

Overview

- Motivation
- Methodology
- Case Study
- Conclusion & Future Work

Categorical Data

Categorical

City

Taipei

New York

London

Tokyo

Tokyo

		Animal							Size				Color					
	Tuna	Cat	Frog	Cod	Goat	Dog	Toad	Cow	Large	Mid	Small	Tiny	White	Black	Red	Blue	Green	Gray
Bina	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0
ary	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	:	÷	÷	÷	÷	:
	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0

	Animal	Size	Color	Other Encoding	Animal	Size	Color
Cat	Cow	Big	White			4	7
ategorical	Tuna	Med Black		2	3	6	
ical	<u>:</u>	<u>:</u>	:	/	:	:	:
	Frog	Tiny	Green		7	1	3
	-0	,		<u> </u>			

	Tuna	Cat	Frog	Cod	Goat	Dog	Toad	Cow	Large	Mid	Small	Tiny	White	Black	Red	Blue	Green	Gray
Bin	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0
ary	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
	:	÷	:	:	:	÷	÷	:	:	÷	:	÷	÷	÷	:	÷	:	÷
	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0

	Animal	Size	Color
Z	10	4	7
Numerical	2	3	6
ca	:	:	÷
	7	1	3

	Tuna	Cat	Frog	Cod	Goat	Dog	Toad	Cow	Large	Mid	Small	Tiny	White	Black	Red	Blue	Green	Gray
	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0
Binary	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
	÷	÷	÷	÷	÷	÷	÷	:	:	÷	÷	÷	÷	:	÷	÷	:	÷
	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0

Grouping

- 1. Default information
- 2. PCA weight
- 3. Correlation model

Sequencing

- 1. Column sum
- 2. Feature purity
- 3. Feature importance
- 4. Optimization model

Binary-Coded Decimal

- 1. BCD
- 2. Ranked BCD

- 1. Grouping similar, correlated features
- 2. Sequencing features in each feature group
- 3. BCD encode on each feature group

Tiny	Cat	Large	Black	White	Cow
1	1	0	1	0	0
0	0	1	0	1	1
:	:	:	:	:	:
0	0	1	0	1	1

- 1. Grouping similar, correlated features
- 2. Sequencing features in each feature group
- 3. BCD encode on each feature group

Tiny	Cat	Large	Black	White	Cow
1	1	0	1	0	0
0	0	1	0	1	1
:	:	:	:		:
0	0	1	0	1	1

- 1. Grouping similar, correlated features
- 2. Sequencing features in each feature group
- 3. BCD encode on each feature group

Cat	Cow	Black	White	Tiny	Large
1	0	1	0	1	0
0	1	0	1	0	1
:	:	:	:	:	:
0	1	0	1	0	1

- 1. Grouping similar, correlated features
- 2. Sequencing features in each feature group
- 3. BCD encode on each feature group

Cow	Cat	White	Black	Tiny	Large
0	1	0	1	1	0
1	0	1	0	0	1
:	:	:	:	:	÷
1	0	1	0	0	1

- 1. Grouping similar, correlated features
- 2. Sequencing features in each feature group
- 3. BCD encode on each feature group

Animal	Color	Size
1	1	2
2	2	1
÷	:	÷
2	2	1

-problem definition

The main goal is to find the optimal G_j and S_j , such that the encoded numerical data would perform better in the classification task.

Symbol	Definition
X_i	The i^{th} feature of Binary data X , $0 \le i \le n$
g(X)	Clustering methods for X
G_{j}	The j^{th} clustered feature group
$s(G_j)$	Sequencing methods for G_j
S_{j}	Sequenced features of G_j
$BCD(S_j)$	BCD code of S_j
Y_j	The j^{th} feature of encoded numerical data

-An animal health check

-An animal health check

	Animal										
Cow	Cat	Goat	Dog	Frog	Toad	Tuna	Cod				
		V									
	Size										
Lar	Large Mid Small Tiny										
		\	/								
			Со	lor							
White	e Bla	ck Gray		Red	Red BI		Green				
	\	/									
	Health Status										
	Good Bad										
	V										

Binary Data (Total:300 samples, 200 good, 100 bad)

-An animal health check

			Ani	mal			
Cow	Cat	Goat	Dog	Frog	Toad	Tuna	Cod
		V					
			Si	ze			
Laı	ge	M	lid	Sm	nall	Ti	ny
		\	/				
			Со	lor			
White	e Bla	ack	Gray	Red	Bl	ue (Green
	\	/					
			Health	Status			
	Go	od			Ва	ad	
					١	/	

