

- 引言: 桥式电路的提出
- □ 单相半波整流电路的不足
- □ 提高整流电压波形质量——改善波动
- □ 提高网侧电压利用率——正负半周都能变换
- □ 改善整流变压器工作条件——消除直流磁势
- □ 与 "半波不可控 \rightarrow 桥式不可控"的发展相类似:"半波可控" \rightarrow "桥式可控"。

■负载性质为电阻的工作情况

单相全控桥式带电阻负载时的电路及波形

结构:

- VT₁和VT₄组成一对桥臂
- ▶ VT₂和VT₃组成另一对桥臂
- VT₁和VT₃: 共阴极→直流侧 (+)
- VT₂和VT₄: 共阳极→直流侧(-)

开关控制:

- ightharpoonup 在 u_2 正半周 $\omega t = \alpha$ 时刻触发 VT_1 和 VT_4 , $u_d = u_2$
- \rightarrow 当 u_2 过零变负后, VT_1 和 VT_4 受反向阳极电压关断, $u_d = 0$
- ightharpoonup 在 u_2 负半周 $\omega t = \pi + \alpha$ 时刻触发 VT_2 和 VT_3 , $u_d = -u_2$
- \rightarrow 当 u_2 过零变正后, VT_2 和 VT_3 受反向阳极电压关断, $u_d=0$
- ν u_2 开始下一个周期,循环工作

直流侧输出:

- \triangleright 整流电压 u_d 波形周期T=10mS,改善波动
- 交流侧正负半周都工作,电压利用率提高1倍,消除了直流磁势。

思考: 单相全控桥电路与单相半波电路的内在联系?

控制特性(整流电压平均值与相位控制角之间的关系):

$$U_d = \frac{1}{\pi} \int_{\alpha}^{\pi} \sqrt{2} U_2 \sin \omega t d(\omega t) = \frac{2\sqrt{2}U_2}{\pi} \frac{1 + \cos \alpha}{2} = 0.9U_2 \frac{1 + \cos \alpha}{2}$$
 \quad \text{a \text{ h8h \text{\text{180}}}}{\text{a}}

向负载输出的直流电流平均值为:

$$I_d = \frac{U_d}{R} = \frac{2\sqrt{2}U_2}{\pi R} \frac{1 + \cos\alpha}{2} = 0.9 \frac{U_2}{R} \frac{1 + \cos\alpha}{2}$$

整流变压器二次侧电流有效值 I2与输出直流电流有效值 I 相等:

$$I = I_2 = \sqrt{\frac{1}{\pi} \int_{\alpha}^{\pi} (\frac{\sqrt{2}U_2}{R} \sin \omega t)^2 d(\omega t)} = \frac{U_2}{R} \sqrt{\frac{1}{2\pi} \sin 2\alpha + \frac{\pi - \alpha}{\pi}} \qquad I_T = \frac{1}{\sqrt{2}} I$$

整流变压器二次侧电流平均值为零。

晶闸管的工作情况

流过晶闸管的电流平均值:
$$I_{dT} = \frac{1}{2}I_d = 0.45\frac{U_2}{R}\frac{1+\cos\alpha}{2}$$

流过晶闸管的电流有效值为:

$$I_{T} = \sqrt{\frac{1}{2\pi} \int_{\alpha}^{\pi} (\frac{\sqrt{2}U_{2}}{R} \sin \omega t)^{2} d(\omega t)} = \frac{U_{2}}{\sqrt{2}R} \sqrt{\frac{1}{2\pi} \sin 2\alpha + \frac{\pi - \alpha}{\pi}}$$

晶闸管承受的最大正向电压和反向电压分别为: $\frac{\sqrt{2}}{2}U_2$ 和 $\sqrt{2}U_2$ 。

■ 带阻感负载($\omega L>>R$)的工作原理分析

- **严**在 u_2 正半周 $\omega t = \alpha$ 时刻,触发 VT_1 和 VT_4
- ☞在 u_2 负半周 $\alpha t = \pi + \alpha$ 时刻,触发 VT_2 和 VT_3

■基本数量关系

☞控制特性

$$U_{\rm d} = \frac{1}{\pi} \int_{\alpha}^{\pi + \alpha} \sqrt{2} U_2 \sin \omega t d(\omega t) = \frac{2\sqrt{2}}{\pi} U_2 \cos \alpha = 0.9 U_2 \cos \alpha$$

