ENBIS pre-conference workshop

Introduction to Kriging using R and JMP

Nicolas Durrande – Mines Saint-Étienne

durrande@emse.fr

Context

There is a wide variety of situations where getting data is extremely expensive.

- real world experiments
- destructive tests

- prototyping
- numerical experiments

The number of experiments is thus limited.

During the lab session, we will consider a numerical simulator of a catapult depending on 4 inputs $x_1, \ldots, x_4 \in [0, 1]$.

This numerical simulator returns the length and height of the throw

Lab session R (5 min)

1. Download and open the file "morning_lab.R" from Nicolas Durrande's homepage

https://sites.google.com/site/nicolasdurrandehomepage/seminars.

2. Execute the first two uncommented lines.

Lab session JMP (5 min)

1. do as above...

or

1. go to: https://durrande.shinyapps.io/catapult

The experiment output can be seen as a function of the input parameters

$$y = f(x)$$
.

where f is a **costly to evaluate function**.

In the following, we will assume that

- $\mathbf{x} \in \mathbb{R}^d$: There are many input parameters
- $y \in \mathbb{R}$: The output is a scalar.

1. Ploting the function is not possible...

2. Computing integrals is not possible...

What is the mean value of f?

3. Uncertainty propagation is not possible...

4. Sensitivity analysis is not possible...

5. Optimisation is also tricky...

Surrogate models

The principle of statistical modelling is to use a few observations to build a mathematical approximation of the function.

The model can then be used to answer all previous questions

Of course, there is a difference between f and m...

What about statistical models?

We want to be able to quantify the model error:

The confidence intervals can be used to obtain a **measure of uncertainty on the value of interest**.

There are many kinds of surrogate models:

- linear regression
- polynomial chaos

- neural networks
- Kriging (or Gaussian process regression)

Example: linear regression for the catapult simulator We consider the simulator as a function of only x_1 and x_2 and 16 observation points where the simulator will be run:

$$X = \begin{pmatrix} 0.00 & 0.00 \\ 0.33 & 0.00 \\ 0.66 & 0.00 \\ 1.00 & 0.00 \\ 0.00 & 0.33 \\ \vdots & \vdots \\ 1.00 & 1.00 \end{pmatrix}$$

Example: linear regression for the catapult simulator We run the simulator (variables x_3 and x_4 are set to 0.5). We obtain

Example: linear regression for the catapult simulator We assume the following linear regression model

$$Y_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2} + \varepsilon_i$$

where the β_k are unknown and the ε_i are $\mathcal{N}(0, \sigma^2)$ and independents.

The β_k can be estimated by minimising the residual sum of squares:

Example: linear regression for the catapult simulator We obtain $\beta = (62.76, -59.71, 95.30)$:

> summary(mr)

Residuals:

```
Min 1Q Median 3Q Max -78.011 -11.058 -3.427 15.187 35.165
```

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 29.3 on 13 degrees of freedom Multiple R-squared: 0.7155, Adjusted R-squared: 0.6717 F-statistic: 16.34 on 2 and 13 DF, p-value: 0.0002832

Example: linear regression for the catapult simulator

Example: linear regression for the catapult simulator The model can be improved by changing the basis functions:

$$\phi_0 = 1$$
, $\phi_1 = x_1 - x_2$, $\phi_2 = (x_1 - x_2)^2$, and $\phi_3 = (x_1 - x_2)^3$.

Residuals:

```
Min 1Q Median 3Q Max -35.042 -8.153 2.001 9.579 20.957
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 92.836 5.386 17.236 7.86e-10 ***
I(x1 - x2) -147.913 16.510 -8.959 1.16e-06 ***
I((x1 - x2)^2) -44.608 12.747 -3.500 0.004386 **
I((x1 - x2)^3) 109.325 22.661 4.824 0.000416 ***
---
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1
```

Residual standard error: 16.26 on 12 degrees of freedom Multiple R-squared: 0.9191, Adjusted R-squared: 0.8989 F-statistic: 45.44 on 3 and 12 DF, p-value: 7.933e-07

Example: linear regression for the catapult simulator

One can distinguish 4 important steps for building a surrogate model :

- 1. Choosing the evaluation points (Design of Experiments)
- 2. Evaluating the costly function
- 3. Choosing the type of model and estimating its parameters
- 4. Validating the model
- 5. Computing the quantity of interest

We will now detail these, with a focus on Kriging models.

