The Muchnik degrees of Π_1^0 and Σ_1^1 classes

Kojiro Higuchi

Mathematical Institute, Tohoku University

February 18, 2012 at Tokyo Institute of Technology

Background

Aim

- \mathcal{P}_{w} : the Muchnik degrees of nonempty Π_{1}^{0} subsets of Cantor space 2^{ω} .
- A long standing simple question: $a < b \Longrightarrow (a, b) \cap \mathcal{P}_{w} \neq \emptyset$?
- Let S_w be the Muchnik degrees of Σ_1^1 subsets of Baire space ω^{ω} .
- One of the main theorems of this talk says: $\forall a, b \in \mathcal{P}_{w}$, $[(a,b)\cap \mathcal{S}_{\mathrm{w}}\neq\emptyset\iff (a,b)\cap \mathcal{P}_{\mathrm{w}}\neq\emptyset].$

Background

Medvedev and Muchnik Degrees

- Medvedev/Muchnik reducibilities \leq_s , \leq_w are natural extensions of Turing reducibility \leq_T for subsets of ω^{ω} .
- $\mathsf{def}(\mathsf{Medvedev}, \ 1955)$. $P \leq_{\mathrm{s}} Q \iff \exists \mathsf{rec} \ \Phi \forall f, \ \Phi(f) \in P.$
- def(Muchnik, 1963). $P \leq_w Q \iff \forall f \exists rec \ \Phi, \ \Phi(f) \in P$.
- For each $r \in \{s,w\}$, \leq_r is a pre-order. Thus $P \equiv_r Q \iff P \leq_r Q \leq_r P$ is an equiv. relation. We define $\mathcal{D}_r = \operatorname{Pow}(\omega^\omega)/\equiv_r$, $\mathcal{P}_r = \{\text{nonempty }\Pi_1^0 \text{ subsets of } 2^\omega\}/\equiv_r$ and $\mathcal{S}_r = \{\Sigma_1^1 \text{ subsets of } 2^\omega\}/\equiv_r$.

Background

Π_1^0 Subsets of 2^{ω}

- Important examples of Π^0_1 subsets of 2^ω are the sets of all (codes of) completions of some recursive theories of first-order logic.
 - ZFC, PA, RCA, ACA, Z₂, · · · .
- \mathcal{P}_{s} , \mathcal{P}_{w} have been well studied since around 2000. However, the Turing degrees of elements of Π_1^0 subsets of 2^{ω} was investigated before.
 - E.g. Jockusch/Soare (1972) proved each nonempty Π_1^0 contains a low element f, i.e., $f' <_{\mathbf{T}} \emptyset'$.
- Π_1^0 is the first level of the arithmetical hierarchies such that the degree structure is non-trivial.
- I do not know any study on S_s or S_w .
- (Kleene) The set of all non-hyperarithmetic reals is an example of Σ_1^1 subsets of ω^{ω} .

Known Results

- Cenzer/Hinman, 2003: \mathcal{P}_{s} is dense.
- Binns, 2003:

Background

$$\begin{array}{l} \text{In } \mathcal{P}_{\mathrm{s}}, \ a < b \Longrightarrow \exists c, d, \ a < c, d < b = \sup(c, d). \\ \text{In } \mathcal{P}_{\mathrm{w}}, \ 0 < b \Longrightarrow \exists c, d, \ 0 < c, d < b = \sup(c, d). \end{array}$$

- Cole/Kihara, 2010: The Σ_2^0 -theory of \mathcal{P}_s as an order structure is decidable.
 - Here note " $\forall a, b[a < b \Longrightarrow \exists c, a < c < b]$ " is Π_2^0 .
- Shafer, 2012: The Σ_4^0 -theory of \mathcal{P}_s and \mathcal{P}_w as order structures is undecidable
- Is \mathcal{P}_{w} dense?

Lattice \mathcal{D}_{w}

Recall $\mathcal{D}_{\mathbf{w}} = \operatorname{Pow}(\omega^{\omega})/\equiv_{\mathbf{w}}$.

