P larizer.

Patent Number: EP0407830, A3, B1

Publication date: 1991-01-16

Inventor(s): FUENFSCHILLING JUERG DR (CH); SCHADT MARTIN DR (CH); SCHMITT KLAUS DR (DE); BARNIK

MIKHAIL IVANOVICH DR (SU); BELYAEV SERGEY VASILIEVICH DR (SU); MALIMONENKÓ NIKOLAI (SU)

Applicant(s): HOFFMANN LA ROCHE (CH); NIOPIC MOSCOW RES & PROD ASS (SU)

Requested

Patent: JP3045906

Application

Number: EP19900112402 19900629

Priority Number

CH1990001641 19900515; CH19890002562 19890710; CH19890003948 19891101

IPC

Classification: G02B5/30; G02F1/00; H04N9/31

EC Classification:

C09K19/58; G02F1/13357P; G02F1/00B134; G02B5/30L; G02F1/139T; H04N9/31V; C09K19/02; G02F1/133T

Equivalents:

DE59010516D, HK1007193, JP2509372B2, KR201976, SG50550

Cited

Documents: US4073571

Abstract

The polariser consists of a layer which is arranged in the beam path of the light, is made from a cholesteric liquid crystal having a Grandjean structure, and in which the light in a specific waveband is selectively and circularly polarised, reflected or transmitted with a reversed sense of rotation, and of a mirror which reverses the direction of rotation of the circularly polarised light. The component reflected by the mirror is likewise transmitted. When the liquid crystal layer is concentric with respect to the source of the natural light and the mirror is spherical, the result is a light source for circularly polarised light. A projection system is produced by combining two such polarisers as polariser and analyzer and a liquid crystal display cell arranged therebetween for modulating

the intensity of the polarised light.

Data supplied from the esp@cenet database - 12

Description

Polarisator

Die Erfindung betrifft einen Polarisator.

Mit dem Begriff Polarisator wird eine optische Vorrichtung bezeichnet, die polarisiertes Licht oder von natürlichem Licht Anteile mit einem bestimmten Polarisationszustand passieren lässt und andere Anteile blockiert. In einem engeren Sinn ist ein Polarisator also eine Vorrichtung zur Erzeugung von polarisiertem Licht aus natürlichem Licht. Unter natürlichem Licht wird dabei unpolarisiertes Licht verstanden und zwar weisses, farbiges oder monochromatisches Licht. Unter einem Analysator versteht man einen zur Analyse von Licht auf seinen Polarisationszustand eingesetzten Polarisator.

Der am weitesten verbreitete Polarisator ist der Folienpolarisator zur Erzeugung von linear polarisiertem Licht. Diese Polarisatoren haben den Nachteil, dass prinzipiell die Hälfte des einfallenden natürlichen Lichts verlorengeht.

Ein Polarisator, der mehr als die Hälfte des einfallenden Lichts als polarisiertes Licht liefern würde, wäre ein erheblicher technischer Fortschritt.

Es wurde nun überraschend ein Polarisator gefunden, der annähernd das gesamte einfallende natürliche Licht polarisiert. Er beruht auf der frequenzselektiven Reflexion cholesterischer Flüssigkristalle und zeichnet sich durch die in den Ansprüchen angegebenen Merkmale aus.

Im folgenden sind anhand der beiliegenden Zeichnungen Ausführungs- und Anwendungsbeispiele der Erfindung beschrieben. Es zeigen:

Fig. 1 eine schematische Darstellung des Funktionsprinzips der Erfindung

Fig. 2 eine Lichtquelle zur Erzeugung von polarisiertem Licht

Fig. 3 eine alternative Form einer Lichtquelle zur Erzeugung von polarisiertem Licht

Fig. 4 eine Anwendung einer Lichtquelle nach Fig. 2 in einem Scheinwerfer

Fig. 5 eine Vorrichtung zur Umwandlung eines unpolarisierten, monochromatischen Lichtstrahls in polarisiertes Licht

Fig. 6 eine Vorrichtung zur Umwandlung von unpolarisiertem, weissem Licht in polarisiertes weisses Licht

Fig. 7 einen Dreifarben-Analysator

Fig. 8 eine alternative Form eines Dreifarbenanalysators

Fig. 9 ein monochromes Projektionssystem

Fig. 10 eine Anwendung der Erfindung in einem Farbprojektionssystem

(19)日本国特許庁(JP)

(12) 特 許 公 報 (B 2)

(11)特許番号

第2509372号

(45)発行日 平成8年(1996)6月19日

(24)登録日 平成8年(1996)4月16日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表示箇所
G 0 2 B	5/30			G 0 2 B	5/30		
# G02F	1/13 1/1333	5 0 5		G 0 2 F	1/13 1/1333	5 0 5	

請求項の数23(全 14 頁)

(21)出願番号	特顧平2-182555	(73)特許権者	99999999
			エフ ホフマン・ラ ロシュ アーゲー
(22)出願日	平成2年(1990)7月10日		スイス国 パーゼル グレンツァーヘル
			ストラッセ 124
(65)公開番号	特開平3-45906	(73)特許権者	99999999
(43)公開日	平成3年(1991)2月27日		ニオピック モスクワ リサーチ アン
(31)優先権主張番号	2562/89-0		ド プロダクション アソシエーション
(32)優先日	1989年7月10日		ソヴィエト連邦 103787 モスクワ ビ
(33)優先権主張国	スイス (CH)		ー. サドバヤ 1-4
(31)優先権主張番号	3948/89-4	(72)発明者	エム イー パルニク
(32)優先日	1989年11月1日		ソヴィエト連邦 103787 モスクワ ビ
(33)優先権主張国	スイス (CH)		ー. サドバヤ 1-4
(31)優先権主張番号	1641/90-6	(74)代理人	弁理士 中村 稔 (外7名)
(32)優先日	1990年5月15日		
(33)優先権主張国	スイス (CH)	審査官	高島 喜一
			最終頁に続く
		11	おとかく みんしん く

(54) 【発明の名称】 偏光子

(57) 【特許請求の範囲】

【請求項1】自然光から、偏光を取り出すための偏光子 であって、

光の通路内に配置されたグランジャン構造を有するコレ ステリック液晶層と、前記液晶層によって反射された光 の通路内に配置され、円偏光の回転方向を逆にするミラ ーを備えていることを特徴とする偏光子。

【請求項2】前記液晶層は球形であることを特徴とする 請求項1に記載の偏光子。

【請求項3】前記液晶層は自然光の光源と同心であるこ 10 とを特徴とする請求項2に記載の偏光子。

【請求項4】前記ミラーは球形であることを特徴とする 請求項1~3のいずれかに記載の偏光子。

【請求項5】前記ミラーは前記液晶層と同心であること を特徴とする請求項4に記載の偏光子。

【請求項6】前記液晶層は入射光の方向に対し45°の角。 度で配置されていることを特徴とする請求項1に記載の 偏光子。

【請求項7】前記液晶層は直角二等辺プリズムの平らな 表面の間に配置されていることを特徴とする請求項1に 記載の偏光子。

【請求項8】異なるスペクトル選択性を有する多数の液 晶層が順々に配置されていることを特徴とする請求項1 に記載の偏光子。

【請求項9】 1/4板が前記液晶層の後ろに配置されてい ることを特徴とする請求項1に記載の偏光子。

【請求項10】偏光を発生する装置であって、 自然光を発生する光源、前記光源と同心に配置され、グ ランジャン構造を有する球形コレステリック液晶層、お よび前記光源と同心で、前記球形液晶層に向かい合って

