

# Trabalho 1: Análise de Sistemas no Espaço de Estados

Professor responsável: Paulo Gil

João Carvalho nº 49341 Nikita Dyskin nº 49541

# Índice:

| Introdução                                               | 3  |
|----------------------------------------------------------|----|
| Modelação analítica                                      | 4  |
| Obtenção do modelo em espaço de estados                  | 4  |
| Análise da estabilidade do sistema                       | 6  |
| Forma canónica diagonal                                  | 8  |
| Análise através da resposta temporal do sistema          | 10 |
| Matriz de transição de estados                           | 10 |
| Solução da equação de estado em regime não forçado       | 12 |
| Simulação da resposta temporal do sistema em anel aberto | 13 |
| Projecto de controlador por retroacção de estado         | 16 |
| Especificações do controlador                            | 16 |
| Controlabilidade do sistema                              | 17 |
| Projecto do controlador com efeito integral              | 19 |
| Simulação do sistema                                     | 21 |
| Conclusão                                                | 26 |
| Anexo                                                    | 27 |

# 1. Introdução

Este trabalho tem como objectivos modelar o sistema da figura 1 em espaço de estados, analisar o seu comportamento dinâmico e fazer controlo por retroacção das variáveis de estado.

O sistema em estudo é constituído por três reservatórios, tendo os tanques 1 e 2 um diâmetro interno de 40 cm e o tanque 3 de 50 cm, duas eletrobombas no tanque 1 e no tanque 2, válvulas para regular o caudal e sensores de nível em todos os tanques.



Figura 1-Sistema de vasos comunicantes

As electrobombas em funcionamento nominal, desprezando o efeito transitório, apresentam uma relação entre os caudais volúmicos  $v_1'$  e  $v_2'$  e as tensões aplicadas aos terminais das respectivas electrobombas,  $u_1$ e  $u_2$ , descrita por:

$$v_1'(t) = 20 * 10^{-4} u_1(t), [m^3/s]$$
  
 $v_2'(t) = 20 * 10^{-4} u_2(t), [m^3/s]$ 

Os caudais volúmicos entre tanques adjacentes e os respectivos caudais volúmicos de descarga são genericamente descritos por

$$v'_{i,j}(t) = \eta_{i,j}(h_i(t) - h_j(t)), [m^3/s]$$
 (1)

onde,

$$\eta_{1,3} = 4,0*10^{-3}; \eta_{3,2} = 4,0*10^{-3}; \eta_0 = 5,0*10^{-3}; \eta_{3,0} = 3,0*10^{-4}; [m^3/m.s] (descarga\ directa)$$

# 2. Modelação analítica

# 2.1. Obtenção do modelo em espaço de estados

O modelo em espaços de estados foi obtido através da aplicação da equação do princípio da conservação da massa, dado por:

$$m_e' - m_S' = \frac{dM}{dt} \tag{2}$$

Sendo:

$$m' = \rho v' \tag{3}$$

Considerando como variáveis de estado os níveis de líquido nos 3 tanques (h1,h2,h3), como entradas  $(u1\ e\ u2)$  a tensão eléctrica aplicada, em Volt, aplicada a cada electrobomba e como saídas os níveis nos tanques  $1\ e\ 2\ e$  o caudal volúmico de saída  $v_0$ , determinou-se então a dinâmica dos tanques na forma de equações diferenciais e posteriormente a obtenção dos respectivos modelos descritos em espaço de estados.

Recorrendo às equações 1,2 e 3, temos:

#### Dinâmica do tanque 1:

$$mb_1' - m_{13}' - m_{10}' = \frac{dM}{dt}$$

Substituindo:

$$m' = \rho v'$$

$$v'_{ii} = \eta'_{ii}(h_i - h_i)$$

Vem que:

$$\begin{split} \rho v_1' - \rho v_{13}' - \rho v_{10}' &= \frac{d}{dt} (\rho A_1 h_1) \Leftrightarrow v_1' - \eta_{13} (h_1 - h_3) - \eta_{10} h_1 = A_1 h_1' \Leftrightarrow \\ h_1' &= \frac{\eta_{13}}{A_1} h_1 + \frac{\eta_{13}}{A_1} h_3 - \frac{\eta_{10}}{A_1} h_1 + \frac{\eta_{10}}{A_1} h_1 + \frac{v_1'}{A_1} \Leftrightarrow \end{split}$$

$$h_1' = -\frac{1}{A_1}(\eta_{13} - \eta_{10})h_1 + \frac{\eta_{13}}{A_1}h_3 + \frac{1}{A_1}v_1'$$

