

**Groups Evaluations** 

Think-Pair-Share

Informal Groups

Self-assessment

Pause for reflection

Large Group Discussion

Writing

(Minute Paper)

Simple

## Complex



Brainstorming

Peer Review

Triad Groups

NETWORK PROTOCOLS & SECURITY 23EC2210 R/A/E

**Topic:** 

## **GUIDED AND UNGUIDED MEDIA**

Session - 5



### AIM OF THE SESSION



To familiarize students with different transmission media in Computer networks.

### **INSTRUCTIONAL OBJECTIVES**



This Session is designed to:

- 1. Describe different guided transmission media.
- 2. Describe different unguided transmission media.

### **LEARNING OUTCOMES**



At the end of this session, you should be able to:

- 1. Describe guided and unguided transmission media.
- 2. Understand the characteristics of twisted, untwisted, coaxial cable and fiber optic cables.
- 3. Understand characteristics of radio, microwave and infrared waves and explain how they transmit data.



### TRANSMISSION MEDIA

- Transmission media are located below the physical layer and are directly controlled by the physical layer.
- Its main functionality is to carry information from the sender to the receiver in the form of bits (Either as Electrical signals or Light pulses).





### TRANSMISSION MEDIA

### Factors for designing the Transmission Media:

- Bandwidth: Greater the bandwidth of a medium, higher the data transmission rate of a signal.
- **Transmission impairment**: The quality of the signals will get destroyed due to transmission impairment which means that the received signal is not identical to the transmitted one.
- **Interference**: The process of disrupting a signal when it travels over a communication medium due to the addition of some unwanted signal.



### TRANSMISSION MEDIA

### Causes of Transmission Impairment:

• Attenuation: Attenuation means the loss of energy, i.e., the strength of the signal decreases with increasing the distance which causes the loss of energy.

• **Distortion:** Distortion occurs when there is a change in the shape of the signal.

• **Noise:** When data is travelled over a transmission medium, some unwanted signal is added to it which creates the noise.









### **CLASSIFICATION OF TRANSMISSION MEDIA**





# GUIDED MEDIA

# (DEEMED TO BE UNIVERSITY)

### **GUIDED MEDIA**

• Guided Media is defined as the physical medium through which the signals are transmitted.

• It is also known as **Bounded media**.

- Types Of Guided media:
  - > Twisted pair
  - Coaxial Cable
  - > Fiber-Optic Cable



### **GUIDED MEDIA: Twisted Pair**

### **Twisted Pair:**

- Twisted pair is a physical media made up of a pair of cables twisted with each other.
- Cheap as compared to other transmission media.
- Installation is easy, and it is a lightweight cable.
- The frequency range for twisted pair cable is from 0 to 3.5KHz.
- A twisted pair consists of two insulated copper wires arranged in a regular spiral pattern.
- Increasing the number of turns per foot decreases noise interference.





### **GUIDED MEDIA: Twisted Pair**

### **Types of Twisted Pairs:**

• Unshielded Twisted Pair: An unshielded twisted pair is widely used in telecommunication.

• Shielded Twisted Pair: A shielded twisted pair is a cable that contains the mesh surrounding the wire that allows the higher transmission rate.



a. Unshielded Twisted Pair (UTP)



b. Shielded Twisted Pair (STP



## GUIDED MEDIA: Twisted Pair

| UTP                                                    | STP                                                         |
|--------------------------------------------------------|-------------------------------------------------------------|
| Advantages                                             | Advantages                                                  |
| > It is cheap.                                         | > An installation of STP is easy.                           |
| > Installation of the unshielded twisted pair is easy. | > It has higher capacity as compared to unshielded twisted  |
| > It can be used for high-speed LAN.                   | pair cable.                                                 |
|                                                        | > It has a higher attenuation.                              |
|                                                        | > It is shielded that provides the higher data transmission |
|                                                        | rate.                                                       |
|                                                        |                                                             |
| Disadvantages                                          | Disadvantages                                               |
| > This cable can only be used for shorter distances    | > It is more expensive as compared to UTP and coaxial       |
| because of attenuation.                                | cable.                                                      |
|                                                        | > It has a higher attenuation rate.                         |



