Все вопросы - сюда

Содержание

1	Teo	ретические вопросы
	1.1	Определение группы. Пример группы
	1.2	Примеры групп по сложению
	1.3	Примеры групп по умножению
	1.4	Группа кватернионов
	1.5	Порядок элемента, порядок группы
	1.6	Группа подстановок. Теорема Кэли
	1.7	Определение циклической группы. Определение образующего элемента
		циклической группы
	1.8	Теорема Лагранжа. Следствия из теремы Лагранжа
	1.9	Определение нормальной подгруппы. Определение фактор-группы
	1.10	Определение гомоомрфизма групп
	1.11	Основная теорема о гомоморфизмах
	1.12	Определение кольца. Примеры колец
		Определение гомоморфизма колец
		Определение идеала. Определение главного идела.
		Построение факторкольца по идеалу $K \backslash I$
		Функция Эйлера. Теорема Эйлера
		Малая теорема Ферма
		Определение поля. Пример
		Простое поле. Пример
		Теорема о простом подполе
		Характеристика поля. Пример
		Алгебраические и трансцендентые элементы поля
		Определение простого элемента поля. Определение неприводимого мно-
		гочлена над полем Р
	1.24	Построение конечного поля из p^n элементов
		Мультипликативаня группа конечного поля
		Пример конечного поля
2	Зад	ачи
	2.1	1.4

1 Теоретические вопросы

1.1 Определение группы. Пример группы

Пусть M - некоторое множество

Бинарная операция на M - это отображение $\circ: M \times M \to M, (a,b) \to a \circ b$ Если на M задана бинарная операция, то множество (M,\circ) называют множесвом с бинарной операцией.

 (M,\circ) называется группой, если выполнены следующие три условаия:

$$\begin{cases} a\circ (b\circ c)=(a\circ b)\circ c, \forall a,b,c\in M (\text{ассоциативность})\\ \text{существует нейтральный элемент }e\in M, e\circ a=a\circ e=a, \forall a\in M\\ \forall a\in M\exists b\in M: a\circ b=b\circ a=e \end{cases}$$

Группы матриц (с оперпцией умножение):

$$GL_n(\mathbb{R}) = \{ A \in Mat_{n \times n} | det A \neq 0 \}$$

$$SL_n(\mathbb{R}) = \{ A \in Mat_{n \times n} | det A = 1 \}$$

1.2 Примеры групп по сложению

Числовые аддитивные группы: $(\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+), (\mathbb{C},+), (\mathbb{Z}_n,+).$

1.3 Примеры групп по умножению

Числовые мультипликативные группы: $(\mathbb{Q}\setminus\{0\},\times), (\mathbb{R}\setminus\{0\},\times), (\mathbb{C}\setminus\{0\},\times), (\mathbb{Z}_p\setminus\{0\},\times),$ р - простое.

1.4 Группа кватернионов

$$Q_8 = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}, \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix}, \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix} \right\}.$$

1.5 Порядок элемента, порядок группы

Порядок элемента g — это величина

$$\operatorname{ord}(g):= egin{cases} \min\{n\in\mathbb{N}:g^n=e\},\ \text{если множнество непусто} \\ \infty, \text{если множество пусто} \end{cases}$$

Порядок группы — мощность носителя группы, то есть, для конечных групп — количество элементов группы

1.6 Группа подстановок. Теорема Кэли

симметрическая группа S_n - все перестановки длины n, $|S_n|=n!$ знакопеременная группа A_n - все четные перестановки длины n $|A_n|=n!/2$

Теорема Кэли: Всякая конечная группа G, ordG = n, изоморфна некторой подгруппе группы перестановок S_n . При этом каждый элемент группы G сопоставляется с перестановкой $\pi_a, \pi_a(g) = a \circ g$, где g - произвольный элемент группы G. пример здесь

1.7 Определение циклической группы. Определение образующего элемента циклической группы

$$\langle g \rangle := \{g^n, n \in \mathbb{Z}\}$$

Группа G называется циклической, если существует такое $g \in G$, что $G = \langle g \rangle$ Элемент g называется образающим элементом циклической группы G Пример: Группы $(\mathbb{Z},+),(\mathbb{Z}_n,+)$ при $n \geq 1$ являются цилическими.

1.8 Теорема Лагранжа. Следствия из теремы Лагранжа

Множество $aH := \{ah \mid h \in H\}$ называется левым смежным классом элемента $a \in G$ по подгруппе H.

