

STUDY TO ANALYZE NEW CUMBERLAND ARMY DEPOT'S CONSOLIDATION AND CONTAINERIZATION POINT

Prepared by Evaluation Research Corporation

17 April 1977

DEDON'T MUNICIPAL ACCUSE ACCUS	READ INSTRUCTIONS BEFORE COMPLETING FORM
2. GOVT ACC	ESSION NO. 3. RECIPIENT'S CATALOG NUMBER
None	(9.)
TITLE (and Subtitie)	S. TYPE OF REPORT & PERIOD COVE
Study to Analyze New Cumberland Army Depot's	
Consolidation and Containerization Point.	August 1976 — April 1977
THE RESIDENCE OF THE PROPERTY	6. PERFORMING ORG. REPORT NUMBE
AUTHOR(s)	None 8. CONTRACT OR GRANT NUMBER(e)
	S. CONTRACT ON GRANT HOMBEN(S)
John A. Scanga Eli P. Schneider	(15) DAAG 36-76-C-0105 new
EII N/Schiletuel	DAAG-30-70-C-0103
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TA
Evaluation Research Corporation	AREA & WORK UNIT NUMBERS
7777 Leesburg Pike, Suite 211	
Falls Church, Virginia 22043	
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
	17 Apr 1977
	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlli	ng Office) 15. SECURITY CLASS. (of this report)
(19) 429-1	UNCLASSIFIED
(12) Inp.	15a. DECLASSIFICATION/DOWNGRADIN
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if	different from Report)
18. SUPPLEMENTARY NOTES	
9. KEY WORDS (Continue on reverse side if necessary and identify by b	
	Consolidation Containerization
Operations Research	Consolidation Containerization

CONTENTS

CHAPTER		PAGE
	ABSTRACT	v
	SUMMARY	vi
	Problem Background Approach Recommendations	vi vi vii vii
1	INTRODUCTION	1-1
	Background Problem Approach Scope Data Description Model Description Plan of Document	1-1 1-1 1-2 1-3 1-3 1-4
2	PROCEDURES	2-1
	Background Approach Results Recommendations	2-1 2-1 2-1 2-2
3	STUDY OF FACSIMILES	3–1
	Background Problem Approach Results Proposed Solution Approach to Solving the Problem Workload	3-1 3-1 3-2 3-2 3-4 3-5 3-6
4	PHYSICAL FACILITIES	4-1
	Background Problem Approach Plan-O-Graph Results Lighting Recommendations	4-1 4-1 4-2 4-2 4-4 4-14

CHAPTER		PAGE
5	OPTIMIZING MODEL	5-1
	Background Problem Model Description Assumptions/Constraints Vans and Volume/Van Shipped Input Data Model Logic Model Results Improving Utilization of Vans	5-1 5-3 5-3 5-4 5-6 5-6 5-6 5-13
APPENDIXES		
A	FLOW DIAGRAMS OF CCP PROCEDURES	A-1
В	ADJUSTED VOLUME BY CONSIGNEE WITHIN ROUTE AND PRE ALOC VOLUME BY CONSIGNEE WITHIN ROUTE	B-1
С	SURFACE VOLUME RECEIVED BY MONTH CONSIGNEES RECOMMENDED FOR AIR SHIPMENTS	C-1
D	VAN LOADING SIMULATION MODEL	D-1
E	SCHEDULE OF SAILING DATES AND SCHEDULE OF BROWN ROUTE SAILINGS	E-1
F	REPORT ON VISITS TO TWO COMMERCIAL TRANSFER AND STORAGE COMPANIES	F-1
FIGURES		
4-1	Plan-O-Graph	4-13
5-2	Detailed Model Output	5-7
TABLES		
3–1	Sample Data from Five Consecutive Facsimiles for Yellow Route Activity WK4FUU	3–3
3–2	A Comparison of the Existing System versus Minimal Upgrading and Ideal Upgrading	3–7
3-3	Software Requirement for CCP Data Processing	3-8
4-1	Volume of Material Received by Route	4-5
4-2	Comparison of Brown Route ALOC Consignees	4-6
4-3	Material Received by Route Comparison of Two Data Periods	4-7
4-4	Volume of Material by Route Surface Vs Air (ALOC)	4-8
4-5	Surface Material Received by Route Adjusted for ALOC	4-10
4–6	Surface Material Received Adjusted for ALOC by Consignee for Brown Route	4-11
4-7	Allocation of Floor Space	4-12
4-8	Warehouse Light Variation	4-15
5-1	Consignee Volume/Shipment/Size of Van	5-2
5-2	Number of Sailings by Van Size Accepted	5-5
5-3	Sample of Shipments for Specified Sailing Dates	5-10
5-4	Brown Route Observed vs Model Results	5-12
5–5	Comparison of Model Results for Brown, Yellow and Isolated A Routes	5-14

ABSTRACT

The ability of the Containerization and Consolidation Point (CCP) to derive optimum van utilization is influenced by a number of factors. They are: availability of material, operating procedures, timeliness and accuracy of information provided the load planners, physical facilities, ship sailing dates and constraints placed on the CCP by Direct Support System Performance requirements.

The study addressed the question "How to improve van utilization within stated DSS requirements?" Each of the major areas were investigated by study team members resulting in recommendations for improving the CCP operation. The classical operations research approach was followed to identify and bound the problem, observe and collect data, analyze the data, evaluate the results and make appropriate recommendations.

Study results indicated the need for improving physical facilities in the surface storage section of Building 83. Improvement in the accuracy and timeliness of computer prepared loading facsimile was also deemed necessary. A model was developed to simulate loading vans. Model results indicate that better loads can be built without an increase in hold time.

SUMMARY

PROBLEM

A reduction in the number of sailings to Europe created an adverse effect on CCP operations. Multiple partial shipments to the same customer aboard the same vessel became more frequent. Also, van utilization remained below stated goals.

Evaluation Research Corporation (ERC) was hired to conduct a study to analyze New Cumberland Army Depot (NCAD) Consolidation and Containerization Point (CCP) and recommend ways to improve its operation.

BACKGROUND

The Direct Support System (DSS) was implemented in 1970 in US Army Europe (USAREUR). Since that time it has been implemented worldwide. One of the fundamental concepts was the establishment of a Consolidated and Containerization Point. The New Cumberland Army Depot, New Cumberland, Pennsylvania CCP was established to receive, consolidate, containerize and ship DSS material direct to USAREUR.

Until 1975 there was a sailing to Europe virtually every day thereby negating the requirement for loading vans based on a specific sailing date. Currently, however, sailings are less numerous which impact on van utilization and the use of existing facilities.

With fewer sailings one would expect to see an increase in van utilization, a larger number of shipments direct to the customer, and possibly an increase in CCP hold time. Paradoxically, partial van loads are being shipped to the same customer on board the same vessel, while van utilization is below the standard set by CCP supervisors.

To assist the loader a computerized system was developed to report the volume of material available to him for shipment. The data reported includes consignee, volume, TCN, number of days in the CCP, etc. The system as operated, lacks timeliness and contains sufficient errors to dilute its credibility.

As part of a contract to determine ways to improve van utilization, a study of the CCP's operation was undertaken. The study encompassed the following areas: operating procedures, physical facilities, information requirements and processing and material storage. The study was restricted to surface material operations.

APPROACH

The study followed the accepted operations research approach to solving problems. It included: defining the problem, placing boundaries on the problem, defining the approach, establishing data requirements, collecting and analyzing data, evaluating the results and making specific recommendations.

Study team members visited NCAD frequently to discuss various aspects of the study, to collect data and observe the CCP operation. Discussions were held with all levels of CCP managers and employees and with other personnel that impact CCP performance, e.g., computer and industrial engineering personnel.

Data representative of all CCP operations were collected, processed and analyzed. These included: operating procedures, facsimiles, manifests, ship sailing dates, consignee/route assignments, computer capabilities, physical facilities and van utilization.

Results of the analyses were evaluated and recommendations for improving overall CCP performances were made.

RECOMMENDATIONS

- 1. Procedures generally were adequate for use by experienced personnel; however, they should be improved if they are to be used to instruct new personnel. It is recommended that more detailed procedures be written for movement of surface material, shipping hazardous material, information flow, and safety.
- 2. Three programs to improve computer services to the CCP are under consideration or in progress. One would increase the capability of the

existing SPEEDEX Computer, another would provide the CCP with a test mini-computer as part of a larger project, the third would increase the capability of the existing sortation computer as part of the planned expanded sortation system.

ERC recommends that the CCP continue to investigate the expansion of the sortation computer's capability until such time that one of the above programs actually becomes operational. This will provide the CCP with an alternative approach to solving the computer problem that is degrading CCP performance if there is a significant delay in the other programs.

- 3. Physical facilities for loading surface material are somewhat inadequate and should be improved. It is recommended that high intensity lights, similar to those in the air material area, be installed in the surface loading area. Further, ERC recommends that the plan-o-graph in Chapter 4 of the report be implemented.
- 4. It is anticipated that van utilization will increase if all of the recommendations are implemented. There is, however, yet another recommendation that will increase reported performance; taking full credit for those vans that weigh out before they are full. The model developed for this study was designed to consider both weight and volume. Results for the Brown Route show that several vans weighed out before they were full increasing the utilization of vans. ERC recommends that computer programs be revised to accept 100% of volume for those vans that weigh out before they are full.
- 5. Model results indicate that material can be held for longer periods of time to achieve the goal of increasing van utilizations without a significant increase in hold time. Loaders must be willing to accept this fact. ERC recommends that material be held longer (particularly for large volume routes) for use in building better van loads.

Chapter 1

INTRODUCTION

BACKGROUND

The Direct Support System (DSS) was implemented in 1970 in US Army Europe (USAREUR). Since that time it has been implemented worldwide. One of the fundamental concepts was the establishment of a Consolidated and Containerization Point (CCP). The New Cumberland Army Depot (NCAD), New Cumberland, Pennsylvania CCP was established to receive, consolidate, containerize and ship DSS material directly to USAREUR.

Material requisitioned by USAREUR units is received from Army, Defense Logistics Agency (DLA), General Services Administration (GSA) and other suppliers. Consolidated air shipments are trucked to Dover AFB, Dover, Delaware and surface shipments are trucked to the appropriate Port of Embarkation (POE) for ultimate delivery to the requisitioner. Material destined for surface shipment to USAREUR is loaded into vans while air shipments are loaded onto 463L pallets.

PROBLEM

Until 1975 there was a sailing to Europe virtually every day, thereby negating the requirement for loading vans based on a specific sailing date. Currently, however, sailings are less numerous which impact on van utilization and the use of existing facilities.

With fewer sailings one would expect to see an increase in van utilization, a larger number of shipments direct to the customer, and possibly an increase in CCP hold time. Paradoxically, partial van loads are being shipped to the same customer on board the same vessel, while van utilization is below the objective set by CCP supervisors.

The load planner must consider many variables and constraints while attempting to maximize van utilization. He, therefore, must be highly

motivated, dedicated and experienced. Examples of the areas to be considered before he releases material for shipment are:

- Operating procedures
- Volume/Weight of material available
- Configuration and fragility of material
- Hold time
- Sailing date
- Number and size of vans in pool
- Number of vans contracted for each sailing
- Availability of floor space
- Employee scheduling (keeping employees occupied)

The load planner must be provided information relating to each item if he is to build acceptable van loads. Procedures, facilities and information such as hold time, material available, sailing date, size and number of vans available, and the number of vans contracted for shipping are provided by various means. All of the above affects the loader's decision. Additionally, he must visually inspect each pallet to determine if it contains fragile material and/or its configuration will allow stacking other material on top of it.

In order to provide the load planner with as much information as possible regarding the material available for shipment, a facsimile load plan is produced from data stored in the SPEEDEX computer. The planner can accept, reject and/or add material to build the load by the use of specific data codes. Following data input and processing, a manifest is produced and the material is loaded into the van. Facsimiles produced generally are untimely due to lack of processing time on the SPEEDEX computer. The facsimiles also contain erroneous data due to key punching and other factors.

APPROACH

The study was designed to address all of the above items except those areas that were a direct infringement on management perogative, i.e., use of employees, number of vans contacted for sailings, etc.

The study followed the accepted operations research approach to solving problems. It includes: defining the problem, placing appropriate boundaries

around the problem, defining the approach, establishing data requirements, collecting and analyzing the data, evaluating the results and making specific recommendations.

Study team members visited NCAD frequently to discuss various aspects of the study, to collect data and observe the CCP operation. Discussions were held with all levels of CCP managers and employees and with other personnel that impact CCP performance, e.g., computer and industrial engineering personnel.

Data representative of all CCP operations were collected, processed and analyzed. These included: operating procedures, facsimiles, manifests, ship sailing dates, consignee/route assignments, computer capabilities, physical facilities and van utilization.

Results of the analyses were evaluated and recommendations for improving overall CCP performances were made.

SCOPE

The study was limited to those CCP operations that affected van utilization and performance. The study did not consider personnel grade structure, numbers, capabilities and work schedules, the sortation system and transportation. However, when these areas affected CCP performance, an attempt was made to derive an estimate of the effect.

DATA DESCRIPTION

Data were collected for each study segment. Data describing the physical facilities were collected. It included available floor space for the plan-o-graph, estimating the amount of light in footcandles for each bay in Building 83 and availability of van loading space.

Operating procedures were obtained and studied to determine their applicability and effectiveness.

Facsimiles and manifests were obtained and studied. Study members followed the facsimile/manifest process on site for seven working days.

Material receipt and shipment data were obtained for use in laying out the plan-o-graph, estimating CCP van utilization and input to the simulation model. Volume shipped to each consignee and route were also used to develop the plan-o-graph and as input to the model.

Chapter 2

PROCEDURES

BACKGROUND

An initial step in the study to improve container utilization at NCAD was to document the procedures and documentation flow associated with processing material through the CCP. It was necessary to understand not only what was described in the NCAD Director of Supply Regulation 740-1, but how the process was actually being performed and the extent to which the documentation needed to be changed to reflect actual or desired procedures. These then could be related to the results of other analyses to provide a comprehensive picture of present operations. This, in turn, provides a baseline for recommended improvements.

APPROACH

The approach used was to develop draft flow diagrams reflecting the procedures as stated in Reg 740-1. These drafts were then reviewed with the using personnel along with direct observation of warehouse and documentation operations. The drafts were revised and annotated accordingly to reflect a clear portrayal of actual operations. Appropriate notations were made to identify procedures missing or not clearly defined in the Reg 740-1 and variances between actual and described procedures.

RESULTS

Flow diagrams for the following operations are presented in Appendix A.

	Procedure	NCAD DIR/SUP REG 740-1 Reference Procedure
5-1	Induction of Parcel Post	5
6-1A	Standard Cargo Freight Receipts Depots, DSA, GSA	6
6-1B	Hazardous Cargo & High Priority Freight Receipts, Depots, DSA, GSA	6
6-1C	Bulk Parcel Post Freight Receipts Procurement Material	6
6-2A	Standard Freight Receipts Procurement Material	6

6-2B	Hazardous, High Priority and Divert Freight Receipts Procurement Material	6
7-1	NCAD Generated Cargo	7
8-1	Unloading Work Order Control Processing	8
9-1	Preservation, Packaging, Packing, Mailing Work Order Processing	9
10-1	Outloading 463-L Air Force Pallets	10
11-1	Outloading SEAVANS	11

Procedures 12 Diverted Shipments and 13 Cancellation and Frustration of shipments were not flow diagrammed.

The procedures in the 740-1 were found to be reasonably complex and not readily translatable into simple diagrams. A number of the procedures needed to be supplemented and modified to reflect actual operations.

Although detailed specifications are available for the CCP/SPEEDEX data system, there is a need for a comprehensive description of overall CCP operations and the associated documentation/data system. This is considered essential for management visibility, operations analysis, establishing priorities and other decisions related to overall CCP performance.

RECOMMENDATIONS

Rewrite and reorganize NCAD DIR/SUP REG 740-1 into a two level document. The top level would provide management and supervision with a clear picture of CCP operations with associated material and documentation flow. The second level would be a "family" of procedures defining each major operation and its documentation/data requirements. The second level would be written for and directed to the operating personnel.

The recommended procedures would be organized essentially as follows: Level One

Present scope, purpose, policies, responsibilities, and an overview of CCP processing and documentation. Emphasis should be placed on a clear portrayal of CCP operations, the functions to be performed, data and its relationship to the material, and the applicable planning and control procedures. The level one procedure would also define and illustrate data forms common to more than one functional area along with an explanation of the data purpose, processing and reporting.

Level Two

Detailed, stand alone procedures for each operation. These procedures should be written to an "application" level and be suitable for use in personnel training and day-to-day operations. The procedures should contain the applicable documentation forms with illustrations of their use. The level two procedures should be reviewed frequently (quarterly or semiannually) for conformance to actual operations, and potential improvements.

LEVEL ONE DOCUMENT

DIR/SUP Regulation 740-1

NCAD Consolidation Containerization Point

(CCP) Operations

General

Scope

Purpose

Policies

Responsibilities

Operations

Receiving

Material Handling

Palletization and Packaging

Load Planning

ALOC

Van Loading

Documentation

Procedures and Forms

Data Handling and Processing

Reporting

LEVEL TWO DOCUMENT (Typical)

DIR/SUP Regulation 740-1

Detail Specification - Induction of Parcel Post

General

Description of Operation
Responsibilities
Relation to other CCP Operations

Operating Procedures

Receipt

Material Check

Sortation Operation

Mobile Parking Station Operation

Marking and Strapping Operation

Documentation Procedure

Description and Function
Document Preparation
Document Flow
Processing and Reports

Chapter 3

STUDY OF FACSIMILES

BACKGROUND

CCP loaders are provided a facsimile of potential loads by the SPEEDEX computer. The facsimile attempts to portray to the loader what is available for shipment. The loader uses the facsimile to build his load, however, he must make certain that the material is actually on the floor and available for shipment. Erroneous information creates additional problems for the loader because he must check-out the facsimile for the same item until it is purged from the facsimile. The SAG instructed study members to investigate the facsimiles situation and make recommendations for solving the problem.

PROBLEM

Early to the CCP revealed that a potential problem existed in the facsimile area. The facsimile is a document produced by the SPEEDEX computer from data input from the CCP receiving and shipping sections, that identifies material available for shipment on the floor by consignee. It provides the CCP loader with simulated van loads by consignee within cluster. The loader then builds his load using material as it is portrayed on the facsimiles and other material that is on the floor but does not appear on the facsimile. Procedures are available to the loader for accepting, rejecting, or adding material to the proposed facsimile in order to manifest the load.