#### Dinâmica do tanque 2:

$$mb_2' - m_{32}' - m_{20}' = \frac{dM}{dt} \Leftrightarrow$$

Seguindo o mesmo método de substituições para o tanque 2, obtém-se:

$$h_2' = -\frac{1}{A_2}(\eta_{32} + \eta_0)h_2 + \frac{\eta_{32}}{A_2}h_3 + \frac{1}{A_2}v_2'$$

#### Dinâmica do tanque 3:

Repetindo o método, vem por fim:

$$m'_{13} - m'_{30} - m'_{32} = \frac{dM}{dt} \Leftrightarrow$$

$$h_3' = -\frac{1}{A_3}(\eta_{13} - \eta_{30} + \eta_{32})h_3 + \frac{\eta_{13}}{A_3}h_1 + \frac{\eta_{32}}{A_3}h_2$$

Sendo as saídas do sistema, os níveis de líquido do tanque 1, do tanque 2 e o caudal volúmico de saída, temos:

$$y_1(t) = h_1(t)$$
  
 $y_2(t) = h_2(t)$   
 $y_3(t) = v'_0(t) = \eta_0 h_3(t)$ 

A dinâmica do sistema dada pelo conjunto de equações diferenciais pode ser escrita sob a forma de vectores e matrizes, resultando no modelo de estado que se segue. Que pode ser descrito de forma abreviada:

$$\frac{d}{dx}x(t) = Ax(t) - Bu(t)$$

$$y(t) = Cx(t) - Du(t)$$
(4)

As equações anteriores, determinam o modelo de estado do sistema. Onde o vector x e as matrizes A,B e C são dadas por:

$$\begin{bmatrix} h_1' \\ h_2' \\ h_3' \end{bmatrix} = \begin{bmatrix} -0.029 & 0 & 0.0318 \\ 0 & -0.0716 & 0.0318 \\ 0.0204 & 0.0204 & -0.0423 \end{bmatrix} \begin{bmatrix} h1 \\ h2 \\ h3 \end{bmatrix} + \begin{bmatrix} 0.0159 & 0 \\ 0 & 0.0159 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} v_1' \\ v_2' \end{bmatrix}$$

$$y(t) = \begin{bmatrix} h_1 \\ h_2 \\ v_0' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \eta_0 & 0 \end{bmatrix} * \begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix}$$

Sendo correspondentemente:

$$A = \begin{bmatrix} -0.029 & 0 & 0.0318 \\ 0 & -0.0716 & 0.0318 \\ 0.0204 & 0.0204 & -0.0423 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.0159 & 0 \\ 0 & 0.0159 \\ 0 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0.005 & 0 \end{bmatrix}$$

## 2.2. Análise de estabilidade do sistema

Os valores próprios do sistema correspondem aos valores próprios da matriz A, obtidos através de:

$$|\lambda I - A| = \begin{vmatrix} \lambda + 0.029 & 0 & 0.0318 \\ 0 & \lambda + 0.0716 & 0.0318 \\ 0.0204 & 0.0204 & \lambda + 0.0423 \end{vmatrix} = 0$$

Desenvolvendo a expressão obtém-se a equação característica do modelo de estado.

$$\lambda^3 + 0.1439\lambda^2 + 0.0051\lambda + 2.4 * 10^{-5} = 0$$

Cuja solução é:

$$\lambda_1 = -0.00546$$
  $\lambda_2 = -0.04865$   $\lambda_3 = -0.0898$ 

Como os valores próprios apresentam parte real <0, conclui-se que o sistema é estável. Utilizando a função *eig()* do *Matlab* confirma-se a correcta obtenção dos valores próprios por métodos analíticos.

$$\lambda_1 = -0.0055$$
  $\lambda_2 = -0.0487$   $\lambda_3 = -0.0898$ 

Podemos também confirmar no Matlab que o sistema é estável através da resposta impulsional, como podemos observar na figura 2.