### **GUIDED MEDIA: Coaxial Cable**

### **Coaxial Cable:**

- Coaxial cable is very commonly used transmission media, for example, TV wire is usually a coaxial cable.
- It has a higher frequency as compared to Twisted pair cable.
- It contains two conductors parallel to each other.
- The inner conductor of the coaxial cable is made up of copper, and the outer conductor is made up of copper mesh.
- The middle core is made up of non-conductive cover that separates the inner conductor from the outer conductor.
- The middle core is responsible for the data transferring whereas the copper mesh prevents from the EMI

(Electromagnetic interference).





### **GUIDED MEDIA: Coaxial Cable**

### **Coaxial Cable Types:**

- Baseband transmission: It is defined as the process of transmitting a single signal at high speed.
- **Broadband transmission:** It is defined as the process of transmitting multiple signals simultaneously.

| Advantages of Coaxial Cable                  | Disadvantages of Coaxial Cable                            |
|----------------------------------------------|-----------------------------------------------------------|
| ➤ The data can be transmitted at high speed. | ➤ It is more expensive as compared to twisted pair cable. |
| > It has better shielding as compared to     |                                                           |
| twisted pair cable.                          | > If any fault occurs in the cable causes the             |
|                                              | failure in the entire network.                            |
| > It provides higher bandwidth.              |                                                           |



### GUIDED MEDIA : Fibre Optic Cable

### **Fibre Optic:**

- Fibre optic cable uses electrical signals for communication.
- It holds the optical fibres coated in plastic that are used to send the data by pulses of light.
- The plastic coating protects the optical fibres from heat, cold, electromagnetic interference from other types of wiring.
- Fibre optics provide faster data transmission than copper wires.



- Core: Strand of glass or plastic through which the light waves are transmitted. The more the area of the core, the more light will be transmitted into the fibre.
- Cladding: The concentric layer of glass that is used to cause the reflection within the core so that the light waves are transmitted through the fibre.
- **Jacket:** The protective coating that is used to preserve the fibre strength, absorb shock and extra fibre protection.



### GUIDED MEDIA : Fibre Optic Cable

### **Advantages of Fibre Optic:**

- **Greater Bandwidth:** Fibre optic cable provides more bandwidth and therefore it carries more data as compared to copper cable.
- **Faster speed:** Fibre optic cable carries the data in the form of light and thus it carries the signals at a higher speed.
- Longer distances: Fibre optic cable carries the data at a longer distance as compared to copper cable.
- Better reliability: Fibre optic cable is more reliable than the copper cable as it is immune to any temperature changes.
- Thinner and Sturdier: Fibre optic cable is thinner and lighter in weight.



# UNGUIDED MEDIA

# (DEEMED TO BE UNIVERSITY)

### **UNGUIDED MEDIA**

- An unguided transmission transmits the electromagnetic waves without using any physical medium.
- Also known as wireless transmission.
- In unguided media, air is the media through which the electromagnetic energy can flow easily.

### **Types of Unguided Media:**

- Radio Waves
- Micro Waves
- > Infrared Waves

# (DEEMED TO BE UNIVERSITY)

### **UNGUIDED MEDIA: Radio Waves**

### **Radio Waves:**

- Radio waves are the electromagnetic waves that are transmitted in all the directions of free space.
- Radio waves are omnidirectional, i.e., the signals are propagated in all the directions.
- The range in frequencies of radio waves is from 3Khz to 1Ghz.
- The sending and receiving antenna are not aligned, i.e., the wave sent by the sending antenna can be received by any receiving antenna.
- An example of the radio wave is **FM** radio.





### **UNGUIDED MEDIA:** Radio Waves

### **Applications Of Radio waves:**

- A Radio wave is useful for multicasting when there is one sender and many receivers.
- Examples of Radio Waves: FM radio, Television, Cordless phones.