The ideal situation is one that provides the loader with a facsimile that actually describes what is on the floor. However, this probably requires a near realtime information system. The current system utilizes the NCAD SPEEDEX computer that is also required to process MRO's and many other data files. Because it was assigned a lower priority, the CCP receives less than adequate service. Delays in producing the facsimile and incorrect input data results in reporting erroneous information to the loader.

Following considerable discussion, the SAG instructed ERC to investigate this problem area.

APPROACH

The procedure approved by the SAG shown below, was followed during the facsimile investigation.

- 1. Select cluster
- 2. Purify data in file
- 3. Track facsimiles
- 4. Evaluate results

Objectives of the investigation were discussed with CCP personnel. Following some discussion, the group concluded that the Yellow Route would be used in the test vehicle.

Data on the initial facsimiles reviewed were compared with material actually on the floor to establish a baseline accuracy figure. Results of this endeavor reduced the number of apparent erroneous items (items on the floor and not on facsimile and vice versa) on the facsimile to 7. Ideally, all receipt data would be withheld from the computer until all facsimile errors were corrected. However, at the request of CCP personnel, receipt data was not withheld until an error free facsimile was obtained; rather, a business as usual policy was maintained. This required beginning the test with facsimiles that carried erroneous data; however, in order to meet the requirement for an error free facsimile, new TX4's were tracked as they appeared in the system.

RESULTS

Facsimiles were tracked for a period of 7 days. At the end of the 7th day, erroneous entries increased from 7 to 28, an increase of 21 or 3 errors per day. Causes of the increase included erroneous TCN's duplicate entries, and entries out of sequence.

Erroneous TCN's included some that were obviously incorrect such as WK5XXX and WK?XXX. A dump of shipment data for a two month period also included these types of errors:

- Duplicate TX4's
- Incorrect TCN's
- Missing TX4's and BBC's
- Appearance of TX4's on facsimile with no material on the floor including
- Appearance of TX4's after a load was manifested

For unknown reasons some of the errors bypassed the checks written in the validation program.

During this period, for example, items appeared on a facsimile after they were manifested and shipped. Causes of their appearance were not determined; however, it is suspected that TX4 data were submitted twice, although upon questioning loaders, none would admit to doing it. This situation can result when a TX4 is input to the computer after the wrapup cycle. It therefore will not appear on the next facsimile. Then, if during this period, a loader prepares a TX4 for shipment and the computer manifests the shipment, one TX4 will be deleted from the file because it was manifested; however, the other TX4 will remain in the file.

Table 3-1 depicts sample listing from five consecutive facsimiles for consignee WK4FUU. Item 1 shows that each of the five facsimiles reported the same material available for shipment. This entry included erroneous date, i.e., a check by study personnel revealed that the material was not on the floor. Under present procedures this item will be carried in the file and will appear on all subsequent facsimiles until it is deleted during a computer purge run. Item 2 shows a correct entry. The item appeared on the facsimile the first day it was manifested and shipped the next day, and was deleted from the file. Item 3, however, shows that the item was manifested and shipped on the first day but was not deleted from the file. This situation was probably caused by duplicate entries discussed above. Item 4 shows another correct entry.

		Т	able 3-1		
	SAMP	LE DATA FROM FI FOR YELLOW RO	VE CONSECUTIVE OUTE ACTIVITY WK		
		F	acsimile Number		
Item	GS-316	L3-317	IT-320	6U-321	CS-322
1	Line 20	Line 36	Line 68	Line 71	Line 54
2			Line 71	Line 74 TX4/Man	
3	TX4/Man	Line 40	Line 82	Line 81	Line 66
4	Line 16 TX4/Man				

Currently the file is purged of erroneous data monthly or when requested. This time lag permits a build-up of erroneous data that detracts from the facsimile's credibility.

Interrogation of loaders and discussions with CCP personnel revealed that each loader has his own reasons for liking or disliking the facsimile. The important questions to be answered are "Does he use the facsimile?" If so, how? Based on the observations of study member, there is no definitive pattern except, the day shift used the facsimiles to better advantage than the night shift. The reason for this phenomenom could not be determined. It is possible that the presence of "brass" on the day shift may have influenced the loaders. The consensus of loaders polled is that the facsimile could be more timely. This would more accurately reflect what is on the floor.

A good fascimile provides the loader with sufficient information to plan acceptable van loads. Therefore, it behooves the CCP to provide him with the best possible facsimile. Several approaches aimed at improving the current facsimile process were presented to the SAG. Of the four basic alternatives designed to assist the surface material loader, the SAG instructed ERC to pursue the one that includes upgrading the sortation computer located in the CCP. An upgraded sortation computer would have the capability to continue to operate the sortation system and in addition, provide the CCP with near real-time facsimiles for use by material loaders. It is assumed that correct facsimiles provided in a timely manner would result in improved van utilization.

PROPOSED SOLUTION

There are two criteria that a best possible facsimile must meet — accuracy and timeliness. The facsimile must accurately portray what is available on the floor for shipment, including those items that must be shipped to meet DSS standards and/or customer Required Delivery Dates (RDD). The facsimile, also, must be timely to insure that all material available for shipment is actually on the facsimile to solve the problem of duplicate entries. One solution to both problems is to put facsimile production on a real or near real time basis. As material is moved from the receiving area to the loading bays, TX4 and other data should be input to the computer (if, with proper coding, it can be accomplished prior to moving the material to the

loading area that would further increase the facsimile's usefulness). The loader will be able to build better loads if he is made aware of all the material available for a consignee or cluster.

APPROACH TO SOLVING THE PROBLEM

The approach that ERC followed, as approved by the SAG, was a straight forward systems analysis procedural approach. It included defining the problem, identifying and enumerating all possible constraints in order to properly bound the problem, estimating the workload and requirements for system hardware and software.

Several constraints were placed on ERC by the SAG. The proposed system should:

- Not interrupt sortation system operation
- Not include anticipated increase in sortation system workload
- Not include ALOC
- Consider the effect of dual processing by SPEEDEX computer and the LSSA Architectural Plan.

Production of real time facsimiles/manifests using the present hardware configuration and operating system is virtually impossible for the following reasons:

- Most of the available core is required for the sortation software.
- 2. 90% of the program disk capacity is used.
- 3. The present operating system is operated as a single partition system. A two-partition operating system implies a requirement for more core as well as acquisition of the software to drive it.

The present sortation system is designed for 200-250 units. This is scheduled to be increased to 500 units. The increase will require additional programming and modifications. An increase in computer storage capacity will also be required. As stated previously, the SAG, however, instructed ERC to ignore the proposed increase in their investigation, however, it must be considered in the overall scheme.

As another constraint, ALOC was to be excluded from the study. Current ALOC procedures follow accepted air shipment procedures that input TX4 and associated data for manifesting a shipment without producing a facsimile.

For this part of the study, ALOC manifests would continue to be produced on the SPEEDEX computer.

There are two programs that could impact on the facsimile problem; one is a local program that will utilize a dual processing function designed to provide more computer time for low priority processing, the other program (Architectural Plan) is being designed and implemented by LSSA. The present computer processing capability will be divided into two parts, one for supply depot processing, the second for other processing, i.e., CCP, finance, personnel, etc. Although this should provide additional time for other data processing, CCP requirements cannot be accommodated.

The LSSA program is designed to provide each functional user with a mini-computer for local processing and subsequently input the data into other minis for additional processing and subsequent storage in the 3300. While this complex system can provide the CCP with its own data processing capability, it is still approximately 3 years from implementation. There is however, one part of the system scheduled for implementation in July that may provide some relief. Mini-computers will be used to share the 3300 computer work load by doing some of the back-end processing and computer assignments. If this is actually accomplished, additional 3300 time may be available for CCP processing. A part of this effort will be tested at NCAD/CCP in the near future, i.e., a mini is scheduled for installation at the CCP. Before this becomes a reality, software programs must be written, tested, and debugged. However, because there can be lengthy delays, the CCP should continue its investigation into expanding the sortation computer.

WORKLOAD

Discussions with CCP personnel and observations made by study personnel indicate that the expected surface data workload can be readily processed by a larger sortation computer.

The estimated workload for surface material includes 7-9000 cards/day, production of 40-50 facsimiles/day, 20-25 manifests/day, periodically dumping processed data into the SPEEDEX computer will continue to process all CCP data for transmission to LCA and MTMC and continue preparing those reports that are currently produced.

The system under consideration will include a continuous file update feature that will permit real time facsimile preparation. This feature can be further enhanced with advance notice of material enroute or, as a minimum, NCAD shipments to the CCP. Advance notice of shipments will provide the loader with the opportunity to build better loads by waiting for material enroute to the CCP.

Hardware Requirements

The existing system utilizes a Hewlett-Packard HP-2100A computer with ancillary hardware shown in Table 3-2. Additional hardware requirements are also shown in the table.

In addition to the existing hardware the system employed one computer operator and one-half of a programmer. It is anticipated that the expanded system can be operated with the same personnel.

	Table 3-2	2	
VERS	A COMPARISON OF THE EX		
System Units	Existing Capacity	Upgraded Capacity	Ideal Capacity
Central Processor Disk	32K Bytes 5M Bytes	64K Bytes 20M Bytes	96K Bytes 20M Bytes
	2.5 Fixed/2.5 Remove	7.5/12.5	
Card reader Printer Teletype	Minimal Usage 180 CPS 10 CPS	Employ Fully 180 CPS 10 CPS	Replaced by CRT 180 CPS 10 CPS
Operating System CRT/Keyboard/ Cassette	l Partition Not Available	2 Partitions 1 Unit	3 Partitions 2 Units
Interface with 3300	Not Available	Possible	Necessary

Software

The major difference between the upgraded systems of Table 3-2 is in the capability to perform the functions listed in Table 3-3 below. Since the operation of the sortation equipment is a constant requirement, the undertaking of all other tasks would have to be accomplished within the remaining partition. In the "ideal" system configuration, all functions could be accomplished comfortably and the card punching operation eliminated in favor of CRT entry of data.

A list of computer programs that will be required to process CCP data and produce facsimiles and manifests is shown in the table below.

Table 3-3

SOFTWARE REQUIREMENT FOR CCP DATA PROCESSING

- Input data/validation
- Sort routines (consignee, cluster, date, etc.)
- Facsimile processing
- Facsimiles printing
- Loader input/validation
- Facsimile update
- Manifest preparation
- Manifest printing
- Housekeeping programs
 - File update
 - sort routines
 - preparation and submission of data to SPEED-X computer
- Other

Cost

The estimated costs for additional hardware to prepare facsimiles and manifests for the expanded system and on a real time basis is \$25,000.00 for the ideal system. Estimated cost for preparing software for the above stated requirements is approximately \$35,000.00 for both systems.

Recommendations

The computer situation at NCAD (including the sortation computer) is in a state of flux. Several programs are in progress that could provide a solution to the CCP computer availability problem. Although they were previously discussed, they will be presented again:

- Enhancing the sortation computer capabilities as part of the overall sortation expansion program
- 2. LSSA architecture program
- 3. SPEEDEX computer enhancement program
- 4. Minicomputer test

There are several recommendations that should be apparent to the reader. However, ERC firmly believes that one alternative stands out if improving CCP performance is of paramount interest to NCAD.

ERC recommends that NCAD initiate a program to replace the present sortation computer with the ideal system described on page 3-7 for the following reasons:

- The system proposed is capable of programming both CCP and sortation information simultaneously
- The system is expandable if necessary. This will take care of wartime requirements.
- The proposed minicomputer test, a part of the LSSA system architecture program, although scheduled for this summer, can be delayed. Also, this adds a second computer to the CCP operation when one can handle all of the CCP and sortation system requirements.

Chapter 4

PHYSICAL FACILITIES

BACKGROUND

The CCP is located in Building 83 of the New Cumberland Army Depot. CCP offices are also located in that building. There are approximately 400,000 sq. ft. of space in the building. Fire walls divide the total space into 5 equal areas of approximately 80,000 sq. ft. each.

The surface material loading area is confined to Bays 3 and 4. Neither area is completely reserved for loading surface shipments. A cafeteria and office is planned for Bay 3. A portion of Bay 4 will be used to extend the present sortation system.

Surface material is received in Bay and stored for shipment in Bays 3 and 4. The area is divided into smaller segments that are designated as storage areas by route. Space allocations are based on volume of material received/shipped and are identified by floor and hanging markers. The spaces are laid out to simulate the floor of a van, i.e., 8' x 40'. Additional 8' x 40' spaces are allocated to larger consignees. This provides the loader with the opportunity to make a reasonable estimate of the material available for shipment for a given route.

Standard lights are placed overhead and in the surface material storage area. Lights in the other areas, however, are of the newer high intensity type that provide more candlepower.

PROBLEM

Physical facilities affect the overall operations of the CCP. Inadequate lighting can create problems in reading and recording data, lack of storage space can force shipment of material out of sequence, poor route identification and boundary markers can result in placing material in the wrong route location.

A sufficient amount of data is read and recorded, additionally, there is considerable movement of material within the surface material storage area to warrant adequate lighting. MILSTRIP documents (DD Form-1348), in some instances the flimsy copy, must be read to determine

consignee in order to store material within the proper route location. Loaders prepare facsimile change cards after checking for material and other pertinent documentation for input to the computer. A well lighted area should result in fewer input data errors and misplaced material.

Material is being shipped out of sequence, i.e., hold time is extended for material stored in the rear of the storage area because material is usually loaded from front to back. Another problem is allocation of floor space. How much floor space should be allocated to each route and where should the route be located to facilitate van loading is to be considered.

Easily visible route boundaries are also necessary to reduce the number of misplaced shipments.

APPROACH

Two basic approaches were followed; (1) measure the amount of light (in foot candles) to estimate its adequacy and (2) prepare a plan-ograph that would incorporate additional storage within the space allocated. Each is discussed in more detail later in the report.

PLAN-O-GRAPH

Background

The plan-o-graph was developed as approved by the SAG. Discussions regarding floor space allocation were held with CCP personnel to capitalize on their experience in storage facilities operations.

The approach is designed to develop a plan for storing material for shipment in order to provide the forklift operator, loader, and supervisor with better storage and loading facilities. The plan includes a new plan-o-graph with racks that can be used for storage as well as identifying clusters and consignees, etc.

The plan-o-graph establishes a clearly marked, easily visible and well defined cluster area. For example, storage racks are placed at the end of each cluster to identify cluster boundaries; consignee identification can also be placed on the appropriate rack. Within each area, floor space is reserved for overflow and outsized material. Material for large volume consignees will be stored on the floor within cluster

boundaries. For small volumes consignees material can be stored under and on the storage racks. This method keeps material for one cluster confined to an area readily visible to the loader permitting him to quickly make a determination when to load a van. This will also provide him with ample space to hang signs, instruction, etc., so that he can work more efficiently and effectively. Supervisors can also be more effective in discharging their duties. The expected decrease in surface material shipments due to ALOC should make this proposed plan even more effective.

Preparation of Plan-o-graph

Preparation of the plan-o-graph for the surface material loading warehouse followed accepted procedures. The initial plan-o-graph was developed based on the availability of two full bays for surface material. Since that time 20,000 sq. ft. of Bay 4, previously assigned to surface loading, was reassigned to the ALOC test and an additional 2800 sq. ft. was allocated for office and cafeteria space, leaving a total of approximately 57,200 sq. ft. of floor space to be allocated.

The concept was presented at the 14 January 1977 meeting of the SAG, for approval which was granted. Data for the period 76211 through 76274 were used to estimate daily average cu. ft. of material received by consignee within cluster for air and surface shipments. ALOC data were used to estimate its effect on surface shipments.

The above procedures were used to prepare two plan-o-graphs, one using racks to identify cluster boundaries; the other using racks to provide major divisions of each bay with cluster boundaries identified by floor markers. The latter plan-o-graph would use the racks for storing material for small volume customers.

Data for preparing the plan-o-graph for the surface material loading area followed the outline below:

- Obtain warehouse dimensions
- 2. Estimate average daily cubic feet of air and surface material received by unit within each cluster
- 3. Estimate volume currently shipped by surface transportation that will be shipped by air for ALOC units

- 4. Subtract Item 3 from Item 2
- 5. Prepare plan-o-graph

Part of surface loading area was reassigned to the ALOC test and an additional 2800 sq. ft. was allocated for office and cafeteria space, leaving a total of approximately 57,200 sq. ft. of floor space to be allocated.

RESULTS

Table 4-1 shows the volume of material received by route at the CCP prior to ALOC. The volume received as recorded on the TX4 data card, was used in this estimation.

The data in Table 1 include ALOC units. Note that the percent of material shipped by air is significant in some clusters and rather insignificant in others. Each cluster was evaluated using not only these data but data from ALOC test reports.

Recognizing that the date recorded on the TX4 could represent only one of several receipt dates, study members checked these results with those recorded by the ALOC study group in its report titled "ALOC Implementation Plan." Table 4-2 shows the percent of material shipped to Brown Route Consignees participating in both studies. WK4GA3, over a ten month period utilized in the ALOC study report, received 56% of all material received by ALOC units within the Brown Route. The two month period used in ERC's calculations showed the same unit received 64%, an increase of 8 percentage points, well within the acceptable range desired for computing consignee floor space. Although the two month period compared favorably with the ALOC study, there was some concern regarding the possibility of variation in data sources. Therefore, a comparison was made between the two month period and a 7 month period using data derived from CCP monthly/quarterly reports. Results of this comparison are shown in Table 4-3. The figure shows that there is virtually no difference in the two periods.

