CS201

Mathematics For Computer Science Indian Institute of Technology, Kanpur

Due by: Oct 12, 2020

Assignment

2

Instructions.

- Solutions should be mandatorily LaTeXed using the template shared and submitted through GradeScope before time. Mention Group Numbers and member names in solutions (refer template instructions).
- Clearly express solutions avoiding unnecessary details. Everything discussed in class is not required to be proved again. And anything non-trivial must be proved.
- Write the solutions on your own. Acknowledge the source wherever required. Keep in my mind department's Anti-Cheating Policy.
- 1. A **partition** of n objects is a collection of its mutually disjoint subsets, called blocks, whose union gives the whole set. Let $S(n; k_1, k_2, ..., k_n)$ denote the number of all partitions of n objects with k_i i-element blocks (i.e., $k_1 + 2k_2 + \cdots + nk_n = n$). In other words,

 k_i = the number of *i*-element blocks in a partition

Show that
$$S(n; k_1, k_2, \dots, k_n) = \frac{n!}{k_1! k_2! \dots k_n! (1!)^{k_1} (2!)^{k_2} \dots (n!)^{k_n}}$$
.

- 2. Show that for every k, the product of any k consecutive natural numbers is divisible by k!.
- 3. Show that the number of pairs (A, B) of distinct subsets of $\{1, 2, ..., n\}$ with $A \subset B$ is $3^n 2^n$.

- 4. There is a set of 2n people (n males and n females). A good party is a set with the same number of males and females. How many ways are there to build such a good party?
- 5. (a) Show that the number of integer solution to the equation

$$x_1 + x_2 + \dots + x_n = k$$

- under the condition that $x_i \geq 0$ for all i is $\binom{n+k-1}{k}$.
- (b) Let n and $k \ge l$ be positive integers. How many different integer solutions are there to the equation $x_1 + x_2 + \cdots + x_n = k$ such that $0 \le x_i < l$ for all i.