HUDSON LABORATORIES of Columbia University 145 Palisade Street, Dobbs Ferry, N. Y. 10522

TECHNICAL REPORT No. 150

THE HUDSON LABORATORIES RAY TRACING PROGRAM

by

H. Davis
H. Fleming
W. A. Hardy
R. Miningham
S. Rosenbaum

June 1968

Document cleared for public release and sale; its distribution is unlimited.

Contract Nonr-266(84)

Hudson Laboratories of. Columbia University Dobbs Ferry, New York 10522

Technical Report No. 150

THE HUDSON LABORATORIES RAY TRACING PROGRAM

Ъy

H. Davis, H. Fleming, W. A. Hardy,

R. Miningham, and S. Rosenbaum

UNCLASSIFIED

June 1968

Document cleared for public release and sale; its distribution is unlimited.

This report consists of 363 pages.

Copy No. of 145 copies.

This work was supported by the Office of Naval Research under Contract Nonr-266(84). Reproduction in whole or in part is permitted for any purpose of the United States Government.

ABSTRACT

A series of computer programs has been developed for the calculation of the acoustical field in long-range, low-frequency underwater sound propagation in the deep ocean. The programs involve the extraction of data inputs from available data banks, the calculation of ray trajectories, and intensity calculations that are based on the mapping of ray densities into the far acoustical field. This report outlines the methods used in the calculations and provides incidental commentary on the results of the program and its application to underwater sound propagation.

CONTENTS

		Page
CHAPTER	I INTRODUCTION	1
1.1.	Objectives	1
1.2.	Data Inputs	2
1.3.	Ray Tracing	3
1.4.	Intensity Calculations	5
	Reference	9
CHAPTER	II DATA INPUTS AND PROGRAM ORGANIZATION	31
2.1.	Introduction	31
2.2.	Data Flow System	31
2.3.	Program Management	32
2.4.	Ray Path Specifications	33
2.5.	Sources of Sound Velocity Profile Data	33
2.6.	Selection of Velocity Profile Data	34
2.7.	Velocity Field Construction Program	35
2.8.	"Four-Point" Fits	37
2.9.	Sources of Bottom Data	38
2.10.	Inputs to the Ray Trace Program	39
2.11.	Outputs of the Ray Trace Program	40
2.12.	Conclusion	41
CHAPTER	III RAY TRACING	55
3.1.	Introduction	55
3.2.	Development of Solution	55
3.3,	Adaptive Controls of Iteration Interval	59
3.4.	Error Estimates	64
3.5.	Printouts	66
3 .6.	Ray Magnification Function	68
3.7.	Ray Depth Distribution Plots	69
	References	73
CHAPTER	IV TRANSMISSION LOSS	76
4.1.	Preliminary Observations	76

		Page
4. 4.	Loss and Weighting Functions	81
4.3.	Intensity Calculations	88
4.4.	Types of Intensity Distributions	94
	References	104
CHAPTER	V PROGRAM ACCURACY	109
5.1.	Program Control Parameters	109
5.2.	Test Procedures	111
5.3.	Hyperbolic Cosine Profile	112
5.4.	Bilinear Profile	130
5.5.	Real Velocity Profile	145
5.6.	Reversibility Test in Real Velocity Field	211
	Reference	212
CHAPTER	VI BATHMETRY	215
6.1.	Introduction	215
6.2.	Specular Reflection	216
6.3.	Bathymetry with Non-Cylindrical Symmetry	218
6.4.	Bathymetric Data	223
	References	231
CHAPTER	. VII PROGRAMMING	232
	Data Input Programs	237
	Ray Trace and Documentation Programs	264
	Ray Trace Analysis Programs	280
CHAPTER	VIII CONCLUSIONS AND RECOMMENDATIONS	308
8.1.	Technical Improvements	309
8.2.	Program Extension	312
8.3.	Experimental Programs	317
	References	320
CHAPTER	IX ACKNOWLEDGMENTS	321
APPENDI	X THE PHASE OF RAY ARRIVALS	323
A-1.	Review of Kirchoff Theory	324
A-2.	Extension to Inhomogeneous Media	326

		Page
A-3.	Phase Change Across Ray Crossings	329
A-4.	Ray Calculation of a Plane Wave Refracted Against	332
	a Stratified Velocity Gradient	
A-5.	Conclusions	337
	References	339

LIST OF FIGURES

Fig. No.		Page
1	Ray trace data flow diagram.	10
2	Ray path drawn on great circle chart showing Marsden squares.	11
3	Great circle computed along ray path at 25 n.m. increments.	12
4	References to velocity profiles stored on NODC tapes.	13
5	Velocity profile plotted in a standard format.	14
6	Multiplot of profile differences compared to a standard.	15
7	Ray trace request form for input data search.	16
8	Ray trace request form for operating parameters.	17
9	Printouts showing bottom and ray path.	18
10(a-d)	Multiplots of ray paths.	19, 20
11, 11a	Ray depth distribution plot at a range of 115 n.m.	21,22
12(a-c)	Ray trace request form for data reduction procedures.	23-25
13	Type II intensity calculation printout.	26
14	Calculated transmission loss curve from Hudson Laboratories Op. 251.	27
15	Type III intensity calculation printout.	28
16	Experimental transmission loss curve for Op. 251.	29
17	Multiplot of ray paths over a 300-mile range.	30
18	Great Circle computed along ray path at 25 n.m. increments.	42
19	NODC Velocity Data related to Marsden Squares.	43
20	Distribution of North Atlantic velocity profiles > 1900 m.	44
21	Distribution of North Atlantic velocity profiles for December.	45

Fig. No.		Page
22	Flow chart of the Ray Trace Velocity Data Search Procedure.	46
23	Sample list from Ray Trace Velocity Data Search by Marsden Squares.	47
24	Velocity profiles for June along a ray path from data search.	48
25	Interpolation and extrapolation formulas for shallow profiles between deep profiles.	49
26	Wilson's Equation for calculating velocities.	50
27	Schematic representation of extrapolation procedures for deep and shallow profiles.	51
28	Formulas for calculating curvature and gradient.	52
29	Plot of the effects of various data fits.	53
30	Formulas for Lagrange and Bedford Institute method of fits.	54
31	Ray depth distribution plot at 225-mile range.	74
32	Ray depth distribution plot at 240-mile range.	75
33	Computed transmission losses as a function of range for hypothetical source at 500 m.	105
34	Computed transmission losses as a function of range for hypothetical source at 5000 m.	106
35	Distributions of ray arrivals.	107
36	Effect of various types of sampling functions.	108
37	Deep profile at range 306 miles.	115
38	Deep profile at range 305 miles.	132
39	Deep profile at range 0.0 miles.	149
40-56	Shallow profiles at ranges 50.2 to 286.4 miles.	150-166
57	Deep profile at range 305.7 miles.	167

Fig. No.		Page
58	Deep profile at range 350 miles.	168
59	Ray trace data flow diagram identifying program source lictings in Chapter VII.	234
	Appendix	
A-1	Coordinate system used for Eq. (A-6).	340
A-2	Coordinate system used to construct an aperture- limited diffraction field.	341
A-3	Ray geometry used to extend wave solution.	342
A-4	Conventional ray diagram for the refraction of an incident plane wave against a velocity gradient.	. 343
A-5	Huygen's determination of the field at $\mbox{\ensuremath{P}}$ due to an incident plane wave at $\mbox{\ensuremath{S}}$.	344
A- 6	Computed travel times and positions on surface S.	345
A-7	Data of Fig. A-6 replotted.	346
A-8	Contours of equal travel time.	347
A-9	Detailed ray paths showing ray intersections.	348
A-1 0	Two-arrival interference pattern of field from a point source reflected against a velocity gradient.	349

CHAPTER I

INTRODUCTION

1.1. Objectives

The results of a number of experiments in low-frequency, longrange underwater sound propagation have shown that bottom interactions
as well as changes in the velocity profiles with range will play important
roles in determining the efficiency of the acoustical transmission between
an underwater source and its receiver. To include these effects in the
analysis of experimental data, Hudson Laboratories has developed a ray
tracing program which is especially adapted to multipath long-range
acoustical propagation — oriented toward ranges of several hundred to
several thousand miles — with the point of view that the program should be:

- i) at least semi-quantitative with respect to the prediction of acoustical transmission losses.
- ii) a flexible research tool that can be used in connection with the analysis of results from specific experiments to choose parameters needed for the prediction of intensity, and
- iii) as complete as possible in terms of assimilating and organizing for convenience a variety of data inputs and presenting computed results to the scientist for his interpretation.

This complete ray tracing program, or, more accurately, the system of programs that has been developed (Fig. 1) is discussed in this report with the motives that led to the selection of certain techniques.

The work can be divided in a natural manner into three major groupings:

- 1.2. Data Inputs
- 1.3. Ray Tracing
- 1.4. Intensity Calculations

and these groups are also consecutive steps in the data flow. The overall program can be illustrated in terms of <u>representative outputs</u> for each group above, which will also serve as an introduction to the details of, and a summary of, the present program.

1.2. Data Inputs

Figure 2 indicates a great circle path from 30°N, 20°W to 50°N, 25°W over which it is desired to obtain data for predicting the transmission loss. Coordinates for this track, or for tracks specified by an initial position and bearing, are computed so that the path can be plotted on standard bathymetric charts to obtain a bottom profile. Figure 3 is an example of the track coordinates printed at 25-mile increments.

If no special velocimetric data are available for this path, e.g., data from a particular experiment, or if given data are to be checked against standard data for the area, the magnetic tape files of the National Oceanographic Data Center (NODC) can be searched for data of given months for sound velocity profiles that possess depths equal to or greater than a Maximum Depth of Observation (MDO), and which lie within a specified range or zone width from the given track. Figure 4 gives the identification numbers of all velocity profiles catalogued by NODC for the months 10, 11, 12 with an MDO greater than 1500 meters and which lie within 50 miles of the track of Fig. 1.

All the velocity profiles selected as pertinent to a given track from any input data source are converted to a standard form for editorial review before insertion into the ray tracing program. Stations given in terms of temperature, salinity, and depth are converted to sound velocity and depth entries by use of Wilson's equation. Also, if the MDO of a station is less than a maximum bottom depth for the ray tracing, an inverse solution is made of Wilson's equation to determine the water temperature at the MDO and the profile is extrapolated to greater depths by assuming that the water temperature is constant and the sound velocity is a function of pressure only. Figure 5 shows the standard form used for the profiles. A four-point fit of entered data points is used to determine the sound velocity at 20-meter intervals to 2000 meters and at 100-meter intervals to the greatest depths. The MDO of the profile of Fig. 5 was 5277 meters and the entered velocity represented a water temperature of 1.818° for an assumed salinity of 35.0%. Insofar as the roughly 1.8° temperature is typical of deep water in the geographical area of the profile, this velocity profile and its extrapolation were accepted as valid for inclusion into the ray tracing program.

References are compiled at the end of each chapter.

Any number of velocity profiles can be inserted into the program to construct the total velocity field; additionally, and provided that profiles can be obtained at the beginning and end of the acoustical path, a number of shallower profiles, e.g., BT or X-BT casts, can be inserted to fill in important detail relating to the surface or near-surface velocity structure. This process is described in detail later in this report (Chapter II). The net result is the construction of a set of velocity profiles ordered in range over the acoustical path which constitutes the velocity field for the subsequent ray tracing. Accompanying this data is a bottom contour, i.e., a set of bottom depth vs range entries.

The variation of the velocity profiles with range can be inspected in detail by plotting the difference between successive entries with respect to a standard, usually the initial, velocity profile entry. This is shown in Fig. 6. The multiplot not only indicates typical local variations among the set of profiles but shows the manner in which the velocity profile structure, e.g., the profile shape and the depth of the sound channel, changes over the acoustical path. These changes represent propagation through different ocean regions such as those defined by the major oceanic currents. The changes permit profound modification of the acoustical field via interactions such as the trapping or ejection of rays from surface or secondary sound channels.

A control form, "Ray Trace Data Search Specifications," is shown in Fig. 7 and this is used to initiate data selection from available data banks.

1.3. Ray Tracing

Figure 8 gives the control form for the "Ray Trace Program Operating Specifications." The form is used to specify the initial conditions for the ray tracing iteration and also to select parameters that control the accuracy and computational speed of the program. For a given source depth and initial angle the ray is traced in the velocity field and in conjunction with the bottom profile prepared previously. Usually a range of initial angles is specified together with an angular increment and the ray trace is repeated for each increment until the entire angular spectrum has been traced.

Figure 9 indicates a printout that is available for each ray traced. Range, depth, angle, travel time, and height above bottom are printed on the bottom, and the top plot depicts the progress of the ray between the surface and the bottom. Printout intervals, typically 1.0 or 2.0 miles, are selected and extra printouts are given at each turning point and surface or bottom hit.

An objective of the program is to determine the principal arrival structure that constitutes far field illumination. The angular increments are chosen small enough so that, insofar as possible, each arrival is well defined. In practical situations this usually requires from one hundred to two hundred rays or more. Summary information of the total field is obtained by compiling the data from the individual ray tracings on an output tape to produce multiplot data or data for the intensity calculations discussed in Chapter IV. Figures 10a through 10d indicate the build-up of the total field by the various rays from the source. To reduce confusion in this representation of the field patterns, each plot is limited to a maximum number of 30 rays.

More specific data are given in the Ray Depth Distribution Plot of Fig. 11. These plots can be obtained at every range that is also a print-out interval of the ray trace program. The sequence of the plot is in terms of the angular increments used in the ray trace and the asterisks show the depth of that ray at the selected range. A ray will be oscillating in depth about that range (Fig. 9) and the maximum and minimum depths of the oscillations that occur about the printout range are indicated by the plus and minus signs in Fig. 11a. The extreme right-hand side of the figure plots the travel time for each ray.

It is clear that if a vertical line is drawn in Fig. 11, representing a given depth between the surface and the bottom, the line will intersect certain families of rays and each intersection will give a different arrival that can contribute to the acoustic field. In this figure the shallower angles correspond to sound duct propagation and the steeper angles represent RSR and bottom bounce propagation.

1.4. Intensity Calculations

Figure 12 is the control form for the "Ray Trace Intensity Calculations" and indicates a number of parameters that are included in the calculation such as wavelength, attenuation functions, source and receiver directivity functions, etc. These are described in Chapter IV. It is a feature of the calculations that intensity is determined as a probability distribution that is obtained by mapping the arrival structure depicted in Fig. 11 across the ocean depth at a given range. This permits a calculation of the intensity at a given range and depth, and therefore the transmission loss. It also determines the distribution of intensity in depth as the sound propagates between the confining sea surface and bottom planes of the ocean.

All such calculations are subject to uncertainties in the input data and must be interpreted as averages over "representative" data. Additional averaging is necessary to account for the fluctuations that are due to multipath structure. In a coarse differentiation corresponding to limiting physical situations, the intensity calculations have been classified into three types, only two of which, types II and III, are considered for long-range propagation.

The Type II intensity calculation is applicable where the depth distribution of acoustical intensity will change with range. Figure 13 shows a printout that gives the transmission loss calculated at twelve depths and for nineteen equally spaced range intervals, usually two-mile increments, that are centered on a given range. These data could be used, for example, to construct the predicted transmission loss to a given receiver from a source that is towed in range at a specified depth. Successive outputs of the type of Fig. 13 can be continuously plotted to give the transmission loss as a function of range in the form of Fig. 14.

When the input data becomes uncertain, and at very long ranges such that convergence zone structure is "washed out," it becomes preferable not to predict the range-dependent Type II transmission losses but instead to average these over a large range interval that would correspond to a convergence zone. For this limit of averaging a Type III transmission loss is calculated with the printout shown in Fig. 15. The

calculation is based on a representative range R and takes the form of a depth distribution of transmission loss in which every ray that is traced can make a contribution provided the ray has not suffered so great an attenuation prior to range R that it has been terminated earlier in the program.

It is not the function of this report to undertake detailed comparisons of the data computed by these programs with specific experimental results. However, as an indication of the ability of the program to predict acoustical transmission using realistic oceanographic environmental data, the predicted curve of Fig. 14 may be compared with Fig. 16 which gives a transmission loss measured by A. N. Guthrie and J. D. Shaffer during a summer 1967 tow of a 13, 33 Hz projector over the Hatteras Plain. Velocity profile input data were obtained at approximately 30-mile intervals using Sippican X-BT casts to 750 meters and deep velocimeter casts were obtained at the end points of the tow. The bottom profile was taken from the PFR records of the towing ship (USNS J. W. Gibbs). The transmission was monitored from the USNS Mizar by a sonobuoy-suspended hydrophone at a depth of 100 meters. The depth of the towed projector was 30 meters.

The velocimeter casts indicated a strong thermocline to the surface from a depth of 150 meters with a roughly isothermal layer of about 200 to 250 meters below the thermocline. The latter layer strongly affected the transmission, acting as a partial sound channel. The experimental data, obtained from digitized records, are based on an intensity average taken over a 2-mile range interval.

The agreement between experiment and theory is partially fortuitous because:

- i) application of ray theory to the very low 13. 33 Hz frequency is questionable, and
- ii) the bottom reflectivity loss function used in the calculation is an extrapolated estimate.

Nonetheless, this and other comparisons that have been made with experiments are highly encouraging; they also indicate that the details of the transmission loss vs range plots are highly sensitive to specific

features of the input data, e.g., horizontal gradients and certain types of bottom features, and that these must be included in any realistic predictive model.

The examples of Figs. 1 through 15 serve as an introduction to the program. They indicate the computational volume that is required to obtain a reasonably complete description of a sound field that may contain twenty to thirty arrivals or more, and also to estimate the distribution of these arrivals with depth at given ranges. With the GE-235 computer available to the Laboratories, a program extending to a 1000-mile range that computes 200 rays will require about 10 to 15 hours for the ray tracing itself plus about two hours for associated plots and intensity calculations. With a modern higher speed computer and, admittedly, with technical improvements in programming it is estimated that the computational time could be cut to one-fiftieth to one-hundredth of the present running time. Features of the present program that are discussed in detail in subsequent chapters of this report include:

- i) a capacity for the inclusion of mixtures of all types of velocity profiles, e.g., surface BT casts, deep Nansen casts, etc., to obtain as precise a construction of the velocity field as the data permits,
- ii) the inclusion of horizontal gradients, earth's curvature corrections, and available bottom data in a straightforward manner,
- iii) a capability for "trading-off" computational accuracy in terms of shorter computer running times according to the nature and reliability of the input data and the type of calculation desired.

Separate experimental studies in long-range acoustical propagation (not reported here) have shown that the horizontal gradients and at least a limited number of bottom interactions must be included to obtain agreement between predictive models for the sound transmission and experimental data, especially at low acoustical frequencies. As a generalization, the bottom interactions that are most important for long-range propagation are of three types:

- i) the terrain local to a source that can either augment the ray field by slope-aided rays that propagate to the far field or can attenuate the field by obstructing many rays that could otherwise propagate,
- ii) prominent rises, e.g., seamounts or ridges, at intermediate ranges that obstruct the ducting of the sound energy, and
- iii) terrain at the farthest ranges that can obstruct the sound by additional terrain shadowing or, conversely, can create "hot spots" due to favorable slopes.

The sound paths and bottom interactions shown in Fig. 17 are typical of physical conditions that prevail in the real ocean and represent the type of propagation toward which the present program is directed. The source is located on a bank at range zero. The sound energy spreads hemispherically, neglecting bottom propagation, to a near range, but during this propagation the steep rays interact strongly with the bottom so that only a fraction \(\eta\) of the source power radiates outwardly beyond and the fraction $(1-\eta)$ is lost to the bottom. The propagation to range R, acts like a filter that eliminates all but the shallow angles. If the bottom is deep between ranges R_1 and a further range R_2 , almost all of the n fraction of the source power propagates as cylindrical spreading with very little decrease in the value of η . An intervening obstruction at range R2 will cause a further filtering of the ducted energy and will produce a distinct decrease in η to a value η' after which the power will again spread cylindrically with a nearly constant fraction η' . Finally, if there is an interaction with the bottom at range R_3 , there will be a further attenuation in the power; however, low-angle reflections from a slope at R₃ can give an increase in the intensity observed at certain depths at the range of R3 .

The frequent observations of nearly ideal cylindrical spreading from intermediate to long ranges give such a model a strong empiric basis as, at least, a good approximation for cylindrically spreading waves. Also, the fractions η can be measured in given ocean regions if the total intensity that propagates throughout the full depth of the ocean can be measured.

The present program attempts a predictive model of such acoustical transmission with special concentration on:

- i) the intensity distribution in depth and as a function of range of source and receiver,
- ii) prediction of the loss fraction η as a function of the depth of the source, the prevailing bathymetry, and the dominant velocity field,
- iii) the effect of changing velocity profiles which, by their change through ocean regions, contract or expand the duct that controls the cylindrical spreading of the sound field.

Reference for Chapter I

1. W. D. Wilson; J. Acoust. Soc. Am. 23, 10, 1357 (1960).

Fig. 1. Ray trace data flow diagram.

Fig. 2. The ray path between 30°N, 20°W and 50°N, 25°W drawn on a great circle chart. Marsden squares were computed by program A-173-F1.

DATA SEARCH PROBRAM (A-173-F1) - R D MININGMAN GREAT CIRCLE BEARINGS AND DISTANCES

COMPUTED ON CLARKE 1864 SPHEROID- DISTANCE IN HILES

		MA	JOR I	PADI	U \$ •		3	443,	955997	H	INOR	RADIUS .	3432	28099ņ
FROM LA	TITUDE	L	ON 6 [1	UDE	T	0 L	AT1	TUDE	LDN	GIT	UDE	DISTA	NCE	WEARING
30 0	•,	30	•	0,	5	0	0	0,	25	9	0,	1220,3	1408	370,4885
RANGE	LA	TITU	DE		L	ONG	Itu	DE	DEAR		_ :			
25.8	38	24	48.10		20	4	41	,42	350.		OINT			
50,8	30	49	20.14		50	Ť		119	350.					
75.0	31				20	14	11	, 34	350 .					
100.0	31		39,6		50	19	. 0	03	390.					
129.0	25 25		19.00		50	23 28		121	350.					
175.8	32		37.47		20	33		,43	390,					
200,0	33		14,31		20	30		59	350.					
225.0	33	41	55,01		20	43		,55	350		_			
259.0	34	•	33,40		20	40		, 38	350,					
277.0	34		11,7		50	53		,14	390,		_			
300.0 32>.0	34 35		27.8		20 21	59 4		.91 .78	390, 350,					
350,0	35	45	5,5		21	Ģ	_	.60	350,					
375,0	36	_			21		37		350					
400,0	36		20.10		21	50	20	,68	349,	970	7			
425,0	36		57.12		51			,70	349,					
450.0 472.0	37 37		33.83		21			155	349,					
500,0	36		46,4		21 21	36	77	,33 ,12	349, 349,					
525.0	30				21	48	11	70	349					
550.0	39		50,00		21	53		1.5	349					
379.0	26		33,46		21			.57	349,	576	3			
460,0	39	51	8,50		55	. 5	40	.08	349,					
427.0 450.8	40		43,30		55	11,	37	74 78	349, 349,					
675,0	41		52.00		55	23	44	19	349.					
700.0	41	29	25.9	3	22	29		14	349					
725.0	41	51	59,40	•	22	34	17	73	349,					
750,0	42		32,7		22		33		349,					
775.0 800.0	42 43	43	38.0		55		58		349.					
823.0	43		10.2		23 23	55 2		168 116	348,	_				
850,0	43	56	42.0		23	i		95	348					
875,0	44		13,4		23	19		19	344					
900.0	44		44,45		23	55		, 05	348,	660	7			
925,0	45		15.0		23	29		, 66	348,					
950,0 973.0	45 45		45,20		52 52	36 43		119	348,					
1000.0	46		44,30		52	50	40	,70 ,64	348, 346,					
1027.0	46				52	58	11	90	348.					
1050.0	47	15	41,73	3	24	5	40	,74	344.					
1875.0	47	37	9.71		24	13		, 34	346.					
1180.0	48	26	37,21		24	20		. 46	344,					
1127.0 1170.0	41	50	4,23		24	28 36		.47 .31	347,					
1179,0	49		56,8		24	44		.50	347.					
1200.0	49		35.20		24	53		. 94	347					

Fig. 3. Great circle computed along ray path at 25 n.m. increments.

VELOCITY DATA SEARCH PROGRAM - R.D. MININGHAM [A-173-F1]
SPECIFICATIONS- MDOR 1500
MONTHSR OCT, NOV, AND DECEMBER
MAXIMUM RANGE FROM RAY PATHR 50.0

TEST RUN

DISTANCE FROM HAY PATH	4	Ĵ	0.3	Ţ.	71.	÷.5	23.	Ž.	~	23,138	O	1	4
DISTANCE FROM ORIGIN [NM]		4	36.0	20,5	1199	21,9	•	48,2	27.7	57,3	40.4	45.9	9:9
LONGITUDE DEG MIN	0 44,	6 7	0 12,	2 40.	1 43,	1 48,	22 41,0	5 2,	5 23,	2 37,	5 27,	4 18.	+ 25.
LATITUDE DEG MIN	0 17.	1 21,	2 16,	8 44	9 40.	0 47.	4	0 32,	2 21,	3 49	4 36,	5 25,	-
YEAR	21	61	57	55	26	58	57	58	59	58	58	58	58
T NO	10	12	15	(C)	10	0	10	0	10	10	10	0	12
DEPTH M METERS	0 0	90	9	80	60	30	00	9	0 6	80	50	50	2100
IDENTIFICATION	400	09007	22009	15001	78002	61004	250029	61004	77001	61003	61003	61003	9610111.
MARSDEN So	-	! -		4 -	-	17	. 7	47	7	. A	7	47	18304

Fig. 4. References to velocity profiles stored on NODC tapes. Selection was made by program A-173-Fl according to the indicated criteria.

Fig 5. Velocity profile plotted in a standard format. This profile was extrapolated from a depth of 5277 meters.

Fig. 6. A multiplot of the profile differences of 10 profiles (B-K) as compared to profile A.

HUDSON LABORATORIES OF COLUMBIA UNIVERSITY AMALYSIS DEPARTMENT DATA FLOW SYSTEM SENIOR SCIENTIST RAY TRACE REQUEST FORH- PART 1

CATIONS Longitude deg min sec
Longitude deg min sec Longitude deg min sec deg min sec
Longitude deg min sec
Longitude deg min sec
Longitude deg min sec
•
•
*
.):•
414
lished velocity data:
<u> </u>
d bottom data that are to
tes, locations, etc.

Fig. 7. Ray trace request form used to specify the data that are to be used in the Ray Trace Program.

HUDSON LABORATORIES OF COLUMBIA UNIVERSITY ANALYSIS DEPARTMENT DATA FLOW SYSTEM SENIOR SCIENTIST RAY TRACE REQUEST FORM- PART 2

Ray	tra	e number	RT	_ Date		
Sen!	lor	Soientiet		Operation		
			AY TRACE OPERATING	SECOLOGICATIONS		
1.	Ini	tial depth	of ray (at range	0).		
	•	. G1 ve de	opth from surface	(meters):	1 01	•
	١	o. Check i	f on bottom:	•		
2.	Max	lmum itera	tion increment (mo	eters):	<u> </u>	
3.	Min	mum itera	tion increment (me	eters):		
4.	Requ	ired acou	racy for predicti	ng velocity field	. E (m/sec) 1_	
5.	Max	lmum numbe	r of allowed surfe	ace hite:		
5.	Max	mum numbe	r of allowed bott	om hits:	•	
•	Maxi	Hum allow	ed grazing angle	(degrees) ı	·	
3.	Pine	l range o	of ray trace (naut:	lcal miles):	•	
	Prin	tout incr	ement (nautical m	1105):	·	
10.	Init	ial angle	s to be traced (de	egrees): <u>from</u>	to	ра
1.	Chec	k for ear	th's curvature co	rrection: <u>YES</u>		
			extrapolating par			
3.	Othe	r informs	tion:			

Fig. 8. Ray trace request form used to specify parameters used in the Ray Trace Program.

ray path. Digital values are printed along with the plot at 1-n.m. increments. Printouts of the Ray Trace Program showing plot of the bottom and Fig. 9.

Fig. 10 (a-d). Multiplot of ray paths. Thirty rays are plotted in each figure.

Fig. 10 (c and d),

Fig. 11. Ray depth distribution plot at a range of 115 n.m.

•					-			•		. 1	L 9	L 8 .	1 2	•					1 4 4 4	•		•	-			1.3			•				-	-	•	-	1	-	
							•	•														•	•	•	•		• •	-		•	•	•	•	•	•	•	•	 	
•	•	•	•	•	•	9		•	•	•	•	•	•	•	•	•	•	•	•	•								1											
-					-		-	-		-	3		-1 - Z	•	-	-	-			-0-	-	1	-	£:	=	.1.	## *	1•	.1.	4	1.		•		-			2.	0 2.
49/3/478	SELECTION S	12731181	1001700	10211161	17584875	£388£361 - 1	256224621	2/224/85 3	20010061	2 ., 23848887	8 - 111109845	44141054 - 8	_	131M6£3' 1	13128061' 8	16149864	15417491	200001-1	ABRIG.CI' S	1/103561'	16729995'	1804963	19209651	RATZAZÞI' I	131526693							11301010	-,12731149	1291/611 - 1		100000000 - 1	_		1 - 0/693242
449491111	- 4040164	10000	1117567	14796126	2211122	2219121	14273846	14875487	26994893	1827551		14219794	.14285976	74191271	54 Jack 1.	13101271.	94504271	6899683	29/4291	11421119	64686276	93464293	12194291	18644Z91"	Alfance .	14502389	.14383337	1430394	14283561	1842427	1318313	14430777	. 54316961	14313190	. 14114930	4384011	14314964	144114971	. [4214997
y SHIREHIA		1014111	TOUR DESIGNATION OF THE PERSON	19911911	I Jacobar.	Tanglant.	T TANIFACT.	I designif.	T Inning?	T TOOMINGS:	T Paggagt'	1 10011001.	. 1001101.	T fansonat.	1 0000001	1 19980101.	. 10000011.	T Geelfeel'	r beendeer.	1 00000001.	T Janinar.	1 69109005	Theman.	1 914114111	1 1111111111111111111111111111111111111	1 91100001.	1 10100001.	1 30000001	1 \$6888884.	I Sentitati'	1 0100001.	1 2000001.	.10000001.	3 00000003.	7 00000007	i tertitet.	. 16101011.	1.18598639.	. 18068081.
2 201111111	11004441	V V V V V V V V V V V V V V V V V V V	A BEC 200 C	25447534 4	. 22269341 4	2 (192591)	4 1844481.	1. 12128346 4	. 65667348 3	2 23245631.	\$ 18824727	34446840	. 39662101 3	52191404 3	. 69398433 3	. 71945227	. 69896617 3	2 32786239	s zeisläte:	66486149 3	. 74656462 3	\$ 26028360	P ISACATAT:	P 16.296963	10116397 4	219(4827 4	7 10616782	.24337121 4	. 23724269 4	90486818	1 06910481	1 39376961.	1.12032060 4	8 61904748	. 60699937 3	61647136	. F4629061 3	50213037 3	. 40436468 3
A PROPERTY .	- 1010001		6 7000X6+	4.1310016	2 98666611.0	2 99666 Ti-	3 91666533.0	1139990y P	2 (BABATT).	* (1000d1) ·	2 0906AL83	11999989 2	11390911 2	181V9961 2	1 1244444.	49666641	1 VEGGGGGV-1	99664684.	i phasain.	*6001060%	*. 64461622 1	. 66611699.	T AGAILLES'.	* . (£111)1977 4	. 66666663 .	506B0107 1	12111197.	94000139 1	P2088152 :	1 0571110x -	46486164 1	64118179 1	64000103 1	42010182 1	*. ftilling 1		Seeloges 2	34c0e194 1	92010141 1
2 1101112	T TRABABA	102000	1.046688	11566686 3	1 11001011	2 11111/17.	1 11111211	T DESCOATT.	e attanta.	1 11111111	£ 11119241'	. 12568086 3	. 12400010 3	£ 93900621.	£ 11910ell.	129780818	r 10009987.	· MANAGES	e sassassi'	2 49996787	TAXIBEED 2	* #010021	C salitagi	e nininati.	2 20222921	Z 00000157.	£ 3010063°	2 00000ag3	2 00000073	2 30101727	2 1000E773.	2 090000	1 164996 31	2 30110477	2.0011100	2 10111/23:	1 1000001	2 0000001	1 10000001

Fig. 11a. Enlarged section of Fig. 11. The maximum and minimum depths of the oscillations about the printout range are indicated by the plus and minus signs. The depth of the ray at the printout range is indicated by an asterisk. "S" indicates the surface and "B" indicates the bottom.

HUDSON LABORATORIES OF COLUMBIA UNIVERSITY ANALYSIS DEPARTMENT DATA FLOW SYSTEM SENIOR SCIENTIST RAY TRACE REQUEST FORM - PART 3

Ray 1	Troce Nu	mber	RT	Date	
Senio	or Scien	tist		Operation	
			ANALYSIS SPECI	FICATIONS	
1.	MULTIP	LOTS	(limit of 30 rays per plo	ot)	
	1.	Ang	les to be plotted (degrees	ı):	
		4.	fromto	c. from	to
		ъ.	fromto	d, from	to
II,	RAY DE	PTH 1	DISTRIBUTION PLOT		
	1.	Bot	tom loss (answer a or b):	_	
		4.	a (fractional)= Cexp	$- (A\phi)^2 + B(SIN$	$\frac{\varphi)^2 a^2}{\lambda}$
			Sigma Table	L	٦
			ge Interval : Sigma	C =	
			o to:	1	meters
			to:	λ =	eters
			to:	A =	
			to:		
		b.	Specify function with thre	e parameters:	
		سيبي			
	2.	Sur	face loss:		
		٠.	β = 1, or		
		ь.	Specify function: B =		
	3.	Cen	ter ranges for calculation	ù:	
		a. 3	Runges (nautical miles):_		
					
		ъ.	or, specify initial range v	with distribution every	nautical
		Eil	e. Initial re	inge;	•

Fig. 12 (a-c). Ray trace request form used for specifying data reduction procedures that are to be used on the output of the Ray Trace Program.

Fig. 12 (b).

	number	RT	Analysis Specifics	tions Page	3.
TYPE	III INTENSITY CALC	CULATION			
1. N	mumber of rays	(180°/Δφ)			
2. H	mumber of depth	intervals	(integer).		
3. W	welengths (meters)):			····
4. C	inter ranges for co	alculation (n.m.	.)		
5. 14	oss and directivity	y functions:			
	a. Check if same a	s for Type II I	ntensity Calculation	01	r,
1	/ b. Specify function	ne:			
•					
OTRE					
OTHE	R INSTRUCTIONS				
OTHE	R INSTRUCTIONS				
OTHE	R INSTRUCTIONS				
OTHE	R INSTRUCTIONS				
OTHE	R INSTRUCTIONS				
OTHE	R INSTRUCTIONS				
OTHE	R INSTRUCTIONS				

Fig. 12 (c).

CENTER LEN	IGTH 150	1200000 S	SPOOTINGS	FACTOR	2>000000	2 40 AM	GLES .:9	100000 3		
FANGE	F-16	R-16	1-14	W-12	F-10	H+8	M-8	4+4	H = 3	н
#0170×	5147.7	5143.2	5104.4	51-5.4	>160.g	5169.2	7177.5	7207.3	219314	>17511
DEPTH.	1831	.000	603	292	.000	984	. 490	DDW		.000
	-106, 350	-174.524	-163,793	-10n 696	-:08,489	-101.747	-114,844	-10/,/35	-107,420	-107,744
<u>75</u>	-104-331 -102,67	-152-574	-90.011	-104.751 -105.700	-106.65A -105,234	-99,892	•112.742 •111,174	*104,701	-103,407	-191,547
15	-10: 20	-40.756	-9H,/11	-101.934	-104.107	-97,299	-139./84	103,400	*102.05/	~19y,470
41,	-100.471	-VP.704	-07.754	-102,557	-103.410	-96,363	-105.607	-10<1247		• 44,458
3055 1955	-97.69	-42,014	-\$4,772 -\$6,121	-97,540	-961455 -991345	-96,20 <u>v</u> -191,04/	•97,434 •182-525	-101,116	*100.4373	• 94.2/2 • 6/.//3
:>c	-95.59	-46.043	467, VIA	-94.553	-98,/59	-101,133	-102-232	-VV. 3/6	4891401	-0/1/03
25(1	•93.200	-95.747 -94.04A	-94,134	-94.403	*99.324	-100 L035_	- 00.482	-90,4/1	*87,260 *87,774	***,444 **1,147
3014	-41.27	-41.803	-93-013	-94,788	-97,714 -94,198	-96,491	-100.047	-00,005	-89,457	•43.579
-010	.97, For	- 102 - 193	PAC, YO.	-90,102	-977		-100,/54		-101./51	
			······································							
ANGE AYYO:		4106.0	K198.5	5200.9	5204.1	M:10 5203.4	H+12	H+14 5210.8	H-10 >211.4	H-18
		.031	-02.754	,100		-191,32¢	,000	,300	1000	. 290
25 25		-72.100	-47,754	-92,342	-9A.1A0	-101,324	-101,709	-10,,41,	-193,003	-103,907
13		-96.497	-45.232	-9n.401	-96.400	-97,624	-90.5/6 -90.831	*103.767	-101,447	*101,703
35		-84,267	-84.431	-87,465	-93,308	-96,210	-96,/55	-194,115	-99.120	-9Y.244
45		-BA.144	-03.734	-86,495	-97,197	-95,000	-45.003	*10,,934	**8,051	*90,231
1000		-04,407	-07.170 -93,187	-84.773	-67,991	-93,210	-91,307	-73.787	-94,299	+94,749
1518		**1.130	-64.544	-04,710	-67.286	-91,920	-94.755	**>,0>1	-98,330	-97,095
2900		• 44.511	-01.004	-94.754	-90.014	-87,15-	-93.230	• 4 • . / 5 *	•94,131	-97,979
25((-70.141	-97.552	-97.302	-97.901	-88,26>	-90,207	·V4,114	-94,053	_ •97,117
1066										
<u>Eniep</u> b	<u> Angl</u>	-V4.508 -101.528 -ALCULATI 28028C J	I.AUI.LCAL	-99,684 184_U11 Biles	-101.432	-76,381 -100,683	•99.390	-48.454	-93,836	•93.772
YPR 11 FNIER P AVELENG	ANGE 1	-101.426 	CI IA IAUIICAL SUDOIMINE	184_U11_ MILES_ FACTOP	-101.432 .2200uuqa	-100,685 2 NU AN	GLES1>	-V8.V24 2	-00,305	-98,556
TO(C YPR 11 FRIED H AVELENG ANGE	<u> Angl</u>	-151.478 	-100.200	-VV.n84 184 U11 miles FACTOP	-101.432	-100,685 2 NU AN	•99.390	-V8.V24	-99,365	
YPA 11 ENIED E AVELENG ANGE CILUP	R-18	PALCULATI 260000 J CCCUL Z	-100.:30	-VV.n84 184 U11 miles FACTOP	-101.432	2 NO AN	.VVV0	-V8.V24	• \$0,365 Ra2	•98,556
YPA 11 ENIER E AVELENG ANGE CITUP	R-14 2157.7	PALCULATE 28 CECHE 2 CCCHE 2 C	-100.:30 CA :AUTICAL 5:021:186 E-14 -2104.9	-VO.NB4 184 U11 MILES FACTOP E-12 5105.4	-101.432 .22004400 .2-11. .2100.0	-100,680 2 MG AN R+B -2169.2	00.303 GLE51> K-A >177.43	-78,724 2 2 2 2 2 2 2 2 2 2 2 3	-99,365 Re2 -2193,4	**************************************
YPE 11 FRIER B AVELENG ANGE CITUM DEPTH	R-18	FALCULATI ZBEDERE J CCCUL Z F-16 J103.2	-100.:30	-VV.n84 184 U11 miles FACTOP	-101.432 -22004400 -1-1' -109.0	-100,680 2 MQ AN R+A -2169,2	.VVV0	-V8.V24	• \$0,365 Ra2	•98,556
YPE 11 FRIER B AVELENG ANGE CITUM DEPTH	R-1d - 120 -	P-16 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-100.000 CA	-90, 884 184 ul; MILES FACTOP E-12 -105, 4 -95, 884 -95, 400	-101.432 -22004800 -1-1' -100.0 -48.902 -98.952	-100.680 2 30 AN R*A -109.2 .109.2 .109.2		-V8.V24 2 000000 3 R-4 ->1000	-99,365 Re2 -2193,4 -1888 -96,22/ -79,278	R -17373
TPR 11 FN1EP P AVELENG ANGE CITUP CITUP C 21 25	R-1d 2127.7	-10176 -7476 -7476 -7476 -7476 -7476 -7476 -7476 -7476	-100.:30 CL	-90, 884 184_U11 HILES FACTOP M-12 >105,4 -91,864 -92,865	.25004400 .25004400 .1-1' .2100.6 .400.7 .700.92 .90,145	-100.680 2 NU AN R*B -109.2 -109.20 -109.20 -109.20 -109.20 -109.337	M-A 7177.1 -100 -102.479 -101.300 -100.178	-V8.V24 2 000000000000000000000000000000000	Ra2 2193.4 	.00,556 .00,556 .00,617 .00,617 .00,402 .104,236
TPR 11 ENIER MAYELENG ANGE CITUM C 20 20 20 20	R-1d 212 17 212 7 212 7 7	-161.426	-100.:30 -100.:	-90, 884 184 ull MILES FACTOP E-12 >105,4 -91,884 -91,400 -91,885 -94,452	-101.432 -22004460 -1-1' -100.0 -48.00 -98.052 -99.145 -96.712	-100.680 2 30 AN R*A -109.2 -109.2 -109.2 -109.2 -109.2 -109.2 -109.2 -109.2		-V8,V24 2 000000 3 H-4 ->162.3 -V0,V25 -184.341 -102,352 -V4,023	-99,365 Ra2 -193,4 -193,4 -193,649 -193,669	.000 .000 .000 .000 .000 .000 .000 .00
ANGE CTION OF THE	R-14 2127.7 	PALCULATE 28 PERC 3 PERC 2 PALCULATE 2 PAL	-100.000 CA	-90, 884 184 U11 MILES FACTOP -91, 884 -91, 482 -91, 887 -91, 827 -91, 827	-101.432 .22004460 -1-1' -210040 -48.902 -98.052 -99.145 -96.715 -96.7172 -94.1247	-100.680 2 MU AN R*A -109.2 -109.580 -109.6	**************************************	-V8.V24 2 000000 3 H-4 ->102.3 -102.3 -102.3>2 -102.3>2 -102.3>2 -102.3>2 -102.3>2 -102.3>2	-99,365 R=2 -193,4 -196,22/ -99,27 -193,669 -99,14/ -99,1/20 -94,1/20	.000 .000 .000 .000 .000 .000 .000 .00
ANGE CIOP CONTROL OF C	R-1d 120 121 121 121 121 121 121 121 121 121	-10176	-100.000 GL LAUTICAL SUDITING L-14 -104.9 -64.574 -94.574 -94.717 -94.717 -94.717 -94.715	-90, 884 184 U11 HILES FACTOP -91, 884 -91, 889 -92, 882 -93, 349 -94, 472 -94, 157 -97, 462	-101.432 .25004800 -1-1' -100.6 -90.052 -90.145 -96.715 -96.715 -96.727 -94.527	-100.680 2 NU AN R*A -109.2 -199.2 -199.00 -99.00 -90.33/ -70.97 -90.97 -91.77		-V8.V24 2 000000000000000000000000000000000	Ra2 219314 	
TOTAL PARTY OF THE	R-1d 2127,7 	-101.426	-100.:30 -100.:	-90,884 184 U11 MILES FACTOP -91,884 -91,492 -91,492 -93,39 -94,157 -97,562	-101.432 -22004400 -1-1'. -160.0 -48.902 -98.952 -99.145 -96.712 -94.747 -94.747 -94.737	-100,680 2. MU AN R*A -109,2 -109,	### ##################################	-V8,V24 2 200000000000000000000000000000000	-99,365 R82 -193,4 -102 -96,227 -99,27 -103,649 -99,172 -98,172 -98,172 -98,172 -98,172	-98,556
ANGE CITUE C C C C C C C C C C C C C C C C C C C	R-14 2127.7 -95.47 -95.47 -95.47 -95.47 -95.47 -95.47 -95.42 -95.42 -95.42 -95.42 -95.42	PALCULATE 280800 3 60040 2 P-16 21-3.2 ADDE -V4.042 -V4.042 -V4.064 -V4.42? -V4.207 -V2.501 -V4.781 -V4.143 -V7.1374	-100.000 CL	-90.884 184.U11 MILES FACTOP H-12 -91.05.4 -91.06 -91.861 -91.79 -94.157 -94.157 -94.881	-101.432 .22004400 -1-1' -210040 -48.902 -98.92 -99.145 -90.712 -94.727 -94.737 -94.737 -97.140	-100.680 2 MU AN R*A 5169.2 -100.680 -100.680 -100.680 -100.680 -100.680 -100.680 -100.680 -100.680 -100.680 -100.680 -100.680 -100.680 -100.680	**************************************	-V8.V24 2 000000000000000000000000000000000	Rm2 -193,4 -103,4 -103,64 -90,177 -103,647 -90,1847 -94,1262 -94,1262 -94,1262 -92,1426 -92,1426 -92,1426	-90,556
TYPE 11 FULE FAVELENG ANGE C110= DEPTH C 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	R-1d 2127.7 	-10175 -74.00. A11 2869686 3 66646 2 -74.00. A12 -74.00. A12 -74.207 -72.150 -74.701 -74.701 -74.701 -74.701 -74.701 -74.701 -74.701 -74.701 -74.701 -74.701 -74.701	-100.000 LAUTICAL SUDTITING -104.79 -104.77 -94.717	-90.884 184.U11 HILES FACTOP M-12 >105.4 -91.060 -92.862 -93.157 -94.157 -97.962 -99.301 -90.1881 -90.189	-101.432 .25004800 -1-1' -100.6 -90.852 -90.145 -90.715 -90	-100.680 2 NU AN R*A -109.2 -109.2 -109.2 -109.2 -109.2 -109.33/ -109.2 -109.33/ -109.2 -109.33/ -109.		-V8.V24 2 000000000000000000000000000000000	R#2 -193.4 -192 -193.4 -193.669 -99.172 -193.669 -99.172 -193.663 -91.20 -92.426 -92.130/ -92.155	
TYPE 11 FULE FAVELENG ANGE C110= DEPTH C 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	R-1d 2127.7 	-10175 -74.00. A11 2869686 3 66646 2 -74.00. A12 -74.00. A12 -74.207 -72.150 -74.701 -74.701 -74.701 -74.701 -74.701 -74.701 -74.701 -74.701 -74.701 -74.701 -74.701	-100.000 LAUTICAL SUDTITING -104.79 -104.77 -94.717	-90.884 184.U11 HILES FACTOP M-12 >105.4 -91.060 -92.862 -93.157 -94.157 -97.962 -99.301 -90.1881 -90.189	-101.432 .25004800 -1-1' -100.6 -90.852 -90.145 -90.715 -90	-100.680 2 NU AN R*A -109.2 -109.2 -109.2 -109.2 -109.2 -109.33/ -109.2 -109.33/ -109.2 -109.33/ -109.		-V8.V24 2 000000000000000000000000000000000	R#2 -193.4 -192 -193.4 -193.669 -99.172 -193.669 -99.172 -193.663 -91.20 -92.426 -92.130/ -92.155	-90,556
TO(C YPA 11 ENIEL B AVELENG ANGE C110P C 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	R-1d 2127.7 	-10176	-100.000 CL LAUTICAL STORTHING -104.19 -104.1	-90.884 184.U11 HILES FACIOP M-12 >105.4 -91.00 -91.00 -92.80 -93.19 -94.19	-101.432 .25004800 -1-1' -100.6 -90.105 -90.175 -90.715 -90	-100.680 2 NU AN R*A -109.2 -109.2 -109.2 -109.2 -109.33/ -10.97		-V8.V24 2 000000000000000000000000000000000	R#2 -19314 -1982 -19314 -1982 -1983 -1983 -1984 -9984 -9984 -9984 -9884 -9884 -9884 -9884 -9884 -9884 -9884 -9884 -9884 -9884 -9884 -9884 -9884 -9884 -9884	
TYPE 11 ENIER H AVELENG ANGE CITUM DEPTH C 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	R-1d 2127,7 	P-16 >161.426 260000 3 60000 2 -16.300 -16.	-100.000 CL LAUTICAL STORTHING -104.19 -104.1	-90.884 184.U11 HILES FACTOP 2.105.4 -91.884 -92.882 -94.92 -94.92 -94.92 -94.92 -94.19 -96.881 -97.588 -92.713	-101.432 .22004800 -1-1' -160.8 -98.052 -99.145 -96.712 -96	-100.680 2. MU.AN R*B. 3109.2		-V8.V24 2 000000000000000000000000000000000	-99,365 Ra2 -193,4 -100 -100,22/ -103,664 -99,184/ -99,120 -98,120 -92,130/ -92,130/ -92,130/ -92,130/ -92,130/ -92,130/ -92,130/ -92,130/ -92,130/ -92,130/ -92,130/	
TYPE 11 ENIER H AVELENG ANGE CITUM DEPTH C 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	R-1d 2127,7 -95,47 -95,47 -95,47 -95,47 -95,47 -95,41 -72,727 -97,27 -97,27 -97,27 -97,27 -97,27 -97,27 -97,27 -97,27	P-16 >161.426 260000 3 60000 2 -16.300 -16.	-100.00 GA	-99.884 184.U11 MILES FACTOP K-12 >105.4 -91.884 -95.409 -95.885 -94.197 -97.462 -79.381 -94.197 -94.883 -97.509 -92.713	-101.432 .22004800 -1-1' -160.8 -98.052 -99.145 -96.712 -96	-100.680 2. MU.AN R*B. 3109.2		-V8.V24 2 000000 3 R-4 ->100000 -V0.V2 -100.352 -V0.051 -V0.051 -V0.051 -V0.27 -101.1V6 -V0.27	-99,365 R=2 -193,4 -100 -103,609 -99,120 -99,120 -92,120 -92,120 -92,130/ -92,150 -100,790	
TYPE 11 ENIER E AVELENG ANGE CITUM DEPTH C 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	R-1d 2127,7 	-101.476	-100.000 GA	-99.884 184.U11 MILES FACTOP R-12 >105.4 -91.884 -92.884 -93.892 -94.157 -97.862 -99.319 -94.157 -97.863 -97.506 -92.713	-101.432 -22004860 -1-1' -100.6 -90.052 -90.052 -90.72 -90.772 -90.	-100.680 2 MU AN R.A. -109.2 -109.2 -109.2 -109.2 -109.2 -109.33/ -10.97/ -10.		-V8.V24 2 000000 3 R-4 ->100000 ->000000 ->000000 ->000000 ->0000000 ->00000000	-99,365 Ra2 -193,4 -102 -193,4 -103,664 -99,184 -98,120 -92,426 -92	
TOTAL THE PARTY OF THE PARTY O	R-14 2127.7 -95.47 -95.47 -95.47 -95.47 -95.47 -95.47 -95.47 -95.47 -95.47 -95.47 -95.42 -97.497 -93.124 -93.124 -93.124 -93.124	PALCULATE PALCULATE 2RCPARC 3 RCCARC 2 P-16 3103.2	-100.000 CL	-90.884 184.U11 MILES FACTOP K-12 -105.4 -91.881 -91.882 -91.83 -91.83	-101.432 -22004400 -1-1' -210040 -48.902 -98.652 -99.145 -96.715 -96.737 -96.739 -9	-100.680 2 NU AN R+B -109.2 -109.580 -109.590 -109.600 -109.700	**************************************	-V8,V24 2 000000 3 H-4 ->102,3 -102	-99,365 Re2 -193,4 -1808 -96,22/ -99,27 -103,004 -90,14/ -90,1/20 -94,20 -94,20 -92,30/ -92,3	
TYPE 11 ENIER E AVELENG ANGE CITUM DEPTH C 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	R-14 2127.7 -95.47 -95.47 -95.47 -95.47 -95.47 -95.47 -95.47 -95.47 -95.47 -95.47 -95.42 -97.497 -93.124 -93.124 -93.124 -93.124	-10170	-100.000 GL LAULICAL SIDGLEING L-14.9 -105.9 -105.	-99.884 184.U11 MILES FACTOP E-12 >105.4 -91.884 -92.884 -93.892 -94.157 -97.862 -99.319 -94.157 -97.863 -97.506 -92.713	-101.432 -22004800 -1-1' -100.0 -1	-100.680 2 MU AN R.A. -109.2 -109.	**************************************	-V8.V24 2 000000 3 R-4 ->100000 3 R-4 ->100000 3 -V0.V2 -1001341 -102.352 ->V1.023 -V2.001 -V3./V2 -101.1V6 ->V3./V2 -101.1V6 ->V3./V2 -101.1V6 ->V3./V2 -101.1V6 ->V3./V2 -101.1V6 ->V3./V3 ->V4.301 ->V1.277 ->V6.327 ->V1.632	-99,365 R=2 -193,4 -100 -103,667 -103,	.98,556
TYPE 11 ENTER H AVELENG ANGE CITUE DEPTH C. 23 25 16 25 16 20 17 18 18 18 18 18 18 18 18 18 18 18 18 18	R-14 2127,7 -150 -95,47 -95,47 -95,47 -95,47 -95,47 -95,47 -95,47 -95,47 -95,47 -95,47 -95,47 -95,47 -95,47 -97,27	PALCULATE PALCULATE 2RCPHC 3 RCPHC 2 P-16 31-3.2 ARRC -V4.042 -V4.042 -V4.042 -V4.781 -V4.781 -V4.143 -V7.374 -V3.892 -V7.374 -V3.892 -V6.214	-100.100 GA	-99.884 184.U11 MILES FACTOP K-12 -91.74 -91.769 -91.79	-101.432 -22004400 -1-1' -102.0 -1	-100.680 2 NU AN R+B -109.2 -109.580 -10.690 -10.690 -10.68	**************************************	-V8,V24 2 000000000000000000000000000000000	-99,365 Re2 -193,4 -1808 -96,22/ -99,27 -103,004 -99,120 -90,124 -94,222 -98,043 -92,307 -92,303 -100,790 -93,120	.00,556 .000 .000 .000 .000 .000 .000 .000
TOTAL THE	R-14 2127,7 	P-16 	-100.000 CL LAUTICAL SIDITEINS E-14 -104.79 -104.79 -94.117 -94.12 -94.117 -94.12 -94.11 -99.103 -94.11 -99.103 -94.11 -99.103 -94.11 -99.103 -94.11 -99.103 -94.11 -99.103 -94.11 -99.103 -94.11 -99.103 -94.11 -99.103	-99.884 184.U11 MILES FACIOP M-12 -91.05.4	-101.432 -22004800 -1-1' -100.0 -90.005 -90.105 -90.715 -90	-100.680 2 30.AN R*A 3169.2 -109.2	**************************************	-V8.V24 2 000000000000000000000000000000000	######################################	
TYPE 11 ENIEE E AVELENG ANGE CITUE DEPTH C 20 10 10 10 10 10 10 10 10 10 10 10 10 10	R-14 2127,7 	PALEULATI PREPERC 3 RECHE 2 P-16 31-3.2	-100.00 GA	-99.884 184.U11 MILES FACTOP H-12 -91.514 -91.805 -91.805 -91.805 -91.805 -91.805 -91.805 -91.806 -91.806 -91.806 -91.806 -91.806 -91.806 -91.806 -91.806 -91.806 -91.806 -91.806 -91.806 -91.806 -91.806 -91.806 -91.806	-101.432 -22004800 -1-1' -100.0 -98.052 -99.145 -96.712 -96.712 -96.712 -96.713 -97.716 -97	-100.680 2 NU AN R+B -109.2 -109.590 -109.600	**************************************	-V8,V24 2 000000000000000000000000000000000	-99,365 Re2 -193,4 -188 -196,22/ -197,29 -193,649 -194,242 -198,144 -194,242 -198,144 -192,363 -100,799 -100,7	.00,556 .00,556 .00,556 .00,576 .00,576 .00,576 .00,576 .00,576 .00,576 .00,576 .00,576 .00,576 .00,576 .00,576
TYPE 11 FAILE B ANGLE TO ANGLE CITUS CC 20 10 10 10 10 10 10 10 10 10	R-14 2127,7 	-101.426 -74.606.3 -74.606.442 -74.426 -74.426 -74.426 -74.136 -74.143	-100.100 GL LAUTICAL SIDITING E-14 -104.9 -	-99.884 184.U11 MILES FACTOP M-12 -91.514 -91.514 -91.515 -91.517 -	-101.432 -22004800 -1-1' -2160.0 -98.082 -99.145 -96.712 -94.747 -95.08 -96.739 -97.735 -97.735 -97.735	-100.680 -100.680 2 MU AN R*A -109.2 -109.2 -109.2 -109.2 -109.33/ -10.072 -	**************************************	-V8.V24 2 000000000000000000000000000000000	**************************************	-98,556
TYPE 11 ENIEE E AVELENG ANGE CITUE DEPTH C 20 10 10 10 10 10 10 10 10 10 10 10 10 10	R-14 2127,7 	PALEULATI PREPERC 3 RECHE 2 P-16 31-3.2	-100.00 GA	-99.884 184.U11 MILES FACTOP H-12 -91.514 -91.805 -91.805 -91.805 -91.805 -91.805 -91.805 -91.806 -91.806 -91.806 -91.806 -91.806 -91.806 -91.806 -91.806 -91.806 -91.806 -91.806 -91.806 -91.806 -91.806 -91.806 -91.806	-101.432 -22004800 -1-1' -100.0 -98.052 -99.145 -96.712 -96.712 -96.712 -96.713 -97.716 -97	-100.680 2 NU AN R+B -109.2 -109.590 -109.600	**************************************	-V8,V24 2 000000000000000000000000000000000	-99,365 Re2 -193,4 -188 -196,22/ -197,29 -193,649 -194,242 -198,144 -194,242 -198,144 -192,363 -100,799 -100,7	.00,556 .00,556 .00,556 .00,576 .00,576 .00,576 .00,576 .00,576 .00,576 .00,576 .00,576 .00,576 .00,576 .00,576

Fig. 13. Type II intensity calculation printout.

Fig. 14. Transmission loss curve calculated from ray tracings based on data taken in Hudson Laboratories Operation 251.

HANGE 300 BOTTOM DEPTH NUMBER OF ANG LSONGOOO 5	3	L MILES DEPTH INTERVALS	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	j		ALS Mr 25
MAVEL FNGTH	idles 3		
	114,0 METER	RS	
COUNT DE	0EPTH	TRANSHISSION LOSS	
	.21105574 3	-,91979623	
2	1	-,96742446	
		-,97205497	
4		-,98329795	
<u> </u>	į	• •	
:	14773902 4	-,99079693	
a.	i	99001902	
		-,98865658	
0		-,98713711	
	i	-,98560860	
i : ::::::::::::::::::::::::::::::::::	25326689 4	98404223	
	1	-,97973651	
15	31658361	-,97655462	
1.0	,33769918 4	-,97223593	
	,35679476 4	-,96575223	
	, 57990335 4	-,95633123	
10	40100591 4	-,96321212	
ļ	1146	-,96104540	
21	44324706 4	-,96064752	
22	32265	-,96329827	
2	,48542821 4	-,97026654	
24		-,97830883	
25	,52763935 4	-,98273667	

Fig. 15. Type III intensity calculation printout.

Fig. 16. Experimental transmission loss curve for Operation 251.

Fig. 17. Multiplot of ray saths over a 300-mile range.

CHAPTER II

DATA INPUTS AND PROGRAM ORGANIZATION

2.1. Introduction

This chapter of the report is concerned with the selection and preparation of data inputs which are used to construct the velocity field and bottom profiles for the Ray Trace Program. In application, the program must be able to accept data from many different sources, and for this reason it was necessary to develop a series of programs into a data flow system. The specific programming details of the system are not given in this chapter, but only the basic principles upon which the system was designed.

2.2. Data Flow System

Over-all objectives in the data flow system have been on:

- 1) Flexibility
- 2) Speed of data assembly
- 3) Error detection
- 4) Documentation

2.2.1. Flexibility

Applications of the ray-tracing program have ranged from time calculations over a short path with data printouts every tenth of a nautical mile, to estimates of transmission loss using relatively crude input data with data printouts at widely separated ranges. The source of the data varies from program to program and all data must be reduced to common formats. The data flow system has been designed to accommodate as many types of inputs as possible.

2.2.2. Speed In Data Assembly

Speed in assembling data is accomplished by having the computer do most of the necessary reduction procedures. The output of one program is the input to another program and thus, once having entered the system, there should be no further need to manipulate data by hand. Time is also saved by having the computer print out a variety of visual displays and plots of data, which are formated for use in reports. A number of forms

(data reduction sheets) have also been developed to effect with ease the initial entrance of data which are not on a medium that is readable by the computer, i.e., card or tape, into the system. Data from any source can be written on forms and punched on cards for special entries.

2.2.3. Error Detection

Every program checks data for consistency and physical impossibilities, e.g., successive range entries must increase in magnitude and it is impossible to have negative depths. This eliminates gross accidental errors in the final data package but final validation depends on editorial review by a scientist as to the acceptability of the input data.

2.2.4. Documentation

Every reduction procedure that is performed on the data is documented by printouts which are labeled to allow cross referencing of its information with the original source or other data reduction printouts. Many of the printouts are self-explanatory and can be copied for use in reports without long explanations.

2.3. Program Management

The first stage of the data flow system funnels data from the various sources into one package (a card deck) for the ray calculations. The second stage calculates the ray paths, and the third stage analyzes data based on the ray paths to give intensity calculations, distribution plots, etc. The three stages of the data flow system are directed by the scientist with the use of three forms. The intent of these forms is as follows.

- (1) Data search specifications, Fig. 7. This form specifies the acoustical path and its length, requests searches for velocity field and bathymetric data, references actual experimental data that would be applicable, and indicates the accuracy that is required for the data inputs.
- (2) Program operating specifications, Fig. 8. This form details the functions and the parameters that are to be used in the Ray Trace Program. Program accuracy is implicitly controlled by specifications on this form, e.g., the maximum iteration increment, the required accuracy for predicting the velocity field, and the number and initial angles of rays used in estimating a ray probability distribution.

- (3) Analysis specifications, Fig. 12. This form controls the selection of various printout or plot options that are available and also specifies physical data such as bottom attenuation functions or directivity functions. The more commonly used ray trace analysis routines have been programmed and are immediately available. They are:
 - a) Type II Intensity Calculation
 - b) Type III Intensity Calculation
 - c) Ray Depth Distribution Plot
 - d) Multi-Plot of Rays
 - e) Transmission Loss vs Range.

At this stage, the scientist may also request a special program to be written which would analyze the results of the Ray Trace Program in some unique manner.

The description and the effects of various parameters used in the forms can be found in the appropriate chapters of this report. This chapter specifies the use of the first form and affords some information on the second, Figs. 7 and 8. The flow diagram in Fig. 1 shows the data processing channels of the data flow system and provides an outline for this chapter.

2.4. Ray Path Specifications

A ray trace path may be specified as:

- (1) Between two positions each located by their latitude and longitude, or
 - (2) An initial position, initial bearing, and a final range.

In either event, track information is developed at specified range intervals along a great circle as in Fig. 18.

2.5. Sources of Sound Velocity Profile Data

Primarily, the bound velocity profile data that are used to construct the velocity field will come from three sources:

(1) National Oceanographic Data Center. NODC has compiled physical and chemical data from more than 300,000 oceanographic stations located throughout the world. Hudson Laboratories has references to all these stations and the data for the majority of them. Velocity

profiles are immediately available for the Pacific Ocean and for much of the Atlantic (Fig. 19) and information for the other areas can be obtained on short order. For reference, the geographic distribution of velocity profiles in the North Atlantic that are deeper than 1,950 meters is shown in Fig. 20, and Fig. 21 shows the distribution in the month of December.

- (2) Published Data from other than NODC. The Hudson Laboratories library receives "data publications" from many oceanographic institutions during a year. All the publications that contain information on the temperature, salinity, or sound structure of an area are indexed with respect to geographical location. Atlases, technical reports, and any other published information which could be helpful in the construction of the velocity field are also indexed in this manner.
- (3) Hudson Laboratories Experiments. Experiments that include velocimeter, X-BT, or BT data taken along the total length of the acoustical path will allow the construction of the best possible velocity field. Even a partial experimental coverage of the path is a help in the selection of the most appropriate information from published data. Experimental data can be combined with published velocity profiles with prudence; i.e., one can take the upper portion of the profile as that of a shallow BT cast but use published data to represent more stable, deeper profiles.

2.6. Selection of Velocity Profile Data

The data flow system is grouped into sub-systems. Some of these assist in the selection of velocity data from large sources such as NODC and the Hudson Laboratories library where it would be difficult to retrieve information without a predefined procedure. The major criteria for selection are:

- (1) Proximity to a designated ray path
- (2) Month or season
- (3) Maximum Depth of Observation (MDO).

2.6.1. Proximity

There is a maximum distance from a ray path such that velocity profiles which lie within the area determined by the ray path and a data zone width are considered acceptable. This area is called the "velocity profile

data zone." The NODC Data Search Procedure (Fig. 22) generates this zone by first computing the great circle between the beginning and end point of the ray path (Fig. 18) and then computing Marsden Squares (I degree areas) that lie in its path and on each side of it, out to the designated maximum distance (Fig. 23).

2.6.2. Season

Profiles are also classified and searched for according to months to permit the selection of profiles which will reflect seasonal characteristics of an area (Fig. 24).

2, 6, 3 · Maximum Depth of Observation

A minimum of two deep profiles are needed to construct the velocity field. They are used at the beginning and at the end of the ray path and should have a maximum depth of observation (MDO) for which the water temperature and salinity have become constant.

After a general selection of profiles has been made, it is the responsibility of the scientist to investigate each profile's finer characteristics, e.g., the year in which the profile was taken, the institution which conducted the survey, the shape of the profile relative to other data being used in the program, and other factors which would determine its application for use in the Ray Trace Program. This final selection constitutes a dataediting review.

2.7. Velocity Field Construction Program

Velocity profiles are entered in the Velocity Field Construction (VFC) program in order of increasing range from the beginning position of the ray path to the end position. Only data in the form "depth vs velocity" are used in the program; therefore, it is necessary to convert information that exists as pressure, temperature, and salinity combinations to this form. This conversion is usually done prior to the running of the program by a sub-system of the data flow system.

The first step in constructing the velocity field is to extrapolate all of the entered profiles to a depth equal to the deepest bottom point along the ray path. Two types of profiles are recognized for this procedure

and are treated differently. Profiles are tagged "deep" or "shallow" before they enter the VFC program and are distinguished by the following definitions:

- (1) Deep profiles have a MDO at a depth where, with further increase in depth, significant changes in temperature and salinity would not be expected; thus the velocity at greater depths can be extrapolated as a function of pressure alone.
- (2) Shallow profiles have a MDO at a depth where, with further increase in depth, changes in temperature and salinity could be expected, and these changes must be included in the calculation of velocities at greater depths (Fig. 25).

2.7.1. Profile Extrapolation

Deep profiles are extrapolated by first calculating the temperature at its MDO and then using this temperature in Wilson's equations to calculate velocities at greater depths. The salinity is considered constant at 35 % and the temperature is calculated by using the depth and velocity at the MDO in an inverse solution of Wilson's equations, Fig. 26.

A procedure is available for extrapolating shallow profiles if they have two bracketing deep profiles, i.e., a deep profile at a range greater than the shallow profile, and a deep profile at a range less than the shallow profile. At great depths the velocity values of the shallow profile are calculated by linear interpolation with respect to range between the two deep profiles. Although the linear interpolated values may be a satisfactory representation of the true velocity structure at great depths, these values will usually not match the MDO of the shallow profile. For this reason, an adjustment is made between the MDO of the shallow profile and a much deeper depth to insure that the interpolated profiles will be continuous. The depth β is chosen as the (arbitrary) depth at which linear interpolation between the deep profiles is permissible, Figs. 25 and 27.

Figure 27 is a schematic illustrating the extrapolation procedures for deep and shallow profiles. Parts of the schematic have been exaggerated for the purpose of clarity and it should not be considered to represent

proper proportion. The interpolation and extrapolation formulas are given in Fig. 25 and an example of extrapolated profiles is given in Table 5.3.1.

2.7.2. Curvature and Gradient Data

The second step in the Velocity Field Construction Program is the calculation of curvature and gradient parameters for all the depths of a profile where there is a value for the velocity that is either given as input data or calculated by one of the foregoing extrapolation procedures. A modified 4-point interpolation is used between listed points on the profile; thus, the vertical velocity structure can be completely defined at the range of the given profile. The formulas for calculating the curvature and gradient are given in Fig. 28. The modified 4-point interpolation procedure, also known as the "Special 4-point fit," is a weighted average of two 3-point parabolic fits.

Only the curvature and gradient parameters at data points are calculated in the VFC program and entered on the data input tape. The interpolation of velocities and derivatives, vertically and horizontally, is done directly in the Ray Trace Program (Chapter III), using the expansions of Fig. 28 in depth and linearly interpolating all the parameters in range between the ranges of successive velocity profile entries. The result of this field composition is the set v(R,z), Z(R,z), D(R,z), and G(R,z) defined continuously over the range R and the ocean depth z, and these are used in a Taylor expansion of the velocity from any point as discussed in Chapter III, Eq. (3).

2.8. "Four-Point" Fits

There are, of course, many types of 4-point fits for estimation of the trend of a function between discretely entered data points. The selection of the special 4-point fit used in the present program was guided by its relative simplicity and by the fact that it gave a smoother approximation than alternative fits which could permit very large local curvatures. To illustrate this, Fig. 29 gives a comparison of the effect of a single displacement from an otherwise constant function according to fits obtained by:

- i) linear interpolation
- ii) Lagrange 4-point
- iii) Bedford Institute 4-point
- iv) Special 4-point.

The Bedford Institute method has been tested and adjusted for optimum agreement with experimental data. See Fig. 30 for formulas

2. 9. Sources of Bettom Data

The horizontal bottom profile along the ray path has proved to be an important factor in ray trace programs. Geological features such as seamounts or banks can totally obstruct, partially attenuate, or redirect rays as they travel along paths determined by the velocity field.

Primarily the data for constructing the bottom profile will come from two sources:

- (1) Published charts. The USN Oceanographic Office has published BC (bottom contour) charts that cover most of the world's oceans. Foreign countries, e.g., Russia, Germany, Great Britain, etc., also publish charts with bottom contours. Charts depicting the detailed structure of a small area are often found in technical reports.
- (2) Research Experiments. As was true with velocity data, the best source of bottom data comes from bathymetric surveys along the ray trace path.

2.9.1. Bottom Profile Construction

The Ray Trace Program presently reads bottom data in the form of range vs depth, which is usually obtained in the following manner:

- (1) The ray path is plotted on the appropriate BC charts, and then
- (2) The distance from the beginning position of the ray path to each of the contours that cross the ray path is calculated. This distance can be computed by having a printout of the great circle (Fig. 18) which lists: range vs geographic position, at small increments (25 miles or less) along the ray path. The ranges for contours between the listed positions can then be read graphically from the BC chart.

Contours are usually read at 100-fathom intervals, but the selection of a smaller or larger interval may be necessary to emphasize special features.

The Ray Trace Program linearly interpolates between input points to provide a continuous trace of the bottom. This fit has proved reliable for most ray traces; however, it is occasionally desirable to have a smoother representation of the bottom. This can be obtained by using a 3- or 4-point fit, prior to running the Ray Trace Program, to generate additional points between those originally listed. This procedure should be adopted with caution and used only in an area where one has an intimate knowledge of the geology and feels that the smoother bottom is closer to the actual situation then the linearly interpolated bottom with discontinuous slopes.

2.10. Inputs to the Ray Trace Program

At this point in the data flow system the velocity and bottom data can be combined into a data package for the Ray Trace Program. Associated with this package must be operating instructions, which are taken from the Ray Trace Request Form - Part 2 (Fig. 8), and provide the following information to the program:

- (1) Initial depth of the rays to be traced. This is in reality the depth of the sonic source or receiver at range zero.
- (2) The initial angles to be traced. Each angle in the program is traced separately from range zero.
- (3) Final range of the ray trace.
- (4) Printout increment. Information concerning the position and angle of the ray is printed at any desired increment (usually 1 or 2 n.m.) along the ray path.
- (5) Iteration parameters. The rays are traced through the velocity field by computing the position of the ray every few meters. The increment at which the ray path is computed is variable and depends on the iteration parameters selected (Chapter III 3.3). These parameters control the accuracy with which the ray path is

predicted: the smaller the iteration increment, the better the prediction but consequently the longer the computing time. All ray traces do not require the same accuracy. A balance must be considered between the prediction of the ray path and the accuracy of the data; using very small iteration increments will not improve the quality of the input data used for the velocity field or the bottom.

(6) Physical parameters. The Ray Trace Program accounts for energy losses due to bulk absorption, bottom hits, and surface hits. The attenuation functions that are used to compute the losses are specified as inputs. The computing of a ray path is terminated when the accumulated loss of a ray meets a specified maximum. The details of these procedures are described in Chapter IV.

The operating instructions for the Ray Trace Program are entered separately from the data package. Thus, it is possible to run different ray traces, i.e., different specifications, on the same data.

2.11. Outputs of the Ray Trace Program

The outputs of the Ray Trace Program are a printout and a magnetic tape with numerical values, at the specified printout intervals for the:

- (1) depth of the ray,
- (2) angle of the ray from the horizontal,
- (3) accumulated travel time of the ray, and
- (4) the distance to the bottom from the depth of the ray (bottom difference).

In addition to the record of this information at the specified interval, the program prints the same data when the ray hits the bottom, hits the surface, or the angle of the ray is zero. A plot of the bottom, the surface, and the path of the ray accompanies the numerical values on the printout.

Analysis of the ray trace can be made directly from the printout or by other computer programs that are capable of reading the Ray Trace Program's output tape. As has been previously mentioned, there are

standard analysis routines that have been programmed, but the scientist is at liberty to develop other analysis procedures for his specific purpose.

2.12. Conclusion

It has been the intent of this chapter to give the reader an over-all viewpoint of the Ray Trace Program, and concepts rather than operational details have been presented. Parenthetical cross references to other chapters were given to direct the reader to a more detailed explanation of the topics being discussed. The Ray Trace Program has been defined as a series of programs and procedures, organized into a data flow system for advantages in speed, accuracy, and flexibility in data processing. It is believed that through this approach, the Ray Trace Program will have its greatest effectiveness as a tool for the acoustical scientist.

A-173-F11	*	3432.980998
VELOCITY DATA SEARCH PROGRAM GREAT CIRCLE BEARINGS AND DISTANCES - R.D. MININGHAM [A-173-F1]	COMPUTED ON CLARK 1866 SPHEROIC - DISTANCE IN N. M.	MAIOS RADIUS A MARK 055007 MINOR BADIUS B 3432,280996
>		

TEST RUN

F R O H	FROM LATITUDE	LON	LONGITUDE	TO LATITUDE	LUNGITUDE	DISTANCE	BEARING
50	• 0	69	.0	30 0 0.	70 0 0.	657,0359	336,5216
RANGE	LATITUDE		LONGITUDE	BEARING TO			
S	0 22 55.	9 0	10 37,5	336,4655			
50.0	20 45 50.	41 65	21 18	336,4082			
Š	1 8 44;	9	32 117	336,3496			
00	1 31 38,	80	42 48,5	336,289b			
5	1 54 31:	2	53 38,7	336,2284			
50	2 17 23:	٥	4 32:1	336,166¢			
35	2 40 15,	.	15 29 0				
000	3 5 5	°C	56	336.0387			
25.	3 25 56.		37	335,9736			
50,	. 48 46.	•	9	335,9062			
75.	4 11 35.	•	20	335,8362			
00	4 34 23,		11	335,7693			
25.	4 57 111	7 6	25	335,6993			
50.	7 19 57.	9	33	335,6285			
75.	5 42 431	2 6	4	335,556t			
00	6 5 28,	3	56	335.4344			
25.	6 28 13,	4	90	335,4116			
50.	6 50 56,	5	20	335,338¢			
75.	/ 13 39,	5	31	335,2656			
00	7 36 21:	4	43	335,1936			
25.	1 59 2.	3	55	335,1231			
50.	d 21 42;	•	7	335,055t			
75.	d 44 22.	\$	19	6.4			
.00	9 7 0	5 6	31	÷			
25.	9 29 39,	9 9	43	334,9315			
50.	9 52 171	1 6	52	5			

Fig. 18. Great Circle computed along ray path at 25 n.m. increments.

Fig. 19. NODC Velocity Data available at Hudson Laboratories shown on a Marsden Square chart.

Fig. 20. Geographic distribution of velocity profiles in the North Atlantic exceeding 1900 meters.

Fig. 21. Geographic distribution of velocity profiles available in the North Atlantic for the month of December.

HUDSON LABORATORIES OF COLUMBIA UNIVERSITY ANALYSIS DEPARTMENT DATA FLOW SYSTEM RAY TRACE VELOCITY DATA SEARCH PROCEDURE

Ray trace data search specifications:

- 1. Begining and ending position of ray path.
- 2. Ray path printout increment.
- 3. Maximum width of data zone.
- 4. Acceptable months for data.
- 5. Acceptable years for data,
- 6. Minimum acceptable sample depth for data,

Fig. 22. Flow chart of the Ray Trace Velocity Data Search Procedure which extracts velocity profiles from NODC data tapes.

```
MARSDEN SQUARES
                       ST RUN
  4395
  4396
  7904
  7905
  7906
  7914
  7915
  7916
  7917
  7924
  7925
  7926
  7927
  7935
  7936
  7937
  7938
  7945
  7946
 7947
 7948
 7956
 7957
 7958
 7959
 7966
 7967
 7968
 7969
 7977
 7978
 7979
 7987
 7988
 7989
 7998
 7999
 8870
 8080
 8090
 8091
11508
11509
11600
```

Fig. 23. List of Marsden Squares calculated along a ray path; sample output of Ray Trace Velocity Data Search Procedure.

VELOCITY DATA SEARCH PROGRAM - R.D. MININGHAM [A=173-F1]
SPECIFICATIONS- MDG= 1500
MONTHS= June
MAXIMUM RANGE FROM RAY PATH= 50.0

TEST RUN

RSDEN IDENTIFICATION So	I DEPTH MONTH YEAR LATITUDE HETERS	Z I	YEAR	LATI Deg	TUDE	F ONG	LONGITUDE DEG MIN	DISTANCE FROM ORIGIN (NH)	DISTANCE FROM
20027,	5300	ø	9	20	0		0	0,21	12:0-
20026.	5100	•	09	21	0			82,15	-27,61
60020	3300	•	24	2	40.0			263,92	-44, 32
60021	3300	ø	24	24	36.0			364.90	571 9.
560022	3400	•	54	25	35.0			323,54	291.57
560175.	5000	•	52	5	32,0			645,05	-35,(\$6
5660174,	5300	•	52	30	0	59	30.0	646,25	54,89
00071	4900	•	28	30	17,0			662,22	19,11.

Fig. 24. References to velocity profiles along a ray path for the month of June. Output of Ray Trace Velocity Data Search Procedure.

EXTRAPOLATION OF SHALLOW PROFILES BY INTERPOLATING BETWEEN TWO DEEP PROFILES

 $\mathbf{v}^S(\mathbf{z})$ = VELOCITY AT DEPTH \mathbf{z} OF THE SHALLOW PROFILE. $\mathbf{v}^S(\text{MDO})$ = VELOCITY AT DEPTH MDO OF THE SHALLOW PROFILE. $\mathbf{v}^D_1(\mathbf{z})$ = VELOCITY AT DEPTH \mathbf{z} OF A DEEP PROFILE AT RANGE 1. $\mathbf{v}^D_{1+1}(\mathbf{z})$ = VELOCITY AT DEPTH \mathbf{z} OF A DEEP PROFILE AT RANGE 1+1. \mathbf{R}^S = RANGE OF THE SHALLOW PROFILE WITH $\mathbf{R}^D_1 \le \mathbf{R}^S < \mathbf{R}^D_{1+1}$. \mathbf{p} = AN ARBITRARY DEPTH PARAMETER.

FOR MDOCZCB.

$$\mathbf{v}^{S}(z) = \mathbf{v}_{1}^{D}(z) + \frac{R^{S} - R_{1}^{D}}{R_{1+1}^{D} - R_{1}^{D}} \left[\mathbf{v}_{1+1}^{D}(z) - \mathbf{v}_{1}^{D}(z) \right] + \frac{\beta - z}{\beta - MDO} \left[\mathbf{v}^{S}(MDO) - \mathbf{v}_{1}^{D}(MDO) \right] - \left(\frac{\beta - z}{\beta - MDO} \right) \left(\frac{R^{S} - R_{1}^{D}}{R_{1+1}^{D} - R_{1}^{D}} \right) \left[\mathbf{v}_{1+1}^{D}(MDO) - \mathbf{v}_{1}^{D}(MDO) \right]$$

FOR $\beta \leq z$.

$$v^{S}(z) = v_{1}^{D}(z) + \frac{R^{S}-R_{1}^{D}}{R_{1+1}^{D}-R_{1}^{D}} \left[v_{1+1}^{D}(z) - v_{1}^{D}(z)\right]$$
.

Fig. 25. Formulas for the interpolation and extrapolation of shallow profiles by interpolating between two deep profiles.

VELOCITY CALCULATIONS GIVEN TEMPERATURE - WILSONS EQUATIONS

GIVÊN DEPTH (2) IN METERS CALCULATE PRESSURE (P) IN KG/CM2

FOR z ≤ 200 METERS

 $\alpha = 3.54428T - 12$, $\beta = 9.961477T - 4$, z = -z $P_{PS_1} = ((-\beta + (\beta^2 - 4\alpha z)^{1/2})/(2\alpha))/689.47$

FOR z > 200 METERS

 $\alpha=-2.62085T-12$, $\beta=9.94765T-4$, $\eta=2.40443T-1$, z=-z

 $P_{PSI} = ((-\beta + (\beta^2 - 4\alpha(\eta + z))^{1/2})/(2\alpha))/689.47$

FOR ALL DEPTHS

PKG/CM(2)=PPSI(0.0703)+1.0332

WILSONS EQUATIONS P=PRESURE KG/CM² S=SALINITY 0=00 T=TEMPERATURE DEG. C. $\Delta VT=4.6233T=5.4585(10^{-2})T^2+2.822(10^{-4})T^3=5.07(10^{-7})T^4$.

 $\Delta VP=1.60518(10^{-1})P+1.0279(10^{-5})P^2+3.451(10^{-9})P^3-3.503(10^{-12})P^4.$

 $\Delta VS=1.391(S-35)=7.8(10^{-2})(S-35)^{2}$

 $\Delta VSTP = (S-35)(-1.197(10^{-2})T+2.61(10^{-4})P-1.96(10^{-7})P^2-2.09(10^{-6})PT) + P(-2.796(10^{-4})T+1.3302(10^{-5})T^2-6.644(10^{-8})T^3)+P^2(-2.391(10^{-7})T+9.286(10^{-10})T^2)-1.745(10^{-10})P^3T.$

v=1449.22+AVT+AVP+AVS+AVSTP.

