# CS4102 Algorithms Fall 2018



#### Warm up

In Season 9 Episode 7 "The Slicer" of the hit 90s TV show *Seinfeld*, George discovers that, years prior, he had a heated argument with his new boss, Mr. Kruger. This argument ended in George throwing Mr. Kruger's boombox into the ocean. How did George make this discovery?





https://www.youtube.com/watch?v=pSB3HdmLcY4

#### Today's Keywords

- Dynamic Programming
- Longest Common Subsequence
- Seam Carving
- Seinfeld

# **CLRS** Readings

• Chapter 15

#### Homeworks

- Hw5 Released on Friday
  - Programming
  - Dynamic Programming

#### **Dynamic Programming**

- Requires Optimal Substructure
  - Solution to larger problem contains the solutions to smaller ones
- Idea:
  - 1. Identify recursive structure of the problem
    - What is the "last thing" done?
  - 2. Select a good order for solving subproblems
    - "Top Down": Solve each recursively
    - "Bottom Up": Iteratively solve smallest to largest
  - 3. Save solution to each subproblem in memory

#### Longest Common Subsequence

Given two sequences X and Y, find the length of their longest common subsequence

#### Example:

X = ATCTGAT

Y = TGCATA

LCS = TCTA

Brute force: Compare every subsequence of X with Y  $\Omega(2^n)$ 



#### **Dynamic Programming**

- Requires Optimal Substructure
  - Solution to larger problem contains the solutions to smaller ones
- Idea:
  - 1. Identify recursive structure of the problem
    - What is the "last thing" done?
  - 2. Select a good order for solving subproblems
    - "Top Down": Solve each recursively
    - "Bottom Up": Iteratively solve smallest to largest
  - 3. Save solution to each subproblem in memory

#### 1. Identify Recursive Structure

Let LCS(i,j) = length of the LCS for the first i characters of X, first j characters of Y

```
Find LCS(i,j):

Case 1: X[i] = Y[j]
X = ATCTGCGT
Y = TGCATAT
LCS(i,j) = LCS(i-1,j-1) + 1

Case 2: X[i] \neq Y[j]
X = ATCTGCGA
Y = TGCATAT
Y = TGCATAC
LCS(i,j) = LCS(i,j-1)
LCS(i,j) = LCS(i-1,j)
```

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

#### **Dynamic Programming**

- Requires Optimal Substructure
  - Solution to larger problem contains the solutions to smaller ones
- Idea:
  - 1. Identify recursive structure of the problem
    - What is the "last thing" done?
  - 2. Select a good order for solving subproblems
    - "Top Down": Solve each recursively
    - "Bottom Up": Iteratively solve smallest to largest
  - 3. Save solution to each subproblem in memory

#### 1. Identify Recursive Structure

Let LCS(i,j) = length of the LCS for the first i characters of X, first j character of Y

```
Find LCS(i,j):

Case 1: X[i] = Y[j]
X = ATCTGCGT
Y = TGCATAT
LCS(i,j) = LCS(i-1,j-1) + 1
Case 2: X[i] \neq Y[j]
```

$$X = ATCTGCGA$$
  $X = ATCTGCGT$   
 $Y = TGCATAT$   $Y = TGCATAC$   
 $LCS(i,j) = LCS(i,j-1)$   $LCS(i,j) = LCS(i-1,j)$ 

$$LCS(i,j) = \begin{cases} 0 & \text{Read from M[i,j]} \\ LCS(i-1,j-1)+1 & \text{if } i = 0 \text{ or } j = 0 \\ \text{If } X[i] = Y[j] \\ \text{Max}(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

#### **Dynamic Programming**

- Requires Optimal Substructure
  - Solution to larger problem contains the solutions to smaller ones
- Idea:
  - 1. Identify recursive structure of the problem
    - What is the "last thing" done?
  - 2. Select a good order for solving subproblems
    - "Top Down": Solve each recursively
    - "Bottom Up": Iteratively solve smallest to largest
  - 3. Save solution to each subproblem in memory

#### 2. Solve in a Good Order

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

$$X = \begin{cases} A & T & C & T & G & A & T \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{cases}$$

$$0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ G & 2 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 \\ C & 3 & 0 & 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 3 & 3 \\ T & 5 & 0 & 1 & 2 & 2 & 3 & 3 & 3 & 4 \\ A & 6 & 0 & 1 & 2 & 2 & 3 & 3 & 4 & 4 \end{cases}$$

To fill in cell (i,j) we need cells (i-1,j-1),(i-1,j),(i,j-1) Fill from Top->Bottom, Left->Right (with any preference)

#### Run Time?

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

$$X = \begin{cases} A & T & C & T & G & A & T \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{cases}$$

$$0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ G & 2 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 \\ C & 3 & 0 & 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3 \\ T & 5 & 0 & 1 & 2 & 2 & 3 & 3 & 3 & 4 & 4 \end{cases}$$

Run Time:  $\Theta(n \cdot m)$  (for |X| = n, |Y| = m)

#### Reconstructing the LCS

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

$$X = \begin{cases} A & T & C & T & G \\ 0 & 1 & 2 & 3 & 4 & 5 \end{cases} \begin{cases} A & T \\ 6 & 7 \end{cases}$$

$$0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ G & 2 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 \\ C & 3 & 0 & 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 3 & 3 \\ T & 5 & 0 & 1 & 2 & 2 & 3 & 3 & 3 & 4 \\ A & 6 & 0 & 1 & 2 & 2 & 3 & 3 & 4 & 4 \end{cases}$$

