

Project Ocre

Extending Cloud Native Beyond the "Linux Barrier" to MCUs Using Wasm

Jason Shepherd & Stephen Berard, Atym

About Us

> 50 years combined experience building connected solutions and driving industry standards

Jason Atym CEO

Stephen Atym CTO

Embedded development is difficult

Talent is difficult to find and retain, only 19% of developers program in C

Monolithic images complicate IP protection. IP theft costs industry >\$500B/year.

Silicon swaps delay projects by months due to vendorspecific HW coupling

Developing common functionality at \$25-40/line of code detracts from adding customer value

Companies lack skills to build secure devices. Security attacks average \$330k per incident.

And it's only getting more complicated

Edge computing

Rise of Al

New security threats and regulations

Growing talent gaps

The '90s called and want their embedded development tools back.

It's time to modernize the embedded space

Server architectures have evolved dramatically over the past 25 years...

...meanwhile, the embedded space has remained largely the same.

Monolithic Embedded

We've reached the technology tipping point

WebAssembly (Wasm) makes cloud-native dev possible for devices that can't support Linux or technologies like Docker and Kubernetes

Frameworks

FaaS

Containers and Clusters

Virtualization

OS

Introducing Project Ocre

- Managed container runtime supporting OCIlike app containerization
- Up to 2000x lower footprint than a Linuxbased container runtime like Docker
- Supports apps written in any programming language
- Zero trust security, rooted in silicon
- To be hosted in LF Edge within the Linux Foundation with the Apache 2.0 license

Ocre app containerization vs. traditional embedded dev

Ocre Containerization

- IP protected in isolated containers
- Supports asynchronous app development lifecycles
- Developers can code in preferred language and merge at deployment
- Hardware complexity abstracted

Traditional Embedded

- IP exposed as raw source code
- Any supply chain change requires recompile and monolithic update
- Developers must code in same language (e.g. C/C++) and deeply understand hardware

Ocre architecture

WebAssembly (Wasm) makes cloud-native dev possible for devices that can't support Linux or technologies like Docker and Kubernetes

Performance and footprint

- Smallest individual app is ~300 bytes of flash, limited by Atym packaging
- Largest app size and quantity deployed per device is limited by HW capability
- Device memory and processing requirements are driven by app needs

Performance

Dependent on application processing needs

Negligible impact for typical eventdriven telemetry use cases

No impact to battery life due to event-driven architecture

256KB of memory and flash

Any processor architecture

(e.g. Arm, x86, RISC-V)

Ocre closely follows OCI design patterns

	Ocre Containers	OCI Containers
Compute	 Portable, instruction set independent code Requires Wasm engine to execute (no specific OS dependency) Packaged as a Wasm module Scheduled using native threads Fine-grained resource controls 	 Platform-specific code Requires Linux kernel to execute Packaged as a tar file system CFS (default) scheduling or real-time scheduler Resource controls for limiting CPU, memory, etc.
Storage	Resource files (blobs)Simulated filesystem (POSIX-like)No direct filesystem access	Layered, union filesystem POSIX filesystem calls OS filtered filesystem access (chroot)
Networking	Managed socket APINaming and service locationInter-container messaging	 L2 virtual networking interface w/bridge, host, & VLAN support Naming (DNS) and service locations Advanced routing, NAT, and address configuration
Security	 Full isolation through virtualization Default-deny permissions model with fine-grain controls Container validation through digital signature 	 OS-level isolation through groups Default-allow permissions model Container validation through digital signature

Baseline Wasm security benefits

- Containerized applications/ modules sandboxed from host and others by default
- Access between apps only possible based on permissions
- Apps can only access specified device memory; can't do callstack jumps and buffer overruns
- Individual containers can be terminated if abnormal behavior is detected

- Monolithic image typically accesses the entire available memory space
- Code can jump to accessing arbitrary addresses or execute in data memory
- Entire device is compromised with a single code bug or security breach

Example deployment patterns

IoT Analytics / Computer Vision

- IoT workloads (e.g. predictive maintenance, cold chain logistics, building automation)
- Al can be telemetry-driven or computer vision / voice recognition

Device Driver Abstraction

- Abstract certified functionality (e.g. cellular modem drivers) from core runtime
- Apps can be updated without impacting regulatory certifications

DEMO

Summary

- Ocre is a tiny (~256KB) container runtime for constrained devices
- Built with a combination of Zephyr and WebAssembly
- Code drops by June to seed Project Ocre in LF Edge
- Stay tuned for more details!
 - In the meantime, feel free to reach out at info@atym.io

Q&A

EMBEDDED
OPEN SOURCE
SUMMIT