

- 1.实验报告如有雷同,雷同各方当次实验成绩均以0分计。
- 2. 当次小组成员成绩只计学号、姓名登录在下表中的。
- 3.在规定时间内未上交实验报告的,不得以其他方式补交,当次成绩按0计。
- 4.实验报告文件以 PDF 格式提交。

院系	数据科学与计算机学院		班 级	16级计科教务2班		组长	钟哲灏		
学号	163	337331	16337327		16337341				
学生	钟哲灏		郑映雪		朱志儒				
	实验分工								
钟哲湯	钟哲灏 进行实验、数据分析,自评 97			平 97	朱志儒	辅助实验、数据分析、撰写 6-			
	分				3 实验报告,自评 97 分				
郑映雪	郑映雪 辅助实验、数据分		析、撰写	員 6−2					
实验排		实验报告及负责排户	饭, 自议	平 97					
分									

实验题目

跨交换机实现 VLAN

实验目的

理解跨交换机之间 VLAN 的特点。使在同一 VLAN 里的计算机系统能跨交换机进行相互通信、而在不同 VLAN 里的计算机系统不能进行相互通信。

实验内容

(1) 完成实验教材第 6 章实例 6-2 的实验(p172-p174)。

(2) 实例 6-3 的实验通过三层交换机实现 VLAN 间路由 (P177-P179)

实验要求

一些重要信息比如 VLAN 信息需给出截图。最重要的一点:一定要注意实验步骤的前后对比!

实验记录

【实验 6-2】

拓扑图如下所示:

步骤 1: 实验前的测试

(1) 将 PC1、PC2、PC3 的网卡分别配置 IP、掩码,验证 3 台主机是否可以两两 ping 通。

如图所示,3 台主机此时可以互相 ping 通。


```
C: Wsers Administrator>ping 192.168.10.10

正在 Ping 192.168.10.10 具有 32 字节的数据:
来自 192.168.10.10 的回复: 字节=32 时间<1ms TTL=128

192.168.10.10 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0 (0% 丢失),往返行程的估计时间<以毫秒为单位):
最短 = 0ms,最长 = 0ms,平均 = 0ms

C: Wsers Administrator>ping 192.168.10.30

正在 Ping 192.168.10.30 與有 32 字节的数据:
来自 192.168.10.30 的回复: 字节=32 时间<1ms TTL=128
在 192.168.10.30 的回复: 字节=32 时间<1ms TTL=128
在 192.168.10.30 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0 (0% 丢失),往返行程的估计时间<(以毫秒为单位):最短 = 0ms,最长 = 0ms,平均 = 0ms
```

(2) 记录交换机 A和B的VLAN信息。

交换机 A 的信息如图所示:

17-S5750-1(config)#show vlan VLAN Name	Status	Ports
1 VLAN0001 /4	STATIC	Gi0/1, Gi0/2, Gi0/3, Gi0
/8		Gi0/5, Gi0/6, Gi0/7, Gi0
10/12		Gi0/9, Gi0/10, Gi0/11, G
Gi0/16		Gi0/13, Gi0/14, Gi0/15,
Gi0/20		Gi0/17, Gi0/18, Gi0/19,
Gi0/24		Gi0/21, Gi0/22, Gi0/23,
Gi0/28		Gi0/25, Gi0/26, Gi0/27,

交换机 B 的信息如图所示:

17-S5750-2(config)#show vlan VLAN Name	Status	
1 VLAN0001		Gi0/1, Gi0/2, Gi0/3, Gi0
/8		Gi0/5, Gi0/6, Gi0/7, Gi0
10/12		Gi0/9, Gi0/10, Gi0/11, G
Gi0/16		Gi0/13, Gi0/14, Gi0/15,
Gi0/20		Gi0/17, Gi0/18, Gi0/19,
Gi0/24		Gi0/21, Gi0/22, Gi0/23,
Gi0/28		Gi0/25, Gi0/26, Gi0/27,

步骤 2: 在交换机 A 上创建 VLAN10,并将端口 0/5 划分到 VLAN10 中。

验证测试:

(1) 在交换机 A 上通过命令 show vlan id 10 验证是否创建 VLAN 10, 查看端口 0/5 是否已经划分到 VLAN 10 中。

如图所示,已经创建 VLAN 10,且端口 0/5 已经划分到了 VLAN 10 中。

17-S5750-1(config)#show vlan id 10 VLAN Name	Status	Ports
10 sales	STATIC	Gi0/5

(2) 检查 PC1 PC2 PC3 此时的连通状况。

如图所示:设置好 VLAN 10 后,此时 PC2 已经无法连通 PC1,但是 PC2 还是可以连通 PC3。


```
C: Wsers Administrator>ping 192.168.10.10

正在 Ping 192.168.10.10 具有 32 字节的数据:
来自 192.168.10.20 的回复: 无法访问目标主机。
来自 192.168.10.20 的回复: 无法访问目标主机。
来自 192.168.10.20 的回复: 无法访问目标主机。
来自 192.168.10.20 的回复: 无法访问目标主机。

192.168.10.10 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0 (0% 丢失),

C: Wsers Administrator>ping 192.168.10.30

正在 Ping 192.168.10.30 具有 32 字节的数据:
来自 192.168.10.30 的回复: 字节=32 时间=1ms TTL=128
来自 192.168.10.30 的回复: 字节=32 时间<1ms TTL=128
在 192.168.10.30 的回复: 字节=32 时间<1ms TTL=128
在 192.168.10.30 的回复: 字节=32 时间<1ms TTL=128
在 192.168.10.30 的回复: 字节=32 时间<1ms TTL=128

192.168.10.30 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0 (0% 丢失),
在 数据包: 已发送 = 4,已接收 = 4,丢失 = 0 (0% 丢失),
在 数据包: 已发送 = 4,已接收 = 4,丢失 = 0 (0% 丢失),
在 数据包: 已发送 = 4,已接收 = 4,丢失 = 0 (0% 丢失),
```

步骤 4: 将交换机 A 与交换机 B 相连的端口(假设为端口 0/24)定义为 Tag VLAN 模式。

信息显示:端口 0/24 已经被打开,设置为 trunk 模式。

如图所示,可以看到端口 0/24 为 enabled 已经打开,模式为 trunk 模式。

验证测试:测试此时 PC1 PC2 PC3 的连通情况。

如图所示,下图是 PC2 尝试 pingPC1 和 PC3,结果都连接不通。


```
C: Wsers Administrator>ping 192.168.10.10

正在 Ping 192.168.10.10 具有 32 字节的数据:
来自 192.168.10.20 的回复: 无法访问目标主机。
来自 192.168.10.20 的回复: 无法访问目标主机。
来自 192.168.10.20 的回复: 无法访问目标主机。
来自 192.168.10.20 的回复: 无法访问目标主机。

192.168.10.10 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0 (0% 丢失),

C: Wsers Administrator>ping 192.168.10.30

正在 Ping 192.168.10.30 具有 32 字节的数据:
来自 192.168.10.20 的回复: 无法访问目标主机。
来自 192.168.10.30 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0 (0% 丢失),
```

在 PC3 上尝试 pingPC1, 仍然连接不通。

```
正在 Ping 192.168.10.10 具有 32 字节的数据:
来自 192.168.10.30 的回复: 无法访问目标主机。
请求超时。
请求超时。
192.168.10.10 的 Ping 统计信息:
数据包: 已发送 = 4, 已接收 = 1, 丢失 = 3 <75% 丢失>,
```

步骤 5: 在交换机 B 上创建 VLAN 20, 并将端口 0/5 划分到 VLAN 20 中。 验证测试:

(1) 验证已在交换机 B 上创建 VLAN 20, 查看端口 0/5 的划分情况。

如图所示,已经在交换机 B上创建 VLAN 20,端口 0/5 已经被划分至 VLAN 20 中。

(2) 检查 PC1 PC2 PC3 此时的连通情况。

如图所示,在 PC2 上尝试 ping PC1 和 PC3 都无法连通。

```
E: Wsers Administrator>ping 192.168.10.10

E在 Ping 192.168.10.10 具有 32 字节的数据:
来自 192.168.10.20 的回复: 无法访问目标主机。
来自 192.168.10.20 的回复: 无法访问目标主机。
来自 192.168.10.20 的回复: 无法访问目标主机。
来自 192.168.10.20 的回复: 无法访问目标主机。

192.168.10.10 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0 〈0½ 丢失〉,

C: Wsers Administrator>ping 192.168.10.30

E在 Ping 192.168.10.30 具有 32 字节的数据:
来自 192.168.10.20 的回复: 无法访问目标主机。
来自 192.168.10.20 的回复:无法访问目标主机。
```

在 PC3 上尝试 pingPC1,也无法连通。

```
C: Wsers Administrator>ping 192.168.10.10
正在 Ping 192.168.10.10 具有 32 字节的数据:
来自 192.168.10.30 的回复: 无法访问目标主机。
请求超时。
请求超时。
192.168.10.10 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 1,丢失 = 3 <75% 丢失>,
```

步骤 6: 将交换机 B 与交换机 A 相连的端口定义为 Tag VLAN 模式。

步骤 7:验证 PC2 和 PC3 能相互通信,但 PC1 和 PC3 不能相互通信。

启动监控软件 Wireshark, 用 ping 命令测试 3 台主机的连通性,并进行以下观察:

(1) 主机之间能否互相通信?

如图所示: PC2 无法连通 PC1。

```
C: Wsers Administrator>ping 192.168.10.10
正在 Ping 192.168.10.10 具有 32 字节的数据:
来自 192.168.10.20 的回复: 无法访问目标主机。
```

如图所示: PC3 无法连接 PC1, 但可以连接 PC2。

```
C: Wsers \Administrator \ping 192.168.10.10

正在 Ping 192.168.10.10 具有 32 字节的数据:
来自 192.168.10.30 的回复: 无法访问目标主机。
请求超时。
请求超时。

192.168.10.10 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 1,丢失 = 3 (75% 丢失),

C: Wsers \Administrator \ping 192.168.10.20

正在 Ping 192.168.10.20 具有 32 字节的数据:
来自 192.168.10.20 的回复: 字节=32 时间<1ms TTL=128

192.168.10.20 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0 (0% 丢失),
往返行程的估计时间<以毫秒为单位〉:
最短 = 0ms,最长 = 0ms,平均 = 0ms
```

所以,此时 PC1 与另外两台主机依然无法连通,但 PC2 和 PC3 可以连通。

(2) 能否检测到 PC1 PC2 PC3 的 ICMP 包?

我们打开 wireshark 进行抓包,限定 ICMP 条件后如图所示:

	213 165.706839	192.168.10.30	192.168.10.20	ICMP	74 Echo (ping) req	uest id=0x0001, seq=39/9984, ttl=128 (reply in 216)
4-	216 165.707206	192.168.10.20	192.168.10.30	ICMP	74 Echo (ping) rep	ly id=0x0001, seq=39/9984, ttl=128 (request in 213)
	220 166.707566	192.168.10.30	192.168.10.20	ICMP	74 Echo (ping) req	uest id=0x0001, seq=40/10240, ttl=128 (reply in 221)
	221 166.708022	192.168.10.20	192.168.10.30	ICMP	74 Echo (ping) rep	ly id=0x0001, seq=40/10240, ttl=128 (request in 220)
	222 167.709528	192.168.10.30	192.168.10.20	ICMP	74 Echo (ping) req	uest id=0x0001, seq=41/10496, ttl=128 (reply in 223)
	223 167.709987	192.168.10.20	192.168.10.30	ICMP	74 Echo (ping) rep	ly id=0x0001, seq=41/10496, ttl=128 (request in 222)
	226 168.711494	192.168.10.30	192.168.10.20	ICMP	74 Echo (ping) req	uest id=0x0001, seq=42/10752, ttl=128 (reply in 227)
L	227 168.711958	192.168.10.20	192.168.10.30	ICMP	74 Echo (ping) rep	ly id=0x0001, seq=42/10752, ttl=128 (request in 226)

