Anotações Representação de inteiros com sinal Yuri Kaszubowski Lopes Éverlin Fighera Costa Marques UDESC Inteiros com sinal Anotações • Como podemos representar o sinal de um inteiro? • Podemos utilizar um dos bits para representar o sinal Convenção: 0 para positivo, 1 para negativo Problemas? Qual o bit usaremos? O primeiro? O último? ALU (Arithmetic Logic Unit) se torna muito mais complexa Temos +0 e -0 Complemento de 1 Anotações Exemplo em decimal Considere que o maior valor que podemos representar possui 3 casas * Ou seja, 999

* Podemos escrever como 167 + o complemento de 52 (mais o carry) O complemento de 52 nesse caso é 999-52 = 947

► Fazer a conta 167 - 52

- Podemos pensar que andamos 52 para trás em uma régua, que tem 999
 - unidades
 - ► Sendo assim, 167 52 = 167 + 947 + carry

_			
Cami	പരമ	anta	1
Com	olelli	ento	ue i

• 167 - 52 = 167 + 947 + carry

$$\frac{167}{+947} \\ \hline 114 + 1 \text{ (do carry)} = 115$$

Y	(L	e	EF	CN	A (UI	DE

Complemento de 1

- Na base 10 isso se chama complemento de 9
- Em binário, temos o complemento de 1
- $\bullet\,$ De forma geral, dado um número N numa base β com d dígitos, o seu complemento é definido como:

$$(\beta^d-1)-N$$

- ullet O complemento de um número positivo, N, representa o número -N.
 - ▶ i.e., geralmente falamos de complemento em termos de fazer o complemento de um número positivo, *N*► ... para representar um número negativo, −*N*

Anotações

Anotações

Complemento de 1

• calcular o complemento de 0101₂

$$(\beta^d - 1) - N$$

 $(2^4 - 1) - 0101_2$
 $1111_2 - 0101_2$
 1010_2

- Truque para números binários: Negue (inverta) cada um dos bits
 - ▶ 0111₂ = 1000₂
 ▶ 0001₂ = 1110₂

Anotações

Complemento de 1 Anotações • Não se utiliza complementos para representar valores positivos! Aplica-se o complemento em um número positivo, N, para obter o "relacionado" negativo, -N • Ao utilizar o complemento, o bit mais significativo é 0 caso o valor seja positivo 1 caso negativo Complemento de 1 Anotações • Transformar os valores para binário e realizar a conta utilizando 8 bits: $23_{10} - 9_{10} \\$ 000101112 (2310) + 1111 0110₂ 0000 1101 (-9_{10}) 1 Bit de carry 0000 1110 (14_{10}) Como o resultado começa em zero, sabemos que é positivo. Podemos converter diretamente para decimal

A

Complemento de 1

$$\begin{array}{c|c} 0000\,1001_2 & (9_{10}) \\ +\,1110\,1000_2 & (-23_{10}) \\ \hline \hline 11111 & 0001 & Sem \ carry \\ \hline 11111 & 0001 & (-14_{10}) \end{array}$$

- O resultado começa em 1, então é negativo.
- Antes de converter para decimal, devemos calcular seu complemento novamente
 - ightharpoonup 11110001₂ = (-)00001110₂ = (-)14₁₀
- Podemos então substituir uma subtração por uma adição do complemento
- Quais problemas resolvemos com o complemento de 1? Qual problema persiste?

