Indications

ANALYSE

Exercice 1 Théorème de Césàro et applications.

Soient $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ et $\ell\in\mathbb{R}$.

1. (a) Montrer que

$$u_n \xrightarrow[n \to +\infty]{} \ell \implies \frac{1}{n} \sum_{k=1}^n u_k \xrightarrow[n \to +\infty]{} \ell.$$

- (b) Étudier la réciproque.
- 2. Lemme de l'escalier.

Montrer que

$$u_{n+1} - u_n \xrightarrow[n \to +\infty]{} \ell \quad \Longrightarrow \quad \frac{u_n}{n} \xrightarrow[n \to +\infty]{} \ell.$$

3. On suppose désormais que

$$\forall n \in \mathbb{N}, \ u_n > 0 \quad \text{et} \quad \ell > 0.$$

Montrer que

$$u_n \xrightarrow[n \to +\infty]{} \ell \implies \sqrt{\prod_{k=1}^n u_k} \xrightarrow[n \to +\infty]{} \ell.$$

Indication • Exercice 1.

- 1. (a) Revenir à la définition quantifiée de convergence d'une suite, en coupant la somme en deux parties (avant N_{ε} et après N_{ε}).
 - (b) Prendre comme contre-exemple une suite non convergente très classique.
- **2.** Utiliser **1.(a)** avec la suite $(u_{n+1} u_n)_{n \in \mathbb{N}}$.
- **3.** Regarder ce qu'il se passe pour la suite $\left(\ln(u_n)\right)_{n\in\mathbb{N}}$.

Exercice 2 Transformation d'Abel.

Soient $(\varepsilon_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$. On pose, pour $n\in\mathbb{N}$, $V_n:=\sum_{k=0}^n v_k$.

1. Principe de la sommation d'Abel.

Montrer que

$$\forall n \in \mathbb{N}^*, \quad \sum_{k=0}^n \varepsilon_k v_k = \sum_{k=0}^{n-1} (\varepsilon_k - \varepsilon_{k+1}) V_k + \varepsilon_n V_n.$$

2. Démonstration du théorème d'Abel.

On suppose que $(\varepsilon_n)_{n\in\mathbb{N}}$ est une suite décroissante de limite nulle et que $(V_n)_{n\in\mathbb{N}}$ est bornée. Montrer que $\sum_n \varepsilon_n v_n$ converge.

3. Application.

Soient $\alpha > 0$, $\theta \in \mathbb{R} \setminus (2\pi\mathbb{Z})$.

- (a) Montrer que la série $\sum \frac{e^{in\theta}}{n^{\alpha}}$ converge.
- **(b)** En déduire la nature des séries $\sum \frac{\cos(n\theta)}{n^{\alpha}}$ et $\sum \frac{\sin(n\theta)}{n^{\alpha}}$.

Indication • Exercice 2.

- **1.** Exprimer v_k en fonction de V_k et V_{k-1} et faire un changement d'indice.
- 2. Utiliser la transformation d'Abel pour exprimer le terme général de la suite des sommes partielles. Vérifier la convergence de chaque terme à l'aide des hypothèses.
- 3. (a) Vérifier les hypothèses du théorème d'Abel avec deux suites judicieusement choisies.
 - (b) Revenir aux parties réelles et imaginaires.

Exercice 6

Montrer que la série $\sum_{n \geq 2} \ln \left(1 - \frac{1}{n^2} \right)$ converge et calculer sa somme.

Indication • Exercice 6.

Remarquer que

$$\ln\left(1-\frac{1}{n^2}\right) = \left(\ln(n+1) - \ln(n)\right) - \left(\ln(n) - \ln(n-1)\right)$$

et utiliser les résultats sur les séries télescopiques.

Résultat • Exercice 6.

$$\sum_{n=2}^{+\infty} \ln\left(1 - \frac{1}{n^2}\right) = -\ln(2).$$

Soit $(u_n)_{n\in\mathbb{N}}\in(\mathbb{R}_+)^\mathbb{N}$ une suite positive.

- **1.** Est-ce que, si $u_n = \underset{n \to +\infty}{\mathfrak{o}} \left(\frac{1}{n}\right)$, alors $\sum_n u_n$ converge?
- 2. Montrer que

$$\left\{egin{align*} & (u_n)_{n\in\mathbb{N}} \text{ est décroissante} \ & \sum_n u_n \text{ converge} \end{array}
ight\} \qquad \Longrightarrow \qquad u_n = \mathop{\mathfrak{o}}_{n o +\infty} \Big(rac{1}{n}\Big).$$

Indication • Exercice 7.

