Final Project (Group 2)

Group 2

2024-06-02

- Research Question/Hypothesis: What variable in the world happiness report (family, health, trust, generosity, and economics) has the greatest effect on a nation's happiness score? »»»> 81e6af9ac23978bbafb85c9fa12c41d73c572ee5
- Hypothesis: Economics plays the largest role in a nation's happiness score.

```
library(readxl)
library(dplyr)
library(ggplot2)
library(tidyr)
data <- read_excel("2019.xls")</pre>
colnames (data)
## [1] "Overall rank"
                                        "Country or region"
## [3] "Score"
                                        "GDP per capita"
## [5] "Social support"
                                        "Healthy life expectancy"
## [7] "Freedom to make life choices" "Generosity"
## [9] "Perceptions of corruption"
library(readxl)
data <- read_excel("2019.xls")</pre>
print(colnames(data))
                                        "Country or region"
## [1] "Overall rank"
                                        "GDP per capita"
## [3] "Score"
## [5] "Social support"
                                        "Healthy life expectancy"
## [7] "Freedom to make life choices" "Generosity"
## [9] "Perceptions of corruption"
```

```
data <- data %>%
  rename(
    Economy = `GDP per capita`,
    Social = 'Social support',
    Health = `Healthy life expectancy`,
    Freedom = `Freedom to make life choices`,
    Corruption = 'Perceptions of corruption',
    Happiness_Score = `Score`
print(colnames(data))
## [1] "Overall rank"
                           "Country or region" "Happiness_Score"
## [4] "Economy"
                           "Social"
                                                "Health"
## [7] "Freedom"
                           "Generosity"
                                                "Corruption"
 head(
    select(data, Economy, Social, Health, Freedom, Corruption, Happiness_Score)
```

Economy	Social	Health	Freedom	Corruption	Happiness_Score
1.340	1.587	0.986	0.596	0.393	7.769
1.383	1.573	0.996	0.592	0.410	7.600
1.488	1.582	1.028	0.603	0.341	7.554
1.380	1.624	1.026	0.591	0.118	7.494
1.396	1.522	0.999	0.557	0.298	7.488
1.452	1.526	1.052	0.572	0.343	7.480

[Module 2: Junhyung Kim, Jiho Lee]

*Scatter Plot

```
qplot(x = Economy, y= Happiness_Score, data = data,
    geom = c("point", "smooth"), method = "lm") +
    labs(title =
    "Scatter Plot of Relationship Between
    Economy and Happiness Score",
    x = "Economy", y = "Happiness Score")

## Warning: 'qplot()' was deprecated in ggplot2 3.4.0.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.

## Warning in geom_point(method = "lm"): Ignoring unknown parameters: 'method'
```

'geom_smooth()' using formula = 'y ~ x'

Scatter Plot of Relationship Between Economy and Happiness Score


```
qplot(x= Social,y=Happiness_Score,data=data,
geom=c("point","smooth"),method="lm")+
labs(title =
"Scatter Plot of Relationship Between
Social and Happiness Score",
x="Social",y="Happiness Score")
```

Warning in geom_point(method = "lm"): Ignoring unknown parameters: 'method'
'geom_smooth()' using formula = 'y ~ x'

Scatter Plot of Relationship Between Social and Happiness Score


```
qplot(x= Health,y=Happiness_Score,data=data,
  geom=c("point","smooth"),method="lm")+
labs(title =
  "Scatter Plot of Relationship Between
Health and Happiness Score",
  x="Health",y="Happiness Score")
```

Warning in geom_point(method = "lm"): Ignoring unknown parameters: 'method'

'geom_smooth()' using formula = 'y ~ x'

Scatter Plot of Relationship Between Health and Happiness Score


```
qplot(x= Freedom,y=Happiness_Score,data=data,
  geom=c("point","smooth"),method="lm")+
labs(title =
  "Scatter Plot of Relationship Between
Freedom and Happiness Score",
  x="Freedom",y="Happiness Score")
```

Scatter Plot of Relationship Between Freedom and Happiness Score


```
qplot(x= Corruption,y=Happiness_Score,data=data,
geom=c("point","smooth"),method="lm")+
labs(title ="Scatter Plot of Relationship Between
Corruption and Happiness Score",
x="Corruption",y="HappinessScore")
```

'geom_smooth()' using formula = 'y ~ x'