Complemento de 1 • Quais problemas resolvemos com o complemento de 1? • O bit de sinal é definido como o bit mais significativo • A ALU é mais simples (precisamos apenas de somadores) • Qual problema persiste? • Temos duas representações para o zero	Anotações
YKL e EFCM (UDESC) Representação de inteiros com sinal 10/19	
Complemento de 2	Anotações
 Variação do complemento de 1 que possui apenas uma representação para o zero De forma geral, dado um número N numa base β com d, seu 	
complemento 2 é	
(β^d-N) para $N\neq 0$ e 0 para $N=0$ • Em binário , é o equivalente ao complemento de 1 somado a 1 ₂	
 Truque para calcular complemento 2 de um valor em binário: Negue (inverta) cada um dos bits e some 1₂ 	
 Devido a soma de um após a inversão, o último bit de carry do cálculo deve ser descartado 	
YKL e EFCM (UDESC) Representação de inteiros com sinal 11/19	
Complemento de 2 • Transformar os valores para binário e realizar a conta utilizando 8 bits:	Anotações
23 ₁₀ – 9 ₁₀	
$00010111_{2} (23_{10}) \\ +11110111_{2} (-9_{10}) \\ \hline 0000 1110 (14_{10})$	

Complemento de 2

• Transformar os valores para binário e realizar a conta utilizando 8 bits: $9_{10}-23_{10} \\$

```
0000\,1001_2 \quad \, (9_{10})
\frac{+11101001_2(-23_{10})}{11110010(-14_{10})}
```

- Como o resultado começa em um, sabemos que é negativo.
- Para converter para decimal, subtrair 1 (para transformar em complemento 1) e inverter os bits.

Anotações

Overflows no complemento de 2

- A soma de valores com sinais diferentes não gera overflows
 - A magnitude do resultado nunca será maior que ambos os operandos
- Detecta-se um overflow quando a soma de dois valores de mesmo sinal resulta em um sinal diferente
 - A soma de dois positivos gera um negativoPor que isso acontece?
 - - * O bit de sinal foi utilizado pelo carry

Anola	çues			

Anotações

Exemplo Overflow

```
#include < stdio . h>
#include < stdlib . h>
int main(){
    short a = 21000; //assumindo que um short ocupa 2 bytes
    short b = 25000;
    short resultadoShort;
    int resultadoInt;
    resultadoShort = a+b;
    resultadoInt = a+b;
    printf("a: %hd b: %hd Short: %hd Int: %d\n",
        a, b, resultadoShort, resultadoInt);
    return 0;
```

 Exercícios Utilizando complemento 2, transforme os valores para binário (todos estão na base 10), realize as operações, e transforme o resultado para decimal novamente. Sinalize overflows. Considere números de 8 bits. 	Anotações
 37 + 46 100 - 99 99 - 100 127 + 1 -127 - 1 	
 128 - 1 Gangnam Style foi o primeiro vídeo do Youtube a gerar um overflow no contador de visualizações. A equipe do Youtube utilizava inteiros com 	
sinal de 32 bits (que utiliza internamente complemento de 2) para representar o número de visualizações. Quando o valor chegou ao limite, o contador foi para -2.147.483.648.	
Por que esse foi o valor exibido, e não 00000000 como nós humanos esperaríamos de um contador que completou um ciclo? O problema foi rapidamente solucionado pelo Youtube. Muitas fontes (nada	
confláveis) na internet afirmam que o vídeo forçou o Youtube a utilizar inteiros de 64 bits para armazenar os contadores. Você consegue pensar em uma solução mais simples para esse problema, sem precisar utilizar	
mais bits? YKL e EFCM (UDESC) Representação de inteiros com sinal 16/19	
	Anotações
Considerando que vamos utilizar n bits para armazenar um valor qualquer. Qual o menor valor possível que pode ser armazenado (negativo)? Qual o maior possível que pode ser armazenado (positivo)?	
YKL e EFCM (UDESC) Representação de inteiros com sinal 17/19	
Referências	Anotações
 TOCCI, R.J.; WIDMER,N.S. Sistemas digitais: princípios e aplicações. 11a ed, Prentice-Hall, 2011. RUGGIERO, M.; LOPES, V. da R. Cálculo numérico: aspectos 	
teóricos e computacionais. Makron Books do Brasil, 1996. NULL, L.; LOBUR, J. Princípios Básicos de Arquitetura e	
Organização de Computadores. 2014. Bookman, 2009. ISBN 9788577807666.	

Representação de inteiros com sinal

18/19