Figura 2-resposta impulsional do sistema

Os vectores próprios da matriz A são os vetores não nulos que são a solução da equação:

$$(\lambda_i I - A) \underset{p_i}{\to} = 0 \tag{5}$$

Ao resolvermo-la obtemos:

$$p_1 = \begin{bmatrix} -0.7670 \\ -0.2782 \\ -0.5780 \end{bmatrix} \qquad p_2 = \begin{bmatrix} -0.7039 \\ 0.5745 \\ 0.4189 \end{bmatrix} \qquad p_3 = \begin{bmatrix} -0.2505 \\ -0.8459 \\ 0.4712 \end{bmatrix}$$

Recorrendo novamente à função eig() do Matlab, confirma-se que :

$$p_1 = \begin{bmatrix} -0.7669 \\ -0.2782 \\ -0.5783 \end{bmatrix} \qquad p_2 = \begin{bmatrix} -0.7035 \\ 0.5741 \\ 0.4189 \end{bmatrix} \qquad p_3 = \begin{bmatrix} -0.2503 \\ -0.8458 \\ 0.4712 \end{bmatrix}$$

## 2.3. Forma canónica diagonal

Procuramos agora encontrar uma matriz de transformação de semelhança que converta o sistema obtido anteriormente na forma canónica diagonal. Como os valores próprios da matriz A são valores não inteiros e distintos, consideramos que a matriz de transformação de semelhança é dada pela matriz constituída pelos vectores próprios.

$$T = [p_1 \ p_2 \ p_3] = \begin{bmatrix} -0.7669 & -0.7035 & -0.2503 \\ -0.2782 & 0.5741 & -0.8458 \\ -0.5783 & 0.4189 & 0.4712 \end{bmatrix}$$
(6)

donde, det(T) = 0.97.

Como o determinante da matriz transformação é diferente de zero, conclui-se que é invertível, e, por isso podemos obter a forma canónica do sistema da seguinte forma:

$$A_d = T^{-1}.A.T$$
  $B_d = T^{-1}.B$   $C_d = C.T$  (7)

Invertendo a matriz de transformação, obtém-se:

$$T^{-1} = \begin{bmatrix} -5.4320 & -1.9703 & -6.4222 \\ 3.1127 & 1.8832 & 5.0337 \\ 3.8995 & 0.7440 & 5.5291 \end{bmatrix}$$

Assumindo a transformação de base,

$$X(t) = T. z(t) \tag{8}$$

E tendo em conta a descrição do sistema em espaços de estados, verifica-se

$$\frac{d}{dt}Z(t) = A_d.z(t) + B_d.u(t)$$

$$y_z(t) = C_d.z(t)$$

Fazendo os cálculos de transformação de base descritos em (6) para o sistema A, obtém-se:

$$A_d = \begin{bmatrix} -0.0055 & 0 & 0 \\ 0 & -0.0487 & 0 \\ 0 & 0 & -0.0898 \end{bmatrix} \qquad B_d = \begin{bmatrix} -0.0103 & -0.0037 \\ 0.0102 & 0.0084 \\ -0.0036 & -0.0120 \end{bmatrix}$$

$$C_d = \begin{bmatrix} -0.7669 & -0.7035 & -0.2503 \\ -0.2782 & 0.5741 & -0.8458 \\ -0.0014 & 0.0029 & -0.0042 \end{bmatrix}$$

# 3. Análise através da resposta temporal do sistema

## 3.1. Matriz de transição de estados

A equação de estado homogénea corresponde à parte do sistema cuja evolução não depende duma excitação externa, dependendo assim, único e exclusivamente das condições iniciais  $x(t_0) = x(0)$ . Assim sendo, a solução do sistema homogéneo pode ser escrita da seguinte forma:

$$x(t) = \phi_t(t, t_0)x(t_0) \tag{9}$$

Sendo:

$$\Phi_t(t) = e^{At}. (10)$$

A matriz  $\phi_t(t)$  pode ser calculada a partir de duas formas:

#### Método 1: Forma canónica diagonal

A matriz de transição de estados associada à forma canónica diagonal  $\phi_d(t)$  é obtida da seguinte forma:

$$\phi_{\rm d}(t) = e^{A_{\rm d}t} = \begin{pmatrix} e^{-0.0077t} & 0 & 0\\ 0 & e^{-0.05t} & 0\\ 0 & 0 & e^{-0.0077t} \end{pmatrix}$$