Scatter Plot of Relationship Between Corruption and Happiness Score


```
## 'geom_smooth()' using method = 'loess' and formula = 'y ~ x'
```

Trend line relationship between Economy vs Happiness Score


```
data %>%
   ggplot() +
   geom_smooth(mapping = aes(x = Social, y = Happiness_Score)) +
   labs(x = "Social", y = "Happiness Score",
        title="Trend line relationship between
        Social vs Happiness Score")
```

'geom_smooth()' using method = 'loess' and formula = 'y ~ x'

Trend line relationship between Social vs Happiness Score


```
data %>%
   ggplot() +
   geom_smooth(mapping = aes(x = Health, y = Happiness_Score)) +
```

```
labs(x = "Health", y = "Happiness Score",
    title="Trend line relationship between
    Health vs Happiness Score")
```

'geom_smooth()' using method = 'loess' and formula = 'y ~ x'

Trend line relationship between Health vs Happiness Score

'geom_smooth()' using method = 'loess' and formula = 'y ~ x'

Trend line relationship between Freedom vs Happiness Score


```
data %>%
   ggplot() +
   geom_smooth(mapping = aes(x = Corruption, y = Happiness_Score)) +
   labs(x = "Corruption", y = "Happiness Score",
        title="Trend line relationship between
        Corruption vs Happiness Score")
```

'geom_smooth()' using method = 'loess' and formula = 'y ~ x'

Trend line relationship between Corruption vs Happiness Score

*HeatMap

HeatMap with linearline Economy vs Happiness Score

'geom_smooth()' using formula = 'y ~ x'

HeatMap with linearline Social vs Happiness Score


```
data %>%
ggplot(aes(x = Health, y = Happiness_Score)) +
  geom_bin2d(bins = 30) +
  geom_smooth(method = "lm", se = FALSE) +
```

'geom_smooth()' using formula = 'y ~ x'

HeatMap with linearline Health vs Happiness Score

'geom_smooth()' using formula = 'y ~ x'

HeatMap with linearline Freedom and Happiness Score

'geom_smooth()' using formula = 'y ~ x'

HeatMap with linearline Corruption and Happiness Score

===== [Module 4: Eugene Kim, Harold Lee - Explanatory Data Analysis]

```
str(data, vec.len = 2)
```

```
## tibble [156 x 9] (S3: tbl df/tbl/data.frame)
## $ Overall rank
                       : num [1:156] 1 2 3 4 5 ...
## $ Country or region: chr [1:156] "Finland" "Denmark" ...
## $ Happiness_Score : num [1:156] 7.77 7.6 ...
## $ Economy
                       : num [1:156] 1.34 1.38 ...
## $ Social
                      : num [1:156] 1.59 1.57 ...
## $ Health
                      : num [1:156] 0.986 0.996 ...
## $ Freedom
                      : num [1:156] 0.596 0.592 0.603 0.591 0.557 ...
                       : num [1:156] 0.153 0.252 0.271 0.354 0.322 ...
   $ Generosity
##
## $ Corruption
                       : num [1:156] 0.393 0.41 0.341 0.118 0.298 ...
head(
    select(data, Economy, Social, Health, Freedom, Corruption,
           Happiness_Score)
```

Economy	Social	Health	Freedom	Corruption	Happiness_Score
1.340	1.587	0.986	0.596	0.393	7.769
1.383	1.573	0.996	0.592	0.410	7.600
1.488	1.582	1.028	0.603	0.341	7.554
1.380	1.624	1.026	0.591	0.118	7.494
1.396	1.522	0.999	0.557	0.298	7.488
1.452	1.526	1.052	0.572	0.343	7.480

Economy	Social	Health	Freedom	Corruption	Happiness_Score
0.287	1.163	0.463	0.143	0.077	3.380
0.359	0.711	0.614	0.555	0.411	3.334
0.476	0.885	0.499	0.417	0.147	3.231
0.350	0.517	0.361	0.000	0.025	3.203
0.026	0.000	0.105	0.225	0.035	3.083
0.306	0.575	0.295	0.010	0.091	2.853

