Machine Learning Theory Notes

Gaotang Li

 $March\ 6,\ 2023$

Contents

Part I Generalization Theory

Supervised Learning Framework

1.1 Basic Setups

In a supervised learning problem, we have a goal to predict a label given an input. Let S denote the dataset $\{(x_i, y_i)\}_{i=1}^n$ for

- $x_i \in \mathcal{X}$, the inputs in the input space.
- $y_i \in \mathcal{Y}$, the label associated with x_i in the label space.

We assume that the data are drawn **i.i.d.** from an unknown probability distribution \mathcal{P} over $\mathcal{X} \times \mathcal{Y}$. We aim at learning a function mapping $h: \mathcal{X} \to \mathcal{Y}$ (aka hypothesis, predictor, model).

To evaluate the performance of h, we specify a loss function. A loss function $\ell \colon \mathcal{Y}, \mathcal{Y} \to \mathbb{R}$ measures the difference between the predicted label and the groundtruth label.

Definition 1.1.1 (population risk). The population risk of a hypothesis h is its expected loss over the data distribution $\mathcal{P}: L_{\mathcal{P}}(h) = \mathbb{E}_{(x,y) \sim \mathcal{P}}[\ell(h(x),y)]$

Example. Examples of Loss Functions

- Classification: 0-1 loss $\ell(\hat{y}, y) = \mathbb{1}(\hat{y} \neq y)$.
- Regression: squared loss $\ell(\hat{y}, y) = (\hat{y} y)^2$

It is often impossible to consider all possible function mappings from $\mathcal{X} \to \mathcal{Y}$. We usually only consider a hypothesis class \mathcal{H} .

Example. Examples of \mathcal{H} .

- Linear function class: $\mathcal{H} = \{h_{\theta} | h_{\theta}(x) = \theta^T x, \theta \in \mathbb{R}\}$
- General parametric function class: $\mathcal{H} = \{h_{\theta} | h_{\theta}(x) = f(x, \theta), \theta \in \mathbb{R}^p\}$

1.2 Empirical Risk Minimization

Definition 1.2.1 (Empirical Risk). The *empirical risk* of a hypothesis h is its average loss over the dataset S

$$L_s(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(x_i), y_i)$$

Empirical risk minimization (ERM) is any algorithm that minimizes the empirical risk over the hypothesis class \mathcal{H} . We denote a hypothesis returned by ERM as \hat{h}_{ERM} , *i.e.*:

$$\hat{h}_{ERM} \in \operatorname{argmin}_{h \in \mathcal{H}} L_S(h)$$

If we assume h is independent of S, then $\mathbb{E}_S[L_S(h)] = L_P(h)$. But in reality h and S are not independent.

1.3 Questions

In the supervised learning part of this course, we are mainly interested in the following two fundamental problems:

- Statistical: What guarantee do we have about $L_P(\hat{h}_{ERM})$?
- Optimization: When may ERM be achieved efficiently?

Concentration Inequality

Concentration inequalities are a mathematical tool to study the relation between population and empirical quantities. Consider the following main question: for i.i.d. random variables X_1, \ldots, X_n , how does $\frac{1}{n} \sum_{i=1}^n X_i$ relate to $\mathbb{E}[\frac{1}{n} \sum_{i=1}^n X_i] = \mu$?

2.1 Chebyshev's Inequality

Lemma 2.1.1 (Markov's Inequality). Let X be a non-negative random variable, then for all t > 0,

$$\Pr(X \ge t) \le \frac{\mathbb{E}(x)}{t}$$

Proof.

$$\mathbb{E}(X) \ge \Pr(X < t) * 0 + \Pr(X > t) * t$$

Theorem 2.1.1 (Chebyshev's Inequality). Let X be a random variable with finite expected value μ and finite non-zero variance σ^2 . Then for any real number t > 0,

$$\Pr[|X - \mathbb{E}(X)| \ge t] \le \frac{\operatorname{Var}(X)}{t}$$

Proof.

$$\begin{split} \Pr\left[X - \mathbb{E}[X] \geq t\right] &= \Pr\left[(X - \mathbb{E}[X])^2 \geq t^2\right] \\ &= \frac{\mathbb{E}\left[(X - \mathbb{E}[X])^2\right]}{t^2} \\ &= \frac{\operatorname{Var}[X]}{t^2} \end{split}$$

Remark.

$$\Pr\left[|X - \mathbb{E}[X]| \ge t\right] \le \frac{\mathbb{E}[|X - \mathbb{E}[X]|^P]}{t^P}$$

Corollary 2.1.1. Let x_1, \ldots, x_n be i.i.d. random variables such that $\mathbb{E}[x_i] = \mu$, $\text{Var}[x_i] = \sigma^2$. Then:

$$\Pr\left[\left|\frac{1}{n}\sum_{i=1}^{n}x_{i}-\mu\right| \geq t\right] \leq \frac{\sigma^{2}}{nt^{2}}$$

2.2 Hoeffding Inequality

Lemma 2.2.1. If $X \in [0, 1]$ a.s. Then,

$$\mathbb{E}\left[e^{\lambda(X-\mathbb{E}[X])}\right] \leq e^{\frac{\lambda^2}{8}}$$

for all $\lambda \in \mathbb{R}$.

Proof. Let $Z = X - \mathbb{E}[X]$, then $\mathbb{E}[Z] = 0$.

Define $\psi(\lambda) := \log \mathbb{E} \left[e^{\lambda Z} \right]$.

Using the Taylor expansion to get that $\psi(\lambda) = \psi(0) + \lambda \psi'(0) + \frac{\lambda^2}{2} \psi''(\lambda')$ where λ' is between 0 and λ .

Here the first term $\psi(0) = \log 1 = 0$, and the second term $\lambda \psi'(0) = \mathbb{E}[Z] = 0$. The only thing we need to is to compute the third term. The idea is to bound the third term by 1/4.

Then

$$\psi'(\lambda) = \frac{\mathbb{E}\left[e^{\lambda Z}Z\right]}{e^{\lambda Z}} = \mathbb{E}[Y]$$

$$\psi''(\lambda) = \frac{\mathbb{E}\left[e^{\lambda Z}Z^2\right]}{e^{\lambda Z}} - \left(\frac{\mathbb{E}\left[e^{\lambda Z}Z\right]}{\mathbb{E}[e^{\lambda Z}]}\right)^2$$

$$= \mathbb{E}[Y^2] - (\mathbb{E}[Y])^2$$

$$= \text{Var}[Y]$$

Where we can think of Y as a reweighted version of Z, and we have that

$$dP_Y(x) = \frac{e^{\lambda x}}{\mathbb{E}\left[e^{\lambda Z}\right]} dP_Z(x)$$

not finished yet...

Remark. We also call such random variables **subgaussian** random variables. Another interpretation is that bounded random variables are subgaussian.

Another reminder is that the expectation is in the form of **Moment Generating Function**, where $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$.

Theorem 2.2.1 (Hoeffding Inequality). Let X_1, \ldots, X_n be i.i.d. random variables such that for each $i, X_i \in [0,1]$ a.s. Then for all t > 0:

$$\Pr\left[\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] \ge t\right] \le e^{-2nt^{2}}$$

$$\Pr\left[\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] \le -t\right] \le e^{-2nt^{2}}$$

Proof. Let us use \bar{X} to denote $\frac{1}{n} \sum_{i=1}^{n} X_i$. Then we have that

$$\Pr\left[\bar{X} - \mathbb{E}[\bar{X}] \ge t\right] = \Pr\left[e^{\lambda(\bar{X} - \mathbb{E}[\bar{X}])} \ge e^{\lambda t}\right] \qquad \lambda > 0$$

$$\le \frac{\mathbb{E}\left[e^{\lambda(\bar{X} - \mathbb{E}[\bar{X}])}\right]}{e^{\lambda t}} \qquad \text{Markov}$$

$$= e^{-\lambda t} \cdot \mathbb{E}\left[e^{\frac{\lambda}{n}\sum_{i=1}^{n}(X_i - \mathbb{E}[X_i])}\right]$$

$$= e^{-\lambda t} \cdot \mathbb{E}\left[\prod_{i=1}^{n} e^{\frac{\lambda}{n}(X_i - \mathbb{E}[X_i])}\right]$$

$$= e^{-\lambda t} \prod_{i=1}^{n} \mathbb{E}\left[e^{\frac{\lambda}{n}(X_i - \mathbb{E}[X_i])}\right] \qquad \text{Independence}$$

$$\le e^{-\lambda t} \left(e^{\frac{1}{8}(\frac{\lambda}{n})^n}\right)$$

$$= e^{-\lambda t + \frac{\lambda^2}{8n}}$$

$$= e^{-2nt^2} \qquad \text{let } \lambda = 4nt$$

By symmetry, we complete the proof.