配置された、入射円偏光の回転方向を逆にする半球形ミラーから成ることを特徴とする装置。

【請求項11】前記液晶層は、異なるスペクトル選択性を有する多数の連続する液晶層から成ることを特徴とする請求項10に記載の装置。

【請求項12】 $\lambda/4$ 板が前記液晶層の後ろに配置されていることを特徴とする請求項10に記載の装置。

【請求項13】ある偏光状態の光に対し選択的透過性を 有する検光子であって、

光の通路内に配置され、グランジャン構造を有するコレステリック液晶層から成ることを特徴とする検光子。

【請求項14】前記液晶層は、異なるスペクトル選択性 を有する多数の連続する液晶層から成ることを特徴とす る請求項13に記載の検光子。

【請求項15】請求項1~9のいずれかに記載の偏光子、請求項13または14に記載の検光子、および前記偏光子と前記検光子の間に配置され、偏光の強度を変調するための液晶表示セルを備えていることを特徴とする投映装置。

【請求項16】前記液晶表示セルはロータリーセルまたは90°以下のねじれ角もしくは90°以上のねじれ角を有するロータリーセルであることを特徴とする請求項15に記載の投映装置。

【請求項17】前記液晶表示セルは表面安定化形強誘電性液晶セルであることを特徴とする請求項15に記載の投映装置。

【請求項18】前記液晶表示セルはDHFセルであることを特徴とする請求項15に記載の投映装置。

【請求項19】前記液晶表示セルはDAPセルであることを特徴とする請求項15に記載の投映装置。

【請求項20】前記偏光子および前記検光子の中に、異なる波長選択性を有する多数のコレステリック層が順々に配置されていることを特徴とする請求項15に記載の投映装置。

【請求項21】請求項9に記載の偏光子と、直線偏光子によって可視化される、基本的電気光学効果をもつ液晶表示セルを備えていることを特徴とする投映装置。

【請求項22】電極を有し、液晶をガイドする板の間に ツイステッドネマチック液晶を有する液晶セルであっ て、

スイッチオフ状態とスイッチオン状態の間の液晶の最適 ピッチ差は1/4波長であることを特徴とする液晶セル。

【請求項23】請求項22に記載のツイステッドネマチック液晶セルを動作させる方法であって、

前記セルによって入射円偏光の偏光状態を制御すること を特徴とする方法。

【発明の詳細な説明】

産業上の利用分野

本発明は、偏光子に関するものである。ここで使用する用語「偏光子」は、偏光すなわち自然光の一定の偏光 50

状態の成分を透過するが、他の成分を阻止する光学素子をいう。したがって、狭い意味では、偏光子は自然光から偏光を取り出すための光学素子である。また「自然光」は非偏光の光すなわち白色光、有色光または単色光を意味する。「検光子」は光の偏光状態を調べるために使用される偏光子である。

発明の解決しようとする課題

最も広く使用されている偏光子は直線偏光を取り出すためのシート型偏光子である。シート型偏光子の短所は、入射した自然光の50%が必然的に失われることである。

入射光の50%以上を偏光の形で取り出す偏光子は相当な技術的進歩と言えるであろう。

課題を解決するための手段

思いがけず、入射した自然光のほとんど全部を偏光する偏光子が見つかった。この偏光子はコレステリック液晶の周波数一選択反射に基づいており、特許請求の範囲に記載した特徴を有する。

次に添付図面を参照して本発明の実施例およびその応 用について説明する。

実施例

30

第1図は、本発明の実施例すなわち偏光子の基本的作用を明らかにするための非常に簡単な図である。偏光子はコレステリック液晶層1を有する。液晶は、グランジャン(Grandjean)構造を有し、液晶の分子は適当な境界条件によって実質上平面的に配向される。境界条件は、既知のやり方、たとえば液晶を囲む板の表面を摩擦することによって生じる。板自体は知られているので、簡潔にするため第1図には図示してない。液晶層は平らである。

配向されたコレステリック液晶層 1 は、波長がコレステリックらせんのピッチに等しいある波長領域(能動波長領域)の場合にのみ反射する。既知の方法で液晶を適切に選択することにより、反射領域のスペクトル幅を変えることができる。反射光は完全に円偏光される。円偏光が反射されるときの回転の方向は、コレステリックらせんの回転の方向によって決まる。反対の方向に回転している偏光は強度を減じずに透過する。

液晶層1と平行に一定距離をおいて、オリフィス板3 を構成する通常のミラー2が配置されている。単色光源4からの光束5はオリフィスを通って装置に入ることができる。次に、光束の通路および入射光の状態を、一方の境界光線6について説明する。

光線6は点7で液晶層1に当たる。この点で、円偏光が反射される。すなわち、光は、液晶層1の回転の方向に従って右まわりまたは左まわりに偏光される(以下、単に右円偏光または左円偏光と呼ぶ)。図中、右まわりの回転方向は+符号で、左まわりの回転方向は一符号で示してある。したがって、反射光8が右円偏光されるとすると、回転方向が逆の光、すなわち光線9は左円偏光

できる。

され強度を減じずに液晶層1を透過する。光線8はミラ 一2に達して点10で反射される。知られているように、 反射の際、偏光の回転方向(以下、単に偏光方向と呼 ぶ)が逆になるので、反射光11は左円偏光され、この結 果、光線9と同様に液晶層1を強度を減じずに透過す る。もしスペクトル幅と配置がコレステリック液晶のそ れと一致すれば、光線11と9の合計は入射光線6の全強 度になり、したがって、得られた偏光は実質上損失がな い。上記の偏光プロセスは境界光線6ばかりでなく、す べての光束5に当てはまることは言うまでもない。した がって、装置から出てくる全光束は一様な円偏光を有す る。もし必要ならば、簡単に直線偏光を得ることができ る。すなわち、1/4波長板を使用して損失なしに円偏光 から直線偏光を作ることができる。したがって、第1図 に示した装置の後ろに1/4波長板を配置すれば、直線偏 光を得ることができる。

もしコレステリック液晶層1を、異なるスペクトル選択性を有する多数のコレステリック層で置き換えれば、 白色光の偏光子を得ることができる。この多層液晶は、 高分子液晶から作ることが好ましい。

第2図は、偏光を発生する装置を示す。球形構造の中 心に、偏光を発生させるための光源12が置かれている。 球形構造は、球形支持体(図示せず)に取り付けられ た、第1スペクトル選択性を有するコレステリック液晶 層13と、第2スペクトル選択性を有する第2液晶層14を 有する。2つの液晶層は、得られる光が白色になるよう なスペクトル選択性を有する。球形支持体の他の半分は 反射膜15で被覆されている。光源12から放射された光16 は、内側の液晶層13に達し、その偏光に応じて分れ、透 過または反射される。透過した光線17は円形偏光され、 液晶層13のスペクトル選択性に対応するスペクトル構成 を有する。透過した光線は第2液晶層14の所でさらに分 かれる。すなわち、一の偏光は透過するが、反射の偏光 は反射される。もし液晶層を適切に選べば、2つの層で 全スペクトルの大部分を上記のように分けることができ るので実質上白色光を作ることができる。もちろん、1 つ以上の液晶層を追加することにより、さらに改良する ことができる。反射光線18は、光源12の他の側に配置さ れたミラー15に達し、そこで反射される。反射の際に偏 光方向が逆になるので、反射光線は、既に透過した光線 40 と同じ回転方向を有する。したがって、反射光線は、強 度を減じずに液晶層13,14を透過する。

