

Agenda

- 1. Exercise Overview
- 2. Use Case for this Exercise
- 3. The Winter Framework
 - 1. Load Data for Fusion
 - 2. Profile Correspondences
 - 3. Define a Fusion Strategy
 - 4. Specify Tolerance Ranges
 - 5. Run Fusion
 - 6. Evaluate Fusion Result
 - 7. Adjust Data Fusion Strategy
- 4. Hands-on: Tasks of the Exercise

1. Exercise Overview

Learning goal

Learn how to use the Winte.r Framework to:

- Fuse data and resolve data conflicts
- Experiment with different conflict resolution functions
- 3. Measure the density and accuracy of the resulting fused dataset

Result

- 1. Fused data set in which each real-world entity is described by only a single record and these records contain no data conflicts
- A well-founded idea about the quality and profile of the fused data

2. Use Case for this Exercise

- 1. Download the .zip of the project from the course page
- 2. Unzip it and look at the files in \data\ folder
 - .xml input datasets in input folder
 - .csv output of Exercise 2 in correspondences folder
 - gold.xml in goldstandard folder
- 3. Open the project in a Java IDE (import as maven project)

The project serves as a quick-start for todays tasks and contains implementations for:

- loading and profiling datasets and correspondences
- various conflict resolution functions
- comparing fusion results to a gold standard (ground truth)
- computing the evaluation metrics density, consistency, and accuracy

Provided Datasets and Correspondences

```
academy_awards_2_actors_correspondences.csv  49 academy_awards_1880,actors_49,1.0
```

(i) academy awards – actors correspondences

```
actors_2_golden_globes_correspondences.csv 28 actors_49,golden_globes_1733,1.0
```

(ii) actors – golden globes correspondences

```
<movie>
    <id>academy awards 1880</id>
    <title>One Flew over the Cuckoo's Nest</title>
    <director>
        <name>Milos Forman</name>
    </director>
    <actors>
            <name>Jack Nicholson</name>
        </actor>
        <actor>
            <name>Brad Dourif</name>
        </actor>
        <actor>
            <name>Louise Fletcher</name>
        </actor>
    </actors>
    <date>1975-01-01</date>
    <oscar>yes</oscar>
</movie>
```

(i) academy awards dataset

metadata:

dataset_score: 0.4 dataset_date: 2015

```
<movie>
    <id>golden globes 1733</id>
    <title>One Flew Over The Cuckoo''s Nest</title>
    <director>
        <name>Milo Forman</name>
                                                <movie>
    </director>
                                                     <id>actors 49</id>
    <actors>
                                                     <title>One Flew Over The CockooDs Nes</title>
                                                     <actors>
            <name>Louise Fletcher</name>
                                                         <actor>
        </actor>
                                                             <name>Louise Fletcher</name>
        <actor>
                                                             <br/>
<br/>
day>1934-01-01</br>
<br/>
/birthday>
            <name>Jack Nicholson</name>
                                                             <birthplace>Alabama
        </actor>
                                                         </actor>
    </actors>
                                                     </actors>
    <date>1976-01-01</date>
                                                     <date>1976-01-01</date>
    <globe>yes</globe>
                                                </movie>
</movie>
```

(ii) golden globes dataset

metadata:

dataset_score: 0.5 dataset date: 2018

(iii) actors dataset

metadata:

dataset_score: 0.6 dataset_date: 2018

3. The Winter Framework

- The <u>Web Data Integration Framework</u> (WInte.r) provides methods for end-to-end data integration
- Implements methods for
 - Data Pre-Processing
 - Schema Matching
 - Identity Resolution
 - Data Fusion
 - Evaluation

- Open Source under Apache 2.0 License
 - https://github.com/wbsg-uni-mannheim/winter/

Data Fusion Walkthrough: Movie Use Case

- 1. Data Sets
- 2. Correspondences
- 3. Fusion Strategy
- 4. Fusion Engine
- 5. Evaluation

3.1 Load Data for Fusion: Data Model

- We need to load:
 - 1. The individual movie data sets
 - 2. The correspondences files
- Data model for fusion needs to
 - Extend the AbstractRecord class which implements both Matchable and Fusible

```
public class Movie
 extends AbstractRecord<Attribute> {
public Movie(
  String identifier,
  String provenance) {
 super(identifier, provenance);
  actors = new LinkedList<>();
private String title;
private String director;
private LocalDateTime date;
private List<Actor> actors;
public String getTitle() {
 return title;
public void setTitle(String title) {
 this.title = title;
```

