Машинное обучение (Machine Learning) Обучение на одном примере (One-shot learning)

Уткин Л.В.

Санкт-Петербургский политехнический университет Петра Великого

One-Shot Learning

Пример

Формальная постановка задачи

Дано:

• малое "помеченное" обучающее множество S из N примеров одинковой размерности с метками y

$$S = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_N, y_N)\}$$

- тестовый пример $\hat{\mathbf{x}}$, который нужно классифицировать Цель:
- ullet так как ровно один пример имеет "правильный" класс, то необходимо определить $y\in S$ такое же как метка \widehat{y} примера $\widehat{\mathbf{x}}$

Что нужно учесть при решении

- В реальности не всегда есть ограничение, что только одно изображение имеет правильный класс
- Просто обобщить эту ситуацию на случай k-shot, если есть не один, а k примеров для каждого y_i , а не один.
- Когда N большое, есть большее число возможных классов, к которым может принадлежать $\widehat{\mathbf{x}}$, поэтому сложнее предсказать правильный класс.
- Случайное угадывание будет иметь $\frac{100}{N}\%$ точность в среднем

Примеры

Датасет Omniglot N=9

Датасет Omniglot представляет собой набор из 1623 рисованных символов в разрешении 105х105 из 50 алфавитов.

Примеры

Датасет Omniglot N=25

Test Image	Support Set				
		ネ	٥	Θ	y
	0	ۍ,	3	7	प
	బ	2	П	Z	\cap
	H	ß	4	4	f
	*	எப	Ų.	द	τ

Примеры

Датасет Omniglot N=36

Support Set

Support Sec						
				あ		
\times	મ		K	1	EL	
4	J	テ	۲	R	પ	
Я	מ	7	ડા	ナ	Ф	
य	U	4	∳	3T	ス	
ゃ	F	댰	7	<u>ه</u>	[ک	

Omniglot

Sanskrit							
प	झ	स्र	দ	ਸ	নূ	घ	
乙	ठ	क	স	फ्	₹	व	
3	ਦ	ᆌ	ज	1	ध्य	स	
द	311	भ	ओ	ম	उ	ਨ	
र	ট্য	ঘ	₹.	8	थ	ट	
42	च	\$	ৰ	hω	श	秜	

Bengali ব অ ন द्ध প্ৰ <u>(9</u> ज ા শ্ব જ 5_ ট ল ড 5] N ফ 8

Простейший метод классификации - 1 ближайший сосед

- Простейший способ классификации это k ближайших соседей, но поскольку для каждого класса есть только один пример, используем 1 ближайшего соседа.
- Евклидово расстояние от тестового примера до обучающего:

$$C(\widehat{\mathbf{x}}) = \arg\min_{c \in S} \|\widehat{\mathbf{x}} - \mathbf{x}_c\|$$

- ullet Точность (Koch и др.): $\sim 28\%$ при N=20 omniglot
- Это примерно в 6 раз больше, чем просто случайное угадывание (5%)
- ullet У людей точность 95.5% при ${\it N}=20$ omniglot
- Hierarchical Bayesian Program Learning (Lake и др.)
 дает 95.2%

Неронные сети для обучения

- Как обучить нейронную сеть на единичных примерах? Переобучение!
- Многие подходы используют Transfer Learning
- Вспомним 1 ближайшего соседа просто классифицирует путем поиска ближайшего примера на расстоянии L_2 (Евклидово расстояние)
- Но эта метрика плоха для большой размерности

Сиамские сети

Сиамские сети

Идея: Сиамская сеть может сравнивать тестовое изображение с каждым изображением в наборе и выбирать, какое из них, имеет один и тот же класс - наиболее близко.

Элементы сиамских сетей

- ullet X_1 и X_2 пара изображений
- ullet Y=0, если X_1 и X_2 один объект, Y=1, если X_1 и X_2 различны
- Построить нейронную сеть с минимальным числом параметров, определяющую для пар объектов, одинаковы ли она или нет

Архитектура сиамских сетей

Y. LeCun. Learning Hierarchies of Invariant Features

- W общий вектор параметров,
- ullet $G_W(X_1)$, $G_W(X_2)$ точки в прост-ве меньшей размерности
- ullet E_W функция совместимости между X_1 и X_2 ("энергия")

Еще пример сиамских сетей

Y. LeCun. Learning Hierarchies of Invariant Features

Функция потерь

 Функция потерь зависит от входных данных и параметров косвенно через энергию:

$$\mathcal{L}(W) = \sum_{i=1}^{N} L(W, (Y, X_1, X_2)_i)$$

$$L(W, Y, X_1, X_2) = (1 - Y)L_G(E_W(X_1, X_2)) + YL_I(E_W(X_1, X_2))$$

$$ullet$$
 L_G - функция потерь для совпадающих пар $Y=0$

 $E_{W} = \|G_{W}(X_{1}) - G_{W}(X_{2})\|$

ullet L_I - функция потерь лоя несовпадающих пар Y=1

Применение к распознаванию лиц

JunlinHu, etc. Discriminative Deep Metric Learning for Face Verification in the Wild, CVPR 2014

Глубокая сиамская сеть

Глубокая сиамская сеть

- Используем t=1, если два изображения одного класса и t=0 иначе
- Функция потерь

$$egin{aligned} L(\mathbf{x}_1, \mathbf{x}_2, t) &= t \cdot \log(p(\mathbf{x}_1 \circ \mathbf{x}_2)) \ &+ (1 - t) \cdot \log(1 - p(\mathbf{x}_1 \circ \mathbf{x}_2)) \ &+ \lambda \cdot \|w\|_2 \end{aligned}$$

• Решение

$$C(\hat{\mathbf{x}}, S) = \arg\max_{c} P(\hat{\mathbf{x}} \circ x_c), \ x_c \in S$$

Глубокая сиамская сеть - обучение

- Почему нет переобучения
- ullet Если есть C примеров в E классах, то число пар среди $C \cdot E$ примеров $N_{\mathsf{пар}} = C \cdot E \cdot (1 C \cdot E)/2$
- 20 примеров Omniglot из 964 классов 185 849 560 пар!
- Но число примеров одного класса $N_{\text{одинак}} = {E \choose 2} C$.
 Это 183 160 пар.
- Важно: для обучения сиамской сети необходимо соотношение 1:1 примеров одного и разных классов

Характеристики

https://sorenbouma.github.io/blog/oneshot/

Вопросы

?