Remark (Equivalent Definition of Hoeffding Inequality). Let $X_1, \ldots, X_n \in [0,1]$ a.s. and independent,

$$\forall \delta \in (0, 1), \text{ w.p.} \ge 1 - \delta \colon \quad \frac{1}{n} \sum_{i=1}^{n} X_i - \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_i\right] \le \sqrt{\frac{\log \frac{1}{\delta}}{2n}}$$

$$\text{w.p.} \ge 1 - \delta \colon \quad \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_i\right] - \frac{1}{n} \sum_{i=1}^{n} X_i \le \sqrt{\frac{\log \frac{1}{\delta}}{2n}}$$

2.3 Bounded Difference Concentration Inequality

We are concerned with diffeormorphism (i.e. change in one coordinate) and formally

$$f(X_1, \cdots, X_n) \mapsto \mathbb{E}\left[f(X_1, \cdots, X_n)\right]$$

Theorem 2.3.1 (Mcdiarmid's inequality). Suppose X_1, \ldots, X_n are independent random variables taking values in a set A. Let $f: A^n \to \mathbb{R}$ be a function that satisfies the *bounded difference* condition:

$$\exists c_1, \dots, c_n > 0 \text{s.t.} \forall x_1, \dots, x_n \in A, x_i' \in A | f(x_1, \dots, x_n) - f(x_1, \dots, x_{i-1}, x_i', x_{i+1}, \dots, x_n) | \le c_i$$

Then, for all t > 0,

$$\Pr[f(X_1,...,X_n) - \mathbb{E}[f(X_1,...,X_n)] \ge t] \le e^{-\frac{2t^2}{\sum_{i=1}^n e_i^2}}$$

Remark. If $f(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^n x_i$ and A = [0, 1], then $c_i = \frac{1}{n}$ and the bound recovers the Hoeffding inequality as e^{-2nt^2} .

Rademacher Complexity

3.1 Uniform Convergence

Motivation: we want to study $L(\hat{h}_{ERM})$ and compare it against $h^* \in \operatorname{argmin}_{h \in \mathcal{H}} L(h)$. We want to bound the difference $L(\hat{h}_{ERM}) - L(h^*)$, which is also referred to as the "**excess risk**".

$$L(\hat{h}_{ERM}) - L(h^*) = \left(L(\hat{h}_{ERM}) - L_S(\hat{h}_{ERM})\right) + \left(L_S(\hat{h}_{ERM}) - L_S(h^*)\right) + \left(L_S(h^*) - L(h^*)\right)$$

where the second term is smaller or equal to 0 by definition, and the third term can be bounded using the Hoeffding inequality as h^* does not depend on S.

Consequently, our aim becomes bounding the first term and we define the following **generalization** gap:

Definition 3.1.1 (Uniform Convergence).

$$L(\hat{h}_{ERM}) - L_S(\hat{h}_{ERM}) \le \sup_{h \in \mathcal{H}} (L(h) - L_S(h))$$

, where the bounded difference is called the generalization gap.

Theorem 3.1.1 (Generalization Bound for finite hypothesis class). If \mathcal{H} is finite, then for any $\delta \in (0,1)$, we have

w.p.
$$\geq 1 - \delta$$
, $\sup_{h \in \mathcal{H}} (L(h) - L_S(h)) \leq \sqrt{\frac{\log |\mathcal{H}| + \log \frac{1}{\delta}}{2n}}$

Remark. If $n >> \log |\mathcal{H}|$, excess risk $\to 0$.

What if \mathcal{H} is infinite?

- Idea: Reduce infinite case to finite case.

3.2 Rademacher Complexity

Notation: Given \mathcal{H} and ℓ , define the family of loss mappings:

$$\mathcal{G} = \{ g_h \colon (x, y) \mapsto \ell(h(x), y), h \in \mathcal{H} \}$$

where
$$z = (x, y) \sim P$$
, $z_i = (x_i, y_i)$, $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$, and $L(h) = \mathbb{E}_{z \sim P}[g_h(z)]$, $L_S(h) = \frac{1}{n} \sum_{i=1}^n g_h(z_i)$.

$$\sup_{h \in \mathcal{H}} \left(L(h) - L_S(h) \right) = \sup_{g \in \mathcal{G}} \left(\mathbb{E}_{z \sim P}[g(z)] - \frac{1}{n} \sum_{i=1}^n g(z_i) \right)$$

Definition 3.2.1 (Empirical Rademacher Complexity). Let \mathcal{G} be a set of functions mapping $\mathcal{Z} \to \mathbb{R}$. Let $S = \{z_1, \dots, z_n\} \subseteq \mathcal{Z}$.

The empirical Rademacher complexity of \mathcal{G} with respect to the simple set S is:

$$R_S(\mathcal{G}) = \mathbb{E}_{\sigma_1, \dots, \sigma_n} \left[\sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^n \sigma_i g(z_i) \right]$$

where $\sigma_i = \begin{cases} +1 & \text{w.p.} \frac{1}{2} \\ -1 & \text{w.p.} \frac{1}{2} \end{cases}$ i.i.d (called Rademacher random variables).

Remark. Rademacher complexity measures the ability of a function class to fit random noise

$$R_S(\mathcal{G}) = \mathbb{E}_{\vec{\sigma}} \left[\sup_{g \in \mathcal{G}} \frac{1}{n} < \vec{\sigma}, \vec{g}_s > \right]$$

Definition 3.2.2 (Rademacher Complexity). Let P be a distribution over \mathcal{Z} .

For an integer $n \geq 1$, the **Rademacher complexity** of \mathcal{G} is

$$R_n(\mathcal{G}) = \mathbb{E}_{S \sim P^n} \left[R_S(\mathcal{G}) \right]$$

Theorem 3.2.1 (Generalization Bound using Rademacher Complexity). Let \mathcal{G} be a function class mapping \mathcal{Z} to $[0,1], S = \{z_1,\ldots,z_n\} \sim P^n$. Then for any $\delta \in (0,1)$:

w.p.
$$\geq 1 - \delta$$
, $\sup_{g \in \mathcal{G}} \left(\mathbb{E}_{z \sim P} \left[g(z) \right] - \frac{1}{n} \sum_{i=1}^{n} g(z_i) \right) \leq 2R_n(\mathcal{G}) + \sqrt{\frac{\log \frac{1}{\delta}}{2n}}$

w.p.
$$\geq 1 - \delta$$
, $\sup_{g \in \mathcal{G}} \left(\mathbb{E}_{z \sim P} \left[g(z) \right] - \frac{1}{n} \sum_{i=1}^{n} g(z_i) \right) \leq 2R_S(\mathcal{G}) + 3\sqrt{\frac{\log \frac{2}{\delta}}{2n}}$

Proof. Step 1: Relate the sup terms to the expectation of sups using Mcdiarmid's ineq

Define $f(z_1, \dots, z_n) = \sup_{g \in \mathcal{G}} \left(\mathbb{E}_{z \sim P} \left[g(z) \right] - \frac{1}{n} \sum_{i=1}^{n} g(z_i) \right)$.

Consider $\{z_1, \ldots, z_n\}$ and $\{z'_1, \ldots, z'_n\}$ that only differs by 1 point (i.e. $z_k \neq z'_k, z_i = z'_i \ \forall i \neq k$).

$$f(z_{1},...,z_{n}) = \sup_{g \in \mathcal{G}} \left(\mathbb{E}\left[g(z)\right] - \frac{1}{n} \sum_{i=1}^{n} g(z'_{i}) + \frac{1}{n} \sum_{i=1}^{n} g(z'_{i}) - \frac{1}{n} \sum_{i=1}^{n} g(z_{i}) \right)$$

$$\leq \sup_{g \in \mathcal{G}} \left(\mathbb{E}\left[g(z)\right] - \frac{1}{n} \sum_{i=1}^{n} g(z'_{i}) \right) + \sup_{g \in \mathcal{G}} \left(\frac{1}{n} \sum_{i=1}^{n} g(z'_{i}) - \frac{1}{n} \sum_{i=1}^{n} g(z_{i}) \right)$$

$$= f(z'_{1},...,z'_{n}) + \sup_{g \in \mathcal{G}} \left(\frac{1}{n} g(z'_{k}) - \frac{1}{n} g(z_{k}) \right)$$

$$\leq f(z'_{1},...,z'_{n}) + \frac{1}{n}$$

Similarly, $f(z_i', \ldots, z_n') - f(z_1, \ldots, z_n) \leq \frac{1}{n}$. Combining them we can get that $|f(z_1, \ldots, z_n) - f(z_1', \ldots, z_n')| \leq \frac{1}{n}$.

