Youshin Kim 2017-02-21 CS251 Project 2

Brute : $(3.27 \times 10^{-10}) * n(n-1)(n-2)(n-3) + n^2 \sim n^4$ because 4 nested for loops accords input + sorting by brute force takes n^2 .

Fast: $\sim (6.70228 \times 10^{-8})^* \, n^2 + n \log n \sim n^2$ because I have 2 nested for loops accords input value with sorting by merge sort that takes O(nlogn) Table of N = $\{5,10,20,40,80,160,320,500,640,1000\}$

N	Brute(in second)	Fast(in second)
5	0.031	0.031
10	0.032	0.029
20	0.032	0.034
40	0.036	0.035
80	0.053	0.039
160	0.242	0.044
320	2.711	0.079
500	20.558	0.224
640	53.667	0.340
1000	325.055	0.53

brute:

fast:

You can see that the plot goes as log sign for fast(concave down) and exponential for brute(concave down).

Estimating N = 1000000:

Brute $(3.27x10^{-10})*((1,000,000)(999999)(999998)(999997) + (1000000)^2) = 3.26998 \times 10^14 \text{ seconds}$

Fast $(6.70228 \times 10^{-8})^*$ $(1000000^2 + 1000000000000) = 992977$ seconds