Introduction to Artificial Intelligence: Knowledge Representation

Dr. Tapas Kumar Mishra

Assistant Professor
Department of Computer Science and Engineering
SRM University
Amaravati-522240, Andhra Pradesh, India
Email: tapaskumar.m [at] srmap [dot] edu [dot] in

Introduction to KR: Formalized Symbolic Logics

- First order predicate logic (FOPL) or Predicate calculus One of the oldest and most important representation scheme
- Logic is a formal method for reasoning.
- In FOPL, statements from a natural language like English are translated into symbolic structures comprised of predicates, functions, variables, constants, quantifiers and logical connectives.
- Inference rules may then be applied to compare, combine and transform these assumed structures into new deduced structures.

Introduction to KR: Formalized Symbolic Logics

- Example: All employees of the Al-software company are programmers
- **FOPL**: $(\forall x)$ (AI-SOFTWARE-CO-EMPLOYEE(x) \rightarrow PROGRAMMER(x))
- **Predicate:** AI-SOFTWARE-CO-EMPLOYEE(x), PROGRAMMER(x)
- "if x is an AI software company employee" and "x is a programmer"
- Variable: x
- If it is known that Jim is an employee of AI software company
 - AI-SOFTWARE-CO-EMPLOYEE(jim)
- One can draw the conclusion that Jim is a programmer
 - PROGRAMMER(jim)

- Propositions are elementary atomic sentences/formulas/well-formed formulas.
- Propositions may be either true or false but may take on no other value.
- Example:
 - It is raining.
 - My car is painted silver.
 - John and Sue have five children.
 - Snow is white.
 - People live on the moon.

- Compound propositions are formed from atomic formulas using the logical connectives, not, or, if ... then, and & if and only if.
- Example:
 - It is raining and the wind is blowing.
 - The moon is made of green cheese or it is not.
 - If you study hard you will be rewarded.
 - The sum of 10 and 20 is not 50.

- Proposition capital letter, sometimes followed by digits
- T true
- F false
- ullet \sim not or negation
- & and or conjunction
- V or or disjunction
- ullet ightarrow if ... then or implication
- $\bullet \ \leftrightarrow$ if and only if or double implication
- **Punctuation** (,), {, }, period

- It is raining and the wind is blowing.
 - (R & B)
 - where R and B stand for the propositions "It is raining" and "the wind is blowing".
- It is raining or the wind is blowing or both.
 - (R V B)
 - V Inclusive disjunction

- If P and Q are formulas, the following are formulas.
 - $(\sim P)$, (P & Q), $(P \lor Q)$, $(P \to Q)$, $(P \leftrightarrow Q)$
- Compound formula: $(P \& (\sim Q \lor R) \rightarrow (Q \rightarrow S))$
- Precedence: \sim , &, V, \rightarrow , \leftrightarrow
- Example:
 - $P \& \sim Q \lor R \rightarrow S \leftrightarrow U \lor W$
 - $((((P \& \sim(Q)) \lor R) \to S) \leftrightarrow (U \lor W))$

Syntax and semantics for propositional logic - Semantics

- The semantics or meaning of a sentence is just the value true or false; that is, it is an assignment of a truth value to the sentence.
- An interpretation for a sentence or group of sentences is an assignment of a truth value to each propositional symbol.
- Example:
 - $(P \& \sim Q)$
 - Interpretation (I_1) : True to P and false to Q
 - Interpretation (I_2) : True to P and true to Q
 - There are four distinct interpretations for this sentence.

Syntax and semantics for propositional logic - Semantics

Rule No.	True Statements	False Statements	
1	T	F	
2	\sim f	\sim t	
3	t & t' (t') is a true statement)	f & a	
4	t V a	a & f	
5	a V t	$f \ V \ f' \ (f' \ is a false statement)$	
6	a ightarrow t	t o f	
7	f o a	$t \leftrightarrow f$	
8	$t\leftrightarrow t'$	$f \leftrightarrow t$	
9	$f \leftrightarrow f'$	$p \Leftrightarrow q$: $(p \Rightarrow q) & (q \Rightarrow p)$	

