1. Propositional Logic

Why Mathematics is Amazing!

- \circ Mathematics is a form of \mathcal{A} rt. The masterpieces of math are elegant arguments (proofs) that tell us some fragment of truth.
- Unlike other sciences where results are most often obtained from experimental data and observation, mathematical results are "discovered" when someone is able to prove that something must be true.
- For a proof to be correct, the underlying steps must be a valid logical argument and the language we use must be well-defined and exact.
- It is useful to know when something is true! Many scientific results are based on underlying mathematical models → physics, chemistry, biology, engineering...
- In this course, we will study DISCRETE MATH the part of mathematics devoted to the study of "discrete" objects (consisting of distinct "whole" parts or unconnected elements).

Ex. DNA sequences = fundamental building blocks of living things (RNA) or = finite strings made of 4 symbols from the Set $\{T(u), C, A_16\}$ translation:

RNA ex. —AGCAUCGCAUCGA—

From DNA to RNA to building proteins from amino acids encoded by 3-letter "words" called codons

 Logic itself is especially important in Computer Science; the language of computers is Boolean algebra. Using logic, we are able to translate our intentions so that a machine made of electrical circuits does our bidding.

THE ROUGH PLAN FOR MAT1348

- We will begin by studying Propositional Logic.
- We will work our way towards writing and understanding correct Mathematical Proofs.
- We will study the basics of Set Theory, Functions, and Relations (especially Equivalence Relations).
- We will learn basic methods of Counting, and Proof by Induction these are fundamental tools for math and computer science.
- We will end with an introduction to Graph Theory, which is an essential tool for modelling many discrete structures.

Warnings!

- This course is very fast-paced.
- You will be given **many** new and precise definitions and techniques to use.
- Having precise (lawyer-like?) language is very important when we communicate (in the form of written mathematical proofs, computer programs, and otherwise), we want to be certain we understand each other exactly.

BASIC BUILDING BLOCKS OF LOGIC

- A **proposition** is a declarative sentence that is either **true** or **false** but not both.
- If a proposition is true, then its **truth value** is TRUE, denoted **T**.
- If a proposition is false, then its **truth value** is FALSE, denoted **F**.

Example 1.1. For each of the following sentences, determine whether or not it is a proposition. If it is a proposition, what is its truth value? If it is not a proposition, explain.

- (a) Ottawa is the capital of Canada. ← a proposition € It's T.
- (b) 1+2=3. \leftarrow a proposition \checkmark It's \top .
- (c) 2+2=3. \leftarrow a proposition \checkmark It's \top
- (d) 1 + x = 3. \leftarrow <u>not</u> a proposition unless we know what x is.
- (e) There exists an integer x such that 1 + x = 3. \leftarrow a proposition \checkmark It's T.
- (f) For all integers x, the equation 1 + x = 3 is true. \leftarrow a proposition \checkmark It's +
- (g) Eat your vegetables. not a proposition since it's not a declarative statement
- (h) What time is it? not a proposition since it's not a declarative statement
- (i) All books in the library are yellow.

La proposition & It's F (at uottawa library)

(j) At least 2 books in the library are yellow.

La propositionでIt's 丁 (at uOttawa library)

Propositional variables (a.k.a atoms) and compound propositions.

- o For short, we will use variables to represent propositions.
- The variables we use to represent propositions are called **propositional variables** or "atoms" for short.

Ex. p: "Tigers are furry animals."

Ex. q: "Elephants are wise."

• A **compound proposition** is formed by combining one or more atoms using **logical connectives.**

LOGICAL CONNECTIVES

Negation. Let p be a proposition.

- The <u>negation of p</u>, denoted 7p, read "not-p", is the proposition "It is not the case that p."
- The truth value of ¬p is the opposite of the truth value of p.

	Truth table:			
p	7-12			
1	F			
F	T			

Conjunction. Let p and q be propositions.

• The <u>conjunction</u> of p and q, denoted $p \land q$, read "p and q", is the proposition

"p and q"

• $p\Lambda q$ is T when both p and q are T; otherwise, $p\Lambda q$ is F.

		Tru	th ta	ıble:
p	8	4	Λ	A.
T	\dashv		T	U
T	F		F	
F	\top		F	
F	4		F	

Disjunction. Let p and q be propositions.

- The <u>disjunction of pand</u> q, denoted pVq,
 read "p or q", is the proposition "p or q"
- pvq is F when both p and q are F; otherwise,
 pvq is T.
- > "or" is the inclusive or i.e. "and/or"

	Truth table:				
p	8	pVq			
T	4	T			
T	F	T			
F	T	T			
F	Ŧ	F			

Exclusive Or. Let p and q be propositions.

