编译原理1-4章习题课

2021级计算机科学与技术

- 第1题 解释下列术语:
- (1) 编译程序
- (2) 源程序、目标程序
- (3) 编译程序的前端、后端

答案:

- (1) 编译程序:如果源语言为高级语言,目标语言 为某台计算机上的汇编语言或机器语言,则此 翻译程序称为编译程序。
- (2) 源程序:源语言编写的程序称为源程序。 目标程序:目标语言书写的程序称为目标程序。

(3) 编译程序的前端:它由这样一些阶段组成: 这些阶段的工作主要依赖于源语言而与目标机 无关。通常前端包括词法分析、语法分析、语 义分析和中间代码生成这些阶段,某些优化工 作也可在前端做,也包括与前端每个阶段相关 的出错处理工作和符号表管理等工作。

编译程序的后端:指那些依赖于目标机而一般不依赖源语言,只与中间代码有关的那些阶段,即目标代码生成,以及相关出错处理和符号表操作。

第2题

- (1)一个典型的编译程序通常由哪些部分组成?
- (2)各部分的主要功能是什么?
- (3)并画出编译程序的总体结构图。

答案:

一个典型的编译程序通常包含 8 个组成部分,它们是词法分析程序、语法分析程序、语义分析程序、中间代码生成程序、中间代码优化程序、目标代码生成程序、表格管理程序和错误处理程序。其各部分的主要功能简述如下。

- (1)词法分析程序:输人源程序,拼单词、检查单词和分析单词,输出单词的机内表达形式。
- (2)语法分析程序:检查源程序中存在的形式语法错误,输出错误处理信息。
- (3)语义分析程序:进行语义检查和分析语义信息,并把分析的结果 保存到各类语义信息表中。
- (4)中间代码生成程序:按照语义规则,将语法分析程序分析出的语法单位转换成某形式的中间语言代码,如三元式或四元式。
- (5)中间代码优化程序:为了产生高质量的目标代码,对中间代码进行等价变换处理。
- (6)目标代码生成程序:将优化后中间代码转换成目标代码程序。
- (7)表格管理程序:负责建立、填写和查找等一系列表格工作。
- (8)错误处理程序:处理和校正源程序中存在的词法、语法和语义错误。当编译程序发现源程序中的错误时,错误处理程序负责报告出错的位置和错误性质等信息,同时对发现的错误进行适当的校正(修复),目的是使编译程序能够继续向下进行分析和处理。

注意:如果问编译程序有哪些主要构成成分,只要回答六部分就可以。如果搞不清楚,就回答八部分。

第3题

何谓翻译程序、编译程序和解释程序? 它们三者之间有何种关系?

答案:

- (1)翻译程序是指将用某种语言编写的程序转换成 另一种语言形式的程序的程序,如编译程序和汇 编程序等。
- (2)广义上讲,编译程序和解释程序都属于翻译程序,但它们的翻译方式不同,解释程序是边翻译(解释)边执行,不产生目标代码,输出源程序的运行结果。而编译程序只负责把源程序翻译成目标程序,输出与源程序等价的目标程序,而目标程序的执行任务由操作系统来完成,即只翻译不执行。

- (3)解释程序分为两种方式:
- ➤ 源程序功能的实现(运行)完全由解释程序承担和完成,即每读出源程序的一条语句的第一个单词,则依据这个单词把控制转移到实现这条语句功能的程序部分,该部分负责完成这条语句的功能的实现(运行),完成后返回到解释程序的总控部分再读人下一条语句继续进行解释、执行;
- ➤ 一边翻译一边执行,即每读出源程序的一条语句,解释程序就将其翻译成一段机器指令并执行之(os控制下自己执行,不由解释程序执行),然后再读人下一条语句继续进行解释、执行。两种方式,都是源程序的执行结果。目前很多解释程序采取上述两种方式综合实现,即先把源程序翻译成较容易解释执行的中间代码,然后集中解释执行中间代码程序,最后得到运行结果。

第 4题

对下列错误信息,请指出可能是编译的哪个阶段(词法分析、语法分析、语义分析、代码生成)报告的。

(1) else 没有匹配的 if 语法

(2) 数组下标越界 语义

(3) 使用的函数没有定义 语法/语义

(4) 在数中出现非数字字符 语法

第1题

文法 $G = (\{A,B,S\},\{a,b,c\},P,S)$ 其中 P 为:

 $S \rightarrow Ac|aB$

 $A \rightarrow ab$

 $B \rightarrow bc$

写出 L(GS) 的全部元素。

答案: L(GS)={abc}

第 2 题 文法 GN 为: N→D|ND D→0|1|2|3|4|5|6|7|8|9 GN 的语言是什么?