- 1. Penser à une série de Bertrand.
- 2. Majorer nu_n par une différence de sommes partielles, quitte à montrer séparément la convergence vers 0 des suites $((2n)u_{2n})_{n\in\mathbb{N}}$ et $((2n+1)u_{2n+1})_{n\in\mathbb{N}}$.

Exercice 20

Existe-t-il $x, y \notin \mathbb{Q}$ tels que $x^y \in \mathbb{Q}$?

Indication • Exercice 20.

On pourra exploiter l'irrationalité de $\sqrt{2}$ et/ou de $\frac{\ln(p)}{\ln(q)}$ avec p et q deux nombres premiers distincts.

Exercice 21

Soit $f \in \mathscr{C}^2(\mathbb{R}, \mathbb{R})$. Calculer

$$\lim_{x \to 0} \frac{f'(x) - \frac{f(x) - f(0)}{x}}{x}.$$

Indication • Exercice 21.

Écrire la formule de Taylor-Young à l'ordre 2 pour f et à l'ordre 1 pour f'.

Indications

ALGÈBRE

Soit $n \ge 2$. Soit $P \in \mathbb{R}_n[X]$ ayant n racines réelles distinctes.

Soit a > 0. Que dire des racines de $P^2 + a$?

Indication • Exercice 28.

- lack Montrer que les racines de P' sont réelles avec le théorème de Rolle.
- lack Montrer que $P^2 + a$ et $(P^2 + a)'$ n'ont pas de racines communes.

Résultat • Exercice 28.

Les racines de $P^2 + a$ sont complexes et simples.

Exercice 30

Déterminer les polynômes $P \in \mathbb{R}[X]$ de degré supérieur ou égal à 1 tels que P' divise P.

Indication • Exercice 30.

Raisonner par analyse-synthèse. Fixer a, λ tels que $P = \lambda (X - a)P'$ et utiliser la formule de Taylor en a pour P puis dériver.

Exercice 36 Noyaux et images itérés, cœur et nilespace.

Soient E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et $u \in L(E)$.

1. Montrer que

$$\forall k \in \mathbb{N}, \quad \mathsf{Ker}(u^k) \subset \mathsf{Ker}(u^{k+1}) \ \ \mathsf{et} \ \ \ \mathsf{Im}(u^{k+1}) \subset \mathsf{Im}(u^k).$$

- **2.** Montrer qu'il existe $k \in \mathbb{N}$ tel que $Ker(u^k) = Ker(u^{k+1})$. On notera p le plus petit entier k vérifiant cette propriété.
- 3. Montrer que

$$\forall k \in \mathbb{N}, \quad \mathsf{Ker}(u^{p+k}) = \mathsf{Ker}(u^p) \ \ \mathsf{et} \ \ \ \mathsf{Im}(u^{p+k}) = \mathsf{Im}(u^p)$$

4. Montrer que $E = \text{Ker}(u^p) \oplus \text{Im}(u^p)$.

Les sous-espaces $Im(u^p)$ et $Ker(u^p)$ s'appellent respectivement « cœur » et « nilespace » de u.

Indication • Exercice 36.

- **1.** Essentiellement, $u^{k+1}(\cdots) = u^k(u(\cdots))$.
- **2.** Raisonner avec la suite $\left(\dim\left(\operatorname{Ker}(u^k)\right)\right)_{k\in\mathbb{N}}$.
- 3. \(\) L'égalité des noyaux peut se démontrer par récurrence.
 - ♦ L'égalité des images peut se démontrer à l'aide d'une inclusion et de l'égalité des dimensions, obtenue par le théorème du rang.
- **4.** Utiliser les dimensions et montrer que l'intersection est nulle.

Exercice 40 Matrices de rang 1.

Soient $n \in \mathbb{N}^*$ et $A \in M_n(\mathbb{C})$ une matrice de rang 1.

- **1.** Montrer qu'il existe $C \in M_{n,1}(\mathbb{C})$ et $L \in M_{1,n}(\mathbb{C})$ telles que A = CL.
- **2.** Montrer que $A^2 = \text{Tr}(A)A$.
- **3.** Déterminer, pour $p \in \mathbb{N}$, une expression de A^p .

Indication • Exercice 40.

- **1.** Les colonnes de A sont liées : il existe C et $(\alpha_i)_{1 \le i \le n}$ tels que $\forall i \in [1, n], C_i(A) = \alpha_i C$.
- 2. On peut utiliser 1. ou faire un changement de base.
- 3. Raisonner par récurrence avec 2...

Résultat • Exercice 40.

$$A^0 = I_n$$
 et $\forall p \in \mathbb{N}^*, A^p = \operatorname{Tr}(A)^{p-1}A$.

