Ivan's Chapter 4 Study Guide

Written by Ivan Petrov (HRB) on 02/12/2019

PLEASE, DO NOT LOSE THIS STUDY GUIDE AND REMEMBER TO STILL STUDY YOUR NOTES! I DO NOT KNOW WHAT IS ON THE TEST AND ALL INFORMATION INSIDE IS INCLUDED BASED ON PURE SPECULATION. I AM NOT RESPONSIBLE FOR ANY IRRELEVANT, MISLEADING OR OTHERWISE FALSE INFORMATION!

ATP – The Fuel of Cells

- All cells use ATP
 - o ATP = Adenosine Triphosphate
 - o Transfers energy from breakdown of food to cell processes.
 - Used for building molecules, active transport, etc.
- Released when phosphate group is removed
 - Has three phosphate groups
 - Bond holding third is unstable and weak
 - Removal results in energy-producing reaction
 - Energy is released; ATP becomes ADP
- Organisms break down carbon-based molecules to produce ATP
- Food does not contain ATP
 - Must be digested into smaller molecules
- Number of ATP molecules relies on type of molecule
 - o Carbohydrate, lipid, or protein
- Carbohydrates are most commonly broken down into ATP
- Breakdown of glucose yields 36-38 (38) molecules of ATP
- Lipids store most energy
 - o Lipid fats store 80% of energy in body
 - Triglyceride can be broken into 146 molecules of ATP
- Proteins store same as carbs; less likely to be broken down
 - Amino acids needed to build more proteins instead of making energy
- Plants use photosynthesis to make ATP

phosphate added adenosine triphosphate energy from breakdown of molecules ADP ADP adenosine disherebyte disherebyte

Chemosynthesis

- Chemosynthesis = Process by which organisms use chemical energy instead of light energy to make energy-storing carbon-based molecules
 - o Still need ATP for energy
- Chemosynthetic organisms make their own food, like plants

<u>Photosynthesis</u> – The Method of Producers

- Organisms which use photosynthesis are producers
 - o Produce source of energy for themselves
- Plants, bacteria and protists are main producers & sources of chemical energy
- Photosynthesis = Process which captures energy from sunlight to make sugars that store chemical energy
- Sunlight has several types of energy
 - o Ultraviolet, microwaves, visible light, etc.
- Chlorophyll = Molecule in chloroplasts which absorbs energy in visible light
 - o Plants have *chlorophyll A* and *chlorophyll B*
 - Absorb mostly red and blue light
 - Don't absorb much green

Chloroplasts

- Photosynthesis occurs in chloroplasts
 - Membrane-bound organelles
 - Most in leaf cells which are specialized for photosynthesis
 - Has two main stages
- Grana and stroma needed for photosynthesis
- Grana = Stacks of coin-shaped membrane-enclosed thylakoids
 - o Membranes contain chlorophyll
- Stroma = Fluid which surrounds grana

Reactions

- Light-dependent reactions = Capture energy from sunlight; take place across thylakoids; needs water and sunlight
 - o Stage 1: Chlorophyll absorbs energy from sunlight
 - Energy is transported across thylakoid membrane
 - H₂O is broken down
 - \bullet O^2 is released
 - Stage 2: Energy carried across membrane is transferred to energy-carrying molecules (such as ATP)
- Light-independent reactions = Use energy from light-dependent reactions to make sugars; reaction occurs in stroma; CO₂ is needed
 - O Stage 3: CO₂ is added to a cycle to build larger reactions
 - Energy from light-dependent reactions is used
 - Stage 4: Molecule of simple sugar (usually glucose [C₆H₁₂O₆]) stores energy captured from sunlight

Equation for Photosynthesis

 $6\text{CO}_2 + 6\text{H}_2\text{O} \rightarrow \text{Light}$, Enzymes $\rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2$

- Light-independent reactions only need one molecule of CO₂ at a time
- Plants need simple sugars to build starch and cellulose

Light-Dependent Reactions

- Energy is captured and transferred in thylakoid by two groups of photosystem molecules
 - o Photosystem I and Photosystem II
- Energy from molecules is used to make molecules that act as energy carriers
 - o Carriers are ATP and NADPH
- ATP from light-dependent reactions is not usually used as the cell's general energy
 - o Goes along with NADPH to later stages of photosynthesis

Photosystem II and Electron Transport

- Needs water to function
- Stage 1: Energy is absorbed from sunlight
 - o Chlorophyll & light-absorbing molecules in thylakoid absorb energy
 - Energy is transferred to electrons (e⁻)
 - Electrons leave chlorophyll and enter electron transport chain
 - Series of proteins in membrane of thylakoid
- Stage 2: Water molecules split
 - o Enzymes break down water molecules
 - Oxygen, hydrogen ions (H⁺) and electrons are separated
 - Oxygen is released as waste
 - o Electrons from water replace those which left chlorophyll
- Stage 3: Hydrogen Ions transported

