Chapter 3 Problems Quantum Computing: An Applied Approach

- 1. What is the final state of the following quantum circuits? Express your answer in Dirac notation.
 - (a) What is the state of the following circuit?

(b) What is the state of the following circuit?

(c) What is the state of the following circuit?

- 2. Compute the x, y, and z coordinates on the Bloch sphere for each of the following qubit states, and draw the states on the Bloch sphere. Note that states below may be unnormalized.
 - (a) $|0\rangle$
 - (b) $|1\rangle$
 - (c) $|0\rangle + |1\rangle$
 - (d) $|0\rangle + e^{i\phi}|1\rangle$ for $\phi \in \{0, \pi/2, \pi, 3\pi/2\}$
 - (e) $3/5|0\rangle + 4/5|1\rangle$.
- 3. Given an initialization of a qubit in state $|0\rangle$ and the following Bloch sphere end states, build a quantum circuit that leads to this state:
 - (a) $3/5|0\rangle + 4/5|1\rangle$.
 - (b) $|0\rangle + e^{i\phi}|1\rangle$ for $\phi \in \{0, \pi/2, \pi, 3\pi/2\}$.

- 4. Are the following sets of gates universal? For each, single qubit gates can act on any qubits, and two-qubit gates can act between any pair of qubits.
 - (a) $\{H, \text{CNOT}\}$
 - (b) $\{H, \text{CNOT}, S\}$
 - (c) $\{H, \text{CNOT}, S, T\}$
 - (d) $\{H, \text{CNOT}, T\}$
 - (e) $\{H, CZ, S\}$
 - (f) $\{H, CZ, T\}$
 - (g) $\{U, \text{CNOT}\}\$ where U is an arbitrary single qubit rotation.
 - (h) U, CZ where U is an arbitrary single qubit rotation.
- 5. Let σ be a Pauli operator, e.g., $\sigma \in \{X, Y, Z\}$. Prove that $e^{i\theta\sigma} = \cos\theta I + i\sin\theta\sigma$.
- 6. Let X, Y, and Z be the usual single qubit Pauli operators. Compute the matrix elements for the single qubit rotation operators $R_x(\theta) := e^{i\theta X/2}$, $R_y(\theta) := e^{i\theta Y/2}$, and $R_z(\theta) := e^{i\theta Z/2}$.
- 7. Prove that $R_x(\theta_2)R_x(\theta_1) = R_x(\theta_1 + \theta_2)$ and similarly for R_y and R_z .
- 8. Why is it important that we represent qubits as complex Hilbert spaces? Why would a real-valued vector space not suffice? How do we represent the Hilbert space of a five-qubit system?
- 9. Consider a qubit in the state $|\psi\rangle = 0.6|0\rangle + 0.8|1\rangle$. What is the probability of measuring the $|0\rangle$ state? What is the probability of measuring the $|1\rangle$ state?
- 10. Suppose the qubit $|\psi\rangle = 0.6|0\rangle + 0.8|1\rangle$ is measured and the outcome is $|0\rangle$. What is the probability of measuring the $|+\rangle$ state? What is the probability of measuring the $|-\rangle$ state?
- 11. If we decided to build a quantum computer with qudits that are 4-level systems let's call these 4-qudits how many such 4-qudits would we need to represent the same computational space as a 10⁶ qubit quantum computer?
- 12. Prove the following identities:
 - (a) HXH = Z
 - (b) HZH = X
 - (c) HYH = -Y
 - (d) $H^2 = I$
 - (e) $SWAP_{ij} = CNOT_{ij}, CNOT_{ji}, CNOT_{ij}$
 - (f) $R_{z,1}(\theta)CNOT_{1,2} = CNOT_{1,2}R_{z,1}(\theta)$