Real Analysis, Stein and Shakarchi Chapter 2 Integration Theory*

Yung-H
siang Huang †

Exercises 1

1.	Proof.					
2.	Proof.					
3.	Proof.					
4.	Proof.					
5.	Proof.					
6.	Proof.					
7.	Proof.					
8.	Proof.					
9.	Proof.					
10.	Proof.					
11.	Proof.					
12.	Proof.					
13.	6. Give an example of two measurable sets A and B such that $A+B$ is not measurable.					
	<i>Proof.</i> As hint, consider $A = \{0\} \times [0, 1]$ and $B = \mathcal{N} \times \{0\}$, they are of measure zero. If $A + B$					
_	is measurable, then by Fubini's theorem, $(A+B)^y \equiv \mathcal{N}$ is measurable for a.e. $y \in [0,1]$.					
	*Last Modified: 2018/04/23					

[†]Department of Math., National Taiwan University. Email: d04221001@ntu.edu.tw

Remark 1.	The hypothesis	A + B is mea	surable in Brun	n-Minkowski ir	nequality is n	needed.
-----------	----------------	--------------	-----------------	----------------	----------------	---------

14. *Proof.* □

15.
$$Proof.$$

19.
$$Proof.$$

- 21. Suppose that f and g are measurable functions on \mathbb{R}^d . (a) Prove that f(x-y)g(y) is measurable on \mathbb{R}^{2d} .
 - (b) Show that if f and g are integrable on R^d , then f(x-y)g(y) is integrable on R^{2d} .
 - (c) Recall the definition of the convolution of f and g given by

$$(f * g)(x) = \int_{-\infty}^{\mathbb{R}^d} f(x - y)g(y) \, dy.$$

Show that f * g is well defined for a.e. x.

(d) Show that f * g is integrable whenever f and g are integrable, and that

$$||f * g||_{L^1(R^d)} \le ||f||_{L^1(R^d)} ||g||_{L^1(R^d)}$$

with equality if f and g are non-negative.

(e) The Fourier transform of an integrable function f is dened by

$$\widehat{f}(\xi) = \int_{R^d} f(x)e^{2\pi ix\cdot\xi} dx.$$

Check that \widehat{f} is bounded and is a continuous function of ξ . Prove that for each one has

$$\widehat{f * g}(\xi) = \widehat{f}(\xi)\widehat{g}(\xi).$$

Remark 2. See Exercise 1.17 in Book IV for a L^p space setting.

22. Let $f \in L^1(\mathbb{R}^d)$ and

$$\widehat{f}(\xi) = \int_{\mathbb{R}^d} f(x)e^{-2\pi i x \cdot \xi} \, dx.$$

Prove that \widehat{f} is uniformly continuous and vanishes at infinity. (This is Riemann-Lebesgue lemma).

Remark 3. Consult [4, Section I.4.1] or [3, Exercise 1.6] for showing the Fourier transform map from $L^1(\mathbb{R}^d)$ to $C_0(\mathbb{R}^d)$ is not surjective. For $L^1(\mathbb{T})$ case, consult Section 4.3.1 of Book IV.

Proof. The continuity is directly from LDCT. Note that

$$\widehat{f}(\xi) = \int_{\mathbb{R}} f(x)e^{-2\pi ix\xi} dx = \int_{\mathbb{R}} -f(y-\frac{1}{2\xi})e^{-2\pi iy\xi} dy.$$

So $\widehat{f}(\xi) = \frac{1}{2} \int_{\mathbb{R}} \left[f(x) - f(x - \frac{1}{2\xi}) \right] e^{-2\pi i x \xi} dx$ and hence the LDCT implies the decay at ∞ . The uniform continuity is an easy consequence of decay at ∞ and continuity.

23. As an application of the Fourier transform, show that there does not exist a function $I \in L^1(\mathbb{R}^d)$ such that

$$f * I = f$$
 for all $f \in L^1(\mathbb{R}^d)$.

Proof. (1st proof, need Fubini's theorem and Riemann-Lebesgue lemma) If this is true, then $\widehat{f} = \widehat{f * I} = \widehat{f}\widehat{I}$. Since there exists $f \in L^1$ such that $\widehat{f} \not\equiv 0, I \equiv 1$, which contradicts to the Riemann-Lebesgue lemma.

(2nd proof, use "translation is continuous in L^1 norm", also see Exercise 1.17 in Book IV) If this is true, then every L_c^{∞} function (essential bounded and has compact support) f is going to be uniformly continuous since f * I is. But this is not true (e.g. $f = \chi_{[0,1]^d}$).

