Business Analytics

Session 9b. Optimization Basics and Linear Programming

Renyu (Philip) Zhang

New York University Shanghai

Spring 2019

What is Optimization

- We now move into the 3rd module of this course: Optimization.
- Most of the decision making problems in practice can be phrased into the following prototype:

Maximze the reward (or minimize the cost) under some constraints.

- Examples:
 - Google maximizes advertising revenue without sacrificing user experiences.
 - VCs maximize return subject to risk tolerance.
 - Prediction models minimize loss on the training set without having an overly complex model.

Optimization Model

$\max f(x)$, subject to $x \in \mathcal{X}$

- x: Decision variables, which define a strategy or an action plan.
 - Control parameters to be decided.
 - Examples: price, advertisement alocation, investment portfolio, etc.
- $f(\cdot)$: Objective function, which defines the goal of the problem, the target to be optimized.
 - Expressed as a function of the decision variables.
 - Provides a criterion to compare alternate solutions/decisions.
 - Can be controlled by decision variables, but not directly.
 - Examples: profit, revenue, cost, risk, etc.
- ullet \mathcal{X} : Constraints, defines when the decision variables are actually feasible.
 - Expressed in terms of decision variables.
 - Examples: Technical, financial, legal, and logical constraints, etc.
- Optimization triplet: decision variables, objective function, constraints.

Solution to Optimization Model

$$x^* = argmax \ f(x)$$
, subject to $x \in \mathcal{X}$

- For a general optimization, i.e., f(·) is a general objective function,
 X is a general feasible set, it is impossible to obtain x*
- When $f(\cdot)$ and \mathcal{X} satisfy some conditions, solving x^* is (relatively) easy or at least plausible.
 - $f(\cdot)$ is linear or concave.
 - X is a convex set or a convex polytope.
- Two goals:
 - Translate decision problems into optimization models.
 - Solve optimization models using analytics tools.

Matrix

- \bullet Data are stored in matrices: $\mathbf{A_{n\times m}}=(\mathbf{A_{i,j}})_{\mathbf{n}\times \mathbf{m}}$
 - n data points, m covariates.
- Example:

$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \mathbf{A}_{13} \\ \mathbf{A}_{21} & \mathbf{A}_{22} & \mathbf{A}_{23} \end{pmatrix} = \begin{pmatrix} 2 & 0 & -1 \\ 3 & 1 & 2 \end{pmatrix}$$

- Two matrices A = B if each entry of A is the same as the corresponding entry of B, i.e., $A_{ij} = B_{ij}$ for all $1 \le i \le n, 1 \le j \le m$.
- ullet Transpose: $\mathbf{B} = \mathbf{A}^{\mathsf{T}}$, then $m{\mathcal{B}}_{ij} = m{\mathcal{A}}_{ji}$.
 - If A is n by m, then A^T is m by n.

Summation of Matrix

• Two matrices of the same dimensions $(n \times m)$, A and B

$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} A_{11} + B_{11} & A_{12} + B_{12} & \cdots & A_{1m} + B_{1m} \\ A_{21} + B_{21} & A_{22} + B_{22} & \cdots & A_{2m} + B_{2m} \\ \cdots & \cdots & \cdots & \cdots \\ A_{n1} + B_{n1} & A_{n2} + B_{n2} & \cdots & A_{nm} + B_{nm} \end{pmatrix}$$

- A + B = B + A, (A + B) + C = A + (B + C), A + O = A, where all the entries of O is 0.
- Matrix substraction: A B = A + (-B).

Multiplication of Matrix

- Two matrics $\mathbf{A}_{p \times q}$ and $\mathbf{B}_{q \times r}$: $\mathbf{M}_{p \times r} = \mathbf{A}\mathbf{B}$
 - $M_{ij} = \sum_{k=1}^{q} A_{ik} B_{kj}$
- lacktriangle (AB)C = A(BC), as long as the dimensions match.
- In general, $AB \neq BA$.
 - The dimensions may not even match.
- How do we represent the following in matrices:
 - $f(x) = \sum_{i=1}^{n} c_i x_i$
 - $\sum_{j=1}^{n} A_{ij} x_j \leq B_i$, for $i = 1, 2, \cdots, m_1$
 - $\bullet \sum_{j=1}^{n} a_{ij} x_j = b_i, \text{ for } i = 1, 2, \cdots, m_2$

Google AdWords

Business Model of Google

 Although Google has more than 1 billion unique monthly visitors, its search engine is free to use.

