B PATENT OFFICE

JAPANESE GOVERNMENT

REC'D 18 AUG 2008.08 00 **WIPO PCT**

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1999年 8月 5 H

出 額 Application Number:

平成11年特許願第222319号

出 人 Applicant (s):

ヤマハ株式会社

JP 00/05179

FKU

Best Available Copy

PRIORITY

2000年 5月12日

特許庁長官 Commissioner. Patent Office

【書類名】

特許願

【整理番号】

YC27979

【提出日】

平成11年 8月 5日

【あて先】

特許庁長官殿

【国際特許分類】

G10H 7/00

H04M 11/08

【発明者】

【住所又は居所】

静岡県浜松市中沢町10番1号 ヤマハ株式会社内

【氏名】

中村 敦一

【発明者】

【住所又は居所】

静岡県浜松市中沢町10番1号 ヤマハ株式会社内

【氏名】

谷口 順哉

【発明者】

【住所又は居所】

静岡県浜松市中沢町10番1号 ヤマハ株式会社内

【氏名】

神谷 靖彰

【特許出願人】

【識別番号】

000004075

【氏名又は名称】

ヤマハ株式会社

【代理人】

【識別番号】

100102635

【弁理士】

【氏名又は名称】

浅見 保男

【選任した代理人】

【識別番号】

100106459

【弁理士】

【氏名又は名称】

高橋 英生

【選任した代理人】

【識別番号】

100105500

【弁理士】

【氏名又は名称】 武山 吉孝

【手数料の表示】

【予納台帳番号】 037338

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9808721

【プルーフの要否】

要

【発明の名称】

楽曲再生装置および楽曲再生方法

【特許請求の範囲】

【請求項1】 インタフェース手段と、

楽譜データの一部を記憶できる容量とされた楽譜データ記憶手段と、

該楽譜データ記憶手段の空き容量を監視する監視手段と、

前記楽譜データ記憶手段に記憶された楽譜データに基づく発音パラメータを音源手段に設定する演奏制御手段とを備え、

前記監視手段は、前記楽譜データ記憶手段に所定量の空きエリアが発生した際に、前記インタフェース手段を介して取り込んだ続く楽譜データを前記楽譜データ記憶手段の前記空きエリアに記憶させるようにしたことを特徴とする楽曲再生装置。

【請求項2】 音色データを記憶する音色データ記憶手段をさらに備え、前記演奏制御手段は音色割当情報で指定された音色データを前記音色データ記憶手段から読み出して前記音源手段に設定するようにしたことを特徴とする請求項1記載の楽曲再生装置。

【請求項3】 演算処理手段と楽譜データが少なくとも記憶される記憶手段と、楽譜データを再生する楽曲再生手段からなる楽曲再生装置であって、

該楽曲再生手段は、インタフェース手段と、楽譜データの一部を記憶できる容量とされた楽譜データ記憶手段と、該楽譜データ記憶手段の空きエリアを監視する監視手段と、前記楽譜データ記憶手段に記憶された楽譜データに基づく発音パラメータを音源手段に設定する演奏制御手段からなり、

前記楽曲再生手段における前記監視手段は、前記楽譜データ記憶手段に所定量の空きエリアが発生した際に、前記演算処理手段に通知することにより、前記演算処理手段が続く楽譜データを前記記憶手段から読み出し、前記楽曲再生手段は、前記インタフェース手段を介して取り込んだ前記続く楽譜データを前記楽譜データ記憶手段の前記空きエリアに記憶させるようにしたことを特徴とする楽曲再生装置。

【請求項4】 前記記憶手段には音色データがさらに記憶されており、前記

楽曲再生手段は、前記記憶手段から読み出した音色データが記憶される音色データ記憶手段をさらに備え、前記演奏制御手段が音色割当情報で指定された音色データを前記音色データ記憶手段から読み出して前記音源手段に設定するようにしたことを特徴とする請求項3記載の楽曲再生装置。

【請求項5】 通信回線を通じて楽譜データあるいは音色データを前記記憶手段にダウンロードする通信機能手段が、さらに備えられていることを特徴とする請求項3または4のいずれかに記載の楽曲再生装置。

【請求項6】 楽譜データの一部を記憶できる容量とされた楽譜データ記憶 手段に楽譜データの一部を記憶させるステップと、

演奏制御手段が、前記楽譜データ記憶手段に記憶された楽譜データに基づく発音パラメータを音源手段に設定して楽音を生成させるステップと、

監視手段が、前記楽譜データ記憶手段に所定量の空きエリアが発生したことを 検出した際に、インタフェース手段を介して取り込んだ次の楽譜データを前記楽 譜データ記憶手段の前記空きエリアに記憶させるようにしたステップと、

を備えることを特徴とする楽曲再生方法。

【請求項7】 音色データ記憶手段に音色データを記憶するステップと、

前記音源手段に楽音を生成させる際に、前記演奏制御手段が音色割当情報で指定された音色データを、前記音色データ記憶手段から読み出して前記音源手段に設定するステップと、

をさらに備えることを特徴とする請求項6記載の楽曲再生方法。

【発明の詳細な説明】

[0001]

