Internet of Things Security

Lecture 3: Review of Attacks in IoT Instructor: Mehmoona Jabeen

Email: Mehmoona.jabeen@au.ed.pk

Department of Cyber Security, Air University

Course: CYS, Spring 2025

Lecture Outline

- Taxonomy of Attacks
- Physical Attacks
- Software Attacks
- Network Attacks
- Attacks in WiFi
- ESP32 for WiFi Pentesting
- IoT Security Foundation

IoT Security Goals

- The traditional and common security goals include **Confidentiality**, **Integrity**, and **Availability** (CIA).
- Apart from the CIA triad, other requirements have become important:
 - Privacy
 - Lightweight solutions
 - Authenticity
 - Standardized policies

Breakdown:

- Authenticity: user, device, context
- **Confidentiality:** storing data and keys securely
- Integrity: data, logs, and firmware integrity
- Availability: fault tolerance and scalability
- **Privacy:** non-link-ability, location, data and device

Taxonomy of Attacks

Physical Attacks	Software Attacks	Network Attacks
Node Tampering	Malware	Traffic Analysis Attack
RF Jamming	Loggers Attack	RFID Spoofing
Malicious Node Injection	Data Tempering	Routing Information Attack
Sensor/Actuator Attack		Selective Forwarding
Physical Damage (PDoS)		Sinkhole Attack
Sleep Denial Attack		Sybil Attack
Side Channel Attacks		Man in the Middle Attack
Energy Harvesting Attack		Replay Attack
Power Analysis Attack		DDoS
Timing Attack		
EM Side Channel Attack		
Reverse Engineering		

Physical Attacks

Node Tempering

- Attacker physically alters the compromised node to obtain login credentials, encryption keys, and sensitive info.
- Can occur in:
 - Development / manufacturing / packaging phases
 - Pre-deployment phase
 - Deployment phase

Smart Meter Tampering

(Title only - no content in original slides)

RF Jamming

- Instead of sending RF signals, attacker transmits noise signals to launch DoS attacks on RFID tags.
- Known as **RF interfacing/jamming**.
- Primary goal: hinder communication.

Node Injection

- Malicious node is dropped among legal nodes (fake node injection).
- Attacker gains control of data flow.
- Many physical devices are vulnerable.

Sensing/Actuating Attack

- False/spoofed commands to actuators disrupt operations.
- Example:
 - Alter sensor reading
 - Cause pump to over/under deliver water

Permanent Denial of Service (PDoS)

- Physically damaging the node to stop requests.
- Known as **phlashing**: bricks a device or corrupts firmware.
- Device must be repaired or replaced.
- Example: Hacker "Janit0r" bricked 2 million IoT devices in 2017.

Cont. PDoS

- 1. Compromising a Device
 - Bricker Bot uses Telnet brute force with common credentials.
- 2. Corrupting a Device
 - Executes Linux commands to:
 - Corrupt storage
 - Disrupt connectivity
 - Wipe files

Reverse Engineering

Attacker disassembles a device to discover and exploit vulnerabilities.

Side Channel Attacks

- Target cryptosystems by analyzing:
 - o Power
 - Timing/delay
 - Electromagnetic emissions

Types:

- Power Analysis Attack
- Timing Attack
- Electromagnetic Side-channel Attack
- Fault Attack

Energy Harvesting/Depleting Attack

- IoT devices use energy from ambient sources.
- Attacker:
 - Blocks energy source
 - Engages device in heavy tasks to drain battery

Software Attacks

Malware

• IoT botnets: infected devices used for DDoS attacks.

Data Tampering

- Deliberately altering data in transit or at rest.
- Dangers:
 - Lack of detection
 - Small tampering = big consequences

Traffic Analysis Attack

- Attacker gains network info without direct access.
- Risk of data leakage.

MITM (Man-in-the-Middle) Attack

- Eavesdrops/monitors communication between IoT devices.
- Violates data privacy.
- Can take control of smart actuators (e.g., industrial robot disruption).

Firmware Attacks

- Reverse Engineering: Extract/analyze firmware for info
- Firmware Modification: Inject malicious code
- **Obtaining Authorization**: Gain unauthorized access
- Installing Unauthorized Firmware: Malicious/stolen firmware
- Unauthorized Devices: Fake device receives authentic firmware

Basic Attacks on WiFi

- Deauthentication attack
- WPA handshake brute-force attack
- PMKID capture and brute-force attack
- WPS PIN attack
- KRACK attack

Authentication in WiFi

Deauthentication Attack

- Deauthentication attack targets wireless networks by sending deauthentication frames to devices on the network, causing them to disconnect from the network.
- The deauthentication frames are sent using a spoofed MAC address, making it difficult for the network to identify the attacker.
- The purpose is to disrupt normal WiFi network operations, causing devices to repeatedly disconnect and reconnect, resulting in a Denial of Service (DoS) condition.
- Can cause network instability or crashes.
- Tools like Aircrack-ng can be used to carry out such attacks.
- Particularly effective against networks with weak or outdated security protocols, such as WEP or WPA.

