Universal mapping class groups

Javier Aramayona

UAM/ICMAT

Joint work with Louis Funar (Grenoble)

Mapping class group

S: orientable surface, of finite or infinite topological type.

- ▶ Mod(S): the group of isotopy classes of homeos $S \rightarrow S$.
- ► PMod(S): the *pure* subgroup (elements pointwise fix boundary and punctures).

Example

 $Mod(torus) = PMod(torus) = GL(2, \mathbb{Z}).$

Finite presentation

Theorem (Dehn-Lickorish, Hatcher-Thurston, etc)

If S has finite type, then Mod(S) is finitely presented. In fact, PMod(S) is generated by a finite collection of Dehn twists.

Proof.

Construct a nice action of Mod(S) on a simply-connected complex (built from simple closed curves on S).

Universal mapping class groups

Groups that contain *every* mapping class group (of genus g).

Motivation

- ► Homological stability
- Dynamics

Homological stability I

 $S_{g,n}$: surface of genus g with n boundary components. Observe that $S_{g,n} \hookrightarrow S_{g,n+1}$ for all n (glue a pair of pants). Can form

$$\lim_{r \to n} \mathsf{PMod}(S_{g,n})$$

Remark

- ▶ $\lim_{n\to\infty} \mathsf{PMod}(S_{g,n})$ contains $\mathsf{PMod}(S_{g,n})$ for all $n\ge 1$.
- It is infinitely generated.

Homological stability II

Theorem (Harer's stability theorem, 1985)

If
$$g >> i$$
, then

 $H_i(\mathsf{PMod}(S_{g,n}), \mathbb{Z}) \cong H_i(\lim_{t \to b} \mathsf{PMod}(S_{g,k}), \mathbb{Z})$

(i.e. H_i does not depend on number of boundary components)

Big mapping class groups

Notation: Σ_g is $S_{g,0}$ minus a Cantor set. Consider $\operatorname{Mod}(\Sigma_g)$.

Big mapping class groups II

Remark

- ► Appear naturally in dynamics (D. Calegari)
- ▶ $Mod(\Sigma_g)$ contains $PMod(S_{g,n})$ for all $n \ge 1$.
- ightharpoonup Mod(Σ_g) is uncountable!
- $\blacktriangleright \ \mathsf{lim}_{\to_k} \, \mathsf{PMod}(S_{g,k}) = \mathsf{PMod}_c(\Sigma_g)$

Asymptotically rigid homeos

Defined in terms of a *rigid structure* on Σ_g : a pants decomposition P, plus some other things. (Point: if f fixes rigid structure then f = id.)

Definition

A homeomorphism $f: \Sigma_g \to \Sigma_g$ is asymptotically rigid if there exists a P-suited compact subsurface Z with f(Z) P-suited, such that f preserves the rigid structure outside these.

Asymptotic mapping class group

Definition

 B_g : the group of isotopy classes of asymptotically rigid homeomorphisms.

Theorem (A-Funar)

One has

$$1 o P\operatorname{\mathsf{Mod}}_c(\Sigma_g) o B_g o V o 1$$

where V is Thompson's group V.

(V is a simple, infinite, finitely-presented group with lots of other cool properties. It's a subgroup of Homeo(Cantor))

Finite presentation

Theorem (A-Funar)

For all g, the group B_g is finitely presented. (Known by Funar-Kapoudjian (2004) for g=0.)

Proof.

Construct a nice action on a simply-connected complex (built from simple closed curves on Σ_g).

Homology

Theorem (A-Funar)

For g >> i, $H_i(B_g, \mathbb{Z})$ is the stable homology group of the m.c.g of genus g. (Corollary: B_g is perfect for $g \geq 3$.)

Proof.

Promote Harer's stability to B_g using the short exact sequence above.

Injections

Theorem (A-Funar)

If h > g then no (weakly) injective homomorphisms $B_h \to B_g$. (Corollary: Class. of the B_g 's up to isomorphism.)

Proof.

Use properties of V, plus the analogous statement for $\mathsf{PMod}(S_{g,n})$ (Castel, A-Souto).

Algebraic rigidity

Theorem (Ivanov)

If S has finite-type then

$$Aut(Mod(S)) = Aut(PMod(S)) = Mod(S).$$

Theorem (A-Funar)

For every g, $Aut(B_g) = N_{Mod(\Sigma_g)}(B_g)$.

Proof.

Prove that Dehn twists go to Dehn twists.

Homomorphisms from lattices

Theorem (Farb-Masur)

Let Γ be an higher-rank lattice, S a surface of finite type. Then every homomorphism $\Gamma \to \mathsf{Mod}(S)$ has finite image.

Theorem (A-Funar)

Let Γ be an higher-rank lattice. Then every homomorphism $\Gamma \to B_g$ has finite image.

Proof.

Use properties of V plus the analogous statement for $PMod(S_{g,n})$ (Farb-Masur...)

Kazhdan's Property (T)

Question

Do finite-type mapping class groups have Property (T)? (The expected answer is "no" (Andersen).)

Theorem (A-Funar)

 B_g does not have Property (T).

Proof.

 B_g surjects onto V, which is infinite and has the *Haagerup* property.

Linearity

Question

Are mapping class groups linear?

Known only for the closed surface of genus 2 (Bigelow-Budney).

Theorem (A-Funar)

 B_g is not linear.

Proof.

 B_g contains a copy of Thompson's group F, which is not linear.

A related group

 H_g (contains B_g) consists of asymptotically rigid homeos, in a weaker sense.

Theorem (A-Funar)

 H_g is finitely presented, and is dense in $Mod(\Sigma_g)$.

Proof.

Given a mapping class, construct by hand a sequence in B_g that converges to it.