

Universidade Federal do Ceará Faculdade de Economia

Métodos Quantitativos

Vicente Lima Crisóstomo

Fortaleza, 2011

Métodos Quantitativos

Introdução Estatística

Estatística Descritiva

Probabilidade

Distribuições de Probabilidades

Amostragem e Distribuições Amostrais

Estimação

Testes de Significância

Análise de Variância

Teste de Significância para Proporções

Testes N\u00e3o Param\u00e9tricos

Correlação e Regressão

Métodos Quantitativos

Sumário

ว

Regressão Linear

- Análise de Regressão
 - Ênfase na natureza do relacionamento
 - Busca uma Equação matemática
 - Capaz de descrever o relacionamento entre variáveis
 - Equação pode ser usada para estimar valores de uma variável com base em valores de

• Outra variável: regressão linear simples

• Outras variáveis: regressão linear múltipla

- De relevante importância em
 - Economia, administração, contabilidade

- Regressão linear
 - Dados são emparelhados
 - Cada observação tem duas ou mais variáveis
 - Exemplos
 - Amostra de pessoas
 - Nome, consumo, renda, escolaridade, idade, altura, peso
 - Amostra de alunos
 - Nome, desempenho, hor_est_sem, idade, altura, peso
 - Amostra de empresas
 - Empresa, RSC, endividamento, rentabilidade, tangibilidade, valor da empresa

- Usos da equação de Regressão linear
 - Calcular valores futuros
 - Calcular valores para evitar experimentos caros e/ou destrutivos
 - Em função de dados históricos obtém-se a equação
 - Estimação de efeitos
 - Adoção de políticas e efeitos na economia
 - Uso de certas técnicas e seus efeitos
 - Observação:
 - <u>Sempre</u>, a lógica da relação deve originar-se de teorias externas ao âmbito da estatística

Métodos Quantitativos 5

Regressão Linear

- A equação de Regressão linear
 - Corresponde a uma equação de uma reta

•
$$y = b + a\underline{x} \approx a\underline{x} + b \approx b_0 + b_1.\underline{x}$$

- b = termo independente, constante, intercepto
- a = coeficiente angular da reta
 - $a = \Delta y / \Delta x$
- A reta intercepta o eixo y no ponto (0; b)
- A reta intercepta o eixo **x** no ponto (-b/a; 0)

Métodos Quantitativos 6

- A equação de Regressão linear
 - Corresponde a uma equação de uma reta

•
$$y = b + a\underline{x} \approx a\underline{x} + b \approx b_0 + b_1.\underline{x}$$

- a = coeficiente angular da reta
 - $a = \Delta y / \Delta x$
 - O coeficiente angular indica quantas unidades <u>y</u> varia a cada variação de uma unidade de <u>x</u>

- A equação de Regressão linear
 - Corresponde a uma equação de uma reta
 - $y = b + a\underline{x} \approx a\underline{x} + b \approx b_0 + b_1.\underline{x}$
 - Como equação de uma regressão linear
 - y = variável a ser predita, estimada, calculada, "explicada" = variável dependente
 - x = variável preditora, explicativa, independente

Regressão Linear

- Nem toda relação é aproximada por uma equação linear
- Ao examinar uma relação entre duas variáveis
 - Pode haver:
 - Inexistência de relação
 - Relação linear
 - Relação não linear
 - Quadrática
 - Cúbica
 - ..

