13.3 二元函数的极限和连续性

钟柳强

华南师范大学数学科学学院,广东广州 510631

习题

1. 用重极限的定义证明 $\lim_{(x,y)\to(2,-1)} (x^2 - 4xy - 3y^2) = 9.$

证明. 对于任一给定的 $\epsilon > 0$, 取 $\delta = \min\{1, \epsilon/34\}$, 则当 $(x,y) \in U^{\circ}((2,-1);\delta)$ 时, 有 $|x| < 3, |y| < 2, |y-1| < 3, |x-2| < \epsilon/34, |y+1| < \epsilon/34$ 成立, 且

$$\begin{aligned} |x^2 - 4xy - 3y^2 - 9| &= |x^2 - 4 - 3(y^2 - 1) - 4(x - 2)y - 8(y + 1)| \\ &= |(x - 2)(x + 2) - 3(y - 1)(y + 1) - 4y(x - 2) - 8(y + 1)| \\ &\leqslant |x - 2|(|x| + 2) + 3|y + 1||y - 1| + 4|y||x - 2| + 8|y + 1| \\ &\leqslant 5|x - 2| + 9|y + 1| + 8|x - 2| + 8|y + 1| \\ &\leqslant 17(|x - 2| + |y + 1|) < \epsilon. \end{aligned}$$

根据重极限定义即可得到 $\lim_{(x,y)\to(2,-1)} (x^2 - 4xy - 3y^2) = 9.$

2. 求下列重极限

(1)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 + y^2}{1 + x^2 + y^2};$$
(2)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2 + y^2};$$
(3)
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2 + y^2)}{x^2 + y^2};$$
(4)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{1 - \sqrt{(1 + x^2)(1 + y^2)}}.$$

$$\lim_{(x,y)\to(0,0)}\frac{x^2+y^2}{1+x^2+y^2}=\lim_{r\to 0}\frac{r^2}{1+r^2}=0.$$

(2) 因为当 $(x,y) \neq (0,0)$ 时,

$$0 \leqslant \frac{x^2 y^2}{x^2 + y^2} \leqslant \frac{x^2 y^2}{2|x|2|y|} = \frac{|xy|}{2} \to 0, \quad ((x, y) \to (0, 0)),$$

故由破敛性,得 $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2} = 0.$

(3) 令 $x^2 + y^2 = t$, 当 $(x, y) \to (0, 0)$ 时, 有 $t \to 0$, 则由第一类极限有,

$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2} = \lim_{t\to 0} \frac{\sin t}{t} = 1.$$

(4) 令 $x = r\cos\theta, y = r\sin\theta$, 当 $(x,y) \to (0,0)$ 时, 有 $r \to 0$, 则

$$\lim_{(x,y)\to(0,0)} \frac{x^2 + y^2}{1 - \sqrt{(1+x^2)(1+y^2)}} = \lim_{r\to 0} \frac{r^2}{1 - \sqrt{1+r^2 + r^4 \sin^2 \theta \cos^2 \theta}}$$

$$= \lim_{r\to 0} \frac{r^2(1 + \sqrt{1+r^2 + r^4 \sin^2 \theta \cos^2 \theta})}{-r^2 - r^4 \sin^2 \theta \cos^2 \theta}$$

$$= \lim_{r\to 0} \frac{1 + \sqrt{1+r^2 + r^4 \sin^2 \theta \cos^2 \theta}}{-1 - r^2 \sin^2 \theta \cos^2 \theta}$$

$$= -2$$

3. 讨论当 $(x,y) \rightarrow (0,0)$ 时函数 f(x,y) 的重极限和累次极限:

(1)
$$f(x,y) = \frac{xy}{x^2 + y^2};$$
 (2) $f(x,y) = (x+y)\sin\frac{1}{x}\sin\frac{1}{y};$ (3) $f(x,y) = \frac{x^2y^2}{x^2y^2 + (x-y)^2};$ (4) $f(x,y) = \frac{x^2y^2}{x^3 + y^3}.$

解: (1) 函数 f(x,y) 的定义域是 \mathbb{R}^2 中 $x \neq 0$ 且 $y \neq 0$ 的点. 任意取定一个数 k. 取 $A = \{(x,y)|y=kx\}$. 则

$$\lim_{\stackrel{(x,y)\to(0,0)}{(x,y)\in A}} f(x,y) = \lim_{\stackrel{(x,y)\to(0,0)}{y=kx}} \frac{xy}{x^2+y^2} = \lim_{x\to 0} \frac{k}{1+k^2} = \frac{k}{1+k^2},$$

其极限值依赖于 k, 根据推论?? 即知重极限不存在.