Индекс подгруппы H в группе G - это число левых смежных классов G по H. Обозначение [G:H]

Теорема Лагранжа: Пусть G - конечная группа, $H\subseteq G$ - подгруппа; тогда $|G|=|H|\cdot [G:H]$

Следствие 1: Пусть G - конечная группа и $H \subseteq G$. Тогда |H| делит |G|

Следствие 2: Пусть G - конечная группа и $g \in G$. Тогда $\operatorname{ord} G$ делит |G|

Следствие 3: Пусть G - конечная группа и |G| - простое число. Тогда G - циклическая группа, порождаемая любым своим неединичным элементом.

1.9 Определение нормальной подгруппы. Определение фактор-группы

Подгруппа $H\subseteq G$ называется нормальной, если $gH=Hg\forall g\in G$. Обозначение $H\triangleleft G$ Пусть H — нормальная подгруппа группы G. Согласно определению, в этой ситуации левые и правые смежные классы G по H — это одно и то же, и тогда мы будем называть их просто смежными классами.

Обозначим через G/H множество всех смежных классов G по H. Оказывается, что на G/H можно ввести структуру группы.

Сначала введём на G/H бинарную операцию, положив $(g_1H)\cdot(g_2H):=(g_1g_2)H$ для любых $g_1,g_2\in G$.

Как это понимать? Мы хотим перемножить два смежных класса и получить в результате третий смежный класс. Для этого мы берём какой-нибудь элемент g_1 из первого смежного класса, элемент g_2 из второго смежного класса и объявляем, что результатом перемножения наших двух смежных классов будет смежный класс элемента g_1g_2 . Однако тут возникает потенциальная проблема: а вдруг при другом выборе элементов g_1 и g_2 из тех же смежных классов смежный класс элемента g_1g_2 окажется другим? Оказывается, в нашей ситуации такое невозможно, что доказывается так называемой проверкой корректности.

Корректность: пусть элементы $g_1', g_2' \in G$ таковы, что $g_1'H = g_1H$ и $g_2'H = g_2H$ (то есть g_1' и $g_2' -$ другие представители наших исходных смежных классов g_1H и g_2H соответственно). Тогда $g_1' = g_1h_1$ и $g_2' = g_2h_2$ для некоторых $h_1, h_2 \in H$. В соответствии с тем же определением должно выполняться равенство $(g_1'H) \cdot (g_2'H) = (g_1'g_2')H$, потому нам нужно показать, что $(g_1'g_2')H = (g_1g_2)H$. Имеем

$$g_1'g_2' = g_1h_1g_2h_2 = g_1g_2g_2^{-1}h_1g_2h_2 \subseteq (g_1g_2)H$$

(в последнем переходе учтено, что $g_2^{-1}h_1g_2 \in H$ в силу нормальности подгруппы H), откуда вытекает $(g_1'g_2')H = (g_1g_2)H$.

Итак, на множестве G/H корректно определена бинарная операция. Теперь легко проверить, что $(G/H,\cdot)$ является группой:

ассоциативность: ((aH)(bH))(cH) = ((ab)H)(cH) = ((ab)c)H = (a(bc))H = (aH)((bc)H) = (aH)((bH)(cH));

нейтральный элемент — это eH: (eH)(aH)=(ea)H=aH=(ae)H=(aH)(eH); обратный к gH элемент — это $g^{-1}H$: $(g^{-1}H)(gH)=(g^{-1}g)H=H=(gg^{-1})H=(gH)(g^{-1}H)$.

Как видно, все необходимые свойства вытекают из аналогичных свойств для группы G.

Группа $(G/H,\cdot)$ называется факторгруппой группы G по нормальной подгруппе H. **Пример.** Пусть $G=(\mathbb{Z},+)$ и $H=n\mathbb{Z}$ для некоторого $n\in\mathbb{N}$. Тогда G/H — это знакомая нам группа вычетов $(\mathbb{Z}_n,+)$. Впрочем, некоторая тонкость тут в том, как именно определять группу $(\mathbb{Z}_n,+)$. С теоретической точки зрения наиболее удобно определение данной группы именно как факторгруппы $\mathbb{Z}/n\mathbb{Z}$. На практике же наиболее удобным для вычислений является определение «на пальцах», когда рассматривается множество $\{0,1,\ldots,n-1\}$ с операцией сложения по модулю n. С формальной точки зрения это будет группа, отличная от $\mathbb{Z}/n\mathbb{Z}$, но изоморфная ей (про изоморфизмы см. ниже).

