期中复习•复分析常见判断题汇总

黄天一

2023年4月14日

这里我们给出不少与复分析期中前内容相关的判断题,来帮助同学们复习一些细枝末节的概念与性质. 先判断对错,再说明理由. 下面我们总设 Ω 是 $\mathbb C$ 中的区域.

第1-17题是前三章的内容,后面的题暂时不需要看.

1. 若 f 在 $z_0 \in \mathbb{C}$ 处满足 Cauchy-Riemann 方程, 则 f 在 z_0 处全纯.

错误, 例如函数 $f(z) = \sqrt{|xy|}, z = x + iy$. 在 z = 0 处, 计算可得

$$\left.\frac{\partial f}{\partial x}\right|_{x=0} = \lim_{\Delta x \to 0} \frac{\sqrt{|\Delta x| \cdot 0} - 0}{\Delta x} = 0, \ \left.\frac{\partial f}{\partial y}\right|_{x=0} = \lim_{\Delta y \to 0} \frac{\sqrt{0 \cdot |\Delta y|} - 0}{\Delta y} = 0.$$

所以 f 在 z=0 处满足 Cauchy-Riemann 方程. 但是当 h=x+iy 沿直线 y=x 趋近于零时, 有

$$\frac{\sqrt{|xy|}}{x+\mathrm{i}y} = \frac{1}{1+\mathrm{i}} \frac{|x|}{x}.$$

上式在 $x \to 0$ 时的极限不存在, 所以 f 在 z = 0 处不是复可微的.

如果考试中考察判断题,无论是对还是错,都一定要像上面这样写出完整的论证过程,不要只拍下一个反例!

2. (2011 期末) 存在 $B(0,1) \setminus \{0\}$ 上的无界全纯函数 f, 使得 $\lim_{z \to 0} z f(z) = 0$.

正确. 例如函数
$$f(z) = \frac{1}{1-z} \in H(B(0,1))$$
, 但 f 无界且 $\lim_{z\to 0} z f(z) = 0$.

来自后来的补充: 想了一想感觉这题放现在不太合适, 虽然做法完全是初等的. 实际上可以用第五章的 Laurent 展开说明只要 $\lim_{z\to 0}zf(z)=0$, 则 0 是 f 的可去奇点 (这个结论叫做 Riemann 可去奇点定理), 从而在 0 附近有界, 但在整个区域上有界性未必成立, 或许这才是本题想说的.

3. (2021 期中) 设 $f = u + iv \in H(\Omega)$, 且满足 $u = v^2$, 则 f 为常数.

正确. 两边求导并由 Cauchy-Riemann 方程可得

$$v_y = u_x = 2vv_x, \ v_x = -u_y = -2vv_y.$$

由此可得 $v_y = -4v^2v_y \Rightarrow v_x, v_y$ 恒为零, 所以 v 是常数. 进而由 $u_x = v_y, u_y = -v_x$ 可得 u 也是常数, 因此 f 为常数.

4. (出现在无数期中里) 设 u 在 Ω 上调和, 则存在 $f \in H(\Omega)$, 使得 u = Re f.

错误. 设 $\Omega = \mathbb{C} \setminus \{0\}$, $u(z) = \log |z|$, 则 $u \in \Omega$ 上调和. 假设存在 $f \in H(\Omega)$ 使得 $\operatorname{Re} f = u$, 考虑 $\mathbb{C} \setminus (-\infty, 0]$ 上的全纯函数 $g(z) = \log z = \log |z| + \operatorname{i} \operatorname{arg} z$, 则在 $\mathbb{C} \setminus (-\infty, 0]$ 上有 $\operatorname{Re}(f - g) = 0$, 从而 f = g 在 $\mathbb{C} \setminus (-\infty, 0]$ 上恒成立. 所以

$$\lim_{n \to +\infty} f\left(-1 + \frac{\mathrm{i}}{n}\right) = \lim_{n \to +\infty} g\left(-1 + \frac{\mathrm{i}}{n}\right) = \mathrm{i}\pi,$$

$$\lim_{n\to +\infty} f\left(-1-\frac{\mathrm{i}}{n}\right) = \lim_{n\to +\infty} g\left(-1-\frac{\mathrm{i}}{n}\right) = -\mathrm{i}\pi.$$

这与 f 在 -1 处的连续性矛盾!