Binary Data (Total:300 samples, 200 good, 100 bad)

Animal	Cow	Cat	Goat	Dog	Frog	•••	Blue	Green
#1	0	1	0	0	0	•••	0	0
#2	1	0	0	0	0	•••	0	0
#3	0	0	0	0	0	•••	0	0
#4	0	0	0	0	0	•••	0	0
#5	0	0	1	0	0	•••	0	0
#6	0	0	0	0	1	•••	0	0
#7	0	0	0	0	0	•••	0	0
:	:	÷	÷	:	:	:	:	:
#300	0	0	0	1	0	•••	0	0

-Grouping

First, we try to find and cluster the related binary features.

- 1. Default information
- 2. PCA weight
- 3. Correlation model
 - K-means
 - Hierarchical clustering
 - Block modeling

Binary Data (Total:300 sample, 200 good, 100 bad)

Sequence

Methodology

-PCA Grouping

No.		PC 1			PC 2		PC 3			
	Feature	Abs. weight	select	Feature	Abs. weight	select	Feature	Abs. weight	select	
1.	Cow	0.562	0	Cat	0.642	X	Black	0.047	X	
2.	Cat	0.486	0	Cow	0.496	X	Goat	0.035	X	
3.	Large	0.348	0	Mid	0.402	X	Cat	0.032	X	
4.	Mid	0.311	0	Black	0.351	X	Cow	0.030	X	
5.	White	0.307	0	Goat	0.302	0	Mid	0.028	X	
6.	Black	0.202	0	Dog	0.229	0	Gray	0.023	X	
7.	Small	0.187	X	Large	0.199	X	White	0.021	X	
8.	Goat	0.153	X	Frog	0.183	0	Dog	0.020	X	
9.	Cod	0.101	X	Small	0.152	0	Large	0.018	X	
10.	Tuna	0.091	X	Gray	0.132	0	Frog	0.016	X	
11.	Dog	0.074	X	White	0.105	X	Small	0.014	X	
12.	Gray	0.060	X	Red	0.008	0	Toad	0.014	0	
13.	Frog	0.056	X	Frog	0.008	X	Tuna	0.012	0	
14.	Toad	0.032	X	Red	0.007	X	Cod	0.007	0	
15.	Red	0.029	X	Toad	0.005	X	Red	0.005	X	
16.	Tiny	0.023	X	Green	0.001	X	Tiny	0.002	0	
17.	Green	0.015	X	Tiny	0.001	X	Blue	0.001	0	
18.	Blue	0.009	X	Blue	0.001	X	Green	0.001	0	

Sequence

Methodology

-PCA Grouping

No.		PC 1			PC 2		PC 3			
	Feature	Abs. weight	select	Feature	Abs. weight	select	Feature	Abs. weight	select	
1.	Cow	0.562	0	Cat	0.642	X	Black	0.047	X	
2.	Cat	0.486	0	Cow	0.496	X	Goat	0.035	X	
3.	Large	0.348	0	Mid	0.402	X	Cat	0.032	X	
4.	Mid	0.311	0	Black	0.351	X	Cow	0.030	X	
5.	White	0.307	0	Goat	0.302	0	Mid	0.028	X	
6.	Black	0.202	0	Dog	0.229	0	Gray	0.023	X	
7.	Small	0.187	X	Large	0.199	X	White	0.021	X	
8.	Goat	0.153	X	Frog	0.183	0	Dog	0.020	X	
9.	Cod	0.101	X	Small	0.152	0	Large	0.018	X	
10.	Tuna	0.091	X	Gray	0.132	0	Frog	0.016	X	
11.	Dog	0.074	X	White	0.105	X	Small	0.014	X	
12.	Gray	0.060	X	Red	0.008	0	Toad	0.014	0	
13.	Frog	0.056	X	Frog	0.008	X	Tuna	0.012	0	
14.	Toad	0.032	X	Red	0.007	X	Cod	0.007	0	
15.	Red	0.029	X	Toad	0.005	X	Red	0.005	X	
16.	Tiny	0.023	X	Green	0.001	X	Tiny	0.002	0	
17.	Green	0.015	X	Tiny	0.001	X	Blue	0.001	0	
18.	Blue	0.009	X	Blue	0.001	X	Green	0.001	О	

