A Primer into Phylogenetics

Julio Diaz Caballero
University of Oxford

Phylogenetics is the scientific study of the **evolutionary relationships** among biological entities—often species, individuals, or genes.

Evolutionary Tree sketched by Charles Darwin

On The Origin of the Species (1859)

SARS-CoV-2 over the last 6 months

https://nextstrain.org/ncov/gisaid/global/6m

Genealogical Relationships

Ryan Gregory (2008)

Genealogical Relationships

Ryan Gregory (2008)

Bacteria do not have birth certificates

people

bacteria

Birth Certificate

Name:

Date ot birth:

Parent 1 name:

Parent 2 name:

Address:

> DNA

TAACCGGTAAAACACTTTGCTCGTGCACA TAGGCGTGACACCTAAGACTGGAACAAG CTCAGAAGAGTAGTAGGCGAGCATTTTTT GACCGAGTCCGCTCCTTTCTAACTCACTG ACTTCTCGCGGGCCGTATCCTGCACGCT CAACAGCCAGCGGTGTCCCGTTACCCTT CAAGCTCATCTTCCTCGAGGTCTGTTGTA GTACCACACGCCTCTCCCGGCATTAGCC CGCACTCCTCGACGGGACATTATGTGCC TTCAGTTCCCGATCTCGGTCGCCCCAG CCGGAATCCCTTAGACACCAGGGCCGCG TGAGCGAGAAGCGGGGGGAGAACTTTAT AGGGCTGTGGCTCATACAATAGGGTAAG GTT...

Node Common ancestor

Many ways to the same tree

Ryan Gregory (2008)

Many ways to the same tree

Ryan Gregory (2008)

Many ways to the same tree

How do we build a tree?

Distance-based methods

- Based on the dissimilarity (the distance) between sequences to construct trees
- UPGMA, Neighbour-Joining

Character-based methods

- Based on all the individual characters from each sequence
- Maximum-likelihood, Maximum-parsimony, Bayesian Analysis

Distance-based methods

Sequence Alignment

A CGATGCTAGA
B GGAAGCACCA
C GCAAGCACGT

A CGATGCTAGA
B GGAAGCACCA

Here, sequences of A and B differ by 5 nucleotides

A CGATGCTAGA
B GGAAGCACCA

The length of the branches indicate this genetic distance

A CGATGCTAGA

1 B A

C GCAAGCACGT

A and C differ by 6 nucleotide differences

4 of these are shared with B

A CGATGCTAGA
B GGAAGCACCA
C GCAAGCACGT

But B and C differ from each other by 3

Distance-based methods

Number of nucleotide differences

	A	В	С
A		5	6
В			3
С			

Distance Matrix

Character-based methods

Maximum-Parsimony

Identify the tree that can explain the data by identifying the minimum number of changes

Maximum-Likelihood

What is the likelihood of the data given a model with some parameters?

Bayesian

What is the likelihood of the model given the data?

- Model:
 - Substitution model

https://www.wikipedia.org

- Model:
 - Substitution model
 - Rate Variation Among Sites

t1	G	C	Т	Т	C	Т	G	Α	Т	Т	Α	Α	C	C	Т	G	C	Т
t2	G	С	Т	Т	С	Т	G	Α	Т	Т	Т	С	Т	С	Т	G	C	С
t3	G	С	Т	Т	С	Т	G	Α	Т	Т	Α	C	Т	С	Т	G	С	С
t4	G	C	Т	Т	С	Т	G	Α	С	Т	Α	G	Т	С	Т	G	С	Т

https://www.wikipedia.org

- Model
 - Substitution model
 - Rate Variation Among Sites
 - Tree topology

- Model

- Substitution model
- Rate Variation Among Sites
- Tree topology

- Resampling

- Bootstrap or Jacknife
- Bootstrap: every character is replaced at random with another character a.k.a resample with replacement
- Increases confidence

- Model
 - Substitution model
 - Rate Variation Among Sites
 - Tree topology

Resampling (bootstrap)

(Then the next five randomly chosen sites: 2, 1, 1, 5, 4, are placed in the next five positions.)

https://www.zoology.ubc.ca/~bio336/Bio336/Lectures/Lecture14/Overheads.html

Bayesian Approach

- Bayesian Inference
 - Combine **prior probabilities** with the likelihood of the model given the data (**posterior probabilities**)

Bayesian Approach

- Bayesian Inference
 - Combine **prior probabilities** with the likelihood of the model given the data (**posterior probabilities**)
- Monte Carlo Markov Chain (MCMC)
 - Simulates trees sampled from the posterior

Confidence in Phylogenies

- Proportion of trees supporting node
- Likelihood of Node

Tools

- General
 - MEGA
- Neighbour-Joining
 - RapidNJ, NINJA
- Maximum-Likelihood
 - RAXML, IQ-TREE
- Bayesian
 - Mr Bayes, RevBayes
- Visualisation
 - iTOL, Microreact, ape (R package)

Challenges

- Computationally expensive
 - Specially character-based methods
 - Not easily scalable
- Requires recombination disentanglement
 - Identification of clonal frame
 - Tools that take recombination (e.g. Gubbins) into account
- Does not include gain/loss evolutionary events

Thank you!

wellcome connecting ACORN science