Load Data for Fusion: Data Model

 Custom XMLReader which implements the FusibleFactory and will create the fused objects

```
public class MovieXMLReader extends XMLMatchableReader<Movie, Attribute> implements
FusibleFactory<Movie, Attribute> {
@Override
public Movie createInstanceForFusion(RecordGroup<Movie, Attribute> cluster) {
 List<String> ids = new LinkedList<>();
  // collect the ids of all records that are fused in this group
 for (Movie m : cluster.getRecords()) {
  ids.add(m.getIdentifier());
  // sort and merge the ids to create an id for the fused record
 Collections.sort(ids);
 String mergedId = StringUtils.join(ids, '+');
  // create the fused record
 return new Movie(mergedId, "fused");
```

Load Data for Fusion: Create Fusible Data sets

- Load data using the FusibleDataSet class
 - Extends the DataSet class

```
// Load the Data into FusibleDataSet
FusibleDataSet<Movie, Attribute> ds1 = new FusibleHashedDataSet<>();
new MovieXMLReader().loadFromXML(new File("data/input/academy_awards.xml"), "/movies/movie", ds1);
```

Allows you to add data set meta data

```
ds1.setScore(3.0);
ds1.setDate(LocalDateTime.parse("2012-01-01", formatter));
```

Calculates density report

```
ds1.printDataSetDensityReport();
```

```
DataSet density: 0,58
Attributes densities:

Actors: 0,23

Date: 1,00

Title: 1,00

Director: 0,09
```

Load Data for Fusion: Load Correspondences

- Use the CorrespondenceSet class to load all correspondences found in data/correspondences
 - Call loadCorrespondences multiple times!

• The order of the data sets (2nd and 3rd parameter) must match the order of lds in the correpondence file!

3.2 Profile Correspondences: Group Size Distribution

- Check group size distribution
 - All correspondences from the identity resolution are combined
 - All records that are believed to describe the same real-world entity end up in a group (transitive!)

```
// write group size distribution
correspondences.printGroupSizeDistribution();
```


3.3 Define Data Fusion Strategy

- Use the DataFusionStrategy class to define how each attribute is fused
- For each attribute, you have to add a Fuser and an EvaluationRule
 - Fusers use a conflict resolution function to fuse the values for an attribute
 - EvaluationRules define tolerance range for considering two values as equal

Define Fusion Strategy: Fuser

- A fuser defines a conflict resolution function
 - That decides which of many values to choose
- And three additional functions
 - If a record has a value that can be fused
 - How to get the value for a record
 - How to assign the fused value to the fused record

```
public class TitleFuser extends AttributeValueFuser<String, Movie, Attribute> {
  public TitleFuser() {
    super(new LongestString<Movie>());
  }

@Override
public boolean hasValue(Movie record) {
  return record.hasValue(Movie.TITLE);
}

@Override
public String getValue(Movie record) {
  return record.getTitle();
}

    Get record's value for this fuser?

Get record's value for this fuser?
```

Define Fusion Strategy: Fuser

- A fuser defines a conflict resolution function
 - That decides which of many values to choose
- And three additional functions
 - If a record has a value that can be fused
 - How to get the value for a record
 - How to assign the fused value to the fused record

```
@Override
public void fuse(RecordCluster<Movie> group,
    Movie fusedRecord) {

FusedValue<String, Movie> fused = getFusedValue(group); Get the fused value

fusedRecord.setTitle(fused.getValue()); Assign the fused value to the fused record

fusedRecord.setAttributeProvenance(Movie.TITLE, fused.getOriginalIds());
}

Add provenance info to the fused record
```

Implemented Conflict Resolution Functions

Numeric Functions	
Average	Calculates the average of all values
Median	Calculates the median of all values
String Functions	
Longest String	Chooses the longest string
Shortest String	Chooses the shortest string
List Functions	
Union	Creates the union of all values of the lists
Intersection	Creates the intersection of all values of the lists
Functions that use Provenance Metadata	
FavourSources	Chooses the value from the data source with the highest score
MostRecent	Chooses the most up-to-date value
Data Type Independent Functions	
Voting	Chooses the most frequent value
ClusteredVote	Chooses the centroid of the largest value cluster

