Application of TDMI on Analyzing Neural Data

Kai Chen

Mar. 2018

Outline

- Concepts and definitions
 - Self-information
 - Entropy
 - Mutual information(MI) and time-delayed mutual information(TDMI)
- Related works about TDMI
- TDMI between Gaussian random variables
- TDMI between spike train and local field potential
 - TDMI estimation
 - Data generated by integrate-and-fire neuronal model

Self-information

• Define:

$$X = \{x_1, x_2, ..., x_n\} \longrightarrow Pr(X = x_i) = p_i, \sum_{i=1}^{n} p_i = 1$$

- If $p_1 > p_2$, then $f(p_1) < f(p_2)$
- If $p_i = 1$, then $f(p_1) = 0$
- If $p_i = 0$, then $f(p_1) = \infty$
- If x_1 and x_2 are independent, then $f(p_1, p_2) = f(p_1p_2) = f(p_1) + f(p_2)$

Define:

$$f(x_i) = \log \frac{1}{p_i}$$

Entropy

• Define:

$$H(X) = \sum_{x \in X} p(x) \log \frac{1}{p(x)}$$

A measure of the uncertainty of a random variable

- $H(X) = H(p_X)$ is continues on P_X
- $H(X_N)$ is monotonically increasing on N, if X_N is uniformly distributed
- Additivity: $H(p_1, p_2, p_3, ..., p_n)$ = $H(p_1 + p_2, p_3, ..., p_n) + (p_1 + p_2)H\left(\frac{p_1}{p_1 + p_2}, \frac{p_2}{p_1 + p_2}\right)$

Mutual information(MI)

• Define:

$$I(X;Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

- I(X;Y) = H(X) H(X|Y) = H(Y) H(Y|X)
- I(X;Y) = H(X) + H(Y) H(X,Y)
- I(X;Y) = 0 if X and Y are independent
- $\bullet \ I(X;X) = H(X)$

Time-delayed Mutual information(TDMI)

$$I(\tau) = I(X(t); Y(t+\tau)) = \sum_{x \in X(t)} \sum_{y \in Y(t+\tau)} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

For random series X and Y,

$$\begin{cases} X_i = f(X_{i-1}, Y_{i-1}) \\ Y_i = g(X_{i-1}, Y_{i-1}) \end{cases}$$

TDMI between spike trains

Spike trains generated by probabilistic model

Taghva, A., Song, D., Hampson, R. E., Deadwyler, S. A., & Berger, T. W. (2012).

Determination of Relevant Neuron–Neuron Connections for Neural Prosthetics Using Time-Delayed Mutual Information: Tutorial and Preliminary Results. *World neurosurgery*, 78(6), 618-630.

TDMI between spike trains

Taghva, A., Song, D., Hampson, R. E., Deadwyler, S. A., & Berger, T. W. (2012).

Determination of Relevant Neuron–Neuron Connections for Neural Prosthetics Using Time-Delayed Mutual Information: Tutorial and Preliminary Results.

TDMI between EEG and sEMG

a Total wTDMI: 15.6-25.4Hz

0.2

Jin, S. H., Lin, P., & Hallett, M. (2010). Linear and nonlinear information flow based on time-delayed mutual information method and its application to corticomuscular interaction.

TDMI infers connectivity patterns

Endo, W., Santos, F. P., Simpson, D., Maciel, C. D., & Newland, P. L. (2015). Delayed mutual information infers patterns of synaptic connectivity in a proprioceptive neural network.

Mutual information of Gaussian random variables

$$\begin{cases} X_n = \alpha X_{n-1} + \varepsilon_n \\ Y_n = \beta Y_{n-1} + \xi X_{n-1} + \eta_n \end{cases}$$

$$I(X,Y) = -\frac{1}{2}\log(1 - \rho^2)$$

$$\rho = \rho(\xi, \alpha, \beta) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y} = \frac{E(XY) - \mu_X \mu_Y}{\sigma_X \sigma_Y}$$

lpha and eta are smaller than 1, suppose $n\gg 1$,

$$\rho(\xi)^{2} = \begin{cases} \frac{\xi^{2}}{(1 - \alpha^{2})^{2} + \xi^{2}(1 + \alpha^{2})} & \alpha = \beta \\ \frac{\xi^{2}(1 - \beta^{2})}{(1 - \alpha\beta)^{2}(1 - \alpha^{2}) + \xi^{2}(1 - (\alpha\beta)^{2})} & \alpha \neq \beta \end{cases}$$

$$\alpha = 0.01$$
, $\beta = 0.01$ #bin=50 T= 300000

Mutual information of Gaussian random variables

If
$$0 < |\alpha|, |\beta| \ll 1$$
, then, $\rho^2 = \frac{\xi^2}{1 + \xi^2}$

$$I(X,Y) = \frac{1}{2}\log(1+\xi^2)$$

$$\rho = \frac{E(XY)}{\sigma_X \sigma_Y}$$

If
$$0 < |\alpha| \ll |\beta| < 1$$
, then, $\rho^2 = \frac{\xi^2 (1 - \beta^2)}{(1 - 2\alpha\beta) + \xi^2}$

$$I(X,Y) = -\frac{1}{2}\log(\frac{(1-2\alpha\beta)+\xi^2\beta^2)}{(1-2\alpha\beta)+\xi^2})$$

When $\xi \ll 1$, I(X,Y) approaches $O(\xi^2)$. When $\xi \gg 1$, $I(X,Y) = -\log \beta$

