Non parametric methods

Course of Machine Learning Master Degree in Computer Science University of Rome "Tor Vergata"

Giorgio Gambosi

a.a. 2017-2018

Probability distribution estimates

• The statistical approach to classification requires the (at least approximate) knowledge of $p(C_i|\mathbf{x})$: in fact, an item \mathbf{x} shall be assigned to the class C_i such that

$$i = \operatorname*{argmax}_{k} p(\mathcal{C}_{k}|\mathbf{x})$$

• The same holds in the regression case, where $p(y|\mathbf{x})$ has to be estimated.

Probability distribution estimates: hypotheses

What do we assume to know of class distributions, given a training set \mathbf{X}, \mathbf{t} ?

• Case 1. The probabilities $p(\mathbf{x}|\mathcal{C}_i)$ are known: an item is assigned \mathbf{x} to the class \mathcal{C}_i such that

$$i = \operatorname*{argmax}_{j} p(\mathcal{C}_{j}|\mathbf{x})$$

where $p(\mathcal{C}_j|\mathbf{x})$ can be derived through Bayes' rule and prior probabilities, since $p(\mathcal{C}_k)|\mathbf{x}) \propto p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)$

Probability distribution estimates: hypotheses

- Case 2. The type of probability distribution $p(\mathbf{x}|\boldsymbol{\theta})$ is known: an estimate of parameter values $\boldsymbol{\theta}_i$ is performed for all classes, taking into account for each class \mathcal{C}_i the subset of $\mathbf{X}_i, \mathbf{t}_i$ of items belonging to the class, that is such that t=i. Different approaches to parameter estimation:
 - 1. Maximum likelihood: $m{ heta}_i^{ML} = rgmax_{m{ heta}} p(\mathbf{X}_i, \mathbf{t}_i | m{ heta})$ is computed. Item \mathbf{x} is assigned to class \mathcal{C}_i if

$$i = \operatorname*{argmax}_{j} p(\mathcal{C}_{j} | \mathbf{x}) = \operatorname*{argmax}_{j} p(\mathbf{x} | \boldsymbol{\theta}_{j}^{ML}) p(\mathcal{C}_{j})$$

2. Maximum a posteriori: $m{ heta}_i^{MAP} = rgmax_{m{ heta}} p(m{ heta}|\mathbf{X}_i, \mathbf{t}_i)$ is computed. Item \mathbf{x} is assigned to class \mathcal{C}_i if

$$i = \underset{j}{\operatorname{argmax}} p(C_j | \mathbf{x}) = \underset{j}{\operatorname{argmin}} p(\mathbf{x} | \boldsymbol{\theta}_j^{MAP}) p(C_j)$$

3. Bayesian estimate: the distributions $p(\boldsymbol{\theta}|\mathbf{X}_i,\mathbf{t}_i)$ are estimated for each class and, from them,

$$p(\mathbf{x}|\mathcal{C}_i) = \int_{\boldsymbol{\theta}} p(\mathbf{x}|\boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathbf{X}_i, \mathbf{t}_i) d\boldsymbol{\theta}$$

Item \mathbf{x} is assigned to class C_i if

$$\begin{split} i &= \operatorname*{argmax}_{j} p(\mathcal{C}_{j}|\mathbf{x}) = \operatorname*{argmax}_{j} p(\mathcal{C}_{j}) p(\mathbf{x}|\mathcal{C}_{j}) \\ &= \operatorname*{argmax}_{j} p(\mathcal{C}_{j}) \int_{\boldsymbol{\theta}} p(\mathbf{x}|\boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathbf{X}_{j}, \mathbf{t}_{j}) d\boldsymbol{\theta} \end{split}$$

Probability distribution estimates: hypotheses

- · Case 3. No knowledge of the probabilities assumed.
- The class distributions $p(\mathbf{x}|\mathcal{C}_i)$ are directly from data.
- In previous cases, use of (parametric) models for a synthetic description of data in \mathbf{X},\mathbf{t}
- In this case, no models (and parameters): training set items explicitly appear in class distribution estimates.
- Denoted as non parametric models: indeed, an unbounded number of parameters is used

Histograms

- Elementary type of non parametric estimate
- \cdot Domain partitioned into m d-dimensional intervals (bins)
- The probability $P_{\mathbf{x}}$ that an item belongs to the bin containing item \mathbf{x} is estimated as $\frac{n(\mathbf{x})}{n}$, where $n(\mathbf{x})$ is the number of element in that bin
- The probability density in the interval corresponding to the bin containing $\mathbf x$ is then estimated as the ratio between the above probability and the interval width $\Delta(\mathbf x)$ (tipically, a constant Δ)

$$p_H(\mathbf{x}) = \frac{\frac{n(\mathbf{x})}{N}}{\Delta(\mathbf{x})} = \frac{n(\mathbf{x})}{N\Delta(\mathbf{x})}$$

S

Histograms: problems

- The density is a function of the position of the first bin. In the case of multivariate data, also from bin orientation.
- · The resulting estimates is not continuous.
- Curse of dimensionality: the number of bins grows as a polynomial of order d: in high-dimensional spaces many bins may result empty, unless a large number of items is available.
- In practice, histograms can be applied only in low-dimensional datasets (1,2)

