Zadanie 5.

5.1 Opis problemu:

Rekurencyjny model wzrostu populacji.

Mamy zadany wzór: $p_{(n+1)} := p_n + rp_n(1 - p_n)$, dla n = 0, 1,...,

Przeprowadzić 40 iteracji w arytmetyce Float32, po czym zmodyfikować 10 wynik tzn, obciąć go po 3 miejscu po przecinku i kontynuować obliczenia.

5.2 Rozwiązanie:

Implementacja iteracyjnego algorytmu w języku Julia.

5.3 Wyniki:

Nr: Wartość(Float32): Wartość(Float32): Błąd bezwzględny: Wartość(Float64)

		ze stopem			
0:	0.01	0.01	0.0	0.01	
1:	0.0397	0.0397	0.0	0.039	97
2:	0.15407173	0.15407173	0.0	0.154	407173000000002
3:	0.5450726	0.5450726	0.0	0.545	50726260444213
4:	1.2889781	1.2889781	0.0	1.288	89780011888006
9:	0.21559286	0.21559286	0.0		0.21558683923263022
10:	0.7229306	0.722	0.00128727	706	0.722914301179573
11:	1.3238364	1.3241479	0.00023529	9635	1.3238419441684408
12:	0.03771698	5 0.036488414	0.03257343	13	0.03769529725473175
36:	0.95646656	0.13344833	0.86047775	5	1.1325322626697856
37:		0.48036796	0.55578303		0.6822410727153098
38:		1.2292118	0.50386536	_	1.3326056469620293
39:		0.3839622	0.6965206		0.0029091569028512065
40:	0.25860548	1.093568	3.2287116		0.011611238029748606

5.4 Wnioski:

Zastosowanie obcięcia w 10 iteracji spowodowało na początku niewielki błąd jednak w trakcie obliczania kolejnych wartości błąd się kumulował i narastał. Dodatkowo widzimy, że użycie

pojedynczej precyzji jest niewystarczające aby otrzymać prawidłowe wyniki.