

Physicsaholics_prateek

Physicsaholics.com

Unacademy

Exercise

Vector

(Physicsaholics)

Physicsaholics

Physicsaholics_prateek Physicsaholics.com

Unacademy

Exercise-2

(Objective Type: Multi Correct)

Physicsaholics_prateek

Physicsaholics.com

Unacademy

- The two vectors \vec{A} and \vec{B} are drawn from a common point and $\vec{C} = \vec{A} + \vec{B}$, then Q 1. angle between \vec{A} and \vec{B} is :
 - (A) 90° if $C^2 = A^2 + B^2$
- (B) greater than 90° if $C^2 < A^2 + B^2$
- (C) greater than 90° if $C^2 > A^2 + B^2$ (D) less than 90° if $C^2 > A^2 + B^2$
- \vec{A} + \vec{B} = \vec{C} Vectors A and B if rotated by θ in the same sense to from \vec{A} and \vec{B} then Q 2.
 - (A) $\vec{A}' + \vec{B}' = \vec{C}$
- (B) $\vec{A}' + \vec{B}' \neq \vec{C}$
- (C) $\vec{A}' \cdot \vec{B}' = \vec{A} \cdot \vec{B}$ (D) $|\vec{A}' + \vec{B}'| = |\vec{C}|$
- If \overrightarrow{a} and \overrightarrow{b} are two vectors with $|\overrightarrow{a}| = |\overrightarrow{b}|$ and $|\overrightarrow{a} + \overrightarrow{b}| + |\overrightarrow{a} + \overrightarrow{b}| = 2 |\overrightarrow{a}|$, then Q 3. angle between $\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{b}$ –
 - (A) 0º
- (C) 60º
- (D) 180º
- Vector \overrightarrow{R} is the resultant of the vectors \overrightarrow{A} and \overrightarrow{B} . Ratio of maximum value of $|\overrightarrow{R}|$ to Q 4. the minimum value of |R| is $\frac{3}{1}$. The |A| may be equal to -

- (D) $\frac{3}{1}$
- Regarding vectors, which of the following is a correct statement? Q 5.
 - (A) Two equal vectors can never give zero resultant
 - (B) Three non-coplanar vectors can not give zero resultant
 - (C) If $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$ and $|\vec{a}| \neq |\vec{b}| \neq |\vec{c}|$, then $\vec{a} + \vec{b} + \vec{c}$ can never be a null vector
 - (D) If $\vec{a} \times \vec{b} = 0$ and $|\vec{a}| = |\vec{b}|$, then $\vec{a} + \vec{b}$ can be zero
- Two bodies P and Q are moving along positive x-axis their position-time graph is Q 6. shown below if $\overset{\rightarrow}{V_{PQ}}$ is velocity of P w.r.t Q and $\overset{\rightarrow}{V_{QP}}$ is velocity of Q w.r.t P then –

Physicsaholics prateek

Physicsaholics.com

Unacademy

- (B) $\overrightarrow{V_{PQ}}$ is towards origin
- (C) $\overrightarrow{V_{OP}}$ is towards origin
- (D) $\stackrel{\rightarrow}{V_{PO}}$ and $\stackrel{\rightarrow}{V_{OP}}$ both can be towards origin at same time

- Given, $\vec{a} + \vec{b} + \vec{c} + \vec{d} = 0$. Which of the following statement(s) is (are) correct)? Q 7.
 - (A) $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} must each be a null vector
 - (B) The magnitude of $\vec{a} + \vec{c}$ equals the magnitude of $\vec{b} + \vec{d}$
 - (C) The magnitude of \vec{a} can never be greater than the sum of the magnitudes of \vec{b} , \vec{c} and \vec{d}
 - (D) $\vec{b} + \vec{c}$ must lie in the plane of \vec{a} and \vec{d} if \vec{a} and \vec{d} , are not collinear and in the line of \vec{a} and \vec{d} , if they are collinear
- Two vectors of magnitude 5 unit and 8 unit are added, sum may have magnitude -Q 8.
 - (A) 5 unit
- (B) 8 unit
- (C) 2 unit
- (D) 14 unit
- If $\overrightarrow{P} = 5a\hat{i} + 6\hat{j}$ and $\overrightarrow{Q} = 3a\hat{i} + 10\hat{j}$. The vectors $\overrightarrow{P} + \overrightarrow{Q}$ makes an angle α with \overrightarrow{P} and Q 9. β with \overrightarrow{Q} then -
 - (A) $\alpha = \beta$ if a = 2
- (B) $\alpha > \beta$ if a > 2 (C) $\alpha < \beta$ if a > 2 (D) $\alpha > \beta$ if a = 0
- **Q 10.** The resultant of three forces of magnitude (P Q), P and (P + Q) acting at a point in directions parallel to the sides of equilateral triangle, taken in order is \overrightarrow{R} , then -
 - (A) $|\overrightarrow{R}| = \sqrt{3}Q$

- (B) $|\vec{R}| = \frac{Q}{\sqrt{3}}$
- (C) \overrightarrow{R} is perpendicular to \overrightarrow{P}
- (D) \overrightarrow{R} is parallel to \overrightarrow{P}

Physicsaholics_prateek

Physicsaholics.com

Unacademy

- Q 11. Select the correct statements -
 - (A) The sum of two vectors may be zero
 - (B) Two vectors are said to be equal if they have same direction and same magnitude
 - (C) The sum of two vectors may not be zero
 - (D) None of these
- Q 12. Select the correct statements -
 - (A) A null vector is vector whose magnitude is zero
 - (B) A vector has never zero magnitude
 - (C) A null vector does not exist
 - (D) none of these
- Q 13. Select the correct statements -
 - (A) Multiplying any vector by an scalar is a meaningful operation
 - (B) A vector has both magnitude and direction
 - (C) Acceleration is a vector quantity
 - (D) None of these
- **Q 14.** If $\vec{A} = 2\hat{i} + \hat{j} + \hat{k}$ and $\vec{B} = \hat{i} + \hat{j} + \hat{k}$ are two vectors, then the unit vector-
 - (A) perpendicular to \hat{A} is $(-\hat{j}+\hat{k})$
- (B) parallel to \vec{A} is $\frac{(2\hat{i} + \hat{j} + \hat{k})}{\sqrt{6}}$
- (C) perpendicular to \vec{B} is $\left(\frac{-\hat{j}+\hat{k}}{\sqrt{2}}\right)$
- (D) parallel to \vec{A} is $\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$
- **Q 15.** Let three vectors \vec{a} , \vec{b} and \vec{c} are related as $\vec{a} + \vec{b} = \vec{c}$. The angle between \vec{a} and \vec{b} is θ Select the correct alternative
 - (A) Anglel \vec{a} | > | \vec{b} | between \vec{c} and \vec{b} is greater than $\frac{\theta}{2}$ if
 - (B) $|\vec{a}| > |\vec{b}|$ Angle between is \vec{c} and \vec{a} greater than if $\frac{\theta}{2}$
 - (C) Angle between \vec{c} and \vec{b} can be $\pi \theta$, for some values of \vec{a} , \vec{b}
 - (D) Angle between \vec{c} and \vec{b} can not be $\pi \theta$, for any values of \vec{a} , \vec{b}

Physicsaholics_prateek

Physicsaholics.com

Unacademy

Answer Key

Q.1) ABD	Q.2) BCD	Q.3) AD	Q.4) AB	Q.5) ABD
Q.6) AC	Q.7) BCD	Q.8) AB	Q.9) AC	Q.10) AC
Q.11) ABC	Q.12) A	Q.13) ABC	Q.14) BD	Q.15) ABC

Physicsaholics

