$$G = (V, E)$$

Algorithms

- finding cycles
- connected
- traversals: BFS, DFS
- topological sort
- strongly connected components

S'more Terminology

- in a directed graph, a path $< v_0, v_1, \dots, v_k >$ forms a **cycle** if $v_0 = v_k$ and the path contains at least one edge
 - a **self-loop** is a cycle of 1
 - a directed graph with *no self-loops* is a **simple** directed graph
- in an undirected graph, a path $< v_0, v_1, \ldots, v_k >$ forms a **cycle** if $k \ge 3, v_0 = v_k$ and $v_1, v_2, \ldots v_k$ rare distinct
- acyclic graphs have no cycles
 - o if an acyclic graph is connected, it is a tree
- degree if a vertex in undirected graph is number of edges incident to it
 - out-degree and in-degree of directed graph is edges leaving it and entering it
- the **length of a path** is the number of edges on it
- a graph is **connected** if every pair of vertices is reachable through a path
 - o a directed graph is **strongly** connected if *both* vertices can reach each others
 - directed graph may have strongly connected components

Representation

Adjacency List

• every vertex has its own linked list containing its adjacent nodes

- the total memory required for an unumerical graph is O(|V| + 2*|E|)
 - where we have to count every edge twice
- ullet the total memory required for a *directed graph* is O(|V|+|E|)

Adjacency Matrix

- a |V| imes |V| matrix where A[i,j] = 1 if an edge exists between i,j
 - $\circ \;\;$ if it is directed, A[i,j] denotes an edge from i to j
- ullet $|V|^2$ memory
- this is better for dense graphs
- undirect graph will be symmetric along the diagonal