Actividad 3. Algunas distribuciones importantes de probabilidad

Adrian Pineda Sanchez

2024-08-09

pregunta 1

1. Graficar una distribución Normal con media = 10, y desviación estándar= 2

```
miu = 10
sigma = 2
x = seq(miu - 4*sigma, miu + 4*sigma, 0.01)
y = dnorm(x,miu, sigma)
plot(x,y, type = "l", col = "red", main = "Normal(10,2)")
```

Normal(10,2)

Pregunta 2

2. Graficar una distribución T Student con grados de libertad = 12

```
gl = 12 # Grados de Libertad
sigma = sqrt(gl/(gl-2))
x = seq( -4*sigma, 4*sigma, 0.01)
```

```
y = dt(x,gl)
plot(x,y, type = "1", col = "blue", main = "T Student con gl = 12")
```

T Student con gl = 12

#Pregunta 3

Gráfique la distribución Chi-cuadrada con 8 grados de libertad.

```
gl = 8
sigma = sqrt(2*gl)
x = seq( 0, miu + 8*sigma, 0.01)
y = dchisq(x,gl)
plot(x,y, type = "l", col = "green", main = "Chi2 con gl = 8")
```

Chi2 con gl = 8

Pregunta 4

Graficar una distribución F con v1 = 9, v2 = 13

```
v1 = 9
v2 = 13
sigma = sqrt(2)*v2*sqrt(v2+v1-2)/(sqrt(v2-4)*(v2-2)*sqrt(v1))
x = seq( 0, miu + 8*sigma, 0.01)
y = df(x,v1, v2)
plot(x,y, type = "1", col = "red", main = "F con v1 = 9, v2 = 13")
```

F con v1 = 9, v2 = 13

Pregunta 5

Si Z es una variable aleatoria que se distribuye normalmente con media 0 y desviación estándar 1, hallar los procedimientos de:

- a) P(Z > 0.7) = 0.2419637
- b) P(Z < 0.7) = 0.7580363
- c) P(Z = 0.7) = 0
- d) Hallar el valor de Z que tiene al 45% de los demás valores inferiores a ese valor.

a)
$$P(Z > 0.7) = 0.2419637$$

```
P_Z_mayor_0.7 = 1 - pnorm(0.7)
P_Z_mayor_0.7

## [1] 0.2419637

b) P(Z < 0.7) = 0.7580363

P_Z_menor_0.7 = pnorm(0.7)
P_Z_menor_0.7
```

d) Hallar el valor de Z que tiene al 45% de los demás valores inferiores a ese valor.
 qnorm(.45)
 ## [1] -0.1256613

Pregunta 6

Hallar el procedimiento para verificar los siguientes resultados si se sabe que X se distribuye normalmente con una media de 100 y desviación estándar de 7.

```
a) P(X < 87) = 0.031645

x = 87

miu = 100

sigma = 7

P_menor_87 = pnorm(87, miu, sigma)

P_menor_87

## [1] 0.03164542

b) P(X > 87) = 0.968354

P_mayor_87 = 1- pnorm(x, miu, sigma)

P_mayor_87

## [1] 0.9683546

c) P(87 < X < 110) = 0.89179

P_mayor_87_menor_110 = pnorm(110, miu, sigma) - pnorm(87, miu, sigma)

P_mayor_87_menor_110

## [1] 0.8917909
```

Pregunta 7.

Hallar el procedimiento para verificar los siguientes resultados si se sabe que X se distribuye T Student con gl= 10, hallar:

- a) P(X < 0.5) = 0.6860532
- b) P(X > 1.5) = 0.082253
- c) La t que sólo el 5% son inferiores a ella. (t = -1.812461)

```
pt(x, gl) y qt(área izq, gl)

a) P(X < 0.5) = 0.6860532

x = 0.5
gl = 10
pt(x, gl)

## [1] 0.6860532

b) P(X > 1.5) = 0.082253

x = 1.5
1- pt(1.5, gl)

## [1] 0.08225366

c) La t que sólo el 5% son inferiores a ella. (t = -1.812461)
qt(.05, gl)

## [1] -1.812461
```

Pregunta 8

[1] 12.59159

Hallar el procedimiento para verificar los siguientes resultados si se sabe que X se distribuye Chi-cuadrada con gl = 6, hallar

```
a) P(X2 < 3) = 0.1911532
gl = 6
x = 3
pchisq(x, gl)
## [1] 0.1911532
b) P(X2 > 2) = 0.9196986
x = 2

1 - pchisq(x, gl)
## [1] 0.9196986
c) El valor x de chi que sólo el 5% de los demás valores de x es mayor a ese valor (
Resp. 12.59159)
area = 1- 0.05
qchisq(area, gl)
```

Pregunta 10

Hallar el procedimiento para verificar los siguientes resultados si se sabe que X se distribuye F con v1 = 8, v2 = 10, hallar

- a) P(X < 2) = 0.8492264
- b) P(X > 3) = 0.05351256
- c) El valor de x que sólo el 25% de los demás valores es inferior a él. (Resp. 0.6131229)
 - a) P(X < 2) = 0.8492264

```
v1 = 8
v2 = 10

prob_menor2 <- pf(2, df1 = v1, df2 = v2)

prob_menor2
## [1] 0.8492264</pre>
```

```
b) P(X > 3) = 0.05351256

prob_mayor_3 <- 1 - pf(3, df1 = v1, df2 = v2)

prob_mayor_3

## [1] 0.05351256
```

```
    c) El valor de x que sólo el 25% de los demás valores es inferior a él. (Resp. 0.6131229)
    qf(0.25, df1 = v1, df2 = v2)
    ## [1] 0.6131229
```

Pregunta 11

Una compañía de reparación de fotocopiadoras encuentra, revisando sus expedientes, que el tiempo invertido en realizar un servicio, se comporta como una variable normal con media de 65 minutos y desviación estándar de 20 minutos. Calcula la proporción de servicios que se hacen en menos de 60 minutos. Resultado en porcentaje con dos decimales, ejemplo 91.32% [R. 40.12%]

```
media <- 65
sigma <- 20
prob <- pnorm(60, media, sigma)
```

```
resultado <- paste0(round(prob * 100, 2), "%")
cat("Proporción de servicios que se hacen en menos de 60 minutos", resultado)
## Proporción de servicios que se hacen en menos de 60 minutos 40.13%</pre>
```