

The NSA
The only part of government that actually listens.

Don't give them anything for free

It's your home, you fight

BetterCrypto·org

Applied Crypto Hardening

Who

Wolfgang Breyha (uni VIE), David Durvaux (CERT.be), Tobias Dussa (KIT-CERT), L. Aaron Kaplan (CERT.at), Christian Mock (coretec), Daniel Kovacic (A-Trust), Manuel Koschuch (FH Campus Wien), Adi Kriegisch (VRVis), Ramin Sabet (A-Trust), Aaron Zauner (azet.org), Pepi Zawodsky (maclemon.at),

New contributors: IAIK,

A-Sit

Agenda

- Pieces of History
- Introduction to BetterCrypto project
- Symetric Ciphering
- Asymetric Cryptography
- Ciphersuites
- Practical Settings
- Heartbeat
- Conclusion

Pieces of History

• Go for Talk @ULG + Enigma

BetterCrypto

- Crypto is cryptic
- A lot of difficult concepts
- A lot of algorithms
- A lot of parameters
- ...

BetterCrypto

- Really difficult for systems administrators
 - A "cookbook" can help!
 - That's BetterCrypo

BetterCrypto is not...

- A crypto course
- A static document

BetterCrypto in short

- Community effort to produce best practices
- Continuous effort
- Mixed expertises
- Open to comments / suggestions / improvements

BetterCrypto in 2 parts

- First part = configurations
 - The most important part
 - Cover as many tools as possible
- Second part = theory
 - Explain and justify choose we made
 - Transparency

How to use?

Crypto in a nutshell

- 2 types of goals:
 - protect the contact of the message
 - identify the author
- Can be combined

Symetric Ciphering

The key is shared

Asymetric Ciphering

- Public key is published
- Private key HAS to be secured

Signing

Author identity is proved

The asymmetric magic

- RSA "formula" : $c = m^e \mod n$
 - with
 - c which is the ciphertext
 - m is the cleartext message
 - e and n are the public key
 - Uncipher with $m = c^d \mod n$
 - d being the private key

Some algorithms

- Hash
 - SHAI
 - SHA256
 - SHA512
- Key Exchange
 - Diffie Elleman

Diffie-Helleman

• How to share a secret key? Secret: a Secret:b Public: p & g~ sendp&g Secret: b Public: p & g $g^b \mod p = B$ send B $g^a \mod p = A$ _send A $B^a \mod p = S$ $A^b \mod p = s$

Ephemeral Diffie-Helleman

- Regular mode
 - Public and private keys are kept
- Ephemeral mode
 - New keys are generated each time
 - By one of the parties at least

SSL

• Explain

Stream vs Block Cipher

- Stream cipher
 - Generate an "infinite" key stream
 - Difficult to correctly use
 - Re-use of keys
 - Faster
- Block cipher
 - Cipher by block with padding
 - Could include integrity protection

Some algorithms

- Symetric
 - AES (Rijndael)
 - Camellia
- Asymetric
 - GPG / PGP
 - RSA

Algorithm vs Implementation!

Heartbeat

Heartbeat

BetterCrypto CipherSuite

- 2 cipher suites
 - version A
 - stronger
 - less supported client
 - version B
 - weaker
 - more "universal"

Cipher Suite A

- TLS 1.2
- Perfect forward secrecy / ephemeral Diffie Hellman
- Strong MACs (SHA-2) or
- GCM as Authenticated Encryption scheme

ID	OpenSSL Name	Version	KeyEx	Auth	Cipher	MAC
0x009F	DHE-RSA-AES256-GCM-SHA384	TLSv1.2	DH	RSA	AESGCM(256)	AEAD
0x006B	DHE-RSA-AES256-SHA256	TLSv1.2	DH	RSA	AES(256) (CBC)	SHA256
0xC030	ECDHE-RSA-AES256-GCM-SHA384	TLSv1.2	ECDH	RSA	AESGCM(256)	AEAD
0xC028	ECDHE-RSA-AES256-SHA384	TLSv1.2	ECDH	RSA	AES(256) (CBC)	SHA384

CiperSuite B

- TLS 1.2,TLS 1.1,TLS 1.0
- Allowing SHA-I

Cipher Suite B

ID	OpenSSL Name	Version	KeyEx	Auth	Cipher	MAC
0x009F	DHE-RSA-AES256-GCM-SHA384	TLSv1.2	DH	RSA	AESGCM(256)	AEAD
0x006B	DHE-RSA-AES256-SHA256	TLSv1.2	DH	RSA	AES(256)	SHA256
0xC030	ECDHE-RSA-AES256-GCM-SHA384	TLSv1.2	ECDH	RSA	AESGCM(256)	AEAD
0xC028	ECDHE-RSA-AES256-SHA384	TLSv1.2	ECDH	RSA	AES(256)	SHA384
0x009E	DHE-RSA-AES128-GCM-SHA256	TLSv1.2	DH	RSA	AESGCM(128)	AEAD
0x0067	DHE-RSA-AES128-SHA256	TLSv1.2	DH	RSA	AES(128)	SHA256
0xC02F	ECDHE-RSA-AES128-GCM-SHA256	TLSv1.2	ECDH	RSA	AESGCM(128)	AEAD
0xC027	ECDHE-RSA-AES128-SHA256	TLSv1.2	ECDH	RSA	AES(128)	SHA256
0x0088	DHE-RSA-CAMELLIA256-SHA	SSLv3	DH	RSA	Camellia(256)	SHA1
0x0039	DHE-RSA-AES256-SHA	SSLv3	DH	RSA	AES(256)	SHA1
0xC014	ECDHE-RSA-AES256-SHA	SSLv3	ECDH	RSA	AES(256)	SHA1
0x0045	DHE-RSA-CAMELLIA128-SHA	SSLv3	DH	RSA	Camellia(128)	SHA1
0x0033	DHE-RSA-AES128-SHA	SSLv3	DH	RSA	AES(128)	SHA1
0xC013	ECDHE-RSA-AES128-SHA	SSLv3	ECDH	RSA	AES(128)	SHA1
0x0084	CAMELLIA256-SHA	SSLv3	RSA	RSA	Camellia(256)	SHA1
0x0035	AES256-SHA	SSLv3	RSA	RSA	AES(256)	SHA1
0x0041	CAMELLIA128-SHA	SSLv3	RSA	RSA	Camellia(128)	SHA1
0x002F	AES128-SHA	SSLv3	RSA	RSA	AES(128)	SHA1

