Table des matières

L 1V.		te bleb-binger et approche bethe Misatz					
1.	1 Descr	ription du modèle de Lieb-Liniger					
	1.1.1	Introduction au modèle de gaz de Bose unidimensionnel et Hamiltonien du modèle					
	1.1.2	Fonction d'onde et Hamiltonien et moment à 2 corps					
1.	2 Équa	tion de Bethe et distribution de rapidité					
	$1.\overline{2.1}$	Fonction d'onde dans le secteur ordonné et représentation de Gaudin					
	1.2.2	Conditions aux bords périodiques					
	1.2.3	Thermodynamique du gaz de Lieb-Liniger à l'état fondamental					
	1.2.4						
	1.2.1	Distributions definements.					
2 R	elaxatic	on et Équilibre dans les Systèmes Quantiques Intégrables : Une Approche par la Ther-					
	nodynamique de Bethe						
2.	•	on d'état d'Équilibre de Gibs Généralisé (GGE)					
	2.1.1	Introduction à l'Équilibre de Gibs Généralisé					
	2.1.2	Moyenne dans l'Équilibre de Gibs Généralisé					
	2.1.3	Rôle des charges conservées extensives et quasi-locales					
2.		modynamique de Bethe et relaxation					
۷.							
	2.2.1	Moyenne dans la limite thermodynamique					
	2.2.2	Statistique des macro-états : entropie de Yang-Yang					
	2.2.3	Équations intégrales de la TBA					
		ue hors-équilibre et hydrodynamique généralisée					
3.		ements physiques de la GHD					
	3.1.1	Systèmes intégrables et quasi-particules					
	3.1.2	GGE local					
	3.1.3	Dynamique semi-classique					
3.	2 Équa	tion hydrodynamique de la GHD					
	3.2.1	Équation de continuité					
	3.2.2	Définition de la vitesse effective $v^{\rm eff}$					
	3.2.3	Système fermé et interprétation					
3.	3 Conse	équences physiques					
	3.3.1	Transport balistique					
	3.3.2	Chocs et rarefactions					
	3.3.3	Corrections diffusive (préliminaire)					
3.		ications concrètes					
٥.	3.4.1						
	3.4.2	Expansion d'un gaz 1D					
	3.4.3	Autres systèmes					
3.		cts mathématiques					
ა.							
	3.5.1	Structure Hamiltonienne					
	3.5.2	Comparaison avec hydrodynamique classique					
	3.5.3	Perspectives rigoureuses					
10	1	on de le distribution de peridité dans des état d'équilibre					
		on de la distribution de rapidité dans des état d'équilibre					
4.		uation-réponse et susceptibilités dans les états d'équilibre généralisés					
	4.1.1	Cadre général : chages et dérivées fonctionnelles					
	4.1.2	Cadre d'Équilibre de Gibbs Généralisée					
	4.1.3	Vérification numérique : Echantillonnage du GGE					
4.		te thermodynamique, structure variationnelle et susceptibilités					
	4.2.1	Susceptibilités spectrales et structure variationnelle de l'entropie					

ii Table des matières

4.2.2	Fluctuations gaussiennes autour de l'équilibre thermodynamique	56
	Expression de la Hessienne	
4.2.4	Fluctuations autour de la distribution moyenne et inversion de la Hessienne	57
4.2.5	Vérification numérique thermodynamique : inversion de la courbure et dérivée fonctionnelle	58
Conclusion		63
A Annexes		65

Chapitre 1

Modèle de Lieb-Liniger et approche Bethe Ansatz

Contents

1.1	Descri	ption du modèle de Lieb-Liniger	2
	1.1.1	Introduction au modèle de gaz de Bose unidimensionnel et Hamiltonien du modèle	2
	1.1.2	Fonction d'onde et Hamiltonien et moment à 2 corps	8
1.2	Équat	ion de Bethe et distribution de rapidité	12
	1.2.1	Fonction d'onde dans le secteur ordonné et représentation de Gaudin	12
	1.2.2	Conditions aux bords périodiques	12
	1.2.3	Thermodynamique du gaz de Lieb-Liniger à l'état fondamental	13
	1.2.4	Excitations élémentaires	14

Introduction

Ce chapitre est consacré à la présentation progressive du modèle de Lieb-Liniger et de l'Ansatz de Bethe, outils centraux pour la description d'un gaz de bosons unidimensionnel en interaction via un potentiel de type delta. L'objectif est d'accompagner rigoureusement le lecteur depuis la formulation quantique du système jusqu'aux solutions exactes obtenues par l'approche de Bethe.

Nous commençons, pour des raisons pédagogiques, par le cas le plus simple : une particule libre, sans interaction, dans un espace unidimensionnel avec conditions aux bords périodiques. Cette première étape permet d'introduire naturellement les fonctions d'onde à une particule, leur évolution sous l'action du Hamiltonien libre, ainsi que la quantification résultant des conditions de périodicité — autrement dit, la version élémentaire des équations de Bethe.

Nous passons ensuite à la formulation du problème en champ quantique, en exprimant le Hamiltonien en termes d'opérateurs de création et d'annihilation dans la représentation positionnelle : il s'agit du passage à la seconde quantification. Cette étape permet de formaliser clairement les termes à un corps et à deux corps dans l'Hamiltonien, et d'établir les notations qui seront utilisées tout au long du chapitre.

Une fois ce cadre posé, nous généralisons le raisonnement au cas de N particules pour introduire le modèle complet de Lieb-Liniger. Nous présentons alors l'Ansatz de Bethe dans sa forme générale, qui fournit les états propres de l'Hamiltonien. Ce formalisme permet d'accéder explicitement au spectre du système, ainsi qu'à diverses quantités physiques telles que l'impulsion totale et le nombre de particules.

Nous revenons ensuite sur le cas à deux particules, cette fois en tenant compte de l'interaction locale. L'analyse de ce système met en lumière les effets de l'interaction ponctuelle sur la régularité de la fonction d'onde et les conditions de raccord, ainsi que sur les modifications des équations de Bethe. Ce cas constitue une étape clé vers la généralisation à N particules.

La fonction d'onde est ensuite étendue au cas général de N particules, ce qui nous permet de dériver les équations de Bethe pour un système entièrement interactif. Ces équations encapsulent toute l'information sur les états propres du système.

Enfin, nous introduisons la notion de distribution de rapidité, concept fondamental pour la description des états dans la limite thermodynamique. Elle permet non seulement de caractériser les états d'énergie minimale (états fondamentaux), mais aussi d'analyser des configurations excitées au-delà de l'état fondamental. Ce formalisme constituera le socle des développements ultérieurs sur les propriétés thermodynamiques et dynamiques des gaz bosoniques intégrables.

1.1 Description du modèle de Lieb-Liniger

1.1.1 Introduction au modèle de gaz de Bose unidimensionnel et Hamiltonien du modèle

De la première à la seconde quantification

Introduction. La mécanique quantique se développe historiquement en deux grandes étapes : la première quantification, aussi appelée quantification canonique, et la seconde quantification. Comprendre ces deux cadres est essentiel pour aborder les systèmes quantiques complexes, en particulier ceux où le nombre de particules peut varier.

Première quantification (quantification canonique, particule unique). La première quantification est la mécanique quantique standard, celle que vous avez rencontrée dès vos premiers cours. Elle consiste à quantifier un système classique décrit par des variables dynamiques telles que la position x et la quantité de mouvement p. On procède en remplaçant ces variables par des **opérateurs hermitiens** \hat{x} et

$$\hat{\boldsymbol{p}} \doteq -i\hbar\hat{\boldsymbol{\partial}}_x,\tag{1.1}$$

où \hbar est la constante de Planck réduite, satisfaisant la **relation de commutation canonique** fondamentale $[\hat{x}, \hat{p}] = i\hbar$. L'état du système est alors décrit par une **fonction d'onde** $\psi(x,t)$, solution de **l'équation de Schrödinger** indépendante du nombre de particules :

$$i\hbar \frac{\partial \psi}{\partial t} = \hat{\mathcal{H}}\psi,$$
 (1.2)

avec $\hat{\mathcal{H}}$ l'opérateur hamiltonien.

Exemple: particule libre en une boite à une dimension.

Dans le cas d'une particule libre de masse m se déplaçant en une dimension, l'Hamiltonien est constitué uniquement du terme cinétique $\hat{\mathcal{H}} = \hat{p}^2/2m$. En représentation position, où l'opérateur quantité de mouvement s'écrit comme dans l'équation (1.1), l'Hamiltonien prend alors la forme différentielle :

$$\hat{\mathcal{H}} = -\frac{\hbar^2}{2m}\partial_x^2. \tag{1.3}$$

Les états propres stationnaires de (1.2) dépendant du temps sont de la forme $\psi_k(x,t) = \varphi_k(x) e^{-i\varepsilon(k)t/\hbar}$ où $\varphi_k(x)$ est une fonction propre de l'hamiltonien, soit de l'équation stationnaire $\hat{\mathcal{H}}\varphi_k = \varepsilon(k)\varphi_k$ i.e. pour une particule libre :

$$\frac{\hbar^2}{2m}\partial_x^2 \varphi_k = \varepsilon(k)\varphi_k,\tag{1.4}$$

avec $\varepsilon(k)$ l'énergie associée à une onde plane de nombre d'onde k

$$\varepsilon(k) = \frac{\hbar^2 k^2}{2m}.\tag{1.5}$$

Les fonctions propres spatiales $\varphi_k(x)$ de l'hamiltonien libre s'écrivent comme des combinaisons linéaires d'ondes planes

$$\varphi_k(x) = ae^{-ikx} + be^{ikx}, \text{ avec } (a,b) \in \mathbb{C}^2.$$
 (1.6)

Périodisité. Si la particule est confinée dans une boîte de longueur L avec des conditions aux limites périodiques (ie $\varphi_k(x+L)=\varphi_k(x)$), alors le spectre de k est quantifié :

$$e^{kL} = 1$$
 ou encore $kL \in 2\pi\mathbb{Z}$. (1.7)

Le problème est équivalent à celui d'une particule libre sur un cercle de périmètre L.

La particule est délocalisée sur tout l'espace (le cercle), sans structure particulière i.e. le solutions (1.6) correspondent à des **états non liés** (ou états de diffusion).

Pour $k \neq 0$ (respectivement pour k = 0), la fonction propre $\varphi_k(x)$ de l'équation (1.6) appartient à un sous-espace propre associé à k de dimension 2 (respectivement de dimension 1) engendré par $x \mapsto e^{-ikx}$ et $x \mapsto e^{ikx}$ (respectivement par $x \mapsto 1$). L'espace engendré par l'ensemble des sous-espaces propres forme un **espace de Hilbert**, muni du **produit scalaire** défini par :

$$(\varphi_{k'}, \varphi_k) = \int_0^L \varphi_{k'}^*(x) \varphi_k(x) dx. \tag{1.8}$$

Les sous-espaces propres sont orthogonaux entre eux i.e. en utilisant les conséquences de la condition de périodicité (1.7), $(\varphi_{k'}, \varphi_k) = 0$ pour $|k'| \neq |k|$. Pour chaque sous-espace propre on impose que les états propres forment une base orthonormale i.e. en utilisant (1.7), les fonctions propres φ_k écrit sous la forme (1.6), sont orthogonaux avec $\varphi_{\overline{k}} \colon x \mapsto \pm (b^* e^{-ikx} - a^* e^{ikx})$ soit $(\varphi_{\overline{k}}, \varphi_k) = 0$, et on impose que $|a|^2 + |b|^2 = L^{-1}$ pour assuré la normalité de φ_k et de $\varphi_{\overline{k}}$ soit $(\varphi_k, \varphi_k) = (\varphi_{\overline{k}}, \varphi_{\overline{k}}) = 1$.

Les solutions générales de l'équation de Schrödinger s'écrivent alors comme une superposition d'états propres $\psi = c_0 \psi_0 + \sum_{|k|>0} (c_k \psi_k + c_{\overline{k}} \psi_{\overline{k}}).$

Il y a deux base de vecteur propre particulier :

i) Base de chiralité / impulsion :

$$\varphi_{\pm} = \frac{1}{\sqrt{L}} e^{\pm ikx} \tag{1.9}$$

Ces derniers de plus d'être états propres de l'opérateur énergie $\hat{\mathcal{H}}$, sont des états propres de l'opérateur impulsion \hat{p} , avec valeurs propres opposées $\pm \hbar k$.

ii) Base symétrique / antisymétrique : En appliquant la matrice de passage unitaire $\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ -i & +i \end{pmatrix}$ à la base $\{\varphi_+, \varphi_-\}$, on passer dans las base

$$\begin{cases} \varphi_S = \sqrt{\frac{2}{L}}\cos(kx) & \text{type Neumann} : \varphi_S'(0) = \varphi_S'(L) = 0\\ \varphi_A = \sqrt{\frac{2}{L}}\sin(kx) & \text{type Dirichlet} : \varphi_A(0) = \varphi_A(L) = 0 \end{cases}$$
(1.10)

Cette condition d'orthonormalité est imposée afin de garantir l'indépendance linéaire des états quantiques, et d'assurer que toute fonction d'onde de l'espace de Hilbert puisse être développée de manière unique sur cette base.

Avec le formalisme de Dirac, la fonction d'onde φ_k est représentée par le ket $|k\rangle$ normé $(i.e.\ \langle k'|k\rangle = \delta_{k',k})$, où $\delta_{p,q}$ est le symbole de Kronecker), et l'équation de Schrödinger s'écrit : $\hat{\mathcal{H}}|k\rangle = \varepsilon(k)|k\rangle$. En appliquant le bra $\langle x|$ de part et d'autre, on obtient : $\langle x|\hat{\mathcal{H}}|k\rangle = \varepsilon(k)\langle x|k\rangle$, où $|x\rangle$ est normé $(i.e.\ \langle x'|x\rangle = \delta(x'-x)$ avec $\delta(y-x)$ une distribution de Dirac) et $\varphi_k(x) = \langle x|k\rangle$ est la représentation positionnelle de l'état $|k\rangle$.

La base $\{|x\rangle\}$ étant continue, et les états $\{|k\rangle\}$ quantifiés (par exemple dans une boîte de taille finie avec conditions aux limites périodiques), les relations de changement de base s'écrivent :

$$|k\rangle = \int_0^L dx \,\varphi_k(x) |x\rangle, \qquad |x\rangle = \sum_k \varphi_k^*(x) |k\rangle,$$
 (1.11)

avec $\varphi_k^*(x) = \langle k|x\rangle$. L'état $|x\rangle$ est relié aux états $|k\rangle$ par une transformation de Fourier discrète. Ces formules montrent que les états $|k\rangle$ sont les composantes de Fourier de l'état $|x\rangle$.

De la particule unique aux systèmes à N particules. Pour un système composé de N particules identiques, une approche naturelle consiste à introduire une fonction d'onde $\varphi(x_1,\ldots,x_N)$ dépendant de N variables, symétrique pour des bosons ou antisymétrique pour des fermions sous l'échange de deux coordonnées $x_i \leftrightarrow x_j$, solution de l'équation de Schrödinger à N corps. Toutefois, cette description devient rapidement inextricable lorsque le nombre de particules augmente, ou lorsque le système permet la création et l'annihilation de particules, comme dans un milieu ouvert ou en contact avec un bain thermique.

Seconde quantification

Pour dépasser ces limitations, on adopte le **formalisme de la seconde quantification**, dans lequel l'état du système est décrit non plus par une fonction d'onde mais par un vecteur dans un espace de Fock. Les opérateurs de création et d'annihilation remplacent alors les variables dynamiques classiques et permettent une description unifiée et élégante des systèmes à nombre variable de particules.

Structure de l'espace des états de Fock. Dans ce formalisme, l'espace des états est une somme directe d'espaces à N particules, et chaque état est décrit par l'occupation des différents modes quantiques. Les opérateurs \hat{a}_k^{\dagger} et \hat{a}_k créent et annihilent une particule dans l'état d'onde plane de moment k:

$$|k\rangle = \hat{a}_k^{\dagger} |\emptyset\rangle, \qquad (1.12)$$

état avec une particule dans le mode k , où $|\emptyset\rangle$ désigne le vide quantique de Fock, défini par :

$$\forall k \in \mathbb{R}: \qquad \hat{\boldsymbol{a}}_k |\emptyset\rangle = 0, \quad \langle \emptyset |\emptyset\rangle = 1.$$
 (1.13)

Le symbole \hat{a}_{λ} représente ici de manière générique soit l'opérateur \hat{b}_{λ} pour les bosons, soit \hat{c}_{λ} pour les fermions, et satisfait respectivement les relations de commutation (pour les bosons) ou d'anticommutation (pour les fermions). Dans ce qui suit, nous nous restreignons au cas bosonique.

Relations de commutation bosoniques. Les relations de commutation fondamentales pour les bosons sont :

$$[\hat{\boldsymbol{b}}_{k}, \hat{\boldsymbol{b}}_{k'}] = [\hat{\boldsymbol{b}}_{k}^{\dagger}, \hat{\boldsymbol{b}}_{k'}^{\dagger}] = 0, \qquad [\hat{\boldsymbol{b}}_{k}, \hat{\boldsymbol{b}}_{k'}^{\dagger}] = \hat{\boldsymbol{\delta}}_{k,k'},$$
 (1.14)

où $\hat{\delta}_{k,k'}$ est le symbole de Kronecker, valant 1 si k=k' et 0 sinon.

Nature du champ quantique. La seconde quantification généralise ce cadre en permettant de traiter des systèmes où le nombre de particules n'est pas fixé, ce qui est fréquent en physique des particules, des champs quantiques, ou des gaz quantiques.

L'idée principale est de ne plus quantifier directement les particules, mais le *champ quantique* associé. Les états d'une particule unique deviennent alors des états d'occupation dans un espace de Fock, qui décrit l'ensemble des configurations possibles avec zéro, une, ou plusieurs particules.

Champs de Bose. Le gaz de Bose unidimensionnel est décrit dans le cadre de la théorie quantique des champs par un champ bosonique canonique $\hat{\Psi}(x)$, qui agit sur l'espace de Fock des états du système. Ce champ quantique encode l'annihilation d'une particule en x, et son adjoint $\hat{\Psi}^{\dagger}(x)$ correspond à la création d'une particule en ce point.

$$|x\rangle = \hat{\Psi}^{\dagger}(x) |\emptyset\rangle, \qquad (1.15)$$

état avec une particule en x et $|\emptyset\rangle$ est le vide quantique de Fock défini par :

$$\forall x \in \mathbb{R}, \qquad \hat{\Psi}(x) |\emptyset\rangle = 0. \tag{1.16}$$

Relations de commutation bosoniques. Ces champs satisfont les relations de commutation canoniques à temps égal :

$$[\hat{\Psi}(x), \hat{\Psi}(y)] = [\hat{\Psi}^{\dagger}(x), \hat{\Psi}^{\dagger}(y)] = 0, \qquad [\hat{\Psi}(x), \hat{\Psi}^{\dagger}(y)] = \hat{\delta}(x - y),$$
 (1.17)

où $\hat{\delta}(x-y)$ est la fonction delta de Dirac. Ces relations expriment le caractère bosonique des excitations du champ.

État à N particules. Soient N bosons dans les états $\{k_1, \dots, k_N\}$ (un boson dans l'état k_1 , un autre dans k_2 , etc.) et aux positions $\{x_1, \dots, x_N\}$ (un boson en x_1 , un autre en x_2 , etc.). Leurs états s'écrivent alors :

$$|\{k_1, \cdots, k_N\}\rangle = \frac{1}{\sqrt{N!}} \hat{\boldsymbol{b}}_{k_1}^{\dagger} \cdots \hat{\boldsymbol{b}}_{k_N}^{\dagger} |\emptyset\rangle, \quad |\{x_1, \cdots, x_N\}\rangle = \frac{1}{\sqrt{N!}} \hat{\boldsymbol{\Psi}}^{\dagger}(x_1) \cdots \hat{\boldsymbol{\Psi}}^{\dagger}(x_N) |\emptyset\rangle, \tag{1.18}$$

où le facteur $1/\sqrt{N!}$ traduit le caractère d'indiscernabilité des bosons et garantit la symétrisation correcte de l'état.

Changement de base. On peut relier les opérateurs de création/annihilation dans la base des ondes planes aux opérateurs de champ via :

$$\hat{\boldsymbol{b}}_{k}^{\dagger} = \int_{0}^{L} dx \, \varphi_{k}(x) \hat{\boldsymbol{\Psi}}^{\dagger}(x), \qquad \hat{\boldsymbol{\Psi}}^{\dagger}(x) = \sum_{k} \varphi_{k}^{*}(x) \hat{\boldsymbol{b}}_{k}^{\dagger}. \tag{1.19}$$

Le champ quantique $\hat{\Psi}(x)$ est relié aux opérateurs de moment \hat{b}_k par une transformation de Fourier. Ces formules montrent que les opérateurs \hat{b}_k sont les composantes de Fourier du champ $\hat{\Psi}(x)$.

Ainsi, un état à N bosons dans la base $|k\rangle^{\otimes N}$ peut s'écrire :

$$|\{k_a\}\rangle = \frac{1}{\sqrt{N!}} \int dx_1 \cdots dx_N \,\varphi_{\{k_a\}}(\{x_a\}) \,\hat{\mathbf{\Psi}}^{\dagger}(x_1) \cdots \hat{\mathbf{\Psi}}^{\dagger}(x_N) \,|\emptyset\rangle \,, \tag{1.20}$$

où on note $\{k_a\} \equiv \{k_1, \dots, k_N\}$ et $\{x_a\} \equiv \{x_1, \dots, x_N\}$, et la fonction d'onde symétrisée s'écrit : $\varphi_{\{k_a\}}(\{x_a\}) = \frac{1}{\sqrt{N!}} \sum_{\sigma \in \hat{\boldsymbol{S}}_N} \prod_{i=1}^N \varphi_{k_{\sigma(i)}}(x_i)$, avec $\hat{\boldsymbol{S}}_N$ le groupe symétrique d'ordre N mais aussi :

$$\varphi_{\{k_a\}}(\{x_a\}) = \frac{1}{\sqrt{N!}} \langle \emptyset | \hat{\mathbf{\Psi}}(x_1) \cdots \hat{\mathbf{\Psi}}(x_N) | \{k_a\} \rangle. \tag{1.21}$$

Operateur.

Opérateur à un corps.

Dans la base discrètes des modes $\{|k\rangle\}$. Soit \hat{f} un opérateur à une particule, dont les éléments de matrice dans une base orthonormée $\{|k\rangle\}$ sont donnés par $f_{\lambda\nu}=\langle\lambda|\hat{f}|\nu\rangle$. Un opérateur symétrique à N particules correspondant à la somme des actions de \hat{f} sur chacune des particules s'écrit en première configuration : $\hat{F}=\sum_{i=1}^N\hat{f}^{(i)}$, où $\hat{f}^{(i)}$ désigne l'action de \hat{f} sur la i^e particule uniquement. En base de Dirac, cela donne : $\hat{f}^{(i)}=\sum_{\lambda,\nu}f_{\lambda\nu}\mid i:\lambda\rangle\langle i:\nu\mid$, où $\mid i:\lambda\rangle$ représente un état où seule la i^e particule est dans l'état λ . On peut montrer que la somme des projecteurs agissant sur chaque particule s'identifie à une combinaison d'opérateurs de création et d'annihilation : $\sum_{i=1}^N |i:\lambda\rangle\langle i:\nu| = \hat{a}^\dagger_\lambda \hat{a}_\nu$, (où \hat{a}_λ est une notation générique désignant \hat{b}_λ pour les bosons, ou \hat{c}_λ pour les fermions).

On en déduit que l'opérateur à un corps \hat{F} peut se réécrire dans le formalisme de la seconde quantification comme :

$$\hat{F} = \sum_{\lambda,\nu} \langle \lambda | \, \hat{f} \, | \nu \rangle \, \hat{a}_{\lambda}^{\dagger} \hat{a}_{\nu}. \tag{1.22}$$

L'opérateur $\hat{a}_{\lambda}^{\dagger}\hat{a}_{\nu}$ fais la transition d'une particule de l'état ν à vers l'état λ . Si $\lambda = \nu$ cette opérateur est l'opérateur nombre de particule dans le mode λ .

Exemples : Énergie cinétique totale. Si l'on sait diagonaliser l'opérateur \hat{f} , c'est-à-dire si l'on peut écrire : $\hat{f} = \sum_k f_k |k\rangle \langle k|$, alors l'opérateur à N corps associé s'écrit : $\hat{F} = \sum_k \langle k|\hat{f}|k\rangle \hat{a}_k^{\dagger} \hat{a}_k$. On obtient ainsi une forme diagonale de \hat{F} en seconde quantification. Un exemple immédiat est l'énergie des particules libres ; on rappelle que pour une : $\hat{\mathcal{H}}|k\rangle = \varepsilon(k)|k\rangle$, avec $\varepsilon(k)$ l'énergie du mode k (1.5). Alors en injectant $\hat{f} = \hat{\mathcal{H}} (=\frac{\hat{p}^2}{2m})$ dans (1.22) on obtient l'énergie cinétique totale du système :

$$\hat{K} = \sum_{k} \varepsilon(k) \, \hat{b}_{k}^{\dagger} \hat{b}_{k}. \tag{1.23}$$

Et pour N particules, en écrivant l'état sous la forme (1.18), en utilisant les relations de commutation (1.14) et la définition de l'état de Fock (1.13), on trouve que $|\{k_a\}\rangle$ est un état propre de \hat{K} associé à l'énergie $\left(\sum_{i=1}^N \varepsilon(k_i)\right)$, c'est-à-dire :

$$\hat{K} |\{k_a\}\rangle = \left(\sum_{i=1}^{N} \varepsilon(k_i)\right) |\{k_a\}\rangle.$$
(1.24)

Dans la base continue des positions $\{|x\rangle\}$. En injectant les relation des changement de base d'état (1.11) et de chanp (1.19) (qui prend la même forme pour \hat{a}_{λ} et pour $\hat{a}_{\lambda}^{\dagger}$), dans (1.22) on obtient :

$$\hat{\mathbf{F}} = \iint_0^L dx \, dy \, \hat{\mathbf{\Psi}}^{\dagger}(x) \, \langle x | \, \hat{\mathbf{f}} \, | y \rangle \, \hat{\mathbf{\Psi}}(y). \tag{1.25}$$

Exemples : Énergie cinétique totale. Reprenons l'exemple de l'énergie cinétique totale avec $\hat{f} = \frac{\hat{p}^2}{2m}$. En injectant $\langle x|\hat{f}|x'\rangle = -\frac{\hbar^2}{2m}\hat{\partial}_y^2\delta(y-x)$ dans (1.25) on réécrit l'opérateur énergie cinétique total \hat{K} de l'équation (1.23) :

$$\hat{\mathbf{K}} = -\frac{\hbar^2}{2m} \int_0^L dx \,\hat{\mathbf{\Psi}}^{\dagger}(x) \,\hat{\boldsymbol{\partial}}_x^2 \hat{\mathbf{\Psi}}(x) = \frac{\hbar^2}{2m} \int_0^L dx \,\hat{\boldsymbol{\partial}}_x \hat{\mathbf{\Psi}}^{\dagger}(x) \cdot \hat{\boldsymbol{\partial}}_x \hat{\mathbf{\Psi}}(x). \tag{1.26}$$

Lorsque cet Hamiltonien agit sur l'état de Fock à N particules $|\{k_a\}\rangle$, les règles de commutation (1.17) ainsi que

la définition des états de Fock (1.16) impliquent (cf. Annexe ??):

$$\hat{\boldsymbol{K}} |\{k_a\}\rangle = \int_0^L d^N z \,\hat{\boldsymbol{K}}_N \,\varphi_{\{k_a\}}(\{z_a\}) \hat{\boldsymbol{\Psi}}(z_1) \cdots \hat{\boldsymbol{\Psi}}^{\dagger}(z_N) |\emptyset\rangle , \quad \text{avec} \quad \hat{\boldsymbol{K}}_N = -\sum_{i=1}^N \frac{\hbar^2 \hat{\boldsymbol{\partial}}_{z_i}^2}{2m}, \tag{1.27}$$

où $-i\hbar\hat{\partial}_{z_i}$ désigne l'opérateur impulsion de la position z_i particule.

Quantité de mouvement totale et nombre total de particules. Dans l'exemple de l'énergie cinétique, l'opérateur \hat{f} est proportionnel à l'opérateur impulsion au carré \hat{p}^2 . On peut appliquer un raisonnement similaire à d'autres observables : pour la quantité de mouvement totale, on choisit $\hat{f} = \hat{p}$ (puissance 1), et pour le nombre total de particules, on prend $\hat{f} = \hat{p}^0$, c'est-à-dire l'identité. On note \hat{Q} l'opérateur nombre total de particule et \hat{P} l'opérateur quantité mouvement totale . En seconde quantification, ces opérateurs s'écrivent dans la base $\{|k\rangle\}$:

$$\hat{Q} = \sum_{k} \hat{b}_{k}^{\dagger} \hat{b}_{k}, \quad \hat{P} = i\hbar \sum_{k} k \, \hat{b}_{k}^{\dagger} \hat{b}_{k}, \tag{1.28}$$

Lorsqu'on les applique à un état de Fock à N particules $|\{k_a\}\rangle$, on obtient :

$$\hat{\mathbf{Q}}|\{k_a\}\rangle = \left(\sum_{i=1}^{N} 1\right)|\{k_a\}\rangle, \quad \hat{\mathbf{P}}|\{k_a\}\rangle = -i\hbar \left(\sum_{i=1}^{N} k\right)|\{k_a\}\rangle. \tag{1.29}$$

Dans la base position $\{|x\rangle\}$, les opérateurs s'écrivent :

$$\hat{\mathbf{Q}} = \int_0^L dx \, \hat{\mathbf{\Psi}}^{\dagger}(x) \hat{\mathbf{\Psi}}(x) \,, \quad \hat{\mathbf{P}} = \frac{i\hbar}{2} \int_0^L dx \, \left\{ \hat{\mathbf{\Psi}}^{\dagger}(x) \hat{\boldsymbol{\partial}}_x \hat{\mathbf{\Psi}}(x) - \left[\hat{\boldsymbol{\partial}}_x \hat{\mathbf{\Psi}}^{\dagger}(x) \right] \, \hat{\mathbf{\Psi}}(x) \right\} \tag{1.30}$$

où l'expression symétrisée de \hat{P} assure son hermiticité.

Lorsqu'on applique ces opérateurs à l'état $|\{k_a\}\rangle$, on obtient (comme pour l'énergie cinétique) :

$$\hat{\boldsymbol{Q}} |\{k_a\}\rangle = \int_0^L d^N z \,\hat{\boldsymbol{\mathcal{N}}}_N \,\varphi_{\{k_a\}}(\{z_a\}) \hat{\boldsymbol{\Psi}}(z_1) \cdots \hat{\boldsymbol{\Psi}}^{\dagger}(z_N) |\emptyset\rangle , \quad \text{avec} \quad \hat{\boldsymbol{\mathcal{N}}}_N = \sum_{i=1}^N 1, \quad (1.31)$$

$$\hat{\boldsymbol{P}}|\{k_a\}\rangle = \int_0^L d^N z \,\hat{\boldsymbol{\mathcal{P}}}_N \,\varphi_{\{k_a\}}(\{z_a\}) \hat{\boldsymbol{\Psi}}(z_1) \cdots \hat{\boldsymbol{\Psi}}^{\dagger}(z_N) \,|\emptyset\rangle , \quad \text{avec} \quad \hat{\boldsymbol{\mathcal{P}}}_N = -i\hbar \sum_{i=1}^N \hat{\boldsymbol{\partial}}_{z_i}. \quad (1.32)$$

On s'avance sur le chapitre (2). , en voulant généraliser avec $\hat{f} = \hat{p}^q$ où q est un entier. Soit dans la base $\{|k\rangle\}$: $\hat{F} = \hbar^q \sum_k k^q \hat{b}_k^\dagger \hat{b}_k$ et en l'appliquant à $|\{k_a\}\rangle$:

$$\hat{\mathbf{F}} |\{k_a\}\rangle = \hbar^q \left(\sum_{i=1}^N k_i^q\right) |\{k_a\}\rangle, \qquad (1.33)$$

et dans la base $\{|x\rangle\}$: $\hat{\boldsymbol{F}} = \frac{\hbar^q}{2} \int_0^L \left\{ \hat{\boldsymbol{\Psi}}^\dagger(x) \hat{\boldsymbol{\partial}}_x^q \hat{\boldsymbol{\Psi}}(x) + (-1)^q \left[\hat{\boldsymbol{\partial}}_x^q \hat{\boldsymbol{\Psi}}^\dagger(x) \right] \hat{\boldsymbol{\Psi}}(x) \right\} dx$ et en l'appliquant à $|\{k_a\}\rangle$: $\hat{\boldsymbol{F}} |\{k_a\}\rangle = \int_0^L d^N z \, \hat{\boldsymbol{\mathcal{F}}}_N \, \varphi_{\{k_a\}}(\{z_a\}) \hat{\boldsymbol{\Psi}}(z_1) \cdots \hat{\boldsymbol{\Psi}}^\dagger(z_N) \, |\emptyset\rangle$ avec $\hat{\boldsymbol{\mathcal{F}}}_N = \hbar^q \sum_{i=1}^N (\hat{\boldsymbol{\partial}}_{z_i})^q$.

Opérateurs à deux corps

Dans la base discrètes des modes $\{|k\rangle\}$. Nous considérons à présent les termes d'interaction impliquant deux particules , $\hat{\boldsymbol{v}}$, dont les éléments de matrices sont donnés par $v_{\alpha\beta\gamma\delta} = \langle 1:\alpha;2:\beta|\,\hat{\boldsymbol{v}}\,|1:\gamma;2:\delta\rangle$, où $|i:\gamma;j:\delta\rangle$ représente l'état où la $i^{\rm e}$ particules est dans l'état γ et la $j^{\rm e}$ dans l'état δ . Ceux-ci correspondent à des opérateurs de la forme : $\hat{\boldsymbol{V}} = \sum_{j< i} \hat{\boldsymbol{v}}^{(i,j)} = \frac{1}{2} \sum_{i,j\neq i} \hat{\boldsymbol{v}}^{(i,j)}$. avec $\hat{\boldsymbol{v}}^{(i,j)}$ désigne l'interaction à deux corps entre les $i^{\rm e}$ et $j^{\rm e}$ particules , exprimés dans la base à deux états : $\hat{\boldsymbol{v}}^{(i,j)} = \sum_{\alpha,\beta,\delta,\gamma} |i:\alpha;j:\beta\rangle v_{\alpha\beta\gamma\delta} \langle i:\gamma;j:\delta|$. On peut réécrire l'opérateur $\hat{\boldsymbol{V}}$ en termes d'opérateurs de création et d'annihilation comme suit :

$$\hat{\mathbf{V}} = \frac{1}{2} \sum_{\alpha, \beta, \gamma, \delta} \langle 1 : \alpha; 2 : \beta | \hat{\mathbf{v}} | 1 : \gamma; 2 : \delta \rangle \ \hat{\mathbf{a}}_{\alpha}^{\dagger} \hat{\mathbf{a}}_{\beta}^{\dagger} \hat{\mathbf{a}}_{\delta} \hat{\mathbf{a}}_{\gamma}. \tag{1.34}$$

Cette forme est particulièrement utile pour le traitement des interactions dans l'espace de Fock.

