Melcome Physics

What Is Physics?

From the very large.....

....to the very small

....and everything in between

- solids
- liquids
- gases

In this course...

Introduction to physics

 Learn problem-solving skills Build a good foundation for other fields too

Learn how to think critically

How much math do you need??

- · No calculus but:
 - Algebra
 - > Trigonometry
 - Linear and quadratic equations

Lots of common sense!!

Main Areas Of Physics

Classical Mechanics

Electricity and Magnetism

Thermal Physics

Quantum Mechanics

Dimensions

All things in physics can be expressed in terms of only three fundamental dimensions:

- Time T
- Length
- Mass

Dimensional Quantities

 Area has dimensions of L²

 Density has dimensions of M / L³ (or ML-³) Frequency has dimensions of 1/T

 Speed has dimensions of L/T

Angle is dimensionless!

Systems Of Units

- MKS system
 - L = metres (m)
 - M = kilograms (kg)
 - T = seconds (s)

- CGS system
 - L = centimetres (m)
 - > M = grams (kg)
 - T = seconds (s)

Length

Distance

Length (m)

- > Tall person
- > Cricket ground
- > Radius of Earth
- > Earth to Sun
- > Radius of universe

- 2×10^{0}
- 3×10^2
- 6.4×10^6
- 1.5×10^{11}
- 1×10^{26}

Distance

Length (m)

- >Thickness of paper 1 x 10⁻⁴
- Diameter of 1 x 10⁻¹⁰
 hydrogen atom
- > Diameter of proton 1 x 10⁻¹⁵

Time

Time (s)

- Light travel Earth-Moon
- > One hour
- > One year
- Age of Universe

 1.3×10^{0}

 3.6×10^3

 3.2×10^7

 5.0×10^{17}

Time (s)

- Open/close eyelid 1.0 x 10^o
- One cycle of radio 1.0 x 10⁻⁸ wave

Mass

Object

- > Student
- > Car
- > Ship

Mass (kg)

 7×10^{1}

 1×10^3

1 x 10⁶

Object

- > Earth
- > Sun
- Milky Way

Mass (kg)

 6×10^{24}

 2×10^{30}

4 x 10⁴¹

Object

Mass (kg)

- Dust particle
- Oxygen Atom
- > Electron

1 x 10⁻⁹

3 x 10⁻²⁵

9 x 10⁻³¹

Converting Units

Useful conversion factors

1 inch = 2.54 cm 1 m = 3.28 ft

Example: convert miles per hour to metres per second

$$1\frac{mi}{hr}$$

$$= 1\frac{mi}{hr} \times 5280 \frac{ft}{mi} \times \frac{1}{3.28} \frac{m}{ft} \times \frac{1}{3600} \frac{hr}{s}$$

$$= 0.447 \frac{m}{s}$$

Dimensional Analysis

This is a very important tool to check your work

Doing a problem you get the answer:

 $d = V t^2$

(velocity x time²)

Units on left side = L

Units on right side = L/T x T² = L x T

Left units and right units don't match, so something is wrong!!

Rules for dimensions

Dimensions (M,L,T) can be treated algebraically!

Multiply or divide quantities of any dimension

Add or subtract quantities of same dimension

Significant Figures

Only use reliably known digits!

General rules for calculations:

> Addition:

95.9+39.32 = 135.22

rounds off to 135

> Subtraction:

95.9 - 39.32 = 56.58

rounds off to 56.6

> Multiplication:

(105.8)(31.4) = 3322.12

rounds off to 3320

> Division:

(105.8)/(31.4) = 3.36943

rounds off to 3.37

Order-ofmagnitude Estimates

- Weight of adult
- Weight of a 1-year ~ 10 kg

~ 100 kg

- old child
- Weight of a cricket ~ 1 kg ball

Example: How many seconds are there in a human lifetime?

- (80 yr)(365 days/yr) (24 hr/day)(60 min/hr) $(60 \text{ s/min}) = 2.5 \times 10^9 \text{ s}$
- (10² yr)(10² days/yr)
 (10¹ hr/day)(10² min/hr)
 (10² s/min) ~ 10⁹ s