

http://www.digicortex.net/node/17

Deep Learning Intro

Jay Urbain, PhD

Professor, Department of Electrical Engineering and Computer Science Milwaukee School of Engineering

Tools tf.Keras

```
Input Image:

TensorFlow Neural Network

Output:

5
```

```
tensorflow and keras (tf.keras not "vanil
      import tensorflow as tf
     from tensorflow import keras
     (train_images, train_labels), (test_images, test_labels) = \
     keras.datasets.mnist.load data()
     model = keras.Sequential([
3
         keras.layers.Flatten(input shape=(28, 28)),
         keras.layers.Dense(128, activation=tf.nn.relu),
         keras.layers.Dense(10, activation=tf.nn.softmax)
     1)
     model.compile(optimizer=tf.train.AdamOptimizer(),
                   Loss='sparse_categorical_crossentropy',
                   metrics=['accuracy'])
     # train model
     model.fit(train images, train labels, epochs=5)
     test_loss, test_acc = model.evaluate(test_images, test_labels)
     print('test accuracy:', test acc)
     predictions = model.predict(test_images)
```

Deep Learning is Representation Learning

(aka Feature Learning)

Representation Matters

Task: Draw a line to separate the green triangles and blue circles.

Deep learning = Learning representations/features

- The traditional model of pattern recognition (since the late 50's)
 - Fixed/engineered features (or fixed kernel) + trainable classifier

- End-to-end learning / Feature learning / Deep learning
 - Trainable features (or kernel) + trainable classifier

Sequence classification: activity recognition

Temporal sensor analysis and activity tracking

	user	activity	timestamp	x-axis	y-axis	z-axis
0	33	Jogging	49105962326000	-0.694638	12.680544	0.503953
1	33	Jogging	49106062271000	5.012288	11.264028	0.953424
2	33	Jogging	49106112167000	4.903325	10.882658	-0.081722
3	33	Jogging	49106222305000	-0.612916	18.496431	3.023717
4	33	Jogging	49106332290000	-1.184970	12.108489	7.205164

Traditional models: activity recognition

http://www.cis.fordham.edu/wisdm/public_files/sensorKDD-2010.pdf

Average[3]: Average acceleration (for each axis)

Standard Deviation[3]: Standard deviation (for each axis)

Average Absolute Difference[3]: Average absolute difference between the value of each of the 200 readings within the ED and the mean value over those 200 values (for each axis)

Average Resultant Acceleration[1]: Average of the square roots of the sum of the values of each axis squared $\sqrt{(x_i^2 + y_i^2 + z_i^2)}$ over the ED

<u>Time Between Peaks[3]</u>: Time in milliseconds between peaks in the sinusoidal waves associated with most activities (for each axis)

Binned Distribution[30]: We determine the range of values for each axis (maximum – minimum), divide this range into 10 equal sized bins, and then record what fraction of the 200 values fell within each of the bins.

Table 2: Accuracies of Activity Recognition

	% of Records Correctly Predicted					
	J48	Logistic Regression	Multilayer Perceptron	Straw Man		
Walking	89.9	93.6	91.7	37.2		
Jogging	96.5	98.0	98.3	29.2		
Upstairs	59.3	27.5	61.5	12.2		
Downstairs	55.5	12.3	44.3	10.0		
Sitting	95.7	92.2	95.0	6.4		
Standing	93.3	87.0	91.9	5.0		
Overall	85.1	78.1	91.7	37.2		

user	activity	timestamp	x-axis	y-axis	z-axis
33	Jogging	49105962326000	-0.694638	12.680544	0.503953
33	Jogging	49106062271000	5.012288	11.264028	0.953424
33	Jogging	49106112167000	4.903325	10.882658	-0.081722
33	Jogging	49106222305000	-0.612916	18.496431	3.023717
33	Jogging	49106332290000	-1.184970	12.108489	7.205164
	33 33 33 33	33 Jogging33 Jogging33 Jogging33 Jogging	33 Jogging 49105962326000 33 Jogging 49106062271000 33 Jogging 49106112167000 33 Jogging 49106222305000	33 Jogging 49105962326000 -0.694638 33 Jogging 49106062271000 5.012288 33 Jogging 49106112167000 4.903325 33 Jogging 49106222305000 -0.612916	33 Jogging 49105962326000 -0.694638 12.680544 33 Jogging 49106062271000 5.012288 11.264028 33 Jogging 49106112167000 4.903325 10.882658 33 Jogging 49106222305000 -0.612916 18.496431

