Multiple Hypothesis Testing

Problems and Corrections

Julia Clark and Cameron Sells

Methods Workshop June 2, 2016

Overview

- What is the multiple comparisons problem (AKA multiple hypothesis testing, multiple inference, multiple significance testing, etc.)?
- 2. What are potential solutions?
- 3. How do we implement them in R?

1. The Problem

The Multiple Comparisons Problem

Suppose we have a family of m hypotheses that we are testing at significance level α :

- For any individual test, the probability of a false positive (Type I error) = α
- ▶ BUT, the joint probability of one or more T1 error in m independent tests is much higher = $1 (1 \alpha)^m$

e.g., if m = 10 and α = 0.05, the probability of at least one false positive is $1-(1-0.05)^{10}\simeq 40\%$

It's technically a problem when ...

Testing a family of hypotheses simultaneously and making a conclusion about an individual hypothesis.

- Families: "any collection of inferences for which it is meaningful to take into account some combined measure of error" (Hochberg & Tamhane 1987)

 —e.g., multiple outcomes, treatment arms, subgroup analyses, interactions, etc.
- Maybe OK if focusing on one hypothesis a priori
- Not OK if picking and choosing which ones to reject

Examples

When in doubt, phrase as a question (are you comparing hypotheses against each other?):

- What is the effect of school vouchers on achievement? {drop out rates, test scores, SATs, college admissions, salary}
- ▶ Which treatment affects voter turnout? {A, B, C, D, E}
- ▶ Does the treatment effect of GOTV campaign vary by age group? {18–25, 26–35, 36–45, ...}

Generally

When testing m hypotheses, H_1, H_2, \ldots, H_m , at significance level α , the probability of getting k significant p-values when there are *no true effects* is given by:

$$\mathsf{Binom}(k,m,\alpha) = \binom{m}{k} \alpha^k (1-\alpha)^m$$

Is this a huge problem?

- Yes if you're running models with large families of variables
- Yes if you're cherrypicking a few significant results to fit your theory (p-hacking, etc)
- Less so with smaller m, highly correlated variables (but let us tell you about it anyway!)

2. Some Solutions

Categories of Solutions

(in roughly descending order of conservativeness)

- A. Control the family-wise error rate (FWER)
- B. Control the false-discovery rate (FDR)
- C. Run a simulation
- D. Make an index of outcome variables
- E. Go Bayesian
- F. (Design-based approach)

Recall ...

	Truth			
	$H_0=T$	$H_0=F$		
Fail to Reject	True Negative	False Negative (T2)		
	$\Pr = 1 - \alpha$	$Pr = \beta$		
Reject	False positive (T1)	True Positive		
	$\Pr = \alpha$	$Pr = 1 - \beta$		

Approaches to dealing with the multiple comparisons problem trade off between TI and T2 errors

A. Controlling the family-wise error rate

FWER = $1 - (1 - \alpha)^m$, the probability of one or more Type 1 errors in a family of m tests

"Controling" the FWER means that for any significance level α:

$$\mathsf{FWER} < \alpha$$

- Allows us to be 1α confident that there are no false discoveries in m hypotheses
- ▶ BUT loss of power to reject false nulls

The Bonferroni (Boole) inequality

Say we have m hypotheses, H_i, \ldots, H_m . Let $Pr(H_i)$ be the probability that a test of H_i gives a false positive, and $Pr(\cup_{i=1}^m H_i)$ be the probability of at least one false positive (i.e., the FWER).

$$\begin{split} Pr(H_i) \cup Pr(H_j) &= Pr(H_i) + Pr(H_j) - Pr(H_i \cap H_j), \forall_{i \neq j} \\ &= Pr(H_i) + Pr(H_j) \text{ (if disjoint)} \\ \rightarrow \\ Pr(\cup_{i=1}^m H_i) &\leq \sum_{i=1}^m Pr(H_i) \\ \text{FWER} &\leq \sum_{i=1}^m \alpha \\ \text{FWER} &\leq m\alpha \end{split}$$

Bonferroni's correction

(classic and impractical)

If the upper bound of the FWER in m tests is $m\alpha$, we can control it by:

- ▶ Setting confidence level $\alpha^* = \alpha/m$
- ▶ Rejecting when $\hat{p}_i \leq \alpha^*$

Lots of variations, including adding weights to different hypotheses: reject if $\hat{p}_i \leq w_m(\alpha/m)$, where $w_m \geq 0, \sum w_m = 1$.

Bonferroni Example

Let's say we have ten p-values (m = 10), and $\alpha = 0.05$. The Bonferroni-adjusted $\alpha^* = 0.05/10 = 0.005$, so

m	\hat{p}	B_{sig} ?
1	0.001	Y
2	0.003	Υ
3	0.005	N
4	0.017	Ν
5	0.025	Ν
6	0.034	Ν
7	0.046	Ν
8	0.053	Ν
9	0.160	Ν
10	0.250	N

Should you use Bonferroni?