Dans la base continue des positions $\{|x\rangle\}$. En injectant les relation des changement de base d'état (1.11) et de chang (1.19), dans (1.34) on obtient :

$$\hat{\mathbf{V}} = \frac{1}{2} \iiint_{0}^{L} dx_{1} dx_{2} dx'_{1} dx'_{2} \langle 1 : x_{1}, 2 : x_{2} | \hat{\mathbf{v}} | 1 : x'_{1}, 2 : x'_{2} \rangle \hat{\mathbf{\Psi}}^{\dagger}(x_{1}) \hat{\mathbf{\Psi}}^{\dagger}(x_{2}) \hat{\mathbf{\Psi}}(x'_{2}) \hat{\mathbf{\Psi}}(x'_{1})$$
(1.35)

Exemple: Interactions ponctuelles. Dans le cas d'une interaction ne dépendant que de la distance relative entre deux particules, $\langle 1: x_1, 2: x_2 | \hat{v} | 1: x_1', 2: x_2' \rangle = v(x_1 - x_2) \delta(x_1 - x_1') \delta(x_2 - x_2')$, l'expression (1.35) se simplifie:

$$\hat{\mathbf{V}} = \frac{1}{2} \int dx_1 \, dx_2 \, v(x_1 - x_2) \, \hat{\mathbf{\Psi}}^{\dagger}(x_1) \, \hat{\mathbf{\Psi}}^{\dagger}(x_2) \, \hat{\mathbf{\Psi}}(x_2) \, \hat{\mathbf{\Psi}}(x_1)$$
(1.36)

soit pour des interactions ponctuelles :

$$\hat{\mathbf{V}} = \frac{g}{2} \int dx \, \hat{\mathbf{\Psi}}^{\dagger}(x) \, \hat{\mathbf{\Psi}}^{\dagger}(x) \, \hat{\mathbf{\Psi}}(x) \, \hat{\mathbf{\Psi}}(x)$$
 (1.37)

et quand on l'applique à l'état $|\{k_a\}\rangle$, les règles de commutations (1.17) et la définition d'état de Fock (1.16) impliquent que (cf Annex ??)

$$\hat{\boldsymbol{V}}|\{k_a\}\rangle = \int d^N z \,\hat{\boldsymbol{\mathcal{V}}}_N \varphi_{\{k_a\}}(\{z_a\}) \hat{\boldsymbol{\Psi}}(z_1) \cdots \hat{\boldsymbol{\Psi}}^{\dagger}(z_N) |\emptyset\rangle \quad \text{avec} \quad \hat{\boldsymbol{\mathcal{V}}}_N = g \sum_{1 \le i < j \le N} \hat{\boldsymbol{\delta}}(z_i - z_j)$$
(1.38)

où g est la constante de couplage.

Expression de l'Hamiltonien de Lieb-Liniger.

À partir d'ici, on fixe $\hbar=m=1$. Ainsi, les dimensions (unités) des nombres d'onde k et des vitesses ne sont plus différenciées. Dans le formalisme des opérateurs de champs, l'Hamiltonien d'un système soumis à des interactions ponctuelles est la somme de l'énergie cinétique \hat{K} donnée par (1.26), et du terme d'interaction \hat{V} introduit dans (1.37):

$$\hat{\boldsymbol{H}} = \int dx \,\hat{\boldsymbol{\Psi}}^{\dagger}(x) \left[-\frac{1}{2} \hat{\boldsymbol{\partial}}_x^2 + \frac{g}{2} \hat{\boldsymbol{\Psi}}^{\dagger}(x) \hat{\boldsymbol{\Psi}}(x) \right] \,\hat{\boldsymbol{\Psi}}(x). \tag{1.39}$$

Lorsqu'on applique cet Hamiltonien à un état de Fock à N particules $|\{\theta_1, \dots, \theta_N\}\rangle$, où chaque paramètre θ_i est homogène à un nombre d'onde ou à une vitesse (mais pas nécessairement homogéne à un nombre d'onde k d'où la notation θ), on obtient — en utilisant les équations (1.26) et (1.38) :

$$\hat{\boldsymbol{H}} |\{\theta_a\}\rangle = \int d^N z \,\hat{\boldsymbol{\mathcal{H}}}_N \varphi_{\{\theta_a\}}(\{z_a\}) \hat{\boldsymbol{\Psi}}(z_1) \cdots \hat{\boldsymbol{\Psi}}^{\dagger}(z_N) |\emptyset\rangle , \qquad (1.40)$$

avec $\{\theta_a\} \equiv \{\theta_1, \cdots, \theta_N\}$ et .

$$\hat{\mathcal{H}}_N = \hat{\mathcal{K}}_N + \hat{\mathcal{V}}_N \quad \text{où on rappelle} \quad \hat{\mathcal{K}}_N = -\frac{1}{2} \sum_{i=1}^N \partial_{z_i}, \text{ et } \hat{\mathcal{V}}_N = g \sum_{1 \le i < j \le N} \hat{\delta}(z_i - z_j). \tag{1.41}$$

Équation du mouvement associée. L'équation du mouvement du champ $\Psi(x)$ est obtenue à partir de l'équation de Heisenberg :

$$i\hat{\partial}_t \hat{\boldsymbol{\Psi}} = [\hat{\boldsymbol{\Psi}}, \hat{\boldsymbol{H}}], \tag{1.42}$$

ce qui, après évaluation explicite du commutateur (1.17), conduit à :

$$i\hat{\partial}_t \hat{\Psi} = -\frac{1}{2} \hat{\partial}_x^2 \hat{\Psi} + g \hat{\Psi}^{\dagger} \hat{\Psi} \hat{\Psi}$$
 (1.43)

est appelée l'équation de Schrödinger non linéaire (NS).

Pour g > 0, l'état fondamental à température nulle est une sphère de Fermi. Seul ce cas sera considéré par la suite.

Conservation et commutation. Les opérateurs nombre totale de particule \hat{Q} et quantité tatole de mouvement \hat{Q} commutent avec l'Hamiltonien \hat{H} du modèle de Lieb-Liniger :

$$[\hat{H}, \hat{Q}] = 0, \quad [\hat{H}, \hat{P}] = 0.$$
 (1.44)

Ils constituent ainsi des intégrales du mouvement. Cette propriété est une manifestation de la symétrie translationnelle du système (pour \hat{P}) et de la conservation du nombre total de particules (pour \hat{Q}).

Nous verrons au chapitre (2) que cette situation s'étend à une *infinité d'intégrales du mouvement* dans les systèmes intégrables, ce qui permettra de construire l'ensemble de Gibbs généralisé (GGE).

États propres et valeurs propres. Les états propres $|\{\theta_a\}\rangle$, construits dans le cadre de la seconde quantification à partir de la solution du modèle de Lieb-Liniger, sont simultanément fonctions propres des opérateurs \hat{Q} , \hat{P} et \hat{K} :

$$\hat{\boldsymbol{Q}}|\{\theta_a\}\rangle = N|\{\theta_a\}\rangle, \quad \hat{\boldsymbol{P}}|\{\theta_a\}\rangle = \left(\sum_{a=1}^N \theta_a\right)|\{\theta_a\}\rangle, \quad \hat{\boldsymbol{K}}|\{\theta_a\}\rangle = \left(\frac{1}{2}\sum_{a=1}^N \theta_a^2\right)|\{\theta_a\}\rangle. \tag{1.45}$$

Conclusion. La première quantification constitue la base indispensable pour comprendre le comportement quantique d'un nombre fixé de particules. La seconde quantification en est une extension naturelle, nécessaire pour décrire des systèmes plus complexes où le nombre de particules peut varier. Elle repose sur la quantification des champs et l'introduction d'opérateurs de création et d'annihilation, ouvrant ainsi la voie à la physique quantique des champs et à de nombreuses applications modernes.

Les opérateurs \hat{Q} , \hat{P} ((1.30)) et \hat{H} (1.39) possèdent une structure diagonale commune dans la base des états propres $|\{\theta_a\}\rangle$, révélant la nature intégrable du modèle de Lieb-Liniger. Leurs valeurs propres sont respectivement les 0^e , 1^{er} et 2^e moments des θ_a . Cette structure permet de généraliser la construction à une hiérarchie complète d'observables conservées, qui seront présentées au chapitre suivant.

En passant par la seconde quantification, nous avons pu relier l'Hamiltonien à une particule $\hat{\mathcal{H}}_1$ (1.3) à un Hamiltonien à N particules $\hat{\mathcal{H}}_N$ (1.41) dans le modèle de Lieb-Liniger (système avec interactions ponctuelles). Les états $\varphi_{\{\theta_a\}}$ sont des états propres du nombre total de particules $\hat{\mathcal{N}}_N$ (1.31), de la quantité de mouvement totale $\hat{\mathcal{P}}_N$ (1.32) et de l'hamiltonien $\hat{\mathcal{H}}_N$.

Dans le cas d'un système à une particule, les états de la forme (1.9) sont déjà propres de $\hat{\mathcal{N}}_1$, $\hat{\mathcal{P}}_1$ et $\hat{\mathcal{H}}_1$ (cf. (1.4)). Mais quelle est leur forme pour N particules? Et comment généraliser les conditions périodiques (1.7), valables pour une particule, à un système à N particules?

Nous allons étudier le cas de N=2 corps, afin de simplifier l'analyse tout en capturant les premiers effets non triviaux des interactions. Cela permettra de comprendre plus facilement les implications physiques des interactions ponctuelles, en particulier leur influence sur la structure des états propres, les conditions de continuité des fonctions d'onde, ainsi que les relations de dispersion modifiées. Ce cas servira de base pour introduire les concepts clés de la résolution exacte par la méthode de Bethe ansatz, avant de les généraliser au cas N-corps.

1.1.2 Fonction d'onde et Hamiltonien et moment à 2 corps

Introduction au système de deux bosons avec interaction de contact. Considérons maintenant un système de deux bosons confinés dans une boîte unidimensionnelle de longueur L, avec des conditions aux limites périodiques. Contrairement au cas à une seule particule, une interaction de contact intervient ici dans la dynamique. L'Hamiltonien à deux particules s'écrit :

$$\hat{\mathcal{H}}_2 = \hat{\mathcal{K}}_2 + \hat{\mathcal{V}}_2$$
, avec $\hat{\mathcal{K}}_2 = -\frac{1}{2}\partial_{z_1}^2 - \frac{1}{2}\partial_{z_2}^2$, et $\hat{\mathcal{V}}_2 = g\,\delta(z_1 - z_2)$. (1.46)

On rappelle que, pour des particules de masse unitaire (i.e., $\hbar=m=1$), les énergies propres de l'opérateur cinétique $\hat{\mathcal{K}}_2$, associées aux fonctions d'onde symétrisées $\varphi_{\{\theta_1,\theta_2\}}$, sont données par :

$$\varepsilon(\theta_1) + \varepsilon(\theta_2) = \frac{\theta_1^2}{2} + \frac{\theta_2^2}{2}.$$
 (1.47)

Afin de simplifier le problème, nous nous plaçons dans le référentiel du centre de masse.

Changement de variables : coordonnées du centre de masse et relative. En première quantification, on introduit les nouvelles variables : $Z=\frac{z_1+z_2}{2}$ (centre de masse), $Y=z_1-z_2$ (coordonnée relative). Dans ce changement de variables, l'opérateur laplacien total $\partial_{z_1}^2+\partial_{z_2}^2$ devient $\frac{1}{2}\partial_Z^2+2\partial_Y^2$. L'Hamiltonien (1.46) se décompose alors en la somme de deux Hamiltoniens agissant respectivement sur Z et Y:

$$\hat{\mathcal{H}}_2 = -\frac{1}{4}\partial_Z^2 + \hat{\mathcal{H}}_{rel}, \quad \text{avec} \quad \hat{\mathcal{H}}_{rel} = -\partial_Y^2 + g\,\delta(Y).$$
 (1.48)

Résolution du problème du centre de masse et de la coordonnée relative. L'Hamiltonien du centre de masse, $-\frac{1}{4}\partial_Z^2$, décrit une particule de masse totale $\bar{m}=2$. Ses états propres sont des ondes planes associées à une énergie $\bar{\theta}^2$, avec : $\bar{\theta}=\frac{\theta_1+\theta_2}{2}$, jouant ici un rôle analogue à celui d'un pseudo-moment associé dans le référentielle de laboratoire. Le Hamiltonien relatif, $\hat{\mathcal{H}}_{\rm rel}$, correspond quant à lui à une particule de masse réduite $\tilde{m}=\frac{1}{2}$ soumise à un potentiel delta centré en Y=0. Son équation propre s'écrit :

$$-\partial_Y^2 \,\tilde{\varphi}(Y) + g \,\delta(Y) \,\tilde{\varphi}(Y) = \tilde{\varepsilon} \,\tilde{\varphi}(Y), \tag{1.49}$$

où $\tilde{\varepsilon}$ désigne l'énergie associée au mouvement relatif.

Forme symétrique de la fonction d'onde pour bosons. Dans le référentiel du centre de masse. Le système est le même que que celuis d'un particules de masse $\tilde{m} = \frac{1}{2}$. Le système étant composé de particules bosoniques, on cherche une solution symétrique que l'on écrit sous la forme :

$$\tilde{\varphi}(Y) = a e^{i\frac{1}{2}\tilde{\theta}|Y|} + b e^{-i\frac{1}{2}\tilde{\theta}|Y|} \propto \sin\left(\frac{1}{2}(\tilde{\theta}|Y| + \Phi)\right). \tag{1.50}$$

Le paramètre $\tilde{\theta} = \theta_1 - \theta_2$ joue ici un rôle analogue à celui d'un pseudo-moment associé à la coordonnée relative, est la phase s'écrit

$$\Phi(\tilde{\theta}) = 2 \arctan\left(\frac{1}{i}\frac{a+b}{a-b}\right), \tag{1.51}$$

car $a \exp(ix) + b \exp(-ix) = 2\sqrt{ab} \sin\left(x + \arctan\left(-i\frac{a+b}{a-b}\right)\right)$. Pour $\tilde{\theta} < 0$, les termes exponentiels $\exp(i\tilde{\theta}|Y|/2)$ et $\exp(-i\tilde{\theta}|Y|/2)$ correspondent aux paires de particules entrantes et sortantes d'un processus de diffusion à deux corps. En réinjectant l'ansatz (1.50) dans l'équation relative (1.49), on obtient l'énergie propre $\tilde{\varepsilon}$ du problème réduit. Elle prend la forme cinétique usuelle $\frac{1}{2} \times \text{masse} \times \text{vitesse}^2$. La masse réduite vaut ici $\tilde{m} = \frac{1}{2}$ et le paramètre $\tilde{\theta}$ joue le rôle d'une impulsion ; ainsi

$$\tilde{\varepsilon}(\tilde{\theta}) = \frac{\tilde{\theta}^2}{4}.\tag{1.52}$$

Cette énergie gouverne la décroissance exponentielle de la fonction d'onde dans la coordonnée relative : plus $\tilde{\theta}$ est grand, plus l'état est localisé autour de Y=0, signe d'une interaction attractive plus forte entre les deux bosons.

La fonction d'onde relative présente des oscillations de fréquence $\tilde{\theta}/2$, et son énergie croît avec $\tilde{\theta}^2$. Cette solution correspond à un état de diffusion à deux corps en interaction ponctuelle. En revanche, une décroissance exponentielle autour de Y=0 n'apparaît que dans le cas d'un couplage attractif (g<0), où des états liés peuvent se former.

L'énergie totale se décompose enfin en la somme du mouvement du centre de masse et du mouvement relatif : $\bar{\theta}^2 + \tilde{\varepsilon}(\tilde{\theta}) = \varepsilon(\theta_1) + \varepsilon(\theta_2)$, où $\bar{\theta} = \frac{\theta_1 + \theta_2}{2}$.

Condition de discontinuité à cause du potentiel delta. En raison de la présence du potentiel delta centré en Y=0, la dérivée première de la fonction d'onde $\tilde{\varphi}(Y)$ présente une discontinuité en ce point. En effet, le potentiel étant infini en Y=0, la phase Φ du régime symétrique est déterminée en intégrant l'équation du mouvement autour de la singularité. En intégrant entre $-\epsilon$ et $+\epsilon$ et en faisant tendre $\epsilon \to 0$, on obtient la condition de saut de la dérivée :

$$\lim_{\epsilon \to 0} \int_{-\epsilon}^{+\epsilon} -\partial_Y^2 \tilde{\varphi}(Y) + g\delta(Y) \tilde{\varphi}(Y) \, dY = \lim_{\epsilon \to 0} \int_{-\epsilon}^{+\epsilon} \tilde{\varepsilon}(\tilde{\theta}) dY,$$
$$\tilde{\varphi}'(0^+) - \tilde{\varphi}'(0^-) - g\tilde{\varphi}(0) = 0.$$

Détermination de la phase Φ . Et en évaluant la discontinuité de sa dérivée au point Y=0, on trouve que la phase Φ satisfait la condition :

$$\Phi(\tilde{\theta}) = 2 \arctan(\tilde{\theta}/g) \in [-\pi, +\pi]. \tag{1.53}$$

Cette relation exprime l'effet de l'interaction delta sur la phase de la fonction d'onde à deux particules. On en déduit que plus le couplage g est fort $(g \to \infty)$, plus la phase Φ se rapproche de zéro. Cela correspond à une fonction d'onde qui s'annule en Y=0, caractéristique d'un régime d'imperméabilité totale.

À l'inverse, dans la limite d'une interaction faible $(g \to 0)$, la phase Φ tend vers π (ou $-\pi$, selon le signe de $\tilde{\theta}$). Dans ce cas, la discontinuité de la dérivée de la fonction d'onde au point Y=0 devient négligeable, ce qui traduit une interaction absente entre les deux particules.

Phase de diffusion à deux corps. En combinant les équations (1.51) et (1.53) avec l'identité analytique valable pour tout $z \in \mathbb{C} \setminus \{\pm i\}$, $2 \arctan(z) = i \ln\left(\frac{1-iz}{1+iz}\right)$ i.e. $e^{2i \arctan(z)} = \frac{1+iz}{1-iz}$, on obtient que le rapport des amplitudes a et b de la fonction d'onde relative (1.50) définit la phase de diffusion $\Phi(\tilde{\theta}) = i \ln\left(-\frac{b}{a}\right)$. On introduit alors la matrice de diffusion (ou facteur de diffusion) noté $S(\theta)$, définie comme une phase complexe :

$$S(\theta) \doteq e^{i\Phi(\theta)} \tag{1.54}$$

Dans le cas d'une interaction de type delta, cette fonction prend la forme explicite :

$$S(\tilde{\theta}) = \frac{1 + i\,\tilde{\theta}/g}{1 - i\,\tilde{\theta}/g}.\tag{1.55}$$

Cette expression, unitaire et analytique, caractérise entièrement la diffusion élastique à deux corps dans le modèle considéré.

Lien entre la phase de diffusion et le décalage temporel — interprétation semi-classique Wigner (1955), à la suite d'Eisenbud (1948), a mis en évidence un lien entre la **phase de diffusion** et un décalage temporel, interprétation qui peut être éclairée dans une perspective semi-classique. L'idée de Wigner repose sur l'analyse d'un paquet d'ondes incident, constitué de la superposition de deux ondes planes de moments voisins, $\tilde{\theta}/2$ et $\tilde{\theta}/2 + \delta \tilde{\theta}$:

$$\tilde{\varphi}_{\text{inc}}(Y) \propto e^{i\frac{1}{2}\tilde{\theta}|Y|} + e^{i\frac{1}{2}(\tilde{\theta} + 2\delta\tilde{\theta})|Y|}.$$
 (1.56)

Cette superposition évolue dans le temps comme :

$$\tilde{\varphi}_{\rm inc}(Y,t) \propto e^{i\left(\frac{1}{2}\tilde{\theta}|Y|-t\,\tilde{\varepsilon}(\tilde{\theta})\right)} + e^{i\left(\frac{1}{2}\left(\tilde{\theta}+2\delta\tilde{\theta}\right)|Y|-t\,\tilde{\varepsilon}(\tilde{\theta}+2\delta\tilde{\theta})\right)}. \tag{1.57}$$

Le centre de ce 'paquet d'ondes' se situe à la position où les phases des deux termes coïncident, c'est-à-dire au point où $|Y|\delta\tilde{\theta}-t[\tilde{\varepsilon}(\tilde{\theta}+2\delta\tilde{\theta})-\tilde{\varepsilon}(\tilde{\theta})]=0$, ce qui donne $|Y|\simeq\tilde{\theta}$ t avec la vitesse réduite $\tilde{\theta}=2\tilde{\varepsilon}'(\tilde{\theta})$. Selon les équations (1.50) et (1.55), l'état sortant de la diffusion correspondant serait :

$$\tilde{\varphi}_{outc}(Y,t) \propto -e^{i\Phi(\tilde{\theta})}e^{-i\frac{1}{2}\tilde{\theta}|Y|} - e^{i\Phi(\tilde{\theta}+2\delta\tilde{\theta})}e^{-i\frac{1}{2}(\tilde{\theta}+2\delta\tilde{\theta})|Y|}. \tag{1.58}$$

En répétant l'argument précédent de la stationnarité de phase, on trouve que la coordonnée relative est à la position $|Y| \simeq \tilde{\theta}t - 2\Phi'(\tilde{\theta})$ au moment t.

$$|Y| \simeq \tilde{\theta}t - 2\Delta(\tilde{\theta}) \tag{1.59}$$

où le **déplacement de diffusion** $\Delta(\theta)$ est donné par la dérivée de la phase de diffusion,

$$\Delta(\theta) \doteq \frac{d\Phi}{d\theta}(\theta) = \frac{2g}{g^2 + \theta^2}.$$
 (1.60)

Retour aux coordonnées du laboratoire. En revenant aux coordonnées du laboratoire, la fonction d'onde à deux corps s'écrit $\varphi_{\{\theta_1,\theta_2\}}(z_1,z_2) = \langle \emptyset | \hat{\Psi}(z_1) \hat{\Psi}(z_2) | \{\theta_1,\theta_2\} \rangle / \sqrt{2}$, dans le cas $z_1 < z_2$, c'est-à-dire pour une séparation relative $Y = z_1 - z_2 < 0$ (on pourra symétriser ultérieurement). Dans le référentiel du laboratoire, le centre de masse évolue selon $Z = \frac{z_1 + z_2}{2} = \overline{\theta} t$. Ainsi, la position semi-classique des deux particules après la collision s'écrit

$$z_1 = Z + \frac{Y}{2} \simeq \theta_1 t - \Delta(\theta_1 - \theta_2), \quad z_2 = Z - \frac{Y}{2} \simeq \theta_2 t + \Delta(\theta_1 - \theta_2),$$
 (1.61)

On peut vérifier les identités utiles suivantes :

$$z_1\theta_1 + z_2\theta_2 = 2Z\overline{\theta} + \frac{1}{2}Y\widetilde{\theta}, \quad z_1\theta_2 + z_2\theta_1 = 2Z\overline{\theta} - \frac{1}{2}Y\widetilde{\theta},$$

ce qui est en accord avec les masses associées : masse totale $\overline{m}=2$, masse réduite $\tilde{m}=\frac{1}{2}$.

Cela nous motive à multiplier l'ansatz dans le référentiel du centre de masse (équation (1.50)) par un facteur de phase globale $\exp(2iZ\overline{\theta})$ pour revenir à la représentation dans le laboratoire. On obtient alors l'expression de la fonction d'onde :

$$\varphi_{\{\theta_1,\theta_2\}}(z_1, z_2) \propto \begin{cases} (\theta_2 - \theta_1 - ig)e^{iz_1\theta_1 + iz_2\theta_2} - (\theta_1 - \theta_2 - ig)e^{iz_1\theta_2 + iz_2\theta_1} & \text{si } z_1 < z_2 \\ (z_1 \leftrightarrow z_2) & \text{si } z_1 > z_2 \end{cases}$$
(1.62)

Pour $\theta_1 > \theta_2$, les deux termes exponentiels $e^{iz_1\theta_1 + iz_2\theta_2}$ et $e^{iz_1\theta_2 + iz_2\theta_1}$ correspondent respectivement aux ondes entrantes et sortantes dans le canal de diffusion à deux corps. Le rapport de leurs amplitudes définit la **phase de diffusion** Φ et **matrice diffusion** S à deux corps (1.55), reste inchangé mais voici une autre écriture :

$$S(\theta_1 - \theta_2) = \frac{\theta_1 - \theta_2 - ig}{\theta_2 - \theta_1 - ig}.$$
(1.63)

Cette phase caractérise entièrement le processus de diffusion dans le modèle de Lieb-Liniger à deux particules.

Conditions périodiques et équations de Bethe pour deux bosons (à révoir).

Périodicité en z_2 . On impose une condition de périodicité sur la fonction d'onde obtenue par ansatz de Bethe (voir équation (1.62)) : $\varphi_{\{\theta_1,\theta_2\}}(z_1,z_2=L) = \varphi_{\{\theta_1,\theta_2\}}(z_1,z_2=0)$, avec $0 < z_1 < z_2 = L$. Au point $z_2 = L$, la configuration reste dans le secteur $z_1 < z_2$, tandis qu'à $z_2 = 0$, on entre dans le secteur $z_2 < z_1$. La continuité de la fonction d'onde impose alors d'échanger les coordonnées $z_1 \leftrightarrow z_2$: $\varphi_{\{\theta_1,\theta_2\}}(z_1,L) = \varphi_{\{\theta_1,\theta_2\}}(0,z_1)$. En utilisant l'expression explicite de l'ansatz dans les deux secteurs, on obtient l'égalité suivante :

$$a\,e^{i\theta_1 z_1 + i\theta_2 L} + b\,e^{i\theta_2 z_1 + i\theta_1 L} \quad = \quad a\,e^{i\theta_2 z_1} + b\,e^{i\theta_1 z_1}.$$

Cette relation, valable pour tout $z_1 \in [0, L]$, fixe une contrainte sur le rapport b/a. En utilisant l'expression de la phase de diffusion introduite en (1.63) pour $z_1 < z_2$:

$$-\frac{b}{a} = e^{i\Phi(\theta_1 - \theta_2)},$$

on obtient une condition sur les phases θ_1 et θ_2 , cœur de la quantification imposée par le formalisme de Bethe.

En identifiant les coefficients de $e^{i\theta_1 z_1}$ et $e^{i\theta_2 z_1}$ indépendamment, on obtient $e^{i\theta_2 L}$ $a=b, e^{i\theta_1 L}$ b=a, c'est-à-dire l'équations de Bethe

$$e^{i\theta_1 L} e^{i\Phi(\theta_1 - \theta_2)} = -1, \qquad e^{i\theta_2 L} e^{i\Phi(\theta_2 - \theta_1)} = -1.$$
 (1.64)

En prenant le logarithme on obtient les équations de Bethe à deux particules :

$$\theta_1 L + \Phi(\theta_1 - \theta_2) = 2\pi I_1, \qquad \theta_2 L + \Phi(\theta_2 - \theta_1) = 2\pi I_2,$$
(1.65)

où $I_1, I_2 \in \mathbb{Z}/2$ sont les nombres demis entiers.

Périodicité sur z_1 . Le raisonnement symétrique conduit exactement aux mêmes égalités (1.64) et (1.65). Ces équations constituent la quantification complète du gaz de Lieb-Liniger à deux bosons sur un cercle de longueur L et seront le point de départ pour l'étude de l'état fondamental et des excitations.

Interprétation physique pour deux particules et rôle de la rapidité

Pour bien comprendre le sens physique des équations de Bethe (1.65), nous avons commencer par le cas de deux particules. Dans ce cadre, les particules interagissent lorsqu'elles se croisent, et à chaque interaction elles acquièrent une **phase de diffusion** Φ . L'état propre du système est obtenu en imposant que l'onde multi-corps soit périodique sur un cercle de longueur L: chaque particule effectue une rotation complète, accumule une phase cinématique $e^{i\theta L}$ liée à son mouvement libre, ainsi que des contributions de phase dues aux diffusions avec l'autre particule. Cela donne lieu à une quantification des **pseudo-impulsions** θ via l'équation de Bethe.

Pour décrire ces **excitations**, ces **quasi-particules**, on introduit le paramètre θ appelé **rapidité**. Ce terme vient de la théorie relativiste [1, 2], mais reste pertinent même dans des modèles non relativistes, comme ici. La rapidité est choisie comme **paramètre spectral naturel** : elle étiquette les états propres, linéarise les relations de dispersion dans certains régimes, et elle simplifie considérablement les équations de Bethe.

On peut interpréter chaque θ comme la **vitesse d'une quasi-particule** : une entité collective qui se comporte comme une particule libre, mais qui tient compte des effets des interactions avec les autres. Contrairement à une particule élémentaire, une **quasi-particule** est une excitation émergente du système à plusieurs corps : elle résume de façon efficace le comportement collectif d'une particule « habillée » par son environnement d'interactions. Cette notion est centrale en physique des systèmes quantiques à N corps, où les excitations ne sont plus des particules indépendantes, mais des objets collectifs.

Ainsi, dans l'image de Bethe, les états propres sont des configurations stables de N quasi-particules de rapidités $\theta_1, \ldots, \theta_N$, dont les valeurs sont quantifiées par les conditions d'interférence imposées par les équations de Bethe.

1.2 Équation de Bethe et distribution de rapidité

1.2.1 Fonction d'onde dans le secteur ordonné et représentation de Gaudin

Sans en donner ici la démonstration, donnons une forme généralisée de la fonction propre à N particules [cf. équation (1.21)], qui prolonge naturellement l'expression obtenue pour le cas à deux corps [cf. équation (1.62)]. Dans le domaine $z_1 < z_2 < \cdots < z_N$, la fonction d'onde pour un état de Bethe à N particules s'écrit (Gaudin 2014, Korepin et al. 1997, Lieb et Liniger 1963):

$$\varphi_{\{\theta_a\}}(z_1, \dots, z_N) = \frac{1}{\sqrt{N!}} \langle \emptyset | \hat{\Psi}(z_1) \dots \hat{\Psi}(z_N) | \{\theta_a\} \rangle$$

$$\propto \sum_{\sigma} (-1)^{|\sigma|} \left(\prod_{1 \le a < b \le N} (\theta_{\sigma(b)} - \theta_{\sigma(a)} - ig) \right) e^{i \sum_{j=1}^{N} z_j \theta_{\sigma(j)}}, \tag{1.66}$$

où la somme s'étend sur toutes les permutations σ de $\{1, \ldots, N\}$. Le facteur $(-1)^{|\sigma|}$ est la signature de la permutation, et les amplitudes dépendent des différences de quasi-moments θ_j ainsi que du couplage g. Cette fonction d'onde est ensuite étendue par symétrie aux autres domaines du type $z_{\pi(1)} < z_{\pi(2)} < \cdots < z_{\pi(N)}$ via des propriétés d'échange symétriques.

1.2.2 Conditions aux bords périodiques

Les équations précédentes ont été établies pour un système défini sur la droite réelle. Cependant, dans une perspective thermodynamique, il est essentiel de considérer une densité finie N/L. Cela peut être obtenu en compactifiant l'espace sur un cercle de longueur L, i.e. en imposant les conditions aux bords périodiques.

Concrètement, cela consiste à identifier x = 0 et x = L et à exiger que la fonction d'onde soit périodique lorsqu'une particule fait le tour du système :

$$\varphi_{\{\theta_{\alpha}\}}(x_{1},\ldots,x_{N-1},L) = \varphi_{\{\theta_{\alpha}\}}(0,x_{1},\ldots,x_{N-1}). \tag{1.67}$$

Cette condition doit être satisfaite pour chaque particule. Or, déplacer la j-ième particule de x_j à $x_j + L$ revient à la faire passer devant toutes les autres : cela introduit un facteur de diffusion à chaque croisement.

Équations de Bethe exponentielles

En imposant les conditions de périodicité sur la fonction d'onde de type Bethe (1.66), on généralise l'éqution (1.64) pour N particules. On obtient que chaque moment θ_a doit satisfaire l'équation :

$$e^{i\theta_a L} \prod_{b \neq a} S(\theta_a - \theta_b) = (-1)^{N-1}, \quad a = 1, \dots, N,$$
 (1.68)

où la matrice diffusion $S(\theta)$ définie en (1.54), (1.55) et (1.63) est l'amplitude de diffusion à deux corps. Le signe $(-1)^{N-1}$ vient du fait que chaque permutation change la signature du déterminant dans la représentation de Gaudin.

Équations de Bethe logarithmiques

En prenant le logarithme du membre gauche et du membre droit de l'équation (1.68), on généralise l'équation (1.65). On obtient sa forme logarithmique :

$$L\theta_a + \sum_{b=1}^{N} \Phi(\theta_a - \theta_b) = 2\pi I_a, \qquad a = 1, \dots, N,$$
 (1.69)

où les I_a sont des nombres quantiques fermioniques, c'est-à-dire des entiers $I_a \in \mathbb{Z}$ si N est impair, et des demi-entiers $I_a \in \mathbb{Z} + \frac{1}{2}$ si N est pair. Cette écriture révèle un lien direct avec un gaz de **fermions libres** en une dimension : en

interaction forte (i.e. $g \to \infty$ c'est-à-dire si $\Phi = 0$), les équations (1.69) se réduisent à $L\theta_a = 2\pi I_a$, soit $\theta_a = 2\pi I_a/L$. Cela correspond exactement aux quantifications de l'impulsion pour des **fermions libres sans spin**, dans une boîte de taille L, avec conditions aux bords périodiques. L'interprétation est alors la suivante : les solutions de Bethe θ_a décrivent

des quasi-particules interagissantes, dont la configuration est déterminée par l'ensemble des nombres quantiques I_a , eux-mêmes analogues aux moments quantiques d'un gaz de fermions libres. C'est pourquoi on parle de nombres fermioniques I_a dans ce contexte.