第3図は別の実施例を示す。球形凹ミラー20のほぼ中央に、単色光源19が配置されている。反対側に、この場合は、球形でなく、平面のコレステリック液晶層21が配置されている。平面の液晶層はより大きな収差が生じるけれども、平面壁の配向は球面上よりも平面上のほうが容易であるから、液晶の配向がより容易にできる。光源と液晶層の間に、平面凸面レンズ22が配置されている。実際には、液晶層を直接レンズの平面側に設けることが 50

この実施例の作用は基本的には前述の実施例と同じである。光源19からの非偏光はレンズ22を透過して、直接またはミラー20で反射された後、液晶層21に入る。矢印と一符号で示した左円偏光成分は液晶層21を透過するが、矢印と+符号で示した右円偏光成分は反射されてミラー20に達する。そこで反射される際に、この成分は左円偏光になり、したがって液晶層21を透過する。このように、すべての光は、前と同様に、実質上一様に偏光される。白色光源の場合には、無関係のスペクトル成分も透過する。この成分も偏光させる場合は、それに適したスペクトル選択性を有する液晶層を追加しなければならない。

第4図は、前に述べた光源をヘッドライトに使用した場合の利点を略図で示す。第2図と同じ光源が放物線ミラー23の焦点に配置されている。光源の液晶層24は、ミラー23に向い合っている。液晶層24は、白色偏光が生じるように、異なるスペクトル選択性を有する多数の層で構成することができる。すべての偏光は放物線ミラー23に達し、放射方向すなわち第4図の右へ、平行光線の形で出ていく。ヘッドライトの前板25は円偏光を直線偏光に変える1/4波長板である。

本発明に係るほぼ100%の偏光を生成する光源によって、偏光のせいでまぶしさがなく効率の良い自動車用へッドランプを始めて製作できるようになった。

第5図は、平行白色光線またはレーザー光線から円偏 光波長帯を分離すための偏光子を示す。一定の波長領域 にある入射光線のすべての光は偏光に変えられる。残り の光は、強度を減じずに偏光子を透過し、別の一定の波 長領域を有する他の同様な偏光子でさらに処理すること ができる。

偏光子は3個の直角二等辺プリズム26,27,28から成り、これらのプリズムの間に、コレステリック液晶層29,30が配置されている。中央プリズム26は他の2つのプリズム27,28より大きい、すなわち中央プリズム26の短辺は他の2つのプリズム27,28の斜辺に等しい。入口プリズム27は、中央プリズム26の斜辺と直角な短辺31を有し、そこを通って光が進入する。入口プリズム27の他の短辺32は、金属皮膜すなわち反射膜で被覆されている。プリズムの間に配置する代わりに、液晶層は、たとえば適切に配置されたセル内部の平らな層でもよいし、板上の高分子膜でもよい。

平行入射光33は非偏光である、すなわち入射光は右円 偏光と左円偏光が重なったものとみなすことができる。 図中、左円偏光は矢印と一符号で示し、右円偏光は矢印 と十符号で示してある。入射光33は、たとえば右円偏光 を反射するように選んだ第1液晶層29に達する。そこで 反射された光はミラー32に達し、そこで反射される際に 偏光の回転方向が逆になる。この左円偏光された光は第 1液晶層29を妨げられずに透過することができ、左円偏 光34として偏光子から出ていく。入射光の左円偏光の成分は、第1液晶層29を通過して第2液晶層30に達する。 第2液晶層30は、ほぼ同じスペクトル選択性を有する

が、第1液晶層29とは反対の回転方向を有するものが選ばれる。その結果、第1液晶層29を透過した左円偏光は第2液晶層30で反射され、最初の左円偏光34と平行な左円偏光35として、偏光子の底面から出ていく。

偏光子の底面から出ていく光34,35は一様に左偏光されており、実質上一定のスペクトル範囲にあるすべての利用可能な光から成っている。入射光33内のこのスペクトル範囲以外の光は強度を減じずに偏光子を透過し、プリズム28を通って図面の左側に出ていく。

前に触れたように、偏光子から出た未処理のスペクトル成分を有する非偏光は異なるスペクトル選択性を有する別の偏光子へ送ることができる。第5図のように多数の偏光子を順々に配置する代わりに、第6図に示すように、3つのスペクトル範囲の偏光を生成する装置を7個のプリズムで作ることができる。この装置は、基本的に第5図の偏光子3個の直列回路であり、同じ大きさの接合された短辺の間に液晶層49~52を有する同じ大きさの5個の大プリズム41~45を有する。さらに、最初の大プリズム41の短辺の上に、大プリズム41~45の短辺に等しい斜辺をもつ小プリズム36が配置されている。大プリズムの斜辺に平行な小プリズム36の一方の短辺37は、反射皮膜で被覆されている。他方の短辺38は光の進入面である。入口プリズム36と最初の大プリズム41の間には、液晶層48が配置されている。

さらに、最大の大プリズム45の露出した短辺の上に、 直角二等辺小プリズム46が配置されており、小プリズム 46の斜辺と大プリズム45の短辺の間にも液晶層53が配置 30 されている。したがって、この装置は、6つの液晶層48 ~53を有する。各対の液晶層は同じ波長選択性と相反す る偏光性を有する。

また、入口プリズム36の反射面37と同じ平面内にある 第2および第4プリズムの上面も、反射皮膜54,55で被 覆されている。

この装置の場合も、前のように、プリズムの代わりに、平板間または平板上のコレステリック液晶層を使用することができる。

色の順序は意図する用途によって異なる。液晶層は短 40 い波長の光よりも長い波長の光をよく通すので、最初に短い波長の光を分離するほうが有利である。

入射した白色光は非偏光であり、入口プリズム36を通って第1液晶層48へ進む。第1液晶層48は青色スペクトル成分の右円偏光を反射し、左円偏光を通過させる。その他のスペクトル成分も同様に通過させる。第1液晶層48で反射した光はミラー37で反射され、その際偏光方向が逆になる。ここで左偏光された光は第1液晶層48を通過することができるので、第6図において下向きに出口面から出ていく。通過した左偏光は同じ波長範囲を有

し、第2液晶層49で反射され、同じ出口面から出てい く。装置を出ていく2つの光線は一様な左円偏光を有 し、入射光の全青色成分から成る。光の残りのスペクト ル成分は第3液晶層50へ進み、ここで、前と同様に、緑 色スペクトル範囲の右円偏光成分は反射され、左円偏光 成分は通過する。反射された緑色光は、同様にミラー54 で反射され、その際偏光方向が逆にされて左円偏光にな るので、下向きに装置から出ていく。通過した緑色光は 液晶層51で反射されて同様に下向きに装置から出てい く。これら2つの光線は一様な左円偏光を有し、入射光 の全緑色成分から成る。光の残りの赤色成分は最後の2 つの液晶層52,53に達し、ここで、前述と同じ作用が生 じて、最終的にすべての光が3つのスペクトル領域に分 離され、一様な左偏光が得られる。全可視スペクトルを 前記3つのスペクトル領域でカバーするようにすれば、 実質上光の損失はない。

有効波長領域において、単一コレステリック液晶層は、光を一の方向に円偏光された完全透過成分と、その反対の方向に円偏光された完全反射成分に分ける。したがって、偏光子から類推して、液晶層は円偏光の検光子として、透過および反射に使用することができる。透過の場合は、有効波長領域の光のみが透過される。すなわち、波長領域は別の光学素子によって選択しなければならない。反射の場合は、有効波長領域の光のみが反射される。すなわち、液晶層は波長に敏感なミラーとして機能する。

