

Advanced method for decision Pattern recognition

One class SVM

- Chapitre 4 -

Outline

- Introduction
- 2 Methods and properties
 - 1C-SVM
 - 1C-SVM Variantes
- Optimization
 - SMO approach
 - Regularization path
- Other approach
 - PCA
 - KPCA
- Conclusion

Outline

- Introduction
- 2 Methods and properties
 - 1C-SVM
 - 1C-SVM Variantes
- Optimization
 - SMO approach
 - Regularization path
- Other approach
 - PCA
 - KPCA
- Conclusion

Motivations

Motivations

- Novelty detection
- Quantile estimation

Situations

- Only one kind of observations are available
- Classes without samples
- Sensor failures
- **a** . . .

Problem

- A representation space $\mathcal{X}_I \subseteq \mathbb{R}^I$
- A data set of iid observations $A_n = \{x_{1:n}\}$
- A random variable X follows an unknown probability distribution P.

Aim:

Estimate a "simple" subset $S \subset \mathcal{X}_I$ such that $P(X \ni S) = 1 - \mu$ with μ a predefined value.

Main elements of solutions

- ullet Approximate the solution using a function f
- f(x) > 0 if $x \in S$
- f is a linear combination of kernels expressed in a transformed space
- f is determined by solving a quadratic problem

Outline

- Introduction
- 2 Methods and properties
 - 1C-SVM
 - 1C-SVM Variantes
- Optimization
 - SMO approach
 - Regularization path
- Other approach
 - PCA
 - KPCA
- Conclusion

Support and Quantiles

- ullet A data set of iid observations $A_n = \{x_{1:n}\}$ with $x_i \in \mathcal{X}_m$
- The RV X follows an unknown probability distribution P
- \bullet C is the class of the measurable subsets \mathcal{X}_m
- ullet λ a measurement function defined on ${\cal C}$

Definition:

• $U(\mu)$ is a quantile if :

$$U(\mu) = \inf\{\lambda(C)|P(C) \ge \mu, C \in \mathcal{C}\}\$$

Intepretation:

The smallest subset containing a probability mass μ .

Remark:

U(1) is the support of P

Estimation of a quantile

Empirical estimator :

$$P_{emp}^{n}(C) = \frac{1}{n} \sum_{i=1}^{n} I_{C}(x_{i})$$

• $C_{\lambda}(\mu)$, $C_{\lambda}^{n}(\mu)$: the C which reach the infimum (greatest lower bound).

Standard measure : the "volume" of C (Lebesgue measure) We seek C with "minimal" volume Determine an estimate of minimum volume $C_{\lambda}^{n}(\mu)$ is insuffisant : Ensure ability to generalize.

Quantile estimation

Consequences

- tradeoff between quality of learning complexity of the learner (VC dimension).
- Restrict or control the set of subsets C eligible.
- ullet With kernel methods : implicit definition of ${\mathcal C}$ via ${\mathcal K}$
- Minimize a quadratic form in the Hilbert space which allows to control the complexity of the function defining C
- We use $\lambda(C_{w,\rho}) = ||w||^2$ (small VC dimension) with $C_{w,\rho} = \{x | f_w(x) \ge \rho\}$

aim:

- Find the best hyperplane that separates the data from the origin
- Maximize the margin
- The value of f(x) depends on the position x with respect to the hyperplane

To find f we solve :

$$\begin{array}{ll} \underset{w \in \mathcal{H}, \xi, \rho}{\text{minimize}} & \frac{1}{2} \|w\|^2 - \rho + \frac{1}{n\nu} \sum_{i=1}^n \xi_i \\ \text{with} & \langle w, \Phi(x_i) \rangle \geq \rho - \xi_i \\ \text{and} & \xi_i \geq 0 \quad \forall i = 1: n \end{array}$$

with
$$\nu \in]0,1]$$
.
 $f(x) = signe(\langle w, \Phi(x) \rangle - \rho)$

Resolution:

$$\mathfrak{L}(w,\xi,\rho,\alpha,\beta) = \frac{1}{2} \|w\|^2 + \frac{1}{n\nu} \sum_{i=1}^n \xi_i$$

$$-\sum_i \alpha_i (\langle w, \Phi(x_i) \rangle - \rho + \xi_i) - \sum_i \beta_i \xi_i - \rho$$
avec $\alpha_i \ge 0 \quad \beta_i \ge 0$

Cancelling derivatives with respect to variables of the primal problem :