Group

Sequence

BCD

Methodology

-Block modeling Grouping

	Tuna	Cat	Frog	Cod	Goat	Dog	Toad	Cow	Large	Mid	Small	Tiny	White	Black	Red	Blue	Green	Gray
Tuna	1.0	0.2	0.2	0.8	0.2	0.2	0.8	0.2	0.1	0.1	0.1	0.3	0.0	0.0	0.0	0.5	0.5	0.0
Cat	0.2	1.0	0.2	0.2	0.2	0.2	0.2	0.8	0.3	0.3	0.1	0.1	0.2	0.2	0.0	0.0	0.0	0.0
Frog	0.2	0.2	1.0	0.2	0.8	0.8	0.2	0.2	0.1	0.1	0.3	0.1	0.0	0.0	0.3	0.0	0.0	0.3
Cod	0.8	0.2	0.2	1.0	0.2	0.2	0.8	0.8	0.1	0.1	0.1	0.3	0.0	0.0	0.0	0.3	0.3	0.0
Goat	0.2	0.2	0.8	0.2	1.0	0.8	0.2	0.2	0.1	0.1	0.3	0.1	0.0	0.0	0.3	0.0	0.0	0.3
Dog	0.2	0.2	0.8	0.2	0.8	1.0	0.2	0.2	0.1	0.1	0.3	0.1	0.0	0.0	0.3	0.0	0.0	0.3
Toad	0.8	0.2	0.2	0.8	0.2	0.2	1.0	0.2	0.1	0.1	0.1	0.3	0.0	0.0	0.0	0.3	0.0	0.0
Cow	0.2	0.8	0.2	0.8	0.2	0.2	0.2	1.0	0.3	0.3	0.1	0.1	0.3	0.3	0.0	0.0	0.0	0.0
Large	0.1	0.3	0.1	0.1	0.1	0.1	0.1	0.3	1.0	0.5	0.1	0.1	0.6	0.6	0.2	0.2	0.2	0.2
Mid	0.1	0.3	0.1	0.1	0.1	0.1	0.1	0.3	0.5	1.0	0.1	0.1	0.6	0.6	0.2	0.2	0.2	0.2
Small	0.1	0.1	0.3	0.1	0.3	0.3	0.1	0.1	0.1	0.1	1.0	0.1	0.2	0.2	0.6	0.2	0.2	0.6
Tiny	0.3	0.1	0.1	0.3	0.1	0.1	0.3	0.1	0.1	0.1	0.1	1.0	0.2	0.2	0.2	0.6	0.2	0.2
White	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.3	0.6	0.6	0.2	0.2	1.0	0.8	0.4	0.4	0.4	0.4
Black	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.3	0.6	0.6	0.2	0.2	0.8	1.0	0.4	0.4	0.4	0.8
Red	0.0	0.0	0.3	0.0	0.3	0.3	0.0	0.0	0.2	0.2	0.6	0.2	0.4	0.4	1.0	0.4	0.4	0.4
Blue	0.5	0.0	0.0	0.3	0.0	0.0	0.3	0.0	0.2	0.2	0.2	0.6	0.4	0.4	0.4	1.0	0.8	0.8
Green	0.5	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.2	0.2	0.2	0.2	0.4	0.4	0.4	0.8	1.0	0.4
Gray	0.0	0.0	0.3	0.0	0.3	0.3	0.0	0.0	0.2	0.2	0.6	0.2	0.4	0.8	0.4	0.8	0.4	1.0

