

<u>Team members :</u>	Role		
CORRE Alexandre	Mechanical part		
GOURBIN Léo	Electrical part		

HOLOGRAM FOR RERONAUTICS

11/12/2024

SUMMARY

- 1 Introduction
- 2 State of the art
- 3 Our solution
- 4 How it works
- 5 Material selection

- 6 Mechanical analysis
- 7 Implementation
- 8 Cost analysis
- 9 Lead time
- **10 Conclusion**

INTRODUCTION

We are proud to present our innovation: a revolutionary holographic module designed to replace traditional screens in airplanes.

Mounted on seats, it offers an immersive and interactive experience, redefining in-flight entertainment.

PROBLEM

How can we design an innovative holographic module that can be adapted to airplane seats in both fixed and portable configurations, while adhering to a strict set of requirements including design, material selection, cost optimization, timeline management, weight constraints, mechanical resistance, and compliance with aviation standards?

STATE OF THE ART

Propeller system

Projection via a screen divided into 4 parts

DIMENSIONS

4 PARTS

Cover

Projection frame

Enclosure lid

Electronics

Enclosure

System attachment

DHTH

FIXING PART

Step 01 (Placement)

Step 02 (Locking)

PROJECTION PART

Beamsplitter

P-C Lens Ø30 mm

DLP471TPFQQ

P-C Lens Ø50 mm

SST-20-WCS-A120-L4651

P-C: Plano-convex

ELECTRICAL DIAGRAM

System reliability

System simplicity

Ease of maintenance

SHFETY

Limits the risk of cuts

Limits the electrical hazard

Limits the risk of snagging

Limits system overheating

COOLING

Air outlets Hot air ISO cross-sectional view of the solution

MRTERIAL SELECTION

2024 aluminium alloy

PET (Plastic)

PLA (Plastic)

Information

- Good strength-to-weight ratio
- Good fatigue resistance
- Ease of machining
- Non-magnetic material
- Low environmental impact
- Available in large quantities

Information

- Low weight
- Recyclable
- Low cost
- Available in large quantities

Information

- Low weight
- Recyclable
- Low cost
- Available in large quantities

MODULE BODY

Axial Stress (σ)

 $\frac{\text{Minimum:}}{1,000 \times 10^{-30} \text{ mm}}$

Maximum: $3,764 \times 10^{-05} \text{ mm}$

Safety factor:

> 5

 $\frac{\text{Minimum :}}{1.000 \times 10^{-30} \text{ mm}}$

1,833e-04

1,629e-04

1,425e-04

1,222e-04

1,018e-04

4,073e-05

2,036e-05

 $\frac{\text{Maximum:}}{2,006 \times 10^{-04} \text{ mm}}$

Safety factor:

> 5

Axial Stress (σ)

Minimum:

 $1,207 \times 10^{-05} \text{ Mpa}$

<u>Maximum :</u>

 $7,377 \times 10^{-02} \text{ Mpa}$

Yield strength:

 $7,583 \times 10^{+01}$ Mpa

Safety factor:

> 5

Von Mises stress

Displacement

Max: 2,036e-04

Shear Stress (τ)

Minimum:

 $1,218 \times 10^{-01} \text{ Mpa}$

Maximum:

 $3,259 \times 10^{-06} \text{ Mpa}$

Yield strength:

 $7,583 \times 10^{+01} \text{ Mpa}$

Safety factor:

> 5

Von Mises stress

Displacement

MODULE BODY

BUDY CUVER

Axial Stress (σ)

Minimum: $1,000 \times 10^{-30} \text{ mm}$

Maximum: $2,941 \times 10^{-05} \text{ mm}$

Safety factor:

> 5

Shear Stress (τ)

URES (mm) 6,533e-06

5,880e-06

5,227e-06

4,573e-06

3,920e-06

3,267e-06

2,613e-06

1,960e-06

1.307e-06

6,533e-07 1.000e-30

1,103e-01

9,925e-02

8,822e-02

7.719e-02

6,616e-02

5,514e-02

4,411e-02

3.308e-02

2,205e-02

1.103e-02

4,225e-08

Minimum: $1,000 \times 10^{-30} \text{ mm}$

Maximum: $6,533 \times 10^{-06} \text{ mm}$

Safety factor:

> 5

Axial Stress (σ)

Minimum: $8,119 \times 10^{-07}$ Mpa

Maximum: $7,446 \times 10^{-02}$ Mpa

Yield strength: $7,583 \times 10^{+01} \text{ Mpa}$

Safety factor: > 5

Mises stress

Von

Displacement

Max: 6,533e-06

Shear Stress (τ)

