

Transporte de Materiales Radiactivos

Transporte de Materiales Radiactivos

Norma AR 10.16.1

Revisión 3 Aprobada por Resolución del Directorio de la Autoridad Regulatoria Nuclear N° 14/2016 (Boletín Oficial 1/2/2016)

TRANSPORTE DE MATERIALES RADIACTIVOS

A. OBJETIVO

1. Establecer requisitos de seguridad radiológica para el transporte de materiales radiactivos.

B. ALCANCE

2. Esta norma es aplicable a todas las modalidades de transporte por vía terrestre, acuática o aérea de materiales radiactivos conforme a lo establecido en los párrafos 106 y 107 del Reglamento para el Transporte Seguro de Materiales Radiactivos, Requisitos de Seguridad Específicos, Colección de Normas de Seguridad del Organismo Internacional de Energía Atómica (OIEA) Nº SSR-6, Edición de 2012.

El cumplimiento de la presente norma y de las normas y requerimientos establecidos por esta Autoridad Regulatoria, no exime del cumplimiento de otras normas y requerimientos no relacionados con la seguridad radiológica, establecidos por otras autoridades competentes.

C. EXPLICACIÓN DE TÉRMINOS

3. Se adoptan como parte integrante de la presente norma las definiciones incluidas en la Sección II Definiciones del Reglamento para el Transporte Seguro de Materiales Radiactivos, Requisitos de Seguridad Específicos, Colección de Normas de Seguridad del OIEA Nº SSR-6, Edición de 2012.

D. REQUISITOS

4. Se adoptan todos los requisitos establecidos en el Reglamento para el Transporte Seguro de Materiales Radiactivos, Requisitos de Seguridad Específicos, Colección de Normas de Seguridad del OIEA Nº SSR-6, Edición de 2012.

REGLAMENTO PARA EL TRANSPORTE SEGURO DE MATERIALES RADIACTIVOS

Edición de 2012

Colección de Normas de Seguridad del OIEA Nº SSR-6

Organismo Internacional de Energía Atómica

ÍNDICE

SECCIÓN I.	INTRODUCCIÓN	1
Antecedentes (10	01–103)	1
	05)	2
Alcance (106–11	0)	2
	·····	4
SECCIÓN II.	DEFINICIONES (201–249)	5
SECCIÓN III.	DISPOSICIONES GENERALES	15
Protección radiol	lógica (301–303)	15
Respuesta a emer	rgencias (304–305)	16
	5n (306)	16
Verificación del	cumplimiento (307–308)	16
Incumplimiento ((309)	17
	les (310)	17
Capacitación (31	1–315)	18
SECCIÓN IV.	LÍMITES DE ACTIVIDAD Y CLASIFICACIÓN	21
Disposiciones ge	enerales (401)	21
	de los radionucleidos (402)	21
Determinación de	e los valores básicos de los radionucleidos (403–407)	21
Clasificación de	materiales (408–420)	47
Clasificación de	bultos (421–433)	53
Arreglos especial	les (434)	57
SECCIÓN V.	REQUISITOS Y CONTROLES PARA EL	
	TRANSPORTE	59
Requisitos antes	de la primera expedición (501)	59
Requisitos antes	de cada expedición (502–503)	59
_	ras mercancías (504–506)	60
_	es peligrosas del contenido (507)	61
	troles relativos a la contaminación y a los bultos que	
•	(508–514)	61

Requisitos y controles para el transporte de bultos exceptuados (515–516) Requisitos y controles para el transporte de materiales BAE y OCS en	63
bultos industriales o sin embalar (517–522)	63
Determinación del índice de transporte (523–524)	65
Determinación del índice de seguridad con respecto a la criticidad para	
remesas, contenedores y sobreenvases (525)	66
Límites del índice de transporte, del índice de seguridad con respecto a	
la criticidad y de los niveles de radiación correspondientes a bultos	
y sobreenvases (526–528)	66
Categorías (529)	67
Marcado, etiquetado y rotulado (530–544)	68
Obligaciones del remitente (545–561)	76
Transporte y almacenamiento en tránsito (562–581)	83
Formalidades aduaneras (582)	90
Remesas que no puedan entregarse (583)	90
Conservación y disponibilidad de los documentos de transporte por los	
transportistas (584–588)	91
SECCIÓN VI. REQUISITOS RELATIVOS A LOS	
MATERIALES RADIACTIVOS Y A LOS	
EMBALAJES Y BULTOS	93
Requisitos relativos a los materiales radiactivos (601–605)	93
Requisitos relativos a las sustancias exceptuadas de la clasificación	
como fisionables (606)	94
Requisitos generales relativos a todos los embalajes y bultos (607–618)	94
Requisitos complementarios relativos a los bultos transportados	
por vía aérea (619–621)	96
Requisitos relativos a los bultos exceptuados (622)	96
Requisitos relativos a los bultos industriales (623–630)	97
Requisitos relativos a los bultos que contengan hexafluoruro de	
uranio (631–634)	99
Requisitos relativos a los bultos del Tipo A (635–651)	100
Requisitos relativos a los bultos del Tipo B(U) (652–666)	102
Requisitos relativos a los bultos del Tipo B(M) (667–668)	105
Requisitos relativos a los bultos del Tipo C (669–672)	106
Requisitos relativos a los bultos que contengan sustancias	100
fisionables (673–686)	107

SECCIÓN VII.	MÉTODOS DE ENSAYO	115
Demostración o	del cumplimiento (701–702)	115
	riación para los materiales BAE-III y los materiales	
•	paja dispersión (703)	116
	materiales radiactivos en forma especial (704–711)	116
•	teriales radiactivos de baja dispersión (712)	119
	tos (713–737)	119
SECCIÓN VIII	I. REQUISITOS ADMINISTRATIVOS	
	Y DE APROBACIÓN	127
	generales (801–802)	127
	los materiales radiactivos en forma especial y de los	
	activos de baja dispersión (803–804)	128
*	las sustancias exceptuadas de la clasificación como	
fisionables (805	5–806)	129
-	los diseños de bultos (807–816)	129
Aprobación de	los límites de actividad alternativos para una remesa	
de instrumentos	s o artículos exenta (817–818)	132
Disposiciones t	ransitorias (819–823)	133
Notificación y	registro de números de serie (824)	135
	expediciones (825–828)	135
Aprobación de	expediciones en virtud de arreglos especiales (829–831)	136
•	aprobación de la autoridad competente (832–833)	137
	os certificados de aprobación (834–839)	140
	s certificados (840)	147
REFERENCIA	S	149
ANEXO I:	RESUMEN DE REQUISITOS DE APROBACIÓN Y	
	NOTIFICACIÓN PREVIA	151
ANEXO II:	FACTORES DE CONVERSIÓN Y PREFIJOS	157
ANEXO III:	RESUMEN DE REMESAS QUE DEBEN EXPEDIRSE	
	SEGÚN LA MODALIDAD DE USO EXCLUSIVO	159
COLABORAD	ORES EN LA PREPARACIÓN Y EL EXAMEN (2012)	161

ENTIDAD.	ES ENCARGADAS DE LA APROBACION	
DE LAS N	ORMAS DE SEGURIDAD DEL OIEA	171
ÍNDICE A	LFABÉTICO	175
LISTA DE	CUADROS	
Cuadro 1.	Extracto de la lista de números de las Naciones Unidas,	
	nombres correctos de expedición y descripciones	22
Cuadro 2.	Valores básicos de los radionucleidos	26
Cuadro 3.	Valores básicos de radionucleidos para radionucleidos o	
	mezclas respecto de los cuales no se dispone de datos	48
Cuadro 4.	Límites de actividad para bultos exceptuados	53
Cuadro 5.	Requisitos de bultos industriales para materiales	
	BAE y OCS.	64
Cuadro 6.	Límites de actividad para los medios de transporte de	
	materiales BAE y OCS en bultos industriales o sin embalar	65
Cuadro 7.	Factores de multiplicación para cisternas, contenedores y	
	BAE-I y OCS-I sin embalar	66
Cuadro 8.	Categorías de los bultos, sobreenvases y contenedores	67
Cuadro 9.	Marcas de las Naciones Unidas para bultos y sobreenvases	69
Cuadro 10.	Límites del índice de transporte para contenedores y medios	
	de transporte no en la modalidad de uso exclusivo	85
Cuadro 11.	Límites del índice de seguridad con respecto a la criticidad	
	para contenedores y medios de transporte que contengan	
	sustancias fisionables	86
Cuadro 12.	Datos relativos a la irradiación solar	104
Cuadro 13.	Valores de Z para el cálculo del índice de seguridad con	
	respecto a la criticidad de conformidad con el párr. 674	108
Cuadro 14.	Altura en caída libre para el ensayo de bultos	
	en condiciones de transporte normales	121

Sección I

INTRODUCCIÓN

ANTECEDENTES

101. El presente Reglamento fija normas de seguridad que permiten someter a un grado razonable de control los riesgos inherentes a la radiación y la criticidad, así como los riesgos térmicos, que pueden correr las personas, los bienes y el medio ambiente en relación con el transporte de materiales radiactivos. Este Reglamento se basa en los Principios Fundamentales de seguridad, Nociones Fundamentales de Seguridad Nº SF-1 [1], copatrocinados por la Agencia para la Energía Nuclear de la OCDE (AEN), la Euratom, el OIEA, la Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO), la Organización Internacional del Trabajo (OIT), la Organización Marítima Internacional (OMI), la Organización Mundial de la Salud (OMS), la Organización Panamericana de la Salud (OPS), y el Programa de las Naciones Unidas para el Medio Ambiente (PNUMA) y en el Vol. Nº 115 de la Colección Seguridad [2], "Normas básicas internacionales de seguridad para la protección contra la radiación ionizante y para la seguridad de las fuentes de radiación", copatrocinadas por la AEN, la FAO, el OIEA, la OIT, la OMS y la OPS. Así, se considera que el cumplimiento del presente Reglamento se ajusta a los principios de las Normas básicas de seguridad relativas al transporte. De acuerdo con la Ref. [1], la responsabilidad primordial de la seguridad debe recaer en la persona u organización a cargo de las instalaciones y actividades que generan riesgos asociados a las radiaciones.

102. Esta norma de seguridad se complementa con un conjunto jerárquico de guías de seguridad, en particular: el Manual explicativo para la aplicación del Reglamento del OIEA para el transporte seguro de materiales radiactivos, Colección de Normas de Seguridad del OIEA Nº TS-G-1.1 (Rev.1) [3]; Planificación y preparación de medidas de respuesta a emergencias en los accidentes de transporte que afecten a materiales radiactivos, Colección de Normas de Seguridad del OIEA Nº TS-G-1.2 (ST-3) [4]; Verificación del cumplimiento para el transporte seguro de materiales radiactivos, Colección de Normas de Seguridad del OIEA Nº TS-G-1.5 [5] (publicado en inglés); Sistema de gestión para el transporte seguro de materiales radiactivos, Colección de Normas de Seguridad del OIEA Nº TS-G-1.4 [6] (publicado en inglés), y Programas de protección radiológica para el transporte de materiales radiactivos, Colección de Normas de Seguridad del OIEA Nº TS-G-1.3 [7].

SECCIÓN I

103. En ciertos puntos del presente Reglamento, se prescribe la adopción de una medida determinada, pero la responsabilidad de tomar esa medida no se hace recaer específicamente en ninguna persona. Tal responsabilidad puede variar según las leyes y la práctica de los distintos países, y según los convenios internacionales en que sean parte esos países. A los efectos del presente Reglamento, no es necesario establecer a quién incumbe esa responsabilidad, sino únicamente especificar la medida. Es prerrogativa de cada gobierno asignar la responsabilidad a quien corresponda.

OBJETIVO

104. El objetivo del presente Reglamento es establecer requisitos que deben satisfacerse para garantizar la seguridad y proteger a las personas, los bienes y el medio ambiente de los efectos de las radiaciones en el transporte de *materiales radiactivos*. Esta protección se logra aplicando los siguientes requisitos:

- a) La contención del contenido radiactivo;
- b) El control de los *niveles de radiación* externa;
- c) La prevención de la criticidad;
- d) La prevención de los daños ocasionados por el calor.

Estos requisitos se satisfacen, en primer lugar, aplicando un enfoque graduado a los límites de contenido de los *bultos* y *medios de transporte* y a las normas funcionales relativas a los *diseños* de *bultos* en función del riesgo asociado con el *contenido radiactivo*. En segundo lugar, se satisfacen estableciendo condiciones relativas al *diseño* y utilización de los *bultos* y al mantenimiento de los *embalajes*, incluida la consideración de la índole del *contenido radiactivo*. Por último, se satisfacen aplicando controles administrativos, incluida, cuando proceda, la *aprobación* de las *autoridades competentes*.

105. En el transporte de *materiales radiactivos*, la seguridad de las personas y la protección de los bienes y el medio ambiente quedan garantizadas si se cumple el presente Reglamento. La certeza a este respecto se logra aplicando *sistemas de gestión* y programas de *verificación del cumplimiento*.

ALCANCE

106. El presente Reglamento se aplica a todas las modalidades de transporte por vía terrestre, acuática o aérea de *materiales radiactivos*, incluido el transporte

INTRODUCCIÓN

incidentalmente asociado al uso de *materiales radiactivos*. El transporte abarca todas las operaciones y condiciones relacionadas con el traslado de *materiales radiactivos* e inherentes al mismo, tales como el *diseño*, la fabricación, el mantenimiento y la reparación de *embalajes*, y la preparación, *expedición*, carga, acarreo, incluido el almacenamiento en tránsito, descarga y recepción en el destino final de cargas de *materiales radiactivos* y *bultos*. Se aplica un enfoque graduado al especificar los requisitos funcionales que señala el presente Reglamento, caracterizados por tres niveles generales de gravedad:

- a) Las condiciones de transporte rutinarias (libre de incidentes);
- b) Las condiciones de transporte normales (pequeños percances);
- c) Las condiciones de accidente durante el transporte.

107. El presente Reglamento no se aplicará a:

- a) Materiales radiactivos que sean parte integral del medio de transporte.
- b) *Materiales radiactivos* desplazados dentro de un establecimiento que esté sujeto a reglamentos apropiados de seguridad vigentes en el establecimiento y cuyo desplazamiento no suponga utilización de vías o ferrocarriles públicos.
- c) *Materiales radiactivos* implantados o incorporados en seres humanos o animales vivos con fines de diagnóstico o tratamiento.
- d) *Materiales radiactivos* en o sobre el cuerpo de una persona que deba ser trasladada para recibir tratamiento médico porque la persona ha sido objeto de incorporación accidental o deliberada de *materiales radiactivos* o de contaminación.
- e) *Material radiactivo* en productos de consumo que hayan recibido *aprobación* reglamentaria, después de su venta al usuario final.
- f) Materiales naturales y minerales que contengan radionucleidos naturales que puedan haber sido sometidos a tratamiento, siempre que la concentración de actividad de los materiales no supere en más de 10 veces los valores especificados en el Cuadro 2 o calculados de conformidad con el apartado a) del párr. 403 y con los párrs. 404 a 407. En el caso de los materiales naturales y minerales que contengan radionucleidos naturales que no estén en equilibrio secular, la concentración de actividad se calculará de conformidad con el párr. 405.
- g) Objetos sólidos no radiactivos con sustancias radiactivas presentes en cualquier superficie en cantidades que no excedan de los niveles definidos en el párr. 214.

SECCIÓN I

- 108. El presente Reglamento no especifica controles relativos al itinerario o a la protección física que puedan instituirse por razones distintas de la seguridad radiológica. Cuando se impongan tales controles, se tendrán en cuenta los riesgos radiológicos y no radiológicos, sin desvirtuar las normas de seguridad que el presente Reglamento tiene por objeto fijar.
- 109. Se deberían adoptar medidas para garantizar que los *materiales radiactivos* se mantienen en condiciones de seguridad durante el transporte a fin de evitar el robo o cualquier daño, y para asegurar que no se cede de forma inadecuada el control sobre los materiales (véase el Anexo I).
- 110. En el caso de *materiales radiactivos* que entrañen riesgos secundarios y en el del transporte de *materiales radiactivos* con otras mercancías peligrosas, se aplicarán los reglamentos pertinentes relativos al transporte de mercancías peligrosas, además del presente Reglamento.

ESTRUCTURA

111. El presente documento se ha estructurado del modo siguiente: en la Sección II se definen las expresiones utilizadas a efectos del Reglamento; en la Sección III figuran disposiciones de carácter general; la Sección IV señala los límites de actividad y las restricciones sobre los materiales que se utilizan en el Reglamento; la Sección V se refiere a los requisitos y controles para el transporte; la Sección VI contiene los requisitos relativos a los *materiales radiactivos* y a los *embalajes* y *bultos*; la Sección VII se refiere a los métodos de ensayo; y en la Sección VIII se señalan los requisitos administrativos y de *aprobación*.

Sección II

DEFINICIONES

A los efectos del presente Reglamento se aplicarán las siguientes definiciones:

 A_1 y A_2 (A₁ and A₂)

201. Por A_1 se entenderá el valor de la actividad de los *materiales radiactivos en forma especial* que figura en el Cuadro 2 o que se ha deducido según los procedimientos de la Sección IV, y que se utiliza para determinar los límites de actividad para los requisitos del presente Reglamento. Por A_2 se entenderá el valor de la actividad de los *materiales radiactivos*, que no sean *materiales radiactivos en forma especial*, que figura en el Cuadro 2 o que se ha deducido según los procedimientos de la Sección IV, y que se utiliza para determinar los límites de actividad para los requisitos del presente Reglamento.

Aeronave (Aircraft)

- 202. Por *aeronave de carga* se entenderá toda aeronave que no sea de pasajeros y que transporte mercancías o bienes.
- 203. Por *aeronave de pasajeros* se entenderá la aeronave que transporte a cualquier persona que no sea miembro de la tripulación, empleado del *transportista* en misión oficial, representante autorizado miembro de un organismo oficial apropiado, ni una persona que acompañe a una *remesa* u otra carga.

Aprobación (Approval)

- 204. Por *aprobación multilateral* se entenderá la *aprobación* concedida por la *autoridad competente* pertinente del país de origen del *diseño* o de la *expedición*, según proceda, y también, en caso de que la *remesa* se haya de transportar *a través o dentro de* cualquier otro país, la *aprobación* de la *autoridad competente* de ese país.
- 205. Por *aprobación unilateral* se entenderá la *aprobación* de un *diseño* que es preceptivo que conceda la *autoridad competente* del país de origen del *diseño* exclusivamente.

SECCIÓN II

Transportista (Carrier)

206. Por *transportista* se entenderá cualquier persona, organización u organismo oficial que se encargue del acarreo de *materiales radiactivos* por cualquier *medio de transporte*. El término comprende tanto a los *transportistas* que arrienden sus servicios o que los presten contra remuneración (denominados en algunos países empresas de transporte público o colectivo) como a los *transportistas* por cuenta propia (denominados en algunos países *transportistas* particulares).

Autoridad competente (Competent authority)

207. Por *autoridad competente* se entenderá cualquier órgano o autoridad designado o de otra forma reconocido como tal para que entienda en cualquier cuestión relacionada con el presente Reglamento.

Verificación del cumplimiento (Compliance assurance)

208. Por *verificación del cumplimiento* se entenderá un programa sistemático de medidas aplicadas por una *autoridad competente* con la finalidad de asegurarse de que se ponen en práctica las disposiciones del presente Reglamento.

Sistema de confinamiento (Confinement system)

209. Por *sistema de confinamiento* se entenderá el conjunto de *sustancias fisionables* y componentes del *embalaje* especificados por el autor del *diseño* y aprobados por la *autoridad competente* al objeto de mantener la seguridad con respecto a la criticidad.

Destinatario (Consignee)

210. Por *destinatario* se entenderá toda persona, organización u organismo oficial que está autorizado a recibir una *remesa*.

Remesa (Consignment)

211. Por *remesa* se entenderá cualquier *bulto* o *bultos* o carga de *materiales radiactivos* que presente un *remitente* para su transporte.

DEFINICIONES

Remitente (Consignor)

212. Por *remitente* se entenderá toda persona, organización u organismo oficial que prepare una *remesa* para su transporte.

Sistema de contención (Containment system)

213. Por *sistema de contención* se entenderá el conjunto de componentes del *embalaje*, especificados por el autor del *diseño*, que están destinados a contener los *materiales radiactivos* durante el transporte.

Contaminación (Contamination)

- 214. Por *contaminación* se entenderá la presencia de una sustancia radiactiva sobre una superficie en cantidades superiores a 0,4 Bq/cm² en el caso de emisores beta y gamma o *emisores alfa de baja toxicidad*, o a 0,04 Bq/cm² en el caso de todos los otros emisores alfa.
- 215. Por *contaminación transitoria* se entenderá la *contaminación* que puede ser eliminada de la superficie en las condiciones de transporte rutinarias.
- 216. Por *contaminación fija* se entenderá la *contaminación* que no es *contaminación transitoria*.

Medio de transporte (Conveyance)

- 217. Por medio de transporte se entenderá:
- a) Para el transporte por carretera o ferrocarril: cualquier *vehículo*.
- b) Para el transporte por vía acuática: cualquier *buque*, o cualquier bodega, compartimiento o *zona delimitada de la cubierta* de un *buque*.
- c) Para el transporte por vía aérea: cualquier aeronave.

İndice de seguridad con respecto a la criticidad (Criticality safety index)

218. Por *índice de seguridad con respecto a la criticidad (ISC)* asignado a un *bulto*, *sobreenvase* o *contenedor* que contenga *sustancias fisionables*, se entenderá un número que se utiliza para controlar la acumulación de *bultos*, *sobreenvases* o *contenedores* con contenido de *sustancias fisionables*.

SECCIÓN II

Zona delimitada de la cubierta (Defined deck area)

219. Por *zona delimitada de la cubierta* se entenderá la zona de la cubierta de intemperie de un *buque* o de la cubierta para *vehículos* de una embarcación de autotransbordo (roll-on/roll-off ship) o de un transbordador, destinada a la estiba de *materiales radiactivos*.

Diseño (Design)

220. Por diseño se entenderá la descripción de las sustancias fisionables exceptuadas en virtud del apartado f) del párr. 417, los materiales radiactivos en forma especial, materiales radiactivos de baja dispersión, bulto o embalaje, que permita la perfecta identificación de tales elementos. Esta descripción podrá comprender especificaciones, planos técnicos, informes que acrediten el cumplimiento de los requisitos reglamentarios y cualesquiera otros documentos pertinentes.

Uso exclusivo (Exclusive use)

221. Por *uso exclusivo* se entenderá el empleo exclusivo, por un solo *remitente*, de un *medio de transporte* o de un gran *contenedor*, respecto del cual todas las operaciones iniciales, intermedias y finales de carga y descarga y *expedición* sean efectuadas de conformidad con las instrucciones del *remitente* o del *destinatario*, cuando el presente Reglamento así lo exija.

Nucleidos fisionables y sustancias fisionables (Fissile nuclides and fissile material)

- 222. Por *nucleidos fisionables* se entenderá el uranio 233, uranio 235, plutonio 239 y plutonio 241. Por *sustancias fisionables* se entenderá toda sustancia que contenga cualquiera de los *nucleidos fisionables*. Se excluyen de la definición de *sustancias fisionables*:
- a) El uranio natural o el uranio empobrecido no irradiados;
- b) El *uranio natural* o el *uranio empobrecido* que hayan sido irradiados solamente en reactores térmicos:
- c) Una cantidad total máxima de 0,25 g de sustancias con *nucleidos fisionables*;
- d) Cualquier combinación de a), b) y/o c);

Estas exclusiones sólo son válidas si no hay otras sustancias con *nucleidos fisionables* en el *bulto* o en la *remesa*, si ésta se expide sin embalar.

DEFINICIONES

Contenedor — pequeño, grande (Freight container — small, large)

223. Por *contenedor* se entenderá un elemento de equipo de transporte de carácter permanente y, por tanto, suficientemente resistente para permitir su empleo repetido; especialmente destinado a facilitar el transporte de mercancías, por una u otra modalidad de transporte, sin necesidad de proceder a operaciones intermedias de recarga; construido de manera que pueda sujetarse y/o manipularse fácilmente, con accesorios para ese fin. El término "*contenedor*" no incluye el vehículo.

Por *contenedor pequeño* se entenderá un contenedor cuyo volumen interno no exceda de 3 m³. Por *contenedor grande* se entenderá un *contenedor* cuyo volumen interno exceda de 3 m³.

Recipiente intermedio para graneles (Intermediate bulk container)

- 224. Por recipiente intermedio para graneles (RIG) se entenderá un embalaje portátil que:
- a) Tenga una capacidad no superior a 3 m³;
- b) Esté diseñado para la manipulación mecánica;
- c) Sea resistente a los esfuerzos que se producen durante la manipulación y el transporte, y ello se haya demostrado mediante ensayos.

Material radiactivo de baja dispersión (Low dispersible radioactive material)

225. Por *material radiactivo de baja dispersión* se entenderá, bien sea *material radiactivo* sólido, o *material radiactivo* sólido en una cápsula sellada, con dispersión limitada y que no esté en forma de polvo.

Materiales de baja actividad específica (Low specific activity material)

226. Por *materiales de baja actividad específica* (*BAE*) se entenderán los *materiales radiactivos* que por su naturaleza tienen una *actividad específica* limitada, o los *materiales radiactivos* a los que se aplican los límites de la *actividad específica* media estimada. Para determinar la *actividad específica* media estimada no deberán tenerse en cuenta los materiales externos de blindaje que circunden a los *materiales BAE*.

SECCIÓN II

Emisores alfa de baja toxicidad (Low toxicity alpha emitters)

227. Por *emisores alfa de baja toxicidad* se entenderá: *uranio natural, uranio empobrecido*, torio natural, uranio 235, uranio 238, torio 232, torio 228 y torio 230 contenidos en minerales o en concentrados físicos o químicos; o emisores alfa con un período de semidesintegración de menos de 10 días.

Sistema de gestión (Management system)

228. Por *sistema de gestión* se entenderá un conjunto de elementos interrelacionados o interactuantes (sistema) destinado a establecer políticas y objetivos y a posibilitar que se logren dichos objetivos de manera eficaz y efectiva.

Presión normal de trabajo máxima (Maximum normal operating pressure)

229. Por *presión normal de trabajo máxima* se entenderá la presión máxima por encima de la presión atmosférica al nivel medio del mar que se desarrollaría en el *sistema de contención* durante un período de un año en las condiciones de temperatura y de irradiación solar correspondientes a las condiciones ambientales en que tiene lugar el transporte, en ausencia de venteo, de refrigeración externa mediante un sistema auxiliar o de controles operacionales durante el transporte.

Sobreenvase (Overpack)

230. Por *sobreenvase* se entenderá un recipiente utilizado por un *remitente* único, que contenga uno o más *bultos* y constituya una unidad con el fin de facilitar la manipulación y la estiba durante el transporte.

Bulto (Package)

- 231. Por *bulto* se entenderá el producto completo de la operación de embalaje, que consiste en el *embalaje* y su contenido preparados para el transporte. Los tipos de *bulto* a los que se aplica el presente Reglamento, sujetos a los límites de actividad y restricciones en cuanto a materiales que figuran en la Sección IV, y que satisfacen los requisitos correspondientes, son:
- a) Bulto exceptuado (excepted package);
- b) Bulto industrial del Tipo 1 (Tipo BI-1) (Type IP-1);
- c) Bulto industrial del Tipo 2 (Tipo BI-2) (Type IP-2);
- d) Bulto industrial del Tipo 3 (Tipo BI-3) (Type IP-3);

DEFINICIONES

- e) Bulto del Tipo A (Type A package);
- f) Bulto del Tipo B(U) (Type B(U) package);
- g) Bulto del Tipo B(M) (Type B(M) package);
- h) Bulto del Tipo C (Type C package).

Los *bultos* que contienen *sustancias fisionables* o hexafluoruro de uranio están sujetos a requisitos adicionales.

Embalaje (Packaging)

232. Por *embalaje* se entenderá uno o más recipientes y cualesquiera otros componentes o materiales necesarios para que los recipientes puedan realizar las funciones de contención y otras funciones de seguridad.

Nivel de radiación (Radiation level)

233. Por *nivel de radiación* se entenderá la correspondiente tasa de dosis expresada en milisieverts por hora o microsieverts por hora.

Programa de protección radiológica (Radiation protection programme)

234. Por *programa de protección radiológica* se entenderá las disposiciones sistemáticas encaminadas a permitir una adecuada consideración de las medidas de protección radiológica.

Contenido radiactivo (Radioactive contents)

235. Por *contenido radiactivo* se entenderá los *materiales radiactivos* juntamente con los sólidos, líquidos y gases contaminados o activados que puedan encontrarse dentro del *embalaje*.

Materiales radiactivos (Radioactive material)

236. Por *materiales radiactivos* se entenderá todo material que contenga radionucleidos en los casos en que tanto la concentración de actividad como la actividad total de la *remesa* excedan de los valores especificados en los párrs. 402 a 407.

SECCIÓN II

Expedición (Shipment)

237. Por *expedición* se entenderá el traslado específico de una *remesa* desde su origen hasta su destino.

Arreglos especiales (Special arrangement)

238. Por *arreglos especiales* se entenderá aquellas disposiciones, aprobadas por la *autoridad competente*, en virtud de las cuales podrá ser transportada una *remesa* que no satisfaga todos los requisitos aplicables del presente Reglamento.

Materiales radiactivos en forma especial (Special form radioactive material)

239. Por *materiales radiactivos en forma especial* se entenderá o bien un *material radiactivo* sólido no dispersable o bien una cápsula sellada que contenga *materiales radiactivos*.

Actividad específica (Specific activity)

240. Por *actividad específica* de un radionucleido se entenderá la actividad por unidad de masa de ese nucleido. Por *actividad específica* de un material se entenderá la actividad por unidad de masa de un material en el que los radionucleidos estén distribuidos de modo esencialmente uniforme.

Objeto contaminado en la superficie (Surface contaminated object)

241. Por *objeto contaminado en la superficie (OCS*) se entenderá un objeto sólido que no es en sí radiactivo pero que tiene *materiales radiactivos* distribuidos en su superficie.

Cisterna (Tank)

242. Por *cisterna* se entenderá una *cisterna* portátil (incluido un contenedor *cisterna*), un camión o vagón *cisterna* o un recipiente que contenga sólidos, líquidos o gases, con una capacidad no inferior a 450 L cuando se utilice para el transporte de gases.

A través o dentro de (Through or into)

243. Por *a través o dentro de* se entenderá a través o dentro de los países por los que se transporta una *remesa*, pero se excluyen específicamente los países sobre o

DEFINICIONES

por encima de los cuales se transporta una *remesa* por aire, siempre que no se hayan previsto paradas en esos países.

Índice de transporte (Transport index)

244. Por *índice de transporte* (*IT*) se entenderá un número asignado a un *bulto*, *sobreenvase*, o *contenedor*, o a un *BAE-I* u *OCS-I* sin embalar, que se utiliza para controlar la exposición a las radiaciones.

Torio no irradiado (Unirradiated thorium)

245. Por *torio no irradiado* se entenderá torio que no contenga más de 10^{-7} g de uranio 233 por gramo de torio 232.

Uranio no irradiado (Unirradiated uranium)

246. Por *uranio no irradiado* se entenderá uranio que no contenga más de 2×10^3 Bq de plutonio por gramo de uranio 235, no más de 9×10^6 Bq de productos de fisión por gramo de uranio 235 y no más de 5×10^{-3} g de uranio 236 por gramo de uranio 235.

Uranio — *natural*, *empobrecido*, *enriquecido* (Uranium — natural, depleted, enriched)

247. Por *uranio natural* se entenderá uranio (que puede haber sido obtenido por separación química) con la composición isotópica que se da en la naturaleza (aproximadamente 99,28 % de uranio 238 y 0,72 % de uranio 235, en masa). Por *uranio empobrecido* se entenderá uranio que contenga un porcentaje en masa de uranio 235 inferior al del *uranio natural*. Por *uranio enriquecido* se entenderá uranio que contenga un porcentaje en masa de uranio 235 superior al 0,72 %. En todos los casos se halla presente un porcentaje en masa muy pequeño de uranio 234.

Vehículo (Vehicle)

248. Por *vehículo* se entenderá todo vehículo de carretera (incluidos los *vehículos* articulados, es decir, los formados por un *vehículo* tractor y un semirremolque) o todo vagón de ferrocarril. Cada remolque será considerado como un *vehículo* distinto.

SECCIÓN II

Buque (Vessel)

249. Por *buque* se entenderá todo *buque* de navegación marítima o embarcación de navegación interior utilizados para transportar carga.

Sección III

DISPOSICIONES GENERALES

PROTECCIÓN RADIOLÓGICA

- 301. Las dosis que reciban las personas serán inferiores a los límites de dosis correspondientes. Se optimizarán la protección y la seguridad de modo que la magnitud de las dosis individuales, el número de personas expuestas y la probabilidad de que ocurran exposiciones se mantengan en los valores más bajos que puedan razonablemente alcanzarse, teniendo en cuenta los factores económicos y sociales y con la limitación de que las dosis individuales estén sujetas a restricciones de dosis. Se adoptará un enfoque estructurado y sistemático que tendrá en cuenta las interrelaciones entre el transporte y otras actividades.
- 302. Se establecerá un *programa de protección radiológica* para el transporte de *materiales radiactivos*. La naturaleza y el alcance de las medidas que se aplicarán en el programa guardarán relación con la magnitud y la probabilidad de que ocurran exposiciones a la radiación. El programa incorporará los requisitos que se señalan en los párrs. 301, 303 a 305, 311 y 562. Los documentos del programa deberán ponerse a disposición de la *autoridad competente*, cuando así se solicite, con fines de inspección.
- 303. En casos de exposición ocupacional ocasionada por actividades de transporte, cuando se determine que la dosis efectiva:
- a) Es probable que se encuentre comprendida entre 1 y 6 mSv en un año, será necesario un programa de evaluación de dosis mediante la vigilancia radiológica en el lugar de trabajo o la vigilancia de la exposición individual; o
- b) Es probable que sea superior a 6 mSv en un año, deberá procederse a la vigilancia radiológica individual.

Cuando se proceda a la vigilancia individual o de los lugares de trabajo, se llevarán los registros apropiados.

SECCIÓN III

RESPUESTA A EMERGENCIAS

304. En caso de accidentes o incidentes durante el transporte de *materiales radiactivos*, se observarán las disposiciones de emergencia establecidas por las entidades nacionales y/o internacionales pertinentes, con el fin de proteger a las personas, los bienes y el medio ambiente. En la Ref. [4] figuran directrices apropiadas para esas disposiciones.

305. En los procedimientos de emergencia se tendrá en cuenta la formación de otras sustancias peligrosas que pueda resultar de la reacción entre el contenido de una *remesa* y el medio ambiente en caso de accidente.

SISTEMA DE GESTIÓN

306. Con el fin de asegurar el cumplimiento de las disposiciones pertinentes del presente Reglamento, se establecerá y aplicará un sistema de gestión basado en las normas internacionales, nacionales o de otra índole aceptables para la autoridad competente respecto de todas las actividades dentro del alcance del Reglamento, el cual se determina en el párr. 106. Se mantendrá a disposición de la autoridad competente la certificación de que se han cumplido plenamente las especificaciones relativas al diseño. El fabricante, el remitente o el usuario deberán estar preparados para:

- a) Facilitar la inspección durante la fabricación y utilización;
- b) Demostrar el cumplimiento del presente Reglamento a la *autoridad competente*.

Cuando sea necesaria la *aprobación* de la *autoridad competente*, dicha *aprobación* tendrá en cuenta la idoneidad del *sistema de gestión*, y dependerá de ella.

VERIFICACIÓN DEL CUMPLIMIENTO

307. La *autoridad competente* verificará el cumplimiento del presente Reglamento.

308. La *autoridad competente* adoptará disposiciones para que se efectúen evaluaciones periódicas de las dosis de radiación recibidas por las personas a causa del transporte de *materiales radiactivos*, a fin de cerciorarse de que el

DISPOSICIONES GENERALES

sistema de protección y seguridad cumple con las Normas básicas de seguridad [2].

INCUMPLIMIENTO

309. En caso de incumplimiento de cualquiera de los límites fijados en el presente Reglamento respecto del *nivel de radiación* o de la *contaminación*:

- a) El *remitente*, el *destinatario*, el *transportista* y cualquier organización participante en el transporte, que puedan verse afectados, según corresponda, serán informados del incumplimiento por:
 - i) El transportista, si el incumplimiento se detecta durante el transporte; o
 - ii) El destinatario, si el incumplimiento se detecta a la recepción;
- b) El transportista, el remitente o el destinatario, según corresponda, deberá:
 - i) Adoptar medidas inmediatas para mitigar las consecuencias del incumplimiento;
 - ii) Investigar el incumplimiento y sus causas, circunstancias y consecuencias;
 - iii) Adoptar medidas adecuadas para eliminar las causas y circunstancias que dieron lugar al incumplimiento y para evitar que vuelvan a ocurrir circunstancias similares a las que lo provocaron;
 - iv) Comunicar a las *autoridades competentes* que corresponda las causas del incumplimiento y las acciones correctivas o preventivas que se han adoptado o que se adoptarán.
- c) La comunicación del incumplimiento al *remitente* y a las *autoridades competentes*, respectivamente, se hará lo antes posible, y será inmediata en todos los casos en que se haya producido o se esté produciendo una situación de exposición de emergencia.

ARREGLOS ESPECIALES

310. Las *remesas* para las que no sea posible satisfacer los demás requisitos del presente Reglamento se transportarán exclusivamente en virtud de *arreglos especiales*. Siempre que la *autoridad competente* haya comprobado que no es posible satisfacer las demás disposiciones del presente Reglamento y se haya demostrado el cumplimiento de las normas obligatorias de seguridad establecidas por el presente Reglamento por medios distintos a las demás disposiciones, la *autoridad competente* podrá aprobar *arreglos especiales* para operaciones de transporte de una *remesa* o de una serie planificada de *remesas* múltiples. El

SECCIÓN III

grado global de seguridad durante el transporte deberá equivaler, cuando menos, al que se alcanzaría de cumplirse todos los requisitos reglamentarios aplicables. Las *remesa*s de este tipo requerirán *aprobación multilateral*.

CAPACITACIÓN

- 311. Los trabajadores deberán recibir capacitación apropiada en relación con la protección radiológica, incluidas las precauciones que se hayan de observar para limitar su exposición ocupacional y la exposición de otras personas que pudieran resultar afectadas por las actividades que ellos realicen.
- 312. Las personas que intervienen en el transporte de *materiales radiactivos* recibirán capacitación en las disposiciones del presente Reglamento, en la medida que lo exijan sus responsabilidades.
- 313. Las personas que clasifican *materiales radiactivos*; embalan *materiales radiactivos*; marcan y etiquetan *materiales radiactivos*; preparan los documentos de transporte para *materiales radiactivos*; ofrecen o aceptan *materiales radiactivos* para el transporte; acarrean *materiales radiactivos* o los manipulan durante el transporte; marcan o rotulan *bultos* de *materiales radiactivos*, o los cargan o descargan de *vehículos* de transporte, *embalajes* para graneles o *contenedores*; o que de otro modo intervienen directamente en el transporte de *materiales radiactivos* según lo determine la *autoridad competente*, recibirán la siguiente capacitación:
- a) Capacitación de carácter general/familiarización;
 - i) Toda persona recibirá capacitación destinada a familiarizarla con las disposiciones generales del presente Reglamento;
 - ii) Esa capacitación comprenderá una descripción de las categorías de *materiales radiactivos*; los requisitos de etiquetado, marcado, rotulado y *embalaje* y separación; una descripción del objeto y el contenido del documento de transporte de *materiales radiactivos*; y una descripción de los documentos de respuesta a emergencias disponibles.
- b) Capacitación en funciones específicas: Toda persona recibirá capacitación detallada sobre los requisitos específicos del transporte de *materiales radiactivos* que se apliquen a la función que esa persona desempeñe.
- c) Capacitación en materia de seguridad: En función del riesgo de exposición en caso de liberación y de las tareas que le correspondan, toda persona recibirá capacitación sobre:

DISPOSICIONES GENERALES

- i) Los métodos y procedimientos para evitar accidentes, tales como la utilización correcta del equipo de manipulación de *bultos* y los métodos apropiados de estiba de *materiales radiactivos*;
- ii) La información disponible acerca de la respuesta a emergencias y la forma de utilizarla;
- iii) Los peligros generales que plantean las distintas categorías de *materiales radiactivos* y la manera de evitar la exposición a esos riesgos, incluido, si procede, el uso de ropa y equipo de protección personal;
- iv) Los procedimientos que se hayan de aplicar de inmediato en caso de liberación fortuita de *materiales radiactivos*, entre ellos los procedimientos de respuesta a emergencias de los que la persona sea responsable y los procedimientos de protección personal aplicables.
- 314. El empleador mantendrá registros de todas las actividades de capacitación sobre seguridad realizadas y las pondrá a disposición del empleado si éste lo solicita.
- 315. La capacitación requerida en el párr. 313 se impartirá o verificará al emplear a una persona en un puesto que entrañe el transporte de *materiales radiactivos*, y se complementará periódicamente con el readiestramiento que la autoridad competente estime adecuado.

Sección IV

LÍMITES DE ACTIVIDAD Y CLASIFICACIÓN

DISPOSICIONES GENERALES

401. Los *materiales radiactivos* deberán asignarse a uno de los números de las Naciones Unidas especificados en el Cuadro 1, de conformidad con los párrs. 408 a 434.

VALORES BÁSICOS DE LOS RADIONUCLEIDOS

402. En el Cuadro 2 figuran los siguientes valores básicos correspondientes a los distintos radionucleidos:

- a) los valores A_1 y A_2 en TBq;
- b) los límites de concentración de actividad para material exento en Bq/g;
- c) los límites de actividad para *remesas* exentas en Bq.

DETERMINACIÓN DE LOS VALORES BÁSICOS DE LOS RADIONUCLEIDOS

- 403. En el caso de los radionucleidos aislados:
- a) Que no figuren en el Cuadro 2, la determinación de los valores básicos de los radionucleidos a que se hace referencia en el párr. 402 requerirá aprobación multilateral. En el caso de estos radionucleidos, las concentraciones de actividad para material exento y los límites de actividad para remesas exentas se calcularán de conformidad con los principios establecidos en las NBS [2]. Es posible utilizar un valor de A2 calculado utilizando un coeficiente de dosis para el tipo apropiado de absorción pulmonar, recomendado por la Comisión Internacional de Protección Radiológica, si se tienen en cuenta las formas químicas de cada radionucleido tanto en las condiciones de transporte normales como en las de accidente. Como alternativa, pueden utilizarse sin obtener la aprobación de la autoridad competente los valores de los radionucleidos que figuran en el Cuadro 3.

SECCIÓN IV

b) En instrumentos o artículos en que los *materiales radiactivos* estén contenidos o formen parte integrante del instrumento u otro artículo manufacturado y que se ajusten al apartado c) del párr. 423, se permiten valores básicos de los radionucleidos que sean alternativos a los que figuran en el Cuadro 2, en relación con el límite de actividad para una *remesa* exenta y dichos valores requerirán *aprobación multilateral*. Los límites de actividad alternativos para una *remesa* exenta se calcularán de conformidad con los principios establecidos en las NBS [2].

