The Safe λ -Calculus

William Blum and C.-H. Luke Ong

Oxford University Computing Laboratory

TLCA 2007

Overview

- ► Safety is originally a syntactic restriction for higher-order grammars with nice automata-theoretic characterization.
- ▶ In the context of the λ -calculus it gives rise to the Safe λ -calculus.
- ► The loss of expressivity can be characterized in terms of representable numeric functions.
- ▶ The calculus has a "succinct" game-semantic model.

Outline for this talk

- 1. The safety restriction for higher-order grammars
- 2. The safe λ -calculus
- 3. Expressivity
- 4. Game-semantic characterization
- 5. Safe PCF, Safe IA

Higher-order grammars

Notation for types: $A_1 \rightarrow (A_2 \rightarrow (\dots (A_n \rightarrow o))\dots)$ is written $(A_1, A_2, \dots, A_n, o)$.

- ▶ Higher-order grammars are used as generators of word languages (Maslov, 1974), trees (KNU01) or graphs.
- ▶ A higher-order grammar is formally given by a tuple $\langle \Sigma, \mathcal{N}, \mathcal{R}, \mathcal{S} \rangle$ (terminals, non-terminals, rewritting rules, starting symbol)
- Example of a tree-generating order-2 grammar:

Non-terminals: S: o, H: (o, o) and F: ((o, o), o). Terminals: a: o and g, h: (o, o).

The Safety Restriction

- ► First appeared under the name "restriction of derived types" in "IO and OI Hierarchies" by W. Damm, TCS 1982
- ▶ It is a syntactic restriction for higher-order grammars that constrains the occurrences of the variables in the grammar equations according to their orders.
- ▶ (A_1, \dots, A_n, o) is homogeneous if A_1, \dots, A_n are, and ord $A_1 \ge \text{ord } A_2 \ge \dots \ge \text{ord } A_n$.

Definition (Knapik, Niwiński and Urzyczyn (2001-2002))

All types are assumed to be homogeneous.

An order k>0 term is *unsafe* if it contains an occurrence of a parameter of order strictly less than k. An unsafe subterm t of t' occurs in *safe position* if it is in operator position ($t'=\cdots(ts)\cdots$). A grammar is safe if at the right-hand side of any production all unsafe subterms occur in safe positions.

Safe grammars: examples

Take $h: o \rightarrow o$, $g: o \rightarrow o \rightarrow o$, a: o. The following grammar is unsafe:

$$\begin{array}{ccc} S & \to & \textit{H a} \\ \textit{H z}^o & \to & \textit{F} \underbrace{(\textit{g z})} \\ \textit{F} \phi^{(o,o)} & \to & \phi \left(\phi \left(\textit{F} h\right)\right) \end{array}$$

It is equivalent to the following safe grammar:

$$\begin{array}{ccc} \mathcal{S} & \rightarrow & \mathit{F}(\mathit{g}\;\mathit{a}) \\ \mathit{F}\;\phi^{(o,o)} & \rightarrow & \phi\left(\phi\left(\mathit{F}\;\mathit{h}\right)\right) \end{array}$$

Some Results On Safety

- Damm82 For generating word languages, order-*n* safe grammars are equivalent to order-*n* pushdown automata.
 - KNU02 Generalization of Damm's result to *tree generating* safe grammars/PDAs.
 - KNU02 The Monadic Second Order (MSO) model checking problem for trees generated by safe higher-order grammars of any order is decidable.
 - Ong06 But anyway, KNU02 result's is also true for unsafe grammars...
- Caucal02 Graphs generated by safe grammars have a decidable MSO theory.
- HMOS06 Caucal's result does not extend to unsafe grammars. However deciding μ -calculus theories is n-EXPTIME complete.
- AdMO04 Proposed a notion of safety for the λ -calculus (unpublished).

Simply Typed λ -Calculus

- ▶ Simple types $A := o \mid A \rightarrow A$.
- ► The order of a type is given by order(o) = 0, $order(A \rightarrow B) = max(order(A) + 1, order(B))$.
- ▶ Jugdements of the form $\Gamma \vdash M : T$ where Γ is the context, M is the term and T is the type:

- ► Example: $f: o \rightarrow o \rightarrow o, x: o \vdash (\lambda \varphi^{o \rightarrow o} x^o. \varphi \ x)(f \ x)$
- ▶ A single rule: β -reduction. e.g. $(\lambda x.M)N \rightarrow_{\beta} M[N/x]$

