5.3 TEOMETPIKH (POOLO)

Ορισμός γεωμετρικής προόδου

Μια ακολουθία λέγεται **γεωμετρική πρόοδος,** αν κάθε όρος της προκύπτει από τον προηγούμενο με πολλαπλασιασμό επί τον ίδιο πάντοτε μη μηδενικό αριθμό.

🖹 Γαραδείγματα:

1. Στην ακολουθία 3, 6, 12, 24,... κάθε όρος της προκύπτει από τον προηγούμενό του με πολλαπλασιασμό επί 2. Δηλαδή για την ακολουθία αυτή ισχύει:

$$\alpha_{\nu+1} = \alpha_{\nu} \cdot 2 \quad \acute{\eta} \quad \frac{\alpha_{\nu+1}}{\alpha_{\nu}} = 2$$

Η ακολουθία (α_{ν}) λέγεται **γεωμετρική πρόοδος με λόγο 2.**

2 Στην ακολουθία 27, -9, 3, -1,... κάθε όρος της προκύπτει από τον προηγούμενό του με πολλαπλασιασμό επί $-\frac{1}{3}$. Δηλαδή για την ακολουθία αυτή ισχύει:

$$\alpha_{\nu+1} = \alpha_{\nu} \cdot \left(-\frac{1}{3}\right) \quad \acute{\eta} \quad \frac{\alpha_{\nu+1}}{\alpha_{\nu}} = -\frac{1}{3}$$

Η ακολουθία (α_{ν}) λέγεται **γεωμετρική πρόοδος με λόγο** $-\frac{1}{3}$.

Σύμφωνα με τον ορισμό, τον μη μηδενικό αυτόν αριθμό τον συμβολίζουμε με λ και τον λέμε λόγο της προόδου

Έτσι, για μια γεωμετρική πρόοδο (α_v) υποθέτουμε πάντα ότι $\alpha_1 \neq 0$, οπότε, αφού είναι και $\lambda \neq 0$, ισχύει $\alpha_v \neq 0$ για κάθε $v \in \mathbb{N}^*$.

Επομένως, για μία γεωμετρική πρόοδο (α_{ν}) με λόγο λ , ισχύει:

$$\alpha_{\nu+1} = \alpha_{\nu} \cdot \lambda$$
 $\acute{\eta}$ $\frac{\alpha_{\nu+1}}{\alpha_{\nu}} = \lambda$

- ► Για τους όρους μιας αριθμητικής προόδου ισχύουν τα εξής:
 - Av $0<\lambda<1$ και $\left\{ egin{array}{ll} \gamma \mbox{l} lpha & lpha_1>0, \end{array}
 ight.$ τότε οι όροι της $\mbox{$\mu$} \mbox{$\kappa$} \mbox{$\rho$} \mbox{$\alpha$} \mbox{$\alpha$} \mbox{$\lambda$} <1$ και $\left\{ egin{array}{ll} \gamma \mbox{α} & lpha_1<0, \end{array}
 ight.$ τότε οι όροι της $\mbox{$\mu$} \mbox{$\kappa$} \mbox{$\rho$} \mbox{$\alpha$} \mbox{$\lambda$} \mbox{$\lambda$} \mbox{$\lambda$} \mbox{$\lambda$} \end{array} \right.$
 - An $\lambda>1$ kai $\left\{ egin{array}{ll} \gamma & (lpha_1>0), & \mbox{tóte oi ópoi ths} & \mu \mbox{eyalówovv} \\ \gamma & (lpha_1<0), & \mbox{tóte oi ópoi ths} & \mu \mbox{kraívovv} \end{array}
 ight.$
 - Αν $\lambda > 1$, τότε όλοι οι όροι της είναι ίσοι
 - Αν $\lambda < 0$, τότε οι όροι της προόδου εναλλάσσουν πρόσημο και δεν μπορούμε να συμπεράνουμε αν μεγαλώνουν οι μικραίνουν

Γενικός (ν-οστός) όρος γεωμετρικής προόδου

Ο ν-οστός μιας γεωμετρικής προόδου με πρώτο όρο α_1 και λόγο λ είναι:

$$\alpha_{\nu} = \alpha_1 \cdot \lambda^{\nu - 1}$$

Απόδειξη:

Από τον ορισμό της γεωμετρικής προόδου έχουμε

$$\alpha_{1} = \alpha_{1}$$

$$\alpha_{2} = \alpha_{1}\lambda$$

$$\alpha_{3} = \alpha_{2}\lambda$$

$$\alpha_{4} = \alpha_{3}\lambda$$

$$\vdots$$

$$\alpha_{v-1} = \alpha_{v-2} \cdot \lambda$$

$$\alpha_{v} = \alpha_{v-1} \cdot \lambda$$

Προσθέτοντας κατά μέλη τις παραπάνω σχέσεις προκύπτει ότι:

$$\alpha_1 \cdot \alpha_2 \cdot \alpha_3 \cdot \dots \cdot \alpha_{\nu-1} \cdot \alpha_{\nu} = \alpha_1 \cdot \alpha_1 \cdot \alpha_2 \cdot \alpha_3 \cdot \dots \cdot \alpha_{\nu-2} \cdot \alpha_{\nu-1} \cdot \lambda^{\nu-1} \iff \alpha_{\nu} = \alpha_1 \cdot \lambda^{\nu-1}$$

Διαδοχικοί όροι γεωμετρικής προόδου

Τρεις μη μηδενικοί αριθμοί α , β , γ είναι διαδοχικοί όροι γεωμετρικής προόδου, αν και μόνο αν ισχύει ότι:

$$\beta^2 = \alpha \gamma$$

Απόδειξη:

Θεωρούμε τρεις διαδοχικούς όρους α , β , γ μιας γεωμετρικής προόδου με λόγο λ . Ισχύει ότι:

$$\frac{\beta}{\alpha} = \lambda$$
 και $\frac{\gamma}{\beta} = \lambda$

Από τις προηγούμενες σχέσεις προκύπτει ότι:

$$\beta^2 = \alpha \gamma \iff \frac{\beta}{\alpha} = \frac{\gamma}{\beta}$$

Η τελευταία σχέση σημαίνει ότι οι αριθμοί α , β , γ είναι διαδοχικοί όροι γεωμετρικής προόδου.

Γεωμετρικός μέσος

Ο θετικός αριθμός $\beta = \sqrt{\alpha \gamma}$ λέγεται **γεωμετρικός μέσος** των αριθμών α και γ .

- Δύο ετερόσημοι αριθμοί δεν έχουν γεωμετρικό μέσο.
- Δύο ίσοι αριθμοί έχουν γεωμετρικό μέσο την απόλυτη τιμή τους.
- Αν οι αριθμοί α , β , γ είναι διαδοχικοί όροι γεωμετρικής προόδου, τότε ο β δεν είναι υποχρεωτικά ο γεωμετρικός μέσος των α και γ , αφού ενδέχεται ο β να είναι αρνητικός αριθμός.