МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по проведению практического занятия №3

Тема занятия:

ИСПОЛЬЗОВАНИЕ МАКРОСОВ ДЛЯ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ ФУНКЦИОНАЛЬНЫХ УЗЛОВ

В современных схемотехнических САПР широко используются модели пассивных и активных электронных компонентов (резисторов, конденсаторов, катушек индуктивности, биполярных и полевых транзисторов различного типа), а также макромодели и макросы более сложных базовых электронных узлов.

Напомним, что макромодели электроны узлов — это «черные ящики», структурные или функциональные (но не принципиальные!) схемы которых известны. Примеры таких макромоделей: макромодели интегральных операционных усилителей, построенных по классической структуре; макромодели интегральных компараторов, аналого-цифровых и цифро-аналоговых преобразователей и др.

Макросы электронных узлов — это «черные ящики», которые реализуют, конкретную функциональную зависимость «вход-выход». Для аналоговых узлов — это либо выполнение определенной математической операции (например, усиления, перемножения сигналов, деления, интегрирования, дифференцирования и др.), либо генерация сигналов с различными типами модуляции (или манипуляции). Для цифровых типовых компонентов — это выполнение логической (или логических) операций (например, логическое И-НЕ с 2-9 входами, логическое ИЛИ-НЕ с 2-9 входами, исключающее ИЛИ-НЕ, *D*-триггер, *JK*-триггер, цифровая линия задержки и др.).

Среди большого многообразия макросов аналоговых функциональных улов, имеющихся в программном пакете *Micro-Cap 10*

demo, целесообразно выделить следующие: усилитель *Amp*, перемножитель *Mul*, интегратор *Int* дифференциатор *Dif*, элемент задержки *Delay*, сумматор (на два и на три входа) *Sum* и *Sum3*, вычитающее устройство *Sub*, гиратор *Gyrator*, кварцевый резонатор *Xtal*, делитель *Div*, устройство взятия модуля *Abs*, устройство выборки-хранения *Sample and Hold*, амплитудный ограничитель *Clip*, управляемый генератор *VCO*, генератор амплитудно-модулированного сигнала *AM*, генератор частотно-манипулированного сигнала *FSK*, генератор фазоманипулированного сигнала *PSK*, пиковый детектор *Peak Detector*.

Следует отметить, что несколько макросов, а именно: усилитель, перемножитель, интегратор, сумматор и генератор, управляемый напряжением – используются в практикуме по данной дисциплине.

Теперь смоделируем ряд функциональных узлов с использованием макросов. Для их размещения на схеме нужно последовательно выбрать следующие пункты меню:

Component > Analog Primitives > Macros.

1. Устройство возведения в квадрат

Его моделирование выполняется на основе аналогового перемножителя (рис. 3.1).

Рис. 3.1

Поясним принцип работы этого устройства. Если обозначить напряжение от источника V1 $u_1(t) = U_1 \cdot \cos \omega_1 t$ и масштабный коэффициент перемножителя (Scale) K_0 , то

$$u_2(t) = K_0 \cdot (U_1 \cdot \cos \omega_1 t)^2 = K_0 \cdot U_1^2 \frac{(1 + \cos 2\omega_1 t)}{2}.$$

Таким образом, в режиме моделирования *Transient* мы будем наблюдать появление на выходе 2 такого устройства постоянной составляющей и второй гармоники.

При необходимости устранить возникшее постоянное смещение следует собрать схему, которая изображена на рис. 3.2.

Рис. 3.2

На вход 3 вычитающего устройства нужно подать постоянное напряжение V2, равное $\frac{K_0 U_1^2}{2}$.

Студентам предлагается смоделировать такой квадратор, при этом числовые данные нужно задать самостоятельно.

2. Интегрирующее устройство (Int)

Передаточная функция идеального неинвертирующего интегратора в операторной форме

$$T_{\text{H}}(p) = U_{\text{BMX}}(p)/U_{\text{BX}}(p) = 1/(p\tau_{\text{H}}),$$

где $U_{\text{вх}}(p)$ – входное напряжение интегратора;

 $U_{\text{вых}}(p)$ – выходное напряжение;

p — оператор Лапласа;

 $\tau_{\scriptscriptstyle \text{\tiny M}}$ – постоянная времени интегрирования.