- How does Google make money?
 - Google generates more than 110 billion USD in 2017.

- Google AdWords: The sponsored online ads system.
 - 97% of Google's revenues come from AdWords.

Sponsored Ads on Google

Google AdWords

- Why do companies advertise on Google?
 - Google receives very heavy traffic.
 - Search pages are formatted in a very clean manner.
 - Companies can choose the queries their ads will be displayed so as to target the desired audience.

Advertising on Google:

- Advertisers place bids for different queries in an auction (generalized second-price auction).
- Based on bids and quality score (fit of advertiser and ad to the queries), Google decides price-per-click of each advertiser and each query.
- Google then decides how often to display each ad for each query.

Price-Per-Click (PPC) and Budget

 Price-Per-Click: How much the advertiser pays Google when a user clicks its ad for that query.

Advertiser	Query 1	Query 2	Query 3
	"4G LTE"	"largest LTE"	"best LTE network"
AT&T	\$5	\$5	\$20
T-Mobile	\$10	\$5	\$20
Verizon	\$5	\$20	\$25

- Budget: The maximum total payment of the advertiser to Google.
 - Each time user clicks on the ad, the budget is depleted by PPC amount.

Advertiser	Daily Budget
AT&T	\$170
T-Mobile	\$100
Verizon	\$160

Click-Through Rate (CTR)

- Click-through rate (CTR): The probability a user clicks on an ad.
 - CTR can be viewed as "click per user".

Advertiser	Query 1	Query 2	Query 3
	"4G LTE"	"largest LTE"	"best LTE network"
AT&T	0.10	0.10	0.08
T-Mobile	0.10	0.15	0.10
Verizon	0.10	0.20	0.20

- If we have 100 users who search "largest LTE" (all allocated to T-Mobile), how many clicks will T-Mobile's ad receive on average?
- PPC×CTR: Average money an advertiser pays Google for each display of its ad for the query.
 - If we allocate 100 "best LTE network" queries to AT&T, what is the expected payment from AT&T to Google.

Advertiser	Query 1	Query 2	Query 3
	"46 LTE"	"largest LTE"	"best LTE network"
AT&T	$\$5 \times 0.10 = \0.5	$\$5 \times 0.10 = \0.5	$$20 \times 0.08 = 1.6
T-Mobile	$$10 \times 0.10 = 1	$\$5 \times 0.15 = \0.75	$$20 \times 0.1 = 2
Verizon	$\$5 \times 0.10 = \0.5	$$20 \times 0.20 = 4	$$25 \times 0.2 = 5

Query Estimates

 Google cannot control how many times a query will be requested -Driven by users!

 Instead, Google estimates the number of times a query will be requested over a given day.

Query	Estimated # of Requests
"4G LTE"	140
"largest LTE"	80
"best LTE network"	80

Google's Problem

• Key Question: How many times to display each ad for each query to maximize revenue?

 Decisions: For each ad and each query, the number of times the ad will be displayed for that query.

Constraints:

- Budget: Average amount paid by each advertiser cannot exceed the budget
- Query estimates: Total ads for a given query cannot exceed the number of requests for that query

First Approach: Greedy Strategy

Greedy Strategy: Display the most profitable ad.

• Most profitable (feasible) allocation: Q_3 to Verizon (\$5).

	Q_1	Q_2	Q_3	Budget
AT&T				170
T-Mobile				100
Verizon			32	160-32×5=0
Numbers	140	80	80-32=48	

Most profitable (feasible) allocation: Q₃ to T-Mobile (\$2).

	Q_1	Q_2	Q_3	Budget
AT&T				170
T-Mobile			48	100-48×2=4
Verizon			32	0
Numbers	140	80	48-48×1=0	

Most profitable (feasible) allocation: Q1 to T-Mobile (\$1).

	Q_1	Q_2	Q_3	Budget
AT&T				170
T-Mobile	4		48	4-4×1=0
Verizon			32	0
Numbers	140-4=136	80	0	

First Approach: Greedy Strategy

Most profitable (feasible) allocation: Q1 to AT&T (\$0.5).