1.10 Определение гомоомрфизма групп

Пусть G, F - две группы

Отображение $\varphi: G \to F$ называется гомоморфизмом, если $\varphi(ab) = \varphi(a) \cdot \varphi(b)$ для любых $a, b \in G$. В каждой из групп своя бинарная операция (!)

1.11 Основная теорема о гомоморфизмах

Ядро гомоморфизма φ - это множество $\mathrm{Ker}\varphi:=\{g\in G|\varphi(g)=e_F\}\subseteq G$ Образ гомоморфизма φ - это множество $\mathrm{Im}\varphi:=\varphi(\mathrm{G})\subseteq F$

Теорема о гомоморфизме $G/\ker\varphi\simeq\operatorname{Im}\varphi$ (измомофно)

1.12 Определение кольца. Примеры колец

Кольцо - это множество R, на котором заданы две бинарные операции $(+,\cdot)$, удоволетворяющие следующим условиям:

1)(R,+) - абелева группа(аддитивная группа кольца R)

2)
$$\forall a, b, c \in R$$

$$\begin{cases} a(b+c) = ab + ac \text{(левая дистрибутивность)} \\ (a+b)c = ac + bc \text{(правая дистрибутивность)} \end{cases}$$
 3) $(ab)c = a(bc) \forall a, b, c \in \mathbb{R}$

R (ассоциативность умножения)

4) существует элемент $1 \in R$ (называемый единицей), такой что $1 \cdot a = a \cdot 1 = a \forall a \in R$ $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ - числовые кольца

1.13 Определение гомоморфизма колец

Отображение $\varphi:R\to Q$ называется гомоморфизмом (колец), если $\varphi(a+b)=\varphi(a)+\varphi(b), \varphi(ab)=\varphi(a)\varphi(b) \forall a,b\in R$

1.14 Определение идеала. Определение главного идела.

Подмножество I кольца R называется (двусторонним) идеалом, если выполнены следующие 2 условия:

- 1) I подгруппа по сложению
- 2) для всех $a \in I, r \in R$ выполнено $ra \in I, ar \in I$

Пусть R - коммутативное кольцо. С каждым элементом $a \in R$ связан идеал $(a) := \{ra|r \in R\}$

Идеал называется **главным**, если существует такое $a \in R$, что I = (a)

1.15 Построение факторкольца по идеалу $K \setminus I$

Пусть R - произвольное кольцо, а I - идеал в R

Рассмотрим факторгруппу (R/I, +). Её элементами являются смежные классы по идеалу I, то есть множества вида a+I, где $a \in R$. Мы хотим превратить R/I в кольцо; для этого введём на R/I операцию умножения, полагая $(a+I) \cdot (b+I) := ab+I$ для всех $a,b \in R$. Иными словами, чтобы перемножить два смежных класса в R/I, мы выбираем в каждом из них по представителю, перемножаем их и смежный класс результата объявляем произведением двух исходных смежных классов.

Как и в случае с определением факторгруппы, здесь нужна проверка корректности. Пусть $a+I=a'+I,\ b+I=b'+I,$ то есть a' и b' — другие представители смежных классов a+I и b+I соответственно. Тогда $a'=a+x,\ b'=b+y$ для некоторых $x,y\in I.$ Тогда то же определение даёт (a'+I)(b'+I)=a'b'+I, и потому нам нужно показать, что a'b'+I=ab+I. В самом деле,

$$a'b'+I=(a+x)(b+y)+I=ab+\underbrace{ay+xb+xy}_{\in I}+I=ab+I.$$

Обратим внимание, что в последнем переходе существенно используется то, что I является идеалом в R.

1.16 Функция Эйлера. Теорема Эйлера

Функция Эйлера $\varphi(n)$ - мультипликативная арифметическая функция, значение которой равно количеству натуральных чисел не превосходящих n и взаимно простых с ним.

Теорема Эйлера - если a(m) = 1, то $a^{\varphi(m)} \equiv 1 \pmod m$, где $\varphi(m)$ — функция Эйлера.

$$\varphi(p) = p-1$$

$$\varphi(p^n) = p^n - p^{n-1}, \ \text{где p - простое число}$$

1.17 Малая теорема Ферма

Если p- простое число и (a,p)=1, то $a^{p-1}\equiv 1\pmod p$

1.18 Определение поля. Пример

Полем называется комммутативное ассоциативное кольцо с единицей, в котором $0 \neq 1$ и всякий ненулевой элемент необратим. **Примеры полей**: $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.

