

PERTH MODERN SCHOOL UNIT 3CD MAS - 2015

TEST 1

POLAR COORDINATES, COMPLEX NUMBERS & VECTORS

NAME:		DATE: Tues 17 th Feb.
Total:	45 marks	Time: 50 min.

Question 1 (5 marks)

(i) Point P has polar coordinates $(4,17^{\circ})$ and it lies on the line y = -x + 5Point Q also lies on the line and is 12cm away from P.

Find the polar coordinates of Q $[r,\theta]$ where $90^{\circ} < \theta < 180^{\circ}$. (3 marks)

(ii) Sketch the graph of $r = \frac{4}{\pi} \theta$ on the axes above and hence state where it intersects r = 4

Question 2	(9 marks)
•	,

On a 3D computer game, Chris, a keen cyclist leaves from *position* (i - j + 2k) metres is travelling at (2i + 3j - 6k) m/s while his mate Dave leaves from position (ai + j + bk) metres running at (i - j + 2k) m/s.

(i) Although they do not collide, their paths do intersect at the point with coordinates (a, 1, b).

Determine the values of **a** and **b**.

(4 marks)

(ii) Find the acute angle between these two paths.

(2 marks)

$$r = \begin{pmatrix} \frac{7}{3} \\ 1 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

Question	3
Ouestion	J

(5 marks)

(a) The vectors $3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ and $\mathbf{i} + 2\mathbf{j} + \mathbf{a}\mathbf{k}$ are perpendicular.

Determine the value of **a**.

(1marks)

(b) Determine whether the two lines

$$r = 8i - j - 8k + \lambda(2i - 3k)$$
 and $r = j - 3k + \mu(i - j + 2k)$ intersect.

(4 marks)

If they do intersect, state the position vector of their point of intersection.

If they do not intersect, justify your answer.

If z = 3 - 4i, determine the reciprocal, $\frac{1}{z}$ (a)

(2 marks)

Let the non-zero complex number z = a + bi. Show that $\frac{1}{a + bi} = \frac{\overline{Z}}{|Z|^2}$ (b) (3 marks)

(c) Describe the geometrical relationship between any non-zero complex number and its reciprocal.

(2marks)

Question 5 (5 marks)

Let MNOPQRST be a rectangular prism with sides \overrightarrow{ON} , \overrightarrow{OP} and \overrightarrow{OR} denoted by the vectors, \mathbf{a} , \mathbf{b} , and \mathbf{c} respectively, as shown in the diagram below.

Suppose that $\bf A$ is the midpoint of \overrightarrow{MN} , $\bf B$ is the midpoint of \overrightarrow{MT} , $\bf C$ is the midpoint of \overrightarrow{QR} and $\bf D$ is the midpoint of \overrightarrow{OR} .

(a) Express \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} and \overrightarrow{OD} in terms of \mathbf{a} , \mathbf{b} , and \mathbf{c} . (2marks)

(b)	Prove that the quadrilateral ABCD is a parallelogram.	(3 marks)
0	Allow C	(5 al. a)
Ques	etion 6	(5 marks)
(a)	Change the complex equation $ Z - i = Z - 1 $ into its Cartesian equivalent.	(3 marks)
4. \		(2)
(b)	Hence identify, the locus of all points Z satisfying the equation in (a).	(2 marks)

Question 7 (5 marks)

An equilateral triangle has vertices A, B and C, where A is the point $\sqrt{3} - \mathbf{j}$ in the Argand plane.

The circumcircle is drawn that passes through vertices A, B, and C and has a centre inside the triangle called the circumcentre.

The circumcentre is located at the origin.

Find the complex numbers z_1 and z_2 corresponding to the vertices B and C, expressing your answers in exact Cartesian form.

Question 8 (4 marks)

Find two numbers which have a product of 2 and a sum of 2.