Part IV: Problem Set 2

Yongseok Kim

May 2, 2020

- 1. (a) See Figure 1. The results obtained from $\hat{m}(x)$ and $\tilde{m}(x)$ are very similar.
 - (b) See Figure 1. The results obtained from the nonparametric regression function estimates and from the linear model are very similar.
 - (c) Unlike the effect of age, the effect of income on happinesss is linear.
- 2. For this question, calculating the bandwith set by cross validation is computationally too burdening. Hence, I only calculate estimators using the bandwidth set by the rule of thumb.
 - (a) See Figure 2. While $\hat{\alpha}(z)$ shows U-shaped graph, $\hat{\beta}(z)$ shows inverse U-shaped graph with respect to age. In other words, on average, people are happiest when they are 20s; gradually becomes unhappier as they get older; and a level of happiness rebounds after their 50s.
 - (b) See Figure 3. Compared to the results from part (a), it is relatively hart to interpret the results in part (b).
- 3. From the above questions, we can verify that the local constant estimator and the local linear estimator yield almost identical results. Hence, for this question, I only calculate the local constant estimator using the bandwidth set by the rule of thumb to highlight a comparison between two subsets .
 - (a) Male vs. Female: For the results, see Figure 4, 5, and 6. Overall, no distinct patterns are detected in subsamples.
 - (b) Employed vs. Unemployed: For the results, see Figure 7, 8, and 9. Overall, no distinct patterns are detected in subsamples.
 - (c) With vs. Without college education: For the results, see Figure 10, 11, and 12. Overall, no distinct patterns are detected in subsamples except with college education subsample around 60s.

Figure 1: $\hat{m}(x)$ and $\tilde{m}(x)$ by the local constant and linear estimation. This figure shows $\hat{m}(x)$ and $\tilde{m}(x)$ from various local constant and linear estimators. Blue linear dashed line represents the linear regression model $y = \hat{\alpha} + \hat{\beta}x$.

Figure 2: $\hat{\alpha}(z)$ and $\hat{\beta}(z)$ by the local constant and linear estimation. This figure shows $\hat{\alpha}(z)$ and $\hat{\beta}(z)$ from various local constant and linear estimators.

Figure 3: $\hat{\alpha}(z)$, $\hat{\beta}_1(z)$, and $\hat{\beta}_2(z)$ by the local constant and linear estimation This figure shows $\hat{\alpha}(z)$, $\hat{\beta}_1(z)$, and $\hat{\beta}_2(z)$ from various local constant and linear estimators.

This figure shows $\hat{m}(x)$ from various local constant estimators. Blue linear dashed line represents the linear regression model $y = \hat{\alpha} + \hat{\beta}x$.

Figure 5: $\hat{\alpha}(z)$ and $\hat{\beta}(z)$ by the local constant estimation This figure shows $\hat{\alpha}(z)$ and $\hat{\beta}(z)$ from various local constant estimators.

Figure 6: $\hat{\alpha}(z)$, $\hat{\beta}_1(z)$, and $\hat{\beta}_2(z)$ by the local constant estimation This figure shows $\hat{\alpha}(z)$, $\hat{\beta}_1(z)$, and $\hat{\beta}_2(z)$ from various local constant estimators.

This figure shows $\hat{m}(x)$ from various local constant estimators. Blue linear dashed line represents the linear regression model $y = \hat{\alpha} + \hat{\beta}x$.

Figure 8: $\hat{\alpha}(z)$ and $\hat{\beta}(z)$ by the local constant estimation This figure shows $\hat{\alpha}(z)$ and $\hat{\beta}(z)$ from various local constant estimators.

Figure 9: $\hat{\alpha}(z)$, $\hat{\beta}_1(z)$, and $\hat{\beta}_2(z)$ by the local constant estimation This figure shows $\hat{\alpha}(z)$, $\hat{\beta}_1(z)$, and $\hat{\beta}_2(z)$ from various local constant estimators.

This figure shows $\hat{m}(x)$ from various local constant estimators. Blue linear dashed line represents the linear regression model $y = \hat{\alpha} + \hat{\beta}x$.

Figure 11: $\hat{\alpha}(z)$ and $\hat{\beta}(z)$ by the local constant estimation This figure shows $\hat{\alpha}(z)$ and $\hat{\beta}(z)$ from various local constant estimators.

Figure 12: $\hat{\alpha}(z), \ \hat{\beta}_1(z),$ and $\hat{\beta}_2(z)$ by the local constant estimation This figure shows $\hat{\alpha}(z)$, $\hat{\beta}_1(z)$, and $\hat{\beta}_2(z)$ from various local constant estimators.

A Appendix

For R codes to get the above results, see $\verb|https://github.com/ysugk/Course-ECON572/tree/master/code|$