Department of Mathematics Indian Institute of Technology Jammu

CSD001P5M Linear Algebra Tutorial: 09

1. Let A be an $m \times n$ matrix. Suppose the columns of A are linearly independent. Show that there exist a matrix Q whose columns are orthogonal and an invertible upper triangular matrix R such that A = QR.

- 2. Let A be $m \times n$ matrix. Prove that
 - a) $\mathbb{R}^n = \mathscr{R}(A) \oplus \mathscr{N}(A)$
 - b) $\mathbb{R}^m = \mathscr{C}(A) \oplus \mathscr{N}(A^T)$.
- 3. Suppose $v_1, \ldots, v_m \in V$ Prove that $\{v_1, \ldots, v_m\}^{\perp} = (\operatorname{span}(v_1, \ldots, v_m))^{\perp}$.
- 4. Let U is a finite dimensional subspace of V. Prove that $U^{\perp} = \{0\}$ if and only if U = V.
- 5. Suppose U is a subspace of V with basis $\{u_1, \ldots, u_m\}$ and $B = \{u_1, \ldots, u_m, w_1, \ldots, w_n\}$ is a basis of V. Apply the Gram-Schmidt procedure to the basis B. and it produce $\{e_1, \ldots, e_m, f_1, \ldots, f_n\}$. Prove that $\{e_1, \ldots, e_m\}$ is an orthonormal basis of U and $\{f_1, \ldots, f_n\}$ is an orthonormal basis of U^{\perp} .
- 6. Let U be a subspace of \mathbb{R}^4 defined by span((1,2,3,-4),(-5,4,3,2)). Find an orthonormal basis of U and an orthonormal basis of U^{\perp} .
- 7. Let *U* and *W* be subset of *V*. Then prove the following:
 - (a) If $U \subset W$, then $W^{\perp} \subset U^{\perp}$.
 - (b) $(U \cup W)^{\perp} = U^{\perp} \cap W^{\perp}$.
 - (c) $U^{\perp} \cup W^{\perp} \subset (U \cap W)^{\perp}$.
- 8. Suppose U, W are subspaces of finite dimensional V. Then prove the following:
 - a) $P_{U^{\perp}} = I P_U$, where I is an identity map.
 - b) $P_U P_W = 0$ if and only if $\langle u, w \rangle = 0$ for all $u \in U, w \in W$.
- 9. Let U = span((1,1,0,0),(1,1,1,2)). Find $u \in U$ such that ||u (1,2,3,4)|| is as small as possible.
- 10. Take your 5 favourite real inner product space. Find U^{\perp} for some of their subspaces U.