

SHELL PETROLEUM DEVELOPMENT COMPANY OF NIGERIA LIMITED

UBIE003L SAND CLEAN-OUT AND ZONE CHANGE PROPOSAL ADDENDUM

Document Number:	SPDC-2020-08-00000117	Prepared By:	Taro Onajite - PT
		Contributors	Imaobong Bassey - PG (Coordinator) Aniekan Obot - PT Esther Briggs - CWI Basil Ogbunude - RE Dike Ahunaya - PP
Document Owner:	PTD/C/NCC	Version:	1.0
Issue Date:	August 2020	Review Date:	August 2022
Record Type Name:	Proposal	Record Series Code:	
Security Classification:	Restricted	ECON classification:	Not Subject to EAR - No US Content

This document is the property of Shell Petroleum Development Company (Nigeria) Ltd., and the copyright therein is vested in Shell Petroleum Development Company (Nigeria) Ltd. All rights reserved. Neither the whole nor part of this document may be disclosed to others or reproduced, stored in a retrieval system, or transmitted in any form by any means (electronic, mechanical, reprographic recording or otherwise) without prior written consent of the copyright owner

Copyright © 2020 SPDC Nigeria Ltd.

1

TABLE OF AUTHORISATION

REVIEWED BY:

Name	Position
Ajaraogu, Benjamin	Production Technology TA2 UPC/G/UR
Mude, Jonathan	Petrophysics TA2 PTD/C/NCC
Okereke, Onyedikachi	Reservoir Engineering TA2 PTD/C/NCC
Etuk, Ubong	Production Geology TA2 PTD/C/NCP
Oluleye, John	Well Intervention Team Lead, WRFM UPC/G/UR

AGREED BY:

Name Position		Signature
Mude, Jonathan	Soku and Nun River Node Lead PTD/C/NCC	
Ajaraogu, Benjamin	Production Technology TA2 UPC/G/UR	
Oluleye, John	Well Intervention Team Lead, WRFM UPC/G/UR	

APPROVED BY:

Name	Position	Signature
Gogo, Oforiokuma	Asset Subsurface Lead, Central East Asset PTD/C/NC	

1. OBJECTIVE

WELL/RESERVOIR	UBIE003L (E3000M)
TYPE	Rigless Intervention (STOG)
OBJECTIVE To restore production of UBIE003L by carrying out sand wash of the tubing, a sleeve (SSD) to access the E3000M reservoir, nitrogen lift and flow the interval Long string. This activity will restore a base case potential of ca. 350 bopd as safeguard resource volume of 1.41 MMstb from the E3000M sand.	
PROPOSAL	Sand Cleanout & Zone Change

2. WELL HISTORY/ PRESENT STATUS

The well was drilled and suspended in February 1967. It was later re-entered and initially completed as a Two String Multiple (TSM) oil producer on the E1000M, E3000M and E5000M sands in May 1973, with all intervals chemically consolidated for sand control.

UBIE003L E1000M: 8289-8293 ftah, 8238 - 8243 ftss (SCON)

This interval came on stream in 1979 and produced dry to a peak production of 1628 bopd in 1985 on bean 48/64". There is no documented reason why the interval was closed in 1987. The interval was re-opened with reduced production in 1996 on bean 24/64" post a mechanical intervention on the string. Water broke through in the same year when the bean was increased from 24/64" to 26/64". HGOR was also recorded that year and the interval was shut-in in1998. The intervals last production data as at early 1998 are 658 bopd, 12% BS&W, GOR of 680 Scf/bbl on bean 26/64". This interval was completed without SCSSSV, thus considered not integral. In 2012, the interval was secured with a downhole plug at 8076 ftah and NRV.

In 2017, a tubing investigation was carried out and the result confirmed that the short string is non integral. During that operation, HUD/restriction was observed in the long string at 8360ftah suspected to be a separation tool. Attempts to retrieve it proved abortive and the interval was secured with downhole plug at 8076 ftah and NRV. A later well intervention activity successfully fished the separation tool at 8360 ftah. However, the planned zone change was aborted due to HUD observed at 8535 ftah above the target SSD @ 8592ftah. An LIB run showed a clear impression which was suspected to be sand and further confirmed by sand bailer run. The sand bailer run was repeated thrice recovering sand each time and gaining 2 feet - HUD now at 8537 ftah. The well has remained closed-in till date.

UBIE003S E3000M: 8518-8522 ftgh, 8468 - 8472 ftss (SCON)

The interval came on-stream in May 1973 at the rate of 500 bopd on bean 16/64". Water breakthrough occurred in December, 1979 on bean 32/64". The interval was beaned down to 26/64" and water production stabilized until September 1987 when water production rose up significantly to about 42% BSW. HGOR of about 2450 scf/bbl was also observed in 1990; it receded afterwards and increased again in 1994 when the interval was re-opened.

In 1996 the SS was suspected to be in communication with the annulus during an intervention activity on the long string, subsequently the interval was shut in for safety reasons. The interval was then secured with downhole plug at 8242 ftah and NRV in 2012. In 2017, a tubing investigation was carried out and the result showed that there is communication between the short string and the casing. Thereafter, it was secured with a downhole plug at 8242 ftah and NRV. The interval has remained secured and closed-in till date. Last production data from the interval in 1996 was GOR of 2360 Scf/bbl, 1196 bopd, 14% BS&W on bean 40/64".

