我的

D31:特徵評估

簡報閱讀

範例與作業

問題討論

特徵評估

知識地圖

本日知識點目標

細說特徵重要性

套件中的特徵重要性 >

機器學習中的優化循環

排列重要性 (permutation...

重要知識點複習

延伸閱讀 >

特徵評估

知識地圖

本日知識點目標

半日知諏點日標

- 樹狀模型的特徵重要性,可以分為哪三種
- sklearn 樹狀模型的特徵重要性與 Xgboost 的有何不同
- 特徵工程中,特徵重要性本身的重要性是什麼

細說特徵重要性

讓我們先來看看什麼是特徵重要性:

下列是房價預估決策樹的預測圖,四個特徵(坪數、房間數、屋齡、是否靠近捷運站)之中,請問你覺得哪一個特徵比較重要?

特徵重要性預設方式是取 特徵決定分支的次數

此例而言: 坪數x1次 房間數x3次 靠近捷運站x2次 屋齡x1次

所以最重要的特徵是 房間數

但分支次數以外,還有兩種更直覺的特徵重要性: 特徵覆蓋度、損失函數降低量

本例的特徵覆蓋度(假定八個結果樣本數量一樣多) : 坪數與房間數的覆蓋度相同(都是8) 而損失函數降低量,則是要看損失函數 (loss function) 決定

套件中的特徵重要性

- sklearn 當中的樹狀模型,都有特徵重要性 這項方法(.feature_importances_),而實際 上都是分支次數
- 進階版的 GDBT模型(xgboost, lightgbm, catboost) 中,才有上述三種不同的重要性

	Xgboost 對應參數 (importance_type)	計算時間	估計精確性	sklearn 有此功能
分支次數	weight	最快	最低	0
分支覆蓋度	cover	快	中	Χ
損失降低量 (資訊增益度)	gain	較慢	最高	X

 \square $\stackrel{\mathcal{F}}{\vdash}$ $\mathring{\mathsf{U}}$ $\stackrel{\circ}{=}$ $\overline{\mathbb{O}}$

- 機器學習特徵優化,循環方式如下圖
- 其中增删特徵指的是

特徵選擇(刪除)

挑選門檻,刪除一部分特徵重要性較低的特徵

特徵組合(增加)

依領域知識,對前幾名特徵做特徵組合或群 聚編碼,形成更強力特徵

- 由交叉驗證確認特徵是否有改善,若沒有改善 善則回到上一輪重選特徵增刪
- 這樣的流程圖綜合了 PART 3:特徵工程的 主要內容,是這個部分的核心知識

排列重要性 (permutation Importance)

雖然特徵重要性相當實用,然而計算原理必須基於樹狀模型,於是有了可延伸至非樹狀

序順序,再用原本模型重新預測,觀察打散 前後誤差會變化多少

	特徵重要性 Feature Impotance	排序重要性 Permutation Importance
適用模型	限定樹狀模型	機器學習模型均可
計算原理	樹狀模型的分歧特徵	打散原始資料中單一特徵的排序
額外計算時間	較短	較長

重要知識點複習

- 樹狀模型的特徵重要性,可以分為分支次 數、特徵覆蓋度、損失函數降低量三種
- sklearn 樹狀模型與 Xgboost 的特徵重要性,最大差異就是在 sklearn 只有精準度最低的「分支次數」
- 特徵重要性本身的重要性,是在於本身是增 冊特徵的重要判定準則,在領域知識不足 時,成為改善模型的最大幫手

延伸閱讀

• 除了每日知識點的基礎之外,推薦的延伸閱 讀能補足學員們對該知識點的了解程度

推薦延伸閱讀

機器學習 - 特徵選擇算法流程、分類、優化與發展綜述

掘余

機器學習-特徵選擇算法流

隨著大數據時代的到來,各行各業湧現的海量數據對數據處理的技術提出 juejin.im

有關特徵選擇的優化流程,在這邊有更完整的說明,不過這篇文章與其說是說明,不如說更像一份索引,我們可以在這篇文章中找到相當多的名稱與論文選錄,建議同學在專題/競賽當中遇到瓶頸時,不妨來逛逛這篇,尋找一下靈感

Permutation Importance Kaggle Dan B. (英文)

Permutation Importance | Kaggle

Explore and run machine learning code with Kaggle Notebooks | Using data from multiple data sources

• 這裡是 Kaggle 上 Dan B. 提供的課程網頁,介紹我們課程中提到的排列重要性,雖然在樹狀模型上,其精準度略遜於特徵重要性,但是這個方法在非樹狀模型上也適用, 泛用性不差

容,例如 SHAP Value,能將樹狀模型預測的各個特徵影響性都可解釋化,在某些應用上,這個會比精準度還要有用

Weight	Feature	
0.0750 ± 0.1159	Goal Scored	
0.0625 ± 0.0791	Corners	
0.0437 ± 0.0500	Distance Covered (Kms)	
0.0375 ± 0.0729	On-Target	
0.0375 ± 0.0468	Free Kicks	
0.0187 ± 0.0306	Blocked	
0.0125 ± 0.0750	Pass Accuracy %	
0.0125 ± 0.0500	Yellow Card	
0.0063 ± 0.0468	Saves	
0.0063 ± 0.0250	Offsides	
0.0063 ± 0.1741	Off-Target	
0.0000 ± 0.1046	Passes	
0 ± 0.0000	Red	
0 ± 0.0000	Yellow & Red	
0 ± 0.0000	Goals in PSO	
-0.0312 ± 0.0884	Fouls Committed	
-0.0375 ± 0.0919	Attempts	
-0.0500 ± 0.0500	Ball Possession %	

解題時間

Sample Code &作業 開始解題

下一步:閱讀範例與完成作業