Group

Sequence

BCL

Methodology

-Block modeling Grouping

	Cow	Cat	Large	Mid	White	Black	Goat	Dog	Frog	Small	Gray	Red	Toad	Tuna	Cod	Tiny	Blue	Green
Cow	1.0	0.8	0.3	0.3	0.5	0.5	0.2	0.2	0.2	0.1	0.0	0.0	0.2	0.2	0.2	0.1	0.0	0.0
Cat	0.8	1.0	0.3	0.3	0.5	0.5	0.2	0.2	0.2	0.1	0.0	0.0	0.2	0.2	0.2	0.1	0.0	0.0
Large	0.3	0.3	1.0	0.5	0.6	0.6	0.1	0.1	0.1	0.1	0.2	0.2	0.1	0.1	0.1	0.1	0.2	0.2
Mid	0.3	0.3	0.5	1.0	0.6	0.6	0.1	0.1	0.1	0.1	0.2	0.2	0.1	0.1	0.1	0.1	0.2	0.2
White	0.5	0.5	0.6	0.6	1.0	0.8	0.0	0.0	0.0	0.2	0.4	0.4	0.0	0.0	0.0	0.2	0.4	0.4
Black	0.5	0.5	0.6	0.6	0.8	1.0	0.0	0.0	0.0	0.2	0.4	0.4	0.0	0.0	0.0	0.2	0.4	0.4
Goat	0.2	0.2	0.1	0.1	0.0	0.0	1.0	0.8	0.8	0.3	0.3	0.3	0.2	0.2	0.2	0.1	0.0	0.0
Dog	0.2	0.2	0.1	0.1	0.0	0.0	0.8	1.0	0.8	0.3	0.5	0.5	0.2	0.2	0.2	0.1	0.0	0.0
Frog	0.2	0.2	0.1	0.1	0.0	0.0	0.8	0.8	1.0	0.3	0.5	0.5	0.2	0.2	0.2	0.1	0.0	0.0
Small	0.1	0.1	0.1	0.1	0.2	0.2	0.3	0.3	0.3	1.0	0.6	0.6	0.1	0.1	0.1	0.1	0.2	0.2
Gray	0.0	0.0	0.2	0.2	0.4	0.4	0.3	0.5	0.5	0.6	1.0	0.8	0.0	0.0	0.0	0.2	0.4	0.4
Red	0.0	0.0	0.2	0.2	0.4	0.4	0.3	0.5	0.5	0.6	0.8	1.0	0.0	0.0	0.0	0.2	0.4	0.4
Toad	0.2	0.2	0.1	0.1	0.0	0.0	0.2	0.2	0.2	0.1	0.0	0.0	1.0	0.8	0.8	0.3	0.5	0.5
Tuna	0.2	0.2	0.1	0.1	0.0	0.0	0.2	0.2	0.2	0.1	0.0	0.0	0.8	1.0	0.8	0.3	0.5	0.5
Cod	0.2	0.2	0.1	0.1	0.0	0.0	0.2	0.2	0.2	0.1	0.0	0.0	0.8	0.8	1.0	0.3	0.5	0.5
Tiny	0.1	0.1	0.1	0.1	0.2	0.2	0.1	0.1	0.1	0.1	0.2	0.2	0.3	0.3	0.3	1.0	0.6	0.6
Blue	0.0	0.0	0.2	0.2	0.4	0.4	0.0	0.0	0.0	0.2	0.4	0.4	0.5	0.5	0.5	0.6	1.0	0.8
Green	0.0	0.0	0.2	0.2	0.4	0.4	0.0	0.0	0.0	0.2	0.4	0.4	0.5	0.5	0.5	0.6	0.8	1.0

BCD

Methodology

-Sequencing

Secondly, sequencing features in each group by the column properties, for outputting more diversified BCD values after encoding.

- 1. Column sum
- 2. Type purity
- 3. Feature importance

-Sequencing

-Sequencing

Group

Sequence

BCE

Methodology

-Sequencing

Sequence

Sequence

BCL

Methodology

-Sequencing

Sequence

BCL

Methodology

-Sequencing

Group Sequence BCD

Methodology

-BCD code

Finally, using Binary Coded Decimal to compute the numerical values representing the feature groups.

- 1. BCD
- 2. Ranked BCD

Decimal		BCD								
digit	8	4	2	1						
0	0	0	0	0						
1	0	0	0	1						
2	0	0	1	0						
3	0	0	1	1						
4	0	1	0	0						
5	0	1	0	1						
6	0	1	1	0						
7	0	1	1	1						
8	1	0	0	0						
9	1	0	0	1						

-BCD code

Group
Sequence
BCD

-BCD code

Sequenced features								
Blue	Tuna	Tiny	Toad	Green	Cod			
1	0	0	0	0	1			
1	0	0	1	0	0			
0	1	1	0	1	0			
0	0	1	1	1	0			

Туре	
Good	
Good	
Bad	
Bad	

Group Sequence BCD

Methodology

-BCD code

BCD	Sequenced features												
ВСР	Blue	Tuna	Tiny	Toad	Green	Cod							
33	1	0	0	0	0	1							
36	1	0	0	1	0	0							
26	0	1	1	0	1	0							
14	0	0	1	1	1	0							

Good	
Good	
Bad	
Bad	

Group
Sequence
BCD

Methodology

-BCD code

Group
Sequence
BCD

Methodology

-BCD code

Methodology

-sum up

Case study

We compare classification results with the commonly used variable encoding method under different datasets.

