Polymeric Structure

Contents

- ✓ Concept of molecular weight
- √ Chemistry of polymers
- √ % Crystallinity
- ✓ Tacticity in polymers

Molecular Weight

- The molecular weight distribution is important in thermoplastics.
- In thermosets, a gelled network of essentially infinite molecular weight is formed, so
 the idea of a "molecular weight distribution" is non-sensical.

Two ways:-

a) Number average molecular weight (M_n) : Total weight of all the polymer molecules in a sample, divided by the total number of polymer molecules in a sample.

Number average molecular weight,
$$\overline{M_n} = \frac{\sum M_i N_i}{\sum N_i}$$

Where, $\mathbf{M_i}$ = molecular weight of i_{th} polymer chain; $\mathbf{N_i}$ = number of chains of that molecular weight.

b) Weighted average molecular weight (M_w) : It's based on the fact that a bigger molecule contains more of the total mass of the polymer sample than the smaller molecules do.

Weighted average molecular weight,
$$\overline{M_w} = \frac{\sum M_i^2 N_i}{\sum M_i N_i}$$

More appropriate

Degree of Polymerization

$$DP = \frac{\overline{M}_n}{m}$$

where, $\overline{M_n}$ = Number average molecular weight m = repeat unit molecular weight (no. of atoms x atomic wt.)

Example: Suppose for **Polyvinyl chloride**, \overline{M}_n = 21,150 g/mol Then, repeat unit molecular weight, m = 2 x 12 + 3 x 1 + 1 x 35 = 62 g/mol

$$DP = \frac{21,150}{62} = 341$$

Reference: Kalpakjian, Schmid - Manufacturing Processes for Engineering Materials, 5th ed.

Repeat unit contains – 2 carbon, 3 hydrogen and 1 chlorine atom

<u>PVC</u>

Polydispersity Index

Polydispersity index, PI =
$$\frac{M_w}{M_n}$$

- The larger the polydispersity index, the broader the molecular weight.
- Monodisperse polymer, where all the chain lengths are equal (such as a protein) has an PI = 1.
- Step polymerization reactions typically yield values of PI ≈ 2.0
- Chain polymerization reactions yield values between PI = 1.5 - 20.

Distribution of molecular weights for a typical polymer

Example

No. of molecules (N _i)	Mass of each molecule (M _i) (g/mol)	Total mass of each type of molecule, (N _i M _i) in g/mol	$M_i^2 N_i$
1	800,000	800,000	6.4 x 10 ¹¹
3	750,000	2250,000	16.8 x 10 ¹¹
5	700,000	3500,000	24.5 x 10 ¹¹
8	650,000	5200,000	33.8 x 10 ¹¹
10	600,000	6000,000	36 x 10 ¹¹
13	550,000	7150,000	39.3 x 10 ¹¹
20	500,000	10,000,000	50 x 10 ¹¹
13	450,000	5850,000	26.3 x 10 ¹¹
10	400,000	4000,000	16 x 10 ¹¹
8	350,000	2800,000	98 x 10 ¹¹
5	300,000	1500,000	4.5 x 10 ¹¹
3	250,000	750,000	18.75 x 10 ¹¹
1	200,000	200,000	0.4x 10 ¹¹
$\sum N_i = 100$		$\sum M_i N_i = 50,000,000$ (Total mass)	$\sum M_i^2 N_i = 370.75 \times 10^{11}$

Number average molecular weight,
$$\overline{M_n} = \frac{\sum M_i N_i}{\sum N_i}$$

$$= \frac{50,000,000}{100} = 500,000 \text{ g/mol}$$

Weighted average molecular weight,
$$\overline{M_W}=\frac{\sum M_i^2 N_i}{\sum M_i N_i}$$

$$=\frac{370.75\times 1011}{50,000,000}=741,500~\rm g/mol$$

Polydispersity index, PI =
$$\frac{M_w}{M_n}$$
 = 1.48

Chemistry of Polymer molecules

 When all the <u>mers</u> are the <u>same</u>, the molecule is called a **Homo-polymer**.

