Problem Set 6

Advanced Logic 9th October 2022

In the following problems, Arith stands for the 'signature of the language of arithmetic": recall that this has one individual constant 0, one singulary function symbol suc, two binary function symbols + and x, and one binary predicate \leq . See below for a reminder of the relevant definitions of FV and [t/v].

Note: problems 2-4 ask you to prove something about all terms and formulae of an arbitrary first-order signature Σ . You may, if you wish, just prove these claims for the special case where Σ is Arith. This will lengthen the proofs a bit, but you may find it helpful if you're getting tripped up by notation like ' $f(t_1, \ldots, t_n)$ ' and ' $R(t_1, \ldots, t_n)$ '.

- 1. (a) (30%) Prove that no term of the language of arithmetic (i.e., no member of Terms(Arith)) contains the character a.
- 2. Answer a
- (b) (30%) Using the result of part (a), prove that no formula of the language of arithmetic (i.e., no member of $\mathcal{L}(Arith)$) contains the character a.
 - 3. (a) (15%) Prove that whenever $s,t\in \mathrm{Terms}(\Sigma)$ and $v\neq FV(s),s[t/v]=s$.
- (b) (10%) Using the result of part (a), prove that whenever $P \in \mathcal{L}(\Sigma), t \in \text{Terms}(\Sigma)$, and $v \neq FV(P), P[t/v] = P$
 - 4. (a) (10%) Prove that whenever $s, t \in \text{Terms}(\Sigma)$ and $v \in FV(s), FV(s[t/v]) = (FV(s) \setminus \{v\}) \cup FV(t)$
- (b) (5%) Using the result of part (a), prove that whenever $P \in \mathcal{L}(\Sigma), t \in \text{Terms}(\Sigma)$, and $v \in FV(P), FV(P[t/v]) = (FV(P) \setminus \{v\}) \cup FV(t)$.

Additional problems (10% extra credit for successfully solving any one of these.)

- 1. Suppose that v and v' are distinct variables and t and t' are terms in which neither v nor v' occur free. Show that (a) for every term s, s[t/v][t'/v'] = s[t'/v'][t/v], and (b) for every formula P, P[t/v][t'/v'] = P[t'/v'][t/v].
- 2. (Optional, ungraded) Define the "standard numeral" function $\langle \cdot \rangle : \mathbb{N} \to \text{Terms}(\text{Arith})$ recursively as follows:

$$\langle 0 \rangle = 0$$

 $\langle \operatorname{suc} n \rangle = \operatorname{suc}(\langle n \rangle)$

Suppose we have some funtion $g: \operatorname{Var} \to \mathbb{N}$. Recursively define a function $d: \operatorname{Terms} (\operatorname{Arith}) \to \mathbb{N}$ such that d(v) = g(v) for every variable v and $d(\langle n \rangle) = n$ for every $n \in \mathbb{N}$. Prove that the function you defined meets these requirements.

4. (Optional, ungraded) Suppose that we have a first-order signature Σ that is "well-behaved' in the following sense: no function symbol or predicate is an initial substring of any other funtion symbol or predicate, and no function symbol or predicate has a variable as an initial substring. Let PolishTerms (Σ) (the set of "terms in Polish notation" over Σ) be the closure of Var under the family of functions $\langle s_1, \ldots, s_n \rangle \mapsto f \oplus t_1 \oplus \cdots \oplus t_n$ where f is an n-ary function symbol of Σ . (Note that unlike our usual definition of term, this one does not use parentheses and commas.)

Prove unique readability for Polish terms: i.e. that whenever $s_1, \ldots, s_m, t_1, \ldots, t_n \in \text{PolishTerms}(\Sigma)$, f is an m-ary function symbol of Σ , and g is an n-ary function symbol of Σ , if $fs_1 \ldots s_m = gt_1 \ldots t_n$, then f = g and m = n and $s_1 = t_1$ and \ldots and $s_m = t_m$.

Definitions The notations 'FV' and '[t/v]' are used ambiguously for two different functions, one defined on $\operatorname{Terms}(\Sigma)$ and the other on $\mathcal{L}(\Sigma)$. (Or we could think of them as standing for the union of those two functions.)

Where Σ is a first-order signature with predicates R_{Σ} , function symbols F_{Σ} , and arity function a_{Σ} , the function $FV : \text{Terms}(\Sigma) \to \mathcal{P}$ (Var) is defined recursively by:

$$\begin{array}{ll} FV(v) &= \{v\} \\ FV(c) &= \emptyset \\ FV\left(f\left(t_1,\ldots,t_n\right)\right) &= FV\left(t_1\right) \cup \cdots \cup FV\left(t_n\right) \quad (\text{ for } f \in F_\Sigma \text{ with } a_\Sigma(f) = n > 0) \end{array}$$

(for $c \in F_{\Sigma}$ with a_{Σ})

The companion function $FV: \mathcal{L}(\Sigma) \to \mathcal{P}(Var)$ is defined recursively as follows:

$$FV\left(F\left(t_{1},\ldots,t_{n}\right)\right)=FV\left(t_{1}\right)\cup\cdots\cup FV\left(t_{n}\right)\quad\left(\text{ for }F\in R_{\Sigma}\text{ with }a_{\Sigma}(F)=n>0\right)$$

$$FV\left(t_{1}=t_{2}\right)=FV\left(t_{1}\right)\cup FV\left(t_{2}\right)$$

$$FV(\neg P)=FV(P)$$

$$FV(P\wedge Q)=FV(P)\cup FV(Q)$$

$$FV(P\vee Q)=FV(P)\cup FV(Q)$$

$$FV(P\to Q)=FV(P)\cup FV(Q)$$

$$FV(\forall vP)=FV(P)\backslash\{v\}$$

$$FV(\exists vP)=FV(P)\backslash\{v\}$$

For any $t \in \operatorname{Terms}(\Sigma)$ and $v \in \operatorname{Var}$, the function $[t/v] : \operatorname{Terms}(\Sigma) \to \operatorname{Terms}(\Sigma)$ (written in postfix position) is defined recursively by

$$u[t/v] = \left\{ \begin{array}{ll} t & \text{if } u = v \\ u & \text{if } u \neq v \end{array} \right. \quad \text{(for } u \in \mathrm{Var} \right)$$

The companion function $[t/v]: \mathcal{L}(\Sigma) \to \operatorname{Terms}(\Sigma)$ is defined recursively as follows:

$$F(t_1, \dots, t_n) [t/v] = F(t_1[t/v], \dots, t_n[t/v])$$

$$(\neg P)[t/v] = \neg (P[t/v])$$

$$(P \land Q)[t/v] = P[t/v] \land Q[t/v]$$

$$(P \lor Q)[t/v] = P[t/v] \lor Q[t/v]$$

$$(P \to Q)[t/v] = P[t/v] \to Q[t/v]$$

$$(\forall uP)[t/v] = \begin{cases} \forall uP & \text{if } v = u \\ \forall u(P[t/v]) & \text{if } v \neq u \text{ and } (u \notin FV(t) \text{ or } v \notin FV(P)) \\ \text{undefined} & \text{if } v \neq u \text{ and } u \in FV(t) \text{ and } v \in FV(P) \end{cases}$$

$$\{\exists (\exists uP)[t/v] = \begin{cases} \exists u \\ \exists u(P[t/v]) & \text{if } v \neq u \text{ and } (u \notin FV(t) \text{ or } v \notin FV(P)) \\ \text{undefined} & \text{if } v \neq u \text{ and } u \in FV(t) \text{ and } v \in FV(P) \end{cases}$$