Chapter 10 Dense Motion Estimation

MRGCV Computer Vision

JM Martínez Montiel

Dense Motion Estimation

- 1. Introduction
- 2. Translational alignment
 - Robust error metrics
 - 2. Bias and gain (exposure differences)
 - Normalized Cross Correlation
- 3. Incremental refinement
 - 1. Bilinear interpolation
 - 2. Computing gradient by finite difference
 - 3. Conditioning and aperture problems
 - 4. Hierarchical motion estimation
- 4. Optical Flow, variational approach
 - 1. Horn-Shunk optical flow
 - Data term
 - 3. Regularizers

Dense motion estimation

Motion Field, the projection on the image plane of the 3D motion in the scene

X x(t) x(t) x(t) x(t) x(t)

Fortun, D., Bouthemy, P., & Kervrann, C. (2015). Optical flow modeling and computation: a survey. *Computer Vision and Image Understanding*, 134, 1-21.

 $X(t + \Delta t)$

Color visualization

Dense motion estimation

Motion Field, the projection on the image plane of the 3D motion in the scene

Fortun, D., Bouthemy, P., & Kervrann, C. (2015). Optical flow modeling and computation: a survey. *Computer Vision and Image Understanding*, 134, 1-21.

2.Translational alignment

- 1. All the pixels x_i in a window have the same translational motion u_i , a real 2D vector.
- 2. Subpixel accuracy!
- 3. Brightness constraint. Constant illumination, Lambertian reflectance.

$$I(\mathbf{x}) = \frac{\sigma}{d^2} k_d \cos \theta$$

Moving de camera does not affect radiance Moving the light affects radiance:

Normal Distance (squared decay)

2.Translational alignment

- 1. All the pixels x_i in a window have the same translational motion u_i , a real 2D vector.
- 2. Subpixel accuracy!
- 3. Brightness constraint. Constant illumination, Lambertian reflectance.
- 4. Minimization of the Sum of the Squared Differences (SSD) of the pixels in the window gray level

$$\underset{u}{\operatorname{argmin}} E_{SSD}(u) \quad E_{SSD}(u) = \sum_{i} [I_{1}(x_{i} + u) - I_{0}(x_{i})]^{2}$$

 x_i i-pixel (integer values) pose in image I_0

u, motion real 2D vector

 $I_1(x_i + u)$ gray level at pixel $x_i + u$ (real values) in image I_1 values computed from bilinear, bicubic interpolation.

Photometric sub-pixel accuracy

before pixelation

after pixelation

Displacement 0.5 pixel Gray level 128, 50 % pixel black 50 % pixel white

Two close-views of the same scene

Evaluation of the error for Different u displacements

2.1 Robust Error Metrics

$$\underset{\boldsymbol{u}}{\operatorname{argmin}} E_{SRD}(\boldsymbol{u}), E_{SRD}(\boldsymbol{u}) = \sum_{i} \rho([I_{1}(\boldsymbol{x}_{i} + \boldsymbol{u}) - I_{0}(\boldsymbol{x}_{i})]^{2})$$

- 1. Occlusions and specular reflections can produce outliers
- 2. As a LS fit, SSD is not robust with respect to outliers.
- 3. $\rho(\cdot)$, robust influence function to alleviate the effect of gross outliers, a robust threshold

Huber

$$\rho(s) = \begin{cases} s & s \le a^2 \\ 2a^2 \sqrt{\frac{s}{a^2}} - 1 & s > a^2 \end{cases}$$

Cauchy

$$\rho(s) = a^2 \left(\log \left(\frac{s}{a^2} \right) + 1 \right)$$

2.Bias and Gain (exposure differences)

- 1. Images acquired different exposition due to differences in:
 - 1. shutter time
 - 2. aperture
 - 3. lighting
- 2. Affine model can cope with this changes, α , gain, β bias

$$I_1(\mathbf{x}_i + \mathbf{u}) = (1 + \alpha)I_0(\mathbf{x}_i) + \beta$$

$$\underset{\{\boldsymbol{u},\alpha,\beta\}}{\operatorname{argmin}} E_{BG}(\boldsymbol{u},\alpha,\beta), E_{BG}(\boldsymbol{u},\alpha,\beta) = \sum_{i} [I_1(\boldsymbol{x}_i + \boldsymbol{u}) - (1+\alpha)I_0(\boldsymbol{x}_i) - \beta]^2$$

- 3. The translational alignment yields
 - 1. Translation vector \boldsymbol{u}
 - 2. Bias, gain of the affine intensity variation lpha,eta