•
$$w = \sum_{i} \alpha_{i} \Phi(x_{i})$$

•
$$0 \le \alpha_i \le \frac{1}{\nu n}$$

•
$$\sum_i \alpha_i = 1$$

Dual Problem:

$$\begin{array}{ll} \underset{\alpha}{\text{minimize}} & \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j \mathcal{K}(x_i,x_j) \\ \\ \text{with} & 0 \leq \alpha_i \leq \frac{1}{\nu n} \text{and} & \sum_i \alpha_i = 1 \end{array}$$

and

$$\rho = \sum_{j} (\alpha_{j} K(x_{j}, x_{i})) \text{ quand } \alpha_{i} \in]0, \frac{1}{\nu n}[$$

due to KKT conditions.

Figure: nu_1svm

Link with Parzen windows:

- Knormalized as a density (Gaussian case)
- $\nu = 1$

Consequence:

- $\alpha_{1:n} = \frac{1}{n}$
- This is the Parzen estimator of a probability density function

Remark:

If K is normalized, $\sum_i \alpha_i K(x_i, x)$ is a probability density that is based solely on the SV.

Property 1:

If the data $\{\Phi(x_{1:n})\}$ are separable then there is only one hyperplane :

- separating all the data from the origin
- maximizing the distance from the origin

This hyperplane is the solution of problem $\rho > 0$:

$$\begin{array}{ll} \underset{w}{\text{minimize}} & \frac{1}{2}\|w\|^2 \\ & \text{with} & \langle w, \phi(x_i) \rangle \geq \rho \end{array}$$

Property 2:

- Consider the separating hyperplane defined by (w, ρ) for the data $\{(\Phi(x_{1:n}), 1)\}$ then this hyperplane (w, 0) is the optimal hyperplane of the data set $\{(\Phi(x_{1:n}), 1), (-\Phi(x_{1:n}), -1)\}$.
- Consider (w,0) the optimal hyperplane separating a set of labeled data : $\{(\Phi(x_{1:n}),y_{1:n})\}$ defined such that $\langle w,\phi(x_i)\rangle>0$ if $y_i=1$. Moreover, if $\frac{\rho}{\|w\|}$ is the margin of this hyperplane, then (w,ρ) define the support hyperplane for the data set $\{(\Phi(x_{1:n}),1)\}$.

Property 3 : If the solution of the 1C-SVM problem is such that $\rho \neq 0$, then

- ullet u is an upper bound of the proportion of outliers
- ullet ν is a lower bound of the proportion of SV

$$PropExclus \le \nu \le PropSVs$$

• If the data are iid according to a continuous distribution function P and the kernel is non-constant then ν is asymptotically equal to the fraction of SVs and excluded.

Figure: Examples of ν -1sym with $\nu = 0.1, 0.3, 0.5, 0.7$

SVDD

Aim:

- \bullet Find the hypersphere with minimum volume that contains all observations excepted a fraction ν
- The hypersphere is defined by the position of its center a and its radius R

Problem formulation:

minimize
$$R^{2} + \frac{1}{n\nu} \sum_{i} \xi_{i}$$
with
$$\|a - \Phi(x_{i})\|^{2} \le R^{2} + \xi_{i}$$
and
$$\xi_{i} \ge 0 \quad \forall i = 1: n$$

Resolution:

$$\mathfrak{L}(R, a, \xi) = R^2 + \frac{1}{n\nu} \sum_{i} \xi_i - \sum_{i} (\alpha_i (R^2 + \xi_i - \|a - \Phi(x_i)\|^2)) - \sum_{i} \beta_i \xi_i$$
with
$$\xi_i \ge 0 \quad \alpha_i \ge 0 \quad \beta_i \ge 0 \quad \forall i = 1 : n$$

Dual Problem:

$$\begin{array}{ll} \underset{\alpha}{\text{minimize}} & \sum_{i,j} \alpha_i \alpha_j K(x_i, x_j) - \sum_i \alpha_i K(x_i, x_i) \\ & \text{with} & 0 \leq \alpha_i \leq \frac{1}{\nu n} \quad \forall i = 1: n \text{and} & \sum_i \alpha_i = 1 \end{array}$$

Equivalence:

- If $K(x_i, x_i) = Cte$ then SVDD $\Leftrightarrow \nu$ -1SVM
- If K(x, x') depends only on x x' SVDD $\Leftrightarrow \nu$ -1SVM

Faire figure

Discriminant 1CSVM

Contexte: It is assumed that we have observations that do not belong to the target class

