## Grover's Search

Yu-Hsuan Huang Cheng-Wei Lin

National Chiao Tung University

January 10, 2020

#### Overview

**Intended Outcome.** Leverage matrix analysis and used it on Grover's search and BBBV bound. Understand how would quantum evolution corresponds to our matrix method.

- Preliminary
- Quantum "rules"
- Preimage finding problem
- Housholder transform
- Grover's search
- BBBV's bound
- Consequences

## Definition (Lebesgue Space)

Given a measure space  $X, \mu$  its p-Labesgue space collects all finite energy mapping to  $\mathbb{C}$ ,

$$\mathcal{L}^p(X) := \left\{ f: X \to \mathbb{C}, \int_X |f|^p d\mu < \infty \right\}.$$

Specifically, we denote  $\mathbb{C}^X := \mathcal{L}^2(X)$  with inner product,

$$\langle x, y \rangle := \int_X \bar{f} \cdot g d\mu,$$

and norm  $||x|| := \langle x, x \rangle$ .

### Theorem (Riesz, Fisher)

The  $\mathbb{C}^X$  is topologically complete, i.e. any Cauchy sequence,  $\{x_i\}_{i\in\mathbb{N}}\subseteq\mathbb{C}^X$  with  $\forall\epsilon>0\exists N,\|x_n-x_m\|<\epsilon,\forall n,m>N$ , has limit,

$$\lim_{i\to N} x_i \in \mathbb{C}^X.$$

If X is finite, then we could choose  $\mu$  as discrete measure, then

$$\mathbb{C}^X = \left\{ f: X \to \mathbb{C}, \sum_{x \in X} |f(x)|^2 < \infty \right\}.$$

For any  $x \in X$ , denote ket  $|x\rangle : \begin{cases} x \mapsto 1 \\ x' \mapsto 0, \text{ for } x \neq x' \end{cases}$  and bra  $\langle x| := |x\rangle^* := \langle x, \cdot \rangle \in \operatorname{Hom}(\mathbb{C}^X, \mathbb{C}).$ 

#### Definition

Given a linear map between Hilbert spaces  $L:V\to W$ , it's adjoint  $L^*:W\to V$  is the only operator [Riesz, Frechet] satisfying,

$$\langle Lv, w \rangle_W = \langle v, L^*w \rangle_V.$$

When W=V and  $L\circ L^*=L^*\circ L=\operatorname{Id}$ , L is said to be unitary. If V,W are finite dimensional  $\mathcal{L}^2$  spaces, then operator could be represented as a matrix and its adjoint is just the conjugate transpose matrix. The unitary operators are just those unitary matrices.

## Definition (local operators)

Consider  $\mathbb{C}^{\{0,1\}^J}$ ,  $J\subseteq\mathbb{N}$  composed of countably many 2 dimensional Lebesgue spaces, i.e. it could be written as the tensor space,

$$\mathbb{C}^{\{0,1\}^K} = \bigotimes_{j \in J} \mathbb{C}^{\{0,1\}}.$$

A operator L is said to be r-local iff,  $\exists R \subseteq J$  of size r and  $L_R \in \mathsf{GL}(\mathbb{C}^{\{0,1\}^R})$  that

$$L = \left(\bigotimes_{j \in J-R} \operatorname{Id}\right) \otimes L_R.$$

## Quantum "Rules"

## Definition (quantum circuit)

A quantum circuit with n-qubits and t gates is composed of a sequence of O(1)-local unitary operators  $\{U_i\}_{1\leq i\leq t}\subseteq \mathbb{C}^{\{0,1\}^n}$ . With initial input state  $|\psi_0\rangle$ , the circuit induces a unitary evolution  $\{|\psi_i\rangle\}_{0\leq i\leq n}$  as following,

$$|\psi_i\rangle = U_i|\psi_{i-1}\rangle.$$

### Definition (measurement)

Given a quantum state  $|\psi\rangle\in\mathbb{C}^X$  measurement is specified by a set of orthogonal projection operators  $\{P_i\}_{i\in J}$ , i.e.

- $ightharpoonup \operatorname{Im}(P_i) \perp \operatorname{Im}(P_i)$ , for  $i \neq j$ ,
- $\triangleright P_i^2 = P_j, \forall j \in J.$

The measurement result would yield j with probability  $||P_i||\psi\rangle||^2$ .