TEMPERATURE CALCULATIONS GIVEN VELOCITY (ITERATIVE METHOD)

GIVEN VMDO , PMDO CALCULATE TMDO

- (1) ASSUME T=10
- (2) CALCULATE WITH WILSONS EQUATIONS v_{T} (USING T AND S=35

NOTE THE UNDERLINED PORTIONS OF WILSONS EQUATIONS ARE EQUAL TO ZERO WHEN THE SALINITY IS 35.

- (3) IF VT THEN THEN THEN THEN THERWISE CONTINUE.
- (4) $\Delta v = v_{MDO} v_{T}$
- (5) ΔT=Δv/4
- (6) T=T +AT AND GO TO STATEMENT 2.

TEST ACCURACY TO 2 DECIMAL PLACES.

Fig. 26. Wilson's Equation for calculating velocities.

Schematic representation of the extrapolation procedures for deep and shallow profiles.

SPECIAL FOUR POINT FIT

CALCULATION OF CURVATURE (Z₁) AND GRADIENT (D₁) AT \mathbf{z}_{1} .

$$Z_{1} = \frac{(v_{1+1} - v_{1})(z_{1-1} - z_{1})^{2} - (v_{1-1} - v_{1})(z_{1+1} - z_{1})^{2}}{(z_{1+1} - z_{1})(z_{1-1} - z_{1})(z_{1+1} - z_{1-1})}$$

$$D_{i} = 2 \frac{(v_{i+1} - v_{i})(z_{i-1} - z_{i}) - (v_{i-1} - v_{i})(z_{i+1} - z_{i})}{(z_{i+1} - z_{i})(z_{i-1} - z_{i})(z_{i+1} - z_{i-1})}$$

FOR
$$z_1 \le z \le z_{1+1}$$

$$v_1^{\alpha} = v_1 + z_1(z-z_1) + D_1 \frac{(z-z_1)^2}{2}$$

$$v_{i+1}^{\alpha} = v_{i+1} + Z_{i+1} (z-z_{i+1}) + D_{i+1} \frac{(z-z_{i+1})^2}{2}$$

$$v(z) = \frac{z-z_1}{z_{1+1}-z_1} v_{1+1}^{\alpha} + \frac{z_{1+1}-z_1}{z_{1+1}-z_1} v_1^{\alpha}$$

$$z = \frac{v_{1+1}^{\alpha} - v_{1}^{\alpha}}{z_{1+1}^{2} - z_{1}^{2}} + \frac{z_{1+1}^{2} - z_{1}^{2}}{z_{1+1}^{2} - z_{1}^{2}} \left[z_{1+1}^{2} + D_{1+1}^{2} (z_{1}^{2} - z_{1+1}^{2}) \right] +$$

$$\frac{z_{1+1}-z}{z_{1+1}-z_{1}} \left[z_{1} + D_{1} (z-z_{1}) \right].$$

$$D=\frac{2(Z_{i+1}-Z_i+D_{i+1}(z-z_{i+1})-D_i(z-z_i))+(D_{i+1}(z-z_i)+D_i(z_{i+1}-z))}{(z_{i+1}-z_i)}.$$

EARTH S CURVATURE CORRECTION (BREKHOVSKIKH, L.M. - WAVES IN LAYERED MEDIA)

$$v_1 = v_1 (1 + \frac{z_1}{\alpha})$$
. $\alpha = 6.37 \times 10^6$ METERS.

Fig. 28. Formulas for calculating curvature and gradient.

Fig. 29. Plot of the effects of various data fits.

LAGRANGE FIT

N- NUMBER OF POINTS FITTED

$$\mathbf{v(z)} = \sum_{i=1}^{N} (\mathbf{v(z)}_{i} (\frac{\mathbf{z_{1}}_{i}}{\mathbf{z_{1}}_{i}} \frac{(\mathbf{z_{2}}_{j})}{(\mathbf{z_{1}}_{1}} \frac{\mathbf{v(z_{2}}_{j})}{(\mathbf{z_{1}}_{2}}))).$$

BEDFORD INSTITUTE FOUR POINT FIT (REPORT NO. BIO 66-3)

V_{P1}= PARABOLA FITTED TO (1),(2), AND (3).

Vp2= PARABOLA FITTED TO (2),(3), AND (4).

$$v_A = \frac{(v_2 - v_3)(z - z_2)}{(z_2 - z_3)} + v_2$$

$$v_B = \frac{(v_2 - v_1)(z - z_2)}{(z_2 - z_1)} + v_2$$
LINEAR INTERPOLATED VALUE
BETWEEN (2) AND (3).

LINEAR EXTRAPOLATED VALUE
USING (1) AND (2).

$$v_c = \frac{(v_{\mu}-v_3)(z-z_3)}{(z_{\mu}-z_3)} + v_3$$
 LINEAR EXTRAPOLATED VALUE USING (3) AND (4).

$$v_R = \frac{1}{2} \left(v_A + \frac{(v_A - v_B)^2 v_C + (v_A - v_C)^2 v_B}{(v_A - v_B)^2 + (v_A - v_C)^2} \right)$$
 REFERENCE CURVE

$$\mathbf{v}(\mathbf{z}) = \frac{|\mathbf{v}_{R} - \mathbf{v}_{P1}| + |\mathbf{v}_{R} - \mathbf{v}_{P2}| \mathbf{v}_{P1}}{|\mathbf{v}_{R} - \mathbf{v}_{P1}| + |\mathbf{v}_{R} - \mathbf{v}_{P2}|}$$

Fig. 30. Formulas for Lagrange and Bedford Institute method of fits.

CHAPTER III

RAY TRACING

3.1. Introduction

A number of references discuss the ray approximation to a spreading wavefront and the conditions under which it will be valid. $^{1,\ 2}$

The two primary limitations are:

- i) there shall be no abrupt changes in the spatial derivatives of the velocity field over a distance that is comparable to a wavelength, and
- ii) the space rate of change of the amplitudes of the waves must be small enough so that the waves can be described by "local plane waves."

In practical terms condition i), above, will be satisfied in the ocean except for very low frequencies and at the boundaries of the medium, and condition ii) will be satisfied except at source points and at ray crossing points where the rays focus or form caustics. In the latter regions the field amplitudes must be determined by wave solutions but, provided that condition i) remains valid, the ray solutions can be continued through the crossing regions and into the far field without ambiguity. (This is further discussed in the Appendix.)

3.2. Development of Solution

3.2.1. Ray Equation

In ray tracing the propagation is represented by the geometrical spreading of the wavefronts from the source, and the latter are described by their orthogonal trajectories or ray paths. It is assumed that everywhere in the ocean the velocity field is known and given by $v(\vec{r})$, i. e., as a scalar function of the position vector \vec{r} in the medium. If the vector \vec{A} specifies the ray path and \vec{d} s is a differential increment along the path the ray equation is \vec{d}

$$\frac{d}{ds} \left[\frac{1}{v(\overrightarrow{r})} \frac{d\overrightarrow{A}}{ds} \right] = \operatorname{grad} \left[\frac{1}{v(\overrightarrow{r})} \right]$$
 (III. 1)

The ray tracing solution to (III. 1) is determined by an initial position \hat{r}_{o} and an initial direction \hat{r}_{s} from this origin which is considered a source

point. The geometrical acoustical field due to the source is given by the mapping into the far field of all the rays considered as functions of \dot{r}_s . Thus, the ray solution is given by a continuous function of position

$$\vec{A} = \vec{A} \left(\vec{r}_0, \hat{r}_s \right)$$
 (III. 2)

3. 2. 2. Expansion of Velocity Field

In applying (III. 1) to the practical case of cylindrical spreading, it is convenient to use the coordinates of range R and depth z measuring these from the origin and the sea surface, respectively, and to measure the ray angle from the horizontal, θ , with a positive angle pointing to deeper depths. At any point $\left(R_i, z_i\right)$ in the medium the velocity field program of Chapter II gives not only the value of the velocity at that point, $v_i = v\left(\overrightarrow{r_i}\right)$, but also the vertical and horizontal gradients as well as the vertical curvature of the velocity field. Thus, if a ray has been followed to $\left(R_i, z_i\right)$ the velocity at a neighboring point $\left(R_{i+1}, z_{i+1}\right)$ can be approximated by

$$\mathbf{v}_{i+1} \left(\mathbf{R}_{i+1}, \mathbf{z}_{i+1}^{-} \right) = \mathbf{v}_{i} \left(\mathbf{R}_{i}, \mathbf{z}_{i} \right) + \mathbf{Z}_{i} \left(\mathbf{z}_{i+1} - \mathbf{z}_{i} \right) + \mathbf{G}_{i} \left(\mathbf{R}_{i+1} - \mathbf{R}_{i} \right) + \mathbf{D}_{i} \frac{\left(\mathbf{z}_{i+1} - \mathbf{z}_{i} \right)^{2}}{2} . \tag{III. 3}$$

In (III. 3) Z_i is the vertical gradient, G_i is the horizontal gradient, and D_i is the vertical curvature of the velocity field, all evaluated at position $\left(R_i,z_i\right)$. A ray at this point and with a ray direction θ_i can be iterated to a further position by use of the velocity field expansion parameters of (III. 3) and in terms of an iteration parameter. In the present work the arc length of the ray has been used for the iteration parameter in preference to other parameters such as an increment in range or in depth. However, two comments must be made before Eq. (III. 1) is expressed in a form suitable for solution by computer iteration.

3. 2. 3. A Semi-Invariant for the Iteration

It is well known that if the medium is purely horizontally stratified, i. e., with no horizontal gradients G_i , a simple invariant exists for each ray path. This is

$$c = \frac{\cos \theta}{v} = \text{constant for } G = 0$$
. (III. 4)

Equation (III. 4) has greatest application to predicting the depth of turning points of the ray and thus the amplitude of the vertical oscillation of the ray about a sound channel as a function of an initial ray angle and the sound velocity at the origin of the ray, i.e., the depths z_t at which $\cos\theta=1=\cos\theta_0 \ v\Big(z_t\Big)/v\Big(z_0\Big)$. In the ocean the average horizontal gradients of the sound velocity field are weaker than the vertical gradients - this does not mean that they can be completely ignored - and it is permissible to regard c of (III. 4) as a semi-invariant, i.e., changing only slightly during an interation from c_i to c_{i+1} . A detailed expansion of c_i in terms of an arc length increment Δ from $\left(R_i, z_i\right)$ gives

$$c_{i+1} = c_i - c_i^2 G_i (1 + \tan^2 \theta_i) \Delta + c_i^3 G_i Z_i \tan \theta_i (1 + \tan^2 \theta_i) \Delta^2 + \dots$$
 (III. 5)

In the program (III. 5) is carried as a parallel iteration with those giving the spatial coordinates (R, z) and is also used to define the cosine of the ray angle at each iteration in the form

$$\cos \theta_{i+1} = v_{i+1} c_{i+1} . \qquad (III. 6)$$

Besides the use of the cosine of the ray angle, the iteration expansion also requires the sine and tangent functions of the angle. If these are obtained in every iteration by inverse trigonometric solutions or, for example, by $\sin\theta=\pm\sqrt{1-\cos^2\theta}$, the high order expansions used in the machine programs by such functions represent a penalty in terms of machine accuracy and, especially, in terms of machine computation time. To avoid these limitations the trial $\sin\theta$ is calculated by a separate iteration expansion that involves only machine multiplications and additions.

$$\left(\sin \theta_{i+1}\right)_{t} = \sin \theta_{i} - c_{i}^{2} v_{i} \left(Z_{i} - G_{i} \tan \theta_{i}\right) \Delta$$

$$- c_{i}^{2} \left(Z_{i}^{2} \sin \theta_{i} + Z_{i} G_{i} \cos \theta_{i} + v_{i} D_{i} \sin \theta_{i}\right) \frac{\Delta^{2}}{2}$$

$$- c_{i}^{2} \left[3 Z_{i} D_{i} \sin^{2} \theta_{i} - c_{i} Z_{i} \cos \theta_{i} \left(Z_{i}^{2} + v_{i} D_{i}\right)\right] \frac{\Delta^{3}}{6}$$

$$(III. 7)$$

and the trial sine of (III, 7) is further corrected to agree with (III. 6) by

$$\sin \theta_{i+1} = \left(\sin \theta_{i+1}\right)_{t} \qquad \text{for } \left(\sin \theta_{i+1}\right)_{t} \leq .01$$

$$= \frac{1}{2} \left[\frac{1 - \cos^{2} \theta_{i+1}}{\left(\sin \theta_{i+1}\right)_{t}} + \left(\sin \theta_{i+1}\right)_{t}\right] \qquad \text{for } \left(\sin \theta_{i+1}\right)_{t} > .01$$
(III. 8)

The tangent of the angle is given by

$$\tan \theta_{i+1} = \frac{\sin \theta_{i+1}}{\cos \theta_{i+1}} . \qquad (III. 9)$$

The development of the trigonometric functions of the ray angle via Eqs. (III. 5) through (III. 9) possesses the following advantages:

- i) accuracy throughout the entire iteration to an extent determined by the accuracy of the corrections of (III. 5) to the semi-invariant of (III. 4),
- ii) adjustment of the ray angle at any position to a value determined by the velocity field program at that point,
- iii) speed of computation. (The coefficients of the arc length and its powers in (III. 7) are also required in (III. 11) so that this computation is not wasted.)

3. 2. 4. Range, Depth, and Time Iterations

From the above (III. 1) can be developed to give the increment in range and depth for travel over an arc length Δ .

$$R_{i+1} = R_i + \cos \theta_i \Delta + c_i \left(Z_i \sin \theta_i - G_i \sin \theta_i \tan \theta_i \right) \frac{\Delta^2}{2}$$

$$+ c_i \left[D_i \sin^2 \theta_i - c_i^2 v_i Z_i \left(Z_i - G_i \tan \theta_i \right) \right] \frac{\Delta^3}{6} \qquad (III. 10)$$

$$- c_i^3 Z_i \left(4 v_i D_i \sin \theta_i + Z_i G_i \cos \theta_i + Z_i^2 \sin \theta_i \right) \frac{\Delta^4}{24}$$

^{*(}III. 8) comes from the condition that $\cos^2 \theta + \sin^2 \theta = 1$ and, if $\sin \theta = (\sin \theta)_t + \sigma$, by assuming that $1 \gg \sigma \gg \sigma^2$.

$$z_{i+1} = z_i + \sin \theta_i \Delta - c_i^2 v_i \left(Z_i - G_i \tan \theta_i \right) \frac{\Delta^2}{2}$$

$$- c_i^2 \left(Z_i^2 \sin \theta_i + Z_i G_i \cos \theta_i + v_i D_i \sin \theta_i \right) \frac{\Delta^3}{6} \qquad (III.11)$$

$$- c_i^2 \left[3 Z_i D_i \sin^2 \theta_i - c_i Z_i \cos \theta_i \left(Z_i^2 + v_i D_i \right) \right] \frac{\Delta^4}{24} \qquad .$$

A similar derivation can be used for the travel time of the ray

$$T = \int_{0}^{\overline{A}} \frac{ds}{v(r)}$$
 (III. 12)

or, as an iteration,

$$T_{i+1} = T_i + \frac{\Delta}{v_i} \left[1 - c_i \left(Z_i \tan \theta_i + G_i \right) \frac{\Delta}{2} + c_i^2 \left(Z_i^2 - v_i D_i \tan \theta_i^2 + Z_i^2 \tan \theta_i^2 + Z_i G_i \tan \theta_i + Z_i^2 \right) \frac{\Delta^2}{6} \right]$$
(III. 13)

The accuracy of the above iterations is discussed in Chapter V, with respect to smooth velocity profiles that are characteristic of theoretical models with known ray solutions. Over all, the results indicate that these expressions permit the use of very large Δ increments that approach 1000 meters per iteration. Associated with large Δ values, of course, is a reduction in the computation time that is required per increment. In ray tracing in the ocean the rays spend most time in the deeper regions where the vertical gradients are small and are nearly constant and this encourages the use of large Δ values for efficient utilization of the computer.

3. 3. Adaptive Controls of Iteration Interval

In surface waters generally and wherever velocimetry casts have been taken with small depth intervals to show detailed structure in a velocity profile, the approximation (III. 3) breaks down and may become unreliable over vertical distances of the order of tens of meters, or less. Such data, for example, can show vertical gradients that approach unity (meters/sec/meter), or 0.1 (meters/sec/meters²) vertical curvature,

and with these coefficients both (III. 3) and all the iteration expansions become invalid unless Δ is kept small. It is to be noted, on the other hand, that if data have been taken at widely spaced depths, as may be typical of older data taken by Nansen casts, the 4-point fit used to obtain a continuous representation of the velocity profile (Chapter II) will effect an automatic smoothing of the data to yield gradients and curvatures that can be several orders of magnitud smaller than the values indicated above.

Under these circumstances the selection of Δ as an input parameter is conditioned by the nature of the input data and Δ becomes limited by the largest gradient and curvature values that can be expected as these are determined by the tabulations of the input data listings. As an alternative to the use of a small fixed Δ for the entire ray path, the present program establishes a series of control tests for the purposes of adapting Δ to control the accuracy of the calculation with respect to specific structure of the velocity field at any one point and to determine the interval over which the expansion (III. 3) will predict the field in the neighborhood of a given point.

3. 3. 1. Sine Increment Test

After any iteration to a given point, the velocity field program is entered to determine the velocity v_i and the parameters c_i , Z_i , D_i , and G_i at that point. From these, and from (III. 6) and (III. 9), a tentative calculation is made with (III. 7) to obtain the sine of the ray angle that would result from an iteration over the maximum Δ that is set into the program. A new iteration interval Δ'_1 is then selected that is the <u>least</u> of

ii)
$$\sqrt{\frac{S}{\left(\sin\theta_{i+1}\right)_{t} - \sin\theta_{i}}} \Delta$$
 (III. 14a)

where S is an input parameter, typically 0.01 to 0.1. Equation (III.14a) cuts back Δ to a value such that the change of the sine of the ray angle in the next iteration is of order S.

The use of the square root in (III, 14a) assumes that the change in the sine of the ray angle for the iteration Δ exceeds S primarily because of the magnitude of the coefficients of the terms Δ^2 and Δ^3 in (III. 7). The assumption is based on the maximum magnitude of the vertical curvature that is typical of many velocity profiles, approaching 0.1 meter/sec/meter 2 , and because the curvature exceeds the gradient term in the iteration expansions by the ratio $|v_i|D_i/Z_i^2$. Thus, the overwhelming necessity for the cutback in Δ is due to profiles with high curvature.

The test of (III. 14a) is by itself not a sufficient test for the accuracy of the sine iteration of (III. 7), for it may happen that the higher order terms of the expansion are large but accidentally cancel each other. In order to catch such accidents (III. 14a), resulting in Δ_1' , is followed by a further test that cuts back Δ_1' to a value Δ_1 such that Δ_1 is the least of

i)
$$\Delta'_1$$
 , or

ii)
$$\sqrt{\frac{S}{|c^2 Z_i D_i \langle \Delta'_1 \rangle^3|}}$$
 . (III. 14b)

The criterion for (III. 14b) is effectively six times the Δ term of highest power in the expansion (III. 7); the accuracy of the sine increment is controlled such that the contribution of this term is less than S/6.

Equations (III. 14), admittedly, will not limit the change in the sine of the ray angle to a value that is less than S in the circumstance that the curvature is small and the vertical gradient is (uniformly) large. In this event it would be preferable to truncate Δ by a linear difference ratio rather than the square root ratio in (III. 14) and to accept the increase in computer running time that the stronger cutback would represent. This has not been considered necessary for the following reasons:

 i) (III. 14) will effect a partial reduction in Δ so that the accuracy of the sine iteration is at least improved by the test.

- ii) The testing of the program discussed in Chapter V shows that the iteration expansions are highly accurate for profiles with large gradients but small curvatures.
- iii) Partial compensation for errors that may originate through the use of large Δ increments in high-gradient regions and which are not bounded by (III. 14) will be made by the semi-invariant corrections expressed by (III. 5) through (III. 8).
- iv) High-gradient regions in the velocity profile structure are usually associated with high-curvature regions that fluctuate in sign. Thus, the particular problem considered here tends to arise accidentally at depths for which the small curvature is due to a transition of the curvature from one algebraic sign to another. In this event Δ_1 will be still further truncated by the velocity field accuracy test discussed below.

3.3.2. Velocity Field Accuracy Test

A further cutback will be required in Δ_1 in high gradient-curvature layers if the velocity field expansion of (III. 3) fails to predict the velocity established by the field construction program at distances Δ_1 from a given point. This problem is sensed in the present program by testing for the accuracy of (III. 3) and by adapting the increment Δ_1 to a value such that (III. 3) is satisfied with an accuracy parameter ϵ . The steps for this test are:

- i) At a point (R_i, z_i) and for a ray angle θ_i (III. 10) and (III. 11) are calculated for Δ_i to obtain the range and depth increments projected for the next iteration.
- ii) The increments of i), above, are used in (III. 3) to determine a trial velocity $(v_{i+1})_+$ at the point $(R_{i+1}, z_{i+1})_+$
- iii) The velocity field program is entered to determine the value of the velocity given by the input data to the program at the new point calculated in ii), above, giving $\begin{pmatrix} v_{i+1} \end{pmatrix}_f$.

iv) A new iteration interval Δ_2 is chosen for the iteration from $\left(R_i, z_i\right)$ such that it is the least of a) Δ_1 for

b)
$$\varepsilon \frac{\Delta_1}{\left[\left(v_{i+1}\right)_f - \left(v_{i+1}\right)_f\right]}$$
 (III. 15)

Of course, if iv-a), above, is satisfied, the point (R_{i+1}, z_{i+1}) calculated in ii), above, can be used directly for advancing the ray without the reiteration over Δ_2 demanded by iv).

3, 3, 3, Minimum Increment Size

Each velocity profile in the program can be entered without restriction on the depth interval between successive entries (a maximum limit of 375 entries is set by memory capacity, however) to allow flexibility for expressing detailed profile structure. If the entries are dense in a given layer and a large Δ_1 is attempted, the velocity field accuracy test permits the extension of the iteration to a depth beyond the range of the field expansion contained in a given 4-point fit that is used to express profile continuity. To ensure that the iteration does not pass over the intervening profile structure too rapidly, the truncation of Δ_1 by (III. 15) has been made linear in this test in contrast to the square root contraction of the sine increment test of (III. 14). This has been done as a safeguard even though the dominant requirement for an ϵ -truncation of Δ_1 is due to the curvature terms.

The linear reduction, however, can greatly increase computer running time when the profiles include sharp breaks in the velocity gradients that must be defined by profile entries taken for small depth intervals. The bilinear profile used in the program testing gives a dramatic example of this, as shown in Chapter V. Such a "kink" in a profile is very unlikely in nature and in any event is smoothed by the 4-point fit used in the program over the interval of the depth entries by which such a feature is defined. Realistic profiles are well represented, within a measurement accuracy of 0.4 meter/sec, by entries at intervals of 10 to 20 meters.

By construction, therefore, the expansion of the velocity field of (III. 3) will be accurate over an iteration interval that is of the order of the minimum depth interval of the data entries, and it becomes wasteful to permit the velocity field accuracy test to cut back Δ_1 to a value less than this minimum increment Δ_m . Δ_m is used in the program as an input parameter determined prior to ray tracing by inspection of the input velocity field data.

3. 3. 4. Turning Point Contraction

It has been straightforward to apply a further test that becomes effective near turning points of the ray, especially as these occur in high tient-curvature layers of the sound velocity profiles. It consists of a reduction of Δ_2 to Δ_m when $c_i \left(v_{i+1} \right)_i \geq 1$ and this restriction acts as a safeguard to prevent the cosine of the ray angle from exceeding unity.

3.4. Error Estimates

The use of the adaptive iteration intervals together with the choice of the maximum iteration interval Δ initially set into the program provides a close control of program accuracy that can be balanced against computer running time. Specific examples are discussed in Chapter V, "Program Accuracy." Because the depth amplitudes of the rays are controlled by the semi-invariant of Eqs. (III. 5) and (III. 6), the primary effect of adjustments of Δ , S, $\Delta_{\rm m}$, and ε is on the range accuracy, i.e., on the range at which a given ray crosses a specific depth or has a turning point with ray angle zero.

This behavior is entirely analogous with the range uncertainty that can be estimated for theoretical models of the velocity field with respect to small perturbations of the field that correspond to a velocity uncertainty. There will also be a "phase uncertainty" of the rays due to the variation of the travel time that will correspond to the range uncertainty. With respect to physical applications, the variation of a calculated range with different choices of ϵ in (III. 15) can be considered a measure of the sensitivity of the ray calculation to the accuracy of the input data of the velocity field. For example, if the input velocity profiles have an accuracy of 0.5 meter/sec

the use of an ε of 0.1 meter/sec may give a more precise formal result for the given input data than a calculation using an ε of 0.5 meter/sec, but it is questionable whether the difference is physically meaningful. Also, the increased accuracy that will be obtained with the smaller ε will require a longer computer running time.

A precise error analysis of the effect of the adaptive iteration interval will depend critically on the details of the given velocity field. For the sound structure of the ocean the error will arise chiefly in the failure of the Taylor expansion of (III. 3) to account for detail in the vertical sound velocity profiles. * As a rough estimate, assume that the error in (III. 3) arises from neglect of an nth order term in the expansion, i. e., the error δv_i can be represented by

$$\delta v_i \approx E_i \frac{\left(z_{i+1} - z_i\right)^n}{n!}$$
 (III. 16)

where E is the nth derivative of the profile with respect to z . (n must be ≥ 3 .) The error in a range iteration, δ R, will be of the form

$$\delta R_i \approx c_i E_i \sin^n \theta_i \frac{\Delta^{n+1}}{(n+1)!}$$
 (III. 17)

Note that the linear form of the adaptive iteration interval correction given by (III. 15) will over-compensate the (n+1)th order correction of (III. 17) if $\delta\,v_i$ is greater than ϵ , so that the maximum error will occur if the difference between the velocity predicted by (III. 3) and the value entered into the velocity field is ϵ itself. The error due to (III. 16) will thus have the maximum value in any iteration of

$$\delta R_i \approx \frac{c_i \Delta}{n} \epsilon$$
 (III. 18)

It is certainly true that the average horizontal gradient of the ocean is much smaller than the average vertical gradient. If, however, the model velocity field is constructed with distinct thermal "patches," local horizontal gradients could become important. In practice, however, the velocity field is nearly always measured by velocity depth profiles taken many miles apart so that horizontal gradients are small just because of the scale of the measurement process.

and the average error per iteration will be less than this. Further, the errors in (III. 17) due to (III. 15) will tend to occur with different algebraic signs as the ray is traced over its full range - if the errors tend to cancel, and cancel randomly, the net fractional error in range δR will be, under these assumptions,

$$\frac{\delta R}{R} \approx \frac{c_1 \epsilon}{n} \sqrt{\frac{\Delta}{R}} \approx \frac{1}{n} \left(\frac{\epsilon}{v}\right) \sqrt{\frac{\Delta}{R}} . \qquad (III. 19)$$

It is to be emphasized that estimates such as those of (III. 18) and (III. 19) are themselves first-order approximations, and cannot be applied for large Δ or ε , i.e., for iteration intervals such that the error δ v_i of (III. 16) becomes comparable to the velocity change predicted by (III. 3). However, and apart from exceptional and special velocity fields, it is reasonable to conclude from (III. 18) that for nominal values of the expansion parameters the maximum fractional error in range will be the fraction ε/nv and may be much less than this when (III. 19) applies.

3.5. Printouts

The use of the flexible iteration interval measured along the ray paths is disadvantageous with respect to two other requirements of the ray tracing program. These are: i) the need for printouts of the ray path at specified range intervals, and ii) the determination of the range and depth at which surface or bottom hits may occur. To accommodate these requirements a set of controlling tests is carried during the ray tracing so that the iteration interval Δ can be further adapted to predict just the value that will advance the ray to a specific point.

The procedure is simplest for the printout points. For these a ray is continued until the range accumulated in iteration would exceed an incremented printout interval such as every mile. At this stage of the program the last iteration has satisfied all other tests such as those of the adaptive iteration intervals given by tests (III. 14) and (III. 15). If $\mathbf{R}^{\mathbf{p}}$ is the printout range and the iteration changes in range by (III. 10) from $\mathbf{R}_{\mathbf{i}}$ to $\mathbf{R}_{\mathbf{i+1}}$, a new iteration increment is defined by the approximate linearly projected value

$$\Delta^{p} = \frac{R^{p} - R_{i}}{\cos \theta_{i}}$$
 for $R_{i+1} \ge R^{p} \ge R_{i}$ (III. 20)

and equations (III. 7) through (III. 13) are used for the $\Delta^{\mathbf{p}}$ iteration to printout

- i) range,
- ii) depth,
- iii) sine of the ray angle,
- iv) travel time, and
- v) height of the ray from the bottom.

Because (III. 20) is only an approximation, the printouts are themselves approximations; the error involved is easily monitored for it leads to a range printout such as 156.00011 instead of the 156.00000 mile integer value at a specified printout range. The error of the example is typical only when Δ increments of 500 meters or more are used. If higher accuracy printout data are required, it is easily achieved by using appropriately smaller Δ values. In any event, the error is only in the printout data and is not accumulated over the history of the ray.

In addition to the printouts at specified range intervals, the ray position is printed at ray turning points at which the ray angle is zero. The procedure is similar to that just described for the range printouts except that the iteration interval is linearly interpolated over the sine of the ray angle when the sine changes sign.

Printouts are also provided when the ray strikes the sea surface or bottom. At the sea surface the ray is reflected specularly by changing the sign of the sine of the incident angle, but at the bottom the ray is reflected specularly with respect to the bottom slope and this also changes the semi-invariant c_i of (III. 5). These reflections interrupt the ray in its transit and their positions must be computed as accurately as possible. A quadratic solution is used to determine the iteration interval Δ such that the ray is advanced to the specific point of contact and further tests are used to insure that the proper quadratic solution is chosen.

and w. to be described here in detail. Some of the tests guard against

the possibility that for a large iteration interval and a nearly grazing ray near a surface, the projected ray position by itself might indicate an apparent miss of the surface due to a curvature of the ray which causes it to be re-entrant. Additional problems arise at the bottom because of the bottom slope. The tests for the reflections are graded in application so that they are not applied except as they are keyed into the program by the ray proximity to the reflecting surface. For example, a sufficient initial test is whether the initial ray position for an iteration is within an iteration interval Δ of the sea surface or the minimum entered bottom depth.

3. 6. Ray Magnification Function

The ray tracing solution, Eq. (III. 2), for the propagation in the inhomogeneous medium is obtained by computer printout of the range and depth positions of the set of rays which are distinguished by the initial directions of the rays from the origin. For cylindrical spreading it is convenient to use a linear parameter τ to specify the initial angle through the relationship $\tau = r_g \theta$ where θ is the initial angle and r_g is a standard radius from the origin that is conventionally taken as one yard.

Formally, the solution (III. 2) will permit continuous derivatives among the variables, R, z, and τ . In particular, the derivative

$$M(R,z,\tau) = \frac{dz}{d\tau} \bigg|_{R}$$
 (III. 21)

represents the magnification of the arc length $\ d\ \tau$ that is projected to form the depth interval $\ d\ z$ at range R and is termed the magnification function of ray $\ \tau$. It expresses the mapping characteristic of the ray tracing solution that is also represented by the concept of ray tubes (or ray shells for cylindrical spreading) with these determined as the volume between differentially spaced rays from the source. In a non-homogeneous medium the different tubes will bend due to refraction and their cross sections will expand or contract as they propagate into the far field. The mapping of the rays is not unique, however, for entirely different elements $\ d\ \tau$ may be projected into a common depth interval $\ dz$ at range R. In underwater acoustics the $\ \tau$ - values projected into a common depth interval are termed different "arrivals" because a receiver

at that position will detect a single source impulse as a set of time-separated signals with delays representing the different travel times for the different paths that connect the source and receiver. It may also happen that there are some depth intervals which are not mapped by any dr because no rays exist that connect such positions with the origin; such regions constitute "shadow zones."

3.7. Ray Depth Distribution Plots

Although the ray paths of individual τ rays can be obtained by computer printout (Fig. 9) a summary of the contribution of all the rays is contained in the ray depth distribution plots in which at a given range successive depths are plotted as functions of rays with incremented initial angles. Plots of this type, representing differing physical situations, are shown in Figs. 11, 31, and 32. The slopes of these plots, if the slopes can be identified, give the magnification function $M(R, z, \tau)$ of (III.21). Each intersection of the curve with a given depth identifies an arrival or possible ray path for acoustical transmission that can also be identified by the travel time plotted on the right-hand side of the figures. Finally, and as a guide for estimating the effectiveness of the rays, an attenuation value, determined by the sea surface and the bottom reflections undergone by the ray in its travel to the given range, is listed in the data printout of the plot. Rays which have been attenuated by these mechanisms to more than a present level are excluded from the plots.

Each of the ray depth distribution plots of the figures shows a distinctive pattern that represents the action of the inhomogeneous velocity field and its boundaries on the initially spherical wave that starts from the origin and propagates to the given range. Also, the depth amplitude of the oscillation of the rays about the sound channel that is plotted shows the depth interval that would be illuminated by the individual arrivals. It is important to note that small changes of the velocity field usually produce only a minor effect on the depth amplitudes but shift or "snake" the curve to alter the identification of the initial angle of an arrival that reaches a given depth interval at the given range. A partial summary of the type of information available from these plots and comments on such data are:

- i) Identification of the range of initial angles from the source that can couple to a given depth interval. For example, in Fig. 11, for angles less than about -12°, there is no effective coupling to a region at or near the sea surface.
- ii) Well-defined, differentiable arrivals, i. e., those for which the magnification function (III. 21) can be calculated, can occur at near to intermediate ranges, e.g., Figs. 11 and 32, but these are observed only for rays which have undergone bottom interactions when the bottom is especially smooth (as it was for the bottom of the Hatteras Plain used for the data of Fig. 14).
- iii) Even if a group of rays has undergone no surface or bottom reflections, it is often found that there may be abrupt jumps in the depths of successive rays so that differentiation in the sense of (III. 21) is impossible, at least on the scale of the initial angle increments used to obtain the plot. Such behavior originates in special details of the velocity profiles used to construct the velocity field, e.g., in regions with different slopes particularly in or near the surface thermocline.
- iv) The effects of ii) and iii), above, can be traced to their origins by consulting the individual ray printouts to identify the special features of the velocity profiles or bottom structure that are responsible. One of the principal effects of the horizontal gradients or, more specifically, the effect of mixing velocity profiles with differing structures, is to increase the breakup of the arrival structure with increasing range. A dramatic example of this occurs when rays become trapped in or are ejected from a surface sound channel, an effect that would not be possible if an average profile, i.e., a stratified medium, were used for the total velocity field.

When a ray depth distribution plot shows smooth behavior, indicating a well-defined arrival structure, the ray tracing calculations will provide a

clear and direct representation of the acoustic field; indeed, if this occurs it is also an indication that the data inputs for the physical parameters that control the propagation are favorable in the sense that the velocity field is simple in structure and an ocean bottom, if it is important, is also well defined and smooth. On the other hand, if the plots show breakup of the arrival structure when the incremented initial angles differ by fractions of a degree, it must be concluded that the computation is expressing the fact that the data inputs themselves represent a complex physical environment.

Much of the experience of Hudson Laboratories in long-range, low-frequency underwater sound propagation indicates that the data demand the inclusion of the effects of the "irregular" arrivals, for frequently they will carry a major fraction of the acoustic energy. They are especially important when there are shadow zones that cannot be illuminated except by bottom reflections, or for the study of the effects of bottom terrain on the modulation of the acoustic field that passes over it, or for the changes in the vertical intensity distribution of the field in propagation across water masses with distinct structural differences in their velocity profiles. Acoustical data of this type can be related to specific environmental features and the latter cannot be approximated by representative or smoothed data inputs.

In the next chapter, on intensity calculations, a method will be presented for using all of the ray arrivals by interpreting their mapping property as a probability distribution in the far acoustical field. The probability interpretation is especially useful because it can combine the uncertainties that are necessarily present in the input oceanographic data with more fundamental theoretical limitations in the techniques for computing wave fields in inhomogeneous media with irregular boundaries. For example, and from the standpoint of ray theory, the following comments are pertinent:

l) If rays have been traced for a set of incremented initial angles with separation $\Delta\theta_s$ and it is found that the arrival structure "breaks up," it is clearly possible to repeat the calculations for initial angle increments $\Delta\theta_s'$ with $\Delta\theta_s'\ll\Delta\theta_s$. This fills in the detail of the arrival structure and permits evaluation of the magnification function of (III. 21) by the limiting process

$$M(R,z,\tau) = \lim_{\Delta \theta_s' \to 0} \left(\frac{z_{\theta_g' + \Delta \theta_g'} - z_{\theta_g'}}{r_s \Delta \theta_s'} \right)_R$$
(III, 22)

- 2) The requirement for accuracy in ray tracing is not primarily towards specifying the range and depth positions of rays with given initial angles in any event such data are exceptionally sensitive at long ranges to variations in the input field data. It is necessary, however, that the relative positions of closely spaced rays be computed accurately if the $M(R,z,\tau)$ of (III. 22) is to represent the spreading of a propagating ray tube.
- 3) A limit on the accuracy with which (III. 22) can be computed will be set by the buildup of machine errors as a given ray is iterated. If such errors are serious the magnification function defined by (III. 22) will not be uniform over a set of differentially incremented initial angles.
- 4) The accuracy requirement of 3), above, is usually a trivial limitation, however. In every detailed examination that has been made of ray tracings in which the magnification function shows abrupt or erratic changes in slope the cause of such behavior has been traced to structure of the input environmental data. Apart from bottom interactions and shadow zone boundaries, the usual origin of the change is due to a change in slope (not an abrupt change, for the velocity field construction program produces profiles which are continuous in both the velocity and its vertical gradient) in the upper thermocline. The effect is increased over a range of initial angles when a number of profiles with differing thermocline structure are used to form the velocity field.

An example of this can be observed in the ray depth distribution plot of Fig. 32 for the very shallow angles from the 100-meter deep ray trace origin. These rays were injected into an approximately isovelocity region below an upper thermocline. The detailed field, obtained by use of the Sippican X-BT casts, usually showed a slight positive thermocline below the main thermocline but some of the casts showed a slight negative thermocline. Several of the shallow angle rays actually skipped a convergence zone or two due to trapping in this region and before being refracted downward when they came into a positive thermocline. This

behavior, of course, is highly sensitive with respect to small variations in the input data and would depend, for example, on whether velocity profiles taken at night were mixed with velocity profiles taken during the day.

- 5) The use of highly detailed input data for the velocity profiles, e.g., the use of the X-BT casts with readout at 5- or 10-meter intervals as compared to data based on much larger readout intervals from Nansen casts, produces a "graininess" or fluctuation in the magnification functions which increases with range and which is not due to machine error but reflects the nature of the input data. It is expected that in acoustical propagation these effects are equivalent to the type of fluctuations that are ascribed to microstructure.
- 6) Not only are the effects of 4) and 5), above, sensitive to detailed structure of the environmental data but it becomes physically meaningless, at least on the basis of ray tracing, to compute rays with very small initial angle increments for the purpose of defining a magnification function that is continuous for differentially incremented initial angles, even when machine errors can be neglected. Both for refraction through small depth intervals and for bottom reflection from small bottom segments a limit will be reached that is set by diffraction spreading. If a magnification function is smoothly defined, in the sense indicated above, it represents a well-defined spreading wavefront; in contrast, an aberrant magnification function that can be identified with a single arrival represents wavefront warpage. In both ray and wave optics the effect of distorted wavefronts is to produce a lack of resolution and a spreading of energy about an average or central position. This, it must be assumed, is given by the trajectory of the central ray.

References for Chapter III

- 1. Physics of Sound in the Sea, Summary Technical Report of NDRC, Division 6, Volume 8; Washington, D. C. (1946).
- 2. C. B. Officer, Introduction to the Theory of Sound Transmission with Application to the Ocean, McGraw Hill Book Co., N. Y. (1958).
- 3. M. Born and E. Wolf, Principles of Optics, Pergamon Press, N. Y. (1959).
- 4. I. Tolstoy and C. S. Clay, Ocean Acoustics, McGraw Hill Book Co., N. Y. (1966).

Fig. 31. Ray depth distribution plot at 225-mile range. This figure is based on the same ray tracing and environmental field used in Fig. 10. It is to be compared with Fig. 11 which is the ray depth distribution plot at 115-mile range. Although the depth amplitudes of the rays as a function of initial angle are comparable, note that the number of arrivals has greatly increased and that the magnification function (III. 21) has become more difficult to define.

Fig. 32. Ray depth distribution plot at 240-mile range. This figure is based on ray tracing for the A. N. Guthrie and J. D. Shaffer experiment described in Introduction. Depth distribution plot shows that transmission can be described in terms of three regimes ordered with respect to initial angles of the rays: 1) angles < -10° and > 10° for which the transmission involves bottom reflections, 2) angular range from -10° to -3° and from 3° to 10° for which a well-defined arrival structure exists, and 3) the angular range from -3° to 3°, representing rays shallowly injected into a variable isothermal region, for which no well-defined arrival structure exists.

CHAPTER IV

TRANSMISSION LOSS

4.1. Preliminary Observations

The objective of this chapter is to use the ray tracing solution, Eq. (III. 2), obtained from the computer printouts, to calculate the intensity in the far acoustical field. First, however, it will be convenient to review briefly certain concepts which are conventional and which will be used in the computations.

4.1.1. Transmission Loss

The intensity in the acoustical field is normalized with respect to source power and is expressed as a transmission loss measured in decibels,

T. L. =
$$10 \log_{10} \frac{I_d}{I_{yd}}$$
 (IV.1)

where I_d is the intensity measured at a given position in the field and I_{yd} is the intensity produced by the (point) source at a distance of one yard. Alternatively, the average sound pressure P_d that is measured can be used to express the transmission loss by

T.L. =
$$20 \log_{10} \frac{P_d}{P_{yd}}$$
 (IV.2)

=
$$20 \log_{10} P_d - 71.6 - 10 \log W$$
 . (IV.3)

In (IV.3) the acoustical pressure produced by a source of power W watts at a distance of one yard has been expressed in dynes/cm² and these are, then, the units to be used for the detected pressure, P_d . In both (IV.2) and (IV.3) the nearly unit factor $\left[\left(\rho\,v\right)_{yd}/\left(\rho v\right)_d\right]$, the ratio of the acoustical impedances at the source and detector, respectively, has been dropped.

4.1.2. Spreading Loss

The contraction, or expansion, of a differential ray tube from a source that propagates through the medium will lead to a "spreading loss." For cylindrical spreading, and neglecting any other attenuation or absorption

than that due to the geometrical divergence of the ray tube, it is straightforward to show that the intensity of a single arrival at position (R, z) will be given by $\frac{1}{2}$

$$I_{d} = I_{yd} \frac{\cos \theta_{o}}{\cos \theta} \frac{1}{M(R, z, \tau)} \frac{r_{yd}}{R}$$
 (IV. 4)

In (IV.4) r_{yd} is the standard distance of one yard, θ is the arrival angle of the ray at the point (R, z), θ_0 is the initial angle of the ray, and $M(R, z, \tau)$ is the magnification factor of Eq. (III. 21); also, $\tau = r_{yd}\theta_0$.

4.1.3. Reciprocity Theorem

Insofar as the rays traced from an origin represent the acoustical field spreading outwards, it is natural to consider the source of the sound at the origin and the resultant field as that which would be measured by a probing hydrophone. In many experiments the receiver is fixed and it is the source that is used as the probe, e.g., a towed projector from a ship. In fact, and thanks to a reciprocity theorem, the same calculation can be used for both types of measurement procedures. 2

The reciprocity theorem, valid for a stable medium, and scalar wave fields, states that it is possible to interchange the positions of the source and receiver in the medium without alteration of the transmission loss. This is related, of course, to the fact that ray paths are reversible and the spreading loss between the two positions is, to first order, independent of the choice of either as an origin.

4.1.4. Multipath Interference

The extrinsic variable of the acoustic field is the instantaneous pressure. Within the ray approximation, and thus away from diffraction determined regions such as turning points, the net pressure can be expressed as the sum of local plane waves each of which represents an independent arrival, i.e.,

$$P(R',z') = \sum_{j} A_{j} e^{-i\left(\omega_{j}t - kR'\cos\theta_{j} - kz'\sin\theta_{j} + \phi_{j}\right)}. \qquad (IV.5)$$

R' and z' are the coordinates of a point in the field near a reference point $\left(R_{o}$, $z_{o}\right)$ and are used here to express the displacements $\left(R-R_{o}\right)$ and $\left(z-z_{o}\right)$ in range and depth, respectively. At the reference point the individual arrivals have amplitudes A_{j} , ray angle θ_{j} , relative phases ϕ_{j} , and frequencies ω_{j} . $k=2\pi/\lambda$ is the wave number and is $(2\pi$ times) the reciprocal wavelength. From (IV.5) it is clear that the instantaneous pressure may have any magnitude from 0 to the sum of the component amplitudes and the precise value will depend on the relative phases. Also, in the region of $\left(R_{o}$, $z_{o}\right)$ there will be an interference structure that depends upon the arrival angles.

The average intensity in the region of the reference point will be

$$\langle I \rangle = \frac{\langle PP^* \rangle}{\rho v}$$

$$= \frac{1}{\rho v T} \int_{t-\frac{T}{2}}^{t+\frac{T}{2}} \frac{1}{\Re 3} \int_{R_0-R/2}^{R_0+R/2} \int_{z_0-3/2}^{z_0+3/2} PP^* dt dR' dz' \quad (IV. 6)$$

where a time average is taken over a duration T and a space average is taken over the interval of dimensions R and 3. Substitution of (IV.5) into (IV.6) leads to an average intensity and fluctuations around this average

$$\rho \mathbf{v} \langle \mathbf{I} \rangle = \frac{1}{2} \sum_{j} \langle \mathbf{A}_{j}^{2} \rangle + \frac{2}{T R_{3}} \int_{\mathbf{T}} \int_{\mathbf{R}} \int_{\mathbf{J}} dt dR dz \left\{ \sum_{j} \sum_{j \neq \kappa} \mathbf{A}_{j} \mathbf{A}_{\kappa} \cos \left[\left(\omega_{j} - \omega_{\kappa} \right) t \right] \right\} - k R \left(\cos \theta_{j} - \cos \theta_{\kappa} \right) - k z \left(\sin \theta_{j} - \sin \theta_{\kappa} \right) + \phi_{j} - \phi_{\kappa} \right\} . \tag{IV.7}$$

The single sum represents the sum of the intensities of the individual arrivals,

$$\langle I \rangle = \sum_{j} I_{j}$$
 (IV. 8)

and the double sum of (IV. 7) gives the fluctuations of intensity that define the interference structure about $\left(R_{o}, z_{o}\right)$.

If the velocity field is stable, a definite meaning can be given to the phases ϕ_j , calculating these in terms of the travel time to $\left(R_0,z_0\right)$ and the additional phase corrections discussed in the Appendix, and the interfering terms in (IV.7) are then determined from the ray tracing. In long-range propagation, however, the phases become unpredictable, not in a formal sense, for they are readily calculated in the model velocity field, but with respect to uncertainties in measurement as well as the inevitable changes in the velocity field with time that occur in the real ocean. Indeed, in the limit of many contributory arrivals that possess random phase differences the interference terms of (IV.7) will cancel each other and the double sum will tend to vanish.

Unfortunately, it is an experimental observation from transmission measurements in the real ocean that the fluctuations of the signal do not average to an rms level that is small compared to the mean value of (IV.8). This partly indicates that the effective number of arrivals is not large, but it can also indicate that the arrival amplitudes A_j are not approximately equal, reflecting an attenuation that depends upon the paths of the arrivals.

It is possible, however, to obtain a phase independent intensity by carrying out the time and space averaging integrals of (IV.7), leading to (IV.8). It is this approach that is taken in the present work with the consequence that the transmission loss that is computed for (IV.1) via (IV.8) must be understood to app'y not to instantaneous experimental measurements but to data that have been averaged over a sufficient scale so that the limit (IV.8) is approached. This will occur for:

- 1. A time average of period T such that 1/T is small compared to a frequency spread that can exist for the different arrivals or for which T is large with respect to a time required for changes in the velocity field of the ocean that randomize the phase differences in (IV.7).
- 2. A range average over the interval R with R sufficiently large so that the oscillations of the integrand minimize the contribution of this integral with respect to the average intensity given by (IV.8). A rough condition for this is

$$\mathcal{R} > \frac{\lambda}{\cos \theta_{j} - \cos \theta_{K}} \qquad (IV. 9)$$

3. A depth average similar to that of 2), above, and under the condition

$$\frac{\lambda}{\sin \theta_{i} - \sin \theta_{\kappa}}$$
 (IV. 10)

This development of the effects of multipath interference is schematic and has suppressed certain details. Among these are:

- The fact that the A_j wave amplitudes are themselves space dependent, and this should be included in the integral of 'IV.7).
- 2. The neglect of diffraction effects. These will be particularly important near depths which are turning points for the arrivals that are defined by the ray depth distribution plots, for at these points the magnification function vanishes. Also, at these points the wave amplitudes will show their greatest spatial dependence.
- 3. Even if the diffraction effects are ignored, the condition (IV. 9) will not be appropriate for small ray angles for these the cosines of (IV. 9) will be nearly unity and the denominator of (IV. 9) will tend to vanish. Thus, at long wavelengths, it will again be necessary to consider the spatial dependence of the wave amplitudes to choose the scale of R such that (IV. 8) is truly a phase independent limit of (IV. 7). Similar remarks apply to the interval g; however, note that for small angle arrivals the ratio g/R goes as (θ_j + θ_k)/2 indicating that the depth interval gives more rapid averaging than the range interval.

Despite these limitations, which are also cautions against applying rigid or arbitrary definitions for the scale of \mathcal{R} and \mathcal{J} , the discussion does clarify the distinctions between experimental tests of transmission loss that depend on broadband sources or cw projectors. For the former, e.g., shots or air guns, the definition of transmission loss, (IV.1), can be modified by considering all quantities as spectral densities leading, in particular, to the frequency dependent transmission loss spectrum. This

over a large bandwidth because (IV.8) is then a good approximation, due to the cancellations in (IV.7), over the frequency bandwidth. Finally, impulse sources are especially useful if arrival structure can be distinguished as distinct time-delayed impulses in the received signals.

CW experiments, on the other hand, are notorious for the large interference fluctuations that are consistently measured in long-range propagation experiments. It is, however, simpler to make these measurements, using narrow band filters for detection, and a detailed continuous record is obtained that does reveal the extent and the dominant periods of the multipath interference. Also, the moving source (or hydrophone) that probes the field enables a spatial average to be taken in terms of the probe velocity and the data time series.

4.2. Loss and Weighting Functions

No general-purpose descriptive model of propagation, such as the present program, can expect to deal comprehensively with detailed physical effects, especially those that require intensive, specialized data specification. Examples would include the effects of specific local bottom profiles and their composition and sub-structure on individual accustical reflections or the dependence of surface scattering amplitudes on the windrow density of the sea surface. This is not to say that such effects are not important, but rather emphasizes practical limitations that must be accepted in treatments of long-range propagation. The constraints occur because: i) it is nearly impossible (or at least extremely rare) that these types of detailed environmental data will be available for an accustical experiment over, say, a path of 100 miles or more, and ii) programs and sub-programs that utilize such data inputs become increasingly complex.

The approach of the present work is intermediate. On the one hand the interpretation of the acoustical field will be given in terms of probability functions, to be defined later, with the anticipation that if the physical effects can be described statistically they can be included in the program in a natural way. On the other hand specific interactions, especially those due to acoustical interactions with the ocean boundaries that represent loss

or scattering, are included on the assumption that they can be described by a few representative parameters. The principal interactions of this type that are used in the program are given below - their approximate character will be apparent.

4.2.1. Bottom Reflectivity

It is assumed that a ray incident against a bottom with a grazing angle χ relative to the bottom will suffer a fractional attenuation

$$a_b = a_b \left(C, \lambda, \chi, \sigma_b \right)$$
 (IV.11)

which is written as a function of certain constants, C, and the parameters of wavelength, λ , grazing angle against the bottom χ , and a coefficient σ_b . The subscript b indicates a particular bottom hit for b bottom hits the total fractional attenuation is

$$a = \int_{b=1}^{B} a_b$$
 (IV. 12)

A functional description of a_b can be given with respect to well-known models such as the Rayleigh reflection law, which is wavelength independent, or as a scattering law from a rough bottom with variance σ_b . Experiments in special areas can be cited for the support of either of these models but, and particularly for long wavelengths, the bulk of published data gives very little guide towards the choice of a representative function for a_b or for adjusting such a function in terms of the geological structure of a region, assuming this is known.

In the present program a_b can be specified by a scientist who has a preference for a given function, or, preferably, who chooses a function that gives a good average fit to experimental data appropriate to the region of the ray tracing. Geological variations can be approximated by tabulation of σ_b as a function of range.

Three a_b functions have been used as approximations in lieu of more specific data:

1. A "square" but lossy critical angle, i.e.,

$$a_b$$
 = k for $0 \le k \le 1$ and $0 \le \chi \le \chi_c$ = 0 for $\chi_c < \chi$. (IV.13)

Typical values that have been used would be

$$k = 1/2$$
 and $\chi_c = 20^{\circ}$

2. A roughness approximation

$$a_b = A \exp -\left[\left(C_1\chi\right)^2 + C_2 \frac{\sin^2\chi}{\lambda} \sigma_b^2\right]$$
 (IV. 14)

Again, typical values are A=0.7, $C_1=0.725$, and $C_2=18.364$. The choice in (IV.14) of a dependence of $1/\lambda$ rather than the $(1/\lambda)^2$ dependence that would be predicted on a pure roughness model has been guided by the experiments of Bucker et al. ³

3. Termination of a ray after B bottom hits. This approximation can be used with either of 1) or 2), above. It has the practical advantage that it can be used directly in the ray tracing program to stop rays and to save machine running time that would be wasted on rays that continually strike the bottom.

4.2.2. Surface Reflectivity

A fractional attenuation for surface reflectivity can be used that is similar to a_b for bottom reflectivity, i.e.,

$$\beta_{s} = \beta_{s} (C, \lambda, \chi, \sigma_{s})$$
 (IV. 15)

where the subscript s indicates a particular surface hit and the total attenuation of a ray striking the surface S times is given by

$$\rho = \frac{S}{\prod_{s=1}^{S} \beta_s}$$
 (IV. 16)

For surface reflections, however, an optimum choice can be made using the function

$$\beta_{\rm g} = 1 - .0234 \left(\frac{\rm f}{1000}\right)^{3/2} \left(\frac{\sigma_{\rm g}}{3.28}\right)^{3/2}$$
 (IV. 17)

as given by Marsh. ⁴ In (IV.17) σ_s is the mean wave height and f is the frequency in Hz. It is clear from (IV.17) that for acoustical frequencies of the order of several hundred cycles or less the surface reflectivity loss can be neglected $(\beta_s = 1)$.

4.2.3. Volume Attenuation

Volume, or bulk, attenuation is expressed by a fractional attenuation

$$r = e^{-\delta R}$$
 (IV. 18)

for a ray at range R and for an absorption coefficient δ . The frequency dependence of δ , as a low-frequency limit, has been taken as

$$\delta = \frac{9.5 \times 10^{-3}}{\chi^2}$$
 (IV. 19)

where λ is given in meters and R in (IV.18) is in nautical miles. (IV.19) is the low-frequency approximation of the plane wave attenuation coefficient given by Marsh and Shulkin. ⁵

Equations (IV.18) and (IV.19) represent the extension to low frequencies of data taken at higher frequencies under conditions such that δ represents bulk absorption in the medium. A number of other expressions have been determined from transmission measurements in the ocean and which are derived, primarily, as factors modifying a sonar type equation in the regime of cylindrical spreading. Insofar as these experiments do not distinguish additional loss mechanisms that may occur, especially those due to bottom or surface losses, the averaged attenuation factors from the transmission measurements should not be used in a program that enters the different types of losses explicitly.

It is fortunate that for frequencies of several hundred cycles or less the available experimental evidence indicates that the attenuation introduced by scattering mechanisms in the ocean is small, i.e., of the order of (IV.19), approaching (IV.19) as a limit. Unfortunately there is little direct evidence to support this conclusion, but it may be inferred because:

- i) scattering will introduce loss either by the interaction itself or by conversion of acoustical energy into directions that will be steeply incident against the bottom and the energy will be absorbed there, and
- ii) the experimental volume absorption reported for measurements of transmission in the sound channel,
 i.e., SOFAR propagation, is small. Sheehy and Halley,
 for example, give

$$a = 2.1 \times 10^{-6} \text{ f}^{3/2} \text{ dB/n. mile}$$
, (IV. 20)

a loss of 2 dB over a range of 1000 miles at 100 Hz.

In the present program (IV. 20) could be used in place of (IV. 1°). However, the surface and bottom losses and the uncertainties in the a_b and β_s functions that describe these losses can be expected to dominate the weak absorption expressed by (IV. 18) or (IV. 20).

4.2.4. Directivity Functions

If the apparatus used as source or receiver in an acoustical experiment is directional, it is straightforward to assign weights to the individual rays according to a directivity factor that describes the dependence of the radiated power on an angle relative to a fixed direction. If a bottom-mounted source or hydrophone is used as a ray origin it becomes directional even though the components may themselves be isotropic. This is easily accounted for by tracing only rays that propagate into the water, i.e., all initial angles are taken upward (and thus are negative), and the rays that would require propagation through the bottom are ignored.

If the source and receiver are not located on a boundary but are near a reflecting surface the response of the element will be directional because of the interference patterns that are termed the "Lloyd Mirror effect."

It is to be emphasized that a ray is not a physical entity but a representation of a local plane wave - a ray arrival implies an extended wave surface that propagates in the ray direction. When the source and/or receiver are near a boundary surface, one part of the wave will arrive directly at the element and another section of the wave will arrive by a reflected path. Inasmuch as the net path differences are small and occur in the immediate region of the element and the reflection, the phase difference of the two arrivals must be accounted for. This leads to a modulation of the intensity that depends on the angle of arrival and is given by the directivity function

$$g(z, \lambda, \theta) = 4 \sin^2 \left\{ \frac{2\pi z}{\lambda} \sin \theta \right]$$
 (IV. 21)

for complete reflection from the sea surface. z is the depth of the source or receiver, λ is the wavelength, and θ is the arrival angle. If the directivity patterns of (IV.21) are plotted for various values of the parameter $(z/\lambda) = r$, then $g(z/\lambda, \theta)$ is small for all θ for r approximately zero but becomes highly rosetted for values of r of order two or greater.

The meaning of (IV.21) becomes unclear, however, as r is extended beyond values of two or three. For shallow angles that carry most of the acoustical energy in long-range propagation and for large r the use of (IV.21) implies that the effective region of reflection occurs at a large range from the arrival point. In turn the phase relationships between the two arrivals become increasingly less predictable at the same time that the directivity factor is becoming increasingly sensitive to small angular displacements. (IV.21) has been truncated in the present program for these reasons to have the form

$$g(z, \lambda, \theta) = 4 \sin^2 \left[\frac{2\pi z}{\lambda} \sin \theta \right] \qquad 0 \le z \le r\lambda$$

$$r\lambda < z \qquad (IV. 22)$$

r is a program input parameter.

(IV. 22) accounts for the major wavelength dependence of the transmission losses that are computed when the program is applied to shallow sources and/or receivers.

Figure 13 shows a printout of an intensity calculation that is described in Chapter IV-4.4.1. From this data a number of plots can be obtained giving transmission loss as a function of range for designated wavelengths and depths. One of these is shown in Fig. 14 as a prediction of the experimental data shown in Fig. 16. Figures 33 and 34 are taken from the same intensity calculation: Fig. 33 shows the transmission loss for wavelengths 15, 50, and 114 meters for a source at a depth of 500 meters and Fig. 34 shows the transmission loss for the same wavelengths for a source depth of 5000 meters. (In the calculations the receiver was fixed at a depth of 100 meters and the source was towed. See Chapter IV-4.1.2.)

The directivity function of (IV.22) was applied to the 100-meter receiver, the origin of the ray traces, for the wavelengths of 50 and 114 meters. It was applied to the towed source at 30 meters depth for all the wavelengths. For the receiver the 50-meter wavelength gives a maximum power at the horizontal angle of $\pm 7.2^{\circ}$ and this couples to a well-defined arrival structure. At 114 meters, however, the angle is $\pm 16.6^{\circ}$, so that most power becomes lost in bottom interactions. The lobe maxima for the 30-meter deep source and wavelengths 15 and 50 meters are $\pm 7.2^{\circ}$ and $\pm 24.7^{\circ}$, respectively, and at 114 meters wavelength the full maximum is not attained even for 90° rays. For the depths of Figs. 33 and 34 no source directivity functions were applied.

The plots of these figures show the emphasis given to convergence zone structure by the 50-meter wavelength not only because the $\pm 7.2^{\circ}$ lobes provide strong illumination in favorable ray directions but because the lobe minimum at $\pm 14.5^{\circ}$ suppresses the contributions from the bottom interactions.

A modification similar to (IV. 22) should be applied to a hydrophone that is mounted near, but not on, the bottom. This has not been attempted in the present program because an adequate approximation to (IV. 22) would require that the complex (magnitude and phase) bottom reflection coefficient be known.

4.3. Intensity Calculations

The ray tracing solution, Chapter III, together with the loss factors and weighting functions of Chapter IV-4.2, allows an estimate to be made of the power flow from the source that can propagate to increasing ranges. Close to the origin all the rays must be evaluated, i.e., rays with initial angles from +90° to -90°, but most of these will strike the bottom at steep angles and will be strongly attenuated. The effective power flow is limited to the regime of rays that illuminate a relatively shallow solid angle - this is described as a transition from spherical to cylindrical spreading.

The detailed bathymetry local to a source can profoundly influence this transition, as has been indicated in the multiplots of Figs. 10 and 17. It is a good approximation to assume that the sound velocity structure near the origin will be stable so that if the bathymetry in this region is well defined and the loss factors a_b correspond to experiment, the fraction of the source power that is effectively radiated into the far field can be determined with fair precision.

The present chapter gives a description of how the detail obtained in the ray tracing solutions can be used not only to determine the fractional power from the source but to construct vertical distributions of the sound intensity as a function of range. The intensities are readily converted into transmission loss values through (IV. 1). The derivations given represent the calculation of a phase-independent intensity, as discussed in Chapter IV-1.4, and it is again emphasized that the results apply as spatial and/or time averages of the more complex multipath interferences.

4.3.1. Addition of Arrival Structure

The intensity of a single arrival will be the product of the spreading loss (IV. 4) and the factors of Chapter IV-2, i.e.,

$$I\left(R,z,\tau,v_{i}\right) = \Phi\left(R,z,\tau,v_{i}\right) \frac{1}{M\left(R,z,\tau,v_{i}\right)}$$
 (IV. 23)

$$\Phi\left(R,z,\tau,v_{i}\right) = I_{yd} \frac{r_{yd}\cos\theta_{o}}{R\cos\theta} \quad \alpha\beta \gamma g_{o}g_{d}$$
 (IV. 24)

The notation of (IV.23) and (IV.24) has been extended, principally by the symbolic use of v_i to represent the model velocity field and other environmental data inputs which are necessary to construct a given ray tracing solution. τ designates the individual rays from the origin and (R,z) is the position in the field at which the intensity is evaluated. g_0 is the directivity factor that may apply to the rays from the origin of the ray tracing, g_d is the detector directivity factor at (R,z), and all the factors α , β , γ , g_0 , and g_d will depend on the ray parameters and the history of the ray as it propagates from the origin to (R,z). ϕ (R,z, τ , v_i) is to be considered a weighting function for each ray; the function also depends on the wavelength but this has not been indicated explicitly in the notation.

The phase-independent intensity is given by (IV.8) as the sum of the arrival intensities. This is represented by

$$I(R, z, v_i) = \int_{\tau} \Phi(R, z, \tau, v_i) \frac{\delta[\tau - \tau(R, z, v_i)]}{M(R, z, \tau, v_i)} d\tau$$
 (IV. 25)

The δ -function in (IV.25) is the conventional sifting operator with the properties

$$\mathbf{F}(\mathbf{x}) = \int \mathbf{F}(\mathbf{x'}) \ \delta(\mathbf{x} - \mathbf{x'}) \ d\mathbf{x'}$$
 (IV. 26)

$$1 = \int \delta (x-x') dx' \qquad (IV. 27)$$

and, as used in (IV. 25), it expresses the stipulation that the only contribution to the integral comes from those arrivals whose initial τ -directions give rays that pass through (R,z). The function $\tau = \tau \left(R,z,v_i\right)$ indicates that at range R and for the field v_i the τ -directions that arrive at depth z have been identified by use of the ray depth distribution plots such as those of Figs. 11, 31, and 32.

The notation of (IV. 23) and elsewhere is appropriate for continuous functions - indeed, if the velocity field and the bottom profiles possess

continuous derivatives, the ray tracing solution will be a continuous function.

Technically, however, this function is approximated in the computer solution by printouts at discrete (R,z) positions for increment τ -directions.

The application of (IV.25), using the computer solutions, is represented graphically in the lower part of Fig. 35. Rays with initial angles θ_1 ,..., θ_{16} have been traced to range R and produce a map of the rays to the depths z_1 ,..., z_{16} . Three cycles of the depth distribution have been indicated in Fig. 35 and each cycle represents a single arrival. To determine the summed intensity at a depth $|z_R|$, a vertical line is constructed in Fig. 35 which selects the three initial angles that would map to the depth $|z_R|$ at range R

The (Stiltjes) integral in (IV.25) measures the contribution of each arrival as a product of $\Phi(R,z,\tau,v_i)$ and $1/M(R,z,\tau,v_i)$. The former depends on the history of the ray and the latter is calculated by (III.22 of Chapter III) as a limiting ratio of $\Delta z/\Delta \tau$, provided this ratio can be defined. The existence of the limit is assumed in Fig. 35 and is also implied by the assumption of a well-defined arrival structure.

The ray depth distribution plots of Figs. 11, 31, and 32 indicate that, for increasing range and as a function of the detailed structure of the input velocity field and bottom profiles, the function $\tau\left(R,z,v_i\right)$ becomes increasingly erratic and random, at least on the scale of the initial angle increments used for these plots. The comments on this behavior given at the end of Chapter III suggest that when this occurs it reflects a complex physical environment; also, if the functions are "filled in" by more detailed computation, it is just this structure which is most sensitive to small variations of the input model.

The transition to random arrivals is indicated at the top of Fig. 35 for which the depths calculated for successively incremented initial angles near θ_N do not form a continuous pattern and do not permit the magnification function to be calculated. The ray theory states that the flux $I_{yd} d\tau$ is transformed to the flux $I_{d} dz$ but does not indicate the degree to which the flux is spread over the depth of the ocean at range R.

In short, if (IV. 25) is followed as a prescription for calculating intensity, it leads to ambiguities which can be resolved only by additional computation that is very likely to be physically meaningless. It is clearly advantageous to rederive (IV. 25) to a form in which all the calculated arrivals are treated on an equal basis and which emphasizes properties of the ray solution that are not sensitive to the detailed structure of the data inputs. An example of such a property is the depth amplitude of the oscillation of the rays about the sound channel which is shown by the + and - limits on the ray depth distribution plots. It may happen that changes in the velocity field $|\mathbf{v}_1|$ will change the labelling of specific initial rays which can couple to a position (R,z) , i.e., a translation of the function $|\tau|(R,z,v_1)$, but will not produce significant changes in the computed sound intensity.

4.3.2. Ray Probability Density

The δ -function of (IV. 25) identifies the initial τ -directions that couple to (R, z) by performing a sifting operation – it is the limiting form of a probability distribution in which τ is considered a function of the variables $\left(R,z,v_i\right)$ and a strict functional dependence exists between τ and these variables due to the ray tracing solution. Specifically, it is possible to make the correspondence

$$\delta \left[\tau - \tau \left(R, z, v_i \right) \right] \rightarrow w \left(\tau \mid R, z, v_i \right)$$
 (IV. 28)

in which $w(\tau | R, z, v_i)$ is the conditional probability density that the ray tracing solution in the model field v_i will yield a ray with an initial direction specified by τ that maps to the position (R, z).

The general expression of possible relationships between the variables will be given by the joint probability density $w(R, z, \tau, v_i)$ with the normalization

$$\int_{R} \int_{z} \int_{\tau} \int_{v_{i}} w(R, z, \tau, v_{i}) dR dz d\tau dv_{i} = 1 . \qquad (IV. 29)$$

A number of marginal distribution densities can be derived from the joint distribution density and further simplifications can be made by choosing products for which the distribution densities are independent. For example, the two-dimensional density $w(\tau, v_i)$ can be factored as $w(\tau) w(v_i)$ because the choice of initial ray directions will not depend on the probability of different types of velocity fields.

Of the four variables of the joint distribution, two may be specified and these will be chosen as the position (R,z). It follows that the greatest interest is on the conditional distribution density $w(z,\tau,v_i|R)$, i.e., the density of z, τ , and v_i at a fixed range R, and this is related to the joint distribution by

$$\mathbf{w}(\mathbf{z}, \tau, \mathbf{v}_i \mid \mathbf{R}) = \frac{\mathbf{w}(\mathbf{R}, \mathbf{z}, \tau, \mathbf{v}_i)}{\mathbf{w}(\mathbf{R})} \qquad (IV.30)$$

The conditional density of (IV.30) can be factored as

$$\mathbf{w}(\mathbf{z}, \tau, \mathbf{v}_{i} | \mathbf{R}) = \mathbf{w}(\mathbf{z} | \mathbf{R}, \tau, \mathbf{v}_{i}) \mathbf{w}(\tau) \mathbf{w}(\mathbf{v}_{i}) \qquad (IV.31)$$

Also, by definition of the magnification factor,

$$M(R,z,\tau,v_i) = \frac{dz}{d\tau} \int_{R,z,\tau,v_i} (IV.32)^{-1}$$

it follows that

$$w(z | R, \tau, v_i) = \frac{w(\tau | R, z, v_i)}{M(R, z, \tau, v_i)}$$
 (IV. 33)

When all of these operations are combined in the integral of (IV. 25) together with the replacement (IV. 28), the intensity in the model velocity field v_i becomes

$$I(R, z, v_i) = \int_{T} \phi(R, z, \tau, v_i) \frac{w(z, \tau, v_i | R)}{w(\tau) w(v_i)} d\tau \qquad (IV. 34)$$

The intensity that would be measured at (R, z) as an average over all possible velocity fields is obtained by multiplying (IV. 34) by $w(v_i)$ and taking the average distribution

$$I(R,z) = \int_{\tau} \int_{V_i} \phi(R,z,\tau,v_i) \frac{w(z,\tau,v_i|R)}{w(\tau)} d\tau dv_i \qquad (IV.35)$$

Equation (IV. 35) is the basic result of this chapter. Its significance becomes clear if it is assumed that the velocity field is single valued and is given by \mathbf{v}_s . The integral over $\mathbf{d}\,\mathbf{v}_i$ in (IV. 35) decreases the order of the marginal density of the integrand and the weighting function $\phi\left(\mathbf{R},\mathbf{z},\tau,\mathbf{v}_s\right)$ is a constant for the integration.

$$I(R,z,v_s) = \int_{\tau} \Phi(R,z,\tau,v_g) \frac{w(z,\tau|R,v_g)}{w(\tau)} d\tau \qquad (IV.36)$$

The integral over τ in (IV. 36) further reduces the order of the density function to give a probability density that depends on depth alone; specifically, (IV. 36) shows that the acoustical intensity at position (R,z) is the weighted probability density by which the arrival structure is mapped from the origin into the depth of the ocean at range R. The weighting function is

$$\frac{\Phi\left(R,z,\tau,v_{g}\right)}{w(\tau)} \qquad (IV,37)$$

When uniform increments are chosen for τ , $w(\tau)$ is uniform in the interval $-\frac{\pi}{2}\frac{r}{2} \le \tau \le \frac{-r}{2}$ and

$$w(\tau) = \frac{1}{\pi r_{vd}}$$
 (IV. 38)

For a stable velocity field (IV. 36) can, of course, be returned to the original form (IV. 25) by reintroducing the magnification functions. (IV. 36), however, is the more general form for the mapping operation that is implied by ray tracing and furthermore (IV. 36) permits a standard statistical interpretation independently of the determination of the magnification functions. The immediate advantages of this method are:

- i) When a large number of rays are traced the entire arriva! structure that can contribute to the field is included.
- ii) Even though the magnification functions become erratic, (IV.36) is fully equivalent to (IV.25) provided that the resultant field distribution can be considered stationary.
- iii) When small changes of the velocity field are considered, (IV. 35) indicates that the variables z and τ at range R are no longer related by a set of single-valued functions but must be interpreted as distributions.
- iv) The calculation of (IV. 36) is a straightforward computer sort program in which the rays that are labeled by their initial angles are reordered in terms of their depths at a given range.
- v) It is at least useful that this interpretation of the intensity is in a direct correspondence with the density of the rays that are printed out as multiplot distributions, e.g., Figs. 10 and 17.

4.4. Types of Intensity Distributions

In the general expression for the average intensity in the field, (IV.35), the single symbol v_i is used to differentiate among velocity fields. Such notation is highly simplified and unspecific with respect to the complex time-dependent temperature and salinity changes that will occur in the ocean. The application of (IV.35) is, of course, straightforward in principle but becomes unrealistic in practical application. It requires that a nearly continuous sampling be made of the velocity field over a long period of time, that the ray tracing calculations be made for each velocity field measurement, and these data are then to be further averaged over all velocity fields for comparison with experimental acoustical data that are taken simultaneously with the velocity data and are averaged over the same time period. The procedure would be significant only if all

other input data, e.g., bottom losses, absorption, etc., were known with sufficient precision so that the method would constitute a true test of the averaging procedures.

Instead, most calculations are made on the basis of a model velocity field which, it is hoped, is at least representative of the field at the time of an experiment. Very little is known, at least for long-range acoustical propagation, of measures of the extent to which changes of the velocity field will modify the transmission loss between a given source and receiver. It has been emphasized in preceding chapters of this report that representative environmental data inputs for a given ray tracing lead to complex arrival structure: it is a pragmatic conclusion that although the replacement of a given velocity field by a "smoothed" average field may greatly simplify the calculated arrival structure, it does not follow that the resultant acoustical field is itself representative. A more formal statement of this conclusion is obtained by noting that the weighting and probability density functions in the integral of (IV. 35) are not separable except under special assumptions.

In the present chapter intensity calculations are made or are indicated for three different assumptions. As classifications, these are:

Туре	Applicable Range	Velocity Field	Intensity
I	Short	Stable	Requires calculation of relative phase of arrivals via (IV, 7) or method of Appendix
II	Intermediate	"Stable"	Range dependent intensity following (IV. 36)
III	Long	Stable in profile structure	Averaged in range over, roughly, a convergence zone interval. No resolvable arrival structure.

The Type I calculation is a limiting case that will not be typical of long-range propagation for it assumes that the velocity field will be so stable that the relative phases of arrivals are also stable. The Type II and Type III calculations are discussed subsequently.

4.4.1. Type II Intensity Calculation

At a given range R and for a velocity field $v_{\rm g}$, the computer solution does not give a continuous functional relationship between τ and the depth τ , but a set of printout data that is incremented in τ . The integral (IV. 36) is to be replaced by the finite sum

$$I(R,z,v_s) = \sum_{j} \Phi(R,z,\tau_j,v_s) \frac{w(z,\tau_j|R,v_s)}{w(\tau_j)} \Delta \tau_j \qquad (IV.39)$$

The assumption of a "stable" velocity field v_g demands that there be a specific z_j depth for each τ_j -ray. What is required, however, is an estimation of the continuous function of depth $I(R,z,v_g)$ that is obtained from the discretely sampled input data points, the z_j . A standard procedure for this uses sampling functions. The depth density function of (IV. 39) is expanded as

$$\mathbf{w}(\mathbf{z}, \tau_{j} | \mathbf{R}, \mathbf{v}_{s}) = \mathbf{w} \left[(\mathbf{z} - \mathbf{z}_{j}) | \tau_{j}, \mathbf{R}, \mathbf{v}_{s} \right] \mathbf{w}(\tau_{j})$$
 (IV. 40)

where $w[(z-z_j)|\tau_j, R, v_s]$ is the conditional density for displacements of z from the depths z_j for given values of the other parameters. At this stage it is simpler to drop the explicit labeling of these parameters and to write $w(z-z_j)$ without ambiguity. The interval $\Delta \tau_j$ is selected in terms of an angular input in the ray tracing program. If N rays are traced that are equally spaced over the range of τ_j .

$$\Delta \tau_{j} = \frac{\pi r_{yd}}{N}$$
 (IV. 41)

and (IV.39) becomes

$$I(R,z,v_s) = \frac{\pi r_{yd}}{N} \sum_{j} \Phi(R,z,\tau_{j},v_s) w(z-z_{j})$$
 (IV. 42)

For normalization in depth from the surface to the bottom depth $\ \mathbf{z}_{B}$, it is necessary that

$$\int_{0}^{z} B w(z-z_{j}) dz = 1 \quad \text{for all } z_{j} \qquad . \tag{IV.43}$$

A number of sampling functions can be used for the smooth estimations of $I(R,z,v_g)$, e.g., histogram plots, $(\sin x)/x$, triangles, etc. Their selection is arbitrary in the limit of large N. In the present program two functions are immediately available:

$$w_{L} = \frac{p}{\pi z_{B}} - \frac{1}{1 \cdot \left(\frac{(z - z_{j})p}{z_{B}}\right)^{2}}$$
 (Lorentz)

$$w_{G} = \frac{2p}{\sqrt{\pi} z_{B}} \exp - \left[\frac{(z - z_{j}) p}{z_{B}}\right]^{2} \qquad (Gauss) \qquad (IV. 45)$$

In (IV. 44) and (IV. 45) the choice of a small constant p represents a large uncertainty in the depth of a given arrival, but the choice of too large a value for p will isolate the distribution of $I(R,z,v_g)$ to the neighborhood of individual arrivals. From statistical considerations that are based on the reliability of sampled estimates p should be of the order of $N^{1/3}$ to $N^{1/2}$ with the larger number being applicable when the intensity distribution can be assumed to be a smooth and uniformly sampled function of depth.

As an example of the use of (IV. 44) and (IV. 45), a fictitious output data tape from the ray tracing program was prepared with depth entries given by

$$z_{j} = 5000 - 2500 \sin \frac{\pi}{2J} \quad j : -J \leq j \leq J \quad ,$$

$$j , J \text{ integer} \qquad . \tag{IV.46}$$

In the limit of very large J the theoretical distribution density for the input data of (IV.46) is given by

$$w(z) = \frac{1}{\pi} \frac{1}{\sqrt{(2500)^2 - (5000 - z)^2}}; \quad 2500 \le z \le 7500$$

$$= 0 ; |5000 - z| > 2500 . \quad (1V.47)$$

Figure 36 indicates the smoothing effected by the two sampling functions when J=15, i.e., 6° increments in (IV.46), and for the coarse parameter p=5 and for the finer resolution of p=25. The bottom depth z_B was taken to be 10,000 (meters). Figure 36 clearly indicates the effect of the much longer "tail" of the Lorentz function.

(IV. 42) has been derived on the assumption of a stable velocity field and the choice of $w(z-z_j)$ was made on the basis of sampling theory. An alternative and less restrictive derivation of (IV. 42) is obtained by the direct assumption that the average effect of variations of the velocity field in (IV. 35) leads to the density function of (IV. 40) and thus to (IV. 42). This interpretation demands that the representative field of the calculation, v_s , is the average velocity field. Also, the choice of a particular $w(z-z_j)$ density is no longer arbitrary but must be guided by oceanographic experience.

The construction of the intensity distribution by use of density functions also serves for the averaging of the acoustical field in the neighborhood of foci or caustics. When the arrival structure is well defined in the ray depth distribution plots there will be certain depths at which the magnification function, $dz/d\tau$, becomes zero – in fact, as discussed in the Appendix, the intensity at these depths will be finite and will be spatially spread by diffraction effects. The latter will be more typically represented by the Gaussian density function of (IV. 45) which has, very roughly, the shape of the fall off of intensity in a Fresnel shadow. Although the turning points of the ray depth distribution plots require no special treatment in the present program, following (IV. 42), they are, of course, regions of high intensity because of the high probability of τ -arrivals in these regions. However, the "spreading" factor, p, of (IV. 44) or (IV. 45) is to be limited to a maximum upper value when used to express diffraction spreading.

It is an obvious defect of the Type II calculation that the distribution densities $w(z-z_i)$ are used for three quite independent reasons, i.e.,

- i) for velocity field averaging,
- ii) for estimating the smoothed intensity distribution based on N data points, and

iii) for averaging diffraction-limited fields.

Another important factor that effectively limits the Type II calculation is the long running time requirement for the ray tracing program on our present computer and the implied pressures, economic and operational, for reducing the number of rays traced, N, to a minimum. Some relief in this direction is obtained by tracing only the shallower angle rays on the assumption that steeper rays are so severely attenuated that they are ineffective; this must be tested by monitoring the attenuation factors that apply to the steeper initial angles.

In view of these problems and the data uncertainties themselves, it is recommended that the Type II intensity calculation be deliberately "over-averaged" by the choice of a small p in (IV. 44) or (IV. 45) with a value not to exceed 20. This choice, at present, is arbitrary; it also implies that the number of rays that are traced be of order 200.

Finally, it is emphasized that the Type II calculation is based on specific assumptions, i.e., (IV. 40), and the type of field chosen, the depths of the source and receiver, the degree of bottom scattering, the presence of horizontal gradients, etc. It would not be expected that the Type II assumptions would apply to a low-frequency, shallow source in a thermocline that shows a strong diurnal variation for in this physical situation the range period of the rays that cycle about the sound channel would depend strongly on the surface thermocline. On the other hand, if the source is at or near the sound channel axis the shallow rays from the source will not be affected by the thermocline, the steep rays will be only partially affected, and only the rays that make nearly grazing angles with the surface will be sensitive to the thermocline variations. If, indeed, a given physical situation can be as clearly defined as in this example, it becomes appropriate to introduce further refinements such as making the density width parameter p a function of τ . Generally, however, decisions of this type are possible only after detailed examination of the ray depth distribution plots and when specific features of the plots can be traced to environmentally sensitive sections of the input data.

4.4.2. Type III Intensity Calculation

When a ray is traced to long ranges, it will continue to show an oscillation about the sound channel and can be characterized by the depth amplitude of this oscillation and the range period. Also, there will be a ray angle at any given depth due to the cycling of the ray. The precise (R, z) position due to a given r-initial direction becomes increasingly uncertain with range, however. This would be expected because of the sensitivity of the range periods to details of the velocity profile structure and is also evidenced by the scatter of the arrival positions for small angular incremients of the initial ray angles.