3. PROPOSED ACTION AND JUSTIFICATION

Four conduits have been completed on the E3000M reservoir – UBIE003S, 003L (behind sleeve), 005L & 006L. UBIE006L and UBIE003S have been secured due to well integrity issues (tubing leak and pressure communication issues respectively) while UBIE005L requires PBV installation and Wellhead Maintenance after retrieval of DW plug in hole.

This is an addendum to the previously signed <u>UBIFOO3L Wireline Recompletion & PBV Installation proposal</u> in 2018. This addendum was necessitated based on operational challenges encountered during execution of the initial scope - wireline recompletion via the long string. HUD was encountered at 8535 ftah during the drift run prior to the proposed objective to retrieve the separation tool and shift open the SSD at 8592 ftah. An LIB run showed a clear impression which was suspected to be sand and further confirmed by sand bailer run. The sand bailer run was repeated thrice recovering sand each time and gaining 2 feet - HUD now at 8537 ftah. This sand restriction is suspected to have resulted due to previous production from the E1000M interval via the long string, leading to sand/debris packing above the separation tool on the E3000M.

In addition, the review of the BSW trend of UBIE003L shows that water production behavior is suspected to be due to coning caused by fluid withdrawal at an increased bean size up to bean 44/64" in 1990 (See water cut diagnostic plot in **Appendix 8**). Comparing the BSW trend for UBIE005L and UBIE003S, it is observed that UBIE005L produced at an higher BSW than UBIE003S even with shallower perforation in UBIE005L. Also, it is expected that after a long shut-in time of over 6 years, the conduit will come in with a lower BSW.

Therefore, it is recommended to carry out a sand cleanout activity using coiled tubing to wash out sand restriction in the tubing section above the separation tool, shift open the SSD at 8592 ftah and produce the E3000M reservoir via the long string. In the unlikely scenario that the E3000M interval does not flow, the fall back option is to secure the E3000M interval and carry out an Acid Stimulation of the E1000M interval to restore production. (See Well Intervention decision tree in **Appendix 10**).

4. PROPOSAL SUMMARY

- 1. Carry out WHM checks on xmas tree valves
- 2. Record CITHP and CHP.
- 3. Carry out sand cleanout of the tubing section.
- 4. Retrieve the separation tool and run drift across long string to confirm HUD/ restriction cleared.
- 5. Verify isolation of the E5000M reservoir and ensure SSD at 8341 ftah is completely closed.
- 6. Open SSD at 8592 ftah to access the E3000M and install separation tool.
- 7. Open up well to flow and observe. If no flow proceed to N2 lift well to production.
- 8. If no flow after N2 lift. Secure the E3000M interval and carry out Acid Stimulation of the E1000M interval.
- 9. Open up well to flow and observe. If no flow proceed to N2 lift well to production.
- 10. Install PB Valve.
- 11. Hand back well to Production Operations Team.

5. WELL AND RESERVOIR DATA

Well/Sand:	Unit		UBIE003 (E3000M)
1.a)Perforated interval	Ftah	PT/PP	8518 - 8522
Perforated interval	Ftss		8468 - 8472
2.a)Maximum Deviation Angle and Depth	° @ Fttvd	PG	3.75° @ 6196
b)Derrick Floor Elevation	Ft		43.9
3.a)Present Production Rate	Bopd	PT	0
b)Estimated Potential	Bopd		245
c)Estimated Gain	Bopd		245
4.a)Reference Depth for Reservoir Pressures	Ftss	RE	8500
b)Original Reservoir Pressure	Psig		3701
c)Present Reservoir Pressure (2019 BHP)	Psig		3671
d)Present Gradient	Psi/ft		0.435
e)Bubble Point Pressure	Psig		3681
f)Specific Gravity of Oil 60/60	-		0.91
g)Oil Viscosity at Reservoir Condition	cР		1.4
h)Solution Gas-Rsi (initial condition)	Scf/Stb		567
i)Formation Volume Factor (initial condition)	-		1.185
j)Static Reservoir Temperature	° F		158
5.a) Other Wells on the same Block	-	RE	5L, 6L (Both closed-in)
b)Daily Production From Block (@31/07/2020)	Mbopd	PT	0
c)Ultimate Recovery for reservoir (@ 01/01/2020)	MMstb		29.7
d)Cumulative Production From Block (@ 01/01/2020)	MMstb		15.4
e)Cumulative Production From Well (@ 01/01/2020)	MMstb		0
f)Reserves From Well	MMstb		0.78
6.a)Original Estimated OWC in Reservoir	Ftss	PP	8500
b)Present Estimated OWC in Reservoir (Mbal)	Ftss		NA
c) Change in OWC From Original OWC	Ft		NA
d) Distance Between Lowest Perforation and POWC	Ftss		NA
7.a)Porosity	%	PP	2729
b)Shale Percent	%		8
c) Water Saturation	%		23
d) Permeability	mD		700
e) Vertical Permeability/Horizontal Permeability	Kv/Kh		NA
f) Sand Thickness as per PDL	Ftvd		94
g) Net Oil Sand	Ftvd		52
h) Net/Gross Ratio	%		92
9.a)Tubing Size/Weight	in/lbs/ft	PT	2-3/8"/6.4
b)Casing Size/Weight	in/lbs/ft		7″/29
10.Average Hole Size across Completion Interval	in	PT	9.625
11 a)Is there a barrier between lowest completion		PG	No
Interval and the present estimated OWC.			

