Team Note of Deobureo Minkyu Party

koosaga, hyea, alex9801

Compiled on March 23, 2018

\mathbf{C}	Contents	4	Geo	ometry			
1	Flows, Matching 2 1.1 Hopcroft-Karp Bipartite Matching		4.1 4.2 4.3 4.4	Green's Theorem	14 14		
	1.3 Min Cost Max Flow 3 1.4 Hell-Joseon style MCMF 3 1.5 Circulation Problem 4 1.6 Min Cost Circulation (WIP) 5 1.7 Gomory-Hu Tree 5		4.5 4.6 4.7	Half-plane Intersection	15 16		
	1.8 Blossom Algorithm for General Matching	5	Ma 5.1	FFT / NTT			
2	Graph 8 2.1 2-SAT 8 2.2 BCC 8 2.3 Splay Tree + Link-Cut Tree 8 2.4 Offline Dynamic MST 9 2.5 Dominator Tree 10 2.6 Global Min-Cut 11 2.7 K-shortest path (WIP) 11		5.2 5.3 5.4 5.5 5.6 5.7 5.8	Hell-Joseon style FFT NTT Polynomial Division Simplex Algorithm Range Prime Counting Discrete Square Root Miller-Rabin Test + Pollard Rho Factorization Highly Composite Numbers, Large Prime	18 19 20 20 20		
	2.8 Edmond's Directed MST (WIP)	6	6.1	scellaneous Popular Optimization Technique			
3	Strings 11 3.1 Aho-Corasick Algorithm 11 3.2 Suffix Array 12 3.3 Manacher's Algorithm 12 3.4 Palindromic Tree (WIP) 12 3.5 Circular LCS 13		6.2 6.3 6.4 6.5 6.6	Nasty Stack Hacks	22 22 22		

KAIST - Deobureo Minkyu Party.

Page 2 of 23

```
럭스를 럭스답게 든든한 연습헬팟 더불어민규당 hyea: Prove by solving. koosaga: Locality to the rescue! alex9801: Isshoman Beenzino
```

1 Flows, Matching

1.1 Hopcroft-Karp Bipartite Matching

```
const int MAXN = 50005, MAXM = 50005;
vector<int> gph[MAXN];
int dis[MAXN], 1[MAXN], r[MAXM], vis[MAXN];
void clear(){ for(int i=0; i<MAXN; i++) gph[i].clear(); }</pre>
void add_edge(int 1, int r){ gph[1].push_back(r); }
bool bfs(int n){
  queue<int> que;
 bool ok = 0;
  memset(dis, 0, sizeof(dis));
  for(int i=0; i<n; i++){</pre>
   if(l[i] == -1 && !dis[i]){
      que.push(i);
      dis[i] = 1;
    }
  while(!que.empty()){
   int x = que.front();
    que.pop();
   for(auto &i : gph[x]){
     if(r[i] == -1) ok = 1;
      else if(!dis[r[i]]){
       dis[r[i]] = dis[x] + 1:
        que.push(r[i]);
   }
  return ok:
bool dfs(int x){
  for(auto &i : gph[x]){
    if(r[i] == -1 \mid | (!vis[r[i]] \&\& dis[r[i]] == dis[x] + 1 \&\& dfs(r[i]))){
     vis[r[i]] = 1; l[x] = i; r[i] = x;
      return 1;
   }
 }
  return 0;
int match(int n){
 memset(1, -1, sizeof(1));
```

```
memset(r, -1, sizeof(r));
 int ret = 0:
 while(bfs(n)){
   memset(vis, 0, sizeof(vis));
   for(int i=0: i<n: i++) if(l[i] == -1 \&\& dfs(i)) ret++:
 }
 return ret;
bool chk[MAXN + MAXM];
void rdfs(int x, int n){
 if(chk[x]) return;
 chk[x] = 1;
 for(auto &i : gph[x]){
   chk[i + n] = 1;
   rdfs(r[i], n);
 }
vector<int> getcover(int n, int m){ // solve min. vertex cover
 match(n):
 memset(chk, 0, sizeof(chk));
 for(int i=0: i<n: i++) if(l[i] == -1) rdfs(i, n):
 vector<int> v;
 for(int i=0; i<n; i++) if(!chk[i]) v.push_back(i);</pre>
 for(int i=n; i<n+m; i++) if(chk[i]) v.push_back(i);</pre>
 return v;
1.2 Dinic's Algorithm
const int MAXN = 505;
struct edg{int pos, cap, rev;};
vector<edg> gph[MAXN];
void clear(){for(int i=0; i<MAXN; i++) gph[i].clear();}</pre>
void add edge(int s. int e. int x){
 gph[s].push_back({e, x, (int)gph[e].size()});
 gph[e].push_back({s, 0, (int)gph[s].size()-1});
int dis[MAXN], pnt[MAXN];
bool bfs(int src, int sink){
 memset(dis, 0, sizeof(dis));
 memset(pnt, 0, sizeof(pnt));
 queue<int> que;
 que.push(src);
 dis[src] = 1;
 while(!que.empty()){
   int x = que.front();
   que.pop():
   for(auto &e : gph[x]){
     if(e.cap > 0 && !dis[e.pos]){
        dis[e.pos] = dis[x] + 1;
        que.push(e.pos);
```

KAIST - Deobureo Minkyu Party.

Page 3 of 23

```
}
  return dis[sink] > 0;
int dfs(int x, int sink, int f){
  if(x == sink) return f;
 for(; pnt[x] < gph[x].size(); pnt[x]++){</pre>
    edg e = gph[x][pnt[x]];
    if(e.cap > 0 \&\& dis[e.pos] == dis[x] + 1){
      int w = dfs(e.pos, sink, min(f, e.cap));
      if(w){
        gph[x][pnt[x]].cap -= w;
        gph[e.pos][e.rev].cap += w;
        return w;
     }
    }
 }
  return 0;
lint match(int src. int sink){
 lint ret = 0;
  while(bfs(src, sink)){
    int r:
    while((r = dfs(src, sink, 2e9))) ret += r;
  return ret:
}
      Min Cost Max Flow
const int MAXN = 100;
struct mincostflow{
  struct edg{ int pos, cap, rev, cost; };
  vector<edg> gph[MAXN];
  void clear(){
   for(int i=0; i<MAXN; i++) gph[i].clear();</pre>
  void add edge(int s. int e. int x. int c){
    gph[s].push_back({e, x, (int)gph[e].size(), c});
    gph[e].push_back({s, 0, (int)gph[s].size()-1, -c});
  int dist[MAXN], pa[MAXN], pe[MAXN];
  bool inque[MAXN];
  bool spfa(int src, int sink){
    memset(dist, 0x3f, sizeof(dist));
    memset(inque, 0, sizeof(inque));
    queue<int> que;
    dist[src] = 0;
    inque[src] = 1;
```

que.push(src);

```
bool ok = 0;
   while(!que.empty()){
     int x = que.front();
      que.pop();
     if(x == sink) ok = 1:
      inque[x] = 0;
     for(int i=0; i<gph[x].size(); i++){</pre>
        edg e = gph[x][i];
        if(e.cap > 0 \&\& dist[e.pos] > dist[x] + e.cost){
          dist[e.pos] = dist[x] + e.cost;
          pa[e.pos] = x;
          pe[e.pos] = i;
          if(!inque[e.pos]){
           inque[e.pos] = 1;
           que.push(e.pos);
   }
   return ok;
 int match(int src, int sink){
   int ret = 0:
   while(spfa(src, sink)){
     int cap = 1e9;
     for(int pos = sink; pos != src; pos = pa[pos]){
        cap = min(cap, gph[pa[pos]][pe[pos]].cap);
     ret += dist[sink] * cap:
     for(int pos = sink; pos != src; pos = pa[pos]){
        int rev = gph[pa[pos]][pe[pos]].rev;
        gph[pa[pos]][pe[pos]].cap -= cap;
        gph[pos][rev].cap += cap;
   }
   return ret;
 }
}mcmf;
1.4 Hell-Joseon style MCMF
const int MAXN = 100:
struct mincostflow{
 struct edg{ int pos, cap, rev, cost; };
 vector<edg> gph[MAXN];
 void clear(){ for(int i=0; i<MAXN; i++) gph[i].clear(); }</pre>
 void add edge(int s, int e, int x, int c){
   gph[s].push_back({e, x, (int)gph[e].size(), c});
   gph[e].push_back({s, 0, (int)gph[s].size()-1, -c});
 int phi[MAXN], inque[MAXN], dist[MAXN];
```

```
void prep(int src, int sink){
  memset(phi, 0x3f, sizeof(phi));
  memset(dist, 0x3f, sizeof(dist));
  queue<int> que;
  que.push(src):
  inque[src] = 1;
  while(!que.empty()){
   int x = que.front();
    que.pop();
   inque[x] = 0;
   for(auto &i : gph[x]){
      if(i.cap > 0 && phi[i.pos] > phi[x] + i.cost){
        phi[i.pos] = phi[x] + i.cost;
        if(!inque[i.pos]){
         inque[i.pos] = 1;
          que.push(i.pos);
     }
   }
  for(int i=0: i<MAXN: i++){</pre>
    for(auto &j : gph[i]){
      if(j.cap > 0) j.cost += phi[i] - phi[j.pos];
   }
  }
  priority_queue<pi, vector<pi>, greater<pi> > pq;
  pg.push(pi(0, src)):
  dist[src] = 0;
  while(!pq.empty()){
    auto 1 = pq.top();
    pq.pop();
    if(dist[1.second] != 1.first) continue;
    for(auto &i : gph[l.second]){
     if(i.cap > 0 && dist[i.pos] > 1.first + i.cost){
        dist[i.pos] = l.first + i.cost;
        pq.push(pi(dist[i.pos], i.pos));
     }
    }
 }
}
bool vis[MAXN];
int ptr[MAXN];
int dfs(int pos, int sink, int flow){
 vis[pos] = 1;
  if(pos == sink) return flow;
  for(; ptr[pos] < gph[pos].size(); ptr[pos]++){</pre>
    auto &i = gph[pos][ptr[pos]];
   if(!vis[i.pos] && dist[i.pos] == i.cost + dist[pos] && i.cap > 0){
     int ret = dfs(i.pos, sink, min(i.cap, flow));
      if(ret != 0){
```

```
i.cap -= ret;
          gph[i.pos][i.rev].cap += ret;
         return ret:
     }
   }
   return 0;
 int match(int src, int sink, int sz){
   prep(src, sink);
   for(int i=0; i<sz; i++) dist[i] += phi[sink] - phi[src];</pre>
   int ret = 0:
   while(true){
     memset(ptr, 0, sizeof(ptr));
     memset(vis, 0, sizeof(vis));
     int tmp = 0:
     while((tmp = dfs(src, sink, 1e9))){
       ret += dist[sink] * tmp;
       memset(vis, 0, sizeof(vis));
      tmp = 1e9:
     for(int i=0; i<sz; i++){</pre>
       if(!vis[i]) continue;
       for(auto &j : gph[i]){
         if(j.cap > 0 && !vis[j.pos]){
            tmp = min(tmp, (dist[i] + j.cost) - dist[j.pos]);
         }
       }
     if(tmp > 1e9 - 200) break;
     for(int i=0; i<sz; i++){</pre>
        if(!vis[i]) dist[i] += tmp;
   }
   return ret;
 }
}mcmf;
1.5 Circulation Problem
struct circ{
 maxflow mf:
 lint lsum:
 void clear(){
   lsum = 0;
   mf.clear();
 void add_edge(int s, int e, int l, int r){
   lsum += 1:
   mf.add\_edge(s + 2, e + 2, r - 1);
   mf.add_edge(0, e + 2, 1);
```

```
mf.add_edge(s + 2, 1, 1);
}
bool solve(int s, int e){
   mf.add_edge(e+2, s+2, 1e9); // to reduce as maxflow with lower bounds, in circulation problem skip this line
   return lsum == mf.match(0, 1);
   // to get maximum LR flow, run maxflow from s+2 to e+2 again
}
circ;
```