The Type III intensity calculations provide an estimate of the acoustical power that is spreading cylindrically by assuming that each ray, modified by the weighting function $\phi(R,z,\tau,v_g)$, delivers its fraction of the source power through a cylindrical shell at an average range R_o . The power carried by the ray has a distribution that is characteristic of the depth amplitude and ray angle of the oscillating ray but the ray position in range is assumed to be completely uncertain.

To express this assumption it is convenient to return to the joint distribution $w(R, z, \tau, v_i)$ of (IV. 29) and, using (IV. 30), to expand the averaging of (IV. 35) to express the range average,

$$\frac{1}{I(R_0, z)} = \frac{1}{\mathcal{R}} \int_{R_0 - \frac{\mathcal{R}}{2}}^{R_0 + \frac{\mathcal{R}}{2}} \int_{\tau} \int_{v_i} \phi(R, z, \tau, v_i) \frac{w(R, z, \tau, v_i)}{w(\tau) w(R)} dR d\tau dv_i \quad (IV. 48)$$

The bar over the intensity in (IV. 48) shows the range averaging over an interval $\mathcal R$. The assumption of the Type III calculation consists in replacing (IV. 48) by

$$\overline{I(R_o, z)} = \int_{\tau} \phi(R_o, z, \tau, v_s) \frac{\overline{w(z, \tau | R, v_s)}}{w(\tau)} d\tau \qquad (IV. 49)$$

where the bar over $\overline{w(z,\tau|R,v_s)}$ indicates a similar range average, and it is also assumed that the model or representative field v_s is suitable as an average field for the calculation.

Analogously to (IV. 47) the range-averaged density of (IV. 49) can be estimated as

$$\overline{\mathbf{w}(z,\tau \mid \mathbf{R},\mathbf{v_g})} = \frac{1}{\sqrt{\tau}} \frac{\mathbf{w}(\tau)}{\tan \theta} \mathbf{Q}(z)$$
 (IV. 50)

with Q(z) defined by

$$Q(z) = 0$$
 , $0 \le z < z_{-}$, and $z_{+} < z \le z_{B}$
$$Q(z) = 1 , z_{-} \le z \le z_{+}$$
 (IV. 51)

In (IV.50) and (IV.51) z_{\perp} is the minimum depth of oscillation of the ray z_{\perp} is the maximum depth of the oscillation, and the range interval between these two depths is given by x_{\perp} . x_{\perp} and x_{\perp} are to bracket the center range x_{\parallel} . x_{\parallel} expresses the probability that the ray does not carry (appreciable) energy outside the depth interval in which it oscillates. It follows that

$$\overline{I(R_o, z)} = \int_{\tau} \phi(R_o, z, \tau, v_s) Q(z) \frac{d\tau}{\sqrt{\tau \tan \theta}}$$
 (IV. 52)

In (IV. 52) $Q(z)/(\sqrt{\tau} \tan \theta)$ plays the role of the density $w(z,\tau | R, v_g)$ of (IV. 36).

The form of the density function of (IV. 52) has the defect that near turning points where $\tan\theta$ vanishes there will be an infinite contribution over an infinitesimal depth interval, and the accidental selection of such a depth would give a contribution that would dominate all other arrivals. To provide averaging over a depth interval it may be noted that $\tan\theta=dz/dR$ and M depth intervals can be selected, each of depth \sqrt{z} with

$$\frac{z}{z} = \frac{z_B}{M}$$
(IV. 53)

This averaging yields

$$I_{\underline{\mathbf{III}}}(\mathbf{R}_{\mathbf{c}}, \mathbf{z}_{\mathbf{m}}) = \frac{1}{2} \int_{\mathbf{z}_{\mathbf{m}-1}}^{\mathbf{z}_{\mathbf{m}}} \overline{I(\mathbf{R}_{\mathbf{c}}, \mathbf{z})} d\mathbf{z}$$
 (IV. 54)

$$= \frac{1}{2} \int_{\mathbf{r}} \int_{\mathbf{z}_{m-1}}^{\mathbf{z}_{m}} \phi(\mathbf{R}_{0}, \mathbf{z}, \mathbf{r}, \mathbf{v}_{s}) \mathbf{Q}(\mathbf{z}) \frac{d\mathbf{r}}{2} d\mathbf{R} \quad (IV.55)$$

$$= \frac{1}{\sqrt{z}} \int_{\tau} \frac{\phi(R_0, z_m, \tau, v_s)}{\phi(R_0, z_m, \tau, v_s)} Q(z) \frac{R}{\sqrt{\tau}} d\tau . \quad (IV. 56)$$

In (IV. 56) the attenuation, spreading, and directivity functions constituting ϕ have been expressed as an average value in the depth interval given by z_m and the change in range of the ray through the depth interval from z_{m-1} to z_m has been expressed by R . It is straightforward to show that the integral of (IV. 56) over the full depth of the ocean represents the net power that propagates cylindrically at the range R_0 .

In the present program the form of (IV.56) presents a minor difficulty in its demand for the range intervals $\widehat{\mathbb{R}}_m$ at which the ray crosses preset depths. (The output of the ray tracing program consists of printouts of the depths at which the ray crosses given ranges.) To obtain the $\widehat{\mathbb{R}}_m$ and also the angles θ at the center of each depth interval, interpolations are used and the result is then summed over τ .

The Type III assumptions will be most applicable when the velocity field is stable at the origin of the ray tracing and the prevailing bathymetry is well defined in that region. This implies that the field distribution and its angular aperture are well defined as the sound spreads from the source region at, for example, the range R_1 of Fig. 17. Subsequently and at much greater ranges the field is averaged by (IV.56); but the function $\overline{\phi(R_c/z_m,\tau,v_s)}$ still involves functions, especially the bottom attenuation a_b , that are evaluated at the precise positions that are calculated by the specific ray tracing solutions in the representative field $|v_s|$.

If the bottom is deep and relatively smooth from the range R₁ to the range at which the intensity is determined by the Type III calculation.

the ϕ -functions will be good approximations even with respect to averages over different types of velocity fields v_i ; however, this may not be true if there is a strong perturbation of the ray solution at an intermediate range, e.g., the seamount structure in Fig. 17. If the Type III calculation is applied to a further range after the seamount obstruction, it is necessary to assume:

- i) the velocity field from R₁ to R₂ in Fig. 17 is stable and the seamount bathymetry and the bottom attenuation functions are known so that the field distribution and aperture after the seamount have been well calculated by the ray tracing, or
- the averaging procedure expressed by (IV. 49, applies over the entire ray path; also, the net interaction with the seamount calculated in the model field v_s is an adequate average even though there may be detailed changes that can occur if v_s is allowed to vary. That is, arrivals which may have missed the seamount entirely in one velocity field will interact with it in another field and conversely, but on the average the net attenuation of the spreading sound energy will not be greatly affected.

The classification of the intensity calculations and the procedures for calculating these are based on explicit assumptions as to the behavior of the field under averaging of environmental input parameters and for given input conditions such as the source and receiver depths. If the origin of the ray trace is in the upper thermocline and this is expected to show strong variation over short periods of time, it is not expected that the Type II calculations will apply although the Type III calculation may apply if surface attenuation can be neglected and for large bottom slopes near the origin. Usually, however, the combination of a near-surface source in a changing thermocline will strongly affect the proportion of rays which are bottom attenuated – for example, for the seamount obstruction of Fig. 17 and for a surface source the density of the rays that pass over the obstruction can be visualized as moving up and down following the changes of the

thermocline. This simple example emphasizes that if either a Type II or Type III calculation is made for comparison with experiment, it is essential that the model velocity field v_s used in the calculation be the average field.

Guides as to the sensitivity of the ray distributions with respect to the environmental conditions can be obtained from the ray depth distribution plots and, as required, from the individual ray tracing printouts. These data can indicate optimum density functions for the intensity calculations. If neither the Type II or Type III calculations can be expected to apply, it is at least useful to attempt two independent calculations that are based on extremes of the velocity field that can be expected to occur, and to compare the transmission loss values that are given by each field.

References for Chapter IV

- Physics of Sound in the Sea, Summary Technical Report of NDRC, Division 6, Volume 8; Washington, D. C. (1946).
- 2. Ibid.
- 3. H. P. Bucker, J. A. Whitney, G. S. Yee, and R. R. Gardiner, J. Acoust. Soc. Am. 37, 1037 (1965). The specific form of the bottom reflectivity function (IV. 14) was kindly suggested to us by Dr. Norman Lord of Hudson Laboratories as a result of his study of a number of bottom reflectivity experiments that have been reported.
- 4. H. W. Marsh, J. Acoust. Soc. Am. 35, 240 (1963).
- 5. M. Shulkin and H. W. Marsh, J. Brit. IRE, 25, 493 (1963).
- 6. M. J. Sheehy and R. Halley, J. Acoust. Soc. Am. 29, 464 (1957).
- 7. Physics of Sound in the Sea, loc. cit.

Fig. 33. Computed transmission losses as a function of range for A. N. Guthrie and J. D. Shaffer environmental data, but for hypothetical source at depth of 500 meters.

Fig. 34. Computed transmission losses as a function of range for A. N. Guthrie and J. D. Shaffer environmental data, but for source depth of 5000 meters.

Fig. 35. Distributions of ray arrivals.

Eq. (IV. 47). Computer plot gives distribution determined from data inputs of (IV. 46) with J = 15 and with use of functions (IV. 44) or (IV. 45). The vertical scale of distribution for Gaussian sampling function with p = 5Fig. 36. Effect of various types of sampling functions used to determine continuous functions based on sampled data. Solid curve represents is twice that of all other figures.

CHAPTER V

PROGRAM ACCURACY

5.1. Program Control Parameters

It has been emphasized in the preceding Chapters that accuracy in a ray tracing calculation is necessary to determine the depth distribution of intensity of the acoustical field, especially the accuracy that expresses the ability of the program to deal with and compute ray paths in the regions of high gradients and curvatures that are typical of the near sea surface structure of the velocity profiles. This is true whether the intensity is calculated for single arrivals through the magnification factor (equivalent to spreading loss) of (III.21) or through the averaging procedures of Chapter IV which do not require direct determination of the magnification factor. On the other hand, it has also been emphasized that as the program complexity and computer running time are increased together, as these are required for accurate expression of the detailed structure, one is calculating the effect of just that detail which is most sensitive to changes of the field in the ocean and which is, therefore, increasingly less likely to represent the actual field at the time of a given experiment. Finally, the problem is complicated by a conclusion of Chapter IV, i.e., it is not a valid procedure to average the environmental data inputs by smoothing these for this process leads to regular arrival structure that does not show the "breakup" that is found in the calculations that are based on more realistic velocity profile structure.

The basic ray tracing program, outlined in Chapter III, uses control parameters that adapt the iteration increment to follow the velocity field structure. For very accurate work the maximum iteration increment can always be made small and the control parameters made "tight." More important, however, is the degree to which the maximum iteration interval can be made very large, conserving computer running time, but calculational accuracy is kept within set limits by adjustment of the adaptive iteration controls. In terms of the constrictions discussed in the previous paragraph these limits must also be appraised as to whether they are physically meaningful.

To a certain extent the action and interaction of the controls can be followed by program testing on smooth, simple velocity fields with known theoretical ray solutions. Practical specification of the control parameters, however, must follow from tests on real velocity profiles which contain the maximum gradients and curvatures that can be expected in the ocean.

The input parameters which control the accuracy are summarized below:

- i) Maximum Iteration Increment (Δ).
 Roughly, the running time of the program over a given range is inversely proportional to Δ. If Δ is too large, however, every iteration will be contracted by one or another of the subsequent tests and this will reverse the trend and lead to longer computer running times. Also, the use of large Δ values even for initial tests in high Z_i and D_i regions leads to breakdown of the iteration expansions to such a degree that the subsequent Δ contractions based on the tests are not properly defined.
- ii) Sine Incremental Test (S Test). This test examines the effect of a tentative iteration of magnitude Δ that depends on the Z_i, D_i, and G_i gradients and curvatures at a given point as these are determined by the velocity field construction program. If this leads to a change in the sine of the ray angle by an amount greater than S, then Δ is contracted to a new Δ_i as given by (III.14).
- iii) Velocity Field Accuracy Test (ϵ Test). The velocity predicted by the Z_i , D_i , and G_i field expansion parameters for a tentative iteration of magnitude Δ_1 is compared with the velocity at the same point which is set by the velocity field construction program. If these disagree by an amount greater than ϵ then the iteration of Δ_1 is further contracted to Δ_2 by the use of (III.15).

iv) Minimum Increment (Δ_m) . A minimum increment can be set into the program and is to be of the order of the minimum depth interval between velocity profile entries. Use of Δ_m avoids too large a contraction of Δ_2 by the ϵ test or S test.

In addition to the above parameters that are entered explicitly, the program implicitly includes the semi-invariant control of (III. 6) and (III. 7).

5.2 Test Procedures

A number of elementary program tests were made as the program developed, primarily to check the operational sequences, indexing of entries, and gross programming errors. Such tests included isovelocity profiles, earth curvature corrections, boundary location and ray reflection calculations, etc., and need not be reported here. Attention is instead concentrated on ray tracing in those velocity fields which reveal the effect of the program control parameters on the accuracy of the ray tracing. The following models have been chosen for this:

- I. Hyperbolic Cosine Profile
- II. Bilinear Profile
- III. Real Velocity Field
- IV. Reversibility Test in Real Velocity Field

The results of the above tests are presented as data printouts with the following formats:

- A. Computer plot of the profile (or profiles).
- B. Tabulation of specific data inputs with the gradient and curvature values of the profiles at these points. These are the data that are used directly in the ray tracing program.
- C. A summary output derived from the ray trace output tape consisting of printouts giving the range, depth, travel time, and sine of the ray angle at turning points of the ray and at surface and bottom reflections. The

program control parameters and the computer running time are also given with the printouts.

5.3. Hyperbolic Cosine Profile

$$v(z) = 1500 \cosh 3 \times 10^{-4} (z-3000)$$
 (V.1)

This is a smooth profile for which the gradient and curvature increase uniformly and continuously on either side of the center depth, 3000 meters. The 4-point fit that is based on data points entered every 50 meters gives an excellent representation of the profile shape and the ε -test does not produce truncation of Δ unless ε is made very small and for very large Δ . The results of this test primarily indicate the accuracy of the basic iteration expansions in smooth profile regions as well as the effect of the S-test.

Figure 37 is a computer plot of the hyperbolic profile. In the depth region of 3000 meters the shape is roughly that of the axis of a sound channel but the continuously increasing curvature together with the large factor multiplying the depth dependence in (V.1), i.e., 3×10^{-4} / meter, produce unrealistically large values of the sound velocity at depth intervals greater than 500 meters from the axis. The data inputs, based on a 3-point fit about each entered point, are given in Table 5.3.1 (these inputs are converted into a 4-point fit in the ray trace program as discussed in Chapter II). The curvature, coefficient D in the Table, is small as compared with the curvature of realistic sound velocity profiles (compare with Chapter V-5.5), but the gradients, coefficient Z, are comparable in the depth intervals from 1000 to 2000 meters and from 4000 to 5000 meters.

Summaries of thirteen ray tracing calculations in the hyperbolic cosine field over a range of 300 miles are shown in Tables 5. 3. 2. 1 through 5. 3. 2. 13, giving only the calculated turning points. A large, upwardly directed, initial angle of -30° was selected to emphasize the high gradient regions of the profile but, for this test, to avoid surface or bottom hits. For the highest accuracy parameters of Table 5. 3. 2. 1 and Table 5. 3. 2. 13,

the results are exactly those that would be predicted by formal solutions. Attention is called to the fact that although there is some shift in the range of the turning points for larger values of the control parameters, the effect of the semi-invariant control is to maintain nearly precise values for the depth amplitudes of the cycling rays. Note also that due to the presentation based on turning points the variations in the travel time that occur among the printouts must be normalized with respect to the range deviations of the turning points.

The principal conclusion that can be drawn from the data of Tables 5, 3, 2, 1 - 5, 3, 2, 13 is that for the arc length increment, Δ , of 500 meters or less there is negligible error in the iterations. For values of Δ of 1000 meters or more the accuracy becomes controlled by the sine increment test. By inspection of the discrepancies in the ranges of the turning points for Δ increments of 1000 meters or more with respect to the accurate solutions obtained by the Δ increments of 250 meters it can be concluded that:

- Agreement would have been improved by the use of maximum sine increments that were considerably less than the minimum value of 0,020 used in Tables 5,3,2,1-5,3,2,13.
- ii. It is a defect of the simple form of the sine increment test given by (III.14) that is does not contract the iteration if there is little net change in the sine of the ray angle. This permits errors to grow in the range and depth coordinates of the ray when there are large Δ increments with small change in the ray angle, e.g., for the rays that cross the axis. This is the principal reason why the results of Tables 5.3.2.6, 5.3.2.7, and 5.3.2.12 have not converged to the more accurate values of Table 5.3.2.13.

It is clear from the results that increased accuracy requires greater computer running time, although there is an advantage in using large Δ increments in association with a strong control obtained through the sine increment test if rather nominal discrepancies can be tolerated. However,

this is a feature of the smooth form of the hyperbolic cosine profile and is not necessarily true for more complex velocity profile types.

Fig. 37.

OFER PROFILE AT PENGL - \$36,306 HILES - TEMP AT ORDERVED HARIPUM DETEND - 6,838 UEW CENTSWEAVE

TABLE OF VALUES OF DUSEASSE SOURIE

Dertune teas	** ** ** * * * * * * * * * * * * * * * *	CHEFFICIENT / COEFFICIENT 6	
	14400117447110	***	
	31 64.6744	- 404 102 1 1914 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
,040 500,00 190,000 200.000	21.54,3066	4- 2001210 A 0415100 L 4- 51406401 A 64168944.	
	9494,4952 2445,5961 2848,4868	- 43338446 4 18742746 - 1 - 42416357 1 18748748 - 3	
200.000 270.000	2845,3581 2845,4865 2814,5745	- 4248499 0 1634809 03 - 41483990 0 16361367 03 - 46076140 1837948 03	
196,004 206,044 296,044 316,044 346,044			
101,111	1004,5107 1074,5087 1004,7402	-,30773491 0 (\$7718776 04	
450,838	5042,7462		
986.649 498.646	1023,7006	* 16130930 4 12313005 01 * 16130930 4 12313005 01 * 19274191 8 12193108 02	
424.111	1907,0871	- 2167909 3 - 1267991 -1 - 38294191 8 -12318498 -1 - 38294191 8 -13183168 -1 - 54498401 2 -3669644 -3	
494,644 144,644 194,444	1871,4487	4.13974393 0 .10043747 +1	
758,663	1974.0007 1942.7462 1944.9746 1973.9871 1807.0877 1807.4867 1871.4867 1874.9727 1874.9727 1874.973 1774.176 1774.176	1974-191 1715-194 -1 1447-191 1715-194 -1 1447-191 1447-194 -1 1273-195 1447-197 -1 1273-195 1447-197 -1 1447-197 1447-197 -1 1448-198 1478-197 -1 1448-198 1478-197 -1 1448-198 1478-197 -1 1448-198 1478-197 -1 1448-198 1478-197 -1 1448-198 1478-197 -1	
100,000 176,000 100,000 170,000	1824,9972	-,31964600 0 .16:496/5 ** -,31964990 0 .16407105 ** -,16764090 0 .16764676 **	
111.111	1807,6510	-31986999) (18407105 -3 -18884980 8 (1876424 -3 -7949386 8 (18134816 -3 -28853496 2 (18134816 -3 -2781560 3 (187688 -3 -2781780 8 (5783748 -3	
1948.474	1770 1470	- 90-03-06	
1998 1 6 5 4	1744,6724	- 27843560 3 13576894 +3 - 27843780 0 15793/98 +3	
1170,000	1737,0099 1724,6463 1711,9186 1677,3481	- 27841780 8 .15793708 -3 -76278328 8 .15833183 -3	
1200.000	1774,6463	29499281 8 15716738 43 424728261 8 15404273 43	
1306,000	1677,3481	123098786 4 (5404416 -4 123196739 4 (5187986 -1	
1394,844	1447,5914	*,25196729 4 ,15187986 *1 *,28439898 8 :15065983 *3	
456,004	1647,1120	. 22439898 8 .15C45V83 -1	
1306,846	1454,4592	- 2000101 6 14007042 -5	
140.001	1634,2463	-14461389 0 .147CHJrs -1	
1656,884	1424,7879	*18774031 8 :14422403 =3 *1784861 8 :1448V4 =3	
1754,886	1604 7105	-117990961 0 144-68424 -1 -17773949 0 144-6849 -1 -14992820 0 14384989 +1	
1010.656	1994,2543	. 14392820 & . 1438489 «1 . 143828 144288 «	
1000,000	1697,3481 1677,918 1678,1431 1679,1120 1695,4992 1644,1788 1647,7899 1613,9287 1604,7293 1896,72943 1896,1477	-19181969 8 14447922 =3	
1996,444	1975,8361	.14411110 8 .14175940 a1	
7475.000	1941 3327	*,12097089 # (14197479 *)	
23.66,413	1957,0079	*,12208626 \$.13595139 *3 *,11648263 0 .13541636 *3	
1200,000	1543,4877	e 1186221 0 12941698 -3 010004390 8 1294052 -3 010004390 8 1294052 -3 0 99109804 -1 12940513 -3 0 89109804 -1 129797448 -3 0 8310980 -1 12979744 -3 0 12979748 -3	
1298.111	1930,1797	* 10911031 0 17500018 **	
\$356,111	1570,4697	# 88319498 at 113757248 a3	
191. 619 191. 619 191. 619 191. 619 120. 6	1921,345	- 19819411 2 . 1441119 43 . 1911949 89 . 14471494 81 . 1447949 14 . 1447949 14 . 1447949 14 . 1447949 14 . 1447949 15 . 1447949 15 . 1447949 16 . 1447949 17 . 14	
2506.004	1910.9007	67795803 +1 11452496 +3	
7394,601	1913,6895	87755893 = 13652496 =3 80938885 =1 1362323 =3 84131718 =1 1387894 =5 47338880 =1 13876944 =5	
2450,000	1910,2763	\$4131718 +1 ,13947446 +3 47318680 +1 ,13974944 +3	
2760.000	1910,0771	- 60596185 +1 13555149 +3 - 53762062 +1 1353747 +3	
249,,99 2504,101 2791	1990,1977 1982,4159 1993,8361 1994,8274 1943,838 1944,4877 1934,1992 1934,1992 1934,1992 1934,1992 1934,1993	224.3349.4 43534/44.44	
1050,000	1901,9190 1900,A750	-,20297697 -1 13913641 -3 -,13903998 -1 13506498 -3	
2000,011	1930,1467	. 47944643 -2 ,13902049 -3	
3013,411	1900,9000	01100000 0 13499446 43 07404803 07 13507446 43	
3100,111	1861,6750	13507444 - 13507444 - 1 13507508 - 13506393 - 1 20097404 - 13513641 - 1	
3199,616	1881,9170	2097404 01 113913641 08 27017212 01 113924708 03 33982982 01 113937970 03	
\$191,111	1904, 2247	33762082 +1 +13537970 +3	
3311.111	1984,8771	4994183 -1 (13555149 -3 47938488 -1 (13574526 -3 54131718 -1 (13567846 -3	
3400.010	1910,0130	54131718 +1 +13567746 +3 40034985 +1 +11527128 +3	
1050.110	1910,007	60036005 -1 (11-27128 +3 67795000 -1 (13092496 +8	
1901.008 1991.000 1600.000	1929, 4671	74908111 -1 :13884387 +3 8144183 -1 :13719948 +3	
3656,890 3656,890 3786,690	1927, 2077	88315468 -1 13757646 -3	

3780.000	1934, 1967	. 99199664 -1 115799614 -3	
3794,108	1935, 1967 1936, 1992 1845, 4877	99199104 -1 (15799218 -3 10211031 8 (15043013 -3 10904300 0 (15049708 -3	
3754,108	1533, 1067 1536, 1792 1843, 4877 1844, 8536	\$4131710 + 1 12907740 + 2 40734000 + 1 11/27123 + 3 40735000 + 1 110/27120 + 2 7496011 - 1 130/4700 + 2 40144100 + 1 137/2740 + 3 40144100 + 1 137/2740 + 3 40144101 + 1 1 1 1 40144101 + 1 1 1 1 40144101 +	
3754,108	1933,1967 1938,1782 1844,4877 1844,6536 1852,4878 1861,3322	99199164 -1 (13709218 -3 10211031 8 (13043013 -3 1099430 6 (1309719 -3 11408221 6 (1304130 -3 12200829 6 (1309313 -4 12200829 6 (1309313 -4 12200829 6 (14092220 -4	
3750.000 300,000 3050,000 3750,000 3750,000	1934,1067 1938,1292 1844,6376 1944,6336 1992,8476 1861,3322 1868,4178	09.00(j/a - 1 13.700(16 3) 1021(1631 6 13.443613 3) 10944300 6 13.00(7/20 3) 11.00(1630 6 13.00(7/20 3) 12.00(20 6 13.00(17) 6 3) 12.00(20 6 13.00(17) 7) 13.70(20 8 14.120(15 3) 13.70(1620 8 14.120(15 3)	
3790,004 3000,005 3090,006 3900,006 4900,006	1934, 1967 1930, 1992 1844, 4877 1844, 8336 1895, 8879 1864, 3322 1868, 8861 1978, 8861 1982, 4188	199199104 - 11709118 - 0 1021181 1 11709118 - 0 1021181 1 1 1 1 1 1 1 1 1	
3794,000 3899,000 3890,000 3990,300 3990,300 4890,600 4890,400	1933,1967 1919,1792 1843,4077 1944,6536 1953,6678 1841,3322 1968,4189 1978,9661 1962,4189 1998,1573	199199104 - 11709114 - 0 10211931 11804513 11	
3794,000 3090,000 3090,000 3990,000 3990,800 4090,800 4194,000 4200,600	1933,1067 1930,1067 1943,4877 1944,6336 1859,9676 1941,3322 1946,4878 1959,9641 1962,1977 1959,2943 1406,7109	199199104 - 1770914 - 0 199199104 - 0 1470914 - 0 14809109 - 0 14809109 - 0 14809109 - 0 12709029 - 0 12709029 - 0 12709029 - 0 14810919 - 0 14810919 - 0 14810919 - 0 14810919 - 0 14810919 - 0 14810919 - 0 14810919 - 0 14810919 - 0 14810929 - 0 148109	
3794,498 3894,898 3996,898 3996,898 3996,898 4896,898 4896,898 4296,888 4296,888 4286,888	1934, 1967 1934, 1967 1844, 4877 1844, 6874 1857, 9876 1864, 3322 1878, 1878, 1878 1878, 1878 1878, 1877 1978, 1877 1978, 1877 1978, 1877 1878, 1877 1878, 1877 1878, 1877 1878, 1877 1878, 1878	199199104 1170914 = 0 10211931 11804513 = 0 10211931 11804513 = 0 11804520 11809170 = 0 1280622 11809170 = 0 1270622 11809170 = 0 1270622 11809170 = 0 1270622 118017070 = 0 1270622 118017070 = 0 1280920 118017070 = 0 1270622 11806220 = 0 1270622 11806220 = 0 1270622 11806220 = 0 1270622 11806220 = 0 1280622 11806220 = 0	
3794,498 3894,898 3994,898 3994,898 4984,898 4984,898 4194,808 4194,808 4294,808 4284,608 4384,608	1904, 2247 1916, 8751 1918, 2761 1919, 2763 1911, 4813 1911, 4817 1912, 4817 1912, 4817 1912, 4817 1914, 4817 1914, 4817 1914, 4817 1917, 4813 1917, 4813	12798629 13799112 ad 12799629 12798629 12798629 12793629 14114015 ad 14114015 ad 14114015 ad 14114016 ad 1	
3796,986 3099,886 3099,886 3796,886 4064,886 4084,886 4184,886 4284,886 4284,886 4284,886 4284,886 4384,886 4384,886	1644,1786	19441394 (14708228 -1 20198944 0 (14788998 -1 20041191 8 (14898442 -1	
3796,986 3099,886 3099,886 3990,886 4090,886 4090,886 4149,880 4290,488 420,488 420,488 420,488 420,488 420,488 420,488 420,488 420,488 420,488 420,488 420,488 420,488 420,488 420,488 420,488	1644,1786 1654,4952 1869,1179	19:41304 (14708428 -) 20:90:40 (14708928 -) 20:90:4181 (1470842 -) 21:48:001 (1470892 -)	
3790,986 3099,989 3090,989 3790,989 4090,989 4090,989 4194,989 4194,989 4290,989 4290,989 4390,989 4491,989 4491,989 4491,989 4591,989 4591,889 4591,889	1644,1786 1654,4552 1669,1120 1676,1433	19:41304 (14708428 -) 20:90:40 (14708928 -) 20:90:4181 (1470842 -) 21:48:001 (1470892 -)	
3790,986 3099,989 3090,989 3790,989 4090,989 4090,989 4194,989 4194,989 4290,989 4290,989 4390,989 4491,989 4491,989 4491,989 4591,989 4591,889 4591,889	1644,1786 1834,6352 1867,1120 1876,1433 1887,9518 1887,3461	19441300 (1470828 1) 20198949 8 14798998 1) 2041331 8 14298442 1) 21488001 8 14903478 18 22419892 8 15938983 18 23188730 115187488 18	
3790,986 3099,989 3090,989 3790,989 4090,989 4090,989 4194,989 4194,989 4290,989 4290,989 4390,989 4491,989 4491,989 4491,989 4591,989 4591,889 4591,889	1644,1786 1894,4992 1869,1120 1876,1433 1867,9918 1809,3461 1711,9196	1946 396 14708428 14708428 14708428 14708428 14708428 14708442 14708442 14708442 14708442 14708442 14708442 158	
3784,918 3091,118 3091,118 3091,118 3091,118 3091,118 3091,118 4091,118	1644,1786 1854,4552 1865,1120 1876,1433 1887,9518 1887,3401 1711,7196	1946 396 14708428 14708428 14708428 14708428 14708428 14708442 14708442 14708442 14708442 14708442 14708442 158	
3784,918 3091,118 3091,118 3091,118 3091,118 3091,118 3091,118 4091,118	1644,1786 1854,4552 1865,1120 1876,1433 1887,9518 1887,3401 1711,7196	1946 398 14708428 14708428 14708428 14708428 14708428 14708428 14708442 14708442 14708442 14708442 14708442 15808428 1580848 15808428 15808428 15808428 15808428 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 15	
3784,918 3091,118 3091,118 3091,118 3091,118 3091,118 3091,118 4091,118	1644,1786 1854,4552 1865,1120 1876,1433 1887,9518 1887,3401 1711,7196	1946 398 14708428 14708428 14708428 14708428 14708428 14708428 14708442 14708442 14708442 14708442 14708442 15808428 1580848 15808428 15808428 15808428 15808428 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 15	
3784,918 3091,118 3091,118 3091,118 3091,118 3091,118 3091,118 4091,118	1644,1786 1854,4552 1865,1120 1876,1433 1887,9518 1887,3401 1711,7196	1946 398 14708428 14708428 14708428 14708428 14708428 14708428 14708442 14708442 14708442 14708442 14708442 15808428 1580848 15808428 15808428 15808428 15808428 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 15	
3784,918 3091,118 3091,118 3091,118 3091,118 3091,118 3091,118 4091,118	1644,1786 1854,4552 1865,1120 1876,1433 1887,9518 1887,3401 1711,7196	1946 398 14708428 14708428 14708428 14708428 14708428 14708428 14708442 14708442 14708442 14708442 14708442 15808428 1580848 15808428 15808428 15808428 15808428 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 15	
3784,918 3091,118 3091,118 3091,118 3091,118 3091,118 3091,118 4091,118	1844,1786 1854,4852 1869,1120 1874,1433 1867,9518 1877,3461 1771,9796 1774,4443 1737,8099 1774,1778 1776,4778 1776,1778 1776,7731 1867,6738	1946 398 14708428 14708428 14708428 14708428 14708428 14708428 14708442 14708442 14708442 14708442 14708442 15808428 1580848 15808428 15808428 15808428 15808428 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 15	
3784,918 3091,118 3091,118 3091,118 3091,118 3091,118 3091,118 4091,118	1844,1786 1854,4852 1869,1120 1874,1433 1867,9518 1877,3461 1771,9796 1774,4443 1737,8099 1774,1778 1776,4778 1776,1778 1776,7731 1867,6738	1946 398 14708428 14708428 14708428 14708428 14708428 14708428 14708442 14708442 14708442 14708442 14708442 15808428 1580848 15808428 15808428 15808428 15808428 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 15	
7794,918 3019,118 3019,118 3019,118 3019,118 3019,118 3019,118 401	1844,1786 1897,1432 1807,1433 1807,1433 1807,9518 1807,9518 1711,9786 1771,7886 1771,7886 1771,7886 1771,1776 1776,1778 1776,7721 1807,7277 1807,7271 1807,7271 1807,7271	1946 398 14708428 14708428 14708428 14708428 14708428 14708428 14708442 14708442 14708442 14708442 14708442 15808428 1580848 15808428 15808428 15808428 15808428 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 15	
7794,918 3019,118 3019,118 3019,118 3019,118 3019,118 3019,118 401	1844,1786 1897,1432 1807,1433 1807,1433 1807,9518 1807,9518 1711,9786 1771,7886 1771,7886 1771,7886 1771,1776 1776,1778 1776,7721 1807,7277 1807,7271 1807,7271 1807,7271	1946 398 14708428 14708428 14708428 14708428 14708428 14708428 14708442 14708442 14708442 14708442 14708442 15808428 1580848 15808428 15808428 15808428 15808428 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 15	
7794,918 3019,118 3019,118 3019,118 3019,118 3019,118 3019,118 401	1844,1786 1897,1432 1807,1433 1807,1433 1807,9518 1807,9518 1711,9786 1771,7886 1771,7886 1771,7886 1771,1776 1776,1778 1776,7721 1807,7277 1807,7271 1807,7271 1807,7271	1946 398 14708428 14708428 14708428 14708428 14708428 14708428 14708442 14708442 14708442 14708442 14708442 15808428 1580848 15808428 15808428 15808428 15808428 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 15	
7794,918 3019,118 3019,118 3019,118 3019,118 3019,118 3019,118 401	1844,1786 1897,1432 1807,1433 1807,1433 1807,9518 1807,9518 1711,9786 1771,7886 1771,7886 1771,7886 1771,1776 1776,1778 1776,7721 1807,7277 1807,7271 1807,7271 1807,7271	1946 398 14708428 14708428 14708428 14708428 14708428 14708428 14708442 14708442 14708442 14708442 14708442 15808428 1580848 15808428 15808428 15808428 15808428 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 15	
7794,918 3019,118 3019,118 3019,118 3019,118 3019,118 3019,118 401	1844,1786 1874,1487 1878,1431 1878,1431 1878,1431 1871,7816 1771,7816 1771,7817 1776,7771 1777,7771 1777,7771 1777,7771 1777,7771 1777,7771 1777,7771 1777,7771 1777,7771	1946 398 14708428 14708428 14708428 14708428 14708428 14708428 14708442 14708442 14708442 14708442 14708442 15808428 1580848 15808428 15808428 15808428 15808428 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 15	
3794,181 3091,180 3091,180 3091,180 3091,180 3091,180 3091,180 4014,180 419	1844,1786 1897,1433 1807,1433 1807,1433 1807,1433 1807,3918 1907,3918 1774,7818 1774,7818 1774,7818 1774,7818 1774,7818 1774,7818 1774,7818 1774,7818 1775,7818	1946 398 14708428 14708428 14708428 14708428 14708428 14708428 14708442 14708442 14708442 14708442 14708442 15808428 1580848 15808428 15808428 15808428 15808428 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 1580848 15	
3794,181 3091,180 3091,180 3091,180 3091,180 3091,180 3091,180 3091,180 409	1844,1786 1897,1433 1807,1433 1807,1433 1807,1433 1807,3918 1907,3918 1774,7818 1774,7818 1774,7818 1774,7818 1774,7818 1774,7818 1774,7818 1774,7818 1775,7818	1946 398 14708428 14708428 14708428 14708428 14708428 14708428 14708442 14708442 14708442 14708442 14708442 15808428 15808448 15808428 15808448 1580848 1580848 1580848 1580848 1580848 1580848	
3794,191 3091,190 3091,190 3091,190 3091,190 3091,190 3091,190 409	1844,1786 1897,1433 1807,1433 1807,1433 1807,1433 1807,3918 1907,3918 1774,7818 1774,7818 1774,7818 1774,7818 1774,7818 1774,7818 1774,7818 1774,7818 1775,7818	1946 398 14708428 14708428 14708428 14708428 14708428 14708428 14708442 14708442 14708442 14708442 14708442 15808428 15808448 15808428 15808448 1580848 1580848 1580848 1580848 1580848 1580848	
3794,918 3991,119 3991,119 3991,119 4991,129 499	1844,1786 1897,1433 1807,1433 1807,1433 1807,1433 1807,1433 1717,1807,1433 1717,1807,1717,1717,1717,1717,1717,1717,	1946 398 14708428 14708428 14708428 14708428 14708428 14708428 14708442 14708442 14708442 14708442 14708442 15808428 15808448 15808428 15808448 1580848 1580848 1580848 1580848 1580848 1580848	
7794,918 3091,110 3091,110 3091,110 3091,110 3091,110 3091,110 4014,110 401	1844,1786 1874,1487 1887,1433 1887,1433 1887,1433 1887,1433 1774,1848	1	

TIBLE OF VALUES OF EXTRAPOLATED POINTS

Table .3.

	HILLIAMS -	IS PRUGRAM#	ANGLES -30.000 DE	GKEF2	
	NUMBER:)472 sec/mile	COSH TOTAL TIME 5	:10
LIST	OF TURNING	PUINIS I.			SECONDS
	IUMBER	RANGE NM	DEPTH M	.00000000	3,4906
	1	2,8272	1169,9793	00000000	10,4720
	2	8,4816	4831,0207	00000000	1/,4533
	3	14,1361	1168,9793 4831,0207	00000000	24,4346
	4	19,7905	1168,9793	0000000	31,4100
	5	25,4449	4831,0207	0000000	36,39/3
	6	31,0993	1168,9793	00000000	42,3786
	7	36,7538	4831,0207	00000000	52,3599
	6	42,4082	1168,9793	00000000	5¥,3413
	9	48,0626 53,7170	4831,0207	00000000	60,3226
	10	59,3714	1168,9793	00004000	73,3039
	11	65.0258	4831,0207	_00000000	80,2852
	12	70,6802	1168,9793	00000000	8/,2665
	13 14	76,3347	4831.0207	,00000000	94,24/8
	15	81,9891	1168,9793	00000000	101,2292
	16	87,6435	4831,0207	00000000	108,2105
	17	93,2979	1168,9793	00000000	115,1918
	16	98,9523	4831,0207	,00000000	122,1731
	19	104.6067	1168,9793	00000000	124,1544
	20	110,2612	4831,0207	00000000	136,1358
	21	115,9156	1168,9793	,0000000	143,1171
	22	121,5700	4831,0207	00000000	150,0984
	23	127,2244	1168,9793	,00000000	15/.0797
	24	132,8788	4831.0207	,00000000	164,0611 171,0424
	25	138,5333	1168,9793	00000000	178,0237
	26	144,1877	4831,0207	0000000	185,0050
	27	149,8421	1168,9793	, Q U Q Q U U B Q	191,9864
	28	155,4965	4831,0207	00000000	198,96/7
	29	161,1509	1168,9793	0000000	205,9490
	30	166,8053	4831,6207	0000000	212,9303
	31	172,4597	1168,9793	. 0 0 0 0 0 0 0	214,9116
	32	178,1141	4831,0207	,0000000	226,8929
	33	183,7685	1168,9793	00000000	235,8742
	34	189,4229	4831,0207	00000000	240,8556
	35	195.0778	1168,9793 4831,0207	0000000	24/,8369
	36	200.7317	· · · · · · · · · · · · · · · · · · ·	0000000	254,8182
	37	206,3862	4831,0207	0000000	261,7995
	38	212,0406 217,6950	1166,9793	0 0 0 0 0 0 0	260,7808
	39	223,3494	40-4 6069	00000000	275,7621
	40	229,0038		00000000	282,7435
	41 42	234,6582		, D U D D U U D D	289,7248
	43	240,3126		,00000000	296,7061
	44	245,9671	4831,0207	0000000	303,68/4
	45	251 621	1168,9793	00000000	310,6687
	46	257,2759	4631,0207	00000000	317,6500
	47	262,9303	1168,9793	0000000	324,6314
	48	268,584	4831,0207	,00000000	331,6127
	49	274,239	1168,9793	00000000	338,5940 342,5793
	50	279,893!	5 4931,0207	0,000,000	352,5566
	51	285,547	1168,9793	00000000	354,53/9
	52	291,202	3 4831,0207	00000000	360,5142
	53	296,856	1165,9793	00000000	
	LE DEG==30,	DOD EPSILON	.5000 DELTA= 25	O MIN DELTABLO	SIN TEST# ,10

Table 5.3.2.1

HAY TRACE ANALYSIS PHUGRAMS R D MININGHAM = {A+261+U1} MAY NUMBERS 2 INITIAL ANGLES -30,000 DEGREES COSH

LIST OF TURNIA	MOINTS 0.5574	sec/mile	TOTAL TIME	2:45
MARFK	MANUE NM	บยะได เล	SINE	SEUDNOS
1	4,8273	1169,9793	, មេខេធ្នាមេ 0.0	3,4906
ž	0.4915	4831,0207	, u u u n u u n u	<u>1</u> 0,4/18
Ĵ	14.1362	1168,9793	. 00000000	1/,4534
4	14.7905	4831,0207	. u t e o u u o o	24,4345
5	25,4452	1169,9793	. 0 0 0 0 0 0 0 0	31,4161
6	31.0994	4531,0207	. 01 000000	30.39/3
7	36.7541	1169,9796	. 01 00 0 00 0	42,3768
8	44,4084	4031,0207	, a c a a u u o o	52,3600
9	40,0629	1169,9796	, <u>0 </u>	57,3415
10	53,7173	4831,0207	, a i a a a a a a a	66,3228
11	54,3717	1169,9795	. 0.000000	73,3041
12	67,0762	4631,0207	, 0 0 0 0 0 0 0	80,2855
13	70,5806	1164,9795	,00000000	87,2668
14	70,3351	4831,0207	, 00000000	94,2482
15	81,9894	1169,9794	, 01 000 000	101,2244
16	87.6440	4831,0207	. 01.000100	100,2109
1.7	93,2962	1169,9794	.00000000	112,1921 122,1737
18	98,9529	4831.0207	, 00 0 n u 0 n u	127,1548
19	104,6072	1169,9794	. 00 00 00 00	130.1305
20	110,2619	4831,0207	, 00,000,00	143,11/6
21	115,9161	1169,9794	. 0. 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	150,0992
22	121,5708	4831,0207	. 00000000	15/.0803
23	12/,2250	1169,9793 4831,0207	. U L O O U U O O	164.0619
24	134,8797 134,5339	1164,9793	0000000	171.0431
25	144,1886	4831.0207	. 01 000 000	175.0247
26 27	149,8439	1168,9793	. 0 0 0 0 0 0 0	185,0058
28	155,4975	4831,0204	. 0 0 0 0 0 0 0	191,98/4
29	161,1518	1169,9793	. 40000000	190,9686
30	166,8064	4631,0204	. 00000000	200,9501
31	172,4507	1164,9793	. 860 00 0000	214,9313
32	178,1152	4831,0205	. 00000000	217,9127
33	183,7696	1169,9793	. 80 0 0 0 0 0 0 0	226,8940
34	189,4240	4831.0205	. 0 0 0 0 0 0 0	233,8753
35	190.0789	1168,9793	, 0 0 0 0 0 0 0 0	240.8567
36	200,7328	4831,0206	.00000000	247.8379
37	206,3874	1168,9793	.0000000	254.8144
38	212.0416	4831,0206	. 0 0 0 0 0 0 0	261,8006
39	21/,6963	1168,9793	. 0 0 0 0 0 0 0 0	260,7822 275,7633
40	223,3505	4831,0206	.0000000	284,7449
41	229,0052	1168,9793	.00000000	284.7261
42	234,6595	4831,0206	, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	290,70/7
43	240,3141	1169,9793	.00100000	303,6888
44	247,9684	4831,0206 1168,9793	. 0 t 0 0 t u 0 0	310,6704
45	251,6230 257,2773	4631.0207	, 00000000	31/,6515
46 47	262,9320	1168,9793	, 00000000	324,6331
48	264,5862	4831,0207	.00000000	331,6143
49	274,2408	1168,9796	. 0 0 0 0 0 0 0	330.5958
50	274,8951	4831,0207	0 0 0 0 0 0 0 0	347,57/0
51	285,5497	1168,9796	, 0 0 0 0 0 0 0	354,5505
52	291,2040	4831,0207	, 0 0 0 0 0 0 0	354,5347
53	296,8585	1169,9795	, 0000000	360,5211

ANGLE DEG==30.000 EPSILON= .5000 DELTA= 500 MIN DELTA=100 SIN TEST= .100

Table 5.3, 2.2

HAY TRACE ANALYS	A "MARDUHA 218 ia Jailini - č		
LIST OF TURNING	POINTS 0.3209	sec/mile	TOTAL TIME 1:3
NUMBER	RANGE NM	M HT94()	5 [Nt

151 OF	TURNIAG	CINIOS	0.3209	sec/mi	le	7	TAT AL	TIME	1:35	
NUME	IER	RANGE	NM	1940	н м		SINE		S	EUUNDS
	1	۱, ۵	8271	1164.	9876	. (10000	000		3,4896
	2	ان ا	4818	4831.	0120	. (70001	000	:	10,4712
	3	14	1364	1168.	9884	. 1	10000	υου	:	1/.4529
	4		7911	4831			JUDBU	UpO		24.4345
	5		4461	1169.		•	ט ח טֿ לינ			31,4106
	6		1011	4831		-	10000			38,3986
	7		7561	1168		•	0000			45.3807
	, 8					•	10001			54.3627
			4112	4431			10001			54,3447
	9		0661	1169.		•				60,3206
	10		7210	4831.		-)			73,3085
	11		3759	1169.		-	Jiggu			•
	12		0307	4831.		•	00000			80,2904
	13	70.	6A55	1168,		•	orogi			87,2722
	14	76.	3402	4831 i	0506	•	00001			94,2549
	15	81.	9949	1169,		•	00000			01,2356
	16	87,	649H	4831.	0207	, 1	0 6 0 0 0	n 0 0	1	06.21/6
	17	93,	3048	1169,	9793	• 1	U	U 0 0	1	12,1996
	18		9598	4831:	0207	•	u t t a u	000	1	24,1816
	19	104		1169.	9793		0 ti (i () ti	U 0 0	1	27,1636
	20	110.		4031			ubuau	Ugo	1	30,1476
	21	115.		1169			υυυου	UnD	1	43,12/6
	22	··· · · · ·	5797	4831		•	otopu		1	50.1096
	23		2346	1108		•	00000	* _		5/,0915
	24		8895	4831		•	00000			64,0735
	25		5444	1169			00000			71,0505
			1994	4831		•	00000			70,03/4
	26				-		00000			85,0193
	27		8543	1168		-	00000			92,0013
	28		5092		0207		00000			90,9832
	29		1641		9793					07,9671
	30		8189		.0207		00000		_	12,94/0
	31		4738		,9793		00000			14,9289
	32		1287		,0207		00000			
	33		7835		,9793	•	00000	-		26,9108
	34		4384		,0207	•	00000	-		33,8927
	35		0933		9793		00000			40,8746
	36	200,	7482		,0207	•	00000			47,8565
	37	200,	4031	116A	9793	•	00000			54,8385
	38	212.	0579	4831	0207	•	00000			61,8204
	39	21/.	7128	1168	9793		00000	-		66,8023
	40	225,	3677	4831	,0207	ı	00001	1000		75,7842
	41	224,	0226	1168	, 9793		00000	1000		82,7661
	42		6774	4831	,0207		00000	1000	2	84.7480
	43	240.	3323	1168	9793	•	00001	100	2	96,7299
	44		9872	4831	0207		00000	000	3	103,7118
	45		6420	1169	,9793		uunat	1000	3	110,6937
	46		2969		0207		00000	1000	3	11,6756
	47		9518		9793	·	00000	1000	3	124,65/5
	48		6067		0207		00000	000	3	31,6344
	49		2615		9793	-	00000			35,6213
	50		9164		0207	•	00000	*	_	42,6031
	51		5713		9793	•	00000			56,5850
	52		2261		0207	•	00000			554,5669
	53		8810	-	9793	•	0000			60.5488
	,,	1. 70		* * U !!	, . ,	•			•	

ANGLE DEG == 30.000 EPSILON = ,5000 DELTA = 1000 MIN DELTA = 100 SIN TEST = ,100

LIST OF TURNING	POINTS 0. 2533	sec/mile	TOTAL TIME	1:15
NUMBER	RANGE NM	DEPIH M	bint	SECONDS
1	2,8258	1165,9950	. u u c o u u p o	ş, 48 > 0
ž	8,4827	4831,0205	, 0 U Q Q U U Q Q	10,4694
Ĵ	14,1410	1168,9793	. 00000000	1/,4545
, i	19,7941	4831,0133	. 0 0 0 0 0 0 0 0	24,43>>
5	25,4493	116A,9958	. 0 0 0 0 0 0 0	31,41/6
6	31,1038	4831,0086	. 00000000	\$6.3940
7	36,7613	1164.9795	, 0 0 0 0 0 0 0	45,3838
ė	42,4191	4831,0206	. 0 0 0 0 0 0 0	52,3684
ğ	40,0715	1169,0285	• 0 0 0 0 0 0 0	54,34/6
10	53,7251	4830,9637	. 0 0 0 0 0 0 0	60,3261
îi	59,3787	1169,0301	. 0 0 0 0 0 0 0	75.3008
12	65,0362	4831,0225	. 0 0 0 0 0 0 0	80,2896
13	70,6933	1168,9780	. 0 u Q Q u u g Q	8/,2723
14	76,3487	4831,0212	• 0 0 0 0 0 0 0	94,2539
15	82.0028	1165,9853	. u u u o u u o o	101,2300
16	87,6626	4831,0213	, 0 U U O U U O O	100,2211
17	93,3148	1168,9934	. 0 0 0 0 0 0 0	117,1984
18	98,9701	4831,0075	. 0 0 0 0 0 0 0	122,1787
19	104,6254	1164,9963	. 00000000	124,1611
20	110,2825	4831,0208	, a 6 6 6 9 9 6 9	130,1474
21	117,9366	1168,9905	. 0 0 0 0 0 0 0	145,1269
22	121,5954	4831,0212	0000000	150,1127
23	12/,2534	1168,9782	. u u o o u u o o	15/,0967
24	132,9069	4831,0141	. u u o o u u o o o	164,0786
25	138,5619	1168,9890	, U U Q Q U U Q Q	171,0605
26	144,2191	4831,0205	, U G G G U U G G	170,0451
27	149,8780	1168,9789	, 0 0 0 0 0 0 0	185,0304
28	15>,5302	4831,0071	• 0 0 0 0 0 0 0 0	192,00/7
29	161,1853	1168,9932	• 0 u o o u u o o	190,9800
30	160,8455	4831,0224	. 0 0 0 0 0 0 0	202,9737
31	172,4982	1168,9977	.0000000	214,9525
32	178,1527	4831,0081	, 0 0 0 0 0 0 0	214,9341
33	183,8083	1169,0320	,0000000	226,9163
34	189,4661	4831,0212	,0000000	233,9013
35	195,1242	1168,9779	,00004000	240,8854
36	200,7814	4831,0222	,0000000	24/,86/9
37	206,4342	1168,9865	.00000000	254,84/3
38	212,0899	4831,0134	,00000000	261,8249
39	217,7466	1168,9847	00000000	265,8143
40	223,4035	4831,0210	.00000000	275,7987
41	224,0609	1168,9789	.00000000	282,7833
42	234,7148	4830,9678	00000000	289,7629
43	240,3713	1168,9791	.0000000	290,7469
44	240,0280	4831,0208	. 0 0 0 0 0 0 0 0	303,7310 310,7102
45	251,6817	1168,9931	00000000	
46	257,3368	4830,9699	00000000	31/,6902 324,6719
47	262,9932	1169,9792	00000000	331,6539
48	268,6492	4831,0215	00000000	330,6337
49	274,3019	1169,0301	,05000000	345,6165
50	279,9593	4831,0224	,000,000,00	352,5985
51	289.6151	1168,9786	,00000000	354,57/0
52	291,2682	4831,0037	,00000000	360,5617
53	296,9258	1168,9791	, 50000000	00012047

ANGLE DEG==30,000 EP\$1LON= ,5000 DELTA=2000 MIN DELTA=100 SIN TEST= ,100

RAY TRACE ANALYSIS PROGRAMS & D MININGHAM = [A=201-01]
HAY NUMBER# 5 INITIAL ARGUE= -30,000 DEGREES

COSH

LIST OF TURNING	POINTS 0.2693	sec/mile	TOTAL TIME 1:20)
NUMBER	PANGE NM	UEPTH M	SINE	SELONDS
1	4,8231	1169,0449	0000000	3,4845
2	6,4759	4830,9707	. 0 . 0 0 0 0 0 0	10,4601
3	14,1428	1168,9785	, 860,000,00	1/,4533
4	19,7941	4831.0120	. 0 6 0 0 0 0 0 0	24,4302
5	27,4493	1169,1772	, 0 ((0 0 0 0 0	31,4112
6	31,1136	4831.0235	, U L D O U U O O	30,3992
7	36,7623	1169,0400	, 0 0 0 0 0 0 0 0	42,3741
8	42,4152	4830,9674	, 0 0 0 0 0 0 0 0	54,3510
9	44,0838	1168,9769	, u u o o u u o o	54,3448
10	53,7479	4831,0243	, 0 0 0 0 0 0 0 0	60,32/6
11	59,3971	1168,9963	,0000000	73,3027
12	65,0659	4831,0236	.0000000	80,2952
13	70.7306	1168,9734	, 0 0 0 0 0 0 0 0	8/,2816
14	76.3819	4831,0109	, 0 0 0 0 0 0 0 0	94,2591
15 16	82,0501 87,7101	1168,9753	,00000000	101,2507
17	• -	4831,0256	, 0 6 6 0 0 0 0 0	108,2392
18	93,3564 99,0259	1169,0506	, 5 (0 0 0 0 0 0	117,2144
19	104,6736	4831,0212 1169,0385	, 50000000	124,2041
ŽÓ	110,3414	4831,0223	. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	129,1780
21	116,0034	1168,9785	. U U Q Q U U D Q	130,1704 143,1598
52	121,6527	4830,9421	,00000000	150,13>3
23	127.3162	1169,9776	00000000	15/,1253
24	132,9714	4831.0167	. 0 0 0 0 0 0 0	164,1049
25	138,6373	1169,9790	0000000	171,0937
26	144,3018	4631.0282	. 0 0 0 0 0 0 0	175.0796
27	144.9506	1169,1448	. 0 0 0 0 0 0 0	182,0557
28	155,5974	4830,8590	, ם ט פ ט ט פ פ	192,0290
29	161,2462	1163,9876	,00000000	197,0010
30	160,8985	4830,8613	,0000000	205,9786
31	172,5468	1168,9915	, 0000000	212,9506
32 33	178,2060	4831,0227	,00000000	219,9356
34	183,8564	1169,0597	, 0 0 0 0 0 0 0 0	226,9122
35	189,5215 195,1844	4831,0221 1168,9779	,00000000	233,9021
36	200,8342	4831.0077	. 0 1 0 0 0 0 0 0 . 0 1 0 0 0 0 0 0	240,8913 247,8679
37	206,4899	1168,9882	. 0 0 0 0 0 0 0	254,84/7
38	212,1436	4831,0030	,00000000	261,8263
39	21/.8108	1168,9785	00000000	260,8147
40	225,4742	4831.0220	. 0 0 0 0 0 0 0 0	277,8094
41	229,1301	1168,9786	00000000	284,7946
42	234,7935	4831,0220	00000000	284,7823
43	240,4444	1168,9881	. 0 0 0 0 0 0 0 0	296,7589
44	240.0968	4830,9504	. 0 6 0 0 0 0 0 0	303,7365
45	251,7574	1168,9761	, n n o o n n o o	310,7197
46	257,4090	4830,8335	,00000000	31/,69/3
47	263,0653	1168,9832	,0000000	324,67/7
48	268,7321	4831,0258	,00000000	331,6655
49 50	274,3825	1169,1649	00000000	335,6434
51	280,0486 285,7074	4831,0239	,00000000	345,6309
52	291,3712	1168,9775 4831,0244	. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	352,6138
53	297,0244	1168,9840	,00000000	359,6021 360,5807
•	# 6. 1 A K	*******	10-004404	00012007

AMGLE DEGS-30.000 EPSILON* .5000 DELTA:3000 MIN DELTA:100 SIN TEST: .100

			COSH	
LIST OF TURNING	POINTS 0.5574	sec/mile	TOTAL TIME 2:	45
NUMBER	RANGE NM	DEPIH M	SINE	SECONDS
1	2,8272	1169,9793	. 0 0 0 0 0 0 0 0	3,4904
2	6,4817	4831,0207	. 0 6 0 0 0 0 0 0	10,4720
3	14,1362	1168,9793	• 0 0 0 0 0 0 0	1/,4536
4	19,7908	4831,0207	, 0 0 0 0 0 0 0	24,4371
5	22,4453	1169,9793	, 0 t 0 0 t 0 0 0	31,4107
6	31,0997	4831,0207	. 0 . 0 0 0 0 0 0	36,3982
7	36,7543	1169,9793	. 0 6 6 9 9 9 6 9	45,3798
8	42,4088	4831,0207	. 0 0 0 0 0 0 0	54,3614
9	48,0634	1168,9793	, 0 0 0 0 0 0 0	54,3429
10	53,7179	4831,0206	, 0 0 0 0 0 0 0	60,3245
11	59,3724	1164,9793	, 00000000	73,3060
12	65,0269	4831,0207	, 0 0 0 0 0 0 0 0	84,28/6
13	70,6814	1168,9793	, 00000000	8/,2692
14	76,3360	4831,0207	,0000000	94,2508
15	H1,9905	1168,9793	,00000000	101,2323
16	87.6450	4831,0207	, 0 0 0 0 0 0 0 0	105,2139
17	93,2995	1164,9793	, 0 0 0 0 0 0 0	112,1954
18	98,9541	4831.0207	,00000000	124,17/0
19	104,6086	1164,9793	,00000000	127,1586
20	110,2631	4831,0206	, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	143,1217
21	117,91/6	1168,9793	. 0 0 0 0 0 0 0	150.1033
22	121,5722	4831,0207	. 00000000	15/,0848
23	12/,2267	1168,9793	. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	164,0604
24	132,8813	4831,0207 1168,9794	0 0 0 0 0 0 0	171,0480
25	138,5357	4831,0207	. 0 0 0 0 0 0 0	170,0295
26 27	144,1902 149,8448	1168,9793	. 0.000000	185,0111
28	155,4993	4831,0207	. 0 . 0 0 0 0 0 0	191,9927
29	161,1539	1164,9793	0000000	190,9742
30	166,8053	4831,0206	. 00000000	207,9578
31	172,4628	1168,9793	. 00000000	212,93/3
32	170,1174	4831,0207	. 0000000	217,9189
33	183,7719	1168,9793	. 0 0 0 0 0 0 0	225,9005
34	187,4265	4831,0207	. 0000000	233,8821
35	195,0809	1168,9794	. 0 0 0 0 0 0 0 0	240,8636
36	200,7354	4831,0207	,0000000	24/,8471
37	206,3900	1168,9793	. 0 0 0 0 0 0 0	254,8247
38	212,0445	4831,0207	• 0000000	261,8043
39	21/,6991	1168,9793	. 00000000	260,7849
40	223,3536	4831.0206	0000000	275,7714
41	229,0080	1168,9793	.0000000	284,7530
42	234,6626	4831,0207	.00000000	289.7345
43	240,3171	1168,9793	. 00000000	296,7161
44	245,9717	4831,0207	.0000000	303,69/7
45	251,6262	1165,9794	.00000000	310,6792
46	25/,2806	4831,0207	00000000	317,6608
47	262,9352	1168,9793	00000000	324,6424
48	268,5897	4831,0207	.00000000	331,6239
49	274,2443	1168,9793	. 0.000000	330,6055
50	279,8988	4831,0206	.00000000	342,58/1 352,5686
51	285,5533	1168.9793	. 00000000	357,5502
52	291,2078	4831,0207	.00000000	360,5317
53	290,8623	1168,9793	122004004	VV- V V H /

ANGLE DEG=-30,000 EPSILON= ,5000 DELTA=1000 MIN DELTA=100 SIN TEST= ,020

MAY NUMBER 7 INITIAL ANGLE # #30,000 DEGREES

	***************************************	71.455 0001000 DE	COSH.	
LIST OF TURNING	POINTS 0.	3547 sec/mile	TOTAL TIME	1:45
NUMBER	BANGE NW	Depth m	SINE	SECONDS
1	2,8271	1169,9793	. 0 0 0 0 0 0 0	3,4900
2	8,4819	4831,0202		
3	14,1370	1168.9798	.00000000	14,4729
4	19.7923	•	,00000000	1/,4506
5	25.4475	4831,0202	,00000000	24,4404
6	31,1027	1169,9798	, 0 0 0 0 0 0 0 0	31,4242
7	36,7579	4531.0202	.0000000	30,4000
8	42,4131	1168,9798	.00000000	42,3918
ğ		4831,0202	. 0 0 0 0 0 0 0 0	54,3756
10	48,0683 53,7236	1168,9798	.00000000	54,3545
ii	59.3788	4631.0202	.00000000	60,3433
12	65,0340	1168,9798	,00000000	73,32/1
13	70,6892	4831,0202	,0000000	80,3109
14	76,3444	1168,9798	,0000000	8/,2947
15		4831,0202	,00000000	94,2785
16	81,9997	1168,9798	,00000000	101,2623
17	87,6549	4831,0202	,00000000	100,2462
18	93.3101 98.9653	1168,9798	,00000000	112,2300
19		4831,0202	,00000000	122,2138
20	104,6205	1168,9798	.0000000	127,19/6
21	110,2758 115,9310	4831.0202	,00000000	130,1814
22		1168.9798	, 0 L 0 0 0 0 0 0	143,1652
23	121,5862 127,2414	4831,0202	,00000000	150,1490
24		1165,9798	,00000000	15/,1328
25	132,8966	4831,0202	,00000000	164,1167
26	136,5518	1168,9798	,00000000	171,1005
27	144,2071 149,8623	4831,0202	,00000000	175,0843
28	155.5175	1169,9798	,00000000	187,0681
29		4831,0202	,00000000	194,0519
30	161,1727	1168,9798	, 00000000	197,0357
31	160,8279	4831,0202	,00000000	200,0195
32	172,4831	1168,9798	,00000000	213,0033
33	178,1384	4831,0202	,00000000	217,98/1
34	183,7936	1168,9798	,00000000	220,9710
35	189,4488	4831,0202	,00000000	233,9548
36	195,1040	1168,9798	.00000000	240,9386
37	200,7592	4831,0202	.0000000	24/,9224
38	206,4144	1168,9798	,00000000	254,9062
39	212,0697	4831,0202	,00000000	261,8900
40	217,7249	1168,9798	,00000000	268,8738
41	223,3801	4831,0202	,0000000	272,85/6
42	229.0353	1168,9798	,00000000	284,8414
43	234,6905	4831,0202	,0000000	287,8252
44	240,3457	1168,9798	.0000000	290,8091
45	240,0010	4831,0202	.0000000	303,7929
44	251,6562	1168,9798	,0000000	310,7767
47	257,3114	4831,0202	.00000000	31/,7605
48	262,9666	1168,9798	.00000000	324,7443
49	268,6218	4831,0202	,00000000	331,7281
50	274,2770	1168,9798	,00000000	330,7119
51	279,9323	4831,0202	,00000000	342,6957
52	285,5875	1168,9798	,00000000	354,6745
53	291,2427 296,8979	4831,0202	.00000000	359,6633
70	270,09/9	1168,9798	,00000000	360,64/1

ANGLE DEG==30,000 EPSILON= ,5000 DELTA=3000 MIN DELTA=100 SIN TEST= .020

Table 5.3,2.7

HAY TRACE ANALYSIS	PRUGRAM.	R D MININGHAM - (A-201-01)	
HAY NUMBER = 6	INITIAL	ANGLE -30,000 DEGREES	COS

LIST OF TURNING	POINTS 0.3547	sec/mile	TOTAL TIME	.:45
NUMBER	RANGE NM	DEPTH M	SINE	SECONDS
1	2,8271	1169,9876	, υυόσυυο Θ	\$,48¥6
Ž	8,4818	4831,0120	. 0 0 0 0 0 0 0	10,4712
3	14,1364	1168,9884	. 0 0 0 0 0 0 0	1/,4529
4	19,7911	4831,0113	00000000	24,4345
5	27,4461	1164,9793	. 0 0 0 0 0 0 0	31,4106
6	31,1011	4831,0207	. 0 0 0 0 0 0 0	36,3986
7	36,7561	1168,9793	, n n o o n n o o	45,3847
å	42,4112	4831,0206	. 0 0 0 0 0 0 0	54,3627
ğ	48,0661	1168,9794	. 0 0 0 0 0 0 0	59 ₁ 3447
10	53,7210	4831,0206	0000000	60,3266
îi	59,3759	1168,9794	. 0 U Q Q U D Q Q	75,3045
12	65,0307	4831,0206	. 0 0 0 0 0 0 0	80,2904
13	70,6855	1168,9794	, 0000000	8/,2722
14	76,3402	4831,0206	. 0 0 0 0 0 0 0	94,2539
15	81,9949	1168,9794	0000000	101,23>6
16	87,6498	4831.0207	, 0 0 0 0 0 0 0	100,21/6
17	93,3048	1168,9793	0000000	117,1996
16	96,9598	4831,0207	. 0 0 0 0 0 0 0	122,1816
19	104.6148	1168,9793	, u u p u u p o	124,1636
20	110,2697	4831,0207	,000,000,0	130,1496
21	115,9247	1168,9793	00000000	143,1276
22	121,5797	4831,0207	, 0 0 0 0 0 0 0	150,1096
23	127,2346	1168,9793	. 0 0 0 0 0 0 0	15/,0915
24	132,8895	4831,0207	00004000	164,0745
25	138,5444	1168,9793	0000000	171,0555
26	144,1994	4831,0207	.00000000	178,03/4
27	144,8543	1168,9793	00004000	187.0173
28	155,5092	4831,0207	0000000	194,0013
29	161,1641	1165,9793	00000000	190,9832
30	160,8189	4831,0207	,00000000	207,9671
31	172,4738	1168,9793	. 0 0 0 0 0 0 0	212,94/0
32	178,1287	4831,0207	, 0 0 0 0 0 0 0	214,9269
33	185,7835	1168,9793	.0000000	220,9108
34	189,4384	4831,0207	. 0 U O O O O O	233,8927
35	195,0933	1165,9793	, 0 0 0 0 0 0 0 0	240,8746
36	200,7482	4831,0207	,0000000	24/,8565
37	206,4031	1168,9793	, 0000000	254,8385
36	212,0579	4831,0207	.00000000	261,8204
39	217,7128	1168,9793	.0000000	566,8053
40	223,3677	4831,0207	.00000000	275,7842
41	229,0226	1168,9793	00000000	282,7661
42	234,6774	4831,0207	, 0000000	289,7480
43	240,3323	1168,9793	,0000000	290,7299
44	245,9872	4831,0207	0000000	303,7118
45	251,6420	1168,9793	,00000000	310,6937
46	257,2969	4831,0207	, 00000000	31/,6756
47	262,9518	1168,9793	,0000000	324,65/5
48	268.6067	4831,0207	,0000000	331,6394
49	274,2615	1168,9793	,0000000	338,6213
50	279,9164	4831,0207	,0000000	342,6031
51	285,5713	1168,9793	,0000000	352,5850
52	291,2261	4831,0207	,00000000	357,5669
53	296,8810	1168,9793	,0000000	360,5488

ANGLE DEG==30,000 EPS[LON=2,0000 DELTA=1000 MIN DELTA=100 SIN TEST= .100

Table 5.3.2.8

RAY TRACE ANALYSIS PHUGRAM+ R D MININGHAM - [A-201-01] INITIAL ANGLE .30,000 DEGREES

	COUL			
TO OTT AT	TIME 2.45	:		

COSH

			COSH	
LIST OF TURNING	POINTS 0.5574	sec/mile	TOTAL TIME 2:4	5
40mBER	PANGE NM	M HTqg()	SINE	SECONDS
1	2,8272	1168,9793	.0000000	3,4904
			00000000	10,4720
Š	8,4817	4831,0207		
3	14,1362	1169,9793	.0000000	1/,4536
4	19,7908	4831,0207	,0000000	24,4351
5	25,4453	1168,9793	. 0000000	31,4167
6	31,0997	4831,0207	. 0,00,00	30,3982
7	30,7543	1168,9793	.0000000	45,3790
8	42,4088	4831,0207	. 00000000	52,3614
9	48,0634	1169,9793	. 0 0 0 0 0 0 0	54,3429
10	55,7179	4831,0206	_ UUD OUU D O	60,3245
11	59,3724	1168,9793	. 0 0 0 0 0 0 0	73,3000
12	65,0269	4831,0207	.0000000	80,28/6
13	70,6814	1168,9793	. 0000000	8/,2692
14	76,3360	4831,0207	0000000	94,2508
15	81,9905	1168,9793	. 0000000	101,2323
		4831.0207	. 0 0 0 0 0 0 0	108,2139
16	8/,6450		00000000	112,1954
17	93,2995	1164,9793		124,17/0
16	98,9541	4831,0207	.00000000	
19	104,6086	1169,9793	.00000000	127,1586
20	110,2631	4831,0206	. 00 0 0 0 0 0	130,1402
21	115,9176	1168,9793	.00000000	143,1217
22	121,5722	4831,0207	.00000000	150,1033
23	127,2267	1168,9793	.0000000	15/,0848
24	132,8813	4831,0207	,0000000	164.0664
25	130,5357	1168.9794	.0000000	171,0480
26	144,1902	4831,0207	• 00 0 0 0 0 0	170,0295
27	149,8448	1168.9793	, 0000000	187,0111
28	155,4993	4831,0207	. 0000000	191,9927
29	161,1539	1168,9793	, 00 0 0 0 0 0 0	198,9742
30	166,8083	4831,0206	. 0000000	202,9528
31	172,4628	1169,9793	. 0 0 0 0 0 0 0	214,93/3
32	178,1174	4831,0207	, uu o o u u o o	217,9189
33	185,7719	1168,9793	. 0 0 0 0 0 0 0	226,9005
34	189,4265	4831,0207	• 0000000	230,8821
35	195.0809	1168,9794	. 80000000	244,8636
36	200,7354	4631,0207	. 0000000	24/,8451
37	206,3900	1168,9793	0000000	254,8207
38	212,0445	4831,0207	00000000	261,8083
39	217,6991	1168,9793	. 0000000	260,7899
40	223,3536	4831,0206	UUOOUUDO	275,7714
41	229,0080	1168,9793	00000000	284,7530
42	234,6626	4831,0207	00000000	287,7345
43	240,3171	1165,9793	00000000	295,7161
44		4831,0207	0000000	303,69/7
45	245,9717		0000000	310,6792
	251,6262 257,2804	1168,9794 4831,0207	0000000	31/,6608
46 47	25/,2806 262 0352		90000000	324,6424
	262,9352	1168,9793	0000000	331,6249
48	260,5897	4831,0207	.0000000	330,60>5
49	274,2443	1168,9793		342,58/1
50	279,8988	4831,0206	• 0 0 0 0 0 0 0 0	
51	285,5533	1168,9793	.0000000	354,5686
52	291,2078	4831.0207	.0000000	359,5502
53	290,8623	1168,9793	,0000000	360,5317

ANGLE DEG==30,000 EPSILON=2,0000 DELTA=1000 HIN DELTA=100 SIN TEST= .020

Table 5.3.2.9

RAY TRACE ANALYSIS PRUGRAM» R D MININGHAM = [A=2U1=U1]
RAY NUMBER# 10 INITIAL ANGLE# -30,000 DEGREES

TAT HUNDERS	TO INSTUAL AN	GCE# -20.000	DEGREES	
LIST OF TURNS NO	A01192 A 1854		COSH	
LIST OF TURNING	POINTS 0.1851	sac/mile	TOTAL TIME O	: >>
ALLEM DE LA				
NUMBER	RANGE NM	DEPTH M	SINE	SECONDS
1	2,8349	1168.9743	" ចំពុច្ចិត្ត ប្រកួ	3,4906
3	d,4998	4831,0257	,00000000	10,4835
3	14,1648	1169,9743	.0000000	1/,4704
4	19,8297	4831,0257	.0000000	24,4693
5	25,4947	1168,9743	.00000000	31,4622
6	31,1596	4831,0257	.0000000	30,4551
7	36,8245	1168,9743	.00000000	45,4480
8	42,4895	4831,0257	.00000000	54,4409
9	48,1544	1168,9743	.00000000	57,4338
10	55,8194	4831.0257	. 0 0 0 0 0 0 0	60,4267
11	59,4843	1168,9743	. 00000000	75,4196
12	65,1493	4831,0257	.00000000	80,4125
13	70,8142	1168,9743	.00000000	8/,40>4
14	76,4791	4831,0257	00000000	94,3983
15	82,1441	1168,9743	,00000000	101,3912
16				
17	87,8090	4831,0257	.00000050	105,3841
T _	93,4740	1168,9743	,00000000	117,37/0
18	99,1389	4831,0257	.00000000	122,3699
19	104,8039	1168.9743	.00000000	127,3628
20	110,4688	4831,0257	,0000000	130,3557
21	110,1337	1168,9743	.0000000	143,3486
22	121,7087	4831,0257	,0000000	150,3415
23	127.4636	1168,9743	.00000000	15/,3344
24	133,1286	4831.0257	.0000000	164,32/3
25	138,7935	1168,9743	.00000000	171,3202
26	144,4584	4831,0257	,00000000	178,3131
27	150,1234	1168,9743	.00000000	185,3060
28	155,7883	4831,0257	,0000000	192,2989
29	161,4533	1168,9743	,00000000	197,2918
30	16/,1182	4831.0257	.00000000	206,2847
31	172,7832	1168,9743	,00000000	213,27/6
32	178,4481	4631,0257	.00000000	220,2705
33	184,1130	1168,9743	,0000000	22/,2654
34	189.7780	4831,0257	.0000000	234,2563
35	195,4429	1168,9743	. 0000000	241,2492
36	201,1079	4831,0257	, 00 00 0000	245,2421
37	206.7728	1168,9743	, 00 00 000	257,2370
38	212,4377	4831,0257	.0000000	264,22/9
39	218,1027	1168,9743	.000004000	267,2208
40	223,7676	4831,0257	.60000000	276,2157
41	229,4326	1169.9743	• 00000000	283,2006
42	235,0975	4831,0257	, 80 0 00000	290,1995
43	240.7624	1168,9743	. 0000 0 000	29/,1924
44	246,4274	4831,0257	,0000000	304,18>3
45	252,0923	1168,9743	. 0 0 0 0 0 0 0	311,1782
46	25/,7573	4831,0257	. 0000000	310,1711
47	265,4222	1168,9743	.000000	325,1640
48	269,0872	4831,0257	0000000	334,1569
49	274,7521	1168,9743	. 00000000	337,1478
50	280,4170	4831.0257	0000000	346,1427
51	286,0820	1168,9743	0000000	350, 13>6
52	291,7469	4831,0257	0000000	360,1205
53	297,4119	1168,9743	0000000	36/,1214
			•	·

ANGLE DEG--30,000 EPSILON=2,0000 DELTA=3000 MIN DELTA=100 SIN TEST= .100

RAY TRACE ANALYSIS PRUGRAM» R D MININGHAM - (A-201+U1)
RAY NUMBER* 11 INITIAL ANGLE* -30,000 DEGREES

		,	COSH	
LIST OF TURNING	POINTS 0.3209	sec/mile		1:35
NUMBER	RANGE NM	DEPTH M	SINE	SECONDS
1	2,8271	1168,9793	.00000000	3.4900
2	6,4819	4831,0202	.00000000	10,4729
3	14,1370	1169,9798	, 0 0 0 0 0 0 0	1/,4506
, i	19,7923	4631,0202	. 0 0 0 0 0 0 0	24,4404
5	25,4475	1168,9798	0000000	31,4242
6	31,1027	4831,0202	. 0000000	38,4080
ž	36,7579	1168,9798	00000000	4>,3916
á	42,4131		. 00000000	54,3796
ý	40,0683	4831,0202 1169,9798	00000000	54,3545
10	53,7236	4831,0202	0000000	60,3433
îi	59,3788	1168,9798		73,32/1
12	65,0340		.0000000	80,3109
13	70,6892	4831,0202	0000000	
14	76,3444	1168,9798	,0000000	8/,2947
15		4831,0202	, 00000000	94,2785
_	81,9997	1168,9798	, 0 0 0 0 0 0 0	101,2423
16 17	87,6549	4831,0202	.0000000	100,2402
18	93,3101	1168,9798	. 00000000	117,2300
	98,9653	4831,0202	, 0000000	124,2138
19	104,6205	1168,9798	,0000000	127,1976
20	110,2758	4831,0202	.0000000	130,1814
21	115,9310	1168,9798	.0000000	140,1652
22	121,5862	4831,0202	.00000000	150,1490
23	12/,2414	1169,9798	.00000000	15/,1328
24	134,8966	4831,0202	,00000000	164,1167
25	138,5518	1168,9798	,00004400	171,1005
26	144,2071	4831,0202	, 0000000	170,0043
27	149,8623	1168,9798	.0000000	182,0681
28	155,5175	4831,0202	.00000000	194,0519
29	161,1727	1168,9798	,00000000	199,0357
30	160,8279	4831,0202	,00000000	200,0195
31	172,4831	1168,9798	,00000000	213,0033
32	178,1384	4831,0202	,00000000	217,98/1
33	183,7936	1168,9798	, 50000000	226,9710
34	189,4488	4831,0202	.00000000	233,9548
35	195,1040	1168,9798	,0000000	240,9386
36	200,7592	4831,0202	,0000000	24/,9224
37	200,4144	1168,9798	,00000000	254,9062
38	212,0697	4831,0202	,00000000	261,8900
39	21/,7249	1168,9798	,00000000	268,8738
40	223,3801	4831,0202	.00000000	275,85/6
41	229,0353	1168,9798	,00000000	282,8414
42	234,6905	4831,0202	,0000000	287,8252
43	240,3457	1168,9798	,00000000	296,8091
44	246,0010	4831,0202	,0000000	303,7929
45	251,6562	1168,9798	, 00000000	310,7767
46	257,3114	4831,0202	,00000000	31/,7605
47	262,9666	1168,9798	,0000000	324,7443
48	260,6218	4831,0202	,00000000	331,7281
49	274,2770	1168,9798	,0000000	338,7119
50	279,9323	4831,0202	0000000	345,6957
51	285,5875	1168,9798	,0000000	354,6795
52	291,2427	4831,0202	,00000000	359,6633
53	296,8979	1168,9798	,0000000	360,64/1

ANGLE DEG==30,000 EPSILON=2,0000 DELTA=3000 MIN DELTA=100 SIN TEST= .020

RAY TRACE ANALYSIS PROGRAM» R D MININGHAM = [A=201=U1]
RAY NUMBER# 12 INITIAL ANGLE* =30,000 DEGREES COSH

LIST OF TURNING	POINTS 0.5574	sec/mile	TOTAL TIME	2:45
	MANGE HM	DEPTH M	SINE	SECONDS
NUMBER 1	2,8272	1166,9793	,00000000	3,4904
ž	8,4617	4831,0207	,00000000	10,4720
š	14,1362	1168,9793	,000,000,00	1/,4536
, and the second	19,7908	4831,0207	0000000	24,4371
5	25,4453	1168,9793	0000000	31,4467
6	31,0998	4831,0207	,00000000	30,3982 42,3797
7	36,7542	1168,9793	,00000000	52,3613
8	42,4088	4831,0207	,0000u000	59,3429
•	48,0633	1168,9793	.0000000	66,3244
10	53,7178	4631,0206 1166,9793	00000000	73,3059
11	59,3723	4831,0207	00000000	80,28/4
12	65,0268	1168,9793	00000000	8/,2640
13	70,6813 76,3358	4831,0207	00000000	94,2506
14	81,9903	1168,9793	. 0 0 0 0 0 0 0 0	101,2321
17	87,6448	4831,0207	00000000	100,2137
16 17	93,2993	1168,9793	00000000	115,1952
16	98,9538	4831,0207	00000000	122,1767
19	104,6084	1168,9793	0000000	129,1583
20	110,2629	4831,0207	,0000000	135,1349
ži	115,9174	1168,9793	0000000	145,1214
22	121,5719	4831,0206	.00000000	150,1029
23	127,2264	1165,9794	,0000000	15/,0844
24	132,8609	4831,0206	,00000000	164,0639
25	138,5354	1168,9793	00000000	171,04/4 179,0209
26	144,1898	4831,0207	00000000	185,0104
27	149,8443	1168,9793	00000000	191,9919
26	155,4989	4831,0207	00000000	198,9735
26	161,1534	1169,9793	00000000	200,9501
30	160,8079	4831,0207 1168,9794	00000000	212,9306
31	172,4625 178,1169	4631.0207	00000000	219,9191
32	183,7714	1168,9793	00000000	220,8997
33	189,4259	4831,0207	,00000000	235,8812
34 3 5	195,0804	1168,9793	.00000000	240,8628
36	200,7350	4831,0207	,00004000	24/,8444
37	200,3894	1168,9793	.00000000	254,8259
36	212,0439	4831,0207	,00000000	261,8074
39	217,6984	1168,9793	,0000000	265,7859
40	223,3529	4831,0207	,00000000	275,7705
41	229,0075	1168,9793	.0000000	284,7520 284,7356
42	234,6620	4031,0206	,00000000	296,7171
43	240,3164	1160,9793	0000000	303,6966
44	245,9709	4831,0207	. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	310,6782
45	251,6255	1168,9793	00000000	31/,6578
46	257,2800	4831,0207 1168,9794	,00000000	324,6413
47	262,9345	4831,0207	0000000	331,6228
48	264,5889 274,2434	1168,9793	00000000	339,6043
49	279,8979	4831,0207	,0000000	345,5459
50 51	285,5525	1168,9793	,0000000	354,56/5
52	291,2070	4831,0206	0000000	354,5440
ร์รี	296,8614	1168.9793	.00000000	360,5305
	₩ · • • · • · · · · · · · · · · · · · ·			

ANGLE DEGS-30,000 EPSILONS ,1000 DELTAS1000 MIN DELTAS 20 SIN TESTS ,020

RAY TRACE ANALYSIS PRUGRAM- R D MININGHAM - [A-201-U1] HAY NUMBER: 13 INITIAL ANGLE: -30,000 DEGREES

HAY NUMBERS	19 INSTIAL AND	17620'AAA	DEG. EE.	
LIST OF TURNING	POINTS 1.1993	sec/mile	COSH TOTAL TIME	5:55
				SECONDS
NUMBER	PANGE NM	DEPTH M	SINE	3,4946
1	2,6272	1168,9793	,0000000	
2	0,4816	4831,0207	.0000000	10,4720
3	14,1361	1168,9793	, 0 0 0 0 0 0 0 0	1/,4533
X	19,7905	4831,0207	.0000000	24,4346
	.	1168,9793	0000000	31,4159
5	25,4449		0 0 0 0 0 0 0	30,39/3
6	31,0993	4831,0207	00000000	49,3786
7	36,7537	1168,9793		54,3549
8	42,4081	4631,0207	,0000000	
ç	48,0626	1169,9793	,00004000	59,3412
10	53,7170	4831,0207	,00000000	65,3226
11	59,3714	1168,9793	. u u o o u u o o	73,3039
12	65,0258	4831,0207	. 0 0 0 0 0 0 0 0	80,2872
13	70,6802	1168,9793	00000000	8/,2605
		4831,0207	0000000	94.24/9
14	76,3347		. 0 0 0 0 0 0 0	101.2292
15	81,9891	1168,9793	00000000	106,7445
16	8/,6435	4831,0207		112,1958
17	93,2979	1168,9793	,0000000	- · · · · · · · · · · · · · · · · · · ·
18	98,9523	4831,0207	, 0 0 0 0 0 0 0 0	122,1731
19	104,6067	1168.9793	.0000000	124,1545
20	110,2611	4831,0207	,00000000	130,13>8
21	115,9156	1168,9793	,0000000	143,11/1
32	121,5700	4831,0207	,00000000	150,0984
23	127,2244	1168,9793	. 0 0 0 0 0 0 0 0	15/.0797
	132,8788	4831,0207	. 00000000	164,0610
24		1168,9793	00000000	171.0424
25	138,5332		00000000	178.0237
26	144,1876	4831,0207	0000000	185,0050
27	149,8420	1168,9793		191,9863
28	155,4964	4831,0207	0000000	198,96/6
29	161,1509	1168,9793	,0000000	
30	166,8053	4831,0207	,0000000	205,9490
31	172,4597	1168,9793	.00000000	212,9303
32	175,1141	4831,0207	.0000000	217,9116
33	185,7685	1168,9793	. 00000000	226,8929
34	189,4229	4831,0207	.00000000	235.8742
35	195,0773	1168,9793	. 0 0 0 0 0 0 0 0	240,8525
36	200,7317	4831,0207	.00000000	24/,8369
	206,3861	1168,9793	0000000	254,8182
37	- ' ' '	4831,0207	00000000	261,7945
38	212,0405	1168,9793	. 00000000	265,7808
39	21/,6949		. 00000000	275,7621
40	223,3493	4831,0207		282,7454
41	229,0038	1168,9793	,0000000	284,7247
42	234,6582	4831,0207	,0000000	
43	240,3126	1168,9793	,0000000	296,7060
44	245,9670	4831,0207	,00000000	303,68/4
45	251,6214	1168,9793	,0000000	310,6687
46	257,2758	4831,0207	. 00000000	31/,6500
47	262,9302	1168,9793	.0000000	324,6313
48	268,5846	4831,0207	. 0 0 0 0 0 0 0 0	331,6126
49	274,2390	1168,9793	0000000	336,5939
	279,8934	4831,0207	0000000	347,5752
50		1168,9793	0000000	352,5565
51	285,5478	4831,0207	00004000	359,53/8
52	291,2022		00000000	366,5192
53	296,8566	1168,9793	, , , , , , , , ,	

ANGLE DEGR-30,000 EPSILON- ,1000 DELTAR 250 MIN DELTAR 20 SIN TEST# ,020

5.4. Bilmear Profile

The bilinear velocity profile, shown in Fig. 38, is a symmetrical profile composed of two constant gradient regions. It is formally defined by

$$\mathbf{v}(\mathbf{z}) = 1500 - 0.05 (\mathbf{z} - 3000) \; ; \; \mathbf{z} < 3000$$

$$\mathbf{v}(\mathbf{z}) = 1500 \; ; \; \mathbf{z} = 3000$$

$$\mathbf{v}(\mathbf{z}) = 1500 + 0.05 (\mathbf{z} - 3000) \; ; \; \mathbf{z} > 3000$$

$$(V.2)$$

This profile is easily represented in the ray tracing program by the use of a limited number of data inputs in the constant gradient regions, but the gradient discontinuity at the depth of 3000 meters can only be approximated. The present program interpolates between discretely entered data inputs to produce a smoothed representation of the profile that also possesses continuous gradients. As a stratagem, therefore, the break in the gradient was confined to a depth interval of ± 0.50 meter about the axis of the profile by defining the profile in terms of the data inputs of Table 5.4.1. The 3-point fit applied to each data entry gives a curvature, coefficient D, of 0.20 at the axis - the 4-point fit used in the ray tracing program increases this curvature to the value 0.40 at the axis but the curvature decreases to zero at the depths 3000 ± 0.50 meters.

