Analyse I Résumé: Calcul intégral.

Définitions et résultats.

1. L'intégrale d'une fonction continue $f:[a,b] \to \mathbb{R}$ sur un intervalle fermé borné $[a,b]^1$ est l'infimum des sommes de Darboux supérieures, ou également le suprémum des sommes de Darboux inférieures par rapport à toutes les subdivisions de l'intervalle [a,b]:

$$\int_{a}^{b} f(x) dx := \overline{S}(f) = \underline{S}(f)$$

2. Si $f:[a,b]\to\mathbb{R}$ est continue, alors on pose

$$\int_{b}^{a} f(x) dx := -\int_{a}^{b} f(x) dx; \qquad \int_{a}^{a} f(x) dx := 0.$$

3. Soit $f:[a,b]\to\mathbb{R}$ une fonction continue et $c\in]a,b[$. Alors on a

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$

4. Soit $f:[a,b]\to\mathbb{R}$ une fonction continue et $m=\min_{[a,b]}f(x),\ M=\max_{[a,b]}f(x)$. Alors

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a).$$

5. (Théorème de la moyenne). Soit a < b, et $f: [a,b] \to \mathbb{R}$ une fonction continue. Alors il existe un point $c \in [a,b]$ tel que

$$\int_a^b f(x) \, dx = f(c)(b-a).$$

- 6. Une primitive F(x) d'une fonction continue f(x) sur un intervalle fermé borné [a,b] est une fonction continue sur [a,b] telle que F'(x)=f(x) pour tout $x\in]a,b[$. Si $F_1(x)$ et $F_2(x)$ sont deux primitives de f(x) sur [a,b], alors $F_1(x)=F_2(x)+C$ pour tout $x\in [a,b]$, où $C\in \mathbb{R}$.
- 7. Soit $f:[a,b]\to\mathbb{R}$ une fonction continue. Alors la fonction

$$F(x) = \int_{a}^{x} f(t) dt$$

est une primitive de f(x) sur [a, b].

¹Dans ce résumé on suppose toujours que l'intervalle [a,b] contient plus qu'un point: a < b.

8. (Théorème fondamental du calcul intégral).

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue. Si G(x) est une primitive de f(x) sur [a,b], alors

$$\int_a^b f(x) \, dx = G(b) - G(a).$$

9. (Intégrale fonction de ses bornes).

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue, $g,h:I\to[a,b]$ des fonctions dérivables sur un intervalle ouvert I. Alors

$$\frac{d}{dx}\left(\int_{h(x)}^{g(x)} f(t) dt\right) = f(g(x))g'(x) - f(h(x))h'(x).$$

10. (Propriétés d'intégrale). Soient $f,g:[a,b]\to\mathbb{R}$ deux fonctions continues.

(a)
$$\int_a^b (\alpha f(x) + \beta g(x)) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx$$
 pour tout $\alpha, \beta \in \mathbb{R}$.

(b) Si
$$f(x) \ge 0$$
 sur $[a, b]$, et $c \in]a, b[$, alors $0 \le \int_a^c f(x) dx \le \int_a^b f(x) dx$.

(c) Si
$$f(x) \leq g(x)$$
 sur $[a, b]$, alors $\int_a^b f(x) dx \leq \int_a^b g(x) dx$.

Technique d'intégration.

1. (Changement de variable).

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue, et $\phi:[\alpha,\beta]\to\mathbb{R}$ une fonction continûment dérivable et telle que $\phi([\alpha,\beta])\subset[a,b]$. Alors

$$\int_{\phi(\alpha)}^{\phi(\beta)} f(x) dx = \int_{\alpha}^{\beta} f(\phi(t))\phi'(t) dt, \quad x = \phi(t).$$

2. (Intégration par parties).

Soient $f,g:I\to\mathbb{R}$ deux fonctions continûment dérivables sur un intervalle ouvert I, et $[a,b]\subset I.$ Alors

$$\int_{a}^{b} f(x)g'(x) dx = f(x)g(x)|_{a}^{b} - \int_{a}^{b} g(x)f'(x) dx.$$

3. Primitives de quelques fonctions.

4. Intégration de quelques fonction rationnelles (Essayez de comprendre la méthode plutôt que mémoriser). Soient $a, b, c, d, p, q \in \mathbb{R}$.

(a)
$$\int \frac{1}{ax+b} dx = \frac{1}{a} \log|ax+b| + C$$
, si $a \neq 0$.

(b)
$$\int \frac{1}{(ax+b)^2} dx = -\frac{1}{a} \frac{1}{ax+b} + C$$
, si $a \neq 0$.

(c)
$$\int \frac{cx - d}{(x - a)(x - b)} dx = \frac{ac - d}{a - b} \log|x - a| + \frac{d - bc}{a - b} \log|x - b| + C, \text{ si } a \neq b, c \neq 0.$$

(d)
$$\int \frac{1}{x^2 + px + q} dx = \frac{1}{\sqrt{q - p^2/4}} \operatorname{Arctg}\left(\frac{x + p/2}{\sqrt{q - p^2/4}}\right) + C$$
, si $p^2 - 4q < 0$.

(e)
$$\int \frac{x}{x^2 + c^2} dx = \frac{1}{2} \log|x^2 + c^2| + C.$$

Intégrales généralisées.

3

1. Soit $f:[a,b]\to\mathbb{R}$ une fonction continue. On définit l'intégrale généralisée

$$\int_{a}^{b^{-}} f(t) dt = \lim_{x \to b^{-}} \int_{a}^{x} f(t) dt,$$

si la limite existe.