1.6 Min Cost Circulation (WIP)

Should be added.

1.7 Gomory-Hu Tree

```
struct edg{ int s, e, x; };
vector<edg> edgs;
maxflow mf;
void clear(){edgs.clear();}
void add_edge(int s, int e, int x){edgs.push_back({s, e, x});}
bool vis[MAXN];
void dfs(int x){
 if(vis[x]) return;
 vis[x] = 1;
 for(auto &i : mf.gph[x]) if(i.cap > 0) dfs(i.pos);
vector<pi> solve(int n){ // i - j cut : i - j minimum edge cost. 0 based.
  vector<pi> ret(n); // if i > 0, stores pair(parent,cost)
  for(int i=1; i<n; i++){
   for(auto &j : edgs){
      mf.add_edge(j.s, j.e, j.x);
      mf.add_edge(j.e, j.s, j.x);
    ret[i].first = mf.match(i, ret[i].second);
    memset(vis, 0, sizeof(vis));
    dfs(i):
    for(int j=i+1; j<n; j++){</pre>
     if(ret[j].second == ret[i].second && vis[j]){
        ret[j].second = i;
     }
    }
    mf.clear();
  return ret;
```

1.8 Blossom Algorithm for General Matching

```
const int MAXN = 2020 + 1;
struct GM { // 1-based Vertex index
```

```
int vis[MAXN], par[MAXN], orig[MAXN], match[MAXN], aux[MAXN], t, N;
vector<int> conn[MAXN];
queue<int> 0:
void addEdge(int u, int v) {
  conn[u].push_back(v); conn[v].push_back(u);
void init(int n) {
 N = n: t = 0:
 for(int i=0; i<=n; ++i) {</pre>
    conn[i].clear():
    match[i] = aux[i] = par[i] = 0;
}
void augment(int u, int v) {
  int pv = v, nv;
   pv = par[v]; nv = match[pv];
   match[v] = pv; match[pv] = v;
   v = nv:
 } while(u != pv);
int lca(int v, int w) {
  ++t;
  while(true) {
   if(v) {
      if(aux[v] == t) return v: aux[v] = t:
      v = orig[par[match[v]]];
    swap(v, w);
void blossom(int v, int w, int a) {
  while(orig[v] != a) {
   par[v] = w: w = match[v]:
   if(vis[w] == 1) Q.push(w), vis[w] = 0;
    orig[v] = orig[w] = a;
   v = par[w];
bool bfs(int u) {
 fill(vis+1, vis+1+N, -1); iota(orig + 1, orig + N + 1, 1);
 Q = queue<int> (); Q.push(u); vis[u] = 0;
  while(!Q.empty()) {
   int v = Q.front(); Q.pop();
   for(int x: conn[v]) {
      if(vis[x] == -1) {
        par[x] = v; vis[x] = 1;
        if(!match[x]) return augment(u, x), true;
        Q.push(match[x]); vis[match[x]] = 0;
```

```
else if(vis[x] == 0 && orig[v] != orig[x]) {
          int a = lca(orig[v], orig[x]);
          blossom(x, v, a); blossom(v, x, a);
      }
    }
    return false;
  int Match() {
    int ans = 0:
    //find random matching (not necessary, constant improvement)
    vector<int> V(N-1); iota(V.begin(), V.end(), 1);
    shuffle(V.begin(), V.end(), mt19937(0x94949));
    for(auto x: V) if(!match[x]){
      for(auto y: conn[x]) if(!match[y]) {
        match[x] = y, match[y] = x;
        ++ans; break;
      }
    }
    for(int i=1; i<=N; ++i) if(!match[i] && bfs(i)) ++ans;</pre>
    return ans:
 }
};
```

1.9 Blossom Algorithm for Weighted General Matching

```
// https://github.com/tzupengwang/PECaveros/blob/master/
// codebook/graph/BorrowedGeneralWeightedMatching.cpp
// N^3 (but fast in practice)
struct WeightGraph {
  static const int INF = INT_MAX;
  static const int N = 514;
  struct edge{
  int u.v.w: edge(){}
  edge(int ui,int vi,int wi)
    :u(ui).v(vi).w(wi){}
 };
  int n,n_x;
  edge g[N*2][N*2]:
  int lab[N*2];
  int match[N*2],slack[N*2],st[N*2],pa[N*2];
  int flo_from[N*2][N+1],S[N*2],vis[N*2];
  vector<int> flo[N*2];
  queue<int> q;
  int e_delta(const edge &e){
  return lab[e.u]+lab[e.v]-g[e.u][e.v].w*2;
  void update_slack(int u,int x){
  if(!slack[x]||e_delta(g[u][x])<e_delta(g[slack[x]][x]))slack[x]=u;</pre>
  }
  void set_slack(int x){
```

```
slack[x]=0;
for(int u=1:u<=n:++u)
  if(g[u][x].w>0&&st[u]!=x&&S[st[u]]==0)
  update_slack(u,x);
void q_push(int x){
if(x<=n)q.push(x);</pre>
else for(size_t i=0;i<flo[x].size();i++)</pre>
  q_push(flo[x][i]);
void set_st(int x,int b){
st[x]=b:
if(x>n)for(size_t i=0;i<flo[x].size();++i)</pre>
  set_st(flo[x][i],b);
int get pr(int b.int xr){
int pr=find(flo[b].begin(),flo[b].end(),xr)-flo[b].begin();
if(pr%2==1){
  reverse(flo[b].begin()+1,flo[b].end());
  return (int)flo[b].size()-pr;
}else return pr:
}
void set_match(int u,int v){
match[u]=g[u][v].v;
if(u<=n) return;</pre>
edge e=g[u][v];
int xr=flo_from[u][e.u],pr=get_pr(u,xr);
for(int i=0;i<pr;++i)set_match(flo[u][i],flo[u][i^1]);</pre>
set_match(xr,v);
rotate(flo[u].begin(),flo[u].begin()+pr,flo[u].end());
void augment(int u.int v){
for(;;){
  int xnv=st[match[u]]:
  set match(u.v):
  if(!xnv)return;
  set_match(xnv,st[pa[xnv]]);
  u=st[pa[xnv]],v=xnv;
}
int get_lca(int u,int v){
static int t=0:
for(++t;u||v;swap(u,v)){
 if(u==0)continue;
  if(vis[u]==t)return u:
  vis[u]=t;
  u=st[match[u]]:
  if(u)u=st[pa[u]];
return 0;
```

KAIST - Deobureo Minkyu Party.