易见原点是这个函数定义域的聚点,且容易算出该函数在原点处的两个累次极限:

$$\lim_{x \to 0} \lim_{y \to 0} \frac{xy}{x^2 + y^2} = 0,$$

$$\lim_{y \to 0} \lim_{x \to 0} \frac{xy}{x^2 + y^2} = 0.$$

(2) 因为

$$\lim_{(x,y)\to(0,0)} (x+y) = 0,$$

而

$$|\sin\frac{1}{x} + \sin\frac{1}{y}| \leqslant 1,$$

所以重极限

$$\lim_{(x,y)\to(0,0)} (x+y) \sin\frac{1}{x} \sin\frac{1}{y} = 0.$$

而累次极限

$$\lim_{x \to 0} \lim_{y \to 0} (x+y) \sin \frac{1}{x} \sin \frac{1}{y}$$

与

$$\lim_{y \to 0} \lim_{x \to 0} (x+y) \sin \frac{1}{x} \sin \frac{1}{y}$$

均不存在, 这是因为当 $x\neq 0$ 时, $\lim_{y\to 0}(x+y)\sin\frac{1}{x}\sin\frac{1}{y}$ 不存在; 当 $y\neq 0$ 时, $\lim_{x\to 0}(x+y)\sin\frac{1}{x}\sin\frac{1}{y}$ 不存在, 当然累次极限也都不存在.

(3) 函数 f(x,y) 的定义域是 \mathbb{R}^2 中 $x \neq 0$ 且 $y \neq 0$ 的点. 取 $A = \{(x,y)|y=x\}, B = \{(x,y)|y=0\}.$ 则

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in A}} f(x,y) = \lim_{\substack{(x,y)\to(0,0)\\y=x}} \frac{x^2y^2}{x^2y^2 + (x-y)^2}$$

$$= \lim_{x\to 0} 1 = 1;$$

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in B\\(x,y)\to 0}} f(x,y) = \lim_{\substack{(x,y)\to(0,0)\\y=0}\\y=0}} \frac{x^2y^2}{x^2y^2 + (x-y)^2} = 0.$$

根据推论?? 即知重极限不存在.

易见原点是这个函数定义域的聚点, 且容易算出该函数在原点处的两个累次极限:

$$\lim_{x \to 0} \lim_{y \to 0} \frac{x^2 y^2}{x^2 y^2 + (x - y)^2} = 0,$$

$$\lim_{y \to 0} \lim_{x \to 0} \frac{x^2 y^2}{x^2 y^2 + (x - y)^2} = 0.$$

(4) 函数 f(x,y) 的定义域是 \mathbb{R}^2 中 $x \neq 0$ 且 $y \neq 0$ 的点. 取 $A = \{(x,y)|y=x\}, B = \{(x,y)|y=-x+x^2\}.$ 则

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in A}} f(x,y) = \lim_{\substack{(x,y)\to(0,0)\\y=x}} \frac{x^2y^2}{x^3+y^3}$$

$$= \lim_{x\to 0} \frac{x^4}{2x^3} = 0;$$

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in B}} f(x,y) = \lim_{\substack{(x,y)\to(0,0)\\y=-x+x^2}} \frac{x^2y^2}{x^3+y^3}$$

$$= \lim_{x\to 0} \frac{x^2-2x+1}{x^2-3x+3} = 1/3.$$

根据推论?? 即知重极限不存在.

