1 Forme Bilineari e Prodotti Scalari

1.1 Forme Bilineari

Sia $\mathbb{V}(\mathbb{K})$ uno spazio vettoriale sul campo \mathbb{K} . Una forma bilineare su \mathbb{V} è un'applicazione

$$*: \mathbb{V}(\mathbb{K}) \times \mathbb{V}(\mathbb{K}) \to \mathbb{K}$$

tale che $\forall \mathbf{v}, \mathbf{u}, \mathbf{w} \in \mathbb{V}$ e $k \in \mathbb{K}$

- 1. $(\mathbf{v} + \mathbf{u}) * \mathbf{w} = (\mathbf{v} * \mathbf{w}) + (\mathbf{u} * \mathbf{w})$
- 2. $\mathbf{v} * (\mathbf{u} + \mathbf{w}) = (\mathbf{v} * \mathbf{u}) + (\mathbf{v} * \mathbf{w})$
- 3. $(k\mathbf{v}) * \mathbf{u} = \mathbf{v} * (k\mathbf{u}) = k(\mathbf{v} * \mathbf{u})$

Si deduce che $0 * \mathbf{v} = \mathbf{v} * 0 = 0, \forall \mathbf{v} \in \mathbb{V}$.

1.2 Forma bilineare simmetrica

Una forma bilineare *, su uno spazio vettoriale $\mathbb{V}(\mathbb{K})$, si dice forma bilineare simmetrica o prodotto scalare se, comunque si considerino due vettori \mathbf{v} e \mathbf{w} in $\mathbb{V}(\mathbb{K})$, si ha:

$$\mathbf{v} * \mathbf{w} = \mathbf{w} * \mathbf{v}$$

1.3 Prodotti scalari e ortogonalità

In uno spazio vettoriale $\mathbb{V}(\mathbb{K})$, con prodotto scalare ".", due vettori \mathbf{v} e \mathbf{w} si dicono **ortogonali** e si scrive $\mathbf{v} \perp \mathbf{w}$ se $\mathbf{v} \cdot \mathbf{w} = 0$.

1.4 Complemento ortogonale

Sia $\mathbb{V}(\mathbb{K})$ uno spazio vettoriale con prodotto scalare "·" e sia A un sottoinsieme, non vuoto, di \mathbb{V} . Si dice **complemento ortogonale** di A in $\mathbb{V}_n(\mathbb{K})$, l'insieme (si legge A ortogonale)

$$A^{\perp} = \mathbf{v} \in \mathbb{V} \mid \mathbf{v} \cdot \mathbf{w} = 0, \forall \mathbf{w} \in A$$

1.4.1 Proposizione

Sia $\mathbb{V}(\mathbb{K})$ uno spazio vettoriale con prodotto scalare "." e sia \mathbf{w} un vettore di $\mathbb{V}(\mathbb{K})$ tale che $\mathbf{w} \cdot \mathbf{w} \neq 0$. Allora, ogni vettore \mathbf{v} di $\mathbb{V}(\mathbb{K})$ si può esprimere come somma di due vettori \mathbf{w}_1 e \mathbf{w}_2 , dove \mathbf{w}_1 è ortogonale a \mathbf{w} e \mathbf{w}_2 è proporzionale a \mathbf{w} . Dimostrazione: Ogni vettore $\mathbf{v} \in \mathbb{V}(\mathbb{K})$ si può scrivere come:

$$\mathbf{v} = \left(\mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}\right) + \left(\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}\right)$$

Un calcolo diretto dimostra che $\mathbf{w}_1 = \mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}$ è ortogonale \mathbf{w} mentre, ovviamente, $\mathbf{w}_2 = \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}$ è proporzionale a \mathbf{w} , secondo lo scalare $\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}$

1.5 Coefficiente di Fourier

Sia $\mathbb{V}(\mathbb{K})$ uno spazio vettoriale con prodotto scalare "·" e sia \mathbf{w} un vettore di \mathbb{V} tale che $\mathbf{w} \cdot \mathbf{w} \neq 0$. Se \mathbf{v} è un vettore di $\mathbb{V}(\mathbb{K})$, si dice **coefficiente** o **componente di Fourier** di \mathbf{v} lungo \mathbf{w} il numero reale

$$\mathbf{v}_w = rac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}$$

e si dice **proiezione** di \mathbf{v} su \mathbf{w} il vettore $\overrightarrow{\mathbf{v}} = \mathbf{v}_w \mathbf{w}$.

1.6 Forme Quadratiche

Sia $\mathbb{V}(\mathbb{K})$ uno spazio vettoriale con prodotto scalare ".". Si dice **forma quadratica**, associata al prodotto scalare ".", l'applicazione

$$q: \mathbb{V}(\mathbb{K}) \to \mathbb{K}$$

$$\mathbf{v} o \mathbf{v} \cdot \mathbf{v}$$

1.7 Spazi con prodotto scalare definito positivo

Un prodotto scalare, assegnato in uno spazio vettoriale $\mathbb{V}(\mathbb{K})$ su un campo ordinato, si dice **definito positivo** se $\forall \mathbf{v} \in \mathbb{V}, \mathbf{v} \cdot \mathbf{v} \geq 0$ e $\mathbf{v} \cdot \mathbf{v} = 0 \iff \mathbf{v} = 0$

Una forma quadratica si dice definita positiva se tale è il prodotto scalare cui essa è associata.

