

$3^{\underline{a}}$ prova de Cálculo 2 – Turma E1 – 2/2012 25/03/2013

Questão:	1	2	3	4	Total
Pontos:	4	1	3	2	10
Bonus:	0	0	0	0	0
Notas:					

NT .	N. f. i
Nome:	Matr.:

Observações: A interpretação das questões faz parte dos critérios de avaliação desta prova. Responda cada questão de maneira clara e organizada. Resultados apresentados sem justificativas do raciocínio não serão considerados. Qualquer aluno pego consultando alguma fonte ou colega terá, imediatamente, atribuído grau zero na prova. O mesmo ocorrerá com o aluno que facilitar a consulta do colega. Casos mais graves, envolvendo algum tipo de fraude, deverão ser punidos de forma bem mais rigorosa.

1. Classifique e resolva cada uma das seguintes EDOs

(a) [1 ponto]
$$y' = x^3y - 4x^3$$

(c) [1 ponto]
$$(2x-4y+5)y'+x-2y+3=0$$

(b) [1 ponto]
$$y' = \frac{xy}{2x^2 + 3y^2 - 20}$$

(d) [1 ponto]
$$y'' = \sqrt{1 - (y')^2}$$

Solução:

(a) Classificação: EDO de 1ª ordem linear

Escrevendo a EDO na forma

$$y' - x^3y = -4x^3,$$

temos $\mu=e^{\int -x^3dx}=e^{-\frac{x^4}{4}}$ é um fator integrante. Com isso, multiplicando a EDO por μ temos que

$$e^{-\frac{x^4}{4}}y' - x^3 e^{-\frac{x^4}{4}}y = -4x^3 e^{-\frac{x^4}{4}} \Rightarrow (e^{-\frac{x^4}{4}}y)' = -4x^3 e^{-\frac{x^4}{4}}$$

$$\Rightarrow e^{-\frac{x^4}{4}}y = \int -4x^3 e^{-\frac{x^4}{4}} dx$$

$$\Rightarrow e^{-\frac{x^4}{4}}y = \int -4x^3 e^{-\frac{x^4}{4}} dx = 4e^{-\frac{x^4}{4}} + C$$

$$\Rightarrow y = 4 + Ce^{\frac{x^4}{4}}$$

(b) Classificação: EDO de 1ª ordem não linear

Podemos reescrever a EDO da seguinte forma

$$-xydx + (2x^2 + 3y^2 - 20)dy = 0.$$

Note que M(x,y) = -xy e $N(x,y) = 2x^2 + 3y^2 - 20$ são de classe C^{∞} . Como

$$\frac{\partial M}{\partial y} = -x \quad e \quad \frac{\partial N}{\partial x} = 4x,$$

não são iguais a EDO não é exata. Entretanto, como

$$\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)=-\frac{5}{y}$$

temos que $\mu(y)=e^{\int-\frac{5}{y}}dy=\frac{1}{y^5}$ é um fator integrante que torna a EDO exata. Com isso, multiplicando a EDO por μ , temos que a seguinte EDO é exata

$$-\frac{x}{y^4}dx + (\frac{2x^2}{y^5} + \frac{3}{y^3} + \frac{20}{y^5})dy = 0.$$

Assim, queremos encontrar ψ tal que

$$\frac{\partial \psi}{\partial x} = -\frac{x}{y^4} \quad e \quad \frac{\partial \psi}{\partial y} = \frac{2x^2}{y^5} + \frac{3}{y^3} + \frac{20}{y^5}.$$
 (1)

Integrando a primeira equação em relação a x temos que

$$\psi(x,y) = -\frac{x^2}{2y^4} + g(y).$$

Derivando esta equação em relação a y e substituindo na segunda equação de (1) temos que

$$\frac{2x^2}{y^5} + g'(y) = \frac{2x^2}{y^5} + \frac{3}{y^3} + \frac{20}{y^5} \Rightarrow g(y) = -\frac{9}{y^4} - \frac{100}{y^6} + C.$$

Com isso temos que

$$\psi(x,y) = -\frac{x^2}{2y^4} - \frac{9}{y^4} - \frac{100}{y^6}.$$

Logo a solução geral da EDO é dada implicitamente pela seguinte equação

$$-\frac{x^2}{2y^4} - \frac{9}{y^4} - \frac{100}{y^6} = C.$$

(c) Classificação: EDO de 1ª ordem não linear.