- 1. Simulated continuous datasets
- 2. Kaggle-Feature encoding challenge dataset

-(3300 samples, 3000 Good, 300 Bad)

- binarize

- binarize

- Categorize

Binarize Data

Instances	x.1	x.2	x.3	x.4	x.5	x.6	•••	z.9	z.10
1	0	1	0	0	0	0	•••	0	0
2	1	0	0	0	0	0	•••	0	0
3	0	0	0	0	0	0	•••	0	0
4	0	0	0	0	1	0	•••	0	0
5	0	0	1	0	0	0	•••	0	0
6	0	0	0	0	1	0	•••	0	0
7	0	0	0	0	0	0	•••	0	0
:	:	:	:	:	:	:	:	:	:
3300	0	0	0	1	0	0	•••	0	0

Institute of Industrial Engineering, NTU | Yun-Hao Yang | 2023

- Categorize

	Binarize Data												
Instances	X	Y	Z	Instances	x.1	x.2	x.3	x.4	x.5	x.6	•••	z.9	z.10
1	x.2	y.9	z.4	1	0	1	0	0	0	0	•••	0	0
2	x.1	y.8	z.2	2	1	0	0	0	0	0	•••	0	0
3	x.9	y.1	z.6	3	0	0	0	0	0	0		0	0
4	x.5	y.7	z.8	4	0	0	0	0	1	0		0	0
5	x.3	y.1	z.8	5	0	0	1	0	0	0		0	0
6	x.5	y.6	z.3	6	0	0	0	0	1	0		0	0
7	x.7	y.5	z.4	7	0	0	0	0	0	0		0	0
:	:	:	:	:	:	:	:	:	:	:	:	:	:
3300	x.4	y.8	z.1	3300	0	0	0	1	0	0	•••	0	0
		•			•		•	•	•	•		•	

-Classification

-Classification

OneHot

Ordinal

Binary

Sum

Purity

Sum

Purity

Sum Purity

RND

Sum

Purity

-Dimension reduction

-Dimension reduction

Numerical feature uniqueness of Kaggle CFEC dataset											
bin0	bin1	bin2	bin3	bin4	ord0	day	month	Target			
0	0	0	0	0	1	1	1	0			
1	1	1	1	1	2	2	2	1			
					3	3	3				
						÷	÷				
L					L	7	12				

Categorical feature uniqueness of Kaggle CFEC dataset

nom0	nom1	nom2	nom3	nom4	ord1	ord2	ord3	ord4
Green	Triangle	Snake	Finland	Bassoon	Grandmaster	Cold	a	A
Blue	Trapezoid	Hamster	Russia	Piano	Expert	Hot	b	В
Red	Polygon	Lion	Canada	Theremin	Novice	Lava Hot	c	C
	Square	Cat	Costa Rica	Oboe	Contributor	Boiling Hot	d	D
	Star	Dog	China		Master	Freezing	÷	÷
L	Circle	Axolotl	India			Warm	0	Z

-Classification

-Feature importance changes

-Different grouping seizes

-Group by hierarchical clustering

Kaggle dataset -Group by hierarchical clustering

Conclusion

- 1. A new encoding scheme for binary data.
- 2. Compress binary features information into integers.
- 3. Preserve classification/regression performance with proposed grouping & sequencing techniques.
- 4. A dimension reduction method of high dimensional binary data.

Instances	x.1	x.2	x.3	x.4	x.5	x.6	•••	z.9	z.10
1	0	1	0	0	0	0	•••	0	0
2	1	0	0	0	0	0		0	0
3	0	0	0	0	0	0		0	0
4	0	0	0	0	1	0	•••	0	0
5	0	0	1	0	0	0		0	0
6	0	0	0	0	1	0		0	0
7	0	0	0	0	0	0		0	0
÷	÷	:	÷	:	÷	:	:	÷	÷
3300	0	0	0	1	0	0	•••	0	0

Future work

- 1. Grouping techniques can be further enhanced.
- 2. Finding the optimal dimension of the data.
- 3. Sequencing problem may be solved with optimization algorithms.
- 4. Rigorous mathematical/statistical derivations are needed.