Applying the Mcdiarmid's inequality, we can get the following bound:

w.p.
$$\geq 1 - \delta, f(z_1, \dots, z_n) - \mathbb{E}\left[f(z_1, \dots, z_n)\right] \leq \sqrt{\frac{\log \frac{1}{\delta}}{2n}}$$

Step 2: Bound $\mathbb{E}_S\left[\sup_{g\in\mathcal{G}}\left(\mathbb{E}_{z\sim P}\left[g(z)\right]-\frac{1}{n}\sum_{i=1}^ng(z_i)\right)\right]$ by Rademacher Complexity Draw a fresh set of n samples $S'=\{z'_1,\ldots,z'_n\}\sim P^n$. Fix S, we have

$$\begin{split} \sup_{g \in \mathcal{G}} \left(\mathbb{E}_{z \sim P} \left[g(z) \right] - \frac{1}{n} \sum_{i=1}^{n} g(z_i) \right) &= \sup_{g \in \mathcal{G}} \left(\mathbb{E}_{S'} \left[\frac{1}{n} \sum_{i=1}^{n} g(z_i) \right] - \frac{1}{n} \sum_{i=1}^{n} g(z_i) \right) \\ &= \sup_{g \in \mathcal{G}} \left(\mathbb{E}_{S'} \left[\frac{1}{n} \sum_{i=1}^{n} \left(g(z'_i) - g(z_i) \right) \right] \right) \\ &\leq \mathbb{E}_{S'} \left[\sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^{n} \left(g(z'_i) - g(z_i) \right) \right] \end{split}$$

Taking expectation over S on both sides generate that

$$\mathbb{E}_{S} \left[\sup_{g \in G} \left(\mathbb{E}_{z \sim P} \left[g(z) \right] - \frac{1}{n} \sum_{i=1}^{n} g(z_{i}) \right) \right] \leq \mathbb{E}_{S,S'} \left[\sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^{n} \left(g(z'_{i}) - g(z_{i}) \right) \right]$$

$$= \mathbb{E}_{S,S',\vec{\sigma}} \left[\sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \left(g(z'_{i}) - g(z_{i}) \right) \right]$$

$$\leq \mathbb{E}_{S,S',\vec{\sigma}} \left[\sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} g(z'_{i}) \right] + \mathbb{E}_{S,S'\vec{\sigma}} \left[\sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^{n} -\sigma_{i} g(z_{i}) \right]$$

$$= 2R_{n}(\mathcal{G})$$

Combining the result from step 1 and step 2, we prove the first inequality in the theorem.

Step 3: Prove $R_n(\mathcal{G})$ and $R_S(\mathcal{G})$ are close Similar to step 1, we can verify that $R_S(\mathcal{G})$ satisfies the bounded difference property.

Apply Mcdiarmid's inequality, we can get that

w.p.
$$\geq 1 - \delta, R_n(\mathcal{G}) \leq R_S(\mathcal{G}) + \sqrt{\frac{\log \frac{1}{\delta}}{2n}}$$

Combining the outputs from step 1 - 3 and replacing δ with $\delta/2$ gives the second inequality.

VC-Dimension

In this chapter, we only consider the binary classification case with the 0-1 loss, i.e. $y = \{\pm 1\}$ and $\mathcal{G} = \{(x,y) \mapsto \mathbb{1} [h(x) \neq y] : h \in \mathcal{H}\}.$

4.1 Growth Function Bounds

Lemma 4.1.1. $R_n(\mathcal{G}) = \frac{1}{2}R_n(\mathcal{H})$

Proof. Given $S = \{(x_i, y_i)\}_{i=1}^n$, we have

$$R_{S}(\mathcal{G}) = \mathbb{E}_{\vec{\sigma}} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \sigma_{i} \mathbb{1} \left[h(x_{i}) \neq y_{i} \right] \right]$$

$$= \mathbb{E}_{\vec{\sigma}} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \frac{1 - y_{i} h(x_{i})}{2} \right]$$

$$= \frac{1}{2} \mathbb{E}_{\vec{\sigma}} \left[\frac{1}{n} \sum_{i=1}^{n} \sigma_{i} + \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} (-y_{i}) h(x_{i}) \right]$$

$$= \frac{1}{2} \mathbb{E}_{\vec{\sigma}} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} h(x_{i}) \right]$$

$$= \frac{1}{2} R_{S}(\mathcal{H})$$

Remark. It then becomes natural to bound $R_n(\mathcal{H})$.

Definition 4.1.1 (Growth Function). The growth function $\Pi_{\mathcal{H}} \colon \mathbb{N} \to \mathbb{N}$ for a hypothesis class \mathcal{H} that maps to $y = \{\pm 1\}$ is defined as

$$\Pi_{\mathcal{H}}(n) = \sup_{x_1, \dots, x_n \in \mathcal{X}} |\{(h(x_1), \dots, h(x_n)) : h \in \mathcal{H}\}|$$

Remark. This definition defines the set of all possible predictions on a given set of inputs.

Theorem 4.1.1 (Generalization bound using VC-dimension). Let \mathcal{H} be a hypothesis class taking values $y = \{\pm 1\}$. Then

$$R_n(\mathcal{H}) \le \sqrt{\frac{2\log \Pi_{\mathcal{H}}(n)}{n}}$$

Proof. Let $S = \{x_1, \dots, x_n\}, Q = Q_S = \{(h(x_1), \dots, h(x_n) : h \in \mathcal{H})\}.$

We want to show that $R_S(\mathcal{H}) \leq \sqrt{\frac{2 \log |Q|}{n}}$

$$R_S(\mathcal{H}) = \mathbb{E}_{\vec{\sigma}} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \sigma_i h(x_i) \right]$$
$$= \mathbb{E}_{\vec{\sigma}} \left[\sup_{\vec{v} \in Q} \frac{1}{n} \sum_{i=1}^n \sigma_i v_i \right]$$
 Apply Hoeffding

Then for all $\lambda > 0$,

$$\begin{split} e^{\lambda R_S(\mathcal{H})} &= e^{\lambda \mathbb{E}_{\vec{\sigma}} \left[\sup_{\vec{v} \in Q} \frac{1}{n} \sum_{i=1}^n \sigma_i v_i \right]} \\ &\leq \mathbb{E}_{\vec{\sigma}} \left[e^{\lambda \sup_{\vec{v} \in Q} \frac{1}{n} \sum_{i=1}^n \sigma_i v_i} \right] & \text{Jensen's ineq} \\ &\leq \mathbb{E}_{\vec{\sigma}} \left[\sum_{\vec{v} \in Q} e^{\lambda \frac{1}{n} \sum_{i=1}^n \sigma_i v_i} \right] \\ &= \sum_{\vec{v} \in Q} \mathbb{E}_{\vec{\sigma}} \left[e^{\lambda \frac{1}{n} \sum_{i=1}^n \sigma_i v_i} \right] \\ &\leq \sum_{\vec{v} \in Q} e^{\frac{\lambda^2}{2n}} & \text{by Hoeffding} \\ &= |Q| e^{\frac{\lambda^2}{2n}} \end{split}$$

This gives that $R_S(\mathcal{H}) \leq \frac{1}{\lambda} \log |Q| + \frac{\lambda}{2n}$

Choose
$$\lambda = \sqrt{2n \log |Q|}$$
 and we can get that $R_S(\mathcal{H}) \leq \sqrt{\frac{2 \log |Q|}{n}}$

Remark. Discussions about the growth function:

• When \mathcal{H} is finite, we have that $\Pi_{\mathcal{H}}(n) \leq |\mathcal{H}|$

$$R_n(\mathcal{H}) \le \sqrt{\frac{2\log|\mathcal{H}|}{n}}$$
 recovers Thm 1

• When \mathcal{H} is "super power", $\Pi_{\mathcal{H}}(n) = 2^n$, i.e. overfitting.

$$R_n(\mathcal{H}) \le \sqrt{\frac{2\log 2^n}{n}} = \sqrt{2\log 2}$$

• What if the growth function is in-between, a polynomial function? Suppose $\Pi_{\mathcal{H}}(n) \leq n^d$, we have that

$$R_n(\mathcal{H}) \le \sqrt{\frac{2d\log n}{n}} \to 0 \text{ if } n >> d\log d$$

Definition 4.1.2 (VC-dimension). The VC-dimension of a class of hypothesis function \mathcal{H} is

$$VC(\mathcal{H}) = \max\{n : \Pi_{\mathcal{H}}(n) = 2^n\}$$

Definition 4.1.3 (Shatter). $S = \{x_1, \dots, x_n\}$ can be shattered by \mathcal{H} if $\forall y_1, \dots, y_n \in \{\pm 1\}, \exists h \in \mathcal{H}$ s.t. $h(x_i) = y_i$ for all $i = \{1, \dots, n\}$.

Remark. The VC-dimension is the maximum size of a sample set S that can be shattered by \mathcal{H} .

Example (Threshold Function). Let
$$\mathcal{X} = \mathbb{R}, \mathcal{H} = \{h_a : a \in \mathbb{R}\}, h_a \in \mathcal{H}, h_a(x) = \begin{cases} +1, & \text{if } x \geq a \\ -1, & \text{if } x < a \end{cases}$$

Then
$$VC - dim(\mathcal{H}) = 1$$

Proof. 1. any input $x \in \mathbb{R}$ can be shattered

$$h_{x-1}(x) = +1, \quad h_{x+1} = -1$$

2. any inputs $x_1, x_2 \in \mathbb{R}$ cannot be shattered

 $x_1 \leq x_2$, impossible to label (+1, -1)

Theorem 4.1.2 (growth function bound). Let \mathcal{H} be a hypothesis class with VC-dimension d. Then,

$$\forall n >> d \colon \Pi_{\mathcal{H}}(n) << \left(\frac{e^n}{d}\right)^d \leq n^d \text{ if } d \geq 3$$

Theorem 4.1.3 (Generalization Bound Using VC-Dimension). Let \mathcal{H} be a hypothesis class taking values in $y = \{\pm 1\}$ and has VC-dim d. Consider the 0-1 loss.

