

#### User Behaviors on Web



#### User Behaviors on Web

- The better you understand me, the better you can serve me
- Basic task: infer the information need, intents, interests of users from their past behaviors, and then predict their future behavior (e.g., click given a query)
- Sample problems:
  - Identifying sessions in query logs
  - Predicting accesses to a given page (e.g., for caching)
  - Recognizing human vs. automated queries
  - Recommending alternative queries, landing pages, ...

#### User Behaviors on Web

Current state-of-the-art recommendation system



(a) Transformer Layer.

(b) BERT4Rec model architecture.

Picture from Sun et al. 19

#### Query Log analysis

- Main idea: log the user behaviors/actions in web search
- Analyze the log to better understand the users

### Query Log analysis

• Ma

An

|             | AnonID | Query                                                                    | QueryTime           | ItemRank | ClickURL                            |
|-------------|--------|--------------------------------------------------------------------------|---------------------|----------|-------------------------------------|
| Г           | 100218 | tennessee department of transportation                                   | 2006-03-01 11:08:30 | 1        | http://www.tdot.state.tn.us         |
| :[          | 100218 | tennessee federal court                                                  | 2006-03-01 11:53:44 | 1        | http://www.constructionweblinks.com |
| Ч           | 100218 | state of tennessee emergency communications board                        | 2006-03-01 12:56:18 | 1        | http://www.tennessee.gov            |
| П           | 100218 | state of tennessee emergency communications board                        | 2006-03-01 12:56:18 | 1        | http://www.tennessee.gov            |
| $\Box$      | 100218 | state of tennessee emergency communications board                        | 2006-03-01 12:56:18 | 2        | http://www.tennessee.gov            |
| $\parallel$ | 100218 | state of tennessee emergency communications board                        | 2006-03-01 12:56:18 | 1        | http://www.tennessee.gov            |
| П           | 100218 | dixie youth softball                                                     | 2006-03-02 10:36:48 | 2        | http://www.dixie.org                |
| П           | 100218 | cdwg                                                                     | 2006-03-03 14:29:07 | 1        | http://www.cdwg.com                 |
| П           | 100218 | cdwg scam cdwge                                                          | 2006-03-03 14:30:11 |          | - 3                                 |
| П           | 100218 | escambia county sheriff's department                                     | 2006-03-07 09:26:51 | 1        | http://www.escambiaso.com           |
| П           | 100218 | escambia county sheriff's department                                     | 2006-03-07 09:26:51 | 2        | http://www.escambiaso.com           |
| П           | 100218 | escambia county sheriff's department                                     | 2006-03-07 09:26:51 | 1        | http://www.escambiaso.com           |
| П           | 100218 | escambia county sheriff's department                                     | 2006-03-07 09:26:51 | 1        | http://www.escambiaso.com           |
| П           | 100218 | pensacola police department                                              | 2006-03-07 09:34:28 | 1        | http://www.pensacolapolice.com      |
| П           | 100218 | memphis pd                                                               | 2006-03-07 09:42:33 | 1        | http://www.memphispolice.org        |
| П           | 100218 | nashville metro pd                                                       | 2006-03-07 09:44:43 | 1        | http://www.police.nashville.org     |
| П           | 100218 | florida highway patrol                                                   | 2006-03-07 09:48:35 | 1        | http://www.fhp.state.fl.us          |
| П           | 100218 | tennessee highway patrol                                                 | 2006-03-07 09:49:52 | 1        | http://www.state.tn.us              |
| П           | 100218 | florida bureau of investigations                                         | 2006-03-07 09:51:08 | 2        | http://www.flsbi.com                |
| П           | 100218 | florida bureau of investigations                                         | 2006-03-07 09:51:08 | 1        | http://www.fhp.state.fl.us          |
| П           | 100218 | government finance officers asssociation                                 | 2006-03-07 21:16:11 |          |                                     |
| П           | 100218 | state of tennessee controllers manual                                    | 2006-03-07 21:17:12 | 1353     | 30 to -0.00                         |
| П           | 100218 | state of tennessee audit controllers manual                              | 2006-03-07 21:17:40 | 3        | http://www.comptroller.state.tn.us  |
| П           | 100218 | state of tennessee audit controllers manual                              | 2006-03-07 21:17:40 | 4        | http://www.fbr.state.tn.us          |
| П           | 100218 | state of tennessee audit controllers manual                              | 2006-03-07 21:17:40 | 9        | http://audit.tennessee.edu          |
| П           | 100218 | internal controls for municipalities under 10 000                        | 2006-03-07 21:38:04 | 1        | http://www.nysscpa.org              |
| П           | 100218 | internal controls for municipalities under 10 000                        | 2006-03-07 21:38:04 | 4        | http://www.massdor.com              |
| П           | 100218 | municipality fraud detection techniques                                  | 2006-03-07 21:41:40 |          | 2-                                  |
| П           | 100218 | municipal fraud audit detection internal controls                        | 2006-03-07 21:43:15 |          |                                     |
| 1           | 100218 | internal fraud controls for municipalities cities towns local government | 2006-03-07 21:45:13 | 1        | http://www.whitehouse.gov           |
|             | 100218 | internal fraud controls for municipalities cities towns local government | 2006-03-07 21:45:13 | 4        | http://www.nhlgc.org                |
|             | 100218 | internal fraud controls for municipalities cities towns local government | 2006-03-07 21:45:13 | 7        | http://www.sao.state.ut.us          |
|             | 100218 | evaluating internal controls a local government managers guide           | 2006-03-07 21:51:18 | 5        | http://www.allbusiness.com          |