Table 4-4 shows the volume of material shipped by air and surface to each route during the month of January 1977, the first full month of

Table 4-1

VOLUME OF MATERIAL RECEIVED BY ROUTE SURFACE VS AIR (PRE-ALOC)

AUGUST 1, 1976 - SEPTEMBER 30, 1976

Volume

Route	Surface	Air	Total	% Surface	% Air
Green A	171,068	6,549	177,617	96.3	3.7.
Red B	125,488	10,911	136,399	92.0	8.0
Purple	59,403	2,647	62,050	95.7	4.3
Green B	85,581	18,199	103,780	82.5	17.5
Yellow	57,948	12,015	69,963	82.8	17.2
Isolated A	53,914	2,205	56,119	96.1	3.9
Isolated B	30,612	714	31,326	97.7	2.3
Blue	138,276	10,417	148,693	93.0	7.0
Orange	169,170	11,777	180,947	93.5	6.5
Red A	73,764	7,821	81,585	90.4	9.6
Brown	294,557	17,262	311,819	94.5	5.5
Isolated C	98-	1,913	2,011	4.9	95.1
Isolated D					
Unknown	33,290	625	33,915	98.2	1.8
				*	
TOTAL	1,293,169	103,055	1,396,224	92.6	7.4

Table 4-2

COMPARISON OF BROWN ROUTE ALOC CONSIGNEES Percent of Total ALOC Study - August-September 1976

Percent of Total

	ALOC Study Dec 74 - Oct 75 Less July	ERC Study Aug - Sept 1976
DSU (Brown Route)		
WK4FW2	3	Neg
WK4F30	5	2
WK4F88	Neg	Neg
WK4GA3	56	64
WK4GBY	21	16
WK4GBZ	7	16
WK4GCB	3	Neg
WK4GB8	Neg	2
WK4GA5		
WK46B6		

Table 4-3

MATERIAL RECEIVED BY ROUTE
Comparison of Two Data Periods

	Percent of	Total (Surface Only)
Route	Aug/Sept	7 mos.
Green A	13.2	14.6
Red B	9.7	9.3
Purple	4.6	4.7
Green B	6.6	7.2
Yellow	4.8	5.3
Isolated A	4.2	4.1
Isolated B	2.4	2.0
Blue	10.6	8.5
Orange	13.1	14.3
Red A	5.7	4.6
Brown	22.5	20.3
Isolated C	neg.	neg.
Isolated D	neg.	1.3
Unknown	2.6	3.8
	100.0	100.0

Table 4-4

VOLUME OF MATERIAL BY ROUTE
SURFACE VS AIR (ALOC)
JANUARY 1977

V	0	1	u	m	e

Route	Surface	Air	Total	% Surface	% Air
Green A	124,539	40,899	165,438	75.3	24.7
Red B	95,307	35,788	131,095	72.7	27.3
Purple	52,329	8,446	60,775	86.1	13.9
Green B	44,741	51,952	96,693	46.3	53.7
Yellow	44,159	20,086	64,245	68.7	31.3
Isolated A	21,313	28,358	49,671	42.9	57.1
Isolated B	30,612	714	31,326	97.7	2.3
Blue	95,927	31,831	127,758	75.1	24.9
Orange	149,471	27,278	176,749	84.6	15.4
Red A	47,341	24,404	71,745	66.0	34.0
Brown	258,694	36,082	294,776	87.8	12.2
Isolated C	120	2,792	2,912	4.1	95.9
Isolated D					
Unknown	33,290	625	33,915	98.2	1.8
TOTAL	997,843	309,255	1,307,098	76.3	23.7

the ALOC test. Comparing percent surface in Tables 4-3 and 4-4 reveals that considerable differences are noted.

Table 4-5 shows the estimated volume of material that will be shipped to each route after adjustments for ALOC. Again, significant differences are noted. These differences were considered in allocating floor space to each route.

Estimating the floor space requirement for each consignee followed the procedure used for the routes/clusters. ALOC data were used in conjunction with pre-ALOC information to allocate floor space to each consignee. Table 4-6 shows the adjusted volume derived for the Brown Route consignees. As with cluster volume, ALOC also has a significant effect on consignee surface volume/shipments.

Adjusted volume for each consignee is shown in Appendix B.

Low Volume Units

An analysis was performed to determine the effect of low volume units on surface and ALOC shipments. Units that received less than 250 cu. ft. by surface means in each of seven months were identified and included in the ALOC segment of the analysis. A total of 33 units were identified. Their impact on surface and air shipments were negligible, because they accounted for less than 1% of the surface volume shipped. Similar results were noted when they were included in the ALOC segment.

Detailed results of the analysis are presented in Appendix C.

Allocation of Floor Space

Floor space was allocated using the percent of total surface volume (less ALOC) received for the period as the primary consideration. The number of consignees in the route was also considered to insure a sufficient number of storage locations. Results presented were approved by CCP personnel following considerable discussion.

Table 4-7 shows the percent of total volume received as adjusted for ALOC, the number of consignees in the route and the percent of total floor space allocated to the route. The Brown Route was allocated 20.4 percent of the available floor space. It has the largest number of consignees and the highest percentage of both the total adjusted and pre-ALOC volumes.

Table 4-5

SURFACE MATERIAL RECEIVED BY ROUTE
ADJUSTED FOR ALOC

	Volume Recei					
Route	Cu. Ft. %					
Green A	124,539 12.	5				
Red B	95,307 9.	6				
Purple	52,329 5.	2				
Green B	44,741 4.	5				
Yellow	44,159 4.	4				
Isolated A	21,313 2.	1				
Isolated B	30,612 3.	1				
Blue	95,927 9.	6				
Orange	149,471 15.	0				
Red A	47,341 4.	7				
Brown	258,694 25.	9				
Isolated C	120 .	0				
Isolated D						
Unknown	33,290 3.	3				
TOTAL	997,843					

Table 4-6
Surface Material Received Adjusted for ALOC by Consignee for Brown Route

	Volume Received
Consignee	Cu. Ft. %
WK4EX4	2,674
WK4EYE	0
WK4EYJ	89,618 34.9
WK4FR5	0
WK4FV2	3,920
WK4FV9	24,276 9.5
WK4FWL	10
WK4FW2	230
WK4FW5	3,791 1.5
WK4F1A	2,359
WK4F30	0
WK4F83	12,872 5.0
WK4F88	48
WK4GA1	7,471 2.9
WK4GA3	682
WK4GA5	202
WK4GAV	5,545 2.2
WK4GBW	66,963 26.1
WK4GBY	162
WK4GBZ	148
WK4GBO	6,776 2.6
WK4GB3	148
WK4GB6	18,603 7.2
WK4GCB	3,170
WK4GD8	254
WK4GFC	2,794
WK4GFX	132
WK4GGD	231
WK4SGA	4,715 1.8
WK4UUB	900
WK46B6	0

	Table	4-7	
	ALLOCATION OF	FLOOR SPACE	
Route #	Percent of Total Volume (less ALOC)	Number of Consignees	Percent of Total Floor Space
1	12.5	24	8.5
2	9.6	25	7.3
3	5.2	12	6.2
4	4.5	16	4.2
5	4.4	16	4.2
6	2.1	6	4.6
7	3.1	5	4.6
8	9.6	22	7.3
9	15.0	24	13.9
10	4.7	16	5.8
11	25.9	28	20.4

The Plan-o-graph

The plan-o-graph approved by CCP personnel is shown in Figure 4-7. The location of each cluster is identified. The number of racks per cluster is also included.

Racks are available in several dimensions. Generally, $5' \times 10'$ racks will permit storing four pallets in each rack and two on top of the rack. Thus six pallets can be stored in each section.

Upright Truss construction specifications consist of:

- 1. Columns punched for two inch vertical adjustability are seam welded tubes (not C-channel).
- Diagonal Braces are welded in place in an x-pattern, thereby packing the bracing in tension, eliminating the possibility of buckling which is often the result of using compression bracing patterns.
- Horizontal Braces are square tubes (not C-channel or angle) of narrow width so that the two inch adjustability of load carrying beams is not interferred with in any way.
- 4. Floor bearing plates welded to base of each column for floor anchoring where required and for receiving shims where required.

Beams are of tubular construction to resist torsional forces even in long spans. Connector angles welded at each end are constructed to engage three planes of each column in a wrap-around grip with increase of frictional

RAILROAD

ROADSIDE

• - Support Beam Top Number = sq. ft. of allocated floor space Lower Number = sq. ft. of rack space

Scale 1/4" = 10'

Figure 4-1

forces as the load increases. Four points of connection using the connector between connector angle and column provide sixteen points of connection at each load level.

Movable racks are available and will provide the flexibility required to change route storage size and/or location. Changing route consignee structure can be readily accomplished by moving consignee identification signs from one rack to another.

The concept also provides the loader with opportunity to complete his paper work within the route storage area, thereby allowing him to check data and/or material rapidly without walking from one location to another. This setup coupled with better lighting should result in improved input data and better facsimiles.

Cost of Racks

Cost estimate for the purchase of 97 racks was obtained from the Advanced Equipment Co. Incorporated, Capitol Heights, Maryland. The estimated cost is \$10,000 and is based on the purchase of the total amount. An increase in the unit price is imposed for orders less than \$10,000.

LIGHTING

Background/Approach

Lights placed overhead include the use of standard light bulbs. The lights appear to be circa pre World War II.

Study team members using a color and cosine corrected light meter measured the amount of light (in footcandles) in each of the five bays in Building 83.

The measurement of light intensity in the warehouse was taken. Measurements were made in all 4 corners and at each support beam in each bay. Results shown in Table 4-8 indicate lighting facilities in the surface area are less than adequate. The air and receiving loading areas, however, are equipped with an equal number of high intensity lights that provide adequate lighting for all receiving and loading functions.

Table 4-8

Bay	Activity	Meter Reading	Footcandles
1	Receiving	low	18
		high	78
		average	56
2	Surface Loading	low	2
		high	5
		average	4
3	Surface Loading	low	2
		high	7
		average	5
4	Cubitron	low	5
		high	75
		average	52
5	Parcel Post	low	3
		high	38
		average	22

Installation of high intensity lights similar to those in the air and receiving sectors will provide sufficient light in the surface area for loaders and forklift operators to better perform their functions. Discussion with CCP personnel revealed that a requisition for high intensicy lights to replace lights in the surface area has been submitted. The request is under consideration by the Base Engineers (their understanding is that the request has been approved but funds are lacking).

RECOMMENDATIONS

Improving the physical facilities can, although secondary in nature, have a beneficial effect on van utilization. Better lighting, readily visible route/consignee markers, greater accessibility to all material and the opportunity to perform paper work within each route storage area should provide the incentive to do better work and decrease human errors.

Recommended improvements to the surface loading area include:

- Increase the available light in the surface loading area to be equal to the other loading areas.
- Install racks to provide additional storage area and route boundary markers.
- Provide well placed markers to identify routes and consignees.
- Provide work desks for use by loaders that are near routes they are responsible for.

Recommend transfer of 32 low volume customers from surface to air transportation.

Chapter 5

OPTIMIZING MODEL

BACKGROUND

During the conduct of the study the possibilities of developing a model to simulate van loading within the constraints placed on the CCP was discussed. Although no simulation model is perfect, the study members undertook the task. The model developed is an optimization model that attempts to build optimal van loads within the assigned constraints.

Data for use in the model was provided by NCAD. The data provided covers a three month period - August, September and November of 1976. Only two months data were used in the study due to technical problems that were encountered in processing the November tapes. However, two months should be sufficient to provide confidence in model results.

The model is operational on a third generation computer (IBM 370-168). It is programmed in FORTRAN IV and requires very short computer operating time (6 CPU seconds for 2 months simulation of the Brown route).

The program is located in Appendix D to this report.

PROBLEM

There are three principal functional requirements for CCP operation which will reduce transportation costs and average response times.

They are:

- 1. Minimize the number of consignees in each container
- 2. Maximize the amount of cargo in each container
- 3. Minimize the time cargo is held at the CCP for consolidation and loading

Operational experience established that a lack of sufficient cargo volume for the average consignee makes it impossible to meet all three objectives. Further, study results indicate that large consignees are shipped several partially loaded vans aboard the same vessel and overall utilization of vans is less than 60%.

Table 5-1 shows the number of 35 foot vans shipped to Brown Route consignees aboard the same vessel (14 August 1976). A complete listing is in Appendix E.

	Table 5-1	
	CONSIGNEE VOLUME/SHIPMENT/SIZE (SELECTED UNITS) August 14, 1976	OF VAN
Consignee		35 ft Van
WK4F83		1311,225,875
WK4FV9		753, 319, 177, 377, 52, 1354, 1679
WK4GA3		1255, 1281, 1353
WK4EYJ		586, 760, 1293, 779, 1771, 596, 1716, 714
WK4GBW		1130, 1248
WK4GA1		1043

The table shows that WK4EYJ was shipped eight 35 foot vans aboard the same vessel. The total volume shipped was 8215 cu. ft. or an average of 1027 cu. ft./35 ft. van. A 35 ft. van has a maximum volume of 2240 cu. ft. with 1027 cu. ft. representing a utilization of 45.8%. If a 5% reduction for dunnage is applied, the utilization is just over 50%. If the utilization was increased to 60%, only 6 vans would be utilized. At 70% only 5 vans would be shipped.

Recognizing that other consignees within the cluster may also be loaded on the van, there still is a high probability that its utilization can be improved. The CCP shipped a total 6346 vans in 1976. CCP personnel estimate a total of 6000 vans will be shipped in 1977; however, ALOC should create a large impact on that number. Considering the effect of ALOC, it is more than likely that 4000-4500 vans will be shipped to USAEUR. If improved utilization of vans can be improved by 5%, it will reduce that number by 1 van per working day (200/year). This will result in a savings of \$350,000 during 1977.

MODEL DESCRIPTION

The constrained optimization simulation model developed builds van loads based on alternative loading policies. The model considers such variables as consignee, hold time, van capacity, operating policies, and weight and cube to optimize loading factors using historical CCP shipment data.

The input data required includes:

- 1. Maximum number of consignees per van
- 2. Maximum hold time employed
- 3. CCP receipt date
- 4. DSU WK identification codes by cluster or drop point
- 5. CCP load rules by van size
 - a. Minimum volume of container
 - b. Optimum volume of container
 - c. Maximum volume of container
- 6. Van closing dates to meet scheduled sailings
- 7. Maximum weight
- 8. Volume

Because the study is only concerned with surface shipments, priority designation of material is not relevant.

ASSUMPTIONS/CONSTRAINTS

The model operates under the following assumptions and constraints. The assumptions are necessary to produce as realistic a simulation as possible within the given constraints.

Assumptions

- The top, bottom and sides of each item is considered to be a flat surface to permit stacking whenever necessary
- 2. The number and size of vans are unrestricted
- 3. Storage space is also unrestricted
- 4. Personnel requirements can be met

In the actual situation many items are shipped that are outsized, contain sharp points thereby prohibiting stacking material on top, fragile material also must be shipped either on top of other material or on the floor of the van without stacking material on top. The model, however, must, out of necessity, assume that material on pallets can be stacked one on the other.

The assumption that there are sufficient number of vans to accommodate surface shipments to USAREUR is valid. The last two assumptions are also valid based on observations made during the study period.

Constraints

Several constraints were placed on the model developer, each constraint has been justified to and approved by the SAG.

- Ship sailing days are: Tuesday, Friday, and Saturday
- Subtract 5% of permitted volumes for "dunnage"
- Use CCP van size determination
- Use 42,000 lbs. for maximum weight
- Limit number of consignees per van to 5
- Vary hold time using 6, 8, and 10 days
- Use TX4 data
- Eliminate hazardous cargo
- Vans that weight-out before cubing out will be considered as 100% loaded
- Use total volume to compute percent fill

Ship sailing days were derived from data obtained from the transportation section of NCAD. Table 5-2 shows the number of sailings by day of the week and the van size accepted by the vessels. A complete list of sailings for the two month period is shown in Appendix E.

VANS AND VOLUME/VAN SHIPPED

The CCP uses a fixed percentage of the van's absolute volume as a maximum. These and optimum and minimum van volumes are also parameters included in the model. In order to insure that pallets remain in a stationary position during movement, "dunnage" is used. To account for this, 5% was subtracted from the permitted volumes for each van size.

In the past, weight was not considered in the percent utilization computations. The model, however, does consider weight to identify vans weights out before they are filled. When this situation occurs, a 100% utilization factor is assigned to the loaded van.

Table 5-2

NUMBER OF SAILINGS BY VAN SIZE ACCEPTED

BY DAY OF WEEK

(Period 3 August thru 3 October)*

Day of Week	Number of Sailings	Number Accepting 35 Foot Vans	Number Accepting 20/40 Foot Vans
Tuesday	7	0	7
Friday	6	0	6
Saturday	9	8	8
Sunday	1	0	1

^{*9} weeks

A study of available data shows that some hazardous cargo is shipped with regular cargo. This phenomenon was not duplicated in the model because all hazardous material was deleted from the data base.

INPUT DATA

Data input for the model was obtained from NCAD/DMIS. Historical data were provided for a three month period. Due to processing difficulties, however, only tow months data were used in the model runs.

Results were initially obtained for three routes, Brown, Yellow and Isolated A, to determine if further model runs were required. It was determined that results obtained for the three routes formed a sufficiently large sample to draw inferences regarding model output when compared to observed data.

MODEL LOGIC

The model as designed, loads vans 4 days per week; Tuesday through Friday. Its original design was altered to simulate the CCPs operating procedure for 35 foot vans and the recent directive to eliminate the use of 40 foot vans from the model.

The model logic attempts to load single consignee vans using either weight or cube. The logic sequence is as follows.

- Aggregate total weights and volumes for each drop point for a given time interval.
- 2. Construct single vans for consignees having total weight in excess of 42,000 lbs.
- Construct single vans for consignees having weight or cube in excess of "optimum" loads.
- 4. Assign consignees to vans in order to maximize volume utilization subject to:
 - a. Total weight of a van less than 42,000 lbs.
 - b. Number of consignees per van less than preassigned maximum (5 used for each van type).
 - c. Total cube per van must exceed minimum value.
- When assignments cannot be made according to 4 above, close remaining vans shipping only cargo that cannot be held for the next interval.

