Algoritmos Greedy (Voraces) ALGORÍTMICA

Azorín Martí, Carmen

Cribillés Pérez, María

Ortega Sevilla, Clara Torres Fernández, Elena

ÍNDICE

O1INTRODUCCIÓN

O2CONTENEDORES

03VIAJANTE DE COMERCIO

Q4CONCLUSIONES

O1INTRODUCCIÓN

Algoritmo Greedy

```
S=Ø
Mientras S no sea una solución y C≠∅. Hacer:
    X=elemento de C que maximiza SELEC(X)
    C=C-\{X\}
    Si (S U {X}) es factible entonces S=SU{X}
Si S es una solución entonces devolver S
en caso contrario: no hay sol
```

S: Conjunto Solución C: Conjunto Candidatos SELEC(): F. Selección

UZ CONTENEDORES

Tenemos un buque con capacidad de carga **K** toneladas y **n** contenedores cuyos respectivos pesos son **p1...pn**. Sabemos también que la capacidad del buque es menor que la suma total de los pesos de los contenedores.

Maximizar número de contenedores

Maximizar número de *toneladas*

MAXIMIZAR NÚMERO DE CONTENEDORES

Cargas introducidas w[i]:

4	9	3	1	6
---	---	---	---	---

Cargas ordenadas de menor a mayor w[i]:

Capacidad máxima de carga: W=6

- 1+3=4<6
- 1+3+4=8>6

PSEUDOCÓDIGO

```
Pedimos los datos de los pesos al usuario:
     k: capacidad del buque
     n: número de contenedores
     w[i]: cada uno de los pesos de los contenedores, 1 \le i \le n
Ordenamos los pesos de los contenedores de menor a mayor (C)
Aplicamos Greedy:
     num contenedores = 0
     Mientras num contenedores no sea una solución y queden contenedores por
     ver:
          num toneladas += w[i]
          si num toneladas ≤ k es factible entonces ++num contenedores
     Devolvemos num contenedores
```



```
for(int i= 0; i < n; ++i){//O(n)}
     cout << "Peso del contenedor " << (i+1) << ": ";//O(1)
     cin >> w[i]; 	//O(1)
     cout << endl;
                         //0(1)
sort(w,w+n); //O(nlogn)
for(int i = 0; (i < n); ++i){ //O(n)
     num toneladas += w[i]; //O(1)
     if(num toneladas <= k)
                             //0(1)
          ++num contenedores; //O(1)
     else
          break;
                          //0(1)
```

EFICIENCIA TEÓRICA

El algoritmo Greedy tiene eficiencia O(nlogn)

¿Es óptimo este algoritmo?

Sí, este algoritmo Greedy siempre proporciona la solución óptima.

Sea $T=\{c1, ..., cn\}$ el conjunto de contenedores y supongamos, sin pérdida de generalidad, que $p1 \le p2 \le ... \le pn$. La solución que proporciona el algoritmo

Greedy viene dada por $S = \{c1, ..., cm\}$ de modo que $\sum_{i=1}^{m} pi \le K$ y $\sum_{i=1}^{m+1} pi > K$

En consecuencia tenemos que: $\sum_{i=1}^{m} pi + \sum_{i=1}^{m+1} pi > K \forall Q \subseteq T \setminus S, Q \neq \emptyset$, con lo que los contenedores del conjunto S se corresponden con la

que queda demostrado que los contenedores del conjunto S se corresponden con la solución óptima, no se podrían meter más.

MAXIMIZAR NÚMERO DE TONELADAS

Cargas introducidas w[i]:

2	10	20	40	15	35	25

Cargas ordenadas de mayor a menor w[i]:

		40	35	25	20	15	10	2
--	--	----	----	----	----	----	----	---

Capacidad máxima de carga: W=30

- 40,35>6
- 25<30
- 25+20=45>30

PSEUDOCÓDIGO

Pedimos los datos de los pesos al usuario:

k: capacidad del buque

n: número de contenedores

w[i]: cada uno de los pesos de los contenedores, $1 \le i \le n$

Ordenamos los pesos de los contenedores de mayor a menor (C)

Aplicamos Greedy:

```
suma_toneladas = 0
```

Mientras suma_toneladas no sobrepase k y queden contenedores por ver:

```
si (w[i]+suma_toneladas) ≤ k es factible entonces
```

suma_toneladas += w[i]

Devolvemos num_toneladas


```
for(int i= 0; i < n; ++i){ //O(n)
	cout << "Peso del contenedor " << (i+1) << ": "; //O(1)
	cin >> w[i]; //O(1)
	cout << endl; //O(1)
}
```

//O(nlogn)

//0(1)

EFICIENCIA TEÓRICA

El algoritmo Greedy tiene eficiencia **O(nlogn)**

else

break;

sort(w,w+n,mayor);

¿Es óptimo este algoritmo?

En este caso este algoritmo Greedy NO es óptimo. CONTRAEJEMPLO:

Podemos coger otras combinaciones con contenedores de pesos menores que dé más próximo a 30 que 25.

O3 PROBLEMA DEL VIAJANTE DE COMERCIO

Dado un conjunto de ciudades y las distancias entre ellas, hemos de averiguar la **ruta más corta** que visita todas las ciudades una única vez y volver al punto de partida.

