IN THE CLAIMS

1	1.	(currer	ntly amended) A method of determining diffusion and relaxation
2		charac	teristics about a fluid in an earth formation using nuclear magnetic
3		resona	nce (NMR) comprising:
4		(a)	applying a static magnetic field to the earth formation, said applied
5			static magnetic field producing an internal field gradient;
6		(b)	applying a sequence of radio frequency (RF) pulses to said earth
7		•	formation;
8		(c)	detecting magnetic resonance signals resulting from said first sequence,
9			substantially all of said magnetic resonance signals being affected by the
10			internal field gradient; and
11		(d)	processing said detected signals for determining said diffusion and
12			relaxation characteristics, said determination taking into
13			account said internal field gradient.
14			
1	2.	(curre	ently amended) The method of claim 1 wherein said sequence of RF pulses
2		furthe	er comprises:
3		(A)	a first sequence of RF pulses associated with a first signal at a first field
4			gradient, and
5		(B)	a second sequence of RF pulses associated with a second signal at a
6			second field gradient different from said first field gradient;
7		wher	rein said detected signals comprise said first signal and said second signal

8		
1	3.	(original) The method of claim 2 wherein said first and second field gradients
2		correspond to different regions of examination in said earth formation.
3		
1	4.	(original) The method of claim 2 wherein said first and second pulse sequences
2		each comprise at least one initial pulse, a first portion that follows the at least one
3		initial magnetic field pulse, and a second portion that follows the first portion
4		such that the second portion refocuses a last echo of the first portion.
5		
1	5.	(original) The method of claim 2 wherein
2		(i) said first portion comprises a modified CPMG sequence including a
3		plurality of refocusing pulses with a tipping angle less than 180° and
4		having a first time interval between adjacent refocusing pulses of said
5		first portion, and
6		(ii) said second portion comprises a plurality of refocusing pulses having a
7		second time interval between adjacent refocusing pulses.
8		
1	6.	(original) The method of claim 2 wherein said first portion comprises one of (i) an
2		inversion recovery sequence, (ii) a driven equilibrium sequence, and, (iii) a
3		CPMG sequence.
4		
1	7.	(original) The method of claim 5 further comprising applying an echo train

2 correction to said first and second signal.

3

- 8. (original) The method of claim 5 further comprising at least one additional
- 2 repetition of (A) and (B) for a different value of said first time interval.

3

- 9. (original) The method of claim 5 further comprising repeating (i) for at least one
- 2 additional value of a time interval between refocusing pulses of said CPMG
- 3 sequence, said additional value being substantially equal to said second time
- 4 interval.

5

- 1 10. (original) The method of claim 1 further determining at least one of (i) a total
- porosity, (ii) clay bound water, (iii) bound volume irreducible, (iv) gas saturation,
- 3 and (v) oil saturation.

4

1 11. (original) The method of claim 2 wherein said first sequence is of a form:

$$W - 90_{\pm x} - TE_{long}/2 - \beta_{\gamma 1} - TE_{long}/2 - echo_1 - TE_{long}/2 - \beta_{\gamma 1}$$

$$- TE_{long}/2 - echo_2 - (TE/2 - \beta_{\gamma 2} - TE/2 - echo)_j$$

- where j is an echo number in a train, W is a wait time, TE_{long} is a diffusion editing
- spacing, TE is the Carr-Purcell spacing, $90_{\pm x}$ and β_{Y1} (or β_{Y2}) are RF pulses
- providing rotation angles of 90 and the β_{Y1} (or β_{Y2}) degrees of a magnetization
- 6 vector.

7

- 1 12. (currently amended) The method of claim 1 claim 2 wherein processing said first
- 2 and said second signal detected signals further comprises, for said first field
- 3 gradient and said second gradient, inverting said first and said second signals, to
- 4 obtain an equivalent amplitude spectrum of a T₂ distribution.

- 1 13. (currently amended) The method of claim 12 wherein said processing said first
- 2 and said second signal detected signals further comprises inverting a T₂
- distribution to obtain a generalized parameter.

4

- 1 14. (original) The method of claim 13 wherein said generalized parameter $Z_i^{(j)}$ has a
- 2 form:

3

$$Z_i^{(j)} = \frac{C}{\gamma^2 G_e^2 D_i^j}$$

- where C is a constant, γ is a gyromagnetic ratio, G_e is the effective field
- 6 gradient, and D_i^{\prime} is a diffusion coefficient.

7

- 1 15. (currently amended) The method of claim 13 wherein said processing said first
- 2 and said at least one additional signal detected signals further comprises inverting
- 3 a plurality of said generalized parameters.