Dans la configuration d'état fondamental (ou de type "mer de Fermi"), ces nombres fermionique sont pris de manière symétrique autour de zéro :

$$I_a = a - \frac{N+1}{2}$$
, pour $a \in [1, N]$. (1.70)

ce qui correspond au choix symétrique des nombres quantiques pour l'état fondamental. Il en résulte une distribution uniforme des θ_a dans l'intervalle autour de zéro $[-\theta_{\max}, \theta_{\max}]$ où θ_{\max} est le paramètre de Fermi (ou rapidité maximale).

Interprétation physique

Les équations de Bethe (1.69) représentent une quantification des pseudo-impulsions θ_a des particules en interaction, résultant d'un interféromètre multi-corps sur le cercle : chaque particule accumule une phase $e^{i\theta_a L}$ due au mouvement libre, ainsi que des phases de diffusion lorsqu'elle croise les autres.

Ce système d'équations détermine les états propres du système de Lieb-Liniger en volume fini, et joue un rôle fondamental dans la description exacte de ses propriétés thermodynamiques et dynamiques.

1.2.3 Thermodynamique du gaz de Lieb-Liniger à l'état fondamental

Dans la limite thermodynamique, le nombre de particules N et la longueur L du système tendent vers l'infini de telle sorte que leur rapport reste fini :

$$\lim_{\substack{L\to\infty\\N\to\infty}}\frac{N}{L}=n<\infty,$$

où n désigne la densité linéique de particules.

Considérons désormais le système à température nulle. L'état fondamental dans le secteur à nombre de particules fixé correspond à la configuration d'énergie minimale parmi les solutions des équations de Bethe (1.69).

Dans la limite thermodynamique $(\lim_{therm} \equiv \lim_{\substack{L \to \infty \\ N \to \infty}})$, les valeurs de θ_a deviennent quasi-continues, avec un espacement

 $\theta_{a+1} - \theta_a = \mathcal{O}(1/L)$, et se condensent dans un intervalle symétrique autour de zéro $[-\theta_{\text{max}}, \theta_{\text{max}}]$. En supposant l'ordre $I_a \geq I_b$ implique $\theta_a \geq \theta_b$, cet intervalle constitue ce qu'on appelle la mer de Dirac (ou sphère de Fermi en dimension un).

Nous introduisons la **densité d'états** $\rho_s(\theta)$, définie par

$$\rho_s(\theta_a) \doteq \frac{1}{L} \lim_{\text{therm}} \frac{|I_{a+1} - I_a|}{|\theta_{a+1} - \theta_a|},\tag{1.71}$$

soit en notant la fonction $I(\theta_a) = I_a$

$$2\pi\rho_s(\theta_a) = \frac{2\pi}{L} \frac{\partial I}{\partial \theta}(\theta_a). \tag{1.72}$$

L'application des équations de Bethe sous forme logarithmique (1.69) conduit alors à

$$2\pi \rho_s(\theta_a) = 1 + \frac{1}{L} \sum_{b=1}^{N} \Delta(\theta_a - \theta_b), \tag{1.73}$$

ce qui relie ρ_s à le déplacement de diffusion Δ définie dans l'équation (1.60).

Intéressons-nous maintenant à la densité de particules dans l'espace des moments, que l'on nome la distribution de rapidité macroscopique et notée $\rho(\theta)$, et définie par

$$L\rho(\theta)\delta\theta \doteq \text{nombre de quasi-particules ayant une rapidité dans } [\theta, \theta + \delta\theta].$$
 (1.74)

Autrement dit, dans un petit intervalle $\delta\theta$, le nombre total de particules ayant une rapidité dans cet intervalle est approximativement :

$$\delta N(\theta) = L\rho(\theta)\delta\theta \tag{1.75}$$

Avec les rapidité θ_a ordonnées *i.e.* $\theta_1 < \theta_1 < \dots < \theta_N$. Pour des intervalle $[\theta_a, \theta_a + \delta \theta_a]$ assez petit $\delta \theta_a = \theta_{a+1} - \theta_a$, est correspond à $\delta N(\theta_a) = 1$ quasi-particule (car une seule particule occupe l'intervalle entre deux rapidités consécutives). Dans la limite thermodynamique la dernier équation (1.75) se réécrit comme :

$$\rho(\theta_a) = \lim_{\text{therm}} \frac{1}{L} \cdot \frac{1}{\theta_{a+1} - \theta_a} > 0. \tag{1.76}$$

On peut aussi écrire la distribution de rapidité sous la forme :

$$\rho(\theta) = \frac{1}{L} \sum_{a=1}^{N} \delta(\theta - \theta_a). \tag{1.77}$$

Dans l'état fondamental, toutes les positions disponibles dans l'intervalle $[-\theta_{\text{max}}, +\theta_{\text{max}}]$ sont occupées. On a donc :

$$\rho(\theta) = \rho_s(\theta). \tag{1.78}$$

La quantité $L\rho(\theta)d\theta$ représente le nombre de rapidités dans la cellule infinitésimale $[\theta, \theta + d\theta]$, tandis que $N = L \int_{-\theta_{\rm max}}^{+\theta_{\rm max}} \rho(\theta) \, d\theta$ donne le nombre total de particules dans le système. Le passage de la somme discrète à l'intégrale dans le second membre de l'équation de Bethe permet d'écrire :

$$\frac{1}{L} \sum_{b=1}^{N} \Delta(\theta_a - \theta_b) \xrightarrow{\text{therm}} \int_{-\theta_{\text{max}}}^{+\theta_{\text{max}}} \Delta(\theta_a - \theta) \, \rho(\theta) \, d\theta. \tag{1.79}$$

Ainsi, l'équation pour la densité d'états devient :

$$2\pi \rho_s(\theta) = 1 + \int_{-\theta_{\text{max}}}^{+\theta_{\text{max}}} \Delta(\theta - \theta') \, \rho(\theta') \, d\theta', \tag{1.80}$$

et, comme $\rho = \rho_s$, à l'état fondamental, on obtient l'équation linéaire intégrale satisfaite par la densité de rapidités :

$$\rho(\theta) - \int_{-\theta_{\text{max}}}^{+\theta_{\text{max}}} \frac{\Delta(\theta - \theta')}{2\pi} \rho(\theta') d\theta' = \frac{1}{2\pi}.$$
 (1.81)

1.2.4 Excitations élémentaires

À partir de l'état fondamental dans le régime d'interaction forte, les excitations élémentaires du modèle de Lieb-Liniger ont été classifiées par Lieb en deux types distincts [3]. Ces excitations peuvent être comprises comme des perturbations de la mer de Fermi formée par les quasi-particules.

- Excitations de type I : Il s'agit remplacer une quasi-particule avec un nombre fermionique au bord de Fermi I_N (ou I_{-N}) par une quasi-particule avec un nombre fermionique $I' > I_N$ (resp. $I' < I_{-N}$), c'est-à-dire au-delà du bord de la mer de Fermi. Ces excitations sont analogues à des excitations de particules libres et, dans la limite des faibles interactions $(g \to 0)$, leur relation de dispersion reproduit celle prédite par la théorie de Bogoliubov.
- Excitations de type II : Ces excitations sont de type particule-trou. Elles sont obtenues en remplaçant une quasi-particule de la mer de Fermi avec une nombre fermionique I_a (i.e., en créant un trou dans l'état fondamental) et de le remplacer par une quasi-particule avec $I' = I_{N+1} = N/2$ ou $I' = I_{N-1} = -N/2$ et en réarrangeant les autres nombres fermionique. Cela correspond à une excitation interne du Fermi pseudo-mer, avec conservation du nombre de particules. Pour de petits I', la dispersion est linéaire, correspondant à des modes phononiques. Dans la limite d'interaction faible $g \to 0$, ces excitations peuvent être interprétées comme des solitons sombres [?].

Ces deux types d'excitations définissent ensemble le spectre complet du modèle de Lieb-Liniger et permettent d'accéder aux propriétés dynamiques du système, telles que les fonctions de réponse ou la structure du spectre d'énergie.

Équation de Bethe continue. À température non nulle (hors de l'état fondamental), il n'y a plus de mer de Fermi définie, et les équations (1.78) et (1.81) ne sont plus valides (en particulier $\rho \neq \rho_s$). Les équations discrètes de Bethe (1.80) se condensent alors en une équation intégrale pour les densités de rapidité :

$$2\pi\rho_s = 1 + \Delta \star \rho, \tag{1.82}$$

où le symbole \star désigne la convolution : $[\Delta \star \rho](\theta) = \int_{-\infty}^{\infty} d\theta' \, \Delta(\theta - \theta') \, \rho(\theta')$. Et on peut définir la distribution de trou ρ_h , tel que $\rho_s = \rho + \rho_h$.

Opération de dressing.

Définition. À toute fonction $f(\theta)$ on associe sa version habillée (ou dressed) $f_{[\nu]}^{dr}(\theta)$, définie comme la solution de l'équation intégrale suivante :

$$f_{[\nu]}^{\mathrm{dr}} = f + \frac{\Delta}{2\pi} \star \left(\nu f^{\mathrm{dr}}\right)$$
 (1.83)

où pour notre système

$$\nu = \frac{\rho}{\rho_s} \tag{1.84}$$

est le facteur d'occupation, et $\Delta/2\pi$ est le noyau de diffusion du modèle. Dans la suite, il est pratique de décrire la thermodynapique et la dynamique des système à l'aide de la fonction d'occumation.

Interprétation physique Le dressing incorpore à tous ordres les effets de rétrodiffusion entre quasi-particules. Il encode ainsi les corrections d'interaction aux grandeurs physiques initiales $f(\theta)$.

Exemple : densité de sites En prenant $f(\theta) = 1$ dans l'équation (1.83), on obtient : $1_{[\nu]}^{\text{dr}} = 1 + \frac{\Delta}{2\pi} \star \left(\nu \, 1_{[\nu]}^{\text{dr}}\right)$ soit directement :

$$2\pi\rho_s = 1_{[\nu]}^{\text{dr}},$$
 (1.85)

ce qui n'est autre que la relation constitutive (1.82).

Chapitre 2

Relaxation et Équilibre dans les Systèmes Quantiques Intégrables : Une Approche par la Thermodynamique de Bethe

Contents

2.1	Notic	on d'état d'Équilibre de Gibs Généralisé (GGE)	17
	2.1.1	Introduction à l'Équilibre de Gibs Généralisé	18
	2.1.2	Moyenne dans l'Équilibre de Gibs Généralisé	19
	2.1.3	Rôle des charges conservées extensives et quasi-locales	20
2.2	Ther	modynamique de Bethe et relaxation	22
	2.2.1	Moyenne dans la limite thermodynamique	22
	2.2.2	Statistique des macro-états : entropie de Yang-Yang	23
	2.2.3	Équations intégrales de la TBA	25

Introduction

Dans les systèmes quantiques intégrables, l'évolution vers l'équilibre à partir d'un état initial arbitraire — généralement hors d'équilibre — ne conduit pas, en général, à une thermalisation décrite par la statistique de Gibbs standard. Cette singularité résulte de l'existence d'une infinité de charges conservées en involution, qui contraignent l'évolution du système à un sous-espace restreint de l'espace des états accessibles. La relaxation vers un état stationnaire n'est donc pas décrite par l'ensemble canonique, mais par un **ensemble thermodynamique généralisé** (GGE), qui tient compte de toutes les constantes du mouvement.

Ce chapitre est consacré à la mise en place rigoureuse de cette notion. Dans une première section, nous revenons brièvement sur la notion d'opérateurs à un corps exprimés en puissances de l'impulsion \hat{p} pour une particule, introduite au chapitre précédent (1) dans l'équation (1.33). Ce cadre permet de construire une hiérarchie naturelle de charges conservées, au-delà du simple nombre de particules, de la quantité totale de mouvement ou de l'énergie cinétique. Ces charges supplémentaires permettent alors de définir les moyennes d'observables dans un état stationnaire hors d'équilibre.

Dans la section suivante, nous poserons les fondations nécessaires à la description quantitative de ces états stationnaires dans le cadre de la **thermodynamique de Bethe** (TBA), qui généralise l'analyse intégrable au-delà de l'état fondamental. Nous considérons un régime thermodynamique macroscopique à température finie (ou plus précisément à entropie de Yang-Yang finie), correspondant à des états hautement excités du spectre mais encore décrits exactement par le formalisme intégrable.

Les outils développés dans ce chapitre seront essentiels pour formuler le GGE et pour décrire la dynamique de relaxation des systèmes intégrables vers ces états stationnaires.

2.1 Notion d'état d'Équilibre de Gibs Généralisé (GGE)

2.1.1 Introduction à l'Équilibre de Gibs Généralisé

Configuration des états. On désigne par $\{\theta_a\} \equiv \{\theta_1, \cdots, \theta_N\}$ la configuration de rapidités caractérisant un état propre à $N \equiv N(\{\theta_a\})$ particules – le nombre de particules n'est donc pas fixé a priori mais dépend de la configuration. L'état propre correspondant est noté $|\{\theta_a\}\rangle = |\{\theta_1, \dots, \theta_N\}\rangle$.

Observables diagonales dans la base des états propres. Dans le chapitre précédent (1), on a vu que l'état $|\{\theta_a\}\rangle$ associé à cette configuration est une état propre des observables nombre et quantité de mouvement et énergie cinétique (1.45). Ces observables sont diagonales dans la base des états propres :

$$\hat{\boldsymbol{Q}} = \sum_{\{\theta_a\}} \left(\sum_{a=1}^N 1 \right) |\{\theta_a\}\rangle \langle \{\theta_a\}|, \, \hat{\boldsymbol{P}} = \sum_{\{\theta_a\}} \left(\sum_{a=1}^N \theta_a \right) |\{\theta_a\}\rangle \langle \{\theta_a\}|, \, \hat{\boldsymbol{K}} = \sum_{\{\theta_a\}} \left(\sum_{a=1}^N \frac{\theta_a^2}{2} \right) |\{\theta_a\}\rangle \langle \{\theta_a\}|.$$
 (2.1)

avec $\sum_{\{\theta_a\}}$ une somme sur tous les configurations.

Nous avons introduit ces observables en injectant des opérateurs \hat{f} proportionnels à des puissances de la quantité de mouvement d'une particule \hat{p} , respectivement $\propto \hat{p}^0$, $\propto \hat{p}^1$ et $\propto \hat{p}^2$, dans l'opérateur à un corps \hat{F} défini dans l'équation (1.25). Écrit de cette manière, nous avons vu dans l'équation (1.33) que pour $\hat{f} = \hat{p}^q$ avec q entier, l'état de Bethe $|\{\theta_a\}\rangle$ est un état propre de \hat{F} :

$$\hat{\mathbf{F}} |\{\theta_a\}\rangle = \sum_{\{\theta_a\}} \left(\sum_{a=1}^N \theta_a^q \right) |\{\theta_a\}\rangle, \tag{2.2}$$

avec des valeurs propres données par des puissances de θ . Cela motive l'étude d'états d'équilibre statistique au-delà de l'équilibre thermique, c'est-à-dire au-delà de l'ensemble de Gibbs.

Contexte et GGE dans les systèmes intégrables. Dans un système quantique intégrable, il existe une infinité de charges conservées locales \hat{Q}_i commutant entre elles et avec l'Hamiltonien \hat{H} ([Rigol et al. 2007]) [?]. Concrètement, chaque charge se présente sous la forme $\hat{Q}_i = \int dx \, \hat{q}_i(x)$, où $\hat{q}_i(x)$ est une densité d'observable locale à support borné. L'intégrabilité implique ainsi une caractérisation complète des états propres par un ensemble de paramètres (rapidités $\{\theta_j\}$ dans le modèle de Lieb-Liniger) [?]. En particulier, contrairement aux systèmes génériques, un système intégrable ne thermalise pas au sens canonique classique, car la présence de toutes ces contraintes empêche l'oubli complet des conditions initiales. Les points clés sont alors :

- Charges conservées : infinité de locales \hat{Q}_i satisfaisant et $[\hat{Q}_i, \hat{H}] = 0$ et $[\hat{Q}_i, \hat{Q}_j] = 0$.
- Densités locales : chaque \hat{Q}_i s'écrit $\hat{Q}_i = \int_{\mathbb{R}} dx \, \hat{q}_i(x)$ avec $\hat{q}_i(x)$ à support fini.
- Relaxation non canonique : après un *quench* (changement brutal de paramètre), le système évolue vers un état stationnaire qui n'est pas décrit par l'ensemble canonique habituel.

Pour décrire cet état, on introduit l'ensemble de Gibbs généralisé (GGE). Rigol et al. ont montré qu'une « extension naturelle de l'ensemble de Gibbs aux systèmes intégrables » prédit correctement les valeurs moyennes des observables après relaxation [?]. Formellement, pour une région finie du système $\mathcal{S} \subset \mathbb{R}$, on définit la matrice densité locale :

$$\hat{\boldsymbol{\rho}}_{\text{GGE}}^{(\mathcal{S})} = \frac{1}{Z^{(\mathcal{S})}} \exp\left(-\sum_{i} \beta_{i} \hat{\boldsymbol{Q}}_{i}^{(\mathcal{S})}\right), \quad \hat{\boldsymbol{Q}}_{i}^{(\mathcal{S})} = \int_{\mathcal{S}} dx \, \hat{\boldsymbol{q}}_{i}(x), \tag{2.3}$$

où $\beta_i \in \mathbb{R}$ sont les multiplicateurs de Lagrange (ou « températures généralisées ») associés aux charges locales conservées $\{\hat{Q}_i\}$. La fonction de partition

$$Z^{(S)} = \mathbf{Tr} \left[\exp \left(-\sum_{i} \beta_{i} \hat{\mathbf{Q}}_{i}^{(S)} \right) \right]$$
 (2.4)

assure la normalisation. L'état GGE ainsi défini est le seul permettant de prédire de manière cohérente les observables locales de S à long temps [?]. Autrement dit, l'équilibre local après quench est un état stationnaire faisant perdurer la mémoire de chaque charge conservée, ce qui conduit à un nombre macroscopique de paramètres β_i thermodynamiques (une « température » par charge) [?].

Interprétation des multiplicateurs de Lagrange. Les multiplicateurs de Lagranges β_i apparaissent naturellement lors de l'optimisation sous contraintes, par exemple dans le formalisme de l'ensemble de Gibbs généralisé (GGE), oû il imposent la conservation des valeurs moyennes des charges $\langle \hat{Q}_i^{(S)} \rangle_{\hat{\rho}_{GGE}^{(S)}} = \text{Tr}[\hat{\rho}_{GGE}^{(S)}\hat{Q}_i^{(S)}]$.

En résumé, la GGE généralise les ensembles canoniques standard : au lieu de retenir uniquement l'énergie, on impose la conservation de l'ensemble complet $\{\hat{Q}_i\}$. Cette construction rend compte du fait que, dans un système intégrable, les observables locaux convergent vers les valeurs moyennes de $\hat{\rho}_{\text{GGE}}^{(S)}$, et non vers celles d'un Gibbs thermique ordinaire [?][?]. On comprend ainsi pourquoi la thermalisation habituelle (canonique ou microcanonique) échoue : seul l'ensemble de Gibbs généralisé peut intégrer toutes les contraintes locales.

Rappel sur le modèle de Lieb-Liniger et distribution de rapidités. Comme rappelé au chapitre précédent, le modèle de Lieb-Liniger (gaz bosonique 1D à interactions de contact) est un exemple paradigmatique d'un système intégrable [?]. Ses états propres sont caractérisés par un ensemble de N rapidités $\{\theta_a\}$, qui jouent le rôle de quasimomenta (Bethe ansatz). Dans ce contexte, l'état macroscopique du gaz après relaxation unitaire est entièrement déterminé par la distribution des rapidités. Formellement, on définit $\rho(\theta)$ la distribution intensive des rapidités telle que $\rho(\theta)d\theta$ donne la fraction de particules par unité de longueur ayant une rapidité dans la cellule $[\theta, \theta + d\theta]$.

Cette « distribution de rapidités » est d'autant plus pertinente qu'elle est accessible expérimentalement. En effet, lorsque le gaz bosonique 1D est libéré et laissé s'étendre, la distribution asymptotique des vitesses des atomes coïncide avec la distribution initiale des rapidités [?] . Autrement dit, la GGE prédit un profil de vitesses observables en laboratoire. Léa Dubois souligne dans sa thèse que " la distribution de rapidités est la distribution asymptotique des vitesses des atomes après une expansion dans le guide 1D ", et qu'elle peut être extraite par l'hydrodynamique généralisée [?].

Dans la GGE, cette distribution macroscopique $\rho(\theta)$ est fixée par l'ensemble des charges conservées. Par exemple, on ajuste les β_i de sorte que les valeurs moyennes $\langle \hat{Q}_i \rangle_{\hat{\rho}_{\rm GGE}^{(S)}}$ correspondent aux valeurs initiales. Ce processus détermine donc la fonction $\rho(\theta)$ décrivant l'état d'équilibre local. Les observables locaux du gaz (densité, corrélations, etc.) en découlent alors via les équations de Bethe ansatz.

2.1.2 Moyenne dans l'Équilibre de Gibs Généralisé

Convention pour les moyennes d'observables. Dans la suite du chapitre, nous noterons la moyenne d'une observable $\hat{\mathcal{O}}$ dans un état décrit par une matrice densité (ici noté) $\hat{\rho}$ par :

$$\langle \hat{\mathcal{O}} \rangle_{\hat{\rho}} \doteq \text{Tr}[\hat{\rho} \, \hat{\mathcal{O}}],$$
 (2.5)

En particulier, si la matrice densité est un projecteur, comme $|\{\theta_a\}\rangle\langle\{\theta_a\}|$, $\mathbf{Tr}[|\{\theta_a\}\rangle\langle\{\theta_a\}|\hat{\mathcal{O}}] = \langle\{\theta_a\}|\hat{\mathcal{O}}|\{\theta_a\}\rangle$. dans ce cas on notera la moyenne :

$$\langle \hat{\mathcal{O}} \rangle_{\{\theta_a\}} = \langle \{\theta_a\} | \hat{\mathcal{O}} | \{\theta_a\} \rangle,$$
 (2.6)

où l'on note simplement l'ensemble des rapidité θ_a pour désigner l'état pur.

Charges conservées locales diagonales dans la base des états propres. Les charges conservées locales $\hat{Q}_i^{(S)}$ est diagonale dans la base des états propres $|\{\theta_a\}\rangle$, avec pour valeurs propres $\langle \hat{Q}_i^{(S)} \rangle_{\{\theta_a\}}$:

$$\hat{\boldsymbol{Q}}_{i}^{(\mathcal{S})} |\{\theta_{a}\}\rangle = \langle \hat{\boldsymbol{Q}}_{i}^{(\mathcal{S})} \rangle_{\{\theta_{a}\}} |\{\theta_{a}\}\rangle. \tag{2.7}$$

Probabilité d'un état à rapidités fixées. On peut alors définir la probabilité d'occurrence d'un état $|\{\theta_a\}\rangle$ comme la moyenne de la matrice densité locale $\hat{\rho}_{\text{GGE}}^{(S)}$ définie dans (2.3) :

$$\mathbb{P}_{\{\theta_a\}}^{(\mathcal{S})} \equiv \langle \hat{\boldsymbol{\rho}}_{\text{GGE}}^{(\mathcal{S})} \rangle_{\{\theta_a\}}, \tag{2.8}$$

$$= \frac{1}{Z^{(S)}} \exp\left(-\sum_{i} \beta_{i} \langle \hat{Q}_{i}^{(S)} \rangle_{\{\theta_{a}\}}\right). \tag{2.9}$$

Moyenne d'un charges conservées locales et dérivées de $Z^{(S)}$. Les charges locales $\hat{Q}_i^{(S)}$ sont diagonale dans la bases { $|\{\theta_a\}\rangle\}$ [cf eq (2.7)]. On peut donc écrire la moyenne d'une observable comme une somme pondérée par

cette probabilité [cf eqs (2.8)-(2.9)], ou encore comme une dérivée de la fonction de partition définie dans l'équation (2.4):

$$\langle \hat{\boldsymbol{Q}}_{i}^{(\mathcal{S})} \rangle_{\hat{\boldsymbol{\rho}}_{\text{GGE}}^{(\mathcal{S})}} = \sum_{\{\theta_{a}\}} \langle \hat{\boldsymbol{Q}}_{i}^{(\mathcal{S})} \rangle_{\{\theta_{a}\}} \mathbb{P}_{\{\theta_{a}\}}^{(\mathcal{S})}$$
(2.10)

$$= \frac{1}{Z^{(S)}} \frac{\partial Z^{(S)}}{\partial \beta_i} \bigg|_{\beta_{i \neq i}}$$
(2.11)

Par le même raisonnement le moment non centré s'écrit :

$$\langle \hat{\boldsymbol{Q}}_{i_1}^{(S)} \, \hat{\boldsymbol{Q}}_{i_2}^{(S)} \cdots \hat{\boldsymbol{Q}}_{i_q}^{(S)} \rangle_{\hat{\boldsymbol{\rho}}_{\text{GGE}}^{(S)}} = (-1)^q \frac{1}{Z^{(S)}} \, \frac{\partial}{\partial \beta_{i_1}} \bigg)_{\beta_{j \neq i_1}} \, \frac{\partial}{\partial \beta_{i_2}} \bigg)_{\beta_{j \neq i_2}} \cdots \frac{\partial}{\partial \beta_{i_q}} \bigg)_{\beta_{j \neq i_2}} Z^{(S)}. \tag{2.12}$$

Moments d'ordre supérieur et fluctuations. On s'avance sur le chapitre (4). Le premier et second moments permettent d'accéder à la variance

$$\left\langle \left(\hat{\boldsymbol{Q}}_{i}^{(S)} - \langle \hat{\boldsymbol{Q}}_{i}^{(S)} \rangle_{\hat{\boldsymbol{\rho}}_{GGE}^{(S)}} \right)^{2} \right\rangle_{\hat{\boldsymbol{\rho}}_{GGE}^{(S)}} = \left\langle \left(\hat{\boldsymbol{Q}}_{i}^{(S)} \right)^{2} \right\rangle_{\hat{\boldsymbol{\rho}}_{GGE}^{(S)}} - \left\langle \hat{\boldsymbol{Q}}_{i}^{(S)} \right\rangle_{\hat{\boldsymbol{\rho}}_{GGE}^{(S)}}$$
(2.13)

de le charge locale $\hat{Q}_i^{(S)}$, en injectant (2.11) et (2.12) et en utilisant $\frac{1}{f}\partial_x^2 f - (\frac{1}{f}\partial_x f) = \partial_x^2 \ln f$:

$$\left\langle \left(\hat{\boldsymbol{Q}}_{i}^{(\mathcal{S})} - \langle \hat{\boldsymbol{Q}}_{i}^{(\mathcal{S})} \rangle_{\hat{\boldsymbol{\rho}}_{GGE}^{(\mathcal{S})}} \right)^{2} \right\rangle_{\hat{\boldsymbol{\rho}}_{GGE}^{(\mathcal{S})}} = \frac{\partial^{2} \ln Z^{(\mathcal{S})}}{\partial \beta_{i}^{2}} \Big)_{\beta_{j \neq i}}, \tag{2.14}$$

$$= -\frac{\partial \langle \hat{Q}_{i}^{(\mathcal{S})} \rangle_{\hat{\rho}_{\text{GGE}}^{(\mathcal{S})}}}{\partial \beta_{i}} \bigg)_{\beta_{j \neq i}} . \tag{2.15}$$

Cas particulier de l'équilibre thermique. Dans le cas particulier de l'équilibre thermique standard (i.e. Gibbsien), le système est décrit par une seule contrainte d'énergie (ou d'énergie et de particule, dans le cas d'un grand canonique). Les multiplicateurs de Lagrange associés aux charges conservées peuvent alors être identifiés à des grandeurs thermodynamiques classiques.

- Si la seule charge conservée est le nombre de particules $\hat{Q}_0^{(S)} = \hat{Q}$, le multiplicateur associé est $\beta_0 = -\beta \mu$, où μ est le potentiel chimique et $\beta = T^{-1}$ l'inverse de la température (avec $k_B = 1$).
- Si la charge conservée est $\hat{Q}_2^{(S)} \mu \hat{Q}_0^{(S)} = \hat{K} \mu \hat{Q}$ (ensemble grand canonique), alors le multiplicateur est simplement β .

Dans le cadre de l'équilibre thermique , les moyennes et les fluctuations thermodynamiques usuelles s'expriment naturellement comme dérivées du logarithme de la fonction de partition $Z^{(\mathcal{S})}$:

$$\langle \hat{\boldsymbol{Q}} \rangle_{\hat{\boldsymbol{\rho}}_{\text{GGE}}^{(\mathcal{S})}} = \frac{1}{\beta} \frac{\partial \ln Z^{(\mathcal{S})}}{\partial \mu} \bigg)_{T}, \qquad \frac{1}{\beta} \frac{\partial \langle \hat{\boldsymbol{Q}} \rangle_{\hat{\boldsymbol{\rho}}_{\text{GGE}}^{(\mathcal{S})}}}{\partial \mu} \bigg)_{T} = \frac{1}{\beta^{2}} \frac{\partial^{2} \ln Z^{(\mathcal{S})}}{\partial \mu^{2}} \bigg)_{T}$$
(2.16)

$$\langle \hat{\boldsymbol{H}} - \mu \hat{\boldsymbol{Q}} \rangle_{\hat{\boldsymbol{\rho}}_{\text{GGE}}^{(\mathcal{S})}} = -\frac{\partial \ln Z^{(\mathcal{S})}}{\partial \beta} \bigg|_{\mu}, \qquad -\frac{\partial \langle \hat{\boldsymbol{H}} - \mu \hat{\boldsymbol{Q}} \rangle_{\hat{\boldsymbol{\rho}}_{\text{GGE}}^{(\mathcal{S})}}}{\partial \beta} \bigg|_{\mu} = \frac{\partial^2 \ln Z^{(\mathcal{S})}}{\partial \beta^2} \bigg|_{\mu}. \tag{2.17}$$

En combinant ces relations, on peut également exprimer l'énergie moyenne et ses fluctuations comme :

$$\langle \hat{\boldsymbol{H}} \rangle_{\hat{\boldsymbol{\rho}}_{\text{GGE}}^{(\mathcal{S})}} = \left[\frac{\mu}{\beta} \frac{\partial}{\partial \mu} \right]_{T} - \frac{\partial}{\partial \beta} \Big]_{\mu} \left[\ln Z^{(\mathcal{S})}, -\frac{\partial \langle \hat{\boldsymbol{H}} \rangle_{\hat{\boldsymbol{\rho}}_{\text{GGE}}^{(\mathcal{S})}}}{\partial \beta} \right]_{-\mu\beta} = \left[\frac{\mu}{\beta} \frac{\partial}{\partial \mu} \right]_{T} - \frac{\partial}{\partial \beta} \Big]_{\mu}^{2} \ln Z^{(\mathcal{S})}. \tag{2.18}$$

2.1.3 Rôle des charges conservées extensives et quasi-locales

Écriture des observables thermodynamiques comme sommes sur les rapidités. Dans un système à N particules caractérisé par des rapidités $\{\theta_a\}_{a=1}^N$, les charges conservées classiques — telles que le nombre de particules, l'impulsion ou l'énergie — s'écrivent comme des sommes de puissances des rapidités : $\langle \hat{\bf Q} \rangle_{\{\theta_a\}} \propto \sum_{a=1}^N \theta_a^0, \, \langle \hat{\bf P} \rangle_{\{\theta_a\}} \propto$

 $\sum_{a=1}^{N} \theta_a^1$, et $\langle \hat{\pmb{K}} \rangle_{\{\theta_a\}} \propto \sum_{a=1}^{N} \theta_a^2$. (cf. équations (2.1)) Dans ce paragraphe précédent, nous avons sous-entendu — sans l'expliciter — qu'il est montré que l'ensemble des charges locales conservées forme une famille donnée par :

$$\hat{Q}_{i}^{(S)} |\{\theta_{a}\}\rangle \propto \sum_{a} \theta_{a}^{i} |\{\theta_{a}\}\rangle.$$
 (2.19)

Ces charges agissent donc de manière diagonale sur les états de Bethe, avec des valeurs propres correspondant aux moments des rapidités.

Charges locales conservées . À toute fonction régulière $f: \mathbb{R} \to \mathbb{R}$ on associe un opérateur-charge locale :

$$\hat{\mathbf{Q}}^{(S)}[f] = L \int d\theta f(\theta) \hat{\boldsymbol{\rho}}^{(S)}(\theta). \tag{2.20}$$

où $\hat{\boldsymbol{\rho}}(\theta)$ agit sur une état de Bethe comme

$$\hat{\boldsymbol{\rho}}(\theta) |\{\theta_a\}\rangle = \frac{1}{L} \sum_{a=1}^{N} \delta(\theta - \theta_a) |\{\theta_a\}\rangle.$$
(2.21)

De sorte que $\hat{\mathcal{Q}}^{(\mathcal{S})}[f]$ agit sur une état de Bethe comme

$$\hat{\mathcal{Q}}^{(\mathcal{S})}[f] |\{\theta_a\}\rangle = \sum_{a=1}^{N} f(\theta_a) |\{\theta_a\}\rangle \quad \text{de sorte que} \quad \langle \hat{\mathcal{Q}}^{(\mathcal{S})}[f]\rangle_{\{\theta_a\}} = \sum_{a=1}^{N} f(\theta_a)$$
 (2.22)

Les choix particuliers $f_0(\theta) = 1$, $f_1(\theta) = \theta$ et $f_2(\theta) = \theta^2/2$ redonnent respectivement l'opérateur nombre $\hat{Q} = \hat{Q}_0^{(S)} = \hat{Q}_1^{(S)}[1]$, impulsion $\hat{P} = \hat{Q}_1^{(S)} = \hat{Q}_1^{(S)}[\theta]$ et énergie cinétique $\hat{K} = \hat{Q}_2^{(S)} = \hat{Q}_2^{(S)}[\theta^2/2]$. Et dans le cadre des (GGE), pour tous les ordres i on note :

$$\hat{Q}_{i}^{(\mathcal{S})} = \hat{\mathcal{Q}}^{(\mathcal{S})}[f_{i}], \quad \text{de sorte que} \quad \langle \hat{Q}_{i}^{(\mathcal{S})} \rangle_{\{\theta_{a}\}} = \sum_{a=1}^{N} f_{i}(\theta_{a})$$
(2.23)

avec les densités spectrales $f_i(\theta) \propto \theta^i$.

Ces charges sont extensives : leur densité locale $\hat{q}_{[f]}^{(S)}$ permet d'écrire $\hat{Q}^{(S)}[f] = \int_0^L dx \, \hat{q}_{[f]}^{(S)}(x)$.

