1

2

PGF-2 α – 1 hr 10 mM sperm. + 5 hr 1 mM sperm. PGF- $2\alpha - 1 \text{ hr } 10 \text{ mM sperm.}$ 3

Control

Control + Spermidine

ω PGF-2α (1 h 35 m)

PGF-2 α (1 h 35 m) + Spermidine

 ω PGF-2 α (1 h 35 m) + Spermidine

2 PGF-2 α (3 h 45 m) + Spermidine

S K T G K H G H A K V H L V G I D I F T G K K Y GAAGATATCTGCCCGTCGACTCATAACATGGATGTCCCCAACATCAAAAGGAATGATTTCCAGCTGATTGGC E D I C P S T H N M D V P N I K R N D F Q L I I Q D G Y L S L L Q D S G E V R E D L R L P GACCTTGGCAAGGAGTTGAGCAGAAGTATGACTGTGGAGAAGAGATCCTGATCACAGTGCTGTCCGCCATG D L G K E I E Q K Y D C G E E I L I T V L S A M ${\tt ACAGAGGAGCCAGCTGTTGCAATCAAGGCCATGGCAAAA} \textbf{TAA} {\tt CTGGCTTCCAGGGTGGCGGTGGCAGCA}$ T E E A A V A I K A M A K ${\tt TTTGACGTTTTATTTTGGTTTTCCTCACCCCTTCAAACTGTCGGGGAGACCCTGCCCTTCACCTAGCTCCCT}$ ${\tt TGGCCAGGCATGAGGGAGCCATGGCCTTGGTGAAGCTACCTGCCTCTTCTCTCGCAGCCCTGATGGGGGAAA}$ $\tt GGGAGTGGGTACTGCCTGTGGTTTAGGTTCCCCTCTCCCTTTTTCTTTTAATTCAATTTGGAATCAGAAAG$ $\tt CTGTGGATTCTGGCAAATGGTCTTGTGTCCTTTATCCCACTCAAACCCATCTGGTCCCCTGTTCTCCATAGT$ TACAAGTTTAATATGAAAAAAAAAAAAAAAAAAAAA (972 NT, 109 aa)

(488 NT, 151 aa)

Figure 4

CAGGTCTAGAGTTGGAATCGAAGCCTCTTAAAATGGCAGATGATTTGGACTTCGAGACAGGAGATGCAGGGG	
M A D D L D F E T G D A G	13
CCTCAGCCACCTTCCCAATGCAGTGCTCAGCATTACGTAAGAATGGTTTTGTGGTGCTCAAGGGCCGGCC	144
A S A T F P M Q C S A L R K N G F V V L K G R P	
GTAAGATCGTCGAGATGTCTACTTCGAAGACTGGCAAGCATGCCAAGGTCCATCTGGTTGGT	
C K I V E M S T S K T G K H G H A K V H L V G I	61
ATATTTTTACTGGGAAGAATATGAAGATATCTGCCCGTCGACTCATAACATGGATGTCCCCAACATCAAAA	288
D I F T G K K Y E D I C P S T H N M D V P N I K	200
GGAATGATTTCCAGCTGATTGGCATCCAGGATGGGTACCTATCCCTGCTCCAGGACAGTGGGGAGGTACGAG	
RNDFOLTGIODGYLGILODG	
AGGACCTTCGTCTGCCTGAGGGAGACCTTGGCAAGGAGATTGAGCAGAAGTATGACTGTGGAGAAGAAGACCTCC	109
EDIRIPEGDICKETEGKKBGGG	432
TGATCACAGTGCTGTCCGCCATGACAGAGGAGGCAGCCTGTTGCAATCAAGGCCATGGCAAAA TAA CTGGCTT	
T. T. T. V. I. C. N. M. T. D.	
Z I I V D S A M I E E A A V A I K A M A K *	154
CCAGGGTGGCGGTGGTGGCAGCAGTGATCCATGAGCCTACAGAGGCCCCTCCCCCAGCTCTGGCTGG	576
TGGCTGGACTCCTATCCAATTTATTTGACGTTTTATTTTGGTTTTCCTCACCCCTTCAAACTGTCGGGGAGA	
CCCTGCCCTTCACCTAGCTCCCTTGGCCAGGCATGAGGGAGCCATGGCCTTGGTGAAGCTACCTGCCTCTTC	720
TCTCGCAGCCCTGATGGGGAAAGGGAGTGGGTACTGCCTGTGGTTTAGGTTCCCCTCTCCCTTTTTTTT	
TAATTCAATTTGGAATCAGAAAGCTGTGGATTCTGGCAAATGGTCTTGTGTCCTTTATCCCACTCAAACCCA	864
TCTGGTCCCCTGTTCTCCATAGTCCTTCACCCCCAAGCACCACTGACAGACTGGGGGACCAGCCCCCTTCCCT	
GCCTGTGTCTCTCCCAAACCCCTCTATAGGGGTGACAAGAAGAGAGGGGGGGG	1008
TCAGGCATCTGGGAAGGCCTTGCCCCCATGGGCTTTACCCTTTCCTGTGGGCTTTCTCCCTGACACATTTGT	1000
TAAAAATCAAACCTGAATAAAACTACAAGTTTAATATGAAAAAAAA	1139
	1123

