Genome Annotation

(adapted from A. Bombarely IBMCP)

Ana Conesa, Professor

Institute for Integrative Systems Biology , CSIC, Spain

ana.conesa@csic.es @anaconesa @conesa_lab

Who I am?

Who I am?

My hobby: my cats

Let's get serious... genome annotation....

GCGTGCAGGACGATGACGCAGAAGCTGGCAGACGGATGCGAGCAGCAGCAGTGACGT CGTGACGACGACTATAGCACACAGTGAAACGACAGTGACGAGCAGGTAGACGATGAC GCAGCAAACCACATAGCATGGCCGCATATTATGACGCAGACCGGACTGACGTGACGT GACTTACGAGCATGCAGCAGTGCACGTGACGTGACGTTTTTTGACGTAGCAGT

Do all nucleotides have the same function?

Genome annotation

Genome annotation is about identifying functional elements in a DNA sequence

Genome elements

Functional

Genome structure

- **Telomeres**
- Centromeres

Expression regulatory elements

- Chromatin conformation
 - **≢**Epigenetic marks

Genes

- Protein coding genes.
- Genes producing ncRNA

Non-functional?

Repetitive elements

Types of "annotation"

Structural annotation consists of the identification of genomic elements.

- ORFs and their localization
- · gene structure
- coding regions
- location of regulatory motifs
- repeats

Functional annotation consists of attaching biological information to genomic elements.

- biochemical function
- biological function
- involved regulation and interactions
- expression

Structural annotation

Functional annotation

kinase

Annotation Strategies

Annotation types

- •Automatic annotation uses pattern recognition algorithms like Markov Chain models.
- •Quality depends on training data; effective for repetitive elements but limited for complex unique genes.
- •Manual annotation involves human-supervised inspection, producing high-quality functional annotations.
- •Manual annotation is feasible mainly in model organisms such as *Saccharomyces cerevisiae* and *Arabidopsis thaliana*.

Identification Genomics Elements

- •Sequence homology methods include RNA-Seq data and known transposon sequences.
- •Pattern-based recognition detects motifs such as ATG and GAx sequences.
- •Experimental data sources include **HiC** contact maps and methylation pattern analyses.
- •Combining multiple approaches enhances annotation accuracy and reliability.

Steps in gene annotation

Annotation Standards

https://www.earthbiogenome.org/

Report on Annotation Standards

VERSION 1.0—JUNE 2023

TO ACCOMPANY THE RECOMMENDATIONS, THE EBP PROVIDES A REPORT ON ANNOTATION TOOLS RECOMMENDATIONS.

AUTHORS: FERGAL J. MARTIN, FRANÇOISE THIBAUD-NISSEN, ALICE DENIS, RODERIC GUIGÓ, KATHARINA J. HOFF, DAVID SWARBRECK, JILL WEGRZYN AND THE EBP ANNOTATION SUBCOMMITTEE

GENOME FEATURES TO BE ANNOTATED IN ALL GENOMES:

The EBP annotation standards committee proposes that the following feature classes are annotated in all genomes:

- 1. Repetitive regions, for the purpose of masking
- 2. Protein-coding genes:
 - 1. CDSs

USEFUL AND HIGHLY DESIRED ADDITIONAL ANNOTATION:

- 1. Protein-coding genes
 - 1. Predicted functional assignments
- 2. Non-coding RNAs (ncRNA):
 - 1. rRNAs
 - 2. tRNAs
- 3. Repeat elements (simple and transposable)
 - 1. Classification through homology/structural assessment
- CpG islands

Annotation of Repetitive Elements

Repeated sequences (repetitive elements, or repeats) are patterns of nucleic acids (DNA or RNA) that occur in multiple copies throughout the genome. The functions and descriptions of these sequences are currently being characterized by scientists. Repetitive DNA was first detected because of its rapid reassociation kinetics.

Relevance of Repetitive Elements

They have effects on gene function, from altering its expression to disrupt its function and convert it in a pseudogene

They can be domesticated being a possible source of new genes

They are an important source of the genome dynamics, from recombination to generation of new genomic elements.

Software to annotate RE

PROGRAM	ТҮРЕ	APPROACH	CITATION
RepeatMasker	Library based.	Search by homology	Smit et al. 1996
PLOTREP (Censor)	Library based.	Search by homology	Toth et al. 2006
LTR_STRUCT	Library based.	Search for LTR Transposons	McCarthy and McDonald 2003
Greedier	Library based.	Search by homology. Nested elements	Li et al. 2008
RTAnalyzer	Signature based	1115- 11	1
FINDMITE	Signature based	Research Open Access Published:	16 December 2019
HelitronFinder	Signature based	Benchmarking transp	oosable element
LTR_Retriever	Ab-initio	methods for creation	n of a streamline
RECON	Ab-initio	pipeline	
PILER	Ab-initio	• •	
RepeatScout	Ab-initio	Shujun Ou, Weija Su, Yi Liao, Kapeel Ch Blanco Lugo, Tyler A. Elliott, Doreen Wa	
RepeatFinder/REPuter	Ab-initio	Matthew B. Hufford □	are, mornas reterson, ming on
RepeatRunner	Pipeline		75 (2010) Oita this artists
RepeatModeler2	Pipeline	Genome Biology 20, Article number: 2 16k Accesses 93 Citations 72 Al	
EDTA	Pipeline	TOR ACCESSES 93 CITATIONS 72 AI	uneurc <u>Metrics</u>
REPET	Pipeline	Combination of many tools	Hoede et al. 2014