With the exception of the region of the gradient discontinuity and for transitions across it, the velocity field is exactly predicted by the velocity field expansion. Also, and because of the vanishing curvature in the constant gradient regions, the iteration equations will be highly accurate. It follows that the principal result of the tests of the ray tracing program in the bilinear field will be to test the ability of the ϵ -test to sense and correct for the gradient discontinuity at 3000 meters. Similarly, the use of large minimum iteration intervals, $\Delta_{\rm m}$, will blur the effects of the transition of the rays across the axis of the profile insofar as they are projected for the arc length $\Delta_{\rm m}$ by an expansion that is valid on only one side of the axis.

The test results are shown for a -15° ray with origin at the axis of the profile and for a 300-mile ray trace in Tables 5.4.2.1 through 5.4.2.11. Again, only the turning point data are presented. As with the

hyperbolic cosine velocity field the turning point depths are calculated with excellent precision for all of the control parameters. It is to be noted that the running time of the program increases with Δ for fixed values of the other control parameters, indicating that the ϵ -test is not only limiting the iteration interval but that an increase in Δ produces an unnecessary truncation over a greater fraction of the arc length of the ray. In contrast, increasing $\Delta_{\rm m}$ drastically drops the computer running time although it does this at the cost of lower accuracy in the results.

The data of Tables 5.4.2.7 and 5.4.2.11 are especially interesting. Δ_{m} was increased to 100 meters. Because the curvature For these, at the origin of the ray was 0.40, the first iteration of the ray was so large that it reversed the sign on the sine of the initial ray angle, producing the apparent turning point at the range 0.0427 miles. Subsequently, the semiinvariant test of (III. 8) compensated for this error but the residual effect of this initial "jog" of the ray shortened the range of the first turning point by 0.16 mile. In the subsequent iterations the terminal point of each iteration never fell so close to the axis that a further false turning point of this type could occur. These data demonstrate not only that the parameter Δ_{m} must be carefully selected with respect to the properties of the input data but also shows the net effect that can be expected when a serious breakdown of the control tests occurs. Note that the semiinvariant test was able, during the first one-quarter cycle of the ray, to reduce the error to 0.16 mile - had there been no correction of this type the test results would have been absurd.

305,000 MILES TEMP AT DESERVED MAXIMUM DEPTHS 4,456 DEG CENTIQUADE VELOCITY VS DEPTH .100000 .100000 .100000 .40000 .40000 .40000 .11200

Fig. 38.

DATE 18 3 1968 ID NUNBER 63 SET 3

6,658 DEG CENTIGRADE	
TEMP AT OBSERVED MAXIMUM DEPTHE	
305,000 MILES	
P PROFILE AT RANGE	
DEE	

TABLE OF YALUES OF OBSERVED POINTS

COEFFICIENT D	0000000	00000000	00000000	0000000	9000000	0000000	00000000	64675804 •	32772513 •	00000000	00000000	00000000	1999999	0000000	00000000	90000000	32772513 -	64875804 -	0 000000000	00000000	00000000	9000000	00000000	00000000	5333333 ·	13333553
COEFFICIENT Z	- 0000000	50000000	50000000	50000000	50000000	50000000	50000000	50000016 -	49999245 0	49999237 -	49999237 -	49999237 -	00000000	49999237 -	49999237 -	49999237 -	49999245 -	50000006	. 500000000 -1	50000000	50000000	500000000	- 000000005	- 0000000	16666667 •	1666667
VELOCITY-M/SEC	650,000	625,000	600.000	575,000	550,000	525,000	505,000	502,500	500,100	500,002	500,000	500,005	500,000	500,005	500,000	500,002	500,100	502,500	1507,0000	525,000	550,000	575,000	000,000	625,000	650,000	000'009
DEPTH=HETERS	00	00.00	000,000	500,00	000.000	500.00	900,00	950.00	998.00	998,50	00.666	999,50	000,000	000.50	001.00	001,50	005,00	050,00	3100,000	500,000	000.000	500,00	000.000	500.00	000.000	000.000

TABLE OF VALUES OF EXTRAPOLATED POINTS

DEPTH=METERS VELOCITY-M/SEC Z COEFFICIENT D COEFFICIENT

RAY TRACE ANALYSIS PRUGRAM# R D MINIMGHAM = [A-201+01] HAY NINRFR# 1 INITIAL ANGLE= -15.000 DEGREES

Bilinear

			DILINE	•		
LIST OF TURNING	PUINTS 0.5166	sec/mile	TOTAL TIME	2:35		
NUMAER	RANGE NH	м нгады	SINE	SECONDS		
1	4,3404	1941,7145	. 0 6 0 0 0 0 0	>,2908		
ž	15.0213	4058,2855	. 0 0 0 0 0 0 0	17,8905		
3	21.7021	1941.7144	. 0 0 0 0 0 0 0	26.4842		
4	30,3830	4059,2855	. 0 . 0 0 4 0 0 0	3/,07/9		
5	39.0639	1041,7145	, 0 t t 0 u u 0 0	4/.6716		
6	41.7447	4654,2855	. ม เ ม ด น บ ด ด	50,2653		
ž	50.4256	1941.7145	. ᲡᲡᲡ ᲔᲡᲡ Ე Ე	60.8590		
8	67,1064	4058,2855	. # r # G r r r O O	74,4547		
9	75,7873	1941,7145	. 0 0 0 0 0 0 0	90.0463		
10	82,4661	405A,2855	. 0 . 0 . 0 . 0 . 0	100.6400		
11	91,1490	1941,7145	. 0000000	111,2537		
12	99.8298	4058,2855	, 0000000	121,82/4		
13	108,5167	1941,7145	. 0 b b b b b b b	134,4211		
14	11/,1915	4059,2855	. 0 0 0 0 0 0 0	149.0148		
15	125.8724	1941.7145	. 00000000	153.6084		
16	134,5532	4054,2855	. 0000000	164.2021		
17	145.2341	1941.7145	. u c a a u a a a	174.7958		
18	151.9149	4058.2855	. UU O O U V D O	182.3895		
19	160,5957	1941.7146	. 0000000	192.9831		
20	169.2766	4058,2855	. 0000000	200.5768		
21	17/,9574	1941,7145	, 0 6 0 0 0 0 0	21/,1705		
22	180.6383	4058.2855	, 00000000	22/.7642		
23	195.3191	1941,7145	. 00000000	230.35/9		
24	203,9999	4054,2855	, 0 6 11 0 11 10 0	240,9516		
25	212,6808	1941,7145	, 0000000	259,5452		
26	221,3616	4058,2855	. 0 0 0 0 0 0 0	270.1389		
27	230.0425	1941.7145	. ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	280.7326		
28	238.7233	4058,2855	, 0 0 0 0 0 0 0	291,3262		
29	24/,4042	1941.7145	, 00000000	301.9199		
30	256,0850	4058,2855	" 0 0 0 0 0 0 0	312.5136		
31	264,7658	1941,7145	, 0000000	323.10/3		
32	273,4467	4054,2654	. 0 0 0 0 0 0 0	333,7009		
3 3	282,1275	1941,7145	. 00000000	344,2946		
34	290,8083	4058,2855	. 0 0 0 0 0 0 0	354,8883		
35	299,4892	1941.7145	. 00000000	362.4819		

LIST OF BOTTOM HITS

NO BOTTOM HITS

LIST OF SURFACE HITS

NO SURFACE HITS

DEPTH M=3000,0000 EPSILON= ,1000 DELTA= 250 MIN DELTA= 4 SIN TEST= ,020

RAY TRACH ANALYSIS PRUGRAN+ R D MININGHAM + [A-201+U1] HAY NUMHER# 2 INITIAL ANGLE= +15,000 DEGREES

BILINEAR

			DIDIDOR						
LIST OF TURNIAU	POINTS 0.6333	sec\NTTe	TOTAL TIME	3110					
NUMBER	PANGE NH	UFPEH M	SINE	SECONDS					
1	4.3404	1941,7145	. ᲪᲡᲡᲘᲡᲡᲘᲡ	∍. 29 68					
2	15.0213	4059,2855	. 80804000	12.8905					
3	21.7021	1941.7145	. 0 0 0 0 0 0 0	20,4842					
4	30.3800	405A, 2855	. 0 0 0 0 0 0 0 0	3/,07/9					
5 6	34.0639	1941.7145	. 0 0 0 0 0 0 0 0	4/.6716					
	47.7447	4054.2854	. თაიითაიი	50,2653					
7	50.4256	1941.7146	. 9 6 9 6 9 6 9	60.8590					
8	62,1064	4058,2854	. 8 . 9 0 4 0 0 0	74.4526					
9	75.7873	1941.7145	. มเอดบบดูด	90.0463					
10	82.4681	4059,2855	. ᲔᲡᲡᲘᲡᲡᲘᲔ	100.6400					
11	91.1490	1941.7145	. 0 0 0 0 0 0 0	111,2357					
12	94.8298	405A,2855	. ט ט ט ט ט ט ט ס	121.82/4					
13	108.5107	1941.7145	. 0 0 0 0 0 0 0	134.4211					
14	11/,1915	4058,2855	. თ. თ. ი თ თ დ ი	143.0148					
15	125.8724	194 <u>1</u> ,/144	. ასცისსტი	159.6084					
16	134,5532	4058,2855	. თ . თ . თ . თ . თ .	164.2021					
17	143,2341	1941.7144	, a u a a u u a a	174,7928					
1.8	151,9149	405A, 2855	. 0 0 0 0 0 0 0	187.3895					
19	160,5957	1941,7145	. 0 . 0 0 0 0 0 0	192.9832					
20	169,2766	4058,2855	, 0 0 0 0 0 0 0	200.5768					
21	177,9574	1941.7145	. 0 6 6 6 6 6 9 9 9	21/.1705					
2.5	180.6382	4059,2855	, 0 C O O U U O O	22/.7642					
23	195.3191	1941,7145	, 00000000	230.35/9					
24	203,9999	4058,2855	, 0 , 0 0 0 0 0 0	240,9516					
25	212.6807	1941,7145	. 2000000	257.5452					
26	221.3616	405A.2855	. 00000000	270.1389					
27	230.0424	1941,7145	. 0000000	280,7326					
28	238.7232	4058,2855	.0000000	291,3263					
29	24/.4041	1941,7145	,0000000	301,9199					
30	256.0849	4058,2855	. 0000000	314.5138					
31	264,7657	1941,7145	.0000000	323.10/3					
32	273.4466	4058,2855	,0000000	333.7009					
33	282.1274	1941,7145	.0000000	344.2946					
34	290.8082	4058,2855	,0000000	354,8883					
35	297,4890	1941,7145	, 0 000 00	36>.4819					

LIST OF BOTTOM HITS

NO ROTTOM HITS

LIST OF SURFACE HITS

NO SURFACE HITS

DEPTH M=3000,0000 EPSILON= .1000 DELIA= 500 MIN DELIA= 4 SIN TEST= .020

Table 5.4.2.2

RAY TRACE ANALYSIS PRUGRAM- R D MININGHAM - [A-201-01]
HAY NUHBER 5 INITIAL ANGLE: -15,000 DEGREES

			BIL	inkar
LIST OF TURNE	MG PUINTS 0.7833	sec/wile	TOTAL	TIME 3:55
NUMBER	PANGE NM	UEPTH M	SINE	SECONDS
1	4.3404	1941,7144	.00000000	>,2969
2	13.0213	4058,2855	,00000000	1>.8905
3	21.7022	1941,7145	.00000000	20,4842
4	30,3830	4058,2855	.0000000	37,0779
5	39,0639	1941,7145	,00000000	4/,6716
6	47.7447	4058,2855	,00004000	50,2653
7	56,4256	1941,7144	.00000000	68,8590
8	65,1064	4058,2855	.00000000	79,4527
9	73,7873	1941,7145	.00000000	90,0464
10	82,4681	4058,2855	.00000000	100,6400
11	91,1490	1941,7145	.00000000	111,2337
12	99,8298	4058,2855	.00000000	121.82/4
13	108,5107	1941,7145	.00000000	132,4211
14	117.1915	4058,2855	, 00000000	145,0148
15	125,8724	1941,7145	,00000000	153,6085
16	134.5532	4059,2855	.00000000	164,2021
17	143,2341	1941,7145	. 0 6 6 6 6 9 6 9	174,7958
18	151,9149	4058,2855	.0000000	187.3895
19	160,5957	1941,7145	,00000000	195,9832
20	169.2765	4058,2855	. 00000000	200.5768
21	17/,9574	1941,7145	, 00000000	21/.1705
22	186.6382	4058,2855	,00000000	22/,7642
23	195,3190	1941,7145	,0000000	230.3579
24	205,9998	4058,2856	, 00000000	245.9516
25	212.6807	1941,7144	.0000000	257.5452
26	221,3615	4058,2855	,0000000	270.1389
27	230,0423	1941,7145	,00000000	280.7326
26	236,7232	4058.2856	,0000000	291,3262
29	247.4040	1941,7145	,0000000	301.9149
30	256,0848	4058,2855	,00000000	312.5136
31	264,7656	1941,7145	.0000000	323,10/2
32	275,4465	4058,2855	,0000000	333,7009
3 3	282,1273	1941,7145	.0000000	344,2946
34	290,6081	4058,2855	.0000000	354.8862
35	294.4889	1941,7145	.00000000	365.4819

NO BOTTOM HITS

LIST OF SURFACE HITS

NO SURFACE HITS

DEPTH M=3000,0000 EPSILON= .1000 DELTA=1000 MIN DELTA= 4 SIN TEST= .020

	PRUGRAN+	R D MININGHAM - [A-201-01] ANGLES -15,000 DEGREES	BILINEAR
RAY NUMBER* 4	1111111	Mild Carlotte	PTRIMOVE

LIST OF TURNING	PUINTS 0.9666	sec/mile	TOTAL TIME	4:50
		JAPIH H	SINE	SECONDS
NUMHER	PANGE NM	1941.7144	. 0 0 0 0 0 0 0 0	>.2969
Ţ	4,3404	4058.2855	0000000	15.8906
S	15,0213	1941.7145	00000000	26,4843
3	21,7022		00000000	3/.07/9
4	30,3830	4058.2855	00000000	47.6716
5	39.0639	1941,7145	00000000	50.2653
6	41,7447	405A,2655	00000000	66.8590
7	56,4256	1941,7145	00000000	79.4527
8	67,1064	405A . 2854	000000000000000000000000000000000000000	90.0464
9	75,7873	1941.7145	. u b 0 0 0 0 0 0	100.6401
10	82,4681	4058.2855	0000000	111,2337
11	91,1489	1941,7145	. 00000000	121.82/4
12	99,8298	4058,2855	,00000000	132,4211
13	104.5106	1941.7145	, 00000000	145,0146
14	11/,1915	4058,2655	,00000000	153.6084
15	122,8723	1941.7145	,0000000	130,0004
16	134,5531	4058,2855	0000000	164,2021
17	145,2340	1941,7145	,00000000	174.7958
îś	151,9148	4059,2855	. 0 0 0 0 0 0 0	185.3895
19	160,5956	1941,7145	. 0 0 0 0 0 0 0	197.9831
20	169.2764	4058,2855	, 0 0 0 0 0 0 0	206,5768
21	171,9572	1941,7145	, U C Q Q U U Q Q	21/,1705
22	184,6381	4058.2855	, 0 0 0 0 0 0 0	22/.7642
23	192,3189	1941.7145	, 0 0 0 0 0 0 0 0	230,35/8
24	203,9997	405A,2855	00000000	240,9515
	212,6805	1941,7145	, 0 0 0 0 0 0 0 0	259,5452
25	221,3613	4058,2855	. 0 0 0 0 0 0 0	270,1389
26		1941,7145	, o u n o u o o d	280,7325
27	230,0421	4058,2854	.00000000	291.3262
28	238,7230	1941.7145	. 0 0 0 0 0 0 0	301.9148
29	24/,4038	405A.2854	0000000	312.5135
30	256.0846	1941,7146	0000000	329,10/1
31	264,7654	4058,2855	,00000000	335,7008
32	275,4462	1941,7145	00000000	344,2945
33	282,1270	17411/142 Anga 2844	00000000	354,8881
34	290,8078	4058,2854	. 00000000	365.4818
35	299,4885	1941.7145	,	

NO BOTTOM HITS

LIST OF SURFACE HITS

NO SURFACE HITS

DEPTH M=3000,0000 EPSILON= ,1000 DELTA=2000 MIN DELTA= 4 SIN TEST= .020

HAY TRACE ANALYSTS PHUGRAD - R D HIDINGHAM -[A-201-U1] INITIAL ANGLES -15.000 DEGREES BILINEAR

LIST OF TURNING POINTS 0.3000 mec/mdle TOTAL TIME 1:30 RAHUE VM JEPIH M SINE SECONDS NUMBER .000000000 7.2974 19.1.7145 4.3394 12.8891 .00000000 13,0202 4054,2855 2 1941,7145 . 0 6 0 0 0 0 0 0 26.4828 3 21.7011 3/.0765 .00000000 30,3419 405A . 2655 4/,6669 1941,7144 .000000000 39,0618 .000000000 50,2626 47,7427 4059,2855 60.8561 1441,7144 .000000000 55.4234 . 000000000 79.4498 4054.2855 65.1043 90.0424 .0000000 9 75,7843 1941.7145 465A.2855 .00000000 100,6500 H2,4651 10 111.2295 . 000000000 91.1457 1941,7145 11 121,8230 .00000000 99.8265 4054,2855 12 .00000000 134.4174 1941.7145 15 100.5064 143,0071 11/.18/3 4054.2856 . 00000000 14 .00000000 153.6027 1941.7145 15 127,8681 164.1964 . 00000000 134.5449 4958,2855 16 174.7849 1941.7145 .000000000 145,2789 17 .00000000 182,3826 151.9098 18 4048,2855 190.9708 .060000000 1441.7145 160,5003 19 .0000000 200.5695 20 169.2711 4059.2855 21/.1620 1941.7145 . 00000000 177.9511 21 .00000000 22/.7557 4059,2855 22 180,6319 230.3492 . U L O O U L D D 1941.7145 195,3127 23 246.9429 405A,2855 .00000000 203,9935 24 .00000000 259,5354 212,6735 1941.7145 25 270.1291 221.3544 4059.2855 .00000000 26 . 00000000 280,7223 1941.7145 230,0349 27 291,3160 4059,2855 .000000000 250,7157 23 ,00000000 301.9005 1941,7144 29 24/,3956 . 000000000 314,5021 4654,2855 250,0705 30 323.0957 1941.7145 264,7575 .00000000 31 .00000000 333.6894 4054,2855 275,4301 32 344.2819 1941.7144 ,000000000 282,1181 33 354.87>6 4058.2855 .00000000 290.7989 34 367.4648 .00000000

LIST OF BOTTOM HITS

35

NO POITOM HITS

LIST OF SURFACE HITS

NO SURFACE HITS

DEPTH M=3000,0000 EPSILON= .1000 DELTA=1000 MIN DELTA= 25 SIN TEST= .020

1941.7146

299.4795

HAY TRACE ANALYSIS PROGRADA R D MIGITIGHAM - [A-201-01] HAY NUMBERS 6 INITIAL AFGLES -15,000 DEGREES

	_		В	ILINEAR
LIST OF TURNING	PDINTS 0.3160	sec/mile	TOTAL	TIME 1:35
NUMRER	b⊻ni@b Zisc	ироји и	SINE	SECONDS
1	4,5367	1941,7144	. uranyuga	>.2946
2	13.0196	4054,2855	. 0 t O n a u n O	1>.6883
3 4	21,7004	1941,7145	, 00 00 00 00 0	26.4820
	30,3A13	485A,2855	. 0 0000000	3/,0757
5	34.0421	1941,7145	, 46 40 44 40 6	4/.6694
6	4/.7430	4058,2855	. 0 . 11 0 u u g o	56.2630
7	50.4238	1941.7145	. 06000000	60.8567
8	65.1047	405A,2855	, U 6 9 8 9 8 9 9 9	77,4504
9	75.7855	1941,7145	. 0 . u n u n g o	90.0441
10	82,4403	4059,2855	• กค.ยบกกขอ	100.63/7
11	91.1471	1944.7145	, 0 (1) 0 0 0 0 0	111.2314
12	94,8280	4059,2655	, 0. 0.00000	121.8250
13	100,5684	1941,7145	. 0 6 11 0 0 0 0 0	132.4161
1.4	11/.1492	4C5A.2855	,00000000	143.0118
15	122,8701	1941,7145	. 0 6 0 0 0 0 0 0	153.60>5
16	134,5509	4659.2855	. 01 00 0 00 0	164.1992
17	145.2318	1941.7145	. 0 . 0 . 0 . 0 .	174,7928
18	151.9126	4059,2855	.0100000	182.3865
19	160.5935	1941,7145	. 01 000 00	195.9802
20	164,2743	4 11 5 A , 2855	. 0 . 0 0 0 0 0 0	206.5739
21	177,9551	1941,7145	.06.000000	21/.16/6
22	180.6300	4058,2854	,0,000000	22/.7612
23	195.316A	1941,7145	, 0 , 0 0 0 0 0 0	23¤.3549
24	263,9976	4058,2855	. 0 6 0 0 0 0 0 0	240,9465
25	212,6784	1941,7146	. U U U U U U U O O	257.5422
26	221,3590	4659.2855	. u c a o u u a a	270.1355
27	230.0345	1441.7145	. 00000000	280.7268
28	258,7204	4059,2855	,0,000000	291,3225
29	24/,4012	1941,7146	.06000000	301.9162
30	256,0821	4ú5A,2854	.0000000	314.5049
31	264,7629	1941.7145	.0600000	323,1035
32	273,4438	4058,2855	.00000000	333.69/2
33	282.1246	1941.7145	. 80 0 0 0 0 0 0	344.2909
34	290,8054	4058,2855	, U C U O U U O O	354.8846
35	299,4863	1941.7145	. 0 0 0 0 0 0 0 0	362.4762

NO ROTTOM HITS

LIST OF SURFACE HITS

NO SURFACE HITS

DEPTH M=3000.0000 EPSILON= ,1000 DELTA=2000 MIN DELTA= 25 SIN TEST= ,020

TRACE ANALYSIS PROGRAM- R D MININGHAM - IA-201-01;
NUMBER= 7 INITIAL ANGLE= -15,000 DEGREES

NUMBER=	7 INITIAL	ANGLE: -15,000	DEGREES	BILINEAR
OF TURNING	PUINTS 0.2	333 co c/mile	TOTAL	TIME 1:10
NUMBER	RANGE NO	Орртн м	SINE	SECONDS
1	,0427	2984,7695	. 00000000	.0526
2	4,1785	4058.2856	.00000000	>.0894
3	12,8586	1941,7145	.00000000	1>,6822
4	21,5388	4054,2855	.0000000	26,2752
5	30,2192	1941,7145	.00000000	30,8684
6	36.8998	4058,2855	.00000000	4/,4617
7	47.5804	1941,7145	,00000000	50.0552
8	56,2612	4059.2855	.00000000	60,6488
9	64,9420	1941,7145	.00000000	79.2424
10	75,6229	405A, 2855	.00000000	87.8361
11	82.3029	1941,7145	.00000000	100.4289
12	90,9832	4058,2855	,0000000	111.0219
13	99,6636	1941,7145	.00000000	121.6151
14	108,3441	4058,2854	, 00000000	132,2084
15	11/,0248	1941,7145	00000000	144,8019
16	125,7055	4058,2855	. 0 0 0 0 0 0 0 0	150,3954
17	134,3863	1941,7145	.00000000	163.9891
18	143,0672	4058,2855	,00000000	174,5827
19	151,7052	1941,7145	.00000000	187.1235
20	160,3857	4058,2855	.00000000	197.7168
21	169,0663	1941,7145	,0000000	206.3102
22	177.7470	4058,2855	.00000000	210,9038
23	186,4278	1941,7145	, 00000000	22/,4974
24	195.1086	4058,2855	,00000000	238,0911
25	203.7895	1941,7145	, 00000000	240.6847
26	212.4697	4058,2855	.00000000	259,27/7
. 27	221,1501	1941,7145	, 00000000	269.8708
28	229,8306	4058,2855	,00000000	280,4641
29	238.5112	1941,7145	.00000000	291,05/5
30	247.1919	4058,2854	.00000000	301.6511
31	255,8727	1941,7145	,00000000	312,2447
32	264,5535	4058.2855	ρασυουύο,	322,8384
33	273,2176	1941.7145	,00000000	335,4116
34	281,8985	4058,2855	.00000000	349,0052
35	290,5793	1941,7144	,00000000	354,5989
36	297.2594	4058,2855	.0000000	367.1918

OF BOTTOM HITS

O BOTTOM HITS

OF SURFACE HITS

O SURFACE HITS

+ H=3000,0000 EPSILON# ,1000 DELTA=1000 HIN DELTA=100 SIN TEST# ,020

RAY TRACE ANALYSIS PROGRAM - R D MININGHAM - [A-201-01]
RAY NUMBER - B INITIAL ANGLE -15.000 DEGREE5 Bilinear

221,3609

230,0417

238,7226

24/,4034

256.0842

264.7650

275,4458

282,1267

290,8075

299,4883

LIST OF TURNING	POINTS 0.300	0 sec/mile	TOTAL TIME	1:30
NUMBER	ANGE VII	овьтн и	SINE	SECONDS
1	4,3403	1941,7145	, 0 0 0 0 0 0 0 0	5.29 66
2	15.0211	4058,2855	. 0 0 0 0 0 0 0 0	12,8903
3	21,7019	1941,7144	. თ თ ი თ თ თ ი	26.4839
4	30.3828	4058,2855	. 0 . 0 0 0 0 0 0	3/,07/6
5	39,0636	1941,7146	. 0 0 0 0 0 0 0	4/,6713
6	4/,7444	405A,2855	.00000000	58,2649
7	56,4253	1941,7145	.00000000	66,8566
8	65,1061	405A,2855	, 0 0 0 0 0 0 0	79,4522
8 9	75,7869	1941,7145	.00000000	90.0459
10	82,4677	4058,2854	. 00000000	100.6395
11	91.1486	1941,7145	,00000000	111,2332
12	99,8294	4058,2855	, 0 0 0 0 0 0 0	121,8269
13	108.5102	1941,7145	.00000000	132,4205
14	11/,1911	4058,2855	.00000000	145.0142
15	125,8719	1941.7145	, 0 0 0 0 0 0 0 0	153.60/8
16	134,5527	4058,2855	.00000000	164.2015
17	143,2335	1941,7145	. 0 0 0 0 0 0 0 0	174.7991
18	151,9144	4058,2855	, 0 0 0 0 0 0 0 0	185,3888
19	160,5952	1941.7144	,00000000	195,9824
20	169,2760	4058,2855	, 06000000	200,5761
21	177,9568	1941.7146	, 0 0 0 0 0 0 0 0	21/,1697
22	180,6376	4058,2855	. .	22/,7634
23	195,3185	1941,7145	.00000000	235.3570
24	203,9993	4058.2855	, 00000000	245,9507
25	212,6801	1941,7145	,00000000	259.5444
0.4	001 7400	4000 2055	0.00000000	270 4 340

4058,2855

1941,7145

4058,2855

1941,7145

4058,2855

1941,7145

4058,2854

1941,7145 4058,2855

1941,7145

,00000000

,00000000

,00000000

.00000000

.00000000

.00000000

,00000000

00000000

.00000000

270,1380

280,7316

291,3253

301,9189

312,5126

325,1062

333,6949

344.2935 354,8872

365,4848

LIST OF BOTTOM HITS

26

27

28

29

30

31

32

33

34

35

، شياط المحلكات

NO ROTTOM HITS

LIST OF SURFACE HITS

NO SURFACE HITS

DEPTH M=3000,0000 EPSILON=1,0000 DELTA= 500 MIN DELTA= 20 SIN TEST= .020

RAY TRACE ANALYSIS PROGRAM- R D MININGHAM - (A-201-01)
RAY HUMBER: 9 INITIAL ANGLE: -15,000 DEGREES

			BILI	NEAR
LIST OF TURN	11 10 boly 12 0	.2500 sec/mile	TOTAL	T1 ME 1:15
NUMBER	FANGE NE	начи	SINE	SECONDS
1	4,3401	. 1941.7145	. თ. დეთ თეთ	>,2903
2	13,0209	4058,2855	, 0 , 0 0 0 0 0 0	17,8900
3 4	21,7017	1941,7144	. 00 00 0 0 0 0	20,4637
	30,3826	4059.2855	. 00 00 00 00 0	3/,07/4
5 6 7	37,0635	1941.7145	. 0 0 0 0 0 0 0 0	4/.6711
Ó	47,7443	405A,2856	, 00000000	50,2647
	56,4252	1941,7144	. 0 6 9 9 0 0 0 9 9	60,6584
8	65,1060	4058.2855	. 0 6 0 0 0 0 0 0	74,4521
9	75,7Ans	1941,7144	. 01 00 0000	94,0478
10	82.4677	4058,2855	. 00000000	100.6395
11	91,1486	1941,7145	. 01.000.000	111,2332
12	99.8294	4059,2855	. 00000000	121,8268
13	108.5103	1941,7145	. 0,000,00	132.4205
14	11/,1911	4058,2855	, 00000000	143,0142
15	125,8720	1941,7145	. 00 00 00 00	150,60/9
16	134,5526		. 06000000	164,2015
17	145,2336	1941,7145	. 0 0 0 0 0 0 0	174,7952
18	151,9145	4059,2855	. 00000000	182.3869
19	160,5953	1941,7145	. 00000000	197,9826
20	169,2762	4059,2855	, 0 6 8 9 8 9 9 9	206,5763
21	177,9570	1941,7145	. 0 . 0 , 0 . 0 0	21/,1699
22	184.6379		. 00 0 0 0 0 0 0	22/,7636
23	195.3187		. 0 0 0 0 0 0 0 0	230.35/3
24	205,9996		. 00 00 00 00	240,9510
25	212,680		. 00 00 00 00	257,5447
26	221,361	4058,2854	. 00 00 00 00	270.1383
27	230,042	1941,7145		280.7320
28	230.7230	4058,2854	, თ. თ ი თ თ ი ი	291,3257
29	24/,403	1941,7145	. 00 00 00 00	301,9194
30	250.0840		. 00 0 0 0 0 0 0	312,5130
31	264.765	5 1941,7145	,0000000	325,1067
32	275,446	3 4058,2854	. 00000000	333,7004
33	282.127		. 0 . 0 0 0 0 0 0	344,2940
34	290,808		.00000000	354,88/7
35	299,488		.00000000	365,4814

NO BOTTOM HITS

LIST OF SURFACE HITS

NO SURFACE HITS

DEPTH M=3000,0000 EPSILON=1.0000 DELTA=1000 MIN DELTA= 20 SIN TEST= .020

BILINEA

			DILLINEA	R.
LIST OF TURNING	F017475 0.2166	sec/mile	TOTAL TIVE	1:05
NUMBER	RAMAN MO	ор-р Гн. м	SINE	SECONDS
1	4,3398	1941,7145	. 0 (0 0 0 0 0 0	3.2960
\$	15,0206	4058,2855	. 0 0 0 0 0 0 0	12,8897
3	21.7014	1941,7145	. 0 0 0 0 0 0 0	26.4832
4	30,3022	4054,2855	. u t a u u u a a	3/.0769
5	34,0630	1441,7145	, 0 6 0 0 0 0 0	4/,6705
6	41.7438	4058,2855	, u	56,2641
7	50,4246	1941,7146	, თ 6 თ 0 0 0 0 0	60.85/8
8	65,1054	4059.2854	. ႷႱႳიႷႷ გი	79.4514
9	7 3, 7863	1941,7145	• or oon no o	90.0451
10	82,4671	405A.2855	. a . o n u u o o	100.6387
11	91,1478	1941.7145	, 0 \ 0 n u u n o	111,2323
12	94,8287	4059.2855	, 0 6 0 0 0 0 0 0	121.8200
13	100.5694	1941.7145	, ისიისსეთ	132.4195
14	11/,1905	405A,2855	, 0 , 0 , 0 , 0 , 0	143,0132
15	125.8711	1941.7145	, 0 , 0 0 0 0 0 0	153.6068
16	134,5518	405A.2855	, 0000000	164.2044
17	145.2327	1941.7146	.0000000	174.7941
18	151.9134	4058.2855	, 0 , 0 0 0 0 0 0	187.38/7
19	160,5943	1941,7145	, 0 , 0 0 0 0 0 0	192.9814
20	164.2751	4054.2855	.0000000	200.5750
21	17/.9558	1941,7146	. 0000000	21/.1605
22	180,6367	4059,2855	.0000000	22/.7622
23	195,3174	1941.7145	, 0 (0 0 0 0 0 0	230,3558 248,9495
24	205,9983	4058,2855	, 0 6 0 0 0 0 0 0	259.5431
25	212,6791	1941,7145	, 0 0 11 0 0 11 0 0	270.1367
26	221,3598	4058,2855	. 0 L 0 0 U 0 0 0	280.7304
27	230,0407	1941,7145	, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	291.3239
28	230,7214	4058,2854	.00000000	301.91/6
29	247,4023	1941,7145	. 0 - 0 0 0 0 0 0	312.5112
30	256,0231	4059,2855	. 0 . 0 0 0 0 0 0	323.1048
31	264,7638	1941.7146 4058.2855	.0000000	333,6985
32	273,4447 282,1254	1941.7145	.00000000	344,2920
33 34	290,8063	4059.2854	.0000000	354.8827
35 35	299,4871	1941.7145	.0000000	362,4793

NO HOTTOM HITS

LIST OF SUPFACE HITS

NO SURFACE HITS

DEPTH H=3000.0000 EPSILON=1.0000 DELTA=2000 MIN DELTA= 20 5IN TEST= .020

RAY TRACE ANALYSIS PHUGRADO R D HILLINGHAM - (A-201-01)
RAY NUMBER: 11 INITIAL ANGLE: -15,000 DEGREES

CAL MODUCE.	II INTITAL AF	Gre -15.000		INEAR	
LIST OF TURNING	POINTS 0 2000		TOTAL		
• • • • • • • • • • • • • • • • • • • •	PUINIS 0.2000	sec/mile	10121	TIME 1:00	
NUMBER	PANGE VM	H FIGH	SINE	SECONDS	
1	.0427	2984,7695	.00000000	, 0526	
2	4.1785	4059,2856	. 00000000	>.0894	
3	12,8585	1941.7145	.06000000	12.6822	
4	21,5367	405A . 2855	.00000000	26.2728	
5	30,21/5	1941,7145	.00000000	36.8664	
6	38,8960	405A, 2855	,00000000	4/.45/5	
7	4/.5768	1941,7145	. 00000000	50, 0511	
8	56,2554	4059,2855	.00000000	68,6422	
9	64,9362	1941,7145	.00000000	77,2359	
10	73,614H	4058,2855	.00000000	89,8269	
11	84.2956	1941,7145	. 06000000	100.4206	
12	90.9741	405A,2855	,0000000	111,0117	
13	94,6549	1941,7145	. 0 6 0 0 0 0 0 0	121,60>3	
14	100,3335	4058,2855	.0000000	132,1904	
15	117,0143	1941,7145	,00000000	144,7900	
16	125,6929	4059,2855	, 00000000	153,3811	
17	134,3737	1941,7145	,00000000	163,9747	
18	143.0522	4958,2655	,00000000	174.5658	
19	151.7330	1941,7145	.00000000	18>,1594	
50	160,4116	4058,2855	, 0 0 0 0 0 0 0 0	190.7505	
21	169,0924	1941,7145	.0000000	200,3441	
22	177.7709	4058.2855	,00000000	216,9352	
23	186,4518	1941,7145	,00000000	22/,5288	
24	195,1303	4058,2855	.00000000	230,1199	
25	203.8111	1941.7145	,00000000	245.7136	
26	212,4897	4058,2855	.00000000	259,3046	
27	221,1705	1941,7145	.00000000	267.8983	
28	229,8490	4058,2855	,00000000	280,4893	
29	238,5298	1941,7145	.00000000	291.0830	
30	247,2084	4058.2854	,00000000	301,6741	
31	255.8892	1941,7145	.00000000	312,26/7	
32 33	264,5677	4058,2855	.00000000	322,8588	
33 34	273,2486	1941,7145	,00000000	334,4524	
	281.9271	4058.2855	.00000000	344.0435	
35 34	290.6079	1941,7145	.00000000	354.63/1	
36	299,2865	4058,2854	,00000000	365,2282	

NO BOTTOM HITS

LIST OF SURFACE HITS

NO SURFACE HITS

DEPTH M=3000.0000 EPSILON=5.0000 DELTA=1000 MIN DELTA=100 SIN TEST= .020

5.5. Real Velocity Field

In 1967 Hudson Laboratories conducted an experiment during which Sippican X BT casts were taken to a depth of 750 meters (T-7 probes) at regular range intervals. These data, together with several deep velocimeter casts, were used to construct the total velocity field consisting of the profiles shown in Figs. 39 through 58 and the tabulated data of Tables 5.5.1.1 through 5.5.1.20. Additionally, bottom depth entries were made at intervals of one mile or less over the total range of 350 miles. Type II intensity calculations (Chapter IV) were made on the basis of 251 rays that were traced in the velocity field. Ray calculations for two of the initial angles are presented in this Chapter. The origin of the rays was at 2331.7 meters depth. 5.5.1. The 14.80° Ray

The 14.80° ray propagated in either an RSR mode or through multiple surface and bottom reflections depending on the bottom contour. The ray was terminated at about 250.6 miles as a result of striking the side of a steep seamount. The results of the calculations for eleven sets of control parameters are shown in Tables 5.5.2.1 through 5.5.2.11. The most accurate values are those of Table 5.5.2.1. Summary comments of these data are:

- i. The drop in computer running time for an increase in $\Delta_{\rm m}$ from 25 to 100 meters shows that the control parameters sensing the detail in the velocity profiles were reducing the iteration increment to less than 100 meters over a large fraction of the ray path, even when the maximum iteration increment was limited to 250 meters.
- ii. The increase in running time when the S-test parameter was raised from 0.020 to 0.100 indicates that the subsequent ε-test is required to produce greater truncation of the iteration increment when it is not pre-limited by the S-test.
- iii. Some increase in the computer running time over that of the previous two tests is due to the requirement that the tape readers that provide the velocity profile data into active memory must take extra time to read-in the consecutive velocity profiles as their ranges are crossed by the advancing

- ray. This implies that the time required per ray mile will increase with the number of vertical profile entries used to define the sound velocity field.
- iv. The reasonable agreement between tests for which the Stest control was 0.020 and those for which it was 0.100 indicate that the iteration increments are not being limited by the accuracy of the iteration expansion as much as they are by the ε-test, insofar as these effects are separable. That is, the truncation of Δ is primarily due to the limiting of Δ as the ray attempts to follow the detailed structure of the velocity field.
- The data of Table 5.5.2.10, for which & was increased from 0.40 to 1.00, is in rough agreement with the more accurate data of Table 5.5.2.1 at the final range of the bottom hit at 250.6 miles. However, the fluctuations of the preceding turning point ranges, or the ranges of the preceding surface and bottom hits, with respect to Table 5.5.2.1, are noticeably greater than are the comparable data of Table 5. 5. 2. 3, for which & was 0.40. This indicates a general tendency for the errors in the ray positions to tend to cancel as the rays pass through velocity profiles with sharply changing curvatures, viz Chapter III - 3.4. In this sense the use of a large can be considered as a rough averaging procedure for a profile's detailed structure; the semi-invariant test assists and controls this process by correcting the ray angle at each iteration to be in agreement with the given velocity field. At turning points of the ray, however, the semi-invariant test becomes less effective. Formally precise results in these regions require that & be made small, as will be apparent in the discussion of the 12.80° ray.

5, 5, 2. The 12, 80° Ray

The 12.80° ray did not make surface or bottom hits in its transit, but did cycle across the full depth of the ocean with an upper turning point approximately 60 meters below the sea surface. The path of this ray, therefore, was especially sensitive to the fluctuations in the upper water structure.

The comments given for the 14.80° ray will also apply to the 12.80° ray, except that the variations of the turning point ranges as a function of the control parameters are greater for the 12.80° ray.

The comments given at the end of Chapter III emphasize that if the vertical profiles of the velocity field are complex, in the sense that the gradients and curvatures change rapidly as a function of depth, there will be significant wavefront distortion and this will appear as an aberration of the plot of the ray depth distribution at a given range. More precisely, the range period of the cycling ray will depend upon the specific structure of the velocity field over the path of the ray and this will lead to fluctuations of the magnification factor that is defined for rays with nearly infinitesimal increments in their initial angles. In long-range propagation one must expect not only the major caustics and foci that are obtained from smoothed data inputs that represent long-term averages of the velocity field but at any one time there will be many secondary caustics that can be regarded as being due to the wavefront aberration. These effects increase with range and they are one reason why the present program computes intensity as a weighted average of many rays, as has been discussed in Chapter IV.

The 12.80° ray is presented here as an excellent example of the difficulties that are implicit in the entire method of ray tracing in inhomogeneous media. The shallow turning point of this ray, at 261 miles, occurred at a depth that was just above a very shallow secondary sound channel - this channel was, in fact, introduced by the velocity field construction program as it attempted to smooth the transition across an abrupt change in slope of the temperature of the thermocline. Additionally, the channel was not present in the velocity profile that was entered at the range 243 miles but was found in the profile at 263 miles; the physical existence of the channel, at the time the ship transited these ranges, was further indicated at the subsequent profile range of 273 miles where it appeared somewhat more strongly and at a slightly deeper depth.

In short, the shallow turning-point depth of the 12.80° ray was just above the weak sound channel. As indicated by the most accurate ray tracing summaries of Tables 5.5.3.1 - 5.5.3.11, the ray was able to continue turning and proceeded to deeper depths. The results of Tables 5.5.3.6, 7, 9 were

obtained for less stringent values of the control parameters and for these the ray became trapped for several oscillations in the slight secondary channel. It is to be noted that this trapping could have been obtained for a very slight change in the initial ray angle and for the most accurate ray tracing; conversely, Table 5.5.3.9 shows that relaxation of the t-test to allow an uncertainty of 1.0 meter/sec also permitted the trapping to occur. Whether this type of trapping actually did occur in the experiment would require analysis of the measurement accuracy of the velocity profile structure and would also require detailed interpretation of the experimental results. This question is less important than the general result of the ray tracing program that the set of rays with turning points in this region showed a marked distortion in the ray magnification function for these rays. In any event, and for low acoustical frequencies with wavelengths of the order of tens of meters, the limited depth interval of only a few meters of the sound channel of this example could be expected to have only a minor physical effect on an extended wavefront.

It has been remarked that the variation in the ranges of the turning points as a function of the control parameters was more marked for the 12.80° ray than for the 14.80° ray, primarily because the steeper angle of the latter ray made it less sensitive to the detail of the upper thermocline structure than was the case for the rays with turning points in this region. However, the precision of the most accurate ray tracing of the 12.80° ray, Table 5.5.3.1, was confirmed independently by the reversibility test presented in the next section.

Fig. 39.

Fig. 40.

Fig. 41.

Fig. 42.

Fig. 43.

Fig. 44.

Fig. 45.

「「「「「「「「」」」」というでは、「「」」というできない。 「「」」というできない。 「「」」というできない。 「「」」というできない。 「「」」というできない。 「「」」というできない。 「「」

Fig. 46.

Fig. 47.

Fig. 48.

fig. 19.

Fig. 50.

Fig. 51.

Fig. 52.

Fig. 53.

Fig. 54.

Fig. 55.

SHALLOW PROFILE AT PANGE 284.400 HILES

Fig. 56.

Fig. 57.

Fig. 58.

TABLE OF VALUES OF DESPRISED POINTS

DEPTH-METERS	V#100114-#/BEC	COEFFICIENT Z	COFFF ICEENT D
.000	1941.0500	.19741444 -1	. 1 0 0 4 4 0 4 4 - 3
14 488	1441 2124	14741848 -1	. 1 0 0 0 4 0 4 4 - 3
	1941.3848	.12694764 8	.71000117 -1
31,100	1943,7373	.10494271 0	-,26200104 -1
46.400	1543,4697	10375043 8	15448134 -1
90,404	1541.4621	34442767 B	+,33733724 +1
55.444	1939.4033	·.32374137 B	.44688244 -1
41.111	1938.4249	20742734 B	. 29113079 - 2
76.600	1936.4769	17374070 D	41949474 -2
40.000	1914,9493	15374091 8	- 20018458 -3
11.111	1933.4617	·. 13176098 6	.45999968 +2
100.000	1532.3141	·.13924182 0	. 53041995 .2
110.000	1930,4044	1,13776215 0	49016931 -2
120.000	1527.5688	20274337 0	- 10040334 -1
125,000	1528.3300	· 21743056 0	.12113454 -1
140,000	1526.4335	. 56426134 +1	. 93339317 +2
154.488	1524.3359	-,36941305 -1	.,54491699 -2
175.000	1923.7119	50340776 -1	.37256063 -2
185,880	1523.3142	70479560 -1	61339693 -2
200.000	1521.5678	+ 58929698 +1	.74664803 -2
265,600	1921.3696	74241447 -1	49401976 -1
210.000	1522.3102	41762943 -1	02003174 -1
215.000	1520.4513	. 19910117 0	30467725 -1
225.000	1520.9337	- 35133863 -1	.13257350 -2 .4001700 -3
250,000	1920,0647	. 245A2378 -1	
279.000	1519.3056	-,10942250 -1	
308,000	1919,1219	15405707 -1	.,45078394 -3 .,39403424 -3
390,000	1517.533	- 41644162 -1	.87989807 -4
400.000	1514.9551	49365273 -1 20047308 -1	10447288 -2
450,000	1512.5044	-,43099149 -1	-,94t7g97g +2
448.000	1512,4392 1510.4638	-,65517807 -1	32292312 -2
140.00	1509,6165	. 42192083 -1	
544.000	1906.6001	49474661 -1	.50169969 -3
596,600 546,000	1905.3671	- 64458525 -1	-, 15745304 -2
595.000	1544 2245	- 16444648 0	a. 11734530 al
404.000	1504,2205 1503.2916	. 15894610 O	13934682 -1
415.000	1902.4350	- 54750424 -1	41929339 -4
450.400	1500.4931	- 59061301 -1	20441046 -3
700.000	1500 4931 1497 2845	• 61571732 •1	. 1 0399322 - 5
794.000	1494,3359	-,4657 9662 -1	49546954 +3
457.200	1492.1908	+.16737239 - 1	.61072085 +4
942,900	1490.9807	93359875 -2	.11166190 -3
1028,700	1490.5907	·. 21542896 ·?	15734412 -4
1114.400	1490.6107	.14466392 +2	. 28301173 -4
1204.700	1490.8410	,26259389 -2	97093787 +6
1285,800	1491.0609	61818181 +7	.84540346 -4 59945509 -4
1371.500	1491,9011	.72397077 -2	.13073045 -4
1497.300	1402,3013	.52506190 -2	,13073045 -4 .39497196 -4
1943.000	1492.8019	.75289639 -2	.68126525 -5
1628,700	1493,5918	.95153409 -2 .97470189 -2	-,13592942 -5
1714,400	1494,4371		,96977471 -4
1000.100	1495,2624	,12130257 +1 ,12130547 +1	- 54570 673 -4
1865.000	1494.5129	,12140686 -1	.57267289 -4
1971.400	1497,3433	14316589 -1	64277489 -5
2097.300	1498,5938	21717909 +2	3230+107 -3
2131.000	1499,6315	14108654 -2	. 19394095 -3
2143.000	1797,8373	10966746 -1	27066314 -4
2220,700	4501 4454	13302985 -1	. 27381449 -4
2314.500	1501,5154 1502,7560	14935265 -1	. 13445229 -5
2400.200 2485,900	1504.6047	,14535643 -1	13577007 -5
2571,600	1505.2474	.14469356 -1	RV25453 #6
2657.400	1504.4882	13360111 •1	-, 25647284 -4
2743.100	1507.5380	14516812 -1	,53128216 -4
2828.800	1507,5389 1508.9798	.16970312 -1	. 27294249 -5
2914,500	1510,4408	.15763346 -1	29963157 -4
3000.200	1511.6816	. 13305932 - 1	27386062 -4
3086.800	1511.6816 1512.7225	.13305289 -1	. 27394367 -4
3171.700	1513,9634	.13764548 -1	.29974784 -4
3257.400	1515.4245	.14212222 -1	66701566 -4
3208.300	1515,6321	.14242611 *1	. 49475914 -4

TABLE OF VALUES OF EXTHAPOLATED POINTS

DEPTH-METERS	AEFOCILA*#\ZEL	2 COFFFICIENT	O COLFFICIENT
3384,300	1917.6058	.17752647 -1	.32601004 -0
3488,300	1519.3826	.17745101 -1	.32625470 -6
3580.310	1521.1625	.17617802 -1	. 32577515 • 6
3686,300	1522.9462	.17850389 -1	. 32596588 -6
3786.300	1524.7328	17882891 -1	.32409853 -6
3888.300	1526.5224	.17915287 -1	. 32386780 -6
3466.300	1528.3159	.17047578 -1	. 12196445 -6
4088,300	1530.1.23	. 17979727 - 1	. 32101347 -6
4188.300	1531.9119	.18011723 -1	. 11690203 -6
4288.300	1533,7144	.18043564 -1	.31799502 •6
4 586 . 300	1537,5706	. 18075237 -1	, 31547546 -6
4468.300	1537,3797	.18186718 -1	. 11414032 -0
4586.300	1539,1419	18118037 -1	31723207 .0
4688.300	1540.9573	. 18149136 -1	. 10975342 -8
4786.300	1542,7757	.16200015 -1	.30784607 -6
4878.300	1544.5973	.14230694 -1	10:74799 -6
4988.300	1546.4219	.18741137 -1	.30307770 -6
5088.300	1548,2495	.14241140 -1	. 10(9794) -8
5188.300	1550.0401	.18321266 -1	. 29754639 - 6
5288,300	1551,9134	. 14440964 -1	. 291 4 0 1 2 8 - 6
538B.300	1553.7501	18340375 -1	.79182434 -6
5486.300	1555.5494	.18409443 -1	28953552 •
5588.300	1557,4322	. 18418744 -1	. 28148376 -1
5688.300	,559.2775	.18446759 -1	. 28381348 -
.74. 100	1561 1256	14405140 -1	.2838:348 -*

Table 5.5.1.1

```
TATE 10 4 1486 10 WHATER 185 SET 1
                                SWALLOW PROFILE AT RANGE - SC. 200 MILES
      TABLE OF VALUES OF ORSERVED POINTS
                         DEPTH-METERS ASLACITY-WASEN CHEFFICIENT & COFFFECIENT D
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             CONFICIENT 7 COPFFICIENT 0

-13741444 -1 .1888484 -3
-16731648 -1 .1888484 -3
-16372495 -1 -1333109 -2
-27374271 0 .7888278 -1
-27374611 -1 -17985114 -1
-17175931 0 -27881198 -2
-2786413 0 -2788178 -1
-1324646 8 .8988274 -2
-13276977 0 .3982878 -1
-1326646 8 .8988274 -2
-10477906 0 -22882895 -3
-00474733 -1 .38171683 -2
-87872734 -1 .38171683 -2
-87872734 -1 .3948288 -2
-83119488 -1 .87842441 -2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1941. 0900
1941. 2124
1941. 3446
1941. 4460
1943. 4473
1943. 4473
1943. 4477
1944. 1121
1940. 2445
1938. 1946
1938. 1946
1938. 3487
1938. 3487
1934. 3647
1934. 3647
1934. 3647
1936. 7448
                                                                                                                                                     .000
10.000
20.000
25.000
30.000
40.000
50.000
65.000
76.000
90.000
100.000
125.000
TABLE OF VALUES OF EXTRAPOLATER POINTS
                         DEPTHONETERS VELOCITY-MASEC & COEFFICIENT D COEFFICIENT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             - 4029026 - | - 3688899 - 2
- 65917377 - | 16688999 - 2
- 65917389 - | - 46837899 - 2
- 59917389 - | - 46837899 - 2
- 59917389 - | - 46837899 - 2
- 59917389 - | - 46837899 - 2
- 59917389 - | - 46837891 - 2
- 59917389 - | - 46837891 - 2
- 4406842 - | - 79627486 - 1
- 1791436 - | - 12762786 - 1
- 1397149 - | - 12762786 - 1
- 1397149 - | - 1276278 - 2
- 2043793 - | - 1276278 - 2
- 2043793 - | - 1276278 - 2
- 2043793 - | - 1276278 - 2
- 2043793 - | - 1276278 - 2
- 2043793 - | - 1276278 - 2
- 2043793 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047753 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | - 1276278 - 2
- 2047754 - | -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1930. ASJA

1927. ASSA

1927. 3749

1927. 3749

1927. 7679

1927. 7679

1928. 7689

1929. 7689

1929. 7689

1929. 7689

1929. 7689

1929. 7689

1929. 7689

1929. 7689

1929. 7689

1931. 4789

1931. 4789

1931. 3489

1931. 3489

1932. 6443

1932. 6443

1402. 7679

1403. 7689

1404. 7689

1404. 7689

1404. 7689

1404. 7748

1405. 7699

1406. 7629

1407. 7689

1408. 7698

1409. 7698

1409. 7698

1409. 7698

1409. 7698

1409. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 7698

1509. 
                                                                                                                                              150.000
                                                                                                                                              175.000
185.000
205.000
205.000
215.000
275.000
275.000
275.000
400.000
400.000
400.000
                                                                                                                                 4%0.000

A78.000

778.000

778.000

778.000

778.000

877.700

942.900

1178.700

1249.700

1371.900

1471.900

1471.900

1471.900

1489.1000

1489.1000

1489.1000

1489.1000

1489.1000

1489.1000

1489.1000

1489.1000

1489.1000

1489.1000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

1711.0000

                                                                                                                                 7314.500

7407.200

7407.200

2747.400

2757.400

2757.400

2757.400

2714.500

300.200

300.200

307.7.700

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.400

1277.40
                                                                                                                                        11 mg, 500

11 mg, 300

11 mg, 300

12 mg, 300

12 mg, 300

12 mg, 300

12 mg, 300

14 mg, 300

15 mg, 300

16 mg, 300

17 mg, 300

17 mg, 300

17 mg, 300

18 mg,
```

Table 5.5.1...

```
Date 19 4 1948 ID NUMBER 145 42T 1
                                     SHALLOW PROFILE AT RANGE
                TABLE OF VALUES OF ORSERVED POINTS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         DEPTHAMETERS VELOCITY-MISEC COEFFICIENT Z COEFFICIENT C
                                                                                                                                                                                                                                                                                                                                                                                                1941,4000
1941,0744
1942,2773
1942,5097
1942,5097
1942,5097
1942,5097
1942,6097
1933,641
1933,641
1933,641
1933,641
1933,641
1933,641
1933,771a
1974,5783
1974,5783
1974,5783
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
1974,978
                                                                                                                 14.005
14.005
14.005
14.005
14.005
14.005
16.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17.005
17
                                                                                                                       469,000
900,000
970,000
970,000
600,000
613,000
670,000
670,000
7700,000
719,000
TARLE OF VALUES OF EXTRAPOLATED POINTS
                     DEPTH-METERS VELOCITY-MISEC 7 CORFFICIENT D CONFFICIENT
                                                                                      857,260
942,990
1026,700
1114,490
1214,490
1214,490
1215,000
1457,300
1543,000
1543,000
1543,000
1571,690
1571,690
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
22131,000
221311,000
                                                                                                                                                                                                                                                                                                                                                          1494,2274
1494,2070
1493,0789
1492,4488
1492,2831
1492,903
1492,903
1492,903
1492,903
1492,903
1492,903
1493,5918
1494,4321
1495,2624
1495,2624
1495,2624
1495,2624
1495,2624
1495,2624
1495,2624
1495,2624
1495,2624
1495,2624
1495,2624
1495,2624
1495,2624
1495,2624
1495,2624
1495,2624
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
1596,3634
15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         4278.300
4378.300
4488.300
4278.300
4278.300
4278.300
4278.300
4278.300
4278.300
5178.300
5178.300
5478.300
5478.300
```

4384,300 4788,300 4788,300 4088,300 4088,300 4088,300 4088,300 4088,300 7788,300 7788,300 7488,300 7488,300 7488,300 7488,300

Table 5.5.1.4

SHALLOW PROFILE AT MANGE 121.000 HILES

TARLE OF VALUES OF ORSERVED POINTS

	veinertvanztee	COMPRICIONS 2	CORFF ICIENT D
	1941.0986	17298644 -1	47030580 -2
14.000	1941,2124	.44741936 -1	.47000500 -2
24.010	1341,6444	.61742199 -1	44080093 -2
14.441	1942,4373	.11897425 8	.14266615 +1
35.441	1541,1605	10242404 -1	•,940 00 351 -i
40.000	1942,5097	. 99423042 -1	, 97333424 •2
90.000	1541.8921	. 94958765 -1	· , 47091876 -2
64.000	1941.7149	+ 11815935 B	-,20000498 -3
76.000	1931,9161	+.15424401 B	·.73001209 -2
11.111	1537,5693	17174864 B	.43000030 -2
11.101	1536, 9917	. 15176104 0	41014545 +3
144.000	1534,5941	· 12741824 4	,51086488 #2
129.000	1532.9681	- 14096306 0	49+47221 -2
135.000	1531.0524	· 14776313 0	.10000289 -1
194, 600	1527,5360	- 10496248 8	-,22461225 -2
140.000	1920,3784		63468424 -7
175.000	1527.6320	76329035 -1	-,55048432 +2
200,000	1924,1276	+, 99743718 -1	,38729886 -2
229.404	1522.6431	. 51062776 -1	-,48013306 -4
254.000	1521.5297	41162770 -1	.91201742 -3
275.000	1521,7854	- 24342339 -1	.43201204 .3
310.000	1520.3114	. 17478918 -1	95391949 -7
374.661	1517. 3939	. 28443158 +1	30063006 -3
466.666	1917, 4498	.,41944474 -1	15282255
491.000	1919, 1970	-,43345212 -1	. 95993842 •
344.444	1913,1086	63434340 -1	90675968 -3
313,000	1512 8522	-,54298885 -1	,21525592 •?
535.011	1511,3960	- 67479686 -1	-,34848393 -2
550.000	1547,9944	-,72435951 -1	. 28444786 - 2
545,414	1941,2238	- 61401949 -1	-,13734703 -2
594.901	1907, 2996	- 10135440 -1	94747758 •2
411.011	1507,4320	43762741 -2	.,29735919 -2
470,000	1914, 4339	. 34217215 -1	114384455 -5
400.000	1903,0785	·,42090096 ·1	-,16150644 -2
495.860	1903,0440	*,162(1532 0	-,14268252 -1
700.000	1507,0550	a,10071610 D	.11367909 -1
725.000	1501.3000	·.17245054 0	-,11694698 -1
734.888	1500,3710	*.14144707 0	.24136047 -1
744.011	1504,1643	+ , 94275445 -1	*.14781767 *1
794.000	1400.4864	.15474033 0	, 23046344 -2

TABLE OF VALUES OF EXTRAPOLATED POINTS

DEPTH-METERS	VELOCITY - H/SEC	Z COFFFICIENT	D COFFFICIENT
40. 444	1494,9767	+,27474079 -1	.94237442 -4
657.200 742.700	1492,9934	- 18346976 -1	.12333791 -3
	1491,4332	. 71992460 -2	.44498212 -4
1020.700	1491.3447	23440770 -2	.71054054 +4
1114,411	1491.4262	47476153 -3	97099391 -4
14067700	1401,4700	42144399 -2	. 84548395 -4
1105.411		,58063139 -2	.,99145895 -4
1371 - 760	1493,1984 1498,3848	37440493 -7	.25115014 +4
1497.366	1407,0019	704(#333 -2	.98865472 -4
1548,000	1493,5016	99133419 -2	. 68126525 -5
1426,764	1494,4381	97478189 -2	-,13592562 -5
1714 • 469	1491, 2624	.12(30297 -1	156977421 -4
1408-100	1496 . 5120	.12 38 947 -1	96970673 **
	3407, 3433	12 38 47 -1	.57287289 -4
1971 0484	1490,9930	14316509 -1	+.64277489 -9
2131.000	1497,4315	21737969 -2	-,32309187 +3
	1499, 6343	14168694 +2	,19594895 +3
2143.800 2220.700	1910.4740	10966746 -1	.27044314 +4
2314.800	1501,5194	. 13362985 -1	.27391469 -4
2466.206	1902,7900	14939265 -1	.13665229 -5
1415.016	1994.0067	14535443 -1	-,13977807 ·F
2571.486	1905, 2474	,14172597 -1	71157858 -9
2657,400	1506.4378	11340094 +1	-,11000241 -4
2743-100	1947,5380	.14034131 -1	44549448 **
2424.411	1548 . 9798	.16030312 -1	.27294249 -3
2914.500	1510.4400	.15743340 -1	20943197 .4
3010.200	1511,6816	.13369932 -1	27306862 -4
3166-111	1512.7225	,13364269 -1	,27394347 +4
3171.780	1913,9434	13744548 +1	129974384 -4
3297,480	1915,4249	14515555 -1	-,46201966 -4
3200,300	1515.4321	.14868611 -1	.49475718 -4
3386.310	1917.6057	.17792647 -1	
3488,388	1519,3824	.17745181 -1	
3700.200	1921,1628	.170(7802 "1	.32577515 +6 .32615662 +6
3600.700	1922.9468	17690399 +1	32348633 -6
3788,370	1924,7326	.17802881 -1	32444000 -6
3844,341	1526.5226	.17945277 +1	.32174971 •
3900.300	1928,3150	.17047588 +1 .17079727 +1	.32181347 +6
4466.350	1939.1123	10011713 -1	31971130
4100:300	1531.9110	18843946 -1	31833649 -6
4266,300	1333.7146	10079247 -1	31520473 +4
4384.311	1535.5246	.10106718 -1	31414432 .4
4400,300	1937.3297 1939.1419	18 38037 -1	31223207 -4
4540,306	1540.9973	10169136 -1	.38979342 +6
4488,300	1542,7797	18260016 -1	38784667 +4
4788.388	1944.9973	182 30705 -1	,30593072 -6
4450,300	1546 . 4719	10241127 -1	30294549 +4
4988.388	1948 , 2499	.10201330 -1	.30195182 -4
5068.300	1990,0001	.18321285 -1	,29754639 +4
5200.300	1551.0138	,18390944 -1	.29402071 -6
5388,369	1993,7903	18380365 -1	.24201508 +6
5488.304	1555,5000	.18409443 -1	.26953992 -6
9900,304	1557.4322	18438244 -1	.20646376 +6
F144 148	1559.2779	.18436244 -1	. 24648374 +4

Table 5.5.1.5

9

Table 5.5.1.6

```
FAR DOTE - A CONTRACTOR
                                                                                                                                                                                                                                                                                                          Contract and the
                                                                                                                                                                                                                                                                                                                                                                                                                                                      APPEARETER, CO. C. C. CALLERY
                                                                                                                                                                                                                                                                                                                                                                                                                                                             The second of the second court
                                                                                                                                                                                                                                                        1941, 1841

1941, 1841

1942, 3441

1942, 3441

1942, 1941

1951, 3451

1951, 3451

1951, 3451

1951, 3451

1951, 3451

1951, 3451

1952, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 3451

1972, 
                                                                        10.000
20.000
25.000
10.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
20.000
                                                                              115.000
120.000
125.000
                                                                           140,000
150,000
155,000
276,000
275,000
275,000
275,000
275,000
350,000
340,000
440,000
450,000
                                                                           710,300

610,000

610,000

715,900

715,900

715,900
TRACE OF VALLERS OF EXPORENCE ATER OFFICES.
             DEPTHEMETERS VILINGTON WASHINGTON CONTRIBUTION CONTRIBUTES
                                                                                                                                                                                                                                                                                                                                                                                                                                                      877.200
942.900
1028.700
1114.400
1275.800
11571.500
1477.500
1571.500
1571.600
2077.500
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143.000
2143
```

The two Espains of Commission and Commission

Table 5.5.1.7

FEBRUAR OF WALLES OF DUSTRIES WITH IN

C # * # * # \$ * \$ # \$	*** ******	exercise (Ext.)	1921,12,15.81
			. # 2 . 0 # 9 # 9 - 2
. 300	1941 5,60	19744574 -1	
10.000	1541.2124	. 21242204 -1	A? 00?
76.997	1704 R/**		*******
10.615	5544.4175	34747294 -1	44499995 -/
40.000	1542 5997	41412K1A +2	· . 21105240 ~/
56.660	1544 5521	* . 24+4645A - 1	147gal 15 -1
44.660	1541.9731	. 11749457 -1	. 1 ** 2004 - 1
*****	1541.4145	23A18319 B	·. #1:00'14 -1
49.440	1537.6657	11629121 1	. 53100301 . 1
70.400	1538.4284	. 9 - 7 4 9 4 () - 1	27100463 -1
75.400	1230.0761	n	- , 467 60 768 - L
	(33/ 1491	- 2100 9441 P	. 21464489 -1
* 2 . 70	1514.1117	P	20000177 -2
**		- 13293265 6	43435755 + 1
100.004	1335.0441	. 1584445t t	12/20306 -2
125.800	1511.4400		74434794 .2
139.000	1529.1124	12 >9586 0	
154.010	1574,7460	807A3917 - 1	
145.000	1927.3494	. 1310J036 A	
174.460	1526,4407	+ . 612A1962 -1	15.00.001
175.003	1926.7519	w.37427964 -1	22.67329 -1
145.000	1525.2441	4.17755083 0	45467340
208,000	1523.4478	95A 4 Q 460 - 1	18170454 -1
710.000	1577.3407	w.54242824 -1	,#5(p232) #2
220.000	1922.7626	+.10776475 5	19700417 -1
229.000	1521,9836	16776463 E	.1900000 -1
235.000	1971 4461	+ . 14A7#72A -1	-,A533A\$47 - 1
790,000	1521 5297	. 25; 7HR36 -1	*. 100 m 2 m 1 m - 1
271.000	1520 785A	11342045	. 41/01013 - 3
108.000	1320.4116	/ 12# 3127 - 2	- 95319244 -7
370,000	1520.2939	* . 10 \$0 \$ 343 - 1	16192348 -3
4 4 4 . 0 6 8	1510.9754	* 43710907 *1	401/18/0 -3
*10.000	1515,5177	+,12641A67 B	* . 19534474 -1
415.000	151 .6989	1613911 0	. 24534918 .1
425.600	1517, 941 1	44044754 - 2	42284645 -/
	1510.4171	. 621 4 0 125 -1	. , 75150119 -3
450,000	1514.0445	- 33412169 -1	.18067471 -2
440.000	1511,4788	12440461 -1	10059626 -1
310.000	1511,4505	- 34944147 -1	10002502 -1
770.000	1304.4722	- 49447714 -1	-,7400 1401 -1
458.000	1505.7445	. 34246377 ·1	33003044 -4
418.000	150 TAGE	. 1111C99A A	224 64 440 -1
470,000		. 85771541 -1	400 D4138 -1
029,000	1567,3479	- 18696195 -1	- 13734792 -1
A 10, 200	134	4.18f 9845f +1	13734741 +1
644.000	1507.144	. 41172360 -1	4104349 -1
* 44, 800		A17 - 2560 -1	41104345 -1
A70,000	1504.1437		13+00179 -1
655.000	1574 7448		.10011075 .7
649.300	1507,1471	47544104 -1	.78577518 -3
790.300	1561 1152	. 59341781 -1	41718903 .7
771.000	1961.240	. 343+7ARG +7	13324597 -3
711,600	1901.9133	14471734 +1	486 gage - 1
748.088	1501,0944	*,120,77043 8	
745,680	1500.4179	16578407 0	
744.668	1200.3140	• .54 0 90429 - L	31231017 +1

ten ... in Theings of Extrapolaten bolbers.

