Math 10

Lesson 7-1 Answers

Lesson Questions

Question 1

a)

$$tanX = \frac{6}{12} = 0.50$$
$$tanZ = \frac{12}{6} = 2.0$$

b)

$$X = tan^{-1}(0.5) = 26.6^{\circ}$$

 $Z = tan^{-1}(2.0) = 63.4^{\circ}$

Question 2

$$tan 25 = 0.466$$

$$tan73 = 3.27$$

Question 3

adj and hyp
$$\rightarrow$$
 cos

$$\cos Q = \frac{\text{adj}}{\text{hyp}} = \frac{4.0}{5.0} = 0.8$$

$$Q = \cos^{-1}(0.8) = 36.9^{\circ}$$

Question 4

$$\sin 30 = 0.50$$

$$\cos 30 = 0.866$$

$$tan 30 = 0.577$$

Assignment

1. a)
$$tanA = \frac{6}{7}$$
 $tanC = \frac{7}{6}$
b) $tanA = \frac{6}{7}$ $tanC = \frac{7}{6}$

$$tanC = \frac{7}{6}$$

b)
$$tan A = \frac{6}{7}$$

$$tanC = \frac{7}{6}$$

- c)
- d)

5.0 (hyp)

4.0 (adj)

Q

4. Sketches will vary. For example:

a)

b)

a) 36.4° b) 68.0°

a) 36.0° b) 49.1°

a) 11° b) 14° c) 6° d) 9° 7.

22° 8.

9. 22°

10. 146°

L7-1

11. a) There is no least possible value; the tangent can be arbitrarily close to zero.

b) There is no greatest possible value; the tangent can be arbitrarily large.

12. a) $1; \frac{1}{\sqrt{2}}; \frac{1}{\sqrt{3}}; \frac{1}{\sqrt{4}}; \frac{1}{\sqrt{5}}; \frac{1}{\sqrt{6}}...$

b)
$$\frac{1}{\sqrt{100}}$$
 or $\frac{1}{10}$

2

- 13. a) i) Opposite: GH; adjacent: AG; hypotenuse: AH
 - ii) Opposite: TK; adjacent: AK; hypotenuse: AT
 - b) i) $\sin A = 0.60$; $\cos A = 0.80$
 - ii) $\sin A = 0.28$; $\cos A = 0.96$
- 14. Sketches will vary. For example:

- 15. a) C = 16.3°, D = 73.7°
 - b) F = 63.9°, H = 26.1°
 - c) $J = 38.0^{\circ}$, $K = 52.0^{\circ}$
 - d) $P = 49.3^{\circ}$, $Q = 40.7^{\circ}$
- 16. 1.3°
- 17. 79.4°
- 18. 61°
- 19. 31°

20. a) i) 0.1736... ii) 0.3420...

iii) 0.6427... iv) 0.7660... v) 0.8660... vi) 0.9848...

21.

The opposite and adjacent sides of an acute angle have the same length, so

$$\frac{\text{opposite}}{\text{hypotenuse}} = \frac{\text{adjacent}}{\text{hypotenuse}}$$

L7-1