PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (51) International Patent Classification 6: WO 98/35056 (11) International Publication Number: C12Q 1/48, C12N 9/12, 15/52, C07K A1 (43) International Publication Date: 13 August 1998 (13.08.98) 14/00, A61K 38/17 (21) International Application Number: PCT/US98/02797 (81) Designated States: AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GE, GW, HU, ID, IL, IS, JP, KG, 9 February 1998 (09.02.98) KR, KZ, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, (22) International Filing Date: NO, NZ, PL, RO, RU, SG, SI, SK, SL, TJ, TM, TR, TT, UA, US, UZ, VN, YU, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, (30) Priority Data: KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, 60/037,560 11 February 1997 (11.02.97) US

(71) Applicant (for all designated States except US): MERCK & CO., INC. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): DUONG, Le, T. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065 (US). RO-DAN, Gideon, A. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065 (US).
- (74) Common Representative: MERCK & CO., INC.; 126 East Lincoln Avenue, Rahway, NJ 07065 (US).

Published
With international search report.

MR, NE, SN, TD, TG).

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML,

- (54) Title: IDENTIFICATION OF INHIBITORS OF PROTEIN TYROSINE KINASE 2
- (57) Abstract

Assays for compounds which bind to or modulate the activity of Protein Tyrosine Kinase 2 are given. These ligands are useful in treating osteoporosis and/or inflammation.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Pinland	l.T	Lithuania ,	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil .	IL	[srac]	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	υz	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam Yugoslavia
CG	Congo	KE	Kenya	NL	Netherlands	YU	
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	Li	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

TITLE OF THE INVENTION

IDENTIFICATION OF INHIBITORS OF PROTEIN TYROSINE KINASE 2

5 BRIEF DESCRIPTION OF THE INVENTION

This invention is directed to a method of identifying compounds which bind to and/or modulate the activity of the enzyme Protein Tyrosine Kinase (PYK2). Such compounds are useful in the prevention and treatment of osteoporosis and inflammation states.

10

25

30

35

BACKGROUND OF THE INVENTION

Protein Tyrosine Kinase 2 (PYK2), also referred to as Cell Adhesion Kinase β (CAKβ), and Related Adhesion Focal Tyrosine Kinase (RAFTK) is a recently described member of the focal adhesion kinase family. See Avraham, et al., 1995 J. Biol. Chem. 270:27742-27751; Lev, et al., 1995 Nature 376:737-745; and Sasaki, et al., 1995 J. Biol. Chem. 270:21206-21219. PYK2 has been cloned from various sources, including mouse, rat and human brain libraries, and the human megakaryocytic CMK cell line.

Monocyte-macrophages are migratory phagocytic cells which play an important role in immunity and inflammation, in part due to their capacity to secrete bioactive molecules. Macrophage function is regulated to a large degree by adhesion to surrounding extracellular matrix (ECM) and by responses to specific cytokines.

Monocyte/macrophage adhesion, chemotaxis and phagocytosis are mainly mediated by β_2 integrins, whose members are classified according to the α chain as $\alpha_L\beta_2$ (LFA-1; CD11a/CD18), $\alpha_M\beta_2$ (Mac-1; CR3; CD11b/CD18) and $\alpha_X\beta_2$ (gp150,95; CD11c/CD18). The adhesion of monocytes is also influenced by members of the β_1 integrins, particularly $\alpha_4\beta_1$ (VLA4) and the α_V -associated integrins.

In vitro, most cells adhere to ECM via focal adhesion contacts. However, monocytic cells adhere to substrate through dot-shaped contact sites named "podosomes". Like focal adhesions, podosomes are regions of the cell surface where the plasma membrane is in close contact with the underlying substrate.

Podosomes have been detected in many transformed cells but are also extensively present in spreading macrophages and osteoclasts.

It would be desirable to identify compounds which would inhibit the formation of podosomes, as these compounds would be potential anti-inflammation and/or anti-osteoporosis agents.

However, to date there is no assay for identifying such compounds.

DETAILED DESCRIPTION OF THE INVENTION

5

10

15

20

25

30

35

This invention relates to a method of identifying a compound which binds to and/or modulates the activity of Protein Tyrosine Kinase 2 (PYK2) comprising contacting the compound and PYK2 and determining if binding has occurred. Further, if binding has occurred, the activity of the bound PYK2 may be compared to activity of PYK2 which is not bound to the compound to determine if the compound modulates PYK2 activity. Murine PYK2 cDNA is set forth in Figure 8 (SEQ ID NO:5). A deduced murine PYK2 protein is also set forth in Figure 8 (SEQ ID NO:6).

This invention also relates to a method for identifying compounds which inhibit the formation of podosomes in macrophage cells comprising: contacting the compound with protein tyrosine kinase 2 (PYK2) and determining if the compound inhibits PYK2 activity.

This invention also relates to a method of identifying a compound which prevents monocyte adhesion to a substrate comprising: contacting the compound with protein tyrosine kinase 2 (PYK2) and determining if the compound inhibits PYK2 activity.

Another aspect of this invention is a method of identifying a compound which inhibits osteoclast mobility comprising: contacting the compound with protein tyrosine kinase 2 (PYK2) and determining if the compound inhibits PYK2 activity.

A further aspect of this invention is a method of identifying a compound which inhibits a monocytic cell from degrading an extracellular matrix comprising: contacting the compound with protein tyrosine kinase 2 (PYK2) and determining if the compound inhibits PYK2 activity.

The present invention relates to compounds which are identified using the assays of the present invention. The compounds which are identified are useful in the prevention and treatment of osteoporosis, inflammation, and other conditions dependent upon monocyte migration and invasion activities.

The present invention also relates to methods of treating and/or preventing a disease state or condition in a mammal which is mediated by PYK2. The present invention also relates to methods of treating and/or preventing osteoporosis and/or inflammation in mammals by administering an effective amount of the compounds which are identified using the assays of the present invention.

BRIEF DESCRIPTION OF THE FIGURES

followed by immunoblot analysis.

5

10

20

25

30

35

FIGURE 1 is a Northern Blot analysis of PYK2

expression in mouse tissues. The same RNA blot was hybridized first with a specific probe for mouse PYK2 (upper panel) and then stripped and probed for mouse Focal Adhesion Kinase (FAK) (lower panel) as described. RNA size markers are indicated on the right.

FIGURE 2 shows characterization of the polyclonal anti-PYK2 antibodies. Specificity of the anti-PYK2 antibodies was assessed by immunoprecipitation using either anti-PYK2 antiserum (upper panel) or anti-FAK mAb 2A7 (lower panel) from cell extracts either isolated from mock-transfected human embryonic kidney 293 cells (lane 1), or stably transfected with mouse FAK cDNA (lane 2) and mouse PYK2 cDNA (lane 3). The level of expression of each protein was visualized by immunoblot analysis using the respective antibodies. Expression of PYK2 and FAK were examined in parental NIH3T3 cells (wt., lane 4), or in Ras-transformed (lane 5) and in Srctransformed (lane 6) NIH3T3 cells. Protein levels of PYK2 (upper panel) and FAK (lower panel) were detected by immunoprecipitation,

FIGURE 3 shows expression of PYK2 in murine monocyte-macrophages in primary thioglycolate-induced peritoneal macrophages (lane 1), immortalized peritoneal IC-21 macrophages (lane 2), monocyte-macrophage RAW264.7 (lane 3), WEHI-3 (lane 4)

and P388D1 (lane 5) cell lines. Expression of these proteins was also examined in isolated mouse bone marrow cells (lane 6), in bone marrow-derrived M-CSF induced macrophages (lane 7) and bone marrow-derived 1,25(OH)₂D₃ -induced osteoclast-like cells (lane 8).

5 To visualize the doublet on SDS-PAGE that represents the closely separated forms of PYK2, the immunoblot for the levels of PYK2 in these cells was underdeveloped.

10

15

20

25

30

35

FIGURE 4 demonstrates that cell adhesion stimulates tyrosine phosphorylation of PYK2 in the IC-21 macrophages in suspension or upon attachment to various ECM. Cells detached by trypsinization (lane 1) or replated on tissue-culture plastic in the presence of complete serum (lane 2). Otherwise, cells in suspension were allowed to attached for 20 min on polystyrene dishes coated with 100 μg/ml poly-L-lysine (lane 3), 25 μg/ml fibronectin (FN, lane 4), 10 μg/ml vitronectin (VN, lane 5), 50 μg/ml fibrinogen (FB, lane 6), 25 μg/ml laminin (LN, lane 7), 25 μg/ml collagen type I (COL I, lane 8) and 25 μg/ml collagen type IV (COL IV, lane 9). The blot was first incubated with anti-phosphotyrosine mAb 4G10 (upper panel), then stripped and re-blotted with anti-PYK2 antibodies (lower panel). The arrows indicate two forms of PYK2 based on differences in molecular weight.

FIGURES 5A, 5B, and 5C demonstrate that adhesion-mediated increase in PYK2 tyrosine phosphorylation is time dependent. In Figure 5A, IC-21 cells were attached to tissue culture dishes for 4h in the presence of serum (ON DISH, lane 1) or maintained in suspension for 1h in serum-free condition (OFF DISH, lane 2). Cells were allowed to attach to fibronectin (FN)-coated dishes in serum-free medium for the indicated times (lanes 3-8). Levels of phosphotyrosine (upper panel) and PYK2 protein (lower panel) were determined by immunoblots using anti-P-Tyr 4G10 mAb and anti-PYK2 Ab, respectively.

In Figure 5B, the kinetics of cell adhesion-induced PYK2 tyrosine phosphorylation were also followed by estimating the mean relative tyrosine phosphorylation of the kinase in IC-21 cells attached to fibringen (Fb), fibronectin (Fn), vitronectin (Vn) or poly-L-lysine

(Poly-L-Lys). In each case, the specific activity of tyrosine phosphorylatated PYK2 was calculated by normalizing to the protein level. The PYK2 tyrosine phosphorylation in ON DISH (arbitrarily set at 1.0) was used as reference. Bars represent mean and SD from three independent experiments.

5

10

25

30

35

Figure 5C shows in vitro kinase assays of anti-PYK2 immunocomplexes from IC-21 cells plated on fibronectin (Fn). The bar graph represents the calculated specific activity of total [32P] incorporation into poly(Glu,Tyr) after kinase assays of immunoprecipitated PYK2 complexes, normalized to the protein level as determined by western blots. Again, the activity of PYK2 in ON DISH was arbitrarily set at 1.0, and all numbers represent averages from three experiments.

FIGURE 6A demonstrates that adhesion-induced tyrosine phosphorylation of PYK2 is mediated by integrin αMβ2 in macrophages. Expression pattern of integrins in IC-21 macrophages was determined by by flow cytometric analysis. Cells were incubated with the following antibodies: mAb M17/4 (anti-α_L); mAb M1/70 (anti-α_M); mAb HL3 (anti-α_X); mAb M18/2 (anti-β2); mAb R1-2 (anti-α4); mAb MFR5 (anti-α5); mAb H9.2B8 (anti-α_V); and mAb 9EG7 (anti-β1); followed by incubation with FITC-conjugated goat anti-rat IgG or FITC-cojugated goat anti-hamster IgG. Open peaks represent cells with secondary antibody treatment alone and filled peaks represent cells incubated with anti-integrin antibodies.

Figure 6B shows IC-21 cells which were allowed to attach to fibrinogen in the absence (lane 1) or the presence of blocking antibodies to the following integrin subunits: anti- α L (lane 2), anti- α M (lane 3), anti- β 2 (lane 4), anti- α 4 (lane 5), anti- α 5 (lane 6) and anti- β 1 (lane 7). Tyrosine phosphorylation of PYK2 was determined by immunoprecipitation and immunoblot analysis.

Figure 6C shows that relative PYK2 tyrosine phosphorylation was quantitated in cells adhering to fibrinogen (Fb, upper panel), to fibronectin (Fn, middle panel) and to vitronectin (Vn, lower panel). The specific activity of phosphotyrosine content in PYK2 was determined by normalizing to the protein level. PYK2

tyrosine phosphorylation is expressed relative to control (in the absence of blocking antibodies), which is arbitrarily set at 1.0. Bars represent values from three separate experiments.

FIGURE 7 demonstrates that clustering of β2-integrin
induces tyrosine phosphorylation of PYK2 in macrophages. IC-21
cells were incubated with either anti-β2 integrin mAb M18/2 or antiβ1 integin mAb 9EG7. Then, cells were treated with goat F(ab')2 antirat IgG (50 μg/ml) for the indicated times. Cells were lysed and
subjected to immunoprecipitation and immunoblot using antiphosphotyrosine mAb 4G10 and anti-PYK2 antibodies as described.

Figure 8 is the cDNA sequence of mouse PYK2 and the deduced protein sequence. Intron sequences are in lower case letters. The exon sequence is capitalized. The boxed sequence of the deduced protein indicates the kinase domain. The circled prolines of the deduced protein indicate the proline rich domain.

As used throughout this specification and claims, the following abbreviations are used:

ECM is extracellular matrix;

20 COL I is collagen type I;

15

COL IV is collagen type VI;

Fb is fibrinogen;

Fn is fibronectin;

Ln is laminin;

Poly-L-Lys is poly-L-lysine;

Vn is vitronectin;

FAK is focal adhesion kinase;

PYK2 is protein tyrosine kinase 2;

CAK β is cell adhesion kinase β ;

RAFTK is related adhesion focal tyrosine kinase.

One of the key features of this invention is the elucidation of the previously unappreciated biological functions of PYK2. In accordance with this invention it has been determined that PYK2 is

the kinase which is primarily responsible for podosome formation in monocyte-macrophages.

Further, in accordance with this invention it has been demonstrate that cell adhesion-dependent PYK2 activation occurs in macrophages. Moreover, PYK2 is specifically localized in macrophage podosomes and its activity is regulated by selective interaction with the integrin $\alpha M\beta 2$.

In recognition that PYK2 is an appropriate target for compounds intended as PYK2 inhibitors or promotors, one aspect of this invention are assays to determine if a candidate molecule can effect PYK2 activity.

The assays of this invention which asses a compound's ability to modulate PYK2 activity may be cell-based or may use PYK2 which is no longer in intact cells. For cell based assay systems, virtually any cell which expresses PYK2 (either naturally or recombinantly) may be used. Such cells and cell lines which naturally express PYK2 are known to those in the art and include: macrophages, osteoclasts, phagocytes, and particularly immortalized mouse peritoneal IC-21 macrophage cell line.

If a recombinant cell expressing PYK2 is to be used, then any host cell which can be transformed and is capable of transcribing and translating nucleic acids encoding PYK2 may be used. Convenient host cells, including mammalian, yeast, and bacterial cells are known to those in the art. The sequence of mouse PYK2 is given in Figure 8 (SEQ ID NO:6).

The assays of this invention may be adaptations of any known assay. For example, one embodiment of this invention is a binding assay wherein either the compound to be assayed or PYK2 is labeled. Labels may be chemiluminescent, radioactive, flourescent or any labels routinely used in the art. In these assays, the compound and the PYK2 are contacted, and incubated for at least a sufficient time for binding to occur. The bound compound-PYK2 can then be separated from unbound compound and unbound PYK2 and the amount of bound entity can be determined by measuring the label.

35

5

10

15

20

25

30

Another assay in accordance with this invention is an *in vitro* kinase assay. In this assay, the activity of PYK2 activity is determined by measuring the ability of PYK2 to incorporate a labeled phosphate into a substrate. In preferred embodiments, the phosphate is radiolabeled, and its incorporation into poly-Glutamine or poly-Tyrosine by PYK2 is measured. A potential inhibitor or activating compound is added, and the incorporation rate is compared to the rate of incorporation in the absence of the compound. One embodiment of this assay is exemplified in Example 8.

5

10

15

20

25

30

35

Yet another assay in accordance with this invention measures the ability of PYK2 to phosphorylate itself at tyrosine residue 402. This assay is generally performed using conditions similar to those for the *in vitro* kinase assay, except that no substrate is required to be present. The incorporation of labeled phosphate into PYK2 is monitored in the presence and absence of the putative inhibitor. In preferred embodiments, the phosphate is radiolabeled and its incorporation into PYK2 is monitored by SDS-PAGE followed by X-ray radiography. The amount of auto-phosphoylation of PYK2 generally reflects the activation state of PYK2. Thus, a compound which inhibits autophosphoylation would be a compound which inactivates the kinase.

Still another assay in accordance with this invention is an assay which measures the effect (either inhibitory or stimulatory) a candidate compound has an podosome formation in a cell. The cells which may be use in this assay include any cell of interest which is known to form podosomes. If the candidate compound has potential use in osteoporosis, the preferred cell is an osteoclast or osteoclast-like cell. Podosomes are treated by methods known in the art so that they can be visualized, for example, by immunofluorescence. Any inhibitory effect of the candidate compound can then be visually assessed.

The above assays, which can identify and characterize a compound's ability to inhibit (or activate) PYK2 activity can therefore be used for a variety of endpoints. Thus, since inhibition of PYK2 can lead to the inhibition of podosome formation, prevention of monocyte

adhesion to a substrate, inhibition of osteoclast mobility and inhibition of extracellular matrix degradation, the above assays are useful for identification of compounds with these utilities.

5

10

15

20

25

30

35

Adhesion-dependent regulation of PYK2 activity was primarily examined in the immortalized mouse peritoneal IC-21 macrophage cell line. IC-21 shares many characteristics with normal (i.e., non-immortalized macrophages) peritoneal macrophages, including the ability to phagocytize, to secrete lysosomal enzymes, to function as effector cells in antibody-dependent cellular cytoxicity, and to respond to chemoattractants. IC-21 cells possess macrophage-specific antigens, Fc and C3 receptors.

Tyrosine phosphorylation of PYK2 is reduced in non-adherent IC-21 macrophages, while cell attachment and spreading on ECM increased PYK2 tyrosine phosphorylation and kinase activity in a time- and substrate-dependent manner. Activation of PYK2 appears to correlate with cell spreading, since macrophages attach to, but spread only slowly on poly-L-lysine, as compared to fibronectin. PYK2 tyrosine phosphorylation proceeded slowly as well.