2. Soit $f:[a,b] \to \mathbb{R}$ une fonction continue. On définit l'intégrale généralisée

$$\int_{a^{+}}^{b} f(t) dt = \lim_{x \to a^{+}} \int_{x}^{b} f(t) dt,$$

si la limite existe.

3. (Critère de comparaison).

Si $f,g:[a,b[\to \mathbb{R} \text{ sont deux fonctions continues telles que il existe } c\in]a,b[$ tel que $0\leq f(x)\leq g(x)$ pour tout $x\in [c,b[$. Alors

- si
$$\int_{a}^{b^{-}} g(t) dt$$
 converge, alors $\int_{a}^{b^{-}} f(t) dt$ converge;

– si
$$\int_a^{b^-} f(t) dt$$
 diverge, alors $\int_a^{b^-} g(t) dt$ diverge.

4.

$$\int_{a}^{b^{-}} \frac{1}{(b-t)^{\alpha}} dt = \begin{bmatrix} \frac{1}{1-\alpha} (b-a)^{1-\alpha}, & \alpha < 1 \\ \text{diverge}, & \alpha \ge 1 \end{bmatrix}$$

5.

$$\int_{0^{+}}^{1} \frac{1}{t^{\alpha}} dt = \begin{bmatrix} \frac{1}{1-\alpha}, & \alpha < 1\\ \text{diverge}, & \alpha \ge 1 \end{bmatrix}$$

- 6. Soit $f:[a,b[\to\mathbb{R}$ une fonction continue. Supposons qu'il existe $\alpha\in\mathbb{R}$ tel que $\lim_{x\to b^-}(b-x)^\alpha f(x)=l\neq 0.$ Alors l'intégrale généralisée $\int_a^{b^-}f(t)\,dt$ converge si $\alpha<1$ et diverge si $\alpha\geq 1$.
- 7. Soit $f:]a,b[\to \mathbb{R}$ une fonction continue. Alors on définit l'intégrale généralisée

$$\int_{a^{+}}^{b^{-}} f(t) dt := \int_{a^{+}}^{c} f(t) dt + \int_{c}^{b^{-}} f(t) dt,$$

si les deux intégrales généralisées convergent. La définition ne depend pas du choix de $c \in]a,b[$.

8. Soit $f:[a,\infty[\to\mathbb{R}$ une fonction continue. Alors on définit l'intégrale généralisée

$$\int_{a}^{\infty} f(t) dt := \lim_{x \to \infty} \int_{a}^{x} f(t) dt,$$

si la limite existe.

9. Soit $f:]-\infty, b] \to \mathbb{R}$ une fonction continue. Alors on définit l'intégrale généralisée

$$\int_{-\infty}^{b} f(t) dt := \lim_{x \to -\infty} \int_{x}^{b} f(t) dt,$$

si la limite existe.

10. Soit $f:]a, \infty[\to \mathbb{R}$ une fonction continue. Alors on définit l'intégrale généralisée

$$\int_{a^{+}}^{\infty} f(t) dt := \int_{a^{+}}^{c} f(t) dt + \int_{c}^{\infty} f(t) dt,$$

si les deux intégrales généralisées convergent. La définition ne depend pas du choix de $c \in]a, \infty[$.

11. Soit $f:]-\infty, b[\to \mathbb{R}$ une fonction continue. Alors on définit l'intégrale généralisée

$$\int_{-\infty}^{b^{-}} f(t) dt := \int_{-\infty}^{c} f(t) dt + \int_{c}^{b^{-}} f(t) dt,$$

si les deux intégrales généralisées convergent. La définition ne depend pas du choix de $c \in]-\infty, b[.$

12. Soit $f:]-\infty, \infty[\to \mathbb{R}$ une fonction continue. Alors on définit l'intégrale généralisée

$$\int_{-\infty}^{\infty} f(t) dt := \int_{-\infty}^{c} f(t) dt + \int_{c}^{\infty} f(t) dt,$$

si les deux intégrales généralisées convergent. La définition ne depend pas du choix de $c \in]-\infty,\infty[$.

13. (Critère de comparaison sur un intervalle non-borné).

Si $f, g : [a, \infty[\to \mathbb{R} \text{ sont deux fonctions continues telles que il existe } c \in]a, \infty[$ et $0 \le f(x) \le g(x)$ pour tout $x \ge c$. Alors

– si
$$\int_{a}^{\infty} g(t) dt$$
 converge, alors $\int_{a}^{\infty} f(t) dt$ converge;

- si
$$\int_{a}^{\infty} f(t) dt$$
 diverge, alors $\int_{a}^{\infty} g(t) dt$ diverge.

14.

$$\int_{1}^{\infty} \frac{1}{t^{\beta}} dt = \begin{bmatrix} \frac{1}{\beta - 1}, & \beta > 1 \\ \text{diverge}, & \beta \le 1 \end{bmatrix}$$

- 15. Soit $f:[a,\infty[\to\mathbb{R}$ une fonction continue. Supposons qu'il existe $\beta\in\mathbb{R}$ tel que $\lim_{x\to\infty}x^{\beta}f(x)=l\neq 0$. Alors l'intégrale généralisée $\int_a^\infty f(t)\,dt$ converge si $\beta>1$ et diverge si $\beta\leq 1$.
- 16. (Critère de convergence pour les séries numériques).

Soit $f: [1, \infty[\to \mathbb{R}$ une fonction continue, et supposons qu'il existe $a \ge 1$ tel que f(x) est positive et strictement décroissante pour tout $x \ge a$. Alors l'intégrale généralisée $\int_{1}^{\infty} f(t) dt$ et la série numérique $\sum_{n=1}^{\infty} f(n)$ convergent ou divergent en même temps.

5

En particulière, la série $\sum_{n=1}^{\infty}\frac{1}{n^p}$ converge si et seulement si p>1.