Tensor Notes

Alexander J. Heilman

revised: July 12, 2021

Contents

1	"Elementary vector spaces"	1
2	"How to make a map."	1

About

The following is a set of notes following along with the youtube series by XylyXylyX titled "What is a Tensor?".

1 "Elementary vector spaces"

Definition: A vector space is a set V of vectors over some field F with two properties, scalar multiplication $F \times V \to V$ (which is distributive wrt addition and is associative) and vector addition $V + V \to V$ (which is distributive wrt multiplication and is associative and commutative)

2 "How to make a map."

Maps can be denoted $\langle \Lambda, \vec{v} \rangle$, where Λ is a map $\Lambda: V \to V$ and $\vec{v} \in V$ is a vector. Maps between vector spaces can be completely defined by their action on respective basis vectors'. Linear maps on vector spaces are defined to be those such that $\langle \Lambda, \alpha \vec{v}_1 + \beta \vec{v}_2 \rangle = \alpha \langle \Lambda, \vec{v}_1 \rangle + \beta \langle \Lambda, \vec{v}_2 \rangle$