Page 7 of 23

```
void add_blossom(int u,int lca,int v){
int b=n+1:
while (b \le n_x \& st[b]) + +b;
if(b>n x)++n x:
lab[b]=0,S[b]=0;
match[b]=match[lca];
flo[b].clear():
flo[b].push_back(lca);
for(int x=u,y;x!=lca;x=st[pa[y]])
 flo[b].push_back(x),flo[b].push_back(y=st[match[x]]),q_push(y);
reverse(flo[b].begin()+1,flo[b].end());
for(int x=v,y;x!=lca;x=st[pa[y]])
 flo[b].push_back(x),flo[b].push_back(y=st[match[x]]),q_push(y);
set_st(b,b);
for (int x=1:x\leq n x:++x) g[b][x]. w=g[x][b].w=0:
for(int x=1;x<=n;++x)flo_from[b][x]=0;</pre>
for(size_t i=0;i<flo[b].size();++i){</pre>
  int xs=flo[b][i]:
  for(int x=1;x<=n_x;++x)</pre>
  if(g[b][x].w==0||e_delta(g[xs][x]) < e_delta(g[b][x]))
    g[b][x]=g[xs][x],g[x][b]=g[x][xs];
  for(int x=1;x<=n;++x)</pre>
  if(flo_from[xs][x])flo_from[b][x]=xs;
set slack(b):
void expand_blossom(int b){
for(size_t i=0;i<flo[b].size();++i)</pre>
  set_st(flo[b][i],flo[b][i]);
int xr=flo_from[b][g[b][pa[b]].u],pr=get_pr(b,xr);
for(int i=0;i<pr;i+=2){</pre>
  int xs=flo[b][i],xns=flo[b][i+1];
  pa[xs]=g[xns][xs].u;
  S[xs]=1,S[xns]=0;
  slack[xs]=0,set_slack(xns);
  q_push(xns);
S[xr]=1,pa[xr]=pa[b];
for(size t i=pr+1:i<flo[b].size():++i){</pre>
  int xs=flo[b][i];
 S[xs]=-1,set_slack(xs);
}
st[b]=0;
}
bool on_found_edge(const edge &e){
int u=st[e.u],v=st[e.v];
if(S[v]==-1){
 pa[v]=e.u,S[v]=1;
  int nu=st[match[v]];
```

```
slack[v]=slack[nu]=0;
  S[nu]=0,q_push(nu);
}else if(S[v]==0){
  int lca=get_lca(u,v);
  if(!lca)return augment(u,v),augment(v,u),true:
  else add_blossom(u,lca,v);
return false:
}
bool matching(){
memset(S+1,-1,sizeof(int)*n_x);
memset(slack+1,0,sizeof(int)*n_x);
q=queue<int>();
for(int x=1;x<=n_x;++x)</pre>
  if (st[x] == x \& \ell \cdot match[x]) pa[x] = 0, S[x] = 0, q_push(x);
if(q.empty())return false;
for(;;){
  while(q.size()){
  int u=q.front();q.pop();
  if(S[st[u]]==1)continue;
  for(int v=1:v<=n:++v)</pre>
    if(g[u][v].w>0&&st[u]!=st[v]){
    if(e_delta(g[u][v])==0){
      if(on_found_edge(g[u][v]))return true;
    }else update_slack(u,st[v]);
  }
  int d=INF;
  for(int b=n+1:b<=n x:++b)
  if(st[b] == b\&\&S[b] == 1)d = min(d, lab[b]/2);
  for(int x=1;x<=n_x;++x)</pre>
  if(st[x]==x&&slack[x]){
    if(S[x]==-1)d=min(d,e_delta(g[slack[x]][x]));
    else if(S[x]==0)d=min(d,e_delta(g[slack[x]][x])/2);
  }
  for(int u=1;u<=n;++u){
  if(S[st[u]]==0){
    if(lab[u] <= d) return 0;</pre>
    lab[u]-=d:
  }else if(S[st[u]]==1)lab[u]+=d:
  for(int b=n+1;b<=n_x;++b)</pre>
  if(st[b]==b){}
    if(S[st[b]]==0)lab[b]+=d*2;
    else if(S[st[b]]==1)lab[b]-=d*2;
  }
  q=queue<int>();
  for(int x=1:x<=n x:++x)
  if(st[x]==x&&slack[x]&&st[slack[x]]!=x&&e_delta(g[slack[x]][x])==0)
    if(on_found_edge(g[slack[x]][x]))return true;
```

KAIST - Deobureo Minkyu Party. Page 8 of 23

```
if(st[b]==b\&\&S[b]==1\&\&lab[b]==0)expand_blossom(b);
  }
  return false;
  pair<long long,int> solve(){
  memset(match+1,0,sizeof(int)*n);
  n \times = n:
  int n_matches=0;
  long long tot_weight=0;
  for(int u=0;u<=n;++u)st[u]=u,flo[u].clear();</pre>
  int w max=0:
  for(int u=1:u<=n:++u)
   for(int v=1; v<=n;++v){
    flo_from[u][v]=(u==v?u:0);
    w_max=max(w_max,g[u][v].w);
  for(int u=1;u<=n;++u)lab[u]=w_max;</pre>
  while(matching())++n_matches;
  for(int u=1;u<=n;++u)
    if (match[u]&&match[u]<u)
    tot_weight+=g[u][match[u]].w;
  return make_pair(tot_weight,n_matches);
  void add_edge( int ui , int vi , int wi ){
  g[ui][vi].w = g[vi][ui].w = wi;
  void init( int _n ){
  n = n:
  for(int u=1;u<=n:++u)</pre>
    for(int v=1; v<=n;++v)</pre>
    g[u][v]=edge(u,v,0);
} graph;
2 Graph
2.1 2-SAT
```

for(int b=n+1; $b \le n_x$;++b)

```
strongly_connected scc;
int n: // = number of clauses
void init(int _n){ scc.clear(); n = _n; }
int NOT(int x) { return x \ge n ? (x - n) : (x + n); }
void add_edge(int x, int y){ // input ~x to denote NOT
  if((x >> 31) & 1) x = (x) + n;
  if((v >> 31) \& 1) v = (~v) + n:
  scc.add_edge(x, y), scc.add_edge(NOT(y), NOT(x));
bool satisfy(vector<bool> &res){
  res.resize(n);
```

```
scc.get_scc(2*n);
 for(int i=0; i<n; i++){</pre>
   if(scc.comp[i] == scc.comp[NOT(i)]) return 0;
   if(scc.comp[i] < scc.comp[NOT(i)]) res[i] = 0;</pre>
   else res[i] = 1:
 }
 return 1;
2.2 BCC
void color(int x, int p){
 if(p){
   bcc[p].push_back(x);
    cmp[x].push_back(p);
 for(auto &i : gph[x]){
   if(cmp[i].size()) continue;
   if(low[i] >= dfn[x]){
     bcc[++c].push_back(x);
      cmp[x].push_back(c);
     color(i, c);
    else color(i, p);
2.3 Splay Tree + Link-Cut Tree
// Checklist 1. Is it link cut, or splay?
// Checklist 2. In link cut, is son always root?
void rotate(node *x){
 if(!x->p) return;
 push(x->p); // if there's lazy stuff
 push(x);
 node *p = x->p;
 bool is_left = (p->l == x);
 node *b = (is_left ? x->r : x->l);
 x->p = p->p:
 if(x-p \&\& x-p-1 == p) x-p-1 = x;
 if(x-p \&\& x-p-r == p) x-p-r = x;
 if(is_left){
   if(b) b \rightarrow p = p;
   p->1 = b;
   p->p = x;
   x->r = p;
 }
 else{
   if(b) b \rightarrow p = p;
   p->r = b;
   p->p = x;
```

KAIST - Deobureo Minkyu Party.

Page 9 of 23

```
x->1 = p;
  pull(p); // if there's something to pull up
  pull(x);
  if(!x->p) root = x; // IF YOU ARE SPLAY TREE
  if(p->pp){ // IF YOU ARE LINK CUT TREE
    x->pp = p->pp;
    p->pp = NULL;
void splay(node *x){
  while(x->p){
    node *p = x->p;
    node *g = p->p;
    if(g){
      if((p\rightarrow 1 == x) \hat{(g\rightarrow 1 == p)}) rotate(x);
      else rotate(p);
    rotate(x);
void access(node *x){
  splay(x);
  push(x);
  if(x->r){
   x->r->pp = x;
    x->r->p = NULL;
    x->r = NULL;
  }
  pull(x);
  while(x->pp){
    node *nxt = x->pp;
    splay(nxt);
    push(nxt);
    if(nxt->r){
      nxt->r->pp = nxt;
      nxt->r->p = NULL;
      nxt->r = NULL;
    nxt->r = x:
    x->p = nxt;
    x->pp = NULL;
    pull(nxt);
    splay(x);
node *root(node *x){
  access(x):
  while (x->1) {
    push(x);
```

```
x = x->1;
 }
 access(x);
 return x;
node *par(node *x){
 access(x);
 if(!x->1) return NULL;
 push(x);
 x = x \rightarrow 1;
 while(x->r){
   push(x);
   x = x->r;
 }
 access(x);
 return x;
node *lca(node *s, node *t){
 access(s);
 access(t);
 splay(s);
 if(s->pp == NULL) return s;
 return s->pp;
void link(node *par, node *son){
 access(par);
 access(son):
 son->rev ^= 1; // remove if needed
 push(son);
 son->1 = par;
 par->p = son;
 pull(son);
void cut(node *p){
 access(p);
 push(p);
 if(p->1){
   p->1->p = NULL;
   p->1 = NULL;
 pull(p);
2.4 Offline Dynamic MST
int n, m, q;
int st[MAXN], ed[MAXN], cost[MAXN], chk[MAXN];
pi qr[MAXN];
bool cmp(int &a, int &b){ return pi(cost[a], a) < pi(cost[b], b);}</pre>
```

KAIST - Deobureo Minkyu Party.

