ECEn 671: Mathematics of Signals and Systems

Randal W. Beard

Brigham Young University

September 1, 2023

Section 1

Notions of Convergence

Notions of Convergence

Definition (Strong Convergence / Convergence in norm)

 x_n converges strongly to x, i.e. $x_n \stackrel{s}{\to} x$ iff

$$||x_n - x|| \to 0$$
 as $n \to \infty$

Definition (Weak Convergence / Convergence in inner product)

 x_n converges weakly to x, i.e. $x_n \stackrel{w}{\to} x$ iff

$$\langle x_n, y \rangle \rightarrow \langle x, y \rangle, \forall y \in S,$$

Note that this must hold for all $y \in S$, therefore Example 2.4.4 in the book is bogus!

Notions of Convergence (cont.)

Theorem (Strong vs. Weak Convergence)

Let (x_n) be a sequence in a normed space \mathbb{X} . Then

- A. Strong convergence ⇒ weak convergence with the same limit
- B. The converse of (A.) is not generally true
- C. If dim $\mathbb{X} < \infty$, then weak convergence \Rightarrow strong convergence.

(A) By definition of strong convergence,

$$x_n \stackrel{s}{\to} x^* \quad \Rightarrow \quad \|x_n - x^*\| \to 0$$

so let y be any element in \mathbb{X} then

$$|\langle x_n, y \rangle - \langle x^*, y \rangle| = |\langle x_n - x^*, y \rangle| \le ||x_n - x^*|| ||y||$$

but the RHS \rightarrow 0 which implies that the LHS \rightarrow 0 which implies weak convergence.

(B) Before proving part (B) lets first understand what is wrong with Example 2.4.4 in the book.

$$x_n = (0, 0, 0, \dots, 1, 0, \dots)$$

 $y = (1, 1/2, 1/4, 1/8, \dots)$

Then $\langle x_n,y\rangle \to 0$ but this does not imply weak convergence since it must hold for all $y\in \mathbb{X}$.

To prove part (B) we need a counter example. Again let $x_n = (0, 0, ..., 0, 1, 0, ...)$ and let $\mathbb{X} = \ell_2$ i.e.

$$y \in \mathbb{X} \Rightarrow \left(\sum_{i=1}^{\infty} |y_i|^2\right)^{\frac{1}{2}} < \infty$$

 $\Rightarrow y_i \to 0 \quad as \quad i \to \infty$

so

$$\langle x_n, y \rangle = y_n \to 0 \quad \text{as} \quad n \to \infty \qquad \forall y \in \mathbb{X}$$

$$\Rightarrow \{x_n\} \stackrel{w}{\to} 0$$

but there is no x^* such that $||x_n - x^*|| \to 0$.

(C) Suppose that $x_n \stackrel{w}{\to} x$ and $dim(\mathbb{X}) = k$ then

$$\forall y \in \mathbb{X} \qquad \langle x_n, y \rangle \to \langle x, y \rangle.$$

Let $\{e_1,\ldots,e_k\}$ be an orthonormal basis for \mathbb{X} , i.e. $\langle e_i,e_j\rangle=\delta_{ij}$, then

$$x_n = a_1^{(n)} e_1 + \dots + a_k^{(n)} e_k$$

 $x = a_1 e_1 + \dots + a_k e_k.$

Then since
$$\langle x_n,y\rangle o \langle x,y\rangle$$
 $\forall y$, let $y=e_j$
$$\Rightarrow \left\langle a_1^{(n)}e_1+\cdots+a_k^ne_k,e_i\right\rangle = a_i^{(n)}$$

and

$$\langle a_1e_1+\cdots+a_ke_k,e_j\rangle=a_j$$

SO

$$\langle x_n, e_j \rangle \to \langle x, e_j \rangle \Rightarrow a_j^{(n)} \to a_j \qquad \forall y = 1, \dots, k$$

Also,

$$||x_n - x|| = \left\| \sum_{j=1}^k a_j^{(n)} e_j - \sum_{j=1}^k a_j e_j \right\| = \left\| \sum_{j=1}^k (a_j^{(n)} - a_j) e_j \right\|$$

$$\leq \sum_{j=1}^k |a_j^{(n)} - a_j| \, ||e_j|| \to 0$$

⇒ strong convergence

Equivalence of Norms

Theorem

Let $dim(\mathbb{X}) = k$ and let $\|\cdot\|$ and $\|\cdot\|_0$ be two different norms on \mathbb{X} then $\exists a, b$ such that

$$a \|x\|_0 \le \|x\| \le b \|x\|_0$$

Proof.

(in book page 96)

Implication: For convergence proofs, it doesn't matter which norm you use, therefore, use the one that simplifies the proof.