# Отчёта по лабораторной работе №1:

Установка и конфигурация операционной системы на виртуальную машину

Слуцкая Евгения Александровна

## Содержание

| 1  | Цель работы                    | 4  |
|----|--------------------------------|----|
| 2  | Задание                        | 5  |
| 3  | Теоретическое введение         | 6  |
| 4  | Выполнение лабораторной работы | 7  |
| 5  | Контрольные вопросы            | 19 |
| 6  | Выводы                         | 22 |
| Сг | исок литературы                | 23 |

# Список иллюстраций

| 4.1  | Создание виртуальной машины                          |    |    |    |    |    |    |   | 7  |
|------|------------------------------------------------------|----|----|----|----|----|----|---|----|
| 4.2  | Задание объема основной памяти                       |    |    |    |    |    |    |   | 8  |
| 4.3  | Задание размера жесткого диска                       |    |    |    |    |    |    |   | 8  |
| 4.4  | Установка дистрибутива                               |    |    |    |    |    |    |   | 9  |
| 4.5  | Изъятие диска из привода                             |    |    |    |    |    |    |   | 9  |
| 4.6  | Обновление пакетов                                   |    |    |    |    |    |    |   | 10 |
| 4.7  | Установка tmux и mc                                  |    |    |    |    |    |    |   | 11 |
| 4.8  | Отключение SELinux                                   |    |    |    |    |    |    |   | 12 |
| 4.9  | Установка имени хоста                                |    |    |    |    |    |    |   | 13 |
| 4.10 | Установка pandoc                                     |    |    |    |    |    |    |   | 14 |
| 4.11 | Установка pandoc-fignos, pandoc-eqnos, pandoc-tabler | 10 | s, | pa | an | do | oc | - |    |
|      | secnos                                               |    |    |    |    |    |    |   | 15 |
| 4.12 | Установка TexLive                                    |    |    |    |    |    |    |   | 16 |
| 4.13 | Вывод команды dmesg                                  |    |    |    |    |    |    |   | 17 |
| 4.14 | Версия ядра                                          |    |    |    |    |    |    |   | 17 |
| 4.15 | Частота процессора                                   |    |    |    |    |    |    |   | 17 |
| 4.16 | Модель процессора                                    |    |    |    |    |    |    |   | 18 |
| 4.17 | Объем доступной оперативной памяти                   |    |    |    |    |    |    |   | 18 |
| 4.18 | Тип обнаруженного гипервизора                        |    |    |    |    |    |    |   | 18 |
| 4.19 | Последовательность монтирования файловых систем      |    |    |    |    |    |    | _ | 18 |

### 1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

### 2 Задание

- 1. Установить виртуальную машину;
- 2. Установить на неё дистрибутив Fedora Linux;
- 3. Настроить операционную систему для дальнейшей работы;
- 4. С помощью команды dmesg получить необходимую информацию: версию ядра Linux, частоту и модель процессора, объём доступной памяти, обнаруженный гипервизор, тип файловой системы корневого раздела, последовательность монтирования файловых систем.

### 3 Теоретическое введение

Операционная система — это комплекс взаимосвязанных программ, который действует как интерфейс между приложениями и пользователями с одной стороны и аппаратурой компьютера, с другой стороны.

VirtualBox – это специальное средство для виртуализации, позволяющее запускать операционную систему внутри другой. С помощью VirtualBox мы можем не только запускать ОС, но и настраивать сеть, обмениваться файлами и делать многое другое.

#### 4 Выполнение лабораторной работы

Для начала создадим новую виртуальную машину: в программе **VirtualBox** нажимаем на кнопку «создать», в качестве имени указываем логин в дисплейном классе (в моем случае – easluckaya) и выбираем образ операционной системы Linux (дистрибутив **Fedora WorkStation**) (рис. 4.1).



Рис. 4.1: Создание виртуальной машины

Выставляем нужный объем основной памяти (у меня 4096 МБ) и количество процессоров (я поставила 3) (рис. 4.2).



Рис. 4.2: Задание объема основной памяти

Задаем размер жесткого диска, желательно от 80 ГБ (рис. 4.3).