易见原点是这个函数定义域的聚点, 且容易算出该函数在原点处的两个累次极限:

$$\lim_{x \to 0} \lim_{y \to 0} \frac{x^2 y^2}{x^3 + y^3} = 0,$$

$$\lim_{y \to 0} \lim_{x \to 0} \frac{x^2 y^2}{x^3 + y^3} = 0.$$

4. 叙述下列极限的定义

(1)
$$\lim_{x \to x_0, y \to y_0} f(x, y) = \infty;$$
 (2)
$$\lim_{x \to \infty, y \to \infty} f(x, y) = A.$$

解: (1) 设 $D \in \mathbb{R}^2$ 的一个点集, f(x,y) 是定义在 D 上的二元函数, $P_0(x_0,y_0)$ 是 D 的一个聚点. 如果对于任给的正数 M, 总存在正数 δ , 使得当 $P(x,y) \in U^{\circ}(P_0;\delta) \cap D$ 时, 都成立

$$|f(x,y)| > M$$
,

则称 f(x,y) 在 D 上当 P(x,y) 趋向于 $P_0(x_0,y_0)$ 时,以 ∞ 为极限,记为

$$\lim_{P\to P_0\atop P\in D}f(x,y)=\infty\quad \text{ if }\lim_{(x,y)\to (x_0,y_0)\atop (x,y)\in D}f(x,y)=A.$$

在不会引起混淆的情况下,也可以分别记为

$$\lim_{P\to P_0} f(P) = \infty \quad \vec{\boxtimes} \quad \lim_{(x,y)\to (x_0,y_0)} f(x,y) = \infty, \quad \vec{\boxtimes} \quad \lim_{x\to x_0 \atop y\to y_0} f(x,y) = \infty.$$

(2) 设 $D \in \mathbb{R}^2$ 的一个点集, f 是定义在 D 上的二元函数, 设 A 是一个确定的实数, 如果对于任给的正 数 ϵ , 总存在正数 M, 使得当 $(x,y) \in \{(x,y) \in D | |x| > M, |y| > M\}$ 时, 都成立

$$|f(P) - A| < \epsilon$$

则称 f 在 D 上当 x 趋向于 ∞ 且 y 趋向于 ∞ 时, 以 A 为极限, 记为

$$\lim_{\substack{x \to \infty, y \to \infty \\ (x,y) \in D}} f(x,y) = A.$$

5. 指出下列二元函数的不连续点, 并说明理由

5. 指出下列二元函数的不连续点,并说明理由
$$\begin{pmatrix}
 (1) & f(x,y) & = \\
 \frac{x}{x+y}, & x+y \neq 0, \\
 0, & x+y=0;
 \end{pmatrix}$$

$$= (2) f(x,y) = \begin{cases}
 \frac{x^2-y^2}{x^2+y^2}, & (x,y) \neq (0,0), \\
 0, & (x,y) = (0,0).
 \end{cases}$$

解: (1) 先考虑 f 关于点集 $\{(x,y)|x+y\neq 0\}$ 的连续性:

任取点 $(x_0, y_0) \in \{(x, y) | x + y \neq 0\}$, 则由

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = \lim_{(x,y)\to(x_0,y_0)} \frac{x}{x+y} = \frac{x_0}{x_0+y_0} = f(x_0,y_0),$$

知 f(x,y) 在 $x+y\neq 0$ 上每一点都连续.

再考虑 f 关于点集 $\{(x,y)|x+y=0\}$ 的连续性:

(i) 原点 (0,0) 处:

当点 (x,y) 沿直线 y=x 趋于 (0,0) 时,

$$\lim_{(x,y)\to(0,0)\atop y=x}\frac{x}{x+y}=\frac{1}{2},$$

当点 (x,y) 沿曲线 $y=x^2$ 趋于 (0,0) 时,

$$\lim_{\stackrel{(x,y)\to(0,0)}{\longrightarrow}}\frac{x}{x+y}=\lim_{x\to 0}\frac{x}{x+x^2}=\lim_{x\to 0}\frac{1}{1+x}=1,$$

故 f(x,y) 在原点 (0,0) 处不连续.

(ii) 非原点处:

任取点 $P_0(x_0, y_0) \in E = \{(x, y) | x + y = 0, x \neq 0 \exists y \neq 0 \},$ 当点 (x,y) 沿直线 y = kx 趋于 (x_0, y_0) 时,

$$\lim_{\substack{(x,y)\to(x_0,y_0)\\y=kx}}\frac{x}{x+y}=\lim_{x\to x_0}\frac{x}{x+kx}=\frac{1}{1+k},$$

其极限值依赖于 k, 故 f(x,y) 在 $E = \{(x,y)|x+y=0 \ x \neq 0, y \neq 0\}$ 上不连续.