CUADRO 1. EXTRACTO DE LA LISTA DE NÚMEROS DE LAS NACIONES UNIDAS, NOMBRES CORRECTOS DE EXPEDICIÓN Y DESCRIPCIONES

•	nación de úmeros s NU	NOMBRE CORRECTO DE EXPEDICIÓN y descripción ^a		
Bultos exceptu	ados			
UN 2	908	MATERIALES RADIACTIVOS, BULTOS EXCEPTUADOS — EMBALAJES VACÍOS		
UN 2	909	MATERIALES RADIACTIVOS, BULTOS EXCEPTUADOS — ARTÍCULOS MANUFACTURADOS DE URANIO NATURAL O URANIO EMPOBRECIDO O TORIO NATURAL		
UN 2	910	MATERIALES RADIACTIVOS, BULTOS EXCEPTUADOS — CANTIDADES LIMITADAS DE MATERIALES		
UN 2	911	MATERIALES RADIACTIVOS, BULTOS EXCEPTUADOS — INSTRUMENTOS o ARTÍCULOS		
UN3:	507	HEXAFLUORURO DE URANIO, MATERIALES RADIACTIVOS, BULTOS EXCEPTUADOS, inferior a 0,1 kg por bulto, no fisionable o fisionable exceptuado ^b		
Materiales rac	liactivos de	baja actividad específica		
UN 2	912	MATERIALES RADIACTIVOS, BAJA ACTIVIDAD ESPECÍFICA (BAE-I), no fisionables o fisionables exceptuados ^b		
UN 3	321	MATERIALES RADIACTIVOS, BAJA ACTIVIDAD ESPECÍFICA (BAE-II), no fisionables o fisionables exceptuados ^b		
UN 3	322	MATERIALES RADIACTIVOS, BAJA ACTIVIDAD ESPECÍFICA (BAE-III), no fisionables o fisionables exceptuados ^b		

LÍMITES DE ACTIVIDAD Y CLASIFICACIÓN

CUADRO 1. EXTRACTO DE LA LISTA DE NÚMEROS DE LAS NACIONES UNIDAS, NOMBRES CORRECTOS DE EXPEDICIÓN Y DESCRIPCIONES (cont.)

Asignación de los números de las NU	NOMBRE CORRECTO DE EXPEDICIÓN y descripción ^a
UN 3324	MATERIALES RADIACTIVOS, BAJA ACTIVIDAD ESPECÍFICA (BAE-II), FISIONABLES
UN 3325	MATERIALES RADIACTIVOS, BAJA ACTIVIDAD ESPECÍFICA (BAE-III), FISIONABLES
Objetos contaminados en	ı la superficie
UN 2913	MATERIALES RADIACTIVOS, OBJETOS CONTAMINADOS EN LA SUPERFICIE (OCS-I u OCS-II), no fisionables o fisionables exceptuados ^b
UN 3326	MATERIALES RADIACTIVOS, OBJETOS CONTAMINADOS EN LA SUPERFICIE (OCS-I u OCS-II), FISIONABLES
Bultos del Tipo A	
UN 2915	MATERIALES RADIACTIVOS, BULTOS DEL TIPO A, no en forma especial, no fisionables o fisionables exceptuados ^b
UN 3327	MATERIALES RADIACTIVOS, BULTOS DEL TIPO A, FISIONABLES, no en forma especial
UN 3332	MATERIALES RADIACTIVOS, BULTOS DEL TIPO A, EN FORMA ESPECIAL, no fisionables o fisionables exceptuados ^b
UN 3333	MATERIALES RADIACTIVOS, BULTOS DEL TIPO A, EN FORMA ESPECIAL, FISIONABLES
Bultos del Tipo B(U)	
UN 2916	MATERIALES RADIACTIVOS, BULTOS DEL TIPO B(U), no fisionables o fisionables exceptuados ^b
UN 3328	MATERIALES RADIACTIVOS, BULTOS DEL TIPO B(U), FISIONABLES
Bultos del Tipo B(M)	
UN 2917	MATERIALES RADIACTIVOS, BULTOS DEL TIPO B(M), no fisionables o fisionables exceptuados ^b
UN 3329	MATERIALES RADIACTIVOS, BULTOS DEL TIPO B(M), FISIONABLES

SECCIÓN IV

CUADRO 1. EXTRACTO DE LA LISTA DE NÚMEROS DE LAS NACIONES UNIDAS, NOMBRES CORRECTOS DE EXPEDICIÓN Y DESCRIPCIONES (cont.)

Asignación de los números de las NU	NOMBRE CORRECTO DE EXPEDICIÓN y descripción ^a	
Bultos del Tipo C		
UN 3323	MATERIALES RADIACTIVOS, BULTOS DEL TIPO C, no fisionables o fisionables exceptuados ^b	
UN 3330	MATERIALES RADIACTIVOS, BULTOS DEL TIPO C, FISIONABLES	
Arreglos especiales		
UN 2919	MATERIALES RADIACTIVOS, TRANSPORTADOS EN VIRTUD DE ARREGLOS ESPECIALES, no fisionables o fisionables exceptuados ^b	
UN 3331	MATERIALES RADIACTIVOS, TRANSPORTADOS EN VIRTUD DE ARREGLOS ESPECIALES, FISIONABLES	
Hexafluoruro de uranio		
UN 2977	MATERIALES RADIACTIVOS, HEXAFLUORURO DE URANIO, FISIONABLE	
UN 2978	MATERIALES RADIACTIVOS, HEXAFLUORURO DE URANIO, no fisionable o fisionable exceptuado ^b	

a El "NOMBRE CORRECTO DE EXPEDICIÓN" se encuentra en la columna "NOMBRE CORRECTO DE EXPEDICIÓN y descripción" y se limita a la parte que figura en LETRAS MAYÚSCULAS. En el caso de los números 2909, 2911, 2913 y 3326 de las Naciones Unidas, en que distintos nombres correctos de *expedición* están separados por la palabra "o", únicamente se utilizará el nombre correcto de expedición pertinente.

404. En los cálculos de A_1 y A_2 para un radionucleido que no figure en el Cuadro 2, una sola cadena de desintegración radiactiva en la que los distintos radionucleidos se encuentran en las mismas proporciones en que se dan en el proceso natural de desintegración y en la que no exista ningún nucleido descendiente que tenga un período de semidesintegración superior a 10 días o superior al período del nucleido predecesor, se considerará constituida por un

b El término "fisionables exceptuados" se refiere sólo a las sustancias exceptuadas en virtud del párr. 417.

LÍMITES DE ACTIVIDAD Y CLASIFICACIÓN

solo radionucleido, y la actividad que se tomará en consideración y el valor de A_1 o de A_2 que se aplicará será el correspondiente al nucleido predecesor de la cadena. En el caso de cadenas de desintegración radiactiva, en las que cualquiera de los nucleidos descendientes tenga un período de semidesintegración superior a 10 días o superior al período del nucleido predecesor, éste y los nucleidos descendientes se considerarán mezclas de radionucleidos diferentes.

405. En el caso de mezclas de radionucleidos, los valores básicos de radionucleidos a que se hace referencia en el párr. 402 podrán determinarse como sigue:

$$X_{\rm m} = \frac{1}{\sum_{i} \frac{f(i)}{X(i)}}$$

donde

- f(i) es la fracción de actividad o concentración de actividad del radionucleido i en la mezcla.
- X(i) es el valor apropiado de A_1 o A_2 , o el límite de concentración de actividad para material exento o el límite de actividad para una *remesa* exenta, según corresponda para el radionucleido i.
- X_m es el valor derivado de A_I o A_2 , o el límite de concentración de actividad para material exento o el límite de actividad para una *remesa* exenta en el caso de una mezcla.

406. Cuando se conoce la identidad de todos los radionucleidos, pero se ignora la actividad de algunos de ellos, los radionucleidos pueden agruparse y puede utilizarse el valor de radionucleido más bajo, según proceda, para los radionucleidos de cada grupo al aplicar las fórmulas de los párrs. 405 y 430. La formación de los grupos puede basarse en la actividad alfa total y en la actividad beta/gamma total, cuando éstas se conocen, utilizando los valores más bajos de radionucleidos para los emisores alfa o los emisores beta/gamma, respectivamente.

El texto sigue en la pág. 47

SECCIÓN IV

CUADRO 2. VALORES BÁSICOS DE LOS RADIONUCLEIDOS

Radionucleido (número atómico)	A_I	A_2	Límite de concentración de actividad para material exento	Límite de actividad para una remesa exenta
	(TBq)	(TBq)	(Bq/g)	(Bq)
Actinio (89)				
Ac-225 (a)	8×10^{-1}	6×10^{-3}	1×10^1	1×10^4
Ac-227 (a)	9×10^{-1}	9×10^{-5}	1×10^{-1}	1×10^3
Ac-228	6×10^{-1}	5×10^{-1}	1×10^1	1×10^6
Plata (47)				
Ag-105	2×10^{0}	2×10^{0}	1×10^2	1×10^6
Ag-108m (a)	7×10^{-1}	7×10^{-1}	1×10^{1} (b)	$1 \times 10^6 (b)$
Ag-110m (a)	4×10^{-1}	4×10^{-1}	1×10^1	1×10^6
Ag-111	2×10^{0}	6×10^{-1}	1×10^3	1×10^6
Aluminio (13)				
Al-26	1×10^{-1}	1×10^{-1}	1×10^{1}	1×10^5
Americio (95)				
Am-241	1×10^{1}	1×10^{-3}	1×10^{0}	1×10^4
Am-242m (a)	1×10^{1}	1×10^{-3}	1×10^0 (b)	1×10^4 (b)
Am-243 (a)	5×10^{0}	1×10^{-3}	1×10^0 (b)	$1 \times 10^3 (b)$
Argón (18)				
Ar-37	4×10^1	4×10^1	1×10^6	1×10^8
Ar-39	4×10^{1}	2×10^{1}	1×10^7	1×10^4
Ar-41	3×10^{-1}	3×10^{-1}	1×10^2	1×10^9
Arsénico (33)				
As-72	3×10^{-1}	3×10^{-1}	1×10^{1}	1×10^5
As-73	4×10^1	4×10^1	1×10^3	1×10^7
As-74	1×10^{0}	9×10^{-1}	1×10^{1}	1×10^6
As-76	3×10^{-1}	3×10^{-1}	1×10^2	1×10^5
As-77	2 × 10 ¹	7 × 10 ⁻¹	1 × 10 ³	1 × 10 ⁶

Las notas figuran en las págs. 44 a 47

CUADRO 2. VALORES BÁSICOS DE LOS RADIONUCLEIDOS (cont.)

Radionucleido (número atómico)	A_I	A_2	Límite de concentración de actividad para material exento	Límite de actividad para una remesa exenta
	(TBq)	(TBq)	(Bq/g)	(Bq)
Astato (85)				
At-211 (a)	2×10^1	5×10^{-1}	1×10^3	1×10^7
Oro (79)				
Au-193	7×10^{0}	2×10^{0}	1×10^2	1×10^7
Au-194	1×10^{0}	1×10^{0}	1×10^{1}	1×10^6
Au-195	1×10^1	6×10^{0}	1×10^2	1×10^7
Au-198	1×10^{0}	6×10^{-1}	1×10^2	1×10^6
Au-199	1×10^1	6×10^{-1}	1×10^2	1×10^6
Bario (56)				
Ba-131 (a)	2×10^{0}	2×10^{0}	1×10^2	1×10^6
Ba-133	3×10^{0}	3×10^{0}	1×10^2	1×10^6
Ba-133m	2×10^{1}	6×10^{-1}	1×10^2	1×10^6
Ba-140 (a)	5×10^{-1}	3×10^{-1}	1×10^{1} (b)	$1 \times 10^5 (b)$
Berilio (4)				
Be-7	2×10^{1}	2×10^1	1×10^3	1×10^7
Be-10	4×10^{1}	6×10^{-1}	1×10^4	1×10^6
Bismuto (83)				
Bi-205	7×10^{-1}	7×10^{-1}	1×10^{1}	1×10^6
Bi-206	3×10^{-1}	3×10^{-1}	1×10^{1}	1×10^5
Bi-207	7×10^{-1}	7×10^{-1}	1×10^{1}	1×10^6
Bi-210	1×10^{0}	6×10^{-1}	1×10^3	1×10^6
Bi-210m (a)	6×10^{-1}	2×10^{-2}	1×10^{1}	1×10^5
Bi-212 (a)	7×10^{-1}	6×10^{-1}	1×10^1 (b)	1×10^5 (b)
Berkelio (97)				
Bk-247	8×10^{0}	8×10^{-4}	1×10^{0}	1×10^4
Bk-249 (a)	4×10^1	3×10^{-1}	1×10^3	1×10^6

CUADRO 2. VALORES BÁSICOS DE LOS RADIONUCLEIDOS (cont.)

Radionucleido (número atómico)	A_I	A_2	Límite de concentración de actividad para material exento	Límite de actividad para una remesa exenta
	(TBq)	(TBq)	(Bq/g)	(Bq)
Bromo (35)				
Br-76	4×10^{-1}	4×10^{-1}	1×10^1	1×10^5
Br-77	3×10^{0}	3×10^{0}	1×10^2	1×10^6
Br-82	4×10^{-1}	4×10^{-1}	1×10^{1}	1×10^6
Carbono (6)				
C-11	1×10^{0}	6×10^{-1}	1×10^{1}	1×10^6
C-14	4×10^{1}	3×10^{0}	1×10^4	1×10^7
Calcio (20)				
Ca-41	Sin límite	Sin límite	1×10^5	1×10^7
Ca-45	4×10^1	1×10^{0}	1×10^4	1×10^7
Ca-47 (a)	3×10^{0}	3×10^{-1}	1×10^{1}	1×10^6
Cadmio (48)				
Cd-109	3×10^{1}	2×10^{0}	1×10^4	1×10^6
Cd-113m	4×10^1	5×10^{-1}	1×10^3	1×10^6
Cd-115 (a)	3×10^{0}	4×10^{-1}	1×10^2	1×10^6
Cd-115m	5×10^{-1}	5×10^{-1}	1×10^3	1×10^6
Cerio (58)				
Ce-139	7×10^{0}	2×10^{0}	1×10^2	1×10^6
Ce-141	2×10^{1}	6×10^{-1}	1×10^2	1×10^7
Ce-143	9×10^{-1}	6×10^{-1}	1×10^2	1×10^6
Ce-144 (a)	2×10^{-1}	2×10^{-1}	1×10^2 (b)	$1 \times 10^5 (b)$
Californio (98)				
Cf-248	4×10^{1}	6×10^{-3}	1×10^{1}	1×10^4
Cf-249	3×10^{0}	8×10^{-4}	1×10^{0}	1×10^3
Cf-250	2×10^{1}	2×10^{-3}	1×10^{1}	1×10^4
Cf-251	7×10^{0}	7×10^{-4}	1×10^{0}	1×10^3

CUADRO 2. VALORES BÁSICOS DE LOS RADIONUCLEIDOS (cont.)

Radionucleido (número atómico)	A_I	A_2	Límite de concentración de actividad para material exento	Límite de actividad para una remesa exenta
	(TBq)	(TBq)	(Bq/g)	(Bq)
Cf-252	1×10^{-1}	3×10^{-3}	1×10^{1}	1 × 10 ⁴
Cf-253 (a)	4×10^{1}	4×10^{-2}	1×10^2	1×10^5
Cf-254	1×10^{-3}	1×10^{-3}	1×10^{0}	1×10^3
Cloro (17)				
Cl-36	1×10^1	6×10^{-1}	1×10^4	1×10^6
Cl-38	2×10^{-1}	2×10^{-1}	1×10^{1}	1×10^5
Curio (96)				
Cm-240	4×10^{1}	2×10^{-2}	1×10^2	1×10^5
Cm-241	2×10^{0}	1×10^{0}	1×10^2	1×10^6
Cm-242	4×10^1	1×10^{-2}	1×10^2	1×10^5
Cm-243	9×10^{0}	1×10^{-3}	1×10^{0}	1×10^4
Cm-244	2×10^{1}	2×10^{-3}	1×10^1	1×10^4
Cm-245	9×10^{0}	9×10^{-4}	1×10^{0}	1×10^3
Cm-246	9×10^{0}	9×10^{-4}	1×10^{0}	1×10^3
Cm-247 (a)	3×10^{0}	1×10^{-3}	1×10^{0}	1×10^4
Cm-248	2×10^{-2}	3×10^{-4}	1×10^{0}	1×10^3
Cobalto (27)				
Co-55	5×10^{-1}	5×10^{-1}	1×10^{1}	1×10^6
Co-56	3×10^{-1}	3×10^{-1}	1×10^{1}	1×10^5
Co-57	1×10^{1}	1×10^1	1×10^2	1×10^6
Co-58	1×10^{0}	1×10^{0}	1×10^{1}	1×10^6
Co-58m	4×10^{1}	4×10^1	1×10^4	1×10^7
Co-60	4×10^{-1}	4×10^{-1}	1×10^{1}	1×10^5
Cromo (24)				
Cr-51	3×10^{1}	3×10^1	1×10^3	1×10^7

CUADRO 2. VALORES BÁSICOS DE LOS RADIONUCLEIDOS (cont.)

Radionucleido (número atómico)	A_I	A_2	Límite de concentración de actividad para material exento	Límite de actividad para una remesa exenta
	(TBq)	(TBq)	(Bq/g)	(Bq)
Cesio (55)				
Cs-129	4×10^{0}	4×10^{0}	1×10^2	1×10^5
Cs-131	3×10^{1}	3×10^{1}	1×10^3	1×10^6
Cs-132	1×10^{0}	1×10^{0}	1×10^{1}	1×10^5
Cs-134	7×10^{-1}	7×10^{-1}	1×10^{1}	1×10^4
Cs-134m	4×10^{1}	6×10^{-1}	1×10^3	1×10^5
Cs-135	4×10^1	1×10^{0}	1×10^4	1×10^7
Cs-136	5×10^{-1}	5×10^{-1}	1×10^{1}	1×10^5
Cs-137 (a)	2×10^{0}	6×10^{-1}	1×10^1 (b)	1×10^4 (b)
Cobre (29)				
Cu-64	6×10^{0}	1×10^{0}	1×10^2	1×10^6
Cu-67	1×10^{1}	7×10^{-1}	1×10^2	1×10^6
Disprosio (66)				
Dy-159	2×10^{1}	2×10^{1}	1×10^3	1×10^7
Dy-165	9×10^{-1}	6×10^{-1}	1×10^3	1×10^6
Dy-166 (a)	9×10^{-1}	3×10^{-1}	1×10^3	1×10^6
Erbio (68)				
Er-169	4×10^{1}	1×10^{0}	1×10^4	1×10^7
Er-171	8×10^{-1}	5×10^{-1}	1×10^2	1×10^6
Europio (63)				
Eu-147	2×10^{0}	2×10^{0}	1×10^2	1×10^6
Eu-148	5×10^{-1}	5×10^{-1}	1×10^{1}	1×10^6
Eu-149	2×10^{1}	2×10^{1}	1×10^2	1×10^7
Eu-150 (período corto)	2×10^{0}	7×10^{-1}	1×10^3	1×10^6
Eu-150 (período largo)	7×10^{-1}	7×10^{-1}	1×10^{1}	1×10^6
Eu-152	1×10^{0}	1×10^{0}	1×10^{1}	1×10^6
Eu-152m	8 × 10 ⁻¹	8 × 10 ⁻¹	1 × 10 ²	1 × 10 ⁶

CUADRO 2. VALORES BÁSICOS DE LOS RADIONUCLEIDOS (cont.)

Radionucleido (número atómico)	A_I	A_2	Límite de concentración de actividad para material exento	Límite de actividad para una remesa exenta
	(TBq)	(TBq)	(Bq/g)	(Bq)
Eu-154	9×10^{-1}	6×10^{-1}	1 × 10 ¹	1×10^{6}
Eu-155	2×10^{1}	3×10^{0}	1×10^2	1×10^7
Eu-156	7×10^{-1}	7×10^{-1}	1×10^{1}	1×10^6
Flúor (9)				
F-18	1×10^{0}	6×10^{-1}	1×10^{1}	1×10^6
Hierro (26)				
Fe-52 (a)	3×10^{-1}	3×10^{-1}	1×10^{1}	1×10^6
Fe-55	4×10^1	4×10^{1}	1×10^4	1×10^6
Fe-59	9×10^{-1}	9×10^{-1}	1×10^{1}	1×10^6
Fe-60 (a)	4×10^1	2×10^{-1}	1×10^2	1×10^5
Galio (31)				
Ga-67	7×10^{0}	3×10^{0}	1×10^2	1×10^6
Ga-68	5×10^{-1}	5×10^{-1}	1×10^{1}	1×10^5
Ga-72	4×10^{-1}	4×10^{-1}	1×10^{1}	1×10^5
Gadolinio (64)				
Gd-146 (a)	5×10^{-1}	5×10^{-1}	1×10^{1}	1×10^6
Gd-148	2×10^{1}	2×10^{-3}	1×10^{1}	1×10^4
Gd-153	1×10^{1}	9×10^{0}	1×10^2	1×10^7
Gd-159	3×10^{0}	6×10^{-1}	1×10^3	1×10^6
Germanio (32)				
Ge-68 (a)	5×10^{-1}	5×10^{-1}	1×10^{1}	1×10^5
Ge-71	4×10^{1}	4×10^{1}	1×10^4	1×10^8
Ge-77	3×10^{-1}	3×10^{-1}	1×10^1	1×10^5
Hafnio (72)				
Hf-172 (a)	6×10^{-1}	6×10^{-1}	1×10^1	1×10^6
Hf-175	3 × 10 ⁰	3 × 10 ⁰	1 × 10 ²	1 × 10 ⁶

CUADRO 2. VALORES BÁSICOS DE LOS RADIONUCLEIDOS (cont.)

Radionucleido (número atómico)	A_I	A_2	Límite de concentración de actividad para material exento	Límite de actividad para una remesa exenta
	(TBq)	(TBq)	(Bq/g)	(Bq)
Hf-181	2×10^{0}	5×10^{-1}	1×10^{1}	1 × 10 ⁶
Hf-182	Sin límite	Sin límite	1×10^2	1×10^6
Mercurio (80)				
Hg-194 (a)	1×10^{0}	1×10^{0}	1×10^{1}	1×10^6
Hg-195m (a)	3×10^{0}	7×10^{-1}	1×10^2	1×10^6
Hg-197	2×10^1	1×10^{1}	1×10^2	1×10^7
Hg-197m	1×10^{1}	4×10^{-1}	1×10^2	1×10^6
Hg-203	5×10^{0}	1×10^{0}	1×10^2	1×10^5
Holmio (67)				
Ho-166	4×10^{-1}	4×10^{-1}	1×10^3	1×10^5
Ho-166m	6×10^{-1}	5×10^{-1}	1×10^{1}	1×10^6
Yodo (53)				
I-123	6×10^{0}	3×10^{0}	1×10^2	1×10^7
I-124	1×10^{0}	1×10^{0}	1×10^{1}	1×10^6
I-125	2×10^1	3×10^{0}	1×10^3	1×10^6
I-126	2×10^{0}	1×10^{0}	1×10^2	1×10^6
I-129	Sin límite	Sin límite	1×10^2	1×10^5
I-131	3×10^{0}	7×10^{-1}	1×10^2	1×10^6
I-132	4×10^{-1}	4×10^{-1}	1×10^1	1×10^5
I-133	7×10^{-1}	6×10^{-1}	1×10^{1}	1×10^6
I-134	3×10^{-1}	3×10^{-1}	1×10^{1}	1×10^5
I-135 (a)	6×10^{-1}	6×10^{-1}	1×10^{1}	1×10^6
Indio (49)				
In-111	3×10^{0}	3×10^{0}	1×10^2	1×10^6
In-113m	4×10^{0}	2×10^{0}	1×10^2	1×10^6
In-114m (a)	1×10^{1}	5×10^{-1}	1×10^2	1×10^6
In-115m	7×10^{0}	1×10^{0}	1×10^2	1×10^6

CUADRO 2. VALORES BÁSICOS DE LOS RADIONUCLEIDOS (cont.)

Radionucleido (número atómico)	A_I	A_2	Límite de concentración de actividad para material exento	Límite de actividad para una remesa exenta
	(TBq)	(TBq)	(Bq/g)	(Bq)
Iridio (77)				
Ir-189 (a)	1×10^{1}	1×10^1	1×10^2	1×10^7
Ir-190	7×10^{-1}	7×10^{-1}	1×10^{1}	1×10^6
Ir-192	$1 \times 10^0 (c)$	6×10^{-1}	1×10^{1}	1×10^4
Ir-194	3×10^{-1}	3×10^{-1}	1×10^2	1×10^5
Potasio (19)				
K-40	9×10^{-1}	9×10^{-1}	1×10^2	1×10^6
K-42	2×10^{-1}	2×10^{-1}	1×10^2	1×10^6
K-43	7×10^{-1}	6×10^{-1}	1×10^{1}	1×10^6
Criptón (36)				
Kr-79	4×10^{0}	2×10^{0}	1×10^3	1×10^5
Kr-81	4×10^{1}	4×10^{1}	1×10^4	1×10^7
Kr-85	1×10^{1}	1×10^1	1×10^5	1×10^4
Kr-85m	8×10^{0}	3×10^{0}	1×10^3	1×10^{10}
Kr-87	2×10^{-1}	2×10^{-1}	1×10^2	1×10^9
Lantano (57)				
La-137	3×10^{1}	6×10^{0}	1×10^3	1×10^7
La-140	4×10^{-1}	4×10^{-1}	1×10^{1}	1×10^5
Lutecio (71)				
Lu-172	6×10^{-1}	6×10^{-1}	1×10^{1}	1×10^6
Lu-173	8×10^{0}	8×10^{0}	1×10^2	1×10^7
Lu-174	9×10^{0}	9×10^{0}	1×10^2	1×10^7
Lu-174m	2×10^{1}	1×10^1	1×10^2	1×10^7
Lu-177	3×10^{1}	7×10^{-1}	1×10^3	1×10^7
Magnesio (12)				
Mg-28 (a)	3×10^{-1}	3 × 10 ⁻¹	1 × 10 ¹	1 × 10 ⁵

CUADRO 2. VALORES BÁSICOS DE LOS RADIONUCLEIDOS (cont.)

Radionucleido (número atómico)	A_I	A_2	Límite de concentración de actividad para material exento	Límite de actividad para una remesa exenta
	(TBq)	(TBq)	(Bq/g)	(Bq)
Manganeso (25)				
Mn-52	3×10^{-1}	3×10^{-1}	1×10^1	1×10^5
Mn-53	Sin límite	Sin límite	1×10^4	1×10^9
Mn-54	1×10^{0}	1×10^{0}	1×10^{1}	1×10^6
Mn-56	3×10^{-1}	3×10^{-1}	1×10^{1}	1×10^5
Molibdeno (42)				
Mo-93	4×10^1	2×10^{1}	1×10^3	1×10^8
Mo-99 (a)	1×10^{0}	6×10^{-1}	1×10^2	1×10^6
Nitrógeno (7)				
N-13	9×10^{-1}	6×10^{-1}	1×10^2	1×10^9
Sodio (11)				
Na-22	5×10^{-1}	5×10^{-1}	1×10^{1}	1×10^6
Na-24	2×10^{-1}	2×10^{-1}	1×10^{1}	1×10^5
Niobio (41)				
Nb-93m	4×10^{1}	3×10^{1}	1×10^4	1×10^7
Nb-94	7×10^{-1}	7×10^{-1}	1×10^{1}	1×10^6
Nb-95	1×10^{0}	1×10^{0}	1×10^1	1×10^6
Nb-97	9×10^{-1}	6×10^{-1}	1×10^{1}	1×10^6
Neodimio (60)				
Nd-147	6×10^{0}	6×10^{-1}	1×10^2	1×10^6
Nd-149	6×10^{-1}	5×10^{-1}	1×10^2	1×10^6
Níquel (28)				
Ni-59	Sin límite	Sin límite	1×10^4	1×10^8
Ni-63	4×10^1	3×10^{1}	1×10^5	1×10^8
Ni-65	4×10^{-1}	4×10^{-1}	1×10^{1}	1×10^6
Neptunio (93)				
Np-235	4×10^1	4×10^{1}	1×10^3	1×10^7

CUADRO 2. VALORES BÁSICOS DE LOS RADIONUCLEIDOS (cont.)

Radionucleido (número atómico)	A_I	A_2	Límite de concentración de actividad para material exento	Límite de actividad para una remesa exenta
	(TBq)	(TBq)	(Bq/g)	(Bq)
Np-236 (período corto)	2×10^{1}	2×10^{0}	1×10^3	1×10^7
Np-236 (período largo)	9×10^{0}	2×10^{-2}	1×10^2	1×10^5
Np-237	2×10^{1}	2×10^{-3}	1×10^0 (b)	1×10^{3} (b)
Np-239	7×10^{0}	4×10^{-1}	1×10^2	1×10^7
Osmio (76)				
Os-185	1×10^{0}	1×10^{0}	1×10^{1}	1×10^6
Os-191	1×10^{1}	2×10^{0}	1×10^2	1×10^7
Os-191m	4×10^1	3×10^{1}	1×10^3	1×10^7
Os-193	2×10^{0}	6×10^{-1}	1×10^2	1×10^6
Os-194 (a)	3×10^{-1}	3×10^{-1}	1×10^2	1×10^5
Fósforo (15)				
P-32	5×10^{-1}	5×10^{-1}	1×10^3	1×10^5
P-33	4×10^{1}	1×10^{0}	1×10^5	1×10^8
Protactinio (91)				
Pa-230 (a)	2×10^{0}	7×10^{-2}	1×10^{1}	1×10^6
Pa-231	4×10^{0}	4×10^{-4}	1×10^{0}	1×10^3
Pa-233	5×10^{0}	7×10^{-1}	1×10^2	1×10^7
Plomo (82)				
Pb-201	1×10^{0}	1×10^{0}	1×10^{1}	1×10^6
Pb-202	4×10^{1}	2×10^{1}	1×10^3	1×10^6
Pb-203	4×10^{0}	3×10^{0}	1×10^2	1×10^6
Pb-205	Sin límite	Sin límite	1×10^4	1×10^7
Pb-210 (a)	1×10^{0}	5×10^{-2}	1×10^{1} (b)	$1 \times 10^4 (b)$
Pb-212 (a)	7×10^{-1}	2×10^{-1}	1×10^{1} (b)	1×10^5 (b)
Paladio (46)				
Pd-103 (a)	4×10^{1}	4×10^1	1×10^3	1×10^8

CUADRO 2. VALORES BÁSICOS DE LOS RADIONUCLEIDOS (cont.)

Radionucleido (número atómico)	A_I	A_2	Límite de concentración de actividad para material exento	Límite de actividad para una remesa exenta
	(TBq)	(TBq)	(Bq/g)	(Bq)
Pd-107	Sin límite	Sin límite	1×10^5	1 × 10 ⁸
Pd-109	2×10^{0}	5×10^{-1}	1×10^3	1×10^6
Prometio (61)				
Pm-143	3×10^{0}	3×10^{0}	1×10^2	1×10^6
Pm-144	7×10^{-1}	7×10^{-1}	1×10^{1}	1×10^6
Pm-145	3×10^{1}	1×10^{1}	1×10^3	1×10^7
Pm-147	4×10^{1}	2×10^{0}	1×10^4	1×10^7
Pm-148m (a)	8×10^{-1}	7×10^{-1}	1×10^{1}	1×10^6
Pm-149	2×10^{0}	6×10^{-1}	1×10^3	1×10^6
Pm-151	2×10^{0}	6×10^{-1}	1×10^2	1×10^6
Polonio (84)				
Po-210	4×10^{1}	2×10^{-2}	1×10^{1}	1×10^4
Praseodimio (59)				
Pr-142	4×10^{-1}	4×10^{-1}	1×10^2	1×10^5
Pr-143	3×10^{0}	6×10^{-1}	1×10^4	1×10^6
Platino (78)				
Pt-188 (a)	1×10^{0}	8×10^{-1}	1×10^{1}	1×10^6
Pt-191	4×10^{0}	3×10^{0}	1×10^2	1×10^6
Pt-193	4×10^1	4×10^{1}	1×10^4	1×10^7
Pt-193m	4×10^{1}	5×10^{-1}	1×10^3	1×10^7
Pt-195m	1×10^{1}	5×10^{-1}	1×10^2	1×10^6
Pt-197	2×10^1	6×10^{-1}	1×10^3	1×10^6
Pt-197m	1×10^{1}	6×10^{-1}	1×10^2	1×10^6
Plutonio (94)				
Pu-236	3×10^{1}	3×10^{-3}	1×10^{1}	1×10^4
Pu-237	2×10^1	2×10^{1}	1×10^3	1×10^7
Pu-238	1×10^{1}	1×10^{-3}	1×10^{0}	1×10^4

CUADRO 2. VALORES BÁSICOS DE LOS RADIONUCLEIDOS (cont.)

Radionucleido (número atómico)	A_I	A_2	Límite de concentración de actividad para material exento	Límite de actividad para una remesa exenta
	(TBq)	(TBq)	(Bq/g)	(Bq)
Pu-239	1×10^{1}	1×10^{-3}	1×10^{0}	1×10^4
Pu-240	1×10^{1}	1×10^{-3}	1×10^{0}	1×10^3
Pu-241 (a)	4×10^{1}	6×10^{-2}	1×10^2	1×10^5
Pu-242	1×10^{1}	1×10^{-3}	1×10^{0}	1×10^4
Pu-244 (a)	4×10^{-1}	1×10^{-3}	1×10^{0}	1×10^4
Radio (88)				
Ra-223 (a)	4×10^{-1}	7×10^{-3}	1×10^2 (b)	1×10^5 (b)
Ra-224 (a)	4×10^{-1}	2×10^{-2}	1×10^1 (b)	$1 \times 10^5 (b)$
Ra-225 (a)	2×10^{-1}	4×10^{-3}	1×10^2	1×10^5
Ra-226 (a)	2×10^{-1}	3×10^{-3}	1×10^{1} (b)	$1\times10^4(\mathrm{b})$
Ra-228 (a)	6×10^{-1}	2×10^{-2}	1×10^{1} (b)	$1 \times 10^5 (b)$
Rubidio (37)				
Rb-81	2×10^{0}	8×10^{-1}	1×10^{1}	1×10^6
Rb-83 (a)	2×10^{0}	2×10^{0}	1×10^2	1×10^6
Rb-84	1×10^{0}	1×10^{0}	1×10^1	1×10^6
Rb-86	5×10^{-1}	5×10^{-1}	1×10^2	1×10^5
Rb-87	Sin límite	Sin límite	1×10^4	1×10^7
Rb (nat)	Sin límite	Sin límite	1×10^4	1×10^7
Renio (75)				
Re-184	1×10^{0}	1×10^{0}	1×10^{1}	1×10^6
Re-184m	3×10^{0}	1×10^{0}	1×10^2	1×10^6
Re-186	2×10^{0}	6×10^{-1}	1×10^3	1×10^6
Re-187	Sin límite	Sin límite	1×10^6	1×10^9
Re-188	4×10^{-1}	4×10^{-1}	1×10^2	1×10^5
Re-189 (a)	3×10^{0}	6×10^{-1}	1×10^2	1×10^6
Re (nat)	Sin límite	Sin límite	1 × 10 ⁶	1 × 10 ⁹

CUADRO 2. VALORES BÁSICOS DE LOS RADIONUCLEIDOS (cont.)

Radionucleido (número atómico)	A_I	A_2	Límite de concentración de actividad para material exento	Límite de actividad para una remesa exenta
	(TBq)	(TBq)	(Bq/g)	(Bq)
Rodio (45)				
Rh-99	2×10^{0}	2×10^{0}	1×10^{1}	1×10^6
Rh-101	4×10^{0}	3×10^{0}	1×10^2	1×10^7
Rh-102	5×10^{-1}	5×10^{-1}	1×10^1	1×10^6
Rh-102m	2×10^{0}	2×10^{0}	1×10^2	1×10^6
Rh-103m	4×10^{1}	4×10^{1}	1×10^4	1×10^8
Rh-105	1×10^{1}	8×10^{-1}	1×10^2	1×10^7
Radón (86)				
Rn-222 (a)	3×10^{-1}	4×10^{-3}	1×10^{1} (b)	1×10^{8} (b)
Rutenio (44)				
Ru-97	5×10^{0}	5×10^{0}	1×10^2	1×10^7
Ru-103 (a)	2×10^{0}	2×10^{0}	1×10^2	1×10^6
Ru-105	1×10^{0}	6×10^{-1}	1×10^{1}	1×10^6
Ru-106 (a)	2×10^{-1}	2×10^{-1}	1×10^2 (b)	1×10^5 (b)
Azufre (16)				
S-35	4×10^{1}	3×10^{0}	1×10^5	1×10^8
Antimonio (51)				
Sb-122	4×10^{-1}	4×10^{-1}	1×10^2	1×10^4
Sb-124	6×10^{-1}	6×10^{-1}	1×10^{1}	1×10^6
Sb-125	2×10^{0}	1×10^{0}	1×10^2	1×10^6
Sb-126	4×10^{-1}	4×10^{-1}	1×10^{1}	1×10^5
Escandio (21)				
Sc-44	5×10^{-1}	5×10^{-1}	1×10^{1}	1×10^5
Sc-46	5×10^{-1}	5×10^{-1}	1×10^{1}	1×10^6
Sc-47	1×10^{1}	7×10^{-1}	1×10^2	1×10^6
Sc-48	3 × 10 ⁻¹	3 × 10 ⁻¹	1 × 10 ¹	1 × 10 ⁵

CUADRO 2. VALORES BÁSICOS DE LOS RADIONUCLEIDOS (cont.)

Radionucleido (número atómico)	A_I	A_2	Límite de concentración de actividad para material exento	Límite de actividad para una remesa exenta
	(TBq)	(TBq)	(Bq/g)	(Bq)
Selenio (34)				
Se-75	3×10^{0}	3×10^{0}	1×10^2	1×10^6
Se-79	4×10^{1}	2×10^{0}	1×10^4	1×10^7
Silicio (14)				
Si-31	6×10^{-1}	6×10^{-1}	1×10^3	1×10^6
Si-32	4×10^1	5×10^{-1}	1×10^3	1×10^6
Samario (62)				
Sm-145	1×10^{1}	1×10^{1}	1×10^2	1×10^7
Sm-147	Sin límite	Sin límite	1×10^{1}	1×10^4
Sm-151	4×10^{1}	1×10^{1}	1×10^4	1×10^8
Sm-153	9×10^{0}	6×10^{-1}	1×10^2	1×10^6
Estaño (50)				
Sn-113 (a)	4×10^0	2×10^{0}	1×10^3	1×10^7
Sn-117m	7×10^{0}	4×10^{-1}	1×10^2	1×10^6
Sn-119m	4×10^{1}	3×10^{1}	1×10^3	1×10^7
Sn-121m (a)	4×10^1	9×10^{-1}	1×10^3	1×10^7
Sn-123	8×10^{-1}	6×10^{-1}	1×10^3	1×10^6
Sn-125	4×10^{-1}	4×10^{-1}	1×10^2	1×10^5
Sn-126 (a)	6×10^{-1}	4×10^{-1}	1×10^{1}	1×10^5
Estroncio (38)				
Sr-82 (a)	2×10^{-1}	2×10^{-1}	1×10^{1}	1×10^5
Sr-85	2×10^{0}	2×10^{0}	1×10^2	1×10^6
Sr-85m	5×10^{0}	5×10^{0}	1×10^2	1×10^7
Sr-87m	3×10^{0}	3×10^{0}	1×10^2	1×10^6
Sr-89	6×10^{-1}	6×10^{-1}	1×10^3	1×10^6
Sr-90 (a)	3 × 10 ⁻¹	3 × 10 ⁻¹	1 × 10 ² (b)	1 × 10 ⁴ (b)

CUADRO 2. VALORES BÁSICOS DE LOS RADIONUCLEIDOS (cont.)

Radionucleido (número atómico)	A_I	A_2	Límite de concentración de actividad para material exento	Límite de actividad para una remesa exenta
	(TBq)	(TBq)	(Bq/g)	(Bq)
Sr-91 (a)	3×10^{-1}	3 × 10 ⁻¹	1 × 10 ¹	1 × 10 ⁵
Sr-92 (a)	1×10^{0}	3×10^{-1}	1×10^{1}	1×10^6
Tritio (1)				
T(H-3)	4×10^1	4×10^{1}	1×10^6	1×10^9
Tantalio (73)				
Ta-178 (período largo)	1×10^{0}	8×10^{-1}	1×10^{1}	1×10^6
Ta-179	3×10^{1}	3×10^{1}	1×10^3	1×10^7
Ta-182	9×10^{-1}	5×10^{-1}	1×10^{1}	1×10^4
Terbio (65)				
Tb-157	4×10^{1}	4×10^1	1×10^4	1×10^7
Tb-158	1×10^{0}	1×10^{0}	1×10^{1}	1×10^6
Tb-160	1×10^{0}	6×10^{-1}	1×10^{1}	1×10^6
Tecnecio (43)				
Tc-95m (a)	2×10^{0}	2×10^{0}	1×10^{1}	1×10^6
Tc-96	4×10^{-1}	4×10^{-1}	1×10^{1}	1×10^6
Tc-96m (a)	4×10^{-1}	4×10^{-1}	1×10^3	1×10^7
Tc-97	Sin límite	Sin límite	1×10^3	1×10^8
Tc-97m	4×10^{1}	1×10^{0}	1×10^3	1×10^7
Tc-98	8×10^{-1}	7×10^{-1}	1×10^{1}	1×10^6
Tc-99	4×10^{1}	9×10^{-1}	1×10^4	1×10^7
Tc-99m	1×10^{1}	4×10^{0}	1×10^2	1×10^7
Telurio (52)				
Te-121	2×10^{0}	2×10^{0}	1×10^{1}	1×10^6
Te-121m	5×10^{0}	3×10^{0}	1×10^2	1×10^6
Te-123m	8×10^{0}	1×10^{0}	1×10^2	1×10^7
Te-125m	2×10^{1}	9×10^{-1}	1×10^3	1×10^7

CUADRO 2. VALORES BÁSICOS DE LOS RADIONUCLEIDOS (cont.)

Radionucleido (número atómico)	A_I	A_2	Límite de concentración de actividad para material exento	Límite de actividad para una remesa exenta
	(TBq)	(TBq)	(Bq/g)	(Bq)
Te-127	2×10^{1}	7×10^{-1}	1×10^3	1 × 10 ⁶
Te-127m (a)	2×10^{1}	5×10^{-1}	1×10^3	1×10^7
Te-129	7×10^{-1}	6×10^{-1}	1×10^2	1×10^6
Te-129m (a)	8×10^{-1}	4×10^{-1}	1×10^3	1×10^6
Te-131m (a)	7×10^{-1}	5×10^{-1}	1×10^{1}	1×10^6
Te-132 (a)	5×10^{-1}	4×10^{-1}	1×10^2	1×10^7
Torio (90)				
Th-227	1×10^1	5×10^{-3}	1×10^1	1×10^4
Th-228 (a)	5×10^{-1}	1×10^{-3}	$1 \times 10^{0} (b)$	1×10^4 (b)
Th-229	5×10^{0}	5×10^{-4}	1×10^0 (b)	$1 \times 10^3 (b)$
Th-230	1×10^{1}	1×10^{-3}	1×10^{0}	1×10^4
Th-231	4×10^{1}	2×10^{-2}	1×10^3	1×10^7
Th-232	Sin límite	Sin límite	1×10^1	1×10^4
Th-234 (a)	3×10^{-1}	3×10^{-1}	1×10^3 (b)	$1 \times 10^5 (b)$
Th (nat)	Sin límite	Sin límite	$1 \times 10^{0} (b)$	$1 \times 10^3 (b)$
Titanio (22)				
Ti-44 (a)	5×10^{-1}	4×10^{-1}	1×10^{1}	1×10^5
Talio (81)				
T1-200	9×10^{-1}	9×10^{-1}	1×10^{1}	1×10^6
Tl-201	1×10^{1}	4×10^{0}	1×10^2	1×10^6
Tl-202	2×10^{0}	2×10^{0}	1×10^2	1×10^6
Tl-204	1×10^1	7×10^{-1}	1×10^4	1×10^4
Tulio (69)				
Tm-167	7×10^{0}	8×10^{-1}	1×10^2	1×10^6
Tm-170	3×10^{0}	6×10^{-1}	1×10^3	1×10^6
Tm-171	4 × 10 ¹	4 × 10 ¹	1 × 10 ⁴	1 × 10 ⁸

CUADRO 2. VALORES BÁSICOS DE LOS RADIONUCLEIDOS (cont.)