 \mathcal{D}_{w} is a distributive lattice with the top and the bot:

- For $P,Q \subset \omega^{\omega}$, $P \times Q = \{f \oplus g : f \in P, g \in Q\}$ induces the sup, where $f \oplus g(2n) = f(n)$ and $f \oplus g(2n+1) = g(n)$.
- $P \cup Q$ induces the inf.
- The deg of P is bottom
 P contains a computable element.
- The deg of Q is top $\iff Q = \emptyset$. Later, sometimes the condition " $Q <_{\mathbf{w}} \emptyset$ " will be

appeared. This is equivalent to say "Q is nonempty".

Open Intervals in \mathcal{D}_{w}

- It is not hard to see the following: $\forall P, Q \subset \omega^{\omega}$ in \mathcal{D}_{w} , $(\deg_{w}(P), \deg_{w}(Q))$ is empty $\iff (\exists f \in P)[\{f\} \equiv_{w} P, \{g:>_{\mathrm{T}} f\} \equiv_{w} Q].$
- ullet As a corollary, \mathcal{S}_{w} is not dense.

Lattice \mathcal{P}_{w}

Let \mathcal{P}_w be the set of all weak degrees of nonempty Π_1^0 subsets of 2^ω .

 \mathcal{P}_{w} is a distributive lattice with the top and the bot:

- $P \times Q$ and $P \cup Q$ induce the sup and the inf, resp.
- The deg of P is bottom

 ⇔ P contains a computable element.
- The deg of PA is top, where PA denotes the set of all (codes of) consistent complete extensions of Peano Arithmetic.
- There are some interesting intermediate degrees in \mathcal{P}_w . E.g., $\deg_w(\mathrm{MLR}) \in \mathcal{P}_w$, where MLR is the set of all Martin-Löf random reals. (In fact, MLR is a Σ_2^0 subset of 2^ω , though.)

The Embedding Lemma

• The Embedding Lem(Simpson).

$$\forall \Sigma_3^0 S' \subset \omega^\omega \forall \Pi_1^0 Q \subset 2^\omega : Q <_{\mathbf{w}} \emptyset$$

$$\exists \Pi_1^0 R \subset 2^\omega, \ R \equiv_{\mathbf{w}} S' \cup Q.$$

• The Embedding Lemma has many consequences, and it seems to be useful to prove or disprove the density of $\mathcal{P}_{\rm w}.$

Some Consequences of The Embedding Lem.

- Thm. $\deg_w(\mathrm{DNR})$, $\deg_w(\mathrm{AED} \cup \mathrm{PA})$, $\deg_w(\mathrm{MLR}^{\emptyset'} \cup \mathrm{PA})$ are in $\mathcal{P}_w \setminus \{\deg_w(2^\omega), \deg_w(\mathrm{PA})\}$, $\mathrm{DNR} = \{f \in \omega^\omega : \forall e, f(e) \neq \{e\}(e)\}$, AED is the set of all almost everywhere dominating reals, $\mathrm{MLR}^{\emptyset'}$ is the set of all reals Martin-Löf random relative to \emptyset' , i.e, the set of 2-random reals.
- Thm(Simpson). The funtion $\phi: \mathcal{R}_T \to \mathcal{P}_w$ s.t. $\phi(\deg_T(A)) = \deg_w(\{A\} \cup PA)$ is an embedding preserving the sup, (therefore \leq ,) the top and the bot.

$$\Pi^0_1$$
 and Σ^1_1

• Main Lem.

$$\forall a \in \mathcal{S}_{w}, b \in \mathcal{P}_{w}$$

 $a < b \Longrightarrow [a, b) \cap \mathcal{P}_{w} \neq \emptyset.$

In other words, $\forall \Sigma_1^1 S \subset \omega^\omega \forall \Pi_1^0 Q \subset 2^\omega : S <_{\mathrm{w}} Q <_{\mathrm{w}} \emptyset \\ \exists \Pi_1^0 \ R \subset 2^\omega, S \leq_{\mathrm{w}} R <_{\mathrm{w}} Q.$