Traditional models: activity recognition

Note: Improved features using traditional machine learning models (SVM, RF, LR) can yield an accuracy in the ~92% range (Quihao Jin, Jay Urbain):

- 3-sec mean
- 5-sec mean
- Median filtering
- Acceleration axis deltas
- FFT Fast Fourier Transform

DL Experiment - WISDM Activity Dataset

Temporal sensor analysis and activity

	user	activity	timestamp	x-axis	y-axis	z-axis
0	33	Jogging	49105962326000	-0.694638	12.680544	0.503953
1	33	Jogging	49106062271000	5.012288	11.264028	0.953424
2	33	Jogging	49106112167000	4.903325	10.882658	-0.081722
3	33	Jogging	49106222305000	-0.612916	18.496431	3.023717
4	33	Jogging	49106332290000	-1.184970	12.108489	7.205164

Model	Accuracy
1) 1-layer LSTM	94.2
2) 2-layer LSTM	95.5
3) 1-layer Convnet	94.5
4) 2-layer Convnet	98.7
5) 2-layer Convnet + 1-layer LSTM	98.5

Layer (type)	Output	Shape	Param #
convld_9 (ConvlD)	(None,	100, 64)	1024
max_pooling1d_9 (MaxPooling1	(None,	50, 64)	0
dropout_9 (Dropout)	(None,	50, 64)	0
convld_10 (ConvlD)	(None,	50, 128)	41088
max_pooling1d_10 (MaxPooling	(None,	25, 128)	0
dropout_10 (Dropout)	(None,	25, 128)	0
gru_5 (GRU)	(None,	25, 50)	26850
flatten_5 (Flatten)	(None,	1250)	0
dense_8 (Dense)	(None,	6)	7506

Total params: 76,468

Test accuracy: 0.987

Difference in Workflow

Machine learning workflow shifts from engineering features for "shallow" models to architecting deep learning models with the ability to learn hierarchical representations of features

Trainable feature hierarchy

Hierarchy of representations with increasing level of abstraction. Each stage is a kind of trainable feature transform

 Image recognition - Pixel \rightarrow edge \rightarrow motif \rightarrow part \rightarrow object Text Character → word → word group → clause → sentence → story/semantic understanding Speech - Sample \rightarrow spectral band \rightarrow sound \rightarrow ... \rightarrow phone \rightarrow phoneme \rightarrow word inable feature inable feature transform transform transform

Deep learning = learning hierarchical representations

It's deep if it has more than one stage of non-linear feature transformation

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

DEEP LEARNING

Neuron: Biological Inspiration for Computation

Neuron: Biological Inspiration for Computation

 Neuron: computational building block for the brain

 (Artificial) Neuron: computational building block for the "neural network"

Key Difference:

- Parameters: Human brains have ~10,000,000 times synapses than artificial neural networks.
- Topology: Human brains have no "layers". Async: The human brain works asynchronously, ANNs work synchronously.
- Learning algorithm: ANNs use gradient descent for learning. We don't know what human brains use
- Power consumption: Biological neural networks use very little power compared to artificial networks
- Stages: Biological networks usually never stop learning. ANNs first train then test.

Deep Learning, Goodfellow, et al.

Non-linear problem: predict Stairs/Not Stairs

- Collection of grayscale images, each a 2×2 grid of pixels where each pixel has an intensity value between 0 (white) and 255 (black).
- The goal is to build a model that identifies images with a "stairs" pattern.

https://gormanalysis.com/introduction-to-neural-networks/

Single Layer Perceptron

$$f(x) = \begin{cases} 1 & \text{if } w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4 > threshold \\ 0 & \text{otherwise} \end{cases}$$

Let's re-express this as follows

$$\hat{y} = \mathbf{w} \cdot \mathbf{x} + b$$

$$f(x) = \begin{cases} 1 & \text{if } \widehat{y} > 0 \\ 0 & \text{otherwise} \end{cases}$$

Here \widehat{y} is our *prediction score*.