6. POTENTIAL ESTIMATION

The Potential estimation for UBIE003L was carried out using the PROSPER IPM tool. The well model was calibrated with the performance of UBIE005L which was the last conduit that produced from the E3000M reservoir. Reference the signed UBIE003L Wireline Recompletion & PBV Installation proposal for detailed assumptions guiding the inflow and outflow performance modelling. For this addendum, certain updates have been included to support the previously approved estimation.

Firstly, sensitivity on starting water cut was done to provide a range of potentials expected from the proposed sand cleanout and zone change activity, using historical BSW trends observed from this interval. (See Well Potentials Table below). Secondly, a risk factor of 70% was applied to the net technical potentials based on OP20 premise on historical success rate (2013 – 2018 WRFM STOGG) performance review for similar well restoration activities. Therefore, the expected base case potential (Risked) to be unlocked by this opportunity is **245** bopd, however the ranges from the technical evaluation are presented below.

S/No	Scenario	BSW (%)	PI (bbl/d/psi)	Oil Rate (bopd)	Risked Potential (bopd)	Remarks
1	Low Case	70	1. <i>7</i>	180	125	Increase in last BS&W seen in the reservoir – starting BS&W of 70%
2	Base Case	60	1.7	350	245	Last BS&W seen in the reservoir – starting BS&W of 60%.
3	High Case	40	1.7	720	505	Reduction in BS&W – starting BS&W of 40%.

^{*}Potential estimated at bean 28/64".

The inflow and outflow performance plot is also captured below for the three cases in addition to the base case where the intersection point shows that the well will produce within the stable region.

7. RESERVES ESTIMATION

Reserves estimation for UBIE003L on E3000M was carried out using material balance evaluation methodology. Good pressure and production performance history match was achieved by regression of the uncertain reservoir parameters within acceptable range. Using the prevailing surface constraints (manifold pressure), a forecast was performed on a well basis for the conduit taking into consideration the well schedule, inflow potential and lift profile of the well. This generated a BC reserves of 1.41 MMstb for this opportunity. Below is a summary of the results of the evaluation.

Interval	UBIE003L:E3000M			
Case	Low	Base	High	
Initial Potential (bopd)	125	245	505	
Estimated Reserves (MMstb)	0.62	1.41	2.18	

8. HSSE/ SPECIAL WELL/LOCATION CONDITION

Condition of wellhead	OK
Last annulus pressure measurement/Date	A-annulus 0 psig. B-Annulus 0 psig / 23 rd April, 2020
MAASP	A-MAASP 1057 psig; B-MAASP 504 psig
Well integrity summary	Well is Integral. eWims Action code 0.
Any problem during last re-entry	None
Location condition	Ok. Well location is Accessible.
Flowline status	Ok
Seasonally flooded	Yes

9. RECENT PRODUCTION DATA

Well Code	Date	Bean (/64th)	Liquid Rate (bbl/d)	Oil Rate (bopd)	BSW %	GOR (Scf/bbl)	THP (psig)	Sand (pptb)
UBIE0035	1/31/1993	40	1986.27	694.92	65.01	562.44	268	6.4
UBIE0035	2/28/1993	40	2126.32	726.88	65.82	632.34	252	16
UBIE003S	3/31/1993	40	1399.63	525.93	62.42	583.65	259	9.6
UBIE003S	4/30/1993	40	1735.48	614.02	64.62	2406.68	265	3.2
UBIE0035	5/31/1993	40	3114.42	1010.77	67.55	2081.51	285	16
UBIE0035	6/30/1993	40	2487.77	1013.21	59.27	2257.75	280	9.6
UBIE0035	7/31/1993	40	1701.54	966.91	43.17	2473.39	290	6.4
UBIE0035	8/31/1993	40	2560.7	1287.8	49.71	757.03	280	9.6
UBIE003S	9/30/1993	40	2540.6	1148.07	54.81	501.86	276	6.4
UBIE0035	10/31/1993	40	3543.12	1613.38	54.46	435.35	287	16
UBIE0035	11/30/1993	40	3068.9	839.16	72.66	2181.18	290	6.4
UBIE0035	12/31/1993	40	4504.94	1162.84	74.19	2381.35	302	16
UBIE003S	1/31/1994	40	3478.42	829.58	76.15	3086.95	305	9.6
UBIE0035	2/28/1994	40	3915.71	891.21	77.24	2821.45	305	16
UBIE0035	3/31/1994	40	3804.52	2078.13	45.38	1227.28	338	9.6
UBIE0035	4/30/1994	40	3372.22	2046.54	39,31	1214.21	283	6.4
UBIE003S	9/30/1994	40	290	154	46.9	16441.56		3.2
UBIE0035	11/30/1994	40	1357.54	736.8	45.73	3093.31	145	6.4
UBIE0035	12/31/1994	40	1678.77	870.1	48.17	2536.28	290	9.6
UBIE0035	1/31/1995	40	1497.89	822.52	45.09	2611.55	290	3.2
UBIE0035	2/28/1995	40	1766.04	834.54	52.75	2573.63	290	3.2
UBIE003S	3/31/1995	40	1735.24	718.01	58.62	2563.41	256	9.6
UBIE003S	4/30/1995	40	1638.21	1276.58	22.07	1927.34	277	12.8
UBIE003S	5/31/1995	40	1392.9	1159.8	16.73	1985.28	290	3.2
UBIE003S	6/30/1995	40	1522.53	1246.37	18.14	1831.7	290	6.4
UBIE0035	7/31/1995	40	1405.03	1200.42	14.56	2154.52	290	3.2
UBIE003S	8/31/1995	40	1504.16	1294.72	13.92	2049.32	290	3.2
UBIE003S	9/30/1995	40	1087.5	852.5	21.61	2686.22	290	3.2
UBIE0035	1/31/1996	40	1398.2	1196.4	14.43	2359.08	290	3.2