(3rd proof, use the notion of absolutely continuity of integral, that is, Propostion 1.12) If such I, then $\chi_{B(0,r)} * I = \chi_{B(0,r)}$ for each r > 0. So there exists $x_r \in \chi_{B(0,r)}$ such that $1 = \chi_{B(0,r)} * I(x_r) = \int_{B(x_r,r)} I \ge 1$. Then $\int_{B(0,2r)} |I| \ge 1$ for each r, but this contradicts to Proposition 1.12.

3

Remark 4. The 2nd and 3rd proof are taken from [2, p.284-285].

- 24. (a) Show that f*g is uniformly continuous when $f\in L^1$ and $g\in L^\infty$
 - (b) If $f \in L^1$ and $g \in L^1 \cap L^{\infty}$, prove that $(f * g)(x) \to 0$ as $|x| \to \infty$.

Proof. (a) May assume $g \not\equiv 0$. By translation is continuous in L^1 norm, there is $\delta > 0$ such that, $||f(\cdot + h - f(\cdot))||_{L^1} < \epsilon/||g||_{L^{\infty}}$ whenever $h < \delta$. Then for all $x \in \mathbb{R}^d$, Hölder's inequality implies that

$$|(f * g)(x + h) - (f * g)(x)| \le ||f(\cdot + h - f(\cdot))||_{L^p} ||g||_{L^q} < \epsilon,$$

whenever $h < \delta$.

(b) By Young's inequality, $f*g \in L^1$. Then by (a) and Exercise 6, $(f*g)(x) \to 0$ as $|x| \to \infty$.

Remark 5. On 2017.09.23, I saw this problem which ask whether f * g is continuous for $f, g \in L^1(\mathbb{T})$. The answer is no by constructing explicit example $f(x) = g(x) = x^{-3/4}\chi_{(0,\pi]}(x)$. There is another answer states a non-trivial fact for me:

"Salem and Zygmund proved that convolution map $L^1(\mathbb{T}) \times L^1(\mathbb{T}) \to L^1(\mathbb{T})$ is onto.

This was shown to hold for all locally compact groups by Paul Cohen in 1959. This result was the starting point of an entire industry establishing "factorization theorems".

A nice survey on this topic is Jan Kisynski, On Cohen's proof of the Factorization Theorem, Annales Polonici Mathematici 75, 2 (2000), 177-192."

25. Show that for each $\epsilon > 0$, the function $F(\xi) = (1 + |\xi|^2)^{-\epsilon}$ is the Fourier transform of an L^1 function. (Note that $F \notin L^1$ if $\epsilon \leq \frac{d}{2}$)

[Hint:
$$K_{\delta}(x) = e^{-\pi|x|^2/\delta} \delta^{-d/2}$$
, consider $f(x) = \int_0^{\infty} K_{\delta}(x) e^{-\pi\delta} \delta^{\epsilon-1} d\delta$.]

Proof. Since $f \geq 0$, Fubini-Tonelli's theorem implies that

$$\int_{\mathbb{R}^d} f(x) \, dx = \int_0^\infty \int_{\mathbb{R}^d} K_\delta(x) \, dx \, e^{-\pi \delta} \delta^{\epsilon - 1} \, d\delta = \int_0^\infty e^{-\pi \delta} \delta^{\epsilon - 1} \, d\delta = \Gamma(\epsilon) \pi^{-\epsilon} < \infty$$

Again, the Fubini-Tonelli theorem implies that

$$\widehat{f}(\xi) = \int_{\mathbb{R}^d} f(x)e^{-2\pi x \cdot \xi} dx = \int_0^\infty \int_{\mathbb{R}^d} e^{-\pi |x|^2/\delta} e^{-2\pi x \cdot \xi} \delta^{-d/2} dx e^{-\pi \delta} \delta^{\epsilon - 1} d\delta$$
$$= \int_0^\infty e^{-\pi \delta(|\xi|^2 + 1)} \delta^{\epsilon - 1} d\delta = \Gamma(\epsilon) \left(\pi (1 + |\xi|^2)\right)^{-\epsilon}.$$

Remark 6. One can also construct functions on \mathbb{T} with arbitrary slow decay for their Fourier transform, see [1, Section 3.3].

Problems

1.	Proof.	
2.	Proof.	
3.	Proof.	
4.	Proof.	
5.	Proof.	

References

- [1] Grafakos, Loukas. Classical Fourier Analysis. 3rd ed., Springer, 2014.
- [2] Jones, Frank. Lebesgue Integration on Euclidean Space. Revised ed., Jones and Bartlett Learning, 2001.
- [3] Linares, Felipe, and Gustavo Ponce. Introduction to Nonlinear Dispersive Equations. 2nd ed., Springer, 2015.
- [4] Stein, Elias M., and Guido L. Weiss. Introduction to Fourier Analysis on Euclidean Spaces. Vol. 1. Princeton University Press, 1971.