MODEL RESULTS

Figure 5.2 indicates an example of detailed output of the model for the time interval of day 235-238. A total of 587 TX4's were available

1	235 — 238	587	1	1 1			
5;	CONSSOULE	VOL	WT	HITEMS			
, c	2 WK4EX4	67	802	3			
7	5 AK4385	2088	30623	207			
2.	6 WK4GA3	306	3418	7			
15	7 AK45B1	2	45	i			
10	12 WK4FW2		278	7			
-		38	12				
11 _	15 AK4429			1			
712	16 WK4GBY	373	15054	23			
.12	17 AK4431	. 33	360	4			
14,	18 WK4GBZ	1693	51601	50			
15	19 AK4129	981	26213	15			
10	22 WK45GA	97	2390	5			
17	25 AK4383	18	588	2			
7.	26 WK4GA1	380	6495	23			
12	30 WK4UUB	34	343	4			
20.	31 WK4GGD	5	198	1			
1::	33 WK4F1A	11	174	3			
1-	35 WK4FW5	52	563	9			
-2	37 WK4GBW	1593	14650	47			
Tal	39 WK4EYJ	7698	166523	72			
1:-	42 WK4FV9	1560	20962	47			
1	44 WK4FWL	5	30	1			
-	45 WK4GBV	60	768	4			
	47 WK4GB6	879	26850	44			
	51 WK4GH3	10	74	5			
	54 WK4FV2	313	16369	5			
11.	PREV XNS FOR						
_ i	I MET AND TON	11123					
. !	L SHIP VAN TYP	F 2	1110	1 4200	0 1060		
	PREV XNS FOR				0 1000		
	TALY AND TOR	ITPL 3	AFFLILU	10 1172 2		733	
- 1	SHIP VAN TYP	E 2	1495	1 /200	0 675	(2)	
				1 4200	0 675		
	PREV XNS FOR	TYPE 3	APPLIEU	10 TYPE 2	7	(a)	
U.	SUID WAN TYP		1000	1 (100		3 .	
	L SHIP VAN TYP	E 2	1092	1 4199	9 1078 -		
	· · · · · · · · · · · · · · · · · · ·		2170	. 2002			
1	SHIP VAN TYP	E 3	2170	1 3892	9 0	(4)	
2	CUTO WILL TUD		2112			13	
	SHIP VAN TYP			1 3269		3	
1	F *SHIPPED SIN	GLE VAN	TYPE 3	USER 5	2088 30623 7	6	
-						(6)	
	SHIP VAN TYP		2088	1 3062			· · · · · · · · · · · · · · · · · · ·
1	- SHIPPED SIN	GLE VAN	TYPE 1	• USER 19	981 26213 7	(2)	
1-			•			(7)	
10	SHIP VAN TYP		981	1 2621			
70	C *SHIPPED SIN	GLE VAN	TYPE 1	• USER 47	879 26850 7	0	
1						(8)	
2	SHIP VAN TYP		879	1 2685			
		CUST #	1 108				
1		CUST #	2 23				
LF,		CUST #		02 67 WK4			
	VAN TYPE 1.	CUST #	4 7	68 60 WK4	GBV 4		
20							

Figure 5-2 (Contd)

•	1														_		
-	1		SHI	PVA	N	TYPE	1		996			4	14858	4	9		
LU			VAN	TYP	E	2.	CUST	#	1	1465	0	1593	WK4GBW		_		
10	i			TYP	-								WK4GA3	1			
					-				_								
	67		SHI	PVA	N	TYPE	2		1899			2	18068	1	(10)	7	
C													WK4FV9		(10)	/	
	1:			TYP			CUST						WK4FV2	27			
	12		• •		_		000.					3,3	W				
C			SHI	PVA	N	TYPE	. 2		1873			2 3	37331	27	(ii) .	
	16			TYP			CUST			960			WK4GBZ	417			
	17			TYP			CUST		2	649			WK4GA1	37		· · ·	
C	, ,		VAIN	111	L		C()31	"	2	049.	,	300	WN4GAI	31			
	18		CHT	D. 1/A	LA	TYPE	1		963			2	14004	37	60)	
	110												16096		(12	<i>y</i>	
	1 1-			TYP			CUST			1505			WK4GHY	627			
	111			TYP			CUST		2	563			WK4FW5				
	12			TYP			CUST		3_	278			WK4FW2				
•	13			TYP			CUST		4	343			WK4UUB				
-	14			TYP			CUST		1	36			AK4431	1867			
	115 -			TYP			CUST		_ 2	588			AK4383				
C	16			TYP			CUST		3	174			WK4F1A				
	177			TYP			CUST		4	74			WK4GB3				
ن	1.1		- Control Control	TYF	1000		CUST		1_	3		Control of the Control	WK4FWL				
2	135			TYF			CUST		2	19			WK4GGD				
CES.	20			TYP			CUST		. 3	17			AK4429				
2	21!			TYP			CUST		4	4!			AK45B1	2155			
25	22	F	CLO	SE V	AN	TYF	PE 1		4	49	7	503			7		
£ .	.73	1													(3)	
BY SOUNG COMPUTER SERVICES, IMC.	74				_		1		497			4	16238	503	<u> </u>		
8	125	T					PE 2		4	77		1828			7		
2	32		PRE	V XV	ıs	FOR	TYPE	2	APPL	IED .	TO	TYPE	1		1	14)	
Ê	12.	1													1 (<u></u>	
5	25						11_		72			4	1196	1828			
æ .	-1-	Г				TYF			4			2155		-	7		
A.R.	ည <u>်</u>	1	PRE	V X	15	FOR	TYPE	3	APPL	IED	TO	TYPE	1		1 1	(5)	
43	31	1													1		
4	-	L	SHI	PV	IN.	TYPE	1	٠.	15			4	285	2155 -	_		
OR	2					The Table	€%		WESS-	7							
THIS FORM FLEPARED BY	24		INT	ERVA	L	SMRY	UTSL		SHIP		RE	MAIN	MIN	OPT	1	MAX	
E P	3		-2	20	7		4403		10173	6	25	97	600	850	1	000	
	36		2 3	35	5		7469		18139			31	1250	1800	•	900	
	37			10	3		6427			9			1300	2050		170	
•	x																

for loading during this period, some, because of hold time constraints, were shipped during the interval and others which could be deferred to the next interval.

Starting with the second line, the aggregated cubes and weights available for each drop point/consignee are indicated.

The transactions that occurred during the simulation have been numbered for ease of reference. Also pairs of lines have been linked where they pertain to a single transaction. Transactions 1, 2 and 3 represent a situation of weighted-out vans. Transactions 4-7 represent single van loading situations where sufficient volumes are available to exceed the optimum cube capacity of some type of van.

Transactions 9-12 represent the standard operation of loading vans in the model. That is, selections of van type and cube to load are repeatedly made with the objective of maximizing the utilization of the remaining capacity of available vans.

The information given following 12 depicts the phenomenon of closing the interval. It is obvious that with the volumes that are available, the required minimum volumes cannot be attained for any van. To compensate for this phenomenon, an occasional relaxation of the constraint of the number of consignees per van is one solution. Another is the extending of permissible "hold times," and of course "ash and trash" vans are a practical answer.

Summary results obtained for the interval are the last items indicated in the figure. It is worth noting that the number of 20' vans shipped (7) includes three of the "close-out" vans.

The situation of inefficient van utilization that was discussed earlier in this chapter can be avoided. A two week sample of shipments made for the two largest consignees in the Brown Route is presented in Figure 5-3. It can be seen that whenever a number of vans were shipped on the same sailing date, that number less one of the vans were either weighted-out or at more than optimum capacity.

It must be recognized that the model does not consider several real world factors and has the benefit of perfect viewing of all receipts prior to loading at the close of an interval. However, this may not be as absurd as it appears. What may be deduced from the simulation is as

Table 5-3

SAMPLE OF SHIPMENTS FOR SPECIFIED SAILING DATES

Consignee	Sailing Date	No. Vans	Van Size	Volume
WK4GBW	Saturday	1	35	1514
	Tuesday	1	20	422
	Friday	1	35	1282
	Saturday	2	20 40	530 2111
WK4EYJ	Saturday	3	20 20 35	900 (W)* 493 2658 (W)
	Tuesday	2	20 40	296 1960 (W)
	Friday	1	20	501
	Saturday	3	20 35 40	1003 (W) 1695 2151

^{*(}W) = Weighed Out

follows. As a total up-to-the-minute portrayal of cargo on the floor becomes more of a reality, we approach the ideal situation depicted by the model.

Results of analysis of historical data and model results are shown in Table 5-1. Shown by type of van are number of vans shipped, percent utilization, average volume, and the number weighed out before they were filled. The average volume and percent utilization shown include 100 percent volume for weighed out vans.

The table shows that, as one would expect, model results are much better than the observed. A total of 251 vans were recorded as shipped, however, for the same period, a maximum of 195 vans were shipped by the model (6 day hold). It would be unrealistic to expect the CCP to achieve a 22% reduction in the number of vans shipped to Brown Route customers for obvious reasons:

- Material configuration prevents stacking pallets
- Fragile material cannot be stacked
- Outsized material must be shipped in large vans
- Low volume customers
- Dock space for loading is limited

The table also shows that using maximum hold time of 6, 8 or 10 days does not appreciably change model results. This may be caused by the model's ability to hold all material until the day it is shipped, i.e., the material is loaded and shipped instantaneously at the end of the day. A difference of 5 vans (195 vs 190) were loaded by the model when 6 days and 10 days maximum hold time criteria were used.

A marked improvement in van utilization is shown between observed and model results. This can be due to the optimum stacking capability of the model and its ability to search for the correct volume to fill out available space in the van. However, van utilization may be improved by using the hold technique employed in the model. This will be discussed later in this section of the report.

Table 5-2 compares model results (using maximum 6 day hold time criterion) for Brown, Yellow and Isolated Route A. The table shows that as less material is available for loading van utilization deteriorates. This implies that additional hold time should be allocated to smaller routes.

Table 5-4
BROWN ROUTE OBSERVED
vs MODEL RESULTS

	_		Γ			
	gnees	No. (W)	3	14		
	Consi	% Util	06	93		
	1.T5	Avg % No. Vol Util (W) cu'	1152 90	2083 93		
	10 Day H.T5 Consignees	No. of Vans	80	110	*	190
	sees	No. (W)	3	14		
	nsign	% Util	1152 90	2083 93 14		
SULTS 1d time	T5 Co	Avg % No. Vol Util (W)	1152	2083		
MODEL RESULTS (maximum hold time)	6 Day H.T5 Consignees 8 Day H.T5 Consignees	No. No. of (W) Vans	83	109	*	192
Ĕ.	nees	No. (W)	4	14		
	Consig	% No. Util (W)	88	93		
	H.T5	Avg Vol	1126	2083		
	6 Day	No. of Vans	87	108	*	195
		No.*	1	7	1	
		% Ut11	51	61	55	
Observed		No. of Avg % No.* Vans Vol Util (W) cu'	652	1363	1412	
0bse		No. of Vans	59	164	28	251
Van Size			20,	35'	.05	Total Vans Ship- ped

*(W) = Weighed Out

** Model was constrained to use large and small vans (35' and 20')

IMPROVING UTILIZATION OF VANS

This section of the report will attempt to integrate all of the recommendations that were made regarding improving van utilization. Emphasis will be placed on information and storage facilities.

Information about availability of material either on the floor or enroute, is paramount in the CCP system as it is now designed. The loader must be made aware of all available material if he is to build better loads.

Better and more frequent information will result in improved loads which should increase the loaders desire to build better loads.

Operating/procedural information is also essential to maintain a high level of motivation.

Storage space as allocated in the plan-o-graph, if utilized effectively, can provide the loader with considerable information just by looking over the material in a given sector.

Using the Brown Route (this is a valid selection because it offers the greatest opportunity for improvement) as an example, a total of 8,280 sq. ft. of floor space is available plus an additional 4,050 sq. ft. on racks. Consider that the bed of a 35' van is (8' x 35') 280 sq. ft.; then, 12,330 divided by 280 or the equivalent of 44 vans full of material can be stored if the material was stacked 8 feet high. Assuming the average height is 4 feet then, 22 vans full of material can be stored. Reduce the height to an average of 3 feet and the van utilization to 66%, then, 11 van loads can be accommodated in the allocated space.

A total of 251 vans were shipped during the 42 working days in the study period (59-20', 164-35', and 28-40'). This equates to 5.976 or 6 vans/day on the average. Using an average height of 4 ft/pallet between 3 and 4 days of material can be stored before it overflows its assigned area. This also indicates that the loader doesn't have to rush to move the material out of the storage; he can, in fact, wait within the above constraints, until material becomes available to build better loads.

The above approach can be further enhanced by moving material within a given route to provide the loader with additional insight to the volume, configuration, and hold time of available material.

Table 5-5 COMPARISON OF MODEL RESULTS FOR BROWN, YELLOW AND ISOLATED A ROUTES MAXIMUM HOLD TIME 6 DAYS VAN SIZE BROWN YELLOW ISOLATED A % Util. % Util No. of Vans % Util No. of Vans No. of Vans 20' 83 87 88 17 16 81 35' 108 93 20 89 23 85

Model results modified by real world situations and applied to available floor space indicate that the loader can build better loads if he is provided with accurate information and takes full advantage of all loading criteria, i.e., storage space, number of consignees, holdtime, etc.

Appendix A

FLOW DIAGRAMS OF CCP PROCEDURES

Parcel Post 5-1

· . '

Standard Freight Receipts - Procurement Material 6-2A

Hazardous, High Priority (AIR) and Divert Freight Receipts - Procurement Material 6-2B

NCAD Generated Cargo 7-1

8-1 Unloading Work Order Control Processing

9-1 Preservation, Packaging, Marking Work Order Processing

Appendix B

Adjusted Volume By Consignee Within Route

and

Pre ALOC Volume By Consignee Within Route

CLUSTER 1
GREEN A ROUTE

		PRE-ALOC			ALOC	
CONSIGNEE	SURFACE	AIR	TOTAL	SURFACE	AIR	TOTAL
WK4EX5	1,310	33	1,343			
WK4FRH	0	0	0			
WK4FT7	2,077	0	2,077			
WK4FUG	98,988	1,048	100,036			
WK4FYO	516	776	1,292			
WK4FY3	31,049	1,004	32,053			
WK4F2G	0	0	0			
WK4F2J	0	0	0			
WK4F2L	277	0	277			
WK4F32	169	2	171			
WK4F8V	2,618	252	2,870			
WK4GC1	46	1,411	1,457			
WK4GC2	6,665	895	7,560			
WK4GC5	449	72	521			
WK4GC6	441	115	556			
WK4GDP	8	0	8			
WK4GEA	150	1	151			
WK4GFL	1,919	0	1,919			
WK4GFS	1,102	0	1,102			
WK4GFO	270	0	270			
WK4NP7	7,691	88	7,779			
WK4SF6	0	0	0			
WK4SRQ	10,719	215	10,934			
WK4SRR	3,938	329	4,267			
WK4UT9	666	308	974			

CLUSTER 2 RED B ROUTE

		PRE-ALOC			ALOC	
CONSIGNEE	SURFACE	AIR	TOTAL	SURFACE	AIR	TOT
WK4EX9	973	334	1,307			
WK4FRD	0	0	0			
WK4FSA	0	0	0			
WK4FOQ	3,551	0	3,551			
WK4FOT	6,042	6	6,048			
WK4FOV	26,756	818	27,574			
WK4FO4	0	0	0			
WK4F8S	18	916	934			
WK4F8T	848	194	1,042			
WK4F9A	2,780	233	3,013			
WK4F9C	13,338	636	13,974			
WK4GDV	1,236	381	1,617			
WK4GDW	23,828	856	24,684			
WK4GDX	3,371	210	3,581			
WK4GDY	160	523	683			
WK4GD1	92	0	92			
WK4GD2	5,543	404	5,947			
WK4GD4	348	0	348			
WK4GD5	1,585	2,145	3,730			
WK4GEV	16,951	3,117	20,068			
WK4GEW	254	50	304			
WK4GFJ	3,170	0	3,170			
WK4GFR	5,638	0	5,638			
WK4GFZ	8,595	0	8,595			
WK4GF3	411	88	499			

CLUSTER 3
PURPLE ROUTE

		PRE-ALOC		ALOC			
CONSIGNEE	SURFACE	AIR	TOTAL	SURFACE	AIR	TOTAL	
WK4EYA	12	0	12				
WK4FRK	1,790	0	1,790				
WK4FRQ	2,068	217	2,285				
WK4FR8	0	0	0				
WK4FU2	2	1	3				
WK4FZ4	34,540	220	34,760				
WK4FZ9	3	1	4				
WK4F3E	0	0	0				
WK4F8W	8,584	271	8,855				
WK4GCP	90	276	366				
WK4GC4	501	1,126	1,627				
WK4GDU	7,941	535	8,476				
WK4GFD	651	0	651				
WK4GFU	3,221	0	3,221				

CLUSTER 4
GREEN B ROUTE

			ALOC			
CONSIGNEE	SURFACE	AIR	TOTAL	SURFACE	AIR	TOTAL
WK4CJR	5	95	100			
WK4EX7	1,513	1	1,514			
WK4F9R	193	173	366			
WK4F9T	3,009	2,366	5,375			
WK4F9V	543	186	729			
WK4F9X	15,483	446	15,929			
WK4F9Z	5,987	1,904	7,891			
WK4F90	3,923	4,572	8,495			
WK4F91	25,760	3,760	29,520			
WK4F93	149	594	743			
WK4F94	103	50	153			
WK4F95	467	68	535			
WK4F96	19,275	640	19,915			
WK4GAB	5,880	2,529	8,409			
WK4GDS	1,252	815	2,067			
WK4GFN	2,039	0	2,039			

CLUSTER 5 YELLOW ROUTE

	PRE-ALOC			ALOC		
CONSIGNEE	SURFACE	AIR	TOTAL	SURFACE	AIR	TOTAL
WK4EYC	1,072	5	1,077			
WK4FRZ	1	0	1			
WK4 FUU	9,231	48	9,279			
WK4FUZ	0	0	0			
WK4FVK	6,592	77	6,669			
WK4F98	8,668	1,105	9,773			
WK4GAA	3,752	326	4,078			
WK4GAC	9,609	680	10,289			
WK4GAD	5,875	0	5,875			
WK4GAE	6,657	4	6,661			
WK4GAH	0	0	0			
WK4GAK	106	8,214	8,320			
WK4GAL	106	1,352	1,458			
WK4GA2	1,827	204	2,031			
WK4GFA	845	0	845			
WK4GFP	2,560	0	2,560			
WK4GFQ	1,047	0	1.047			