Charges conservées généralisée. Les fonction f_i étant fixées, on note la fonction régulière $w: \mathbb{R} \to \mathbb{R}$ — dorénavant appelée poids spectral, ou potentiel spectral —

$$w = \sum_{i} \beta_i f_i, \tag{2.24}$$

on associe un opérateur-charge généralisé $\hat{\boldsymbol{\mathcal{Q}}}^{(\mathcal{S})}[w]$:

$$\hat{\boldsymbol{\mathcal{Q}}}^{(\mathcal{S})}[w] |\{\theta_a\}\rangle = \sum_{a=1}^{N} w(\theta_a) |\{\theta_a\}\rangle \quad \text{de sorte que} \quad \langle \hat{\boldsymbol{\mathcal{Q}}}^{(\mathcal{S})}[w]\rangle_{\{\theta_a\}} = \sum_{i} \beta_i \langle \hat{\boldsymbol{Q}}_i^{(\mathcal{S})}\rangle_{\{\theta_a\}}$$
 (2.25)

Expression de la matrice densité généralisée. La matrice densité s'écrit sous la forme : L'ensemble général défini par $\hat{\varrho}^{(\mathcal{S})}[w]$

$$\hat{\varrho}^{(S)}[w] = \frac{e^{-\hat{\mathcal{Q}}^{(S)}[w]}}{Z^{(S)}[w]}, \text{ avec} \quad e^{-\hat{\mathcal{Q}}^{(S)}[w]} = \sum_{\{\theta_a\}} e^{-\sum_{a=1}^N w(\theta_a)} |\{\theta_a\}\rangle \langle \{\theta_a\}|, \tag{2.26}$$

et la fonction de partition (2.4) s'écrit $Z^{(S)}[w] \doteq \mathbf{Tr} \left[e^{-\hat{\mathcal{Q}}^{(S)}[w]} \right]$ vaux :

$$Z^{(S)}[w] = \sum_{\{\theta_a\}} e^{-\sum_{a=1}^{N} w(\theta_a)}, \tag{2.27}$$

devient un Generalized Gibbs Ensemble (GGE), $\hat{\rho}_{\text{GGE}}^{(S)}$ (de l'équation (2.3)) dès lors que $w(\theta) = \sum_i \beta_i f_i(\theta)$ (de l'équation (2.24)) où f_i sont les densités spectrales associées aux charges locales conservées (de l'équation (2.23)).

Probabilité associée à une configuration de rapidités. Dans ce formalisme, la probabilité d'occuper l'état $|\{\theta\}\rangle$ (2.8) est donc

$$\mathbb{P}_{\{\theta_a\}}^{(S)} = Z^{(S)}[w]^{-1} e^{-\sum_{a=1}^{N} w(\theta_a)}. \tag{2.28}$$

On voit ainsi que le poids statistique factorise naturellement sur les pseudo-moments, chaque particule étant pondérée par $w(\theta_a)$.

Moyennes d'observables dans le GGE. Pour tout opérateur local $\hat{\mathcal{O}}$ diagonal dans la base de Bethe, la moyenne généralisée vaut

$$\langle \hat{\mathcal{O}} \rangle_{\hat{\boldsymbol{\varrho}}^{(S)}[w]} = \frac{\sum_{\{\theta_a\}} \langle \hat{\mathcal{O}} \rangle_{\{\theta_a\}} e^{-\sum_{a=1}^{N} w(\theta_a)}}{\sum_{\{\theta_a\}} e^{-\sum_{a=1}^{N} w(\theta_a)}}$$

$$(2.29)$$

Ainsi, la connaissance de la fonction $w(\theta)$ suffit à déterminer les propriétés statistiques de toute observable diagonale, y compris les charges conservées elles-mêmes.

Conclusion de la section : vers la thermodynamique de Bethe. Nous avons vu que, dans un système intégrable, la description correcte de l'équilibre stationnaire requiert l'introduction d'une famille infinie de charges conservées, comprenant à la fois des charges strictement locales et des charges quasi-locales. Toutes ces charges se réunissent dans l'opérateur fonctionnel $\hat{Q}^{(S)}[w]$, défini par un poids spectral $w(\theta)$ (cf. équations (2.22)). Cette construction conduit naturellement à la matrice densité généralisée $\hat{\rho}^{(S)}_{GGE} \propto e^{-\hat{Q}^{(S)}[w]}$ (cf. équations (2.26)), et à la moyenne d'un opérateur local $\hat{\mathcal{O}}$ donnée par $\langle \hat{\mathcal{O}} \rangle_{\hat{\rho}^{(S)}_{GGE}} = \mathrm{Tr}(\hat{\mathcal{O}}\hat{\varrho}^{(S)}[w])$ (cf. équations (2.29)). La connaissance de $w(\theta)$ suffit donc pour prédire les valeurs moyennes de toutes les observables diagonales, y compris celles des charges elles-mêmes ; c'est le cœur du Ensemble de Gibbs Généralisé (GGE pour Generalized Gibbs Ensemble).

Cette base est désormais posée : dans la section suivante, nous passerons au thermodynamique de Bethe. Nous verrons comment, dans la limite thermodynamique, les sommes sur les configurations de rapidités se transforment en intégrales sur des densités continues, comment apparaît l'entropie de Yang-Yang, et comment les moyennes de l'ensemble généralisé se réexpriment à l'aide de ces densités macroscopiques. C'est ce formalisme qui permettra d'analyser finement la relaxation post-quench et de relier microscopie intégrable et hydrodynamique généralisée.

2.2 Thermodynamique de Bethe et relaxation

2.2.1 Moyenne dans la limite thermodynamique

Observables locales dans la limite thermodynamique. Dans la suite de ce chapitre, nous omettrons l'exposant (S). Dans la base des états de Bethe $\{|\{\theta_a\}\rangle\}$, l'opérateur $\hat{\rho}(\theta)$ défini en (2.21) est diagonal, et agit comme un projecteur sur les valeurs de rapidité.

Dans la limite thermodynamique, différentes configurations microscopiques $\{\theta_a\}$ peuvent correspondre à la même distribution de rapidité macroscopique $\rho(\theta)$. Autrement dit, plusieurs états $|\{\theta_a\}\rangle$ partagent la même valeur propre $\rho(\theta)$ de l'opérateur $\hat{\rho}(\theta)$. Cela reflète une dégénérescence macroscopique induite par le passage à la limite thermodynamique $(N, L \to \infty \text{ avec } N/L \to \text{const})$.

Si l'observable \mathcal{O} est suffisamment locale, sa valeur d'attente dans un état propre ne dépend pas des détails microscopiques, mais uniquement de la distribution de rapidité. On écrit alors :

$$\lim_{\text{therm.}} \langle \hat{\mathcal{O}} \rangle_{\{\theta_a\}} = \langle \hat{\mathcal{O}} \rangle_{[\rho]}, \tag{2.30}$$

où $\lim_{\text{therm.}}$ est la limite thermodynamique $(N, L \to \infty \text{ avec } N/L \to \text{const})$ et où $\langle \mathcal{O} \rangle_{[\rho]}$ désigne la valeur d'attente de \mathcal{O} dans un état macroscopique caractérisé par la distribution de rapidité $\rho(\theta)$.

Dans un ensemble général (GGE), la valeur moyenne de l'observable (2.29) devient alors :

$$\lim_{\text{therm.}} \langle \hat{\mathcal{O}} \rangle_{\hat{\varrho}[w]} = \frac{\sum_{\rho} \langle \hat{\mathcal{O}} \rangle_{[\rho]} \Omega[\rho] e^{-\sum_{a=1}^{N} w(\theta_a)}}{\sum_{\rho} \Omega[\rho] e^{-\sum_{a=1}^{N} w(\theta_a)}}, \qquad (2.31)$$

où \sum_{ρ} est une somme sus tous les distribution de rapidité ρ et où $\Omega[\rho]$ désigne le nombre de micro-états compatibles avec la distribution de rapidité ρ .

Pour établir la fonction $\Omega[\rho]$, reppelons-nons de la transformation des équations de Bethe dans la limite thermodynamique, hors état fondamentale (1.84) et (1.85).

$$\nu = \frac{\rho}{\rho_s}, \qquad 2\pi \rho_s = 1_{[\nu]}^{\text{dr}}$$
 (2.32)

où $f_{[\nu]}^{\text{dr}}$ est définie en (1.83).

Cette formalisation constitue la brique de base de la **hydrodynamique généralisée** et, dans la section suivante, permet de définir rigoureusement l'**entropie de Yang–Yang**, indispensable pour décrire la relaxation hors d'équilibre des systèmes intégrables.

2.2.2 Statistique des macro-états : entropie de Yang-Yang

Motivation. Dans la limite thermodynamique, une observable locale dans un Generalized Gibbs Ensemble (GGE) dépend uniquement de deux objets continus : (i) la distribution de rapidité $\rho(\theta)$, (ii) le poids spectral $w(\theta)$, c.-à-d. la " température généralisée " assignée à chaque quasi-particule. Cette reformulation est puissante car elle fait disparaître les détails d'un état propre individuel.

Cependant, pour décrire un vrai équilibre à température finie, il faut la distribution à l'équilibre :

$$\rho_{\text{eq}}(\theta) \doteq \langle \hat{\boldsymbol{\rho}}(\theta) \rangle_{\hat{\boldsymbol{\varrho}}[w]}, \qquad (2.33)$$

donc le lien entre ρ_{eq} et w. La réponse fut donnée dans les travaux pionniers de YANG & YANG (1969). Leur approche repose sur l'analyse de la **structure statistique des états propres** partageant la même distribution $\rho(\theta)$.

Distribution de rapidité comme macro-état. Chaque distribution de rapidité $\rho(\theta)$ ne correspond pas à un état propre unique, mais à un grand **ensemble de micro-états** : différents choix des ensembles de quasi-moments $(\{\theta_a\}_{a\in \llbracket 1,N\rrbracket})_{N\in\mathbb{N}^*}$ peuvent conduire à la même densité de distribution à l'échelle macroscopique. Ainsi, $\rho(\theta)$ doit être interprétée comme un **macro-état**, qui agrège un très grand nombre d'états propres microscopiques.

La question thermodynamique devient alors : Combien de micro-états microscopiquement distincts sont compatibles avec un même macro-état $\rho(\theta)$?

Plus précisément, dans l'expression de moyenne des operateurs locaux (2.31), apparaît le facteur $\Omega[\rho]$, qui compte ces états propres. La détermination de $\Omega[\rho]$ (ou équivalemment de l'entropie de Yang-Yang $\mathcal{S}_{YY}[\rho]$ car $\Omega[\rho] = e^{L\mathcal{S}_{YY}[\rho]}$ avec L la taille du système) est donc la clé pour relier (i) le poids spectral $w(\theta)$ imposé dans le GGE et (ii) la distribution de rapidité moyenne $\rho_{eq}(\theta)$ observée à l'équilibre.

Dénombrement local des configurations microcanoniques. Pour répondre à cette question, on subdivise l'axe des rapidités en petites tranches ou cellules de largeur $\delta\theta$, chacune centrée en un point θ_a . Dans une tranche $[\theta_a,\theta_a+\delta\theta]$, on suppose que la densité $\rho(\theta)$ est à peu près constante. Le nombre de quasi-particules dans cette tranche est alors approximativement :

$$N_a = L\rho(\theta_a)\delta\theta$$
,

et le nombre total d'états disponibles (i.e., le nombre d'états possibles si toutes les positions en moment étaient disponibles) est donné par la densité totale de niveaux

$$M_a = L\rho_s(\theta_a)\delta\theta$$
.

Les particules occupent ces niveaux de manière analogue à des fermions libres (principe d'exclusion de Pauli), le nombre de manières différentes de choisir N_a niveaux parmi M_a est donné par :

$$\Omega(\theta_a) \approx \binom{M_a}{N_a} = \frac{[L\rho_s(\theta)\delta\theta]!}{[L\rho(\theta)\delta\theta]![(L\rho_s(\theta) - L\rho(\theta))\delta\theta]!}.$$
(2.34)

Estimation asymptotique à l'aide de Stirling. En utilisant la formule de Stirling :

$$n! \sim_{n \to \infty} n^n e^{-n} \sqrt{2\pi n}.,$$
 (2.35)

composé du fonction logarithmique, il vient cette équivalence :

$$\ln n! \quad \underset{n \to \infty}{\longrightarrow} \quad n \ln n \underbrace{-n + \ln \sqrt{2\pi n}}_{o(n \ln n)} , \qquad (2.36)$$

$$\underset{n \to \infty}{\sim} n \ln n \tag{2.37}$$

#conf. est jamais null donc on peut approximer, pour de grandes valeurs de L et de $\delta\theta$:

$$\ln \Omega(\theta) \underset{\substack{\rho \delta \theta \to \infty \\ \rho(\theta) \le \rho_s(\theta)}}{\sim} L[\rho_s \ln \rho_s - \rho \ln \rho - (\rho_s - \rho) \ln(\rho_s - \rho)](\theta) \delta \theta. \tag{2.38}$$

Cette expression donne la contribution par unité de θ à l'entropie associée à la cellule autour de θ_a .

Entropie de Yang-Yang : définition . Le nombre total de micro-états compatibles avec une distribution macro-scopique donnée $\rho(\theta)$ est obtenu en prenant le produit des nombres de configurations pour chaque cellule de rapidité $[\theta_a, \theta_a + \delta \theta] : \Omega(\theta_a)$. En prenant le logarithme de ce produit, on accède à l'entropie totale. Pour alléger la notation, cette somme sur les cellules est notée $\sum_a^{\theta-\text{cellules}}$ où chaque a indexe une cellule de rapidité $[\theta_a, \theta_a + \delta \theta]$. On écrit alors :

$$\ln \Omega[\rho] = \sum_{a}^{\theta - \text{cellules}} \ln \Omega(\theta_a), \qquad (2.39)$$

$$\approx LS_{YY}[\rho],$$
 (2.40)

où l'on définit l'entropie de Yang-Yang par la formule discrétisée :

$$S_{YY}[\rho] \doteq \sum_{a}^{\theta-\text{cellules}} [\rho_s \ln \rho_s - \rho \ln \rho - (\rho_s - \rho) \ln(\rho_s - \rho)](\theta_a) \delta\theta.$$
 (2.41)

Énergie généralisée par unité de longueur : définition. Dans le cadre du Generalized Gibbs Ensemble (GGE), l'énergie généralisée associée à une distribution de rapidité $\rho(\theta)$ et à un poids spectral $w(\theta)$ est définie comme la somme des poids assignés à chaque quasi-particule. Dans la limite thermodynamique, en supposant que $w(\theta)$ varie lentement sur chaque tranche $[\theta_a, \theta_a + \delta\theta]$, cette somme soit l'énergie généralisée par unité de longueur \mathcal{W} se se définit par :

$$LW(\{\theta_a\}) \doteq \sum_{a=1}^{N} w(\theta_a) \underset{\text{therm.}}{\sim} LW[\rho] \doteq L \sum_{a}^{\theta\text{-cellules}} w(\theta_a) \rho(\theta_a) \, \delta\theta. \tag{2.42}$$

Moyenne des Observables locales dans la limite thermodynamique. Dans un ensemble général (GGE), la valeur moyenne de l'observable (2.31) devient :

$$\lim_{\text{therm.}} \langle \hat{\mathcal{O}} \rangle_{\hat{\varrho}[w]} \approx \frac{\sum_{\rho} \langle \hat{\mathcal{O}} \rangle_{[\rho]} e^{L(\mathcal{S}_{YY}[\rho] - \mathcal{W}[\rho])}}{\sum_{\rho} e^{L(\mathcal{S}_{YY}[\rho] - \mathcal{W}[\rho])}}, \tag{2.43}$$

où la somme $\sum \rho$ porte sur toutes les distributions possibles de rapidité ρ

Passage à la limite continue. En faisant tendre $\delta\theta \to 0$, les sommes deviennent des intégrales et l'entropie de Yang-Yang ainsi que l'énergie généralisée par unité de longueur prennent la forme :

$$S_{YY}[\rho] = \int d\theta \left[\rho_s \ln \rho_s - \rho \ln \rho - (\rho_s - \rho) \ln(\rho_s - \rho) \right](\theta), \tag{2.44}$$

$$W[\rho] = \int w(\theta)\rho(\theta) d\theta \qquad (2.45)$$

Formule fonctionnelle pour les moyennes. Dans la limite thermodynamique $L \to \infty$, la somme sur les distributions de rapidité ρ admissibles peut être approximée par une intégrale fonctionnelle sur l'espace des densités de rapidité continues, munie d'une mesure fonctionnelle $\mathcal{D}\rho: \sum_{\rho} \sim \int \mathcal{D}\rho$. Cette correspondance repose sur l'idée que les macro-états admissibles deviennent denses dans l'espace fonctionnel, et que le poids statistique associé à chaque configuration est donné par l'entropie de Yang–Yang. La mesure fonctionnelle $\mathcal{D}\rho$ parcourt l'espace des densités $\rho(\theta)$ continues, chaque configuration étant pondérée par le facteur exponentiel $e^{L(S_{YY}[\rho]-\mathcal{W}[\rho])}$. Finalement, la moyenne d'une observable dans le GGE (2.43) s'écrit comme une intégrale fonctionnelle/de chemin :

$$\lim_{\text{therm.}} \langle \hat{\mathcal{O}} \rangle_{\hat{\varrho}[w]} = \frac{\int \mathcal{D}\rho \ e^{L(\mathcal{S}_{YY}[\rho] - \mathcal{W}[\rho])} \langle \hat{\mathcal{O}} \rangle_{[\rho]}}{\int \mathcal{D}\rho \ e^{L(\mathcal{S}_{YY}[\rho] - \mathcal{W}[\rho])}}. \tag{2.46}$$

Interprétation thermodynamique.

- $S_{YY}[\rho]$ compte le logarithme du nombre de micro-états réalisant la distribution $\rho(\theta)$: c'est l'entropie combinatoire.
- $\mathcal{W}[\rho]$ mesure le coût énergétique généralisé associé à cette distribution, dicté par le poids spectral $w(\theta)$.

Leur différence

$$(S_{YY} - W)[\rho]$$

joue donc le rôle d'une fonction thermodynamique effective (analogue à une entropie libre). L'exposant $e^{L(S_{YY}-W)[\rho]}$ fixe la **probabilité relative** d'un macro-état $\rho(\theta)$ dans le GGE : le terme entropique favorise la multiplicité des états, tandis que le terme énergétique pénalise les configurations coûteuses — d'où la compétition caractéristique de l'équilibre statistique.

2.2.3 Équations intégrales de la TBA

Moyenne des observables dans l'ensemble généralisé de Gibbs.

Approximation au point selle (« méthode de la selle statique ») Dans la limite thermodynamique $L \to \infty$, cette intégrale est dominée par la configuration ρ_{eq} qui maximise le poids exponentiel $e^{L(S_{YY}-W)[\rho]}$ dans l'expression (2.46). Il s'agit de la densité de rapidité la plus probable, solution d'un problème de maximisation. On obtient à l'ordre principal

$$\lim_{\text{therm}} \langle \hat{\mathcal{O}} \rangle_{\hat{\varrho}[w]} \approx \langle \hat{\mathcal{O}} \rangle_{[\rho_{eq}]}, \tag{2.47}$$

où ρ_{eq} est la distribution de rapidité à l'équilibre (2.33). Cette approximation correspond à une méthode de selle statique, où l'on développe la fonction thermodynamique effective, $S_{YY} - W$ au voisinage de la distribution dominante.

Dérivée fonctionnelle comme dérivée directionnelle. Dans le cadre des systèmes continus, les observables physiques dépendent souvent d'un champ $\phi(x)$, et sont représentées par des fonctionnelles, notées $F[\phi]$. Afin d'étudier la sensibilité de ces fonctionnelles à une variation infinitésimale du champ, on introduit la notion de **dérivée** fonctionnelle, définie par analogie avec la dérivée directionnelle en espace vectoriel de dimension finie.

Considérons une variation infinitésimale du champ de la forme $\phi(x) \mapsto \phi(x) + \epsilon \lambda(x)$, où $\lambda(x)$ est une fonction test lisse de support compact. La variation induite sur la fonctionnelle est donnée par :

$$\mathscr{D}_{[\lambda]}F[\phi] \equiv \lim_{\epsilon \to 0} \frac{F[\phi + \epsilon \lambda] - F[\phi]}{\epsilon} \tag{2.48}$$

La quantité $\mathscr{D}_{[\lambda]}F[\phi]$ est linéaire en $\lambda(x)$, et peut donc s'écrire sous forme d'un produit scalaire dans l'espace fonctionnel :

$$\mathscr{D}_{[\lambda]}F[\phi] = \int dx \, \frac{\delta F[\phi]}{\delta \phi(x)} \lambda(x) \tag{2.49}$$

La fonction $\frac{\delta F[\phi]}{\delta \phi(x)}$ est appelée **dérivée fonctionnelle** de $F[\phi]$ au point x. Elle joue un rôle analogue au gradient dans les espaces de dimension finie, en ce qu'elle encode la variation de $F[\phi]$ sous une perturbation infinitésimale du champ au point x.

On peut interpréter la dérivée fonctionnelle $\delta F[\phi]/\delta\phi(x)$ comme le résultat de la dérivation directionnelle de $F[\phi]$ dans la direction de la distribution $\delta(x-x_0)$, qui représente une perturbation localisée du champ au point x_0 :

$$\frac{d}{d\epsilon}F[\phi + \epsilon\delta(x - x_0)]\bigg|_{\epsilon = 0} = \frac{\delta F[\phi]}{\delta\phi(x_0)}$$
(2.50)

Cette construction générale sera utilisée dans la suite pour formuler des conditions d'extremum (par exemple dans des principes variationnels), ou pour dériver les équations de mouvement associées à une action.

Développement fonctionnel au premier ordre. Écrivons $\rho = \rho_{eq} + \delta \rho$ et développons $(S_{YY} - W)[\rho]$ à l'ordre linéaire :

$$(S_{YY} - W)[\rho] \approx (S_{YY} - W)[\rho_{eq}] + \mathcal{D}_{[\delta\rho]}(S_{YY} - W)[\rho_{eq}] + \mathcal{O}(\delta\rho^2),$$

La condition de stationnarité au point selle impose : $\mathcal{D}_{[\delta\rho]}(\mathcal{S}_{YY} - \mathcal{W})[\rho_{eq}] = 0$ soit

$$\mathcal{D}_{[\delta\rho]}\mathcal{S}_{YY}[\rho_{eq}] = \mathcal{D}_{[\delta\rho]}\mathcal{W}[\rho_{eq}]. \tag{2.51}$$

Équation intégrale de la TBA. La condition de stationnarité au point selle $\rho = \rho_{eq}$ (2.51) réécrit de la forme de produit scalaire (2.49) implique que pour tous θ :

$$\frac{\delta \mathcal{S}_{YY}[\rho_{\text{eq}}]}{\delta \rho(\theta)} = \frac{\delta \mathcal{W}[\rho_{\text{eq}}]}{\delta \rho(\theta)},\tag{2.52}$$

et la forme de l'énergie généralisée (2.45) et le rappel (2.50) impliquent que le second membre de l'équation précédente (2.52) est

$$\frac{\delta \mathcal{W}[\rho_{\text{eq}}]}{\delta \rho(\theta)} = w(\theta). \tag{2.53}$$

Ainsi (2.52) se réécrit en

$$\frac{\delta \mathcal{S}_{YY}[\rho_{\text{eq}}]}{\delta \rho(\theta)} = w(\theta), \tag{2.54}$$

En utilisant l'expression explicite de l'entropie de Yang-Yang (2.44), on obtient l'identité fonctionnelle

$$w = \ln(\nu_{eq}^{-1} - 1) - \frac{\Delta}{2\pi} \star \ln(1 - \nu_{eq}). \tag{2.55}$$

où $\nu_{eq} = \rho_{eq}/\rho_{seq}$ est le facteur d'occupation à l'équilibre.

Forme pseudo-énergie. La pseudo-énergie ϵ se donne alors par la statistique de type Fermi-Dirac

$$\epsilon = \ln(\nu_{eq}^{-1} - 1), \qquad \nu_{eq} = \frac{1}{1 + e^{\epsilon}}.$$
(2.56)

En réinjectant (2.56) dans (2.55) on obtient l'équation intégrale canonique de la thermodynamique de Bethe :

$$\epsilon = w - \frac{\Delta}{2\pi} \star \ln(1 + e^{-\epsilon}). \tag{2.57}$$

Les relations (2.56)–(2.57) déterminent de façon univoque la distribution de rapidité d'équilibre ρ_{eq} à partir du poids spectral w, caractéristique du GGE.

Ainsi, la méthode du point selle relie explicitement le poids spectral, w (caractéristique du GGE) au macro-état le plus probable, ρ_{eq} , et permet d'évaluer les observables par la formule d'ensemble (2.47).

Résolution numérique de l'équation TBA. Prenons un poids spectrale quelconque, par exemple :

$$w(\theta) = \theta^2. \tag{2.58}$$

En injectant w dans l'équation intégrale pour la pseudo-énergie (2.57), on obtient l'équation non linéaire. Cette équation définit un opérateur contractant sur l'espace des fonctions $\epsilon(\theta)$; son Jacobien a une norme strictement inférieure à 1, garantissant la convergence de l'itération de Picard.

Algorithme d'itération. La structure contractante de l'équation garantit l'absence de cycles ou de points fixes multiples, assurant la convergence de l'itération vers l'unique solution admissible. L'équation (??) est non linéaire; pour la résoudre numériquement, on utilise une méthode itérative de type Picard. On initialise $\epsilon_0 = w$, puis on construit une suite de fonctions ε_n définie par

$$\epsilon_{n+1} = \epsilon_0 - \frac{\Delta}{2\pi} \star \ln(1 + e^{-\epsilon_n}), \quad n \ge 0$$

L'itération est poursuivie jusqu'à convergence, que l'on peut tester via le critère numérique $\beta \|\varepsilon_{n+1} - \varepsilon_n\|_{\infty} < 10^{-12}$, où $\|\cdot\|_{\infty}$ désigne la norme L^{∞} (ou un maximum discret après discrétisation).

Facteur d'occupation et densités. Une fois la pseudo-énergie $\epsilon(\theta)$ convergée, le facteur d'occupation à l'équilibre est obtenu en injectant ϵ dans l'équation (2.56), ce qui donne ν_{eq} .

On en déduit ensuite la densité d'état à l'équilibre $\rho_{s,eq}$ via le **dressing** de la fonction constante $f(\theta) = 1$, selon (1.85), rappelée ici pour mémoire : $2\pi\rho_{s,eq} = 1^{\text{dr}}_{[\nu_{eq}]}$.

L'opérateur de dressing (1.83) étant linéaire, il se résout numériquement sous la forme :

$$\left\{ \operatorname{id} - \frac{\Delta}{2\pi} \star (\nu * \cdot) \right\} f_{[\nu]}^{\mathrm{dr}} = f,$$

où id: $f \mapsto f$ est l'identité fonctionnelle, et * désigne la multiplication. Après discrétisation de la variable θ , cette équation devient un système linéaire de type Ax = b, facilement résoluble numériquement.

La distribution de rapidité est alors obtenue par $\rho_{\rm eq} = \nu_{\rm eq} * \rho_{\rm s,eq}$.

Ainsi en fixant le poids spectral $w(\theta)$, l'algorithme fournit la pseudo-énergie ϵ , le facteur d'occupation $\nu_{\rm eq}$ et la distribution de rapidité $\rho_{\rm eq}$.

À l'équilibre thermique. Si on se place à l'équilibre canonique, caractérisé par la température T et le potentiel chimique μ . Dans ce cadre, le poids spectral vaut

$$w(\theta) = \beta \left[\varepsilon(\theta) - \mu \right], \qquad \beta = \frac{1}{T} \left(k_B = 1 \right), \quad \varepsilon(\theta) = \frac{\theta^2}{2} \left(m = 1 \right).$$
 (2.59)

Chapitre 3

Dynamique hors-équilibre et hydrodynamique généralisée

Contents

3.1	Fonde	ements physiques de la GHD	30
	3.1.1	Systèmes intégrables et quasi-particules	30
	3.1.2	GGE local	31
	3.1.3	Dynamique semi-classique	32
3.2	Équat	ion hydrodynamique de la GHD	33
	3.2.1	Équation de continuité	33
	3.2.2	Définition de la vitesse effective v^{eff}	34
	3.2.3	Système fermé et interprétation	35
3.3	Consé	quences physiques	36
	3.3.1	Transport balistique	37
	3.3.2	Chocs et rarefactions	38
	3.3.3	Corrections diffusive (préliminaire)	39
3.4	Appli	cations concrètes	40
	3.4.1	Problème bipartite	40
	3.4.2	Expansion d'un gaz 1D	42
	3.4.3	Autres systèmes	42
3.5	Aspec	ets mathématiques	43
	3.5.1	Structure Hamiltonienne	44
	3.5.2	Comparaison avec hydrodynamique classique	44
	3.5.3	Perspectives rigoureuses	45

Introduction

- Motivation : limitations des descriptions hydrodynamiques classiques pour les systèmes intégrables.
- Idée centrale de la GHD : hydrodynamique adaptée aux modèles intégrables, fondée sur le GGE local.
- Lien avec le chapitre précédent : du GGE global au GGE local.

Contexte général : des descriptions hydrodynamiques classiques insuffisantes. Les systèmes quantiques à un grand nombre de degrés de liberté présentent souvent, à grande échelle, des comportements collectifs pouvant être décrits par des équations hydrodynamiques. Dans les systèmes non intégrables, la relaxation vers l'équilibre thermique permet d'envisager des descriptions effectives fondées sur quelques paramètres macroscopiques — comme la température, la pression ou la densité — évoluant selon des lois de conservation classiques (de type Euler ou Navier-Stokes). Néanmoins, cette approche classique échoue dans le cas des systèmes intégrables, où l'existence d'un nombre extensif de constantes du mouvement empêche l'oubli des détails microscopiques. Dans ces systèmes, la dynamique est fortement contrainte, et l'approche thermodynamique classique est inadaptée.

Vers une hydrodynamique adaptée aux systèmes intégrables. Face à ce constat, la notion d'**hydrodynamique généralisée** (Generalized Hydrodynamics, GHD) a émergé comme une théorie effective décrivant la dynamique macroscopique des systèmes intégrables unidimensionnels. La GHD s'appuie sur une hypothèse cruciale : à chaque point de l'espace-temps, le système peut être considéré localement en **équilibre généralisé**, décrit par un **GGE local** (Generalized Gibbs Ensemble). Cette idée constitue une extension hydrodynamique naturelle du cadre du GGE introduit dans le chapitre précédent.

Dynamique des quasi-particules. Dans le langage du Bethe Ansatz, les états d'équilibre généralisé sont caractérisés par une densité de pseudo-particules (ou rapidités) $\rho(\theta)$. L'approche GHD postule que ces objets peuvent être promus au rang de champs dynamiques $\rho(x,t,\theta)$, dont l'évolution dans l'espace et le temps est gouvernée par une équation de type transport. L'innovation essentielle réside dans la prise en compte des **vitesses effectives** de ces excitations, qui résultent des interactions intégrables entre les quasi-particules.

Du GGE global à la GHD locale : continuité du formalisme. Le chapitre précédent a établi le rôle central du GGE pour décrire les états stationnaires atteints par les systèmes intégrables isolés. La GHD prolonge cette structure en permettant de modéliser des régimes non stationnaires, à travers l'évolution lente de GGEs locaux. Mathématiquement, cela se traduit par une équation de conservation pour la densité de quasi-particules, couplée à une équation intégrale déterminant leurs vitesses effectives en fonction de la distribution locale. Ce couplage rend la théorie **non linéaire** et **auto-consistante**, tout en préservant une structure fortement contrainte par l'intégrabilité.

Objectif du chapitre. Ce chapitre a pour objectif de présenter les fondements de l'hydrodynamique généralisée, ses équations fondamentales, ainsi que ses principales conséquences physiques et mathématiques. Nous détaillerons les hypothèses de construction, l'équation hydrodynamique de base, la définition des vitesses effectives, et les structures de conservation associées. Nous illustrerons ensuite cette théorie par plusieurs applications concrètes, telles que le problème de jonction bipartite ou l'expansion d'un gaz 1D. Enfin, nous discuterons des aspects mathématiques profonds liés à la structure Hamiltonienne de la GHD et des perspectives de formalisation rigoureuse dans le cadre de la théorie des équations de conservation.

3.1 Fondements physiques de la GHD

Introduction.

L'hydrodynamique généralisée repose sur une compréhension fine des propriétés des systèmes intégrables, et en particulier sur la manière dont les excitations (quasi-particules) émergent de la solution exacte du modèle via le Bethe Ansatz. Cette section a pour objectif de poser les bases physiques nécessaires à la construction de la GHD, en présentant successivement le rôle des quasi-particules, la notion de GGE local, et l'approximation semi-classique sous-jacente à la dynamique hydrodynamique.

Organisation de la section. Nous commencerons par rappeler la structure des solutions dans les systèmes intégrables, caractérisées par un spectre de rapidités associé à des états de type Bethe. Ces objets permettent une description thermodynamique efficace en termes de densités de quasi-particules. Nous introduirons ensuite le concept de GGE local, qui étend la description d'équilibre généralisé à un cadre dépendant de l'espace et du temps, pierre angulaire de la GHD. Enfin, nous discuterons l'interprétation semi-classique des quasi-particules en mouvement selon des vitesses effectives, liant ainsi la microphysique intégrable à une description hydrodynamique.

3.1.1 Systèmes intégrables et quasi-particules

- Notion de rapidité dans le Bethe Ansatz.
- Charges conservées infinies et conséquences dynamiques.

Modèles intégrables en une dimension. Les systèmes intégrables en dimension un présentent une structure remarquable : ils admettent un nombre infini de constantes du mouvement en involution, ce qui les rend exactement solubles, même à grand nombre de degrés de liberté. Cette propriété empêche la thermalisation au sens usuel et conduit à une dynamique très contrainte. Les modèles intégrables quantiques les plus emblématiques incluent la chaîne de Heisenberg, le modèle de Lieb-Liniger de bosons en interaction delta, et le gaz de Calogero-Sutherland.

Le formalisme du Bethe Ansatz. Dans ces modèles, la diagonalisation du Hamiltonien s'effectue via le Bethe Ansatz, une méthode introduite à l'origine pour la chaîne de Heisenberg et généralisée à d'autres systèmes. L'idée centrale du Bethe Ansatz est de représenter les états propres du système comme des superpositions d'ondes planes, dont les phases sont déterminées par des conditions de type périodique modifiées par les interactions. Ces conditions donnent lieu à un ensemble d'équations dites **équations de Bethe**, qui fixent un ensemble discret de **rapideurs** (ou rapidités), notées $\{\theta_i\}$, associées aux excitations du système.

