Multivariable Feedback Control Homework 03 - due Wednesday May 22nd, 2024.

The goal of this homework is to start exploring *MIMO systems*.

Problem 1 The goal of this first problem is to interpret the steady state behavior of the closed loop controlled SISO system shown in Fig. 1 through the Singular Value Decomposition (interpretation of the singular input and output directions). For the simple plant G(s) you will solve 2 different control problems.

$$G(s) = \frac{1}{s+10}$$

- **Spec1** Find $C_1(s)$ so that the output y tracks asymptotically any constant reference r. Let (r, d_1, d_2) be the inputs and (e_y, m) the outputs (setting all the other inputs to 0) of the 2×3 equivalent MIMO system transfer function $W_1(s)$. Interpret the SVD decomposition of the corresponding dc-gain $W_1(0)$.
- Spec2 Find $C_2(s)$ which guarantees that the output y will track asymptotically the sinusoidal reference $r(t) = \sin 10t$. Let (r, n) be the inputs and (y, m) the outputs (setting all the other inputs to 0) of the equivalent 2×2 equivalent MIMO system transfer function $W_2(s)$. Interpret the SVD decomposition of the corresponding gain matrix $W_2(j10)$ (you may find useful the command frd and frdata).

Figure 1: Control system

Problem 2 Find/create a 2 inputs – 2 outputs (possibly physical) system where it is evident the necessity (advantage) or usefulness of scaling variables in a control problem.

Problem 3 Consider the three-mass system shown in Fig. 2 and described in terms of the relative displacements $z_i = \delta_i - \delta_i(0)$, i = 1, ..., 3 by the following set of linear differential equations (see the figure for the definition of the variables δ_i , i = 1, ..., 3)

$$\begin{split} m_1 \ddot{z}_1 &= -k_0 z_1 - k_1 \left(z_1 - z_2 \right) - \mu_1 (\dot{z}_1 - \dot{z}_2) - d_1 \dot{z}_1 + f_1 \\ m_2 \ddot{z}_2 &= k_1 \left(z_1 - z_2 \right) - k_2 \left(z_2 - z_3 \right) + \mu_1 (\dot{z}_1 - \dot{z}_2) - \mu_2 (\dot{z}_2 - \dot{z}_3) - d_2 \dot{z}_2 \\ m_3 \ddot{z}_3 &= k_2 \left(z_2 - z_3 \right) + \mu_2 (\dot{z}_2 - \dot{z}_3) - d_3 \dot{z}_3 + f_3 \end{split}$$

with parameters m_i (mass), k_i (elastic coefficient), μ_i (damper coefficient between masses), d_i (friction with the terrain coefficient), f_1 a control force on the mass m_1 and f_3 a second control force on the mass m_3 . Note the presence of a spring from m_1 to the wall with elastic coefficient k_0

Figure 2: The three-mass system.

Main objectives:

- 1. Choose a nominal control problem with its performance weights, add measurement noise and a disturbance of your choice on one of the masses and finally build the augmented plant. Find a controller which guarantees this nominal performance.
- 2. Introduce uncertainties and show the difference between unstructured and structured uncertainty. Verify if the previous controller is also robustly stabilizing. If necessary find a controller using the SSV or see how much more uncertainty you can deal with using the SSV.

Possible values for a standard case (you can explore other situations where there is more or less friction and/or more or less rigid springs and or more differences in the masses):

```
\begin{split} m_1 &= 1 \text{ kg}, \ m_2 = 1.5 \text{ kg}, \ m_3 = 0.5 \text{ kg} \\ k_0 &= 5 \text{ N/m}, \ k_1 = 10 \text{ N/m}, \ k_2 = 100 \text{ N/m} \\ \mu_1 &= 5 \text{ N.s/m}, \ \mu_2 = 15 \text{ N.s/m} \\ d_1 &= 0.1 \text{ N.s/m}, \ d_2 = 0.2 \text{ N.s/m}, \ d_3 = 0.1 \text{ N.s/m}. \end{split}
```