Exercice 42

Soient $n \in \mathbb{N}^*$ et $N \in M_n(\mathbb{C})$ une matrice *nilpotente*.

La matrice N est dite nilpotente lorsqu'il existe $p \in \mathbb{N}$ tel que $N^p = 0_{\mathsf{M}_n(\mathbb{C})}$.

Montrer que $N - I_n$ est inversible et déterminer son inverse.

Indication • Exercice 42.

Calculer $(I_n - N) \sum_{k=0}^{p_0-1} N^k$ où p_0 désigne l'indice de nilpotence de N (le plus petit entier k tel que $N^k = 0_{\mathsf{M}_n(\mathbb{C})}$).

Résultat • Exercice 42.

$$(I_n - N)^{-1} = \sum_{k=0}^{p_0 - 1} N^k$$

où p_0 désigne l'indice de nilpotence de N.

Exercice 43 Lemme de Hadamard.

Soit $n \in \mathbb{N}^*$.

Une matrice $A \in M_n(\mathbb{C})$ *est dite* à diagonale strictement dominante *lorsque*

$$\forall i \in [1, n], \quad |a_{i,i}| > \sum_{\substack{j=1 \ i \neq i}}^{n} |a_{i,j}|.$$

Montrer qu'une matrice à diagonale strictement dominante est inversible.

Indication • Exercice 43.

Raisonner par contraposée avec le critère nucléaire d'inversibilité : fixer X tel que AX=0 puis étudier une ligne bien choisie de cette équation pour aboutir à une contradiction avec la définition de matrice à diagonale strictement dominante.

Exercice 55 Inversibilité dans $M_n(\mathbb{Z})$.

Soit $n \in \mathbb{N}^*$. Soit $M \in M_n(\mathbb{Z})$.

Déterminer une condition nécessaire et suffisante pour que M soit inversible et que $M^{-1} \in M_n(\mathbb{Z})$.

Indication • Exercice 55.

Raisonner par analyse-synthèse en utilisant

- ♦ la description des inversibles de ℤ;
- ♦ la formule de la comatrice.

Résultat • Exercice 55.

Une condition nécessaire et suffisante est que |det(M)| = 1.

Soit $n \in \mathbb{N}^*$. Calculer le déterminant

Indication • Exercice 59.

Reconnaître, à l'aide de développements suivant une ligne ou une colonne, une relation de récurrence linéaire d'ordre 2 vérifiée par la suite $(\Delta_n)_{n\in\mathbb{N}^*}$ puis en déterminer le terme général.

Résultat • Exercice 59.

$$\Delta_{n+2} = 3\Delta_{n+1} - 2\Delta_n.$$
$$\Delta_n = 2^{n+1} - 1.$$

Exercice 69 Similitudes d'un espace euclidien.

Soient $(E, \langle \cdot | \cdot \rangle)$ un espace euclidien de dimension $n \in \mathbb{N}^*$ et $f \in L(E)$.

• On dit que f est une similitude de rapport $\lambda \in \mathbb{R}_+$ lorsque

$$\forall x \in E, \quad ||f(x)|| = \lambda ||x||.$$

• On dit que f préserve l'orthogonalité lorsque

$$\forall x, y \in E, \quad x \perp y \implies f(x) \perp f(y).$$

- **1.** Soient $x, y \in E$ tels que ||x|| = ||y|| = 1. Montrer que $x y \perp x + y$.
- **2.** Soit $\lambda \in \mathbb{R}_+$. Montrer que

$$f$$
 est une similitude de rapport $\lambda \quad \iff \quad \forall x,y \in E, \ \left\langle f(x) \,\middle|\, f(y) \right\rangle = \lambda^2 \langle x \mid y \rangle.$

- **3.** Soit $\lambda \in \mathbb{R}_+$. On suppose que f est une similitude de rapport λ . Montrer que f préserve l'orthogonalité.
- **4.** On suppose que f préserve l'orthogonalité. Soit (e_1, \dots, e_n) une base orthonormée de E.
 - (a) Soient $i, j \in \llbracket 1, n
 rbracket$. Montrer que $\left\| f(e_i) \right\| = \left\| f(e_j) \right\|$.
 - **(b)** En déduire qu'il existe $\lambda \in \mathbb{R}_+$ tel que f est une similitude de rapport λ .

Indication • Exercice 69.