(1139 NT, 154 aa)

Figure 6

rat vs. human(NM 020390) 72.5% identity (coding) rat ATGGCAGATGATTTGGACTTCGAGACAGGAGATGCAGGGGCCTCAGCCACCTTCCCAATG ::: : ::: ::: ATGGCAGACGAAATTGATTTCACTACTGGAGATGCCGGGGCTTCCAGCACTTACCCTATG human rat human CAGTGCTCGGCCTTGCGCAAAAACGGCTTCGTGGTGCTCAAAGGACGACCATGCAAAATA rat GTGGAGATGTCAACTTCCAAAACTGGAAAGCATGGTCATGCCAAGGTTCACCTTGTTGGA ATTGATATTTTTACTGGGAAGAAATATGAAGATATCTGCCCGTCGACTCATAACATGGAT rat ATTGATATTTTCACGGGCAAAAAATATGAAGATATTTGTCCTTCTACTCACAACATGGAT human rat GTCCCCAACATCAAAAGGAATGATTTCCAGCTGATTGGCATCCAGGATGGGTACCTATCC human GTTCCAAATATTAAGAGAAATGATTATCAACTGATATGCATTCAAGATGGTTACCTTTCC CTGCTCCAGGACAGTGGGGAGGTACGAGAGGACCTTCGTCTGCCTGAGGGAGACCTTGGC rat CTGCTGACAGAAACTGGTGAAGTTCGTGAGGATCTTAAACTGCCAGAAGGTGAACTAGGC human AAGGAGATTGAGCAGAAGTATGACTGTGGAGAAGAGATCCTGATCACAGTGCTGTCCGCC rat :: :: :: ::: :: :: : :: ::::: : : : : :: :: rat ATGACAGAGGAGCAGCTGTTGCAATCAAGGCCATGGCAAAA ::::: :: :: :: :::: :: :: human ATGAGTGAAGAATATGCTGTAGCCATAAAACCCT--GCAAAT

Figure 7

rat vs. mouse (BC003889) 98.3% identity (coding)

	10	20	30	40	50	60
rat	ATGGCAGATGATTTGC					AATG
mouse	::::::::::::::::::::::::::::::::::::::					:::: AATG
mouse	10	20	30	40	50	60
	70	80	90	100	110	120
rat	CAGTGCTCAGCATTAC	GTAAGAATGG		CICAAGGGCC	GGCCAIGIAA	GAIC
mouse	CAGTGCTCAGCATTACC		TTTGTGGTGC		GCCATGTAAG	ATC
	70	80	90	100	110	120
			250	1.50	170	100
rat	130 GTCGAGATGTCTACTT	140 rcgaagactgg	150 Caaccatgge	160 'Catgccaagg	170 TCCATCTGGT	180 TGGT
rat	::::::::::::::	CGAAGACIGG	::::::::::	:::::::::::	:::::::::	:::
mouse	GTCGAGATGTCTACTT	CGAAGACTGG	CAAGCATGGC	CATGCCAAGG	TCCATCTGGT	TGGC
	130	140	150	160	170	180
	190	200	210	220	230	240
rat	ATTGATATTTTTACTO					
140						::::
mouse	ATTGACATTTTTACTO	GGAAGAAATA	TGAAGATATC	TGCCCGTCGA		GGAT
	190	200	210	220	230	240
	250	260	270	280	290	300
rat	GTCCCCAACATCAAAA	AGGAATGATTI	CCAGCTGATT	GGCATCCAGG	ATGGGTACCT	ATCC
	:::::::::::::::::::::::::::::::::::::::	:::::::::::		:::::::::		::::
mouse	GTCCCCAACATCAAAC		CCAGCTGATT 270	GGCATCCAGG 280	ATGGGTACCT 290	ATCC 300
	250	260	270	200	290	300
	310	320	330	340	350	360
rat	CTGCTCCAGGACAGTC	GGGAGGTACG	AGAGGACCTT	CGTCTGCCTG	AGGGAGACCT	TGGC
					: :::::::	:::: TOOO
mouse	CTGCTCCAGGACAGTC	320	330	340	350	360
	510	320	330	310		
	370	380	390	400	410	420
rat	AAGGAGATTGAGCAGA	AAGTATGACTO	TGGAGAAGAG	SATCCTGATCA	CAGTGCTGTC	CGCC
moure	AAGGAGATTGAGCAG	::::::::::::::::::::::::::::::::::::::	:::::::::: TGGAGAAGAG	::::::::: ۵٦٢٢٢٢٢۵٢٢۵	CAGTGCTGTC	::: TGCC
mouse	370	380	390	400	410	420
	430	440	450	460		
rat	ATGACAGAGGAGCAGCTGTTGCAATCAAGGCCATGGCAAAA					
mouse	::::::::::::::::::::::::::::::::::::::					
	430	440	450	460		