Adhesion-induced PYK2 tyrosine phosphorylation and kinase activation suggests the involvement of integrins in the cell attachment and spreading process. Indeed, clustering of $\beta 2$ integrins, but not $\beta 1$ integrins, with the respective antibodies induce PYK2 tyrosine phosphorylation. Moreover, blocking antibodies to the integrin subunits α_M (M1/70) and $\beta 2$ (M18/2) which inhibit cell attachment and spreading on fibrinogen reduced PYK2 tyrosine phosphorylation on this substrate. Interestingly, when cells are seeded on fibronectin, blocking antibodies to $\alpha_M\beta 2$ inhibit PYK2 tyrosine phosphorylation, but not antibodies to the $\alpha 4\beta 1$ and $\alpha 5\beta 1$ fibronectin receptors. Although $\alpha 4\beta 1$ and $\alpha 5\beta 1$ are the principal fibronectin receptors in IC-21 macrophages as well, blocking antibodies to either $\alpha 4$ or $\alpha 5$ did not substantially inhibit cell adhesion to fibronectin in this study.

Adhesion to vitronectin also induced PYK2 tyrosine phosphorylation, but flow cytometry analysis indicated low

expression of α_V -associated receptors and blocking antibodies to both β_1 or β_2 integrins had no effect on vitronectin-induced PYK2 phosphorylation.

5 After a period of time in the circulation, peripheral blood monocytes migrate to various tissues, where they are known to undergo final differentiation into macrophages. Monocyte migration involves multiple interactions with the endothelial lining, diapedesis between endothelial cells and crossing of the ECM. Podosomes or 10 "rosette" adhesions have been detected in many transformed cells, but they are most abundant in spreading macrophages and osteoclasts. Interestingly, cells which express podosomes have an "invasive" phenotype, they are highly motile and secrete proteases. Podosomes are dynamic structures; they apparently assemble and disassemble 15 within a few minutes. Podosomes have therefore been implicated in the regulation of rapid migration and in local degradation of the ECM. Inhibition of PYK2 activity thus results in reduced motility and decreased matrix degradation in macrophages. Therefore, the podosome-associated PYK2 is a potential crucial intermediate in 20 adhesion-dependent differentiation and activation of macrophages.

PYK2 is highly expressed in macrophages and rapidly tyrosine phosphorylated upon cell attachment to specific ECM. This cell adhesion-dependent PYK2 phosphorylation is mediated, in part, by the ligation of integrin $\alpha M\beta 2$. In addition, PYK2 co-localizes with $\alpha M\beta 2$ to podosomes in macrophages. The localization of PYK2 implicates its function in the formation of podosomes and in the regulation of migration and matrix degradation of monocytic cells. To reach the above conclusions regarding PYK2 function, the following investigations were made.

25

30

A. Cloning and Expression of Mouse PYK2 and FAK
Since focal adhesion kinase (FAK) expression was
unable to be detected in a number of macrophage cell lines and in
bone marrow-derived osteoclasts, it was hypothesized that another

PCT/US98/02797 - WO 98/35056

cell adhesion-dependent kinase, homologous to FAK, may assume its function in these cells. To evaluate PYK2 as a possible adhesiondependent kinase in macrophages, specific probes were generated for PYK2 and FAK which were used to examine the expression of PYK2 and FAK in mouse tissues. As previously reported, PYK2 is highly expressed in brain and spleen, and at lower levels in kidney, lung and liver (Fig. 1, upper panel), and has a more restricted tissue distribution than FAK (Fig.1, lower panel).

5

Using the PYK2 probe, the full length cDNA from a 10 mouse spleen cDNA library was cloned. The deduced amino acid sequence of the full length clone was found to be identical to the recently published amino acid sequence of the mouse RAFTK (Avraham, et al., 1995 supra). In addition, full length FAK from a mouse osteoblastic MB1.8 cell line (Wesolowski, et al., 1995 Exp. Cell 15 Res. 219:679-686), and its sequence was the same as that published (Hanks, et al., 1992 Proc. Natl. Acad. Sci. USA 89:8487-8491). PYK2 and FAK cDNAs were subsequently transfected into human embryonic kidney (HEK) 293 cells. Cell lines which permanently express either PYK2 or FAK were established and the expression 20 levels of the exogeneously expressed mouse kinases were assessed by northern analysis.

<u>B.</u> Characterization of Polyclonal Anti-PYK2 Antibodies

To study the function of PYK2 in macrophages, anti-25 PYK2 antibodies were developed against the C-terminal domain of mouse PYK2 as described in the Examples, and were affinity purified using the recombinant peptide. To characterize the polyclonal anti-PYK2 antibodies, or FAK was immunoprecipitated from the parental HEK 293 cells and from the transfected cell lines using either 30 polyclonal anti-PYK2 antisera or monoclonal anti-FAK antibody (mAb 2A7), followed by immunoblotting with the respective antibodies. The parental HEK 293 cells express endogeneous FAK, but not PYK2 (Fig. 2). Anti-PYK2 antisera recognize a 110 kDa protein in HEK 293 cells transfected with full length mouse PYK2 35

cDNA (Fig. 2, lane 3), but not the transfected mouse FAK (Fig. 2, lane

2) or the endogenously expressed human FAK (Fig. 2, lane 1-3). In addition, PYK2 protein was not detected in NIH-3T3 cells and transformation of this fibroblastic cell line by either v-ras or v-src did not induce PYK2 (Fig. 2, lane 4-6).

5

10

15

20

25

30

C. PYK2 is expressed in Murine Macrophages

Using the same polyclonal anti-PYK2 antibodies, PYK2 expression was observed in isolated primary cultures of murine peritoneal macrophages (Fig. 3, lane 1) and in a number of mouse monocyte-macrophage cell lines (Fig. 3, lanes 2-5) as well as in bone marrow derived macrophages and osteoclast-like cells (Fig. 3, lanes 7-8). Previous studies suggested that monocytic cells do not express FAK. In this study, the lack of FAK expression in the peritoneal and bone marrow derived macrophages (Fig. 3, lanes 3 and 7) and in the bone marrow derived osteoclast-like cells was confirmed (Fig. 3, lane 8). FAK was not detected in the monocyte-macrophage cell lines, WEHI-3 and P388D1 (Fig. 3, lanes 4 and 5), and in the peritoneal macrophage IC-21 line (Fig. 3, lane 2). FAK was detected in the mouse bone marrow derived macrophage RAW264.7 cell line (Fig. 3, lane 3).

PYK2 which is highly expressed in all murine macrophages (Fig. 3, upper panel), appears to present as two forms, differing slightly in molecular weight. The peritoneal macrophage IC21 cells express both forms equally, while WEHI-3 and the bone marrow derived osteoclast-like cells express mainly the higher molecular weight PYK2. RAW264.7, P388D1, the primary peritoneal macrophages and the bone marrow derived macrophages express predominantly the lower molecular weight form of PYK2. PYK2 tyrosine was rapidly dephosphorylated upon trypsinization, but both PYK2 forms are still detected by anti-PYK2 antibodies, as marked by the arrows.

<u>D.</u> Substrate-dependent Cell Adhesion Induces Tyrosine
 <u>Phosphorylation of PYK2 in Macrophages</u>

It has been reported that the adhesion of rat fibroblast 3Y1 cells to fibronectin failed to induce tyrosine phosphorylation of PYK2 (Sasaki, et al., 1995 J. Biol. Chem. 270:21206-21219), however, attachment of CMK cells to fibronectin stimulated PYK2 tyrosine 5 phosphorylation and kinase activity (Li, et al., 1996 Blood 88:417-428). In accordance with this invention it was found that in IC-21 macrophages in suspension, PYK2 is dephosphorylated (Fig. 4, lane 1). However, when the cells are replated on plastic tissue culture dishes in the presence of serum, PYK2 is rapidly tyrosine 10 phosphorylated by immunoblotted with mAb 4G10 as the cells attach and spread (Fig. 4, lane 2). Similar adhesion-induced tyrosine phosphorylation of PYK2 was also observed in the other monocytemacrophage cell lines and in primary macrophages. Substantial tyrosine phosphorylation of PYK2 in IC-21 cells seeded on ECMcoated polystyrene dishes in the absence of serum for 20 min at 37°C 15 is induced only by specific ECM components: fibronectin, vitronectin or fibringen (Fig. 4, lanes 3-9). Much lower levels of PYK2 phosphorylation are also detected when cells are plated on polylysine, collagen type I, collagen type IV, or laminin. Previous reports on 20 laminin receptors suggest that in macrophages they are normally in a low affinity state and require activation for adhesion to laminincoated surfaces.

Adhesion-dependent PYK2 tyrosine phosphorylation is a rapid response. Upon attachment of IC-21 macrophages to either fibronectin, vitronectin or fibrinogen, an increase in PYK2 tyrosine phosphorylation is detected within 1 minute and peaks around 20 minutes after plating (Fig. 5A and 5B). In addition, the increase in PYK2 tyrosine phosphorylation upon attachment to fibronectin is associated with a concomittant increase in PYK2 intrinsic kinase activity (Fig. 5C). Attachment to poly-L-lysine caused a much slower increase in PYK2 tyrosine phosphorylation (Fig. 5B), which paralleled slower spreading of IC-21 cells on poly-L-lysine coated surfaces. Interestingly, PYK2 is highly phosphorylated for as long as the cells are allowed to attach and spread on the ECM coated dishes.

No decline in PYK2 tyrosine phosphorylation or kinase activity was observed for up to 1 hour and for as long as 4 hours.

E. Induction of PYK2 Tyrosine phosphorylation is Mediated by Integrin αMβ2

5

10

15

Since the $\beta1$ and $\beta2$ integrins are primarily responsible for the adherence of macrophages to other cells and to ECM components such as fibronectin and fibrinogen and α_V integrins mediate binding to vitronectin the role of these integrins in the adhesion-induced tyrosine phosphorylation of PYK2 was examined. The surface expression of integrins present in IC-21 macrophages was determined by flow cytometry. As shown in Figure 6A, the predominant integrins are $\alpha4\beta1$ and $\alphaM\beta2$. Lower levels of integrins $\alpha5\beta1$ and $\alphaL\beta2$ were also detected. However, integrins $\alpha\chi\beta2$ and the α_V -associated integrins were not detected in this cell line, using mAb HL3 and mAb H9.2B8, respectively.

To examine the role of specific integrins in PYK2 tyrosine phosphorylation, IC-21 macrophages were incubated with 20 blocking antibodies to the \(\beta_2\)-associated integrin subunits: antiintegrin α L antibody (M17/4), anti-integrin α M antibody (M1/70) or anti- integrin β_2 antibody (M18/2). In addition, blocking antibodies to the integrin subunit α_4 (R1-2), or α_5 (MFR5) and to the integrin subunit β₁ (9EG7) were also used. As shown in Figures 6B and 6C, 25 PYK2 tyrosine phosphorylation is specifically inhibited by anti- $\alpha_{\rm M}$ and anti-β2 antibodies when IC-21 cells are seeded on fibrinogen or fibronectin. Surprisingly, when the cells adhere to fibronectin-coated plates, antibodies to the integrin subunit α_4 , α_5 or β_1 fail to block the increase in PYK2 tyrosine phosphorylation. On vitronectin, 30 antibodies to the β_2 -associated integrins or to the β_1 -associated integrins do not prevent the adhesion-mediated PYK2 phosphorylation in IC-21 cells (Fig. 6C). Although, the expression of the α_{V} -associated integrins could not be demonstrated in this study using flow cytometry, the possibility of low expression of α_V integrins 35 sufficient to mediate macrophage attachment to vitronectin cannot be

ruled out. These findings suggest that the integrin $\alpha M\beta 2$ is the predominant receptor which mediates IC-21 macrophage attachment to fibrinogen, and regulates cell attachment to fibronectin. IC-21 cells express significant levels of integrin $\alpha 4\beta 1$ and detectable levels of $\alpha L\beta 2$, and $\alpha 5\beta 1$ as shown by flow cytometry (Fig. 6A), however these receptors do not appear to play a significant role in regulating PYK2 phosphorylation during the initial phase within 20 minutes of cell adhesion to fibrinogen and fibronectin.

5

The role of integrin αMβ2 in mediating PYK2 tyrosine phosphorylation was further supported by integrin ligation. IC-21 macrophages were incubated either with anti-integrin β2 antibodies (M18/2) or anti-integrin β1 antibodies (9EG7), and clustering effects were enhanced by incubation with secondary antibodies. PYK2 phosphotyrosine levels were determined after immunoprecipitation by immunoblotting. As shown in Figure 7, ligation of the β2 integrin subunit (lane 1-5) increases PYK2 tyrosine phosphorylation, while ligation of the β1 integrin subunit (lane 6) has no effect. Similar to cell attachment, ligation of the β2 integrin causes a very rapid (within 5 minutes) increase in PYK2 tyrosine phosphorylation, which remains elevated at least up to 30 minutes at 37°C.

F. PYK2 Localizes to Podosomes in Macrophages

The localization of PYK2 in IC-21 cells and in primary bone marrow-derived and peritoneal macrophages was examined. Cells were allowed to adhere on fibronectin-coated glass coverslips in the absence of serum. The same findings as those described below were obtained using vitronectin- or fibrinogen-coated coverslips. After 20 hours at 37°C, all cells are spread and display a typical fanlike shape of migrating macrophages. Immunofluorescent staining of both IC-21 peritoneal macrophages and primary macrophages with affinity purified anti-PYK2 antibodies visualize PYK2 either in the perinuclear region or in structures resembling podosomes. Depending on the state of cell migration, the podosome-associated PYK2 was found in the periphery of the ruffled-leading edge of motile cells or organized in extensive arrays, mainly underneath the migrating cell bodies and occasionally under the nucleus. Similar to focal adhesion kinase, podosome associated PYK2 was always found to cluster with proteins highly tyrosine phosphorylated. This is evidence of a role for PYK2 in the assembly and/or disassembly of podosomes in macrophages.

20

5

10

15

G. Co-localization of PYK2 and Cytoskeletal Proteins

Because PYK2 localizes to podosomes, it may play an important role in anchoring actin filaments. When IC-21 macrophages were co-stained with anti-PYK2 antibodies and phalloidin, PYK2 was detected extensively in the perinuclear regions of some cells, where it was never found to associate with F-actin. However, podosome associated PYK2 (which appeared as dot-like structures) was readily demonstrated to cluster with aggregrates of F-actin. Similarly, podosome-associated PYK2 was found either at the leading edge or under the lamellipodia and the migrating cell body. Immunostaining of α-actinin also revealed its co-localization with PYK2 in podosome structure.

In accordance with this invention, PYK2 was found to be organized as rings in podosome adhesion contacts in macrophages.

This indicates that PYK2 is closely associated with a number of cytoskeletal proteins, including vinculin, talin and paxillin, which were previously identified to form ring-like structures surrounding the actin core in podosomes. To further confirm the subcellular distribution of PYK2 in macrophages, IC-21 cells were double stained with anti-PYK2 antibodies and monoclonal antibodies to vinculin, talin or paxillin. PYK2 was again shown to concentrate in podosomes as well as in the perinuclear region. Co-localization of PYK2 with vinculin with talin and with paxillin in the ring-like structure was demonstrated.

5

10

H. Co-localization of PYK2 and the Integrin αMβ2 in

Macrophages The β 2 integrin was previously detected as a diffusion 15 corona of staining around the podosome adhesion contacts in the monocyte-macrophage cell lineage. Since the present functional data suggested the involvement of the integrin $\alpha_{M}\beta_{2}$ in the activation of PYK2 in peritoneal macrophage IC-21 cells, the association of this kinase with the integrin αMβ2 was examined by double staining IC-20 21 cells plated on fibronectin-coated glass coverslips, with both anti-PYK2 antibodies and the anti- $\alpha_{\rm M}$ integrin subunit or the anti- β_2 integrin subunit. It was found the two structures to co-localize. Immunostaining of IC-21 cells with anti- α _L integrin, anti- α ₄ integrin, anti- α 5 integrin and anti- β 1 integrin was also performed. 25 These integrins appeared to be diffusely located in the apical surface of IC-21 macrophages. No co-localization of the β_1 -associated integrins with PYK2 was observed in IC-21 macrophages.

The following non-limiting Examples are presented to better illustrate this invention.

EXAMPLE 1

5

Antibodies

Monoclonal anti-FAK antibody 2A7 was purchased from Upstate Biotech. (UBI, Lake Placid, NY). The following rat antimouse β2 associated integrins were purified from hybridoma 10 supernatants obtained from the American Type Culture Collection (ATCC, Rockville, MD): mAb M17/4 (anti-aL), mAb M1/70 (anti-αM), and mAb M18/2 (anti-β2). Rat anti-mouse α4 integrin mAb R1-2 was a gift from Dr. Irving L. Weissman, Stanford University. Monoclonal antibodies to integrin subunits α_5 (mAb MFR5), α_V (mAb H9.2B8), α_X 15 (mAb HL3) and β₁ (mAb 9EG7) were purchased from Pharmingen, San Diego, CA. Antibodies to phosphotyrosine (mAb py20) and paxillin (mAb 349) were from Transduction Labs. (Lexington, KY). Antibodies to vincullin (mAb VIN-11-5) and to talin (mAb 8d4) were from Sigma (St. Louis, MO). F(ab)'2 anti-rat IgG, FITC-conjugated 20 goat anti-mouse IgG and TRITC- conjugated donkey anti-rabbit IgG were purchased from Jackson Labs (West Grove, PA). FITCconjugated goat anti-rat IgG and FITC-conjugated goat anti-hamster IgG were purchased from Boehringer Mannheim Co., (Indianapolis, IN). All horseradish peroxidase (HRP) conjugated secondary 25 antibodies were purchased from Amersham (Arlington Heights, IL), except the direct HRP-conjugated anti-phosphotyrosine mAb 4G10 was from UBI. All secondary antibodies coupled to Sepharose were from Organon Teknika (Durham, NC).