Page 10 of 23

```
void contract(int s, int e, vector<int> v, vector<int> &must_mst, vector<int>
&maybe mst){
  sort(v.begin(), v.end(), cmp);
  vector<pi> snapshot;
  for(int i=s: i<=e: i++) disj.uni(st[ar[i].first], ed[ar[i].first], snapshot):</pre>
  for(auto &i : v) if(disj.uni(st[i], ed[i], snapshot)) must_mst.push_back(i);
  disj.revert(snapshot);
  for(auto &i : must mst) disj.uni(st[i], ed[i], snapshot):
  for(auto &i : v) if(disj.uni(st[i], ed[i], snapshot)) maybe_mst.push_back(i);
  disi.revert(snapshot):
}
void solve(int s, int e, vector<int> v, lint cv){
  if(s == e){}
    cost[qr[s].first] = qr[s].second;
    if(st[ar[s].first] == ed[ar[s].first]){
      printf("%lld\n", cv);
      return:
    }
    int minv = qr[s].second;
    for(auto &i : v) minv = min(minv, cost[i]):
    printf("%lld\n",minv + cv);
    return;
  int m = (s+e)/2;
  vector<int> lv = v. rv = v:
  vector<int> must mst. maybe mst:
  for(int i=m+1; i<=e; i++){</pre>
    chk[ar[i].first]--:
    if(chk[qr[i].first] == 0) lv.push_back(qr[i].first);
  vector<pi> snapshot;
  contract(s, m, lv, must_mst, maybe_mst);
  lint lcv = cv:
  for(auto &i : must_mst) lcv += cost[i], disj.uni(st[i], ed[i], snapshot);
  solve(s, m, maybe_mst, lcv);
  disj.revert(snapshot);
  must_mst.clear(); maybe_mst.clear();
  for(int i=m+1; i<=e; i++) chk[qr[i].first]++;</pre>
  for(int i=s: i<=m: i++){</pre>
    chk[qr[i].first]--;
    if(chk[qr[i].first] == 0) rv.push_back(qr[i].first);
  lint rcv = cv;
  contract(m+1, e, rv, must_mst, maybe_mst);
  for(auto &i : must_mst) rcv += cost[i], disj.uni(st[i], ed[i], snapshot);
  solve(m+1, e, maybe_mst, rcv);
  disi.revert(snapshot):
  for(int i=s; i<=m; i++) chk[qr[i].first]++;</pre>
}
```

```
int main(){
 scanf("%d %d".&n.&m):
 vector<int> ve:
 for(int i=0: i<m: i++){</pre>
   scanf("%d %d %d", &st[i], &ed[i], &cost[i]);
 scanf("%d",&g):
 for(int i=0; i<q; i++){
   scanf("%d %d",&qr[i].first,&qr[i].second);
   qr[i].first--;
   chk[qr[i].first]++;
 disj.init(n);
 for(int i=0; i<m; i++) if(!chk[i]) ve.push_back(i);</pre>
 solve(0, q-1, ve, 0);
2.5 Dominator Tree
namespace dtree{ // by cki86201
 vector<int> E[MAXN], RE[MAXN], rdom[MAXN];
 int S[MAXN], RS[MAXN], cs;
 int par[MAXN], val[MAXN], sdom[MAXN], rp[MAXN], dom[MAXN];
 void clear(int n) {
   cs = 0:
   for(int i=0;i<=n;i++) {</pre>
     par[i] = val[i] = sdom[i] = rp[i] = dom[i] = S[i] = RS[i] = 0;
     E[i].clear(); RE[i].clear(); rdom[i].clear();
   }
 void add_edge(int x, int y) { E[x].push_back(y); }
 void Union(int x, int y) { par[x] = y; }
 int Find(int x, int c = 0) {
   if(par[x] == x) return c ? -1 : x;
   int p = Find(par[x], 1);
   if(p == -1) return c ? par[x] : val[x];
   if(sdom[val[x]] > sdom[val[par[x]]]) val[x] = val[par[x]];
   par[x] = p;
   return c ? p : val[x];
 void dfs(int x) {
   RS[S[x] = ++cs] = x;
   par[cs] = sdom[cs] = val[cs] = cs;
   for(int e : E[x]) {
     if(S[e] == 0) dfs(e), rp[S[e]] = S[x];
     RE[S[e]].push_back(S[x]);
   }
```

KAIST - Deobureo Minkyu Party.

Page 11 of 23

```
int solve(int s, int *up) { // Calculate idoms
                                                                                             vis[t] = 1;
   dfs(s):
                                                                                            for(int j=0; j<n; j++){</pre>
   for(int i=cs:i:i--) {
                                                                                               if(!vis[j]){
     for(int e : RE[i]) sdom[i] = min(sdom[i], sdom[Find(e)]);
                                                                                                adj[s][j] += adj[t][j];
     if(i > 1) rdom[sdom[i]].push_back(i);
                                                                                                adi[i][s] += adi[i][t];
     for(int e : rdom[i]) {
                                                                                              }
       int p = Find(e);
       if(sdom[p] == i) dom[e] = i;
                                                                                            adj[s][s] = 0;
       else dom[e] = p;
                                                                                          }
                                                                                          return ans;
     if(i > 1) Union(i, rp[i]);
                                                                                        }
                                                                                       };
   for(int i=2;i<=cs;i++) if(sdom[i] != dom[i]) dom[i] = dom[dom[i]];</pre>
   for(int i=2;i<=cs;i++) up[RS[i]] = RS[dom[i]];</pre>
                                                                                       2.7 K-shortest path (WIP)
   return cs;
                                                                                         Should be added.
 }
                                                                                       2.8 Edmond's Directed MST (WIP)
     Global Min-Cut
                                                                                         Should be added.
namespace stoer_wagner{
  int minimum_cut_phase(int n, int &s, int &t, vector<vector<int>> &adj, vector<int>
                                                                                       2.9 Vizing Theorem for Edge Coloring (WIP)
 vis){
                                                                                         Should be added.
   vector<int> dist(n);
    int mincut = 1e9:
    while(true){
                                                                                          Strings
     int pos = -1, cur = -1e9;
     for(int i=0; i<n; i++){</pre>
                                                                                       3.1 Aho-Corasick Algorithm
       if(!vis[i] && dist[i] > cur){
          cur = dist[i];
                                                                                       const int MAXN = 100005, MAXC = 26;
                                                                                       int trie[MAXN][MAXC], fail[MAXN], term[MAXN], piv;
         pos = i;
       }
                                                                                       void init(vector<string> &v){
                                                                                        memset(trie, 0, sizeof(trie));
     if(pos == -1) break:
                                                                                        memset(fail, 0, sizeof(fail));
                                                                                        memset(term, 0, sizeof(term));
      s = t;
     t = pos;
                                                                                        piv = 0:
     mincut = cur;
                                                                                        for(auto &i : v){
     vis[pos] = 1;
                                                                                          int p = 0;
     for(int i=0; i<n; i++){</pre>
                                                                                          for(auto &j : i){
       if(!vis[i]) dist[i] += adj[pos][i];
                                                                                            if(!trie[p][j]) trie[p][j] = ++piv;
     }
                                                                                            p = trie[p][j];
   }
                                                                                          }
    return mincut; // optimal s-t cut here is, {t} and V \ {t}
                                                                                          term[p] = 1;
  int solve(int n, vector<vector<int>> adj){
                                                                                        queue<int> que;
   if(n <= 1) return 0;
                                                                                        for(int i=0; i<MAXC; i++){</pre>
    vector<int> vis(n):
                                                                                          if(trie[0][i]) que.push(trie[0][i]);
    int ans = 1e9;
   for(int i=0; i<n-1; i++){
                                                                                         while(!que.empty()){
     int s, t;
                                                                                          int x = que.front();
                                                                                          que.pop();
     ans = min(ans, minimum_cut_phase(n, s, t, adj, vis));
```

KAIST - Deobureo Minkyu Party.

Page 12 of 23

```
for(int i=0; i<MAXC; i++){</pre>
      if(trie[x][i]){
        int p = fail[x];
        while(p && !trie[p][i]) p = fail[p];
        p = trie[p][i]:
        fail[trie[x][i]] = p;
        if(term[p]) term[trie[x][i]] = 1;
        que.push(trie[x][i]);
    }
 }
}
bool query(string &s){
  int p = 0;
  for(auto &i : s){
    while(p && !trie[p][i]) p = fail[p];
    p = trie[p][i];
    if(term[p]) return 1;
 }
 return 0;
3.2 Suffix Array
  Should be revised.
const int MAXN = 500005;
int ord[MAXN], nord[MAXN], cnt[MAXN], aux[MAXN];
void solve(int n, char *str, int *sfx, int *rev, int *lcp){
  int p = 1;
  memset(ord, 0, sizeof(ord));
  for(int i=0; i<n; i++){</pre>
    sfx[i] = i:
    ord[i] = str[i]:
  int pnt = 1;
  while(1){
    memset(cnt, 0, sizeof(cnt));
    for(int i=0; i<n; i++) cnt[ord[min(i+p, n)]]++;</pre>
    for(int i=1; i<=n || i<=255; i++) cnt[i] += cnt[i-1];
    for(int i=n-1: i>=0: i--)
      aux[--cnt[ord[min(i+p, n)]]] = i;
    memset(cnt, 0, sizeof(cnt));
    for(int i=0; i<n; i++) cnt[ord[i]]++;</pre>
    for(int i=1; i<=n || i<=255; i++) cnt[i] += cnt[i-1];
    for(int i=n-1; i>=0; i--)
     sfx[--cnt[ord[aux[i]]]] = aux[i]:
    if(pnt == n) break;
    pnt = 1;
    nord[sfx[0]] = 1;
```

for(int i=1; i<n; i++){</pre>

```
if(ord[sfx[i-1]] != ord[sfx[i]] || ord[sfx[i-1] + p] != ord[sfx[i] + p]){
     }
     nord[sfx[i]] = pnt;
   memcpy(ord, nord, sizeof(int) * n);
   p *= 2;
 }
 for(int i=0; i<n; i++) rev[sfx[i]] = i;</pre>
 int h = 0:
 for(int i=0; i<n; i++){</pre>
   if(rev[i]){
     int prv = sfx[rev[i] - 1];
     while(str[prv + h] == str[i + h]) h++;
     lcp[rev[i]] = h;
   }
   h = \max(h-1, 0);
3.3 Manacher's Algorithm
const int MAXN = 1000005;
int aux[2 * MAXN - 1];
void solve(int n, int *str, int *ret){
 // *ret : number of nonobvious palindromic character pair
 for(int i=0; i<n; i++){
   aux[2*i] = str[i]:
   if(i != n-1) aux[2*i+1] = -1;
 }
 int p = 0, c = 0:
 for(int i=0; i<2*n-1; i++){
   int cur = 0;
   if(i <= p) cur = min(ret[2 * c - i], p - i);
   while(i - cur - 1 >= 0 && i + cur + 1 < 2*n-1 && aux[i-cur-1] == aux[i+cur+1]){
      cur++;
   }
   ret[i] = cur;
   if(i + ret[i] > p){
     p = i + ret[i];
     c = i;
 }
```

3.4 Palindromic Tree (WIP)

Should be added.

KAIST - Deobureo Minkyu Party.