• The <u>exclusive or of p and q</u>, denoted $p \oplus q$, read "p x-or q", is the proposition

"p or q but not both"

• p⊕q is T when exactly one of pandq is T and the other is F; otherwise, p⊕q is F.

Truth Table:					
p	8	POQ			
T	4	F			
T	F	T			
F	7	T			
F	F	F			

Conditional Statement / Implication. Let p and q be propositions.

• The conditional statement "if-p, then q", is denoted $p \rightarrow q$, read "p implies q", is the proposition "If-p, then q."

- $p \rightarrow q$ is F when p is T and q is F; otherwise, $p \rightarrow q$ is T.
- p→q is like a promise or bargain. If p is T, then q is promised to be T. The only way a promise is broken is when p is T but q is F.

Note: $[F \rightarrow (anything)]$ is T. $[(anything) \rightarrow T]$ is T.

Biconditional Statement. Let p and q be propositions.

- The biconditional statement "p if and only if q" is denoted $p \leftrightarrow q$, read "p if and only if q".
- $P \leftrightarrow q$ is T when p and q have the same truth value (both T or both F); otherwise, $p \leftrightarrow q$ is F.

		Truth Table:
ф	8	p↔a
T	4	T
T	F	F
F	丁	F
F	F	

TRUTH TABLES

When making a truth table for a compound proposition consisting of atoms p_1, p_2, \dots, p_k , we will always use the following convention:

- · 2k rows for k atoms p1, ..., pk
- truth values always Ts and Ts (not Os/1s)
- · Each atom has its own column.
- For rightmost atom's column, we alternate T, F, T, F, ... from top to bottom of column
 - Moving one column to the left, the next atom's column alternates twice as many Ts and twice as many Fs as the column on its immediate right

Example 1.2. Write a truth table for each of the following compound propositions:

a.
$$(p \to q) \leftrightarrow (\neg p \lor q)$$

b.
$$(p \oplus q) \rightarrow \neg q$$

c.
$$(p \to q) \land (q \to p)$$

d.
$$\neg(\neg p \lor q)$$

e.
$$(p \land \neg p) \leftrightarrow (p \lor \neg p)$$

f.
$$q \leftrightarrow (p \leftrightarrow r)$$

	$q \cdot r \cdot (p \cdot r \cdot r)$	
a)	p q ρ→q T T T	$7pVq (p \rightarrow q) \leftrightarrow (7pVq)$
		T
	TFF	I F I T
	FTT	T
	FFT	
b)	p q P D g	7q (p \phi q) -> 7q
<i>D</i>	P Q P B T T F	7q (γ⊕q) → 7q F T
	TFT	1 + 1
	FTT	T F F F F F F F F F F
	FFF	T
c)	$pq p \rightarrow q$ TTT	$q \rightarrow p (p \rightarrow q) \land (q \rightarrow p)$
	TF F	
	FT T	T T T
	1 1 1	
d)	p q 7p 7	pvq 7(7-pvq)
9()	P 9 7 7 7 7 F F	+ 1 + 1 + 1
	TFF	FIT
	F T + -	T F
	FFT -	<u> </u>
e)	p 7p p/17	
	T F F	
	FTF	H T H H H

f)	pqr	p⇔r	q ex (per)	
	TTT	T	T		
	TTF	F	F		
	TFT		F		
	TFF	F	T		
	FTT	F	F		
	FTF	丁	T		
	FFT	F	T		
	FFF	T	F		

TAUTOLOGIES, CONTRADICTIONS, AND CONTINGENCIES

- A compound proposition that is always true (in all rows of its truth table) is called a **tautology**.
- A compound proposition that is always false (in all rows if its truth table) is called a **contradiction**.
- A compound proposition that is neither a tautology nor a contradiction is called a **contingency**.

Example 1.3. For each compound proposition given in Example 1.2, determine whether it is a tautology, contradiction, or contingency.

b)
$$(p \oplus q) \rightarrow 7q$$
 is sometimes T, sometimes F : contingency

c)
$$(-p \rightarrow q) \land (q \rightarrow p)$$
 is sometimes T, sometimes F : contingency

STUDY GUIDE

- proposition propositional variable / atom compound proposition
- truth value truth table (how many rows?)
- \diamond logical connectives: negation \neg disjunction (or) \lor conjunction (and) \land implication \rightarrow biconditional (if and only if) \leftrightarrow exclusive or (XOR) \oplus
- tautology contradiction contingency

Rosen Exercises 1.1 # 1,3,5,9,11,29,31,33,37 1.3 # 9,15