5. COMPARACIONES

VIAJANTE COMERCIO

Vecino más cercano

Función CalcularRecorrido(matriz)

- 1. Buscar una ciudad aleatoria ciudad_random
- Actualizamos element a dicha ciudad y buscamos la más cercana no visitada que será nuestro destino (dst)
- Marcamos dst como visitada
- 4. Comprobamos
 - a. Si todas las ciudades se han visitado, termina
 - b. Si no, vuelve al paso 2


```
while (!pila.isEmpty()){
                                    //O(n^2)
                                                          Eficiencia teórica
            element = pila.peek();
            i = 1;
            min = Integer.MAX_VALUE;
                                                              Eficiencia O(n²)
            while (i <= nNodos){
                                                                   //O(n)
                  if (element!=i && ciudadesVisitadas[i] == 0){
                                                                   //0(1)
                        if (min > matriz[element][i]){
                                                             //0(1)
                                    min = matriz[element][i];
                                    dst = i;
                                    minFlag = true;
```

Inserción más lejana

- El recorrido parcial inicial se construye a partir de las tres ciudades más al este, al oeste y al norte.
- El siguiente nodo a insertar es el de la primera fila que no ha sido visitada.
- El nodo se inserta en la posición en la que provoque menor incremento de la distancia total recorrida.
 - a. Para hacerlo se calcula cada posible posición y se guarda la que es mínima y su índice.

Eficiencia teórica

```
void CalcularRecorrido(int matrix[][], int dim){
  Declaración de variables
      for(int i=0; i < dim; i++) //O(n)
             recorrido[i]=-1;
      for(int i=0; i < dim; i++) //O(n)
             visitado[i]=0;
 Declaración de variables
                               //0(1)
      if(west_city != -1){
             recorrido[contr]=west city;
             contr++:
             visitado[west city]=1;
             contv++:
      if(north_city != -1){
                                         //0(1)
            Similar a west city
             pero con north city ···
```

```
for(int i = 0; i < contr-1; i++){···}
                                      //O(n)
for(int i=0; i<dim; i++){
                             //O(n²)
                                      //O(n)
       if(visitado[i]!=1){
                 Declaración e inicialización de variables ··· //O(1)
               for(int k=1; k < contr-1; k++)
                                                     //O(n)
                       Código con un if ··· //O(1)
                       Actualizar variables
                                                     //0(1)
               if(suma_aux < min_suma){ \cdots}</pre>
                                                              //0(1)
                for(int j = contv; j > index_min; j--){\cdots}
                                                             //O(n)
                       Actualizar variables ··· //O(1)
       Imprimir por pantalla los resultados
                                                     //O(n)
```

Eficiencia O(n²)

Algoritmo Propio

- 1. El recorrido parcial inicial se construye a partir de cuatro ciudades distintas buscadas de forma aleatoria.
- 2. El siguiente nodo a insertar es el que se acerque más a alguno de los nodos ya insertados.
- 3. El nodo se inserta en la posición en la que provoque menor incremento de la distancia total recorrida.
 - a. Para hacerlo se calcula cada posible posición y se guarda la que es mínima y su índice.


```
void CalcularRecorrido(int matriz[][]){
       for (int j=0; j<num nodos;++j){
                                                    //O(n)
              visitados[j]=false;
       while(contr < 4){
                                                    //0(1)
       random = rand.nextInt(num nodos-1);
       if(!visitados[random]){···}
                                            //0(1)
       for(int \ i = 0; \ i < contr-1; \ i++){\cdots}
                                                    //O(n)
       while (contr < num nodos){
                                                    //O(n^3)
              for(int i = 0; i < contr-1; i++){
                                                    //O(n^2)
                                                           //O(n)
              for(int j = 0; j < num_nodos; j++){
              if(!visitados[j]){
                                                    //0(1)
              if(dist_total + ps < dist_menor){···} //O(1)</pre>
```

Eficiencia teórica

Eficiencia O(n³)

COMPARACIÓN ENTRE HEURÍSTICAS:

- Vecino más cercano
- Inserción más lejana
- Algoritmo Propio

Con los datos proporcionados:

- 16 ciudades
- 29 ciudades
- 76 ciudades

16 ciudades sin ordenar

Ulysses 16 -> 16 ciudades

29 datos sin conectar

Bayg 29 -> 29 ciudades

Eje de abscisas (x)

Algoritmo propio

Inserción más lejana

Algorítmica

76 datos sin conectar

Eil 76 -> 76 ciudades

Eje de abscisas (x)

Comparativa

Número nodos	Vecino más Cercano	Inserción más Lejana	Algoritmo Propio	
16	79	69	83	Distancia
10	35.83	27.02	33.98	Tiempo (ms)
29	10200	9735	9547	Distancia
25	36.30	22.98	39.76	Tiempo (ms)
76	662	581	586	Distancia
70	27.19	26.87	47.08	Tiempo (ms)

A por el 10 :()

04

CONCLUSIONES

Los algoritmos Greedy son:

- → Eficientes
- → Diseño e implementación sencillos
- → No siempre dan con la solución óptima
 - Heurísticas Greedy
- → Muy útiles en problemas sobre GRAFOS

GRACIAS!

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon and infographics & images by Freepik

Azorín Martí, Carmen Cribillés Pérez, María Ortega Sevilla, Clara Torres Fernández, Elena