Рис. 4.3: Задание размера жесткого диска

При запуске нам предложат установить дистрибутив, что мы и делаем (рис. 4.4).



Рис. 4.4: Установка дистрибутива

#### Важно!

После установки необходимо изъять диск из привода, чтобы при запуске виртуальной машины снова не предлагали установку (рис. 4.5).



Рис. 4.5: Изъятие диска из привода

Далее в терминале переключаемся на роль супер-пользователя командой **sudo -i** и обновляем все пакеты с помощью **dnf -y update** (рис. 4.6).



Рис. 4.6: Обновление пакетов

Для удобства работы устанавливаем **MC** (MidnightCommander) и **tmux** командой **dnf install tmux mc** (рис. 4.7).



Рис. 4.7: Установка tmux и mc

Также отключаем систему **SELinux**, поскольку в нашем курсе он не понадобится. Для этого переходим в **mc**, затем в файле /**etc/selinux/config** заменяем значение **SELINUX=enforcing** на значение **SELINUX=permissive** (рис. 4.8).



Рис. 4.8: Отключение SELinux

Далее установим имя хоста с помощью команды **hostnamectl set-hostname username** (вместо username указываем логин в дисплейном классе, в моем случаем -easluckaya), затем проверяем, установлено ли имя хоста верно командой **hostnamectl** (рис. 4.9).

```
\oplus
                                    Терминал
                                                                   Q
easluckaya@fedora:~$ sudo -i
[sudo] пароль для easluckaya:
root@fedora:~# hostnamectl set-hostname easluckaya
root@fedora:~# hostnamectl
    Static hostname: easluckaya
          Icon name: computer-vm
            Chassis: vm 🖴
         Machine ID: 7c4ed8b2eec146208131ba6663db7293
            Boot ID: d15a95e98cbf4ddba41f6a83deceb64f
     Virtualization: oracle
   Operating System: Fedora Linux 39 (Workstation Edition)
        CPE OS Name: cpe:/o:fedoraproject:fedora:39
     OS Support End: Tue 2024-11-12
OS Support Remaining: 7month 3w 2d
             Kernel: Linux 6.7.9-200.fc39.x86_64
       Architecture: x86-64
    Hardware Vendor: innotek GmbH
     Hardware Model: VirtualBox
   Firmware Version: VirtualBox
      Firmware Date: Fri 2006-12-01
       Firmware Age: 17y 3month 2w 5d
oot@fedora:~#
```

Рис. 4.9: Установка имени хоста

Также для дальнейшей работы нам необходимо установить **pandoc** и **TexLive**. Для этого в роли супер-пользователя вводим команды: **dnf** -y **install pandoc**, **pip install pandoc-fignos pandoc-eqnos pandoc-tablenos pandoc-secnos –user** и **dnf** -y **install texlive-scheme-full** (рис. 4.10), (рис. 4.11), (рис. 4.12).