1.8 Norma

Dato un vettore $\mathbf{v} \in \mathbb{V}^{\circ}(\mathbb{R})$ si dice **norma** di \mathbf{v} il numero reale positivo o nullo

$$||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{\mathbf{v}^2} = \sqrt{q(\mathbf{v})}$$

1.9 Versore

Sia $\mathbf{v} \neq 0$ un vettore di $\mathbb{V}^{\circ}(\mathbb{R})$, si dice **versore** di \mathbf{v} il vettore

$$\mathbf{v}' = \frac{\mathbf{v}}{||\mathbf{v}||}$$

1.10 Disuguaglianza di Cauchy-Schwarz

Siano \mathbf{v} e \mathbf{u} due vettori di $\mathbb{V}^{\circ}(\mathbb{R})$. Allora

$$|\mathbf{v} \cdot \mathbf{u}| \le ||\mathbf{v}|| \cdot ||\mathbf{u}||$$

ove $|v \cdot u|$ indica il valore assoluto di $\mathbf{v} \cdot \mathbf{u}$.

1.10.1 Dimostrazione

Siano non nulli i vettori ${\bf v}$ e ${\bf w}$. Diversamente la tesi è immediata. Per ongi numero reale α si ha

$$0 \le (\alpha \mathbf{u} + \mathbf{v})^2 = (\mathbf{u} \cdot \mathbf{u})\alpha^2 + 2(\mathbf{u} \cdot \mathbf{v})\alpha + (\mathbf{v} \cdot \mathbf{v})$$

e quindi, al variare di $\alpha \in \mathbb{R}$, il trinomio

$$||\mathbf{u}||^2 \alpha^2 + 2(\mathbf{u} \cdot \mathbf{v})\alpha + ||\mathbf{v}||^2$$

è maggiore o al più uguale a zero. Il suo discriminante non può, pertanto, essere positivo perchè se lo fosse, al variare di α , il trinomio cambierebbe segno. Risulta

$$\frac{\Delta}{4} = |\mathbf{u} \cdot \mathbf{v}|^2 - ||\mathbf{u}||^2 ||\mathbf{v}||^2 \le 0$$

1.11 Disuguaglianza triangolare

Siano \mathbf{v} e \mathbf{u} due vettori di $\mathbb{V}^{\circ}(\mathbb{R})$. Allora

$$||\mathbf{v} + \mathbf{u}|| \le ||\mathbf{v}|| + ||\mathbf{u}||$$

1.11.1 Dimostrazione

Sono immediati i seguenti calcoli:

$$||\mathbf{v} + \mathbf{u}||^2 = ||\mathbf{u}||^2 + \mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{u} + ||\mathbf{v}||^2 \le ||\mathbf{u}||^2 + 2|\mathbf{u} \cdot \mathbf{v}| + ||\mathbf{v}||^2$$

Applicando la disuguaglianza di Cauchy-Schwarz si ottiene la tesi:

$$||\mathbf{v} + \mathbf{u}||^2 \le ||\mathbf{u}||^2 + 2||\mathbf{u}||||\mathbf{v}|| + ||\mathbf{v}^2|| = (||\mathbf{u}|| + ||\mathbf{v}||)^2$$

1.12 Osservazione

- : I vettori della base canonica $B = (e_1, e_2, \dots, e_n)$, dello spazio euclideo reale \mathbb{R}^n , godono delle seguenti proprietà:
 - 1. hanno norma unitaria, cioè, $||e_i|| = 1$ per $i = 1, 2 \cdots n$;
 - 2. sono tra loro ortogonali, cioè, $e_i \cdot e_j = 0$ per $i \neq j$ ove $i, j \in I_n$
 - 3. la *i*-esima componente, di un qualunque vettore (x_1, x_2, \ldots, x_n) di \mathbb{R}^n , si ottiene moltiplicando scalarmente quel vettore per e_i .

Diremo che i vettori v_1, v_2, \ldots, v_r , di uno spazio vettoriale $\mathbb{V}^{\circ}(\mathbb{V})$, tutti diversi dal vettore nullo, costituiscono un **sistema ortogonale** se $\mathbf{v}_i \cdot \mathbf{v}_j = 0$, per $i \neq j$ e $i, j \in I_r$. Se, inoltre, hanno norma unitario, essi costituiscono un **sistema ortonormale**. Una base, che sia anche un sistema ortogonale. Una base, che sia anche un sistema ortogonale, si dice **base ortonormale**. Ovviamente il vettore nullo è ortogonale a tutti i vettori di \mathbb{V} . Da un sistema (o da una base) ortogonale di \mathbb{V} si può sempre ricavare una base ortonormale di \mathbb{V} , dividendo ciascun vettore del sistema per la sua norma.

I vettori della base canonica, di uno spazio euclideo reale, costituiscono una base ortonormale, ma possiamo dimostrare che, in ogni spazio vettoriale f.g. con prodotto scalare definito positivo, è possibile costruire una base ortonormale che possiede le stesse proprietà che la base canonica ha negli spazi euclidei.

1.12.1 Lemma

In uno spazio vettoriale $V^{\circ}(\mathbb{R})$, se i vettori non nulli $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$, costituiscono un sistema ortogonale, allora sono linearmente indipendenti.

Partendo da una qualsiasi base di $V^{\circ}(\mathbb{R})$, possiamo ora costrure una base ortogonale seguendo il procedimento detto **processo di ortogonalizzazione di Gram-Schmidt**.

1.12.2 Teorema

Fissata una base $B = (e_1, e_2, \dots, e_n)$ di $\mathbb{V}^{\circ}(\mathbb{R})$, la sequenza $B' = (e'_1, e'_2, \dots, e'_n)$ così costruita

E' evidente che, volendo determinare una base ortonormale di uno spazio vettoriale con prodotto scalare definito positivo, basta normalizzare la base ottenuta applicando il processo di ortogonalizzazione di Gram-Schmidt a una base qualunque dello spazio.