Radionucleido (número atómico)	A_I	A_2	Límite de concentración de actividad para material exento	Límite de actividad para una remesa exenta
	(TBq)	(TBq)	(Bq/g)	(Bq)
Uranio (92)				
U-230 (absorción pulmonar rápida)(a)(d)	4×10^{1}	1×10^{-1}	1×10^1 (b)	$1\times10^5\mathrm{(b)}$
U-230 (absorción pulmonar media)(a)(e)	4×10^{1}	4×10^{-3}	1×10^{1}	1×10^4
U-230 (absorción pulmonar lenta)(a)(f)	3×10^{1}	3×10^{-3}	1×10^{1}	1×10^4
U-232 (absorción pulmonar rápida)(d)	4×10^{1}	1×10^{-2}	$1\times10^0\mathrm{(b)}$	$1\times10^3\mathrm{(b)}$
U-232 (absorción pulmonar media)(e)	4×10^{1}	7×10^{-3}	1×10^1	1×10^4
U-232 (absorción pulmonar lenta)(f)	1×10^1	1×10^{-3}	1×10^1	1×10^4
U-233 (absorción pulmonar rápida)(d)	4×10^1	9×10^{-2}	1×10^{1}	1×10^4
U-233 (absorción pulmonar media)(e)	4×10^1	2×10^{-2}	1×10^2	1×10^5
U-233 (absorción pulmonar lenta)(f)	4×10^{1}	6×10^{-3}	1×10^{1}	1×10^5
U-234 (absorción pulmonar rápida)(d)	4×10^1	9×10^{-2}	1×10^{1}	1×10^4
U-234 (absorción pulmonar media)(e)	4×10^1	2×10^{-2}	1×10^2	1×10^5
U-234 (absorción pulmonar lenta)(f)	4×10^1	6×10^{-3}	1×10^{1}	1×10^5
U-235 (todos los tipos de absorción pulmonar) (a)(d)(e)(f)	Sin límite	Sin límite	1×10^1 (b)	$1\times10^4\mathrm{(b)}$
U-236 (absorción pulmonar rápida)(d)	Sin límite	Sin límite	1 × 10 ¹	1 × 10 ⁴

CUADRO 2. VALORES BÁSICOS DE LOS RADIONUCLEIDOS (cont.)

Radionucleido (número atómico)	A_I	A_2	Límite de concentración de actividad para material exento	Límite de actividad para una remesa exenta
	(TBq)	(TBq)	(Bq/g)	(Bq)
U-236 (absorción pulmonar media)(e)	4 × 10 ¹	2×10^{-2}	1×10^2	1 × 10 ⁵
U-236 (absorción pulmonar lenta)(f)	4×10^{1}	6×10^{-3}	1×10^{1}	1×10^4
U-238 (todos los tipos de absorción pulmonar) (d)(e)(f)	Sin límite	Sin límite	$1\times10^1~(b)$	$1\times10^4\mathrm{(b)}$
U (natural)	Sin límite	Sin límite	1×10^{0} (b)	1×10^3 (b)
U (enriquecido al 20 % o menos)(g)	Sin límite	Sin límite	1×10^{0}	1×10^3
U (empobrecido)	Sin límite	Sin límite	1×10^{0}	1×10^3
Vanadio (23)				
V-48	4×10^{-1}	4×10^{-1}	1×10^{1}	1×10^5
V-49	4×10^1	4×10^{1}	1×10^4	1×10^7
Tungsteno (74)				
W-178 (a)	9×10^{0}	5×10^{0}	1×10^{1}	1×10^6
W-181	3×10^{1}	3×10^{1}	1×10^3	1×10^7
W-185	4×10^{1}	8×10^{-1}	1×10^4	1×10^7
W-187	2×10^{0}	6×10^{-1}	1×10^2	1×10^6
W-188 (a)	4×10^{-1}	3×10^{-1}	1×10^2	1×10^5
Xenón (54)				
Xe-122 (a)	4×10^{-1}	4×10^{-1}	1×10^2	1×10^9
Xe-123	2×10^{0}	7×10^{-1}	1×10^2	1×10^9
Xe-127	4×10^{0}	2×10^{0}	1×10^3	1×10^5
Xe-131m	4×10^{1}	4×10^{1}	1×10^4	1×10^4
Xe-133	2×10^{1}	1×10^{1}	1×10^3	1×10^4
Xe-135	3 × 10 ⁰	2 × 10 ⁰	1 × 10 ³	1 × 10 ¹⁰

CUADRO 2. VALORES BÁSICOS DE LOS RADIONUCLEIDOS (cont.)

Radionucleido (número atómico)	A_I	A_2	Límite de concentración de actividad para material exento	Límite de actividad para una remesa exenta
	(TBq)	(TBq)	(Bq/g)	(Bq)
Itrio (39)				
Y-87 (a)	1×10^{0}	1×10^{0}	1×10^1	1×10^6
Y-88	4×10^{-1}	4×10^{-1}	1×10^{1}	1×10^6
Y-90	3×10^{-1}	3×10^{-1}	1×10^3	1×10^5
Y-91	6×10^{-1}	6×10^{-1}	1×10^3	1×10^6
Y-91m	2×10^{0}	2×10^{0}	1×10^2	1×10^6
Y-92	2×10^{-1}	2×10^{-1}	1×10^2	1×10^5
Y-93	3×10^{-1}	3×10^{-1}	1×10^2	1×10^5
Iterbio (70)				
Yb-169	4×10^0	1×10^{0}	1×10^2	1×10^7
Yb-175	3×10^{1}	9×10^{-1}	1×10^3	1×10^7
Zinc (30)				
Zn-65	2×10^{0}	2×10^{0}	1×10^{1}	1×10^6
Zn-69	3×10^{0}	6×10^{-1}	1×10^4	1×10^6
Zn-69m (a)	3×10^{0}	6×10^{-1}	1×10^2	1×10^6
Circonio (40)				
Zr-88	3×10^{0}	3×10^{0}	1×10^2	1×10^6
Zr-93	Sin límite	Sin límite	1×10^3 (b)	$1 \times 10^7 (b)$
Zr-95 (a)	2×10^{0}	8×10^{-1}	1×10^{1}	1×10^6
Zr-97 (a)	4×10^{-1}	4×10^{-1}	1×10^{1} (b)	1×10^5 (b)

a) Los valores de A_1 y/o A_2 de estos nucleidos predecesores incluyen contribuciones de sus descendientes con períodos de semidesintegración inferiores a 10 días, que se enumeran a continuación:

Mg-28 Al-28 Ar-42 K-42 Ca-47 Sc-47 Ti-44 Sc-44 Fe-52 Mn-52m

Cuadro 2, nota a) (cont.)

Fe-60	Co-60m
Zn-69m	Zn-69
Ge-68	Ga-68
Rb-83	Kr-83m
Sr-82	Rb-82
Sr-90	Y-90
Sr-91	Y-91m
Sr-92	Y-92
Y-87	Sr-87m
Zr-95	Nb-95m
Zr-97	Nb-97m, Nb-97
Mo-99	Tc-99m
Tc-95m	Tc-95
Tc-96m	Tc-96
Ru-103	Rh-103m
Ru-106	Rh-106
Pd-103	Rh-103m
Ag-108m	Ag-108
Ag-110m	Ag-110
Cd-115	In-115m
In-114m	In-114
Sn-113	In-113m
Sn-121m	Sn-121
Sn-126	Sb-126m
Te-118	Sb-118
Te-127m	Te-127
Te-129m	Te-129
Te-131m	Te-131
Te-132	I-132
I-135	Xe-135m
Xe-122	I-122
Cs-137	Ba-137m
Ba-131	Cs-131
Ba-140	La-140
Ce-144	Pr-144m, Pr-144
Pm-148m	Pm-148
Gd-146	Eu-146
Dy-166	Ho-166
Hf-172	Lu-172
W-178	Ta-178
W-188	Re-188
Re-189	Os-189m
Os-194	Ir-194
Ir-189	Os-189m
Pt-188	Ir-188
Hg-194	Au-194

Cuadro 2, nota a) (cont.)

```
Hg-195m
           Hg-195
Pb-210
            Bi-210
Pb-212
            Bi-212, Tl-208, Po-212
Bi-210m
            Tl-206
Bi-212
            Tl-208, Po-212
At-211
            Po-211
Rn-222
           Po-218, Pb-214, At-218, Bi-214, Po-214
            Rn-219, Po-215, Pb-211, Bi-211, Po-211, Tl-207
Ra-223
Ra-224
            Rn-220, Po-216, Pb-212, Bi-212, Tl-208, Po-212
Ra-225
            Ac-225, Fr-221, At-217, Bi-213, Tl-209, Po-213, Pb-209
Ra-226
            Rn-222, Po-218, Pb-214, At-218, Bi-214, Po-214
Ra-228
            Ac-228
Ac-225
            Fr-221, At-217, Bi-213, Tl-209, Po-213, Pb-209
Ac-227
           Fr-223
Th-228
            Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Tl-208, Po-212
Th-234
           Pa-234m, Pa-234
Pa-230
            Ac-226, Th-226, Fr-222, Ra-222, Rn-218, Po-214
U-230
            Th-226, Ra-222, Rn-218, Po-214
U-235
           Th-231
Pu-241
           U-237
Pu-244
           U-240, Np-240m
Am-242m
           Am-242, Np-238
Am-243
           Np-239
Cm-247
            Pu-243
Bk-249
            Am-245
Cf-253
            Cm-249
```

b) Los nucleidos predecesores y sus descendientes incluidos en equilibrio secular se enumeran a continuación:

```
Sr-90
            Y-90
Zr-93
            Nb-93m
Zr-97
            Nb-97
Ru-106
            Rh-106
Ag-108m
            Ag-108
Cs-137
            Ba-137m
Ce-144
            Pr-144
Ba-140
            La-140
Bi-212
            Tl-208 (0,36), Po-212 (0,64)
Pb-210
            Bi-210, Po-210
Pb-212
            Bi-212, Tl-208 (0,36), Po-212 (0,64)
Rn-222
            Po-218, Pb-214, Bi-214, Po-214
Ra-223
            Rn-219, Po-215, Pb-211, Bi-211, Tl-207
Ra-224
            Rn-220, Po-216, Pb-212, Bi-212, Tl-208 (0,36), Po-212 (0,64)
            Rn-222, Po-218, Pb-214, Bi-214, Po-214, Pb-210, Bi-210, Po-210
Ra-226
Ra-228
            Ac-228
```

Cuadro 2, nota a) (cont.)

```
Th-228
           Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Tl-208 (0,36), Po-212 (0,64)
Th-229
           Ra-225, Ac-225, Fr-221, At-217, Bi-213, Po-213, Pb-209
           Ra-228, Ac-228, Th-228, Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Tl-208
Th-nat
           (0,36), Po-212 (0,64)
Th-234
           Pa-234m
U-230
           Th-226, Ra-222, Rn-218, Po-214
           Th-228, Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Tl-208 (0,36),
U-232
           Po-212 (0,64)
U-235
           Th-231
U-238
           Th-234, Pa-234m
           Th-234, Pa-234m, U-234, Th-230, Ra-226, Rn-222, Po-218, Pb-214,
U-nat
           Bi-214, Po-214, Pb-210, Bi-210, Po-210
Np-237
           Pa-233
Am-242m
           Am-242
Am-243
           Np-239
```

- c) La cantidad puede obtenerse mediante medición de la tasa de desintegración o midiendo el *nivel de radiación* a una determinada distancia de la fuente.
- d) Estos valores se aplican únicamente a compuestos de *uranio* que toman la forma química de UF₆, UO₂F₂ y UO₂(NO₃)₂ tanto en condiciones de transporte normales como de accidente.
- e) Estos valores se aplican sólo a compuestos de *uranio* que toman la forma química de UO₃, UF₄, UCl₄, y compuestos hexavalentes tanto en condiciones de transporte normales como de accidente.
- f) Estos valores se aplican a todos los compuestos de *uranio* que no sean los especificados en d) y e) *supra*.
- g) Estos valores se aplican solamente al *uranio no irradiado*.

407. Para radionucleidos aislados o para mezclas de radionucleidos de los que no se dispone de datos pertinentes se utilizarán los valores que figuran en el Cuadro 3.

CLASIFICACIÓN DE MATERIALES

Materiales de baja actividad específica

408. Los *materiales radiactivos* sólo podrán clasificarse como *materiales BAE* si se cumplen las condiciones de los párrs. 226, 409 a 411 y 517 a 522.

CUADRO 3. VALORES BÁSICOS DE RADIONUCLEIDOS PARA RADIONUCLEIDOS O MEZCLAS RESPECTO DE LOS CUALES NO SE DISPONE DE DATOS

Contenido radiactivo	A_I	A_2	Límite de concentración de actividad para material exento	Límite de actividad para una remesa exenta
	(TBq)	(TBq)	(Bq/g)	(Bq)
Sólo se conoce la presencia de nucleidos emisores beta o gamma	0,1	0,02	1 × 10 ¹	1 × 10 ⁴
Se sabe que existen nucleidos emisores alfa, pero no emisores de neutrones	0,2	9 × 10 ⁻⁵	1×10^{-1}	1×10^3
Se sabe que existen nucleidos emisores de neutrones o no se dispone de ningún dato pertinente	0,001	9 × 10 ⁻⁵	1×10^{-1}	1×10^3

409. Los *materiales BAE* estarán comprendidos en uno de los tres grupos siguientes:

a) BAE-I

- i) Minerales de uranio y torio y concentrados de dichos minerales, y otros minerales con radionucleidos contenidos naturalmente en ellos.
- ii) *Uranio natural, uranio empobrecido*, torio natural o sus compuestos o mezclas que no estén irradiados y se encuentren en estado sólido o líquido.
- iii) Materiales radiactivos para los que el valor de A_2 no tenga límite. Las sustancias fisionables podrán incluirse sólo cuando estén exceptuadas en virtud del párr. 417.
- iv) Otros *materiales radiactivos* en los que la actividad esté distribuida en todo el material y la *actividad específica* media estimada no exceda de 30 veces los valores de concentración de actividad que se especifican en los párrs. 402 a 407. Las *sustancias fisionables* podrán incluirse sólo cuando estén exceptuadas en virtud del párr. 417.

- b) BAE-II
 - i) Agua con una concentración de tritio de hasta 0,8 TBq/L;
 - ii) Otros materiales en los que la actividad esté distribuida por todo el material y la *actividad específica* media estimada no sea superior a $10^{-4} A_{2}/g$ para sólidos y gases y $10^{-5} A_{2}/g$ para líquidos.
- c) BAE-III
 - Sólidos (por ejemplo, desechos consolidados, materiales activados), excluidos los polvos, que cumplan los requisitos del párr. 601, en los que:
 - i) Los *materiales radiactivos* se encuentren distribuidos por todo un sólido o conjunto de objetos sólidos, o estén, esencialmente, distribuidos de modo uniforme en el seno de un agente ligante compacto sólido (como hormigón, asfalto y materiales cerámicos).
 - ii) Los *materiales radiactivos* sean relativamente insolubles, o estén contenidos intrínsecamente en una matriz relativamente insoluble, de manera que, incluso en caso de pérdida del *embalaje*, la pérdida de *material radiactivo* por *bulto*, producida por lixiviación tras 7 días de inmersión en agua no exceda de 0,1*A*₂.
 - iii) La *actividad específica* media estimada del sólido, excluido todo material de blindaje, no sea superior a $2 \times 10^{-3} A_2/g$.
- 410. Un *bulto* de *materiales BAE-III* o *BAE-III* sólidos no combustibles, si se transporta por vía aérea, no deberá contener una actividad superior a $3\,000A_2$.
- 411. El *contenido radiactivo* en un solo *bulto* de *materiales BAE* se limitará de modo que no se supere el *nivel de radiación* especificado en el párr. 517, y la actividad en un solo *bulto* deberá también restringirse de modo que no se superen los límites de actividad correspondientes a un *medio de transporte* especificados en el párr. 522.

Objeto contaminado en la superficie

- 412. Los *materiales radiactivos* podrán clasificarse como *OCS* si se cumplen las condiciones enunciadas en los párrs. 241, 413, 414 y 517 a 522.
- 413. Un *OCS* pertenecerá a uno de los dos grupos siguientes:
- a) OCS-I: Un objeto sólido en el que:
 - i) La *contaminación transitoria* en la superficie accesible, promediada sobre 300 cm² (o sobre el área de la superficie si ésta fuera inferior a 300 cm²) no sea superior a 4 Bq/cm² en el caso de emisores beta y

- gamma y de *emisores alfa de baja toxicidad*, o a 0,4 Bq/cm² en el caso de todos los demás emisores alfa.
- ii) La *contaminación fija* en la superficie accesible, promediada sobre 300 cm² (o sobre el área de la superficie si ésta fuera inferior a 300 cm²) no sea superior a 4 × 104 Bq/cm² en el caso de emisores beta y gamma y de *emisores alfa de baja toxicidad*, o a 4 000 Bq/cm² en el caso de todos los demás emisores alfa.
- iii) La *contaminación transitoria* más la *contaminación fija* en la superficie inaccesible, promediada sobre 300 cm² (o sobre el área de la superficie si ésta fuera inferior a 300 cm²) no sea superior a 4 × 10⁴ Bq/cm² en el caso de emisores beta y gamma y de *emisores alfa de baja toxicidad*, o a 4 000 Bq/cm² en el caso de todos los demás emisores alfa
- b) OCS-II: Un objeto sólido en el que la contaminación fija o la contaminación transitoria en la superficie sea superior a los límites aplicables estipulados para el OCS-I en el apartado a) anterior y en el que:
 - i) La *contaminación transitoria* en la superficie accesible promediada sobre 300 cm² (o sobre el área de la superficie si ésta fuera inferior a 300 cm²) no sea superior a 400 Bq/cm² en el caso de emisores beta y gamma y de *emisores alfa de baja toxicidad*, o a 40 Bq/cm² en el caso de todos los demás emisores alfa.
 - ii) La *contaminación fija* en la superficie accesible promediada sobre 300 cm² (o sobre el área de la superficie si ésta fuera inferior a 300 cm²) no sea superior a 8 × 10⁵ Bq/cm² en el caso de emisores beta y gamma y de *emisores alfa de baja toxicidad*, o a 8 × 10⁴ Bq/cm² en el caso de todos los demás emisores alfa.
 - iii) La contaminación transitoria más la contaminación fija en la superficie inaccesible, promediada sobre 300 cm² (o sobre el área de la superficie si ésta fuera inferior a 300 cm²) no sea superior a 8 × 10⁵ Bq/cm² en el caso de emisores beta y gamma y de *emisores alfa de baja toxicidad*, o a 8 × 10⁴ Bq/cm² en el caso de todos los demás emisores alfa.

414. El *contenido radiactivo* en un solo *bulto* de *OCS* se limitará de modo que no se supere el *nivel de radiación* especificado en el párr. 517, y la actividad en un solo *bulto* deberá también restringirse de modo que no se superen los límites de actividad correspondientes a un *medio de transporte* especificados en el párr. 522.

Materiales radiactivos en forma especial

415. Los *materiales radiactivos* podrán clasificarse como *materiales radiactivos en forma especial* sólo si cumplen los requisitos establecidos en los párrs. 602 a 604 y 802.

Material radiactivo de baja dispersión

416. Los *materiales radiactivos* podrán clasificarse como *materiales radiactivos de baja dispersión* sólo si cumplen los requisitos establecidos en el párr. 605, teniendo en cuenta los requisitos de los párrs. 665 y 802.

Sustancias fisionables

- 417. Las sustancias fisionables y los bultos que contengan sustancias fisionables se clasificarán en función de la entrada pertinente como "FISIONABLES", de acuerdo con el Cuadro 1 a menos que estén exceptuados por una de las disposiciones de los apartados a) a f) del presente párrafo, y se transportarán de conformidad con los requisitos del párr. 570. Todas las disposiciones se aplican únicamente a las sustancias contenidas en bultos que cumplan los requisitos del párr. 636, a menos que en la disposición se permitan específicamente sustancias sin embalar:
- a) El *uranio enriquecido* en uranio 235 hasta un máximo del 1 % en masa, y con un contenido total de plutonio y de uranio 233 que no sea superior al 1 % de la masa de uranio 235, siempre que los *nucleidos fisionables* se encuentren homogéneamente distribuidos por todo el material. Además, si el uranio 235 se halla presente en forma metálica, de óxido o de carburo, no deberá estar dispuesto en forma de retículo.
- b) Las soluciones líquidas de nitrato de uranilo enriquecido en uranio 235 hasta un máximo de un 2 % en masa, con un contenido total de plutonio y uranio 233 que no exceda del 0,002 % de la masa de *uranio*, y con una razón atómica mínima de nitrógeno a *uranio* (N/U) de 2.
- c) El *uranio* con un enriquecimiento máximo del 5 % en masa de uranio 235, siempre que:
 - i) No haya más de 3,5 g de uranio 235 por *bulto*;
 - ii) El contenido total de plutonio y uranio 233 no sea superior al 1 % de la masa de uranio 235 por *bulto*;
 - iii) El transporte del *bulto* esté sujeto al límite para *remesas* previsto en el apartado c) del párr. 570.

- d) Los *nucleidos fisionables* con una masa total no superior a 2,0 g por *bulto*, siempre que el *bulto* se transporte con sujeción al límite para *remesas* previsto en el apartado d) del párr. 570;
- e) Los *nucleidos fisionables* con una masa total no superior a 45 g, embalados o sin embalar, con sujeción a los límites previstos en el apartado e) del párr. 570;
- f) Una *sustancia fisionable* que cumpla los requisitos del apartado b) del párr. 570, y de los párrs. 606 y 802.
- 418. El contenido de los *bultos* que contengan *sustancias fisionables* será el que se especifique para el *diseño* del *bulto*, ya sea directamente en el presente Reglamento o en el certificado de *aprobación*.

Hexafluoruro de uranio

- 419. El hexafluoruro de uranio se asignará a uno de los siguientes números de las Naciones Unidas únicamente:
- a) UN 2977, MATERIALES RADIACTIVOS, HEXAFLUORURO DE URANIO, FISIONABLE;
- b) UN 2978, MATERIALES RADIACTIVOS, HEXAFLUORURO DE URANIO, no fisionable o fisionable exceptuado;
- c) UN 3507, HEXAFLUORURO DE URANIO, MATERIALES RADIACTIVOS, BULTOS EXCEPTUADOS, inferior a 0,1 kg por bulto, no fisionable o fisionable exceptuado.
- 420. El contenido de un *bulto* que contenga hexafluoruro de uranio cumplirá los siguientes requisitos:
- a) La masa de hexafluoruro de uranio no será diferente de la permitida para el *diseño* del *bulto*.
- b) La masa de hexafluoruro de uranio no será superior a un valor que pudiera conducir a un saldo o exceso de volumen inferior al 5 % a la temperatura máxima del *bulto*, según se especifique para los sistemas de las plantas en los que podría utilizarse el *bulto*.
- c) El hexafluoruro de uranio estará en forma sólida y la presión interna no será superior a la presión atmosférica cuando se presente para el transporte.

CLASIFICACIÓN DE BULTOS

421. La cantidad de *materiales radiactivos* en un *bulto* no será superior a los límites pertinentes correspondientes al tipo de *bulto* estipulados más adelante.

Clasificación como bulto exceptuado

- 422. Un *bulto* podrá clasificarse como un *bulto exceptuado* si cumple una de las siguientes condiciones:
- a) Es un bulto vacío que haya contenido materiales radiactivos.
- b) Contiene instrumentos o artículos que no excedan de los límites de actividad especificados en el Cuadro 4.
- c) Contiene artículos manufacturados con *uranio natural*, *uranio empobrecido* o torio natural.
- d) Contiene *materiales radiactivos* que no excedan de los límites de actividad especificados en el Cuadro 4.
- e) Contiene menos de 0,1 kg de hexafluoruro de uranio que no exceda de los límites de actividad especificados en la columna 4 del Cuadro 4.

CUADRO 4. LÍMITES DE ACTIVIDAD PARA BULTOS EXCEPTUADOS

	Instrumentos	Instrumentos o artículos		
Estado físico del contenido	Límites para los instrumentos y artículos ^a	Límites para los <i>bultos</i> ^a	Límites para los <i>bultos</i> ^a	
Sólidos:				
en forma especial	$10^{-2}A_{I}$	\mathbf{A}_1	$10^{-3}A_{I}$	
otras formas	$10^{-2}A_2$	A_2	$10^{-3}A_2$	
Líquidos	$10^{-3}A_2$	$10^{-1}A_2$	$10^{-4}A_2$	
Gases:				
Tritio	$2\times 10^{-2}A_2$	$2\times 10^{-1}A_2$	$2\times 10^{-2}A_2$	
en forma especial	$10^{-3}A_I$	$10^{-2}A_I$	$10^{-3}A_I$	
otras formas	$10^{-3}A_2$	$10^{-2}A_2$	$10^{-3}A_2$	

^a En cuanto a las mezclas de radionucleidos, véanse los párrs. 405 a 407.

- 423. Los *materiales radiactivos* que estén contenidos en un instrumento u otro artículo manufacturado o que formen parte integrante de ellos, podrán clasificarsebajo el número 2911 de las Naciones Unidas, MATERIALES RADIACTIVOS, BULTOS EXCEPTUADOS INSTRUMENTOS o ARTÍCULOS, siempre que:
- a) El *nivel de radiación* a 10 cm de distancia de cualquier punto de la superficie externa de cualquier instrumento o artículo sin embalar no exceda de 0,1 mSv/h.
- b) Cada instrumento o artículo esté marcado con la inscripción "RADIACTIVO" en su superficie externa, salvo en los siguientes casos:
 - i) Los relojes o dispositivos radioluminiscentes no requieren inscripciones.
 - ii) Los productos de consumo que hayan sido objeto de la aprobación reglamentaria de conformidad con el apartado e) del párr. 107, o que no excedan individualmente del límite de actividad para una *remesa* exenta indicado en el Cuadro 2 (columna 5) no requieren inscripciones, a condición de que esos productos se transporten en un *bulto* que lleve marcada la inscripción "RADIACTIVO" en su superficie interna de modo tal que la advertencia de que contiene *materiales radiactivos* se observe claramente al abrir el *bulto*.
 - iii) Otros instrumentos o artículos demasiado pequeños para llevar marcados la inscripción "RADIACTIVO" no requieren inscripciones, a condición de que se transporten en un *bulto* que lleve marcada la inscripción "RADIACTIVO" en su superficie interna de modo tal que la advertencia de que contiene *materiales radiactivos* se observe claramente al abrir el *bulto*.
- c) El material activo esté completamente encerrado en componentes no activos (un dispositivo cuya única función sea la de contener *materiales radiactivos* no se considerará un instrumento o artículo manufacturado).
- d) Los límites especificados en las columnas 2 y 3 del Cuadro 4 se cumplan para cada elemento individual y cada *bulto*, respectivamente.
- e) En el caso del transporte por correo, la actividad total de cada *bulto exceptuado* no exceda de un décimo de los límites pertinentes especificados en la columna 3 del Cuadro 4.
- 424. Los *materiales radiactivos* en formas diferentes de las especificadas en el párr. 423, cuyas actividades no excedan de los límites especificados en la columna 4 del Cuadro 4 podrán clasificarse bajo el número 2910 de las Naciones Unidas, MATERIALES RADIACTIVOS, BULTOS EXCEPTUADOS CANTIDADES LIMITADAS DE MATERIALES, siempre que:

- a) El *bulto* retenga su *contenido radiactivo* en las condiciones de transporte rutinarias.
- b) El bulto lleve marcada la inscripción "RADIACTIVO" en:
 - i) Una superficie interna de modo tal que la advertencia de que contiene *materiales radiactivos* se observe claramente al abrir el *bulto*; o
 - ii) La parte externa del *bulto* cuando no sea práctico marcar la inscripción en una superficie interna.
- c) En el caso del transporte por correo, la actividad total de cada *bulto exceptuado* no exceda de un décimo de los límites pertinentes especificados en la columna 4 del Cuadro 4.
- 425. El hexafluoruro de uranio que no exceda de los límites especificados en la columna 4 del Cuadro 4 podrá clasificarse bajo el número 3507 de las Naciones Unidas HEXAFLUORURO DE URANIO, MATERIALES RADIACTIVOS, BULTOS EXCEPTUADOS, inferior a 0,1 kg por *bulto*, no fisionable o fisionable exceptuado, siempre que:
- a) La masa de hexafluoruro de uranio en el *bulto* sea inferior a 0,1 kg.
- b) Se cumplan las condiciones del párr. 420, y de los apartados a) y b) del párr. 424.

426. Los artículos manufacturados con *uranio natural*, *uranio empobrecido* o torio natural, y los artículos en los que el único *material radiactivo* sea *uranio natural* sin irradiar, *uranio empobrecido* sin irradiar o torio natural sin irradiar podrán clasificarse bajo el número 2909 de las Naciones Unidas, MATERIALES RADIACTIVOS, BULTOS EXCEPTUADOS — ARTÍCULOS MANUFACTURADOS DE URANIO NATURAL o URANIO EMPOBRECIDO o TORIO NATURAL, siempre que la superficie externa del uranio o del torio quede encerrada en una funda o envoltura inactiva de metal o de algún otro material resistente.

Requisitos y controles adicionales para el transporte de embalajes vacíos

427. Los *embalajes* vacíos que hayan contenido previamente *materiales* radiactivos podrán clasificarse bajo el número 2908 de las Naciones Unidas, MATERIALES RADIACTIVOS, BULTOS EXCEPTUADOS — EMBALAJES VACÍOS, siempre que:

- a) Se mantengan en buen estado y firmemente cerrados.
- b) De existir uranio o torio en su estructura, la superficie exterior de los mismos esté cubierta con una funda o envoltura inactiva de metal o de algún otro material resistente.
- c) El nivel de *contaminación transitoria* interna no exceda de 100 veces los valores especificados en el párr. 508.
- d) Ya no sean visibles las etiquetas que puedan haber llevado sobre su superficie de conformidad con el párr. 538.

Clasificación como bulto del Tipo A

- 428. Los *bultos* que contengan *materiales radiactivos* podrán clasificarse como *bultos del Tipo A* siempre que se cumplan las condiciones de los párrs. 429 y 430.
- 429. Los *bultos del Tipo A* no contendrán actividades superiores a ninguna de las siguientes:
- a) Cuando se trate de materiales radiactivos en forma especial A_I ;
- b) Para todos los restantes *materiales radiactivos* A_2 .
- 430. Cuando se trate de mezclas de radionucleidos cuyas identidades y actividades respectivas se conozcan, se aplicará la siguiente condición al *contenido radiactivo* de un *bulto del Tipo A*:

$$\sum_{i} \frac{B(i)}{A_I(i)} + \sum_{i} \frac{C(j)}{A_2(j)} \le 1$$

donde

- B(i) es la actividad del radionucleido i como *material radiactivo en forma* especial;
- $A_I(i)$ es el valor de A_I para el radionucleido i;
- C(j) es la actividad del radionucleido j que no se encuentre en forma de *material* radiactivo en forma especial;
- $A_2(j)$ es el valor de A_2 del radionucleido j.

Clasificación como bulto del Tipo B(U), Tipo B(M) o Tipo C

- 431. Los bultos del Tipo B(U), del Tipo B(M) y del Tipo C se clasificarán de conformidad con el certificado de aprobación de la autoridad competente correspondiente al bulto, emitido por el país de origen del diseño.
- 432. El contenido de un bulto del Tipo B(U), del Tipo B(M) o del Tipo C será el que se especifique en el certificado de aprobación.
- 433. Los *bultos del Tipo B(U)* y *del Tipo B(M)*, si se transportan por vía aérea, deberán cumplir los requisitos estipulados en el párr. 432 y no contendrán actividades superiores a las siguientes:
- a) Para *materiales radiactivos de baja dispersión* según lo autorizado para el *diseño* del *bulto* de acuerdo con las especificaciones del certificado de *aprobación*;
- b) Para materiales radiactivos en forma especial 3 $000A_1$ o 10^5A_2 , según cual sea menor;
- c) Para todos los restantes materiales radiactivos $3~000A_2$.

ARREGLOS ESPECIALES

434. Los *materiales radiactivos* se clasificarán como transportados en virtud de *arreglos especiales* cuando se vayan a transportar de conformidad con lo estipulado en el párr. 310.

Sección V

REQUISITOS Y CONTROLES PARA EL TRANSPORTE

REQUISITOS ANTES DE LA PRIMERA EXPEDICIÓN

- 501. Antes de la primera utilización de un *embalaje* para el transporte de *materiales radiactivos*, se confirmará que este se ha fabricado de conformidad con las especificaciones del *diseño* para asegurar el cumplimiento de las disposiciones pertinentes del presente Reglamento y de los certificados de *aprobación* correspondientes. Si procede, deberán cumplirse también los siguientes requisitos:
- a) Si la presión de *diseño* del *sistema de contención* es superior a una presión manométrica de 35 kPa, se verificará el *sistema de contención* de cada *embalaje* para cerciorarse de que se ajusta a los requisitos de *diseño* aprobados relativos a la capacidad de dicho sistema para mantener su integridad bajo esa presión.
- b) Cuando se trate de *embalajes* que vayan a utilizarse como *bultos del Tipo B(U)*, *del Tipo B(M)* o *del Tipo C* y de *embalajes* destinados a contener *sustancias fisionables*, se verificará si la eficacia de su blindaje y sistema de contención y, cuando sea necesario, sus características de transmisión del calor y la eficacia del *sistema de confinamiento* están dentro de los límites aplicables al *diseño* aprobado o especificados para el mismo.
- c) Cuando se trate de *embalajes* destinados a contener *sustancias fisionables*, se verificará si la eficacia de las características de seguridad con respecto a la criticidad está dentro de los límites aplicables al *diseño* o especificados para el mismo, y en particular cuando se trate de *embalajes* destinados a contener *sustancias fisionables* cuando, para satisfacer los requisitos del párr. 673, se hayan incorporado especialmente venenos neutrónicos, se efectuarán comprobaciones para confirmar la presencia y la distribución de dichos venenos neutrónicos.

REQUISITOS ANTES DE CADA EXPEDICIÓN

502. Antes de cada *expedición* de cualquier *bulto*, habrá que cerciorarse de que el *bulto* no contiene:

- a) Radionucleidos diferentes de los especificados para el diseño del bulto; ni
- b) Sustancias en una forma, o en un estado físico o químico, diferentes de los especificados para el *diseño* del *bulto*.
- 503. Antes de cada *expedición* de cualquier *bulto*, habrá que cerciorarse de que se han cumplido todos los requisitos especificados en las disposiciones pertinentes del presente Reglamento y en los certificados de *aprobación* correspondientes. Si procede, deberán cumplirse también los siguientes requisitos:
- a) Se verificará que los dispositivos de elevación que no satisfagan los requisitos del párr. 608 se han desmontado o se han dejado inoperantes en cuanto a su uso para la elevación del *bulto*, de conformidad con el párr. 609.
- b) Todo *bulto del Tipo B(U)*, *del Tipo B(M)* y *del Tipo C* se retendrá hasta que se haya aproximado lo suficiente a las condiciones de equilibrio para demostrar que se cumplen los requisitos relativos a la temperatura y a la presión, a menos que la exención de tales requisitos haya sido objeto de *aprobación unilateral*.
- c) Cuando se trate de *bultos del Tipo B(U), del Tipo B(M)* y *del Tipo C*, se verificará, por inspección y/o mediante ensayos apropiados, que todos los cierres, válvulas y demás orificios del *sistema de contención* a través de los cuales podría escapar el *contenido radiactivo* están debidamente cerrados y, cuando proceda, precintados de conformidad con lo establecido para confirmar el cumplimiento de los requisitos de los párrs. 659 y 671.
- d) Cuando se trate de *bultos* que contengan *sustancias fisionables*, se realizará la medición especificada en el apartado b) del párr. 677 y los ensayos para verificar que los *bultos* estén cerrados de conformidad con lo estipulado en el párr. 680.

TRANSPORTE DE OTRAS MERCANCÍAS

- 504. Ningún *bulto* contendrá elementos distintos de los necesarios para utilizar los *materiales radiactivos*. La interacción entre estos elementos y el *bulto*, en las condiciones de transporte aplicables al *diseño*, no deberá reducir la seguridad del *bulto*.
- 505. Los *contenedores*, los *RIG*, las *cisternas*, así como otros *embalajes* y *sobreenvases*, utilizados para el transporte de *materiales radiactivos* no se utilizarán para almacenamiento o transporte de otras mercancías, a menos que se hayan descontaminado hasta un nivel inferior a 0,4 Bq/cm² para emisores beta y

REQUISITOS Y CONTROLES PARA EL TRANSPORTE

gamma y *emisores alfa de baja toxicidad*, y a 0,04 Bq/cm² para todos los demás emisores alfa.

506. Las *remesas* se mantendrán separadas de otras mercancías peligrosas durante el transporte, en cumplimiento de los reglamentos para el transporte de mercancías peligrosas pertinentes de cada uno de los países *a través o dentro de* los cuales se transporten los materiales, y, según proceda, de los reglamentos de las organizaciones de transporte de reconocida competencia, así como del presente Reglamento.

OTRAS PROPIEDADES PELIGROSAS DEL CONTENIDO

507. Además de las propiedades radiactivas y fisionables, se deberán tener en cuenta al embalar, etiquetar, marcar, rotular, almacenar y transportar el *bulto* todas las demás propiedades peligrosas del contenido de este, como son, por ejemplo, la explosividad, la inflamabilidad, la piroforicidad, la toxicidad química y la corrosividad, de manera que se cumplan tanto los pertinentes reglamentos para el transporte de mercancías peligrosas de cada uno de los países *a través o dentro de* los cuales se transporten los materiales como, cuando proceda, los reglamentos de las organizaciones de transporte de reconocida competencia, así como el presente Reglamento.

REQUISITOS Y CONTROLES RELATIVOS A LA CONTAMINACIÓN Y A LOS BULTOS QUE PRESENTEN FUGAS

508. La *contaminación transitoria* en las superficies externas de un *bulto* deberá mantenerse tan baja como sea posible y, en las condiciones de transporte rutinarias, no deberá exceder de los límites siguientes:

- a) 4 Bq/cm² para emisores beta y gamma y emisores alfa de baja toxicidad;
- b) 0,4 Bq/cm² para todos los demás emisores alfa.

Estos límites son aplicables cuando se promedian sobre cualquier área de 300 cm² de cualquier parte de la superficie.

509. Sin perjuicio de lo dispuesto en el párr. 514, el nivel de la *contaminación* transitoria en las superficies externas e internas de sobreenvases, contenedores, cisternas, RIG y medios de transporte no deberá exceder de los límites especificados en el párr. 508.

- 510. Cuando se advierta que un *bulto* está deteriorado o presenta fugas, o si se sospecha que se hayan podido producir en él fugas o deterioros, se restringirá el acceso a dicho *bulto* y un especialista realizará, tan pronto como sea posible, una evaluación del grado de *contaminación* y del *nivel de radiación* resultante en el *bulto*. La evaluación comprenderá el *bulto*, el *medio de transporte*, las zonas contiguas de carga y descarga y, de ser necesario, todos los demás materiales que se hayan transportado en el mismo *medio de transporte*. Cuando sea necesario, deberán tomarse medidas adicionales para la protección de las personas, los bienes y el medio ambiente, en conformidad con las disposiciones establecidas por la *autoridad competente* pertinente, a fin de contrarrestar y reducir al mínimo las consecuencias de dicha fuga o deterioro.
- 511. Los *bultos* deteriorados o que presenten fugas de *contenido radiactivo* superiores a los límites admisibles para las condiciones de transporte normales podrán trasladarse a un lugar provisional aceptable bajo supervisión, pero su utilización se suspenderá hasta que se hayan reparado o reintegrado a su estado inicial y descontaminado.
- 512. Los *medios de transporte* y el equipo habitualmente utilizados para el transporte de *materiales radiactivos* estarán sujetos a inspecciones periódicas a fin de determinar el grado de *contaminación*. La frecuencia de esas inspecciones dependerá de la probabilidad de que se produzca una *contaminación*, así como de la periodicidad con que se transporten *materiales radiactivos* y de su cantidad.
- 513. Sin perjuicio de lo dispuesto en el párr. 514, todo *medio de transporte*, o equipo o parte del mismo, que haya resultado contaminado durante el transporte de *materiales radiactivos* por encima de los límites especificados en el párr. 508, o que presente un *nivel de radiación* superior a 5 μSv/h en la superficie, será descontaminado, tan pronto como sea posible, por especialistas y no se volverá a utilizar hasta que se cumplan las siguientes condiciones:
- c) La *contaminación transitoria* no será superior a los límites especificados en el párr. 508.
- d) El *nivel de radiación* resultante de la *contaminación fija* no será superior a 5 μSv/h en la superficie.
- 514. Los *contenedores*, *cisternas*, *RIG* o *medios de transporte* dedicados al transporte de *materiales radiactivos* sin embalar en la modalidad de *uso exclusivo* se exceptuarán del cumplimiento de los requisitos de los párrs. 509 y 513 únicamente en lo que respecta a sus superficies internas y sólo mientras permanezcan en dicho *uso exclusivo* específico.

REQUISITOS Y CONTROLES PARA EL TRANSPORTE DE BULTOS EXCEPTUADOS

- 515. Los *bultos exceptuado*s se deberán ajustar solamente a las siguientes disposiciones de las Secciones V y VI:
- a) Los requisitos especificados en los párrs. 503 a 505, 507 a 513, 516, 530 a 533, 545, la fase introductoria del párr. 546, los apartados a) y k) del párr. 546, los párrs. 550 a 553, 555, 556, 561, 564, 582 y 583;
- b) Los requisitos relativos a los *bultos exceptuado*s que se especifican en el párr. 622;
- c) Los requisitos especificados en los párrs. 580 y 581, si se transportan por correo.

Todas las disposiciones pertinentes de las demás secciones serán de aplicación a los *bultos exceptuados*. Si el *bulto exceptuado* contiene *sustancias fisionables*, será de aplicación una de las excepciones previstas en el párr. 417 para las *sustancias fisionables*.

516. El *nivel de radiación* en cualquier punto de la superficie externa de un *bulto exceptuado* no excederá de 5 μ Sv/h.

