Graph powers and the transitive closure

the power of G where G is a digraph of (V, E) is equal to the number of times E is composed with itself and is represented as K and GK is a digraph of (V, EK)

$$E^{1} = E$$
 $E^{K} = E \circ E^{K-1}$, for all $K \ge 2$

The Graph Power Theorem:

Let G be a digraph Let y and v be any two vertices in G. There is an edge from u to v in GK if and only if there is a walk of length K from u to v in G

The Transitive Closure

the transitive closure of R is the smallest relation of R+ that is transitive and includes all pairs from R Notation: R+ i.e. $R^+ = R \cup R^2 \cup ... \cup R^n$ where $n \leq |D| \cup D$: domain

the transitive closure of G is the digraph of (V, E^+) where E^+ is the transitive closure of E. Notation: G^+ The union of G^{K} for all $K \ge 1$ $G^+ = G \cup G^2 \cup ... \bowtie G^n$ where $n \le |V|$

alternatively ...

Look for $x,y,z \in G$ such that (x,y) and $(y,z) \in E$ but $(x,z) \notin E$. If found, then add (x,z) to relation E repeat until no pair is added to E