由图可知,可以检测到 PC2 和 PC3 的 ICMP 包,但是不可以检测到 PC1 的 ICMP 包。

(3) 能否捕获到 Trunk 链路上的 VLAN ID? 请说明原因。

不能。Trunk 用于交换机的互联,而用于连接用户端的端口是 access 端口,承载的是标准的以太网帧。我们用 wireshark 捕获的是以太网帧,它不包含 802.1Q 帧,所以无法检测 Trunk 链路上的 VLAN ID。

- (4) (这步实验是第二次来实验室进行的,使用了不同的设备)
- ①查看交换机的地址表,如图所示。

```
11-S5750-1#show mac-address-table
Vlan
         MAC Address Type
                                    Interface
          5869.6c15.5720 DYNAMIC GigabitEthernet 0/24
  1
          4433.4c0e.ae20
 10
                            DYNAMIC GigabitEthernet 0/5
 20
          0088.9900.0a49
                           DYNAMIC GigabitEthernet 0/24
 20
          4433.4c0e.ce79
                            DYNAMIC GigabitEthernet 0/15
11-S5750-1#
```

②清除地址表,如图所示。

```
11-S5750-1#clear mac-address-table dynamic
11-S5750-1#show mac-address-table
Vlan MAC Address Type Interface
```

③增加一个网线接口,观察地址表的形成如图所示。

从图中可以看出新增一个表项,MAC 地址为 98e7.f44b.de73,接口为 GigabitEthernet 0/9,VLAN 为 1。

11-S5750-1# Vlan	show mac-address-tabl MAC Address	le Type	Interface	
1	5869.6c15.5720	DYNAMIC	GigabitEthernet	0/24
1	98e7.f44b.de73	DYNAMIC	GigabitEthernet	0/9
20	0088.9900.0a49	DYNAMIC	GigabitEthernet	0/24
20	4433.4c0e.ce79	DYNAMIC	GigabitEthernet	0/15
11-95750-18	show mac-address-tabl			
11 20100 1#	estion mac_address_tabl	re		
Vlan	MAC Address	Гуре	Interface	
			Interface GigabitEthernet	 0/24
	MAC Address	Туре		
	MAC Address 5869.6c15.5720	Type DYNAMIC	GigabitEthernet	0/9
Vlan 1 1	MAC Address 5869.6c15.5720 98e7.f44b.de73	Type DYNAMIC DYNAMIC	GigabitEthernet GigabitEthernet	0/9 0/5

④在 PC2 使用 Wireshark 抓取 ARP 包可以看到洪泛现象,如图所示。

从图中可以看到 IP 为 192.168.10.30 的 PC3 在广播询问 IP 为 192.168.10.20 的 PC2 的 MAC 地址。

IP 为 192.168.10.20 的 PC2 在广播询问 IP 为 192.168.10.30 的 PC3 的 MAC 地址。

3 2.360719	00:88:99:00:0a:49	Broadcast	ARP	60 Who has 192.168.10.20? Tell 192.168.10.30
4 2.360729	Shenzhen_0e:ce:79	00:88:99:00:0a:49	ARP	42 192.168.10.20 is at 44:33:4c:0e:ce:79
6 2.361157	Shenzhen_0e:ce:79	Broadcast	ARP	42 Who has 192.168.10.30? Tell 192.168.10.20
7 2.361502	00:88:99:00:0a:49	Shenzhen_0e:ce:79	ARP	60 192.168.10.30 is at 00:88:99:00:0a:49
> Frame 3: 60 bytes	on wire (480 bits), 60	bytes captured (480	bits) on i	interface 0
> Ethernet II, Src: (00:88:99:00:0a:49 (00:	88:99:00:0a:49), Dst	: Broadcast	t (ff:ff:ff:ff:ff)
→ Address Resolution	Protocol (request)	,-		· ·
Hardware type: E	thernet (1)			
Protocol type: I	Pv4 (0x0800)			
Hardware size: 6				
Protocol size: 4	ı			
Opcode: request	(1)			
Sender MAC addre	ss: 00:88:99:00:0a:49	(00:88:99:00:0a:49)		
Sender IP addres	s: 192.168.10.30	,		
Target MAC addre	ss: 00:00:00 00:00:00	(00:00:00:00:00:00)		
•	s: 192.168.10.20	,		

- ⑤show mac-address-table 指令显示的 MAC 地址与在 CMD 下通过 ipconfig /all 命令显示的 MAC 地址是相同的。
 - (5) 实验实现了 VLAN 的验证, 达到了预期的目标。

实验思考:

(1) 为什么不同的 VLAN 之间不能直接互相通信?

答:直接通信是指不经过路由器的通信。若干个 VLAN 在逻辑上其实是相当于形成了若干个局域网,不同的 VLAN 之间的通信须经过单臂路由,但是这样就不能叫做直接通信了,因为它已经经过了路由器。所以不同的 VLAN 之间不能直接相互通信。

(2) 说明 VLAN 技术中的 Trunk 模式端口的用途和特点。

Trunk 模式端口一般用于交换机之间的连接,承载 802.1Q 帧 ,缺省关联交换机上配置的所有 VLAN。

Trunk 模式的特点: ①缺省 VLAN 的以太网帧是不带标签的; ②允许多个 VLAN 通过,可以接受和发送多个 VLAN 的数据帧。

- (3) 如何查看 Trunk 端口允许哪些 VLAN 通过? show run 命令可以查看全局的配置。
 - (4) 实验前要确定 3 台主机处于同一个网段内, 为什么要这样限定?

因为同一网段的 3 台主机互相连接的时候不需要经过路由器就可以互相连通,这样只需要设置 VLAN 形成虚拟的局域网就可以通过三台主机是否可以连通以及不同 VLAN 之间是否可以连通来测试是否达到了预期的实验目标。这与高中的实验里控制变量的方法有点相似。

【实验 6-3】

拓扑图:

实验步骤:

步骤一:

(1) PC1 和 PC2、PC3 均不能连接, 而 PC2 和 PC3 可以连接, 如图所示。

原因: PC1 处于 192.168.20.00/24 子网, 而 PC2 和 PC3 处于 192.168.10.00/24 子网, 它们不处于相同的子网。

PC2 ping PC1 和 PC3,如图所示。

```
C:\Users\Administrator\ping 192.168.20.10

正在 Ping 192.168.20.10 具有 32 字节的数据:
来自 172.16.17.2 的回复: 无法访问目标主机。
来自 172.16.17.2 的回复: 无法访问目标主机。
来自 172.16.17.2 的回复: 无法访问目标主机。
来自 172.16.17.2 的回复: 无法访问目标主机。

192.168.20.10 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0 (0% 丢失),

C:\Users\Administrator\ping 192.168.10.30

正在 Ping 192.168.10.30 與有 32 字节的数据:
来自 192.168.10.30 的回复: 字节=32 时间<ims ITL=128
非位:已发送 = 4,已接收 = 4,丢失 = 0 (0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 0ms,最长 = 0ms,平均 = 0ms
```


PC3 ping PC1,如图所示。

```
C: Wsers Administrator>ping 192.168.20.10
正在 Ping 192.168.20.10 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
192.168.20.10 的 Ping 统计信息:
数据包: 已发送 = 4, 已接收 = 0, 丢失 = 4 (100% 丢失),
```

(2) 使用 show ip route 命令查看三层交换机的路由表,如同所示。

步骤 7:

(1) 测试发现 PC2 和 PC3 可以连通,如图所示。

```
C: Wsers Administrator>ping 192.168.10.30

正在 Ping 192.168.10.30 具有 32 字节的数据:
来自 192.168.10.30 的回复: 字节=32 时间=1ms TTL=128
来自 192.168.10.30 的回复: 字节=32 时间<1ms TTL=128

192.168.10.30 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0 <0% 丢失>,
往返行程的估计时间<以毫秒为单位>:
最短 = 0ms,最长 = 1ms,平均 = 0ms
```