La notion de rapidité. La rapidité θ joue ici un rôle analogue à celui de la quantité de mouvement dans les systèmes non intégrables. Elle paramètre l'énergie $e(\theta)$ et l'impulsion $p(\theta)$ des quasi-particules. Dans les modèles intégrables, ces fonctions $e(\theta)$ et $p(\theta)$ sont liées de manière spécifique, et les interactions entre particules se traduisent par des décalages de phase dans l'espace des rapideurs, sans diffusion classique. Cela permet une description complète des états en termes de distributions continues de rapidité à l'état thermodynamique.

Charges conservées et structure intégrable. Un aspect fondamental de l'intégrabilité est l'existence d'une infinité de charges conservées $\{Q_n\}$, qui s'expriment dans le cadre du Bethe Ansatz comme des fonctions additives sur les quasi-particules : chaque excitation de rapidité θ porte une charge $q_n(\theta)$ telle que

$$Q_n = \int d\theta \, \rho(\theta) \, q_n(\theta),$$

où $\rho(\theta)$ est la densité de quasi-particules. Ces charges incluent non seulement l'énergie et la quantité de mouvement (correspondant à n=2 et n=1), mais aussi une hiérarchie infinie de quantités non triviales, spécifiques au modèle.

Conséquences dynamiques. La présence de ces charges interdit la thermalisation conventionnelle et donne lieu à des comportements non ergodiques. Après un déséquilibre initial, comme un quench quantique, le système évolue vers un état stationnaire non thermique, décrit non pas par une distribution de Gibbs, mais par un **Generalized Gibbs Ensemble** (GGE), tenant compte de toutes les charges conservées. Ces charges contraignent également le transport : au lieu d'une relaxation diffusante, on observe souvent un **transport balistique** des observables, sous-tendu par la dynamique cohérente des quasi-particules.

Vers la description hydrodynamique. L'ensemble des concepts introduits ici — rapidité, quasi-particules, charges conservées — fournit le socle physique pour la construction d'une théorie hydrodynamique adaptée aux modèles intégrables. En promouvant la densité $\rho(\theta)$ au statut de champ dynamique $\rho(x,t,\theta)$, on accède à une description à grande échelle des dynamiques hors équilibre, qui sera formalisée dans les sections suivantes.

3.1.2 GGE local

- Hypothèse d'équilibre local généralisé.
- Distribution locale des pseudo-particules $\rho(x, t, \theta)$.

Hypothèse d'équilibre local généralisé. Dans les systèmes quantiques non intégrables, l'hypothèse d'équilibre local — ou local thermal equilibrium — constitue la pierre angulaire des descriptions hydrodynamiques classiques. Elle postule que, à une échelle spatiale et temporelle suffisamment large, le système peut être considéré comme étant en équilibre thermique local, caractérisé par des paramètres macroscopiques (température, densité, vitesse moyenne, etc.) qui varient lentement en espace et en temps.

Pour les systèmes intégrables, cette hypothèse doit être généralisée en raison de la multitude de charges conservées. Le système ne relaxe pas vers un état thermique classique, mais vers un état décrit par un Generalized Gibbs Ensemble (GGE) qui prend en compte l'ensemble infini des charges conservées. L'idée centrale de la GGE locale est donc d'étendre cette notion d'équilibre local à une forme généralisée, où, en chaque point (x,t), le système est approximé par un GGE paramétré par des potentiels chimiques locaux associés aux charges conservées.

Distribution locale des pseudo-particules. Dans la description thermodynamique des systèmes intégrables via le Bethe Ansatz, l'état du système est caractérisé par une distribution continue des quasi-particules en rapidité, notée $\rho(\theta)$. Cette densité de quasi-particules encode la population des modes d'excitation, et détermine l'ensemble des observables macroscopiques par intégration sur θ .

L'hypothèse d'équilibre local généralisé conduit naturellement à introduire une densité locale des quasi-particules, fonction de la position et du temps, $\rho(x,t,\theta)$. Cette fonction est supposée varier lentement sur les échelles macroscopiques, reflétant une distribution locale de GGE à chaque point.

Cette représentation locale permet de traduire la complexité microscopique du système intégrable en une fonction continue, dépendant de l'espace, du temps et de la rapidité, qui joue le rôle de variable d'état pour la description

hydrodynamique. C'est à partir de cette densité locale que seront construites les équations de la GHD, décrivant l'évolution macroscopique hors équilibre.

Signification physique et implications. L'introduction de $\rho(x,t,\theta)$ est essentielle pour capturer la richesse des phénomènes hors équilibre dans les systèmes intégrables. Par exemple, lors d'une jonction bipartite entre deux semi-infinis initialement à des GGEs différents, la distribution locale des quasi-particules varie spatialement, donnant naissance à des profils non triviaux et à un transport balistique des charges.

L'hypothèse de GGE local justifie également le recours à une dynamique hydrodynamique fondée sur la conservation locale des charges, ce qui différencie la GHD des approches hydrodynamiques classiques basées sur un nombre restreint de variables macroscopiques. Elle constitue ainsi la base physique rigoureuse permettant d'écrire des équations de transport généralisées, comme nous le verrons dans la section suivante.

3.1.3 Dynamique semi-classique

- Interprétation des quasi-particules en mouvement avec une vitesse effective.
- Liens entre dynamique microscopique et hydrodynamique.

Interprétation des quasi-particules en mouvement. L'une des avancées majeures de l'hydrodynamique généralisée est la reconnaissance que les quasi-particules décrites par la distribution locale $\rho(x,t,\theta)$ peuvent être considérées comme des entités semi-classiques se déplaçant avec une vitesse effective $v^{\rm eff}(x,t,\theta)$ qui dépend non seulement de leur rapidité intrinsèque, mais aussi de la distribution locale des autres quasi-particules. Cette vitesse effective intègre les interactions intégrables entre quasi-particules, reflétant le fait que, malgré l'absence de diffusion classique, les quasi-particules sont « habillées » par leur environnement et subissent un déplacement collectif non trivial.

Cette idée s'appuie sur le fait que, à l'échelle macroscopique, le système peut être vu comme un gaz de quasiparticules faiblement corrélées, où chaque excitation porte une charge, une énergie et une impulsion, et se propage selon une cinématique modifiée par les interactions intégrables. L'approche semi-classique assimile ainsi la dynamique complexe du système quantique à une équation de transport dans l'espace des positions et des rapidités.

Définition de la vitesse effective. La vitesse effective $v^{\text{eff}}(\theta)$ se définit comme la vitesse de propagation d'une excitation dans un milieu où la distribution des quasi-particules est donnée localement par $\rho(x,t,\theta)$. Cette quantité s'obtient à partir des dérivées des fonctions d'énergie et d'impulsion renormalisées, via une équation intégrale de type thermodynamique de Bethe Ansatz (TBA). Formellement, elle s'exprime comme

$$v^{\text{eff}}(\theta) = \frac{(e')^{\text{dr}}(\theta)}{(p')^{\text{dr}}(\theta)},$$

où les dérivées dressed $(\cdot)^{dr}$ tiennent compte des interactions avec la distribution locale des quasi-particules.

Lien entre dynamique microscopique et description hydrodynamique. Cette interprétation semi-classique permet de relier directement la microphysique intégrable — définie par des interactions quantiques exactes et des états propres construits via le Bethe Ansatz — à une description hydrodynamique macroscopique. En effet, en considérant que la densité locale $\rho(x,t,\theta)$ évolue par transport le long de trajectoires définies par v^{eff} , on obtient une équation de conservation locale pour les quasi-particules, qui constitue le cœur des équations de la GHD.

Ainsi, la complexité microscopique est encapsulée dans la définition non triviale de la vitesse effective, tandis que l'évolution globale s'écrit sous la forme d'une équation aux dérivées partielles conservant la densité locale. Ce passage de l'échelle microscopique à macroscopique s'appuie donc sur une approximation semi-classique rigoureuse, justifiée dans la limite thermodynamique et à grandes échelles spatiales et temporelles.

Conséquences dynamiques. Cette approche fournit une explication claire au transport balistique observé dans les systèmes intégrables : chaque quasi-particule transporte ses charges à sa vitesse effective, et l'ensemble du système se comporte comme un fluide de quasi-particules interagissant de façon cohérente. De plus, la formulation semi-classique ouvre la voie à l'introduction de corrections diffusive ou fluctuantes, en étendant la description au-delà de la limite purement balistique.

Cette compréhension physique est fondamentale pour la formulation mathématique de la GHD et la modélisation précise des phénomènes hors équilibre dans les gaz quantiques intégrables, sujets des développements qui suivent dans ce chapitre.

Conclusion.

Cette section a introduit les éléments structurants de la GHD du point de vue physique. Les systèmes intégrables se distinguent par une richesse de charges conservées qui modifie en profondeur leur dynamique collective. À travers le formalisme du Bethe Ansatz, les états sont représentés par des distributions continues de quasi-particules, dont les propriétés thermodynamiques et dynamiques sont entièrement déterminées par leur densité en rapidité. La généralisation locale du GGE permet de modéliser des situations hors équilibre en supposant que le système relaxe localement vers une forme de GGE, dont les paramètres varient lentement dans l'espace-temps. Enfin, la dynamique semi-classique des quasi-particules constitue le socle sur lequel repose la formulation hydrodynamique de la GHD, en autorisant une description en termes de courants de quasi-particules à vitesse effective. Ces concepts seront exploités dans la section suivante pour formuler les équations fondamentales de la GHD.

3.2 Équation hydrodynamique de la GHD

Introduction.

Les fondements physiques exposés dans la section précédente permettent maintenant de formaliser les équations dynamiques qui régissent l'évolution macroscopique des systèmes intégrables dans le cadre de l'hydrodynamique généralisée. L'objectif de cette section est de présenter l'équation de conservation centrale de la GHD, d'expliciter la définition de la vitesse effective $v^{\rm eff}(x,t,\theta)$, et de montrer que la théorie résulte en un système fermé et auto-cohérent d'équations aux dérivées partielles.

Structure générale. La dynamique de la densité locale de quasi-particules $\rho(x,t,\theta)$ est régie par une équation de type transport, analogue à une équation de continuité classique. Toutefois, la nouveauté profonde de la GHD réside dans le fait que la vitesse d'advection $v^{\rm eff}$ dépend elle-même de la distribution ρ , ce qui engendre une non-linéarité essentielle. Cette structure rend la GHD conceptuellement proche des systèmes de lois de conservation non linéaires, tout en incorporant les spécificités des modèles intégrables à travers les relations de Bethe thermodynamique.

Organisation de la section. Nous commencerons par écrire l'équation hydrodynamique de base, de forme conservative, puis nous introduirons les équations intégrales permettant de calculer la vitesse effective. Enfin, nous discuterons la fermeture du système, et les analogies formelles avec d'autres équations classiques de la physique mathématique.

3.2.1 Équation de continuité

$$\partial_t \rho(x, t, \theta) + \partial_x \left[v^{\text{eff}}(x, t, \theta) \rho(x, t, \theta) \right] = 0$$

Conservation locale de la densité de quasi-particules. L'élément fondamental de l'hydrodynamique généralisée est l'équation de transport pour la densité locale de quasi-particules, notée $\rho(x,t,\theta)$, où θ est la rapidité des excitations. Cette équation prend la forme d'une équation de conservation locale :

$$\partial_t \rho(x,t,\theta) + \partial_x \left[v^{\text{eff}}(x,t,\theta) \, \rho(x,t,\theta) \right] = 0.$$

Elle exprime que, à chaque valeur de la rapidité θ , le nombre de quasi-particules est conservé le long de la dynamique, en l'absence de création ou d'annihilation. La quantité $v^{\rm eff}(x,t,\theta)$ désigne la vitesse effective des quasi-particules, qui dépend elle-même de la distribution complète $\rho(x,t,\theta')$ à travers une équation intégrale auto-cohérente.

Structure en lois de conservation. L'équation ci-dessus est à comparer avec les lois de conservation classiques utilisées en hydrodynamique chaotique. Pour un fluide classique dans un potentiel extérieur V(x), on écrit typiquement trois équations de conservation :

$$\begin{split} \partial_t q_M(x,t) + \partial_x j_M(x,t) &= 0, \\ \partial_t q_P(x,t) + \partial_x j_P(x,t) &= -\frac{1}{m} \frac{\partial V(x)}{\partial x} q_M(x,t), \\ \partial_t q_E(x,t) + \partial_x j_E(x,t) &= 0. \end{split}$$

où q_M , q_P , q_E désignent respectivement les densités de masse, de quantité de mouvement et d'énergie, et j_M , j_P , j_E les courants associés. La deuxième équation contient un terme source dû au potentiel, ce qui rend la conservation du moment non triviale.

Dans le cas d'un fluide galiléen, et en absence de potentiel (V=0), ces équations se réécrivent sous la forme standard des équations d'Euler :

$$\partial_t n + \partial_x (nu) = 0,$$

$$\partial_t u + u \partial_x u + \frac{1}{mn} \partial_x P = 0,$$

$$\partial_t e + u \partial_x e + \frac{P}{n} \partial_x u = 0,$$

où $n = q_M/m$ est la densité de particules, $u = q_P/q_M$ la vitesse moyenne, e l'énergie interne, et P = P(n, e) la pression d'équilibre. Ces équations décrivent un fluide compressible, sous l'hypothèse d'équilibre local classique.

Analogies et différences fondamentales. L'équation de continuité de la GHD se place dans une structure conceptuellement proche de ces équations classiques, mais avec des différences fondamentales :

- Dans la GHD, la variable d'état fondamentale est la fonction $\rho(x,t,\theta)$, définie sur l'espace-temps et l'espace des rapidités. Il s'agit donc d'une description infinidimensionnelle, en contraste avec les quelques champs scalaires (densité, vitesse, température) utilisés dans l'hydrodynamique classique.
- La vitesse de transport v^{eff} n'est pas une donnée externe, ni une fonction simple de θ , mais dépend implicitement de l'ensemble du profil $\rho(x, t, \theta')$ via une équation intégrale. Cela rend l'équation non linéaire et auto-cohérente.
- Le couplage entre différentes valeurs de θ remplace, dans une certaine mesure, les effets de pression et de viscosité présents dans les fluides classiques, mais sous une forme non locale dans l'espace des vitesses.

Structure géométrique et signification physique. La forme conservée de l'équation reflète la nature balistique du transport dans les systèmes intégrables. Chaque quasi-particule transporte sa charge (énergie, moment, etc.) à une vitesse propre, déterminée collectivement. Cela permet une propagation de l'information sans diffusion ni perte, à la différence des systèmes chaotiques.

Cette équation constitue le point de départ de l'analyse des phénomènes hors équilibre dans la GHD. En intégrant cette équation sur l'espace des rapidités θ , on peut retrouver les équations de conservation pour les charges physiques (énergie, moment, particules), mais enrichies d'une structure qui encode l'intégrabilité du système.

Perspectives. Dans les sections suivantes, nous expliciterons la définition de $v^{\rm eff}$, montrant qu'elle résulte de l'habillage des quasi-particules par leurs interactions, et que son calcul repose sur le formalisme du Bethe Ansatz thermodynamique. Nous verrons alors que l'équation de GHD est en réalité un système fermé d'équations couplées, ce qui justifie pleinement son appellation d'« hydrodynamique ».

3.2.2 Définition de la vitesse effective v^{eff}

- Résolution auto-cohérente via les équations de type TBA.
- Rôle du kernel de diffusion $T(\theta, \theta')$.

Origine de la vitesse effective. Dans le cadre de l'hydrodynamique généralisée, chaque quasi-particule de rapidité θ est associée à une vitesse effective $v^{\rm eff}(x,t,\theta)$, qui détermine le transport de la densité $\rho(x,t,\theta)$ à grande échelle. Contrairement à la vitesse de groupe $v^{\rm gr}(\theta) = \frac{de(\theta)}{dp(\theta)}$ utilisée dans des descriptions non interactives, la vitesse effective incorpore les effets d'interactions intégrables entre les quasi-particules. Ces interactions n'induisent pas de diffusion au sens classique, mais elles modifient les trajectoires des excitations à travers des déphasages collectifs, dont l'effet net est capturé par une renormalisation des quantités dynamiques via un « habillage ».

Habillage des dérivées d'énergie et d'impulsion. La construction de v^{eff} repose sur le formalisme thermodynamique du Bethe Ansatz (TBA), qui permet d'exprimer les dérivées de l'énergie $e(\theta)$ et de l'impulsion $p(\theta)$ comme des fonctions « habillées », c'est-à-dire modifiées par les interactions. Formellement, la vitesse effective est donnée par :

$$v^{\text{eff}}(x,t,\theta) = \frac{(e')^{\text{dr}}(x,t,\theta)}{(p')^{\text{dr}}(x,t,\theta)},$$

où les dérivées habillées $(\cdot)^{dr}$ sont définies via une équation intégrale linéaire dépendant de la densité locale de pseudo-particules $\rho(x,t,\theta)$.

Équation d'habillage. Soit $h(\theta)$ une fonction quelconque (par exemple $e'(\theta)$ ou $p'(\theta)$). Sa version habillée $h^{\mathrm{dr}}(\theta)$ est définie par :

$$h^{\mathrm{dr}}(\theta) = h(\theta) + \int d\theta' \, T(\theta, \theta') \, \frac{\rho(x, t, \theta')}{\rho^{\mathrm{tot}}(x, t, \theta')} \, h^{\mathrm{dr}}(\theta'),$$

où:

- $T(\theta, \theta')$ est le **noyau de diffusion**, qui encode les interactions entre les quasi-particules. Il dépend du modèle considéré et dérive du déphasage entre états propres.
- $\rho^{\text{tot}}(x,t,\theta)$ est la densité totale d'états accessibles à la rapidité θ , et satisfait elle-même une équation intégrale couplée à $\rho(x,t,\theta)$.

Cette équation d'habillage doit être résolue de manière auto-cohérente, ce qui confère à $v^{\rm eff}$ une dépendance implicite complexe vis-à-vis du profil hydrodynamique.

Rôle du noyau de diffusion $T(\theta, \theta')$. Le noyau $T(\theta, \theta')$ joue un rôle central dans la construction de la GHD. Il est issu de la dérivée du déphasage entre deux quasi-particules de rapidité θ et θ' , résultant du Bethe Ansatz. Physiquement, il mesure l'intensité de l'interaction entre les deux excitations et détermine comment la propagation d'une quasi-particule est affectée par la présence des autres.

Dans les modèles intégrables à deux corps, $T(\theta, \theta')$ est donné par :

$$T(\theta, \theta') = \frac{1}{2\pi} \frac{d}{d\theta} \varphi(\theta - \theta'),$$

où φ est la phase de diffusion entre deux excitations.

Dans le cas du modèle de Lieb-Liniger par exemple, on a :

$$T(\theta, \theta') = \frac{c}{\pi} \frac{1}{(\theta - \theta')^2 + c^2},$$

où c est la force d'interaction entre les bosons.

Structure auto-cohérente. L'ensemble formé par l'équation de continuité et l'équation d'habillage constitue un système fermé d'équations pour $\rho(x,t,\theta)$. Ce système est :

$$\begin{cases} \partial_t \rho(x,t,\theta) + \partial_x \left[v^{\text{eff}}(x,t,\theta) \, \rho(x,t,\theta) \right] = 0, \\ v^{\text{eff}}(x,t,\theta) = \frac{(e')^{\text{dr}}(x,t,\theta)}{(p')^{\text{dr}}(x,t,\theta)}, & \text{avec } h^{\text{dr}} = \text{solution de l'équation d'habillage.} \end{cases}$$

Cette fermeture non triviale distingue la GHD d'une simple équation de transport linéaire : la vitesse dépend elle-même de la fonction transportée, ce qui donne au système un caractère non linéaire et intégral.

Conclusion. La vitesse effective est l'objet central qui permet de relier la description microscopique intégrable à la dynamique hydrodynamique. Elle capture l'effet des interactions entre excitations par l'intermédiaire du noyau T, et sa définition repose sur une structure mathématique riche issue du TBA. L'équation de GHD peut ainsi être vue comme une équation de conservation non linéaire à champ vectoriel auto-induit, structure que nous explorerons plus en détail dans la prochaine sous-section.

3.2.3 Système fermé et interprétation

- Équation hydrodynamique auto-consistante.
- Analogies avec les systèmes de conservation classiques.

Fermeture auto-cohérente des équations. Les éléments précédents ont permis d'identifier les deux équations fondamentales de l'hydrodynamique généralisée : l'équation de conservation pour la densité locale de quasi-particules,

$$\partial_t \rho(x, t, \theta) + \partial_x \left[v^{\text{eff}}(x, t, \theta) \rho(x, t, \theta) \right] = 0,$$

et la définition implicite de la vitesse effective comme rapport de quantités habillées :

$$v^{\mathrm{eff}}(x,t,\theta) = \frac{(e')^{\mathrm{dr}}(x,t,\theta)}{(p')^{\mathrm{dr}}(x,t,\theta)}.$$

Ce couple forme un système fermé et non linéaire pour l'inconnue $\rho(x,t,\theta)$, la vitesse effective étant déterminée par la résolution d'une équation intégrale dépendant elle-même de ρ . Cette auto-consistance rend la GHD profondément différente des équations de transport classiques où le champ de vitesse est imposé ou découple des degrés de liberté transportés.

Nature du système : transport non linéaire couplé. Du point de vue mathématique, la GHD s'apparente à un système d'équations de type conservation avec non-linéarités intégrales. Plus précisément, il s'agit d'un champ de densité $\rho(x,t,\theta)$ évoluant sous l'action d'un flot $v^{\rm eff}(x,t,\theta)$ qui dépend fonctionnellement de l'ensemble du profil $\rho(x,t,\theta')$. On peut interpréter cette structure comme une équation de transport dans un espace de phase étendu (x,θ) , avec une dynamique non locale en θ .

Cette structure se rapproche de celle des systèmes cinétiques (par exemple, l'équation de Vlasov dans la physique des plasmas), où le champ d'advection est auto-induit par la distribution des particules. Ici cependant, l'auto-induction se fait via une équation intégrale définie par le noyau $T(\theta, \theta')$ issu de la structure intégrable du modèle.

Comparaison avec l'hydrodynamique classique. On peut mettre en parallèle ce système avec les équations d'Euler pour un fluide compressible. Dans le cas classique, les équations sont fermées en termes de quelques variables macroscopiques : densité n(x,t), vitesse u(x,t), énergie interne e(x,t), avec des relations de type état pour fermer le système via la pression P(n,e).

Dans la GHD, les rôles de ces champs sont remplacés par la densité continue $\rho(x,t,\theta)$. La fermeture ne repose plus sur une équation d'état mais sur la résolution d'une équation d'habillage, c'est-à-dire sur la connaissance détaillée du spectre d'excitations du système, qui est une propriété intrinsèque de son intégrabilité.

Caractère galiléen et invariances. Dans plusieurs modèles intégrables (comme le modèle de Lieb-Liniger), la GHD respecte une forme d'invariance galiléenne. En effet, le flot global peut être modifié par une translation dans l'espace des vitesses (rapideurs), ce qui reflète la covariance des équations sous changement de référentiel inertiel. Cela renforce l'analogie avec les équations d'Euler, tout en mettant en évidence des différences essentielles : dans la GHD, les flux sont résolus en chaque point (x,t) pour toutes les valeurs de θ simultanément, ce qui donne au système une richesse dynamique supérieure.

Conséquences physiques. Le caractère auto-consistant de la GHD permet de décrire avec précision des phénomènes hors équilibre dans les systèmes intégrables : expansion balistique de nuages quantiques, jonctions bipartites entre deux domaines thermalisés, propagation d'ondes de chocs, etc. Ces effets trouvent un équivalent formel dans les solutions faibles d'équations de conservation classiques, mais leur description complète nécessite de suivre la dynamique des quasi-particules pour toute la gamme de rapidités.

La capacité à résoudre de manière déterministe l'évolution de $\rho(x,t,\theta)$ à partir de données initiales, en exploitant uniquement la structure intégrable du modèle, constitue l'un des atouts fondamentaux de la GHD.

Conclusion. La GHD s'impose comme une théorie hydrodynamique complète et rigoureuse pour les systèmes intégrables, grâce à une structure fermée alliant conservation locale et auto-consistance non linéaire. Elle offre une généralisation naturelle des lois de conservation classiques dans un cadre quantique, et fournit un outil puissant pour explorer les dynamiques hors équilibre à l'échelle macroscopique. Ce système constitue la base à partir de laquelle peuvent être développées des généralisations, incluant les effets diffusifs, les corrections quantiques, ou les couplages avec des champs externes.

Conclusion.

Cette section a établi le cœur mathématique de la théorie hydrodynamique généralisée. La densité de quasiparticules $\rho(x,t,\theta)$ évolue selon une équation de conservation locale, où le flux est donné par le produit de la densité et de la vitesse effective. Ce qui distingue fondamentalement la GHD des équations hydrodynamiques classiques est que cette vitesse effective v^{eff} est déterminée de façon auto-cohérente via une équation intégrale dépendant de la distribution locale des quasi-particules, reflétant ainsi les interactions intégrables entre excitations.

Le système d'équations ainsi obtenu est fermé, non linéaire, et admet une interprétation géométrique et physique riche, en particulier dans le cadre des systèmes à lois de conservation. Il constitue une base robuste pour l'analyse des phénomènes de transport balistique, des profils hors équilibre, et des régimes asymptotiques dans les systèmes intégrables. Cette équation fondamentale sera appliquée et illustrée dans les sections suivantes.

3.3 Conséquences physiques

Introduction.

L'équation d'hydrodynamique généralisée (GHD) fournit une description déterministe et auto-cohérente de la dynamique hors équilibre dans les systèmes intégrables à une dimension. Sa forme conservée, conjuguée à la structure non linéaire issue des interactions entre quasi-particules, permet de dériver un ensemble riche de prédictions physiques à l'échelle macroscopique.

Cette section est consacrée à l'exploration des principales conséquences dynamiques de la GHD. En premier lieu, nous examinerons le comportement à grand temps, où l'évolution est dominée par un transport balistique : chaque quasi-particule se propage avec sa propre vitesse effective, conduisant à des structures de fronts nets dans les profils de charge. Cette dynamique évoque des analogies avec les ondes dans les systèmes conservatifs, mais avec des propriétés propres à l'intégrabilité.

Nous aborderons ensuite la formation de structures non linéaires — *chocs* et *rarefactions* — dans des situations de type problème de Riemann, comme une jonction bipartite. Bien que la GHD soit initialement une théorie sans viscosité ni dissipation, la richesse de ses solutions rappelle celle des équations d'Euler hyperboliques.

Enfin, nous introduirons brièvement les limites de validité de la GHD purement balistique, et motiverons l'émergence de la GHD diffusive, qui inclut des corrections à l'ordre suivant, permettant notamment de décrire le lissage des chocs et l'apparition de fluctuations thermiques.

3.3.1 Transport balistique

- Comportement à grand temps.
- Propagation de fronts de charges.

Comportement à grand temps. L'une des signatures les plus marquantes des systèmes intégrables décrits par l'hydrodynamique généralisée (GHD) est la dominance du transport balistique à grande échelle spatio-temporelle. Ce régime est caractérisé par le fait que les quasi-particules se propagent librement, avec une vitesse effective $v^{\rm eff}(\theta)$, sans diffusion ni dissipation classique. À temps long, l'évolution du système est ainsi dominée par des profils déterministes, construits à partir du transport de ces modes.

Mathématiquement, cette structure se manifeste par la formation de profils stationnaires dépendant de la variable auto-similaire $\xi = x/t$. Dans cette limite dite de type hydrodynamique d'Euler, la densité de quasi-particules $\rho(x,t,\theta)$ admet une forme fonctionnelle asymptotique :

$$\rho(x, t, \theta) \longrightarrow \rho_{\infty}(\xi, \theta) \quad \text{avec} \quad \xi = \frac{x}{t},$$

ce qui reflète le fait que chaque excitation de rapidité θ se propage selon $v^{\rm eff}(\theta)$, donnant lieu à une organisation spatiale macroscopique selon la valeur de ξ .

Propagation de fronts de charges. Le transport balistique dans la GHD se traduit par la propagation de fronts de charge bien définis. Ces fronts délimitent des régions spatiales où la densité (d'énergie, de particules, de moment...) est approximativement constante, et sont le résultat de la superposition des trajets des quasi-particules.

Considérons par exemple une jonction bipartite : à l'instant initial t=0, le système est préparé avec deux demiespaces en équilibre local différent, chacun décrit par un GGE distinct (différente température, densité, etc.). Au cours de l'évolution, les quasi-particules de part et d'autre de la coupure se propagent selon leur vitesse effective respective, donnant lieu à un profil non trivial de charges dans la région intermédiaire. Ce profil est à support fini dans ξ , puisque seules les quasi-particules dont $v^{\text{eff}}(\theta)$ est compatible avec la position $\xi=x/t$ peuvent contribuer.

Dans cette configuration, on observe typiquement l'apparition d'un front d'expansion caractérisé par deux valeurs extrêmes ξ_- et ξ_+ telles que :

$$\rho_{\infty}(\xi,\theta) = \begin{cases} \rho_{L}(\theta) & \text{si } \xi < \xi_{-}, \\ \text{fonction interpolante} & \text{si } \xi_{-} < \xi < \xi_{+}, \\ \rho_{R}(\theta) & \text{si } \xi > \xi_{+}, \end{cases}$$

où $\rho_{\rm L}$ et $\rho_{\rm R}$ désignent les distributions initiales à gauche et à droite, respectivement.

Origine du profil en ξ . Le profil stationnaire $\rho_{\infty}(\xi,\theta)$ est obtenu en imposant la condition de matching le long des caractéristiques, c'est-à-dire en utilisant l'information que la densité est transportée sans déformation :

$$v^{\text{eff}}(\xi, \theta) = \xi.$$

Cette condition détermine, pour chaque valeur de ξ , quelle distribution $\rho_{\infty}(\xi,\theta)$ est compatible avec la propagation des modes de rapidité θ . Le problème devient alors une équation non linéaire implicite à résoudre pour chaque ξ .

Ce mécanisme donne lieu à une séparation spatiale des excitations en fonction de leur rapidité : les plus rapides (valeurs extrêmes de $v^{\rm eff}$) déterminent les bornes du front, tandis que les autres s'organisent entre ces bornes, définissant ainsi une structure riche et universelle à temps long.

Comparaison avec les systèmes non intégrables. Dans un système non intégrable, le transport est typiquement dominé par la diffusion : l'élargissement des profils se fait selon une loi de type \sqrt{t} , et les fronts sont arrondis par la dissipation. En contraste, dans les systèmes intégrables, l'absence de mécanismes dissipatifs donne lieu à un transport balistique dominé par des modes cohérents, avec des fronts nets et persistants.

Cette différence est directement observable expérimentalement, par exemple dans l'expansion d'un gaz de bosons 1D (modèle de Lieb-Liniger), où les fronts d'énergie et de densité s'éloignent linéairement en temps, en accord avec les prédictions de la GHD.

Conclusion. Le transport balistique constitue la manifestation principale de l'intégrabilité dans la dynamique hors équilibre. Il résulte du mouvement libre et cohérent des quasi-particules habillées, et conduit à une structure hydrodynamique déterministe où les profils se réorganisent selon la variable auto-similaire $\xi = x/t$. Cette description rend compte de nombreux résultats numériques et expérimentaux, et prépare le terrain pour l'étude de structures plus complexes comme les chocs, rarefactions ou effets diffusifs, abordés dans les sections suivantes.

3.3.2 Chocs et rarefactions

- Solution de type problème de Riemann.
- Apparition de structures non linéaires.

Problèmes de Riemann en GHD. Un cadre particulièrement fertile pour étudier la formation de structures non linéaires dans la GHD est celui du *problème de Riemann*, où l'on considère une condition initiale par morceaux :

$$\rho(x, t = 0, \theta) = \begin{cases} \rho_{\mathcal{L}}(\theta), & x < 0, \\ \rho_{\mathcal{R}}(\theta), & x > 0, \end{cases}$$

où $\rho_{\rm L}$ et $\rho_{\rm R}$ sont deux distributions de quasi-particules stationnaires correspondant à des GGEs différents (densité, température, moment, etc.).

À l'image du problème de Riemann en hydrodynamique classique, cette discontinuité initiale génère une évolution non triviale dans la région centrale $x \in [v_{\min}^{\text{eff}}t, v_{\max}^{\text{eff}}t]$, où les deux flux se rencontrent. Le système tend alors vers une solution stationnaire dépendant uniquement de la variable auto-similaire $\xi = x/t$, solution qui résout l'équation de continuité :

$$\partial_t \rho(x, t, \theta) + \partial_x \left[v^{\text{eff}}(\rho) \rho(x, t, \theta) \right] = 0.$$

Structure des solutions : rarefactions. Lorsque la courbe $\theta \mapsto v^{\text{eff}}(\theta)$ est strictement croissante, on observe une solution dite de rarefaction. Dans ce cas, les quasi-particules de rapidités différentes se séparent dans l'espace en raison de leurs vitesses distinctes. Il en résulte un étalement continu du profil : la densité $\rho(x,t,\theta)$ devient une fonction lisse de x dans la région intermédiaire, avec un dégradé de contributions des deux GGEs initialement présents.

Cette structure est semblable à la solution classique d'une onde de rarefaction dans les équations d'Euler : les champs hydrodynamiques varient de manière continue entre deux états asymptotiques, sans formation de discontinuité.

Formation de chocs. À l'inverse, si la relation entre $v^{\rm eff}$ et θ n'est pas monotone, ou si le système présente une non-convexité dans l'espace des états, des *chocs* peuvent apparaître. Dans ce cas, la solution stationnaire développée à temps long peut contenir des discontinuités nettes dans la densité de quasi-particules. Ces discontinuités sont analogues aux discontinuités de chocs classiques, où plusieurs caractéristiques se croisent, menant à une perte de régularité dans la solution.

Il est important de noter que, contrairement à l'hydrodynamique classique où la viscosité ou les effets dissipatifs régularisent naturellement les chocs, la GHD dans sa forme balistique ne les adoucit pas : les solutions restent en général discontinues. Toutefois, l'introduction de *corrections diffusive* permet de rétablir une structure de solution continue, comme nous le verrons dans la sous-section suivante.

Solutions entropiques et unicité. Le problème de Riemann dans un cadre non linéaire admet souvent plusieurs solutions faibles. Pour sélectionner la solution physiquement pertinente, il est nécessaire d'introduire un critère d'entropie, comme dans les systèmes classiques. En GHD, une telle sélection est implicite dans le choix de la dynamique microscopique sous-jacente : les solutions obtenues via l'évolution réelle du système quantique, ou via des simulations numériques (par exemple en chaîne XXZ ou gaz de Lieb-Liniger), convergent vers une solution unique du problème de Riemann.

