

# Determining the Latent Heat of Vapourization of Water by Varying Pressure

Kevin Sohn (260782138), Lambert Francis (260861226)

McGill University Department of Physics

June 15, 2022

#### Abstract

In this experiment, we determined the latent heat of vaporization of water by boiling water under various pressures and recording the boiling temperature and pressure. The latent heat, L, was determined by performing two fits: a linear fit of the form  $lnP = -\frac{L}{RT} + lnP_0$ , and a non-linear fit of the form on  $P = P_0 e^{-\frac{L}{RT}}$ , where R, P, and T represent the universal gas constant, pressure, and absolute temperature. L was determined to be  $41900 \pm 64 \frac{J}{mol}$  in the linear case and  $37000 \pm 600 \frac{J}{mol}$  in the non-linear case. The triple point pressure was estimated by evaluating the linear fit at 273.15K, resulting in  $P = 0.47 \pm 0.02$  cmHg. Both L's were more than  $3\sigma$  below the accepted values whereas the triple point pressure was within  $1\sigma$  of the accepted value. We believe these discrepancies are due to systematic errors present in the experimental setup and underestimation of our uncertainty.

### 1 Introduction

In 1761, Joseph Black observed that applying heat to ice at melting point or to water at boiling point did not increase the temperature of the ice/water mixture or the water/steam mixture [1]. This led him to theorize the existence of latent heat, characterizing energy transfer that occurs without changing a substance's temperature [2]. This concept is pivotal in describing phase transitions because latent heat is what fuels the change of state of a substance without changing its temperature [3].

Both temperature and pressure can be varied to induce a phase transition of a substance [4]. The correct combination of these quantities differ from substance to substance and a phase diagram helps visualize the relationship for that specific substance. Lines across the phase diagram depict varying combinations of temperature and pressure that will initiate a phase transition. The triple point is a special point on the phase diagram where the three phases of a substance (solid, liquid, and gas) can coexist in thermal equilibrium [5].

A quantitative description of the relationship between temperature and pressure is given by the Clausius-Clapeyron equation, which gives the slope of the vapour pressure curve [6]. Making several approximations and integrating gives

$$\ln P = -\frac{L}{RT} + \ln P_0,\tag{1}$$

where P is saturated vapour pressure, T is absolute temperature,  $P_0$  is atmospheric pressure, L is latent heat, and R is the universal gas constant. The exponential form of Eq. (1) is given by

$$P = P_0 e^{-\frac{L}{RT}}. (2)$$

The goal of this experiment was to determine the latent heat of vapourization of water by measuring the equilibrium vapour pressure as a function of temperature. By replicating the linear relationship predicted by Eq. (1), we extracted the value of L from the slope of the  $\ln P$  vs.  $\frac{1}{T}$  graph. Then, we compared our result with the value of L extracted from the non-linear fit based on Eq. (2).

### 2 Materials and Methods



Figure 1: Schematic of the experimental setup. Figure taken from [7].

The experimental setup consisted of a flask containing water, a condenser, a heater, a thermometer, and a manometer. A picture of a similar setup can be found in Figure 1. The experiment began at lowest pressure (highest vacuum) and proceeded to highest pressure (atmospheric). Before taking data, we first ensured the water was boiling and at thermal equilibrium. Temperature was recorded digitally via PASCO with a temperature sensor. Absolute pressure was calculated by  $P_{abs} = P_0 - (P_{left} - P_{right})$ , where  $P_{left}$  and  $P_{right}$  are the pressure readings from the left and right tube of the manometer, respectively. Pressure was raised by approximately 1-2 cmHg after each measurement by opening a hand-operated valve to let air into the water-flask. Measurements were made only when thermal equilibrium was achieved, which generally took 3-5 minutes. A live temperature versus time graph was used to aid in recognizing thermal equilibrium. This process was repeated until the pressure inside the flask reached atmospheric pressure.

A linear fit of the form of Eq. (1) and a non-linear fit of the form of Eq. (2) were performed on the pressure versus temperature data to determine the latent heat of vaporization of water (L). Both fits were then used to estimate the triple point pressure solving for pressure when

temperature was 273.15 Kelvin (The triple point temperature of water).

### 3 Results

The uncertainty in atmospheric pressure  $(P_0)$  was taken to be  $\pm$  half of division  $(0.05 \ kPa)$  as it was an analog measurement. The uncertainty in temperature was taken to be  $\pm$  last digit  $(0.01 \ K)$  since it was recorded digitally. Since absolute pressure (P) was calculated by PASCO using the formula,  $P = P_0 - (P_{left} - P_{right})$ , error was propagated using the standard subtraction formula [8] to get,  $\alpha_P = \sqrt{(\alpha_{P0})^2 + (\alpha_{P_{left}})^2 + (\alpha_{P_{right}})^2} = 0.08 \ cmHg$ . All calculations were done with Python in Jupyter Notebook. The code can be found in Appendix B.