Figure 8

BY PAFTS

rat vs. human(BC000751 or NM_001970) 100.0% identity						
	10	20	30	40	50	60
rat	MADDLDFETGDAGA	SATFPMQCSA	LRKNGFVVL	GRPCKIVEMS:	rsktgkhgha	KVHLVG
	:::::::::::::::	::::::::	:::::::::		::::::::::	::::::
human	MADDLDFETGDAGA	SATFPMQCSA:	LRKNGFVVL	(GRPCKIVEMS)	rsktgkhgha	KVHLVG
	10	20	30	40	50	60
	70	80	90	100	110	120
rat	IDIFTGKKYEDICP	STHNMDVPNI	KRNDFQLIGI	QDGYLSLLQD	SGEVREDLRL	PEGDLG
	:::::::::::::::::::::::::::::::::::::::	:::::::::	:::::::::		: : : : : : : : : :	:::::
human	IDIFTGKKYEDICP	STHNMDVPNI	KRNDFQLIGI	QDGYLSLLQD	SGEVREDLRL	PEGDLG
	70	80	90	100	110	120
	130	140	150			
rat	KEIEQKYDCGEEILITVLSAMTEEAAVAIKAMAK					
	:::::::::::::::::::::::::::::::::::::::					
human	n KEIEQKYDCGEEILITVLSAMTEEAAVAIKAMAK					
	130	140	150			

Figure 9

... **. . .** . .

rat vs. human(NM 020390) 82.5% identity ${\tt MADDLDFETGDAGASATFPMQCSALRKNGFVVLKGRPCKIVEMSTSKTGKHGHAKVHLVG}$ rat human MADEIDFTTGDAGASSTYPMQCSALRKNGFVVLKGRPCKIVEMSTSKTGKHGHAKVHLVG ${\tt IDIFTGKKYEDICPSTHNMDVPNIKRNDFQLIGIQDGYLSLLQDSGEVREDLRLPEGDLG}$ rat human IDIFTGKKYEDICPSTHNMDVPNIKRNDYQLICIQDGYLSLLTETGEVREDLKLPEGELG rat KEIEQKYDCGEEILITVLSAMTEEAAVAIKAMAK :::: ::. ::.. ..:. ::.:: ::::: human KEIEGKYNAGEDVQVSVMCAMSEEYAVAIKP-CK

Figure 10

 ${\tt MADDLDFETGDAGASATFPMQCSALRKNGFVVLKGRPCKIVEMSTSKTGKHGHAKVHLVG}$ rat mouse MADDLDFETGDAGASATFPMQCSALRKNGFVVLKGRPCKIVEMSTSKTGKHGHAKVHLVG ${\tt IDIFTGKKYEDICPSTHNMDVPNIKRNDFQLIGIQDGYLSLLQDSGEVREDLRLPEGDLG}$ rat mouse IDIFTGKKYEDICPSTHNMDVPNIKRNDFQLIGIQDGYLSLLQDSGEVREDLRLPEGDLG rat KEIEQKYDCGEEILITVLSAMTEEAAVAIKAMAK ************************ mouse KEIEQKYDCGEEILITVLSAMTEEAAVAIKAMAK