3.4 Specify Tolerance Range

- Evaluation rules are used to calculate consistency and accuracy
- Implement one class per attribute specific evaluation rule which
 - extends the EvaluationRule class
 - defines which values should be considered as equal
- It might be OK to tolerate
 - +/- 2% for numeric data like temperature, population
 - edit distance 1 for people names but likely not for movie names

```
public class TitleEvaluationRule extends EvaluationRule<Movie, Attribute> {
    SimilarityMeasure<String> sim = new TokenizingJaccardSimilarity();

    @Override
    public boolean isEqual(Movie record1, Movie record2) {
        // the title is correct if all tokens are there, but the order does not matter
        return sim.calculate(record1.getTitle(), record2.getTitle()) == 1.0;
    }
}
```

3.5 Run Fusion

- Use the DataFusionEngine class to
 - calculate value consistency

```
// create the fusion engine
DataFusionEngine<Movie, Attribute> engine = new DataFusionEngine<>>(strategy);

// calculate attribute consistency
engine.printClusterConsistencyReport(correspondences, null);
```

Attribute Consistencies:
Actors: 0,43
Date: 0,00
Title: 0,94
Director: 1,00

and fuse the data sets.

```
// run the fusion
FusableDataSet<Movie,Attribute> fusedDataSet = engine.run(correspondences, null);
```

Writing the Fused Dataset to an XML File

Use XMLFormatter to write your dataset to an XML file

```
public class MovieXMLFormatter extends XMLFormatter<Movie> {
 @Override
public Element createRootElement(Document doc) {
  return doc.createElement("movies");
 @Override
public Element createElementFromRecord(FusableMovie record, Document doc) {
  Element movie = doc.createElement("movie");
  movie.appendChild(createTextElement("id",
  record.getIdentifier(), doc));
  movie.appendChild(createTextElementWithProvenance("title",
  record.getTitle(),
  record.getMergedAttributeProvenance(Movie.TITLE), doc));
  return movie;
```

Example Record in the Fused Dataset

```
<?xml version="1.0" encoding="UTF-8"?>
<movies>
  <movie>
    <id>academy awards 2334+actors 39+golden globes 2000</id>
    <title provenance="golden globes 2000">Who's Afraid Of Virginia Woolf</title>
    <director provenance="academy awards 2334">Mike Nichols/director>
    <date provenance="golden globes 2000+actors 39">1967-01-01T00:00</date>
    <actors provenance="academy awards 2334+golden globes 2000+actors 39">
      <actor>
        <name>George Segal</name>
      </actor>
      <actor>
        <name>Richard Burton
      </actor>
      <actor>
        <name>Elizabeth Taylor</name>
      </actor>
      <actor>
       <name>Sandy Dennis</name>
      </actor>
    </actors>
  </movie>
```

3.6 Evaluate Fusion Result

- Use the DataFusionEvaluator class
 - needs your fusion strategy!
 - accepts a DataSet as gold standard (ground truth)
 - returns the accuracy of the dataset compared to the gold standard

Evaluate Fusion: an example

Record generated by data fusion

```
<movie>
 <id>academy awards 1880+actors 126+actors 49+golden globes 1733</d>
 <title provenance="golden globes 1733">One Flew Over The Cuckoo''s Nest</title>
 <director provenance="academy awards 1880">Milos Forman
 <date provenance="academy awards 1880">1975-01-01T00:00</date>
 <actors provenance="actors 126+academy awards 1880+golden globes 1733+actors 49">
   <actor>
     <name>Brad Dourif</name>
   </actor>
   <actor>
     <name>Louise Fletcher</name>
   </actor>
   <actor>
     <name>Jack Nicholson</name>
   </actor>
                                                                           <movie>
 </actors>
</movie>
```

Compare the fused values with the ones in the gold standard:

- Did your conflict resolution functions work?
- Should the value comparison be strict or more relaxed?
 - "Cuckoo"s Nest" vs "Cuckoo's Nest"

title with the longest string

director from most trusted source

actors list from union

Gold standard record

```
<id>academy awards 1880</id>
    <title>One Flew over the Cuckoo's Nest</title>
    <director>
        <name>Milos Forman</name>
    </director>
    <actors>
        <actor>
            <name>Jack Nicholson</name>
        </actor>
        <actor>
            <name>Brad Dourif</name>
        </actor>
        <actor>
            <name>Louise Fletcher</name>
        </actor>
    </actors>
    <date>1975-01-01</date>
    <oscar>yes</oscar>
</movie>
```