Métodos Quantitativos 9 Métodos Quantitativos 10

- Determinação da equação linear
 - Valores de y podem ser preditos a partir de x?
 - Equação amostral (observada)

$$y_c = b_0 + b_1 x + erro$$

- A partir de dados amostrais pode-se determinar uma equação que bem represente a relação entre duas variáveis da população?
 - Equação que representa função de regressão populacional (não observada, estimada)

$$y_c = \beta_0 + \beta_1 x + erro$$

Métodos Quantitativos 13

Regressão Linear

- Método para encontrar, ou ajustar, uma linha reta ao conjunto de pontos (pares ordenados) determinados pelas duas variáveis
 - Mínimos Quadrados Ordinários (MQO)
 - Ordinary Least Squares (OLS)
 - Outros

Métodos Quantitativos 14

- Mínimos Quadrados Ordinários (MQO)
 - Método mais simples e mais usado
 - Busca minimizar os desvios entre cada observação (par ordenado) e a reta da equação de regressão
 - Busca minimizar o erro
 - Busca a reta que apresente menores desvios em relação aos vários pontos
 - Observações
 - Soma dos desvios verticais dos pontos em relação à reta "estimada" é zero
 - Soma dos quadrados dos desvios dos pontos em relação à reta "estimada" é mínima

- Mínimos Quadrados Ordinários (MQO)
 - Método mais comum para ajustar uma linha ao conjunto de pontos observados
 - Duas características da reta resultante:
 - Soma dos desvios verticais (valor observado valor calculado pela equação linear) é zero
 - Reta é a mais "próxima" de todos os pontos
 - Soma dos quadrados das distâncias é mínima
 - Equação da reta de regressão

$$y_c = b_0 + b_1 x + erro$$

Métodos Quantitativos

17

Regressão Linear

- Mínimos Quadrados Ordinários (MQO)
 - Valor minimizado
 - Diferença entre y_i e y_c.
 - y_i = um valor <u>observado</u> de y
 - y_c = um valor <u>calculado</u> de y usando a equação de mínimos quadrados com valor observado de x emparelhado com valor y.

$$\sum (y_i - y_c)^2$$

$$y_c = b_0 + b_1 x + erro$$

Métodos Quantitativos 18

Regressão Linear

- Mínimos Quadrados Ordinários (MQO)
 - Valores de b₀ e b₁ que minimizam a soma dos quadrados dos desvios são as soluções do seguinte sistema de equações:
 - n = número de pares de observações

$$\sum y = nb_0 + b_1 \left(\sum x\right)$$

$$\sum xy = b_0 \left(\sum x \right) + b_1 \left(\sum x^2 \right)$$

- Mínimos Quadrados Ordinários (MQO)
 - Valores de b₀ e b₁

$$b_1 = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$

$$b_0 = \frac{\sum y - b_1 \sum x}{n}$$

■ Exemplo:

- Quilometragem de um carro pode afetar seu preço de venda? Pode-se propor que sim como hipótese? Considerando que sim. Qual o grau de influência da quilometragem sobre o preço de venda?
 - x = quilômetros rodados (em milhares)
 - y = preço do veículo

Regressão Linear

- Outros fatores além da quilometragem tambem podem afetar o preço
- "isolando" outros possíveis fatores
- Tentar encontrar uma equação que "indique" o efeito da quilometragem sobre o preço

Métodos Quantitativos 21 Métodos Quantitativos 22

Regressão Linear

 Dispondo de uma amostra (conjunto de observações de carros vendidos) pode-se calcular b₀ e b₁

$$b_1 = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$

$$b_0 = \frac{\sum y - b_1 \sum x}{n}$$

Exemplo: quilometragem e preço do carro

$$y = 2.933,6 - 38,56 x$$

Obs.	х	у	x.y	x2	y2		
1	40	1.000	40.000	1.600	1.000.000		
2	30	1.500	45.000	900	2.250.000	n =	14
3	30	1.200	36.000	900	1.440.000		
4	25	1.800	45.000	625	3.240.000	b1 =	-38,56
5	50	800	40.000	2.500	640.000		
6	60	1.000	60.000	3.600	1.000.000		
7	65	500	32.500	4.225	250.000	b0 =	2.933,6
8	10	3.000	30.000	100	9.000.000		
9	15	2.500	37.500	225	6.250.000		
10	20	2.000	40.000	400	4.000.000		
11	55	800	44.000	3.025	640.000		
12	40	1.500	60.000	1.600	2.250.000		
13	35	2.000	70.000	1.225	4.000.000		
14	30	2.000	60.000	900	4.000.000		
soma	505	21.600	640.000	21.825	39.960.000		