Рис. 4.10: Установка pandoc



Рис. 4.11: Установка pandoc-fignos, pandoc-eqnos, pandoc-tablenos, pandoc-secnos



Рис. 4.12: Установка TexLive

В окне терминала проанализируем последовательность загрузки системы, выполнив команду **dmesg**, но перед этим сначала переключимся на роль суперпользователя. Вывод будет огромным, но покажу небольшую часть в начале (рис. 4.13).

```
sudol пароль для easluckava:
        sluckaya:-# dmesg
000000] Linux version 6.7.9-200.fc39.x86_64 (mockbuild@c9040d5832f245329326c60b1688b627) (gcc (GCC) 13.2.1 20231205 (Red Hat 13.2.1-6),
GNU ld version 2.40-14.fc39) #1 SMP PREEMPT_DYNAMIC Wed Mar 6 19:35:04 UTC 2024

0.000000] Command line: BOOT_IMAGE=(hd0,gpt2)/vmlinuz-6.7.9-200.fc39.x86_64 root=UUID=0ala995f-3d21-4f31-b378-a29e22e255ae ro rootflags=s
ıbvol=root rhgb quiet
                   BIOS-provided physical RAM map:
                                  0.000000] BIOS-e820: [mem 0x000000000100000-0x00000000dffeffff] usable
           0000] BIOS-e820: [mem 0x000000000fff0000-0x000000000fffffff] ACPI data
                                   [mem 0x00000000fee00000-0x0000000fee00fff] reserved
[mem 0x00000000ffc0000-0x00000000ffffffff] reserved
                              20: [mem 0x0000000100000000-0x000000011fffffff] usable
                                                                 active
             000) APIC Static calls initialized
000] SMBIOS 2.5 present.
000] DMI: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
 I
                  hypervisor detected: NVM
kvm-clock: Using msrs 4b564d01 and 4b564d00
kvm-clock: using sched offset of 4416335166 cycles
clocksource: kvm-clock: mask: 0xfffffffffffffff max_cycles: 0x1cd42e4dffb, max_idle_ns: 881590591483 ns
tsc: Detected 2611.200 MHz processor
                    e820: update [mem 0x00000000-0x00000fff] usable ==> reserved
e820: remove [mem 0x00000000-0x000fffff] usable
                   last_pfn = 0x120000 max_arch_pfn = 0x400000000
                   MTRRs disabled by BIOS

x86/PAT: Configuration [0-7]: WB WC UC- UC WB WP UC- WT last_pfn = 0xdfff0 max_arch_pfn = 0x400000000
```

Рис. 4.13: Вывод команды dmesg

Дальше получим следующую информацию все той же командой **dmesg**, но добавим grep -i "то, что ищем" (**dmesg** | **grep -i "то, что ищем"**).

1. Версия ядра Linux (Linux version) (рис. 4.14).

```
root@easluckaya:- # dmesg | grep -i "Linux version"
[ 0.000000] Linux version 6.7.9-200.fc39.x86_64 (mockbuild@c9040d5832f245329326c60b1688b627) (gcc (GCC) 13.2.1 202312 05 (Red Hat 13.2.1-6), GNU ld version 2.40-14.fc39) #1 SMP PREEMPT_DYNAMIC Wed Mar 6 19:35:04 UTC 2024 root@easluckaya:-#
```

Рис. 4.14: Версия ядра

2. Частота процессора (Detected Mhz processor) (рис. 4.15).

```
root@easluckaya:~# dmesg | grep -i "Mhz"
[ 0.000006] tsc: Detected 2611.200 MHz processor
[ 4.369984] e1000 0000:00:03.0 eth0: (PCI:33MHz:32-bit) 08:00:27:8a:a4:f6
root@easluckaya:~# S
```

Рис. 4.15: Частота процессора

3. Модель процессора (СРИО)(рис. 4.16).

```
root@easluckaya:~# dmesg | grep -i "CPU0"

[ 0.163354] smpboot: CPU0: 11th Gen Intel(R) Core(TM) i5-11260H @ 2.60GHz (family: 0x6, model: 0x8d, stepping: 0x1)
root@easluckaya:~#
```

Рис. 4.16: Модель процессора

4. Объём доступной оперативной памяти (Memory available) (рис. 4.17).

```
root@easluckaya:~# dmesg | grep -i "available ("

[ 0.028820] Memory: 3963112K/4193848K available (20480K kernel code, 3276K rwdata, 14752K rodata, 4588K init, 4892K bss, 230476K reserved, 0K cma-reserved)

root@easluckaya:~#
```

Рис. 4.17: Объем доступной оперативной памяти

5. Тип обнаруженного гипервизора (Hypervisor detected) (рис. 4.18).

```
root@easluckaya:~

root@easluckaya:~# dmesg | grep -i "hypervisor detected"

[ 0.000000] Hypervisor detected: KVM

root@easluckaya:~#
```

Рис. 4.18: Тип обнаруженного гипервизора

6. Последовательность монтирования файловых систем (рис. 4.19).

```
root@easluckaya:~# dmesg | grep -i "mounted filesystem"

[ 9.150567] EXT4-fs (sda2): mounted filesystem 64a7e232-6ac8-4875-afd3-85f655732be1 r/w with ordered data mode. Quota mode: none.
root@easluckaya:~#
```

Рис. 4.19: Последовательность монтирования файловых систем

#### 5 Контрольные вопросы

#### 1. Какую информацию содержит учётная запись пользователя?

Информацию об учетных записях Linux хранит в файле /etc /passwd.