この選択反射の性質は、さらに検光子、波長選択器および光結合器の諸機能を組み合わせるときに使用できる。第7図は、そのような装置を示す。検光子は、互いに平行に間隔をおいて、入射光線に対し45°の角度で配置された3つのコレステリック液晶層60~62を有する。これらの液晶層は、異なる波長選択性と同じ回転方向を有している。たとえば、3つの液晶層はすべて右円偏光のみまたは左円偏光のみを反射する。この装置は平行四辺形断面をもつ2個のプリズム63,64と、直角二等辺三角形断面をもつ2個のプリズム65,66から成る。代わりに、前のように、ガラス板(セル)または液晶高分子層間の保持器の中に、液晶セルを斜めに配置してもよい。

液晶層60は、たとえば青色スペクトル領域の右円偏光を反射すると仮定する。もし入射光線がこのスペクトル領域に相当し、右円偏光されていれば、入射光線は完全反射され、作用を受けずに他の2つの液晶層61,62を通過して、検光子の出口側へ進む。緑色および赤色スペクトル領域の光線68,69についても同じことが当てはまる。もし光線67,68,69が別の色成分または別の偏光成分を含んでいれば、それらの成分は反射されずに、液晶層を通過する。したがって、そのような成分に対し、検光子は入射光線の方向に完全に透明である。

第8図に3色検光子の別の形態を示す。この検光子で 50 は、2つの液晶層が反射の作用を行い、第3の液晶層が 10

30

透過の作用を行う。反射作用をする2つのコレステリッ ク液晶層71,72は、組み合わされて立方体を構成する4 個のプリズムの隣接する短辺(表面)の間に配置されて いる。この場合には、3原色の各光線は、第7図のよう に互いに平行でなく、3つの異なる方向から入射され る。青色領域の光線74は図面の左から来て、液晶層72で 反射され、赤色領域の光線75は図面の右から来て、液晶 層71で反射される。緑色光線76は上方から来て、液晶層 73を透過する。したがって、もし3つの色のすべてが一 様に偏光されていれば、液晶層73は、液晶層71,72とは 逆の回転方向をもつ必要がある。また、誤ったスペクト ル成分が射出光線に混じる可能性があるので、それらを 前もって緑色光線76から除去しなければならない。これ は青色および赤色には当てはまらない。その理由は、誤 ったスペクトル成分は対応する液晶層で反射されないか らである。

3つの光線74~76の通路に配置された液晶セル77,78,79は光線74,75,76をそれぞれ変調する。次に、その変調プロセスを、投映装置の場合について説明する。

液晶を用いた投映装置は知られている。投映装置は、 光源、偏光子、液晶表示セル、検光子および投映レンズ 系から成っている。カラー投映の場合は、たとえば光源 の光から3原色を濾波するカラーフィルタを使用するこ ともできる。液晶セルに使用される電気光学効果に応じ て、検光子を省略してもよい(たとえば、ゲストホスト 効果の場合)。通例、光は3つの独立した光線に分離さ れて、それぞれ光を変調するための液晶表示セルに入 る。変調された3つの光線は、3つの投映レンズ系によ って投映スクリーン上に重ね合わされるか、または最初 に結合された後、1つのレンズ系で投映される。

液晶表示セルは、十分に吟味したどんな種類のものでもよく、たとえばロータリーセル(TN)、ハイツイストセル(STN,SBE)、DHF(Deformed Helix Ferroelectric)セル、表面安定化形強誘電性液晶(SSFLC(Surface Stabilized Ferroelectric Liquid Crystal))セル、ゲストホストセル、DAP(Deformation of corrected phase)セル、ECBセル、等でもよい。通例、上記すべてのセルは直線偏光について使用される。大部分のセルは、電圧に応じて、直線偏光子によって定められた2つの偏光方向の間に位相シフトを生じさせる。

以上説明した偏光子と検光子は投映装置に特に適している。光を直線偏光させなければならない場合には、円偏光が液晶表示セルに達する前に、1/4波長板を用いて、円偏光を直線偏光に変えることができる。その場合には、円偏光を取り出すため、液晶表示セルの後方、検光子の前方に、第2の1/4波長板を挿入しなければならない。しかし、円偏光を直接用いることができる場合は、2つの1/4波長板を追加する必要はないので、構造はより簡単になる。

上記の投映装置は光の収率が高いので、既知のあらゆ 50

る投映装置にまさっている。この投映装置は、液晶表示 装置による大面積投映たとえばビデオやテレビの投映に 利用することができるので好ましい。

上に挙げた一部の液晶表示セルについては、円偏光で動作しているとき、すなわち偏光方向が回転する(らせんによるモード誘導)場合には、液晶表示セルのパラメータを修正しなければならない。この電気光学効果の成分は、円偏光の場合には使用されないが、偏光子の位置や、セルの厚さに対する複屈折の最適比に影響を与える。

複屈折成分については、液晶の中を伝播する 2 つのモード間の位相シフトが波長の (n+1/2) 倍であれば $(n=0,1,\ldots)$ 、円偏光は回転方向を変える。検光子が回転方向(たとえば、選択反射)に敏感であれば、直線偏光子の場合のように、明らか暗への切替えを正確に行うことができる。したがって、円偏光で動作している場合は、電圧を印加したとき、適当に定義された偏光方向の間に (n+1/2) λ のピッチ差が生じるという事実に基づいた作用を有する任意の液晶表示セルを使用することができる。液晶表示セルを動作させる新規な方法については、最後に、第14図~第17図を参照して詳しく説明する。

第9図は、円偏光子81として機能する第2図と同じ光源と、波長選択器として機能する単一コレステリック液晶層の検光子82を備えた単色投映装置を示す。偏光子81と検光子82の間に、光を変調するための液晶表示セル83が配置されている。偏光子おび検光子のコレステリック層は共に多層である、すなわち白色を再生するため、異なる有効波長領域をもつ多数のコレステリック層で構成されている。

上記単色投映装置および他の偏光子/検光子の組合せ から成る同様な投映装置を、3原色の場合は3個、マル チカラー投映装置の場合に3個以上作ることができる。 ランプは1個で足りるであろう。3重または多重投映装 置の利点として、投映装置の機械的または電気光学オリ フィス板(たとえば、ロータリセル)で簡単にカラーマ ッチングができる。第10図は、第6図の偏光子85と第7 図の検光子86から成るカラー投映装置を示す。非偏光の 白色入射光線84は、第6図の偏光子について述べたよう に、異なるスペクトル範囲の3つの円偏光87,88,89に分 離される。3つの光路には、各色を変調するための液晶 表示セル91,92,93が配置されている。3つの液晶表示セ ル91,92,93は、投映レンズまでの光学距離が3つとも同 じになるように位置決めされる。液晶表示セル91.92.93 を通過した後(もし必要ならば、変調された後)、第7 図で述べたように、3つの光線は検光子86の中で単一光 線90に再結合される。

第11図は、第8図の検光子95と第6図の偏光子94の組合せを示す。光線を案内するため、通常の平面ミラー96.97を使用している。

最後に、第12図は、第8図の検光子99と第2図の光線98の組合せを示す。ランプは立方体の対角線上に設置されており、立方体の2つの対向する面はコレステリック層またはコレステリック層に対向するミラーを配置するため使用される。このようにして、単一光線で、それぞれの有効波長領域内で円偏光された3つの光線が得られる。検光子は第8図のものと同じであり、面100,101,102に液晶表示セルが配置されている。傾斜ミラー103は色選択性液晶ミラーとして作られている。ミラー104,106は通常の平面ミラーである。3つの色は再結合されて射出光線107になる。