REQUISITOS Y CONTROLES PARA EL TRANSPORTE DE MATERIALES BAE Y OCS EN BULTOS INDUSTRIALES O SIN EMBALAR

- 517. La cantidad de materiales *BAE* u *OCS* en un solo *bulto del Tipo BI-1*, *del Tipo BI-2*, *del Tipo BI-3*, u objeto o colección de objetos, si procede, se limitará de forma que el *nivel de radiación* externa a 3 m de distancia del material u objeto o colección de objetos sin blindaje no exceda de 10 mSv/h.
- 518. Cuando se trate de *materiales BAE* y *OCS* que sean o contengan *sustancias fisionables*, que no estén exceptuadas en virtud del párr. 417, se satisfarán los requisitos aplicables de los párrs. 568 y 569.
- 519. Cuando se trate de *materiales BAE* y *OCS* que contengan *sustancias fisionables*, se satisfarán los requisitos aplicables del párr. 673.
- 520. Los *materiales BAE* y *OCS* de los grupos *BAE-I* y *OCS-I* podrán transportarse, sin embalar, siempre que cumplan las siguientes condiciones:

- a) Todos los materiales sin embalar que no sean minerales que contengan exclusivamente radionucleidos naturales se transportarán de modo que, en las condiciones de transporte rutinarias, no se produzca ninguna fuga del *contenido radiactivo* del *medio de transporte* ni pérdida alguna de blindaje.
- b) Todo *medio de transporte* será de *uso exclusivo*, excepto cuando transporte solamente *OCS-I* en los que la *contaminación* en las superficies accesibles e inaccesibles no sea superior a 10 veces el nivel aplicable especificado en el párr. 214.
- c) En el caso de *OCS-I* en que se sospeche que existe *contaminación transitoria* en las superficies inaccesibles en grado superior a los valores estipulados en el inciso i) del apartado a) del párr. 413, se adoptarán medidas para asegurar que no se liberen *materiales radiactivos* dentro del *medio de transporte*.
- d) Las *sustancias fisionables* sin embalar cumplirán los requisitos del apartado e) del párrafo 417.
- 521. Los materiales *BAE* y *OCS*, sin perjuicio de lo especificado en el párr. 520, se embalarán de conformidad con los requisitos del Cuadro 5.

CUADRO 5. REQUISITOS DE BULTOS INDUSTRIALES PARA MATERIALES BAE Y OCS

	Tipo de bulto industrial		
Contenido radiactivo	Uso exclusivo	No en uso exclusivo	
BAE-I			
Sólido ^a	Tipo BI-1	Tipo BI-1	
Líquido	Tipo BI-1	Tipo BI-2	
BAE-II			
Sólido	Tipo BI-2	Tipo BI-2	
Líquido y gas	Tipo BI-2	Tipo BI-3	
BAE-III	Tipo BI-2	Tipo BI-3	
OCS-I ^a	Tipo BI-1	Tipo BI-1	
OCS-II	Tipo BI-2	Tipo BI-2	

^a Si se cumplen las condiciones especificadas en el párr. 520, los *materiales BAE-I* y *OCS-I* podrán transportarse sin embalar.

522. La actividad total en un solo compartimiento o bodega de una embarcación de navegación interior, o en otro *medio de transporte*, para acarreo de materiales *BAE* y *OCS* en *bultos del Tipo BI-1*, *del Tipo BI-2* y *del Tipo BI-3* o sin embalar, no excederá de los límites indicados en el Cuadro 6.

DETERMINACIÓN DEL ÍNDICE DE TRANSPORTE

- 523. El *IT* de un *bulto*, *sobreenvase*, *contenedor* o *BAE-I* u *OCS-I* sin embalar será la cifra obtenida aplicando el siguiente procedimiento:
- a) Se determinará el *nivel de radiación* máximo en unidades de milisievert por hora (mSv/h) a una distancia de 1 m de las superficies externas del *bulto*, *sobreenvase*, *contenedor* o *BAE-I* y *OCS-I* sin embalar. El valor determinado se multiplicará por 100 y la cifra obtenida será el *IT*. En el caso de los minerales y concentrados de *uranio* y de torio, pueden tomarse como *niveles de radiación* máximos en cualquier punto situado a una distancia de 1 m de la superficie externa de la carga los valores siguientes:
 - i) 0,4 mSv/h para minerales y concentrados físicos de *uranio* y torio;
 - ii) 0,3 mSv/h para concentrados químicos de torio;
 - iii) 0,02 mSv/h para concentrados químicos de *uranio* que no sean hexafluoruro de uranio.

CUADRO 6. LÍMITES DE ACTIVIDAD PARA LOS MEDIOS DE TRANSPORTE DE MATERIALES BAE Y OCS EN BULTOS INDUSTRIALES O SIN EMBALAR

Naturaleza del material	Límite de actividad para <i>medios de transporte</i> que no sean embarcaciones de navegación interior	Límite de actividad para una bodega o compartimiento de una embarcación de navegación interior	
BAE-I	Sin límite	Sin límite	
<i>BAE-II</i> y <i>BAE-III</i> Sólidos no combustibles	Sin límite	100A ₂	
BAE-II y BAE-III Sólidos combustibles, y todos los líquidos y gases	100A ₂	$10A_2$	
OCS	$100A_{2}$	$10A_{2}$	

- b) Para *cisternas*, *contenedores* y *BAE-I* y *OCS-I* sin embalar, el valor determinado en el apartado a) se multiplicará por el factor apropiado del Cuadro 7.
- c) La cifra obtenida según los apartados a) y b) se redondeará a la primera cifra decimal superior (por ejemplo, 1,13 será 1,2), excepto los valores de 0,05 o menos, que se podrán considerar como cero.

524. El *IT* de un *sobreenvase*, *contenedor* o *medio de transporte* se obtendrá ya sea sumando los *IT* de todos los *bultos* contenidos, o midiendo directamente el *nivel de radiación*, salvo en el caso de *sobreenvases* no rígidos, para los cuales el *IT* se obtendrá únicamente sumando los *IT* de todos los *bultos*.

DETERMINACIÓN DEL ÍNDICE DE SEGURIDAD CON RESPECTO A LA CRITICIDAD PARA REMESAS, CONTENEDORES Y SOBREENVASES

525. El *ISC* para cada *sobreenvase* o *contenedor* se obtendrá sumando los *ISC* de todos los *bultos* que contiene. El mismo procedimiento se aplicará para determinar la suma total de los *ISC* de una *remesa* o a bordo de un *medio de transporte*.

LÍMITES DEL ÍNDICE DE TRANSPORTE, DEL ÍNDICE DE SEGURIDAD CON RESPECTO A LA CRITICIDAD Y DE LOS NIVELES DE RADIACIÓN CORRESPONDIENTES A BULTOS Y SOBREENVASES

526. Salvo en el caso de *remesas* en la modalidad de *uso exclusivo*, el *IT* de cualquier *bulto* o *sobreenvase* no deberá ser superior a 10, y el *ISC* de cualquier *bulto* o *sobreenvase* no deberá ser superior a 50.

CUADRO 7. FACTORES DE MULTIPLICACIÓN PARA CISTERNAS, CONTENEDORES Y BAE-I Y OCS-I SIN EMBALAR

Dimensiones de la carga ^a		Factor de multiplicación
-	dimensión de la carga $\leq 1 \text{ m}^2$	1
$1 \text{ m}^2 <$	dimensión de la carga $\leq 5 \text{ m}^2$	2
$5 \text{ m}^2 <$	dimensión de la carga $\leq 20 \text{ m}^2$	3
$20 \text{ m}^2 <$	dimensión de la carga	10

^a Se mide el área de la mayor sección transversal de la carga.

- 527. Salvo en el caso de *bultos* o *sobreenvases* transportados por ferrocarril o por carretera según la modalidad de *uso exclusivo* en las condiciones especificadas en el apartado a) del párr. 573, o según la modalidad de *uso exclusivo* y *arreglo especial* en un *buque* o por aire en las condiciones especificadas en el párr. 575 o en el párr. 579, respectivamente, el máximo *nivel de radiación* en cualquier punto de la superficie externa de un *bulto* o *sobreenvase* no deberá exceder de 2 mSv/h.
- 528. El máximo *nivel de radiación* en cualquier punto de la superficie externa de un *bulto* o *sobreenvase* en la modalidad de *uso exclusivo* no deberá exceder de 10 mSv/h

CATEGORÍAS

- 529. Los *bultos, sobreenvases* y *contenedores* se clasificarán en la categoría I-BLANCA, II-AMARILLA o III-AMARILLA, de conformidad con las condiciones especificadas en el Cuadro 8 y con los siguientes requisitos:
- a) En el caso de un *bulto, sobreenvase* o *contenedor*, se tendrán en cuenta el *IT* y el *nivel de radiación* en la superficie para determinar la categoría apropiada. Cuando el *IT* satisfaga la condición correspondiente a una

CUADRO 8. CATEGORÍAS DE LOS BULTOS, SOBREENVASES Y CONTENEDORES

Condiciones			
IT	Nivel de radiación máximo en cualquier punto de la superficie externa	Categoría	
0 ^a	Hasta 0,005 mSv/h	I-BLANCA	
Mayor que 0 pero no mayor que 1 ^a	Mayor que 0,005 mSv/h pero no mayor que 0,5 mSv/h	II-AMARILLA	
Mayor que 1 pero no mayor que 10	Mayor que 0,5 mSv/h pero no mayor que 2 mSv/h	III-AMARILLA	
Mayor que 10	Mayor que 2 mSv/h pero no mayor que 10 mSv/h	III-AMARILLA ^b	

^a Si el *IT* medido no es mayor que 0,05, el valor citado puede ser cero en conformidad con el apartado c) del párr. 523.

b Deberá transportarse también bajo *uso exclusivo*, salvo en el caso de los *contenedores* (véase el Cuadro 10).

- categoría, pero el *nivel de radiación* en la superficie satisfaga la condición correspondiente a una categoría diferente, el *bulto*, *sobreenvase* o *contenedor* se asignará a la categoría superior de las dos. A este efecto, la categoría I-BLANCA se considerará la categoría más baja.
- b) El *IT* se determinará de acuerdo con los procedimientos especificados en los párrs. 523 y 524.
- c) Si el *nivel de radiación* en la superficie es superior a 2 mSv/h, el *bulto* o *sobreenvase* se transportará según la modalidad de *uso exclusivo* y ajustándose a las disposiciones del apartado a) del párr. 573, el párr. 575 o el párr. 579, según proceda.
- d) A un *bulto* que se transporte en virtud de *arreglos especiales* se le asignará la categoría III-AMARILLA salvo en los casos previstos en las disposiciones del párr. 530.
- e) A un *sobreenvase* o *contenedor* que contenga *bultos* que se transporte en virtud de *arreglos especiales* se le asignará la categoría III-AMARILLA salvo en los casos previstos en las disposiciones del párr. 530.

MARCADO, ETIQUETADO Y ROTULADO

530. Para cada *bulto* o *sobreenvase* se determinará el número de las Naciones Unidas y el nombre correcto de *expedición* (véase el Cuadro 1). En todos los casos de transporte internacional de *bultos* que requieran la *aprobación* del *diseño* o la *expedición* por parte de la *autoridad competente*, y para los que sean aplicables distintos tipos de *aprobación* en los diversos países interesados en la *expedición*, el número de las Naciones Unidas, el nombre correcto de la *expedición*, la categorización, las etiquetas y las marcas estarán en conformidad con el certificado del país de origen del *diseño*.

Marcado

- 531. Todo *bulto* deberá llevar marcada de manera legible y duradera en el exterior del *embalaje* la identificación del *remitente* o del *destinatario*, o de ambos. Todo *sobreenvase* deberá llevar marcada de manera legible y duradera en el exterior del *sobreenvase* la identificación del *remitente* o del *destinatario*, o de ambos, a menos que las marcas de todos los *bultos* incluidos en el interior del *sobreenvase* sean claramente visibles.
- 532. Todo *bulto* deberá llevar la marca de las Naciones Unidas de manera legible y duradera en el exterior tal como se especifica en el Cuadro 9. Además, todo *sobreenvase* deberá llevar marcada de manera legible y duradera la palabra

"SOBREENVASE" y la marca de las Naciones Unidas tal como se especifica en el Cuadro 9, a menos que todas las marcas de los *bultos* incluidos en el *sobreenvase* sean claramente visibles.

- 533. Todo *bulto* cuya masa bruta exceda de 50 kg llevará marcada su masa bruta permitida de manera legible y duradera en el exterior del *embalaje*.
- 534. Todo *bulto* que se ajuste al *diseño* de:
- a) Un *BI-1*, *BI-2* o *BI-3* llevará marcada de manera legible y duradera en el exterior del *embalaje* la inscripción "TIPO BI-1", "TIPO BI-2" o "TIPO BI-3", según proceda.

CUADRO 9. MARCAS DE LAS NACIONES UNIDAS PARA BULTOS Y SOBREENVASES

Artículo	Marca de las Naciones Unidas ^a
Bulto (distinto de un bulto exceptuado)	Número de las Naciones Unidas, precedido de las letras "UN", y nombre correcto de la expedición
Bulto exceptuado (distinto de los presentes en remesas aceptadas para circulación y distribución postal internacional)	Número de las Naciones Unidas, precedido de las letras "UN"
Sobreenvase (distinto de los sobreenvases que contengan sólo bultos exceptuados)	Número de las Naciones Unidas, precedido de las letras "UN" para cada número de las Naciones Unidas pertinente en el <i>sobreenvase</i> , seguido del nombre correcto de la expedición en el caso de un <i>bulto no exceptuado</i>
Sobreenvase que contenga sólo bultos exceptuados (distintos de las remesas aceptadas para circulación y distribución postal internacional)	Número de las Naciones Unidas, precedido de las letras "UN" para cada número de las Naciones Unidas pertinente en el <i>sobreenvase</i>
Remesa aceptada para circulación y distribución postal internacional	El requisito del párr. 581

^a En el Cuadro 1 figura la lista de los números de las Naciones Unidas y los nombres correctos de las expediciones.

- b) Un bulto del Tipo A llevará marcada de manera legible y duradera en el exterior del embalaje la inscripción "TIPO A".
- c) Un *BI-2*, *BI-3* o un *bulto del Tipo A* llevará marcado de manera legible y duradera en el exterior del *embalaje* el código internacional de matrículas de *vehículos* (código VRI) del país de origen del *diseño* y el nombre del fabricante u otra identificación del *embalaje* especificada por la *autoridad competente* del país de origen del *diseño*.
- 535. Todo *bulto* que se ajuste a un *diseño* aprobado de conformidad con uno o varios de los párrs. 807 a 816 y 820, llevará marcada en el exterior del *embalaje* de manera legible y duradera la siguiente información:
- a) La marca de identificación asignada a ese *diseño* por la *autoridad competente*;
- b) Un número de serie que identifique inequívocamente cada *embalaje* que se ajuste a ese *diseño*;
- c) La inscripción "TIPO B(U)", "TIPO B(M)" o "TIPO C" cuando se trate de diseños de bultos del Tipo B(U), del Tipo B(M) o del Tipo C.
- 536. Todo *bulto* que se ajuste a un *diseño del Tipo B(U)*, *del Tipo B(M)* o *del Tipo C* llevará, en la superficie externa del recipiente más exterior, resistente al fuego y al agua, el símbolo del trébol que se indica en la Fig. 1, estampado, grabado o marcado de cualquier otra manera que lo haga bien visible y resistente a los efectos del fuego y del agua.
- 537. En el caso de materiales *BAE-I* u *OCS-I* contenidos en recipientes o materiales de embalaje y transportados conforme al *uso exclusivo*, permitido por el párr. 520, la superficie exterior de estos recipientes o materiales de embalaje podrá llevar la inscripción "BAE-I RADIACTIVOS" u "OCS-I RADIACTIVOS", según proceda.

Etiquetado

538. Todo *bulto*, *sobreenvase* y *contenedor* deberá llevar las etiquetas que correspondan a los modelos aplicables de las Figs. 2 a 4, salvo en los casos permitidos en las disposiciones alternativas del párr. 543 relativas a los *contenedores* grandes y *cisternas*, con arreglo a la categoría a que pertenezca. Además, todo *bulto*, *sobreenvase* y *contenedor* que contenga *sustancias fisionables* distintas de las *sustancias fisionables* exceptuadas en virtud de las

Fig. 1. Símbolo fundamental: un trébol cuyas proporciones están basadas en un círculo central de radio X. La dimensión mínima admisible de X será de 4 mm.

disposiciones del párr. 417, llevará etiquetas que se ajustarán al modelo representado en la Fig. 5. Todas las etiquetas no relacionadas con el contenido deberán retirarse o cubrirse. Para el caso de *materiales radiactivos* que tengan otras propiedades peligrosas, véase el párr. 507.

539. Las etiquetas que se ajusten a los modelos aplicables representados en las Figs. 2 a 4 se fijarán en dos lados opuestos de la parte exterior del *bulto* o *sobreenvase*, o bien en el exterior de los cuatro lados del *contenedor* o *cisterna*. Las etiquetas que se ajusten al modelo que se indica en la Fig. 5, cuando proceda, se fijarán al lado de las etiquetas correspondientes a los modelos aplicables representados en las Figs. 2 a 4. Las etiquetas no deberán cubrir las inscripciones especificadas en los párrs. 531 a 536.

Etiquetado para el contenido radiactivo

540. En cada etiqueta que se ajuste a los modelos aplicables representados en las Figs. 2 a 4 se consignará la información siguiente:

Fig. 2. Etiqueta para la categoría I-BLANCA. El color de fondo de la etiqueta será blanco, el trébol y los caracteres y líneas impresos serán negros y la barra que indica la categoría será roja.

a) Contenido:

i) Salvo en el caso de material *BAE-I*, el (los) nombre(s) del (de los) radionucleido(s), según se indica en el Cuadro 2, utilizando los símbolos prescritos en el mismo. Tratándose de mezclas de radionucleidos, se enumerarán los nucleidos más restrictivos en la medida en que lo permita el espacio disponible. Se indicará el grupo de *BAE* u *OCS* a continuación del (de los) nombre(s) del (de los) radionucleido(s). Con este fin se utilizarán los términos "BAE-II", "BAE-III", "OCS-I" y "OCS-II".

Fig. 3. Etiqueta para la categoría II-AMARILLA. El color de fondo de la mitad superior de la etiqueta será amarillo y el de la mitad inferior blanco, el trébol y los caracteres y líneas impresos serán negros y las barras que indican la categoría serán rojas.

- ii) En el caso de material *BAE-I*, basta con la inscripción "BAE-I"; no es necesario indicar el nombre del radionucleido.
- b) Actividad: La actividad máxima del *contenido radiactivo* durante el transporte expresada en bequerelios (Bq) con el prefijo y símbolo apropiado del SI (véase el Anexo II). Tratándose de *sustancias fisionables*, puede emplearse la masa total de los *nucleidos fisionables*, en lugar de la actividad, utilizando como unidad el gramo (g), o sus múltiplos.

Fig. 4. Etiqueta para la categoría III-AMARILLA. El color de fondo de la mitad superior de la etiqueta será amarillo y el de la mitad inferior blanco, el trébol y los caracteres y líneas impresos serán negros y las barras que indican la categoría serán rojas.

c) En el caso de *sobreenvases* y *contenedores*, en las inscripciones "contenido" y "actividad" de la etiqueta constará la información estipulada en los apartados a) y b) del párr. 540, respectivamente, totalizada para el contenido completo del *sobreenvase* o *contenedor*, salvo que en el caso de las etiquetas para *sobreenvases* o *contenedores* que contengan cargas mixtas de *bultos* con diferentes radionucleidos las inscripciones podrán ser: "Véanse los documentos de transporte".

Fig. 5. Etiqueta para el ISC. El color de fondo de la etiqueta será blanco y los caracteres y líneas impresos serán negros.

d) *IT*: El número se determina de conformidad con los párrs. 523 y 524 (no se requiere la inscripción del *IT* en el caso de la categoría I-BLANCA.)

Etiquetado para la seguridad con respecto a la criticidad

541. En cada etiqueta que se ajuste al modelo indicado en la Fig. 5 se consignará el *ISC* declarado en el certificado de *aprobación* que sea aplicable en los países *a través o dentro de* los que se transporta la *remesa* y emitido por la *autoridad competente*, o el *ISC* especificado en el párr. 674 o en el párr. 675.

542. Tratándose de *sobreenvases* y *contenedores*, en la etiqueta que se ajuste al modelo indicado en la Fig. 5 se consignará la suma de los *ISC* de todos los *bultos* que contengan dichos *sobreenvases* y *contenedores*.

Rotulado

- 543. Los *contenedores grandes* que contengan *bultos* que no sean *bultos exceptuados* y las *cisternas* llevarán cuatro rótulos que se ajustarán al modelo representado en la Fig. 6. Los rótulos se fijarán en posición vertical en cada una de las paredes laterales y en la frontal y posterior del *contenedor grande* o *cisterna*. Todos los rótulos no relacionados con el contenido deberán retirarse. En vez de utilizar una etiqueta y un rótulo, está permitido también utilizar, cuando proceda, solamente etiquetas ampliadas como las de las Figs. 2 a 4, pero con el tamaño mínimo señalado en la Fig. 6.
- 544. Cuando la *remesa* en el interior del *contenedor* o *cisterna* sea material *BAE-I* u *OCS-I* sin embalar, o cuando una *remesa* en el interior de un *contenedor* deba enviarse según la modalidad de *uso exclusivo* y se trate de *materiales radiactivos* embalados correspondientes a un solo número de las Naciones Unidas, se consignará también el número apropiado de las Naciones Unidas para la *remesa* (véase el Cuadro 1), en cifras negras de altura no inferior a 65 mm, ya sea:
- a) En la mitad inferior del rótulo representado en la Fig. 6, y sobre fondo blanco; o
- b) En el rótulo representado en la Fig. 7.

Cuando se utilice el método indicado en el apartado b), el rótulo complementario se fijará en un lugar inmediatamente adyacente al rótulo principal en los cuatro lados del *contenedor* o *cisterna*.

OBLIGACIONES DEL REMITENTE

545. Sin perjuicio de lo dispuesto en el presente Reglamento, nadie podrá ofrecer *materiales radiactivos* para su transporte a menos que esos materiales estén debidamente marcados, etiquetados, rotulados, descritos y certificados en un documento de transporte, y en las condiciones para el transporte que se requieren en el presente Reglamento.

Fig. 6. Rotulado. Salvo en los casos permitidos en virtud del párr. 571, las dimensiones de este modelo son las mínimas; cuando se utilicen rótulos de distintas dimensiones se guardarán las mismas proporciones que en el modelo. El número "7" tendrá una altura no inferior a 25 mm. El color de fondo de la mitad superior del rótulo será amarillo y el de la mitad inferior blanco, el trébol y los caracteres y líneas impresos serán negros. El empleo del término "RADIACTIVO" en la mitad inferior es facultativo, con el fin de permitir también la utilización de este rótulo para indicar el número apropiado de las Naciones Unidas correspondiente a la remesa.

Fig. 7. Rótulo para indicar por separado el número de las Naciones Unidas. El color de fondo del rótulo será naranja y los bordes y el número de las Naciones Unidas serán negros. El símbolo "****" indica el espacio en el que deberá insertarse el número de las Naciones Unidas apropiado para los materiales radiactivos de que se trate, según se especifica en el Cuadro 1.

Detalles de la remesa

546. El *remitente* incluirá en los documentos de transporte de cada *remesa* la identificación del *remitente* y el *destinatario*, incluidos sus nombres y direcciones, y la información siguiente, según proceda, en el orden indicado:

- a) El número de las Naciones Unidas asignado al material, según se especifica en los párrs. 401 y 530, precedido de las letras "UN".
- b) El nombre correcto de la expedición, especificado de conformidad con lo dispuesto en los párrs. 401 y 530.
- c) El número "7" de la clasificación de las Naciones Unidas.
- d) El o los números de clase o de división de riesgo secundario correspondientes a la o las etiquetas de riesgo secundario que se deban aplicar, cuando se asignen, deberán figurar entre paréntesis, tras el número de la clase o de la división de riesgo primario.
- e) El nombre o símbolo de cada radionucleido o, para las mezclas de radionucleidos, una descripción general apropiada o una lista de los nucleidos más restrictivos.
- f) Una descripción de la forma física y química de los materiales, o una indicación de que los materiales son *materiales radiactivos en forma especial* o *materiales radiactivos de baja dispersión*. Para la forma química es aceptable una descripción química genérica.

- g) La actividad máxima del *contenido radiactivo* durante el transporte expresada en bequerelios (Bq) con el prefijo y símbolo apropiado del SI (véase el Anexo II). Si se trata de *sustancias fisionables*, puede utilizarse en lugar de la actividad la masa de las *sustancias fisionables* (o, si se trata de mezclas, la masa de cada *nucleido fisionable*, según proceda), en gramos (g) o los múltiplos adecuados.
- h) La categoría del *bulto*, es decir: I-BLANCA, II-AMARILLA, III-AMARILLA.
- i) El IT (sólo en el caso de las categorías II-AMARILLA y III-AMARILLA).
- j) Si se trata de *sustancias fisionables*:
 - i) A cuya expedición se aplique una excepción de los apartados a) a f) del párr. 417, una referencia a ese párrafo;
 - ii) Expedidas con arreglo a los apartados c) a e) del párr. 417, la masa total de los *nucleidos fisionables*;
 - iii) Contenidas en un *bulto* al que se aplique uno de los apartados a) a c) del párr. 674 o el párr. 675, una referencia a ese párrafo;
 - iv) El ISC, según proceda.
- k) La marca de identificación correspondiente a cada certificado de aprobación de la autoridad competente (materiales radiactivos en forma especial, materiales radiactivos de baja dispersión, sustancias fisionables exceptuadas en virtud del apartado f) del párr. 417, arreglos especiales, diseño del bulto, o expedición) aplicable a la remesa.
- 1) Si se trata de *remesas* que incluyan más de un *bulto*, la información contenida en los apartados a) a k) del párr. 546 con respecto a cada *bulto*. Si se trata de *bultos* en un *sobreenvase*, *contenedor* o *medio de transporte*, una declaración detallada del contenido de cada *bulto* incluido en el interior del *sobreenvase*, *contenedor* o *medio de transporte* y, según proceda, de cada *sobreenvase*, *contenedor* o *medio de transporte*. Si los *bultos* se van a extraer del *sobreenvase*, *contenedor* o *medio de transporte* en un punto de descarga intermedio, deberá disponerse de la documentación de transporte adecuada.
- m) Cuando sea necesario expedir una *remesa* según la modalidad de *uso exclusivo*, la indicación "EXPEDICIÓN EN LA MODALIDAD DE USO EXCLUSIVO".
- n) Si se trata de BAE-II, BAE-III, OCS-I y OCS-II, la actividad total de la remesa como múltiplo de A_2 . Si se trata de materiales radiactivos para los que el valor de A_2 no tenga límite, el múltiplo de A_2 será cero.

Certificación o declaración del remitente

- 547. El *remitente* incluirá en los documentos de transporte una certificación o declaración redactada en los siguientes términos:
 - "Declaro que el contenido de esta remesa queda total y exactamente descrito más arriba mediante el nombre correcto de expedición; asimismo, que se ha clasificado, embalado, marcado y etiquetado/rotulado y se halla en todo respecto en condiciones adecuadas para su transporte, de conformidad con los reglamentos internacionales y nacionales pertinentes."
- 548. Si el objeto de esta declaración constituye ya una condición del transporte en el marco de un determinado convenio internacional, no será necesario que el *remitente* extienda dicha declaración por lo que se refiere a aquella parte del transporte que quede comprendida en el convenio.
- 549. El *remitente* firmará la declaración y consignará en ella la fecha. Quedan autorizadas las firmas en facsímil, siempre que la validez legal de éstas esté reconocida por la legislación aplicable.
- 550. Si la documentación de las mercancías peligrosas se presenta al *transportista* mediante técnicas de procesamiento electrónico de datos (EDP) o de intercambio electrónico de datos (EDI), la firma o firmas pueden sustituirse por el nombre o nombres (en mayúsculas) de la persona autorizada a firmar.
- 551. Si los *materiales radiactivos*, que no se transporten en *cisternas*, se embalan o cargan en cualquier *contenedor* o *vehículo* que se haya de transportar por mar, las personas responsables del embalaje del contenedor o *vehículo* facilitarán un certificado de embalaje del contenedor/*vehículo* que especifique el número o números de identificación del contenedor/*vehículo* y certifique que la operación se ha realizado de conformidad con las condiciones aplicables del Código IMDG [8].
- 552. La información requerida en los documentos de transporte y el certificado de embalaje del contenedor/*vehículo* pueden fusionarse en un solo documento; de no ser así, los documentos deben ir juntos. Si la información se fusiona en un solo documento, éste incluirá una declaración firmada, por ejemplo:
 - "Se declara que la carga de las mercancías en el contenedor/vehículo se ha realizado de conformidad con las disposiciones aplicables."

Esta declaración irá fechada y la persona que la firme estará identificada en el documento. Quedan autorizadas las firmas en facsímil, siempre que la validez legal de éstas esté reconocida por las leyes y los reglamentos aplicables.

553. La declaración se extenderá en el mismo documento de transporte en el que se consignen los detalles de la *remesa* que se enumeran en el párr. 546.

Información que ha de facilitarse a los transportistas

- 554. En los documentos de transporte, el *remitente* incluirá una declaración relativa a las medidas que, si hubiere lugar, debe adoptar el *transportista*. Esta declaración irá redactada en los idiomas que el *transportista* o las autoridades interesadas estimen necesario y deberá comprender, como mínimo, los siguientes puntos:
- a) Los requisitos suplementarios relativos a la carga, estiba, transporte, manipulación y descarga del *bulto*, *sobreenvase* o *contenedor*, incluidas cualesquiera disposiciones especiales referentes a la estiba con miras a la disipación del calor en condiciones de seguridad (véase el párr. 565), o bien, una declaración de que no es necesario aplicar ninguno de estos requisitos suplementarios;
- b) Cualquier restricción que afecte a las modalidades de transporte o a los *medios de transporte* y, si fueran necesarias, instrucciones sobre el itinerario;
- c) Las medidas, adecuadas para la *remesa*, que haya que adoptar en caso de emergencia.
- 555. El *remitente* conservará una copia de cada uno de los documentos de transporte que contengan la información especificada en los párrs. 546, 547, 551, 552 y 554, según proceda, durante un período mínimo de tres meses. Cuando los documentos se conserven en formato electrónico, el *remitente* deberá poder reproducirlos en forma impresa.
- 556. No es necesario que los certificados pertinentes de las *autoridades competentes* acompañen a la *remesa*. El *remitente* los pondrá a disposición de los *transportistas* antes de la carga o de la descarga.

Notificación a las autoridades competentes

557. Antes de proceder a la primera expedición de cualquier bulto que requiera la aprobación de la autoridad competente, el remitente se encargará de que la

autoridad competente del país de origen de la expedición y la autoridad competente de cada país a través o dentro del cual se vaya a transportar la remesa reciban copias de cada certificado extendido por la autoridad competente relativo al diseño del bulto de que se trate. El remitente no tendrá que esperar acuse de recibo de la autoridad competente, ni ésta tendrá que acusar recibo del certificado

558. El remitente notificará toda expedición comprendida en los siguientes apartados a), b), c) o d) a la autoridad competente del país de origen de la expedición y a la autoridad competente de cada uno de los países a través o dentro de los cuales se vaya a transportar la remesa. Esta notificación deberá obrar en poder de cada una de las autoridades competentes antes de que se inicie la expedición y, de preferencia, con una antelación mínima de 7 días.

- a) Los bultos del Tipo C que contengan materiales radiactivos cuya actividad sea superior a $3\,000A_1$ o a $3\,000A_2$, según proceda, o a $1\,000$ TBq, rigiendo entre estos valores el que sea menor;
- b) Los *bultos del Tipo B(U)* que contengan *materiales radiactivos* cuya actividad sea superior a $3\,000A_1$ o a $3\,000A_2$, según proceda, o a $1\,000$ TBq, rigiendo entre estos valores el que sea menor;
- c) Los bultos del Tipo B(M);
- d) Las expediciones que se efectúen en virtud de arreglos especiales.

559. La notificación de la remesa incluirá:

- a) Datos suficientes para poder identificar el *bulto* o *bultos*, comprendidos todos los números de los certificados y las marcas de identificación correspondientes.
- b) Datos relativos a la fecha de *expedición*, la fecha prevista de llegada y el itinerario propuesto.
- c) El nombre o nombres de los *materiales radiactivos* o nucleidos.
- d) Una descripción de la forma física y química de los *materiales radiactivos*, o una indicación de que se trata de *materiales radiactivos en forma especial* o de *materiales radiactivos de baja dispersión*.
- e) La actividad máxima del *contenido radiactivo* durante el transporte expresada en bequerelios (Bq) con el prefijo y símbolo apropiado del SI (véase el Anexo II). Tratándose de *sustancias fisionables* puede emplearse la masa (o, si se trata de mezclas, la masa de cada *nucleido fisionable*, según proceda), en lugar de la actividad, utilizando como unidad el gramo (g), o sus múltiplos.

560. No será necesario que el *remitente* envíe una notificación por separado, si los datos requeridos se han incluido ya en la solicitud de *aprobación* de la *expedición* (véase el párr. 827).

Posesión de los certificados e instrucciones

561. El *remitente* estará en posesión de una copia de cada uno de los certificados exigidos en virtud de la Sección VIII del presente Reglamento y de una copia de las instrucciones relativas al adecuado cierre del *bulto* y demás preparativos para la *expedición* antes de proceder a cualquier *expedición* con arreglo a lo establecido en los certificados.

TRANSPORTE Y ALMACENAMIENTO EN TRÁNSITO

Separación durante el transporte y el almacenamiento en tránsito

- 562. Los *bultos*, *sobreenvases* y *contenedores* que contengan *materiales radiactivos* y *materiales radiactivos* sin embalar deberán estar separados durante el transporte y durante el almacenamiento en tránsito:
- a) De los trabajadores, en zonas de trabajo habitualmente ocupadas, por distancias calculadas utilizando un criterio de dosis de 5 mSv en un año y parámetros de modelos conservadores;
- b) De los miembros del público, en zonas en que éste tenga acceso regular, por distancias calculadas utilizando un criterio de dosis de 1 mSv en un año y parámetros de modelos conservadores;
- c) De películas fotográficas sin revelar, por distancias calculadas utilizando un criterio aplicable a la exposición a la radiación de películas fotográficas sin revelar debida al transporte de *materiales radiactivos* de 0,1 mSv por *remesa* de ese tipo de películas;
- d) De otras mercancías peligrosas, de conformidad con el párr. 506.
- 563. Los *bultos* o *sobreenvases* de las categorías II-AMARILLA o III-AMARILLA no se acarrearán en compartimientos ocupados por pasajeros, salvo en los reservados exclusivamente al personal especialmente autorizado para acompañar a dichos *bultos* o *sobreenvases*.

Estiba durante el transporte y el almacenamiento en tránsito

- 564. Las remesas se estibarán en forma segura.
- 565. Siempre que el flujo térmico medio en su superficie no exceda de 15 W/m² y que la carga circundante inmediata no vaya en sacos o bolsas, se podrá acarrear o almacenar un *bulto* o *sobreenvase* junto con carga general embalada sin que deba observarse ninguna condición especial de estiba, salvo por lo que pueda requerir de manera específica el correspondiente certificado de *aprobación* de la *autoridad competente*.
- 566. La carga de *contenedores* y la acumulación de *bultos*, *sobreenvases* y *contenedores* se controlará según se indica a continuación:
- a) Salvo en la modalidad de *uso exclusivo*, y para las *remesas* de materiales *BAE-I*, se limitará el número total de *bultos*, *sobreenvases* y *contenedores* en un *medio de transporte* de modo que la suma de los *IT* a bordo del *medio de transporte* no exceda de los valores indicados en el Cuadro 10.
- b) El *nivel de radiación* en las condiciones de transporte rutinarias no deberá exceder de 2 mSv/h en ningún punto de la superficie externa del *medio de transporte*, ni de 0,1 mSv/h a 2 m de distancia de la superficie externa del *medio de transporte*, excepto cuando se trate de *remesas* transportadas según la modalidad de *uso exclusivo* por ferrocarril o por carretera, para las cuales los límites de radiación en torno al *vehículo* se indican en los apartados b) y c) del párr. 573.
- c) La suma de los *ISC* en un *contenedor* y a bordo de un *medio de transporte* no deberá exceder de los valores indicados en el Cuadro 11.
- 567. Todo *bulto* o *sobreenvase* que tenga un *IT* superior a 10, o toda *remesa* que tenga un *ISC* superior a 50, se transportará únicamente según la modalidad de *uso exclusivo*.

Requisitos complementarios relativos al transporte y el almacenamiento en tránsito de sustancias fisionables

568. Todo grupo de *bultos*, *sobreenvases* y *contenedores* que contengan *sustancias fisionables* almacenadas en tránsito en cualquier zona de almacenamiento se limitará de modo que la suma de los *ISC* del grupo no exceda de 50. Cada grupo se almacenará de modo que se mantenga un espaciamiento mínimo de 6 m con respecto a los otros grupos.

CUADRO 10. LÍMITES DEL ÍNDICE DE TRANSPORTE PARA CONTENEDORES Y MEDIOS DE TRANSPORTE NO EN LA MODALIDAD DE USO EXCLUSIVO

Tipo de contenedor o medio de transporte	Límite aplicable a la suma de <i>IT</i> en un contenedor o a bordo de un medio de transporte	
Contenedor:		
Contenedor — pequeño	50	
Contenedor — grande	50	
Vehículo	50	
Aeronave:		
de pasajeros	50	
de carga	200	
Embarcación de navegación interior	50	
Buque de navegación marítima ^a :		
 i) Bodega, compartimiento o zona delimitada de la cubierta: Bultos, sobreenvases, contenedores pequeños 	50	
Contenedores grandes	200	
ii) Total en buques:		
Bultos, sobreenvases, contenedores pequeños Contenedores grandes	200 Sin límite	

Los *bultos* o *sobreenvases* que se acarreen dentro de un *vehículo* o sobre él conforme a las disposiciones del párr. 573 podrán transportarse en un *buque*, siempre que no se descarguen del *vehículo* en ningún momento mientras se encuentren a bordo del *buque*.

569. Cuando la suma de los *ISC* a bordo de un *medio de transporte* o en el interior de un *contenedor* exceda de 50, tal como se permite en el Cuadro 11, el almacenamiento se realizará de forma que se mantenga un espaciamiento mínimo de 6 m respecto de otros grupos de *bultos*, *sobreenvases* o *contenedores* que contengan *sustancias fisionables* o de otros *medios de transporte* que acarreen *materiales radiactivos*.

570. Las *sustancias fisionables* que se ajusten a una de las disposiciones a) a f) del párr. 417 cumplirán los siguientes requisitos:

a) Sólo se permite una de las disposiciones a) a f) del párr. 417 por remesa.

CUADRO 11. LÍMITES DEL ÍNDICE DE SEGURIDAD CON RESPECTO A LA CRITICIDAD PARA CONTENEDORES Y MEDIOS DE TRANSPORTE QUE CONTENGAN SUSTANCIAS FISIONABLES

Tipo de contenedor o medio de transporte	Límite aplicable a la suma de <i>ISC</i> en un contenedor o a bordo de un medio de transporte		
	No en la modalidad de <i>uso exclusivo</i>	En la modalidad de uso exclusivo	
Contenedor:			
Contenedor — pequeño	50	No se aplica	
Contenedor — grande	50	100	
Vehículo	50	100	
Aeronave:			
de pasajeros	50	No se aplica	
de carga	50	100	
Embarcación de navegación interior	50	100	
Buque de navegación marítima ^a :			
i) Bodega, compartimiento o zona delimitada de la cubierta: Bultos, sobreenvases, contenedores pequeños	50	100	
Contenedores grandes	50	100	
ii) Total en buques: Bultos, sobreenvases, contenedores pequeños Contenedores grandes	200 ^b Sin límite ^b	200° Sin límite°	

^a Los *bultos* o *sobreenvases* que se acarreen dentro de un *vehículo* o sobre él conforme a las disposiciones del párr. 573 podrán transportarse en un *buque*, siempre que no se descarguen del *vehículo* en ningún momento mientras se encuentren a bordo del *buque*. En este caso son de aplicación los límites que figuran bajo el epígrafe "en la modalidad de *uso exclusivo*".

b La *remesa* se manipulará y estibará de modo que la suma de los *ISC* en cualquiera de los grupos no exceda de 50, y de modo que cada grupo se manipule y estibe de forma que se mantenga un espaciamiento mínimo de 6 m respecto de otros grupos.

^c La *remesa* se manipulará y estibará de modo que la suma de los *ISC* en cualquiera de los grupos no exceda de 100, y de modo que cada grupo se manipule y estibe de forma que se mantenga un espaciamiento mínimo de 6 m respecto de otros grupos. El espacio que quede entre grupos puede ser ocupado por otro tipo de carga de conformidad con el párr. 506.

- b) Sólo se permite una *sustancia fisionable* aprobada en los *bultos* clasificados de conformidad con el apartado f) del párr. 417 por *remesa*, a menos que se autoricen sustancias múltiples en el certificado de *aprobación*.
- c) Las *sustancias fisionables* contenidas en *bultos* clasificados de conformidad con el apartado c) del párr. 417 se transportarán en una *remesa* que no contenga más de 45 g de *nucleidos fisionables*.
- d) Las *sustancias fisionables* contenidas en *bultos* clasificadas de conformidad con el apartado d) del párr. 417 se transportarán en una *remesa* que no contenga más de 15 g de *nucleidos fisionables*.
- e) Las *sustancias fisionables*, sin embalar o embaladas, clasificadas de conformidad con el apartado e) del párr. 417 se transportarán según la modalidad de *uso exclusivo* en un *medio de transporte* que no contenga más de 45 g de *nucleidos fisionables*.

Requisitos complementarios relativos al transporte por ferrocarril y por carretera

571. Los *vehículos* ferroviarios y de carretera que acarreen *bultos*, *sobreenvases* o *contenedores* que lleven alguna de las etiquetas indicadas en las Figs. 2 a 5, o bien que acarreen *remesas* en la modalidad de *uso exclusivo*, ostentarán de modo visible el rótulo indicado en la Fig. 6 en las siguientes posiciones:

- a) Las dos superficies laterales externas en el caso de *vehículos* ferroviarios;
- b) Las dos superficies laterales externas y la superficie externa de la parte trasera cuando se trate de un *vehículo* de carretera.

Cuando un *vehículo* carezca de caja, los rótulos podrán fijarse directamente en la estructura que soporte la carga, a condición de que sean fácilmente visibles. En el caso de *cisternas* o *contenedores* de grandes dimensiones bastarán los rótulos fijados sobre dichas *cisternas* o *contenedores*. Tratándose de *vehículos* que no tengan suficiente espacio para fijar rótulos más grandes, las dimensiones del rótulo que se indican en la Fig. 6 podrán reducirse a 100 mm. Todo rótulo no relacionado con el contenido deberá retirarse.

572. Cuando la *remesa* dentro del *vehículo* o sobre el mismo sea material *BAE-I* u *OCS-I* sin embalar o cuando una *remesa* deba ser transportada según la modalidad de *uso exclusivo* y se trate de *materiales radiactivos* embalados correspondientes a un solo número de las Naciones Unidas, se consignará también el número apropiado de las Naciones Unidas (véase el Cuadro 1) en cifras negras de altura no inferior a 65 mm, ya sea:

- a) En la mitad inferior del rótulo representado en la Fig. 6, sobre fondo blanco; o
- b) En el rótulo representado en la Fig. 7.

Cuando se utilice el método del apartado b), el rótulo complementario se fijará en un lugar inmediatamente adyacente al rótulo principal, sobre las dos superficies externas laterales en el caso de *vehículos* ferroviarios, o sobre las dos superficies externas laterales y la superficie exterior de la parte trasera en el caso de *vehículos* de carretera.

