Name	Rupali Sawale
UID no.	2021700056
Experiment No.	3

AIM:	Implement Divide and Conquer technique.					
Program						
PROBLEM STATEMENT:	Implement Strassen's Matrix Multiplication algorithm and compare it with standard matrix multiplication.					
ALGORITHM/ THEORY:	// C code of two 2 by 2 matrix multiplication using Strassen's algorithm					
	#include <stdio.h></stdio.h>					
	int main(){					
	int a[2][2], b[2][2], c[2][2], i, j;					
	int m1, m2, m3, m4, m5, m6, m7;					
	printf("Enter the 4 elements of first matrix: ");					
	for(i = 0; i < 2; i++)					
	for($j = 0; j < 2; j++$)					
	scanf("%d", &a[i][j]);					
	printf("Enter the 4 elements of second matrix: ");					
	for($i = 0$; $i < 2$; $i++$)					
	for($j = 0; j < 2; j++$)					
	scanf("%d", &b[i][j]);					

```
printf("\nThe first matrix is\n");
for(i = 0; i < 2; i++){
  printf("\n");
  for(j = 0; j < 2; j++)
     printf("%d\t", a[i][j]);
printf("\nThe second matrix is\n");
for(i = 0; i < 2; i++){
  printf("\n");
  for(j = 0; j < 2; j++)
     printf("%d\t", b[i][j]);
m1 = (a[0][0] + a[1][1]) * (b[0][0] + b[1][1]);
m2=(a[1][0] + a[1][1]) * b[0][0];
m3 = a[0][0] * (b[0][1] - b[1][1]);
m4 = a[1][1] * (b[1][0] - b[0][0]);
m5=(a[0][0] + a[0][1]) * b[1][1];
m6=(a[1][0] - a[0][0]) * (b[0][0]+b[0][1]);
m7 = (a[0][1] - a[1][1]) * (b[1][0] + b[1][1]);
c[0][0] = m1 + m4 - m5 + m7;
c[0][1] = m3 + m5;
c[1][0] = m2 + m4;
```

```
c[1][1] = m1 - m2 + m3 + m6; printf("\nAfter multiplication using Strassen's algorithm \n"); for(i = 0; i < 2; i++) \{ printf("\n"); for(j = 0; j < 2; j++) printf("\%d\t", c[i][j]); \} return 0; \}
```

Result:

OUTPUT 1:

```
Enter the 4 elements of first matrix: 5 7 8 3
Enter the 4 elements of second matrix: 6 2 1 4

The first matrix is

5 7 8 3
The second matrix is

6 2 1 4

After multiplication using Strassen's algorithm

37 38
51 28

...Program finished with exit code 0
Press ENTER to exit console.
```

Verification of algorithm:

Normal Strassen's	Date
R = 5 7	
8 3	
Salmary in total attitude of	
S: 6 2	
1 4]	
R x s = [57] [6	2 7
83] [1	9
= \[30+7 \] 10+28	
48+3 16+1	2
= [37 38]	
51 28	

OUTPUT2:

```
Enter the 4 elements of first matrix: 4 3 2 1
Enter the 4 elements of second matrix: 3 1 1 2
The first matrix is
        3
        1
The second matrix is
3
        1
After multiplication using Strassen's algorithm
15
        10
        4
...Program finished with exit code 0
Press ENTER to exit console.
```

Verification of algorithm:

CONCLUSION: We used Strassen's Matrix Multiplication and compared with Standard Matrix Multiplication logic. On comparison we found out that Strassen's is better than standard method for multiplication of square matrices.