Fazendo a substituição v = x - 2y e $y' = \frac{1-v'}{2}$ temos que

$$(2v+5)\frac{1-v'}{2} + v + 3 = 0 \Rightarrow \frac{2v+5}{4v+11}v' = 1 \Rightarrow \int \frac{2v+5}{4v+11}dv = x+c$$
$$\Rightarrow \int 2 + \frac{1}{5+2v}dv = x+c$$

$$\Rightarrow 2v + \frac{1}{2}\ln|5 + 2v| = x + c$$

$$\Rightarrow 2x - 4y + \frac{1}{2}\ln|5 + 2x - 4y| = x + c.$$

Logo a solução geral da EDO é dada implicitamente pela seguinte equação

$$2x - 4y + \frac{1}{2}\ln|5 + 2x - 4y| = x + c.$$

(d) Classificação: EDO de $2^{\underline{a}}$ ordem não linear Fazendo a substituição v=y' temos que

$$v' = \sqrt{1 - v^2} \Rightarrow \int \frac{dv}{\sqrt{1 - v^2}} = \int dx + c = x + c$$

$$\Rightarrow \operatorname{arcsen} v = x + c \Rightarrow v = \operatorname{sen}(x + c)$$

$$\Rightarrow y' = \operatorname{sen}(x+c) \Rightarrow y = -\cos(x+c).$$

2. [1 ponto] Sabendo-se que a taxa de desintegração de uma substância radioativa é proporcional à quantidade de substância existente em cada instante de tempo e que a meia vida é o tempo necessário para desintegrar metade da quantidade dessa substância. Se um isótopo radioativo tem meia vida de 16 dias e você deseja ter 30 g do isótopo em 30 dias, calcule a quantidade inicial do isótopo.

Solução: Sejam y(t) a quantidade da substância radiativa em t dias e y_0 a quantidade inicial da substância. Neste caso temos o seguinte PVI

$$\begin{cases} y' = ky, & t > 0 \\ y(0) = y_0, & y(16) = \frac{y_0}{2}, \end{cases}$$

onde k é a constante de proporcionalidade.

Vamos inicialmente encontrar uma solução geral para a EDO. Como a EDO é separável temos que

$$\frac{y'}{y} = k \Rightarrow \int \frac{1}{y} dy = \int k dt \Rightarrow \ln|y| = kt + C \Rightarrow y = C_1 e^{kt}$$

Com isso a solução geral da EDO é

$$y(t) = C_1 e^{kt}, \quad \forall \ t > 0.$$

Substituindo as condições iniciais temos que

$$y(0) = y_0 \Rightarrow C_1 = y_0$$

е

$$y(16) = \frac{y_0}{2} \Rightarrow k = \ln\left(\frac{1}{2}\right)^{t/16}.$$

Com isso temos que a solução do PVI é

$$y(t) = y_0 \left(\frac{1}{2}\right)^{t/16}, \quad t > 0.$$

Queremos encontrar y_0 tal que y(30) = 30. Substituindo na solução do PVI temos que

$$y(30) = 30 \Rightarrow 30 = y_0 \frac{1}{2^{15/8}} \Rightarrow y_0 = 30 \times 2^{15/8}.$$

Logo, para se ter 30 g do isótopo em 30 dias devemos ter aproximadamente 110g das substância inicialmente.

3. Encontre a solução geral da EDO

$$y'' + 2y' + 2y = f(x).$$

em cada um dos casos:

- (a) [1 ponto] f(x) = 0.
- (b) [1 ponto] $f(x) = -2\cos 2x$.
- (c) [1 ponto] $f(x) = \frac{e^{-x}}{\cos x^3}$.

Solução:

(a) Considere a EDO y'' + 2y' + 2y = 0. Resolvendo o polinômio característico associado temos que

$$\lambda^2 + 2\lambda + 2 = 0 \Rightarrow \lambda = -1 \pm i$$

Com isso as soluções fundamentais da EDO são $y_1(x) = e^{-x} \cos x$ e $y_2(x) = e^{-x} \sin x$ para todo $x \in \mathbb{R}$.

Logo a solução geral da EDO é dada por

$$y_h(x) = e^{-x}(C_1 \cos x + C_2 \sin x), \quad \forall \ x \in \mathbb{R}.$$
 (2)

(b) Considere a EDO $y'' + 2y' + y = -2\cos 2x$. Do item anterior temos a solução geral da EDO homogênea associada. Usando o Método dos Coeficientes a Determinar sabemos uma solução particular da EDO é da forma

$$y_p(x) = A\cos 2x + B\sin 2x$$
.