■ Exemplo: quilometragem e preço do carro

$$y = 2.933,6 - 38,56 x$$

	obs	x_Km	y_preco observado	y_preco calculado	(yi-yc)^2
	1	40	1,000.00	1,391.60	153350.56
	2	30	1,500.00	1,777.20	76839.84
	3	30	1,200.00	1,777.20	333159.84
	4	25	1,800.00	1,970.00	28900
	5	50	800.00	1,006.00	42436
	6	60	1,000.00	620.40	144096.16
	7	65	500.00	427.60	5241.76
	8	10	3,000.00	2,548.40	203942.56
	9	15	2,500.00	2,355.60	20851.36
	10	20	2,000.00	2,162.80	26503.84
	11	55	800.00	813.20	174.24
	12	40	1,500.00	1,391.60	11750.56
	13	35	2,000.00	1,584.40	172723.36
	14	30	2,000.00	1,777.20	49639.84
				N 47 1	1269609.9
.,				Mínimo	25
le	todos Qu	ıantitativos			25

$$y = 2.933,6 - 38,56 x$$

	A equação indica	que a cada	1.000 quilômetros o	carro perde	: \$38,56 de va	lo
--	------------------	------------	---------------------	-------------	-----------------	----

Observ.	Х	Y observado	Y calculado
8	10	3.000	2.548
	<u>12</u>		<u>2.471</u>
9	15	2.500	2.355
	<u>18</u>		<u>2.240</u>
10	20	2.000	2.162
4	25	1.800	1.970
2	30	1.500	1.777
3	<u>32</u> <u>33</u>		<u>1.700</u>
14	<u>33</u>		<u>1.661</u>
13	35	2.000	1.584
1	<u>38</u>		<u>1.469</u>
12	40	1.500	1.391
	<u>45</u> 50		<u>1.199</u>
5	50	800	1.006
	<u>53</u>		<u>890</u>
11	55	800	813
6	60	1.000	620
	<u>62</u>		<u>543</u>
7	65	500	428
Métodos Quantitativos			

Regressão Linear

 Sobre a equação que aproxima a função de regressão populacional

$$y_c = \beta_0 + \beta_1 x + erro$$

- O resultado é uma estimativa
- Equação de regressão é uma estimação da real relação
- Trata-se de uma relação média
- O valor estimado pela equação pode não ser exato
- A relação linear pode não manter-se fora do escopo da amostra

Regressão Linear

■ Inferência em análise de regressão

$$y_0 = \beta_0 + \beta_1 x + erro$$

26

- b_0 e b_1 são estimativas pontuais dos parâmetros populacionais β_0 e β_1
- erro representa a dispersão na população
- Ausência de erro significaria todos os pontos sobre uma linha reta => relacionamento perfeito
- Relacionamento perfeito "quase" impossível
- Há outras variáveis **x** que influenciam o valor de **y**
- Cada variável x terá seu grau de influência em y

■ Inferência em análise de regressão

$$y_c = \beta_0 + \beta_1 x + erro$$

- Cada variável **x** terá seu grau de influência em **y**
- Haveria distintos conjuntos de valores da variável x capazes de explicar y?
 - Dois fatores minimizam esta possibilidade
 - Idoneidade da amostra
 - Elevado número de observações
- Haveria outros conceitos (variáveis) capazes de explicar y?
 - Idade, Conservação, Cidade, Número de proprietários, Categoria dos proprietários ...

