

10.020 Data Driven World

Supervised Learning

Peng Song, ISTD

Week 6, Lesson 3, 2021

Revision: Working with Data

Python read and manipulate data in numerical tables using pandas.

	month	town	flat_type	block	street_name	storey_range	floor_area_sqm	flat_model	lease_commence_date	remaining_lease	resale_price
0	2017- 01	ANG MO KIO	2 ROOM	406	ANG MO KIO AVE 10	10 TO 12	44.0	Improved	1979	61 years 04 months	232000.0
1	2017- 01	ANG MO KIO	3 ROOM	108	ANG MO KIO AVE 4	01 TO 03	67.0	New Generation	1978	60 years 07 months	250000.0
2	2017- 01	ANG MO KIO	3 ROOM	602	ANG MO KIO AVE 5	01 TO 03	67.0	New Generation	1980	62 years 05 months	262000.0
3	2017- 01	ANG MO KIO	3 ROOM	465	ANG MO KIO AVE 10	04 TO 06	68.0	New Generation	1980	62 years 01 month	265000.0
4	2017- 01	ANG MO KIO	3 ROOM	601	ANG MO KIO AVE 5	01 TO 03	67.0	New Generation	1980	62 years 05 months	265000.0
95853	2021- 04	YISHUN	EXECUTIVE	326	YISHUN RING RD	10 TO 12	146.0	Maisonette	1988	66 years 04 months	650000.0
95854	2021- 04	YISHUN	EXECUTIVE	360	YISHUN RING RD	04 TO 06	146.0	Maisonette	1988	66 years 04 months	645000.0
95855	2021- 04	YISHUN	EXECUTIVE	326	YISHUN RING RD	10 TO 12	146.0	Maisonette	1988	66 years 04 months	585000.0
95856	2021- 04	YISHUN	EXECUTIVE	355	YISHUN RING RD	10 TO 12	146.0	Maisonette	1988	66 years 08 months	675000.0
95857	2021- 04	YISHUN	EXECUTIVE	277	YISHUN ST 22	04 TO 06	146.0	Maisonette	1985	63 years 05 months	625000.0

95858 rows x 11 columns

Revision: Data Visualization

Python draw common plots to visualize data using **Matplotlib** and **Seaborn**.

Revision: Types of Machine Learning

- Supervised learning
 - Given: training data + desired outputs (labels)
- Unsupervised learning
 - Given: training data (without labels)
- Reinforcement learning
 - Rewards from sequence of actions

Our focus in this course

Supervised Learning vs Unsupervised Learning

Supervised Learning vs Unsupervised Learning

Supervised Learning vs Unsupervised Learning

Classification

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
- y is categorical

Classification

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
- y is categorical

Classification

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
- y is categorical

Regression

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
- y is numeric

Classification

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
- y is categorical

Regression

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
- y is numeric

Classification

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
- y is categorical

Regression

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
- y is numeric

Week 10 Logistic Regression

Week 9 Linear Regression

Classification #1: Animal Recognition

- Represent input image as a vector $\mathbf{x} \in \mathbb{R}^{w \times h \times 3}$
- Learn a classifier $f(\mathbf{x})$ such that,

 $f: \mathbf{x} \to \{\text{zebra, tiger, rhino, panda, lion, hippo, penguin, giraffe, snake, elephant}\}$

Classification #2: Hand-written Digit Recognition

- Represent input image as a vector $\mathbf{x} \in \mathbb{R}^{w \times h}$
- Learn a classifier f(x) such that,
 f: x → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Regression #1: House Price Prediction

• Learn a function y = f(x), where

Regression #2: Stock Price Prediction

• Learn a function y = f(x), where

2022.01

Supervised Learning Process

Supervised Learning Process

Data Acquisition

 Data acquisition is the process to acquire datasets that can be used to train the machine learning models.

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	36.2
		•••					•••	•••			•••			
501	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273.0	21.0	391.99	9.67	22.4
502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273.0	21.0	396.90	9.08	20.6
503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273.0	21.0	396.90	5.64	23.9
504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273.0	21.0	393.45	6.48	22.0
505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273.0	21.0	396.90	7.88	11.9

Data Acquisition Approaches

1. Data Discovery

Search for datasets available on the web

2. Data Augmentation

Enriching existing data by adding more external data

3. Data Generation

Generate the datasets manually or automatically

Supervised Learning Process

Data Extraction

Extract data for machine learning

INDUS: proportion of non-retail business acres per town

RM: average number of rooms per dwelling

DIS: weighted distances to five Boston employment centers

MEDV: median value of owner-occupied homes in \$1000s

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	36.2
	•••						•••				•••			
501	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273.0	21.0	391.99	9.67	22.4
502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273.0	21.0	396.90	9.08	20.6
503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273.0	21.0	396.90	5.64	23.9
504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273.0	21.0	393.45	6.48	22.0
505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273.0	21.0	396.90	7.88	11.9

Data Extraction

Extract data for machine learning

INDUS: proportion of non-retail business acres per town

RM: average number of rooms per dwelling

DIS: weighted distances to five Boston employment centers

MEDV: median value of owner-occupied homes in \$1000s

fo	~ 1	roo	
Tea	ลเน	res	

	RM	DIS	INDUS
0	6.575	4.0900	2.31
1	6.421	4.9671	7.07
2	7.185	4.9671	7.07
3	6.998	6.0622	2.18
4	7.147	6.0622	2.18
•••	•••	•••	
501	6.593	2.4786	11.93
502	6.120	2.2875	11.93
503	6.976	2.1675	11.93
504	6.794	2.3889	11.93
505	6.030	2.5050	11.93