# Quantum "Rules"

For example, take Hadamard tansform  $H^{\otimes n}$  as example,

$$H^{\otimes n} = \frac{1}{\sqrt{2^n}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^{\otimes n}.$$

This maps as follows,

$$|x\rangle \mapsto \frac{1}{\sqrt{2^n}} \sum_{x' \in X} (-1)^{x \cdot x'} |x'\rangle.$$

Specifically define  $|+\rangle = H|0\rangle$  and  $|-\rangle = H|1\rangle$ , Also we have,

$$H|0\rangle = \frac{1}{\sqrt{2^n}} \sum_{\mathbf{x}' \in \mathbf{X}} |\mathbf{x}'\rangle.$$

# Quantum "Rules"

$$(A \otimes C)(B \otimes D) \sim AB$$

$$(A \otimes C)(B \otimes D) \sim AB \otimes CD$$

$$CD$$

$$CD$$

## Definition (preimage finding problem)

In a preimage finding finding problem, one is given access to the quantum oracle of  $f:\{0,1\}^n \to \{0,1\}$  in the following form,

$$O_{\pm}:|x\rangle\rightarrow (-1)^{f(x)}|x\rangle,$$

and asked to find any  $x_0$  such that  $f(x_0) = 1$ .



(Here H represent Householder transform instead of Hadamard.)



(Here H represent Householder transform instead of Hadamard.)



(Here H represent Householder transform instead of Hadamard.)

## Theorem (Grover's search)

The preimage finding problem could be solved in  $O(\sqrt{\frac{N}{k}})$  quantum queries and  $O(n\sqrt{\frac{N}{k}})$  gates where  $N:=2^n$  and  $k=\#\{x:f(x)=1\}$  with the following algorithm,

- Initialize the state  $|\psi_0\rangle = |0\rangle$ .
- ► Apply Hadamard transform  $|\psi_1\rangle = H|\psi_0\rangle = \frac{1}{\sqrt{N}} \sum_{i \in \{0,1\}^n} |i\rangle$ .
- ▶ Apply  $G_+ \circ O_\pm$  for  $O(\sqrt{\frac{N}{k}})$  iterations,  $|\psi_{i+1}\rangle = G_+ \circ O_\pm |\psi_i\rangle$ , where

$$G_+ = 2|+\rangle\langle +|-1.$$

Measure the final state in computational basis with the projection matrices

$$\{P_x := |x\rangle\langle x|\}_{x\in\{0,1\}^n} \subseteq \mathbb{C}^{\{0,1\}^n}.$$







#### Proof.

Well-definedness. First of all, since  $\sigma(G_n) = \{\pm 1\}$  and Hermitian,  $G_+$  is unitary. Also we have,

$$G_+ = 2|+\rangle\langle +|-I = H \circ G_0 \circ H,$$

where

$$G_0:=2|0\rangle\langle 0|-I: \begin{cases} |x\rangle\mapsto -|x\rangle, \text{ for } x\neq 0\\ |0\rangle\mapsto |0\rangle. \end{cases}$$

Check that  $G_0$  could be constructed in O(n) gates! Convergence. Suppose

$$|\psi_i\rangle = \sum_{x:f(x)=1} a_i |x\rangle + \sum_{x:f(x)=0} b_i |x\rangle.$$

Define mean value  $\mu_i := \frac{-k}{N} a_i + \frac{(N-k)}{N} b_i$ .

#### Proof.

We have,

$$a_{i+1} = 2\mu_i + a_i = \frac{N-2k}{N}a_i + \frac{2N-2k}{N}b_i$$
, and  $b_i = \sqrt{\frac{1-ka_i^2}{N-k}}$ .

Suppose 
$$ka_i^2 = \sin^2(\theta_i)$$
, then  $a_i = \frac{\sin(\theta_i)}{\sqrt{k}}$  and  $b_i = \frac{\cos(\theta_i)}{\sqrt{N-k}}$ .

$$\sin(\theta_{i+1}) = \frac{N - 2k}{N\sqrt{k}} a_i + \frac{2N - 2k}{N\sqrt{k}} b_i$$

$$= \frac{N - 2k}{N} \sin(\theta_i) + \frac{2\sqrt{(N-k)k}}{N} \cos(\theta_i)$$

$$= \sin(\theta_i + \phi),$$

where 
$$\sin(\phi) = \frac{2\sqrt{(N-k)k}}{N}$$
.



