Post-training Quantization (PTQ)

```
converter = tf.lite.TFLiteConverter.from_saved_model(CATS_VS_DOGS_SAVED_MODEL)

converter.optimizations = [tf.lite.Optimize.DEFAULT]

tflite_model = converter.convert()

tflite_model_file = 'converted_model.tflite'
```

with open(tflite_model_file, "wb") as f:

f.write(tflite_model)

```
converter = tf.lite.TFLiteConverter.from_saved_model(CATS_VS_DOGS_SAVED_MODEL)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_model = converter.convert()
```

```
tflite_model_file = 'converted_model.tflite'
```

```
with open(tflite_model_file, "wb") as f:
    f.write(tflite_model)
```

```
[tf.lite.Optimize.DEFAULT]
[tf.lite.Optimize.OPTIMIZE_FOR_SIZE]
[tf.lite.Optimize.OPTIMIZE_FOR_LATENCY]
```

Quantization

Quantization is an optimization that works by **reducing the precision** of the numbers used to represent a model's parameters, which by default are 32-bit floating point numbers. This results in a **smaller model size**, **better portability** and **faster computation**.

Reducing the Precision

Why do we Quantize?

Size

Storage size: Smaller neural network models occupy less storage space on your device.

Storage & RAM Size

Storage size: Smaller neural network models occupy less storage space on your device, and in moving from 32-bits to 8-bits we readily get 4x reduction in memory.

Our board (in your kit for Course 3) only has 256KB of RAM (memory) and 1MB of Flash (storage)

Storage & RAM Size

Less memory usage: Smaller models use less RAM when they are run, which frees up memory for other parts of your application to use, and can translate to better performance and stability.

Weight Ranges

Weight distribution for AlexNet shows how most weight values are **concentrated** in a small range.

Latency

 Int8 (v. fp32) format severely reduces the computation to run inference using a model, resulting in lower latency

Latency

- Int8 (v. fp32) format severely reduces the computation to run inference using a model, resulting in lower latency
- Latency optimizations can also have a notable impact on power consumption.

Int8 v. Float (CPU time per inference)

Quantized models are up to 2-4x faster on CPU and 4x smaller.

Portability **Trade-offs**

Not all embedded systems are created equal. Sacrifice **portability** across systems for **efficiency**.

Single Precision IEEE 754 Floating-Point Standard

Option 2

How do we Quantize?

Biases

Biases

Activations

Biases

Activations

Reduce Precision (Discretize)

-5.4 Original 32-bit float values 0.0

+4.5

Reconstructed 32-bit float values

Reconstructed 32-bit float values

Quantization

Quantized Weight Compression (for size)

Quantized Inference Calculation (for latency)

Decompress each weight value from **8-bit integer** into a **fp32 floating-point** value before multiplying it with the input value:

```
output = ... inputn * decompress(q_weightn)
```

Where:

```
decompress(quantized_code) {
   return float((quantized_code / 255.0) * (max - min)) + min;
}
```

Quantized Weight Compression (for size) Quantized Inference Calculation (for latency)

Imagine that we artificially **reduce the precision** of every input to the **dot product**, so that they're no longer using the full range of a 32-bit float:

```
output = ... quantize(inputn, step) * quantize(weightn, step)
```

Where:

```
quantize(x, step) {
  return round(x*step) / step;
}
```

e.g., quantize(3.14, 1.0) = 3.0 (rounding to nearest whole number) and quantize(3.14, 0.1) = 3.1 (rounding to nearest 1/10)

What are the trade-offs?

Accuracy-Latency **Trade-off**

Quantization works well but performance but can suffer from accuracy loss during *inference*.

Accuracy-Latency **Trade-off**

Quantization works well but performance but can suffer from accuracy loss during *inference*.

Accuracy-Latency **Trade-off**

Quantization works well but performance but can suffer from accuracy loss during *inference*.

About Quantizing Other NN Parts?

- Weights
- Activations
- Channels
- Tensors
- Layers
- ...

Every network has something unique for it, so the degree to which you can quantize (e.g., weights, activations) will vary.

About Quantizing Other NN Parts?

- Weights
- Activations
- Channels
- Tensors
- Layers
- ...

In Summary...

Summary

Doing all calculations in eight-bit integers offers some compelling advantages:

• Faster arithmetic. You need a lot fewer gates to implement an eight-bit integer multiply-add than a 32-bit floating point operation.

Summary

Doing all calculations in eight-bit integers offers some compelling advantages:

- Faster arithmetic. You need a lot fewer gates to implement an eight-bit integer multiply-add than a 32-bit floating point operation.
- Lower memory demands. We're only accessing eight bits instead of thirty-two, which reduces the load on the memory system by 75%.

Summary

Doing all calculations in eight-bit integers offers some compelling advantages:

- Faster arithmetic. You need a lot fewer gates to implement an eight-bit integer multiply-add than a 32-bit floating point operation.
- Lower memory demands. We're only accessing eight bits instead of thirty-two, which reduces the load on the memory system by 75%.
- Reduced resource requirements. Many low-end microcontrollers and DSPs lack floating-point hardware, so avoiding floats increases portability.