Des travaux récents ont commencé à formaliser cette sélection dans le langage de l'hydrodynamique intégrable, notamment via la convexité de certaines quantités thermodynamiques associées à la GGE locale.

Interprétation physique. Les chocs et rarefactions sont des signatures directes du caractère non linéaire de la GHD. Leur apparition marque une frontière entre régimes simples (transport balistique régulier) et dynamiques plus complexes où des structures collectives émergent.

Dans les expériences sur gaz quantiques unidimensionnels, ces phénomènes peuvent être observés sous forme de fronts nets ou adoucis selon la préparation initiale, et sont en bon accord avec les prédictions théoriques. La nature dispersive ou non de ces structures constitue aussi une piste de recherche active pour différencier GHD balistique et GHD diffusive.

Conclusion. Le problème de Riemann fournit un cadre idéal pour explorer la richesse dynamique de la GHD. Selon la géométrie de l'espace des quasi-particules et la non-linéarité de $v^{\rm eff}$, le système peut générer des solutions continues (rarefactions) ou discontinues (chocs), de manière similaire aux équations d'Euler. Ces structures sont la manifestation macroscopique des interactions cohérentes entre excitations intégrables, et ouvrent la voie à une compréhension fine de la formation de structures hors équilibre dans les systèmes quantiques.

3.3.3 Corrections diffusive (préliminaire)

- Limites de validité de la GHD.
- Introduction à la GHD diffusive.

Limites de validité de la GHD balistique. La formulation de base de la GHD repose sur une hypothèse centrale : à grande échelle spatio-temporelle, les systèmes intégrables évoluent selon une dynamique purement balistique. Cela suppose que les quasi-particules se propagent de manière cohérente, sans diffusion ni fluctuations aléatoires.

Cependant, cette approximation trouve rapidement ses limites dans plusieurs contextes:

- lorsque les gradients de densité deviennent importants (par exemple au voisinage d'un choc);
- lorsque l'on considère des corrélations à temps long ou à grande distance ;
- lorsqu'on étudie la dynamique au-delà de l'ordre dominant en 1/t.

Dans ces cas, les effets de diffusion et de fluctuations thermiques ne sont plus négligeables. La GHD balistique, de par sa structure hyperbolique déterministe, échoue à capturer ces phénomènes. Il devient donc nécessaire d'introduire des corrections à l'ordre suivant dans l'expansion en grande échelle : on parle alors de **GHD diffusive**.

Origine microscopique de la diffusion. Même dans un système intégrable, les quasi-particules ne sont pas parfaitement indépendantes : elles interagissent via des déphasages cohérents. Bien que ces interactions n'induisent pas de thermalisation classique, elles peuvent produire des effets de type *random walk* à l'échelle méso- ou macroscopique, liés à l'accumulation de fluctuations au cours du temps.

Du point de vue du Bethe Ansatz, cette diffusion résulte de la propagation de petites perturbations autour d'un GGE local, et du couplage entre les différents modes via le noyau de diffusion $T(\theta, \theta')$. Ces effets peuvent être formalisés par une théorie cinétique linéarisée autour de l'état stationnaire.

Introduction à la GHD diffusive. La version diffusive de la GHD consiste à ajouter un terme de type Fick ou Navier-Stokes à l'équation de conservation, menant à une équation de type :

$$\partial_t \rho(x,t,\theta) + \partial_x \left[v^{\text{eff}}(\theta) \, \rho(x,t,\theta) \right] = \partial_x \left[D(\theta) \, \partial_x \rho(x,t,\theta) \right],$$

où $D(\theta)$ est un coefficient de diffusion généralisé, qui dépend du spectre des excitations et de la structure du GGE local.

Ce terme n'est pas imposé a priori, mais dérivé à partir d'une linéarisation de la dynamique microscopique, souvent en utilisant la matrice de diffusion obtenue via le formalisme de la matrice de susceptibilité et de corrélations dynamiques. Il encode les effets des fluctuations thermiques et de la dispersion quantique, même dans un système strictement intégrable.

Forme tensorielle et interprétation. La diffusion en GHD n'est pas scalaire, mais prend en réalité la forme d'un opérateur intégral non local agissant sur l'espace des rapidités. Il existe un tenseur de diffusion $\mathcal{D}(\theta, \theta')$ tel que :

Termes diffusifs =
$$\partial_x \left(\int d\theta' \, \mathcal{D}(\theta, \theta') \, \partial_x \rho(x, t, \theta') \right)$$
.

Cette structure reflète l'interdépendance des modes de rapidité due aux interactions intégrables. Le calcul explicite de $\mathcal{D}(\theta, \theta')$ repose sur des corrélations dynamiques à deux points en GGE, qui peuvent être obtenues via la théorie des grandes déviations ou des expansions diagrammatiques.

Conséquences physiques. L'introduction de la diffusion permet de :

- lisser les discontinuités apparentes dans les solutions balistiques (chocs, fronts);
- décrire correctement les fonctions de corrélation dynamiques à temps long (lois de fluctuation-dissipation généralisées);
- relier la GHD à des descriptions hydrodynamiques stochastiques (KPZ, Lévy, etc.) dans certaines limites.

Des effets tels que le broadening diffusif des fronts balistiques (largeur croissante en \sqrt{t}) ont été observés numériquement et expérimentalement, en accord avec les prédictions de la GHD diffusive.

Conclusion. La GHD diffusive constitue une extension naturelle de la GHD balistique, nécessaire pour capturer les effets subdominants à l'ordre 1/t. Elle repose sur une compréhension fine des fluctuations dans les systèmes intégrables et ouvre la voie à une hydrodynamique complète, capable de traiter à la fois les effets cohérents et dissipatifs. Bien que les expressions explicites des termes diffusifs soient encore en cours d'élaboration pour de nombreux modèles, leur introduction marque une étape importante dans la compréhension de la dynamique quantique hors équilibre.

Conclusion.

Les conséquences physiques de la GHD sont multiples et marquent une rupture profonde avec les comportements attendus dans les systèmes non intégrables. La présence d'un transport balistique structuré, l'apparition de fronts nets et de solutions de type chocs ou rarefactions, illustrent le rôle central des quasi-particules dans la dynamique collective.

La structure des solutions de GHD révèle également les limites de la description purement conservatrice : à mesure que des gradients forts apparaissent, ou que des fluctuations deviennent significatives, des corrections diffusive ou stochastiques doivent être considérées. Ces développements récents ouvrent un nouveau champ de recherche, reliant la GHD à des approches plus générales de la non-équilibre quantique.

Les exemples étudiés dans cette section montrent que la GHD n'est pas seulement une construction théorique élégante, mais un outil prédictif puissant, déjà en accord avec des expériences récentes en physique des gaz quantiques unidimensionnels.

3.4 Applications concrètes

Introduction.

Après avoir établi les fondements théoriques de l'hydrodynamique généralisée (GHD) et exploré ses conséquences physiques, nous illustrons ici son efficacité par l'étude de situations expérimentales et numériques concrètes.

La GHD s'est révélée être un cadre remarquablement prédictif pour décrire la dynamique hors équilibre de systèmes quantiques intégrables. Sa capacité à relier les propriétés microscopiques (via le Bethe Ansatz ou des équations intégrales de type TBA) aux évolutions macroscopiques de profils de densité ou d'énergie en fait un outil de choix pour traiter des problèmes réels.

Cette section est organisée autour de trois classes d'applications. Nous commençons par le problème de jonction bipartite, paradigme fondamental des protocoles hors équilibre, où deux régions préparées dans des états distincts sont mises en contact à l'instant t=0. Nous étudierons ensuite l'expansion libre d'un gaz unidimensionnel initialement confiné, une situation directement accessible en expérience. Enfin, nous évoquerons d'autres systèmes intégrables, tant quantiques (comme la chaîne XXZ) que classiques (tels que les gaz de Toda), où la GHD a permis d'obtenir des prédictions quantitatives robustes.

3.4.1 Problème bipartite

- Deux GGE initiaux couplés à t = 0.
- Évolution des observables.

Deux GGE initiaux couplés à t=0. Le problème bipartite constitue l'un des protocoles fondamentaux pour étudier la dynamique hors équilibre dans les systèmes intégrables. Il consiste à préparer le système dans un état initial composé de deux demi-espaces thermalisés séparément, chacun décrit par un état d'équilibre local — en l'occurrence un GGE (Generalized Gibbs Ensemble) —, puis à les mettre en contact brutalement à l'instant t=0.

Plus précisément, l'état initial est de la forme :

$$\rho(x, t = 0, \theta) = \begin{cases} \rho_{\mathcal{L}}(\theta), & x < 0, \\ \rho_{\mathcal{R}}(\theta), & x > 0, \end{cases}$$

où $\rho_{\rm L}$ et $\rho_{\rm R}$ sont deux distributions stationnaires de quasi-particules, correspondant à des GGEs caractérisés par des ensembles de multiplicateurs de Lagrange différents (température, potentiel chimique, vitesse moyenne, etc.).

Ce type de configuration est expérimentalement réalisable dans les gaz quantiques unidimensionnels, où deux nuages de particules confinés peuvent être préparés indépendamment, puis mis en contact via une manipulation du potentiel de piégeage. Elle est également simulée numériquement avec grande précision dans des chaînes quantiques (ex : XXZ) ou des modèles classiques intégrables.

Évolution hydrodynamique à temps long. L'évolution du système, dans le cadre de la GHD, est entièrement déterminée par la propagation des quasi-particules avec leur vitesse effective $v^{\rm eff}(\theta)$. À temps long, le système développe un profil stationnaire qui ne dépend que de la variable auto-similaire $\xi = x/t$. Ce profil résout l'équation :

$$v^{\text{eff}}(\rho_{\infty}(\xi,\theta)) = \xi,$$

c'est-à-dire que seules les quasi-particules dont la vitesse effective est compatible avec le rapport ξ peuvent contribuer à la densité locale.

Ce mécanisme conduit à une solution $\rho_{\infty}(\xi,\theta)$ qui interpole entre les deux distributions initiales : pour $\xi \ll 0$ (région gauche), on retrouve $\rho_{\rm L}$, pour $\xi \gg 0$ (région droite), on retrouve $\rho_{\rm R}$, tandis qu'entre les deux, un profil interpolant non trivial se forme.

Observables physiques. À partir de la solution hydrodynamique $\rho(x,t,\theta)$, on peut calculer les observables locales macroscopiques, telles que :

- la densité de particules n(x,t),
- la densité d'énergie e(x,t),
- les courants associés : $j_n(x,t)$, $j_e(x,t)$, etc.

Ces quantités sont obtenues par intégration sur l'espace des rapidités :

$$n(x,t) = \int d\theta \, \rho(x,t,\theta), \quad e(x,t) = \int d\theta \, \rho(x,t,\theta) \varepsilon(\theta), \quad j_n(x,t) = \int d\theta \, v^{\text{eff}}(x,t,\theta) \rho(x,t,\theta),$$

où $\varepsilon(\theta)$ est l'énergie d'une quasi-particule de rapidité θ .

En particulier, au centre de la jonction (x = 0), on observe la formation d'un état stationnaire non équilibrium (NESS, non-equilibrium steady state), où les observables prennent des valeurs intermédiaires entre celles de gauche et de droite, mais restent constantes dans le temps. Ce NESS porte un courant de particules ou d'énergie non nul, qui peut être prédit analytiquement à partir des données initiales.

Expressions analytiques et cas particuliers. Dans certains cas, comme pour des modèles à une seule espèce de quasi-particules (ex. modèle de gaz libre ou modèle de fermions durs), les expressions pour $\rho_{\infty}(\xi,\theta)$ peuvent être obtenues explicitement. Par exemple, dans le régime de faibles interactions (limite de gaz de Tonks-Girardeau), on retrouve des résultats similaires à ceux de la théorie des fermions libres, avec une structure en "fenêtre de Fermi mobile".

Dans les modèles plus complexes (ex. Lieb-Liniger), la solution doit être obtenue numériquement, par itération des équations intégrales impliquant le kernel de diffusion $T(\theta, \theta')$.

Comparaison avec expériences et simulations. La GHD appliquée au problème bipartite a montré une excellente concordance avec les simulations numériques (DMRG, tDMRG) et avec certaines expériences. Notamment :

- La propagation des fronts de charges observée dans des gaz de bosons unidimensionnels est bien décrite par la solution en ξ .
- Les valeurs stationnaires des courants mesurés expérimentalement sont reproduites par la GHD à partir des GGEs initiaux.

Ces succès renforcent l'idée que la GHD, bien que dérivée dans une limite d'échelle, capture fidèlement la dynamique réelle des systèmes intégrables.

Conclusion. Le problème bipartite constitue un test décisif de la validité de la GHD : il combine la présence d'un gradient brutal, de structures non linéaires et d'un régime asymptotique riche. La capacité de la GHD à prédire analytiquement le comportement du système à long temps, y compris les courants et profils de charges, en fait un cadre hydrodynamique puissant pour la physique hors équilibre des systèmes intégrables. Cette méthode s'étend également à d'autres situations expérimentales, comme l'expansion de gaz ou le transport quantique en géométrie ouverte.

3.4.2 Expansion d'un gaz 1D

- Libération d'un gaz : forme des profils de densité.
- Comparaison avec les données expérimentales ou numériques.

Libération d'un gaz : forme des profils de densité. L'expansion libre d'un gaz unidimensionnel constitue une application paradigmatique de la GHD, illustrant comment une configuration initiale confinée évolue hors équilibre lorsqu'elle est brusquement libérée. Typiquement, on considère un nuage de particules piégé dans un potentiel confiné, par exemple harmonique, qui est soudainement supprimé à l'instant t=0. Le gaz se dilate alors dans l'espace, et la dynamique macroscopique est gouvernée par la redistribution des quasi-particules.

La GHD permet de prédire précisément la forme des profils de densité n(x,t) à tout instant, en résolvant l'équation de continuité balistique :

$$\partial_t \rho(x, t, \theta) + \partial_x (v^{\text{eff}}(x, t, \theta) \rho(x, t, \theta)) = 0,$$

avec une condition initiale localement thermalisée dans le piège, typiquement un GGE spatialement dépendant. La dynamique entraı̂ne une propagation auto-similaire à grande échelle, où les profils de densité et d'énergie s'étalent en fonction de la variable $\xi = x/t$.

Cette évolution est marquée par la formation de fronts nets, délimités par les vitesses effectives minimales et maximales des quasi-particules. La forme des profils révèle également la redistribution des vitesses, l'échange d'énergie et la transformation locale de l'état GGE.

Caractéristiques particulières et phénomènes observés. L'expansion conduit souvent à une diminution de la densité locale, accompagnée d'une modification du spectre de rapidités $\rho(x,t,\theta)$: certaines régions de l'espace voient un enrichissement en quasi-particules rapides, tandis que d'autres restent dominées par des quasi-particules lentes.

Cette redistribution est au cœur de la relaxation vers des états hors équilibre généralisés, où chaque point spatial se trouve caractérisé par un GGE local différent de l'état initial.

Un autre phénomène remarquable est la possible formation de structures non linéaires, comme des fronts de rarefaction, et la persistance de profils asymptotiques stables à long temps.

Comparaison avec les données expérimentales et numériques. L'efficacité de la GHD dans ce contexte est largement validée par des comparaisons quantitatives avec des données expérimentales issues des gaz ultra-froids 1D, notamment dans des configurations réalisées avec des atomes froids de Rubidium ou Lithium.

Les profils de densité mesurés par imagerie optique coïncident avec les prédictions de la GHD à des échelles spatiales et temporelles macroscopiques, confirmant ainsi la pertinence de la description balistique.

De plus, des simulations numériques exactes ou quasi-exactes, basées sur des méthodes telles que la matrice densité renormalisée temporelle (tDMRG) ou les techniques Monte Carlo quantiques, confirment la précision des solutions GHD, même en présence d'interactions fortes.

Ces validations expérimentales et numériques confèrent à la GHD un rôle central dans l'interprétation et la prédiction des dynamiques hors équilibre dans les gaz quantiques confinés.

Perspectives et extensions. L'étude de l'expansion libre ouvre la voie à l'analyse d'autres phénomènes hors équilibre, tels que la propagation de perturbations locales, la réponse à des quenches rapides, ou l'impact de potentiels externes variés.

La prise en compte des corrections diffusive et des effets de fluctuations thermiques constitue un axe de recherche actif, visant à étendre la validité de la GHD dans les régimes plus complexes observés expérimentalement.

Conclusion. L'expansion d'un gaz 1D illustre avec clarté la puissance prédictive de la GHD. En reliant la microscopie intégrable aux profils macroscopiques observables, elle permet de décrire quantitativement la dynamique hors équilibre de systèmes quantiques réels. La concordance entre théorie, simulations et expériences renforce la place centrale de la GHD comme cadre unificateur de la dynamique des gaz quantiques unidimensionnels.

3.4.3 Autres systèmes

- Chaîne XXZ.
- Modèles classiques intégrables (Toda, etc.).

La chaîne XXZ. La chaîne de spins XXZ constitue un modèle quantique intégrable fondamental, largement étudié en physique et en physique de la matière condensée. Son intégrabilité repose sur la solution exacte via le Bethe Ansatz, qui permet d'identifier un spectre infini de charges conservées et de quasi-particules associées.

L'application de la GHD à la chaîne XXZ a permis d'explorer la dynamique hors équilibre dans ce système discret, notamment dans des configurations de jonction bipartite, quenches globaux, ou transport de spin et d'énergie. La description hydrodynamique généralisée fournit un cadre puissant pour calculer les profils locaux de densité de spin, les courants de transport, ainsi que les phénomènes de relaxation.

De nombreux résultats ont confirmé que la GHD capture fidèlement les dynamiques, notamment en comparant avec des simulations numériques par DMRG temporel. Des extensions récentes ont également intégré des corrections diffusive pour décrire la dissipation subtile présente dans ce système, permettant de mieux comprendre la transition entre transport ballistique et diffusion.

Ainsi, la chaîne XXZ constitue un laboratoire théorique privilégié où la GHD relie les propriétés microscopiques exactes à des prédictions macroscopiques quantitatives, enrichissant la compréhension des systèmes quantiques intégrables à plusieurs degrés de liberté.

Modèles classiques intégrables (Toda, etc.). Au-delà des modèles quantiques, la GHD trouve également des applications dans des modèles classiques intégrables, comme la chaîne de Toda. Ce système de particules couplées avec interaction exponentielle est un exemple archetypal de système intégrable classique, possédant un nombre infini de charges conservées et des solutions exactes en termes d'ondes solitaires.

L'hydrodynamique généralisée appliquée à ces modèles classiques permet de décrire la dynamique collective des ondes et des excitations, en traduisant la propagation des solitons en termes de distributions de quasi-particules classiques. L'équation de continuité généralisée et les vitesses effectives ont alors une interprétation directe en termes de propriétés des ondes solitaires.

Des études récentes ont montré que la GHD classique capture également la formation de structures non linéaires, la propagation balistique des ondes, ainsi que l'apparition de corrections diffusives dues aux interactions entre solitons. Cette approche a ouvert un pont entre la théorie de l'intégrabilité classique et les descriptions hydrodynamiques modernes.

Par ailleurs, la comparaison entre modèles classiques et quantiques via la GHD permet d'identifier des mécanismes universels dans la dynamique hors équilibre, et de mieux comprendre le rôle de la quantification sur la nature des excitations et leur transport.

Conclusion. La généralité de la GHD dépasse largement le cadre des gaz quantiques unidimensionnels. Son application à la chaîne XXZ et aux modèles classiques intégrables confirme sa portée universelle comme cadre hydrodynamique unifié des systèmes intégrables. Ces applications diverses enrichissent notre compréhension des phénomènes hors équilibre, mettant en lumière les mécanismes fondamentaux du transport, de la relaxation et des fluctuations dans une grande variété de contextes physiques.

Conclusion.

Les applications présentées dans cette section confirment la pertinence et la puissance de la GHD pour modéliser la dynamique hors équilibre de systèmes intégrables.

Dans le problème bipartite, la GHD permet de déterminer analytiquement les profils stationnaires et les courants de charges, souvent en accord avec des simulations numériques exactes ou des résultats issus de l'holographie thermodynamique. Lors de l'expansion d'un gaz, la théorie rend compte avec précision de la forme des profils de densité et de leur structure auto-similaire, en lien direct avec les expériences menées dans les gaz ultra-froids. Enfin, l'applicabilité de la GHD à des modèles intégrables variés (quantum ou classiques) témoigne de sa portée universelle.

Ces résultats suggèrent que la GHD ne constitue pas seulement une avancée théorique, mais également un cadre opérationnel, permettant d'analyser, de prédire et d'interpréter les données expérimentales dans un large éventail de contextes physiques. Elle offre ainsi une interface naturelle entre intégrabilité théorique, simulations numériques et expériences de physique quantique hors équilibre.

3.5 Aspects mathématiques

Introduction.

L'hydrodynamique généralisée (GHD), bien que née d'un formalisme physique, s'inscrit profondément dans un cadre mathématique riche et structurant. Cette section vise à éclairer les fondements mathématiques sous-jacents à la GHD, en s'intéressant à sa structure Hamiltonienne, à ses liens et différences avec l'hydrodynamique classique, ainsi qu'aux avancées récentes dans la rigueur des démonstrations.

La formulation de la GHD repose sur des équations de conservation généralisées dotées d'une structure de Poisson non triviale, reflétant la nature intégrable des modèles sous-jacents. Cette approche ouvre la voie à une interprétation géométrique potentielle, reliant la GHD à des espaces de phases infinis et à des structures symplectiques généralisées.

Par ailleurs, la comparaison avec les systèmes classiques comme les équations d'Euler ou de Navier-Stokes permet de mettre en lumière l'unicité et la richesse des équations intégrables qui gouvernent la GHD, tout en soulignant les spécificités liées aux nombreuses charges conservées.

Enfin, les progrès récents dans la démonstration rigoureuse des résultats de la GHD, portés notamment par des travaux de Doyon, Bertini et leurs collaborateurs, témoignent de la maturation rapide de ce domaine à l'interface entre physique mathématique et analyse.

3.5.1 Structure Hamiltonienne

- Forme de Poisson.
- Interprétation géométrique éventuelle.

Forme de Poisson. L'une des caractéristiques remarquables de l'hydrodynamique généralisée (GHD) est qu'elle s'inscrit naturellement dans un cadre Hamiltonien infini-dimensionnel, où les équations de mouvement peuvent être formulées à partir d'une structure de Poisson adaptée.

Concrètement, la distribution des quasi-particules $\rho(x,\theta)$, qui dépend de la position spatiale x et de la rapidité θ , peut être vue comme une variable de champ évoluant selon des équations de conservation généralisées. La dynamique est alors gouvernée par une forme de Poisson $\{\cdot,\cdot\}$ définie sur l'espace fonctionnel des distributions $\rho(x,\theta)$.

Cette structure de Poisson générale est non triviale : elle reflète la présence d'un nombre infini de charges conservées et implique que les équations de GHD sont intégrables au sens Hamiltonien. En particulier, on peut écrire l'évolution temporelle d'un observable fonctionnelle $\mathcal{F}[\rho]$ sous la forme :

$$\partial_t \rho(x,\theta) = \{ \rho(x,\theta), \mathcal{H}[\rho] \},$$

où $\mathcal{H}[\rho]$ est un Hamiltonien fonctionnel lié à l'énergie du système.

La forme exacte de cette structure de Poisson a été explicitée dans divers travaux récents. Elle généralise la structure classique de Poisson utilisée en hydrodynamique classique, mais intègre la dépendance en rapidité, ainsi que le couplage entre modes via le kernel d'interaction. Cette forme de Poisson non locale est compatible avec les équations de continuité généralisées de la GHD, et assure la conservation des charges infinies.

Interprétation géométrique éventuelle. D'un point de vue géométrique, cette structure Hamiltonienne invite à considérer l'espace des distributions $\rho(x,\theta)$ comme une variété infinie-dimensionnelle munie d'une structure symplectique généralisée.

Dans ce cadre, la dynamique GHD apparaît comme un flot Hamiltonien sur cet espace, où les variables de phase sont les densités de quasi-particules et leurs conjugées. Cette interprétation ouvre la porte à l'utilisation d'outils géométriques puissants issus de la géométrie symplectique et de la géométrie Poisson, tels que les algèbres de Lie infinis-dimensionnelles, les variétés de Poisson et les groupes de transformations canoniques.

Une piste prometteuse est de relier cette géométrie à celle des espaces de modules d'états GGE, ou aux espaces de phases associés aux équations intégrables classiques. On peut imaginer que la GHD constitue une version hydrodynamique de telles structures, étendant la géométrie intégrable à un cadre continu et à une échelle macroscopique.

Ce point de vue géométrique reste encore en grande partie conjectural et fait l'objet d'investigations actuelles. Il pourrait fournir un cadre conceptuel unifiant reliant intégrabilité, géométrie et dynamique hors équilibre.

Conclusion. La reconnaissance d'une structure Hamiltonienne sous-jacente à la GHD confère à cette théorie une rigueur et une élégance mathématique significatives. La forme de Poisson adaptée aux distributions de quasi-particules permet de comprendre la nature intégrable de la dynamique hydrodynamique généralisée.

L'interprétation géométrique éventuelle, bien que encore en développement, offre des perspectives stimulantes pour relier la GHD à des concepts plus larges en géométrie mathématique et physique mathématique, et pourrait permettre d'étendre la portée de la GHD à d'autres domaines et modèles.

3.5.2 Comparaison avec hydrodynamique classique

- Lois de conservation classiques (Euler, Navier-Stokes).
- Nature intégrable des équations de GHD.

Lois de conservation classiques (Euler, Navier-Stokes). L'hydrodynamique classique, notamment dans ses formulations d'Euler ou de Navier-Stokes, repose sur un ensemble de lois de conservation fondamentales portant sur des grandeurs macroscopiques telles que la masse, la quantité de mouvement et l'énergie. Ces équations prennent la forme de systèmes hyperboliques ou parabolique de PDEs (équations aux dérivées partielles) qui gouvernent l'évolution des champs de densité, vitesse et pression dans un fluide classique.

Les équations d'Euler, par exemple, expriment la conservation locale de la masse et de la quantité de mouvement dans un fluide idéal sans viscosité, alors que les équations de Navier-Stokes intègrent des termes dissipatifs représentant la viscosité et la diffusion de la quantité de mouvement. Ces descriptions classiques reposent sur un nombre fini de variables d'état, généralement limitées à trois grandeurs macroscopiques par point spatial.

Nature intégrable des équations de GHD. En revanche, la GHD traite des systèmes intégrables caractérisés par l'existence d'un nombre infini de charges conservées. Cette richesse en conservations transforme profondément la nature des équations hydrodynamiques : au lieu d'un système fini de PDEs classiques, on obtient un système infini-dimensionnel, où la densité des quasi-particules $\rho(x,t,\theta)$ joue le rôle de variable d'état fonctionnelle.

Les équations de GHD sont donc des équations de continuité généralisées pour une famille continue de charges, paramétrées par la rapidité θ . Cette structure complexe permet à la GHD de capturer la dynamique microscopique intégrable, notamment la coexistence simultanée de nombreuses modes propagatives avec des vitesses effectives dépendantes des densités locales.

Cette nature intégrable confère aux équations de GHD une structure mathématique riche, notamment la possibilité d'être formulées dans un cadre Hamiltonien infini-dimensionnel (cf. section précédente), ainsi qu'une hiérarchie de solutions exactes et stables à long temps.

De plus, contrairement aux équations classiques souvent caractérisées par la présence de dissipation (viscosité), les équations balistiques de la GHD décrivent une dynamique essentiellement conservative et cohérente, sans mécanismes de dissipation intrinsèques à l'ordre dominant. Les corrections diffusive apparaissent en tant que termes subdominants, résultant des fluctuations microscopiques.

Conséquences physiques et mathématiques. Cette comparaison souligne que la GHD constitue une extension non triviale de l'hydrodynamique classique, adaptée aux systèmes où l'intégrabilité gouverne la dynamique. Elle permet de modéliser des phénomènes hors équilibre avec une précision inaccessible aux cadres classiques, en intégrant l'impact des charges conservées multiples sur le transport et la relaxation.

D'un point de vue mathématique, cela signifie que les outils d'analyse et de résolution doivent être adaptés à un cadre infini-dimensionnel et souvent non linéaire, avec des solutions présentant des propriétés de stabilité et d'intégrabilité non rencontrées en hydrodynamique classique.

Conclusion. La comparaison entre GHD et hydrodynamique classique met en lumière la singularité des systèmes intégrables hors équilibre. La GHD généralise les principes fondamentaux de conservation tout en incorporant la complexité liée aux charges infinies, donnant naissance à des équations hydrodynamiques à la fois riches et robustes.

Cette perspective éclaire les différences fondamentales entre la dynamique des fluides classiques et celle des gaz quantiques intégrables, et pose les bases d'une compréhension approfondie des phénomènes hors équilibre dans des contextes où la notion d'intégrabilité joue un rôle central.

3.5.3 Perspectives rigoureuses

- État de l'art des preuves mathématiques.
- Résultats récents (Doyon, Bertini, etc.).

État de l'art des preuves mathématiques. L'hydrodynamique généralisée, bien que solidement établie sur des bases physiques et numériques, pose encore de nombreux défis en termes de rigueur mathématique. L'objet principal d'étude est un système infini-dimensionnel d'équations aux dérivées partielles non linéaires, gouvernant l'évolution des distributions de quasi-particules dans des systèmes intégrables.

Jusqu'à récemment, la plupart des résultats concernant la GHD reposaient sur des arguments formels, des calculs issus du Bethe Ansatz thermodynamique (TBA), ou des comparaisons numériques. La preuve rigoureuse que la GHD décrit bien la limite hydrodynamique d'un grand nombre de particules dans un système quantique intégrable reste un défi majeur.

Les principales difficultés proviennent de la complexité combinatoire des quasi-particules, de la nature non locale et non linéaire des équations, ainsi que de la gestion des fluctuations microscopiques et de l'extension des résultats aux régimes hors équilibre.

Résultats récents (Doyon, Bertini, etc.). Des progrès significatifs ont toutefois été réalisés ces dernières années grâce aux travaux de plusieurs chercheurs, parmi lesquels Benjamin Doyon, Lorenzo Bertini, et leurs collaborateurs, qui ont entrepris de poser la GHD sur des bases mathématiques plus solides.

Ces avancées comprennent :

- La démonstration de la convergence vers les équations de GHD dans certaines limites semi-classiques ou thermodynamiques, notamment pour des modèles simplifiés ou dans des régimes de faible couplage.
- La caractérisation précise des états locaux généralisés (local GGEs) et la preuve de leur stabilité dynamique dans certains cas.
- L'étude rigoureuse des corrections diffusive et des fluctuations, en reliant la GHD à des théories de grande déviation et à la théorie des processus stochastiques.
- La mise en place de cadres mathématiques adaptés (espaces fonctionnels, structures de Poisson, etc.) permettant de formuler et d'étudier la dynamique GHD avec rigueur.

Ces résultats renforcent la confiance dans la validité de la GHD au-delà des arguments heuristiques, tout en ouvrant la voie à une théorie hydrodynamique intégrable pleinement rigoureuse.

Perspectives futures. Le programme rigoureux autour de la GHD reste cependant largement ouvert. Les défis majeurs incluent :

- L'extension des preuves à des modèles quantiques généraux avec interactions fortes.
- La compréhension fine des effets de dissipation, fluctuations, et corrections hors échelle de temps hydrodynamique.
- L'étude des couplages avec des environnements ouverts, et des phénomènes de décohérence dans ce cadre.
- L'élaboration d'une théorie unifiée reliant GHD, théorie des champs conformes hors équilibre et systèmes intégrables classiques.

Ces questions constituent un champ de recherche dynamique à la croisée de la physique mathématique, de l'analyse fonctionnelle et de la théorie des systèmes dynamiques intégrables.

Conclusion. Les avancées récentes en mathématiques rigoureuses confirment que la GHD, au-delà de son succès heuristique et expérimental, est susceptible d'être solidement ancrée dans un cadre formel rigoureux. Ces développements enrichissent non seulement la compréhension fondamentale de la dynamique hors équilibre dans les systèmes intégrables, mais ils ouvrent aussi la voie à de nouvelles méthodes analytiques, à l'étude des fluctuations et des phénomènes critiques, et à la généralisation de la théorie à des contextes plus larges.

Conclusion.

La GHD constitue un pont fascinant entre physique et mathématiques, enrichissant les deux domaines. Sa structure Hamiltonienne dévoile une géométrie sous-jacente complexe qui étend les notions classiques de symplectique à des espaces fonctionnels infinis. Comparée à l'hydrodynamique classique, elle révèle des équations intégrables avec une richesse inédite liée à l'existence de charges conservées infinies.

Les avancées récentes en mathématiques rigoureuses, bien que souvent limitées à des cas particuliers ou à des approximations, renforcent la solidité de la GHD et ouvrent des perspectives passionnantes, tant pour la preuve de résultats fondamentaux que pour l'étude des fluctuations et des corrections diffusive.

Ainsi, cette section met en lumière la profonde structure mathématique qui sous-tend la GHD et invite à poursuivre son étude dans un cadre rigoureux et formel, pour consolider son rôle central dans la compréhension des systèmes quantiques hors équilibre.

Conclusion

- Résumé du rôle de la GHD dans les systèmes intégrables.
- Connexions avec les expériences de gaz quantiques.
- Perspectives: diffusion, chaos, hydrodynamique quantique stochastique.

Résumé du rôle de la GHD dans les systèmes intégrables. L'hydrodynamique généralisée (GHD) s'est imposée comme un cadre théorique puissant et unificateur pour décrire la dynamique hors équilibre des systèmes intégrables unidimensionnels. En étendant les principes classiques de l'hydrodynamique aux cas où un nombre infini de charges conservées intervient, la GHD capture la complexité des interactions microscopiques à travers des équations macroscopiques cohérentes. Elle relie ainsi la microscopie quantique intégrable à des phénomènes macroscopiques observables, offrant une compréhension approfondie des processus de transport, de relaxation et de formation d'états stationnaires non équilibres.

Connexions avec les expériences de gaz quantiques. Les prédictions de la GHD ont trouvé un écho remarquable dans les expériences récentes sur les gaz quantiques unidimensionnels d'atomes ultra-froids, où les conditions de quasi-intégrabilité sont réunies. La capacité de la GHD à prédire avec précision l'évolution des profils de densité, les courants d'énergie et les distributions locales dans ces systèmes a confirmé son rôle de théorie effective hors équilibre. Cette concordance expérimentale, couplée à des simulations numériques avancées, souligne la pertinence pratique de la GHD et son potentiel pour guider les futures explorations expérimentales dans la physique des gaz quantiques.