Then, for all $\delta \in (0,1)$,

w.p.
$$\geq 1 - \delta$$
, $\sup_{h \in \mathcal{H}} (L(h) - L_S(h)) \leq \sqrt{\frac{2d \log e^n}{d}} + \sqrt{\frac{\log \frac{1}{\delta}}{2n}}$

Remark. This VC-dimension bound requires n >> d. In other words, it is effective when the hypothesis class is relatively less expressive.

4.2 More on VC-Dimension

First we look at more examples illustrating the concept of VC-dimension.

Example (Axis-aligned rectangles). Let $\mathcal{X} = \mathbb{R}$, $\mathcal{H} = \{h_{a,b,c,d} : a,b,c,d \in \mathbb{R}\}$, and $h \in \mathcal{H}$ be the form

$$h_{a,b,c,d}(x) = \begin{cases} 1 & \text{if } x_1 \in [a,b], x_2 \in [c,d] \\ -1 & \text{otherwise} \end{cases}$$

Then we have **Vc-dim** $\mathcal{H} = 4$.

Proof. 1. there exists 4 points that can be shattered exists or for all?

2. Any 5 points cannot be shattered Choose the minimum axis-aligned rectangle that contains all 5 points, then it is impossible to label the sides +1 while labeling inside one -1

Example (Linear Functions). Let $\mathcal{X} = \mathbb{R}$, $\mathcal{H} = \{h_w : w \in \mathbb{R}^d\}$, and

$$h_w(x) = \operatorname{sign}(w^T x) = \begin{cases} 1 & \text{if } w^T x \ge 0\\ -1 & \text{if } w^t x < 0 \end{cases}$$

Then $Vc\text{-dim}(\mathcal{H}) = d$.

Proof. 1. $\exists d$ points that can be shattered Same Question exists or for all?

Choose $x_1, \ldots, x_d \in \mathbb{R}^d$ that are linearly independent.

Then for all $y_1, \ldots, y_d \in \{\pm 1\}$, we can find a $w \in \mathbb{R}^d$ such that $w^T x_i = y_i$, for all $i = 1, \ldots, d$ by solving the set of linear equations.

2. Any d+1 point cannot be shattered

Assume for the sake of contradiction that there exists d+1 points: x_1, \ldots, x_d that can be shattered.

In formal terms, $\exists \alpha = (\alpha_1, \dots, \alpha_{d+1})$ s.t. $\sum_{i=1}^{d+1} \alpha_i x_i = 0, \ \alpha \neq 0, \ i.e. \ \exists \text{ a coordinate } k \in \{1, \dots, d+1\}$ s.t. $\alpha_k \neq 0$. WLOG we can assume $\alpha_k > 0$.

For all $w \in \mathbb{R}^d$, we must have $\sum_{i=1}^{d+1} \alpha_i w^T x_i = 0$. why?

Then let $y_i = \operatorname{sign}(\alpha_i), i = 1, \dots, d+1$. $\exists w \in \mathbb{R}^d$ s.t. $\operatorname{sign}(w^T x_i) = y_i$.

Then we find the contradiction:

$$0 = \sum_{i=1}^{d+1} \alpha_i(w^T x_i) < 0$$
 opposite sign

Example (Sine Function). Let $\mathcal{X} = \mathbb{R}$, $\mathcal{H} = \{h_\omega : \omega \in \mathbb{R}\}$, and $h = \text{sign}(\sin(\omega x))$

Then $Vc\text{-dim}(\mathcal{H}) = \infty$.

Proof. It suffices to show that \exists n points that can be shattered, for any n. Consider n points, $x_i = 2^{-i}$ (i = 1, ..., n) and any labeling $y_1, ..., y_n \in \{\pm 1\}$.

Define $\frac{\omega}{\pi} = \left(y_n' y_{n-1}' \dots y_1' 1\right)_2$ in terms of binary integer, where $y_i' = \begin{cases} 0 & \text{if } y_i = 1 \\ 1 & \text{if } y_i = -1 \end{cases}$

WTS sign $(\sin(\omega x_i)) = y_i$,

which can be realized through

$$\frac{\omega x_i}{\pi} = \frac{\omega}{\pi} 2^{-i} = (y'_n y'_{n-1} \dots y'_1 1)_2$$

Not fully understand

Theorem 4.2.1 (VC-dimension in finite precision). Let \mathcal{H} be parametrized by p parameters, with each stored in k bits. $\mathcal{H} = \{h_{\theta}, \theta \in \mathbb{R}^P\}$, then VC-dim $(\mathcal{H}) \leq k \cdot p$.

Proof. There are $(2^k)^p$ choices for $\theta = (\theta_1, \dots, \theta_p)$, and then

$$2^{\text{Vc-dim}(\mathcal{H})} \le |\mathcal{H}| \le 2^{kp}$$

Remark (Limitation of VC-dimension).

$$L(h) - L_S(h) \le \tilde{O}\left(\sqrt{\frac{VC - dim(\mathcal{H})}{n}}\right)$$

$$\le \tilde{O}\left(\sqrt{\frac{\#params}{n}}\right)$$

If # params » # samples, the bound will become vacuous.

Margin Theory

We focus on the binary classification setting where $y = \{\pm 1\}$.

5.1 Basic Setups

Definition 5.1.1 (Margin). The margin of a function $h: \mathcal{X} \to \mathbb{R}$ at a point $x \in \mathcal{X}$ labeled with $y \in \{\pm 1\}$ is yh(x).

Remark. We have $\hat{y} = \text{sign}(h(x))$; and a classification is correct when yh(x) > 0.

Definition 5.1.2 (Margin Loss). For any $\gamma > 0$, define γ -margin loss as

$$\ell_{\gamma}(y',y) = \ell_{\gamma}(yy') = \begin{cases} 1, & \text{if } yy' \leq 0\\ 1 - \frac{yy'}{\gamma} & \text{if } 0 < yy' < \gamma\\ 0, & \text{if } yy' \geq \gamma \end{cases}$$

Remark. Margin Loss ≥ 0 -1 loss (in terms of their graphs).

Definition 5.1.3 (Population & Empirical Risk for Margin Loss).

$$L_{\gamma}(h) = \mathbb{E}_{(x,y)\sim P} \left[\ell_{\gamma}\left(h(x),y\right)\right]$$

$$L_{\gamma,S}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell_{\gamma} \left(h(x_i), y_i \right)$$

Remark. $\ell_{\gamma}(\cdot)$ is $\frac{1}{\gamma}$ -Lipschitz.

SideNote: We say $f: \mathbb{R} \to R$ is C-Lipschitz if $|f(x) - f(x')| \le C|x - x'|$ for all $x, x' \in \mathbb{R}$. OR equivalently, $|f'(x)| \le C, \forall x \in R$.

Lemma 5.1.1 (Talagrend's Lemma). Let $\phi \colon \mathbb{R} \to \mathbb{R}$ be a C-Lipschitz function. Then,

$$R_S(\phi \circ \mathcal{H}) \leq C \cdot R_S(\mathcal{H})$$

where $\phi \circ \mathcal{H} = \{z \mapsto \phi(h(z)) : h \in \mathcal{H}\}.$

Theorem 5.1.1 (Margin-based generalization bound for binary classification). Let \mathcal{H} be a function class mapping $\mathcal{X} \to \mathbb{R}$. Fix $\gamma > 0$. Then, for any $\delta \in (0,1)$, with probability $\geq 1 - \delta$ we have:

$$\sup_{h \in \mathcal{H}} \left(L_{\gamma}(h) - L_{\gamma,S}(h) \right) \le \frac{2}{\gamma} R_n(\mathcal{H}) + \sqrt{\frac{\log \frac{1}{\delta}}{2n}}$$

Also with probability $\geq 1 - \delta$, we have:

$$\sup_{h \in \mathcal{H}} \left(L_{\gamma}(h) - L_{\gamma,S}(h) \right) \le \frac{2}{\gamma} R_{S}(\mathcal{H}) + 3\sqrt{\frac{\log \frac{1}{\delta}}{2n}}$$

Proof.

$$G_{\gamma} = \{(x, y) \mapsto \ell_{\gamma}(yh(x)) \colon h \in \mathcal{H}\}$$
$$= \{(x, y) \mapsto \ell_{\gamma}(\hat{h}(x, y)) \colon \hat{h} \in \hat{\mathcal{H}}\}$$
$$= \ell_{\gamma} \circ \hat{\mathcal{H}}$$

where $\hat{\mathcal{H}} = \{(x, y) \to yh(x) \colon h \in \mathcal{H}\}.$

$$R_{S}(\hat{\mathcal{H}}) = \mathbb{E}_{\vec{\sigma}} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} y_{i} h(x_{i}) \right]$$
$$= \mathbb{E}_{\vec{\sigma}} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} h(x_{i}) \right]$$
$$= R_{S}(\mathcal{H})$$

By Talagrend's lemma, $R_S(G_\gamma) \leq \frac{1}{\gamma} R_S(\hat{\mathcal{H}}) = \frac{1}{\gamma} R_S(\mathcal{H})$.