可见,移相范围为 90°

- 圖晶闸管承受的最大正反向电压: $\sqrt{2}U_2$
- ■晶闸管导通角 θ 与 α 无关,均为180°

■ 晶闸管电流平均值:
$$I_{dT} = \frac{1}{2}I_{d}$$

暗晶闸管电流有效值: $I_{\rm T} = \frac{1}{\sqrt{2}} I_{\rm d} = 0.707 I_{\rm d}$

愛医器二次侧电流 i_2 的波形为正负各 180° 的矩形波, 其相位由 α 角决定,有效值 $I_2=I_d$ 。

■ 带"反电动势-电阻"负载时的工作情况

单相桥式全控整流电路接"反电动势—电阻"负载时的电路

□ 当蓄电池、直流电动机的电枢(忽略其中的电感)等为负载时,负载 可看成一个直流电压源,对于整流电路,此类负载属于反电动势负载

思考: 反电动势对晶闸管工作状态有什么影响?

单相桥式全控整流电路接反电动势—电阻负载时的电路及波形

圖当 $|u_2|>E$ 时,晶闸管具备导通条件之一:阳极电压为正

a)

- 圖品闸管导通之后, $u_d=\pm u_2$,直至 $|u_2|=E$,晶闸管关断, i_d 即降至0,此后 $u_d=E$
- m在一个正弦半波内,晶闸管导通角度最大为: $\pi-2\delta$
- ☞如果触发脉冲出现在 $\pi > \alpha > \pi \delta$ 的区间内,晶闸管承受反向阳极电压,不可能被触发导通。
- 写与电阻负载时相比,晶闸管提前了角度 δ 关断, δ 称为停止导电角: $\sin\delta = E\sqrt{2}U_2$
 - 思考:图 b)中整流电流波形是断续的,如何使其连续?

例题:单相桥式全控整流电路, $U_2=100\mathrm{V}$,负载中R=2 Ω ,L值极大,反电势 $E=60\mathrm{V}$ 。当 $\alpha=30^{\circ}$ 时:

(1) 作出主电路原理图和 $u_{\rm d}$ 、 $i_{\rm d}$ 、 $i_{\rm 2}$ 的波形图; (2) 求整流电路的 $U_{\rm d}$ 、 $I_{\rm d}$ 和 $I_{\rm 2}$; (3) 晶闸管的最大反向电压和电流有效值 $I_{\rm VT}$; (4) 选择晶闸管的电压额定值 $U_{\rm N}$ 和电流额定值 $I_{\rm N}$ 。

(2)
$$U_d = 0.9 U_2 \cos \alpha = 78.0 \text{ (A)}, \quad I_d = (U_d - E)/R = 9.0 \text{(A)}, \quad I_2 = I_d = 9.0 \text{(A)}$$

(3)求晶闸管承受的最大反向电压 $U_{
m VTm}$:

由
$$U_2$$
=100,有 U_{VTm} = $\sqrt{2}U_2$ =141.4(V)

流过每个晶闸管的电流的有效值为 $I_{
m VT}$:

$$I_{\text{VT}} = \sqrt{\frac{1}{2\pi} \int_{\alpha}^{\alpha+\pi} I_d^2 \, d \, (\omega t)} = I_{\text{d}} / \sqrt{2} = 6.4 \, \text{(A)}$$

(4) 考虑安全裕量, 额定值选择

电压: (2-3) U_{VTm} =283-424, 选 U_{N} =400V;

