Listado 3: Sistemas de ecuaciones

ÁLGEBRA LINEAL

1. Escriba los siguientes sistemas de ecuaciones en forma matricial y resuélvalos utilizando el método de eliminación de Gauss.

a)
$$\begin{cases} -x_1 + x_3 + 2x_4 &= 1 \\ x_1 - x_2 + x_3 - 2x_4 &= -1 \\ -x_1 - 2x_2 + x_3 + 3x_4 &= 2 \\ -x_1 - 4x_2 + 2x_3 + 4x_4 &= 5 \end{cases}$$
 b) COMPLETAR

2. Considere A y \vec{b} , matrices y vector de coeficiente reales, respectivamente, definidos por

$$A = \begin{pmatrix} -a & 2 & 0 & 1\\ a & -3 & 2 & -1\\ a & -2 & -1 & 1\\ 2a & -2 & -4 & b \end{pmatrix} \quad \mathbf{y} \quad \vec{b} = \begin{pmatrix} 1\\ -2\\ -1\\ a+b+2 \end{pmatrix}$$

- a) Determine los valores de a yb para los cuales el sistema $A\vec{x} = b$, con $\vec{x} \in \mathbb{R}^3$, sea compatible determinado, compatible indeterminado, o indeterminado.
- b) Para a = 1 y b = -1, encuentre las soluciones del sistema.
- 3. Considere el sistema de ecuaciones

COMPLETAR.

Encuentre el o los valores de $a \in \mathbb{R}$ tales que el sistema sea compatible determinado. En cada uno de los casos, encuentre la solución de este sistema.

4. Sean $\alpha, \beta \in \mathbb{R}$. Considere el sistema de ecuaciones de incógnitas $x,y,z \in \mathbb{R}$

$$x + y + \alpha z = 0$$
$$x + y + \beta z = 0$$
$$\alpha x + \beta y + z = 0$$

- a) Determine α y β tales que la solución de este sistema de ecuaciones sea única. ¿Cuál es dicha solución?
- b) Determine α y β tales que el sistema tenga solución no trivial, y su respectivo conjunto solución.

5. Encuentre los valores de $\alpha, \beta, k \in \mathbb{R}$ para que el sistema de ecuaciones

COMPLETAR

- a) Tenga solución única
- b) Sea incompatible
- 6. Sean $\alpha, \beta \in \mathbb{R}$. Considere el siguiente sistema de ecuaciones.

COMPLETAR

- a) Determine el o los valores de α y β tales que este sistema de ecuaciones sea compatible determinado, compatible indeterminado o incompatible
- b) Para $\alpha = 1$ y $\beta = 2$, determine el conjunto solución.
- 7. Considere los puntos A = (-1, 0, 1), B = (0, 1, 2) y C = (1, 1, 1), y los vectores $\vec{a} = \overrightarrow{OA}$, $\vec{b} = \overrightarrow{OA}$ y $\vec{c} = \overrightarrow{OC}$, donde O = (0, 0, 0).
 - $a) \ \ \text{Calcule} \ d(A,B), \ d(A,C), \ d(B,C), \ \|\vec{a}\|, \ \|\vec{b}\|, \ \|\vec{c}\|, \ (2\vec{a}) \cdot \vec{b}, \ \left(-\vec{b}\right) \times \vec{c} \ \ \vec{b} \cdot (\vec{c} \times \vec{a}).$
 - b) Determine los ángulos entre \vec{a} , \vec{b} y \vec{c} .
 - c) Describa el conjunto de los vectores $\vec{x} \in \mathbb{R}^3$ tales que
 - 1) \vec{x} es paralelo a \vec{c} y $||\vec{x}|| = 1$.
 - 2) \vec{x} es perpendicular a \vec{a} y \vec{c} .
 - 3) $\|\vec{x} \vec{a}\| = \|\vec{x} \vec{b}\|.$
- 8. Determine un vector $\vec{r} \in \mathbb{R}^3$ tal que
 - a) $\|\vec{r}\| = 4$, el ángulo entre \vec{r} e $\hat{\imath}$ es de $\frac{\pi}{4}$ y el ángulo entre \vec{r} y $\hat{\jmath}$ es de $\frac{\pi}{3}$.
 - b) \vec{r} es perpendicular a [1,2,2], el ángulo entre \vec{r} e $\hat{\imath}$ es de $\frac{\pi}{6}$ y el ángulo entre \vec{r} y \hat{k} es de π .
 - c) \vec{r} es paralelo a [0,-1,2], el ángulo entre \vec{r} e $\hat{\imath}$ es de $\frac{\pi}{2}$ y el ángulo entre \vec{r} y \hat{k} es de π .