DIII Departamento de Ingeniería rivestigaciones Tecnológica

VECTOR POSICIÓN

Debe poder resolver estos problemas en forma autónoma puede asumir que adquirió los conocimientos mínimos sobre los temas abordados.

Los problemas marcados con (*) entrañan dificultades adicionales. No dude en consultar a docentes y compañeros si no puede terminarlos.

Realice los siguientes pasos definiendo las variables necesarias en SymPy para que pueda verificar los resultados.

c) Restar las variables correspondientes para realizar
$$\Delta \vec{r}_{a \to b} = \vec{r}_b - \vec{r}_a$$
 y guardar el resultado en ab_deltaR.

2. (*) Posición en función de una variable

Una partícula de masa m está engarzada en un aro de radio R, por lo que su radio medido desde el centro del aro es constante. Basta entonces conocer el ángulo φ para describir su posición.

a) Escríbala en coordenadas cartesianas en función de R y φ . Recuerde que la primera es constante, no es más que un símbolo para la biblioteca SymPy, en tanto que la segunda es una variable que depende del tiempo, o dinámica, en el léxico de la biblioteca. Deberá recurrir a funciones trigonométricas. Busque como estas se implementan en la biblioteca.

 $b)\,$ Haga que ${\tt SymPy}$ calcule la velocidad en este sistema de referencia. Resultado:

$$-R\sin(\varphi)\dot{\varphi}\hat{\mathbf{e}}_{\mathbf{x}} + R\cos(\varphi)\dot{\varphi}\hat{\mathbf{e}}_{\mathbf{y}}$$