

A polynomial generalization of the power-compositions determinant*

Josep M. Brunat and Antonio Montes
 Departament de Matemàtica Aplicada II,
 Universitat Politècnica de Catalunya, Spain.
 {josep.m.brunat, antonio.montes}@upc.edu
<http://www-ma2.upc.edu/~montes>

July 12, 2005.

Abstract

Let $C(n, p)$ be the set of p -compositions of an integer n , i.e., the set of p -tuples $\alpha = (\alpha_1, \dots, \alpha_p)$ of nonnegative integers such that $\alpha_1 + \dots + \alpha_p = n$, and $\mathbf{x} = (x_1, \dots, x_p)$ a vector of indeterminates. For α and β two p -compositions of n , define $(\mathbf{x} + \alpha)^\beta = (x_1 + \alpha_1)^{\beta_1} \cdots (x_p + \alpha_p)^{\beta_p}$. In this paper we prove an explicit formula for the determinant $\det_{\alpha, \beta \in C(n, p)}((\mathbf{x} + \alpha)^\beta)$. In the case $x_1 = \dots = x_p$ the formula gives a proof of a conjecture by C. Krattenthaler.

Key words. composition, polynomial determinant, power-composition, combinatorial determinant.

AMS subject classifications. 11C20, 15A36, 05A10, 05A19.

1 Introduction

Let us start with some notation. If $\mathbf{u} = (u_1, \dots, u_\ell)$ and $\mathbf{v} = (v_1, \dots, v_\ell)$ are two vectors of the same length, we define $\mathbf{u}^\mathbf{v} = u_1^{v_1} \cdots u_\ell^{v_\ell}$ (where, to be consistent $0^0 = 1$). In our case, the entries u_i and v_i of \mathbf{u} and \mathbf{v} will be nonnegative integers or polynomials. We use $\mathbf{x} = (x_1, \dots, x_p)$ to denote a vector of indeterminates and $\mathbf{1} = (1, \dots, 1)$. The lengths of \mathbf{x} and $\mathbf{1}$ will be clear from the context. If $\mathbf{u} = (u_1, \dots, u_\ell)$, then $s(\mathbf{u})$ denotes the sum of the entries of \mathbf{u} , i.e. $s(\mathbf{u}) = u_1 + \dots + u_\ell$, and $\bar{\mathbf{u}}$ denotes the vector obtained from \mathbf{u} by deleting the last coordinate, $\bar{\mathbf{u}} = (u_1, \dots, u_{\ell-1})$.

Let $C(n, p)$ be the set of p -compositions of an integer n , i.e., the set of p -tuples $\alpha = (\alpha_1, \dots, \alpha_p)$ of nonnegative integers such that $\alpha_1 + \dots + \alpha_p = n$. If $\alpha = (\alpha_1, \dots, \alpha_p)$ and $\beta = (\beta_1, \dots, \beta_p)$ are two p -compositions of n , using the above

*Work partially supported by the Ministerio de Ciencia y Tecnología under projects BFM2003-00368 and MTM2004-01728 and Ministerio de Ciencia y Tecnología and by the Generalitat de Catalunya under project 2005 SGR 00692

notation, we have $\boldsymbol{\alpha}^{\beta} = \alpha_1^{\beta_1} \cdots \alpha_p^{\beta_p}$. In [1] the following explicit formula for the determinant $\Delta(n, p) = \det_{\boldsymbol{\alpha}, \boldsymbol{\beta} \in C(n, p)} (\boldsymbol{\alpha}^{\boldsymbol{\beta}})$ was proved:

$$\Delta(n, p) = \prod_{k=1}^{\min\{n, p\}} \left(n^{\binom{n-1}{k}} \prod_{i=1}^{n-k+1} i^{(n-i+1)\binom{n-i-1}{k-2}} \right)^{\binom{p}{k}}. \quad (1.1)$$

In a complement [4] to his impressive *Advanced Determinant Calculus* [3], C. Krattenthaler mentions this determinant, and after giving the alternative formula

$$\Delta(n, p) = n^{\binom{n+p-1}{p}} \prod_{i=1}^n i^{(n-i+1)\binom{n+p-i-1}{p-2}} \quad (1.2)$$

he states as a conjecture a generalization to univariate polynomials. Namely, let x be an indeterminate and

$$\Delta(n, p, x) = \det_{\boldsymbol{\alpha}, \boldsymbol{\beta} \in C(n, p)} ((x \cdot \mathbf{1} + \boldsymbol{\alpha})^{\boldsymbol{\beta}}).$$

Note that $(x \cdot \mathbf{1} + \boldsymbol{\alpha})^{\boldsymbol{\beta}} = (x + \alpha_1)^{\beta_1} \cdots (x + \alpha_p)^{\beta_p}$.

