PolySAT A Word-level Solver for Large Bitvectors

Jakob Rath¹ Nikolaj Bjørner² Laura Kovács¹ Clemens Eisenhofer¹ Daniela Kaufmann¹

¹TU Wien

²Microsoft Research

Background: Satisfiability Modulo Theories (SMT)

Problem Statement:

Is φ satisfiable?

where φ is a formula in classical first-order logic with equality and certain theories (e.g., fragments of integer arithmetic).

Background: Satisfiability Modulo Theories (SMT)

Problem Statement:

Is φ satisfiable?

where φ is a formula in classical first-order logic with equality and certain theories (e.g., fragments of integer arithmetic).

Example

$$f(x+1) \neq f(x) \land 2x + 5y \leq 10 \land (x = y \lor f(x) = f(y))$$

SMT Solver: fully automated system to determine satisfiability

SMT Solver: fully automated system to determine satisfiability

$$f(x+1) \neq f(x) \land 2x + 5y \leq 10 \land (x = y \lor f(x) = f(y))$$

SMT Solver: fully automated system to determine satisfiability

$$f(x+1) \neq f(x) \land 2x + 5y \leq 10 \land (x = y \lor f(x) = f(y))$$

SMT Solver: fully automated system to determine satisfiability

$$f(x+1) \neq f(x) \land 2x + 5y \le 10 \land (x = y \lor f(x) = f(y))$$

SMT Solver: fully automated system to determine satisfiability

$$f(x+1) \neq f(x) \land 2x + 5y \leq 10 \land (x = y \lor f(x) = f(y))$$

SMT Solver: fully automated system to determine satisfiability

$$f(x+1) \neq f(x) \land 2x + 5y \leq 10 \land (x = y \lor f(x) = f(y))$$

SMT Solver: fully automated system to determine satisfiability

$$f(x+1) \neq f(x) \land 2x + 5y \leq 10 \land (x = y \lor f(x) = f(y))$$

Our focus: theory solver for bitvectors!

PolySAT: a Word-level Solver for Large Bitvectors

Bitvectors?

- 1. Sequence of bits, e.g., 01011
- 2. Fixed-width machine integers, e.g., uint32_t, int64_t
- 3. Modular arithmetic: $\mathbb{Z}/2^k\mathbb{Z}$

PolySAT: a Word-level Solver for Large Bitvectors

Bitvectors?

- 1. Sequence of bits, e.g., 01011
- 2. Fixed-width machine integers, e.g., uint32_t, int64_t
- 3. Modular arithmetic: $\mathbb{Z}/2^k\mathbb{Z}$

Examples:

- $2x^2y + z = 3$
- ► $x + 3 \le x + y$
- \triangleright z = x & y
- x[3:0] = 0

PolySAT: a Word-level Solver for Large Bitvectors

Bitvectors?

- 1. Sequence of bits, e.g., 01011
- 2. Fixed-width machine integers, e.g., uint32_t, int64_t
- 3. Modular arithmetic: $\mathbb{Z}/2^k\mathbb{Z}$

Examples:

- $2x^2y + z = 3$
- ► $x + 3 \le x + y$
- \triangleright z = x & y
- x[3:0] = 0

Natural target for many program verification tasks!

 $\mathbb{Z}/2^k\mathbb{Z}$ is a finite commutative ring, but not a field.

Ordering: representatives $\{0,1,\ldots,2^k-1\}$ (unsigned bitvectors)

 $\mathbb{Z}/2^k\mathbb{Z}$ is a finite commutative ring, but not a field.

Ordering: representatives $\{0, 1, \dots, 2^k - 1\}$ (unsigned bitvectors)

$$x, y \ge 0 \implies xy \ge x$$
 Overflow/wraparound: $3 \cdot 6 = 2 \mod 2^4$
 $x, y \ne 0 \implies xy \ne 0$ Zero divisors: $6 \cdot 8 = 0 \mod 2^4$
 $x \le y \implies x - y \le 0$ Usual inequality normalization fails

į

 $\mathbb{Z}/2^k\mathbb{Z}$ is a finite commutative ring, but not a field.