rat vs. mouse (BC003889)100.0% identity

Figure 12

The first arms over the grown of the first o

Southern Blot of Rat Genomic DNA

EcoRV

Rat eIF-5A 1139 bp

EcoR1 EcoRV BamH1

Full-length rat eIF-5A cDNA probe

FIG. 13

Figure 14

 ${\tt GCTGTGTATTATTGGGCCCATAAGAACCACATACCTGTGCTGAGTCCTGCACTCACAGACGGCTCACTGGGT}$ D M I F F H S Y K N P G L V L D I V E D L R L I V K H H I ${\tt GCCAATGCTAACCTCATGCGGAATGGAGCTGACTACGCTGTTTATATCAACACAGCCCAGGAGTTTGATGGC}$ A N A N L M R N G A D Y A V Y I N T A Q E F D S D S G A R P D E A V S W G K I R M D A Q P V K $\tt GTCTATGCTGATGCATCTCTGGTTTTCCCCTTGCTGGTGGCTGAGACATTCGCCCAAAAGGCAGATGCCTTC$ $\begin{smallmatrix} V & Y & A & D & A & S & L & V & F & P & L & L & V & A & E & T & F & A & Q & K & A & D & A & F \\ \end{smallmatrix}$ RAEKNED ${\tt GCATACCAACCCCTCCTGGGCCCTCTCCTTGGTCAGCAGCATCTTGAGAATAAATGGCCTTTTTGTTGGTTT}$ CTGTAAAAAAAGGACTTTAAAAAAAAAAAA

(606 NT, 151 aa)

Figure 16

Figure 17

rat	vs. human	(BC00031	33) 87.4%	identity	(coding)		
rat	CCTCTCT	10	20	30	40	50	60
ruc	:::::		JCCCATAAGA ::::: ::::	ACCACATACC	TGTGCTGAGT		
human			 	::::::::::::::::::::::::::::::::::::::	:::: :::: TGTGTTTAGT	:: ::::: :	:::::
	10001011	10	20	30			
		10	20	30	40	50	60
		70	80	90	100	110	100
rat	GGCTCACT				TAAAAACCCA	110 CCCTTCCTCC	120
	::::: ::	::::::::		::::::::	:: :::::	GGCTTGGTCC	TGGAC
human	GGCTCGCT	GGGCGACA	ATGATCTTCT'	TCCATTCCTA	CAAGAACCCG	GGCCTGGTCC	TCCAC
		70	80	90	100	110	120
					200	110	120
	1	.30	140	150	160	170	180
rat	ATCGTTGA	AGACCTGC	CGGCTCATCA	ACATGCAGGC	CATTTTCGCC	AAGCGCACTG	GGATG
	:::::::	::::::	::::::::		::: :: :::		
human	ATCGTTGA	GGACCTGA	GGCTCATCA	ACACACAGGC	CATCTTTGCC	AAGTGCACTG	GGATG
	1	.30	140	150	160	170	180
		90	200	210	220	230	240
rat	ATCATCCT	GGGTGGAG	GCGTGGTCA	AGCACCACAT	CGCCAATGCT	AACCTCATGC	GAAT
,	::::: ::	::: :: :	:::::::::	::::::::	:::::::::::::::::::::::::::::::::::::::		
human	ATCATTCT	GGGCGGGG	GCGTGGTCA	GCACCACAT'	TGCCAATGCCA	ACCTCATGC	GAAC
	1	90	200	210	220	230	240
wa. -		50	260	270	280	290	300
rat	GGAGCTGA	CTACGCTG			GAGTTTGATG		
human	:: :: ::			:::::::::::::::::::::::::::::::::::::::	::::::::::::	:::: :::::	:::
numan	COGGCCGA	CTACGCTG 50	TTTACATCAA		GAGTTTGATG	GCTCTGACTC	AGGT
	21	50	260	270	280	290	300
	3	10	320	220	2.4.0		
rat				330	340 CCGGATGGATG	350	360
	::::::::	::: :		GGGCAAGAIC	CGGATGGATG	CACAGCCAGT	'AAAG
human	GCCCGACCA	AGACGAGG		GGGCD AGATO	CGGGTGGATG		:::
	3:	10	320	330	340		
				330	340	350	360
	3.7	70	380	390	400	410	420
rat	GTCTATGCT	rgatgcat(GTGGCTGAGA	CATTCCCCCA	420
	:::::::::	::: :: ::	: ::::: ::	:::: ::::	:::::::::::::::::::::::::::::::::::::::	· ·· ····	DAAA
human	GTCTATGCT	GACGCCT(CCCTGGTCTT	CCCCCTGCTT	GTGGCTGAAA	· · · · · · · · · · · · · · · · · · ·	GN N.C.
	37	70	380	390	400	410	420
							720
	4 3		440	450			
rat	GCAGATGC	CTTCAGAGO	CTGAGAAGAA'	TGAGGAC			
	:::::	::::	:::::::	::::::			
human	ATGGATGCC	CTTCATGCA	ATGAGAAGAA	CGAGGAC			
	43	0	440	450			

Figure 18

Hours After PGF-2 α Treatment

0 1 24

The property of the party of th

Saline – 3 hours *in vitro*

FIG. 21

Southern Blot of Rat Genomic DNA

Partial rat DHS cDNA probe

