

# CT101 Computing Systems

Dr. Bharathi Raja Chakravarthi Lecturer-above-the-bar

Email: <a href="mailto:bharathi.raja@universityofgalway.ie">bharathi.raja@universityofgalway.ie</a>



University of Galway.ie



# Other Two-Level Implementations

- · In integrated circuits, NAND and NOR gates are commonly used.
- These gates often allow wire connections between their outputs to create specific logic functions, known as "wired logic."
- For example, open-collector TTL NAND gates perform wired-AND logic when connected together.
- The wired-AND logic performed with two NAND gates is depicted in Figure (a).





- The wired-AND logic is symbolically represented, with lines passing through the center of the gate to distinguish it.
- The wired-AND gate is a symbolic representation of the function achieved through a specific wired connection, not a physical gate.
- The logic function implemented by this wired-AND gate is
   F = (AB)'(CD) = (AB + CD) = (A + B)(C + D)
- This function is referred to as an AND-OR-INVERT function.





- ECL gates with NOR outputs can be connected to perform a wired-OR function.
- The logic function implemented by the circuit of Figure (b) is and is called an OR-AND-INVERT function.

$$F = (A + B)' + (C + D)' = [(A + B)(C + D)]'$$





- A wired-logic gate does not produce a physical second-level gate, since it is just a wire connection.
- For discussion purposes, we will consider the circuits of Figure (a) and (b) as two-level implementations.
- The first level consists of NAND (or NOR) gates and the second level has a single AND (or OR) gate.
- The wired connection in the graphic symbol will be omitted in subsequent discussions.



# Nondegenerate Forms

- Four types of gates are considered: AND, OR, NAND, and NOR.
- When one type of gate is assigned for the first level and one for the second level, there
  are 16 possible combinations of two-level forms.

#### Note:

The same type of gate can be in the first and second levels, as in a NAND–NAND implementation.

• Eight of these combinations are said to be degenerate forms because they degenerate to a single operation.



# Nondegenerate Forms

- This can be seen from a circuit with AND gates in the first level and an AND gate in the second level.
- The output of the circuit is merely the AND function of all input variables.
- The remaining eight nondegenerate forms produce an implementation in sum-of-products form or product-of-sums form.



# Nondegenerate Forms

The eight nondegenerate forms are as follows:

AND-OR OR-AND

NAND-NAND NOR-NOR

NOR-OR NAND-AND

OR–NAND AND–NOR

- The first gate listed in each of the forms constitutes the first level in the implementation.
- The second gate listed is a single gate placed on the second level.
- Note that any two forms listed on the same line are duals of each other.



- NAND-AND and AND-NOR forms are equivalent and perform the AND-OR-INVERT function.
- The AND-NOR form resembles the AND-OR form but includes an inversion done by the bubble in the output of the NOR gate.
- It implements the function F = (AB + CD + E)'.





- The alternative graphic symbol for the NOR gate is used in the diagram (Figure b).
- A single variable, E, is not complemented in this diagram because the only change is in the graphic symbol of the NOR gate.
- The bubble from the input terminal of the second-level gate is moved to the output terminals of the first-level gates.





- An inverter is needed for the single variable to compensate for the bubble, or the inverter can be removed if input E is complemented.
- The circuit in Figure c is a **NAND-AND form**, which was previously shown to implement the AND-OR-INVERT function.





- An AND-OR implementation requires an expression in sum-of-products form.
- The AND-OR-INVERT implementation is similar to AND-OR, except for the inversion.
- If the complement of the function is simplified into sum-of-products form (by combining the 0's in the map), it will be possible to implement F' with the AND-OR part of the function.
- When F' passes through the always present output inversion (the INVERT part), it will generate the output F of the function.
- An example for the AND-OR-INVERT implementation will be shown subsequently.



# OR-AND-INVERT Implementation

- The OR-NAND and NOR-OR forms perform the OR-AND-INVERT function, as shown in Figure below.
- The OR-NAND form resembles the OR-AND form, except for the inversion done by the bubble in the NAND gate.
- It implements the function F = [(A + B)(C + D)E]'





# OR-AND-INVERT Implementation

- By using the alternative graphic symbol for the NAND gate, we obtain the diagram of Figure (b).
- The circuit in Figure (c) is obtained by moving the small circles from the inputs of the second-level gate to the outputs of the first-level gates.
- The circuit of Figure (c) is a NOR-OR form.





# OR-AND-INVERT Implementation

- The OR-AND-INVERT implementation requires an expression in product-of-sums form.
- If the complement of the function is simplified into that form, we can implement F' with the OR-AND part of the function.
- When F' passes through the INVERT part, we obtain the complement of F', or F, in the output.



