Mining Data Graph

COMMUNITY DETECTION

Lecturer: Le Ngoc Thanh

Email: Inthanh@fit.hcmus.edu.vn

Content

- Concept
- Community optimization
- Community detection methods
 - Methods based on minimal slices
 - Intermediate-based method
 - Methods based on RandomWalk

Community

• Community is the set of vertices where each vertex has more internal connections than outward connections.

Content

- Concept
- Community optimization
- Community detection methods
 - Methods based on minimal slices
 - Intermediate-based method
 - Methods based on RandomWalk

Community optimization

- In addition to the quality and distance measurements, one has 2 more ways of measuring to assess density:
 - Intracluster density: the bigger the better
 - Intercluster density: the smaller the better

Density in the group

 Group density is the ratio between the number of edges inside the group and the maximum number of possible edges in the group.

•
$$\delta(C) = \frac{number\ of\ edges\ in\ the\ group}{N_c(N_c-1)/2}$$

Example:

$$\delta(C_1) = \frac{7}{10} = 0.7$$

$$\delta(C_2) = \frac{4}{6} = 0.75$$

$$\delta(C_3) = \frac{3}{3} = 1.0$$

Out-of-group density

 Out-of-group density is the ratio of the number of out-group edges to the number of possible out-group edges.

•
$$\epsilon(C) = \frac{number\ of\ edges\ outside\ the\ group}{N_c(N-N_c)}$$

Example:

$$\epsilon(C_1) = \frac{2}{35}$$

$$\epsilon(C_2) = \frac{3}{32}$$

$$\epsilon(C_3) = \frac{3}{27}$$

Content

- Concept
- Community optimization
- Community detection methods
 - Methods based on minimal slices
 - Intermediate-based method
 - Methods based on RandomWalk

Minimum slice

- The goal of the minimum slice is to find the least edge set that blocks the flow from source S to T.
 - The cutting size is the total weight of those edges

Minimum slice

• Slice:

$$cut(A,B) = \sum_{i \in A, j \in B} w_{ij}$$

Community detection with minimal slice

Goal: minimal slice

$$arg min_{A,B} cut(A,B)$$

• Problem:

The problem occurs due to not considering the internal connection

Slice normalization

The normalized slice depends on the density in each group

$$ncut(A,B) = \frac{cut(A,B)}{vol(A)} + \frac{cut(A,B)}{vol(B)}$$

with vol(A): total weight of edges with at least one end in A

$$vol(A) = \sum_{i \in A} k_i$$

Content

- Concept
- Community optimization
- Community detection methods
 - Methods based on minimal slices
 - Intermediate-based method
 - Methods based on RandomWalk

Community detection based on mediation

- Intermediate-based community detection performs the process of community identification by removing the highly intermediate vertex/edge.
- There are two types:
 - Based on peak intermediation
 - Based on edge intermediation.

Peak intermediate

 The vertex intermediate is calculated based on the number of shortest paths in the graph that must pass through a given vertex.

Edge intermediate

 Edge intermediates are evaluated based on the number of shortest paths that must pass through a given edge.

The vertex intermediate algorithm

Lặp lại cho đến khi trung gian đỉnh nhỏ hơn ngưỡng cho trước

Chọn đỉnh có giá trị trung gian đỉnh lớn nhất

Edge Intermediate Algorithm

Lặp lại cho đến khi độ cạnh trung gian nhỏ hơn ngưỡng cho trước

Ngắt đồ thị tại cạnh này

Content

- Concept
- Community optimization
- Community detection methods
 - Methods based on minimal slices
 - Intermediate-based method
 - Methods based on RandomWalk

Random Walk

 Given a graph, from a starting vertex, we randomly choose a vertex to continue. After t such iterations, we will have a random walk of size t.

Random Walk

• The probability of selecting an edge can be evaluated based on the correlation between the two texts and is normalized.

Transition Matrix

$$\begin{bmatrix} 0 & 1/2 & 1/2 & 0 \\ 1/3 & 0 & 1/3 & 1/3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Community detection based on random walk

 Community detection based on random walk is done based on the following statement:

A random path that begins at a vertex is more likely to move in one community than in another.

Example

Node	Prob. Next Step within cluster	Prob. Next Step between clusters
1	80%	20%
2	100%	0%
3	67%	33%

Algorithmic ideas

- Adjust the weight so that after a random walk of a given size, the likelihood of movement in the group will be high.
- The weighting is adjusted so that:
 - Stronger neighbors will get stronger
 - Weaker neighbors will get weaker
 - This process is called inflation

Inflationization

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

507 220220 N

The Inflations

Reference

 Mihalcea, Rada, and Dragomir Radev. Graphbased natural language processing and information retrieval. Cambridge university press, 2011.