10.COST ESTIMATE

	TBG Wash/ SAND C/O, N2 LIFT	
S/N	Description	Cost \$
1	Mobilisation	127,070.08
2	WHM package	4,200.00
3	Slickline package Opr	2,080.00
4	Slickline package Stby	11,160.00
5	Coiled Tubing Package Opr	74,343.72
6	Coiled Tubing Package Stby	65,162.48
7	Scaffold	1,120.00
8	Accomodation	28,000.00
9	Feeding	28,000.00
10	Chemicals (salts) + Gel	27,351.10
11	Liquid Nitrogen	32,000.00
12	AGO	10,640.00
13	Demobilization	63,535.04
14	FTO/Security	50,471.40
15	WH refurbishment	0.00
16	HSE Officer	7,700.00
17	Land Logistics	13,304.58
18	OH personnel	7,000.00
	20% Contingency	110,627.68
	Total	\$663,766.07

11. RISK AND MITIGATION

Reference <u>UBIE003L Wireline Recompletion & PBV Installation proposal</u> for detailed risk/mitigations and HSSE critical activities. However, these are associated risk as a result of this addendum.

RISKS	LIKELIHOOD / IMPACT	EFFECT	IMPACT ON COSTS OR REWARDS	MITIGATION
Chemical handling	Low/Low	Deployment of proprietary chemicals with potential health consequences.	Personnel safety, environemental threats HSSE Incident.	 Adhere to SHOC Card for handling chemicals. Chemicals deployed are off the shelf chemicals used regularly on well intervention activities
Formation & Release of H2S	Low/Low	H2S can be liberated by secondary reaction of sulphide solutions.	Injury or fatality Corrosion. HSSE PS incident	 Gas testing to be carried out as required. Personnel will be competent to manage H2S exposure. Abort operation if H2S monitor shows concentration exceeds 50ppm.
Coil Tubing & wireline stuck in hole.	Low/Medium	Possible risk of getting the CT/ tools stuck in hole during the operation.	Loss of well. Oil deferment. High cost of fishing CT.	Use certified equipment and competent Operators. Ensure max. pull on wire/CT is limited to rating.
Corrosion and Erosion Tendency of Treatment	Low/Medium	Solvents may increase corrosion & erosion risk in the well.	Loss of well integrity. Low recovery. Loss of Production	 Corrosion inhibitors will be added to the treatment. Tubing will be pickled & Surfactants deployed to reduce surface tension.
Flowback management	Medium/Medium	Effluents recovered during tubing wash could lead to environmental issues.	Reputation. Environmental impact	Effluent Tanks will be provided, and evacuated through the Flow station.
Treatment Equipment Integrity	Low/Medium	Possible risk of mobilizing a faulty equipment with poor historical background of where it was previously deployed, leading to H2S Exposures and delayed intervention.	H2S Exposures and delayed well intervention.	Ensure pre-mobilization inspections are effectively conducted and verification of historical background where equipment has been previously deployed, to confirm that it is suitable for use.
Well Kick- Off Post treatment	Medium/Medium	Post chemical treatment, interval may require kick off assistance	Increased cost of intervention. Extended execution time	 Rock in the well. Secondly, deploy N2 Lift to kick-off well to production.
Inability to Open SSD	High/High	SSD stuck closed as a result of age and other factors making it difficult to open.	Loss of reward, higher intervention cost and NPT	 Attempt with the special opening and jarring tool. Contingency plan: carry out tubing punch above perf depth to access E3000 Volumes.
Tool blow- out after opening SSD	Low/Medium	Tool may be blown up after opening sleeve to higher pressure.	Higher intervention/fishing cost and well integrity risk	 Equalise the pressure in the long string prior to opening sleeve. Follow gradual opening to avoid a sharp pressure increase.