答案: GN的语言是 V + 。 V={0,1,2,3,4,5,6,7,8,9} N=>ND=>NDD.... =>NDDDD...D=>D.....D 或允许0开头的非负整数

第3题

为只包含数字、加号和减号的表达式,例如: 9-2+5、3-1、7等构造一个文法。

答案:

GS:

S->S+D|S-D|D D->0|1|2|3|4|5|6|7|8|9

第 4 题

已知文法 G:

<表达式>::=<项> | <表达式> +<项>

<项>::=<因子> | <项>*<因子>

<因子>::= (<表达式>) | i

试给出下述表达式的推导及语法树。

(1) i+(i+i) <表达式>=><表达式> +<项>

=> <项>+<项> (2) i+i*i => <因子>+<项>

=>i+ <项>

答案:

=>i+ <因子>

=>i+(<表达式>)

=>i+(<表达式>+<项>)

=>**i**+(<<mark>项</mark>>+<项>)

=>i+(<**因子**>+<项>)

=>i+(i+<项>)

=>i+(i+<因子>)=>i+(i+i)

第5题

证明下述文法 G <表达式> 是二义的。

<表达式>::= a|(<表达式>)|<表达式><运算符><表达式>

<运算符>::=+|-|*|/

可为句子 a+a*a 构造两个不同的最右推导:

最右推导1 〈表达式〉⇒〈表达式〉〈运算符〉〈表达式〉

⇒〈表达式〉〈运算符〉a

⇒〈表达式〉*a

⇒〈表达式〉〈运算符〉〈表达式〉*a

➡ 〈表达式〉〈运算符〉a*a

⇒ 〈表达式〉+a*a

 \Rightarrow a + a * a

最右推导2 〈表达式〉⇒〈表达式〉〈运算符〉〈表达式〉

→ 〈表达式〉〈运算符〉〈表达式〉〈运算符〉〈表达式〉

⇒ 〈表达式〉〈运算符〉〈表达式〉〈运算符〉 a

⇒〈表达式〉〈运算符〉〈表达式〉 *a

⇒ 〈表达式〉〈运算符〉a*a

⇒ 〈表达式〉+a*a

= a + a * a

第6题

文法 GS 为:

 $S \rightarrow Ac|aB$

 $A \rightarrow ab$

 $\mathbf{B} \rightarrow \mathbf{bc}$

该文法是否为二义的? 为什么?

答案:

对于串 abc

- (1) S = > Ac = > abc
- (2) S=>aB=>abc

即存在两不同的最右推导。所以,该文法是二义的。

或:对于输入字符串,能构造出两棵不同的语法树,所以它是二义的。

第7题

令文法 GE 为:

$$E \rightarrow T \mid E+T \mid E-T$$

$$T \rightarrow F \mid T^*F \mid T/F$$

$$F \rightarrow (E) \mid i$$

证明 E+T*F 是它的一个句型, 指出这个句型的所有短语、直接短语和句柄。

答案:

语法树如右图,所以E+T*F是一个句型。 或:存在推导序列:E=>E+T=>E+T*F,所以是一个句型。

- 此句型相对于 E 的短语有:E+T*F; 相对于 T 的短语有 T*F
- 直接短语为: T*F
- · 句柄为: T*F

第8题

一个上下文无关文法生成句子 abbaa 的推导树如右:

- (1) 给出串 abbaa 的最左推导、最右推导。
- (2) 该文法的产生式集合 P 可能有哪些元素?
- (3) 找出该句子的所有短语、直接短语、句柄。

答案:

(1) 串 abbaa 的最左推导:

S=>ABS=>aBBS=>aBBS=>abBS=>abbS=>abbAa=>abbaa 最右推导:

S=>ABS=>ABAa=>ABaa=>ASBBaa=>ASBbaa=>ASbbaa=>Abbaa=>abbaa (2) 产生式集合可能包含的元素: S→ABS |Aa|ε A→a B→SBB|b

(3) 该句子的短语有:

a是相对 A 的短语 ε是相对 S 的短语 b是相对 B 的短语 εbb 是相对 B 的短语 aεbbaa 是相对 S 的短语 直接短语有: a、ε、b 句 有是: a

- 第9题解释下列术语和概念:
 - (1) 字母表
 - (2) 串、字符和句子
 - (3) 语言、语法和语义

答案:

- (1) 字母表: 是一个非空有穷集合。
- (2) 串: 符号的有穷序列。

字符:字母表中的元素。

句子: 从识别符号出发推导出的终结符串。

(3) 语言:它是由句子组成的集合,是由一组记号所构成的集合。程序设计的语言就是所有该语言的程序的全体。

语法:表示构成语言句子的各个记号之间的组合规律。程序的结构 或形式。

语义:表示按照各种表示方法所表示的各个记号的特定含义。语言 所代表的含义。

第3章 词法分析习题

第 1 题 构造与正规表达式(ab)*(a*|b*)(ba)*等价的DFA 答案:

1)首先构造正规表达式的NFA

第3章 词法分析习题

答案:

2)然后将NFA转换成DFA

ε-closure(move(I,a)) ε -closure(move(I,b)) **{2,4,6,7,9}** \rightarrow {0,1,3,4,5,6,7,9} **{5,6,7,8,9} {2,4,6,7,9} {4,6,7,9} {1,3,4,5,6,7,8,9} {5,6,7,8,9} {7,9**} **{5,6,7,8,9} {4,6,7,9} {8} {4,6,7,9} {5,6,7,8,9}** {1,3,4,5,6,7,8,9} **{2,4,6,7,9} {7,9**} **{8**} **{7,9**} **{8**}

I	ε-closure (move(I,a))	ε-closure (move(I,b))
\rightarrow {0,1,3,4,5,6,7,9}	{2,4,6,7, 9 }	{5,6,7,8, 9 }
{2,4,6,7, 9 }	{ 4 , 6 , 7 , 9 }	<i>{</i> 1,3,4,5,6,7,8, 9 <i>}</i>
{5,6,7,8, 9 }	{ 7,9 }	{5,6,7,8, 9 }
{4,6,7, <mark>9</mark> }	{4,6,7, <mark>9</mark> }	{8 }
<i>{</i> 1,3,4,5,6,7,8, 9 <i>}</i>	{2,4,6,7, <mark>9</mark> }	{5,6,7,8, 9 }
{ 7,9 }		{8}
{8 }	{ 7 , 9 }	

然后给出状态转换表

$\sum S$	a	b
$\rightarrow 0$	1	2
1	3	4
2	5	2
3	3	6
4	1	2
5		6
6	5	

第3章 词法分析习题

第2题

给定文法GS:

 $S \rightarrow aA|bQ$

 $A \rightarrow aA|bB|b$

 $B \rightarrow bD|aQ$

 $Q \rightarrow aQ|bD|b$

 $D \rightarrow bB|aA$

 $E \rightarrow aB|bF$

 $F \rightarrow bD|aE|b$

(1)先构造其NFA

构造相应的最小的DFA。

第3章 词法分析习题 (2)用子集法将NFA确定化

	a	b
→ S	A	Q
A	A	BZ
Q	Q	DZ
BZ	Q	D
DZ	A	В
D	A	В
В	Q	D

将S、	A,	Q,	BZ,	DZ,	D,	B重新命名,
用0、	1,	2,	3 、	4,	5、	6分别表示。
因为3	3, 4	中台	含有Z	,所以	义它有	们为终态。

	a	b
$\rightarrow 0$	1	2
1	1	3
2	2	4
3	2	5
4	1	6
5	1	6
6	2	5

第3章 词法分析习题

(2)确定化后的DFA 状态图

	a	b
$\rightarrow 0$	1	2
1	1	3
2	2	4
3	2	5
4	1	6
5	1	6
6	2	5

(3)化简*DFA*

```
P0= ({0,1,2,5,6}, {3,4}) 用b进行分割
P1= ({0,5,6}, {1,2}, {3,4}) 再用b进行分割
P2= ({0}, {5,6}, {1,2}, {3,4}) 再用a,b进行分割
不再发生变化
令{0}为A, {1,2}为B, {3,4}为C, {5,6}为D。
```

第3章 词法分析习题

(3)化简后的DFA


```
P0= ({0,1,2,5,6},{3,4}) 用b进行分割
P1= ({0,5,6},{1,2},{3,4}) 再用b进行分割
P2= ({0},{5,6},{1,2},{3,4}) 再用a,b进行分割
不再发生变化
令{0}为A,{1,2}为B,{3,4}为C,{5,6}为D。
```

第1题 试消除下面文法G[A] 中的左递归和左公因子, 并判断 改写后的文法是否为LL(1)文法?

$$A \rightarrow \alpha \beta_1 | \alpha \beta_2 | \dots | \alpha \beta_n | \gamma_1 | \gamma_2 | \dots | \gamma_m$$