EXAMPLE 2

Cell Culture

All monocyte/macrophage cell lines, IC-21 (ATCC, TIB-5 186), P388D1 (ATCC, TIB-63), RAW264.7 (ATCC, TIB-71), WEHI-3 (ATCC, TIB-68), were obtained from the American Type Culture Collection (Rockville, MD). Murine peritoneal macrophages were prepared as described (Mercurio, et al., 1984, J. Exp. Med. 160:1114-1125, which is hereby incorporated by reference. Briefly, 10 macrophages were induced by thioglycolate injection into the peritoneal cavities of adult BALB/c mice. After 4 days, cells were collected, washed and cultured in RPMI 1640 medium containing 10% FBS. After 3 hours at 37°C, the cultures were washed extensively to remove non-adherent cells and cultured overnight 15 before samples were prepared for immunoprecipitation. Bone marrow derived macrophages were prepared as described (Li and Chen, 1995, J. Leuk. Biol. 57:484-490, which is hereby incorporated by reference). Non adherent cells were cultured in RPMI completed medium in the presence of human macrophage 20 colony-stimulating factor (MCS-F, 250 units/ml, Genetics Institute, Cambridge, MA). Differentiated macrophages were prepared for immunoprecipitation after 5 days in culture. Bone marrow derived osteoclast-like cells were prepared as described (Wesolowski, et al., 1995 Exp. Cell Res. 219:679-686, which is hereby incorporated by 25 reference). After the collagenase-dispase treatment, mononucleated tartrate resistant phosphatase positive cells were released from the tissue culture plate using 30 nM echistatin. Freshly isolated osteoclast-like cells were immediately solubilized in immunoprecipitation buffer.

30

EXAMPLE 3

cDNA Cloning and Expression of mouse PYK2

Specific probes for mouse PYK2 and FAK were initially generated based on the non-homologous region between the proteins, which is adjacent to the C-terminal of the kinase domain. Using polymerase chain reaction (PCR), a specific probe for PYK2 (570bp) was generated using the 5'-primer (AGTGA CATTT ATCAG ATGGA G) (SEQ.ID.NO. 1) and the 3'-primer (GAATG GACTG

- TGCAC CGAGC C) (SEQ.ID.NO.2), with cDNAs of mouse bone marrow derived osteoclast-like cells as template (Wesolowski, et al., 1995, supra). Similarly, a specific probe for FAK (700bp) was generated using the following primers: 5'- (CAGCA CACAA TCCTG GAGGA G) (SEQ. ID.NO.3) and 3'- (GCTGA AGCTT GACAC
- CCTCA T) (SEQ.ID.NO.4) with cDNAs of mouse osteoblastic MB1.8 cells as template (Wesolowski, et al., 1995, supra). These probes were confirmed by sequencing analysis. PYK2 cDNA fragments were cloned from a mouse spleen ZAP II cDNA library (Stratagene, La Jolla, CA) using the specific PYK2 probe. Full length PYK2 cDNA
 were constructed by ligation of two overlapping clones at the VspI
- site. The amino acid sequence of the isolated PYK2 cDNA clone was identical to the previously published mouse RAFTK sequence (Avraham, et al., 1995, *J. Biol. Chem.* 270: 27742-27751.). Full length FAK cDNA was generated by PCR according to the published
- 25 sequence (Hanks, et al., 1992 Proc. Natl. Acad. Sci. USA. 89:8487-8491, which is hereby incorporated by reference). Both PYK2 and FAK cDNAs were subcloned into pCDNA3 plasmid (InVitrogen, San Diego, CA) and transfected into human embryonic kidney (HEK) 293 cells (ATCC, Rockland, MD) by electroporation at 200V, 960 μF using
- 30 a GenePulser (Biorad Labs, Richmond, CA). HEK 293 cells was subsequently subjected to G418 selection (800 μg/ml, Gibco BRL) and clones were picked after 3 weeks in selection medium.

35

Expression of PYK2 and FAK in HEK293 cells were confirmed by northern analysis using the respective probes and by western blot analysis using either polyclonal anti-PYK2 antibodies or

mAb 2A7 anti-FAK antibody. Mouse multiple tissue northern blot was purchased from Clonetech (Palo Alto, CA) and hybridization of the northern blot using probes specific for PYK2, FAK and glyceraldehde 3-phosphate dehydrogenase (GAPDH) were performed as described previously (Wesolowski, et al., 1995, *supra*).

EXAMPLE 4

Production and Affinity Purification of Polyclonal Antibodies to Mouse PYK2

5

10 The PYK2 C-terminal domain (from methionine residue 685 to end) was amplified by PCR using the mouse PYK2 as template. Amplified product was cloned into pGEX-4T plasmid (Pharmacia Biotech., Piscataway, NJ) and transformed in E. coli XL1-Blue 15 (Stratagene). Expression of GST-PYK2 C-terminal fragment was induced using 0.5 mM IPTG, purified and cleaved from GST with thrombin, essentially according to the instructions of the manufacturer (Pharmacia). The purified C-terminal fragment of mouse PYK2 was used to immunize two rabbits (Research Genetics, 20 Huntsville, AL) and the titers of both antisera were initially determined by ELISA using the recombinant C-terminal fragment of PYK2. Specificity of the immune sera was subsequently determined by western blot by comparison to the preimmune sera. Polyclonal antibodies were then affinity purified by passing the combined 25 fractions of both antisera through an affinity column, which was constructed using the same purified antigen cross linked to CNBractivated Sepharose 4B according to the instructions of the

manufacturer (Pharmacia). The antibodies were eluted from the column using 0.2 M Glycine, pH 2.5 and 1mM EGTA and the eluted

fraction was then dialyzed against PBS containing 0.02% azide. Anti-PYK2 antibodies were stored at -70°C at a concentration of 0.5mg/ml.

5 EXAMPLE 5

25

30

Cell Attachment to ECM and Inhibition by Anti-Integrin Antibodies Polystyrene dishes (35 mm, Becton Dickinson, Lincoln Park, NJ) were coated overnight at 4°C with either 100 μg/ml 10 polylysine (Sigma), or 25 µg/ml human fibronectin (NY Blood Center, New York, NY), or 10 μg/ml human vitronectin, or 50 μg/ml human fibrinogen, or 25 µg/ml mouse laminin (Gibco BRL), or 25 µg/ml collagen type I or collagen type IV (Collaborative Biomed., Bedford, MA). Plates were blocked with blocking buffer containing casein 15 (Pierce, Rockford, IL) for 1h at room temperature, rinsed with PBS prior to addition of cell suspensions. Cells were lifted using Trypsin-EDTA (5 min, 37°C) and washed 3 times with serum free RPMI medium containing soybean trypsin inhibitors (SBTI, 0.5 mg/ml, Sigma). Cells in suspension (2 X 106 cells per ml) were allowed to attach to ECM-coated plates at 37°C for 1 to 60 min as indicated. Cells 20 were solubilized in RIPA buffer and prepared for immunoprecipitation.

Inhibition of cell attachment to ECM by blocking antiintegrin antibodies was performed essentially as followed: IC-21
macrophages were lifted using trypsin-EDTA and washed with
serum free RPMI media containing SBTI as described above. Cell
suspensions (2 X 10⁶ cells per ml) were incubated with 25 μg of one of
the following anti-mouse integrin subunit antibodies: mAb M17/4
(anti-α_L), mAb M1/70 (anti-α_M), mAb M18/2 (anti-β₂), mAb R1-2
(anti-α₄), mAb MFR5 (anti-α₅) or mAb 9EG7 (anti-β₁). Prior to
inhibition of cell attachment, all antibodies were washed and
concentrated (1mg/ml) on a Centricon-30 concentrator (Amicon,
Beverly MA) in the presence of PBS and 0.1% BSA. After incubation
with antibodies for 20 min, cells were allowed to attach to ECM -

coated plates for an additional 20 min at 37°C, prior to preparation for immunoprecipitation using anti-PKY2 antibodies (see below).

EXAMPLE 6

5

10

15

Integrin Clustering

Antibody-induced clustering in the peritoneal macrophage IC-21 cell line was performed as previously reported (Greenberg, et al., 1994 J. Biol. Chem. 269:3897-3902, which is hereby incorporated by reference). After trypsinization and washing as described above, cell suspensions (1 X 10^6 cells per ml) were incubated with mAb M18/2 or mAb 9EG7 (25 µg/ml) at 4°C for 30 min. Cells were washed with ice-cold serum free medium (2X) containing $100~\mu\text{M}$ sodium vanadate and resuspended in medium containing $50~\mu\text{g/ml}$ of goat F(ab)'2 anti-rat IgG and shifted into 37°C incubation for the indicated times. Cells were lyzed in RIPA buffer and subjected to immunoprecipitation and immunoblotting as described below.

EXAMPLE 7

20

25

30

Immunoprecipitation of PYK2 and FAK

To analyze the expression levels of PYK2 and FAK in various cell lines, total cell lysates were prepared by the addition of 1 ml ice cold RIPA buffer containing 1 mM sodium vanadate, 50 mM NaF and a cocktail of protease inhibitors containing 2mM PMSF, 20 μg/ml aprotinin, 10 μg/ml leupeptin (Boehringer Mannheim, Indianapolis, IN) and incubated for another 20 min for complete solubilization. After centrifugation, total protein concentration of the clarified lysates was determined. Typically, 250 μg of cell lysates were subjected to immunoprecipitation using either anti-PYK2 antibodies (1μg) or mAb 2A7 anti-FAK antibody (4 μg). Immunoprecipitation was carried out for at least 4 hrs at 4°C,

followed by addition of anti-rabbit IgG or anti-mouse IgG coupled to Sepharose (Organon Teknika). To study the phosphotyrosine content of PYK2 in IC-21 cells in response to cell adhesion, the attachment assay described above was stopped by addition of an equal volume of 2X ice cold RIPA buffer, and cell lysates were prepared for immunoprecipitation using 2 µg of anti-PYK2 antibodies. After SDS-PAGE and transfer to nitrocellulose membranes (Novex, San Diego, CA), phosphotyrosine was detected by immunoblotting with HRPconjugated anti-phosphotyrosine mAb 4G10 or with anti-PYK2 10 polyclonal antibodies, followed by HRP-conjugated anti-rabbit IgG. Blots were developed by enhanced chemiluminescence (ECL, Amersham). ECL signals were determined using an LKB ultroscan XL laser densitometer (LKB, Bromma, Sweden) and the specific activity of tyrosine phosphorylated PYK2 was calculated by 15 comparing the estimated phosphotyrosine contents to protein levels of PYK2. Relative specific activity of phosphorylated PYK2 was normally determined from triplicated experiments.

EXAMPLE 8

20

25

30

35

In vitro Kinase Assay

After cell attachment to ECM, IC-21 cells were solubilized in TNE lysis buffer containing 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1% NP-40, 1mM EDTA, 10% glycerol, 50 mM NaF, 1 mM sodium vanadate and protease inhibitors as described above. PYK2 was immunoprecipitated from the clarified lysates, half of the sample was subjected to immunoblotting with anti-PYK2 antibodies, as described above, and the other half was washed 2 times with the same lysis buffer, and with kinase assay buffer (1X) containing 20 mM Tris-HCl, pH 7.4, 100 mM NaCl, 10 mM MnCl₂ and 1 mM dithiothreitol. After removal of the wash buffer, 50 μ l of kinase assay buffer containing 5 μ Ci [γ -32P] ATP (3000Ci/mmol, Amersham), 10 μ M ATP, 0.1% BSA and 100 μ g of poly (Glu,Tyr) (molar ratio 4:1; Sigma) was added to the beads and incubated for 10 min at 30°C (Howell and Cooper, 1995 *Mol. Cell. Biol.* 14:5402-5411). The reaction

mixtures (25 µl) were added to 25 µl of 30% trichloroacetic acid (TCA) and 0.1 M sodium pyrophosphate, followed by incubation at 4°C for 15 min. The precipitated proteins were transferred to a Multiscreen-FC filter plate (Millipore, Marlborough, MA), washed with ice cold 15% TCA (3X), allowed to dry and incorporation of ³²P into the substrate was counted on a Packard top count microplate scintillation counter (Packard, Meriden, CT). Each assay was performed as triplicate. The specific activity was determined by comparing the radioactive counts with immunoblot signals.

10

5

EXAMPLE 9

Flow Cytometry

Surface expression of integrins was analyzed by singlecolor flow cytometry. After trypsin-EDTA treatment, cells were
washed with completed RPMI media containing 10% FBS, twice with
Dulbecco's phosphate buffer saline (DPBS) and resuspended in DPBS
containing 1% BSA. Cells (2 x 10⁴) were incubated with the antiintegrins mAbs (2µg), as described above, followed by incubation at
4°C for 30 min. The samples were washed once before addition of
FITC- labeled goat anti-rat IgG or goat anti-hamster IgG (Boehringer
Mannheim). After additional 30 min incubation at 4°C, cells were
washed and resuspended in 300 µl of Flow Cytometric buffer (100 mM
Hepes buffer, pH 7.5, 150 mM NaCl, 3 mM KCl and 1 mM CaCl₂) and
analyzed by a FACSCalibur (Becton Dickinson, San Jose, CA).

EXAMPLE 10

Immunofluorescence Microscopy

Immunofluorescent labeling of podosomes in IC-21 cells was performed as followed: IC-21 cells were lifted by trypsin-EDTA for 5 min., washed in serum free media (2X), plated on Fn coated glass coverslips and left overnight at 4°C. Cells were washed in PBS (2X) and fixed for 10 min in 4% paraformaldehyde, 2% sucrose in

PBS. Cells were then permeabilized in 0.5% Triton, PBS for 5 min, followed by incubation for 1 hr in blocking buffer containing 10% normal goat serum, 1% BSA in PBS. All subsequent incubations with primary and secondary antibodies were performed in the same 5 blocking buffer. PYK2 was visualized using the affinity purified polyclonal anti-mouse PYK2 antibodies, followed by TRITC- donkey anti-rabbit IgG. Actin was stained with 500 mU/ml FITC-phalloidin (Molecular Probes, Inc., Eugence, OR). Phosphotyrosine and paxillin were stained with mouse mAb py20 and mAb 349, respectively. Vinculin and talin were stained using mouse mAb 10 VIN-11-5 and mAb 8d4, respectively. The mouse monoclonal antibodies were visualized using FITC- goat anti-mouse IgG. The integrin subunits αL , αM , $\alpha 4$, $\alpha 5$, $\beta 1$ and $\beta 2$ were immunostained using the following rat anti-mouse integrin antibodies: M17/4, M1/70, 15 R1-2, MFR5, 9EG7 and M18/2, respectively, followed by FITCconjugated goat anti-rat IgG. Immunofluorescent labelled cells were photographed through an 100X objective using a Zeiss Axiophot epifluorescence microscope.

20 Co-localization of PYK2 and Phosphotyrosine in Macrophage Podosomes

25

30

IC-21 cells were plated on fibronectin-coated glass coverslips in serum-free media. Migrating macrophages with typical fan-like shape were fixed and solubilized. Cells were costained for PYK2 using affinity purified anti-PYK2 polyclonal antibodies, followed by TRITC-donkey anti-rabbit IgG, and for phosphotyrosine using mAb py20, followed by FITC-goat anti-mouse IgG. PYK2 appeared as a ring structure in the adhesion contacts, organized in the cell leading edge or in extensive arrays of rosettes under the cell body. The phosphotyrosine appeared as dot-like structures, which predominantly co-localize with PYK2 in macrophages.

Podosome-Associated PYK2 co-localized with F-actin in Macrophages

IC-21 cells were co-stained with FITC-phalloidin and anti-PYK2 antibodies, followed by TRITC-donkey anti-rabbit IgG. A typical migrating macrophage with a typical fan-like shape or a macrophage with multiple adhesion contacts was chosen. PYK2 localized to perinuclear and dot-like structures at the leading edge or to extensive arrays of podosomes underneath the lamellaepodia. In the same cells, F-actin cores concentrated in podosomes. Colocalization of PYK2 and F-actin was detected in podosomes and tail regions of migrating macrophages while perinuclear PYK2 was not associated with actin filaments.

5

10

25

PYK2 Co-localizes with Vinculin, Talin and Paxillin in Podosomes of Macrophages

IC-21 cells were co-stained with anti-PYK2 antibodies
and with anti-vinculin mAb VIN-11-5, with anti-talin mAb 8d4, and
anti-paxillin mAb 349, followed by appropriate conjugated secondary
antibodies. PYK2 localized in the perinuclear regions and in
podosomes. Only podosome associated PYK2 was co-localized with
vinculin, talin and paxillin, which all appear as ring-like structures.

Co-localization of PYK2 and the Integrin am \(\text{Mg}_2 \) in Macrophages

IC-21 cells were plated on fibronectin-coated surface and stained with anti-PYK2 antibodies and with rat anti-mouse α_M mAb M1/70, rat anti-mouse β_2 mAb M18/2, followed by TRITC-donkey antirabbit IgG and FITC-goat anti-rat IgG.