【発明が属する技術分野】

本発明は、自動車電話機や携帯電話機等に適用して好適な楽曲再生装置および楽曲再生方法に関するものである。

[0002]

【従来の技術】

アナログセルラーシステムやデジタルセルラーシステムとして知られているP D.C. (Personal Digital Cellular telecommunication system) 等の携帯電話シ

[0003]

【発明が解決しようとする課題】

しかしながら、上記した従来の電話端末装置では、メロディ音を発生することができるものの、メロディ音の音質としては満足できるものではなかった。

これを解決するために、従来、自動演奏することのできる楽曲再生装置を用いることが考えられる。従来の自動演奏可能な楽曲再生装置は、中央処理装置(Central Processing Unit: CPU)、ROM (Read Only Memory)、RAM (Random Access Memory)、音源を備え、ROMに記憶された自動演奏プログラムをCPUが実行することにより、ROMあるいはRAMに記憶された楽曲データを読み出して、音源に対して発音パラメータを設定することにより楽曲を再生するようにしている。

[0004]

このような電話端末装置には小型かつ安価で多機能が求められており、内蔵されるCPUには発着信処理、表示処理等の多くの処理を行うことが必要とされている。すなわち、楽曲再生装置を携帯型の電話端末装置に適用した際には、CPUは電話機能処理に加えて楽曲再生処理も行わなければならず、CPUとして高速のCPUが求められるようになる。このため、高速のCPUを備える高価な電話端末装置になってしまうという問題点があった。

また、メロディを再生することのできるメロディICが知られている。このメロディICは、音源とシーケンサと楽譜データ記憶用ROMからなり、外部から再生指令を与えることにより楽譜データ記憶用ROMに記憶された楽譜データを再生してメロディを再生することができる。このようなメロディICを電話端末装置に内蔵させれば、CPUは楽曲再生処理を行う必要がないことから、低廉な低速のCPUを使用することができることになる。

[0005]

しかしながら、メロディICでは楽譜データ記憶用ROMの記憶容量が小さいことから記憶できる楽曲の種類が限られた種類になると共に、再生される楽曲の長さを長くすることができない。さらに、楽譜データ記憶用ROMの記憶容量が小さいことから高品質の再生楽曲とするための大量の楽曲データを記憶することができず、低品質のメロディしか再生できないという問題点があった。

そこで、本発明は、楽譜データを記憶する記憶手段の容量が小さくても高品質の楽曲を再生することのできる楽曲再生装置および楽曲再生方法を提供することを目的としている。また、本発明は、低速の演算処理装置であっても高品質の楽曲を再生することのできる楽曲再生装置および楽曲再生方法を提供することを目的としている。

[0006]

【課題を解決するための手段】

前記目的を達成するために、本発明の楽曲再生装置は、インタフェース手段と、楽譜データの一部を記憶できる容量とされた楽譜データ記憶手段と、該楽譜データ記憶手段の空き容量を監視する監視手段と、前記楽譜データ記憶手段に記憶された楽譜データに基づく発音パラメータを音源手段に設定する演奏制御手段とを備え、前記監視手段は、前記楽譜データ記憶手段に所定量の空きエリアが発生した際に、前記インタフェース手段を介して取り込んだ続く楽譜データを前記楽譜データ記憶手段の前記空きエリアに記憶させるようにしている。

また、上記本発明の楽曲再生装置において、音色データを記憶する音色データ 記憶手段をさらに備え、前記演奏制御手段は音色割当情報で指定された音色データを前記音色データ記憶手段から読み出して前記音源手段に設定するようにして もよい。

[0007]

前記目的を達成することのできる本発明の他の楽曲再生装置は、演算処理手段と楽譜データが少なくとも記憶される記憶手段と、楽譜データを再生する楽曲再生手段からなる楽曲再生装置であって、該楽曲再生手段は、インタフェース手段と、楽譜データの一部を記憶できる容量とされた楽譜データ記憶手段と、該楽譜

データ記憶手段の空きエリアを監視する監視手段と、前記楽譜データ記憶手段に記憶された楽譜データに基づく発音パラメータを音源手段に設定する演奏制御手段からなり、前記楽曲再生手段における前記監視手段は、前記楽譜データ記憶手段に所定量の空きエリアが発生した際に、前記演算処理手段に通知することにより、前記演算処理手段が続く楽譜データを前記記憶手段から読み出し、前記楽曲再生手段は、前記インタフェース手段を介して取り込んだ前記続く楽譜データを前記楽譜データ記憶手段の前記空きエリアに記憶させるようにしている。

また、上記本発明の楽曲再生装置において、前記記憶手段には音色データがさらに記憶されており、前記楽曲再生手段は、前記記憶手段から読み出した音色データが記憶される音色データ記憶手段をさらに備え、前記演奏制御手段が音色割当情報で指定された音色データを前記音色データ記憶手段から読み出して前記音源手段に設定するようにしてもよい。

[0008]

