Analisi Matematica A.A 2022-2023

8 Asintoti

8.1 Asintoto orizzontale

Definizione 8.1.1 (Asintoto orizzontale). Data una $f: A \to \mathbb{R}$, un $a \in \mathbb{R}$. Se esiste $\lim_{x \to x_0} f(x) = l \in \mathbb{R}$ (finito) si dice che f ha un asintoto orizzontale di equazione y = l per x che tende $a \pm \infty$.

Esempio 8.1.1. Prendiamo $f(x) = e^x \text{ con } f : \mathbb{R} \to \mathbb{R}$.

Figure 36: Asintoto orizzontale di e^x

Andiamo come prima cosa a calcolare il limite: $\lim_{x\to -\infty} f(x)=0$. Possiamo così vedere che f ha un asintoto orizzontale di equazione y=0 per $x\to -\infty$.

Come possiamo notare nell'immagine a fianco (asintoto segnato dalla linea blu in basso).

Esempio 8.1.2. Facciamo un altro esempio prendendo questa volta $f(x) = \arctan(x)$ con $f: \mathbb{R} \to \mathbb{R}$

Anche qui compre prima cosa calcoliamo il limite sia vero $+\infty$ che verso $-\infty$ della funzione:

$$\lim_{x \to +\infty} \arctan(x) = \frac{\pi}{2} \lim_{x \to -\infty} \arctan(x) = -\frac{\pi}{2}$$

Vediamo dunque due asintoti con equazioni $y = \frac{\pi}{2}$ e $y = -\frac{\pi}{2}$ rispettivamente con $x \to +\infty$ e $x \to -\infty$. Possiamo vedere i due asintoti nell'immagine a fianco (rette in blu).

Figure 37: Asintoto orizzontale di $\arctan(x)$

8.2 Asintoto verticale

Definizione 8.2.1 (Asintoto verticale). Dato un $A \subset \mathbb{R}$, $x_0 \in Acc(A)$, $x_0 \in \mathbb{R}$, una $f : A \to \mathbb{R}$. Se f diverge per x che tende a x_0 da destra o da sinistra (o da entrambe le parti) si dice che f ha un asintoto verticale di equazione $x = x_0$.

Esempio 8.2.1. Prendiamo la funzione $f(x) = \frac{1}{x}$ definita come $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$.

Andiamo a calcolare nel punto di discontinuità, che è lo 0, il limite sia da destra che da sinistra:

$$\lim_{x \to 0^+} \frac{1}{x} = +\infty, \lim_{x \to 0^-} \frac{1}{x} = -\infty.$$

Vediamo dunque la f ha un asintoto verticale di equazione x=0. Possiamo vedere l'asintoto nell'immagine a fianco (asintoto verticale segnato in blu).

Figure 38: Asintoto verticale di $\frac{1}{x}$

Osservazione 8.2.1. Una funzione al massimo ha 2 asintoti orizzontali (uno a $+\infty$ ed uno a $-\infty$) ma può anche avere ∞ asintoti verticali, come nel caso di $f(x) = \tan(x)$ che ha ∞ asintoti verticali.

Analisi Matematica A.A 2022-2023

8.3 Asintoto obliquo

Definizione 8.3.1 (Asintoto obliquo). Data una $f:(a,+\infty)\to\mathbb{R}$. Se esiste $\lim_{x\to+\infty}\frac{f(x)}{x}=m$ con $m\in\mathbb{R}$ e $m\neq 0$, e se esiste anche $\lim_{x\to+\infty}f(x)-mx=q$ con $q\in\mathbb{R}$ allora si dice che f ha un asintoto obliquo di equazione y=mx+q per $x\to+\infty$. Lo stesso vale con $x\to-\infty$.

Esempio 8.3.1. Facciamo un esempio di calcolo dei asintoto obliquo con $f(x) = \frac{2x^2 + 3x + 2}{x - 5}$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \frac{2x^2 + 3x + 2}{x^2 - 5x} = 2, \text{ quindi } m = 2$$

$$\lim_{x \to +\infty} f(x) - mx = \frac{2x^2 + 3x + 2}{x - 5} - 2x = \lim_{x \to +\infty} \frac{2x^2 + 3x + 2 - 2x(x - 5)}{x - 5} = \lim_{x \to +\infty} \frac{3x + 2 + 10x}{x - 5} = \lim_{x \to +\infty} \frac{13x + 2}{x - 5} = 13$$

Abbiamo dunque che esiste un asintoto obliquo di equazione y=2x+13 per $x\to +\infty$

Osservazione 8.3.1. Una funzione può avere al massimo 2 asintoti obliqui (uno a $+\infty$ ed uno a $-\infty$). Inoltre non può avere contemporaneamente un asintoto orizzontale ed uno obliquo "dalla stessa parte".

Esempio 8.3.2. Prendiamo $f(x) = 3x + 5\log(x)$ definita come $f:(0,+\infty)\to\mathbb{R}$. Proviamo ora a calcolare l'asintoto obliquo.

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{f(x)}{x} = \lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{3x + 5\log(x)}{x} = 3 + \lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{5\log(x)}{x} = 3 + 0 = 3 \text{ quindi } m = 3.$$

Visto che la q non torna un numero finito vediamo che questa funzione non ha asintoto obliquo.