Perspectives : diffusion, chaos, hydrodynamique quantique stochastique. Malgré ses succès, la GHD classique telle qu'elle a été formulée ne rend pas encore pleinement compte des phénomènes diffusive et chaotiques présents dans les systèmes réels. Les corrections diffusive à la dynamique balistique, ainsi que les effets de fluctuations et de désordre, constituent des domaines d'étude en plein essor, conduisant à la notion de GHD diffusive et à des formulations stochastiques de l'hydrodynamique quantique. Ces extensions promettent de mieux comprendre la transition entre régimes intégrables et non intégrables, le rôle du chaos quantique et l'émergence d'une hydrodynamique plus complète. Elles ouvrent ainsi des perspectives passionnantes pour la compréhension des systèmes quantiques hors équilibre dans toute leur complexité.

Conclusion finale. En résumé, la GHD représente un progrès majeur dans la théorie des systèmes intégrables hors équilibre, mêlant rigueur mathématique, pertinence physique et validité expérimentale. Son développement continu, notamment à travers l'intégration des corrections diffusive et des phénomènes stochastiques, promet d'élargir encore son champ d'application, consolidant sa place au cœur de la physique mathématique moderne.

Annexes

- Calculs détaillés de v^{eff} .
- Rappels sur le Bethe Ansatz thermodynamique.
- Formulation intégrale des équations GHD.

Calculs détaillés de la vitesse effective v^{eff} . Cette annexe présente le calcul complet de la vitesse effective des quasi-particules, $v^{\text{eff}}(\theta)$, à partir des équations intégrales auto-cohérentes issues du Bethe Ansatz thermodynamique (TBA). Nous détaillons la résolution de l'équation de type Fredholm qui définit v^{eff} en fonction de la distribution des pseudo-particules $\rho(\theta)$ et du kernel d'interaction $T(\theta,\theta')$. Les différentes étapes, notamment la linearisation des équations, les propriétés symétriques du kernel, ainsi que les méthodes numériques utilisées pour leur résolution, sont exposées ici pour assurer une compréhension complète et rigoureuse.

Rappels sur le Bethe Ansatz thermodynamique. Cette section rappelle les fondements du Bethe Ansatz thermodynamique, qui constitue la pierre angulaire de la description microscopique des systèmes intégrables étudiés. On y présente la notion de rapidités, les équations quantiques de Bethe en régime thermodynamique, ainsi que les définitions des densités de pseudo-particules $\rho(\theta)$ et des trous $\rho^h(\theta)$. Les relations fondamentales liant ces quantités, ainsi que les fonctions d'énergie et de momentum, sont rappelées avec les notations utilisées dans le corps du texte, afin d'assurer une référence claire pour le lecteur.

Formulation intégrale des équations GHD. Enfin, cette annexe explicite la forme intégrale des équations de l'hydrodynamique généralisée. Nous montrons comment les équations de continuité pour la distribution $\rho(x,t,\theta)$ peuvent être formulées sous forme d'équations intégrales en espace des rapidités, faisant intervenir le kernel $T(\theta,\theta')$ et la vitesse effective. Cette formulation est particulièrement utile pour l'analyse analytique et numérique, et permet de relier directement la GHD aux équations TBA. Des exemples concrets et des cas particuliers sont également présentés pour illustrer l'efficacité de cette approche.

Conclusion des annexes. Ces annexes fournissent les bases techniques nécessaires à la compréhension approfondie de la GHD et de ses fondements microscopiques. Elles constituent un support essentiel pour le lecteur souhaitant approfondir les calculs sous-jacents et maîtriser les outils mathématiques qui accompagnent cette théorie innovante.

Chapitre 4

Fluctuation de la distribution de rapidité dans des état d'équilibre

Contents

4.1	Fluctu	nation-réponse et susceptibilités dans les états d'équilibre généralisés	50
	4.1.1	Cadre général : chages et dérivées fonctionnelles	50
	4.1.2	Cadre d'Équilibre de Gibbs Généralisée	52
	4.1.3	Vérification numérique : Echantillonnage du GGE	53
4.2	Limite	e thermodynamique, structure variationnelle et susceptibilités	55
	4.2.1	Susceptibilités spectrales et structure variationnelle de l'entropie	55
	4.2.2	Fluctuations gaussiennes autour de l'équilibre thermodynamique	56
	4.2.3	Expression de la Hessienne	57
	4.2.4	Fluctuations autour de la distribution moyenne et inversion de la Hessienne	57
	4.2.5	Vérification numérique thermodynamique : inversion de la courbure et dérivée fonctionnelle	58

Introduction

Pourquoi étudier les fluctuations? L'hypothèse selon laquelle, après relaxation, le système est décrit par un Generalized Gibbs Ensemble (GGE) constitue un fondement majeur de notre compréhension des dynamiques hors équilibre dans les systèmes intégrables. Cette hypothèse, bien que robuste théoriquement, appelle à être testée expérimentalement.

Toutefois, la seule connaissance de la distribution de rapidité moyenne $\rho_{\rm eq}$ ne permet pas, à elle seule, de confirmer la validité du GGE. En effet, plusieurs ensembles statistiques peuvent mener à une même valeur moyenne de $\rho(\theta)$. Pour lever cette ambiguïté, il est nécessaire d'étudier les **fluctuations** autour de la distribution typique, notées $\delta \rho$, définies par : $\rho = \rho_{\rm eq} + \delta \rho$. Cela nécessite de pousser le développement fonctionnel de la fonction thermodynamique effective $(S_{YY} - W)[\rho]$ à l'ordre quadratique en $\delta \rho$.

Si la GGE décrit correctement la valeur moyenne de $\rho(\theta)$ après relaxation, il est naturel de se demander si elle capture également les fluctuations autour de cette moyenne. Autrement dit, notre objectif est de tester si la GGE constitue le bon ensemble statistique pour l'état stationnaire, en analysant non seulement la distribution moyenne des quasi-particules, mais aussi ses fluctuations.

(en traveaux, ... les articles sont a lire plus en détails mais voilas un début) Plusieurs travaux récents ont mis

en lumière l'intérêt expérimental de sonder ces fluctuations. De Nardis et al. ont notamment montré que la mesure de la structure dynamique de la densité, après un quench, permet de reconstruire entièrement l'état stationnaire, c'est-à-dire la distribution $\rho(\theta)$ du GGE [4]. En particulier, l'analyse du facteur de structure dynamique permet d'extraire les différentes températures effectives β_i du GGE, et donc d'accéder à la distribution macroscopique des quasi-particules [5, 6].

Ainsi, en mesurant les corrélations dynamiques du gaz — accessibles expérimentalement via la spectroscopie ou les fluctuations de densité — on peut tester si les fluctuations observées concordent avec celles prédites par la GGE.

Concrètement, cela consiste à analyser la dispersion des vitesses (ou rapidités) sur plusieurs répétitions expérimentales d'un même quench. Si la GGE décrit correctement l'état stationnaire, la variance et les corrélations des

fluctuations de $\rho(\theta)$ devraient être en accord avec les prédictions du formalisme fluctuationnel issu de l'entropie $\hat{\rho}_{GGE}^{(S)}$, cf. (2.3).

Le lien entre fluctuations, fonctions de réponse, et ensembles de Gibbs généralisés (GGE) a suscité un intérêt croissant dans les systèmes quantiques intégrables. Le formalisme des charges quasi-locales et des potentiels conjugués dans le GGE a été précisé dans le modèle de Lieb-Liniger par Pálmai et Konik [7], qui montrent comment structurer la matrice densité en termes de fonctionnelles de rapidité. L'identité fondamentale liant la dérivée fonctionnelle de l'entropie de Yang-Yang au noyau de fluctuations $\chi(\theta,\theta')$ est également dérivée dans ce cadre.

La relation fluctuation—réponse dans les gaz bosoniques unidimensionnels a été étudiée en profondeur par De Nardis et al. [4], qui proposent une méthode pour reconstruire les fluctuations thermiques à partir de fonctions de réponse dynamiques, en comparant mesures expérimentales et théories thermodynamiques. D'autres travaux, comme ceux de Goldstein et Andrei [5], ou de Caux et Konik [6], examinent en détail la relaxation vers un GGE à la suite d'un quench quantique, et en particulier le rôle de la distribution de rapidité dans la description des états stationnaires.

En résumé, l'étude des fluctuations de la distribution de rapidités fournit un test clé de la validité du GGE pour modéliser les résultats expérimentaux dans le modèle de Lieb-Liniger [4].

Ce chapitre est consacré à cette extension, qui permettra :

- d'obtenir les matrices de susceptibilité χ_w et les corrélations gaussiennes du GGE;
- de fournir la base théorique des équations d'hydrodynamique généralisée au second ordre.

Nous commencerons par rappeler le formalisme variationnel, puis nous dériverons l'action quadratique régissant $\delta \rho$.

4.1 Fluctuation-réponse et susceptibilités dans les états d'équilibre généralisés

4.1.1 Cadre général : chages et dérivées fonctionnelles

Formulation fonctionnelle des moments et cumulants des charges. Considérons un système unidimensionnel de taille finie L. Dans le chapitre (2), aux équations (2.20) et (2.21), nous avons introduit l'opérateur de charge généralisée $\hat{\mathbf{Q}}[f]$, défini à partir d'une fonction test $f \colon \mathbb{R} \to \mathbb{R}$ et de l'opérateur densité de rapidité $\hat{\boldsymbol{\rho}}(\theta)$, selon la relation intégrale :

$$\hat{\mathbf{Q}}[f] = L \int d\theta f(\theta) \hat{\boldsymbol{\rho}}(\theta), \quad \text{où } \hat{\boldsymbol{\rho}}(\theta) \text{ agit comme} \quad \hat{\boldsymbol{\rho}}(\theta) |\{\theta_a\}\rangle = \frac{1}{L} \sum \delta(\theta - \theta_a) |\{\theta_a\}\rangle$$
(4.1)

États d'équilibre généralisés et poids spectral. Dans un système intégrable, on a vus dans l'équation (2.26) qu'un état d'équilibre est décrit par une matrice densité de la forme :

$$\hat{\boldsymbol{\varrho}}^{(\mathcal{S})}[w] \doteq \frac{1}{Z^{(\mathcal{S})}[w]} e^{-\hat{\boldsymbol{\mathcal{Q}}}^{(\mathcal{S})}[w]}, \quad \text{avec} \quad Z^{(\mathcal{S})}[w] \doteq \text{Tr}\left(e^{-\hat{\boldsymbol{\mathcal{Q}}}^{(\mathcal{S})}[w]}\right), \tag{4.2}$$

associée à w, où $w(\theta)$ est **poids spectral** (ou **potentiel spectral**), et $\hat{\boldsymbol{\mathcal{Q}}}^{(\mathcal{S})}[w]$ est une **charge généralisée** associé à ce poids.

Dérivée fonctionnelle directionnelle. Comme introduit dans l'équation (2.48), la dérivée fonctionnelle dans la direction d'une fonction test f appliquée à un fonctionnel F[g], comme :

$$\mathscr{D}_{[f]}F[g] \doteq \lim_{\epsilon \to 0} \frac{F[g + \epsilon f] - F[g]}{\epsilon}. \tag{4.3}$$

À partir de la définition précédente (4.3) , il est clair que $\mathcal{D}_{[f]}F[g]$ est, en ce qui concerne sa dépendance en f, un fonctionnel linéaire :

$$\mathscr{D}_{[c_1f_1+c_2f_2]}F[g] = c_1\mathscr{D}_{[f_1]}F[g] + c_2\mathscr{D}_{[f_2]}F[g], \tag{4.4}$$

avec c_1 et c_2 des réelles et f_1 et f_2 des fonctions de $\mathbb R$ dans $\mathbb R$.

La linéarité de $\hat{\mathcal{Q}}[g]$ implique que sa différentielle fonctionnelle dans la direction f :

$$\mathcal{D}_{[f]}\hat{\mathcal{Q}}[g] = \hat{\mathcal{Q}}[f]. \tag{4.5}$$

Cette notation permet une différentiation fonctionnelle claire, notamment dans les calculs de moments et cumulants.

Dans la suite, pour alléger les notations, nous noterons $\langle \cdot \rangle_w$ au lieu de $\langle \cdot \rangle_{\hat{\varrho}^{(S)}[w]}$.

Moments non centrés. À l'aide de cette notation, on a définie les moments non centrés d'ordre q des charges sous la forme :

$$\langle \hat{\boldsymbol{\mathcal{Q}}}^{(\mathcal{S})}[f_1] \hat{\boldsymbol{\mathcal{Q}}}^{(\mathcal{S})}[f_2] \cdots \hat{\boldsymbol{\mathcal{Q}}}^{(\mathcal{S})}[f_q] \rangle_w = (-1)^q \frac{1}{Z^{(\mathcal{S})}[w]} \mathscr{D}_{[f_1]} \mathscr{D}_{[f_2]} \cdots \mathscr{D}_{[f_q]} Z^{(\mathcal{S})}[w], \tag{4.6}$$

De même, on a définie les moments d'ordre q de la distribution de rapidité à l'aide des dérivées ponctuelles :

$$\langle \hat{\boldsymbol{\rho}}^{(\mathcal{S})}(\theta_1) \hat{\boldsymbol{\rho}}^{(\mathcal{S})}(\theta_2) \cdots \hat{\boldsymbol{\rho}}^{(\mathcal{S})}(\theta_q) \rangle_w = (-1)^q \frac{1}{L^q} \frac{1}{Z^{(\mathcal{S})}[w]} \frac{\delta}{\delta w(\theta_1)} \frac{\delta}{\delta w(\theta_2)} \cdots \frac{\delta}{\delta w(\theta_q)} Z^{(\mathcal{S})}[w], \tag{4.7}$$

Cumulants et fluctuations. On définit les fluctuations des charges et des distributions de rapidité par :

$$\delta \hat{\mathcal{Q}}^{(\mathcal{S})}[f] \doteq \hat{\mathcal{Q}}^{(\mathcal{S})}[f] - \langle \hat{\mathcal{Q}}^{(\mathcal{S})}[f] \rangle_w , \quad \delta \hat{\rho}^{(\mathcal{S})}(\theta) \doteq \hat{\rho}^{(\mathcal{S})}(\theta) - \langle \hat{\rho}^{(\mathcal{S})}(\theta) \rangle_w . \tag{4.8}$$

Les **cumulants** d'ordre q des **charges** s'obtiennent comme dérivées fonctionnelles du logarithme de la fonction de partition :

$$\langle \delta \hat{\mathcal{Q}}^{(S)}[f_1] \delta \hat{\mathcal{Q}}^{(S)}[f_2] \cdots \delta \hat{\mathcal{Q}}^{(S)}[f_q] \rangle_w = (-1)^q \mathscr{D}_{[f_1]} \mathscr{D}_{[f_2]} \cdots \mathscr{D}_{[f_q]} \ln(Z^{(S)}[w]), \tag{4.9}$$

et la cumulant d'ordre q des **distribution de rapidité**comme dérivées ponctuelles du logarithme de la fonction de partition

$$\langle \delta \hat{\boldsymbol{\rho}}^{(\mathcal{S})}(\theta_1) \, \delta \hat{\boldsymbol{\rho}}^{(\mathcal{S})}(\theta_2) \, \cdots \, \delta \hat{\boldsymbol{\rho}}^{(\mathcal{S})}(\theta_q) \rangle_w = (-1)^q \frac{1}{L^q} \frac{\delta}{\delta w(\theta_1)} \frac{\delta}{\delta w(\theta_2)} \cdots \frac{\delta}{\delta w(\theta_q)} \ln(Z^{(\mathcal{S})}[w]). \tag{4.10}$$

Moyennes et corrélations d'ordre faible. À l'ordre 1, les moments non centrés sont simplement les valeurs moyennes. Les moyennes des charges (4.6) et des distributions de rapidité (4.7) peuvent être exprimées comme dérivées fonctionnelles respectivement ponctuelles du logarithme de la fonction de partition :

$$\langle \hat{\boldsymbol{\mathcal{Q}}}^{(\mathcal{S})}[f_1] \rangle_w = -\mathscr{D}_{[f_1]} \ln(Z^{(\mathcal{S})}[w]), \quad \langle \hat{\boldsymbol{\rho}}^{(\mathcal{S})}(\theta_1) \rangle_w = -\frac{1}{L} \frac{\delta \ln(Z^{(\mathcal{S})}[w])}{\delta w(\theta_1)}. \tag{4.11}$$

Pour un état donné, la fonction $\langle \hat{\rho}(\theta) \rangle_w$ n'est rien d'autre que la distribution de rapidités par unité de longueur.

À l'ordre 2, les **cumulants** correspondent aux **corrélations**. On constate, à partir des expressions ci-dessus (4.11), que les fluctuations des charges (4.9) et des distributions de rapidité (4.10) peuvent être obtenues comme dérivées fonctionnelles respectivement ponctuelles des moyennes :

$$\langle \delta \hat{\boldsymbol{\mathcal{Q}}}^{(\mathcal{S})}[f_1] \, \delta \hat{\boldsymbol{\mathcal{Q}}}^{(\mathcal{S})}[f_2] \rangle_w = -\mathscr{D}_{[f_2]} \, \langle \hat{\boldsymbol{\mathcal{Q}}}^{(\mathcal{S})}[f_1] \rangle_w \,, \quad \langle \delta \hat{\boldsymbol{\rho}}^{(\mathcal{S})}(\theta_1) \, \delta \hat{\boldsymbol{\rho}}^{(\mathcal{S})}(\theta_2) \rangle_w = -\frac{1}{L} \frac{\delta \, \langle \hat{\boldsymbol{\rho}}^{(\mathcal{S})}(\theta_1) \rangle_w}{\delta w(\theta_2)}$$
(4.12)

Cette identité relie la fonction de corrélation des fluctuations aux dérivées fonctionnelles de la valeur moyenne : elle exprime une susceptibilité fonctionnelle, au sens où elle mesure la réponse linéaire d'une observable à une perturbation infinitésimale du poids $w(\theta)$. La susceptibilité s'identifie ainsi à la covariance entre charges généralisées, illustrant le principe de fluctuation-réponse.

Par souci de lisibilité, nous omettrons les indices (S): le caractère local des observables étant désormais implicite.

Notation susceptibilité et fluctuations. Considérons deux fonctions f_1 et f_2 . On définie la suscesptibilité (ou fonction de réponse croisée), $\chi_{\omega}[f_1, f_2]$ par

$$\chi_w[f_1, f_2] \doteq -\mathcal{D}_{[f_2]} \langle \hat{\mathbf{Q}}[f_1] \rangle_w. \tag{4.13}$$

Cette fonction de réponse est reliée aux fluctuations dans le GGE. Plus précisément, $\chi_{\omega}[f_1, f_2]$ vérifie

$$\chi_w[f_1, f_2] = C_w[f_1, f_2],\tag{4.14}$$

où les corrélations à deux points $C_{\omega}(f_1, f_2)$, défini par

$$C_w[f_1, f_2] \doteq \langle \hat{\mathcal{Q}}[f_1] \hat{\mathcal{Q}}[f_2] \rangle_w - \langle \hat{\mathcal{Q}}[f_1] \rangle_w \langle \hat{\mathcal{Q}}[f_2] \rangle_w, \tag{4.15}$$

quantifie les fluctuations dans le GGE.

L'équation précédente, qui relie la réponse linéaire aux fluctuations, est une relation très importante qui sera utilisée pour des tests numériques dans cette section.

Lien entre distributions de rapidités et observables locales. À partir de l'équation (4.1), on remarque que

$$\hat{\mathbf{Q}}[\delta(\cdot - \theta)/L] = \hat{\boldsymbol{\rho}}(\theta). \tag{4.16}$$

Les moments non centrés des charges (4.6) ainsi que leurs cumulants (4.9) deviennent alors ceux des distributions de rapidités (respectivement (4.7) et (4.10)), en prenant les fonctions $f_i(\theta) = \delta(\cdot - \theta_i)/L$.

Cela est en accord avec le fait que les dérivées fonctionnelles deviennent :

$$\mathcal{D}_{[\delta(\cdot-\theta)]}F[g] \doteq \lim_{\epsilon \to 0} \frac{F[g + \epsilon\delta(\cdot-\theta)] - F[g]}{\epsilon},$$

$$= \frac{\partial F}{\partial g(\theta)}.$$
(4.17)

$$= \frac{\partial F}{\partial g(\theta)} . \tag{4.18}$$

L'équation (4.13) s'écrit dans ce cas, en utilisant la notation de l'équation (4.17) et la propriété (4.4):

$$\chi_w(\theta, \theta') \doteq -\frac{1}{L} \frac{\delta \langle \hat{\boldsymbol{\rho}}(\theta) \rangle_w}{\delta \omega(\theta')} \tag{4.19}$$

où l'on a utilisé la notation $\chi_w(\theta, \theta') = \chi_w \left[\frac{\delta(\cdot - \theta)}{L}, \frac{\delta(\cdot - \theta')}{L} \right]$.

L'équation (4.15), quant à elle, s'écrit

$$C_{\omega}(\theta, \theta') \doteq \langle \hat{\boldsymbol{\rho}}(\theta) \hat{\boldsymbol{\rho}}(\theta') \rangle_{w} - \langle \hat{\boldsymbol{\rho}}(\theta) \rangle_{w} \langle \hat{\boldsymbol{\rho}}(\theta') \rangle_{w}$$

$$(4.20)$$

où l'on utilise la notation $C_{\omega}(\theta, \theta') = C_{\omega}\left(\frac{\delta(\cdot - \theta)}{L}, \frac{\delta(\cdot - \theta')}{L}\right)$.

La relation (4.14), qui relie la susceptibilité aux corrélation, inplique alors :

$$-\frac{1}{L}\frac{\delta\langle\hat{\boldsymbol{\rho}}(\theta)\rangle_{w}}{\delta\omega(\theta')} = \langle\hat{\boldsymbol{\rho}}(\theta)\hat{\boldsymbol{\rho}}(\theta')\rangle_{w} - \langle\hat{\boldsymbol{\rho}}(\theta)\rangle_{w}\langle\hat{\boldsymbol{\rho}}(\theta')\rangle_{w}$$

$$(4.21)$$

Cadre d'Équilibre de Gibbs Généralisée

Paramétrisation du potentiel spectral et réécriture des moments des charges.

Lien entre dérivées fonctionnelles, paramétrisation spectrale et moments des charges. Dans le cadre de l'Équilibre de Gibbs Généralisées (GGE), le poids spectral s'écrit

$$w(\theta) = \sum_{i} \beta_{i} f_{i}(\theta), \tag{4.22}$$

où les fonction régulières f_i sont des densitées spectrale associées au charges \hat{Q}_i , de sorte que les charges soient bien $\hat{Q}_i^{(S)} = \hat{Q}^{(S)}[f_i]$, alors on peut considérer la variation fonctionnelle d'une fonctionnelle F[w] par rapport à la direction f_i , ce qui revient à effectuer une perturbation $w \to w + \epsilon f_i$, autrement dit $\beta_i \to \beta_i + \epsilon$. La dérivée fonctionnelle de F[w]dans la direction f_i s'écrit alors :

$$\mathscr{D}_{[f_i]}F[w] \doteq \lim_{\epsilon \to 0} \frac{F\left[\sum_j (\beta_j + \delta_{ij}\epsilon)f_j\right] - F\left[\sum_j \beta_j f_j\right]}{\epsilon}, \tag{4.23}$$

$$= \frac{\partial F}{\partial \beta_i} \Big)_{\beta_{j \neq i}}. \tag{4.24}$$

Cette expression est valable tant que les fonctions f_j sont considérées comme fixées. En revanche, si les f_j peuvent varier, alors la différentiation par rapport aux β_j ne correspond plus à une dérivée fonctionnelle au sens strict. En injectant cette expression dans l'expression du moment non-centré (4.6) nous l'obtenons l'expression (2.12).

Avec la condition (4.22) et la définition (4.23), nous pouvons donc réécrire les moments non centrés (des charges) (4.6) et les cumulants (des charges) (4.9), et donc les moyennes (4.11) et corrélations (4.12), en remplaçant les dérivées fonctionnelles $\mathscr{D}_{[f_i]}$ par $\frac{\partial}{\partial \beta_i}\Big)_{\beta_{i \neq i}}$.

De plus en remarquand que $\frac{\partial w(\theta)}{\partial \beta_i}\Big)_{\beta_i \neq i} = f_i(\theta)$, alors la dérivé selon β_i s'écrit

$$-\frac{\partial}{\partial \beta_{i}}\Big)_{\beta_{j\neq i}} = -\int d\theta \, \frac{\partial w(\theta)}{\partial \beta_{i}}\Big)_{\beta_{j\neq i}} \frac{\delta}{\delta w(\theta)},$$

$$= L \int d\theta \, f_{i}(\theta) \left(-\frac{1}{L} \frac{\delta}{\delta w(\theta)}\right). \tag{4.25}$$

Nous pouvons donc, encore une fois, en utilisant (4.25), réécrire les moments non centrés des charges (4.6) en fonction des moments non centrés des distributions de rapidités (4.7):

$$\langle \hat{\boldsymbol{\mathcal{Q}}}^{(\mathcal{S})}[f_1] \cdots \hat{\boldsymbol{\mathcal{Q}}}^{(\mathcal{S})}[f_q] \rangle_w = L^q \int d\theta_1 f_1(\theta_1) \cdots \int d\theta_q f_q(\theta_q) \langle \hat{\boldsymbol{\rho}}^{(\mathcal{S})}(\theta_1) \cdots \hat{\boldsymbol{\rho}}^{(\mathcal{S})}(\theta_q) \rangle_w, \qquad (4.26)$$

De même, nous pouvons réécrire les cumulants des charges (4.9) à partir des cumulants des distributions de rapidités (4.10):

$$\langle \delta \hat{\boldsymbol{\mathcal{Q}}}^{(\mathcal{S})}[f_1] \cdots \delta \hat{\boldsymbol{\mathcal{Q}}}^{(\mathcal{S})}[f_q] \rangle_w = L^q \int d\theta_1 f_1(\theta_1) \cdots \int d\theta_q f_q(\theta_q) \langle \delta \hat{\boldsymbol{\rho}}^{(\mathcal{S})}(\theta_1) \cdots \delta \hat{\boldsymbol{\rho}}^{(\mathcal{S})}(\theta_q) \rangle_w. \tag{4.27}$$

Ces relations sont naturelles. En particulier, on retiendra que les moyennes et les corrélations des charges s'écrivent :

$$\langle \hat{\mathbf{Q}}^{(S)}[f] \rangle_w = L \int d\theta f(\theta) \langle \hat{\boldsymbol{\rho}}^{(S)}(\theta) \rangle_w,$$
 (4.28)

$$\langle \delta \hat{\boldsymbol{\mathcal{Q}}}^{(\mathcal{S})}[f_1] \, \delta \hat{\boldsymbol{\mathcal{Q}}}^{(\mathcal{S})}[f_2] \rangle_w = L^2 \iint d\theta_1 d\theta_2 f_1(\theta_1) \, \langle \delta \hat{\boldsymbol{\rho}}^{(\mathcal{S})}(\theta_1) \, \delta \hat{\boldsymbol{\rho}}^{(\mathcal{S})}(\theta_2) \rangle_w \, f_2(\theta_2). \tag{4.29}$$

4.1.3 Vérification numérique : Echantillonnage du GGE

On souhaite tester notre capaciter à eéchantillonner à échantillonner le GGE avec Metropolice. Pour cela on va utiliser le principe de *fluctuation-réponse* définie ci dessus dans l'équation (4.12). On va dans un premier temps calculer numériquement les corrélation des distrivution de rapidité en utilisant un algorithme de Monte Carlo basé sur les états propres du modèle de Lieb-Liniger et dans un deuxiemment temps en utilisant la suceptibilité.

Méthode numérique de Monte Carlo:

Paramètres fixés. On fixe un poids spectral, par exemple quadratique

$$w(\theta) = \frac{1}{2}\theta^2,\tag{4.30}$$

et on fixe les paramètres physiques du système : N=7 particules, L=10 la taille du système, et g=1 l'intensité des interactions.

 $\acute{E}quations$ de Bethe. Les états propres du gaz sont obtenus par la résolution des équations de Bethe (1.69) que l'on rappelle :

$$L\theta_j + \sum_{k \neq j} 2 \arctan\left(\frac{\theta_j - \theta_k}{g}\right) = 2\pi I_j, \tag{4.31}$$

où $\{I_i\}$ sont des entiers (ou demi-entiers) représentant une configuration de type Bethe.

Initialisation: état fondamental.

1. On commence par proposer une configuration d'entier de Bethe $\{I_j\}$ correspondant à l'état fondamental. Celle-ci est donnée par l'équation (1.70) que l'on rappelle,

$$I_j = j - \frac{N+1}{2}, \quad j \in [1, N]$$
 (4.32)

- 2. On résout ensuite les équations de Bethe associées afin d'obtenir l'ensemble des rapidités $\{\theta_i\}$.
- 3. Ces rapidités définissent une distribution empirique de rapidité, notée $\rho(\theta)$, que l'on enregistre sous la forme :

$$\rho(\theta) = \frac{1}{L} \sum_{j=1}^{N} \delta(\theta - \theta_j)$$
(4.33)

Pour rendre cette distribution exploitable numériquement, on la binne sur une grille discrète $\{\theta_i\}$.

À chaque étape du Monte Carlo :

- 1. Une nouvelle configuration $\{I'_j\}$ est proposée en faisant varier chaque entier I_j aléatoirement de ± 1 , c'est-à-dire en posant $I'_j = I_j$. ± 1 , le signe étant choisi au hasard.
- 2. À partir de cette configuration $\{I'_j\}$, on résout les équations de Bethe pour obtenir un nouvel ensemble de rapidités $\{\theta'_i\}$.
- 3. La nouvelle configuration est ensuite soumise au critère de Metropolis afin de décider si elle est acceptée ou rejetée. L'acceptation se fait avec une probabilité min $\left(1, e^{-\left(\sum_{j} w(\theta_{j}) \sum_{j} w(\theta'_{j})\right)}\right)$, en se basant sur l'énergie associée à la fonction w.
 - Si la configuration est acceptée, on met à jour les ensembles : $\{I_j\} \leftarrow \{I'_j\}$ et $\{\theta_j\} \leftarrow \{\theta'_j\}$.
- 4. Enfin, on enregistre la distribution de rapidité empirique associée à la configuration $\{\theta_j\}$, en la discrétisant sur une grille fixée $\{\theta_i\}$.

Cela permet de construire numériquement :

- la moyenne du profil de distribution de rapidité empirique , correspondant à $\langle \hat{\rho}(\theta) \rangle_w$, obtenue par une moyenne sur les configurations générées par la méthode de Monte Carlo,
- la covariance spectrale empirique correspondant à $\langle \delta \hat{\boldsymbol{\rho}}(\theta) \, \delta \hat{\boldsymbol{\rho}}(\theta') \rangle_{w}$.

Calcul numérique de la susceptibilité par dérivée fonctionnelle. Pour évaluer la susceptibilité linéaire, définie comme la dérivée de $\langle \hat{\rho}(\theta) \rangle_w$ par rapport à une perturbation infinitésimale du poids spectral $w(\theta')$, on adopte une approche numérique fondée sur les différences finies. La procédure est la suivante :

1. On modifie localement le potentiel $w(\theta)$ en y ajoutant une perturbation delta centrée en θ' , selon :

$$w(\theta) \to w(\theta) + \varepsilon \, \delta_{\theta'}(\theta),$$
 (4.34)

où ε est un petit paramètre de perturbation.

- 2. On relance ensuite le Monte Carlo avec ce potentiel perturbé, ce qui permet d'estimer la nouvelle moyenne $\langle \hat{\rho}(\theta) \rangle_{w+\varepsilon \delta_{\theta'}}$.
- 3. Enfin, on évalue la dérivée fonctionnelle par la formule de différence finie suivante :

$$-\frac{1}{L}\frac{\delta\langle\hat{\boldsymbol{\rho}}(\theta)\rangle_{w}}{\delta w(\theta')} \approx -\frac{1}{L} \cdot \frac{\langle\hat{\boldsymbol{\rho}}(\theta)\rangle_{w+\varepsilon\delta_{\theta'}} - \langle\hat{\boldsymbol{\rho}}(\theta)\rangle_{w}}{\varepsilon}.$$
(4.35)

Cette méthode permet ainsi d'approcher numériquement la matrice de réponse linéaire entre les coordonnées spectrales θ et θ' , que l'on peut comparer à la matrice de corrélation obtenue précédemment.

Difficultés numériques: Les algorithmes de Monte Carlo produisent des estimations bruitées des grandeurs physiques, notamment de la densité de rapidité moyenne $\langle \hat{\rho}(\theta) \rangle_w$. Cette quantité présente une incertitude statistique (écart-type) entre deux réalisations indépendantes de la procédure de Monte Carlo. Pour réduire ce bruit, il est nécessaire d'augmenter le nombre d'échantillons de I_j , ce qui alourdit le coût numérique du calcul.

Le calcul de la susceptibilité nécessite d'estimer la dérivée fonctionnelle de la densité de rapidité par rapport au poids w.

Cependant, pour que cette approximation soit valable, ε doit être suffisamment petit. Or, si ε est trop petit, la différence $\langle \hat{\rho}(\theta) \rangle_{w+\varepsilon\delta_{\theta'}} - \langle \hat{\rho}(\theta) \rangle_{w}$ devient du même ordre que leur bruit statistique, et la dérivée est alors noyée dans le bruit.

Pour limiter l'erreur statistique, on peut dans un premier temps ajuster à la fois le nombre d'échantillons des configurations $\{I_j\}$ et la valeur de ε , de sorte que l'écart-type de $\langle \rho(\theta) \rangle_w$ soit au moins dix fois plus petit que la variation $\langle \rho(\theta) \rangle_{w+\varepsilon\delta_{\theta'}} - \langle \rho(\theta) \rangle_w$.

Il convient donc de choisir ε suffisamment petit pour garantir la validité de l'approximation linéaire, tout en s'assurant que la variation mesurée dépasse significativement le bruit statistique. En pratique, cela requiert une calibration fine de ε ainsi qu'un nombre suffisamment grand d'échantillons pour garantir une estimation fiable de la susceptibilité.

Comparaison numérique. Les deux matrices sont ensuite représentées sous forme d'images couleur pour visualiser leur structure et mettre en évidence leur éventuelle coïncidence.

