Dynamical tides affect the evolution timescale of super Earth

Liu Guanfu

October 16, 2021

Contents

- What is super Earth?
- The puzzle of the super Earth.
- Two categories of the models of gas giant.
- Three categories of the core accretion models.
- Some possible answers of the puzzle.
- The dynamical tides can be an answer.
- Model setup
- Numerical results

What is super Earth?

- Mass of solid core: $2 \sim 20 M_{\bigoplus}$
- 2 Core radius: $1 \sim 2R_{\bigoplus}$
- ${\bf 0}$ Gas-to-core mass ratios (GCRs): up to 10% (Earth: $\sim 10^{-6})$
- Bulk densities: $< 3 \text{gcm}^{-3}$

Just as we see from the above, we have no strict definition of super-Earth. To be exact, we just assemble some exoplanets whose parameters are in the range that the above list, and give them a name super-Earths. Super means more massive than Earth, Earth suggests that they are rocky exoplanets, not gas giants. More details see¹

¹Eve J. Lee and Eugene Chiang. "To cool is to accrete: analytic scalings for nebular accretion of planetary atmospheres". In: *Astrophysical Journal* 811.1 (2015), p. 41. arXiv: 1508.05096.

The puzzle of the super Earth.

The atmosphere of Earth has been outgassed from the rock. However, the GCRs of super-Earths are too large to been explained by the outgassing process. More plausibly, super-Earth atmospheres originated by accretion from the primordial nebula, which is just as Jupiter did. Since the core mass of Jupiter is in the range of $10\sim 20M_{\bigoplus}$, so why the super-Earths escaped from becoming a gas giant?

Two categories of the models of gas giant.

Models of giant planet formation fall into two categories: core accretion or gravitational instability².

- Gravitational instability Investigate the fragmentation of the protoplanetary disk into bound clumps.
- Core accretion A solid core grows until it becomes massive enough to rapidly accrete gas.

My work is based on the Core accretion model.

²Ana Maria A. Piso and Andrew N. Youdin. "On the minimum core mass for giant planet formation at wide separations". In: Astrophysical Journal 786.1 (2014). ISSN: 15384357. DOI: 10.1088/0004-637X/786/1/21.

Three categories of the core accretion models.

Static models

The accretion of planetesimals provides a steady luminosity that determines the structure and mass of the atmosphere.

Limitation: Neglect the heat generated by atmospheric collapse, which can transform the core accretion instability into slower process of Kelvin-Helmholtz contraction.

- Quasi-static models Include time-dependent atmospheric evolution, have 3 phases.
 - Rapid planetesimals accretion.
 - Atmosphere grows, cooling by KH contraction.
 - The run-away growth of atmosphere.
- Opnical models

How runaway growth ends and the final planet mass (Gap opening in disks and the transition of accretion from spherical to planar)

Some possible answers of the puzzle.

- Late stage core formation The final assembly of super-Earth cores from mergers of proto-cores is delayed by gas dynamical friction³.
- To cool is to accret
 - Tidally-forced turbulent diffusion⁴.
 - Tidal heating of young super-Earth atmospheres⁵.
 - High opacity atmosphere⁶.
 - Rapid recycling⁷.
- Gap opening

³Eve J. Lee, Eugene Chiang, and Chris W. Ormel. "Make super-earths, not jupiters: Accreting nebular gas onto solid cores at 0.1 AU and beyond". In: Astrophysical Journal 797.2 (2014). arXiv: 1409.3578.

⁴Cong Yu. "The Formation of Super-Earths by Tidally Forced Turbulence". In: *The Astrophysical Journal* 850.2 (2017), p. 198. ISSN: 0004-637X. DOI: 10.3847/1538-4357/aa9849. arXiv: 1711.00594.

⁵Sivan Ginzburg and Re'em Sari. "Tidal heating of young super-Earth atmospheres". In: *Monthly Notices of the Royal Astronomical Society* 464.4 (2017), pp. 3937–3944. arXiv: 1608.03718.

⁶Eve J. Lee and Eugene Chiang. "To cool is to accrete: analytic scalings for nebular accretion of planetary atmospheres". In: *Astrophysical Journal* 811.1 (2015), p. 41. arXiv: 1508.05096.

⁷Chris W. Ormel, Ji Ming Shi, and Rolf Kuiper. "Hydrodynamics of embedded planets' first atmospheres - II. A rapid recycling of atmospheric gas". In: *Monthly Notices of the Royal Astronomical Society* 447.4 (2015), pp. 3512–3525. ISSN: 13652966. DOI: 10.1093/mnras/stu2704. arXiv: 1410.4659.