Completes the proof by applying the generalization bound for G_{γ}

What generalization bound?

Part II Optimization

Gradient descent and Convex Optimization

Please refer to appendix 1 and 2 for a basic calculus and linear algebra recap at first.

Gradient Descent is an iterative algorithm, where we are concerned with

$$\min_{x \in \mathbb{R}^d} f(x)$$

The algorithm starts at $x_0 \in \mathbb{R}^d$ and iteratively update the variable x_1, x_2, \ldots

When the point is at x_t , we can do 1st-order Taylor expansion:

$$f(x_t + \Delta x) \approx f(x_t) + \langle \nabla f(x_t), \Delta x \rangle + \cdots$$

In order to decrease f as much as possible, we can choose $\Delta x//-\nabla f(x_t)$.

Remark

$$\inf_{\|\Delta x\|_2 \leq \epsilon} \langle a, \Delta x \rangle = -\epsilon \|a\|_2$$

the optimum occurs at $\Delta x = \epsilon \frac{a}{\|a\|_2}$

This motivates **Gradient Descent**(GD).

$$x_{t+1} = x_t - \eta \nabla f(x_t), \ t = 0, 1, 2, \dots$$

where $\eta > 0$ is called step size or learning rate.

In order for GD to do what it's supposed to do, we want the 1st-order Taylor expansion to be accurate.

Error of 1st-order Taylor:

$$f(x) - f(x_t) - \langle \nabla f(x_t), x - x_t \rangle = \frac{1}{2} (x - x_t)^T \nabla^2 f(\xi) (x - x_t)$$

$$\leq \frac{1}{2} \|\nabla^2 f(\xi)\|_2 + \|x - x_t\|_2^2$$

Definition 6.0.1 (smoothness). A differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ is β -smooth $(\beta > 0)$ if

$$\|\nabla f(x) - \nabla f(y)\|_2 \le \beta \|x - y\|_2, \ \forall \ x, y$$

In other words, gradient of f is β -Lipschitz.

Remark. When f is twice differentiable, $f: \mathbb{R}^d \to \mathbb{R}$ is equivalent to

$$\|\nabla^2 f(x)\|_2 \le \beta, \ \forall \ x$$

Lemma 6.0.1. If f is β -smooth, then:

$$|f(y) - f(x) - \langle \nabla f(x), y - x \rangle| \le \frac{\beta}{2} ||x - y||_2^2$$

Proof.

$$\begin{split} |f(y)-f(x)-\langle \nabla f(x),y-x\rangle| &= |\int_0^1 \langle \nabla f(x+t(y-x)),y-x\rangle - \int_0^1 \langle \nabla f(x),y-x\rangle dt| \qquad \text{FTC} \\ &= |\int_0^1 \langle \nabla f(x+t(y-x))-\nabla f(x),y-x\rangle dt| \\ &\leq \int_0^1 \|\nabla f(x+t(y-x))-\nabla f(x)\|_2 \|y-x\|_2 \quad \text{Cauchy-Schwardz} \\ &\leq \int_0^1 \beta \cdot \|t(y-x)\|_2 \cdot \|y-x\|_2 dt \qquad \text{beta - smooth} \\ &= \beta \|y-x\|_2^2 \cdot \int_0^1 t dt \\ &= \frac{\beta}{2} \|y-x\|_2^2 \end{split}$$

Lemma 6.0.2 (Descent Lemma). If f is β -smooth and $\eta \leq \frac{1}{\beta}$, then GD with step size η ($x_{t+1} = x_t - \eta \nabla f(x_t)$) satisfies

$$f(x_{t+1}) \le f(x_t) - \frac{\eta}{2} \|\nabla f(x_t)\|_2^2$$

Proof.

$$f(x_{t+1}) \leq f(x_t) + \langle f(x_t), t_1 - t \rangle + \frac{\beta}{2} ||t_1 - t||_2^2$$
 previous lemma
$$= f(x_t) + \langle f(x_t), -\eta \nabla f(x_t) \rangle + \frac{\beta}{2} ||-\eta \nabla f(x_t)||_2^2$$

$$= f(x_t) - \left(\eta - \frac{\beta}{2} \eta^2\right) ||f(x_t)||_2^2$$

$$\leq f(x_t) - \frac{\eta}{2} ||f(x_t)||_2^2$$

Remark. Descent Lemma shows that every step in a β -smooth function f decreases the function value.

Corollary 6.0.1. If f is β -smooth, then GD with step size $\eta \leq \frac{1}{\beta}$ must satisfy:

- $\lim_{t\to\infty} f(x_t)$ exists
- $\lim_{t\to\infty} \|\nabla f(x_t)\|_2 = 0$, since function converges and $f(x_t) f(x)$ is bounded by it.

6.1 Convex Optimization

Definition 6.1.1 (convexity). We present the following definitions:

convex set: A set $X \subseteq \mathbb{R}^d$ is convex if

$$\forall x, y \in X, \ \forall \gamma \in (0,1) \colon (1-\gamma)x + \gamma y \in X$$

convex function: A function $f: X \to \mathbb{R}$ is convex if X is convex and

$$\forall x, y \in X, \ \forall \gamma \in (0,1) \colon f((1-\gamma)x + \gamma y) \le (1-\gamma)f(x) + \gamma f(y)$$

Example. Common Convex Functions

- linear function
- squared norm

Example (Examples that preserve convexity). E.g.

- non-negative weighted sum
- composition with affine mapping
- pointwise supreme

Example (Linear Model). Given dataset $S = \{x_i, y_i\}_{i=1}^n$, $\mathcal{H} = \{x \mapsto w^T x \colon w \in \mathbb{R}^d\}$. Empirical risk $L_S(w) = \frac{1}{n} \sum_{i=1}^n \ell(w^T x_i, y_i)$

claim: If $\ell(y',y)$ is convex in its first argument (for any fixed y), then L_S is convex.

Let's see the common loss functions that are convex in first argument. $(y \in \{\pm 1\})$

- squared loss: $\ell(y', y) = (y y')^2$ Convex
- 0-1 loss: $\ell(y', y) = \mathbb{1}[yy' \le 0]$ not Convex
- Margine loss: not convex
- Hinge loss: convex
- logistic loss: $\ell(y', y) = \log(1 + e^{-yy'})$ convex

Lemma 6.1.1 (first-order & second-order characterization of convex functions). First, if f is differentiable, then f is convex if and only if

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle, \ \forall x, y$$

Second, if f is twice-continuously differentiable, then f is convex if and only if

$$\nabla^2 f(x) \succeq 0, \ \forall x$$

Definition 6.1.2 (Local Minimum). A local minimum of a function $f: \mathbb{R}^d \to \mathbb{R}$ is a point $x \in \mathbb{R}$ such that $\exists \epsilon > 0$:

$$f(x) \le f(y), \ \forall \ y \ \text{satisfying} \ \|y - x\|_2 \le \epsilon$$

Lemma 6.1.2. Every local minimum of a convex function is a global minimum.

Proof. Suppose x is a local minimum but not global minimum, i.e., $\exists y \text{ s.t. } f(y) < f(x)$.

By convexity, for all $\gamma \in (0,1)$,

$$f((1-\gamma)x + \gamma y) \le (1-\gamma)f(x) + \gamma f(y)$$

$$\le (1-\gamma)f(x) + \gamma f(x)$$

$$= f(x)$$

As we take $\gamma \to 0$, we have $\|(1-\gamma)x + \gamma y - x\|_2 \to 0$, yielding a contraction.

Remark. Isn't it "As we take $\gamma \to 1$, we have $||f((1-\gamma)x+\gamma y)-f(x)||_2 \to 0$, yielding a contraction."

Lemma 6.1.3. If $f: \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable, and $\nabla f(x) = 0$ (*i.e.* x is a stationary point), then x is a global minimum.

Proof.
$$\forall y, f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle = f(x)$$

Lemma 6.1.4. If $f: \mathbb{R}^d \to \mathbb{R}$ is differentiable, and x is a local minimum, then $\nabla f(x) = 0$.

Corollary 6.1.1. If f is convex and differentiable, then x is a global minimum if and only if $\nabla f(x) = 0$.

