EE 325 Assignment 1

The screenshots of the total and scatter plots for every combination of K and the method of selecting the K are attached below.

i) By inspecting the obtained scatter plots, the hand-wavy guess for the actual average. That we've assived at is

120 call-min/day/Student.

The code we wrote, was designed in such a way so as to calculate average standard deviation (i.e mean of the 50 standard deviations for a given combination of K & method of Selecting K). Thus, the guess for the actual standard deviation was arrived at, with the aid of a forementioned provision of the code and it is 20.

- (ii) It each of the 50 repetitions should be seen as a separate survey,
 - (A) Then the preferred scheme of choosing k students would be Scheme . Le Randomly' select 10,000 people in the colony. Rationally justifying, this scheme is innove representative of the original data as composed to other schemes.
 - (B) The preferred value of K is 200. The Sureness of the estimate of the value of average, from a single survey of K samples can be quantitatedly described wing the concept of Confidence Internals.

(in is sample mean
s is sample standard edeviation
n is sample size)

where, t_{n-1,0/2} (known as t-score) is some factor dependent on the size of our sample (n-1) and the degree of confidence./we require (0/2) (say 95./. or 99./.)

The smaller the confidence interval, for a given confidence of say 99%, the more is sureness of our sample mean with respect to actual mean. Thus,

Width of confidence interval = 2 (thing) (=)

[Also, tai]

So, width dereases with increasing value of n, leading us to choose preferred K=200. Thus, all our guesses are justified appropriately.

Also, from the inspection of Scatter plots, it can be observed that the distribution of points are more scattered as K increases, further supporting our choice of K.

It can be observed that scatterplots are more precise for scheme in plots, for a given k. Thus, it validates our choice of scheme to Select students.

Using the actual data, we find that, actual average = 120.133171180902, which is very much close to our guess.

actual standard deviation = 19.97553838285526

Scheme 3 (Random K):

K=200

calculated mean= 120.22922187517852

calculated average standard deviation= 20.12935843341547

K=100
calculated mean= 120.19421920555851
calculated average standard deviation= 19.8157135606269

K=50

calculated mean= 120.31059235747081

calculated average standard deviation= 19.56177926403608

K=20
calculated mean= 119.76101071571584
calculated average standard deviation= 18.821670932243602

K=10
calculated mean= 120.14390805720409
calculated average standard deviation= 17.945107775353748

Scheme 2 (Selecting K from an arbitrary point):

K=200
calculated mean= 120.07865788013885
calculated average standard deviation= 19.832993970039976

K=100
calculated mean= 120.34963766310668
calculated average standard deviation= 19.600241891507256

K=50
calculated mean= 120.28306701108357
calculated average standard deviation= 19.17156564414576

K=20
calculated mean= 120.12274857002876
calculated average standard deviation= 19.44943891525027

K=10
calculated mean= 119.77671339775699
calculated average standard deviation= 19.262621008492395

Scheme 1 (Choosing first K):

K=200

calculated mean= 119.7060312390456

calculated average standard deviation= 20.46215677520817

K=100
calculated mean= 121.18210695177557
calculated average standard deviation= 19.53385560455709

K=50
calculated mean= 121.72830003447028
calculated average standard deviation= 20.561181410744524

K=20
calculated mean= 122.1861914235542
calculated average standard deviation= 18.437072782809306

K=10

calculated mean= 123.70251492505696

calculated average standard deviation= 15.427623599915016

Dis kohli in always picking heads, it means he has to his mind, that p(H) > B(1) implifting that his thing to P(H) > 1/2: and as he have assumed that the coiring, used is a fair coin.

i Now, Let's calculate the problem of below, defined events Poroblem that head comes in no tosses is 120/100.

So let's divide this into 10 even sots.

Forom haibi tat

b(+-150) = 0.30

D(1->30) = 0.33

D(1-0, 50) = 0.40, ... pti in ...

P(1-1,60) = 0.31 11 11

P(1-170) = 0.32 P(1-1 80) = 0.31

D(14 40) = 0.8111 1011 111

P(1-100) =0.3. 000 His 2000 11, 11

* 41 we write, individual probabilities of tosses, than we can see that after 19th toss, probability is going down from 0,3 and it goes lowest to 0.25. So he might doubt his initial decision after seeing 25th toss.

b) The probability of 25th toss is the least 10:25) but kohli may have view when mind that there are 75 tosses remaining and he may not book hope. The porobability at 69th toss w' 0.818541 which is the least perobability in the surroundings. So, it is highly probable that the is make sure by then.

and the contract of the contra

1) For coin 2 (in hibsitxt), we can see that the probability of each toss us always >0.5 Eg: - P(1) = 1 P(30)=0.67 11 1111 1211 1151 P(60) = 0.633. Sorthere is no need for knohli to doubt his decision and their is no point of being sure. 2) For coin 3 the values are always 1.0.5 He doubt his de decision at the 20 tond, 28th; toes when the probability is all low at 0.42. He gets sure at the 87th toss when probabily 43 0.43 3) The probabilities were greater than 0.5 but after toss 24 the values fall dow. the doubts his assumption of the 27th toss (p=0.44). He gets: sure at, the 175th toss (where p. >0.45) 3. Degree d Surenes Degree of sureness = points in which probability: il bille indecrears sino; total noid points. * Assume the number of points = 5 (a) husib! degree of, surenes = 5 6 husbs degree of sureness = 1

(as probability is always > 0.5)

- @ hw3b3 degree of Surenus = 4 = 0.8.
- 1 hwyby: degree of sureners = 4 = 0.8.