前記目的を達成することのできる本発明の楽曲再生方法は、楽譜データの一部を記憶できる容量とされた楽譜データ記憶手段に楽譜データの一部を記憶させるステップと、演奏制御手段が、前記楽譜データ記憶手段に記憶された楽譜データに基づく発音パラメータを音源手段に設定して楽音を生成させるステップと、監視手段が、前記楽譜データ記憶手段に所定量の空きエリアが発生したことを検出した際に、インタフェース手段を介して取り込んだ次の楽譜データを前記楽譜データ記憶手段の前記空きエリアに記憶させるようにしたステップとを備えている

また、上記本発明の楽曲再生方法において、音色データ記憶手段に音色データを記憶するステップと、前記音源手段に楽音を生成させる際に、前記演奏制御手段が音色割当情報で指定された音色データを、前記音色データ記憶手段から読み出して前記音源手段に設定するステップとをさらに備えていてもよい。

[0009]

このような本発明によれば、楽譜データ記憶手段に所定量の空きエリアが発生 した際に、次の楽譜データを楽譜データ記憶手段の空きエリアに順次記憶するよ うにしたので、楽譜データ記憶手段の記憶容量が小さくてもデータ量が多くなる

高品質の楽曲を再生することができるようになる。また、演奏時間の長い楽曲で あっても再生することができる。

さらに、演算処理手段は、楽譜データ記憶手段に所定の空き容量が発生した際に、次の楽譜データを読み出して楽曲再生手段に送る処理をするだけでよく楽曲再生処理を行う必要がないので、低速の演算処理手段を用いても高品質の楽曲を再生することができるようになる。

[0010]

【発明の実施の形態】

本発明の楽曲再生方法を具現化した本発明の楽曲再生装置を携帯電話機に適用 した際に、携帯電話機に楽曲データをダウンロードする概念図を図1に示す。

携帯電話機におけるセルラーシステムは、一般に小ゾーン方式が採用されてサービスエリア内に多数の無線ゾーンが配置されている。この各々の無線ゾーンを管理するのが基地局A(2a)~基地局D(2d)であり、移動局である携帯電話機1、101が一般電話機と通話する際には、携帯電話機1、101が属する無線ゾーンを管理している基地局を介して移動交換局に接続され、移動交換局から一般電話網に接続されるようになる。これにより、携帯電話機1,101は、各無線ゾーンを管理する基地局と無線回線を介して接続されることにより他の電話機と通話を行うことができるようになる。

[0011]

このようなセルラーシステムの一例が図1に示されており、携帯電話機1,101は基地局A(2a)~基地局D(2d)のうちの基地局C(2c)が管理する無線ゾーン内に属している場合が示されている。携帯電話機1,101と基地局2cとは無線回線により接続されており、通話を行う際や位置登録を行う際の上り信号は基地局2cで受信されて処理される。基地局2a~基地局2dはそれぞれ異なる無線ゾーンを管理しているが、その無線ゾーンの周縁は相互に重なるようになっていてもよい。基地局2a~基地局2dは多重化回線を介して移動交換局3に接続され、さらに、複数の移動交換局3は関門交換局4で集線されて一般電話交換局5aに接続される。複数設けられた関門交換局4は相互に中継伝送路で接続されている。一般電話交換局5a,5b,5c・・・は各地域毎に設置

[0012]

ダウンロードセンター6には随時新曲が追加されて多数の楽曲データが蓄積されており、本発明においては、一般電話網に接続されているダウンロードセンター6から、例えば携帯電話機1,101に楽曲データをダウンロードすることができるようにされている。ここで、携帯電話機1が楽曲データをダウンロードする際には、携帯電話機1はダウンロードセンター6の電話番号を発呼する。これにより、携帯電話機1はダウンロードセンター6の電話番号を発呼する。これにより、携帯電話機1ー基地局2 c 一移動交換局3ー関門交換局4ー一般電話交換局5 a 一般電話交換局5 b ー ダウンロードセンター6の経路で、ダウンロードセンター6と携帯電話機1とが接続される。次いで、携帯電話機1は表示器に表示されるメニューに従ってダイヤルボタン等を操作すれば、所望の曲名の楽曲データをダウンロードすることができる。この場合の、楽曲データとは楽譜データと音色データとから構成されている。また、上述の方法により音色データだけ、あるいは楽譜データだけを携帯電話機1にダウンロードすることもできるようにされている。

[0013]

次に、本発明の楽曲再生方法を具現化した本発明の楽曲再生装置を携帯電話機 に適用した実施の形態の構成例を図2に示す。

図2において、携帯電話機1は、一般にリトラクタブルとされたアンテナ1aを備え、アンテナ1aは変調・復調機能を有する通信部13に接続されている。システム用の中央処理装置(Central Processing Unit: CPU)10は、電話機能プログラムを実行することにより携帯電話機1の各部の動作を制御するシステム制御部であり、動作時の経過時間を示したり、特定の時間間隔でタイマ割込を発生するタイマを備えている。また、システムCPU10は割込要求信号(IRQ)を受けた際に、後述する楽曲再生処理を補助する処理を行う。システムRAM11はダウンロードセンター6からダウンロードされた楽譜データおよび音

