DESARROLLO DE UN ALGORITMO INTELIGENTE PARA LA DIFERENCIACIÓN ENTRE MOVIMIENTOS RUTINARIOS Y ARRITMIAS CARDIACAS EN MONITOREO ECG WEARABLE

GRUPO 6:

- DIEGO ALBERTO CUBA MONTEROLA
- ROGGER A HUAMAN GONZALES
- HIROSHI JULIO KAMEYA INAFUKU
- ALEJANDRO JAVIER ROSAS GONZÁLEZ-ZÚÑIGA
- DAVID PUMA SILVA

ESTADO DEL ARTE

Beamo

Dispositivo médico 4 en 1 que combina un termómetro sin contacto, un oxímetro, un estetoscopio digital y un electrocardiograma (ECG) de una derivación, permitiendo realizar chequeos médicos completos desde casa.

ECG de una derivación: Captura señales eléctricas del corazón con alta precisión, adecuado para chequeos rutinarios o monitoreo continuo.

Detección de fibrilación auricular:
Identifica arritmias cardíacas
comunes, proporcionando alertas
oportunas sobre posibles
problemas de salud.

Conectividad con la aplicación: Los registros de ECG se sincronizan con la app de Withings, permitiendo compartir resultados fácilmente con médicos para evaluaciones detalladas.

Apple Watch

Smartwatch avanzado que combina funciones de conectividad, salud y fitness. Su tecnología de monitoreo de ECG permite registrar un electrocardiograma de una derivación directamente desde la muñeca, ayudando a identificar ritmos cardíacos irregulares, como la fibrilación auricular, y alertar sobre posibles problemas de salud cardíaca.

Electrodos integrados: Utiliza electrodos en la parte trasera del reloj y la corona digital para generar un ECG de una derivación en 30 segundos.

Detección de anomalías: Analiza el ritmo cardíaco para detectar signos de fibrilación auricular u otras irregularidades.

Historial y reportes: Los datos se almacenan en la aplicación Salud y pueden compartirse fácilmente con profesionales médicos para análisis detallados.

Wearable Device - US9955887B2

La patente US9955887 pertenece a iRhythm Technologies, Inc. y describe un dispositivo monitor portátil diseñado para registrar datos cardíacos. El sistema incluye métodos y sistemas para extraer características específicas de interés de los datos recogidos, que posteriormente son transmitidas para proporcionar información de salud relacionada.

Registro continuo de datos cardíacos: El dispositivo capta datos como los intervalos R-R, lecturas de acelerómetro y la hora del registro, permitiendo un monitoreo detallado del ritmo cardíaco.

Análisis y transmisión remota: Extrae características de los datos cardíacos y las envía a un servidor para su análisis, lo que facilita diagnósticos en tiempo real o diferido.

Compatibilidad con tecnologías wearables: Diseñado para ser usado en dispositivos como parches, relojes inteligentes u otros sensores portátiles, maximizando la comodidad y la integración en la vida diaria del usuario.

PROBLEMA

LOS DISPOSITIVOS WEARABLES DE ECG ENFRENTAN DESAFÍOS DE PRECISIÓN, CON RIESGOS DE FALSOS POSITIVOS O NEGATIVOS. EL PRINCIPAL PROBLEMA SON LOS ARTEFACTOS, ESPECIALMENTE LOS DE MOVIMIENTO (MA), QUE ALTERAN EL TRAZADO Y DIFICULTAN SU INTERPRETACIÓN. REDUCIR ESTOS ARTEFACTOS ES UNO DE LOS MAYORES RETOS EN EL MONITOREO AMBULATORIO.

NECESIDAD

Carencia de softwares especializados para dispositivos cardiacos wearables que permitan distinguir las diferencias entre actividades rutinarias, como rascarse el pecho y cepillarse los dientes, con patologías a nivel de bioseñal

PROPUESTA DE SOLUCION

Desarrollar un modelo de Machine Learning que permita diferenciar entre señales ECG alteradas por movimientos rutinarios (rascarse) y señales que reflejan patologías reales (arritmias)

METODOLOGÍA

Random Forest

TABLE 7. SUMMARY OF PERFORMANCE RESULTS OF THE PROPOSED ECG CLASSIFICATION MODELS

Classifier Type	Avg. Accuracy %	Avg. Sensitivity %	Avg. Specificity %
RBF Network	92.00	91.90	90.80
Multilayer Perceptron	93.74	93.70	92.10
Logistic Model Trees	95.54	95.50	94.80
ND Troo	05.60	05.70	05.20
Random Forest Tree	97.45	97.50	95.90