If
$$0 < |\beta| \ll |\alpha| < 1$$
, then, $\rho^2 = \frac{\xi^2}{(1 - 2\alpha\beta)(1 - \alpha^2) + \xi^2}$

$$I(X,Y) = -\frac{1}{2}\log(\frac{(1-2\alpha\beta)(1-\alpha^2)}{(1-2\alpha\beta)(1-\alpha^2)+\xi^2})$$

When $\xi \ll 1$, I(X, Y) approaches $O(\xi^2)$. When $\xi \gg 1$, $I(X, Y) = \frac{1}{2} \log(1 + \frac{\xi^2}{(1 - 2\alpha\beta)(1 - \alpha^2)})$

Mutual information of Gaussian random variables

If $|\alpha|$, $|\beta| < 1$, then,

When
$$\xi \ll 1$$
, $I(X,Y)$ approaches $O(\xi^2)$.

When $\xi \gg 1$, $I(X,Y) = \begin{cases} -\frac{1}{2}log(\frac{\alpha^2}{1+\alpha^2}) & \alpha = \beta \\ -\frac{1}{2}log(\frac{\beta^2(1-\alpha^2)}{1-(\alpha\beta)^2}) & \alpha \neq \beta \end{cases}$

$$\rho = \frac{E(XY)}{\sigma_X \sigma_Y}$$

$$\alpha = 0.01$$
, $\beta = 0.01$ #bin=150 T= 300000

 $\alpha = 0.6$, $\beta = 0.01$ #bin=150 T= 300000

 $\alpha=0.5$, $\beta=0.6$ #bin=50 T= 300000

TOK (Hais

100k trials

#trials = 100 k

Baseline $\propto \frac{1}{Length \ of \ data \ set}$

#bins = 10

TDMI between spike train and local field potential(LFP)

Local Field Potential

$$I_{t_1}, I_{t_2}, I_{t_3}, I_{t_4}, I_{t_5}, I_{t_6}, \dots, I_{t_n} \longrightarrow Y$$

$$I(X;Y,\tau) = \sum_{x \in X} \sum_{y \in Y(\tau)} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

$$I_{real} \cong I_{obs} + \frac{B_X + B_Y - B_{XY} - 1}{2N}$$

Conductance-based Integrate-and-fire model:

$$C\frac{dv}{dt} = -g_l(v - \epsilon_l) - g_Q(v - \epsilon_Q) \quad Q \in \{e, i\}$$

$$g_Q = S_Q \sum_{j,t \ge t_j} \exp(-\frac{t - t_j}{\tau_Q})$$

When
$$v(t = t_i) \ge v_{\theta}$$
, $v(t) = v_r$, $v \in [t_i, t_i + \tau_{ref})$

'Point source' current model of local field potential:

$$V = \frac{1}{4\pi\sigma} \sum_{i} \frac{I_{i}}{r_{0} - r_{i}}$$

$$I = -g_{l}(v - \epsilon_{l}) - g_{o}(v - \epsilon_{o}) \quad Q \in \{e, i\}$$

Roulston, M. S. (1999).

Estimating the errors on measured entropy and mutual information.

TDMI Estimation

$$I(X;Y,\tau) = \sum_{x \in X} \sum_{y \in Y(\tau)} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} \longrightarrow p(x,y) \text{ estimation}$$

$$X(t) = \{X_{t_1}, X_{t_2}, \dots, X_{t_n}\} \longrightarrow P(X) \longrightarrow I(X; Y, \tau)$$

- Treated time series of LFP as WSS signal.
- Neglect the autocovariance length of LFP.

Paradigm of simulation

Sample Figure

The peak lying on the positive side of the graph indicates the same direction of neuronal information as the physical connection does.

dt	0.5 ms
#bins	10
Poisson Rate	1.3kHz
Forward Strength	0.005
Synaptic Strength	0.005
Т	200 s

Length of time series = 600 s

One-way Connection

Poisson Rate	1.3 kHz	dt	0.5 ms
S	0.005	#bins	10
F	0.005	Т	200 s

mi mi_shuffle mi_shuffle_mean mutual info 90 8 0.2 0.0 L -15 -100 10 15 Delay Time(ms)

From 1 to 2

From 2 to 1

Neuronal Interaction layout

TDMI between spike and its own current, voltage and conductance respectively

Neuronal Interaction layout

Mutual information calculation with different shifting scheme

Shifting spike train

Shifting current

Mutual information calculation with different shifting scheme

Poisson Rate	1.3 kHz
Poisson S	0.005
Synaptic S	0.005
$dt / d\tau$	0.5 ms
#bins	10
T	50mins
Delay	0 ms
Firing Rate	14 Hz
#data points	75k

Shifting spike train

Shifting current

Mutual information calculation with different shifting scheme

Shifting spike train

Shifting current

1.3 kHz	
0.005	
0.005	
0.5 ms	
10	
4.4h	
0 ms	
14 Hz	
400k	

Bi-directed Connection

Poisson Rate	1.5 kHz	dt	0.5 ms
S	0.005	#bins	20
F	0.005	Т	600 s

From 1 to 2

From 2 to 1

Summary

- Concepts of self-information, entropy and mutual information
- TDMI between spike-spike interaction, EEG-sEMG correlation, and its inference of neuronal connecting pattern
- TDMI between Gaussian random variables
- TDMI between spike train and local field potential

Thanks for your attention