### Query Log analysis



- Slide from Ricardo Baeza-Yates

#### Query Log Analysis in Literature

- Enhance ranking retrieval, advertisement
- Query suggestion; refinement; expansion; substitution, ...
- Spelling check
- Other tasks ...

#### Query Log Analysis in Literature

| Query log name     | Public | Period                                             | # Queries          | # Sessions  | # Users           |
|--------------------|--------|----------------------------------------------------|--------------------|-------------|-------------------|
| Excite '97         | Y      | Sep '97                                            | 1,025,908          | 211,063     | $\sim 410,360$    |
| Excite '97 (small) | Y      | Sep '97                                            | 51,473             | N.D.        | $\sim 18,113$     |
| Altavista          | N      | Aug 2 <sup>nd</sup> - Sep 13 <sup>th</sup> '98     | 993,208,159        | 285,474,117 | N.D.              |
| Excite '99         | Y      | Dec '99                                            | 1,025,910          | 325,711     | $\sim 540,000$    |
| Excite '01         | Y      | May '01                                            | 1,025,910          | 262,025     | $\sim 446,000$    |
| Altavista (public) | Y      | Sep '01                                            | 7,175,648          | N.D.        | N.D.              |
| Tiscali            | N      | Apr '02                                            | 3,278,211          | N.D.        | N.D.              |
| TodoBR             | Y      | Jan - Oct '03                                      | 22,589,568         | N.D.        | N.D.              |
| TodoCL             | N      | May – Nov '03                                      | N.D.               | N.D.        | N.D.              |
| AOL (big)          | N      | Dec 26 <sup>th</sup> '03 – Jan 1 <sup>st</sup> '04 | $\sim 100,000,000$ | N.D.        | $\sim 50,000,000$ |
| Yahoo!             | N      | Nov '05 – Nov '06                                  | N.D.               | N.D.        | N.D.              |
| AOL (small)        | Y      | Mar 1 <sup>st</sup> - May 31 <sup>st</sup> '06     | 36,389,567         | N.D.        | N.D.              |

 Mei and Church 08: MSN Search – 18 months, 637 million unique queries, 585 million unique urls, 193 million unique IP addresses