替換为
 $A \rightarrow \alpha A' | \gamma_1 | \gamma_2 | \dots | \gamma_m$
 $A' \rightarrow \beta_1 | \beta_2 | \dots | \beta_n$
 $A \rightarrow A \alpha_1 | A \alpha_2 | \dots | A \alpha_n | \beta_1 | \beta_2 | \dots | \beta_m$
 $(\alpha_i \neq \varepsilon, \beta_j$ 不以A 开头)
 $A \rightarrow \beta_1 A' | \beta_2 A' | \dots | \beta_m A'$
 $A' \rightarrow \alpha_1 A' | \alpha_2 A' | \dots | \alpha_n A' | \varepsilon$

答案:

(1)提取左公共因子和消除左递归后,G[A]变换为等价的G'[A]如下: $A \rightarrow a A'$

$$A' \rightarrow A B e/\epsilon$$

$$B \rightarrow d B'$$

$$B' \rightarrow b B' | \varepsilon$$

$$A \rightarrow a A'$$

(2)计算非终结符的FIRST 集和FOLLOW集结果如下:

$$A' \rightarrow A B e/\epsilon$$

FIRST (A) =
$$\{a\}$$
 FOLLOW (A) = $\{\$,d\}$

$$B \rightarrow d B'$$

FIRST
$$(B) = \{d\}$$
 FOLLOW $(B) = \{e\}$

$$B' \rightarrow b B' | \varepsilon$$

FIRST
$$(A') = \{ a, \epsilon \}$$
 FOLLOW $(A') = \{ \}, d \}$

FIRST
$$(B') = \{b,\epsilon\}$$
 FOLLOW $(B') = \{e\}$

(3)对相同左部的产生式可知:

FIRST
$$(A' \rightarrow A B e) \cap FOLLOW (A' \rightarrow \epsilon) = \{a\} \cap \{\#,d\} = \emptyset$$

FIRST
$$(B' \rightarrow b \ B') \cap FOLLOW (B' \rightarrow \varepsilon) = \{b\} \cap \{e\} = \emptyset$$

所以G'[A]是LL(1) 文法。

第 2 题 已知文法GS:

S→aH

 $H\rightarrow aMd|d$

 $\mathbf{M} \rightarrow \mathbf{A} \mathbf{b} | \mathbf{\epsilon}$

 $A \rightarrow aM|e$

(1)判断G是否是LL(1)文法,若是,请构造相应的LL(1)预测分析表;

(2)如果是LL(1)文法,请给出输入串aaabd\$的预测过程。

答案:

(1)计算FIRST集和FOLLOW集

(2)构造LL(1)预测分析表

非终结符	FIRST集	FOLLOW集
S	{a}	{\$ }
Н	{a, d}	{\$ }
M	{a, e, ε}	{d, b}
A	{a, e}	{b}

	a	d	b	е	\$
S	S->aH				
Н	H->aMd	H->q			
M	M->Ab	Μ-> ε	Μ-> ε	M->Ab	
A	A->aM			A->e	

第 2 题 已知文法GS:

S→aH

 $H\rightarrow aMd|d$

 $\mathbf{M} \rightarrow \mathbf{A} \mathbf{b} | \mathbf{\epsilon}$

 $A \rightarrow aM|e$

(1)判断G是否是LL(1)文法,若是,请构造相应的LL(1)预测分析表;

(2)如果是LL(1)文法,请给出输入串aaabd\$的预测过程。

答案:

(1)计算FIRST集和FOLLOW集

(2)构造LL(1)预测分析表

非终结符	FIRST集	FOLLOW集
S	{a}	{\$ }
Н	{a, d}	{\$ }
M	{a, e, ε}	{d, b}
A	{a, e}	{b}

	a	d	b	е	\$
S	S->aH				
Н	H->aMd	H->q			
M	M->Ab	Μ-> ε	Μ-> ε	M->Ab	
A	A->aM			A->e	

文法GS:

 $S \rightarrow aH$ $H \rightarrow aMd|d$ $M \rightarrow Ab|\epsilon$ $A \rightarrow aM|e$

LL(1)预测分析表

	a	d	b	e	\$
S	S->aH				
Н	H->aMd	H->q			
M	M->Ab	Μ-> ε	Μ-> ε	M->Ab	
A	A->aM			A−>e	

(3)输入串aaabd\$的预测过程

步骤	分析栈	输入串	推导使用产生式
1	S \$	aaabd\$	S→aH
2	aH\$	aaabd\$	'a'匹配
3	H\$	aabd\$	H→aMd
4	aMd\$	aabd\$	'a'匹配
5	Md\$	abd\$	M→Ab
6	Abd\$	abd\$	А→а М
7	aMbd\$	abd\$	'a'匹配
8	Mbd\$	bd\$	М→ε
9	bd\$	bd\$	'b'匹配
10	d\$	d\$	'd'匹配
11	\$	\$	分析成功