DEPTH-MFTERS	YELNELTY-HV4FC	1 corefletest	u voftillt#4
		32440681 -1	.10638487 -3
847,200	1446,7461	. 229 07338 -1	12831858 -1
742.98	441,6442		, 10247553 +3
1070,700	1492.4134	17394279 -1	.00433484 #4
1114,488	1441.7975	413n1343 -P	
1294,709	3493.7577	. 26994840 -3	
1245.600	1491.4817	37440756 -7	A45 40 412 -4
1371,500	1402 7731	,433495BP +2	.,54945555 -4
1457,300	1492,4290	10A1737A -2	.30017323 .4
943,888	1492.4015	64077743 -2	. 363.72891 -4
1626,700	1403 401	951 13404 -7	,48126529 -5
1714,460	1494,4121	.97470189 -7	13592562 -5
1000,100	485 2624	.12130257 -1	.96977421 -4
	1 494 . 51 29	121 19547 -1	96918673 -4
1005.900	(447,3433	12140684 -1	197247289 -4
1971,493		14310387 -1	44277489 -5
7057.348	1408,563R	21717009 -2	32304187 -3
2331.449	1405'7174		.10974098 -3
7113,000	1499,6145	34508854 -7	27044314 -4
7226,708	1500,4748	10046746 -1	
7314,500	(501,5154	.13302945 •1	
2430,200	1992,J466	.14535265 -1	
2449,900	1504.0067	. 14413643 -1	13577007 -5
2571.600	1905.2474	.14043952 -1	·.10170334 ·
2457.494	1204.4135	1- 001fact1.	56935843 -5
2743,500	1507,9189	.14840958 -1	43220431 -4
7674,600	956,9796	.10010312 -1	127244249 -5
2914.500	1510.4404	.15743146 +1	.,29963157 -4
3000.200	1911.4#14	.11305937 -1	77386062 ·4
30A6.000	1512.7225	.13306780 -1	.27344367 •4
3171,760	1913.0434	.15744548 -1	20074584 -4
1297,480	515,4245	.14212222 +1	662 91966 -4
3240.300	(915.4171	14242811 -1	.49475918 -4
1348.300	1317.6037	17742647 -1	. 52061404 +6
	1917.1424	17797101 -1	.12025470 =6
3440,306	1571.1474	17017002 -1	. 32577519
3340,300	1572,4467	17840394 -1	132019462 .0
1656.700	574.7374	17842891 -1	12367706 -6
3786.388		17915277 -1	, 12409853 -6
1000.300	1576,5728	17947578 +1	. 32196045 . 0
1944,340	1528. 1159	17979727 -1	32501347 -6
4 (98 , 30 0	1930,1123	18011723 -1	11490203 .4
4188,300	1931, 411	18043506 -1	11779702 -6
4298,362	1533.7148		31547546 t
4346.300	1 2 3 2	14075737 -1	31414932 -6
4486.300	1517.1297	10106718 1	11221297 •6
4546,300	1534,1419	18 (16 0 3 7 - 1	
4464.300	(540,9973	. 1446130 -1	.30775342 -4
a788.300	1542,7757	.1*209515 -1	. 10/4441/
4846,300	1544.5071	.14270704 +1	
4986, 100	\$548,4219	.14941137 -1	10269623 .4
9044,300	1948 2495	. 14791330 -1	10117739
9140,300	1550.0#01	.14471776 41	.29773717 +4
4248.300	1551,0134	1- ********	29802351 **
5310.300	1545 7404	1 . 445 546 .1	,29231338 +6
5448.300	1557 4494	10404443 -1	. 24653552 - 6
5548.300	1557.4122	.18418244 +1	.29648376 -4
364A.3GQ	44.0 2174	14414244 -1	.786 443 76 +4

Table 5.5.1.8

4086.300 5188.300 5288.300 5388.300 5488.300

Table 5, 5, 1, 9

SHATE ON PROFILE AT GANGE - DIRECTOR HELES

TAPLE OF VALUES OF CUSEBUEN COLLEC

第二年 大小日本では一部は北京日本日の日本

四個 人名 人名

01 PTD+4FTEMS	ALFUCTIA-ALEK	Catchicites &	COFFI [CIFAT D
.000	1545.9100	15741736 -1	.10002114 -3
10.000	1542.0424	.16741943 -1	.10(02116 -3
20.000	1542.2648	27742290 1	.21(00481 -2
30.000	1542,5473	49242592	.72(00172 -7
40.000	1543,2497	.07421799 -2	10-00395 -1
90.000	1544,7771	¥3250762 ·s	91100939 -2
60.000	1541. 1845	*.19:25952 n	25(00272 +2
70.000	1937.7469	*.14275980 D	42100108
A0.000	1536,5293	-,94249567 -1	.45600458 .2
90.000	1537, 7617	//759547 -1	2010618b -J
100.000	1510,9741		
125.000	1934,7301		
		• . 90 0A1021 •1	47t04675 -5
150.000	1512.1261	95641714 -1	.68799133 -3
179.000	1529.0520	10476276 A	14748753 -7
200.000	1526,8479	· .61920709 ·1	. 18458404 .?
210.000	1926,9103	· , 67629331 ·1	-, 99739667 -2
279.000	1524,8239	•.10228091 n	.13:33541 -2
270.000	1522,6494	+.63445380 -T	17400494 -2
275.000	1571.4457	4.24742383 -1	•2F03039 •3
300.000	1571.7014	15428642 -1	.13166882 -3
350.000	1520.5939	252A2795 -1	49:0349 <u>1</u> -J
400.000	1518,5754	47644700 -1	40404129 -3
450.000	1515.7471	•.4062@00# -1	.68574696 +3
485.000	1514.7453	.10611595 •1	. ? ? 430284 • ?
490,000	1514.8485	-,26419893 -1	1764R024 -1
.00.000	1513,7486	961A9074 -1	.41203875 - 2
525,000	1513.1047	-,29744915 -1	-,52405441 -3
550.000	1512.3106	·.42499720 -1	57672957 -3
600,000	1509,4722	54248150 -1	,99492370 -4
A#0.000	1506.8#37	·.24245931 ·1	.11[00964 -2
460.C00	1500.6961	5114893A -1	K4E06976 -2
A75.000	1905.1095	·.65163917 -1	.46227010 -2
690.000	1504.7430	87A4D03A -1	762 75177 -2
7 cg. 000	1503,4857	10A10912 0	. 35337003 -2
730.000	1501 4121	•.55An4094 •1	46f98252 -4
750.000	1500,7067	- 51015121 -1	. 23357551 -3

TABLE OF VALUES OF EXTRAPOLATED POINTS

Table 5.5.1.19

Date 19 4 1256 ID 11 MOFE 145 067 SHALLOW PROFILE AT SAUGE 234.405 MILES THOLE OF VALUES OF OUSERVER EGILLS 1542, 5800 1544, 8012 1542, 7924 1542, 8473 1542, 8473 1543, 2497 1543, 2497 1544, 9733 1540, 7145 1539, 2860 1538, 9893 1538, 4817 1531, 481 1536, 6802 1533, 1461 1530, 7421 1522, 2357 1522, 3314 1522, 3357 1522, 3357 1522, 3578 1523, 1498 1522, 2357 1522, 3578 1524, 0788 1514, 0788 1514, 0788 1511, 9895 1511, 9895 .000 70.000 20.000 20.000 30.000 40.000 50.000 55.000 60.000 76.000 80.000 96.000 100.000 175.000 175.000 275.000 275.000 275.000 275.000 350.000 450.000 500.000 550.000 570.000 1510.9857 1510.1427 1508.7056 1507.4114 1507.2736 1506.0060 1503.8452 1500.7067 TABLE OF VALUES OF EXTRAPOLATED POINTS DEPTH-METERS VILOCITY-W/SEC 2 COECFICIENT O CONFFICIENT -,355,05269 -1
-,248,05190 -1
-,136,64175 -1
-,378,7991 -2
-100,1003 -2
-453,6910 -2
-100,1003 -2
-403,8610 -2
-7,124,1809 -2
-7,124,1809 -2
-7,124,1809 -2
-7,124,1809 -2
-7,124,1809 -2
-7,124,1809 -2
-7,124,1809 -1
-124,18086 -1
-124,18086 -1
-124,18086 -1
-124,18086 -1
-124,18086 -2
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0289 -1
-133,0389 -1
-134,0289 -1
-134,0289 -1
-134,0389 -1
-136,039 -1
-136,039 -1
-136,039 -1
-136,039 -1
-136,039 -1
-136,039 -1
-136,039 -1
-136,039 -1
-136,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-138,039 -1
-12473560 -3
13467862 -3
131862824 -3
13190555 -6
184540349 -4
175924460 -4
175924460 -4
17592460 -4
17592460 -4
17592460 -4
1759260 -5
17597421 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
17707289 -4
177 897,200 942,900 1028,700 1114,400 1200,700 1285,800 1371,500 1457,300 1497,300 1543.000 1578.700 1714.400 1700.100 1707.600 27131.000 27131.000 27131.000 27143.000 27143.000 27143.000 27143.000 2714.600 2714.600 2714.600 2097,400 2743,100 2878,800 2914,900 3000,200 31086,000 3171,700 3288,300 3288,300 3488,300 3588,300 3788,300 3788,300 308,300 3986,300 4086,300 4166,300 4208,300 4368,300 4466,300 .32101347 -6
31800203 -6
31795502 -6
31547546 -6
31424032 -6
31223297 -6
30073342 -6
30764607 -6
3096823 -6
30117035 -6
29773712 -6 4688.300 4788.300 4888.300 4888.300 4988.300 5088.300 5189.300 5288.300 5388.300 5488.300 5588.300

Table 5, 5, 1, 11

.29773712 .29602051 .29201300 .28953552 .28(48376 .28648376

a property sole.

```
DATE 19 4 1 40H 10 + HOLD 1 1PE KE" 1
      SWALLOW PROFILE AT MANGE - 739,700 MILES
TABLE OF VALUES OF ORSERVER POINTS
                                                                                                                                                                                                                                                                                                                                                                                                        DEPTW-METERS SECUCITY WASER CHEFFEICIENT 1 COSTECUTIONS D
                                                                                                                                                                                                                                 1941. V100
1942. 0024
1942. 0024
1942. 4071
1942. 4071
1941. 5097
1941. 5097
1941. 1072
1951. 1072
1951. 1072
1952. 1072
1952. 1072
1952. 1072
1952. 1072
1952. 1072
1952. 1072
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1953. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1952. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073
1953. 1073

                                                              70.000
40.000
70.000
70.000
70.000
70.000
70.000
70.000
70.000
70.000
70.000
70.000
70.000
70.000
70.000
70.000
70.000
70.000
70.000
70.000
70.000
70.000
70.000
70.000
70.000
70.000
70.000
            TAPLE OF VALUES OF EXTRAPOLATED POINTS
                         DEPTH-METERS VILLOCITY-MASEC & CORFFICIENT D. CORFFICIENT
                                                                                                                                                                                                                                                                                                                                                                                                                                    1914, 3A53
1913.0199
1512.1764
1011, 7907
1510.9901
1500.4906
1500.4319
1500.4000
1400.7888
1400.4000
1400.7888
1402.1667
1402.0469
1402.1667
1402.0469
1402.1667
1402.0469
1402.1667
1402.0469
1402.1667
1402.0469
1402.167
1402.047
1402.047
1402.047
1402.047
1402.047
1402.047
1402.047
1402.047
1402.047
1402.047
1402.047
1402.047
1402.047
1402.047
1402.047
1402.047
1402.047
1402.047
1402.047
1402.047
1506.388
1510.7889
1510.888
1511.688
1512.988
1512.9888
1512.9888
1512.9888
1512.9888
1512.9888
1512.9888
1513.9888
1513.9888
1514.9888
1515.9888
1516.9788
1516.9788
1516.9788
1516.9788
1516.9788
1516.9788
1516.9788
1516.9788
1516.9788
1516.9788
1516.9788
1516.9788
1516.9788
1516.9788
1516.9788
1516.9788
1516.9788
1516.9788
1516.9788
1516.9788
1516.9788
1516.9788
                                                                 190,000
196,000
199,300
600,000
619,000
670,000
750,000
750,000
750,000
1730,000
1730,000
1730,000
1730,000
1730,000
1730,000
1730,000
1730,000
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
1731,400
173
                                                                                                          4388.300
```

Table 5.5.1.12

TABLE OF VALUES OF EXTRAPOLATED POINTS

TANES OF AMERICA			
DEPTH-METFRS	YELDCITY-H/SEC	S CURELICIENS	D CORFFICIENT
		36935233 -1	. 12878963 -3
497,200	1496,3887		13930310 -3
942.900	1493,7134	+.23410290 ·1	12203150 -7
1020.700	1492,0320	. 14334548 .1	11722974 -3
30000	1491,2537	409#1109 *7	
1114.400	1493.3490	95646475 -1	
1200,700	1491,4181	45143510 -2	.R4540246 +4
1285,860		39642401 -7	. 59945399 **
1371,900	1442,1134	40017712 -2	23424806 -4
1497,300	1492,3725		49191719 .4
1543,600	1492.8019		48126925 +5
1628.700	1493,5918	95143409 .5	. 13992962 +5
1714.405	1404,4321	97470189 *7	36977421 -4
1000.100	1495,2624	.12110297 *1	4970473 -4
1889,900	1496,5129	.12:30547 *1	
18874700	1497,3433	12140686 -1	
1971,600	1418,5938	14316569 11	*,44277489 +9
2077,309	1497 6319	.21737909 -7	-,32309187 -3
2131.000		14118654 +2	. 1 85 8 4 0 95 + 3
2143.000	1499,6343	19966746 -1	27066314 -4
2228.700	1900,4746	.10440140	27391469 -4
2314,500	1501,5154	1334246 1	13665229 -9
2400,200	1502,7560	14957265 1	3977967 •3
2485.900	1304,0007	14519643 -1	
	1945.2474	13863336 -1	
2571,690	1904.3841	13361526 .5	
2697,400	1507,5389	15143892 -1	38940657 **
2743.100		16940312 -1	27294249 .5
2828.000	1508,9768	15743346 +1	- 29943157 +4
2914,500	1510,4408	13303932 -1	. 27386662 -4
3000.200	1911,6816	13946240 -1	27394367 +4
3006.000	1512,7725		29974584 +4
3171.700	1513.9634	.15744548 +1	-,66201966 -4
3277, +60	1513,4245	142(2222 +1	49479914 -4
3248.300	1515.8321	14242011 -1	32081604 -4
34,44,344	1511 5057	. 17742447 - 1	
3386,300	1919,3826	17747101 *1	32425470 -6
3488,300	1921,1628	17817802 +1	32577515 .4
3588,300	1721,1000	17640300 -1	32615447 **
3600,300	1922.9462	17842891 -1	32347706 -6
3788.300	1924,7328	79,9277 -1	
3464,300	1926,3726	17947978 -1	
3988,300	1926,3199	37979727 +1	
4068.300	1530,1123	3,979,727	
4100,300	1931,9116	13011723 -	
4208,300	1933,7146	18643566 -	
	1939,9206	26012531	31414032 +0
4308,300	1937, 3297	18166718 .	
4440,300	1939,1419	16116037 -	31723297 -6
4588,300		18169136 -	30979342 +4
4688.300	1940.9573	18230016 -	30784407 -6
4750.300	1542,7797	18210703 -	30503872 +0
4888,300	1944,5973	18241137	30269623 -6
4988,300	1940.4714		
5048.300	1948,2479		
5164,300		16371776 -	*********
			1
5268.309		18580365 -	20201508 -6
5386,300			28653552 +6
5488.30			
9588.30			28649376 .0
5666,305		. 10410241	

Table 5.5.1.13

DEPTH-METERS	ALFOCT 14 - HAZEL	CORFFICIENT Z	CUEFFICIENT U
	1542,3600	.20241634 -1	21949554 .2
18.000	1942,5324	.62420845 +2	1,2199950 42
20.000	1542.4846	.57422636 -2	20999908 +2
30.000	1500.0475	107467 9 +1	10000224 -3
48.866	1542.4197	17742336 -1	19073484 +7
96.888	1542.0021	49230320 -1	13300152 -1
46.111	1545.0345	. 29709415 O	*.36247014 *1
45,440	1539,0057	- 20876026 0	.71100571 +1
74.609	1939,7449	- 52758940 -1	-, 42000580 +2
44.111	1934,7993	. 99999967 .1	.10009991 -3
90.000	1937,7617	- 53299373 -1	.93000984 -2
130.000	1937,4941	22816253 -1	4,30514744 +2
125.404	1934,1901	80960903 -1	16040454 -2
190.000	1935.6461	809 64375 - 1	10245557 -2
140.000	1532.8485	- 22943144 0	· 27733960 ·1
169,000	1931,3497	. 22343199 0	. 97333900 -1
179.464	1938.4820	1061342D O	38744311 J2
288.000	1926,4179	16373219 0	49348770 +3
215.000	1924,0014	91230347 -1	10293450 -1
225,000	1923,4938	46469323 +1	-, 13484415 +2
250.000	1922,1097	*,465A2843 *1	13446309 +2
275.000	1921,3497	-,18161926 -1	.02843345 .3
388.000	1921.2014	659487a0 -2	10068945 -4
39 4 . 500	1570.0534	131A2041 -1	24401768 -3
404.101	1519,6454	JB143934 -1	75205994 -3
470.000	1517,0372	48445252 -1	34000931 -3
500.000	1515.0369		55606079 -3
550.000	1911,4503	+.62448071 +1	21196951 -3
400.000	1908,7021	616690D6 -1	18043693 +3
490.000	1505,4836	.31992572 -1	.13646943 -2
678.000	1505.1163	+,464A8673 +1	- 28403744 +2
475,000	1704,8494	. 19578457	* 34405994 *1
640.000	1503,1604	19478497 0	96405792 -1
485,000	1902.4814	31747762 -1	.06018844 =2
700,000	1503.4852	. 36346352 -1	10481140 -1
710.000	1902.5775	-,79164267 -1	.23335775 -2
730.000	1901.4420	3.748690 .1	.10001042 -2
790.000	1701.0007	+.23657195 +1	30903673 =3
701000	********	-14-07/197 -1	

TABLE OF VALUES OF EXTRAPOLATED POINTS

DEPTHUMETERS	VELOCITY-H/88C	I CORFFICIENT	D COFFF ICIENT
497.200	1444,2453	37348714 -1	.13281435 -3
742,900	1493,5784	25832480 -1	.13492473 -3
1020.700	1491.8662	*:14926965 *1	.12661106 -3
1114.400	1491,0862	-,365(7963 +2	.12791772 -3
1200.700 1205.000	1491,2100 1491,3290	,130>9504 -2 ,49400311 -2	97086734 -6 .84940336 -4
1371,500	1492,0594	.60027153 -2	- 59945601 -4
1497.308	1492,3540	43271335 +2	.20837750 .4
1543,004	1402.0015	722(7942 +2	.44645437 -4
1426.789	1493,5910	,75133469 -2	.60126525 -5
1714,400	1494,4321	97470189 -2	13792762 -9 .96977421 -4
1006,100	1496.5129	,12134297 -1 ,12130547 -1	.96977421 =4 *.96970673 =4
1771,400	1497.3433	12540406 -1	.97207289 -4
2457,300	1498,5934	.143{6989 -1	+,44277489 +5
2131.000	1499,6319	21737909 -2	·. 3230 0187 -3
2143.000	1499,4343	14160054 -2	19594095 -3
2220.700	1980,4746	10966746 -1	.27066314 =4
2314,900 2400.200	1901,7194 1902,7560	.13362985 -1 .14535265 -1	. 27391449 a4 .13445229 a3
7489,914	1804.4047	14935443 -1	-,13577047 -5
2571.400	1505 2474	13427341 -1	·. 19173636 -4
2457,460	1906,3780	13361618 -1	43177648 -9
2748:100	1507 5309	15179991 -1	.36118197 -4
2420,000	1308,9796	.16930312 -1	.27294247 -5
2714.700 3000,200	1910,4408 1911,4814	.15763346 -1 .13365932 -1	27384062 -4
3004.400	1512,7229	13356289 •1	27394367 -4
3171,700	1913,0634	13744948 -1	29974584 -4
3297.400	1515,4249	.14212222 -1	46291746 -4
3200,300	1515.6821	.14242011 -1	69475918 -4
3300; 300	1517,4057	17792647 -1	.32081604 -4
3400,300 3 500 .300	1519.3824 1521.1628	.17785101 =1 .178[7802 =1	.32825470 +6 .32577515 +6
3000.300	1522,9462	17050300 -1	.32415462 -6
3700.300	1524,7328	.178A2891 -1	.32367706 -6
3000,300	1924.5228	.17915277 =1	32405858
3900,300	1920,3150	.17947578 #1	,32196045 -4
4900,300 4108\300	1930.1123	.17979727 -1	.32101347 -6
4208,300	1933,7140	.10011723 -1 .10043966 -1	31795302 -6
4340,100	1939,5204	.19079237 -1	31547546 =6
4400,310	1937,3297	18106718 -1	31414032 -6
4568.388	1539.1419	.18138037 -1	,31223297 -6
4668,300	1940,0573	.16169136 -1	,30975342 -4
4788,300	1942,7797	.16200016 -1	.30784607 -4
4000,300 4700,300	1944,9973	.14230705 -1 .14261137 -1	.30269423 -4
5000,300	1948,2479	.10201330 -1	30117035 -4
9144,300	1996.0001	14351274 -1	29773712 -6
5288,304	1551.9138	.18346964 -1	.29602051 -5
4308,300	1993.7903	18340345 -1	.29201500 -4
5468,308	1555,5698	10409443 -1	.28753552 -4
5508,300 5408,300	1557.4322 1559.2775	.18438244 -1	.28648376 -6 .28648376 -6
74441348	183,15,13	' Yadlata. 41	

Table 5.5.1.14

Date 19 4 1408 10 11- EP 165 415

Table 5, 5, 1, 15

DATE 19 4 1966 ID NIMBER 164 447 1

SHALLOW PROFILE AT BANGE - 274,460 MILES

TABLE OF VALUES OF DESFEVED POINTS

DEPTH-METERS	**LOC1**-#/\$EC	CORFFICIENT 2	COEFFICIENT D
	1942,8888	47981473 -2	.19673486 47
10.000	1942,7924	- 475*9745 42	.10073406 +7
20.000	1942,7048	.27942270 -1	.44649324 -2
30.000	1543,2473	.27942470 -1	
44,444	1943.2497	. 26976645 8	* . 454 #451 P *1
45,646	1541.1488	-,27479948 8	.70000739 -1
54.401	1941.0021	-,38424990 -1	*.12244922 *1
11-111	1537.4045	*.17977448 8 *.17975481 8	71000472 -2 .13700085 -1
79,555	1937.3993	17777781 # 94797340 -1	-, 99963213 -4
14,494 14,494	1930.0117	. 67949500 -1	25000763 -2
100.000	1930.0141		
175.000	1533.4461	#20A1844 -1	. 471 96486 -1
170,400	1931.3461	+.18442139 1	-,7664B124 -2
140.000	1529.1784	+.17416434 A	.24002134 -2
175,000	1927,5420	-,10271208 4	,,,,,,,,,,
200,004	1525.2370	-,34747229 -1	46972.04 -2
216,000	1929,1303	-,37 4##\$\$# -1	-,92535444 -2
225,800	1823.9434	62879689 -1	11421155 .5
254,998	1522,9490	·.23261740 ·1	113768437 +2
279.365	1572.8197	634(2366 -5	-,14003410 -4
300.000	1922.4417	*.09413047 -2	-,20349092 -8
351,111	1922,3236	- 30946277 -2	-,77336420 +3
379.000	1922,1494	- 15e77881 B	-, 27401725 -1
340,100	1581.4987	14176735	47782911 -1
385,111	1981.1319	44449257 -2	·. 19834014 -2
440.000	1920.7895	· . 333 (9026 · 1	-, 13634392 -7
430.496	1319,1729	3476 6192 -1	.13037816 -2
449.010	1910.0001	a.13(94754 g	· . 1 43 3 4 8 4 1 - 1
450.006	1517.9678	·. 13193763	14834523 -1
405.488	1517.4448	*, 33419999 *1	* 12305797 -2
740.111	1717.4698	·.52643545 -1	.17949424 -3 -,36019498 -4
990.600	1513,7066	*.48444683 =1 *.42911578 =1	92977791 -3
	1910.6723	10037367	-,41694936 +2
179.111	1308.0400	*.51740112 et	.27242750 -1
430,404	1540,0498	-,29499337 -1	10135840 -1
846.616	1507,7919	64778313 -1	.10201094 -5
676.100	1997,5734	49941748 -2	49338446 +2
495,411	1507,4550	29744374 -1	*.14402473 ·L
445,840	1904.4372	.16069022 -1	. 27736282 -1
478.800	1706.0449	.39087459 -1	*,10539309 ·L
400,111	1906.3400	- 10945533 -1	149907111 =2
474.111	1706,9632	- 53744584 -1	14001522 -1 .10501196 -1
700,000	1509,2494	*,71271420 =1 .99247614 +5	.10341196 -1 .23442691 -1
71 B. 880 71 W. 880	1909.0777 1909.0690	97247614 -1	-,21042400 -1
730.000	1304,7024	- 63144686 -1	74206497 -3
790.400	1302.8849	64663643 -5	47714927 +3
. 20,000			

TABLE OF VALUES OF EXTRAPOLATED POINTS

Derti-meters	VELOCITY-H/880	I CORFFICIENT	D COFFFICIENT
2011111111111111			
497,288	1497.7724	44397449 -1	13639847 *3
148,111	1494.6114	. 2043 7142 -1	11617912 -3
1020.711	1492.6432	17122792 -1 -,60941319 -7	.13013234 -3 .12719635 -3
1114,400 1200,700	1491.8737 1491.8713	04942617 -3	- 197111482 -4
1205.000	1401.7679	. 29044493 =2	.84740454 +4
1371,500	1492.3280	39448397 -2	99145745 +4
1497,300	1492,4412	27974348 -2	.32833288 -4
1943,444	1498,0019	.47(29881 -2	, 98731884 •4
1628.700	1403,5010		44154555 -1
1714,488	1494,4181	.97478189 *2 .12136297 *1	*.13592562 -5 .96977421 -4
1004.100	1495,2484 1496,5189	.12130297 *1 .12130947 *1	94774473 -4
1971.000	1407.3483	12148684 -1	. 97267209 +4
2457,300	1400,4038	14114987 +1	44277480 -5
2131,800	1497,4317	21737949 .2	*.32384187 +3
2147.888	1449,6343	. 1414884 • 8	.19994893 -3
2220.744	1940,4740	110060746 -1	. 27666314 -4
1974.201	1901,9194	.13162703 -1	.27391469 =4 .13669829 =P
1410.201	1982,7948 1984,8867	.14939245 *1 .14939443 -1	-,13977807 -5
1489.988 8872.688	1707,2474	13709408 -1	13917327 -4
2697.400	1964, 3729	13341469 -1	98872134 -9
2743.184	1507,5309	.199(1944 -1	.37878005 -4
2020.000	1986, 9798	. 14036312 -1	, 27594249 -B
2714,711	2910448	.19743346 -1	·, 20043157 -4
1444 . 244	1911,4614	.13399932 -1	27306062 =4 . 27304307 =4
3464.414	1912,7229	.13366289 -1 .15744948 -1	.27394387 =4 .29974384 =4
1171.700 1897.400	1913,9684	142(2227 -1	66841966 -4
3804.100	1519,4321	14447011 -1	.49475918 +4
1300.311	1517.4057	17792647 -1	.37181604 .4
1464,341	1517,2424	17745141 -1	.32429470 -4
3940,349	1921,1480	.17617002 -1	,32977919 -4
3446.344	1922,9467	17898399 =1	.32419442 -4
3710-311	1924,7326	17862091 +1 17019277 +1	.32489893 .4
2004,344 3106,311	1920, 3150	17947978 -1	32174847 +4
4100.311	1930.1183	17070727 41	. 32111347 -4
41.00.300	1931, 9110	15611723 -1	31696203 -6
4200,300	1933,7546	.18443764 +1	.31709902 -4
4300,311	1,937,5246	16075237 -1	.31547546 -6 .31414832 -^
4440,341	1937,3297	.10166718 -1	31414832 -A
4906.306	1537,1410	10130037 -1	54979742 -8
4848.388 4788.388	1940.9973 1942.7757	10000044 -1	30784407 +6
4904,340	1844.5973	10030769	365'3872 -4
4944.301	1544, 4219	10241187 -1	.36269623 -6
\$144,711	1940, 2409	10291350 -1	10117039 +4
9100,300	1990,0001	,15821276 +1	, 99773717 06
1864-348	1991.9134	18340964 -1	. #9442491 ··
5306.300	1990,7900 1990,9000	.10380349 -1	28953553 -4
5486,300 5988,300	1997,4327	18430244 -1	78448374 +4
7,000,300		18418144 41	

Table 5.5.1.16

Da16 19 4 1986 ID HINNER Table to valued to detroite margin DEPTH-METERS VELOCITY-M/SEC CORFFICIENT 2 CORFFICIENT D 1 A . 806
1 A . 806
2 O . 906
3 O . 906
4 O . 906
4 O . 906
1 O . 1942. 3400 1942. 9124 1942. 4073 1943. 4409 1943. 3409 1943. 3409 1943. 3409 1943. 3409 1938. 27417 1938. 7341 1938. 7342 1938. 7344 1938.

TABLE OF VALUES OF EXTRAPOLATED POINTS

DEPTH+HETERS	VELOCITY-H/SEC	2 COFFFICIENT	D COEFFICIENT
497.280	1496,1804	361 9 6783 -1	-13774740 -3
942.700	1493,4129	- ,24141477 -1	.13044418 -3
1028.700	1491 , 6623	14761968 -1	.13150293 .3
1114,400	1498 . 8885	-,35986957 -2	12902011 -3
1206+760	1491,0901	.19972419 -9	*.97034955 **
1205,400	1491.2104	.54831344 -2	.84940318 -4
(371,989	1491,7909	49370176 -2	-,50945404 +4
1487,300	1462,3312	47273891 -2	.17761357 -4
1543.100	1442.4019	.7394 8988 - 2	142224147 -4
1628.700	1493,5918	195133409 -2	.48124529 +5
1714.405	1494 . 4381	.97479189 -2	13592362 -5
1488,100	1405,2624	.12130297 +1	196977421 -4
1989,980	1400,5120	,12130947 -1	-196970673 -4
2657.346	1494,5938	.12140086 -1 .14314509 -1	.57207289 #4 44277489 #3
2131.000	1499,4319	21737000 -2	34109107 -3
2145.000	1409.4343	14, 80054 .5	19594195 -3
2226\700	1900.4748	10946746 -1	27044314 -4
2314,300	1901,9194	.13562405 -1	. 27391469 -4
2406.200	1902,1560	,145 35265 -1	13665229 -6
2469,900	1904.0067	,145 15643 -1	13577007 -9
2771,600	1903.2474	.13782989 41	16207162 -4
2657,400	1906.3703	.13361714 -1	.63072711 -3
2743.188	1907,5360	.15224361 -1	.37082262 -4
2020,000	1304,9798	.10938312 -1	.27294340 -3
1914,500	1910.4488	15768346 .1	-: 20963197 -4
3000.200	1311.6010	.13369932 +1	27386062 -4
3006.000 3171-700	1912,7229	113386389 -1	.27394367 •4
3297,488	1913,9634 1919,4249	19764948 -1	.29774584 +4 46281546 +4
3200,300	1515.4321	.14242611 *1	-,46201366 -4 ,69475918 -4
3300.300	1517.4057	.17742647 *1	32081604 .4
3400,300	1919,3424	17709181 41	32829470 -6
3988,300	1921.1428	17817402 -1	12577919 +4
3466,314	1522.9462	.17850309 +1	.32453662 .4
3700.300	1524,7528	.17882001 -1	-323477C4 +3
3488.380	1926,5728	.170 (5277 -1	,32489893 .4
3986,300	1988,3190	.17947578 -1	.32196945 -6
4488,310	1530,1123	17979727 +1	.32161347 +4
4104,300	1931,0114	.18011723 -1	.31940303 -6
4200,300 4300,300	1933,7144 1937,5284	.18043966 w1 .18099237 w1	.31749302 +6 .31547544 +6
4488.300	1937.3297		.31947944 #6 .31414032 *6
4546.300	1939,1419	.10106718 =1 .10136037 =1	.31223207 .4
4488,308	1940,9573	18169136 -1	.30979342 .4
4784,368	1942,7797	.10200016 -1	.34784607 +6
10.00,300	1544,5973	10230705 -1	30903077 -4
4988,300	1946,4219	.10841137 -1	.30244423 +4
5488,300	1948,2499	.10201330 -1	.30117035 -4
9184,300	1550.0601	.10371274 -1	129773712 **
5288,380	1551,9138	.10350764 -1	129602091 46
2200.300	1953,7503	.16280365 -1	. 29201508 -6
9400,300	1555,5696	.104 jj 9443 - 1	190993392 -4
7500,300	1957,4322	,104 50244 -1	120846376 +6
3000,300	1999,2779	.18438244 +1	. 28646376 ++

Table 5.5.1.17

第二年 1

Table 5, 5, 1, 18

```
TATE 19 4 1258 10 1 MOED 165 CET 1
             DEEP PROFILE AT PANGE 305,700 Mich
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           TEMP AT DESCRYS MARENUM DENTHE 2,709 DEG CENTIGRADE
Table of vacific to Calmark, Adjust
      DEPTH-METERS VELOCITY-MASER CONFICIENT & CONFISECIENT
                                                                                                                                                                                                                                                                                                                                   -.17258453 -1
.57418823 -2
.17242146 -1
.57422338 -2
.175422338 -2
.1757595 0
-.24026104 0
-.26576157 0
-.1652094 0
-.31426175 -1
                                                                                                                                                                                            1542.1500
1542.0924
1542.2924
1542.3797
1542.3797
1542.3797
1542.3797
1542.3797
1540.2946
1533.7329
1533.7329
1533.7329
1533.7329
1533.7329
1533.7329
1533.7329
1533.7329
1533.7329
1533.7329
1533.7329
1520.4861
1520.4871
1520.4871
1520.4871
1520.4871
1520.4871
1520.4871
1520.4871
1520.4871
1520.7337
1504.4781
1504.4781
1504.8871
1504.8871
1408.8871
1408.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8871
1409.8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              . 23( Qn336 -2
                                                             10.000
20.009
30.000
40.000
50.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              . 251 0 0 336 - 2
. 191 7 3 4 8 6 - 7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               -,22599914 -2
,22590954 -2
-,24000239 +1
-,10300179 -1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 13200073
                                                                 70.000
80.000
90.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  , 19666918
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               .19060910 -1
-,50400772 -1
.85667495 -2
-,17603760 -3
-,62405396 -3
                                                                                                                                                                                                                                                                                                                                   - 10776081 0

- 212498197 0

- 118436197 0

- 118436180 - 1

- 88943782 - 1

- 39342720 - 1

- 24142716 - 1

- 67615992 - 2

- 119780928 - 2

- 22442730 - 1

- 37343929 - 1

- 46140799 - 1

- 47746111 - 1

- 2711996 - 1

- 35343929 - 2

- 244848668 - 1

- 35372702 - 2

- 7489189 - 2

- 7486181 - 2

- 72761881 - 2

- 72761881 - 2

- 72357077 - 2

- 725618181 - 2

- 72357077 - 2

- 725618181 - 2

- 72357077 - 2

- 725618181 - 2

- 72357077 - 2

- 725618181 - 2

- 72357077 - 2

- 725618181 - 2

- 72357077 - 2

- 725618181 - 2

- 72357077 - 2

- 725618181 - 2

- 72357077 - 2

- 725618181 - 2

- 72357077 - 2

- 725761881 - 2

- 727777909 - 2

- 727777909 - 2

- 72777709 - 2

- 72777709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

- 7277709 - 2

-
                                                        95,000
100,000
175,000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               - 174 05 JV6
- 30 08 05 46
- 400 00 00
- 44 00 415
- 44 00 415
- 94 10 46 02
- 48 53 60 27
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 20 08
- 78 10 2
                                                        150,000
175,000
200,000
                                                    275,000
250,000
275,000
300,000
350,000
                                                        400.000
490.000
500.000
590.000
                                             600.000
670.000
700.000
750.000
150.000
1114.400
1200.760
1371.500
1457.300
1628.700
1714.400
180.100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        -,59945509
-13673045
-39497196
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   .68126575
-.13592962
.56977421
-.86970673
                                             1885,900
1971,600
2057,300
2131,000
2143,000
2228,700
2314,500
2400,200
2465,900
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          57207289 •4
•64277489 •5
•32309187 •3
19594095 •3
27066314 •4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            .77391469
.13665229
                                                                                                                                                                                                                                                                                                                                                         144 15643 -1

144 15587 -1

15643149 -1

16930312 -1

15743346 -1

13305932 -1

13306289 -1

15744548 -1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          -.13577007
-.86786290
.26642626
.27294249
-.29963157
-.27386062
.27394367
.29974584
                                                  2571,600
2743,100
2828,600
                                                2914,500
3000,200
3086,000
3171,700
3257,400
    TABLE OF VALUES OF EXTRAPOLATED POINTS
          DEPTH-HETERS VALUCTIV-M/SEC 2 COFFFICIENT D COFFFICIENT
                                                                                                                                                                                                                                                                                                                                                     2 COFFFICIENT
.17782647 .1
.177875101 -1
.17887802 -1
.17880380 -1
.17982891 -1
.17947578 -1
.17947578 -1
.18013566 -1
.18013566 -1
.18180376 -1
.18180376 -1
.18180376 -1
.18180376 -1
.18200016 -1
.18200016 -1
.18200340 -1
.18351964 -1
                                                                                                                                                                                              1517.6058
1519.3826
1521.1428
1522.0462
1524.7328
1526.5028
1526.3028
1531.9129
1531.9119
1533.7146
1535.5206
1537.3297
1537.3297
1537.3297
1540.0573
1544.5073
                                             3386,300
3488,300
3588,300
3688,300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       .32081604 -6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       .32081604 -6
.32625470 -6
.32577515 -6
.32596588 -6
.32405853 -6
.32386780 -6
.32196045 -6
.32101347 -6
.31690203 -6
                                                3688,300
3786,300
3688,300
4988,300
4188,300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       .31690203
.31795502
.31547546
.31414032
.31223297
.30475342
.30784607
.30574799
                                                  4286.300
4388.300
4468.300
                                                  4588,300
4688,300
4788,300
                                                    4888.300
                                                                                                                                                                                                  1544,5973
1546,4719
1548,2495
1550,0801
1551,9138
1553,7503
1555,898
1557,472
1559,2775
                                                  4988.300
5088.300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           .30307770 +6
.30097941 +6
.79754639 +6
                                                  5186,300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           .29:40198 -6
.29182534 -6
.28553552 -6
.28548376 -6
                                                                                                                                                                                                                                                                                                                                                              .18350964 -1
                                                                                                                                                                                                                                                                                                                                                         ,183M0375 =1
,184M9443 =1
,184M8244 =1
,184M6759 =1
                                                  5386.300
5488.300
                                                    5588.30D
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           . 26361348
```

Table 5. 5. 1. 1.

5788.300

1561,1256

TABLE OF VALUES OF ORSERVEN POINTS

Debinentital	ATTUCITATANCEL	COPPLICIENT 7	CUPPTICIENT .
.000	1242.1400	17258451 -1	. 2 5 6 0 0 5 3 6 • 2
10.000	1542,0024		(23000336 -2
20.000	1642 7446	.5/44/825 42	
	442 7446	11242146 **	
10.000	1542,4373	.57472638 -2	-, 22499954 -/
40,000	1542,3797	.57422638 -2	. > 2449954 - 2
50.000	1542,5521	* . 18475495 A	-,2400B239 -1
A0.000	1540.2845	• . 280 20104 B	10300179 -1
70.000	1516.9469	. 26576157 g	13:000/3 -1
A0.000	1534,9491	. 145 260 9ft n	A9100435 -7
90.000	1533,6417		19164916 +1
99.000	1533,7329		
		107760M1 A	- 4640n772 -1
100.000	1512.5641	· .31249587 0	#5067495 +2
125.000	1579,9100	10836197 n	-117603760 -3
150.000	1927.1460	11675111 0	62405 3 96 -3
175.000	1523.9919	- 885AJ080 -1	\$ \$400800E.
200.000	1922,7178	+ . 45942372 -1	. 401.00000 -3
225.000	1571.6937	+ .35342320 -1	.44100415 -3
250.000	1520,9497	- 241 62216 -1	44100415 -3
275.000	1520,4856	- 67615891 -2	.94404602 #3
300.000	1520,6116		-,48536072 =3
350.000	1519,9535		
		-,27442735 -4	• . 37202759 • 5
400.000	1516, 3653	· . 35343922 ·1	-,14402008 -3
450.000	1210.4171	451 45295 +1	28to3482 -3
500,000	1513,7488	47666111 -1	.22+00217 -3
*50.000	1511.6505	· .42746438 ·1	. 32015228 .4
600,000	1909,4722	5116 ⁷⁹⁴⁶ -1	· 30404511 ·3
650.000	1500.5337	•.927n1596 •1	13573009 •?
670.000	1504.4082	*.85439411 ·j	.20735194 -2
700.000	1502.7751	36 Q R4H21 -1	.11067866 #2
730.000	1502,1921	4153574U -1	14735146 -2
790.000	1501.0467	• ,54# % 606# • 1	.14348169 -3
1114,400	1490,6107	51372702 w2	13916814 .3
1200.700	1490,8410	24259189 -2	97193787 .6
1245,800	1491.0409	.61615161 +2	A454n366 +4
1371,500	1491.9011	77357077 .2	. 59945509 ·c
1457.300	1492, 1913	52506190 -2	13673045 -4
1543,000	1492,8815	71289639 -2	39497196 +4
1628.700	1493,5918	.954 33409 -2	46126525 -5
1714.400	1494,4321		13592562 +5
1800.100	1495,2624		
		.121 10257 -1	
1885,900	1496.5129	121 10547 -1	46476673 -4
1971.600	1407.3437	12140666 -1	.57207289 -4
2037,100	1498,5938	,14316589 -1	64277489 -5
2131.000	1499,6315	21737909 -2	-,32309187 -3
2143.000	1499,6343	.144 08854 -2	19294095
2228,700	1500,474R	.10946746 -1	.27086316 -4
2314,500	1501,5154	,13302985 -1	,27391469 -4
2400,200	1502.7560	,14555765 -1	. 13065229 5
2485,900	1504.0067	14335643 -1	•.13577007 •5
2571.600	1505,2474	,141 N5587 +1	-,86786290 -b
2743.100	1507.5389	.15AA3149 +1	. 261 4 2626 . 4
2628,800	1508,9798	.16930312 -1	, 27294249 +5
2914,500	1510,4408	15743346 -1	-, 29963157 -4
3000.200	1511,6814	11385932 -1	· , 27386062 ·4
3004.000	1512,7225	.13306789 -1	. 27394367 .4
3171,700	1513,9634	15744548 -1	. 29974584 . 6
3257,400	1515,4245	14212727 -1	66201566 -4
3288,300	1515,8321	14762811 -1	.69475918 -4

TABLE OF VALUES OF EXTRAPOLATED POINTS

3388.300	1517,6056	17752647 -1	.32081604 -	
3488,300	1514,3426	.17745101 -1	.32t25470 ·	
1508,300	1521., 1428	.17817802 -1	. 32577515 •	6
3689,300	1522,9462	178-0389 -1	. 32596588 •	6
3788.300	1574,7328	17842591 -1	.32405853 +	6
3888,300	1526,5228	.17915287 -1	.32386780 .	ð
3986.300	1528,3159	17947578 -1	. 32196045 .	6
4088,300	1530,1123	17979777	.32101347 .	6
4188.300	1531,9119	18011723 •9	31F90203 -	6
4286.300	1533.7144	.18043566 -1	.31795502 •	ŕ
4388,300	1535,5206	.18075237 -1	11547546 .	ń
4486.300	1537.3297	.18166718 -1	.31414832 -	6
4586,300	1539,1419	.18118037 -1	31223297 +	
4686.300	1540,9573	18169136 -1	10975342 .	
4700.300	1542 7757	.18200016 -1	.30784607 .	
4686.309	1544.5973	.18230696 -1	,30574799 •	
4988.300	1540,4219	18241137 -1	.30307770 .	
90A6.300	:548,2495	18751340 -1	. 10097961 .	
5188,300	1550,0801	14321266 *1	.29754639 -	
5288,300	1551,9138	18340964 -1	29640198 •	
5380,300	1553,7503	.19390375 -1		
54PA,300	1555.5498	.18409443 -1	,28953552 •	
45 P 4 , 300	1557,4322	18438244 -1	.28646376 •	
3688,300	1554,2775	.14446759 -1	.28381348 -	
4788,300	1561,1296	.18405140 -1	.75361348 -	ħ

DEPTH-METERS VELOCITY-W/SEC Z COEFFICIENT O COLFFICIENT

Table 5, 5, 1, 20

TOTAL TIME: 6:25

REAL DATA

RAY TRACE ANALYSIS PROGRAM» R D MININGHAM . [A+201+U1] RAY NIMBER: 2 INITIAL ANGLE: 14.800 DEGREES

LIST OF TURNING POINTS

NUMBER	RANGE NM	DEPTH M	SINE	SECONDS
1	42,0365	5330,0164	. 0 (0 0 0 0 0 0	51,9442
2	76.4735	5319,6074	00000000	94,4787
3	110,7732	5300,5859	. 9 9 9 9 9 9 9 9	130,8568
-	211,2336	5320,6432	0000000	261,0543
**	245.8375	5327,2179	0600000	303,7418

List of Bottom Hits

NUMBER	RANGE NM	DEPTH M	SINE	SECONDS
1	9,6509	5231,3682	,04940010	11,8527
5	144.6268	5303,5306	01223719	174,6956
3	177.6907	5297,6438	.01939190	219,5498
4	250.6628	4854,2592	43183014	309,5990

LIST OF SURFACE HITS

NUMBER	RANGE NM	DEPTH M	SINE	SECONDS
1	24.8445	.0000	12042871	30,7058
2	59.2619	0000	12022631	75,2196
3	93.6401	.0000	- 11975456	115,6874
4	127,9680	.0000	-,12173470	155,0963
5	161,2821	.0000	12035611	199,2898
6	193.9753	0000	-,11669018	239,7412
ž	228,5325	,0000	-,11449216	282,4145

DEPTH M=2331,/246 EPSILON= ,4000 DELTA= 250 MIN DELTA= 25 SIN TEST= ,020

RAY TRACE ANALYSIS PROGRAM. R D MININGHAM - (A-201-U1) HAY NUMBERS 4 INITIAL ANGLES 14,800 DEGREES

LIST OF TURNING POINTS

NUMBER	PANGE NM	DEPTH M	SINE	SECONDS
1	42,0446	5329,5941	.00000000	51,9557
2	76,4912	5318,3160	.00000000	94,4996
3	110,7887	5299,0879	. 0000000	130,8748
4	211,3011	5319,3012	.00000000	261,1343
5	245,9018	5326.4147	.00000000	201,8280

LIST OF BOTTOM HITS

NUMBER	RANGE NM	DEPTH H	SINE	SECONDS
1	9,6513	5231,3729	.04939935	11,8532
2	144.6574	5303,5305	.01188210	178,7315
3	177,7442	5297,4712	.01908254	219.6532
4	250,6504	4868, 3945	43348186	309,5427

LIST OF SURFACE HITS

NUMBER	RANGE NM	DEPTH M	SINE	SECONDS
1	24,8516	.0000	-,12064716	30,7141
2	59,2727	.0000	+.12035742	73,2325
3	93,6568	0000	· 11957655	115,7094
4	127,9814	.0000	-,12085987	156,1117
5	161,3277	.0000	12028807	199,3457
6	194,0436	.0000	*.11713184	239,8223
7	228,5976	,0000	- 11435945	242,4916

DEPTH M=2331,7246 EPSILON= ,4000 DELTA= 500 MIN DELTA= 25 SIN TEST= .020

RAY TRACE ANALYSIS PROGRAM. R D MININGHAM . [A-201-01] RAY NUMBER: 6 INITIAL ANGLE: 14,800 DEGREES

LIST OF TURNING POINTS

NUMBER	RANGE NM	DEPTH M	SINE	SECOND5
1	42.0416	5329.5420	.0000000	51.9503
ž	76.4852	5318.0826	.00000000	94.4930
3	110.7706	,		136.8542
3		5298,9006	,00000000	
	211,5049	5318,0771	.00000000	261,3791
7	246.1231	5325,9340	.00000000	304.1239

LIST OF BOTTOM HITS

NUMBER	RANGE NM	DEPTH M	SINE	SECONDS
1	9.6517	5231,3778	.04939857	11.8556
2	144.7297	5303,5304	.00983787	175.8189
3	177,9301	5296,8711	.01865054	217,8761
4	250,6071	4917,5981	43891237	309,4898

LIST OF SURFACE HITS

NUMBER	RANGE NM	DEPTH M	SINE	SECONDS
1	24,8489	,0000	12116200	30,7111
2	59,2705	.0000	12075283	75.2300
3	93,6454	0000	11611114	115,6938
4	127,9670	0000	-,12083045	150,0952
5	161,4950	.0000	-,12007135	199.5444
6	194,2570	0000	-,11692902	240.0778
7	228,8217	,0000	-,11411035	282,7607

DEPTH M=2331,7246 EPSILON= .4000 DELTA=1000 MIN DELTA= 25 SIN TEST= .020

RAY TRACE ANALYSIS PROGRAMS A D MINIMOMAM _ (A-201-U1) RAY NUMBERS 8 INTITAL ANGLES 14,800 DEGREES

LIST OF TUNNING POINTS

NUMBER 1 2 3 4	RANGE NM 42,0405 76,4635 110,7569 211,2698 245,8691	DEPTH M 5329,7029 5318,8268 5299,5013 5319,6343 5325,7106	\$1 NE ,00000000 ,00000000 ,00000000	SECONDS 51,9489 94,4670 136,8376 261,0982 303,8203
•	S45 * 00 A T	20831.200	,	

LIST OF BOTTOM HITS

NUMBER 1 2 3	RANGE NM 9.6509 144.6266 177.7286 250.6578	DEPTH M 5231,3682 5303,5306 5297,5215 4859,9059	51NE .04940010 .01170549 .01897265 .43254495	SECONDS 11.8527 175.6958 219.6355 309.5534
4	274.67/6	402414071	1	

LIST OF SURFACE HITS

NUMBER 1 2 3 4	RANGE NM 24.8480 59.2578 93.6253 127.9527 161.3051	DEPTH M .0000 .0000 .0000	51NE -,12125664 -,12621877 -,11967721 -,12094519 -,12068439	SECONDS 30,7099 73,2148 115,6701 158,0781 199,8065
•		* 7 * 1 ±	-,12068434 -,11900038	237,8065
6 7	194,0297 228,5671	.0000	- 11440839	282,4504

DEPTH M=2331,7246 EPSILON= ,4000 DELTA= 250 MIN DELTA=100 SIN TEST= ,020

RAY TRACE ANALYSIS PROGRAM+ R D MININGHAM - [A-201-U1] RAY NUMBER# 10 INITIAL ANGLE# 14.800 DEGREES

LIST OF TURNING POINTS

NUMBER 1 2 3 4 5	#ANGE NM 42,0370 76,4790 110,7759 211,1696 245,7714	DEPTH M 5329,4830 5319,3832 5300,3869 5320,3438 5328,9850	SINE .00000000 .0000000 .0000000 .0000000	SECONDS 51,9446 94,4848 136,8995 260,9772 303,7023
LIST OF BOTTOM	HITS			
NUMBER 1 2 3 4	RANGE NM 9.6513 144.6002 177.6388 250.6747	DEPTH M 5231,3729 5303,5306 5297,8114 4840,5686	5 NE .04939935 .01249403 .01944346 .43046548	SECONDS 11.8532 178.6637 219.5876 309.5735
LIST OF SURFAC	E HITS			
NUMBER 1 2 3 4 5 6	RANGE NM 24,8407 59.2658 93.6452 127.9640 161,2452 193.9141 228.4672	DEPTH M .0000 .0000 .0000 .0000 .0000	SINE1211383612553072126695912097709120989031180398310513665	SECONDS 30,7013 73,2240 115,6930 158,0910 199,2455 239,6677 262,3350

DEPTH M=2331,7246 EPSILON+ ,4000 DELTA+ 500 MIN DELTA+100 SIN TEST+ .020

RAY TRACE ANALYSIS PRUGRAM- R D MININGHAM - [A-201-U1] RAY NUMBER# 12 INITIAL ANGLE= 14.800 DEGREE5

LIST OF TURNING POINTS

NUMBER	RANGE NM	DEPTH M	SINE	SECONDS
1	42.0337	5329,6545	.00000000	51,9410
2	76,4458	5318,6603	.00000000	94.4464
3	110,7463	5298,4071	.0000000	135.8251
4	211.4721	5316,1953	.00000000	261,3398
5	246.0347	5323,8121	.00000000	304,0184

LIST OF BOTTOM HITS

NUMBER	RANGE NM	DEPTH H	SINE	SECONDS
1	9,6517	5231.3778	04939857	11.8536
2	144,6506	5303,5305	.01078931	170.7249
3	177,8585	5297,1021	.01746278	219.7908
4	250.6264	4895.6020	.43682601	309.5142

LIST OF SURFACE HITS

NUMBER	RANGE NM	DEPTH H	SINE	SECONDS
1	24,8481	.0000	-,12129373	30,7100
2	59,2364	0000	12572846	73,1897
3	95,6148	.0000	11966235	115.6577
4	127,9364	.0000	12082098	158.0592
5	161,3660	.0000	-,12030509	199.3910
6	194,2284	.0000	11732424	240.0439
7	228,7490	.0000	-,10125341	282,6740

DEPTH M=2331,7246 EPSILON= ,4000 DELTA=1000 HIN DELTA=100 SIN TEST= ,020

RAY TRACE ANALYSIS PROGRAM- R D MININGHAM - [A-201-U1]
RAY NUMBER: 14 INITIAL ANGLE: 14,800 DEGREES

93,6535

161,2301 193,9167 228,4733

LIST OF TURNING POINTS

NUMBER	PANGE NM	DEOTH M	SINE	SECONDS
1	42.0455	5329,6878	.000000a0	51,9548
2	76,4870	5319,7470	.00000000	94,4947
3	110,7848	5300.2167	.00000000	135.8706
4	211,1763	5321,3377	.00000000	260.9860
5	245,7749	5329,1059	.0000000	303,7074
LIST OF BOTTOM	HITS			
NUMBER	RANGE NM	<u>И</u> ЕРТН М	SINE	SECONDS
1	9.6509	5231,3682	.04940010	11,8527
2	144.6044	5303.5306	.01288874	175,6691
3	177.6318	5297,8339	.01950774	219,5198
4	250,6739	4841,5465	43038896	304,5735
LIST OF SURFAC	E HITS			
NUMBER	PANGE NM	DEPTH M	SINE	SECONDS
1	24,8542	,0000	-,12116547	30,7173
2	59,2754	.0000	11963882	73.2356
_			*	

.0000

.0000

.0000

.0000

.0000

-,11970842 -,12219315

-,12041577 -,11732194

-,11462670

115,7034 158,1050

199,2281 239,6715

282,3440

DEPTH M=2331,7246 EPSILON= ,4000 DELTA= 250 MIN DELTA= 25 SIN TEST= ,100

RAY THACE ANALYSIS PROGRAMS & D MININGMAM = [A-201-01]
RAY NUMBERS 16 INITIAL ANGLES 14,800 DEGREES

LIST OF TURNING POINTS

NUMBER	RANGE NM	DEPTH M	SINE	*****
1	42.0789	5320,4214		SECONDS
وَ	70,4727		00000000	51,9351
2 3		5318,1571	,0000000	94,4778
ž	110.7683	5299,3746	.0000000	136,8510
4 5	211,4513	5317,3756	. 0 6 0 0 0 0 0 0	261,3146
,	246,0548	5324,7354	.00000000	304.0414
LIST OF HOTTOM	HITS			
NUMBER	RANGE NM	DEPTH M	6 a.u.m	
1	¥.6513		SINE	SECONDS
	144,6852	5281,3729	,04939935	11,8532
2 3		5303,5306	.01062735	178,7657
4	177,8551	5297,1134	.01840020	217,7867
•	250.6216	4901,1608	.43702034	304,5072
LIST OF SURFACE	E HITS			
NUMBER	RANGE NM	DEPTH M	SINE	CERANAS
1	24.8338	.0000	-,12074029	SECONDS
2	59.2561	.0000	*,12070138	30,6931
Ĵ	93,6365	.0000		75,2128
4	127,9568		*,11906981	115,6833
5	161.4037	,0000	12127232	150,0850
5 6 7	101.903/	,0000	-,12009471	199,4357
7	194,1872	.0000	11698222	239,9948
,	228,7484	.0000	-,11407567	282,6725

DEPTH M=2331,7246 EPSILON= ,4000 DELTA= 500 MIN DELTA= 25 SIN TEST= ,100

RAY TRACE ANALYSIS PROGRAM - R D MININGHAM - (A-201-U1) RAY NUMBER 18 INITIAL ANGLE 14,800 DEGREES

LIST OF TURNING POINTS

NUMBER	RANGE NM	DEPTH M	51NE	SECONDS
1	42,0381	5329,5289	,0000000	51,9463
2	76.4797	5319,2813	,00 000000	94,4 863
3	110.7870	5302,1588		130, 8736
4 5	210,8398 245,4453	5326,0975 5334,5697	, 0 0 0 0 0 0 0	260,5 85 4 304,3 153

LIST OF BOTTOM HITS

NUMBER	RANGE NM	DEPTH M	SINE	SECONDS
1	9,6517	5231,3778	.04939857	11,8536
2	144,5002	5303,5306	01537630	176,5458
3	177,3465	5298,7543	02085441	217,1809
4	250.7414	4764,6356	42246072	309,6604
5	254,2508	5357,3188	.83156412	317,6036

LIST OF SURFACE HITS

NUMBER	RANGE NH	DEPTH M	SINE	SECONDS
1	24.8442	.0000	-,12116544	30,7596
2	59.2648	0000	- 12077400	74,2243
3	93,6445	.0000	-,11972851	115,6931
Ă	127,9839	.0000	-,12185027	150,1156
5	161.0158	.0000	-,12080315	195,9736
6	193.5735	.0000	- 11772833	239,2634
7	228,1410	.0000	-,11509068	281,9484
8	252,3901	.0000	-,835 06663	313,4023

DEPTH M=2331,7246 EPSILON# ,4000 DELTA=1000 MIN DELTA= 25 SIN TEST# .100

RAY TRACE ANALYSIS PROGRAM- R D MININGHAM - [A-201-01] RAY NUMBER* 20 INITIAL ANGLE 14,800 DEGREES

LIST OF TURNING POINTS

NUMBER	RANGE NM	DEPTH H	SINE	SECONDS
1	42,0468	5329,5295	.00000000	51,956
ž	76,5007	5319,7365	.00000000	94,5108
3	110,8008	5300,4930	.00000000	130,8888
4	211,5932	5317,1658	0000000	261,4820
5	246,1875	5326,2505	,0000000	304,1984
IST OF BOTTOM	HITS			
NUMBER	RANGE NH	DEPTH M	SINE	SECONDS
1	9.6519	5231,3803	04939794	11,8559
ž	144,7633	5303,5303	.00979560	175,8576
2 3	177.9936	5296,6658	01803322	219,9500
4	250,5947	4931,8084	44040136	309,4718

NUMBER	RANGE NM	DEPTH M	SINE	SECONDS
1	24.8522	.0000	12114329	30,7151
ž	59,2774	.0000	12011252	75,2381
i	93,6607	.0000	11966140	117,7118
Ă	127,9876	,0000	-,12095391	158,1190
5	161,5311	.0000	12004149	199,5856
6	194.3369	.0000	11691224	240.1713
7	228,8890	,0000	-,11424799	282,8383

DEPTH M=2331,7246 EPSILON=1,0000 DELTA=1000 MIN DELTA= 25 SIN TEST# .020

RAY TRACE ANALYSIS PROGRAM» R D MININGHAM - (A-201-U1) RAY NUMBER# 22 INITIAL ANGLE# 14,800 DEGREES

LIST OF TURNING POINTS

NUMBER	RANGE NM	DEPTH M	SINE	SECOND\$
NONECK 4	42,0446	5329,6439	.0000000	51,9537
2	76.4625	5318,4882	.01000000	94,4660
3	110,7513	5298,2679	00000000	130.8312
4	211,7912	5315,0929	.0000000	261,7196
5	246,3625	5322,9604	00000000	304,4081

LIST OF BOTTOM HITS

NUMBER 1 2 3	RANGE NM 9,6519 144,8202 178,1765	DEPTH M 5231,3803 5303,5302 5296,0761 4964,1233	5 INE , Q4939704 , UU73U819 , Q1752368 , 44434381	SECONDS 11,8939 178,9262 220,1693 309,4309
4	250,5663	440411500	14449468	00.11000

LIST OF SURFACE HITS

NUMBER	RANGE NM	DEPTH M	SINE	SEÇOND\$
NUMBER	24.8473	.0000	-,12121006	30,7092
<u>.</u>	59,2477	,0000	11993616	75,2036
2	· . • •	.0000	+ 12709655	119,6696
3	93,6169	• -	- 12078162	150,0438
4	127,9404	,0000	•	199,7892
5	161,7009	,0000	-,11992336	240,4078
6	194,5337	,0000	-,11436507	7 / 2 7
7	229.0745	,0000	- 11376762	283,0410

DEPTH M=2331,7246 EPSILON=1,0000 DELTA=1000 MIN DELTA=100 SIN TEST= ,020

RAY TRACE ANALYSIS PRUGRAM- R D MININGHAM - (A-201-U1)
RAY NUMBER: 13 INITIAL ANGLE: 12.800 DEGREES

LIST OF TURNING POINTS

NUMBER	RANGE NM	DEPTH M	SINE	SECONDS
1	10,6914	4636,8062	,00000000	13,0486
2	27,3065	56,0691	.00000000	33,6340
3	43,9612	4661,7441	.00000000	54,2266
4	60,5835	58,6136	0000000	74,77/4
5	77,2256	4646,1412	00000000	95,3522
6	93,7580	59,5792	00000000	115,7990
7	110,2344	4625,4456	,00000000	130,1792
8	126,9466	63,4847	00000000	150.8385
9	143,6946	4633,8019	00000000	177.5402
10	160,3327	57,6701	,00000000	198,1091
11	176,9653	4633,6488	,00000000	218.6714
12	198,6527	65,5746	,00000000	239,2985
13	210,3562	4638,8054	00000000	259,9449
14	227.3088	65,1093	.00000000	280,8886
15	244,2782	4648,4786	,00000000	301,8926
16	261,3155	64,4044	00000000	322,8981
17	261,5947	67,7178	.00000000	323,2338
18	261,9443	66,5572	00000000	325,6944
19	262,2404	67,5114	,00000000	324,0106
20	262.5587	66,6480	00000000	324,3939
21	262,8330	67,3708	,00000000	324,7235
22	265.1413	66.7344	,00000000	325,0943
23	263.4028	67,2826	,00000000	325,4090
24	263,6868	66,7907	00000000	327,7506
25	265,9723	67.2401	.00000000	320,0940
26	264,2347	66,9948	,00000000	326,4097
27	264.5808	67.4055	,00000000	320,8261
28	264,8435	67,2746	.00000000	32/,1421
29	265,4524	67,7972	,0000000	327,8746
30	265,4995	67,7961	.00000006	32/,9312
31	283,2255	4640,7667	.00000000	349,8056
32	299.8845	60,8308	,00000000	370,3949
33	316,4664	4597,2013	.00000000	390,9007
34	332,9613	63,8783	,00000000	411,2909
35	349,4576	4597,2014	0000000	431,6989

LIST OF BOTTOM HITS

NU BOTTOM HITS

LIST OF SURFACE HITS

NO SURFACE HITS

DEPTH M#2331,7246 EPSILON# ,4000 DELTA# 250 MIN DELTA# 25 SIN TEST# ,100

TAL TIME: 6:00 REAL DATA

RAY TRACE ANALYSIS PROCRAM: R D MININGMAM : (A-201-U1; RAY NUMBER: 3 INITIAL ANGLE: 12,800 DEGREES

LIST OF TURNING POINTS

NUMBER	RANGE NM	DEPTH M	SINE	SECONDS
1	10,6907	4636,8044	,0000000	13,0878
5	27,3036	56,1211	.00000000	33,6306
	45,9552	4661,9209	.00000000	54,2196
4	60,5957	58,7826	.00000000	74,7924
7	· · · · · · · · · · · · · · · · · · ·			95,3695
5	77,2364	4647,2377	.0000000	
6	93,7702	59,3993	.00000000	115,8139
7	110,2461	4627,0526	.00000000	136,1960
8	126,9740	63,1653	.00000000	156,8715
9	143,7364	4634,1481	00000000	177,5003
10	160,3909	57,3289	00000000	190,1788
ii	177,0383	4634,6345	.0000000	218,7549
12	193,7278	65,5456	.00000000	237,3045
13	210,4404	4639,7244	.00000000	260,0457
14	227.3826	65,3084	.00000000	280,9770
15	244.3490	4648,2251	,00000000	301,93/5
16	261.6297	65,9928	00000000	324,2740
17	278.8663		00000000	344,5614
		4638,0370		
18	295,5877	60.0790	,00000000	367,2246
19	312,2357	4593,5493	,00 000 000	38>,8084
20	328,7465	63,4772	.00000000	400,2258
21	345,2652	4593,5491	,00000000	420,6527

LIST OF BOTTOM HITS

NO BOTTOM HITS

LIST OF SURFACE HITS

NO SURFACE HITS

DEPTH M=2331,7246 EPSILON= ,4000 DELTA= 500 MIN DELTA= 25 SIN TEST= .020

RAY TRACE ANALYSIS PROGRAM- R D MININGHAM - [A-201-U1] RAY NUMBER- 5 INITIAL ANGLET 12,000 DEGREES

LIST OF TURNING POINTS

NUMBER	RANGE NM	DEPTH M	SINE	CEFANAE
1	10.6913	4636,8050	• -	SECONDS
2	27,3046		,0000000	13,0004
ī	43 0004	56,1166	.00000000	33,6318
Ž.	43,9504	4641,9858	.90000000	54,2140
	60,6487	56,8267	.0000000	74,8564
5	77,3345	4646,0186	,00000000	95.4838
6	95,8466	59,9596	,0000000	
7	110,3254	4626,2976		115,9062
8	127.0383		,0000000	130,2896
ğ	127,0303	63,3897	.0000000	150,9498
•	143,7909	4632,7654	.00000000	17/,6568
10	160,4298	57.8472	00000000	198,2260
11	177,0613	4630,7369	.00000000	
12	193,7536	66,0643		219,7868
13	210,4548		,00000000	234,4196
14		4635,6622	,00000000	260,0433
	227,4096	65,3854	,00000000	281,0098
15	244,3856	4644,4134	.00000000	301,9617
16	261,4341	64,7589	.00000000	325.0405
17	278,6611	4634,7534	0000000	
18	295,4165			344,3386
19	742 0700	60,0433	.00000000	365,0224
	312,0702	4590,1552	.00000000	38>,6049
20	328,5788	63,2596	,00000000	400,0236
21	345.1010	4590.1552	,00000000	426.4546

LIST OF BOTTOM HITS

NO BOTTOM HITS

LIST OF SURFACE HITS

NO SURFACE HITS

DEPTH M=2331,7246 EPSILON= .4000 DELTA=1000 MIN DELTA= 25 SIN TEST= .020

RAY TRACE ANALYSIS PROGRAM. R D MININGHAM . [A-201-U1]
RAY NUMBER. 7 INITIAL ANGLE 12.800 DEGREES

LIST OF TURNING POINTS

NUHBER	PANGE NM	DEPTH M	SINE	SECONDS
1	10.6914	4636,8062	.00000000	13,0886
2	27,3017	56,1523	.00000000	33.6284
3	45,9577			
ĭ		4661,8168	.00000000	54,2223
2	60,6553	56,8423	,00000000	74,8636
5	77,3362	4645,3990	.00000000	95,4850
6	93.8970	58.7015	,00000000	117,9600
7	110,4220	4624,2656	.00000000	130,4847
8	127,1403	63,4974	.00000000	15/,0712
9	145,8874	4632,1829	.00000000	17/,7718
10	160,5217	57,8238	.00000000	198,3360
11	177,1528	4632,2899	00000000	218,8965
12	193,8421	65.7386	.00000000	234,5257
13	210.5454	4637,3436	.00000000	260.1718
14	227.4930	65,0827	.00000000	281,1097
15	244,4728	4647,6013	00000000	302,0861
16	261,5769	64,4407	0000000	323,2120
17	278.6670	4638,8072	.0000000	344,3211
18	295,3900			
		60,0678	,00000000	364,9902
19	312,0395	4594,5429	.000000 00	389,5718
20	328,5551	63,1064	,000,000,0	407,9951
21	345,0763	4594,5431	.00000000	420,4250

LIST OF BOTTOM HITS

NO BOTTOM HITS

LIST OF SURFACE HITS

NO SURFACE HITS

DEPTH M=2331,7246 EPSILON= ,4800 DELTA= 250 MIN DELTA=100 SIN TEST= .020

Table 5, 5, 3, 4

0.9571 sec/mile

TOTAL TIME: 5:35 REAL DATA

RAY TRACE AMALYSIS PROGRAM- R D MIN; NOMAM - [A-201-41]
RAY NUMBER 9 INITIAL ANGLE 12,800 DEGREES

LIST OF TURNING POINTS

NUMBER	RANGE NM	DEPTH M	SINE	SECONDS
1	10.4907	4636,8044	.00000000	17.0876
ž	27,2964	94,1725	.00000000	31,6222
•	43,9318	4661,6038	,0000000	54,1914
•	69,6270	56,4987	.00000000	74,6300
5	77.3239	4645,0561	.00000000	95.4704
6	95.4393	60,1172	.0000000	117,8908
7	110.3167	4625,0062	.00020000	136,2790
•	127.0440	63,5148	.00000000	190,9994
•	143,7936	4631,9109	.00000000	177.6591
10	160.4257	57,8058	.00000000	190,2806
11	177,0621	4632,1211	0000000	210,7874
12	193.7650	45.7179	.00000000	239,4320
13	210.4798	4637,4071	.00060066	260.0027
14	227,4255	64,9886	.0000000	261,0202
15	244,3940	4647,5254	.00000000	301,9910
16	261,3868	64,5162	,00000000	322,9853
17	278,5314	4638,2639	.00800000	344,1980
18	299.2519	40,0504	.00000000	344,0841
19	311,9052	4593,3034	.00000000	305,4101
20	328,4158	63.0550	.00000000	409,8273
21	344,9436	4593,3033	,00000000	424,2691

LIST OF BOTTOM HITS
NO SOTTOM HITS

LIST OF SURFACE HITS
NO SURFACE HITS

DEPTH M=2331,7246 EPSILONO ,4000 DELTA= 580 MIN DELTA=100 SIN TEST= ,020

RAY TRACE ANALYSIS PROGRAM- R D MININGHAM - [A-201-U1] RAY NUMBER: 11 INITIAL ANGLE: 12.800 DEGREES

LIST OF TURNING POINTS

NUMBER	RANGE NM	ЙЕРТН Н	SINE	SECONDS
1	10,6913	4636,8050	.00000000	15.0884
5	27,2995	56,1725	00000000	35,6256
		4662,0056	.0000000	54,2197
•	43,9556		00000000	74,8548
4	60,6478	56 , 8965	,00000000	77,0970
5	77,3280	4645,3537	.00000000	99,4752
6	93,8796	58,8807	.0000000	117.9452
7	110.3971	4625,1129	,00000000	130,3770
é	127,1151	63,5049	.00000000	157,0411
ě	143,8620	4631.8439	.0000000	177,7417
-				199,3020
10	160,4931	57.7409	.00000000	244 8420
11	177,1238	4632,3869	.00000000	210,8620
12	193,8154	65.7293	,0000u0 60	239.4941
13	210,5303	4637.7235	.00000000	260,1540
14	227,4887	65,4181	0000000	281,1047
15	244,4557	4648,3810	.00000000	302,0655
_	- · ·		00000000	323,2947
16	261,6114	65,8070		
17	278,7237	4639,9515	,0000000	344,3902
18	295.4405	59,8483	.0000000	365,0516
19	312,0876	4596,3665	.00000000	38>.6304
20	328,6163	63.0559	.00000000	406,0693
			.00000000	420,4807
21	345,1212	4596 - 3662	14200000	46214601

LIST OF BOTTOM HITS

NO BOTTOM HITS

LIST OF SURFACE HITS

NO SURFACE HITS

DEPTH M=2331,7246 EPSILON= ,4000 DELTA=1000 MIN DELTA=100 SIN TEST= .020

Table 5, 5, 3, 6

1.4142 sec/mile

TOTAL TIME: 8:15

REAL DATA

RAY TRACE ANALYSIS PROGRAM- R D MININGHAM - [A-201-U1]
RAY NUMBER* 1 INITIAL ANGLE* 12,800 DEGREES

LIST OF TURNING POINTS

NUMBER	RANGE NM	DEPTH H	SINE	SECONDS
1	10,6914	4636,8062	.0000000	13,0886
Ž	27,3103	56,1248	.0000000	33.6386
3	45.9638	4661,7430	.0000000	54,2296
Ž.	60.6487	56,9917	.0000000	74,8558
5	7/,3220	4645,9849	,0000000	95.4682
6	93,8757	58,9457	, 0 L D 0 0 0 0 0	115,9406
7	110.3853	4625,1242	. 00000000	130,3608
8	127,1047	63,2749	.0000000	15/,0287
9	143.8547	4633,0407	.00000000	17/,7328
10	160.4911	57,7543	.0000000	198,2996
11	177,1219	4633,2844	. 00000000	214,8597
12	193,8077	65,6781	.00000000	239,4848
13	210,5176	4638,3765	.00000000	260,1388
14	227,4623	65,0646	.00000000	281.0732
15	244,4385	4648,3111	00000000	302,0453
16	261,4483	64,3531	0000000	325,0578
17	270,5465	4639,9808	00000000	344,1768
18	295,2831	59,8875	.00000000	364.8620
19	311,9376	4595,7191	.00000000	385,4498
20	328,4561	63,0793	00000000	405,8764
21	344,9815	4595,7192	00000000	426,3114

LIST OF BOTTOM HITS

NO BOTTOM HITS

LIST OF SURFACE HITS

NO SURFACE HITS

DEPTH M=2331,7246 EPSILON= ,4000 DELTA= 250 MIN DELTA= 25 SIN TEST= ,020

RAY TRACE ANALYSIS PROGRAM- R D MININGHAM - (A-201-U1)
RAY NUMBER* 15 INITIAL ANGLE* 12,800 DEGREES

LIST OF TURNING POINTS

NUMBER	RANGE NM	DEPTH M	SINE	SECONDS
1	10.6907	4636,8044	,00000000	19,04/6
2	27,2121	59,3028	00000000	33,5205
3	45,8122	4660,9987	0 0 0 0 0 0 0	54,0474
Ă	60,4318	57,9067	0000000	74,5950
5	77,0846	4644.7097	.0000000	95,1622
6	93,5987	58,5366	.0000000	11>,60/0
7	110.1091	4623,2235	.00000000	130,0200
8	126,7755	63,3483	0000000	156,6322
9	143,5324	4632.4670	.06000000	17/,3446
10	160,1184	58,3837	,00000000	19/,8507
11	176,7542	4631,7805	.00000000	215,4105
12	193,3297	70,0813	,00000000	538,9048
13	209.9772	4635,6417	,00000000	254,4872
14	226,9135	65,3198	,00000000	280,4115
15	243,8874	4646,8911	.00000000	301,3811
16	260,9238	66,4761	,00000000	322.4295
17	261.0603	67,1786	,00000000	322,5897
18	261,3865	64,0827	,00000000	322,9619
19	261,5361	68,0006	00000000	324,1619
20	261,8037	63,8295	.00000000	323,4837
21	261,9565	68.0460	,00000000	325,6674
22	262,2166	64,6864	,00000000	323,9803
23	279,3651	4636,2463	,00000000	34>,1598
24	296,0705	59,9378	.0000000	365,8076
25	312,7273	4590,2854	.0000000	380,3961
26	329,2483	62,2445	00000000	400,8217
27	345,8016	4590,2854	00000000	427.2962

LIST OF HOTTOM HITS

NO BOTTOM HITS

LIST OF SURFACE HITS

NO SURFACE HITS

DEPTH M=2331,7246 EPSILON= ,4000 DELTA= 500 MIN DELTA= 25 SIN TEST# ,100

RAY TRACE ANALYSIS PROGRAM- R D MININGHAM - [A-201+U1] RAY NUMBER= 17 INITIAL ANGLE= 12,800 DEGREE5

LIST OF TURNING POINTS

NUMBER	RANGE NM	DEPTH M	SINE	SECONDS
1	10.6913	4636,8050	.00000000	13,0884
ž	27.3220	55,9852	0000000	34,6525
₹	44.0020	4662,5671	00000000	54,2751
Ž.	60,6486	58,6305	.00000000	74,8591
3				95,4379
7	77.2973	4646,6479	,00000000	
6	93,7917	59,7763	,00000000	115,0340
7	110.2801	4627,4540	.0000000	130,2344
•	127.0120	61,9869	.00000000	150,9161
9	143,7606	4632,5523	.00000000	177,6188
10	160.3810	57,2477	.00000000	198,1663
11	177,0098	4632,2882	.00000000	210,7248
12	193,6216	68,9703	.00060000	239,2408
13	210.3042	4637,3472	.00000000	259,8812
14	227,2941	65,1325	0000000	280,8701
15	244,2557	4648,3104	.00000000	301,6291
16	261,0361	72,0140	.00000000	322,5615
17	277.8818	4641,7828	.00000000	345,3777
18	294.6449	59,5030	.00000000	364,0939
19	311.2956	4598,3941	.00000000	384,6770
20	327.8082	64,9141	0000000	405.0959
21	344,2577	4596,3942	00000000	425,4406

LIST OF BOTTOM HITS
NO BOTTOM HITS

LIST OF SURFACE HITS'

DEPTH M=2331,7246 EPSILON# ,4000 DELTA#1000 MIN DELTA# 25 SIN TEST# ,100

RAY TRACE ANALYSIS PROGRAM- R D MININGHAM - (A-201-U1)
RAY NUMBER= 19 INITIAL ANGLE= 12,800 DEGREE5

LIST OF TURNING POINTS

NUMBER	RANGE NM	DEPTH M	SINE	SECONDS
1	10,6868	4636.8003	.0000000	15,0832
2	27,3011	56,1495	00000000	35,6281
3	43,9439	4661,6838	00000000	54,2071
4	60,6462	56,8716	0000000	74,8542
5	77,3132	4645,0817	00000000	95,4596
6 7	95,8454	59,6193	00000000	117,9002
7	110,3444	4623,5956	.0000000	130,3136
8	127,0344	63,8618	.0000000	156,9458
9	143,7752	4632,5952	.00000000	17/,6390
10	160,3966	57,7460	,00000000	198,1881
11	177.0276	4632,1833	.00000000	218,7485
12	195,7437	65,6991	.00000000	239,4096
13	210.4508	4637,8585	.00000000	260.0602
14	227.3672	65,3788	00000000	280,9606
15	244,3499	4648,2443	.00000000	301,9396
16	261,3937	66.4442	.00000000	322,9932
17	261,6688	67,5553	,00000000	323,3242
18	261,9230	66,6093	.00000000	323,6300
19	262,2022	67.5221	00000000	323,9656
20	262,5201	66,5614	00000000	324,3482
Žĺ	262,6898	67.2134	00000000	324,5524
22	262,9665	65.7569	,00000000	324,8852
23	263,1910	68,3954	,00000000	325,1553
24	263,4203	64,5388	.00000000	329,4311
25	280,4882	4632,3086	.00000000	340,5138
26	297,1717	60,6601	,00000000	367,1358
27	313,7951	4588,5859	.00000000	387,6867
28	330,2932	63,3749	,00000000	400,0891
29	346,8065	4588,5858	.0000000	428,5099

LIST OF BOTTOM HITS

NO BOTTOM HITS

LIST OF SURFACE HITS

NO SURFACE HITS

DEPTH M=2331,7246 EPSILON=1.0000 DELTA=1000 MIN DELTA= 25 SIN TEST= .020

RAY TRACE ANALYSIS PROGRAM» R D MININGHAM - (A-201-U1) Hay Numbers 21 initial angle= 12.800 degrees

LIST OF TURNING POINTS

NUMBER	RANGE NM	DEPTH M	SINE	SECOND8
NUMBER 4	10.6868	4636,8003	.0000000	13.0832
<u>.</u>	27.2949	56,1776	0000000	33.6206
2		4444 6874	00000000	54,2100
3	43,9470	4661,5574	0000000	74.8461
4	60,6399	56,8786	0000000	
5	77.3031	4644,0669	,0000000	95,4471
6	93,8538	59,0409	.0000000	117,9101
ž	110,3793	4622,1036	0000000	130,3946
á	127.0868	64,1649	0000000	157,0079
ÿ	145,8231	4629,3606	00000000	177,6957
		7029,5000	.00000000	198,2296
10	160.4318	56,3767		218,7743
11	177,0500	4628,9777	,0000000	
12	193,7418	66,1322	,00000000	234.4065
13	210,4440	4633,7247	.0000000	260,0510
14	227,3592	65,9033	0000000	280,9619
15	244,3411	4642,8283	.00000000	301,9290
		69,7308	00000000	322,8568
16	261,2806	44 - 6 5 6 4	00000000	345,7724
17	278.2095	4635,5884	,0000000	
18	294,9371	60,0448	,0000000	364,4462
19	311,5802	4589,6187	0000000	365.0203
20	328,0742	63,3533	00000000	40>,4181
21	344,5871	4589,6187	,00000000	425,8384

LIST OF BOTTOM HITS

NO BOTTOM HITS

LIST OF SURFACE HITS

NO SURFACE HITS

DEPTH M=2331,7246 EPSILON=1.0000 DELTA=1000 MIN DELTA=100 SIN TEST= .020

5.6. Reversibility Test in Real Velocity Field

A further test of the ray tracing program was made to determine the ability of the program to calculate the reversed ray path and to compare this path with the path determined by a prior calculation. Theoretically, and as a property of the basic ray equation (III.1), any ray should be exactly reversible. The solution by incremented iterations and the general method of the present program, however, guarantee that the iterations in one direction will be entirely independent of those in the other direction. Thus, the degree to which the ray is returned to its origin by the reversed ray tracing becomes an excellent criterion of the overall accuracy of the program.

The steps followed in these tests were:

- i) A forward ray tracing was made to determine the depth and ray angle of the ray at a given range. For these the most accurate control parameters were chosen, corresponding to those in Table 5.5.2.1 for the 14.80° ray and in Table 5.5.3.1 for the 12.80° ray. Actual values were a depth of 4975.40 meters and an angle of 5.22° for the 14.80° ray at the range of 250 miles and a depth of 4085.93 meters and an angle of 6.27° for the 12.80° ray at a range of 350 miles.
- ii) The bottom profile and the velocity profiles of the velocity field were reversed in their range sequences by preparing new input data decks for which the given ranges were subtracted from the maximum range of the program.
- iii) The final positions of the rays traced in the forward direction were used as origins for a new ray trace in the program with reversed data inputs, but the final angle of the ray in the forward direction was reversed in sign to become the initial angle for the new ray trace.
- iv) For convenience in comparing the data results, the printouts of the reversed ray trace were again reversed and are presented in Table 5.6.1 for the 14.80° ray and in Table 5.6.2 for the 12.80° ray. This technique allows the initial depths and angles of these tables to be compared directly with those of Tables 5.5.2.1 and 5.5.3.1 as measures of the overall accuracy of the reversibility test. It also follows that the data printouts of the tables at the largest ranges represent ray path comparisons over the shortest relative range intervals.

The data comparisons speak for themselves - the variations are, in fact, less than the deviations found for the ray tracings in the forward direction only but with different values of the control parameters.

Reference for Chapter V

1. I. Tolstoy and C. S. Clay, Ocean Acoustics, McGraw Hill Book Co., N.Y. (1966).

RAY THACE ANALYSIS PRUGRAM- R D MININGHAM - (A-201-01)
NAY NUMBER* 2 INITIAL ANGLES =14,827 DEGREES

LIST OF TURNIN	IG POINTS		REVERSE	
NUMBER	RANGE NM	DEPTH M	SINE	SELUNDS
1	44,0606	5330.1087	. 4000000	51.9754
2	70,5027	>320.0638	. 00 0 0 0 0 0 0	94.5191
3 4	110,8029	5300,9118	. 00000000	130,8951
4	211.2359	5320,5766	. 0000000	261.0599
5	245,8375	5327,2197	. 0000000	302.7848
LIST OF BOTTOM	HITS			
NUMBER	RANGE NM	DEBİH W	SINE	SELONDS
1	9.6768	5231,6639	U4942235	11.8849
2 3	144,6398	>303,5306	.01259448	170,/140
3	177.6861	5297,6586	.01939231	217.5873
LIST OF SURFAC	E HITS			
NUMBER	RANGE NM	DEPTH M	SINE	SECONDS
1	24,6634	.0000	-:1:124/14	30.7307
2	59.2831	.0000	-, 12024948	73,24/6
3	99,6729	,0000	-,12265150	119,7292
4	127,9989	0009	*.1219//31	150,1359
5	161,2794	.0000	12030025	197,2875
6 7	193,9744	. 0000	w. 1172/665	237,7430
7	228.5317	.0000	• 11436850	284.4165

EPSILON= .4000 DELTA= 250 MIN DELTA= 25 SIN TEST= .020

RAY TRACE ANALYSIS PRUGRAM- R D MININGHAM - [A-201-01] MAY NUMBER 1 INITIAL ANGLE -12,808 DEGREES

LIST OF TURNING POINTS

REVERSE

NUMBER	RANGE NM	UEPTH H	SINE	SECONUS
1	10,6988	4637,3478	. 0 0 0 0 0 0 0	13,09/9
2	2/,3093	55,9885	. 0000000	33,6390
3	45,9744	4662,3625	. 0000000	54,2430
4	60,6789	56,7735	. 0000000	74,8929
5	7/,3476	4646,2945	. 00000000	95,4996
6	95,9117	58,8693		112.9844
7	110,4189	4625,4963	. 0000000	130,4017
8	12/,1369	63,2249	. 00000000	15/,0682
9	143,8897	4633,4937	. 00000000	17/.7756
10	160.5216	57,7453	. 00000000	196,33/1
11	17/,1456	4633,1682	. 00000000	210,8892
12	193,8441	65.6737	. 0000000	237,5295
13	210,5382	4638,4417	. 00000000	260,1645
14	22/,4924	65,1435	. 00000000	281.1102
15	244,4577	4647.7688	. 0000000	302.0643
16	261,5268	64,4545	. 00000000	323,1530
17	278,5655	4640,1722	. 00000000	344.2005
18	295,2972	59,9395	. 0000000	364,8748
19	311,9450	4595,7226	. 0000000	383,4594
20	320,4679	63,0808	. 0000000	402.8912
21	344,9815	4595,7223	, 00000000	420,3121

LIST OF BOTTOM HITS

NO BOTTOM HITS

LIST OF SURFACE HITS

NO SURFACE HITS

EPSILON# ,4000 DELTA# 250 MIN DELTA# 25 SIN TEST# .020

CHAPTER VI

BATHYMETRY

6.1 Introduction

The present ray tracing program is limited to two-dimensional cylindrical spreading, i.e., propagation along a given bearing. This is not regarded as a serious limitation for the treatment of ray paths that travel entirely through water, since in long-range propagation the possible effects of azimuthal refraction in the water would not be significant in the calculation of transmission loss using the averaged sound distributions described in Chapter IV. Similarly, and recognizing that surface wave scattering can in principle be non-isotropic in its dependence on wave and swell directions, the very small attenuation of such scattering (IV.17) in the low-frequency limit and for prevailing sea states of the ocean shows that there would be no more than a formal advantage in accepting the complexity of a three-dimensional ray tracing program for the sake of including these physical effects.

As discussed in Chapter I, however, bottom-reflected sound energy can make a significant, and at times major, contribution to the acoustical field and must be included in a general-purpose predictive model. The total sound field is made up of numerous and usually unidentifiable arrivals in long-range propagation studies. In applying the present program toward identifying the arrival structure due to explosive sources we have had good success in predicting the arrivals that travel through the water by refraction alone, but have found it more difficult to identify the bottom-reflected arrivals, especially in ocean regions with complex bathymetry.

Chapter I lists the dominant bathymetric interactions as arising from:

- i) terrain local to the origin,
- ii) intervening obstructions over the ray path, e.g., rises and seamounts, and
- iii) distant slopes which alter the vertical sound distribution. Formally, the use of the cylindrical spreading model demands that the bottom contours taken about the origin of the ray tracing be close approximations to concentric circles about the origin or, at least, that the tangent

planes adopted to represent the bottom be not only tangent to the bottom profile used in the program but be also normal to the particular azimuthal plane of the ray tracing. Frequently these conditions will be adequately met and can be used satisfactorily in some geographical locations. However, it may happen that the bathymetry is so poorly defined that this first approximation must be made on a provisional basis in making an initial estimate of the transmission loss. In the latter event the present program provides an estimate of the effect of the bottom reflections through, for example, the ray depth distribution plots. Such initial studies can determine the intervals at which bathymetric measurements are needed as part of an experiment in acoustical propagation.

The general problem of determining the bottom reflectivity coefficients for use in the ray tracing program either experimentally or theoretically is far beyond the scope of the present report. As already noted in Chapter IV, it must be emphasized that scant data exist as a guide for even representative models of the low-frequency, low grazing angle reflections that can be expected to dominate in long-range propagation. The nature of the information that is required can be summarized in three categories that are further discussed below:

- 1. the emphasis on specular reflection coefficients,
- 2. the treatment of highly contoured bottoms that do not possess cylindrical symmetry, and
- 3. the reliability and accuracy of the bottom contours themselves in terms of oceanographic practice and "standard," e.g., BC, charts.

6.2. Specular Reflection

General treatments of boundary layer scattering from a moderately rough surface show that the reflected waves can be resolved into a specular (and coherent) wave and an incoherent wave. Resolution into these classes will be possible whether the boundary may be treated as a simple surface or must be analyzed in terms of subplanes such as those representing sedimented layers. It is to be noted that when bottom penetration exists into a multiply layered boundary, the impulse response may show a long

apparent reverberation resulting from the time delays and dispersions that will be associated with the primary and secondary reflections from the individual layers - the presence of such a tail does not, therefore, provide of itself a discrimination of the reflection as specular or incoherent.

The direction of the specular reflection, however, can be treated directly by the ray theory, and the calculation of the spreading loss that is applied to individual arrivals is unaltered by the reflections that occur at plane or nearly plane boundaries. It is necessary, of course, that the changes of the slopes of the boundary planes be small compared with a wavelength as a condition for the application of ray theory - otherwise, there will be additional losses due to diffraction.

The incoherent reflection cannot be treated by continuation of the ray paths after the reflection. The intensity of the incident wave must be evaluated at the boundary and there be used as a source intensity for the wavelets scattered in all the non-specular directions. As a consequence, the energy scattered into any differential solid angle becomes negligible with respect to the energy in the solid angle that is specularly reflected. As a further consequence, the attenuation of the incoherently scattered waves is much greater than that of the specularly reflected wave in the far field when a moderate to strong specularly reflected component can exist, and this can be expected in the region of long wavelengths and low grazing angles that dominate long-range propagation.

The above emphasizes that the bottom scattering attenuations (Chapter IV-4.2.1) that are introduced into the ray tracing program as part of the weighting functions that modify each ray are to apply to specular reflection, at least for the rays that subsequently propagate to long ranges. If, on the other hand, the reflectivity is measured locally, the total incoherently reflected energy contributes as an integral comprised of all of the contributions from the local bottom surface. The net incoherent reflection comes from a large effective solid angle and can be considerably larger than that due to the specularly reflected wave; also, such local measurements will require detailed experimental design and analysis to separate the two types of reflectivity contributions from the scattered intensity. However, the incoherent scattering remains a

secondary process, and as the range from the scatterers increases, the effective solid angle from the scattering area decreases so that in the limit of long ranges (and excepting specialized bottom contours) the incoherent scattering becomes negligible.

Strong empiric evidence can be cited for the use of the specular reflection coefficients for the reflections from both the surface and bottom ocean boundaries. In 1962 Berman noted that the arrival structure from long-range explosive shots can be interpreted as an indication of the angular spread of ray arrivals and concluded that over ranges as large as 2000 miles the angular spread was of the order of 0.2°! Such a result cannot be understood unless the reflections were specular.

Berman's arguments for this conclusion require assumptions and simplifications that are unrealistic, e.g., no dispersion and no bottom penetration, and his data analysis makes no distinctions between boundaryreflected arrivals and arrivals that have traveled solely through the water. Nonetheless, applications of the present ray tracing program to shot structure analysis do require conclusions that are similar to Berman's (although we would be considerably more conservative in our own conclusions). It is certainly true that with increasing range resolvable and identifiable bottom-reflected arrivals from explosive shots show far less time spread in their structure than is found in single bottom reflections in local measurements. This is in agreement with the greater attenuation with range of the incoherent components of the reflection, as discussed previously. There are, of course, an increasing number of arrivals with increasing range it is significant that the time spread of the dominant arrivals is in good agreement with the ray tracing model results for the rays, and this is one basis for the assertion that the energy carried by the bottom reflection arrivals cannot be neglected in long-range propagation.