2). By minimizing the square of distances of each point particular line, say, [ant bo = y]
the data available in hwich
The result obtained was
a = 0.00101
b = 51,7805
Thus the line is
y = 0.00101x + 51.7805

IND	EX X	Y(obv)	١	Y(fitted)	Y(obv)-Y(fitted)
01.	155	48.222		51.9377	-3.71563
02.	155	47.9602		51.9377	-3.97751
03. 04.	155 155	49.8665 51.1825		51.9377 51.9377	-2.07119 -0.75522
05.	155	50.5532		51.9377	-1.38444
06 .	155	50.5702		51.9377	-1.36744 -1.92335
07. 08.	155 155	50.0143 49.8199		51.9377 51.9377	-2.11778
69 .	155	50.125		51.9377	-1.81269
10.	155 155	47.9052 50.2498		51.9377 51.9377	-4.03243 -1.68787
11. 12.	155	47.2022		51.9377	-4.7355
13.	155	49.9282		51.9377	-2.00951
14. 15.	155 155	47.7514 47.5443		51.9377 51.9377	-4.18629 -4.39341
16.	155	48.3197		51.9377	-3.61794
17.	155	47.0459		51.9377	-4.89173
18. 19.	155 155	49.0240 50.6660		51.9377 51.9377	-2.91371 -1.27168
20.	155	48.6259		51.9377	-3.31173
21.	155	49.7436		51.9377	-2.19412
22.	155 155	49.2431 50.8177		51.9377 51.9377	-2.69461 -1.11994
24.	155	48.7625		51.9377	-3.17514
25.	155	49.4395		51.9377	-2.49821
26. 27.	160 160	54.2016 52.2194		51.9427 51.9427	2.25883 0.276611
28.	160	49.0992		51.9427	-2.84351
29.	160	52.1797		51.9427	0.236948 -2.82908
30. 31.	160 160	49.1137 50.5149		51.9427 51.9427	-1.42788
32.	160	50.9340		51.9427	-1.00869
33.	160	51.8050		51.9427 51.9427	-0.137735 -2.03863
34. 35.	160 160	49.9041 51.3068		51.9427	-0.635953
36.	160	53.1546		51.9427	1.21186
37.	160	47.6418		51.9427 51.9427	-4.30097 -3.05786
38. 39.	160 160	48.8849 52.2924		51.9427	0.349671
40.	160	50.0591		51.9427	-1.88366
41. 42.	160 160	50.4427 51.8859		51.9427 51.9427	-1.50001 -0.056838
43.	160	53.8346		51.9427	1.89185
44.	160	48.5472		51.9427	-3.39558
45. 46.	160 160	49.1365 50.3837		51.9427 51.9427	-2.80623 -1.55899
47.	160	50.5008		51.9427	-1.44197
48.	160	50.6603		51.9427	-1.28246
49. 50.	160 160	50.0313 52.3295		51.9427 51.9427	-1.91144 0.38673
51.	170	52.1357		51.9529	0.182778
52.	170	53.8060		51.9529	1.85309
53. 54.	170 170	54.9846 54.0628		51.9529 51.9529	3.03174 2.10992
55.	170	52.5668		51.9529	0.613931
56.	170	53.6808		51.9529	1.72795
57. 58.	170 170	53.0239 52.6005		51.9529 51.9529	1.07103 0.647594
59.	170	55.5297		51.9529	3.57685
60.	170	53.2035		51.9529	1.25062
61. 62.	170 170	52.6330 52.3660		51.9529 51.9529	0.680117 0.413166
63.	170	53.6818		51.9529	1.72892
54.	170	51.2562		51.9529	-0.696642
65. 66.	170 170	51.0308 53.7893		51.9529 51.9529	-0.922118 1.83647
57.	170	51.5653		51.9529	-0.387534
58.	170	52.9002		51.9529	0.947347
59. 70.	170 170	54.6631 54.8832		51.9529 51.9529	2.71023 2.93035
71.	170	55.8168		51.9529	3.86392
72.	170	51.9857		51.9529	0.032777
73. 74.	170 170	54.7851 53.9879		51.9529 51.9529	2.83218 2.03505
75.	170	55.3787		51.9529	3.42578