Evolúcia počítaťových hier*

Dávid Babiš

Slovenská technická univerzita v Bratislave Fakulta informatiky a informačných technológií xbabis@stuba.sk 00000000

30. marec 2003

School of Hard Knocks SOCI4568 L01 Sociology of Physics For: Professor Y.R.U StillHere

Abstrakt

To, že sa počítačové hry z roka na rok menia a vylepšujú, nie je pre vás určite novinkou. Vidieť ju však v rozmedzí mnoho rokov je zaručene niečo neopísateľné. Počítačová technika ide neuveriteľne rýchlo dopredu. Tieto hry sú s nami iba pár desiatok rokov, ale za tú dobu sa stihli výrazne zmeniť. Od jednoduchých pixelov na čiernobielych monitoroch sme sa dostali k prepracovanej grafike, ktorá nielen verne zachytáva našu skutočnosť, ale dokáže vykresliť aj neskutočnosť. Napríklad fantastické svety ktoré existujú len vo videohrách. V tomto článku sa dozviete, ako sa menila nielen grafická stránka počítačových hier od roku 1952. Rozdiel je naozaj obrovský. Pamätáte si ešte niektoré staré klasiky?

1 Úvod

Od jednoduchých pixelov na čiernobielych monitoroch sme sa dostali k prepracovanej grafike, ktorá nielen verne zachytáva našu skutočnosť, ale dokáže vykresliť aj neskutočnosť. Napríklad fantastické svety ktoré existujú len vo videohrách. V tomto článku sa dozviete, ako sa menila nielen grafická stránka počítačových hier od roku 1952. Rozdiel je naozaj obrovský. Pamätáte si ešte niektoré staré klasiky? Motivujte čitateľa a vysvetlite, o čom píšete. Úvod sa väčšinou nedelí na časti. Uveďte explicitne štruktúru článku. Tu je nejaký príklad. Základný problém, ktorý bol naznačený v úvode, je podrobnejšie vysvetlený v časti 2.2. Dôležité súvislosti sú uvedené v častiach 4 a 5. Záverečné poznámky prináša časť 6.

^{*}Semestrálny projekt v predmete Metódy inžinierskej práce, ak. rok 2022/23, vedenie: Dávid Babiš

2 HISTÓRIA

2 História

2.1 NIMROD 1951

V roku 1951 bol pri príležitosti "Festival of Britain" predstavený digitálny počítač Ferranti NIMROD. Išlo o prvý počítač navrhnutý špeciálne pre počítačovú hru. Tento stroj so spotrebou krásnych 6 kilowattov a frekvenciou procesora 10kHz vedel, ako už názov napovedá, jedinú hru - NIM. Pôvodom pravdepodobne v Číne, NIM je jednoduchá logická hra pre dvoch hráčov spočívajúca v odoberaní prvkov z niekoľkých (typicky troch) množín. V každom ťahu môže hráč odobrať ľubovoľné množstvo prvkov (miniálne jeden) z jednej množiny. Víťazom je ten hráč, ktorý odoberie posledný prvok.

Ako "grafický" výstup bol použitý panel so žiarovkami. NIMROD teda nie je mnohými považovaný za skutočnú videohru, pretože nepoužíva zobrazovacie zariadenie typu TV/monitor a pod. Ale to sa zase dostávame k problematickej definícii videohry. O niečo neskôr bol NIMROD s veľkým úspechom vystavený aj v Berlíne.

2.2 OXO 1952

Za prvú skutočnú videohru je možné OXO považovať najmä preto, že pre jej grafický výstup bola vôbec prvýkrát v dejinách počítačov použitá osciloskopická obrazovka, teda monitor. Vznikla v roku 1952. Zobrazenie bitmapy bolo 35 × 16 pixelov. Hra bola nainštalovaná na elektrónkovom počítači EDSAC, ktorý bežne používal dierne pásky. Zahrať ste si mohli jedine proti umelej inteligencii. Ovládať ju bolo možné pomocou vytáčacieho telefónu, pričom vytočené číslo znamenalo políčko, na ktoré hráč umiestnil guľôčku alebo krížik. Hra bola na počítači EDSAC nainštalovaná iba po dobu Douglesovej dizertačnej práce a širokej verejnosti sprístupnená nikdy nebola. Po obhájení svojej práce musel Dougles hru z počítača vymazať, pretože zaberala príliš mnoho miesta.

Z obr. 1 je všetko jasné.

Obr. 1: Rozhodujúci argument.

3 Iná časť

Základným problémom je teda... Najprv sa pozrieme na nejaké vysvetlenie (časť 3.1), a potom na ešte nejaké (časť 3.1).

Môže sa zdať, že problém vlastne nejestvuje [Cop99], ale bolo dokázané, že to tak nie je [CHE05, CK05]. Napriek tomu, aj dnes na webe narazíme na všelijaké pochybné názory [SEI]. Dôležité veci možno zdôrazniť kurzívou.

3.1 Nejaké vysvetlenie

Niekedy treba uviesť zoznam:

- jedna vec
- druhá vec
 - x
 - y

Ten istý zoznam, len číslovaný:

- 1. jedna vec
- 2. druhá vec
 - (a) x
 - (b) y

3.2 Ešte nejaké vysvetlenie

Veľmi dôležitá poznámka. Niekedy je potrebné nadpisom označiť odsek. Text pokračuje hneď za nadpisom.

 $^{^1\}mathrm{Niekedy}$ môžete potrebovať aj poznámku pod čiarou.

4 LITERATÚRA

- 4 Dôležitá časť
- 5 Ešte dôležitejšia časť
- 6 Záver

Literatúra

- [CHE05] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged configuration through specialization and multi-level configuration of feature models. *Software Process: Improvement and Practice*, 10:143–169, April/June 2005.
- [CK05] Krzysztof Czarnecki and Chang Hwan Peter Kim. Cardinality-based feature modeling and constraints: A progress report. In *International Workshop on Software Factories, OOPSLA 2005*, San Diego, USA, October 2005.
- [Cop99] James O. Coplien. Multi-Paradigm Design for C++. Addison-Wesley, 1999.
- [SEI] Carnegie Mellon University Software Engineering Institute. A framework for software product line practice—version 5.0. http://www.sei.cmu.edu/productlines/frame_report/.