Análise Sintática LL(1): Recursão à Esquerda Fatoração

Análise Sintática LL(1)

$$S \rightarrow E$$
\$
 $E \rightarrow E + T$
 $E \rightarrow T$
 $T \rightarrow T * F$
 $T \rightarrow F$
 $F \rightarrow id$
 $F \rightarrow (E)$

É possível gerar um parser LL(1) para essa gramática?

	Nullable	FIRST	FOLLOW
Е	N	(id	+)\$
Т	N	(id	+ *) \$
F	N	(id	+ *) \$
S	N	(id	

Recursão à Esquerda

É possível gerar um parser LL(1) para essa gramática?

	Nullable	FIRST	FOLLOW
Ε	N	(id	+)\$
Т	N	(id	+ *) \$
F	N	(id	+ *) \$
S	Ν	(id	

Problema:

- A função que implementa E precisa chamar a si mesma caso escolha E+T.
- Porém, é a primeira ação dela, antes de avançar na cadeia de entrada
- Laço infinito!
- Acontece devido à recursão à esquerda

Recursão à Esquerda

Gramáticas com recursão à esquerda não podem ser LL(1).

Fatoração (recursão à direita)!

- *E* → TE'
- $E' \rightarrow +TE'$
- E' →

Recursão à Esquerda

Generalizando:

- Tendo $X \to X \gamma$ e $X \to \alpha$, onde α não começa com X
- Derivamos strings da forma $\alpha \gamma^*$
 - $-\alpha$ seguido de zero ou mais γ .
- Podemos reescrever:

$$\begin{pmatrix} X \to X \ \gamma_1 \\ X \to X \ \gamma_2 \\ X \to \alpha_1 \\ X \to \alpha_2 \end{pmatrix} \Longrightarrow \begin{pmatrix} X \to \alpha_1 \ X' \\ X \to \alpha_2 \ X' \\ X' \to \gamma_1 \ X' \\ X' \to \gamma_2 \ X' \\ X' \to \gamma$$

$$S \rightarrow E \$$$

$$E \rightarrow E - T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$T \rightarrow F$$

$$F \rightarrow \text{id}$$

$$F \rightarrow \text{num}$$

$$F \rightarrow (E)$$

$$\begin{pmatrix}
X \to X\gamma_1 \\
X \to X\gamma_2 \\
X \to \alpha_1 \\
X \to \alpha_2
\end{pmatrix}$$

$$\begin{array}{c}
X \to \alpha_1 X' \\
X \to \alpha_2 X' \\
X' \to \gamma_1 X' \\
X' \to \gamma_2 X' \\
X' \to \end{array}$$

$$S \rightarrow E \$$$

$$E \rightarrow E - T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$T \rightarrow F$$

$$F \rightarrow \text{id}$$

$$F \rightarrow \text{num}$$

$$F \rightarrow (E)$$

$$\begin{pmatrix}
X \to X\gamma_1 \\
X \to X\gamma_2 \\
X \to \alpha_1 \\
X \to \alpha_2
\end{pmatrix}$$

$$\begin{array}{c}
X \to \alpha_1 X' \\
X \to \alpha_2 X' \\
X' \to \gamma_1 X' \\
X' \to \gamma_2 X' \\
X' \to \gamma_2 X'
\end{pmatrix}$$

$$S \rightarrow E \$$$

$$E \rightarrow E - T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$T \rightarrow F$$

$$F \rightarrow \text{id}$$

$$F \rightarrow \text{num}$$

$$F \rightarrow (E)$$

$$\begin{pmatrix}
X \to X\gamma_1 \\
X \to X\gamma_2 \\
X \to \alpha_1 \\
X \to \alpha_2
\end{pmatrix}$$

$$X \to \alpha_1 X' \\
X' \to \gamma_1 X' \\
X' \to \gamma_2 X' \\
X' \to \gamma_2 X' \\
X' \to \gamma_2 X'$$

$$S \rightarrow E \$$$

$$E \rightarrow E - T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow T / F$$

$$T \rightarrow F$$

$$F \rightarrow \text{id}$$

$$F \rightarrow \text{num}$$

$$F \rightarrow (E)$$

$$\begin{pmatrix}
X \to X\gamma_1 \\
X \to X\gamma_2 \\
X \to \alpha_1 \\
X \to \alpha_2
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
X \to \alpha_1 X' \\
X \to \alpha_2 X' \\
X' \to \gamma_1 X' \\
X' \to \gamma_2 X' \\
X' \to
\end{pmatrix}$$

$$\begin{pmatrix}
X \to X\gamma_1 \\
X \to X\gamma_2 \\
X \to \alpha_1 \\
X \to \alpha_2
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
X \to \alpha_1 X' \\
X \to \alpha_2 X' \\
X' \to \gamma_1 X' \\
X' \to \gamma_2 X' \\
X' \to
\end{pmatrix}$$

$$\begin{pmatrix}
X \to X\gamma_1 \\
X \to X\gamma_2 \\
X \to \alpha_1 \\
X \to \alpha_2
\end{pmatrix}$$

