A. HORMONES

A **HORMONE** as a **chemical**, produced by a **gland**, which is carried by the **blood**.

It then **alters the activity** of one or more **specific target organs**.

- The hormonal system is also known as the **endocrine system**.
- Here are the main endocrine glands of the body:

• Homeostasis is simply maintaining a constant internal environment.

B. CONTROLLING BLOOD GLUCOSE CONCENTRATION

C. POSITIVE AND NEGATIVE FEEDBACK

POSITIVE FEEDBACK is when a RISE in the level of something causes FURTHER RISES and a FALL in the level causes FURTHER FALLS

This tends to lead to SUDDEN RISES OR FALLS

NEGATIVE FEEDBACK is when a CHANGE in the level of something causes the OPPOSITE CHANGE

This RETURNS it to the NORMAL LEVEL

Controlling blood glucose concentration is a good example of NEGATIVE FEEDBACK:

D. TYPE I & TYPE II DIABETES

• Both types of diabetes cause a high blood glucose concentration.

	TYPE I DIABETES	TYPE II DIABETES
STARTS	During childhood	After childhood
CAUSE	 Immune system destroys β cells of pancreas (So) less insulin is 	Target cells on liver do not respond to insulin
	secreted	(are insulin-insensitive)
CONTROLLED BY	Insulin injectionsMeasuring blood glucose levels regularly	Low carbohydrate diets.Exercise.
NOTES	Diet and exercise alone cannot control it	Risk factors: • high-fat, low-fibre diets • obesity • genetics

E. EFFECTS OF THYROXIN

• BAT = Brown Adipose (Fat) Tissue

Hypothyroidism

• Happens when the thyroid gland does not secrete enough thyroxin

- Metabolic rate decreases
- Reduced respiration of BAT
- Unexpected weight gain
- More calories are stored as fat

F. EFFECTS OF LEPTIN

• Leptin inhibits appetite to prevent us from overeating.

Appetite is inhibited (feel 'full')

Prevents overeating

More adipose tissue = more leptin released

Obese people can have leptin resistance

G. EFFECTS OF MELATONIN

• Melatonin is secreted by the **pineal gland** to control **circadian rhythms** and **sleep patterns**.

MELATONIN & JET LAG

- We are adapted to live in a 24-hour cycle and have circadian rhythms in behaviour that fits with this cycle
- We produce more melatonin at night and less melatonin as we get older
- So, older people have more irregular sleep patterns
- Jet lag is when the SCN and pineal gland keep setting a circadian rhythm to suit the day and night from the old time zone rather than the new one
- Symptoms: cannot sleep; irritable; headache; tiredness
- We can take melatonin by mouth at a time when we should be going to sleep to help prevent jet lag.

H. COMPARING THE NERVOUS & HORMONAL (ENDOCRINE) SYSTEMS

SIMILARITIES			
Both used to communicate between cells /tissues/organs			
Both cause a response in specific/target cells			
Both can stimulate or inhibit			
Both can work over long distances			
Both (usually) under control of the brain/CNS			
Both used in homeostasis/use negative feedback			
DIFFERENCES			
NERVES	HORMONES		
Electrical impulses	Chemical messenger		
Transported in neurons	Transported in blood		
Faster acting	Slower acting		
Shorter-lived	Long term / longer-lasting		
Carried to single/specific cell	Carried throughout the body		
Only muscles/glands receive impulses	Wider range of tissues affected		