Data Mining (Minería de Datos)

DATASETS & DATA CHALLENGES

Maialen Iturbide José Manuel Gutiérrez Grupo de Meteorología Univ. de Cantabria - CSIC MACC / IFCA

DATASETS & DATA CHALLENGES

NOTA: Las líneas de código de R en esta presentación se muestran sobre un fondo gris.

CSIC

Oct	30	Aplazada (sesión de refuezo)
Nov	6	Presentación, introducción y perspectiva histórica
	8	Paradigmas, problemas canónicos y data challenges
	13	Reglas de asociación
	15	Practica: Reglas de asociación
	20	Evaluación, sobrejuste y crossvalidacion
	22	Practica: Crossvalidacion
	27	Arboles de clasificacion y decision
	29	Practica: Arboles de clasificación
		T01. Datos discretos
Dic	4	Técnicas de vecinos cercano (k-NN)
	11	Práctica: Vecinos cercanos
	13	Reducción de dimensión lineal
	18	Practica: LDA y PCA
	20	Reducción no lineal
		T02. Clasificación
Ene	8	Arboles de clasificación y regresion (CART)
	10	Practica: CART
	15	Ensembles: Bagging and Boosting
	17	Practica Random Forests
		T03. Prediccion
	22	Practica Gradient boosting
	24a	Técnicas de agrupamiento
	24b	Practica: Técnicas de agrupamiento
	29a	Practica: El paquete CARET
	29b	Examen

Bibliografía/Repositorios de datos

1

An Introduction to Statistical Learning: With Applications in R

James, G., Witten, D., Hastie, T., Tibshirani, R.

Springer (2013)

http://www-bcf.usc.edu/~gareth/ISL

install.packages("ISLR")
library("ISLR")
library(help = "ISLR")

2 library(help = "datasets")

4

https://www.kaggle.com/datasets

CSIC

https://archive.ics.uci.edu/ml/datasets.html

Master Universitario Oficial **Data Science**

DATA MINING:

Bibliography/Data Repositories

Overview

Description

Evaluation

Prizes

Timeline

In this competition, Kaggle is challenging you to build a model that predicts the total ride duration of taxi trips in New York City. Your primary dataset is one released by the NYC Taxi and Limousine Commission, which includes pickup time, geocoordinates, number of passengers, and several other variables.

Longtime Kagglers will recognize that this competition objective is similar to the ECML/PKDD trip time challenge we hosted in 2015. But, this challenge comes with a twist. Instead of awarding prizes to the top finishers on the leaderboard, this playground competition was created to reward collaboration and collective learning.

https://www.kaggle.com/headsortails/nyc-taxi-eda-update-the-fast-the-curious/notebook

Listado de datasets utilizados en el curso

EN FUNCIÓN DE LA NATURALEZA DE LOS DATOS PODEMOS CLASIFICARLAS COMO

SÓLO CATEGÓRICAS (FACTORES)

- Groceries. Disponible en kaggle y en el paquete {arulesViz} de R.
- Mushroom. Disponible en kaggle y UCI.

MIXTOS (CONTINUOS Y FACTORES)

- Iris. Disponible en kaggle, UCI y el paquete {datasets} de R.
- MNIST. Disponible en

https://pjreddie.com/projects/mnist-in-csv/

- Gene expression (Golub et al). Disponible en kaggle.
- Meteo (Santander Meteorology Group).
- The fruits dataset by Dr. lain Murray. Disponible en

https://towardsdatascience.com/solving-a-simple-classification-problem-with-python-fruits-lovers-edition-d20ab6b071d2

Todos estos datasets están disponibles en **gitHub**:

https://github.com/SantanderMetGroup/Master-Data-Science

Master Universitario Oficial **Data Science**

DATA MINING:

DATASETS

En el curso utilizaremos un <u>dataset</u> más pequeño, "Groceries", disponible en el paquete de R **arulesViz**.

