Parameterefficient Fine-tuning (PEFT)

Full fine-tuning of large LLMs is challenging

Parameter efficient fine-tuning (PEFT)

New trainable layers

LLM

LLM with additional layers for PEFT

Less prone to catastrophic forgetting

Other

Full fine-tuning creates full copy of original LLM per task

PEFT fine-tuning saves space and is flexible

PEFT Trade-offs

Parameter Efficiency

Memory Efficiency

Training Speed

Model Performance

Inference Costs

PEFT methods

Selective

Select subset of initial LLM parameters to fine-tune

Reparameterization

Reparameterize model weights using a low-rank representation

LoRA

Additive

Add trainable layers or parameters to model

Adapters

Soft Prompts

Prompt Tuning

Source: Lialin et al. 2023, "Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning",

Low-Rank Adaptation of Large Language Models (LoRA)

1. Freeze most of the original LLM weights.

- 1. Freeze most of the original LLM weights.
- 2. Inject 2 rank decomposition matrices
- 3. Train the weights of the smaller matrices

Steps to update model for inference

1. Matrix multiply the low rank matrices

$$B * A = B \times A$$

2. Add to original weights

- Freeze most of the original LLM weights.
- 2. Inject 2 rank decomposition matrices
- 3. Train the weights of the smaller matrices

Steps to update model for inference:

Matrix multiply the low rank matrices

$$B * A = B \times A$$

2. Add to original weights

Concrete example using base Transformer as reference

Use the base Transformer model presented by Vaswani et al. 2017:

- Transformer weights have dimensions $d \times k = 512 \times 64$
- So 512 x 64 = 32,768 trainable parameters

In LoRA with rank r = 8:

- A has dimensions $r \times k = 8 \times 64 = 512$ parameters
- B has dimension $d \times r = 512 \times 8 = 4,096$ trainable parameters
- 86% reduction in parameters to train!

- Train different rank decomposition matrices for different tasks
- 2. Update weights before inference

Sample ROUGE metrics for full vs. LoRA fine-tuning

Full fine-tune ROUGE

Sample ROUGE metrics for full vs. LoRA fine-tuning

Choosing the LoRA rank

Rank r	val_loss	BLEU	NIST	METEOR	ROUGELL	CIDEr
1	1.23	68.72	8.7215	0.4565	0.7052	2.4329
2	1.21	69.17	8.7413	0.4590	0.7052	2.4639
4	1.18	70.38	8.8439	0.4689	0.7186	2.5349
8	1.17	69.57	8.7457	0.4636	0.7196	2.5196
16	1.16	69.61	8.7483	0.4629	0.7177	2.4985
32	1.16	69.33	8.7736	0.4642	0.7105	2.5255
64	1.16	69.24	8.7174	0.4651	0.7180	2.5070
128	1.16	68.73	8.6718	0.4628	0.7127	2.5030
256	1.16	68.92	8.6982	0.4629	0.7128	2.5012
512	1.16	68.78	8.6857	0.4637	0.7128	2.5025
1024	1.17	69.37	8.7495	0.4659	0.7149	2.5090

- Effectiveness of higher rank appears to plateau
- Relationship between rank and dataset size needs more empirical data

Source: Hu et al. 2021, "LoRA: Low-Rank Adaptation of Large Language Models"

QLoRA: Quantized LoRA

- Introduces 4-bit NormalFloat (nf4) data type for 4-bit quantization
- Supports double-quantization to reduce memory ~0.4 bits per parameter (~3 GB for a 65B model)
- Unified GPU-CPU memory management reduces GPU memory usage
- LoRA adapters at every layer not just attention layers
- Minimizes accuracy trade-off

Optimizer
State
(32 bit)

Adapters
(16 bit)

Base
Model

16-bit Transformer

16-bit Transformer

16-bit Transformer

A-bit Transformer

Quident Flow
Paging Flow

A-bit Transformer

A-bit Transformer

A-bit Transformer

A-bit Transformer

Paging Flow

quantizing the transformer model to 4-bit precision and using paged optimizers to handle memory spikes.

LoRA

QLoRA

Full Finetuning

(No Adapters)

Source: Dettmers et al. 2023, "QLoRA: Efficient Finetuning of Quantized LLMs"

PEFT methods summary

Selective

Select subset of initial LLM parameters to fine-tune

Reparameterization

Reparameterize model weights using a low-rank representation

LoRA

Additive

Add trainable layers or parameters to model

Adapters

Soft Prompts

Prompt Tuning

