

运筹学实验课

指导教师:曾艳姗

运筹学实验基本内容

模块	实验 序号	知识点	课时	提交 时间
	1	线性规划	1	第13周
运筹学实	2	线性规划灵敏度分析	2	周四
	3	整数规划	1	下午
	4	指派问题与运输问题	2	
	*5	网络最优化问题	课外	
验	*6	目标规划	课外	
	*7	动态规划	课外	
	8	综合性实验:案例建模分析	6	第18周
合计			12	

运筹学实验基本要求

- · 每个实验包括基础练习和应用实践两部分,上 交实验作业包括实验手册和程序源代码(要能 够运行无误);
- 要求:
- 1. 独立完成;
- 2. 基础练习部分在该实验机时内完成;
- 3. 应用实践部分提交的实验报告必须写出详细的建模步骤、必要的屏幕截图及对运行结果进行分析、决策. 源程序名按统一规定记.如:实验_1的应用实践程序文件名应记为model_1.lq4。

运筹学综合实验基本要求

· 综合实验: 仔细阅读共享中的综合实验 大纲、报告模板和综合实验案例, 按综 合实验的格式和要求完成。

实验1:线性规划

- 实验目的
- 1. 熟悉LINGO8.0的基本操作方法;
- 2. 掌握在LINGO8.0环境下求解简单的线性规划模型的方法;
- 3. 掌握线性规划模型解的情况。

LINGO的语法规定

- (1) 求目标函数的最大值或最小值分别用max=...或min=...来表示;
- (2)每个语句必须以分号";"结束,每行可以有多个语句,语句可以跨行;
- (3)变量名称必须以字母(a~z)开头,由字母、数字(0~9)和下划线所组成,长度不超过32个字符,不区分大小写;
- (4) 可以给语句加上标号,如[OBJ] min=2*x1-3*x2;
- (5) 以!开头,以";"号结束的语句是注释语句;
- (6) 若对变量的取值范围没有作特殊声明,则默认所有决策变量都 非负;
- (7) 在LINGO中,可用 "<="或 "<"代替 "≤" ,同样可用 ">="或 ">"代替 "≥" ;
- (8) LINGO模型以语句 "model:"开头,以 "end"结束,对于比较 简单的模型,这两个语句常省略。

基础练习1演示

• 在模型窗口中输入如下程序代码:

min=2*x1-3*x2;

-5*x1+6*x2<=30;

4*x1+6*x2<=5;

x1>=0;

x2>=0;

Vari:	able	Value	Reduced Cost
	X1	0.000000	4.000000
	X2	0.8333333	0.000000
	Row	Slack or Surplus	Dual Price
	1	-2.500000	-1.000000
	2	25.00000	0.000000
	3	0.000000	0.5000000
	4	0.000000	0.000000

0.000000

0.8333333

Objective value:

实验2:线性规划灵敏度分析

- 实验目的
- 1. 熟悉LINGO8.0的基本操作方法;
- 2. 理解LINGO8.0的模型结果报告的主要数据含义;
- 3. 掌握使用**LINGO8.O**软件进行灵敏度分析的操作方法。

基础练习1演示

• 在模型窗口中输入如下程序代码:

max = 200*x1+300*x2;

×1<100;

×2<120;

×1+2*×2<160;

运行结果

Global optimal solution found at iteration: Objective value: 29000.00 Variable Value Reduced Cost X1100.0000 0.000000 X230.00000 0.000000 目标函数 所在行 Slack or Surplus Row Dual Price 1.0000000 29000 00 50.00000 0.000000 约束条件 90.00000 0.000000 所在行 4 0.000000 150.0000 松弛或剩余

对偶价格

实验3:整数规划

- 实验目的:
- 1. 熟悉LINGO8.0的基本操作方法;
- 2. 掌握整数规划的基本概念及数学模型;
- 3. 掌握LINGO8.0的原始集合及其操作函数的使用方法;