Тогда

$$U_{\text{\tiny BMX}}(p) = U_{\text{\tiny BX}}(p)/(p\tau_{\text{\tiny M}}).$$

При выполнении нулевых начальных условий перейдем во временную область

$$u_{\text{\tiny BMX}}(t) = \frac{1}{\tau_{\text{\tiny M}}} \int_0^t u_{\text{\tiny BX}}(\tau) d\tau.$$

Полученное выражение – это математическое описание операции интегрирования.

Студентам предлагается в режиме анализа *Transient* произвести моделирование интегратора при подаче на его вход:

- а) последовательности положительных прямоугольных импульсов с постоянной амплитудой и заданной скважностью;
- б) импульсного напряжения в виде меандра.

При задании параметров интегратора в формате схем (при графическом вводе) нужно определить два параметра (рис. 3.3):

- *Scale* масштабный коэффициент,
- *VINIT* начальное значение напряжения на выходе интегратора.

Числовые данные каждая бригада студентов задает самостоятельно. В процессе моделирования следует выполнить режим *Stepping* по параметру *Scale* и дать объяснение полученным результатам.

Рис. 3.3

3. Дифференцирующее устройство (Dif)

Передаточная функция идеального неинвертирующего дифференциатора в операторной форме

$$T_{o}(p) = \frac{U_{\text{\tiny BblX}}(p)}{U_{\text{\tiny BK}}(p)} = p \cdot \tau_{o},$$

где $U_{\text{вх}}(p)$ – входное напряжение дифференциатора;

 $U_{\text{вых}}(p)$ – выходное напряжение;

 $\tau_{_{\! I}}$ – постоянная времени дифференцирования.

Тогда

$$U_{\text{\tiny \textit{BbLX}}}(p) = p \cdot \tau_{\partial} \cdot U_{\text{\tiny \textit{ex}}}(p).$$

При выполнении нулевых начальных условий прейдем во временную область

$$u_{\scriptscriptstyle
m BbIX}(t) = au_{\scriptscriptstyle
m A} rac{du_{\scriptscriptstyle
m BX}(t)}{dt}.$$

Последние выражение — это математическая запись операции дифференцирования.

Студентам предлагается промоделировать в режиме *Transient* последовательное соединение интегратора и дифференциатора при подаче на вход импульсного напряжения в виде меандра.

При задании параметров дифференциатора в формате схем (при графическом вводе) нужно определить параметр *Scale* (рис. 3.4).

Числовые данные предлагается каждой бригаде студентов задать самостоятельно. В процессе моделирования следует выполнить режим *Stepping* по параметру *Scale* и дать объяснение полученным результатам.

Рис. 3.4

4. Делитель (Div)

Указанное устройство выполняет операцию деления, которую можно проиллюстрировать на примере схемы, представленной на рис. 3.5.

Рис. 3.5

Студентам предлагается объяснить результат, полученный в режиме *Transient* на выходе 3.

Задать следующие параметры:

- для делителя *X*1 коэффициент *Scale*=1;
- для генератора гармонических колебаний V1 A=1 B, F=10 K;
- для батареи *V2 VALUE*=5.

5. Гиратор (*Gyrator*)

Сначала преподавателю следует дать студентам необходимые сведения по способам реализации гираторов и их практическому применению (например, по учебному пособию Е.А. Богатырёва «Микроэлектронные аналоговые и аналого-дискретные устройства приема и обработки радиосигналов, Издательский дом МЭИ, 2007).

На занятии предлагается использовать гиратор как имитатор индуктивности. Если гиратор, обладающий проводимостью гирации G, нагрузить на емкость $C_{\rm H}$, то на его входных зажимах можно обнаружить индуктивный импеданс, который обусловлен появлением имитируемой индуктивности

$$L_{_{\mathfrak{K}B}} = \frac{C_{_{\scriptscriptstyle{H}}}}{G^2}.$$

Возможна реализация как последовательного, так и параллельного колебательного контура на основе гиратора, нагруженного на емкость $C_{\rm H}$ (рис. 3.6, a и δ соответственно).

Рис. 3.6

Студентам предлагается смоделировать с помощью подпрограммы AC одну из приведенных схем, предварительно произведя расчет параметров контура, реализуемого с помощью гиратора. Числовыми данными студенты каждой бригады задаются самостоятельно.

На рис. 3.7 приведен другой вариант схемы с уже рассчитанными параметрами пассивных компонентов.

Рис. 3.7

$$f_0 \approx 1 M \Gamma$$
ц.

Студентам предлагается провести моделирование этой схемы в подпрограмме AC, определить основные показатели эквивалентного контура, в том числе в режиме Stepping значений емкостей C1 и C2.