Attribute characteristics	Categorical
Number of instances	9835
Number of attributes	169

```
install.packages("arulesViz")
data("Groceries")
```

Master Universitario Oficial Data Science

http://archive.ics.uci.edu/ml/datasets/Mushroom

Data Set Characteristics:	Multivariate	Number of Instances:	8124	Area:	Life
Attribute Characteristics:	Categorical	Number of Attributes:	22	Date Donated	1987-04-27
Associated Tasks:	Classification	Missing Values?	Yes	Number of Web Hits:	298439

Attribute Information: (classes: edible=e, poisonous=p)

cap-shape: bell=b,conical=c,convex=x,flat=f, knobbed=k,sunken=s

cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s

cap-color: brown=n,buff=b,cinnamon=c,gray=g,green=r,pink=p,purple=u,...

bruises: bruises=t,no=f

odor: almond=a,anise=l,creosote=c,fishy=y,foul=f,musty=m,none=n,...

```
• • •
```

```
mush <- read.csv("Data_mining/datasets/mushrooms.csv")
str(mush)</pre>
```

```
'data.frame': 8124 obs. of 23 variables:
$ class : Factor w/ 2 levels "e", "p": 2 1 1 2 1 1 1 1 2 1 ...
$ cap.shape : Factor w/ 6 levels "b", "c", "f", "k", ..: 6 6 1 6 6 6 1 1 6 1 ...
$ cap.surface : Factor w/ 4 levels "f", "g", "s", "y": 3 3 3 4 3 4 3 4 3 4 3 ...
$ cap.color : Factor w/ 10 levels "b", "c", "e", "g", ..: 5 10 9 9 4 10 9 9 9 10 ...
$ bruises : Factor w/ 2 levels "f", "t": 2 2 2 2 1 2 2 2 2 2 ...
$ odor : Factor w/ 9 levels "a", "c", "f", "l", ...: 7 1 4 7 6 1 1 4 7 1 ...
```

Master Universitario Oficial Data Science

http://archive.ics.uci.edu/ml/datasets/Iris

Data Set Characteristics:	Multivariate	Number of Instances:	150	Area:	Life
Attribute Characteristics:	Real	Number of Attributes:	4	Date Donated	1988-07-01
Associated Tasks:	Classification	Missing Values?	No	Number of Web Hits:	1549312

Anderson's Iris Data -- 3 species

https://towardsdatascience.com/solving-a-simple-classification-problem-with-python-fruits-lovers-edition-d20ab6b071d2

```
fruits <- read.table("Data mining/datasets/fruits.txt", header = TRUE)</pre>
str(fruits)
```

```
59 obs. of 7 variables:
'data.frame':
$ fruit_label : int 111222211...
$ fruit_name : Factor w/ 4 levels "apple", "lemon", ..: 1 1 1 3 3 3 3 1 1 ...
$ fruit_subtype: Factor w/ 10 levels "braeburn", "cripps_pink", ..: 4 4 4 5 5 5 5 5 1 1 ...
             : int 192 180 176 86 84 80 80 76 178 172 ...
$ mass
              : num 8.4 8 7.4 6.2 6 5.8 5.9 5.8 7.1 7.4 ...
$ width
$ height
              : num 7.3 6.8 7.2 4.7 4.6 4.3 4.3 4 7.8 7 ...
$ color score : num 0.55 0.59 0.6 0.8 0.79 0.77 0.81 0.81 0.92 0.89 ...
```


Optimization Based Tumor Classification from Microarray Gene Expression Data

Onur Dagliyan¹, Fadime Uney-Yuksektepe², I. Halil Kavakli¹, Metin Turkay³*

An important use of data obtained from microarray measurements is the classification of tumor types with respect to genes that are either up or down regulated in specific cancer types.

CSIC

Data set Samples Genes Classes Reference					
	Data set	Samples	Genes	Classes	Reference

Table 1. Cancer data sets used in this study.