- 573. Cuando se trate de *remesas* en la modalidad de *uso exclusivo*, el *nivel de radiación* no deberá exceder de:
- a) 10 mSv/h en cualquier punto de la superficie externa de cualquier *bulto* o *sobreenvase*, y solo podrá exceder de 2 mSv/h si:
 - i) El vehículo está provisto de un recinto cerrado en cuyo interior no puedan penetrar personas no autorizadas durante el transporte en condiciones rutinarias;
 - ii) Se adoptan medidas para que los *bultos* o *sobreenvases* se aseguren de modo que la posición de cada uno dentro del recinto del *vehículo* no cambie durante el transporte en condiciones rutinarias;
 - iii) No se efectúan operaciones de carga o descarga durante la expedición.
- b) 2 mSv/h en cualquier punto de las superficies externas del *vehículo*, comprendidas la superior e inferior, o bien, cuando se trate de un *vehículo* descubierto, en cualquier punto situado en los planos verticales proyectados desde los bordes exteriores del *vehículo*, en la superficie superior de la carga y en la superficie externa inferior del *vehículo*.
- c) 0,1 mSv/h en cualquier punto situado a 2 m de distancia de los planos verticales representados por las superficies laterales externas del *vehículo*, o bien, si la carga se transporta en un *vehículo* descubierto, en cualquier punto situado a 2 m de distancia de los planos verticales proyectados desde los bordes exteriores del *vehículo*.
- 574. En el caso de *vehículos* de carretera solo podrán viajar el conductor y sus ayudantes si dichos *vehículos* acarrean *bultos*, *sobreenvases* o *contenedores* que lleven etiquetas de la categoría II-AMARILLA o III-AMARILLA.

Requisitos complementarios relativos al transporte en buques

575. Los *bultos* o *sobreenvases* que tengan en su superficie un *nivel de radiación* superior a 2 mSv/h, a excepción de los que sean acarreados dentro de un *vehículo* o sobre el mismo en la modalidad de *uso exclusivo* conforme a lo indicado en la

nota a) del Cuadro 10, no deberán transportarse en *buques* a no ser en virtud de *arreglos especiales*.

- 576. El transporte de *remesas* mediante *buques* de uso especial que, a causa de su *diseño* o debido a un régimen especial de flete, se dedican a acarrear *materiales radiactivos*, quedará exceptuado de los requisitos estipulados en el párr. 566 siempre que se cumplan las siguientes condiciones:
- a) La *autoridad competente* del país bajo cuyo pabellón navegue el *buque* y, cuando así se solicite, la *autoridad competente* de cada puerto de escala, aprueben un *programa de protección radiológica* para la *expedición*.
- b) Se determinen previamente las disposiciones de estiba para toda la travesía, incluidas las de las *remesas* que se cargarán en los puertos de escala en ruta.
- c) La carga, el acarreo y la descarga de las *remesas* sean supervisadas por personas especializadas en el transporte de *materiales radiactivos*.

Requisitos complementarios relativos al transporte por vía aérea

- 577. En las *aeronaves de pasajeros* no se transportarán *bultos del Tipo B(M)* ni *remesas* en la modalidad de *uso exclusivo*.
- 578. No se transportarán por vía aérea *bultos del Tipo B(M)* con venteo, *bultos* que requieran refrigeración externa mediante un sistema auxiliar de refrigeración, *bultos* que se sometan a controles operacionales durante su transporte, ni *bultos* que contengan materiales pirofóricos líquidos.
- 579. A no ser en virtud de *arreglos especiales*, no se transportarán por vía aérea los *bultos* o *sobreenvases* que en su superficie tengan un *nivel de radiación* superior a 2 mSv/h.

Requisitos complementarios relativos al transporte por correo

- 580. Las autoridades postales nacionales podrán aceptar para su despacho y distribución en el interior de sus respectivos países las *remesas* que se ajusten a los requisitos del párr. 515, y en las cuales la actividad del *contenido radiactivo* no exceda de un décimo de los límites prescritos en el Cuadro 4, y que no contengan hexafluoruro de uranio, a condición de que reúnan los requisitos complementarios que dichas autoridades hayan podido establecer.
- 581. Las *remesas* que se ajusten a los requisitos del párr. 515, en las cuales la actividad del *contenido radiactivo* no exceda de un décimo de los límites

prescritos en el Cuadro 4, y que no contenga hexafluoruro de uranio, podrán ser aceptadas para su circulación y distribución postal internacional con sujeción, en particular, a los siguientes requisitos complementarios, establecidos en los documentos (Acts) de la Unión Postal Universal:

- a) Sólo podrán ser entregadas a los servicios postales por *remitentes* expresamente autorizados por las autoridades nacionales.
- b) Se despacharán utilizando la ruta más rápida, normalmente por vía aérea.
- c) Habrán de ir marcadas de manera clara y duradera en su parte exterior con la inscripción "MATERIALES RADIACTIVOS CANTIDADES PERMITIDAS PARA CIRCULACIÓN Y DISTRIBUCIÓN POSTAL". Esa inscripción será tachada cuando se devuelva el embalaje vacío.
- d) Deberán llevar en la parte exterior el nombre y la dirección del *remitente*, con la indicación de que se proceda a la devolución de la *remesa* de no poder efectuarse su entrega al *destinatario*.
- e) En el *embalaje* interno se harán constar el nombre y la dirección del *remitente*, así como el contenido de la *remesa*.

FORMALIDADES ADUANERAS

582. Las formalidades aduaneras que entrañen la inspección del *contenido* radiactivo de un bulto se efectuarán exclusivamente en un lugar dotado de medios adecuados de control de la exposición a las radiaciones y en presencia de especialistas. Todo bulto que se abra para cumplir esas formalidades se dejará, antes de su envío al destinatario, en el mismo estado en que se hallaba antes de abrirlo.

REMESAS QUE NO PUEDAN ENTREGARSE

583. Cuando una *remesa* no se pueda entregar, se colocará en lugar seguro, se informará de ello a la *autoridad competente* lo antes posible, y se pedirán instrucciones sobre las medidas que se hayan de adoptar.

CONSERVACIÓN Y DISPONIBILIDAD DE LOS DOCUMENTOS DE TRANSPORTE POR LOS TRANSPORTISTAS

- 584. El transportista sólo aceptará una remesa si:
- a) Se facilitan una copia del documento de transporte y los demás documentos o información que se exigen en el presente Reglamento; o
- b) Se facilitan en formato electrónico la información correspondiente a la *remesa*.
- 585. La información correspondiente a la *remesa* acompañará a dicha *remesa* hasta el destino final. Esta información podrá figurar en el documento de transporte de mercancías peligrosas o en otro documento, y deberá ser entregada al *destinatario* cuando se le entregue la *remesa*.
- 586. Cuando la información correspondiente a la *remesa* se entregue al *transportista* en formato electrónico, éste deberá poder acceder a ella en todo momento durante el transporte hasta el destino final. Se deberá poder presentar la información como documento en papel sin demora.
- 587. El *transportista* conservará una copia del documento de transporte y de la información y documentación adicionales que se especifican en este Reglamento durante un período mínimo de tres meses.
- 588. Cuando los documentos se conserven en formato electrónico o en un sistema informático, el *transportista* deberá poder reproducirlos en forma impresa.

Sección VI

REQUISITOS RELATIVOS A LOS MATERIALES RADIACTIVOS Y A LOS EMBALAJES Y BULTOS

REQUISITOS RELATIVOS A LOS MATERIALES RADIACTIVOS

Requisitos relativos a los materiales BAE-III

601. Los *materiales BAE-III* serán sólidos de tal naturaleza que, si el contenido total de un *bulto* se somete al ensayo especificado en el párr. 703, la actividad en el agua no exceda de $0.1A_2$.

Requisitos relativos a materiales radiactivos en forma especial

- 602. Los *materiales radiactivos en forma especial* tendrán como mínimo una dimensión no inferior a 5 mm.
- 603. Los *materiales radiactivos en forma especial* serán de tal naturaleza o estarán diseñados de tal manera que si se someten a los ensayos especificados en los párrs. 704 a 711 cumplan los siguientes requisitos:
- a) No se romperán ni fracturarán cuando se les someta a los ensayos de impacto, percusión o flexión especificados en los párrs. 705 a 707 y en el apartado a) del párr. 709, según proceda.
- b) No se fundirán ni dispersarán cuando se les someta al ensayo térmico especificado en el párr. 708 o en el apartado b) del párr. 709, según proceda.
- c) La actividad en el agua proveniente de los ensayos de lixiviación especificados en los párrs. 710 y 711 no excederá de 2 kBq; o alternativamente, en el caso de fuentes selladas, la tasa de fuga correspondiente al ensayo de evaluación por fugas volumétricas especificado en el documento ISO 9978: "Radiation Protection Sealed Radioactive Sources Leakage Test Methods" [9] de la Organización Internacional de Normalización (ISO), no excederá del umbral de aceptación aplicable que sea admisible para la *autoridad competente*.

604. Cuando una cápsula sellada forme parte integrante de los *materiales* radiactivos en forma especial, la cápsula estará construida de manera que sólo pueda abrirse destruyéndola.

Requisitos relativos a los materiales radiactivos de baja dispersión

605. Los *materiales radiactivos de baja dispersión* serán de tal naturaleza que la totalidad de estos *materiales radiactivos* contenidos en un *bulto* cumplan los siguientes requisitos:

- a) El *nivel de radiación* a 3 m de distancia de los *materiales radiactivos* sin blindaje no exceda de 10 mSv/h.
- b) Cuando se les someta a los ensayos especificados en los párrs. 736 y 737, la liberación en suspensión en el aire en forma gaseosa y de partículas de un diámetro aerodinámico equivalente de hasta $100 \, \mu m$ no exceda de $100 A_2$. Podrá utilizarse un espécimen distinto para cada ensayo.
- c) Cuando se les someta al ensayo especificado en el párr. 703, la actividad en el agua no exceda de $100A_2$. En la aplicación de este ensayo se tendrán en cuenta los efectos nocivos de los ensayos especificados en el apartado b).

REQUISITOS RELATIVOS A LAS SUSTANCIAS EXCEPTUADAS DE LA CLASIFICACIÓN COMO FISIONABLES

606. Las *sustancias fisionables* exceptuadas de la clasificación como "FISIONABLES" en virtud del apartado f) del párr. 417 serán subcríticas sin necesidad de controlar la acumulación, siempre que cumplan las siguientes condiciones:

- a) Las condiciones del apartado a) del párr. 673;
- b) Las condiciones compatibles con las disposiciones sobre evaluación establecidas en los apartados b) de los párrs. 684 y 685 para los *bultos*;
- c) Las condiciones especificadas en el apartado a) del párr. 683, si se transportan por vía aérea.

REQUISITOS GENERALES RELATIVOS A TODOS LOS EMBALAJES Y BULTOS

607. El *bulto* se diseñará de manera que pueda transportarse con facilidad y seguridad teniendo en cuenta su masa, volumen y forma. Además, el *bulto* deberá

REQUISITOS RELATIVOS A LOS BULTOS

diseñarse de modo que pueda sujetarse debidamente dentro del *medio de transporte*, o sobre él, durante el transporte.

- 608. El *diseño* será de naturaleza tal que cualquier dispositivo de enganche que pueda llevar el *bulto* para izarlo no falle cuando se utilice debidamente, y que de producirse el fallo de dicho dispositivo, no sufra menoscabo la capacidad del *bulto* para satisfacer otros requisitos del presente Reglamento. En el *diseño* se tendrán en cuenta los coeficientes de seguridad apropiados en previsión de maniobras de izado brusco.
- 609. Los dispositivos de enganche y cualesquiera otros que lleven los *bultos* en su superficie exterior para las operaciones de izado estarán diseñados de manera que puedan soportar la masa total del *bulto*, de conformidad con los requisitos del párr. 608, o se puedan desmontar o dejar inoperantes durante el transporte.
- 610. En la medida de lo posible, los *embalajes* estarán diseñados y terminados de modo que las superficies externas no tengan partes salientes y que puedan descontaminarse fácilmente.
- 611. En la medida de lo posible, la capa externa del *bulto* se diseñará de manera que no recoja ni retenga el agua.
- 612. Los elementos que durante el transporte se añadan a los *bultos* y que no formen parte de éstos no deberán menoscabar su seguridad.
- 613. Los *bultos* deberán resistir los efectos de toda aceleración, vibración o resonancia vibratoria que pueda producirse en las condiciones de transporte rutinarias sin que disminuya la eficacia de los dispositivos de cierre de los diversos recipientes ni se deteriore la integridad del *bulto* en su conjunto. En particular, las tuercas, los pernos y otros dispositivos de sujeción estarán diseñados de forma que no puedan aflojarse ni soltarse accidentalmente, ni siquiera después de un uso repetido.
- 614. Los materiales de que se componga el *embalaje*, así como todos sus componentes o estructuras, tendrán que ser física y químicamente compatibles entre sí y con el *contenido radiactivo*. Deberá tenerse en cuenta su comportamiento bajo irradiación.
- 615. Todas las válvulas a través de las cuales pueda escapar el *contenido* radiactivo se protegerán contra la manipulación no autorizada.

- 616. En el *diseño* del *bulto* se tendrán en cuenta las temperaturas y las presiones ambiente que probablemente se den durante el transporte en condiciones rutinarias.
- 617. Los *bultos* se diseñarán de modo que proporcionen suficiente blindaje para asegurar que, en las condiciones de transporte rutinarias y con el *contenido radiactivo* máximo para el cual están diseñados, el *nivel de radiación* en cualquier punto de la superficie externa de los *bultos* no exceda de los valores especificados en los párrs. 516, 527 y 528, según proceda, teniendo en cuenta lo dispuesto en el apartado b) del párr. 566 y en el párr. 573.
- 618. En el *diseño* de *bultos* para *materiales radiactivos* que tengan otras propiedades peligrosas se tendrán en cuenta esas propiedades (véanse los párrs. 110 y 507).

REQUISITOS COMPLEMENTARIOS RELATIVOS A LOS BULTOS TRANSPORTADOS POR VÍA AÉREA

- 619. En el caso de *bultos* destinados al transporte por vía aérea, la temperatura de las superficies accesibles no excederá de 50°C, con una temperatura ambiente de 38°C, sin tener en cuenta la irradiación solar.
- 620. Los *bultos* destinados al transporte por vía aérea deberán estar diseñados de manera que no sufra menoscabo la integridad de la contención si se exponen a temperaturas ambiente comprendidas entre –40°C y +55°C.
- 621. Los *bultos* que contengan *materiales radiactivos* destinados al transporte por vía aérea deberán resistir, sin que resulte pérdida o dispersión del *contenido radiactivo* del *sistema de contención*, una presión interna que produzca una diferencia de presión no inferior a la *presión normal de trabajo máxima* más 95 kPa.

REQUISITOS RELATIVOS A LOS BULTOS EXCEPTUADOS

622. Los *bultos exceptuado*s deberán diseñarse de conformidad con los requisitos especificados en los párrs. 607 a 618 y, además, con los especificados en los párrs. 619 a 621 si se acarrean por vía aérea.

REQUISITOS RELATIVOS A LOS BULTOS

REQUISITOS RELATIVOS A LOS BULTOS INDUSTRIALES

Requisitos relativos a los bultos del Tipo BI-1

623. Los *bultos del Tipo BI-1* deberán diseñarse de conformidad con los requisitos especificados en los párrs. 607 a 618 y 636 y, además, con los especificados en los párrs. 619 a 621 si se acarrean por vía aérea.

Requisitos relativos a los bultos del Tipo BI-2

- 624. Para ser calificado como *Tipo BI-2*, el *bulto* se diseñará de modo que cumpla los requisitos para el *Tipo BI-1* especificados en el párr. 623 y, además, si se somete a los ensayos especificados en los párrs. 722 y 723, que se impida:
- a) La pérdida o dispersión del contenido radiactivo;
- b) Un aumento superior al 20 % del *nivel de radiación* máximo en cualquier superficie externa del *bulto*.

Requisitos relativos a los bultos del Tipo BI-3

625. Para ser calificado como *Tipo BI-3*, el *bulto* se diseñará de modo que cumpla los requisitos relativos al *Tipo BI-1* según se especifican en el párr. 623 y, además, los requisitos especificados en los párrs. 636 a 649.

Requisitos alternativos aplicables a los bultos del Tipo BI-2 y del Tipo BI-3

- 626. Los bultos pueden utilizarse como bultos del Tipo BI-2 siempre que:
- a) Satisfagan los requisitos para los *bultos del Tipo BI-1* especificados en el párr. 623.
- b) Se diseñen de forma que cumplan los requisitos prescritos para el Grupo de embalaje/envasado I o II de las Naciones Unidas en el capítulo 6.1 de las Recomendaciones de las Naciones Unidas relativas al Transporte de Mercancías Peligrosas: Reglamentación Modelo [10].
- c) Cuando se sometan a los ensayos especificados para el Grupo de *embalaje*/ envasado I o II de las Naciones Unidas, se impida:
 - i) La pérdida o dispersión del contenido radiactivo;
 - ii) Un aumento superior al 20 % del *nivel de radiación* máximo en cualquier superficie externa del *bulto*.

- 627. Las *cisternas* portátiles pueden utilizarse también como *bultos del Tipo BI-2* o *del Tipo BI-3* siempre que:
- a) Satisfagan los requisitos para los *bultos del Tipo BI-1* especificados en el párr. 623.
- b) Se diseñen de forma que cumplan los requisitos prescritos en el capítulo 6.7 de las Recomendaciones de las Naciones Unidas relativas al Transporte de Mercancías Peligrosas: Reglamentación Modelo [10] o con otras normas, como mínimo equivalentes, y puedan resistir una presión de ensayo de 265 kPa.
- c) Se diseñen de manera que todo blindaje adicional incorporado sea capaz de resistir los esfuerzos estáticos y dinámicos resultantes de la manipulación normal y de las condiciones de transporte rutinarias y de impedir un aumento superior al 20 % del *nivel de radiación* máximo en cualquier superficie externa de las *cisternas* portátiles.
- 628. Las *cisternas* que no sean *cisternas* portátiles pueden utilizarse también como *bultos del Tipo BI-2* o *del Tipo BI-3* para transportar líquidos y gases *BAE-I* y *BAE-II*, según se prescribe en el Cuadro 5, siempre que:
- a) Cumplan los requisitos para los *bultos del Tipo BI-1* especificados en el párr. 623.
- b) Se diseñen de manera que cumplan los requisitos prescritos en los reglamentos regionales o nacionales de transporte de mercancías peligrosas y puedan resistir una presión de ensayo de 265 kPa.
- c) Se diseñen de manera que todo blindaje adicional incorporado sea capaz de resistir los esfuerzos estáticos y dinámicos resultantes de la manipulación normal y de las condiciones de transporte rutinarias y de impedir un aumento superior al 20 % del *nivel de radiación* máximo en cualquier superficie externa de las *cisternas*.
- 629. Los *contenedores* con las características de un recipiente cerrado pueden utilizarse también como *bultos del Tipo BI-2* o *del Tipo BI-3* siempre que:
- a) El contenido radiactivo se limite a materiales sólidos.
- b) Satisfagan los requisitos para los *bultos del Tipo BI-1* especificados en el párr. 623.
- c) Estén diseñados de conformidad con el documento de la Organización Internacional de Normalización ISO 1496/ 1: Series 1 Freight Containers
 Specifications and Testing Part 1: General Cargo Containers for General Purposes [11], excluidas las dimensiones y la masa bruta máxima.

Deberán diseñarse de modo que, si se someten a los ensayos descritos en dicho documento y a las aceleraciones producidas durante el transporte en condiciones rutinarias, se impida:

- i) La pérdida o dispersión del contenido radiactivo;
- ii) Un aumento superior al 20 % del *nivel de radiación* máximo en cualquier superficie externa de los *contenedores*.
- 630. Los *RIG* metálicos pueden utilizarse también como *bultos del Tipo BI-2* o *del Tipo BI-3* siempre que:
- a) Satisfagan los requisitos para los *bultos del Tipo BI-1* especificados en el párr. 623.
- b) Estén diseñados de forma que cumplan los requisitos prescritos para el Grupo de embalaje/envasado I o II de las Naciones Unidas en el capítulo 6.5 de las Recomendaciones de las Naciones Unidas relativas al Transporte de Mercancías Peligrosas: Reglamentación Modelo [10], y de modo que, si se someten a los ensayos prescritos en dicho documento, pero realizando la prueba de caída en la orientación que cause el máximo daño, se impida:
 - i) La pérdida o dispersión del contenido radiactivo;
 - ii) Un aumento superior al 20 % del *nivel de radiación* máximo en cualquier superficie externa del *RIG*.

REQUISITOS RELATIVOS A LOS BULTOS QUE CONTENGAN HEXAFLUORURO DE URANIO

- 631. Los *bultos* diseñados para contener hexafluoruro de uranio deberán satisfacer los requisitos prescritos en otras partes del presente Reglamento que se refieren a las propiedades radiactivas y fisionables de los materiales. Salvo en los casos permitidos según el párr. 634, el hexafluoruro de uranio en cantidades iguales o superiores a 0,1 kg también se deberá embalar y transportar de conformidad con las disposiciones del documento ISO 7195 de la Organización Internacional de Normalización: Packaging of Uranium Hexafluoride (UF₆) for Transport [12], y con los requisitos especificados en los párrs. 632 y 633.
- 632. Todo *bulto* destinado a contener 0,1 kg o más de hexafluoruro de uranio deberá diseñarse de modo que satisfaga los siguientes requisitos:

- a) Superar el ensayo estructural especificado en el párr. 718, salvo en los casos permitidos según el párr. 634, sin que se produzcan fugas ni tensiones inaceptables, según se especifica en la norma ISO 7195 [12];
- b) Superar el ensayo de caída libre especificado en el párr. 722 sin que resulte pérdida o dispersión del hexafluoruro de uranio;
- c) Superar el ensayo térmico especificado en el párr. 728, salvo en los casos permitidos según el párr. 634, sin que se produzca rotura del *sistema de contención*.
- 633. Los *bultos* diseñados para contener 0,1 kg o más de hexafluoruro de uranio no deberán estar dotados de dispositivos de alivio de presión.
- 634. Previa *aprobación multilateral*, los *bultos* diseñados para contener 0,1 kg o más de hexafluoruro de uranio pueden transportarse si están diseñados:
- a) Conforme a normas internacionales o nacionales distintas de la ISO 7195
 [12], a condición de que se mantenga un nivel equivalente de seguridad; y/o
- b) Para resistir una presión de ensayo inferior a 2,76 MPa sin que resulten fugas ni tensiones inaceptables, según se especifica en el párr. 718; y/o
- c) Para contener 9 000 kg o más de hexafluoruro de uranio y los *bultos* no satisfacen el requisito especificado en el apartado c) del párr. 632.

En todos los demás aspectos, se deberán satisfacer los requisitos especificados en los párrs. 631 a 633.

REQUISITOS RELATIVOS A LOS BULTOS DEL TIPO A

- 635. Los *bultos del Tipo A* se diseñarán de modo que cumplan los requisitos especificados en los párrs. 607 a 618 y, además, los requisitos de los párrs. 619 a 621 si se acarrean por vía aérea, y los de los párrs. 636 a 651.
- 636. La menor dimensión total externa del bulto no será inferior a 10 cm.
- 637. Todo *bulto* llevará en su parte externa un precinto o sello que no se rompa fácilmente y que, mientras permanezca intacto, sea prueba de que el *bulto* no ha sido abierto.
- 638. Todos los dispositivos para fijación del *bulto* estarán diseñados de manera tal que, tanto en condiciones de transporte normales como en condiciones de

accidente, las fuerzas actuantes en dichos dispositivos no disminuyan la capacidad del *bulto* para cumplir los requisitos del presente Reglamento.

- 639. Al diseñar los *bultos*, se deberán tener en cuenta temperaturas comprendidas entre –40°C y +70°C para los componentes del *embalaje*. Deberá prestarse especial atención a las temperaturas de congelación, cuando el contenido sea líquido, y al posible deterioro de los materiales del *embalaje* dentro del intervalo de temperaturas indicado.
- 640. Las técnicas de *diseño* y de fabricación se ajustarán a las normas nacionales o internacionales, o a otros requisitos, que sean aceptables para la *autoridad competente*.
- 641. El *diseño* comprenderá un *sistema de contención* firmemente cerrado, con un cierre de seguridad que no pueda abrirse de manera no intencional ni por efecto de la presión que pueda desarrollarse en el interior del *bulto*.
- 642. Los *materiales radiactivos en forma especial* podrán considerarse un componente del *sistema de contención*.
- 643. Si el *sistema de contención* constituye una unidad separada del *bulto*, deberá poder cerrarse firmemente mediante un cierre de seguridad independiente de las demás partes del *embalaje*.
- 644. En el *diseño* de todos los componentes del *sistema de contención* se tendrán en cuenta, cuando proceda, la descomposición radiolítica de los líquidos y otros materiales vulnerables y la generación de gases por reacción química y radiolisis.
- 645. El *sistema de contención* deberá retener su *contenido radiactivo* aun cuando la presión ambiente descienda hasta 60 kPa.
- 646. Todas las válvulas que no sean las de alivio de presión irán alojadas dentro de un receptáculo que retenga toda fuga procedente de la válvula.
- 647. Todo blindaje contra las radiaciones en el que vaya incorporado un componente del *bulto* especificado como parte del *sistema de contención* estará diseñado de manera que impida que dicho componente se separe fortuitamente del blindaje. Si éste y el componente incorporado constituyen una unidad separada, el blindaje contra las radiaciones deberá poder cerrarse firmemente con un cierre de seguridad independiente de los demás elementos del *embalaje*.

- 648. Los *bultos* se diseñarán de manera tal que, si se someten a los ensayos especificados en los párrs. 719 a 724, se impida:
- a) La pérdida o dispersión del contenido radiactivo;
- b) Un aumento superior al 20 % del *nivel de radiación* máximo en cualquier superficie externa del *bulto*.
- 649. En el *diseño* de un *bulto* destinado a contener *materiales radiactivos* líquidos se deberá prever un saldo o exceso de volumen para dar cabida a las variaciones del contenido debidas a cambios de temperatura, a efectos dinámicos y a la dinámica de llenado.
- 650. Además, los *bultos del Tipo A* diseñados para contener *materiales radiactivos* líquidos deberán:
- a) Ser adecuados para cumplir las condiciones prescritas en el apartado a) del párr. 648, si se someten a los ensayos especificados en el párr. 725; y
- b) Alguno de los siguientes:
 - i) Estar provistos de material absorbente suficiente para absorber el doble del volumen del contenido líquido. El material absorbente ha de estar dispuesto de manera adecuada para que entre en contacto con el líquido en caso de fuga;
 - ii) Estar provistos de un *sistema de contención* constituido por componentes primarios de contención interior y componentes secundarios de contención exterior diseñados de modo que encierre el contenido líquido completamente y asegure su retención en los componentes secundarios de contención exterior, incluso si se producen fugas en los componentes primarios de contención interior.
- 651. Los *bultos* diseñados para contener gases deberán ser tales que impidan la pérdida o dispersión del *contenido radiactivo* si se les somete a los ensayos especificados en el párr. 725. Los *bultos del Tipo A* destinados a contener gas tritio o gases nobles quedarán exceptuados de este requisito.

REQUISITOS RELATIVOS A LOS BULTOS DEL TIPO B(U)

652. Los *bultos del Tipo B(U)* se diseñarán de modo que se ajusten a los requisitos especificados en los párrs. 607 a 618, a los especificados en los párrs. 619 a 621 si se transportan por vía aérea, y en los párrs. 636 a 649, sin

perjuicio de lo especificado en el apartado a) del párr. 648 y, además, a los requisitos especificados en los párrs. 653 a 666.

- 653. Los *bultos* se diseñarán de modo que, en las condiciones ambientales que se especifican en los párrs. 656 y 657, el calor generado en el interior del *bulto* por su *contenido radiactivo* no produzca en el *bulto*, en las condiciones de transporte normales y según demuestren los ensayos descritos en los párrs. 719 a 724, un efecto desfavorable por el cual el *bulto* deje de cumplir los requisitos aplicables en lo que respecta a la contención y al blindaje si se deja sin vigilancia durante un período de una semana. Se prestará especial atención a los efectos del calor que pueden tener una o varias de las siguientes consecuencias:
- a) Alteración de la disposición, la forma geométrica o el estado físico del *contenido radiactivo* o, si los *materiales radiactivos* se encuentran encerrados en un recipiente o revestimiento (por ejemplo, elementos combustibles envainados), deformación o fusión del recipiente, del material de revestimiento o del propio *material radiactivo*;
- b) Reducción de la eficiencia del embalaje por dilatación térmica diferencial, o por fisuración o fusión del material de blindaje contra las radiaciones;
- c) Aceleración de la corrosión en combinación con la humedad.
- 654. Los *bultos* se diseñarán de modo que, en las condiciones ambientales que se especifican en el párr. 656, y en ausencia de irradiación solar, la temperatura en las superficies accesibles de los *bultos* no exceda de 50°C, a menos que el transporte se efectúe según la modalidad de *uso exclusivo*.
- 655. Salvo lo dispuesto en el párr. 619 para un *bulto* transportado por vía aérea, la temperatura máxima de cualquier superficie del *bulto* fácilmente accesible durante el transporte en la modalidad de *uso exclusivo* no excederá de 85°C en ausencia de irradiación solar en la condición ambiental especificada en el párr. 656. Pueden tenerse en cuenta barreras o pantallas destinadas a proteger a las personas sin necesidad de someter dichas barreras o pantallas a ensayos.
- 656. Se supondrá que la temperatura ambiente es de 38°C.
- 657. Se supondrá que las condiciones de irradiación solar son las especificadas en el Cuadro 12.
- 658. Los *bultos* provistos de protección térmica con objeto de satisfacer los requisitos del ensayo térmico especificado en el párr. 728 se diseñarán de modo que tal protección conserve su eficacia si se someten los *bultos* a los ensayos

CUADRO 12. DATOS RELATIVOS A LA IRRADIACIÓN SOLAR

Caso	Forma y posición de la superficie	Irradiación solar para	
	i offila y posicion de la superficie	12 horas por día (W/m²)	
1	Superficies planas transportadas horizontalmente — colocadas boca abajo	0	
2	Superficies planas transportadas horizontalmente — colocadas boca arriba	800	
3	Superficies transportadas verticalmente	200^{a}	
4	Otras superficies (no horizontales) colocadas boca abajo	200^{a}	
5	Todas las demás superficies	400 ^a	

Como alternativa, se puede recurrir a una función sinusoidal, adoptándose un coeficiente de absorción y despreciándose los efectos de una posible reflexión proveniente de los objetos contiguos.

especificados en los párrs. 719 a 724 y en los apartados a) y b) o apartados b) y c), según proceda, del párr. 727. Cualquier protección de esta naturaleza en el exterior de los *bultos* no deberá perder su eficacia en caso de desgarramiento, corte, arrastre, abrasión o manipulación brusca.

659. Los *bultos* se diseñarán de modo que si se les somete:

- a) A los ensayos especificados en los párrs. 719 a 724, la pérdida de *contenido* radiactivo no sea superior a $10^{-6}A_2$ por hora.
- b) A los ensayos especificados en los párrs. 726, 727 apartado b), 728 y 729, y al ensayo indicado en:
 - El apartado c) del párr. 727, cuando el *bulto* tenga una masa no superior a los 500 kg, una densidad global no superior a 1 000 kg/m³ basándose en las dimensiones externas, y un *contenido radiactivo* superior a 1 000A₂, que no esté constituido por *materiales radiactivos en forma especial*; o
 - El apartado a) del párr. 727, para todos los demás bultos;
 - i) Los *bultos* queden con suficiente blindaje para asegurar que el *nivel de radiación* a 1 m de su superficie no exceda de 10 mSv/h con el *contenido radiactivo* máximo para el cual están diseñados los *bultos*.
 - ii) La pérdida acumulada de *contenido radiactivo* en un período de una semana no sea superior a $10A_2$ para el criptón 85 y a A_2 para todos los demás radionucleidos.

Cuando se trate de mezclas de radionucleidos diferentes, se aplicarán las disposiciones de los párrs. 405 a 407, salvo que, en el caso del criptón 85, puede utilizarse un valor efectivo de $A_2(i)$ igual a $10A_2$. En el caso del apartado a), en la evaluación se tendrán en cuenta los límites de *contaminación* externa especificados en el párr. 508.

- 660. Los bultos de contenido radiactivo con actividad superior a 10^5A_2 se diseñarán de modo que, si se someten al ensayo reforzado de inmersión en agua especificado en el párr. 730, no se produzca la rotura del sistema de contención.
- 661. La observancia de los límites admisibles para la liberación de actividad no deberá depender del empleo de filtros ni de un sistema mecánico de refrigeración.
- 662. El *bulto* no llevará incorporado ningún sistema de alivio de presión del *sistema de contención* que pueda dar lugar al escape de *materiales radiactivos* al medio ambiente en las condiciones de los ensayos descritos en los párrs. 719 a 724 y 726 a 729.
- 663. Los *bultos* se diseñarán de manera que si se encuentran a la *presión normal de trabajo máxima* y se someten a los ensayos especificados en los párrs. 719 a 724 y 726 a 729, los niveles de tensión del *sistema de contención* no alcancen valores que afecten desfavorablemente al *bulto* de modo que éste deje de cumplir los requisitos aplicables.
- 664. Los *bultos* no tendrán una *presión normal de trabajo máxima* superior a una presión manométrica de 700 kPa.
- 665. Los bultos que contengan materiales radiactivos de baja dispersión se diseñarán de modo que ningún elemento que se incorpore a los materiales radiactivos de baja dispersión que no forme parte de ellos, ni ningún componente interno del embalaje, afecte desfavorablemente el comportamiento de los materiales radiactivos de baja dispersión.
- 666. Los *bultos* se diseñarán para un intervalo de temperaturas ambiente de –40°C a +38°C.

REQUISITOS RELATIVOS A LOS BULTOS DEL TIPO B(M)

667. Los bultos del Tipo B(M) se ajustarán a los requisitos relativos a los bultos del Tipo B(U) especificados en el párr. 652 con la excepción de que, en el caso de

bultos destinados exclusivamente al transporte en el interior de un determinado país o entre países determinados, se pueden suponer condiciones diferentes de las indicadas en los párrs. 639, 655 a 657 y 660 a 666, siempre que se cuente con la aprobación de las autoridades competentes de esos países. No obstante, en la medida de lo posible se cumplirán los requisitos relativos a los bultos del Tipo B(U) especificados en los párrs. 655 y 660 a 666.

668. Puede permitirse durante el transporte el venteo intermitente de los *bultos del Tipo B(M)*, siempre que los controles operacionales para el venteo sean aceptables para las *autoridades competentes* pertinentes.

REQUISITOS RELATIVOS A LOS BULTOS DEL TIPO C

- 669. Los *bultos del Tipo C* se diseñarán de modo que se ajusten a los requisitos especificados en los párrs. 607 a 621 y 636 a 649, sin perjuicio de lo indicado en el apartado a) del párr. 648, y a los requisitos especificados en los párrs. 653 a 657, 661 a 666 y 670 a 672.
- 670. Los *bultos* deberán satisfacer los criterios de evaluación prescritos para los ensayos en el apartado b) del párr. 659 y en el párr. 663 después de su enterramiento en un medio definido por una conductividad térmica de 0,33 W/(m·K) y una temperatura de 38°C en estado estable. Como condiciones iniciales de la evaluación se supondrá que el aislamiento térmico de los *bultos* se mantiene intacto, que los *bultos* se encuentran a la *presión normal de trabajo máxima* y que la temperatura ambiente es de 38°C.
- 671. Los *bultos* se diseñarán de modo que, si se encuentran a la *presión normal de trabajo máxima* y se someten:
- a) A los ensayos especificados en los párrs. 719 a 724, la pérdida de *contenido* radiactivo no sea superior a $10^{-6}A_2$ por hora.
- b) A las secuencias de ensayo indicadas en el párr. 734:
 - i) Los bultos queden con suficiente blindaje para garantizar que el nivel de radiación a 1 m de su superficie no exceda de 10 mSv/h con el contenido radiactivo máximo para el cual están diseñados los bultos.
 - ii) La pérdida acumulada de *contenido radiactivo* en un período de una semana no sea superior a $10A_2$ para el criptón 85 y a A_2 para todos los demás radionucleidos.

Cuando se trate de mezclas de radionucleidos diferentes, se aplicarán las disposiciones de los párrs. 405 a 407, salvo que, en el caso del criptón 85, puede utilizarse un valor efectivo de $A_2(i)$ igual a $10A_2$. En el caso del apartado a), en la evaluación se tendrán en cuenta los límites de *contaminación* externa especificados en el párr. 508.

672. Los *bultos* se diseñarán de modo que, si se someten al ensayo reforzado de inmersión en agua descrito en el párr. 730, no se produzca la rotura del *sistema de contención*.

REQUISITOS RELATIVOS A LOS BULTOS QUE CONTENGAN SUSTANCIAS FISIONABLES

- 673. Las sustancias fisionables deberán transportarse de modo que:
- a) Se mantenga la subcriticidad en las condiciones de transporte rutinarias, normales y en las de accidente; en particular, deberán tenerse en cuenta las siguientes posibilidades:
 - i) La penetración o fuga de agua de los bultos;
 - ii) La disminución de la eficiencia de los absorbentes o moderadores neutrónicos incorporados en los *bultos*;
 - iii) La modificación de la disposición del contenido, ya sea dentro del *bulto* o como consecuencia de un escape de sustancias del mismo;
 - iv) La disminución del espacio dentro de los bultos o entre ellos;
 - v) La inmersión de los *bultos* en agua o su hundimiento en nieve;
 - vi) Los cambios de temperatura.
- b) Satisfagan los requisitos:
 - i) Estipulados en el párr. 636, salvo cuando se trate de sustancias sin embalar específicamente permitidas en el apartado e) del párr. 417;
 - ii) Prescritos en otras partes del presente Reglamento en relación con las propiedades radiactivas de los materiales;
 - iii) Estipulados en el párr. 637 a menos que las sustancias estén exceptuadas en virtud de lo dispuesto en el párr. 417;
 - iv) Estipulados en los párrs. 676 a 686, a menos que las sustancias estén exceptuadas en virtud de lo dispuesto en el párr. 417, 674 o 675.

674. Los *bultos* que contengan *sustancias fisionables* que se ajusten a los requisitos del apartado d) del párr. 674 y una de las disposiciones de los apartados a) a c) del párr. 674 están exceptuados del cumplimiento de los requisitos establecidos en los párrs. 676 a 686.

- a) Los *bultos* que contengan *sustancias fisionables* en cualquier forma, siempre que:
 - i) La menor dimensión externa del *bulto* no sea inferior a 10 cm.
 - ii) El *ISC* del *bulto* se calcule utilizando la siguiente fórmula: $ISC = 50 \times 5 \times \{[\text{masa de uranio } 235 \text{ en el } bulto \text{ (g)}]/\text{Z} + [\text{masa de otros } nucleidos fisionables^1 \text{ en el bulto (g)}]/280\} donde los valores de Z se indican en el Cuadro 13.$
 - iii) El *ISC* de cualquier *bulto* no sea superior a 10.
- b) Los *bultos* que contengan *sustancias fisionables* en cualquier forma, siempre que:
 - i) La menor dimensión externa del *bulto* no sea inferior a 30 cm.
 - ii) Los *bultos*, una vez sometidos a los ensayos especificados en los párrs. 719 a 724.
 - Retengan su contenido de sustancias fisionables;
 - Tengan dimensiones externas globales de como mínimo 30 cm;
 - Prevengan la entrada de un cubo de 10 cm.
 - iii) El *ISC* del *bulto* se calcule utilizando la siguiente fórmula: *ISC* = 50 × 2 × {[masa de uranio 235 en el *bulto* (g)]/Z

 + [masa de otros *nucleidos fisionables*¹ en el *bulto* (g)]/280}

 donde los valores de Z se indican en el Cuadro 13.
 - iv) El *ISC* de cualquier *bulto* no sea superior a 10.

CUADRO 13. VALORES DE Z PARA EL CÁLCULO DEL ÍNDICE DE SEGURIDAD CON RESPECTO A LA CRITICIDAD DE CONFORMIDAD CON EL PÁRR. 674

Enriquecimiento ^a	Z
Uranio enriquecido hasta el 1,5 %	2 200
Uranio enriquecido hasta el 5 %	850
Uranio enriquecido hasta el 10 %	660
Uranio enriquecido hasta el 20 %	580
Uranio enriquecido hasta el 100 %	

^a Si el *bulto* contiene *uranio* con diversos grados de enriquecimiento en uranio 235, el valor correspondiente al grado de enriquecimiento más elevado se utilizará como valor de Z.

¹ El plutonio puede tener cualquier composición isotópica siempre que la cantidad de Pu-241 sea inferior a la de Pu-240 en el *bulto*.

- c) Bultos que contengan sustancias fisionables en cualquier forma, siempre que:
 - i) La menor dimensión externa del *bulto* no sea inferior a 10 cm.
 - ii) Los *bultos*, una vez sometidos a los ensayos especificados en los párrs. 719 a 724:
 - Retengan su contenido de sustancias fisionables;
 - Tengan dimensiones externas globales de como mínimo 10 cm;
 - Prevengan la entrada de un cubo de 10 cm.
 - iii) El *ISC* del *bulto* se calcule utilizando la siguiente fórmula: $ISC = 50 \times 2 \times \{ [\text{masa de uranio } 235 \text{ en el } bulto \text{ (g)}]/450 + [\text{masa de otros } nucleidos fisionables^1 \text{ en el } bulto \text{ (g)}]/280 \}$
 - iv) La masa máxima de *nucleidos fisionables* en cualquier *bulto* no exceda de 15 g.
- d) La masa total de berilio, de material hidrogenado enriquecido en deuterio, de grafito y de otras formas alotrópicas del carbono en un solo *bulto* no será superior a la masa de *nucleidos fisionables* en el *bulto*, salvo cuando su concentración total no exceda de 1 g en cualquier cantidad de 1 000 g de material. No es necesario tomar en consideración el berilio incorporado en aleaciones de cobre hasta el 4 % en peso de la aleación.
- 675. Los *bultos* que no contengan más de 1 000 g de plutonio quedan exceptuados de la aplicación de los párrs. 676 a 686, siempre que:
- a) El plutonio no contenga más de un 20 % de *nucleidos fisionables* en masa.
- b) El *ISC* del *bulto* se calcule utilizando la siguiente fórmula: $ISC = 50 \times 2 \times [\text{masa de plutonio (g)/1 000}]$
- c) Si el uranio está presente con el plutonio, la masa de uranio no será superior a un 1 % de la masa del plutonio.

Especificación del contenido para las evaluaciones de diseños de bultos que contengan sustancias fisionables

676. En caso de que se desconozca la forma química o física, la composición isotópica, la masa o concentración, la razón de moderación o densidad o la configuración geométrica, las evaluaciones especificadas en los párrs. 680 a 685 se efectuarán suponiendo que cada parámetro desconocido tiene el valor que da la máxima multiplicación de neutrones compatible con las condiciones y parámetros conocidos de estas evaluaciones.

- 677. Tratándose de combustible nuclear irradiado, las evaluaciones especificadas en los párrs. 680 a 685 se basarán en una composición isotópica que esté demostrado que produce:
- a) La máxima multiplicación de neutrones durante el historial de irradiación; o
- b) Una estimación conservadora de la multiplicación de neutrones a efectos de la evaluación de los *bultos*. Después de la irradiación y antes de la *expedición*, se realizará una medición para confirmar que el valor de la composición isotópica es conservador.

Requisitos relativos a la geometría y la temperatura

678. Los *bultos*, una vez sometidos a los ensayos especificados en los párrs. 719 a 724, deberán:

- a) Tener dimensiones externas globales de como mínimo 10 cm;
- b) Prevenir la entrada de un cubo de 10 cm.

679. Los *bultos* se diseñarán para un intervalo de temperaturas ambiente de –40°C a +38°C, a menos que la *autoridad competente* especifique otra cosa en el certificado de *aprobación* del *diseño* de los *bultos*.