电流: (1.5-2) $I_{\rm VT}/1.57=6-8$, 选 $I_{\rm N}=10{\rm A}$ (见下页表)。

参数	I _T (AV)	$V_{\rm TM}$	I_{R}	I_{GT}	V_{GT}	I _H	$\mathrm{d}V/\mathrm{d}t$	温度范	$V_{\rm RRM}$	结构	冷却	引线
型号	(A)	(V)	(mA)	(mA)	(v)	(mA)	V/RIS	围(℃)	(v)	形式	方式	性质
KP1 (3CT101)	1	€2.0	≤ 3	≤20	≤2.5	≤10	≥25		50 ~ 1600	螺栓型	自冷	硬引线
KP3 (3CT102)	3	€2.2	≤ 8	€30	≤ 3	€30	≥25	4 t	100 ~ 2000	螺栓型	自冷	硬引线
KP5 (3CT103)	5	€2.2	≤ 8	≤60	≤ 3	€60	≥25		100 ~ 2000	螺栓型	自冷	硬引线
KP10 (3CT104)	10	€2.2	≤10	≤100	≤ 3	≤100	≥25	+ 100	100 ~ 2000	螺栓型	自冷	硬引线
KP20 (3CT105)	20	€2.2	≤20	≤100	≤ 3	≤100	≥25	7.700	100 ~ 2000	螺栓型	自冷	硬引线
KP30 (3CT106)	30	€2.4	≤20	≤150	≤ 3	≤150	≥50	-	100 ~ 2400	螺栓型	风冷	软引线
KP50 (3CT107)	50	≤2.4	≤20	≤200	≤ 3	≤200	≥50		100 ~ 2400	螺栓型	风冷	软引线
KP100	100	€2.6	≤40	250	≤3.5	≤200 子市1	≥ 100	- 40 ~ + 125	100 ~ 3000	螺栓型	风冷	软引线
				≤ 250					100 ~ 3000	平板型	风冷	_
KP200	200	≤2.6	<u>\$</u> ≤40	球最	大 I C	ww.dzsc. 采购网 ≤200	.coм 对站 ≥100		100 ~ 3000	螺栓型	风冷	软引线
				≤250	€3.5				100 ~ 3000	平板型	风冷	_
							,		100 ~ 3000	平板型	水冷	_
KP300	300	≤2.6	€50	≤350	€3.5	≤300	≥100		100 ~ 3000	平板型	风冷	
KP400	400	≤2.6	≤50	≤350	≤4	≤300	≥ 100		100 ~ 3000	平板型	风冷	_
KP500	500	€2.6	≤60	≤350	≤4	≤400	≥100		100 ~ 3000	平板型	风冷	_
									100 ~ 3000	平板型	风冷	_
KP600	600	€2.6	≤60	≤350	≤ 4	≤400	≥100		100 ~ 3000	平板型	风冷	
KP800 .	800	€2.6	≤80	≤450	≤ 4	≤500	≥100		100 ~ 3000	平板型	水冷	
									100 ~ 3000	平板型	水冷	

3.1.3 单相全波可控整流电路

单相全波可控整流电路及波形

- 电路结构特点:整流变压器T带中心抽头
- 电阻性负载时的工作原理简析
- ☞在 u_2 正半周, VT_1 工作,变压器二次绕组上半部分流过电流。
- \mathbf{w}_{2} 负半周, \mathbf{VT}_{2} 工作,变压器二次绕组下半部分流过电流。
- ☞相当于两个单相半波电路分时工作→故称为"全波"。
- ☞整流变压器不存在直流磁化的问题。

■ 单相全波与单相全控桥的区别

- ☞全波电路中变压器结构较复杂:引出中点。
- ☞全波电路只用2个晶闸管,比桥式少2个;门极驱动电路也少2个;但是晶闸管承受的最大电压是单相全控桥的2倍。
- ☞单相全波导电回路只含1个晶闸管,比单相桥少1个,因而管压降也少1半→变换器的效率有所提高。

3.1.4 单相桥式半控整流电路

单相全控桥式

■ 思路:路径不变,开关"降阶"

整流管共阳极连接半控桥的部分工作波形

—2只晶闸管被整流管取代(控制复杂性降低,电路经济性提高)

整流管串联的半控桥

- 整流管共阳极连接的半控桥
- □ 带阻感负载时工作分析(未加接续流二极管VD_R)
 - ☞在 u_2 正半周 α 角触发 VT_1 , u_2 经 VT_1 和 VD_4 向负载供电。
- \mathbf{u}_2 过零变负后,因电感作用使电流连续, \mathbf{VT}_1 继续导通,但因 \mathbf{u}_d 电位、续流路径为 \mathbf{L} - \mathbf{R} - \mathbf{VT}_1 - \mathbf{VD}_2 - \mathbf{L} ,续流期间 \mathbf{u}_d = $\mathbf{0}$ 。
 - ☞ αu_2 负半周,供电路径: $\alpha u_2 VT_3 VD_2$,续流路径: $\alpha L R VT_3 VD_4 L$.
- □ 加接续流二极管VD_R的工作情况
- 電若无续流二极管,则当 α 突然增大至180°或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通、 u_d 波形成为正弦半波,电路进入到失控状态。
 - ☞加接与负载反并联的续流二极管VD_R后,续流由VD_R完成,避免了失控现象。
- 整流管串联的半控桥
- 】 把全控桥的晶闸管 VT_3 和 VT_4 换为二极管 VD_3 和 VD_4 ,这样可以省去续流二极管 VD_R ,续流路径: L-R- VD_4 - VD_3 -L 。

单相电路存在的问题: 在三相系统中引起负载不平衡,功率限制,直流电压纹波/脉动.....。 解决途径?

The Ema