$$X \to \alpha_1 X' \\
X' \to \gamma_1 X' \\
X' \to \gamma_2 X' \\
X' \to \gamma_2 X' \\
X' \to \gamma_2 X'$$

$$\begin{pmatrix}
X \to X\gamma_1 \\
X \to X\gamma_2 \\
X \to \alpha_1 \\
X \to \alpha_2
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
X \to \alpha_1 X' \\
X \to \alpha_2 X' \\
X' \to \gamma_1 X' \\
X' \to \gamma_2 X' \\
X' \to \gamma_2 X'
\end{pmatrix}$$

$$\begin{pmatrix}
X \to X\gamma_1 \\
X \to X\gamma_2 \\
X \to \alpha_1 \\
X \to \alpha_2
\end{pmatrix}$$

$$X \to \alpha_1 X' \\
X' \to \gamma_1 X' \\
X' \to \gamma_2 X' \\
X' \to \gamma_2 X' \\
X' \to \gamma_2 X'$$

$$\begin{pmatrix}
X \to X\gamma_1 \\
X \to X\gamma_2 \\
X \to \alpha_1 \\
X \to \alpha_2
\end{pmatrix}$$

$$X \to \alpha_1 X' \\
X' \to \alpha_2 X' \\
X' \to \gamma_1 X' \\
X' \to \gamma_2 X' \\
X' \to \gamma_2 X' \\
X' \to \gamma_2 X'$$

$$\begin{pmatrix}
X \to X\gamma_1 \\
X \to X\gamma_2 \\
X \to \alpha_1 \\
X \to \alpha_2
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
X \to \alpha_1 X' \\
X \to \alpha_2 X' \\
X' \to \gamma_1 X' \\
X' \to \gamma_2 X' \\
X' \to
\end{pmatrix}$$

$$\begin{pmatrix}
X \to X\gamma_1 \\
X \to X\gamma_2 \\
X \to \alpha_1 \\
X \to \alpha_2
\end{pmatrix}$$

$$X \to \alpha_1 X' \\
X' \to \alpha_2 X' \\
X' \to \gamma_1 X' \\
X' \to \gamma_2 X' \\
X' \to$$

$$\begin{pmatrix}
X \to X\gamma_1 \\
X \to X\gamma_2 \\
X \to \alpha_1 \\
X \to \alpha_2
\end{pmatrix}$$

$$X \to \alpha_1 X' \\
X' \to \alpha_2 X' \\
X' \to \gamma_1 X' \\
X' \to \gamma_2 X' \\
X' \to \gamma_2 X'$$

$$\begin{pmatrix}
X \to X\gamma_1 \\
X \to X\gamma_2 \\
X \to \alpha_1 \\
X \to \alpha_2
\end{pmatrix}$$

$$X \to \alpha_1 X' \\
X' \to \alpha_2 X' \\
X' \to \gamma_1 X' \\
X' \to \gamma_2 X' \\
X' \to$$

$$\begin{pmatrix}
X \to X\gamma_1 \\
X \to X\gamma_2 \\
X \to \alpha_1 \\
X \to \alpha_2
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
X \to \alpha_1 X' \\
X \to \alpha_2 X' \\
X' \to \gamma_1 X' \\
X' \to \gamma_2 X' \\
X' \to
\end{pmatrix}$$

$$\begin{pmatrix}
X \to X\gamma_1 \\
X \to X\gamma_2 \\
X \to \alpha_1 \\
X \to \alpha_2
\end{pmatrix}$$

$$X \to \alpha_1 X' \\
X' \to \alpha_2 X' \\
X' \to \gamma_1 X' \\
X' \to \gamma_2 X' \\
X' \to Y_2 X' \\
X' \to Y_2 X'$$

$$S \rightarrow E$$

 $E \rightarrow T E'$
 $E' \rightarrow + T E'$
 $E' \rightarrow - T E'$
 $E' \rightarrow$
 $T \rightarrow F T'$
 $T' \rightarrow + F T'$
 $T' \rightarrow +$

	nullable	FIRST	FOLLOW
S	no	(id num	
\boldsymbol{E}	no	(id num) \$
E'	yes	+-) \$
T	no	(id num) + - \$
T'	yes	* /) + - \$
\boldsymbol{F}	no	(id num) * / + - \$

$S \rightarrow E$ \$			nullable	FIRST	FOLLO	OW	
$E \rightarrow T E'$		S	no	(id num		-0	
$E' \rightarrow + T E'$		E	no	(id num) \$		
$E' \rightarrow - T E'$		E'	yes	+-) \$		
<i>E'</i> →		T	no	(id num) + -	\$	
		T'	yes	* /) + -	\$	
$T \rightarrow F T'$		\boldsymbol{F}	no	(id num) * / +	- \$	
$T' \rightarrow^* F T'$,I		£2.	200		
$T' \rightarrow / F T'$							
$T' \rightarrow$							
$F \rightarrow id$	S	+	*	$\frac{\text{id}}{S \to E\$}$	$S \to E\$$)	\$
	S E			$S \to E \mathfrak{F}$ $E \to T E'$	C. C		
$F \rightarrow num$	E'	$E' \rightarrow +TE'$		$L \rightarrow IL$	$L \rightarrow IL$	$E' \rightarrow$	$E' \rightarrow$
$F \rightarrow (E)$	T	-		$T \to FT'$	$T \to FT'$		
,	T'	$T' \rightarrow$	$T' \to *FT'$			$T' \rightarrow$	$T' \rightarrow$
	F	* *************************************		$F \rightarrow id$	$F \to (E)$		

