CONSERVAÇÃO DE ENERGIA

Para amenizar a exigência de fluxo isotérmico nas equações da tabela 2-2, exigimos uma equação de conservação de energia. Esta equação adiciona uma variável dependente adicional, temperatura, à formulação. Uma declaração do balanço energético da primeira lei da termodinâmica adequada para nossos propósitos é:

Onde V é um volume arbitrário como na figura 2-1. Usamos o paralelo entre a conservação das espécies Eq 2.1-1 e Eq 2.3-1 para encurtar o desenvolvimento a seguir.

Por analogia com o procedimento descrito em Sec.2-2, a Eq. (2.3-1) pode ser escrita como

$$\int_{V} \frac{\partial}{\partial t} \left(\rho U + \frac{1}{2} \sum_{j=1}^{N_{P}} \rho_{j} |\vec{u}_{j}|^{2} \right) + \vec{\nabla} \cdot \vec{E} dV = \dot{W}$$
 (2.3-2)

na Eq.(2.3-2) o termo $1/2 \sum_{j=1}^{N_P} \rho_j |\vec{u}_j|^2$ representa energia cinética por unidade de volume a granel. Os termos restantes ρ U, E e W representam **concentração**, **fluxo** e **fonte de energia (trabalho)**, respectivamente, aos quais damos forma específica a seguir. U é uma energia interna geral e ρ é a densidade geral dada pela Eq (2.2-13a).

O termo fonte requer consideravelmente mais elaboração do que os outros termos da Eq. (2.3-2). A forma da primeira lei da termodinâmica dos sistemas abertos, expressa pela Eq. (2.3-2) exige que o termo W seja composto apenas por componentes de trabalho, na ausência de fontes de aquecimento externas. É claro que os aquecimentos de reação, vaporização e solução são importantes em vários processos de EOR, mas estão implicitamente presentes na equação nos termos de concentração e fluxo. Consideramos apenas a taxa de trabalho realizado contra um campo de pressão W_{pv} e trabalhamos contra a gravidade W_g nesse desenvolvimento. A soma $W = W_{pv} + W_G$ é a taxa de trabalho realizada em um elemento de fluxo no volume v.

Voltando à Fig.2-1 (b), considere um elemento no campo de fluxo multifásico e multicomponente que cruza ΔA . Como o trabalho é o produto da força vezes a distância, a taxa de trabalho é a força vezes a velocidade. O elemento que cruza ΔA está, portanto, fazendo o trabalho ΔW_{pv} em que

$$\Delta \dot{W}_{PV} = -\sum_{j=1}^{N_P} P_j \Delta A \vec{n} \cdot \vec{u}_j \qquad (2.3-3)$$

O termo $P_j\Delta A_n^{\rightarrow}$ é a força exercida em uma ΔA pela pressão na fase j. O produto escalar na eq. (2.3-3) expressa apenas uma definição mais geral da taxa de trabalho ao usar forças e velocidades vetoriais. O sinal negativo na Eq. (2.3-3) é satisfazer a convenção usual de sinais termodinâmicos para o trabalho, pois o ΔW_{pv} . deve ser positivo para o trabalho realizado em um elemento fluido que flui para $V(\vec{n}\cdot\vec{u}_j<0)$. O trabalho pressão-volume total é a soma da Eq. (2.3-3) sobre todos os elementos de superfície que, no limite da maior ΔA que se aproxima de zero, se torna uma integral de superfície. Usando o teorema da divergência Eq. (2.1-7) nesta integral fornece a forma final para W_{pv} .

$$\dot{W}_{PV} = -\int_{V} \sum_{j=1}^{N_p} \vec{\nabla} \cdot (P_j \vec{u}_j) dV \qquad (2.3-4)$$

Para explicar o trabalho da gravidade, novamente pegamos um produto escalar de uma velocidade e o vetor de gravidade \overrightarrow{g} .

$$\Delta \dot{W}_G = \sum_{j=1}^{N_P} \rho_j \vec{u}_j \cdot \vec{g} \Delta V \qquad (2.3-5)$$

O sinal positivo surge nesta equação, uma vez que uma fase fluida que flui contra a gravidade $(\vec{u}_j \cdot \vec{g} \le 0)$ está sendo executada. Observe a distinção entre as formas elementares nas Eqs. (2.3-3) e (2.3-5). A equação (2.3-3) é apropriada para o trabalho realizado contra as forças da superfície, e a Eq (2.3-5) é apropriada para o trabalho realizado contra as forças do corpo. A taxa do trabalho total realizado contra a gravidade é

$$\dot{W}_G = \int_V \sum_{j=1}^{N_P} \rho_j \vec{u}_j \cdot \vec{g} dV$$
 (2.3-6)

do procedimento de limitação usual.

