Statistik 1 (Teil 1) HS17

Übungsblatt 9

Dr. Stella Bollmann und Prof. Dr. Carolin Strobl

Aufgabe 1 Was ist der Unterschied zwischen einer Wahrscheinlichkeitsfunktion und einer Dichte?

Für die nächsten Aufgaben müssen Sie Werte aus der vereinfachten Normalverteilungs-Tabelle ablesen. Die Tabelle finden Sie in der Formelsammlung.

Aufgabe 2 Eine Zufallsvariable Z ist standardnormalverteilt. Bestimmen Sie zunächst folgende Wahrscheinlichkeiten direkt aus der N(0,1)-Tabelle:

- 1. $P(z \le 1.28)$
- 2. P(z > 2.33)
- 3. $P(1.28 < z \le 2.33)$

Aufgabe 3 Eine Zufallsvariable X ist normalverteilt mit Erwartungswert $\mu = 100$ und Varianz $\sigma^2 = 49$. Bestimmen Sie folgende Wahrscheinlichkeiten:

- 1. $P(x \le 109)$
- 2. $P(x \le 100)$

Aufgabe 4 Eine Zufallsvariable Z ist standardnormalverteilt. Bestimmen Sie diejenigen z-Werte, unter denen die genannten Prozentsätze der Verteilung liegen.

- 1. $z_{75\%}$
- 2. $z_{95\%}$

Aufgabe 5 Ein Testwert ist innerhalb einer Population normalverteilt mit Erwartungswert μ und Varianz σ^2 . Bestimmen Sie den Erwartungswert und die Standardabweichung der Stichprobenverteilung des Mittelwertes, die sich ergibt, wenn man sehr viele einfache Zufallsstichproben der Grösse n = 100 zieht, und für jede Stichprobe den durchschnittlichen Testwert der Personen in der Stichprobe berechnet.

- 1. Wenn für die Testwerte in der Grundgesamtheit der Erwartungswert $\mu = 50$ und die Varianz $\sigma^2 = 400$ ist.
- 2. Wenn für die Testwerte in der Grundgesamtheit der Erwartungswert $\mu = 30$ und die Varianz $\sigma^2 = 225$ ist.

Statistik 1 (Teil 1) HS17

3. Wie verändert sich die Standardabweichung der Stichprobenverteilung des Mittelwertes, wenn

- (a) die Varianz der Testwerte in der Grundgesamtheit σ^2 kleiner wird?
- (b) die Grösse der Stichproben n grösser wird?

Überlegen Sie sich die Auswirkung zunächst theoretisch (verbale Erklärung oder Erklärung mithilfe der Formeln für $\mu_{\bar{x}}$ und $\sigma_{\bar{x}}$). Dann überprüfen Sie Ihre Überlegungen, indem Sie die erste Teilaufgabe (bei der $\mu = 50$, $\sigma^2 = 400$ und n = 100 war) mit folgenden Werten neu berechnen:

-
$$\mu = 50$$
, $\sigma^2 = 256$, $n = 100$
- $\mu = 50$, $\sigma^2 = 400$, $n = 400$