WPA Handshake Brute-Force Attack

- When a client connects to a WPA/WPA2 network, a **four-way handshake** is performed using the **pre-shared key (PSK)** or **pairwise master key (PMK)**.
- This handshake can be captured using a wireless packet capture tool.
- After capturing, attackers guess the PSK using brute-force—trying different character combinations.
- Specialized software performs brute-force attempts until the correct key is found.

PMKID Capture and Brute-Force Attack

- A relatively new attack targeting networks using WPA3-PSK encryption.
- Involves capturing the Pairwise Master Key Identifier (PMKID) used during the client's authentication process.
- PMKID is generated using the network's SSID and PSK.
- Attackers capture the PMKID using a packet capture tool and brute-force the PSK until it's found.

WPS PIN Attack

- Targets networks using the WPS feature for device connection.
- Instead of entering the PSK, users input an eight-digit PIN.
- Attack involves brute-forcing the PIN using tools like Reaver or Bully, which send PIN
 guesses to the access point until the correct one is found.

KRACK Attack (Key Reinstallation Attack)

- Targets WPA/WPA2 networks.
- Exploits a protocol vulnerability to intercept and decrypt network traffic.
- Intercepts the **four-way handshake** between the client and access point.
- Forces the client to reuse an already-used encryption key, allowing traffic decryption.

ESP32

Introduction

- ESP32 is a powerful Wi-Fi and Bluetooth enabled microcontroller chip by Espressif Systems.
- Successor to the **ESP8266** with:
 - More processing power
 - More memory
 - o Added features like Bluetooth and dual-core processing
- Features:
 - o **Dual-core processor** up to 240 MHz
 - Built-in Wi-Fi and Bluetooth
 - Multiple protocols and GPIO support

ESP32 Basic Architecture

- **Dual-core processor**: Two Tensilica LX6 cores up to 240 MHz
- Memory:
 - o Up to 520KB SRAM
 - o Up to 4MB Flash
 - o 8KB RTC memory
- Connectivity:
 - o Wi-Fi, Bluetooth Classic, BLE
 - o Wi-Fi Direct, WPS
- Peripheral Interfaces:
 - o UART, SPI, I2C, PWM, ADC
 - o SD card, Ethernet, CAN bus
- Security:
 - Secure boot
 - Flash encryption
 - Hardware-accelerated encryption
- Power Management:
 - Multiple sleep modes for low power usage

ESP32 for WiFi Attacks

- Low power, lightweight, battery-operated device ideal for Wi-Fi attacks.
- Universal Wi-Fi penetration tool developed:
 - Uses ESP-IDF public API
 - Bypasses closed-source libraries that block forged frames

Available WiFi Attacks Using ESP

- 1. ESP8266 Deauther (by Stefan Kremser aka "spacehuhn")
 - Performs deauthentication attacks via ESP8266
- 2. ESP32 Deauther Tool
 - Open-source project by various developers (e.g. GANESH ICMC/USP)
 - o Supports:
 - Deauthentication attacks
 - Beacon frame injection
 - Probe request attacks
 - o Portable and easy-to-use

ESP32 Wi-Fi Penetration Tool Components

- Wi-Fi Controller
 - Manages Wi-Fi interfaces and configurations
 - o Enables promiscuous mode
- Frame Analyzer
 - Parses captured frames (e.g. PMKIDs)
 - Filters by BSSID and helps analysis
- WSL Bypasser
 - Overrides blocking functions in Wi-Fi Stack Libraries
- Webserver
 - o UI for tool control and attack configuration
 - Built on ESP-IDF HTTP server
- PCAP & HCCAPX Serializers
 - Convert frames to formats for:
 - Wireshark (PCAP)
 - Hashcat (HCCAPX)
- Main Component
 - Manages attack types and variations

IoT Attacks Mitigation & Research

Research Challenges

- Need for lightweight and robust trust management
- Ensure physical security, risk management, and intrusion detection at all IoT layers
- Develop a **standardized security framework**
- Improve security protocols as per application
- Consider **K-anonymity** for identity/location privacy
- Use ML/DL-based real-time analysis at IoT nodes
- Dataset limitations lead to ML inaccuracies
- Design lightweight cryptographic algorithms
- Combine encryption with autonomic approaches

IoT Security Foundation

- Established to address IoT security challenges
- Proposes a hub-based architecture to:
 - Reduce system complexity
 - Demonstrate secure system examples
 - Manage system hygiene and resilience
 - Provide centralized management for enterprises

Hub-Based Security Architecture

Hub Functions

Network Management & Security

- Local IoT Network (separation for security)
- Staging & Live system separation

• Gateways and firewalls

Connecting Devices Securely

- Authentication & Authorization
- Secure Boot
- Roots of Trust

Lifecycle Management

- Monitoring, Auditing, Discovery
- Update and Patch Management
- Device Identity and Authorization
- End-of-life Device Management