Ordering: representatives $\{0, 1, \dots, 2^k - 1\}$ (unsigned bitvectors)

$$x, y \ge 0 \implies xy \ge x$$
 Overflow/wraparound: $3 \cdot 6 = 2 \mod 2^4$
 $x, y \ne 0 \implies xy \ne 0$ Zero divisors: $6 \cdot 8 = 0 \mod 2^4$
 $x \le y \implies x - y \le 0$ Usual inequality normalization fails

Example

$$x + 3 \le x + y \mod 2^3$$

- ► For x = 0: $3 \le y$ $\iff y \in \{3, 4, 5, 6, 7\}$
- ► For x = 2: $5 \le 2 + y \iff y \in \{3, 4, 5\}$

 $\mathbb{Z}/2^k\mathbb{Z}$ is a finite commutative ring, but not a field.

Ordering: representatives $\{0, 1, \dots, 2^k - 1\}$ (unsigned bitvectors)

$$x, y \ge 0 \implies xy \ge x$$
 Overflow/wraparound: $3 \cdot 6 = 2 \mod 2^4$
 $x, y \ne 0 \implies xy \ne 0$ Zero divisors: $6 \cdot 8 = 0 \mod 2^4$
 $x \le y \implies x - y \le 0$ Usual inequality normalization fails

Example

$$x+3 \le x+y \mod 2^3$$

Solving Approaches

► Bit-blasting

Translate into boolean formula and use SAT solver

¹Yoni Zohar et al.: Bit-Precise Reasoning via Int-Blasting

²S. Graham-Lengrand, D. Jovanović, B. Dutertre: *Solving bitvectors with MCSAT: explanations from bits and pieces*

Solving Approaches

▶ Bit-blasting

Translate into boolean formula and use SAT solver

► Int-blasting¹

Translate into integer arithmetic

Bound constraints: $0 \le x < 2^k$ Modulo operations: $x \cdot y \mod 2^k$

¹Yoni Zohar et al.: Bit-Precise Reasoning via Int-Blasting

²S. Graham-Lengrand, D. Jovanović, B. Dutertre: *Solving bitvectors with MCSAT: explanations from bits and pieces*

Solving Approaches

► Bit-blasting

Translate into boolean formula and use SAT solver

► Int-blasting¹

Translate into integer arithmetic

Bound constraints: $0 \le x < 2^k$ Modulo operations: $x \cdot y \mod 2^k$

► MCSAT-based approaches²

Search for assignment to bitvector variables

→ PolySAT

¹Yoni Zohar et al.: Bit-Precise Reasoning via Int-Blasting

²S. Graham-Lengrand, D. Jovanović, B. Dutertre: *Solving bitvectors with MCSAT: explanations from bits and pieces*

PolySAT Overview

- ► Theory solver for bitvector arithmetic
 - ► Input: conjunction of bitvector constraints
 - Output: SAT or UNSAT
- ▶ Based on modular integer arithmetic $(\mathbb{Z}/2^k\mathbb{Z})$

PolySAT Overview

- ► Theory solver for bitvector arithmetic
 - ► Input: conjunction of bitvector constraints
 - Output: SAT or UNSAT
- ▶ Based on modular integer arithmetic $(\mathbb{Z}/2^k\mathbb{Z})$
- Search for a model of the input constraints
 - Incrementally assign bitvector variables
 - Keep track of viable values for variables
 - Add lemmas on demand

Bitvector Language

```
 \begin{array}{lll} \text{Arithmetic} & x+y,\,x\cdot y,\,\textit{div},\,\textit{mod},\,\ldots\\ & \text{Equations} & x=y\\ & \text{Inequalities} & x\leq y\,\,\text{with}\,\,x,y\in\{0,1,\ldots,2^k-1\}\\ & \text{Inequalities (signed)} & x\leq_s y\,\,\text{with}\,\,x,y\in\{-2^{k-1},\ldots,2^{k-1}-1\}\\ & \text{Bit-wise} & \textit{and, or, xor, not, }\ldots\\ & \text{Structural} & \textit{shift, concat, extract, }\ldots \end{array}
```

Inequalities	$p \le q$ (polynomials p, q)
Overflow	$\Omega^*(p,q)$
Bit-wise	r = p & q
Structural	$r = p \ll q$, $r = p \gg q$, $x = y[h:l]$
Clauses	Disjunction of constraint literals