Minimum: $4,225 \times 10^{-08}$ Mpa

Maximum:

 $1,103 \times 10^{-01} \text{ Mpa}$

Yield strength: $7,583 \times 10^{+01} \text{ Mpa}$

Safety factor:

> 5

Displacement

Von Mises stress

BODY COVER

PROJECTION SCREEN

Displacement

Axial Stress (σ)

 $\frac{\text{Minimum:}}{1,000 \times 10^{-30} \text{ mm}}$

Maximum: $5,073 \times 10^{-05} \text{ mm}$

Safety factor:

> 5

Shear Stress (τ)

URES (mm)

7,922e-06

7,042e-06

6,162e-06

5,281e-06

4,401e-06

3,521e-06

2,641e-06 1,760e-06 8,802e-07 $\frac{\text{Minimum:}}{1,000 \times 10^{-30} \text{ mm}}$

 $\frac{\text{Maximum:}}{8,802 \times 10^{-06} \text{ mm}}$

Safety factor:

> 5

Axial Stress (σ)

Minimum :

 $2,562 \times 10^{-15} \text{ Mpa}$

 $\frac{\text{Maximum:}}{1,782 \times 10^{-02} \text{ Mpa}}$

Yield strength: $7,583 \times 10^{+01}$ Mpa

Safety factor:

> 5

Shear Stress (τ)

 $\frac{\text{Minimum:}}{3,158 \times 10^{-18} \text{ Mpa}}$

Maximum:

 $6,743 \times 10^{-02}$ Mpa

Yield strength: $7,583 \times 10^{+01}$ Mpa

Safety factor:

> 5

Displacement ____

Von Mises stress

HTTHCHMENT SYSTEM

Displacement

Von

Mises

stress

Axial Stress (σ)

 $\frac{\text{Minimum:}}{1,000 \times 10^{-30} \text{ mm}}$

 $\frac{\text{Maximum:}}{\text{1,376} \times 10^{-03}} \text{ mm}$

Safety factor:

> 5

Shear Stress (τ)

 $\frac{\text{Minimum:}}{1,000 \times 10^{-30} \text{ mm}}$

 $\frac{\text{Maximum:}}{2,504 \times 10^{-04} \text{ mm}}$

Safety factor:

> 5

Axial Stress (σ)

 $\frac{\text{Minimum:}}{7,060 \times 10^{-05} \text{ Mpa}}$

<u>Maximum</u>:

 $9,246 \times 10^{-01} \text{ Mpa}$

 $\frac{\text{Yield strength:}}{\text{7,583} \times 10^{+01}} \, \text{Mpa}$

Safety factor:

> 5

Shear Stress (τ)

 $\frac{\text{Minimum:}}{1,330 \times 10^{-06} \text{ Mpa}}$

Maximum:

 $3,185 \times 10^{-01} \text{ Mpa}$

Yield strength: $7,583 \times 10^{+01}$ Mpa

<u>Safety factor:</u>

> 5

Displacement

Von Mises stress

HTTHCHMENT SYSTEM

Torsional Stress (τ)

 $\frac{\text{Minimum}:}{1,000 \times 10^{-30} \text{ mm}}$

 $\frac{\text{Maximum:}}{2,476 \times 10^{-02} \text{ mm}}$

<u>Safety factor:</u>

> 5

Displacement

Von Mises stress

Torsional Stress (τ)

 $\frac{\text{Minimum:}}{1,978 \times 10^{-05} \text{ Mpa}}$

1,978 × 10 · · · Nipa

 $\frac{\text{Maximum:}}{\text{1,653} \times 10^{+01}} \text{ Mpa}$

 $\frac{\text{Yield strength:}}{\text{7,583} \times 10^{+01}} \, \text{Mpa}$

<u>Safety factor:</u>

> 5

Final product

MODULE COVER

Displacement

Von

Mises

stress

Axial Stress (σ)

 $\frac{\text{Minimum:}}{1,000 \times 10^{-30} \text{ mm}}$

 $\frac{\text{Maximum:}}{2,582 \times 10^{-05} \text{ mm}}$

Safety factor:

> 5

Shear Stress (τ)

 $\frac{\text{Minimum:}}{1,000 \times 10^{-30} \text{ mm}}$

Maximum: $4,296 \times 10^{-05}$ mm

Safety factor:

> 5

Axial Stress (σ)

Minimum:

 $1,629 \times 10^{-04} \text{ Mpa}$

Maximum:

 $1,018 \times 10^{-01} \text{ Mpa}$

Yield strength: $7,583 \times 10^{+01}$ Mpa

Safety factor:

> 5

Shear Stress (τ)

Minimum:

 $7,982 \times 10^{-07} \text{ Mpa}$

Maximum:

 $9,757 \times 10^{-02} \text{ Mpa}$

Yield strength:

 $7,583 \times 10^{+01}$ Mpa

<u>Safety factor:</u>

> 5

Displacement

Von Mises stress

MECHANICAL ANALYS<u>IS</u>

MODULE COVER

Torsional Stress (τ)

 $\frac{\text{Minimum}:}{1,000 \times 10^{-30} \text{ mm}}$

 $\frac{\text{Maximum:}}{1,906 \times 10^{-04} \text{ mm}}$

<u>Safety factor:</u>

> 5

Displacement

Von Mises

stress

Final product

Torsional Stress (τ)

 $\frac{\text{Minimum:}}{4,268 \times 10^{-06} \text{ Mpa}}$

 $\frac{\text{Maximum:}}{4,570 \times 10^{-01} \text{ Mpa}}$

Yield strength:

 $7,583 \times 10^{+01} \text{ Mpa}$

<u>Safety factor:</u>

> 5

IMPLEMENTATION

SERT VIEW

IMPLEMENTATION

USER

IMPLEMENTATION

5,5 kg

PORTABLE

COST ANALYSIS

ELECTRONICS

Component name	Price (€ HT)	URL
SST-20-WCS-A120-L4651	0,52	SST-20-WCS-A120-L4600 Luminus Devices Mouser France
P-C Lens Ø 50 mm	1,16	Lentille de verre Concave convexe Double, 30mm 40mm 50mm, longueur focale 50mm 75mm 100mm 150 mm 300mm, optique pour projecteur, bricolage - AliExpress 1420
DLP471TPFQQ	214,23	DLP471TPFQQ Texas Instruments Mouser France
P-C Lens Ø 30 mm	10,6	Jimdary Lentille Convexe en Verre Optique, lentille Convexe de diamètre K9 30mm, pour lentille loupe Bricolage lentille d'expérimentation Optique Physique : Amazon.fr: High-Tech
Circular polarizer filter	18,3	Amazon Basics - 77 mm Filtre de Protection Polarisant Circulaire pour des Couleurs Plus Profondes, Réduction des Reflets et des Éblouissements, Multi-Couches, Protège contre la Poussière : Amazon.fr: High-Tech
Beamsplitter (Polka Dot)	149	Polka Dot Beamsplitters
Fans (×2)	7,09	JZK Lot de 2 mini ventilateurs 50 x 50 x 10 mm 2 broches DC 5 V avec câbles 5010 - Petit ventilateur silencieux - 50 mm - 5 cm - 5 V - Sans balais - DC - Pour boîtier PC - Avec câble et prise : Amazon.fr: Informatique
Battery	20,99	Gecoty® Batterie 9,6V 2400mAh Ni-MH AA Rechargeable avec câble de Charge (Prise Tamiya) : Amazon.fr: High-Tech

Total price (electronic)

421,89 €

COST ANALYSIS

MECHANICAL SYSTEM

Component name	Price (€ HT)	URL	
Cover	2,2		
Projection frame	19	Pet G Plaque incolore transparent 1000 x 600 x 3 mm alt-Intech®: Amazon.fr: Commerce, Industrie et Science	
Enclosure lid	3,5		
Enclosure	16,07		
System attachment	1,03		
Plastic electronic component	12		

Total price (Module components)

With a price of 2,6€/kg for aluminium

53,8€

COST HNALYSIS

TOTAL PRICE

421,89€

Total price (Module components)

53,8€

Total price before charges (Entire module)

475,69 €

Total price after charges (Entire module)

2575,69 €

Planning:

	22/10/2024	05/11/2024	25/11/2024	11/12/2024	Role	TOTAL (hours)	TOTAL (salary)
Alexandre C.	3,5	7	7	3,5	Mechanical part	21	1 050,00€
Léo G.	3,5	7	7	3,5	Electrical part	21	1 050,00€
			42	2 100,00€			
				Engineer hourly rate		50	

LEAD TIME

Design time:

Between 15 and 17 hours

Production time (assumption with metal printing)

Between 20 and 25 hours

Production time (assumption with plastic printing)

Between 6 and 8 hours

CONCLUSION

An innovative solution.

Low cost.

Low weight, which can be reduced.

Easy-to-use system.

Portable but also can be fixed.

Easy and quick to produce.