4

1 16. (original) The method of claim 12 wherein at least one component of said

equivalent amplitude spectrum further comprises a plurality of diffusion
 components.

4

1 17. (original) The method of claim 11 further comprising at least one additional repetition of (b) and (c) for a different value of TE_{long}.

3

1 18. (original) The method of claim 2 wherein said first pulse sequence is of a form:

2
$$180 - \tau_1 - 90_{\pm x} - [TE/2 - \beta_Y - TE/2 - echo]_j$$

- 3 wherein 180 is a 180° tipping pulse, τ is a wait time, TE is the Carr-Purcell
- spacing, $90_{\pm x}$ and β_Y are RF pulses providing rotation angles of 90° and β of
- 5 a magnetization vector

6

- 1 19. (original) The method of claim 18 further comprising at least one additional
- 2 repetition of (A) and (B) for a different value of τ .

3

- 1 20. (currently amended) An apparatus for determining diffusion and relaxation
- 2 characteristics about a fluid in an earth formation comprising:
- 3 (a) a magnet on a nuclear magnetic resonance (NMR) sensor conveyed in a
- 4 borehole in said earth formation, said magnet producing a static magnetic
- 5 field to in the earth formation with an internal field gradient therein;
- 6 (b) a transmitter on said NMR sensor for applying which applies a sequence
- of radio frequency (RF) pulses to said earth formation;

Fax:7132668510

8		(c)	a receiver on said NMR sensor for detecting which detects magnetic
9			resonance signals resulting from said first sequence, substantially all of the
.0			magnetic resonance signals being affected by the internal field gradient;
1			and
12		(d)	a processor for determining which determines from said detected signals
13			said diffusion and relaxation characteristics, said determination taking into
14			account said internal field gradient.
15			
1	21.	(curre	ently amended) The apparatus of claim 20 wherein said transmitter applies:
2		(A)	a first sequence of RF pulses associated with a first signal at a first field
3			gradient, and
4		(B)	a second sequence of RF pulses associated with a second signal at a
5			second field gradient different from said first field gradient;
6		wher	rein said magnetic resonance signals comprise said first signal and said
7		seco	nd signal.
8			
1	22.	(orig	ginal) The apparatus of claim 21 wherein said first and second field gradients
2		corr	espond to different regions of examination in said earth formation.
3			
1	23.	(cur	rently amended) The apparatus of claim 21 wherein said first sequence of RF
2		puls	ses and the second sequence of RF pulses pulse sequences each comprise at
3		leas	t one initial pulse, a first portion that follows the at least one initial magnetic
	10/7	65,612	7

4		field pulse, and a second portion that follows the first portion such that the second
5		portion refocuses a last echo of the first portion.
6		
1	24.	(currently amended) The apparatus of elaim 21 claim 23 wherein
2		(i) said first portion comprises a modified CPMG sequence including a
3		plurality of refocusing pulses with a tipping angle less than 1800 and
4		having a first time interval between adjacent refocusing pulses of said
5		first portion, and
6		(ii) said second portion comprises a plurality of refocusing pulses having a
7		second time interval between adjacent refocusing pulses.
8		
1	25.	(currently amended) The apparatus of claim 21 claim 23 wherein said first portion
2		comprises one of (i) an inversion recovery sequence, (ii) a driven equilibrium
3		sequence, and (iii) a CPMG sequence.
4		
1	26.	(original) The apparatus of claim 24 wherein said processor further applies further
2		an echo train correction to said first and second signal.
3		
1	27.	(original) The apparatus of claim 24 wherein said transmitter further performs at
2		least one additional repetition of (A) and (B) for a different value of said first time
3	i	interval.
4	•	

- 1 28. (original) The apparatus of claim 24 wherein said processor further repeats (i) for
- 2 at least one additional value of a time interval between refocusing pulses of said
- 3 CPMG sequence, said additional value being substantially equal to said second
- 4 time interval.

- 1 29 (original) The apparatus of claim 20 wherein said processor further determines at
- 2 least one of (i) a total porosity, (ii) clay bound water, (iii) bound volume
- 3 irreducible, (iv) gas saturation, and, (v) oil saturation.

4

1 30. (original) The apparatus of claim 21 wherein said first sequence is of a form:

$$W - 90_{\pm x} - TE_{long}/2 - \beta_{Y} - TE_{long}/2 - echo_{i} - TE_{long}/2 - \beta_{Y}$$

$$- TE_{long}/2 - echo_{2} - (TE/2 - \beta_{Y} - TE/2 - echo)_{j}$$

- 3 where j is an echo number in a train, W is a wait time, TE_{long} is a diffusion editing
- spacing, TE is the Carr-Purcell spacing, $90_{\pm x}$ and β_Y are RF pulses providing
- 5 rotation angles of 90^{0} and the β of a magnetization vector.

