

ALGEBRA CHAPTER 5

COCIENTES NOTABLES

MOTIVATING STRATEGY

Michael Francis Atiyah

Matemático del siglo XX

La Matemática no solo se desarrollo en el pasado, también se sigue desarrollando en la actualidad, siendo uno de esos autores:

Michael Francis Atiyah es un matemático británico nacido en 1929 que pasa por ser unos de los matemáticos más importantes del siglo XX y de lo que llevamos del XXI. Sus contribuciones se centran principalmente en Geometría y Topología, siendo las más importantes la creación, de la denominada en Topología teoría K y muy relacionado con el número de soluciones independientes en ecuaciones diferenciales.

HELICO THEORY

COCIENTES NOTABLES

I) Definición

Son aquellos cocientes que se pueden obtener en formas directa sin la necesidad de efectuar la operación de división.

Forma general

$$\frac{x^n \pm y^n}{x \pm y}$$

n: Número de términos del C.N.

Además: $n \in N, n \ge 2$

$$\frac{x^n - y^n}{x - y}$$

$$\frac{x^n + y^n}{x + y}$$

$$\frac{x^n - y^n}{x + y}$$

$$\frac{x^n + y^n}{x - y}$$

II) CASOS DE COCIENTES NOTABLES

(Si la división es exacta)

$$\frac{x^{n} - y^{n}}{x - y} = x^{n-1} + x^{n-2} \cdot y + x^{n-3} \cdot y^{2} + \dots + y^{n-1}$$

Para todo "n" entero positivo

$$\frac{x^n - y^n}{x + y} = x^{n-1} - x^{n-2} \cdot y + x^{n-3} \cdot y^2 - \dots - y^{n-1}$$

Para todo "n"
PAR

$$\frac{x^n + y^n}{x + y} = x^{n-1} - x^{n-2} \cdot y + x^{n-3} \cdot y^2 - \dots + y^{n-1}$$

Para todo "n"
IMPAR

PROPIEDAD

Sea:
$$\frac{x^a \pm y^b}{x^p \pm y^q}$$

Genera cociente notable si:

$$\frac{a}{p} = \frac{b}{q} = n \text{ ($\#$ términos del C.N)}$$

IV) TÉRMINO DE LUGAR $k:(t_k)$

$$\frac{\text{CASO 1:}}{x^p - y^q}$$

$$t_k = +(x^p)^{n-k} \cdot (y^q)^{k-1}$$

$$K = 1, 2, 3, ..., n$$

Término de lugar k o posición k

HELICO | THEORY

CASO 2:

$$\frac{x^a - y^b}{x^p + y^q}$$

CASO 3:

$$\frac{x^a + y^b}{x^p + y^q}$$

Para ambos casos:

Sea:
$$\frac{x^n \pm y^n}{x \pm y}$$

Si n es impar Lugar(Tc)= $K = \frac{n+1}{2}$ $T_c = T_{\left(\frac{n+1}{2}\right)}$

$$T_{c} = T_{\left(\frac{n+1}{2}\right)}$$

Lugar(Tc1)= K = $\frac{n}{2}$ $T_{c1} = T_{\left(\frac{n}{2}\right)}$

$$T_{c1} = T_{\left(\frac{n}{2}\right)}$$

Si n es par

Lugar(Tc2)= K = $\frac{n+2}{2}$ $T_{c2} = T_{(\frac{n+2}{2})}$

$$T_{c2} = T_{\left(\frac{n+2}{2}\right)}$$

$$t_k = (signo)(x^p)^{n-k}.(y^q)^{k-1}$$

+ si k es IMPAR

- si k es PAR

HELICO PRACTICE

PROBLEMA 1 Indique el número de términos en el cociente notable: $\frac{x^{10a+4}-y^{13a+7}}{x^3-v^4}$

Resolución

$$El \ n^{\circ} \ de \ t\'{e}rminos = \boxed{\frac{10a+4}{3} = \frac{13a+7}{4}} \dots \dots \alpha$$

$$40a + 16 = 39a + 21$$
$$a = 5$$

Reemplazando: $a = 5 en \alpha$,

$$n^{\underline{0}}t\acute{e}rminos = \frac{10(5) + 4}{3}$$

 n^{o} términos = 18

 n° términos = 18

PROBLEMA 2

Indique el grado absoluto del término de lugar 18 en el cociente notable:

$$\frac{x^{40} - y^{200}}{x^2 + y^{10}}$$

Resolución

$$\mathbf{n} = \frac{40}{2} \qquad \qquad \mathbf{n} = 20$$

$$t_{18} = ? \qquad \qquad k = 18$$

Estamos en el 2^{do}caso de C.N

Como k es PAR signo es –

$$t_{18} = -(x^2)^{20-18}(y^{10})^{18-1}$$

$$t_{18} = -x^4 y^{170}$$

Piden: G.A

 $\therefore G.A = 174$

PROBLEMA 3 ¿Qué lugar ocupa en el desarrollo del cociente notable: $\frac{x^{160}-y^{280}}{x^4-y^7}$ el término de grado absoluto 252 ?

