

Lahore University of Management Sciences CS / EE 320 – Computer Organization and Assembly Language

Spring 2023 - 24

Instructor	Dr. Shahid Masud
Room No.	9-223A, Level 2, SBASSE
Office Hours	To be announced
Email	smasud@lums.edu.pk
Telephone	8199
Secretary/TA	
TA Office Hours	
Course URL	on LMS

Course Teaching Methodology (Please mention following details in plain text)

On-campus lectures and computer-based labs

Course Basics				
Credit Hours 4 (3 Theory + 1 Programming Lab)				
Lecture(s)	Nbr of Lec(s) Per Week	2	Duration	75 minutes
Recitation/Lab (per	Nbr of Lec(s) Per Week	1	Duration	75 – 100 minutes
week)				
Tutorial (per week)	Nbr of Lec(s) Per Week	As required	Duration	As required

Course Distribution		
Core CS → Can be used as Core in CS undergraduate curriculum		
	(in lieu of Fundamentals of Computer Systems CS 225*)	
Elective	Computer Science / Electrical Engineering / Computer Systems / and related majors	
Open for Student	Sophomore / Junior / Senior	
Category		
Close for Student	Freshman	
Category		

COURSE DESCRIPTION

The first course in the Computer Systems series helps students understand the basic design and operation of computing hardware, how to evaluate its performance, and how the hardware interfaces to software. When designing or selecting a computer system, it is important to understand the tradeoff among various components and functional blocks. This course will cover the basic concepts of Computer Organization including the design of single-cycle and multi-cycle CPU control and data-path, memory systems including hierarchy, caches and virtual memory, and input/output subsystems. Instruction set architecture of a RISC processor is studied in detail. Some aspects of pipelining and parallel processing are also covered. Performance estimation is used to appreciate different operations and choices.

The Labs will have focus on learning and experimenting with MIPS Assembly Level Programming.

COURSE PREREQUISITE(S)

Introduction to Computer Programming (SSE Core) CS 100

COURSE OBJECTIVES

To understand basic building blocks and appreciate design choices in a modern computer system including hardware, microprocessor, software and the interface between hardware and software. Learn to program in Assembly Language

Course Learning Outcomes				
	The students will be able to:	The students will be able to:		
CLO 1	Demonstrate understanding of basic building blocks and performance measurement in a computer system			
CLO 2	Demonstrate knowledge of methods and techniques to build datapath of a modern microprocessor			
CLO 3	Write Assembly Language programs to carry out basic arithmetic and data-handling operations			ndling operations
Relation t	Relation to CS / EE Program Outcomes			
CLOs	Related PLOs	Levels of Learning	Teaching Methods	CLO Attainment checked in
CLO 1	PLO 1 (Engg. Knowledge)	Cog 3	Lectures	Quizzes, Exams
CLO 2	PLO 3 (Development of Solutions)	Cog 3	Lectures	Quizzes, Exams
CLO 3	PLO 5 (Modern Tool Usage)	Cog 3, PsyMo 2	Programming	Lab Tasks and Assignments

Grading breakup: Component Details and weightages

Assignment(s): 5% (2 to 3)

Home Work: 0%

Quiz(s): 15% (5 to 6, one quiz will be dropped)

Labs: 20% (Attendance 4%, Task Completion 12%, Lab Quiz/s 4%)

Class Participation: 0% Midterm Examination: 25%

Project:

Final Examination: 35%

Examination Detail		
Midterm Exam	Yes/No: Yes Combine Separate: Combine Duration: 75 minutes Preferred Date: Lecture 15 or 16 Exam Specifications: Closed Book / Closed Notes / Calculator Allowed	
Final Exam	Yes/No: Yes Combine Separate: Combine Duration: 3 hours Exam Specifications: Closed Book / Closed Notes / Calculators Allowed	

Week/	Topics	Readings	Related CLOs
Lecture	Topics	Reduiligs	& Remarks
Weeks 1, 2	Introduction to Computer Organization, Building blocks, performance	Chap 1	CLO 1

