Reproducing Kernels

Recap:

Def: We say $K: \Sigma \times \Sigma \to \mathbb{R}$ is a reproducing kernel for a Hilbert space # (of functions $f: \Sigma \to \mathbb{R}$) if

 $f(x) = \langle f, k(\cdot, x) \rangle_{H}$ for all $f \in H$

"Therefore, K(·, x) is a "delta" function for H.

Defi: If a Hilbert space of has a reproducing kernel, then of His called a RKHS.

(Every H such that $L_x: f \to f(x)$ is such that $|L_x(f)| \le M ||f||_H$ is a RKHS. Here, $M < \infty$.)

RKHS induced by a pos. def. matrix

Given a square complex matrix $P = (Pij)_{i,j=1}^n$. If we let $X = \{1,2,...,n\}$

then $K: X \times X \rightarrow \mathbb{C}$ can be defined as K(i,j) = Pij

We can define: $f: X \rightarrow C$ with (f(i), ..., f(n))

Let $\mathcal{H}_o = Span\{k(\cdot, x) : x \in X\}$

= Span { p(., j) : j=1,..., n}

= Column space of P.

Now, suppose that P is pos. def. so K is a pos. def. kernel.

If k is reproducing:

$$k_{x}(y) = k(y,x) = \langle k(\cdot,x), k(\cdot,y) \rangle_{H_{x}}$$

$$p_{j}(i) = P(i,j) = \langle Pe_{j}, e_{i} \rangle = \langle P^{\frac{1}{2}}e_{i} \rangle$$
 $p_{j} = jth colof P$

Thus,
$$\langle f, g \rangle_{H} = \mathcal{L}_{d} \beta \mathcal{D}_{d} \otimes kere$$

$$= \langle \hat{\sum}_{i=1}^{n} a_{i} k(\cdot, i), \hat{\sum}_{i=1}^{n} \beta_{i} k(\cdot, j) \rangle$$

$$= \hat{\sum}_{i} \hat{\sum}_{i} a_{i} \beta_{i} \langle k(\cdot, i), k(\cdot, j) \rangle$$

$$\stackrel{(i)}{=} \hat{j}^{2} \hat{j}^{2} \otimes k(\cdot, i) = 0$$

$$= \hat{\sum}_{i=1}^{n} \hat{\sum}_{j=1}^{n} d_{i} \hat{\beta}_{j} e_{j}^{\dagger} p^{\dagger} e_{i}$$

Examples of pos. def. kernels

Linear kernels

poly. kernels

$$K(x,y) = (x + r)^{n}$$

Gaussian

$$K(x,y) = e^{-||x-y||^2}$$
 $\sigma > 0$

Laplacian

$$K(x,y) = e^{-\alpha(1|x-y|)}$$

て 次 口 。

Sobolev space kernel: Let K, d be integers, $k \ge \frac{d}{2}$ Matern kernels: $k(x,y) = \|x-y\|_2^{k-\frac{d}{2}} K$ This reproducing kernel for $W_2^k(R^d)$. That is,

This reproducing kernel for $W_2^k(R^d)$. That is, functions on R^d that are k-times weakly differentiable with $\|f\|_{W_k^k}^2 = \int_{j=0}^k \|D^j f\|_{L^2}^2$, diff op.

The representer theorem:

- · Given "training examples": x1,..., xn ∈ Ω
- · Given "training values" : y,,..., yn E R
- Given arbitrary error function: $E: (\chi \times R^2)^n \rightarrow R \cup \{\infty\}$

$$E = E((x_1, y_1, f(x_1)), ..., (x_n, y_n, f(x_n)))$$
 measures how well you distant f does on training set.

* Strictly monotonically increasing real-valued func. $g: [o, \infty) \to \mathbb{R}.$

Then any minimizer of $f^* = \underset{f \in \mathcal{H}}{\operatorname{argmin}} \quad E\left(\left(x_i, y_i, f(x_i)\right), ..., \left(x_n, y_n, f(x_n)\right) + g\left(||f||_{\mathcal{H}}\right)$ FEXI

ARCHS with Kernel K: DXD -> R

has the representation:

$$f^*(x) = \prod_{i=1}^n \lambda_i k(x,x_i) + V$$

where $\langle V, K(\cdot, x_i) \rangle_{H} = 0$, for $1 \le i \le n$.

Therefore,

$$f(x_i) = \langle \sum_{i=1}^{n} d_i k(\cdot, x_i) + V, k(\cdot, x_i) \rangle_{H}$$
 reproducing
$$= \sum_{i=1}^{n} d_i \langle k(\cdot, x_i), k(\cdot, x_i) \rangle_{H}$$

Thus, E in minimization is independent of V.

$$g(||f||) = g(||\sum_{i=1}^{n} a_i k(\cdot, x_i) + v||)$$

$$= g((||\hat{\Sigma}_{i=1}^n \chi_i k(\cdot, x_i)||^2 + ||v||^2)^{\frac{1}{2}})$$

$$\geq g(\|\sum_{i=1}^{n} \lambda_i k(\cdot, x_i)\|)$$

Consequently, best to pick V=0. That is $f^*(x) = \int_{i=1}^{n} d_i k(x, x_i)$.

E =
$$\frac{1}{2}\sum_{i=1}^{n} (y_i - f(x_i))^2$$
 and $g(||f||_H) = \lambda ||f||_H^2$
for $\lambda > 0$.

$$f^* = \underset{f \in \mathcal{H}}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{n} (y_i - f(x_i))^2 + g(||f||_{\mathcal{H}})$$

Equivalent to:

$$\alpha^* = \underset{d_1, \dots, \alpha_n \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{n} a_j \, K(x_i, x_j) \right)^{\frac{1}{2}} + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} a_i \, K(x_i, x_j) a_j.$$

Therefore,
$$(\mathbf{Z}A^{T}A + \lambda A) \times^{*} = Ay$$

An infinite-dimensional problem can be solved via a linear system!