

Exercice 1 Soit le réseau bayésien donné ci-après.

RÉSEAUX BAYÉSIENS & Les tables de probabilités locales associées aux nœuds sont les suivantes : (Documents non-autorisés)

Examen

♦ 2016 – 2017

TABLE $1 - P(V_2)$ $\begin{array}{c|c} v_2 & .9 \\ \hline & .02 & .1 \\ \end{array}$

TABLE $2 - P(V_1|V_2)$
 v2
 v2

 v3
 .5
 .7

 ¬v3
 .5
 .3

TABLE $3 - P(V_3|V_2)$

Calculer un arbre de jonction cohérent associé à ce réseau bayésien.

DOCUMENTS NON AUTORISES.

Exercice 1 (4 points)

Soit $\mathcal D$ une base de transactions représentée horizontalement $\mathcal H_{\mathcal D}$:

t	Items			
$t_1 A$	B	C	D	
t_2	B	C		E
$t_3 A$	B	C		E
t_4	B			E
$t_5 A$	B	C		E
t_6	B	C	i de la	10 es

Question 1 • Donnez la représentation verticale V_D et matricielle \mathcal{M}_D . (0,5 pts)

Question 2 • Donnez les supports et les fréquences (absolu/relative) des itemsets suivants : (1 pt)

$$L = \{ACD, CE, BCE, ABCE, E, D, BC\}$$

Question 3 • Donnez l'ensemble des clos avec un minsup $\theta = 2$. (1 pt)

Question 4 • Donnez la taille de l'espace de recherche. (0,5pt)

Question 5 • Montrez comment le générateur de l'algorithme Apriori peut générer un itemset de taille k de j façon différentes (avec $j = \frac{k(k-1)}{2}$). (1pt)

Université de Montpellier - Master Informatique Examen Algorithmes de mouvement : partie recherche locale 2016–2017

Documents non autorisés

Point le plus bas sur une carte

On considère une carte géographique numérisée où chaque pixel est associé à l'altitude (en mètres par exemple) du point correspondant. Les métaheuristiques que vous allez décrire dans cet exercice travaillent ainsi avec une matrice A « d'altitudes » pour rechercher un des points les plus bas de la carte correspondante.

On prendra comme exemple de matrice A la matrice : $\{\{2, 8, 6, 4, 3\}, \{0, 1, 10, 9, 7\}, \{2, 3, 8, 5, 6\}, \{2, 3, 7, 2, 1\}, \{4, 8, 2, 2, 10\}\}.$

1 Questions (6 points)

- 1. Définir 3 voisinages utilisables par une métaheuristique recherchant un des points le plus bas sur la carte en utilisant une matrice A.
- 2. Décrire précisément la métaheuristique de descente stricte (hill climbing) qui n'accepte un mouvement que s'il est strictement améliorant.
 - Appliquer cet algorithme de descente stricte sur la carte donnée en exemple en partant du point $A_{2,3}$ d'altitude 5. On considère le voisinage le plus simple où un point sur la carte a 4 voisins : à gauche (ouest), à droite (est), au dessus (nord), en dessous (sud). Quel est le point trouvé sur la carte quand l'algorithme termine?
- 3. On veut maintenant appliquer une variante de recuit simulé simple où la probabilité d'accepter un voisin détériorant est de 20%.
 - Décrire précisément la fonction Accept(x, x') qui décide si un voisin x' de la configuration x est accepté ou non.
 - Décrire précisément la métaheuristique qui effectue une marche du point de départ au point final sur la carte.
 - Donner les étapes de calcul de cet algorithme en partant du même point $A_{2,3}$ sur la carte en exemple. (Vous choisissez comme cela vous arrange si un candidat détériorant est accepté ou non.)