The Safe λ -Calculus

The formation rules

$$(var) \frac{(var)}{x : A \vdash_{s} x : A} \qquad (wk) \frac{\Gamma \vdash_{s} M : A}{\Delta \vdash_{s} M : A} \Gamma \subset \Delta$$

$$(app) \frac{\Gamma \vdash M : (A_{1}, \dots, A_{I}, B) \quad \Gamma \vdash_{s} N_{1} : A_{1} \quad \dots \quad \Gamma \vdash_{s} N_{I} : A_{I}}{\Gamma \vdash_{s} MN_{1} \dots N_{I} : B}$$
with the side-condition $\forall y \in \Gamma : \text{ord } y \geq \text{ord } B$

$$\Gamma x_{1} : A_{1} \quad x_{2} : A_{2} \vdash_{s} M : B$$

(abs)
$$\frac{\Gamma, x_1 : A_1 \dots x_n : A_n \vdash_s M : B}{\Gamma \vdash_s \lambda x_1 : A_1 \dots x_n : A_n \cdot M : A_1 \to \dots \to A_n \to B}$$

with the side-condition $\forall y \in \Gamma : \text{ord } y \geq \text{ord } A_1 \to \ldots \to A_n \to B$

Lemma

If $\Gamma \vdash_s M$: A then every free variable in M has order at least $\operatorname{ord} A$.

The Safe λ -Calculus : examples

- ▶ Some examples of safe terms: $\lambda x.x$, $\lambda xy.x$, $\lambda xy.y$.
- ▶ Up to order 2, β -normal terms are always safe.
- ▶ The two Kierstead terms (order 3). Only one of them is safe:

$$\lambda f^{((o,o),o)}.f(\lambda x^o.f(\lambda y^o.y))$$
$$\lambda f^{((o,o),o)}.f(\lambda x^o.f(\lambda y^o.x))$$

▶ An example of safe term not in β -normal form:

$$(\lambda \varphi^{o \to o} x^o. \varphi \ x)(\lambda y^o. y)$$

Variable Capture

The usual "problem" in λ -calculus: avoid variable capture when performing substitution: $(\lambda x.(\lambda y.x))y \rightarrow_{\beta} (\lambda y.x)[y/x] \neq \lambda y.y$

- 1. Standard solution: Barendregt's convention. Variables are renamed so that free variables and bound variables have different names. Eg. $(\lambda x.(\lambda y.x))y$ becomes $(\lambda x.(\lambda z.x))y$ which reduces to $(\lambda z.x)[y/x] = \lambda z.y$ Drawback: requires to have access to an unbounded supply of names to perform a given sequence of β -reductions.
- 2. Another solution: use the λ -calculus à la de Brujin where variable binding is specified by an index instead of a name. Variable renaming then becomes unnecessary. Drawback: the conversion to nameless de Brujin λ -terms requires an unbounded supply of indices.

Property

In the Safe λ -calculus there is no need to rename variables when performing substitution.

Variable capture: examples

1. Contracting the β -redex in the following term

$$f: o \rightarrow o \rightarrow o, x: o \vdash (\lambda \varphi^{o \rightarrow o} x^{o}. \varphi \ x)(\underline{f} \ \underline{x})$$

leads to variable capture:

$$(\lambda \varphi x. \varphi \ x)(f \ x) \not\rightarrow_{\beta} (\lambda x. (f \ x)x).$$

Hence the term is unsafe. Indeed, $\operatorname{ord} x = 0 \le 1 = \operatorname{ord} f x$.

- 2. The term $(\lambda \varphi^{o \to o} x^o. \varphi x)(\lambda y^o. y)$ is safe.
- 3. The unsafe term $\lambda y^o z^o.(\lambda x^o.y)z$ can be contracted without renaming variables. Hence not all terms whose β -contraction can be correctly implemented by capture permitting substitution, are safe.

Transformations preserving safety

- Substitution preserves safety.
- ▶ β -reduction does not preserve safety: Take w, x, y, z: o and f: (o, o, o). The safe term $(\lambda xy.f \times y)z$ w β -reduces to the unsafe term $(\lambda y.f \times y)w$ which in turns reduces to the safe term $f \times w$.
- ▶ Safe β -reduction: reduces simultaneously as many β -redexes as needed in order to reach a safe term.
- ▶ Safe β -reduction preserves safety.
- η -reduction preserves safety.
- ▶ η -expansion does not preserve safety. E.g. $\vdash_s \lambda y^o z^o.y : (o, o, o)$ but $\not\vdash_s \lambda x^o.(\lambda y^o z^o.y)x : (o, o, o)$.
- ightharpoonup η -long normal expansion preserves safety.

Expressivity

Safety is a strong constraint but it is still unclear how it restricts expressivity:

- de Miranda and Ong showed that at order 2 for word languages, non-determinism palliates the loss of expressivity. It is unknown if this extends to higher orders.
- ► For tree-generating grammars: Urzyczyn conjectured that safety is a proper constraint i.e. that there is a tree which is intrinsically unsafe. He proposed a possible counter-example.
- For graphs, HMOS06's undecidability result implies that safety restricts expressivity.
- ► For simply-typed terms: ...