PCT/US98/02797 - WO 98/35056

SEQUENCE LISTING

- (1) GENERAL INFORMATION
- (i) APPLICANT: DUONG, LE T. RODAN, GIDEON A.
- (ii) TITLE OF THE INVENTION: IDENTIFICATION OF INHIBITORS OF PROTEIN TYROSINE KINASE 2
- (iii) NUMBER OF SEQUENCES: 6
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Merck & Co., Inc.
 - (B) STREET: P.O. Box 2000, 126 E. Lincoln Avenue
 - (C) CITY: Rahway
 - (D) STATE: NJ
 - (E) COUNTRY: USA
 - (F) ZIP: 07065-0900
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette
 - (B) COMPUTER: IBM Compatible (C) OPERATING SYSTEM: DOS

 - (D) SOFTWARE: FastSEQ for Windows Version 2.0
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 60/037,560
 - (B) FILING DATE: 11-FEB-1997
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Sabatelli, Anthony D
 - (B) REGISTRATION NUMBER: 34,714
 - (C) REFERENCE/DOCKET NUMBER: 19814
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 732-594-1935
 - (B) TELEFAX: 732-594-4720
 - (C) TELEX:
 - (2) INFORMATION FOR SEQ ID NO:1:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Other

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
AGTGACATTT ATCAGATGGA G	21
(2) INFORMATION FOR SEQ ID NO:2:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: Other	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
GAATGGACTG TGCACCGAGC C	21
(2) INFORMATION FOR SEQ ID NO:3:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: Other	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
CAGCACACA TCCTGGAGGA G	21
(2) INFORMATION FOR SEQ ID NO:4:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 21 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
GCTGAAGCTT GACACCCTCA T	21
(2) INFORMATION FOR SEQ ID NO:5:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3981 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

ATTCGCGGCC	GCTCGACCTC	AGCCTCTGCA	GGCAGAGCCG	CGCGTCCTAC	CTGCGGCGGC	60
	TGGCCCAGCC					120
	GTCCTAGCTG					180
GTGTAAAAGT	GGGCACTTTA	CGCCGGCCTG	AGGGCCCCCC	AGAGCCCATG	GTGGTGGTAC	240
	GGAGAAGGAA					300
TCAACCCAGG	GAAGAACTTC	AAGCTTGTCA	AATGCACAGT	GCAGACAGAG	ATCCAGGAGA	360
	CATCCTCCTG					420
ATGGGCTGAG	GCTGAAGCAC	ATGAAGTCAG	ACGAGATCCA	CTGGCTGCAC	CCACAGATGA	480
	AGTGCAGGAC					540
ACCTTCAAAT	CCGCTACTTG	CCGGAAGACT	TCATGGAGAG	CCTGAAAGAA	GACAGGACCA	600
CATTGCTGTA	CTTTTATCAA	CAGCTCCGGA	ATGACTACAT	GCAACGCTAC	GCCAGCAAGG	660
TCAGTGAAGG	CATGGCTCTG	CAGCTGGGCT	GTCTGGAGCT	CAGGAGATTC	TTCAAGGACA	720
TGCCCCACAA	TGCACTGGAC	AAAAAGTCCA	ACTTTGAACT	CCTGGAAAAA	GAAGTCGGTC	780
TGGACCTGTT	TTTCCCAAAG	CAGATGCAGG	AAAACTTAAA	GCCCAAGCAG	TTCCGGAAGA	840
TGATCCAGCA	GACCTTCCAG	CAGTATGCAT	CACTCCGGGA	GGAAGAGTGT	GTCATGAAAT	900
TCTTCAATAC	CCTAGCGGGC	TTTGCCAACA	TTGACCAGGA	GACCTACCGC	TGCGAACTCA	960
TTCAAGGATG	GAACATTACT	GTGGACCTGG	TCATCGGCCC	TAAAGGCATC	CGTCAGCTGA	1020
CAAGTCAAGA	TACAAAGCCC	ACCTGCCTGG	CCGAGTTTAA	GCAGATCAGA	TCCATCAGGT	1080
GCCTCCCATT	GGAAGAGACC	CAGGCAGTCC	TGCAGCTGGG	CATCGAGGGT	GCCCCCAGT	1140
CCTTGTCTAT	CAAAACGTCG	TCCCTGGCAG	AGGCTGAGAA	CATGGCTGAT	CTCATAGATG	1200
GCTACTGCAG	GCTGCAAGGA	GAACATAAGG	GCTCTCTCAT	CATGCATGCC	AAGAAAGATG	1260
GTGAGAAGAG	GAACAGCCTG	CCTCAGATCC	CCACACTAAA	CCTGGAGGCT	CGGCGGTCGC	1320
	AAGCTGCAGC					1380
	AGGAGGTCCA					1440
TTCTGGGTGA	AGGCTTCTTT	GGGGAGGTCT	ATGAAGGTGT	CTACACGAAC	CACAAAGGGG	1500
	TGTGGCCGTC					1560
	TGAGGCAGTG					1620
	TGAAGAGGAA					1680
	CCTGGAACGA					1740
	ATGCAAAGCC					1800
	GAACATCCTG					1860
	CATTGAGGAC					1920
	CCCCGAGTCC					1980
	ATGCATGTGG					2040
	TGTCATCGGA					2100
	CCTTTACACA					2160
	GGAGCTTGTG					2220
	AGAAAGGAAT					2280
	CCCACCCAAG					2340
	TAAGCTGCAG					2400
	TATGGAGTAT		_			2460
	CTTCAAGCGC					2520
	CCAGCAGCTC					2580
	GCAGATGGTG					2640
	TTATATGAAT					2700
	AGGGCCCCCA					2760
	GGACAGGACC					2820
	ACTCAAGAAC					2880
	GGGGCTGAAC					2940
	ATCTTCGAGG					3000
	CATCAACAAG					3060
	GCGGCAGATG					3120
	TGTGGACCAA					3180
	GGGGCCACCT					3240
CHICANGAGA	GOGGEORECI	SCCIGCAICI	TOTGCCCCCA	CCIGICIIGG	CATACCTITC	3440

CTGCCTTGCC TTTGGTTATT GGTCTTCCAG GGAAAGCTGA GAAGAGTCCA TCCCCCTTGC CACTTTGCAC GACACCCCT CTTCCCCCAA CCCACCCCAG ACTGTGCTAC TCAGGCTGCA 3360 TCTGGACAGA AAGGACTCTG GGCACAGACA CGGGGTGGGG TGACATAGTT CATAGGGGTA 3420 CTACTGCCAG CCACTCCCTC TTACCCCAGC CTGGGTTGCT GGAGCATCAT TGGGGTCATG AGTGTACCCC TAACGGCCAA GATGGCTTTC TGCATGGACA TTTGAGAGCC AGTATTCCTC 3540 CTTCCTCTC AGCCCTCAGG GACCCCTGAT ACAGAGGGGA CAGAGAGGGG TTTTATTTGT AGAGAAGCTG GTGAGATGAG GGCTGGACCT GGCTCTCTTG TACAGTGTAC ATTGGAATTT ATTTAATGTG AGTTTGACCT GGATGGACAG CCAAGGGCCA TAGTCCAGGA GCAAACCAAT 3720 CCAGTCACAG GACTCTGTGT TTTATGGAAC TGAGTGCCAC AGGAAGAAGC AGAGAGTCGG 3780 AGGTCAGAAT GGACTTTGTG CCCTTCCTGC GTTTCTCTTC TCCCTCTTTC CTTCTCCCCT CTTTTCTTAC GTCTCCTTTT TCTCCTCCCC CTTTTCACAT CTGCTCCCCT CCTCTCTCAT 3900 GTCTGTGGAG AACATTTACC TTCCTTCTTT TTGATCGGTG GTTGAATTAA AATTATTACC 3960 ATTTGCTTTG TGGCTCGTGC C

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1009 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Ser Gly Val Ser Glu Pro Leu Ser Arg Val Lys Val Gly Thr Leu Arg Arg Pro Glu Gly Pro Pro Glu Pro Met Val Val Pro Val Asp 25 Val Glu Lys Glu Asp Val Arg Ile Leu Lys Val Cys Phe Tyr Ser Asn 40 45 Ser Phe Asn Pro Gly Lys Asn Phe Lys Leu Val Lys Cys Thr Val Gln 55 Thr Glu Ile Glu Ile Ile Thr Ser Ile Leu Leu Ser Gly Arg Ile Gly Pro Asn Ile Gln Leu Ala Glu Cys Tyr Gly Leu Arg Leu Lys His 85 90 Met Lys Ser Asp Glu Ile His Trp Leu His Pro Gln Met Thr Val Gly 100 105 110 Glu Val Gln Asp Lys Tyr Glu Cys Leu His Val Glu Ala Glu Trp Arg 120 · 125 Tyr Asp Leu Gln Ile Arg Tyr Leu Pro Glu Asp Phe Met Glu Ser Leu 130 135 140 Lys Glu Asp Arg Thr Thr Leu Leu Tyr Phe Tyr Gln Gln Leu Arg Asn 155 145 150 Asp Tyr Met Gln Arg Tyr Ala Ser Lys Val Ser Glu Gly Met Ala Leu 165 170 Gln Leu Gly Cys Leu Glu Leu Arg Arg Phe Phe Lys Asp Met Pro His 180 185 190 Asn Ala Leu Asp Lys Lys Ser Asn Phe Glu Leu Leu Glu Lys Glu Val 195 200 205 Gly Leu Asp Leu Phe Phe Pro Lys Gln Met Gln Glu Asn Leu Lys Pro 215 220 Lys Gln Phe Arg Lys Met Ile Gln Gln Thr Phe Gln Gln Tyr Ala Ser

Leu Arg Glu Glu Cys Val Met Lys Phe Phe Asn Thr Leu Ala Gly Phe Ala Asn Ile Asp Gln Glu Thr Tyr Arg Cys Glu Leu Ile Gln Gly Trp Asn Ile Thr Val Asp Leu Val Ile Gly Pro Lys Gly Ile Arg Gln Leu Thr Ser Gln Asp Thr Lys Pro Thr Cys Leu Ala Glu Phe Lys Gln Ile Arg Ser Ile Arg Cys Leu Pro Leu Glu Glu Thr Gln Ala Val Leu Gln Leu Gly Ile Glu Gly Ala Pro Gln Ser Leu Ser Ile Lys Thr Ser Ser Leu Ala Glu Ala Glu Asn Met Ala Asp Leu Ile Asp Gly Tyr Cys Arg Leu Gln Gly Glu His Lys Gly Ser Leu Ile Met His Ala Lys Lys Asp Gly Glu Lys Arg Asn Ser Leu Pro Gln Ile Pro Thr Leu Asn Leu Glu Ala Arg Arg Ser His Leu Ser Glu Ser Cys Ser Ile Glu Ser Asp Ile Tyr Ala Glu Ile Pro Asp Glu Thr Leu Arg Arg Pro Gly Gly Pro Gln Tyr Gly Val Ala Arg Glu Glu Val Val Leu Asn Arg Ile Leu Gly Glu Gly Phe Phe Gly Glu Val Tyr Glu Gly Val Tyr Thr Asn His Lys Gly Glu Lys Ile Asn Val Ala Val Lys Thr Cys Lys Lys Asp Cys Thr Gln Asp Asn Lys Glu Lys Phe Met Ser Glu Ala Val Ile Met Lys Asn Leu Asp His Pro His Ile Val Lys Leu Ile Gly Ile Ile Glu Glu Glu Pro Thr Trp Ile Ile Met Glu Leu Tyr Pro Tyr Gly Glu Leu Gly His Tyr Leu Glu Arg Asn Lys Asn Ser Leu Lys Val Pro Thr Leu Val Leu Tyr Thr Leu Gln Ile Cys Lys Ala Met Ala Tyr Leu Glu Ser Ile Asn Cys Val His Arg Asp Ile Ala Val Arg Asn Ile Leu Val Ala Ser Pro Glu Cys Val Lys Leu Gly Asp Phe Gly Leu Ser Arg Tyr Ile Glu Asp 570 · Glu Asp Tyr Tyr Lys Ala Ser Val Thr Arg Leu Pro Ile Lys Trp Met 580 590 Ser Pro Glu Ser Ile Asn Phe Arg Arg Phe Thr Thr Ala Ser Asp Val Trp Met Phe Ala Val Cys Met Trp Glu Ile Leu Ser Phe Gly Lys Gln Pro Phe Phe Trp Leu Glu Asn Lys Asp Val Ile Gly Val Leu Glu Lys Gly Asp Arg Leu Pro Lys Pro Glu Leu Cys Pro Pro Val Leu Tyr Thr . 655 Leu Met Thr Arg Cys Trp Asp Tyr Asp Pro Ser Asp Arg Pro Arg Phe Thr Glu Leu Val Cys Ser Leu Ser Asp Ile Tyr Gln Met Glu Lys Asp

```
Ile Ala Ile Glu Gln Glu Arg Asn Ala Arg Tyr Arg Pro Pro Lys Ile
                   695
                                     700
Leu Glu Pro Thr Thr Phe Gln Glu Pro Pro Pro Lys Pro Ser Arg Pro
                710
                                 715
Lys Tyr Arg Pro Pro Pro Gln Thr Asn Leu Leu Ala Pro Lys Leu Gln
             725
                              730
Phe Gln Val Pro Glu Gly Leu Cys Ala Ser Ser Pro Thr Leu Thr Ser
                          745
Pro Met Glu Tyr Pro Ser Pro Val Asn Ser Leu His Thr Pro Pro Leu
                               765
   755
              760
His Arg His Asn Val Phe Lys Arg His Ser Met Arg Glu Glu Asp Phe
   770 775
                                     780
Ile Arg Pro Ser Ser Arg Glu Glu Ala Gln Gln Leu Trp Glu Ala Glu
                790
                                 795
Lys Ile Lys Met Lys Gln Val Leu Glu Arg Gln Gln Lys Gln Met Val
             805
                              810
Glu Asp Ser Gln Trp Leu Arg Arg Glu Glu Arg Cys Leu Asp Pro Met
       820
                           825
Val Tyr Met Asn Asp Lys Ser Pro Leu Thr Pro Glu Lys Glu Ala Gly
              840
Tyr Thr Glu Phe Thr Gly Pro Pro Gln Lys Pro Pro Arg Leu Gly Ala
                  855
                           860
Gln Ser Ile Gln Pro Thr Ala Asn Leu Asp Arg Thr Asp Asp Leu Val
865 870
                                 875
Tyr His Asn Val Met Thr Leu Val Glu Ala Val Leu Glu Leu Lys Asn
             885
                             890
Lys Leu Gly Gln Leu Pro Pro Glu Asp Tyr Val Val Val Lys Asn
          900
                           905
                                          910
Val Gly Leu Asn Leu Arg Lys Leu Ile Gly Ser Val Asp Asp Leu Leu
                      920
     915
                                        925
Pro Ser Leu Pro Ala Ser Ser Arg Thr Glu Ile Glu Gly Thr Gln Lys
 930 935
                                    940
Leu Leu Asn Lys Asp Leu Ala Glu Leu Ile Asn Lys Met Lys Leu Ala
                 950
                                 955
Gln Gln Asn Ala Val Thr Ser Leu Ser Glu Asp Cys Lys Arg Gln Met
           965 970
Leu Thr Ala Ser His Thr Leu Ala Val Asp Ala Lys Asn Leu Leu Asp
         980
                          985
Ala Val Asp Gln Ala Lys Val Val Ala Asn Leu Ala His Pro Pro Ala
      995
              1000
                               1005
Glu
```

- 33 -

WHAT IS CLAIMED IS:

5

25

1. A method of identifying a compound which binds to and/or modulates the activity of Protein Tyrosine Kinase 2 (PYK2) comprising:

- a) contacting the compound and PYK2; and
- b) determining if binding has occurred.
- 2. A method according to Claim 1 further comprising the step of comparing activity of PYK2 which has bound to the compound to activity of PYK2 which is not bound to the compound.
- 3. A method according to Claim 1 wherein the PYK2 is present in intact cells.
 - 4. A method according to Claim 1 wherein the PYK2 is not in an intact cell.
- 5. A method according to Claim 3 wherein the intact cell is a recombinant cell which expresses PYK2.
 - 6. A method according to Claim 2 wherein the compound is labeled.

7. A method according to Claim 1 wherein the PYK2 is labeled.

- 8. A method according to Claim 2 wherein the
 30 activity of PYK2 is determined by measuring the ability of PYK2 to
 incorporate a labeled phosphate into a poly-glutamine or poly-tyrosine
 substrated.
- 9. A method according to Claim 8 wherein the 35 labeled phosphate is radiolabeled.

- WO 98/35056 PCT/US98/02797

10. A method according to Claim 2 wherein the activity of PYK2 is determined by measuring the ability of PYK2 to incorporate labeled phosphate into itself at tyrosine residue 402.

5

- 11. A method according to Claim 10 wherein the phosphate is radio-labeled.
- 12. A method according to Claim 12 wherein the intact cell forms podosomes in the absence of compound.
 - 13. A method according to Claim 12, wherein step b) comprises measuring the effect the compound has on podosome formation in the cell.

15

14. A method of identifying a compound which prevents monocyte adhesion to a substrate by determining the ability of the compound to inhibit Protein Tyrosine Kinase 2 (PYK2) activity comprising:

20

- a) contacting a compound with PYK2; and
- b) determining if the compound inhibits PYK2 activity.
- 15. A method according to Claim 14 wherein step b)
 25 comprises a method selected from the group consisting of:
 - a) measuring the ability of the compound to inhibit the ability of PYK2 to incorporate phosphate into a poly-glutamine or poly-tyrosine substrate;
- b) measuring the ability of the compound to inhibit the ability of PYK2 to incorporate phosphate into itself at tyrosine residue 402; and
 - c) measuring the ability of the compound to inhibit the formation of podosomes

WO 98/35056 . PCT/US98/02797

16. A method of identifying a compound which inhibits osteoclast mobility by determining the compound's ability to inhibit Protein Tyrosine Kinase (PYK2) activity comprising:

- a) contacting a compound with PYK2; and
- b) determining if the compound inhibits PYK2 activity.
- 17. A method according to Claim 16 wherein step b) comprises a method selected from the group consisting of:
- a) measuring the ability of the compound to inhibit the ability of PYK2 to incorporate phosphate into a poly-glutamine or poly-tyrosine substrate;
 - b) measuring the ability of the compound to inhibit the ability of PYK2 to incorporate phosphate into itself at tyrosine residue 402; and
 - c) measuring the ability of the compound to inhibit the formation of podosomes.
- 18. A method of identifying a compound which
 20 inhibits a monocytic cell from degrading an extracellular matrix by
 determining the compound's ability to inhibit Protein Tyrosine
 Kinase (PYK2) activity comprising:
 - a) contacting a compound with PYK2; and
 - b) determining if the compound inhibits PYK2
- 25 activity.

5

15

- 19. A method according to Claim 18 wherein step b) comprises a method selected from the group consisting of:
- a) measuring the ability of the compound to inhibit 30 the ability of PYK2 to incorporate phosphate into a poly-glutamine or poly-tyrosine substrate;
 - b) measuring the ability of the compound to inhibit the ability of PYK2 to incorporate phosphate into itself at tyrosine residue 402; and

- WO 98/35056 PCT/US98/02797

c) measuring the ability of the compound to inhibit the formation of podosomes.

- 20. A compound identified according to the method of 5 Claim 1.
 - 21. A method of treating or preventing a disease state or condition in a mammal which is mediated by PYK2 comprising administering a compound according to Claim 20.

10

22. A method of treating or preventing osteoporosis or inflammation in a mammal comprising administering a compound according to Claim 20.

