INFERENCIA FILOGENÉTICA

- 1. DISTANCIA
- 2. ARGUMENTACIÓN HENNIGIANA

Forma simple de medir **divergencia** entre dos terminales y construir árboles filogenéticos

Método 1: UPGMA (unweighted-pair group method with arithmetic means)

1. Medir distancias pareadas (p-distance) y agrupar a aquellos que tienen menor distancia

Método 1: UPGMA (unweighted-pair group method with arithmetic means)

2. Medir distancias pareadas (p-distance) desde el cluster a los otros terminales y reptir primer paso hasta terminar

Método 1: UPGMA (unweighted-pair group method with arithmetic means)

PROBLEMA: no estima correctamente la distancia genética entre dos terminales

SOLUCIÓN: convertir distancias pareadas a distancias evolutivas usando MODELOS DE EVOLUCIÓN

P.e. corrección con JC69

$$P_{ii}(t) = 1/4 + 3/4 \exp(-\mu t)$$

$$P_{ij}(t) = 1/4 - 1/4 \exp(-\mu t)$$

$$\mu t = -1/2 \log(1 - 4/3 p)$$

$$p = 3/4[1 - \exp(-2\mu t)]$$

$$d = -3/4 \ln(1 - 4/3 p)$$

Método 2: Neighbor-Joining: minimiza la longitud total de las ramas

1. Matriz de distancias evolutivas

	а	b	С	d	е
а	0	5	9	9	8
b	5	0	10	10	9
С	9	10	0	8	7
d	9	10	8	0	3
е	8	9	7	3	0

2. <u>Primer ensamblaje de vecinos</u>: convertir valores a matriz Q₁ y escoger el par con valores más bajos

	а	b	C	d	е
a		-50	-38	-34	-34
b	-50		-38	-34	-34
С	-38	-38		-40	-40
d	-34	-34	-40		-48
е	-34	-34	-40	-48	

$$Q_1(a,b) = (n-2)d(a,b) - \sum_{k=1}^5 d(a,k) - \sum_{k=1}^5 d(b,k)$$

3. <u>Primera estimación de long. de ramas</u>

$$\delta(a,u) = rac{1}{2}d(a,b) + rac{1}{2(5-2)}\left[\sum_{k=1}^5 d(a,k) - \sum_{k=1}^5 d(b,k)
ight] \quad = rac{5}{2} + rac{31-34}{6} = 2 \ \delta(b,u) = d(a,b) - \delta(a,u) \quad = 5-2 = 3$$

Método 2: Neighbor-Joining: minimiza la longitud total de las ramas

4. Actualizar matriz de distancia con el nuevo par

$$d(u,c) = \frac{1}{2}[d(a,c) + d(b,c) - d(a,b)] = \frac{9+10-5}{2} = 7$$

$$d(u,d) = \frac{1}{2}[d(a,d) + d(b,d) - d(a,b)] = \frac{9+10-5}{2} = 7$$

$$d(u,e) = \frac{1}{2}[d(a,e) + d(b,e) - d(a,b)] = \frac{8+9-5}{2} = 6$$

	u	С	d	е
u	0	7	7	6
С	7	0	8	7
d	7	8	0	3
е	6	7	3	0

5. Segundo ensamblaje de vecinos: convertir valores a matriz Q_2 y escoger el par con valores más bajos

	u	С	d	е
u		-28	-24	-24
С	-28		-24	-24
d	-24	-24		-28
е	-24	-24	-28	

6. Segunda estimación de long. de ramas

$$\delta(u,v) = rac{1}{2}d(u,c) + rac{1}{2(4-2)}\left[\sum_{k=1}^4 d(u,k) - \sum_{k=1}^4 d(c,k)
ight] = rac{7}{2} + rac{20-22}{4} = 3$$
 $\delta(v,c) = d(u,c) - \delta(u,v) = 7-3 = 4$

Método 2: Neighbor-Joining: minimiza la longitud total de las ramas

7. Actualización final de matriz de distancia con el nuevo par

$$d(v,d) = rac{1}{2}[d(u,d) + d(c,d) - d(u,c)] = rac{7+8-7}{2} = 4 \ d(v,e) = rac{1}{2}[d(u,e) + d(c,e) - d(u,c)] = rac{6+7-7}{2} = 3$$

	v	d	е
v	0	4	3
d	4	0	3
е	3	3	0

8. Tercer ensamblaje de vecinos: convertir valores a matriz Q_3 y escoger el par con valores más bajos

	v	d	е
v		-10	-10
d	-10		-10
е	-10	-10	

9. Última estimación de long. de ramas

$$\delta(v,w) = rac{1}{2}d(v,d) + rac{1}{2(3-2)}\left[\sum_{k=1}^3 d(v,k) - \sum_{k=1}^3 d(d,k)
ight] \quad = rac{4}{2} + rac{7-7}{2} = 2 \ \delta(w,d) = d(v,d) - \delta(v,w) = 4-2 = 2 \ \delta(w,e) = d(v,e) - \delta(v,w) = 3-2 = 1$$

Método 2: Neighbor-Joining: minimiza la longitud total de las ramas

VENTAJAS:

- Muy rápido para matrices muy grandes
- Usa distancias evolutivas y estima longitud de ramas
- Buen estimativo de árbol inicial para otros análisis

DESVENTAJAS:

- No se basa en evolución de caracteres individuales
- No permite evaluar la calidad del árbol

SISTEMÁTICA FILOGENÉTICA

Objetivo: reconstruir las relaciones de parentesco entre taxones y proveer una clasificación concordante usando clados monofiléticos

En la naturaleza hay un orden jerárquico

Los caracteres permiten reconstruir ese orden

Especies y taxones superiores pueden definirse como monofiléticos si y solo si comparten una novedad evolutiva única (sinapomorfía)

Argumentación Hennigiana

- Determinar homología primaria
- Determinar polaridad (Grupo ajeno)
- Identifique congruencias
- Construya el o los árboles

Supuestos sobre homología y polaridad

En ausencia de evidencia en contra, asuma que los caracteres compartidos son resultado de ancestralidad: Homología *a priori*

En ausencia de evidencia en contra, asuma que los caracteres derivados compartidos permiten reconocer relaciones

Argumentación Hennigiana

Algunos problemas con la argumentación Hennigiana

- Polarización a priori de caracteres (grupo ajeno = ancestral)
- El método asume que no hay homoplasia (poco realista)
 - Caracteres inconsistentes con otros violan el modelo Hennigiano

Imposible evitar errores o malas interpretaciones al codificar caracteres