Agora, é possível obter a matriz de transição de estados através duma transformação de base, utilizando como matriz de transformação a matriz calculada em (6):

$$\phi(t) = T\phi_{d}(t)T^{-1} \tag{11}$$

Chegamos então ao resultado:

$$\phi(t) = \begin{bmatrix} \phi_{11} & \phi_{12} & \phi_{13} \\ \phi_{21} & \phi_{22} & \phi_{23} \\ \phi_{31} & \phi_{32} & \phi_{33} \end{bmatrix}$$

Com os respectivos membros:

$$\begin{array}{l} \phi_{11} = 0.066e^{-0.090t} + 0.492e^{-0.051t} + 0.442e^{-0.008t} \\ \phi_{12} = 0.202e^{-0.090t} - 0.386e^{-0.051t} + 0.183e^{-0.008t} \\ \phi_{13} = 0.584e^{-0.0078t} - 0.398e^{-0.051t} - 0.1795e^{-0.090t} \\ \phi_{21} = 0.202e^{-0.090t} - 0.386e^{-0.051t} + 0.183e^{-0.008t} \\ \phi_{22} = 0.062e^{-0.090t} + 0.302e^{-0.051t} + 0.076e^{-0.008t} \\ \phi_{23} = 0.312e^{-0.005t} - 0.555e^{-0.090t} - 0.239e^{-0.008t} \\ \phi_{31} = 0.373e^{-0.008t} - 0.386e^{-0.051t} - 0.183e^{-0.090t} \\ \phi_{32} = 0.199e^{-0.051t} - 0.354e^{-0.0898t} + 0.153e^{-0.008t} \\ \phi_{33} = 0.312e^{-0.090t} + 0.206e^{-0.051t} + 0.482e^{-0.008t} \end{array}$$

#### Método 2 (confirmação): Transformada de Laplace

Considerando condições iniciais não nulas, pode-se escrever:

$$\phi_{t}(t) = \mathcal{L}^{-1}\{(sI - A)^{-1}\}\tag{11}$$

Fazendo os cálculos, obtém-se:

$$(sI - A)^{-1} = \begin{bmatrix} s^2 + 0.114s & 0.001 & 0.032s + 0.002 \\ \hline s^3 + 0.148s^2 + 0.006s & s^3 + 0.148s^2 + 0.006s & s^3 + 0.148s^2 + 0.006s \\ \hline 0.001 & s^2 + 0.0767s + 0.001 & 0.032s + 0.002 \\ \hline s^3 + 0.148s^2 + 0.006s & s^3 + 0.148s^2 + 0.006s & s^3 + 0.148s^2 + 0.006s \\ \hline s^3 + 0.148s^2 + 0.006s & s^3 + 0.148s^2 + 0.006s & s^3 + 0.148s^2 + 0.006s \\ \hline \end{cases}$$

Aplicando o operador Transformada de Laplace inverso, vem que:

$$\phi(t) = \begin{bmatrix} \phi_{11} & \phi_{12} & \phi_{13} \\ \phi_{21} & \phi_{22} & \phi_{23} \\ \phi_{31} & \phi_{32} & \phi_{33} \end{bmatrix}$$

Com respectivos membros:

$$\begin{array}{l} \phi_{11} = 0.066e^{-0.090t} + 0.492e^{-0.051t} + 0.442e^{-0.008t} \\ \phi_{12} = 0.202e^{-0.090t} - 0.386e^{-0.051t} + 0.183e^{-0.008t} \\ \phi_{13} = 0.584e^{-0.0078t} - 0.398e^{-0.051t} - 0.1795e^{-0.090t} \\ \phi_{21} = 0.202e^{-0.090t} - 0.386e^{-0.051t} + 0.183e^{-0.008t} \\ \phi_{22} = 0.062e^{-0.090t} + 0.302e^{-0.051t} + 0.076e^{-0.008t} \\ \phi_{23} = 0.312e^{-0.005t} - 0.555e^{-0.090t} - 0.239e^{-0.008t} \\ \phi_{31} = 0.373e^{-0.008t} - 0.386e^{-0.051t} - 0.183e^{-0.090t} \\ \phi_{32} = 0.199e^{-0.051t} - 0.354e^{-0.0898t} + 0.153e^{-0.008t} \\ \phi_{33} = 0.312e^{-0.090t} + 0.206e^{-0.051t} + 0.482e^{-0.008t} \end{array}$$

Obtendo-se então a validade do primeiro método.