FIGURE 1

FIGURE 2

~
Figure
7-1

3/13

-- WO 98/35056

PCT/US98/02797

Figure 4

4/13

Blot: anti-PYK2 0 COF IA COF I ω Ν٦ FIGURE 4 9 묘늬 ΝΛ 2 ŁΝ 4 က Poly-L-lysine daiQ nO Off Dish

Figure 158

FIGURE 5B

PIGURE 5C

FIGURE 6A

Figure 68

FICURE 6B

Figure 6 C

FIGURE 6C

FIGURE 7

FIGURE 8

	60
attegeggeegetegaceteageetetgeaggeagageegegegteetacetgeggegge	
tgcgctcacctggcccagcccggagccctggcccgagtccgcgcctcgcccgagggactg	120
caatgtgccggtcctagctgcagtctgagaggATGTCCGGGGTGTCTGAGCCCTTGAGCC	180
· MSGVSEPLSR	10
GTGTAAAAGTGGGCACTTTACGCCGGCCTGAGGGCCCCCCAGAGCCCATGGTGGTGGTAC	240
V K V G T L R R P E G P P E P M V V V P	30
CAGTGGATGTGGAGAAGGAAGACGTGCGCATCCTCAAGGTCTGCTTCTACAGCAACAGCT	300
V D V E K E D V R I L K V C F Y S N S F	50
TCAACCCAGGGAAGAACTTCAAGCTTGTCAAATGCACAGTGCAGACAGA	360
N P G K N F K L V K C T V O T E I Q E I	70
TCATCACCTCCATCCTCCAGTGGGCGAATAGGGCCCAACATCCAGCTGGCTG	420
	90
ITSILLSGRIGPNIQLAECY	
ATGGGCTGAGGCTGAAGCACATGAAGTCAGACGAGATCCACTGGCTGCACCCACAGATGA	480
GIRLKEMKSDEIEWLEPOMT	110
CCGTGGGCGAAGTGCAAGTATGAATGTCTACACGTGGAAGCTGAGTGGAGGTATG	540
V G E V Q D K Y E C L H V E A E W R Y D	130
ACCTTCAAATCCGCTACTTGCCGGAAGACTTCATGGAGAGCCTGAAAGAAGACAGGACCA	600
LQIRYLPEDFMESLKEDRŤŤ	150
CATTGCTGTACTTTTATCAACAGCTCCGGAATGACTACATGCAACGCTACGCCAGCAAGG	660
LLYFYQQLRNDYMQRYASKV	170
TCAGTGAAGGCATGGCTCTGCAGCTGGGCTGTCTGGAGCTCAGGAGATTCTTCAAGGACA	720
S E G M A L Q L G C L E L R R F F K D M	190
TGCCCCACAATGCACTGGACAAAAAGTCCAACTTTGAACTCCTGGAAAAAGAAGTCGGTC	780
	210
PHNALDKKSNFELLEKEVGL	
TGGACCTGTTTTTCCCAAAGCAGATGCAGGAAAACTTAAAGCCCAAGCAGTTCCGGAAGA	840
DLFFPKQMQENLKPRQFRKM	230
TGATCCAGCAGACCTTCCAGCAGTATGCATCACTCCGGGAGGAAGAGTGTGTCATGAAAT	900
IQQTFQQYASLREEECVMKF	250
TCTTCAATACCCTAGCGGGCTTTGCCAACATTGACCAGGAGACCTACCGCTGCGAACTCA	960
FNTLAGFANIDQETYRCELI	270
TTCAAGGATGGAACATTACTGTGGACCTGGTCATCGGCCCTAAAGGCATCCGTCAGCTGA	1020
Q G W N I T V D L V I G P X G I R Q L T	290
CAAGTCAAGATACAAAGCCCACCTGCCTGGCCGAGTTTAAGCAGATCAGATCCATCAGGT	1080
S Q D T K P T C L A E F K Q I R S I R C	310
GCCTCCCATTGGAAGAGACCCAGGCAGTCCTGCAGCTGGGCATCGAGGGTGCCCCCCAGT	1140
LPLEETQAVLQLGIEGAPQS	330
CCTTGTCTATCAAAACGTCGTCCCTGGCAGAGGCTCAGAACATGGCTGATCTCATAGATG	1200
	350
	1260
GCTACTGCAGGCTGCAAGGAGAACATAAGGGCTCTCTCATCATGCATG	
Y C R L Q G E H K G S L I M H A K K D G	370
GTGAGAAGAGGAACAGCCTGCCTCAGATCCCCACACTAAACCTGGAGGCTCGGCGGTCGC	1320
GTGAGAAGAGGAACAGCCTGCCTCAGATCCCCACACTAAACCTGGAGGCTCGGCGGTCGC E R R N S L P Q I P T L N L E A R R S H	1320 390
GTGAGAAGAGGAACAGCCTGCCTCAGATCCCCACACTAAACCTGGAGGCTCGGCGGTCGC E K R N S L P Q I P T L N L E A R R S H ACCTCTCAGAAAGCTGCAGCATAGAGTCAGACATCTATGCGGAGATTCCCGATGAGACCC	1320 390 1380
GTGAGAAGAGGAACAGCCTGCCTCAGATCCCCACACTAAACCTGGAGGCTCGGCGGTCGC E K R N S L P Q I P T L ·N L E A R R S H ACCTCTCAGAAAGCTGCAGCATAGAGTCAGACATCTATGCGGAGATTCCCGATGAGACCC L S E S C S I E S D I Y A E I P D E T L	1320 390 1380 410
GTGAGAAGAGGAACAGCCTGCCTCAGATCCCCACACTAAACCTGGAGGCTCGGCGGTCGC E K R N S L P Q I P T L N L E A R R S B ACCTCTCAGAAAGCTGCAGCATAGAGTCAGACATCTATGCGGAGATTCCCGGATGAGACCC	1320 390 1380 410 1440
GTGAGAAGAGGAACAGCCTGCCTCAGATCCCCACACTAAACCTGGAGGCTCGGCGGTCGC E K R N S L P Q I P T L ·N L E A R R S H ACCTCTCAGAAAGCTGCAGCATAGAGTCAGACATCTATGCGGAGATTCCCGATGAGACCC L S E S C S I E S D I Y A E I P D E T L	1320 390 1380 410
GTGAGAAGAGAACAGCCTGCCTCAGATCCCCACACTAAACCTGGAGGCTCGGCGGTCGC E R R N S L P Q I P T L N L E A R R S H ACCTCTCAGAAAGCTGCAGCATAGAGTCAGACATCTATGCGGAGATTCCCGATGAGACCC L S E S C S I E S D I Y A E I P D E T L TGCGAAGACCAGGAGGTCCACAGTACGGTGTTGCCCGTGAAGAAGTAGTTCTTAACCGCA R R P G G P Q Y G V A R E E V V L N R I	1320 390 1380 410 1440
GTGAGAAGAGAACAGCCTGCCTCAGATCCCCACACTAAACCTGGAGGCTCGGCGGTCGC E K R N S L P Q I P T L N L E A R R S H ACCTCTCAGAAAGCTGCAGCATAGAGTCAGACATCTATGCGGAGATTCCCGATGAGACCC L S E S C S I E S D I Y A E I P D E T L TGCGAAGACCAGGAGGTCCACAGTACGGTGTTGCCCGTGAAGAAGTAGTTCTTAACCGCA R R P G G P Q Y G V A R E E V V L N R I TTCTGGGTGAAGGCTTCTTTGGGGAGGTCTATGAAGGTGTTCTACACGAACCACAAAGGGG	1320 390 1380 410 1440 430
GTGAGAAGAGAACAGCCTGCCTCAGATCCCCACACTAAACCTGGAGGCTCGGCGGTCGC E K R N S L P Q I P T L N L E A R R S B ACCTCTCAGAAAGCTGCAGCATAGAGTCAGACACTCTATGCGGAGATTCCCGATGAGACCC L S E S C S I E S D I Y A E I P D E T L TGCGAAGACCAGGAGGTCCACAGTACGGTGTTGCCCGTGAAGAAGTAGTTCTTAACCGCA R R F G G P Q Y G V A R E E V V L N R I TTCTGGGTGAAGGCTTCTTTGCGGAGGTCTATGAAGGTGTCTTACACGAACCACAAAGGGG L G E G F F G E V Y E G V Y T N B K G E	1320 390 1380 410 1440 430 1500
GTGAGAAGAGAACAGCCTGCCTCAGATCCCCACACTAAACCTGGAGGCTCGGCGGTCGC E R R N S L P Q I P T L N L E A R R S E ACCTCTCAGAAAGCTGCAGCATAGAGTCAGACATCTATGCGGAGATTCCCGATGAGACCC L S E S C S I E S D I Y A E I P D E T L TGCGAAGACCAGGAGGTCCACAGTACGGTGTTGCCCGTGAAGAAGTAGTTCTTAACCGCA R R P G G P Q Y G V A R E E V V L N R I TTCTGGGTGAAGGCTTCTTTGGGGGAGGTCTATGAAGGTGTCTTACCACAAAGGGG L G E G F F G E V Y E G V Y T N B K G E AAAAAATTAATGTGGCCGTCAAGACCTGTAAGAAGACTGTACCCAGGACAAAAGGAGA	1320 390 1380 410 1440 430 1500 450
GTGAGAAGAGAACAGCCTGCCTCAGATCCCCACACTAAACCTGGAGGCTCGGCGGTCGC E K R N S L P Q I P T L N L E A R R S B ACCTCTCAGAAAGCTGCAGCATAGAGTCAGACATCTATGCGGAGATTCCCGATGAGACCC L S E S C S I E S D I Y A E I P D E T L TGCGAAGACCAGGAGGTCCACAGTACGGTGTTGCCCGTGAAGAAGTAGTTCTTAACCGCA R R P G G P Q Y G V A R E E V V L N R I TTCTGGGTGAAGGCTTCTTTGCGGAGGTCTATGAAGGTGTCTTACACGAACCACAAAGGGG L G E G F F G E V Y E G V Y T N B K G E AAAAAATTAATGTGGCCGTCAAGACCTGTAAGAAGACTGTACCCAGGACAACAAGGAGA K I N V A V K T C K K D C T Q D H K E K	1320 390 1380 410 1440 430 1500 450 1560 470
GTGAGAAGAGAACAGCCTGCCTCAGATCCCCACACTAAACCTGGAGGCTCGGCGGTCGC E K R N S L P Q I P T L N L E A R R S H ACCTCTCAGAAAGCTGCAGCATAGAGTCAGACATCTATGCGGAGATTCCCGATGAGACCC L S E S C S I E S D I Y A E I P D E T L TGCGAAGACCAGGAGGTCCACAGTACGGTGTTGCCCGTGAAGAAGTAGTTCTTAACCGCA R R F G G P Q Y G V A R E E V V L N R I TTCTGGGTGAAGGCTTCTTTGGGGAGGTCTATGAAGGTGTCTTACACGAACCACAAAGGGG L G E G F F G E V Y E G V Y T N B K G E AAAAAATTAATGTGGCCGTCAAGACCTGTAAGAAAGACTGTACCCAGGACAACAAGGAGA K I N V A V K T C K K D C T Q D H K E K AGTTCATGAGTGAGGTGATCATGAAGAATCTTGACCCCCCTCACATCGTGAAGCTGA	1320 390 1380 410 1440 430 1500 450 1560 470 1620
GTGAGAAGAGGAACAGCCTGCCTCAGATCCCCACACTAAACCTGGAGGCTCGGCGGTCGC E K R N S L P Q I P T L N L E A R R S H ACCTCTCAGAAAGCTGCAGCATAGAGTCAGACATCTATGCGGAGATTCCCGATGAGACCC L S E S C S I E S D I Y A E I P D E T L TGCGAAGACCAGGAGGTCCACAGTACGGTGTTGCCCGTGAAGAAGTAGTTCTTAACCGCA R R P G G P Q Y G V A R E E V V L N R I TTCTGGGTGAAGGCTTCTTTGCGGAGGTCTATGAAGGTGTCTACACGAACCACAAAGGGG L G E G F F G E V Y E G V T N B K G E AAAAAATTAATGTGGCCGTCAAGACCTGTAAGAAAGCACTGACCACAAAGGAGA K I N V A V K T C K K D C T Q D H K E K AGTTCATGAGTGAGGCGTGATCATGAAGAATCTTGACCACCCCTCACATCGTGAAGCTGA F M S E A V I M K N L D E P E I V K L I	1320 390 1380 410 1440 430 1500 450 1560 470 1620 490
GTGAGAAGAGGAACAGCCTGCCTCAGATCCCCACACTAAACCTGGAGGCTCGGCGGTCGC E K R N S L P Q I P T L N L E A R R S H ACCTCTCAGAAAGCTGCAGCATAGAGTCAGACATCTATGCGGAGATTCCCGATGAGACCC L S E S C S I E S D I Y A E I P D E T L TGCGAAGACCAGGAGGTCCACAGTACGGTGTTGCCCGTGAAGAAGTAGTTCTTAACCGCA R R P G G P Q Y G V A R E E V V L N R I TTCTGGGTGAAGGCTTCTTTGGGGAGGTCTATGAAGGTGTCTACACGAACCACCAAAAGGG L G E G F F G E V Y E G V Y T N B K G E AAAAAATTAATGTGGCCGTCAAGACCTGTAAGAAAGACTGTACCCAGGACAACAAGGAGA K I N V A V K T C K K D C T Q D H K E K AGTTCATGAGTGAGGCGTGATCATGAAGAATCTTGACCACCCTCACATCGTGAAGCTGA F M S E A V I M K N L D H P B I V K L I TTGGCATCATTGAAGAGGGAACCCACCTGGATTATCATGGGAACTGTTATCCTTATGGGGAGC	1320 390 1380 410 1440 430 1500 450 1560 470 1620 490
GTGAGAAGAGGAACAGCCTGCCTCAGATCCCCACACTAAACCTGGAGGCTCGGCGGTCGC E R R N S L P Q I P T L N L E A R R S H ACCTCTCAGAAAGCTGCAGCATAGAGTCAGACATCTATGCGGAGATTCCCGATGAGACCC L S E S C S I E S D I Y A E I P D E T L TGCGAAGACCAGGAGGTCCACAGTACGGTGTTGCCCGTGAAGAAGTAGTTCTTAACCGCA R R P G G P Q Y G V A R E E V V L N R I TTCTGGGTGAAGGCTTCTTTGGGGAGGTCTATGAAGGTGTCTACACGAACCACAAAGGGG L G E G F F G E V Y E G V Y T N B R G E AAAAAATTAATGTGGCCGTCAAGACCTGTAAGAAACACTGTACCCACGAACAACAAGGAGA K I N V A V K T C K R D C T Q D H R E K AGTTCATGAGTGAGGGAGTGATCATGAAGAATCTTGACCACCCTCACATCGTGAAGCTGA F M S E A V I M K N L D B P E I V K L I TTGGCATCATTGAAGAGGAACCCACCTGGATTATCATGGGACCTGTATCCTTATGGGGAGC G I I E E E P T W I I M E L Y P Y G E L	1320 390 1380 410 1440 430 1500 450 1660 470 1620 490 1680 510
GTGAGAAGAGGAACAGCCTGCCTCAGATCCCCACACTAAACCTGGAGGCTCGGCGGTCGC E K R N S L P Q I P T L N L E A R R S H ACCTCTCAGAAAGCTGCAGCATAGAGTCAGACATCTATGCGGAGATTCCCGATGAGACCC L S E S C S I E S D I Y A E I P D E T L TGCGAAGACCAGGAGGTCCACAGTACGGTGTTGCCCGTGAAGAAGTAGTTCTTAACCGCA R R P G G P Q Y G V A R E E V V L N R I TTCTGGGTGAAGGCTTCTTTGCGGAGGTCTATGAAGGTGTCTACACGAACCACCAAAAGGG L G E G F F G E V Y E G V Y T N B K G E AAAAAATTAATGTGGCCGTCAAGACCTGTAAGAAAGACTGTACCCAGGACAACAAGGAGA K I N V A V K T C K K D C T Q D H K E K AGTTCATGAGTGAGGGGAGTGATCATGAAGAATCTTGACCACCCTCACATCGTGAAGCTGA F M S E A V I M K N L D E P E I V K L I TTGGGATCATTGAAGAAGGAACCCACCTGGATTATCATGGGAACTGTATCCTTATGGGGAGC G I I E E E P T W I I M E L Y P Y G E L TGGGACACTACCTGGAACGAAATAAAAACTCCCTGAAGGTACCCACTCTGGTCCTGTACA	1320 390 1380 410 1440 430 1500 450 1560 470 1620 490 1680 510
GTGAGAAGAGGAACAGCCTGCCTCAGATCCCCACACTAAACCTGGAGGCTCGGCGGTCGC E R R N S L P Q I P T L N L E A R R S H ACCTCTCAGAAAGCTGCAGCATAGAGTCAGACATCTATGCGGAGATTCCCGATGAGACCC L S E S C S I E S D I Y A E I P D E T L TGCGAAGACCAGGAGGTCCACAGTACGGTGTTGCCCGTGAAGAAGTAGTTCTTAACCGCA R R P G G P Q Y G V A R E E V V L N R I TTCTGGGTGAAGGCTTCTTTGGGGAGGTCTATGAAGGTGTCTACACGAACCACAAAGGGG L G E G F F G E V Y E G V Y T N B R G E AAAAAATTAATGTGGCCGTCAAGACCTGTAAGAAGACTGTACCCAGGACAACAAAGGAGA R I N V A V R T C K R D C T Q D H K E K AGTTCATGAGTGAGGCAGTGATCATGAAGAATCTTGACCACCCCTCACATCGTGAAGCTGA F M S E A V I M K N L D E P E I V K L I TTGGGATCATTGAAGAAGCACCTGGATATCATGGAACTGTATCCTTATGGGGAGC G I I E E E P T W I I M E L Y P Y G E L TGGGACACTACCTGGAACGAAATAAAAACTCCCTGAAGGTACCCACTCTGGTCCTGTACA G B Y L E R N K N S L K V P T L V L Y T	1320 390 1380 410 1440 430 1500 450 1620 470 1620 1680 510 1740 530
GTGAGAAGAGGAACAGCCTGCCTCAGATCCCCACACTAAACCTGGAGGCTCGGCGGTCGC E R R N S L P Q I P T L N L E A R R S H ACCTCTCAGAAAGCTGCAGCATAGAGTCAGACATCTATGCGGAGATTCCCGATGAGACCC L S E S C S I E S D I Y A E I P D E T L TGCGAAGACCAGGAGGTCCACAGTACGGTGTTGCCCGTGAAGAAGTAGTTCTTAACCGCA R R P G G P Q Y G V A R E E V V L N R I TTCTGGGTGAAGGCTTCTTTGGGGAGGTCTATGAAGGTGTCTTACCACAACCACAAAGGGG L G E G F F G E V Y E G V Y T N B R G E AAAAAATTAATGTGGCCGTCAAGACCTGTAAGAAAGACTGTACCCAGGACAACAAAGGAGA R I N V A V R T C K R D C T Q D H R E K AGTTCATGAGTGAGGCAGTGATCATGAAGAATCTTGACCACCCCTCACATCGTGAAGCTGA F M S E A V I M K N L D E P E I V K L I TTGGGATCATTGAAGGAACCCCACCTGGATATCATGGAACCTGTATCCTTATGGGGAGC G I I E E E P T W I I M E L Y P Y G E L TGGGACACTACCTGGAACGAAATAAAAACCTCCCTGAAGGTACCCACCTCTGGTCCTGTACA G B Y L E R N K N S L R V P T L V L Y T CCCTACAGATATGCAAAGCCCAACGGGATA	1320 390 1380 410 1440 430 1500 450 1620 470 1620 1680 510 1740 530 1800
GTGAGAAGAGGAACAGCCTGCCTCAGATCCCCACACTAAACCTGGAGGCTCGGCGGTCGC E K R N S L P Q I P T L N L E A R R S H ACCTCTCAGAAAGCTGCAGCATAGAGTCAGACATCTATGCGGAGATTCCCGATGAGACCC L S E S C S I E S D I Y A E I P D E T L TGCGAAGACCAGGAGGTCCACAGTACGGTGTTGCCCGTGAAGAAGTAGTTCTTAACCGCA R R P G G P Q Y G V A R E E V V L N R I TTCTGGGTGAAGGCTTCTTTGGGGAGGTCTATGAAGGTGTCTTACACGAACCACAAAGGGG L G E G F F G E V Y E G V Y T N B K G E AAAAAATTAATGTGGCCGTCAAGACCTGTAAGAAAGACTGTACCCAAGAACAACAAGGAGA K I N V A V K T C K K D C T Q D H K E K AGTTCATGAGTGAGGCAGTGATCATGAAGAATCTTGACCACCCCCCCC	1320 390 1380 410 1440 430 1500 450 1560 470 1620 490 1680 510 1740 530 1800 550
GTGAGAAGAGGAACAGCCTGCCTCAGATCCCCACACTAAACCTGGAGGCTCGGCGGTCGC E R R N S L P Q I P T L N L E A R R S H ACCTCTCAGAAAGCTGCAGCATAGAGTCAGACATCTATGCGGAGATTCCCGATGAGACCC L S E S C S I E S D I Y A E I P D E T L TGCGAAGACCAGGAGGTCCACAGTACGGTGTTGCCCGTGAAGAAGTAGTTCTTAACCGCA R R P G G P Q Y G V A R E E V V L N R I TTCTGGGTGAAGGCTTCTTTGGGGAGGTCTATGAAGGTGTCTTACCACAACCACAAAGGGG L G E G F F G E V Y E G V Y T N B R G E AAAAAATTAATGTGGCCGTCAAGACCTGTAAGAAAGACTGTACCCAGGACAACAAAGGAGA R I N V A V R T C K R D C T Q D H R E K AGTTCATGAGTGAGGCAGTGATCATGAAGAATCTTGACCACCCCTCACATCGTGAAGCTGA F M S E A V I M K N L D E P E I V K L I TTGGGATCATTGAAGGAACCCCACCTGGATATCATGGAACCTGTATCCTTATGGGGAGC G I I E E E P T W I I M E L Y P Y G E L TGGGACACTACCTGGAACGAAATAAAAACCTCCCTGAAGGTACCCACCTCTGGTCCTGTACA G B Y L E R N K N S L R V P T L V L Y T CCCTACAGATATGCAAAGCCCAACGGGATA	1320 390 1380 410 1440 430 1500 450 1560 470 1620 490 1680 510 1740 530 1800 550 1860
GTGAGAAGAGGAACAGCCTGCCTCAGATCCCCACACTAAACCTGGAGGCTCGGCGGTCGC E K R N S L P Q I P T L N L E A R R S H ACCTCTCAGAAAGCTGCAGCATAGAGTCAGACATCTATGCGGAGATTCCCGATGAGACCC L S E S C S I E S D I Y A E I P D E T L TGCGAAGACCAGGAGGTCCACAGTACGGTGTTGCCCGTGAAGAAGTAGTTCTTAACCGCA R R P G G P Q Y G V A R E E V V L N R I TTCTGGGTGAAGGCTTCTTTGGGGAGGTCTATGAAGGTGTCTTACACGAACCACAAAGGGG L G E G F F G E V Y E G V Y T N B K G E AAAAAATTAATGTGGCCGTCAAGACCTGTAAGAAAGACTGTACCCAAGAACAACAAGGAGA K I N V A V K T C K K D C T Q D H K E K AGTTCATGAGTGAGGCAGTGATCATGAAGAATCTTGACCACCCCCCCC	1320 390 1380 410 1440 430 1500 450 1560 470 1620 490 1680 510 1740 530 1800 550