5. 若整函数 f 将实轴和虚轴上的点均映为实数, 则 f'(0) = 0.

正确. 考虑两条曲线 $\gamma_1: (-1,1) \to \mathbb{C}, t \mapsto t, \gamma_2: (-1,1) \to \mathbb{C}, t \mapsto it, 则 <math>\gamma_1, \gamma_2$ 在 z=0 处是正交的. 若 $f'(0) \neq 0$,则由保角性可得 γ_1, γ_2 的像在 f(0) 处仍然正交. 但 f 把实轴和虚轴都映入实轴, 所以 γ_1, γ_2 的像的夹角只能是 0 或 π , 矛盾.

6. Log(z) 作为多值函数, 成立等式 $Log(z^2) = 2Log(z)$.

错误. 考虑 z = i, 则有

$$Log(i^2) = Log(-1) = (2k+1)\pi i, \ k \in \mathbb{Z}$$

另一方面,有

$$2\mathrm{Log}(\mathrm{i}) = 2\left(2k\pi + \frac{\pi}{2}\right)\mathrm{i} = (4k+1)\pi\mathrm{i}, \ k \in \mathbb{Z}.$$

二者不相等.

7. 对任意的 $z \in \mathbb{C} \setminus \{0\}$ 和 $w \in \mathbb{C}$, 成立 $z^{2w} = z^w \cdot z^w$.

错误. 考虑 $w = \frac{1}{2}, z = 1, 则$

$$1^{2 \times \frac{1}{2}} = 1, \ 1^{\frac{1}{2}} \cdot 1^{\frac{1}{2}} = \pm 1,$$

二者不相等.

8. sin z 是复数域上的有界函数.

错误. 由定义可得 $\sin(in) = \frac{e^{-n} - e^n}{2i}$, $\forall n \in \mathbb{Z}$, 所以 $\sin z$ 是无界的.

9. 函数 $f(z) = \text{Log}\left(\frac{z^2-1}{z}\right)$ 在区域 $\mathbb{C}\setminus([-1,0]\cup[1,\infty))$ 上能选出单值的全纯分支.

正确. 首先 f(z) = Log(z+1) + Log(z-1) - Log(z), $0, \pm 1, \infty$ 都是其支点. 区域 $\Omega = \mathbb{C} \setminus ([-1,0] \cup [1,\infty))$ 不包含这些支点, 并且任取 Ω 内的简单闭曲线 γ , γ 的外部必然不包含 ∞ , 并且内部要么不含支点, 要么同时包含支点 -1, 0, 我们只需证明后一种情况下有 $\Delta_{\gamma} f(z) = 0$. 由于

$$\Delta_{\gamma} \text{Log}(z+1) = 2\pi i, \ \Delta_{\gamma} \text{Log}(z-1) = 0, \ \Delta_{\gamma} \text{Log}(z) = 2\pi i.$$

所以
$$\Delta_{\gamma} f(z) = \Delta_{\gamma} \text{Log}(z+1) + \Delta_{\gamma} \text{Log}(z-1) - \Delta_{\gamma} \text{Log}(z) = 2\pi i - 2\pi i = 0.$$

10. 设 f 为 $\sqrt[4]{(1-z)^3(1+z)}$ 在 $\mathbb{C} \setminus [-1,1]$ 上的单值全纯分支,并且 $f(i) = \sqrt{2}e^{\frac{\pi}{8}i}$,则 $f(-i) = \sqrt{2}e^{\frac{\pi}{8}i}$.

错误. 参考刘助教第二次习题课讲义 (懒得画图了喵).

11. 若 f 在 Ω 上全纯, 则沿 Ω 内任一可求长闭曲线的积分为零.