As expressões de trabalho se encaixam perfeitamente na Eq. (2,3-3). Depois de coletar todos os termos com o mesmo volume integral e marcar o integrando zero porque V é arbitrário, temos

$$\frac{\partial}{\partial t} \left(\rho U + \frac{1}{2} \sum_{j=1}^{N_P} \rho_j |\vec{u}_j|^2 \right) + \vec{\nabla} \cdot \vec{E} + \sum_{j=1}^{N_P} \vec{\nabla} \cdot (P_j \vec{u}_j) - \sum_{j=1}^{N_P} \rho_j \vec{u}_j \cdot \vec{g} = 0$$
 (2.3-7)

O termo fluxo de energia é composto de contribuição convectiva das seguintes fases, condução e radiação, sendo todas as outras formas negligenciadas

$$\vec{E} = \sum_{j=1}^{N_P} \rho_j \vec{u}_j \left[U_j + \frac{1}{2} |\vec{u}_j|^2 \right] + \vec{q}_c + \vec{q}_r$$
 (2.3-8)

Por uma questão de brevidade, negligenciamos a radiação na discussão a seguir, embora esse mecanismo de transporte possa ser importante na estimativa de perdas de calor dos poços. Para fluxo multifásico, o fluxo de calor condutor é da lei de Fourier

$$\vec{q}_c = -k_{T} \vec{\nabla} T \tag{2.3-9}$$

onde e K_{ti} é a condutividade térmica total. K_{ti} é uma função complexa das condutividades térmicas de saturação de fase e fase K_{tj} e K_{ts} sólidos que consideramos conhecidas. Te paralelo entre a Eq. (2.3-8) e o termo de fluxo dispersivo na Eq. (2.2-2) é óbvio. Também invocamos o requisito de equilíbrio térmico local nesta definição, assumindo o requisito de equilíbrio térmico local nessa definição, considerando que a temperatura T é a mesma em todas as fases dentro do REV.

A inserção das definições (2.3-8) e (2.3-9) em (2.3-7) produ

$$\frac{\partial}{\partial t} \left(\rho U + \frac{1}{2} \sum_{j=1}^{N_P} \rho_j |\vec{u}_j|^2 \right) + \vec{\nabla} \cdot \left(\sum_{j=1}^{N_P} \rho_j \vec{u}_j \left[U_j + \frac{1}{2} |\vec{u}_j|^2 \right] \right)
- \vec{\nabla} \cdot (k_{T_t} \vec{\nabla} T) + \sum_{j=1}^{N_P} \left[\vec{\nabla} \cdot (P_j \vec{u}_j) - \rho_j \vec{u}_j \cdot \vec{g} \right] = 0$$
(2.3-10)

A primeira soma no termo da convecção e na expressão pressão-volume do trabalho pode ser combinada para fornecer

$$\frac{\partial}{\partial t} \left(\rho U + \frac{1}{2} \sum_{j=1}^{N_P} \rho_j |\vec{u}_j|^2 \right) + \vec{\nabla} \cdot \left(\sum_{j=1}^{N_P} \rho_j \vec{u}_j \left[H_j + \frac{1}{2} |\vec{u}_j|^2 \right] \right) - \vec{\nabla} \cdot (k_{T_t} \vec{\nabla} T)$$

$$- \sum_{j=1}^{N_P} \rho_j \vec{u}_j \cdot \vec{g} = 0 \qquad (2.3-11)$$

onde $H_j = U_j + P_j / \rho_j$ é a entalpia da fase j por unidade de massa de j. Finalmente, vamos escrever o vetor de gravidade como na Eq. (2.2-15). O último termo na eq. (2.3-11) torna-se

$$\sum_{j=1}^{N_P} \rho_j \vec{u}_j \cdot \vec{g} = -g \sum_{j=1}^{N_P} \rho_j \vec{u}_j \cdot \vec{\nabla} D_z$$

$$= -g \sum_{j=1}^{N_P} \vec{\nabla} \cdot (\rho_j \vec{u}_j D_z) + g \sum_{j=1}^{N_P} D_z \vec{\nabla} \cdot (\rho_j \vec{u}_j)$$
(2.3-12)

Isto quando substituído na eq (2.3-11) nos da

$$\frac{\partial}{\partial t} \left(\rho U + \frac{1}{2} \sum_{j=1}^{N_P} \rho_j |\vec{u}_j|^2 \right) + \vec{\nabla} \cdot \left(\sum_{j=1}^{N_P} \rho_j \vec{u}_j \left[H_j + \frac{1}{2} |\vec{u}_j|^2 + g D_z \right] \right) - \vec{\nabla} \cdot (k_{Tt} \vec{\nabla} T)
- g D_z \vec{\nabla} \cdot \left(\sum_{j=1}^{N_P} \rho_j \vec{u}_j \right) = 0$$
(2.3-13)

da Eq. (2.2-21), o último termo se torna $gD_z\partial(\phi\rho)/\partial t$, que quando substituído na Eq. (2.3-13), torna-se a forma final (Eq. 2.3-14) na tabela 2-3, uma vez que gDz tem tempo independente. Os termos de trabalho da são agora a equação como a energia potencial mais familiar.