# Tabular Summary

- The Table below summarizes the procedures for implementing a Boolean function in any one of the four 2-level forms.
- Because of the INVERT part in each case, it is convenient to use the simplification of F'
  (the complement) of the function.

| Equivalent<br>Nondegenerate Form |          | Implements      | Simplify                                                                 | To Get          |
|----------------------------------|----------|-----------------|--------------------------------------------------------------------------|-----------------|
| (a)                              | (b)*     | the<br>Function | <i>F'</i><br>into                                                        | an Output<br>of |
| AND-NOR                          | NAND-AND | AND-OR-INVERT   | Sum-of-products form by combining 0's in the map.                        | F               |
| OR-NAND                          | NOR-OR   | OR-AND-INVERT   | Product-of-sums form by combining 1's in the map and then complementing. | F               |



<sup>\*</sup>Form (b) requires an inverter for a single literal term.

# Tabular Summary

- When F' is implemented in one of these forms, we obtain the complement of the function in the AND-OR or OR-AND form.
- The four 2-level forms invert this function, giving an output that is the complement of F.
- This is the normal output F.

| Equivalent<br>Nondegenerate Form |          | Implements      | Simplify                                                                 | To Get          |
|----------------------------------|----------|-----------------|--------------------------------------------------------------------------|-----------------|
| (a)                              | (b)*     | the<br>Function | into                                                                     | an Output<br>of |
| AND-NOR                          | NAND-AND | AND-OR-INVERT   | Sum-of-products form by combining 0's in the map.                        | F               |
| OR-NAND                          | NOR-OR   | OR-AND-INVERT   | Product-of-sums form by combining 1's in the map and then complementing. | F               |



<sup>\*</sup>Form (b) requires an inverter for a single literal term.

Implement the function of F = x'y'z' + xyz' with the four 2-level forms.

• The complement of the function is simplified into sum-of-products form by combining the 0's in the map:

$$F' = x'y + xy' + z$$

The normal output for this function can be expressed as

$$F = (xy + xy + z)$$



- The normal output is in the AND-OR-INVERT form. The AND-NOR and NAND-AND implementations are shown in Figure (b).
- Note that a one-input NAND, or inverter, gate is needed in the NAND-AND implementation, but not in the AND-NOR case.
- The inverter can be removed if we apply the input variable z' instead of z.





- The OR-AND-INVERT forms require a simplified expression of the complement of the function in product-of-sum form.
- To obtain this expression, we first combine the 1's in the map:

$$F = x'y'z' + xyz'$$

• Then we take the complement of the function: F' = (x + y + z)(x' + y' + z)





- The normal output F can now be expressed in the form F= [(x+y+z)(x +y +z)] which is the OR-AND-INVERT form.
- From this expression, we can implement the function in the **OR-NAND** and **NOR-OR** forms, as shown in Figure (c).







# Exclusive-OR Function

 The exclusive-OR (XOR), denoted by the symbol ⊕, is a logical operation that performs the following Boolean operation:

$$x \oplus y = xy' + x'y$$

- The exclusive-OR is equal to 1 if only x is equal to 1 or if only y is equal to 1 (i.e., x and y differ in value), but not when both are equal to 1 or when both are equal to 0.
- The exclusive NOR, also known as equivalence, performs the following Boolean operation:

$$(x \oplus y)' = xy + x'y'$$



- The exclusive-NOR is equal to 1 if both x and y are equal to 1 or if both are equal to 0.
- The exclusive-NOR can be shown to be the complement of the exclusive-OR by means of a truth table or by algebraic manipulation:

$$(x \oplus y)' = (xy' + x'y)' = (x' + y)(x + y') = xy + x'y'$$

The following identities apply to the exclusive-OR operation:

$$x \oplus 0 = x$$

$$x \oplus 1 = x'$$

$$x \oplus x = 0$$

$$x \oplus x' = 1$$

$$x \oplus y' = x' \oplus y = (x \oplus y)'$$



- Any of these identities can be proven with a truth table or by replacing the  $\oplus$  operation by its equivalent Boolean expression.
- It can be shown that the exclusive-OR operation is both commutative and associative; that
  is,

$$A \oplus B = B \oplus A$$
 and  $(A \oplus B) \oplus C = A \oplus (B \oplus C) = A \oplus B \oplus C$ 



- In an exclusive-OR (XOR) gate, the two inputs can be interchanged without affecting the operation.
- A three-variable XOR operation can be evaluated in any order, allowing the expression of three or more variables without parentheses.
- This implies the possibility of using exclusive-OR gates with three or more inputs.
- However, multiple-input exclusive-OR gates are difficult to fabricate with hardware.
- Even a two-input function is typically constructed with other types of gates.



A two-input exclusive-OR function is constructed with conventional gates using two
inverters, two AND gates, and an OR gate, as shown in Figure (a).