错误. 考虑 $\Omega = \mathbb{C} \setminus \{0\}$, $f(z) = \frac{1}{z} \in H(\Omega)$. 则圆周 |z| = 1 包含于 Ω , 且 $\int_{|z|=1} \frac{\mathrm{d}z}{z} = 2\pi\mathrm{i} \neq 0$.

12. 若 f 在 Ω 上全纯, 则 f 在 Ω 上存在原函数.

错误. 考虑 $\Omega = \mathbb{C} \setminus \{0\}$, $f(z) = \frac{1}{z} \in H(\Omega)$. 假设 f 在 Ω 上存在原函数 F, 考虑单位圆周 |z| = 1, $t \mapsto e^{it}(t \in [0, 2\pi])$, 则

$$2\pi i = \int_{|z|=1} \frac{dz}{z} = \int_0^{2\pi} F'(e^{it})(e^{it})'dt = \int_0^{2\pi} \frac{d}{dt} F(e^{it})dt = F(e^{it})\Big|_0^{2\pi} = 0.$$

矛盾!

13. 在单位圆周上可以用多项式一致逼近函数 $f(z) = \frac{1}{z}$.

错误. 假设存在多项式列 $\{p_n(z): n=1,2,\cdots\}$ 在单位圆周 |z|=1 上一致收敛于 $f(z)=\frac{1}{z}$, 则

$$2\pi i = \int_{|z|=1} \frac{dz}{z} = \lim_{n \to +\infty} \int_{|z|=1} p_n(z) dz = \lim_{n \to +\infty} 0 = 0.$$

矛盾!

这里我们简单介绍本题背后的一些有趣内容. 在数分中, 成立着著名的 Weierstrass 一致逼近定理:

(Weierstrass) 任一紧致区间上的连续函数可以被多项式一致逼近.

而本题实际上说明了, 上述逼近定理无法被直接推广到复变理论. 尽管如此, 我们实际有如下所述的 Runge 逼近定理:

(Runge) 任一紧致集合 K 上的全纯函数 f 可以被有理函数一致逼近, 并且这些有理函数的极点均落在 K^c 中.

推荐感兴趣的同学阅读 Stein 复分析的 60-64 页了解详细的证明过程. 该定理的证明思路十分清晰, 分两步走: (i) 将 f 表示为 K 外一条折线上的 Cauchy 型积分; (ii) 用积分的黎曼和一致逼近f, 从而得到满足要求的一列有理函数.

那么什么时候才能在紧致集合在多项式逼近全纯函数呢?事实上,从 Runge 逼近定理出发,我们可以得到这样的结论:如果紧致集 K 还满足 K^c 是连通集,则全纯函数 f 可以被多项式一致逼近.可以看到,本题中的紧致集合 K,即单位圆周的补集并不是连通的,这与该推论相符.

Runge 逼近定理还有着许多漂亮的推论,这里我们仅举一例,感兴趣的同学可以自行验证 (也是 Stein 课后问题里的一题, Problem 2.5). 存在这样一个整函数 f,满足 "万有性质",即任取整函数 g,存在自然数列 $\{n_k\}$,使得 $f(z+n_k)$ 在 \mathbb{C} 上内闭一致收敛于 g. 更进一步,也存在这样的整函数 g,存在自然数列 $\{n_k\}$,使得 $f^{(n_k)}$ 在 \mathbb{C} 上内闭一致收敛于 g.

14. $\stackrel{\text{def}}{=} \operatorname{Re} z_1 \leq 0, \operatorname{Re} z_2 \leq 0 \text{ pt}, |e^{z_1} - e^{z_2}| \leq |z_1 - z_2|.$

正确. 首先 e^z 是整函数, 且 $(e^z)' = e^z$. 在线段 $z_1 z_2$ 上, 恒成立 $\operatorname{Re} z \leq 0$. 因此

$$|e^{z_1} - e^{z_2}| = \left| \int_{z_1}^{z_2} e^z dz \right| \le \int_{z_1}^{z_2} |e^z| |dz| = \int_{z_1}^{z_2} e^{\operatorname{Re} z} |dz| \le \int_{z_1}^{z_2} |dz| = |z_1 - z_2|.$$

15. ℂ上的非负调和函数为常数.