CLUSTER 6
ISOLATED A ROUTE

	PRE-ALOC		ALOC			
SURFACE	AIR	TOTAL	SURFACE	AIR	TOTAL	
4,479	0	4,479				
31,253	584	31,837				
53	1,113	1,166				
9,264	0	9,264				
6,059	273	6,332				
2,806	235	3,041				
	4,479 31,253 53 9,264 6,059	SURFACE AIR 4,479 0 31,253 584 53 1,113 9,264 0 6,059 273	SURFACE AIR TOTAL 4,479 0 4,479 31,253 584 31,837 53 1,113 1,166 9,264 0 9,264 6,059 273 6,332	SURFACE AIR TOTAL SURFACE 4,479 0 4,479 31,253 584 31,837 53 1,113 1,166 9,264 0 9,264 6,059 273 6,332	SURFACE AIR TOTAL SURFACE AIR 4,479 0 4,479 31,253 584 31,837 53 1,113 1,166 9,264 0 9,264 6,059 273 6,332	

CLUSTER 7
ISOLATED B ROUTE

	PRE-ALOC			ALOC			
CONSIGNEE	SURFACE	AIR	TOTAL	SURFACE	AIR	TOTAL	
WK4FSR	10,776	599	11,375				
WK4FTK	490	0	490				
WK4FTN	6,627	115	6,742				
WK4F2A	979	0	979				
WK4F42	11,740	0	11,740				
WK4JLA	0	0	0				

CLUSTER 8
BLUE ROUTE

		PRE-ALOC			ALOC	
CONSIGNEE	SURFACE	AIR	TOTAL	SURFACE	AIR	T
WK4EX8	9,724	2	9,726			
WK4F2V	0	0	0			
WK4F2Y	0	0	0			
WK4F2Z	0	1	1			
WK4F22	4,741	0	4,741			
WK4F25	4,655	299	4,954			
WK4F27	0	0	0			
WK4F3K	50,291	102	50,393			
WK4F8Y	360	2	362			
WK4GAM	57	0	57			
WK4GAQ	4,858	514	5,372			
WK4GCN	221	1,117	1,338			
WK4GDR	5,337	422	5,759			
WK4GD3	0	0	0			
WK4GED	226	938	1,164			
WK4GEH	1,107	1,201	2,308			
WK4GEJ	15,553	1,773	17,326			
WK4GEL	1,999	290	2,289			
WK4GEM	4,648	334	4,982			
WK4GEN	4,801	1,083	5,884			
WK4GEP	6,485	609	7,094			
WK4GES	180	0	180			
WK4GET	14,496	1,154	15,650			
WK4GFK	8,373	0	8,373			
WK4GFT	0	0	0			
WK4GF2	3	551	554			
WK4RCV	161	25	186			

CLUSTER 9
ORANGE ROUTE

NSIGNEE SURFACE		TOTAL		SURFACE		
				SURFACE	AIR	TOTA
4EX6 1,152	624	1,776				
4EYF 52,319	106	52,425				
4FV6 806	4	810				
4FXZ 352	3	355				
4FX4 2,210	15	2,225				
4FYS 36,151	188	36,339				
4FZB 321	350	671				
4FZC 665	118	783				
4FZD 1,070	1,630	2,700				
4FZL 1,485	0	1,485				
4FZN 2,127	1,548	3,675				
4FZV 4,026	13	4,039				
4FZ1 350	0	350				
4F33 429	2	431				
4GCL 2,766	181	2,947				
4GC3 0	0	0				
4GC7 C	0	0				
4GC9 905	30	935				
4GDB C	2	2				
4GDC 13,031	2,078	15,109				
4GDD 7,491	997	8,488				
4GDK 28,905	1,066	29,971				
4GDL 0	0	0	•			
4GFY 1,962	273	2,235				
4POQ 30	9	39				
4QPU 32	302	334				
4R30 9,801	2,134	11,935				
4UUA 784	104	888				

CLUSTER 10 RED A ROUTE

		PRE-ALOC			ALOC	
CONSIGNEE	SURFACE	AIR	TOTAL	SURFACE	AIR	T
WK4EYD	391	1	392			
WK4FRW	5	0	5			
WK4F3N	450	0	450			
WK4F3Z	1,781	46	1,827			
WK4F80	51	1,011	1,062			
WK4F81	1,452	18	1,470			
WK4GEK	1,882	1,193	3,075			
WK4GEO	108	887	995			
WK4GE1	39	57	96			
WK4GE2	20,702	688	21,390			
WK4GE3	4,614	793	5,407			
WK4GE4	19,286	1,752	21,038			
WK4GE7	14,661	1,350	16,011			
WK4GFE	0	0	0			
WK4GF1	8,229	1	8,230			
WK4GF6	113	24	137			

CLUSTER 12 ISOLATED C ROUTE

		PRE-ALOC		ALOC			
CONSIGNEE	SURFACE	AIR	TOTAL	SURFACE	AIR	TOTAL	
WK4F87	0	867	867				
WK4GDT	98	1,046	1,144				

CLUSTER 11 BROWN ROUTE

TOTO	-		00	
PK	E-A	AI.	()()	

ALOC

		THE ALOC			ALOC	
CONSIGNEE	SURFACE	AIR	TOTAL	SURFACE	AIR	TOTAL
WK4EX4	2,674	106	2,780			
WK4EYE	0	0	0			
WK4EYJ	89,618	4,155	93,773			
WK4FR5	0	0	0			
WK4FV2	3,920	1	3,921			
WK4FV9	24,276	1,469	25,745			
WK4FWL	10	0	10			
WK4FW2	1,007	377	1,384			
WK4FW5	3,791	78	3,869			
WK4F1A	2,359	463	2,822			
WK4F30	144	22	166			
WK4F83	12,872	1,257	14,129			
WK4F88	0	245	245			
WK4GA1	7,471	463	7,934			
WK4GA3	26,346	2,221	28,567			
WK4GA5	6	1,558	1,564			
WK4GBV	5,545	0	5,545			
WK4GBW	66,963	1,103	68,066			
WK4GBY	6,632	1,176	7,808			
WK4GBZ	6,572	51	6,623			
WK4GBO	6,776	0	6,776			
WK4GB3	148	170	318			
WK4GB6	18,603	1,345	19,948			
WK4GD8	52	930	982			
WK4GFC	2,794	4	2,798			
WK4GFX	132	0	132			
WK4GGD	231	12	243			
WK4SGA	4,715	12	4,727			
WK4UUB	900	44	944			

CLUSTER 13 ISOLATED D ROUTE

PRE-ALOC		ALOC				
CONSIGNEE	SURFACE	AIR	TOTAL	SURFACE	AIR	TOTAL
WK3FQT						
WK3FQU						
WK3FQ3						

CLUSTER 16

		PRE-ALOC			ALOC	
CONSIGNEE	SURFACE	AIR	TOTAL	SURFACE	AIR	TOTAL
WKOFPV						
WK2FP7						
WK9GG9	13,143	113	13,256			
WK9GHK	15,824	502	16,326			
WM1Q7C	642	10	652			
WN7GX8	3,681	0	3,681			

Surface Material Received Adjusted for ALOC by Consignee for Green Route A $\,$

	Volume Re	
Consignee	Cu. Ft.	%
WK4EX5	1,310	1.1
WK4FRH	0	
WK4FT7	2,077	1.7
WK4FUG	98,988	79.5
WK4FYO	112	.1
WK4FY3	36	
WK4F2G	0	
WK4F2J	0	
WK4F2L	48	
WK4F32	0	
WK4F8V	102	.1
WK4GC1	112	.1
WK4GC2	540	. 4
WK4GC5	64	
WK4GC6	26	
WK4GDP	8	
WK4GEA	4	
WK4GFL	1,919	1.5
WK4GFS	1,102	.9
WK4GFO	270	.2
WK4NP7	6,266	5.0
WK4SF6	0	
√K4SRQ	10,719	8.6
WK4SRR	170	.1
WK4UT9	666	.5
TOTAL	124.539	

Surface Material Received Adjusted for ALOC by Consignee for Red Route B $\,$

MX4EX9 973 1.0 MX4FRD 0 MX4FSA 0 MX4FOQ 3,551 3.7 MX4FOT 6,042 6.3 MX4FOV 26,756 28.1 MX4FOV 26,756 28.1 MX4FSS 98 .1 MX4FST 108 .1 MX4FPQC 13,338 14.0 MX4FPQC 13,338 14.0 MX4GDW 74 3.828 25.0 MX4GDDW 23,828 25.0 MX4GDY 16 3.8 MX4GDY 1,540 1.6 MX4GDY 1,540 1.6 MX4GEV 1,540 1.6 MX4GEV 1,540 3.3 MX4GFY 3,3170 3.3 MX4GFY 3,595	Consignee	Volume Rec Cu. Ft.	eived %
NK4FRD 0 NK4FSA 0 NK4FOQ 3,551 3.7 NK4FOT 6,042 6.3 NK4FOV 26,756 28.1 NK4FOV 0 0 NK4FBS 98 .1 NK4FBT 108 .1 NK4F9A 210 .2 NK4F9C 13,338 14.0 NK4GDV 74 0 NK4GDW 23,828 25.0 NK4GDX 280 .3 NK4GDY 16 0 NK4GDY 15 0 NK4GDY 1,540 1.6 NK4GDY 1,540 1.6 NK4GDY 1,540<			
MK4FSA 0 MK4FOQ 3,551 3.7 MK4FOT 6,042 6.3 MK4FOV 26,756 28.1 MK4FO4 0 0 MK4FBS 98 .1 MK4FBT 108 .1 MK4F9A 210 .2 MK4F9C 13,338 14.0 MK4GDV 74 0 MK4GDW 23,828 25.0 MK4GDX 280 .3 MK4GDY 16 0 MK4GDY 1 0 MK4GDY 1 0 MK4GDY			2.0
MK4FOQ 3,551 3.7 MK4FOT 6,042 6.3 MK4FOV 26,756 28.1 MK4FO4 0 MK4F8S 98 .1 MK4F8T 108 .1 MK4F9A 210 .2 MK4F9C 13,338 14.0 MK4GDV 74 MK4GDW 23,828 25.0 MK4GDX 280 .3 MK4GDY 16 MK4GDY 16 MK4GDY 16 MK4GDY 16 MK4GDY 16 MK4GDY 16 MK4GDY 348 MK4GDY 1,540 1.6 MK4GEW 254 .3 MK4GFJ 3,170 3.3 MK4GFZ 8,595 9.0 MK4GF3 146 .2			
NK4FOT 6,042 6.3 NK4FOV 26,756 28.1 NK4FO4 0 NK4F8S 98 .1 NK4F8T 108 .1 NK4F9A 210 .2 NK4F9C 13,338 14.0 NK4GDV 74 NK4GDW 23,828 25.0 NK4GDX 280 .3 NK4GDY 16 .3 NK4GDY 96 .1 NK4GDY 96 .1 NK4GDA 348 .4 NK4GDA 35 .5 NK4GEW 254 .3 NK4GEF 5,638 5.9 NK4GFZ 8,595 9.0 NK4GF3 146 .2			3.7
MK4FOV 26,756 28.1 MK4F04 0 MK4F8S 98 .1 MK4F8T 108 .1 MK4F9A 210 .2 MK4F9C 13,338 14.0 MK4GDV 74 MK4GDW 23,828 25.0 MK4GDX 280 .3 MK4GDY 16 MK4GDY 96 .1 MK4GDY 96 .1 MK4GDY 96 .1 MK4GDY 348 .4 MK4GDY 154 .2 MK4GDY 154 .2 MK4GDY 154 .2 MK4GDY 154 .2 MK4GEV 1,540 1.6 MK4GEW 254 .3 MK4GFR 5,638 5.9 MK4GFZ 8,595 9.0 MK4GF3 146 .2			
NK4F04 0 NK4F8S 98 .1 NK4F8T 108 .1 NK4F9A 210 .2 NK4F9C 13,338 14.0 NK4GDV 74 NK4GDW 23,828 25.0 NK4GDX 280 .3 NK4GDY 16 NK4GDY 16 NK4GDY 16 NK4GDY 16 NK4GDY 16 NK4GDY 154 NK4GDY 154 NK4GDY 348 NK4GDY 1,540 1.6 NK4GEW 254 NK4GFZ 3,170 3.3 NK4GFZ 8,595 9.0 NK4GFZ 8,595 9.0 NK4GFZ 8,595 9.0 NK4GFZ 146			
JK4F8S 98 .1 JK4F8T 108 .1 JK4F9A 210 .2 JK4F9C 13,338 14.0 JK4GDV 74 JK4GDW 23,828 25.0 JK4GDX 280 .3 JK4GDY 16 .2 JK4GDY 96 .1 JK4GDD 96 .1 JK4GDA 348 .4 JK4GDA 348 .4 JK4GDA 1,540 1.6 JK4GEW 254 .3 JK4GEW 254 .3 JK4GFR 5,638 5.9 JK4GFZ 8,595 9.0 JK4GF3 146 .2			20.1
WK4F8T 108 .1 WK4F9C 13,338 14.0 WK4GDV 74 WK4GDX 23,828 25.0 WK4GDY 16 WK4GDY 16 WK4GD1 92 WK4GD2 96 .1 WK4GD4 348 .4 WK4GD5 154 .2 WK4GEV 1,540 1.6 WK4GEW 254 .3 WK4GFJ 3,170 3.3 WK4GFR 5,638 5.9 WK4GFZ 8,595 9.0 WK4GF3 146 .2			1
xx4F9A 210 .2 xx4F9C 13,338 14.0 xx4GDV 74 xx4GDW 23,828 25.0 xx4GDX 280 .3 xx4GDY 16 .2 xx4GD1 92 .2 xx4GD2 96 .1 xx4GD4 348 .4 xx4GD5 154 .2 xx4GEV 1,540 1.6 xx4GEW 254 .3 xx4GFJ 3,170 3.3 xx4GFZ 8,595 9.0 xx4GFZ 8,595 9.0 xx4GF3 146 .2			
NK4F9C 13,338 14.0 NK4GDV 74 NK4GDW 23,828 25.0 NK4GDX 280 .3 NK4GDY 16 NK4GD1 92 NK4GD2 96 .1 NK4GD4 348 .4 NK4GD5 154 .2 NK4GEV 1,540 1.6 NK4GFJ 3,170 3.3 NK4GFR 5,638 5.9 NK4GFZ 8,595 9.0 NK4GF3 146 .2			
WK4GDV 74 WK4GDW 23,828 25.0 WK4GDX 280 .3 WK4GDY 16 WK4GD1 92 WK4GD2 96 .1 WK4GD4 348 .4 WK4GD5 154 .2 WK4GEV 1,540 1.6 WK4GFW 254 .3 WK4GFJ 3,170 3.3 WK4GFR 5,638 5.9 WK4GFZ 8,595 9.0 WK4GF3 146 .2			
WK4GDW 23,828 25.0 WK4GDX 280 .3 WK4GDY 16 WK4GD1 92 WK4GD2 96 .1 WK4GD4 348 .4 WK4GD5 154 .2 WK4GEV 1,540 1.6 WK4GEW 254 .3 WK4GFJ 3,170 3.3 WK4GFR 5,638 5.9 WK4GFZ 8,595 9.0 WK4GF3 146 .2			14.0
WK4GDX 280 .3 WK4GDY 16 WK4GD1 92 WK4GD2 96 WK4GD4 348 WK4GD5 154 WK4GEV 1,540 1.6 WK4GEW 254 WK4GFJ 3,170 3 WK4GFR 5,638 5 WK4GFZ 8,595 9.0 WK4GF3 146			25 0
WK4GDY 16 WK4GD1 92 WK4GD2 96 .1 WK4GD4 348 .4 WK4GD5 154 .2 WK4GEV 1,540 1.6 WK4GEW 254 .3 WK4GFJ 3,170 3.3 WK4GFR 5,638 5.9 WK4GFZ 8,595 9.0 WK4GF3 146 .2			
WK4GD1 92 WK4GD2 96 .1 WK4GD4 348 .4 WK4GD5 154 .2 WK4GEV 1,540 1.6 WK4GEW 254 .3 WK4GFJ 3,170 3.3 WK4GFR 5,638 5.9 WK4GFZ 8,595 9.0 WK4GF3 146 .2			
WK 4GD2 96 .1 WK 4GD4 348 .4 WK 4GD5 154 .2 WK 4GEV 1,540 1.6 WK 4GEW 254 .3 WK 4GFJ 3,170 3.3 WK 4GFR 5,638 5.9 WK 4GFZ 8,595 9.0 JK 4GF3 146 .2			
WK 4GD4 348 .4 WK 4GD5 154 .2 WK 4GEV 1,540 1.6 WK 4GEW 254 .3 WK 4GFJ 3,170 3.3 WK 4GFR 5,638 5.9 WK 4GFZ 8,595 9.0 WK 4GF3 146 .2			,
WK4GD5 154 .2 WK4GEV 1,540 1.6 WK4GEW 254 .3 WK4GFJ 3,170 3.3 WK4GFR 5,638 5.9 WK4GFZ 8,595 9.0 WK4GF3 146 .2			
WK4GEV 1,540 1.6 WK4GEW 254 .3 WK4GFJ 3,170 3.3 WK4GFR 5,638 5.9 WK4GFZ 8,595 9.0 WK4GF3 146 .2			
WK4GEW 254 .3 WK4GFJ 3,170 3.3 WK4GFR 5,638 5.9 WK4GFZ 8,595 9.0 WK4GF3 146 .2			
WK4GFJ 3,170 3.3 WK4GFR 5,638 5.9 WK4GFZ 8,595 9.0 WK4GF3 146 .2			
WK4GFR 5,638 5.9 WK4GFZ 8,595 9.0 WK4GF3 146 .2			
WK4GFZ 8,595 9.0 WK4GF3 146 .2			
WK4GF3 146 .2			
TOTAL 95,307	wK4GF3	146	. 2
	TOTAL	95,307	

Surface Material Received Adjusted for ALOC BY Consignee for Purple Route

Consignee	Volume Receiv Cu. Ft.
WK4EYA	12
WK4FRK	1,790
WK4FRQ	2,068
WK4FR8	0
WK4FU2	2
WK4FZ4	34,540
WK4FZ9	3
WK4F3E	0
WK4F8W	8,584
WK4GCP	112
WK4GC4	286
WK4GDU	1,060
WK4GFD	651
WK4GFU	3,221
TOTAL	52,329