- Figure (b) shows the implementation of the exclusive-OR with four NAND gates.
- The first NAND gate performs the operation (xy)' = (x' + y').
- The other two-level NAND circuit produces the sum of products of its inputs:

$$(x' + y')x + (x' + y')y = xy' + x'y = x \oplus y$$

- Only a limited number of Boolean functions can be expressed in terms of exclusive-OR (XOR) operations.
- The XOR function is encountered frequently in the design of digital systems.
- It is particularly useful in arithmetic operations and error detection and correction circuits.



- The exclusive-OR operation with three or more variables can be converted into an ordinary Boolean function by replacing the  $\oplus$  symbol with its equivalent Boolean expression.
- In particular, the three-variable case can be converted to a Boolean expression as follows:

$$A \oplus B \oplus C = (AB' + A'B)C' + (AB + A'B')C$$
$$= AB'C' + A'BC' + ABC + A'B'C$$
$$= \Sigma(1, 2, 4, 7)$$



- Three-variable exclusive-OR (XOR) function evaluates to 1 under two conditions:
  - When only one variable is equal to 1.
  - When all three variables are equal to 1.
- Unlike the two-variable XOR, where only one variable must be 1, in the case of three or more variables, an odd number of variables (1, 3, 5, etc.) must be equal to 1 for the function to yield 1.
- The multiple-variable exclusive-OR operation is defined as an "odd function."



- The three-variable exclusive-OR function is expressed as the logical sum of four minterms.
- These minterms have binary numerical values of 001, 010, 100, and 111.
- All of these binary values have an odd number of 1's (1, 1, 1, and 3, respectively).
- The remaining four minterms (000, 011, 101, and 110) are not included in the function.
- These excluded minterms have an even number of 1's in their binary numerical values.
- In general, for an n-variable exclusive-OR function is an odd function defined as the logical sum of 2n/2 minterms whose binary numerical values have an odd number of 1's.



- · The concept of an odd function can be clarified through mapping.
- Figure (a) illustrates the map for the three-variable exclusive-OR function.
- The four minterms of this function are equally spaced on the map.





(a) Odd function  $F = A \oplus B \oplus C$ 

- Odd functions are identified by the binary values of their minterms having an odd number of 1's.
- The complement of an odd function results in an even function.
- Figure (b) depicts a three-variable even function, which evaluates to 1 when an even number of its variables are set to 1, including the case where none of the variables is 1.





(b) Even function  $F = (A \oplus B \oplus C)'$ 

- A three-input odd function is implemented using two-input exclusive-OR gates (Figure (a)).
- The complement of an odd function is achieved by replacing the output gate with an exclusive-NOR gate (Figure (b)).
- Now, let's consider the four-variable exclusive-OR operation.





we can obtain the sum of minterms for this function:

$$A \oplus B \oplus C \oplus D = (AB' + A'B) \oplus (CD' + C'D)$$

$$= (AB' + A'B)(CD + C'D') + (AB + A'B')(CD' + C'D)$$

$$= \Sigma(1, 2, 4, 7, 8, 11, 13, 14)$$

- For a four-variable Boolean function, there are 16 minterms.
- Half of the minterms have binary numerical values with an odd number of 1's, and the other half have an even number of 1's.



#### Odd Function

- The binary value of a minterm is determined by its position in the map, based on row and column numbers.
- The map in Figure (a) represents the four-variable exclusive-OR function, which is an odd function.
- The complement of an odd function is an even function, as shown in Figure (b).

| $\searrow CD$ |     |                  |                   |                   |              |                                     |
|---------------|-----|------------------|-------------------|-------------------|--------------|-------------------------------------|
| AI            | 3/5 | 00               | 01                | 11                | 10           |                                     |
|               | 00  | $m_0$            | $m_1$ 1           | $m_3$             | $m_2$ 1      |                                     |
|               | 01  | $m_4$ 1          | $m_5$             | $m_7$ 1           | $m_6$        | $\left. \left. \right  \right _{B}$ |
|               | 11  | $m_{12}$         | m <sub>13</sub> 1 | m <sub>15</sub>   | $1^{m_{14}}$ |                                     |
| 4 {           | 10  | m <sub>8</sub> 1 | $m_9$             | m <sub>11</sub> 1 | $m_{10}$     |                                     |
| •             |     |                  | 1                 |                   |              | •                                   |

(a) Odd function  $F = A \oplus B \oplus C \oplus D$ 





- Exclusive-OR (XOR) functions have practical applications in systems requiring error detection and correction codes.
- A parity bit is commonly used for error detection during the transmission of binary information.
- A parity bit is an additional bit added to a binary message to ensure that the total number
  of 1's in the message (including the parity bit) is either odd or even.