Page 13 of 23

3.5 Circular LCS

```
string s1, s2;
int dp[4005][2005];
int nxt[4005][2005];
int n, m;
void reroot(int px){
  int py = 1;
  while(py <= m && nxt[px][py] != 2) py++;</pre>
  nxt[px][py] = 1;
  while(px < 2 * n \&\& py < m){
    if(nxt[px+1][py] == 3){
      px++;
      nxt[px][py] = 1;
    else if(nxt[px+1][py+1] == 2){
      px++;
      py++;
      nxt[px][py] = 1;
    else py++;
  while(px < 2 * n \&\& nxt[px+1][py] == 3){
    nxt[px][py] = 1;
}
int track(int x, int y, int e){ // use this routine to find LCS as string
  int ret = 0;
  while(y != 0 \&\& x != e){
    if(nxt[x][v] == 1) v--:
    else if(nxt[x][y] == 2) ret += (s1[x] == s2[y]), x--, y--;
    else if(nxt[x][v] == 3) x--:
 }
  return ret;
int solve(string a, string b){
  n = a.size(), m = b.size();
  s1 = "#" + a + a:
  s1 = '#' + b:
  for(int i=0; i<=2*n; i++){
    for(int j=0; j<=m; j++){</pre>
      if(i == 0){
        nxt[i][j] = 3;
        continue;
      }
      if(i == 0){
```

```
nxt[i][j] = 1;
      continue;
    dp[i][j] = -1;
    if(dp[i][j] < dp[i][j-1]){
      dp[i][j] = dp[i][j-1];
      nxt[i][j] = 1;
    if(dp[i][j] < dp[i-1][j-1] + (s1[i] == s2[j])){
      dp[i][j] = dp[i-1][j-1] + (s1[i] == s2[j]);
      nxt[i][j] = 2;
    if(dp[i][j] < dp[i-1][j]){
      dp[i][j] = dp[i-1][j];
      nxt[i][j] = 3;
 }
int ret = dp[n][m];
for(int i=1; i<n; i++){
 reroot(i), ret = max(ret, track(n+i, m, i));
return ret;
```

4 Geometry

4.1 Green's Theorem

Let C is positive, smooth, simple curve. D is region bounded by C.

$$\oint_C (Ldx + Mdy) = \iint_D (\frac{\partial M}{\partial x} - \frac{\partial L}{\partial y})$$

To calculate area, $\frac{\partial M}{\partial x} - \frac{\partial L}{\partial y} = 1$, common selection is $M = \frac{1}{2}x$, $L = -\frac{1}{2}y$.

Line integral of circle parametrized by $(x,y)=(x_C+r_C\cos\theta,\ y_C+r_C\sin\theta)$ is given as follows.: $\frac{1}{2}(r_C(x_C(\sin\theta_f-\sin\theta_i)-y_C(\cos\theta_f-\cos\theta_i))+(\theta_f-\theta_i)r_C^2)$.

Line integral of line parametrized by $(x,y)=t(x_1,y_1)+(1-t)(x_2,y_2)$ is given as follows:: $\frac{1}{2}(x_1y_2-x_2y_1)$.

inline double arc_area(double x, double y, double r, double s, double e){ //s and e
are line integral theta value.
 return (r*(x*(sin(e)-sin(s))-y*(cos(e)-cos(s)))+(e-s)*r*r)*0.5;
}

inline double polygon_area(double x1, double y1, double x2, double y2){ //Shoelace formula

KAIST - Deobureo Minkyu Party.

Page 14 of 23

```
return (x1*y2-x2*y1)*0.5;}
```

4.2 Smallest Enclosing Circle / Sphere

```
namespace cover_2d{
  double eps = 1e-9;
  using Point = complex<double>;
  struct Circle{ Point p; double r; };
  double dist(Point p, Point q){ return abs(p-q); }
  double area2(Point p, Point q){ return (conj(p)*q).imag();}
  bool in(const Circle& c. Point p) { return dist(c.p. p) < c.r + eps: }
  Circle INVAL = Circle{Point(0, 0), -1};
  Circle mCC(Point a, Point b, Point c){
   b -= a: c -= a:
   double d = 2*(conj(b)*c).imag(); if(abs(d)<eps) return INVAL;</pre>
   Point ans = (c*norm(b) - b*norm(c)) * Point(0, -1) / d:
    return Circle{a + ans, abs(ans)};
  Circle solve(vector<Point> p) {
    mt19937 gen(0x94949); shuffle(p.begin(), p.end(), gen);
    Circle c = INVAL;
    for(int i=0; i<p.size(); ++i) if(c.r<0 ||!in(c, p[i])){</pre>
     c = Circle{p[i], 0};
     for(int j=0; j<=i; ++j) if(!in(c, p[j])){
       Circle ans{(p[i]+p[j])*0.5, dist(p[i], p[j])*0.5};
        if(c.r == 0) {c = ans; continue;}
        Circle 1. r: 1 = r = INVAL:
        Point pq = p[i]-p[i];
        for(int k=0; k<=j; ++k) if(!in(ans, p[k])) {</pre>
          double a2 = area2(pq, p[k]-p[i]);
          Circle c = mCC(p[i], p[j], p[k]);
          if(c.r<0) continue:
          else if(a2 > 0 && (1.r<0||area2(pg, c.p-p[i]) > area2(pg, 1.p-p[i]))) 1 =
          else if(a2 < 0 && (r.r<0||area2(pq, c.p-p[i]) < area2(pq, r.p-p[i]))) r =
        if(1.r<0\&\&r.r<0) c = ans:
        else if(1.r<0) c = r;
        else if(r.r<0) c = 1:
        else c = 1.r<=r.r?1:r:
      }
    }
    return c;
}:
namespace cover_3d{
  double enclosing_sphere(vector<double> x, vector<double> y, vector<double> z){
    int n = x.size();
```

```
auto hyp = [](double x, double y, double z){
     return x * x + y * y + z * z;
   };
   double px = 0, py = 0, pz = 0;
   for(int i=0: i<n: i++){
     px += x[i];
     pv += v[i];
     pz += z[i]:
   px *= 1.0 / n:
   py *= 1.0 / n;
   pz *= 1.0 / n;
   double rat = 0.1, maxv:
   for(int i=0; i<10000; i++){
     maxv = -1;
     int maxp = -1:
     for(int j=0; j<n; j++){
       double tmp = hyp(x[j] - px, y[j] - py, z[j] - pz);
        if(maxv < tmp){</pre>
         maxv = tmp;
         maxp = j;
      px += (x[maxp] - px) * rat;
     py += (y[maxp] - py) * rat;
     pz += (z[maxp] - pz) * rat;
     rat *= 0.998:
   return sqrt(maxv);
};
4.3 3D Convex Hull
// code credit : https://gist.github.com/msg555/4963794
struct vec3{
 11 x, y, z;
 vec3(): x(0), y(0), z(0) {}
 vec3(11 a, 11 b, 11 c): x(a), y(b), z(c) {}
 vec3 operator*(const vec3& v) const{ return vec3(y*v.z-z*v.y, z*v.x-x*v.z,
 x*v.v-v*v.x): }
 vec3 operator-(const vec3& v) const{ return vec3(x-v.x, y-v.y, z-v.z); }
 vec3 operator-() const{ return vec3(-x, -y, -z); }
 11 dot(const vec3 &v) const{ return x*v.x+y*v.y+z*v.z; }
};
struct twoset {
 int a, b;
 void insert(int x) { (a == -1 ? a : b) = x; }
 bool contains(int x) { return a == x || b == x: }
 void erase(int x) { (a == x ? a : b) = -1; }
```

KAIST - Deobureo Minkyu Party. Page 15 of 23

```
int size() { return (a != -1) + (b != -1); }
} E[MAXN][MAXN]; // i < j</pre>
struct face{
  vec3 norm:
 ll disc;
  int I[3];
}:
face make_face(int i, int j, int k, int ii, vector<vec3> &A){ // p^T * norm < disc</pre>
  E[i][j].insert(k); E[i][k].insert(j); E[j][k].insert(i);
  face f; f.I[0]=i, f.I[1]=j, f.I[2]=k;
  f.norm = (A[j]-A[i])*(A[k]-A[i]);
  f.disc = f.norm.dot(A[i]);
  if(f.norm.dot(A[ii])>f.disc){
   f.norm = -f.norm:
    f.disc = -f.disc;
  return f;
}
vector<face> get_hull(vector<vec3> &A){
  int N = A.size():
  vector<face> faces; memset(E, -1, sizeof(E));
  faces.push_back(make_face(0,1,2,3,A));
  faces.push_back(make_face(0,1,3,2,A));
  faces.push back(make face(0.2.3.1.A)):
  faces.push_back(make_face(1,2,3,0,A));
  for(int i=4: i<N: ++i){</pre>
   for(int j=0; j<faces.size(); ++j){</pre>
      face f = faces[i];
      if(f.norm.dot(A[i])>f.disc){
        E[f.I[0]][f.I[1]].erase(f.I[2]);
        E[f.I[0]][f.I[2]].erase(f.I[1]);
        E[f.I[1]][f.I[2]].erase(f.I[0]);
        faces[j--] = faces.back();
        faces.pop_back();
    }
    int nf = faces.size():
    for(int j=0; j<nf; ++j){</pre>
      face f=faces[i]:
      for(int a=0: a<3: ++a) for(int b=a+1: b<3: ++b){
        int c=3-a-b:
        if(E[f.I[a]][f.I[b]].size()==2) continue;
        faces.push_back(make_face(f.I[a], f.I[b], i, f.I[c], A));
     }
    }
  return faces:
```

4.4 Dynamic Convex Hull Trick

```
// code credit : https://github.com/niklasb/contest-algos/
// blob/master/convex_hull/dynamic.cpp
using line t = double:
const line_t is_query = -1e18;
struct Line {
 line_t m, b;
  mutable function<const Line*()> succ:
  bool operator<(const Line& rhs) const {
   if (rhs.b != is_query) return m < rhs.m;</pre>
   const Line* s = succ():
   if (!s) return 0:
   line t x = rhs.m:
   return b - s->b < (s->m - m) * x;
 }
};
struct HullDynamic : public multiset<Line> { // will maintain upper hull for maximum
 bool bad(iterator v) {
   auto z = next(y);
   if (y == begin()) {
     if (z == end()) return 0:
     return y->m == z->m && y->b <= z->b;
   auto x = prev(v):
   if (z == end()) return y->m == x->m && y->b <= x->b;
   return (x-b - y-b)*(z-m - y-m) >= (y-b - z-b)*(y-m - x-m);
 }
  void insert_line(line_t m, line_t b) {
   auto v = insert({ m, b }):
   v->succ = [=] { return next(y) == end() ? 0 : &*next(y); };
   if (bad(v)) { erase(v): return: }
   while (next(y) != end() && bad(next(y))) erase(next(y));
    while (y != begin() && bad(prev(y))) erase(prev(y));
 line_t query(line_t x) {
   auto 1 = *lower_bound((Line) { x, is_query });
   return 1.m * x + 1.b:
 }
}H:
     Half-plane Intersection
const double eps = 1e-8;
```

```
typedef pair < long double, long double > pi;
namespace hpi{
bool z(long double x){ return fabs(x) < eps; }</pre>
```