Regressão Linear

- Inferência em análise de regressão
 - Análise de regressão supõe que
 - Para cada x há uma distribuição de potenciais y com distribuição normal
 - Dado x, os vários valores de y correspondentes têm distribuição normal
 - A média de cada distribuição equivale ao valor médio de y na população

Métodos Quantitativos 29 Métodos Quantitativos 30

Regressão Linear

- Inferência em análise de regressão
 - Análise de regressão supõe que
 - Para cada x há uma distribuição de potenciais y com distribuição normal
 - Dado x, os vários valores de y correspondentes têm distribuição normal
 - Distribuição condicional de y dado x
 - A média de cada distribuição equivale ao valor médio de y na população
 - Distribuições condicionais de y, para cada valor de x, têm mesmo desvio padrão

Regressão Linear

- Hipóteses de Análise de Regressão
 - Variável dependente (y) é aleatória
 - Para cada x há uma distribuição condicional de y que é uma distribuição normal
 - As distribuições normais de y têm igual desvio padrão (homoscedasticidade = homogeneidade ou uniformidade de variância)

Métodos Quantitativos 31 Métodos Quantitativos 32

Homoscedasticidade

Métodos Quantitativos 33

x	у	y-calc	DN y
10	3.000	2.548	2.551
10		2.548	2.547
10		2.548	2.544
10		2.548	2.543
10		2.548	2.547
10		2.548	2.541
10		2.548	2.545
10		2.548	2.558
10		2.548	2.556
30	2.500	1.777	1.772
30		1.777	1.784
30		1.777	1.769
30		1.777	1.781
30		1.777	1.774
30		1.777	1.789
30		1.777	1.779
30		1.777	1.783
30		1.777	1.780
30		1.777	1.771
65	500	428	436
65		428	436
65		428	417
65		428	436
65		428	429
65		428	433
65		428	431
65		428	439
65		428	439
65		428	432
CE		420	420

Métodos Quantitativos 65 428 430 34

Regressão Linear

- Erro Padrão da Estimativa
 - Qual a precisão das estimativas de regressão?
 - Dispersão populacional pode ser estimada com base na dispersão amostral (em relação à reta de regressão)?
 - Quanto menor o erro (dispersão em relação à reta de regressão)
 - Maior a precisão das estimativas
 - Maior a capacidade explicativa do modelo

Regressão Linear

- Erro Padrão da Estimativa
 - Dispersão na população afeta precisão da estimação
 - Maior dispersão => menor precisão da estimação
 - Estimação do erro (dispersão) populacional com base na dispersão amostral
 - Desvio padrão em relação à reta de regressão
 - (n − 2): dois graus de liberdade ao calcular-se dois valores
 (b₀ e b₁) na equação de regressão

$$s_e = \sqrt{\frac{\sum (y_i - y_c)^2}{n - 2}}$$

Métodos Quantitativos 35 Métodos Quantitativos 36

- Erro Padrão da Estimativa
 - Baseado na hipótese de igualdade de desvio padrão entre as várias distribuições condicionais de y para cada x
 - Hipótese de dispersão uniforme
 - homoscedasticidade
- Fórmula alternativa para erro padrão da estimativa que não requer y_c

$$s_e = \sqrt{\frac{\sum y^2 - b_0 \sum y - b_1 \sum xy}{n - 2}}$$

Métodos Quantitativos 37

Regressão Linear

- Inferência sobre o coeficiente angular da reta
 - Testar se parâmetro coeficiente angular da reta (b₁) é, ou não, nulo
 - Um coeficiente angular nulo (b₁ = 0) significa que **x** não tem influência sobre **y**
 - Ausência de relacionamento entre x e y
 - Hipótese a ser verificada (para o parâmetro populacional)

$$H_0: \beta_1 = 0$$

significa que x <u>não tem</u> efeito sobre y

Métodos Quantitativos 38

Regressão Linear

- Inferência sobre o coeficiente angular da reta (b₁)
 - Hipótese a ser verificada
 - H_0 : $\beta_1 = 0$
 - H₁: β₁≠ 0
 - Estatística de teste
 - Diferença entre coeficiente amostral (b₁) e 0 (zero)
 - dividido pelo desvio padrão da distribuição amostral do coeficiente angular

$$t = \frac{valor\ amostral - valor\ referência}{desvio\ padrao\ da\ distribuicao\ amostral\ do\ coeficiente\ angular}$$

