

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba

Engen	haria	Mecatrô	nica – I	Departai	mento d	de Elet	rônica ((DAELN)
Discip	lina: I	Eletricid	ade Pro	f. José J	Jair Alv	es Me	ndes Jú	nior

4.1	D .
Aluno:	Data:
Aluno.	Data.

Experiência 7 – Teorema da Superposição e Ponte de Wheatstone

Antes da aula de laboratório, cada aluno deve fazer os cálculos e preencher as tabelas com os valores teóricos e, quando for o caso, montar e soldar previamente cada circuito que será testado. Deve-se preparar os cabos para as medidas de corrente em cada circuito que será testado.

- 1. Objetivos de Aprendizagem
- Verificar, experimentalmente, o Teorema da Superposição;
- Verificar, experimentalmente, a Ponte de Wheastone.
- 2. Componentes utilizados
- Resistores de 1/4W: 100Ω , 120Ω , 270Ω , 330Ω , 390Ω , 470Ω , 680Ω , $1k\Omega$ e 2,2k Ω ;
- Potenciômetro de $1k\Omega$;
- Pilhas de 1,5V com suporte;
- Fonte de tensão variável 0V-12V;
- Protoboard;
- Multímetro digital.
- 3. Experiência 7
- 3.1 Teorema da Superposição

O teorema da superposição enuncia que a corrente que circula por um ramo de um circuito com várias fontes de tensão é igual à soma algébrica das correntes, considerando uma fonte de tensão de cada vez, curto-circuitando as demais.

Usando o circuito da Figura 1 como exemplo, para se calcular a corrente de ramo I_2 usando o teorema da superposição, calcula-se esta corrente considerando uma fonte de tensão de cada vez, curto-circuitando as demais, como apresentado na Figura 2. A corrente I_2 do circuito completo é o somatório da corrente no ramo 2 nos três circuitos parciais ($I_2 = I_{2A} + I_{2B} + I_{2C}$)

Figura 1 – Circuito para avaliação do teorema da superposição.

Figura 2 – Circuitos apresentando a contribuição individual das fontes (a) E_1 , (b) E_2 e (c) E_3 .

Para o circuito da Figura 1, calcule V_{R2} e I_2 . Monte o circuito e meça V_{R2} e I_2 . Anotar os valores na Tabela 1.

V _{R2} calculado	V _{R2 medido}	I2 calculado	I ₂ medido

Para os circuitos da Figura 2, calcule I_{2A} , I_{2B} e I_{2C} , monte os três circuitos e medir as correntes. Anote os valores da Tabela 2, calculando também $I_2 = I_{2A} + I_{2B} + I_{2C}$.

Tabela 2

Parâmetro	Valor Calculado	Valor Medido	
I _{2A}			
I_{2B}			
I _{2C}			
$I_2 = I_{2A} + I_{2B} + I_{2C}$			

Com os valores obtidos nas Tabelas 1 e 2, foi possível comprovar o teorema da superposição? Justifique

3.2 Ponte Wheatstone

A Ponte de Wheatstone é um circuito composto por resistores arranjados de tal forma a obter-se em um determinado ramo uma corrente nula, situação denominada equilíbrio da ponte, como apresenta a Figura 3.

Figura 3 – Circuito de Ponte de Wheatstone.

Observando a Figura 3, pode-se concluir que se I3 = 0A, VR1 = VR3 e VR2 = VR4. Substituindo-se os valores, tem-se as equações (1) e (2)

$$V_{R1} = V_{R3} = R_1 \times I_1 = R_3 \times I_2 \tag{1}$$

$$V_{R2} = V_{R4} = R_2 \times I_1 = R_4 \times I_2 \tag{2}$$

Da equação (1) e (2) pode-se escrever (3) e (4):

$$\frac{I_2}{I_1} = \frac{R_1}{R_3} \tag{3}$$

$$\frac{I_2}{I_1} = \frac{R_2}{R_4} \tag{4}$$

Portanto a equação (5) mostra a relação entre os resistores para se garantir o equilíbrio da ponte, ou seja $I_3 = 0$.

$$\frac{R_1}{R_3} = \frac{R_2}{R_4} \tag{5}$$

Uma das aplicações da ponte de Wheatstone é a medida de resistência com grande precisão. Na Figura 4, um dos resistores (R_X) é desconhecido e um dos resistores restantes é substituído por um potenciômetro, que é ajustado para garantir que $I_3 = 0$. Assim, o valor do resistor R_X pode ser obtido pela equação (6)

$$R_X = \frac{R_2}{R_4} \times R_P \tag{5}$$

Figura 4 – Ponte de Wheatstone equilibrada.

O ponto de I_3 = 0 é medido com um amperímetro. Não se deve curto-circuitar. É para um ligar um amperímetro.

Para o circuito da Figura 5, qual deve ser o valor do potenciômetro para que a ponte esteja equilibrada (I₃ = 0A)? Nesta situação qual o valor da queda de tensão em cada resistor? Anotar na Tabela 6. Monte o circuito, ajuste o potenciômetro para o ponto de equilíbrio da ponte, medir a resistência do potenciômetro e as quedas de tensão em cada um dos resistores. Anote na Tabela 3.

Monte o circuito da Figura 6 conectando em R_X três resistores de valores desconhecidos (abaixo de 680Ω). Para cada resistor, ajuste o equilíbrio da ponte e anote na Tabela 4 o valor do potenciômetro (R_P) e o valor de R_X calculado pela fórmula R_X =(R_1/R_2) x R_P . Medir o valor de R_X com o ohmímetro e anote a Tabela 4.

Figura 5 – Circuito para montagem da verificação da Ponte de Wheatstone (1).

Tabela 3

Parâmetro	Valor Calculado	Valor Medido
R_p		
V_{R1}		
V_{R2}		
V _{RX}		
V_{RP}		

Figura 6 - Circuito para montagem da verificação da Ponte de Wheatstone (2).

Tabela 4

Parâmetro	R _P medido	Rx calculado	R _X medido
R_{x1}			
R _{x2}			
R _x 3			