Inequalities	$p \le q$ (polynomials p, q)	
Overflow	$\Omega^*(p,q)$	
Bit-wise	r = p & q	
Structural	$r = p \ll q$, $r = p \gg q$, $x = y[h:l]$	
Clauses	Disjunction of constraint literals	
D D I .:		

By Reduction:

Equations $p = q \iff p - q \le 0$

Inequalities	$p \leq q$	(polynomials p,q)
Overflow	$\Omega^*(p,q)$	
Bit-wise	r = p & q	
Structural	$r=p\ll q$, $r=$	$= p \gg q$, $x = y[h:l]$
Clauses	Disjunction of co	nstraint literals
By Reduction:		

Equations $p = q \iff p - q \le 0$ Inequalities (signed) $p \le_s q \iff p + 2^{k-1} \le q + 2^{k-1}$

Inequalities	$p \leq q$ (po	olynomials p,q)
Overflow	$\Omega^*(p,q)$	
Bit-wise	r = p & q	
Structural	$r=p\ll q$, $r=p\gg q$,	x = y[h:l]
Clauses	Disjunction of constraint I	iterals
By Reduction:		
Equations	$p = q \iff p - q \le 0$	
Inequalities (signed)	$p \leq_{s} q \iff p + 2^{k-1} \leq$	$q + 2^{k-1}$
Bit-wise negation	$\sim p = -p-1$	

Inequalities	$p \le q$ (polynomials p, q)
Overflow	$\Omega^*(p,q)$
Bit-wise	r = p & q
Structural	$r = p \ll q$, $r = p \gg q$, $x = y[h:l]$
Clauses	Disjunction of constraint literals
By Reduction:	
Equations	$p=q\iff p-q\leq 0$
Inequalities (signed)	$p \leq_{s} q \iff p + 2^{k-1} \leq q + 2^{k-1}$
Bit-wise negation	$\sim p = -p - 1$
Bit-wise or	$p\mid q=p+q-(p\ \&\ q)$

g

Inequalities	$p \leq q$	(polynomials p, q)
Overflow	$\Omega^*(p,q)$	
Bit-wise	r = p & q	
Structural	$r=p\ll q$,	$r = p \gg q$, $x = y[h:l]$
Clauses	Disjunction of	f constraint literals
By Reduction:		
Equations	$p = q \iff p$	
Inequalities (signed)	$p \leq_s q \iff$	$p+2^{k-1} \le q+2^{k-1}$
Bit-wise negation	$\sim p = -p - 1$	
Bit-wise or	$p \mid q = p + q$	-(p & q)
Quotient/remainder	$q \coloneqq \mathtt{bvudiv}(a)$	(a,b), r := bvurem(a,b)
	ightharpoonup a = bq + r	•
	$ ightharpoonup eg \Omega^*(b,q)$	
	$ ightharpoonup \neg \Omega^+(bq,r)$	$(\text{e.g., } bq \leq -r-1)$
	▶ $b \neq 0 \rightarrow r$	< <i>b</i>
	▶ $b = 0 \rightarrow q$	+1 = 0

PolySAT Solving Loop

Modified CDCL loop, similar to MCSAT³

- Assign boolean values to constraint literals $(p \le q \text{ vs. } p > q)$
- ▶ Assign integer values to bitvector variables $(x \mapsto 3)$

³L. de Moura, D. Jovanović: A Model-Constructing Satisfiability Calculus

PolySAT Solving Loop

Modified CDCL loop, similar to MCSAT³

- Assign boolean values to constraint literals $(p \le q \text{ vs. } p > q)$
- ▶ Assign integer values to bitvector variables $(x \mapsto 3)$

Main components:

- ► Trail Γ records assignments and reasons
- For each variable x, keep track of viable values V_x
- \triangleright Conflict \mathcal{C} : set of constraints that contradicts Γ
- lacktriangle Conflict analysis extracts lemmas from ${\cal C}$