Figure 2: Linear and non-linear fits. A reference line is included for the linear fit for comparison to the true value. For the non-linear fit, the axes are scaled to allow scipy.optimize to function correctly.

| Fit Type       | Latent Heat L $(\frac{J}{mol})$ | Triple Point Pressure $(cmHg)$ |
|----------------|---------------------------------|--------------------------------|
| Linear Fit     | $41900 \pm 64$                  | $0.47 \pm 0.02$                |
| Non-linear Fit | $37000 \pm 600$                 | _                              |

Table 1: Extracted values from the fits in Fig. 2

The slope of the linear fit in Fig. 2 was  $-\frac{L}{R} = -5038 \pm 8$ , which implies that the latent

heat of vapourization of water is  $L = 41900 \pm 64 \frac{J}{mol}$ . For the non-linear fit in Fig. 2, the latent heat of vapourization of water was calculated to be  $L = 37000 \pm 600 \frac{J}{mol}$ , where the uncertainty was derived from the co-variance matrix given by scipy.optimize.

The triple point pressure was estimated to be  $P_{Triple} = 0.47 \pm 0.02 \ cmHg$  and was obtained by calculating the pressure at 273.15 K using Eq. (2), using the linear fit latent heat result. The error was propagated by  $\sigma_P^2 = (e^{\frac{-L}{RT}})^2 \sigma_{P_0}^2 + (\frac{P_0}{RT} e^{\frac{-L}{RT}})^2 \sigma_L^2$  (differential error propagation).

### 4 Discussion

From Table. 1, we observe that the latent heat of water from both the linear fit and the non-linear fit are more than  $3\sigma$  below the accepted value of  $40700 \frac{J}{mol}$  [9]. However, the triple point pressure estimation,  $0.47 \pm 0.02 \ cmHg$ , is consistent with the accepted value of  $0.458 \ cmHg$  as it is within  $1\sigma$ .

We can clearly see from Fig. 2 that the boiling point of water changes depending on pressure. Using Eq. (2), and our experimentally determined latent heat (L), we can estimate the boiling pressure at any given temperature where boiling is defined.

All results in this experiment, except the triple pressure estimation, were inconsistent with expected values. We believe there are several causes behind this: In the non-linear fit case, scipy.optimize did not fit the data correctly, even when passed in accepted values, until our data was scaled down in magnitude; In fact, the quality of the fit seemed largely dependent on the units, hence magnitude, of the data. This calls into question the accuracy of the non-linear fit. In the linear case, we suspect the discrepancy to be a result of error underestimation.

There are several sources of unaccounted error: a noticeable pressure leak, incorrect reading of the meniscus, and inherent uncertainty of the barometer used to measure atmospheric pressure, all of which would create a systematic offset to the data. Furthermore, inspecting the low uncertainty given by the linear fit suggests there may be a deeper root to the cause. The approximations used to derive Eq. (1) may not have been ideal and a more general equation might correct the offset. We suspect that an experiment designed to take these factors into account would result in a value for L within  $3\sigma$  of the accepted value.

## 5 Conclusions

In this experiment, we determined the latent heat of vaporization of water and estimated its triple point pressure. We found that boiling is not constrained to a single temperature, but rather, dependent on the subjected pressure and temperature.

In our analysis, we note that the non-linear fitting procedure ( $curve_-fit$ ) had difficulty determining the best fit latent heat value. Thus, we relied on our linear fit for L to estimate the triple point pressure of water. In future experiments, we hope to coax scipy.optimize to performing better non-linear fits. On the other hand, the triple point pressure of water extracted from the linear fit gave us an accurate result that was within  $1\sigma$ . From this, we conclude that linearizing data is the more reliable way to extract parameters from an equation.

While our findings were statistically inconsistent with accepted results, our linear estimation for L was relatively close to the accepted value. We believe this discrepancy is a result of systematic error in the setup and our theoretical approximations. This experiment could be improved significantly by addressing the systematic errors and using a more general version of Eq. (1) to solve for L.