Conjecture [C. Krattenthaler]:

$$\Delta(n, p, x) = (px + n)^{\binom{n+p-1}{p}} \prod_{i=1}^n i^{(n-i+1)\binom{n+p-i-1}{p-2}}. \quad (1.3)$$

As $(n - i + 1)\binom{n+p-i-1}{p-2} = (p - 1)\binom{n+p-i-1}{p-1}$, formula (1.2) can be written in the form

$$\Delta(n, p) = n^{\binom{n+p-1}{p}} \prod_{i=1}^n i^{(p-1)\binom{n+p-i-1}{p-1}}$$

and Krattenthaler's Conjecture (1.3) in the form

$$\Delta(n, p, x) = (px + n)^{\binom{n+p-1}{p}} \prod_{i=1}^n i^{(p-1)\binom{n+p-i-1}{p-1}}. \quad (1.4)$$

The main goal of this paper is to prove a generalization of formula (1.4) for p indeterminates. For this, let $\mathbf{x} = (x_1, \dots, x_p)$ be a vector of indeterminates, and let

$$\Delta(n, p, \mathbf{x}) = \det_{\boldsymbol{\alpha}, \boldsymbol{\beta} \in C(n, p)} ((\mathbf{x} + \boldsymbol{\alpha})^{\boldsymbol{\beta}}).$$

(Recall that $(\mathbf{x} + \boldsymbol{\alpha})^{\boldsymbol{\beta}} = (x_1 + \alpha_1)^{\beta_1} \cdots (x_p + \beta_p)^{\beta_p}$). Then, we prove the following formula (Theorem 5.1):

$$\Delta(n, p, \mathbf{x}) = (s(\mathbf{x}) + n)^{\binom{n+p-1}{p}} \prod_{i=1}^n i^{(p-1)\binom{n+p-i-1}{p-1}}. \quad (1.5)$$

As $s(\mathbf{x}) = x_1 + \cdots + x_p$, if $x_1 = \cdots = x_p = x$, then $s(\mathbf{x}) = px$ and the conjectured identity (1.4) follows.

We also prove a variant of this result for proper compositions. A *proper p-composition* of an integer n is a p -composition $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_p)$ of n such that $\alpha_i \geq 1$ for all $i = 1, \dots, n$. Denote by $C^*(n, p)$ the set of proper p -compositions of n and define

$$\Delta^*(n, p, \mathbf{x}) = \det_{\boldsymbol{\alpha}, \boldsymbol{\beta} \in C^*(n, p)} \left((\mathbf{x} + \boldsymbol{\alpha})^{\boldsymbol{\beta}} \right).$$

The determinant $\Delta^*(n, p, \mathbf{x})$ has the following factorization (Theorem 6.1):

$$\Delta^*(n, p, \mathbf{x}) = (s(\mathbf{x}) + n)^{\binom{n-1}{p}} \left(\prod_{j=1}^p \prod_{i=1}^{n-p+1} (x_j + i)^{\binom{n-i-1}{p-2}} \right) \prod_{i=1}^{n-p+1} i^{(p-1)\binom{n-i-1}{p-1}}. \quad (1.6)$$

The paper is organized as follows. In the next section we collect some combinatorial identities for further reference. In Section 3 we prove the equivalence between the formula (1.2) given by Krattenthaler and (1.1). In Section 4 we prove two lemmas. The first one is a generalization of the determinant $\Delta(n, 2, \mathbf{x})$. The second lemma uses the first and corresponds to a property of a sequence of rational functions which appear in the triangulation process of the determinant $\Delta(n, p, \mathbf{x})$. Section 5 contains the proof of the main result, Theorem 5.1. Finally, Section 6 is devoted to proving (1.6).