C₁:
$$x^2y + 3y + 7 = 0 \mod 2^4$$

C₂: $2y + z + 8 = 0 \mod 2^4$
C₃: $3x + 4yz + 2z^2 + 1 = 0 \mod 2^4$

1.
$$\Gamma = C_1 C_2 C_3$$

C₁:
$$x^2y + 3y + 7 = 0 \mod 2^4$$

C₂: $2y + z + 8 = 0 \mod 2^4$
C₃: $3x + 4yz + 2z^2 + 1 = 0 \mod 2^4$

1.
$$\Gamma = C_1 C_2 C_3$$

$$2. \Gamma = C_1 C_2 C_3 (x \mapsto 0)^{\delta}$$

decide x

$$C_1$$
: $x^2y + 3y + 7 = 0 \mod 2^4$
 C_2 : $2y + z + 8 = 0 \mod 2^4$
 C_3 : $3x + 4yz + 2z^2 + 1 = 0 \mod 2^4$

1.
$$\Gamma = C_1 C_2 C_3$$

2.
$$\Gamma = C_1 C_2 C_3 (x \mapsto 0)^{\delta}$$
 decide $x \mapsto C_1|_{\Gamma} : 3y + 7 = 0 \Rightarrow y = 3$

C₁:
$$x^2y + 3y + 7 = 0 \mod 2^4$$

C₂: $2y + z + 8 = 0 \mod 2^4$
C₃: $3x + 4yz + 2z^2 + 1 = 0 \mod 2^4$

1.
$$\Gamma = C_1 C_2 C_3$$

2.
$$\Gamma = C_1 C_2 C_3 (x \mapsto 0)^{\delta}$$
 decide $x \mapsto C_1|_{\Gamma} : 3y + 7 = 0 \Rightarrow y = 3$

3.
$$\Gamma = C_1 C_2 C_3 (x \mapsto 0)^{\delta} (y \mapsto 3)^{C_1,x}$$
 propagate y

$$C_1$$
: $x^2y + 3y + 7 = 0 \mod 2^4$
 C_2 : $2y + z + 8 = 0 \mod 2^4$
 C_3 : $3x + 4yz + 2z^2 + 1 = 0 \mod 2^4$

1.
$$\Gamma = C_1 C_2 C_3$$

2.
$$\Gamma = C_1 C_2 C_3 (x \mapsto 0)^{\delta}$$
 decide $x \mapsto C_1|_{\Gamma} : 3y + 7 = 0 \Rightarrow y = 3$

3.
$$\Gamma = C_1 C_2 C_3 (x \mapsto 0)^{\delta} (y \mapsto 3)^{C_1,x}$$
 propagate $y \mapsto C_2|_{\Gamma} : z + 14 = 0 \Rightarrow z = 2$

C₁:
$$x^2y + 3y + 7 = 0 \mod 2^4$$

C₂: $2y + z + 8 = 0 \mod 2^4$
C₃: $3x + 4yz + 2z^2 + 1 = 0 \mod 2^4$

- 1. $\Gamma = C_1 C_2 C_3$
- 2. $\Gamma = C_1 C_2 C_3 (x \mapsto 0)^{\delta}$ decide $x \mapsto C_1|_{\Gamma} : 3y + 7 = 0 \Rightarrow y = 3$
- 3. $\Gamma = C_1 C_2 C_3 (x \mapsto 0)^{\delta} (y \mapsto 3)^{C_1,x}$ propagate $y \mapsto C_2|_{\Gamma} : z + 14 = 0 \Rightarrow z = 2$
- 4. $\Gamma = C_1 C_2 C_3 (x \mapsto 0)^{\delta} (y \mapsto 3)^{C_1,x} (z \mapsto 2)^{C_2,y}$ propagate z

C₁:
$$x^2y + 3y + 7 = 0 \mod 2^4$$

C₂: $2y + z + 8 = 0 \mod 2^4$
C₃: $3x + 4yz + 2z^2 + 1 = 0 \mod 2^4$

- 1. $\Gamma = C_1 C_2 C_3$
- 2. $\Gamma = C_1 C_2 C_3 (x \mapsto 0)^{\delta}$ decide $x \mapsto C_1|_{\Gamma} : 3y + 7 = 0 \Rightarrow y = 3$
- 3. $\Gamma = C_1 C_2 C_3 (x \mapsto 0)^{\delta} (y \mapsto 3)^{C_1,x}$ propagate $y \mapsto C_2|_{\Gamma} : z + 14 = 0 \Rightarrow z = 2$
- 4. $\Gamma = C_1 C_2 C_3 (x \mapsto 0)^{\delta} (y \mapsto 3)^{C_1,x} (z \mapsto 2)^{C_2,y}$ propagate $z \mapsto C_3|_{\Gamma} : 1 = 0$ Conflict: $C = \{C_3, x = 0, y = 3, z = 2\}$

