I. Space of sequences

Classially we know that segmences look like a_1, a_2, a_3, \ldots

What one these a_i ? $a_i \in X$ where X is any set. This can be regarded as a function $f: \mathbb{N} \to X$, given by $f(i) = a_i$.

The space of X-valued segmences is just $\{f: N \to X\}$. Notation: $X^Y := \{f: Y \to X \mid f \text{ function }\}$ The space of X-valued is just X^N .

Intuition: $S^{N} = S \times S \times S \times \cdots \times S$ $(n \in \mathbb{Z}_{\geqslant 0}) = \{(s_{1}, s_{2}, \dots, s_{N}) \mid s_{i} \in S\}$ $\cong \{f : \{1, \dots, n\} \rightarrow S\}$ $= \{f : [n] \rightarrow S\} = S^{[n]}$ If X, Y are finite then $X^{Y} \cong X^{[Y]}$

Let's focus on $\mathbb{R}^{\mathbb{N}}$: real valued seguences. $\mathbb{R}^{\mathbb{N}}$ is an \mathbb{R} -vector space.

Addition: Termwise $f, g \in \mathbb{R}^N$ $(f+g) := (n \mapsto f(n)+g(n))$ Scalar mult: $C \in \mathbb{R}$, $f \in \mathbb{R}^N$ then $(c \cdot f) = (n \mapsto c \cdot f(n))$

Zero: $f = (n \mapsto 0)$

Why is this not a basis? It does not span RN.

Does $f=(n \to i)$ lie in the Span of B? However B spans $\mathbb{R}^{(N)}$

(N) = { all sequences in RN which are eventually 0}.

Multiplication on $\mathbb{R}^{\mathbb{N}}$: $\left(f\cdot g\right)=\left(n\mapsto f(n)\cdot g(n)\right)$ Multiplicative $id: f=(n\mapsto 1)$ $\therefore \mathbb{R}^{\mathbb{N}}$ is a ring.

:. RN is an R-algebra (VS+ ring)

S: If I have seq f and q in RN, s.t. f.g is the zero seq. Is it true that either for g must be the zero seq?

Ans. No. f = (1,0,1,0,...)g = (0,1,0,1,...)

Subsequence: Let $f \in \mathbb{R}^N$. A subseq of f is some $h \in \mathbb{R}^N$ s.t. $h = f \circ g$ for some $g: N \to N$ strictly increasing. (Clearly g is I-I)

Subseq is just the main seq with some terms ignored.

II. (Sub) space of convergent real seq

We say f converges if $\exists x \in \mathbb{R}$ C.t. f converges to x.

If we write f as (χ_n) then notation: $\chi_n \rightarrow \chi$ for (χ_n) cgs to $\chi \in \mathbb{R}$. $\rightarrow \lim_{n \rightarrow \infty} \chi_n = \chi_n$ $\lim_{n \rightarrow \infty} f(n) = \chi_n$ (if $\chi_n \rightarrow \chi_n$.)

Note: N depends on E.

- 2 (n) does not converge
- \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

Properties

- ① $\chi \in |R| \quad S.t. \quad |\chi| \leq \varepsilon \quad \forall \quad \varepsilon \in R^+ \quad \text{then} \quad \alpha = 0.$ (Same is true for $|\pi| < \varepsilon$
- 2 If $\alpha_n \rightarrow a + a_n \rightarrow b$ then a = b. Pf: Ut $\epsilon > 0$ given.

$$|a-b| = |a-2n+2n-b|$$

$$\leq |a-2n|+|2n-b|$$

$$\leq |x_n-a|+|x_n-b|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad \text{for } n > N$$

$$\Rightarrow a-b=0 \Rightarrow a > b.$$

- (i) $\lambda x_n + by_n \rightarrow \chi + 0 + n, \chi \neq 0$ then $\frac{1}{2}$. Then:

 (i) $\lambda x_n + by_n \rightarrow \chi + 0 + n, \chi \neq 0$ then $\frac{1}{2}$. Then:

 (ii) $\lambda x_n + by_n \rightarrow \chi + 0 + n, \chi \neq 0$ then $\frac{1}{2}$.
- $\widehat{4} \qquad \chi_n \rightarrow \chi \quad \iff \quad (\chi_n \chi) \quad \longrightarrow \quad 0$
- 6 Say $x_n \rightarrow x$. $x_n \geq 0 \forall n$. Then $x \geq 0$.
- S. Say $x_n \to x$, $y_n \to y$ s.t. $x_n > y_n + n$. Can we say x > y? Ans. No. $\begin{cases} \frac{1}{n} \\ \frac{3}{n} \end{cases} \longrightarrow 0$, $\frac{1}{n} > 0$.
- Sandwich Thun: α_n, y_n, z_n are s.t. $\alpha_n \rightarrow \alpha_1, z_n \rightarrow \alpha_2,$ and $\alpha_n \leq y_n \leq z_n \forall n$. Then $y_n \rightarrow \alpha$.
 - Definition: (1) We say $\lim_{n\to\infty} a_n = \infty$ if $y \in \mathbb{R}^+$ $\exists N \in \mathbb{N}$ s.t. $y \in \mathbb{N}$ $\exists n \neq y$.
 - (2) We say $\lim_{n\to\infty} \alpha_n = -\infty$ if $\lim_{n\to\infty} (-\alpha_n) = \infty$.