Start from bottom right,

if symbols matched, print that symbol then go diagonally else go to largest adjacent

#### Reconstructing the LCS

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

$$X = \begin{cases} A & T & C & T & G & A & T \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{cases}$$

$$0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ G & 2 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 & 2 \\ C & 3 & 0 & 0 & 1 & 2 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 4 \\ A & 6 & 0 & 1 & 2 & 2 & 3 & 3 & 3 & 4 & 4 \end{cases}$$

Start from bottom right,

if symbols matched, print that symbol then go diagonally else go to largest adjacent

#### Reconstructing the LCS

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

$$X = \begin{cases} A & T & C & T & G \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{cases}$$

$$0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ G & 2 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 \\ C & 3 & 0 & 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ A & 4 & 0 & 1 & 1 & 2 & 2 & 2 & 3 & 3 \\ T & 5 & 0 & 1 & 2 & 2 & 3 & 3 & 3 & 4 \end{cases}$$

$$T = \begin{cases} 0 & 1 & 2 & 2 & 3 & 3 & 3 & 4 & 4 & 4 \\ 0 & 1 & 2 & 2 & 3 & 3 & 3 & 4 & 4 & 4 \\ 0 & 0 & 1 & 2 & 2 & 3 & 3 & 3 & 4 & 4 & 4 \end{cases}$$

Start from bottom right,

if symbols matched, print that symbol then go diagonally else go to largest adjacent

#### Seam Carving

 Method for image resizing that doesn't scale/crop the image

Cropped



Scaled



Carved



# Cropping

• Removes a "block" of pixels







# Scaling

• Removes "stripes" of pixels







#### Seam Carving

• Removes "least energy seam" of pixels

http://rsizr.com/







# Seattle Skyline





#### Energy of a Seam

- Sum of the energies of each pixel
  - -e(p) = energy of pixel p
- Many choices
  - E.g.: change of gradient (how much the color of this pixel differs from its neighbors)
  - Particular choice doesn't matter, we use it as a "black box"

#### Identify Recursive Structure

Let S(i,j) = least energy seam from the bottom of the image up to pixel  $p_{i,j}$ 



#### Finding the Least Energy Seam

Want the least energy seam going from bottom to top, so delete:

$$\min_{k=1}^{m} (S(n,k))$$



### Computing S(n, k)

Assume we know the least energy seams for all of row n-1

(i.e. we know  $S(n-1,\ell)$  for all  $\ell$ )



### Computing S(n, k)

Assume we know the least energy seams for all of row n-1 (i.e. we know  $S(n-1,\ell)$  for all  $\ell$ )



#### Bring It All Together

Start from bottom of image (row 1), solve up to top

Initialize  $S(1,k) = e(p_{1,k})$  for each pixel in row 1



#### Bring It All Together

Start from bottom of image (row 1), solve up to top

Initialize 
$$S(1,k) = e(p_{1,k})$$
 for each pixel  $p_{1,k}$ 

For 
$$i > 2$$
 find  $S(i, k) = \min$ 

For 
$$i > 2$$
 find  $S(i, k) = \min \begin{cases} S(n-1, k-1) + e(p_{n,k}) \\ S(n-1, k) + e(p_{n,k}) \\ S(n-1, k+1) + e(p_{n,k}) \end{cases}$ 

$$S(n-1,k) + e(p_{n,k})$$

$$S(n-1,k+1) + e(p_{n,k})$$



Energy of the seam initialized to the energy of that pixel

#### Bring It All Together

Start from bottom of image (row 1), solve up to top

Initialize 
$$S(1,k) = e(p_{1,k})$$
 for each pixel  $p_{1,k}$ 

For 
$$i > 2$$
 find  $S(i, k) = \min$ 

For 
$$i > 2$$
 find  $S(i, k) = \min \begin{cases} S(n-1, k-1) + e(p_{n,k}) \\ S(n-1, k) + e(p_{n,k}) \\ S(n-1, k+1) + e(p_{n,k}) \end{cases}$ 

$$S(n-1,k+1) + e(p_{n,k})$$

Pick smallest from top row, backtrack, removing those pixels



Energy of the seam initialized to the energy of that pixel

#### Run Time?

Start from bottom of image (row 1), solve up to top

Initialize 
$$S(1,k) = e(p_{1,k})$$
 for each pixel  $p_{1,k}$ 

For 
$$i \ge 2$$
 find  $S(i,k) = \min - \begin{cases} S(n-1,k-1) + e(p_{i,k}) \\ S(n-1,k) + e(p_{i,k}) \\ S(n-1,k+1) + e(p_{i,k}) \end{cases}$ 

 $\Theta(m)$ 

$$\Theta(n \cdot m)$$

Pick smallest from top row, backtrack, removing those pixels



m

 $\Theta(n+m)$ 

Energy of the seam initialized to the energy of that pixel

#### Repeated Seam Removal

Only need to update pixels dependent on the removed seam

2n pixels change  $\Theta(2n)$  time to update pixels  $\Theta(n+m)$  time to find min+backtrack