

This listing of claims will replace all prior versions, and listing in the application:

Listing of claims

27

Claim 1 (currently amended) A computer motherboard architecture comprising: a computer motherboard possessing typical components including a CPU, a data bus, a power interface, and an audio input data pathway, said audio input data pathway connecting the audio input of the motherboard to the CPU;

a DSP chip in the audio input data path;

a bridge interfacing between said DSP chip and the bus on the computer motherboard;

a memory in electrical connection to said DSP chip;

a command and control speech engine residing in said memory of said DSP chip; wherein said DSP is enabled to operate in either command and control mode or continuous speech mode and said DSP serves as the preprocessor of all speech input prior to execution of instructions by the CPU to process the speech input and wherein said speech engine includes a vocabulary of speech terms enabled to be loaded into said memory/which are associated with specific instructions or contextual environments.

Claim 2 (cancelled)

Claim 3 (original) A computer motherboard architecture according to claim 1 wherein said DSP is operable to be dynamically set by a user in either a continuous speech mode or a command and control mode.

Claim 4 (currently amended) A computer <u>motherboard</u> architecture according to claim 1 wherein said audio input data pathway comprises a microphone input, means for digitizing an audio input data pathway, and a DSP chip, bridge chip communicating with said bus.

Claim 5 (currently amended) A computer motherboard <u>architecture</u> according to claim 1 wherein said DSP chip is operable to convert said audio input into phonemes.

Claim 6 (cancelled)

Claim 7 (currently amended) A computer <u>motherboard</u> architecture according to claim <u>1</u> 6 wherein said vocabulary of speech terms resides in said memory in electrical connection to said DSP chip.

Claim 8 (currently amended) A computer <u>motherboard</u> architecture according to claim <u>1</u> 6 wherein said vocabulary of speech terms is able to be defined by a user, either in a static or active mode.

Claim 9 (currently amended) A computer <u>motherboard</u> architecture according to claim <u>1</u> 6 wherein said vocabulary of speech terms is refreshed by the CPU based upon the context of an application running on a host processor.

Claim 10 (currently amended) A computer <u>motherboard</u> architecture according to claim 1 wherein said DSP chip is operable to perform preprocessing for a software-based speech engine residing elsewhere on a computer.

Claim 11 (currently amended) A computer <u>motherboard</u> architecture according to claim 1 wherein said DSP chip is operable to perform menu selection <u>including such as mobile</u> phone audio functions comprising voice activated dialing, voice control, noise cancellation, and speech to signal conversion.

Claim 12 (currently amended) A computer <u>motherboard</u> architecture according to claim 1 wherein said DSP chip is <u>enabled</u> operable to perform noise cancellation functions.

Claim 13 (currently amended) A computer <u>motherboard</u> architecture according to claim 1 wherein said DSP chip is <u>enabled</u> operable to function in a command and control speech mode.

Claim 14 (currently amended) A computer <u>motherboard</u> architecture according to claim 1 wherein said DSP chip is <u>enabled</u> operable to function in a continuous speech mode.

Claim 15 (currently amended) A computer motherboard architecture according to claim 1 wherein said DSP chip is enabled operable to function in a mobile phone mode.

Claim 16 (currently amended) A computer <u>motherboard</u> architecture according to claim 1 wherein said DSP is <u>enabled</u> operable to function in a language translation mode.

Claim 17 (currently amended) A computer <u>motherboard</u> architecture according to claim 1 wherein said computer motherboard is a user-supported computer motherboard.

Claim 18 (currently amended) A computer <u>motherboard</u> architecture according to claim 17 wherein said user-supported computer is a voice activated user-supported computer.

Claim 19 (currently amended) A computer <u>motherboard</u> architecture according to claim 1 wherein said computer motherboard is a portable computer motherboard.

Claim 20 (cancelled)

Claim 21 (currently amended) A computer <u>motherboard</u> architecture according to claim 1 wherein said computer motherboard is a desktop computer motherboard.

Claim 22 (canceled)

Claim 23 (currently amended) A computer <u>motherboard</u> architecture according to claim 1 wherein said computer motherboard is a video gaming system computer motherboard.

Claim 24 (currently amended) A computer <u>motherboard</u> architecture according to claim

1 wherein said computer motherboard is a computing and communications device

computer motherboard.

Claim 25 (currently amended) A computer <u>motherboard architecture</u> system of claim 1 wherein said computer motherboard is a component of a member selected from the group consisting of user supported computers laptop computer, desktop computers, portable computers and mixtures thereof.

Claims 26-30 (canceled)

Claim 31 (currently amended) A computer <u>motherboard</u> architecture according to claim 1 wherein when said DSP is operating in command and control mode said DSP is operable to accommodate full interpreting and processing of said speech without said CPU being utilized.

Claim 32 (currently amended) A computer <u>motherboard</u> architecture according to claim 1 wherein said DSP is enabled to substantially reduce power consumption from a like system absent said DSP.

Claim 33 (new) A method of processing speech, the method comprising the steps of: inputting speech into an audio input device, converting said speech from an analog format to a digital signal,

transmitting said digital signal to a digital signal processor, wherein said digital signal processor is included on a motherboard of a computer and said digital signal processor is enabled to function as a preprocessor of all speech input,

analyzing said digital signal with at least said digital signal processor and a speech engine residing in a memory on said motherboard and electrically connected to said digital signal processor,

transmitting said analyzed digital signal to a processor in electrical connection to said digital signal processor and said memory of said computer,

performing an operation or command representative of said analyzed digital signal by said processor.

Claim 34 (new) The method of claim 33, after said step of analyzing, further comprising the step loading an appropriate vocabulary into said speech engine depending on the context of the operation being performed by a user.