これまでの投映装置はすべて透過型であった。しかし、本発明の偏光子と検光子は反射型にも使用できる。 非透明トランジスタの中で光の損失はないので、反射型 投映装置は、特に"TFT"に使用するのに適している。

第13図は、前述の投映装置の一例を示す。第3図の光源111から入ってきた光は、ビームスプリッター112の追加コレステリック層114で分離され、正しい円偏光を有する正しい色のみが反射され、残りの光は透過する。

次に、反射された光は液晶表示セル115を通過し、ミラー116で反射されて再びセル115を通過してコレステリック層114に当たる。コレステリック層114は、その円偏光を検光し、今度はその反射光を透過させる。その理由はミラー116の所で偏光方向が逆になったからである。透過した光は投映することもできるし、対応する他の偏光子からの異なる色の光と再結合させることもできる。集積能動電子デバイスを装備した液晶(たとえば、TFT、MIM、等)の場合は、各画素のトランジスタによって作動する電極はミラーとして作られる。ミラー116は、1組のこれらの電極によって構成される。

光は液晶表示セル115を二度通過するので、光は二倍の位相シフトを受ける。すなわち、同じ電気光学効果を得るには、複屈折を、同じ厚さの透過型表示セルの半分にしなければならない。もしレンズと鏡筒をコレステリック液晶に対する境界面として使用し、かつ液晶表示セルが鏡筒を境界面として直接使用すれば、よりコンパクトな装置になる。

単色投映装置を基礎にして、透過型装置と同じやり方で、考えられるすべての偏光子と検光子の組合せを作ることができる。

第14図に示した反射型投映装置は光源19、ミラー20、および光を右円偏光に変えるコレステリック液晶層21を有する。光源19から届いた光は光路内に45°の角度で配置された逆循環性のコレステリック液晶層128に当たる。この第2コレステリック液晶層すなわちフィルタ128は、右円偏光としてフィルタ選択帯域を有する光成分を90°曲げて液晶セル129とミラー130へ向ける。液晶セル129は、オン状態とオフ状態の間に1/2液長またはその奇数倍数の最小光路差を有する。したがって、この液晶セルは円偏光の回転方向を左まわりに変える。この結

果、円偏光の回転方向はミラー130で反射される際に再び変わる。ミラー130で反射された右円偏光は液晶セル129によって再び左まわりに変えられるので、コレステリック液晶層128を妨げられずに通過することができる。

コレステリック液晶層128の選択帯域より外の光は、 反射されずに、コレステリック液晶層128を透過して装 置から右へ出ていく。

コレステリック液晶層は、たとえば、らせんピッチ p $<1.5\,\mu$ m以下、光学的異方性 n>0.09以上のコレステリック物質から作ることができる。コレステリック物質はコレステリック液晶でもよいし、潜在的コレステリック構造を有するガラス相でもよい。通常の動作温度において十分広い温度範囲を有する適当な物質が知られている

コレステリック層を作るための物質は、コレステリック液晶相またはコレステリック構造をもつガラス相を有し、さらに、らせんピッチ $p < 1.5 \mu$ m以下で、光学的 異方性n > 0.09以上のキラル側鎖をもつ液晶側鎖重合体が好ましい。この種の重合体は多数知られており、一部は市販されている。適当な物質の例は、Konsortium frelektrochem Industrie(西独)から以下の名称で市販されているコレステリック側鎖をもつポリシロクサンである。

名称 最大選択反射

W 2648 $0.658 \mu \text{ m}$

W 2649 $0.540 \mu \text{ m}$

C 4754 $0.540 \,\mu$ m

C 4768 $0.678 \mu \text{ m}$

C 4760 0.600 μ m C 4745 0.460 μ m

30

これらの重合体のガラス遷移温度は約50℃であり、透明化温度は約180℃である。反射帯域幅は約60nmである。

また、コレステリック層を作るための物質は、光学的 異方性Δn>0.09以上であって、ネマチックベース物質 内に、1種またはそれ以上のキラル不純物が、ネマチッ クマトリックス内に必要ならせんピッチp<1.5 μ mの ねじりを導入する量だけ含まれたコレステリック液晶混 合物でもよい。ネマチックベース物質は十分な広さのネ マチック中間相を有するべきで、2以上の成分から成る ものが好ましい。適当な成分および混合物は多数知られ ている。それらは主として液晶表示装置に関して記載さ れており、多くは市販されている。印刷物による上記物 質のリストとして、たとえば、D.Demus et al.,Flssi ge Kristalle in Tabellen, VEB Deutcher Verlag fr Grundstoffind-ustrie, Leipzig, Vol.1 (1976) & Vol.2 (1984) に記載されている。必要な光学的異方性 n < 0. 09は、少なくとも約半分の環が芳香族炭化水素であるよ うな成分、またはそれらの成分が十分高い比率で含まれ ている混合物を選択することによって容易に得ることが

できる。

適当なキラル不純物は、たとえば、EP-A-021384
1、AWO 87/05017、およびEPA89.106808.2によって知られている。コレステリック混合物に含まれるキラル不純物の比率は、必要ならせんピッチによって決まり、個々のケースについて容易に決定することができる。もし所

$$R'-Z-A-Z'-B$$

ここで、nは数字Oまたは1を表す。環A,B,Cはそれ ぞれハロゲン、シアン、メチル、および(または)メト キシで置換されたか、置換されてない1.4-フェニレン を表す。もし必要ならば、その中の1または2CH基は窒 素で置き換えられる。すなわち、環A,B,Cは、トランス -1,4-シクロヘキシレンを表す。Z¹とZ²はそれぞれ単 一共有結合、-CH2 CH2 -、OCH2、-CH2 O、-COO-、ま たは-00C-を表し、Z³とZ⁴はそれぞれ単一共有結合、 酸素、-COO-または-OOC-を表し、R¹とR²はそれぞれ ヒドロキシ基またはキラル基 $-C*HX^1-R^3$ 、 $-CH_2-C$ 20 * $HX^1 - R^3$, -C * H (CH₃) $-COOR^3$, -C * $HR^4 - COOR$ 3 - C * H (CH₃) - CH₂ OR 3 - C * H (CH₃) - CH₂ CO OR3、-C*H (CH3) -CH2 CH-OR3を分離した後の旋光 性テルペンアルコールのラジカルを表す。上記化学基の C*はキラル炭素原子を表し、XIはフッ素、塩素、シア ン、メチル、ヒドロキシ、メトキシ、またはメトキシカ ルボニルを表し、R³はアルキルまたはアルケニルを表 し、R⁴はフェニルを表す。

前式 I において、 Z^1 と Z^2 はそれぞれ好ましい単一共有結合を示す。環A,B,Cはすべて芳香族炭化水素、詳細には1,4-フェニレンである。 Z^3 は好ましい-00C-を表し、 Z^4 は好ましい-C0O-を表す。

キラル不純物の好ましい基は、前式 I の旋光性化合物である。式 I の n は数字 1 を表し、環A,B,Cはそれぞれハロゲン、シアン、メチル、および (または) メトキシ(もし必要ならば、その中の 1 または2CH基は窒素で置き換えられる) で置換された、または置換されてない1,4ーフェニレンを表す。 Z¹とZ²はそれぞれ単一共有結合を表し、Z³はー00Cーを表し、Z⁴はーC00ーを表し、R¹と R²はそれぞれヒドロキシ基またはキラル基ーC* HX¹ーR 40³またはーCH2ーC* HX¹ーR³を分離した後の旋光性テルペンアルコールのラジカルを表す。上記化学基のC*はキラル炭素原子を表し、X¹はフッ素、塩素、シアン、メチル、またはメトキシを表し、R³はアルキルまたはアルケニルを表す。

