Low-cost attacks on Ethereum 2.0 by sub-1/3 stakeholders

Michael Neuder Daniel J. Moroz Rithvik Rao David C. Parkes

School of Engineering and Applied Sciences Harvard University

Workshop on Game Theory in Blockchain (GTiB)
The 16th Conference on Web and Internet Economics (WINE)
December 11, 2020

Context

- The Ethereum 2.0 beacon chain launched December 1, 2020.
- Approximately 1 Million ETH (500 Million USD) currently staked.
- High validator participation in the consensus.

Contributions

- Outline two attacks that can be launched against the Ethereum 2.0 Beacon chain.
 - Malicious reorgs
 - 2. Delaying finality
- Demonstrate that for a 30% stake attacker, these attacks are feasible and cheap.

Malicious Reorgs

Intuition:

- The fork-choice rule decides between conflicting blocks with same parent by seeing which block has more votes.
- 2. An attacker can create a private fork, during which the honest validators vote for the parent block.
- 3. This allows the validator to use multiple sets of votes for their private chain and thus outweigh the next honest blocks.

o Impact:

- 1. Potential to double spend.
- 2. Potential to front run.

Delaying Finality

Intuition:

- 1. Finality gadget operates on special "checkpoint" blocks.
- 2. In order to finalize new blocks, 2/3 of the validators need to agree on one of these checkpoint blocks.
- 3. If the attacker is the proposer (block creator) for a checkpoint block, they can delay its release in order to ensure 2/3 threshold is not met.

Impact:

- 1. Temporary DoS on finalization mechanism.
- 2. Less predictable network.

Related Work

- Proof-of-Work selfish mining literature from Eyal and Sirer (2013),
 Nayak et al. (2016), Sapirshtein et al. (2016).
- Longest-chain Proof-of-Stake selfish mining by Brown-Cohen et al. (2019), Neuder et al. (2020).
- Attacks on the beacon chain.
 - 1. Ebb and Flow attack by Neu et al. (2020).
 - 2. Decoy Flip-Flop by Ryuya Nakamura (2019).
 - 3. Bouncing attack by Ryuya Nakamura (2019).

Proof-of-Stake Basics

- Time is divided epochs, which consists of 12 second slots.
- Each slot has a committee with a single proposer and many attesters.
- Proposers create blocks, and attesters vote.
- \circ Validators are rewarded for participation (as of today 14% annually).

Proof-of-Stake Basics

- Combination of two ideas:
 - 1. Fork-choice rule: HLMD-GHOST (Hybrid Latest Message Driven Greedy Heaviest Observed SubTree).
 - 2. Finality tool: Casper FFG (Friendly Finality Gadget).

Fork-Choice Rule

- HLMD-GHOST[†] uses weight to determine the head of the canonical chain.
- Each block annotated with its weight.
- Blue blocks are heaviest branch at each fork and thus part of canonical chain.

[†] Hybrid Latest Message Driven Greedy Heaviest Observed SubTree

Attestations

Definition

An <u>attestation</u> is the casting of a vote that contains:

 A_1 — a source epoch boundary block

 A_2 — a target epoch boundary block

 A_3 – the head of the chain according to HLMD-GHOST

 \circ For now we only consider A_3 , which is the result of HLMD-GHOST.

Definition

 Chain reorganizations, or reorgs, occur when a conflicting fork is determined to be dominant over the existing canonical chain.

Strategy

- The attacker privately proposes block n+1 and attests with $(A_3 = n+1)$. Honest validators instead attest with $(A_3 = n)$.
- At slot n + 2, an honest validator will propose a block whose parent is the slot n block.
- \circ The attacker then releases private attestations and block n+1, which is seen as the head of the chain by HLMD-GHOST.

Strategy

Probability

- Use Monte Carlo simulation of 10⁷ randomly generated epochs.
- o In this case, we only consider reorgs that occur within a single epoch.
- Cost is the amount of reward lost, or the opportunity cost of playing this dishonest strategy.

Finality

- Finality is a property of blocks.
- Casper FFG* from Buterin and Griffith (2017) operates on top of a blockchain and determines which blocks are finalized.
- The first block in the chain is finalized, and the gadget moves monotonically up in block height, using "checkpoint" blocks.
- Design rationale: More efficient to use checkpoints rather than finalizing each block individually.

Epoch Boundary Blocks (EBBs)

- Block 32 is the EBB for epoch 1 because it is the first block of the epoch.
- Block 63 is the EBB for epoch 2 because the expected first block of the epoch, block 64, was not published.

Attestations Revisited

Definition

An <u>attestation</u> is the casting of a vote that contains:

 A_1 — a source epoch boundary block

 A_2 — a target epoch boundary block

 A_3 – the head of the chain according to HLMD-GHOST

- An attestation with $(A_1 = \beta, A_2 = \gamma)$ means, "I want to move the finality gadget from EBB β to EBB γ ".
- If 2/3 of the validators attest with $(A_1 = \beta, A_2 = \gamma)$, we say a supermajority link is created, and the gadget is moved.

Justification and Finalization

- o An EBB becomes justified when the gadget lands on it.
- An EBB becomes finalized when the gadget is moved from that block to the next epoch's EBB.

Delaying Finality

Strategy

- Attacker privately creates block 32, which is an EBB for epoch 1.
- Since the honest validators do not see the EBB (block 32), they attest with $(A_1 = 0, A_2 = 31) \implies$ "Move gadget from 0 to 31".
- Repeat previous two steps with block 33.
- Attacker releases private fork and withholds all remaining attestations.

Delaying Finality

Probability

- The 30% attacker has probability $(0.3)^2 = 0.09$ of forcing non-justified epoch.
- In order to ensure none of next n epochs are finalized on time,
 attacker needs to ensure that no two epochs in a row are justified.
- Cost is the amount of reward lost, or the opportunity cost of playing this dishonest strategy.

Conclusion

- Summary
 - * Ethereum Proof-of-Stake
 - Malicious Reorgs
 - Delaying Finality
- Future work
 - * Quantifying the impact of attacks.
 - * Mitigation of attacks.

Thanks!