Η Πίεση και τα Μαθηματικά της

K. Λόλας 1 $\,$ $\,$ Μ. Ελευθεριάδης 2 $\,$ Π. Πετρίδης 3

 1 10ο ΓΕΛ ΘΕΣ/ΝΙΚΗΣ (ΠΕ03)

 2 320 ΓΕΛ ΘΕΣ/ΝΙΚΗΣ (ΠΕ03)

 3 ΓΕΛ ΧΑΛΑΣΤΡΑΣ (ΠΕ04.01)

Λευκάδα, Οκτώβριος 2017

Η Ανάγκη

- Διαισθητικοί Εμπειρικοί
- Μαθηματικό υπόβαθρο (?)
- Εμβάθυνση Παράδοξα

Εισαγωγή Διαίρεση Συμπεράσματα Γενίκευση

Πίεση Εμπειρικά Μαθηματικά

Ορισμός

Ορισμός (Β Γυμνασίου)

Πίεση ονομάζουμε το πηλίκο της δύναμης που ασκείται κάθετα σε μια επιφάνεια προς το εμβαδόν της επιφάνειας αυτής

Πίεση - Εμπειρικά

• Μονόμετρο

Πίεση - Εμπειρικά

- Μονόμετρο
- Διανυσματικό

Πίεση - Μαθηματικά

$$\bullet \ \vec{F} = p\vec{A}$$

Πίεση - Μαθηματικά

$$\bullet \ \vec{F} = p\vec{A}$$

$$\vec{F} = p\vec{A}$$

$$p = \frac{\vec{F}}{\vec{A}}$$

$$V \times V^* \to \mathbb{R}$$
$$\frac{\vec{a}}{\vec{b}} = \frac{\vec{a} \cdot \vec{b}}{\left|\vec{b}\right|^2}$$

$$V \times V^* \to \mathbb{R}$$
$$\frac{\vec{a}}{\vec{b}} = \frac{\vec{a} \cdot \vec{b}}{\left|\vec{b}\right|^2}$$

• Καλά ορισμένη πράξη

$$V \times V^* \to \mathbb{R}$$
$$\frac{\vec{a}}{\vec{b}} = \frac{\vec{a} \cdot \vec{b}}{\left|\vec{b}\right|^2}$$

- Καλά ορισμένη πράξη
- Αρ. Επιμεριστική $\frac{\vec{a}+\vec{b}}{\vec{c}}=\frac{\vec{a}}{\vec{c}}+\frac{\vec{b}}{\vec{c}}$

$$V \times V^* \to \mathbb{R}$$
$$\frac{\vec{a}}{\vec{b}} = \frac{\vec{a} \cdot \vec{b}}{\left|\vec{b}\right|^2}$$

- Καλά ορισμένη πράξη
- Αρ.Επιμεριστική $\frac{\vec{a}+\vec{b}}{\vec{c}}=\frac{\vec{a}}{\vec{c}}+\frac{\vec{b}}{\vec{c}}$
- Προσεταιριστική $\frac{k\vec{a}}{\vec{c}}=k\frac{\vec{a}}{\vec{c}},\;k\in\mathbb{R}$

$$V \times V^* \to \mathbb{R}$$
$$\frac{\vec{a}}{\vec{b}} = \frac{\vec{a} \cdot \vec{b}}{\left|\vec{b}\right|^2}$$

- Καλά ορισμένη πράξη
- Αρ. Επιμεριστική $\frac{\vec{a}+\vec{b}}{\vec{c}}=\frac{\vec{a}}{\vec{c}}+\frac{\vec{b}}{\vec{c}}$
- Προσεταιριστική $\frac{k\vec{a}}{\vec{c}}=k\frac{\vec{a}}{\vec{c}},\;k\in\mathbb{R}$
- Αντιμεταθετική

$$V \times V^* \to \mathbb{R}$$
$$\frac{\vec{a}}{\vec{b}} = \frac{\vec{a} \cdot \vec{b}}{\left|\vec{b}\right|^2}$$

- Καλά ορισμένη πράξη
- Αρ.Επιμεριστική $\frac{\vec{a}+\vec{b}}{\vec{c}}=\frac{\vec{a}}{\vec{c}}+\frac{\vec{b}}{\vec{c}}$
- Προσεταιριστική $\frac{k\vec{a}}{\vec{c}}=k\frac{\vec{a}}{\vec{c}},\;k\in\mathbb{R}$
- Αντιμεταθετική
- Προσεταιριστική

$$V \times V^* \to \mathbb{R}$$
$$\frac{\vec{a}}{\vec{b}} = \frac{\vec{a} \cdot \vec{b}}{\left|\vec{b}\right|^2}$$