(probably not)

- Appropriate for worst case scenario: all tests are independent and even one false positive is a big problem
- Easy and simple—same adjustment for all p-values, and can apply to other people's regression tables

...but WAY too conservative when there is dependence (if dependence is perfect, FWER $\rightarrow \alpha$) or if restricting Type I errors isn't your top priority

Holm's method

(an improvement over Bonferroni that's still pretty conservative)

Controls FWER using a stepwise (step-up) method:

- 1. Order p-values $1 \dots m$ from smallest to largest
- 2. Find the **smallest** p-value such that

$$p_k > \frac{\alpha}{m+1-k}$$
, where k is the p-value index

3. Declare this and all larger p-values insignificant

Holms vs. Bonferroni

Bonferroni: reject when

$$p \le \alpha/m = 0.005$$

Holm: no reject when

$$p_k > \frac{\alpha}{m+1-k} = \frac{0.05}{10+1-k}$$

k	\hat{p}	B_{rej} ?	H_{value}	H_{rej} ?
1	0.001	Y	0.005	Υ
2	0.003	Υ	0.006	Υ
3	0.005	Ν	0.006	Υ
4	0.017	Ν	0.007	Ν
5	0.025	Ν	0.008	Ν
6	0.034	Ν	0.010	Ν
7	0.046	Ν	0.013	Ν
8	0.053	Ν	0.017	Ν
9	0.160	Ν	0.025	Ν
10	0.250	Ν	0.050	Ν

Advantages of Holm over Bonferroni

Starts by comparing most significant hypothesis to Bonferroni value:

$$p_k > \frac{\alpha}{m+1-k} \equiv p_k > \frac{\alpha}{m} \text{ for } k=1$$

If the condition is unmet, this hypothesis is rejected and it moves to the next, $p_k > \frac{\alpha}{m-1} \rightarrow$ with each, it reduces the critical value, gaining power.

⇒ Hypotheses rejected by Bonferroni are also rejected by Holm + a few more.

B. Controlling the false-discovery rate

(allows more false positives than FWER)

FDR = The expected percent of rejections that are type I errors in a family of tests:

$$E\left[\frac{\text{false rejections}}{\text{total rejections}}\right]$$

FDR vs. FWER

Let V be the number of false rejections (T1 errors) and R be the total number of rejections:

$$FWER = Pr(V > 0)$$
$$FDR = E[V/R]$$

- If ALL null hypotheses are true, V = R and: FDR = E[V/R] = Pr(R > 0) = Pr(V > 0) = FWER
- If one or more null hypotheses is false, FDR is less conservative than FWER, so you get more power to reject false nulls

Benjamini-Hochberg (BH)

(like Holm with more power)

Controls FDR using a stepwise (step-down) method:

- 1. Order p-values $1 \dots m$ from smallest to largest
- 2. Find the largest p-value such that

$$p_k \leq \frac{k\alpha}{m}$$
, where k is the p-value index

3. Declare this and all smaller p-values significant

Like FWER, lots of variations (e.g., weighting hypotheses, etc.)

Holms vs. Bonferroni vs. BH

Bonferroni: reject when $p < \alpha/m = 0.005$

Holm: no reject when $p_k > \frac{\alpha}{m+1-k} = \frac{0.05}{10+1-k}$

BH: reject when $p_k \leq \frac{k\alpha}{m} = \frac{k(0.05)}{10}$

k	\hat{p}	B_{rej} ?	H_{val}	H_{rej} ?	BH_{val}	BH_{rej} ?
1	0.001	Y	0.005	Y	0.005	Υ
2	0.003	Υ	0.006	Υ	0.010	Υ
3	0.005	N	0.006	Υ	0.015	Υ
4	0.017	N	0.007	Ν	0.020	Υ
5	0.025	N	0.008	Ν	0.025	Υ
6	0.034	N	0.010	Ν	0.030	N
7	0.046	N	0.013	Ν	0.035	N
8	0.053	N	0.017	Ν	0.040	N
9	0.160	N	0.025	Ν	0.045	N
10	0.250	N	0.050	N	0.050	N

Advantages of BH over FWER

- Keeps Type 2 errors as low as possible
- Penalty scales with the number of hypotheses
- Gains in power larger when fewer nulls are true
- BUT mixed results with dependence

C. Simulation

(best at dealing with dependence between tests)

See R implementation up next, also EGAP tools and Anderson (2008).

D. Construct index of outcome variables

(instead of changing p-values, reduce m)

- Transform variables so "beneficial" effects go in same direction
- Calculate z-score for each variable (using mean/sd of control group)
- 3. Combine outcomes into single score:
 - A. Mean effects index: Sum z-scores
 - B. Inverse-covariance weighted matrix index (ICWMI): Calculate weighted index using inverted var-cov matrix of z-scores

Should you use an index?

Pros:

- Good for "general effect"
- May gain power (average out random variation in outcome measures)
- ICWMI more efficient (less weight to highly correlated outcomes)

Cons:

- Not as good for theory-building
- For ICWMI, possible to generate negative weights (reversing direction of effect)
- Not helpful for multiple treatment arms, interactions, etc.

E. Bayesian solution

(stop worrying so much about multiple comparisons)

Gelman, Hill & Yajima, 2012:

- Not super concerned about Type 1 error, because rarely believe null is strictly true (i.e., that $H_0 = 0$)
- ► Real problem isn't multiple comparisons, it's "insufficient modeling of the relationship between the corresponding parameters of the model" → use multi-level model to build multiplicity in from the beginning

Read paper for more ...

F. Design-based approach

(not a technical fix, but ...)

- 1. Pre-analysis plans can help:
 - Clarify number of comparisons and how you will address them (reduce researcher degrees of freedom)
 - Specify "primary" hypotheses (disagreement over this)
- Replication can help root out false positives (and negatives) in previous work

3. R Implementation

References

- ► Holm (1979)
- Benjamini & Hochberg (1995)
- Benjamini & Hochberg (2000)
- Westfall & Young (1997)
- Kling, Liebman & Katz (2005)
- Romano & Wolf (2005)
- Anderson (2008)
- Gelman et al (2012)
- ► EGAP tools