综上所述, f(x,y) 的不连续点直线 x+y=0 上.

(2) 先考虑原点处的连续性:

当点 (x,y) 沿直线 y = kx 趋于 (x_0, y_0) 时,

$$\lim_{\substack{(x,y)\to(x_0,y_0)\\y=kx}}\frac{x^2-y^2}{x^2+y^2}=\lim_{x\to 0}\frac{x^2-k^2x^2}{x^2+k^2x^2}=\frac{1-k^2}{1+k^2},$$

其极限值依赖于 k, 故 f(x,y) 在原点处不连续.

再考虑非原点处的连续性:

对任意点 $(x_0, y_0) \in E = (x, y) \mathbb{R}^2 | x \neq 0$ 且 $y \neq 0$,由

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = \lim_{(x,y)\to(x_0,y_0)} \frac{x^2 - y^2}{x^2 + y^2} = \frac{x_0^2 - y_0^2}{x_0^2 + y_0^2} = f(x_0, y_0).$$

知, f(x,y) 在非原点处都连续.

综上所述, f(x,y) 的不连续点在原点处.

6. 证明: 若二元函数 f 在点集 D 上连续,则其在 D 的任何子集上也是连续的.

证明. 不妨设 $I \subset D$ 且 I 非空, 对任意点 $P_0 \in I$, 下证 f 在点 P_0 处连续.

事实上, 因为 $P_0 \in I \subset D$, 故 $P_0 \in D$, 而 f 在 D 上连续, 故 f 在 P_0 处连续, 又由 P_0 的任意性可知, f 在 I 上连续.

7. 设 f(x,y) 在区域 D 内对 x 连续, 对 y (关于 x) 一致连续, 证明 f 在 D 内连续.

证明. 即证明对 $P_0(x_0, y_0) \in D, f$ 在点 P_0 处连续.

事实上, 由于 f(x,y) 在区域 D 内对 x 连续, 故对上述的 x_0 , 对任给的 $\epsilon > 0$, $\exists \delta_1 > 0$, 使得当 $|x-x_0| < \delta_1$ 时, 总有

$$|f(x,y_0) - f(x_0,y_0)| < \frac{\epsilon}{2}$$
 (1)

由于 f(x,y) 在区域 D 内对 y (关于 x) 一致连续, 则对上述的 ϵ , $\exists \delta_2 > 0$, 使得只要 $|y - y_0| < \delta_2$, 总有

$$|f(x,y) - f(x,y_0)| < \frac{\epsilon}{2} \tag{2}$$

取 $\delta = \min\{\delta_1, \delta_2\}$, 则对上述的 ϵ , 当 $|x - x_0| < \delta$ 且 $|y - y_0| < \delta$ 时, 由公式 (1), (2), 总有

$$|f(x,y) - f(x_0, y_0)| = |f(x,y) - f(x,y_0) + f(x,y_0) - f(x_0)|$$

$$\leq |f(x,y) - f(x,y_0)| + |f(x,y_0) - f(x_0, y_0)|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

由二元函数的连续性可知, f 在点 P_0 处连续, 又有 P_0 的任意性, f 在 D 内连续.

8. 证明: 若 f 在 \mathbb{R}^2 中每一点都连续且 $\lim_{\|P\| \to \infty} f(P)$ 存在且有限, 则 f 在 \mathbb{R}^2 中一致连续.

证明. 由 $\lim_{\|P\|\to\infty} f(P)$ 存在且有限, 不妨设 $\lim_{\|P\|\to\infty} f(P) = A < \infty$, 由极限的定义, 对任给的 $\epsilon > 0$, $\exists M > 0$, 使得当 $P \in D_1 = \{(x,y) \in \mathbb{R}^2 | \sqrt{x^2 + y^2} > M \}$, 总有

$$|f(P) - A| < \frac{\epsilon}{2} \tag{1}$$

于是, 对于任给的点 $P_1(x_1, y_1), P_2(x_2, y_2) \in D_1$, 由公式 (1), 总有

$$|f(P_1) - f(P_2)| = |f(P_1) - A + A - f(P_2)|$$

 $\leq |f(P_1) - A| + |f(P_2) - A|$
 $< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon;$