色データからなる楽曲データの格納エリアや、ユーザ設定データ格納エリア、および、システムCPU10のワークエリア等が設定されるRAM (Random Acces s Memory) である。システムROM12はシステムCPU10が実行する送信や着信の各種電話機能プログラムや楽曲再生処理を補助する処理等のプログラムや、プリセットされた楽譜データや音色データ等の各種データが格納されているROM (Read Only Memory) である。

[0014]

また、通信部13は、アンテナ1aで受信された信号の復調を行うと共に、送信する信号を変調してアンテナ1aに供給している。通信部13で復調された受話信号は、音声処理部(コーダ/デコーダ)14において復号され、マイク21から入力された通話信号は音声処理部14において圧縮符号化される。音声処理部14は、送話用の音声を高能率圧縮符号化/復号化しており、例えばCELP(Code Excited LPC)系やADPCM(適応差分PCM符号化)方式のコーダ/デコーダとされている。楽曲再生部15は、音声処理部14からの受話信号を受話用スピーカ22から放音したり、楽曲データを再生して着信音/保留音として出力している。なお、着信音は着信用スピーカ23から放音され、保留音は受話信号とミキシングされて受話用スピーカ22から放音される。

[0015]

また、楽曲再生部15が楽曲データを再生している際に、内部に設けられた楽譜データの記憶手段に所定量の空きエリアが生じた場合は、楽曲再生部15は割込要求信号(IRQ)をシステムCPU10に与え、システムCPU10はシステムRAM11あるいはシステムROM12に記憶されている楽譜データの続きを読み出して楽曲再生部15に転送している。インタフェース(I/F)16は、パーソナルコンピュータ等の外部機器20から楽譜データと音色データからなる楽曲データ等をダウンロードするためのインタフェースである。入力部17は携帯電話機1に備えられた「O」から「9」のダイヤルボタンや各種ボタンから構成される入力手段である。表示部18は電話機能のメニューや、ダイヤルボタン等のボタンの操作に応じた表示がされる表示器である。バイブレータ19は、

着信時に着信音に代えて携帯電話機1の本体を振動させることにより、着信をコ

[0016]

次に、図2に示す楽曲再生部15の構成例を図3に示す。

図3において、インタフェース30はバス24を介して各種データを受け取るインタフェースであり、楽譜データや音色データを含む各種データと、受け取ったデータが何のデータであるかを示すインデックスデータ(INDEX)とを分離して、データはDATA出力から出力し、インデックスデータ(INDEX)はINDEX出力から出力している。FIFO(First-In First-Out)31は楽譜データを、例えば32ワード分格納できる記憶手段であり、先に書き込まれた楽譜データから順次読み出されるようにされている。FIFO31から楽譜データが読み出されて設定された所定量の空きエリアが発生した際には、FIFO31は割込要求信号(IRQ)をシステムCPU10に送っている。

[0017]

INDEXデコーダ32は、インデックスデータをデコードして書込パルス(WP)と後述するIRQ Pointデータのラッチパルス(LP)をFIFO31に供給し、シーケンサ33が受け取るデータがインタフェース30のDATA出力から出力される際にシーケンサ33にその旨を示すインデックスデータAD1を供給し、音色データ記憶部(Voice RAM)34が受け取るデータがインタフェース30のDATA出力から出力される際に音色データ記憶部(Voice RAM)34にその旨を示すインデックスデータAD2を供給している。シーケンサ33は、FIFO31に読出パルス(Read)を印加してFIFO31から順次楽譜データを読み出し、楽譜データ中の時間情報に対応して楽譜データに対応する発音パラメータを音源部35に設定している。また、インタフェース30のDATA出力から取り込まれた音色割当データで指定されたパート毎の音色ナンバを音色データ記憶部(Voice RAM)34に供給して、音色ナンバに対応する音色パラメータを音色データ記憶部(Voice RAM)34から読み出して音源部35に設定している。

[0018]

音色データ記憶部(Voice RAM) 3 4 は、インタフェース 3 0 のDATA出力から

[0019]

次に、図3に示す楽曲再生部15の動作を説明すると、図2に示す携帯電話機1において、楽曲再生モードとして表示部18に表示される曲名等の曲に関する情報から所望の楽曲を選択する。すると、選択された当該楽曲の楽曲データがシステムRAM11から読み出され、バス24を介して楽曲再生部15に送られる。インタフェース30を介して取り込まれた楽曲データ中の8音色分の音色データは、音色データに付属していたインデックスデータをINDEXデコーダ32がデコードして音色データ記憶部(Voice RAM)34にインデックスデータAD2として供給することにより、音色データ記憶部(Voice RAM)34に書き込まれる。音色データ記憶部(Voice RAM)34に書き込まれる。音色データ記憶部(Voice RAM)34に書き込まれる。音色データ記憶部(Voice RAM)34に書き込まれた8音色分の音色データの構成例を図5に示す。

[0020]