3.7 Adjust the Data Fusion Strategy

Winte.r supports detailed event logging which can help you adjust your fusion strategy and improve your results

- Default logging level: dataset densities, group size distributions, gold standard elements, attributes consistencies, fusion accuracy
- Trace (tracefile): default + fusion errors and corresponding correct values from the gold standard, attribute specific accuracy

```
private static final Logger logger = WinterLogManager.activateLogger("trace");
```

 Activate the fusion debug report after initializing the DataFusionStrategy object

```
// define the fusion strategy
DataFusionStrategy<Movie, Attribute> strategy = new DataFusionStrategy<>(new MovieXMLReader());
// write debug results to file
strategy.activateDebugReport("data/output/debugResultsDatafusion.csv", -1, gs);
```

Adjust the Data Fusion Strategy: an example

Inspect the debug report

Attribute (Name	Consistency	ValueIDS	Values	FusedValue	IsCorrect	CorrectValue
		Date-{actors_97				
Date	0	academy_awards_3480}	{1947-01-01T00:00 1946-01-01T00:00}	1947-01-01T00:00	FALSE	1946-01-01 T00:00
		Date-{actors_104				
Date	0	academy_awards_3059}	{1954-01-01T00:00 1953-01-01T00:00}	1954-01-01T00:00	FALSE	1953 01-01T00:00
		Date-{actors_91				
Date	0	academy_awards_4015}	{1941-01-01T00:00 1940-01-01T00:00}	1941-01-01T00:00	FALSE	1940-01-01T00:00
the fused value comes from the actors dataset as a result of the FavourSource fusion strategy		the fused value in	V Wrong		et date agrees ocademy_awards	

Possible implication if this is the case for many values

WInte.r Tutorial also covers Data Fusion

https://github.com/wbsg-uni-mannheim/winter/wiki

Project Related Information

Select Data for Fusion Experiments

- Your input is the output of Exercises 1 and 2
 - schema is aligned, unique IDs are in place, identity resolution is done
- What data is suitable for fusion experiments?
 - Select at least 2 datasets for which
 - 1. attribute intersection is big enough
 - you should be able to fuse data for >= 5 attributes
 - 2. quality of identity resolution is good enough
 - 3. it makes sense to apply different fusion functions to the attributes
 - compare different functions
 - experiment with using provenance data vs. no provenance data

Prepare Your Gold Standard

- Your gold standard should contain
 - >= 15 entities
 - >= 4 attributes per entity
- Manually look up the correct values (in an external data source)!
- The Gold Standard uses your target schema
 - Use IDs from one of your data sets, so the evaluator can find the correct records!
- Don't create ambiguities!
 - If records a, b, c are the same according to the identity resolution
 - Only one corresponding record can appear in the gold standard
 - Choose a, b or c as ID in the gold standard

Requirements for the Final Project Report

- 12 pages (sharp!) counted without title page, table of content, literature list
 - Every extra page (including appendix pages) will reduce your mark by 0.33
- Due to Sunday, 3rd December 2023, 23:59
 - Send by email to Chris, Keti, Ralph and Alex
- You must use the **DWS master thesis layout** (without Chapters)
 - https://www.uni-mannheim.de/dws/teaching/thesis-guidelines/
- Also submit
 - 1. your code and
 - 2. (a subset) of your data
- Please cite sources properly if you use any
 - Preferred citation style [Author, year]

Final Report: Content

Your final report should contain

- 1. Results of Phase 1: Data Translation
- 2. Results of Phase 2: Identity Resolution
- 3. Results of Phase 3: Data Fusion
- 4. Summary of the overall result

Data Translation in the Final Report

- Your report should contain
 - 1. Profiling results describing your input data sets
 - e.g. updated versions of the tables that you created for your project proposal

Dataset	Source (*)	format	class (**)	# of entities	# of attributes	list of attributes (***)
IMDB	Download URL	csv	movie	17,000	10	title, director, year,
DBpedia	dbpedia.org/sparql	xml	actor	23,500	8	name, birthDate (MV), activeYears,
Freebase	Download URL	csv	actor	11,000	14	given_name, surname, spouse (MV)
Class nam	e Attribute name	I Datasets	in which at	tribute is four	nd	
Class name	e Attribute name	Datasets	willon a	ti ibato io ioai	164	
movie	name	•		ataset3, datase		
		•	dataset2, da			
movie	name	dataset1, dataset1,	dataset2, da	ataset3, datase		