- Inferência sobre o coeficiente angular da reta (b₁)
 - Desvio padrão da distribuição amostral do coeficiente angular

$$s_b = s_e \cdot \sqrt{\frac{1}{\sum x^2 - \left[\frac{(\sum x)^2}{n}\right]}}$$

Estatística de teste
$$t_{teste} = \frac{b_1}{s_b}$$

- Inferência sobre o coeficiente angular da reta (b₁)
 - Hipótese a ser verificada

$$H_0: \beta_1 = 0$$

coeficiente angular é nulo. x não tem efeito sobre y.

$$H_1$$
: $\beta_1 \neq 0$

coeficiente angular é distinto de zero. x tem efeito sobre y. cada incremento de x ocasiona um efeito de b₁ unidades em y.

- Teste de significância de b₁
 - Se t_{teste} supera t_{crítico} (zona de rejeição de H0)
 - Rejeita-se H₀ e aceita-se H₁
 - Significa que o coeficiente angular é significativamente distinto de zero

Métodos Quantitativos 41

■ Exemplo: quilometragem e preço do carro

■ Teste de significância de b₁

■ <i>y</i>	= 2.9	33,6 -	38,56 <i>x</i>				
Obs.	Х	У	ху	x2	y2		
1	40	1.000	40.000	1.600	1.000.000		
2	30	1.500	45.000	900	2.250.000	n = 14	14
3	30	1.200	36.000	900	1.440.000		
4	25	1.800	45.000	625	3.240.000	b1 =	-38,56
5	50	800	40.000	2.500	640.000		
6	60	1.000	60.000	3.600	1.000.000		
7	65	500	32.500	4.225	250.000	b0 =	2.933,6
8	10	3.000	30.000	100	9.000.000		
9	15	2.500	37.500	225	6.250.000	$s_e =$	324,55
10	20	2.000	40.000	400	4.000.000	$s_b =$	5,4
11	55	800	44.000	3.025	640.000		
12	40	1.500	60.000	1.600	2.250.000		
13	35	2.000	70.000	1.225	4.000.000	$t_{teste} =$	-7,12078
14	30	2.000	60.000	900	4.000.000		
soma	505	21.600	640.000	21.825	39.960.000		
Métodos Qua	antitativos						42

Probabilidades da Distribuição t **Probabilidades na cauda**

i iobabi	ilidades lia (Jauda						
Uma Ca	auda	0,100	0,050	0,025	0,010	0,005	0,001	0,0005
Duas C	audas	0,200	0,100	0,050	0,020	0,010	0,002	0,001
D	1	3,078	6,314	12,710	31,820	63,660	318,300	637,000
E	2	1,886	2,920	4,303	6,965	9,925	22,330	31,600
G	3	1,638	2,353	3,182	4,541	5,841	10,210	12,920
R	4	1,533	2,132	2,776	3,747	4,604	7,173	8,610
E	5	1,476	2,015	2,571	3,365	4,032	5,893	6,869
E	6	1,440	1,943	2,447	3,143	3,707	5,208	5,959
S	7	1,415	1,895	2,365	2,998	3,499	4,785	5,408
	8	1,397	1,860	2,306	2,896	3,355	4,501	5,041
0	9	1,383	1,833	2,262	2,821	3,250	4,297	4,781
F	10	1,372	1,812	2,228	2,764	3,169	4,144	4,587
	11	1,363	1,796	2,201	2,718	3,106	4,025	4,437
F	12	1,356	1,782	2,179	2,681	3,055	3,930	4,318
R	13	1,350	1,771	2,160	2,650	3,012	3,852	4,221
E	14	1,345	1,761	2,145	2,624	2,977	3,787	4,140
E	15	1,341	1,753	2,131	2,602	2,947	3,733	4,073
D	16	1,337	1,746	2,120	2,583	2,921	3,686	4,015
0	17	1,333	1,740	2,110	2,567	2,898	3,646	3,965
М	18	1,330	1,734	2,101	2,552	2,878	3,610	3,922
Método	Métodos Quantitativos 43							

