Лабораторная работа №1

Операционные системы

Чёрная С.В., НКАбд-06-23

02 марта 2024

Российский университет дружбы народов, Москва, Россия

Цель работы

Целью данной работы является приобритение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Задание

- 1. Создание виртуальной машины
- 2. Установка операционной системы
- 3. Работа с операционной системой после установки
- 4. Установка программного обеспечения для создания документации
- 5. Дополнительные задания

Нажимая "создать", создаю новую виртуальную машину, указываю ее имя, путь к папке машины по умолчанию меня устраиваеи, выбираю тип ОС и версию(рис. 1)

Рис. 1: Создание виртуальной машины

Указываю объем основной памяти виртуальной машины, размером 4096 МБ(рис. 2)

Рис. 2: Указание объема памяти

Выбираю создание нового виртуального диска и указываю его размер(рис. 3)

Рис. 3: Виртуальный жёсткий диск

Выбираю в VirtualBox настройку своей виртуальной машины, перехожу в "носители", добавляю новый привод оптических дисков и выбираю скаченный образ операционной системы Fedora(рис. 4)

7/33

Скачанный образ ОС был успешно выбран(рис. 5)

Рис. 5: Выбранный образ оптического диска

Запускаю созданную виртуальную машину для установки(рис. 6)

Выбираю язык для дальнейшего использования в процессе установки(рис. 7)

Раскладку клавиатуры оставляю по умолчанию (английская и русская), дату и время так же оставляю по умолчанию (Европа/Москва). Выбираю место установки (рис. 8)

Далее операционная система устанавливается. После установки нажимаю "завершить установку" (рис. 9)

Рис. 9: Завершение установки операционной системы

Диск не отключался автоматически, поэтому отключаю носитель информации с образом(рис. 10)

Рис. 10: Отключение оптического диска

Загружаю виртуальную машину и задаю имя пользователя(рис. 11)

Устанавливаю пароль пользователя (рис. 12)

Захожу в терминал и переключаюсь на роль супер-пользователя(рис. 13)

Рис. 13: Запуск терминала

Обновляю все пакеты(рис. 14)

```
svchernaya@fedora:-$ sudo -i
[sudo] пароль для svchernaya:
[root@fedora ~]# dnf -y update
Copr repo for PyCharm owned by phracek 208 kB/s | 161 kB 00:00
```

Рис. 14: Обновление

Устанавливаю программы для удобства работы в консоли(рис. 15)

Устанавливаю программы для автоматического обновления(рис. 16)

[root@fedora ~]# dnf install dnf-a	utomatic		
	действия метаданных: 0:32:00 назад,	Cp 28 deg 2024 16:06:36.	
Зависимости разрешены.			
Пакет	Архитектура	Версия	
Установка:			
dnf-automatic	noarch	4.19.0-1.fc39	
Результат транзакции			
Установка 1 Пакет			
Объем загрузки: 46 k			
Объем изменений: 76 k			
Продолжить? [д/Н]: д			
Загрузка пакетов:			

Рис. 16: Установка программного обеспечения для автоматического обновления

Перемещаюсь в директорию /etc/selinux, открываю md, ищу нужный файл (рис. 17)

Рис. 17: Поиск файла

Изменяю открытый файл: SELINUX=enforcing меняю на значение SELINUX=permissive(рис. 18)

Перезагружаю машину, захожу снова в ОС, запускаю терминал, запускаю терминальный мультиплексор tmux. Переключаюсь на роль супер-пользователя и устанавливаю средства разработки(рис. 19)

Установка программного обеспечения для создания документации

Устанавливаю дистрибутив texlive(рис. 20)

```
Выполнено!
root@fedora:~# dnf -y install texlive-scheme-full

[0] 0:sudo* "fedor
```

Рис. 20: Установка texlive

Установка программного обеспечения для создания документации

Устанавливаю необходимые расширения для pandoc (рис. 21)

```
\oplus
                                                       svchernaya@fedora:~ — tmux
                                                               3.1.3-25.fc39
                                   noarch
                                                                                                     upda
Результат транзакции
Установка 2 Пакета
Объем загрузки: 26 М
Объем изменений: 192 М
Загрузка пакетов:
(1/2): pandoc-common-3.1.3-25.fc39.noarch.rpm
[MIRROR] pandoc-3.1.3-25.fc39.x86 64.rpm; Curl error (28): Timeout was reached for http://mirror.vandex
erything/x86_64/Packages/p/pandoc-3.1.3-25.fc39.x86_64.rpm [Operation too slow. Less than 1000 bytes/se
ndsl
(2/2): pandoc-3.1.3-25.fc39.x86_64.rpm
Обший размер
Проверка транзакции
Проверка транзакции успешно завершена.
Идет проверка транзакции
Тест транзакции проведен успешно.
Выполнение транзакции
  Подготовка
  Установка
                   : pandoc-common-3.1.3-25.fc39.noarch
  Установка
                   : pandoc-3.1.3-25.fc39.x86 64
  Запуск скриптлета: pandoc-3.1.3-25.fc39.x86 64
  Проверка
                   : pandoc-3.1.3-25.fc39.x86 64
                   : pandoc-common-3.1.3-25.fc39.noarch
  Проверка
Установлен:
  pandoc-3.1.3-25.fc39.x86 64
                                                                 pandoc-common-3.1.3-25.fc39.noarch
```

Выводы

При выполнении данной лабораторной работы я приобрела практические навыки установки операционной системы на виртуальную машину, а так же сделала настройки минимально необходимых для дальнейшей работы сервисов.

