GEOMETRÍA Capítulo 20

3th
SECONDARY

ÁREA DE REGIONES
CUADRANGULARES

@ SACO OLIVEROS

HELICO | MOTIVATION

ÁREAS DE REGIONES CUADRANGULARES

Región Cuadrada

$$S_{ABCD} = \ell^2$$

$$S_{ABCD} = \frac{d^2}{2}$$

Región Rectangular

Región Trapecial

$$S_{ABCD} = \frac{(D+a)n}{2}$$

1. Calcule el área de la región romboidal ABCD, si AD = 9 y HC = $\sqrt{97}$.

Resolución:

Piden: S_{ABCD}

$$S_{ABCD} = (AD)(BH)$$

$$S_{ABCD} = (9)(BH)...(1)$$

ABCD: Romboide

$$AD = BC = 9$$

CBH: T. Pitágoras

$$\sqrt{97^2} = 9^2 + (BH)^2$$

$$4 = BH ...(2)$$

Reemplazando 2 en 1.

$$S_{ABCD} = (9)(4)$$

 $S_{ABCD} = 36 u^2$

2. Se muestra un cuadrado y un rectángulo de regiones equivalentes. Halle el valor de x.

Resolución:

- Piden: x
- Por dato:

$$S_{ABCD} = S_{MNPQ}$$

$$12^2 = (6)(x)$$

$$144 = (6)(x)$$

$$x = 24u$$

3. Calcule el área de una región rombal, si un lado mide 17 u y la diagonal mayor mide 30 u.

Resolución:

- Piden: S_{ABCD}
- Se traza \overline{BD} .
- BOC: T. Pitágoras

$$17^2 = (BO)^2 + 15^2$$

$$8 = BO = OD$$

Por teorema:

$$S_{ABCD} = \frac{(30)(16)^{\circ}}{2_{1}}$$

$$S_{ABCD} = 240 u^2$$

4. Calcule el área de la región trapecial sombreada.

Resolución:

$$S_{ABCD} = \frac{(AD + BC)}{2}. (AB)$$

 $S_{ABCD} = \frac{(AD + 4)}{2}. (9)... (1)$

- Se traza la altura CH.
- ABCH : Rectángulo
- CHD: T. Pitágoras

$$15^2 = (HD)^2 + 9^2$$

 $144 = (HD)^2 \longrightarrow HD = 12...(2)$

Reemplazando 2 en 1.

$$S_{ABCD} = \frac{(16 + 4)}{2} \cdot (9)$$

 $S_{ABCD} = 90 \text{ u}^2$

5. Calcule el área de una región rombal ABCD.

Resolución:

Piden: S_{ABCD}

$$S_{ABCD} = (DC)(BE)$$

 $S_{ABCD} = (13)(BE) ... (1)$

ABCD: Rombo

$$AD = CD = BC = AB = 13$$

CEB : Teorema de Pitágoras

$$13^2 = 5^2 + (BE)^2$$

$$BE = 12$$
 (2)

Reemplazando 2 en 1.

$$S_{ABCD} = (13)(12)$$

$$S_{ABCD} = 156 u^2$$

6. Determine el área de la región sombreada; si P, T y L son puntos de tangencia. Resolución: •

18cm ' 8cm 8 18 24

Piden: S_{OQLT}

Por teorema:

$$m \neq OTL = m \neq QLT = 90^{\circ}$$

OQLT: Trapecio

Reemplazando al teorema:

$$S_{OQLT} = \frac{(18 + 8)}{2} \cdot (24)$$

$$S_{OQLT} = 312 \text{ m}^2$$

7. En la figura, PA = $\sqrt{3}$ u y DQ = $2\sqrt{3}$ u. Calcule el área de la región cuadrada ABCD.

Resolución:

Piden: S_{ABCD}

$$S_{ABCD} = x^2 \dots (1)$$

△BAP ~ △QDC

$$\frac{x}{2\sqrt{3}} = \frac{\sqrt{3}}{x}$$

$$x^2 = 6$$
 ...(2)

Reemplazando 2 en 1.

$$S_{ABCD} = 6 u^2$$

3. Calcule el área de una región rombal, si un lado mide 5 u y la diagonal mayor mide 8 u.

Resolución:

- Piden: S_{ABCD}
- Se traza BD.
- BOC: T. Pitágoras

$$5^2 = (BO)^2 + 4^2$$

$$3 = BO = OD$$

$$\rightarrow$$
 BD = 6

Por teorema:

$$S_{ABCD} = \frac{(8)(6)}{2}$$

$$S_{ABCD} = 24 u^2$$