Он содержит следующее:

User ID - логин;

Password – наличие пароля;

**UID** - идентификатор пользователя;

GID - идентификатор группы по умолчанию;

**User Info** – вспомогательная информация о пользователе (полное имя, контакты и т.д.)

**Home Dir** - начальный (он же домашний) каталог;

Shell - регистрационная оболочка, или shell.

#### 2. Укажите команды терминала и приведите примеры.

• для получения справки по команде;

Для получения справки по команде используется команда "man" (от "manual"). Например, man ls

• для перемещения по файловой системе;

Для перемещения по файловой системе используется команда "cd" (от "change directory"). Например, cd /home/user/documents

• для просмотра содержимого каталога;

Для просмотра содержимого каталога используется команда "**ls**" (от "list"). Например, ls /home/user/documents

• для определения объёма каталога;

Для определения объёма каталога используется команда "**du**" (от "disk usage"). Например, du -h /path/to/directory

• для создания / удаления каталогов / файлов;

Для создания каталогов используется команда "**mkdir**" (от "make directory"), для удаления - "rmdir" (для удаления пустого каталога) или "rm" (для удаления файлов). Например, mkdir new directory

• для задания определённых прав на файл / каталог;

Для задания определённых прав на файл / каталог используется команда "**chmod**" (от "change mode"). Например, chmod 755 file.txt

• для просмотра истории команд.

Для просмотра истории команд используется команда "history". Например, history

3. Что такое файловая система? Приведите примеры с краткой характеристикой.

Файловая система — это способ организации и хранения файлов на компьютере. Она определяет структуру файлов и директорий, права доступа к ним, их названия и другие свойства.

Примеры файловых систем в Linux:

**ext4** - одна из наиболее распространенных файловых систем в Linux. Она обладает высокой производительностью и поддерживает большие объемы данных.

**Btrfs** - современная файловая система, которая поддерживает различные функции, такие как снимки, управление памятью и проверка целостности данных.

**XFS** - файловая система, разработанная для обработки больших объемов данных и высоких нагрузок. Она обладает хорошей производительностью и отказоустойчивостью.

**ZFS** - файловая система с мощными функциями управления данными, включая сжатие, шифрование и быструю проверку целостности данных.

#### 4. Как посмотреть, какие файловые системы подмонтированы в ОС?

В Linux можно просмотреть список подмонтированных файловых систем с помощью команды **df** -h. Эта команда отобразит информацию о дисковом пространстве, включая подмонтированные файловые системы. Также можно использовать команду **mount**, которая отобразит список всех подмонтированных файловых систем и их параметры.

#### 5. Как удалить зависший процесс?

Для удаления зависшего процесса в Linux можно воспользоваться командой **kill**. Сначала необходимо определить PID (идентификатор процесса) зависшего процесса с помощью команды **ps** -aux | **grep** [название процесса]. Затем используйте команду **kill** [PID] для завершения процесса. Если процесс попрежнему не завершается, можно попробовать использовать команду **kill** -9 [PID], которая немедленно прерывает процесс. Также можно воспользоваться командой **pkill** [название процесса] для завершения всех процессов с указанным именем.

### 6 Выводы

В данной работе мы приобрели практические навыки установки операционной системы на виртуальную машину и настройки минимально необходимых для дальнейшей работы сервисов.

### Список литературы

- 1. Кулябов Д. С. Введение в операционную систему UNIX Лекция.
- 2. Colvin H. VirtualBox: An Ultimate Guide Book on Virtualization with VirtualBox. CreateSpace Independent Publishing Platform, 2015. 70 c.
- 3. Таненбаум Э., Бос X. Современные операционные системы. 4-е изд. СПб. : Питер, 2015. 1120 с. (Классика Computer Science).