

# LAPLACE TRANSFORM

#### 42.1 INTRODUCTION

Laplace transforms help in solving the differential equations with boundary values without finding the general solution and the values of the arbitrary constants.

#### **42.2 LAPLACE TRANSFORM**

**Definition.** Let f(t) be function defined for all positive values of t, then

$$F(s) = \int_0^\infty e^{-st} f(t) dt$$

provided the integral exists, is called the **Laplace Transform** of f(t). It is denoted as

$$L[f(t)] = F(s) = \int_0^\infty e^{-st} f(t) dt$$

#### **42.3 IMPORTANT FORMULAE**

1. 
$$L(1) = \frac{1}{s}$$

**2.** 
$$L(t^n) = \frac{n!}{s^{n+1}}$$
, when  $n = 0, 1, 2, 3...$ 

**3.** L 
$$(e^{at}) = \frac{1}{s-a}$$

3. 
$$L(e^{at}) = \frac{1}{s-a}$$
  $(s > a)$  4.  $L(\cosh at) = \frac{s}{s^2 - a^2}$   $(s^2 > a^2)$   
5.  $L(\sinh at) = \frac{a}{s^2 - a^2}$   $(s^2 > a^2)$  6.  $L(\sin at) = \frac{a}{s^2 + a^2}$   $(s > 0)$ 

**5.** L (sinh 
$$at$$
) =  $\frac{a}{s^2 - a^2}$ 

$$(s^2>a^2)$$

6. L (sin at) = 
$$\frac{a}{s^2 + a^2}$$

7. L (cos 
$$at$$
) =  $\frac{s}{s^2 + a^2}$  ( $s > 0$ )

1.  $L(1) = \frac{1}{s}$ 

$$1. \quad L(1) = \frac{1}{s}$$

**Proof.** L(1) = 
$$\int_0^\infty 1 \cdot e^{-st} dt = \left[ \frac{e^{-st}}{-s} \right]_0^\infty = -\frac{1}{s} \left[ \frac{1}{e^{st}} \right]_0^\infty = -\frac{1}{s} [0 - 1] = \frac{1}{s}$$

Hence L(1) = 
$$\frac{1}{s}$$

Proved.

2. 
$$L(t^n) = \frac{n!}{s^{n+1}}$$
 where *n* and *s* are positive.

Proof.

$$L(t^n) = \int_0^\infty e^{-st} t^n dt$$

**Putting** 

$$st = x$$
 or  $t = \frac{x}{s}$  or  $dt = \frac{dx}{s}$ 

Thus, we have 
$$L(t^n) = \int_0^\infty e^{-x} \left(\frac{x}{s}\right)^n \frac{dx}{s} \Rightarrow L(t^n) = \frac{1}{s^{n+1}} \int_0^\infty e^{-x} \cdot x^n \, dx$$

$$\Rightarrow L(t^n) = \frac{1}{s^{n+1}} \Rightarrow L\left(t^n\right) = \frac{n!}{s^{n+1}} \Rightarrow L\left(t^n\right) = \frac{n!}{s^{n+1}}$$
Proved.

3. 
$$L\left(e^{at}\right) = \frac{1}{s-a}, \text{ where } s > a$$

$$Proof. \quad L\left(e^{at}\right) = \int_0^\infty e^{-st} \cdot e^{at} \, dt = \int_0^\infty e^{-(s-a)t} \cdot dt = \left[\frac{e^{-(s-a)t}}{-(s-a)}\right]_0^\infty = -\frac{1}{s-a} \left[\frac{1}{e^{(s-a)t}}\right]_0^\infty$$

$$\begin{array}{ccc}
\mathbf{J} & \mathbf{0} & \mathbf{J} & \mathbf{0} & \mathbf{s} - a \left[ e^{(s-a)t} \right]_{0} \\
&= \frac{-1}{(s-a)} (0-1) = \frac{1}{s-a}
\end{array}$$
Proved.

$$= \frac{1}{2} \left[ \frac{s + a + s - a}{s^2 - a^2} \right] = \frac{s}{s^2 - a^2}$$
 **Proved.**

$$5. \quad L(\sinh at) = \frac{a}{s^2 - a^2}$$

Proof. L (sinh at) = 
$$L\left[\frac{1}{2}(e^{at} - e^{-at})\right]$$
  
=  $\frac{1}{2}[L(e^{at}) - L(e^{-at})] = \frac{1}{2}\left[\frac{1}{s-a} - \frac{1}{s+a}\right] = \frac{1}{2}\left[\frac{s+a-s+a}{s^2-a^2}\right]$   
=  $\frac{a}{s^2-a^2}$  Proved.  
6.  $L(\sin at) = \frac{a}{s^2+a^2}$ 

6. 
$$L(\sin at) = \frac{a}{s^2 + a^2}$$

**Proof.** L (sin at) = L 
$$\left[ \frac{e^{iat} - e^{-iat}}{2i} \right]$$
  $\left[ \because \sin at = \frac{e^{iat} - e^{-iat}}{2i} \right]$   
=  $\frac{1}{2i} \left[ L \left( e^{iat} - e^{-iat} \right) \right] = \frac{1}{2i} \left[ L \left( e^{iat} \right) - L \left( e^{-iat} \right) \right]$   
=  $\frac{1}{2i} \left[ \frac{1}{s - ia} - \frac{1}{s + ia} \right] = \frac{1}{2i} \frac{s + ia - s + ia}{s^2 + a^2} = \frac{1}{2i} \frac{2ia}{s^2 + a^2} = \frac{a}{s^2 + a^2}$  **Proved.**

7. 
$$L(\cos at) = \frac{s}{s^2 + a^2}$$

**Proof.** 
$$L(\cos at) = L\left(\frac{e^{iat} + e^{-iat}}{2}\right) \qquad \left[\because \cos at = \frac{e^{iat} + e^{-iat}}{2}\right]$$

$$= \frac{1}{2} [L(e^{iat} + e^{-iat})] = \frac{1}{2} [L(e^{iat}) + L(e^{-iat})] = \frac{1}{2} \left[ \frac{1}{s - ia} + \frac{1}{s + ia} \right] = \frac{1}{2} \frac{s + ia + s - ia}{s^2 + a^2}$$

$$= \frac{s}{s^2 + a^2}$$
Proved.

**Example 1.** Find the Laplace transform of f(t) defined as

$$f(t) = \begin{cases} \frac{t}{k}, & \text{when } 0 < t < k \\ 1, & \text{when } t > k \end{cases}$$

Solution. 
$$L[f(t)] = \int_0^k \frac{t}{k} e^{-st} dt + \int_k^\infty 1.e^{-st} dt = \frac{1}{k} \left[ \left( t \frac{e^{-st}}{-s} \right)_0^k - \int_0^k \frac{e^{-st}}{-s} dt \right] + \left[ \frac{e^{-st}}{-s} \right]_k^\infty$$

$$= \frac{1}{k} \left[ \frac{ke^{-ks}}{-s} - \left( \frac{e^{-st}}{s^2} \right)_0^k \right] + \frac{e^{-ks}}{s} = \frac{1}{k} \left[ \frac{ke^{-ks}}{-s} - \frac{e^{-sk}}{s^2} + \frac{1}{s^2} \right] + \frac{e^{-ks}}{s}$$

$$= -\frac{e^{-sk}}{s} - \frac{1}{k} \frac{e^{-ks}}{s^2} + \frac{1}{k} \frac{1}{s^2} + \frac{e^{-ks}}{s} = \frac{1}{ks^2} [-e^{-ks} + 1]$$
Ans.

**Example 2.** Find the Laplace transform of the function  $f(t) = \begin{cases} t-1, & 1 < t < 2 \\ 3-t, & 2 < t < 3 \end{cases}$  (U.P., II Semester, 2009)

**Solution.** The given function is periodic with period 3.

$$L[f(t)] = \int_{1}^{3} f(t) e^{-st} dt$$

$$= \left[ \int_{1}^{2} f(t) e^{-st} dt + \int_{2}^{3} f(t) e^{-st} dt \right]$$

$$= \left[ \int_{1}^{2} (t-1) e^{-st} dt + \int_{2}^{3} (3-t) e^{-st} dt \right]$$

$$= \left[ \left\{ (t-1) \frac{e^{-st}}{-s} - \frac{e^{-st}}{(-s)^{2}} \right\}_{1}^{2} + \left\{ (3-t) \frac{e^{-st}}{-s} + \frac{e^{-st}}{(-s)^{2}} \right\}_{2}^{3}$$

$$= \left[ \left\{ \frac{e^{-2s}}{-s} - \frac{e^{-2s}}{s^{2}} + \frac{e^{-s}}{s^{2}} \right\} + \left\{ \frac{e^{-3s}}{s^{2}} - \frac{e^{-2s}}{-s} - \frac{e^{-2s}}{s^{2}} \right\} \right]$$

$$= \left[ -\frac{e^{-2s}}{s} - \frac{e^{-2s}}{s^{2}} + \frac{e^{-s}}{s^{2}} + \frac{e^{-3s}}{s^{2}} + \frac{e^{-2s}}{s} - \frac{e^{-2s}}{s^{2}} \right]$$

$$= \left[ \frac{1}{s^{2}} (-e^{-2s} + e^{-s} + e^{-3s} - e^{-2s}) \right] = \frac{1}{s^{2}} [e^{-s} - 2e^{-2s} + e^{-3s}] \quad \text{Ans.}$$

Example 3. Find the Laplace transform of  $F(t) = \begin{cases} 1, & 0 \le t < 1 \\ t, & 1 \le t < 2 \\ t^2, & 2 \le t < \infty \end{cases}$  (Q. Bank U.P. 2001)

**Solution.** Here, we have 
$$F(t) = \begin{cases} 1, & 0 \le t < 1 \\ t, & 1 \le t < 2 \\ t^2, & 2 \le t < \infty \end{cases}$$

$$L[F(t)] = \int_0^\infty e^{-st} \cdot F(t) dt = \int_0^1 e^{-st} dt + \int_1^2 t e^{-st} dt + \int_2^\infty t^2 e^{-st} dt$$

$$= \left(\frac{e^{-st}}{-s}\right)_{0}^{1} + \left(t\frac{e^{-st}}{-s} - \frac{e^{-st}}{s^{2}}\right)_{1}^{2} + \left(t^{2}\frac{e^{-st}}{-s}\right)_{2}^{\infty} - \int_{2}^{\infty} 2t \cdot \frac{e^{-st}}{-s} dt$$

$$= \left(\frac{1 - e^{-s}}{s}\right) + \left(\frac{-2}{s}e^{-2s} - \frac{e^{-2s}}{s^{2}}\right) - \left(\frac{e^{-s}}{-s} - \frac{e^{-s}}{s^{2}}\right) + \frac{4}{s}e^{-2s} + \frac{2}{s}\int_{2}^{\infty} t e^{-st} dt$$

$$= \frac{1}{s} + \frac{2}{s}e^{-2s} + \frac{e^{-s}}{s^{2}} - \frac{e^{-2s}}{s^{2}} + \frac{2}{s}\left[\left(t\frac{e^{-st}}{-s}\right)_{2}^{\infty} - \int_{2}^{\infty} 1 \cdot \frac{e^{-st}}{-s} dt\right]$$

$$= \frac{1}{s} + \frac{2}{s}e^{-2s} + \frac{e^{-s}}{s^{2}} - \frac{e^{-2s}}{s^{2}} + \frac{2}{s}\left[\frac{2}{s}e^{-2s} + \frac{1}{s}\left(\frac{e^{-st}}{-s}\right)_{2}^{\infty}\right]$$

$$= \frac{1}{s} + \frac{2}{s}e^{-2s} + \frac{e^{-s}}{s^{2}} + \frac{3}{s^{2}}e^{-2s} + \frac{2}{s^{3}}e^{-2s}.$$
Ans.

 $= \frac{1}{s} + \frac{2}{s}e^{-2s} + \frac{e^{-s}}{s^2} + \frac{3}{s^2}e^{-2s} + \frac{2}{s^3}e^{-2s}.$  **Example 4.** Find the Laplace transform of  $f(t) = \begin{cases} t^2, & 0 < t < 2 \\ t - 1, & 2 < t < 3 \\ 7, & t > 3 \end{cases}$ 

(U.P, II Semester, June 2007)

Solution. L 
$$[f(t)] = \int_0^\infty e^{-st} f(t) dt = \int_0^2 t^2 e^{-st} dt + \int_2^3 (t-1) e^{-st} dt + \int_3^\infty 7 e^{-st} dt$$

$$\left[\int I \, II = I \, II_1 - I' \, II_{11} + I'' \, II_{111} - \dots\right]$$

$$= \left[t^2 \left(\frac{e^{-st}}{(-s)}\right) - 2t \frac{e^{-st}}{(-s)^2} + 2\frac{e^{-st}}{(-s)^3}\right]_0^2 + \left[(t-1) \left(\frac{e^{-st}}{(-s)}\right) - \frac{e^{-st}}{(-s)^2}\right]_2^3 + 7\left[\frac{e^{-st}}{-s}\right]_3^\infty$$

$$= \left[-4 \left(\frac{e^{-2s}}{s}\right) - 4 \left(\frac{e^{-2s}}{s^2}\right) - 2 \left(\frac{e^{-2s}}{s^3}\right) + \frac{2}{s^3}\right] + \left[2 \left(\frac{e^{-3s}}{-s}\right) - \frac{e^{-3s}}{s^2} + \frac{e^{-2s}}{s} + \frac{e^{-2s}}{s^2}\right] + 7\left(0 + \frac{e^{-3s}}{s}\right)$$

$$= \frac{2}{s^3} + e^{-2s} \left[-\frac{4}{s} - \frac{4}{s^2} - \frac{2}{s^3}\right] + e^{-3s} \left[-\frac{2}{s} - \frac{1}{s^2}\right] + e^{-2s} \left[\frac{1}{s} + \frac{1}{s^2}\right] + e^{-3s} \left[\frac{7}{s}\right]$$

$$= \frac{2}{s^3} + e^{-2s} \left[-\frac{4}{s} - \frac{4}{s^2} - \frac{2}{s^3} + \frac{1}{s} + \frac{1}{s^2}\right] + e^{-3s} \left[-\frac{2}{s} - \frac{1}{s^2} + \frac{7}{s}\right]$$

$$= \frac{2}{s^3} + e^{-2s} \left[-\frac{3}{s} - \frac{3}{s^2} - \frac{2}{s^3}\right] + e^{-3s} \left[\frac{5}{s} - \frac{1}{s^2}\right] = \frac{2}{s^3} - \frac{e^{-2s}}{s^3} \left(2 + 3s + 3s^2\right) + \frac{e^{-3s}}{s^2} \left(5s - 1\right)$$
Ans.

**Example 5.** Find the Laplace transform of  $(1 + \sin 2t)$ .

**Solution.** Laplace transform of  $(1 + \sin 2t)$ 

$$= \int_{0}^{\infty} e^{-st} \left( 1 + \sin 2t \right) dt = \int_{0}^{\infty} e^{-st} \left( 1 + \frac{e^{2it} - e^{-2it}}{2i} \right) dt$$

$$= \frac{1}{2i} \int_{0}^{\infty} \left[ 2ie^{-st} + e^{(-s+2i)t} - e^{(-s-2i)t} \right] dt = \frac{1}{2i} \left[ \frac{2ie^{-st}}{-s} + \frac{e^{(-s+2i)t}}{-s+2i} - \frac{e^{(-s-2i)t}}{-s-2i} \right]_{0}^{\infty}$$

$$= \frac{1}{2i} \left[ \left( 0 + \frac{2i}{s} \right) + \frac{1}{-s+2i} (0 - 1) - \frac{1}{-s-2i} (0 - 1) \right]$$

$$= \frac{1}{2i} \left[ \frac{2i}{s} + \frac{1}{s-2i} - \frac{1}{s+2i} \right] = \frac{1}{2} \left[ \frac{2}{s} + \frac{4}{s^2+4} \right] = \frac{1}{s} + \frac{2}{s^2+4}$$
Ans.

