Unüberwachtes Lernen

Prof. Dr. Karsten Lübke

SoSe 2017

Unüberwachtes Lernen

Unüberwachtes Lernen (engl.: unsupervised learning): Es gibt keine bekannte abhänige Variable y, die modelliert werden soll

Methoden (u. a.):

- Hauptkomponentenanalyse (engl.: Principal Component Analysis):
 Finde (wenige) Linearkombinationen der Variablen: Zusammenfassung von Variablen, Dimensionsreduktion
- Clusteranalyse (engl.: Cluster Analysis): Finde Gruppen (Cluster) von Beobachtungen, die innerhalb der Cluster homogen, zwischen den Clustern heterogen sind¹

¹Clustern von Variablen analog

Haupt komponent en analyse

ldee: Fasse korrelierte Variablen (linear) zusammen. Die resultierenden Komponenten sind unkorreliert und beinhalten einen möglichst großen Anteil der (multivariaten) Gesamtvariation.

Analyse Extraversion

Extraversionstest nach Dr. Satow, angepasst von Prof. Dr. Sebastian Sauer.

Fragebogen: http://bit.ly/1HBhKWU

Analyse Extraversionsdaten: Alternative Einlesen

Menii RStudio:

File -> Import Dataset-> From Excel ...

Datei "Extraversion.xlsx" auswählen (Browse) -> Import

Analyse Extraversionsdaten: Einlesen


```
# Gqqfs. Einmaliq vorab installieren
# install.packages("readxl")
# Paket zum Einlesen von Excel Dateien laden
library(readxl)
# Daten einlesen
# Daten "Extraversion.xls" einlesen
# und als Datensatz "Extraversion" in R speichern
# Achtung: Pfad zur Datei anpassen
Extraversion <- read excel("Extraversion.xlsx")</pre>
```

data.frame() # Als Datensatz definieren

library(mosaic)

scale() %>% # Skalieren


```
Big5_Extra <- Extraversion[,1:10] %>% # Variablen wählen na.omit() %>% # Fehlende Werte löschen
```

Übung 1: Korrelation/ Kovarianz Big-5

Stimmt die Aussage: Bei skalierten/ standardisierten² Variablen ist die Kovarianzmatrix identisch zu der Korrelationsmatrix?

- Ja.
- Nein.

²d. h. $\bar{x} = 0$, sd = 1

Big-5 Extraversion: Korrelation

library(corrplot) # ggfs. einmalig vorab installieren
cor(Big5_Extra) %>%
 corrplot()

Übung 2: Korrelation Big-5

Welche der folgenden Aussagen stimmt?

- A: Die Variable F4_Verein korreliert hoch mit allen anderen Variablen
- B: Es gibt eine hohe Korrelation zwischen F5_Kommunikativ und F9_Party
- C: Die Variablen F3_Einzelgaenger und F7_Allein korrelieren negativ mit den anderen Variablen
- D: Es gibt eine negative Korrelation zwischen F5_Kommunikativ und F6_Kontaktfreudig

Hauptkomponentenanalyse Big-5

ergpca <- prcomp(~., data=Big5_Extra)</pre>

Ein Screeplot stellt die Varianz der Hauptkomponenten dar.

Übung 3: Screeplot

Welche der folgenden Aussagen stimmt?

- A: Alle Hauptkomponenten haben in etwa die gleiche Varianz
- B: Ungefähr nach k = 5 Hauptkomponenten gibt es einen Abfall in der Varianz
- C: Die erste Hauptkomponente hat eine deutlich h\u00f6here Varianz als die anderen

Big-5: Multivariate Varianz

summary(ergpca)

```
Importance of components%s:
                             PC1
                                   PC2
                                          PC3
                                                   PC4
                                                           PC!
##
## Standard deviation 1.9264 1.1276 1.0152 0.95305 0.8364
## Proportion of Variance 0.3711 0.1272 0.1031 0.09083 0.06996
## Cumulative Proportion
                          0.3711 0.4982 0.6013 0.69214 0.76213
##
                              PC7
                                      PC8
                                              PC9
                                                     PC10
## Standard deviation
                          0.73753 0.67945 0.65066 0.57230
## Proportion of Variance 0.05439 0.04616 0.04234 0.03275
                          0.87875 0.92491 0.96725 1.00000
## Cumulative Proportion
```

Übung 4: Multivariate Varianz

Welche der folgenden Aussagen stimmt?