### Main Results of Query Log Analysis

- Average number of terms in a query is ranging from a low of 2.2 to a high of 2.6
- The most common number of terms in a query is 2
- 45% (2001) of queries are about Commerce, Travel, Economy, People (was 20%1997)
  - The queries about adult content or entertainment decreased from 20% (1997) to around 7% (2001)
- The majority of users don't refine their query
  - The number of users who viewed only a single page increase 29% (1997) to 51% (2001) (Excite)
  - 85% of users viewed only first page of search results (AltaVista)

This slide is from Pierre Baldi

#### **Power-law Characteristics**





Power-Law in log-log space

$$f(r) = c r^{-a}$$
  
 $log(f(r)) = log(c) - a log(r)$ 

- Frequency f(r) of Queries with Rank r
  - 110000 queries from Vivisimo
  - 1.9 Million queries from Excite
- There are strong regularities in terms of patterns of behavior in how we search the Web

Entropy of Search Logs - How Hard is Search? With Personalization? With Backoff? (Mei and Church, 2008)

- Traditional Search
  - H(URL | Query)
  - 2.8 (= 23.9 21.1)
- Personalized Search
  - H(URL | Query, IP)
  - 1.2 (= 27.2 26.0)

Personalizati on cuts H in Half!

|               | Entropy (H) |
|---------------|-------------|
| Query         | 21.1        |
| URL           | 22.1        |
| IP            | 22.1        |
| All But IP    | 23.9        |
| All But URL   | 26.0        |
| All But Query | 27.1        |
| All Three     | 27.2        |

A sketch of a searcher... "moving through many actions towards a general goal of satisfactory completion of research related to an information need." (after Bates 90)



mustang

www.fordvehicles.co m/ cars/mustang

www.mustang.com

ford mustang



Nov

en.wikipedia.org/wiki/ Ford\_Mustang



Search sequence



#### **Query Session Detection**

- Roughly defined as queries that are submitted by the same user in a short period of time
- Hypothesis:
  - Queries in the same session are related
  - Queries in the same session reflect the same mission/task, etc.
  - Queries in the same session reflect the "modification" relationship
- How to segment query sequence into sessions?
- Heuristic methods; Machine learning methods (hidden Markov models, conditional random fields, etc)

#### Example – A Poet's Corner

- AOL User 23187425 typed the following queries within a 10 minutes time-span:
  - you come forward 2006-05-07 03:05:19
  - start to stay off 2006-05-07 03:06:04
  - i have had trouble 2006-05-07 03:06:41
  - time to move on 2006-05-07 03:07:16
  - all over with 2006-05-07 03:07:59
  - joe stop that 2006-05-07 03:08:36
  - i can move on 2006-05-07 03:09:32
  - give you my time in person 2006-05-07 03:10:07
  - never find a gain 2006-05-07 03:10:47
  - i want change 2006-05-07 03:11:15
  - know who iam 2006-05-07 03:11:55
  - curse have been broken 2006-05-07 03:12:30
  - told shawn lawn mow burn up 2006-05-07 03:13:50
  - burn up 2006-05-07 03:14:14
  - was his i deal 2006-05-07 03:15:13
  - i would have told him 2006-05-07 03:15:46
  - to kill him too 2006-05-07 03:16:18

### Query Reformulation – Spelling Correction



[Cucerzan and Brill, 2004]

| albert einstein   | 4834 |
|-------------------|------|
| albert einstien   | 525  |
| albert einstine   | 149  |
| albert einsten    | 27   |
| albert einsteins  | 25   |
| albert einstain   | 11   |
| albert einstin    | 10   |
| albert eintein    | 9    |
| albeart einstein  | 6    |
| aolbert einstein  | 6    |
| alber einstein    | 4    |
| albert einseint   | 3    |
| albert einsteirn  | 3    |
| albert einsterin  | 3    |
| albert eintien    | 3    |
| alberto einstein  | 3    |
| albrecht einstein | 3    |
| alvert einstein   | 3    |

### Query Suggestions (Expension)



### **Query Semantic Selection**

- The meanings of words are changing over time.
  - E.g., switch



#### **Query Semantic Selection**

- The meanings of words are changing over time.
  - E.g., switch



- Hypothesis:
  - Users prefer to know the new meaning of the word





This slide is from Zhuofeng Wu

#### **Beyond Query Logs?**

- Browsing logs
- Eye-tracking logs
- Social bookmarks?