#### Alternate Method

$$L(1 + \sin 2t) = L(1) + L\sin 2t = \frac{1}{s} + \frac{2}{s^2 + 4}$$
 Ans.

#### 42.4 PROPERTIES OF LAPLACE TRANSFORM

(1) 
$$L[af_1(t)+bf_2(t)] = a L[f_1(t)]+b L[f_2(t)]$$

**Proof.** 
$$L[af_1(t) + bf_2(t)] = \int_0^\infty e^{-st} [af_1(t) + bf_2(t)] dt$$
  
 $= a \int_0^\infty e^{-st} f_1(t) dt + b \int_0^\infty e^{-st} f_2(t) dt$   
 $= a L[f_1(t)] + b L[f_2(t)]$ 
**Proved.**

# **42.5 CHANGE OF SCALE PROPERTY**

If L{
$$f(t)$$
} =  $F(s)$  then  $L{f(at)} = \frac{1}{a}F(\frac{s}{a})$ 

Proof. 
$$L\{f(at)\} = \int_0^\infty e^{-st} f(at) dt = \int_0^\infty e^{-\left(\frac{s}{a}\right)u} f(u) \frac{du}{a} \quad \left[ \text{Put } at = u \Rightarrow dt = \frac{du}{a} \right]$$

$$= \frac{1}{a} \int_0^\infty e^{-\left(\frac{s}{a}\right)u} f(u) du = \frac{1}{a} \int_0^\infty e^{-\left(\frac{s}{a}\right)t} f(t) dt$$

$$= \frac{1}{a} \int_0^\infty e^{-St} f(t) dt = \frac{1}{a} L\{f(t)\} = \frac{1}{a} F(S) \qquad \left[ \text{Put } S = \frac{s}{a} \right]$$

$$= \frac{1}{a} F\left(\frac{s}{a}\right) \qquad \text{Proved.}$$

**Example 6.** If  $L\{J_0(\sqrt{t})\} = \frac{e^{-\frac{1}{4s}}}{s}$ , find  $L\{J_0(2\sqrt{t})\}$ 

Solution. Here, we have

$$L\{J_0(\sqrt{t})\} = \frac{e^{-\frac{1}{4s}}}{s}$$
By change of scale property,

$$L\{J_0(\sqrt{4t})\} = \frac{1}{4} \cdot \left\{ \frac{e^{-\frac{1}{4(s/4)}}}{(s/4)} \right\}$$

$$\Rightarrow L\left\{J_0(2\sqrt{t})\right\} = \frac{1}{s}e^{-1/s}$$
 Ans.

(2) First Shifting Theorem. If  $L \{f(t)\} = F(s)$ , then

$$L[e^{at} f(t)] = F(s-a)$$

$$L[e^{at} f(t)] = \int_0^\infty e^{-st} e^{at} f(t) dt = \int_0^\infty e^{-(s-a)t} f(t) dt$$

 $= \int_0^\infty e^{-rt} f(t) dt$  = F(r) = F(s-a)With the help of this property, we can have the following important results:

where r = s - aProved.

1. 
$$L(e^{at}t^n) = \frac{n!}{(s-a)^{n+1}}$$

Proof.

2. 
$$L(e^{at} \cosh bt) = \frac{s-a}{(s-a)^2 - b^2}$$
  
3.  $L(e^{at} \sinh bt) = \frac{b}{(s-a)^2 - b^2}$   
4.  $L(e^{at} \sin bt) = \frac{s-a}{(s-a)^2 + b^2}$   
5.  $L(e^{at} \cos bt) = \frac{s-a}{(s-a)^2 + b^2}$ 

**4.** L 
$$(e^{at} \sin bt) = \frac{b}{(s-a)^2 + b^2}$$

3. L 
$$(e^{at} \sinh bt) = \frac{b}{(s-a)^2 - b^2}$$

5. L 
$$(e^{at}\cos bt) = \frac{s-a}{(s-a)^2 + b^2}$$

# 42.6 HEAVISIDE'S SHIFTING THEOREM (Second Translation Property)

If L 
$$\{f(t)\}\ = F(s)$$
 and  $g(t) = \begin{cases} f(t-a), & t > a \\ 0, & 0 < t < a \end{cases}$  then prove that

$$L\{g(t)\} = e^{-as}F(s)$$
 (U.P. II Semester, Summer 2006)

Proof. 
$$L\{g(t)\} = \int_0^\infty e^{-st} g(t) dt$$
  

$$= \int_0^a e^{-st} g(t) dt + \int_a^\infty e^{-st} g(t) dt \qquad [g(t) = 0, \text{ when } 0 < t < a]$$

$$= 0 + \int_a^\infty e^{-st} f(t-a) dt = \int_a^\infty e^{-st} f(t-a) dt \qquad [\text{Put } t-a = u \Rightarrow dt = du]$$

$$= \int_0^\infty e^{-s(u+a)} f(u) du = e^{-sa} \int_0^\infty e^{-su} f(u) du = e^{-as} \int_0^\infty e^{-st} f(t) dt \text{ Proved.}$$

$$L\{g(t)\} = e^{-as} F(s)$$

**Example 7.** Find the Laplace transform of  $\cos^2 t$ . **Solution.** We know that  $\cos 2t = 2 \cos^2 t - 1$ 

$$\cos^{2} t = \frac{1}{2} [\cos 2t + 1]$$

$$L (\cos^{2} t) = L \left[ \frac{1}{2} (\cos 2t + 1) \right] = \frac{1}{2} [L (\cos 2t) + L (1)]$$

$$= \frac{1}{2} \left[ \frac{s}{s^{2} + (2)^{2}} + \frac{1}{s} \right] = \frac{1}{2} \left[ \frac{s}{s^{2} + 4} + \frac{1}{s} \right]$$
Ans.

**Example 8.** If  $L(\cos^2 t) = \frac{s^2 + 2}{s(s^2 + 4)}$ , find  $L(\cos^2 at)$ . (U.P., II Semester, Summer 2006)

**Solution.** We have,  $L(\cos^2 t) = \frac{s^2 + 2}{s(s^2 + 4)}$ 

By change of scale property, we l

L 
$$(\cos^2 at) = \frac{1}{a} \cdot \frac{\left(\frac{s}{a}\right)^2 + 2}{\frac{s}{a} \left[\left(\frac{s}{a}\right)^2 + 4\right]} = \frac{1}{a} \left[\frac{s^2 + 2a^2}{\frac{s}{a}(s^2 + 4a^2)}\right] = \frac{s^2 + 2a^2}{s(s^2 + 4a^2)}$$
 Ans.

**Example 9.** Find the Laplace transform of  $t^{-\frac{1}{2}}$ 

**Solution**. We know that L  $(t^n) = \frac{|n+1|}{c^{n+1}}$ 

Put 
$$n = -\frac{1}{2}$$
,  $L(t^{-1/2}) = \frac{\boxed{\frac{1}{2} + 1}}{s^{-1/2 + 1}} = \frac{\boxed{\frac{1}{2}}}{\sqrt{s}} = \frac{\sqrt{\pi}}{\sqrt{s}}$ , where  $\boxed{\frac{1}{2}} = \sqrt{\pi}$ 

**Example 10.** Find the Laplace transform of 2 sin 2t cos 4t. Solution. We have

$$f(t) = 2 \sin 2t \cos 4 \ t = \sin \frac{2t + 4t}{2} + \sin \frac{2t - 4t}{2} = \sin 3t - \sin t$$

$$L f(t) = L (\sin 3t) - L (\sin t) = \frac{3}{s^2 + 9} - \frac{1}{s^2 + 1}$$
Ans.

1143

**Example 11.** Find the Laplace transform of 4 sin<sup>3</sup> t

**Solution.** We have

$$f(t) = 4 \sin^3 t = 3 \sin t - \sin 3t \qquad [\sin 3t = 3 \sin t - 4 \sin^3 t]$$

 $L f(t) = 3 L \sin t - L \sin 3t = \frac{3}{c^2 + 1} - \frac{3}{c^2 + 2}$ Ans.

**Example 12.** Find the Laplace transform of 4 cosh 2t sin 4t Solution. We have

$$f(t) = 4\cosh 2t \sin 4t = 4\left(\frac{e^{2t} + e^{-2t}}{2}\right) \left(\frac{e^{4it} - e^{-4it}}{2i}\right)$$

$$= \frac{1}{i} \left[e^{(2+4i)t} - e^{(2-4i)t} + e^{(-2+4i)t} - e^{(-2-4i)t}\right]$$

$$L\left[f(t)\right] = -i \left[L\left(e^{(2+4i)t}\right) - L\left(e^{(2-4i)t}\right) + L\left(e^{(-2+4i)t}\right) - L\left(e^{(-2-4i)t}\right)\right]$$

$$= -i \left[\frac{1}{s-2-4i} - \frac{1}{s-2+4i} + \frac{1}{s+2-4i} - \frac{1}{s+2+4i}\right]$$

$$= -i \left[\left(\frac{1}{s-2-4i} - \frac{1}{s+2+4i}\right) - \left(\frac{1}{s-2+4i} - \frac{1}{s+2-4i}\right)\right]$$

$$= -i \left[\frac{4+8i}{s^2 - (2+4i)^2} - \frac{4-8i}{s^2 - (2-4i)^2}\right]$$
Ans.

#### **EXERCISE 42.1**

11. cosh at sin at

Find the Laplace transforms of the following:  
1. 
$$t + t^2 + t^3$$
 Ans.  $\frac{1}{s^2} + \frac{2}{s^3} + \frac{6}{s^4}$  2.  $\sin t \cos t$  Ans.  $\frac{1}{s^2 + 4}$   
3.  $t^{7/2} e^{5t}$  (M.D.U. Dec. 2009) Ans.  $\frac{105 \sqrt{\pi}}{16 (s-5)^{9/2}}$   
4.  $\sin^3 2 t$  Ans.  $\frac{48}{\left(s^2 + 4\right)\left(s^2 + 36\right)}$   
5.  $e^{-t} \cos^2 t$  Ans.  $\frac{1}{2s+2} + \frac{s+1}{2s^2 + 4s + 10}$  6.  $\sin 2t \cos 3t$  Ans.  $\frac{2(s^2-5)}{\left(s^2+1\right)\left(s^2+25\right)}$   
7.  $\sin 2 t \sin 3 t$  Ans.  $\frac{12s}{\left(s^2+1\right)(s^2+25)}$   
8.  $\cos at \sinh at$  Ans.  $\frac{1}{2} \left[ \frac{s-a}{\left(s-a\right)^2 + a^2} - \frac{s+a}{\left(s+a\right)^2 + a^2} \right]$   
9.  $\sinh^3 t$  Ans.  $\frac{6}{\left(s^2-1\right)\left(s^2-9\right)}$  10.  $\cos t \cos 2 t$  Ans.  $\frac{s\left(s^2+5\right)}{\left(s^2+1\right)\left(s^2+9\right)}$ 

Ans.  $\frac{a(s^2 + 2a^2)}{s^4 + 4s^4}$ 

12. 
$$f(t) = \begin{cases} \cos\left(t - \frac{2\pi}{3}\right), & t > \frac{2\pi}{3} \\ 0, & t < \frac{2\pi}{3} \end{cases}$$
 Ans.  $e^{\frac{-2\pi s}{3} \cdot \frac{s}{s^2 + 1}}$ 

#### 42.7 EXISTENCE THEOREM

According to this theorem  $\int_0^\infty e^{-st} f(t) dt$  exists if  $\int_0^\lambda e^{-st} f(t) dt$  can actually be evaluated and its limit as  $\lambda \to \infty$  exists.

Otherwise we may use the following theorem:

If f(t) is continuous and  $\lim_{t\to\infty} \left[e^{-at}f(t)\right]$  is finite, then Laplace transform of f(t) i.e.  $\int_{-\infty}^{\infty} e^{-st}f(t)dt$  exists for s>a.

It should however, be kept in mind that the above foresaid conditions are sufficient but not necessary.

For example;  $L\left(\frac{1}{\sqrt{t}}\right)$  exists though  $\frac{1}{\sqrt{t}}$  is infinite at t=0. Similarly a function f(t) for

which  $\lim_{t\to\infty} \left[e^{-at}f(t)\right]$  is finite and having a finite discontinuity will have a Laplace transform of s > a.

# 42.8 LAPLACE TRANSFORM OF THE DERIVATIVE OF f(t)

$$L[f'(t)] = sL[f(t)] - f(0)$$
 where  $L[f(t)] = F(s)$ .

**Proof.** 
$$L[f'(t)] = \int_0^\infty e^{-st} f'(t) dt$$

Integrating by parts, we get

$$L[f'(t)] = \left[e^{-st}f(t)\right]_0^\infty - \int_0^\infty (-se^{-st})f(t) dt$$

$$= -f(0) + s \int_0^\infty e^{-st}f(t) dt \qquad (e^{-st}f(t) = 0, \text{ when } t = \infty)$$

$$= -f(0) + s L[f(t)]$$

$$L[f'(t)] = s L[f(t)] - f(0).$$
Proved.

**Note.** Roughly, Laplace transform of **derivative** of f(t) corresponds to **multiplication** of the Laplace transform of f(t) by s.

#### 42.9 LAPLACE TRANSFORM OF DERIVATIVE OF ORDER n (M.D.U. Dec. 2009)

$$L[f^{n}(t)] = s^{n}L[f(t)] - s^{n-1}f(0) - s^{n-2}f'(0) - s^{n-3}f''(0) - \dots - f^{n-1}(0)$$

**Proof.** We have already proved in Article 42.8 that

$$L[f'(t)] = sL[f(t)] - f(0)$$
 ...(1)

Replacing f(t) by f'(t) and f'(t) by f''(t) in (1), we get

$$L[f''(t)] = sL[f'(t)] - f'(0)$$
 ...(2)

Putting the value of L[f'(t)] from (1) in (2), we have

$$L[f''(t)] = s[sL[f(t)] - f(0)] - f'(0)$$

$$L[f''(t)] = s^{2}L[f(t)] - sf(0) - f'(0)$$
Similarly,
$$L[f'''(t)] = s^{3}L[f(t)] - s^{2}f(0) - sf'(0) - f''(0)$$

$$L[f^{iv}(t)] = s^{4}L[f(t)] - s^{3}f(0) - s^{2}f'(0) - sf''(0) - f'''(0)$$

$$L[f^{n}(t)] = s^{n}L[f(t)] - s^{n-1}f(0) - s^{n-2}f'(0) - s^{n-3}f''(0) + \dots - f^{n-1}(0)$$

**Example 13.** Given  $L\left(2\sqrt{\frac{t}{\pi}}\right) = \frac{1}{s^{3/2}}$ , show that  $L\left(\frac{1}{\sqrt{\pi t}}\right) = \frac{1}{\sqrt{s}}$ . (U.P., II Semester, 2005)

Proved.

