

Hints for Exercises in Chapter 2

1. Difference between propositional logic and first-order logic

Answer:

Propositional logic deals with statements that are either true or false, without internal structure. First-order logic extends this by including quantifiers (\forall , \exists), variables, and predicates, allowing more expressive representations.

Hint:

Think about how you'd represent "All humans are mortal" in each logic system.

2. Syntax and semantics in logic

Answer:

Syntax refers to the formal structure or rules for writing logical expressions. **Semantics** defines the meaning or truth of those expressions in a model.

Hint:

Consider how a grammatically correct sentence might still be meaningless; logic works similarly.

3. Logical inference

Answer:

Logical inference is the process of deriving new statements from known ones.

- Valid: From "All birds fly" and "Penguin is a bird," infer "Penguin flies."
- Invalid: From "All birds fly" and "Penguin flies," infer "Penguin is a bird."

Hint:

Try creating your own examples and test their validity.

4. Soundness and completeness

A system is **sound** if all derivable statements are true. It is **complete** if all true statements can be derived. These properties ensure reliability and power in reasoning.

Hint:

Ask: Can I trust the system to never lie and to find all truths?

5. Limitations of logic in real-world knowledge

Answer:

Logic struggles with uncertainty, ambiguity, and incomplete information. It's rigid and doesn't handle probabilistic reasoning well.

Hint:

Think about how humans deal with vague or contradictory information - can logic do the same?

6. Resolution principle

Answer:

Resolution is a rule of inference that combines clauses to eliminate contradictions. It's powerful because it's complete for propositional logic and forms the basis of many automated reasoning systems.

Hint:

Try resolving "A OR B" and "NOT A OR C": what do you get?

7. Translating natural language to logic

Answer:

Example:

- "It is raining or snowing" → R V S (Propositional)
- "All cats are mammals" → ∀x (Cat(x) → Mammal(x)) (First-order)

Hint:

Break sentences into subjects, predicates, and logical connectors.

8. Normal forms in logic

Answer:

- CNF (Conjunctive Normal Form): AND of ORs
- DNF (Disjunctive Normal Form): OR of ANDs
 They simplify reasoning and are essential for algorithms like resolution.

Hint:

Try converting simple expressions like " $(A \rightarrow B)$ " into CNF.

9. Logical connectives and truth tables

Answer:

- AND (Λ): True if both are true
- OR (V): True if at least one is true
- NOT (¬): Inverts truth
- IMPLIES (→): False only if premise is true and conclusion false
- BICONDITIONAL (↔): True if both sides are equal

Hint:

Build truth tables for each to see how they behave.

10. Unification in first-order logic

Answer:

Unification is the process of making two logical expressions identical by finding a substitution for variables. It's crucial for applying resolution in first-order logic.

Hint:

Try matching "Loves(x, y)" with "Loves(John, y)": what substitution works?

11. Logic-based Al vs. other approaches

Logic-based AI uses formal rules and reasoning. Connectionist (neural networks) and statistical AI rely on data and patterns. Logic is precise; others are flexible and data-driven.

Hint:

Compare how each approach handles language translation or image recognition.

12. Relevance of logic in AI today

Answer:

Logic is still used in knowledge representation, automated reasoning, planning, and semantic web technologies. It's essential for explainable AI and rule-based systems.

Hint:

Explore AI applications in law, medicine, or robotics — where rules matter.

13. Challenges in scaling logic-based systems

Answer:

Complexity grows rapidly with more rules and facts. Handling uncertainty, incomplete data, and real-time reasoning is difficult.

Hint:

Think about how many rules you'd need to model human conversation.

14. Implementing a theorem prover using resolution

Answer:

A basic theorem prover converts expressions to CNF and applies resolution to check entailment. The example implemented shows how a query like "C" can be proven from a knowledge base.

Hint:

Try modifying the knowledge base and see how the result changes.

15. Creating a small expert system

Use rules like:

- IF animal has feathers THEN it is a bird
- IF bird cannot fly THEN it might be a penguin
 Implement forward chaining to infer conclusions from facts.

Hint:

Pick a narrow domain and list simple rules, then build logic around them.

16. Knowledge representation and ontologies

Answer:

Ontologies are structured frameworks for organizing knowledge. They define concepts, relationships, and rules, enabling logical reasoning and interoperability.

Hint:

Explore how medical ontologies help diagnose diseases.

17. Solving a logic puzzle using resolution

Answer:

Choose a puzzle like Sudoku. Represent constraints as logical clauses and apply resolution to eliminate invalid options until a solution emerges.

Hint:

Start with a small grid and write rules for rows, columns, and boxes.

18. Search algorithms in problem-solving

Answer:

Search algorithms like BFS, DFS, and A* help find solutions in puzzles, games, and planning by exploring possible states and paths.

Hint:

Visualize a maze, how would you find the shortest path?

19. Challenges in large state spaces

Large spaces lead to memory and time issues. It's hard to explore all possibilities, and heuristics may be needed to guide search.

Hint:

Think about chess, how many moves ahead can you realistically compute?

20. Local search algorithms

Answer:

- Hill Climbing: Moves to better states
- **Simulated Annealing:** Allows occasional worse moves to escape local optima Useful for optimization in large spaces.

Hint:

Try solving a puzzle by tweaking one piece at a time.

21. Game-playing AI using minimax

Answer:

Implement minimax to evaluate game states and choose optimal moves. Use depthlimited search for simplicity. Let a human play against the AI.

Hint:

Start with Tic-Tac-Toe, can your AI block and win?

22. Stop word removal function

Answer:

Create a list like ["the", "a", "is", "in"] and filter tokens from a sentence. This helps in text preprocessing for NLP tasks.

Hint:

Try removing stop words from a paragraph, what's left?

23. Keyword-based topic detection

Define keyword lists for topics. Scan a document for matches and assign the topic with the most hits.

Hint:

Test with news headlines, can you guess the topic?