IIC2343 – Arquitectura de Computadores

Antonia Christensen achristensen l@uc.cl

REPRESENTACIÓN DE NÚMEROS ENTEROS

Partamos con un mini resumen...

¿Cómo representamos los números naturales de forma eficiente?

Representación Posicional.

Posición del símbolo (dígito) dentro de la secuencia.

$$\sum_{k=0}^{n-1} s_k \times b^k$$

¿Qué pasa con los negativos?

1. Bit de signo: bit extra que determina si es positivo (0) o negativo (1).

2. Complemento a 1: not(número) = not(dígito) para cada dígito.

¿Qué pasa al sumar x + -x?

3. Complemento a 2: "arreglo algebraico" => + 1.

EJERCICIOS

1. T1 2018-2

- a) Indique la base β en la cual la siguiente ecuación es correcta: $7_{\beta} + 8_{\beta} = 13_{\beta}$.
- b) ¿Para qué números $\alpha \in \mathbb{R}$, existe β , tal que $\alpha = 10_{\beta}$? Indique una expresión analítica que caracterice β en función de α .

2. EX 2020-1

a) [**Números**] Transforma el número 10645₇ a base 14. Incluye tu procedimiento.

Propuesto:

f) Demuestre que el complemento a 2 del complemento a 2 de un número x es igual a x, i.e., $x = C_2(C_2(x))$. **Hint**: asuma que $C_2(x + y) = C_2(x) + C_2(y)$. (1 pto.)

a) Indique la base β en la cual la siguiente ecuación es correcta: $7_{\beta} + 8_{\beta} = 13_{\beta}$.

b) ¿Para qué números $\alpha \in \mathbb{R}$, existe β , tal que $\alpha = 10_{\beta}$? Indique una expresión analítica que caracterice β en función de α .

a) [**Números**] Transforma el número 106457 a base 14. Incluye tu procedimiento.

a) [**Números**] Transforma el número 106457 a base 14. Incluye tu procedimiento.

REPRESENTACIÓN DE NÚMEROS RACIONALES

Representación de punto flotante (float, double)

o La idea es aumentar el rango de la representación de punto fijo.

Se basa en la notación científica: codifica donde está el punto.

o Resultado: aumenta el rango pero se pierde precisión.

IEEE754 - FLOAT 32 BITS

- Signo: 1 bit (0: positivo, 1: negativo).
- Exponente: 8 bits (desfasado en 127).
- Significante o mantisa: 23 bits (normalizado).

$$X = -1^{signo} * (1 + significante) * 2^{(exponente - 127)}$$

Casos especiales:

■ **0** : significante = 0 y exponente = 0

• Inf (+ y -): significante = 0 y exponente = 1111...

■ NaN: exponente = 111... y significante!= 0.

EJERCICIOS

1. I1 2014-1

3. Escriba en formato float el número -48. Indique cómo se compone y qué significa cada una de las partes de la secuencia de bits.

2. I2 2020-1

Explica clara y detalladamente por qué, por la convención IEEE754, al sumar $2^{31} + 1$ obtenemos 2^{31} . Incluye los valores representados en notación científica pero en binario.

Propuesto

2. Considere el estándar IEEE 754 para la representación de números de punto flotante de precisión simple (32 bits). ¿Cuántos números se pueden representar con este estándar, sin considerar ±∞ ni NaN?

3. Escriba en formato float el número -48. Indique cómo se compone y qué significa cada una de las partes de la secuencia de bits.

Explica clara y detalladamente por qué, por la convención IEEE754, al sumar $2^{31} + 1$ obtenemos 2^{31} . Incluye los valores representados en notación científica pero en binario.

Explica clara y detalladamente por qué, por la convención IEEE754, al sumar $2^{31} + 1$ obtenemos 2^{31} . Incluye los valores representados en notación científica pero en binario.