(2) 测试发现 PC1 和 PC2 不可以连通,如图所示。


```
C: Wsers Administrator>ping 192.168.20.10
正在 Ping 192.168.20.10 具有 32 字节的数据:
来自 172.16.17.2 的回复: 无法访问目标主机。
```

(3) 使用 show ip route 命令查看三层交换机的路由器,如图所示。

与步骤 1 中的路由表比较发现,路由表未新增表项。

步骤 8:

讨论: 虚拟接口 VLAN 10 与虚拟接口 VLAN 20 的 IP 地址不能在同一个网段。

原因:不同 VLAN 之间的通信需要使用三层交换机的路由功能,所以不同的 VLAN 必须配置成不同子网段的 IP 地址,不能把两个 VLAN 配置成同一个 IP 地址。

步骤 10:

(1) PC1、PC2 和 PC3 三台计算机可以两两互通,如图所示。PC2 ping PC1 和 PC3,如图所示。


```
C: Wsers Administrator > ping 192.168.20.10

正在 Ping 192.168.20.10 具有 32 字节的数据:
来自 192.168.20.10 的回复: 字节=32 时间(1ms TTL=127)

192.168.20.10 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0 (0% 丢失),往返行程的估计时间(以毫秒为单位):
最短 = 0ms,最长 = 0ms,平均 = 0ms

C: Wsers Administrator > ping 192.168.10.30

正在 Ping 192.168.10.30 則复: 字节=32 时间(1ms TTL=128)
来自 192.168.10.30 的回复: 字节=32 时间(1ms TTL=128)

192.168.10.30 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0 (0% 丢失),往返行程的估计时间(以毫秒为单位):
最短 = 0ms,最长 = 0ms,平均 = 0ms
```

PC3 ping PC1,如图所示。

```
C: Wsers Administrator>ping 192.168.20.10

正在 Ping 192.168.20.10 具有 32 字节的数据:
来自 192.168.20.10 的回复: 字节=32 时间=1ms TTL=127
来自 192.168.20.10 的回复: 字节=32 时间<1ms TTL=127
来自 192.168.20.10 的回复: 字节=32 时间<1ms TTL=127
来自 192.168.20.10 的回复: 字节=32 时间<1ms TTL=127

192.168.20.10 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0 <0% 丢失>,往返行程的估计时间<以毫秒为单位>:
最短 = 0ms,最长 = 1ms,平均 = 0ms
```

(2) 可以监控到 PC1、PC2、PC3 的 ICMP 包, 如图所示。

PC2 监测到 PC1 的 ICMP 包,如图所示。

No.	Time	Source	Destination	Protocol	Length Info	
→	5 12.477419	192.168.10.20	192.168.20.10	ICMP	74 Echo (ping) request	id=0x0001, seq=95/24320,
	7 13.477438	192.168.10.20	192.168.20.10	ICMP	74 Echo (ping) request	id=0x0001, seq=96/24576,
	9 14.479213	192.168.10.20	192.168.20.10	ICMP	74 Echo (ping) request	id=0x0001, seq=97/24832,
	12 15.480158	192.168.10.20	192.168.20.10	ICMP	74 Echo (ping) request	id=0x0001, seq=98/25088,
-	6 12.477631	192.168.20.10	192.168.10.20	ICMP	74 Echo (ping) reply	id=0x0001, seq=95/24320,
	8 13.477887	192.168.20.10	192.168.10.20	ICMP	74 Echo (ping) reply	id=0x0001, seq=96/24576,
	10 14.479479	192.168.20.10	192.168.10.20	ICMP	74 Echo (ping) reply	id=0x0001, seq=97/24832,
	13 15.480426	192.168.20.10	192.168.10.20	ICMP	74 Echo (ping) reply	id=0x0001, seq=98/25088,