図5に示すように、音色1~音色8の音色データは、波形パラメータと、エンベロープパラメータと、変調パラメータと、エフェクトパラメータからなり、それぞれのパラメータは音色1~音色8に特有のパラメータとされている。各音色データにおける波形パラメータは、楽音波形を指示しており、例えば音源部35が波形テーブルを有するPCM音源とされていた場合は、波形テーブルの何れかの波形を指示するパラメータとされ、音源部35がFM音源とされていた場合は、FM演算のアルゴリズムを指示するパラメータとされる。エンベロープパラメータは、アタックレート、ディケイレート、サスティンレベル、リリースレート

[0021]

また、インタフェース30を介して取り込まれた楽曲データ中のテンポデータ (Tempo) と音色割当データは、テンポデータと音色割当データに付属していた インデックスデータをINDEXデコーダ32がデコードしてシーケンサ33に インデックスデータAD1として供給することにより、シーケンサ33に取り込 まれる。シーケンサ33は、取り込んだ音色割当データで指定された音色パラメ ータを音色データ記憶部 (Voice RAM) 34から読み出して、音源部35に設定 する。この際の音色割当データの構成例を図6に示す。図6に示すように、パー ト1~パート4に割り当てられた音色が音色ナンバで示されている。すなわち、 シーケンサ33がパート毎に指定された音色ナンバを音色データ記憶手段34に 供給すると、音色ナンバに対応する音色パラメータが音色データ記憶手段34か ら読み出されて音源部35に各パートの音色としてそれぞれ設定されるようにな る。なお、音色データ記憶部(Voice RAM)34には、再生する楽曲データを構 成している音色データが転送されて書き込まれるので、音色データ記憶部(Voic e RAM)34の記憶容量が、本実施例では少なくとも8音色分の音色データを記 憶できる小さな記憶容量であっても、当該楽曲データを再生する際に必要な音色 データは全て音色データ記憶部(Voice RAM)34に記憶されているようになる

また、テンポはユーザが編集可能とされている。

[0022]

さらに、インタフェース30を介して取り込まれた楽曲データ中の楽譜データは、楽譜データに付属していたインデックスデータをINDEXデコーダ32がデコードしてFIFO31に書込パルス(WP)を供給することにより、FIFO31には32ワード分の楽譜データが書き込まれるようになる。この32ワード分は、楽曲一曲の内の一部の楽譜データであり、その先頭の楽譜データとされ

FIFO31に書き込まれた楽譜データは、音符データと休符データから構成され、そのデータ構成の一例を図4に示す。図4に示す1ワードの音符データは、オクターブコードとノートコード、音符データが属するパートナンバと、次の音符または休符までの時間長であるインターバルと、発音長の情報から構成される。また、図4に示す1ワードの休符データは、休符の種類を示す休符データと、休符データが属するパートナンバと、次の音符または休符までの時間長であるインターバルとから構成されている。

[0023]

音源部35が楽音を再生する際には、FIFO31から上記した音符データお よび休符データが順次読み出されるようになり、読み出された分だけFIFO3 1には空きエリアが発生するようになる。FIFO31には楽譜データの先頭の 3 2 ワード分しか書き込まれていないため、発生した空きエリアに続く次の楽譜 データを書き込むようにすれば、データ量が多くされる高品質の楽音を再生する 楽譜データとされていても繰り返しFIFO31に順次続く楽譜データを書き込 むことにより高品質の楽譜データを書き込んで再生することができるようになる 。本発明の楽曲再生装置は、このような原理で楽曲データを再生しており、再生 に先立ってFIFO31に何ワード分の空きエリアが発生した際に次の楽譜デー タをFIFO31に書き込むかを設定している。IRQ Pointデータは、このデー タで示すワード分空きエリアが発生した時に、FIFO31に続く楽譜データを 書き込むことを指示する割込要求信号(IRQ)をシステムCPU10に与える ためのデータであり、再生に先立ってIRQ Pointデータが設定される。この場合 、IRQ Pointデータを0ワードに近く設定すると、割込頻度が増加するが、書込 ワード数が少なくなるためシステムCPU10の処理は軽い処理とすることがで きる。一方、IRQ Pointデータを32ワードに近く設定すると、割込頻度は少な くなるが書込ワード数が多くなるためシステムCPU10の処理は重くなる。従 って、システムCPU10の処理速度に応じてIRQ Pointデータを設定するのが 好適である。

[0024]

ここで、楽曲再生部 1-5 に楽曲データを再生するスタート指示を行うと、シー

[0025]

そして、楽音再生の進行に伴いFIFO31において検出された空きエリアが IRQ Pointデータ値に等しくなった場合には、割込要求信号(IRQ)がシステムCPU10に与えられる。システムCPU10はこれを受けて、システムRAM11から次の楽譜データを(31-IRQ Point)ワード分読み出してバス24に送出する。この楽譜データは、インタフェース30を介してFIFO31の空きエリアに書き込まれる。このようなFIFO31への(31-IRQ Point)ワード分の次の楽譜データが書き込まれる処理が繰り返し実行されることにより、多くのデータからなる楽譜データであっても結果的にFIFO31に全てのデータが書き込まれることになる。FIFO31からは読み出された楽譜データは、音源部35においてテンポに従って再生されて出力されることから、多くのデータとされる高品質の再生楽音を得ることのできる楽曲データを、例えば32ワード分しか記憶できないFIFO31を用いても再生することができるようになる

