Theory of CS?

Main focus of the course on Phase Transitions and Critical phenomena

Dynamical Systems and Chaos

Information theory

Data driven methods

Network Theory

Stochastic processes

Phase transitions

Scaling, fractal structures

Evolutionary processes

Critical Phenomena

Emergence

Self-Organised Criticality

Game Theory

Interdisciplinary research

Pattern formation

What about the guest lectures?

The Euler Characteristic and Topological Phase Transitions in Complex Systems

Fernando N. Santos (DIEP)

Impact of Link Recommendation Algorithms in Opinion Polarization

Fernando P. Santos (IvI/SIAS)

A bottom-up approach to climate change agreements

Vítor V. Vasconcelos (IvI / CSL)

Dueling for dominance:

from tracking to maneuvers to strategies in 3D zebrafish fights

Greg Stephens (VU/Physics of Life)

Fernando P. Santos Opinion dynamics on social networks

Dynamical Systems and Chaos

Information theory

Data driven methods

Network Theory

Stochastic processes

Evolutionary processes

Critical Phenomena

Game Theory

Interdisciplinary research

Fernando P. Santos Opinion dynamics on social networks

Dynamical Systems and Chaos

Information theory

Data driven methods

Network Theory

Stochastic processes

Evolutionary processes

Critical Phenomena

Game Theory

Interdisciplinary research

Fernando N. Santos Topological, high-order transition in the brain

Dynamical Systems and Chaos

Information theory

Data driven methods

Network Theory

Stochastic processes

Evolutionary processes

Critical Phenomena

Game Theory

Interdisciplinary research

Fernando N. Santos Topological, high-order transition in the brain

Dynamical Systems and Chaos

Information theory

Data driven methods

Network Theory

Stochastic processes

Evolutionary processes

Critical Phenomena

Game Theory

Interdisciplinary research

Wout Merbis Epidemic modeling in complex networks

Dynamical Systems and Chaos

Information theory

Data driven methods

Network Theory

Stochastic processes

Evolutionary processes

Critical Phenomena

Game Theory

Interdisciplinary research

Wout Merbis Epidemic modeling in complex networks

Dynamical Systems

and Chaos

Data driven methods

Information theory

Network Theory

Stochastic / out-of-equilibrium processes

Evolutionary processes

Critical Phenomena

Game Theory

Interdisciplinary research

Vitor Vasconcelos Reaching climate agreement

Dynamical Systems and Chaos

Information theory

Data driven methods

Network Theory

Stochastic processes

Evolutionary processes

Critical Phenomena

Game Theory

Interdisciplinary research

Vitor Vasconcelos Reaching climate agreement

Dynamical Systems and Chaos

Information theory

Data driven methods

Network Theory

Stochastic processes

Evolutionary processes

Critical Phenomena

Game Theory

Interdisciplinary research

Greg Stephens Theoretical biology

Dynamical Systems and Chaos

Information theory

Data driven methods

Network Theory

Stochastic processes

Evolutionary processes

Critical Phenomena

Game Theory

Interdisciplinary research

Greg Stephens Theoretical biology

Dynamical Systems and Chaos

Information theory

Data driven methods

Network Theory

Stochastic processes

Evolutionary processes

Critical Phenomena

Game Theory

Interdisciplinary research

What can you study at UvA if you are interested in complex systems?

Out-of-equilibrium statistical physics

+ Good bases in probability theory and stochastic processes

Interdisciplinary research

Dynamical systems and Chaos

Information Theory

Critical phenomena

—>> More information to be posted on Canvas towards the end of the course

Data-driven approaches to complex systems