Regressão Linear

- Inferência sobre o coeficiente angular da reta (b₁)
 - Hipótese a ser verificada

$$H_0$$
: $β_1 = 0$
 H_1 : $β_1 \ne 0$

- Teste de significância de b₁
 - Se t_{teste} supera t_{crítico} em valor absoluto
 - Rejeita-se H₀ e aceita-se H₁
 - No exemplo, t_{teste} (-7,12078) supera t_{crítico} de modo que o coeficiente angular (-38,56) é significativamente distinto de zero (no caso é inferior a zero)
 - Há uma correlação significativamente negativa entre x e y
 - De fato, a quilometragem do veículo afeta negativamente seu valor de venda
 - A cada 1.000Km o preço do veículo cai \$ 38,56.

Métodos Quantitativos 44

- Coeficiente de determinação (r²)
 - Medida que avalia grau de predição da equação
 - Grau de ajuste da reta de regressão da amostra aos dados
 - Predição baseada na reta de regressão X predição baseada na média
 - Em que grau as predições da reta de regressão são melhores que as baseadas na média?
 - Menor dispersão levará a melhor predição
 - Dispersão de pontos (y_i) em torno da média de y X dispersão em torno da reta de regressão (y_c)

Métodos Quantitativos 45

Regressão Linear

- Coeficiente de determinação (r²)
 - Variação de y_i em torno da média de y
 - Variação TOTAL
 - Soma de quadrados de desvios entre cada valor observado (y_i) e a média de y
 - Variação de y em torno da reta de regressão y_c
 - Variação NÃO EXPLICADA
 - não se sabe a razão da estimação da reta diferir dos valores observados
 - Soma de quadrados de desvios entre cada valor observado (y_i) e cada valor calculado pela equação de regressão (y_c)

Regressão Linear

- Coeficiente de determinação (r²)
 - Medida que avalia grau de predição da equação
 - Dispersão de pontos (y_i) em torno da média de y X dispersão em torno da reta de regressão (y_c)
 - Se a dispersão (erro) em torno da reta de regressão (y_i y_c) é muito menor que aquela (erro) em torno da média (y_i - y_{med})
 - Predições baseadas na reta de regressão são melhores que as da média

Métodos Quantitativos 46

Regressão Linear

- Coeficiente de determinação (r²)
 - Variação de y_i em torno da média de y
 - Variação TOTAL (s_y²)

$$variacao\ total = \sum (y_i - \bar{y})^2$$

- Variação de y em torno da reta de regressão y_c
 - Variação NÃO EXPLICADA (s_e²)

$$variacao nao explicada = \sum (y_i - y_c)^2$$

Métodos Quantitativos 47 Métodos Quantitativos 48

- Coeficiente de determinação (r²)
 - Quantidade de desvio explicada pela reta de regressão (variação EXPLICADA)
 - Diferença entre Variação TOTAL e Variação NÃO EXPLICADA

variacao explicada = variacao total - variacao nao explicada

- Percentual de variação explicada (r²)
 - Razão entre variação explicada e variação total

$$r^2 = \frac{variacao\ explicada}{variacao\ total} = \frac{variacao\ total - variacao\ nao\ explicada}{variacao\ total}$$

49 Métodos Quantitativos

Regressão Linear

- Coeficiente de determinação (r²)
 - Percentual de variação explicada (r²)

$$r^2 = \frac{s_y^2 - s_\theta^2}{s_y^2} = 1 - \frac{s_\theta^2}{s_y^2}$$

- Onde
 - s_v² é a variância de y em relação à média (variação TOTAL)
 - s_e² é a variância de y em relação à reta (variação NÃO EXPLICADA)