Evaluación de un bulto en aislamiento

- 680. Tratándose de un *bulto* en aislamiento, se supondrá que puede haber penetración o fuga de agua en todos los espacios vacíos del *bulto*, incluidos los situados dentro del *sistema de contención*. No obstante, si el *diseño* incluye características especiales que impidan la penetración o la fuga de agua en algunos de esos espacios vacíos, incluso como consecuencia de un error humano, podrá suponerse que no hay penetración ni fuga en lo que respecta a tales espacios vacíos. Estas características especiales deberán incluir:
- a) La presencia de barreras múltiples de gran eficacia contra la penetración o fuga de agua, dos de las cuales como mínimo permanezcan estancas si los *bultos* se someten a los ensayos prescritos en el apartado b) del párr. 685; un alto grado de control de calidad en la fabricación, mantenimiento y reparación de los *embalajes*; y ensayos que demuestren la estanqueidad de cada *bulto* antes de cada *expedición*; o
- b) Cuando se trate de *bultos* que contengan hexafluoruro de uranio solamente, con un enriquecimiento máximo del 5 % en masa de uranio 235:

- i) *Bultos* en los que, después de los ensayos prescritos en el apartado b) del párr. 685, no haya ningún contacto físico entre la válvula y cualquier otro componente del *embalaje* que no sea en su punto original de unión y en los que, además, después del ensayo prescrito en el párr. 728, las válvulas permanezcan estancas;
- ii) Un alto grado de control de calidad en la fabricación, mantenimiento y reparación de los *embalajes*, conjuntamente con ensayos para demostrar la estanqueidad de cada *bulto* antes de cada *expedición*.
- 681. Se supondrá que el sistema de confinamiento está rodeado directa y completamente de una reflexión por agua de 20 cm como mínimo o de una reflexión mayor que pueda producir el material circundante del embalaje. No obstante, cuando pueda demostrarse que el sistema de confinamiento se mantiene dentro del embalaje después de someterse a los ensayos prescritos en el apartado b) del párr. 685, podrá suponerse en los ensayos mencionados en el apartado c) del párr. 682 que el bulto está rodeado directa y completamente de una reflexión por agua de 20 cm como mínimo.
- 682. Los *bultos* deberán ser subcríticos según lo especificado en los párrs. 680 y 681 y en las condiciones que den lugar a la máxima multiplicación de neutrones compatibles con:
- a) Las condiciones de transporte rutinarias (libre de incidentes);
- b) Los ensayos especificados en el apartado b) del párr. 684;
- c) Los ensayos especificados en el apartado b) del párr. 685.
- 683. En el caso de los *bultos* destinados al transporte por vía aérea:
- a) Los *bultos* deberán ser subcríticos en condiciones compatibles con los ensayos para *bultos del Tipo C* descritos en el párr. 734, suponiendo una reflexión por agua de 20 cm como mínimo pero sin penetración de agua;
- b) En la evaluación descrita en el párr. 682, no se deberán tener en cuenta las características especiales del párr. 680 a menos que, después de los ensayos para *bultos del Tipo C* especificados en el párr. 734 y, posteriormente, del ensayo de penetración de agua descrito en el párr. 733, se impida la penetración o fuga de agua de los espacios vacíos.

Evaluación de conjuntos ordenados de bultos en condiciones de transporte normales

684. Se fijará un número N de modo que un número de *bultos* igual a cinco veces N, con la disposición y las condiciones de los *bultos* que permitan la máxima multiplicación de neutrones, sea subcrítico atendiendo a los requisitos siguientes:

- a) No habrá nada entre los *bultos* y el conjunto de *bultos* estará rodeado por todos sus lados de una reflexión por agua de 20 cm como mínimo;
- b) El estado de los *bultos* será la condición evaluada o demostrada si se hubiesen sometido a los ensayos especificados en los párrs. 719 a 724.

Evaluación de los conjuntos ordenados de bultos en condiciones de accidente durante el transporte

685. Se fijará un número N de modo que un número de *bultos* igual a dos veces N, con la disposición y las condiciones de los *bultos* que permitan la máxima multiplicación de neutrones, sea subcrítico atendiendo a los requisitos siguientes:

- a) Una moderación hidrogenada entre los *bultos* y el conjunto de *bultos* con una reflexión por agua de 20 cm como mínimo por todos sus lados.
- b) Los ensayos especificados en los párrs. 719 a 724 seguidos por los ensayos que sean más rigurosos entre los siguientes:
 - i) Los ensayos especificados en el apartado b) del párr. 727 y, o bien los especificados en el apartado c) del párr. 727 para los *bultos* con una masa que no exceda de 500 kg y una densidad total que no exceda de 1 000 kg/m³ en función de sus dimensiones externas, o los indicados en el apartado a) del párr. 727 para todos los demás *bultos*, seguidos por el ensayo especificado en el párr. 728 y, por último, por los ensayos especificados en los párrs. 731 a 733; o
 - ii) El ensayo especificado en el párr. 729.
- c) En caso de que cualquier parte de las *sustancias fisionables* escape del *sistema de contención* después de los ensayos especificados en el apartado b) del párr. 685, se supondrá que se escapan *sustancias fisionables* de cada *bulto* del conjunto ordenado y que el total de las *sustancias fisionables* se ordenará en la configuración y moderación que dé lugar a la máxima multiplicación de neutrones con una reflexión por agua completa y directa de 20 cm como mínimo.

Determinación del índice de seguridad con respecto a la criticidad de bultos

686. El *ISC* de *bultos* que contengan *sustancias fisionables* se obtendrá dividiendo el número 50 entre el menor de los dos valores de N fijados de conformidad con los procedimientos especificados en los párrs. 684 y 685 (es decir, *ISC* = 50/N). El valor del *ISC* puede ser cero, siempre que un número ilimitado de *bultos* sea subcrítico (es decir, que N sea efectivamente igual a infinito en ambos casos).

Sección VII

MÉTODOS DE ENSAYO

DEMOSTRACIÓN DEL CUMPLIMIENTO

701. Se demostrará que se cumplen las normas funcionales estipuladas en la Sección VI haciendo uso de cualesquiera de los siguientes métodos que se indican a continuación o de una combinación de ellos:

- a) Ejecución de ensayos con especímenes que representen materiales *BAE-III*, o *materiales radiactivos en forma especial*, o *materiales radiactivos de baja dispersión*, o con prototipos o muestras del *embalaje*, en cuyo caso el contenido del espécimen o del *embalaje* destinado al ensayo deberá simular con la mayor fidelidad posible el grado previsto de *contenido radiactivo*, y el espécimen o *embalaje* que se someterá a ensayo deberá prepararse en la forma en que se presente para el transporte.
- b) Referencia a demostraciones anteriores satisfactorias de índole suficientemente semejante.
- c) Ejecución de ensayos con modelos de escala conveniente que incorporen aquellas características que sean importantes en relación con el elemento en estudio, siempre que la experiencia técnica haya demostrado que los resultados de tales ensayos son apropiados a los fines del *diseño*. Cuando se utilice un modelo a escala, habrá de tenerse presente la necesidad de ajustar determinados parámetros de ensayo, tales como el diámetro del penetrador o la carga de compresión.
- d) Cálculo o argumentación razonada, cuando exista un consenso general de que los métodos de cálculo y los parámetros utilizados en los mismos son confiables o conservadores.
- 702. Tras haber sometido a ensayos el espécimen, prototipo o muestra se utilizarán métodos adecuados de evaluación para asegurar que se han cumplido los requisitos de la presente sección de conformidad con las normas funcionales y de aceptación prescritas en la Sección VI.

ENSAYO DE LIXIVIACIÓN PARA LOS MATERIALES BAE-III Y LOS MATERIALES RADIACTIVOS DE BAJA DISPERSIÓN

703. Durante 7 días se sumergirá en agua a temperatura ambiente una muestra de material sólido que represente el contenido total del *bulto*. El volumen de agua que se utilizará en el ensayo será suficiente para que al final del período de ensayo de 7 días, el volumen libre de agua restante no absorbida y que no ha reaccionado sea, como mínimo, el 10 % del volumen de la propia muestra sólida que se somete a ensayo. El agua tendrá un pH inicial de 6 a 8 y una conductividad máxima de 1 mS/m a 20°C. La actividad total del volumen libre de agua se medirá después de la inmersión de la muestra de ensayo durante 7 días.

ENSAYOS DE LOS MATERIALES RADIACTIVOS EN FORMA ESPECIAL

Aspectos generales

704. Los especímenes que comprendan o simulen *materiales radiactivos en forma especial* se someterán al ensayo de impacto, el ensayo de percusión, el ensayo de flexión y el ensayo térmico especificados en los párrs. 705 a 708. Se podrá emplear un espécimen diferente en cada uno de los ensayos. Después de cada ensayo, el espécimen será objeto de un ensayo de evaluación por lixiviación o un ensayo de fugas volumétricas, por un método que no sea menos sensible que los descritos en el párr. 710 para materiales sólidos no dispersables o en el párr. 711 para materiales encapsulados.

Métodos de ensayo

705. Ensayo de impacto: Se dejará caer el espécimen sobre el blanco desde una altura de 9 m. El blanco tendrá las características que se definen en el párr. 717.

706. Ensayo de percusión: El espécimen se colocará sobre una plancha de plomo apoyada en una superficie dura y lisa y se golpeará con la cara plana de una barra de acero dulce de manera que se produzca un impacto equivalente al que produciría la caída libre de 1,4 kg desde una altura de 1 m. La cara inferior de la barra tendrá 25 mm de diámetro y sus bordes estarán redondeados de modo que el radio sea de $3,0 \pm 0,3$ mm. El plomo, de una dureza comprendida entre 3,5 y 4,5 en la escala de Vickers y un espesor de 25 mm como máximo, cubrirá una superficie mayor que la del espécimen. Si el ensayo se repite, se colocará cada vez el

MÉTODOS DE ENSAYO

espécimen sobre una parte intacta del plomo. La barra golpeará el espécimen de manera de producir el máximo daño.

707. Ensayo de flexión: Este ensayo se aplicará solamente a fuentes largas y delgadas que tengan una longitud mínima de $10~\rm cm$ y una razón longitud anchura mínima no inferior a 10. El espécimen se fijará rígidamente en posición horizontal por medio de una mordaza, de manera que la mitad de su longitud sobresalga de la cara de la mordaza. La orientación del espécimen será tal que éste experimente un daño máximo si se golpea su extremo libre con la cara plana de una barra de acero. La barra golpeará el espécimen de manera que se produzca un impacto equivalente al que produciría la caída libre de un peso de $1,4~\rm kg$ desde una altura de $1~\rm m$. La parte inferior de la barra tendrá $25~\rm mm$ de diámetro y sus bordes serán redondeados con un radio de $3,0~\pm 0,3~\rm mm$.

708. Ensayo térmico: El espécimen se calentará al aire hasta una temperatura de 800°C, se mantendrá a esa temperatura durante 10 minutos y a continuación se dejará enfriar.

709. Los especímenes que comprenden o simulan *materiales radiactivos* encerrados en una cápsula sellada podrán quedar exceptuados de:

- a) Los ensayos prescritos en los párrs. 705 y 706, siempre que, en vez de someterse a ellos, los especímenes se sometan al ensayo de impacto prescrito en el documento de la Organización Internacional de Normalización ISO 2919: Sealed Radioactive Sources — Classification [13]:
 - i) El ensayo de impacto Clase 4 si la masa de los *materiales radiactivos en forma especial* es inferior a 200 g;
 - ii) El ensayo de impacto Clase 5 si la masa de los *materiales radiactivos* en forma especial es superior a 200 g pero inferior a 500 g.
- b) El ensayo prescrito en el párr. 708, siempre que en vez del mismo los especímenes se sometan al ensayo térmico Clase 6 especificado en el documento ISO 2919 [13].

Métodos de evaluación por lixiviación y por fugas volumétricas

710. Cuando se trate de especímenes que comprendan o simulen materiales sólidos no dispersables, se llevará a cabo una evaluación por lixiviación según se indica a continuación:

- a) El espécimen se sumergirá durante 7 días en agua a temperatura ambiente. El volumen de agua que se utilizará en el ensayo será suficiente para que al final del período de ensayo de 7 días el volumen libre de agua restante no absorbida y que no ha reaccionado sea, como mínimo, el 10 % del volumen de la propia muestra sólida que se somete a ensayo. El agua tendrá un pH inicial de 6 a 8 y una conductividad máxima de 1 mS/m a 20°C.
- b) A continuación se calentará el agua con el espécimen hasta una temperatura de 50 ± 5 °C y se mantendrá a esta temperatura durante 4 horas.
- c) Se determinará entonces la actividad del agua.
- d) El espécimen se mantendrá después durante 7 días, como mínimo, en aire en reposo a una temperatura no inferior a 30°C y una humedad relativa no inferior al 90 %.
- e) Seguidamente, se sumergirá el espécimen en agua que reúna las mismas condiciones que las que se especifican en el apartado a), y el agua con el espécimen se calentará hasta 50 ± 5 °C y se mantendrá a esta temperatura durante 4 horas.
- f) Se determinará entonces la actividad del agua.
- 711. En el caso de especímenes que comprenden o simulan *materiales radiactivos* encerrados en una cápsula sellada, se llevará a cabo una evaluación por lixiviación o por fugas volumétricas según se indica a continuación:
- a) La evaluación por lixiviación constará de las siguientes etapas:
 - i) El espécimen se sumergirá en agua a temperatura ambiente. El agua tendrá un pH inicial de 6 a 8 y una conductividad máxima de 1 mS/m a 20°C.
 - ii) El agua con el espécimen se calentará hasta una temperatura de 50 ± 5 °C y se mantendrá a esta temperatura durante 4 horas.
 - iii) Se determinará entonces la actividad del agua.
 - iv) El espécimen se mantendrá después durante 7 días, como mínimo, en aire en reposo a una temperatura no inferior a 30°C y una humedad relativa no inferior al 90 %.
 - v) Se repetirán los procesos de los incisos i), ii) y iii).
- b) La evaluación alternativa por fugas volumétricas comprenderá cualesquiera de los ensayos prescritos en el documento de la Organización Internacional de Normalización ISO 9978: Radiation Protection Sealed Radioactive Sources Leakage Test Methods [9] siempre que sean aceptables para la autoridad competente.

MÉTODOS DE ENSAYO

ENSAYOS DE MATERIALES RADIACTIVOS DE BAJA DISPERSIÓN

712. Todo espécimen que comprenda o simule *materiales radiactivos de baja dispersión* deberá someterse al ensayo térmico reforzado que se especifica en el párr. 736 y al ensayo de impacto que se indica en el párr. 737. Se podrá emplear un espécimen diferente en cada uno de los ensayos. Después de cada ensayo, el espécimen se someterá al ensayo por lixiviación especificado en el párr. 703. Luego de cada ensayo se determinará si se han cumplido los requisitos pertinentes del párr. 605.

ENSAYOS DE BULTOS

Preparación de los especímenes para los ensayos

- 713. Todos los especímenes se examinarán antes de los ensayos a fin de determinar y registrar posibles defectos o deterioros, en particular:
- a) Divergencias con respecto al *diseño*;
- b) Defectos de fabricación:
- c) Corrosión u otros deterioros;
- d) Distorsión de las características de los componentes.
- 714. Se especificará claramente el sistema de contención del bulto.
- 715. Las características externas del espécimen se identificarán con toda claridad, a fin de que sea posible referirse a cualquier parte de él de manera simple y clara.

Ensayo de la integridad del sistema de contención y del blindaje y evaluación de la seguridad con respecto a la criticidad

- 716. Después de cualquiera de los ensayos pertinentes que se especifican en los párrs. 718 a 737:
- a) Se determinarán y registrarán los defectos y deterioros.
- b) Se determinará si se ha conservado la integridad del *sistema de contención* y del blindaje en la medida exigida en la Sección VI para el *bulto* objeto de ensayo.

c) En el caso de *bultos* que contengan *sustancias fisionables*, se determinará si son válidas las hipótesis y condiciones utilizadas en las evaluaciones estipuladas en los párrs. 673 a 686 para uno o más *bultos*.

Blanco para los ensayos de caída

717. El blanco para los ensayos de caída especificados en los párrs. 705, 722, 725 apartado a), 727 y 735 consistirá en una superficie plana horizontal de naturaleza tal que cualquier incremento de su resistencia al desplazamiento o a la deformación al producirse el impacto con el espécimen no dé lugar a un aumento significativo de los daños experimentados por dicho espécimen.

Ensayo de embalajes diseñados para contener hexafluoruro de uranio

718. Los especímenes que comprendan o simulen *embalajes* diseñados para contener 0,1 kg o una cantidad superior de hexafluoruro de uranio deberán someterse a ensayos hidráulicos a una presión interna de 1,38 MPa como mínimo, pero cuando la presión de ensayo sea inferior a 2,76 MPa, el *diseño* deberá ser objeto de *aprobación multilateral*. Para someter los *embalajes* a nuevos ensayos podrá utilizarse cualquier otro ensayo no destructivo equivalente, previa *aprobación multilateral*.

Ensayos encaminados a demostrar la capacidad de soportar las condiciones de transporte normales

719. Los ensayos son el ensayo de aspersión con agua, el ensayo de caída libre, el ensayo de apilamiento y el ensayo de penetración. Especímenes de los *bultos* se someterán a los ensayos de caída libre, de apilamiento y de penetración, precedido cada uno de ellos de un ensayo de aspersión con agua. Puede utilizarse un mismo espécimen para todos los ensayos, siempre que se cumplan los requisitos del párr. 720.

720. El intervalo de tiempo que medie entre la conclusión del ensayo de aspersión con agua y el ensayo siguiente deberá ser tal que el espécimen se haya embebido en agua en la mayor medida posible y no se aprecie desecación en su exterior. En ausencia de pruebas en contrario, se adoptará un intervalo de 2 horas si la aspersión con agua se aplica simultáneamente desde las cuatro direcciones. En cambio, no deberá mediar intervalo de tiempo alguno si la aspersión con agua se aplica consecutivamente desde cada una de las cuatro direcciones.

MÉTODOS DE ENSAYO

- 721. Ensayo de aspersión con agua: El espécimen se someterá a una aspersión con agua que simule la exposición a una lluvia de aproximadamente 5 cm por hora, durante 1 hora como mínimo.
- 722. Ensayo de caída libre: Se dejará caer el espécimen sobre el blanco de manera que experimente el máximo daño por lo que respecta a las características de seguridad que se han de poner a prueba:
- a) La altura de caída, medida entre el punto inferior del espécimen y la superficie superior del blanco, no será menor que la distancia especificada en el Cuadro 14 para la masa aplicable. El blanco tendrá las características que se definen en el párr. 717.
- b) Cuando se trate de *bultos* en forma de paralelepípedo rectangular, de cartón de fibra o de madera, cuya masa no exceda de 50 kg, se utilizará un espécimen por separado para un ensayo de caída libre sobre cada uno de los vértices desde una altura de 0,3 m.
- c) Cuando se trate de *bultos* cilíndricos de cartón de fibra cuya masa no exceda de 100 kg, se utilizará un espécimen por separado para un ensayo de caída libre sobre cada uno de los cuadrantes de ambos contornos circulares desde una altura de 0,3 m.
- 723. Ensayo de apilamiento: A menos que la forma del *embalaje* impida realmente el apilamiento, el espécimen se someterá durante 24 horas a una carga de compresión igual a la mayor de las siguientes:
- a) La equivalente a 5 veces el peso máximo del *bulto*; y
- b) La equivalente al producto de 13 kPa por el área de la proyección vertical del *bulto*.

La carga se aplicará uniformemente sobre dos lados opuestos del espécimen, uno de los cuales será la base sobre la que normalmente descanse el *bulto*.

CUADRO 14. ALTURA EN CAÍDA LIBRE PARA EL ENSAYO DE BULTOS EN CONDICIONES DE TRANSPORTE NORMALES

Masa del <i>bulto</i> (kg)	Altura de caída libre (m)
masa del <i>bulto</i> < 5 000	1,2
$5~000 \leq \text{ masa del } bulto \leq 10~000$	0,9
$10~000 \leq \text{ masa del } bulto \leq 15~000$	0,6
15 000 ≤ masa del $bulto$	0,3

- 724. Ensayo de penetración: El espécimen se colocará sobre una superficie rígida, plana y horizontal que permanezca prácticamente inmóvil mientras se esté realizando el ensayo:
- a) Una barra de 3,2 cm de diámetro, con un extremo hemisférico y una masa de 6 kg, se dejará caer, con su eje longitudinal en posición vertical, sobre el centro de la parte más débil del espécimen, de manera que, de penetrar lo suficiente, golpee el *sistema de contención*. La barra no deberá experimentar una deformación considerable como consecuencia de la ejecución del ensayo.
- b) La altura de caída de la barra, medida entre su extremo inferior y el punto de impacto previsto en la superficie superior del espécimen, será de 1 m.

Ensayos complementarios para los bultos del Tipo A diseñados para contener líquidos y gases

- 725. Se someterán un espécimen, o especímenes separados, a cada uno de los ensayos indicados a continuación, a menos que se pueda demostrar que uno de estos ensayos es más riguroso que el otro para el espécimen de que se trate, en cuyo caso se someterá un solo espécimen al ensayo más riguroso:
- a) Ensayo de caída libre: Se dejará caer el espécimen sobre el blanco de manera que experimente el máximo daño por lo que respecta a la contención. La altura de caída, medida entre el extremo inferior del espécimen y la superficie superior del blanco, será de 9 m. El blanco tendrá las características que se definen en el párr. 717.
- b) Ensayo de penetración: El espécimen se someterá al ensayo especificado en el párr. 724, con la excepción de que la altura de la caída se aumentará a 1,7 m, en lugar de 1 m, como se indica en el apartado b) de dicho párrafo.

Ensayos encaminados a demostrar la capacidad de soportar las condiciones de accidente durante el transporte

726 El espécimen se someterá a los efectos acumulados de los ensayos especificados en los párrs. 727 y 728, en dicho orden. Tras estos ensayos, ya sea el mismo espécimen u otro por separado se someterá al (los) efecto(s) de(l) (los) ensayo(s) de inmersión en agua, especificados en el párr. 729 y, si procede, en el párr. 730.

727. Ensayo mecánico: El ensayo mecánico consistirá en tres ensayos de caída diferentes. Cada espécimen se someterá a las caídas aplicables, según se

MÉTODOS DE ENSAYO

especifica en el párr. 659 o en el párr. 685. El orden en que se someta el espécimen a los ensayos de caída deberá escogerse de manera que, tras la ejecución del ensayo mecánico, los daños que haya experimentado sean tales que den lugar a un daño máximo en el subsiguiente ensayo térmico:

- a) En la caída I, se dejará caer el espécimen sobre el blanco de manera que experimente el máximo daño; la altura de caída, medida entre el extremo inferior del espécimen y la superficie superior del blanco, será de 9 m. El blanco tendrá las características que se describen en el párr. 717.
- b) En la caída II, el espécimen se dejará caer sobre una barra rígidamente montada en posición perpendicular al blanco, de modo que experimente el daño máximo. La altura de caída, medida entre el punto del espécimen en que se pretende que se produzca el impacto y la superficie superior de la barra, será de 1 m. La barra será maciza, de acero dulce, con una sección circular de 15,0 ± 0,5 cm de diámetro, y de 20 cm de longitud, a menos que una barra más larga pueda causar un daño mayor, en cuyo caso se empleará una barra de longitud suficiente para causar el daño máximo. El extremo superior de la barra será plano y horizontal, con el borde redondeado y un radio no superior a 6 mm. El blanco en el que esté montada la barra tendrá las características que se describen en el párr. 717.
- c) En la caída III, el espécimen se someterá a un ensayo de aplastamiento dinámico colocándolo sobre el blanco de modo que dicho espécimen sufra el daño máximo por la caída sobre él de una masa de 500 kg desde una altura de 9 m. La masa consistirá en una plancha maciza de acero dulce de 1 m × 1 m que caerá en posición horizontal. La cara inferior de la plancha de acero tendrá los bordes y vértices redondeados, de modo que el radio no sea superior a 6 mm. La altura de caída se medirá entre la cara inferior de la plancha y el punto más alto del espécimen. El blanco sobre el que repose el espécimen tendrá las características que se describen en el párr. 717.

728. Ensayo térmico: El espécimen estará en condiciones de equilibrio térmico a una temperatura ambiente de 38°C, sometido a las condiciones de irradiación solar especificadas en el Cuadro 12 y a la tasa máxima de *diseño* de generación de calor en el interior del *bulto* por efecto del *contenido radiactivo*. Como alternativa, cualquiera de estos parámetros podrá poseer valores distintos antes del ensayo, y durante éste, siempre que se tengan debidamente en cuenta en la evaluación ulterior del comportamiento del *bulto*. El ensayo término consistirá en a) seguido de b).

- a) La exposición del espécimen durante un período de 30 minutos a un medio térmico que aporte un flujo de calor que equivalga, como mínimo, al de la combustión en aire de un combustible hidrocarburado en condiciones ambientales suficientemente en reposo como para alcanzar un coeficiente de emisividad medio de la llama de 0,9 como mínimo y una temperatura media de al menos 800°C, que rodee totalmente el espécimen, con un coeficiente de absortividad superficial de 0,8 o bien el valor que se pueda demostrar que tendrá el *bulto* si se expone a un fuego de las características especificadas.
- b) La exposición del espécimen a una temperatura ambiente de 38°C, sometido a las condiciones de irradiación solar especificadas en el Cuadro 12 y a la tasa máxima de *diseño* de generación de calor en el interior del *bulto* por efecto del *contenido radiactivo* durante suficiente tiempo para garantizar que las temperaturas en el espécimen disminuyan uniformemente y/o se acerquen a las condiciones iniciales de estado estacionario. Como alternativa, cualquiera de estos parámetros podrá poseer valores distintos después de que cese el aporte de calor, siempre que se tengan debidamente en cuenta en la evaluación posterior del comportamiento del *bulto*. Durante el ensayo y después de él no se enfriará artificialmente el espécimen y se permitirá que prosiga de forma natural cualquier combustión de sus materiales.
- 729. Ensayo de inmersión en agua: El espécimen se sumergirá bajo una columna de agua de, como mínimo, 15 m durante un período no inferior a 8 horas en la posición que produzca el daño máximo. A efectos de demostración, se considerará que cumple dichas condiciones una presión externa manométrica de por lo menos 150 kPa.

Ensayo reforzado de inmersión en agua aplicable a los bultos del Tipo B(U) y del Tipo B(M) que contengan más de $10^5 A_2$ y a los bultos del Tipo C

730. Ensayo reforzado de inmersión en agua: El espécimen se sumergirá bajo una columna de agua de, como mínimo, 200 m, durante un período no inferior a 1 hora. A efectos de demostración, se considerará que cumple estas condiciones una presión externa manométrica de por lo menos 2 MPa.

Ensayo de filtración de agua aplicable a los bultos que contengan sustancias fisionables

731. Quedarán exceptuados de este ensayo los *bultos* para los que, a efectos de evaluación con arreglo a los párrs. 680 a 685, se haya supuesto una infiltración de agua en el grado que dé lugar a la reactividad máxima.

MÉTODOS DE ENSAYO

- 732. Antes de someter el espécimen al ensayo de infiltración de agua que se especifica a continuación, se someterá a los ensayos descritos en el apartado b) del párr. 727 y a los del apartado a) o bien del apartado c) del mismo párr. 727, según se estipula en el párr. 685, y al ensayo especificado en el párr. 728.
- 733. El espécimen se sumergirá bajo una columna de agua de, como mínimo, 0,9 m durante un período no inferior a 8 horas y en la posición en que sea de prever una infiltración máxima.

Ensayos aplicables a los bultos del Tipo C

- 734. Los especímenes deberán someterse a los efectos de las secuencias de ensayo que se indican a continuación:
- a) Los ensayos especificados en los apartados a) y c) del párr. 727, y los párrs. 735 y 736, en este orden;
- b) El ensayo especificado en el párr. 737.

Podrán utilizarse especímenes por separado para la secuencia en a) y para b).

- 735. Ensayo de perforación-desgarramiento: El espécimen se someterá a los efectos destructivos causados por el impacto de una sonda maciza vertical de acero dulce. La orientación del espécimen de *bulto* y el punto de impacto en la superficie de éste serán tales que den lugar a un daño máximo al finalizar la secuencia de ensayos especificada en el apartado a) del párr. 734:
- a) El espécimen, que representará un *bulto* con una masa inferior a 250 kg, se colocará en un blanco y se someterá a la caída de una sonda con una masa de 250 kg desde una altura de 3 m sobre el punto de impacto previsto. Para este ensayo se utilizará como sonda una barra cilíndrica de 20 cm de diámetro cuya extremidad de impacto tenga la forma del tronco de un cono circular recto con las siguientes dimensiones: 30 cm de altura y 2,5 cm de diámetro en la parte superior, con el borde redondeado de modo que el radio no sea superior a 6 mm. El espécimen se colocará en un blanco de las características especificadas en el párr. 717.
- b) Para los *bultos* que tengan una masa de 250 kg o más, la base de la sonda se colocará sobre un blanco y el espécimen se dejará caer sobre ella. La altura de la caída, medida desde el punto de impacto con el espécimen hasta el extremo superior de la sonda, será de 3 m. La sonda para este ensayo tendrá las mismas propiedades y dimensiones que las especificadas en el apartado a), salvo que la longitud y la masa de la sonda serán las que causen

el máximo daño al espécimen. La base de la sonda se colocará en un blanco de las características especificadas en el párr. 717.

736. Ensayo térmico reforzado: Las condiciones para este ensayo serán las especificadas en el párr. 728, salvo que la exposición al medio térmico será por un período de 60 minutos.

737. Ensayo de impacto: El espécimen deberá someterse a un impacto sobre un blanco a una velocidad no inferior a 90 m/s, orientado de modo que experimente el máximo daño. El blanco tendrá las características descritas en el párr. 717, salvo que su superficie podrá tener cualquier orientación, a condición de que sea normal a la trayectoria del espécimen.

Sección VIII

REQUISITOS ADMINISTRATIVOS Y DE APROBACIÓN²

DISPOSICIONES GENERALES

801. En el caso de los *diseños* de *bultos* en que no se requiera la *expedición* por una *autoridad competente* de un certificado de *aprobación*, el *remitente*, previa petición, facilitará a la *autoridad competente*, para su inspección, pruebas documentales que demuestren que el *diseño* del *bulto* se ajusta a todos los requisitos aplicables.

802. Se requerirá la *aprobación* de la *autoridad competente* en los siguientes casos:

a) Los *diseños* de:

- i) *Materiales radiactivos en forma especial* (véanse los párrs. 803, 804 y 823);
- ii) Materiales radiactivos de baja dispersión (véanse los párrs. 803 y 804);
- iii) Sustancias fisionables exceptuadas en virtud del apartado f) del párr. 417 (véanse los párrs. 805 y 806);
- iv) *Bultos* que contengan 0,1 kg de hexafluoruro de uranio o una cantidad superior (véase el párr. 807);
- v) *Bultos* que contengan *sustancias fisionables*, salvo en los casos previstos en los párrs. 417, 674, o 675 (véanse los párrs. 814 a 816, y 820);
- vi) Los *bultos del Tipo B(U)* y los *bultos del Tipo B(M)* (véanse los párrs. 808 a 813, y 820);
- vii) Los bultos del Tipo C (véanse los párrs. 808 a 810).
- b) Arreglos especiales (véanse los párrs. 829 a 831).
- c) Ciertas *expediciones* (véanse los párrs. 825 a 828).

² Aunque esta publicación es una nueva edición, no hay cambios que afecten a los requisitos administrativos y de *aprobación* respecto de los *materiales radiactivos* y los *bultos* aprobados de conformidad con las ediciones, enmiendas o revisiones anteriores, desde la edición de 1996.

- d) El *programa de protección radiológica* para *buques* de uso especial (véase el apartado a) del párr. 576).
- e) El cálculo de los valores de radionucleidos no indicados en el Cuadro 2 (véase el apartado a) del párr. 403).
- f) El cálculo de los límites de actividad alternativos para una *remesa* de instrumentos o artículos exenta (véase el apartado b) del párr. 403).

Los certificados de *aprobación* del *diseño* del *bulto* y de *aprobación* de la *expedición* se podrán combinar en un solo documento.

APROBACIÓN DE LOS MATERIALES RADIACTIVOS EN FORMA ESPECIAL Y DE LOS MATERIALES RADIACTIVOS DE BAJA DISPERSIÓN

803. El diseño de los materiales radiactivos en forma especial requerirá aprobación unilateral. El diseño de los materiales radiactivos de baja dispersión requerirá aprobación multilateral. En ambos casos la solicitud de aprobación comprenderá:

- a) Una descripción detallada de los *materiales radiactivos* o, si se tratara de una cápsula, del contenido de ésta; deberá indicarse especialmente tanto el estado físico como el químico.
- b) Una descripción detallada del *diseño* de cualquier cápsula que vaya a utilizarse.
- c) Una declaración de los ensayos efectuados y de los resultados obtenidos, o bien pruebas basadas en métodos de cálculo, que demuestren que los *materiales radiactivos* son capaces de cumplir las normas funcionales u otras pruebas de que los *materiales radiactivos en forma especial* o los *materiales radiactivos de baja dispersión* cumplen los requisitos aplicables del presente Reglamento.
- d) Una especificación del *sistema de gestión* aplicable, como se requiere en el párr. 306.
- e) Toda medida que se tenga previsto aplicar antes de la *expedición* de *remesas* de *materiales radiactivos en forma especial* o de *materiales radiactivos de baja dispersión*.

804. La *autoridad competente* establecerá un certificado de *aprobación* en el que se hará constar que el *diseño* aprobado se ajusta a los requisitos aplicables a los *materiales radiactivos en forma especial* o a los *materiales radiactivos de baja dispersión* y asignará a ese *diseño* una marca de identificación.

REQUISITOS ADMINISTRATIVOS Y DE APROBACIÓN

APROBACIÓN DE LAS SUSTANCIAS EXCEPTUADAS DE LA CLASIFICACIÓN COMO FISIONABLES

805. El *diseño* de una *sustancia fisionable* exceptuada de la clasificación como "FISIONABLE" de conformidad con el Cuadro 1, en virtud del apartado f) del párr. 417, requerirá *aprobación multilateral*. La solicitud de *aprobación* comprenderá:

- a) Una descripción detallada de las sustancias; deberá indicarse especialmente tanto el estado físico como el químico.
- b) Una declaración de los ensayos efectuados y de los resultados obtenidos, o bien pruebas basadas en métodos de cálculo, que demuestren que las sustancias son capaces de cumplir los requisitos especificados en el párr. 606.
- c) Una especificación del *sistema de gestión* aplicable como se requiere en el párr. 306.
- d) Una declaración de medidas específicas que se hayan de adoptar antes de proceder a la *expedición*.

806. La *autoridad competente* establecerá un certificado de *aprobación* en el que se hará constar que las sustancias aprobadas se ajustan a los requisitos aplicables a las *sustancias fisionables* exceptuadas por la *autoridad competente* de conformidad con el párr. 606 y asignará a ese *diseño* una marca de identificación.

APROBACIÓN DE LOS DISEÑOS DE BULTOS

Aprobación de los diseños de bultos destinados a contener hexafluoruro de uranio

807. La *aprobación* de *diseños* de *bultos* que contienen 0,1 kg de hexafluoruro de uranio, o una cantidad superior, está sujeta a los siguientes requisitos:

- a) Cada *diseño* que se ajuste a los requisitos del párr. 634 requerirá *aprobación multilateral*.
- b) Cada *diseño* que se ajuste a los requisitos de los párrs. 631 a 633 requerirá *aprobación unilateral* de la *autoridad competente* del país de origen del *diseño*, a menos que en virtud de alguna otra disposición del presente Reglamento se requiera la *aprobación multilateral*.
- c) La solicitud de *aprobación* deberá incluir toda la información necesaria para que la *autoridad competente* pueda cerciorarse de que el *diseño* se

- ajusta a los requisitos del párr. 631 y una especificación del sistema de gestión aplicable, como se requiere en el párr. 306.
- d) La *autoridad competente* establecerá un certificado de *aprobación* en el que se hará constar que el *diseño* aprobado se ajusta a los requisitos del párr. 631, y asignará a ese *diseño* una marca de identificación.

Aprobación de los diseños de bultos del Tipo B(U) y del Tipo C

808. Todo diseño de bultos del Tipo B(U) y del Tipo C deberá ser objeto de aprobación unilateral, salvo que:

- a) Un *diseño* de *bulto* para *sustancias fisionables*, sujeto también a lo estipulado en los párrs. 814 a 816, requiera *aprobación multilateral*;
- b) Un diseño de bulto del Tipo B(U) para materiales radiactivos de baja dispersión requiera aprobación multilateral.

809. La solicitud de aprobación comprenderá:

- a) Una descripción detallada del *contenido radiactivo* previsto en la que se indique especialmente su estado físico y químico y el tipo de radiación emitida;
- b) Una descripción detallada del *diseño*, acompañada de un juego completo de planos y especificaciones de los materiales y de los métodos de fabricación;
- c) Una declaración de los ensayos efectuados y de los resultados obtenidos, o bien demostraciones basadas en métodos de cálculo u otras demostraciones de que el *diseño* cumple los requisitos aplicables;
- d) Las instrucciones de operación y mantenimiento que se proponen para la utilización del *embalaje*;
- e) Si el *bulto* está diseñado para una *presión normal de trabajo máxima* superior a una presión manométrica de 100 kPa, una especificación de los materiales con que está construido el *sistema de contención*, las muestras que deben tomarse y los ensayos que han de realizarse;
- f) Cuando el *contenido radiactivo* previsto consista en combustible nuclear irradiado, el solicitante señalará y justificará cualquier hipótesis que se haya adoptado en el análisis de seguridad respecto de las características del combustible y describirá cualquier medición previa a la *expedición* que se estipule en el apartado b) del párr. 677;
- g) Las medidas especiales de estiba que sean necesarias para garantizar la disipación en forma segura del calor emitido por el *bulto*, teniendo en cuenta las distintas modalidades de transporte que vayan a utilizarse y el tipo de *medio de transporte* o *contenedor*;

REQUISITOS ADMINISTRATIVOS Y DE APROBACIÓN

- h) Una ilustración, que pueda reproducirse, de tamaño no superior a 21 cm × 30 cm, en la que se indique cómo está constituido el *bulto*;
- i) Una especificación del *sistema de gestión* aplicable, tal como se estipula en el párr. 306.
- 810. La *autoridad competente* establecerá un certificado de *aprobación* en el que se hará constar que el *diseño* aprobado cumple los requisitos relativos a los *bultos del Tipo B(U)* o *del Tipo C*, y asignará a ese *diseño* una marca de identificación.

Aprobación de los diseños de bultos del Tipo B(M)

- 811. Los *diseños* de *bultos del Tipo B(M)*, incluidos los destinados a *sustancias fisionables*, que han de cumplir también los requisitos de los párrs. 814 a 816, así como los destinados a *materiales radiactivos de baja dispersión*, deberán ser objeto de *aprobación multilateral*.
- 812. La solicitud de *aprobación* de un *diseño* de *bulto del Tipo B(M)* comprenderá, además de la información exigida en el párr. 809 en el caso de *bultos del Tipo B(U)*:
- a) Una lista de los requisitos que se especifican en los párrs. 639, 655 a 657 y 660 a 666 a los que no se ajuste el *bulto*;
- b) Los controles operacionales complementarios propuestos para su aplicación durante el transporte, no previstos en el presente Reglamento, pero que se consideren necesarios para garantizar la seguridad del *bulto* o para compensar las deficiencias indicadas en el apartado a);
- c) Una declaración relativa a cualquier restricción que afecte a la modalidad de transporte y a cualesquiera procedimientos especiales de carga, acarreo, descarga o manipulación;
- d) Una declaración de las diversas condiciones ambientales (temperatura, irradiación solar) que se prevea encontrar durante el transporte y que se hayan tenido en cuenta en el *diseño*.
- 813. La *autoridad competente* establecerá un certificado de *aprobación* en el que se hará constar que el *diseño* aprobado cumple los requisitos aplicables a los *bultos del Tipo B(M)* y asignará a ese *diseño* una marca de identificación.

Aprobación de los diseños de bultos destinados a contener sustancias fisionables

- 814. Todo *diseño* de *bulto* para *sustancias fisionables* que no esté exceptuado por alguno de los apartados a) a f) del párr. 417, el párr. 674 o el párr. 675, deberá ser objeto de *aprobación multilateral*.
- 815. La solicitud de *aprobación* deberá comprender toda la información necesaria para demostrar, a satisfacción de la *autoridad competente*, que el *diseño* se ajusta a los requisitos del párr. 673 y a una especificación del *sistema de gestión* aplicable, según se estipula en el párr. 306.
- 816. La *autoridad competente* establecerá un certificado de *aprobación* en el que se hará constar que el *diseño* aprobado se ajusta a los requisitos del párr. 673, y asignará a ese *diseño* una marca de identificación.

APROBACIÓN DE LOS LÍMITES DE ACTIVIDAD ALTERNATIVOS PARA UNA REMESA DE INSTRUMENTOS O ARTÍCULOS EXENTA

- 817. Los límites de actividad alternativos para una *remesa* de instrumentos o artículos exenta de conformidad con el apartado b) del párr. 403 requerirán *aprobación multilateral*. La solicitud de *aprobación* comprenderá:
- a) Una identificación y descripción detallada del instrumento o artículo, sus usos previstos y el (los) radionucleido(s) incorporado(s);
- b) La actividad máxima del (de los) radionucleido(s) contenido(s) en el instrumento o artículo;
- c) Los *niveles de radiación* externa máximos emitidos por el instrumento o artículo;
- d) Las formas química y física del (de los) radionucleido(s) contenido(s) en el instrumento o artículo;
- e) Los detalles de la construcción y el diseño del instrumento o artículo, particularmente en lo que atañe a la contención y el blindaje del radionucleido en las condiciones de transporte rutinarias, normales y de accidente;
- f) El *sistema de gestión* aplicable, comprendidos los procedimientos de ensayo y verificación de la calidad que se hayan de aplicar a las fuentes radiactivas, los componentes y los productos acabados para asegurar que no se rebasen la actividad máxima especificada de los *materiales radiactivos* o los *niveles de radiación* máximos especificados para el instrumento o

REQUISITOS ADMINISTRATIVOS Y DE APROBACIÓN

- artículo, y que los instrumentos o artículos se fabriquen de conformidad con las especificaciones del *diseño*;
- g) El número máximo de instrumentos o artículos que se prevea expedir por *remesa* y anualmente;
- h) Las evaluaciones de dosis de conformidad con los principios y las metodologías establecidos en las NBS [2], comprendidas las dosis individuales para los trabajadores encargados del transporte y los miembros del público y, si procede, las dosis colectivas que se deriven de las condiciones de transporte rutinarias, normales y de accidente, basadas en los escenarios representativos de transporte a que están sujetas las *remesas*.

818. La *autoridad competente* establecerá un certificado de *aprobación* en el que se hará constar que el límite de actividad alternativo aprobado para una *remesa* de instrumentos o artículos exenta cumple los requisitos del apartado b) del párr. 403 y asignará a ese certificado una marca de identificación.