2 Auxiliary summation formulas

Lemma 2.1. *Let a, b, c, d, m and n be nonnegative integers. Then, the following equalities hold.*

- (i) $\sum_{k \in \mathbb{Z}} \binom{a}{c+k} \binom{b}{d-k} = \binom{a+b}{c+d}$;
- (ii) $\sum_{k \leq n} \binom{a+k}{a} = \sum_{k \leq n} \binom{a+k}{k} = \binom{n+a+1}{a+1}$;
- (iii) $\sum_{r=1}^n r \binom{n+a-r}{a} = \binom{n+a+1}{a+2}$;

Proof. (i) is the well known Vandermonde's convolution, see [2, p. 169]. The formulas in (ii) are versions of the parallel summation [2, p. 159]. Part (iii) follows from

$$\begin{aligned} \sum_{r=1}^n r \binom{n+a-r}{a} &= \sum_{r=1}^n r \binom{n+a-r}{n-r} = \sum_{k=0}^{n-1} \sum_{i=0}^k \binom{a+i}{a} \\ &= \sum_{k=0}^{n-1} \binom{a+k+1}{a+1} = \binom{a+n+1}{a+2}. \end{aligned}$$

□

3 Equivalence between the two formulas for $x = 0$

Here we prove the equivalence between the formulas (1.1) and (1.2) for $\Delta(n, p)$. Obviously, the result of substituting $x = 0$ in formula (1.3) of the Conjecture gives formula (1.2) for $\Delta(n, p)$.

Proposition 3.1. *Formulas (1.1) and (1.2) are equivalent.*

Proof. We derive formula (1.2) from (1.1), which was already proved in [1]. First, note that if $p < k \leq n$, the binomial coefficient $\binom{p}{k}$ is zero. Thus, we can replace $\min\{p, n\}$ by n in formula (1.1). Analogously, if $n - k + 1 < i \leq n$, the binomial coefficient $\binom{n-i-1}{k-2}$ is zero, and we can replace the upper value $n - k + 1$ by n in the inner product. Second, the case $a = n - 1$, $b = d = p$ and $c = 0$ of Lemma 2.1 (i) yields

$$\sum_{k=1}^n \binom{n-1}{k} \binom{p}{k} = -1 + \sum_{k=0}^n \binom{n-1}{k} \binom{p}{p-k} = \binom{n+p-1}{p} - 1,$$

and, if $i \geq 1$, by taking $a = n - i - 1$, $b = d = p$ and $c = -2$ in Lemma 2.1 (i), we obtain

$$\sum_{k=1}^{n-1} \binom{n-i-1}{k-2} \binom{p}{k} = \sum_{k=0}^{n-1} \binom{n-i-1}{k-2} \binom{p}{p-k} = \binom{n+p-i-1}{p-2}.$$

Therefore,

$$\begin{aligned} \Delta(n, p) &= \prod_{k=1}^{\min\{n,p\}} \left(n \binom{n-1}{k} \prod_{i=1}^{n-k+1} i^{(n-i+1)} \binom{n-i-1}{k-2} \right)^{\binom{p}{k}} \\ &= \prod_{k=1}^n \left(n \binom{n-1}{k} \prod_{i=1}^n i^{(n-i+1)} \binom{n-i-1}{k-2} \right)^{\binom{p}{k}} \\ &= \left(\prod_{k=1}^n n \binom{n-1}{k} \binom{p}{k} \right) \left(\prod_{k=1}^n \prod_{i=1}^n i^{(n-i+1)} \binom{n-i-1}{k-2} \binom{p}{k} \right) \\ &= n^{\binom{n+p-1}{p}-1} \left(\prod_{i=1}^{n-1} i^{(n-i+1)} \binom{n+p-i-1}{p-2} \right) n^{\sum_{k=1}^n \binom{-1}{k-2} \binom{p}{k}} \\ &= n^{\binom{n+p-1}{p}+p-1} \prod_{i=1}^{n-1} i^{(n-i+1)} \binom{n+p-i-1}{p-2} \\ &= n^{\binom{n+p-1}{p}} \prod_{i=1}^n i^{(n-i+1)} \binom{n+p-i-1}{p-2}. \end{aligned}$$

□

4 A recurrence

The next lemma evaluates the determinant

$$D_r(n, y, z) = \det_{0 \leq i, j \leq r} ((y - i)^{n-j} (z + i)^j),$$

by reducing it to a Vandermonde determinant. Note that $D_n(n, x_1 + n, x_2) = \Delta(n, 2, \mathbf{x})$.