6.3. Bathymetry with Non-Cylindrical Symmetry

The foregoing remarks constitute a good approximation for the treatment of the bottom reflections when the bottom is approximately flat over an acoustical path and provided that strong reflectors outside the bearing of the acoustical path do not provide special alternative paths that can selectively

couple sound energy from the source to the receiver. The calculation of transmission loss that is presented in Chapter IV requires a large number of rays in the azimuthal bearing plane for the purpose of sampling the resultant field distribution and is especially suitable as an averaging process for the bottom reflections over a gently undulating, moderately rough bottom. Specifically, it is expected that the rays that are canted off a given bearing in a reflection will be partially offset by rays that are initially propagating on an adjacent bearing and which by reflection are canted toward the receiver. The presence of such "cross-bearing coupling" that averages to a value independent of the bearing is not inconsistent with the assumption of cylindrical spreading and, in first approximation, would not alter the vertical distribution of channeled sound energy.

In the presence of more complex bathymetry, however, the simplifications of a model based on cylindrical symmetry cannot be justified. In some experiments involving towed low-frequency cw projectors Hudson Laboratories has detected energy which, by its Doppler shift, can be identified as propagating at bearing angles of 30° to 40° from the direct path and which could have been detected only after reflection from adjacent terrain. This experience is anomalous, but is cited as one example that the total sound field results from many contributions. Indeed, if the present ray tracing program were to be extended for greater physical application, and apart from technical improvements that might lead to increased computational efficiency, the direction of the effort would be toward a more realistic inclusion of the contributions from bottom reflections. The following comments are provided not toward discussion of such a revision but in appraisal of the limitations of the cylindrical spreading model. The comments are given in terms of the three principal bottom interactions that affect long-range propagation.

6.3.1. Terrain Local to the Origin

When the origin of the rays occurs at or near a slope or embankment there is a strong possibility that slope-reflected rays will be converted to ray directions that can propagate to long ranges in the sound channel or in an RSR mode, e.g., Figs. 9 and 17. It will be a rare geological structure, however, that does not show troughs or rises and other features which will act to make the coupling of the sound energy to the far field dependent on specific bearing angles.

A realistic model for this type of boundary would consist of small-scale roughness over an averaged bottom that is described by contours taken many wavelengths apart. The roughness leads to incoherent scattering, but if the bottom is smooth on average there will also be a specular reflection that can be described through an attenuation function. The ray tracing from a given origin yields the direction of the wavefronts that are incident against the bottom, and from these data the orientation of facets which will reflect to a given bearing can be determined. The effective cross section for each facet will be proportional to its Gaussian curvature, and the inclination of the reflected ray will determine how the ray is subsequently propagated - the facets that reflect steep rays that require further bottom reflections can be disregarded.

The description in terms of facets is the extension to three dimensions of the two-dimensional profile used for cylindrical spreading. However, the simple two-dimensional profile implies that the specular reflection remains on or close to the bearing angle because the bottom planes are assumed normal to the given bearing; in three dimensions there may be very few or no facets with an orientation that permits coupling to a given bearing or, on the other hand, certain bearings may be very strongly illuminated by extensive, favorably oriented slopes. If an acoustic source and its adjacent terrain were viewed in a manner that corrected for the refraction of the rays in subsequent propagation, three characteristic types of illumination would be clearly visible:

- 1) direct rays which were not reflected from the bottom,
- localized images of the source that are reflected from the bottom facets, and
- a uniform illumination of the entire slope due to incoherent scattering.

The fact that the slope, viewed from the far field, would appear uniformly illuminated by the incoherent scattering is deduced by assuming that the scattering would roughly obey Lambert's Law. This is analogous to the uniform radiance from the surface of the moon produced by reflected sunlight. Unlike the optical analogy, however, it would be expected that for low-frequency acoustical waves a typical slope under water would or could show significant specular reflection from certain facets, and that the specularly reflected energy from these would have much greater brightness than that scattered diffusely. The degree with which each type of illumination contributes to the net far acoustical field will depend on the position of the source in the region of the slope, the nature of the slope itself, and the structure of the velocity profiles which govern both the coupling of the direct rays and the angles of incidence of the rays reflected against the bottom, including those rays which are first reflected from the sea surface.

More importantly, the refraction of the spreading energy of the field propagating from the source and slope will produce modulations of each of the three types of contributions that will depend on the position in the far field. For example, it will be characteristic of shadow zone reception that the major contributions will come from the bottom reflections although the total energy spreading from the source may contain only a small percentage of bottom-reflected energy.

A principal direction of the present program has been toward the inclusion of all significant modes of propagation even though the description and evaluation of such modes is (initially) handled by highly empiric, even ad hoc, procedures. One reason for the inclusion of such effects is to increase the facility with which the predicted transmission loss can be compared with experimental data. Evidently, the bottom-reflected arrival contributions will not only affect the magnitude of the measured transmission loss but will be important also in a description of the transmission loss spectrum and in the shape of the transmission loss taken as a function of range and position in the ocean. Although the present two-dimensional program cannot treat the bottom reflections from complex bathymetry on a quantitative basis it can, at least, contribute toward distinguishing the direct, purely refracted or RSR arrivals from those that do interact with the bottom.

6.3.2. Seamounts and Slopes at Intermediate Ranges

It has already been indicated, e.g., in Fig. 17, that an intervening obstruction can radically modify the vertical distribution of the spreading sound energy, acting as a filter that both attenuates and truncates selected ray bundles. The interaction will not only depend on the bathymetry of the obstruction itself but will be sensitive to the illumination against the obstruction that is determined by the propagation paths between the source for the ray tracing and the interposed bottom. A detailed treatment of this problem, therefore, will be conditional upon a relatively complete, accurate treatment of the incident acoustical field. Further, all the problems raised in the preceding discussions will again apply to this type of blockage, including the question as to whether a cylindrical spreading model that is two dimensional will be applicable.

The model is probably satisfactory if the obstruction is a uniform rise that lies approximately normal to the acoustical path, but it will be obviously inadequate for the treatment of seamounts, many of which have widths that are considerably narrower than a convergence zone. Weston treated the three-dimensional scattering from a round island and concluded that the "radar cross-section" for scattering from this type of feature would increase with deflection angle for source and receiver at angles with respect to the island that approach twice the bottom critical angle. Weston's arguments are highly simplified and he deals only with the specular reflection; also, the fall-off of the specular reflection coefficient with increasing deflection angle will limit such side-of-slope scattering to a smaller value than that estimated by him.

If the seamount obstruction is regarded as being gradually translated across an otherwise unobstructed acoustical path, it would be expected that the rising base of the structure would initially obstruct the propagating field. Later, it may well be possible that reflections from the sides add energy and produce a redistribution of the ray bundles to increase the efficiency of the transmission. Finally, it would be expected that the central core of the seamount would produce maximum occultation in a manner that depends on the depth of the peak and the vertical distribution of the sound field in its location. The most important simple criterion for these

effects will be the proportion of the acoustical field that travels directly through the water as compared to the field that arrives from the bottom reflections.

6.3.3. Distant Slopes

When the ray paths are followed across entire ocean basins the field can be regarded as broadly illuminating the far slopes of the basin and will produce a vertical redistribution of the spreading energy as discussed previously and indicated in Fig. 17. Because of the reciprocity theorem (Chapter IV-4.1.3) the comments that apply to the treatment of the local slope near the origin of the ray tracing will also apply to the far-field bottom reflections. There is, of course, the important practical distinction that the origin for the rays will represent a specific choice for which every attempt will be made to define the local bathymetry. The sound field map from this origin can be expected to cover tens of thousands of square miles and it must be expected that detailed bathymetric knowledge will be available for only isolated areas of the total field of illumination.

6.4. Bathymetric Data

The preceding remarks summarize the limitations of the present program for dealing with the acoustical field that has been bottom reflected as well as with extensions to the program that could be formulated so as to provide a more realistic treatment of the effects of the bottom. Over-all, however, such work demands that the bathymetric data must be known with a precision that is at least comparable to that of the velocity profile data. Also, in terms of long-range propagation over paths of several hundred miles range or more, it is necessary that much of the data will come from standard bathymetric charts.

This chapter includes background for readers who are not familiar with the methods used to construct such charts. It also discusses the procedures adopted in connection with the present program to obtain the bottom profile that is used in the ray tracing program.

6.4.1. Standard Bathymetric Charts

In recent years the knowledge of deep-sea bathymetry has been greatly increased through oceanographic research and military surveys

while at the same time various events have dramatized the need for still more extensive and detailed knowledge in the field. Institutions from which Hudson Laboratories has acquired significant amounts of data for use in the ray trace program include the British Hydrographic Office, National Institute of Oceanography (England), Deutsches Hydrographisches Institut (Germany), Lamont Geological Observatory, Woods Hole Oceanographic Institution, Scripps Institution of Oceanography, Bedford Institute of Oceanography (Canada), and finally the U.S. Naval Oceanographic Office (NAVOCEANO) with the largest bathymetric data-gathering program of all these. This latter office is the official repository of all sounding data obtained by ships under control of the U.S. Navy, but it also receives extensive data from other Government agencies, commercial ships, oceanographic institutions, and foreign hydrographic bureaus. Of all sounding data collected by NAVOCEANO over the past 18 years, 78% was obtained by Navy and Coast Guard vessels, 11% on special surveys, and less than 11% was collected by merchant ships. NAVOCEANO is also responsible for the Department of Defense Bathymetric Data Bank, and is the world's largest producer of bathymetric charts.

The Bathymetry Division, Hydrographic Surveys Department, of NAVOCEANO receives approximately 700 sounding reports annually representing about 1.5 million miles of soundings. Most of the sounding tracks are plotted on the 3000 series plotting sheets (4 inches to a degree of longitude). Soundings are usually entered from echograms at time intervals of every 15 min. ⁴ However, an automated program developed by Lamont Geological Observatory under the direction of Dr. B. C. Heezen plots soundings at every peak, low, and change of slope. ⁵ Only in recent years has a program been initiated by NAVOCEANO to inspect the echograms for correctness of interpretation, positional accuracy, and for grading according to the quality of the sounding equipment used.

The soundings are compiled on "collection sheets" which are overlays to specific plotting sheets. There may be two sets of collection sheets (with and without security classification), and also several plotting sheets for each collection sheet. Classified bathymetric data are any data collected with a line spacing of 5 n.m. or less that have been obtained with a high-precision navigation system (e.g., Loran C) on a survey conducted by a Naval vessel. The Navy has no security classification control over a similar sounding density in the same area taken by an independent oceanographic organization.

The Bathymetry Division has the responsibility to provide charts tor navigation and for the charting of shallow areas from surveys and merchant ship reports. The discussion in this report is limited to unclassified bathymetry.

Only about 4% of the world oceans has been surveyed by trained personnel operating from specially equipped oceanographic research vessels. Therefore, bathymetric charts are constructed primarily from random data tracks, which are sounding tracks from ships in transit from port to port or to and from operating areas. The sounding and navigation accuracy of these tracks is often open to question as the data may have been obtained or reduced by untrained personnel. A general statement concerning the bathymetric charts of the Atlantic Ocean is that those west of 60°W longitude have reasonably good accuracy, and those from 50° to 60°W longitude have only fair accuracy. The charts over the Mid-Atlantic Ridge delineate the ridge but fail, in most cases, to point out fracture zones and detailed topographical features. Charts along the coast of Europe range from good to fair. There are no BC charts of the South Atlantic, and generally charts north of 50° latitude are poor.

Many reported shallow features are unconfirmed because research and survey vessels have been unable to locate them. A similar situation exists in deep waters. For example, the reports of "phantom" seamounts come, for the most part, from merchant ship observers who operate low-powered sounding equipment that is used only occasionally while the ship is in transit. This results in a discontinuous sounding track that causes operator confusion as to what is the recording phase of the returning echc. 5

Extensive phantom banks have been reported which display two dominant characteristics: (1) they have depths between 125 and 375 fathoms, and (2) they are always located in the daytime, never at night. Such recordings are not the ocean bottom, but the "Deep Scattering Layer" (DSL). The DSL has been found in most of the world oceans. It descends from the surface at sunrise to depths between 125 and 375 fathoms during the day.

Backus and Worthington⁶ have found the DSL in the area of the "American Scout" seamount (46° 22'N, 37° 04'W) reported in July 1948 by the S. S. American Scout and two other merchant vessels the following month, and again in July 1964. Five research vessels have been in the area since 1958, and have failed to detect the mount. Soundings in the area show an average depth of 2420 fathoms.

Another example is Milne Bank shown on current charts at 43° 37' N, 38° 42' W. This was first reported to the British Admiralty in 1864 by Sir Alexander Milne at 43° 35'N, 38° 50'W as a bottom of fine sand and ooze at 92 and 81 fathoms. In 1868 the H. M. S. Gannet obtained 2280 fathoms in Admiral Milne's position. In 1894, the Bank was removed from the Admiralty charts. The S. S. Innaco in 1921 obtained a sounding of 63 fathoms and rocky bottom at 43° 37'N, 38° 42'W, and 75 fathoms about 2 miles southwest of this position. On October 14, 1936, the S. S. Camito ran its Marconi Eckometer sounding gear for 25 min and reported depths from 56 to 160 fathoms during a 5-min period. It reported that the ship was running on Eckometer soundings at 13.8 knots from 43°39'.5"N, 38°38'.5"W to 43°40'N, 38°37'W. In 1937, the H. M. S. Challenger obtained depths at the original Milne position of 2200 fathoms. In 1957-8, the German research vessels Gauss and Anton Dohrn ran over 350 n.m. of track in the area making continuous soundings. In 1965, Backus and Worthington ran track lines through the area. Neither the 56-fathom peak nor any other seamount feature has been observed by a modern oceanographic vessel.

We are convinced that Milne Bank does not exist in its charted position. However, the lead line soundings of 1864 and 1921 cannot be ignored until a systematic survey of the area is undertaken.

There is no complete up-to-date source combining the presentation of all available data for any single BC area. The data is found at NAVOCEANO in the following forms:

- (1) Documents originals and/or copies of log books, track plots, echograms, sounding listings, charts, publications;
- (2) Rolls of 35-mm film;
- (3) Micromaster slides;

- (4) Punch card data file;
- (5) Miscellaneous unplotted data:
- (6) Composite charts;
- (7) BC charts (need revision, updating).

New programs in 1954 were given priority over routine up-dating of the BC charts. In March 1964 there were 23,438 document units not plotted on BC charts. A document unit consists of soundings crossing one plotting sheet. The backlog is increasing because of the number of sounding reports coming into the division. There are occasional data requests that reduce the backlog, but not to any great degree.

The indexing of the report documents starts with a cursory examination to see that the data reports conform to H. O. Pub. 606b. In this examination many discrepancies with the publication are found, ..g., echograms but no ship navigation logs received, no correlation of navigation with echograms, etc. The data are given a general rating (1 to 4) lased on the type of navigation control and completeness of the document. A rating of 1 is the highest rating and has navigational control obtained by Loran A or better with fixes every four hours or less. The data are collected by a survey on an oceanographic vessel using a precision depth recorder and the echogram accompanies the navigation data to NAVOCEANO. A rating of 2 meets all the requirements of 1 except that the navigation is poorer than Loran A. A classification of 3 is given to a document that contains a sounding track with no navigation aids but does contain an echogram. A rating of 4 is the same as a 3 rating without the echogram, and the sounding data may be only a listing of depths and position.

It is at this point that a master chart is prepared on which all the soundings are plotted. The final manuscript contour chart for publication is then drafted by a bathymetrist who must analyze the soundings and select different weights for the reliability of the data so as to fit the soundings to a consistent bathymetric representation. Needless to say, the quality of the BC's differs because not only do different people make varying judgments as to the quality of the data, but also the lack of data in some areas may force the bathymetrist to use poor data that would be omitted in areas where there

is good control - e.g, west of 60 W longitude, the poorer data can be omitted completely. The bathymetrist also plots data from foreign nautical charts. The contours are drafted as 100-fathom isobaths that represent the geomorphology of the area. A BC log is kept for each bottom contour chart, consisting of the following: 1) the scientific literature referred to, 2) surveys used, 3) the domestic and foreign charts used, 4) the data of completion of the various steps in construction, and 5) names of personnel performing the work. This work is done by geologists, not cartographers, as the charting of the sea floor differs greatly from contouring aerial topographic maps.

A great deal of practical navigation experience is needed. Knowledge of sounding equipment and the correct delineation of bottom topography depends on the bathymetrist's knowledge of geology and sedimentology. Because the hydrographic chart is made up from only spot soundings, sounding lines, and profiles, placement of the contours on the charts necessarily becomes subjective. It is apparent that the chart quality depends on the bathymetrist's care and expertise in marine geomorphology. A chart must be constructed and reconstructed until the best possible interpretation is developed.

The use of the published Bathymetric Charts in underwater acoustics is limited for two important reasons: 1) the charts have been primarily designed for surface navigation and therefore do not include the positions at which soundings were made, and 2) much of the data used in constructing the chart is of unknown or poor accuracy. Therefore, it is necessary to obtain the "collection sheets," when possible, in order to determine the best profile for the ray tracing program in the area of interest. The published BC charts would be much more usable in acoustical investigations if the actual locations of the sounding data (control lines) were to be routinely incorporated in the construction of the charts. Also, the control lines should preferably be coded (e.g., by color or pattern) as to the reliability in terms of quality of navigation controls, sounding equipment, and other characteristics of the data presented.

6.4.2. Applications of Acoustics to Bathymetry

Essentially all of the data used in the preparation of the bathymetric charts (BC's) comes from echo sounding with greater weight assigned for the type of apparatus found on oceanographic research vessels. Where the contours change rapidly, the older wide-beam (60°) transducer can give ambiguous results arising from apparent multiple bottom structures unless exceptional care is taken in "migrating" the contours to form continuous lines; this problem is reduced when data are taken using narrow-beam (6°) transducers. All such devices have the defect, however, that bottom structure is greatly averaged by the returning echos in transits over the deep ocean and the data are confined to the contours taken over the track lines.

High-powered, deep-sea lateral echo sounders are far more useful for bathymetric determinations, for they determine not only a local bottom depth but also a profile transverse to the ship's track that may be extended to a range of several miles. In consequence, data are obtained that reveal the degree of modulation or roughness of the bottom. Present research programs are concentrating on the extent to which the topography determined by these techniques agrees with that mapped by the insitu observations of a trained geological observer operating from a deep submersible.

Coarser mapping of large-scale bathymetric features such as seamounts or slopes can be obtained by long-range propagation studies. Although these do not provide detail, they can provide surveys over large geographical areas to identify prominent reflectors or occultors of the sound. In reflection, large explosive charges are used as sources and the reflectors are located by comparison of the sound travel times for echoes that are monitored by widely spaced hydrophones. An example of occultation is shown in Fig. 17; if a continuous surface source such as a towed projector were to transit behind the seamount shown in the figure there would be a pronounced attenuation of the detected energy for the bearings that intercept the seamount.

These techniques do not, of course, replace detailed surveys, but they are of immense value in revising the locations of mis-positioned seamounts, in detecting seamounts or windows in unsurveyed areas, and for broad exploration of an area in terms of its reverberation background. Such work at Hudson Laboratories has, for example, identified a number of acoustic windows in the Mid-Atlantic Ridge and these correspond to prominent fracture zones across the Ridge.

6.4.3. Bathymetric Data Required for Acoustical Applications

The 100-fathom contours of the present bathymetric charts are primarily adapted toward surface vessel navigation using standard echosounding apparatus. If the contours are regular and widely spaced, and supplemental information is available as to the physical nature of the bottom, e.g., smooth and sandy, or rocky and rough, such data can be used with some reliability to construct the bottom profiles and approximate reflectivities that are needed for the ray tracing. A special and optimum example would be the Hatteras Abyssal Plain, which is known to be not only flat but to possess a large specular, coherent reflectivity.

Such regions, however, are either exceptional in long-range propagation or they occur at deep depths intermediate between highly contoured slopes and seamounts. For the latter, the contours of bathymetric charts drafted on the basis of a few track lines in the area cannot be considered to provide reliable estimates of the bottom features that will be effective as acoustical reflectors. It must be expected that a major number of applications of the ray tracing program as a predictive model will have no better bottom data than that available from the present bathymetric charts, but it must also be expected that with time, or as a result of special intensive experiments, more precise knowledge of many bottom regions will be accumulated. Such data should be not only bathymetric but geomorphic, including bottom composition and structure, properties of subbottom planes, and other data that can be utilized to refine the predictive model.

At present, it is strongly recommended that the bottom profiles that are generated for a program be drawn from inspection of the original collection sheets (Chapter VI-4.1). At the very least, such inspection will indicate the reliability that can be placed on the treatment of the bottom-reflected energy - it may also indicate regions with smooth slopes, or bearings that intersect smooth slopes which will be favorable as acoustic reflectors.

In using the present ray trace program at Hudson Laboratories the bottom profile is constructed by calculating and plotting the great circle path across the bathymetric chart, and recording the 100-fathom isobaths and positions of slope changes with an accuracy of at least 0.1 mile with respect to the source or receiver. As required, either as a matter of judgment or if additional data are available, entries on a finer scale may be added to represent changing slopes or curved features.

References for Chapter VI

- 1. Clay, C. S., J. Geophys. Res., 71, 2037 (1966).
- 2. Berman, A., J. Acoust. Soc. Am., 34, 298 (1962).
- 3. Weston, D., Proc. Phys. Soc., 78, 46 (1961).
- 4. Bathymetry, Basis of Inner Space. SP-98, U. S. Naval Oceanographic Office, Washington, D. C. (April 1967).
- 5. Heezen, B. C., personal communication.
- 6. Gilg, J. G., McConnell, J. J., "Non-Existent Seamounts, A Case Study," Informal Manuscript No. 66-28, U. S. Naval Oceanographic Office, Washington, D. C. (September 1960).
- 7. Backus, R. H. and Worthington, L. V., "On the Existence of the Seamount Known as 'American Scout'," Deep-Sea Res., 12, pp. 457-460 (1965).
- 8. Oceanographic Office Observers Manual, Sonic Soundings Pub. No. 606b, published by the U.S. Naval Oceanographic Office, Washington, D. C. (revised July 1963).

CHAPTER VII

PROGRAMMING

This chapter contains the source listings of 19 major programs in the ray trace data flow system. These are numbered in Fig. 59 in the order of their presentation. The programs have been grouped by general function into three sections: 1) data input programs, 2) ray trace and documentation programs, and 3) ray trace analysis programs. These listings should provide the reader with a greater insight into the technical programming aspects of the ray trace program.

The Hudson Laboratories number of each program (Fig. 59) designates by the second letter the language in which it is written: F for FORTRAN-II, F IV for FORTRAN-IV, G for GAP, and U for Klerer-May USER language. Most of the programs are written in USER language, which is self-documenting without supplementary flow charts. The USER reference manual, Table 7.1, is included in this chapter to give the reader the proper interpretation of statements used in the programs. It should be noted that superscripts that are red in the original source listings form new characters and are not to be interpreted as exponents; in this report these appear as black characters, and the reader must alert himself to distinguish the superscripts used as exponents from those added merely to form a new variable.

The following program source listings constitute the balance of this chapter.

DATA INPUT PROGRAMS

- 1. A-173-Fl Velocity Data Search Program.
- 2. A-177-F1 Velocity Profile Punch Program.
- 3. A-192-F1 Read FNWF Cards.
- 4. A-186-Ul Velocity Calculations by Wilson's Equation.
- 5. A-198-Ul Velocity Profile Data Selection Program.
- 6. A-147-Ul Velocity Profile Interpolation Program.
- 7. A-197-Ul Comparison of Velocity Profiles.

RAY TRACE AND DOCUMENTATION PROGRAMS

- 8. A-180-Ul Velocity and Bottom Data Input Program.
- 9. A-181-Ul Extrapolation and Interpolation of Velocity Profiles.

- 10. A-199-Ul Profile Plot Program.
- 11. A-182-Ul Ray Trace Program.

RAY TRACE ANALYSIS PROGRAMS

- 12. A-187-Ul Ray Depth Distribution Program Pass 1.
- 13. A-183-Ul Ray Depth Distribution Program Pass 3.
- 14. A-195-Ul Type III Intensity Program Pass 1.
- 15. A-185-Ul Type III Intensity Calculation Pass 3.
- 16. A-196-Ul Multiplot Pass I.
- 17. A-189-Ul Type II Intensity Calculation Pass 1.
- 18. A-184-Ul Type II Intensity Calculation Pass 3.
- 19. A-200-Ul Type II Intensity Plot Pass 4.

RAY TRACE DATA FLOW

Fig. 59. Ray trace data flow diagram identifying program source listings in Chapter VII.

Vecebulary List

28A	CARD	END	LN	READ	TANGENT
ABSOLUTE	CARDS	£OF	LOG	RETURN	TANH
AND	COMPUTE	EQUALS	LOOP	REWIND	TAPE
ARC	CONTINUE	EXP	MAXIMUM	ROUND	THE
ARCCOS	COS	FILE	MESSAGE	SEC	THEN
ARCCOSH	COSECANT	FINISH	ZIJNIM	SECANT	TIMES
ARCCOT	COSH	FOR	OF	SECH	TO
ARCCOTH	COSINE	FORMAT	OR	K12	TOP
ARCCSC	COT	FORMULA	OTHERWISE	SINE	TRUNCATE
ARCCSCH	COTANGENT	FRACTIONAL	PART	SINH	TYPE
ARCSEC	COTH	FROM	PAUSE	SLFW	IINTII
ARCSECH	CSC	GO	PERFORM	SPECIAL	UPPER
ARCSIN	CSCH	HEADING	PLOT	SOPT	VARIABLE
ARCSINH	CYCLE	IF	PLUS	STATEMENT	VARIABLES
ARCTAN	DIMENSION	INFINITY	PRINT	9072	WITHIN
ARCTANH	DIVIDED	LABEL	PROCEDURE	SUBROUTINE	WRITE
BY	DO	LINE	PROGRAM	SWITCH	
CALL	F1.2F	LINES	PUNCH	TAN	

A period denotes the end of a statement or the end of an implied loop. Corrections can be made by overtyping or by pressing the control key ERASE when positioned over the error.

Each program must be terminated by the statement END OF PROGRAM or FINISH.

More than one statement per typing line is acceptable.

To continue a statement beyond the maximum typing length for one line,

press the carriage return us many times as desired.

Names of variables with more than one character should be defined by a SPECIAL VARIABLES statement before use. A comma or the word AND may be used to separate computable state-

FROM $i\approx 1$ TO 10 COMPUTE $A_{1} \in B_{i+1}(C_{i+1}), \ C_{i} \in A_{i+1}(X)$ and $D \in SIN(\theta_{1})$ Superacripts and subscripts must be in straight line form but forms such an (A.) sre perminuible.

Examples of Acceptable Forms

The letters E. L. G denote an arithmetic expression, e.g., F may denote the expression A + 2B + 1, otherwise a single variable is meant. British 1 I denote a choice of forms. Square Brackets [] denote those forms that are optional.

Note: The horizontal extension of the lower limit equation and upper limit expression should not exceed the corresponding nums of the sum symbol. The operand of the sam should be outside the symbol.

DIMENSION A - (N, M).

This indicates that A is an (N : 1) by (M : 1) array

DIMENSION B = 40, Z = 30, Q = (10, 50). SPECIAL VARIABLE(S) = DIMENSION

SPECIAL VARIABLES TEMPERATURE, HUMIDITY, PRESSURE,

COUNT, LBJ = (14, 200), ay = 10.

UPPER is used in the same number as DIMENSION and SPECIAL

VARIABLES except that the infricated arrays are stored in upper memory UPPER C, WEIGHT - 56, K (20, 30).

Subscripted variables need not be dimensioned when used in foems such

(2) MAXIMUM n 10, 3 15

A.k B.Q., FOR k 4.5, . . . , J WITHIN : 0 BY 3 UNITE n.

(3)
$$A = \sum_{i=1}^{40} B_i$$
, $P = \begin{bmatrix} 30 \\ 1, j=0 \end{bmatrix}$ $C_{i,j}$

FROM i E TO G (Unit steps assumed)

FROM : N BY 2.34 UNTIL A - B

FROM A B - 5 BY 2 UNTIL Q - 20

FROM . E TO INFINITY

FROM or FOR forms can be used either to begin or end a statement.

C. A. 18, FROM: 1 TO 10.

FROM : 1 TO 10 COMPUTE A, IB..

DO STATEMENTS FROM J 1 TO 10.

This indicates that all statements up to but not including 5 will be executed. (No two 1900) statements should terminate at the same statement number. Otherwise, any number of 1.00P procedures within or external to other 1.00P procedures is permitted.)

FROM WITHIN AND

FOR # 0,5, . . . , 90 WITHIN # 1 TO 10 AND # 1 TO 5 LOOP TO

FORMULA 6.

The loop to be performed most often in the first one; the least often in

READ READ CARD READ CARDS

READ A, FROM in 1 TO A; 15.

Card Formst is free field; number of data points may vary from card to card and may be in either fixed or floating point form. READ X.

READ A., B., FROM I. E UNTIL A. 93.643.

Data may be punched into cards in the following forms: $2=2-1.596-(3.213)-4.60-2.784[2]/2.78*(0^4]/2.781-2^4/2.78*(0^4)/2.781-0^4/2.781$

Example

(--1, D=15, (-3, F=4, D=2, M=1, FROM mel certit, a COMPUTE 8,=5-n.

PERFORM Hyper FOR rel UNTIL res.

MARKET AND ALL COLUMN

MAXINUM DOZO.

HEAD A. . B. FROM 140 TO A.

$$\sum_{i=1}^{n} \left[\lambda_{i} \prod_{i=1}^{n} \alpha_{i} \lambda_{j} \right].$$

Table 7.1

Three Alternate Formulations Of The Same Problem DIMENSION x=20, y=20.

GeO. SIAD L.

FORMALA 1. READ Ag. Yo.

awart, IF ask GO to FORMULA 1. Second, STATIMENT 1, Beg, Pel.

STATISHED 2. PaPapy $_{\rm R},~{\rm Deph}_{\rm L}$ If eso bills Go to STATIMENT 2.

SaPan Allo ded 11. IF and GO TO STATEMENT 1.

POUNT THE OF PROGRAM.

MAXIMUM 1420.

RIAD W. 940. FROM XHO TO W READ $\mathbf{u}_{\chi_{\mathcal{F}}}^{-} \mathbf{v}_{\chi_{\mathcal{F}}}^{-}$

DO FORMULA 3 FROM 140 TO W.

σ=1.

FROM YES TO W COMPUTE CHARLYNG.

ր⊷ թ+Ե_գ3.

FORMER 3. PRINT D.

INO OF PROGRAM.

PRINT X, i 1AI, Y, IA, BI, Z, SIN m, i Y, FOR i 1, 2, . . . N. PPINT E. F JA.BI. X G.A. FUNCH E F IA.BI, X GIAL

A and L are integers between 0 and 9 but their aum may not exceed 9. Iand), will be printed for eard purchash with A places to the left of the decimal point and Biplaces to the right. The salue of G and c will be prented for card punched) as an integer of A places. Gwill be stored in X. E, and I, will be printed for cord punched) in floating point form.

PRINTY E 14.B.C.L.

Some we almost a copt that E in firm divided by 100 to change its range

in the prin statement a maximum of B expressions circluding a blank between comman are allowed. Fach is centered in a 15 position field,

PRINT LABEL A, COUNT, X-Y, SIGMA (J). PRINT LABEL LABEL HEADING PRINT HEADING

Each label, asparated by comman, in a PRIVE LABEL statement may be up to 15 characters in length and will be printed in a 15 gossition. field. A coccusum of 8 labels per statement in permitted and should contain only those characters used on the high-speed printer.

The PRINT FORMAL statement muy be used when it is desired to mix literals and answers or to have more than 8 answers per line.

PRINT FORMAT n, E, F, X G. FORMAT in LLL...L xxxx LLL...L x.xx y.

n in an integer of up to four places, LLL stands for any literals that are printable on the high-speed printer. Small x's are used to denote the sectual position and number of digits of fixed point quantities while one small y is used for each floating point quantity. The first set of x's denotes the first expression equation variable mentioned in the PRINT FORMAT statement, the second set of x's denotes the second expression...etc. FORMAT statements may be located anywhere in a program-

FRINT FORMAT 12, θ_1 , SIN θ_2 , ϕ_3 = $\frac{180\,\theta_3}{1}$ FROM 1 - 1 TO N.

FORMAT 12 ANGLE (RADIANS) y SIN THETA XIXXXX AND THE ANGLE IS XXX DEGREES.

If $\theta_1/3\pi/4$ then the following would be printed on the high speed printer:

*ANGLE (BADIANS) : ,23561945 1 SIN THETA - ,7071 AND THE ANGLE IS 135 DEGREES.1

SLEW N (Printer paper spaced N !ines) SLEW[[TO]TOP] (Paper will advance to top of page)

Messages on the typewriter or printer are printed using the following forms:

TYPE NEGATIVE SQUARE ROOT. PRINT MESSAGE (END OF PROGRAM) AND SLEW.

IF F G THEN GO TO STATEMENT !.

IF F G GO TO STATEMENT 1.

IF F G THEN B . C . E.

IF F G THEN READ ... IF F G THEN CONTINUE.

ELSE (GO TO IF F - G THEN ... \[\ \ ELSE \ \ GO TO \ COMPUTE ...

Examples of multiple conditions:

COMPUTE... READ " OTHER-IF i 5 OR G+H OR SIN θ_i + β' THEN C . D WISE GO TO FORMULA 3 CONTINUE

IF P. G AND H +/ 2 AND.

IF U O OR (G or SIN # AND H: Con)...

IF E. FEG THEN ...

!) COMPUTE A - B - 2, (IF $_{1}$ THEN (IF m -n THEN T $_{2}$ r SIN $\theta)$ OTHERWISE $(T-rCOS(\theta))$ and PRINT T, A.

2) COMPUTE A . B . 2, (IF . . | THEN (IF m . n THEN T - c SIN# OTHERWISE T + COS (1) and PRINT T. A.

In case I Ter sm & if inj and in an Ter cost when it j

I ∘r co-stwhen t≠j Tisnotcomputed when i≂j and m≠n.

In case 2 Ter sin θ when ι − j and m · n T-r cos θ when ι · j and m ≠ n T is not computed when ι ≠ j.

GO - GO[TO]

GO TO STATEMENT 20

PAUSE will cause the object program to go into a loop. Exit out of the loop will occur if console switch No. 0 is toggled.

Comments than computable statements) are entered between 1.1 symbols.

FROM : 1 TO 10 READ X, IREAD VALUESI.

 $Y[t_{i,j}] = \{i \in I2\},$

-236-

Table 7.1 (contd)

Use of the next forms eliminates the necessity of using "100" or "1 000" statements. Computable substatements within an implied by pair separated by a "comma or $\Lambda M D$

FOR + 1(1)50 AND k 0 BY 2 UNTIL Y 2000 READ X. ... COMPUTE Y 2X AND PRINT Y.

FROM: 1 TO INFINITY READ X., IF X / 10 COMPUTE Y Y - X., n n . 2 OTHERWISE GO TO STATEMENT 1.

Superaccipta that are red are used to form new characters cather than being interpreted as exponents. The following is a short program to determine the maximum absolute value of a set of positive numbers X

In the following magnetic tape communeds Γ is the number of elements in the array V . T is the tape number and P is the controller (plug) number

READ TAPE Vo. T. P. L. The first Lelements of the tape record is

read into locations V_0 to V_{k+1} . WRITE TAPE V_2 , T_1 P, S. (Locations $V_2 \sim V_0$ are written on tape)

REWIND T, P. RWD T, P. WRITE END OF FILE T, P. EOF T, P.

IF END OF FILE P THEN ... IF EOF P 60 TO ...

In the following example Y is the variable to be plotted, Y is the ''independent index'' (i.e. Y - I(X)), V= the minimum value of Y and B $^{\circ}$ the maximum value of Y.

PLOT Y, X, A, B. PLOT Z., i, 0, 1 FR JM i = 1 TO 565%.

LXAMPLES

READ A, COMPUTE Y= - AND PLOT Y, 5, -1. 1 FROM 1=1 UNTIL YOL.

IF doe compute $x=\sqrt{(a+k)\alpha}$, $y=B_{1,j}x+C_0$ 1 and print y, a, 1, k, otherwise compute $x=2\alpha k$, $y=B_{1,j}x+C_0$ 1 and print y, α , 1, k from $\alpha=1$ to n within the ry , of white 3 and for k=0(5)90.

FROM 1=1 TO 10 AND J=1 TO 10 READ A J. COMPUTE $B_{i,j} = A_{i,j} + a_{i,j} + \gamma_j$ and Print $A_{i,j}$, $B_{i,j}$, x_i , x_j

FOR r=1, 2, ..., 10 AND FOR m-+(.01)+ COMPUTE SporSin20. $C_{\mu^{n}} \sqrt{r} \frac{105^{-1}e}{105^{-1}e}$, $A=1_{\mu^{n}} = \frac{30}{e-1}$ TAN(,1xee),

A+ PRINT P, 8, Vp, 4.

IF (x37 and 750) or $\{-ke,\gamma/e,\}>(x-\gamma)^2$ then compute $T_{\chi\gamma} = \gamma(e-\varphi)^2$ and $v=(y\tau_{\chi\gamma})^{\gamma e}$ and phint $w_e + \tau_{\chi\gamma}$, $x_e + y=2k+3$ by .017 until w55800 and from x=) To 100 OTHERWISE GO TO STATEMENT 2.

To define a procedure within a program:

(SUBBOUTINE) (***)PROCEDURE ((Name).	,	 	 .
	RETUR	N	 	

RETURN [END [(Name)] [SUBROU] INE PROCEDURE] L

The name of a subroutine can be an alphaoumeric string of any length but must began with an alphabetic character and cannot be dentical to any item in the vocabulary list. As many BEITBN's as desired may be inserted to branch out of the subroutine back to the mount program. The END statement is optional, A STOP or GO TO should precede suboutines

To call a procedure:

... GALL (Name) [SUBROUTINE]

Relative Positions of Special Characters

M. KLERER and J. MAY, REFFRENCE MANUAL Columbia University, Hudson Laboratories Dobbs Ferry, New York Revised Edition July, 1965

This week has been supported by the Office of Naval Research and the Jovanced Research Projects Agency under Continet Sout-266(84)

1) A-173-F1 Velocity Data Search Program:

Searches NODC master file tape for velocity data along ray path. Sample printouts: Figs. 18, 23, and 24 in Chapter II.

```
PAGE
       KOMMON MAR(2000)
KUMMON : (305), MON(13), MAA(12)
KUMMON : (305), MON(13), MAA(12)
KUMMON : (501, DSOR(50), DSOL(50), DFAR(50), Dr OR(50)
       KOMMON DE AL (50), PEOL (50)
       DIMENSION MAIZEL
       ADMMON HUAL1, PMA(1), HSA(1), HDO(1), BHO(1), HSO(1), EDA(1), EMA(1),
      *534[1],+[0(1],+M0(1),+S0(1)
         · 3.141592/180.
       5113443,956
       SH#3432,281
C = SH/SM
       HEAD IN DIN MA
30
       ⊀ ≈ 1
       j. # 1
       1/11
       READ 11. [PDA[1]. RMALI]. BSALI]. BDOLLJ. HMOLIJ. BSOLLJ. [:1. K).
      • (EDA(J) EMA(J) ESA(J) EDO(J) EMO(J) ESO(J) J = 1, L)
       00 60 1 = 1 , K
       14 W G
   94
        I) * BDALLI
        IM = BMA[]]
       WS = HSA(1)
        ju = 800111
       JH = BMU[[]
        XS = #5/111
       BHI : PMA(I)
       BSI = RSA[1]
        B4J = RMO(1)
        HSJ . HSOLLI
        IF [HDA[]]] 31, 32, 32
   31
        BMI # -BMA! 1]
        HSI . -HSA[]]
   32
        IF [PD0[1]] 35, 34, 34
        1110MH- = CMH
        HSJ = = HS0[]]
            * [HDA(1) + BMI/60. + BSI/3600.] + G
   34
           x (RU011) + RMJ/60 + HSJ/3600 + G
        00 60 1 4 1 1
   61
        KD . EDAIJI
          * EMAIJI
        YS . ESALJI
       LU . EDOIJI
        1 = EMIT[J]
        75 = ES0[J]
        EMI . EMA[J]
        ESI = ESA[J]
        FWJ = FWD(J)
        [ر] ESn = لاغم
        IF IFDA(J) 35, 36, 36
        ESI . .ESA[J]
        E11 = -EMA(J)
        JF (FDO(J)) 37. 38. 38
        [[]0M] . [[F]
        ESJ . . ESO(1)
```

```
FAGE
          FA = [FDA[J] + FM]/60. + FS]/360(.) + 6
FD = [FDC[J] + FM]/60. + FSJ/360(.) + C
SAU = FC = 50
      100
           A1 = A1CF (SAM)

IF [AM] 42, 39, 42

F [SA - F7] 42, 41, 42
            FIDTK 1541,541,43
            FT - 231 44, 43, 43
PRINT 20, LA, SM, SH
    341
           PRINT 23. VA
           TRINT 21, 10, 1M, 15,
            ाइए <u>चार</u>ित
            30 70 80
HISTANCE CALCULATION
      42 [F [4851 [54] - 89,95 + q] 108, 109, 109
108 [F [4851 [FA] + 89,95 + G] 110, 109, 109
           CONTINUE
            11SAESA/
            030=50/1
            OF A= FAZY,
            1) () = ( () / 1.
            TUSABIJSA
            TUSU = 1151
            TDFA=DFA
            TOFO # DF U
            CALL DR (USA, DSO, DFA, DFO, SM, SR, DIST, CHAI
            CAS=CAR
            SD=0181
            IF LAHSF (SA)
                                 .n5 • 6 j 203, 203, 2n2
              COLTEMBE
   202
PRINT RESULTS OF DISTANCE AND HEARING CALCULATIONS
            (F (| (F) 5H, 5H, 73
|F (F = 25) 40, 73, 73
PRINT 20,5M,5P
    73
            PRINT 23, MA
            M ⇒ 0
            PRINT 22, IN, IM, ES, JD, JM, XS, KD, FM, YS, LD, L4, 45, SD, CB/
INCHEMENT ALONG A GREAT CIRCLE
            IF [DIN] 311, 311, 308
            D:NIG
            DSA=SA/G
            11SU=50/4
            DFA=FA/G
            DECENT 314
CONTINUE
    309
            1111+N 4=N H
```

	PAGE	_3
CALL DR 105A. DSO. DF A. UED. SM. SB. DIST. CBP1		
CALL INC [CHP.DSA.DSO.DIN.DXA,DXO,IXA,IXAM,XAS,IXO,IXOM,XOS]		
C OPINT ANSWERS TO INCREMENT CALCULATIONS		
C		
DSA=DXA		
n\$U=nXn		
[F[P]N+D[V]402,402,401		
401 PRINT 310.PINZ. [XAZ. [XAMZ, XASZ, [XOZ. [XOHZ, XOSZ, CBR		
402 2142=214		
IXAZ=1XA IXAMZ=XAHSF(IXAM)		
XAS2=ABSF(XAS)		
[XOS#1XU		
[XUM2=XAHSF (]XOH]		************
XDS2*ARSF[XDS]		
IF (1XA) 321, 319, 321		
319 IXAM2=1XAM		
321 IF(1×01322,323.322		
323 XUM2=1XOM		
322 CHIINUE		
IF (DIST-DIN) 311,311,300		
C UND OF INCREMENTING	, , , , , , , , , , , , , , , , , , , 	—
C C		
311 M * M + 1		
60 CONTINUE		
GO TO 99		
109 [F[DIN]509,509,201		
509 [F [M + 25] 200, 201, 201		
201 PRINT 20. SM. SB		
PRINT 23. MA		
M = 0 200 PRINT 24. ID. IM. WS. JD. JM. XS. KD. KM. YS. LD. LM. 6S		
GO TO 60		
203 [F[D]N]503,503,205		
503 IF [h= 25] 204, 205, 205		
205 PRINT 20, SM, SB		
PRINT 23, MA	<u> </u>	
M * 0		
204 PHINT 25, ID, IM, HS, JD, JM, XS, KD, KM, YS, LD, LM, 45, SU		
GO TO 60 V 52A SPB TYPE,1		
V BCI 8, SOMETHING IS WRONG HERE		
V OCT 2000000		
99 CONTINUE		
C CRS#COURSE BEARING START		
C CRF COURSE BEARING FINISH		
C SBR# START BEARING RIGHT C SBL# START BEARING LEFT C FBR# FINISH BEARING RIGHT C FBL# FINISH BEARING LEFT		
C SBL START BEARING LEFT		
C FBR* FINISH BEARING RIGHT		
C CALCULATION OF CBF		
A ANTON OF LET		

	PAG	<u>-</u>	_
			_
	USA:TDFA		_
	Ú\$U• i pro		_
	DFAETUSA		_
	OFO # YDS()		_
	CALL DR (DSA, DSO, DFA, DFO, SM, SB, DISY, CBF)		_
	Cat • Cak		
	DSAUTDSA		_
	050:1050		_
	DFA=7DFA		_
	DFO = TDF()		-
CALCULA	TION OF MARSEDEN SOUARES ALONG THE RAY PATH		_
UAGGGLA	1104 OF HARDENEN SHOWERS ALONG THE MRT FRIT		-
	DO 906 1-1,2000		-
906	MAR()=0		-
700	PRINT 1194, MA		n.i
	DIN #10.		-
801	CALL DR (USA, DSO, DFA, DFO, SM, SB, D'ST, CBR)		-
	CALL INC (CHR.DSA.DSO.DIN.DXA.DXO.IXA.IXAM.XAS.IXO.IXUM.XUS)		-
····	CALL MARG (IXA, IXO)		-
	DSANDXA		-
	nso=nxo	~~~~	-
	IF (DIST-DIN)901,901,801		-
901	CONTINUE		-
			•
CALCULA	ITION OF STARTING AND ENDING POINTS		
	DSAWTRSA		
	DS0=7090		•
	DFAZTDFA		_
	DFO*TPF()		_
	READ 905,WID		_
	10Pawin/15,		
	J0P*T0P+1,		
	T0P×J0P		_
	SBR=CBS+90.		_
	(F[SAR-360,)2,2,1		
1	SBR*SBR-360.		_
2	SBL=CBS-90,		_
	1F(SBL)3,4,4		_
3	SHL#SHL+360.	~	_
4	F8R*(9F+90.		
	[FIFAR-360,]6,6,5		
5	FBR*FBR-360,		_
6	FBL*CBF*90.		_
			_
	CONTINUE		_
8	Continue	~~, ==	_
	TSA*DSA		-
	TS0=DS0		_
	DO 812 :=1, JOP		-
·····			
			_
	DSA=TSA DSO=TSO		_

		PAGE _
809	F C C	
044	CH4≈58B	
811	CALL THE [CBP, DSA, PS), DEN, DXA, DXD, IXA, IXAH, XAS, IXO, IXOM, XUS]	
	CALL MARD [[XA,[XO]	
	DSAR([]=DXA	
	DSUR() = DX()	···
	CHR*SBI	***** * ** * * **
	CALL INC ICHR. DSA, (SD, DIN, DXA, DXO, IXA, IXAM, XAS, IXO, IXOM, XOS)	
	CALL MARO ([XA, [XO]	
	DSAL [] I DXA	
	1)\$-01, [1] = (1×0	
	1)SAERFA	
	USUERF O	
	C9H=ERB	To an extension of the second second
	CALL INC ICBR. DSA, PSO, DIN, DXA, DXO, IXA, IXAM, XAS, IXO, IXOM, XUS)	
	CALL MARO (1XA,1XO)	
	DFAR(I) = DXA	
	DFOR([]=DXO	
	C3H=FBI	
	CALL INC ICBP.DSA.DSJ.DIN.DXA.DXJ.IXA.IXAM.XAS.IXO.IXOM.XOSI	
	CALL MARC ILYA. IXOI	
	DEAL (III = DXA	
	DEGL (1)=DXO	
812	CONTINUE	
	TON OF MARSDEN SQUARES ALONG THE GREAT C ROLES	
	DIN=10.	
	DO 1003 1-1,JOP	
	USABNSAH(1)	
	DSO#7SOR(I)	
	DFA=DFA [1]	
	DFO*DFOL(I)	
1002	CALL DR (DSA, DSO, DFA, UFO, SM, SB, DIST, CBF)	
	CALL INC (CRR. DSA. DSD. DIN. DXA, DXO, 1XA, 1XAM, XAS, 1XO, 1XUM, XOS)	
	CALL MARO ([YA, [XO]	
	DSAEDXA	
	nS0=nxn	
	IF [NIST-D]N]1001,1001,1002	
1001	DSA=DSAL(I)	
	DSOFNSOI (I)	
	DFA*DFAH(I)	
	OFO*NFOH(I)	
1004	CALL DR (USA, DSO, DFA, UFO, SM, SB, DIST, CBK)	
	CALL INC ICHR. DSA, DSO, DYN, DXA, DXO, [XA, TXAM, XAS, [XO, [XOM, KOS]	
	CALL MARO (1xA,[x0]	
	DSABDXA	
	D\$0.€UXC	
	IF [n]S'-U[N]1003,1003,1004	
	CONTINUE	
1003		
1003	00 1021 1=1,2000	
	[F [MAR(1)]1021,1022,1021	
1003 1021 1024	DO 1021 [=],2000 [F [MARII]]1021,1022,1021 PRINT 1024, MAR([]) FORMAT [[A]]	

			PAGE	6
	1.022	CONTINUE		
C				
<u>C</u>	SEARCH	4000 BELLINEWOR AVDE		
C		OF LEAST CONTROL OF THE CONTROL OF T		
		REMIND 7 READ 1191. (MON(I), 1=1.121, MAA		
		READ 1192, MDO		
		PRINT 1131, MDO, MAA, WTD, MA		
		MDUsMDn/100		
	1101	CALL REED (1,1,2,300.1FF)		
	1102	NU 1110 J=1,301,5		
P.	1103	F (J=301) 1103,1101,1101 FARE MAR(I)		
	1100	[F (FAR-T(J)) 1104,1120,1110		
· · · ·	1104	[#]+1		
		[F [MAR(1]] 1111,1111,1103		
C		DR DEPTH		
	1120	K#J+1		
		[U=T(K)/10000.		
С	THET EN	F_(D•MD0 1110,1105,1105 MONTH		
	1105	De ID		
		M*(T/K)-(*1,000,1/100.		
		IF [mgm(M]-1] 1110,1106,1110		-
	1106	, #K+1		
		1,3,41		
		<u> </u>		
000	CALCULA	ATE DISTANCE TO PROFILE -POIST		
~č~~	0.000	of Pinings 10 title shifts		
		DSAFTDSA		
		NSOET DSO		
		DFABT(L)		
		DFO=T((,)) CALL DP (DSA,DSO,DFA,DFO,SM,SB,D1SY,CBF)	<u></u>	
		PDIST = PIST		
C				
C	CALCULAT	TE DISTANCE FROM RAY PATH		
		IF [CBR-CB5]1201,1201,1202		
	1201	A# 1 1		
	1202	GU TN 1203 A=1,		
	1202	CONTINUS		
	1108	CHR*CHS		
		DINODIST		
_		CALL INC [C9R, DSA, DSD, DIN, DXA, DXO, IXA, IXAM, XAS, IXO, IXOM, XOS]		
		DSA*DXA		
		050 PXO		
		CALL DR (DSA,DSO,DFA,UFO,SM,SB,DI3T,CBF) (F (PD(ST-DIST) 1501,1501,1502		
	1501	DISTEPPIST		
	1502	CONTINUE		
	1109	[FIDTSY-WIN]1401,1401,1110		
	1401	DIST = DIST = A		

```
PHEPARE IN PUINT
               'D= | D + 100
               ITKET[K]
               | / = | TK = 1 10 C + 1 [ 11 + M ] ]
               TYLET (L.)
               ATLETTL
               ATLECT(: ) - AT! ) - 60.
               ATL=ABSF (ATL)
               [4.4]
               AL . II
               AL=(T(())=AL)+60
                 *ABSF [AL]
               PHINT 1130, IT1, TILLLI, ID, M, IY, ITL, ATL, IL, A., PDIST, DIST
               PUNCH 1193, TIJI, TIKI, TILI, TILLI, TILLI
              COMITABLE
  1111 CONTINUE
        SPB
                  TYPF,1
        BC1
                  5.END UF PHOGRAM
        OCT
                  2000000
               CALL EXIT
  TYPEHRITER HOUTINE
V
  TYPE INX
        LDA
                  <u>, 1</u>
        HMI
¥
        BNN
         BRU
                  * - 1
         SAN
                   18
        TYP
        TOV
                   1
_Y.
         BNN
         BRU
                   *-1
         SAN
                   12
         TYP
         LDA
                   11
         BNN
         BRU
                   *-1
         SAN
TYP
                   TYPE
         BRU
               FORMAT ( FR.2, 7[343])
          10
                        [F4,0, F3.0, F7,4, 1x, F4.0, F3.0, F7,4]
               FORMAT
              FORMAT [7[3A3]]
               FORMAT [1H1,28HVELCCITY DATA SEARCH PROGRAM, /10x, 35HGREAT CIRCL.
        50
              +BEARINGS AND DISTANCES, 17H - R.D. MININGHAM, 5X, 10H(A-173-11) .//
              *20% STHCOMPUTED ON CLARK 1866 SPHEROID - DISTANCE IN N. M.
              *// 20%, 15HMAJOR RADIUS . . F15.6.
              +1/H MINOR RADIUS W . F15.6//1
              FORMAT 1140, 414X, 214, F7,31,10X, 1845 A Y E P O 1 N T1
               FORMAT ( 140, 4(4X, 2)4, F7,3), 2F15,4)
              FORMAT [20x,7[3A3]//6x, 13HFROM LATITUDE, 8x, 9HLONGITUDE, 9x, 911HTO LATITUDE, 9x, 9HLONGITUDE, 10x, 8HDISTANCE, 8x, 7HBEARING FORMAT [1H0, 4(4x, 214, F7,3), 6x, 9H+ + + + +,6x, 9h+ +
              ** *)
```

		PAGE 8
25	FORMAT (1HO, 4(4X, 2(4, F7,3),F15,4, 5X, 9H+ * * * *)	
310	FURMAT (1x, F7,1, 2(2x, 214, F6.2),1x, F10,4)	
314	FORMATI//2X, SHRANGE, BX, AHLATIYUDE, 9X, 9HLCNGITUDE, 4X11	THEE ARTING TO
	+43x, 11HF [NAL POINT]	
905	FORMAT (F10.5)	
1130	FURMAT (18, F32, 0, 19, 3'5, F5, 1, F5, 1, F12, 2, F16, 2)	
1131	FORMAT (1H1.56HVELOCITY DATA SEARCH PROGRAM - R.D. MI	TINGHAM TA-17
1101	+3-F11,723H SPECIFICATIONS - HOOM, 15.719X,7HHONTHS -	47 TAX 1.710V.
	#28HMAX!MUM RANGE FROM RAY PATH#, F6,1,/77(3A3),//1X,	7,080,7,27,7
	* ASHMARSDEN IDENTIFICATION DEPTH HONTH YEAR	ATTYLINE IN
		T. LATTIONE O
	• NGITHDE DISTANCE FROM DISTANCE FROM/ 14,	JEG MIN OFI
Allegan & Little Printers		JEG WIN OAT
	+GIN (NM) RAY PATH//]	
1191	FORMAT (12[1,4(3A3)]	and the same and the same that the same and
1192	FURMAT (15)	
1193	FORMAT (2510.0,2510.4,510.0)	
1194		
	END	
	and the part of the control of the c	
	Market Control of the	
	A CONTROL OF THE PROPERTY OF T	
	والمرابعة والمرابعة والمراب بالمراب والمرابعة	
		
	The state of the s	
·* · · · · · · · · · · · · · · · · · ·		

2) A-177-F1 Velocity Profile Punch Program (3 pp.):

Punches velocity cards from NODC data tapes calling subroutine A-179-VF1 (1 p.). No sample printouts shown, but see flow chart in Chapter II, Fig. 22.

```
C READ WODE DAT TAPE REMINIFICAN (A-17/-F1)
                                          1047 - 14440 - 14440 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 1464 - 
                                          DIMERSION 18(100)
              SET UP PROURAM
C
                                          MINY=134142
                                          41 4N x 199726
                                          MAXICAN
                                          MIN1( =9994949
                                          MAX=(
                                           DJ 13 1#1 400
                    13
                                           0 = (1) A
                                           DO 20 M=1.50
                                           READ 100, 410[H], MLA (N], MLU(N], (1DC(N, J), J#1,8)
                                           MAX=I AX+1
                                           [F [610[N]-M]NN]21,39,21
                                           IF [MIN10-M10[H]]41,41,40
                     21
                     4 0
                                           MIN1U=M10[K]
                                           IF [ FAX10 TM10 [ N] ] 42,20,20
                     41
                     42
                                           MAX10=M10(N)
                                           BUNITAGE
                     2.0
C
                                           DJ 44 ]=1,9999979
CALL REED [[4,1,2,7,10]]
                     39
                                           IF (14(6)-MIN10122,49,48
                       LDZ
V 224
                         RCS
٧
٧
                         BPL.
٧
                         BRU
                                           PHINT 102, [4 (6], MIN10, NAX10
                                           SUNTINUE
                      44
C
          READ TAPE BACKWARDS
C
V 48A CIN
                         BRU
٧
                                                      *-1
٧
                         SEL
٧
                         HAD
                                                     1, [4,0
٧
                         CIN
                                                      2
                         BRU
                                                      *-1
C
               TEST 10 DEGREE SO.
                                           CALL REED ([A.1.2,400,10F]
                      6
                      45
                                            DO 3 1=1,561,40
                                           DU 3 VEL.MAX
                                            J41+5
                                            1F [[A[J] = MAX10]46,46,47
                                            1F [ 10 [ N ] = ] A [ J ] ] 3, 2, 3
                     46
           TEST 1 DEGREE SOUAHES
C
                                           J=2+1
                      5
٧
                         STX
                                                      $12,2
                                                      J, 2
٧
                         LDX
                         LDA
                                                      14.2
                                                      13
                          SLA
                          SHA
                                                      13
                          STA
                                                      M1
                                                      512,2
                          LDX
                                            IF [NI-MLA(N)]3,5,3
```

PAGE

```
READ NODE JATA THEE RD MININGHAM (A-177-F1)
                                                                                    PAGE
             J=2+1+4
       STX
                512,2
٧
                J.2
٧
       LDX
٧
       LDA
                14.2
٧
       SLA
                13
       SRA
                13
       STA
                M1
       L, D X
                ST2,2
             IF (M1-MLU(N)13,9,3
   TEST IDENTIFICATION NO.
             CONTINUE
             K#1
             DU 11 M#24,26
             L=I+M
             DU 11 Je1.3
             K=K+1
             CALL CHAP [IA(L), J. IDT[K]]
             CUNTINUE
      11
             DO 30 J#2:8
             IF [[DC[N.J]]31.30.31
             IF (101(J)-10C(N, J)13,30,3
      31
             CONTINUE
      30
             L = U
             1 VD=1+27
             DJ 50 J#1:1ND
             DJ 50 k#1.3
             L=L+1
             CALL SHAR (IA(J),K,IB(L))
      50
             CONTINUE
C
             MINEM INN
             [8[4] #M] NN
             IF [[H[81]=1]60,61,60
             IB (4) = HINY
      61
             IF (IB(82)-1)62,63,62
       60
             MIN #MINY
       63
             CUNTINUE
       62
       LDA
                 18+142
        SLA
                 12
        STA
                 IB+142
        LDA
                 IB+16
        SLA
                 12
                 18+16
        STA
        LDA
                 18+28
                 12
        SLA
        STA
                 18+28
                 18+62
        LDA
        SLA
                 12
                 IH+62
        STA
C
             IF (18(80)=3)52,51,3
             PRINT 103, 18(16), 1P(17), 18(18), 18(6), 18(12), (18(J), J=4,9),

    MIN. [[B[J], J=10,15], [B[21],
```

ż

*[B(22),[B(19),]B(20),(IB(K),K#72,79)

GU TO 3

```
PAGE
C READ HODG DAYA TAPE RD MINIECHAM (A-177-F1)
        51
               IF {18(47)-6153,53,3
               PHINT 104: [18[J], J-28, 32], [18[ ]], J-47, 50], [8[16], [8[17], [8[18],
       53
              2 18(6), 18(12), (18(3), 3=72,79)
        LDZ
        RCS
        BMI
               3A
PUNCH 104:[[B[J],J*28,32],[[B[J],J*47,50],[B[16],[8[17],18[18],
        BRU
              2 [8(6), 18[12], (18[J), J=72,79]
               CONTINUE
               GO TO 6
REMIND 7
        47
C
    FORMATS
               FORMAT (4X, A3, 211, 32X, A1, 711)
        100
               FORMAT [3410]
       102
              FORMAT (1H1,59HNODC VELOCITY DATA TAPE PRUGRAM - R.D. MININGHAM (A 2-177-F11//10HMARSDEN SQ, 2x, 8HLATITUDE, 2x, 9HLONGITUDE, 2x,
        103
              32HMO.2X,2HYR,3X,14HIDENTIFICATION,/12X,3HUEG,1X,3HMIN,4X,3HDEG,
41X,3HMIN,/3X,511,4X,A1,211,1X,211,1H,,A1,2X,A1,311,1X,211,1H,,A1,
              . 2x,211,
              52X,211,4X,A1,711// 5X,5HDEPTH,8X,8HVELOCITY,6X,10HMARSDEN SQ,
              6 1JX,2HID]
               FORMAT (5x,411,1H.,A1,8x,1H1,311,1H.,11,1Ux,511,9x,A1,/11)
        104
        107
                FORMAT [A3]
 V ST2
        855
                   1
               END
```

							PAG	£1
		SUBROUTINE	CHAR II. L.KI					
		INT	CHAR (I,J,K)					
		NAJ						
V	STX	512,2 N,2 IN	~					
- · · · · · · · · · · · · · · · · · · ·	L DX	NIC TAI						
<u> </u>	SHD	<u>iż</u>						
V	BXL	2,2				- A CAMBAN AND THE PROPERTY OF	حد و معهور ورسست و دي يا دي سوت.	
V	BRU	14						
V	LDZ						. It is not the second and the second second second	
V	SLD	6 3,2						
- v	BRU	14						
Δ	LDZ	The state of the s						
Δ	SLD	6 TR	AND THE RESIDENCE OF THE PARTY		ALLE CO. DE METTE PRINCE EN			
VIA	STA	IK						
V	LDX	512,2	alak kalak 1999 gapa dan sahira - Kabbanaya sahira sahira					
V 512	BSS	KEIK 1 RETURN END						
4 512	B33	RETURN	<u> </u>					
		END					THE STATE OF THE S	
					2200			

		·			 			

	· · · · · · · · · · · · · · · · · · ·							
		The same of the sa						
	·		And the state of t					
							and the same of th	
				· · · · · · · · · · · · · · · · · · ·				
		and the second control of the second						

3) A-192-F1 Read FNWF Cards:

Reads depth vs. temperature cards punched by the Fleet Numerical Weather Facility. These cards are then re-formated and written on tape for A-186-U1. No sample printouts shown.

READ	FNWF CARDS (A-192-FR) R. D. MININGMAM	PAGE
	DIMENSION [D[50], [T(50], [TD[50], A[3]	
	REWIND 3	
	READ 103, ITS, ITS2	
	PRINT 103, ITS, ITS?	
	1 PRINT 104 A(1)=1.	
	A(2) • 1,	
	A(3)=1.	
	WRITE TAPE 3.A(1).A(2).A(3)	
	00 20 1=1,100	
11	F [[-1] 11,11,12 L=0	
	READ 100, [[D[J],[T[J],[TD[J],Jm1,7]	
	DO 9 Jul.7	
	IF [1752-17[J]] 6,22,6	
7	[F [175-17[J]] 8,7,8	
	PRINT 101.1L, ID(J), [T(J), ITD(J)	
	CALL CHAR [IL:1:11]	
	CALL CHAR (ID[J],1,12)	
	CALL CHAR [ID[J],2,13]	
	A[1]=[100*[1]+[10*[2]+[3	
	CALL CHAR (IT(J).1.11) CALL CHAR (IT(J).2.12)	
	CALL CHAR (ITD(J).1.13)	
	A[Je]3	
	A130A13/10,	
	V(5)=(10+[1]+(15)	
···	A[2]=A[2]+A[3 A[3]=35,	
	WHITE TAPE 3,4(1),4(2),4(3)	
9	CONTINUE	
	00 TO 20	
15	READ 102, ([D[J],[T[J],[TD[J],J=1,13]	
	DO 10 Je1,13 IF (1152-17(J) 3,21,3	
	IF(1YS=1Y(J)) 5,4,5	
	[L*17D(J)	
	GO TO 10	
<u> </u>	PRINT 101. [L. [D[J], [T[J], [TD[J]	
	CALL CHAR [IL,1,11]	
	CALL CHAR (ID(J),1,12) CALL CHAR (ID(J),2,13)	
	A(1) = (100 + 11) + (10 + 12) + 13	
	CALL CHAR (IT(J),1,1)	
	CALL CHAR (IT(J), 2, 12)	
	CALL CHAR (ITD(J), 1, 13)	
	A 13613	
	A[3=A[3/10, A[2]=(10+[1)+([2)	
	V(5)+V(5)+V(3)	
	A(J) +35.	
	WRITE TAPE 3,4(1),4(2),4(3)	
10	CONTINUE	

C	READ	FNWF CARDS (A-192-F1) R. D. MININGHAM	PAGE 2
	20	CONTINUE TO TO THE STATE OF TH	
c	FORMA	REWIND 3	
	102) FORMAT (36%,7(A2,A2,A1,1%)) [FORMAT (6%,A1,A2,6%,A2,14,A1,6%,2H35] FORMAY[13[A2,A2,A1,1%]] FORMAY[1%,2A2]	
	104	FURHAT (8%,1H1,7%,1H1,8%,1H1) END	

4) A-186-Ul Velocity Calculations by Wilson's Equation:

Reads depth vs. temperature and salinity data and computes velocity with Wilson's Equation. No sample printouts shown.

1.

SPECIAL VARIABLES SVT, SVP, AVS, AVSTP. SLEW TOP.

STREET ON AND BEE.

CTATENEST 3. READ K,S,MAR,ID. B3*MAR. B1*ID. SLEW TOP. PRINT S 日,K 日.

PRINT PESSAGE VELOCITY CALCULATIONS BY WILSONS EQUATIONS - PROGRAMMER R D MININGHAM. PRINT MESSAGE ANALYSIS FILE NO (A-186-U2). SLEW 2.

PRINT FORMAT 10,5. FORMAT TO PROFILE NUMBER XXXX. SLEW 2.

CHIT HARRI DEPTH(V), VELOCHY (M-S), TEMPERATURE (C), SALINHTY (O-CO), MARSDEN SQ, ID.

CIRTENENT 1. OF AD TAPE A1.3.3. PIA1. THAS. STA3.

TO LOS A THEN GO TO SERIENCE OF S.

P. ANT TO AND GO THE PRINT P 설, T선, V^{AR} 성, I^O 전 AND Ry-TAND B₂-TO AND WRITE TAPE By, 4, 14, 14 AND GO TO STATEMENT 3.

A THE DE SOLEONET.

.(EEEBSES.E) 4.4 (**14. C. C. S.

16 4.1 7074 74 (4.070) (9/1) - PAP/21.254 PA(P(4.0703))+11.03324

١٩٥٠ : ١٩٥٥ : (١١٥ - ١٩٤٤) ٩٩٤ (١٥ - ١٩٥٤) ٩٩٥ (١٥ - ١٩٥٤) ١٩٩٩ (١٩٥٠ - ١٩٥٤) ٩٩٩ (١٩٥٠ - ١٩٥٤) ٩٩٩

174 1 1 2 2 16-26) -7.8 (10-2) (5-35)?.

.varos(5-15)(-1,107(10⁻²)142.(1(10⁻⁴)p-1,26(10⁻⁷)p²-2.09(10⁻⁵)pr)+
E(-2,762(10⁻¹)1+1,3102(10⁻⁵)1²-6.644(10⁻⁸)1³)+p²(-2,391(10⁻⁷)1+
1,032(10⁻¹⁰)1²)-1,745(10⁻¹⁰)p³1.

VITATO, PT+AVT+AVP+AVS+AVSTP.

FOINT 316.4, V 和.4, I 和.4, S 图.4, HAR 数, ID 数, By.D. By.V. WRITE TAPE By. 4, 1, 4.

GO TO STATEMENT 1.

STATENENT 2. TYPE END OF PROGRAM. FINISH.

5) A-198-Ul Velocity Profile Data Selection Program:

Reduces to a minimum the number of points needed to define a velocity profile while meeting a specified curve fitting tolerance.

DIMENSION z=300, V=300, Z=300, D=300.

UPPER 0-2000, V-2000.

RNO 4,1. READ L,T,P. K-O.

READ TAPE A, 4,1,4.

STATEMENT 1. SLEW TOP. K-K+1. PRINT MESSAGE VELOCITY PROFILE DATA SELECTION PROGRAM (A-198-U1) R D MININGHAM.

PRINT FORMAT 1,L,K. FORMAT 1 PROFILE NUMBER XXXXX XXXXXX. SLEW 2. IF P=1 THEN PUNCH L & ,K & . PRINT LABEL DEPTH (M), VELOCITY (M/S), MARSDEN SQ, ID.

FROM J=1 TO INFINITY READ TAPE A, A,1, A AND (IF EOF 1 THEN GO TO STATEMENT 99) AND (IF A,=1 AND A,=1 THEN GO TO STATEMENT 2) AND DJ-AZ AND VJ-AZ AND M-J.

STATEMENT 2.

!=10. C=0. 1=0.

FROM J=1 TO M COMPUTE (IF Dj=C THEN 1=1+1 AND zj=Dj AND Vj=Vj AND C=C+1) AND (IF C=100 THEN I=25) AND (IF C=300 THEN I=50) AND (IF C= 1000 THEN I=100).

H-1. IF Dyf x, THEN H-H-1 AND XNOM AND VNWY

FROM 1-1 TO N CALL SUBROUTINE ZD.

M^V=0. X=0.

FROM J=1 TO M COMPUTE $z_0=0_J$ AND CALL SIBROXITINE INT AND $D^V=(v_0=v_J)$ AND $(1F\ D^V)$ THEN $(1F\ D^V)$ THEN $M^V=D^V$ AND $x^S=0_J$ AND $v^S=v_J$ AND x=1).

IF X=0 THEN GO TO STATEMENT 6.

STATEMENT 3.

FROM 1-1 TO M COMPUTE (IF 2521 THEN (FROM 1-11 BY -1 TO ICE COMPUTE 21-1 "2, AND V1+1"Y, AND Z1+1"7, AND D1+2"D1) AND RIEZS AND VIEYS AND NENHI AND ON TO STATEMENT 5).

IF P=1 THEN PUNCH Ay Box Az 和 は Az は , at . PRINT Ay Box Az 和 は A は は t .

GO TO STATEMENT 1. STATEMENT 99. TYPE END OF PROGRAM. STOP.

SUBROUTINE ZD.

X=0. IF 1=1 THEN 1=2 AND X=1.

IF 1=N THEN $z_{N^{m}}z_{N-1}+D_{N-1} \cdot (z_{N^{m}}z_{N-1})$ and $D_{N^{m}}D_{N-1}$ and return,

$$Z_1 = \frac{(v_{1+1} - v_1)(x_1 - x_1)^2 - (\frac{1}{1} - v_1)(x_{1+1} - x_1)^2}{-(x_{1+1} - x_1)(x_{1-1} - x_1)(x_{1+1} - x_{1-1})}$$

$$\gamma^i = 5 \; \frac{(s^{i+1} - s^i)(s^{i-1} - s^i)(s^{i+1} - s^{i-1})}{(s^{i+1} - s^i)(s^{i-1} - s^i)(s^{i+1} - s^{i-1})} \;\; .$$

IF X-1 THEN Z1-Z1+D1 121-Z2) AND D1-D1 AND 1-1. FETIEN.

SUBROUTINE INT.

FROM 1=1 TO N COMPUTE IF $z_1 > z_0$ THEN GO TO STATEMENT 10%.

STATEMENT 100. IF \$5 - \$1 THEN YOU'L AND RETURN.

$$v^1 - v_1 + z_1 (z_0 - z_1) + D_1 \frac{(z_0 - z_1)^2}{2}$$
.

$$v^2 = v_{i+1} + 7_{i+1} (z_0 - z_{i+1}) + c_{i+1} \frac{(z_0 - z_{i+1})^2}{2}$$
 .

$$v_0 = \frac{z_0 - z_1}{z_{1+1} - z_1} v^2 + \frac{z_{1+1} - z_0}{z_{1+1} - z_1} v^1$$

6) A-147-Ul Velocity Profile Interpolation Program:
Plots velocity data cards in a standard format. Sample printout:
Chapter I, Fig. 5.

```
STATEMENT 1. IF P-1 THEN PURCH D<sub>0</sub> ΒιΣ, ν<sub>0</sub> βιΣ, μ<sup>ΔR</sup> Εξ, ι<sup>D</sup> Εξ, απιτ2. Ε<sub>α</sub>-D<sub>0</sub>, Ε<sub>ατ1</sub>-ν<sub>G</sub>, IF D<sub>0</sub>27000 AND ν<sub>0</sub>21555 THEN A+530 AND B-650, ν<sub>0</sub>-ν<sub>0</sub>-1000, PLOT ν<sub>0</sub>, D<sub>0</sub>, A, B,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              IF DACO AND BUCONEL AND DAEL COMES AND DAES COMES AND VARYAL AND THEN THEN THEN THEN THE BAS ESTATEMENT S.
                                                                                                                                                                                         NEW THEN PUNCH O1 B.11; V1 A.14; WAR EL, 10 EL. FROM 101 TO 365 COMPUTE Cant. Cant. Candle CastaVI.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                nenel AND IF DACOREL AND DRAICOS AND DOCORES IND DRAICONES AND MASAL THEN GO TO STATEMENT STILE MENELL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         IF DACED AND BUCEMEL AND PAST COMP AND DAPPORES AND VALIDATE OF TO STATEMENT 2.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       IF DACOAL AND DALLED AND DOCOMES AND DALSCOLES AND VALSAI GO TO STATCHENT 9.
CORMAT 30 ERROR -- DEPTH ORDER -- NEMBER DEBENKERR V-MAKKERR.
CORMAT 30 ERROR -- SAWE DEPTH --- NEMBER DEBENKERR V-MAKKERR.
FORMAT 31 ERROR -- VELOCITY LIMIT EXCEDED -- NEMBER DEBENKER V-MAKKERR.
SLEW 2.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 IF Do-Da+3 AND Va+341 THEN VO-Va+3 AND GO TO STATEMENT 1.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   IF DOSDING AND VASAL THEN NAME AND GO TO STATEMENT 3.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      IF DO-P +1 THEN VO-VHI AND GO TO STATEMENT 1.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        IF D. -D +2 THEN VO-VA+2 AND GO TO STATEMENT 1.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                IF DO-D, THEN VO-V, AND GO TO STATEMENT 1.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     STATEMENT 3. IF DO-DK THEN VO-VK AND GO TO STATEMENT 3.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    IF DONE THEN GO TO STATEMENT S.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               IF DACE GO TO STATEMENT 10.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ndl.
Siainent 10.
if D<sub>o</sub>xoood Thin Grido.
                                                                                                                                   SLEW 2.
PRINT MESSAGE (DEPTH
                                                                                                                                                                                                                                                                                                                                                      PLOT VIT DI. A. B.
                                                                                                                                                                                                                                                                    515.4 1.
V1=V1-1000.
                                                                                                                                                                                                                                                                                                                                                                                                                   V1.V1+1000.
```

THE YOARD PRINTER TO LIMES TO HACH AND PUT TAKE AND LOOP (TOOLE O), PAUSE, MAD 1,0.

HEAD 1, W. M. P. SAO WHIE TARE E 1,1,2,365.

G4), 8445, 14555, C-20, READ X, AND (F X=0 G0 TO STATEMENT 12, 15 4). RINT FORMAT 32 , 2, X , Y, L, M, 11, F1-Z, F2-X, F3-Y, F4-L, F5-M, F6-N, F7-WAM, F8-10. WATTE TAPE F1.1,2,8.

-2-2-2-1. FROM not 15 INFINITY READ Do, Vo, MAH, 10 AND IF Vo. 1 THEN GD TO STATEMENT &. STATEMENT 4.

IF VACIDOO OR VASIGOO THEN PRINT FORMAT 31, N+1, Dp+1. Vn+1 AND Q+1 AND CLEW 1).

IF D. D. P. THEN PRINT FORMAT 30, n+1, D. 11 VN. AND Q-1 AND SLEE 1),

STATEMENT 2.

$$\text{tai} \quad \text{V^{Pl}=} \frac{(\text{\mathbb{O}_0-\mathbb{O}_{n+1}})(\text{\mathbb{O}_0-\mathbb{O}_{n+2}})}{(\text{\mathbb{O}_n-\mathbb{O}_{n+1}})(\text{\mathbb{O}_n-\mathbb{O}_{n+2}})} \, \text{V_n} \, + \, \frac{(\text{\mathbb{O}_0-\mathbb{O}_n})(\text{\mathbb{O}_0-\mathbb{O}_{n+2}})}{(\text{\mathbb{O}_{n+1}-\mathbb{O}_n})(\text{\mathbb{O}_{n+1}-\mathbb{O}_{n+2}})} \, \text{V_{n+1}} \, + \, \frac{(\text{\mathbb{O}_0-\mathbb{O}_n})(\text{\mathbb{O}_0-\mathbb{O}_{n+1}})}{(\text{\mathbb{O}_{n+2}-\mathbb{O}_n})(\text{\mathbb{O}_{n+2}-\mathbb{O}_{n+1}})} \, \text{V_{n+2}-\mathbb{O}_{n+1}} \, + \, \frac{(\text{\mathbb{O}_0-\mathbb{O}_n})(\text{\mathbb{O}_0-\mathbb{O}_{n+1}})}{(\text{\mathbb{O}_n-\mathbb{O}_n-\mathbb{O}_{n+2}})} \, \text{V_{n+2}-\mathbb{O}_{n+1}} \, + \, \frac{(\text{\mathbb{O}_0-\mathbb{O}_n})(\text{\mathbb{O}_0-\mathbb{O}_{n+1}})}{(\text{\mathbb{O}_n-\mathbb{O}_n-\mathbb{O}_{n+2}})} \, \text{V_{n+2}-\mathbb{O}_n} \, + \, \frac{(\text{\mathbb{O}_0-\mathbb{O}_n})(\text{\mathbb{O}_0-\mathbb{O}_n-$\mathbb{O}_$$

$$2^{n} \quad V^{P2} = \frac{(D_0 - D_{n+1})(D_0 - D_{n+3})}{(D_n - D_{n+1})(D_n - D_{n+3})} V_n + \frac{(D_0 - D_n)(D_0 - D_{n+3})}{(D_{n+1} - D_n)(D_{n+1} - D_{n+3})} V_{n+1} + \frac{(D_0 - D_n)(D_0 - D_{n+1})}{(D_{n+3} - D_n)(D_{n+3} - D_{n+1})} V_{n+3} \ .$$

$$\text{Bof} \quad v^{A} = \frac{(v_{n+1} - v_n)(D_0 - D_n)}{(D_{n+1} - D_n)} \quad + \quad \quad v_n.$$

$$|h_0| \quad v^B = \frac{(v_{n+2} - v_n)(O_0 - O_n)}{(O_{n+2} - O_n)} + v_n.$$

$$ba = \frac{(v_{n+2} - v_{n+1})(b_0 - b_{n+1})}{(b_{n+2} - b_{n+1})} + v_{n+1} .$$

IF VA-VB AND VB-VC THEN VR-VA AND GO TO STATEMENT 100.

$$\text{find} \quad V^{R} = .5 \left(V^{A} + \frac{(V^{A} - V^{B})^{2} V^{C} + (V^{A} - V^{C})^{2} V^{B}}{(V^{A} - V^{B})^{2} + (V^{A} - V^{C})^{2}} \right),$$

STATEMENT 100.

IF $v^R = v^{P1}$ and $v^{P1} = v^{P2}$ then $v_0 = v^R$ and go to statement 1.

QO TO STATEMENT 1.

$$\mathbb{M} = \mathbb{A}^{n} := \frac{(0_{n+1}, 0_{n+2})(0_0 - 0_{n+3})}{(0_{n+1}, 0_{n+2})(0_{n+1} - 0_{n+3})} = \mathbb{A}^{n} := \frac{(0_{n+1}, 0_{n+2})(0_0 - 0_{n+3})}{(0_{n+1}, 0_{n+2})(0_{n+3} - 0_{n+3})} = \frac{(0_{n+1}, 0_{n+2})(0_{n+3})}{(0_{n+2}, 0_{n+3})(0_{n+3} - 0_{n+3})} = \mathbb{A}^{n} := \frac{(0_{n+1}, 0_{n+2})(0_{n+3})}{(0_{n+1}, 0_{n+3})(0_{n+3} - 0_{n+3})} = \mathbb{A}^{n} := \mathbb{A}^{n}$$

$$0 = v^{\frac{1}{4}} = \frac{(v_{n+1}^{-v_{n+2}})(D_0^{-0}_{n+1})}{(D_{n+1}^{-0}_{n+2})} = v_{n+1}^{-1} \ .$$

$$\label{eq:poisson} \frac{1}{M} - v^{n} = \frac{(v_{n+1} - v_n)(p_0 - p_{n+1})}{(p_{n+1} - p_n)} - v_{n+1} \; .$$

$$\frac{h}{h} = \frac{(v_{n+3} - v_{n+2})(o_0 - o_{n+2})}{(o_{n+3} - o_{n+2})} = + v_{n+2} \ .$$

IF $v^A_{\bullet \nu} v^B_{\bullet AND} \ v^B_{\bullet \nu} v^C_{\bullet THEN} \ v^R_{\bullet \nu} v^A_{\bullet AND GO TO STATEMENT 101.$

$$B = v^R = .5 \left(v^A \right. + \left. \frac{(v^A - v^B)^2 v^C + (v^A - v^C)^2 v^B}{(v^A - v^B)^2 + (v^A - v^C)^2} \right).$$

STATEMENT 101.

IF $V^R = V^{P1}$ AND $V^{P1} = V^{P2}$ THEN $V_Q = V^R$ AND GO TO STATEMENT 1.

$$\frac{44}{14} \quad A^{0} = \frac{1 A_{b}^{-1} A_{b} \frac{1}{1} + \frac{1}{14} A_{b}^{-1} A_{b} \frac{1}{14}}{1 A_{b}^{-1} A_{b} \frac{1}{14} A_{b}^{-1} A_{b} \frac{1}{14} A_{b}^{-1}}$$

QO TO STATEMENT 1.