Resolución

$$\mathbf{n} = \frac{160}{4} \boxed{n = 40}$$

$$t_k = (signo)(x^4)^{n-k}(y^7)^{k-1}$$

Estamos en el 1^{er}caso de C.N

El **signo** siempre es +, así k sea **PAR** o **IMPAR**

$$t_k = (x^4)^{40-k} (y^7)^{k-1}$$

$$t_k = (x)^{160-4k} (y)^{7k-7}$$

$$160 - 4k + 7k - 7 = 252 (Dato)$$

$$3k = 99$$

∴ Ocupa el lugar 33

PROBLEMA 4 Halle el término central en el desarrollo del cociente notable:

$$\frac{5p+1+y^{5p-6}}{x^{p-1}+y^{p-2}}$$

Resolución

$$\frac{x^{5p+1} + y^{5p-6}}{x^{p-1} + y^{p-2}} = \frac{x^{21} + y^{14}}{x^3 + y^2}$$

$$N^{\circ}de\ t\acute{e}rminos(n) = \frac{5p+1}{p-1} = \frac{5p-6}{p-2} = 7$$

$$(5p+1)(p-2) = (p-1)(5p-6)$$

 $5p^2 - 9p - 2 = 5p^2 - 11p + 6$
 $2p = 8$

Lugar(Tc)=
$$\frac{n+1}{2}$$
 sabemos $n=7$

$$k = Lugar(Tc) = 4$$

$$T_k = (signo)(x^3)^{n-k}(y^2)^{k-1}$$

$$K \ es \ Par \ , el \ signo \ es(-)$$

$$T_4 = -(x^3)^{7-4}(y^2)^{4-1}$$

$$T_4 = -x^9y^6$$

$$T_C = -x^9y^6$$

$$\therefore T_C = -x^9 y^6$$

PROBLEMA 5 En el cociente notable: $\frac{(x+1)^{20}-(x-1)^{20}}{4\pi}$, determine el valor numérico del séptimo término para x=2

Resolución

recuerda:

$$(x+1)^2 - (x-1)^2 = 4x$$

(Identidad legendre)

Cálculo de T₇

$$n = 10$$

$$k = 7$$

$$T_k = (signo)[(x+1)^2]^{n-k}[(x-1)^2]^{k-1}$$

$$T_7 = +[(x+1)^2]^{10-7}[(x-1)^2]^{7-1}$$

$$T_7 = +[(x+1)^2]^{10-7}[(x-1)^2]^{7-1}$$

$$T_7 = (+)(x+1)^6(x-1)^{12}$$

$$V.N(T_7)$$
 para $x=2$

$$V.N(T_7) = (3)^6(1)^{12}$$

: V.N = 729

PROBLEMA 6 El número de veces que postuló el alumno Ricardo a la UNI está dado por la

cantidad de términos que tiene el cociente de:

$$\frac{x^{68} + x^{66} + x^{64} + \dots + x^2 + 1}{x^{12} + x^{10} + x^8 \dots + x^2 + 1}$$

¿Cuántas veces postuló Ricardo?

Resolución

$$\frac{x^{68} + x^{66} + x^{64} + \dots + x^{2} + 1}{x^{12} + x^{10} + x^{8} \dots + x^{2} + 1} = \frac{\frac{x^{70} - 1}{x^{2} - 1}}{\frac{x^{14} - 1}{x^{2} - 1}} = \frac{x^{70} - 1}{x^{14} - 1} \Rightarrow N^{\circ} de \ t\acute{e}rminos = \frac{70}{14}$$

Recuerda

$$\frac{x^{20}-1}{x^4-1}=x^{16}+x^{12}+x^8+x^4+1$$

$$N^{\circ}de \ t\'erminos = \frac{20}{4} = 5$$

∴ Ricardo postuló 5 veces

del quinto término es 95 y los grados absolutos de los términos disminuyen de 6 en 6. Si el precio de un polo deportivo es (ab-36) dólares, pero en oferta de verano se hace un descuento del 30%.¿Cuál es

el precio de oferta del polo deportivo?

Resolución

Propiedad:

Dado:

$$\frac{x^m \pm y^n}{x^p \pm y^q}$$

Si genera un C.N, se cumple: Los G.A de los términos aumentan o disminuyen a una razón constante (r)

$$r = q - p$$

Del dato

$$r = -6 \quad \equiv 1 - a$$

$$a = 7$$

Calculo del T₅

$$n = b$$
 $k = 5$

$$T_5 = +(x^a)^{b-5}(y)^{5-1}$$

 $T_5 = +(x^7)^{b-5}y^4$

$$GA(T_5) = 95$$
 $7(b-5) + 4 = 95$
 $b = 13$

el precio del polo es:

$$(7)(13) - 36 = 55$$

Descuento 30%

$$0,30(55)=16,5$$

Precio de oferta: 55-16,5

∴Precio de oferta: \$38,5