Example: Polynomial Equations (conflict)

$$\Gamma = C_1 C_2 C_3 (x \mapsto 0)^{\delta} (y \mapsto 3)^{C_1, x} (z \mapsto 2)^{C_2, y}$$

$$C = \{C_3, x = 0, y = 3, z = 2\}$$

Follow dependencies of $\mathcal C$ according to Γ :

$$C' = \{C_3, x = 0, y = 3, C_2\}$$

Example: Polynomial Equations (conflict)

$$\Gamma = C_1 C_2 C_3 (x \mapsto 0)^{\delta} (y \mapsto 3)^{C_1, x} (z \mapsto 2)^{C_2, y}$$

$$C = \{C_3, x = 0, y = 3, z = 2\}$$

Follow dependencies of C according to Γ :

$$C' = \{C_3, x = 0, y = 3, C_2\}$$

$$C_3: \qquad 3x + 4yz + 2z^2 + 1 = 0$$

$$C_2: \qquad 2y + z + 8 = 0 \qquad |\cdot 2z|$$

$$C_3 - 2z \cdot C_2: \qquad 3x + 1 = 0$$

Example: Polynomial Equations (conflict)

$$\Gamma = C_1 C_2 C_3 (x \mapsto 0)^{\delta} (y \mapsto 3)^{C_1, x} (z \mapsto 2)^{C_2, y}$$

$$C = \{C_3, x = 0, y = 3, z = 2\}$$

Follow dependencies of C according to Γ :

$$C' = \{C_3, x = 0, y = 3, C_2\}$$

$$C_3: \qquad 3x + 4yz + 2z^2 + 1 = 0$$

$$C_2: \qquad 2y + z + 8 = 0 \qquad |\cdot 2z|$$

$$C_3 - 2z \cdot C_2: \qquad 3x + 1 = 0$$

Lemma:

$$C_3 \wedge C_2 \to 3x + 1 = 0$$

Constraints:

C₁:
$$x^2y + 3y + 7 = 0 \mod 2^4$$

C₂: $2y + z + 8 = 0 \mod 2^4$
C₃: $3x + 4yz + 2z^2 + 1 = 0 \mod 2^4$
C₄: $3x + 1 = 0 \mod 2^4$

Constraints:

C₁:
$$x^2y + 3y + 7 = 0 \mod 2^4$$

C₂: $2y + z + 8 = 0 \mod 2^4$
C₃: $3x + 4yz + 2z^2 + 1 = 0 \mod 2^4$
C₄: $3x + 1 = 0 \mod 2^4$

Continued:

5.
$$\Gamma = C_1 C_2 C_3 C_4^{C_2, C_3}$$

backjump, propagate lemma

Constraints:

C₁:
$$x^2y + 3y + 7 = 0 \mod 2^4$$

C₂: $2y + z + 8 = 0 \mod 2^4$
C₃: $3x + 4yz + 2z^2 + 1 = 0 \mod 2^4$
C₄: $3x + 1 = 0 \mod 2^4$

Continued:

5.
$$\Gamma = C_1 C_2 C_3 C_4^{C_2, C_3}$$
 backjump, propagate lemma
6. $\Gamma = C_1 C_2 C_3 C_4^{C_2, C_3} (x \mapsto 5)^{C_4}$ propagate x

Constraints:

C₁:
$$x^2y + 3y + 7 = 0 \mod 2^4$$

C₂: $2y + z + 8 = 0 \mod 2^4$
C₃: $3x + 4yz + 2z^2 + 1 = 0 \mod 2^4$
C₄: $3x + 1 = 0 \mod 2^4$

Continued:

5.
$$\Gamma = C_1 C_2 C_3 C_4^{C_2, C_3}$$
 backjump, propagate lemma
6. $\Gamma = C_1 C_2 C_3 C_4^{C_2, C_3} (x \mapsto 5)^{C_4}$ propagate $x \mapsto C_1|_{\Gamma} : 12y + 7 = 0$ Conflict due to parity!

