Ainslee's RL Final Project Environment Design

This environment simulates a character-level spell correction task. Each episode begins with a real English word that has been corrupted using DeepWordBug. The agent sees the corrupted version and attempts to restore it to the correct (original) spelling using one-character substitutions. The environment is built to be compatible with OpenAI Gymnasium and can be used with discrete-action RL algorithms like PPO or DQN.

• Observation Space

- obs: a fixed-length sequence of characters (e.g., max 10), padded as needed
- Characters are integer-encoded (a=1 to z=26, PAD=0).
- Represented as a 1D NumPy array of length max_word_length

• Action Space

- Discrete space of size max_word_length × 26.
 - * Each action encodes a tuple (position, new_char), where:
 - position ∈ [0, max word length 1]
 - new_char ∈ [0, 25], representing 'a' through 'z'
 - * To decode:

```
position = action // 26
char_index = action % 26
new_char = chr(97 + char_index) # ASCII for 'a' is 97
```

- * This is functionally the same as using (position, letter) directly, but flattened into a single integer for Gymnasium's Discrete(n) action space. This keeps the interface simple for standard agents that expect discrete actions.
- * I could instead define a MultiDiscrete([max_word_length, 26]) action space if I'd rather keep the (position, char) tuple literal.

• Step Output Format

- The step(action) method returns:

obs, reward, terminated, truncated, info

- * obs: the new word state, integer-encoded and padded
- * reward: see reward structure below
- * terminated: True if the agent has restored the word exactly
- * truncated: True if max number of steps reached
- * info: a dict with optional metadata (maybe: edit distance or original word)

• Reward Structure

- Sparse by default:
 - * +1.0 if the current word exactly matches the ground truth (i.e., the correct word **before** it was corrupted with DeepWordBug)
 - * 0.0 otherwise
- Optional: negative shaping via normalized edit distance:
 - * The agent receives -normalized_edit_distance(current,

target), where:

- normalized_edit_distance = edit_distance / max(len(current), len(target))
- $\cdot\,$ This penalizes edits that move the agent farther from the correct answer.
- · Encourages more efficient and targeted edits.
- * This can be introduced if sparse rewards prove too difficult for learning.

• Done Condition

- terminated = True if current word == original word (i.e., correct spelling)
- truncated = True if step count \geq to max_steps
- The episode ends when either is **True**.