2.3 Normalized Cross Correlation(exposure differences)

- 1. Images acquired different exposition
- 2. Affine model can cope with this changes, α , gain, β bias

$$I_1(\mathbf{x}_i + \mathbf{u}) = (1 + \alpha)I_0(\mathbf{x}_i) + \beta$$

3. Maximization of NCC avoids computing explicitly α , β

$$\underset{\{u\}}{\operatorname{argmax}} E_{NCC}(\boldsymbol{u},), E_{NCC}(\boldsymbol{u}) = \frac{\sum_{i} [I_{0}(\boldsymbol{x}_{i}) - \bar{I}_{0}] [I_{1}(\boldsymbol{x}_{i} + \boldsymbol{u}) - \bar{I}_{1}]}{\sqrt{\sum_{i} [I_{0}(\boldsymbol{x}_{i}) - \bar{I}_{0}]^{2}} \sqrt{\sum_{i} [I_{1}(\boldsymbol{x}_{i} + \boldsymbol{u}) - \bar{I}_{1}]^{2}}} \quad \bar{I}_{0} = \frac{1}{N} \sum_{i} I_{0}(\boldsymbol{x}_{i})$$

$$\bar{I}_{1} = \frac{1}{N} \sum_{i} I_{1}(\boldsymbol{x}_{i} + \boldsymbol{u})$$

- 4. NCC always values between [-1,1], desirable scores, 0.7-1.0
- 5. Invalid in texture-less areas where the denominator goes to zero

Brightness constancy

$$I_{1}(x_{i} + u + \Delta u) \approx I_{1}(x_{i} + u) + J_{1}(x_{i} + u) \Delta u$$

$$J_{1}(x_{i} + u) = \nabla I_{1}(x_{i} + u) = \left(\frac{\partial I_{1}}{\partial x}, \frac{\partial I_{1}}{\partial y}\right)(x_{i} + u) = \left(I_{x}, I_{y}\right)(x_{i} + u)$$

$$0 = I_{1}(x_{i} + u + \Delta u) - I_{0}(x_{i}) \approx I_{1}(x_{i} + u) + J_{1}(x_{i} + u) \Delta u - I_{0}(x_{i})$$

$$\Delta u$$
?

$$e_i = I_t = I_1(x_i + u) - I_0(x_i)$$

solve

$$J_1(x_i + u) \Delta u + e_i = 0$$

Per pixel: 2 unknowns, 1 equation

 I_0

3. Lucas-Kanade. Incremental refinement

same motion all pixels in small window

$$E_{LK-SSD}(\boldsymbol{u} + \Delta \boldsymbol{u}) \approx \sum_{i} [\boldsymbol{J_1}(\boldsymbol{x_i} + \boldsymbol{u}) \ \Delta \boldsymbol{u} + \boldsymbol{e_i}]^2$$

$$J_{1}(x_{i} + u) = \nabla I_{1}(x_{i} + u) = \left(\frac{\partial I_{1}}{\partial x}, \frac{\partial I_{1}}{\partial y}\right)(x_{i} + u) = \left(I_{x}, I_{y}\right)(x_{i} + u)$$

$$e_{i} = I_{1}(x_{i} + u) - I_{0}(x_{i}) = I_{t} \qquad \Delta u = (u, v)$$

Solving a least squares problem which yields the next linear system: $A\Delta u = b$

$$\mathbf{A} = \sum_{i} \mathbf{J}_{1}^{T}(\mathbf{x}_{i} + \mathbf{u}) \mathbf{J}_{1}(\mathbf{x}_{i} + \mathbf{u}) = \begin{bmatrix} \sum_{i} I_{x}^{2} & \sum_{i} I_{x}I_{y} \\ \sum_{i} I_{x}I_{y} & \sum_{i} I_{y}^{2} \end{bmatrix}$$

$$\mathbf{b} = -\sum_{i} e_{i} \mathbf{J}_{1}^{T}(\mathbf{x}_{i} + \mathbf{u}) = -\begin{bmatrix} \sum_{i} I_{x}I_{t} \\ \sum_{i} I_{y}I_{t} \end{bmatrix}$$

3. Incremental refinement

while $\|\Delta u\| < \epsilon$ compute $I_1(x_i + u)$; might imply image wrapping compute $(I_x, I_y)(x_i + u) = J_1(x_i + u)$ compute $e_i = I_1(x_i + u) - I_0(x_i) = I_t$ compute A compute A compute A solve $A\Delta u = b$ update $A\Delta u = b$ update $A\Delta u = b$ update $A\Delta u = a$ u dim 2 v

 x_i , dim 2 vector, integer values u dim 2 vector, float values Δu dim 2 vector, float values

end

For efficiency to avoid recomputing $J_1(x_i + u)$ at each iteration $J_1(x_i + u) \approx J_0(x_i)$

Can be extended to consider:

- 1. gain and bias
- 2. robust influence functions

3.1 Bilinear Interpolation

$$I(x + \Delta x, y + \Delta y) \approx \begin{bmatrix} 1 - \Delta x & \Delta x \end{bmatrix} \begin{bmatrix} I(x, y) & I(x, y + 1) \\ I(x + 1, y) & I(x + 1, y + 1) \end{bmatrix} \begin{bmatrix} 1 - \Delta y \\ \Delta y \end{bmatrix}$$

$$\begin{bmatrix} 0.5 & 0.5 \end{bmatrix} \begin{bmatrix} 91 & 162 \\ 210 & 95 \end{bmatrix} \begin{bmatrix} 0.8 \\ 0.2 \end{bmatrix} = 146.1$$

3.2 Computing gradient by finite difference

Forward difference

$$I_{\mathcal{X}}(x,y) \approx I(x+1,y)-I(x,y)$$

$$I_y(x,y) \approx I(x,y+1)-I(x,y)$$

Backward difference

$$I_{\chi}(x,y) \approx I(x,y) - I(x-1,y)$$

$$I_{\nu}(x,y) \approx I(x,y) - I(x-1,y)$$

Central difference

$$I_{x}(x,y) \approx \frac{I(x+1,y) - I(x-1,y)}{2}$$

$$I_y(x,y) \approx \frac{I(x,y+1) - I(x,y-1)}{2}$$

By Kakitc - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=63327976

3.3 Conditioning and aperture problems

The linear system

 $A\Delta u = b$

Only well conditioned if $\lambda_1 \geq \lambda_2$, eignevalues of A are not close to 0

J. Shi and C. Tomasi, "Good features to track," 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 1994, pp. 593-600, doi: 10.1109/CVPR.1994.323794.

3.4 Hierarchical motion estimation

3.4 Hierarchical motion estimation

Fig 8.3, 8.4 Szeliski 2010

- 1. Exhaustive search in the coarsest level (l)
- 2. LK incremental refinement $\rightarrow u^{(l)}$
- 3. Prediction at the next level

$$\widehat{\boldsymbol{u}}^{(l-1)} = 2\boldsymbol{u}^{(l)}$$

- 4. Exhaustive search in small window around the prediction
- 5. LK incremental refinement $\rightarrow u^{(l-1)}$

3.4 Hierarchical motion estimation

Dense Motion. Optical Flow

- 2D projection of the 3D scene motion.
- Computed for every single pixel of the scene.

$$\underset{u}{\operatorname{argmin}} E_{SSD}(u) \quad E_{SSD}(u) = \sum_{i} [I_{1}(x_{i} + u) - I_{0}(x_{i})]^{2}$$

All the pixels $\{x_i\}$ in a **window**, have the **same** motion u

$$\underset{\{u_i\}}{\operatorname{argmin}} E_{SSD-OF}(\{u_i\}) \quad E_{SSD-OF}(\{u_i\}) = \sum_{i} [I_1(x_i + u_i) - I_0(x_i)]^2$$

Each pixel x_i of the **image** has a **different** motion u_i

Aperture problem

$$\underset{u}{\operatorname{argmin}} E_{SSD}(u) \quad E_{SSD}(u) = \sum_{i} [I_{1}(x_{i} + u) - I_{0}(x_{i})]^{2}$$

All the pixels $\{x_i\}$ in a **window**, have the **same** motion u

- # equations, pixels in the window, e.g 25 in a 5x5 window
- # unknowns, 2, one per each component of the $oldsymbol{u}$ vector

$$\underset{\{u_i\}}{\operatorname{argmin}} E_{SSD-OF}(\{u_i\}) \quad E_{SSD-OF}(\{u_i\}) = \sum_{i} [I_1(x_i + u_i) - I_0(x_i)]^2$$

Each pixel x_i of the image has a different motion u_i

- # equations, 1 per pixel in the image
- # unknowns, 2 per pixel in the image, 2 per each u_i 2-compoents vector
- # double number of unknown than equations under constrained aperture problem

Continuous Modelling

$$I: \Omega \times T \longrightarrow \mathcal{R}$$
$$(x, y, t) \sim I(x, y, t) = I(x, t)$$

In corresponding pixels the grey level do no change

$$I(x + u, y + v, t + 1) - I(x, y, t) = 0$$

Linearizing the equation

$$I(x + u, y + v, t + 1) \approx I(x, y, t) + I_x(x, y, t)u + I_y(x, y, t)v + I_t(x, y, t)1$$

$$I(x + u, y + v, t + 1) - I(x, y, t) = 0 \Longrightarrow I_x u + I_y v + I_t = 0$$