用語「ハロゲン、シアン、メチルおよび (または) メトキシ (もし必要ならば、本発明に従ってその中の1または2CH基が窒素で置き換えられる) で置換された、または置換されてない1.4ーフェニレン」は、1.4ーフェニレン、フルオロー1.4ーフェニレン、クロロー1.4ーフェ 50

望であれば、らせんピッチの温度依存性を、DE-A-28 27471やEP-A-0304738に記載されている方法で補償することができる。それに加えて、屈折率の温度依存性も

14

好ましいキラル不純物は次の一般式をもつ旋光性化合物である。

補償することが好ましい。

ニレン、シアノー1.4ーフェニレン、2.3ージシアノー1.4ーフェニレン、メチルー1.4ーフェニレン、メトキシー1.4ーフェニレン、ピリジンー2.5ーdiyl、ピリミジンー2.5ーdiyl、ピラジンー2.5ーdiyl、ピリダジンー3.6ーdiyl、等を含む。

用語「ハロゲン」はフッ素、塩素、臭素および沃素を いうが、フッ素と塩素が好ましい。

用語「ヒドロキシ基を分離した後の旋光性テルプンア ルコールのラジカル」は、構造式TOHを有する旋光性テ ルペンアルコールのT基を表す。用語「テルペンアルコ ール」は周知であり、たとえば、Rompps Chemie Lexiko n,Vol.6 (1977) に記載されているように、モノテルペ ンから誘導されたアルコールをいう。用語「モノテルペ ン」は、テルペン炭化水素Cio His とその水素添加誘導体 と脱水素誘導体を含む。好ましい旋光性テレペンアルコ ールの例としては、(1R,2S,5R) - (-) -メントー ル、(1S, 2R, 5R) - (+) - イソメントール、(1S, 2S, -1)3S,5R) - (+) -イソピノカンフォール、(1S) -(-) -ボルネオール、(IR) - (-) -ミルテノー ル、(1S, 2S, 5R) - (+) - ネオメントール、<math>(-) -カルベオール、(+)ージヒドロカルベオール、(+) -テルペン-4 -ol、(+) $-\alpha$ -テルピネオール、等 がある。

用語「アルキル」および「アルケニル」は、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、ビニル、1ープロペニル、1ーブテニル、1ーペンテニル、アルリル、2ーブテニル、2ーペンテニル、3ーブテニル、3ーペンテニル、4ーペンテニル、5ーヘキシニル、6ーヘプテニルなど、直鎖ラジカルおよび枝分かれラジカル(15炭素原子以下が好ましい)を含む。キラル不純物の製造法は前に引用した文献に記載されているが、同様な方法で作ることができる。

以下は、好ましいコレステリック混合物の例である。 らせんピッチの測定値は、22°であった。以下のリスト において、Cは結晶相を表し、Sc*はキラルスメクチッ クC相を表し、SaはスメクチックA相を表し、Chはコレ ステリック相を表し、Iはイソトロピック相を表す。 混合物 1

) 32.75重量%,4′ーペンチルー4−シアノビフェニル、

18.01重量%,4' -ヘプチル-1-シアノビフェニル、 11.46重量%,4' -オクチロキシ-4-シアノビフェニ

11.46重量%,4 ーオクテロキシー4ーシアノビジェニル、

- 5.73重量%,4″ーペンチルー4ーシアノーpーテルフェニル、
- 4.09重量%,4- [5- (4-ブチルフェニル) -2-ピ リミジニル] ペンゾニトリル、
- 4.91重量%,4- [5-(トランス-4-エチルシクロへ キシル) -2-ピリミジニル] -ベンゾニトリル、
- 4.91重量%,4- [5- (トランス-1-ペンチルシクロ 10 ヘキシル) -2-ピリミジニル] -ベンゾニトリル、
- 18.14重量%,4′ [2 (S) -ミチルブチル] -4 [2 (R) -オクチロキシカルボニル] -ビフェニル; p=0.320 μ m,らせんの回転方向=右,Tc=45°, Δ n=0.24

混合物 2

- 3.86重量%.4′ーエチルー4ーシアノビフェニル、
- 2.29重量%,4' -プロピル-4-シアノビフェニル、
- 4.37重量%,4′ーブチルー4ーシアノビフェニル、
- 4.71重量%,4-(トランス-4-プロピルシクロヘキシ 20 ル) ベンゾニトリル、
- 10.57重量%,4- (トランス-4-ペンチルシクロヘキシル) ベンゾニトリル、
- 13.75重量%,1- (トランス-1-プロピルシクロヘキシル)-4-エチルベンゼン、
- 11.91重量%,1- [2- (トランス-4-プロチルシクロヘキシル) エチル] -4-エトキシベンゼン、
- 4.03重量%,4'' ーペンチルー4-シアノーpーテルフェニル、
- 4.11重量%,4′-(トランス-4-ペンチルシロクヘキ 30 シル)-4-シアノビフェニル、
- 11.49重量%,1- [2-(トランス-4-ブチルシクロ ヘキシル) エチル] -4-(トランス-4-ペンチルシ クロヘキシル) ベンゼン、
- 3.41重量%,4′-[2-(トランス-4-ブチルシクロ ヘキシル)エチル]-4-(トランス-4-ペンチルシ クロヘキシル)ビフェニル、
- 5.46重量%,4′-[2-(トランス-4-ブチルシクロ ヘキシル)エチル]-4-(トランス-4-ペンチルシ クロヘキシル)-1.1′-エチレンジベンゼン、
- 2.04重量%, トランス-4-[2-(トランス-4-プロピルシクロヘキシル) エチル] ーシクロヘキサンカルボン酸-4-シアノフェニルエステル、
- 18.14 重量%, 4′, 4″-ジ-[2(S)-オクチルオキシカルボニル]-p-テルフェニル;
- $p=0.340\,\mu\,m$,らせんの回転方向=左, $Tc=60^{\circ}$, $\Delta~n=0.14$

混合物 3

31.06重量%,4′ーペンチルー4ーシアノビフェニル、15.22重量%,4′ーペプチルー4ーシアノビフェニル、

9.74重量%,4′ーオクチルオキシー4ーシアノビフェニル.

