MATH 210B

Name: Quin Darcy
Due Date: 3/11/20
Instructor: Dr. Shannon
Assignment: Homework 6

4. Let ζ be a primitive 6th root of unity. Find (with explanation) all 1-1 homomorphisms of $\mathbb{Q}(\sqrt[3]{5},\zeta)$ to \mathbb{C} , and all 1-1 homomorphisms from $\mathbb{Q}(\sqrt{2},i)$ to \mathbb{C} .

Solution. Let $\zeta = \frac{1}{2} + i\frac{\sqrt{3}}{2}$. Then ζ is equal to one of the 2 primitive 6^{th} roots of unity. The minimal polynomial of $\sqrt[3]{5}$ over \mathbb{Q} is $x^3 - 5$. The minimal polynomial of ζ over \mathbb{Q} is $x^2 - x + 1$. Since $\sqrt[3]{5} \notin \mathbb{Q}(\zeta)$ and $\zeta \notin \mathbb{Q}(\sqrt[3]{5})$, then $[\mathbb{Q}(\sqrt[3]{5}, \zeta) : \mathbb{Q}] = 6$. Note that $x^3 - 5$ splits over $\mathbb{Q}(\sqrt[3]{5}, \zeta)$ as

$$(x - \sqrt[3]{5})(x - \zeta^2\sqrt[3]{5})(x - \zeta^4\sqrt[3]{5}).$$

Similarly, $x^2 - x + 1$ splits over $\mathbb{Q}(\sqrt[3]{5}, \zeta)$ as

$$(x-\zeta)(x-\zeta^5).$$

Since $\mathbb{Q}(\sqrt[3]{5},\zeta) \subseteq \mathbb{C}$, then both polynomials split over \mathbb{C} . Thus, if $\psi \colon \mathbb{Q}(\sqrt[3]{5},\zeta) \to \mathbb{C}$ is a 1-1 homomorphism, then by Exam 1 and HW5 we have 6 possibilities

$$\psi_{1} := \begin{cases} \sqrt[3]{5} \mapsto \sqrt[3]{5} \\ \zeta \mapsto \zeta \end{cases} \qquad \psi_{2} := \begin{cases} \sqrt[3]{5} \mapsto \zeta^{2} \sqrt[3]{5} \\ \zeta \mapsto \zeta \end{cases} \qquad \psi_{3} := \begin{cases} \sqrt[3]{5} \mapsto \zeta^{4} \sqrt[3]{5} \\ \zeta \mapsto \zeta \end{cases}$$

$$\psi_{4} := \begin{cases} \sqrt[3]{5} \mapsto \sqrt[3]{5} \\ \zeta \mapsto \zeta^{5} \end{cases} \qquad \psi_{5} := \begin{cases} \sqrt[3]{5} \mapsto \zeta^{2} \sqrt[3]{5} \\ \zeta \mapsto \zeta^{5} \end{cases} \qquad \psi_{6} := \begin{cases} \sqrt[3]{5} \mapsto \zeta^{4} \sqrt[3]{2} \\ \zeta \mapsto \zeta^{5} \end{cases}$$

As above, we see that the minimal polynomial of $\sqrt{2}$ over \mathbb{Q} is $x^2 - 2$ which factors as $(x - \sqrt{2})(x + \sqrt{2})$ over $\mathbb{Q}(\sqrt{2})$. The minimal polynomial of i over \mathbb{Q} is $x^2 + 1$, which factors as (x - i)(x + i) over $\mathbb{Q}(i)$. Thus, there are 4 possible 1-1 homomorphisms from $\mathbb{Q}(\sqrt{2}, i)$ to \mathbb{C} . We have:

$$\psi_1 := \begin{cases} \sqrt{2} \to \sqrt{2} \\ i \to i \end{cases} \qquad \psi_2 := \begin{cases} \sqrt{2} \to -\sqrt{2} \\ i \to i \end{cases}$$

$$\psi_3 := \begin{cases} \sqrt{2} \to \sqrt{2} \\ i \to -i \end{cases} \qquad \psi_4 := \begin{cases} \sqrt{2} \to -\sqrt{2} \\ i \to -i \end{cases}$$

5. For each of the following fields, and mappings, φ , determine if φ is an automorphism of the field, and if so, then find F_{φ} , and find $[E \colon F_{\varphi}]$.