- o Electrons move from protein to protein in electron transport chain
- Their energy is used to pump H⁺ ions into the thylakoid against concentration gradient
- o H⁺ builds up inside thylakoid
- o Electrons move onto Photosystem I

Photosystem I and Energy-Carrying Molecules

- Light energy is still absorbed
 - o Added to electrons, some of which come from photosystem II

- Stage 4: Energy is absorbed from sunlight
 - o Electrons are energized by thylakoid membrane light-absorbing molecules
 - Leave the molecules
- Stage 5: NADPH produced
 - Energized electrons are added to NADP⁺ which functions like ADP
 - NADPH molecules are made
 - Functions like ATP
 - Go to light-independent reactions

ATP Production

- Production of ATP depends on H⁺ which built up in the thylakoid from photosystem II and enzymes
- Stage 6: Hydrogen ion diffusion
 - o Hydrogen ions flow through thylakoid membrane protein channel
 - Difference in H⁺ concentration = chemiosmotic gradient

- Stores potential energy
- o Ions flow through channel by diffusion
- Stage 7: ATP produced
 - ATP synthase = Complex enzyme
 - As ions flow through channel, makes ATP by adding phosphate groups to ADP

The Calvin Cycle

- Can't take place without ATP from light-dependent reactions
- The Calvin Cycle runs on CO₂ and energy carried by ATP and NADPH to make simple sugars
- Only one molecule of CO₂ is added at a time
 - Simplified diagram shows three
- Stage 1: CO₂ added
 - o CO₂ molecules are added to preexisting 5-carbon molecules
 - Six-carbon molecules are formed
- Stage 2: Three-carbon molecules formed
 - o ATP and NADPH are used by enzymes to split six carbon molecules
 - Three-carbon molecules are formed and rearranged
- Stage 3: Three-carbon molecules exit
 - Most three-carbon molecules stay in cycle
 - One high-energy molecule leaves
 - o After two leave, they're bonded to build a six-carbon sugar
 - Such as glucose
- Stage 4: Three-carbon molecules recycled
 - o Energy from ATP is used to change three-carbon into five-carbon molecules
 - Five-carbon molecules stay in cycle
 - Added to new CO₂ molecules

Cellular Respiration and Glycolysis

- Cellular respiration releases chemical energy from sugars and other carbon-based molecules
 - Makes ATP when oxygen is present
 - Is an aerobic process
 - Needs oxygen to take place
 - Takes place in mitochondria
- Glycolysis splits glucose into two three-carbon molecules
 - Makes two molecules of ATP
 - Takes place in cytoplasm
 - o Is an anaerobic process
 - Does not need oxygen to take place
 - Necessary for cellular respiration

glucose

- The Krebs Cycle produces molecules which carry energy to 2nd part of cellular respiration
- Stage 1: Three-carbon molecules from glycolysis are broken down
 - o Small number of ATP molecules are made
 - o CO₂ is given off as waste product
- Stage 2: Energy is transferred to 2nd stage of cellular respiration

- Electron transport chain of proteins needs energy molecules from Krebs cycle and O₂ to make ATP
 - o Takes place in/across inner mitochondrial membrane
- Stage 3: Energy is transferred to chain of proteins in inner membrane
- Stage 4: Large amounts of ATP molecules are made
 - o O₂ enters and is used to make H₂O
 - o Water and heat are given off
- Up to 38 ATP molecules are produced from breaking down one glucose molecule
 - o 2 from glycolysis and 36 from cellular respiration

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$

Glycolysis and Cellular Respiration

- Stage 1: Two ATP molecules are used to energize a glucose molecule
 - o Glucose splits into two three-carbon molecules
 - o Enzymes and chemical reactions rearrange molecules
- Stage 2: Energized electrons from three-carbon are transferred to NAD⁺ molecules
 - o NADH molecules are formed
 - Reactions convert three-carbon molecules to pyruvate which enters cellular respiration
 - Four ATP molecules are made
- Although four molecules are made, two are used to split the glucose molecule

 Output

 Description:
- Pyruvate and NADH are used for cellular respiration when oxygen is present
- NADH is an electron carrier

The Krebs Cycle and Cellular Respiration

- Stage 1: Pyruvate broken down
 - A pyruvate molecule is split into a two-carbon molecule and molecule of CO₂, which is a waste product

glucose

- o Electrons and transferred from two-carbon molecule to NAD+
 - Forms molecule of NADH
 - NADH moves to electron transport chain
- Stage 2: Coenzyme A
 - Bonds to two-carbon molecule
 - o Intermediate molecule goes to Krebs cycle
- Stage 3: Citric acid formed
 - o Two-carbon part of intermediate molecule is added to four-carbon molecule
 - Forms six-carbon molecule called citric acid
 - Coenzyme A goes back to stage 2
- Stage 4: Citric acid broken down
 - o Citric acid is broken down by enzyme and five-carbon molecule is formed