Lemma 4.1.

$$D_r(n, y, z) = (y + z)^{\binom{r+1}{2}} \left(\prod_{i=0}^r (y - i)^{n-r} \right) \left(\prod_{i=1}^r i^{r-i+1} \right).$$

Proof.

$$\begin{aligned} D_r(n, y, z) &= \begin{vmatrix} (y-0)^n(z+0)^0 & (y-0)^{n-1}(z+0)^1 & \cdots & (y-0)^{n-r}(z+0)^r \\ (y-1)^n(z+1)^0 & (y-1)^{n-1}(z+1)^1 & \cdots & (y-1)^{n-r}(z+1)^r \\ \vdots & \vdots & & \vdots \\ (y-r)^n(z+r)^0 & (y-r)^{n-1}(z+r)^1 & \cdots & (y-r)^{n-r}(z+r)^r \end{vmatrix} \\ &= \left(\prod_{i=0}^r (y - i)^n \right) \begin{vmatrix} 1 & (z+0)/(y-0) & \cdots & (z+0)^r/(y-0)^r \\ 1 & (z+1)/(y-1) & \cdots & (z+1)^r/(y-1)^r \\ \vdots & \vdots & & \vdots \\ 1 & (z+r)/(y-r) & \cdots & (z+r)^r/(y-r)^r \end{vmatrix} \\ &= \left(\prod_{i=0}^r (y - i)^n \right) \prod_{0 \leq i < j \leq r} \left(\frac{z+j}{y-j} - \frac{z+i}{y-i} \right) \\ &= \left(\prod_{i=0}^r (y - i)^n \right) \prod_{0 \leq i < j \leq r} \frac{(y+z)(j-i)}{(y-j)(y-i)} \\ &= \left(\prod_{i=0}^r (y - i)^n \right) (y + z)^{\binom{r+1}{2}} \frac{\prod_{i=1}^r i^{r-i+1}}{\prod_{i=0}^r (y - i)^r} \\ &= (y + z)^{\binom{r+1}{2}} \left(\prod_{i=0}^r (y - i)^{n-r} \right) \left(\prod_{i=1}^r i^{r-i+1} \right). \end{aligned}$$

□

Lemma 4.2. Define $f_r: \mathbb{N}_0 \times \mathbb{N}_0 \rightarrow \mathbb{Q}(y, z)$ recursively by

$$\begin{aligned} f_0(i, j) &= (z + i)^j; \\ f_{r+1}(i, j) &= f_r(i, j) \quad \text{if } j \leq r; \\ f_{r+1}(i, j) &= f_r(i, j) - \left(\frac{y - i}{y - r} \right)^{j-r} \frac{f_r(i, r)f_r(r, j)}{f_r(r, r)} \quad \text{if } j > r. \end{aligned}$$

Then

$$(i) \quad f_{r+1}(r, j) = 0 \text{ for } j \geq r + 1;$$

$$(ii) \quad f_r(r, r) = (y + z)^r \frac{r!}{\prod_{i=0}^{r-1} (y - i)}.$$

Proof. Part (i) is trivial using induction. To obtain $f_r = f_r(r, r)$, we take $n \geq r$ and calculate $D(n, y, z) = D_n(n, y, z)$ by Gauss triangulation method.

The entry (i, j) of $D(n, y, z)$ is $(y - i)^{n-j}(z + i)^j = (y - i)^{n-j}f_0(i, j)$. If $j \geq 1$, add to the column j the column 0 multiplied by

$$-\frac{1}{(y - 0)^{j-0}} \frac{f_0(0, j)}{f_0(0, 0)}.$$

Then, the entry (i, j) with $j \geq 1$ is modified to

$$\begin{aligned} & (y - i)^{n-j}f_0(i, j) - (y - i)^{n-0}f_0(i, 0) \frac{1}{(y - 0)^{j-0}} \frac{f_0(0, j)}{f_0(0, 0)} \\ &= (y - i)^{n-j} \left\{ f_0(i, j) - \left(\frac{y - i}{y - 0} \right)^{j-0} \frac{f_0(i, k)f_0(k, j)}{f_0(0, 0)} \right\} \\ &= (y - i)^{n-j}f_1(i, j). \end{aligned}$$

Therefore, $D(n, y, z) = \det_{0 \leq i, j \leq r} ((y - i)^{n-j}f_1(i, j))$ and $f_1(0, j) = 0$ for $j \geq 1$.