(a)
$$\mathbb{Q}(i)$$
, $\varphi(i) = -i$.

MATH 210B Darcy

Solution. This is an automorphism. Since $\mathbb{Q}(i)$ is the splitting field for $x^2 + 1 = (x-i)(x+i)$, then all we need is that i be mapped to itself or -i. We also know that φ is the identity over \mathbb{Q} and thus for any $a+bi \in \mathbb{Q}(i)$, we have $\varphi(a+bi) = a-bi$ and so $\mathbb{Q} \subseteq F_{\varphi}$. Moreover, since i is the only element which does not map to itself, then $F_{\varphi} = \mathbb{Q}$ and so $[\mathbb{Q}(i):\mathbb{Q}] = 2$.

(b) $\mathbb{Q}(\omega)$, $\varphi(\omega) = \omega^2$.

Solution. This is an automorphism. Since $x^2 + x + 1 = (x - \omega)(x - \omega^2)$ is the minimal polynomial associated with ω , then all we need is that $\varphi(\omega) \in \{\omega, \omega^2\}$, which it is. From the definition, it follows that $\varphi(\omega^2) = \omega$. Thus, the only fixed elements of this automorphism are those in \mathbb{Q} and so $F_{\varphi} = \mathbb{Q}$ and $[\mathbb{Q}(\omega): \mathbb{Q}] = 2$.

(c) $\mathbb{Q}(\omega)$, $\varphi(\omega) = -\omega$.

Solution. This is not an automorphism, since $-\omega$ is not a root of $x^2 + x + 1$.

(d) $\mathbb{Q}(x)$, $\varphi(x) = 1/x$.

Solution. φ is an automorphism and so $\varphi(x+\frac{1}{x})=\varphi(x)+\varphi(\frac{1}{x})=\frac{1}{x}+x$. Thus, $\mathbb{Q}(x+\frac{1}{x})\subseteq F_{\varphi}$. Note that x is a root of $z^{-}(x+\frac{1}{x})z+1$. And so the minimal polynomial for x has degree ≤ 2 . However, if it had degree 1, then $[\mathbb{Q}(x)\colon\mathbb{Q}(x+\frac{1}{x})]=1$ which would imply that $\mathbb{Q}(x)=\mathbb{Q}(x+\frac{1}{x})$. This is not true since not every element of $\mathbb{Q}(x)$ is fixed. Thus, $[\mathbb{Q}(x)\colon\mathbb{Q}(x+\frac{1}{x})]=2$. Since for any $f(x)\in F_{\varphi}$ such that $f(x)\notin\mathbb{Q}(x+\frac{1}{x})$ we would have $[\mathbb{Q}(x+\frac{1}{x})\colon\mathbb{Q}(x+\frac{1}{x})]>1$ and so $[\mathbb{Q}(x)\colon\mathbb{Q}(x+\frac{1}{x},f(x))]=1$, but this is not possible. Therefore, $F_{\varphi}=\mathbb{Q}(x+\frac{1}{x})$ and $[\mathbb{Q}(x)\colon F_{\varphi}]=2$.

(e) $GF(2^n), \varphi(a) = a^2$.

Solution. φ is an automorphism. Since it is 1-1, then for any $a \in GL(2^n)$ such that $\varphi(a) = a^2 = a$, it follows that a = 1 or a = 0. However, $a \neq 1$ since if $1 \in GF(2^n)$, then $\varphi(1+1) = 1+1=2$, but we know $\varphi(2) = 4$. Thus, $F_{\varphi} = \{0\}$ and $[GL(2^n): F_{\varphi}] = 2^n$.