6.2 Convergence of GD for Smooth Convex Functions

Lemma 6.2.1 (contraction lemma). If f is convex and β -smooth, and $\eta \leq \frac{1}{\beta}$, then:

$$||x_{t+1} - x^*||_2 \le ||x_t - x^*||_2, \ \forall \ t$$

Proof.

$$||x_{t+1} - x^*||_2^2 = ||(x_t - x^*) - \eta \nabla f(x)||_2^2$$

$$= ||x_t - x^*||_2^2 - 2\eta \langle x_t - x^*, \nabla f(x_t) \rangle + \eta^2 ||\nabla f(x)||_2^2$$

$$\leq ||x_t - x^*||_2^2 - 2\eta (f(x_t) - f(x^*)) + 2\eta (f(x_t) - f(x^{t+1}))$$

$$= ||x_t - x^*||_2^2 - 2\eta (f(x_{t+1}) - f(x^*))$$

$$\leq ||x_t - x^*||_2^2$$

Where the step from 2nd to 3rd line relies on the convexity assumption and the descent lemma.

Remark. In addition to the descent lemma, contraction lemma tells us that not only the function value decreases, the next step's x always gets closer to the optimum point.

Theorem 6.2.1 (GD convergence for smooth convex functions). If f is convex and β -smooth, and $\eta \leq \frac{1}{\beta}$, then:

$$f(x_t) - f(x^*) \le \frac{2\|x_0 - x^*\|_2^2}{nt}, \quad \forall t \ge 1$$

Proof. Let $\delta_t = f(x_t) - f(x^*)$.

By the descent lemma,

$$\delta_{t+1} \le \delta_t - \frac{\eta}{2} \|\nabla f(x)\|_2^2 \tag{1}$$

By convexity and contraction lemma,

$$\delta_{t} \leq \langle \nabla f(x_{t}), x_{t} - x^{*} \rangle \leq \|\nabla f(x_{t})\| \|x_{t} - x^{*}\|$$

$$\leq \|\nabla f(x_{t})\| \|x_{0} - x^{*}\|$$
(2)

By putting (1) and (2) together, we have

$$\delta_{t+1} \le \delta_t - \frac{\eta}{2} \left(\frac{\delta_t}{\|x_0 - x^*\|_2} \right)^2$$

Diving this inequality by $\delta_t \cdot \delta_{t+1}$, we can get the following:

$$\frac{1}{\delta_t} \le \frac{1}{\delta_{t+1}} - \frac{\eta}{2\|x_0 - x^*\|_2} \cdot \frac{\delta_t}{\delta_{t+1}} \le \frac{1}{\delta_{t+1}} - \frac{\eta}{\|x_0 - x^*\|_2}$$

Taking the sum over $t = 0, 1, \dots, t - 1$:

$$\sum_{s=0}^{t-1} \left(\frac{1}{\delta_s} - \frac{1}{\delta_{s+1}} \right) \le -\frac{\eta t}{2 \|x_0 - x^*\|_2}$$

which gives to the desired inequality:

$$\delta_t \le \frac{2\|x_0 - x^*\|_2^2}{\eta t}$$

Remark. Let $\eta = \frac{1}{\beta}$, we get $\delta_t \leq \frac{2\beta \|x_0 - x^*\|_2^2}{t}$.

To get $\delta_t \leq \epsilon$, we need the step size $t \geq \frac{2\beta \|x_0 - x^*\|_2^2}{\epsilon}$

Convergence of GD Under Certain Conditions

7.1 For Smooth and Convex Functions

Definition 7.1.1 (strong convexity). $f: \mathbb{R}^d \to \mathbb{R}$ is α -strongly convex $(\alpha > 0)$ if $f(x) - \frac{\alpha}{2} ||x||_2^2$ is convex.

Lemma 7.1.1 (first-order & second-order characterization of strong convexity). 1. first-order: If $f: \mathbb{R}^d \to \mathbb{R}$ is differentiable, then f is α -SC if and only if:

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\alpha}{2} ||y - x||_2^2 \ \forall \ x, y$$

2. second-order: If $f: \mathbb{R}^d \to \mathbb{R}$ is twice continuously differentiable, then f is α -SC if and only if:

$$\nabla^2 f(x) \succeq \alpha I, \ \forall x$$

Example. $f(x) = \frac{1}{2}x^T Ax$ for symmetric A. Then we know $\nabla^2 f(x) = A$.

If $\lambda_{\min}(A) > 0$, then f is $\lambda_{\min}(A) - SC$, and $\lambda_{\min} - \text{smooth}$.

Theorem 7.1.1 (GD convergence for smooth and strongly-convex functions). If f is β -smooth and $\alpha - SC$, and $\alpha \leq \frac{1}{\beta}$, then

1.
$$||x_{t+1} - x^*||_2^2 \le (1 - \alpha \eta) \cdot ||x_t - x^*||_2^2, \forall t.$$

2.
$$f(x_t) - f(x^*) \leq \frac{\beta}{2} (1 - \alpha \eta)^t ||x_0 - x^*||_2^2$$

Proof.

$$||x_{t+1} - x^*||_2^2 = ||(x_t - x^*) - \eta \nabla f(x_t)||_2^2$$

$$= ||x_t - x^*||_2^2 - 2\eta \langle x_t - x^*, \nabla f(x_t) \rangle + \eta^2 ||\nabla f(x_t)||_2^2$$

$$\leq ||x_t - x^*||_2^2 - 2\eta \left(f(x_t) - f(x^*) + \frac{\alpha}{2} ||x_t - x^*||_2^2 \right) + 2\eta \left(f(x_t) - f(x_{t+1}) \right)$$

$$= (1 - \alpha \eta) ||x_t - x^*||_2^2 - 2\eta \left(f(x_{t+1}) - f(x^*) \right)$$

$$\leq (1 - \alpha \eta)$$

which finishes (1). To see how we prove (2), we proceed as follows:

By (1), we have $||x_t - x^*||_2^2 \le (1 - \alpha \eta)^t ||x_0 - x^*||_2^2$, then:

$$f(x_t) - f(x^*) \le \langle \nabla f(x^*), x_t - x^* \rangle + \frac{\beta}{2} ||x_t - x^*||_2^2$$
$$\le \frac{\beta}{2} (1 - \alpha \eta)^t ||x_0 - x^*||_2^2$$

Remark. If $\eta = \frac{1}{\beta}$:

$$||x_t - x^*||_2^2 \le \left(1 - \frac{\alpha}{\beta}\right) ||x_0 - x^*||_2^2$$

$$= \left(1 - \frac{1}{\kappa}\right) ||x_0 - x^*||_2^2$$

$$\le e^{-\frac{t}{\kappa}} ||x_0 - x^*||_2^2$$

where we set $\kappa = \frac{\beta}{\alpha}$ to be the "condition number" and the last line comes from $1 - \frac{1}{\kappa} \le e^{-\frac{1}{\kappa}}$.

Alternatively, if we want $\|x_t - x^*\|_2^2 \le \epsilon$, we need to set the step size $t \ge \kappa \log \frac{\|x_0 - x^*\|_2^2}{\epsilon}$.

Example (Linear Regression). $x_1,...,x_n \in \mathbb{R}^d, \ y_1,...,y_n \in \mathbb{R}, \ \mathcal{H} = \{x \mapsto w^Tx : w \in \mathbb{R}^d\}$

ERM minimizes:

$$L(w) = \frac{1}{2n} \sum_{i=1}^{n} (w^{T} x_{i} - y)^{2}$$

$$= \frac{1}{2n} ||XW - y||_{2}^{2}$$

$$= \frac{1}{2n} (w^{T} X^{T} X w - 2y^{T} X w + y^{T} y)$$

where $X = [x_1^T \dots x_n^T]^T \in \mathbb{R}^{n \times d}, y = [y_1 \dots y_n]^T \in \mathbb{R}^n$.

We can calculate gradient and Hessian of L(w) as follows:

$$\nabla L(w) = \frac{1}{2n} \left(2X^T X W - 2y^T X + y^T y \right)$$
$$\nabla^2 L(w) = \frac{1}{n} X^T X \succeq 0$$

Let $\beta = \lambda_{\max}(\frac{1}{n}X^TX)$ and $\alpha = \lambda_{\min}(\frac{1}{n}X^TX)$

Then L is β -smooth and α -SC (if $\alpha > 0$).

Example (Logistic Regression). $y_i \in \{\pm 1\}$

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + e^{-y_i w^T x_i} \right)$$

We calculate the gradient and Hessian as above:

$$\nabla L(w) = \frac{1}{n} \sum_{i=1}^{n} \frac{e^{-y_i w^T x_i (-y_i x_i)}}{1 + e^{-y_i w^T x_i}} \in \mathbb{R}^d$$

Note that $\left(\frac{e^z}{1-e^z}\right)' = \frac{e^z}{(1+e^z)^2}$

$$\nabla^2 L(w) = \frac{1}{n} \sum_{i=1}^n \frac{e^{-y_i w^T x_i}}{(1 + e^{-y_i w^T x_i})^2} (-y_i x_i) (-y_i x_i)^T$$
$$= \frac{1}{n} \sum_{i=1}^n \frac{e^{-y_i w^T x_i}}{(1 + e^{-y_i w^T x_i})^2} x_i x_i^T$$

It turns out that $\frac{e^{-y_i w^T x_i}}{(1+e^{-y_i w^T x_i})^2} \leq \frac{1}{4}$. Therefore,

$$\nabla^2 L(w) \leq \frac{1}{n} \sum_{i=1}^n \frac{1}{4} x_i x_i^T = \frac{1}{4n} X^T X$$

and we conclude that L is β -smooth with $\beta = \lambda_{max}(\frac{1}{4n}X^TX)$.