^{*}Summary statistics

^{*}Box Plot

Box Plot Each Variable

*Violin Plot

Violin Plot of Each Variable

variables Alleeting happiness deon

*Summary

```
data %>%
  summarize(
   mean= mean(Economy),
```

```
median = median(Economy),
sd = sd(Economy),
iqr = IQR(Economy),
min = min(Economy),
max = max(Economy)
```

mean	median	sd	iqr	min	max
0.9051474	0.96	0.3983895	0.62975	0	1.684

```
data %>%
  summarize(
    mean= mean(Social),
    median = median(Social),
    sd = sd(Social),
    iqr = IQR(Social),
    min = min(Social),
    max = max(Social)
)
```

mean	median	sd	iqr	min	max
1.208814	1.2715	0.2991914	0.39675	0	1.624

```
data %>%
  summarize(
    mean= mean(Health),
    median = median(Health),
    sd = sd(Health),
    iqr = IQR(Health),
    min = min(Health),
    max = max(Health))
```

```
data %>%
  summarize(
    mean= mean(Freedom),
    median = median(Freedom),
    sd = sd(Freedom),
    iqr = IQR(Freedom),
```

```
min = min(Freedom),
max = max(Freedom)
)
```

mean	median	sd	iqr	min	max
0.3925705	0.417	0.1432895	0.19925	0	0.631

```
data %>%
  summarize(
    mean= mean(Corruption),
    median = median(Corruption),
    sd = sd(Corruption),
    iqr = IQR(Corruption),
    min = min(Corruption),
    max = max(Corruption)
)
```

mean	median	sd	iqr	min	max
0.1106026	0.0855	0.0945378	0.09425	0	0.453

```
data_E <- data %>%
  summarize(
    mean= mean(Economy),
    median = median(Economy),
    sd = sd(Economy),
    iqr = IQR(Economy),
    min = min(Economy),
    max = max(Economy)
)
```

```
data_S <- data %>%
  summarize(
    mean= mean(Social),
    median = median(Social),
    sd = sd(Social),
    iqr = IQR(Social),
    min = min(Social),
    max = max(Social)
)
```

```
data_H <- data %>%
    summarize(
    mean= mean(Health),
```

```
median = median(Health),
   sd = sd(Health),
   iqr = IQR(Health),
   min = min(Health),
   max = max(Health)
 )
data_F <- data %>%
  summarize(
   mean= mean(Freedom),
   median = median(Freedom),
   sd = sd(Freedom),
   iqr = IQR(Freedom),
   min = min(Freedom),
   max = max(Freedom)
 )
data_C <- data %>%
  summarize(
   mean= mean(Corruption),
   median = median(Corruption),
   sd = sd(Corruption),
   iqr = IQR(Corruption),
   min = min(Corruption),
   max = max(Corruption)
 )
combined_data <- rbind(data_E, data_S, data_H, data_F, data_C)</pre>
combined_data_rounded <- combined_data %>%
 mutate(across(everything(), ~ round(., 2)))
row.names(combined_data_rounded) <- c("Economy", "Social", "Health", "Freedom", "Corruption")</pre>
## Warning: Setting row names on a tibble is deprecated.
print(combined_data_rounded)
## # A tibble: 5 x 6
     mean median
                  sd
                          iqr
                               min
                                     max
## * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
## 1 0.91
                                 0 1.68
            0.96 0.4
                        0.63
## 2 1.21 1.27 0.3
                        0.4
                                 0 1.62
## 3 0.73
            0.79 0.24 0.33
                                 0 1.14
## 4 0.39
            0.42 0.14 0.2
                                 0 0.63
## 5 0.11
            0.09 0.09 0.09
                                0 0.45
```

[Module 5: Chun Jin Park - Modeling]

Linear model using Im

```
model <- lm(Happiness_Score ~ Economy + Social + Health + Freedom + Generosity
           + Corruption, data = data)
summary(model)
##
## Call:
## lm(formula = Happiness_Score ~ Economy + Social + Health + Freedom +
##
      Generosity + Corruption, data = data)
##
## Residuals:
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -1.75304 -0.35306 0.05703 0.36695 1.19059
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                1.7952
                           0.2111 8.505 1.77e-14 ***
## Economy
                0.7754
                           0.2182 3.553 0.000510 ***
## Social
                1.1242
                          0.2369 4.745 4.83e-06 ***
## Health
                1.0781
                           0.3345 3.223 0.001560 **
## Freedom
                1.4548
                          0.3753 3.876 0.000159 ***
                        0.4977 0.984 0.326709
## Generosity
                0.4898
## Corruption
                           0.5424
                                  1.793 0.075053 .
                0.9723
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.5335 on 149 degrees of freedom
## Multiple R-squared: 0.7792, Adjusted R-squared: 0.7703
## F-statistic: 87.62 on 6 and 149 DF, p-value: < 2.2e-16
```