# 3.2. Solução da equação de estado em regime não forçado

A equação de estado em regime não forçado partindo da representação do sistema na forma canónica diagonal tem a seguinte forma:

$$z(t) = \phi_{\rm d}(t)z(t_0) \tag{12}$$

Considerando:  $z(t_0) = \begin{bmatrix} h_{10} & h_{20} & h_{30} \end{bmatrix}^T$ 

$$x(t) = \phi_{\rm d}(t)x(t_0) \Leftrightarrow$$

$$\Leftrightarrow \begin{array}{cccc} e^{-0.0077t}h10 & 0 & 0\\ 0 & e^{-0.05t}h20 & 0\\ 0 & 0 & e^{-0.0077t}h30 \end{array}$$

# 3.3. Simulação da resposta temporal do sistema em anel aberto

Considerando condições iniciais nulas e recorrendo às funções do *Matlab step()*, calculou-se a resposta ao degrau unitário do sistema em anel aberto.

#### Resposta ao degrau unitário:



Figura 3 – Resposta ao degrau unitário do sistema

Agora, utilizando a função do *Matlab Isim()*, assumindo condições iniciais  $x(t_0) = \begin{bmatrix} 0.5 & 0.5 & 0.5 \end{bmatrix}^T$ m, com as electrobombas em repouso (regime não forçado), observou-se o sistema a convergir para a origem. Para a simulação, utilizou-se um horizonte temporal de 2000 segundos, obteve-se a seguinte resposta:



Figura 3 – Simulação do sistema em anel aberto, em regime não forçado com condições iniciais não nulas

De seguida calculou-se a trajectória de estado nos 3 planos, descrita na base dos vectores de estado. O resultado foi:



Figura 3 – Trajectória de estado no 3 planos

# 4. Projecto de controlador por retroacção de estado

# 4.1 Especificações do controlador

Finalmente, procede-se ao projecto de um controlador por retroacção de estado com e sem efeito integral.

Para ambos os controladores, pretende-se que forcem o sistema a que tenha erro estático nulo na resposta ao degrau com 0.8 de amplitude, tempo de estabelecimento a 5% inferior a 60% (escolheuse 50%) do tempo dominante de estabelecimento do sistema em anel aberto e que tenha sobreelevação nula.

Para que o tempo de estabelecimento seja cumprido, começa-se por calcular o tempo de estabelecimento dominante do sistema em anel aberto, com o auxilio da função *Matlab stepinfo()*, cujo valor é  $t_{s[5\%]} = 399 \, s$ , que multiplicado por 50%, é 199.5. O polo dominante, para que o sistema tenha tal dinâmica, é calculado através da expressão:

$$D\omega_n = \frac{3}{t_{S[5\%]}} \tag{13}$$

Como se pretende que a resposta do sistema tenha sobreelevação nula, a parte imaginária dos polos é nula.

#### 4.2. Controlabilidade do sistema

Para os projectos dos controladores, considerou-se o sistema SISO, apenas com a electrobomba 1 a funcionar e com a observação do nível de  $h_2$ :

```
B_siso =
7.7953e-003
0.0000e+000
0.0000e+000
```

Cujo polinómio característico é dado por

$$Q(\lambda) = \lambda^3 + 0.136\lambda^2 + 0.004\lambda + 0.023\lambda$$

Construindo a matriz de controlabilidade  $S = [B_{siso} | A_{siso} B_{siso} | A_{siso}^2 B_{siso}]$ :

Verifica-se que a sua característica é igual a 3, pelo que o par (A,B) é completamente controlável.

# 4.3. Projecto do controlador por retroacção de estado com ganho adicional

Pela expressão (13), consideram-se os valores próprios desejados do sistema que respeitam as condições pretendidas para a dinâmica, como sendo:

$$\lambda = [-0.015 - 0.075 - 0.120]$$

Cujo polinómio característico é dado por:

$$Q^*(\lambda) = \lambda^3 + 0.21\lambda^2 + 0.012\lambda + 0.136\lambda$$

Pretende-se agora dimensionar o vector de ganhos K, calculado a partir de  $Q(\lambda) = |\lambda I - (A - BK)|$ , com  $K = (K_1 K_2 K_3)$  e toma a seguinte forma:

$$Q(\lambda) = \lambda^3 + (0.0077k1 + 0.136)\lambda^2 + (0.0002k3 + 0.00085k1 + 0.004)\lambda$$
$$+ (0.000002k1 + 0.000005k2 + 0.000001k3 + 0.000002)$$