STATEMENT 6,

$$\frac{\mu_{R}}{\mu_{R}} \ v^{P1} = \frac{(0_{0} - 0_{n+2})(0_{0} - 0_{n+1})}{(0_{n+3} - 0_{n+2})(0_{n+3} - 0_{n+1})} \ v_{n+3} \ + \ \frac{(0_{0} - 0_{n+3})(0_{0} - 0_{n+1})}{(0_{n+2} - 0_{n+3})(0_{0} - 0_{n+1})} \ v_{n+2} \ + \ \frac{(0_{0} - 0_{n+3})(0_{0} - 0_{n+2})}{(0_{0} - 0_{n+3})(0_{0} - 0_{n+2})} \ v_{n+1} \ ,$$

$$\beta s | v^A = \frac{(v_{n+2}^- v_{n+3})(0_0 \cdot 0_{n+3})}{(0_{n+2}^- 0_{n+3})} + v_{n+3} .$$

$$\label{eq:polynomial} | h | v^B = \frac{(v_{n+1}^{-v} v_{n+3})(v_0^{-v} v_{n+3})}{(v_{n+1}^{-v} v_{n+3})} + v_{n+3}^{v} \; .$$

$$bel \quad v^{C} = \frac{(v_{n+1} - v_{n+2})(D_{0} - D_{n+2})}{(D_{n+1} - D_{n+2})} \quad + \quad v_{n+2} \quad .$$

IF VALUE AND VELVE THEN VALVE AND GO TO STATEMENT 102.

$$\label{eq:polynomial} \text{SSR} \quad v^R = ,5 \ \, (v^A - + \ \, \frac{(v^A - v^B)^2 v^C \ \, + \ \, (v^A - v^C)^2 v^B}{(v^A - v^B)^2 \ \, + \ \, (v^A - v^C)^2} \ \,) \quad .$$

STATEMENT 102.

IF $v^{R_{\omega V}P1}$ AND $v^{P1}_{\omega V}^{P2}$ THEN $v_{\alpha^{\omega V}}^{R}$ AND GO+TO STATEMENT 1,

$$|| v^{R} - v^{P_1^{1}} || v^{P_2} + || v^{R} - v^{P_2^{1}} || v^{P_1} - || v^{R} - v^{P_2^{1}} || v^{P_1} - || v^{R} - v^{P_2^{1}} || v^{P_1^{1}} - || v^{R} - v^{P_2^{1}} || v^{P_1^{1}} - || v^{R} - v^{P_2^{1}} || v^{P_1^{1}} - || v^{P_1^{1}}$$

00 TO STATEMENT 1.

STATEMENT 12. TYPE (END OF PROGRAM), EOF 1,2. RMD 1,2. FINISH,

7) A-197-Ul Comparison of Velocity Profiles:

Calculates differences between velocity profiles with reference to one profile. A plot of the velocity differences of a set of profiles is shown in Chapter I, Fig. 6.

DIMENSION REMOD,C-400,C-100,D-200, RMD 1,2. RMD 2,2. READ N. N-2N, FROM 1=1 TO N READ TAPE R₀,1,2,365. RMD 1,2.

FROM J=0 TO 365 COMPUTE (IF RJ=RJ+1 THEN M=J AND GO TO STATEMENT 1).

STATEMENT 1. READ TAPE C 0,1,2,8.

IF EOF 2 THEN GO TO STATEMENT 2. SLEW TOP.

PRINT MESSAGE COMPARSION OF VELOCITY PROFILES PROGRAM (A-197-U1).

.E

SIGN 1. PRINT FORMT 1,C $|_0$,C $_1$,C $_2$. FORMT 1 PROFILE NUMBER XXXX DATA REDUCTION XXXXXXXX XXXXXXX

SLEW 2. PRINT LABEL DEPTH, DIFFERENCE, REFERENCE, COMPARE. SLEW 1.

FROM 5=1 TO 181 COMPUTE D_5=0.

READ TAPE C0,1,2,365. J=0.

FROM 1=1 BY 2 TO M COMPUTE JEGAL AND (IF C1-1-C1 THEN GO TO STATEMENT 3) AND DJ-R1-C1 AND (IF R1-1-1-C1-1 THEN PRINT MESSAGE (ORDER ERROR) AND GO TO STATEMENT 1) AND PRINT R1-1 5-11, D. B.A.R. 4.3 ,C. 4.3 . STATEMENT 3. WRITE TAPE D1,2,2,1,81, GO TO STATEMENT 1.

SLEW TOP, PRINT MESSAGE MULTI-PLOT OF VELOCITY PROFILES (A-197-UB), SLEW 1.

STATEMENT 2. RND 1,2. EOF 2,2. RND 2,2.

PRINT FORMAT 1,C 0,C 1,C 2, SLEW 2, FINISH,

The second of the second of the second

8) A-180-Ul Velocity and Bottom Data Input Program:

Reads data input package, checks for errors, and writes data on tape. No sample printouts shown.

1 A - 180 - U1 }

UPPER A=50,R*1000,B='000,D=500,V=500, C=2. DIMENSION R=5,FR=5,0=5.

TYPE PUT SW 1 AND SW 2 DOWN.

TYPE PUT BLANK TAPE ON 2 2 THEN TOGOLE O. PAUSE.

TYPF THANKS. PEA TOP. PRINT MESSAGE VELOCITY AND BOTTOM DATA INPUT PROGNAM (A-180-UI). SLEW 1.

PRINT FORMAT 1,43,44,41,40,42. FORMAT 1 RAY TRACE NUMBER XXXXXXXX XXXXXXX DATE XX XXXX

IF A1>12 OR A0>31 THEN PRINT MESSAGE ERROR-- DATE.

READ A3, A12. IF A9=1 THEN PRINT FORMAT 2, A12. IF A9=0 THEN PRINT FORMAT 3, A12.

IF A AO AND A AI THEN 2-1 AND PRINT MESSAGE ERROR-- INDICATION OR EARTHS CURVATURE CORRECTION- 0-YES 1-NO.

1340. Z#D.

FORMAT & EARTHS CURVATURE CORRECTION NOT USED -- BETA= XXXXX.X METERS. FORMAT 3 EARTHS CURVATURE CORRECTION USED -- BETA=XXXXXXX METERS.

SIFW 2. PRINT MESSARE (LIST OF BOTTON POINTS). SLEW 1.

PAINT LADEL RANGE (PM), POTTOM (FMS), DRN, BEARING.

READ RO. B. PRINT RO 5.4 , B. 5.4 , B. 5.4 , B. 5.4 . A 10" BO. IF RO 40 THEN Z-1 AND, PRINT MESSAGE ERROR-- FINST RANGE NOT EQUAL TO ZERO. FROM 1-1 TO INFINITY READ RIBE AND (IF RISO GO TO STATEMENT S) AND READ DRIB AND

(IF 30% OR 885 & BTIEN Z=1 AND PRINT NESSAGE (ERROR -- IDENTIFICATION FOR THE ABOVE BOTTOM POINT IS WRONG)) AND 아마 요 [본 건 13] 등 경 10 [청 18 등 점 AND.

(IF R SR, 1 THEN Z= AND PRINT NESSAGE (ERROR -- RANGE OUT OF ORDER)) ANT (IF 1.82880378 1 100) AB THEN A 10 1.82880378 1 100) (IF 3) <> OR B > FOOD THEN Z=1 AND PRINT MESSAGE (EPROR-- DEPTH BEYOND PHISICAL LIMITS)). STATEMENT 5. $M^{DR} \circ R_{i-1}$, $R^{P} = R_i$, $B = B_i$, $R_i = R_{i-1} + 1$. $B_i = B_{i-1}$, i = i+1: $A_{13} = i$. $A_{11} = 0$. STATEMENT 25. WRITE TAPE A_0 , 2, 2, 14. IF $B \neq 1$ THEN Z = 1 AND PRINT MESSAGE ERROR == 1 19ST PROFILE MUST BE DEEP.

In 1-1. FROM J=0 TO I COMPUTE $C_0 = R_j$ AND $C_1 = B_j$ AND WRITE TAPE C_0 , 2, 2, 2.

READ M^{ACC} , 1^{CC} .

STATEMENT 7. N=N+1.

SLEW YOP. PRINT MESSAGE VELOCITY AND BOTTOM DATA INPUT PROGRAM (A-180-U1). SLEW 1.

PRINT FORMAT 2.A3.A4.A3.A0.A2. IF A9=2 THEN PRINT FORMAT 2.A3. IF A9=0 THEN PRINT FORMAT 3.A12.

IF A9=0 AND A9=1 THEN Z=1 AND PRINT MESSAGE ERROR-- INDICATION FOR EARTHS CURVATURE CORRECTION- 0=YES 1=NO.

IF B=1 THEN PRINT FORMAT 4.N.RP. IF B=0 PRINT FORMAT 5.N.R.

IF A90 AND B91 THEN Z=1 AND PRINT MESSAGE ERROR-- INDICATION FOR TYPE OF PROFILE- 0=SHALLOW 1=DEEP.

FORMAT 4 PROFILE NUMBER REKER PRINCE REXEX.XXMM DELP PROFILE.
FORMAT 5 PROFILE NUMBER REKER PRINCE REXEX.XXMM SHALLOW PROFILE.

PRINT LABEL DEPTH (M), VELOCITY (M-S), MARSDEN SQ, ID.

FROM H=1 TO & COMPUTE 22=180. 03=580.

READ DO, VO, MAR, ID. IF DONO THEN Z-1 AND PRINT MESSAGE ERROR-- PROFILE DOES NOT STARL AT ZERO DEPTH.

PRINT DO 5.1, VO 1.2, MAR M , ID 4. IF 1400

1=0. DO STATEMENT 6 FROM J=5 BY 2 TO INFINITY. I=1+1. READ D_1 , V_1 , M^{AR} , I^D .

STATEMENT 51.

IF DISDING THEN GO TO STATEMENT 52.

 ${\rm R^R}_{\rm 5}{\rm =}{\rm D_1},~{\rm F^R}_{\rm 5}{\rm =}{\rm V_1},~{\rm if}~{\rm R^R}_{\rm 5}{\rm =}1~{\rm AND}$ i<3 then go to statement 52.

IF $R^R_{e_p}$ COMPUTE (FROM K=) TO 4 COMPUTE R^R_{K} = R^R_{K+1} AND F^R_{K} = F^R_{K+3}).

IF 1=3 COMPUTE 1 =1 AND R C-R 2-1 AND CALL SUBROUTINE FOUR AND CALL SUBROUTINE ALPHA1.

IF IC3 THEN DO TO STATEMENT 52.

IF RR == 1 COMPUTE R == RR =+1 AND CALL SUBROUTING FOUR AND CALL SUBROUTING ALPH12 AND GO TO STATEMENT 52.

 $R_{0}^{R}=R_{0}^{R}+1$. CALL SUBROUTINE FOUR. CALL SUBROUTINE ALPHAS.

 $R_{0}^{R}=R_{3}^{R}=1$. CALL SUBROUTINE FOUR. CALL SUBROUTINE ALPHA1.

GO TO STATEMENT 52.

SUBROUTINE ALPHA1.

 $\mathbf{A^{X}=R^{R}_{0}=R^{R}_{3}},\ \mathbf{A^{Y}=F^{R}_{0}=F^{R}_{3}},\ \mathbf{1F}\ \mathbf{i=3}\ \mathbf{AND}\ \mathbf{1^{I}=1}\ \mathbf{COMPUTE}\ \mathbf{A^{X}=R^{R}_{0}=R^{R}_{2}}\ \mathbf{AND}\ \mathbf{A^{Y}=F^{R}_{0}=F^{R}_{2}}\ \mathbf{AND}\ \mathbf{1^{I}=0},\ \mathbf{RETURN}.$

SUBROUTINE ALPHA2.

 $B^{X} = R^{R}_{0} - R^{R}_{2}, \quad B^{Y} = F^{R}_{0} - F^{R}_{2}, \quad \text{If } R^{R}_{5} = 1 \text{ COMPUTE } B^{X} = R^{R}_{0} - R^{R}_{3} \text{ AND } B^{Y} = F^{R}_{0} - F^{R}_{3}, \quad A = (A^{X2} + A^{Y2})^{1/2}, \quad B = (B^{X2} + B^{Y2})^{1/2}, \quad B = (B^{X2}$

a0-a1+a5+a3. a1-a5. a5-a3.

IF D C1000 THEN (IF $\alpha_0 \mbox{$^{44}0$}$ THEN GO TO STATEMENT 53 OTHERWISE RETURN).

IF D, <1500 THEN (IF 00 500 THEN GO TO STATEMENT 53 OTHERWISE RETURN).

IF D₄C2000 THEN (IF a₀C530 THEN GO TO STATEMENT 53 OTHERWISE RETURN).

IF D 2000 THEN (IF a 537 THEN GO TO STATEMENT 53 OTHERWISE RETURN).

STATEMENT 53. PRINT MESSAGE ERROR-- SHARP GRADIENT CAUSED BY ONE POINT.

7-1.

RETURN.

SUBROUTINE FOUR.

STATEMENT 52. IF V₁=1 MNO D₁=1 THEN SLEW 2. PRINT D₁ 告.1 , V₁ 4.2 , MAR 供, I^D 例 .

IF V =1 AND D =1 THEN GO TO STITEMENT 8.

IF DICO 1-1 THEN Z=1 AND PRINT MESSAGE ERROR -- DEPTH ORDER.

IF D =D == THEN Z=1 AND PRINT MESSAGE ERROR-- SAME DEPTH.

IF MARS AND THEN Z=1 AND PRINT MESSAGE ERROR-- MARSDEN SQUARE NOT CORRECT.

IF IDS ID THEN Z=1 AND PRINT MESSAGE ERROR-- IDENTIFICATION NOT CORRECT.

IF V,>1600 THEN Z/1 AND PRINT MESSAGE ERROR-- VELOCITY GREATER THAN 1600.

IF V <1400 THEN Z-1 AND PRINT MESSAGE ERROR-- VELOCITY LESS THAN 1400.

8,-0, B,+1-V,.

STATEMENT 6

IF IC3 THEN Z=1 AND PRINT MESSAGE ERROR-- 3 OR MORE ROFILE POINTS ARE NEEDED.

MPR-RP. Bori. B1-8. B2-1852RP. B3-D0. B4-V0. K-21. STATEMENT 30. WRITE TAPE B0,2,2,3. STATEMENT 31. WRITE TAPE B3,2,2,K.

 $R^S=R^P$. $B^{ET}=\beta$. READ R^P , β . If $R^P=0$ GO TO STATEMENT 10 OTHERWISE READ M^{ARS} , I^{DS} AND (IF $R^S>R^P$ THEN Z=1 AND PRINT MESSAGE (ERROR-- RANGE ORDER)) AND GO TO STATEMENT 7.

STATEMENT 10. IF BET 1 THEN Z=1 AND PRINT MESSAGE ERROR -- LAST PROFILE MUST BE DEEP.

IF N=1 PRINT MESSAGE (ERROR-- PROGRAM NEEDS TWO PROFILES) AND Z=1.

8,=8,+1852. STATEMENT 41. WRITE TAPE 80,2,2,3. STATEMENT 42. WRITE TAPE 83,2,2,K.

SLEW TOP. IF Z=1 PRINT MESSAGE (THERE ARE ERRORS IN THE ABOVE DATA -- UNLESS THIS DATA IS FOR A THEORETICAL)AND
PRINT MESSAGE (MODEL IT SHOULD BE CORRECTED) AND TYPE (READ PRINTER--TOGGLE O TO CONTINUE) AND SLEW TOP AND PAUSE.

IF Z=0 PRINT MESSAGE (ALL DATA WITHIN PHYSICAL LIMITS ; HOWEVER THE ABOVE PRINTOUT SHOULD NOT BE LEFT UNCHECKEDD.

IF MPR CMBR THEN MANPR OTHERWISE MAMBR.

PRINT FORMAT 12, M. FORMAT 12 THE ABOVE DATA CAN NOT BE USED IN RAY TRACES EXCEEDING XXXXX.X NAUTICAL MILES.

SLEW TOP. EOF 2,2. RWD 2,2. FINISH.

9) A-181-Ul Extrapolation and Interpolation of Velocity Profiles:
Extrapolates all profiles to a depth greater than the deepest bottom point. See Table 5.5.1.1, Chapter V.

{ PREPARATION OF DEEP PROFILE TAPE}

SEARCH FOR DEEP PROFILES

STATEMENT 1. STATEMENT 2. READ TAPE A.2,2,3.

IF EOF 2 00 TO STATEMENT 50. M=A₀,H=A₁,R=A₂,H¹=2M.

READ TAPE A,2,2,M¹ AND IF H=0 00 TO STATEMENT 2. K=0.

FROM 1=0 BY 2 UNTIL H¹=2 COMPUTE 2_K=A₁,V_K=A₁₊₁,K=K+1. P^{MOO}=2_{K-1},V^{MOO}=V_{M-1}. S=35.

EXTRAPOLATION OF DEEP PROFILES - IF NECESSARY CALCULATION OF TEMPERATURE - } { EARTH CORNECTION FACTORS - 2D COEFFICIENTS OF FIT

CALL SUBROUTINE WILSON. STATEMENT 3. W=1. FROM r=M UNTIL $z_{r=3}$ >DO STATEMENT 300. COMPUTE z_r =P^{MOO}+100(r=M+1). CALL SUBROUTINE WILSON. STATEMENT 300. G=P=r=1. IF e=1 00 TO STATEMENT \$6. CALL SUBROUTINE CORRECTION. STATEMENT \$6. a_0 =R, a_1 =P+1, a_2 =M, a_3 =T^{MOO}. WRITE TAPE A,3,7,8. r=1. CALL SUBROUTINE ZD. Z=Z+D(z_0 = z_1). a_0 = z_0 , a_1 =V $_0$, a_2 =Z, a_3 =0. WRITE TAPE A,3,1,8. FROM r=1 TO P=1 DO STATEMENT 21. CALL SUBROUTINE ZD. a_0 = z_r , a_1 =V $_r$, a_2 =Z, a_3 =0. WRITE TAPE A,3,1,8. STATEMENT 21. r=P. Z=Z+D(z_r = $z_{r=1}$). a_0 = z_r , a_1 =V $_r$, a_2 =Z. WRITE TAPE A,3,1,8. GC TO STATEMENT 2.

EHALLOW EXTRAPOLATION AND INTERPOLATION }

STATEMENT 50. WRITE EOF 3,1 AND REWIND 3,1 AND REWIND 2,2 . SN=0. READ TAPE 4,2,2,14. FROM 1=0 TO A_{13}^{-1} READ TAPE 4,2,2,2.

{ READ VELOCITY PROFILE T2P2 AND DEEP PROFILE T3P1 }

STATEMENT 6. READ TAPE A,2,2,3. IF E0F 2 GO TO STATEMENT 5 . $M=A_0$, $H=A_1$, $R=A_2$, $M^1=2M$.

IF H=1 READ TAPE A,2,2, M^1 AND GO TO STATEMENT 6. $S^N=1$. READ TAPE A,2,2, M^1 . K=0.

FROM 1=0 BY 2 UNTIL $M^1=2$ COMPUTE $2_{K}=A_1$, $V_{K}=A_{1+1}$, K=K+1. STATEMENT 8. READ TAPE A,3,1,4. $R=A_0$, $P=A_1$, $M=A_2$, $T^{MOO}=A_3$.

{ SEARCH FOR BRACKETING DEEP RANGES FOR SHALLOW RANGE - WRITE D-S TAPE T1P2 } IF R>R GO TO STATEMENT 7. $R^T=R,P^T=P,M^T=M$. $T^{TMOO}=T^{MOO}$. $A_b=1$. WRITE TAPE A,1,2,5. FROM 1=0 TO P=1 READ TAPE A,3,1,4 AND COMPUTE $z_1=A_0$, $v_1=A_1$, $v_1=A_2$, $v_2=A_3$ and write Tape A,1,2,4. GO TO STATEMENT 8.

#RITE D-S TAPE FOR OBSERVED SHALLOW POINTS STATEMENT 7. $R^1=R_1T^{1MOO}=T^{MOO}_1P^1=P_1$, $M^1=M_1$, $R=R^T_1, T^{MOO}=T^{MOO}_1P=P_1$, $M=M^T$. STATEMENT 43. $A_0=R_1A_2=0$, $A_2=M_1A_3=999999$, $A_0=0$. WRITE TAPE A,1,2,5. G=M-1. IF G=1 GO TO STATEMENT 61. CALL SUBROUTINE CORRECTION. STATEMENT 61. r=1. CALL SUBROUTINE 70. $Z=Z+O(z_0-z_1)$. $A_0=z_0,A_1=V_0,A_2=Z_1A_3=0$. WRITE TAPE A,1,2,4. FROM r=1 10 M-2 LOOP STATEMENT 31. CALL SUBROUTINE 20. $A_0=z_1,A_1=V_1,A_2=Z_1,A_3=0$. WRITE TAPE A,1,2,4. STATEMENT 31. $Z_0=Z_{M-2},V_0=V_{M-2},Z_1=Z_{M-1},V_1=V_{M-1}$. IF $H^1=0$ THEN $H^1=0$ AND GO TO STATEMENT 47.

PREPARE FOR VERTICAL INTERPOLATION

FROM 1=0 TO P^1 =1 READ TAPE A,3.1,4 AND COMPUTE z^1_1 =0, v^1_1 =A₁, z^1_1 =A₂, 0^{D1}_1 =A₃. STATEMENT 47. IF P>P¹ THEN U=P OTHERWISE U=P¹. FROM K=0 TO U IF $z_K > z_{M-1}$ THEN j=K AND GO TO STATEMENT 41. STATEMENT 41. COMPUTE $r=z_{M-1}$, $r=z_{j-1}$, $t=v_{j-1}$, t=v

 $\{$ PREPARE FOR RANGE INTERPOLATION $\}$ IF J=1 THEN v^{D1}_{-n} , v^{D2}_{-n} otherwise v^{D1}_{-n} and v^{D2}_{-n} . Call subroutine range int.

I FIND SHALLOW COEFFICIENTS FOR EXTRAPOLATED POINTS

IF J=1 THEN J=J+1 OTHERWISE k_1 , $z_2=r, v_2=v^{SP}, r=1$. CALL SUBROUTINE ZD. $k_0=z_1, k_1=v_1, k_2=z, k_3=0$. WRITE TAPE A,1,2,4. $z_0=z_1, v_0=v_1, z_1=z_2, v_1=v_2$. IF J>P-1 OR k>P¹=1 THEN GO TO STATEMENT 13. GO TO STATEMENT 10. STATEMENT 13. $k_0=r, k_1=v^{SP}, k_2=z+0$ ($z_2=z_1$), $k_3=0$. WRITE TAPE A,1,2,4. $k_0=k_1=k_2=k_3=999999$. WRITE TAPE A,1,2,4. STATEMENT 42. READ TAPE A,2,2,3. IF EOF 2 GO TO STATEMENT 5. $k_1=k_0$, $k_1=k_1$, $k_2=k_1$. READ TAPE A,2,2, $k_1=k_1$. IF $k_1=k_2=k_1$, $k_2=k_1$, $k_1=k_2=k_1$, $k_2=k_1$, $k_1=k_2=k_1$. WRITE TAPE A,2,2, $k_1=k_1$. IF $k_1=k_2=k_1$, $k_2=k_1$, $k_1=k_2=k_1$, $k_2=k_1$, $k_1=k_2=k_1$. READ TAPE A,2,2, $k_1=k_1$. IF $k_1=k_2=k_1$, $k_2=k_1$, $k_1=k_2=k_1$, $k_2=k_1$, $k_1=k_2=k_1$. READ TAPE A,2,2, $k_1=k_1$.

{ WRITES SHALLOW EXTRAPOLATED RECORDS ONTO D-S TAPE } IF R<R\^1 THEN H^H=9 AND GO TO STATEMENT &3. $A_0=R^1,A_1=P^1,A_2=M^1,A_3=T^{1MDO},A_k=1$ AND WRITE APE A,1,2,5. FROM 1=0 TO P\^1=1 COMPUTE $A_0=z^1$, $A_1=V^1$, $A_2=Z^1$, $A_3=D^{D1}$, AND WRITE TAPE A,1,2,4. $P^T=P^1,T^{TMDO}=T^{1MDO},M^T=M^1,R^T=R^1$. FROM 1=0 TO P\^1=1 COMPUTE $2_1=Z^1$, $V_1=V^1$, $Z_1=Z^1$, $D^D_1=D^{D1}$. GO TO STATEMENT 8.

END OF PROGRAM

{ WRITES ALL DEEP RECORDS, FROM DEEP TAPE, FOLLOWING LAST SHALLOW RECORD ONTO D-S TAPE } STATEMENT 5. IF S^N_{A0} GO TO STATEMENT 48. STATEMENT 89. READ TAPE A,3,1,4. IF EOF 1 GO TO STATEMENT 60. STATEMENT 37. $A_{4}=1$, $P=A_{1}$. WRITE TAPE A,1,2,5. FROM 1=0 TO P-1 READ TAPE A,3,1,4 AND WRITE TAPE A,1,2,4. GO TO STATEMENT 49. STATEMENT 48. $A_{0}=R^{1}$, $A_{1}=P^{1}$, $A_{2}=M^{1}$, $A_{3}=T^{1MOO}$, $A_{4}=1$. WRITE TAPE A,1,2,5. FROM 1=0 TO $P^{1}=1$ COMPUTE $A_{0}=2^{1}$, $A_{1}=V^{1}$, $A_{2}=Z^{1}$, $A_{3}=O^{D1}$, AND WRITE TAPE A,1,2,4. READ TAPE A,3,1,4. IF EOF 1 GO TO STATEMENT 60 OTHERWISE GO TO STATEMENT 37. STATEMENT 60. WRITE EOF 1,2. REWIND 2,2. REWIND 3,1. STOP.

SUBROUTINES

I SUBROUTINE CORRECTION

SUBROUTINE CORRECTION. FROM r=0 TO G COMPUTE $V_p=V_p(1+\frac{\pi}{6.37(10)^5})$, RETURN .

SUBROUTINE ZD

SUBROUTINE ZD: COMPUTE Z= $\frac{(\mathsf{V_{r+1}} - \mathsf{V_r})(z_{r-1} - z_r)^2 - (\mathsf{V_{r-1}} - \mathsf{V_r})(z_{r+1} - z_r)^2}{-(z_{r+1} - z_r)(z_{r-1} - z_r)(z_{r+1} - z_r)},$

$$\mathsf{D} = \frac{2((\mathsf{v}_{r+1}^{} - \mathsf{v}_{r}^{})(z_{r-1}^{} - z_{r}^{}) - (\mathsf{v}_{r-1}^{} - \mathsf{v}_{r}^{})(z_{r+1}^{} - z_{r}^{}))}{(z_{r+1}^{} - z_{r}^{})(z_{r-1}^{} - z_{r}^{})(z_{r+1}^{} - z_{r-1}^{})} \; . \quad \mathsf{RETURN}.$$

SUBROUTINE WILSONS EQUATIONS TO FIND VELOCITY FROM TEMPERATURE OR

{ TEMPERATURE FROM VELOCITY }

SUBROUTINE WILSON, IF WHO THEN THE AND DIP MOO OTHERWISE DIEZ AND THE THOU. STATEMENT 100.

IF D>200 00 TO STATEMENT 101. α=-3.54428T12, β=9.961477T4, D=-D,

 $P^{SI} = ((-\beta + (\beta^2 - 4\alpha D)^{-5})/(2\alpha))/689.47$. 00 TO STATEMENT 102. STATEMENT 101. $\alpha = -2.62085T^{12}$,

 $\beta=9.947657^{14}$, $\gamma=2.404437^{1}$, D=-D, $\rho^{S1}=((-\rho+(\beta^2-4a(\gamma+0))^{-5})/(2a))/689.47$. STATEMENT 102. D=-D.

P=.0703PS1+1.0332. Δ^{VT} =4.6233T-5.4585T 2 T 2 +2.822T 4 T 3 -5.07T 7 T 4 .

 $\Delta^{VP} = 1.60518 \, t^{1} P + 1.0279 \, t^{5} P^{2} + 3.451 \, t^{9} P^{3} - 3.503 \, t^{12} P^{4}, \quad \Delta^{VS} = 1.391 \, (s - 35) - 7.8 \, t^{2} \, (s - 35)^{2}.$

 Δ^{VSTP} =(S-35)(-1.197727+2.6) T^{4} P-1.96 T^{7} P²-2.09 T^{6} PT)+P(-2.796 T^{4} +1.3302 T^{5} T²-6.644 T^{8} T³)+

 $P^{2}(-2.3911^{7}1+9.2861^{10}1^{2})-1.7441^{10}p^{3}1.$ $v^{T}=1449.22+\Delta^{VT}+\Delta^{VP}+\Delta^{VS}+\Delta^{VS}1^{P}$.

IF WET THEN V = V AND RETURN . IF | V -V MOU | C.0001 THEN T NO GO TO STATEMENT 103.

 $\Delta^V = V^{MOO} = V^T$, $\Delta^T = \Delta^V/4$, $T = T + \Delta^T$ AND GO TO STATEMENT 100. STATEMENT 103. RETURN.

SUBROUTINE INTERPOLATION

SUBROUTINE INTERPOLATION. $K=t^1+S^1(r-\rho^1)+T^1(r-\rho^1)^2/2$. L=t+S(r-\rho)+T(r-\rho)^2/2.

$$n^{1} = \frac{(r-\rho^{1})L}{(\rho-\rho^{1})} + \frac{(\rho-r)K}{(\rho-\rho^{1})}$$
 • RETURN.

SUBROUTINE RANGE INT

SUBROUTINE RANGEINT. IF $r < z_{M-1}$ OR $B < z_{M-1}$ THEN TYPE (RANGE INTERPOLATION VALUES INCORRECT) AND STOP.

$$\text{IF rSB THEN } \mathsf{V}^{\mathsf{SP}} = \mathsf{V}^{\mathsf{D1}} + \frac{(\mathsf{R} - \mathsf{R})(\mathsf{V}^{\mathsf{D2}} - \mathsf{V}^{\mathsf{D1}})}{(\mathsf{R}^{\mathsf{1}} - \mathsf{R})} - \frac{(\mathsf{B} - \mathsf{r})(\mathsf{R} - \mathsf{R})(\mathsf{G} - \mathsf{F})}{(\mathsf{B} - \mathsf{z}_{\mathsf{M} - \mathsf{1}})(\mathsf{R}^{\mathsf{1}} - \mathsf{R})} + \frac{(\mathsf{B} - \mathsf{r})(\mathsf{V}_{\mathsf{M} - \mathsf{1}} - \mathsf{F})}{(\mathsf{B} - \mathsf{z}_{\mathsf{M} - \mathsf{1}})} \\ \text{ otherwise }$$

$$v^{SP} = v^{D1} + \frac{(R - R)(v^{D2} - v^{D1})}{(R^1 - R)}$$
 . RETURN.

10) A-199-Ul Profile Plot Program:

Plots velocity profiles used by Ray Trace Program. Sample printout: Fig. 39 in Chapter V.

DIMENSION A-750,1=10. UPPER z=750,V=750,Z=750,D=750. REWIND 2,2. READ TAPE 1,2,2,5. READ TAPE 8,2,2,1. FROM 1=1 TO 3-READ TAPE 4,2,2,2. READ B,1,4,4,4,4,4,1,2,1,2,1,5,1,0,3,1,4. STATEMENT 20. SLEW TOP. PRINT FORMAT 10, 12, 12, 13, 14, 15.

SLEW 2. STATEMENT 1. READ TAPE A,2,2,5. IF EOF 2 THEN GO TO STATEMENT 9. R=A0/1852,P=A1-1, V=A2-1, T+O0 =A2, H=A1. IF H=0 THEN PRINT FURNAT 20, H UTHERWISE PRINT FORM T 30,R, TMO. SLEW 2. IF H-1 GO TO STATEMENT 2. 1-0. STATEMENT 3. READ TAPE A,2,2,4. IF ECF 2 HEN TYPE (TAPE READ ENROR) AND STOP. IF A0"999999 GO TO STATEMENT 5. Z1"A0, V1"A1, Z1"A2, D1"A3, 1"1+1. GC TO STATEMENT 3. STATEMENT 5. P":-1. GO TO STATEMENT 7. STATEMENT 2. FROM 1=0 TO P READ TAPE A, 2, 2, 4 AND (IF EOF 2 V-7E (TAPE ERROR) AND STOP) AND COMPUTE Z, = A, V, = PRINT MESSAGE TABLE OF VALUES OF OBSERVED POINTS. SLEW 1.

 $\sqrt{5S_a} \sqrt{31 + \frac{z_{11}}{z_{11} - z_{11}}} + \frac{z_{111} - t}{z_{111} - z_{11}} \sqrt{S_a}$ (IF $\sqrt{SS_a} + \frac{z_{11} - t}{z_{111} - z_{11}} + \frac{z_{111} - t}{z_{111} - z_{11}} + \frac{z_{111} - t}{z_{111} - z_{11}}$ $\text{ROM 1=A TO INFINITY (IF 13P TYPF (MAX DFPTH EXCEEDED)), IF $z_1 \le t \le z_{1+1}$ THEN $V^S_= V_1 + z_1(t-z_1) + D_1(t-z_1)^2/2$, $V^{3}_= V_{1+1} + Z_{1+1}(t-z_{1+1}) + C_{1+1}(t-z_{1+1})^2/2$, $V^{3}_= V_{1+1} + Z_{1+1}(t-z_{1+1}) + C_{1+1}(t-z_{1+1}) IF MªM GO TO STATEMENT 20. IF MAX Mª THEN MAX Mª , O.M Mª AZ , D.D AD GO TO STATEMENT 68. GO TO STATEMENT RO. STATEMENT 9. REVIND 2, 2. STCF. PRINT MESSAGE TABLE OF VALUES OF EXTRAPOLATED POINTS. SLEW 1. LABEL DEPTH-METERS, VELOCITY-4/SEC,Z CREFFICIENT, CREFFICIENT. SIEW 1. PRINT MESSAGE VELOCITY US DEPTH. SLEW 1. PIBP, PABP, ABO, MAX MI, OBO. STATEMENT 68. FROM EC BY A LNTIL MAX CO STATFVENT 70. FROM 1=M1 TO P PRINT Z1 5.3 , V1 11.4 ,Z1,D1. SLEW TOP. IF HO PRINT FURMAT 20,R OTHERWISE PRINT FORMAT 30,9,TMO. SLEW 2. LABEL DEPTH-METERS, VELOCITY-M/SEC, COEFFICIENT Z, COEFFICIENT D. SLEW 1. FROM 1=0 TO M PRINT Z1 15.3 , V1 14.11, 171, D1. SLEW 2. FORMAT IN DATE XX XXXX ID NUMBER XXXXX SET XX.

FORMAT 20 SHALLOW PROFILE AT RANGE XXXXXXXXXX MILES.

TEMP AT OBSERVED MAXIMUM DEPTHE XX.XXX DEG CENTIGRADE. FINISH. FORMAT 30 DEEP PROFILE AT RANGE XXXXXXXXX MILES

11) A-182-Ul Ray Trace Program;

Traces rays through velocity field. Sample printout: Chapter I, Fig. 9.

I INITIAL RANGE NM, FINAL RANGE NM, INITIAL DEPTH M, MAX ITERATION, MIN ITERATION, EPSILON, MAX SINL CHANGE, { MAX SURFACE HITS, MAX BOTTOM HITS, MAX GRAZING ANGLE, PRINTOUT INCREMENT, SURFACE DELTA } DIMENSION F=4 . UPPER z=375,V=375,Z=375,D=375,Z=375,V=375,Z=375,D=375,X=375,Y=375, STATEMENT 100. 0-0. EOF-0. READ K,E,I,AM,F3,E,SS,F,F,H,S,A. S-1852S, E-1852E, K-1852K. STATEMENT 10. IF EOF=1 THEN WRITE EOF 2,2 AND EOF=0. REWIND 1,2. SLEW TOP. READ TAPE A,1,2,5. G-K. D1-Q-W-L-G-H-No-R-M-O. READ 0. IF & 999 GO TO STATEMENT 100. PRINT FORMAT 1,41,40,42,43,44. SLEW 2. PRINT FORMAT 2,1,0,c,4M,F3,55. SIN_SIN (#0/180), -K,y=1,4-4M. SLEW 2. PRINT FORMAT 4. { READS BOTTOM PROFILE OFF TAPE - STORE IN RANGE X, DEPTH Y } READ TAPE A,1,2,1. MmAg. FROM 1=0 TO M-1 READ TAPE A,1,2,2 AND COMPUTE X1=1852A0,Y1=1.82880366A1. FROM 1=0 TO $X_{i+1} > K$ COMPUYE 1=1. $t=((Y_{i+1} - Y_i)/(X_{i+1} - X_i))$ $(K = X_i) + Y_i$. If i > t THEN y = t. t = 0. THE 2 BRACKETING PROFILES ARE SELECTED AND STORED IN R,z,V,Z,D AND R,z,V,Z,D STATEMENT 3. Q=0. READ TAPE A,1,2,5. R=A0,T=A3. STATEMENT 9. IF Q=1 SEARCH ONLY FOR THE RIGHT BRACKETING PROFILE AND STORE IN R,z,V,Z,D IF FOR GO TO STATEMENT 4. IF Q/1 GO TO STATEMENT 1. FROM 1=0 TO G-1 COMPUTE $z_1=z_1$, $v_1=v_1$, $z_1=z_1$, $D_1=D_1$. P=G,R=R AND GO TO STATEMENT 3. STATEMENT 1. R=R. IF T=999999 THEN (FROM 1=0 TO INFINITY READ TAPE A,1,2,4 AND (IF A0=999999 THEN P=1 AND GO TO STATEMENT 3) AND COMPUTE $z_1=A_0, V_1=A_1, Z_1=A_2, D_1=A_3$) OTHERWISE PHA, AND (FROM 1=0 TO P-1 READ TAPE A,1,2,4 AND COMPUTE $\mathbf{z_1} = \mathbf{A_0}, \mathbf{V_1} = \mathbf{A_1}, \mathbf{Z_1} = \mathbf{A_2}, \mathbf{D_1} = \mathbf{A_3})$ AND GO TO STATEMENT 3. STATEMENT 4. IF Q-1 00 TO STATEMENT 5.

(INPUT PROCEDURES - SET UP FOR CORRECT PROFILE AND DEPTH

IF T-999999 THEN (FROM 1-0 TO INFINITY READ TAPE A,1,2,4 AND

(FROM 1=0 TO G=1 READ TAPE A,1,2,4 AND COMPUTE z1=A0,V1=A1,Z1=A2,D1=A3).

(IF A0 999999 THEN Gas AND GO TO STATEMENT 5) AND COMPUTE Z1 AO, V1 A, Z1 A2, D1 A) OTHERWISE GAA AND

A NEW BOTTOM POINT IS SELECTED

STATEMENT 5.

FIRM 140 TO INFINITY IF $y \le x_{1+1}$ GO TO STATEMENT 6. STATEMENT 6. FRUM JOO TO INFINITY IF YEX 341 GO TO STATEMENT 7. STATEMENT 7. IF GO GO TO STATEMENT 11. FROM 10-M TO M-1 IF KX 10-1 THEN GO TO STATEMENT 8, STATEMENT 8, M-k.

STATEMENT 11.

INTERPOLATION .. WITH GIVEN Pay - BRACKETING PROFILES

THE POINT IS FOUND WITH COEFFICIENTS - STORED IN P.Y. VR. ZR. DR. QR.

imV₁,KmZ₁,Lms₁,NmD₁, S^Uml.

GO TO STATEMENT 25. STATEMENT 21. VK-VT, ZK-ZT, 1-V1+1, L-21+1, K-Z1+1, N-D1+1. SU-2. QO TO STATEMENY 25. STATEMENT 22.

GO TO STATEMENT 27. STATEMENT 28. VJ-VT,ZJ-ZT,DJ-DT.

vK1=vT,zK1=zT,J=1,U=0,. SV=1.

1=V_1.K=Z_1.L=x_1.N=D_1. SU-3.

GO TO STATEMENT 25. STATEMENT 23. VK VT ,ZK ZT. 1=VJ+1.

KmZ_{j+1},L=x_{j+1},N=D_{j+1}. S^U=4.

GO TO STATEMENT 25. STATEMENT 24. VK1-VT .ZK1-ZT

J-2, U-Dj. S^V=2.

GO TO STATEMENT 27.

STATEMENT 29.

 $\Psi^{J1} = \Psi^{T}, Z^{J1} = Z^{T}, D^{J1} = D^{T}. R^{1} = (R-r)/(R-R), R^{2} = (r-R)/(R-R).$

IF Q40 THEN $V^Q_{=R^2V^J+R^2V^{J1}}$ AND (IF Q-1 GO TO STATEMENT 30 OTHERWISE GO TO STATEMENT 32).

 $v^R = R^1 v^J + R^2 v^{J1} \cdot z^R = R^1 z^J + R^2 z^{J1} \cdot D^R = R^1 D^J + R^2 D^{J1} \cdot G^R = (v^{J1} - v^J)/(R - R). \text{ If } z = K \text{ THEN C-$COS}(\#\theta/180)/V^R$.$

COS-VRC. IF | SIN >.01 THEN SIN-# ((| 1-COSA)/SIN+SIN)/2.

IF a=2 THEN SIN-MCOS-WSIN, C-WC+MSIN1/VR, a=0, COS-VRC. TAN-SIN/COS.

ST 1 C2VR(ZR-QRTAN) A+C2(ZR2SIN+ZRGRCOS+VRDRSIN) A2/2+C2(3ZRDRSIN2-CZRCOS(ZR2+VRDR)) A3/6 | .

IF ST>SS THEN 4-(SS/ST).50. ST- | C27PDP4]. IF ST>SE THEN 4-((SS/ST).5)4.

GO TO STATEMENT 26

STATEMENT RS.

 $V^{T}=1+K(y-L)+N(L-y)^{2}/2,Z^{T}=K+N(y-L)$. IF $S^{U}=1$ 00 to statement 21. If $S^{U}=2$ go to statement 22. IF SU-3 QO TO STATEMENT 23. IF SU-4 QO TO STATEMENT 24.

STATEMENT 27.

IF SV-1 00 TO STATEMENT 28. IF SV-2 GO TO STATEMENT 29.

STATEMENT 26.

(TESTING FOR Δ CHANGE BECAUSE OF NEW VELOCITY FIELD)

IF $\Delta S(R-r)/C^{OS}$ THEN $F_1 = \Delta$ AND CALL SUBROUTINE VQ, R^M_-r , y^M_-y , $y_-y_+\delta^Z$, $r_-r+\delta^R$, Q_-1 AND GO TO STATEMENT 31.

STATEMENT 30.

 $r=R^M$, $y=y^M$, Q=0. If $|V^\Delta-V^Q| < \epsilon$ go to statement 40. $\Delta=\epsilon \Delta/|V^\Delta-V^Q|$. If ΔKF_3 then $\Delta=F_3$. Go to statement 40.

STATEMENT 31.

 $\Delta^R=(R-r)/C^{OS}$, $F_1=\Delta^R$. CALL SUBROUTINE VQ. Q=2. $R^M=r$, $y^M=y$, $y=y+\delta^Z$, $r=r+\delta^R$. GO TO STATEMENT 5.

STATEMENT 32.

Q=0, x=R^M, y=y^M. IF $|V^{\Delta}-V^{Q}| < \epsilon$ Then $\Delta = 0$ Otherwise $\Delta = \epsilon \Delta^R/|V^{\Delta}-V^{Q}|$ and (if $\Delta < \epsilon_3$ Then $\Delta = \epsilon_3$), go to statement 40. FROM v=0 to G=1 COMPUTE $z_v=z_v, v_v=v_v, z_v=z_v, v_v=z_v,

STATEMENT 40.

IF | VQ >1 THEN 4-F3.

(TESTING FOR SURFACE HITS) IF y>0 | S^{IN} | +0 THEN GO TO STATEMENT 50. IF y>0 GO TO STATEMENT 41. G=1. $z^X=z^R=y0^R/2$. IF | z^X | <.0001 THEN $\Delta=-y/(S^{IN})$ OTHERWISE

CALL SUBROUTINE ITRAT. y1-0. GO TO STATEMENT 60.

STATEMENT 41.

ZX=ZR-yDR/2. IF SIN2+2yC2VRZX50 00 TO STATEMENT 60. IF | ZX <.0001 THEN 10-4/(SIN) OTHERWISE

n= SIN+ ISIN2+24C2VRZX . IF nSO OR n34 GO TO STATEMENT 60.

Δ=n. α-1. CALL SUBROUTINE ITRAT. y1-0. GO TO STATEMENT 60.

ITESTING FOR BOTTOM HITS

STATEMENT 50.

FROM N=M TO M-1 (IF $r < x_{k+1}$ then go to statement 51). Statement 51. If $r + \Delta c^{OS} + cz^R s^{IN} \Delta^2 / 2 \leq x_{k+1}$ then go to statement 52. $\Delta r (x_{k+1} - r) / c^{OS}$, M=M+1. Statement 52. If $y \leq y_{k+1} - \Delta$ and $y \leq y_{k+1} - \Delta$ go to statement 60.

$$P = \frac{Y_{k+1} - Y_k}{X_{k+1} - X_k}$$
, $\sigma = (\beta C^{OS} - S^{IN})^2 - 2C^2 V^R z^R (Y_k - y + \beta (x - X_k))$.

IF eso go to statement 60. If $\|z^{n}\| < \infty$ then (if Y_{k} -y+8(x-X) <0 then go to statement 60 otherwise

$$\frac{Y_k - y + \beta \left(x - K_k\right)}{s \ln_{-\beta C} OS} \text{) OTHERWISE } n = \frac{s \ln_{-\beta C} OS_{-\sigma} \cdot 5}{c^2 \sqrt{R_2 R}} \text{ .}$$

IF nSO GO TO STATEMENT 60. IF n34 GO TO STATEMENT 60. Δ =n. G=2. CALL SUBROUTINE ITRAT. σ =26/(1=62), G=1/(1+ σ 2). 5 , μ = σ GO TO STATEMENT 60.

| PROCEDURES FOR EXIT OR RETURN |

STATEMENT 60.

IF L = 0 THEN CALL SUBROUTINE ITRAT. L=0. CALL SUBROUTINE PRINT. CALL SUBROUTINE TIME. G=1. t=t+8.
IF #PE PRINT HESSAGE (MAX RANGE), EOF=1 AND GO TO STATEMENT 10 .

IF c=1 THEN H=H+1 AND $s^{IN}=-s^{IN}$, $r=r^1$, $y=y^1$, $C=C^1$, $s^{IN}=s^{IN}$. IF H>F THEN PRINT MESSAGE (MAX SURFACE HITS), $E^{OF}=1$ AND 00 TO STATEMENT 10 . IF c=2 THEN N=N+1 AND 00 TO STATEMENT 9.

IF N>F THEN PRINT MESSAGE (MAX BOTTOM HITS), ϵ^{OF} =1 and go to statement 10 . g=0 . Go to statement 9.

{ITRAT SUBROUTINE}

SUBROUTINE ITRAT.

STATEMENT 90.

 $\begin{array}{l} \text{L=1.} \quad \text{C1=\text{C}$=\text{C}2}^{R}(1+\text{T}^{AN2})\Delta + \text{C}^{3}$_{Q}^{R}\text{T}^{AN}(1+\text{T}^{AN2})\Delta^{2}, \\ \text{x1=\text{x}$\in\text{C}0$\to\text{C}$}(2^{R}\text{S}^{1N}\text{-}\text{d}^{R}\text{S}^{1N}\text{T}^{AN})\Delta^{2}/2 + \text{C}(D^{R}\text{S}^{1N2}\text{-}\text{C}^{2}\text{V}^{R}\text{Z}^{R}(2^{R}\text{-}\text{G}^{R}\text{T}^{AN}))\Delta^{3}/6 - \text{C}^{3}\text{Z}^{R}(4\text{V}^{R}\text{D}^{R}\text{S}^{1N}\text{+}\text{Z}^{R}\text{G}^{R}\text{C}^{OS}\text{+}\text{Z}^{R2}\text{S}^{1N})\Delta^{4}/2 + \text{C}^{2}$

IF 01 00 TO STATEMENT 81. RETURN.

```
SUBROUTINE PRINT.
IF SINSING SO AND GOO THEN GO 3.
                                                                             FROM V=1 TO 2 DO STATEMENT 89.
                                                                                                                                              IF V=1 AND GDr2 THEN GO TO STATEMENT 83. 0^{1}=1, r^{11}=r^{2}, r^{11}=r^{2}
IF vol AND and AND Gar THEN and,
CTI-C1.SINTI-SINI. rt-r.yT-y.AT-A.SINT-SIN.CT-C.
                                                                                                                                             IF OK3 THEN A-AT (G-r)/(r2-r), G-G+S AND GO TO STATEMENT 90.
IF and THEN AND TSIN/(SIN-SIN1) AND WELL AND GO TO STATEMENT 90.
                                                                                                                                             IF 4TS IN/(SIN-SIN1) < 4T (G-P)/(P-P) THEN
(IF well then deats in/(sin-sin1) and well otherwise deat (g-r)/(r1-r) and geges)
OTHERWISE (IF v=1 THEN \Delta = \Delta^T(0-r)/(r^2-r)) OTHERWISE 0=0+S AND v=1 AND \Delta = \Delta^T S^{1N}/(S^{1N}-S^{1N2})). OD TO STATEMENT 90.
 STATEMENT 81.
Fom1. GO TO STATEMENT 103.
 STATEMENT 104.
F_2=0, t=t+8, D^1=0, S^{1N}=S^{1N1}, y=y^1, z=z^1.
FROM K=0 TO M-1 IF PCXK+1 THEN M-K AND GO TO STATEMENT 84.
PRINT FORMAT 3, r/1852,y,S IN1,t,W.
ρ<sub>0</sub>=r/1852,ρ<sub>1</sub>=y.ρ<sub>2</sub>=S<sup>IN1</sup>,ρ<sub>3</sub>=t,ρ<sub>4</sub>=W. WRITE TAPE ρ,2,2,5. If α=2 AND v=2 THEN
(IF | SINT | ) HITHEN PRINT HESSAGE (CRITICAL SINE) AND COMPUTE EOF ... AND GO TO STATEMENT 10), SINT ... SIN.
t=t=B. IF v=2 AND (IF o=1 OR o=2 GO TO SYATEMENT 89).
rlarT1, ylayT1, clacT1, SIN1asINT1, rarT, yayT, AmaT, SINasINT, cacT.
IF v=1 AND oc3 AND GDr1 THEN s^{INT} = s^{IN}, r^{T} = r_{x}y^{T} = y_{x}c^{T} = c.
IF was AND and THEN RETURN.
IF W-1 AND G23 GO TO STATEMENT 88.
IF well THEN wert AND GO TO STATEMENT 81.
    STATEMENT 88.
 STATEMENT 89. RETURN.
SUBROUTINE VQ.
 \delta^{Z_{\bullet}S^{1N}} F_{1} - C^{2} V^{R} ( \P^{R} - Q^{R} Y^{NN} ) F_{1}^{2/2} - C^{2} ( T^{R2}S^{1N} + T^{R}Q^{R}C^{OS} + V^{R}D^{R}S^{1N} ) F_{1}^{3/6} - C^{2} ( 3 Z^{R}D^{R}S^{1N2} - C T^{R}C^{OS} ( T^{R2} + V^{R}D^{R}) ) F_{1}^{4/24} + C^{2} ( T^{R2}S^{1N} + T^{R}Q^{R}C^{OS} + V^{R}D^{R}S^{1N} ) F_{1}^{3/6} - C^{2} ( T^{R2}S^{1N} + T^{R}Q^{R}C^{OS} + V^{R}D^{R}S^{1N} ) F_{1}^{3/6} + C^{2} ( T^{R2}S^{1N} + T^{R}Q^{R}C^{OS} + V^{R}D^{R}S^{1N} ) F_{1}^{3/6} + C^{2} ( T^{R2}S^{1N} + T^{R}Q^{R}C^{OS} + V^{R}D^{R}S^{1N} ) F_{1}^{3/6} + C^{2} ( T^{R2}S^{1N} + T^{R}Q^{R}C^{OS} + V^{R}D^{R}S^{1N} ) F_{1}^{3/6} + C^{2} ( T^{R2}S^{1N} + T^{R}Q^{R}C^{OS} + V^{R}D^{R}S^{1N} ) F_{1}^{3/6} + C^{2} ( T^{R2}S^{1N} + T^{R}Q^{R}C^{OS} + V^{R}D^{R}S^{1N} ) F_{1}^{3/6} + C^{2} ( T^{R2}S^{1N} + T^{R}Q^{R}C^{OS} + V^{R}D^{R}S^{1N} ) F_{1}^{3/6} + C^{2} ( T^{R2}S^{1N} + T^{R}Q^{R}C^{OS} + V^{R}D^{R}S^{1N} ) F_{1}^{3/6} + C^{2} ( T^{R2}S^{1N} + T^{R}Q^{R}C^{OS} + V^{R}D^{R}S^{1N} ) F_{1}^{3/6} + C^{2} ( T^{R2}S^{1N} + T^{R}Q^{R}C^{OS} + V^{R}D^{R}S^{1N} ) F_{1}^{3/6} + C^{2} ( T^{R2}S^{1N} + T^{R}Q^{R}C^{OS} + V^{R}D^{R}S^{1N} ) F_{1}^{3/6} + C^{2} ( T^{R2}S^{1N} + T^{R}Q^{R}C^{OS} + V^{R}D^{R}S^{1N} ) F_{1}^{3/6} + C^{2} ( T^{R2}S^{1N} + T^{R}Q^{R}C^{OS} + V^{R}D^{R}S^{1N} ) F_{1}^{3/6} + C^{2} ( T^{R2}S^{1N} + T^{R}Q^{R}C^{OS} + V^{R}D^{R}S^{1N} ) F_{1}^{3/6} + C^{2} ( T^{R2}S^{1N} + T^{R}Q^{R}C^{OS} + V^{R}D^{R}S^{1N} ) F_{1}^{3/6} + C^{2} ( T^{R2}S^{1N} + T^{R}Q^{R}C^{OS} + V^{R}D^{R}S^{1N} ) F_{1}^{3/6} + C^{2} ( T^{R2}S^{1N} + T^{R}Q^{R}C^{OS} + V^{R}D^{R}S^{1N} ) F_{1}^{3/6} + C^{2} ( T^{R2}S^{1N} + T^{R}Q^{R}C^{OS} + T^{R}Q^{R}C^{OS} + V^{R}D^{R}C^{OS} + T^{R}Q^{R}C^{OS} + V^{R}D^{R}C^{OS} +
6 +F, COS+C(ZR5 IN-GR5 INTAN)F, 2/2+C(DR5 IN2-C2VRZP2)F, 3/6-C3ZRVRDR5 INF, 4/6 .
VA= VR+2R6Z+DR6Z2/2+QR6R.
RETURN.
SUBBOUTINE TIME.
B-4(1-c(2RTAN+ 0R)4/2+C2(2R2-VRDRTAN2+27R2TAN2+27R0RTAN+20H2)62/6)/VR. IF F2-1 GO TO STATEMENT 104.
FORMAT 1 DATE- EX XX XXXX RUN-XXXX XXXX.
FORMAT 2 DEPTH-M-XXXX,XXXX ANGLE DEG-XXX.XXX EPSILON-X,XXXX DELTA-XXXX MIN DELTA-XXXX SIN TEST- .xxx
FORMAT 3 MARK. MARK MARKA MARKAMAK MARK. MARK. MARK. MARK.
FORMAT 4 RANGE NM DEPTH M SINE
                                                                                    SEC
                                                                                                     BOT DIF M.
```

TILSTING FOR PRINTING CONDITIONS . INTERVAL, INFLECTION, BOTTOM OR SURFACE HIT . PRINT SUBROUTING

FINISH.

12) A-187-Ul Ray Depth Distribution Program - Pass 1:

Selects plotting information from ray trace output tape, and writes a tape for the sort program (A-188-G1).

RAY TRACE DEPTH DISTRIBUTION PROGRAM NUMBER 531 PASS 1 PROGRAMMER HOWARD L DAVIS FOR DR W A HARDY

FUNCTION H(A,U,C)= $(A/1.38)^2 + 18.364 (CSIN A)^2/(U)$. O=0. FUNCTION BH(A,U,C)=1/($_{\rm H}^{\rm H(A,U,C)}$).

TYPE RAY DEPTH DSSTRIBUTION / INPUT T 1,2/HARDY.

TYPE (GE 531 (A 187 U1)).

STATEMENT 5002. RWD 1,2 AND RWD 2,2.

READ CARD A.

UPPER $R^R=150$, $R^Y=100$, $\gamma=100$, $R^B=100$, $\beta=100$, $R^F=100$

DIMENSION W=16.

 N^R =150, N^B =100, N^Y =100, M=25. SPECIAL VARIABLE ATT .

READ ATTENUATION LOWER LIMIT, EPSILON ANGE METERS, EPSILON ANGLE RADIANS, DUMMY, MAXIMUM NUMBER OF RECORDS, NUMBER OF CONSECUTIVE RAYS TO BE PROCESSED

READ CARD ATT, E^{R} , E^{θ} , D^{U} , M^{AX} , N^{θ} .

STATEMENT 300. | READ PRINTOUT RANGES

SLEW 2 AND PRINT MESSAGE (RANGE).

FROM L=0 TO INFINITY IF L>N^R GO STATEMENT 350 ELSE READ CARD $R^R_{\ L}$ AND IF $R^R_{\ L}$ =99999992 THEN (N^R =L AND (FROM B=0 TO L=2 IF $R^R_{\ P}$ > $R^R_{\ P+1}$ PROUT FORMAT 100, P+1) AND GO TO STATEMENT 302) ELSE PRINT $R^R_{\ L}$.

STATEMENT 302. $\{$ READ BOTTOM RANGE AND ASSOCIATED ATTENUATION COEFFICIENT $\}$ SLEW 2 AND PRINT MESSAGE (BOTTOM PANGE ATTENUATION).

FROM L=0 TO INFINITY IF L>N^B GO STATEMENT 350 ELSE READ CARD P_L^{β} AND IF R_L^{β} =9999993 THEN (N_{PL}^{β} , AND (FROM P=0 TO L=2 | IF R_{P}^{β} > R_{P+1}^{β} PRINT FORMAT 400, P+1) AND GO STATEMENT 303) ELSE READ CARD β_L AND PRINT R_L^{β} , β_L .

STATEMENT 303. | READ SURFACE ATTENUATION RANGE AND ASSOCIATED COEFFICIENT

SLEW 2 AND PRINE MESSAGE (SURFACE RANGE ATTENUATION).

FROM L=0 TO INFINITY IF L>N $^{\gamma}$ GO STATEMENT 50 ELSE READ CARD R^{γ}_{L} AND IF R^{γ}_{L} =9999994 THEN (N^{γ} =L, (FROM P=0 TO L=2 IF R^{η}_{p} >R $^{\gamma}_{p+1}$ THEN PRINT FORMAT 300,P+1) AND GO TO STATEMENT 304) ELSE READ γ_{L} AND PRINT R^{γ}_{L} , γ_{L} .

STATEMENT 350. TYPE CARD INPUT ERROR TOO MANY CARDS , TERMINATE .

STATEMENT 304. TYPE CARD INPUT COMPLETED.

```
SLEW 1. LABER ( WAVELENGTH ). POHLY A.
SLEW 1. PPINT FORMAT SUG. NO. NO. NO. NO.
SLEW 2. PRINT FORMAT COC. ATT. E2. E5. D3. SLEW 1. PRINT TURNAT CO., PAY, N.
FORMAT TOO MANCE INPUT ERROR, PANCE CARD TO Y.
FORMAT 200 INITIAL MIGLE INPUT ERICH, ANGLE CARD IA. Y.
FORMAT 300 SURFACE ATTENUATION EPPOR, SURFACE ATTENUATION CARD NO Y-
FORMAT 400 BOTTOM ATTENUATION ERROR, ECTTOR ATTENUATION CAPD NO y.
FORMAT 500 Y INITIAL ANCS Y RANGES Y SURFACE AND Y LOTTON ATTENUATIONS.
FORMAT GOD ATT LIMIT Y EMSR Y EPSTHETA Y DURAN Y.
FORMA" 60" MAXIMUM NUMBER OF RECORDS Y MAX RANGES IN CYCLE Y .
I END OF CAPO HEADING DEQUENCE !
I INITER ANGLE SEARCH INITIAL ANGLE (4) WRICH IS TO DEFIRST PERCORD!
STATEMENT 1000, NUMBER-O . FFILE COUNTS
STATEMENT ". Fan. CHEC. . . CHEC IS ASCENDING COUNT OF RECORD READ FOR EACH FILE!
STATEMENT 3. READ TAPE TO:1.2.5 IF EOF 2 00 TO STATEMENT
OTHERWISE RATO, ZeT, , um (180/v) ARCS IN To, BATA.
INITIALIZATION EACH TIME NEW RAY IS EXAMINED }
STATEMENT 2. NUMBER-NUMBER+1,SH-0, SB-0, ATT-1,ZMIN-Z,ZMAX-Z,ZCRIT-Z, JR-0,
 c[RIT =],D=0,CREC =], E=0, TEST=0, 0K=0, TAFE=0.
I ATTENUATION AND PANCE ANAYSIS }
STATEMENT 100. CALL ( ATTENUATION ) .
STATEMENT 201. IF ATTICATT THEN TYPE ( ATT LIMIT ) IF ON THEN OF STATEMENT 151.
STATEMENT 154. CAL'. ( RANGE ANALYSIS).
 EXTERMINATION CONDITIONS WHEN A RANGE IS NOT BEING PROCESSED }
IF CHO THEN ( IF COF 2 CO STATEMENT 15) ELEC IF END OR ATTICATT OR TEST ME
 OP THEO OR CHECHAY OD STATEMENT 351 %
STATEMENT 10. READ TAPE TO:1,2.5 AND CREC-CREC I AND
IF TO OR CREC HAX THEN ( IF OR =1 00 TO STATEMENT 154
OTHERWISE GO TO STATEMENT 151).
IF ECF 2 THEN E-1 AND (IF OK-1 GO STATEMENT 154 ELSE GO STATEMENT 151). GO TO STATEMENT 100.
 E TERMINATION ROUTINE !
STATEMENT 151. IF TEST ON THEN ( FROM L-TEST+1 TO NR COMPUTE
Wn=R<sup>R</sup>1 =1, ( FOR P=1(1)13 COMPUTE Wp=0<sup>U</sup>),
H.4=0, W15=(W0+0/350), WRITE TAPE W0,2,2,16 ).
STATEMENT 153. IF NUMBER ON THEN (IF E-1 GO STATEMENT 1 ELSE (FROM L-0 TO INFINITY
READ TAPE T_0, 1, 2, 5 AND IF FOF 2 00 STATEMENT 1)).
EOF 2,2 AND TYPE END OF RUN / USE SORT PROGRAM / SORT ON 36TH WORD OF EACH RECORD.
TYPE SCRT COOF 32 32 31 32.
STOP.
 SUBROUTINE ( PANCE ANAYSIS). | FINDS DESIGNATED RANGES REEPING TRACK OF TURNING POINTS
 I CONDITIONS INDICATING TAPE WRITE WHEN PANCE IS BEING PROCESSED!
 IF COCCUMAN OR 1, CO OR ATTENTT THEN ( IF ON THEN TOCALL THE THEN TOCALL THE THEORY THEN TOCALL THE THEORY THEN TOCALL THE THEN TOCALL THE THEORY THEORY THEORY THEORY THEORY THE THEORY THE
 IN FOR 2 THEN (IF OKA) THEN I CONTAT AND GO STATEMENT COO).
 Deta, Teta, umTa, Retu.
```

```
STATEMENT 101. (+3°, STATEMENT 119.
E STAPCH FOR PAINT
If \operatorname{PS}(\operatorname{P}^{2}_{\mathbb{R}^{d}}) and \operatorname{PS}(\operatorname{P}^{2}_{\mathbb{R}^{d}}) , then \operatorname{S}^{k} , and so the state state onto
FORCE STATIS CAPER POPULO OFFI HE AND WESTERS
TAPE RANGE TOO STALL SO CONTINUE SEARCHING
IF RC(P^R_{\underline{\ \ }}-E^R) THEN GO STATEMENT TOC.
I TAPE RANGE TO LARGE ASSUME CURPENT TAPE RECORD IS PROPER HARGE }
IF D^{K}=0 THEN ( PRINT FORMAT 201, R^{Q}_{ij} and ( for i=1(1)) compute T_{i}=D^{U} ) and type (Pance Error Continue), r^{K}=1,
AND GO TO STATEMENT 205 ) ELSE GO TO STATEMENT 106.
 BUFFER FOR RANGES RETWEEN COMMON TURNING POINTS, UP TO A MAXIMUM OF 25 }
STATEMENT 205. JP JAT , TEST TEST +1, TAPT TAPE +1,
 IF TAPE >25 THEN TYPE MORE THAN 25 PANGES IN CYCLE, TERMINATE.
STATEMENT 104. WETAPF -1 . RECUND WART J. ZEWET., WEWETER TENTE. OF WETER APT.
 I TEST FOR TURNING POINT }
 STATEMENT 106. IF I & SET OR BSER OR ZSER THEN ZOCRIT ZORIT, ZORIT ZOCRIT -Z. CONT -CTEC
 AND ON TO STATEMENT 200 ELSE RETURN.
 FORMAT 201 RANGE Y NOT ON TRACE OF INITIAL MICE.E Y .
 STATEMENT 200. IF ON THE RETURN. IF 20CRIT CZCOIT THEN 2 MAE 20CRIT,
 ZMIN-ZCRIT OTHERWISE ZMAX-ZCRIT, ZMIN- ZOCRIT.
  { WRITING ON TAPE FROM BUFFER MEN TURNING POINTS FOUND }
  FROM K-O TO TAPE-1 LOOP STATEMENT AGT.
 WO-RFOUND K, W1=2 K, W10-8, W15-(W0+8/350) AND W2=2MIN, W3=2MAX, W6-4 K, W5-1 K, W6-4 K, W7-4 K.
  ( FOR 1.-8(1)13 COMPUTE M_{\rm L}-D<sup>U</sup>) AND WRITE TARE M_{\rm O}-2.2.76.
  STATEMENT 401.
   TAPE -0, 0 =0 . RETURN.
   { CALCULATION OF ATTENUATION }
  SUBROUTINE (ATTENUATION).
   R=T<sub>0</sub>, 7=T<sub>1</sub>, 8=T<sub>4</sub>.
   IF ZSE OO TO STATEMENT 130.
   IF BSE 00 TO STATEMENT 131. RETURN.
   STATEMENT 130. SH-SH+1 , GO TO STATEMENT 132.
    STATEMENT 131 . SB-SB+7 , GO TO STATEMENT 15-
    STATEMENT 132. FROM Q=0 TO NY-1 IF RY Q THEN S=Q AND GO TO STATEMENT 17.
      TYPE ATTENUATION CONSTANT ERROR (SUPFACE), TERMINATE, STOP.
    STATEMENT 15. FROM N=0 TO N^{\tilde{B}}\text{-1} IF R^{\tilde{D}}_{\tilde{K}}\tilde{N}R THEN \mu_{0}K AND. GO TO STATEMENT N^{\mu} ,
                                                                                   Best Available Copy
    TYPE ATTENUATION ERROR HERE (BOTTOM), TERMINATE. STOP.
    STATEMENT 16. MARCSIN To.
    ATTARTTXPH(\Delta, \lambda, \beta_{\mu}).
     STATEMENT 17. ATT-ATTXYS. RETURN.
```

13) A-183-Ul Ray Depth Distribution Program - Pass 3:

Reads sort output, prints Ray Depth Distribution Table and
writes tape for plot program. Sample printout: Chapter I, Fig. 11.

```
{ PASS 3 RAY DEPTH DISTRIBUTION GE 532, A 193 U1 }
{ PROGRAMMED BY HOWARD L. DAVIS FOR DR. W.A. HARDY }
TYPE RAY DEPTH DISTRESUTION.
TYPE ( GE 532 ( A 183 U1 )).
RWD 1,2 AND RWD 2,2.
                    | NUMBER OF RAYS OR INITIAL ANGLES SAME AS FOR PASS 1
READ CARD N,M,B.
{ DECIMAL FRACTION OF PAPER TO BE USED FOR TIME PLOT, MAXIMUM BUTTOM DPETH TO BE FUUND }
                          FROM Q=0 TO INFINITY LCOP STATEMENT 100.
UPFER C=225 , W=3600.
FROM L=0 BY 16 TO 16(N-1 ) HEAD TAPE W, 1,2,16 AND IF EDF 2 GU STATEMENT 101
ELSE IF W_+5 228 THEN C=( G+1), CG W_+5. TMIN_TMAX_CO.
FROM P=O TO G IF TMINOUP THEN TMINOUP ELSE IF TMAXCO THEN TMAX = 0 .
   P=(T^{MAX}-T^{MIN})/(120M).
FORMAT 300 5 %
                     ILIMINATED.
FCRMAT 200 y y
                     RANGE NOT FOUND.
FORMAT HOD Y Y Y Y Y Y.
PRINT MESSAGE ( RAY DEPTH DISTRIBUTION).
SLEW 2. FROM G=0 BY 16 TO 16(N-1) IF (WG+1+WG+7) $23 THEN D=WG+1+YG+, AND GO STATEMENT 401.
STATEMENT 401.
PRINT FORMAT 100, WO, D, P, Q+1.
FORMAT 300 RANGE & BOTTOM DEPTH & TIME SCALE &
                                                                      COUNT XXX.
SLEW 2. PRINT LABEL ( COUNT, INITIAL ANGLE, DEPTH, ATTENCIATION, TIME, ANGLE).
FROM G= 0 BY 16 TO 16(N-1 ) LOOP STATEMENT 99.
IF W_{G+1}>28 THEN ( IF W_{G+2}<26 THEN PRINT FORMAT 200, (G+16)/16, W_{G+1} ELSE PRINT FORMAT 300, (G+16)/16, V_{G+1}>26
 AND (FROM L=G TO G+15 COMPUTE W_{\rm E}=2R), AND GO TO STATEMENT 50.
PRINT FORMAT 400, (G+26)/16, WG+14, WG+14, WG+5, ARCSIN WG+6 .
W_{C+11} = 0, W_{C+12} = -(MB(W_{C+5} - T^{MIN})/(T^{MAX} - T^{MIN}) + P(t+1.5)/120), W_{C+13} = 0.
FOR L=0(1)35 COMPUTE WL+G=-VG+L *
STATEMENT 50. WRITE TAPE Mg,2,2,14.
STATEMENT 39. CONTINUE.
LOF 2.2.
STATEMENT 100. CONTINUE. STATEMENT 101.
FROM L-0 TO 10 COMPUTE FOR 1.2.
TYPE FOR MULTIPLEX PLOT, IND 1,2 AID RUB 2,2. THE ( 1)D OF BURCHMY ME CITE.
```

14) A-195-Ul Type III Intensity Program - Pass 1:

Reads ray trace output tape, calculates transmission loss for specified ranges, and writes tape for sort program (A-188-G1).

TYPE INTERSITY 111 (A 195 U1). SMECIAL VARIABLES REQUND, ATT, EOF. PROGRAM NUMBER 547 BY HOWARD DAVIS FOR DR. W.A. HARDY TYPE INTENSITY 111 ROBERT MININGHAM RAY TRACE SYSTEM NUMBER (A 195 U1). SPECIAL VARIABLES REGUND, ATT, EGF. DIMENSION T=16, W=16, Z=3, ATT=5, \=5. UPPER $R^{\beta}=200$, $\beta=200$, T=(3,15), Q=500, R=500, R=501, $\Delta^{J}=500$, $\alpha=500$, $Z^{F}=500$. I MENUMBER OF INTERVALS, NO MUNUMBER OR RAYS TO BE PROCESSED, DESURFACE ATTENUATION COEFFICIENT $\{e^{R_{\mu}}$ allowable variance in range identification, e^{θ} allowable variance in angle identification $\}$ READ CARD M, N $^{\theta}$, σ , ϵ^{R} , ϵ^{θ} . 0=0. IF M>500 TYPE (TOO MANY INTERVALS TERMINATE), STOP. SLEW TOP, LABEL (NUM INTERVALS, NUM ANGLES, EPSILON R, EPSILON THETA, SUR ATT COEFF) , AND PRINT M, N $^{\theta}$, E R , E $^{\theta}$, σ . SLEW 2, LABEL (RANGES). { READ IN RANGES AT WHICH CALCULATIONS ARE TO BE MADE } FROM L=0 TO 500 READ CARD R IF R =9999991 THEN (N^R =L, (FROM P=0 TO L=2 IF $R_{P+1} \le R_P$ THEN TYPE (RANGE INPUT ERROR) , STOP), GO STATEMENT 301) ELSE PRINT RL. TYPE (MORE THAN 501 INPUT RANGES TERMINATE) , STOP. STATEMENT 301. SLEW 2. LABEL (RANGE, BOTTOM ATT). { READ IN RANGE AND ASSOCIATED BOTTOM ATTENUATION COEFFICIENT } FROM L=0 TO 200 READ CARD R^{β}_{L} AND IF R^{β}_{L} =9999992 THEN (N^{β}_{N} L, (FROM P=0 TO L~2 IF R^{β}_{P+1} $\leq R^{\beta}_{P}$ THEN TYPE (ATTENUATION RANGE INPUT ERROR), STOP), GO STATEMENT 302) ELSE READ CARD β_L AND PRINT RBL.BL.

PROGRAM NUMBER 547 BY HOWARD DAVIS FOR DR. W.A. HARDY

TYPE (MORE THAN 201 ATTENUATION INPUT RANGES TERMINATE), STOP.

STATEMENT 302. SLEW 2.

```
{ READ IN WAVELENGTHS ON CARDS }
LABEL ( WAVELENGTHS). FROM L=0 TO 5 READ CARD \lambda_L IF \lambda_L=99999993 THEN ( N^{\lambda}=L , QO STATEMENT 303)
ELSE PRINT & AND ATTENT.
TYPE ( MORE THAN 5 WAVELENGTHS TERMINATE), STOP. STATEMENT 303.
RND 1,2 AND RND 2,2 AND RND 3,1 AND R31=0.
{ R31 NO MEANS TAPE 3,1 IS IN REWOUND CONDITION , R31 NEANS TAPE 3,1 IS NOT REWOUND }
LABEL ( RANGES, BOTT ATTEN, WAVE LENGTHS), PRINT NR, NB, NA
IF MNRN8>25000 THEN TYPE ( OUTPUT TAPE 2,2 WILL BE OVERLOADED, TERMINATE ), STOP.
READ AAA. PRINT LABEL BT SCATTERING. PRINT AAA.
TYPE ( CARD INPUT COMPLETED).
COUNT_O.
{ OH MEANS MINIMAX FOUND EOFH MEANS EOF FOUND }
{ KEEP READING TAPE UNTIL A TURNING POINT IS FOUND THEN TEST FOR RANGE STATUS }
{ THE BEGINING AND ENS OF EACH FILE IS TREATED AS A TURNING POINT }
STATEMENT 3.
READ TAPE TO, 1,2,5 AND IF EOF 2 THEN GO STATEMENT 3 ELSE aC T, ZCRIT T, RC T,
\leftarrow (180/\pi)ARCSIN(T_2), Z^{BI} = T_1, \Delta=0, EOF=0, J=0.
{ ZBI IS THE INITIAL DEPTH AT ORIGIN }
FROM L=1 TO N<sup>\lambda</sup> COMPUTE ATT<sub>L=1</sub>=1 AND T<sub>L+6</sub>=1. WRITE TAPE T<sub>0</sub>,3,1,16 AND R<sup>31</sup>=1.
 I REPOUND FROM ZERO EACH NEW TIME THROUGH
STATEMENT 4.
                     REDUND #0.
STATEMENT 5.
READ TAPE TO, 1,2,5 AND IF EOF 2 THEN 4=1, EOF=1 , GO STATEMENT 206 ELSE
 CALL ( ATTENUATION), 4=0 , WRITE TAPE To,3,1,16 AND R31=1.
```

 $\{$ Turning point found $\}$ if $\|\mathbf{I}_{\frac{1}{2}} \le \epsilon^{\theta} \|_{\Omega^{\epsilon}} \mathbf{I}_{\frac{1}{2}} \epsilon^{\epsilon} \|_{\Omega^{\epsilon}} \mathbf{I}_{\frac{1}{2}} \epsilon^{\epsilon} \|_{\Omega^{\epsilon}}$ then $_{L^{\epsilon}} = 1$ test for range statement 205. If $\mathbf{I}_{0} \le \mathbf{I}_{0} = 1$ test for range statement 205.

IF TOARJAER TYPE (RANGE SKIPPED TERMINATE MAYEY ER IS TOO SMALL), LABEL (R SKIPPED) , PRINT TO-J-RJ,E^R, RFOUNE AND STOP. RANGE FOUND

J=J+1, $Z^F_{\rm PCUMO}^{-1} + T_{\rm d}$, regund-regard+1, if regund > 500. Then type (found ranges between minimax overstored terminate), stop.

STATEMENT 206. { IF \$40 THEN CONTINUE SEARCH }

IF 4=0 THEN GO STATEMENT 5.

If eof=0 and reguld =0 then (if R 32 =1 then Rad 3,1 and R 32 =0) and 2 CR1 = $_{1}$, R c = $_{1}$, a c = $_{1}$,

WRITE TAPE To,3,1,16 AND R³¹-1 AND GO STATEMENT 5.

ZNGRIT 1, GCMT2, RCMT0, EOF 3,1.

ALL INFORMATION BETWEEN MINIMAX NOW ON TAPE. NUMBER OF RANGES FOUND IS RFOUND

{ MONOTONIC INCREASING D=1 ELSE D=0 MONOTONIC DECREASING IF Z^{CRIT}>Z^{NOTIT}, Z^{MIM}ZCRIT, Z^{MIM}ZCRIT, D=0. STATEMENT 10. FROM S=0 TO REGIND=1 LOPE STATEMENT 19.

(IF R³³=1 THEN RWO 3,1 AND R³³=0), & \$\alpha^{F}_2 \gamma^{M}, P=1, & \alpha^{p} = \alpha M \alpha^{2}, F^{LAG1} = F^{LAG2} = E^{31} = 0.

STATEMENT 110. $Z=(P-\Delta M)\Delta^2$, IF $Z^{MIN} < Z < Z^{MAX}$ THEN $Q_{P+1}=1$, GO STATEMENT 111. IF $Z^{MAX} \le Z$ THEN $S^{MAX}=0$ ELSE $S^{MAX}=1$. IF $Z^{MAX}=0$ ELSE $Z^{MAX}=1$. IF $Z^{MAX}=0$ THEN $Z^{MAX}=0$ THEN $Z^{MAX}=0$ THEN $Z^{MAX}=0$ THEN $Z^{MAX}=0$ THEN $Z^{MAX}=0$ AND $Z^{MAX}=0$ THEN $Z^{$

IF $\Delta m0$ THEN (IF $W_1 \!\!<\!\! Z$ THEN GO STATEMENT 111 ELSE GO STATEMENT 112). IF $W_1 \!\!>\!\! Z$ THEN GO STATEMENT 111.

STATEMENT 112.

READ TAPE W_0 ,3,1,16 AND R^{31} =1, IF EOF 1 GO STATEMENT 207 ELSE (FROM Y=0 TO 15 COMPUTE $T_{3,Y}$ = W_Y). GO STATEMENT 150.

STATEMENT 207. FROM Y=0 TO 15 COMPUTE $^{T}_{3,Y}$ $^{T}_{0,Y}$. ϵ^{31} =1. { MEANS EOF ON 31 HAS BEEN HIT }

STATEMENT 150. FROM Y=1 TO 3 COMPUTE ZY=TY,1.

```
CALL ( INTERPOLATION). { RETURNS INTERPOLATED LANGE AND ANGLE }
    IF PAM THEN GO STATEMENT 18.
   IF \Delta=0 THEN ( IF | (P+1~\DeltaM)\Delta^{7}|>7^{MAX} THEN GO STATEMENT 18 FLSE \sigma^{K}_{mO}),
   IF \Delta = 1 THEN ( IF \| (P+1-\Delta M)\Delta^{\frac{1}{2}} \| < 2^{M \| N \|} THEN GO STATEMENT 18 ELSE O^{K} \neq 0 ) .
   IF E^{31}=1 THEN 0^{K}=1, CO STATEMENT 600.
   IF T3,1$ (P+1-4M)4 THEN 0K-1.
   STATEMENT 600.
  IF \sigma^{K}=1 THEN P=P+1 , Q_{p+1}=1 , 2=|\langle P-\Delta M \rangle \Delta^{7}| , GO STATEMENT 150.
  STATEMENT 18. IF PCM THEN ( FROM Y=0 TO 15 COMPUTE _{1,Y}^{=1}2,Y, _{2,Y}^{*}3,Y), _{P-P+1}, GO STATEMENT 1LO.
  FROM L=2 TO M+1 LOOP STATEMENT 666.
 WOHR J+5-REOUND ! INPUT RANGE VALUE }
                                                                  W_1 = (\Delta^J_{L} - \Delta^J_{L-1}), { DEPTH DIFFERENCES USING REAL END POINTS } W_3 = 0, { INTERPLOATED TANGENT ANGLE }
 W2=(#/180)0, | INITIAL ANGLE OF RAY IN RADIANS }
 W4=Q1, { O OR 1 }
                                                                           W5 " C" , { DEPTHS INCLUDING REAL END POINTS }
W6-RL-RL-1. { INTERPOLATED RANGE DIFFERENCES }
                                                                         (FROM Y=0 TO 4 COMPUTE WY+7"T2,747),
 W_{12}=1 (L-2-\Delta(M-1))\Delta^{2}+\Delta^{2},
                                                           W13"Z"S, { BOTTOM DEPTH AT INPUT RANGE }
W_{14} = R^{CN} - R^{C}, { LOCAL RANGE INTERVAL }
W_{15} = W_0 + \left( \left( L - 2 - \Delta(M-1) \right) \right) / 10000 , { SORT VARIABLE } .
WRITE TAPE W0,2,2,16.
STATEMENT 666,
CONTINUE.
```

STATEMENT 19.

(IF R31=1 THEN RWD 3,1 AND R31=0), RC_RCN, ZCRIT_ZNCRIT, aC_CN.

(FROM L=0 TO INFINITY READ TAPE To,1,2,5 AND IF EOF 2 THEN GO STATEMENT 405) ELSE GO STATEMENT 405). IF JKNR THEN GO STATEMBNT BI ELSE (IF EOF-O THEN

STATEMENT S1. IF EOF=1 THEN GO STATEMENT 91 ELSE A=0, EOF=0, GO STATEMENT 4.

STATEMENT 91. FROM 1=J TO NR-1 LOOP STATEMENT 667.

FROM L=2 TO M+1 LOOP STATEMENT 668.

Wo.Rg, W≥=8(#/180), W4=0,W1=W5=W5=W6=9999999, W15=W0+| (L-2)| / 100000, (FROM 5=0 TO & COMPUTE Wj+7=0), WRITE TAPE Wo,2,2,16.

STATEMENT 668.

STATEMENT 667.

\$ J. GREATER THAN N RED R. STATEMENT 405. COUNT_COUNT_11.

If $n^{9} {\rm sc}^{\rm OUNT}$ then eof 2,2 and type (program finished), rad 2,2 and rad 1,2 and (if ${\rm r}^{31}$) then Rad 3,1 and ${\rm r}^{31}$ =0), stop, else go statement 3.

