Distance Measures

Distance Measures

Distance Measure	Formula	Description
Euclidean (L_2) norm	$ u,v _2 = \sqrt{\sum_i (u_i - v_i)^2}$	Standard distance in Euclidean space. Most common geometric distance.
Manhattan (L_1) norm	$ u,v _1 = \sum_i u_i - v_i $	Sum of absolute differences. Useful for sparse data and robust models.
Maximum (L_{∞}) norm	$ u,v _{\infty} = \max_{i} u_i - v_i $	Only considers the largest component-wise difference.
L_p -norm	$ u,v _p = (\sum_i u_i - v_i ^p)^{1/p}$	Generalized distance measure. $p = 1, 2, \infty$ are special cases.
Mahalanobis Distance	$D(u,v) = \sqrt{(u-v)^T S^{-1}(u-v)}$	Takes correlations and scaling into account via covariance matrix S . Useful in classification.
Cosine Distance	$D(u, v) = 1 - \frac{u \cdot v}{\ u\ \ v\ }$	Measures angle between vectors. Often used in NLP, recommender systems.
Hamming Distance	$D(u,v) = \sum_{i} [u_i \neq v_i]$	Counts differing positions in binary vectors. Common in genetics, information theory.
Jaccard Distance	$D(A,B) = 1 - \frac{ A \cap B }{ A \cup B }$	Measures dissimilarity between sets.
Canberra Distance	$D(u,v) = \sum_{i} \frac{ u_i - v_i }{ u_i + v_i }$	Sensitive to small differences when components are near zero.
Bray-Curtis Distance	$D(u,v) = \frac{\sum_{i} u_i - v_i }{\sum_{i} u_i + v_i }$	Used in ecology for compositional dissimilarity.
Earth Mover's	Informal: minimal "work" to transform	Popular in image comparison, optimal
Distance (Wasserstein)	one distribution into another	transport, GANs. Metric over distributions.
Bregman Divergence	$D_F(u, v) = F(u) - F(v) - \nabla F(v)^T (u - v)$	General class of distances (e.g., squared Euclidean, KL divergence).
KL Divergence (Kullback–Leibler)	$D_{\mathrm{KL}}(P Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}$	Measures how one probability distribution diverges from another. Not symmetric.