NLP100 BASIC Hands-on

Attention!

This lecture is made for beginners.

After this, you can easily tackle NLP100 CH6-9.

(If you can solve NLP100 alone, you don't need to take the lecture.)

Prepare

The main purpose of this lecture is to get accustomed with coding in ML.

Copy this Colab into your own drive to solve the exercises.

Section 1

- NLP 処理の流れ
- EDA with dataframe
- pre-process
- モデル選択
- 学習
- <u>hyper parameter setting</u>

NLP 処理の流れ

- 一般的なNLPでは、以下の流れで行います。
- EDA: Explanatory Data Analysis
- pre-process
- choose a model
- train&predict
- hyper parameter setting

では、順に見ていきましょう。

EDA with dataframe

機械学習を行う際には、EDA(Explanatory Data Analysis)を行い、採用すべき特徴量やモデルを検討します。

pandas.dataframeはSQLチックに表データにアクセスするためのライブラリです。若干処理が遅いですが、デファクトスタンダードとなっています。

さっそくQ1を解きましょう (dataframeに不慣れな方は、INFO FOR YOUを見てから解きましょう)

参考: 公式チートシート(jp,en)、データサイエンス100本ノック

NLP100 BASIC Hands-on

http://pandas.pydata.org/ This cheat sheet inspired by Rstudio Data Wrangling Cheatsheet (https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf) Written by Irv Lustig, Princeton Consultants

データの要約 df['w'].value_counts() 変数の出現回数をカウント len(df) # DataFrameの行数を出力 df['w'].nunique() ユニークな値をカウントして出力 df.describe() Basic descriptive statistics for each column (or GroupBy) pandasは様々な種類のpandasオブジェクト(DataFrame columns, Series, GroupBy, Expanding and Rolling(下記参照))を操作するsummary functions(要約関数)を提供し、各グループに対して1つの値を返しま す。DataFrameに適用された場合、結果は各column(列)にSeries型で返されます。例: min() 各オブジェクトの最小値を取得 各オブジェクトの値を合計 count() max() mean() median() 各オブジェクトの平均を取得 各オブジェクトの中央値を取得 var() quantile([0.25,0.75]) 各オプジェクトの分位値を取得 std() 各オブジェクトの分散値を取得 ・ 各オブジェクトの標準偏差を取得 apply(function) 各オブジェクトにを適用 データのグループ化 df.groupby(by="col") "col"列の値でグループ化した GroupByオブジェクトを返す df.groupby(level="ind") インデックスレベル"ind"でグル ープ化したGroupByオブジェクト 各グループの長さ 関数を使ってグループを集計 window関数 df.expanding() 要約関数を累積的に適用可能にした Expanding オブジェクトを返す

df.rolling(n) 長さnのwindowに要約関数を適用可能にしたRollingオブジェクト 各列のヒストグラムを描画

df.plot.hist()

df.plot.scatter(x='w'.v='h') 散布図を描画

min(axis=1)

絶対値を取得

shift(-1)

累積和

cummax()

cumprod() 累積積

プロット(描画)

欠損データを扱う

df.dropna() NA/nullを含むrow(行)を除外する

新たなcolumn(列)を1つ追加

には1つのSeriesを返します。例:

clip(lower=-10,upper=10)

下限を-10.上限を10に設定してト

shift(1) 1行ずつ後ろにずらした値をコピー shift(-1) rank(method= 'dense') ランク付け(同数はギャップなしで計算) cumsum()

要素ごとの最大値を取得

rank(method='min') ランク付け(同数は小さい値にする)

max(axis=1)

1つ以上の新たなcolumn(列)を計算して追加

pd.qcut(df.col, n, labels=False)

df['Volume'] = df.Length*df.Height*df.Depth

df.fillna(value)

http://pandas.pydata.org/ This cheat sheet inspired by Rstudio Data Wrangling Cheatsheet (https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf) Written by Irv Lustig, Princeton Consultants

pre-process

生のテキストではうまく学習できないため、前処理が必要です。

- テキストのクリーニング: 目標のテキスト以外を削除する
- 単語分割(token): 形態素解析を行い、単語単位にばらす
- 単語の正規化: 文字種や表記ゆれを統一する、数字を0に置き換える
- ストップワードの除去: 機能語(助詞や助動詞)を除去する
- 単語のID化: Bag of WordsまたはNNでベクトル化
- バディング: 系列長を揃える(NN学習用)

Q2で前処理を練習しましょう。 けんけん@skyeanka

モデル選択

モデル選択の際は、とりあえずのモデル(baseline)を作り、そこからベースモデルを基準に様々なモデルを選定していくことになります。

機械学習のモデルは、たいていsklearnに実装されています。

今回の問題は多クラス分類問題ですので、次ページの $\underline{F-F}$ に従い、 $\underline{LinearSVC}$ (線形SVM)を使うことにしましょう。

子首

MLにおける学習では、目的関数を立て、それが最小(最大)となるように行います。 今回使う線形SVMでは、マージン ||w|| が最大となるように目的関数が立てられます。

では、実際に学習してみましょう(Q3)

hyper parameter setting

先程のA3では、LinearSVCをパラメータを指定せず、初期値のまま学習しましたが、例えば損失関数をL1とすると、スコアが変動します。

このような学習前に指定する必要があるパラメータをハイパーパラメータと呼び、trainデータで学習し、validationデータを利用し評価します。実際のデータに対しての評価も行いため、ここではtestデータは使用しません。

けんけん@skyeanka

13

Section 2

- Word2Vec
- Neural Network
- RNN
- CNN
- <u>Transformer</u>
- <u>Huggingface</u>

Word2Vec

Word2Vecは、後述するNNを 使って、単語を**計算可能な**分散 (ベクトル)表現へ変換する手法 です。

w2v['父']-w2v['男']+w2v['女'] == w2v['母']

Q2で作った単語ベクトルを、Word2Vecで作り直してみましょう(Q4)

office ondo uk role appear man directoritishook receive among filmac include good show featureson pan launch

https://towardsdatascience.com/understanding-

Neural Network

脳の神経回路を模した数理モデル

隠れ層を増やすことで精度の 高い非線形な判別が可能とな ります

Q5でシンプルなNNを実装し てみましょう

https://miyabi-lab.space/

RNN

時系列データを扱えるように したNNです。 右図の通り、隠れ層hをinput

右図の通り、隠れ層hをinput に加えることで、前回までの入 力が反映されています。

発展形にLSTMがあります。

CNN

CNNは画像処理で有名ですが、 NLPでも有効です。

例えば、文章と単語ベクトルで 構成した行列でCNNを行うと 良いパフォーマンスが得られ ます Kim(2014) 解説記事(jp)

Transformer

2017年登場以来、自然言語処理の基本モデルとなっています。

系列変換(Encoder・Decoderモデル)に、文章の各単語ごとの関連・類似度の評価(Attention)を組み込むことで、より長い文脈を学習できるようになりました。

Huggingface 🛜

Huggingface ⇔はMLでポピュラーなライブラリで、訓練済みのモデル やデータセットを簡単に利用できます。

大規模な言語モデルを訓練するには莫大なコストが必要ですので、 Huggingfaceのような訓練済みのモデルを利用することが一般的です。

ここでは、DeBERTaV3というモデルを使って、Q3,Q5で解いた分類問題を解いてみましょう(Q6)

参考: <u>Huggingface Tutorial</u>

EoF