12. REFERENCES

A. <u>UBIE003L Wireline Recompletion & PBV Installation proposal, 2018</u>

13. LIST OF APPENDICES

Appendix 1: Ubie 003 Well Status Diagram (Current Status)

Appendix 2: Ubie 003S Well Performance Plot

Appendix 3: Ubie 003L Petrophysical Data layout

Appendix 4: Ubie E3000 Hydrocarbon Distribution Plot

Appendix 5: Ubie E3000 Top Structure Map

Appendix 6: Ubie E3000 Structural Cross-Section

Appendix 7: Ubie 003L H2S Prediction and Souring Potential

Appendix 8: Water Cut Diagnostics Plot for UBIE003S on E3000M

Appendix 9: Pore Pressure Prediction for Ubie 003L on E3000M Reservoir (See Addendum)

Appendix 10: Well Intevention Decision Tree.

Appendix 11: Emergency Response Data and Contact

Appendix 1: Ubie 003 Well Status Diagram (Current Status)

4" Ni 0-3/4 Ni J5	### SRADE WT.	494 2518 3509 7632 10321	1500 sss F W/360 sss TOC = SUI 1200 sss SG 1.90 9137 (CS	CEMENT Poz SG 162 R Poz 12% Ca RFACE CLASS CT TOC =	ecc acl ₂	SG 678 FT	ITEM GATE VAL' XMAS TRE ADAPTER TUBING HI TUBING HI RISER SPC CSG. H. HC CSG. H. SF SEAL BUSS HOLE 14-3/4" - 350	FLANG ANGER EAD OOL OUSING POOL HING	TYPE DSB E DCB DCB DCB X'	10" x 6"	SIZE (16" x 2-11") (16" x 2-3/8" x 2-3/8") x 10"	1/16" 8" HCS W/	300 300 300 ENE	ERGISED
4" Ni 0-3/4 NA 1-3/4	80 26 80 23 55 23 180 23 180 23 180 47 GRADE 4.7 N-80	494 2518 3509 7632 10321	1500 sxs F W360 sxs TOC = SUI 1200 sxs SG 1.90 9137 (CS	Poz SG 162 R Poz 12% Ca RFACE CLASS CT TOC = ST) DEVIATI 3° AT	ION 76	678 FT	GATE VALV XMAS TRE ADAPTER TUBING HI TUBING HI RISER SPC CSG. H. HC CSG. H. SE SEAL BUSS	FLANG ANGER EAD OOL OUSING POOL HING	DSB E DCB DCB WF	6" x 2-7/ 10" x 6" 10-3/4"	'16" x 2-1 '8" x 2-3/8 x 10"	1/16" 8" HCS W/	300 300 300 ENE	00 W/CLP 00 x 5000 00 ERGISED
-3/4 N.1 J.5 N. N. N. SERING SIZE LS 2-3/8 SS 2-3/8	80 23 55 23 180 23 180 23 WT GRADE 4.7 N-80	2518 3509 7632 10321	W360 sxs TOC = SUI 1200 sxs SG 1.90 9137 (CS MAX DFE ORDF	Poz 12% Ca RFACE CLASS CT TOC = ST) DEVIATI 3° AT -TCHH	ION 76		XMAS TRE ADAPTER TUBING HI TUBING HI RISER SPC CSG. H. HC CSG. H. SF SEAL BUSI	FLANG ANGER EAD OOL OUSING POOL HING	E DCB DCB WF	6" x 2-7/ 10" x 6" 10-3/4"	'8" x 2-3/8	8" HCS W	300 300 300 ENE	00 x 5000 00 ERGISED OIR DAT
RING SIZE LS 2-3/8	TUBING TUBING WT GRADE 4.7 N-80 4.6 N-80	3509 7632 10321 	W360 sxs TOC = SUI 1200 sxs SG 1.90 9137 (CS MAX DFE ORDF	Poz 12% Ca RFACE CLASS CT TOC = ST) DEVIATI 3° AT -TCHH	ION 76		ADAPTER TUBING HI TUBING HI RISER SPC CSG. H. HC CSG. H. SF SEAL BUSI	FLANG ANGER EAD DOL DUSING POOL HING	E DCB DCB WF	6" x 2-7/ 10" x 6" 10-3/4"	'8" x 2-3/8	8" HCS W	300 300 300 ENE	00 x 5000 00 ERGISED OIR DAT
RING SIZE LS 2-3/8 SS 2-3/8	TUBING WT GRADE 4.7 N-80	7632 10321 TYPE EU NU	1200 sxs SG 1.90 9137 (CS	CLASS CT TOC = ST) DEVIATI 3° AT	ON 76		TUBING HI TUBING HI RISER SPC CSG. H. HC CSG. H. SF SEAL BUSI	ANGER EAD OOL OUSING POOL HING	DCB DCB WF	10" x 6"	x 10"		300 300 ENE	00 ERGISED
RING SIZE LS 2-3/8	TUBING WT GRADE 4.7 N-80	10321	1200 sxs SG 1.90 9137 (CS	CLASS CT TOC = ST) DEVIATI 3° AT -TCHH	76 43.		RISER SPO CSG. H. HO CSG. H. SF SEAL BUSI HOLE	OOL DUSING POOL HING	DCB WF	10" x 6"	x 10"		300 300 ENE	00 ERGISED