[0026]

ここで、携帯電話機1に着信があった際に、楽曲再生部15で楽曲が再生されるように設定されていた場合は、携帯電話機1に着信があった際に、上記した楽

[0027]

次に、FIFO31の詳細構成を図7に示し、その動作を図8を参照しながら 説明する。

インタフェース30からIRQ Pointデータが出力される際には、INDEXデコーダ32からラッチパルス(LP)がラッチ回路43に供給される。これにより、ラッチ回路43に設定された例えば"15"に設定されたIRQ Pointデータがラッチされるようになる。また、インタフェース30から楽譜データが出力される際には、INDEXデコーダ32から書込パルス(WP)が書込アドレスカウンタ41およびアップ/ダウンカウンタ45のアップ端子に印加される。書込パルス(WP)は1ワード毎に発生され、初期状態においては、この書込パルス(WP)により書込アドレスカウンタ41が順次"0"から"31"まで歩進されていくので、32ワードの記憶容量を少なくとも有するRAM40に32ワードの先頭の楽譜データが記憶されるようになる。同時に、アップ/ダウンカウンタ45も"0"から"31"までアップカウントされる。この状態が図8(a)のスタート時として示されており、RAM40は状態「FULL」とされて、書込アドレスWの番地は"31"とされ読出アドレスRの番地は"0"とされる。

[0028]

ここで、楽曲再生のスタートが指示されると、シーケンサ33から読出パルス (Read) が読出アドレスカウンタ42に印加されて歩進されていくので、RAM 40のアドレス"0"番地の楽譜データから順次読み出されていくようになる。 また、読出パルス (Read) はアップ/ダウンカウンタ45のダウン端子にも印加される。 すなわち、アップ/ダウンカウンタ45は書込パルス (WP) によりア

ップカウントされ、読出パルス (Read) によりダウンカウントされるようになる

そして、16ワード分の楽譜データが読み出されて再生された際のRAM40の状態が図8(b)に示されている。16ワード分の楽譜データが読み出されたことから、読出アドレスカウンタ42は"15"番地のアドレスとされており、アップ/ダウンカウンタ45の計数値は(31-16)=15となる。前述したようにラッチ回路43にラッチされたIRQ Pointデータは"15"とされているので、比較回路44はアップ/ダウンカウンタ45の計数値とラッチ回路43のIRQ Pointデータ値とが一致していることを検出する。これにより、比較回路44から割込要求信号(IRQ)が出力されてシステムCPU10に与えられる。システムCPU10は前述したようにシステムRAM11から(31-IRQ Point)=16ワード分の次の楽譜データを読み出して、バス24に送出する。

[0029]

バス24に送出された楽譜データは、RAM40の空きエリアである"0"番地から"15"番地までに書き込まれるが、この際にINDEXデコーダ32から書込パルス(WP)が書込アドレスカウンタ41およびアップ/ダウンカウンタ45のアップ端子に印加される。書込パルス(WP)は16ワード分である16パルス発生され、この書込パルス(WP)によりモジュロ31のカウントを行う書込アドレスカウンタ41が"15"番地まで歩進されて、楽譜データが当該アドレスカウンタ41が"15"番地まで歩進されて、楽譜データが当該アドレス番地にそれぞれ書き込まれていく。同時に、アップ/ダウンカウンタ45も"16"だけアップカウントされるが、この際でも楽譜データは順次読み出されてアップ/ダウンカウンタ45は読出パルス(Read)によりダウンカウントされているので、そのカウント値は書込パルス(WP)と読出パルス(Read)を累積したカウント値となる。16ワードの楽譜データが補充されたRAM40の状態が図8(c)に16ワードの追加書込時(楽譜データの補充)として示されている。

[0030]

次いで、シーケンサ33から読出パルス(Read)が読出アドレスカウンタ42 に印加されて、楽譜データがRAM40から3-2ワード分読み出されたRAM4

[0031]

このように、RAM40に16ワード分の空きエリアが発生する毎に、16ワード分の楽譜データが順次RAM40に追加書き込みされて補充されることにより、RAM40の記憶容量が少なくとも32ワードあれば高品質の再生楽音を得ることのできる大量の楽譜データを有する楽曲データを、順次RAM40に書き込んで再生することができるようになる。

なお、アップ/ダウンカウンタ45の計数値は、RAM40から未だ読み出されずに格納されている楽譜データのワード数と一致する。

[0032]

ところで、各パートには再生される際に音色割当データに従って割り当てられた音色に設定されているが、楽譜データ中に各パート用の音色割当データを挿入しておくと、再生中にこの音色割当データがFIFO31から読み出された際に、シーケンサ33はその音色割当データの音色ナンバを音色データ記憶部(Voice RAM)34に供給する。これにより、音色ナンバに対応する音色パラメータが音色データ記憶部(Voice RAM)34から読み出されて、音源部35内の音色割当データで指示されたパート用の音源レジスタに設定される。したがって、音源部35で再生される当該パートの楽音の音色が変更されるようになる。