(2.3-14)
$$\frac{\partial}{\partial t} (\rho U + \rho g D_z + \frac{1}{2} \sum_{j=1}^{N_P} \rho_j |\vec{u}_j|^2)$$
 1
 $+ \vec{\nabla} \cdot \left(\sum_{j=1}^{N_P} \rho_j \vec{u}_j \left[H_j + \frac{1}{2} |\vec{u}_j|^2 + g D_z \right] \right)$
 $- \vec{\nabla} \cdot (k_D \vec{\nabla} T) = 0$

Relações Auxiliares

A Tabela 2-3 resume as equações que, juntamente com as da tabela 2-2, são necessárias para obter especificações completas de problemas de fluxo de fluido não isotérmico. As três primeiras equações que já discutimos.

A concentração de energia por unidade de volume total deve incluir contribuições internas de energia de todas as fases de fluxo e da fase sólida

$$\rho U = \phi \sum_{j=1}^{N_P} \rho_j S_j U_j + (1 - \phi) \rho_s U_s \qquad (2.3-15)$$

Onde Uj é a energia interna por unidade de massa da fase j. Essa definição, juntamente com o termo de energia cinética, negligência todas as formas de energia, exceto interna e potencial, que é incluída em W abaixo.

As energias internas da fase U_j e U_s e as entalpias H_{ij} são função da temperatura T, pressão da fase P_j e composição w_{ij} . Uma forma que essa dependência pode assumir é a Eq. (2.3-16), onde as energias internas duplamente subscritas (e entalpias) são quantidades parciais de massa. Quantidades parciais de massa, Eq. (2.3-17), são analogias com quantidades molares parciais na termodinâmica da solução. Por exemplo, a energia interna de massa parcial das espécies i na fase j é a mudança em U_j à medida que W_{ij} é alterado, todas as outras variáveis são mantidas constantes,

$$U_{ij} = \left(\frac{\partial U_j}{\partial \omega_{ij}}\right)_{P_j, T, \, \omega_{kj, \, k \neq i}} \tag{2.3-18}$$

e similar para Uis e Hij. As próprias propriedades de massa parcial podem ser calculadas a partir de equações do estado Eq (2.2-12) ou correlações empíricas em função da temperatura, pressão e composição.

As equações (2.3-16) são prontamente revertidas para formas simples. Por exemplo, se a fase j é uma solução ideal, as quantidades de massa do componente se tornam quantidades puras de componentes, funções apenas de temperatura e pressão. Além disso, se j é um gás ideal, as quantidades parciais de massa são apenas funções de temperatura.

As equações apresentadas nas tabelas 2-2 estão completas, mas só podem ser resolvidas com a especificações de um conjunto igualmente completo de condições iniciais e condicionais.

TABLE 2-1 SUMMARY OF DIFFERENTIAL OPERATORS IN RECTANGULAR, CYLINDRICAL, AND SPHERICAL COORDINATES

Spherical coordinates (r, θ, ϕ)	$\vec{a}_z \qquad \vec{\nabla} \cdot \vec{B} = \frac{1}{r^2} \frac{\partial (r^2 B_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (B_\theta \sin \theta)$ $+ \frac{1}{r \sin \theta} \frac{\partial B_\phi}{\partial \phi}$	$[\vec{\nabla}S]_r = \frac{\partial S}{\partial r}$	$[\vec{\nabla}S]_{\theta} = \frac{1}{r} \frac{\partial S}{\partial \theta}$	$[\vec{\nabla}S]_{\phi} = \frac{1}{r \sin \theta} \frac{\partial S}{\partial \phi}$,-	$+\frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial S}{\partial\theta}\right)+\frac{1}{r^2\sin^2\theta}\frac{\partial^2S}{\partial\theta^2}$
Cylindrical coordinates (r, θ, z)	$\vec{\nabla} \cdot \vec{B} = \frac{1}{r} \frac{\partial (rB_r)}{\partial r} + \frac{1}{r} \frac{\partial B_\theta}{\partial \theta} + \frac{\partial B_r}{\partial z}$	$[\vec{\nabla}S]_r = \frac{\partial S}{\partial r}$	$\left[\vec{\nabla}S\right]_{\theta} = \frac{1}{r} \frac{\partial S}{\partial \theta}$	$[\vec{\nabla}S]_{r} = \frac{\partial S}{\partial z}$	$\vec{\nabla}^2 S = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial S}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 S}{\partial \theta^2} + \frac{\partial^2 S}{\partial z^2}$	
Rectangular coordinates (x, y, z)	$\vec{\nabla} \cdot \vec{B} = \frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z}$	$[\vec{\nabla}S]_x = \frac{\partial S}{\partial x}$	$[\vec{\nabla}S]_{y} = \frac{\partial S}{\partial y}$	$[\vec{\nabla}S]_t = \frac{\partial S}{\partial z}$	$\vec{\nabla}^2 S = \frac{\partial^2 S}{\partial x^2} + \frac{\partial^2 S}{\partial y^2} + \frac{\partial^2 S}{\partial z^2}$	