- The transmitted message, along with the parity bit, is received and checked for errors at the receiving end.
- Error detection occurs when the checked parity doesn't match the transmitted one.
- The circuit responsible for generating the parity bit in the transmitter is called a "parity generator."
- The circuit in the receiver that verifies the parity is known as a "parity checker."



- An example involves a three-bit message transmitted with an even-parity bit.
- The truth table for the parity generator is shown in the Table below.
- The three bits, labeled as x, y, and z, form the message and serve as inputs to the circuit.
- The output is the parity bit P.

**Even-Parity-Generator Truth Table** 

| Three-Bit Message |   |   | Parity Bit |
|-------------------|---|---|------------|
| x                 | y | z | P          |
| 0                 | 0 | 0 | 0          |
| 0                 | 0 | 1 | 1          |
| 0                 | 1 | 0 | 1          |
| 0                 | 1 | 1 | 0          |
| 1                 | 0 | 0 | 1          |
| 1                 | 0 | 1 | 0          |
| 1                 | 1 | 0 | 0          |
| 1                 | 1 | 1 | 1          |



- For even parity, P is generated to ensure the total number of 1's (including P) is even.
- P is determined by minterms with an odd number of 1's in their binary values.
- This makes P an odd function, as it equals 1 for minterms with an odd number of 1's.
- Therefore, P can be expressed as a three-variable exclusive-OR function:

$$P=x \oplus y \oplus z$$

**Even-Parity-Generator Truth Table** 

| Three-Bit Message |   |   | Parity Bit |  |
|-------------------|---|---|------------|--|
| x                 | y | z | P          |  |
| 0                 | 0 | 0 | 0          |  |
| 0                 | 0 | 1 | 1          |  |
| 0                 | 1 | 0 | 1          |  |
| 0                 | 1 | 1 | 0          |  |
| 1                 | 0 | 0 | 1          |  |
| 1                 | 0 | 1 | 0          |  |
| 1                 | 1 | 0 | 0          |  |
| 1                 | 1 | 1 | 1          |  |



• The logic diagram for the parity generator is shown in Fig. (a)



- Data transmission involves sending three data bits along with a parity bit for error checking.
- At the destination, a parity-checker circuit is used to examine the received bits for potential errors.



- In this case, even parity is utilized, meaning that the four bits received must contain an even number of 1's.
- An error during transmission is identified if the four received bits contain an odd number of 1's, suggesting that a bit has changed value during the transmission.
- The output of the parity checker is denoted as "C," and it equals 1 if an error occurs, indicating that the four received bits have an odd number of 1's.



• The table presents the truth table for the even-parity checker, outlining the conditions under which C is equal to 1.

| Four Bits<br>Received |   |   |   | Parity Error<br>Check |  |
|-----------------------|---|---|---|-----------------------|--|
| x                     | y | z | P | C                     |  |
| 0                     | 0 | 0 | 0 | 0                     |  |
| 0                     | 0 | 0 | 1 | 1                     |  |
| 0                     | 0 | 1 | 0 | 1                     |  |
| 0                     | 0 | 1 | 1 | 0                     |  |
| 0                     | 1 | 0 | 0 | 1                     |  |
| 0                     | 1 | 0 | 1 | 0                     |  |
| 0                     | 1 | 1 | 0 | 0                     |  |
| 0                     | 1 | 1 | 1 | 1                     |  |
| 1                     | 0 | 0 | 0 | 1                     |  |
| 1                     | 0 | 0 | 1 | 0                     |  |
| 1                     | 0 | 1 | 0 | 0                     |  |
| 1                     | 0 | 1 | 1 | 1                     |  |
| 1                     | 1 | 0 | 0 | 0                     |  |
| 1                     | 1 | 0 | 1 | 1                     |  |
| 1                     | 1 | 1 | 0 | 1                     |  |
| 1                     | 1 | 1 | 1 | 0                     |  |



- The function C is defined by the eight minterms with binary numerical values that have an odd number of 1's.
- This truth table corresponds to the map shown in Fig. (a), which represents an odd function.





(a) Odd function  $F = A \oplus B \oplus C \oplus D$ 

The parity checker can be implemented with exclusive OR gates:

$$C=x \oplus y \oplus z \oplus P$$

• The logic diagram of the parity checker is shown in Fig. (b).





- The parity generator can be efficiently implemented using the circuit depicted in Fig. (b) when the input P is set to logic 0, and the output is designated as P.
- This implementation is feasible because z ⊕ 0=z, meaning that the value of z passes through the gate without alteration.
- An important advantage of this approach is its versatility, as the same circuit can serve the dual purpose of both parity generation and checking.



(b) 4-bit even parity checker



#### References

- Computer Organization and Architecture Designing for Performance Tenth Edition by William Stallings
- Digital Design With an Introduction to the Verilog HDL FIFTH EDITION by M Morris, M. and Michael, D., 2013.





# Thank you