このように、楽譜データ中に各パート用の音色割当データを挿入しておくことにより、再生中に各パートの音色を変更することができるようになる。また、音色データ記憶部 (Voice RAM) 3.4 に記憶する8音色分の音色データを、ユーザ

がシステムRAM11に記憶されている音色データから選択して音色データ記憶部(Voice RAM)34に転送するようにしてもよい。この際に、システムRAM 11にはダウンロードセンター6や外部機器20から種々の音色データがダウン ロードされている。

[0033]

次に、楽曲再生処理時にシステムCPU10が実行する楽曲再生補助処理のフローチャートを図9に示す。

楽曲再生モードとされると楽曲再生メニューが表示部18に表示され、ステップS1にて表示部18に表示された選曲メニューからダイヤルボタン等を操作して所望の選曲操作を行う。この際の選曲は、システムRAM11およびシステムROM12に記憶されている楽曲データのいずれかが選択される。この場合、システムRAM11にはダウンロードセンター6や外部機器20からダウンロードされた楽曲データが記憶されている。選曲操作が終了するとステップS2にて音色データとテンポの設定が行われる。このステップS2では、選曲された楽曲データ中の8音色の音色データが楽曲再生部15に転送されて、音色データ記憶部(Voice RAM)34に記憶される。さらに、選曲された楽曲データ中のテンポデータが楽曲再生部15に転送されて、シーケンサ33に設定されるが、この際に表示部18に表示されたテンポデータをダイヤルボタン等を操作することにより編集するようにしてもよい。

[0034]

次いで、ステップS3にて表示部18に表示されたIRQ Pointデータをダイヤルボタン等を操作することにより所定値に設定する。この際に、システムCPU10の処理速度を勘案しながらIRQ Pointデータを設定する。次いで、選曲された楽曲データ中の32ワード分の楽譜データがシステムRAM11から読み出されて楽曲再生部15に転送されてFIFO31に書き込まれることにより、FIFO31が楽譜データでFULL状態とされる。

次いで、ステップS5にてスタート操作されるまで待機される。このスタート操作は、着信音として再生する場合は着呼したことがスタート操作となり、保留音として再生する場合は保留ボタンを操作したことがスタート操作となる。ここ

[0035]

また、スタート操作されたと判定されない場合は、ステップS11に分岐して 再生操作のボタンが操作されたか否かが判定される。再生操作のボタンが操作さ れたと判定された場合は、ステップS1に戻りステップS1ないしステップS4 の操作を再度実行することができる。再生操作のボタンが操作されたと判定され ない場合は、ステップS5に戻りスタート操作されるまで待機される。

楽曲再生部15がスタートコマンドを受けると、上述した楽曲再生処理が開始されて、選曲された楽曲が再生されるようになる。そして、楽曲再生部15において割込要求信号(IRQ)が発生したとステップS7で判定されると、ステップS8にて(31-IRQ Point)ワード数の続く楽譜データをシステムRAM11から読み出して楽曲再生部15に転送する。このステップS7,S8の処理はステップS9にてストップ操作したと判定されるまで繰り返し実行される。ストップ操作は、着信音として再生している場合は着信ボタンを操作したことがストップ操作となり、保留音として再生している場合は保留解除ボタンを操作したことがストップ操作となる。ここで、ストップ操作されたとステップS9にて判定された場合は、ステップS10に進んでストップコマンドが楽曲再生部15に転送され、楽曲再生部15における楽曲再生処理は停止される。同時に、ステップS5に戻り再びスタート操作されるまで待機される。

[0036]

このように、楽曲再生処理が実行されて選曲された楽曲の再生が行われるのは、着信音として再生する場合は着呼した時であり、保留音として再生する場合は保留ボタンを操作した時であり、その場合に再生される楽曲は選曲操作により選曲された楽曲とされる。また、選曲操作において着信音、保留音として再生する楽曲をそれぞれ独立して選曲できるようにして、それぞれのスタート操作がされた際にそれぞれ独立した楽曲を再生できるようにしてもよい。また、選曲操作は随時行えるようにされているので、着信音、保留音として再生する楽曲を任意に選曲することができる。

なお、システムCPU10は図示しない電話機能処理を実行することがメイン 処理とされており、図9に示す楽曲再生補助処理を合わせて実行するようにして も楽曲再生補助処理は軽い処理とされているので、システムCPU10として高 速のCPUとする必要をなくすことができる。

また、FIFO40の記憶容量は32ワード分の楽譜データを記憶できる容量としたが、これに限るものではなくシステムRAM11より大幅に少ない記憶容量とされていればよい。さらに、音色データ記憶部(Voice RAM)34は8音色分の音色データを記憶できる記憶容量としたが、これに限るものではなく少なくとも発音パート数以上の音色数を記憶できる記憶容量であれば、システムRAM11より大幅に少ない記憶容量でよい。

[0038]

さらにまた、本発明の楽曲再生装置における音源部35の音源方式としては、 FM音源方式、波形メモリ音源(PCM音源)方式、物理モデル音源方式等とす ることができ、音源の構成としてはDSP等を用いたハードウェア音源でも、音 源プログラムを実行させるソフトウェア音源でもよい。

