

UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO COLEGIADO DE ENGENHARIA ELETRICA

LUCIVANIO DE SOUZA OLIVEIRA JUNIOR TAYLA DE SOUZA MIRANDA

IMPLEMENTAÇÃO DA APROXIMAÇÃO DE DERIVADA DE FUNÇÃO UTLIZANDO DIFERENÇAS FINITAS

Trabalho apresentado no curso de bacharelado em Engenharia Eletrica na Universidade Federal do Vale do São Francisco.

Professor: Carlos Freitas

Juazeiro-BA

1. Oque é a Aproximação de Derivadas usando Diferenças Finitas

As diferenças finitas são técnicas utilizadas para aproximar derivadas de funções com base em valores discretos. São amplamente usadas em métodos numéricos e aplicações computacionais, especialmente na engenharia e física.

Fórmulas Principais:

- Diferença Progressiva: $f'(x) \approx (f(x+h) - f(x)) / h$ - Diferença Regressiva: $f'(x) \approx (f(x) - f(x-h)) / h$ - Diferença Centrada: $f'(x) \approx (f(x+h) - f(x-h)) / (2h)$

Aplicações:

- Aproximação de derivadas em pontos específicos
- Resolução numérica de equações diferenciais
- Simulações computacionais em física e engenharia

Vantagens e Limitações:

- Vantagens: Simplicidade, implementação direta, aplicável a dados experimentais
- Limitações: Erros de truncamento, sensibilidade ao passo h

2. Exemplos utilizados na pratica

CODIGO:

```
4 $
Edit Preview
                                                                                                       Spaces 

                                                                                                                             No wrap ◆
      import math
     def derivada_diferencas_finitas(f, x, h=1e-5, tipo='centrada'):
4
        if tipo == 'progressiva':
            return (f(x + h) - f(x)) / h
        elif tipo == 'regressiva':
             return (f(x) - f(x - h)) / h
8
       elif tipo == 'centrada':
9
            return (f(x + h) - f(x - h)) / (2 * h)
        else:
10
11
             raise ValueError("Tipo inválido")
12
13
14
         return math.sin(x) # exemplo: sin(x)
15
      x = math.pi / 4
16
17
      h = 0.0001
18
19
      resultado = derivada_diferencas_finitas(func, x, h, tipo='centrada')
20
21
      print(resultado)
```

Link Github: https://github.com/LucivanioJunior/Codigos-de-

2.2 Testes usados nos Códigos:

2.2.1

 $f(x) = x^3 \qquad x = 2$

Resultado Esperado: 12

Alterações Usadas:

Pontos: Função Matemática:

h: 0,0001

Resultado Obtido: 12.00000001000845

 $f(x) = \ln(x) \qquad x = 1$

Resultado Esperado: 1

Alterações Usadas:

Função Matemática:

x: 1

math.log(x)

h: 0,0001

Pontos:

Resultado Obtido: 1.0000000033332233

 $f(x) = \cos(x^2) \qquad x = 1$

Resultado Esperado: -1,683

Alterações Usadas:

Pontos: Função Matemática:

h: 0,0001

Resultado Obtido: -1.6829419692016012

IMPLEMENTAÇÃO DA SOMA DE RIEMMAN PARA CALCULO DE INTEGRAL

Trabalho apresentado no curso de bacharelado em Engenharia Eletrica na Universidade Federal do Vale do São Francisco.

Professor: Carlos Freitas

Juazeiro-BA

3. Soma de RIEMMAN e sua utilização no calculo de derivadas

A soma de Riemann é um método numérico usado para aproximar o valor de uma integral definida. Ela consiste em dividir a área sob uma curva em retângulos e somar suas áreas.

Tipos de Soma de Riemann:

- Pela esquerda: Usa o valor da função no início de cada subintervalo
- Pela direita: Usa o valor da função no final de cada subintervalo
- Pelo ponto médio: Usa o valor da função no ponto médio de cada subintervalo

Aplicações:

- Cálculo de áreas sob curvas
- Aproximação de integrais definidas
- Cálculos em física, economia e estatística

Ligação com o Conceito de Integral:

À medida que o número de subintervalos aumenta (e sua largura tende a zero), a soma de Riemann se aproxima do valor exato da integral definida.

4. Exemplos utilizados na pratica

```
8 Raw □ ± 0 → 0
Code Blame 26 lines (22 loc) · 583 Bytes
        def soma_riemann(f, a, b, n, metodo='meio'):
            largura = (b - a) / n
            soma = 0.0
             for i in range(n):
               if metodo == 'esquerda':
                     x = a + i * largura
               elif metodo == 'direita':
                     x = a + (i + 1) * largura
             elif metodo == 'meio':

x = a + (i + 0.5) *

else:

raise ValueError("N
                    x = a + (i + 0.5) * largura
   11
   12
                    raise ValueError("Método inválido")
   13
                soma += f(x)
           return soma * largura
   14
   15
          import math
   16
   17
         def funcao(x):
   18
   19
            return math.sin(x)
   20
         a = 0
   21
   22
         b = math.pi
          n = 1000
   23
   24
   25
         resultado = soma_riemann(funcao, a, b, n, metodo='meio')
    26 print(resultado)
```

Link do Github: https://github.com/LucivanioJunior/Codigos-de-

Calculo1/blob/main/Soma%20de%20RIEMANN

4.2 Testes usados nos Códigos

4.2.1

 $f(x) = x^2$ de 0 a 2

Resultado Esperado: 2,6667

Alterações Usadas

Pontos:

Função Matemática:

a: 0

x**2 (X²)

b: 2

n: 1000

Resultado Obtido: 2.666665999999998

f(x) = sen(x) de 0 a π

Resultado Esperado: 2

Alterações Usadas

Pontos:

Função Matemática:

a: 0

math.sin(x)

b: math.pi (valor de pi)

n: 1000

Resultado Obtido: 2.0000008224672676

```
f(x) = e^{-x^2} de -2 a 2
```

Resultado Esperado: 1,7640

```
11 v else:
raise ValueError("Método inválido")

soma += f(x)

return soma * largura
15
16 import math
17
18 → def funcao(x):
19 return math.exp(-x**2)
21 a = -2
22 b = 2
23 n = 1000
Ln: 19, Col: 26
1.7641628792077948
Ŧ
** Process exited - Return Code: 0 **
>_ Press Enter to exit terminal
```

Alterações Usadas:

Pontos:

Função Matemática:

a: -2

math.exp(-x**2)

b: 2

n: 1000

Resultado Obtido: 1.7641628792077948

5. CONCLUSÃO

Diferenças Finitas: Usada para aproximar derivadas.

Soma de Riemann : Usada para aproximar integrais (Áreas sob curvas).