Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

Отчет по лабораторной работе № 2 по эконометрике "Постороение регрессионной модели, нелинейной по параметрам"

Выполнила студентка: Заболотских Екатерина группа: 3630102/70301

Проверил: к.ф.-м.н., доцент Иванков Алексей Александрович

Содержание

1	Пос	становка задачи	2
2	Теория		2
	2.1	Построение регрессионной модели линейной по параметрам	2
		2.1.1 Регуляризация по Тихонову	2
	2.2	Построение регрессионной модели нелинейной по параметрам	3
		2.2.1 Метод отжига Коши	3
3	Pea	лизация и выводы	4
	3.1	Линейная по параметрам	4
	3.2	Нелинейная по параметрам	4

1 Постановка задачи

Имеется реализация случайного процесса. Построить две регрессионные модели:

- 1. **линейную по параметрам.** Разложить детерменированную функцию в ряд Тейлора и через замену предположить о линейности модели. Оценить коэффициенты полинома модели с помощью МНК.
- 2. **нелинейную по параметрам.** Оценить параметры β_0 и β_1 напрямую, применя метод отжига.

2 Теория

В данной лабораторной работе мы так же будем рассматривать аддитивную модель.

$$X(t) = g(t) + \xi(t)$$

Только теперь первомоментная функция поведения процесса будет иметь вид:

$$g(t) = \beta_0 * e^{\beta_1 * t}.$$

Стахостическое слагаемое так же как и в прошлый раз - случайная функция: $\xi(t) \sim N(0, \sigma)$.

2.1 Построение регрессионной модели линейной по параметрам

Для того, чтобы свести детерменированное слагаемое к линейному виду, разложим e^{β_1*t} в ряд Тейлора до 4-ой степени:

$$g(t) = \beta_0 (1 + \beta_1 * t + \frac{\beta_1^2 * t^2}{2} + \frac{\beta_1^3 * t^3}{6} + \frac{\beta_1^4 * t^4}{24} + o(t^4))$$

Сделаем замену переменных:

$$\gamma_1 = \beta_0 \beta_1$$
 $\gamma_2 = \beta_0 \frac{\beta_1^2}{2}$ $\gamma_3 = \beta_0 \frac{\beta_1^3}{6}$ $\gamma_4 = \beta_0 \frac{\beta_1^4}{24}$

Мы получили линейную по параметрам регрессионную модель:

$$X(t) = \beta_0 + \gamma_1 * t + \gamma_2 * t^2 + \gamma_3 * t^3 + \gamma_4 * t^4 + \xi(t)$$
(1)

Оценки параметров $\hat{\beta}_0$ и $\{\hat{\gamma}_i\}_{i=1}^4$ находим применяя регуляризацию Тихонова.

Теперь нам нужно вернуться к исходному виду модели:

$$\hat{\beta}_{1}^{1} = \frac{\hat{\gamma}_{1}}{\hat{\beta}_{0}} \qquad \hat{\beta}_{1}^{2} = \frac{\sqrt{2\hat{\gamma}_{2}}}{\hat{\beta}_{0}} \qquad \hat{\beta}_{1}^{3} = \frac{\sqrt[3]{6\hat{\gamma}_{3}}}{\hat{\beta}_{0}} \qquad \hat{\beta}_{1}^{4} = \frac{\sqrt[4]{24\hat{\gamma}_{4}}}{\hat{\beta}_{0}}$$

2.1.1 Регуляризация по Тихонову

Пусть дана СЛАУ: Ax = b. Матрица A - вырожденная или плохо обусловленная. Решение данной задачи неустойчиво к малым изменениям правых и левых частей.

$$A^T * A * x = A^T * b$$
 $cond(A) = \frac{|\lambda(A)_{max}|}{|\lambda(A)_{min}|}$

Регуляризация заключается во внесении параметра α :

$$||Ax - b||^2 + \alpha ||y||^2 \to min$$

$$(A^T A + \alpha E)x_{\alpha} = A^T b$$

Оператор $(A^TA + \alpha E)$ называется оператором регуляризации Тихонова. Устойчивость оператора:

$$AX = \lambda X \qquad | + \alpha X$$
$$(A + \alpha E)X = (\lambda + \alpha)X$$

Тогда:

$$cond(A) = \frac{|\lambda(A)_{max} + \alpha|}{|\lambda(A)_{min} + \alpha|}$$

2.2 Построение регрессионной модели нелинейной по параметрам

В данном случае модель будет иметь вид:

$$X(t) = \beta_0 * e^{\beta_1 * t} + \xi(t)$$

Для оценки параметров β_0 и β_1 будем решать задачу минимизации функционала:

$$S(\hat{\beta}) := \sum_{i=1}^{n} (X(t_i) - \hat{g}(t_i))^2$$

Будем использовать метод отжига. В данной работе использовался метод Коши.

2.2.1 Метод отжига Коши

Это стахастический метод, использующий случайный поиск, иммитирующий процесс остывания метала, входе которого система принимает минимальную энергию.

Пусть задан компакт возможных решений $S(\beta_0,\beta_1)$, необходимо минимизировать функционал: $f:R^2\to R$.

Алгоритм:

- 1. случайным образом выбирается начальная точка $x_0(\beta_0, \beta_1) \in S$
- 2. задается начальное значение энергии: $E_0 = f(x_0)$
- 3. цикл (пока не достигнем желаемой температуры T_n) ($\{i\}_{i=1}^n$)
 - (a) сравниваем текущее значение энергии E с функционалом в точке: f(x). Если f(x) < E, то E = f(x).
 - (b) понижаем температуру: $T_i = \frac{T_0}{\sqrt{i}}$
 - (c) генерируем новую точку для предполагаемого перехода: $x' \sim C(x,T)$
 - (d) вычисляем $t = H(\Delta E, T) = e^{(-\Delta E/T_i)}$, где $\Delta E = E f(x')$
 - (e) генерируем $u \sim U([0,1])$
 - (f) проходим проверку:
 - i. если (t < u), то x = x' и переходим к пункту (a)
 - іі. иначе переходим к пункту (b)

3 Реализация и выводы

3.1 Линейная по параметрам

Параметр α в регуляризации Тиханова принимает значения 0,0.1,0.2,...,1. В результате разбиения временного ряда на интервалы, апроксимация тренда была наилучшей для $\alpha=0$ на всех интервалах. Невязка большая на всем временном интервале.

3.2 Нелинейная по параметрам

Модель лучше апроксимирует тренд при малом задаваемом средневкадратическом отклонении. Работа модели во многом зависит выбора конечной температуры.