Cole/Simpson's Lemma

- Lem(Cole/Simpson). $\forall \Pi_1^0 \ P, Q \subset \omega^\omega : \{0^\omega\} \not\geq_w Q$ $\exists \Pi_1^0 \ H(P,Q) \simeq P \ \forall g \in H(P,Q), \ \{g\} \not\geq_w Q.$
- Lem'(Cole/Simpson). $\forall f \in 2^{\omega} \forall \Pi_1^{0,f} P, Q \subset \omega^{\omega} : \{f\} \not\geq_{w} Q \\ \exists \Pi_1^{0,f} H(f,P,Q) \simeq P \ \forall g \in H(f,P,Q), \ \{f \oplus g\} \not\geq_{w} Q.$

Here, note that $P \neq \emptyset \iff H(f, P, Q) \neq \emptyset$.

A Key Lemma

- Lem'(Cole/Simpson). $\forall f \in 2^{\omega} \forall \Pi_1^{0,f} P, Q \subset \omega^{\omega} : \{f\} \not>_{w} Q$ $\exists \Pi_1^{0,f} H(f,P,Q) \simeq P \ \forall g \in H(f,P,Q), \ \{f \oplus g\} \not\geq_{\mathrm{w}} Q.$
- Lem. $\forall \Sigma_1^1 S, \Pi_1^0 Q \subset \omega^\omega : S <_w Q$ $\exists \Pi_1^0 \ R \subset \omega^{\omega}, S <_{w} R \not>_{w} Q.$ \therefore Define $\Sigma^1_{\mathsf{T}} S' = S \cap \{f : \{f\} \not >_{\mathsf{w}} Q\}$. (Note $S' \neq \emptyset$.) Choose Π_1^0 P s.t. $\forall f \ [f \in S' \iff \exists g, \ f \oplus g \in P]$. Let $\Pi_1^{0,t} P^f = \{g : f \oplus g \in P\}$. (Note $f \in S' \Rightarrow P^f \neq \emptyset$.) Define $\Pi_1^0 R = \{ f \oplus g : f \in S', g \in H(f, P^f, Q) \}.$ Then $R \neq \emptyset$ and $\forall f \oplus g \in R$, $S \leq_w \{f \oplus g\} \not \geq_w Q$. Thus $S <_{w} R >_{w} Q$.

Main Lemma

- Lem. $\forall \Sigma_1^1 S, \Pi_1^0 Q \subset \omega^\omega : S <_w Q$ $\exists \Pi_1^0 \ R \subset \omega^{\omega}, S \leq_{\rm w} R \not\geq_{\rm w} Q.$
- The Embedding Lem(Simpson). $\forall \Sigma_3^0 S' \subset \omega^\omega \forall \Pi_1^0 Q \subset 2^\omega : Q <_w \emptyset$ $\exists \Pi_1^0 R \subset 2^{\omega}, \ R \equiv_{\mathbf{w}} S' \cup Q.$
- Main Lem. $\forall \Sigma_1^1 S \subset \omega^\omega \forall \Pi_1^0 Q \subset 2^\omega : S <_w Q <_w \emptyset$ $\exists \Pi_1^0 \ R \subset 2^\omega, S \leq_w R \leq_w Q.$ \therefore Lem gives Π_1^0 $S' \subset \omega^{\omega}$ s.t. $S <_{\mathbf{w}} S' \not>_{\mathbf{w}} Q$. Thus $S <_{w} S' \cup Q <_{w} Q$. The Embedding Lem gives the desired R.

If \mathcal{P}_w is Not Dense

- Main Lem. $\forall \Sigma_1^1 S \subset \omega^\omega \forall \Pi_1^0 Q \subset 2^\omega : S <_w Q <_w \emptyset \\ \exists \Pi_1^0 \ R \subset 2^\omega, S \leq_w R <_w Q.$
- Thm. TFAE:

1.
$$\exists \Pi_1^0 P, Q \subset 2^\omega : P <_{\mathbf{w}} Q <_{\mathbf{w}} \emptyset$$

$$\neg \exists \Pi_1^0 R \subset 2^\omega, \ P <_{\mathbf{w}} R <_{\mathbf{w}} Q.$$