- 6. For each of the fields, and subsets, S, of the automorphism group of the field, find F_S , and find $[E:F_S]$. For (b)-(e), the φ 's are defined in the solution to HW5.
 - (a) $\mathbb{Q}(i)$, $S = \{\text{identity}, \varphi(i) = i\}.$

Solution. Clearly, with the identity automorphism we have that all of $\mathbb{Q}(i)$ is fixed, however, with $\varphi(i) = -i$, only \mathbb{Q} is fixed. Thus, $F_S = \mathbb{Q}(i) \cap \mathbb{Q} = \mathbb{Q}$ and so $[\mathbb{Q}(i):\mathbb{Q}] = 2$.

(b) $\mathbb{Q}(\sqrt[3]{2},\omega)$, $S = \{\varphi_1, \varphi_2\}$.

Solution. Here we have that the fixed field of φ_1 is $\mathbb{Q}(\sqrt[3]{2}, \omega)$ and for φ_2 it is just $\mathbb{Q}(\omega\sqrt[3]{2}$. Thus, $F_S = \mathbb{Q}(\sqrt[3]{2})$ and, by HW5, $[\mathbb{Q}(\sqrt[3]{2}, \omega) : \mathbb{Q}] = 2$.

(c) $\mathbb{Q}(\sqrt[3]{2},\omega)$, $S = \{\varphi_1, \varphi_3\}$.

Solution. With φ_1 , the fixed field is all of $\mathbb{Q}(\sqrt[3]{2},\omega)$ and since with φ_3 , we have that $\varphi(\sqrt[3]{2}) = \sqrt[3]{2}$, then only ω has changed. Thus, $F_S = \mathbb{Q}(\sqrt[3]{2})$. Additionally, since $\omega \notin \mathbb{Q}(\sqrt[3]{2})$, then the minimal polynomial of ω over $\mathbb{Q}(\sqrt[3]{2})$ is $x^2 + x + 1$ and thus $[\mathbb{Q}(\sqrt[3]{2},\omega):\mathbb{Q}(\sqrt[3]{2})] = 2$.

MATH 210B Darcy

(d) $\mathbb{Q}(\sqrt[3]{2},\omega)$, $S = \{\varphi_1, \varphi_4, \varphi_5\}$.

Solution. The fixed field for the identity map is all of $\mathbb{Q}(\sqrt[3]{2},\omega)$. The fixed field for φ_4 is $\mathbb{Q}(\omega)$ since $\varphi(\sqrt[3]{2}) = \omega\sqrt[3]{2}$ and $\varphi_4(\omega) = \omega$. Similarly, φ_5 leaves ω unchanged while $\varphi_5(\sqrt[3]{2}) = \omega^2\sqrt[3]{2}$ and so the fixed field for φ_5 is $\mathbb{Q}(\omega)$. Thus, $F_S = \mathbb{Q}(\omega)$ and $[\mathbb{Q}(\sqrt[3]{2},\omega):\mathbb{Q}(\omega)] = 3$ since $x^3 - 2$ is the minimal polynomial of $\sqrt[3]{2}$ over $\mathbb{Q}(\omega)$.

(e) $\mathbb{Q}(\sqrt[3]{2},\omega)$, $S = \{\varphi_1, \varphi_2, \varphi_6\}$.

Solution. In this case both φ_2 and φ_6 map $\sqrt[3]{2}$ and ω to elements different from themselves. However, $\varphi_6(\omega^2\sqrt[3]{4})$. And so $F_S = \mathbb{Q}(\omega^2\sqrt[3]{4})$ and $[\mathbb{Q}(\sqrt[3]{2},\omega):\mathbb{Q}(\omega^2\sqrt[3]{4})] = 3$.