Tidy to get the model coefficients

```
coefficients <- tidy(model)</pre>
print(coefficients)
## # A tibble: 7 x 5
##
     term
                 estimate std.error statistic p.value
##
     <chr>
                    <dbl>
                               <dbl>
                                         <dbl>
                                                   <dbl>
                               0.211
                                         8.51 1.77e-14
## 1 (Intercept)
                    1.80
```

```
## 2 Economy
                    0.775
                              0.218
                                        3.55 5.10e- 4
## 3 Social
                    1.12
                              0.237
                                        4.75 4.83e- 6
                    1.08
## 4 Health
                              0.335
                                        3.22 1.56e- 3
## 5 Freedom
                    1.45
                              0.375
                                        3.88 1.59e- 4
## 6 Generosity
                                        0.984 3.27e- 1
                    0.490
                              0.498
## 7 Corruption
                    0.972
                              0.542
                                        1.79 7.51e- 2
```

Glance to get the model's performance metrics

```
performance <- glance(model)</pre>
print(performance)
## # A tibble: 1 x 12
     r.squared adj.r.squared sigma statistic p.value
##
                                                           df logLik
                                                                       AIC
                                                                             BIC
##
                       <dbl> <dbl>
                                        <dbl>
                                                  <dbl> <dbl>
                                                               <dbl> <dbl> <dbl>
         0.779
                       0.770 0.534
                                         87.6 2.40e-46
                                                              -120.
                                                                      256.
## # i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
```

Observed vs Predicted plot

Residuals vs Predicted plot

Residuals vs Predicted Happiness Score

Q-Q plot

```
qqnorm(residuals(model))
qqline(residuals(model), col = "red")
```


[Module 6: Sena Julsdorf and Hyeongseok Sim]


```
library(ggplot2)
library(caTools)
```

```
set.seed(123)
split <- sample.split(data$Happiness_Score, SplitRatio = 0.5)
training_set <- subset(data, split == TRUE)
testing_set <- subset(data, split == FALSE)</pre>
```

```
lmmodel <- lm(Happiness_Score ~ Economy, data = testing_set)
summary(lmmodel)</pre>
```

```
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
                 3.2913
                            0.2002
                                     16.44
                                             <2e-16 ***
## (Intercept)
                                              <2e-16 ***
## Economy
                 2.3317
                            0.1974
                                     11.81
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.6552 on 76 degrees of freedom
## Multiple R-squared: 0.6474, Adjusted R-squared: 0.6428
## F-statistic: 139.6 on 1 and 76 DF, p-value: < 2.2e-16
predictions <- predict(lmmodel, newdata = testing_set)</pre>
rmse <- sqrt(mean((testing_set$Happiness_Score - predictions)^2))</pre>
print(paste("RMSE: ", rmse))
## [1] "RMSE: 0.646727299146686"
r_squared <- summary(lmmodel)$r.squared
print(paste("R-squared: ", r_squared))
## [1] "R-squared: 0.647436919488881"
ggplot(data, aes(x = Social, y = Happiness_Score)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE, col = "blue") +
  labs(title = "Scatter Plot of Happiness Score based on Social",
       x = "Social Score",
      y = "Happiness Score")
```



```
lmmodel_2 <- lm(Happiness_Score ~ Social, data = testing_set)</pre>
summary(lmmodel_2)
##
## Call:
## lm(formula = Happiness_Score ~ Social, data = testing_set)
##
## Residuals:
##
        Min
                  1Q
                      Median
                                    3Q
                                            Max
## -1.91246 -0.50723 0.04253 0.55227 1.19156
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                 1.8034
                            0.3742
                                     4.819 7.23e-06 ***
## Social
                 3.0001
                            0.2974 10.089 1.13e-15 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7214 on 76 degrees of freedom
## Multiple R-squared: 0.5725, Adjusted R-squared: 0.5669
## F-statistic: 101.8 on 1 and 76 DF, p-value: 1.128e-15
predictions_2 <- predict(lmmodel_2, newdata = testing_set)</pre>
rmse_2 <- sqrt(mean((testing_set$Happiness_Score - predictions_2)^2))</pre>
print(paste("RMSE (Social model): ", rmse_2))
## [1] "RMSE (Social model): 0.712139313572519"
r_squared_2 <- summary(lmmodel_2)$r.squared
print(paste("R-squared (Social model): ", r_squared_2))
## [1] "R-squared (Social model): 0.57251156656046"
ggplot(data, aes(x = Freedom, y = Happiness_Score)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE, col = "blue") +
  labs(title = "Scatter Plot of Happiness Score based on Freedom",
       x = "Freedom Score",
       y = "Happiness Score")
## 'geom_smooth()' using formula = 'y ~ x'
```