DISPOSICIONES TRANSITORIAS

Bultos que no requieren la aprobación del diseño de la autoridad competente de conformidad con las ediciones de 1985 y de 1985 (enmendada en 1990) del Reglamento

- 819. Los *bultos* para cuyo *diseño* no se requiera la *aprobación* de la *autoridad competente* (*bultos exceptuados*, *bultos del Tipo BI-1*, *del Tipo BI-2* y *del Tipo BI-3* y *bultos del Tipo A*) deberán cumplir plenamente lo estipulado en la presente edición del Reglamento, con la salvedad de que los *bultos* que cumplan los requisitos establecidos en las ediciones de 1985 o de 1985 (enmendada en 1990) del presente Reglamento:
- a) Se podrán seguir utilizando en el transporte siempre que fueran preparados para el transporte antes del 31 de diciembre de 2003 y con sujeción a los requisitos del párr. 822, si procede;
- b) Se podrán seguir utilizando, siempre que:
 - i) No fueran diseñados para contener hexafluoruro de uranio.
 - ii) Se apliquen los requisitos pertinentes del párr. 306 de la presente edición del Reglamento.
 - iii) Se apliquen los límites de actividad y clasificación que figuran en la sección IV de la presente edición del Reglamento.
 - iv) Se apliquen los requisitos y controles para el transporte que figuran en la sección V de la presente edición del Reglamento.

v) El *embalaje* no se haya fabricado o modificado después del 31 de diciembre de 2003.

Bultos aprobados de conformidad con las ediciones de 1973, de 1973 (enmendada), de 1985 y de 1985 (enmendada en 1990) del Reglamento

820. Los *bultos* para cuyo *diseño* se requiera la *aprobación* de la *autoridad competente* deberán cumplir plenamente lo estipulado en la presente edición del Reglamento, a menos que se reúnan las siguientes condiciones:

- a) Los *embalajes* se hayan fabricado según un *diseño* de *bulto* aprobado por la *autoridad competente* en virtud de las disposiciones de las ediciones de 1973 o de 1973 (enmendada) o de 1985 o de 1985 (enmendada en 1990) del presente Reglamento.
- b) El diseño del bulto esté sujeto a aprobación multilateral.
- c) Se apliquen los requisitos pertinentes estipulados en el párr. 306 de la presente edición del Reglamento.
- d) Se apliquen los límites de actividad y clasificación que figuran en la sección IV de la presente edición del Reglamento.
- e) Se apliquen los requisitos y controles para el transporte que figuran en la sección V de la presente edición del Reglamento.
- f) En el caso de los *bultos* que contengan *sustancias fisionables* y que se transporten por vía aérea, se cumpla el requisito estipulado en el párr. 683.
- g) En el caso de los *bultos* que cumplan los requisitos establecidos en las ediciones de 1973 o de 1973 (enmendada) del Reglamento:
 - i) Los bultos queden con suficiente blindaje para asegurar que el *nivel* de radiación a 1 m de su superficie no exceda de 10 mSv/h en las condiciones de accidente durante el transporte definidas en la edición de 1973 revisada o la edición de 1973 revisada (enmendada) del presente Reglamento con el contenido radiactivo máximo para el cual estén autorizados.
 - ii) Los *bultos* no utilicen el venteo continuo.
 - iii) De conformidad con lo dispuesto en el párr. 535, se asigne a cada embalaje un número de serie que quede marcado en su exterior.
- 821. No se permitirán nuevas construcciones de *embalajes* según un *diseño* de bulto que cumpla lo dispuesto en las ediciones de 1973, de 1973 (enmendada), de 1985 y de 1985 (enmendada en 1990) del Reglamento.

Bultos exceptuados del cumplimiento de los requisitos relativos a las sustancias fisionables de conformidad con la edición de 2009 del Reglamento

822. Los *bultos* que contengan *sustancias fisionables* exceptuadas de la clasificación como "FISIONABLES" de conformidad con los incisos i) o iii) del apartado a) del párr. 417 de la edición de 2009 del Reglamento que se preparen para el transporte antes del 31 de diciembre de 2014 se podrán seguir utilizando en el transporte y se podrán seguir clasificando como no fisionables o fisionables exceptuados, con la salvedad de que los límites para *remesas* especificados en el Cuadro 4 de la edición de 2009 del Reglamento se aplicarán al *medio de transporte*. La *remesa* se transportará según la modalidad de *uso exclusivo*.

Materiales radiactivos en forma especial aprobados de conformidad con las ediciones de 1973, de 1973 (enmendada), de 1985 y de 1985 (enmendada en 1990) del Reglamento

823. Los *materiales radiactivos en forma especial* fabricados según un *diseño* que haya recibido la *aprobación unilateral* de la *autoridad competente* en virtud de las ediciones de 1973, 1973 (enmendada), 1985 o de 1985 (enmendada en 1990) del Reglamento podrán continuar utilizándose siempre que estén en conformidad con el *sistema de gestión* obligatorio, con arreglo a los requisitos aplicables estipulados en el párr. 306. No se permitirán nuevas fabricaciones de *materiales radiactivos en forma especial* de este tipo.

NOTIFICACIÓN Y REGISTRO DE NÚMEROS DE SERIE

824. Se informará a la *autoridad competente* del número de serie de cada *embalaje* fabricado según un *diseño* aprobado de conformidad con los párrs. 808, 811, 814 y 820.

APROBACIÓN DE EXPEDICIONES

- 825. Se precisará la aprobación multilateral para:
- a) La *expedición* de *bultos del Tipo B(M)* que no se ajusten a los requisitos del párr. 639 o que estén diseñados para permitir el venteo intermitente controlado.

SECCIÓN VIII

- b) La expedición de bultos del Tipo B(M) que contengan materiales radiactivos cuya actividad sea superior a 3 $000A_1$ o a 3 $000A_2$, según corresponda, o a 1 000 TBq, rigiendo entre estos valores el que sea menor.
- c) La expedición de bultos que contengan sustancias fisionables si la suma de los ISC de los bultos en un solo contenedor de transporte o en un solo medio de transporte excede de 50. De este requisito quedarán excluidas las expediciones por buques de navegación marítima, si la suma de los ISC no excede de 50 en ninguna bodega, compartimiento o zona delimitada de la cubierta de un buque y si se cumple el espaciamiento de 6 m entre los grupos de bultos o sobreenvases que se exige en el Cuadro 11.
- d) Los *programas de protección radiológica* para *expediciones* en *buques* de uso especial de conformidad con el apartado a) del párr. 576.
- 826. La *autoridad competente* podrá permitir que se efectúe un transporte *a través o dentro de* su país, sin que se haya aprobado la *expedición*, mediante una disposición al efecto en el documento en el que apruebe el *diseño*.
- 827. En la solicitud de aprobación de una expedición se indicará:
- a) El período de tiempo, relativo a la *expedición*, para el que se solicite la *aprobación*;
- b) El *contenido radiactivo* real, las modalidades de transporte que se proyecta utilizar, el tipo de *medio de transporte* y la ruta probable o prevista;
- c) Los detalles de cómo se dará efecto a las medidas de precaución y a los controles administrativos u operacionales a que se alude en el certificado de *aprobación* del *diseño* del *bulto*, si procede, extendido con arreglo a los párrs. 810, 813 y 816.
- 828. Una vez aprobada la *expedición*, la *autoridad competente* extenderá un certificado de *aprobación*.

APROBACIÓN DE EXPEDICIONES EN VIRTUD DE ARREGLOS ESPECIALES

- 829. Toda *remesa* que se transporte en virtud de *arreglos especiales* requerirá *aprobación multilateral*.
- 830. La solicitud de *aprobación* de una *expedición* en virtud de *arreglos especiales* incluirá toda la información necesaria para demostrar, a satisfacción de la *autoridad competente*, que el grado global de seguridad durante el transporte es

al menos equivalente al que se obtendría en el caso de que se hubieran satisfecho todos los requisitos aplicables del presente Reglamento. La solicitud también incluirá:

- a) Una declaración de los aspectos en que la *expedición* no puede efectuarse plenamente de conformidad con los requisitos aplicables;
- b) Una declaración de cualesquiera precauciones especiales que deban adoptarse o controles especiales administrativos u operacionales que deban ejercerse durante el transporte para compensar el no cumplimiento de los requisitos aplicables del presente Reglamento.
- 831. Una vez aprobada una *expedición* en virtud de *arreglos especiales*, la *autoridad competente* extenderá un certificado de *aprobación*.

CERTIFICADOS DE APROBACIÓN DE LA AUTORIDAD COMPETENTE

Marcas de identificación de la autoridad competente

832. Todo certificado de *aprobación* extendido por una *autoridad competente* irá caracterizado por una marca de identificación. Esta marca será del siguiente tipo general:

VRI/número/clave del tipo

- a) Salvo en los casos estipulados en el apartado b) del párr. 833, VRI representa el código internacional de matrículas de *vehículos* para identificar al país que extiende el certificado.
- b) El número será asignado por la *autoridad competente* y será único y específico por lo que respecta al *diseño*, la *expedición* o el límite de actividad alternativo concretos para una *remesa* exenta. La marca de identificación de *aprobación* de la *expedición* deberá estar relacionada de una forma clara con la marca de identificación de *aprobación* del *diseño*.
- c) Las claves de tipos que figuran a continuación se utilizarán en el orden indicado para identificar los tipos de certificado de *aprobación* extendidos:
 - AF Diseño de bulto del Tipo A para sustancias fisionables
 - B(U) Diseño de bulto del Tipo B(U) (B(U)F si es para sustancias fisionables)
 - B(M) Diseño de bulto del Tipo B(M) (B(M)F si es para sustancias fisionables)

SECCIÓN VIII

C	Diseño de bulto del Tipo C (CF si es para sustancias fisionables)				
IF	Diseño de bulto industrial para sustancias fisionables				
S	Materiales radiactivos en forma especial				
LD	Material radiactivo de baja dispersión				
FE	Sustancias fisionables que cumplen los requisitos del párr. 606				
T	Expedición				
X	Arreglo especial				
AL	Límites de actividad alternativos para una remesa de				
	instrumentos o artículos exenta				

En el caso de los *diseños* de *bultos* para hexafluoruro de uranio no fisionable o fisionable exceptuado, en que no se aplique ninguna de las claves anteriores, se utilizarán las claves de tipos siguientes:

- H(U) Aprobación unilateral H(M) Aprobación multilateral
- d) En el caso de certificados de *aprobación* del *diseño* de *bulto* y de *materiales radiactivos en forma especial*, que no sean los expedidos de conformidad con las disposiciones de los párrs. 820 a 823, y en el de certificados de *aprobación* de *materiales radiactivos de baja dispersión*, se añadirá el símbolo "-96" al de la clave del tipo.
- 833. Estas marcas de identificación se aplicarán de la manera siguiente:
- a) Cada certificado y cada *bulto* llevará la marca de identificación apropiada, inclusive los símbolos prescritos en los apartados a) a d) del párr. 832, salvo que, en el caso de los *bultos*, sólo figurarán las claves pertinentes indicadoras del *diseño*, añadiéndose, si procede, el símbolo "-96" tras la segunda barra, es decir: la "T" o "X" no figurarán en la marca de identificación en el *bulto*. Cuando se combinen la *aprobación* del *diseño* y la *aprobación* de la *expedición*, no es necesario repetir las claves de tipos pertinentes. Por ejemplo:

A/132/B(M)F-96: Un *diseño* de *bulto del Tipo B(M)*, aprobado para *sustancias fisionables*, que requiere *aprobación multilateral*, para el que la *autoridad competente* de Austria ha asignado para el *diseño* el número 132 (esta marca deberá figurar tanto en el propio *bulto* como en el certificado de *aprobación* del *diseño* del *bulto*);

A/132/B(M)F-96T: Aprobación de la expedición extendida para un bulto

que lleva la marca de identificación arriba explicada

(sólo deberá figurar en el certificado);

A/137/X: Aprobación de arreglo especial extendida por la

autoridad competente de Austria, a la que se ha asignado el número 137 (sólo deberá figurar en el

certificado);

A/139/IF-96: Un diseño de bulto industrial para sustancias

fisionables aprobado por la autoridad competente de Austria, al que se ha asignado el número 139 (deberá figurar tanto en el bulto como en el certificado de

aprobación del diseño del bulto);

A/145/H(U)-96: Un diseño de bulto para hexafluoruro de uranio

fisionable exceptuado aprobado por la *autoridad competente* de Austria, al que se ha asignado el número 145 (deberá figurar tanto en el *bulto* como en el certificado de *aprobación* del *diseño* del *bulto*).

b) Cuando la *aprobación multilateral* se efectúe por refrendo de conformidad con el párr. 840, sólo se utilizarán las marcas de identificación asignadas por el país de origen del *diseño* o de la *expedición*. Cuando la *aprobación multilateral* se efectúe por emisión sucesiva de certificados por los distintos países, cada certificado llevará la marca apropiada de identificación y el *bulto* cuyo *diseño* haya sido así aprobado llevará todas las marcas de identificación correspondientes.

Por ejemplo:

A/132/B(M)F-96 CH/28/B(M)F-96

sería la marca de identificación de un *bulto* originariamente aprobado por Austria y posteriormente aprobado, mediante un certificado por separado, por Suiza. Si hubiera más marcas de identificación, se consignarían de modo análogo sobre el *bulto*.

c) La revisión de los certificados se indicará mediante una expresión entre paréntesis a continuación de la marca de identificación en el certificado. Por ejemplo, A/132/B(M)F-96(Rev.2) significaría la revisión 2 del certificado de *aprobación* por Austria del *diseño* del *bulto*; o A/132/B(M)F-96(Rev.0) indicaría la versión original del certificado de *aprobación* por Austria del *diseño* del *bulto*. En el caso de las versiones originales, la expresión entre paréntesis es facultativa y se pueden utilizar otras palabras tales como

SECCIÓN VIII

- "versión original" en lugar de "Rev.0". Los números de revisión de un certificado sólo pueden ser asignados por el país que extiende el certificado de *aprobación* original.
- d) Al final de la marca de identificación se podrán añadir entre paréntesis símbolos adicionales (si son necesarios en virtud de las reglamentaciones nacionales), por ejemplo, A/132/B(M)F-96(SP503).
- e) No es necesario modificar la marca de identificación en el *embalaje* cada vez que se efectúe una revisión del certificado del *diseño*. Sólo se modificará dicha marca cuando la revisión del certificado del *diseño* del *bulto* implique un cambio de la clave del tipo empleada para indicar tal *diseño* tras la segunda barra.

CONTENIDO DE LOS CERTIFICADOS DE APROBACIÓN

Certificados de aprobación para materiales radiactivos en forma especial y materiales radiactivos de baja dispersión

834. Todo certificado de *aprobación* extendido por una *autoridad competente* para *materiales radiactivos en forma especial* o para *materiales radiactivos de baja dispersión* comprenderá la información que se indica a continuación:

- a) Tipo de certificado;
- b) Marca de identificación de la autoridad competente;
- c) Fecha de emisión y de expiración;
- d) Lista de los reglamentos nacionales e internacionales aplicables, incluida la edición del Reglamento para el transporte seguro de materiales radiactivos del OIEA, de conformidad con la cual se aprueban los *materiales* radiactivos en forma especial o los materiales radiactivos de baja dispersión;
- e) Identificación de los *materiales radiactivos en forma especial* o de los *materiales radiactivos de baja dispersión*;
- f) Descripción de los materiales radiactivos en forma especial o de los materiales radiactivos de baja dispersión;
- g) Especificaciones del *diseño* para los *materiales radiactivos en forma* especial o los *materiales radiactivos de baja dispersión*, las cuales pueden incluir referencias a los planos;
- h) Una especificación del *contenido radiactivo* que incluya las actividades involucradas y que puede incluir la forma física y la química;
- i) La especificación de un *sistema de gestión* aplicable, como se requiere en el párr. 306;

- j) Referencia a la información facilitada por el solicitante en relación con medidas específicas que se hayan de adoptar antes de proceder a la *expedición*;
- k) Si la *autoridad competente* lo considera oportuno, referencia a la identidad del solicitante;
- 1) Firma y cargo del funcionario que extiende el certificado.

Certificados de aprobación de sustancias exceptuadas de la clasificación como fisionables

835. Todo certificado de *aprobación* extendido para sustancias exceptuadas de la clasificación como "FISIONABLES" por una *autoridad competente* comprenderá la siguiente información:

- a) Tipo de certificado;
- b) Marca de identificación de la autoridad competente;
- c) Fecha de emisión y de expiración;
- d) Lista de los reglamentos nacionales e internacionales aplicables, comprendida la edición del Reglamento para el transporte seguro de materiales radiactivos del OIEA de conformidad con la cual se aprueba la excepción;
- e) Descripción de las sustancias exceptuadas;
- f) Especificaciones de limitación para las sustancias exceptuadas;
- g) Una especificación del *sistema de gestión* aplicable, como se requiere en el párr. 306;
- h) Referencia a la información facilitada por el solicitante, relativa a medidas específicas que se hayan de adoptar antes de proceder a la *expedición*;
- i) Si la *autoridad competente* lo considera oportuno, referencia a la identidad del solicitante;
- j) Firma y cargo del funcionario que extiende el certificado;
- k) Referencia a la documentación que demuestre el cumplimiento de lo dispuesto en el párr. 606.

Certificados de aprobación para arreglos especiales

836. Todo certificado de *aprobación* extendido para un *arreglo especial* por una *autoridad competente* comprenderá la siguiente información:

- a) Tipo de certificado.
- b) Marca de identificación de la *autoridad competente*.
- c) Fecha de emisión y de expiración.

SECCIÓN VIII

- d) Modalidad(es) de transporte.
- e) Toda restricción que afecte a las modalidades de transporte, tipo de *medios de transporte*, *contenedores*, así como cualesquiera instrucciones necesarias sobre el itinerario.
- f) Lista de los reglamentos nacionales e internacionales aplicables, incluida la edición del Reglamento para el transporte seguro de materiales radiactivos del OIEA de conformidad con la cual se aprueba el *arreglo especial*.
- g) La siguiente declaración: "El presente certificado no exime al remitente del cumplimiento de cualquier requisito impuesto por el Gobierno de cualquier país a través del cual o al cual se transporte el bulto".
- h) Referencias a certificados para otros *contenidos radiactivos*, otros refrendos de *autoridades competentes*, o datos o información técnica adicionales, según considere oportuno la *autoridad competente*.
- i) Descripción del *embalaje* mediante referencia a los planos o a la especificación del *diseño*. Si la *autoridad competente* lo estima oportuno se incluirá igualmente una ilustración que pueda reproducirse, de tamaño no superior a 21 cm × 30 cm, en la que se indique cómo está constituido el *bulto*, acompañada de una breve descripción del *embalaje*, comprendidos los materiales de que está construido, masa bruta, dimensiones externas generales y aspecto.
- j) Especificación del *contenido radiactivo* autorizado, comprendida cualquier restricción que afecte al *contenido radiactivo* y que no resulte evidente a juzgar por la naturaleza del *embalaje*. Se deberá indicar la forma física y química, las actividades de que se trate (comprendidas las de los distintos isótopos, si procediera), la masa en gramos (cuando se trate de *sustancias fisionables* o de cada *nucleido fisionable*, según proceda), y si son *materiales radiactivos en forma especial, materiales radiactivos de baja dispersión* o *sustancias fisionables* exceptuadas en virtud del apartado f) del párr. 417, si procede.
- k) Además, por lo que respecta a los *bultos* que contengan *sustancias fisionables*:
 - i) Descripción detallada del *contenido radiactivo* autorizado;
 - ii) El valor del *ISC*;
 - iii) Una referencia a la documentación que demuestre la seguridad del contenido con respecto a la criticidad;
 - iv) Cualesquiera características especiales sobre la base de las cuales se haya supuesto la ausencia de agua en determinados espacios vacíos al efectuar la evaluación de la criticidad:

- v) Cualquier determinación (basada en el apartado b) del párr. 677) a partir de la cual se suponga una multiplicación de neutrones distinta en la evaluación de la criticidad como resultado de la experiencia real en la irradiación;
- vi) El intervalo de temperaturas ambiente en relación con el cual se ha aprobado el *arreglo especial*.
- Lista detallada de todos los controles complementarios de orden operacional necesarios para la preparación, carga, acarreo, descarga y manipulación de la *remesa*, comprendida cualquier medida especial de estiba encaminada a la disipación segura del calor.
- m) Si la *autoridad competente* lo estima oportuno, las razones existentes para el *arreglo especial*.
- n) Descripción de las medidas de compensación que se aplicarán por tratarse de una *expedición* en virtud de *arreglos especiales*.
- o) Referencia a la información facilitada por el solicitante, relativa a la utilización del *embalaje* o a medidas específicas que se hayan de adoptar antes de proceder a la *expedición*.
- p) Declaración relativa a las condiciones ambientales supuestas para los fines del *diseño*, si no coinciden con las especificadas en los párrs. 656, 657 y 666, según proceda.
- q) Cualquier disposición para emergencias considerada necesaria por la autoridad competente.
- r) Especificación del *sistema de gestión* aplicable, según se estipula en el párr. 306.
- s) Si la *autoridad competente* lo considera apropiado, referencia a la identidad del solicitante y a la del *transportista*.
- t) Firma y cargo del funcionario que extiende el certificado.

Certificados de aprobación para expediciones

- 837. Todo certificado de *aprobación* de una *expedición* extendido por una *autoridad competente* comprenderá la siguiente información:
- a) Tipo de certificado.
- b) Marca(s) de identificación de la *autoridad competente*.
- c) Fecha de emisión y de expiración.
- d) Lista de los reglamentos nacionales e internacionales aplicables, incluida la edición del Reglamento para el transporte seguro de *materiales radiactivos* del OIEA de conformidad con la cual se aprueba la *expedición*.

SECCIÓN VIII

- e) Toda restricción que afecte a las modalidades de transporte, tipo de *medios de transporte*, *contenedores*, así como cualesquiera instrucciones necesarias sobre el itinerario.
- f) La siguiente declaración: "El presente certificado no exime al remitente del cumplimiento de cualquier requisito impuesto por el Gobierno de cualquier país a través del cual o al cual se transporte el bulto".
- g) Lista detallada de todos los controles complementarios de orden operacional necesarios para la preparación, carga, acarreo, descarga y manipulación de la *remesa*, comprendida cualquier medida especial de estiba encaminada a la disipación segura del calor o al mantenimiento de la seguridad con respecto a la criticidad.
- h) Referencia a la información facilitada por el solicitante en relación con medidas específicas que se hayan de adoptar antes de proceder a la *expedición*.
- i) Referencia al certificado o certificados pertinentes de *aprobación* del *diseño*.
- j) Especificación del *contenido radiactivo* real, comprendida cualquier restricción que afecte al *contenido radiactivo* y que no resulte evidente a juzgar por la naturaleza del *embalaje*. Se deberá indicar la forma física y química, las actividades totales de que se trata (comprendidas las de los distintos isótopos, si procediera), la masa en gramos (cuando se trate de *sustancias fisionables* o de cada *nucleido fisionable*, según proceda) y si son *materiales radiactivos en forma especial, materiales radiactivos de baja dispersión* o *sustancias fisionables* exceptuadas en virtud del apartado f) del párr. 417, si procede.
- k) Cualquier disposición para emergencias considerada necesaria por la *autoridad competente*.
- 1) La especificación de un *sistema de gestión* aplicable, como se requiere en el párr. 306.
- m) Si la *autoridad competente* lo considera oportuno, referencia a la identidad del solicitante.
- n) Firma y cargo del funcionario que extiende el certificado.

Certificados de aprobación para diseños de bultos

838. Todo certificado de *aprobación* del *diseño* de un *bulto* extendido por una *autoridad competente* comprenderá la siguiente información:

- a) Tipo de certificado.
- b) Marca de identificación de la *autoridad competente*.
- c) Fecha de emisión y de expiración.

- d) Toda restricción que afecte a las modalidades de transporte, si procede.
- e) Lista de los reglamentos nacionales e internacionales aplicables, comprendida la edición del Reglamento para el transporte seguro de materiales radiactivos del OIEA de conformidad con la cual se aprueba el diseño.
- f) La siguiente declaración: "El presente certificado no exime al remitente del cumplimiento de cualquier requisito impuesto por el Gobierno de cualquier país a través del cual o al cual se transporte el bulto".
- g) Referencias a certificados para otros *contenidos radiactivos*, otros refrendos de *autoridades competentes*, o datos o información técnica adicionales, según considere oportuno la *autoridad competente*.
- h) Declaración en la que se autorice la *expedición*, siempre que se requiera que dicha *expedición* sea aprobada en virtud del párr. 825, si procede.
- i) Identificación del embalaje.
- j) Descripción del *embalaje* mediante referencia a los planos o a la especificación del *diseño*. Si la *autoridad competente* lo estima oportuno se incluirá igualmente una ilustración que pueda reproducirse, de tamaño no superior a 21 cm × 30 cm, en la que se indique cómo está constituido el *bulto*, acompañada de una breve descripción del *embalaje*, comprendidos los materiales de que está construido, masa bruta, dimensiones externas generales y aspecto.
- k) Especificación del diseño mediante referencia a los planos.
- Especificación del *contenido radiactivo* autorizado, comprendida cualquier restricción que afecte al *contenido radiactivo* y que no resulte evidente a juzgar por la naturaleza del *embalaje*. Se deberá indicar la forma física y química, las actividades de que se trate (comprendidas las de los distintos isótopos, si procediera), la masa en gramos (cuando se trate de *sustancias fisionables*, la masa total de los *nucleidos fisionables* o la masa de cada *nucleido fisionable*, según proceda) y si son *materiales radiactivos en forma especial, materiales radiactivos de baja dispersión* o *sustancias fisionables* exceptuadas en virtud del apartado f) del párr. 417, si procede.
- m) Una descripción del sistema de contención.
- n) Por lo que respecta a los *diseños* de *bultos* con *sustancias fisionables* que requieran la *aprobación* multilateral del *diseño* del *bulto* de conformidad con el párr. 814:
 - i) Descripción detallada del *contenido radiactivo* autorizado;
 - ii) Descripción del sistema de confinamiento;
 - iii) Valor del ISC;
 - iv) Referencia a la documentación que demuestre la seguridad del contenido con respecto a la criticidad;

SECCIÓN VIII

- v) Cualesquiera características especiales sobre la base de las cuales se haya supuesto la ausencia de agua en determinados espacios vacíos al efectuar la evaluación de la criticidad;
- vi) Cualquier determinación (basada en el apartado b) del párr. 677) a partir de la cual se suponga una multiplicación de neutrones distinta en la evaluación de la criticidad como resultado de la experiencia real en la irradiación;
- vii) El intervalo de temperaturas ambiente en relación con el cual se ha aprobado el *diseño* del *bulto*.
- o) Cuando se trate de *bultos del Tipo B(M)*, una declaración en la que se especifiquen aquellas normas prescritas en los párrs. 639, 655 a 657 y 660 a 666 a las que no se ajuste el *bulto*, así como cualquier información complementaria que pueda ser de utilidad a las demás *autoridades competentes*.
- p) Cuando se trate de *bultos* que contengan más de 0,1 kg de hexafluoruro de uranio, una declaración en que se especifiquen las prescripciones del párr. 634 que son aplicables, y toda información adicional que pueda ser de utilidad para las demás *autoridades competentes*.
- q) Lista detallada de todos los controles complementarios de orden operacional necesarios para la preparación, carga, acarreo, descarga y manipulación de la *remesa*, comprendida cualquier medida especial de estiba encaminada a la disipación segura del calor.
- r) Referencia a la información facilitada por el solicitante, relativa a la utilización del *embalaje* o a medidas específicas que se hayan de adoptar antes de proceder a la *expedición*.
- s) Declaración relativa a las condiciones ambientales supuestas para los fines del *diseño*, si no coinciden con las especificadas en los párrs. 656, 657 y 666, según proceda.
- t) La especificación de un *sistema de gestión* aplicable, como se requiere en el párr. 306.
- u) Cualquier disposición para emergencias considerada necesaria por la *autoridad competente*.
- v) Si la *autoridad competente* lo considera oportuno, referencia a la identidad del solicitante.
- w) Firma y cargo del funcionario que extiende el certificado.

Certificados de aprobación de los límites de actividad alternativos para una remesa de instrumentos o artículos exenta

839. Todo certificado extendido por una *autoridad competente* de los límites de actividad alternativos para una *remesa* de instrumentos o artículos exenta de conformidad con el párr. 818 comprenderá la siguiente información:

- a) Tipo de certificado;
- b) Marca de identificación de la autoridad competente;
- c) Fecha de emisión y de expiración;
- d) Lista de los reglamentos nacionales e internacionales aplicables, comprendida la edición del Reglamento para el transporte seguro de materiales radiactivos del OIEA de conformidad con la cual se aprueba la exención;
- e) Identificación del instrumento o artículo;
- f) Descripción del instrumento o artículo;
- g) Especificaciones del diseño del instrumento o artículo;
- h) Especificación del (de los) radionucleido(s) y del (de los) límite(s) de actividad alternativo(s) aprobado(s) para la(s) *remesa*(s) del (de los) instrumento(s) o artículo(s) exenta(s);
- i) Referencia a la documentación que demuestre el cumplimiento de lo dispuesto en el apartado b) del párr. 403;
- j) Si la *autoridad competente* lo considera oportuno, referencia a la identidad del solicitante;
- k) Firma y cargo del funcionario que extiende el certificado.

REFRENDO DE LOS CERTIFICADOS

840. Las *aprobaciones multilaterales* podrán tener lugar mediante refrendo del certificado original extendido por la *autoridad competente* del país de origen del *diseño* o de la *expedición*. Dicho refrendo puede adoptar la forma de un aval del certificado original o la emisión por separado de un aval, anexo, suplemento, etc., por la *autoridad competente* del país a través del cual o al cual se efectúa la *expedición*.

REFERENCIAS

Las referencias remiten a las ediciones vigentes en el momento de publicación del presente Reglamento. Es posible que ediciones posteriores que sustituyen a estas referencias hayan sido adoptadas en las legislaciones nacionales.

- [1] COMUNIDAD EUROPEA DE LA ENERGÍA ATÓMICA, ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA ALIMENTACIÓN Y LA AGRICULTURA, ORGANISMO INTERNACIONAL DE ENERGÍA ATÓMICA, ORGANIZACIÓN INTERNACIONAL DEL TRABAJO, ORGANIZACIÓN MARÍTIMA INTERNACIONAL, AGENCIA PARA LA ENERGÍA NUCLEAR DE LA OCDE, ORGANIZACIÓN PANAMERICANA DE LA SALUD, PROGRAMA DE LAS NACIONES UNIDAS PARA EL MEDIO AMBIENTE, ORGANIZACIÓN MUNDIAL DE LA SALUD, Principios fundamentales de seguridad, Colección de Normas de Seguridad del OIEA Nº SF-1, OIEA, Viena (2007).
- [2] ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA ALIMENTACIÓN Y LA AGRICULTURA, ORGANISMO INTERNACIONAL DE ENERGÍA ATÓMICA, ORGANIZACIÓN INTERNACIONAL DEL TRABAJO, AGENCIA PARA LA ENERGÍA NUCLEAR DE LA OCDE, ORGANIZACIÓN PANAMERICANA DE LA SALUD, ORGANIZACIÓN MUNDIAL DE LA SALUD, Normas básicas internacionales de seguridad para la protección contra la radiación ionizante y para la seguridad de las fuentes de radiación, Colección Seguridad Nº 115, OIEA, Viena (1997).
- [3] ORGANISMO INTERNACIONAL DE ENERGÍA ATÓMICA, Manual Explicativo para la aplicación del Reglamento del OIEA para el transporte seguro de materiales radiactivos, Colección de Normas de Seguridad del OIEA Nº TS-G-1.1 (Rev.1), OIEA, Viena (2010).
- [4] ORGANISMO INTERNACIONAL DE ENERGÍA ATÓMICA, Planificación y preparación de medidas de respuesta a emergencias en los accidentes de transporte que afecten a materiales radiactivos, Colección de Normas de Seguridad del OIEA Nº TS-G-1.2 (ST-3), OIEA, Viena (2009).
- [5] ORGANISMO INTERNACIONAL DE ENERGÍA ATÓMICA, Compliance Assurance for the Safe Transport of Radioactive Material, Colección de Normas de Seguridad del OIEA Nº TS-G-1.5, OIEA, Viena (2009).
- [6] ORGANISMO INTERNACIONAL DE ENERGÍA ATÓMICA, The Management System for the Safe Transport of Radioactive Material, Colección de Normas de Seguridad del OIEA Nº TS-G-1.4, OIEA, Viena (2008).
- [7] ORGANISMO INTERNACIONAL DE ENERGÍA ATÓMICA, Programas de protección radiológica para el transporte de materiales radiactivos, Colección de Normas de Seguridad del OIEA Nº TS-G-1.3, OIEA, Viena (2011).
- [8] ORGANIZACIÓN MARÍTIMA INTERNACIONAL, Código marítimo internacional de mercancías peligrosas, IMDG-IMO, Londres (2010).
- [9] ORGANIZACIÓN INTERNACIONAL DE NORMALIZACIÓN, Radiation Protection
 Sealed Radioactive Sources Leakage Test Methods, ISO 9978:1992(E), ISO, Ginebra (1992).

- [10] NACIONES UNIDAS, Recomendaciones relativas al Transporte de Mercancías Peligrosas: Reglamentación Modelo (ST/SG/AC.10/1/Rev.17), Naciones Unidas, Nueva York y Ginebra (2011).
- [11] ORGANIZACIÓN INTERNACIONAL DE NORMALIZACIÓN, Series 1 Freight Containers Specifications and Testing Part 1: General Cargo Containers for General Purposes, ISO 1496:1990(E), ISO, Ginebra (1990); y enmiendas posteriores 1:1993, 2:1998, 3:2005, 4:2006 y 5:2006.
- [12] ORGANIZACIÓN INTERNACIONAL DE NORMALIZACIÓN, Nuclear Energy Packaging of Uranium Hexafluoride (UF₆) for Transport, ISO 7195:2005(E), ISO, Ginebra (2005).
- [13] ORGANIZACIÓN INTERNACIONAL DE NORMALIZACIÓN, Radiation Protection
 Sealed Radioactive Sources General Requirements and Classification,
 ISO 2919:2012 (E), ISO, Ginebra (2012).

Anexo I

RESUMEN DE REQUISITOS DE APROBACIÓN Y NOTIFICACIÓN PREVIA

Este resumen presenta el contenido del Reglamento para el transporte seguro de materiales radiactivos (Edición de 2012). Se señala a la atención del usuario que puede haber diferencias (excepciones, adiciones, etc.) en relación con:

- a) los reglamentos nacionales relativos a la seguridad tecnológica;
- b) las restricciones de los transportistas;
- c) los reglamentos nacionales relativos a la seguridad física, la protección física, la responsabilidad, los seguros, la notificación previa y/o los itinerarios y las licencias de importación/exportación/tránsito¹.

¹ En particular, se adoptan otras medidas para asegurar la protección física adecuada en el transporte de materiales nucleares y prevenir actos que consistan en recibir, poseer, usar, transferir, alterar, evacuar o dispersar materiales nucleares sin autorización legal, si tales actos causan, o es probable que causen, la muerte o lesiones graves a cualquier persona o sustanciales daños patrimoniales (véanse las Refs. I–1 a I–6).

ANEXO I

ANEXO I: RESUMEN DE REQUISITOS DE APROBACIÓN Y NOTIFICACIÓN PREVIA (Parte 1)

Párrafos esenciales del Reglamento	Clase de <i>bulto</i> o material	Necesidad de aprobación por la autoridad competente		Obligación del <i>remitente</i> de notificar al país de origen y a los países en	
		País de origen	Países en ruta ^a	ruta ^a cada <i>expedición</i>	
	Bultos exceptuados ^{b,c}	No	No	No	
	Materiales BAE ^{c, d, e} y OCS ^{c,e} — Tipo BI-1, — Tipo BI-2 o — Tipo BI-3	No	No	No	
	Tipo A ^c ,d,e	No	No	No	

^a A través o dentro de cualquier otro país (pero no sobre o por encima de los cuales) se transporta la *remesa* (véase el párr. 204 del Reglamento).

En el caso del transporte internacional por correo, las *remesas* sólo podrán ser entregadas a los servicios postales por *remitentes* expresamente autorizados por las autoridades nacionales.

^c Si el *contenido radiactivo* consiste en *sustancias fisionables* exceptuadas en virtud del apartado f) del párr. 417 del Reglamento, se requerirá *aprobación multilateral* (véase el párr. 805 del Reglamento).

d Si el *contenido radiactivo* consiste en hexafluoruro de uranio en cantidades de 0,1 kg o más, serán de aplicación además los requisitos de *aprobación* de *bultos* que lo contengan (véanse los párrs. 802 y 807 del Reglamento).

^e Si el *contenido radiactivo* consiste en *sustancias fisionables* que no están exceptuadas del cumplimiento de los requisitos relativos a *bultos* que contengan *sustancias fisionables*, serán de aplicación además los requisitos de *aprobación* que figuran en los párrs. 814 y 825 del Reglamento.

RESUMEN DE REQUISITOS DE APROBACIÓN Y NOTIFICACIÓN PREVIA

ANEXO I: RESUMEN DE REQUISITOS DE APROBACIÓN Y NOTIFICACIÓN PREVIA (Parte 2)

Párrafos esenciales del	Clase de <i>bulto</i> o material	Necesidad de aprobación por la autoridad competente		Obligación del <i>remitente</i> de notificar al país de origen y a los países
Reglamento		País de origen	Países en ruta ^a	en ruta ^a cada <i>expedición</i>
808 557, 558, 825	Tipo B(U) ^{b, c, d} — Diseño del bulto — Expedición	Sí No	No ^e No	(Véanse las notas 1 y 2)
811 557, 558, 825	Tipo B(M) ^{b, c, e} — Diseño del bulto — Expedición	Sí (Véase la nota 3)	Sí (Véase la nota 3)	Sí (Véase la nota 1)
808 557, 558, 825	Tipo C ^{b, c, d} — Diseño del bulto — Expedición	Sí No	No No	(Véanse las notas 1 y 2)

^a A través o dentro de cualquier otro país (pero no sobre o por encima de los cuales) se transporta la *remesa* (véase el párr. 204 del Reglamento).

- ^c Si el *contenido radiactivo* consiste en hexafluoruro de uranio en cantidades de 0,1 kg o más, serán de aplicación además los requisitos de *aprobación* de *bultos* que lo contengan (véanse los párrs. 802 y 807 del Reglamento).
- d Si el *contenido radiactivo* consiste en *sustancias fisionables* exceptuadas en virtud del apartado f) del párr. 417 del Reglamento, se requerirá *aprobación multilateral* (véase el párr. 805 del Reglamento).
- ^e Si el *contenido radiactivo* consiste en *material radiactivo de baja dispersión*, y el *bulto* se va a expedir por vía aérea, se requiere la *aprobación multilateral* del *diseño* del *bulto* (véase el apartado b) del párr. 808) del Reglamento).

Nota 1: Antes de proceder a la primera *expedición* de cualquier *bulto* que requiera la *aprobación* del *diseño* por la *autoridad competente*, el *remitente* se encargará de que la *autoridad competente* de cada país reciba copia del certificado de *aprobación* de dicho *diseño* (véase el párr. 557 del Reglamento).

Nota 2: Se requiere notificación si el *contenido radiactivo* excede de 3 000 A_1 , o 3 000 A_2 , o 1 000 TBq, rigiendo entre estos valores el que sea menor (véase el párr. 558 del Reglamento).

Nota 3: Se requiere *aprobación multilateral* de la *expedición* si el *contenido radiactivo* excede de 3 000 A_1 , o 3 000 A_2 , o 1 000 TBq, rigiendo entre estos valores el que sea menor, o si se permite el venteo intermitente controlado (véase el párr. 825 del Reglamento).

Si el *contenido radiactivo* consiste en *sustancias fisionables* que no están exceptuadas del cumplimiento de los requisitos relativos a *bultos* que contengan *sustancias fisionables*, serán de aplicación además los requisitos de *aprobación* que figuran en los párrs. 814 y 825 del Reglamento.

ANEXO I

ANEXO I: RESUMEN DE REQUISITOS DE APROBACIÓN Y NOTIFICACIÓN PREVIA (Parte 3)

Párrafos esenciales	Clase de <i>bulto</i> o material	Necesidad de <i>aprobación</i> por la <i>autoridad competente</i>		Obligación del <i>remitente</i> de notificar al país	
del Reglamento		País de origen	Países en ruta ^a	de origen y a los países en ruta ^a cada <i>expedición</i>	
814 825	Bultos que contengan sustancias fisionables — Diseño del bulto — Expedición	Sí ^b	Sí ^b		
	$\Sigma ISC \le 50$ $\Sigma ISC > 50$	No ^c Sí	No ^c Sí	(Véanse las notas 1 y 2) (Véanse las notas 1 y 2)	
807 825	Bultos que contengan 0,1 kg o más de hexafluoruro de uranio ^d — Diseño del bulto — Expedición	Sí No ^c	Sí, en caso de H(M)/ No, en caso de	(Véance las notas 1 v 2)	
823	— Expedición	INO ⁻	en caso de H(U) No ^c	(Véanse las notas 1 y 2)	

^a *A través o dentro de* cualquier otro país (pero no sobre o por encima de los cuales) se transporta la *remesa* (véase el párr. 204 del Reglamento).

b Los *diseños* de *bultos* que contengan *sustancias fisionables* pueden requerir también la *aprobación* con respecto a uno de los otros apartados del Anexo I.

No obstante, las *expediciones* pueden requerir también la *aprobación* con respecto a uno de los otros apartados del Anexo I.

d Si el *contenido radiactivo* consiste en *sustancias fisionables* exceptuadas en virtud del apartado f) del párr. 417 del Reglamento, se requerirá *aprobación multilateral* (véase el párr. 805 del Reglamento).

Nota 1: El requisito de *aprobación multilateral* relativo a *bultos* de *sustancias fisionables* y a algunos *bultos* de hexafluoruro de uranio hace que se satisfaga automáticamente el requisito del párr. 557 del Reglamento.

Nota 2: Se requiere notificación si el contenido excede de 3 $000A_1$, o 3 $000A_2$, o 1 000 TBq, rigiendo entre estos valores el que sea menor (véase el párr. 558 del Reglamento).

RESUMEN DE REQUISITOS DE APROBACIÓN Y NOTIFICACIÓN PREVIA

ANEXO I: RESUMEN DE REQUISITOS DE APROBACIÓN Y NOTIFICACIÓN PREVIA (Parte 4)

Párrafos esenciales del	Clase de <i>bulto</i> o material	Necesidad de aprobación por la autoridad competente		Obligación del <i>remitente</i> de notificar al país de origen y a los países	
Reglamento		País de origen	Países en ruta ^a	en ruta ^a cada <i>expedición</i>	
803	Materiales radiactivos en forma especial — Diseño	Sí	No	No	
825	— Expedición	(Véase la nota 1)	(Véase la nota 1)	(Véase la nota 1)	
	Materiales radiactivos				
803	<i>de baja dispersión</i> — Diseño	Sí	Sí	No	
825	— Expedición	(Véase la nota 1)	(Véase la nota 1)	(Véase la nota 1)	
550,002,020	Arreglos especiales	G'	G'	G'	
558, 802, 829	— Expedición Bultos del Tipo B(U) cuyo diseño se ha aprobado de conformidad con:	Sí	Sí	Sí	
820	— el Reglamento de 1973	Sí	Sí	(Véase la nota 2)	
820	— el Reglamento de 1985	Sí	Sí	(Véase la nota 2)	
805	Sustancias fisionables exceptuadas de la clasificación como "FISIONABLES", de conformidad con el párr. 606	Sí	Sí	No	
817	Remesa de instrumentos o artículos exenta	Sí	Sí	No	

^a A través o dentro de cualquier otro país (pero no sobre o por encima de los cuales) se transporta la *remesa* (véase el párr. 204 del Reglamento).

Nota 1: Véanse los requisitos de *aprobación* y notificación previa para el *bulto* de que se trata. Nota 2: Antes de proceder a la primera *expedición* de cualquier *bulto* que requiera la *aprobación* del *diseño* por la *autoridad competente*, el *remitente* se encargará de que la *autoridad competente* de cada país reciba copia del certificado de *aprobación* de dicho *diseño* (véase el párr. 557 del Reglamento).