KAIST - Deobureo Minkyu Party. Page 16 of 23

```
struct line{
                                                                                           auto local = [&](pi P, pi a, pi b, pi c) {
    long double a, b, c;
    bool operator<(const line &1)const{</pre>
                                                                                          };
     bool flag1 = pi(a, b) > pi(0, 0);
     bool flag2 = pi(1.a, 1.b) > pi(0, 0):
      if(flag1 != flag2) return flag1 > flag2;
                                                                                          while(s+1 < e){
      long double t = ccw(pi(0, 0), pi(a, b), pi(l.a, l.b));
                                                                                            m = (s+e) / 2;
      return z(t) ? c * hypot(l.a, l.b) < l.c * hypot(a, b) : <math>t > 0;
    pi slope(){ return pi(a, b);}
  };
  pi cross(line a, line b){
                                                                                              else e = m:
    long double det = a.a * b.b - b.a * a.b;
    return pi((a.c * b.b - a.b * b.c) / det, (a.a * b.c - a.c * b.a) / det);
                                                                                             else{ // down
  bool bad(line a, line b, line c){
    if(ccw(pi(0, 0), a.slope(), b.slope()) <= 0) return false;</pre>
   pi crs = cross(a, b);
                                                                                            }
                                                                                          }
   return crs.first * c.a + crs.second * c.b >= c.c:
  bool solve(vector<line> v, vector<pi> &solution){ // ax + by <= c;</pre>
    sort(v.begin(), v.end());
                                                                                          return -1;
    deque<line> dq;
    for(auto &i : v){
      if(!dq.empty() && z(ccw(pi(0, 0), dq.back().slope(), i.slope()))) continue;
                                                                                         4.7 kd-tree
      while(dq.size() >= 2 && bad(dq[dq.size()-2], dq.back(), i)) dq.pop_back();
      while(dq.size() >= 2 && bad(i, dq[0], dq[1])) dq.pop_front();
      dq.push_back(i);
                                                                                         struct node{
                                                                                          pi pnt;
    while(dq.size() > 2 && bad(dq[dq.size()-2], dq.back(), dq[0])) dq.pop_back();
    while(dq.size() > 2 && bad(dq.back(), dq[0], dq[1])) dq.pop_front();
                                                                                         }tree[270000];
    vector<pi> tmp:
    for(int i=0; i<dq.size(); i++){</pre>
                                                                                        pi a[100005];
                                                                                         int n. ok[270000]:
     line cur = dq[i], nxt = dq[(i+1)%dq.size()];
      if(ccw(pi(0, 0), cur.slope(), nxt.slope()) <= eps) return false;</pre>
      tmp.push_back(cross(cur, nxt));
    }
    solution = tmp;
    return true;
};
      Point-in-polygon test / Point-to-polygon tangent
// by zigui
                                                                                          int m = (s+e)/2;
// C : counter_clockwise(C[0] == C[N]), N >= 3
// return highest point in C <- P(clockwise) or -1 if strictly in P
// polygon is strongly convex, C[i] != P
int convex_tangent(vector<pi> &C, pi P, int up = 1){
  auto sign = [&](lint c){ return c > 0 ? up : c == 0 ? 0 : -up; };
```

```
return sign(ccw(P, a, b)) \le 0 && sign(ccw(P, b, c)) >= 0;
 int N = C.size()-1, s = 0, e = N, m;
 if( local(P, C[1], C[0], C[N-1]) ) return 0:
   if( local(P, C[m-1], C[m], C[m+1]) ) return m;
   if ( sign(ccw(P, C[s], C[s+1])) < 0) { // up}
     if (sign(ccw(P, C[m], C[m+1])) > 0) e = m;
     else if( sign(ccw(P, C[m], C[s])) > 0) s = m;
      if (sign(ccw(P, C[m], C[m+1])) < 0) s = m;
     else if( sign(ccw(P, C[m], C[s])) < 0) s = m;
 if( s && local(P, C[s-1], C[s], C[s+1]) ) return s;
 if( e != N && local(P, C[e-1], C[e], C[e+1]) ) return e;
typedef pair<int, int> pi;
 int spl, sx, ex, sy, ey;
lint sqr(int x){ return 111 * x * x: }
bool cmp1(pi a, pi b){ return a < b; }</pre>
bool cmp2(pi a, pi b){ return pi(a.second, a.first) < pi(b.second, b.first); }
// init(0, n-1, 1) : Initialize kd-tree
// set dap = INF, and call solve(1, P). dap = (closest point from P)
void init(int s, int e, int p){ // Initialize kd-tree
 int minx = 1e9, maxx = -1e9, miny = 1e9, maxy = -1e9;
 for(int i=s; i<=e; i++){</pre>
   minx = min(minx, a[i].first);
   miny = min(miny, a[i].second);
   maxx = max(maxx, a[i].first);
   maxv = max(maxv, a[i].second):
```

KAIST - Deobureo Minkyu Party.

Page 17 of 23

```
tree[p].spl = (maxx - minx < maxy - miny);</pre>
  sort(a+s, a+e+1, [&](const pi &a, const pi &b){
   return tree[p].spl ? cmp2(a, b) : cmp1(a, b);
  });
  ok[p] = 1:
  tree[p] = {a[m], tree[p].spl, minx, maxx, miny, maxy};
  if(s <= m-1) init(s, m-1, 2*p);
  if(m+1 \le e) init(m+1, e, 2*p+1);
}
lint dap = 3e18;
void solve(int p, pi x){ // find closest point from point x (L^2)
  if(x != tree[p].pnt) dap = min(dap, sqr(x.first - tree[p].pnt.first) +
  sqr(x.second - tree[p].pnt.second));
  if(tree[p].spl){
    if(!cmp2(tree[p].pnt, x)){
     if(ok[2*p]) solve(2*p, x);
      if (ok[2*p+1] \&\& sqr(tree[2*p+1].sy - x.second) < dap) solve(2*p+1, x);
    }
    else{
      if(ok[2*p+1]) solve(2*p+1, x);
      if(ok[2*p] && sqr(tree[2*p].ey - x.second) < dap) solve(2*p, x);</pre>
    }
  }
  else{
    if(!cmp1(tree[p].pnt, x)){
     if(ok[2*p]) solve(2*p, x);
      if (ok[2*p+1] \&\& sqr(tree[2*p+1].sx - x.first) < dap) solve(2*p+1, x);
    }
    else{
      if(ok[2*p+1]) solve(2*p+1, x);
      if(ok[2*p] && sqr(tree[2*p].ex - x.first) < dap) solve(2*p, x);</pre>
 }
}
    Math
5.1 FFT / NTT
namespace fft{
  typedef complex<double> base;
  void fft(vector<base> &a, bool inv){
    int n = a.size(), j = 0;
    vector<base> roots(n/2):
    for(int i=1; i<n; i++){</pre>
```

int bit = $(n \gg 1)$;

while(j >= bit){
 j -= bit;

```
bit >>= 1;
    i += bit:
    if(i < j) swap(a[i], a[j]);</pre>
  double ang = 2 * acos(-1) / n * (inv ? -1 : 1);
  for(int i=0; i<n/2; i++){
    roots[i] = base(cos(ang * i), sin(ang * i));
  /* In NTT, let prr = primitive root. Then,
  int ang = ipow(prr, (mod - 1) / n);
  if(inv) ang = ipow(ang, mod - 2);
  for(int i=0: i<n/2: i++){
    roots[i] = (i ? (111 * roots[i-1] * ang % mod) : 1);
  Others are same. If there is /= n, do *= ipow(n, mod - 2).
  In XOR convolution, roots[*] = 1.
  for(int i=2: i<=n: i<<=1){
    int step = n / i;
    for(int j=0; j<n; j+=i){</pre>
      for(int k=0; k<i/2; k++){</pre>
        base u = a[j+k], v = a[j+k+i/2] * roots[step * k];
        a[j+k] = u+v;
        a[j+k+i/2] = u-v;
    }
  if(inv) for(int i=0; i<n; i++) a[i] /= n;
vector<lint> multiply(vector<lint> &v, vector<lint> &w){
  vector<base> fv(v.begin(), v.end()), fw(w.begin(), w.end());
  int n = 2; while(n < v.size() + w.size()) n <<= 1;</pre>
  fv.resize(n): fw.resize(n):
  fft(fv, 0); fft(fw, 0);
  for(int i=0; i<n; i++) fv[i] *= fw[i];</pre>
  fft(fv, 1);
  vector<lint> ret(n);
  for(int i=0: i<n: i++) ret[i] = (lint)round(fv[i].real()):
  return ret;
7
vector<lint> multiply(vector<lint> &v, vector<lint> &w, lint mod){
  int n = 2; while(n < v.size() + w.size()) n <<= 1;</pre>
  vector<base> v1(n), v2(n), r1(n), r2(n);
  for(int i=0; i<v.size(); i++){</pre>
    v1[i] = base(v[i] >> 15, v[i] & 32767);
  for(int i=0; i<w.size(); i++){</pre>
    v2[i] = base(w[i] >> 15, w[i] & 32767);
```

KAIST - Deobureo Minkyu Party.

