

A mathematical model for the eradication of Guinea Worm Disease

Robert J. Smith, Patrick Cloutier, James Harriso and Alex Desforges

Bartolomé Ortiz Viso

bortiz@correo.ugr.es @bortizmath

Modelos en Ecología Máster en Física y Matemáticas

2 Febrero, 2018

Índice

Introducción

Mecanismos biológicos implicados

Modelado matemático

Comportamiento sin impulsos Comportamiento con impulsos

Simulaciones numéricas

Simulación caso particular

Conclusiones y futuro trabajo

Introducción

Claves de la Dracunculiasis

- Los europeos vieron por primera vez la enfermedad en la costa de Guinea del oeste de África en el siglo XVII.
- En la década de 1950 había 50 millones de casos.
- En 1986 comenzó un programa de erradicación concertado.
- Si se erradica con éxito, será el primer parásito enfermedad a ser erradicada.
- GWD es la única enfermedad que se transmite únicamente a través del agua potable.

Mecanismos biológicos implicados

Figura: Ciclo de la dracunculiasis

Modelo final

Variables

S: Susceptibles, E: Expuestos, I: Infectados, W: Cantidad de parásito

$$S' = \Pi - \beta SW - \mu S + \kappa I$$
, para $t \neq t_k$ (1)

$$E' = \beta SW - \alpha E - \mu E$$
, para $t \neq t_k$

$$I' = \alpha E - \kappa I - \mu I$$
, para $t \neq t_k$

$$W' = \gamma I - \mu_W W$$
, para $t \neq t_k$

$$\Delta W = -rW$$
 para $t = t_k$

Comportamiento sin impulsos

Resultados teóricos

- Dos posibles comportamientos dependientes de R₀
- $R_0 = \frac{\Pi \alpha \gamma \beta}{\mu(\alpha + \mu)(\kappa + \mu)\mu_W}$
- Si $R_0 < 1$ el unico punto de equilibrio es $(A, E, I, W) = (\frac{\Pi}{u}, 0, 0, 0)$ y es estable
- Si R₀ > 1 el equilibrio libre de enfermedad es inestable y existe un equilibrio estable con enfermedad

Comportamiento con impulsos

Planteamiento

El sistema con impulsos se puede analizar sobreestimando cantidades. Esto nos permite resolver la ecuación para W.

Impulsos periodicos

 Disminucion gradual empezando por el equilibrio

Impulsos NO periodicos

 Disminucion gradual empezando por el equilibrio, si la estimacion del espaciado es correcta

Simulaciones numéricas

Objetivo

Calcular la sensibilidad de el estimador R_0

- Latin hypercube sampling (LHS)
- Partial rank correlation coefficients (PRCCs)

Simulación caso particular

Nos llevamos el problema a un esquema discreto 📖

Conclusiones y futuro trabajo

- La clorizacion no ocurre de forma simultanea
- Hay distintas fuentes de agua a considerar y por ende distintos focos
- El ciclo de vida no se ve reflejado en el modelo.
- Necesaria la interpretación matemática incluso para variables no biológicas.