Surface Material Received Adjusted for ALOC by Consignee for Green Route B $\,$

		Volume Re	ceived
Consignee		Cu. Ft.	%
WK4CJR		20	
WK4EX7		1,513	3.4
WK4F9R		6	
WK4F9T		2,112	4.7
WK4F9V		154	.3
WK4F9X		15,483	34.6
WK4F9Z		304	.7
WK4F90		72	.2
WK4F91		1,632	3.6
WK4F93		502	1.1
WK4F94	*	103	. 2
WK4F95		76	.2
WK4F96		19,275	43.1
WK4GAB		198	. 4
WK4GDS		1,252	2.8
WK4GFN		2,039	4.6
TOTAL		44,741	

Surface Material Received Adjusted for ALOC by Consignee for Isolated Route A

	Volume Received		
Consignee	Cu. Ft.	%	
WK4FSE	4,479	21.0	
WK4F8Q	6,218	29.2	
WK4F85	32	.1	
WK4GFH	9,264	43.5	
WK4SN8	1,014	4.8	
WK4SN9	306	1.4	
TOTAL	21,313		

Surface Material Received Adjusted for ALOC by Consignee for Isolated Route ${\tt B}$

Volume Received		
Cu. Ft.	%	
10,776	35.2	
490	1.6	
6,627	21.6	
979	3.2	
11,740	38.4	
0		
30,612		
	Cu. Ft. 10,776 490 6,627 979 11,740	

Surface Material Received Adjusted for ALOC by Consignee for Blue Route

	Volume Received Cu. Ft. %		
Consignee	Cu. Ft.		
WK4EX8	9,724	10.1	
WK4F2V	0		
WK4F2Y	0		
WK4F2Z	0		
WK4F22	4,741	4.9	
WK4F25	4,655	4.9	
WK4F27	0		
WK4F3K	50,291	52.4	
WK4F8Y	360	.4	
WK4GAM	28		
WK4GAQ	10		
WK4GCN	182	.2	
WK4GDR	668	.7	
WK4GD3	0		
WK4GED	322	.3	
WK4GEH	210	. 2	
WK4GEJ	752	.8	
WK4GEL	312	.3	
WK4GEM	240	.3	
WK4GEN	0		
WK4GEP	180	.2	
WK4GES	180	.2	
WK4GET	14,496	15.1	
WK4GFK	8,373	8.8	
WK4GFT	0		
WK4GF2	42		
wk4RCV	161	.2	
TOTAL	95,927		

Surface Material Received Adjusted for ALOC by Consignee for Orange Route

	Volume Re		
Consignee	Cu. Ft.	%	
WK4EX6	1,152	.8	
WK4EYF	52,319	35.0	
WK4FV6	806	.5	
WK4FXZ	0		
WK4FX4	2,210	1.5	
WK4FYS	36,151	24.2	
WK4FZB	321	. 2	
WK4FZC	665	. 4	
WK4FZD .	1,070	.7	
WK4FZL	1,485	1.0	
WK4FZN	1,006	. 7	
WK4FZV	4,026	2.7	
WK4FZ1	350	.2	
WK4F33	0		
WK4GCL	32		
WK4GC3	0		
WK4GC7	0		
WK4GC9	248	.2	
WK4GDB	0		
WK4GDC	13,031	8.7	
WK4GDD	498	.3	
WK4GDK	28,905	19.4	
WK4GDL	0		
WK4GFY	1,962	1.3	
WK4POQ	30		
WK4QPU	10		
WK4R30	2,182	1.5	
WK4TUJ	228	.1	
WK4UUA	784	.5	
TOTAL	149,471		

Surface Material Received Adjusted for ALOC by Consignee for Red Route A

	Volume Received		
Consignee	Cu. Ft.	%	
WK4EYD	391	.8	
WK4FRW	5		
WK4F3N	450	1.0	
WK4F3Z	1,781	3.8	
WK4F80	82	.2	
WK4F81	126	.3	
WK4GEK	140	.3	
WK4GEO	110	. 2	
WK4GE1	6		
WK4GE2	20,702	43.7	
WK4GE3	44		
WK4GE4	586	1.2	
WK4GE7	14,661	31.0	
WK4GFE	0		
WK4GF1	8,229	17.4	
WK4GF6	28		
TOTAL	47,341		

Surface Material Received Adjusted for ALOC by Consignee for Brown Route

	Volume Received
Consignee	Cu. Ft. %
WK4EX4	2,674 1.0
WK4EYE	0
WK4EYJ	89,618 34.9
WK4FR5	0
WK4FV2	3,920 1.5
WK4FV9	24,276 9.5
WK4FWL	10
WK4FW2	230 .1
WK4FW5	3,791 1.5
WK4F1A	2,359 .9
WK4F30	0
WK4F83	12,872 5.0
WK4F88	48
WK4GA1	7,471 2.9
WK4GA3	682
WK4GA5	202
WK4GBV	5,545 2.2
WK4GBW	66,963 26.1
WK4GBY	162
WK4GBZ	148
WK4GBO	6,776 2.6
WK4GB3	148
WK4GB6	18,603 7.2
WK4GCB	3,170 .5
WK4GD8	254 .1
WK4GFC	2,794 1.1
WK4GFX	132
WK4GGD	231 .1
WK4SGA	4,715 1.8
wk4uub	900 .4
WK46B6	0
TOTAL	258,694

Surface Material Received Adjusted for ALOC by Consignee for Isolated Route C $\,$

	Volume Received
Consignee	Cu. Ft. %
WK4F87	56 46.6
WK4GDT	64 53.3
TOTAL	120

Surface Material Received Adjusted for ALOC by Consignee for Isolated Route D

Volume Received
Cu. Ft. %

WK3FQT

WK3FQU

WK3FQ3

Surface Material Received Adjusted for ALOC by Consignee for Unknown Route

	Volume 1	Received
Consignee	Cu. Ft.	%
WKOFPV		
WK2FP7		
WK9GG9	13,143	39.5
WK9GHK	15,824	47.5
WM1Q7C	642	1.9
WN7GX8	3,681	11.1
TOTAL	33,290	

Appendix C

SURFACE VOLUME RECEIVED BY MONTH
CONSIGNEES RECOMMENDED FOR AIR SHIPMENTS

Surface Volume 1976 Cluster 1 Green Route A

Nov	1748	7411	40007	9809	1	1	10	327	1253	59	1528	-	1	6	2	180	320	127	12118	1	796 .	621	412	73341	
Oct	12930	1602	108363	14151	-	1	3677	153	2005	276	8379	435	915	12	33	1131	1686	3762	74877	24	19074	8688	1374	238490	
Sep	3361	3778	41936	2134	!	1	7	79	1456	155	3101	143	103	1	96	398	522	642	20867	!	1709	637	797	81750	
Aug																									
Jul																									
Jun	699	792	106682	9196	1	1	492	303	1862	38	1547	116	76	!!	7	382	570	1405	2324	1	8490	7131	1	142217	
Мау	313	700	36401	12868	1	1	520	933	910	11	1282	148	130	!	3	579	2302	962	2088	12	26266	1139	!	87622	
Apr																									
Mar	88	1470	53894	9527			824	845	2092	137	2235	145	177	-	72	875	721	766	6245	54	!	1	-	81298	
Feb	59	1015	29011	14269	-	20	146	077	1565	6	1505	148	77	-	65	1420	553	827	3465	5	-	1		55329	
Air	84		A	A	R	R	A	A	A	A	A	A	A	A	A				A	K		A			
Consignee	WK4EX5 WK4FRH	WK4FT7	WK4FUG WK4FY0	WK4FY3	WK4F2G	WK4F2J	WK4F2L	WK4F32	WK4F8V	WK4GC1	WK4GC2	WK4GC5	WK4GC6	WK4GDP	WK4GEA	WK4GFL	WK4GFS	WK4GFO	WK4NP7	WK4SF6	WK4SRQ	WK4SRR	WK4UT9	TOTAL	

Surface Volume 1976 Cluster 2 Red Route B

Nov	250	1	1673	4396	9597	1	75	276	808	3307	697	4917	502	59	!	2286	!!!	116	9579	22	1330	1160	2606	93	40403	
Oct	3078	-	1947	11139	21756	171	180	1455	4047	19911	2664	20964	2943	309	720	5286	1	4497	15291	174	2091	1914	7761	363	128661	
Sep	801	29	2762	1612	14152	36	7	724	1360	6527	282	6465	1832	112	!!!	3461	7	6905	9071	2148	2896	1706	1815	228	62102	
Aug																										
Jul																										
Jun	194	!	2263	1020	33929	-	3	574	1335	8147	421	10010	1740	1216	6	2742	09	1414	8575	142	319	1118	570	139	75986	
Мау	549	!	215	297	14910	12	29	779	777	9859	384	6450	794	272	!	1979	3	1485	10521	115	1591	3659	3828	307	58853	
Apr																										
Mar	96	30	1721	1715	18786	12	2	324	10958	8400	355	7476	076	158	-	2462	17	857	6592	47	196	1302	2248	102	65567	
Feb	06	5	949	812	12166	!		483	1092	8682	488	4390	816	88	11	3485		1149	10316	78	1244	1124	1621	328	49114	
Air Ship	84	R				R	A	A	A		A		A	A	R	A	R	A	A	A				V		
Consignee	WK4EX9 WK4FRD	WK4FSA	WK4F0Q	WK4FOT	WK4FOV	WK4F04	WK4F8S	WK4F8T	WK4F9A	WK4F9C	WK4GDV	WK4GDW	WK4GDX	WK4GDY	WK4GD1	WK4GD2	WK4GD4	WK4GD5	WK4GEV	WKAGEW	SIKAGFJ	MKAGFR				

Surface Volume 1976 Cluster 3 Purple Route

Nov	1	1754	1132	1	1	14772	1	1	3056	69 .	45	2067	883	1339	25117
Oct	1	7887	3687	1	1	22536	15	1	15210	627	210	8220	564	2922	61878
Sep	828	2232	4190	1	1	13938	1	1	3426	290	266	4712	294	930	31406
Aug	•						•								
<u>Ju1</u>															
Jun	1	2195	695	1	1	16226	æ	1	3254	215	43	4243	869	976	28553
Мау	2795	595	758	1	1	27166	1	1	4917	99	105	2171	148	1604	40325
Apr															
Mar	1.	2432	1850	1	1	11680	ł		4542	328	703	4289	836	923	27583
Feb	10	683	3550	1	1	15759	1	1	5115	220	295	2282	781	1299	29994
Air Ship				æ	М		œ	æ		A	A	A			
Consignee	WK4EYA	WK4FRK	WK4FRQ	WK4FR8	WK4FU2	WK4F24	WK4F29	WK4F3E	WK4F8W	WK4GCP	WK4GC4	WK4GDU	WK4GFD	WK4GFU	TOTAL

Surface Volume 1976 Cluster 4 Green Route B

Nov	128	294	34	2165	291	6045	164	069	6428	102	1	9/	807	1556	1822	445	21647	
Oct	1887	870	261	10644	885	42084	10341	3930	32466	1134	2643	216	16971	6783	13095	6342	150552	
Sep	170	S	271	2174	276	10629	3997		7340		9		5276		80	1088	34349 1	
Aug																		
<u>Ju1</u>																		
Jun	36	240	163	1705	1774	17303	4033	1858	6855	2	1	81	19832	3017	94	2198	59191	
May	29	1	32	6652	402	12048	2973	2837	6755	42	1	96	17763	1127	1	1646	52709	
Apr																		
Mar	67		54	263	237	8627	1857	1278	1928	20		226	6873	732	3	3272	31419	
						~										"1		
Feb	1	1	52	789	483	7314	2797	770	4540	104	1	107	5088	1520	1	2642	26206	
Air Ship	4		٧	Ą	٧		¥	¥	A	٧	٧	٧		¥				
Consignee	WK4CJR	WK4EX7	WK4F9R	WK4F9T	WK4F9V	WK4F9X	WK4F92	WK4F90	WK4F91	WK4F93	WK4F94	WK4F95	WK4F96	WK4GAB	WK4GDS	WK4GFN	TOTAL	

A = ALOC Unit R = Recommended for Air Shipments

Surface Volume 1976 Cluster 5 Yellow Route

-

Nov	164	80	8197	1	9087	1429	704	7911	13	4414	1	350	20	526	291	729	869	30860
Oct	4200	84	21339	1	11526	9777	4365	27210	249	14628	I	240	123	2490	573	2004	1284	98094
Sep	657	1	4563	114	8050	2312	917	5109	20	4371	1	41	57	898	609	1892	552	30133
Aug																		
<u>Ju1</u>																		
Jun	301	10	9776	1	8667	2097	2150	5624	1054	2104		92	6	587	165	1728	206	30571
May	262	7	6270	1	4278	2038	1758	4883	438	707	1	12	75	462	81	872	238	22381
Apr																		
Mar	78	п	9554	1	5184	4047	2722	2099	п	3182	1	5	14	745	799	3439	1276	37674
Feb	72	1	7710	1	5668	2501	1365	5502	1	603	1	278	S	076	628	1103	870	27246
Air Ship		æ		æ		4	¥				æ	¥	٧	٧				
Consignee	WK4EYC	WK4FRZ	WK4 FUU	WK4 FUZ	WK4FVK	WK4F98	WK4GAA	WK4GAC	WK4GAD	WK4GAE	WK4GAH	WK4GAK	WK4GAL	WK4GA2	WK4GFA	WK4GFP	WK4GFQ	TOTAL

Surface Volume 1976 Cluster 6 Isolated Route A

Nov	978	7255	373	3833	1292	399	14130
Oct	4863	33147	2037	8553	7251	1359	57210
Sep	591	12301	07	2142	11611	749	17734
Aug	•						
<u>Ju1</u>							
Jun	1349	34722	62	3951	4556	331	44971
Мау	287	25666	167	2439	2488	428	31475
Apr							
Mar	1	25554	21	1566	3125	197	30463
Feb	7	10386	74	745	2967	474	14653
Air Ship		٧	V		٧	٧	
Consignee	WK4 FSE	WK4F8Q	WK4 F85	WK4GFH	WK4SN8	WK4SN9	TOTAL

A = ALOC Unit R = Recommended for Air Shipments

Surface Volume 1976 Cluster 7 Isolated Route B

Nov	6809	191	2600	. 497	571		13524
Oct	15342	2076	10341	099	1872	1	30291
Sep	94476	206	4025	395	390		9492
Aug	•						
<u>Ju1</u>							
Jun	5875	297	16855	545	1	1	23569
Мау	5250	280	3864	153	1	1	9547
Apr							
Mar	4845	419	4292	254	1		9810
Feb	2560	434	4964	254	210	1	8022
Air Ship						æ	
Consignee	WK4FSR	WK4FTK	WK4 FTN	WK4F2A	WK4F42	WK4JLA	TOTAL

A = ALOC Unit R = Recommended for Air Shipments

Surface Volume 1976 Cluster 8 Blue Route

Nov	2432		1	6181	1815	1	20657	219	e	636	7	1173	1	31	168	1	183	989	1108	1157	1	8294	1738	-	10	1	86797	
Oct	14958		1	4890	5622	1	46785	426	699	5625	1164	5157	1	39	1998	4155	4032	6865	9153	3411	. 18	18150	7503	!	!	198	138936	
Sep	305		1	2511	1941	1	16987	1423	. 1	1295	11	1332	1	67	495	-	1884	1035	2815	3078	!	8061	3294	1	1	9	46524	
Aug	•																											
<u>Ju1</u>																												
Jun	202		1	739	976	1	38397	278	7	2811	78	2216	1	52	513	13152	1060	930	2189	2265	2233	10744	4008	ļ	1917	429	85196	
May	162		1	1842	537	1	15541	569	7	2509	9	1710	1	1	450	1264	1350	1602	2282	1750	1374	9399	2219	1	146	994	45408	
APE																												
Mar	98		1	2503	11	1	15902	625	1	2207	43	2958	1	1	419	2043	6	961	1912	4561	1237	6338	1953	1	989	2799	47088	
Feb	99		1	1114	1	1	10278	178	1	2302	259	1674	!	1	437	1675	27	492	2415	2366	2304	5161	1867	30	293	1363	34301	
Air Ship	Ω	4 00	«			æ			A	A	¥	¥	æ	V	V	V	V	V	V	V				æ	A			
Consignee	WK4 EX8	WK4F2Y	WK4F22	WK4F22	WK4F25	WK4F27	WK4F3K	WK4F8Y	WK4GAM	WK4GAQ	WK4GCN	WK4GDR	WK4GD3	WK4GED	WK4GEH	WK4GEJ	WK4GEL	WK4GEM	WK4GEN	WK4GEP	WK4GES	WK4GET	WK4GFK	WK4GFT	WK4GF2	WK4RCV	TOTAL	

A = ALOC Unit R = Recommended for Air Shipments

Surface Volume 1976 Cluster 9 Orange Route

Nov	961 24795 24795	3	22	1432	157	163	1	10	781	4170	485	77	193	1	1	147	-	3448	1428	11387	1	7035	77	14	6697	1	319	61867
Oct	3945 76299 76299	144	2808	18990	27	834	30828	735	3782	6132	2769	798	3054	!	!	1797	1	16755	8631	44736	!	29379	126	87	26199	1	1272	284159
Sep	437 17673 17673	1	69	7700	23	108	1194	1	1599	7893	433	26	612	1	1	190	1	3316	1907	30150	!	6821	265	9	2331	168	246	84185
Aug																												
Jul																												
Jun	725 -35974 2813	372	51	9692	26	450	4	845	1219	379	753	281	1388	1	1	163	!	5328	4847	21592	1	2665	240	166	4672	1	78	94753
May	635 13657 1444	955	3446	2909	198	297	111	150	267	09	917	1208	1479	1	1	308	1	2081	1241	8142	-	4024	481	1	8076	-	403	26089
Apr																												
Ma:	538 17317 3415	818	3418	1259	181	1075	202	132	765	-	1154	538	2849	1	1	1415	1	3713	4559	13487	1	4971	168	1	5176	1	3	67154
Feb	138 16335 4044	451	7102	28049	1.	719	124	1781	1212	1	199	1052	828	1	1	919	1	3351	4486	17520	!	1719	105	1	2425	-	348	92907
Air		A			æ				A			A	A	œ	œ	A	œ		A		æ		A	œ	A	A		
Consignee	WK4EX6 WK4EYF WK4FV6	WK4FXZ	WK4 FX4	WK4FYS	WK4FZB	WK4F2C	WK4FZD	WK4FZL	WK4FZN	WK4FZV	WK4F21	WK4F33	WK4GCL	WK4GC3	WK4GC7	WK4GC9	WK4GDB	WK4GDC	WK4GDD	WK4GDK	WK4GDL	WK4GFY	WK4P0Q	WK4QPU	WK4R30	WK4TUJ	WK4UUA	TOTAL