#### Proof.

Note that  $\phi \in \Theta\left(\sqrt{\frac{k}{N}}\right)$  is independent of i and thus, in order that

$$\begin{split} \Omega(1) &\leq \Pr[\text{measure result } x: f(x) = 1] \\ &= ka_i^2 = k \sin^2(\theta_i) = k \sin^2(\theta_1 + (i-1)\phi), \end{split}$$

the iteration count  $i \in \Theta(\sqrt{\frac{N}{k}})$  would be enough. Also, since each iteration would cost  $\Theta(n)$  gates, in total  $\Theta(n\sqrt{\frac{N}{k}})$  gates are enough.

We now introduce a restricted version of BBBV bound for pre-image finding problem.

# Theorem (Bennett, Bernstein, Brassard, Vazirani)

In order to solve for pre-image finding problem with k = 1,  $\Omega(\sqrt{N})$  quantum queries are required.

#### Lemma

Suppose  $|\phi\rangle, |\psi\rangle \in \mathbb{C}^X$  with  $|||\phi\rangle|| = |||\psi\rangle|| = 1$  and  $|||\phi\rangle - |\psi\rangle|| \le \epsilon$ . Given measurement matrices  $\{P_j\}_{j\in J}$  the probability difference is bounded as following,

$$\sum_{j\in J} \left| \|P_j|\phi\rangle\|^2 - \|P_j|\psi\rangle\|^2 \right| = \sum_{j\in J} \left| \langle \phi|P_j|\phi\rangle - \langle \psi|P_j|\psi\rangle \right| \le 4\epsilon.$$

#### Proof.

Suppose  $|\delta \rangle = |\phi \rangle - |\psi \rangle$  and,

$$P_j|\phi\rangle = \alpha_j, \quad P_j|\psi\rangle = \beta_j, \quad \gamma_j = P_j|\delta\rangle = \alpha_j - \beta_j.$$

Then

$$\alpha_{j}\alpha_{j}^{*} - \beta_{j}\beta_{j}^{*} = (\beta_{j} + \gamma_{j})(\beta_{j}^{*} + \gamma_{j}^{*}) - \beta_{j}\beta_{j}^{*}$$

$$= \beta_{j}\beta_{j}^{*} + \gamma_{j}\gamma_{j}^{*} + \beta_{j}\gamma_{j}^{*} + \gamma_{j}\beta_{j}^{*} - \beta_{j}\beta_{j}^{*}$$

$$= \gamma_{j}\gamma_{j}^{*} + \beta_{j}\gamma_{j}^{*} + \gamma_{j}\beta_{j}^{*}.$$

Therefore,

$$\begin{split} & \sum_{j \in J} |\langle \phi | P_j | \phi \rangle - \langle \psi | P_j | \psi \rangle| \le \sum_{j \in J} \left| \gamma_j \gamma_j^* + \beta_j \gamma_j^* + \gamma_j \beta_j^* \right| \\ & \le \langle \delta | \delta \rangle + \langle \psi | \delta \rangle + \langle \delta | \psi \rangle \le \epsilon^2 + 2\epsilon \le 4\epsilon. \end{split}$$



#### Proof of main theorem.

Any q-query algorithm is of form

$$U_q O_{\pm} U_{q-1} \dots U_1 O_{\pm} U_0.$$

For some 
$$\tilde{x} \in X$$
 pick  $f(x) = \begin{cases} 1, & \text{for } x = \tilde{x}, \\ 0, & \text{otherwise.} \end{cases}$  Let

$$|\psi_{\tilde{x}}^{i}\rangle = O_{\pm}U_{i-1}|\psi_{\tilde{x}}^{i-1}\rangle, |\psi_{0}^{i}\rangle = U_{i-1}|\psi_{\tilde{x}}^{i-1}\rangle.$$

We are bounding  $\|U_q|\psi_{\tilde{x}}^q\rangle - U_q|\psi_0^q\rangle\| = \||\psi_{\tilde{x}}^q\rangle - |\psi_0^q\rangle\|.$ 

Proof of main theorem.