FIGURE 8. ctd.

S R Y I E D E D Y K K A S V T R L F Y K S40 ANTIGATGETCECCCAGGTCCATCACTACCGCCCAGTGATGCTGGA 1980 N M S F E S I N F R R F T T A S D V W M 610 N M S F E S I N F R R F T T A S D V W M 610 N M S F E S I N F R R F T T A S D V W M 610 N M S F E S I N F R R F T T A S D V W M 610 N M S F E S I N F R R F T T A S D V W M 610 N M S V C M W E I L S F G K Q F F F W L E 530 N M S V G M W E I L S F G K Q F F F W L E 530 N M S V I G V L E K G D R L F K F E L C 650 N K D V I G V L E K G D R L F K F E L C 650 N K D V I G V L E K G D R L F K F E L C 650 N K D V I G V L E K G D R L F K F E L C 650 N K D V I G V L E K G D R L F K F E L C 650 N K D V L E K G D R L F K F E L C 650 N K D V L E K G D R L F K F E L C 650 N K D V L E K G D R L F K F E L C 650 N K D V L E K G D R L F K F E L C 650 N K D V L E K G D R L F K F E L C 650 N K D V L E K G D R L F K F E L C 650 N K D V D F S D R F 670 N K D V L E K G D R L F K F E L C V C S L S D S D I Y Q M E K A D I A 690 N K D I A	TCTCCCGGTACATTGAGGACGAAGACTATTACAAAGCCTCTGTGACACGTCTACCCATCA	1920
H S P S I N F R F T T S D V M	SRYIEDEDYYKASVTRLPIK	590
H S P S I N F R F T T S D V M	AATGGATGTCCCCCGAGTCCATCAACTTCCGCCGCTTCACAACCGCCAGTGATGTCTGGA	1980
TOTTICTETATICATIOGRAGATCETCACETTIGGGAAGCAGCCTTTCTTCTGGCCC F-A V C H W E I L S F G K Q F F F W L E		610
F - X V C M W E I L S F G K Q P F F W L E AMANTANGGATGCCAGGTGGCGGAACGTGCCGAACGCCGAACGCT N K D V I G V L E K G D R L P K P E L C 650		2040
NAMITANGENTETICATCOGGAGIAGAGGGGACAGGTGCCCAAGCTCT 1		430
N K D V I G V L E K G D R L F K F E L C		2100
TOTAGGACCICAGGAGATACACCICAGGAGAAGAACATTACAGGAGAAGAAGAAGAAGACATTACAGGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAA	والمستونة والمستون	650
F P V L Y T L H T R C W D Y D F S D R F CCCGCCTTCACGGACCTCTCACGCCCCAGTCACTACACTTATACAGAGGAGAAGGACATTG R F T E L V C S L S D I Y Q M E K D I A 690 CCATAGAGCAGAAAGGAATCCTGCTACCGACCCCCTAAAATATTGGAGCCTACTACCT I E Q E R N A R Y R P P K I L E P T T F 710 TCAGGGAACCCCCAACCCACACCCCCCCAAAATATATGGAGCCTACCTA		2160
CCCGCTTCACGGAGCTTGTGTGCAGCCTCAGTGACATTATCAGATGGAGAAGGACATTG R F T E L V C S L S L S L Y Q M E K D I A 590 CCATAGAGCAAGAAAGGAATCCTGCTACCGACCCCCTAMAATATGGGCCTACTACTCT I B Q E R N A R Y R P P P X L L E P T T F 710 TTCAGGAACCCCCAACCCCAACCCCCCCCCCCCCCCCC		670
R F T E L V C S L S D I Y Q M E K D I A 699		2220
CEATMGAGCAMGANAGGANTGCTCCCTTACCGACCCCCTAAAATATTTGGAGCCTACCTT I E Q E R N A R Y R P P R I L E P T T F 710 TTCAGGAACCCCCACCCCAAGCCCACCCGGCCCAAGTACAGACCCTCCTCCCAAGACCAACC Q E P P R R R R R R R R R P R P R P R		690
T		2280
TTCAGGAACCCCCACCCAGCCGCCCAGTACAGACCTCCTCCAGAGACACCC Q E P P R P R P R P R P P P T L C TO TOCTGGCTCCTTAGAGTCCCAGTCCCTGAGGGTCCTTGTGCCAGGTCTCTCAGCGTCCTCCAGCC 2400 L A P L Q P Q V P E G L C A S S P T L TAGCAGCCTATAGAGTATCCAGTTCCAGTTAACCACCCCACCTTCCACC 2400 T S P M E Y P S P V N S L H T P P L F R P 770 GGCACAATGTCTTCAAGCACCACCAGCATGCGGGAGGAGGAGTCTCATCCGCCCAGTAGCC 2520 H N V F R R H S M R P E D F I R P S R P 770 GAGAAGAGGGCCCAGCAGCATGCGGGAGGAGAGATCAAGACTCCAGGCCCAGTAGCC 2520 GAGAAGAGGCCCAGCAGCATGCGGGCAGAGAGATCAAGATGAAGAGGGTCCTAGAAA 2580 E P A Q Q L W P A E X I R M R Q V L P R 810 GACACCACACACACACAGTGCGAGAAGATTCCACGCGAGAAGAACTCTTGTG 2640 Q Q R Q M V P D S Q W L R R P E R C L D 830 ACCCTATGGTTTATATGAATGACAAGTCCCCCACTGACCCCAGAGAAGAAGATCCTTGG 2640 Q Q R Q M V P D S Q W L R R P E R C L D 830 ACCCTATGGTTTATATGAATGACAAGTCCCCCACTGACTCCAGAGAAGAAGAGAGGCCGGCTACA 2700 P M V Y M N D R S P L T P P R R P A C G A Q S I Q P T 870 CAGGCACACAGGGCCCCACGAAAACCACCTCCAGCTGGAGGAAGAAGATCCATTCAGCCCA 2760 E F T G P P Q R P P R L G A Q S I Q P T 870 CAGGCCAACCTGGACAGACCACTGCCCCTGTTACCACAAATCCATTCATCCACTGAGGG AACACCTCGACAGAACCACTCCAGCTGGTGGAGAACCACTCCACTGAACCACTCGACTGAGACAACCCCTCGACTGACATCCATTCAGCCCA 2760 A N L D R T D D L V Y B N V M T L V P A 890 CTGTCCTGGAACTCAAGAACAAGCTTGGCCCAGTTGCCCCCCTGAGGACTATCTTGCCCC 2740 A N L D R T D D L V P B P D Y V V V V V V V V V V V V V V V V V V		710
Q E P P P N P S R P K Y R P P Q T N L TGCTGGCTCCTAAGCTGCAGTTCCAGGTCCCTAGGGGTCTGTGCCAGGTCTCTCAGGC L A P K L Q F Q V P E G L C A S S P T L TACCAGCCCTATGGAGTATCCAGTTCCAGTTAACTCGCCAGACCCCACCTCTCCACC T S P M E Y P S P V N S L H T P P L R TGCAGACTGTTCTAGGGCCACACCCCACTCTCCACC T S P M E Y P S P V N S L H T P P L R GGCACAATGTCTTCAGGGCCACACCCCAGGGAGGACTTCATCCGCCCCAGACCCCAGCACCCCAGCAGCAGGAGGACTACCACCCCAGCAGCACCCCAGCAGCAGGAGGAGGAAGAACATCACCACCCCAGCAGCACCAGCAGCAGGAGGAGGAAGAACATCACCACCCCAGCAGCACCACCAGGAGGAGGAAGAACATCACACCAGGCCCAGGAGGAGGAGGAGGAAGAACAACCAGGCCCAGGAGG		2340
TGCTGGCTCTTAGCTGCAGTTCCAGGTCCTGAGGGTCTTGTGCCAGCTCTCTAGCC L A P K L Q F Q V P E G L C A S S P T L TACCAGCCCTATGGGTATCCAGTTACCTCCAGTTACTCCACCCCCACCTCTCCACC T S P H E Y P S P V N S L H T P P L R GGCACAATGTCTTCAAGCGCCACACCACCACCACCTCCCACC H N V F K R H S N R E E D F I R P S S R GGAAGAGGCCCAGCACTCTGGGAGGCAGAGACACTCAACCCGCCCAGTAGCC E P A Q L W E A E K I K M K Q V L E R GACACCAAAACCAGTGTGGAAGAATTCCCAGTGGCTCAAGCCAGAGACACACCTTGGAAA ACCCTATGGTTTATATGAAGTGCAAGATTCCCAGTGGCTCAGGCAGAGAAAACTCTTGG Q Q K Q M V E D S Q W L R R E E R C L D 830 ACCCTATGGTTTATATGAATGACAAGTCCCCACTGACCCCAGAGAAGAAGATCCTTGG P M V Y M N D K S P L T P E K E A G Y T 850 CGGAGTTCAACGGGCCCCACCAGAAACCACCTGGCTCAGGCGAAGAAGAAGTCCTTGG E F T G P P Q K P P R L G A Q S I Q P T 870 CAGCCAACCTGACAGGAGCAGAAAACCACCTCGGCTGGTGCAAGTCATTCAGCCA A N L D R T D D L V Y H N V M T L V E A A N L D R T D D L V Y H N V M T L V E A N L D R T D D L V Y H N V M T L V E A CTGACAGAACCTGAAACCAACTGGCCAAGTTCCCCCCTGAGACATCTATGCGGG V L E L K N K L G Q L P P E D Y V V V V 100 CCTTGCCTGGAACCTCAGAAACCACCTGGCCAGTTGCCCCCTGAGGACATCTATGCCCCT K N V G L N L R K L I G S V D D L L P S 300 CCTTGCCCGCATCTTCCGAAGGATTGAAGCGCAGTGCAATCTCTTCGCCCT A E L I N K H K L A Q Q N A V T S L S E 3120 TGCAGAAGACTCAAACAAGAATGAAGTTGGCCCAGCTCAACAAACGCCCTGCAAGAACC D C K R Q M L T A S H T L A V D A K N L 3120 TGCAGAAGACTCAACCAAGAACAAGAACTCCTCGCCAACCAA		730
L. A (P) K L Q F Q V (P) E G L C A S S (P) T L TTACCAGCCTATGGAGTATCCATCTCCAGTTAACTCCTCCCCCCCC		2400
TTACCAGCCCTATGGGTATCCATCTCCATTAACTCGCTGCACACCCCACCTCTCCACC T S (P) M E Y (P) S (P) V N S L H T (P) (P) L H R 770 GGCACAATGTCTTCAAGGCCCACAGCATGCGGGGGGGGGG		750
T S P M E Y P S P V N S L H T P L E R 770 GGCACATTTCTTCAAGCGCCACAGCATGCGGGAGGAGGAGGACTTCATCCGGCCCAGTAGCC H N V F K R H S N R E E D F I R P S S R 790 GAGAAGAGGCCCAGGAGCTCTGGGAGGCAGGAGAGATCAAGATGAAGCAGGTCCTAGAAA E E A Q Q L W E A E K I K M K Q V L E R 810 GACACCAGAAGCAGAGGTGGAGGATTCCCAGTGGCTCAGGAGGAAAGATGCTTGGG 2640 Q Q K Q M V E D S Q W L R R E E R C L D 830 ACCCTATGGTTTATATGAAAGACCAGCCCCACTGACCTCAGGAGAAGGAAAGATGCTTGG 2700 P M V Y M N D K S P L T P E K E A G Y T 850 CGGAGTTCAACAGGCCCCCACAGAAACCACCTCGGGTCCAGTCCATTCAGCCCA E F T G F P Q K P P R L G A Q S I Q P T 870 CAGCCAACCTGAACCAGGAACCACCTCGGGTCCAGTCCA	TTACCACCCTATGGAGTATCCATCTCCAGTTAACTCGCTGCACACCCCACCTCTCCACC	2460
GCCACAATTCTTCAAGCGCCACAGCATGCGGGAGGAGGACTTCATCCGGCCCAGTAGCC B N V F K R H S M R E E D F I R P S S R 790 GAGAAGAGGCCCAGCAGCTCTGGGAGGCAGAAGAACATCAAGATGAAGAGGTCCTAGAAA E E A Q Q L W E A E K I K H K Q V L E R 810 GACAGCAGAAGCAGGAGGAAGAACATCAAGATGAAGAAGATCCTTGG : 2640 Q Q K Q M V E D S Q W L R R E E R C L D 830 ACCCTATGGTTTATATGAATGACAAGTCCCCACTGACTCCAGGAAGGA		770
## N V F K R H S M R E E D F I R F S S R 790 GRGAAGAGGCCCCAGCAGCTCTGGGAGGCAGAGAAAACAGATCAAGATGAAGCAGGTCCTGAGACAGAGCCCAGCCCCAGCAGCCCAGCAGAAAAAACAAGCAGATGAAGAA		2520
CAGARAGGCCCAGCAGCTCTGGGAGGCAGAGAAGATCAAGATGAAGCAGGTCCTAGAAA E E A O Q L W E A E K I K M K Q V L E R 810 GACAGCAGAAGCAGATGGTGGAAGATTCCCAGTGGCCGAGAGGAAGATGCTTGG C 2640 Q Q K O M V E D S Q W L R R E E R C L D 830 ACCCTATGGTTTATAGAATGACAAGTCCCCACTGACTCCAGAGAAGAGGCCGGCTACA 2700 P M V Y M N D K S P L T P E K E A G Y T 850 CGGAGGTCACAGGGCCCCCACAGAAAACCACCTCGGCTCGGTGCACAGTCCATTCAGCCCACGGAGAAGCACGCCCCCACAGAAACCACCTCGGCTCGGTGCACAGTCCATTCAGCCCTGGAGCAAGTCCATTCAGCCCACGAGAAACCACCTCGGTGCACAGTCCATTCAGCCCTGGAGGAAACCACCTCGGTGCACAGTCCATTCAGCCCTGGAGGAAACCACCTTGGCCACTTGACCCACAGTTCACCCTGGAGGAAACCACCTTGGAGAAACCACCTTGGCCACATTCACCCTGGTGAGG 2820 A N L D R T D D L V Y H N V M T L V E A 890 CTGTGCTGGAACCTAAGAACAAGCTTGGCCAGTTGCCCCCCTGAGGACCTATGTGGTGGAGG 2820 A N L D R T D D L V Y H N V M T L V E A 890 TGAAGAACGTGGACGATGACCTTGGCCAGTTGCCCCCTGAGAACTTATGTGGTTGGGG 2820 V L E L K N K L G Q L P P E D Y V V V V V 910 TGAAGAACGTGGGGCTGAACCTTGGGCAAGTTCATCGGCCAGGTTGGACGATCTCTTGCCCT 2940 X N V G L N L R K L I G S V D D L L P S 930 CCTTGCCGGCATCTTCGAGGACAGAATTGAAGGGACCCAGAAACTCCTCTAACAAAGACC L P A S S R T E I E G T Q K L L N K D L 950 AGGACTGCAGGCTCATCACAGAAGTTGATGGCTCACCAGAACCCCGTGAACGTCCCTCAGTG 3060 A E L I N K N K L A Q Q N A V T S L S E 970 AGGACTGCAGGGCCAGATGCTCACACGGTCCCATACCCTGGCTTGGATGCCAAGAACC 3120 D C K R Q M L T A S B T L A V D A K N L S S E 970 GGCAGGTTGGACCAAGCCAAGGTTTGTGGCTAACCTGGCCTGCATGCCAGAACC 3120 CCTGGATGCTGGACCCAAGCCAAGGTTTGTGGCTAACCTGGCCTGCATGCA		790
E E A Q Q L W E A E X I K M K Q V L E R 810 GACAGCARARGAGAGATGGTGGARAGATTCCCAGTGGCCTGAGGCARAGAGAAAGATGCTTGG : 2640 Q Q K Q M V E D S Q W L R R E E R C L D 830 ACCCTATGGTTTATATACAAGTCCCCCCCTGATGCCCAAGAGGAGAGGGCCCGGTACA 2760 P M V Y M N D X S P L T P E K E A G Y T 850 CGGAGTTCACAGGGCCCCCACAGAAACCACCTCGGCTCGGTGCACAGTCCATTCAGCCCA 2760 E F T G P P Q K P P R L G A Q S I Q P T 870 CAGCCAACCTGGACAGGACCGATGACCTCGTGTACCACAATTCATCACCCCA 2760 A N L D R T D D L V Y H N V M T L V E A 890 CTGTGCTGGAACTCAAGAACAAGCTTGGCCAGTTCCCCCTTGAGGACTATTGTGTGGG 2880 V L E L K N K L G Q L P P E D Y V V V V 910 TGAAGAACGTGGGGCTGAACCTGGGGAAGACTCATCCCCTGTGAGGACTATTTGTGTGGG 2890 CTTTGCCGGCATTCTCGGGGAAGATTGAAGGGACCCAGAAACTCCTTAACAAAGACC 2940 X N V G L N L R K L I G S V D D L L P S 930 CCTTGCCGGCATCTTCGAGGACAGAGATTGAAGGGACCCAGAAACTGCTCAACAAAAGACC 3000 L P A S S R T E I E G T Q K L L N K D L 950 AGGACTGCAAGCGGAAGATGATTGAAGGGACCCAGAAACTGCTCTAACAAAAGACC 3000 L P A S S R T E I E G T Q K L L N K D L 950 AGGACTGCAAGCGGAAGATGATGATGGCTCAGAGAACGCCGTGGAGGTTCCTGAGGA 3060 A E L I N K N K L A Q Q N A V T S L S E 970 AGGACTGCAAGCGGAAGATGATTGATGGCTCAATACCCTGGGTGTGGATGCCTAAGAAACC 3120 D C K R Q H L T A S B T L A V D A K N L 990 TGCTGGGATGCTCACAGCCAAGGCTTGTGGCTCAATACCCTGGCCTACCGCCTGAGGAC 3120 Gacttgcatgacaccccctcttccagcctacacccccagaactgtgctagaagaggggcaacactttccccttgc 3360 L D A V D Q A K V V A N L A B P P A E * Gactagagaagaggggccacctgctgcttccagagaacagagatgagagaga		2580
GRCAGGRAAGCAGATGGTGGAAGATTCCCAGTGGCTGAGGGGAAGGAA		810
Q Q K Q M V E D S Q W L R R E E R C L D 830 ACCCTATGGTTTATATGRATGRATGRATGCCCCACTGGCTCCCAGGGAAGGGGCCCGCTACA 2700 P M V Y M N D K S P L T P B K E A G Y T 850 CGGGGTTCACAGGGCCCCCACAGARACCACCTCGGCTCGG		2640
RCCTATGGTTTATATGRATGACAAGTCCCCACTGACTCCAGAGAAGGAGGCCGGCTACA P M V Y M N D K S P L T P E K E A G Y T 850 CGGAGTTCACAGGGCCCCCCACAGAAACCACTCGGCTCGGTGCACAGTCCATCAGCCCA E F T G P P Q K P P R L G A Q S I Q P T 870 CAGCCAACCTGGACAGGACCGATGACCTCGGTTGCACAAATGTCATCACCCCA A N L D R T D D L V Y H N V M T L V E A 890 CTGTGCTGGAACTCAAGAACAAGCTTGGCCAGTTGCCCCCTGAGGACTATGTGGTGG 2880 V L E L K N K L G Q L P P E D Y V V V V 910 TGAAGAACGTGGGGCTGAACCTGGGGAAGCTCATCGGCAGATCTTTTGGTGGTG 2940 K N V G L N L R K L I G S V D D L L P S 930 CCTTGCCGGCATCTTCGAGGACAGAGATTGAAGGGGACCCAGAAACTGCTCAACAAAGACC 3000 L P A S S R T E I E G T Q K L L N K D L 950 TGCAGAGCTCATCAACAAGATGAAGTTGGTCACACAAAACGCCCTGACGCTCCTGAGGACCTCACCAAGAACC 3000 L P A S S R T E I E G T Q K L L N K D L 950 AGGACTGCAAGCGGCAAGATGATGATGAGGGGACCCAGAAACTGCTCCTGAGGGG 3120 A E L I N K M K L A Q Q N A V T S L S E 970 TGCTGGATGCTGTGGACCAAGCCAAGGTTCTGGCTCCAACACACC 3120 TGCTGGATGCTGGGACCAAGCCAAGGTTGTGGCTCCAAACACGCCCTGACGTCCCAAGAACC 3120 D C K R Q M L T A S H T L A V D A K M L 990 TGCTGGATGCTGGGACCAAGCCAAGGTTTGGCTCAAACTCGGCTGAGGACCCAGGAGT L D A V D Q A K V V A N L A H P A E * Gatcaagaagaggggcacctgcctgatettetgccccaacgtgtctttggcatacctttc ccctttccacaggcaaccccctttcccccaagacaggagagaga		830
P M V Y M N D K S P L T P E K E A G Y T 850 CGGAGTTCACAGGGCCCCCACAGAAACCACTCGGCTCGG		2700
CGGAGTTTACAGGCCCCCCACAGARACCACCTCGGCTCGG		850
E F T G P P Q K P P R L G A Q S I Q P T 870 CAGCCAACCTGGACAGACCGATGACCTCGTTACCACATGTCATGACCCTGGTGAGG 2820 A N L D R T D D L V Y B N V M T L V E A 890 CTGGTGGAACCTAAGAACCACTGGCCAGTTGCCCCCTGAGGACTATGTGGTGGGG 2880 V L E L K N K L G Q L P P E D Y V V V V V 910 TAAGAACTGGGGGGGTGAACCTCAGGACATACTGGGGAACCTCATGGCCAGTTGGCCAGTTGGACGATGTTGGCCCCTTTGCCCT 2940 K N V G L N L R K L I G S V D D L L P S 930 CCTTGCCGGGAACCTCTCGAGGACAACTGCTCAACAAAGACC 3000 L P A S S R T E I E G T Q R L L N K D L 950 TGGCAGAGGTCATCAACAAGAACTGAAGAACTGCTCAACAAGAACC 3000 A E L I N K N K L A Q Q N A V T S L S E 970 AGGACTGCAAGAGGGGACCAAGAACTGCTCCAAGAACC 3120 D C K R Q M L T A S B T L A V D A K N L 990 TGCTGGATGCTGGACCAAGACTCCAACAAGAACC 3120 D C K R Q M L T A S B T L A V D A K N L 990 TGCTGGATGCTGGACCAAGCCAAGCCAAGCTCACACAGCTTGGCCAAGAACC 3120 Cacttgcacgacacccccccccaccccagactgtgctatcttggcatacctttc ctgcacagacaagggggccacctgccttcaaccaccccccagactgtgcaaagaggggtcaacctttc ctgcactagacaagaggggccaccttccacacccccagactgtgcaaagaggggtaacctttc ctccacaacccaccccagactgtgcaaacaccattc 3240 ctactgcaagaaagggcacccctgaacaccacccccagactgtgcaataccttc 3360 agagaaaggactcttgggcacaagacaccagagaggggaacactttggggaaaggaggacacattggggtaaccattcaccttc 3360 agagaagctgtgaaaggacccctgaacacacaccaccccagaccagacaccagacaccacccctttcaacacagaccaccacccccagactggttgaaagagagggtcaacaccaccacccctgaacacacac		2760