**Author Contribution Statement:** K.S and L.F contributed equally to the experiment and the report.

## References

- [1] "Joseph Black Wikipedia." [Online]. Available: https://en.wikipedia.org/wiki/ Joseph{\_}Black 1
- [2] "Latent heat Wikipedia." [Online]. Available: https://en.wikipedia.org/wiki/Latent $\{ \_ \}$  heat 1
- [3] "Phase transition Wikipedia." [Online]. Available: https://en.wikipedia.org/wiki/ Phase{\_}transition 1
- [5] "Triple point Wikipedia." [Online]. Available: https://en.wikipedia.org/wiki/Triple{\_} point 1
- [6] "8.4 The Clausius-Clapeyron Equation." [Online]. Available: https://web.mit.edu/16. unified/www/FALL/thermodynamics/notes/node64.html 1
- [7] "Heat of Vaporization Experiment." [Online]. Available: https://www2.southeastern. edu/Academics/Faculty/delbers/Heatofvaporization.htm 2
- [8] I. "Hughes and T. Hase, Measurements and Their Uncertainties: A practical Guide to Modern Error Analysis. Oxford University Press, 2010. 3
- [9] P. Datt, Latent Heat of Vaporization/Condensation. Dordrecht: Springer Netherlands,
   2011, pp. 703-703. [Online]. Available: https://doi.org/10.1007/978-90-481-2642-2\_327

### A Lab Notebook

|                                       | and the second s | 1062-1                                                                                                                          | atent Heat of      | Valourization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lab 2 - Latent Heat of Vapourization Of Water                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | before reasurement!                                                                                                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in equilibrium.                                                                                                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A $P = P$ $P$ $P$ atmospheric pressure                                                                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A $P = P_0 e^{\frac{1}{RT}}$ $P_0$ : atmospheric pressure a correct early $T$ : absolute temp.                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Po = 102.75 ± 0.05 2Pa L: latent heat of vap-                                                                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                    | : universal gas const.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                       | manoneten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                       | analog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | temp (x)                                                                                                                        | Left value (on Hg) | Right valve (cm Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| \$5.                                  | measurepol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 286-71 ±0.01                                                                                                                    | 87.20 ±0.05        | 11.70 ±0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                       | us thalf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 322.80 ± 11                                                                                                                     | 83.50 ± 11         | 14.85 ± 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                       | division                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 334.29±11                                                                                                                       | 80.38 ± 11         | 17.65 \$ 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| · · · · · · · · · · · · · · · · · · · | Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 344.36 ±11                                                                                                                      | 76.09 ± 11         | 21.46 ± 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                       | digital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 352.87 ± "                                                                                                                      | 71. 05 ± 11        | 25.82 ± 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 6                                     | n ± last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 359.49 ± !!                                                                                                                     | 65 - 89 ± 11       | 30-35 ± 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                       | digit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 362.22 ± 60                                                                                                                     | 62.46 \$ 11        | 33-35 ± 1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 368.39±11                                                                                                                       | 56.98 ± 11         | 38.14 # 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 370.79± 11                                                                                                                      | 54-10 ± 11         | 40.70 \$ 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 374.12±11                                                                                                                       | 49.72 ± 11         | 44.50 ± 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 376-17±11                                                                                                                       | 49.93 ± 11         | 46.97 ± 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 376-08±11                                                                                                                       | 49.95 ± 11         | 49.95 ± 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | error sources:                                                                                                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                       | Management of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AP = (25.82 - 23.60) Zpa -> mercury rising when Valle a                                                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Different increments of mercury each trial                                                                                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                       | Por volidalda.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | changing pressure before equilibrium.                                                                                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Different increments of mercury each trial.  Changing pressure before equilibrium.  Barometer giving wrong atmospheric pressure |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | > data offset!                                                                                                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                    | T addition high his had not recovered printing the high old the had had the high distribution to the solution of an element of the solution of the high solu |  |  |



## B Python Code

```
In [22]: import numpy as np
         import matplotlib.pyplot as plt
         import scipy.optimize as opt
         plt.rcParams['figure.figsize'] = [18, 7]
         plt.rc('font', size = 15)
         plt.rc('xtick', labelsize = 15)
         plt.rc('ytick', labelsize = 15)
In [23]: # importing raw data
         data = np.loadtxt("rawdata.csv", delimiter = ",");
         P, T, leftP, rightP = np.transpose(data);
         # a bunch of conversions for pressure, P0
         P0 = 102.75; # kPa
         P0 = P0*1000*0.000750062 # cmHg
         P0_err = 0.05; # kPa
         P0_err = P0_err*1000*0.000750062 # cmHg
         print(P0, P0_err)
         # errors for measured quantities
         leftP err = 0.05; # cmHg
         rightP_err = 0.05; # cmHg
         T err = 0.01 \# K
```