**Solution.** Let 
$$F(t) = 2\sqrt{\frac{t}{\pi}} \implies F'(t) = \frac{1}{\sqrt{\pi t}}$$
. Also  $F(0) = 0$ 

$$L\{F'(t)\} = s L\{F(t)\} - F(0) = s. \frac{1}{s^{3/2}} - 0$$

$$L\left(\frac{1}{\sqrt{\pi t}}\right) = \frac{1}{\sqrt{s}}.$$
**Example 14.** Find the Laplace transform of  $\sin \sqrt{t}$ ; Hence find  $L\left(\frac{\cos \sqrt{t}}{2\sqrt{t}}\right)$ 

Solution. 
$$\sin \sqrt{t} = \sqrt{t} - \frac{(\sqrt{t})^3}{3!} + \frac{(\sqrt{t})^5}{5!} - \dots$$

$$= t^{1/2} - \frac{t^{3/2}}{3!} + \frac{t^{5/2}}{5!} - \dots \qquad \left[ \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \right]$$

$$\therefore L(\sin \sqrt{t}) = L\left(t^{1/2} - \frac{t^{3/2}}{3!} + \frac{t^{5/2}}{5!} - \dots \right) = \frac{\Gamma 3/2}{s^{3/2}} - \frac{\Gamma 5/2}{3! s^{5/2}} + \frac{\Gamma 7/2}{5! s^{7/2}} - \dots$$

$$= \frac{\sqrt{\pi}}{2s^{3/2}} \left\{ 1 - \left( \frac{1}{2^2 s} \right) + \frac{1}{2!} \left( \frac{1}{2^2 s} \right)^2 - \dots \right\}$$

$$= \frac{\sqrt{\pi}}{2s^{3/2}} \left\{ 1 - \left( \frac{1}{2^2 s} \right) + \frac{1}{2!} \left( \frac{1}{2^2 s} \right)^2 - \dots \right\}$$

$$= \frac{\sqrt{\pi}}{2s^{3/2}} \left\{ 1 - \left( \frac{1}{2^2 s} \right) + \frac{1}{2!} \left( \frac{1}{2^2 s} \right)^2 - \dots \right\}$$

$$= L(\sin \sqrt{t}) = \frac{\sqrt{\pi}}{2s^{3/2}} e^{-(1/4s)}$$
Now,  $L\left[ \frac{d}{dt} (\sin \sqrt{t}) \right] = s L(\sin \sqrt{t}) - 0$ 

$$\left[ \because F(0) = 0 \text{ and } L\left[ \frac{d}{dt} [F(t)] \right] = sF(s) \right]$$

$$L\left( \frac{\cos \sqrt{t}}{2\sqrt{t}} \right) = \frac{\sqrt{\pi}}{2\sqrt{s}} e^{-\left( \frac{1}{4s} \right)} \implies L\left( \frac{\cos \sqrt{t}}{\sqrt{t}} \right) = \frac{\sqrt{\pi}}{\sqrt{5}} e^{-1/45}$$
Ans.

#### 42.10 LAPLACE TRANSFORM OF INTEGRAL OF f(t)

$$\left| L \left[ \int_0^t f(t) dt \right] = \frac{1}{s} F(s) \right| \qquad \text{where} \quad L[f(t)] = F(s)$$

**Proof.** Let  $\phi(t) = \int_0^t f(t) dt$  and  $\phi(0) = 0$  then  $\phi'(t) = f(t)$ 

We know the formula of Laplace transforms of  $\phi'(t)$  *i.e.* 

$$L[\phi'(t)] = sL[\phi(t)] - \phi(0)$$

$$\Rightarrow L[\phi'(t)] = sL[\phi(t)] \qquad [\phi(0) = 0]$$

$$\Rightarrow \qquad L[\phi(t)] = \frac{1}{s}L[\phi'(t)]$$

Putting the values of  $\phi(t)$  and  $\phi'(t)$ , we get

$$L\left[\int_0^t f(t) dt\right] = \frac{1}{s} L\left[f(t)\right] \implies \left[L\left[\int_0^t f(t) dt\right] = \frac{1}{s} F(s)\right] \quad \text{Proved.}$$

**Note.** (1) Laplace transform of **Integral** of f(t) corresponds to the division of the Laplace transform of f(t) by s.

(2) 
$$\int_0^t f(t) dt = L^{-1} \left[ \frac{1}{s} F(s) \right]$$

# 42.11 LAPLACE TRANSFORM OF t.f(t) (Multiplication by t)

If 
$$L[f(t)] = F(s)$$
, then 
$$L[t^n f(t)] = (-1)^n \frac{d^n}{ds^n} [F(s)]. \qquad (U.P., II Semester, Summer 2005)$$

**Proof.** 
$$L[f(t)] = F(s) = \int_0^\infty e^{-st} f(t) dt \qquad \dots (1)$$

Differentiating (1) w.r.t. 's', we get

$$\frac{d}{ds} \Big[ F(s) \Big] = \frac{d}{ds} \Big[ \int_0^\infty e^{-st} f(t) dt \Big] = \int_0^\infty \frac{\partial}{\partial s} \Big( e^{-st} \Big) f(t) dt$$

$$= \int_0^\infty \Big( -t e^{-st} \Big) f(t) dt = \int_0^\infty e^{-st} \Big[ -t f(t) \Big] dt$$

$$= L \Big[ -t f(t) \Big] \implies L \Big[ t f(t) \Big] = (-1)^1 \frac{d}{ds} \Big[ F(s) \Big]$$

Similarly, 
$$L[t^2 f(t)] = (-1)^2 \frac{d^2}{ds^2} [F(s)]$$

$$L[t^3 f(t)] = (-1)^3 \frac{d^3}{ds^3} [F(s)]$$

$$L[t^n f(t)] = (-1)^n \frac{d^n}{ds^n} [F(s)]$$
Proved.

# **42.12 INITIAL AND FINAL VALUE THEOREMS**

(a) Initial Value Theorem.  $L\{f(t)\}=F(s)$ 

$$\Rightarrow \lim_{t \to 0} f(t) = \lim_{s \to \infty} [sF(s)], \text{ provided the limit exists.}$$

**Proof.** 
$$L\{f'(t)\} = sL\{f(t)\} - f(0)$$

$$\Rightarrow \int_{0}^{\infty} e^{-st} f'(t) dt = s F(s) - f(0)$$

$$\Rightarrow \qquad \lim_{s \to \infty} \int_0^\infty e^{-st} f'(t) dt = \lim_{s \to \infty} \left[ sF(s) - f(0) \right]$$

$$\Rightarrow \qquad \lim_{s \to \infty} \left[ s F(s) \right] = f(0) + \int_{0}^{\infty} \left( \lim_{s \to \infty} e^{-st} \right) f'(t) dt$$

$$= f(0) + \int_0^\infty (0) f'(t) dt \qquad (\because \lim_{s \to \infty} e^{-st} = 0)$$

$$= f(0) + 0 = f(0) = \lim_{t \to 0} f(t)$$

(b) Final Value Theorem.  $L\{f(t)\}=F(s)$ 

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} [sF(s)], \text{ provided the limits exist.}$$

**Proof.** 
$$L\{f'(t)\} = sL\{f(t)\} - f(0) \implies \int_0^\infty e^{-st} f'(t) dt = sF(s) - f(0)$$

$$\Rightarrow \qquad \lim_{s \to 0} \int_{0}^{\infty} e^{-st} f'(t) dt = \lim_{s \to 0} \left[ sF(s) - f(0) \right]$$

$$\Rightarrow \qquad \lim_{s \to 0} \left[ s F(s) - f(0) \right] = \lim_{s \to 0} \int_{0}^{\infty} e^{-st} f'(t) dt$$

$$\Rightarrow \qquad \lim_{s \to 0} [sF(s)] - f(0) = \lim_{s \to 0} \int_{0}^{\infty} e^{-st} f'(t) dt$$

$$\Rightarrow \lim_{s\to 0} \left[ sF(s) \right] - f(0) = \int_{0}^{\infty} \lim_{s\to 0} e^{-st} f'(t) dt = \int_{0}^{\infty} (1) f'(t) dt \qquad \left[ \because \lim_{s\to 0} e^{-st} = 1 \right]$$

$$\Rightarrow \left| \lim_{s \to 0} \left[ sF(s) \right] = \lim_{t \to \infty} f(t) \right|$$

**Example 15.** If  $L(F(t)) = \frac{1}{s(s+\beta)}$  then, find  $\lim_{t \to \infty} F(t)$ 

**Solution.** By final-value theorem,

$$\lim_{t \to \infty} F(t) = \lim_{s \to 0} sL\{F(t)\} = \lim_{s \to 0} \frac{s}{s(s+\beta)} = \lim_{s \to 0} \frac{1}{(s+\beta)} = \frac{1}{\beta} \quad \text{Ans.}$$

# **42.13. EXPONENTIAL INTEGRAL FUNCTION** $\int_{t}^{\infty} \left(\frac{e^{-x}}{r}\right) dx$

Let 
$$f(t) = \int_{t}^{\infty} \frac{e^{-x}}{x} dx$$

$$\Rightarrow$$
  $f'(t) = -\frac{e^{-t}}{t}$   $\Rightarrow$   $tf'(t) = -e^{-t}$  [Here – ve sign appears due to lower limit]

Taking Laplace Transform of tf'(t), we get  $L\{t f'(t)\} = L\{-e^{-t}\} = -L\{e^{-t}\}$ 

$$\Rightarrow \qquad -\frac{d}{ds} \left[ sF(s) - f(0) \right] = -\frac{1}{s+1}$$

$$\Rightarrow \frac{d}{ds} \left[ s F(s) \right] = \frac{1}{s+1} \qquad \left[ \because f(0) = \text{constant} : \frac{d}{ds} f(0) = 0 \right]$$

Integrating both the sides, we get

$$s F(s) = \log(s+1) + C$$
 ...(1)

Now, by final value theorem, we have

$$\lim_{s \to 0} sF(s) = \lim_{t \to \infty} f(t) \qquad \dots (2)$$

$$\lim_{s \to 0} sF(s) = \lim_{t \to \infty} f(t) \qquad \dots(2)$$
Hence, 
$$\lim_{s \to 0} \left[ sF(s) \right] = \lim_{s \to 0} [\log(s+1) + C] = 0 + C = C \qquad \dots(3)$$

Also, 
$$\lim_{t \to \infty} \left[ f(t) \right] = \lim_{t \to \infty} \int_{t}^{\infty} \left( \frac{e^{-x}}{x} \right) dx = 0 \qquad \dots (4)$$

Putting the values of  $\lim_{s\to 0} [s F(s)]$  and  $\lim_{t\to \infty} [f(t)]$  from (3) and (4) in (2), we get C=0.

Hence from (1), 
$$sF(s) = \log(s+1) \Rightarrow F(s) = \left\{\frac{\log(s+1)}{s}\right\}$$

$$\Rightarrow$$

$$L\int_{t}^{\infty} \left(\frac{e^{-x}}{x}\right) dx = \left[\frac{\log(s+1)}{s}\right]$$

**Example 16.** Find the Laplace Transform of t sin at

Solution. 
$$L(t \sin at) = L\left(t\frac{e^{iat} - e^{-iat}}{2i}\right) = \frac{1}{2i}[L(t.e^{iat}) - L(te^{-iat})]$$

$$= \frac{1}{2i}\left[-\frac{d}{ds}\frac{1}{s-ia} + \frac{d}{ds}\frac{1}{s+ia}\right] = \frac{1}{2i}\left[\frac{1}{\left(s-ia\right)^2} - \frac{1}{\left(s+ia\right)^2}\right] = \frac{1}{2i}\left[\frac{\left(s+ia\right)^2 - \left(s-ia\right)^2}{\left(s-ia\right)^2\left(s+ia\right)^2}\right]$$

$$= \frac{1}{2i}\frac{\left(s^2 + 2ias - a^2\right) - \left(s^2 - 2ias - a^2\right)}{\left(s^2 + a^2\right)^2} = \frac{1}{2i}\frac{4ias}{\left(s^2 + a^2\right)^2} = \frac{2as}{\left(s^2 + a^2\right)^2}$$
Ans.

**Example 17.** Find the Laplace transform of t sinh at.

Solution. L (sinh at) 
$$= \frac{a}{s^2 - a^2}$$
L [t sinh at] 
$$= -\frac{d}{ds} \left( \frac{a}{s^2 - a^2} \right) = \frac{2as}{\left( s^2 - a^2 \right)^2}$$
Ans.

**Example 18.** Find the Laplace transform of  $t^2 \cos at$ 

Solution. 
$$L(\cos at) = \frac{s}{s^2 + a^2}$$

$$L(t^2 \cos at) = (-1)^2 \frac{d^2}{ds^2} \left[ \frac{s}{s^2 + a^2} \right] = \frac{d}{ds} \frac{\left(s^2 + a^2\right) \cdot 1 - s(2s)}{\left(s^2 + a^2\right)^2} = \frac{d}{ds} \frac{a^2 - s^2}{\left(s^2 + a^2\right)^2}$$

$$= \frac{\left(s^2 + a^2\right)^2 (-2s) - \left(a^2 - s^2\right) \cdot 2\left(s^2 + a^2\right) (2s)}{\left(s^2 + a^2\right)^4} = \frac{(s^2 + a^2)(-2s) - (a^2 - s^2) \cdot 4s}{(s^2 + a^2)^3}$$

$$= \frac{-2s^3 - 2a^2s - 4a^2s + 4s^3}{\left(s^2 + a^2\right)^3} = \frac{2s\left(s^2 - 3a^2\right)}{\left(s^2 + a^2\right)^3}$$
Ans.

**Example 19.** Obtain the Laplace transform of  $t^2e^t \sin 4t$ . (Uttarakhand II Sem., Summer 2010, U.P. II Semester, Summer 2002)

Solution. L (sin 4t) = 
$$\frac{4}{s^2 + 16}$$
,  

$$L(e^t \sin 4t) = \frac{4}{(s-1)^2 + 16}$$

$$L(te^t \sin 4t) = -\frac{d}{ds} \left(\frac{4}{s^2 - 2s + 17}\right) = \frac{4(2s-2)}{(s^2 - 2s + 17)^2}$$

$$L(t^{2}e^{t} \sin 4t) = -\frac{d}{ds} \left( \frac{4(2s-2)}{(s^{2}-2s+17)^{2}} \right) = -4 \frac{(s^{2}-2s+17)^{2} 2 - (2s-2)2(s^{2}-2s+17)(2s-2)}{(s^{2}-2s+17)^{4}}$$

$$= -4 \frac{(s^{2}-2s+17) 2 - 2(2s-2)^{2}}{(s^{2}-2s+17)^{3}} = \frac{-4(2s^{2}-4s+34-8s^{2}+16s-8)}{(s^{2}-2s+17)^{3}}$$

$$= \frac{-4(-6s^{2}+12s+26)}{(s^{2}-2s+17)^{3}} = \frac{8[3s^{2}-6s-13]}{(s^{2}-2s+17)^{3}}$$
Ans.