Pela dimensão do sistema, torna-se um esforço hercúleo calcular analiticamente a solução, pelo que se utiliza a função de *Matlab acker()* que calcula o vector de ganhos K de retroação que colocam o sistema com os valores próprios pretendidos, sendo ele:

$$K = [9.54 - 3.43 - 3.46]$$

O cálculo do ganho adicional tem como objectivo compensar o ganho estático do sistema em anel fechado. O gajo adicional é calculado a partir do seguinte sistema:

$$\frac{N_x}{N_u} = \begin{pmatrix} A_{siso} & B_{siso} \\ C_{siso} & 0 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{2.2} \\ 4.45$$

Pelo que,

$$N = (N_u + KN_x) = 25.84$$



Figura 4 – Arquitectura do controlo de seguimento com ganho adicional

#### 4.4 Projecto do controlador com efeito integral

A inclusão do efeito integral no controlador por retroacção de variáveis de estado, torna-se desta forma bastante simples, se pensarmos que basta adicionar uma variável extra ao sistema cuja derivada é dada pelo erro de controlo, que depois é integrada e multiplicada por um ganho e de seguida somada com o estado de retroacção multiplicado por um ganho. Ficando então o sistema estendido, escrito da seguinte forma:

$$\begin{pmatrix} \dot{x}\left(t\right) \\ \dot{x}_{n+1}\left(t\right) \end{pmatrix} = \begin{pmatrix} A & 0 \\ -C & 0 \end{pmatrix} \begin{pmatrix} x\left(t\right) \\ x_{n+1}\left(t\right) \end{pmatrix} + \begin{pmatrix} B \\ -D \end{pmatrix} u\left(t\right) + \begin{pmatrix} 0 \\ 1 \end{pmatrix} r\left(t\right)$$

$$y\left(t\right) = \begin{pmatrix} C & 0 \end{pmatrix} \begin{pmatrix} x\left(t\right) \\ x_{n+1}\left(t\right) \end{pmatrix} + Du\left(t\right)$$

Como a matriz D=0 obtemos o sistema estendido:

$$\overline{A} = \begin{bmatrix} A_{siso} & 0 \\ -C_{siso} & 0 \end{bmatrix}; \ \overline{B} = \begin{bmatrix} B_{siso} \\ 0 \end{bmatrix}; \ \overline{C} = \begin{bmatrix} C_{siso} & 0 \end{bmatrix}$$

Sendo o sistema original controlável, o sistema estendido também o é. Deste modo, podemos calcular a matriz de ganhos K.

Escolhe-se como valores próprios com base na expressão (13), mas desta vez, como o sistema estendido é de quarta ordem, adicionamos um polo extra 1 década depois do polo dominante, para que este não condicione a dinâmica pretendida do sistema. Ficamos então com o conjunto de valores próprios:

$$\lambda = [-0.015 - 0.075 - 0.120 - 0.150]$$

Calculando o polinómio característico do sistema estendido, obtemos:

$$Q(\lambda) = \lambda^4 + 0.360\lambda^3 + 0.043\lambda^2 + 0.002\lambda + 0.020$$

E como polinómio característico do sistema com a dinâmica pretendida, temos que:

$$Q^*(\lambda) = \lambda^4 + 0.148\lambda^3 + 0.006\lambda^2 + 0.035\lambda$$

Podemos finalmente calcular o vector  $K_z$ , como sendo:

$$K_z = [-0.02 \ 0.033 - 0.037 - 0.2012]$$

Com recurso à função Matlab ctrb(), calcula-se a matriz de controlabilidade S.