$$\hat{y} = -0.0019x_1 + -0.0016x_2 + 0.0020x_3 + 0.0023x_4 + 0.0003$$

Single Layer Perceptron with Sigmoid Activation: use non-linear activation function

$$sigmoid(z) = \frac{1}{1+e^{-z}}$$

$$z = w \cdot x = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$$

$$\widehat{y} = sigmoid(z) = \frac{1}{1+e^{-z}}$$

$$f(x) = \begin{cases} 1 & \text{if } \hat{y} > 0.5 \\ 0 & \text{otherwise} \end{cases}$$

Logistic Regression

Single Layer Perceptron - problems

- The model outputs a real number whose value correlates with the concept of likelihood, but there's no basis to interpret the values as probabilities, they can be outside the range [0, 1].
- The model can't capture the non-linear relationship (interactions) between the variables and the target:

Start with an image, x = [100, 0, 0, 125]. Increase x3 from 0 to 60

Variables are independent.

Sigmoid

- The sigmoid function causes the increase of 60 (right image) to "fire" (increase rapidly) as z=w·x increases, but the pace slows down as z continues to increase.
- This aligns with our intuition that the right image should reflect a greater increase in the likelihood of stairs versus the left image.

Still have problems

- ŷ has a monotonic relationship with each variable. What if we want to identify lightly shaded stairs?
- The model does not account for variable interaction.
 - Increasing or decreasing a pixel by x3 should potentially increase or decrease y[^] depending on the values of the other variables. The current model has no way of achieving this.

Multi-Layer Perceptron with Sigmoid activation function

• Can solve both of the above issues by adding an extra *layer* to the perceptron model.

Multi-Layer Perceptron with Sigmoid activation function

Example: Identify the stairs pattern

- Build a model that fires when "left stairs" are identified, y left
- Build a model that fires when "right stairs" are identified, y right
- Add the score of the base models so that the final sigmoid function only fires if both y left and y right are large

XOR Problem – Minsky paper

- Can't solve with a single layer
- Exercise: create single node networks for OR and AND. Try to create single node network for XOR. Create and verify solution with 2 layers.

Neural Network Architecture

Multi-layer Perceptron

Combing Neurons in Hidden Layers:

The "Emergent" Power to Approximate

Universality: For any arbitrary function f(x), there exists a neural network that closely approximate it for any input x

What can we do with Deep Learning?

- Number
- · Vector of numbers
- Sequence of numbers
- Sequence of vectors of numbers

- Number
- · Vector of numbers
- Sequence of numbers
- · Sequence of vectors of numbers

Karpathy

Loss Functions

- Loss function quantifies gap between prediction and ground truth
- · For regression:
 - · Mean Squared Error (MSE)
- For classification:
 - Cross Entropy Loss

Mean Squared Error

$$MSE = rac{1}{N}\sum_{i=1}^{ ext{Prediction}} (t_i - s_i)^2$$

Cross Entropy Loss

Classes Prediction
$$CE = -\sum_{i}^{C} t_{i} log(s_{i})$$
 Ground Truth $\{0,1\}$

Backpropagation

Task: Update the weights and biases to decrease loss function

Subtasks:

- Forward pass to compute network output and "error"
- 2. Backward pass to compute gradients
- 3. A fraction of the weight's gradient is subtracted from the weight.

| Learning Rate

Numerical Method: Automatic Differentiation

Learning is an Optimization Problem

Task: Update the weights and biases to decrease loss function

SGD: Stochastic Gradient Descent

Overfitting and Regularization

- Help the network **generalize** to data it hasn't seen.
- Big problem for small datasets.
- Overfitting example (a sine curve vs 9-degree polynomial):

Overfitting and Regularization

• Overfitting: The error decreases in the training set but increases in the test set.

Systems are currently good at basic prediction problems - deep learning + supervised data.

Pure perception, i.e., scene understanding is very hard. Identifying objects in an image is good, but understanding how they relate is hard

а

Deep Learning:

Our intuition about what's "hard" is flawed (in complicated ways)

Visual perception: 540,000,000 years of data

Bipedal movement: 230,000,000 years of data

Abstract thought: 100,000 years of data

Prediction: Dog

+ Distortion

Prediction: Ostrich

Generative Models may help

"Encoded in the large, highly evolve sensory and motor portions of the human brain is a **billion** years of experience about the nature of the world and how to survive in it.... Abstract thought, though, is a new trick, perhaps less than **100 thousand years** old. We have not yet mastered it. It is not all that intrinsically difficult; it just seems so when we do it."

- Hans Moravec, Mind Children (1988)