Example 20. Find the Laplace transform of the function

$$f(t) = te^{-t} \sin 2t \qquad (U.P. II Semester, Summer 2002)$$
**Solution.**  $L[\sin 2t] = \frac{2}{s^2 + 4}$ 

$$L\left[e^{-t} \sin 2t\right] = \frac{2}{\left(s+1\right)^2 + 4} = F(s) \quad (\text{say})$$

$$L\left(te^{-t} \sin 2t\right) = -F'(s) = -\frac{d}{ds} \left[\frac{2}{\left(s+1\right)^2 + 4}\right] = \frac{2 \cdot 2(s+1)}{\left[\left(s+1\right)^2 + 4\right]^2} = \frac{4(s+1)}{\left[\left(s+1\right)^2 + 4\right]^2}$$
**Ans.**

#### **EXERCISE 42.2**

Find the Laplace transforms of the following:

Find the Laplace transforms of the following:

1. 
$$t_{e}at$$
Ans.  $\frac{1}{(s-a)^{2}}$ 
2.  $t \cosh at$ 
Ans.  $\frac{s^{2}+a^{2}}{(s^{2}-a^{2})^{2}}$ 
3.  $t \cos t$ 
Ans.  $\frac{s^{2}-1}{(s^{2}+1)^{2}}$ 
4.  $t \cosh t$ 
Ans.  $\frac{s^{2}+1}{(s^{2}-1)^{2}}$ 
5.  $t^{2} \sin t$ 
Ans.  $\frac{2(3s^{2}-1)}{(s^{2}+1)^{3}}$ 
6.  $t^{3}e^{-3t}$ 
Ans.  $\frac{6}{(s+3)^{4}}$ 
7.  $t \sin^{2} 3t$ 
Ans.  $\frac{1}{2} \left[ \frac{1}{s^{2}} - \frac{s^{2}-36}{(s^{2}+36)^{2}} \right]$ 
8.  $t e^{at} \sin at$ 
Ans.  $\frac{2a(s-a)}{(s^{2}-2as+2a^{2})^{2}}$ 
9.  $t e^{-t} \cosh t$ 
Ans.  $\frac{s^{2}+2s+2}{(s^{2}+2s)^{2}}$ 
10.  $t^{2}e^{-2t} \cos t$ 
Ans.  $\frac{2(s^{3}+6s^{2}+9s+2)}{(s^{2}+4s+5)^{3}}$ 
11.  $\int_{0}^{t} e^{-2t} t \sin^{3} t \, dt$ 
Ans.  $\frac{3(s+2)}{2s} \left[ \frac{1}{[(s+2)^{2}+9]^{2}} - \frac{1}{[(s+2)^{2}+1]^{2}} \right]$ 

12. If f(t) is continuous, except for an ordinary discontinuity at t = a, (a > 0) as given in the figure, then show that

$$L[f'(t)] = s[f(t)] - f(0) - e^{-as}[f(a+0) - f(a-0)]$$
(U.P. II Semester 2003)

13. Pick the correct statement for final value theorem of Laplace transform:



(i) Lt 
$$f(t) = \text{Lt } s F(s)$$
 (ii) Lt  $f(t) = \text{Lt } s F(s)$  (U.P. II Semester 2010) Ans. (ii)

# 42.14 LAPLACE TRANSFORM OF $\frac{1}{t}f(t)$ (Division by t)

If 
$$L[f(t)] = F(s)$$
, then  $L\left[\frac{1}{t}f(t)\right] = \int_{s}^{\infty} f(s)ds$  (U.P. II Semester Summer, 2007, 2005)

**Proof.** We know that 
$$L[f(t)] = F(s)$$
 or  $F(s) = \int_0^\infty e^{-st} f(t) dt$  ...(1) Integrating (1) w.r.t. 's', we have

$$\int_{s}^{\infty} F(s) ds = \int_{s}^{\infty} \left[ \int_{0}^{\infty} e^{-st} f(t) dt \right] ds = \int_{0}^{\infty} f(t) \left[ \int_{s}^{\infty} e^{-st} ds \right] dt = \int_{0}^{\infty} f(t) \left[ \frac{e^{-st}}{-t} \right]_{s}^{\infty} dt$$

$$= \int_{0}^{\infty} \frac{-f(t)}{t} \left[ e^{-st} \right]_{s}^{\infty} dt = \int_{0}^{\infty} \frac{-f(t)}{t} \left[ 0 - e^{-st} \right] dt = \int_{0}^{\infty} e^{-st} \left\{ \frac{1}{t} f(t) \right\} dt = L \left[ \frac{1}{t} f(t) \right]$$

$$\Rightarrow L \left[ \frac{1}{t} f(t) \right] = \int_{0}^{\infty} F(s) ds$$
Proved.

Cor. 
$$L^{-1} \int_{s}^{\infty} F(s) ds = \frac{1}{t} f(t)$$

**Example 21.** Find the Laplace transform of  $\frac{\sin 2t}{t}$ 

Solution. 
$$L(\sin 2t) = \frac{2}{s^2 + 4}$$

$$L\left(\frac{\sin 2t}{t}\right) = \int_s^{\infty} \frac{2}{s^2 + 4} ds = 2 \cdot \frac{1}{2} \left[ \tan^{-1} \frac{s}{2} \right]_s^{\infty} = \left[ \tan^{-1} \infty - \tan^{-1} \frac{s}{2} \right] = \frac{\pi}{2} - \tan^{-1} \frac{s}{2}$$

$$= \cot^{-1} \frac{s}{2}$$
Ans.

**Example 22.** Find the Laplace transform of  $f(t) = \int_0^t \frac{\sin at}{t} dt$ (M.D.U., Dec. 2009, U.P., II Semester, Summer 2005)

Solution. 
$$L(\sin at) = \frac{a}{s^2 + a^2}$$
 
$$L\left(\frac{\sin at}{t}\right) = \int_s^\infty \frac{a}{s^2 + a^2} ds = \left[\tan^{-1} \frac{s}{a}\right]_s^\infty = \frac{\pi}{2} - \tan^{-1} \frac{s}{a} = \cot^{-1} \frac{s}{a}$$
 Hence, 
$$L\left[\int_0^t \frac{\sin at}{t} dt\right] = \frac{1}{s} \cot^{-1} \frac{s}{a}$$
 Ans.

**Example 23.** Find the Laplace transform of:

Solution. Here, 
$$\frac{\cos at - \cos bt}{t}$$
 (Uttarakhand, II Semester, June 2007, U.P., II Semester, 2004)
$$f(t) = \frac{\cos at - \cos bt}{t}$$

We know that, 
$$L(\cos at - \cos bt) = L(\cos at) - L(\cos bt) = \frac{s}{s^2 + a^2} - \frac{s}{s^2 + b^2}$$

$$L\left(\frac{\cos at - \cos bt}{t}\right) = \int_{s}^{\infty} \left(\frac{s}{s^{2} + a^{2}} - \frac{s}{s^{2} + b^{2}}\right) ds = \left[\frac{1}{2}\log\left(s^{2} + a^{2}\right) - \frac{1}{2}\log\left(s^{2} + b^{2}\right)\right]_{s}^{\infty}$$

$$= \frac{1}{2} \left[\log\frac{s^{2} + a^{2}}{s^{2} + b^{2}}\right]_{s}^{\infty} = \frac{1}{2} \left[\log\frac{1 + \frac{a^{2}}{s^{2}}}{1 + \frac{b^{2}}{s^{2}}}\right]_{s}^{\infty} = \frac{1}{2}\log1 - \frac{1}{2}\log\frac{1 + \frac{a^{2}}{s^{2}}}{1 + \frac{b^{2}}{s^{2}}} = 0 - \frac{1}{2}\log\frac{s^{2} + a^{2}}{s^{2} + b^{2}} \text{ [log 1 = 0]}$$

$$= \frac{1}{2}\log\frac{s^{2} + b^{2}}{s^{2} + a^{2}}$$
Ans.

**Example 24.** If  $f(t) = \frac{e^{at} - \cos bt}{t}$ , find the Laplace transform of f(t).

(U.P. II Semester, Summer 2003)

Solution. 
$$f(t) = \frac{e^{at} - \cos bt}{t} = \frac{e^{at}}{t} - \frac{\cos bt}{t}$$
We know that, 
$$L(e^{at} - \cos bt) = \left(\frac{1}{s-a} - \frac{s}{s^2 + b^2}\right)$$

$$\therefore L\left(\frac{e^{at} - \cos bt}{t}\right) = \int_{s}^{\infty} \left(\frac{1}{s-a} - \frac{s}{s^2 + b^2}\right) ds = \left[\log(s-a) - \frac{1}{2}\log(s^2 + b^2)\right]_{s}^{\infty}$$

$$= \left[\frac{2\log(s-a) - \log(s^2 + b^2)}{2}\right]^{\infty} = \frac{1}{2}\left[\log(s-a)^2 - \log(s^2 + b^2)\right]_{s}^{\infty}$$

$$= \frac{1}{2} \left[ \log \frac{(s-a)^2}{s^2 + b^2} \right]_s^{\infty} = \frac{1}{2} \left[ \log \left\{ \frac{\left(1 - \frac{a}{s}\right)^2}{1 + \frac{b^2}{s^2}} \right\} \right]_s^{\infty}$$

$$= \frac{1}{2} \left[ 0 - \log \frac{\left(1 - \frac{a}{s}\right)^2}{\left(1 + \frac{b^2}{s^2}\right)} \right] = \frac{1}{2} \left[ \log \frac{s^2 + b^2}{(s-a)^2} \right]$$
Ans.

**Example 25.** Find the Laplace transform of  $\frac{1-\cos t}{2}$ .

Solution. L 
$$(1 - \cos t) = L(1) - L(\cos t) = \frac{1}{s} - \frac{s}{s^2 + 1}$$

$$L\left[\frac{1 - \cos t}{t}\right] = \int_{s}^{\infty} \left(\frac{1}{s} - \frac{s}{s^2 + 1}\right) ds = \left[\log s - \frac{1}{2}\log\left(s^2 + 1\right)\right]_{s}^{\infty}$$

$$= \frac{1}{2} \left[\log s^2 - \log\left(s^2 + 1\right)\right]_{s}^{\infty} = \frac{1}{2} \left[\log\frac{s^2}{s^2 + 1}\right]_{s}^{\infty}$$

$$= \frac{1}{2} \left[\log\frac{1}{\left(1 + \frac{1}{s^2}\right)}\right]_{s}^{\infty} = \frac{1}{2} \left[0 - \log\frac{s^2}{s^2 + 1}\right] = -\frac{1}{2}\log\frac{s^2}{s^2 + 1}$$

Again, 
$$L\left[\frac{1-\cos t}{t^2}\right] = -\frac{1}{2} \int_{s}^{\infty} \log \frac{s^2}{s^2+1} ds = -\frac{1}{2} \int_{s}^{\infty} \left(\log \frac{s^2}{s^2+1} \cdot 1\right) ds$$
Integrating by parts, we have,
$$= -\frac{1}{2} \left[\log \frac{s^2}{s^2+1} \cdot s - \int \frac{s^2+1}{s^2} \frac{\left(s^2+1\right) 2s - s^2 \left(2s\right)}{\left(s^2+1\right)^2} \cdot s ds\right]_{s}^{\infty}$$

$$= -\frac{1}{2} \left[s \log \frac{s^2}{s^2+1} - 2 \int \frac{1}{s^2+1} ds\right]_{s}^{\infty} = -\frac{1}{2} \left[s \log \frac{s^2}{s^2+1} - 2 \tan^{-1} s\right]_{s}^{\infty}$$

$$= -\frac{1}{2} \left[0 - 2\left(\frac{\pi}{2}\right) - s \log \frac{s^2}{s^2+1} + 2 \tan^{-1} s\right] = -\frac{1}{2} \left[-\pi - s \log \frac{s^2}{s^2+1} + 2 \tan^{-1} s\right]$$

 $= \frac{\pi}{2} + \frac{s}{2} \log \frac{s^2}{s^2 + 1} - \tan^{-1} s = \left(\frac{\pi}{2} - \tan^{-1} s\right) + \frac{s}{2} \log \frac{s^2}{s^2 + 1} = \cot^{-1} s + \frac{s}{2} \log \frac{s^2}{s^2 + 1}$  **Example 26.** Evaluate  $L\left[e^{-4t} \frac{\sin 3t}{t}\right]$ 

**Solution.** 
$$L[\sin 3t] = \frac{3}{s^2 + 3^2}$$

$$\Rightarrow L\left[\frac{\sin 3t}{t}\right] = \int_{s}^{\infty} \frac{3}{s^{2} + 9} ds = \left[\frac{3}{3} \tan^{-1} \frac{s}{3}\right]_{s}^{\infty} = \left[\tan^{-1} \frac{s}{3}\right]_{s}^{\infty} = \frac{\pi}{2} - \tan^{-1} \frac{s}{3} = \cot^{-1} \frac{s}{3}$$

$$L\left[e^{-4t} \frac{\sin 3t}{t}\right] = \cot^{-1} \frac{s+4}{3} = \tan^{-1} \frac{3}{s+4}$$
Ans.

#### **EXERCISE 42.3**

Find Laplace transform of the following:

1. 
$$\frac{1}{t}(1-e^t)$$
 Ans.  $\log \frac{s-1}{s}$  2.  $\frac{1}{t}(e^{-at}-e^{-bt})$  Ans.  $\log \frac{s+b}{s+a}$ 
3.  $\frac{1}{t}(1-\cos at)$  Ans.  $-\frac{1}{2}\log \frac{s^2}{s^2+a^2}$ 

4. 
$$\frac{1}{t}\sin^2 t$$
 Ans.  $\frac{1}{4}\log \frac{s^2+4}{s^2}$  5.  $\frac{1}{t}\sinh t$  Ans.  $-\frac{1}{2}\log \frac{s-1}{s+1}$ 
6.  $\frac{1}{t}(e^{-t}\sin t)$  Ans.  $\cot^{-1}(s+1)$  7.  $\frac{1}{t}(1-\cos t)$  Ans.  $\frac{1}{2}[\log(s^2+1)-\log s^{\delta}]$ 

8. 
$$\int_0^\infty \frac{1}{t} e^{-2t} \sin t \, dt$$
 Ans.  $\frac{1}{s} \cot^{-1} (s+2)$  9.  $\int_0^\infty \frac{e^{-t} - e^{-3t}}{t} \, dt$  Ans.  $\log 3$ 

#### 42.15 LAPLACE TRANSFORM OF ERROR FUNCTION

**Example 27.** Find  $L\left\{erf\sqrt{t}\right\}$  and hence prove that

$$L\left\{t.erf \, 2\sqrt{t}\right\} = \frac{3s+8}{s^2 \left(s+4\right)^{3/2}} \qquad (U.P. II Semester, Summer 2001)$$

**Solution.** We know that  $erf \sqrt{t} = \frac{2}{\sqrt{\pi}} \int_{0}^{t} e^{-x^2} dx$ 

$$= \frac{2}{\sqrt{\pi}} \int_{0}^{\sqrt{t}} \left(1 - x^{2} + \frac{x^{4}}{2!} - \frac{x^{6}}{3!} + \dots\right) dx = \frac{2}{\sqrt{\pi}} \left[x - \frac{x^{3}}{3} + \frac{x^{5}}{10} - \frac{x^{7}}{42} \dots\right]_{0}^{\sqrt{t}}$$

$$= \frac{2}{\sqrt{\pi}} \left[\sqrt{t} - \frac{t^{3/2}}{3} + \frac{t^{5/2}}{10} - \frac{t^{7/2}}{42} + \dots\right]$$

$$L\left\{erf\sqrt{t}\right\} = \frac{2}{\sqrt{\pi}} \left[\frac{\left|\frac{3}{2}\right|}{s^{3/2}} - \frac{\frac{5}{2}}{3s^{5/2}} + \frac{10s^{7/2}}{10s^{7/2}} - \frac{\frac{9}{2}}{42s^{9/2}} + \dots\right]$$

$$= \frac{2}{\sqrt{\pi}} \left[\frac{1}{2} \frac{\left|\frac{1}{2}\right|}{s^{3/2}} - \frac{3}{2} \frac{1}{2} \frac{\left|\frac{1}{2}\right|}{2} + \frac{5}{2} \frac{3}{2} \frac{1}{2} \frac{\left|\frac{1}{2}\right|}{2} - \frac{7}{2} \frac{5}{2} \frac{3}{2} \frac{1}{2} \frac{\left|\frac{1}{2}\right|}{2} + \dots\right]$$

$$= \frac{1}{s^{3/2}} - \frac{1}{2} \frac{1}{s^{3/2}} + \frac{1.3}{2.4} \frac{1}{s^{7/2}} - \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \frac{1}{s^{9/2}} + \dots$$

$$= \frac{1}{s^{3/2}} \left[1 - \frac{1}{2} \cdot \frac{1}{s} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{1}{s^{2}} - \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \frac{1}{s^{3}} + \dots\right]$$

$$= \frac{1}{s^{3/2}} \left[1 - \frac{1}{2} \cdot \frac{1}{s} + \frac{\left(-\frac{1}{2}\right)\left\{-\frac{3}{2}\right\}}{2!} \frac{1}{s^{2}} + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!} \frac{1}{s^{3}} + \dots\right]$$

$$= \frac{1}{s^{3/2}} \left[1 + \frac{1}{s}\right]^{-\frac{1}{2}} = \frac{1}{s^{3/2}} \left[\frac{s}{s+1}\right]^{\frac{1}{2}} = \frac{1}{s\sqrt{(s+1)}}$$
Ans.

