Feuille de TD Nº4

Exercice 1. Soient X_1, \ldots, X_n des variables aléatoires indépendantes. Soit $Z = f(X_1, \ldots, X_n)$ fonction de carré intégrable. Montrer que

$$\operatorname{Var}(Z) \le \sum_{i=1}^{n} \mathbb{E}\left[(Z - \mathbb{E}^{(i)} Z)^{2} \right].$$

Cette inégalité est connue sous le nom d'Efron-Stein.

Exercice 2. Le but de cet exercice est de montrer que la mesure Gaussienne satisfait une inégalité de Poincaré.

Soit $X = (X_1, ..., X_n)$ un vecteur Gaussien standard i.e. les X_i sont des variables Gaussiennes standard indépendantes. Le but est donc de montrer que pour tout $f : \mathbb{R}^n \to \mathbb{R}$ continument différentiable on a

$$Var(f(X)) \le \mathbb{E}\left[\left\|\nabla f(X)\right\|^2\right]$$

1. Montrer qu'il suffit de montrer l'inégalité pour n = 1.

Par la suite on prend $f: \mathbb{R} \to \mathbb{R}$ continument dérivable.

- 2. Soient $\varepsilon_1, \ldots, \varepsilon_n$ des variables de Rademacher indépendantes. On pose $S_n = n^{-\frac{1}{2}} \sum_{i=1}^n \varepsilon_i$. Calculer $\operatorname{Var}^{(i)}(f(S_n))$ pour tout $i \leq n$.
- 3. Montrer que

$$\operatorname{Var}(f(S_n)) \le \frac{1}{4} \sum_{i=1}^n \mathbb{E}\left[\left(f\left(S_n + \frac{1 - \varepsilon_i}{\sqrt{n}}\right) - f\left(S_n - \frac{1 + \varepsilon_i}{\sqrt{n}}\right) \right)^2 \right]$$

4. Montrer que

$$\lim \sup_{n} \sum_{i=1}^{n} \mathbb{E} \left[\left(f \left(S_n + \frac{1 - \varepsilon_i}{\sqrt{n}} \right) - f \left(S_n - \frac{1 + \varepsilon_i}{\sqrt{n}} \right) \right)^2 \right] = 4 \mathbb{E} \left[f'(X)^2 \right].$$

5. En déduire l'inégalité de Poincaré Gaussienne pour n=1.

Exercice 3.

- 1. Montrer que si un mesure μ sur \mathbb{R}^n satisfait une inégalité de Sobolev Logarithmique alors elle satisfait une inégalité de Poincaré.
 - Indication : Pour toute fonction f et $\varepsilon > 0$, appliquer l'inégalité de Sobolev Logarithmique pour la fonction $(1 + \varepsilon f)$.
- 2. Montrer que l'inégalité de Sobolev Logarithmique et l'inégalité de Poincaré ne sont pas equivalentes. *Indication : Considérer la loi exponentielle*.