What about strong convexity? As $\|w\|_2 \to \infty$ and $w^T x_i \neq 0$, then $\frac{e^{-y_i w^T x_i}}{(1 + e^{-y_i w^T x_i})^2} \to 0$. Therefore, $\exists w \text{ s.t. } \nabla^2 L(w) \prec \alpha I, \forall \alpha > 0$

7.2 Linear Convergence under PL condition

Definition 7.2.1 (Poly-Lojasiewicz(PL) condition). A differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ satisfies $\alpha - PL$ condition $(\alpha > 0)$ if

$$\|\nabla f(x)\|_{2}^{2} \geq 2\alpha \left(f(x) - f(x^{*})\right), \ \forall \ x \in \mathbb{R}^{d}$$

where $x^* = \operatorname{argmin}_{x \in \mathbb{R}^d} f(x)$.

Lemma 7.2.1 ($\alpha - SC \Rightarrow \alpha - PL$). If f is differentiable and $\alpha - SC$, then f is $\alpha - PL$.

Proof. By the 1st-order characterization of $\alpha - SC$:

$$\begin{split} f(y) &\geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\alpha}{2} \|y - x\|_2^2, \forall \ x, y \\ \min_y \{f(y)\} &\geq \min_y \{f(x) + \langle \nabla f(x), y - x \rangle + \frac{\alpha}{2} \|y - x\|_2^2\} \\ f(x^*) &\geq f(x) + \langle \nabla f(x), -\frac{1}{\alpha} \nabla f(x) \rangle + \frac{\alpha}{2} \cdot \frac{1}{\alpha^2} \|\nabla f(x)\|_2^2 \\ &= f(x) - \frac{1}{2\alpha} \|\nabla f(x)\|_2^2 \end{split}$$

where the second last line comes from the fact that optimal $y = x - \frac{1}{\alpha} \nabla f(x)$. why?

Remark. $\alpha - PL$ is a weaker condition than $\alpha - SC$, where the latter is a necessary condition for the former.

Theorem 7.2.1 (Convergence of GD for smooth and PL functions). If f is β -smooth and α -PL, and

 $\eta \leq \frac{1}{\beta}$, then:

$$f(x_t) - f(x^*) \le (1 - \alpha \eta)^t (f(x_0) - f(x^n))$$

Proof.

$$f(x_{t+1}) - f(x^*) \le f(x_t) - f(x^*) - \frac{\eta}{2} \|\nabla f(x_t)\|_2^2$$
 Descent Lemma

$$\le f(x_t) - f(x^*) - \frac{\eta}{2} \cdot 2\alpha (f(x_t) - f(x^*))$$
 alpha-PL

$$= (1 - \eta \alpha)(f(x_t) - f(x^*))$$

Properties of PL functions

- 1. Not necessarily convex, e.g., $f(x) = x^2 + 3\sin^2 x$
- 2. Can have multiple global minima (This is on the contrary to αSC functions, where its global minima is unique)
- 3. All stationary points are global minima

$$\nabla f(x) = 0 \Rightarrow 0 = \|\nabla f(x)\|_{2}^{2} \ge 2\alpha \left(f(x) - f(x^{*})\right)$$
$$\Rightarrow f(x) \le f(x^{*})$$
$$\Rightarrow f(x) = f(x^{*})$$

Example (Overparametrized Linear Regression). We start off in same setting as the previous linear regression example (that is, the same symbols, gradient, and Hessian), etc. However, here n << d – there are many more parameters than observations.

In order for L to be SC, we need $\lambda_{\min}(X^TX) > 0$, where X^TX is a $d \times d$ matrix.

But if n < d, X^TX is not full-rank – we have $\operatorname{rank}(XX^T) \le n < d$. As non-full-rank matrices have at least one zero singular value, this implies that $\lambda_{\min} = 0$ and thus L is not SC.

Fortunately, we can still show the PL condition in this case.

Assume rank $(X) = n, (x_1, \ldots, x_n)$ are linearly independent, then

$$\exists w^* \in \mathbb{R}^d \text{ s.t. } (w^*)^T x_i = y_i, \forall i$$

In fact, infinite w^* of this form exist and lie in the same subspace of \mathbb{R}^d . We will show, where $XX^T \in \mathbb{R}^{n \times n}$, that:

$$\|\nabla L(W)\|_{2}^{2} \ge 2\lambda_{\min}(\frac{1}{n}XX^{T}) \cdot (L(w) - L(w^{*}))$$

To prove this,

$$\|\nabla L(W)\|_{2}^{2} = \frac{1}{n} \|X^{T}(Xw - y)\|_{2}^{2}$$

$$= \frac{1}{n^{2}} (Xw - y)^{T} X X^{T} (Xw - y)$$

$$\geq \frac{1}{n^{2}} \lambda_{\min} (XX^{T}) \cdot \|Xw - y\|_{2}^{2}$$

$$= \frac{2}{n} \lambda_{\min} (XX^{T}) \cdot (L(w) - L(w^{*}))$$

and so L satisfies the PL condition.

the second last line why?

Non-Convex Optimization

8.1 Basics

We focus on unconstrained optimization problems

$$\min_{x \in \mathbb{R}^d} f(x)$$

Assume: f is β -smooth and twice continuously differentiable.

Definition 8.1.1 (stationary point). x is a stationary point of f if $\nabla f(x) = 0$. x is an ϵ -stationary point if $\|\nabla f(x)\|_2 \leq \epsilon$.

Theorem 8.1.1 (Convergence of GD to an ϵ -stationary point). If f is β -smooth, then for any $\epsilon > 0$, GD with $\eta \leq \frac{1}{\beta}$ finds an ϵ -stationary point within $T = \frac{2(f(x_0) - f(x^*))}{\eta \epsilon^2}$, *i.e.*:

$$\min_{0 \le t \le T} \|\nabla f(x_t)\|_2 \le \epsilon$$

Proof. By descent lemma:

$$f(x_t) - f(x_{t+1}) \ge \frac{\eta}{2} \|\nabla f(x_t)\|_2^2$$

Sum over t = 0, 1, ..., T - 1:

$$f(x_0) - f(x^*) \ge f(x_0) - f(x_T) \ge \frac{\eta}{2} \sum_{t=0}^{T-1} \|\nabla f(x_t)\|_2^2$$

$$\frac{1}{T} \sum_{t=0}^{T-1} \|\nabla f(x_t)\|_2^2 \le \frac{2}{\eta T} (f(x_0) - f(x^*)) = \epsilon^2$$

$$\min_{0 \le t \le T-1} \left\| \nabla f(x_t) \right\|_2^2 \le \epsilon$$

and this gives us our result. Note when $\eta = \frac{1}{\beta}$, we have that $T = \frac{2\beta(f(x_0) - f(x^*))}{\epsilon^2}$.

Remark. What does this mean for non-convex functions?

- Gradient descent is unlikely to go to a local maximum.
- Local minima are likely the best we can hope for in general.

Definition 8.1.2 (saddle point). A saddle point is a stationary point but not a local minimum or local maximum. Equivalently, x is a saddle point of f if $\nabla f(x) = 0$, and $\forall \ \epsilon > 0$, $\exists y, z \text{ s.t. } \|y - x\|_2 \le \epsilon$, $\|z - x\|_2 \le \epsilon$ and f(y) < f(x) < f(z).

Definition 8.1.3 (strict saddle point). A saddle point x of f is strict if $\lambda_{\min}(\nabla^2 f(x)) < 0$

Example. We have the following two functions:

$$f_1(x_1, x_2) = x_1^2 - x_2^2$$

 $f_2(x_1, x_2) = x_1^2 - x_2^3$

With some calculations, we get that

$$\nabla f_1(x_1, x_2) = (2x_1 - 2x_2)^T$$
$$\nabla^2 f_1(x_1, x_2) = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$$

At (0,0), the gradient is 0, but $\lambda_{min}(\nabla^2 f_1(0,0)) < 0$. So (0,0) is a strict saddle point of f_1 . But with f_2 ,

$$\nabla f_2(x_1, x_2) = (2x_1 - 3x_2^2)^T$$
$$\nabla^2 f_2(x_1, x_2) = \begin{bmatrix} 2 & 0\\ 0 & -6x_2 \end{bmatrix}$$

At (0,0), the gradient is 0, but $\lambda_{min}(\nabla^2 f_2(0,0)) = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \succeq 0$. So (0,0) is a non-strict saddle point of f_2 .