RING SIZE LS 2-3/8 SS 2-3/8	TUBING WT GRADE 4.7 N-80 4.6 N-80	TYPE EU NU	MAX DFE ORDF	TOC = ST) DEVIATI 3° AT -TCHH	76 43.		CSG. H. HC CSG. H. SF SEAL BUSI HOLE	OUSING POOL HING	6 WF	10" x 7"		MAYEC	ENE	ERGISED
LS 2-3/8 SS 2-3/8	WT GRADE 3 4.7 N-80 4.6 N-80	NU	MAX DFE ORDF	TOC = ST) DEVIATI 3° AT -TCHH	76 43.		CSG. H. HC CSG. H. SF SEAL BUSI HOLE	OUSING POOL HING	'X'	10" x 7"		MAYEC	ENE	ERGISED
LS 2-3/8 SS 2-3/8	WT GRADE 3 4.7 N-80 4.6 N-80	NU	9137 (CS MAX DFE ORDF	DEVIATI 3° AT	76 43.		CSG. H. HC CSG. H. SF SEAL BUSI HOLE	OUSING POOL HING	'X'	10" x 7"		MAYEC	ENE	ERGISED
LS 2-3/8 SS 2-3/8	WT GRADE 3 4.7 N-80 4.6 N-80	NU	MAX DFE ORDF	DEVIATI 3° AT	76 43.		CSG. H. SF SEAL BUSH HOLE	OOL HING	'X'	10" x 7"		MAYSS	ENE	ERGISED
LS 2-3/8 SS 2-3/8	WT GRADE 3 4.7 N-80 4.6 N-80	NU	DFE ORDF	3° AT -TCHH	76 43.		SEAL BUSH	HING				MAYEC		OIR DAT
LS 2-3/8 SS 2-3/8	WT GRADE 3 4.7 N-80 4.6 N-80	NU	DFE ORDF	3° AT -TCHH	76 43.		HOLE					MAYCO		OIR DAT
LS 2-3/8 SS 2-3/8	WT GRADE 3 4.7 N-80 4.6 N-80	NU	DFE ORDF	3° AT -TCHH	76 43.				OPEN HOLE PL		IIVIIY	WAX.SG	- NESERV	
SS 2-3/8	4.6 N-80	NU	ORDF			5 FT				DR	RILLED	1.12	ALL	7/78
			ORDF			5 FT				IC		1.01	D9.0/G	30/1/
					18.		9-5/8" - 1074	40	NONE					_
SAND	PERFORA	ATIONS	_	STATUS		9 F I							1	
SAND	PERFORA	ATIONS	_	STATUS										-
AND	PERFOR	ATTONS	_		•	DFI	TH (FT)	STR)ESC	RIPTIC	<u> </u>	
							(,	OI K			JESU	KIPII	JIN	
				≥ ≥	\times	_								
						┡								
						I —			l					
						I —		—	!					
						ऻ—		\vdash	.					
						\vdash			V OVER 2.20	0" 1100	v 2 7/0"	HCC-		
						—		S	X-OVER 2-3/	o HUSP)	x <u>2-1/8"</u>	поър		
				L		_	005		OTIC IVAL CU		/O!! F!!			
				- ⊢	<u>•</u>	8	095	\vdash	OTIS 'XA' SLI SNAP LATCH			2-3/0" NII		
			eq		$\overline{}$		156		BAKER A-5 P				<u>. </u>	
						T °			CONTRACT N	WINER S	46L4/	. 02		
									X-OVER 2-3/	8" HCSR:	x 2-7/8"	' EUp		
			1 1											
		_												
≣1.0	8289 - 8293	FT												
	(SCON)				0	8	341	L	OTIS 'XA' SL	EEVE 2-3	3/8" EU			
									X-OVER 2-3/8					
								S	SNAP LATCH				U	
			\geq		\boxtimes	8	359		BAKER A-5 F	PACKER	SIZE 47	7 - C2		
									L		_			
					J	<u> </u>		S	OTIS 'XN' N	IPPLE, 2-	-3/8" NL	J		
					/	I —		\vdash	l					
			٥	/ ك	/	8	405	S	BOTTOM PE	:RF. PRO	UUCTIO	ON TUBE	<u>: 2-3/8" N</u>	<u>U</u>
				/ /	/	┢		\vdash	-					
				//					l					
									l					
						8	509-8529		STEEL BLAS	TJOINT	2-7/8" FI	U X 20"		
									I DEAG		- · · · · L			
						L								
				\Box					l					
3.0	8518 - 8522	FT =	_	0		85	592	L	OTIS 'XA' SL					
∪		-				ऻ—		\vdash	OTIS 'XN' NI	PPLE, 2-	3/8" NU	J		
	(SCON)					-00	57	\vdash	.					
						86	IJ <i>1</i>	H		00.6=	4000	(0.1.5-)		
			\Rightarrow	7 6			00	\vdash	MODEL 'G' L					<u>s UNITS</u>
				~{ }⊦	$\overline{}$	87	UU		BAKER MOD	EL DB P	ACKER	K SIZE 84	1-32	
						lacksquare		\vdash						
									l					
									1					
									Ī					
						8	739		NO-GO COL	LAR 2-7/8	B" EU			
				₹1										
				7										
	8846 - 88	52 ≡	=											
.0	(SCON													
	(SCOIN	,							ļ					
<u> </u>							0657		TOP PLUG					
	LT/GR/SP/MSFL. ?/CBLCNL/GR	FDC/CNL,C	ST T	D = 10740	0 FT	I	HOR: PEAE,		1	PREPARED		_		