さらにまた、楽譜データは図4に示すフォーマットとしたが、本発明はこれに限るものではなく、時間情報を付加したMIDI形態やSMF (Standard MIDI File) 形式の楽譜データとして転送するようにしてもよい。

[0039]

【発明の効果】

本発明は以上説明したように、楽譜データ記憶手段に所定量の空きエリアが発生した際に、次の楽譜データを楽譜データ記憶手段の空きエリアに順次記憶するようにしたので、楽譜データ記憶手段の記憶容量が小さくても高品質の楽曲を再生することができるようになる。また、演奏時間の長い楽曲であっても再生することができる。

さらに、演算処理手段は、楽譜データ記憶手段に所定の空き容量が発生した際 に、次の楽譜データを読み出して楽曲再生手段に送る処理をするだけでよく楽曲 再生処理を行う必要がないので、低速の演算処理手段を用いても高品質の楽曲を

再生することができるようになる。

【図面の簡単な説明】

- 【図1】 本発明の楽曲再生方法を具現化した本発明の楽曲再生装置を携帯電話機に適用した際に、携帯電話機に楽曲データをダウンロードする概念図である。
- 【図2】 本発明の楽曲再生方法を具現化した本発明の楽曲再生装置を携帯 電話機に適用した実施の形態の構成例を示す図である。
- 【図3】 本発明の楽曲再生方法を具現化した本発明の楽曲再生装置の実施の形態である楽曲再生部の構成例を示す図である。
- 【図4】 本発明の楽曲再生装置の実施の形態における楽譜データのデータ 構成例を示す図である。
- 【図5】 本発明の楽曲再生装置の実施の形態における音色データ記憶部 (Voice RAM) に書き込まれた8音色分の音色データの構成例を示す図である。
- 【図6】 本発明の楽曲再生装置の実施の形態における音色割当データの構成例を示す図である。
- 【図7】 本発明の楽曲再生装置の実施の形態におけるFIFOの詳細構成を示す図である。
- 【図8】 本発明の楽曲再生装置の実施の形態におけるFIFOの動作を説明するための図である。
- 【図9】 本発明の楽曲再生装置が適用される携帯電話機におけるシステム CPUが実行する楽曲再生補助処理のフローチャートである。

【符号の説明】

1 携帯電話機、1a アンテナ、2a~2d 基地局、3 移動交換局、4 関門交換局、5a,5b,5c 一般電話交換局、6 ダウンロードセンター、10 システムCPU、11 システムRAM、12 システムROM、13 通信部、14 音声処理部、15 楽曲再生部、16 インタフェース、17 入力部、18 表示部、19 バイブレータ、20 外部機器、21 マイク、22 受話用スピーカ、23 着信用スピーカ、24 バス、30 インタフェース、32 デコーダ、33 シーケンサ、34 音色データ記憶手段 (Voice—

RAM)、35 音源部、36 DAC、37 ミキサ、40 RAM、41 書 込アドレスカウンタ、42 読出アドレスカウンタ、43 ラッチ回路、44 比較回路、45 アップ/ダウンカウンタ、101 携帯電話機

【書類名】 図 面

【図1】

音符 (1ワード)

Oct Note パート インターバル	発音長
---------------------	-----

休符(1ワード)

休符コード	パート	インターバル	
-------	-----	--------	--

【図5】

Voice RAM

音色 1	波形パラメータ 1 エンペロープパラメータ 1 変調パラメータ 1 エフェクトパラメータ 1
音色 2	波形パラメータ 2 エンベロープパラメータ 2 変調パラメータ 2 エフェクトパラメータ 2
音色 8	波形パラメータ 8 エンベロープパラメータ 8 変調パラメータ 8 エフェクトパラメータ 8

【図6】

音色割当データ

パート1 →音色1 パート2 →音色5	パート3 →音色8	パート4 →音色2
---------------------------	--------------	--------------

【図7】

【図8】

【図9】

【書類名】

要約書

【要約】

【課題】 楽譜データを記憶する記憶手段の容量が小さくても高品質の楽曲を再生すること。

【解決手段】 楽曲再生のスタート時にはFIFO31に32ワード分の楽譜データが書き込まれる。楽曲再生をスタートしてFIFO31から楽譜データを読み出しながら音源部35で楽譜データに基づく楽音を再生する。FIFO31の空きエリアが所定量となったことが検出された際に、FIFO31はIRQを発生しCPU10に与える。CPU10はこれを受けてRAM11から次の楽譜データを読み出してインタフェース30を介してFIFO31に楽譜データを補充する。この処理が繰り返されることにより、FIFO31の容量が小さくても、高品質の楽音を再生できる楽譜データを順次書き込んで再生することができる。

【選択図】 図3

出願人履歴情報

識別番号

[000004075]

1. 変更年月日 1990年 8月22日

[変更理由] 新規登録

住 所 静岡県浜松市中沢町10番1号

氏 名 ヤマハ株式会社

This Page Blank (uspto)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

This Page Blank (uspto)