GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA		
	Electromagnetismo	

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Cuarto Semestre	070402	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al alumno los conocimientos fundamentales para analizar y comprender los fenómenos eléctricos y magnéticos presentes en la naturaleza, los cuales son de vital importancia en la comprensión de las propiedades a nivel atómico de los diferentes materiales y el funcionamiento de los diferentes dispositivos electrónicos.

TEMAS Y SUBTEMAS

1. Lev de Coulomb

- 1.1. Carga eléctrica
- 1.2. Conservación de carga eléctrica1.3. Ley de Coulomb
- 1.4. Sistemas de cargas puntuales
- 1.5. Distribuciones continuas de carga
- 1.6. Conductores y aisladores

Campo eléctrico

- 2.1. Definición de campo eléctrico
- 2.2. Líneas de campo eléctrico
- 2.3. Campo eléctrico producido por cargas puntuales
- 2.4. Campo eléctrico producido por un dipolo eléctrico
- 2.5. Cálculo de campos eléctricos debidos a distribuciones de carga
- 2.6. Movimiento de partículas cargadas en un campo eléctrico uniforme

3. Ley de Gauss

- 3.1. Flujo eléctrico
- 3.2. Derivación de la ley de Gauss
- 3.3. Aplicaciones de la ley de Gauss

Potencial eléctrico

- 4.1. Definición de potencial eléctrico para sistemas de cargas puntuales
- 4.2. Potencial eléctrico debido a distribuciones de carga continuas
- 4.3. Obtención de \dot{E} a partir del potencial eléctrico
- 4.4. Diferencia de potencial
- 4.5. Energía potencial electrostática de un sistema de cargas puntuales
- 4.6. Energía asociada a un campo eléctrico

Capacitancia y dieléctricos

- 5.1. Definición de capacitancia
- 5.2. Ejemplos de cálculo de capacitancia
- 5.3. Capacitores conectados en serie y en paralelo
- 5.4. Energía almacenada en el campo eléctrico en un capacitor cargado
- 5.5. Dieléctricos
- 5.6. Polarización de la materia
- Campo eléctrico debido a la materia polarizada

COORDINACIÓN

GENERAL DE EDUCACIÓN

MEDIA SUPERIOR Y SUPERIOR

5.8. Capacitores con dieléctrico

6. Corriente y resistencia

- 6.1. Cargas en movimiento y corriente eléctrica
- 6.2. Densidad de corriente
- 6.3. Resistencia y Ley de Ohm
- 6.4. Potencia en circuitos eléctricos

7. Circuitos de corriente directa

- 7.1. Fuerza electromotriz (fem)
- 7.2. Resistencias conectadas en serie y en paralelo
- 7.3. Leyes de Kirchhoff
- 7.4. Forma práctica de aplicar las leyes de Kirchhoff
- 7.5. Circuitos RC

8. Campos magnéticos

- 8.1. Definición de campo magnético
- 8.2. Fuerza de Lorentz
- 8.3. Fuerza magnética sobre un conductor que conduce corriente eléctrica
- 8.4. Torca magnética sobre una espira con corriente eléctrica en un campo magnético externo

9. Fuentes de campos magnéticos

- 9.1. Ley de Biot-Savart
- 9.2. Aplicaciones de la Ley de Biot-Savart
- 9.3. Ley de Ampere
- 9.4. Aplicaciones de la Ley de Ampere
- 9.5. Flujo magnético
- 9.6. Dipolo magnético (imán) y momento dipolar magnético
- 9.7. Ley de Gauss para campos magnéticos

10. Ley de Faraday

- 10.1. Ley de Faraday
- 10.2. Aplicaciones de la Ley de Faraday
- 10.3. Ley de Lenz
- 10.4. Fems inducidas y campos eléctricos inducidos

11. Ecuaciones de Maxwell

- 11.1. Corriente de desplazamiento
- 11.2. Ecuaciones de Maxwell en forma integral
- 11.3. Ecuaciones de Maxwell en forma diferencial

ACTIVIDADES DE APRENDIZAJE

Exposiciones didácticas y demostrativas dirigidas por el profesor, así como la realización de actividades extra clase proporcionados por el profesor con el fin de retroalimentar el conocimiento previamente adquirido.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicara el procedimiento de evaluación que deberá comprender, tres evaluaciones parciales y una final, tales evaluaciones serán escritas, orales además de contar con una evaluación continua sobre el estudiante

BIBLIOGRAFÍA

Libros Básicos:

- 1. Física Vol. 2, R. Resnick, D. Halliday, K. S. Krane, Ed. 4, CECSA
- 2. Física Tomo II, R. A. Serway, Ed. 4, McGraw-Hill Interamericana Editores, S. A. de C. V.
- 3. Campos Electromagnéticos, R. K. Wangsness, Limusa.
- 4. Electricidad y Magnetismo, G. A. Jaramillo Morales, A. A. Alvarado Castellanos, Ed. 2, Trillas.

Libros de Consulta:

1. Electricity and Magnetism volume II, Purcell, E. M., Ed. 2, McGraw-Hill College

COORDINACIÓN

GENERAL DE EDUCACIÓN

MEDIA SUPERIOR Y SUPERIOR

- Física: la Naturaleza de las Cosas, Vol. II, Susan M. Lea , John Robert Burke, Internacional Thomson
- Física para Ciencias e Ingeniería Vol. II, Gettys , Keller , Skove, Mc Graw Hill.
 Física para Ciencias e Ingeniería Vol. II, John P. Mckelvey , Howard Grotch, Editorial Harla

PERFIL PROFESIONAL DEL DOCENTE

Maestría en Física

