À l'interface entre les logistiques portuaire et métropolitaine : modélisation agent couplée avec des graphes dynamiques

Thibaut Démare, Cyrille Bertelle, Antoine Dutot, Laurent Lévêque

Université du Havre Réunion de lancement du projet CLASSE

9 Octobre 2014

Introduction Modélisation d'un système logistique La simulation Conclusion

Introduction

Problématique

- La logistique portuaire se caractérise par des flux massifiés mais qui subissent les aléas du maritime.
- La logistique métropolitaine traite des flux atomisés et régulier.
- On s'intéresse ainsi à l'interface entre ces deux sous-systèmes.

Comment cette zone tampon se structure et s'organise pour atomiser et temporiser les flux de marchandises?

Objectif du travail de recherche

On modélise un système logistique au sein d'une plateforme de simulation afin :

- d'en extraire ses propriétés à l'aide de mesures (structure, indice de fluidité des chaînes logistiques,...).
- de pouvoir tester de nouveaux scénarios (système d'aide à la décision).

Méthodes employées

Pour cela, on utilise :

- Un modèle orienté agents.
- Des graphes dynamiques.

Les agents Les graphes dynamique

Modélisation d'un système logistique

Figure 1: Les agents en interactions

Figure 2: Les agents en interactions

Les infrastructures

- Les terminaux.
- Les gares.
- Les entrepôts et plateformes logistiques.

Les réseaux de transport : support du flux de marchandise

- Plusieurs sous réseaux spécialisés (routier, ferroviaire, fluvial, lignes maritimes).
- La quantité de marchandise sur le réseau de transport évolue en temps réel.
- Des zones du réseaux peuvent être engorgées par un surplus de véhicule et ralentir le flux.
- Mais la dynamique se trouve aussi sur la structure (accidents, travaux,...).

Les interactions entre les agents

- La collaboration entre les différents acteurs forment un graphe.
- Les agents ont la capacité de changer de collaborateur (pour cause de coûts trop important, ou par manque d'efficacité).
- On veut ainsi déterminer les communautés d'agents les plus efficaces afin d'en déterminer les caractéristiques.

'implémentatior es résultats

La simulation

Introduction Modélisation d'un système logistique La simulation Conclusion

L'implémentation Les résultats

Vidéo de la simulation.

Figure 3: Rupture de stock au sein des destinataires finaux

Introduction Modélisation d'un système logistique La simulation Conclusion

Conclusion

Perspectives

- Intégrer la part provenant d'autres ports tel qu'Anvers.
- Définir une mesure de performance des chaînes logistiques.
- Développer un outil de détection de communauté pour déterminer les groupes de collaborateur les plus performants.

Si vous souhaitez poser des questions, n'hésitez pas!

Contact:

thibaut.demare@gmail.com