An Event-B Specification of

Vectors

This project tests code generation for vectors.

1	CONT	TEXT Context hi hii index lo loo			
	1.1	III IIII IIIdex 10 100			
2	MACHINE Test				
	2.1	bytes bytes_size			
	2.2	cut(new_size)			
	2.3	split(left_size new_size out_msg)			
3	REF1	NEMENT Test1			
	3.1				
	3.2	split extends split			
4	MACHINE Vectors				
	4.1	bytes bytes_size heights			
	4.2	$\operatorname{setHeight}(at\ h)$			
	4.3	$\operatorname{setHeights}(hs)$			
	4.4	$\operatorname{findHeight}(h\ out_i)$			
	4.5	$\operatorname{addByte}(b)$			
	4.6	cut(new size)			

CONTEXT Context

```
1.1
CONSTANTS
 lo
 hi
 index
 loo
 hii
AXIOMS
 axm1: lo = 1
 axm2: hi = 10
 axm3: index = lo..hi
         \mathrm{loo} \in \mathbb{Z}
 axm4:
          \mathrm{hii} \in \mathbb{Z}
 axm5:
          hii > loo
 axm6:
THEOREM
          card(index) = max(index)
 thm1:
         lo = min(index)
 thm2:
 thm3: hi = max(index)
          5 = \operatorname{card}(5..9)
 thm4:
          9 = max(5..9)
 thm5:
          hii = max(loo..hii)
 thm6:
END
```

2.1 VARIABLES bytes $bytes_size$ INVARIANTS inv1: $bytes \in 1..bytes_size \rightarrow 0..255$ $bytes_size = card(dom(bytes))$ EVENT INITIALISATION THEN init1: $bytes := 1..10 \times \{1\}$ $bytes_size := 10$ init2: END 2.2 EVENT cut ANY new_size WHERE grd1: $bytes_size > 1$ $new_size = bytes_size - 1$ grd2: grd3: $new_size \in \mathbb{N}_1$ THEN $bytes_size := new_size$ act1: $bytes := \{x \cdot x \in 1..new_size \mid x \mapsto bytes(x+1)\}$ END 2.3 EVENT split ANY new_size left size out_msg WHERE grd1: $new_size \in \mathbb{N}_1$ $left_size \in \mathbb{N}_1$ grd2: $bytes_size > left_size$ grd3: $new_size = bytes_size - left_size$ grd4: grd5: $out_msg = 1..new_size \lhd bytes$ THEN

MACHINE Test

act1:

act2: END $bytes\ size := new\ size$

 $bytes := \{x \cdot x \in \texttt{1}..new_size \mid x \mapsto bytes(x + left_size)\}$

2

REFINEMENT Test

REFINES Test

VARIABLES

3.1

EVENT split
EXTENDS split

EXTENDS split

WHERE

grd1_1: $2 \in \text{dom}(bytes)$ grd1_2: $left_size = bytes(1)$ END

4 MACHINE Vectors 4.1 VARIABLES A fixed size vector of heights. heightsSize of the bytes vector bytes size A vector of bytes bytesINVARIANTS inv_he: $heights \in (1..100) \rightarrow \mathbb{N}$ $inv_bs: bytes_size \in \mathbb{N}$ $bytes \in (1..bytes_size) \rightarrow 0..255$ inv_by: EVENT INITIALISATION THEN init_he: $heights := 1..100 \times \{0\}$ init_ws: $bytes_size := 0$ init_we: $bytes := \emptyset$ END 4.2 EVENT setHeight ANY athWHERE grd_p: $at \in \mathrm{dom}(\mathit{heights})$ $h \in \mathbb{N}$ grd_h: THEN heights(at) := hact_1: **END EVENT** setHeights 4.3 ANY hsWHERE grd_hs: $hs \in (1..100) \rightarrow \mathbb{N}$ THEN act_1: heights := hsEND **EVENT** findHeight 4.4 ANY h

 out_i WHERE
grd1:

grd3:

grd4: END $h \in \mathbb{N}$

 $out_i \in dom(heights)$

 $\exists x \cdot x \in \mathrm{dom}(\mathit{heights}) \land \mathit{heights}(x) = \mathit{h} \land \mathit{out_i} = x$

```
4.5
EVENT addByte
{\tt ANY}
 b
WHERE
 \texttt{grd\_b} \colon \quad b \in 0..255
THEN
 \verb"act_1: bytes := bytes \cup \{bytes\_size + 1 \mapsto b\}
 act_2: bytes_size := bytes_size + 1
END
EVENT cut
                                                                                                                4.6
ANY
 new\_size
WHERE
 grd1: bytes\_size > 1
 grd2:
           new\_size \in \mathbb{N}_1
           new\_size = bytes\_size - 1
 grd3:
THEN
 act1:
          bytes\_size := new\_size
 act2:
          bytes := \{x \cdot x \in 1..new\_size \mid x \mapsto bytes(x+1)\}
END
```

addByte, 6

bytes, 3, 5 bytes_size, 3, 5

Context, 2 cut, 3, 6

findHeight, 5

heights, 5

INITIALISATION, 3, 5

setHeight, 5 setHeights, 5 split, 3, 4

Test, 3, 4 Test1, 4

Vectors, 5