Nested search sequences - Mei et al. 09

### Eye Tracking (Golden Triangle)

```
Results 1 - 10 of about 676,000 for "digital camera" cheapest (0.36 secon
Deals on Ordital Carneras and Accessors 56/1000 24 Gameras
onal retail service combined with discount prices on all photographic & digital camera
ent. Our prices are among a the cheapest that you will find on ...
istolcameras colub/ - 34k - Feb 15, 2005;; GALBES - Similar r 2003
                                                                                                                                                                                                                  100s of merchant quotes on cameras
 pest digital costern InfoJour search
```

- Google Eye Tracking Heat Map, Eyetools Eyetracking Research

#### Understanding the individual

- Gather information beyond the query
- Explicit v. implicit
- Client-side v. server-side

### Learning More Explicitly v. Implicitly

- Explicit
  - User shares more about query intent
  - User shares more about interests
  - Hard to express interests explicitly



This slide is from Jaime Teevan

#### Learning More Explicitly v. Implicitly

#### Explicit

- User shares more about query intent
- User shares more about interests
- Hard to express interests explicitly

#### Implicit

- Query context inferred
- Profile inferred about the user
- Less accurate, needs lots of data

This slide is from Jaime Teevan

#### Personalized search

#### Personalized search: Basic Idea

Lies at the intersection of Information retrieval and Recommender systems.

#### Why do we need personalization?

Understanding queries in isolation is hard For e.g. Query — "MSR"

- Microsoft Research





- Mountain Safety Research 46% of people found improvement with core ranking
- 70% of people found improvement with personalization
- More of these stats at: https://www.forbes.com/sites/blakemorgan/2020/02/18/50-statsshowing-the-power-of-personalization/

#### Personalized search: Solutionizing

#### Solution:

We need to personalize the results based on each user information

What exactly do we mean by user information?

- Who is asking? A programmer vs a carpenter
- What have they done in the past? Visited URLs?
- Where they are? In Michigan vs in California
- When is it? Is it winter or summer?

#### How to approach personalization

Almost all the approaches tackles the problem by figuring out the actual intent of search

Query logs give an ample amount of information for giving these answers. We use the information available to figure out the intent of query

E.g., if I type "map" → "Google maps", "Bing maps", "Apple maps" vs it could be area map, Europe map, etc.

But not all queries have a potential of personalization

 For e.g., "New York Times" → 95% people go to nytimes.com, hence less scope of personalization

It's important to learn when to personalize!

#### When to personalize?

Goal: to define a score that can determine a personalizability of a Query

#### How can we do it?

 Use a Machine learning based model i.e., we can model this problem as a classification problem

> P(personalizability | Query) → will give us a probability between 0 − 1 that defines if the query is personalizable

- The above model runs for each user.
- A lot of these models takes both local and global information

### How to personalize?

There are broadly two ways in which we can personalize search output for the user:

- User-Interface based personalization: Changing the layout of results based on user
- Algorithmic-based personalization: Changing the search results based on user

#### User-interface personalization

Basic goal of User-interface based personalization:

- Reduce working memory load
- Provide alternative interfaces for novice and expert users
- Reorder content based on search history
- Basic elements required:
  - Document set selection: What documents to show where?
  - Query specification: What exact "intent" are the results for?
  - Result examination: Easy to examine results
  - Interaction support (feedback): Can give back feedback if its not pleasing

## Beyond Ranking: Optimizing Whole-Page presentation(Wang et al, WSDM 2016 best paper







#### Interface as a Machine learning problem

- Goal: To optimize the page layout given a user and a Query
- How to do it?
  - For any ML problem, we first need a loss function to optimize
  - We will treat this as a classification problem and use its loss function

### Interface as a Machine learning problem



# Algorithmic-based personalization: model building

Basic idea: Simple → Use the user history to figure out the intent of the given query How to do it?