Note: B = vector functionS = scalar function

TABLE 2-2 SUMMARY OF EQUATIONS FOR ISOTHERMAL FLUID FLOW IN PERMEABLE MEDIA

		Number independent scalar*	Dependen	Dependent variables [†]
Equation (1)	Name (2)	equations (3)	Identity (4)	Number (5)
$(2.1-9) \frac{\partial W_i}{\partial t} + \vec{\nabla} \cdot \vec{N_i} = R_i$	Species i conservation	N_C	$W_i, R_i, \overrightarrow{N_i}$	$2N_C + N_C N_D$
(2.2-1) $W_i = \phi \sum_{j=1} \rho_j S_j \omega_{ij} + (1-\phi)\rho_s \omega_{is}$	Overall concentration	$N_C - 1$	$\rho_{l}, S_{j}, \omega_{ij}, \omega_{li}$	$2N_P + N_P N_C + N_C$
$(2.2-2) \ \overrightarrow{N_i} = \sum_{j=1}^{N_p} (\rho_j \omega_{ij} \overrightarrow{u_j} - \phi \rho_j S_j \overrightarrow{K_{ij}} \cdot \overrightarrow{\nabla} \omega_{ij})$	Species i flux	$N_C N_D$	\vec{u}_j	$N_P N_D$
$(2.2-3) R_{l} = \phi \sum_{j=1}^{np} S_{j} r_{ij} + (1-\phi) r_{is}$	Species i source	N_C-1	Fij. Fis	$N_PN_C+N_C$
$(2.2-4) \sum_{i=1}^{\infty} R_i = 0$	Total reaction definition	· .		
(2.2-5) $\overrightarrow{u_j} = -\lambda_{rj} \overrightarrow{k} \cdot (\overrightarrow{\nabla} P_j + \rho_j \overrightarrow{g})$ (2.2-6) $\lambda_{rj} = \lambda_{rj}(S, \omega, u_j, \overrightarrow{x})$ (2.2-7) $P_j - P_n = P_{cin}(S, \omega, \overrightarrow{x})$	Darcy's law Relative mobility Capillary pressure definition	$N_P N_D$ N_P $N_P - 1$	λ_{ij},P_j	$2N_P$

* Total independent equations = $N_D(N_P + N_C) + 2N_PN_C + 4N_P + 4N_C$ † Total dependent variables = $N_D(N_P + N_C) + 2N_PN_C + 4N_P + 4N_C$

TABLE 2-2 CONTINUED

		Number independent scalar*	Dependent variables [†]	ariables⁺
Equation (1)	Name (2)	equations (3)	Identity (4)	Number (5)
(2.2-8a) $\sum_{i=1}^{N_C} \omega_{ij} = 1$	Mass fraction definition	N _P		
$(2.2-8b) \sum_{i=1}^{k} \omega_{ii} = 1$	Stationary phase mass fraction definition	_		
$(2.2-9) \sum_{j=1} S_j = 1$	Saturation definition	-		
$(2.2-10a) r_{ij} = r_j(\omega_{ij}, P_j)$	Homogeneous kinetic reaction rates	$(N_C-1)N_P$		
(2.2-10b) $r_{is} = r_{is}(\omega_{is})$	Stationary phase reaction rates	$N_C - 1$		
$(2.2-10c) \sum_{i=1}^{N} r_{ij} = 0$	Total phase reaction definition	N_{P}		
$(2.2-10d) \sum_{i=1} r_{ii} = 0$	Stationary phase total reaction rates			
$(2.2-11a) \omega_{ij} = \omega_{ij}(\omega_{ik})_{k \neq j}$	Equilibrium relations (or phase balances)	$N_C(N_P-1)$		
$(2.2-11b) \omega_{i_1} = \omega_{i_2}(\omega_{i_j})$	Stationary phase equilibrium relations (or phase balances)	N_C		
$(2.2-12) \ \rho_j = \rho_j(T, P_j)$	Equations of state	N_{P}		

* Total independent equations = $N_D(N_P + N_C) + 2N_PN_C + 4N_P + 4N_C$ † Total dependent variables = $N_D(N_P + N_C) + 2N_PN_C + 4N_P + 4N_C$