Extracción de características

Table 1. ECG features set I and set II for classification

number	23 features(set I)	14 feature(set II)
1	P wave	
2	R wave	\checkmark
3	R wave start point	\checkmark
4	R wave end point	
5	T1 wave	\checkmark
6	T2 wave	\checkmark
7	P wave start point	
8	P wave end point	
9	T wave start point	
10	T wave end point	
11	PP	\checkmark
12	QRS	\checkmark
13	PR	√ √ √ √
14	ST	\checkmark
15	QT	\checkmark
16	RR	\checkmark
17	TT	
18	P	\checkmark
19	T	
20	Total beat	\checkmark
21	T1 T2	
22	ST	
23	PR	$\sqrt{}$

Modelado

División del conjunto de datos

Entrenamiento (80%)
Prueba (20%)

Métricas de evaluación

Recall
Precision

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

PROTOTIPO

Base de datos

Physionet

A large scale 12-lead electrocardiogram database for arrhythmia study

Jianwei Zheng 🐧 , Hangyuan Guo 🐧 , Huimin Chu 🚯

Published: Aug. 24, 2022. Version: 1.0.0

Fs: 500 Hz

Duración: 10s

12 derivaciones

Base de datos

Kaggle

New Notebook

PTB-XL - Atrial Fibrillation Detection

Subset PTB-XL- 3 ecg rhythms: Normal, Atrial Fibrillation, all other arrhythmia.

- 6528 pacientes
- 10 segundos
- **500** Hz
- 12 derivaciones

Base de datos

Personas sanas con ECG, realizando movimiento de rascase

Fs: 500 Hz

Duración: 10s

3 Derivadas (DI,DII,DIII)

LECTURA DE SEÑALES

ESP32 - AD8232

```
#include <Arduino.h>
#include <XSpaceBioV10.h>
XSpaceBioV10Board MyBioBoard;
const int SAMPLE_RATE = 500;
                                  // Frecuencia de muestreo (Hz)
const int SAMPLE_INTERVAL = 1000 / SAMPLE_RATE; // Intervalo entre muestras (ms)
// Variables de tiempo
unsigned long lastSampleTime = 0;
void setup() {
 MyBioBoard.init();
 // Despertar los sensores AD8232
 MyBioBoard.AD8232 Wake(AD8232 XS1);
 MyBioBoard.AD8232_Wake(AD8232_XS2);
 Serial.begin(115200);
void loop() {
 // Capturar la hora actual
 unsigned long currentTime = millis();
  // Tomar una muestra cada SAMPLE_INTERVAL ms
  if (currentTime - lastSampleTime >= SAMPLE_INTERVAL) {
   lastSampleTime = currentTime;
   double DerivationI = MyBioBoard.AD8232_GetVoltage(AD8232_XS1);
   double DerivationII = MyBioBoard.AD8232_GetVoltage(AD8232_XS2);
   double DerivationIII = DerivationII - DerivationI;
   // Enviar datos al puerto serial
   Serial.println(String(DerivationI) + " " + String(DerivationII) + " " + String(DerivationIII));
```