Appendix 2: Ubie 003S (E3000M) Performance Plot (OFM)

Appendix 3: Ubie 003L Petrophysical Data Layout

Appendix 4: Ubie E3000 Hydrocarbon Distribution Plot

Appendix 5: Ubie E3000 Top Structure Map

Appendix 6: Ubie E3000 Reservoir Cross Section

Appendix 7: Ubie 003L H₂S Prediction and Souring Potential

PVT Analysis Result for Ubie E1000 Reservoir

- PVT samples were taken directly from UBIE003L on E3000M reservoir in 1984, but the gas and fluid compositional analysis was not carried out.
- PVT data from shallower E1000M (1994) and deeper E5000M (1995) reservoir have been used as analogue.
- The molecular composition of reservoir fluid (E1000) and reservoir fluid analysis (E5000M) indicates no H2S present as seen in the tables below.
- No H2S production has been recorded till date from Ubie field.

	FLOPETRO		Pig in	Page
UBIE 5 E1.00 UBIE	STATE	GHELL - BP NIGERIA	Report	%/LN/01
	TABLE VII			
	MOLECULAR COMPOSITION	OF RESERVOID F	Luio	
	Componenta	Moleculer %	1	
	Mitrogen	0.05	7	
	Corton Pickide	0.16		
	Methene	53,58	7	
	Ethana	2,70		
	Propere	0,31		
	las Sutame	0.06		
	Moreal Suterm	0.09		
	Ino Pentane	0,07		
	Normal Pentens	0.04		
	Hexanes	0.20		
	Heptunes*	42,70	1	
	Total	100.00 K		
	Molecular Weight	195.0		
8.	Peptenes* Mel. Ut.	349		

a stant	client SHEL	L PETROLEUM DEV. C	OY.	page :	. 9
o lieste	well: UBIE:	748 / E5.000M	report no : pv196005	sampling date :	
		RESERVOIR FI	UID ANALYSIS		
i. compositio	N (mole per cen	() FLASHED LIO	UID FLASHED O	AS DESER	VOIR FLUII
Non-kydrozarbon		150000000000000000000000000000000000000			
Netrogen	N)	0.00	0.81	-	0.01
Carbon Dioxida	001	0.00	0.43		0.24
Hydrogen Sulphide	13.8	0.00	0.00		0.00
fivorscaroons	-				0145
Methane	CHa	0.00	36.73		48,55
Exhane	C) Ho	1,09	7.39		4.62
Propine	Citta	1,38	2,47		1.99
Butane	(Califor	0.73	0.67		0.70
n Butterie	nC ₄ H ₁₀	2.30	1.20		1.68
Percane	(CaHtz	1.14	0.35		0.70
n Puntana	nCsH12	1.81	0.42		1:03
Hexanes	CaHia	3,39	0.15		1.57
Heptanes	CaH ₁₄	16.41	0.09		7.27
Octumes	Callin	34.96	0.06		15.42
Nonance	Co Had	10,83	0.03		4.78
Decimes	C10 H22	3.13	0.00		1.38
Undecanee	C11H24	2.84	0.00		1.25
Dodocanes	C12H26	2.18	0.00		0.96
Tridecanes	C13H28	1.88	0.00		0.87
Totradecopes	C14H30	1.30	9.00	1410	0.57
Pentadocanas	CtsHag	1.18	0.00		0.53
Hexadecuses	Ciellas	0.72	0.00	3	0.32
Heptadecemen	C17H20	0.65	0.00	0 01	0.20
Octadocunes	C18H38	0.36	0.00	9 9	0.25
Nonadecuries	C19R40	0.43	0.00		0.19
Ricosanes plus	C20H42+	11.08	0.00		4.88
Total		100.00	100,00	1	60.00
Molar Ratio		0.4402	0.5598	- 1	.0000
2. PHASE PROPE	RTIES				
Moter Mass fluid		126.25	19,39		88.43
Density Fluid : gven	13	0.875	1000	. 1	200
Mole personi Hepta		88.15	0.18		38.90
Molar Man Heptan		189.96			89.75
Mole percent Eleosanes plus		11.08			4.88
Molar Mass Ekrosar		643.28		6	43.28
Density Elemanes		0.953			
Rolative Density : a			0.669		

