

Definite Integrals Ex 20.5 Q1

$$\int\limits_{a}^{b} f(x) dx = \lim_{h \to 0} h \Big[f(a) + f(a+h) + f(a+2h) + - - - + f(a+(n-1)h) \Big], \text{ where } h = \frac{b-a}{n}$$

Here,
$$a = 0$$
, $b = 3$ and $f(x) = (x + 4)$

$$h = \frac{3}{n} \Rightarrow nh = 3$$

Thus, we have,

$$\Rightarrow I = \int_{0}^{3} (x + 4) dx$$

$$\Rightarrow I = \lim_{h \to \infty} h [f(0) + f(h) + f(2h) + - - - f((n-1)h)]$$

$$\Rightarrow I = \lim_{h \to 0} h [f(0) + f(h) + f(2h) + - - - f((n-1)h)]$$

$$\Rightarrow I = \lim_{h \to 0} h [4 + (h+4) + (2h+4) + - - - + ((n-1)h+4)]$$

$$\Rightarrow I = \lim_{h \to 0} h \left[4n + h \left(1 + 2 + 3 + - - - + \left(n - 1 \right) \right) \right]$$

$$\Rightarrow I = \lim_{h \to 0} h \left[4n + h \left(\frac{n(n-1)}{2} \right) \right] \qquad \left[\because h \to 0 \ \& \ h = \frac{3}{n} \Rightarrow n \to \infty \right]$$

$$\left[\because h \to 0 \ \& \ h = \frac{3}{n} \Rightarrow n \to \infty \right]$$

$$\Rightarrow I = \lim_{n \to \infty} \frac{3}{n} \left[4n + \frac{3}{n} \frac{\left(n^2 - 1\right)}{2} \right]$$

$$\Rightarrow I = \lim_{n \to \infty} 12 + \frac{9}{2} \left(1 - \frac{1}{n} \right)$$

$$= 12 + \frac{9}{2} = \frac{33}{2}$$

$$\therefore \int_{0}^{3} (x + 4) dx = \frac{33}{2}$$

Definite Integrals Ex 20.5 Q2

$$\int_{a}^{b} f(x) dx = \lim_{h \to 0} h \Big[f(a) + f(a+h) + f(a+2h) + - - - + f(a+(n-1)h) \Big]$$
where $h = \frac{b-a}{b}$

Here
$$a = 0$$
, $b = 2$
 $\Rightarrow h = \frac{2}{n} \& f(x) = x + 3$

$$I = \int_{0}^{2} (x+3) dx$$

$$\Rightarrow I = \lim_{h \to 0} h \left[f(0) + f(h) + f(2h) + \dots - f((n-1)h) \right]$$

$$\Rightarrow I = \lim_{h \to 0} h \left[3 + (h+3) + (2h+3) + (3h+3) - \dots - + (n-1)h + 3 \right]$$

$$= \lim_{h \to 0} h \left[3n + h \left(1 + 2 + 3 + \dots - - (n-1) \right) \right]$$

$$= \lim_{h \to 0} h \left[3n + h \frac{n(n-1)}{2} \right]$$

$$\therefore h = \frac{2}{n} \otimes \text{if } h \to 0 \Rightarrow n \to \infty$$

$$= \lim_{n \to \infty} \frac{2}{n} \left[3n + \frac{2}{n} \frac{n(n-1)}{2} \right]$$

$$= \lim_{n \to \infty} \left[6 + \frac{2}{n} n^2 \left(1 - \frac{1}{n} \right) \right]$$

$$= 6 + 2 = 8$$

$$\int_{0}^{2} (x+3) dx = 8$$

Definite Integrals Ex 20.5 Q3

We have

$$\int_{a}^{b} f(x)dx = \lim_{h \to 0} h \left[f(a) + f(a+h) + f(a+2h) + \dots + f(a+(n-1)h) \right]$$
where $h = \frac{b-a}{n}$

Here
$$a = 1$$
, $b = 3$ and $f(x) = 3x - 2$
 $h = \frac{2}{n} \Rightarrow nh = 2$

Thus, we have,

$$I = \int_{1}^{3} (3x - 2) dx$$

$$\Rightarrow I = \lim_{h \to 0} h \left[f(1) + f(1 + h) + f(1 + 2h) + \dots - f(1 + (n - 1)h) \right]$$

$$= \lim_{h \to 0} h \left[1 + \left\{ 3(1 + h) - 2 \right\} + \left\{ 3(1 + 2h) - 2 \right\} + \dots - \dots + \left\{ 3(1 + (n - 1)h) - 2 \right\} \right]$$

$$= \lim_{h \to 0} h \left[n + 3h \left(1 + 2 + 3 + \dots - (n - 1) \right) \right]$$

$$= \lim_{h \to 0} h \left[n + 3h \frac{n(n - 1)}{2} \right]$$

$$\therefore h = \frac{2}{n} \qquad \text{if } h \to 0 \Rightarrow n \to \infty$$

$$\therefore \lim_{n \to \infty} \frac{2}{n} \left[n + \frac{6}{n} \frac{n(n - 1)}{2} \right]$$

$$= \lim_{n \to \infty} 2 + \frac{6}{n^2} n^2 \left(1 - \frac{1}{n} \right)$$

$$= \lim_{n \to \infty} 2 + 6 = 8$$

Definite Integrals Ex 20.5 Q4

 $\therefore \int_{1}^{3} (3x - 2) dx = 8$

We have.

$$\int_{a}^{b} f(x) dx = \lim_{h \to 0} h \Big[f(a) + f(a+h) + f(a+2h) + - - - + f(a+(n-1)h) \Big]$$
where $h = \frac{b-a}{n}$

Here
$$a = -1$$
, $b = 1$ and $f(x) = x + 3$

$$\therefore h = \frac{2}{n} \Rightarrow nh = 2$$

Thus, we have,

$$I = \int_{-1}^{1} (x+3) dx$$

$$I = \lim_{h \to 0} h \left[f(-1) + f(-1+h) + f(-1+2h) + \dots + f(-1+(n-1)h) \right]$$

$$= \lim_{h \to 0} h \left[2 + (2+h) + (2+2h) + \dots + \{(n-1)h + 2\} \right]$$

$$= \lim_{h \to 0} h \left[2n + h(1+2+3+\dots + n) \right]$$

$$= \lim_{h \to 0} h \left[2n + h \frac{n(n-1)}{2} \right] \qquad \left[\because h = \frac{2}{n} \otimes \text{if } h \to 0 \Rightarrow n \to \infty \right]$$

$$= \lim_{n \to \infty} \frac{2}{n} \left[2n + \frac{2}{n} \frac{n(n-1)}{2} \right]$$

$$= \lim_{n \to \infty} 4 + \frac{2n^2}{n^2} \left(1 - \frac{1}{n} \right)$$

$$= 4 + 2 = 6$$

$$\int_{-1}^{1} \left(x + 3 \right) dx = 6$$

********* END *******