Surface Volume 1976 Cluster 10 Red Route A

1

Consignee	Air	Feb	Mar	Apr	Мау	Jun	<u>Ju1</u>	Aug	Sep	Oct	Nov
WK4EYD		1	150		180	48			102	3288	828
WK4 FRW	œ	92	33		14	1			1	1	1
WK4F3N		1	1255		1	80			1	1917	30
WK4F32		548	1112		235	1872			624	4299	902
WK4F80	A	42	I		1	45			41	147	84
WK4F81	A	603	862		629	166			753	6354	194
WK4GEK	V	1	1		80	298			73	2382	202
WKĄGEO	¥	1	3		64	112			57	150	15
WK4GE1	A	161	36		12	42			141	117	9
WK4GE2		9114	8664		4231	8121			3980	13737	3243
WK4GE3	A	291	513		523	482			365	1197	1608
WK4GE4	V	1468	10605		8467	9701			5757	30087	3280
WK4GE7		7410	7264		6932	2995			1986	24837	2303
WK4GFE	×	١	1		1	1			1	1	1
WK4GF1		2652	1004		4080	2558			1849	7752	4183
WK4GF6	V	61	267		70	83			147	627	30
TOTAL		24095	31768		25431	29201			15875	16896	16873

A = ALOC Unit R = Recommended for Air Shipments

Surface Volume 1976 Cluster 11 Brown Route

At the second se

Nov	863	22622	1	9152	19993	-	131	6172	2432	68	3345	38	1790	5091	107	7040	19184	2105	1030	1766	825	3116	225	412	720	1	140	1318	470	1	110176	
Oct	7794	107556	1	8847	36189	!	3714	17391	5820	231	14001	42	18234	25285	672	13548	39558	5709	3774	13389	1434	21675	417	351	3948	1	120	7218	1170	1	358087	
Sep	571	34194	1	1907	17855	!	652	4227	2258	10	7997	13	3856	6246	23	8888	26666	1390	1324	2319	168	4108	198	1	880	1	14	3985	281		125101	
Aug																																
<u>Ju1</u>																																
Jun	1137	45411	1	1406	20840	1	763	2657	1571	343	8556	106	1186	8963	526	25578	6547	2512	992	1407	142	4150	e	198	1	1491	119	1	1		136604	
Мау	240	24060	1	985	7443	1	246	1637	1064	515	8956	2	1289	6024	1	34979	891	1545	1517	2	4962	4551	!	73	829	3539	-	-	!	1	104885	
Apr																																
Mar	282	40706	!	2136	16445	3408	1	4038	2264	821	6286	33	2122	9269	28	24417	1	2542	3870	88	7907	3647	39	18	1726	3838	7	1	1	1	130094	
Feb	120	24043	1	877	10189	126	1	2395	2106	930	1864	135	1583	9299	77	17539	1	4149	1271	2	108	5998	81	43	745	2392	!	!	!	1	88012	
Air	æ		æ			A	æ			A		A		A	A			A	A				A	A			æ			A		
Consignee	WK4EX4 WK4EYE	WK4EYJ	WK4FR5	WK4FV2	WK4FV9	WK4 FWL	WK4FW2	WK4FW5	WK4F1A	WK4F30	WK4F83	WK4F88	WK4GA1	WK4GA3	WK4GA5	WK4GBV	WK4GBW	WK4GBY	WK4GB2	WK4GB0	WK4GB3	WK4GB6	WK4GCB	WK4GD8	WK4GFC	WK4GFX	WK4GGD	WK4SGA	WK4UUB	WK46B6	TOTAL	

A = ALOC Unit R = Recommende! for Air Shipments

Surface Volume 1976 Cluster 12 Isolated Route C

Nov	3	22	25
0ct	105	204	309
Sep	1	2	2
Aug			
Jul			
Jun	2	27	29
Мау	£	22	25
Apr			
Mar	9	[]	6
Feb	4	66	103
Air	A	A	
Consignee	WK4F87	WK4GDT	TOTAL

A = ALOC Unit R = Recommended for Air Shipments

Surface Volume 1976 Cluster 13 Isolated Route D

Nov	3841	1	3801	7643
0ct	11349	1	12795	24144
Sep	2904	4	9709	8934
Aug				
Jul				
Jun	1834	39	6124	1997
Мау	2893	S	3581	6419
Apr				
Mar	1715	443	7592	9750
Feb	1781	37	1008	2826
Air Ship				
Consignee	WK3FQT	WK3FQU	МКЗ ЕQ3	TOTAL

A = ALOC Unit R = Recommended for Air Shipments

Surface Volume 1976 Unknown Cluster

Nov	78	1816	3459	5025	129	7056	17563
Oct	123	8577	12744	61236	108	9105	91893
Sep	1	2268	2580	5999	1		11514
Aug	٠						
Ju1							
Jun	2	1902	2621	14934	67	1338	20846
May	80	1253	2103	909	84	1	2446
Apr							
Mar	1	1544	1833	23442	24	2326	29169
Feb	130	1916	3505	4365	1	6115	16031
Air	æ				R		
Consignee	WKOFPV	WK2FP7	WK9GG9	МК9СНК	WM1Q7C	WN7GX8	TOTAL

A = ALOC Unit R = Recommended for Air Shipments

Appendix D

VAN LOADING SIMULATION MODEL

Program Listing

```
INTEGER+2 IU(1000) . IVOL (1000) . IMH(1000) . IWT(1000) . MUST(1000)
             COMMON MAX (3) . MIN (3) . NPUSE (3) . MUPT (3) . IAL (3) . MREM (3) . MWT (3) .
            *LOAD(3) •NDU(3) •INT(99•4) •LIST(127•4) •MORD(127) •MAMT(127) •NODIT(127
            *) . MWAT (127) . NTX4 . KF (3)
            *.NTYV(3), MREMT(3), MTOTW(3), MTOTV(3), IU(3,7), IU, IVOL. IMH, IWT, MUST
             DIMENSION ISTR (4,3)
             CALL CLR(INT.396.1)
             PEAD100, MHI.NINT, (MIN(J), MOPT(J), MAX(J), KF(J), NPUSE(J), J=1,3), INT(
            #1,1),K,L1
             IF (L1.EQ. 0) GOTO173
             KK=2
             JJ=INT(1,1)
             DO174 I=JJ.NINT.7
        100 FORMAT (A4, 1914)
             INT(KK,1)=I+1
             INT(KK+1,1)=I+2
             INT (KK+2,1)=I+4
        174 KK=KK+3
             NINT=KK
        173 INT (NINT+1,1)=K
             INT(NINT+2+1)=K
             IF (L1.NE.0) GOTO172
             D01711=2,NINT
        171 READ1700, (INT(I.J), J=1,4)
       1700 FORMAT (15,1X,311)
        172 READ(1,400, ERR=172)K1, K2, JWT, IVL, IRECD, IHOLD
             IF (IRECD.LT.INT(1,1))GOT0172
        400 FORMAT (T47, 2A3, T72, 15, 14, 2X, 13, 2X, 13)
             NT X4=0
             N=1
             MM=2
             READ(5,200,ENU=2)LIST(N,1),LIST(N,2),LIST(MM,1),LIST(MM,2)
        200 FORMAT (4A3)
             MORD(N)=N
121
             MORD (MM) =MM
             S+MM=MM+2
            .W=N+5
130
             GOTOI
           2 N=N-1
             M=N
           6 MM=0
             D03 J=2,M
             J1=MORD (J-1)
             J2=MORD(J)
             IF (LIST (J] +1) -LIST (J2+1))3+4+5
           4 IF (LIST (J1,2)-LIST (J2,2))3,3,5
           5 MORD(J-1)=J2
             MORD(J)=J1
             L=MM
           3 CONTINUE
             IF (MM.LE.2) GOTO7
             M=MM-1
             GOT06
           7 DO81=1.N
             J1 = MORD(I)
           8 PRINT 300+I+(LIST(J1+J)+J=1+4)
             D041 I=N.126
5
             MORD(I+1) = 127
          41 LIST(I+1,1)=MHI
             D042 I=1,N,2
             LIST(I,3)=I
```

```
42 LIST(1+1.3)=1
             CALLCLR (10,21,0)
       .300 FORMAT(15.1X.2A3.3X.2A3)
             DO994IJK=2.NINT
             D011J=1.3
             K=4-J
             IAL (J) = INT (1JK . J+1)
             IAL(K) = INT(1JK*K*1)
             IF (IAL (J) . EQ. 1) MAXV=J
             IF (IAL (K) . EQ. 1) MINV=K
      C
             IF (IJK.LF.2) GOTO1812
      C
18:
             ISTR(1,J)=LOAD(J)
      C
             ISTR(2.J) = NUU(J)
      C
             ISTR(4.J) = MREM(J)
             ISTR(3.J) = MWT(J)
       1812 LOAD(J) = 0
12
13
             NDU(J) = 0
14
             MWT(J) = 0
             MREM(J) =MAX(J)
15
116
          11 CONTINUE
17
             I1=INT(IJK-1+1)+1
12
             IS=INT(IJK+1)
19
          12 CALL LOOK (K1,K2,JJ)
             IF (JJ.EQ. 0) GOTO13
             NTX4=NTX4+1
             JU(NTX4)=JJ
             IVOL (NTX4) = IVL
             IMH(NTX4)=IHOLD
             TWL=(AXTM)TWI
             MUST (NTX4)=0
       4000 FORMAT (15,518,1x,2A3)
123
             JF(IHOLD.LE.INT(IJK+1,1))MUST(NTX4)=1
             IF (IJK.GT.2) GOTO13
             PRINT4000+NTX4+JJ+IVL+JWT+MUST(NTX4)+IHOLD+K1+K2
          13 READ (1,400, END=98, ERR=13) K1, K2, JWT, IVL, IRECD, IHOLD
             IF (JWT-LT.0) JWT=-JWT
             IF (IVL.LT.0) IVL =- IVL
             IF (IRECD.LE.12) GOTO12
3
          15 CALL CLR (MAMT, N, 0)
             CALL CLR (MWAT + N+0)
37
             CALL CLR(NODIT+N+0)
             CALL CLR(NTYV, 12.0)
             D0141=1,NTX4
             J=IU(I)
             IF (J.EQ. 0) GOTO14
             MAMT(J) = MAMT(J) + IVOL(I)
             (I) TWI+(L) TAWM=(L) TAWM
            I+(L)TIDON=(L)TIDON
          14 CONTINUE
             PRINT1000, 11, 12, NTX4, IAL
47
             D01819 J=1.N
49
             IF (NODIT (J) . GT . 0) PRINT 1200 . J. LIST (J. 1) . LIST (J. 2) . MAMT (J) . MWAT (J) . N
            *ODIT(J)
       1819 CONTINUE
51
52
       1200 FORMAT (14,1X,2A3,318)
       1000 FORMAT(616/255(14.1x.2A3.315/))
             D0791 I=1.N
         794 IF (MWAT (I) . LE . 42000) GOT0791
55
             IW=0
             LL=0
              JM=0
```

```
792 IND=0
             MAK= U
             D0743 J=1.NTX4
             IF (IU(J) .NE . I) GOTO793
             JF (MUST (J) . L T. 0) GOT 0793
             TF(IWT(J).LE.MAW)GOTO793
             IF ((IW+IWT(J)).GT.42000)G0T0793
             IF ((JM+IVOL(J)).GT.MAX(MAXV))GUT0793
             INU=J
             MAW=IWT(J)
         793 CONTINUE
             IF (IND.EQ.0) GOT0795
             IW=IW+IWT(IND)
             (IND)
             IVOL (IND) = 0
             MUST(1ND) = -1
             IWT(IND) = 0
112!
             LL=LL+1
             G0T0792
         795 IF (IW.EQ.0) GOT0791
16
             CALL UPD (MAXV, JM, IW, -2)
17
             MWAT(I) = MWAT(I) - IW
13
             ML-(I) TMAM=(I) TMAM
20
             NODIT(I)=NODIT(I)-LL
21
             G0T0794
         791 CONTINUE
22
        201 D0202J=1.N
             IF (MAMT (J) .LE.0) GOTO202
             (L) TMAM=ML
16
             IF (JM.GT.MAX (MAXV)) GOTO203
             DO204K=MINV.MAXV
             IF (JM.LT.MOPT(K)) GOTO202
             IF (JM.LE.MAX (K)) GOTO2031
         204 CONTINUE
        202 CONTINUE
31
             G0T02171
        203 ISHIP=MAX(MAXV)
             I W=MAXV
             CALL SHIP (J, ISHIP, IW, 2)
             PRINT2030, MAXV, J, ISHIP, IW
       2030 FORMAT( * *SHIPPED SINGLE VAN TYPE (.12. . USER (.13.216)
             CALL UPD (MAXV, ISHIP, IW,-1)
             GOT0201
       2031 IW=K
             CALL SHIP (J.JM.IW.2)
             PRINT2030.K.J.JM,IW
             CALL UPD(K+JM+IW+-1)
            G0T0201
45
       2171 CONTINUE
      C
             D02118 I=1.3
147
      C
             LOAD(1)=[STR(1+1)
             NDU(1)=151K(2.1)
             MWT(I)=ISTR(3,1)
      C2118 MREM(I)=ISTR(4+I)
        211 18=0
151
             IPM=99999
             JB=0
             D0219 I=1.N
             (I) TMAM=ML
             JW=42000-MWAT(I)
             IF (JM.LE.0) GOT0219
```

```
DOSJAK=WINA*WYXA
             IF (IAL (K) .EQ. U) GOTUZIN
             JU=MREM(K)-JM
             JF (JD.LT.0)6010218
             IF (JD.GT.IPM) GOTO218
             IF (MWT (K) . LE. JW) GOT02166
             GOTO218
       5166 CONTINUE
             IF (NDU(K)-NPUSE(K)+1)217,216,216
        216 JF ((LOAD(K)+JM).LT.MIN(K))GOTO218
        217 IPM=JD
             IB=I
             JR=K
        218 CONTINUE
110
        219 CONTINUE
             IF (IH.EQ. 0) GOT02312
12
13
             JM=MAMT (IB)
             IW=JB
             CALL SHIP (IH, JM, IW, 2)
             CALL UPD (JB.JM.IW.IB)
17
             GOT0211
       2312 no2313I=1.N
             IF (MAMT (1) . EQ. 0) GOTO2313
            KK=D
             LL=0
             JJ=0
             D02314J=1,NTX4
             IF (IU(J) .NE . I) GOTO2314
             IF (MUST (J) . NE. 1) GOTO2314
             LL=LL+1
             KK=KK+IWT(J)
             JJ=JJ+IVOL (J)
       2314 CONTINUE
             LL=(I)TMAM
            MWAT(I)=KK
             NODIT(I)=LL
       2313 CONTINUE
        231 IB=0
            .JB=0
             IPM=99999
             IF (IAL (1) + IAL (2) + IAL (3)) 239, 239, 234
        234 D02321=1.N
             IF (MAMT (1) . EQ. 0) GOTO232
             (I) TMAM=ML
             JW=42000-MWAT(I)
             VXAM. VNIM=XESOD
             IF (IAL (K) . EQ. 0) GOTO233
            JD=MREM(K)-JM
             IF (JD.LT.0) G0T0233
             IF (JD.GT. IPM) GOTO233
             IF (MWT (K) . LE . JW) GOTO235
             6010533
        235 IPM=JD
             18=1
             JB=K
        233 CONTINUE
        232 CONTINUE
             IF (16.EQ.0) GOTO241
             JM=MAMT (IB)
             IW=JB
             CALL SHIP(IB,JM.IW,1)
```

```
CALL UPD (JH . JM . IW . IB)
               IF (NDU (JB) . E(0.0) 1AL (JB) = 0
              6010231
        - 241 DO242J=MINV+MAXV
              IF (IAL (J) . NE . U) PRINT | 250 . J. NDU (J) . LUAD (J) . MREM (J)
        1250 FORMAT ( CLOSE VAN TYPE +,12,316)
              IF (NDU(J).NE.0) CALL UPD(J.0.0,-1)
         242 CONTINUE
         239 D02381=1.N
              IF (MAMT (I) . EQ. 0) GOTO238
              PRINT1300, I, MAMT(I)
        1300 FORMAT( * A&T -- *, 13, 15)
         238 CONTINUE
              MM=0
              D02411 I=1,NTX4
              IF (MUST (I) . NE . 0) GOTO2411
113
              IF (IVOL (I) . LE . 0) GOTO2411
114
              MM = MM + 1
              IVOL (MM) = IVOL (I)
15
16
              IU(MM) = IU(I)
17
              IMH(MM) = IU(I)
              IWT(MM) = IWT(I)
              MUST (MM)=0
             IF (IMH (MM).LT.INT (IJK+2,1)) MUST (MM) =1
        2411 CONTINUE
              NTX4=MM
53
                     IF (IEND.NE.1234) GOT0999
               G0T01712
          98 IEND=1234
              IRECD=99999
              GOT015
         999 PRINT5000, (J,NTYV(J),MTOTV(J),MTOTW(J),MREMT(J),MIN(J)
130
             *, MOPT (J), MAX (J), J=1,3)
        1712 IEND=0
              REWIND1
2
        5000 FORMAT ( OINTERVAL SMRY 1./,3(12,718,/))
              PRINT6000.10
              IF (LIST (N+1,3) .NE.LIST (N+1.2)) GOTO172
        6000 FORMAT ( '1END . 7 (317/))
              END
              SUBROUTINE UPD (JB.JM, IW. IB)
             INTEGER*2 IU(1000) . IVOL (1000) . IMH(1000) . IWT(1000) . MUST(1000)
              COMMON MAX(3) - MIN(3) - NPUSE(3) - MOPT(3) - IAL(3) - MREM(3) - MWT(3) -
             *LOAD(3) .NDU(3) .INT (99,4) .LIST (127.4) .MORD (127) .MAMT (127) .NODIT (12
             *) , MWAT (127) , NTX4 , KF (3)
42
            *,NTYV(3),MREMT(3),MTOTW(3),MTOTV(3),IO(3,7),IU,IVOL,IMH,IWT,MUST
             LOAD (JB) =LOAD (JB) +JM
            MREM(JB)=MAX(JB)-LOAD(J8)
45
             MWT (JB) = MWT (JB) + IW
              IF (JM.NE.O) NDU (JB) = NDU (JB) +1
              IF (IB.LE.0) GOTO7
              PRINT700.JB.NDU(JB).IW.JM.LIST(IB.1).LIST(IB.2).MREM(JE)
              IF (NDU (JB) . GE . NPUSE (JB) ) GOTO7
54
         700 FORMAT ( VAN TYPE ',12. CUST # ',13,216,1x,2A3,16)
1311
              IF (MREM (JB) . GT . KF (JB) ) RETURN
           7 I2=JB
              IF (Jb.EQ.1) GOTO77
              11=JB-1
             DO 78 I2=1,I1
              IF (IAL (I2) . EQ. 1. AND. LOAD (JB) . LE. MAX (I2) ) GOTO79
          78 CONTINUE
```

```
12=JB
             G01077
         79 PRINT80.JH.12
         80 FORMAT ( PREV XNS FOR TYPE . 12. APPLIED TO TYPE . 12)
         77 PRINTBOO, 12, L()AD(JB) . NDU(JB) . MWT (JB) , MFEM(JB)
             GOT01901
        800 FORMAT ( OSHIP VAN TYPE 1.12.418)
       1857 NTYV(12)=NTYV(12)+1
             (HU) UAOJ+(SI) VTOTM=(SI) VTOTM
             MREMT (12) = MREMT (12) + MAX (12) - LOAU (Jb)
             NDU(JB) = 0
             MTOTW(I2) = MTOTW(I2) + MWT(JB)
             MWT(JB) = 0
             LOAD (JH) = 0
             MREM (JH) =MAX (JH)
           9 RETURN
       1901 I=I2
14
             J=NDU (JB)
15
             IPC=100
             IF (IB.NE.-2) IPC=100*LOAD (JB) /MAX(I2)
17
             IQ(I,1)=IQ(I,1)+1
18
             IQ(I,2)=IQ(I,2)+IPC
            10(1+J+2)=10(1+J+2)+1
             GOT01857
             END
             SUBROUTINE CLR (M, N, L)
             DIMENSION M(1)
             D011=1.N
           1 M(I)=L
             RETURN
             END
             SUBROUTINE SHIP (IB, JM, IW, IGO)
             INTEGER#2 IU(1000) , IVOL (1000) , IMH(1000) , IWT(1000) , MUST(1000)
             COMMON MAX(3), MIN(3), NPUSE(3), MOPT(3), IAL(3), MREM(3), MWT(3),
            *LOAD (3) •NDU(3) • INT (99,4) •LIST (127,4) •MORD (127) •MAMT (127) •NODIT (127
            4) - MWAT (127) - NTX4 - KF (3)
           WANTYVES AMREMT (3) AMTOTW (3) AMTOTV (3) , 10 (3,7) , 1U, 1VOL, 1MH, 1WT, MUST
             MAXW=42000-MWT(IW)
             I W=0
            -K=0
         14 D0191=1-NTX4
             1F(1U(1),NE.1B)G0T019
             IF (MUST (1) . NE . 1) GOTO19
             JJ=K+IVOL(I)
             IF (JJ.GT.JM) GOTO19
            IF ((IW+IWT(I)).GT.MAXW)GOTO19
             IW=IW+IWT(I)
             IVOL(I)=0
             MUST(I) = -1
             LL=LL+1
         19 CONTINUE
            IF (K.EQ.JM) GOTO29
             IF (IGO.NE.2) GOTO29
             D027I=1 .NTX4
             IF (IU(I) .NE . IB) GOTO27
             IF (MUST (1) . NE . 0) GOTO27
             JJ=K+IVOL(I)
             IF ((IW+IWT(I)).GT.MAXW)GOTO27
             IF (JJ-JM) 26, 26, 27
```