Note that,

$$\begin{split} & \||\psi_{\tilde{x}}^{i}\rangle - |\psi_{0}^{i}\rangle\| \\ & \leq \|O_{\pm}U_{i-1}|\psi_{\tilde{x}}^{i-1}\rangle - U_{i-1}|\psi_{0}^{i-1}\rangle\| \\ & \leq \|O_{\pm}U_{i-1}|\psi_{\tilde{x}}^{i-1}\rangle - U_{i-1}|\psi_{\tilde{x}}^{i-1}\rangle\| + \|U_{i-1}|\psi_{\tilde{x}}^{i-1}\rangle - U_{i-1}|\psi_{0}^{i-1}\rangle\| \\ & \leq \|O_{\pm}U_{i-1}|\psi_{\tilde{x}}^{i-1}\rangle - U_{i-1}|\psi_{\tilde{x}}^{i-1}\rangle\| + \||\psi_{\tilde{x}}^{i-1}\rangle - |\psi_{0}^{i-1}\rangle\|. \end{split}$$

Let 
$$U_{i-1}|\psi_{\tilde{x}}^{i-1}\rangle = \sum_{x} \alpha_{x}|x\rangle$$
, then

$$||O_{\pm}U_{i-1}|\psi_{\tilde{x}}^{i-1}\rangle - U_{i-1}|\psi_{\tilde{x}}^{i-1}\rangle|| \le 2|\alpha_{\tilde{x}}|.$$

By Cauchy-Schwartz Inequality when running all possilbe  $\tilde{x}$ ,

$$\sum_{\tilde{\mathbf{x}} \in X} |\alpha_{\tilde{\mathbf{x}}}| \leq \sqrt{\sum_{\tilde{\mathbf{x}} \in X} |\alpha_{\tilde{\mathbf{x}}}^2| \cdot \mathbf{N}} \leq \sqrt{\mathbf{N}}.$$

#### Proof of main theorem.

Therefore,

$$\begin{split} &\sum_{\tilde{\mathbf{x}} \in \mathbf{X}} \| |\psi_{\tilde{\mathbf{x}}}^{i} \rangle - |\psi_{0}^{i} \rangle \| \\ &\leq \sum_{\tilde{\mathbf{x}} \in \mathbf{X}} \left( \| O_{\pm} U_{i-1} | \psi_{\tilde{\mathbf{x}}}^{i-1} \rangle - U_{i-1} | \psi_{\tilde{\mathbf{x}}}^{i-1} \rangle \| + \| |\psi_{\tilde{\mathbf{x}}}^{i-1} \rangle - |\psi_{0}^{i-1} \rangle \| \right) \\ &\leq \sum_{\tilde{\mathbf{x}} \in \mathbf{X}} \left( \sqrt{N} + \| |\psi_{\tilde{\mathbf{x}}}^{i-1} \rangle - |\psi_{0}^{i-1} \rangle \| \right) \leq q \sqrt{N}, \end{split}$$

We have that  $\mathbb{E}_{\tilde{\mathbf{x}} \overset{\$}{\leftarrow} \mathbf{X}}[\||\psi^i_{\tilde{\mathbf{x}}}\rangle - |\psi^i_0\rangle\|] \leq \frac{q}{\sqrt{N}}$ . Together with previous lemma, in order to find preimage with  $\Omega(1)$  probability, we require  $q \geq \Omega(\sqrt{N})$ .

# Consequences

## Corollary

The post quantum security for any symmetrical cryptosystem is cut in half.

Corollary (Brassard, Hoyer, Tapp)

Hash collision could be found in  $O(N^{\frac{1}{3}})$  queries.

Corollary (complexity theoretic result)

There is an quantum oracle A that

 $NP^A \not\subseteq BQP^A$ .

## Summary and Take-aways

- Quantum computation is just unitary evolution driven by local unitaries.
- ▶ The Grover diffusion operator  $G_+$  is in fact negative Householder transform.
- For upper bound proof, need to prove for well-definedness and convergence speed.
- For lower bound proof, need to consider general case. (any potential algorithm)
- Grover search produces quadratic and only quadratic speedup, quantum computation is not the cure-all!