Step 1 : Feature extraction

- We can extract different kinds of features from user history:
  - User Content: Queries, desktop index, explicit profile etc.
  - User Behavior: visited web pages, feedback(explicit & implicit)
  - Context features: Location, time of the day/week, etc.
- Factors impacting this feature generation:
  - Short-term history vs long-term history
  - Is it for an individual vs for a group

# Algorithmic-based personalization: model usage

- There could also be other factors that influences the model building. These are:
  - Where doe model reside: Server, Client -> Compute power
  - How used: Ranking, Suggestions, etc.
  - When used: How often are they used?

Step2: Using features to get intent

- We can treat it as a classification problem where we classify the intent of user
- The output are tokenized words(application of BERT-based model)
- OR we can simply use a simple conditional statements to get a rough idea about intent

## Algorithmic-based personalization: Case studies

- Based on the usage patterns, and the features that are generated, lets look at 4 case studies where we can use personalization.
  - Navigational search: Search done for navigations
  - Client-side personalized search: Use more User based features
  - Using Long term and Short-term contexts
  - Temporal contexts: Personalization based on time and space

# 1 Navigational search: Search done for navigations

- Re-finding a web page is common in Web search
  - 33% of queries are repeated queries
  - 39% of clicks are repeated clicks
- Many of these are "navigational" queries
  - e.g., new York times → nytimes.com
  - Shows consistent intent across individuals
  - Identified via low click entropy
- A different version of these are "personal navigation" queries
  - -Different intent across individuals but consistent for an individual

# 1 Navigational search: Search done for navigations

- Navigational queries are low hanging fruit for search engines
- These queries comprise of ~12% of total queries
- They have a high prediction accuracy of ~95%
- In short, high coverage, low risk prediction!

### 2 Client-side personalized search

- "Client-side" → Simply means that the model is sitting on your device. In the form of cache, cookies, history, bookmarks, etc.
- Re-ranking of web results using user specific information





### 2 Client-side personalized search

- Personalized ranking model output:
  - Final score = weighted average of web score and personal score
  - score = alpha x (web score) + (1 alpha) x personal score

Global score

local score

- alpha → lies between 0 1
- web score = global scores assigned by the search engine
- personal score -> depends on Content and interaction history of user

## 3 Using Long term and Short-term contexts

- Long term preferences:
  - Content: could use language models, topic models, etc.
  - Analyze behavior: Specific queries, visited URLs
- Short-term tasks
  - Analyze queries within a current session
  - 60% of search has multiple queries in a session
  - We try to predict the intent of current query, given the immediate previous query in the session

# 4 Temporal contexts: Personalization based on time

Queries are not uniformly distributed over time

For the same query, the intent can be different depending on the

time



 For e.g., if I type "US open" before the event, I am looking for the tickets and schedule but if I search for "US open" after the event has occurred, then it's more about the outcome of matches

## 4 Temporal contexts: Personalization based on time

- Solution:
  - -Use time-aware retrieval models  $\rightarrow$  An easy way to do this is add time dependent variables like date, week, etc. to features
  - Output here is again user intent

#### **Evaluate Personalization**

- Recently, personalization has led to Filter Bubble effects → where certain users are simply unable to access information that the search engines' algorithm decides is irrelevant
- Basic strategy for evaluation of personalization in search
  - Use a defined set of queries q
  - perform A/B testing for these queries among different groups



#### Challenges in personalization

- User centric challenges:
  - Privacy
  - Serendipity and novelty: exploration vs exploitation of content
  - Control and transparency
- System-centric challenges
  - -Optimization: Storage, run-time, caching
  - Evaluation: measurement, experimentation

## Thanks!