Constraints:

C₁:
$$x^2y + 3y + 7 = 0 \mod 2^4$$

C₂: $2y + z + 8 = 0 \mod 2^4$
C₃: $3x + 4yz + 2z^2 + 1 = 0 \mod 2^4$
C₄: $3x + 1 = 0 \mod 2^4$

Continued:

5.
$$\Gamma=C_1C_2C_3C_4^{C_2,C_3}$$
 backjump, propagate lemma 6. $\Gamma=C_1C_2C_3C_4^{C_2,C_3}(x\mapsto 5)^{C_4}$ propagate $x\mapsto C_1|_{\Gamma}\colon 12y+7=0$ Conflict due to parity!

7. Unsatisfiable.

How to choose values?

For each variable x, keep track of viable values V_x :

- ightharpoonup choose a value from V_x for decisions
- ▶ propagate $x \mapsto v$ when $V_x = \{v\}$ is a singleton set
- ightharpoonup conflict if $V_x = \emptyset$

How to choose values?

For each variable x, keep track of viable values V_x :

- \triangleright choose a value from V_x for decisions
- ▶ propagate $x \mapsto v$ when $V_x = \{v\}$ is a singleton set
- ightharpoonup conflict if $V_x = \emptyset$

Currently:

- $ightharpoonup V_{
 m x}$ represented as set of intervals
- ▶ when x appears only linearly, extract a forbidden interval
- ▶ additionally, keep track of fixed bits of x (e.g., $2^4x = 2^45$)
- bit-blasting as fallback (only a single bitvector variable)

Intervals

We use half-open intervals:

- ▶ Usual notation $[\ell; u]$
- ▶ but wrap around if $\ell > u$

Intervals

We use half-open intervals:

- ▶ Usual notation $[\ell; u]$
- ▶ but wrap around if $\ell > u$

Examples mod 2⁴:

[2; 5[=
$$\{2,3,4\}$$

[13; 2[= $\{13,14,15,0,1\}$
[0; 0[= \emptyset

Note:

$$p \in [\ell; u] \iff p - \ell < u - \ell$$

Forbidden Intervals

p, q, r, s: polynomials, evaluable in current trail Γ

x: variable, unassigned in Γ

$$px + r \le qx + s$$

⁴S. Graham-Lengrand, D. Jovanović, B. Dutertre: *Solving bitvectors with MCSAT: explanations from bits and pieces*

Forbidden Intervals

p, q, r, s: polynomials, evaluable in current trail Γ

x: variable, unassigned in Γ

$$px + r \le qx + s$$

\widehat{p}	\widehat{q}	Interval	
0	1	$x \notin [-s; r-s[$	if $r \neq 0$
1	0	$x \notin [s-r+1;-r[$	if $s \neq -1$
1	1	$x \notin [-s; -r[$	if $r \neq s$
		Lemmas from intervals ⁴	

⁴S. Graham-Lengrand, D. Jovanović, B. Dutertre: *Solving bitvectors with MCSAT: explanations from bits and pieces*

Forbidden Intervals

p, q, r, s: polynomials, evaluable in current trail Γ

x: variable, unassigned in Γ

$$px + r \le qx + s$$

\widehat{p}	\widehat{q}	Interval	
0	1	$x \notin [-s; r-s[$	if $r \neq 0$
1	0	$x \notin [s-r+1;-r[$	if $s eq -1$
1	1	$x \notin [-s; -r[$	if $r \neq s$
		Lemmas from intervals ⁴	
$\overline{\{0,n\}}$	$\{0, n\}$	Set of intervals ("equal coeff.")	
n	m	Set of intervals ("disequal coeff.")	
		Intervals from fixed bits	
		Combination with value selection	
		Fallback to bit-blasting	

⁴S. Graham-Lengrand, D. Jovanović, B. Dutertre: *Solving bitvectors with MCSAT: explanations from bits and pieces*

$$px + r \le qx + s$$
 with $\hat{p} \ne \hat{q}$

$$px + r \le qx + s$$
 with $\hat{p} \ne \hat{q}$

choice based on current value \hat{x}

Conflict Resolution Strategy

- 1. Track the conflict's cone of influence while backtracking over the trail Γ
- Conflict resolution plugins derive lemmas from constraints in the conflict
- 3. For now, accumulate lemmas from conflict plugins
 - New (often simpler) constraints improve propagation
 - Easy to experiment with new types of lemmas
- 4. When reaching the first relevant decision, learn lemmas and resume search