	Q_1	Q_2	Q_3	Budget
AT&T	136			170-136×0.5=102
T-Mobile	4		48	0
Verizon			32	0
Numbers	136-136=0	80	0	

• Most profitable (feasible) allocation: Q2 to AT&T (\$0.5).

	Q_1	Q_2	Q_3	Budget
AT&T	136	80		102-80×0.5=62
T-Mobile	4		48	0
Verizon			32	0
Numbers	0	80-80=0	0	

• Revenue of the greedy strategy:

$$170 + 100 + 160 - 62 = \$368$$

Question: Can we do a better job?

Modeling the Problem

Decisions:

Advertiser	Query 1	Query 2	Query 3
	"4G LTE"	"largest LTE"	"best LTE network"
AT&T	X_{A1}	X_{A2}	X_{A3}
T-Mobile	X _{T1}	X_{T2}	Х тз
Verizon	X_{V1}	X_{V2}	X_{V3}

Revenue:

$$0.5 \textit{X}_{\textit{A}1} + 0.5 \textit{X}_{\textit{A}2} + 1.6 \textit{X}_{\textit{A}3} + \textit{X}_{\textit{T}1} + 0.75 \textit{X}_{\textit{T}2} + 2 \textit{X}_{\textit{T}3} + 0.5 \textit{X}_{\textit{V}1} + 4 \textit{X}_{\textit{V}2} + 5 \textit{X}_{\textit{V}3}$$

Constraints:

- Budget for AT&T: $0.5X_{A1} + 0.5X_{A2} + 1.6X_{A3} < 170$
- Budget for T-Mobile: $X_{T1} + 0.75X_{T2} + 2X_{T3} \le 100$
- Budget for Verizon: $0.5X_{V1} + 4X_{V2} + 5X_{V3} \le 160$
- Number of $Q_1: X_{A1} + X_{T1} + X_{V1} \le 140$
- Number of Q_2 : $X_{A2} + X_{T2} + X_{V2} \le 80$
- Number of Q_3 : $X_{43} + X_{T3} + X_{V3} \le 80$
- Non-negativity: $X_{A1}, X_{A2}, X_{A3}, X_{T1}, X_{T2}, X_{T3}, X_{V1}, X_{V2}, X_{V3} \ge 0$
- We ignore the integer constraints for now.

Linear Programming (LP) for Google AdWords

$$\begin{aligned} & \textit{max} \ 0.5 \textit{\textbf{X}}_{\textit{\textbf{A}}1} + 0.5 \textit{\textbf{X}}_{\textit{\textbf{A}}2} + 1.6 \textit{\textbf{X}}_{\textit{\textbf{A}}3} + \textit{\textbf{X}}_{\textit{\textbf{T}}1} + 0.75 \textit{\textbf{X}}_{\textit{\textbf{T}}2} + 2 \textit{\textbf{X}}_{\textit{\textbf{T}}3} \\ & + 0.5 \textit{\textbf{X}}_{\textit{\textbf{V}}1} + 4 \textit{\textbf{X}}_{\textit{\textbf{V}}2} + 5 \textit{\textbf{X}}_{\textit{\textbf{V}}3} \end{aligned}$$