- 2. Your consolidated schema and how you created it
- 3. Which transformations you used and why
 - if there was any information you could not transform

Identity Resolution in the Final Report

- Your report should contain
 - Content and size of your gold standard and procedure used to create it
 - 2. Which matching rules did you try?
 - Discuss what happened with P/R and F1?
 - Please include a table comparing the results of the different matching rules
 - Which blocking methods did you try?
 - Report and discuss the change in runtime, number of matches, and reduction ratio. How do P/R/F1 change?
 - Please include a table comparing the results of the different blocking methods that you tested
 - 4. What's the group size distribution of your result?
 - 5. An analysis of the errors that remain when applying your best matching rule.

#	Matching Rule	Blocker	P	R	F1	# Corr	Time
1	Rule1:Title&Year	No Blocking	0.71	0.95	0.82	10.230	90 min
2	Rule1:Title&Year	StandardYear	0.71	0.73	0.72	9.609	18 sec
3	Rule1:Title&Year	SNBYear	0.71	0.89	0.79	10.215	50 sec
4	Rule2:Title&Actors	SNBYear	0.81	0.89	0.83	9.919	19 sec

Data Fusion in the Final Report

- Your report should contain
 - 1. Which datasets your selected for fusion?
 - 2. What kind of provenance data you added?
 - 3. What was the density of your input and the merged datasets?
 - 4. How consistent were your datasets?
 - 5. Size and content of your gold standard and how you created it
 - 6. Which conflict resolution functions you tried for each attribute
 - Whether your define your own conflict resolution functions
 - 7. Which accuracy did the different conflict resolution functions deliver? What was the best function for each attribute?
 - Please include a table comparing the accuracies reached by the different resolution functions.
 - An analysis of the errors that remain after applying your best resolution function.

Summary of Overall Results in Final Report

Please conclude your report with a summary answering the following three questions:

- 1. How many additional entities did you add compared to the largest of your input datasets?
- 2. How much did you increase the density of your data compared to the largest of your input datasets?
- 3. What is the overall accuracy of your final dataset according to your gold standard?

Final Report: Important

- Balance your content between the 3 exercises
 - not 10 pages on identity resolution and 2 pages on the rest
- If you have done something cool write about it!
 - it is highly unlikely we dig it out of your code ourselves
- We are strict about the 12 pages limit. Thus,
 - include lots of tables to show us what you have tried
 - briefly discuss the results of each of your experiments
 - do not repeat theoretical stuff from the slides (e.g. definition of X)
 - we will reduce your mark by 0.33 for each extra page no matter how interesting it is!

Task

- 1. Open and run the provided Java project
- 2. Inspect the profiling results
 - 1. What is the potential of every dataset to fill missing values within the other datasets?
 - 2. How many real-world entities are presented by more than one dataset?
 - 3. How is it possible to have 4 conflicting values given that we have only 3 datasets?
 - 4. Which attributes do you expect to be more conflicting?
- 3. Create your own value-based fusion strategy that selects the longest title value
- 4. Inspect the debug report to find which source is the most trustworthy for the date attribute. Change the dataset metadata so that this source is preferred.

Interpreting profiling results

Dataset	Number of Elements	Overall Density	Attribute Density				
			Actors	Date	Title	Director	
academy_awards.xml	4580	0.58	0.23	1.00	1.00	0.09	
actors.xml	151	0.75	1.00	1.00	1.00	0.00	
golden_globes.xml	2279	0.78	0.98	1.00	1.00	0.14	
			Good for	High overlap: More			

Group size distribution of 148 groups

missing values

potential for conflicts

Create your own value-based fusion strategy that selects the longest title value

```
public class TitleFuserLongestString extends AttributeValueFuser<String, Movie,
Attribute> {
    public TitleFuserLongestString() {
         super(new LongestString<Movie, Attribute>());
    public void fuse(RecordGroup<Movie, Attribute> group, Movie fusedRecord,
    Processable Correspondence Attribute, Matchable >> schemaCorrespondences,
    Attribute schemaElement) {
         . . .
    public boolean hasValue(Movie record, Correspondence<Attribute, Matchable>
    correspondence) {
    protected String getValue(Movie record, Correspondence<Attribute, Matchable>
    correspondence) {
```

Which source is the most trustworthy as far as the date attribute is concerned?

