

WWW-24 Research Track

DSLR: Diversity Enhancement and Structure Learning for Rehearsal-based Graph Continual Learning

Seungyoon Choi*, Wonjoong Kim*, Sungwon Kim, Yeonjun In, Sein Kim, Chanyoung Park

Korean Advanced Institute of Science and Technology (KAIST)

Introduction Continual Learning

- Efficient learning from **newly introduced data** without retraining the model on the entire dataset, enabling the **preservation of previously acquired knowledge**.
- Challenge → avoid catastrophic forgetting!

Introduction Continual Learning

- Continual learning approaches
 - Regularization-based approach: Regularize important parameters to be not changed.
 - Architectural approach: Modify the model's architecture based on the task.
 - Rehearsal-based approach: Store and use important data that effectively represents the entire class from past tasks.

Existing method can cause overfitting to replay buffer

Mean Feature (MF)

Select nodes nearest the center of feature space

Embeddings of nodes & replayed nodes selected using MF

Existing method can cause overfitting to replay buffer

Coverage-based Diversity (CD): Considering both Representativeness & Diversity

Using CD can lead to another issue → Homophily Ratio

	MF	$^{\mathrm{CD}}$				
Class 1	0.68 ± 0.43	0.57 ± 0.45				
Class 2	0.91 ± 0.24	0.92 ± 0.22				
Class 3	0.82 ± 0.28	0.76 ± 0.40				
Class 4	0.68 ± 0.43 0.91 ± 0.24 0.82 ± 0.28 0.88 ± 0.26	0.82 ± 0.36				

Homophily ratio of replayed nodes using MF & CD

Forgetting over various homophily ratio of the replayed nodes

Can we just enhance the homophily ratio of replay nodes?

Using CD can lead to another issue → Homophily Ratio

	MF	$^{\mathrm{CD}}$
Class 1	0.68 ± 0.43	0.57 ± 0.45
Class 2	0.91 ± 0.24	0.92 ± 0.22
Class 3	0.82 ± 0.28	0.76 ± 0.40
Class 4	0.88 ± 0.26	0.82 ± 0.36

Homophily ratio of replayed nodes using MF & CD

Forgetting over various homophily ratio of the replayed nodes

Structure Learning for replay buffer!

→ Formulating the structure of replayed nodes to be connected to truly informative neighbors

Proposed Method Preliminaries

- Continual Learning Scenario
 - Sequential of tasks $\mathcal{T} = \{T_1, T_2, \cdots, T_M\}$
 - Graph at task t $\mathcal{G}^t = (A^t, X^t)$
 - Incremental graph $\mathcal{G} = \left\{\mathcal{G}^1, \mathcal{G}^2, ..., \mathcal{G}^M
 ight\}, ext{ where } \mathcal{G}^t = \mathcal{G}^{t-1} + \Delta \mathcal{G}^t$
 - Goal $GNN_{\theta^1}, GNN_{\theta^2}, ..., GNN_{\theta^M}$

Proposed Method Simplified Framework

Replay buffer selection considering both representativeness & diversity

Reformulating the structure of replay buffer to be connected to truly informative neighbors

Proposed Method Coverage-based Diversity (CD)

• Cover of node v_i

$$\mathcal{C}(v_i) = \{v_j \mid dist(\underline{h_i}, h_j) < d, \quad \underline{y_i} = y_j\} \,, \text{ where } d = r \cdot \underline{E(v_i)}$$
 Embedding of v_i class of v_i Average of pairwise distance in same class

Set of replayed nodes of class C_l

$$\mathcal{B}_{C_l} = \operatorname{argmax}_{\{v_{b_1}, \dots, v_{b_{e_l}} | v_{b_1}, \dots, v_{b_{e_l}} \in train_{C_l}\}} \left| Cover(\{v_{b_1}, \dots, v_{b_{e_l}}\}) \right|$$
where $Cover(\{v_1, \dots, v_n\}) = \mathcal{C}(v_1) \cup \dots \cup \mathcal{C}(v_n)$

Size of replay buffer assigned for class C_l

$$e_l = \frac{\text{\# of training nodes for class } C_l}{\text{\# of training nodes for all seen classes}} \, \mathbf{X} \, \, \mathbf{Replay \, buffer \, size}$$