Problem formulation:

Let n_1 be the number of samples that belong to class ω_1 and n_2 the number of other observations,

$$\begin{split} \min_{w \in \mathcal{H}, \xi, \zeta, \rho} \quad & \frac{1}{2} \|w\|^2 - \rho + \frac{1}{n_1 \nu_1} \sum_{i=1}^{n_1} \xi_i + \frac{1}{n_2 \nu_2} \sum_{k=1}^{n_2} \zeta_k \\ \text{with} \qquad & \langle w, \Phi(x_i) \rangle \geq \rho - \xi_i \quad \forall i = 1: n_1 \\ \text{with} \qquad & \langle w, \Phi(x_k) \rangle < \rho - \zeta_k \quad \forall k = 1: n_2 \\ \text{and} \qquad & \xi_i \geq 0 \quad \forall i = 1: n_1 \\ \text{and} \qquad & \zeta_k \geq 0 \quad \forall k = 1: n_2 \end{split}$$

Discriminant 1CSVM

Dual Problem:

$$\begin{aligned} & \underset{\alpha}{\min} & & \sum_{i,j=1}^{n_1} \alpha_i \alpha_j K(x_i, x_j) \\ & & -2 \sum_{i=1}^{n_1} \sum_{k=1}^{n_2} \alpha_i \alpha_k K(x_i, x_k) \\ & & + \sum_{k,p=1}^{n_2} \alpha_k \alpha_p K(x_k, x_p) \end{aligned}$$
 with
$$& \sum_{i=1}^{n_1} \alpha_i - \sum_{k=1}^{n_2} \alpha_k = 1 \\ \text{and} & 0 \leq \alpha_i \leq \frac{1}{n_1 \nu_1} \quad \forall i = 1: n_1 \\ \text{and} & 0 \leq \alpha_k \leq \frac{1}{n_2 \nu_2} \quad \forall k = 1: n_2 \end{aligned}$$

Comments

Conclusion

Outline

- - 1C-SVM
 - 1C-SVM Variantes
- Optimization
 - SMO approach
 - Regularization path
- - PCA
 - KPCA

SMO Method

Principle:

Divide the primal problem into a sequence of small problems.

Due to equality constraint on $\sum_i \alpha_i \Rightarrow$ it is not possible to change a single value.

At least consider pairs of values.

basic problem : Consider α_i and α_i :

$$\begin{array}{ll} \min\limits_{\alpha_i,\alpha_j} & \frac{1}{2} \left(\alpha_i^2 \textit{K}_{ii} + \alpha_j^2 \textit{K}_{jj} + 2 \alpha_i \alpha_j \textit{K}_{ij} \right) + c_i \alpha_i + c_j \alpha_j \\ \text{with} & \alpha_i + \alpha_j = \gamma \\ \text{and} & 0 \leq \alpha_i, \alpha_j \leq \frac{1}{n\nu} \end{array}$$

and

$$\gamma = 1 - \sum_{k \neq i,j} \alpha_k = \alpha_i^{old} + \alpha_j^{old}$$

$$c_i = \sum_{k \neq i,j} \alpha_k K_{ik} \qquad c_j = \sum_{k \neq i,j} \alpha_k K_{jk}$$

decompose in 4 sub-matrix

SMO Method

Resolution: Substituting α_j :

$$\begin{aligned} & \min_{\alpha_i} & & \frac{1}{2}\alpha_i^2\chi + \alpha_i(c_i - c_j + \gamma(K_{ij} - K_{jj})) \\ & \text{with} & & \chi = K_{ii} - 2K_{ij} + K_{jj} \\ & \text{and} & & & L \leq \alpha_i, \alpha_j \leq H \end{aligned}$$

and

$$L = \max(0, \gamma - \frac{1}{\nu n})$$

$$H = \min(\frac{1}{\nu n}, \gamma)$$

where

$$\alpha_i = \min(\max(L, \tilde{\alpha_i}), H)$$

SMO Method

Resolution:

$$\tilde{\alpha_i} = \alpha_i^{old} + \frac{c_j - c_i + \alpha_j^{old} K_{jj} - \alpha_i^{old} K_{ii} + K_{ij} (\alpha_i^{old} - \alpha_j^{old})}{\chi}$$

$$= \alpha_i^{old} + \frac{f^{old}(x_j) - f^{old}(x_i)}{\chi}$$

Initialization:

Draw $n\nu$ observations and fix values $\alpha_i = \frac{1}{n\nu}$. If $n\nu$ is not an integer, give the supplement to the last.