又 f 在有界区域 $D_2 = \{(x,y) \in \mathbb{R}^2 | \sqrt{x^2 + y^2} \leq M + 1\}$ 上连续, 从而一致连续, 即对上述的 ϵ , $\exists \delta \in (0,1)$, 对 $\forall P_1, P_2 \in D_2$, 只要 $||P_1P_2|| < \delta$, 就有

$$|f(P_1) - f(P_2)| < \epsilon \tag{2}$$

对 $\forall P_1, P_2 \in \mathbb{R}^2$, 只要 $||P_1 - P_2|| < \delta$, 则 P_1, P_2 同属于 D_1 或同属于 D_2 , 进而由公式 (1), (2), 总有

$$|f(P_1) - f(P_2)| < \epsilon$$

由一致连续的定义, f 在 \mathbb{R}^2 中一致连续.

9. 设 $D \subset \mathbb{R}^2$ 有界, f(x,y) 在 D 上连续且对于任意的 $P \in D'$, $\lim_{Q \to P, Q \in D} f(Q)$ 存在, 证明 f 在 D 上一致连续.

证明. (反证法) 假设 f 在 D 上不一致连续, 则 $\exists_0 > 0$, 对 $\forall \delta > 0$, $\exists P_1', P_2' \in D$, 使得当 $\|P_1' - P_2'\| < \delta$ 时, 有

$$|f(P_1') - f(P_2')| > \epsilon_0 \tag{1}$$

令 $\delta = 1/k$, 得到两个点列 $\{P_k\}, \{P_k'\} \subset D$, 因为 D 有界, 由致密性定理, $\exists \{P_k\}, \{P_k'\}$ 的两个收敛子列 $\{\tilde{P}_k\}, \{\tilde{P}_k'\}, \tilde{P}_k'\}$, 不妨设

$$\lim_{k \to \infty} \tilde{P}_k = A, \qquad \lim_{k \to \infty} \tilde{P}'_k = B,$$

下证 A = B,

显然, $A \in D'$, 且 $\{\tilde{P}_k\}, \{\tilde{P}_k'\}$ 是 D 中子列, 且满足 (1) 式.

对 $\forall \delta>0,$ 当 k 充分大时, $\{\tilde{P_k}\},\{\tilde{P_k'}\}\in U(A,\delta)\cap D,$ 且满足 $|\{\tilde{P_k}\}-\{\tilde{P_k'}\}|<\delta,$ 有

$$|f(\tilde{P}_k)| - f(\{\tilde{P}_k'\})| \geqslant \epsilon_0$$

利用极限存在的 Cauchy 准则的否定形式可知, $\lim_{P_k \to A} fP_k$ 不存在, 这与已知矛盾, 故假设不成立.

10. 设 f(x,y) 在 \mathbb{R}^2 中连续, 如果 $\lim_{\|P\| \to \infty} f(P) = +\infty$, 则 f(x,y) 有最小值; 如果 $\lim_{\|P\| \to \infty} f(P) = -\infty$, 则 f(x,y) 有最大值.

证明. 由 $\lim_{\|P\|\to+\infty} f(P)=+\infty$ 得, 对 $\forall M>0, \exists G_M,$ 使得对 $\forall P\in D_M=\{\|D\|>G_M\},$ 有

故不妨设存在点 $P_0(x_0,y_0)$, 使得 $M_0=f(P_0)>0$, 对上述 M_0 存在 $G_0\triangleq\max\{\|P_0\|+1,G_{M_0}\}>\|P_0\|$, 使得 $\forall P\in A=\{p\in\mathbb{R}^2|\|P_0\|>G_0\}$

$$f(P) > M_0 \tag{1}$$

由 f(x,y) 在 \mathbb{R}^2 上连续, 则 f(x,y) 在 $\bar{B} = \bar{O}(o, \|P_0\| + \frac{1}{2})$ 上连续, 故在 \bar{B} 上存在上的最小值 $f(P_0')$, 又由 $P_0 \in \bar{B}$ 得:

$$f(P_0') < f(P_0) \tag{2}$$

最后, 注意到 $A \cup B = \mathbb{R}^2$, 由 (1), (2) 可知 $\forall P \in \mathbb{R}^2$, 有 $f(P_0') < f(P_0)$ 结论得证.