16

- 15.00重量%,1- (トランス-4-プロピルシクロヘキシル)-4-エチルベンゼン、
- 4.87重量%,4″ーペンチル-4-シアノ-p-テルフェニル、
- 4.15重量%,4- [5- (トランス-4-エチルシクロへ キシル) -2-ピリミジニル] -ベンゾニトリル、
- 4.15重量%,4- [5-(トランス-4-ペンチルシクロ ヘキシル)-2-ピリミジニル]-ベンゾニトリル、
- 15.81重量%,4′,4″-ジー[2(S)-オクチルオキシカルボニル]-p-テルフェニル;
- $p=0.373\,\mu$ m,らせんの回転方向=左, $Tc=45^{\circ}$, Δ n=0.23

混合物 4

- 39.89重量%,4′ーペンチルー4ーシアノビフェニル、
- 16.12重量%,4' -ヘプチルー4 -シアノビフェニル、
- 10.31重量%,4′ーオクチルオキシー4ーシアノビフェニル、
- 10.00重量%,1- (トランス-4-プロピルシクロヘキシル) -4-エチルベンゼン、
- 5.16重量%,4″ーペンチルー4ーシアノーpーテルフェニル.
- 4.38重量%,4- [5-(トランス-4-エチルシクロへキシル)-2-ピリミジニル]-ベンゾニトリル、
- 4.39重量%,4- [5-(トランス-4-ペンチルシクロヘキシル)-2-ピリミジニル]ーベングニトリル、
- 16.41重量%,4′,4″-ジー[2(S)-オクチルオキシカルボニル]-p-テルフェニル;
- $p=0.453\,\mu$ m,らせんの回転方向=左, $Tc=53^{\circ}$, Δ n=0.24

混合物 5

40

- 29.34重量%,4′ーペンチルー4ーシアノビフェニル、
- 14.39重量%,4′ーヘプチルー4ーシアノビフェニル、
- 17.50重量%,1- [2-(トランス-4-プロピルシクロヘキシル) エチル] -4-エチルベンゼン、
- 4.60重量%,4″ーペンチルー4ーシアノーpーテルフェニル、
- 3.93重量%,4- [5-(トランス-4-エチルシクロへ キシル) -2-ピリミジニル] -ベンゾニトリル、
- 3.93重量%,4- [5-(トランス-4-ペンチルシクロ ヘキシル)-2-ピリミジニル]-ベンゾニトリル、
- 17.10重量%,4′,4″ -ジー [2 (S) -オクチルオキシカルボニル] -p-テルフェニル:
- $p=0.365\,\mu$ m, らせんの回転方向=左 , $Tc=45^{\circ}$, Δ n = 0.23

以下の化合物は化学式 I を有するキラル不純物の別の 50 例である。 20

4,4'' -ジー [2 (R) -シアノ-1-プロピルオキシカルボニル] -p-テルフェニル;

m.p.179.2℃、

4,4'' ージー [2 (S) ークロロー 1 ーペンチルオキシカルボニル] ー p ーテルフェニル,

m.p. $(C - Sc) 106^{\circ}C$, $Sc^* - SA110$, $2^{\circ}C$, $SA - Ch140^{\circ}C$, c1 ar.temp. $(Ch - I) 141^{\circ}C$,

4,4" -ジー [2 (R) -クロロー4-メチルー1-ペンチルオキシガルボニル] -p-テルフェニル,

m.p.169.4℃~170.0℃、

4,4" -ジー [2 (S) -シアノ-4-メチル-1-ペンチルオキシガルボニル] -p-テルフェニル,

m.p.129℃~131℃、

4,4" -ジー [1 (R),2(S),5(R) -メチルオキシガルボニル] - p - テルフェニル,

m.p.168℃~169℃、

4,4'' -ジー [2 (R) -シアノ-1-ペンチルオキシカルボニル] -p-テルフェニル,

4,4'' -ジー [2 (S) -クロロー1-ブチルオキシカルボニル] -p-テルフェニル,

m.p. $(C-S_A)$ 137.3°C, °C, $S_A-Ch139.3$ °C,clar.temp. (Ch-I) 153°C,

 $4,4'' - \forall - [2 (S) - \forall P / - 1 - \forall F / + \forall A + \forall A / + \forall A /$

m.p.129.9℃、

4,4'' ージー [2 (R) ーシアノー1ーヘキシルオキシカルボニル] -pーテルフェニル.

4.4'' ージー [2 (S) ークロロー 3 ーメチルー 1 ーブ チルオキシカルボニル] ー p ーテルフェニル,

m.p.171.1℃、

4,4'' ージー [2 (R) ーシアノー 3 ーメチルー 1 ーブ チルオキシカルボニル] ー p ーテルフェニル,

m.p.132.9℃、

4,4'' ージー [1 (S) - (メトキシガルボニル) エトキシ] - p ーテルフェニル,

m.p.142.6℃、

4,4'' ージー [1 (S) - (エトキシガルボニル) エトキシ] - p ーテルフェニル,

m.p.91.3℃、

4,4'' ージー [1 (S) - メチルー 2 - (エトキシガル ボニル) エトキシ] - p - テルフェニル,

4.4'' -ジー [2 (S) -シアノー4-メチルー1-ペンチルオキシ] -p-テルフェニル,

m.p.116°C.

4,4'' - \forall - [2 (S) - $^{\alpha}$)+ $^{$

m.p.82.8℃、

4,4'' ージー [2 (S) ーペンチルオキシカルボニル] ー p ーテルフェニル,

m.p.82.8℃、

4,4" -ジー [2 (S) -クロロー4ーメチルー1ーペンチルオキシ] - p - テルフェニル,

18

m.p.170℃。

前に触れたように、第15図~第19図はさまざまた偏光 子を用いて液晶セルを動作させるさまざまな方法を示 す。第15図は、第3図に示したものに類似する光源を含 む装置(見やすくするためレンズを省略してある)を示 す。単色光源19から出た光 (λ=600nm) は、第3図で 説明したように、直ちに、またはミラー20で反射された 後、コレステリック液晶層21の中で右に回転する円偏光 に変えられる。液晶層21の後ろに配置された1/4波長板1 18は円偏光を直線偏光に変える。上下矢印は偏光の方向 を示す。1/4波長板118の後ろに配置されたTNセル119 は、既知のやり方で光の偏光方向を90°回転させる。回 転した光は、TNセル119の後ろの直線偏光子を、強度を 減じずに通過することができる。もしTNセル119に電圧 を印加しなければ、セルより前の偏光方向に対し90°の 角度だけ回転する。もしTNセル119に電圧を印加すれ ば、回転効果は生じない。したがって、回転されなかっ た光は偏光子120を通過することはできない。このよう に、TNセル119は通常のやり方で動作し、入射光の偏光 方向はスイッチオフ状態(導波モード)において回転さ れる。

第16図は別の動作方法を示す。前に説明したやり方で作られた右回転の円偏光は、コレステリック液晶層21からTNセル119へ直接達する。この動作方法では、TNセル119は、スイッチオフ状態とスイッチオン状態の間の最小光学ピッチ差 $\delta = \Delta$ $n \cdot d = \lambda/2$ を有していなければなならい。もしこの条件が満たされれば、円偏光は通過の際その回転方向が変わる、すなわちこの場合には右(+)から差(一)へ回転方向が変わる。TNセル119の後ろに配置された第2のコレステリック層121は第1のコレステリック層21とは反対に回転している円偏光すなわち左円偏光に対し透過性がある。もしTNセル119をオンに切り換えれば、つまり光学的に一軸性になれば、TNセル119は光の偏光状態に影響を与えない。したがって光はコレステリック液晶層121によって妨げられずに通過する。

第15図と第16図の2つの装置は、光の一部を吸収する 偏光子が存在しないので、光源19から放射された全部の 光が出口から出てくる。比較のため、第17図は直線偏光 子122,123を備えたTNセル119から成る従来の装置を示 す。入口側偏光子122は光の半分を吸収するので、出口 側から出てくることができる光は多くても元の強度の半 分である。

第15図〜第17図の装置は、表示セルがこの原理に立って作られていれば、陽画コントラストを送り出す。陰画コントラストは、各場合について、第16図のように左に回転させる代わりに、右に回転させるコレステリック層を用いることにより、または他の2つのケースの既知の