A N L D R T D D L V Y B N V M T L V E A 890 CTGTGCTGGAACTCAAGACAAGCTTGGCCAGTTGCCCCCTGAGGACTATGTGGTGGTGG V L E L K N K L G Q L P P E D Y V V V V 910 TGAAGAACGTGGGGCTGAACCTGCGGAAGCTCATCGGCAGTTGGACGATCTTGCCCT 2940 K N V G L N L R K L I G S V D D L L P S 930 CCTTGCCGGCATCTTCGAGGACAGGATTGAAGGGACCCAGAAACTGCTCAACAAGACC 3000 L P A S S R T E I E G T Q K L L N K D L 950 TGGCAGAGCTCATCAACAAGATGAAGTTGACGTACCCAGAAACTGCCCTAACAAGACC 3060 A E L I N K N K L A Q Q N A V T S L S E 970 AGGACTGCAAGCGGCAGATGCTCACAGGGTCCCATACCATGGCCCTGAGAACC 3120 D C K R Q M L T A S B T L A V D A K N L 990 TGCTGGATGCTTGGACCAAGCCAAGGTTGTGGCTAATCTGGCCCACCGCCTGCAGAACC 3120 TGCTGGATGCTTGGACCAAGCCAAGGTTGTGGCTAATCTGGCCCACCGCCTGCAGAACC 3120 TGCTGGATGCTTGGACCAAGCCAAGGTTGTGGCTAATCTGGCCCACCGCCTGCAGAACC 3120 GCTTGGATGCTTGGACCAAGCCAAGGTTGTGGCTAATCTGGCCCACCCGCCTGCAGAACC 3120 GCTTGGATGCTTGGACCAAGCCAAGGTTGTGGCTAATCTGGCCCACCCGCCTGCAGAACC 3120 GCTTGGATGCTTGGACCAAGCCAAGGTTGTGGCTAATCTGGCCCACCCGCCTGCAGAACC 3120 GCTTGGATGCTTGGACCAAGCCAAGGTTGTGGCTAATCTGGCCCACCCGCCTGCAGAACC 3120 GCTTGGATGCTTGGACCAAGCCAAGGTTGTGGCTAATCTGGCCCACCCGCCTGCAGAACC 3120 GCTTGGATGCTTGGACCAAGCCAAGGTTGTGGCTAATCTGGCCCACCCGCCTGCAGAACC 3120 GCTTGGATGCTTGGACCAAGCCAAGGTTGTGGCTAACCACGGTTGGGCTAACAACC 3120 GCTTGGATGCTTGGACCAAGCCAAGGTTGTGGCCAATCTGGCCCACCCGCCTGCCAGAACC 3120 GCTTGGAGAGGAGAGAGAGATGAAGCCAAGGTTGTGGCCAACAACCCCTGGCTGAGAACC 3120 GCTTGGAGAGGAGAGAGAGAGAGAGAGGAGGGGTGGGTGG		870
A N L D R T D D L V Y B N V M T L V E A 890 CTGTGCTGGAACTCAAGACAAGCTTGGCCAGTTGCCCCCTGAGGACTATGTGGTGGTGG V L E L K N K L G Q L P P E D Y V V V V 910 TGAAGAACGTGGGGCTGAACCTGCGGAAGCTCATCGGCAGTTGGACGATCTTGCCCT 2940 K N V G L N L R K L I G S V D D L L P S 930 CCTTGCCGGCATCTTCGAGGACAGGATTGAAGGGACCCAGAAACTGCTCAACAAGACC 3000 L P A S S R T E I E G T Q K L L N K D L 950 TGGCAGAGCTCATCAACAAGATGAAGTTGACGTACCCAGAAACTGCCCTAACAAGACC 3060 A E L I N K N K L A Q Q N A V T S L S E 970 AGGACTGCAAGCGGCAGATGCTCACAGGGTCCCATACCATGGCCCTGAGAACC 3120 D C K R Q M L T A S B T L A V D A K N L 990 TGCTGGATGCTTGGACCAAGCCAAGGTTGTGGCTAATCTGGCCCACCGCCTGCAGAACC 3120 TGCTGGATGCTTGGACCAAGCCAAGGTTGTGGCTAATCTGGCCCACCGCCTGCAGAACC 3120 TGCTGGATGCTTGGACCAAGCCAAGGTTGTGGCTAATCTGGCCCACCGCCTGCAGAACC 3120 GCTTGGATGCTTGGACCAAGCCAAGGTTGTGGCTAATCTGGCCCACCCGCCTGCAGAACC 3120 GCTTGGATGCTTGGACCAAGCCAAGGTTGTGGCTAATCTGGCCCACCCGCCTGCAGAACC 3120 GCTTGGATGCTTGGACCAAGCCAAGGTTGTGGCTAATCTGGCCCACCCGCCTGCAGAACC 3120 GCTTGGATGCTTGGACCAAGCCAAGGTTGTGGCTAATCTGGCCCACCCGCCTGCAGAACC 3120 GCTTGGATGCTTGGACCAAGCCAAGGTTGTGGCTAATCTGGCCCACCCGCCTGCAGAACC 3120 GCTTGGATGCTTGGACCAAGCCAAGGTTGTGGCTAATCTGGCCCACCCGCCTGCAGAACC 3120 GCTTGGATGCTTGGACCAAGCCAAGGTTGTGGCTAACCACGGTTGGGCTAACAACC 3120 GCTTGGATGCTTGGACCAAGCCAAGGTTGTGGCCAATCTGGCCCACCCGCCTGCCAGAACC 3120 GCTTGGAGAGGAGAGAGAGATGAAGCCAAGGTTGTGGCCAACAACCCCTGGCTGAGAACC 3120 GCTTGGAGAGGAGAGAGAGAGAGAGAGGAGGGGTGGGTGG	CAGCCAACCTGGACAGGACCGATGACCTCGTGTACCACAATGTCATGACCCTGGTGGAGG	2820
V L E L K N K L G Q L P P E D Y V V V V 2910 TGAAGAACGTGGGGCTGAACCTGCGGGAAGCTCATCGCCAGTGTGGACGATCTCTTGCCCT 2940 K N V G L N L R K L I G S V D D L L P S 930 CCTTGCCGGCATCTTCGAGGACAGAGATTGAAGGGACCCAGAAACTGCTCAACAAAAACAC 3000 L P A S S R T E I E G T Q K L L N K D L 950 TGGCAGAGCTCATCAACAAGATGAAGTTGGCTCAAGAGAACGCCGTGACGTCCCTGAGTAG 3060 A E L I N K N K L A Q Q N A V T S L S E 970 AGGACTGCAAGCGGCAGATGCTCACAGCGTCCCATACCCTGGATGCCTCAGAAACC 3120 D C K R Q M L T A S E T L A V D A K N L 990 TGCTGGATGCTGTGGACCAAGCCAAGCTTGTGGCTAATCTGGCCCACCCGCTGCAGAGC 3180 L D A V D Q A K V V A N L A E P P A E * gatcaagagagggggccacctgctgcatcttctgccccaagactgtgctactcacccttc 3240 ctatggacagaaaggagtcttggtattggtattctgggacagagagtgtaatcatccccttgc tctggacagaaaggagtcttggcacagacaggggttggggtgacatcattgggtaatg agtgaccctaaggccactccctttcccccaaccccagactgtgtgacatcattgggtaatg agtgtaccctaagggcaagagaggctgagactgggttgtggagagaga	ANLDRTDDLVYHNVMTLVEA	890
V L E L K N K L G Q L P P E D Y V V V V 2910 TGAAGAACGTGGGGCTGAACCTGCGGGAAGCTCATCGCCAGTGTGGACGATCTCTTGCCCT 2940 K N V G L N L R K L I G S V D D L L P S 930 CCTTGCCGGCATCTTCGAGGACAGAGATTGAAGGGACCCAGAAACTGCTCAACAAAAACAC 3000 L P A S S R T E I E G T Q K L L N K D L 950 TGGCAGAGCTCATCAACAAGATGAAGTTGGCTCAAGAGAACGCCGTGACGTCCCTGAGTAG 3060 A E L I N K N K L A Q Q N A V T S L S E 970 AGGACTGCAAGCGGCAGATGCTCACAGCGTCCCATACCCTGGATGCCTCAGAAACC 3120 D C K R Q M L T A S E T L A V D A K N L 990 TGCTGGATGCTGTGGACCAAGCCAAGCTTGTGGCTAATCTGGCCCACCCGCTGCAGAGC 3180 L D A V D Q A K V V A N L A E P P A E * gatcaagagagggggccacctgctgcatcttctgccccaagactgtgctactcacccttc 3240 ctatggacagaaaggagtcttggtattggtattctgggacagagagtgtaatcatccccttgc tctggacagaaaggagtcttggcacagacaggggttggggtgacatcattgggtaatg agtgaccctaaggccactccctttcccccaaccccagactgtgtgacatcattgggtaatg agtgtaccctaagggcaagagaggctgagactgggttgtggagagaga	CTGTGCTGGAACTCAAGAACAAGCTTGGCCAGTTGCCCCCTGAGGACTATGTGGTGGTGG	2880
K N V G L N L R K L I G S V D D L L P S 930 CCTTGCCGGCATCTTCGAGGACAGAGATTGAAGGGCCCCAGAAACTGCTCAACAAAGACC 3000 L P A S S R T E I E G T Q K L L N K D L 950 TGGCAGAGGCTCATCAACAAGATGAAGTTGGCTCAGCAGAACGCCGTGACGTCCCTGAGTG 3060 A E L I N K M K L A Q Q N A V T S L S E 970 AGGACTGCAAGAGGCAGACGCCGTGACGTCCCAGAACC 3120 D C K R Q M L T A S E T L A V D A K N L 990 TGCTGGATGCTGTGGACGAAGCCAAGACC 3120 L D A V D Q A K V V A N L A E P P A E \$ gatcaagagggggccacctgcctgcatcttctgccccaacccaggggaagaggggccaccttgctttcgacagaaaggagtcaacccctttc acacccaggggaaaggtggaaaggtggatcatccccctttc acacccagacctgcctttcaggcaaacccctttccaggggaaaggtggggtgaacagcaacccatttcaggctgca 3360 tctggacagaaaggactttggttattggtcttccaggctggattggttgagaagattcattgggtta 3480 agtgtacccctaacggcaagaagagagctgggacaagaacaggggttgagaagagaggggtttattttt 3480 agtgtacccctaacggcaagaatggctttctttgaacaggagaagaggggtttatttttt 3480 agagaagctgtgaagaagagagaccctggatcactggctacaagaagaggggtttatttttt 3600 agagaagatgtgagaatgagatggaccctgatacaagaggggacaatttttttt	V L E L K N K L G Q L P P E D Y V V V	910
CCTTGCCGGCATCTTCGAGGACAGAGATTGAAGGGACCCAGAAACTGCTCAACAAAGACC L P A S S R T E I E G T Q R L L N K D L 950 TGGCAGAGGTCATCAACAAGATGAAGTTGGCTCAGCAGAACGCCGTGACGTCCCTGAGTG A B L I N K N K L A Q Q N A V T S L S E 970 AGGACTGCAAGCGGCAGATGCTCACAGCGTCCCATACCCTGGCTGG	TGAAGAACGTGGGGCTGAACCTGCGGAAGCTCATCGGCAGTGTGGACGATCTCTTGCCCT	2940
L P A S S R T E I E G T Q K L L N K D L 350 TGGCAGAGCTCATCAACAAGATGAAGTTGGCTCAGCAGAACGCCGTGACGTCCCTGAGTG A E L I N K H K L A Q Q N A V T S L S E 970 AGGACTGCAAGCGGCAGATGCTCACAGCGTCCCATACCCTGGCTGG		930
TGGCAGAGGTCATCAACAAGATGAAGTTGGCTCAGCAGAACGCCGTGACGTCCCTGAGTG A E L I N K N K L A Q Q N A V T S L S E 970 AGGACTGCAAGCGGCAGATGCTCACAGCGTCCCATACCCTGGCTGG	CCTTGCCGGCATCTTCGAGGACAGAGATTGAAGGGACCCAGAAACTGCTCAACAAAGACC	3000
A E L I N K N K L A Q Q N A V T S L S E 970 AGGACTGCAAGCGGCAGATGCTCACAGCGTCCCATACCCTGGCTGG	LPASSRTEIEGTQRLLNKDL	950
AGGACTGCAAGCGGCAGATGCTCACAGCGTCCCATACCCTGGCTTTGGATGCCAAGAACC D C X R Q M L T A S B T L A V D A X N L 990 TGCTGGATGCTGTGGACCAAGCCAAGCTTGTGGCTAATCTGGCCCACCCGCCTGCAGAGT L D A V D Q A X V V A N L A B P P A E gatcaagagaggggccacctgcctgcatcttctgccccaagctgtcttggcatacctttc ctgccttgcct	TGGCAGAGCTCATCAACAAGATGAAGTTGGCTCAGCAGAACGCCGTGACGTCCCTGAGTG	3060
D C X R Q M L T A S E T L A V D A K N L 3180 TGCTGGATGCTGTGGACCAAGCCAAGCTTGTGGCTAATCTGGCCCACCGGCTGCAGAGT L D A V D Q A K V V A N L A E P P A E gatcaagagggggccacctgctgcatcttctgccccaagaggaaagatccatcc		970
TGCTGGATGCTGTGGACCAAGCCAAGCTTGTGGCTAATCTGGCCCACCCGCCTGCAGAGT L D A V D Q A K V V A N L A B P P A E * gatcaagagaggggccacctgcctgcatcttctgccccacctgtcttggcatacctttc ctgccttgcct	<u>AGGACTGCAAGCGGCAGATGCTCACAGCGTCCCATACCCTGGCTGTGGATGCCAAGAACC</u>	3120
L D A V D Q A R V V A N L A B P P A E quatronia de la constitución de		
gatcaagagaggggccacctgcctgcatettetgccccaacctgtcttggcatacetttc ctgccttgcctttggttattggtcttccaggganagctgagaagagtccatccccttgc 3300 cactttgcacgacaccccctcttcccccaacccacacccagactgtgctactcaggctgca tctggacaganaggactctgggcacagacacggggtggggt	TGCTGGATGCTGTGGACCAAGCCAAGGTTGTGGCTAATCTGGCCCACCCGCCTGCAGAGt	3180
catttgcctttgcttattggtcttccaggganagctgagaaggtccatccccttgc caetttgcacgacaccccctttcccccaaccccagactgtgctactcaggctgca tctggacaganaggactctggcacagacacggggtgggtgacatagttcataggggta 3420 ctactgccagccactccctcttaccccagcctgggttgctgagcatcattggggtcatg agtgtacccctaagggcaagatggctttctgcaggacatttgagagccagtattcctc cttcctcttcagccctcagggacccctgatacagaggggacagagagggggtttatttgt agagaagctgtgagatggacctggacctggctctcttgtacagtgtacattggaatt 3660 attaatgtgagtttgacctggatggacctggccatagtccaggagaaacaaat 3720 ccagtcacaggactctggttttatggaactgagtgcatagtcaggagagaga		
catttgcctttgcttattggtcttccaggganagctgagaaggtccatccccttgc caetttgcacgacaccccctttcccccaaccccagactgtgctactcaggctgca tctggacaganaggactctggcacagacacggggtgggtgacatagttcataggggta 3420 ctactgccagccactccctcttaccccagcctgggttgctgagcatcattggggtcatg agtgtacccctaagggcaagatggctttctgcaggacatttgagagccagtattcctc cttcctcttcagccctcagggacccctgatacagaggggacagagagggggtttatttgt agagaagctgtgagatggacctggacctggctctcttgtacagtgtacattggaatt 3660 attaatgtgagtttgacctggatggacctggccatagtccaggagaaacaaat 3720 ccagtcacaggactctggttttatggaactgagtgcatagtcaggagagaga	gatcaagagagggccacctgcctgcatcttctgccccacctgtcttggcatacctttc	
cactttgcacqacacccctcttcccccaacccacccaqactgtgctactcaggctgca 3360 tctgqacagaaaggactctgggcacagacacggggtgggtgacatagttcataggggta 3420 ctactgccagccactccctcttaccccaqcctgggttgctggagcactcattggggtcatg 3480 agtgtacccctaacggccaagatggctttctgcatggacatttgagagccagtattcctc cttcctcttcagccctcagggacccctgatacagaggggacagagaggggttttatttgt 3600 agagaagctggtgagatgaggggtggacctggctctcttgtacagtgtacattggaattt 3660 atttaatgtgagtttgacctggatggaccagggccatagtccaggagcaaaccaat 3720 ccagtcacaggactctgtgttttatggaactgagtgccacaggagagaga	ctgccttgcctttggttattggtcttccagggaaagctgagaagagtccatccccttgc	
ctactgccagccactcctcttaccccagcctggttgctggagcatcattggggtcatg agtgtacccctaacggccaagatggctttctgcatggacatttgagagccagtattcctc cttcctcttcagccctcagggacccctgatacagggggacagagaggggttttatttgt agagaagctggtgagatgagggctggacctggctctcttgtacagtgtacattggaattt attaatgtgagtttgacctggatggacagccaagggccatagtccaggagcaaaccaat ccagtcacaggactctgtgttttatggaactgagtgccacaggagagaagcagagagtcgg aggtcagaatggactttgtgccctcctggtttctctctccccctctttcccccc	cactttgcacgacacccctcttcccccaacccaccccagactgtgctactcaggctgca	
attactgccagccactcctctttaccccagctggttgctggagcatcattggggtcatg agtgtacccctaacggccaagatggctttctgcatggacatttgagagccagtattcctc cttcctcttcagccctcagggacccctgatacagaggggacagagaggggttttatttgt agagaagctggtgagatgagggctggacctggttctcttgtacagtgtacattggaattt attaatgtgagtttgacctggatggacctggctctcttgtacagtgtacattggaattt ccagtcacaggactctgtgttttatggaactgagtgccacaggagagaagcagagagtcgg aggtcagaatggactttgtgccttcctggtttctctctcccccttttcctcccct 3780 aggtcagaatggactttgtgccctcctggtttctctttccccctctttcccccc	totggacagaaaggactotgggcacagacacggggtggggt	
agtgtacccctaacggccaaqatggctttetgcatggacatttgagagccagtattcctc cttcctcttcagccctcagggacccctgatacagaggggacagagaggggttttatttgt agagaagctggtgagatgagggctggacctggttctcttgtacagtgtacattggaattt atttaatgtgagtttgacctggatggaccagggccatagtccaggagcaaacaaa	ctactoccacccactccttaccocaqcctqqqttqctqqaqcatcattqqqqtcatq	
etteetetteageeeteagggaceetgatacagaggggacagagaggggttttatttgt 3600 agagaagetggtgagatgagggetggacetggetetettgtacagtgtacattggaattt 3660 atttaatgtgagtttgacetggatggacagcaagggceatagtecaggagcaaacaaat 3720 ceagteacaggactetgtgttttatggaactgagtgccacaggaagaagcagagagtegg 3780 aggtcagaatggactttgtgeeetteetggttteteteteeetetteeetet 3840 etttettacgteteettttteteeteeeetttteacatetgeteeeetetetete gtetgtgagaacatttacetteettetttttgateggtggttgaattaaaattattace 3960	agtgtacccctaacggccaagatggctttctgcatggacatttgagagccagtattcctc	
agagaagctggtgagatgagggctggacctggctctcttgtacagtgtacattggaattt 3660 atttaatgtgagtttgacctggatggacagccaagggccatagtccaggagcaaacaaa	cttcctcttcagccctcagggacccctgatacagaggggacagagaggggttttatttgt	
atttaatgtgagtttgacctggatggacagccaagggccatagtccaggagcaaacoaat 3720 ccagtcacaggactctgtgttttatggaactgagtgccacaggaagaagcagagagtcgg aggtcagaatggactttgtgcccttcctggttttctcttctccctctttcctcc	agagaagctggtgagatgagggctggacctggctctcttgtacagtgtacattggaattt	
ccaqtcacaqqactctqtqttttatqqaactqaqtqccacaqqaaqaaqcaqaqaqtcqq 3780 agqtcaqaatqqactttqtqcccttcttqtttttctcttctcctctttttttt	atttaatgtgagtttgacctggatggacagccaagggccatagtccaggagcaaaccaat	_
aggicagaaiggacttigigcosticotgcgttictottotecctotticotectot 3840 ettitottacgictocttittotecccccttiticaeatetgctcccctctcteat 3900 gtctgiggagaacattaccttcttttttgatcggiggttgaattaaaattattacc 3960	ccaqtcacaggactctqtgttttatgq&actg>gccacagga&g&agc&g&g>cgg	
cttttcttacgtctcctttttctcctcccccttttcacatctgctcccctctctct	aggtcagaatggactttgtgcccttcctgcgtttctcttctccctctttccttctccct	
gtctgtggagaacatttaccttccttctttttgatcggtggttgaattaamattattacc 3960	ctittettacgtetecttttetecteccectttteaeatetgeteccetecteteat	
	gtotgtggagaacatttacottcottotttttqatcggtggttgaattaaaattattacc	
		3981