^{*} Algumas colunas da tabela foram omitidas

Fatoração à Esquerda

• Um outro problema para *predictive parsing* ocorre em situações do tipo:

$$S \rightarrow \text{if } E \text{ then } S \text{ else } S$$

 $S \rightarrow \text{if } E \text{ then } S$

 Regras do mesmo não terminal começam com os mesmo símbolos

Fatoração à Esquerda

$$S \rightarrow \text{if } E \text{ then } S \text{ else } S$$

 $S \rightarrow \text{if } E \text{ then } S$

Criar um novo não-terminal para os finais permitidos:

$$S \rightarrow \text{if } E \text{ then } S X$$

 $X \rightarrow X \rightarrow \text{else } S$

Análise Descendente (Predictive Parsing)

```
void S() { E(); eat(EOF); }

void E() {
    switch (tok) {
        case ?: E(); eat(PLUS); T(); break;
        case ?: E(); eat(MINUS); T(); break;
        case ?: T(); break;
        default: error(); }
}

void T() {
    switch (tok) {
        case ?: T(); eat(TIMES); F(); break;
        case ?: T(); eat(DIV); F(); break;
        case ?: F(); break;
        default: error(); }
}
```

Funciona ???

```
S \rightarrow E $
E \rightarrow E + T
E \rightarrow E - T
E \rightarrow T
T \rightarrow T * F
T \rightarrow T / F
T \rightarrow F
F \rightarrow id
F \rightarrow num
F \rightarrow (E)
```

Análise Descendente (Predictive Parsing)

$S \rightarrow E$ \$
$E \to T E'$ $E' \to + T E'$
<i>E'</i> → <i>T E'</i>
$E' \rightarrow$
$T \rightarrow F T'$ $T' \rightarrow^* F T'$
$T' \rightarrow FT'$
$T' \rightarrow$
$F \rightarrow id$
$F \rightarrow num$
$F \rightarrow (E)$

	+	*	id	()	\$
S			$S \to E$ \$	$S \to E$ \$		
\boldsymbol{E}			$E \to TE'$	$E \to TE'$		
E'	$E' \rightarrow +TE'$				$E' \rightarrow$	$E' \rightarrow$
T			$T \to FT'$	$T \to FT'$		
T'	$T' \rightarrow$	$T' \to *FT'$			$T' \rightarrow$	$T' \rightarrow$
\boldsymbol{F}			$F \rightarrow id$	$F \to (E)$		

^{*} Algumas colunas da tabela foram omitidas

Análise Descendente (Predictive Parsing)

```
S \rightarrow E $
E \rightarrow TE'
E' \rightarrow + TE'
E' \rightarrow - TE'
E' \rightarrow T \rightarrow FT'
T' \rightarrow FT'
T' \rightarrow FT'
T' \rightarrow FT'
T' \rightarrow F \rightarrow Id
F \rightarrow num
F \rightarrow (E)
```

```
void T() {
    switch (tok) {
    case ID:
    case NUM:
    case LPAREN: F(); Tprime(); break;
    default: print("expected id, num, or left-paren");
}}

void Tprime() {
    switch (tok) {
        case PLUS: break;
        case TIMES: eat(TIMES); F(); Tprime(); break;
        case RPAREN: break;
        case EOF: break;
        default: print("expected +, *, right-paren, or end-of-file");
}}
```

^{*} Algumas colunas da tabela foram omitidas

Lista de Exercícios

Lista 11

• Exercícios teóricos

Trabalho 1

• Léxico/Sintático para a linguagem Portugol

Trabalho T1 - PASCAL

```
program ex;
    var m: integer;
function F(n:integer; var k:integer):integer;
var p,q:integer;
begin
    if n<2 then</pre>
    begin
        F:=n;
        k := 0
    end
    else
    begin
        F := F(n-1, p) + F(n-2, q);
        k:=p+q+1
    end;
    write(n,k)
end
begin
    write (F(3,m),m);
end.
```

PASCAL - Cartas Sintáticas

programa:

bloco:

PASCAL - Cartas Sintáticas

expressão:


```
expressao → expressao_simples

expressao → expressao = expressao_simples

expressao → expressao <> expressao_simples

expressao → expressao < expressao_simples

expressao → expressao <= expressao_simples

expressao → expressao >= expressao_simples

expressao → expressao >= expressao_simples
```

Lista de Exercícios

Lista 11

• Exercícios teóricos

Trabalho 1

• Léxico/Sintático para a linguagem Pascal