Numerical functions

Church Encoding: for $n \in \mathbb{N}$, $\overline{n} = \lambda sz.s^nz$ of type $I = (o \to o) \to o \to o$.

Theorem (Schwichtenberg 1976)

The numeric functions representable by simply-typed terms of type $I \rightarrow \ldots \rightarrow I$ are exactly the multivariate polynomials extended with the conditional function:

$$cond(t, x, y) = \begin{cases} x, & \text{if } t = 0 \\ y, & \text{if } t = n + 1 \end{cases}$$

Numerical functions (2)

Let $n, m \in \mathbb{N}$.

- ▶ Natural number: $\overline{n} = \lambda sz.s^nz : (o \rightarrow o) \rightarrow o \rightarrow o$. Safe.
- ▶ Addition: $\overline{n+m} = \lambda \alpha^{(o,o)} x^o . (\overline{n} \alpha) (\overline{m} \alpha x)$. Safe.
- ▶ Multiplication: $\overline{n.m} = \lambda \alpha^{(o,o)}.\overline{n}(\overline{m}\alpha)$. Safe.
- ► Conditional: $C = \lambda FGH\alpha x.H(\lambda y.G\alpha x)(F\alpha x)$. Unsafe.

In fact:

Theorem

Functions representable by safe λ -expressions of type $I \to \ldots \to I$ are exactly the multivariate polynomials.

Game semantics

Model of programming languages based on games (Abramsky et al.; Hyland and Ong; Nickau)

- ▶ 2 players: Opponnent (system) and Proponent (program)
- ▶ The term type induces an arena defining the possible moves

- Play = justified sequence of moves played alternatively by O and P with justification pointers.
- Strategy for P = prefix-closed set of plays. sab in the strategy means that P should respond b when O plays a in position s.
- ▶ The denotation of a term M, written $\llbracket M \rrbracket$, is a strategy for P.
- ▶ $[7 : \mathbb{N}] = \{\epsilon, q, q \ 7\}$ $[succ : \mathbb{N} \to \mathbb{N}] = Pref(\{q^0q^1n(n+1) \mid n \in \mathbb{N}\})$
- ▶ Compositionality: [succ 7] = [succ]; [7]

Game-semantic Characterization of Safety

The variable binding restriction imposed by the safety constraint implies:

Theorem

- ► Safe terms are denoted by P-incrementally justified strategies: each P-move *m* points to the last O-move in the P-view with order > ord *m*.
- ► Conversely, if a *closed* term is denoted by a P-incrementally justified strategy then its η -long β -normal form is safe.

Corollary

Justification pointers attached to P-moves are redundant in the game-semantics of safe terms.

Safe PCF

- ▶ PCF = λ^{\rightarrow} with base type \mathbb{N} + successor, predecessor, conditional + Y combinator
- ► Safe PCF = Safe fragment of PCF

Proposition

Safe PCF terms are denoted by P-i.j. strategies.

The first fully-abstract models of PCF were based on game semantics (Abramsky et al., Hyland and Ong, Nickau).

Question: Are P-i.j. strategies, suitably quotiented, fully abstract for Safe PCF?

Idealized Algol (IA): Open problem

- ► IA = PCF + block-allocated variables + imperative features
- ▶ Introduced by John Reynolds, 1997.
- ▶ $IA_i + Y_j$: fragment of IA with finite base type, terms of order $\leq i$, recursion limited to order j

Two IA terms are equivalent iff the two sets of complete plays of the game denotations are equal [Abramsky,McCusker].

- ▶ IA_2 : the set of complete plays is regular [Ghica&McCusker00].
- ▶ $IA_3 + Y_0$: DPDA definable [Ong02].
- ► *IA*₃ + *while*: Visibly Pushdown Automaton definable [Murawski&Walukievicz05].

Hence observational equivalence is decidable for all these fragments. However at order 4, observational equivalence is undecidable [Mur05].

Question: Is observational equivalence decidable for the safe fragment of IA_4 ?

Conclusion and Future Works

Conclusion:

Safety is a syntactic constraint with interesting algorithmic and game-semantic properties.

Future work:

- ▶ What is a (categorical) model of the safe lambda calculus?
- Can we obtain a fully abstract model of Safe PCF (with respect to safe contexts)?
- ▶ Complexity classes characterized with the Safe λ -calculus?
- ➤ Safe Idealized Algol: is contextual equivalence decidable for some finitary fragment (e.g. Safe IA₄) (with respect to all/safe contexts) ?

Related works:

- ▶ Jolie G. de Miranda's thesis on safe/unsafe grammars.
- ► Ong introduced computation trees in LICS2006 to prove decidability of MSO theory on infinite trees generated by higher-order grammars (whether safe or not).