2.
$$\exists \Sigma_1^1 S \subset \omega^\omega \exists \Pi_1^0 Q \subset 2^\omega : S <_w Q <_w \emptyset$$

 $\neg \exists \Pi_1^0 R \subset 2^\omega, S <_w R <_w Q.$

If \mathcal{P}_w is Dense

- Main Lem. $\forall \Sigma_1^1 S \subset \omega^\omega \forall \Pi_1^0 Q \subset 2^\omega : S <_w Q <_w \emptyset \\ \exists \Pi_1^0 \ R \subset 2^\omega, S \leq_w R <_w Q.$
- Thm. $\forall \Pi_1^0 P, Q \subset 2^\omega : P <_w Q <_w \emptyset$, TFAE:
 - 1. $\exists \Pi_1^0 R \subset 2^\omega$, $P <_w R <_w Q$.
 - 2. $\exists \Sigma_1^1 S \subset \omega^{\omega}, \ P <_{\mathbf{w}} S <_{\mathbf{w}} Q$.

$Hyperarithmetic\ Witness$

Let $P, Q \subset 2^{\omega}$ be nonempty Π_1^0 sets with $P <_{\mathbf{w}} Q$.

- Thm. TFAE:
 - 1. $\exists \Pi_1^0 R \subset 2^\omega$, $P <_w R <_w Q$.
 - 2. $\exists \Sigma_1^1 S \subset \omega^{\omega}, \ P <_{\mathbf{w}} S <_{\mathbf{w}} Q.$
- Cor. If $\exists \Delta_1^1 f \in P, \{f\} \not\geq_{\mathrm{w}} Q$, then 2 holds.
 - ∵ We can prove

 $\forall f: \{f\} \not\geq_{\mathrm{w}} Q \exists \Delta_2^{0,f} g, \{f\} <_{\mathrm{w}} \{g\} \not\geq_{\mathrm{w}} Q.$

Thus if f is Δ_1^1 , so is g. It is known that $\{g\}$ is Σ_1^1 .

- Cor. If $\#(P \cap \{f : \{f\} \not\geq_{\mathrm{w}} Q\}) \leq \aleph_0$, then 1 holds.
 - \therefore Every countable Σ_1^1 set has only Δ_1^1 elements.

No Hyperarithmetic Witness

- Main Lem. $\forall \Sigma_1^1 S \subset \omega^\omega \forall \Pi_1^0 Q \subset 2^\omega : S <_w Q <_w \emptyset$ $\exists \Pi_1^0 \ R \subset 2^\omega, S \leq_w R \leq_w Q.$
- Thm(Jockusch/Soare). $\mu(\{g \in 2^{\omega} : \{g\} \not\geq_{w} PA\}) = 1$
- Thm'(Jockusch/Soare). If $\{f\} \not\geq_{\mathrm{w}} \mathrm{PA}$, then $\mu(\{g \in 2^{\omega} : \{f \oplus g\} \not\geq_{\mathrm{w}} \mathrm{PA}\}) = 1$
- Thm. $\forall \Pi_1^0 P \subset 2^\omega : P <_w PA \exists \Pi_1^0 R \subset 2^\omega$, $P \leq_{\mathbf{w}} R <_{\mathbf{w}} \mathrm{PA} \text{ and } \neg \exists \Delta_1^1 h \in R \cap \{f : \{f\} \geqslant_{\mathbf{w}} \mathrm{PA}\}.$ \therefore "g is $\Delta_1^{1,f}$ " is Π_1^1 in f and g. Define $\Sigma_1^1 S = \{ f \oplus g : f \in P, g \text{ is not } \Delta_1^{1,t} \}.$ Choose $f \in P$ s.t. $\{f\} \not\geq_{w} PA$. Note $\mu(2^{\omega} \cap \Delta_{1}^{1,f}) = 0$. $\exists g : \mathsf{non} \ \Delta_1^{1,f} \ \mathsf{with} \ \{ f \oplus g \} \not \geq_{\mathsf{w}} \mathsf{PA}.$ Thus $P <_{w} S \cup PA <_{w} PA$. Main Lem gives the desired R.

Thank you!