FIGURE 4.1 – Comparaison des matrices : à gauche, susceptibilité $\chi_w(\theta, \theta')$ obtenue par dérivée fonctionnelle; au centre, corrélation spectrale $C_w(\theta, \theta')$ estimée par fluctuations; à droite, leur différence.

Discussion. (à revoir le m'avance un peu) Les figures montrent une excellente concordance entre les deux matrices, confirmant numériquement le principe de fluctuation-réponse dans le cadre du GGE. La différence résiduelle visible sur la troisième image est due aux erreurs statistiques liées à la méthode Monte Carlo et à l'approximation par différences finies dans le calcul de la dérivée fonctionnelle.

4.2 Limite thermodynamique, structure variationnelle et susceptibilités

4.2.1 Susceptibilités spectrales et structure variationnelle de l'entropie

Rappels. Dans l'approximation thermodynamique, le système est décrit en termes de grandeurs macroscopiques, notamment par la distribution de rapidité $\rho(\theta)$. Dans l'équation (2.46), nous avons vu que, dans la limite thermodynamique, la moyenne d'un observable s'écrit :

$$\langle \hat{\mathcal{O}} \rangle_w = \frac{\int \mathcal{D}\rho \ e^{L(\mathcal{S}_{YY}[\rho] - \mathcal{W}[\rho])} \langle \hat{\mathcal{O}} \rangle_{[\rho]}}{\int \mathcal{D}\rho \ e^{L(\mathcal{S}_{YY}[\rho] - \mathcal{W}[\rho])}}.$$
(4.36)

où S_{YY} est l'entropie de Yang–Yang et W l'énergie généralisée, introduites respectivement dans (2.44) et (2.45). La quantité $\langle \hat{\mathcal{O}} \rangle_{[\rho]}$ désigne la valeur propre de l'observable associée aux états caractérisés par la distribution de rapidité ρ .

À l'équilibre thermodynamique, la distribution $\rho_{\rm eq}(\theta)$ satisfait l'équation (2.33), et coïncide avec la moyenne de l'opérateur de densité de rapidité :

$$\rho_{\rm eq} = \langle \hat{\boldsymbol{\rho}}(\theta) \rangle_w \tag{4.37}$$

représentant ainsi la densité continue de quasi-particules dans l'état stationnaire d'équilibre.

Dans le cadre du GGE continu, l'état macroscopique est entièrement déterminé par une densité spectrale $\rho(\theta)$ qui maximise l'entropie de Yang-Yang, $\mathcal{S}_{YY}[\rho]$, sous la contrainte de conservation des charges généralisées. Le poids spectral $w(\theta)$ est alors fixé. Comme nous l'avons vu (au chapitre (2)), la condition d'équilibre (2.54) peut s'écrire sous la forme variationnelle :

$$\frac{\delta \mathcal{S}_{YY}[\rho]}{\delta \rho(\theta)} \bigg)_{\rho = \rho_{eq}} = w(\theta). \tag{4.38}$$

Dérivée fonctionnelle. On peut considérer l'équation d'équilibre comme une relation implicite définissant le poids spectral w comme une fonctionnelle de la distribution de rapidité ρ . La dérivée fonctionnelle de cette relation s'écrit :

$$\frac{\delta w(\theta)}{\delta \rho(\theta')} \Big)_{\rho = \rho_{eq}} = \frac{\delta^2 \mathcal{S}_{YY}[\rho]}{\delta \rho(\theta) \, \delta \rho(\theta')} \Big)_{\rho = \rho_{eq}}, \tag{4.39}$$

où le membre de droite représente l'opérateur hessien (ou courbure fonctionnelle) de l'entropie de Yang–Yang, évalué à l'équilibre. Cet opérateur est négatif défini, conformément à l'interprétation de \mathcal{S}_{YY} comme une entropie à maximiser.

Inversion. On en déduit que la réponse de ρ à une variation infinitésimale du poids spectral w est donnée par l'inverse fonctionnel de (4.39):

$$-\frac{1}{L} \frac{\delta \rho(\theta)}{\delta w(\theta')} \Big|_{\rho = \rho_{\text{eq}}} = -\left(L \frac{\delta^2 \mathcal{S}_{\text{YY}}[\rho]}{\delta \rho(\theta) \, \delta \rho(\theta')}\right)_{\rho = \rho_{\text{eq}}} \right)^{-1}. \tag{4.40}$$

La susceptibilité fonctionnelle $\chi_w(\theta, \theta')$, définie dans (4.19), coïncide avec cette expression.

4.2.2 Fluctuations gaussiennes autour de l'équilibre thermodynamique

Une autre approche pour accéder aux fluctuations de la distribution de rapidité $\rho = \rho_{eq} + \delta \rho$ en étudiant

$$(S_{YY} - W)[\rho_{eq} + \delta \rho] = \exp{\{\mathscr{D}_{[\delta \rho]}\}} ((S_{YY} - W)[\rho_{eq}]).$$

Dans un état de GGE consiste à exploiter le développement quadratique de l'action effective autour de l'équilibre thermodynamique. Cette méthode, dite *gaussienne*, repose sur le fait que, dans la limite thermodynamique, l'intégrale fonctionnelle définissant le GGE est dominée par les configurations proches du point-selle ρ_{eq} .

On peut alors développer l'action $S_{YY} - W$ à second ordre autour de ce point d'équilibre :

$$(\mathcal{S}_{YY} - \mathcal{W})[\rho] \approx (\mathcal{S}_{YY} - \mathcal{W})[\rho_{\text{eq}}] + \underbrace{\int d\theta \frac{\delta(\mathcal{S}_{YY} - \mathcal{W})[\rho]}{\delta\rho(\theta)}}_{= 0 \text{ par stationnarit\'e}} \int_{\rho = \rho_{eq}} \delta\rho(\theta) - \frac{1}{2} \int d\theta d\theta' \delta\rho(\theta) \mathcal{H}(\theta, \theta') \delta\rho(\theta') + \mathcal{O}(\delta\rho^3) (4.41)$$

où
$$\mathcal{H}(\theta, \theta') = -\frac{\delta^2(S_{YY} - \mathcal{W})[\rho]}{\delta\rho(\theta)\,\delta\rho(\theta')}\Big|_{\rho = \rho_{eq}}$$
 est la hessienne de l'action effective.

Sous l'approximation gaussienne autour de l'équilibre, la covariance des fluctuations est donnée par :

$$\langle \delta \rho(\theta) \, \delta \rho(\theta') \rangle_{w} = \frac{\int \mathcal{D} \delta \rho \, \delta \rho(\theta) \, \delta \rho(\theta') \, \exp\left[-\frac{L}{2} \iint d\theta_{1} d\theta_{2} \, \delta \rho(\theta_{1}) \, \mathcal{H}(\theta_{1}, \theta_{2}) \, \delta \rho(\theta_{2})\right]}{\int \mathcal{D} \delta \rho \, \exp\left[-\frac{L}{2} \iint d\theta_{1} d\theta_{2} \, \delta \rho(\theta_{1}) \, \mathcal{H}(\theta_{1}, \theta_{2}) \, \delta \rho(\theta_{2})\right]},$$

$$= (L\mathcal{H})^{-1}(\theta, \theta'),. \tag{4.42}$$

Les corrélation $C_w(\theta, \theta')$ définie en (4.20) coïncide avec cette expression .

Ces relations posent les bases d'une description quantifiée des fluctuations de densité de rapidité, essentielles pour tester expérimentalement la validité du GGE, comprendre les corrélations à longue distance, et accéder aux propriétés dynamiques fines des systèmes intégrables en une dimension.

Ce développement quadratique justifie le caractère gaussien des fluctuations dans le régime thermodynamique, et sera à la base des extensions hydrodynamiques de type MFT (Macroscopic Fluctuation Theory).

Structure de \mathcal{H} . L'opérateur hessien de l'action effective se décompose naturellement comme la différence entre deux contributions fonctionnelles :

$$\mathcal{H} = \mathcal{H}^{(\mathcal{W})} - \mathcal{H}^{(\mathcal{S}_{YY})},\tag{4.43}$$

οù

$$\mathcal{H}^{(\mathcal{W})}(\theta, \theta') \doteq \frac{\delta^2 \mathcal{W}[\rho]}{\delta \rho(\theta) \, \delta \rho(\theta')} \bigg)_{\theta = \theta - \epsilon}, \quad \text{et} \quad \mathcal{H}^{(\mathcal{S}_{YY})}(\theta, \theta') \doteq \frac{\delta^2 \mathcal{S}_{YY}[\rho]}{\delta \rho(\theta) \, \delta \rho(\theta')} \bigg)_{\theta = \theta - \epsilon}. \tag{4.44}$$

L'opérateur inverse \mathcal{H}^{-1} est défini par la relation fonctionnelle :

$$(\mathcal{H}^{-1} \cdot \mathcal{H})(\theta, \theta') = (\mathcal{H} \cdot \mathcal{H}^{-1})(\theta, \theta') = \int d\theta'' \, \mathcal{H}(\theta, \theta'') \, \mathcal{H}^{-1}(\theta'', \theta') = \delta(\theta - \theta'), \tag{4.45}$$

où $\delta(\theta - \theta')$ désigne la distribution de Dirac, et non une variation.

On remarque tout d'abord que $\mathcal{H}^{(\mathcal{W})}=0$, car l'énergie généralisée par unité de longueur s'écrit simplement comme un couplage linéaire en ρ :

$$\mathcal{W}[\rho] = \int d\theta \, w(\theta) \, \rho(\theta),$$

avec un poids spectral $w(\theta)$ fixé (2.45). La seconde dérivée fonctionnelle de W s'annule donc identiquement.

En revanche, la courbure fonctionnelle provient entièrement de l'entropie de Yang–Yang, dont l'expression (2.44) est donnée par :

$$S_{YY}[\rho] = \int d\theta \left[\rho_s(\theta) \ln \rho_s(\theta) - \rho(\theta) \ln \rho(\theta) - (\rho_s(\theta) - \rho(\theta)) \ln(\rho_s(\theta) - \rho(\theta)) \right], \tag{4.46}$$

où $\rho_s(\theta)$ désigne la densité d'états liée à ρ par les équations de Bethe (1.82):

$$2\pi\rho_s = 1 + \Delta \star \rho. \tag{4.47}$$

Ainsi, l'opérateur de fluctuation \mathcal{H} coïncide avec la hessienne négative de l'entropie \mathcal{S}_{YY} , et détermine complètement la covariance spectrale à l'équilibre.

(b)

Figure 4.2

4.2.3 Expression de la Hessienne

En calculant la dérivée fonctionnelle seconde de l'entropie de Yang-Yang, définie en (4.46), dans la direction d'une variation $\delta \rho$, on obtient l'opérateur hessien $\mathcal{H}^{(\mathcal{S}_{YY})}$. L'opérateur hermien \mathcal{H} est donné par $\mathcal{H} = -\mathcal{H}^{(\mathcal{S}_{YY})}$, et se décompose comme suit :

$$\mathcal{H}(\theta, \theta') = \mathcal{D}(\theta, \theta') + \mathcal{V}(\theta, \theta') \tag{4.48}$$

La contribution diagonale locale, notée $\mathcal{D}(\theta, \theta')$, présente une singularité caractéristique d'une structure de type Fermi–Dirac. Elle reflète l'exclusion statistique effective induite par l'intégrabilité, y compris dans un système bosonique. Elle s'écrit :

$$\mathcal{D}(\theta, \theta') = \left(\frac{1}{\rho_{s,eq}(\theta)\nu_{eq}(\theta)(1 - \nu_{eq}(\theta))}\right)\delta(\theta, \theta'). \tag{4.49}$$

La partie régulière symétrique, notée $V(\theta, \theta')$, regroupe quant à elle les contributions non locales issues des interactions entre quasi-particules.

$$\mathcal{V}(\theta, \theta') = -\left(\frac{1}{\rho_{s,eq}(\theta)(1 - \nu_{eq}(\theta))} + \frac{1}{\rho_{s,eq}(\theta')(1 - \nu_{eq}(\theta'))}\right) \frac{\Delta(\theta - \theta')}{2\pi} + \int d\theta'' \frac{\nu_{eq}(\theta'')}{\rho_{s,eq}(\theta'')(1 - \nu_{eq}(\theta''))} \frac{\Delta(\theta - \theta'')}{2\pi} \frac{\Delta(\theta'' - \theta')}{2\pi} \right)$$

$$(4.50)$$

avec $\rho_{eq}(\theta) = \nu_{eq}(\theta) \rho_{s,eq}(\theta)$.

4.2.4 Fluctuations autour de la distribution moyenne et inversion de la Hessienne

On cherche alors \mathcal{H}^{-1} aussi sous la forme

$$\mathcal{H}^{-1}(\theta, \theta') = \mathcal{D}^{-1}(\theta, \theta') + \mathcal{B}(\theta, \theta') \tag{4.51}$$

avec une partie diagonale sans intéraction

$$\mathcal{D}^{-1}(\theta, \theta') = (\rho_{s,eq}(\theta)\nu_{eq}(\theta)(1 - \nu_{eq}(\theta)))\delta(\theta, \theta')$$
(4.52)

tel que

$$(\mathcal{D}^{-1} \cdot \mathcal{D})(\theta, \theta') = (\mathcal{D} \cdot \mathcal{D}^{-1})(\theta, \theta') = \int d\theta'' \, \mathcal{D}(\theta, \theta'') \, \mathcal{D}^{-1}(\theta'', \theta') = \delta(\theta - \theta'), \tag{4.53}$$

avec une partie symétrique régulière avec interaction \mathcal{B} .

Les equations (4.48), (4.51), (4.45) et (4.53), il vient que cette série d'équivalences

$$\left\{ \begin{array}{lll} \mathcal{H} \cdot \mathcal{H}^{-1} & = & \delta \\ \mathcal{H}^{-1} \cdot \mathcal{H} & = & \delta \end{array} \right. i.e. \left\{ \begin{array}{lll} \mathcal{H} \cdot \mathcal{B} & = & -\mathcal{V} \cdot \mathcal{D}^{-1} \\ \mathcal{B} \cdot \mathcal{H} & = & -\mathcal{D}^{-1} \cdot \mathcal{V} \end{array} \right. i.e. \left\{ \begin{array}{lll} \mathcal{B} & = & -\mathcal{H}^{-1} \cdot \mathcal{V} \cdot \mathcal{D}^{-1} \\ \mathcal{B} & = & -\mathcal{D}^{-1} \cdot \mathcal{V} \cdot \mathcal{H}^{-1} \end{array} \right.$$

Du fait que tous ces fonctions (\mathcal{H} , \mathcal{D} , \mathcal{V} et inverse) soit symétriques alors l'equation ci-dessus sont tous équivalentes et \mathcal{B} étant donc symétrique . Donc en utilisant (4.50) et (4.52)

$$\mathcal{B}(\theta, \theta') = -(\mathcal{D}^{-1} \cdot \mathcal{V} \cdot (\mathcal{H}^{(\mathcal{S}_{YY})})^{-1})(\theta, \theta'),$$

$$= (\rho_{s,eq}(\theta)\nu_{eq}(\theta)(1 - \nu_{eq}(\theta))) \times$$

$$\left\{ \frac{\Delta}{2\pi} \star \left[\frac{1}{\rho_{s,eq}(\theta)(1 - \nu_{eq}(\theta))} + \frac{1}{\rho_{s,eq}(\cdot)(1 - \nu_{eq}(\cdot))} \right] \mathcal{H}^{-1}(\cdot, \theta') \right.$$

$$\left. - \frac{\nu_{eq}(\cdot)}{\rho_{s,eq}(\cdot)(1 - \nu_{eq}(\cdot))} \left(\frac{\Delta}{2\pi} \star \mathcal{H}^{-1}(\cdot, \theta') \right) \right] \right\} (\theta),$$

$$(4.54)$$

où $(f \star g)(x)$ désigne la convolution $\int f(x-t) g(t) dt$. En injectant cette dernier équation et (4.51), dans (4.42), il vient que une éqution implicite:

$$\langle \delta \rho(\theta) \delta \rho(\theta') \rangle_{w} = \frac{1}{L} \mathcal{D}^{-1}(\theta, \theta') + \frac{1}{L} (\rho_{s,eq}(\theta) \nu_{eq}(\theta) (1 - \nu_{eq}(\theta))) \times \left\{ \frac{\Delta}{2\pi} \star \left[\left(\frac{1}{\rho_{s,eq}(\theta) (1 - \nu_{eq}(\theta))} + \frac{1}{\rho_{s,eq}(\cdot) (1 - \nu_{eq}(\cdot))} \right) \mathcal{H}^{-1}(\cdot, \theta') \right\} - \frac{\nu_{eq}(\cdot)}{\rho_{s,eq}(\cdot) (1 - \nu_{eq}(\cdot))} \left(\frac{\Delta}{2\pi} \star \mathcal{H}^{-1}(\cdot, \theta') \right) \right] \right\} (\theta),$$

$$(4.55)$$

Cette expression explicite des corrélations permet d'évaluer les fluctuations des grandeurs macroscopiques comme le nombre total de particules ou l'énergie, en les exprimant comme des observables linéaires de la densité $\rho(\theta)$.

4.2.5 Vérification numérique thermodynamique : inversion de la courbure et dérivée fonctionnelle

Principe de fluctuation-réponse. Dans cette sous-section, nous proposons de tester l'expression (4.55). Dans cette équation, le membre de droite s'écrit :

$$(L\mathcal{H})^{-1}(\theta,\theta'),$$

où \mathcal{H} désigne l'opposé de la hessienne de l'entropie de Yang–Yang. Or $(L\mathcal{H})^{-1}(\theta, \theta')$ est aussi le membre de droite de (4.40).

Le membre de gauche de l'équation (4.40), à savoir

$$-\frac{1}{L}\frac{\delta\rho_{\rm eq}(\theta)}{\delta w(\theta')},$$

peut être évalué numériquement sans avoir à recourir à l'entropie de Yang–Yang. Il suffit en effet de calculer la variation de la distribution de rapidité à l'équilibre $\rho_{\rm eq}(\theta)$ en réponse à une petite perturbation du poids spectral $w(\theta')$.

Ainsi Nous proposons ainsi de comparer numériquement les deux expressions : $(L\mathcal{H})^{-1}(\theta, \theta')$ et $-\frac{1}{L}\frac{\delta\rho_{\text{eq}}(\theta)}{\delta w(\theta')}$, afin de tester la validité l'expression (4.55).

Méthode.

Calcul de la matrice hermitienne. On considère un gaz de bosons unidimensionnels intégrable, décrit par l'équation de Bethe, dans un état d'équilibre généralisé caractérisé par la taille du système L, l'intensité d'interaction g, et un poids spectral fixé $w(\theta)$.

À partir de ces paramètres, on résout numériquement les équations de la thermodynamique de Bethe (TBA) (2.57), ce qui permet d'obtenir les grandeurs thermodynamiques d'équilibre :

- la distribution de rapidité $\rho_{eq}(\theta)$,
- la densité d'états $\rho_{s,eq}(\theta)$
- et la fonction d'occupation $\nu_{eq}(\theta) = \rho_{eq}(\theta)/\rho_{s,eq}(\theta)$.

Ces quantités permettent ensuite de construire :

- la contribution diagonale singulière $\mathcal{D}(\theta, \theta')$, définie par (4.49), ainsi que son inverse $\mathcal{D}^{-1}(\theta, \theta')$ (voir (4.52));
- la contribution régulière non locale $V(\theta, \theta')$, définie par (4.50).

La matrice de fluctuation $\mathcal{H}(\theta, \theta')$, définie par (4.48), est obtenue en combinant ces deux contributions. L'inverse $(L\mathcal{H})^{-1}(\theta, \theta')$ en (4.55) fournie une partie sans interaction (diagonale) $\mathcal{D}^{-1}(\theta, \theta')/L$ et une partie avec intéraction $\mathcal{B}(\theta, \theta')/L$ avec (4.54).

Calcul par différentiation numérique. En parallèle, on effectue une variation infinitésimale du poids spectral $w(\theta)$, et on résout à nouveau numériquement les équations TBA pour obtenir la distribution de rapidité correspondante. Par différentiation, on accède alors à :

$$-\frac{1}{L}\frac{\delta\rho_{\rm eq}(\theta)}{\delta w(\theta')}.$$

Cette quantité représente la réponse directe du système à une perturbation du poids spectral, et peut être comparée à l'inverse de la matrice hessienne obtenue précédemment.

Dans une équilibre thermodynamique généralisé

Paramètres fixés. On fixe un poids spectral, par exemple quadratique

$$w(\theta) = \frac{1}{2}\theta^2,\tag{4.56}$$

et on fixe les paramètres physiques du système : L=10 , et g=1.

En ne fixant pas N, la contribution du nombre de particule dans w n'est pas fixées contrairement pour les simulations de la partie Monte-Carlos fais dans la section prècedent.

Comparaison. Les deux approches produisent des matrices que l'on compare numériquement. La coïncidence entre ces deux résultats valide la structure variationnelle de l'entropie de Yang-Yang et confirme que la réponse linéaire (calculée comme dérivée fonctionnelle) coïncide avec l'inverse de la courbure thermodynamique.

FIGURE 4.3 – Vérification numérique dans le régime thermodynamique. Gauche : χ_w par inversion de la courbure. Centre : χ_w par dérivée fonctionnelle. Droite : écart relatif entre les deux.

Conclusion. Cette vérification confirme que, dans le régime thermodynamique, la structure variationnelle de l'entropie de Yang-Yang encode entièrement les fluctuations et les réponses spectrales du système. Il s'agit d'un test non trivial du principe de fluctuation-réponse appliqué aux systèmes intégrables.

Dans un second temps, il est naturel de vouloir tester ce principe pour différentes formes du poids spectral w. Dans le cas général du GGE, w appartient à un espace de dimension infinie. Afin de réduire cette complexité, nous nous restreignons à une sous-famille à deux paramètres, en nous plaçant dans le cadre de l'équilibre thermique. Ce choix permet de comparer explicitement les fluctuations de grandeurs thermodynamiques macroscopiques, telles que le nombre total de particules et l'énergie cinétique.

Vérification numérique thermique : énergie et nombre de particules

Nous testons à présent notre expression des fluctuations dans le cas particulier de l'équilibre thermique. Le système est supposé en contact avec un bain à température T et potentiel chimique μ . Le poids spectral prend alors la forme canonique : $w(\theta) = \beta \varepsilon(\theta) - \beta \mu$, avec $\beta = 1/(k_B T)$ et $\varepsilon(\theta)$ l'énergie spectrale (par exemple $\theta^2/2$ pour des particules libres).

Paramètres fixés. On reprend ici le formalisme de l'équation (4.22), dans lequel le poids spectral s'écrit comme une combinaison linéaire :

$$w(\theta) = \beta_0 f_0(\theta) + \beta_2 f_2(\theta),$$

où $f_i(\theta)$ sont les densités locales associées aux charges conservées.

Dans le cas de l'équilibre thermique usuel (ensemble de Gibbs), seules deux charges sont conservées : le **nombre total de particules** \hat{Q} et l'**énergie cinétique totale** \hat{K} . Cela correspond au choix suivant :

$$f_0(\theta)=1,$$
 (densité de particules)
$$f_1(\theta)=\frac{1}{2}m\theta^2,$$
 (densité d'énergie cinétique)

les coefficients de Lagrange associés sont :

$$\beta_0 = -\beta \mu,$$
(potentiel chimique)
$$\beta_1 = \beta,$$
(inverse de la température)

Calcul de la matrice hermitienne. Les densités locales f_i sont fixées. Pour spécifier le poids spectral w, on choisit les coefficients de Lagrange β_0 et β_2 en imposant dans un premier temps T=60 nK et $\mu=27$ nK. De plus, afin de se placer dans un régime physique particulier, on fixe la taille du système à L=? et l'impulsion maximale à q=?.

À partir de ces paramètres, et suivant la même procédure numérique que dans la sous-section précédente, on obtient la distribution de rapidité à l'équilibre $\langle \hat{\rho}(\theta) \rangle_w \equiv \rho_{\rm eq}(\theta)$, ainsi que les composantes de l'inverse de l'opérateur hessien \mathcal{H}^{-1}/L : la contribution diagonale sans interaction \mathcal{D}^{-1}/L et la contribution non locale issue des interactions \mathcal{B}/L .

Les **points rouges** indiquent le régime considéré dans le diagramme de phase du modèle de Lieb-Liniger, présenté en figure 4.4a. Ce diagramme a pour abscisse la **constante de Lieb** $\gamma = g/n$ et pour ordonnée la **température** réduite $t = 1/(\beta g^2)$. La densité linéaire n n'est pas un paramètre d'entrée, mais elle est calculée via : $n = \int \rho_{eq}(\theta) d\theta$.

Nous représentons également la quantité

$$\frac{1}{L} \frac{\mathcal{D}^{-1}(\theta, \theta')}{\delta(\theta - \theta')}$$

sur la figure ??. La fonction delta dans (4.52) étant approximée numériquement par un pas de discrétisation, la matrice \mathcal{D}^{-1} est proportionnelle à ce pas.

La contribution \mathcal{B}/L liée aux interactions est représentée en figure 4.4b.

Enfin, en faisant varier le potentiel chimique μ , nous répétons l'ensemble des calculs précédents. Les régimes ainsi obtenus sont indiqués par des **points bleus** dans le diagramme de phase (figure 4.4a).

Corrélation des observables thermodynamiques. Conformément à l'équation (4.29), nous calculons les fluctuations du nombre total de particules ainsi que celles de l'énergie cinétique totale, respectivement données par :

$$C_w[f_0, f_0] = L^2 \iint d\theta \, d\theta' \, f_0(\theta) \, \frac{1}{L} \mathcal{H}^{-1}(\theta, \theta') \, f_0(\theta'),$$
 (4.57)

$$C_w[f_2, f_2] = L^2 \iint d\theta \, d\theta' \, f_2(\theta) \, \frac{1}{L} \mathcal{H}^{-1}(\theta, \theta') \, f_2(\theta').$$
 (4.58)

Pour chaque régime simulé (correspondant aux **points bleus** et **rouges** sur la figure 4.4a), nous évaluons numériquement les quantités $C_w[f_0, f_0]$ et $C_w[f_2, f_2]$, qui représentent les fluctuations extensives des observables associées aux charges \hat{Q}_0 (nombre de particules) et \hat{Q}_2 (énergie cinétique).

Ces résultats sont représentés par des **points orange** dans la figure 4.5, illustrant l'évolution des fluctuations en fonction du régime thermodynamique du système.

Susceptibilité des observables thermodynamiques. En parallèle, pour chaque régime simulé (correspondant aux points bleus et rouges de la figure 4.4a), et conformément à l'équation (4.29), nous calculons les moyennes des charges associées au nombre total de particules et à l'énergie cinétique totale, données respectivement par :

$$\langle \hat{\mathbf{Q}}[f_0] \rangle_w = L \int d\theta \ f_0(\theta) \ \langle \hat{\boldsymbol{\rho}}(\theta) \rangle_w ,$$
 (4.59)

$$\langle \hat{\mathbf{Q}}[f_2] \rangle_w = L \int d\theta \ f_2(\theta) \ \langle \hat{\boldsymbol{\rho}}(\theta) \rangle_w \,.$$
 (4.60)

Nous souhaitons ensuite approximer les susceptibilités thermodynamiques définies par :

$$\chi_w[f_i, f_i] = -\frac{\partial \langle \hat{\mathcal{Q}}[f_i] \rangle_w}{\partial \beta_i} \bigg|_{\beta_{j \neq i} \text{ fixés}}.$$
 (4.61)

Pour cela, nous procédons à une variation infinitésimale du poids spectral w:

• Une variation infinitésimale ϵ_{μ} du potentiel chimique μ correspond à une perturbation du poids spectral de la forme:

$$w \to w - \beta \epsilon_{\mu} f_0$$
.

On résout alors numériquement les équations TBA pour ce nouveau poids, afin de calculer :

$$\langle \hat{\mathcal{Q}}[f_0] \rangle_{w-\beta\epsilon_{\mu}f_0}$$
.

• On effectue ensuite une variation infinitésimale ϵ_{β} de l'inverse de la température, de sorte que la combinaison $(\beta + \epsilon_{\beta})(\mu + \epsilon_{\mu}) = \beta \mu$ reste constante, maintenant ainsi β_0 fixe. Cela conduit à une variation du poids spectral de la forme :

$$w \to w + (\beta + \epsilon_{\beta})(-\epsilon_{\mu}f_0 + f_2).$$

On résout à nouveau les équations TBA pour obtenir :

$$\langle \hat{\mathbf{Q}}[f_2] \rangle_{w+(\beta+\epsilon_{\beta})(-\epsilon_{\mu}f_0+f_2)}$$
.

Ces simulations permettent d'estimer numériquement les susceptibilités :

$$\chi_{w}[f_{0}, f_{0}] \approx \frac{\langle \hat{\mathcal{Q}}[f_{0}] \rangle_{w-\beta\epsilon_{\mu}f_{0}} - \langle \hat{\mathcal{Q}}[f_{0}] \rangle_{w}}{\beta\epsilon_{\mu}}, \qquad (4.62)$$

$$\chi_{w}[f_{2}, f_{2}] \approx -\frac{\langle \hat{\mathcal{Q}}[f_{2}] \rangle_{w+(\beta+\epsilon_{\beta})(-\epsilon_{\mu}f_{0}+f_{2})} - \langle \hat{\mathcal{Q}}[f_{2}] \rangle_{w}}{\epsilon_{\beta}}. \qquad (4.63)$$

$$\chi_w[f_2, f_2] \approx -\frac{\langle \hat{\mathcal{Q}}[f_2] \rangle_{w + (\beta + \epsilon_\beta)(-\epsilon_\mu f_0 + f_2)} - \langle \hat{\mathcal{Q}}[f_2] \rangle_w}{\epsilon_\beta}.$$
(4.63)

Ces approximations numériques sont représentées par des points bleus dans la figure 4.5, et permettent de confronter les résultats issus de la dérivée fonctionnelle avec ceux provenant de la réponse directe à une perturbation du poids spectral.

(b) $\mathcal{B}(\theta, \theta')$.

FIGURE 4.4 – (a) Diagramme de phase du modèle de Lieb-Liniger à l'équilibre thermique. Différents régimes asymptotiques sont séparés par des transitions progressives. Les points bleus représentent les fluctuations calculées numériquement pour différentes températures. Les coordonnées sont données par $\gamma = \frac{mg}{\hbar^2 n}$ et $t = \frac{k_B T}{mg^2/\hbar^2}$. (b) Représentation en niveaux de couleur de la partie régulière \mathcal{B} des fluctuations $\delta \rho$ pour T=60 nK et $\mu=27$ nK (point rouge dans (a))(courbes blanches à enlevé).

Comparaison avec les dérivées thermodynamiques. Les résultats obtenus à partir de l'analyse quadratique de l'action (fluctuations de ρ) sont comparés aux fluctuations extraites directement par différentiation des observables thermodynamiques $\langle \hat{Q} \rangle_w$ et $\langle \hat{H} \rangle_w$. Ces comparaisons sont présentées dans la Fig. ?? et révèlent une excellente concordance.

FIGURE 4.5 – Comparaison numérique entre les fluctuations calculées à partir de l'analyse quadratique de l'action (fluctuations de ρ) et celles obtenues par dérivées thermodynamiques des observables moyennes. (revoir titres shema)

Conclusion

Dans ce chapitre, nous avons étudié les fluctuations de la distribution de rapidité dans les états d'équilibre généralisés (GGE), en mettant en lumière le lien fondamental entre corrélations et réponse linéaire.

Nous avons d'abord introduit le formalisme général des GGE, dans lequel les observables macroscopiques sont dérivées fonctionnellement du potentiel conjugué $w(\theta)$. Dans ce cadre, nous avons montré que la matrice de susceptibilité spectrale $\chi_w(\theta, \theta')$ décrit à la fois la réponse linéaire de la densité spectrale moyenne à une perturbation infinitésimale du potentiel, et les corrélations entre fluctuations de la densité, conformément au principe de fluctuation-réponse. Ce lien a été validé numériquement par des simulations de Monte-Carlo sur des ensembles de quasi-particules.

Nous avons ensuite approfondi l'étude de la limite thermodynamique, où les fluctuations autour de l'état d'équilibre deviennent gaussiennes. Dans cette approximation, les susceptibilités s'expriment comme l'inverse de la courbure fonctionnelle de l'entropie de Yang-Yang, formalisée par l'opérateur hessien $\mathcal{H}^{\mathcal{S}_{YY}}$. Nous avons donné une formulation explicite de cet opérateur, ainsi que de sa matrice inverse.

Enfin, nous avons relié ces objets locaux à des susceptibilités globales via une projection sur les fonctions test $f_i(\theta)$, en considérant le poid/potentiel spectral $w(\theta)$ comme une combinaison linéaire des charges \hat{Q}_i . Ce formalisme nous a permis d'interpréter la dérivée de l'observable $\langle \hat{Q}_i \rangle_w$ par rapport au multiplicateur de Lagrange β_i comme une dérivée fonctionnelle projetée de la matrice $\chi_w(\theta,\theta')$, et d'en valider la structure par une comparaison numérique explicite sur l'énergie et le nombre de particules.

(je m'avence ... à voir) Ce chapitre établit ainsi de manière rigoureuse et quantitative le lien entre dérivées fonctionnelles, susceptibilités et fluctuations dans les GGE, en fournissant à la fois des fondements théoriques et des validations numériques robustes.

Conclusion

Conclusion de la thèse.

Annexe A

Annexes

Informations complémentaires.

66 Annexes

Bibliographie

- [1] Alexander B. Zamolodchikov and Alexey B. Zamolodchikov. Factorized s-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models. *Annals of Physics*, 120(2):253–291, 1979.
- [2] Olivier Babelon, Denis Bernard, and Michel Talon. *Introduction to Classical Integrable Systems*. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2003.

[3]

- [4] Jacopo De Nardis, Miłosz Panfil, Andrea Gambassi, Leticia F. Cugliandolo, Robert Konik, and Laura Foini. Probing non-thermal density fluctuations in the one-dimensional Bose gas. *SciPost Phys.*, 3:023, 2017.
- [5] G. Goldstein and N. Andrei. Equilibration and generalized gge in the lieb-liniger gas. arXiv preprint, 2013.
- [6] Jean-Sébastien Caux and Robert Konik. Constructing the generalized gibbs ensemble after a quantum quench. *Phys. Rev. Lett.*, 109:175301, 2012.
- [7] T. Pálmai and R. M. Konik. Quasi-local charges and the generalized gibbs ensemble in the lieb–liniger model. *Phys. Rev. E*, 98(5):052126, 2018.