50 Métodos Quantitativos

Regressão Linear

■ s_v² é a variância de y em relação à média (total)

$$s_y^2 = \frac{\sum (y_i - \vec{y})^2}{n - 2}$$

$$s_y^2 = \frac{\sum (y_i - \vec{y})^2}{n-2}$$
 $s_y^2 = \frac{(\sum y^2) - \frac{(\sum y)^2}{n}}{n-2}$

■ s_e² é a variância de y em relação à reta (não explicada)

$$s_{\sigma}^2 = \frac{\sum (y_i - y_{\sigma})^2}{n - 2}$$

$$s_e^2 = \frac{\sum (y_i - y_o)^2}{n - 2}$$
 $s_e^2 = \frac{\sum y^2 - b_0 \sum y - b_1 \sum xy}{n - 2}$

Exemplo: quilometragem e preço do carro

$$y = 2.933,6 - 38,56 x$$

Obs.	х	У	xy	x2	y2		
1	40	1.000	40.000	1.600	1.000.000		
2	30	1.500	45.000	900	2.250.000	n	14
3	30	1.200	36.000	900	1.440.000		
4	25	1.800	45.000	625	3.240.000	b ₁ =	-38,56
5	50	800	40.000	2.500	640.000		
6	60	1.000	60.000	3.600	1.000.000		
7	65	500	32.500	4.225	250.000	$b_0 =$	2.933,6
8	10	3.000	30.000	100	9.000.000	ŭ	
9	15	2.500	37.500	225	6.250.000	t _{teste} =	-7,12078
10	20	2.000	40.000	400	4.000.000		
11	55	800	44.000	3.025	640.000	$r^2 =$	0,81
12	40	1.500	60.000	1.600	2.250.000		
13	35	2.000	70.000	1.225	4.000.000		
14	30	2.000	60.000	900	4.000.000		
soma	505	21.600	640.000	21.825	39.960.000		

■ Coeficiente de determinação (r²)

$$y = 2.933,6 - 38,56 x$$

 $r^2 = 0.81$

Aproximadamente 81% da variação em y é explicada por x

Regressão Linear

- Teste de independência entre as variáveis do modelo
- Análise de Variância para regressão simples
 - Teste dos coeficientes estimados
 - "teste da significância global do modelo"

Métodos Quantitativos 53 Métodos Quantitativos 54

Regressão Linear

Análise de Variância para regressão simples

H0: Há relacionamento entre variáveis

H1: Não relacionamento entre variáveis, elas são realmente independentes

$$F = \frac{estimativa "entre" da variancia}{estimativa "dentro" da variancia}$$

$$F = \frac{\frac{(soma\ de\ quadrados\ entre)}{k-1}}{\frac{(soma\ de\ quadrados\ dentro)}{n-2}} = \frac{\frac{\sum (y_c - \overline{y})^2}{k-1}}{\frac{\sum (y_i - y_c)^2}{n-2}}$$

- Análise de Variância para regressão simples
 - Teste dos coeficientes estimados
 - "teste da significância global do modelo"
 - F calculado comparado com F crítico
 - Se Fcalculado supera Fcrítico
 - Rejeita-se H0 de igualdade entre coeficientes estimados das variáveis, ou seja, de dependência entre variáveis
 - Aceita-se H1 de não relacionamento entre variáveis, ou seja, de Independência das variáveis. O conjunto de variáveis explicativas é bom.