- 1. Calculer le produit scalaire.
- **2.** \implies Utiliser la formule de polarisation.
 - \subset Cas où x = y.
- 3. Utiliser 2...
- **4.** (a) Utiliser **1.** avec $f(e_i e_j)$ et $f(e_i + e_j)$.
 - **(b)** Écrire $x \in E$ dans $(e_i)_i$ puis calculer $||x||^2$ et $||f(x)||^2$.

Exercice 75

On se place dans $\mathbb{R}[X]$ que l'on munit du produit scalaire

$$\langle \cdot \mid \cdot \rangle : (P, Q) \longmapsto \int_0^1 P(t)Q(t) dt.$$

Existe-t-il $A \in \mathbb{R}[X]$ tel que pour tout $P \in \mathbb{R}[X]$, $P(0) = \langle A \mid P \rangle$?

Indication • Exercice 75.

Raisonner par l'absurde et considérer la suite $\left((X-1)^n\right)_{n\in\mathbb{N}}$

Exercice 80 Suites de carré sommable.

On considère

$$\ell^2 \coloneqq \left\{ (u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \ \middle| \ \sum_n |u_n|^2 \ \mathsf{converge} \right\}.$$

On définit sur $\ell^2 \times \ell^2$ l'application suivante :

$$\langle \cdot | \cdot \rangle : ((u_n)_{n \in \mathbb{N}}, (v_n)_{n \in \mathbb{N}}) \longmapsto \sum_{n=0}^{+\infty} u_n v_n.$$

- 1. Montrer que $\left(\ell^2,\left\langle\cdot\mid\cdot\right\rangle\right)$ est un espace préhilbertien réel.
- 2. On considère

$$F := \{(u_n)_{n \in \mathbb{N}} \mid \exists p \in \mathbb{N} : \forall n \geqslant p, u_n = 0\}.$$

- (a) Montrer que F est un sous-espace vectoriel de ℓ^2 , différent de ℓ^2 .
- **(b)** Montrer que $F \neq (F^{\perp})^{\perp}$.

Indication • Exercice 80.

1. Il faut montrer que ℓ^2 est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$, puis montrer que $\langle \cdot \mid \cdot \rangle$ définit bien un produit scalaire.

L'inégalité suivante sera utile :

$$\forall x, y \in \mathbb{R}, \quad |xy| \leqslant \frac{x^2 + y^2}{2}.$$

- 2. (a)
 - **(b)** Calculer le produit scalaire entre une suite de F^{\perp} et $(0, \dots, 0, 1, 0, \dots, 0, \dots) \in F$ pour décrire F^{\perp} et en déduire $(F^{\perp})^{\perp}$.

Indications

PROBABILITÉS

Soit $(p_n)_{n\in\mathbb{N}^*}\in[0,1]^{\mathbb{N}^*}$. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes telle que

$$\forall n \in \mathbb{N}^*, \quad X_n \sim \mathscr{B}(p_n).$$

On pose, pour $n \in \mathbb{N}^*$,

$$S_n := \frac{X_1 + \cdots + X_n}{n}$$
 et $m_n := \frac{p_1 + \cdots + p_n}{n}$.

Montrer que

$$\forall \varepsilon > 0, \quad \lim_{n \to +\infty} \mathbb{P}(|S_n - m_n| \geqslant \varepsilon) = 0.$$

Indication • Exercice 84.

Utiliser l'inégalité de Bienaymé-Tchebychev.

Exercice 85

Soit X une variable aléatoire réelle définie sur un espace probabilisé fini. Montrer que

$$\mathbb{E}[X]^2 \leqslant \mathbb{E}[X^2].$$

Indication • Exercice 85.

Utiliser la formule de König-Huygens ou l'inégalité de Cauchy-Schwarz.

Exercice 89

1. Soient $n \in \mathbb{N}^*$ et $p \in [0,1]$. Soit X une variable aléatoire suivant une loi binomiale $\mathcal{B}(n,p)$. Montrer que

$$\forall \varepsilon > 0, \quad \mathbb{P}\left(\left|\frac{X}{n} - \rho\right| \geqslant \varepsilon\right) \leqslant \frac{p(1-\rho)}{n\varepsilon^2}.$$

2. Application.

On lance un dé cubique parfait. Déterminer un nombre de lancers minimal pour pouvoir affirmer, avec un risque d'erreur inférieur à 5%, que la fréquence d'apparition du 6 diffère de 1/6 d'au plus 1/100.

Indication • Exercice 89.

- **1.** Utiliser l'inégalité de Bienaymé-Tchebychev avec X et $\varepsilon \leftarrow \varepsilon n$, ou avec $Y := \frac{X}{n}$.
- 2. Bien poser le problème pour appliquer 1..

Résultat • Exercice 89.

 $n \ge 27778$.