正确. 设 u 为 $\mathbb C$ 上的非负调和函数,则它存在 $\mathbb C$ 上的共轭调和函数 v. 考虑整函数 $f=u+\mathrm{i} v$,则 Re $f\geqslant 0$. 考虑函数 $g(z)=\frac{1}{f(z)+1}$,则 g 为整函数且 $|g(z)|\leqslant 1$,由 Liouville 定理可得 g 为常数,进而 f 为常数,所以 u 为常数.

16. 设 f 为非常值整函数, 则当 $z \to \infty$ 时, $|f(z)| \to \infty$.

错误. 考虑非常值整函数 e^z , 则当 z 沿负实轴趋近于 ∞ 时, e^z 收敛于零.

17. 非常值整函数 f 的像在 \mathbb{C} 中稠密.

正确. 设 f 为整函数, 且 $f(\mathbb{C})$ 在 \mathbb{C} 中不稠密, 即存在 $w_0 \in \mathbb{C}, r > 0$ 使得 $B(w_0, r) \cap f(\mathbb{C}) = \emptyset$. 考虑函数 $g(z) = \frac{1}{f(z) - w_0}$, 由于 $|f(z) - w_0| \ge r$, 所以 g 是整函数且 $|g(z)| \le \frac{1}{r}$. 由 Liouville 定理可得 g 是常数. 从而 f 是常数.

18. 设 f 在 |z| < 2 内全纯, 且对任意 $n \ge 1$, 有

$$\int_{|z|=1} \frac{f(z)dz}{(n+1)z-1} = 0,$$

则 f 恒为零.

正确. 由 Cauchy 积分公式可得

$$f\left(\frac{1}{n+1}\right) = \frac{1}{2\pi i} \int_{|z|=1} \frac{f(z)}{z - \frac{1}{n+1}} dz = \frac{n+1}{2\pi i} \int_{|z|=1} \frac{f(z)}{(n+1)z - 1} dz = 0, \ \forall n \geqslant 1.$$

由唯一性定理即可得 f 恒为零.

19. 单位圆盘 B(0,1) 上的非零全纯函数在 B(0,1) 中至多有有限个零点.

错误. 例如函数 $f(z) = \sin \frac{1}{1-z}$, 则 $f \in H(B(0,1))$, 但是 $z = 1 - \frac{1}{n\pi}$, $n = 1, 2, \cdots$ 都是 f 的零点.

20. 设 f 在 Ω 上全纯, 且在 Ω 上恒成立 $f'(z) \neq 0$, 则 f 在 Ω 上单叶.

错误. 例如 $\Omega = \mathbb{C}$, $f(z) = e^z$, 则 $f'(z) = e^z$ 恒不为零, 但 $e^z = e^{z+2k\pi i}$, $k \in \mathbb{Z}$ 恒成立.

21. 方程 $2z^4 = \sin z$ 在 |z| < 1 中只有一个根.

错误. 设 $f(z)=2z^4-\sin z$, 我们先估计 $\sin z$ 在 $\partial B(0,1)$ 上的模. 设 $z=\mathrm{e}^{\mathrm{i}\theta}\in\partial B(0,1)$, 则由定义可得

$$|\sin z| = \frac{1}{2} |e^{ie^{i\theta}} + e^{-ie^{i\theta}}| \le \frac{e^{-\cos\theta} + e^{\cos\theta}}{2} \le \frac{e + e^{-1}}{2} < 2.$$

设 $g(z) = 2z^4$, 则可得在 $\partial B(0,1)$ 上成立

$$|f(z) - g(z)| = |\sin z| < 2 = |g(z)|.$$

所以 $2z^4 = \sin z$ 的在 B(0,1) 内的零点个数与 $z^4 = 0$ 相等, 为 4.

22. 方程 $z^8 - 4z^5 + z^2 - 1 = 0$ 在圆环 1 < |z| < 2 内的零点个数为 3.