Subject to

$$\begin{aligned} 0.5 \textbf{\textit{X}}_{\textbf{\textit{A}}1} + 0.5 \textbf{\textit{X}}_{\textbf{\textit{A}}2} + 1.6 \textbf{\textit{X}}_{\textbf{\textit{A}}3} &\leq 170 \\ \textbf{\textit{X}}_{\textbf{\textit{T}}1} + 0.75 \textbf{\textit{X}}_{\textbf{\textit{T}}2} + 2 \textbf{\textit{X}}_{\textbf{\textit{T}}3} &\leq 100 \\ 0.5 \textbf{\textit{X}}_{\textbf{\textit{V}}1} + 4 \textbf{\textit{X}}_{\textbf{\textit{V}}2} + 5 \textbf{\textit{X}}_{\textbf{\textit{V}}3} &\leq 160 \\ \textbf{\textit{X}}_{\textbf{\textit{A}}1} + \textbf{\textit{X}}_{\textbf{\textit{T}}1} + \textbf{\textit{X}}_{\textbf{\textit{V}}1} &\leq 140 \\ \textbf{\textit{X}}_{\textbf{\textit{A}}2} + \textbf{\textit{X}}_{\textbf{\textit{T}}2} + \textbf{\textit{X}}_{\textbf{\textit{V}}2} &\leq 80 \\ \textbf{\textit{X}}_{\textbf{\textit{A}}3} + \textbf{\textit{X}}_{\textbf{\textit{T}}3} + \textbf{\textit{X}}_{\textbf{\textit{V}}3} &\leq 80 \\ \textbf{\textit{X}}_{\textbf{\textit{A}}1}, \textbf{\textit{X}}_{\textbf{\textit{A}}2}, \textbf{\textit{X}}_{\textbf{\textit{A}}3}, \textbf{\textit{X}}_{\textbf{\textit{T}}1}, \textbf{\textit{X}}_{\textbf{\textit{T}}2}, \textbf{\textit{X}}_{\textbf{\textit{T}}3}, \textbf{\textit{X}}_{\textbf{\textit{V}}1}, \textbf{\textit{X}}_{\textbf{\textit{V}}2}, \textbf{\textit{X}}_{\textbf{\textit{V}}3} &\leq 0 \end{aligned}$$

Solving the Linear Program in Python

- Use the the package "cvxopt".
 - pip install cvxopt
- Demonstration.
- Optimal Ad Display Strategy:

Advertiser	Query 1	Query 2	Query 3
	"4G LTE"	"largest LTE"	"best LTE network"
AT&T	$X_{A1}^* = 40$	$X_{A2}^* = 40$	$X_{A3}^* = 80$
T-Mobile	$X_{T1}^* = 100$	$X_{T2}^* = 0$	$X_{T3}^* = 0$
Verizon	$X_{V1}^* = 0$	$X_{V2}^* = 40$	$X_{V3}^* = 0$

- Optimal Revenue=\$428
 - 16.3% higher than the greedy strategy (\$368)
- In practice, the problem scale is much larger.
 - Hundreds of thousands of bidders, over \$100 billion.
 - Gains from optimization models at this scale become enormous.

Linear Programming Triplet for Google AdWords

Decision variables: How many ads to display for each advertiser and each query?

Objective function: The revenue of Google per day.

- Constraints:
 - The total revenue from one advertiser is within its budget
 - The total displays for one query cannot exceed its total number.

Linear Programming: General Formulation

$$\max_{(x_1,x_2,\cdots,x_n)} c_1 x_1 + c_2 x_2 + \cdots c_n x_n$$
subject to
$$\begin{cases} G_{11} x_1 + G_{12} x_2 + \cdots + G_{1n} x_n & \leq h_1 \\ G_{2,1} x_1 + G_{2,2} x_2 + \cdots + G_{2n} x_n & \leq h_2 \\ \cdots & \\ G_{m_1,1} x_1 + G_{m_1,2} x_2 + \cdots + G_{m_1,n} x_n & \leq h_{m_1} \\ A_{11} x_1 + A_{12} x_2 + \cdots + A_{1n} x_n & = b_1 \\ A_{2,1} x_1 + A_{2,2} x_2 + \cdots + A_{2n} x_n & = b_2 \\ \cdots & \\ A_{m_2,1} x_1 + A_{m_2,2} x_2 + \cdots + A_{m_2,n} x_n & = b_{m_2} \\ x_1 \geq 0, x_2 \geq 0, \cdots, x_n \geq 0 \end{cases}$$

Notes on LP

- Maximization and minimization problems are easily transformable.
 - $\max f(x)$ is equivalent to $\min[-f(x)]$
- In the constraints, "≥" is equivalent to "≤"; ">" is equivalent to "<".</p>
 - ullet $g({\it x}) \geq 0$ is equivalent to $-g({\it x}) \leq 0$; $g({\it x}) > 0$ is equivalent to $-g({\it x}) < 0$
- If all the constraints are strict inequalities (">" and "<"), we cannot find an optimal solution.
 - When building LP models, try not to include strict inequalities as constraints.

Homework

- Submit your choice of final topic to me by 10:00pm, Sunday, April 14.
- Review the questions discussed today.
- Read Analytics Edge, Chapter 12.2-12.4.
- Finish Homework 9 (NO need to submit it).
- Read the required reading for Session 10.