Autgabe 1

- 1) wieso sind positive bewichte wichtig for die

 Konvergenz lin On [f, w] = I[f, w]?
 - Antword: Weil es sonst zu Auslöschung fehren Könnte
- 2) Was ist das Ziel der Gauß-Kronrad-Quadratur?
 Andnort: Eine Quadratur mit Exaktheitsgrad 2N+1
- 3) Wie landet die Herationsformel des Newton-Verfahrens?

 Antwort: Xk+1 = Xk ('(Xk))-1 ((Xk))
- 4) Wans ist ein Herations verfahren lokal konv. ?

 Antwort: lokal konv. gegen $\hat{x} \in \mathbb{R}^n$, wenn es eine

 Umgebung U van \hat{x} gibt, sodass für alle

 Startwerte in dieser Umgebung ($x_0 \in U$)

 die zugrundeliegende Folge wohldefiniert &

 gegen \hat{x} konvergent ist.
- 5) Wann ist ein Verfahren global konvergent?

 Antwort: Wenn die Umgabung $U = \mathbb{R}^n$, dh.

 alle Startwerte $x_c \in \mathbb{R}^n$ kenv. gegen \hat{x} .

Author 2

$$K := \lim_{n \to \infty} \sup_{n \to \infty} \int_{K} K$$

$$K \to \infty$$

(i) $\lim_{n \to \infty} \sup_{n \to \infty} \left(\int_{K} \int_{K} K \right) \int_{K} \int_{K} K \int_{K} \int_{K} K \int_{K} \int_{K} K \int_{K} K$

$$P_{n} = \frac{1}{n} (2(n-1)+1) \times P_{n-1}(x) - (n-1) P_{n-2}(x)$$

$$= \frac{1}{n} ((2n-1) \times P_{n-1}(x) - (n-1) P_{n-2}(x))$$

$$\frac{d}{dx} P_{n}(x) = \frac{1}{n} ((2n-1)(P_{n-1}(x) + xP'_{n-1}(x)) - (n-1)P'_{n-2}(x))$$