Gene Annotation

Gene Annotation Strategies

Ab-initio

- •Rely in mathematical models to determine intronexon structure.
- •Do not external evidence (e.g. ESTs).
- •Do not report untranslated regions (UTRs).
- •Accuracy intron-exon structure < 60%.

Evidence-based

- •ESTs, RNA-seq and know protein data need to be aligned.
- Good accuracy.
- Poorer sensitivity.
- Computationally intensive.

Evidence-driven

- •Does first ab initio, then refine with experimental data
- Combine the best of the both worlds
- Improves sensitivity
- Computationally intensive.

Keys for a successful annotation

Good TE Library Much transcript / protein data

Good *ab initio*models

Quality data from other species

Ab initio gene prediction algorithms

PROGRAM	ТҮРЕ	APPROACH	CITATION
Augustus	Ab-Initio/Evidence	Generalized Hidden Markov Models (HMM)	Stanke et al. 2006
Gnomon	Ab-initio	HMM derived from Genscan	Souvorov et al. 2010
Eugene	Ab-Initio/Evidence	HMM + Evidence alignment	Foissac et al. 2008
FGENESH	Ab-initio	нмм	Solovyev et al. 2006
GeneMark	Ab-initio	HMM + Unsupervised training	Ter-Hovhannisyan et al. 2008
GENSCAN	Ab-initio	Fourier transformation	Burge and Karlin, 1998
Glimmer-HMM	Ab-initio	Generalized Hidden Markov Models (HMM)	Salzberg et al. 1999
GeneID	Ab-initio	нмм	Guigo et al. 1992
SNAP	Ab-initio	Semi-HMM	Korf, 2004
Helixer	Ab-initio	DL + HMM	Holst et al. 2023
Tiberius	Ab-initio	DL + HMM	Lars et al. 2024

Ab initio gene prediction algorithms

There are two types of algorithms applied to gene structure identification:

- Hidden Markov Models (HMM).
 - Examples: Augustus, Gnomon...

Usually needs to be trained by SPECIES (They do not generalise well)

- Neural Networks and Deep Learning Models (DL).
 - Example: Helixer, Tiberius...

They can be trained by LINEAGE They need GPUs to be efficient

Evidence-based gene prediction

Maximize transcriptome/proteome diversity and coverage

Evidence based gene prediction algorithms

PROGRAM	ТҮРЕ	APPROACH	CITATION
Exonerate	Transcripts or Proteins Evidence (EvT, EvP)	Sequence alignment (used by Maker)	Slater and Birney, 2005
PASA	Transcripts Evidence (EvT)	Transcript model assembly	Haas et al. 2003
Tophat/Cufflinks	SR Transcripts Evidence (EvT)	Based on RNA-Seq alignments	Trapnell et al. 2012
GeneWise	Protein Sequence Evidence (EvP)	Sequence alignment (obsolete)	Birney et al. 2004
GenomeScan	Protein Sequence Evidence (EvP)	Sequence alignment (obsolete)	Yeh et al. 2001
TransDeCoder	Protein Sequence Evidence (EvP)	Based on the longest ORF + Sequence homology hits (BLAST/HMMSCAN)	NA
√ T2D	Protein Sequence Evidence (EvP)	New version of TransDeCoder	Mao et al. 2025
GeMoMa	Protein Sequence Evidence (EvP)	Protein alignment (+ opt. transcriptomic data)	Keilwagen et al. 2019

Evaluation of annotation methods

Do I have capture the whole gene space?

Are my gene models correct on intron-exon, CDS and UTRs, and nucleotides?

Are my gene models real genes or do I have pseudogenes, TE... identified as genes?

BUSCO

from QC to gene prediction and phylogenomics

We are pleased to announce the release of new BUSCO datasets! Based on OrthoDBv12 (https://orthodb.org), the new datasets represent a significant increase in coverage over all domains. The new odb12 dataset release contains 36 datasets for archaea, up from 16, and 334 datasets for bacteria, up from 83. The eukaryota dataset release is being finalised and will be released in the coming weeks.

BUSCO v6.0.0 is the current stable version!

Gitlab ☑, a Conda package ☑ and Docker container ☑ are also available.

Based on evolutionarily-informed expectations of gene content of near-universal single-copy orthologs, the BUSCO metric is complementary to technical metrics like N50.

