

CLAIMS

What is claimed is:

- 1 1. An apparatus for allocating a processing resources to functions in a queue waiting
2 to be executed, comprising:
 - 3 a capacity determining means for determining an amount of the processor resource
4 available to be assigned;
 - 5 a load determining means for determining an estimate of an amount of the resource
6 needed for each function waiting in the queue to execute;
 - 7 a prioritization means for prioritizing each of the functions in a queue waiting to
8 be executed; and
 - 9 an allocating means, which receives information from said capacity determining
10 means, said load determining means, and said prioritization means, for allocating the
11 available resource to the functions based on a hierarchical priority scheme.
- 1 2. The apparatus of claim 1, wherein:
 - 2 the functions are decomposed elements of a more complex process and do not
3 require the same amount of resource to execute.
- 1 3. The apparatus of claim 2, wherein:
 - 2 multiple instances of any function within the process may be invoked by the
3 processor to execute concurrently.
- 1 4. The apparatus of claim 3, wherein:
 - 2 each of the functions within the process is assigned a separate priority within the
3 hierarchical priority scheme.

1 5. The apparatus of claim 4, wherein:
2 each instance of each function within the process is assigned a separate priority
3 within the hierarchical priority scheme.

1 6. The apparatus of claim 2, further comprising:
2 an assigning means, in communication with said allocation means, for assigning a
3 resource throttling value to each function waiting in the queue to be executed, wherein the
4 throttling value determines the reduction of the resource allocated to each of the
5 functions.

1 7. The apparatus of claim 1, wherein:
2 the allocation of the available resource to the functions waiting in the queue is
3 conducted to optimize the amount of the resource assigned to these functions.

1 8. The apparatus of claim 1, wherein:
2 the allocation of the available resource to the functions waiting in the queue is
3 conducted to optimize a combined number of instances of each function concurrently
4 executed.

1 9. An apparatus for allocating a processing resource to functions in a queue waiting
2 to be executed, comprising:
3 a capacity determining means for determining an amount of the processor resource
4 available to be assigned;
5 a load determining means for determining an estimate of an amount of the resource
6 needed for each function waiting in the queue to execute;
7 an allocating means, which receives information from said capacity determining
8 means and said load determining means, for allocating the available resource to the

9 functions based on a hierarchical priority scheme, wherein
10 said load determining means calculates a product, for each of j instances of k
11 functions, obtained by:
12 (a) estimating the amount of resource needed to support the execution of
13 the j^{th} instance of the k^{th} function;
14 (b) assigning a value of either zero or one to a multiplicand associated
15 with the j^{th} instance of the k^{th} function; and
16 (c) multiplying the estimated amount of resource needed to support the
17 execution of the j^{th} instance of the k^{th} function by its associated
18 multiplicand and assigning the result to the product associated with
19 the j^{th} instance of the k^{th} function; and
20 said load determining means calculates a sub-total sum, for each of the j instances,
21 obtained by:
22 (d) summing together the products associated with each of the k
23 functions of the j^{th} instance; and
24 (e) adding an estimate of the resource needed to support background
25 processing associated with the j^{th} instance to the sum of the products
26 associated with each of the k functions of the j^{th} instance and
27 assigning the result to the sub-total for the j^{th} instance.

1 10. The apparatus of claim 9, wherein:
2 the multiplicand value associated with the j^{th} instance of the k^{th} function is
3 determined according to the hierarchical priority scheme.

1 11. The apparatus of claim 9, wherein:
2 said load determining means repeats the steps (a) through (e), recited in claim 19,
3 for each of a number of sequential time periods; and

4 said allocating means reallocates the available resource to the functions in each of
5 said time periods based on a hierarchical priority scheme.

1 12. The apparatus of claim 11, wherein:

2 said load determining means establishes a variable length time period that is no
3 longer than the period needed to execute any one of the j instances of the k functions that
4 are executing concurrently.

1 13. The apparatus of claim 11, further comprising:

2 for each of the j instances of the k^{th} function, said prioritization means assigns
3 increasingly higher priority in accordance with an increasingly greater number of time
4 periods that have passed since the j^{th} instance of the k^{th} function was last executed.