I Quelques fonctions auxiliaires

Attention à ne pas compter chaque arête deux fois.

```
let nombre_aretes g =
   let res = ref 0 in
   for i = 0 to Array.length g - 1 do
       res := !res + List.length g.(i)
   done;
   !res/2 (* on a compté chaque arête 2 fois *)
```

Autre possibilité:

```
let nombre_aretes g =
    (Array.map List.length g
    |> Array.fold_left (+) 0) / 2;;
```

- 2. let g = [|[|1; 3|]; [|0; 2; 4|]; [|1; 5|]; [|0; 4|]; [|1; 3; 5|]; [|2; 4|]|]
- 3. Une possibilité: let adjacence g = Array.map Array.of_list g Si n est le nombre de sommets et m le nombre d'arêtes de g, Array.map Array.of_list g crée un nouveau tableau de taille n (complexité O(n)) puis le remplit en appliquant Array.of_list sur chaque élément de g. Comme Array.of_list g.(i) demande autant d'opérations que le degré du sommet i, Array.map Array.of_list g demande au total $\sum deg(i) = 2m = 1$

O(m). Il y a donc bien une complexité O(n+m) au total.

4.

5.

6.

```
let quadrillage p q =
   let n = p*q in
   let g = Array.make n [] in
   for i = 0 to n - 1 do
        if i mod p <> 0 then g.(i) <- [i - 1];
        if i mod p <> p - 1 then g.(i) <- (i + 1)::g.(i);
        if i >= p then g.(i) <- (i - p)::g.(i);
        if i < n - p then g.(i) <- (i + p)::g.(i)
        done;
   g</pre>
```

II Caractérisation des arbres

- 7. $s \in C_s \text{ donc } C_s \neq \emptyset$
 - $S_n \subseteq \bigcup C_s$ car si $s \in S_n$ alors $s \in C_s$. $C_s \subseteq S_n$ par définition donc $\bigcup C_s \subseteq S_n$. Donc $S_n = \bigcup C_s$.
 - Soient $s, t \in S_n$. Supposons $C_s \cap C_t \neq \emptyset$ et montrons $C_s = C_t$. Comme $C_s \cap C_t \neq \emptyset$, il existe un sommet $u \in C_s \cap C_t$. Comme $u \in C_s$, il existe un chemin C_1 de u à s. De même, il existe un chemin C_2 de u à t. En concaténant C_1 et C_2 , on obtient un chemin C de s à t. Alors, si $v \in C_s$, la concaténation d'un chemin de v à s et de C donne un chemin de v à t, ce qui montre $C_s \subseteq C_t$. De même, on montre $C_t \subseteq C_s$ et donc $C_s = C_t$.
- 8. Soit $C = \{ \text{ longueur de } C \mid C \text{ est un chemin de } s \ \text{`a} \ t \}$. Comme $t \in C_s$, $C \neq \emptyset$. Comme C est un sous-ensemble non vide de \mathbb{N} , il possède un minimum.
 - Notons C un chemin réalisant ce minimum. Supposons que C passe plusieurs fois par le même sommet u. Alors on peut décomposer C en un chemin C_1 de s à u, puis un chemin C_2 partant de u et revenant en u, puis un chemin C_3 de u vers t. Alors, en supprimant C_2 , obtient un chemin de s vers t (composé de C_1 et C_3) de longueur strictement inférieure à C, ce qui est absurde. Donc les sommets de C sont distincts.
- 9. Supposons par l'absurde que les extrémités u, v de a_k soient dans la même composante connexe. Alors il existe un chemin C dans G_k de u à v. La concaténation de C et de a_k donne un cycle. Ce cycle existe aussi dans G, ce qui est absurde pour

un arbre.

Comme il y a initialement n composantes connexes, que chaque ajout d'arête diminue de 1 le nombre de composante connexe et qu'on obtient un arbre G avec 1 composante connexe (car G est un arbre donc connexe donc possède 1 seule composante connexe), n-1 arêtes ont été ajoutés : m=n-1.

10.

- $(i) \implies (ii)$ Si G un arbre alors G est connexe par définition et m = n 1 par la question précédente.
- (ii) \Longrightarrow (iii) Si G est connexe et m=n-1: supposons que G contienne un cycle C. Soit a une arête de C. Alors G-a (le graphe obtenu en enlevant a dans G) est connexe. En effet : si u et v sont deux sommets de G alors ils sont reliés par un chemin C_{uv} dans G (car G est connexe) et, en remplacant a par C-a dans C_{uv} , on obtient un chemin de u à v dans G-a.

Ainsi G-a est connexe et possède n sommets et n-2 arêtes, ce qui est absurde d'après Q9.

 $(iii) \implies (i)$ Supposons G acyclique et m=n-1. Soient $C_1,...,C_k$ les composantes connexes de G et $n_1,...,n_p$ leurs nombres de sommets. D'après Q9, chaque C_k possède n_k-1 arêtes. Donc G possède $\sum_{k=1}^p (n_k-1)=n-p$ arêtes. Comme m=n-1 par hypothèse, p=1. Donc G est connexe et (i) est démontré.

