This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

What is claimed is:

5

10

15

 A method for preparing a hydroxyalkyl starch, comprising the steps of:

providing a starch; and

reacting said starch with a starch hydroxyalkylating agent in the presence of an alcohol and an alkali metal at a temperature effective to produce a granular hydroxyalkylated starch having an MS sufficient to render said hydroxyalkylated starch cold water soluble.

- 2. A method according to claim 1, wherein the MS of said starch is greater than about 0.30 after hydroxyalkylation.
- 3. A method according to claim 1, wherein the MS of said starch ranges from about 0.30 to about 0.70 after hydroxyalkylation.
- 4. A method according to claim 1, wherein the MS of said starch ranges from about 0.4 to 0.50 after hydroxyalkylation.
- 5. A method according to claim 1, wherein said temperature ranges from about 90° C to about 110° C.
- 6. A method according to claim 1, wherein the reaction of starch with the hydroxyalkylating agent occurs for a time period ranging from about 1.5 hours to about 2 hours.
 - 7. A method according to claims 1-3, wherein said hydroxyalkylating agent is propylene oxide or ethylene oxide.

- A method according to claim 7, wherein said hydroxyalkylating agent is ethylene oxide.
 - 9. The starch prepared in accordance with claim 1.

A method for preparing a crosslinked hydroxyalkyl starch, comprising the steps of: providing a starch;

reacting said starch with a starch hydroxyalkylating agent in the presence of an alcohol and an alkali metal at 10 a temperature effective to produce a granular hydroxyalkylated starch having an MS sufficient to render said hydroxyalkylated starch cold water soluble; and

crosslinking said starch with a poly-functional crosslinking agent. 15

A method according to claim 10, wherein said poly-functional crosslinking agent is selected from among phosphorus oxychloride and epichlorohydrin.

20

()

A method according to claim 10, wherein the MS of said starch is greater than about 0.30 after hydroxyalkylation.

25

- A method according to claim 10, wherein the MS of said starch ranges from about 0.30 to about 0.70 after hydroxyalkylation.
- A method according to claim 10, wherien the MS of said starch ranges from about 0.4 to 0.50 after 30 hyrdoxyalkylation.
 - A method according to claim 10, wherein said temperature ranges from about 90° C to about 110° C.

16. A method according to claim 10, wherein the reaction of starch with the hydroxyalkylating agent occurs for a time period ranging from about 1.5 hours to about 2 hours.

5

- 17. A method according to claim 10, wherein said hydroxyalkylating agent is propylene oxide or ethylene oxide.
- 18. A method according to claim 10, wherein said hyroxyalkylating agent is ethylene oxide.
 - 19. The starch prepared in accordance with claim 10.

15

()

20. A method for preparing a crosslinked hydroxyalkyl starch, comprising the steps of:

providing a starch; and

reacting said starch with a starch hydroxyalkylating
agent in the presence of an alcohol and an alkali metal
and a poly-functional crosslinking agent at a temperature
effective to produce a granular, crosslinked
hydroxyalkylated starch having an MS sufficient to render
said hydroxyalkylated starch cold water soluble.

- 21. A method according to claim 20, wherein said poly-functional crosslinking agent is selected from among phosphorus oxychloride and epichlorohydrin.
- 30 22. A method according to claim 20, wherein the MS of said starch is greater than about 0.30 after hydroxyalkylation.
- 23. A method according to claim 20, wherein the MS of said starch ranges from about 0.30 to about 0.70 after hydroxyalkylation.

- 24. A method according to claim 20, wherein the MS of said starch ranges from about 0.4 to 0.50 after hydroxyalkylation.
- 25. A method according to claim 20, wherein said temperature ranges from about 90° C to about 110° C.
- 26. A method according to claim 20, wherein the reaction of starch with the hydroxyalkylating agent occurs for a time period ranging from about 1.5 hours to about 2 hours.
- 27. A method according to claim 20, wherein said hydroxyalkylating agent is propylene oxide or ethylene oxide.
 - 28. A method according to claim 27, wherein said hydroxyalkylating agent is ethylene oxide.
 - 29. The starch prepared in accordance with claim 20.

20

5

()

30. A method for preparing a crosslinked hydroxyalkyl starch, comprising the steps of: providing a starch; and

reacting said starch in an aqueous slurry with

5 a starch hydroxyalkylating agent in the presence of an
alcohol and an alkali metal at a temperature effective to
produce a granular hydroxyalkylated starch having a molar
substitution (MS) sufficient to render said
hydroxyalkylated starch cold water soluble; and

- 10 crosslinking said starch with a poly-functional crosslinking agent.
 - 31. A method for preparing a crosslinked hydroxyalkyl starch, comprising the steps of: providing a starch; and
- reacting said starch in an aqueous slurry with a starch hydroxyalkylating agent in the presence of an alcohol and an alkali metal and a poly-functional crosslinking agent at a temperature effective to produce a granular, crosslinked hydroxyalkylated starch having a molar substitution (MS) sufficient to render said hydroxyalkylated starch cold water soluble.
 - 32. A method according to claim 30, wherein said poly-functional crosslinking agent is selected from among phosphorus oxychloride and epichlorohydrin.

- 33. A method according to claim 30, wherein the MS of said starch is greater than about 0.30 after hydroxyalkylation.
- 34. A method according to claim 30, wherein the MS
 of said starch ranges from about 0.30 to about 0.70 after hydroxyalkylation.
 - 35. A method according to claim 30, wherein the MS of said starch ranges from about 0.4 to 0.50 after hydroxyalkylation.
- 10 36. A method according to claim 30, wherein said temperature ranges from about 90° to about 110°C.
 - 37. A method according to claim 30, wherein the reaction of starch with the hydroxyalkylating agent occurs for a time period ranging from about 1.5 hours to about 2 hours.
 - 38. A method according to claim 30, wherein said hydroxyalkylating agent is propylene oxide or ethylene oxide.
- 39. A method according to claim 30, wherein said 20 hydroxyalkylating agent is ethylene oxide.

- 40. A method according to claim 31, wherein said poly-functional crosslinking agent is selected from among phosphorus oxychloride and epichlorohydrin.
- 41. A method according to claim 31, wherein the MS

 25 of said starch is greater than about 0.30 after

 hydroxyalkylation.

- 42. A method according to claim 31, wherein the MS of said starch ranges from about 0.30 to about 0.70 after hydroxyalkylation.
- 43. A method according to claim 31, wherein the MS of said starch ranges from about 0.4 to 0.50 after hydroxyalkylation.
 - 44. A method according to claim 31, wherein said temperature ranges from about 90°C to about 110°C.
- 45. A method according to claim 31, wherein the reaction of starch with the hydroxyalkylating agent occurs for a time period ranging from about 1.5 hours to about 2 hours.
 - 46. A method according to claim 31, wherein said hydroxyalkylating agent is propylene oxide or ethylene oxide.

47. A method according to claim 31, wherein said hyroxyalkylating agent is ethylene oxide.