8.2 Second-order stationary point

Definition 8.2.1 (second-order stationary point). x is a second-order stationary point (SOSP) of f if $\nabla f(x) = 0$ and $\nabla^2 f(x) \succeq 0$. x is an (ϵ_1, ϵ_2) -SOSP if $\|\nabla f(x)\|_2 \leq \epsilon_1$, $\nabla^2 f(x) \succeq -\epsilon_2 I$

Definition 8.2.2 (Hessian-Lipschitzness). f is ρ -Hessian-Lipschitz if

$$\left\|\nabla^2 f(x) - \nabla^2 f(y)\right\|_2 \leq \rho \|x - y\|_2, \ \forall \ x, y \in \mathbb{R}^d$$

Equivalently,

$$|f(y) - \left(\langle \nabla f(x), y - x \rangle + \frac{1}{2} (y - x)^T \nabla^2 f(x) (y - x) \right)| \le \frac{\rho}{6} ||x - y||_2^3, \ \forall \ x, y \in \mathbb{R}^d$$

Finding ϵ -SOSP using Hessian information

Suppose $\|\nabla f(x_t)\|_2 < \epsilon$ and $\lambda_{\min}(\nabla^2 f(x_t)) < -\epsilon_2$

$$f(x_t + v) = f(x_t) + \langle \nabla f(x_t), v \rangle + \frac{1}{2} v^T \nabla^2 f(x_t) v \pm \frac{\rho}{6} ||v||_2^3$$

We want to find v such that $v^T \nabla^2 f(x_t) v$ is minimized. An intuitive solution is to use the bottom eigenvector.

Recap:
$$\sup_{\|v\|_2=1} v^T A v = \lambda_{\max}(A), \text{ achieved by top eigenvector}$$

$$\inf_{\|v\|_2=1} v^T A v = \lambda_{\min}(A), \text{ achieved by bottom eigenvector}$$

Algorithm 1 GD + Eigenvector Computation

```
1: Initialize x_0 \in \mathbb{R}^d
2: for t = 0, 1, 2... do
3: if ||\nabla f(x_t)||_2 > \epsilon then
4: x_{t+1} := x_t - \eta \nabla f(x_t)
5: else
6: v_t := \text{Eigenvector of } \nabla^2 f(x_t) \text{ corresponding to the smallest eigenvalue}
7: v_t := v_t / ||v_t||_2
8: x_{t+1} := \begin{cases} x_t + \gamma v_t & \text{if } f(x_t + \gamma v_t) \leq f(x_t - \gamma v_t) \\ 0 & \text{otherwise} \end{cases}
9: end if
10: end for
```

Theorem 8.2.1 (GD + eigenvector finds SOSP). Assume that f is β -smooth and ρ -Hessian Lipschitz. Fix $\epsilon > 0$. Let $\eta = \frac{1}{\beta}$ and $\gamma = \sqrt{\frac{\epsilon}{\rho}}$.

Then within $T = \frac{3\beta(f(x_0) - f(x^*))}{\epsilon^2}$ iterations, at least one of the iterates x_t $0 \le t \le T$ is an $(\epsilon, \sqrt{\rho\epsilon})$ -SOSP.

Proof. Proof by contradiction. Assume that all iterates x_0, \ldots, x_T are not $(\epsilon, \sqrt{\rho \epsilon})$ -SOSP. Then we want to show we will have a sufficient decrease of $f(x_t)$ in every iteration, and reach a contradiction.

Case 1: $\|\nabla f(x_t)\|_2 > \epsilon$.

By descent lemma: $f(x_{t+1}) - f(x_t) \le -\frac{\eta}{2} \|\nabla f(x_t)\|_2^2 < -\frac{1}{2}\epsilon^2 = \frac{1}{2\beta}\epsilon^2$

Case 2: $\|\nabla f(x_t)\|_2 \le \epsilon$.

By our assumption that x_t is not an $(\epsilon, \sqrt{\rho \epsilon})$ -SOSP, we know $\lambda_{\min}(\nabla^2 f(x_t)) < -\sqrt{\rho \epsilon}$

By choice of v_t : $v_t^T \nabla^2 f(x_t) v_t = \lambda_{\min}(\nabla^2 f(x_t)) < -\sqrt{\rho \epsilon}$.

$$f(x_{t+1}) = \min\{f(x_t + \gamma v_t), f(x_t - \gamma v_t)\}$$

$$\leq f(x_t) + \min\{\langle \nabla f(x_t), \gamma v_t \rangle, \langle \nabla f(x_t), -\gamma v_t \rangle\} + \frac{1}{2}(\gamma v_t)^T \nabla^2 f(x_t)(\gamma v_t) + \frac{\rho}{6} \|\gamma v_t\|_2^3$$

$$\leq f(x_t) + 0 + \frac{\gamma^2}{2}(-\sqrt{\rho \epsilon}) + \frac{\rho}{6}\gamma^3$$

$$= f(x_0) - \frac{1}{3}\sqrt{\frac{\epsilon^3}{\rho}}$$

$$= f(x_0) - \frac{\epsilon^2}{3\beta}$$

$$\text{let gamma} = \text{sqrt}(\text{ep/rho})$$

$$\leq f(x_t) - \frac{\epsilon^2}{3\beta}$$

$$\text{beta} >= \text{sqrt}(\text{rho ep})$$

In either case, function value decreases $\geq \frac{\epsilon^2}{3\beta}$. Then

$$T \le \frac{f(x_0) - f(x^*)}{\frac{\epsilon^2}{3\beta}} = \frac{3\beta(f(x_0) - f(x^*))}{\epsilon^2}$$

Finding ϵ -SOSP without using Hessian information

Perturbed GD: $x_{t+1} = x_t - \eta(\nabla f(x_t) + \xi_t)$ where $\xi_t \sim \mathcal{N}(0, \frac{r^2}{d}I)$.

Theorem 8.2.2 (Perturbed GD finds SOSP). Assume f is β -smooth and ρ -Hessian-Lipschitz.

Fix $\epsilon > 0, \delta \in (0, 1)$.

If we choose $\eta = \frac{1}{\beta}$, $r = \tilde{O}(\epsilon)$ and run perturbed GD for $T = O\frac{\beta(f(x_0) - f(x^*))}{\epsilon^2}$ iterations, then w.p. $\geq 1 - \delta$, at least one of the iterates is an $(\epsilon, \sqrt{\rho \epsilon})$ SOSP.

Intuition: a random perturbation will have a component that aligns with the bottom eigenvector of $\nabla^2 f(x_t)$.

Part III

Appendix

Calculus

9.1 Taylor Expansion

In 1-dimension, for a function $f: \mathbb{R} \to \mathbb{R}$, the taylor expansion of f at a point x_0 can be expressed as:

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \dots + \frac{1}{k!}f^{(k)}(x_0)(x - x_0)^k + \dots$$

In particular, we call the approximation error, or equivalently, remainder as:

$$f(x) - f_{k,x_0}(x) = \frac{1}{(k+1)!} f^{(k+1)}(\xi)(x - x_0)$$

where ξ is between x_0 and x.

Let's do some extension to **multivariate** functions where $f: \mathbb{R}^d \to \mathbb{R}$.

The taylor expansion at x_0 can be expressed as:

$$f(x) \approx f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle + \frac{1}{2} (x - x_0)^T \nabla^2 f(x_0) (x - x_0) + \cdots$$

Similarly, we can also have remainder:

$$f(x) - f(x_0) - \langle \nabla f(x_0), x - x_0 \rangle = \frac{1}{2} (x - x_0)^T \nabla^2 f(\xi) (x - x_0)$$

where $\xi = x_0 + t(x - x_0)$, for some $t \in [0, 1]$.

Fundamental Theorem of Calculus

in 1-d:

$$f(x) - f(x_0) = \int_{x_0}^{x} f'(t)dt$$

in multivariate:

$$f(x) - f(x_0) = \int_0^1 \langle \nabla f(x_0 + t(x - x_0)), x - x_0 \rangle dt$$

9.2 Linear Algebra

Definition 9.2.1. Let $A \in \mathbb{R}^{d \times d}$

- Eigenvalue, eigenvector: $A\vec{v} = \lambda \vec{v}, \ \vec{v} \neq 0$
- If A is symmetric, it has d real eigenvalues:

$$\lambda_{\max}(A) = \lambda_1(A) \ge \lambda_2(A) \ge \dots \ge \lambda_d(A) = \lambda_{\min}(A)$$

- Spectral norm: $||A||_2 = \sup_{||v||=1} ||Av||_2 = \sup_{||u||=||v||=1} |u^T A v|$ If A is symmetric, $||A||_2 = \max_i |\lambda_i(A)| = \max\{|\lambda_1(A), \lambda_d(A)|\}$
- PSD matrix: $A \succeq 0$ if A is symmetric and $\lambda_{\min}(A) \geq 0$, or equivalently: A is symmetric and $v^T A v \geq 0$, for all $v \in \mathbb{R}^d$.

Moreover, we write $A \succeq B$ if $A - B \succeq 0$, $\lambda_{\min}(A) \cdot I \preceq A\lambda_{\max}(A) \cdot I$