6

- 1 31 (original) The apparatus of claim 20 wherein said processor further obtains an
- 2 equivalent amplitude spectrum of a T₂ distribution.

3

- 1 32. (currently amended) A system for use in a borehole in an earth formation
- 2 comprising:

3	((a)	a conveyance device for conveying which conveys a nuclear magnetic
4			resonance (NMR) sensor into said borehole;
5		(b)	a magnet on said NMR) NMR sensor, said magnet applying a static
6			magnetic field in said earth, said static magnetic field having an internal
7			gradient;
8		(b)	a transmitter on said NMR sensor for applying which applies
9			radio-frequency (RF) magnetic field pulses to said formation and
10			producing produces signals resulting from a T2 distribution spectrum of
11			said earth formation, at least one component of said T2 spectrum further
12			comprising a plurality of diffusion coefficients, said signals being
13			substantially affected by the internal field gradient;
14		(c)	a receiver on said NMR sensor for receiving which receives said produced
15			signals;
16		(d)	a processor for processing which processes said received signals and
17			determining determines therefrom said T2 distribution and said plurality of
18			diffusion coefficients, said determination accounting for said internal
19			gradient.
20			
1	33.	(ori	ginal) The system of claim 32 wherein said conveyance device is one of (i) a
2		wir	eline, (ii) a drillstring, and, (iii) coiled tubing
3			
1	34.	(си	rrently amended) A method of analyzing an earth formation comprising:

2	(a)	applying a static magnetic field to the earth formation, said applied
3		static magnetic field producing an internal field gradient in said earth
4		formation;
5	(b)	applying a first sequence of radio frequency (RF) pulses to said earth
6		formation and obtaining a first signal associated with a first value of a
7		field gradient;
8	(c)	applying a second sequence of radio frequency (RF) pulses to said earth
9		formation and obtaining a second signal associated with a second value of
10		a field gradient; and
11	(d)	processing said first and second signals for determining at least one of (A)
12		a diffusion characteristic of said earth formation, and, (ii) a relaxation
13		characteristic of said earth formation, said determination taking into
14		account said internal field gradient;
15	<u>wh</u>	erein said first and second signals being substantially affected by the internal
16	<u>fi</u> el	d gradient
17		
1	35. (or	iginal) The method of claim 34 wherein said first and second field gradients
2	co	respond to different regions of examination in said earth formation.
3		
1	36. (o	riginal) The method of claim 34 said first and second pulse sequences each
2	co	mprise at least one initial pulse, a first portion that follows the at least one

3		initial	magnetic field pulse, and a second portion that follows the first portion
4		such ti	nat the second portion refocuses a last echo of the first portion.
5			
1	37.	(curren	ntly amended) An apparatus for use in a borehole in an earth formation
2		comp	rising:
3		(a)	a magnet for applying which applies a static magnetic field to the earth
4			formation, said applied static magnetic field producing an internal field
5			gradient in said earth formation;
6		(b)	a transmitter for applying which applies a first pulse sequence and a
7			second sequence of radio frequency (RF) pulses to said earth formation;
8		(c)	a receiver for obtaining which obtains a first signal and a second signal
9			resulting from said first and second sequence of RF pulses, said first and
10			second signals associated with a first and second value of a field gradient
11			in said earth formation and affected by the internal field gradient; and
12		(d)	a processor for determining from said first and second signal at least one
13			of (A) a diffusion characteristic of said earth formation, and, (ii) a
14			relaxation characteristic of said earth formation, said determination taking
15			into account said internal field gradient.
16			•
1	38.	(orig	ginal) The apparatus of claim 37 wherein said first and second field gradients
2		corr	espond to different regions of examination in said earth formation.
3			

1	39.	(original) The apparatus of claim 37 said first and second pulse sequences each
2		comprise at least one initial pulse, a first portion that follows the at least one
3		initial magnetic field pulse, and a second portion that follows the first portion
4		such that the second portion refocuses a last echo of the first portion.
5		
1	40.	(original) The apparatus of claim 37 further comprising a conveyance device
2		selected from (i) a wireline, (ii) a drilling tubular, and, (iii) coiled tubing.
3		
1	41.	(original) The method of claim 39 wherein said first portion comprises one of (i)
2		an inversion recovery sequence, (ii) a driven equilibrium sequence, (iii) a CPMG
3		sequence, and, (iv) a modified CPMG sequence having a refocusing pulse with a
4		tipping angle less than 180°.

10/765,612

5