EEE124 - Lecture Content - DAS

- Wind power Lecture:
 - Introduction
 - Physics of Wind Power
 - Generator Topologies
 - Location Issues
 - Power Availability

Electricity!

Electricity is energy transported by the motion of electrons

Energy cannot be created or destroyed, therefore we do not make electricity, we CONVERT other energy sources into electrical energy

Conversion is the name of the game

Solar power!

Wind Power to Electricity

How does it work?

Wind Power – Energy Available

Kinetic Energy = Work = $\frac{1}{2}$ mV²

Where:

M= mass of moving object

V = velocity of moving object

What is the mass of moving air?

- = density (ρ) x volume (Area x distance)
- $= \rho x A x d$
- $= (kg/m^3) (m^2) (m)$
- = kg

Wind Power – Energy Extraction

Power in the wind

 $= \frac{1}{2} \rho A V^3$

Effect of air density, ρ

Effect of swept area, A

Effect of wind speed, V

Swept Area: $A = \pi R^2$ Area of the circle swept by the rotor (m²).

Wind Power – Size Matters!

Swept are is proportional to square of the rotor diameter

- 20% increase in rotor diameter increases area by 44%
- Doubling diameter increases area 4 times

Generator Scale

Generator Scale – Moving Forward

Local Turbulence – Siting the turbine

Examples of Wind Power

Terminology

Wind Machine

 Kinetic device used to capture the wind and put it to work

Wind System

Wind machine, tower, and all ancillary equipment

• Windmill

 Wind machine that generates mechanical motion (ie. water pumping, grain grinding, etc.)

• Wind Turbine

 A device that produces electricity from the kinetic energy of wind

Early Technology c1900's

Birth of Modern Wind Power

1980's

1940's

Modern Examples

Small (<10kW)

- Homes & Farms
- Off-Grid Applications
- £2k-£15k
- 60cm 6m Diameter

Medium (10-250kW)

- Village Power / Factories
- Hybrid Systems
- Distributed Power
- £40k £250k
- 5m -50m Diameter

Large (250 kW – 5 MW)

- Wind Farms
- £500k £2M (per turbine)
- 50m 100m Diameter

Generator Scale

Generator Topologies

Turbines can be categorized into two overarching classes based on the orientation of the rotor

Vertical Axis

Horizontal Axis

VAWT's

Lift Device

"Darrieus"

- Low solidity, aerofoil blades
- More efficient than drag device

Drag Device "Savonius"

- High solidity, cup shapes are pushed by the wind
- At best can capture only 15% of wind energy

HAWT's

- Rotors are usually Up-wind of tower
- Some machines
 have down-wind
 rotors, but only
 commercially
 available ones are
 small turbines

Large HAWT Components

- Significant moving parts
- Low speed of the blades use gears to drive turbine
- Brake system
- Motor turns blades into wind

Inside the HAWT

Generator Maintenance

Onshore wind farm sites UK

Wind Farm Potential

- Each wind turbine can produce between 1/4 and 2 MW of electrical power.
- Wind farm needs to be located where there is a relatively high average wind speed.
- Assume 24 wind turbines each generating 0.25 MW for 70% of time.
- In a year this amounts to 3.66×10^7 kwhr.
- If this figure is divided by average amount of electricity used by a consumer ie 10,607 kwhr in a year,
- Answer is 3600 consumers.
- But 166 of these small wind farms = 1000Mw power station!
- Is the power available when you want it?

Offshore Wind Turbines

Offshore Wind Cluster Features

- Larger average wind speed than onshore
- Easier planning consent
- Technical expertise exists from oil rig experience
- Suitable locations

Offshore Wind Farm Topology

Turbine Mounting

Offshore Wind Potential

Technical potential of offshore wind

- 25,000 TWh by 2020
- 30,000 TWh by 2030

EU energy demand - 3,537 TWh by 2020 - 4,279 TWh by 2030

L VV L/

Eight 100x100 km offshore wind farms could produce 3,000 TWh – equivalent to EU power demand

Offshore Wind Farm Sites

End 2008: 1.5 GW offshore – 8 EU countries

Total: 1,471.33 MW

Where's Windy!

Annual 50m Wind Speed July 1983 - June 1993

-2	Sheltere m s ⁻¹	d terrain ² Wm ⁻²	Open m s ⁻¹	plain ³ Wm ⁻²	At a se	wm ⁻²	Oper m s ⁻¹	n sea ⁵ Wm ⁻²	Hills an	nd ridges ⁶ Wm ⁻²
3750	> 6.0	> 250	> 7.5	> 500	> 8.5	> 700	> 9.0	> 800	> 11.5	> 1800
	5.0-6.0	150-250	6.5-7.5	300-500	7.0-8.5	400-700	8.0-9.0	600-800	10.0-11.5	1200-1800
	4.5-5.0	100-150	5.5-6.5	200-300	6.0-7.0	250-400	7.0-8.0	400-600	8.5-10.0	700-1200
	3.5-4.5	50-100	4.5-5.5	100-200	5.0-6.0	150-250	5.5-7.0	200-400	7.0- 8.5	400- 700
	< 3.5	< 50	< 4.5	< 100	< 5.0	< 150	< 5.5	< 200	< 7.0	< 400

Variations

Variations in average annual wind speeds

Variations

Variations in average monthly wind speed

Variations

• Variations in average wind speed throughout the day, and instantaneously.

Hybrid Systems

Commercial Generation

Exceptional Conditions

Which do you prefer?

• 300MW Oil Fired

Summary

Wind Power Isn't Perfect

- Wind Power output varies over time
- Wind Power can only meet part of your load
- Wind Power is location-dependent
- Wind Power is transmission-dependent
- Wind Power has environmental impacts
 - ... But Wind Power could have a Great Future!

References

- http://learn.kidwind.org/
- www.windpower.org