Design of experiments

Design specificities for computer experiments

Two main constraints and their consequences.

- For deterministic simulators, running twice the simulator at the same location gives the same result
 - → Avoid replications
- A simulator generally models a complex phenomenon with strongly non-linear behaviour
 - \rightarrow Fill the space, in order to avoid missing an area

Additional constraint:

3. The aforementioned principles should apply in lower subspaces, since the *true* dimensionality can be lower.

Example:
$$f_{sim}(x_1, x_2) = g(x_1)$$

- \rightarrow It is useless to run the simulator with same x_1 locations!
- \rightarrow The x_1 locations should fill the space

A potentially bad design: How to waste 2/3 of runs!

Only 3 points among 9 are useful if f_{sim} depends only on x_1 (or x_2).

 x_1

Various design types can be found in the literature:

- Latin Hypercubes
- Low discrepancy sequences
- Voronoi Tessellations
- ...

Various criteria can be used to asses a DoE quality

- Maximin
- Minimax
- Discrepancy
- IMSE
- **...**

Some of them are implemented in the DiceDesign package

Better designs: Latin hypercubes

Better designs: Latin hypercubes

Good(?) designs: space-filling Latin hypercubes

X0 <- lhsDesign(n = 9, dimension = 2)\$design
X <- maximinESE_LHS(X0, it=2)\$design</pre>

Lab session R (25 min)

- Load the DiceDesign package and build a DoE of 16 points in [0,1]⁴. Store it in a 16 × 4 matrix X.
- Plot the columns of X against each other (pairs(X)).
- Use the numerical simulator to compute the output values. Store them in a vector Y.
- 4. plot Y against the various input variables.
- 5. What optimal input values can you suggest?

Lab session JMP (25 min)

- 1. Open the file Intro_to_Kriging_JMP.jrn
- Repeat the previous trials with a linear regression model.
- 3. Create a Design of experiments.
- Use the numerical simulator to compute the output values. Store them in a vector Y.
- 5. plot Y against the various input variables.
- 6. What optimal input values can you suggest?

Kriging or Gaussian process regression

A random process is similar to a random variable but each draw is a function:

Gaussian processes are particular random processes: Z is a GP if any linear combination of $Z(x_i)$ is normally distributed.

The distribution of a

- **Gaussian random variable** is fully described by its *mean* (scalar) and variance (positive scalar).
- Gaussian vector (i.e. multivariate normal) is fully described by its mean vector and covariance matrix (symmetric positive semi-definite matrix).
- **Gaussian process** is fully described by its *mean function* and *covariance function* (or kernel):

$$k(x, y) = cov[Z(x), Z(y)]$$

The mean of a GP can be any function, but the kernel must satisfy two properties:

- It is symmetric: k(x, y) = k(y, x)
- It is positive semi-definite (psd):

$$\forall n \in \mathbb{N}, \forall x_i \in D, \forall \alpha \in \mathbb{R}^n, \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j k(x_i, x_j) \ge 0$$

This can be written in a matrix fashion:

$$\forall n \in \mathbb{N}, \forall X \in D^n, \forall \alpha \in \mathbb{R}^n, \ \alpha^t k(X, X) \alpha \geq 0$$

Furthermore any symmetric psd function can be seen as the covariance of a Gaussian process. This equivalence is known as the Loeve theorem.

Exercise

Prove that the following functions are valid covariance functions

- 1. k(x, y) = 1
- 2. $k(x, y) = \delta_{x=y}$
- 3. $k(x, y) = \exp(-(x y)^2)$

Exercise solutions

- It can be proved directly from the definition. This is the covariance of the following GP:
- As above, it can be proved using the definition. This is the covariance function of the white noise process.
- This cannot be proved from the definition, as for most kernels.
 However, this is a valid covariance function.