International application No. PCT/US98/02797

	<u></u>
US CL :435/7.1, 15, 69.1, 194; 514/2; 530/350	
B. FIELDS SEARCHED	
Minimum documentation searched (classification system follow	ved by classification symbols)
U.S. : 435/7.1, 15, 69.1, 194; 514/2; 530/350	
Documentation searched other than minimum documentation to the	he extent that such documents are included in the fields scarched
Electronic data base consulted during the international search (Please See Extra Sheet.	name of data base and, where practicable, search terms used)
C. DOCUMENTS CONSIDERED TO BE RELEVANT	
Category* Citation of document, with indication, where	appropriate, of the relevant passages Relevant to claim No.
Regulation of Ion Channel and MAP	Kinase Functions. Nature. 31
Kinase β, a Novel Protein-Tyrosine Kinase Subfamily. The Journal of	Kinase of the Focal Adhesion f Biological Chemistry. 08
X Further documents are listed in the continuation of Box	C. See patent family annex.
Special categories of cited documents:	*T* later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered to be of particular relevance	date and not in conflict with the application but cited to understand the principle or theory underlying the invention
E cartier document published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
*L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other	when the document is taken alone
special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is
O document referring to an oral disclosure, use, exhibition or other means	combined with one or more other such documents, such combination being obvious to a person skilled in the art
Purcher documents are listed in the continuation of Box C. SASAKI et al. Cloning and Characterization of Cell Adhesion Kinase B, a Novel Protein-Tyrosine Kinase of the Focal Adhesion Kinase Subfamily. The Journal of Biological Chemistry. 08 September 1995, Vol. 270, No. 36, pages 21206-21219, see especially pages 21216-21219. Further documents are listed in the continuation of Box C. See patent family annex. Purchase of the intermittenal filing date or priority of the intermittenal filing date or priority of the priority and chimsel or color priority in the intermittenal filing date in or color decement of the intermittenal filing date in or large which it is depressed and chimsel and making address of the intermittenal filing date but intermittenal filing date in color and intermittenal filing date in color and intermittenal filing date in color and intermittenal filing date in the intermittenal filing date in color and intermitt	
Date of the actual completion of the international search	1 1
03 APRIL 1998	1 8 JUN 1998
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230	July an 1 was 1 of

International application No. PCT/US98/02797

			- •
C (Continue	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		-
Category*	Citation of document, with indication, where appropriate, of the relevan	Relevant to claim No	
Y	SCHLAEPFER et al. Signal Transduction from the Ext MatrixA Role for the Focal Adhesion Protein-Tyrosine FAK. Cell Structure and Function. October 1996, Vol. pages 445-450, especially pages 446-448.		
Y	SICILIANO et al. Differential Regulation of Proline-Ric Tyrosine Kinase 2/Cell Adhesion Kinase β (PYK2/CAKβ pp125 ^{FAK} by Glutamate and Depolarization in Rat Hippod The Journal of Biological Chemistry. 15 November 1996 271, No. 46, pages 28942 to 28946, especially pages 289	1-22	
Y	SEUFFERLEIN et al. Dissociation of Mitogen-Activated Kinase Activation from p125 Focal Adhesion Kinase Tyre Phosphorylation in Swiss 3T3 Cells Stimulated by Bombe Lysophosphatidic Acid, and Platelet-Derived Growth Fact Molecular Cell Biology. December 1996, Vol. 7, pages 1875, especially pages 1867-1872.	osine esin, tor.	1-22
Y	WEBER et al. Inhibitors of Protein Tyosine Kinase Supple Stimulated Induction of Endothelial Cell Adhesion Molec Journal of Immunology. 01 July 1995, Vol. 155, No. 1, 1445-451, especially pages 446-449.	ules. The	1-22
	·		
·			
٠ بر			
		į	
		1	=

Form PCT/ISA/210 (continuation of second sheet)(July 1992) *

International application No. PCT/US98/02797

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
·
1. X As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)+

International application No. PCT/US98/02797

APS, Biosis, Medline, WPI search terms: protein tyrosine kinase, cell adhesion kinase, related adhesion focal adhesion kinase, monocyte adhesion, osteoclast mobility, inhibitor, extracellular matrix, osteoporosis, treatment.						
	• .					
			•			

Form PCT/ISA/210 (extra sheet)(July 1992) *

DOCUMENT-IDENTIFIER: US 5998136 A

TITLE: Selection systems and methods for identifying genes and gene products involved in cell proliferation

CLAIMS:

25. The process of claim 2, wherein the sene is a dominant negative oncogene selected from the group consisting of cJUN, EGF-R, GRB2, RAF, MAX, RAS, SRC, and tyrosine kinase receptor mutants.