PURAL MALL ...

```
26 K=JJ
              JW=IW+IWT(I)
              IVOL(I) = 0
              MUST(I) = -1
              LL=LL+1
                     IF (JJ.EQ.JM) GOTU29
          27 CONTINUE
          29 JM=K
              NODIT(IR) = NODIT(IR) - LL
              MWAT (IH) = MWAT (IH) - IW
              MAMT(IB)=MAMT(IB)-JM
 7.
              IF (JM.NE.O) RETURN
              PRINT1000 • (I + MAMT (I) • MWAT (I.) • NODIT (I) • I = I • 127) • IAL • MAX • MOPT • MIN • MR
1:0
             *EM+LOAD + NDU + MWT + IB + IW + IGO
        1000 FORMAT ( PROBLEM ** * * * * * 1/127 (14,319/) ,9 (316/))
11
              RETURN
1121
              END
12
              SUBROUTINE LOOK (K1, K2, JJ)
14
              COMMON MAX(3) +MIN(3) , NPUSE(3) , MOPT(3) , IAL(3) + MREM(3) , MWT(3) ,
             *LOAD(3),NDU(3),INT(99,4),LIST(127,4),MORU(127),MAMT(127),NODIT(127
16
             *) , MWAT (127) , NTX4 , KF (3)
17
              DIMENSION MP (6)
              DATA MP/32,16,6,4,2,1/
119
              JJ=64
              D09L=1.6
121
              II=MORD (JJ)
              IF (K1.LT.LIST(II.1)) GOTOR
23
              IF (K1.GT.LIST(II,1))GOTO7
              IF (K2-LIST (II,2))8,10,7
           8 JJ=JJ-MP(L)
              GOT09
           7 JJ=JJ+MP(L)
2
           9 CONTINUE
              II=MORD(JJ)
              IF(LIST(II+1).NE.K1.OR.LIST(II+2).NE.K2)GOTO11
          10 JJ=II
              RETURN
          11 JJ=0
              RETURN
              ENU
22
Œ
```

Appendix E

SCHEDULE OF SAILING DATES

AND

SCHEDULE OF BROWN ROUTE SAILINGS

SAILING SCHEDULE

8-1-76 - 10-9-76

Sail	Port	<u>Vessel</u>	TCN	Units
8/1	DUNDALK	YOUNG AMERICA	5412V601-602	2
8/3	TIOGA	AMER LEADER	5414V601-605	5
8/6	DUNDALK	AMER LEGEND	5436V601-627	27
8/7	DUNDALK	MARKET	5454V601-662	62
8/10	TIOGA	AMER ALLIANCE	5450V601-615	15
8/13	DUNDALK	AMER ACCORD	5437V601-630	30
8/14	DUNDALK	EXPORT FREEDOM	5437V601-631	31
8/14	DUNDALK	FORT GALLOWAY	5486V601-670	70
8/20	DUNDALK	AMER ARGOSY	5507V601-630	30
8/21	DUNDALK	RESOURCE	5491V601-692	92
8/21	DUNDALK	LIGHTING	5506V601-640	40
8/21	DUNDALK	DEFIANCE	5513V601	1
8/24	TIOGA	AMER LEGACY	5528V601-630	30
8/28	DUNDALK	MARKET	5492V601-708	108
8/28	DUNDALK	EXPORT PATRIOT	5514V601-625	25
8/31	TIOGA	AMER LEADER	5548V601-624	24
9/4	DUNDALK	GALLOWAY	5493V601-695	95
9/4	DUNDALK	EXPORT FREEDOM	5572V601	1
9/4	DUNDALK	AMER ALLIANCE	5591V601-635	35
9/10	DUNDALK	AMER ACCORD	5564V601-624	24
9/11	DUNDALK	RESOURCE	5566V601-675	75
9/11	DUNDALK	LIGHTING	5563V601-651	51
9/17	DUNDALK	AMER ARGOSY	5557V601-626	26
9/18	DUNDALK	MARKET	5650V601-701	101
9/18	DUNDALK	RED JACKET	5667V601-602	2

SAILING SCHEDULE (Continued) 8-1-76 - 10-9-76

<u>Sail</u>	Port	Vessel	TCN	Units
9/21	TIOGA	AMER LEGACY	5652V601-625	25
9/24	DUNDALK	AMER ACE	5617V601-617	17
9/25	DUNDALK	EXPORT FREEDOM	5656V601-651	51
9/25	DUNDALK	GALLOWAY	5658V601-687	87
9/28	TIOGA	AMER LEADER	V601-618	18
10/2	DUNDALK	RESOURCE	5683V601-702	102
10/2	DUNDALK	LIGHTING	5696V601-650	50
10/3	DUNDALK	DEFIANCE	5706V601	1
10/9	DUNDALK	EXPORT PATRIOT	5701V601-609	9

BROWN ROUTE SAILINGS

Sail Date	Port	<u>Vessel</u>	Van #	Van Vol.	Date Shipped
8-7-76	Dundalk	Market	51059/35 51254/35	1069 1383	216 217
8-10-76	Tioga	Alliance	24803/20	568	215
8-13-76	Dundalk	Accord	24948/20 60231/20 79315/20	716 758 695	219 225 224
8–14–76	Dundalk	Galloway	39846/35	1465	218
		,	50814/35 52468/35	1106 1281	218 219
			60458/35 60953/35	1397 1454	223 219
			63330/35 65203/35 70891/35	1403 1377 1602	218 218 217
8-14-76	Dundalk	Export			
		Freedom	20381/20 75392/40 75487/40	559 1408 1170	222 225 223
			90705/40	1381	223
8–20–76	Dundalk.	Argosy	01914/40 12734/40	1576 1435	225 230
		•	95154/40 99739/40	1598 1279	227 229
8-21-76	Dundalk	Lightning	22084/20 25316/20	748 671	233 232
8-21-76	Dundalk	Resource	27673/20 36548/35	777 1289	232
0-21-70	Dundark	Resource	39447/35 43452/35	1143 1450	231 226
			46174/35 47373/35	1453 681	224 230
			501106/35 51799/ 52278/35	815 1092	229 229
			59004/35 59115/35	1617 1534 1165	226 229 230
			65312/35 66985/35	1114 1331	230 228
			72407/35 73909/35	1429 1244	225 228

Sail Date	Port	Vessel	Van #	Van Vol.	Date Shipped
8-24-76	Tioga	Legacy	03517/40	1529	233
0 2	11080	педасу	10497/40	1163	231
			16664/40	1506	234
			19050/40	1656	234
			17050740	1050	234
		Export			
8-28-76	Dundalk	Patriot	20484/20	555	237
			20675/20	643	237
			21876/20	884	238
8-28-76	Dundalk	Market	33521/35	1161	236
			34439/35	1479	236
			35274/35	1354	233
			36090/35	1477	237
			36293/35	1679	233
			37592/35	949	237
			38181/35	1182	239
			39786/35	1152	238
			41361/35	1548	239
			43258/35	1384	240
			54200/35	861	237
			54274/35	1269	237
			54359/35	1344	237
			55278/35	1050	239
			61538/35	1267	235
			02500,55	220,	233
8-31-76	Tioga	Leader	02440/20	712	238
			68933/20	740	240
9-4-76	Dundalk	Galloway	02351/35	1944	241
			08236/35	1440	244
			08291/35	669	243
			35100/35	1646	246
			37991/35	972	244
			39954/35	1017	246
			41031/35	1123	246
			42629/35	1162	241
			55859/35	1471	243
			57708/35	2217	243
			59062/35	1284	241
			59368/35	2172	242
			62432/35	1250	245
9-7-76	Dundalk	Alliance	19072/40	1845	245
			54241/40	489	244
			58540/20	504	245
			91543/40	1681	245

Sail Date	Port	<u>Vessel</u>	Van #	Van Vol.	Date Shipped
9-10-76	Dundalk	Accord	08021/44	1744	251
			10114/40	1266	252
			19679/40	786	252
			22883/40	922	251
			92520/40	1210	252
9-11-76	Dundalk	Resource	37914/35	1043	252
			38906/35	1268	247
			47623/35	1388	253
			48263/35	1117	253
			50608/35	1173	252
			51299/35	1181	247
			53338/35	1287	248
			63279/35	1203	251
			66570/35	1156	247
			67918/35	1263	247
			69216/35	1378	252
9-11-76	Dunda1k	Lightning	20497/20	573	255
			22253/20	660	246
			23064/20	582	246
			24950/20	566	245
			26413/24	737	248
9-21-76	Tioga	Legacy	21126/20	592	259
			62476/20	647	258
			74487/20	513	259
9-24-76	Dundalk	Ace	10690/40	1474	261
9-25-76	Dundalk	Freedom	21006/20	439	265
			25094/20	662	267
			5963/20	678	265
9-25-76	Dunda1k	Galloway	04637/35	1201	264
			08061/35	1271	265
			35709/35	1181	266
			40550/35	1477	264
			43439/35	545	265
***			44065/35	1117	263
			46105/35	1167	260
			47311/35	787	265
			47374/35	1584	261
			50961/35	1320	266
			53569/35	1262	266
			54708/35	1142	264
			55598/35	1320	266
			61309/35	1570	260
			64627/35	1282	260
			65078/35	1192	266
			65613/35	1568	266
			70436/35	1123	261
			71462/35	1097	264

Sail Date	Port	<u>Vessel</u>	Van #	Van Vol.	Date Shipped
9-28-76	Tioga	Leader	10790/20	630	269
			51322/20	706	269
10-2-76	Dundalk	Resource	01265/35	1320	267
			01470/35	1247	268
			02153/35	1423	268
			09474/35	1203	271
			35351/35	1320	267
			41578/35	1320	267
			42803/35	1161	268
			45097/35	1472	267
			50348/35	1487	273
			53148/35	1900	267
			56820/35	2400	267
			57375/35	1909	273
			60366/35	1382	272
			62146/35	1320	266
			62472/35	1031	268
			62705/35	1320	268
			70228/35	1383	271
			99212/35	949	271
			99322/35	1460	272
			99330/35	1104	271
10-2-76	Dundalk	Lightning	20188/20	771	268
			20350/20	551	271
			24241/20	507	272
			26363/20	538	273
			66044/20	720	267

Appendix F

REPORT ON VISITS TO TWO COMMERCIAL TRANSFER AND STORAGE COMPANIES

VISIT TO COMMERCIAL STORAGE AND TRANSFER COMPANIES

Visit to two commercial transfer facilities were undertaken in an attempt to provide a comparison for CCP operations. Although the two commercial organizations are profit-oriented and both are part of a larger group, they as the CCP, must receive, consolidate, load and deliver cargo.

The study team was interested in determining how the two commercial organizations operated: how goods were received, stored, consolidated and shipped. Additionally, the pilferage problem was discussed with representatives of each company.

Company A is an affiliate of ATLAS Van Lines, a worldwide mover of household goods. Company B provides rapid service between Washington, D.C., Richmond, Norfolk, Charlotte, Greensboro, Raleigh, Fayetteville and other cities in Eastern Virginia and North Carolina.

A comparison of the two companies with the CCP operation is difficult to make because of the nature and responsibilities of each organization. Figure is an attempt to make this comparison.

Most of the material received for overseas shipment by Company A is packed in cartons at the customer's house. On those occasions when unpacked household goods are received, the company increases its staff of loaders and packers. Comparison of hold time is also difficult because customer goods may be stored for extended periods waiting for a house or apartment to be vacated, etc.

COMPANY A

Company A is a worldwide mover of household goods, a part of the ATLAS Van Line System. They are more aware of the consolidation problem that inces the CCP.

COMPARISON OF CCP AND TWO COMMERCIAL FREIGHT HAULERS

Company B	General Cargo	Washington, Maryland Virginia, North Carolina	Yes	300-350/Day	No	0-1 Day	12-14/Day	No	No	30	Minimal
Company A	Household	Worldwide	Yes	20-25/Day	Yes	Varies	Peak Season 30/Day	Yes	No	Off season 6–7 Peak season 13–15	Minimal but increasing
CCP	All classes of Supply Household (less ammo)	CONUS/USAREUR	Yes		No	0-7	50/Day P	Yes	Yes	300 OO	
	• Type of Goods Moved	• Area Serviced	 Consolidation of Shipments 	• Number of Shipment/Families	 Advanced Notice of Material Shipped to Warehouse 	 Warehouse Hold Time 	• Number of Vans (Inbound and Outbound)	 Palletized Loads 	 Computerized Inventory 	• Number of Employees	• Pilferage

The movement of a family's household goods overseas begins with a visit of an estimator who identifies all items. After the contract is signed, each item is tagged, packed and moved to the warehouse where it is generally offloaded to be consolidated with other goods for the same approximate destination. Occasionally household goods from two or three families are sequentially loaded in the van for shipment.

Two procedures are used:

- 1. During the peak season for incountry shipments, household goods are separated by family by the use of bedsprings and mattresses. There is little or no delay moving the goods during the peak season. If a shipment comes to Company A for local distribution, they are notified in advance. Advanced notice is also given for any overseas move. A jacket, filed by name, is set up for each move. The jacket contains all of the information made available to the company. This information includes expected arrival date, name, lot, shipment information, warehouse location, number of pallets, and other containers (rugs are packed in separate containers). Again, this is a manual system.
- 2. Oversea shipments usually require storage of goods. They are loaded in boxes with rugs stored in special containers. They use 28 different size boxes for storing the goods. The large furniture boxes are stored 5 high. Company A maintains 3 million feet of floor space for packing and storage. A family's goods may be stored in three or four locations. This information is stored in the family jacket and is used by the loader to locate material for containerization.

Pilferage at Company A han been minimal but has been increasing lately. We were told "If this trend continues, we intend to hire private policemen to patrol the warehouse."

COMPANY B

This company provides service between Washington - Richmond, Norfolk, Charlotte, Greensboro, Fayetteville, Raleigh and other cities in Eastern Virginia and North Carolina. The company ships and receives trailer loads to the above cities for local distribution.

They handle 250-300 shipments or 12-14 trailers/day, about half inbound. Shipments are consolidated to some degree in the warehouse. The system for identifying material in the warehouse is totally manual. Shipment warehouse location is recorded on the bill of lading. This is the only information the loader has to work with. Ninety percent of material is in and out of the warehouse the same day.

Pilferage is minimal and according to their spokesman is strictly an internal problem. They place emphasis on the fact that their employees are all honest hardworking people. Each new employee is thoroughly screened before he is hired.

Generally no advanced notice of shipments are received. However, on those occasions when valuable merchandise is on board, they do receive advanced shipment information. Shipments are unloaded and loaded without delay. In order to move 12-14 van loads of relatively small shipments, a fairly effective system must exist.