Scatter Plot of Happiness Score based on Freedom


```
lmmodel_3 <- lm(Happiness_Score ~ Freedom, data = testing_set)
summary(lmmodel_3)</pre>
```

```
##
## Call:
## lm(formula = Happiness_Score ~ Freedom, data = testing_set)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -2.8451 -0.6640 -0.0348 0.8907 1.7633
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                            0.3318 11.317 < 2e-16 ***
## (Intercept)
                 3.7556
## Freedom
                 4.3667
                            0.7930
                                    5.507 4.77e-07 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.9329 on 76 degrees of freedom
## Multiple R-squared: 0.2852, Adjusted R-squared: 0.2758
## F-statistic: 30.32 on 1 and 76 DF, p-value: 4.768e-07
predictions_3 <- predict(lmmodel_3, newdata = testing_set)</pre>
```

```
rmse_3 <- sqrt(mean((testing_set$Happiness_Score - predictions_3)^2))
print(paste("RMSE (Freedom model): ", rmse_3))</pre>
```

```
## [1] "RMSE (Freedom model): 0.920858315286326"
```

```
r_squared_3 <- summary(lmmodel_3)$r.squared
print(paste("R-squared (Freedom model): ", r_squared_3))</pre>
```

[1] "R-squared (Freedom model): 0.285207357638025"

'geom_smooth()' using formula = 'y ~ x'

Scatter Plot of Happiness Score based on Health


```
lmmodel_4 <- lm(Happiness_Score ~ Health, data = testing_set)
summary(lmmodel_4)</pre>
```

```
##
## Call:
## lm(formula = Happiness_Score ~ Health, data = testing_set)
##
## Residuals:
       Min
                  1Q
                       Median
                                    3Q
                                            Max
## -1.64520 -0.40654 0.06847 0.54871 1.50718
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 2.7048
                            0.2762
                                     9.794 4.08e-15 ***
## Health
                 3.7042
                            0.3519 10.525 < 2e-16 ***
```

```
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.7039 on 76 degrees of freedom
## Multiple R-squared: 0.5931, Adjusted R-squared: 0.5878
## F-statistic: 110.8 on 1 and 76 DF, p-value: < 2.2e-16
predictions_4 <- predict(lmmodel_4, newdata = testing_set)</pre>
rmse_4 <- sqrt(mean((testing_set$Happiness_Score - predictions_4)^2))</pre>
print(paste("RMSE (Health model): ", rmse_4))
## [1] "RMSE (Health model): 0.694771303098578"
r_squared_4 <- summary(lmmodel_4)$r.squared</pre>
print(paste("R-squared (Health model): ", r squared 4))
## [1] "R-squared (Health model): 0.593108901180756"
lmmodel_5 <- lm(Happiness_Score ~ Economy, data = training_set)</pre>
summary(lmmodel_5)
##
## Call:
## lm(formula = Happiness_Score ~ Economy, data = training_set)
## Residuals:
##
        Min
                  1Q
                       Median
                                    3Q
                                            Max
## -2.20542 -0.45196 0.01283 0.52414 1.48846
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 3.4813
                         0.1863
                                   18.68
                                             <2e-16 ***
## Economy
                 2.1250
                            0.1937
                                     10.97
                                             <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7083 on 76 degrees of freedom
## Multiple R-squared: 0.6129, Adjusted R-squared: 0.6078
## F-statistic: 120.3 on 1 and 76 DF, p-value: < 2.2e-16
predictions_5 <- predict(lmmodel, newdata = training_set)</pre>
```

```
rmse_5 <- sqrt(mean((testing_set$Happiness_Score - predictions_5)^2))
print(paste("RMSE: ", rmse))

## [1] "RMSE: 0.646727299146686"

r_squared_5 <- summary(lmmodel_5)$r.squared

print(paste("R-squared (Economy model): ", r_squared_5))

## [1] "R-squared (Economy model): 0.612897269110227"</pre>
```