GUARDADO DE ARCHIVOS

```
import serial
                                                                                                 #-----para establecer el nombre-----
import time
                                                                                                      carpeta_ubicacion = "DATA/CUBA/"
                                                                                                      nombre archivo = "rascado 4"
# Configuración del puerto serial
port = 'COM6' # Cambia según tu configuración
baud_rate = 115200 # Debe coincidir con el baud rate del microcontrolador
capture_time = 3 # Tiempo de captura en segundos
                                                                                                      with open(carpeta_ubicacion+nombre_archivo+".txt", "w") as file:
# Conexión al puerto serial
ser = serial.Serial(port, baud_rate)
                                                                                                               while time.time() - start_time < capture_duration: # Corre durante 10 segundos</pre>
                                                                                                                    if ser.in waiting > 0: # Revisa si hay datos disponibles
def calculate_sampling_frequency(capture_time):
   """Calcula la frecuencia de muestreo basada en un tiempo de captura."""
                                                                                                                         line = ser.readline().decode('utf-8').strip() # Lee y decodifica la linea
   timestamps = []
                                                                                                                         print(line) # Opcional: muestra los datos en la terminal
   print(f"Leyendo datos durante {capture_time} segundos para calcular la frecuencia de muestreo...")
                                                                                                                         file.write(line + '\n') # Escribe la linea en el archivo
   start time = time.time()
                                                                                                           except KeyboardInterrupt:
   while time.time() - start_time < capture_time:
                                                                                                               print("Detenido por el usuario")
      try:
          ser.readline().decode('utf-8').strip() # Leer datos (no se guardan)
                                                                                                           finally:
          timestamps.append(time.time()) # Registrar tiempo de llegada de cada muestra
                                                                                                               ser.close()
          continue # Ignorar errores de lectura
                                                                                                           ser.close()
   # Calcular frecuencia de muestreo
                                                                                                           print(f"\nResultados:")
   num_samples = len(timestamps) # Total de muestras recibidas
                                                                                                           print(f"Frecuencia de muestreo estimada: {fs:.2f} Hz")
   total_time = timestamps[-1] - timestamps[0] # Tiempo total entre la primera y última muestra
   sampling frequency = num samples / total time # Frequencia de muestreo (Hz)
                                                                                                           print(f"Número total de muestras: {num_samples}")
                                                                                                           print(f"Tiempo total de captura: {total time:.2f} segundos")
   return sampling_frequency, num_samples, total_time
                                                                                                 except Exception as e:
try:
   # Calcular la frecuencia de muestreo
                                                                                                      print(f"Error: {e}")
   fs, num_samples, total_time = calculate_sampling_frequency(capture_time)
                                                                                                 finally:
   # Define el tiempo de duración de la captura en segundos
                                                                                                      if ser.is_open:
   capture duration = 50
   start time = time.time()
                                                                                                           ser.close()
```

ACONDICIONAMIENTO DE LA SEÑAL

```
def butter_bandpass(lowcut, highcut, fs, order=5):
    nyquist = 0.5 * fs # Frecuencia de Nyquist
    low = lowcut / nyquist
    high = highcut / nyquist
    b, a = butter(order, [low, high], btype='band')
    return b, a

def butter_bandpass_filter(data, lowcut, highcut, fs, order=5):
    b, a = butter_bandpass(lowcut, highcut, fs, order=order)
    y = filtfilt(b, a, data)
    return y
```

```
#Filtro IIR: NOTCH
def notch_filter(data, fs, freq=60.0, Q=20.0):
   w0 = freq / (fs / 2)  # Normalizar la frecuencia
   b, a = iirnotch(w0, Q)
   filtered_signal = filtfilt(b, a, data)
   return filtered_signal, b, a
```


AVANCE DEL CÓDIGO DE ML (RANDOM FOREST)

```
from sklearn.model selection import train test split
   from sklearn.ensemble import RandomForestClassifier
   from sklearn.metrics import accuracy score, classification report, confusion matrix
 4 from imblearn.over sampling import SMOTE
   import seaborn as sns
   import matplotlib.pyplot as plt
 8 # Dividir dataset en datos de entrenamiento y testeo
   X_train, X_test, y_train, y_test = train_test_split(features, etiquetas, test_size=0.3, random_state=42)
   # Aplicar SMOTE al conjunto de entrenamiento para balancear
   smote = SMOTE(random state=42)
   X_train, y_train = smote.fit_resample(X_train, y_train)
    model = RandomForestClassifier(n_estimators=200, random_state=42) #Creacion del modelo
    model.fit(X train, y train) # Entrenar el modelo con los datos balanceados
18 y_pred = model.predict(X_test) # Testeo del modelo con la data reservada para el test
20 # Evaluar rendimiento
   accuracy = accuracy_score(y_test, y_pred)
   print(f"Precisión del modelo: {accuracy:.2f}")
    print("\nReporte de Clasificación:")
    print(classification_report(y_test, y_pred))
   # Matriz de confusión
   conf_matrix = confusion_matrix(y_test, y_pred)
   print("\nMatriz de Confusión:")
    print(conf_matrix)
    plt.figure(figsize=(6, 6))
   sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=['Arritmia', 'No arritmia'], yticklabels=['Arritmia', 'No arritmia'])
   plt.xlabel('Predicción')
   plt.ylabel('Valor Real')
   plt.title('Matriz de Confusión')
    plt.show()
```

Thank you very much!