■ Teste de independência entre os coeficientes

$$F = \frac{\frac{(soma\ de\ quadrados\ entre)}{k-1}}{\frac{(soma\ de\ quadrados\ dentro)}{n-2}} = \frac{\frac{\sum (y_c - \overline{y})^2}{k-1}}{\frac{\sum (y_i - y_c)^2}{n-2}}$$

- F = 5.370.295 / 105.333 = **50.98**
 - df1 = 1; df2 = 12; α = 0,05; $F_{critico}$ = 4,75
 - F calculado supera 4,75 (50,98 > 4,75)
 - Rejeita-se H0
 - · Aceita-se H1: variáveis são independentes

Métodos Quantitativos

57

Métodos Quantitativos

58

Regressão Linear Múltipla

- Regressão Linear Múltipla
 - Forma da equação de regressão
 - Amostral

$$y_c = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + \dots + b_k x_k + erro$$

• Populacional

$$y_c = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_k x_k + erro$$

- $\beta_0 = intercepto$
- k = número de variáveis independentes
- β_i (j = 1, k) = coeficientes angulares

Regressão Linear Múltipla

- Regressão Linear Múltipla envolve
 - Três ou mais variáveis
 - Duas ou mais variáveis independentes
- Objetivo da regressão linear múltipla
 - Estabelecer uma equação que permita estimar, ou predizer, valores de y a partir de valores de várias variáveis independentes x
 - Mais variáveis independentes melhoram a capacidade de predição em comparação com a regressão simples
 - Técnica de MQO para obtenção de equação
 - Mais cálculos e complexidade

Regressão Linear Múltipla

- Regressão Linear Múltipla
 - Forma da equação de regressão

$$y_c = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_k x_k + erro$$

- Ao invés de linha de regressão tem-se
- <u>"Plano" de regressão</u> para três variáveis
- "Hiperplano" para mais variáveis (k)
- Quanto menor a dispersão dos pontos em relação ao "plano" de regressão, melhor a precisão das estimações

61 Métodos Quantitativos Métodos Quantitativos

Regressão Linear Múltipla

- Regressão Linear Múltipla
 - Escolha de melhores variáveis explicativas
 - Conhecimento do fenômeno estudado é fundamental
 - Revisão da literatura sempre essencial
 - Proposição de hipóteses deve ser independente dos dados

Regressão Linear Múltipla

- Regressão Linear Múltipla
 - Poucos fenômenos podem ser explicados por uma única variável
 - Objetivo é escolher as melhores variáveis explicativas dentre muitas possíveis
 - Ideal
 - Mais elevada capacidade explicativa do modelo com o mínimo de variáveis independentes (explicativas)

62

Regressão Linear Múltipla

- Regressão Linear Múltipla
 - Escolha de melhores variáveis explicativas
 - Conhecimento do fenômeno estudado é fundamental

Exemplos

Var. Dependente	Variáveis Independentes
Estrutura de capital	Rentabilidade, tangibilidade, tamanho, estrutura de propriedade
Volume de vendas do produto	Qualidade, preço, propaganda,
Salário	Qualificação, inteligência, gênero, dedicação
Investimento	Endividademento, fluxo de caixa, estrutura de propriedade, investimento prévio,
Safra agrícola	Chuva, tipo de solo, técnica de plantio, técnica de tratamento do solo,

63 64 Métodos Quantitativos Métodos Quantitativos

Regressão Linear Múltipla

- Regressão Linear Múltipla
 - Escolha de melhores variáveis explicativas
 - Conhecimento do fenômeno estudado é fundamental
 - Levantamento de variáveis (conceitos) possíveis
 - Análise de correlação entre variáveis
 - Evitar uso de variáveis independentes muito correlacionadas
 - Estimação de modelos alternativos
 - Avaliação de r²
 - Indica capacidade explicativa do modelo
 - Avaliação de F
 - Indica grau de independência entre coeficientes

Regressão Linear Múltipla

- Econometria
 - Significa "medida econômica"
 - Aplicação da estatística a dados econômicos para dar suporte a modelos econômicos propostos teoricamente
 - Trata da verificação empírica de leis econômicas
- Contabilometria?
- *metria?

Métodos Quantitativos 65 Métodos Quantitativos 66