Now,  $L\left\{erf\left(2\sqrt{t}\right)\right\} = L\left\{erf\sqrt{4t}\right\} = \frac{1}{4} \frac{1}{\frac{s}{4}\sqrt{\frac{s}{4}+1}} = \frac{2}{s\sqrt{s+4}}$ 

$$L\left\{terf\left(2\sqrt{t}\right)\right\} = -\frac{d}{ds} \frac{2}{\sqrt{s^{3}+4s^{2}}} = -2\left(-\frac{1}{2}\right)\left[s^{3}+4s^{2}\right]^{-\frac{3}{2}} \left(3s^{2}+8s\right)$$

$$= \frac{3s^{2}+8s}{\left(s^{3}+4s^{2}\right)^{3/2}} = \frac{s(3s+8)}{s(s+4)^{3/2}} = \frac{3s+8s}{s(s+4)^{3/2}}$$
Proved.

#### **42.16 COMPLEMENTARY ERROR FUNCTION**

This function is defined by

$$erf_{c}(\sqrt{t}) = 1 - erf(\sqrt{t}) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{\sqrt{t}} e^{-x^{2}} dx$$
Now,  $L\{erf_{c}(\sqrt{t})\} = L\left\{1 - \frac{2}{\sqrt{\pi}} \int_{0}^{\sqrt{t}} e^{-x^{2}} dx\right\} = L(1) - \frac{2}{\sqrt{\pi}} L\left\{\int_{0}^{\sqrt{t}} e^{-x^{2}} dx\right\} = \frac{1}{s} - \frac{1}{s\sqrt{s+1}}$ 

$$= \frac{\sqrt{(s+1)} - 1}{s\sqrt{(s+1)}} = \frac{\left\{\sqrt{(s+1)} - 1\right\}\left\{\sqrt{(s+1)} + 1\right\}}{s\sqrt{(1+s)}\left\{\sqrt{(s+1)} + 1\right\}}$$

$$= \frac{s+1-1}{s\sqrt{s+1}(\sqrt{s+1} + 1)} = \frac{1}{\sqrt{(s+1)}\left\{\sqrt{(s+1)} + 1\right\}}$$

$$\therefore L\left[erf_c(\sqrt{t})\right] = \frac{1}{\sqrt{s+1}\left\{\sqrt{s+1} + 1\right\}}$$
Ans.

#### **42.17 UNIT STEP FUNCTION**

With the help of unit step functions, we can find the inverse transform of functions, which cannot be determined with previous methods.

The unit step function u(t - a) is defined as follows:

$$u(t-a) = \begin{cases} 0, & \text{when } t < a \\ 1, & \text{when } t \ge a \end{cases} \text{ where } a \ge 0$$



#### 42.18 LAPLACE TRANSFORM OF UNIT FUNCTION

$$L[u(t-a)] = \frac{e^{-as}}{s}$$

Proof. 
$$L[u(t-a)] = \int_0^\infty e^{-st} u(t-a) dt = \int_0^a e^{-st} .0 dt + \int_a^\infty e^{-st} .1 dt = 0 + \left[\frac{e^{-st}}{-s}\right]_a^\infty$$
$$L[u(t-a)] = \frac{e^{-as}}{s}$$
Proved.

**Example 28.** Express the following function in terms of unit step functions and find its Laplace transform:

$$f(t) = \begin{cases} 8, & t < 2 \\ 6, & t \ge 2 \end{cases}$$

**Solution.** 
$$f(t) = \begin{cases} 8+0, & t < 2 \\ 8-2, & t \ge 2 \end{cases} = 8 + \begin{cases} 0, & t < 2 \\ -2, & t \ge 2 \end{cases} = 8 + (-2) \begin{cases} 0, & t < 2 \\ 1, & t \ge 2 \end{cases} = 8 - 2u(t-2)$$

$$L\{f(t)\}=8L(1)-2Lu(t-2)=\frac{8}{s}-2\frac{e^{-2s}}{s}$$
 Ans.

**Example 29.** Draw the graph of u(t-a) - u (t-b). **Solution.** As in Art 42.17 the graph of u(t-a) is a straight line parallel to *t*-axis from A to  $\infty$ .

Similarly, the graph of u(t-b) is a straight line parallel to t-axis from B to  $\infty$ .

Hence, the graph of u(t-a) - u(t-b) is AB.



#### 42.19 SECOND SHIFTING THEOREM

If 
$$L[f(t)] = F(s)$$
, then 
$$L[f(t-a).u(t-a)] = e^{-as}F(s)$$
Proof.  $L[f(t-a).u(t-a)] = \int_0^\infty e^{-st} [f(t-a).u(t-a)]dt$ 

$$= \int_0^a e^{-st} f(t-a).0 dt + \int_a^\infty e^{-st} f(t-a)(1) dt = \int_a^\infty e^{-st} f(t-a) dt$$

$$= \int_0^\infty e^{-s(u+a)} f(u) du, \qquad \text{where } u = t-a$$

$$= e^{-sa} \int_0^\infty e^{-su}.f(u) du = e^{-sa}F(s)$$
Proved.

**Example 30.** Express the following function in terms of unit step function and find its Laplace transform:

$$f(t) = \begin{cases} E, & a < t < b \\ 0, & t \ge b \end{cases}$$

$$f(t) = E \begin{cases} 1, & a < t < b \\ 0, & t \ge b \end{cases}$$

$$L\{f(t)\} = E \left[ \frac{e^{-as}}{s} - \frac{e^{-bs}}{s} \right]$$
Ans.

Solution.

**Example 31.** Express the following function in terms of unit step function:

$$f(t) = \begin{cases} t-1, & 1 < t < 2 \\ 3-t, & 2 < t < 3 \end{cases}$$

and find its Laplace transform

(*U.P.*; *II Semester*, 2009)

$$f(t) = \begin{cases} t-1, & 1 < t < 2 \\ 3-t, & 2 < t < 3 \end{cases}$$

$$= (t-1) \left[ u(t-1) - u(t-2) \right] + (3-t) \left[ u(t-2) - u(t-3) \right]$$

$$= (t-1)u(t-1) - (t-1)u(t-2) + (3-t)u(t-2) + (t-3)u(t-3)$$

$$= (t-1)u(t-1) - 2(t-2)u(t-2) + (t-3)u(t-3)$$

$$= e^{-s} L(t) - 2 e^{-2s} L(t) - e^{-3s} L(t)$$

$$\left[ L[f(t-a), u(t-a)] = e^{-as} F(s) \right]$$

$$L[f(t)] = \frac{e^{-s}}{s^2} - 2\frac{e^{-2s}}{s^2} + \frac{e^{-3s}}{s^2}$$
 Ans.

**Example 32.** Find  $L\{F(t)\}\ if$ 

$$F(t) = \begin{cases} \sin\left(t - \frac{\pi}{3}\right), & t > \frac{\pi}{3} \\ 0, & t < \frac{\pi}{3} \end{cases}$$

$$L\{F(t)\} = e^{-s\frac{\pi}{3}} L (\sin t)$$

$$= e^{-s\frac{\pi}{3}} \cdot \frac{1}{s^2 + 1}$$
(Using second shifting property) **Ans.**

# 42.20 THEOREM. $L[f(t)u(t-a)] = e^{-as}L[f(t+a)]$

**Proof.** 
$$L[f(t).u(t-a)] = \int_0^\infty e^{-st} [f(t).u(t-a)] dt$$
  
 $= \int_0^a e^{-st} [f(t).u(t-a)] dt + \int_a^\infty e^{-st} .[f(t).u(t-a)] dt = 0 + \int_a^\infty e^{-st} .f(t)(1) dt$   
 $= \int_a^\infty e^{-s(y+a)} .f(y+a) dy = e^{-as} \int_a^\infty e^{-sy} .f(y+a) dy$   $(t-a=y)$   
 $= e^{-as} \int_a^\infty e^{-st} f(t+a) dt = e^{-as} L[f(t+a)]$  **Proved.**

**Example 33.** Find the Laplace transform of  $t^2 u$  (t-3).

Solution. 
$$t^2 u(t-3) = [(t-3)^2 + 6(t-3) + 9]u(t-3)$$
  

$$= (t-3)^2 u(t-3) + 6(t-3)u(t-3) + 9u(t-3)$$

$$L[t^2 u(t-3)] = L[(t-3)^2 u(t-3)] + 6L[(t-3)u(t-3)] + 9L[u(t-3)]$$

$$= e^{-3s} \left[ \frac{2}{s^3} + \frac{6}{s^2} + \frac{9}{s} \right]$$

**Aliter.** 
$$L[t^2u(t-3)] = e^{-3s}L(t+3)^2 = e^{-3s}L[t^2+6t+9] = e^{-3s}\left[\frac{2}{s^3} + \frac{6}{s^2} + \frac{9}{s}\right]$$
 **Ans.**

**Example 34.** Find the Laplace transform of  $e^{-2t}u_{\pi}(t)$  where

$$u_{\pi}(t) = \begin{cases} 0; & t < \pi \\ 1; & t > \pi \end{cases}$$
Solution. 
$$u_{\pi}(t) = \begin{cases} 0; & t < \pi \\ 1; & t > \pi \end{cases}$$

$$u_{\pi}(t) = u(t - \pi)$$

$$L\left[u_{\pi}(t)\right] = L\left[u(t-\pi)\right] = \frac{e^{-ns}}{s}$$

$$L\left[e^{-2t}u_{\pi}(t)\right] = \frac{e^{-\pi(s+2)}}{s+2}$$
Ans.

**Example 35.** Express the following function in terms of unit step function and find its Laplace

transform 
$$f(t) = \begin{cases} 0, & 0 < t < 1 \\ t - 1, & 1 < t < 2 \\ 1, & 2 < t \end{cases}$$
 (U.P. II Semester, Summer 2002)

Solution. The above function shown in the figure is expressed in algebraic form

$$f(t) = \begin{cases} 0, & 0 < t < 1 \\ t - 1, & 1 < t < 2 \\ 1, & 2 < t \end{cases} \dots (1)$$

$$f(t) = (t - 1) [u(t - 1) - u(t - 2)] + u(t - 2)$$

$$= (t - 1)u(t - 1) - u(t - 2)\{t - 1 - 1\} = (t - 1)u(t - 1) - (t - 2)u(t - 2)$$

$$Lf(t) = L(t - 1)u(t - 1) - L(t - 2)u(t - 2) = \frac{e^{-s}}{s^2} - \frac{e^{-2s}}{s^2}$$
Ans.

**Example 36.** Represent  $f(t) = \sin 2t$ ,  $2\pi < t < 4\pi$  and f(t) = 0 otherwise, in terms of unit step function and then find its Laplace transform.

Solution. 
$$f(t) = \begin{cases} \sin 2t, & 2\pi < t < 4\pi \\ 0, & \text{otherwise} \end{cases}$$

$$f(t) = \sin 2t \Big[ u(t - 2\pi) - u(t - 4\pi) \Big]$$

$$L[f(t)] = L[\sin 2t. u(t - 2\pi)] - L[\sin 2t. u(t - 4\pi)]$$

$$= e^{-2\pi s} L \sin 2(t + 2\pi) - e^{-4\pi s} L \sin 2(t + 4\pi)$$

$$= e^{-2\pi s} L \sin 2t - e^{-4\pi s} L \sin 2t$$

$$= e^{-2\pi s} \frac{2}{s^2 + 4} - e^{-4\pi s} \frac{2}{s^2 + 4} = \left( e^{-2\pi s} - e^{-4\pi s} \right) \frac{2}{s^2 + 4}$$
Ans.

**Example 37.** A function f(t) obeys the equation  $f(t) + 2 \int_0^t f(t) dt = \cosh 2t$ 

Find the Laplace transform of f(t).

(U.P. II Semester Summer 2006)

**Solution.** We have, 
$$f(t) + 2 \int_0^t f(t) dt = \cosh 2t$$

Taking Laplace transformation of both the sides, we get

$$L\left\{f\left(t\right)\right\} + 2L\int_{0}^{t} f\left(t\right) dt = L\left(\cosh 2t\right) \qquad \Rightarrow \qquad F\left(s\right) + 2 \cdot \frac{1}{s}F\left(s\right) = \frac{s}{s^{2} - 4}$$

$$\Rightarrow \qquad F\left(s\right)\left\{1 + \frac{2}{s}\right\} = \frac{s}{s^{2} - 4} \qquad \Rightarrow \qquad F\left(s\right)\left\{\frac{s + 2}{s}\right\} = \frac{s}{s^{2} - 4}$$

$$\Rightarrow \qquad F\left(s\right) = \left(\frac{s}{s^{2} - 4}\right)\left(\frac{s}{s + 2}\right) \qquad \Rightarrow \qquad F\left(s\right) = \frac{s^{2}}{\left(s^{2} - 4\right)\left(s + 2\right)} \qquad \text{Ans.}$$

#### **EXERCISE 42.4**

Find the Laplace transform of the following:

1. 
$$f(t) = \begin{cases} t-1, & 1 < t < 2 \\ 0, & \text{otherwise} \end{cases}$$

2.  $e^{t}u(t-1)$ 

3.  $\frac{1-e^{2t}}{t} + tu(t) + \cosh t \cdot \cot t$ 

4.  $t^{2}u(t-2)$ 

5.  $\sin t u(t-4)$ 

6.  $f(t) = K(t-2)[u(t-2) - u(t-3)]$ 

7.  $f(t) = K\frac{\sin \pi t}{T}[u(t-2T) - u(t-3T)]$ 

Ans.  $\frac{e^{-s} - e^{-2s}}{s^{2}} - \frac{e^{-2s}}{s}$ 

Ans.  $\frac{e^{-(s-1)}}{s-1}$ 

Ans.  $\log \frac{s-2}{s} + \frac{1}{s^{2}} + \frac{s^{3}}{s^{4} + 4}$ 

Ans.  $\frac{e^{-2s}}{s^{3}}(4s^{2} + 4s + 2)$ 

Ans.  $\frac{e^{-4s}}{s^{2} + 1}[\cos 4 + s \sin 4]$ 

Ans.  $\frac{K\pi T}{s^{2}T^{2} + \pi^{2}}[e^{-2sT} - e^{-3sT}]$ 

Express the following in terms of unit step functions and obtain Laplace transforms.