• When there is more than one type of mer present, the molecule is a **Co-polymer**.

 Mer units that have 2 active bonds to connect with other mers are called bi-functional.

Polyethylene

 Mer units that have 3 active bonds to connect with other mers are called trifunctional. They form 3-D molecular network structures.

Possible Physical States for Polymer Materials

Traditional classification of physical states (gases, liquids, crystals) is not informative for polymer materials.

Classification of polymer materials:-

- Partially crystalline state
- Viscoelastic State (polymer melt)
- Highly elastic state (e.g. Rubbers)
- Glassy state (e.g. Organic glasses from poly(styrene), poly(methylmethacrylate), poly(vinyl chloride))

Most polymers don't stretch out fully, like this. Instead, they fold back on themselves after going straight for a short distance, like this.

- ✓ Lamella grow like the spokes of a bicycle wheel from a central nucleus.
- ✓ The whole assembly is called a *Spherulite*. In a sample of a crystalline polymer weighing only a few grams, there are many billions of Spherulites.

Crystallinity

Crystalline region: Orderly arrangement of molecular chains.

✓ High crystallinity means - higher density, more strength, higher resistance to both dissolution and softening by heating.

Degree of crystallinity in Polymers

- Ranges from completely amorphous to about 95% crystalline.
- Metal specimens are almost always entirely crystalline.
- Ceramics are either totally crystalline or totally non-crystalline.

For same material & molecular weight

 $\rho_{crystalline\ polymer} > \rho_{amorphous\ polymer}$ (due to close packing)

Remember: No polymer is 100% crystalline

Reference: Kalpakjian, Schmid - Manufacturing Processes for Engineering Materials, 5th ed.

Crystallinity dependence

Degree of crystallinity is affected by:-

- ✓ Rate of cooling during solidification
 - More the rapid cooling lesser the time for alignment poorer the crystallinity.
- ✓ Chain configuration
 - ➤ More the side branching & cross linking <u>more the restriction</u> to prevent the <u>chain alignment</u> <u>lesser</u> the <u>crystallinity</u>.
 - > Thus, linear polymer have high degree of crystallinity.
 - Most network and crosslinked polymers are almost totally amorphous.

Reference: Kalpakjian, Schmid - Manufacturing Processes for Engineering Materials, 5th ed.

Tacticity in Polymers

- ✓ Different atomic configurations for the same composition.
- ✓ Tacticity is the way pendant groups are arranged along the backbone chain of a polymer.
- ✓ Isotactic & Syndiotactic regular geometry facilitates fitting of adjacent chain, thus more crystalline.
- ✓ Atactic Poorly Crystalline due to irregularity of side group.
- ✓ Also, larger the side-bonded groups of atoms the less is the tendency for crystallization.

Stereoisomers

Some Highly Crystalline Polymers:

- ✓ Polypropylene
- ✓ Syndiotactic polystyrene
- ✓ Nylon
- ✓ Kevlar and Nomex

Some Highly Amorphous Polymers

- ✓ Poly(methyl-methacrylate), PMMA
- ✓ Atactic polystyrene
- ✓ Polycarbonate
- ✓ Polyisoprene

% Crystallinity

% Crystallinity =
$$\frac{\rho_c(\rho_s - \rho_a)}{\rho_s(\rho_c - \rho_a)} \times 100$$

where, ρ_s : Density of specimen

 ho_a : Density of the totally amorphous polymer, ho_c : Density of the perfectly crystalline polymer

The values of ρ_s , ρ_a and ρ_c are measured by experimental means.

In the **next lecture**, we will learn about:

- ✓ Glass Transition temperature (T_g)
- ✓ Experimental methods to determine T_g
- ✓ Factors affecting T_g