	issues		
1	Course Introduction, Basic blocks of a Computer System	Chap 1	CLO 1
-	Emerging trends in computer systems, Microprocessor Technology,	Chap 1	CLO 1
2	software processing on hardware		
3	Computer throughput and response time, Performance of a computer system, Power Wall	Chap 1	CLO 1
4	Performance of Uniprocessor and Multiprocessor, MIPS, Quantitative Performance Benchmarks	Chap 1	CLO 1
Weeks 3, 4	Operation of Computer Hardware, Instructions, logical and arithmetic operations, addressing modes	Chap 2	CLO 3
5	Operations of Computer Hardware, Representing Instructions in Computers	Chap 2	CLO 3
6	Instruction fields, Logical and Decision Instructions,	Chap 2	CLO 3
7	Procedures and Sub-Routines, Stack operations	Chap 2	CLO 3
8	Addressing Modes, Instruction Execution	Chap 2	CLO 3
	Computer Arithmetic, addition, subtraction, multiplication, floating point,	Chap 3	CLO 2
Weeks 5, 6	parallelism in SIMD, vector instructions		
9	Computer Arithmetic, Addition, Multiplication, Signed numbers	Chap 3	CLO 2
10	Division, Introduction to Floating Point numbers	Chap 3	CLO 2
11	IEEE 754 standard, Floating Point Addition and Subtraction	Chap 3	CLO 2
12	Floating Point Multiplication, Rounding, Truncation, Guard Bits, MIPS example, Parallelism and Computer Arithmetic	Chap 3	CLO 2
Week 7, 8, 9	Processor design, building a datapath, multicycle implementation, pipelined datapath and control, data and control hazards	Chap 4	CLO 2
13	Basic MIPS Processor, Major Functional Units	Chap 4	CLO 2
14	Building a Datapath, R-format Instructions, Register file, ALU Control	Chap 4	CLO 2
15	Midterm week	спар 4	CLO Z
13	Load / Store Instructions, BEQ Instructions, Single Cycle vs Multicycle	Chap 4	CLO 2
16	Implementation	Chap 4	020 2
17	Introduction to Pipelining, Data Hazards	Chap 4	CLO 2
18	Forwarding, Stalling, Control Hazards, Impact of Pipelining on Branch Instructions, Branch Prediction	Chap 4	CLO 2
Midterm	Midterm examination		
week 8 or 9	<u> </u>		
19	Exception Handling, Parallelism via Instructions, Concept of Speculation, Multiple-Issue Processor	Chap 4	CLO 2
Weeks 10,	Memory technologies, memory hierarchy, caches, virtual memory	Chap 5	CLO 1
11, 12	,,,,,,		
20	Memory Technology, RAM, ROM, Flash	Chap 5	CLO 1
21	Memory Technology DISK, DVD, RAID Array (Stallings)	Stallings	CLO 1
	Introduction to Caches, Tag Field, Cache Access Direct, Associative, Set-	Chap 5 /	CLO 1
22	Associative	Stallings	
23	Cache Misses, Cache Performance, Multi-Level Caches	Chap 5	CLO 1
24	Virtual Memory, Page Faults, Fast Address Translation using TLB	Chap 5	CLO 1
25	Virtual Machines, Integrating VM, TLB and Caches, Cache Coherence	Chap 5	CLO 1
Week 13, 14	Parallel processing, multithreading, multicore processors	Chap 6	CLO 2
26	Challenges in creating parallel processing programs, SISD, MIMD, SIMD,	Chap 6	CLO 2
26	Challenges in creating parallel processing programs, SISD, MIMD, SIMD,	Chap 6	CLO 2

	SPMD, Vector Processing		
27	Hardware Multithreading, Multicore and Shared-Memory Multiprocessors	Chap 6	CLO 2
28	GPU, Domain Specific Architecture (DSA)	Chap 6	CLO 2

Textbook(s)/Supplementary Readings

<u>Text Book:</u> Computer Organization and Design (MIPS Edition) The Hardware / Software Interface by David Patterson and John Hennessy, 6th Edition

<u>Supplementary Reading:</u> Computer Organization and Architecture Designing for Performance by William Stallings, 10th Edition

Lab Topics	
Lab 1	Introduction to Assembly Language Programming, QtSpim (MARS) environment, MIPS Reference Card
Lab 2	Writing simple Assembly language programs in QtSpim, MIPS Registers and Memory map
Lab 3	Write programs to add, subtract, logical operations using different addressing modes
Lab 4	Write program to multiply and divide using different registers and addressing modes
Lab 5	Write program to use array operations in different addressing modes
Lab 6	Control Instructions and Procedure calls in Assembly Language
Lab 7	Exceptions, Interrupts and I/O in Assembly Language
Lab 8	Special instructions in RISC assembly language (eg. floating point)
Lab 9	Lab Assignment 1
Lab 10	Lab Assignment 2
Lab 11	Introduction to Computer Architecture Simulators, study pipeline behavior
Lab Exam	Lab Exam

Complex Engineering	Complex Engineering Problem/Activity:		
	Included: No		
Complex			
Engineering	Nature and details of Complex Engineering Problem:		
Problem Details			
	Assessment in		
	Included: No		
Complex			
Engineering Activity	Nature and details of Complex Engineering Activity:		
Details			
	Assessment in:		

Rubric Based Assessment of CLO:NIL

Assessment based on written quizzes, assignments, exams and laboratory tasks.

Lab tasks involve writing, debugging and executing Assembly Language Code for MIPS processor.

Academic Honesty

The principles of truth and honesty are recognized as fundamental to a community of teachers and students. This means that all academic work will be done by the student to whom it is assigned without unauthorized aid of any kind. Plagiarism, cheating and other forms of academic dishonesty are prohibited. Any instances of academic dishonesty in this course (intentional or unintentional) will be dealt with swiftly and severely. Potential penalties include receiving a failing grade on the assignment in question or in the

course overall. For further information, students should make themselves familiar with the relevant section of the LUMS student handbook.

Harassment Policy

SSE, LUMS and particularly this class, is a harassment free zone. There is absolutely zero tolerance for any behavior that is intended or has the expected result of making anyone uncomfortable and negatively impacts the class environment, or any individual's ability to work to the best of their potential. In case a differently abled student requires accommodations for fully participating in the course, students are advised to contact the instructor so that they can be facilitated accordingly. If you think that you may be a victim of harassment, or if you have observed any harassment occurring in the purview of this class, please reach out and speak to me. If you are a victim, I strongly encourage you to reach out to the Office of Accessibility and Inclusion at oai@lums.edu.pk or the sexual harassment inquiry committee at harassment@lums.edu.pk for any queries, clarifications, or advice. You may choose to file an informal or a formal complaint to put an end of offending behavior. You can find more details regarding the LUMS sexual harassment policy here. To file a complaint, please write to harassment@lums.edu.pk. SSE Council on Equity and Belonging In addition to LUMS resources, SSE's Council on Belonging and Equity is committed to devising ways to provide a safe, inclusive and respectful learning environment for students, faculty and staff. To seek counsel related to any issues, please feel free to approach either a member of the council or email at cbe.sse@lums.edu.pk

Rights and Code of Conduct for Online Teaching

The misuse of online modes of communication is unacceptable. TAs and Faculty will seek consent before the recording of live online lectures or tutorials. Please inform if you do not wish to be recorded during a session to inform the faculty member. Please also ensure that you prioritize formal means of communication (email, lms) over informal means to communicate with course staff.