- $((P \& \sim Q) \rightarrow R) \lor Q$
- $((P \& \sim Q) \rightarrow R) \lor Q \Rightarrow F$
- Interpretation I: Assign true to P, false to Q and false to R
- Rules: 2 ($\sim Q$ as true), 3 (($P \& \sim Q$) as true), 6 (($P \& \sim Q$) $\to R$ as false) and 5 (Q as false)

- Satisfiable: A statement is satisfiable if there is some interpretation for which it is true.
- Contradiction: A sentence is contradictory (unsatisfiable) if there is no interpretation for which it is true.
- Valid/Tautologies: A sentence is valid if it is true for every interpretation.
- **Equivalence:** Two sentences are equivalent if they have the same truth value under **every** interpretation.
- Logical consequences: A sentence is a logical consequence of another if it is satisfied by all interpretations which satisfy the first.
- A valid statement is satisfiable, but the converse is not necessarily true.
 b

- P V ∼P is valid.
- $P \& \sim P$ is contradiction.
- P is satisfiable but not valid.
- P and $\sim (\sim P)$ are equivalent.
- \bullet P is a logical consequence of (P & Q) since any interpretation for which (P & Q) is true, P is also true.

Theorem 1

The sentence s is a logical consequence of s_1, \ldots, s_n if and only if $s_1 \& s_2 \& \ldots s_n \to s$ is valid.

Theorem 2

The sentence s is a logical consequence of s_1, \ldots, s_n if and only if $s_1 \& s_2 \& \ldots \& s_n \& \sim s$ is inconsistent.

Proof

$$\begin{array}{l}
\sim (s_1 \& s_2 \& \dots \& s_n \to s) \\
= \sim (\sim (s_1 \& s_2 \& \dots s_n) \lor s) \\
= \sim \sim (s_1 \& s_2 \& \dots s_n) \lor \sim s \\
= s_1 \& s_2 \& \dots s_n \lor \sim s
\end{array}$$

- When s is a logical consequence of s_1, \ldots, s_n , the formula $s_1 \& s_2 \& \ldots \& s_n \to s$ is called a **theorem**, with s the **conclusion**.
- Let $S = \{s_1, ..., s_n\}$
- S logically implies or logically entails s, written as $S \models s$

Some Equivalence Laws

Idempotency	P V P = P		
	P & P = P		
Associativity	$(P \lor Q) \lor R = P \lor (Q \lor R)$		
	(P & Q) & R = P & (Q & R)		
Commutativity	P V Q = Q V P		
	P & Q = Q & P		
	$P \leftrightarrow Q = Q \leftrightarrow P$		
Distributivity	$P \& (Q \lor R) = (P \& Q) \lor (P \& R)$		
	$P \lor (Q \& R) = (P \lor Q) \& (P \lor R)$		
De Morgan's Laws	\sim (P V Q) = \sim P & \sim Q		
	\sim (P & Q) = \sim P V \sim Q		
Conditional Elimination	$P \rightarrow Q = \sim P \vee Q$		
Bi-conditional Elimination	$P \leftrightarrow Q = (P \rightarrow Q) \& (Q \rightarrow P)$		

Truth Table for Equivalent Sentences

Р	Q	\sim P	(∼P V <i>Q</i>)	$P \rightarrow Q$	$Q \rightarrow P$	$(P o Q) \ \& \ (Q o P)$
true	true	false	true	true	true	true
true	false	false	false	false	true	false
false	true	true	true	true	false	false
false	false	true	true	true	true	true

Inference Rules

• The problem is given a set of sentences $S = \{s_1, \ldots, s_n\}$ (the premises), prove that the truth of s (the conclusion); that is, show that $S \models s$.

Modus Ponens

 $P \\ P \rightarrow Q$

Q

Example

Joe is a father.

Joe is a father. \rightarrow Joe has a child.

Joe has a child.

Inference Rules

Chain Rule

 $P \rightarrow Q$ $Q \rightarrow R$

 $P \rightarrow R$

Chain Rule

Programmer likes LISP \rightarrow Programmer hates COBOL Programmer hates COBOL \rightarrow Programmer likes recursion

Programmer likes LISP \rightarrow Programmer likes recursion

Inference Rules

Substitution

If s is a valid sentence, s' derived from s by consistent substitution of propositions in s, is also valid.