PC2 监测到 PC3 的 ICMP 包,如图所示。

No.	Time	Source	Destination	Protocol	Length Info	
→	16 17.453449	192.168.10.20	192.168.10.30	ICMP	74 Echo (ping) request	id=0x0001, seq=99/25344,
	18 18.454225	192.168.10.20	192.168.10.30	ICMP	74 Echo (ping) request	id=0x0001, seq=100/25600,
	21 19.455974	192.168.10.20	192.168.10.30	ICMP	74 Echo (ping) request	id=0x0001, seq=101/25856,
	23 20.456973	192.168.10.20	192.168.10.30	ICMP	74 Echo (ping) request	id=0x0001, seq=102/26112,
←	17 17.453675	192.168.10.30	192.168.10.20	ICMP	74 Echo (ping) reply	id=0x0001, seq=99/25344,
	19 18.454652	192.168.10.30	192.168.10.20	ICMP	74 Echo (ping) reply	id=0x0001, seq=100/25600,
	22 19.456413	192.168.10.30	192.168.10.20	ICMP	74 Echo (ping) reply	id=0x0001, seq=101/25856,
	24 20.457392	192.168.10.30	192.168.10.20	ICMP	74 Echo (ping) reply	id=0x0001, seq=102/26112,
\ F.	ama 16. 74 hutas	on wine (FO2 bits)	74 bytes continued (F	02 bits\ an	intenfece 0	

PC3 监测到 PC1 的 ICMP 包,如图所示。

No.	Time	Source	Destination	Protocol	Length Info	
→	13 7.771080	192.168.10.30	192.168.20.10	ICMP	74 Echo (ping) request	id=0x0001, seq=48/12288,
	16 8.771727	192.168.10.30	192.168.20.10	ICMP	74 Echo (ping) request	id=0x0001, seq=49/12544,
	18 9.772651	192.168.10.30	192.168.20.10	ICMP	74 Echo (ping) request	id=0x0001, seq=50/12800,
	20 10.773779	192.168.10.30	192.168.20.10	ICMP	74 Echo (ping) request	id=0x0001, seq=51/13056,
←	14 7.772175	192.168.20.10	192.168.10.30	ICMP	74 Echo (ping) reply	id=0x0001, seq=48/12288,
	17 8.772273	192.168.20.10	192.168.10.30	ICMP	74 Echo (ping) reply	id=0x0001, seq=49/12544,
	19 9.773074	192.168.20.10	192.168.10.30	ICMP	74 Echo (ping) reply	id=0x0001, seq=50/12800,
	21 10.774167	192.168.20.10	192.168.10.30	ICMP	74 Echo (ping) reply	id=0x0001, seq=51/13056,

(3) 使用 show ip route 命令查看三层交换机的路由表,如图所示。

比较:与步骤1的路由表相比可以看到,此时的路由表新增了4个表项:

- ①192.168.10.0/24 是直连子网,属于 VLAN 20
- ②192.168.10.254/32 是本地主机
- ③192.168.20.0/24 是直连子网,属于 VLAN 10
- ④192.168.20.254/32 是本地主机

(4) 在 CMD 下使用 route print 命令可以查看到实验设置的路由,如图所示。

PC1的CMD下:

IPv4 路由:	表				
 活动路由: 网络目标	 网络掩码	 	 关 接口	 跃点数	
, 24 H 12	0.0.0.0	0.0.0.0	172.16.0.1	172.16.17.1	276
	0.0.0.0	0.0.0.0	192.168.20.254	192.168.20.10	266

PC2的CMD下:

IPv4	路由表		
 活动距 网络E	·====================================		
网络目	目标 网络掩码	网关 接口 跃点数	
	0.0.0	0.0.0.0 192.168.10.254 192.168.10.20 266	

PC3的CMD下:

(5) 由本实验得到的结论:不同的 VLAN 可通过三层交换机的路由功能实现通信。

实验思考

- (1) 原因:在三层交换机配置虚拟端口地址后,各 VLAN 中的主机将三层交换机上相应 VLAN 的虚拟端口地址作为本 VLAN 网关,主机发送的数据到达三层交换机后利用路 由功能转发到其他 VLAN。
- (2) 使用 show ip route 命令查看三层交换机的路由表,说明每个条目的意义。

① 192.168.10.0/24 是直连子网,属于 VLAN 20

- ② 192.168.10.254/32 是本地主机
- ③ 192.168.20.0/24 是直连子网,属于 VLAN 10
- ④ 192.168.20.254/32 是本地主机