原始集合的定义语法

- Setname/member_list/:attribute_list;
- · 在lingo模型窗口下录入:

```
sets:
```

variable/1..5/:x,c,a1,a2;

endsets

一共定义了4个原始集合(一元数组), 每个集合下有5个成员

> x1,x2,x3,x4,x5; c1,c,2,c3,c4,c5; a11,a12,a13,a14,a15; a21,a22,a23,a24,a25;

两个常用的操作函数

- · 求和函数@sum
- · 使用格式: @sum(集合名称:求和表达式)

```
max=@sum(variable:c*x);
```


max = c1*x1+c2*x2+c3*x3+c4*x4+c5*x5;

两个常用的操作函数

- · 求和函数@sum
- · 使用格式: @sum(集合名称:求和表达式)
 - @sum(variable:a1*x)<4;

a11*x1+a12*x2+a13*x3+a14*x4+a15*x5<4;

两个常用的操作函数

- · 求和函数@for
- · 使用格式: @for(集合名称:约束表达式)

```
@for(variable:@bin(x));
```

!作用是对某个集合的所有成员分别生成一个约束表达式;

等价

- @bin(x1);
- @bin(x2);
- @bin(x3);
- @bin(x4);
- @bin(x5);

实验提示

• 变量限定函数及其功能:

@gin(X)	限制X为整数。该函数在整数规划中特 别有用
@bin(X)	限制X为0或1。该函数在0-1规划中特别 有用
@bnd(L,X,U)	限制 $L \le X \le U$,可用作约束条件
@free(X)	取消对变量X的限制(即X为自由变量)

实验4:指派问题与运输问题

- 实验目的:
- 1. 熟悉LINGO8.0的原始集合和派生集合的用法;
- 2. 掌握在LINGO8.0环境下求解指派问题;
- 3. 掌握在LINGO8.0环境下求解运输问题。

派生集合的定义语法

- setname(parent_set_list)/member_list :arrtribute_list;
- · 在lingo模型窗口下录入:

操作函数的嵌套

@for(worker(i):@sum(job(j):x(i,j))=1);

@for(集合名称:约束表达式)

@for第一个参数为worker,共有4个成员,

对应集合worker中的每个成员都生成一个约束表达式, 故共生成4个约束表达式

操作函数的嵌套

@for(worker(i):@sum(job(j):x(i,j))=1);

worker(1)的约束 worker(2)的约束 worker(3)的约束 worker(4)的约束

```
@sum(job(j):x(1,j)) = 1;
@sum(job(j):x(2,j)) = 1;
@sum(job(j):x(3,j)) = 1;
@sum(job(j):x(4,j)) = 1;
```

每个工人只被指派 一项工作

例:实验手册

• 某学校为提高学生的学习兴趣和加强学 术讨论的气氛,决定举办生态学、能源、 运输和生物工程4个学术讲座,每个讲座 每周举行一次。经调查得知,周一至周 五不能出席某一讲座的学生数如表所示 (略)。现在要安排讲座的日程(每个学术 问题为一个讲座,每天不能安排多于一 个讲座), 使不能出席听讲的学生数最少。

```
<u>sets</u>:⊬
days/1..5/;↔
subject/1..5/;↓
links(days, subject):people, x; ↔
endsets+
data:+
people=+
50₽
     40₽
           60₽
                 20₽
                      99999#
     30₽
                 30₽
                      99999₽
40₽
           40₽
                                ₽.
60₽
     20₽
           30₽
                 20₽
                      99999#
                                ₽.
          20₽
                 30₽
30₽
     30₽
                      99999₽-
                                ₽.
          10₽
                 30₽
10₽
     20₽
                      99999#
                                47
; +1.
enddata+′
min=@sum(links:people*x)-99999;↓
@for(days(i):@sum(subject(j):x(i,j))=1);
@for(subject(j):@sum(days(i):x(i,j))=1);
@for(links:@bin(x));
```