Now, assume that $D(n, y, z) = \det_{0 \leq i, j \leq n} ((y - i)^{n-j}f_k(i, j))$ for $k \geq 1$ with $f_k(i, j) = 0$ for $k, j > i$. Add to the column $j \geq k + 1$ the column k multiplied by

$$-\frac{1}{(y - k)^{j-k}} \frac{f_k(k, j)}{f_k(k, k)}.$$

The entry (i, j) is modified to

$$\begin{aligned} & (y - i)^{n-j}f_k(i, j) - (y - i)^{n-k}f_k(i, k) \cdot \frac{1}{(y - k)^{j-k}} \cdot \frac{f_k(k, j)}{f_k(k, k)} \\ &= (y - i)^{n-j} \left\{ f_k(i, j) - \left(\frac{y - i}{y - k} \right)^{j-k} \frac{f_k(i, k)f_k(k, j)}{f_k(k, k)} \right\} \\ &= (y - i)^{n-j}f_{k+1}(i, j). \end{aligned}$$

Clearly $f_{k+1}(k, j) = 0$ for $j > k$. After n iterations, we get the determinant of a triangular matrix. Hence

$$D(n, y, z) = \det_{0 \leq k \leq n} ((y - k)^{n-k}f_k(k, k)) = \prod_{r=0}^n (y - k)^{n-k}f_k.$$

The principal minor of order $r + 1$ is $D_r(n, y, z) = \prod_{k=0}^r (y - k)^{n-k}f_k$. Therefore,

$$\frac{D_r(n, y, z)}{D_{r-1}(n, y, z)} = (y - r)^{n-r}f_r. \quad (4.7)$$

On the other hand, by Lemma 4.1 we obtain

$$\begin{aligned} \frac{D_r(n, y, z)}{D_{r-1}(n, y, z)} &= \frac{(y + z)^{\binom{r+1}{2}} (\prod_{i=0}^r (y - i)^{n-r}) (\prod_{i=1}^r i^{r-i+1})}{(y + z)^{\binom{r}{2}} (\prod_{i=0}^{r-1} (y - i)^{n-r-1}) (\prod_{i=1}^{r-1} i^{r-i})} \\ &= (y + z)^r \cdot r! \cdot \frac{(y - r)^{n-r}}{\prod_{i=0}^{r-1} (y - i)}. \end{aligned}$$

Comparing with (4.7), we have arrived at

$$f_r = (y + z)^r \frac{r!}{\prod_{i=0}^{r-1} (y - i)}.$$

□

5 Proof of the main theorem

We sort $C(n, p)$ in lexicographic order. For instance, for $n = 5$, and $p = 3$, we obtain

$$\begin{aligned} C(5, 3) = \{ & (5, 0, 0), (4, 1, 0), (3, 2, 0), (2, 3, 0), (1, 4, 0), (0, 5, 0), \\ & (4, 0, 1), (3, 1, 1), (2, 2, 1), (1, 3, 1), (0, 4, 1), \\ & (3, 0, 2), (2, 1, 2), (1, 2, 2), (0, 3, 2), \\ & (2, 0, 3), (1, 1, 3), (0, 2, 3), \\ & (1, 0, 4), (0, 1, 4), \\ & (0, 0, 5) \}. \end{aligned}$$

Let $M(n, p, \mathbf{x})$ be the matrix with rows and columns labeled by the p -compositions of n in lexicographic order and with the entry $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ equal to $(\mathbf{x} + \boldsymbol{\alpha})^{\boldsymbol{\beta}}$. We have $\Delta(n, p, \mathbf{x}) = \det M(n, p, \mathbf{x})$.

An entry $(\mathbf{x} + \boldsymbol{\alpha})^{\boldsymbol{\beta}}$ in $M(n, p, \mathbf{x})$ can be written in the form $(\bar{\mathbf{x}} + \bar{\boldsymbol{\alpha}})^{\bar{\boldsymbol{\beta}}} (x_p + \alpha_p)^{\beta_p}$. For $0 \leq i, j \leq n$, let S_{ij} be the matrix with entries $(\bar{\mathbf{x}} + \bar{\boldsymbol{\alpha}})^{\bar{\boldsymbol{\beta}}}$ where $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ satisfy $\alpha_p = i$ and $\beta_p = j$. Thus, the submatrix of $M(n, p, \mathbf{x})$ formed by the entries labeled $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ with $\alpha_p = i$ and $\beta_p = j$ can be written $(S_{ij}(x_p + i)^j)$. Note that

$$S_{kk} = M(n - k, p - 1, \bar{\mathbf{x}}).$$

Define $f_0(i, j) = (x_p + i)^j$. Therefore, $M(n, p, \mathbf{x})$ admits the block decomposition

$$M(n, p, \mathbf{x}) = (S_{ij} f_0(i, j))_{0 \leq i, j \leq n}.$$

The idea is to put $M(n, p, \mathbf{x})$ in block triangular form in such a way that at each step only the last factor of each block is modified.