The dynamical tides can be an answer.

We choose the quasi-static model, and concentrate our attention on the phase 2. The effect of the dynamical tides serves as a kind of mechanism belong to the "to cool is to accret" scenario.

The dynamical tides can modulate the rate of cooling, thus avoiding gas giant formation.

Figure 1: Credit: Eve J. Lee1, Eugene Chiang1, Chris Ormel

Model setup

The assumptions of our atmosphere models of super-Earth:

- The atmosphere is spherically symmetric.
- The core mass and radius is fixed.
- Two layers: Inner zone is convective, while outer is radiative⁸.
- The dynamical wave dissipate all the energy in the outer layers, no reflection.

$$\Delta t_{old} = \frac{-\Delta E + \langle e \rangle \Delta M - P \langle V \rangle}{\langle L_{old} \rangle} \tag{1}$$

$$\langle L_{new} \rangle = \langle L_{old} \rangle - \dot{E}$$
 (2)

Here, \dot{E} is the luminosity generated from dynamical tides.

$$\Delta t_{new} = \frac{-\Delta E + \langle e \rangle \Delta M - P \langle V \rangle}{\langle L_{new} \rangle}$$
 (3)

 $^{^8}$ Phil Arras and Lars Bildsten. "Thermal Structure and Radius Evolution of Irradiated Gas Giant Planets". In: The Astrophysical Journal 650.1 (2006), pp. 394–407. DOI: 10.1086/506011.

Numerical results

We set the tidal forcing frequency $\omega=2.136\times 10^{-2}\Omega_p$ as a constant. It should be noted that the spin frequency $\Omega_s=0.5635\Omega_p$, while the orbital frequency $\Omega=0.5742\Omega_p$, which means the orbital frequency is very close to the spin frequency. Under this condition, we find that $0.1 \mathrm{AU}$ is the critical orbital radius.

Numerical results

From 5.17myr to 8.35 myr.

Larger forcing frequency, the evolution history will be dominated by the tidal heating,

Numerical results

Why we choose $0.10 \mathrm{AU}$: Closer means stronger dynamical tides effect..

Table 2 Average Number of Planets Per Star Per Period Bin (in Percent)											
Class	Period Range (days)										
	0.8-	2.0-	3.4-	5.9-	10-	17-	29-	50-	85-	145-	245-
	2.0	3.4	5.9	10	17	29	50	85	145	245	418 ^a
Giants	0.015	0.067	0.17	0.18	0.27	0.23	0.35	0.71	1.25	0.94	1.05
	±0.007	±0.018	±0.03	±0.04	±0.06	±0.06	±0.10	±0.17	±0.29	± 0.28	± 0.30
Large Neptunes	0.004	0.006	0.11	0.091	0.29	0.32	0.49	0.66	0.43	0.53	0.24
	± 0.003	± 0.006	± 0.03	±0.030	± 0.07	± 0.08	± 0.12	± 0.16	± 0.17	± 0.21	±0.15
Small Neptunes	0.035	0.18	0.73	1.93	3.67	5.29	6.45	5.25	4.31	3.09	
	± 0.011	± 0.03	± 0.09	± 0.19	± 0.39	± 0.64	± 1.01	± 1.05	± 1.03	± 0.90	
Super-Earths	0.17	0.74	1.49	2.90	4.30	4.49	5.29	3.66	6.54		
	± 0.03	±0.13	± 0.23	± 0.56	± 0.73	± 1.00	± 1.48	± 1.21	± 2.20		
Earths	0.18	0.61	1.72	2.70	2.70	2.93	4.08	3.46			
	± 0.04	±0.15	± 0.43	± 0.60	± 0.83	± 1.05	± 1.88	± 2.81			
Total	0.41	1.60	4.22	7.79	11.2	13.3	16.7	13.7			
	± 0.05	±0.20	± 0.50	±0.85	±1.2	± 1.6	± 2.6	± 3.2			

Figure 2: Table 2 of the paper⁹

 $0.1 \mathrm{AU}$ corresponds to 11.5 days, our numerical results can explain 17.9% (or more, since we don't search the upper limit of semi-major axis) of super-Earths.

⁹François Fressin et al. "The false positive rate of Kepler and the occurrence of planets". In: Astrophysical Journal 766.2 (2013). ISSN: 15384357. DOI: 10.1088/0004-637X/766/2/81. arXiv: 1301.0842.

THANKS