Conclusion

SVs Choice:

• We seek a sample that violates the KKT conditions

$$f(x_i)\alpha_i > 0$$

case $f(x_i) > 0$ and $\alpha_i \neq 0$ or

$$-f(x_i)(\frac{1}{n\nu}-\alpha_i)>0$$

case
$$f(x_i) < 0$$
 and $\alpha_i \neq \frac{1}{n\nu}$

• Find the sample x_j which maximizes on $k | f(x_i) - f(x_k) |$ for $x_k \in SV$ with $SV = \{x_k | \alpha_k \in]0, \frac{1}{n\nu}[\}$

In practice this operation is repeated on all the data and then several times only on SVs.

If no violation of KKT conditions remains on A_n then it is finished!

Simple algorithm:

- Initialize α and $\rho = \max_i f(x_i)$
- ② While the KKT conditions are not satisfied for all x_i
 - Choose α_i and α_i
 - 2 Initialize α_i^{old} and α_i^{old}
 - **6** Calculate $\tilde{\alpha}_i$
 - ① Determine $\alpha_i = \min(\max(L, \tilde{\alpha_i}), H)$
 - **o** Deduce α_i
 - **o** Calculate ρ using the fact that $\rho = f(SV|border)$
- **1** Return α and ρ

Problem formulation:

$$\begin{aligned} & \min_{w,\rho,\xi} & & \frac{n\nu}{2} \|w\|^2 - n\nu\rho + \sum_{i=1}^n \xi_i \\ & \text{with} & & \langle w, \Phi(x_i) \rangle \geq \rho - \xi_i & \forall i = 1:n \\ & \text{and} & & \xi_i \geq 0 & \forall i = 1:n \end{aligned}$$

Dual Problem:

$$\begin{array}{ll} \underset{\alpha}{\text{minimize}} & \frac{1}{2n\nu} \sum_{i,j} \alpha_i \alpha_j K(x_i,x_j) \\ \text{with} & 0 \leq \alpha_i \leq 1 \quad \forall i=1:n \\ \text{with} & w = \frac{1}{n\nu} \sum_i \alpha_i \Phi(x_i) \\ \text{and} & \sum_i \alpha_i = n\nu \\ \end{array}$$

Observation 1:

For a given value ν there is a solution α^{ν} ,

The function $f^{\nu}(x)$ divides A_n in 3 groups :

•
$$C = \{i | f^{\nu}(x_i) > 0 \text{ et } \alpha_i^{\nu} = 0\}$$

•
$$\mathcal{M} = \{i | f^{\nu}(x_i) = 0 \text{ et } \alpha_i^{\nu} \in]0, 1[\}$$

•
$$\mathcal{E} = \{i | f^{\nu}(x_i) < 0 \text{ et } \alpha_i^{\nu} = 1\}$$

Observation 2:

When ν changes without change of the groups composition, only the α_i associated with the elements of \mathcal{M} change.

Observation 3:

When ν changes while the composition of the groups stay the same, values of the α_i associated with the elements of \mathcal{M} change linearly with ν .

Proof:

Given ν^m and ν^M such that the groups stay the same for any $\nu \in [\nu^m, \nu^M]$

Consequence:

$$\sum_{k \in \mathcal{M}} \alpha_k^{\nu^{M}} - \sum_{k \in \mathcal{M}} \alpha_k^{\nu} = n(\nu^{M} - \nu)$$

We define
$$g^{\nu}(x)=\langle w^{\nu},\Phi(x)\rangle-\frac{\alpha_0^{\nu}}{n\nu}$$
 with $\rho^{\nu}=\frac{\alpha_0^{\nu}}{n\nu}$

$$g^{\nu}(x) = \frac{1}{n\nu} \left(\sum_{i} \alpha_{i}^{\nu} K(x, x_{i}) - \alpha_{0}^{\nu} \right)$$

$$g^{\nu}(x) = g^{\nu}(x) - \frac{\nu^{M}}{\nu} g^{\nu^{M}}(x) + \frac{\nu^{M}}{\nu} g^{\nu^{M}}(x)$$

$$= \frac{1}{n\nu} \left(\sum_{i} (\alpha_{i}^{\nu} - \alpha_{i}^{\nu^{M}}) K(x, x_{i}) - (\alpha_{0}^{\nu} - \alpha_{0}^{\nu^{M}}) + n\nu^{M} g^{\nu^{M}}(x) \right)$$