Theorem 5.1.

$$\Delta(n, p, \mathbf{x}) = (s(\mathbf{x}) + n)^{\binom{n+p-1}{p}} \prod_{i=1}^n i^{(p-1)\binom{n+p-i-1}{p-1}}.$$

Proof. The proof is by induction on p . For $p = 1$, $\Delta(n, p, x)$ is the determinant of the 1×1 matrix $((x + n)^n)$. Hence $\Delta(n, p, x) = (x + n)^n$. This value coincides with the right hand side of the formula for $p = 1$.

Consider now the case $p = 2$. Any 2-composition of n is of the form $(n - i, i)$ for some i , $0 \leq i \leq n$. The determinant to be calculated is $\Delta(n, 2, \mathbf{x}) = \det_{0 \leq i, j \leq n} ((x_1 + n - i)^{n-j} (x_2 + i)^j)$. By taking $r = n$, $y = x_1 + n$ and $z = x_2$ in Lemma 4.1, we get

$$\Delta(n, 2, \mathbf{x}) = D_n(n, x_1 + n, x_2) = (x_1 + x_2 + n)^{\binom{n+1}{2}} \prod_{i=1}^n i^{n-i+1}.$$

Therefore, the formula holds for $p = 2$.

Now, let $p > 2$ and assume that the formula holds for $p - 1$. Begin with the block decomposition of the matrix $M(n, p, \mathbf{x}) = (S_{ij}f_0(i, j))_{0 \leq i, j \leq n}$.

Assume $\Delta(n, p, \mathbf{x}) = \det(S_{ij}f_r(i, j))$ where $S_{ij} = ((\bar{\mathbf{x}} + \bar{\boldsymbol{\alpha}})^{\bar{\beta}})$, with $\alpha_p = i$, $\beta_p = j$, and $f_r(i, j) = 0$ for $i < r$ and $j > r$.

Fix a column β with $\beta_p = j > r$. For each $\gamma \in C(n, p)$ with $\gamma_p = r$ and $\gamma_k \geq \beta_k$ for $k \in [p - 1]$, add to the column β the column γ multiplied by

$$-\frac{1}{(s(\bar{\mathbf{x}}) + n - r)^{j-r}} \binom{j-r}{\bar{\gamma} - \bar{\beta}} \frac{f_r(r, j)}{f_r(r, r)}.$$

The differences $\bar{\delta} = \bar{\gamma} - \bar{\beta}$ are exactly the $(p - 1)$ -compositions of $j - r$. Also note that by the multinomial theorem,

$$(s(\bar{\mathbf{x}}) + n - i)^{j-r} = ((x_1 + \alpha_1) + \cdots + (x_{p-1} + \alpha_{p-1}))^{j-r} = \sum_{\bar{\delta}} \binom{j-r}{\bar{\delta}} (s(\bar{\mathbf{x}}) + \bar{\boldsymbol{\alpha}})^{\bar{\delta}}.$$

Then, a term of column β is modified to

$$\begin{aligned} & (\bar{\mathbf{x}} + \bar{\boldsymbol{\alpha}})^{\bar{\beta}} f_r(i, j) - \sum_{\bar{\gamma}} \frac{1}{(s(\bar{\mathbf{x}}) + n - r)^{j-r}} \binom{j-r}{\bar{\gamma} - \bar{\beta}} \frac{f_r(r, j)}{f_r(r, r)} (\bar{\mathbf{x}} + \bar{\boldsymbol{\alpha}})^{\bar{\gamma}} f_r(i, r) \\ &= (\bar{\mathbf{x}} + \bar{\boldsymbol{\alpha}})^{\bar{\beta}} \left\{ f_r(i, j) - \frac{1}{(s(\bar{\mathbf{x}}) + n - r)^{j-r}} \left(\sum_{\bar{\delta}} \binom{j-r}{\bar{\delta}} (\bar{\mathbf{x}} + \bar{\boldsymbol{\alpha}})^{\bar{\delta}} \right) \frac{f_r(r, j) f_r(i, r)}{f_r(r, r)} \right\} \\ &= (\bar{\mathbf{x}} + \bar{\boldsymbol{\alpha}})^{\bar{\beta}} \left\{ f_r(i, j) - \frac{(s(\bar{\mathbf{x}}) + n - i)^{j-r}}{(s(\bar{\mathbf{x}}) + n - r)^{j-r}} \frac{f_r(r, j) f_r(i, r)}{f_r(r, r)} \right\}. \end{aligned}$$