Kernel density estimators

- Probability that an item is in region $\mathcal{R}(\mathbf{x})$, containing \mathbf{x}

$$P_{\mathbf{x}} = \int_{\mathcal{R}(\mathbf{x})} p(\mathbf{z}) d\mathbf{z}$$

• Given n items $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$, the probability that k among them are in $\mathcal{R}(\mathbf{x})$ is given by the binomial distribution

$$p(k) = \binom{n}{k} P_{\mathbf{x}}^{K} (1 - P_{\mathbf{x}})^{n-k} = \frac{n!}{k!(n-k)!} P_{\mathbf{x}}^{K} (1 - P_{\mathbf{x}})^{n-k}$$

· Mean and variance of the ratio $r=\frac{k}{n}$ are

$$E[r] = P_{\mathbf{x}}$$
 $\operatorname{var}[r] = \frac{P_{\mathbf{x}}(1 - P_{\mathbf{x}})}{n}$

• $P_{\mathbf{x}}$ is the expected fraction of items in $\mathcal{R}(\mathbf{x})$, and the ratio r is an estimate. As $n \to \infty$ variance decreases and r tends to $E[r] = P_{\mathbf{x}}$. Hence, in general,

$$r = \frac{k}{n} \simeq P(\mathbf{x})$$

8

Nonparametric estimates

• Let the volume of $\mathcal{R}(\mathbf{x})$ be sufficiently small. Then, the density $p(\mathbf{x})$ is almost constant in the region and

$$P_{\mathbf{x}} = \int_{\mathcal{R}(\mathbf{x})} p(\mathbf{z}) d\mathbf{z} \simeq p(\mathbf{x}) V$$

where V is the volume of $\mathcal{R}(\mathbf{x})$

- since $P_{\mathbf{x}} \simeq \frac{k}{n}$, it then derives that $p(\mathbf{x}) \simeq \frac{k}{nV}$

9

Approaches to nonparametric estimates

Two alternative ways to exploit the estimate $p(\mathbf{x}) \simeq \frac{k}{nV}$

- 1. Fix V and derive k from data (kernel density estimation)
- 2. Fix k and derive V from data (K-nearest neighbor).

It can be shown that in both cases, under suitable conditions, the estimator tends to the true density $p(\mathbf{x})$ as $n\to\infty$.

Kernel density estimation: Parzen windows

- Region associated to a point \mathbf{x} : hypercube with edge length h (and volume h^d) centered on \mathbf{x} .
- Kernel function $k(\mathbf{u})$ (Parzen window) used to count the number of items in the unit hypercube centered on u

$$k(\mathbf{u}) = \begin{cases} 1 & |u_i| \le 1/2 \\ 0 & \text{otherwise} \end{cases} i = 1, \dots, d$$

- as a consequence, $k\left(\frac{\mathbf{x}-\mathbf{x}'}{h}\right)=1$ iff \mathbf{x}' is in the hypercube of edge length h centered on \mathbf{x}
- · the number of items in the hypercube is then

$$K = \sum_{i=1}^{n} k \left(\frac{\mathbf{x} - \mathbf{x}_i}{h} \right)$$

11

Kernel density estimation: Parzen windows

The estimated density is

$$p(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h^d} k\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

Since

$$k(\mathbf{u}) \ge 0$$
 and $\int k(\mathbf{u})d\mathbf{u} = 1$

it derives

$$p(\mathbf{x}) \ge 0$$
 and $\int p(\mathbf{x}) d\mathbf{x} = 1$

that is, $p_n(\mathbf{x})$ is a probability density

· Window size has a relevant effect on the estimate

Kernel density estimation: Parzen windows

Kernels and smoothing

- · Parzen windows drawbacks
 - 1. discontinuity of the estimates
 - items in a region centered on x have uniform weights: their distance from x is not taken into account
- Solution: use of smooth kernel functions $\kappa(u)$

$$\int_{0^d}^{h^d} \kappa(\mathbf{x}) d\mathbf{x} = 1$$

- 1. usually radial functions (functions of the distance from the center)
- 2. resulting estimate:

$$p(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^{n} \kappa \left(\frac{\mathbf{x} - \mathbf{x}_i}{h} \right)$$

Density estimation through kNN

- \cdot The region around ${f x}$ is extended to include k items
- The estimated density is

$$p(\mathbf{x}) \simeq \frac{k}{nV} = \frac{k}{nc_d r_k^d(\mathbf{x})}$$

where:

- \cdot c_d is the volume of the d-dimensional sphere of unitary radius
- $\cdot r_k^d(\mathbf{x})$ is the distance from \mathbf{x} to the k-th nearest item (the radius of the smallest sphere with center \mathbf{x} containing k items)

Classification through kNN

- To classify \mathbf{x}_i , let us consider a hypersphere of volume V with center \mathbf{x} containing k items from the training set
- Let k_i be the number of such items belonging to class C_i . Then, the following approximation holds:

$$p(\mathbf{x}|\mathcal{C}_i) = \frac{k_i}{n_i V}$$

where n_i is the number of items in the training set belonging to class C_i

· Similarly, for the evidence,

$$p(\mathbf{x}) = \frac{k}{nV}$$

· And, for the prior distribution,

$$p(C_i) = \frac{n_i}{n}$$

· The class posterior distribution is then

$$p(C_i|\mathbf{x}) = \frac{p(\mathbf{x}|C_i)p(C_i)}{p(\mathbf{x})} = \frac{\frac{k_i}{n_i V} \cdot \frac{n_i}{n}}{\frac{k}{n V}} = \frac{k_i}{k}$$

Classification through kNN

- Simple rule: an item is classified on the basis of similarity to near training set items
- To classify \mathbf{x} , determine the k items in the training nearest to it and assign \mathbf{x} to the majority class among them
- A metric is necessary to measure similarity.