Ввожу в терминале команду dmesg, чтобы проанализировать последовательность загрузки системы (рис. 22).

```
sychernaya@fedora:~ — tmux
  118.366237] 13:56:48.355329 main
                                        Initializing service ...
  118.491900] 13:56:48.541496 main
                                        Creating worker thread ...
  118.569547] 13:56:48.559264 main
                                        Service started
                                       VBoxClient 7.0.14 Fedora r161095 (verbosity: 0) linux.amd64 (Jan 16
              13:56:4
                                       OS Release: 6.7.6-200.fc39.x86 64
                                       OS Version: #1 SMP PREEMPT DYNAMIC Fri Feb 23 18:27:29 UTC 2024
                                       Executable: /usr/bin/VBoxClient
              13:56:48.708591 main
                                       Process ID: 2781
              13:56:48.708592 main
                                        Service: Drag'n'Drop
  118.828455] 13:56:48.878855 main
                                        Initializing service ...
  119.377085] 13:56:49.427241 main
                                        Creating worker thread ...
                                        Proxy window-9x1200001 (debug mode: false), root window-0x/02 ...
  119,420098] 13:56:49,470392 main
                                        Service started
  138.828278] hrtimer: interrupt took 1935355 ns
  213.884259] 13:58:23.927282 DrmResizeThread VBoxDRMClient: push screen layout data of 1 display(s) to DRM
lse, rc=V
  222.997171] 13:58:33.041054 DomResizeThread VBoxDRMClient: push screen layout data of 1 display(s) to DRM
lse, rc-V
 1996.8805021 14:28:05.946383 DrmResizeThread VBoxDRMClient: push screen layout data of 1 display(s) to DRM
lse, rc=V
 2604.5518031 14:28:14.618379 DomResizeThread VBoxDRMClient: push screen layout data of 1 display(s) to DRM
lse. rc=V
  2618 8987991 14:28:28 965458 DomResizeThread VBoxDRMClient: nush screen layout data of 1 display(s) to DRM
```

С помощью поиска, осуществляемого командой 'dmesg | grep -i ', ищу версию ядра Linux: 6.1.10-200.fc37.x86_64 (рис. 23).

```
rootafedors:-# dmesg | grep -1 "Linux version" [ 6.009800] Linux version 6.7.6-296.fc33.x85_64 (mockbuild01ftae28ea38d40908fb24667adfe502f) (gcc (GCC) 13.2.1 20231205 (Red Hat 13.2.1-6), GNJ ld version 2.40-14.fc39) #1 SMP PREEPPT_DYNAMIC Fri Feb 23 18:27:29 UTC 2024
```

Рис. 23: Поиск версии ядра

К сожалению, если вводить "Detected Mhz processor" там, где нужно указывать, что я ищу, то мне ничего не выведется. Это происходит потому, что запрос не предусматривает дополнительные символы внутри него (я проверяла, будет ли работать он с маской - не будет). В таком случае я оставила одно из ключевых слов (могла оставить два: "Mhz processor") и получаю результат (рис. 24).

```
root@fedora:~# dmesg | grep -i "processor"
[    0.000009] tsc: Detected 3194.010 MHz processor
[    0.200895] smpboot: Total of 1 processors activated (6388.02 BogoMIPS)
[    0.206895] ACPI: Added _OSI(Processor Device)
[    0.206895] ACPI: Added _OSI(Processor Aggregator Device)
root@fedora:~# ^C
root@fedora:~# dmesg | grep -i "Detected 3194.010 MHz processor"
[    0.000009] tsc: Detacted 3194.010 MHz processor
```

Рис. 24: Поиск частоты процессора

Аналогично ищу модель процессора (рис. 25).

```
[ 0.091984] GPUN: Hyper-Threading is disabled
[ 0.199030] smpboot: GPUN: AMD Ryzen 7 5800H with Radeon Graphics (family: 0x19, model: 0x50, stepping: 0x
0)
```