For any observation $x_k \in \mathcal{M}$ we have :

$$g^{\nu^{\mathbf{M}}}(x_{k}) = g^{\nu}(x_{k}) = 0$$

$$\sum_{I \in \mathcal{M}} (\alpha_{I}^{\nu} - \alpha_{I}^{\nu^{\mathbf{M}}}) K(x_{k}, x_{I}) - (\alpha_{0}^{\nu} - \alpha_{0}^{\nu^{\mathbf{M}}}) = 0$$

$$\begin{cases} K\left(\alpha^{\nu} - \alpha^{\nu^{\mathbf{M}}}\right) - \left(\alpha_{0}^{\nu} - \alpha_{0}^{\nu^{\mathbf{M}}}\right) \mathbf{1} &= \mathbf{0} \\ \mathbf{1}^{T}\left(\alpha^{\nu} - \alpha^{\nu^{\mathbf{M}}}\right) &= n\nu - n\nu^{\mathbf{M}} \end{cases}$$

Let:

$$A = \begin{pmatrix} K & -1 \\ \mathbf{1}^T & 0 \end{pmatrix}$$
$$c^T = [0...0, 1]$$

Thus:

$$A\left(\left(\begin{array}{c} \alpha^{\nu} \\ \alpha_{0}^{\nu} \end{array}\right) - \left(\begin{array}{c} \alpha^{\nu^{M}} \\ \alpha_{0}^{\nu^{M}} \end{array}\right)\right) = (n\nu - n\nu^{M})c \tag{1}$$

Thus:

$$\begin{pmatrix} \alpha^{\nu} \\ \alpha_{0}^{\nu} \end{pmatrix} = \begin{pmatrix} \alpha^{\nu M} \\ \alpha_{0}^{\nu M} \end{pmatrix} + (n\nu - n\nu^{M})A^{-1}c$$
 (2)

Group change :

• x_k de \mathcal{M} vers \mathcal{E} $(\alpha_k \to 1)$

$$\nu = \frac{1 - \alpha_k^{\nu M}}{n(A^{-1}c)_k} + \nu^M$$

• x_k de \mathcal{M} vers \mathcal{C} $(\alpha_k \to 0)$

$$\nu = \frac{-\alpha_k^{\nu M}}{n(A^{-1}c)_k} + \nu^M$$

• x_k vers \mathcal{M} (eq 2)

$$\nu = \nu^{M} \left(\frac{[K(x_{k},.),-1](A^{-1}c) - g^{\nu^{M}}(x_{k})}{[K(x_{k},.),-1](A^{-1}c)} \right)$$

Group change case 3:

$$g^{\nu}(x_k) = \frac{1}{n\nu} \left(\sum_i (\alpha_i^{\nu} - \alpha_i^{\nu^{\mathbf{M}}}) K(x_k, x_i) - (\alpha_0^{\nu} - \alpha_0^{\nu^{\mathbf{M}}}) + n\nu^{\mathbf{M}} g^{\nu^{\mathbf{M}}}(x_k) \right) = 0$$

Thus:

$$\sum_{i} (\alpha_{i}^{\nu} - \alpha_{i}^{\nu^{\mathbf{M}}}) K(x_{k}, x_{i}) - (\alpha_{0}^{\nu} - \alpha_{0}^{\nu^{\mathbf{M}}}) = -n \nu^{\mathbf{M}} g^{\nu^{\mathbf{M}}}(x_{k})$$

Thus:

$$[K(\mathbf{x}_k,.),-1](\begin{pmatrix} \alpha^{\nu} \\ \alpha_0^{\nu} \end{pmatrix} - \begin{pmatrix} \alpha^{\nu}^{\mathbf{M}} \\ \alpha_0^{\nu}^{\mathbf{M}} \end{pmatrix}) = -n\nu^{\mathbf{M}} g^{\nu^{\mathbf{M}}}(\mathbf{x}_k)$$

Using eq. 2:

$$n[K(x_k,.),-1]A^{-1}c(\nu-\nu^M)=-n\nu^Mg^{\nu^M}(x_k)$$

Regularization path

Step:

 $u^m = \max(\nu_{changement})$ Replace u^M by the value u^m progression by decreasing value of u

Stop:

When \mathcal{E} is empty!