- A: Die erste Hauptkomponente enthält mehr als die Hälfte der Gesamtvarianz
- B: Die ersten drei Hauptkomponenten haben eine Varianz größer als 1
- C: Die Varianz der Hauptkomponenten nimmt zu
- D: Mit 20% der Hauptkomponenten kann 80% der Gesamtvarianz erfasst werden

Extraversion: Biplot

Ein Biplot visualisiert die Ladungen der Variablen sowie die Werte der Beobachtungen auf den ersten Hauptkomponenten ("Scores").

biplot(ergpca)

Übung 5: Biplot

17 / 38

Welche der folgenden Aussagen stimmt?

A: Beobachtung 25 steht gerne im Mittelpunkt

B: Beobachtung 25 ist gerne allein

■ C: Weiß nicht

Ladungen

##

PC2

-0.37991170 0.28000997 -0.04890728

0.34772008 -0.39761602 -0.11608462

-0.31393570 -0.38962475 0.05636913

-0.31788786 0.02749680 -0.2153387

-0.23135004 -0.52923767 0.1521971

Die Ladungen geben das Gewicht der einzelnen Variablen für die jeweilige Hauptkomponente an.

```
ergpca$rotation[,1:3]
```

F2 Zusammen

F7_Allein
F8 Stimmung

F9 Party

·· ·· <u>-</u> - ·· · · · · · · · · · · · · · · · · ·		
## F3_Einzelgaenger	0.31830517 -0.45934930	0.08135633
## F4_Verein	-0.09927139 0.15189388	0.86798448
## F5_Kommunikativ	-0.37696270 -0.24099774	0.04304854
## F6_Kontaktfreudig	-0.37188345 -0.19554849	0.08241711

PC1

F10 Unternehmungslustig -0.30009253 -0.02114792 -0.37783403

Übung 6: Ladungen

Welche der folgenden Aussagen stimmt nicht?

- A: Die Variable F4_Verein ist für die erste Hauptkomponente unwichtig
- B: Die Variablen F3_Einzelgaenger und F7_Allein haben auf der ersten Hauptkomponente eine andere Richtung als die anderen Variablen
- C: Mit Ausnahme von F4_Verein sind die meisten Variablen für die erste Hauptkomponente annähernd gleich wichtig
- D: Je h\u00f6her der Wert f\u00fcr F11_Mittelpunkt desto h\u00f6her ist der Wert auf der zweiten Hauptkomponente

Cronbachs Alpha

Cronbachs Alpha ist eine Maßzahl für die interne Konsistenz einer Skala (Reliabilität). Sollte i. d. R. > 0.7 sein.

```
library(psych) # ggfs. einmalig vorab installieren
ca <- alpha(Big5_Extra, check.keys = TRUE)</pre>
```

```
## Warning in alpha(Big5_Extra, check.keys = TRUE): Some items
## This is indicated by a negative sign for the variable name
```

```
summary(ca)
```

##

```
## Reliability analysis
## raw_alpha std.alpha G6(smc) average_r S/N ase mean so
## 0.8 0.8 0.81 0.28 3.9 0.017 -0.15 0.59
```

Übung 7: Cronbachs Alpha

Ist die interne Konsistenz der Skala hier akzeptabel?

- Ja.
- Nein.

Offene Übung Freizeitverhalten

Lassen sich die Variablen F12_Facebook, F13_Kater und F19_Partybesuche zusammenfassen?

Finde Gruppen, die sich intern ähnlich sind:

- Agglomerativ/ hierarchisch: Beobachtungen werden sukzessiv zusammengefasst
- $lue{}$ Partitionierend: Beobachtungen werden zu k Clustern zusammengefasst

Ähnlichkeit/ Unähnlichkeit wird über Distanzmaße (z. B. Euklidischer Abstand $d(x,y)=\sqrt{\sum_j{(x_j-y_j)^2}}$ definiert.