Now, define $f_{r+1}(i, j) = f_r(i, j)$ for $j \leq r$ and

$$f_{r+1}(i, j) = f_r(i, j) - \frac{(s(\bar{\mathbf{x}}) + n - i)^{j-r}}{(s(\bar{\mathbf{x}}) + n - r)^{j-r}} \frac{f_r(r, j) f_r(i, r)}{f_r(r, r)}$$

for $j > r$. Note that $f_{r+1}(r, j) = 0$ for $j > r$. After n iterations, we arrive at the block matrix $(S_{ij}f_n(i, j))_{0 \leq i, j \leq n}$ where $f(i, j) = 0$ for $j > i$. Thus, the determinant $\Delta(n, p, \mathbf{x})$ is the product of the determinants of the diagonal blocks:

$$\Delta(n, p, \mathbf{x}) = \prod_{r=0}^n \det(S_{rr}f_r(r, r)).$$

Now, $S_{rr} = M(n - r, p - 1, \bar{\mathbf{x}})$, a square matrix of order $\binom{n-r+p-2}{p-2}$. Therefore

$$\Delta(n, p, \mathbf{x}) = \prod_{r=0}^n \left(\Delta(n - r, p - 1, \bar{\mathbf{x}}) f_r(r, r)^{\binom{n-r+p-2}{p-2}} \right).$$

Now, observe that the rational functions f_r satisfy the hypothesis of Lemma 4.2 with $y = s(\bar{\mathbf{x}}) + n = x_1 + \cdots + x_{p-1} + n$ and $z = x_p$. Thus,

$$f_r = f_r(r, r) = (s(\mathbf{x}) + n)^r \cdot \frac{r!}{\prod_{i=0}^{r-1} (s(\bar{\mathbf{x}}) + n - i)}.$$

By the induction hypothesis,

$$\begin{aligned}\Delta(n, p, \mathbf{x}) &= \prod_{r=0}^n \left((s(\bar{\mathbf{x}}) + n - r)^{\binom{n-r+p-2}{p-1}} \prod_{i=1}^{n-r} i^{(p-2)\binom{n-r+p-i-2}{p-2}} \right) \\ &\quad \cdot \prod_{r=0}^n \left((s(\mathbf{x}) + n)^r \cdot r! \cdot \frac{1}{\prod_{i=0}^{r-1} (s(\bar{\mathbf{x}}) + n - i)} \right)^{\binom{n-r+p-2}{p-2}}\end{aligned}$$

It remains to count how many factors of each type there are in the above product.

The number of factors $(s(\mathbf{x}) + n)$ is $\sum_{r=1}^n r^{\binom{n+p-r-2}{p-2}}$. From Lemma 2.1 (iii) for $a = p - 2$ this coefficient is $\binom{n+p-1}{p}$.

The number of factors $s(\bar{\mathbf{x}}) + n - i$, for $0 \leq i \leq n - 1$, is (by using Lemma 2.1 (ii) with $a = p - 2$)

$$\binom{n-i+p-2}{p-1} - \sum_{r=i+1}^n \binom{n-r+p-2}{p-2} = \binom{n-i+p-2}{p-1} - \binom{n-i+p-2}{p-1} = 0.$$

Finally, for $1 \leq i \leq n$, the number of factors equal to i is

$$\begin{aligned}(p-2) \sum_{r=0}^{n-i} \binom{n+p-i-r-2}{p-2} + \sum_{r=i}^n \binom{n+p-r-2}{p-2} = \\ (p-2) \binom{n+p-i-r-1}{p-1} + \binom{n+p-r-1}{p-1} = (p-1) \binom{n+p-r-1}{p-1}.\end{aligned}$$

□

6 Proper compositions

A *proper p-composition* of an integer n is a p -composition $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_p)$ of n such that $\alpha_i \geq 1$ for all $i = 1, \dots, n$. We denote by $C^*(n, p)$ the set of proper p -compositions of n . In [1] the following formula was given:

$$\Delta^*(n, p) = \det_{\boldsymbol{\alpha}, \boldsymbol{\beta} \in C^*(n, p)} (\boldsymbol{\alpha}^\boldsymbol{\beta}) = n^{\binom{n-1}{p}} \prod_{i=1}^{n-p+1} i^{(n-i+1)\binom{n-i-1}{p-2}}.$$

Here, we study the corresponding generalization

$$\Delta^*(n, p, \mathbf{x}) = \det_{\boldsymbol{\alpha}, \boldsymbol{\beta} \in C^*(n, p)} ((\mathbf{x} + \boldsymbol{\alpha})^\boldsymbol{\beta}).$$