Substituindo na EDO obtemos que $A=\frac{1}{5}$ e $B=-\frac{2}{5},$ daí, $y_p(x)=\frac{1}{5}\cos 2x-\frac{2}{5}\sin 2x.$ Logo a solução geral da EDO é

$$y(x) = y_h(x) + y_p(x) = e^{-x}(C_1 \cos x + C_2 \sin x) + \frac{1}{5} \cos 2x - \frac{2}{5} \sin 2x, \quad \forall \ x \in \mathbb{R}.$$

(c) Considere a EDO $y'' + 2y' + y = \frac{e^{-x}}{\cos^3 x}$. Do item (a) temos a solução geral da EDO homogênea associada. Vamos usar o Método da Variação dos Parâmetros para determinar uma solução particular para esta EDO. Queremos encontrar uma solução particular da forma

$$y_p(x) = u(x)e^{-x}\cos x + v(x)xe^{-x}\sin x,$$

onde u e v satisfazem

$$\begin{cases} u'e^{-x}\cos x + v'xe^{-x}\sin x = 0\\ -u'e^{-x}(\cos x + \sin x) + v'e^{-x}(-\sin x + \cos x) = \frac{e^{-x}}{\cos^3 x}. \end{cases}$$

Cancelando e^{-x} nas equações e substituindo a primeira na segunda obtemos o seguinte sistema

$$\begin{cases} u'\cos x + v'\sin x = 0 \\ -u'\sin x + v'\cos x = \frac{1}{\cos^3 x}. \end{cases}$$

Resolvendo este sistema obtemos que $u'(x) = -\frac{\sin x}{\cos^3 x}$ e $v' = \sec^2 x$. Integrando ambas as equações obtemos que $u(x) = -\frac{\sec^2 x}{2}$ e $v(x) = \operatorname{tg} x$.

Logo a solução geral da EDO $\acute{\rm e}$

$$y(x) = y_h(x) + y_p(x) = e^{-x}(C_1 \cos x + C_2 \sin x) - \frac{\sec^2 x}{2}e^{-x} \cos x + \operatorname{tg} x e^{-x} \sin x.$$

4. Considere o seguinte PVI

$$\begin{cases} x^2y'' - x(x+2)y' + (x+2)y = 0 \\ y(-1) = -\frac{e-1}{e}, \ y'(-1) = 1 \end{cases}$$

- (a) [0.5 pontos] Verifique que $y_1(x) = x$ é solução da EDO.
- (b) [0,5 pontos] Encontre o intervalo de validade da solução.
- (c) [1 ponto] Encontre a solução geral do PVI.

Solução:

- (a) Basta substituir na EDO.
- (b) Colocando a EDO é linear de 2ª ordem linear na forma

$$y'' - \frac{x+2}{x}y' + \frac{x+2}{x^2}y = 0$$

vemos que $p(x)=-\frac{x+2}{x}$ e $q(x)=\frac{x+2}{x^2}$ são contínuas em $\mathbb{R}\setminus\{0\}$, pelo T.E.U.S.L, temos que existe uma única solução para o PVI dado em $(-\infty,0)$.

(c) Vamos determinar uma segunda solução usando o método da redução de ordem. Suponha que $y_2(x) = u(x)x$ seja solução da EDO. Substituindo na EDO obtemos que

$$x^{3}(u'' - u') = 0 \Rightarrow u'' - u' = 0.$$

Note que esta última equação é de segunda ordem linear homogênea com coeficientes constantes, assim temos que

$$\lambda^2 - \lambda = 0 \Rightarrow \lambda_1 = 0 \text{ e } \lambda_2 = 1.$$

Daí, sabemos que as soluções fundamentais desta EDO são $u_1 = 1$ e $u_2 = e^x$. Descartando a primeira temos que $y_2 = xe^x$ Vejamos se y_1 e y_2 são soluções fundamentais. Note que

$$W[y_1, y_2](x) = \det \begin{pmatrix} x & xe^x \\ 1 & e^x(1+x) \end{pmatrix} = x^2 e^x \neq 0, \quad \forall \ x \in (-\infty, 0).$$

Logo y_1 e y_2 são LI em $(0, +\infty)$ e portanto a solução geral da EDO é dada por

$$y(x) = C_1 x + C_2 x e^x.$$

Substituindo as condições iniciais temos que $C_1=1$ e $C_2=1$. Logo a solução do PVI é dada por

$$y(x) = x + xe^x \quad \forall \ x \in (-\infty, 0).$$