7. Prove that f(x) has a multiple root in its splitting field iff f and f' have a common factor of degree ≥ 1 .

Proof. Let E denote the splitting field of f(x) and assume $\alpha \in E$ is a root of multiplicity k > 1. Then by definition, $(x - \alpha)^k \mid f(x)$ and so we may write

$$f(x) = (x - \alpha)^k \sum_{i=0}^m a_i x^i.$$

Taking the derivative of both sides we get

$$(f(x))' = \left((x - \alpha)^k \sum_{i=0}^m a_i x^i \right)'$$

$$= k(x - \alpha)^{k-1} \sum_{i=0}^m a_i x^i + (x - \alpha)^k \sum_{i=1}^m i a_i x^{i-1}$$

$$= (x - \alpha)^{k-1} \left(k \sum_{i=0}^m a_i x^i + (x - \alpha) \sum_{i=1}^m i a_i x^{i-1} \right).$$

Thus, $(x - \alpha)^{k-1} \mid f'(x)$ and $(x - \alpha)^{k-1} \mid f(x)$. Since k > 1, then $k - 1 \ge 1$. Hence, f(x) and f'(x) have a common factor of degree ≥ 1 . Now to argue the contrapositive, assume that f(x) does not have a multiple root in its splitting field. Then letting α be a root of f(x), we can write $f(x) = (x - \alpha)g(x)$, where $(x - \alpha) \nmid g(x)$. From here we see that the derivative of f is $f'(x) = g(x) + (x - \alpha)g'(x)$. Thus, $(x - \alpha) \nmid f'(x)$ and since α was any root of f(x), then it follows that f(x) and f'(x) do not share any common factors.

8.

(a) Assume that char(F) = 0, $f(x) \in F[x]$, and f(x) is irreducible over F. Prove that f cannot have any roots of multiplicity greater than 1.

MATH 210B Darcy

Proof. Assume for contradiction that f(x) has a root of multiplicity greater than 1. Then by 7., f(x) and f'(x) have a common factor. Thus, if a is the root of multiplicity, then the minimal polynomial of a over F is f(x) since f(x) is irreducible (assuming it is monic). However, since a is also a root of f'(x), then it must be the case that $f(x) \mid f'(x)$. This is a contradiction as $\deg(f'(x)) < \deg(f(x))$.

(b) Assume that $\operatorname{char}(F) = p$, $f(x) \in F[x]$, f(x) is irreducible over F. Prove that if f has a multiple root then there exists $g(x) \in F[x]$ such that $f(x) = g(x^p)$.

Proof. Assume that f has a multiple root. Then by 7., f and f' share a common factor. Since f is irreducible, then gcd(f, f') = f. This implies that f'(x) = 0. Thus, for some $g(x) \in F[x]$, $f(x) = g(x^p)$. In other words, if we let $f(x) = a_0 + a_1 x^p + \cdots + a_n x^{np}$, then $f'(x) = pa_1 x^{p-1} + \cdots + npa_n x^{np-1}$ and since char(F) = p, then every term in f'(x) vanishes.

9.

(a) Prove that if p is prime, $p \nmid n$, then $x^n - 1$ has n distinct roots over \mathbb{Z}_p .

Proof. Let $f(x) = x^n - 1$, then $f'(x) = nx^{n-1}$. Since $p \nmid n$, then $f'(1) \neq 0$. Seeing that the only root of f'(x) is 0 and $f(0) \neq 0$, then it follows that f(x) and f'(x) share no common roots and thus no common factors. Thus, f(x) has no roots of multiplicity. Thus, $x^n - 1$ has n distinct roots over \mathbb{Z}_p .

(c) Assume that ζ is a primitive n^{th} root of unity. Determine $[\mathbb{Q}(\zeta):\mathbb{Q}]$.

Solution. By part (b) we know that if $f(x) \mid x^n - 1$ and ζ is a root of f(x) then ζ^p , where p prime and $p \nmid n$, is also a root. Thus, the total number of roots of such an f(x) is given by $\phi(n)$. Thus, the minimal polynomial of ζ has degree $\phi(n)$ and therefore, $[\mathbb{Q}(\zeta):\mathbb{Q}] = \phi(n)$.