- o NADH molecule is made and leaves cycle
- A CO₂ waste product is created
- Stage 5: Five-carbon molecule broken down by an enzyme
 - o One four-carbon, NADH, and ATP molecule is formed
 - NADH leaves the cycle
 - o CO₂ waste product is produced
- Stage 6: Four-carbon molecule rearranged by enzymes
 - o High-energy electrons are released
 - o NADH and FADH₂ electron carrier molecules are made
 - Both leave the cycle
 - Four-carbon molecule remains

- Products from the breakdown of one pyruvate molecule are...
 - o Three molecules of CO₂ waste product
 - One molecule of ATP
 - o Four molecules of NADH to electron transport chain
 - o One molecule of FADH₂ to electron transport chain
- Glycolysis produces two pyruvate molecules
 - o Totals six CO₂, two ATP, eight NADH, and two FADH₂ molecules

The Electron Transport Chain is the 2nd Main part of Cellular Respiration

- Electron transport chain takes place in and across mitochondrion inner membrane
 - Made of proteins
 - Use energy from NADH and FADH₂ to pump H⁺ against concentration gradient and across membrane
- Ions flow back through membrane to produce ATP

- Oxygen is needed to pick up electrons which have gone through the chain
- Step 1: Electrons removed
 - o Protein inside inner membrane takes electrons from NADH and FADH₂
 - o Two molecules of NADH and one molecule of FADH2 are used
- Step 2: Hydrogen ions transported
 - Electrons travel through transport chain proteins
 - Use energy from electrons to pump hydrogen ions across inner membrane to produce chemiosmotic gradient
 - o Hydrogen ions build up inside mitochondria
- Step 3: ATP produced
 - Flow of hydrogen ions is used to make ATP
 - o Ions diffuse through protein channel in inner membrane of mitochondrion
 - Channel is part of ATP synthase
 - ATP Synthase adds phosphate groups to ADP to make ATP
 - o For each pair of electrons, three ATP molecules are made
- Step 4: Water formed
 - Oxygen enters the process
 - o Oxygen picks up electrons and hydrogen ions to form water
 - Water is given off as a waste product.

- Products from cellular respiration including glycolysis are...
 - o CO₂ from the Krebs cycle and broken-down pyruvate
 - Water from transport chain
 - O Up to 38 ATP per glucose molecule
 - 2 from glycolysis, 2 from Krebs cycle, and up to 34 from transport chain

	Photosynthesis	Cellular Respiration
Organelle for Process	Chloroplast	Mitochondrion
Reactants	CO ₂ and H ₂ O	Sugars (glucose) and O ₂
Electron transport chain	Proteins within thylakoid membrane	Proteins within inner mitochondrial membrane
Cycle of chem. Reactions	Calvin cycle in stroma builds sugar molecules	Kerbs cycle in matrix breaks down carbon-based molecules
Products	Sugars (glucose) and O ₂	CO ₂ and H ₂ O

Lactic Acid Fermentation

- Fermentation is an anaerobic process which allows glycolysis to continue
 - Does not make ATP
 - o Removes electrons from NADPH and recycles NAD
- Lactic Acid (C₃H₆O₃) is what causes your muscles to burn during hard exercise
 - o Product of lactic acid fermentation
- Once oxygen is available, cells go back to using aerobic respiration
- Waste products of bacteria and mold fermentation are essential for making cheese, yogurt, and bread

GLYCOLYSIS LACTIC ACID FERMENTATION 2 ADP 2 ATP 2 NADH 2 CO2 glucose 2 NADH 2 NADH 2 NADH 2 NADH 2 CO2 glucose 2 NADH 2 NADH 2 NADH 2 NADH 2 CO2 glucose 2 NADH 2 NADH 2 NADH 2 NADH 2 CO2 glucose 2 NADH 2 NADH 2 NADH 2 NADH 2 CARbon dioxide

Alcohol Fermentation

- Alcohol fermentation is used by yeast and plants
 - o Begins at same point as lactic acid
- Stage 1: Pyruvate and NADH from glycolysis enter alcoholic fermentation
 - Two NADH molecules provide energy to break down pyruvate into an alcohol and carbon dioxide
 - NADH is converted back into NAD⁺
- Stage 2: The molecules of NAD⁺ are recycled back to glycolysis
 - o The recycling allows it to continue
- Products of this process include...
 - Two molecules of alcohol
 - Often ethyl alcohol
 - Two molecules of carbon dioxide
 - Two molecules of NAD⁺

Microorganisms and You

- As yeast breaks down sugar, it produces CO₂
 - o This is why bread rises

MITOCHONDRIONA OUTER MEMBRANE INTERMEMBRANE SPACE INNER MEMBRANE MATRIXE

CHLOROPLASTH
OUTER MEMBRANE
INTERMEMBRANE SPACE,
INNER MEMBRANE
GRANUM*
THYLAKOIDL
STROMAL LAMELLAM
DNAN
RIBOSOMEO
STARCH GRAINP

STROMA