Рис. 25: Поиск модели процессора

Объем доступной оперативной памяти ищу аналогично поиску частоты процессора, т. к. возникла та же проблема, что и там (рис. 26).

```
root@fedora:~
                   root@fedora:~
                                                                       root@fedora:~
   0.001946] ACPI: Reserving DSDT table
                                                at [mem 0xdfff0610-3xdfff2962]
   0.001946] ACPI: Reserving FACS table
                                                at [mem 0xdfff0200-0xdfff623f]
   6.001947] ACPI: Reserving FACS table
                                                at [mem 0xdfff0200-9xdfff623f]
   6.001948] ACPI: Reserving AFIC table
                                                at [mem 0xdfff0240-3xdfff6293]
   6.001948] ACPI: Reserving SSDT table
                                                at [mem 0xdfff02a0-3xdfff660b]
   6.002372] Early momory node ranges
   6.013322] PM: hibernation: Registered nosave
                                                       : [mem 0x00036000-6x00300fff]
   6.013323] PM: hibernation: Registered nosave
                                                       : [mem 0x0009f000-6x0099ffff]
   6.013324] PM: hibernation: Registered nosave
                                                       : [mem 0x000ac000-cx003effff]
   6.013325] PM: hibernation: Registered nosave
                                                       : [mem 0x000fc000-cx000fffff]
   6.0133251 PM: hibernation: Registered nosave
                                                       : [mem 0xdfff@000-@xdfffffff]
   6.013326] PM: hibernation: Registered nosave
                                                       : [mem 0xe0036000-6xfebfffff]
   6.013327] PM: hibernation: Registered nosave
                                                       : [mem 0xfec96000-6xfec00fff]
   6.013327] PM: hibernation: Registered nosave
                                                       : [mem 0xfec31000-6xfedfffff]
   6.013328] PM: hibernation: Registered nosave
                                                       : [mem 0xfee30000-0xfee00fff]
   6.013329] PM: hibernation: Registered nosave
                                                       : [mem 0xfee31000-6xfffbffff]
   €.013329] PM: hibernation: Registered nosave
                                                       : [mem 0xfffc0000-0xffffffff]
   6.064618] Memory: 3963976K/4193848K available (20489K kernel code, 3276K rwdata, 14748K rodata, 4588K in
it. 4892K bss, 229612K reserved, OK cma-reserved)
   0.094895] Freeing SMP alternatives
   6.201214] x86/mm: Memor
                            block size: 128MB
   6.743643] Freeing initrd
                                  y: 3278€K
   €.764969] Non-volatile
                                  driver v1.3
   1.175701] Freeing unused decrypted
   1.177228] Freeing unused kernel image (initmem)
                                                         v: 4588K
   1.179994] Freeing unused kernel image (rodata/data gap) memory: 1636K
   3.121936] vmwgfx 0000:00:02.0: [drm] Legacy nemor
                                                       limits: VRAM = 16384 kB. FIFO = 2048 kB. surface = 50
```

Нахожу тип обнаруженного гипервизора (рис. 27).

```
[ 3.839317] systemu[1]: Listering on systema-commo.socket - Userspace Out-
root@fedora: # dmesg | grep -i "Hypervisor detected"
[ 6.003600] Hypervisor detected: KVM
```

Рис. 27: Поиск типа обнаруженного гипервизора

Последовательность монтирования файловых систем можно посмотреть, введя в поиск по результату dmesg слово mount (рис. 28).

```
t-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
                     Appoint-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
    3.724228] BTRES: device label fedora devid 1 transid 527 /dev/sdo3 scanned by mount (453)
    3.725169] BTRFS info (device sda3): first mount of filesystem 5363fbee-68ec-47bc-943c-27027a0ca527
    5.818802] systemd[1]: Set_up auto
                                                 proc-sys-fs-binfmt_misc.automount - Arbitrary Executable File For
mats File System Auto
    S.644430] systemd[1]: hourning dev-hugepages.mount - Muge Pages File System...
S.858206] systemd[1]: hourning dev-majueue.comt - POSIX Message Queue File System...
S.652241 systemd[1]: hourning sys-kornel-dobug.mount - Kornel Jobug File System...
                                   ting dev-mqueue.mount - POSIX Message Queue File System...
    5.869842] systemd[1]: Hounting sys-kernel-tracing.mount - Kernel Trace File System...
    6.079679] systemd[1]: Starting systemd-remount-fs.service - Rem
                                                                              ount Root and Kernel File Systems...
    6.077272] systemd[1]: Nounted dev-hugepages mount - Huge Pages File System.
                                   ted dev-mqueue.mount - POSIX Message Queue File System.
    6.097951] systemd[1]: Houn
    7.635146] EXT4-fs (sda2): moun
                                        ted filesystem 223202f1-cbc8-4ba0-9c70-f2ab537b72d7 r/w with ordered data
     Ouota node: none
```

Рис. 28: Последовательность монтирования файловых систем

Список литературы

Список литературы

```
::: {#fefs}
```

1. https://esystem.rudn.ru/mod/page/view.php?id=1098787