8. 
$$f(t) = \begin{cases} t, & 0 < t < 2 \\ 0, & 2 < t \end{cases}$$
Ans.  $u(t) - u(t-2), \frac{1 - (2s+1)e^{-2s}}{s^2}$ 
9.  $f(t) = \begin{cases} \sin t, & 0 < t < \pi \\ t, & t > \pi \end{cases}$ 
Ans.  $\frac{1 + e^{-\pi s}}{s^2 + 1} + \frac{e^{-\pi s} (\pi s + 1)}{s^2}$ 

10. 
$$f(t) = \begin{cases} 4, & 0 < t < 1 \\ -2, & 0 < t < 3 \\ 5, & t > 3 \end{cases}$$
 Ans.  $\frac{4 - 6e^{-s} + 7e^{-3s}}{s}$ 

#### 42.21. PERIODIC FUNCTIONS

Let f(t) be a periodic function with period T, then

$$L[f(t)] = \frac{\int_0^T e^{-st} f(t) dt}{1 - e^{-sT}}$$

**Proof.** 
$$L[f(t)] = \int_{0}^{\infty} e^{-st} f(t) dt = \int_{0}^{T} e^{-st} f(t) dt + \int_{T}^{2T} e^{-st} f(t) dt + \int_{2T}^{3T} e^{-st} f(t) dt + \dots$$

Substituting 
$$t = u + T$$
 in second integral and  $t = u + 2$   $T$  in third integral, and so on. 
$$L[f(t)] = \int_0^T e^{-st} f(t) dt + \int_0^T e^{-s(u+T)} f(u+T) du + \int_0^T e^{-s(u+2T)} f(u+2T) du + ...$$

$$= \int_0^T e^{-st} f(t) dt + e^{-sT} \int_0^T e^{-su} f(u) du + e^{-2sT} \int_0^T e^{-su} f(u) du + ...$$

$$[f(u) = f(u+T) = f(u+2T) = f(u+3T) = .... ]$$

$$= \int_0^T e^{-st} f(t) dt + e^{-sT} \int_0^T e^{-st} f(t) dt + e^{-2sT} \int_0^T e^{-st} f(t) dt + ...$$

$$= \left[1 + e^{-sT} + e^{-2sT} + e^{-3sT} + ...\right] \int_0^T e^{-st} f(t) dt \qquad \left[1 + a + a^2 + a^3 + ... = \frac{1}{1-a}\right]$$

$$= \frac{1}{1-e^{-sT}} \int_0^T e^{-st} f(t) dt.$$
Proved.

Example 38. Find the Laplace transform of the waveform

$$f(t) = \left(\frac{2t}{3}\right), 0 \le t \le 3.$$

$$L\left[f(t)\right] = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt$$

$$L\left[\frac{2t}{3}\right] = \frac{1}{1 - e^{-3s}} \int_0^3 e^{-st} \left(\frac{2}{3}t\right) dt = \frac{1}{1 - e^{-3s}} \frac{2}{3} \left[\frac{te^{-st}}{-s} - \left(1\right) \frac{e^{-st}}{s^2}\right]_0^3$$

$$= \frac{2}{3} \frac{1}{1 - e^{-3s}} \left[\frac{3e^{-3s}}{-s} - \frac{e^{-3s}}{s^2} + \frac{1}{s^2}\right] = \frac{2}{3} \cdot \frac{1}{1 - e^{-3s}} \left[\frac{3e^{-3s}}{-s} + \frac{1 - e^{-3s}}{s^2}\right]$$

$$= \frac{2e^{-3s}}{-s\left(1 - e^{-3s}\right)} + \frac{2}{3s^2}$$
Ans.

**Example 39.** Draw the graph and find the Laplace transform of the triangular wave function of period 2 C given by

$$f(t) = \begin{cases} t, & 0 < t \le C \\ 2C - t, & C < t < 2C \end{cases}$$
 (Uttarakhand, II Semester, June 2007)

**Solution.** Period = 2C = T

Solution.

Laplace transform of periodic function f(t)

$$L\{f(t)\} = \frac{\int_{0}^{T} e^{-st} f(t) dt}{1 - e^{-sT}}$$

$$L\{f(t)\} = \frac{1}{1 - e^{-2Cs}} \int_{0}^{2C} e^{-st} f(t) dt \qquad (T = 2c)$$

On putting the values of f(t), we get

$$\begin{split} &L\Big[f\left(t\right)\Big] = \frac{1}{1 - e^{-2Cs}} \left[\int_{0}^{C} e^{-st}t \ dt + \int_{C}^{2C} e^{-st} \left(2C - t\right) dt\right] \\ &= \frac{1}{1 - e^{-2Cs}} \left[\left\{\frac{te^{-st}}{-s} - 1 \cdot \frac{e^{-st}}{\left(-s\right)^{2}}\right\}_{0}^{C} + \left\{\left(2C - t\right) \frac{e^{-st}}{\left(-s\right)} - \left(-1\right) \frac{e^{-st}}{\left(-s\right)^{2}}\right\}_{C}^{2C}\right] \\ &= \frac{1}{1 - e^{-2Cs}} \left[\left\{\frac{C \cdot e^{-Cs}}{-s} - \frac{e^{-Cs}}{\left(-s\right)^{2}} - 0 + \frac{1}{s^{2}}\right\} + \left\{\left(2C - 2C\right) \frac{e^{-2Cs}}{\left(-s\right)} + \frac{e^{-2Cs}}{s^{2}} - \left(\left(2C - C\right) \frac{e^{-Cs}}{-s} + \frac{e^{-Cs}}{s^{2}}\right)\right\}\right] \\ &= \frac{1}{1 - e^{-2Cs}} \left\{-\frac{Ce^{-Cs}}{s} - \frac{e^{-Cs}}{s^{2}} + \frac{1}{s^{2}} + \frac{e^{-2Cs}}{s^{2}} + \frac{Ce^{-Cs}}{s} - \frac{e^{-Cs}}{s^{2}}\right\} \\ &= \frac{1}{1 - e^{-2Cs}} \left\{\frac{1}{s^{2}} \left(1 - 2e^{-Cs} + e^{-2Cs}\right)\right\} = \frac{\left(1 - e^{-Cs}\right)^{2}}{s^{2} \left(1 + e^{-Cs}\right) \left(1 - e^{-Cs}\right)} = \frac{1 - e^{-Cs}}{s^{2} \left(1 + e^{-Cs}\right)} \end{split}$$
Ans.

**Example 40.** Draw the graph of the periodic function

$$f(t) = \begin{cases} t, & 0 < t < \pi \\ \pi - t, & \pi < t < 2\pi \end{cases}$$

and find its Laplace transform

(U.P. Second Semester, 2003)

**Solution.** Period =  $2\pi = T$ 

Laplace transform of Periodic functions



Ans.

$$= \frac{1}{1 - e^{-2\pi s}} \left[ \frac{\pi}{s} \left( e^{-2\pi s} - e^{-\pi s} \right) + \frac{1}{s^2} \left( 1 + e^{-2\pi s} - 2e^{-\pi s} \right) \right] = \frac{-\pi s e^{-\pi s} \left( 1 - e^{-\pi s} \right) + \left( 1 - e^{-\pi s} \right)^2}{s^2 \left( 1 + e^{-\pi s} \right)}$$

$$= \frac{-\pi s e^{-\pi s} + 1 - e^{-\pi s}}{s^2 \left( 1 + e^{-\pi s} \right)}$$
Ans.

**Example 41.** Find the Laplace transform of the function (Half wave rectifier)

$$f(t) = \begin{cases} \sin \omega t & \text{for } 0 < t < \frac{\pi}{\omega} \\ 0 & \text{for } \frac{\pi}{\omega} < t < \frac{2\pi}{\omega} \end{cases}. \qquad (U.P. II Semester, 2010, Summer 2002) \end{cases}$$

$$\mathbf{Solution.} \quad L\left[f(t)\right] = \frac{1}{1 - e^{-sT}} \int_{0}^{T} e^{-st} f(t) dt \\ = \frac{1}{1 - e^{-\frac{2\pi s}{\omega}}} \int_{0}^{2\pi/\omega} e^{-st} f(t) dt \\ = \frac{1}{1 - e^{-\frac{2\pi s}{\omega}}} \left[ \int_{0}^{\pi/\omega} e^{-st} \sin \omega t dt + \int_{\pi/\omega}^{2\pi/\omega} e^{-st} \times 0 \times dt \right] \\ = \frac{1}{1 - e^{-\frac{2\pi s}{\omega}}} \int_{0}^{\pi/\omega} e^{-st} \sin \omega t dt \qquad \left[ \int_{0}^{\pi/\omega} e^{-st} \sin \omega t dt + \int_{\pi/\omega}^{\pi/\omega} e^{-st} \cos \omega t dt \right] \\ = \frac{1}{1 - e^{-\frac{2\pi s}{\omega}}} \left[ \frac{e^{-st} \left( -s \sin \omega t - \omega \cos \omega t \right)}{s^2 + \omega^2} \right]_{0}^{\pi/\omega} \\ = \frac{1}{1 - e^{-\frac{2\pi s}{\omega}}} \left[ \frac{e^{-st} \left( -s \sin \omega t - \omega \cos \omega t \right)}{s^2 + \omega^2} \right]_{0}^{\pi/\omega} \\ = \frac{1}{1 - e^{-\frac{\pi s}{\omega}}} \left[ \frac{e^{-st} \left( -s \sin \omega t - \omega \cos \omega t \right)}{s^2 + \omega^2} \right]_{0}^{\pi/\omega} \\ = \frac{1}{(s^2 + \omega^2) \left[ 1 - e^{-\frac{\pi s}{\omega}} \right]} = \frac{\omega \left[ 1 + e^{-\frac{\pi s}{\omega}} \right]}{\left( s^2 + \omega^2 \right) \left[ 1 - e^{-\frac{\pi s}{\omega}} \right]}$$

**Example 42.** Find the Laplace Transform of the Periodic function (saw tooth wave)

$$f(t) = \frac{kt}{T} \text{ for } 0 < t < T, \qquad f(t+T) = f(t)$$
**Solution.**  $L[f(t)] = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} \frac{kt}{T} dt$ 

$$= \frac{1}{1 - e^{-sT}} \frac{k}{T} \int_0^T e^{-st} \cdot t dt = \frac{k}{T(1 - e^{-sT})} \left[ t \frac{e^{-st}}{-s} - \int 1 \cdot \frac{e^{-st}}{-s} dt \right]_0^T \text{ Integrating by parts}$$

$$= \frac{k}{T(1 - e^{-sT})} \left[ \frac{te^{-st}}{-s} - \frac{e^{-st}}{s^2} \right]_0^T = \frac{k}{T(1 - e^{-sT})} \left[ \frac{Te^{-sT}}{-s} - \frac{e^{-sT}}{s^2} + \frac{1}{s^2} \right]$$

$$= \frac{k}{T(1 - e^{-sT})} \left[ \frac{Te^{-sT}}{-s} + \frac{1}{s^2} (1 - e^{-sT}) \right] = -\frac{ke^{-sT}}{s(1 - e^{-sT})} + \frac{k}{Ts^2}$$
 Ans.

**Example 43.** Obtain Laplace transform of rectangular wave given by



**Solution.** We know that Laplace transform of a periodic function i.e.,

$$Lf(t) = \frac{\int_{0}^{T} e^{-st} f(t) dt}{1 - e^{-sT}} = \frac{\int_{0}^{\frac{T}{2}} e^{-st} A dt + \int_{\frac{T}{2}}^{\frac{T}{2}} e^{-st} \left(-A\right) dt}{1 - e^{-sT}}$$

$$= A \frac{\left[\frac{e^{-st}}{-s}\right]_{0}^{\frac{T}{2}} - \left[\frac{e^{-st}}{-s}\right]_{\frac{T}{2}}^{T}}{1 - e^{-sT}} = \frac{A}{1 - e^{-sT}} \left[-\frac{e^{-\frac{sT}{2}}}{s} + \frac{1}{s} + \frac{e^{-sT}}{s} - \frac{e^{-\frac{sT}{2}}}{s}\right]$$

$$= \frac{A}{s\left(1 - e^{-sT}\right)} \left[1 - 2e^{-\frac{sT}{2}} + e^{-sT}\right] = \frac{A}{s\left(1 - e^{-sT}\right)} \left[1 - e^{-\frac{sT}{2}}\right]^{2}$$

$$= \frac{A\left[1 - e^{-\frac{sT}{2}}\right]^{2}}{s\left(1 + e^{-\frac{sT}{2}}\right)\left(1 - e^{-\frac{sT}{2}}\right)} = \frac{A\left(e^{\frac{sT}{4}} - e^{-\frac{sT}{4}}\right)}{s\left(e^{\frac{sT}{4}} + e^{-\frac{sT}{4}}\right)} = \frac{A}{s} \tanh \frac{sT}{4}$$
Ans.

**Example 44.** Draw the graph of the following periodic function and find its Laplace transform:

$$f(t) = \begin{cases} t & \text{for } 0 < t \le a \\ 2a - t & \text{for } a < t < 2a \end{cases}$$
 (U.P. II Semester, Summer 2002)

$$f(t) = \begin{cases} t & \text{for } 0 < t \le a \\ 2a - t & \text{for } a < t < 2a \end{cases}$$

$$(U.P. II Semester, Summer 2002)$$
Solution. The given function is periodic with period  $2a$ .
$$\therefore L[f(t)] = \frac{1}{1 - e^{-2as}} \int_{0}^{2a} f(t)e^{-st} dt$$

$$= \frac{1}{1 - e^{-2as}} \left[ \int_{0}^{a} f(t)e^{-st} dt + \int_{a}^{2a} f(t)e^{-st} dt \right]$$

$$= \frac{1}{1 - e^{-2as}} \left[ \int_{0}^{a} te^{-st} dt + \int_{a}^{2a} (2a - t)e^{-st} dt \right]$$

$$= \frac{1}{1 - e^{-2as}} \left[ \left\{ t \frac{e^{-st}}{-s} - \frac{e^{-st}}{(-s)^{2}} \right\}_{0}^{a} + \left\{ (2a - t) \frac{e^{-st}}{-s} + \frac{e^{-st}}{(-s)^{2}} \right\}_{a}^{2a} \right]$$

$$= \frac{1}{1 - e^{-2as}} \left[ -\frac{ae^{-as}}{s} - \frac{e^{-as}}{s^2} + \frac{1}{s^2} + \frac{e^{-2as}}{s^2} + \frac{ae^{-as}}{s} - \frac{e^{-as}}{s^2} \right] = \frac{1}{1 - e^{-2as}} \left[ \frac{1}{s^2} + \frac{e^{-2as}}{s^2} - 2\frac{e^{-as}}{s^2} \right]$$

$$= \frac{1}{s^2} \frac{1}{\left(1 - e^{-2as}\right)} \left( 1 + e^{-2as} - 2e^{-as} \right) = \frac{1}{s^2} \frac{\left(1 - e^{-as}\right)^2}{\left(1 + e^{-as}\right)\left(1 - e^{-as}\right)} = \frac{1}{s^2} \left[ \frac{1 - e^{-as}}{1 + e^{-as}} \right]$$

$$= \frac{1}{s^2} \left[ \frac{\frac{as}{2} - e^{-\frac{as}{2}}}{\frac{as}{2} + e^{-\frac{as}{2}}} \right] = \frac{1}{s^2} \tanh \frac{as}{2}$$
Ans.