MEDV 24.0 0 21.6 2 34.7 3 33.4 4 36.2 **501** 22.4 **502** 20.6 **503** 23.9 **504** 22.0 **505** 11.9

target

Data Normalization

- Minmax normalization
- Z normalization

Minmax Normalization

• Linear scale data to range [0, 1]

$$normalized = \frac{data - min}{max - min}$$

Minmax Normalization

• Linear scale data to range [0, 1]

$$normalized = \frac{data - min}{max - min}$$

features

	RM	DIS	INDUS
0	6.575	4.0900	2.31
1	6.421	4.9671	7.07
2	7.185	4.9671	7.07
3	6.998	6.0622	2.18
4	7.147	6.0622	2.18
501	6.593	2.4786	11.93
502	6.120	2.2875	11.93
503	6.976	2.1675	11.93
504	6.794	2.3889	11.93
505	6.030	2.5050	11.93

	MEDV
0	24.0
1	21.6
2	34.7
3	33.4
4	36.2
501	22.4
502	20.6
503	23.9
504	22.0

target

Z Normalization

Linear scale data such that the average is 0 and the standard deviation is 1

 $normalized = \frac{data - \mu}{\sigma}$

Z Normalization

• Linear scale data such that the average is 0 and the standard deviation is 1 $normalized = \frac{data - \mu}{\sigma}$

Assumption: the data has a Gaussian distribution

Supervised Learning Process

Data Splitting

- Split the data into:
 - training dataset
 - test dataset

Would this be a good way to do the data splitting?

features

	RM	DIS	INDUS	
0	6.575	4.0900	2.31	
1	6.421	4.9671	7.07	
2	7.185	4.9671	7.07	
3	6.998	6.0622	2.18	
4	7.147	6.0622	2.18	
501	6.593	2.4786	11.93	
502	6.120	2.2875	11.93	
503	6.976	2.1675	11.93	
504	6.794	2.3889	11.93	
505	6.030	2.5050	11.93	

target

MEDV
24.0
21.6
34.7
33.4
36.2
22.4
20.6
23.9
22.0
11.9

Data Splitting

- Split the data into:
 - training dataset
 - test dataset

 The split must be done randomly to avoid systematic bias in the split of the dataset.

features

	RM	DIS	INDUS
0	6.575	4.0900	2.31
1	6.421	4.9671	7.07
2	7.185	4.9671	7.07
3	6.998	6.0622	2.18
4	7.147	6.0622	2.18
	•••	•••	•••
501	6.593	2.4786	11.93
502	6.120	2.2875	11.93
503	6.976	2.1675	11.93
504	6.794	2.3889	11.93
505	6.030	2.5050	11.93

target

		_
	MEDV	
0	24.0	train
1	21.6	test
2	34.7	test
3	33.4	train
4	36.2	train
•••	:	
501	22.4	test
502	20.6	train
503	23.9	test
504	22.0	train
505	11.9	train

Fundamental Assumption

- **Assumption**: The distribution of training examples is identical to the distribution of test examples (including future unseen examples).
 - In practice, this assumption is often violated to certain degree.
 - Strong violations will clearly result in poor prediction accuracy.
- To achieve good accuracy on the test data, training examples must be sufficiently representative of the test data.

Data Splitting Percentage

- The procedure has one main configuration parameter, which is the size of the train and test sets.
- This is most commonly expressed as a percentage between 0 and 1 for either the train or test datasets, e.g.,

Train: 80%, Test: 20%

- Train: 67%, Test: 33%

Train: 50%, Test: 50%

Data Splitting: Tuning the Model

- There are times in machine learning, we need to experiment with different parameters and find the optimum parameters.
- In these cases, the dataset is usually split into three:
 - training dataset, which is used to build the model
 - validation dataset, which is used to evaluate the model for various parameters and to choose the optimum parameter
 - test dataset, which is used to evaluate the model built with the optimum parameter found previously

Supervised Learning Process

Training the Model

- Simplest form: learn a function from examples
 - f is the target function
 - An example is a pair (x, f(x))
- Pure induction task:
 - Given a collection of examples of f, return a function h that approximates f.
 - find a hypothesis h, such that $h \approx f$, given a training set of examples
- This is a highly simplified model of real learning:
 - Ignores prior knowledge
 - Assumes examples are given

- Construct/adjust h to agree with f on training set
- (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:

- Construct/adjust h to agree with f on training set
- (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:

- Construct/adjust h to agree with f on training set
- (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:

- Construct/adjust h to agree with f on training set
- (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:

- Construct/adjust h to agree with f on training set
- (h is consistent if it agrees with f on all examples)
- E.g., curve fitting:

- Hypotheses must generalize to correctly classify/predict instances not in the training data.
- Simply memorizing training examples is a consistent hypothesis that does not generalize.
- Occam's razor:
 - Finding a simple hypothesis helps ensure generalization.

Supervised Learning Process

Testing the Model

- Test the model using unseen test data to assess the model accuracy
- Avoid overfitting at the learning stage

Testing the Model

- Test the model using unseen test data to assess the model accuracy
- Avoid overfitting at the learning stage

Cohort Problem CS5

CS5. Standardization: Write a function that takes in data frame where all the column are the features and normalize each column according to the following formula.

 $normalized = \frac{data - \mu}{\sigma}$

Cohort Problem CS6

CS5. Splitting Data Randomly: Create a function to split the Data Frame randomly. The function should have the following arguments:

- df_feature: which is the data frame for the features.
- df_target: which is the data frame for the target.
- random_state: which is the seed used to split randomly.
- test_size: which is the fraction for the test data set (0 to 1), by default is set to 0.5

Thank You!