Theorem 6.1. *If $p \leq n$, then*

$$\Delta^*(n, p, \mathbf{x}) = (s(\mathbf{x}) + n)^{\binom{n-1}{p}} \left(\prod_{i=1}^{n-p+1} \prod_{j=1}^p (x_j + i)^{\binom{n-i-1}{p-2}} \right) \prod_{i=1}^{n-p} i^{(p-1)\binom{n-i-1}{p-1}}.$$

Proof. The mapping $C^*(n, p) \rightarrow C(n-p, p)$ defined by $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_p) \mapsto \boldsymbol{\alpha} - \mathbf{1} = (\alpha_1 - 1, \dots, \alpha_p - 1)$ is bijective. Thus, we have

$$\begin{aligned}\Delta^*(n, p, \mathbf{x}) &= \det_{\boldsymbol{\alpha}, \boldsymbol{\beta} \in C^*(n, p)} ((\mathbf{x} + \boldsymbol{\alpha})^{\boldsymbol{\beta}}) \\ &= \det_{\boldsymbol{\alpha}, \boldsymbol{\beta} \in C^*(n, p)} ((\mathbf{x} + \mathbf{1} + \boldsymbol{\alpha} - \mathbf{1})^{\boldsymbol{\beta} - \mathbf{1} + \mathbf{1}}) \\ &= \det_{\boldsymbol{\alpha}, \boldsymbol{\beta} \in C(n-p, p)} ((\mathbf{x} + \mathbf{1} + \boldsymbol{\alpha})^{\boldsymbol{\beta}} (\mathbf{x} + \mathbf{1} + \boldsymbol{\alpha})^{\mathbf{1}}) \\ &= \Delta(n-p, p, \mathbf{x} + \mathbf{1}) \prod_{\boldsymbol{\alpha} \in C(n-p, p)} (\mathbf{x} + \mathbf{1} + \boldsymbol{\alpha})^{\mathbf{1}}.\end{aligned}$$

The number of times that an integer i , $0 \leq i \leq n-p$ appears as the first entry of p -compositions of $n-p$ is the number of solutions $(\alpha_2, \dots, \alpha_{n-p})$ of $i + \alpha_2 + \dots + \alpha_p = n-p$, which is $\binom{n-p-i+p-2}{p-2} = \binom{n-i-2}{p-2}$. The count is the same for every coordinate. Then, in the product $\prod_{\boldsymbol{\alpha} \in C(n-p, p)} (\mathbf{x} + \mathbf{1} + \boldsymbol{\alpha})^{\mathbf{1}}$, the number of factors equal to $x_j + 1 + i$ is $\binom{n-i-2}{p-2}$; equivalently, for $1 \leq i \leq n-p+1$, the number of factors equal to $x_j + i$ is $\binom{n-i-1}{p-2}$. Therefore,

$$\begin{aligned}\Delta^*(n, p, \mathbf{x}) &= \Delta(n-p, p, \mathbf{x} + \mathbf{1}) \prod_{\boldsymbol{\alpha} \in C(n-p, p)} (\mathbf{x} + \mathbf{1} + \boldsymbol{\alpha})^{\mathbf{1}} \\ &= (s(\mathbf{x}) + n)^{\binom{n-1}{p}} \left(\prod_{i=1}^{n-p+1} \prod_{j=1}^p (x_j + i)^{\binom{n-i-1}{p-2}} \right) \prod_{i=1}^{n-p} i^{(p-1)\binom{n-i-1}{p-1}}.\end{aligned}$$

□

Acknowledgements

The authors would like to thank the referee very much for valuable suggestions, corrections and comments, which result in a great improvement of the original manuscript.

References

- [1] J. M. Brunat and A. Montes, The power-compositions determinant and its application to global optimization, *SIAM J. Matrix Anal. Appl.* **23** (2001), 459–471.
- [2] R. L. Graham, D. E. Knuth and O. Patashnik, *Concrete Mathematics, A Foundation for Computer Science*, (Addison-Wesley), (1989).
- [3] C. Krattenthaler, Advanced Determinant Calculus, *Séminaire Lotharingien Combin.* **42**, Article B42q, (1999).

- [4] C. Krattenthaler, Advanced Determinant Calculus: A complement, Ar χ iv number math. CO/0503507, (2005), Available on line at: <http://igd.univ-lyon1.fr/~kratt>, *Linear Algebra Appl.* (to appear).