15

RESTRICTED

Appendix 8: Water Cut Diagnostics Plot for UBIE003S on E3000M

Diagnosis Result: Bottom water coning with late time channeling

Appendix 9: Pore Pressure Prediction for Ubie 003L on E3000M

Appendix 10: Well Intervention Decision Tree

Appendix 11: Emergency Response Data & Contact

	Em	ergency Data S	Set Content	Data Owners /Accountable Discipline	Names	Email
	1	Duty roaster (weekend duty/leave plan)		Development – Planning	Akpovine Otughwor	Akopovine.otughwor@shell.com
				Weekend duty Coordination	Eric Ezenobi	Eric.C.Ezenobi@shell.com
	2	Subsurface team,	nse contact details: operations team, ternal emergency	Soku/ Nun River Node FMT PT PP PG RE WRFM CWI Asset Engr.	Jonathan Mude Eelah Muzan Dike Ahunanya Imaobong Bassey Basil Ogbunude Esther Briggs Olugbenga Jimba	J.Mude@shell.com Eelah.Moro@shell.com Dike.Ahunanya@shell.com Imaobong.bassey@shell.com B.Ogbunude@shell.com Esther.Briggs@shell.com Olugbenga.Jimba@shell.com
People Contacts and Procedures	3	UBIE003L Zone C Proposal	Change & Unsecuring	Soku/ Nun River Node FMT PT PP PG RE WRFM CWI Asset Engr.	Jonathan Mude Eelah Muzan Dike Ahunanya Imaobong Bassey Basil Ogbunude Esther Briggs Olugbenga Jimba	J.Mude@shell.com Eelah.Moro@shell.com Dike.Ahunanya@shell.com Imaobong.bassey@shell.com B.Ogbunude@shell.com Esther.Briggs@shell.com Olugbenga.Jimba@shell.com
tacts	4	Well tops and flu	id fill interpretation	PG/PP	lmaobong Bassey/ Dike Ahunanya	<u>imaobong.bassey@shell.com</u> Dike.Ahunanya@shell.com
Son	5	Subsurface map	'	PG	Imaobong Bassey	Imaobong.bassey@shell.com
People	6	Pore pressure pre	ediction	RE/PP	Basil Ogbunude/ Dike Ahunanya	B.Ogbunude@shell.com Dike.Ahunanya@shell.com
	7	Intervention work	scope	PT/WE	Eelah Muzan /Conrad Ibekwe	
	8	Correlation Pane		PG	Imaobong Bassey	Imaobong.bassey@shell.com
	9 Cross section through the			PG	Imaobong Bassey	Imaobong.bassey@shell.com
	10	Petrophysical log wells	s for well & nearby	PP	Dike Ahunanya	<u>Dike.Ahunanya@shell.com</u>
	11	Worst Case Discharge		PT	Eelah Muzan	<u>Eelah.Moro@shell.com</u>
	12	Well Status Diago	ram	PT	Eelah Muzan	<u>Eelah.Moro@shell.com</u>
Ove	rall res	ponsible focal poir				
Nam		, , , , , , , , , , , , , , , , , , , ,	Arnold Obomanu	,		
Conto	act Det	ails	a.obomanu@shell.co	m / +2348070221066		

UBIE003L SAND CLEANOUT & ZONE CHANGE PROPOSAL ADDENDUM

	Eme	rgency Data Set Content	Update Timing	Medium/Location	Data Owners /Accountable Discipline				
	1	Duty roaster (weekend duty/ leave plan)	Annually/after staff rotations	Electronic/SharePoint and ERO Portal	Development - Planning				
	2	Emergency response contact details: Subsurface team, operations team, wells, OU and external emergency responders.	After staff rotations	Electronic/ <u>ERO Portal</u>	ERT				
	3	Communication Protocol	No special communication operation that will be execu	ERT					
People contacts and Procedures	4	UBIE003L Zone Change & Unsecuring Proposal		Electronic/ <u>Sirus Catalog</u> <u>UBIE003L Zone Change & PB Valve Proposal</u> <u>Addendum</u>	PG/ PP/ RE/PT/WE				
d Proc	5	Well tops and fluid fill interpretation	Dependent on availability of new information	Electronic/CDS, ERO Portal	PG/PP				
acts an	6	Subsurface map		Electronic/ <u>UBIE003L Zone Change & PB Valve</u> Proposal Addendum, <u>ERO Portal</u> and <u>Sirus</u> <u>Catalog</u>	PG				
conte	7	Pore pressure prediction	6 months prior to activity	Electronic/ <u>UBIE003L Zone Change & PB Valve</u> <u>Proposal Addenduml</u>	RE/PP				
<u> </u>	8	Intervention work scope	Dependent on		PT/WE				
eo	9	Correlation Panel	availability of new information	Electronic/ <u>UBIE003L Zone Change & PB Valve</u> <u>Proposal Addendum</u> and <u>Sirus Catalog</u>	PG				
4	10	Cross section through the Workover well.		Proposal Addendum and Sirus Catalog	PG				
	11	Petrophysical logs for well & nearby wells	Not Applicable	Electronic/ <u>RECALL</u> , Hardcopy/Log Room	PP				
	12	Worst Case Discharge	When Pore pressure prediction is updated prior to activity	Electronic/ <u>UBIE003L Zone Change & PB Valve</u> <u>Proposal Addenduml</u> and <u>Share point</u>	PT				
	13	Well Status Diagram	Dependent on availability of new information	Electronic/EDM, <u>Sirus Catalog</u> & <u>UBIE003L</u> Zone Change & PB Valve Proposal Addendum	PT				
Overall responsible focal point for Duty and Emergency Response Files									
Nam									
Conto	act Detai	ls <u>a.obomanu@shell.co</u>	om / +2348070221066						

20