- Assume conflict $V_x = \emptyset$
- ► Forbidden intervals:

$$C_i \implies x \notin [\ell_i; u_i[$$
 if c_i

S. Graham-Lengrand, D. Jovanović, B. Dutertre: Solving bitvectors with MCSAT: explanations from bits and pieces

- Assume conflict $V_x = \emptyset$
- Forbidden intervals:

$$C_i \implies x \notin [\ell_i; u_i[$$
 if c_i

► Concrete intervals cover the domain: $\bigcup_i [\hat{\ell}_i; \hat{u}_i] = [0; 2^k]$

S. Graham-Lengrand, D. Jovanović, B. Dutertre: Solving bitvectors with MCSAT: explanations from bits and pieces

- Assume conflict $V_x = \emptyset$
- ► Forbidden intervals:

$$C_i \implies x \notin [\ell_i; u_i[$$
 if c_i

▶ Concrete intervals cover the domain: $\bigcup_i [\hat{\ell}_i; \hat{u}_i] = [0; 2^k]$

S. Graham-Lengrand, D. Jovanović, B. Dutertre: Solving bitvectors with MCSAT: explanations from bits and pieces

- Assume conflict $V_x = \emptyset$
- Forbidden intervals: $C_i \implies x \notin [\ell_i; u_i]$ if c_i
- ▶ Concrete intervals cover the domain: $\bigcup_i [\hat{\ell}_i; \hat{u}_i] = [0; 2^k]$

S. Graham-Lengrand, D. Jovanović, B. Dutertre: Solving bitvectors with MCSAT: explanations from bits and pieces

- Assume conflict $V_x = \emptyset$
- Forbidden intervals: $C_i \implies x \notin [\ell_i; u_i]$ if c_i
- ▶ Concrete intervals cover the domain: $\bigcup_i [\hat{\ell}_i; \hat{u}_i] = [0; 2^k]$

S. Graham-Lengrand, D. Jovanović, B. Dutertre: Solving bitvectors with MCSAT: explanations from bits and pieces

- Assume conflict $V_x = \emptyset$
- Forbidden intervals: $C_i \implies x \notin [\ell_i; u_i]$ if c_i
- ▶ Concrete intervals cover the domain: $\bigcup_i [\hat{\ell}_i; \hat{u}_i] = [0; 2^k]$

▶ Use symbolic intervals to express the overlap condition:

$$u_1 \in [\ell_2; u_2[\ \land \ u_2 \in [\ell_3; u_3[\ \land \ u_3 \in [\ell_1; u_1[$$

S. Graham-Lengrand, D. Jovanović, B. Dutertre: Solving bitvectors with MCSAT: explanations from bits and pieces

Conflict Resolution Plugins

Forbidden Intervals Lemma

Superposition	$p(x)=0 \land q(x)=0$	$\implies rp(x) + sq(x) = 0$	
	choose r, s to eliminate highest power of x		
Overflow	$\Omega^*(p,q) \wedge eg \Omega^*(p,r)$	$\implies q > r$	
Inequality	px < qx	$\implies \Omega^*(x,p) \lor p < q$	
	$px \leq qx$	$\implies \Omega^*(x,p) \lor p \le q$	
		$\forall x = 0$	
Bit-wise and	x = p & q	$\implies x \le p$	
	$x = p \& q \land p = q$	$\implies x = p$	
	$x = p \& q \land p = 2^n - 1$	$\implies 2^{n-k}x = 2^{n-k}q$	
Bounds	$C(x,y) \land x \in [x_l;x_h]$	$\implies y \in [y_l; y_h]$	
	$\Omega^*(p,q) \wedge p \leq b_1$	$\implies q \geq b_2$	
	$axy + bx + cy + d \leq \dots$	$\implies \dots$	

20

Conclusion

PolySAT

- ▶ Bit-vector solver in Z3
- ► Word-level reasoning

Thank you!