A partir do sistema estendido em anel aberto, obtemos a matriz modal.

$$M = \begin{bmatrix} 0.002 & 0.043 & 0.36 & 1\\ 0.043 & 0.36 & 1 & 0\\ 0.36 & 1 & 0 & 0\\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Vem finalmente que:

$$\overline{K} = K_z * (S.M)^{-1} = (13.370 \quad 39.739 \quad 42.501 \quad 1.981)$$

Vem então que:



Figura 5- Arquitectura do controlo de seguimento com efeito integral

Em que a matriz de ganhos  $-K_n = 1.981$  e a matriz de ganhos  $-K = (13.370 \quad 39.739 \quad 42.501)$ 

# 4.5. Simulação do sistema

Para a simulação do sistema utilizou-se a *Toolbox Simulink* do *Matlab*. Simulou-se o sistema com o controlador de retroacção de estado com ganho de compensação e o controlador com retroacção de estado e efeito integral. Para ambas as arquitecturas, simulou-se primeiro sem perturbações e de seguida com uma perturbação de uma constante multiplicativa 0.8 na matriz de entrada.

#### Controlador com retroacção de variáveis de estado com ganho adicional:

No Simulink contruiu-se o seguinte diagrama de blocos:



Figura 6- Diagrama de blocos do sistema de controlo com retroacção de variáveis de estado e ganho adicional

#### Cujo resultado da simulação é:



Figura 7- Resultado do sistema de controlo com retroacção de variáveis de estado e ganho adicional sem perturbações



Figura 8- Resultado do sistema de controlo com retroacção de variáveis de estado e ganho adicional com perturbações

#### Controlador com retroacção de variáveis de estado com efeito integral:

No Simulink contruiu-se o seguinte diagrama de blocos:



Figura 9- Diagrama de blocos do sistema de controlo com retroacção de variáveis de estado com efeito integral

#### Cujo resultado da simulação é:



Figura 10- Resultado do sistema de controlo com retroacção de variáveis de estado e efeito integral sem perturbações



Figura 11- Resultado do sistema de controlo com retroacção de variáveis de estado e efeito integral com perturbações

Usando como métricas de comparação:

$$IEQ = \int_0^T (e(t))^2 dt$$

$$IUQ = \int_0^T (u(t))^2 dt$$

$$IUQ = \int_0^T (u(t))^2 dt$$

Obtemos:

#### Controlador com ganho adicional:

Sem perturbação: IEQ = 8.9916

IUQ = 44395

Error estático= 3.37e-7

Com perturbação: IEQ = 9.026

IUQ = 4831.1

Erro estático = 0.033

#### Controlador com efeito integral:

Sem perturbação: IEQ = 5.0005

IUQ = 8967.8

Erro estático = 3.47e-7

# 5. Conclusão

Com este trabalho, o grupo conseguiu com sucesso modelar um sistema físico em espaço de estados e controlá-lo.

Concluímos que na presença de uma perturbação que cause erro estático, o controlador de retroacção de estado com ganho adicional não é muito robusto, o que leva à necessidade de inclusão de efeito integral, visto que este integra o erro acumulado e isso faz com que desapareça o erro estático, já que este é constante ao longo do tempo e o efeito integral "tem em conta" todo o erro passado.