Data set	Samples	Genes	Classes	Reference
Leukemia	72	7129	2	Golub et al. (1999)
Prostate cancer	102	12600	2	Singh et al. (2002)
Prostate outcome	21	12600	2	Singh et al. (2002)
DLBCL	77	7129	2	Shipp et al. (2002)

Optimization Based Tumor Classification from Microarray Gene Expression Data

Onur Dagliyan¹, Fadime Uney-Yuksektepe², I. Halil Kavakli¹, Metin Turkay³*

```
gene <- read.csv("Data_mining/datasets/gene_trainDF.csv")</pre>
str(gene)
                       38 obs. of 7130 variables:
       'data.frame':
               : num 1.1314 1.3258 -2.0812 0.8449 -0.0963 ...
               : num 0.459 0.48 -0.332 1.156 0.844 ...
        $ X7129: num -0.16 0.412 -0.26 -1.504 0.139 ...
```


\$ label: Factor w/ 2 levels "ALL", "AML": 1 1 1 1 1 1 1 1 1 1 ...

The highest accuracy is obtained with the optimal gene set consisting of 4 genes:

- Myeloperoxidase (M19507-at),
- adipsin (M84526-at),
- CD33 antigen and
- TCF3 transcription factor 3.

Table 2. Classification results of leukemia (AML-ALL) data set.

Classifier	Test Set	10-CV	LOOCV
HBE	100	97.146 0.903	98.61
BayesNet	94.12	95.71	95.83
LibSVM	58.82	86.576 10.44	91.67
SMO	97.06	93.146 0.571	94.44
Logistic Regression	91.18	96.866 1.67	98.61
FBF Network	97.06	97.43± 1.07	97.22
IBk .	97.06	96.006 1.40	95.83
J48	94.12	89.146 1.94	90.28
Random Forest	94.12	93.146 1.07	90.2

Large scale predictors

Predictand: precipitation in Lisboa. LonLim = -9.15LatLim = 38.7years = 1979:2008

Local predictands


```
Model
Analogs, reg., ...
\mathbf{Y}_n = f(\mathbf{X}_n)
Statistical methods
```

meteo <- read.csv("Data mining/datasets/meteo.csv")</pre> str(meteo)

```
10958 obs. of 321 variables:
'data.frame':
$ y : num 10.9 0.6 13 0 0 1.2 1.1 0 0 0.7 ...
$ X1 : num 57043 56963 56523 54628 53584 ...
$ X2 : num 56535 56493 55971 53980 53391 ...
     : num 55884 55931 55304 53494 53310 ...
$ X4 : num 55176 55340 54498 53073 53293 ...
```


Downscaling

based on historical

data to link large

scale circulation to

local climates.

MIXTO

Digit Recognizer

Learn computer vision fundamentals with the famous MNIST data

1,996 teams · 2 years to go

Overview Discussion Leaderboard Kernels Rules Data

https://www.kaggle.com/c/digit-recognizer#tutorial

```
mydatadir <- paste0(getwd(), "/MNIST_train.csv")</pre>
train <- read.csv(mydatadir)</pre>
str(train)
               42000 obs. of 785 variables:
  'data.frame':
   $ label : int 1014007353...
   $ pixel0: int 0000000000...
   $ pixel1 : int 0000000000...
   $ pixel2: int 0000000000...
# split data into response variable (y) and predictors (x)
y <- train[,1]; x <- train[,-1]</pre>
dim(x)
[1] 42000
            784
par(mfrow = c(3,2))
image(matrix(as.matrix(x[7,]), nrow = sqrt(784), ncol = sqrt(784)))
for (i in 8:12) {
      image(matrix(as.matrix(x[i,]), nrow = sqrt(784), ncol = sqrt(784)))
```

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

[1] 7 3 5 3 8 9

Y[7:12]

30-60mins

Echa un vistazo a los datasets que hay en el paquete ISLR.

```
install.packages("ISLR")
library("ISLR")
library(help = "ISLR")
```

Analiza la estructura de los datasets: ¿de qué tipo son? ¿para qué tipo de problemas serían adecuados? e.g.

```
data("Hitters")
str(Hitters)
```

60-90mins

Lee con calma el siguiente notebook de kaggle sobre las duraciones de los trayectos de taxi en Nueva York:

https://www.kaggle.com/headsortails/nyc-taxi-eda-update-the-fast-the-curious/notebook