77.0688705 0.0375031

 $P0 = 77.07 \pm 0.04$  cmHg

$$P = P0 - (P_{left} - P_{right})$$

$$\alpha_P = \sqrt{(\alpha_{P0})^2 + (\alpha_{P_{left}})^2 + (\alpha_{P_{right}})^2}$$

http://lectureonline.cl.msu.edu/~mmp/labs/error/e2.htm (http://lectureonline.cl.msu.edu/~mmp/labs/error/e2.htm)

```
In [24]: P0 = 77.07
P0_err = 0.04
P_err = np.sqrt(P0_err**2 + leftP_err**2 + rightP_err**2);
print(P_err);
```

0.08124038404635961

 $\alpha_P = 0.08 \text{ cmHg}$ 

```
In [25]: # linearizing data and propagating error
         x = 1/T;
         x_{err} = np.sqrt((-1/T**2)**2 * T_err**2);
         y = np.log(P);
         y_err = np.sqrt((1/P)**2 * P_err**2);
         w = 1/y err**2; # weight
         # calculate the denominator for linear least squares
         Del = np.sum(w)*np.sum(w*x**2)-(np.sum(w*x))**2
         # slope and intercept
         m = (np.sum(w)*np.sum(w*x*y)-np.sum(w*x)*np.sum(w*y))/Del
         c = (np.sum(w*x**2)*np.sum(w*y)-np.sum(w*x)*np.sum(w*x*y))/Del
         # error on slope and intercept
         m_err = np.sqrt(np.sum(w)/Del);
         c_err = np.sqrt(np.sum(w*x**2)/Del);
         # linear model
         fit = m*x + c
         # max and min line
         fit_max = (m+m_err)*x + c
         fit_min = (m-m_err)*x + c
         # Appendix Reference Line
         y_ref = -5205*x + 18.3
         print(m, m_err);
         print(-m*8.314, m_err*8.314);
         print(np.exp(m*(1/273.15)+c)) # triple point estimate, (plugging in 27
         3.15 K) # Get .49 cmHg # .49 +- .03
         print(np.exp((m-m_err)*1/273.15)+c)
         print(np.exp((m+m_err)*1/273.15)+c)
         -5038.064489109793 7.674488732916755
         41886.46816245882 63.8056993254699
         0.49455464286534956
         17.740216816070966
         17.74021681661984
```

 $-\frac{L}{R} = -5038 \pm 8 \implies L = 41900 \pm 64 \frac{J}{mol}$ 

```
In [26]: fig, (ax1, ax2) = plt.subplots(1,2);
         # plotting linear data
         axl.errorbar(x, y, yerr = y_err, fmt = ".", color = "k", label = "Data
         ", capsize = 2, elinewidth = 1);
         ax1.plot(x, fit, label = "Best fit");
         ax1.plot(x, fit_max, label = "Max");
         ax1.plot(x, fit_min, label = "Min");
         ax1.plot(x, y_ref, label='Reference')
         ax1.set_title(r"$lnP$ as a function of $\frac{1}{T}$ for Water");
         ax1.set_xlabel(r"\$\frac{1}{T}\$ $[K^{-1}]\$");
         ax1.set ylabel(r"lnP [cmHg]");
         ax1.legend();
         ax1.grid();
         scale = 100000 # np.scipy.opt.curve fit has issues fitting to large nu
         mbers for some reason
         x = np.linspace(T[0]/scale, T[len(T)-1]/scale, 100)
         # scaling down every quantity
         P = P/scale
         T = T/scale
         P_err = P_err*1.33/scale
         def f1(T, L):
             P0 = 77.07*1.33 \# Kpa
             R = 8.314; \# J/mol.K
             return P0*np.exp(-L/(R*T)); # R in J/mol.K
         # plotting non-linear data
         param2, cov2 = opt.curve_fit(f1, T, P, absolute_sigma = True)
         ax2.errorbar(T, P, yerr = P_err, fmt = ".", label = "Data", capsize =
         2, elinewidth = 1)
         ax2.plot(x, f1(x, param2), label = "Best fit")
         ax2.set_title("Pressure as a function of Temperature for Water");
         ax2.set_xlabel(r"$T\times 10^{-5}$ [K]");
         ax2.set_ylabel(r"$P\times 10^{-5}, [cmHg]");
         ax2.legend();
         ax2.grid();
```



$$L = 37000 \pm 600 \frac{J}{mol}$$

#### Source for universal gas constant R

https://www.engineeringtoolbox.com/individual-universal-gas-constant-d\_588.html (https://www.engineeringtoolbox.com/individual-universal-gas-constant-d\_588.html)

#### Source for L

https://www.engineeringtoolbox.com/water-properties-d\_1573.html (https://www.engineeringtoolbox.com/water-properties-d\_1573.html)