Page 18 of 23

```
}
    fft(v1, 0);
    fft(v2, 0):
    for(int i=0; i<n; i++){</pre>
      int i = (i ? (n - i) : i):
      base ans1 = (v1[i] + conj(v1[j])) * base(0.5, 0);
      base ans2 = (v1[i] - conj(v1[j])) * base(0, -0.5);
      base ans3 = (v2[i] + conj(v2[j])) * base(0.5, 0);
      base ans4 = (v2[i] - conj(v2[j])) * base(0, -0.5);
      r1[i] = (ans1 * ans3) + (ans1 * ans4) * base(0, 1);
      r2[i] = (ans2 * ans3) + (ans2 * ans4) * base(0, 1);
    fft(r1, 1):
    fft(r2, 1);
    vector<lint> ret(n);
    for(int i=0: i<n: i++){</pre>
      lint av = (lint)round(r1[i].real());
      lint bv = (lint)round(r1[i].imag()) + (lint)round(r2[i].real());
      lint cv = (lint)round(r2[i].imag());
      av %= mod, bv %= mod, cv %= mod;
      ret[i] = (av << 30) + (bv << 15) + cv:
      ret[i] %= mod;
      ret[i] += mod:
      ret[i] %= mod;
    return ret:
 }
}
     Hell-Joseon style FFT
#include <smmintrin.h>
#include <immintrin.h>
#pragma GCC target("avx2")
#pragma GCC target("fma")
m256d mult( m256d a, m256d b){
  _{\rm m256d} c = _{\rm mm256\_movedup\_pd(a)};
  _{m256d} d = _{mm256\_shuffle\_pd(a, a, 15)};
  m256d cb = mm256 mul pd(c, b):
  _{m256d} db = _{mm256_{mul_pd(d, b)}};
  _{m256d} = _{mm256\_shuffle\_pd(db, db, 5)};
  _{\rm m256d} r = _{\rm mm256\_addsub\_pd(cb, e)};
  return r:
void fft(int n, __m128d a[], bool invert){
  for(int i=1, j=0; i<n; ++i){</pre>
    int bit = n >> 1:
   for(; j>=bit; bit>>=1) j -= bit;
    j += bit;
    if(i<j) swap(a[i], a[j]);</pre>
```

```
for(int len=2; len<=n; len<<=1){</pre>
   double ang = 2*3.14159265358979/len*(invert?-1:1);
    m256d wlen; wlen[0] = cos(ang), wlen[1] = sin(ang);
   for(int i=0: i<n: i += len){</pre>
     m256d w: w[0] = 1: w[1] = 0:
     for(int j=0; j<len/2; ++j){</pre>
       w = _mm256_permute2f128_pd(w, w, 0);
        wlen = _{mm256_{insertf128_{pd}(wlen, a[i+j+len/2], 1)};
        w = mult(w, wlen);
        _{m128d} vw = _{mm256} extractf128 pd(w, 1);
        _{m128d} u = a[i+j];
        a[i+j] = _mm_add_pd(u, vw);
        a[i+j+len/2] = _mm_sub_pd(u, vw);
   }
 7
 if(invert){
    _{m128d inv; inv[0] = inv[1] = 1.0/n;
   for(int i=0; i<n; ++i) a[i] = _mm_mul_pd(a[i], inv);</pre>
 }
vector<int64_t> multiply(vector<int64_t>& v, vector<int64_t>& w){
 int n = 2; while(n < v.size()+w.size()) n<<=1;</pre>
 _{m128d*} fv = new _{m128d[n]};
 for(int i=0; i<n; ++i) fv[i][0] = fv[i][1] = 0;
 for(int i=0; i<v.size(); ++i) fv[i][0] = v[i];</pre>
 for(int i=0: i<w.size(): ++i) fv[i][1] = w[i]:</pre>
 fft(n, fv, 0); //(a+bi) is stored in FFT
 for(int i=0: i<n: i += 2){
   __m256d a:
   a = _mm256_insertf128_pd(a, fv[i], 0);
   a = _mm256_insertf128_pd(a, fv[i+1], 1);
   a = mult(a, a);
   fv[i] = mm256 extractf128 pd(a, 0):
   fv[i+1] = _mm256_extractf128_pd(a, 1);
 fft(n, fv, 1):
 vector<int64_t> ret(n);
 for(int i=0; i<n; ++i) ret[i] = (int64_t)round(fv[i][1]/2);
 delete[] fv:
 return ret;
5.3 NTT Polynomial Division
vector<lint> get_inv(int n, const vector<lint> &p){
 vector<lint> q = \{ipow(p[0], mod - 2)\}:
 for(int i=2; i<=n; i<<=1){
   vector<lint> res:
   vector<lint> fq(q.begin(), q.end()); fq.resize(2*i);
   vector<lint> fp(p.begin(), p.begin() + i); fp.resize(2*i);
```

KAIST - Deobureo Minkyu Party.

Page 19 of 23

```
fft(fq, 0); fft(fp, 0);
    for(int j=0; j<2*i; j++){
     fp[j] *= fq[j] * fq[j] % mod;
     fp[j] %= mod;
    fft(fp, 1);
    res.resize(i);
    for(int j=0; j<i; j++){</pre>
     res[i] = mod - fp[i];
     if(j < i/2) res[j] += 2 * q[j];
     res[j] %= mod;
    q = res;
  return q;
vector<lint> poly_divide(const vector<lint> &a, const vector<lint> &b){
  assert(b.back() != 0); // please trim leading zero
  int n = a.size(), m = b.size();
  int k = 2; while (k < n-m+1) k <<= 1;
  vector<lint> rb(k), ra(k);
  for(int i=0; i<m && i<k; ++i) rb[i] = b[m-i-1];</pre>
  for(int i=0; i<n && i<k; ++i) ra[i] = a[n-i-1];</pre>
  vector<lint> rbi = get_inv(k, rb);
  vector<lint> res = multiply(rbi, ra);
  res.resize(n - m + 1):
  reverse(res.begin(), res.end()):
  return res;
}
     Simplex Algorithm
/* Ax <= b. max c^T x
* Usage : Simplex(VVD A, VD b, VD c).solve(VD ans)
* not feasible : -INF; unbounded : INF
* accuracy ~ (size of ans) * EPS
* EPS recommended 1e-9 on double, 1e-12 on long double
* expected n ~ 100, 10ms. worst case is exponential */
using real_t = double;
using VD = vector<real_t>;
using VVD = vector<VD>;
const real_t EPS = 1e-9;
struct Simplex{
  int m, n;
  vector<int> B. N:
  VVD D:
  Simplex(const VVD& A, const VD& b, const VD &c)
   : m(b.size()), n(c.size()), N(n+1), B(m), D(m+2, VD(n+2)){
      for(int i=0; i<m; ++i) for(int j=0; j<n; ++j) D[i][j] = A[i][j];
```

```
for(int i=0; i<m; ++i) B[i] = n+i, D[i][n] = -1, D[i][n+1] = b[i];
      for(int j=0; j<n; ++j) N[j] = j, D[m][j] = -c[j];</pre>
     N[n] = -1: D[m+1][n] = 1:
 void Pivot(int r. int s) {
   real_t inv = 1/D[r][s];
   for(int i=0; i<m+2; ++i){
     for(int j=0; j<n+2; ++j){
        if(i != r && j != s) D[i][j] -= D[r][j] * D[i][s] * inv;
     }
   }
   for(int i=0; i<m+2; ++i) if(i != r) D[i][s] *= -inv;
   for(int j=0; j<n+2; ++j) if(j != s) D[r][j] *= inv;
   D[r][s] = inv; swap(B[r], N[s]);
 bool Phase(bool p) {
    int x = m + p;
   while(true) {
      int s = -1:
     for(int j=0; j<=n; ++j){
        if(!p && N[j] == -1) continue;
        if(s == -1 || D[x][j] < D[x][s]) s = j;
      if(D[x][s] > -EPS) return true;
      int r = -1;
      for(int i=0: i<m: ++i){
        if(D[i][s] <= EPS) continue:</pre>
        if(r == -1 || D[i][n+1] / D[i][s] < D[r][n+1] / D[r][s]) r = i;
     if(r == -1) return false;
     Pivot(r, s);
   }
 real t solve(VD &x) {
    int r = 0:
   for(int i=1; i<m; ++i) if(D[i][n+1] < D[r][n+1]) r=i;
    if(D[r][n+1] < -EPS) {
     Pivot(r, n);
      if(!Phase(1) || D[m+1][n+1] < -EPS) return -1/0.0;
     for(int i=0; i<m; ++i) if(B[i] == -1) {
        int s = min_element(D[i].begin(), D[i].end() - 1) - D[i].begin();
        Pivot(i, s);
   }
   if(!Phase(0)) return 1/0.0:
   x = VD(n):
   for(int i=0; i<m; ++i) if(B[i] < n) x[B[i]] = D[i][n+1];
   return D[m][n+1]:
 }
};
```

KAIST - Deobureo Minkyu Party.

Page 20 of 23

5.5 Range Prime Counting

bool solve(int a, int p, int &x, int &y) {

```
// credit : https://github.com/stjepang/snippets/blob/master/count_primes.cpp
// Primes up to 10^12 can be counted in ~1 second.
const int MAXN = 1000005: // MAXN is the maximum value of sgrt(N) + 2
bool prime[MAXN];
int prec[MAXN];
vector<int> P;
void init() {
  prime[2] = true;
 for (int i = 3; i < MAXN; i += 2) prime[i] = true;
 for (int i = 3: i*i < MAXN: i += 2){
    if (prime[i]){
      for (int i = i*i: i < MAXN: i += i+i) prime[i] = false:</pre>
   }
 }
  for(int i=1; i<MAXN; i++){</pre>
    if (prime[i]) P.push_back(i);
   prec[i] = prec[i-1] + prime[i];
}
lint rec(lint N, int K) {
 if (N <= 1 | | K < 0) return 0;
  if (N <= P[K]) return N-1;
  if (N < MAXN && 111 * P[K]*P[K] > N) return N-1 - prec[N] + prec[P[K]];
  const int LIM = 250:
  static int memo[LIM*LIM][LIM];
  bool ok = N < LIM*LIM;</pre>
  if (ok && memo[N][K]) return memo[N][K];
 lint ret = N/P[K] - rec(N/P[K], K-1) + rec(N, K-1);
  if (ok) memo[N][K] = ret;
  return ret:
}
lint count primes(lint N) { //less than or equal to
  if (N < MAXN) return prec[N];</pre>
  int K = prec[(int)sqrt(N) + 1];
  return N-1 - rec(N, K) + prec[P[K]];
}
     Discrete Square Root
// https://github.com/tzupengwang/PECaveros/
// blob/master/codebook/math/DiscreteSqrt.cpp
void calcH(int &t, int &h, const int p) {
  int tmp=p-1; for(t=0;(tmp&1)==0;tmp/=2) t++; h=tmp;
// solve equation x^2 \mod p = a
```

```
if (p == 2) { x = y = 1; return true; }
int p2 = p / 2, tmp = mypow(a, p2, p);
if (tmp == p - 1) return false:
if ((p + 1)^{-} \% 4 == 0) {
  x=mvpow(a,(p+1)/4,p): v=p-x: return true:
} else {
  int t, h, b, pb; calcH(t, h, p);
  if (t >= 2) {
    do \{b = rand() \% (p - 2) + 2;
    } while (mypow(b, p / 2, p) != p - 1);
    pb = mypow(b, h, p);
  } int s = mypow(a, h / 2, p);
  for (int step = 2; step <= t; step++) {</pre>
    int ss = (((lint)(s * s) \% p) * a) \% p;
    for(int i=0;i<t-step;i++) ss=(lint)ss*ss%p;;</pre>
    if (ss + 1 == p) s = (s * pb) % p;
  pb = ((lint)pb * pb) % p;
  x = ((lint)s * a) % p; y = p - x;
} return true:
```