11.

```
let rec representant p s =
   if p.(s) < 0 then s
   else representant p p.(s);;</pre>
```

12.

```
let union p s t =
   if p.(s) = p.(t) then p.(t) <- p.(t) - 1;
   if p.(s) < p.(t) then p.(t) <- s
   else p.(s) <- t;;</pre>
```

13. Montrons la proposition suivante par récurrence :

 H_k : si \mathcal{P} est une partition de S_n construite à partir de $\mathcal{P}_n^{(0)}$ avec au plus k réunions et $X \in \mathcal{P}$ alors $|X| \geq 2^{h(s)}$.

- H_0 est vraie car on a alors h(s) = 0 et |X| = 1 (toutes les parties sont des singletons).
- Soit $k \in \mathbb{N}^*$. Supposons H_{k-1} et considérons \mathcal{P} une partition de S_n construite à partir de $\mathcal{P}_n^{(0)}$ avec k réunions. La dernière réunion a permis d'obtenir \mathcal{P} à partir d'une partition \mathcal{P}' en réunissant les parties X et Y associées à deux sommets s et t, pour obtenir une partie Z. On note h(t) la hauteur de t dans \mathcal{P} et h'(t) la hauteur de t dans \mathcal{P}' . Supposons que t ait été choisi comme représentant à l'issue de cette union (le cas où s l'a été est similaire).

D'après H_{k-1} , $|Y| \ge 2^{h'(t)}$. Il y a 2 cas : soit h(t) = h'(t) soit h(t) = h'(t) + 1.

Si
$$h(t) = h'(t)$$
 alors $|Z| \ge |Y| \ge 2^{h'(t)} = 2^{h(t)}$.

Si h(t) = h'(t) + 1 alors h'(s) = h'(t) (seule possibilitée pour augmenter la hauteur) et :

$$|Z| = |Y| + |X| \underbrace{\geq}_{H_{k-1}} 2^{h'(t)} + 2^{h'(s)} = 2^{h'(t)+1} = 2^{h(t)}$$

On a donc bien montré H_k .

D'après le principe de récurrence, H_k est donc vraie pour tout $k \in \mathbb{N}$.

14. union p s t est clairement en O(1). representant p s est en complexité linéaire en la hauteur de l'arbre contenant s, qui est $h(s) \leq \log_2(n)$ (d'après Q13), c'est-à-dire O($\log(n)$), où n est le nombre de sommets.

```
let est_un_arbre g =
let r = ref true in
let n = Array.length g in
let p = Array.init n (fun i -> -1) in
for i = 0 to n - 1 do
let ri = representant p i in
List.iter (fun j ->
let rj = representant p j in
if ri = rj then r := false
else union p ri rj) g.(i)
done;
!r && nombre_aretes g = n - 1
```

III Algorithme de Wilson

- 16. Le chemin {debut = 1; fin = 4; suivant = [|-5; 2; 5; 3; -1; 4|]} part du sommet 1 pour aller en 2 puis 5 puis 4.
- 17. Cet algorithme peut ne pas terminer (si on tombe toujours sur un cycle avant de rencontrer \mathcal{T}) mais la probabilité que cela arrive est nulle.

18.

```
let marche_aleatoire adj parent s =
  let c = {
     debut = s;
     fin = s;
     suivant = Array.make (Array.length adj) (-1)
  } in
  while parent.(c.fin) = -2 do
     let i = Random.int (Array.length adj.(c.fin)) in
     let v = adj.(c.fin).(i) in
     c.suivant.(c.fin) <- v;
     c.fin <- v;
     done;
     c</pre>
```

19.

```
let rec greffe parent c =
  let u = ref c.debut in
  while !u <> c.fin do
      let v = c.suivant.(!u) in
      parent.(!u) <- v;
      u := v
  done</pre>
```

20.

```
let wilson g r =
   let n = Array.length g in
   let adj = adjacence g in
   let parent = Array.make n (-2) in
   parent.(r) <- -1;
   for s = 0 to n - 1 do
        if parent.(s) = -2 then
            let c = marche_aleatoire adj parent s in
            greffe parent c
   done;
   parent</pre>
```

IV Arbres couvrants et pavages par des dominos

21.

22.

23. On peut récupérer les coordonnées (i, j) de s en utilisant la fonction sommets et utiliser la direction du domino en (i, j).

24.

```
let coord_noire i = 2*(i \mod p), 2*(i/p)
```

25.

26.

```
let phi pavage =
   let n = Array.length pavage in
   let parent = Array.make n (-1) in
   for i = 1 to n - 1 do (* on laisse -1 dans parent.(0) (racine) *)
        let k, l = coord_noire i in
        parent.(i) <- sommet_direction i pavage.(k).(l)
   done;
   parent</pre>
```