- Καλά ορισμένη πράξη
- Αρ.Επιμεριστική $\frac{\vec{a}+\vec{b}}{\vec{c}}=\frac{\vec{a}}{\vec{c}}+\frac{\vec{b}}{\vec{c}}$
- Προσεταιριστική $\frac{k\vec{a}}{\vec{c}}=k\frac{\vec{a}}{\vec{c}},\;k\in\mathbb{R}$
- Αντιμεταθετική
- Προσεταιριστική
- Ουδέτερο Αντίστροφο

$$\bullet \ \frac{\vec{a} + \vec{b}}{\vec{c}} = \frac{\vec{a}}{\vec{c}} + \frac{\vec{b}}{\vec{c}}$$

$$\bullet \ \frac{\vec{a}+\vec{b}}{\vec{c}}=\frac{\vec{a}}{\vec{c}}+\frac{\vec{b}}{\vec{c}}$$

$$p(\vec{F_1}+\vec{F_2})=p(\vec{F_1})+p(\vec{F_2})$$

•
$$\frac{k\vec{a}}{\vec{c}} = k\frac{\vec{a}}{\vec{c}}, \ k \in \mathbb{R}$$

$$\bullet \ \frac{\vec{a} + \vec{b}}{\vec{c}} = \frac{\vec{a}}{\vec{c}} + \frac{\vec{b}}{\vec{c}}$$

$$\bullet \ \frac{k\vec{a}}{\vec{c}} = k\frac{\vec{a}}{\vec{c}}, \ k \in \mathbb{R}$$

•
$$\frac{k\vec{a}}{\vec{c}} = k\frac{\vec{a}}{\vec{c}}, \ k \in \mathbb{R}$$

$$p(k\vec{F}) = kp(\vec{F})$$

Υδροστατική Πίεση

Παραδοχή

- Ανεξάρτητη Επιφάνειας
- g(z) = c'

Υδροστατική Εξίσωση

$$\frac{dp}{dz} = -\rho g$$

Απόδειξη Ανεξαρτησίας ως προς Επιφάνεια

$$F_1cos\theta=F_3$$
 και $F_1sin\theta=F_3$

Αντίστοιχα

$$p_1 S_1 cos\theta = p_3 S_3 \Rightarrow p_1 = p_3$$

και

$$p_1S_1sin\theta=p_2S_2\Rightarrow p_1=p_2$$

Απόδειξη Υδροστατικής

Παραδοχή

- g(dz) = c'

$$\begin{split} \sum F_z &= 0 \Rightarrow \\ F_{z1} - F_{z2} &= B \Rightarrow \\ \left(p_{z_0} - p_{z_0 + dx}\right) dx \, dy &= \iiint_V \rho g \, dx \, dy \, dz \Rightarrow \\ -dp \, dx \, dy &= \rho g \iiint_V dx \, dy \, dz \Rightarrow \\ -dp \, dx \, dy &= \rho g dz \, dx \, dy \Rightarrow \frac{dp}{dz} = -\rho g \end{split}$$

Ατμοσφαιρική Πίεση

Παραδοχή

- \bullet g(z) = c
- $\bullet \ T(z) = c'$

Εξίσωση Πίεσης

$$p = p_0 e^{-\frac{m}{kTg}z}$$

Απόδειξη Ατμοσφαιρικής

$$\begin{split} \frac{dp}{dz} &= -\rho g \Rightarrow \\ \frac{dp}{dz} &= -\frac{mp}{kT}g \Rightarrow \\ \frac{dz}{dp} &= -\frac{kTg}{m}\frac{1}{p} \Rightarrow \\ z &= -\frac{kTg}{m}\ln\frac{p}{p_0} \Rightarrow \\ p &= p_0 e^{-\frac{m}{kTg}z} \end{split}$$

Ρευστά

Παραδοχή

- Δεν υπάρχει τριβή με τα τοιχώματα
- Υγρό ασυμπίεστο

Εξισώσεις

• Οριζόντιο σωλήνα: $\frac{\rho v^2}{2} + p = c$

Ρευστά

Παραδοχή

- Δεν υπάρχει τριβή με τα τοιχώματα
- Υγρό ασυμπίεστο

Εξισώσεις

- Οριζόντιο σωλήνα: $\frac{\rho v^2}{2} + p = c$
- Γενικά: $\frac{\rho v^2}{2} + p + \rho g h = c$

Απόδειξη Ρευστών - Οριζόντιου

Παραδοχή

- Δεν υπάρχει τριβή με τα τοιχώματα
- Υγρό ασυμπίεστο

$$\begin{split} F &= ma \Rightarrow -Adp = \rho V \frac{dv}{dt} \\ &- Adp = \rho Adx \frac{dv}{dt} \Rightarrow -dp = \rho v dv \\ &- \int_{p_1}^{p_2} dp = \int_{v_1}^{v_2} \rho v dv \Rightarrow p_2 - p_1 = \frac{1}{2} \rho (v_2^2 - v_1^2) \\ &\frac{1}{2} \rho v^2 + p = c \end{split}$$

Πίεση

$$p = \frac{\vec{F}}{\vec{A}} = \frac{\vec{F}\vec{A}}{\left|A\right|^2}$$

Σας Ευχαριστούμε...