Inspect the log messages → change log level to trace

```
Error in 'Date': [Movie academy_awards_4080+actors_90: Goodbye, Mr. Chips / Sam Wood / 1940-01-01T00:00] <> [Movie academy_awa Error in 'Date': [Movie academy_awards_4081+actors_12: Gone with the Wind / Victor Fleming / 1940-01-01T00:00] <> [Movie academ Error in 'Date': [Movie academy_awards_3480+actors_97: The Best Years of Our Lives / William Wyler / 1947-01-01T00:00] <> [Move Error in 'Date': [Movie academy_awards_4270+actors_9: The Great Zeigfeld / Robert Z. Leonard / 1937-01-01T00:00] <> [Movie academy_awards_4270+actors_9: The Great Zeigfeld / Robert Z. Leonard / 1937-01-01T00:00] <> [Movie academy_awards_4270+actors_9: The Great Zeigfeld / Robert Z. Leonard / 1937-01-01T00:00] <> [Movie academy_awards_4270+actors_9: The Great Zeigfeld / Robert Z. Leonard / 1937-01-01T00:00] <> [Movie academy_awards_4270+actors_9: The Great Zeigfeld / Robert Z. Leonard / 1937-01-01T00:00] <> [Movie academy_awards_4270+actors_9: The Great Zeigfeld / Robert Z. Leonard / 1937-01-01T00:00] <> [Movie academy_awards_4270+actors_9: The Great Zeigfeld / Robert Z. Leonard / 1937-01-01T00:00] <> [Movie academy_awards_4270+actors_9: The Great Zeigfeld / Robert Z. Leonard / 1937-01-01T00:00] <> [Movie academy_awards_4270+actors_9: The Great Zeigfeld / Robert Z. Leonard / 1937-01-01T00:00] <> [Movie academy_awards_4270+actors_9: The Great Zeigfeld / Robert Z. Leonard / 1937-01-01T00:00] <> [Movie academy_awards_4270+actors_9: The Great Zeigfeld / Robert Z. Leonard / 1937-01-01T00:00] <> [Movie academy_awards_4270+actors_9: The Great Zeigfeld / Robert Z. Leonard / 1937-01-01T00:00] <> [Movie academy_awards_4270+actors_9: The Great Zeigfeld / Robert Z. Leonard / 1937-01-01T00:00] <> [Movie academy_awards_4270+actors_9: The Great Zeigfeld / Robert Z. Leonard / 1937-01-01T00:00] <> [Movie academy_awards_4270+actors_9: The Great Zeigfeld / Robert Z. Leonard / 1937-01-01T00:00] <> [Movie academy_awards_4270+actors_9: The Great Zeigfeld / Robert Z. Leonard / 1937-01-01T00:00] <> [Movie academy_awards_4270+actors_9: The Great Zeigfeld / Robe
```

```
ds1.setScore(1.0);
ds2.setScore(2.0);
ds3.setScore(3.0);
```

 The current strategy selects the date value from the actors dataset (ds2)

Which source is the most trustworthy as far as the date attribute is concerned?

- Adjust the dataset scores
- Use a conflict resolution function that uses these scores

```
strategy.addAttributeFuser(
    Movie.DATE,
    new DateFuserFavourSource(),
    new DateEvaluationRule());
```

Check how the accuracy changes

```
ds1.setScore(1.0);
ds2.setScore(2.0);
ds3.setScore(3.0);

ds1.setScore(3.0);
ds2.setScore(1.0);
ds2.setScore(1.0);
ds3.setScore(2.0);
Attribute-specific accuracy: 0.95
```

Final Presentation and Exam

- Presentation Dates
 - 06.12.2023 and 07.12.2023
- Date and Time of WDI Exam
 - 18.12.2023 at 12:30
- Format
 - 5-6 open questions that show that you have understood the theory part of the lecture
 - all lecture slide sets including structured data on the Web and data exchange formats + query languages
 XPath and SPARQL
 - Duration: 60 minutes

...and now

- Get the template project and
 - Define your inputs
 - Experiment with creating the merged dataset, and density and consistency evaluation metrics
 - Define your conflict resolution functions
 - Define your gold standard
 - Experiment with data fusion and accuracy evaluation metrics
- Write your final report
- Repeat the theory parts in order to be ready for the final exam
 - The video recordings of all lectures are online