ANEXO I

REFERENCIAS DEL ANEXO I

- [I-1] ORGANISMO INTERNACIONAL DE ENERGÍA ATÓMICA, Convención sobre la protección física de los materiales nucleares, INFCIRC/274/ Rev.1, OIEA, Viena (1980).
- [I–2] ORGANISMO INTERNACIONAL DE ENERGÍA ATÓMICA, Recomendaciones de Seguridad Física Nuclear sobre la Protección Física de los Materiales y las Instalaciones Nucleares, (INFCIRC/225/Rev.5), Colección de Seguridad Física Nuclear del OIEA Nº 13, OIEA, Viena (2012).
- [I-3] ORGANISMO INTERNACIONAL DE ENERGÍA ATÓMICA, Orientaciones y sugerencias para la aplicación del documento INFCIRC/225/Rev.4, Protección Física de los Materiales y las Instalaciones Nucleares, IAEA-TECDOC-967 (Rev.1), OIEA, Viena (2002)
- [I–4] ORGANISMO INTERNACIONAL DE ENERGÍA ATÓMICA, Security in the Transport of Radioactive Material, Colección de Normas de Seguridad Física Nuclear del OIEA Nº 9, OIEA, Viena (2008).
- [I–5] ORGANISMO INTERNACIONAL DE ENERGÍA ATÓMICA, Código de conducta sobre la seguridad tecnológica y física de las fuentes radiactivas, IAEA/CODEOC/2004, OIEA, Viena (2004).
- [I–6] ORGANISMO INTERNACIONAL DE ENERGÍA ATÓMICA, Directrices sobre la importación y exportación de fuentes radiactivas, OIEA, Viena (2012).

Anexo II

FACTORES DE CONVERSIÓN Y PREFIJOS

En la presente edición del Reglamento para el transporte seguro de materiales radiactivos se utiliza el Sistema Internacional de Unidades (SI). Los factores de conversión para unidades no pertenecientes al SI son:

UNIDADES DE RADIACIÓN

Actividad en bequerelios (Bq) o curios (Ci)

1 Ci =
$$3.7 \times 10^{10}$$
 Bq
1 Bq = 2.7×10^{-11} Ci

Dosis equivalente en sievert (Sv) o rem

1 rem =
$$1.0 \times 10^{-2}$$
 Sv
1 Sv = 100 rem

PRESIÓN

Presión en pascales (Pa) o (kgf/cm²)

CONDUCTIVIDAD

La conductividad en siemens por metro (S/m) o (mho/cm)

$$10 \mu mho/cm = 1 mS/m$$
 ó $1 mho/cm = 100 S/m$ $1 S/m = 10^{-2} mho/cm$

ANEXO II

PREFIJOS Y SIMBOLOS DEL SI

Los múltiplos y submúltiplos decimales de una unidad pueden formarse mediante prefijos o símbolos, que tendrán los siguientes significados, colocados antes del nombre o símbolo de la unidad.

Factor de multiplicación	Prefijo	Símbolo
$1\ 000\ 000\ 000\ 000\ 000\ 000 = 10^{18}$	exa	Е
$1\ 000\ 000\ 000\ 000\ 000 = 10^{15}$	peta	P
$1\ 000\ 000\ 000\ 000 = 10^{12}$	tera	T
$1\ 000\ 000\ 000 = 10^9$	giga	G
$1\ 000\ 000 = 10^6$	mega	M
$1\ 000 = 10^3$	kilo	k
$100 = 10^2$	hecto	h
$10 = 10^1$	deca	da
$0.1 = 10^{-1}$	deci	d
$0.01 = 10^{-2}$	centi	c
$0,001 = 10^{-3}$	mili	m
$0,000\ 001 = 10^{-6}$	micro	μ
$0,000\ 000\ 001 = 10^{-9}$	nano	n
$0,000\ 000\ 000\ 001 = 10^{-12}$	pico	p
$0,000\ 000\ 000\ 000\ 001 = 10^{-15}$	femto	f
$0,000\ 000\ 000\ 000\ 000\ 001 = 10^{-18}$	atto	a

Anexo III

RESUMEN DE REMESAS QUE DEBEN EXPEDIRSE SEGÚN LA MODALIDAD DE USO EXCLUSIVO

Las siguientes *remesas* deben expedirse según la modalidad de *uso exclusivo*:

- a) Materiales *BAE-I* y *OCS-I* sin embalar (véase el párr. 520);
- b) Materiales *BAE-I* en estado líquido en *bultos del Tipo BI-1* (véanse el párr. 521 y el Cuadro 5);
- c) Materiales *BAE-II* en estado gaseoso y/o líquido en *bultos del Tipo BI-2* (véanse el párr. 521 y el Cuadro 5);
- d) Materiales *BAE-III* en *bultos del Tipo BI-2* (véanse el párr. 521 y el Cuadro 5);
- e) Bultos o sobreenvases que tengan un IT superior a 10 o remesas que tengan un ISC superior a 50 (véanse los párrs. 526 y 567);
- f) Bultos o sobreenvases cuyo nivel de radiación máximo en cualquier punto de las superficies externas exceda de 2 mSv/h (véase el párr. 527);
- g) *Medios de transporte* o *contenedores grandes* cargados con una suma total de *IT* superior a los valores indicados en el Cuadro 10 (véase el apartado a) del párr. 566);
- h) *Medios de transporte* o *contenedores grandes* cargados con una suma total de *ISC* superior a los valores indicados en el Cuadro 11 bajo el rubro "no en la modalidad de *uso exclusivo*" (véase el párr. 569);
- i) Bultos del Tipo B(U), del Tipo B(M) o del Tipo C cuya temperatura en las superficies accesibles exceda de 50°C cuando estén sometidos a una temperatura ambiente de 38°C en ausencia de irradiación solar (véase el párr. 654);
- j) Hasta 45 g de *nucleidos fisionables* en un *medio de transporte*, embalados o sin embalar, de conformidad con las disposiciones del apartado e) del párr. 417 y del apartado d) del párr. 520;
- k) *Bultos* que contengan *sustancias fisionables* clasificadas como no fisionables o fisionables exceptuadas en virtud del inciso i) o iii) del apartado a) del párr. 417 de la edición de 2009 del presente Reglamento (véase el párr. 822).

Aceña Moreno, V. Consejo de Seguridad Nuclear (España)

Alter, U. Ministerio Federal de Medio Ambiente (Alemania)

Anikin, A. Servicio Federal de Supervisión Ambiental, Industrial

y Nuclear de Rusia (Federación de Rusia)

Ardouin, C. Laboratorio Radiológico Nacional (Nueva Zelandia)

Ashour Al-Jeidi, J. Libia

Askitoglu, E. Inspección Federal de Seguridad Nuclear (Suiza)

Barlow, I. Departamento de Transporte (Reino Unido)

Barto, A. Comisión Reguladora Nuclear

(Estados Unidos de América)

Barton, N. Departamento de Transporte (Reino Unido)

Belamaric, N. Oficina Estatal de Protección Radiológica (Croacia)

Binet, J. Comisión Europea

Blahova, V. Oficina Estatal de Seguridad Nuclear (República

Checa)

Börst, F. Oficina Federal de Protección Radiológica (Alemania)

Bove, R. ENEA/FPN (Italia)

Boyle, R. Departamento de Transporte

(Estados Unidos de América)

Brach, E. Comisión Reguladora Nuclear

(Estados Unidos de América)

Brennan, D. Asociación de Transporte Aéreo Internacional

Buchelnikov, A. Corporación Estatal de Energía Atómica

(Federación de Rusia)

Busitta, M.A. Ente de Energía Atómica (Libia)

Buxo da Trindade, R. Unidad de Protección y Seguridad Radiológicas del

Instituto Tecnológico y Nuclear (Portugal)

Cabianca, T. Agencia de Protección de la Salud (Reino Unido)

Capadona, N. Autoridad Regulatoria Nuclear (Argentina)

Carenini, L. Instituto de Radioprotección y Seguridad Nuclear

(IRSN) (Francia)

Charette, M. CAMECO (Canadá)

Cho, D. Instituto de Seguridad Nuclear de Corea

(República de Corea)

Conroy, M. Departamento de Transporte

(Estados Unidos de América)

Cook, J. Comisión Reguladora Nuclear

(Estados Unidos de América)

Cottens, E. Agencia Federal de Control Nuclear (Bélgica)

Crook, P. Departamento de Transporte (Reino Unido)

Darby, S. Instituto Mundial de Transporte Nuclear

Dekker, B. Instituto Mundial de Transporte Nuclear

Desnoyers, B. Instituto Mundial de Transporte Nuclear

Droste, B. Instituto Federal para la Investigación y el Ensayo de

Materiales (Alemania)

Duchacek, V. Oficina Estatal de Seguridad Nuclear

(República Checa)

Duffy, J. Instituto de Protección Radiológica de Irlanda (Irlanda)

Dziubiak, T. Organismo Nacional de Energía Atómica (Polonia)

Edgecombe, R. Nordion Inc. (Canadá)

Elkikly, A.E. Libia

El-Shinawy, R. Organismo de Energía Atómica (Egipto)

Enríquez Marchal, C. Empresa Nacional de Residuos Radiactivos S.A.

(España)

Ershov, V. Corporación Estatal de Energía Atómica

(Federación de Rusia)

Ertürk, K. Autoridad de Energía Atómica (Turquía)

Eshragi, A. Organización de Energía Atómica del Irán

(República Islámica del Irán)

Faille, S. Comisión Canadiense de Seguridad Nuclear (Canadá)

Faludi, R. ELCF (Federación Europea de Fabricantes de

Bombillas)

Fasten, C. Oficina Federal de Protección Radiológica (Alemania)

Fierbintu, T. Comisión Nacional de Control de Actividades

Nucleares (Rumania)

Fulford, G. Nordion Inc. (Canadá)

Fuller, J. Departamento de Transporte (Reino Unido)

Garg, R. Comisión Canadiense de Seguridad Nuclear (Canadá)

Gessl, M. Federación Internacional de Asociaciones de Pilotos de

Líneas Aéreas

Getrey, C. Instituto de Radioprotección y Seguridad Nuclear

(IRSN) (Francia)

Girkens, P. Ministerio Federal de Transportes, Obras Públicas y

Urbanismo (Alemania)

Glenn, K. Comisión Canadiense de Seguridad Nuclear (Canadá)

Gorlin, S. Asociación Nuclear Mundial

Gozalo, L. Autoridad de Seguridad Nuclear/Dirección de

Actividades Industriales y Transportes (Francia)

Gullö, J. Agencia Sueca de Contingencias Civiles (Suecia)

Hajizadeh, B. Organización de Energía Atómica del Irán

(República Islámica del Irán)

Hanaki, I. Organismo de Seguridad Nuclear e Industrial (Japón)

Hellsten, S. Organismo de Seguridad Radiológica y Nuclear

(Finlandia)

Herrati, A. Centro de Investigación Nuclear de Argel (Argelia)

Hesius, M. Agencia Federal de Control Nuclear (Bélgica)

Hinrichsen, P. Organismo Nacional de Reglamentación Nuclear

(Sudáfrica)

Hirose, M. Instituto Mundial de Transporte Nuclear

Hishida, M. Organización de Seguridad de la Energía Nuclear

(Japón)

Hornkjøl, S. Autoridad Noruega de Protección Radiológica

(Noruega)

Hughes, S. Agencia de Protección de la Salud (Reino Unido)

Hursthouse, J. Departamento de Transporte (Reino Unido)

Ikoma, Y. Secretaría de la Comisión de Seguridad Nuclear

(Japón)

Ilijas, B. Oficina Estatal de Seguridad Radiológica y Nuclear

(Croacia)

Ito, D. Instituto Mundial de Transporte Nuclear

Itoh, C. Instituto Central de Investigación para la Industria de la

Energía Eléctrica (Japón)

Iwasa, T. Ministerio de Educación, Cultura, Deportes, Ciencia y

Tecnología (Japón)

Jacob, E. Delegado de seguridad nuclear y protección

radiológica para actividades e instalaciones de defensa nacional/Autoridad de Seguridad Nuclear

de Defensa (Francia)

Jutier, L. Instituto de Radioprotección y Seguridad

Nuclear/Dirección de Seguridad de las Usinas, los

Laboratorios, el Transporte y los Desechos

(Francia)

Kapoor, A. Departamento de Energía (Estados Unidos de América)

Katona, T. Academia de Ciencias (Hungría)

Kavanagh, J. Nordion Inc. (Canadá)

Kekli, A. Centro de Investigaciones sobre Energías Renovables y

Desalación del Agua (Libia)

Kent, N. Instituto Mundial de Transporte Nuclear

Kervella, O. Comisión Económica de las Naciones Unidas para

Europa

Kirchnawy, F. Ministerio Federal de Transporte, Innovación y

Tecnología (Austria)

Koch, F. Inspección Federal de Seguridad Nuclear (Suiza)

Kojima, S. Organismo de Seguridad Nuclear e Industrial (Japón)

Komann, S. Instituto Federal para la Investigación y el Ensayo de

Materiales (Alemania)

Konnai, A. Instituto Nacional de Investigación Marítima (Japón)

Korbmacher, T. Instituto Mundial de Transporte Nuclear

Krzaniak, M. Nordion Inc. (Canadá)

Kueny, L. Autoridad de Seguridad Nuclear (Francia)

Lahkola, A. Organismo de Seguridad Radiológica y Nuclear

(Finlandia)

Lamarche, D. Transporte de Canadá (Canadá)

Landier, D. Autoridad de Seguridad Nuclear (Francia)

Leblanc, V. Agencia Federal de Control Nuclear (Bélgica)

Li, X. CNNC Everclean Co. Ltd. (China)

Lizot, M. Autoridad de Seguridad Nuclear/Dirección de

Actividades Industriales y Transportes (Francia)

López Vietri, J. Autoridad Regulatoria Nuclear (Argentina)

Lourtie, G. Agencia Federal de Control Nuclear (Bélgica)

Malesys, P. Organización Internacional de Normalización

Marzo, G. Agencia Nacional para Nuevas Tecnologías, Energía y

Desarrollo Económico Sostenible (ENEA) (Italia)

McGhee, S. Nordion Inc. (Canadá)

Mennerdahl, D. E. Mennerdahl Systems (Suecia)

Miller, J. Asociación Internacional de Suministradores y

Productores de Fuentes

Mirfakhraei, P. Comisión Canadiense de Seguridad Nuclear (Canadá)

Mochizuki, H. Instituto Nacional de Investigación Marítima (Japón)

Mohajane, E. Sudáfrica

Mohd Sobari, M. Junta de Concesión de Licencias de Energía Atómica

(Malasia)

Mosoeunyane, S. Organismo Nacional de Reglamentación Nuclear

(Sudáfrica)

Muneer, M. Autoridad Reguladora Nuclear (Pakistán)

Nada, A. Organismo de Energía Atómica (Egipto)

Neau, H. Instituto Mundial de Transporte Nuclear

Neuman, I. EU.select GmbH (Bélgica)

Nitsche, F. Oficina Federal de Protección Radiológica (Alemania)

O Connor, G. Departamento de Transporte (Reino Unido)

O'Connor, S. Departamento de Energía (Estados Unidos de América)

Odano, N. Instituto Nacional de Investigación Marítima (Japón)

Olma, R. EU.select GmbH (Bélgica)

Ordaz, V. Comisión Reguladora Nuclear

(Estados Unidos de América)

Orsini, A. Agencia Nacional para Nuevas Tecnologías, Energía y

Desarrollo Económico Sostenible (ENEA) (Italia)

Ortiz de Echevarria Diez, I. Instituto de Radioprotección y Seguridad

Nuclear/Dirección de Seguridad de las Usinas, los

Laboratorios, el Transporte y los Desechos

(Francia)

Oue, K. Organismo de Seguridad Nuclear e Industrial (Japón)

Owen, G. International Nuclear Services (Reino Unido)

Oyinloye, J. Departamento de Transporte (Reino Unido)

Parks, C. Laboratorio Nacional de Oak Ridge

(Estados Unidos de América)

Patasius, Z. Cuerpo de Inspección Estatal de Seguridad de la

Energía Nucleoeléctrica (Lituania)

Patko, A. NAC International (Estados Unidos de América)

Pecnik, M. Oficina Estatal de Protección Radiológica (Croacia)

Rahim, I. Organización Marítima Internacional

Rashid, M. Autoridad Reguladora Nuclear (Pakistán)

Reculeau, J. Delegado de seguridad nuclear y protección

radiológica para actividades e instalaciones de defensa nacional/Autoridad de Seguridad

Nuclear de Defensa (Francia)

Reiche, I. Oficina Federal de Protección Radiológica (Alemania)

Richartz, M. Ministerio Federal de Medio Ambiente, Protección de

la Naturaleza y Seguridad Nuclear (Alemania)

Roelofsen, E. Covidien (Países Bajos)

Rooney, K. Organización de Aviación Civil Internacional

Rossi, L. Comisión Europea

Rubio de Juan, E. Consejo de Seguridad Nuclear (España)

Safar, J. Autoridad de Energía Atómica (Hungría)

Sallit, G. Departamento de Transporte (Reino Unido)

Sampson, M. Comisión Reguladora Nuclear

(Estados Unidos de América)

Sannen, H. Bélgica

Sarkar, S. Agencia Australiana de Protección Radiológica y

Seguridad Nuclear (Australia)

Sauron, C. Autoridad de Seguridad Nuclear (Francia)

Savic, N. Ministerio Federal de Transporte, Innovación y

Tecnología (BMVIT) (Austria)

Schwela, U. Centro Internacional de Estudios del Tantalio-Niobio

Sekse, T. Autoridad Noruega de Protección Radiológica

(Noruega)

Sen, A. Departamento de Transporte (Reino Unido)

Sert, G. Instituto de Radioprotección y Seguridad

Nuclear/Dirección de Seguridad de las Usinas, los Laboratorios, el Transporte y los Desechos

(Francia)

Shukri, T. Representante Permanente de la Ciudad Rey Abdulaziz

para la Ciencia y la Tecnología (Arabia Saudita)

Singh, K. Junta Reguladora de la Energía Atómica (India)

Smith, J. Comisión Reguladora Nuclear

(Estados Unidos de América)

Statkus, V. Centro de Protección Radiológica (Lituania)

Stroem, K. Agencia Sueca de Contingencias Civiles (Suecia)

Svahn, B. Autoridad Sueca de Seguridad Radiológica (Suecia)

Svein-Erik, C. Autoridad Noruega de Protección Radiológica

(Noruega)

Takani, M. Instituto Mundial de Transporte Nuclear

Taniuchi, H. Transnuclear Ltd. (Japón)

Ter Morshuizen, M. Ministerio de Vivienda, Planificación Espacial y Medio

Ambiente (Países Bajos)

Tezuka, H. Organización de Seguridad de la Energía Nuclear

(Japón)

Tikkinen, J. Organismo de Seguridad Radiológica y Nuclear

(Finlandia)

Trivelloni, S. Agencia de Protección del Medio Ambiente y Servicios

Técnicos (Italia)

Turner, M. Departamento de Transporte (Reino Unido)

Twala, V. Eskom (Sudáfrica)

van Aarle, J. Nordostschweizerische Kraftwerke AG (Suiza)

Van de Put, F. ELCF (Federación Europea de Fabricantes de

Bombillas)

Vince, D. Departamento de Transporte (Reino Unido)

Vogiatzi, S. Comisión Griega de Energía Atómica (Grecia)

Welleman, E. Autoridad Sueca de Seguridad Radiológica (Suecia)

Whittingham, S. Departamento de Transporte (Reino Unido)

Wille, F. Instituto Federal para la Investigación y el Ensayo de

Materiales (Alemania)

Wortmann, G. Asociación Internacional de Suministradores y

Productores de Fuentes

Xavier, A. Comisión Nacional de Energía Nuclear (Brasil)

Yamaguchi, M. Organización de Seguridad de la Energía Nuclear

(Japón)

Yamanaka, T. Organización de Seguridad de la Energía Nuclear

(Japón)

Yamasaki, A. Nippon Kaiji Kentei Kyokai (Japón)

Yamauchi, T. Organismo de Seguridad Nuclear e Industrial (Japón)

Young, C. Consultor (Reino Unido)

Zamora Martín, F. Consejo de Seguridad Nuclear (España)

Zika, H. Autoridad Sueca de Seguridad Radiológica (Suecia)

Se reconoce la inestimable contribución de muchos otros participantes que colaboraron en el examen y la revisión de esta publicación en los Estados Miembros.

ENTIDADES ENCARGADAS DE LA APROBACIÓN DE LAS NORMAS DE SEGURIDAD DEL OIEA

El asterisco indica que se trata de un miembro corresponsal. Estos miembros reciben borradores para formular observaciones, así como otra documentación pero, generalmente, no participan en las reuniones. Dos asteriscos indican un suplente

Comisión sobre Normas de Seguridad

Alemania: Vorwerk, A.; Argentina: González, A.J.; Australia: Larsson, C.-M.; Bélgica: Samain, J.-P.; Brasil: Salati de Almeida, I.P.; Canadá: Jammal, R.; China: Jun Yu; Corea, República de: Yun, C.-H.; Emiratos Árabes Unidos: Travers, W.; España: Gurguí Ferrer, A.; Estados Unidos de América: Weber, M.; Federación de Rusia: Bezzubtsev, V.S.; Finlandia: Reiman, L.; Francia: Lacoste, A.-C.; *India*: Bajaj, S.S.; *Israel*: Markovits, M.; *Japón*: Nakamura, K.; Lituania: Demčenko, M.; Malasia: Raja Adnan, R.; Marruecos: Soufi, I.; Pakistán: Habib, M.A.; Reino Unido: Weightman, M.; República Checa: Drábová, D. (Presidencia); Sudáfrica: Phillips, C.O.; Suecia: Lund, I.; Agencia para la Energía Nuclear de la OCDE: Yoshimura, U.; Comisión Europea: Faross, P.; Comisión Internacional de Protección Radiológica: Cousins, C.; Grupo Asesor sobre seguridad física nuclear: Raja Adnan, A.; Grupo Internacional de Seguridad Nuclear: Meserve, R.; OIEA: Delattre, D. (Coordinación); Presidentes de los Comités sobre Normas de Seguridad: Feron, F. (NUSSC); Massera, G. (RASSC); Brach, E.W. (TRANSSC); Williams, G. (WASSC).

Comité sobre Normas de Seguridad Nuclear

Alemania: Weidenbrück, K.; *Argelia: Merrouche, D.; Argentina: Waldman, R.; Australia: Ward, J.; Austria: Sholly, S.; Bélgica: De Boeck, B.; Brasil: Gromann, A.; *Bulgaria: Vlahov, N.; Canadá: Rzentkowski, G.; China: Li, Jingxi; *Chipre: Demetriades, P.; Corea, República de: Lee, S.; Croacia: Medakovič, S.; Egipto: Ibrahim, M.; Emiratos Árabes Unidos: Grant, I.; Eslovaquia: Uhrik, P.; Eslovenia: Vojnovič, D.; España: Zarzuela, J.; Estados Unidos de América: Case, M.; Federación de Rusia: Stroganov, A.; Finlandia: Järvinen, M.-L.; Francia: Feron, F. (Presidencia); *Grecia: Nikolaou, G.; Hungría: Adorján, F.; India: Vaze, K.; *Indonesia: Antariksawan, A.; Irán, República Islámica del: Mataji Kojouri, N.; Israel: Harari, R.; Italia: Matteocci, L.; Japón: Maki, S.; Libia: Abulagassem, O.; Lituania:

Šlepavičius, S.; *Malasia*: Azlina Mohammed Jais; *Marruecos*: Soufi, I.; *México*: Carrera, A.; *Pakistán*: Mansoor, F.; *Panamá*: Gibbs, E.; *Polonia*: Kielbasa, W.; *Reino Unido*: Hart, A; *República Checa*: Vesely, J.; *Rumania*: Ciurea-Ercau, C.; *Suecia*: Hallman, A.; *Suiza*: Flury, P.; **Tailandia*: Siripirom, L.; **Turquía*: Kilinc, B.; *Ucrania*: Gromov, G.; *Agencia para la Energía Nuclear de la OCDE*: Reig, J.; *Asociación Nuclear Mundial*: Fröhmel, T.; *Comisión Electrotécnica Internacional*: Bouard, J.-P.; *Comisión Europea*: Vigne, S.; *ENISS*: Bassing, G.; *OIEA*: Svab, M. (Coordinación); *Organización Internacional de Normalización*: Sevestre, B.

Comité sobre Normas de Seguridad Radiológica

Alemania: Helming, M.; *Argelia: Chelbani, S.; Argentina: Massera, G. (Presidencia), **Gregory, B.; Australia: Topfer, H.; *Austria: Karg, V.; Bélgica: van Bladel, L.; Brasil: Da Hora Marechal, M.H.; *Bulgaria: Katzarska, L.; Canadá: Thompson, P.; China: Yang, H.; *Chipre: Demetriades, P.; Corea, República de: Rho, S.; Croacia: Kralik, I.; Dinamarca: Øhlenschlæger, M.; Egipto: Hamed Osman, A.; Emiratos Árabes Unidos: Loy, J; Eslovaquia: Jurina, V.; Eslovenia: Sutej, T.; España: Álvarez, C.; Estados Unidos de América: McDermott, B.; Federación de Rusia: Mikhenko, S.; Finlandia: Markkanen, M.; Francia: Godet, J.-L.; *Grecia: Kamenopoulou, V.; Hungría: Koblinger, L.; India: Sharma, D.N.; *Indonesia: Rusdian, Y.; Irán, República Islámica del: Kardan, M.R.; Irlanda: Pollard, D.; Israel: Koch, J.; Italia: Bologna, L.; Japón: Nagata, M.; Libia: El-Fawaris, B.; Lituania: Mastauskas, A.; Malasia: Mishar, M.; México: Delgado Guardado, J.; Noruega: Saxebol, G.; Nueva Zelandia: Cotterill, A.; Países Bajos: Vermeulen, T.; Pakistán: Nasim, B.; Panamá: Gibbs, E.; Perú: Ramírez Quijada, R.; Polonia: Merta, A.; Reino Unido: Temple, C.; República Checa: Petrova, K.; Rumania: Preoteasa, A.; Sudáfrica: Tselane, T.J.; Suecia: Hägg, A.; Suiza: Leupin, A.; *Tailandia: Suntarapai, P.; *Turquía: Celik, P.; Ucrania: Pavlenko, T.; Agencia para la Energía Nuclear de la OCDE: Lazo, T.E.; Asociación Internacional de Protección Radiológica: Kase, K.; Asociación Internacional de Suministradores y Productores de Fuentes: Fasten, W.; Asociación Nuclear Mundial: Saint-Pierre, S.; Comisión Europea: Janssens, A.; Comisión Internacional de Protección Radiológica: Clement, C.: Comité Científico de las Naciones Unidas para el Estudio de los Efectos de las Radiaciones Atómicas: Crick, M.; European Nuclear Installation Safety Standards: Lorenz, B.; Oficina Internacional del Trabajo: Niu, S.; OIEA: Colgan, P.A. (Coordinación); Organización de las Naciones Unidas para la Alimentación y la Agricultura: Byron, D.; Organización Internacional de Normalización: Rannou, A.; Organización Mundial de la Salud: Peres, M.; Organización Panamericana de la Salud: Jiménez, P.

Comité sobre Normas de Seguridad en el Transporte

Alemania: Richartz, M., **Nitsche, F.; Argelia: Herrati, A.; Argentina: López Vietri, J.; Australia: Sarkar, S.; Austria: Kirchnawy, F.; Bélgica: Lourtie, G.; Brasil: Xavier, A.M.; *Bulgaria: Bakalova, A.; Canadá: Faille, S.; China: Xiaoqing, Li; *Chipre: Demetriades, P.; Corea, República de: Cho, D.; Croacia: Ilijas, B.; Egipto: Nada, A.; España: Zamora, F.; Estados Unidos de América: Boyle, R.W.; **Brach, E.W. (Presidencia); **Weaver, D.; Federación de Rusia: Buchelnikov, A., **Ershov, V., **Anikin, A.; Finlandia: Lahkola, A.; Francia: Kueny, L., **Sert, G.; *Grecia: Vogiatzi, S.; Hungría: Sáfár, J.; India: Singh, K.; *Indonesia: Sinaga, D.; Irán, República Islámica del: Eshraghi, A.; Irlanda: Duffy, J.; Italia: Trivelloni, S.; Japón: Kojima, S.; Lituania: Statkus, V.; Malasia: Mohd Sobari, M.P.; **Hussain, Z.A.; *Marruecos: Allach, A.; México: Bautista Arteaga, D.M.; **Delgado Guardado, J.L.; Noruega: Hornkjøl, S.; *Nueva Zelandia: Ardouin, C.; Países Bajos: Ter Morshuizen, M.; Pakistán: Muneer, M.; Panamá: Francis, D.; *Polonia: Dziubiak, T.; Reino Unido: Sallit, G.; República Checa: Ducháček, V.; Sudáfrica: Mohajane, P., **Hinrichsen, P., **Mmutle, N.; Suecia: Zika, H.; Suiza: Koch, F.; *Tailandia: Jerachanchai, S.; *Turquía: Türkes Yilmas, S.; Ucrania: Kutuzova, T.; Asociación de Transporte Aéreo Internacional: Brennan, D.; Asociación Internacional de Suministradores y Productores de Fuentes: Miller, J.J.; Asociación Nuclear Mundial: Gorlin, S.; Comisión Económica de las Naciones Unidas para Europa: Kervella, O.; Comisión Europea: Binet, J.; Instituto Mundial de Transporte Nuclear: Neau, H.J.; OIEA: Stewart, J.T. (Coordinación); Organización de Aviación Civil Internacional: Rooney, K.; Organización Internacional de Normalización: Malesys, P.; Unión Postal *Universal*: Bowers, D.G.

Comité sobre Normas de Seguridad de los Desechos

Alemania: Götz, C.; *Argelia: Ghezal, A.; Argentina: Lee Gonzales, H.A.; Australia: Williams, G. (Presidencia); *Austria: Fischer, H.; Bélgica: Blommaert, W.; Brasil: De Souza Ferreira, R.; *Bulgaria: Alexiev, A.; Canadá: Howard, D.; China: Zhimin Qu; Chipre: Demetriades, P.; Corea, República de: Park, W.-J.; Croacia: Trifunovic, D.; Dinamarca: Hannesson, H.; Egipto: Abdel-Geleel, M.; Eslovaquia: Homola, J.; Eslovenia: Kroselj, V.; España: López de la Higuera, J.; Estados Unidos de América: Camper, L.; Federación de Rusia: Polyakov, Y.; Finlandia: Hutri, K.; Francia: Evrard, L.; *Grecia: Mitrakos, D.; Hungría: Molnár, B.; India: Rana, D.; *Indonesia: Wisnubroto, D.; Irán, República Islámica del: Sebteahmadi, S.; Iraq: Al-Janabi, M.; Israel: Torgeman, S.; Italia: Dionisi, M.; Japón: Shiozaki, M.; Libia: Gremida, K.; Lituania: Paulikas, V.;

ENTIDADES ENCARGADAS DE LA APROBACIÓN DE LAS NORMAS DE SEGURIDAD DEL

Malasia: Hassan, H.; *Marruecos: Bouanani, A.; México: Aguirre Gómez, J.; *Nueva Zelandia: Cotterill, A.; Países Bajos: van der Shaaf, M.; Reino Unido: Chandler, S.; República Checa: Lietava, P.; Rumania: Rodna, A.; Sudáfrica: Mosoeunyane, S.; Suecia: Hedberg, B.; Suiza: Altorfer, F.; *Tailandia: Supaokit, P.; *Turquía: Ünver, Ö.; Ucrania: Kondratyev, S.; ; Agencia para la Energía Nuclear de la OCDE: Riotte, H.; Asociación Internacional de Suministradores y Productores de Fuentes: Fasten, W.; Asociación Nuclear Mundial: Saint-Pierre, S.; Comisión Europea: Necheva, C.; European Nuclear Installation Safety Standards-FORATOM: Nocture, P.; OIEA: Siraky, G. (Coordinación); Organización Internacional de Normalización: James, M.

(con los párrafos en orden numérico)

- *A*₁: 201, 402, 404–407, 428, 429–430, 433, 558, 825
- *A*₂: 201, 402–407, 409, 410, 428, 429, 430, 433, 546, 558, 601, 605, 659, 660, 671, 730, 825
- Actividad específica: 226, 240, 409
- Agua: 106, 217, 409, 536, 601, 603, 605, 611, 660, 672, 673, 680, 681, 683–685, 703, 710, 711, 719–721, 726, 729–733, 836, 838
- Alivio de presión: 633, 646, 662
- Almacenamiento: 106, 505, 507, 562, 568, 569
- *Aprobación multilateral:* 204, 310, 403, 634, 718, 803, 805, 807, 808, 811, 814, 817, 820, 825, 829, 832, 833, 838, 840
- Aprobación unilateral: 205, 503, 803, 807, 808, 823, 832
- *Arreglos especiales*: 238, 310, 434, 527, 529, 546, 558, 575, 579, 802, 829–833, 836
- Autoridad competente: 104, 204, 205, 207–209, 238, 302, 306–310, 313, 315, 403, 431, 510, 530, 534, 535, 541, 546, 556–558, 565, 576, 583, 603, 640, 667, 668, 679, 711, 801, 802, 804, 806, 807, 810, 813, 815, 816, 818–820, 823, 824, 826, 828, 830–840
- *Baja actividad específica:* 226, 244, 408–411, 517–523, 537, 540, 544, 546, 566, 572, 601, 628, 701, 703
- Blindaje: 226, 409, 501, 520, 617, 627, 628, 653, 659, 671, 716, 817
- Bulto del Tipo A: 231, 428-430, 534, 635-651, 725, 819, 832
- *Bulto del Tipo B(M)*: 231, 431–433, 501, 503, 535, 536, 558, 577, 578, 667, 668, 730, 802, 811–813, 825, 832, 833, 838
- Bulto del Tipo B(U): 231, 431–433, 501, 503, 535, 536, 558, 652–667, 730, 802, 808, 810, 812, 832
- Bulto del Tipo C: 231, 431, 432, 501, 503, 535, 536, 558, 669–672, 683, 730, 734–737, 802, 808, 810, 832
- Bulto exceptuado: 231, 419, 422–427, 515, 516, 543, 622, 819

Bulto industrial: 231, 517–524, 534, 623–630, 819, 832, 833

Buque: 217, 219, 249, 527, 575, 576, 802, 825

Calor: 104, 501, 554, 565, 603, 653, 704, 708, 728, 809, 836–838

Camión cisterna: 242

Carretera (transporte por): 106, 107, 217, 242, 248, 527, 566, 571–574

Categorías de bultos: 529, 530, 538, 540, 546, 563, 573

Certificado de *aprobación*: 104, 111, 204, 205, 238, 310, 403, 418, 431–433, 501, 503, 530, 535, 541, 546, 556, 557, 559–561, 565, 570, 634, 667, 679, 718, 801–808, 810, 811, 813, 814, 816, 818, 827, 828, 831–840

Cisterna: 242, 505, 509, 514, 523, 538, 539, 543, 544, 551, 571, 627, 628

Condiciones ambientales: 616, 619, 620, 645, 653–656, 666, 670, 679, 703, 710, 711, 728, 812, 836, 838

Condiciones de accidente: 106, 403, 404, 638, 673, 685, 726, 817, 820

Condiciones normales: 106, 511, 653, 673, 684, 719–725

Condiciones rutinarias: 106, 215, 424, 508, 520, 566, 573, 613, 616, 617, 627–629, 673, 682, 817

Contaminación: 107, 214–216, 309, 413, 427, 508–510, 512, 513, 520, 659, 671

Contención: 104, 232, 501, 620, 650, 653, 725, 817

Contenedor cisterna: 242

Contenedor: 218, 221, 223, 244, 313, 505, 509, 514, 523–525, 529, 538–540, 542–544, 546, 551, 554, 562, 566, 568, 569, 571, 574, 629, 809, 825, 836, 837

Controles operacionales: 229, 578, 668, 812, 827, 830, 836–838

Correo: 423, 424, 515, 580, 581

Criticidad: 101, 104, 209, 501, 606, 673, 716, 836–838

Descontaminación: 511, 513

Destinatario: 210, 221, 309, 531, 546, 582, 585

Diseño de bultos: 104, 418, 420, 433, 502, 534–536, 546, 557, 617, 618, 632, 650, 651, 676–679, 801, 802, 807–816, 820, 821, 827, 832, 833, 838, 840

Documento(s) de transporte: 313, 540, 545-547, 552-555, 584-588

Embalaje: 104, 106, 111, 209, 213, 220, 224, 231, 232, 235, 313, 409, 427, 501, 505, 531, 533–535, 581, 610, 614, 631, 639, 643, 647, 653, 665, 680, 681, 701, 718, 723, 809, 819–821, 824, 833, 836–838

Embalajes vacíos: 422, 427, 581

Emergencia: 102, 304, 305, 309, 313, 554, 836–838

Ensayo(s): 111, 224, 503, 601, 603, 605, 624, 626–630, 632, 634, 648, 650, 651, 653, 655, 658–660, 662, 663, 670–672, 674, 678, 680–685, 701–713, 716–737, 803, 805, 809, 817

Estiba: 219, 230, 313, 554, 565, 576, 809, 836–838

Etiqueta: 313, 427, 507, 530, 538–543, 545–547, 571, 574

Expedición: 204, 221, 237, 501–503, 530, 546, 557–561, 573, 576, 677, 680, 802, 803, 805, 809, 825–828, 830–838, 840

Exposición a la radiación: 244, 302, 562, 582

Fabricación: 106, 306, 403, 422, 423, 426, 501, 604, 640, 680, 713, 809, 819-821, 823, 824, 836, 838

Ferrocarril (transporte por): 106, 107, 217, 242, 248, 527, 566, 571, 572

Fijación: 638

Forma especial: 201, 220, 239, 415, 429, 430, 433, 546, 559, 602–604, 642, 659, 701, 704, 709, 802–804, 823, 832, 834, 836–838

Formalidades aduaneras: 582

Fuga: 510, 603, 632, 634, 646, 650, 673, 680, 683, 704, 710, 711, 731–733

Gas: 235, 242, 409, 628, 644, 651, 725

Hexafluoruro de uranio: 231, 419, 420, 422, 425, 523, 580, 581, 631–634, 680, 718, 802, 807, 832, 833, 838

Índice de seguridad con respecto a la criticidad: 218, 525, 526, 541, 542, 546, 566–569, 674, 675, 686, 825, 836, 838

Índice de transporte: 244, 523, 524, 526, 529, 540, 546, 566, 567

Inspección: 302, 306, 503, 582, 801

Irradiación solar: 619, 654, 655, 657, 728

Límite de actividad: 111, 201, 231, 402, 403, 405, 411, 414, 422, 423, 802, 817–820, 832, 839

Límite de actividad alternativo: 403, 802, 817, 818, 832, 839

Límites de dosis: 301

Lixiviación: 409, 603, 703, 704, 710–712

Mantenimiento: 104, 106, 680, 809, 837

Marca de identificación: 534, 535, 546, 559, 804, 806, 807, 810, 813, 816, 818, 832–839

Marcado: 313, 423, 424, 507, 530–537, 539, 545, 547, 820, 833

Masa: 240, 247, 417, 420, 425, 533, 540, 546, 559, 607, 609, 659, 674–676, 680, 685, 709, 722–724, 727, 735, 836–838

Material radiactivo de baja dispersión: 220, 225, 416, 433, 546, 559, 605, 665, 701, 703, 712, 802–804, 808, 811, 832, 834, 836–838

Medio de transporte: 104, 217, 221, 411, 414, 509, 510, 512–514, 520, 522, 524, 525, 546, 554, 566, 569, 570, 607, 809, 822, 825, 827, 836, 837

Mercancías peligrosas: 110, 506, 507, 550, 562, 627, 628, 630

N: 684-686

Nivel de radiación: 104, 233, 309, 404, 411, 414, 423, 510, 513, 516, 517, 523, 524, 527–529, 566, 573, 575, 579, 605, 617, 624, 626–630, 648, 659, 671, 817, 820

Nombre de expedición: 530, 546, 547

Normas básicas de seguridad (NBS): 101, 308, 403, 817

Notificación: 557–560, 824

Número de las Naciones Unidas (UN): 401, 419, 530, 544, 546, 572

Número de serie: 535, 820, 824

Objeto contaminado en la superficie: 241, 244, 412–414, 517–523, 537, 540, 544, 546, 572

Otras propiedades peligrosas: 507, 538, 618

Presión normal de trabajo máxima: 229, 621, 663, 664, 670, 671, 809

Presión: 229, 420, 501, 503, 616, 621, 627, 628, 633, 634, 641, 645, 646, 662-664, 670, 671, 718, 729, 730, 809

Protección radiológica: 102, 234, 302, 311, 576, 603, 711, 802, 825

Recipiente intermedio para graneles: 224, 505, 509, 514, 630

Remesa: 203,204, 210–212, 222, 236–238, 243, 305, 310, 402, 403, 405, 417, 423, 506, 525, 526, 541, 544, 546, 547, 553, 554, 556–559, 562, 564, 566, 567, 570–573, 576, 577, 580, 581, 583–586, 802, 803, 817, 818, 822, 829, 832, 836–839

Remitente: 211, 212, 221, 230, 306, 309, 531, 546–549, 554–558, 560, 561, 581, 801, 836–838

Responsabilidad: 101, 103

Rótulo: 313, 507, 543–545, 547, 571, 572

Saldo o exceso de volumen: 420, 649

Separación: 313, 562, 563, 568

Sin embalar: 222, 244, 417, 423, 514, 520, 522, 523, 544, 562, 570, 572, 673

Sistema de confinamiento: 209, 501, 681, 838

Sistema de contención: 213, 229, 501, 503, 621, 632, 641–645, 647, 650, 660, 662, 663, 672, 680, 685, 714, 716, 724, 809, 838

Sistema de gestión: 102, 105, 228, 306, 803, 805, 807, 809, 815, 817, 823, 834–838

Sistema de refrigeración: 578, 661

Sobreenvase: 218, 230, 244, 505, 509, 523–532, 538–540, 542, 546, 554, 562, 563, 565–569, 571, 573–575, 579, 825

Sustancias fisionables: 209, 218, 220, 222, 231, 409, 417–419, 501, 503, 515, 518–520, 538, 540, 546, 559, 568–570, 606, 631, 673–686, 716, 731-733, 802, 805, 806, 808, 811, 814–816, 820, 822, 825, 832, 833, 835–838

Temperatura: 229, 420, 503, 616, 619, 620, 639, 649, 654–656, 666, 670, 673, 679, 703, 708–711, 728, 812, 836, 838

Transportista: 203, 206, 309, 550, 554, 556, 584, 586–588, 836

Uso exclusivo: 221, 514, 520, 526–529, 537, 544, 546, 566, 567, 570–573, 575, 577, 654, 655, 822

Vehículo: 217, 219, 223, 242, 248, 313, 534, 551, 552, 566, 571-575, 832

Venteo: 229, 668, 820, 825

Verificación del cumplimiento: 102, 105, 208, 307

Vía aérea (transporte por): 106, 217, 243, 410, 433, 527, 577-579, 581, 606,

619-623, 635, 652, 655, 683, 820

Zona de la cubierta: 217, 219, 825

www.**arn**.gob.ar

Av. del Libertador 8250 (C1429BNP) Ciudad Autónoma de Buenos Aires República Argentina Teléfono: (+54 11) 6323-1300

E-mail: info@arn.gob.ar

Av. del Libertador 8250 (C1429BNP) Ciudad Autónoma de Buenos Aires República Argentina

> Teléfono: (+54 11) 6323-1300 E-mail: info@arn.gob.ar