### **Advantages Of Radio transmission:**

- Radio transmission is mainly used for wide area networks and mobile cellular phones.
- Radio waves cover a large area.
- Radio transmission provides a higher transmission rate.



### **UNGUIDED MEDIA: Micro Waves**

### **Micro Waves:**

- Electromagnetic waves having frequencies between 1 and 300 GHz are called microwaves.
- Microwaves are unidirectional. The sending and receiving antennas need to be aligned.
- A pair of antennas can be aligned without interfering with another pair of aligned antennas.

### **Types of Microwaves:**

- Terrestrial Microwave: Microwaves that transmits the beam of a radio signal from one ground-based antenna to another ground-based antenna.
- > Satellite Microwave: Microwaves that transmits data (in form of radio signals) between a ground-based station and an orbiting satellite.



### **UNGUIDED MEDIA: Infrared Waves**

### **Infrared Waves:**

- An infrared transmission is a wireless technology used for communication over short ranges.
- The frequency range of the infrared is 300 GHz to 400 THz.
- It is used for short-range communication such as data transfer between two cell phones, TV remote operation, data transfer between a computer and cell phone resides in the same closed area.

#### **Characteristics Of Infrared:**

- > It supports high bandwidth, and hence the data rate will be very high.
- Infrared waves cannot penetrate the walls. Therefore, the infrared communication in one room cannot be interrupted by the nearby rooms.
- ➤ An infrared communication provides better security with minimum interference.



### **SELF-ASSESSMENT QUESTIONS**

- 1. Which of this is not a guided media?
- (a) Fiber Optic Cable
- (b) Coaxial Cable
- (c) Wireless LAN
- (d) Twisted Pair
- 2. Coaxial cable consists of \_\_\_\_\_ concentric copper conductors.
- (a) 1
- (b) 2
- (c) 3
- (d) 4
- 3. \_\_\_\_ cable can carry signals of higher frequency ranges than \_\_\_\_ cable.
- (a) Twisted pair; Fiber Optic
- (b) Twisted pair; Fiber Optic
- (c) Fiber Optic; Coaxial Cable
- (d) None



### **SELF-ASSESSMENT QUESTIONS**

- 1. Which of this is not a guided media?
- (a) Fiber Optic Cable
- (b) Coaxial Cable
- (c) Wireless LAN
- (d) Twisted Pair
- 2. Coaxial cable consists of \_\_\_\_\_ concentric copper conductors.
- (a) 1
- (b) 2
- (c) 3
- (d) 4
- 3. \_\_\_\_ cable can carry signals of higher frequency ranges than \_\_\_\_ cable.
- (a) Twisted pair; Fiber Optic
- (b) Twisted pair; Fiber Optic
- (c) Fiber Optic; Coaxial Cable
- (d) None





# **Topic Summary**

### Transmission Media

- Guided Media
  - > Twisted pair
  - Coaxial Cable
  - > Fiber-Optic Cable
- Unguided Media
  - Radio Waves
  - Micro Waves
  - ➤ Infrared Waves



### REFERENCES FOR FURTHER LEARNING OF THE SESSION

#### **Reference Books:**

- 1. A.S. Tanenbaum, David J. Wetheral "Computer Networks" Pearson, 5th Edition.
- 2. Kurose, J and Ross, K Computer Networking: A Top-Down Approach Addison-Wesley- 6th edition.

#### **Sites and Web links:**

- 1. <a href="https://www.geeksforgeeks.org/types-of-transmission-technology/">https://www.geeksforgeeks.org/types-of-transmission-technology/</a>
- 2. <a href="https://www.tutorialspoint.com/data communication computer network/computer network topologies.htm">https://www.tutorialspoint.com/data communication computer network/computer network topologies.htm</a>
- 3. https://www.javatpoint.com/computer-network-transmission-modes



### THANK YOU



Team - Network Protocols & Security