25

BUSCO assessment

Evidence-driven Strategies

Method-

Evaluation of strategies for evidence-driven genome annotation using long-read RNA-seq

Alejandro Paniagua,^{1,2,6} Cristina Agustín-García,^{1,6} Francisco J. Pardo-Palacios,¹ Thomas Brown,^{3,4} Maite De Maria,⁵ Nancy D. Denslow,⁵ Camila J. Mazzoni,^{3,4} and Ana Conesa¹

¹ Institute for Integrative Systems Biology, Spanish National Research Council, Paterna 46980, Spain; ² Department of Computer Science, Universitat de València, Valencia 46100, Spain; ³ Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany; ⁴ Berlin Center for Genomics in Biodiversity Research, 14195 Berlin, Germany; ⁵ Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32611, USA

Evidence-driven

- •Does first ab initio, then refine with experimental data
- Combine the best of the both worlds
- Improves sensitivity
- Computationally intensive.

Paniagua et al. Genome Research, 2025

Genome annotation and IrRNA-seq

Genome annotation supported by IrRNA-seq

Curated and reconstructed transcripts outperforms

Amount of data needed

Figure 3. Performance analysis of gene prediction as a function of the number of reads. Sensitivity, precision (A), and number of missed loci (B) were obtained with different sample sizes of WTC11 cell line PacBio FLNC reads using evidence-based and evidence-driven approaches. Performance of the different genome annotation approaches with Illumina short-read and PacBio long-read technologies at the gene level. (C) Ab initio predictions. (D) Evidence-based models using PacBio and Illumina-assembled transcriptomes. (E) Evidence-driven approach with PacBio, Illumina reads or Illumina-assembled transcriptomes as the source of evidence for the prediction step.

Application to the manatee genome annotation

Genome annotation pipelines

PROGRAM	ТҮРЕ	APPROACH	CITATION
EVM	Integrator	Integrate different genome annotations	Haas et al. 2008
MAKER	Pipeline	Integrative approach with different programs	Holt and Yandell, 2011
BRAKER	Pipeline	Integrative approach with different programs	Bruna et al. 2021
EviAnn	Pipeline	Fast and light annotation pipeline	Zimin et al. 2025
(EGAP) EGAPx	Pipeline	NCBI public pipeline It does not work on some lineages (e.g. mosses)	NA
Ensembl	Pipeline	ENSEMBL pipeline for annotation. It is not public.	Ashurst et al. 2005

Some recommended tools

 \equiv

README.md

BRAKER User Guide

Contacts for Github Repository of BRAKER at https://github.com/Gaius-Augustus/BRAKER:

Katharina J. Hoff, University of Greifswald, Germany, katharina.hoff@uni-greifswald.de, +49 3834 420 4624

Tomas Bruna, Georgia Tech, U.S.A., bruna.tomas@gatech.edu

BRAKER and TSEBRA at PAG XXIX

Lars Gabriel gave a talk about PacBio ccs integration into gene prediction with BRAKER and TSEBRA at PAG on Sunday, Jan 9 2022 4:25 PM. The workflow for PacBio data integration is documented at https://github.com/Gaius-Augustus/BRAKER/blob/master/docs/long_reads/long_read_protocol.md, slides are available at https://github.com/Gaius-Augustus/BRAKER/blob/master/docs/slides/slides_PAG2022.pdf

35

EviAnn -- evidence-based eukaryotic genome annotation software

EviAnn (Evidence Annotation) is novel genome annotation software. It is purely evidence-based. EviAnn derives protein-coding gene and long non-coding RNA annotations from RNA-seq data and/or transcripts, and alignments of proteins from related species. EviAnn outputs annotations in GFF3 format. EviAnn does not require genome repeats to be soft-masked prior to running annotation. EviAnn is stable and fast. Annotation of a mouse (M.musculus) genome takes less than one hour on a single 24 core Intel Xeon Gold server (assuming input of aligned RNA-seq reads in BAM format and ~346Mb of protein sequences from several related species including human).

EviAnn manuscript is under review. The preprint is available here: https://www.biorxiv.org/content/10.1101/2025.05.07.652745v1

Some recommended tools

https://github.com/ncbi/egapx

Eukaryotic Genome Annotation Pipeline - External (EGAPx)

EGAPx is the publicly accessible version of the updated NCBI Eukaryotic Genome Annotation Pipeline.

We currently have protein datasets posted that are suitable for most vertebrates, arthropods, echinoderms, and some plants:

- Chordata Mammalia, Sauropsida, Actinopterygii (ray-finned fishes), other Vertebrates
- Insecta Hymenoptera, Diptera, Lepidoptera, Coleoptera, Hemiptera
- · Arthropoda Arachnida, other Arthropoda
- Echinodermata
- Monocots Liliopsida
- · Eudicots Asterids, Rosids, Fabids, Caryophyllales

I Fungi, Protozoans, and most non-arthropod Protostomia are out-of-scope for EGAPx. We recommend using a different annotation method for these organisms.

Check your knowledge

- What is the difference between evidence-driven and ab inition gene predicton methods
- Is gene annotation all genome annotation?
- What is BUSCO?
- Indicate 3 key element of success for geneome annotation
- What can you do to annotate a genome if you do not have much experimental evidence?
- What does fragmented BUSCO mean?