Maximize the number of nodes covered by Covers of replayed nodes

Proposed Method Coverage-based Diversity (CD)

$$\mathcal{B}_{C_l} = \underbrace{\operatorname{argmax}_{\{v_{b_1}, \cdots, v_{b_{e_l}} | v_{b_1}, \cdots, v_{b_{e_l}} \in train_{C_l}\}} \left| Cover(\{v_{b_1}, \cdots, v_{b_{e_l}}\}) \right| \quad \text{where} \quad Cover(\{v_{1}, \cdots, v_{n}\}) = \mathcal{C}(v_{1}) \underbrace{\cup \cdots \cup \mathcal{C}(v_{n})}_{\text{Diversity}} \right|$$
Representativeness

Proposed Method Structure Learning for Replay Buffer

- Training link prediction module LP_{ϕ}
- Link prediction loss $\mathcal{L}_{link} = -(\sum_{e_{ij} \in \mathcal{D}_t^{link}} (A_{ij}^t \log(S_{ij}) + (1 A_{ij}^t) \log(1 S_{ij}))$ Similarity based score

Capture structural proximity

Training link set at T_t

Node classification loss $\mathcal{L}_{node} = \beta \mathcal{L}_{\mathcal{D}_t^{tr}}(\theta^t; A^t, X^t) + (1 - \beta) \mathcal{L}_{\mathcal{B}}(\theta^t; A^t, X^t)$ Training node set at T_t Replay buffer

Capture homophily ratio

Final loss function $\mathcal{L}_{LP} = \lambda \mathcal{L}_{link} + (1-\lambda)\mathcal{L}_{node}$

Discover truly informative neighbors

Proposed Method Structure Learning for Replay Buffer

- Structure inference
 - Edge addition: Connect N nodes with highest score, maintaining the original neighbors

$$\tilde{A}_{b_i j} = \begin{cases} 1, & \text{if } v_j \in \mathcal{K}_{b_i} \cup \mathcal{N}(v_{b_i}) \\ 0, & \text{otherwise} \end{cases} \qquad \mathcal{K}_{b_i} = \{ \operatorname{argmax}_{v_j}^{(N)} S_{b_i j} \}$$

• Edge deletion: Remove edges whose score is smaller than the threshold

$$\tilde{A}_{b_i j} = \begin{cases} 1, & \text{if } S_{b_i j} > \tau \\ 0, & \text{otherwise} \end{cases}$$

Proposed Method Overall Architecture

Experiments Dataset

Cora: citation networks

• Citeseer : citation networks

Amazon Computer : co-purchase graph

• OGB-arxiv: large citation networks

Reddit : large social networks

Dataset	# Nodes	# Edges	# Features	# Classes per task	# Tasks
Cora	2,708	5,429	1,433	2	3
Citeseer	3,312	4,732	3,703	2	3
Amazon Computer	13,752	245,778	767	2	4
OGB-arxiv	169,343	1,166,243	128	3	5
Reddit	232,965	114,615,892	602	5	8

Experiments Baselines

Experiments Experimental Setting

Hyperparameters

Dataset	β	λ	N	K	τ	r	Buffer size	Learning rate
Cora	0.1	0.5	5	50	0.8	0.3	100	0.005
Citeseer	0.1	0.5	5	50	0.8	0.25	100	0.005
Amazon Computer	0.1	0.5	5	50	0.8	0.2	200	0.005
OGB-arxiv	0.05	0.5	5	50	0.8	0.15	3,000	0.005
Reddit	0.05	0.5	5	50	0.8	0.15	3,000	0.005

Evaluation protocal

- **PM** (Performance Mean) = $\frac{1}{T} \sum_{i=1}^{T} A_{T,i}$
- **FM** (Forgetting Mean) = $\frac{1}{T-1} \sum_{i=1}^{T-1} A_{T,i} A_{i,i}$

	Performance of task	1 Performance of task2	Performance of task3
After Task 1	96.77		
After Task 2	91.7 _{FN}	86.17 — _{FM}	
After Task 3	PM 62.21	79.25	76.5