Key Length

On the choice between AES256 and AES128: I would never consider using AES256, just like I don't wear a helmet when I sit inside my car. It's too much bother for the epsilon improvement in security."

- Vincent Rijmen in a personal mail exchange Dec 2013
 - Symetric
 - 128 bits
 - Aysmetric
 - 3248 bits (RSA)

Choose a Method

Lenstra and Verheul Equations (2000) Lenstra Updated Equations (2004)

ECRYPT II Recommendations (2012)

NIST Recommendations (2012)

ANSSI Recommendations (2010)

Fact Sheet NSA Suite B Cryptography (2013)

Network Working Group RFC3766 (2004)

BSI Recommendations (2014)

Compare all Methods

1 Reference for the comparison

You can enter the year until when your system should be protected and see the corresponding key sizes or you can enter a key/hash/group size and see until when you would be protected.

Enter an elliptic curve key size:

256

bits

2 Compare

Method	Date	Symmetric	Asymmetric	Discrete Lo Key	garithm Group	Elliptic Curve	Hash
[1] Lenstra / Verheul @	2084	135	7813 6816	241	7813	257	269
[2] Lenstra Updated 🕜	2090	128	4440 6974	256	4440	256	256
[3] ECRYPT II	2031 - 2040	128	3248	256	3248	256	256
[4] NIST	> 2030	128	3072	256	3072	256	256
[5] ANSSI	> 2020	128	4096	200	4096	256	256
[6] NSA	•	128				256	256
[7] RFC3766 @	-	136	3707	272	3707	257	-
[8] BSI (signature only)	> 2020	-	1976	256	2048	250	256

Compatibility (B suite)

Handshake Simulation			
Bing Oct 2013	TLS 1.0	TLS_DHE_RSA_WITH_AES_256_CBC_SHA (0x39) FS	256
<u>Chrome 31 / Win 7</u>	TLS 1.2	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	256
Firefox 10.0.12 ESR / Win 7	TLS 1.0	TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (0x88) FS	256
Firefox 17.0.7 ESR / Win 7	TLS 1.0	TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (0x88) FS	256
Firefox 21 / Fedora 19	TLS 1.0	TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (0x88) FS	256
Firefox 24 / Win 7	TLS 1.0	TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (0x88) FS	256
Googlebot Oct 2013	TLS 1.0	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	256
IE 6 / XP No FS ¹ No SNI ²			Fail ³
IE 7 / Vista	TLS 1.0	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	256
IE 8 / XP No FS ¹ No SNI ²			Fail ³
IE 8-10 / Win 7	TLS 1.0	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	256
<u>IE 11 / Win 7</u>	TLS 1.2	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	256
<u>IE 11 / Win 8.1</u>	TLS 1.2	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	256
Java 6u45 No SNI ²			Fail ³
Java 7u25			Fail ³
OpenSSL 0.9.8y	TLS 1.0	TLS_DHE_RSA_WITH_AES_256_CBC_SHA (0x39) FS	256
OpenSSL 1.0.1e	TLS 1.2	TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (0xc030) FS	256
Opera 17 / Win 7	TLS 1.2	TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 (0x6b) FS	256
Safari 5.1.9 / OS X 10.6.8	TLS 1.0	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	256
Safari 6 / iOS 6.0.1	TLS 1.2	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xc028) FS	256
Safari 6.0.4 / OS X 10.8.4	TLS 1.0	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	256
Safari 7 / OS X 10.9	TLS 1.2	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xc028) FS	256
Tor 17.0.9 / Win 7	TLS 1.0	TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (0x88) FS	256
Yahoo Slurp Oct 2013	TLS 1.0	TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (0x88) FS	256

- Webservers
 - Apache
 - lighttpd
 - nginx
 - Microsoft IIS

- SSH
 - Open SSH
 - Cisco ASA
 - Cisco IOS

- Mail servers
 - Dovecot
 - cyrus-imapd
 - Postfix
 - Exim

- VPN
 - IPSec
 - CheckPoint Firewall-I
 - OpenVPN
 - PPPTP
 - Cisco ASA
 - OpenSWAN
 - tinc

- PGP/GPG
- IPMI/ILO
- Instant Messaging
 - ejabberd
 - OTR
 - Charybdis
 - SILC

- Database systems
 - Oracle
 - MySQL
 - DB2
 - PostgreSQL

- Proxy
 - squid
 - Bluecoat
 - Pound
- Kerberos

Futur / Idea

- Configuration Generator (online)
- A friendly copy/paste version
- Other tools

Conclusion

References

- BetterCrypto.org
- https://git.bettercrypto.org/ach-master.git
- http://lists.cert.at/cgi-bin/mailman/listinfo/ach

- Contact
 - david@autopsit.org
 - @ddurvaux