**Example 45.** A periodic square wave function f(t), in terms of unit step functions, is written as

$$f(t) = k \left[ u_0(t) - 2u_a(t) + 2u_{2a}(t) - 2u_{3a}(t) + \dots \right]$$

Show that the Laplace transform of f (t) is given by

$$L[f(t)] = \frac{k}{s} \tanh\left(\frac{as}{2}\right)$$
Solution. 
$$f(t) = k\left[u_0(t) - 2u_a(t) + 2u_{2a}(t) - 2u_{3a}(t) + \dots\right]$$

$$f(t) = k\left[u(t-0) - 2u(t-a) + 2u(t-2a) - 2u(t-3a) + \dots\right]$$

$$L[f(t)] = k\left[Lu(t-0) - 2Lu(t-a) + 2Lu(t-2a) - 2Lu(t-3a) + \dots\right]$$

$$= k\left[\frac{1}{s} - 2\frac{e^{-as}}{s} + 2\frac{e^{-2as}}{s} - 2\frac{e^{-3as}}{s} + \dots\right] = \frac{k}{s}\left[1 - 2e^{-as} + 2e^{-2as} - 2e^{-3as} + \dots\right]$$

$$= \frac{k}{s}\left[1 - 2(e^{-as} - e^{-2as} + e^{-3as} - \dots)\right] = \frac{k}{s}\left[1 - 2\frac{e^{-as}}{1 + e^{-as}}\right] = \frac{k}{s}\left[\frac{1 + e^{-as} - 2e^{-as}}{1 + e^{-as}}\right]$$

$$= \frac{k}{s}\left[\frac{1 - e^{-as}}{1 + e^{-as}}\right] = \frac{k}{s}\left[\frac{\frac{as}{2} - e^{-\frac{as}{2}}}{\frac{as}{2} + e^{-\frac{as}{2}}}\right] = \frac{k}{s}\tanh\frac{as}{2}$$
Ans.

#### **EXERCISE 42.5**

1. Find the Laplace transform of the periodic function

$$f(t) = e^t \text{ for } 0 < t < 2\pi$$
**Ans.** 
$$\frac{e^{2(1-s)\pi} - 1}{(1-s)(1-e^{-2\pi s})}$$

$$f(t) = e^{t} \text{ for } 0 < t < 2\pi$$

$$f(t) = e^{t} \text{ for } 0 < t < 2\pi$$

$$2. \text{ Obtain Laplace transform of full wave rectified sine wave given by}$$

$$f(t) = \sin \omega t, \quad 0 < t < \frac{\pi}{\omega}$$

$$(s^{2} + \omega^{2}) \cot \frac{\pi s}{2\omega}$$
3. Find the Laplace transform of the staircase function

$$f(t) = kn, \ np < t < (n+1)p, \ n = 0, 1, 2, 3$$
 Ans.  $\frac{ke^{ps}}{s(1-e^{-ps})}$ 

Find Laplace transform of the following:

**4.** 
$$f(t) = t^2$$
,  $0 < t < 2$ ,  $f(t+2) = f(t)$   
Ans.  $\frac{2 - e^{-2s} - 4se^{-2s} - 4s^2e^{-2s}}{s^3(1 - e^{-2s})}$ 

5. 
$$f(t) = \begin{cases} 1, & 0 \le t \le \frac{a}{2} \\ -1, & \frac{a}{2} \le t < a \end{cases}$$
 (U.P. II Semester, 2004) Ans.  $\frac{1}{s} \tanh \frac{as}{4}$ 

$$6. \ f(t) = \begin{cases} \cos \omega t, & 0 < t < \frac{\pi}{\omega} \\ 0, & \frac{\pi}{\omega} < t < \frac{2\pi}{\omega} \end{cases}$$

$$7. \ f(t) = \begin{cases} t, & 0 < t < 1 \\ 0, & 1 < t < 2 \end{cases} f(t+2) = f(t)$$

$$8. \ f(t) = \begin{cases} \frac{2t}{T}, & 0 \le t \le \frac{T}{2} \\ \frac{2}{T}(T-t), & \frac{T}{2} \le t \le T \end{cases} f(t+T) = f(t)$$

$$Ans. \ \frac{s}{(s^2 + \omega^2)\left(1 - e^{-\frac{\pi s}{\omega}}\right)}$$

$$Ans. \ \frac{1 - e^{-s}(s+1)}{s^2\left(1 - e^{-2s}\right)}$$

$$Ans. \ \frac{2}{Ts^2} \tanh \frac{sT}{4} - \frac{1}{s\left(e^{\frac{sT}{2}} + 1\right)}$$

#### 42.22 IMPULSE FUNCTION

When a large force acts for a short time, then the product of the force and the time is called impulse in applied mechanics. The unit impulse function is the limiting function.

$$\delta(t-1) = \begin{cases} \frac{1}{\varepsilon}, & a < t < a + \varepsilon \\ 0, & \text{otherwise} \end{cases}$$

The value of the function (height of the strip in the figure) becomes infinite as  $\varepsilon \to 0$  and the area of the rectangle is unity.

(1) The Unit Impulse function is defined as follows:

the third is defined as follows. 
$$\delta(t-a) = \begin{cases} \infty & \text{for } t = a \\ 0 & \text{for } t \neq a \end{cases}$$

$$\int_{0}^{\infty} \delta(t-a) . dt = 1$$
[Area of strip = 1]

and

(2) Laplace Transform of Unit Impulse function

Mean value Theorem
$$\int_{0}^{\infty} f(t) \, \delta(t-a) dt = \int_{a}^{a+\varepsilon} f(t) \cdot \frac{1}{\varepsilon} dt \qquad \begin{cases} \text{Mean value Theorem} \\ \int_{a}^{b} f(t) dt = (b-a) f(\eta) \end{cases}$$

$$= (a+\varepsilon-a) f(\eta) \cdot \frac{1}{\varepsilon} \qquad \text{where } a < \eta < a + \varepsilon$$

$$= f(\eta)$$
Property I.
$$\int_{0}^{\infty} f(t) \delta(t-a) dt = f(a)$$
as  $\varepsilon \to 0$ 

**Note.** If  $f(t) = e^{-st}$  and  $L[\delta(t-a)] = e^{-as}$ 

**Example 46.** Evaluate  $\int_{-\infty}^{\infty} e^{-5t} \delta(t-2) dt$ .

**Solution.** 
$$\int_{-\infty}^{\infty} e^{-5t} \delta(t-2) dt = e^{-5 \times 2} = e^{-10}$$
 **Ans.**

Property II: 
$$\int_{-\infty}^{\infty} f(t) \delta'(t-a) dt = -f'(a)$$

**Proof.** 
$$\int_{-\infty}^{\infty} f(t)\delta'(t-a)dt = \left[f(t).\delta(t-a)\right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f'(t)\delta(t-a)dt$$
$$= 0 - 0 - f'(a) = -f'(a)$$

**Example 47.** Find the Laplace transform of  $t^3\delta(t-4)$ 

**Solution.** 
$$Lt^3\delta(t-4) = \int_0^\infty e^{-st} t^3\delta(t-4) dt = 4^3 e^{-4s}$$
 **Ans.**

#### **EXERCISE 42.6**

Evaluate the following:

1. 
$$\int_{0}^{\infty} e^{-3t} \delta(t-4) dt$$
 Ans.  $e^{-12}$  2.  $\int_{-\infty}^{\infty} \sin 2t \, \delta\left(t - \frac{\pi}{4}\right) dt$  Ans. 1

3.  $\int_{-\infty}^{\infty} e^{-3t} \delta'(t-2) dt$  Ans.  $3e^{-6}$ 

Find Laplace transform of

4. 
$$\frac{\delta(t-4)}{t}$$
 Ans.  $\frac{e^{-4s}}{4}$  5.  $\cos t \log t \, \delta(t-\pi)$  Ans.  $-e^{-\pi s} \log \pi$  6.  $e^{-4t}\delta(t-3)$  Ans.  $e^{-3(s+4)}$ 

#### **42.23 CONVOLUTION THEOREM**

then 
$$L[f_1(t)] = F_1(s) \text{ and } L[f_2(t)] = F_2(s)$$

$$L\{\int_0^t f_1(x) f_2(t-x) dx\} = F_1(s) \cdot F_2(s)$$
or 
$$L^{-1}(F_1(s) \cdot F_2(s)) = \int_0^t f_1(x) f_2(t-x) dx$$

Proof We have

$$L\left\{\int_{0}^{\infty} f_{1}(x) f_{2}(t-x) dx\right\} = \int_{0}^{\infty} e^{-st} \left[\int_{0}^{t} f_{1}(x) f_{2}(t-x) dx\right] dt \qquad \text{(By Definition)}$$

where the double integral is taken over the infinite region in the first quadrant lying between the lines x = 0 and x = t.

Here first we are integrating w.r.t. "x", within limits x = 0 and x = t, and then we will integrate w.r.t. "t" with limits t = 0 and  $t = \infty$ .



On changing the order of integration first we integrate w.r.t. "t" with limits t = x and  $t = \infty$  and then w.r.t. "x" with limits x = 0 and  $x = \infty$ .



On changing the order of integration, the integral becomes

$$\int_{0}^{\infty} dx \left[ \int_{x}^{\infty} e^{-st} f_{1}(x) \cdot f_{2}(t-x) dt \right]$$

$$= \int_{0}^{\infty} dx \left[ \int_{x}^{\infty} e^{-s(t-x+x)} f_{1}(x) \cdot f_{2}(t-x) dt \right] = \int_{0}^{\infty} dx \left[ \int_{x}^{\infty} e^{-s(t-x)} \cdot e^{-sx} f_{1}(x) \cdot f_{2}(t-x) dt \right]$$

$$= \int_{0}^{\infty} e^{-sx} f_{1}(x) dx \left[ \int_{x}^{\infty} e^{-s(t-x)} f_{2}(t-x) dt \right] = \int_{0}^{\infty} e^{-sx} f_{1}(x) dx \left[ \int_{x}^{\infty} e^{-sz} f_{2}(z) dz \right]$$

[Put 
$$t - x = z \implies dt = dz$$
]

$$= \int_0^\infty e^{-sx} f_1(x) dx \int_0^\infty e^{-sz} f_2(z) dz, \qquad \text{Lower limit } x - x = z \implies z = 0]$$

$$= \int_0^\infty e^{-sx} f_1(x) F_2(s) dx = \left[ \int_0^\infty e^{-sx} f_1(x) dx \right] F_2(s) = F_1(s) F_2(s) \qquad \text{Proved.}$$

**Example 48.** Find the Laplace transform of  $\int_0^t e^x \cdot \sin(t-x) dx$ 

Solution. By Convolution Theorem

$$L \int_0^t f_1(x) f_2(t-x) dx = F_1(s) \cdot F_2(s)$$

$$\Rightarrow L \int_0^t e^x \cdot \sin(t-x) dx = L(e^x) \cdot L \sin t = \frac{1}{s-1} \frac{1}{s^2+1} = \frac{1}{(s-1)(s^2+1)}$$
Ans.

**Note.** Convolution Theorem is generally used to find Inverse Laplace transform of the product of two functions, discussed in the next chapter.

# 42.24 LAPLACE TRANSFORM OF BESSEL FUNCTIONS $J_0$ (x) and $J_1$ (x)

We know that

$$J_n(x) = \frac{x^2}{2^n \Gamma(n+1)} \left[ 1 - \frac{x^2}{2 \cdot (2n+2)} + \frac{x^4}{2 \cdot 4 \cdot (2n+2) \cdot (2n+4)} - \dots \right]$$

$$J_0(t) = \left[ 1 - \frac{t^2}{2^2} + \frac{t^4}{2^2 \cdot 4^2} - \frac{t^6}{2^2 \cdot 4^2 \cdot 6^2} + \dots \right]$$

Taking Laplace transforms of both sides, we have

$$LJ_{0}(t) = \frac{1}{s} - \frac{1}{2^{2}} \cdot \frac{2!}{s^{3}} + \frac{1}{2^{2} \cdot 4^{2}} \cdot \frac{4!}{s^{5}} - \frac{1}{2^{2} \cdot 4^{2} \cdot 6^{2}} \cdot \frac{6!}{s^{7}} + \dots$$

$$= \frac{1}{s} \left[ 1 - \frac{1}{2} \left( \frac{1}{s^{2}} \right) + \frac{1 \cdot 3}{2 \cdot 4} \left( \frac{1}{s^{4}} \right) - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \left( \frac{1}{s^{6}} \right) + \dots \right]$$

$$= \frac{1}{s} \left[ 1 + \left( -\frac{1}{2} \right) \left( \frac{1}{s^{2}} \right) + \frac{\left( -\frac{1}{2} \right) \left( -\frac{3}{2} \right)}{2!} \left( \frac{1}{s^{2}} \right)^{2} + \frac{\left( -\frac{1}{2} \right) \left( -\frac{3}{2} \right) \left( -\frac{5}{2} \right)}{3!} \left( \frac{1}{s^{2}} \right)^{3} + \dots \right]$$

$$= \frac{1}{s} \left[ 1 + \frac{1}{s^{2}} \right]^{-\frac{1}{2}}$$

$$= \frac{1}{s} \left[ \frac{s^{2} + 1}{s^{2}} \right]^{-\frac{1}{2}} = \frac{1}{s} \left[ \frac{s^{2}}{s^{2} + 1} \right]^{\frac{1}{2}} = \frac{1}{\sqrt{s^{2} + 1}}$$

$$\text{(By Binomial theorem)}$$

$$\text{We know that} \quad Lf\left(at\right) = \frac{1}{a} F\left( \frac{s}{a} \right)$$

$$LJ_{0}(at) = \frac{1}{a} \frac{1}{\sqrt{\frac{s^{2}}{a^{2}} + 1}} = \frac{1}{\sqrt{s^{2} + a^{2}}}$$
[From (1)]
$$LJ_{1}(x) = -LJ'_{0}(x) = -\left[sLJ_{0}(x) - J_{0}(0)\right] = -\left[s.\frac{1}{\sqrt{s^{2} + 1}} - 1\right] = 1 - \frac{s}{\sqrt{s^{2} + 1}}$$
Ans.

#### **EXERCISE 42.7**

Find the Laplace transform of the following:

1. 
$$e^{ax} J_0(bx)$$
 Ans.  $\frac{1}{\sqrt{s^2 + 2as + a^2 + b^2}}$  2.  $x J_0(ax)$  Ans.  $\frac{s}{(s^2 + a^2)^{3/2}}$ 
3.  $x J_1(x)$  Ans.  $\frac{1}{(s^2 + 1)^{3/2}}$ 

#### **42.25 EVALUATION OF INTEGRALS**

We can evaluate number of integrals having lower limit 0 and upper limit  $\infty$  by the help of Laplace transform.