STOP. SUBROUTINE (ATTENUATION).

FUNCTION BE(A,U,C)=(A/1.38)2+128.55(CSIN A)2/(7U). FUNCTION BH(A,U,C)=A44/(BE(A,U,C)).

IF $extsf{T}_{1} extsf{SE}^{\text{R}}$ THEN (FROM L=0 TO N^A-1 COMPUTE ATT_=6ATT_), GO STATEMENT 512.

ELSE RETURN, ATT = ATT BH (ARCSIN(T2), A, B,), GO STATEMBNT 512) TYPE (ATTENUATION RANGE FOR BOTTOM HIT NOT FOUND TERMINATE), STOP IF TASER THEN (FROM Y=0 TO NB-1 IF TOSRBY THEN (FROM L=0 TO NA-1 COMPUTE

STATEMENT 512.

FROM P-O TO 4 COMPUTE TP+7-ATTP. RETURN.

STOP. SUBROUTINE (INTERPOLATION).

IF $Z=T_{2,1}$ THEN $\alpha_{P+1}=T_{2,2}$, $R_{P+1}=T_{2,0}$, 90 STATEMENT 352.

$$R_{P+1} = \frac{(z-z_2)(z-z_3)\tau_{1,0}}{(z_1-z_2)(z_1-z_3)} + \frac{(z-z_1)(z-z_3)\tau_{2,0}}{(z_2-z_1)(z_2-z_3)} + \frac{(z-z_1)(z-z_2)\tau_{3,0}}{(z_3-z_1)(z_3-z_2)}$$

$$\alpha_{p+1} = \tau_{1,2} + \frac{(z-z_1)(\tau_{2,2}-\tau_{1,2})}{(z_2-z_1)}$$

STATEMENT 352. 4 P+1=Z.

RETURN.

FINISH.

15) A-185-Ul Type III Intensity Calculation - Pass 3:

Reads sort output and prints table. Sample printout: Chapter I, Fig. 15.

```
TYPE 111 INTENSITY CALCULATION FOR DR. W. HARDY BY H. DAVIS
 { PROGRAM 549 MININGHAM NUMBER A 185 U1 }
 TYPE (A 185 U1 ) .
 O=0.
DIMENSION W-16, A-5 .
UPPER ATT=250, F=250, Q=250, \Delta^1=250, \alpha=250, \theta=250, \Delta^1=250 .
FUNCTION D(E)=9.5×10^{-3}/(E)^2 . FUNCTION G(A,B,C)=4(SIN(6.28A/BSIN(C)))^2 .
SLEW TOP AND PRINT MESSAGE (TYPE 111 INTENSITY CALCULATION (A 185 U1 ) PASS 3).
READ CARD NTP,NP,N,NR,ZI,r.
SLEW 1 AND LABEL ( TOT NUM ANGLES, NUM ANGLES, NUM INTERVALS, NUM RANGES, INITIAL DEPTH, SMALL R),
  PRINT NTP, NP, N, NR, ZI, E.
SLEW 1 AND LABEL (WAVELENGTHS) .
FROM L=0 TO 5 READ CARD \lambda_{L} AND IF \lambda_{L}=99999991 THEN N<sup>\lambda</sup>=L, GO STATEMENT 2 ELSE PRINT \lambda_{L} .
TYPE (MORE THAN 5 WAVELENGTHS TERMINATE), STOP.
STATEMENT 2.
FROM M=0 TO N^{\lambda}=1 { NUMBER OF WAVELENGTHS } LOOP STATEMENT 26.
RWD 1,2.
TYPE ( NEW WAVELENGTH ) .
IF Z SAMP THEN H-1 ELSE H-0 .
FROM YOU 1 TO NR { NUMBER OF INPUT RANGES } LOOP STATEMENT 25.
FROM Y=1 TO N { NUMBER OF INTERVALS } LOOP STATEMENT 24.
DUM_1.
CALL ( TAPEOREAD).
IF OK=1 THEN CALL ( SET UP),OK=0.
CALL ( INTENSITY CAL ).
PRINT FORMAT 40, Y,Z,TL.
STATEMENT 24. STATEMENT 25. STATEMENT 26.
TYPE (END OF PROGRAM ). STOP .
```

SUBROUTINE (TAPLOREAD) . FROM Lat TO Nº LOOP STATEMENT IN. BEAD TAPE MO, 1,2,25. Rado , | INPUT TANGES | e_ wg , { INITIAL ANGLES } aL Wy , { TANGENT ANGLES } Q-W4 , EITHER O OR 1} 4 ATTL WM47 . { RANGE INTERVAL FOR DEPTH INTERVALS ATTL WM47 . { ATTENUATION FOR THE MTH WAVELENGTH } (IF w_3 <10000 THEN Z= w_{12} , Z^{C1}=Z^{C1}+1) , { DEPTH FOR CALCULATION } Z^A= w_{13} , { BOTTOM DEPTH AT RANGE } . AJ -WIN ! LOCAL RANGE INTERVAL } . IF W.>10000 THEN DUM-DUM+1. STATEMENT 10. RETURN . STOP . SUBROUTINE (SET UP). SLEW TOP , PRINT MESSAGE (TYPE 111 INTENSITY CALCULATION), SLEW 1, PRINT FORMAT 10, R, Y^{OU} , M+1 . PRINT FORMAT 20, ZA,N AND SLEW 1 AND PRINT MESSAGE (NUMBER OF ANGLES), PRINT NP. SLEW 1 AND PRINT FORMAT 30, AM . TRANSMISSION LOSS). SLEW 3 AND PRINT MESSAGE (COUNT DEPTH FORMAT 40 XXX FORMAT 10 RANGE XXXXXXXXXX NAUTICAL MILES XXX RANGE OF XXX WAVELENGTH . DEPTH INTERVALS MEXXX. FORMAT 20 BOTTOM DEPTH XXXXXXXX METERS FORMAT 30 WAVELENGTH XXXXXXXX METERS. RETURN. STOP. SUBROUTINE (INTENSITY CAL). $\sigma=\lambda_M$. IF Z $\leq \lambda_M$ r THEN F=1 ELSE F=0.

$$T^{L}=10LOG \qquad \frac{N^{P}}{2215Z^{A}N^{TP}R} \qquad \sum_{j=1}^{N^{P}} (ATT_{j}(G(Z,\lambda_{M},\alpha_{j})F+1-F)(G(Z^{1},\lambda_{M},\theta_{j})\mu+1-\mu) \frac{\Delta^{1}_{j}COS(\theta_{j})}{\Delta^{3}_{j}COS(\alpha_{j})} Q_{j})$$

16) A-196-Ul Multiplot - Pass 1:

Selects ranges to be plotted from ray trace output tape and writes tape for sort program (A-188-U1). Sample multiplot: Chapter I, Fig. 10.

IF 128 THEY VIE BUD ON TO STATEMENT 5), (FROM 1-84) TO D COMPUTE (FROM 1-0 TO & COMPUTE C1-0), WRITE TAPE C,2,2,4 AND WRITE EOF 2,2) AND GO TO STATEMENT 5. ANTE TAPE C.2.2.3. 30 TO STATEMENT 33. STATEMENT 4. IF A-B GO TO STATEMENT 6. IF I-A THEN TYPE (CHANCE INPUT TAPE THEN TOGGLE O) AND PAUSE. STATEMENT 6. FEATO 2,2. HEAD A, B,D. 140. STATEMENT 33. READ TAPE C,1,2,5. IF EOF 2 THEN WRITE EOF 2,2 AND 1-1+1 AND GO TO STATEMENT 4. SO TO STATEMENT 1. STATEMENT 5. WRITE EDF 2,2. TYPE (PROGRAM IS NOT FINISHED). REWIND 1,2. REWIND 2,2. POUT PLANK TAPE ON TIPZ AND SAVE INPUT TAPE THEN TOGGLE O). PAUSE.

IS AGOSTHEN COLNINGS AND GO TO STATEMENT 2. IF EK-1=1 THEN K-K-1. DK-1-1, EK-1. B-AO. PRINT OK CH. EK CH.: K-K+1. GO TO STATEMENT 2. STATEMENT 10. IF CAC CONTRIBUTIONS GED FROM 1-1 TO G READ TAPE A,2,2,5 AND WRITE TAPE A,1,2,5. WRITE EOF 1,2. K-K+1. STATEMENT 11. CLATERY, 1. 11, 84, 84, STATERENT 2. READ TAPE A,2,2,5. IF USEN TO STATEMENT TO. IF EOF 2 THEN 3-3+1 AND GO TO STATEMENT 1. COLTE FOR 1,2. JECTI, IF KOM THEN KEIT IF JOEN OF TO STATEMENT 14. GO TO STATEMENT 13. STATEMENT 14. IF THI WRITE EOF 1,2. IF ARY THEN THE ,SET AND PRINT MESSAGE (TAPE IS 6000) AND GO TO STATEMENT 14 OTHERWISE SHENTH. KEAD TAPE A, 2, 2, 5. IF FOF 2 SO TO STATEMENT 12. WRITE TAPE A,1,2,5. CO TO STATEMENT 11. STATEMENT 12. DE HERE ARE TARE FORMAT ERRORS ON RAY TOACE TARE TO PO A NEW TARE IS WRITTEN ON TI POS TYPE (PASSAM IS STILL NOT FINISHED). REWIND 2,2. REWIND 1,2. K-1,1-1. STATEMENT 13. DIMPLATION DETOCALESTOOLFSTOOL READ NO FROM 183 TO N READ FIG. JESTMESTERSTOP. PAINT MESSAGE MORE THAN ONE ANGLE IN THE FOLLOWING FILE. LABEL INDEX-LAST REC,FILE. REWIND 1,2. REWIND 2,2. TYPE (PROGRAM IS STILL IN PROCESS).

IF EGE 2 THEN JEJET AND GO TO STATEMENT 20. GO TO STATEMENT 22. STATEMENT 21. FROM NEO BY A UNTIL MR LOOP STATEMENT 24. READ TAPE A,T,2,5. AFAD SECTION STATEMENT 20. IF JOFT THEN GO TO STATEMENT 21. STATEMENT 22. READ TAPE A,T.2.5. APPITE NEW HAY TOACE TAPE TO BE USED FOR MULTIPLEX PLOT IF EDE 2 DO 70 STATEMENT 25. STATEMENT 26.

IF SAL TYPE (OUTPUT TAPE WILL BE TIP2) OTHERWISE TYPE (OUTPUT TAPE WILL BE T2P2 - PUT BLANK ON T2P2 - THEN TOGGLE O) AND PAUSE.

IF | Ag-n <6 THEN Ag=Ag+Ag Ag=n, Ag=Ag,Ag=-Ag,Ag=0 AND WRITE TAPE A,S,2,4 AND GO TO STATEMENT 23. READ TAPE A,T,2,5. IF EOF 2 GO TO STATEMENT 25. SO TO STATEMENT 26. STATEMENT 23. STATEMENT 24. READ TAPE A, 1,2,5. IF EOF 2 CONTINUE OTHERWISE TYPE (RANGE GREATER THAN SIVEN MAXIMUM) AND STOP ++11, -f11, 1F ISN GO TO STATEMENT 30. GO TO STATEMENT 20. STATEMENT 30. WRITE EOF S,2. TYPE (END OF PROGRAM). REWIND T,2. REWIND S,2. FINISH. STATEMENT 25. L-n. FROM n=L BY & UNTIL Mª COMPUTE A₀-n AND (FROM r=1 TO 3 COMPUTE A_r-D) AND WRITE TAPE A,S,2,4.

Best Available Copy

17) A-189-Ul Type II Intensity Calculation - Pass 1;

Reads ray trace output tape, calculates transmission loss for specified ranges, and writes tape for plot program (A-200-UI).

```
PASS 1 TYPE 11 INTENSITY CALCULATION QE 541 ( A 189 U1 ) }
 { PROGRAMMED BY HOWARD L DAVIS FOR W A HARDY }
 FUNCTION BE(A,U,C)=(A/1.38)2+128.55(CSIN A)2/(70).
 FUNCTION BH(A,U,C)=1/(e^{BE(A,U,C)}).
O=0.
TYPE INTENSITY TYPE 11 .
TYPE ( GE 541 ( A 189 U1)).
SPECIAL VARIABLES ATF=(9,18), ATT=10.
DIMENSION W-16, X=10, RF=18, 7=18, 0=18, TF=18, 8=18.
UPPER R=1000, R=500, p=500.
SLLW TOP.
I READ IN EPSILON RANGE, DIFFERENCE BETWEEN ADJOINING RANGES, NUMBER OF RAYS TO BE PROCESSED
{ SURFACE HIT ATTENUATION COEFFICIENT }
READ CARD E^{R}, \Delta, D^{U}, N^{\theta}, \gamma.
LABEL ( RANGE DIFFENCE). PRINT A. SLEW 1.
LABEL ( DUMMY). PRINT DU. SLEW 1. LABEL (EPSION RANGE , NUM OF ANGLES, SURFACE COEFF ).
PRINT ER, NO, Y. SLEW 2.
LABEL ( RANGES). { READ IN CENTER RANGES }
FROM L=0 TO 1000 READ \rm R_L AND IF \rm R_L = 9999991 THEN
( NR L AND ( FROM P=0 TO NR-2 IF RP+1SHP THEN TYPE ( RAIGLS NOT IN ASLENDING ORDER TERMINATE))
AND GO STATEMENT 75) ELSE PRINT RL.
TYPE ( MORE THAN 1000 RANGES IN INPUT BY CARD ). STATEMENT 75.
SLEW 2.
PRINT MESSAGE ( MINIMUM RANGE BOTTOM ATTENUATION).
{ READ IN RANGE AND BOTTOM COEFFICIENT UP TO THAT RANGE }
FROM L=0 TO 500 READ R^{\beta}_{L} AND IF R^{\beta}_{L}=9999992 THEN ( N^{\beta}=L AND ( FROM P=0 TO N^{\beta}=2 IF R^{\beta}_{P+1} \leq R^{\beta}_{L} THEN
TYPE ( BOTTOM ATTENUATION RANGES AND COEFFICIENTS NOT In ASCENDING ORDER)) AND GO STATEMENT 76) ELSE
READ BE AND PRINT RB , BE.
TYPE ( MORE THAN 50% BOTIOM ATTENUATIONS FOUND CONTINUE).
STATEMENT 76. LABEL ( WAVE LENGTHS), FLOM L=0 TO 9 READ AL AND
IF \lambda_1 = 9999993 THEN ( N^{\lambda} = L AND ( GO STATEMENT 85) ) ( LUE PRINT \lambda_1 .
TYPE ( OVER 10 WAVELENGTHS CONTINUE).
STATEMENT 85 . TYPE ( CARD INPUT CAMPLETED).
RWD 2,2 AND RWD 1,2.
```

```
0
  PROCESSING OF FIRST 18 RAY PRACE RANGED
 NO. STATEMENT 100. No.1, J-0, CTHD-18, CHRG--18.
 FROM L=0 TO 9 COMPUTE ATT, =1 AND ( FROM P=0 TO 10 COMPUTE ATT, =0).
READ TAPE TO:1,2,5 I. FOF 2 GO STA-EMENT 101 ELSE NEM-NEM-1, GARCSIN To. CALL ( ATTEMMATICA).
FROM GOO TO 10 READ TAPE TO,1,2,5 IF EOF 2 TYPE ( EOF IN FIRST 18 RANCES), AND STOP ELSE CALL ( ATTEMUATION).
 I TEST RANGE 18 TO BE SURE IT IS NOT TO LARGE!
IF TOURS THEN TYPE ( FIRST RANGE LOWER THAN 18 TH RANGE ON RAY TERMINATE ) AND STON.
 I NORMAL PROCESSING BEGINS
FORMAT 102 RANGE Y ON TRACE LANGER THAN Y INPUT PANGE Y DELTA Y.
STATEMENT 102.
READ TAPE TO. 1, 2,5 AND IF FOF 2 00 STATEMENT 200 ELSE
IF TOSH, +ACERG-ER OD STATEMENT 102.
 WEN PANCE IF FOUND
L-CARG/2 +9.
RELEASE ACCORD, ZETT, QUARCSIN TOUTS ATTAINETE, CENTER FOR TO NA -1 COMPUTE ATTAIL CATTON
CARG_CARG+2 . IF L=18 THEN CARG .-18 . J-J+1 AND
GO STATEMENT 103 ELSE GO STATEMENT 102.
STATEMENT 103. FILDH GOD TO 18 LOOP STATEMENT 109.
Wo-REGON 1-7 GON 2-WE WE TE CO WEARCO WELL ( FROM P-O TO N'-1 COMPUTE WEAP-ATEP-E'
WRITE IAPE Wg.2,2,10.
STATEMENT 109. IF HO GO STATEMENT 200. IF USN THEN OF STATEMENT 100. IF NINON GO STATEMENT 100.
COT 2,2 AID TYPE ( EMP OF PROMINENT LIFE GIRST GOOD BONDOW ).
 { TERMINATIONS }
STATEMENT 200, H-O.
L=C180/2 + 0.
 IF JOHR THEN ( FROM CALL TO 18 COMPUTE RECOUNTS AF COMPUTE ATTRICATED IN THE COMPUTE ATTRICADO).
  CARG CORD to), CARG --14, U-U+1, GO STATEMENT 103. IF NOW ON STATEMENT 103.
EIF OUR AND TYPE ( ENGINE PROGRAM LISE DISC SORT THE MEMATER ).
   once time ( ATTEMENTION).
 IF TYRE THEN STAND AND A THOUGH IN THE THE HE STORY ATT. IN THE TEN
 THE THEFT THEFT IS STATED
 FROM ONE OF THE WEST OF THE WAS TATEDONE TO BE AND THE SECOND OF THE SEC
 AND IT P. INTERNATIONS.
```

SET. CL

ът н.

ਤest Available Copy

18) A-184-Ul Type II Intensity Calculation - Pass 3:

Reads sort output, prints table, and writes tape for plot program (A-200-U1). Sample printout: Chapter I, Fig. 13.

```
TYPE 11 INTENSITY CALCULATION PASS 3 }
 1 PROGRAM NUMBER 542 . PROGRAMMED BY HOWARD E. DAVIS FOR DR. W.A. HARLY }
TYPE ( TYPE 1) INTENSITY CALCULATION NUMBER (40) 1
TYPE ( GE 542 ( A 184 U1)).
SPECIAL VARIABLES ATT, TL.
DIMENSION Z8 49. W=16, x=250, ZA =250,
UPPER 1L=(250,9), Z=250, ATT=250, \theta=250,
FUNCTION G(A,B,C)=4(SIN(6,28A/BSIN C))2.
FUNCTION Y(A^{1}.B^{2}.C^{3}) = (P(A^{1}.B^{2})/(C^{3}))^{2}.
FUNCTION D(E)=9.5x10^{-3}/(E)^{2}.
I DIMENSION OF DEPTHS AND BOTTOM DIFFERENCE AND INITIAL BOTTOM IN METERS NO CONVERSIONS MADE
 I INITIAL DEPTH, NUMBER OF RAYS, TOTAL NUMBER OF RAYS, }
{ SMOOTHING FACTOR, RECEIVER AND SOURCE FUNCTION CONSTANT }
READ CARD 781, NO, NEO, P. r.
PRINT MESSAGE ( DEPTHS).
FROM L=0 TO 250 READ Z, IF 2, #9999990 THEN NZ=L AND ( FROM L=0 TO NZ=2 IF Z_1+157, THEN
TYPE ( DEPTH INPUT NOT IN ASCENDING ORDER)) , GO STATEMENT 103 ELSE PRINT 2,.
STATEMENT 103.
IF N7 >252 THEN TYPE ( MORE THAN 251 DEPTHS TO MANY).
LABEL (WAVELENGTHS).
FROM L=0 TO 9 READ CARD \lambda_{\rm L} AND IF \lambda_{\rm L}=9999991 THEN ( N_{\rm =L}^{\lambda} AND GO STATEMENT 85) ELSE PRINT \lambda_{\rm L}.
TYPE ( MORE THAN 10 WAVELENGTHS CONTINUE).
STATEMENT 85.
PRINT LABEL ( NUM WAVE LENGTH, NO ANGLES, TOTAL NU ANGS, NO DEPTHS , SMOOTHING FACT, INIT DEPTH , SMALL R ).
PRINT NA, NO, NTO, NZ, P, ZBI, r. SLEW TOP.
NR=0, NP=0.
STATEMENT 107.
FORMAT 5 TYPE 11 INTENSITY CALCULATION FORMAT 10 CENTER RANGE & NAUTICAL MILES.
                                                 (A 184 U1)
FORMAT 20 BOTTOM DEPTH & METERS.
FORMAT 30 WAVELENGTH y SMOOTHING FACTOR y NO ANGLES y.
```

READ FOR ONE ANGLE CINCE FLEST QUE THEN QUE

N-NZ,

M==1, Q=9,

STATEMENT 500.

RWD 1.2. M-M+1 IF M3N THEN TYPE (PROGRAM COMPLETED) AND STOP. NRMO. IF z^{R} THEN F=1 ELSE F=0. STATEMENT 600.

FROM L=0 TO Q LOOP STATEMENT 10. K=0.

FROM S=0 TO N 0 -1 LOOP STATEMENT 63. READ TAPE W $_{0}$,1,2,16 AND IF EOF 2 GO STATEMENT 201 .

z^As^{-W}1, αs^{-W}2, θs^{-W}5, ATTs^{-W}6+M*

IF ATTs-0 THEN K-K+1 ELSE R-W₀, z^BL^{-W}1+W4.

STATEMENT 63.

IF KANB THEN GO STATEMENT 202.

CALL (INTENSITY CALCULATION). STATEMENT 53. CONTINUE.

STATEMENT 10.

IF Q=8 GO STATEMENT 11. STATEMENT 12. NR NR+1. SLEW TOP . PRINT FORMAT 5, NR. PRINT FORMAT 10, R.

PRINT FORMAT 30, $\lambda_{\rm M}$, P, N⁰. Q=8 . SLEW 2. PRINT FORMAT 11.

PRINT FORMAT 21, z^{B}_{O} , z^{B}_{1} , z^{B}_{2} , z^{B}_{3} , z^{B}_{4} , z^{B}_{5} , z^{B}_{6} , z^{B}_{7} , z^{B}_{8} , z^{B}_{9} .

SLEW 2. FROM L=0 TO N=1 PRINT FORMAT 1 , Z_,TL_,0,TL_,2,TL_,2,TL_,2,TL_,4,TL,5,TL,6,TL_,7,TL_,8,TL_,9.

STATEMENT 11.

SLEW 3. PRINT FORMAT 12. Gag. NuNP+1.

PRINT FORMAT 22, 280, 281, 282, 283, 284, 285, 286, 287, 783.

SLEW 2. FROM LWO TO N=1 PRINT FORMAT 2, ZL, TLL,0,TLL,2,TEL,3, TLL,3, TLL,5,TLL,6, TLL,7,TLL,6.

CO STATEMENT 600.

STATEMENT 201, IF LaO AND Sal THEN TYPE (EOF OK CONTINUE) AND GO STATEMENT 500 ELSE PRINT FORMAY 25, S,NR.

FORMAT 25 EUF EMHUM AT MEAD Y OF ANGLE Y. STATEMENT 203, TYPE (IMPROPER EOF) AND STOP.

SUBROUTINE (INTENSITY CALCULATION).

STATEMENT 19.

FROM 1-0 TO NL1 LOOP STATEMENT 9. IF $Z_1 > Z_L^0$ THEN $Z_1^S = Z_1$, $Z_1 = Z_L^0$, $\Delta = 0$ ELSE $\Delta = 1$. CONSTANT CONVERTED FOR METERS! IF $Z_1 \leq \lambda_{m,n}$ THEN N=1 ELSE N=0.

$$\frac{Pe^{-RQ(u)}}{12502^{B_{L}NT^{G}R}} \sum_{j=0}^{N^{B}-1} \frac{N^{B}-1}{(ATT_{j}(1+(Y=Y(Z_{1},Z^{A}_{j},Z^{B}_{L}))=Y)(G(Z^{B_{1}},\lambda_{M},\theta_{j})F+1=F)(Q(Z_{1},\lambda_{M},\alpha_{j})M+1=M)(COS \theta_{j})(e^{-Y})/(COS \alpha_{j})}{1-COS \theta_{L}NT^{G}R}$$

TL: La 10LOO

IF Δ =0 THEN (FROM Δ =1+1 TO N=1 COMPUTE TL_{A3}E=0), 2_1 =2^S, GO STATEMENT 9. STATEMENT 9.

RETURN.

{ ZERO ATTENUATIONS } STATEMENT ROSE FROM 1=0 TO N=1 CONFUTT TILL=0 . z^B_{L} =0. GO STATEMENT 53.

FORMAT 12 RANGE R+2 R+4 R+6 R+8 R+10 R+12 R+14 R+16 R+18.

19) A-200-Ul Type II Intensity Plot - Pass 4:

Plots transmission loss. Sample printout: Chapter I, Fig. 14.

CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

The present program must be regarded as an initial step, a prototype program directed toward a comprehensive model of long-range, low-frequency acoustical propagation in the deep ocean. Many of the factors that influence the propagation are introduced in an admittedly ad hoc manner, e.g., bottom and surface reflectivity. Other problems are avoided by the introduction of special restrictions – the chief example is the smoothing of the effects of multipath interference structure by the demand that the transmission loss calculation be interpreted as a spatial and frequency average in comparison with experimental data. Finally, the effects of diffraction, as they arise in boundary reflections and wavefront aberrations, have been included only indirectly, and the degree to which they will change the calculated average distributions of the acoustical field has not even been estimated.

Despite these evident limitations, the program does provide a structure for appraising the effects of known and dominant environmental factors on the distribution, arrival structure, and intensity of the acoustical field. Indeed, at present the accuracy of the program is undoubtedly limited far more by the inherent imprecision in the data inputs of the sound velocity field and the sea bottom shape and reflection properties than by lack of formal treatment of factors such as those given in the previous paragraph. Also, as the environmental data become more refined, the treatment of these effects can be developed more precisely and used to upgrade and extend the present program in a straightforward manner.

A potential user for the program should refer to the several Data Specification Forms given in Chapter I of this report. What specification can he give to the bottom or surface reflectivity functions that are required, or to the appropriate source and/or receiver directivity functions appropriate to his application? Similarly, how is the velocity accuracy test parameter, ϵ , selected and what determines the density of initial ray angles to be traced or the number of bottom hits allowed before a ray is considered terminated? The questions demand,

DEPTH = XXXXX ---- SCALE ----FROM J=1 TO L LOOP TO STATEMENT 3 . SLEW TOP . PRINT FORMAT 1 , $\lambda_{J_s}D_l$. WAVELENGTH = XXXXX PLOT OF DAVIS TYPE 2 OUTPUT HARDY J TRANTUM 2/1/68 } READ N.L. ANUMBER OF DEPTHS, NUMBER OF WAVELENGTHS! READ MIN, MAX. PLOT SCALE, READ RO, RMAX, AR. & RANGE VALUES! TAPE ON 2,2 } FROM 1=1 TO N READ $\mathbf{D_1}$. FROM 1= 1 TO L READ λ_1 . READ I . DEPTH ARGUEMENT | IF 1=99 STOP . SPECIAL VARIABLES MIN, MAX, RO, RMAX, GR INPUT - GUTPUT OF DAVIS PASS 3 DIMENSION D-50 , T-50 , A-10 . PRINT FORMAT 2 , MIN , MAX . STATEMENT 1 . FORMAT 1

-307-

READ TAPE T1,2,2,N . IF EOF 2 REWIND 2,2 AND GO TO STATEMENT 1 .

PLOT T, R , MIN, MAX .

STATEMENT 2 .

REWIND 2,2 . GO TO STATEMENT 1 . FINISH .

FROM R -RO BY AR TO RMAX LOOP TO STATEMENT 2 .

of course, familiarity with the structure of the present program; more broadly interpreted, the questions become open-ended.

Central not only to the application of the program but to its development and evaluation there must be an experimental program that is sufficiently comprehensive to include a detailed description of the environment in parallel with precise measurements of the acoustical field. It is to be expected that the process of comparing predicted and experimental results will be highly adaptive in the sense that initial calculations will show which factors most strongly influence the acoustical propagation and, in turn, the experimental results will demonstrate whether such factors have been under- or over-estimated. For example, if the ray tracing shows that the dominant acoustical energy is propagated by paths that involve bottom interactions then the experimental data can be used to determine bottom loss parameters. A second calculation using these parameters can then be compared with independent experimental data and would be expected to provide improved agreement.

Over-all, and from the experience of Hudson Laboratories in using the ray tracing program and in applying it to experimental data, continuation of the paragram would be directed in three categories which are listed below and are discussed in greater detail in subsequent sections:

- i) Technical improvements in the present program.
- ii) Extension toward more complex environments than can be presently treated.
- iii) Experimental programs which either supplement the ray tracing program or provide specific tests of its predictions.

8.1. Technical Improvements

In Chapter VII we recognized that during the growth of the program a number of procedures were followed which have been shown on subsequent analysis to be inefficient in computer utilization. They were not corrected during several revisions of the program because of the expectation that it would later be entirely re-programmed for a larger computer than the presently used GE-235, and that such technical improvements could be

accomplished most efficiently during this process. Apart from this type of specific programming for machine efficiency it is believed that substantial improvements could be effected by changes in the structure of the program itself, and these are outlined below.

8.1.1. N-Parameter Representation of Velocity Profiles

The solution of the ray equation by iteration demands a technique for expressing the change in the velocity field as a function of displacement from a given position. In the present program this was achieved by a Taylor expansion that also identifies the derivatives of the velocity field at a given point, i.e., considering only the depth dependence,

$$\mathbf{v}(\mathbf{z}) = \mathbf{v}(\mathbf{z}_0) + \frac{\partial \mathbf{v}}{\partial \mathbf{z}} \Big|_{\mathbf{z}_0} (\mathbf{z} - \mathbf{z}_0) + \dots + \frac{1}{\mathbf{n}!} \frac{\partial^{\mathbf{n}} \mathbf{v}}{\partial \mathbf{z}^{\mathbf{n}}} \Big|_{\mathbf{z}_0} (\mathbf{z} - \mathbf{z}_0)^{\mathbf{n}} + \dots$$
 (VIII.1)

Only the quadratic terms are included in the present program (Chapter III).

If the expansion (VIII.1) is carried to the n-th order, the coefficients of the expansion must be evaluated in terms of (n+1) or more data inputs points from a velocity profile. There is no unique form or method for achieving this expansion except that the result must be gauged with respect to its ability to represent the properties of the actual velocity profiles in the real ocean. For example, it has been noted in Chapter II, Fig. 29, that the 4-point Lagrangian representation can produce unrealistically large curvatures in the neighborhood of individual data points. In general, however, the range of validity of (VIII.1) will be increased for large values of n and, if the iterated solutions of the ray equation are expressed in terms of the coefficients of (VIII.1), the length of the iteration increments can be increased correspondingly. It follows that over-all computer running time can be reduced at the cost of deriving more complex iteration equations.

The above conclusion assumes that the velocity profile data that are entered to construct the velocity field are pre-edited such that the input data contain not only the velocity value but also the coefficients of (VIII.1) that are needed for the expansion. The method is most useful when many rays are to be traced because the input data are processed once

and then are repeated for each trace. Indeed, if the range of the expansion (VIII.1) can be made large enough, the velocity accuracy test, i.e., t-test, is no longer required and this would save the time required in the present program for i) making a test iteration, ii) determining the velocity by means of a field expansion over the test iteration, iii) computing the velocity given by the velocity field construction program at the terminus of the test iteration, and iv) comparing these results to determine the accuracy of the projected iteration and the truncation required if this is necessary. Also, the higher order representation of the field expansion would smooth the intermediate coefficients of (VIII.1) so that, for example, the curvature would not fluctuate as erratically as is evidenced in the real data values of Tables 5.3.1.

8.1.2. Direct Calculation of Spreading Loss

In Chapters III and IV the spreading loss, or magnification function, was determined as the change of depth for rays with differentially incremented initial angles. It is well known that this change can be also expressed in terms of the local field derivatives of individual rays; Born and Wolf, for example, give the ray intensity $I(\vec{r})$ at position \vec{r} as a function of an initial intensity $I_O(\vec{r}_O)$ at position \vec{r}_O by

$$I(\vec{r}) = \frac{v(\vec{r}_0)}{v(\vec{r})} I_0(\vec{r}_0) \exp \left\{ -\int_{\vec{r}_0}^{\vec{r}} v(\vec{r}) \left[\operatorname{div} \left(\frac{\hat{t}}{v(\vec{r})} \right) \right] ds \right\}$$
 (VIII. 2)

where \hat{t} is the vector ray direction and ds is taken over the ray path. (VIII. 2) is readily expressed as an iteration equation similar to those used in the program for computing the ray positions or the travel time. Also, the intensity distributions, calculated in Chapter IV, can be re-expressed in terms of the "local" spreading losses derived through (VIII. 2)

This approach was not followed in the present program because the formulation of Chapter IV, oriented toward the estimation of ray densities, is more general and does not require the detail expressed by (VIII.2). This decision has been regretted, however, and the tabulation of (VIII.2) in the Ray Depth Distribution Plot tables would have been helpful in many applications.

8.1.3. Additional Distribution Plots

The Ray Depth Distribution Plot provides a summary of the manner in which the set of rays with differing initial angles combine to form a field distribution at a given range. The plot, with its associated table, lists:

- i) the ray depth
- ii) the ray angle
- iii) the travel time
- iv) an attenuation factor based on bottom losses only. By following the methods given in Chapter IV, further compilations of these data can be obtained as weighted distribution functions taken with respect to travel time or arrival angle, and these can be plotted individually. Such plots would be valuable in making direct comparisons with experimental data.

It is evident that the distribution routines that are based on data from the ray tracing outputs, i.e., the plot routines mentioned above as well as the various intensity calculations, are similar in type and depend on common input data. In terms of computer utilization it is efficient to prepare all of these outputs in one pass, provided that the computer has sufficient capacity to store the data range needed for the computations in active memory and to compute all of the independent outputs. This has not been possible with our present computer nor has sufficient attention been given, in view of the fact that the output routines were developed and programmed independently, to a more optimum program organization. Considerations of this type are mandatory for the development of a flexible, integrated program.

8.2. Program Extension

Future extensions of the program have been studied and planned to provide capabilities for the inclusion of more complex environmental data or for more detailed physical predictions than are possible with the present program, but programming in these directions has been delayed pending extensive evaluation of the predicted results of this program with experimental data. Additionally, many of the extensions not only would require increased computer capacity, but also they involve modification of the basic ray tracing program and the methods by which data are

introduced and used in it. The examples given below, therefore, represent both re-programming requirements as well as theoretical extensions. They may also be cited to summarize some of the limitations of the present approach toward acoustical prediction.

8.2.1. Three-Dimensional Modeling

An appraisal of the two-dimensional restriction of the present program has been presented in Chapter VI. One conclusion was that the bending of rays in the azimuthal plane by refraction would not be important for the prediction of sound intensities as averages, but there are other applications in which it would be useful to have quantitative estimates of the magnitude of such bending. Formally, the extension of the iteration equations to include an azimuthal spreading would be elementary - the real problem is the specification of the velocity field to include transverse gradients as well as the prescription which is used to determine these gradients from velocity profile data. For the most part, it is the opinion of the present authors that in long-range propagation involving many multipath contributions the deviations from a great circle bearing that are sometimes observed in azimuthal arrival angle most probably represent bettom scattering rather than azimuthal refraction.

8.2.2. Treatment of Bottom Facets

The acoustical scattering from a contoured bottom slope, especially an extensive slope near the origin of the ray tracing, has been discussed schematically in Chapter VI. One approach toward this problem was outlined in Chapter VI and consisted of a method for compiling the available bottom contours to determine the location and curvature of bottom facets that would provide specular reflection of rays from the ray tracing origin into a given bearing. The ray tracing is then carried through in a standard manner for the rays that are purely refracted, but the bottom-reflected rays are summed over the facets that have been identified and are assigned weights that depend on the curvature of the facets. This treatment is especially appropriate for long wavelength sound and for bottom contours that change slowly compared with a wavelength. Finally, the results of such a program would be valuable for estimating not only the

number of arrivals that occur in the vertical plane at the origin, but also the number and intensity of the arrivals with different azimuthal angles at the origin. Indeed, and because the illumination against the slope will depend on the position of a source in the far field, an estimate is also obtained of the fluctuations of the azimuthal arrivals as a function of the range of the source from a given receiver.

8.2.3. Wavefront Calculations

It has been emphasized in this report that ray tracing in real velocity fields using a dense set of initial angles shows significant wavefront aberration and this aberration grows with the range of the ray tracing to the point where distinctions can no longer be made between a normal arrival and arrivals which are sub-structures of an aberrant wavefront. This is clearly evidenced in the fluctuations of the magnification functions, i.e., the slopes, of the Ray Depth Distribution Plots.

Such distortions can be traced to specific features of the input velocity field data and are related to the fluctuating curvatures of the velocity profiles as these are shown, for example, in Table 5.3.1. It is to be noted, however, that the curvature fluctuations arise from the particular representation of the velocity profile that is used in the present program and that this is an intermediate step toward achieving formally correct solutions of the ray equation. Because the ray tracing program uses other controls, such as the &-test and that of the semi-invariant, the computer solutions have averaged the curvature fluctuations and, as shown in Chapter V, the solutions can be accepted as accurate formal solutions with a precision that is determined by selection of the program control parameters. Since the fluctuations of the magnification functions that are found in calculations based on real data inputs are much greater than the variations that occur for different but nominal ranges of the control parameters, it must be concluded that the resultant wavefront aberration that is calculated represents a physical property of underwater sound transmission.

It would be useful to explore these properties further by means of ray-diffraction calculations such as those indicated in the Appendix. For

this purpose it would be desirable to generate the wavefronts themselves on the computer program using the travel time of the set of rays, the ray positions and directions, the phase changes of the rays, and the spreading loss of (VIII.2) of this chapter. From these data, and using methods derived from the discussion of the Appendix, the interference structure of the aberration can be predicted except, of course, in the immediate regions of caustics or foci.

8.2.4. Surface Ducts and Surface Scattering

The present program uses a flat sea surface. This is an excellent approximation for low frequencies and for the specular, surface-reflected wave. However, if a surface sound channel exists at the sea surface, non-specularly reflected energy can excite this duct and can propagate in it. Two regimes must be distinguished depending on whether the ray tracing origin is in or below the surface duct. If the origin is in the duct, the present program can easily handle transmission in the duct but does not predict leakage from the duct as this may be due either to diffraction or to scattering from a modulated sea surface. If the origin is well below the duct, the converse applies.

Neglect of such surface-duct transmission is often permissable in low-frequency, long-range propagation both because the leakage from the duct attenuates this mode of transmission more rapidly than modes due to alternative paths in deeper water, and because the mixed velocity profiles found in long-range propagation will tend to interrupt and destroy the surface channel. However, this will not always be true, and it becomes useful to include such modes as part of an extension of the program to short to intermediate ranges.

Various techniques can be used to estimate the contribution of the surface-duct transmission to the total sound field, but they will not be discussed here. Instead, it is recommended that the program be extended to include a modulation of the shape of the sea surface. This capability would, in turn, be used for research-oriented investigations of the surface-scattered wavefronts due to reflection of sound from a point source. ²

8.2.5. Noise Distributions

It would be expected that noise that originates at the sea surface can be described, statistically, in terms of a directivity function and an amplitude that depends on the local sea state. In turn, the net noise field at any point in the ocean depends on the integrated contributions of the entire surface, but with modifications that are introduced by the sound velocity field and bottom structure. The Type III intensity distribution that is an option of the present program is well adapted to such calculations — the averaging over the range positions of a ray can be interpreted as an average over the possible range positions of the source. In turn, the summation of a number of Type III intensity calculations, weighted by an appropriate surface area, would be a calculation of the surface-generated noise field. This result demands the specification of the noise distribution function but, if this is given, the amplitude of the function for a given sea state can be determined by comparison of the calculated results with experimental data.

8.2.6. Arrival Interference Statistics

The subject of this report is the application of ray tracing techniques to the prediction of acoustical transmission in the ocean, and comparisons with the alternative mode theory have been avoided. This is unfortunate in the sense that any model that attempts to be comprehensive should be free to assimilate the most useful treatments and to combine these as necessary for predictive purposes. Many authors have commented on the equivalence of the two theories when each is carried through toward the determination of a net acoustical field. Indeed, it may be noted that some of the discussion of this report has been guided by interpreting the results of mode theory in terms of ray theory.

For example, the discussion of arrival structure in Chapter IV and the summation of arrival structure to determine the spatially averaged field given by Eq. (IV. 36) can be regarded as a summation of weighted mode functions. The difference is that the functions of Eq. (IV. 36) are determined by operations on the ray tracing solutions for a set of initial angles rather than by the process of determining the mode solutions of the wave equation in the given velocity field. It is obvious that the ray tracing derived functions do not include diffraction effects except as these are assimilated in

the averaging processes specified for the intensity calculations. It is also believed that the functions derived from the ray tracing solutions are far more accurate representations of the field distributions in a complex ocean environment than are the functions derived from mode theory for a simplified stratified medium with only weakly interacting boundary planes. It is clear that the selection of specific tools will depend on the nature of the application as well as being influenced by what tool is available.

Attention is called to the work of C. S. Clay. ^{2, 3} This can be summarized as a specification of measurements that can be made on the sound field to distinguish signals that originate from local or point sound sources with respect to the properties of fields that originate in extended sources. Clay's use of mode theory for his derivations should not obscure the importance of these objectives nor be interpreted as a prohibition against a fully equivalent derivation in terms of local plane waves, i.e., ray theory.

These analyses, based on intensity interferometry, regard the intensity fluctuations as originating in the summation of interfering arrivals. The power spectrum of the fluctuations taken over a suitable time interval, or range interval for a moving source, is independent of the phase relationships of individual arrivals and becomes a unique signature of the sound field. By extension of the Type II intensity calculations and by using the variable of arrival angle rather than mode vector, these spectra can be computed from the ray tracing calculation and be used to compare with experimental data. Incidentally, and as computed by ray theory, the spectra can be used to distinguish wavefront aberrations from independently interfering arrivals. In short, this extension of the ray tracing program would be of great value for testing the predictive model and for the analysis of the effects of the environment on the structure of the sound propagation.

8.3. Experimental Programs

The objective of any associated experimental program is, of course, to obtain data on the properties of sound transmission in the ocean. However, insofar, as the model of propagation that can be calculated

for the experiment becomes even first-order reliable, it becomes a frame-work for interpreting the experiment and for identifying the environmental factors that have influenced the measurements. The types of experiments listed below can be recommended partly because the data they would provide would be independently useful as characteristic of acoustical propagation in the ocean, and they are also recommended for comparison with the predictions that can be computed through, for example, the methods of this report. It is understood that environmental data taken during the experimental program must be of a precision and quantity adequate to serve as data inputs into the predictive program.

8.3.1. Determination of Acoustical Flux

Basic to the concept of cylindrical spreading is the prediction that the net, outwardly radiating acoustical flux will fall off inversely with the range while experiencing an additional attenuation due to bulk absorption, scattering, and bottom losses. If small angular factors are neglected the acoustical flux, F, is the integral of the vertical intensity distribution I(z),

$$\mathbf{F} = \int_{0}^{\mathbf{z}} \mathbf{B} \quad (VIII.3)$$

It is recommended that the flux be determined as a function of the range between source and receiver and, using broadband sources, as a function of the acoustical frequency. The experiment should be repeated for various types of bottoms and, in particular, for bottom obstructions such as those indicated in Fig. 17. Basically, this experiment determines the transmission anomaly of the sonar equation.

8.3.2. Vertical Intensity Distribution

Incidental to the data of the above experiment would be the measurement of I(z) itself, and the modulation of this with range that reveals convergence zone structure as well as the damping of this structure due to the specific form of the velocity field and the relative contribution of bottom-reflected energy. It would be of especial interest if the sources used to excite these fields consisted of both point sources, to excite the full field, and directional sources to provide selective illumination of initial

angles. Again, the experiment should be repeated for differing forms of bottom topography to determine, for example, the effect of seamount obstructions as filters of ducted sound energy.

8.3.3. Vertical Arrival Structure

Impulse sources, e.g., snots, are commonly detected as a train of resolved arrivals. For the quantitative analysis of long-range propagation, far more attention must be given to the structure of these arrivals for acoustical paths that propagate by refraction only, concentrating on the phase changes produced by the refractive paths and on the effects of wave-front aberrations on the structure of the waveforms. The analysis can also be greatly assisted by resolution in the vertical plane of the arrival directions of the signals, using vertical arrays, both to identify the arrival paths and to evaluate the magnitudes in terms of a spreading loss. It is important to establish relationships between the loss of time resolution of the impulse signal with range and the spread of the signal in the vertical arrival directions. At the higher angles, the vertical array can distinguish the bottom-reflected contributions and be used to determine bottom reflectivity losses and, by correlation, to distinguish the coherent reflectivity from the incoherent components.

8.3.4. Noise Distributions and Directivity

Associated with the above programs would be measurements of similar properties for the acoustical noise field. These can be used with the predictive model, vide 8.2.5 above, to determine the amplitudes and directivities of the noise excitation functions for surface-generated noise, if this can be isolated from other noise sources of biological, machine, or seismic origin.

8.3.5. Signal Statistics

Section 8.2.6 outlines the role of intensity spectra in the interpretation of acoustical propagation. These measurements become part of a statistical analysis program to determine, for example, the extent of the spatial intervals required for averaging multipath spectra, the fluctuations that occur about such averages, the degree of correlation of signals that

can be achieved in practice in the presence of wavefront aberration, the "higher frequency" components of the intensity spectra that represent bottom interactions, and the degree of discrimination that the statistical analyses provide with reference to similar ocean noise spectra.

8.3.6. Specific Environmental Interactions

When, either by experimental control or by the ray tracing analysis, signals can be isolated as having had specific interactions with the environmental structure, the data can be used to determine the interaction parameters that are required in the predictive model. Experiments in these directions should emphasize the frequency dependence of the effect, the time dependence of the interaction that is responsible for frequency spreading, and the dependence on interaction angle. Examples of such experiments include:

- i) Boundary scattering from either the sea surface or bottom to include isolation of the coherent and incoherent reflectivities, the effect of the scattering on the directivity functions used in the present program, 4.2.4, and the Doppler shifting of the moving sea surface.
- ii) The use of the Doppler shift to analyze the angular directivity of the sound propagated from a moving source.
- iii) Analysis of scattered signals in terms of roughness coefficients and, for the sea bottom, layer structures and acoustical penetration into these.

References for Chapter VIII

- 1. M. Born and E. Wolf, Principals of Optics, Pergamon Press, N.Y. (1959).
- 2. I. Tolstoy and C. S. Clay, Ocean Acoustics, McGraw-Hill Book Co., N.Y. (1966).
- 3. C. S. Clay, Revs. of Geophysics 4 (4), 475-507 (1966).

CHAPTER IX

ACKNOWLEDGMENTS

Many individuals, both within and without Hudson Laboratories, have provided material assistance in the preparation and execution of these programs, and the authors gratefully acknowledge all such support We wish particularly to thank LCDR James C. Froid of the Office of Naval Research for his efforts in providing us with data inputs for the program, for his administrative help in conducting a number of experiments that have been carried out as part of the present program, and for his continued encouragement.

A Workshop on Ray Tracing was arranged by the Office of Naval Research in August 1967, and was held at Monterey, California, under the direction of Captain Paul Woolf of the Fleet Numerical Weather Facility; the authors wish to acknowledge the comments that were received during the Workshop from all the participants and particularly those from Captain Woolf and his staff. Mr. Donald Atkocius of the Naval Oceanographic Office has given continued support to the program, especially in making available extensive bathymetric data for use in the construction of bottom profiles.

Within Hudson Laboratories, discussions with Drs. C. S. Clay and I. Tolstoy have contributed toward an appraisal of theoretical problems in underwater sound propagation. Dr. Norman Lord kindly reviewed an initial draft of this report and further suggested the form of the bottom scattering function used in preliminary intensity calculations. Dr. A. N. Guthrie and Mr. J. D. Shaffer permitted us to use their data for the calculations reported in Chapters I and IV. Over all, Dr. Winston L. Hole has given continued advice and assistance in the preparation of this report.

The staff of the Hudson Laboratories Computing Department have been especially helpful both in running the programs and in the solution of many programming difficulties. We wish to recognize explicitly the assistance received from Mr. John Trantum and Mr. Fred Grossman. Mr. John Seney prepared a preliminary program which demonstrated the advantages of the iteration method, and which was subsequently developed into the present program.

Finally, Mrs. Catherine Gerow prepared many of the figures and data compilations used in this report and contributed considerable editorial assistance. Photographic reproductions of the computer printouts and plots were prepared by Miss Vivian Bruno with skill and attention to detail.

APPENDIX

THE PHASE OF RAY ARRIVALS

This Appendix gives a further discussion of ray theory as applied to the exact determination of the intensity of the acoustic field in a nonhomogeneous medium, i.e., the wave intensity that is determined by computing the phase and amplitude of individual arrivals and adding these algebraically to form the net field amplitude. The material is relegated to an appendix because it differs in emphasis from the principal concern of the main report which is the estimation of transmission loss for longrange acoustical propagation in the real ocean. For the latter it would be a rare physical situation for which the exact velocity field would be known with sufficient accuracy to justify any connection between a computed travel time and the total phase change of a ray over its path. In the main report it is recommended that the far field intensity be determined as a probability that represents the averaging of the intensities of individual arrivals. This is to be achieved by averaging spatially over an interval that is large enough to allow for those acoustical field fluctuations which are due to the wave interference of the amplitudes of individual arrivals and may include temporal averaging for changes in the velocity field or for broad frequency bandwidth.

This appendix originated in discussions among the authors and their colleagues at Hudson Laboratories as to the validity of the ray theory and the extent to which it could be applied meaningfully to a wave field. The discussion is included in this report for the following reasons:

1. The ray theory has been severely criticized as inexact and even inapplicable to wave propagation due to, for example, "failure at turning points," "shedding of energy for a curved ray," and "failure to predict phase changes." To the authors such attacks on ray theory seem unjustified and unsupported on theoretical grounds which we present in this appendix. (It is true that a simple ray theory, i.e., a theory applied to extended plane waves rather than "local" plane waves, does not predict the phase change of a wave that is refracted against a velocity gradient, as has been discussed by Tolstoy and Clay, and Tolstoy. 1,2 However, their comments have sometimes been improperly generalized as criticisms of ray theory in general.)

- 2. The new ray trace program has been used to construct a wave field for a model situation, discussed below, and in presenting these calculations the accuracy and utility of the present program is further demonstrated. Also, we expect to make a number of similar calculations in future research programs and it is convenient to document our methods in the present report.
- 3. By presenting this discussion we may clarify for some readers the distinctions between the actual wave field, which includes the interference effects of many arrivals, and the averaged field discussed previously.

The material of this appendix is summarized as follows:

- A review of wave propagation using the Kirchoff development of the wave theory of Huygens and Fresnel.
- 2. The extension of the Kirchoff theory to inhomogeneous media.
- 3. The phase change across ray foci.
- 4. Calculation of the field of a plane wave refracted against a field gradient.
- 5. Conclusions.

A-1. Review of Kirchoff Theory

The Kirchoff theory is central to the calculation of diffraction fields and is discussed in detail in a number of standard references. In this section the theory is briefly reviewed, following the presentation of Born and Wolf, 3 to lay a formal basis for the subsequent calculations.

Let U(r) and U'(r) be two wave fields which are the space-dependent solutions of monochromatic waves V(r,t) and V'(r,t) each with time dependence t that is periodic with angular frequency ω , i.e.,

$$V(r,t) = U(r) e^{-i\omega t}$$
 (A.1)

$$V'(r,t) = U'(r) e^{-i\omega t}$$
 (A.2)

U(r) and U'(r) are to satisfy the wave equations

$$(\vee^2 + k^2) U = (\vee^2 + k^2) U' = 0$$
 (A.3)

k is the usual wave vector for which

$$k = \frac{\omega}{c(r)} = \frac{2\pi}{\lambda(r)}$$
 (A.4)

where c(r) is the sound velocity written as a function of space in an inhomogeneous medium and $\chi(r)$ is the wavelength. If U'(r) also possesses a singularity at a point P of the form

$$U'(r) \rightarrow \frac{e^{ikr}}{r}$$
 as $r \rightarrow 0$ (A.5)

then U(P) can be determined from a Green's theorem if U(r), U'(r) and their derivatives are known on a bounding surface S that surrounds P:

$$U(P) = \frac{1}{4\pi} \oint_{S} \left\{ U \frac{\partial U'}{\partial n} - U' \frac{\partial U}{\partial n} \right\} ds \qquad (A.6)$$

The differentiation with respect to n is along the inward normal from S (Fig. A-1). Equation (A.6) expresses the solution U (P) in terms of an interference between the functions U and U' and their normal derivatives on the surface S.

In homogeneous space the particular U'(r) of (A.5) is everywhere an exact solution of (A.3), and the limit of application of (A.6) is determined solely by the precision to which U(r) is known on the boundary surface S.

If an arbitrary function of time, $V\left(\mathbf{r},t\right)$, is expressed as a Fourier series

$$V(\mathbf{r},t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} U_{\omega}(\mathbf{r}) e^{-i\omega t} d\omega \qquad (A.7)$$

then it is straightforward to use this in (A. 6) and recombine the series to show that V(r,t) is given by

$$V(P,t) = \frac{1}{4\pi} \oint_{S} \left\{ \left[V \right]_{t-T} \frac{\partial U'}{\partial n} - U' \left[\frac{\partial V}{\partial n} \right]_{t-T} \right\} ds$$
 (A.8)

where the functions in square brackets are defined on S at the retarded times (t-T) and T is the travel time from P to points on S. Again, the differentiation is defined with respect to the inward normal to S.

The classical test of Eq. (A.8) is the determination of the scalar wave field in the neighborhood of a diffraction focus. Using the coordinates of Fig. A-2, (A.8) becomes

$$U(P) = \frac{ik}{4\pi} \frac{e^{-ikf}}{f} \oiint_{s} \frac{e^{iks}}{s} (\hat{s} \cdot \hat{n} - 1) ds \qquad (A.9)$$

The accuracy of (A.9) for prediction of the detailed wave field to the right of surface S in Fig. A-2 is well established. In particular, (A.9) leads to the well-known "phase anomaly" of value π that exists between wave surfaces that lie on opposite sides of the origin O of Fig. A-2.

A-2. Extension to Inhomogeneous Media

Equations (A. 6) through (A. 8) of the preceding section are also valid in an inhomogeneous medium provided that the "test" function U'(r) satisfies the wave equation (A. 3) and possesses the (1/r) singularity of (A. 5) at the point P at which the field U(r) is to be evaluated. Thus the application of the Kirchoff development in an inhomogeneous medium requires not only that the field U(r) be known on a boundary surface S but also that a suitable test function U'(r) can be found for use in Eqs. (A. 6) through (A. 8).

For this purpose a wave function U'(r) that is derived from ray theory will be satisfactory except in certain special regions that are discussed below. By U'(r) is meant the function 5

$$U'(r) \rightarrow \frac{e^{ikr}}{r}$$
 for $r \rightarrow 0$ (A.5)

=
$$A(r) e^{i\omega T}$$
 for $r \gg \lambda$ (A.10)

where A(r), the amplitude of the ray, is to be real and positive and the travel time T is calculated from position P along the ray path to a point on the surface S by

$$T = \int_{\mathbf{p}}^{\mathbf{S}} \frac{d\mathbf{r}}{c(\mathbf{r})} \qquad (A.11)$$

General discussions of the validity of this solution are given in the standard references - it is certainly a valid solution of the wave equation in the asymptotic limit of short wavelengths.

The collection of rays emanating from P represent the directions along which the intensity is directed, and the orthogonal surfaces to these rays are wave surfaces defined by a constant travel time T . If U'(r) of (A.10) is an acoustic pressure, the associated particle velocity is given by

$$\vec{\mathbf{u}}' = \frac{-\mathbf{i}}{\omega \rho} \operatorname{grad} \mathbf{U}'(\mathbf{r})$$
 (A.12)

where p is the density of the medium, or, using (A.10) and (A.11)

$$\vec{u}' = \frac{-i}{\omega \rho} \left(\frac{\text{grad } A(\mathbf{r})}{A(\mathbf{r})} + i \frac{\omega}{c(\mathbf{r})} \stackrel{\wedge}{\mathbf{r}} \right) A(\mathbf{r}) e^{i\omega' \Gamma} . \tag{A.13}$$

The time-averaged intensity vector has the direction of the ray for

$$2 \rho c \langle \vec{I} \rangle = \rho c \operatorname{real} (U' \vec{u}') = [A(r)]^2 \dot{r}$$
, (A.14)

where \hat{r} gives the ray direction. In the asymptotic limit of small wavelengths (or large k with $k=2\pi/\lambda$) the condition

$$\frac{g \operatorname{rad} A(r)}{A(r)} \ll \frac{\omega}{c} = \frac{2\pi}{\lambda} = k$$
 (A.15)

will be valid everywhere except where the gradient of the amplitude diverges. This is also one condition for the validity of the ray theory.

Straightforward application of flux conservation using (A.14) can be used to determine the amplitudes A(r) from the ray tracing solutions. The rays emitted into a differential solid angle $\delta\Omega$ from P form a ray tube. In propagating through the inhomogeneous medium these tubes may expand or contract in cross section as they follow the curving ray. If the tube intersects surface S with cross section dS and orientation \hat{n} the amplitude on S is given by

$$A(r) = \sqrt{\frac{1}{2 \cdot h}} \frac{c_S}{c_p} \frac{d\Omega}{dS}$$
 (A.16)

where c_S is the sound velocity on S and c_P is the sound velocity at P .

If the cross section of the ray tube shrinks to zero, as it will if the rays cross or focus, the condition (A. 15) cannot be maintained and the ray solution (A. 10) cannot be extrapolated through a ray crossing point. Note, however, that the energy carried by such a ray tube can be carried through a ray crossing in view of (A. 14), i.e., a ray crossing point is not a scattering point. The amplitudes A(r) in a region where the rays cross are determined by diffraction and the wave field must be extrapolated through the region by use of a wave theory. In the following section the principal concern will be toward the modification of ray theory when ray solutions are projected through such geometrical divergences.

The use of the test function U'(r) of (A.10) and (A.11) and the condition (A.15) modify Eq. (A.8) to

$$V(P,t) = \frac{1}{4\pi} \oiint_{S} \left\{ \left[V \right]_{t-T} \left(i k \hat{T} \cdot \hat{n} \right) - \left[\frac{\partial V}{\partial n} \right]_{t-T} \right\} A(r) dS \qquad (A.17)$$

Preferably the surface S will be chosen such that on it V(r,t) will either vanish or can be defined as a local plane wave with direction $\stackrel{\wedge}{s}$ and amplitude B(r). That is, the harmonic component of V(r,t), U(r), can be expressed as a local plane wave on S of the form

$$U(r) = B(r) e^{ikr \cdot \hat{s} + \hat{r}}$$
(A.18)

and (A.17) further simplifies to

$$U(\mathbf{r}) = \frac{i}{4\pi} \oiint_{\mathbf{S}} k \left(\hat{\mathbf{r}} \cdot \hat{\mathbf{n}} - \hat{\mathbf{s}} \cdot \hat{\mathbf{n}}\right) A(\mathbf{r}) B(\mathbf{r}) e^{i\omega T} dS$$
 (A.19)

where T, from (A.11), is a function of r on S

A-3. Phase Change Across Ray Crossings

The above is used to investigate the typical ray crossing situation in an inhomogeneous medium that is sketched in Fig. A-3. The set of rays that radiate spherically from P are represented by a center ray 0 and an adjacent pair of rays, Fl and -1, which will be required to determine the amplitude of ray 0 through use of (A.16). The rays cross to form a caustic or focus in the general region of C and subsequently diverge from this region. While the amplitudes of the diverging rays can still be estimated by the use of (A.16), it is desired that an indication be given as to:

- i) the calculation of the diffraction field in the region of $\ C$.
- ii) the determination of a phase change of the ray bundle on transit through the ray crossing region C.

The surface S_1 is to be the wave front representing the waves from P advancing towards C, but is constructed well before C so that the amplitude of the wave front on S_1 is given by (A.16) without violation of the condition (A.15). In the asymptotic limit of small wavelengths S_1 will be normal to the rays and will also represent equal travel time T for the ray bundle. Similarly, S_2 is the wave front of the waves diverging from C and S_2 is constructed well behind C as measured along ray 0.

Although the physical field, represented by the rays from P, has ray crossings in the region C, it is possible to construct an entirely new ray field solution from points on S_2 to those on S_1 for which none of the rays will cross one another. In fact, if the surfaces S_1 and S_2 are not too far apart and the velocity field gradients are not exceptionally large in the region of C, the ray (or wave) field U''(r) will be very nearly

$$U''(r) \approx \frac{e^{iks}}{s} \tag{A.20}$$

in which so is the distance along a ray path from a point O_2' on S_2 to a point O_1'' on S_1 . The field on the surface S_1 is given by the ray

solution (A.10), (A.11), and (A.16) for the rays from P. The field due to this is found on the surface S_2 by the use of the test function. U"(r) in (A.8). For a harmonic wave this is formally expressed by

$$U(r) = \frac{ie^{\omega T}}{4\pi} \oint_{S_1} k(\hat{s} \cdot \hat{n} - \hat{r} \cdot \hat{n}) A(r) U''(r) e^{i\omega T''} dS$$
(A.21)

giving the continuation of the field from S_1 to S_2 . T" is the travel time computed for the rays of U''(r).

Although the amplitudes A(r) of (A,10) will diverge in the region C, this is not reflected in any anomalous behavior of the ray trajectories themselves as determined by the ray Eq. (III.1) of the main report. Thus the travel time T'' between the wave surfaces is still, by Fermat's principle, an extremum for those ray paths that coincide with the ray paths originally followed from point P and which are normal to the two surfaces. In going from the general point O_2' on S_2 to points O_1'' on surface S_1 there will, of course, be many new paths that must be computed for the integral (A,21) which are not normal to S_2 and are not, therefore, normal to S_1 . It is a consequence of this that T'' in (A,21) can be expanded in terms of coordinates that lie on the surface of S_1 and that the expansion will be stationary about a point O_1' which lies on the ray path PO_1' O_2' .

A specific example of the integration of an integral of the type of (A.21) will be given in a later section. Here, the magnitude of the integral is neglected to give the phase contribution. The general form of the integral will be

$$W = \oiint_{s} g(x, y) e^{ikf(x, y)} dx dy$$
 (A.22)

where f(x, y) can be expanded in the form

$$f(x,y) = f(x_0, y_0) + \frac{\beta}{2} (x - x_0)^2 + \frac{\gamma}{2} (y - y_0)^2 + \eta(x - x_0) (y - y_0) + \dots$$
 (A.23)

the result is given by 6

$$w = \frac{2\pi i\sigma}{\sqrt{|\hat{\rho}_{Y} - \eta^{2}|}} \quad g(x_{o}, y_{o}) = \frac{e^{ikf(x_{o}, y_{o})}}{k}$$
(A. 24)

where the positive square root is taken and

$$\sigma = +1$$
 for $\beta \gamma > \eta^2$, $\beta > 0$ (A.24a)

= -1 for
$$\beta \gamma > \eta^2$$
, $\beta < 0$ (A.24b)

$$= -i \quad \text{for} \quad \beta \gamma < \eta^2 \tag{A.24c}$$

The physical origin of the phase factors (*) in (A.24) and (-i) in (A.24c) that multiply the exponential of (A.24) can be simply explained. The expansion (A.23) represents a surface for which there will be constant phase contours centered about a point of stationary phase at the position (x_0, y_0) . If a wavefront satisfying the condition (A.24a) is advancing toward an observer, the wavefront will appear convex to him. Similarly, the wavefront of the solution for (A.24b) will be concave, but the wavefront represented by (A.24c) will be warped and possess two curvatures of differing algebraic sign, i.e., a saddlepoint, as seen by the observer. At large distances from the origin, for which $x-x_0$ and $y-y_0$ become large, the exponential of (A.22) oscillates so rapidly that such source points make a vanishing contribution to W — the major contribution comes from the area about the central point of stationary phase.

If the equal phase contours represented by (A.23) are spaced one-half wavelength apart, the areas between the contours correspond to Fresnel Zones. The integral (A.23) is continuous across such zones and each zone, starting from the center point of stationary phase, contributes an average value with a phase of $\pi/2$ if the surface is convex. Although the successive zones tend to cancel each other, the contribution of each diminishes for increasing zones from the center to leave the net phase value $\pi/2$ which is given by the factor (i) in (A.24). If the surface is concave, which is the solution (A.24b), the average phase of the central zone is $-\pi/2$. If the surface is a saddlepoint with the solution (A.24c)

the contribution from the central zone tends to vanish, and it is the higher-order zones that make the principal contribution to the integral. For each zone, however, the average phase is zero and, if $g(x_0, y_0)$ is real, the integral W for the solution (A.24c) is also real and shows no phase change.

Equation (A. 21) is readily cast into the form of Eq. (A. 22) and all the functions except the exponential become real and are evaluated at the point of stationary phase. This, as noted before, lies on the normal ray path from P that connects the two surfaces S_1 and S_2 . The choice of the solutions (A. 24a, b, c) will depend on the type of curvature of the wave field. For underwater acoustics the dominant situation will consist of cylindrical spreading in one dimension and, for the example of Fig. A-3, a convergent wavefront for S_1 in the plane of Fig. A-3. The radii of curvature have, therefore, differing algebraic signs and the solution (A. 24c) will apply. The product of the imaginary factors and the signs in (A. 21), (A. 24), and (A. 24c) leave a net phase shift of $-\pi/2$ such that the phase of the wave at S_2 is given by

$$\Phi = \text{phase} = \omega \int_{p}^{S_2} \frac{ds}{c(r)} - \frac{\pi}{2} = \omega T - \frac{\pi}{2} \qquad (A.25)$$

In applying the above to the use of ray theory in underwater acoustics to calculate the amplitude and phase of wave fields, the solutions of (A.10) and (A.11) are to be augmented by the <u>prescription</u> that a phase of $\pi/2$ is to be subtracted for each ray crossing undergone by a <u>differential</u> ray bundle; also, the solution will not apply in the immediate region of the ray crossing. The field must there be calculated by detailed evaluation of integrals of the form of (A.21) to express the diffraction spreading.

A-4. Ray Calculation of a Plane Wave Refracted Against a Stratified Velocity Gradient

One of the few exact calculations that can be made for wave propagation in an inhomogeneous medium demonstrates that a plane wave refracted against a stratified velocity gradient is reflected with an additional phase change of $-\pi/2$ with respect to $\omega\,T$, where T is the travel time along the ray paths. The conventional ray diagram for this reflection

is indicated in Fig. A-4 which shows the normal rays from plane surface S that propagate into the gradient region. They are turned by the gradient at a common depth z_t and return to the homogeneous inedium to form a new wave front that passes through point P. The surface that is formed by the turning points of all the rays at depth z_t is a caustic surface in Fig. A-4, and the $\pi/2$ phase shift that is not predicted for the rays is usually ascribed to a breakdown of the ray theory at the turning point at depth z_t .

We have investigated this physical situation to test whether the ray solution of (A.10) and (A.11) can be used in (A.19), with the modification indicated by (A.25), to calculate the field at P due to the reflected wavefront S. The test also measures the ability of the ray solution to predict the wavefield from a source at point P that propagates onto the surface S. Figure A-5 shows the construction, and it is clear that the individual rays from P no longer have turning points at a common depth z_+ .

For the parameters given in Fig. A-5, the ray tracing program was used to compute the travel time of the ray, T, the position of the ray on plane S, and the angle of inclination a of the ray to plane S. Calculations were made for a range of initial angles from P and also for sets of rays that propagate in planes with differing azimuthal angles with respect to the plane normal to S that also contains points P and O. The latter calculations provided data to give the ray parameters for the intersection of the rays over the entire surface of S. The results are given graphically in Figs. A-6 through A-9. No calculations were made for rays from P that would arrive at S without being refracted by the velocity gradient as this would represent only the direct arrival and is of no interest to the present problem.

The smoothness of the data shown in the figures indicates the consistency of the calculation. The ray paths are readily given by elementary calculations for the particular model that was chosen, and checks indicated that the calculational accuracy was precise in time to several microseconds and in positions to fractions of a millimeter. The calculation is difficult for the ray trace program because no program modification was made to indicate to the computer that the velocity field would change slope at depth z=0. However, it was required that during any iteration the predicted

velocity at the terminus of an iteration should match the given velocity field within 0.01 meter/sec. Printouts of the ray data on surface S were obtained by treating the surface as a bottom together with a demand that the rays terminate after the first bottom hit.

From the figures it is clear that there are two types of arrivals on surface S. As indicated in Fig. A-9 the arrivals with initial angle $\theta \leq \theta_{C}$ have crossed one another, and contrarily. The caustic of such intersections reaches surface S for angle θ_{C} at position y_{C} below O on S. From the data given in the figures the field V(P,t) may be evaluated using equation (A.19).

At the region about O on surface S and for $\theta \leq \theta_c$, (A.19) together with (A.16) are readily placed in the forms (A.22) and (A.23). The appropriate curvatures were evaluated from Figs. A-6 and A-8. For an incident wave on S of the form

$$V(r,t) = e^{-i(\omega t - kn)}, \qquad (A.26)$$

(A. 24) and (A. 24a), corrected for the phase shift due to the ray crossings, give

$$V(P, t) = 0.999 e^{-i\omega (t-T_0) - i\frac{\pi}{2}}$$
 (A.27)

The result was obtained by a simple numerical estimate of the curvatures of Figs. A-6 and A-8 about the point O from the graphical constructions; the result could be refined by numerical curve-fitting techniques, but this has not been thought to be necessary. Equation (A.27) is the result predicted by theory. 7

From Fig. A-6 it is seen that with respect to the initial angle θ there is also a point of stationary phase for T about the angle θ_C and this could make an additional contribution to the result of (A.27), above. However, the integral that is required by (A.19) is over the surface S, and Fig. A-7 indicates that y_C is not a point of stationary phase for T. Also, and although the amplitude A(r) of (A.16) diverges about $y=y_C$, this divergence makes no contribution to the integral (A.19). Thus, for the expansion of y about θ_C ,

$$y = y_c + \frac{\varepsilon}{2} (\theta + \theta_c)^2$$
 (A. 28)

$$dy = \varepsilon (\theta - \theta_c) d\theta \qquad . \tag{A.29}$$

The amplitude at $y = y_0$ diverges as

$$A(r) \approx \sqrt{\frac{d\theta}{dy}}$$
 (A. 30)

and

$$V(P,t) \approx g'(x_{c},y_{c}) \oiint_{s} e^{-i\omega(t-T)} dx \sqrt{dy d\theta}$$

$$\approx g'(x_{c},y_{c}) \oiint_{s} e^{-i\omega(t-T)} dx d\theta \sqrt{\epsilon(\theta-\theta_{c})} . \tag{A.31}$$

In (A.31) $g'(x_c, y_c)$ represents the slowly varying functions for the stationary phase integral that are evaluated at (x_c, y_c) . It follows that when T is expanded to form a stationary phase integral about θ_c the term in the square root following the differentials in (A.31) causes the net contribution from the region of θ_c to vanish. Finally, if the caustic on S were to make a contribution to the field at P its phase would depend on T_c and on the specific details of the velocity gradient - this is contrary to the known theoretical solutions of the wave equation applicable to this problem.

The vanishing of (A.31) at $\theta_{\rm C}$ demonstrates that the $\pi/2$ phase shift is not due to a focussing to P of secondary waves from S , i.e., Huygen's wavelets that propagate away from the normal to plane S , especially as these would originate from S at the position of the caustic at $y_{\rm C}$.

The foregoing has used the ray tracing solution from a point, P, to form a "test" solution to the wave equation that can be used in the Kirchoff theory for inhomogeneous media to calculate the complete field, including diffraction, at point P. The solution (A.27) is similar to that which would be obtained by using only the normal rays from surface S, as in Fig. A-4,

but the detailed development has shown that the field at P is due entirely to the Huygen's wavelets radiated from the area of S where the ray from P is normal to surface S. Also, the $\pi/2$ phase shift of the field at P after reflection from the velocity gradient is due to the ray crossings by the wavelets as they spread cylindrically but are refocussed due to refraction in the stratified medium.

The solution can also be used to determine the field on a plane surface S due to a point source at P provided the field is not extended into regions where the field amplitude of (A,16) diverges. For simplicity, the method is illustrated here by the simpler calculation of the field on a conical shell with cone axis through P and for which the plane S of Fig. A-5 is a tangent plane. The amplitude of (A,16) is directly determined from the inverse slope $d\theta/dy$ obtained from Fig. A-6. As a rough approximation both y and T were expressed in terms of θ through

$$y = c_1 + c_2 \theta + c_3 \theta^2 + c_4 \theta^3$$
 (A. 32)

$$T_1 = d_1 + d_2 \theta + d_3 \theta^2 + d_4 \theta^3$$
 (A.33)

where the subscripted constants were determined to emphasize the region of $\boldsymbol{\theta}_{\mathbf{C}}$.

The net field on the conical surface S will consist of two arrivals. Due to the ray crossings of the rays with $\theta \leq \theta_C$ these will have a $\pi/2$ phase lag with respect to the larger initial angles from P, and this must be included in computing the interference pattern of the two arrivals. If the amplitudes are A_1 and A_2 , respectively, the intensity on S is given by

$$I = \frac{1}{\rho c} \left[A_1^2 + A_2^2 + 2 A_1 A_2 \sin 2\pi f (T_1 - T_2) \right]$$
 (A. 34)

with $T_2 = T_1 (2\theta_c - \theta)$. The solution (A. 34) cannot be continued to the position of the caustic at y_c on surface S because the amplitudes will diverge. Using the constants in (A. 32) and (A. 33) that were derived from Fig. A-6, (A. 34) has been plotted as a function of position on S in Fig. A-10

for a frequency of 20 Hz. The dashed line in Fig. A-10 indicates the nature of the effect of diffraction to spread the geometrical divergence of the amplitudes over a finite spatial interval.

A-5. Conclusions

Based on the interpretation of ray theory given in this appendix, we conclude:

- 1. The phase change does not occur at the "turning point" at which the rays become horizontal but only applies after the region where the rays cross one another.
- 2. The ray solutions for propagation from a point source that utilize (A.10), (A.11), and (A.16) cannot give the wave field in the region of shadow zones or foci or caustics; however, these solutions can describe the field at surfaces that bound such points and solutions of the form of (A.19) can then be attempted. If the contributions from caustics or foci that may occur on such bounding surfaces can be shown to be negligible, the method can be used to compute the wave field at individual points within the surface.
- 3. If the medium is not horizontally stratified but possesses gradients in two dimensions, greater care must be used at ray crossing points. Specifically, it must be determined whether solution (A. 24b) or solution (A. 24c) applies to the stationary phase integral. The former will give a phase shift of $-\pi$ while the latter gives only one-half that phase shift.
- 4. It is incorrect to automatically apply corrections of $-\pi/2$ to a ray that goes through a turning point. For example, in Fig. A-9, the correction is appropriate to rays that reach the plane S with initial angles less than $\theta_{\rm C}$, but is incorrect for the steeper rays that leave the source at angles greater than $\theta_{\rm C}$. Note also that in the example of Fig. A-9, and provided that the velocity gradient region is thick enough, the first arrival will have no phase change but the second arrival will.
- 5. If high reflectivity surfaces bound the velocity gradient region from above in such a manner that the steeper rays from P are surface reflected and do not reach the plane S in the region of point O in Fig. A-4 but the rays refracted about the initial angle θ_O are permitted,

the phase change correction will still be applicable even though the other field contributions are eliminated.

- 6. While it must be determined that the frequencies for which these results are applied are high enough so that ray theory is valid as an asymptotic limit, the criteria for the existence of the phase shift depend sole! on the ray crossings prior to an arrival point unless, of course, this point is taken so close to a focus or caustic that the full wave field must be evaluated.
- 7. When multiple arrivals are present, and provided that the observation point is not near a caustic or focus, the total field amplitude may be determined by superposition of the independent ray fields unless the medium is nonlinear.
- 8. The ray solutions are not adequate for the evaluation of reflection and transmission coefficients at boundaries with discontinuous changes in the sound velocity. Ray theory can be used for these if these coefficients are given independently, including both the real and imaginary components.
- 9. The caution given in the beginning of this appendix is reemphasized here; in applying these techniques to a nonhomogeneous medium
 such as the ocean, it must be established that the velocity field can be known
 with sufficient accuracy to justify any connection between the computed travel
 time T for a model velocity field and the actual phase change of the ray
 over its path. It is most probable and this will be established in future
 research that such investigations will be valuable for adjacent rays that
 travel over nearly the same ray paths. For this situation, together with
 the approach of (A. 2) above, one wishes to establish procedures for determining, for example, the effective width of convergence zones including
 diffraction effects.

Appendix References

- I. Tolstoy and C. S. Clay, <u>Ocean Acoustics</u>, McGraw-Hill Book Co., New York (1966).
- 2. I. Tolstoy, J. Acoust. Soc. Am, 37, 1153 (1965).
- 3. M. Born and E. Wolf, <u>Principles of Optics</u>, Chapter 8, Pergamon Press, New York (1959).
- 4. M. Born and E. Wolf, loc. cit., Section 8.8.4.
- 5. The Physics of Sound in the Sea, Summary Technical Report of NDRC, Division 6, Volume 8, Chapter 3, Washington, D. C. (1946).
- 6. M. Born and E. Wolf, loc. cit., Appendix III.
- 7. A. H. Carter, Multi-Mode Acoustic Propagation in an Inhomogeneous Bounded Medium, Thesis (unpublished), Brown University (1963).

Fig. A-1. Coordinate system used for Eq. (A.6).

Fig. A-2. Coordinate system used to construct an aperture-limited diffraction field. On the spherical surface S of radius f the wave $V(r,t) \quad \text{is constant in phase and magnitude and is given by } \frac{e^{-ikf}}{f} \quad .$ The field due to this wave, representing the truncation of the wave by the finite aperture of S , of diameter 2G , is determined at P O is the focal point of S .

Fig. A-3. Ray geometry used to extend wave solution on surface S_1 through the region of ray crossings, C, to a further surface S_2 Equation (A.21) is used to determine the field on S_2 in terms of the field on S_1 and in terms of ray solutions from points O_2' on S_2 to the points on surface S_1 at O_1'' These are separated by the travel time T''

Fig. A-4. Conventional ray diagram for the refraction of an incident plane wave against a velocity gradient. The medium is horizontally stratified with constant sound velocity for negative values of z and with a constant gradient for positive values of z. The gradient is given by p. The normal rays of an incident wavefront at surface S are turned in the gradient region and are refracted back toward negative depths. z_t is the depth at which the rays are turned to be horizontal.

Fig. A-5. Huygen's determination of the field at P due to an incident plane wave at S. The diagram is otherwise analogous to Fig. A-4. The rays from P are specified by their angle with respect to the horizontal, θ . P has been chosen to be on the same level as the normal ray from point O on S, and this ray makes an angle θ with the horizontal. On S the ray from P have a ray direction S that is inclined by the angle G with respect to the normal of plane G. Points G and G are separated in range by distance G as specified parameters for the ray tracing program the following values were chosen:

Fig. A-7. The data of Fig. A-6 replotted to show the travel time $T-T_0$ as a function of position on plane S; also for set "O"

Fig. A-8. Cours of equal travel time for rays from P to the plane surface S measured with respect to point O on S. Fig. A-8a gives the contours for initial angles $\theta \leq \theta_C$ and Fig. A-8b gives the contours for initial angles $\theta \geq \theta_C$.

FIG. 9 DETAILED RAY PATHS FOR SET "O" RAYS SHOWING RAY INTERSECTIONS.
SOLID LINES INDICATE RAYS WITH 0*0. AND DASHED LINES INDICATE
RAYS WITH 0*0. ADJACENT RAYS WITH 0*0. HAVE MADE ONE
INTERSECTION BEFORE MEETING PLANE S BUT THE RAYS WITH 0*0.
HAVE NOT INTERSECTED BEFORE MEETING PLANE S.

Tig. A-10. Two-arrival interference pattern of field from a point source reflected against a velocity gradient as in Fig. A-5.

UNCLASSIFIED

Security Classification					
DOCUMENT CONT	ROL DATA - R	. D			
(Security classification of title, body of abshact and indexing a	ennetetion must be e				
1. BRIGINATING ACTIVITY (Corporate author)		SALPEPORT SECURITY CLASSIFICATION			
Hudson Laboratories of Columbia Universi	ity	UNCLASSIFIED			
145 Palisade Street		28. SROUP			
Dobbs Ferry, New York 10522		Not applicable			
A REFORE TITLE	CINC PROC	D 4 1 4			
THE HUDSON LABORATORIES RAY TRAC	JING PROG	KAN	1		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)					
Technical Report					
S. AUTHOR(S) (First name, middle initial, last name)					
H. Davis, H. Fleming, W. A. Hardy, R.	Miningham,	S, Rosen	baum		
4. MEPORY DATE	Tre. TOTAL NO. 0		T-1		
	36.3	FPAGES	76. NO. OF NERS		
June 1968	M. ORIGINATOR'S REPORT NUMBERIS				
	Technical Report No. 150				
Nonr-266(84)	recimital Report No. 150				
	Į.				
۲.	SD. OTHER REPORT NO(S) (Any other numbers that may be assigned				
í	this report)		•		
4					
10. DISTRIBUTION STATEMENT					
Document cleared for public release and s	anlar ite diet	wibution is	e unlimited		
Document cleared for public release and a	iale, its area	I Ibation (a	, ammitted.		
	12. SPONSORING				
11- SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY ACTIV	V17V		
	Office of	Naval Res	search, Code 466		
1					
13. ABSTRACT					
A series of computer programs ha	s been deve	loped for t	the calculation of		
the acoustical field in long-range, low-fre	equency unde	erwater so	und propagation in		

the acoustical field in long-range, low-frequency underwater sound propagation in the deep ocean. The programs involve the extraction of data inputs from available data banks, the calculation of ray trajectories, and intensity calculations that are based on the mapping of ray densities into the far acoustical field. This report outlines the methods used in the calculations and provides incidental commentary on the results of the program and its application to underwater sound propagation.

n	n	FORM	14	73	(PAGE 1)

UNCLASSIFIED

UNCLASSIFIED

Security Classification	LIN	× 4	LINK B		LINKC	
KEV WORDS	#0 L E	wŦ	AOLE WT		MOLE WY	
Ray tracing						
Long-range underwater sound propagation						
Terrain shadowing (underwater sound)						
Computer applications - ray tracing						
Vertical distribution of sound intensity (in underwater propagation)						
Multipath interference (underwater sound)						
Transmission loss (underwater sound)						,
Bottom reflections (underwater sound)						
Phase changes in ray theory						
		1				
			}			
			•			
	- 1					
				ļ		

DD FORM .. 1473 (BACK)
5/N 0101-807-6821

UNCLASSIFIED
Security Classification 6-31409