

What fact formula?	ors influen	ce the capa	acitance o	f a capac	itor, and wl	nat is the
2d.1 (2/4) •	Reactive co	mponents • i	d:WUxQUz	1C		
		pacitance i			plates dou	bles?

2d.1 (3/4) • Reactive components • id:iOXUtAs9
What happens to capacitance if plate area doubles?
2d.1 (4/4) • Reactive components • id:snGJZdyD
Is the formula for Capacitance on the EX309 sheet, and do you know how
Is the formula for Capacitance on the EX309 sheet, and do you know how
Is the formula for Capacitance on the EX309 sheet, and do you know how
Is the formula for Capacitance on the EX309 sheet, and do you know how
Is the formula for Capacitance on the EX309 sheet, and do you know how
Is the formula for Capacitance on the EX309 sheet, and do you know how
Is the formula for Capacitance on the EX309 sheet, and do you know how

2d.1 (1/2) • Reactive components • id:erA72lhb

What is the unit for the quantity of electricity called, and how is it defined?

2d.1 (2/2) • Reactive components • id:PzSmDiD6

What is the formula for stored charge on a capacitor?

2d.4 (1/3) • Reactive components • id:FOUzLyD4
Revision mode: the inductor. Give a brief summary of what it does, what affects its value and the unit. Check formulas for inductors in series and in parallel.
2d.4 (2/3) • Reactive components • id:OZVRnz0L
what does self inductance mean and what is back EMF?

What happe	ens after one time constant has elapsed in an RL circuit, and constants?
	e components • id:jJL0xDVW ens after one time constant has elapsed in an RC circuit, and constants?

2e.3 (1/2) • AC theory • id:K3f1UiBo

From the intermediate course, we know that in circuits with pure Capacitance or pure Inductance, there is a 90 degree phase difference between voltage and current. Now we need to know which leads which...

2e.3 (2/2) • AC theory • id:UHcSkdol

What is the phasor diagram for voltage in an AC series circuit consisting of a resistor, an inductor and a capacitor?

2e.3 (2/5) • AC theory • id:cFx7kOmd

What is the formula for the reactance of an inductor, what does the graph of Reactive Reactance vs frequency look like, and can you find it in EX309?

2e.4 (1/5) • AC theory • id:XHrZd8SU

How are capacitors being used in this diagram? Hint: look at the arrows. It won't have the description or the arrows on the real thing.

2e.4 (2/5) • AC theory • id:GBtkMjhk

What is happening in this diagram?

2e.4 (3/5) • AC theory • id:UOpfSJqm

What is RF bypass?

2e.4 (4/5) • AC theory • id:V3fn3Qol

Why do we use multiple bypass capacitors on a power supply? Values like $1\mu F$, 100nF, 10nF and 1nF are common and actually 3-4 may be used to take signals down to earth.

2e.4 (5/5) • AC theory • id:a52zD3NT

Here is a small piece of circuit with the capacitor connected between a 12V DC power supply and earth. Why would it be here?

2e.5 (1/2) • AC theory • id:x8Fj1aqF

How are inductors used in this diagram?

2e.5 (2/2) • AC theory • id:-ybShg7h

How are inductors used in this diagram?

2e.6 (1/5) • AC theory • id:7YKuHqny

How is Impedance calculated in an RC or RL circuit?

2e.6 (2/5) • AC theory • id:Kd_v9eaD

What is the visual representation of Impedance calculated in an RC or RL circuit?

2e.6 (3/5) • AC theory • id:WM6LX6G-

What is the impedance of the circuit in the diagram?

2e.6 (4/5) • AC theory • id:D_qymJnT

What is the impedance of the circuit in the diagram?

2e.6 (5/5) • AC theory • id:nODdsBIO

Really nasty question

Really nasty question gives you component values and supply voltage – what is V across C

- Need to work out X
- Use X and R to work out Z
- Use Z to work out I
- Use I and X to work out V
- Worked example in Weekly Instructions

2h.1 (1/4) • Tuned circuits and resonance • id:-cve6QhE

Recap on tuned circuits. What do you remember? Which is the acceptor circuit, and which is the rejector circuit? I always remember PARALLEL for PEAK Z.

2h.1 (2/4) • Tuned circuits and resonance • id:80kswhtQ

What is the resonant frequency formula that applies to both series and parallel tuned circuits?

2h.1 (3/4) • Tuned circuits and resonance • id:Icrs9YHB
How do you transpose the resonant frequency formula to solve for C or L?
2h.1 (4/4) • Tuned circuits and resonance • id:YIWQ4xfJ
Calculate resonant frequency of 22pf capacitor with $10 \mu H$ inductor

2h.2 (1/3) • Tuned circuits and resonance • id:s7y_uZJc
Summarise what you know about crystals and how they're used.
2h.2 (2/3) • Tuned circuits and resonance • id:0S0usOAm
Identify a circuit with crystals in it

2h.2 (3/3) • Tuned circuits and resonance • id:knldQzuu

What does the specification of a crystal's performance look like?

2h.4 • Tuned circuits and resonance • id:hQ5vWwHT

In this circuit the resonant frequency is 5.3MHz and there is an RF supply of just 2mV across the series circuit. Q MAGNIFICATION hinges on the fact that when a series tuned circuit is at resonance, the reactances X_L and X_C are equal and opposite, so they cancel each other.

oltages	and circul	ating currer	its in tuned	circuits can	be very high	
h.4 • Tur	ned circuits	and resonanc	e • id:bSZoH	asf		
Apply th	e formula f	or Q factor	given circui	t componer	t values	

2h.4 • Tuned circuits and resonance • id:ck-ql2VL
Recall the definition of the half power point of resonance curves
2h.4 • Tuned circuits and resonance • id:pnYosChc
Apply the equation for Q given the resonant frequency and the half power points on the resonance curve

2h.5 • Tuned circuits and resonance • id:gsL6QJgR

Understand the meaning of dynamic resistance, $R_{D\cdots}$

7a.1 • Good operating practices and procedures • id:undefined

What is working split?