5.7 Miller-Rabin Test + Pollard Rho Factorization

```
namespace miller_rabin{
 lint mul(lint a, lint b, lint p){
   lint ret = 0:
   while(a){
     if(a\&1) ret = (ret + b) \% p;
     a >>= 1;
     b = (b << 1) \% p;
   return ret;
 lint ipow(lint x, lint y, lint p){
   lint ret = 1, piv = x \% p;
   while(v){
     if(y&1) ret = mul(ret, piv, p);
     piv = mul(piv, piv, p);
     y >>= 1;
   }
   return ret;
 bool miller_rabin(lint x, lint a){
   if(x % a == 0) return 0:
   lint d = x - 1;
   while(1){
     lint tmp = ipow(a, d, x):
     if(d&1) return (tmp != 1 && tmp != x-1);
     else if(tmp == x-1) return 0;
     d >>= 1:
```

KAIST - Deobureo Minkyu Party.

Page 21 of 23

```
bool isprime(lint x){
    for(auto &i : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}){
      if(x == i) return 1;
      if (x > 40 \&\& miller rabin(x, i)) return 0:
    }
    if(x \le 40) return 0;
    return 1;
}
namespace pollard_rho{
  lint f(lint x, lint n, lint c){
    return (c + miller_rabin::mul(x, x, n)) % n;
  void rec(lint n, vector<lint> &v){
    if(n == 1) return;
    if(n \% 2 == 0){
    v.push_back(2);
    rec(n/2, v);
    return;
  if(miller_rabin::isprime(n)){
    v.push_back(n);
    return:
  lint a, b, c;
  while(1){
    a = rand() \% (n-2) + 2;
    b = a;
    c = rand() \% 20 + 1;
    do{
      a = f(a, n, c);
      b = f(f(b, n, c), n, c);
    \frac{1}{2} while (\gcd(abs(a-b), n) == 1);
    if(a != b) break;
  lint x = gcd(abs(a-b), n);
  rec(x, v):
  rec(n/x, v);
vector<lint> factorize(lint n){
  vector<lint> ret;
  rec(n, ret);
  sort(ret.begin(), ret.end());
  return ret;
};
```

5.8 Highly Composite Numbers, Large Prime

< 10	^k number	divisors	2	2 3		71113171923293137							37	
1	6	4	1	1										
2	60	12	2	1	1									
3	840	32	3	1	1	1								
4	7560	64	3	3	1	1								
5	83160	128	3	3	1	1	1							
6	720720	240	4	2	1	1	1	1						
7	8648640	448	6	3	1	1	1	1						
8	73513440	768	5	3	1	1	1	1	1					
9	735134400	1344	6	3	2	1	1	1	1					
10	6983776800	2304	5	3	2	1	1	1	1	1				
11	97772875200	4032	6	3	2	2	1	1	1	1				
12	963761198400	6720	6	4	2	1	1	1	1	1	1			
13	9316358251200	10752	6	3	2	1	1	1	1	1	1	1		
14	97821761637600	17280	5	4	2	2	1	1	1	1	1	1		
15	866421317361600	26880	6	4	2	1	1	1	1	1	1	1	1	
16	8086598962041600	41472	8	3	2	2	1	1	1	1	1	1	1	
17	74801040398884800	64512	6	3	2	2	1	1	1	1	1	1	1	1
18	897612484786617600	103680	8	4	2	2	1	1	1	1	1	1	1	1

< 10	^k prime	<pre># of prime</pre>	< 10^	k prime
1	7	4	10	9999999967
2	97	25	11	99999999977
3	997	168	12	999999999989
4	9973	1229	13	999999999971
5	99991	9592	14	9999999999973
6	999983	78498	15	99999999999989
7	9999991	664579	16	99999999999937
8	99999989	5761455	17	999999999999999
9	99999937	50847534	18	9999999999999989

NTT Prime:

```
998244353 = 119 \times 2^{23} + 1. Primitive root: 3. 985661441 = 235 \times 2^{22} + 1. Primitive root: 3. 1012924417 = 483 \times 2^{21} + 1. Primitive root: 5.
```

6 Miscellaneous

6.1 Popular Optimization Technique

- CHT. DnC optimization. Mo's algorithm trick (on tree). IOI 2016 Aliens trick. IOI 2009 Hiring trick.
- Knuth's $O(n^2)$ Optimal BST : minimize $D_{i,j} = Min_{i \leq k < j}(D_{i,k} + D_{k+1,j}) + C_{i,j}$. Quadrangle Inequality : $C_{a,c} + C_{b,d} \leq C_{a,d} + C_{b,c}$, $C_{b,c} \leq C_{a,d}$. Now monotonicity holds.
- \bullet Sqrt batch processing Save queries in buffer, and update in every sqrt steps (cf : IOI 2011 Elephant. hyea calls it "ainta technique")

KAIST - Deobureo Minkyu Party. Page 22 of 23

- Dynamic insertion in static set (Make O(lgn) copy. Merge like binomial heap.)
- Offline insertion / deletion in insert-only set (Pair insertion-deletion operation, and regard it as range query)

6.2 Bit Twiddling Hack

```
int __builtin_clz(int x);//number of leading zero
int __builtin_ctz(int x);//number of trailing zero
int __builtin_clzll(long long x);//number of leading zero
int __builtin_ctzll(long long x);//number of trailing zero
int __builtin_popcount(int x);// number of 1-bits in x
int __builtin_popcountll(long long x);//number of 1-bits in x
lsb(n): (n & -n); // last bit (smallest)
floor(log2(n)): 31 - __builtin_clz(n | 1);
floor(log2(n)): 63 - builtin clzll(n | 1):
//compute next perm. ex) 00111, 01011, 01101, 01110, 10011, 10101...
long long next_perm(long long v){
 long long t = v \mid (v-1);
 return (t + 1) \mid (((^t \& -^t) - 1) >> (_builtin_ctz(v) + 1));
     Fast Integer IO
static char buf[1 << 19]; // size : any number geq than 1024
static int idx = 0:
static int bytes = 0;
static inline int read() {
  if (!bytes || idx == bytes) {
    bytes = (int)fread(buf, sizeof(buf[0]), sizeof(buf), stdin);
    idx = 0:
  return buf[idx++]:
static inline int _readInt() {
  int x = 0, s = 1:
  int c = _read();
  while (c \le 32) c = read();
  if (c == '-') s = -1, c = _read();
  while (c > 32) x = 10 * x + (c - '0'), c = _read();
  if (s < 0) x = -x:
  return x:
}
6.4 OSRank in g++
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
```

```
using namespace __gnu_pbds;
```

```
typedef
tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update>
ordered_set;
ordered_set X;
X.insert(1); X.insert(2); X.insert(4); X.insert(8); X.insert(16);
cout<<*X.find_by_order(1)<<endl; // 2</pre>
cout<<*X.find_by_order(2)<<endl; // 4</pre>
cout<<*X.find_by_order(4)<<endl; // 16</pre>
cout<<(end(X)==X.find_by_order(6))<<end1; // true</pre>
cout<<X.order_of_key(-5)<<endl; // 0</pre>
cout<<X.order_of_key(1)<<endl; // 0</pre>
cout<<X.order of kev(3)<<endl: // 2</pre>
cout<<X.order_of_key(4)<<endl;</pre>
cout<<X.order_of_key(400)<<endl; // 5</pre>
6.5 Nasty Stack Hacks
//64bit ver.
int main2(){ return 0:}
int main(){
 size_t sz = 1<<29; //512MB
 void* newstack = malloc(sz):
 void* sp_dest = newstack + sz - sizeof(void*);
  asm __volatile__("movq %0, %%rax\n\t"
  "movg %%rsp , (%%rax)\n\t"
  "movq %0, %%rsp\n\t": : "r"(sp_dest): );
 main2():
 asm __volatile__("pop %rsp\n\t");
 return 0;
6.6 C++ / Environment Overview
// vimrc : set nu sc ci si ai sw=4 ts=4 bs=2 mouse=a syntax on
// compile : g++ -o PROB PROB.cpp -std=c++11 -Wall -02
// options : -fsanitize=address -Wfatal-errors
#include <bits/stdc++.h> // magic header
using namespace std; // magic namespace
struct StupidGCCCantEvenCompileThisSimpleCode{
 pair<int, int> array[1000000]:
}; // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=68203
// how to use rand (in 2017)
mt19937 rng(0x14004);
```

```
int randint(int lb, int ub){ return uniform_int_distribution<int>(lb, ub)(rng); }

// comparator overload
auto cmp = [](seg a, seg b){return a.func() < b.func(); };
set<seg, decltype(cmp)> s(cmp);
map<seg, int, decltype(cmp)> mp(cmp);
priority_queue<seg, vector<seg>, decltype(cmp)> pq(cmp); // max heap

// hash func overload
struct point{
int x, y;
bool operator==(const point &p)const{ return x == p.x && y == p.y; }
};
struct hasher {
size_t operator()(const point &p)const{ return p.x * 2 + p.y * 3; }
};
unordered_map<point, int, hasher> hsh;
```