Ex. PM =
$$(62.21+79.25+76.5) / 3$$

FM = $\{(96.77-62.21)+(86.17-79.25)\} / 2$

※ Performance with 10 runs

Datasets	Cora		Cite	seer	Amazon Computer		OGB-arxiv		Reddit	
Metrics Methods	РМ ↑	FM ↓	РМ↑	FM ↓	РМ↑	FM ↓	РМ↑	FM ↓	РМ↑	FM ↓
LWF [18]	61.00 ± 4.47	25.73 ± 9.26	50.38 ± 2.02	21.37 ± 4.33	30.28 ± 1.11	80.71 ± 1.68	24.18 ± 2.69	48.56 ± 8.07	23.68 ± 8.74	63.33 ± 10.08
EWC [16]	70.56 ± 3.13	31.90 ± 4.38	60.98 ± 3.45	21.56 ± 4.39	49.63 ± 4.27	49.62 ± 5.73	45.71 ± 6.50	30.91 ± 2.73	20.57 ± 6.25	28.09 ± 6.93
GEM [20]	65.44 ± 5.16	32.97 ± 3.94	60.14 ± 1.72	21.89 ± 2.82	40.74 ± 3.03	42.19 ± 4.52	40.58 ± 4.26	29.28 ± 7.56	36.28 ± 4.77	17.94 ± 2.84
MAS [1]	72.10 ± 5.25	17.21 ± 5.35	60.62 ± 3.32	23.44 ± 3.73	63.37 ± 1.80	23.17 ± 8.18	39.29 ± 2.91	30.36 ± 3.74	10.27 ± 2.84	13.85 ± 1.42
ContinualGNN [34]	72.21 ± 1.83	33.84 ± 2.74	60.58 ± 0.86	34.89 ± 1.50	76.12 ± 0.75	29.33 ± 1.03	48.91 ± 4.15	52.83 ± 1.09	OOM	OOM
TWP [19]	71.87 ± 8.45	25.77 ± 4.38	61.80 ± 1.31	24.76 ± 3.93	71.28 ± 3.26	26.55 ± 3.28	39.20 ± 5.92	25.65 ± 4.26	22.56 ± 7.57	21.70 ± 5.51
ER-GNN [46]	78.68 ± 2.10	21.16 ± 3.52	65.49 ± 1.00	30.04 ± 1.19	77.20 ± 2.11	22.00 ± 2.13	37.19 ± 2.50	37.26 ± 1.55	33.62 ± 6.61	19.35 ± 6.08
RCLG [24]	70.77 ± 4.74	15.71 ± 4.01	66.60 ± 3.33	22.67 ± 5.49	51.91 ± 6.57	16.71 ± 9.74	50.04 ± 6.44	41.00 ± 8.16	OOM	OOM
DSLR	81.59 ± 1.65	14.59 ± 2.61	69.54 ± 0.74	18.21 ± 0.96	80.08 ± 0.98	14.18 ± 3.15	51.46 ± 1.50	22.21 ± 3.82	38.12 ± 5.91	16.78 ± 8.12

- DSLR outperforms in terms of both PM and FM over all baselines, demonstrating low variance
- Rehearsal-based approaches (ContinualGNN, ER-GNN) outperforms other baselines in PM, but show worse FM

Memory efficiency of DSLR

- Mild decrease of the performance when the buffer size decreases
- DSLR can achieve comparable performance with a much smaller buffer size

Effectiveness of Coverage-based Diversity (1)

- DSLR outperforms ER-GNN regardless of the buffer size, in both PM and FM
- When buffer size increases from 1% to 3% (small to mid-size), the gain of performance of DSLR is more significant

Effectiveness of Structure Learning (1)

• Structure learning component not only benefits the performance, but also memory efficiency

Conclusion

- Summary
 - Graph Continual Learning with diverse, representative replayed nodes and structure learning for them

- Contribution
 - Emphasize the consideration of diversity when selecting the replayed nodes
 - Discover the substantial influence of the quality of neighbors surrounding the replayed nodes
 - Extensive experiments demonstrate the effectiveness and efficiency of DSLR

Thank you!

[Full Paper] https://www.arxiv.org/abs/2402.13711

[Source Code] https://github.com/seungyoon-Choi/DSLR_official

[Lab Homepage] http://dsail.kaist.ac.kr

[Email] csyoon08@kaist.ac.kr