Regularization path

Initialization:

Start with $\nu = 1 - \frac{\epsilon}{n}$

A single x_k is in the margin, the others are outliers $(lpha_i=1$ et

$$(\alpha_k = 1 - \epsilon). \ \rho = f(x_k)$$

To find k:

$$\min_{k} \frac{1}{2n\nu} \sum_{i,j} \alpha_{i} \alpha_{j} K_{ij} - \frac{\epsilon}{n\nu} \sum_{i} \alpha_{i} K_{ik} + \frac{\epsilon^{2}}{2n\nu} K_{kk}$$

Thus:

$$\min_{k} \frac{1}{2n\nu} \sum_{i,j} K_{ij} - \frac{\epsilon}{n\nu} \sum_{i} K_{ik} + \frac{\epsilon^2}{2n\nu} K_{kk}$$

Which means choosing the closest x_k to the barycenter in the Hilbert space :

$$\max_{k} \sum_{i \neq k} K_{ik}$$

If several x_k enter simultaneously the margin (P=0): solve the optimisation problem with ν close to 1.

Outline

- Introduction
- Methods and properties
 - 1C-SVM
 - 1C-SVM Variantes
- Optimization
 - SMO approach
 - Regularization path
- Other approach
 - PCA
 - KPCA
- Conclusion

PCA

Principle

Projection from \mathbb{R}^l to \mathbb{R}^d

Minimizing the deformation of the sample cloud

Retain most of the variance

Decision based on reconstruction error.

PCA Method

We search u such that ||u|| = 1 and the projection of X on the axis carried by u captures the most variance.

$$\max_{u} \quad u^{t} X^{t} X u$$
 avec
$$u^{t} u = 1$$

Dual Problem:

$$\max_{\lambda} \min_{u} -u^{t}X^{t}Xu + \lambda(u^{t}u - 1)$$

Method - continuation

We search v such that ||v|| = 1 and $v \perp u$ and the projection of X on the axis carried by v captures the most variance in the subspace.

$$\max_{v} \quad v^{t} X^{t} X v$$
 avec
$$v^{t} v = 1 \text{ et } v^{t} u = 0$$

Dual problem:

$$\max_{\lambda,\beta} \min_{\mathbf{v}} -\mathbf{v}^t X^t X \mathbf{v} + \lambda (\mathbf{v}^t \mathbf{v} - 1) + \beta \mathbf{v}^t \mathbf{u}$$

Solution

Eigenvectors

Eigenvalues

Principle

Perform a PCA in a transformed space ${\cal H}$

Given Φ a transformation such that :

$$\Phi : \mathbb{R}^I \to \mathcal{H}$$
$$x \mapsto \Phi(x)$$

Hypothesis : $\sum_{i} \tilde{\Phi}(x_{i}) = 0$ One defines $\tilde{S}_{f} = \frac{1}{n} \sum_{i} \tilde{\Phi}(x_{i}) \tilde{\Phi}(x_{i})^{t}$

We search λ and V such that :

$$\tilde{S}_f V = \lambda V$$

Solution

V a vector of the space $\{\tilde{\Phi}(x_1),\ldots,\tilde{\Phi}(x_n)\}\Rightarrow$

$$\exists \alpha \text{ st. } V = \sum_{i} \alpha_{i} \tilde{\Phi}(x_{i})$$

with $\tilde{K}_{i,j} = < \tilde{\Phi}(x_i), \tilde{\Phi}(x_j) >$ Consequences :

$$K\alpha = n\lambda\alpha$$

 α are the eigenvectors of K $KPCA_d(x) = \sum_i \alpha_i^d \tilde{K}(x_i, x)$

Interpretation

- Maximize the variance in \mathcal{H}
- ullet Minimize the reconstruction error in ${\cal H}$
- Minimize the representation entropy
- Maximize mutual information in relation with the data
- ullet If Φ is a polynomial, relation with high order moments

Interpretation

- Maximize the variance in \mathcal{H}
- ullet Minimize the reconstruction error in ${\cal H}$
- Minimize the representation entropy
- Maximize mutual information in relation with the data
- \bullet If Φ is a polynomial, relation with high order moments

Interpretation

- ullet Maximize the variance in ${\cal H}$
- ullet Minimize the reconstruction error in ${\cal H}$
- Minimize the representation entropy
- Maximize mutual information in relation with the data
- \bullet If Φ is a polynomial, relation with high order moments

Outline

- Introduction
- 2 Methods and properties
 - 1C-SVM
 - 1C-SVM Variantes
- Optimization
 - SMO approach
 - Regularization path
- Other approach
 - PCA
 - KPCA
- Conclusion

Conclusion

Contributions

- Detection
- Classification