The Aperture Problem

- The BCCE provides at most 1 equation for unknowns
- Motion, ill posed problem

$$I_x u + I_y v + I_t = 0 \qquad (I_x I_y) {u \choose v} + I_t = 0 \qquad \nabla I {u \choose v} + I_t = 0$$

- Only the flow component perpendicular to image gradient can be computed, so-called normal flow
- If $\binom{u}{v}$ satisfies BCCE equation so does $\binom{u+u'}{v+v'}$ if $\nabla I \binom{u'}{v'} = 0$
- If $\nabla I \binom{u}{v} \approx 0$ motion cannot be computed either poorly textured areas, provide no information

Variational Approach

• Compute the motion field u as a minimizer of a suitable energy functional:

$$E(\mathbf{u}) = \int_{\Omega} D(\mathbf{u}) + \lambda S(\mathbf{u}) dx dy$$

- **Data term**, D(u), penalizes deviations from BCCE
- Smoothness (regularization) term, S(u), penalizes deviations from smoothness in the motion field
- **Regularization weight** $\lambda > 0$ determines the degree of smoothness
- The solution u fit best the model assumptions, compromise between contradictory assumptions.

Horn-Schunk method

$$E(\boldsymbol{u}) = \int_{\Omega} \left(I_x u + I_y v + I_t \right)^2 + \lambda \left(|\nabla u|^2 + |\nabla v|^2 \right) dx dy$$

Horn, B. K., and Schunck, B. G. (1981). Determining optical flow. *Artificial Intelligence*, *17*(1-3), 185-203

- Data term penalizes deviations from BCCE
- Smoothness term penalizes deviation from smoothness i.e. variations of u,v given by they first derivatives

Data Term

In the literature variations around the BCCE to boost performance

- Quadratic error function + robust influence
- Filtering
- NCC in a patch around the pixel
- ...

Fortun, D., Bouthemy, P., & Kervrann, C. (2015). Optical flow modeling and computation: a survey. *Computer Vision and Image Understanding*, 134, 1-21. http://bigwww.epfl.ch/publications/fortun1501.pdf

Regularization

- Horn-Shrunk L_2 norm on the motion field gradient $|\nabla u|^2 + |\nabla v|^2$
- Total Variation TV L_1 norm on the motion field gradient $|\nabla u| + |\nabla v|$
 - Preserves the motion field discontinuities in the occluding boundaries.
 - Efficient in GPU algorithms
- Inclusion a weight with image gradient information $e^{-\|\nabla I(x)\|^2/\zeta}$
 - Reduces the regularization in the image borders
 - Reduce the regularization in textured areas

Learning Methods in Optical Flow

RAFT, 2020

Teed, Z., & Deng, J. (2020, August). Raft: Recurrent all-pairs field transforms for optical flow. In *European conference on computer vision* (pp. 402-419). Springer, Cham.

Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., & Brox, T. (2017). Flownet 2.0: Evolution of optical flow estimation with deep networks. CVPR (pp. 2462-2470).

Training on synthetic datasets

Flying Chairs

Dosovitskiy, et al. Flownet: Learning optical flow with convolutional networks CVPR 2015

FlyingThings3D

Mayer, N et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. CVPR 2016

Sintel

Butler, D. J., et al. (2012, October). A naturalistic open source movie for optical flow evaluation. ECCV 2012.

https://youtu.be/ZmiBI4tPk_o

Zaragoza

RAFT

RAFT, 2020

Sintel Results: Training Set (Generalization)

Teed, Z., & Deng, J. (2020, August). Raft: Recurrent all-pairs field transforms for optical flow. In *European conference on computer vision* (pp. 402-419). Springer, Cham.

RAFT, test on Sintel

Sintel Results: Training Set (Generalization)

Train on Chairs->Things, test on Sintel

https://youtu.be/ul6pXRGKmco?si=GDfqyJl-f3ZyOXDh&t=1336

Discovering camouflage

Video Object Segmentation using RAFT

Self-supervised Video Object Segmentation by Motion Grouping, Yang et al. (ICCV), 2021

Stereo matching

Only searching along epiploar line

Warp Consistency

Prune Truong, Martin Danelljan, Fisher Yu, and Luc Van Gool. Warp Consistency for Unsupervised Learning of Dense Correspondences. ICCV 2021

Bridge the simulation gap
Data training is covisible image pairs

Warp Consistency Results

Prune Truong, Martin Danelljan, Fisher Yu, and Luc Van Gool. Warp Consistency for Unsupervised Learning of Dense Correspondences. ICCV 2021

Warp Consistency Results

Test on Endoscopy

Ivan Gonzalo. Cálculo de flujo óptico denso en imágenes de colonoscopias mediante aprendizaje no supervisado. TFG. Universidad de Zaragoza. 2023