Vorbereitung: Freizeitverhalten


```
Freizeit <- Extraversion %>%

select(F12_Facebook, F13_Kater, F19_Partybesuche) %>% # Vare
na.omit() %>% # Fehlende Werte löschen
scale() %>% # Skalieren
data.frame() # Als Datensatz definieren
```


Freizeit[1:3,] # Ersten drei Beobachtungen

```
## F12_Facebook F13_Kater F19_Partybesuche

## 1 0.4090813 -0.24245120 0.8852787

## 2 0.0531947 0.91730552 0.8852787

## 3 0.6202668 -0.01049986 1.2862530
```

```
Freizeit[1:3,] %>%
  dist() # Distanz
```

```
## 1 2
## 2 1.2131327
## 3 0.5090984 1.1589539
```

Übung 8: Distanz

Welche der folgenden Aussagen stimmt?

- A: Beobachtungen 1 und 2 sind sich am ähnlichsten
- B: Beobachtungen 1 und 3 sind sich am ähnlichsten
- C: Beobachtungen 2 und 3 sind sich am ähnlichsten

Hierarchische Clusteranalyse


```
erghclust <-Freizeit %>% # Datensatz
  dist() %>% # Distanz
  hclust() # Hierarchische Cluster
```

Dendrogramm

28 / 38

Je höher (Height) die Stelle ist, an der zwei Beobachtungen oder Cluster zusammengefasst werden, desto größer ist die Distanz zwischen ihnen.

plot(erghclust)

hclust (*, "complete")

Anzahl Cluster

Eine mögliche Trennung für k = 2 Cluster:

```
plot(erghclust)
rect.hclust(erghclust, k=2, border="red")
```


Zuordnung in Datensatz schreiben
Freizeit\$hcclust <- cutree(erghclust, k=2)</pre>

Cluster Beschreibung


```
mean(F12 Facebook ~ hcclust, data=Freizeit)
## 1
## -0.01216125 0.19522002
mean(F13_Kater ~ hcclust, data=Freizeit)
## 1 2
## -0.1925119 3.0903234
mean(F19_Partybesuche ~ hcclust, data=Freizeit)
## 1
```

-0.1526532 2.4504855

Übung 9: Cluster Beschreibung

Welche der folgenden Aussagen stimmt?³

- A: Im Mittelwert haben Beobachtungen aus Cluster 2 0.2
 Facebook-Freunde
- B: Im Mittelwert gehen Personen aus Cluster 1 öfter auf Partys als aus Cluster 2
- C: Personen aus Cluster 2 haben im Mittelwert öfter einen Kater als aus Cluster 1

 SoSe 2017
 Prof. Dr. Karsten Lübke
 31 / 38

³Beachte: der Datensatz Freizeit ist standardisiert

k-Means Clusteranalyse

Der Ablauf des Verfahrens:

- 1: Zufällige Beobachtungen als k Clusterzentrum
- 2: Zuordnung der Beobachtungen zum nächsten Clusterzentrum
- 3: Neuberechnung der Clusterzentren als Mittelwert der dem Cluster zugeordneten Beobachtungen

Wiederholung bis keine Änderung in (2) oder maximale Iterationsanzahl erreicht.

k-Means Clusteranalyse Freizeitverhalten

Mit z. B. k = 3 Zentren:

Ergebnis k-Means


```
ergkclust$size # Anzahl Beob. je Cluster
```

[1] 95 25 204

ergkclust\$centers # Cluster Zentren

```
## F12_Facebook F13_Kater F19_Partybesuche
## 1 1.0836399 0.1302987 0.3527567
## 2 0.1553459 2.6925065 2.2485914
## 3 -0.5236737 -0.3906423 -0.4398366
```

Übung 10: Clustergröße

Welche Aussage stimmt?

- A: Die Anzahl Beobachtungen ist in Cluster 1 am größten
- B: Die Anzahl Beobachtungen ist in Cluster 2 am größten
- C: Die Anzahl Beobachtungen ist in Cluster 3 am größten

Übung 11: Beschreibung Cluster

Für welchen Cluster passt die Beschreibung Facebook Junkies am Besten?

- A: Cluster 1
- B: Cluster 2
- C: Cluster 3

Übung 12: Clusterzentren

37 / 38

In welcher Variable unterscheidet sich Cluster 3 am meisten von den anderen?⁴

A: F12_Facebook

B: F13_Kater

■ C: F19_Partybesuche

⁴Beachte: der Datensatz Freizeit ist standardisiert

Offene Übung Extraversion

Führen Sie eine Clusteranalyse auf den Scores der ersten beiden Hauptkomponenten der Extraversionsitems durch

pcascores <- predict(ergpca)[,1:2]</pre>