やり方で出口側で直線偏光子を90°だけ回転させることにより、容易に得ることができる。

第18図は、第16図のように、円偏光が直接TNセル124 へ送られるようになっている類似の装置を示す。しかし、第16図とは異なり、TNセル124はスイッチオン状態とスイッチオフ状態の間の最小光学ピッチ差 $\delta=\lambda/4$ を有する。したがって、スイッチオフ状態では、TNセル124は1/4波長板として作用し、円偏光を直線偏光へ変換する。TNセル124の後ろに配置された直線偏光子125は適当な姿勢のとき直線偏光を阻止することができる。スイッチオン状態では、TNセル124は円偏光に対し影響を与えない。したがって、円偏光は直線偏光子125を透過する。

もし条件 $\delta=\lambda/4$ またはその整数倍が実現可能であれば、TNセルの代わりに、他の適当な液晶セルをこの装置に使用することができる。もし円偏光を使用することができれば、たとえば、第15図や第17図の光源から得ることができれば、第18図の装置は100%の光出力を与えることができる。しかし、もし従来のやり方で非偏光の白色光を使用すれば、直線偏光子と1/4波長板で円偏光を作る際に50%の損失が生じることが知られている。それでも、TNセルに対する特性電圧はかなり低いので(たとえば、最大でも従来の動作方式における電圧の50%である)、第17図の従来の動作方式に比べれば、1/4波長板の費用が加わっても十分ひき合う。

第19図は、反射によって動作する装置を示す。この装 置はスイッチオン状態とスイッチオフ状態の間の最小光 学ピッチ差δ=λ/4を有するTNセルを備えた前述の装置 に対応するものである。この例では、DAPセル126が使用 されている。したがって、スイッチオフ状態では、セル 30 は1/4波長板として作用する。すなわち、円偏光は直線 偏光に変換される。ミラー127での反射後、逆過程が生 じる、すなわち直線偏光がセル126の中で再び円偏光に 変換されて、妨げられずにコレステリック層21を通過す るので、出口では光の全強度を使用できる。もし光学的 に一軸になるようにセル126に電圧を印加すれば、セル1 26は光の偏光状態に影響を与えない。この結果、セル12 6の後ろの右円偏光は、ミラー127に達して反射される際 に前述のように回転方向を変える。反射後の左円偏光 は、DAPセル126によって影響されずに、コレステリック 層21へ進み、そこで阻止される。

発明の効果

この装置の利点は、ミラー127を液晶セルの基板上に配置することができるので、画素の能動面のアパーチャーすなわち輝度を減少させないように、薄膜トランジスタなどの光吸収構造をミラーの後ろに配置できることである。比較テストによれば、第15図、第16図および第18図の装置は第17図の従来装置の輝度の約二倍の輝度が実際に得られた。そのほかに、前に触れたように、必要な制御電圧が著しく低い。

液晶セルの2つの動作モード、すなわち直線偏光による動作モードと円偏光による動作モードを用いて、シャープな透過性がりでなく、フラットな透過性を実現することが可能である。したがって、シャープな曲線ばかりでなく、テレビジョンに使用される多数の灰色の濃淡を有するフラットな曲線、したがって高度多重化セル、いわゆるシャープなスーパーツイストセルを使用できる。

20

もし光の入射角が35°以上であれば、第10図に示した ものに類似する投映装置の液晶表示セルの所で、非偏光 の残光が起きるかも知れない。コントラストの低下を避 けるため、液晶表示セルに直列に配列した偏光子で非偏 光の残光を抑制することができる。非偏光の残光部分は 非常に少ないから、追加偏光子は投映効率をほんの少し 低下させるだけである。

始めに述べた異なるスペクトル選択性を有する数個のコレステリック液晶層の直列配列は、白色光を近似するために使用できるほか、ある色領域の中でコレステリック液晶層の帯域を拡大するためにも使用できる。異なる平均波長のコレステリック液晶層を適切に組み合わせることにより、選択反射の帯域を簡単に変えることができる。

【図面の簡単な説明】

第1図は、発明の基本作用を示す図、

第2図は、偏光を作るための光源を示す図、

第3図は、偏光を作るための別形式の光源を示す図、

第4図は、ヘッドライトに応用した第2図の光源を示す 図、

第5図は、非偏光の単色光を偏光に変える装置を示す 図、

第6図は、非偏光の白色光を偏光した白色光に変える装置を示す図、

第7図は、3色検光子を示す図、

第8図は、別形式の3色検光子を示す図、

第9図は、単色投映装置を示す図、

第10図は、カラー投映装置を示す図、

第11図は、別形式のカラー投映装置を示す図、

第12図は、さらに別形式のカラー投映装置を示す図、

第13図は、反射型カラー投映装置を示す図、

第14図は、別の反射型カラー投映装置を示す図、

第15図~第19図は新規な偏光子を備えた液晶セルを動作させる種々の方法を示す図である。

符号の説明

1 ……コレステリック液晶層、2 ……ミラー、3 ……オリフィス板、4 ……単色光源、5 ……光束、6 ……境界光線、7 ……衝突点、8 ……反射光線、9 ……透過光線、10……衝突点、11……反射光線、12……非偏光光源、13……コレステリック液晶層、14……第2 コレステリック液晶層、15……反射膜、16……光線、17……透過光線、18……反射光線、19……単色光源、20……球形凹

22

面ミラー、21……コレステリック液晶層、22……平面凸面レンズ、25……ヘッドライトの前板、26,27,28……直角二等辺プリズム、29,30……コレステリック液晶層、31……短辺、32……ミラー、33……入射光、34,35……反射光、36……かプリズム、37……反射膜、38……短辺、41~45……大プリズム、46……小プリズム、48~53……コレステリック液晶層、54,55……反射皮膜、60~62……コレステリック液晶層、63,64……平行四辺形プリズム、65,66……直角二等辺プリズム、67,68,69……入射光、71,72……コレステリック液晶層、73……液晶層、7 104……青色光、75……赤色光、76……緑色光、77,78,79 ……液晶セル、81……光源、82……検光子、83……液晶

表示セル、84……非偏光白色入射光、85……偏光子、86……検光子、87,88,89……異なるスペクトル範囲をもつ円偏光、90……単一光線、91~93……液晶表示セル、94……偏光子、95……検光子、96,97……平面ミラー、98……光源、99……検光子、100~102……面、103~106……ミラー、107……射出光線、111……光源、112……光線分離立方体、114……コレステリック層、115……液晶表示セル、116……ミラー、118……1/4波長板、119……TNセル、120……偏光子、121……コレステリック層、122,123……直線偏光子、124……TNセル、125……直線偏光子、126……DAPセル、127……ミラー、128……コレステリック液晶層、129……液晶セル、130……ミラー。

【第6図】

【第7図】

【第8図】

【第9図】

81 83 82

【第12図】

【第18図】

【第10図】

【第11図】

【第16図】

[第13図] [第14図] 115 (第14図] 116 (第14図] 117 (第14図] 117 (第14図] 117 (第14図] 118 (第14Z] 118 (第

【第17図】

【第19図】

フロントページの続き

(72)発明者 エス ヴェー ベリャーエフ

ソヴィエト連邦 103787 モスクワ ビ

ー. サドバヤ 1-4

(72)発明者 ユルク フュンフシーリング

スイス国 ツェーハー4054 バーゼル ヴァイヘルホッフシュトラーセ 138 (72)発明者 エン ヴェー マリモネンコ

ソヴィエト連邦 103787 モスクワ ビ

ー. サドバヤ 1-4

(72)発明者 マーチン シャット

スイス国 ツェーハー4411 ゼルティス ベルク リーシュターレルシュトラーセ

77

(72)発明者 クラウス シュミット

ドイツ連邦共和国 デー7850 レーラッ ハ ガルテンシュトラーセ 16ベー