1.19 Простое поле. Пример

Простое поле - это поле, которое не имеет нетривиальных подполей

1.20 Теорема о простом подполе

Любое поле имеет ЕДИНСТВЕННОЕ тривиальное подполе, которое изоморфно либо полю рациональных чисел Q, либо полю целых чисел по вычету р (Z_p) .

1.21 Характеристика поля. Пример

Определение 1. Xарактеристикой поля K называется наименьшее натуральное число p, для которого $\underbrace{1+1+\ldots+1}_p=0$. Если такого p не существует, то говорят, что характеристика поля K равна нулю.

Характеристика поля K обозначается через $\operatorname{char} K$.

Примеры. char $\mathbb{Q} = \operatorname{char} \mathbb{R} = \operatorname{char} \mathbb{C} = 0$, char $\mathbb{Z}_p = p$.

1.22 Алгебраические и трансцендентые элементы поля.

Если K, F - два поля - $K \subseteq F$, то поле F называетс расширением поля K Элемент $\alpha \in F$ называется **алгебрическим** над K, если существует ненулевой многочлен $f \in K[x]$ со свойством $f(\alpha) = 0$. В противном случае элемент α называется **трансцендентым** над K

Пример: Рассмотрим расширение поелй $\mathbb{Q} \subseteq R$. Элемент $\sqrt{2}$ является алгебраическим над \mathbb{Q} , так как он аннулируется многочленом $x^2-2\in\mathbb{Q}[x]$. Элементы π,e - трансценденты над \mathbb{Q}

1.23 Определение простого элемента поля. Определение неприводимого многочлена над полем Р

Простой элемент поля- элемент, который нельзя представить в виде произведения двух элементов, которые необратимы. **Неприводимый многочлен над полем P** - нетривиальный многочлен, неразложимый в произвидение нетривиальных многочленом. То есть многочлен $p \in P[x]$ называется неприводимм, если не существует $q, r \in P[x]$, таких, что p = qr

1.24 Построение конечного поля из p^n элементов

Пусть $h \in \mathbb{Z}_p[x]$ - неприводимый многочлен степени n. Тогдк мы знаем, что фактор-кольцо $F = \mathbb{Z}_p[x]/(h)$ является полем. Также мы занем, что F имеет размерность f как векторное пространство над \mathbb{Z}_p , а тогда $|F| = p^n$, то есть F- искоме поле из p^n элементов.

1.25 Мультипликативаня группа конечного поля

. Пусть K - произвольное конечное поле из p^n элементов (p- простое и $n \in \mathbb{N}$). Имеем $\mathrm{char} K = p,$ и в частности $\mathbb{Z}_p \subseteq K$

Рассмотрим группу $K^{\times} := (k \setminus \{0\}, \times)$, она называется мультипликативной группой поля K.

1.26 Пример конечного поля

Пример. Построим поле из 4 элементов. В соответствии с описанной выше конструкцией возьмём многочлен

$$h = x^2 + x + 1 \in \mathbb{Z}_2[x].$$

Поскольку $h(0) = h(1) = 1 \neq 0$, этот многочлен не имеет корней в \mathbb{Z}_2 . А так как $\deg h = 2$, то отсюда следует, что h неприводим. Значит, факторкольцо

$$F = \mathbb{Z}_2[x]/(h)$$

является искомым полем из 4 элементов. Имеем $F = \{0, 1, \overline{x}, \overline{x} + 1\}$, где черта означает класс соответствующего элемента в факторкольце. На этом множестве операция сложения выполняется по модулю 2, а чтобы перемножить два элемента, их нужно сначала умножить как многочлены от \overline{x} , а затем понизить все степени выше 1 по правилу

$$\overline{x}^2 = \overline{x} + 1.$$

2 Задачи

2.1 1.4

Найдите остаток от деления 48^{5n+3} на 11

$$48 \equiv 4 \pmod{11} \longmapsto 4^{5n+3} \equiv 48^{5n+3} \pmod{11}$$

$$4^{5n+3} \equiv 4^{5n} \cdot 4^3 \equiv 4^{5n} \cdot 9 \equiv 9 \pmod{11}$$

$$4^2 \equiv 5 \pmod{11}$$

$$4^3 \equiv 9 \pmod{11}$$

$$4^4 \equiv 3 \pmod{11}$$

$$4^5 \equiv 1 \pmod{11}$$