**Example 49.** Evaluate 
$$\int_0^\infty te^{-3t} \sin t \ dt$$

**Solution.** 
$$\int_{0}^{\infty} te^{-3t} \sin t \, dt = \int_{0}^{\infty} te^{-st} \sin t \, dt$$

$$= L(t \sin t) = -\frac{d}{ds} \left( \frac{1}{s^{2} + 1} \right) = \frac{2s}{\left( s^{2} + 1 \right)^{2}}$$

Putting 
$$s = 3$$
, we get  $= \frac{2 \times 3}{\left(3^2 + 1\right)^2} = \frac{6}{100} = \frac{3}{50}$ 

**Example 50.** Evaluate 
$$\int_0^\infty \frac{e^{-t} \sin t}{t} dt$$
 and  $\int_0^\infty \frac{\sin t}{t} dt$  (U.P., II Semester, 2009)

**Solution.** 
$$\int_0^\infty \frac{e^{-t} \sin t}{t} dt = \int_0^\infty e^{-st} \frac{\sin t}{t} dt \qquad (s = 1)$$

$$= L \left[ \frac{\sin t}{t} \right] = \int_{s}^{\infty} \frac{1}{s^2 + 1} ds = \left[ \tan^{-1} s \right]_{s}^{\infty} = \frac{\pi}{2} - \tan^{-1} s \qquad \dots (1)$$

$$= \frac{\pi}{2} - \tan^{-1}(1) = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$$
 (s = 1) Ans.

On putting 
$$s = 0$$
 in (1), we get 
$$\int_0^\infty \frac{\sin t}{t} dt = \frac{\pi}{2} - \tan^{-1}(0) = \frac{\pi}{2}$$
 Ans.

**Example 51.** Evaluate 
$$\int_0^\infty \frac{e^{-at} - e^{-bt}}{t} dt$$

Solution. 
$$\int_{0}^{\infty} e^{-st} \left( e^{-at} - e^{-bt} \right) dt = L \left( e^{-at} - e^{-bt} \right) = L \left( e^{-at} \right) - L \left( e^{-bt} \right) = \left( \frac{1}{s+a} - \frac{1}{s+b} \right)$$
$$\int_{0}^{\infty} e^{-st} \left( \frac{e^{-at} - e^{-bt}}{t} \right) dt = L \frac{1}{t} \left( e^{-at} - e^{-bt} \right) = \int_{s}^{\infty} \left( \frac{1}{s+a} - \frac{1}{s+b} \right) ds$$
$$= \left[ \log (s+a) - \log (s+b) \right]_{s}^{\infty}$$

$$= \left[ \log \left( \frac{s+a}{s+b} \right) \right]_s^{\infty} = \left[ \log \frac{1+\frac{a}{s}}{1+\frac{b}{s}} \right]_s^{\infty} = \left[ \log 1 - \log \frac{s+a}{s+b} \right] = \log \frac{s+b}{s+a}$$
Putting s = 0 in above, we get 
$$\int_0^{\infty} \left( \frac{e^{-at} - e^{-bt}}{t} \right) dt = \log \left( \frac{b}{a} \right)$$
Ans.

**Example 52.** Show that  $\int_0^\infty t^3 e^{-t} \sin t \, dt = 0$ 

**Solution.** L  $\{t^3 \sin t\} = (-1)^3 \frac{d^3}{ds^3} L \{\sin t\}$ 

$$\Rightarrow \int_{0}^{\infty} e^{-st} t^{3} \sin t \, dt = \frac{-d^{3}}{ds^{3}} \frac{1}{s^{2} + 1}$$

$$= -\frac{d^{2}}{ds^{2}} \left[ -\frac{2s}{(s^{2} + 1)^{2}} \right] = \frac{d}{ds} \left[ \frac{(s^{2} + 1)^{2} (2) - 2s \left[ 2(s^{2} + 1) \right] (2s)}{(s^{2} + 1)^{4}} \right]$$

$$= \frac{d}{ds} \left[ \frac{2(s^{2} + 1) - 8s^{2}}{(s^{2} + 1)^{3}} \right] = \frac{d}{ds} \left[ \frac{-6s^{2} + 2}{(s^{2} + 1)^{3}} \right] = \frac{(s^{2} + 1)^{3} (-12s) - (-6s^{2} + 2)3(s^{2} + 1)^{2} (2s)}{(s^{2} + 1)^{6}}$$

$$= \frac{(s^{2} + 1)(-12s) - (-6s^{2} + 2)6s}{(s^{2} + 1)^{4}} = \frac{-12s^{3} - 12s + 36s^{3} - 12s}{(s^{2} + 1)^{4}}$$

$$\int_0^\infty e^{-st} t^3 \sin t \, dt = \frac{24s^3 - 24s}{(s^2 + 1)^4} = \frac{24s (s^2 - 1)}{(s^2 + 1)^4} \qquad \dots (1)$$

Putting s = 1 in (1), we get  $\int_0^\infty e^{-t} t^3 \sin t \, dt = 0$ 

**Example 53.** Evaluate  $\int_0^\infty t^2 e^{3t} \sin^2 t dt$ 

**Solution.** We have,  $\sin^2 t = \frac{1}{2} (1 - \cos 2t)$ 

$$\Rightarrow L\{\sin^2 t\} = \frac{1}{2} [L\{1\} - L\{\cos 2t\}] = \frac{1}{2} \left[ \frac{1}{s} - \frac{s}{s^2 + 4} \right]$$

$$\Rightarrow \qquad L\left[t^2\sin^2t\right] = (-1)^2 \cdot \frac{d^2}{ds^2} \left[\frac{1}{2} \left\{\frac{1}{s} - \frac{s}{s^2 + 4}\right\}\right]$$

$$\Rightarrow \int_{0}^{\infty} e^{-st} \cdot t^{2} \sin^{2} t \, dt = \frac{1}{2} \frac{d}{ds} \left[ \frac{d}{ds} \left\{ \frac{1}{s} - \frac{s}{s^{2} + 4} \right\} \right] = \frac{1}{2} \frac{d}{ds} \left[ -\frac{1}{s^{2}} - \frac{(s^{2} + 4)(1) - s(2s)}{(s^{2} + 4)^{2}} \right]$$

$$= \frac{1}{2} \frac{d}{ds} \left[ -\frac{1}{s^{2}} - \frac{-s^{2} + 4}{(s^{2} + 4)^{2}} \right] = \frac{1}{2} \left[ \frac{2}{s^{3}} - \frac{(s^{2} + 4)^{2}(-2s) - (-s^{2} + 4)(2s)}{(s^{2} + 4)^{4}} \right]$$

$$= \frac{1}{2} \left[ \frac{2}{s^{3}} - \frac{(s^{2} + 4)(-2s) - (-s^{2} + 4)(4s)}{(s^{2} + 4)^{3}} \right] \qquad \dots (1)$$

Putting the value of s = -3 in (1), we get

$$\int_0^\infty e^{3t} t^2 \sin^2 t \, dt = \frac{1}{2} \left[ \frac{2}{-27} - \frac{(13)6 - (-5)(-12)}{(9+4)^3} \right]$$
$$= -\frac{1}{27} - \frac{9}{(13)^3} = \frac{-2197 - 243}{59319} = \frac{-2440}{59319}$$
Ans.

#### **EXERCISE 42.8**

Evaluate the following by using Laplace Transform:

1. 
$$\int_0^\infty t e^{-4t} \sin t \, dt$$

**Ans.** 
$$\frac{8}{289}$$

1. 
$$\int_{0}^{\infty} te^{-4t} \sin t \, dt$$
 Ans.  $\frac{8}{289}$  2.  $\int_{0}^{\infty} \frac{e^{-2t} \sinh t \sin t}{t} \, dt$  Ans.  $\frac{1}{2} \tan^{-1} \frac{1}{2}$ 
3.  $\int_{0}^{\infty} \frac{\sin^{2} t}{t^{2}} \, dt$  Ans.  $i\frac{5}{2}$  4.  $\int_{0}^{\infty} \frac{e^{-t} - e^{-4t}}{t} \, dt$  Ans.  $\log 4$ 

**Ans.** 
$$\frac{1}{2} \tan^{-1} \frac{1}{2}$$

$$3. \int_0^\infty \frac{\sin^2 t}{t^2} dt$$

Ans. 
$$i\frac{5}{2}$$

$$4. \quad \int_0^\infty \frac{e^{-t} - e^{-4t}}{t} dt$$

# 42.26 FORMULATION OF LAPLACE TRANSFORM

| S.No. | f(t)                                  | F(s)                                                 |
|-------|---------------------------------------|------------------------------------------------------|
| 1.    | $e^{at}$                              | $\frac{1}{s-a}$                                      |
| 2.    | t <sup>n</sup>                        | $\frac{n+1}{s^{n+1}} \text{ or } \frac{n!}{s^{n+1}}$ |
| 3.    | sin <i>at</i>                         | $\frac{a}{s^2 + a^2}$                                |
| 4.    | cos at                                | $\frac{s}{s^2 + a^2}$                                |
| 5.    | sinh at                               | $\frac{a}{s^2 - a^2}$                                |
| 6.    | cosh at                               | $\frac{s}{s^2 - a^2}$                                |
| 7.    | u(t-a)                                | $\frac{e^{-as}}{s}$                                  |
| 8.    | $\delta (t-a)$                        | $e^{-as}$                                            |
| 9.    | $e^{bt}\sin at$                       | $\frac{a}{\left(s-b\right)^2+a^2}$                   |
| 10.   | $e^{bt}\cos at$                       | $\frac{s-b}{\left(s-b\right)^2+a^2}$                 |
| 11.   | $\frac{t}{2a}\sin at$                 | $\frac{s}{\left(s^2+a^2\right)^2}$                   |
| 12.   | t cos at                              | $\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$         |
| 13.   | $\frac{1}{2a^3}(\sin at - at\cos at)$ | $\frac{1}{\left(s^2+a^2\right)^2}$                   |
| 14.   | $\frac{1}{2a}(\sin at + at \cos at)$  | $\frac{s^2}{\left(s^2+a^2\right)^2}$                 |

# 42.27 PROPERTIES OF LAPLACE TRANSFORM

| S.No. | Property                         | f(t)                     | F (s)                                                      |
|-------|----------------------------------|--------------------------|------------------------------------------------------------|
| 1.    | Scaling                          | f(at)                    | $\frac{1}{a}F\bigg(\frac{s}{a}\bigg), \qquad a > 0$        |
|       |                                  | $\frac{df(t)}{dt}$       | $s F(s) - f(0), \qquad s > 0$                              |
| 2.    | Derivative                       | $\frac{d^2 f(t)}{dt^2}$  | $s^2 F(s) - sf(0) - f'(0), \qquad s > 0$                   |
|       |                                  | $\frac{d^3 f(t)}{dt^3}$  | $s^{3}F(s) - s^{2}f(0) - sf'(0) - f''(0), s > 0$           |
| 3,    | Integral                         | $\int_0^t f(t)  dt$      | $\frac{1}{s}F(s),  s>0$                                    |
| 4.    | Initial Value                    | $\lim_{t\to 0} f(t)$     | $\lim_{s\to\infty} sF(s)$                                  |
| 5.    | Final Value                      | $\lim_{t\to\infty} f(t)$ | $\lim_{s\to\infty} sF(s)$                                  |
| 6.    | First shifting                   | $e^{-at}f(t)$            | $F\left( s+a\right)$                                       |
| 7.    | Second shifting                  | $f(t) \ u \ (t-a)$       | $e^{-a} L f(t+a)$                                          |
| 8.    | Multiplication by t              | tf(t)                    | $-\frac{d}{ds}F(s)$                                        |
| 9.    | Multiplication by t <sup>n</sup> | $t^n f(t)$               | $(-1)^n \frac{d^n}{ds^n} F(s)$                             |
| 10.   | Division by t                    | $\frac{1}{t}f(t)$        | $\int_{s}^{\infty} F(s) \ ds$                              |
| 11.   | Periodic function                | f(t)                     | $\frac{\int_0^T e^{-st} f(t)}{1 - e^{-st}}  f(t+T) = f(t)$ |
| 12.   | Convolution                      | f(t) * g(t)              | F(s) G(s)                                                  |

# **OBJECTIVE TYPE QUESTIONS**

# Choose the correct alternative :

se the correct alternative :

1. Laplace transform of 
$$t^3e^{-3t}$$
 is :

(i)  $\frac{7}{(s+4)^3}$  (ii)  $\frac{s}{(s+3)^3}$  (iii)  $\frac{6}{(s+3)^4}$  (iv)  $\frac{2}{(s+6)^3}$  Ans. (iii) (R.G.P.V., Bhopal, II Semester, Feb. 2006)

2. Laplace transform of  $e^{-2t} \sin 4t$  is :

(i) 
$$\frac{2}{s^2 + 4s + 20}$$
 (ii)  $\frac{s - 2}{s^2 + 4s + 20}$  (iii)  $\frac{s - 4}{s^2 + 4s + 20}$  (iv)  $\frac{4}{s^2 + 4s + 20}$  Ans. (iv) (R.G.P.V., Bhopal, II Semester, June 2007)

3. If  $\{F(t)\} = \overline{f}(s)$ , then  $L\left\{\int_0^t F(x) dx\right\}$  is:

(i) 
$$\int_0^s \overline{f}(s) ds$$
 (ii)  $\int_0^s \frac{1}{s} \overline{f}(s) ds$  (iii)  $\frac{1}{s} \overline{f}(s)$  (iv)  $s \overline{f}(s)$  Ans. (iii) (R.G.P.V., Bhopal, II Semester, June 2006)

**4.** If  $L\{F(t)\} = \overline{f}(s)$ , then  $L\{t | F(t)\}$  is :

(i) 
$$\overline{f}'(s)$$
 (ii)  $-\overline{f}'(s)$  (iii)  $\overline{f}'(s) + \overline{f}(s)$  (iv)  $s\overline{f}'(s) + \overline{f}(s)$  Ans. (ii) (R.G.P.V., Bhopal, II Semester, June 2006)

5. Laplace transform of  $\frac{\cos at - \cos bt}{t}$  is

(i) 
$$\log \frac{s^2 + b^2}{s^2 + a^2}$$
 (ii)  $\frac{1}{2} \log \frac{s^2 + a^2}{s^2 + b^2}$  (iii)  $\frac{1}{2} \log \frac{s^2 + b^2}{s^2 + a^2}$  (iv)  $\log \frac{s + b}{s + a}$  Ans. (iii) (R.G.P.V., Bhopal, II Semester, Feb. 2006, 2005)

6. The Laplace transform of the function

$$F(t) = \begin{cases} 1, & 0 \le t < 2 \\ -1, & 2 \le t < 4 \end{cases}, f(t+4) = f(t) \text{ is given as,}$$

(i) 
$$\frac{1-e^{-2s}}{s(1+e^{-2s})}$$
 (ii)  $\frac{1+e^{-2s}}{s(1+e^{-2s})}$  (iii) 0 (iv)  $\frac{s+1}{s-1}$  Ans. (i) (U.P., II Semester, 2009)

Fill in the blank for each of the following question:

7. The Laplace transform of

$$\int_{0}^{t} \int_{0}^{t} \int_{0}^{t} \cos au \, du \, du \, du \text{ is given as ......} [U.P.T.U. (SUM) \ 2009]$$
 Ans.  $\frac{1}{s^{2}(s^{2} + a^{2})}$