正确. 设 $f(z) = z^8 - 4z^5 + z^2 - 1$. 在圆周 |z| = 1 上, 有

$$|f(z) - (-4z^5)| = |z^8 + z^2 - 1| \le 3 < |-4z^5|.$$

所以 f(z) 在 $\overline{B(0,1)}$ 内的零点个数为 5. 在圆周 |z|=2 上,有

$$|f(z) - z^8| = |-4z^5 + z^2 - 1| \le 4 \times 2^5 + 2^2 + 1 < 2^8 = |z^8|.$$

因此 f(z) 在 B(0,2) 内的零点个数为 8. 综上所述 f(z) 在圆环 1 < |z| < 2 内的零点个数为 8-5=3.

23. 设 $f \in H(\Omega) \cap C(\overline{\Omega})$, 则 $f \in \Omega$ 的边界上取到最大模.

错误. 例如取 $\Omega=\{z\in\mathbb{C}:-\frac{\pi}{2}<\operatorname{Im}z<\frac{\pi}{2}\},\,f(z)=\mathrm{e}^{\mathrm{e}^z}.$ 则 f 为整函数, 且任取 $z=x\pm\mathrm{i}\frac{\pi}{2}\in\partial D,$ 有

$$|f(z)| = |e^{\pm ie^x}| = 1.$$

但是在内点 z=0 处, f(0)=e, 所以 f 在 Ω 的内部取最大模.

24. 设 $|z_k| > 1, k = 1, \dots, n$. 则存在 $z_0 \in \partial B(0,1)$, 满足 $\prod_{k=1}^{n} |z_k - z_0| > 1$.

正确. 考虑多项式 $f(z)=\prod\limits_{\substack{k=1\\n}}^n(z_k-z),$ 则 $|f(0)|=\prod\limits_{\substack{k=1\\n}}^n|z_k|>1.$ 由最大模原理可得存在 $z_0\in\partial B(0,1),$ 使得 $|f(z_0)|=\prod\limits_{\substack{k=1\\k=1}}^n|z_k-z_0|>f(0)=1.$

25. 存在 B(0,1) 上的全纯函数 f, 使得在 B(0,1) 上恒成立 $|f(z)| = |z|^2 + 1$.

错误. 假设存在这样的函数 f,则 $g=\frac{1}{f}\in H(B(0,1))$. 但是 |g(0)|=1,在 $|z|=\frac{1}{2}$ 上恒成立 $|g(z)|=\frac{4}{5}<1$,这与最大模原理矛盾.

26. 设 f 为整函数, 如果 f 在 B(0,1) 内非零, 且 $|f(z)| = M > 0, \forall |z| = 1, 则 <math>f$ 为常数.

正确. 考虑函数 $g(z)=\frac{f(z)}{M},$ 则 |g(z)|=1, $\forall |z|=1.$ 由最大模原理可得 $|g(0)|\leqslant 1.$ 考虑函数 $h=\frac{1}{g},$ 则 |h(z)|=1, $\forall |z|=1,$ 再用最大模原理可得 $|h(0)|=\frac{1}{|g(0)|}\leqslant 1.$ 所以 |g(0)|=1, 故 g(z) 在 B(0,1) 内恒为常数,由唯一性定理可得 g 在 $\mathbb C$ 上恒为常数,故 f 也为常数.

27. 设 $f: B(0,1) \to B(0,1)$ 全纯, 且 f(0) = 0, 则 $\sum_{n=0}^{\infty} f(z^n)$ 在 B(0,1) 中内闭一致收敛.

正确. 任取 $G \subset B(0,1)$,设 $\rho = \operatorname{dist}(G,\partial B(0,1)) \in (0,1)$. 由 Schwarz 引理可得 $|f(z^n)| \leq |z|^n \leq (1-\rho)^n$,由级数 $\sum_{n=1}^{\infty} (1-\rho)^n$ 收敛,应用 Weierstrass 判别法可得 $\sum_{n=1}^{\infty} f(z_n)$ 在 G 内一致收敛.