Example

The sentence $P \lor \sim P$ is valid; therefore $Q \lor \sim Q$ is also valid.

Simplification

From P & Q infer P

Conjunction

From P and from Q, infer P & Q

Transposition

From $P \rightarrow Q$, infer $\sim Q \rightarrow \sim P$

Syntax and Semantics for FOPL

- PL does not permit us to make generalized statements about classes of similar objects.
- There are **serious** limitations when reasoning about real world entities.

Example

All students in computer science must take Pascal. John is a computer science major.

It is not possible to conclude in PL that John must take Pascal since the second statement does not occur as part of the first one.

• FOPL was developed by logicians to extend the expressiveness of PL.

- Connectives (five symbols): \sim , &, V, \rightarrow and \leftrightarrow
- Quantifiers (two symbols): ∃ (Existential quantification) and ∀ (Universal quantification)
 - $(\forall x)$ $(\forall y)$ $(\forall z)$, we abbreviate with a single quantifier and drop the parentheses to get $\forall xyz$
- Constants: numbers, words and small letters near the beginning of the alphabet
 - a, b, c, 5.3, -21, flight-102 and john
- Variables: words and small letters near end of the alphabet
 - x, y and z

- Function: It denotes relations defined on a domain D.
- A 0-ary function is a constant.
 - **Example:** f, g, h, father-of and age-of
- Predicates: It denotes relations or functional mappings from the elements of a domain D to the values true or false.
- A 0-ary predicate is a proposition (a constant predicate).
 - **Example:** Capital letters and capitalized words such as P, Q, R. EQUAL and MARRIED
- Term: Constants, variables and functions
- Atomic formulas/Atoms: Predicates
- Literal: An atom or its negation
- Punctuations: (,), [,], {, } and period

Example

- E1: All employees earning \$1400 or more per year pay taxes.
- E2: Some employees are sick today.
- E3: No employee earns more than the president.
- E(x) for x is an employee. (**NOTE**: upper case denotes a predicate)
- P(x) for x is president.
- i(x) for the income of x. (**NOTE**: lower case denotes a function)
- GE(u, v) for u is greater than or equal to v.
- S(x) for x is sick today.
- T(x) for x pays taxes.

E1':
$$\forall x ((E(x) \& GE(i(x), 1400)) \rightarrow T(x))$$

E2':
$$\exists y \ (E(y) \rightarrow S(y))$$

E3':
$$\forall xy ((E(x) \& P(y)) \rightarrow \sim GE(i(x), i(y)))$$

The expressions E1', E2' and E3' are known as well-formed formulas (wffs).

- An atomic formula is a wff.
- If P and Q are wffs, then $\sim P$, P & Q, P \vee Q, $P \rightarrow Q$, $P \leftrightarrow Q$, $\forall x \ P(x)$ and $\exists x \ P(x)$ are wffs.

Valid wffs

```
MAN(john)
PILOT(father-of(bill))
\exists xyz \ ((FATHER(x, y) \& FATHER(y, z)) \rightarrow GRANDFATHER(x, z))
\forall x \ NUMBER(x) \rightarrow (\exists y \ GREATER-THAN(y, x))
\forall x \ \exists y \ (P(x) \& \ Q(y)) \rightarrow (R(a) \ V \ Q(b))
```

Not wffs

```
\forall P\ P(x) \to Q(x)\ //\ Universal quantification is applied to the predicate P(x) MAN(\simjohn) // Constant is negated father-of(Q(x)) // Function with a predicate argument MARRIED(MAN, WOMAN) // Predicate with two predicate arguments
```


Semantics for FOPL

• A predicate (or wff) that has no variables is called a ground atom.

Example

E: $\forall x ((A(a,x) \lor B(f(x))) \& C(x)) \rightarrow D(x)$

Predicates: A, B, C and D

A is a **two-place predicate**, the first argument being the **constant** a and the second argument, a **variable** x.

B, C and D are all unary predicates.

The argument of B is a function f(x) and the argument of C and D is the variable x.