26

# 6. Anexo

#### Modelação analítica:

```
close all, clear all, clc;
format shortEng
format compact
응응
%Variables
syms s t;
A1 = 0.125; A2 = A1;
A3 = 0.196;
n13 = 4e-3;
n32 = 4e-3;
n0 = 5e-3;
n30 = 3e-4;
n10 = 3e-4;
v1 = 20e-4;
v2 = 20e-4;
응응
%State space representation System
A = [-(1/A1) * (n13+n10) 0 n13/A1; 0 (-1/A2) * (n32+n0)
(1/A2)*n32; (1/A3)*n13 (1/A3)*n32 - (1/A3)*(n13+n30+n32)];
B = [(1/A1)*v1 0; 0 (1/A2)*v2; 0 0];
C = [1 \ 0 \ 0; \ 0 \ 1 \ 0; \ 0 \ n0 \ 0];
D = zeros(3,2);
응응
%forma canonica, matrizes de transformacao e de transicao
[V,D2] = eig(A, 'nobalance', 'vector');
val prop = diag(D2);
T = V;
Ad = (T^{-1}) * A * T;
Bd = T^{-1} * B;
Cd = C * T;
phid = diag(exp(D2*t));
phiT = T * phid * T^-1; %transicao de estados atraves da matriz
de transicao
phiT = vpa(phiT);
%transicao de estados com Transformada de laplace
sia = s * eye(size(A, 1), size(A, 2)) - A;
phiS = adjoint(sia) / det(sia);
phi = vpa(ilaplace(phiS));
phi = vpa(phi);
```

```
응응
%Time response
sys = ss(A,B,C,D);
G = tf(sys);
figure();
step(G);
figure();
impulse(sys);
응응
%Simulação
x0 = [.5.5.5];
t = 0:0.05:2000;
u = zeros(length(t), 2);
figure();
lsim(sys,u,t,x0)
[y,t,x] = lsim(sys,u,t,x0);
%evolução do vector de estado
V32 = V(3:-1:2,1:3);
V31 = V(3:-1:1, 1:3), [V31(2,:)] = [];
V21 = V(2:-1:1, 1:3);
figure();
subplot(3,1,1), plot(x(:,3), x(:,2)), hold on, qv1 = quiver([0
0 \ 0, [0 \ 0 \ 0], V32(1,:), V32(2,:), 0.5); hold off;
qv1.MaxHeadSize = .2; qv1.LineStyle='--';
title('Plano X2-X3'), ylabel('x3'), xlabel('x2')
subplot(3,1,2), plot(x(:,3), x(:,1)), hold on, qv1 = quiver([0
0 \ 0], [0 \ 0 \ 0], \ V31(1,:), \ V31(2,:), \ 0.5); hold off;
qv1.MaxHeadSize = .2; qv1.LineStyle='--';
title('Plano X1-X3'), ylabel('x3'), xlabel('x1')
subplot(3,1,3), plot(x(:,2), x(:,1)), hold on, qv1 = quiver([0
0 \ 0], [0 \ 0 \ 0], \ V21(1,:), \ V21(2,:), \ 0.5); hold off;
qv1.MaxHeadSize = .2; qv1.LineStyle='--';
title('Plano X1-X2'), ylabel('x2'), xlabel('x1')
```

#### Projecto controlador:

```
clear all
close all
clc
n13 = 2.5e-3;
n10 = 1.0e-4;
n32 = 2.5e-3;
n0 = 3e-3;
di = 0.35;
Atk = pi/4*di^2;
% I. Model :: SISO
A siso = [-(n13+n10) \ 0 \ n13;0 \ -(n32+n0) \ n32;n13 \ n32 \ -
(n13+n32)]/Atk;
B siso = [7.5e-4 \ 0 \ 0]'/Atk;
C siso = [0 1 0];
D siso = [0];
% II. State Feedback Control :: N
% -----
Ts design set = 0.5*399; % << Ts design max
Dwn = 3/Ts design set;
lambda 1 = -Dwn;
lambda 2 = 5*lambda 1;
lambda 3 = 8*lambda 1;
lambda spec = [lambda 1 lambda 2 lambda 3]
K = acker(A siso, B siso, lambda spec);
Nxu = [A siso B siso; C siso D siso]^{-1*}[zeros(3,1); 1];
N = Nxu(end) + K*Nxu(1:end-1);
% EFEITO INTEGRAL
clear all
close all
clc
n13 = 4.0e-3;
n10 = 3.0e-4;
n32 = 4.0e-3;
n30 = 3.0e-4;
n0 = 5.0e-3;
di12 = 0.4;
di3 = 0.5;
```

```
Atk12 = pi/4*di12^2;
Atk3 = pi/4*di3^2;
% I. Model :: SISO
§ -----
A siso = [-((n13+n10)/Atk12) \ 0 \ (n13/Atk12); 0 \ -((n32+n0)/Atk12)]
(n32/Atk12); (n13/Atk3) (n32/Atk3) - ((n13+n32+n30)/Atk3)];
B siso = ([(20e-4) \ 0 \ 0]')/Atk12;
C siso = [0 1 0];
D siso = [0];
sys = ss(A_siso, B_siso, C_siso, 0);
% II. State Feedback Control :: N
A = [A \text{ siso zeros}(3,1); -C_\text{siso 0}];
B_{-} = [B_{siso}; -D_{siso}];
C = [0 \ 1 \ 0];
Ts design set = 399*0.5; % << Ts design max
Dwn = 3/Ts design set;
lambda 1 = -Dwn;
lambda 2 = 5*lambda 1;
lambda 3 = 8*lambda 1;
lambda 4 = 10*lambda 1;
lambda spec = [lambda 1 lambda 2 lambda 3 lambda 4]
K = acker(A, B, lambda spec);
K=K (1:3);
N=K (4);
```