In order to plot sample paths from a GP $Z \sim \mathcal{N}(m(.), k(., .))$, we will consider samples of the GP discretised on a fine grid.

Exercise: Simulating sample paths Let X be a set 100 regularly spaced points over the input space of Z.

- What is the distribution of Z(X) ?
- How to simulate samples from Z(X) ?

We have observed the function f for a set of points $X = (X_1, \dots, X_n)$:

The vector of observations is F = f(X) (ie $F_i = f(X_i)$).

We assume f is a sample from a given GP and we know it interpolates...

What can we say if we combine these two informations?

We obtain the following conditional samples:

Which can be summarized by a mean function and confidence intervals:

The conditional distribution Z(x)|Z(X)=F is still Gaussian and it can be computed analytically:

mean value

$$m(x) = E[Z(x)|Z(X)=F]$$
$$= k(x,X)k(X,X)^{-1}F$$

predicted variance

$$v(x) = \text{var}[Z(x)|Z(X)=F]$$

= $k(x,x) - k(x,X)k(X,X)^{-1}k(X,x)$

predicted covariance

$$c(x, y) = \text{cov}[Z(x), Z(y)|Z(X)=F]$$

= $k(x, y) - k(x, X)k(X, X)^{-1}k(X, y)$

where
$$k(x, y) = \text{cov}[Z(x), Z(y)].$$

A few remarkable properties of GPR models

- They can interpolate the data-points
- The prediction variance does not depend on the observations
- The mean predictor does not depend on the variance
- The mean predictor (usually) come back to zero when for predictions far away from the observations.

Lab session R (25 min)

- Load the DiceKriging package look at the help of the function km.
- Create a Kriging model on the catapult data with default kernel and parameters.
- Use the functions sectionview and sectionview3d from the package DiceView.
- 4. Do some variables seem more influential than others?

Lab session JMP (25 min)

- Create a Kriging model on the catapult data with default kernel and parameters.
- 2. Explore the model using the diagnostics.
- 3. Do some variables seem more influential than others?

Model validation

We have seen that given some observations F = f(X), it is very easy to build lots of models, either by changing the kernel parameters or the kernel itself.

The interesting question now is to know how to get a good model. To do so, we will need to answer the following questions:

- What is a good model?
- How to measure it?

The idea is to introduce new data and to compare the model prediction with reality

Since GPR models provide a mean and a covariance structure for the error they both have to be assessed. Let X_t be the test set and $F_t = f(X_t)$ be the associated observations.

The accuracy of the mean can be measured by computing:

Mean Square Error
$$MSE = \operatorname{mean}((F_t - m(X_t))^2)$$

A "normalised" criterion $Q_2 = 1 - \frac{\sum (F_t - m(X_t))^2}{\sum (F_t - \operatorname{mean}(F_t))^2}$

On the above example we get MSE = 0.038 and $Q_2 = 0.95$.

The predicted distribution can be tested by normalising the residuals.

According to the model, $F_t \sim \mathcal{N}(m(X_t), c(X_t, X_t))$.

 $c(X_t, X_t)^{-1/2}(F_t - m(X_t))$ should thus be independents $\mathcal{N}(0, 1)$:

When no test set is available, another option is to consider cross validation methods such as leave-one-out.

The steps are:

- 1. build a model based on all observations except one
- 2. compute the model error at this point

This procedure can be repeated for all the design points in order to get a vector of error.

On the previous example we obtain MSE = 0.24 and $Q_2 = 0.34$.

Why doesn't the model perform as good previously?

Model to be tested:

Step 1:

Step 2:

Step 3:

It turns out that the error is always computed at the 'worst' location!

We can also look at the residual distribution. For leave-one-out, there is no joint distribution for the residuals so they have to be standardised independently. We obtain:

