Notes - MAT223 (Linear Algebra)

$$\vec{w} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

is a linear combination of

$$\vec{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

when there is a solution to

$$a\vec{u} + b\vec{v} = \vec{w}$$

$$a \begin{bmatrix} 1 \\ 2 \end{bmatrix} + b \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$\begin{cases} a + 2b = 1 \\ 2a + 3b = 1 \end{cases}$$

Linear Equation:

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = c$$

Consistent: System has 1+ solutions **Inconsistent:** System has 0 solutions

 $\mathbb{R}^1 = \mathbb{R} = 1D$ Space (number line)

 $\mathbb{R}^2 = 2D$ Space

 $\mathbb{R}^3 = 3D$ Space

 $\mathbb{R}^n = \text{n-D Space}$

For some = \exists (there exists)

For any $= \forall$ (for all)

$$\begin{bmatrix} x \\ y \end{bmatrix} = [x, y] = (x, y) = \langle x, y \rangle = \langle x \rangle$$

Equations vs. Set-Builder Notation

$$S = \{(x, y) : y = -x + 4\}$$
is equivalent to
$$y = -x + 4$$

$$= \{(x, y) \in \mathbb{R}^2 \mid y = mx + b\}$$

 $S = \{(x, y) \in \mathbb{R}^2 \mid y = mx + b\}$ is equivalent to

y = mx + b

"A set of all possible (x, y)points in which y = -x + 4"

Note: Think of a set of infinite points as a line, and a set of infinite lines as a plane.

2D Line

$$l = \{\vec{x} \in \mathbb{R}^2 \mid \vec{x} = t\vec{d} + \vec{p} \text{ for some } t \in \mathbb{R}\} \text{ (set-builder notation)}$$

$$\vec{x} = t\vec{d} + \vec{p} \text{ (vector form, v.1)}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = t \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} + \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} \text{ (vector form, v.2)}$$

Why 'for some'? No *single* vector in the set l satisfies $\vec{x} = t\vec{d} + \vec{p}$ 'for all' values of t simultaneously.

 \vec{d} = direction vector

t = parameter variable

Think of
$$\begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$$
 as $slope = \frac{d_2}{d_1}$

Think of $\begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$ as a point that vector crosses

Note: the same vector can be expressed with different \vec{d}/t values.

Skew: Two direction vectors that intersect

Colinear: Two points on the same line

Overdetermined: System # of equations > # of unknown variables **Underdetermined:** System # of equations < # of unknown variables

Customizing Restrictions

$$R = \left\{ \vec{x} : \vec{x} = t\vec{d} + \vec{p} \text{ for some } t \ge 0 \right\}$$

$$S = \left\{ \vec{x} : \vec{x} = t\vec{d} + \vec{p} \text{ for some } t \in [0, 2] \right\}$$

$$C = \left\{ \vec{x} : ||\vec{x}|| = 1 \right\}$$

$$U = \left\{ \vec{x} : \vec{x} = t\vec{e_1} + s\vec{e_2} \text{ for some } t, s \in [0, 1] \right\}$$

$$P = \left\{ \vec{x} : \vec{x} = t \begin{bmatrix} 2 \\ 1 \end{bmatrix} + s \begin{bmatrix} -1 \\ 1 \end{bmatrix} \text{ for some } t \in [0, 1], s \in [-1, 1] \right\}$$
parallelogram (polygon, 2d area)

Let $\vec{w} = a_1 \vec{v_1} + a_2 \vec{v_2} + \dots + a_n \vec{v_n}$ (ie. a linear combination of $\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}$) \overrightarrow{w} is a non-negative linear combination of $\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_2}$ if $a_1, a_2, ..., a_n \geq 0$.

 \vec{w} is a **convex** linear combination of $\vec{v_1}, \vec{v_2}, ..., \vec{v_2}$ if $a_1, a_2, ..., a_n \ge 0$ and $a_1 + a_2 + \cdots + a_n = 1$.

• Note: the set of $\overrightarrow{v_1}$ and $\overrightarrow{v_2}$'s convex linear combinations form a straight line between $\overrightarrow{v_1}$ and $\overrightarrow{v_2}$

3D Line

$$l = \{ \vec{x} \in \mathbb{R}^3 \mid \vec{x} = t\vec{d} + \vec{p} \text{ for some } t \in \mathbb{R} \}$$

$$\vec{x} = t\vec{d} + \vec{p}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = t \begin{bmatrix} d_1 \\ d_2 \\ d \end{bmatrix} + \begin{bmatrix} p_1 \\ p_2 \\ p_2 \end{bmatrix}$$

$$\mathcal{P} = \left\{ \vec{x} \in \mathbb{R}^3 \mid \vec{x} = t \overrightarrow{d_1} + s \overrightarrow{d_2} + \vec{p} \text{ for some } t, s \in \mathbb{R} \right\}$$

$$\vec{x} = t \overrightarrow{d_1} + s \overrightarrow{d_2} + \vec{p}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = t \begin{bmatrix} d_{1_1} \\ d_{1_2} \\ d_{1} \end{bmatrix} + s \begin{bmatrix} d_{2_1} \\ d_{2_2} \\ d_{2} \end{bmatrix} + \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix}$$

Span: The set containing all linear combinations of the vectors in a set of vectors V. The set of every single point that a set of vectors can "reach" when combined together in any way.

$$\operatorname{span} V = \{ \vec{v} : \vec{v} = a_1 \overrightarrow{v_1} + a_2 \overrightarrow{v_2} + \dots + a_n \overrightarrow{v_n} \text{ for some } \overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n} \in V, \quad a_1, a_2, \dots, a_n \in \mathbb{R} \}$$

Example:
$$\vec{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$. Find span $\{\vec{u}, \vec{v}\}$.

$$\operatorname{span}\{\vec{u}, \vec{v}\} = \{\vec{x} : \vec{x} = a\vec{u} + b\vec{v} \text{ for some } a, b \in \mathbb{R}\}\$$

$$a\vec{u} + b\vec{v} = \vec{x}$$

$$a\begin{bmatrix} 1\\1 \end{bmatrix} + b\begin{bmatrix} 1\\-2 \end{bmatrix} = \begin{bmatrix} x\\y \end{bmatrix}$$

$$\begin{cases} a+b=x\\ a-2b=y \end{cases}$$

$$a = \frac{1}{3}(2x+y), b = \frac{1}{3}(x-y)$$

a, b can be set based on the (x, y)coordinates of the point we're testing if it's a linear combination. Thus, $\operatorname{span}\{\vec{u}, \vec{v}\} = \mathbb{R}^2 \text{ (all of 2D space)}$

Example:
$$\vec{u} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$. Example: $S = \{(x, y) \in \mathbb{R}^2 : y = x - 4\}$. Find span S .

$$a\vec{u} + b\vec{v} = \vec{x}$$

$$a \begin{bmatrix} -1\\2 \end{bmatrix} + b \begin{bmatrix} 1\\-2 \end{bmatrix} = \begin{bmatrix} x\\y \end{bmatrix}$$

$$\begin{cases} -a + b = x\\ 2a - 2b = y\\ 0 = 2x + y \end{cases}$$
ert $y = -2x$ to vector form

Convert y = -2x to vector form

$$\operatorname{span}\{\vec{u}, \vec{v}\} = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$= t \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

$$= t\vec{v} \text{ for some } t \in \mathbb{R}^2$$

$$= \operatorname{span}\{\vec{v}\} \in \mathbb{R}^2$$

Note: A single vector's span is always a single line.

Example:
$$S = \{(x, y) \in \mathbb{R}^2 : y = x - 4\}$$
. Find span S .

Note that
$$\begin{bmatrix} 4 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 4 \end{bmatrix} \in S$

All LCs of
$$\{\begin{bmatrix} 4 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 4 \end{bmatrix}\} \subseteq$$

All LCs of all $\vec{v} \in S = \operatorname{span} S$

Since span
$$\left\{ \begin{bmatrix} 4\\0 \end{bmatrix}, \begin{bmatrix} 0\\4 \end{bmatrix} \right\} = \mathbb{R}^2$$
,
 \therefore span $S = \mathbb{R}^2$

Note: The span of a line not touching the origin is \mathbb{R}^2 .

Rewriting Spans as Vectors

The span of a vector,

 $\operatorname{span}\{\overrightarrow{v_1}\} = \{\overrightarrow{v} : \overrightarrow{v} = a_1 \overrightarrow{v_1} \text{ for some } a_1 \in \mathbb{R}\},$

can be re-written as

$$\operatorname{span}\{\vec{d}\} = \{\vec{x} : \vec{x} = t\vec{d} \text{ for some } t \in \mathbb{R}\},\$$

which is equivalent to

$$l = {\vec{x} : \vec{x} = t\vec{d} + \vec{0} \text{ for some } t \in \mathbb{R}},$$

which is a **line** that passes the origin.

The span of two vectors,

$$\operatorname{span}\{\overrightarrow{d_1}, \overrightarrow{d_2}\} = \{\overrightarrow{v} : \overrightarrow{v} = a_1 \overrightarrow{v_1} + a_2 \overrightarrow{v_2} \text{ for some } a_1, a_2 \in \mathbb{R}\},$$

can be re-written as

$$\operatorname{span}\{\overrightarrow{d_1}, \overrightarrow{d_2}\} = \{\vec{x} : \vec{x} = t\overrightarrow{d_1} + s\overrightarrow{d_2} \text{ for some } t, s \in \mathbb{R}\}$$

which is equivalent to

$$\mathcal{P} = \{\vec{x} : \vec{x} = t\overrightarrow{d_1} + s\overrightarrow{d_2} + \vec{0} \text{ for some } t, s \in \mathbb{R}\},\$$

which is a **plane** that passes the origin.

Set Addition

$$A = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}\}, B = \{\overrightarrow{u_1}, \overrightarrow{u_2}, \dots, \overrightarrow{u_n}\} \Rightarrow A + B = \{\vec{x} : \vec{x} = \vec{a} + \vec{b} \text{ for some } \vec{a} \in A, \vec{b} \in B\}$$

Example:
$$C = \{\vec{x} : ||\vec{x}|| = 1\}$$
 and

$$X = \{\overrightarrow{e_1}, 2\overrightarrow{e_2}\} = \{\begin{bmatrix}1\\0\end{bmatrix}, \begin{bmatrix}0\\2\end{bmatrix}\}$$
. Find $C + X$.

$$C+X=\left\{\vec{x}+\begin{bmatrix}1\\0\end{bmatrix}:\|\vec{x}\|=1\right\}\cup\left\{\vec{x}+\begin{bmatrix}0\\2\end{bmatrix}:\|\vec{x}\|=1\right\},$$
 which can be written as

$$C + X = \{\vec{x} + \vec{v} : ||\vec{x}|| = 1, \vec{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \end{bmatrix} \}.$$

C is a set referring to a circle (r = 1, center = origin).

X is a set referring to two vectors $\overrightarrow{e_1}$ and $2\overrightarrow{e_2}$

C+X is a set referring to two circles,

- Circle 1 (r = 1, center = origin + $\overrightarrow{e_1}$)
- Circle 2 (r = 1, center = origin + $2\overrightarrow{e_2}$)

Rewriting Vectors as Translated Spans

Since span $\{\vec{d}\} = t\vec{d} + \vec{0}$, for a line/plane/something \vec{x} ,

$$\vec{x} = (a_1 \overrightarrow{v_1} + a_2 \overrightarrow{v_2} + \dots + a_n \overrightarrow{v_n}) + \vec{p}$$

= span{\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}} + {\vec{p}}

Homogenous: A vector equation/system of equations with variables $a_1, a_2, ..., a_n$ of the form

$$\overrightarrow{a_1}\overrightarrow{v_1} + \overrightarrow{a_2}\overrightarrow{v_2} + \dots + \overrightarrow{a_n}\overrightarrow{v_n} = \overrightarrow{0}$$

Trivial: A linear combination $a_1 \overrightarrow{v_1} + a_2 \overrightarrow{v_2} + \cdots + a_n \overrightarrow{v_n}$ $a_n \overrightarrow{v_n}$ where all coefficients $a_1, a_2, ... a_n = 0$.

Non-Trivial: A linear combination $a_1 \overrightarrow{v_1} + a_2 \overrightarrow{v_2} +$ $\cdots + a_n \overrightarrow{v_n}$ where 1+ coefficients aren't 0.

Geometric Definition

$$\vec{w} = a\vec{u} + b\vec{v} \Rightarrow \vec{w} \in \text{span}\{\vec{u}, \vec{v}\}\$$
$$\vec{w} = a\vec{u} + b\vec{v} \Rightarrow \text{span}\{\vec{u}, \vec{v}\} = \text{span}\{\vec{u}, \vec{v}, \vec{w}\}\$$

Linearly Independent: In a set of vectors, if all vectors contribute to the span. (\vec{u}, \vec{v}) **Linearly Dependent:** In a set of vectors, if a vector doesn't contribute to the span. (\overrightarrow{w})

If one of the vectors is a linear combination of the others. Or, if some point can be represented as 2+ unique linear combinations. Algebraic Definition

$$\vec{w} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \vec{u} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}, \vec{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

 $1\vec{w} + 1\vec{u} + 0\vec{v} = \vec{0}, : \vec{w}, \vec{u}$ are linearly dependent

Linearly Independent: In a set of vectors, if there's no non-trivial linear combination of them equalling 0. **Linearly Dependent:** In a set of vectors, if there's a non-trivial linear combination of them equalling 0.

If the only solution to homogenous equation

$$a_1\overrightarrow{v_1} + a_2\overrightarrow{v_2} + \dots + a_n\overrightarrow{v_n} = \overrightarrow{0}$$

 $\begin{array}{c} a_1\overrightarrow{v_1}+a_2\overrightarrow{v_2}+\cdots+a_n\overrightarrow{v_n}=\overrightarrow{0}\\ \text{Is } a_1,a_2,\ldots,a_n=0 \text{ (trivial), the vectors } \overrightarrow{v_1},\overrightarrow{v_2},\ldots,\overrightarrow{v_n} \end{array}$ are linearly independent.

Reduced Row Echelon Form (RREF)

						•		,			
RE	F				RREF						
[1	а	b	С	w	Γ1	0	0	0	$\begin{bmatrix} w \\ x \end{bmatrix}$		
0	3	d	e	x	0	1	0	0	x		
0	0	1	f	у	0	0	1	0	у		
0	0	0	1	Z	L0	0	0	1	Z		
Г1	0	а	0	x]	Γ1	0	a	0	χ		
0	2	b	0	y	0	1	b	0	y		
Lo	0	0	1	$_{Z}]$	L0	0	0	1	\boldsymbol{z}		

Leading Ones/Pivots: A row's first number, which = 1

Identity Matrix: Notated $I_{n \times n}$ or just I, a square matrix where main diagonal numbers = 1, everything else = 0

Pivot Column: Columns with leading ones Free Variable Columns: Columns without leading ones

Example: Find the complete solution to

$$\begin{cases} 3w - 6x + 6y + 4z = -5\\ 3v - 7w + 8x - 5y + 8z = 9\\ 3v - 9w + 12x - 9y + 6z = 15 \end{cases}$$

Turn into matrix, row reduce to

$$\begin{bmatrix} 1 & 0 & -2 & 3 & 0 & | -24 \\ 0 & 1 & -2 & 2 & 0 & | -7 \\ 0 & 0 & 0 & 0 & 1 & | 4 \end{bmatrix}$$

Exists free variable columns, thus infinite solutions.

Introduce free variables (placeholders) so $\begin{cases} x = t \\ y = s \end{cases}$ $\begin{cases} v - 2t + 3s = -24 \\ w - 2t + 2s = -7 \\ z = 4 \end{cases}$ Isolate the main variables, convert to yet t = 0.

$$\begin{cases} v - 2t + 3s = -2z \\ w - 2t + 2s = -7 \\ z = 4 \end{cases}$$

Isolate the main variables, convert to vector form:

$$\begin{bmatrix} v \\ w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -24 \\ -7 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 2 \\ 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} -3 \\ -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
 for some $t, s \in \mathbb{R}$

Note: Think of solutions as where things intersect. Can be an entire line/plane, not just a single triplet of x/y/z values (a single point or "unique solution")

Example: Are
$$\begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 4 \\ 0 \\ 8 \end{bmatrix}$, $\begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix}$ linearly dependent?

Convert to matrix, row reduce to

$$\begin{bmatrix} 1 & 0 & 1/2 & 0 \\ 0 & 1 & 5/8 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Column 3 is a free variable column, infinite solutions, and thus linearly dependent. If no free variables columns, linearly independent.

Maximal Linearly Independent Subset (MLIS):

Largest linearly independent subset of a vector set

*Get rid of the free variable column in the above example, resulting two vectors are its MLIS

Note: If you are in \mathbb{R}^n and have >n vectors in a set, they are linearly dependent.

		-	C	• . •
Geome	tric	1)6	tir	บปากก

Algebraic Definition

$$\vec{a} \cdot \vec{b} = \|\vec{a}\| \|\vec{b}\| \cos \theta$$

Where \vec{a} and \vec{b} are two vectors and θ (0 \leq $\theta \leq \pi$), is the smallest angle between them

$$\vec{a} \cdot \vec{b} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = a_1b_1 + a_2b_2 + \dots + a_nb_n$$

Combining Definitions (try deriving them as exercises!)

Angle Between Vectors

$$\theta = \arccos\left(\frac{u_1v_1 + u_2v_2 + \dots + u_nv_n}{\|\vec{u}\|\|\vec{v}\|}\right)$$

Example: Plane \mathcal{P} passes A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1). Find vector and normal form.

First, vector form. Since \mathcal{P} 's a plane, two direction vectors are needed.

$$\overrightarrow{d_1} = A - B = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$
 Remember: the same vector can be written with different d_1, d_2 .

$$\therefore \mathcal{P} = t \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + s \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Next, normal form. Solve $\vec{n} \cdot d_1 = 0$ and

$$\vec{n} \cdot d_2 = 0$$
, where $\vec{n} = (x, y, z)$.
 $\begin{cases} 1x - 1y + 0z = 0 \\ 0x + 1y - 1z = 0 \end{cases}$

Get equation of normal vector, x - 2y +z = 0. Find a point it passes, $\vec{n} = (1, 1, 1)$.

$$\therefore \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \cdot \left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right) = 0$$

Note: You can convert back to vector form by just doing the above equation.

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} x - 1 \\ y \\ z \end{bmatrix}$$
$$= x + y + z - 1 = 0$$

You get the original plane's equation, x + y + z = 1. Convert to vector form by finding $\overline{d_1}$, $\overline{d_2}$, and \vec{p} , via finding points the plane passes through.

Length of a Vector

Length of a Vector
$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} \qquad \|\vec{v}\|^2 = \vec{v} \cdot \vec{v}$$

Direction: \vec{u} points in direction of \vec{v} if $\exists k \in \mathbb{R}, \vec{u} = k\vec{v}$ (if \vec{u} is a multiple of \vec{k}). Positive direction $\Leftrightarrow k > 0$

Orthogonal: Essentially, perpendicular, forms a right angle. The vectors \vec{u} , \vec{v} , when $\vec{u} \cdot \vec{v} = 0$.

Note: Perpendicularity is the orthogonality of classical geometric objects.

Normal Vector: A non-zero (not $\vec{0}$) vector orthogonal to all direction vectors of a line/plane/hyperplane \vec{x}

Normal Form: Form of a normal vector of \vec{x} , expressed as the solution to $\vec{n} \cdot (\vec{x} - \vec{p}) = 0$ where $\vec{n} \neq 0$.

Note: The equation basically says \vec{n} and \vec{x} are perpendicular. $-\vec{p}$ gets rid of any translations of \vec{x} .

Hyperplane: A set of all normal vectors to a line / plane / hyperplane \vec{x} . The set of solutions to normal form.

Note: Hyperplanes are neither hyper nor planes. In \mathbb{R}^n , hyperplanes are always in \mathbb{R}^{n-1} .

Zero Matrix: Matrix where everything is 0.

Size/Shape/Dimensions: # rows \times # columns. (i, j) entry means the i-th row, j-th column.

Diagonal Matrix: All non-diagonals = 0

Upper Triangular Matrix: Everything below diagonal = 0 **Lower Triangular Matrix:** Everything above diagonal = 0

Symmetric Matrix: Square matrix if $\forall i, j, (i, j) = (j, i)$ Skew/Anti-Symmetric Matrix: If $\forall i, j, (i, j) = -(j, i)$

Matrix Multiplication: Requires dimensions $L = a \times b$, $R = b \times c$. Results in $X = a \times c$. Watch 3Blue1Brown's video on this for good intuition!

$$\begin{bmatrix} a_1 & b_1 & \cdots & z_1 \\ a_2 & b_2 & \cdots & z_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_n & b_n & \dots & z_n \end{bmatrix} \begin{bmatrix} \alpha_1 & \beta_1 & \cdots & \omega_1 \\ \alpha_2 & \beta_2 & \cdots & \omega_2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_n & \beta_n & \dots & \omega_n \end{bmatrix}$$

$$= \begin{bmatrix} a_1\alpha_1 + b_1\alpha_2 + \cdots + z_1\alpha_n & a_1\beta_1 + b_1\beta_2 + \cdots + z_1\beta_n & \cdots & a_1\omega_1 + b_1\omega_2 + \cdots + z_1\omega_n \\ a_2\alpha_1 + b_2\alpha_2 + \cdots + z_2\alpha_n & a_2\beta_1 + b_2\beta_2 + \cdots + z_2\beta_n & \cdots & a_2\omega_1 + b_2\omega_2 + \cdots + z_2\omega_n \\ \vdots & \vdots & \ddots & \vdots \\ a_n\alpha_1 + b_n\alpha_2 + \cdots + z_n\alpha_n & a_n\beta_1 + b_n\beta_2 + \cdots + z_n\beta_n & \dots & a_n\omega_1 + b_n\omega_2 + \cdots + z_n\omega_n \end{bmatrix}$$

It's hard to read, so instead, think of it as a bunch of dot products between single rows and single columns. You can do dot products between single rows and single columns (see specific case below).

$$= \begin{bmatrix} \operatorname{row} \ 1_L \cdot \operatorname{col} \ 1_R & \operatorname{row} \ 1_L \cdot \operatorname{col} \ 2_R & \cdots & \operatorname{row} \ 1_L \cdot \operatorname{col} \ n_R \\ \operatorname{row} \ 2_L \cdot \operatorname{col} \ 1_R & \operatorname{row} \ 2_L \cdot \operatorname{col} \ 2_R & \cdots & \operatorname{row} \ 2_L \cdot \operatorname{col} \ n_R \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{row} \ m_L \cdot \operatorname{col} \ 1_R & \operatorname{row} \ m_L \cdot \operatorname{col} \ 2_R & \dots & \operatorname{row} \ m_L \cdot \operatorname{col} \ n_R \end{bmatrix}$$

Specific Case: LM =
$$a \times b$$
, RM = $b \times 1$

$$\begin{bmatrix}
a_1 & b_1 & \cdots & z_1 \\
a_2 & b_2 & \cdots & z_2 \\
\vdots & \vdots & \ddots & \vdots \\
a_n & b_n & \dots & z_n
\end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$= x_1 \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} + x_2 \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} + \dots + x_n \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{bmatrix}$$

$$= \begin{bmatrix} a_1 x_1 + b_1 x_2 + \dots + z_n x_n \\ a_2 x_1 + b_2 x_2 + \dots + z_n x_n \\ \dots \\ a_n x_1 + b_2 x_2 + \dots + z_n x_n
\end{bmatrix}$$

which can be rewritten as:

$$\begin{bmatrix} \vec{a} & \vec{b} & \cdots & \vec{z} \end{bmatrix} \vec{x}$$

$$= \begin{bmatrix} x_1 \vec{a} + x_2 \vec{b} + \cdots + x_n \vec{z} \end{bmatrix}$$

Note: If LM has 1 row, it's dot product $[a \quad b \quad \cdots \quad c]\vec{x}$ $= [x_1 a + x_2 b + \cdots + x_n z]$

which can be rewritten as...

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_2 \end{bmatrix} \vec{b}$$

$$= [a_1b_1 + a_2b_2 + \cdots + a_nb_n]$$

$$= \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

It's not the exact same since the scalar's in a 1×1 matrix. But it does show that <u>we</u> can flip the left matrix so it's vertical.

Component: The component of \vec{a} in direction \vec{b} is a vector from $\vec{0}$ to \vec{b} 's closest point to \vec{a} . Written as vcomp $_{\vec{b}}\vec{a}$.

Projection: The projection of \vec{v} onto set X is a vector from $\vec{0}$ to X's closest point to \vec{v} . Written as $\operatorname{proj}_X \vec{v}$.

$$\bullet \quad \left(\vec{v} - \operatorname{proj}_{X} \vec{v}\right) \cdot X = 0$$

Projection can be found...

- Visually
- Using the above equation
- Calculating the minimum of $\|\vec{v} X\|$ when X can be expressed as a vector equation.
- \bullet With the theorem $\text{proj}_{\text{span}\{\vec{v}\}}\vec{u}=\text{vcomp}_{\vec{v}}\vec{u}, (\vec{v}\neq 0)$

Note: Projection will be undefined if *X* is an open set (eg. an interval or 2D shape)

Subspace: A subset $\mathcal{V} \subseteq \mathbb{R}^n$, where for $\vec{u}, \vec{v} \in \mathcal{V}, k \in \mathbb{R}$, (1) $\vec{u} + \vec{v} \in \mathcal{V}$ (2) $k\vec{u} \in \mathcal{V}$ (3) $\vec{0} \in \mathcal{V}$ Note: Every subspace is a span. Every span is a subspace. \mathcal{V} is subspace $\Leftrightarrow \mathcal{V} = \operatorname{span} X$ for some set X.

Trivial Subspace: $\{\vec{0}\}\subseteq\mathbb{R}^n$. Always a subspace of \mathbb{R}^n along with \mathbb{R}^n itself.

Example: $\mathcal{V} \subseteq \mathbb{R}^2$ is the complete solution to x + 2y = 0. Prove \mathcal{V} is a subspace.

Let $\vec{u}, \vec{v} \in \mathcal{V}, k \in \mathbb{R}$. By definition, this is true:

$$\begin{cases} u_1 + 2u_2 = 0 \\ v_1 + 2v_2 = 0 \end{cases}$$
 (1) Prove $\vec{u} + \vec{v} \in \mathcal{V}$

$$\vec{u} + \vec{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix}$$

And $\vec{u} + \vec{v}$'s coordinates satisfy \mathcal{V} 's equation.

$$(u_1 + v_1) + 2(u_2 + v_2)$$

= $(u_1 + 2u_2) + (v_1 + 2v_2) = 0$

(2) Prove $k\vec{u} \in \mathcal{V}$

$$k\vec{u} = \begin{bmatrix} ku_1 \\ ku_2 \end{bmatrix}$$

And $k\vec{u}$'s coordinates satisfy \mathcal{V} 's equation.

$$ku_1 + 2(ku_2) = k(u_1 + 2u_2) = 0$$

(3) Prove $\vec{0} \in \mathcal{V}$

$$0 + 2(0) = 0$$

Basis: A basis for subspace \mathcal{V} is a linearly independent vector set \mathcal{B} where span $\mathcal{B} = \mathcal{V}$.

AKA any linearly independent set whose span = a given subspace. There're infinitely many.

Dimension: The # of elements in a basis for subspace \mathcal{V} . Written as dim \mathcal{V}

Example:
$$A = {\vec{x}: x_1 + 2x_2 - x_3 = 0, x_1 + 6x_4 = 0}$$
. Find a basis for and dimension of A .

Find the complete solution to the system, which is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = t \begin{bmatrix} 0 \\ 1/2 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} -6 \\ 3 \\ 0 \\ 1 \end{bmatrix}$$

$$A = \operatorname{span} \left\{ \begin{bmatrix} 0 \\ 1/2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -6 \\ 3 \\ 0 \\ 1 \end{bmatrix} \right\}, \text{ which is a linearly}$$

independent set with two elements, so $\dim A = 2$.

Equivalent Notations

$$\begin{cases} x + 2y + z = 3 \\ x - y - z = -2 \end{cases}$$
$$\begin{bmatrix} x + 2y + z \\ x - y - z \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$
$$A\vec{x} = \vec{b}$$

A = coefficient matrix

 $\vec{x} = \text{column vector of variables}$

 $\vec{b} = \text{column vector of constants}$

Matrix Multiplication - Column Interpretation

The thing we've been doing the whole time.

$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = x \begin{bmatrix} 1 \\ 1 \end{bmatrix} + y \begin{bmatrix} 2 \\ -1 \end{bmatrix} + z \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Matrix Multiplication - Row Interpretation

Let
$$\overrightarrow{r_1}, \overrightarrow{r_2}, ..., \overrightarrow{r_n} =$$
 the rows of the coefficient matrix.

$$\overrightarrow{r_1} = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

$$\overrightarrow{r_2} = \begin{bmatrix} 1 & -1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \overrightarrow{r_1} \\ \overrightarrow{r_2} \end{bmatrix} \overrightarrow{v} = \begin{bmatrix} \overrightarrow{r_1} \cdot \overrightarrow{v} \\ \overrightarrow{r_2} \cdot \overrightarrow{v} \end{bmatrix}$$

Example: Find all vectors orthogonal to

$$\vec{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{b} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}.$$

Find \vec{x} that satisfies $\vec{a} \cdot \vec{x} = 0$ and $\vec{b} \cdot \vec{x} = 0$. Use the row-interpretation matrix equation

$$\begin{bmatrix} \vec{a} \\ \vec{b} \end{bmatrix} \vec{x} = \begin{bmatrix} \vec{a} \cdot \vec{x} \\ \vec{b} \cdot \vec{x} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \vec{0}$$

Row-reduce $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$ to $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ and solve the above equation to get

$$\vec{x} = t \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

Example: Find a normal vector (in normal form) of

hyperplane
$$Q$$
, $\vec{x} = t \begin{bmatrix} 1 \\ 1 \\ -1 \\ 1 \end{bmatrix} + s \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} + r \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$.

The normal vector has to be orthogonal to d_1, d_2, d_3 . Use the row-interpretation matrix equation

$$\begin{bmatrix} 1 & 1 & -1 & 1 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \vec{0}$$

Row-reduce and solve to get

$$\vec{x} = t \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix}, \text{AKA} \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix} \cdot \left(\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} - \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \right) = 0$$

Note: You can still solve it without a matrix equation, so I don't see the point of the above.

$$\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \cdot \vec{x} = 0 \text{ and } \begin{bmatrix} 1\\2\\1 \end{bmatrix} \cdot \vec{x} = 0 \text{ have equations}$$
$$\begin{cases} x + y + z = 0\\ x + 2y + z = 0 \end{cases}$$

Solution is y = 0, x + z = 0. If x = -1, you get z = -x = 1 and the same vector as above. Standard Basis: In \mathbb{R}^n , the set $\{\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}\}$, where

$$\overrightarrow{e_1} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \overrightarrow{e_2} = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, \overrightarrow{e_n} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

Three Equivalent Notations

$$\vec{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
 $\vec{v} = 2\vec{e_1} + 3\vec{e_2}$ $\vec{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}_{\varepsilon}$

Where $\mathcal{E} = \{\overrightarrow{e_1}, \overrightarrow{e_2}\}$ is the standard basis. The vectors in \mathcal{E} define 'length' of one unit in our made-up grid.

Example: Let
$$\mathcal{E} = \{\overrightarrow{e_1}, \overrightarrow{e_2}\}$$
 be \mathbb{R}^2 's standard basis, $\mathcal{C} = \{\overrightarrow{c_1}, \overrightarrow{c_2}\}$, $\overrightarrow{c_1} = \overrightarrow{e_1} + \overrightarrow{e_2}, \overrightarrow{c_2} = 3\overrightarrow{e_2}$, $\overrightarrow{v} = 2\overrightarrow{e_1} - \overrightarrow{e_2}$. Find $[\overrightarrow{v}]_{\mathcal{E}}, [\overrightarrow{v}]_{\mathcal{C}}$.

Write out the question more clearly. $\vec{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}_{\varepsilon}, \vec{c_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}_{\varepsilon}, \vec{c_2} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}_{\varepsilon}$

Must find $\vec{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}_a$

$$x \begin{bmatrix} 1 \\ 1 \end{bmatrix}_{\varepsilon} + y \begin{bmatrix} 0 \\ 3 \end{bmatrix}_{\varepsilon} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}_{\varepsilon}$$
$$\begin{cases} x = 2 \\ x + 3y = -1 \end{cases}$$

Solve to get x = 2, y = -1, therefore $\vec{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

Note: $\{\overrightarrow{e_1}, \overrightarrow{e_2}\}, \{\overrightarrow{-e_1}, \overrightarrow{-e_2}\}$ is righthanded. $\{-\overrightarrow{e_1}, \overrightarrow{e_2}\}, \{\overrightarrow{e_1}, -\overrightarrow{e_2}\}, \{\overrightarrow{e_2}, \overrightarrow{e_1}\}$ is lefthanded.

$$\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}_{\mathcal{B}}$$

$$= a_1 \overrightarrow{b_1} + a_2 \overrightarrow{b_2} + \dots + a_n \overrightarrow{b_n}$$

 $\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}_{\mathcal{B}}$ $= a_1 \overrightarrow{b_1} + a_2 \overrightarrow{b_2} + \dots + a_n \overrightarrow{b_n}$ $\begin{bmatrix} \overrightarrow{b_1}, \overrightarrow{b_2}, \dots \overrightarrow{b_n} \\ \vdots \\ a_n \end{bmatrix}_{\mathcal{B}} \text{ where }$ Representation of \vec{v} in basis $\mathcal{B} =$

Real Object vs. Representation of an Object

$$\vec{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}_{\mathcal{E}}$$
 True vector, real-life object $[\vec{v}]_{\mathcal{E}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ Artificial construct, meaningless

Orthonormal: $\mathcal{B} = \{\overrightarrow{b_1}, \overrightarrow{b_2}, ..., \overrightarrow{b_n}\}$, if all vectors are orthogonal.

Right-Handed/Positively Oriented: $\mathcal{B} = \{\overrightarrow{b_1}, \overrightarrow{b_2}, ..., \overrightarrow{b_n}\}$, if all vectors can be rotated to align with standard basis vectors.

- "Can be continuously transformed to the standard basis while remaining linearly independent throughout."
- In \mathbb{R}^2 , basically if $\overrightarrow{b_2}$ points counterclockwise of $\overrightarrow{b_1}$

Left-Handed/Negatively Oriented: In $\mathcal{B} = \{\overrightarrow{b_1}, \overrightarrow{b_2}\}$, if vectors have to be flipped on an axis to align with standard basis vectors.

Example: Is $T\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} 2x^2 \\ y+4 \end{bmatrix}$ linear?

Let
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$, $k \in \mathbb{R}$.

(1) Prove $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$

$$T(\vec{u} + \vec{v}) = \begin{bmatrix} 2(u_1 + v_1)^2 \\ (u_2 + v_2) + 4 \end{bmatrix}$$

$$T(\vec{u} + \vec{v}) = \begin{bmatrix} 2(u_1 + v_1)^2 \\ (u_2 + v_2) + 4 \end{bmatrix}$$

$$T(\vec{u}) + T(\vec{v}) = \begin{bmatrix} 2(u_1)^2 + 2(v_1)^2 \\ (u_2 + 4) + (v_2 + 4) \end{bmatrix}$$

Two sides do not match, not linear.

(2) Prove $T(k\vec{v}) = kT(\vec{v})$

$$T(k\vec{v}) = \begin{bmatrix} 2(kv_1)^2 \\ (kv_2) + 4 \end{bmatrix} = \begin{bmatrix} 2k^2v_1^2 \\ kv_2 + 4 \end{bmatrix}$$

Linear Transformation: A function $T: V \to W$, where V and W are subspaces, when $\forall \vec{u}, \vec{v} \in V, k \in \mathbb{R}$,

- (1) $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$
- (2) $T(k\vec{v}) = kT(\vec{v})$

Note: Same notations, $T: \mathbb{R}^n \to \mathbb{R}^m$, $T(\vec{x}) = M\vec{x}$, and $T\vec{x}$

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear, then...

- $T(\vec{0}) = \vec{0}$
- T moves parallel lines to parallel lines/points
- T moves lines to lines/points
- T moves subspaces to subspaces

Composition: Let $f: A \to B$, $g: B \to C$. Composition of g and $f, g \circ f$, is the function $h: A \to C$ where $h(x) = g \circ f(x) = g(f(x)).$

$$kT(\vec{v}) = k \begin{bmatrix} 2(v_1)^2 \\ (v_2) + 4 \end{bmatrix} = \begin{bmatrix} 2kv_1^2 \\ kv_2 + 4k \end{bmatrix}$$

Two sides do not match, not linear.

Note: Use counterexamples too.

Image/Range: Set of all of transformation $T: V \to W$'s outputs on set X, T(X).

range $(T) = \{ \vec{v} \in W : \vec{v} = T\vec{x} \text{ for some } \vec{x} \in V \}$ $\forall T : \mathbb{R}^n \to \mathbb{R}^m, \text{ range}(T) \subseteq \mathbb{R}^m \text{ is subspace.}$

Rank: rank(T) = dim(image(T))

- Rank $0 \Rightarrow \text{range}(T) = \vec{0}$
- Rank $1 \Rightarrow \text{range}(T) = \text{line}$

Null Space/Kernel: Set of all vectors that become $\vec{0}$ under transformation $T: V \to W$.

$$\operatorname{null}(T) = \{\vec{x} \in V : T\vec{x} = 0\}$$

$$\forall T : \mathbb{R}^n \to \mathbb{R}^m, \operatorname{null}(T) \subseteq \mathbb{R}^m \text{ is subspace.}$$

Nullity: $\operatorname{nullity}(T) = \dim(\operatorname{null}(T))$

Fundamental Subspace: Three special subspaces of any matrix *M*:

- 1) Row Space: span of M's rows, row(M)
- 2) Column Space: span of M's columns, col(M)
- 3) Null Space: set of solutions to $M\vec{x} = \vec{0}$

Transpose: A matrix with rows/columns swapped, notated M^T

Solutions to $M\vec{x} = \vec{b}$ are null $(M) + \{\vec{p}\}$ where \vec{p} = one solution to the above equation

Linearly independent \Leftrightarrow null(M) = $\{\vec{0}\}$

$$\dim(\operatorname{row}(M)) = \dim(\operatorname{col}(M))$$

 $row(M) = col(M^T)$

 $\operatorname{range}(T)=\operatorname{col}(M)$

 $rank(M) = rank(M^T)$

rank(M) = rank(M) rank(M) + nullity(M) = # columns M# of pivots + # of non-pivots = # columns rank(T) + nullity(T) = dim(domain of T) rank(M) = # pivots in rref(M)

 $\operatorname{nullity}(M) = \#$ free variable columns in $\operatorname{rref}(M)$

Induced Transformation: A linear transformation $T_M : \mathbb{R}^n \to \mathbb{R}^m$ is induced by matrix M when $[T_M \vec{v}]_{\mathcal{E}'} = M[\vec{v}]_{\mathcal{E}}$.

- $\mathcal{E}, \mathcal{E}' = \mathbb{R}^m, \mathbb{R}^n$'s standard bases
- $[T\vec{v}]_{\mathcal{B}} = [T]_{\mathcal{B}}[\vec{v}]_{\mathcal{B}}$, $[T]_{\mathcal{B}}$ is the representation of T in basis \mathcal{B} .

Example: Find matrix M for $T\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} 2x + y \\ x \end{bmatrix}$.

Since $T: \mathbb{R}^2 \to \mathbb{R}^2$, let $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

Get example inputs $T\begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} 2\\1 \end{bmatrix}$ and $T\begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} 1\\0 \end{bmatrix}$.

Since M is a matrix for T, $T\vec{x} = M\vec{x}$ for all \vec{x} .

$$T\vec{x} = M\vec{x} \qquad T\vec{x} = M\vec{x} \qquad \text{Result is } M$$

$$T\begin{bmatrix} 1\\0 \end{bmatrix} = M\begin{bmatrix} 1\\0 \end{bmatrix} \qquad T\begin{bmatrix} 0\\1 \end{bmatrix} = M\begin{bmatrix} 0\\1 \end{bmatrix} \qquad = \begin{bmatrix} a & b\\c & d \end{bmatrix}$$

$$\begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} a & b\\c & d \end{bmatrix} \begin{bmatrix} 1\\0 \end{bmatrix} \qquad \begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} a & b\\c & d \end{bmatrix} \begin{bmatrix} 0\\1 \end{bmatrix} \qquad = \begin{bmatrix} 2&1\\1&0 \end{bmatrix}.$$

$$\begin{bmatrix} a\\c \end{bmatrix} = \begin{bmatrix} 2\\1 \end{bmatrix} \qquad \begin{bmatrix} b\\d \end{bmatrix} = \begin{bmatrix} 1\\0 \end{bmatrix}$$

Example: Let \mathcal{P} be plane x + y + z = 0, $T: \mathbb{R}^3 \to \mathbb{R}$ is projection on \mathcal{P} . Find range(T), rank(T), null(T), nullity(T).

T is projection onto $\mathcal{P} \Rightarrow \operatorname{range}(T) \subseteq \mathcal{P}$.

 $\forall \vec{x} \in \mathcal{P}, T(\vec{x}) = \vec{x} \qquad \Rightarrow \mathcal{P} \subseteq \text{range}(T)$

 $\therefore \operatorname{range}(T) = \mathcal{P}$

 \mathcal{P} is a plane $\Rightarrow \dim(\mathcal{P}) = 2$

 $\therefore \operatorname{rank}(T) = \dim(\operatorname{range}(T)) = \dim(\mathcal{P}) = 2$

T is projection onto $\mathcal{P} \Rightarrow \forall \vec{n}, \vec{n} \cdot \mathcal{P} = 0 \Rightarrow T(\vec{n}) = \vec{0}$

$$\therefore \operatorname{null}(T) = \{\operatorname{all} \vec{n}\} \cup \{\vec{0}\} = \operatorname{span} \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$

 $\operatorname{null}(T)$ is a span/line $\Rightarrow \dim(\operatorname{null}(T)) = 1$

 $\therefore \operatorname{nullity}(T) = \dim(\operatorname{null}(T)) = 1$

Example: $M = \begin{bmatrix} 1 & 2 & 5 \\ 2 & -2 & -2 \end{bmatrix}$. Find null, row, column space.

null(M) is solution to $M\vec{x} = \vec{0}$, span $\left\{ \begin{bmatrix} -1\\ -2\\ 1 \end{bmatrix} \right\}$

$$\operatorname{row}(M) = \operatorname{span}\left\{\begin{bmatrix} 1\\2\\5 \end{bmatrix}, \begin{bmatrix} 2\\-2\\-2 \end{bmatrix}\right\}$$
$$\operatorname{col}(M) = \operatorname{span}\left\{\begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\-2 \end{bmatrix}, \begin{bmatrix} 5\\-2 \end{bmatrix}\right\} = \mathbb{R}^2$$

Example: T is induced by M, let $\vec{v} = 3\vec{e_1} - 3\vec{e_3}$. Find $T(\vec{v})$.

$$[T_M \vec{v}]_{\mathcal{E}'} = M[\vec{v}]_{\mathcal{E}} = \begin{bmatrix} 1 & 2 & 5 \\ 2 & -2 & -2 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ -3 \end{bmatrix}_{\mathcal{E}} = \begin{bmatrix} -12 \\ 12 \end{bmatrix}_{\mathcal{E}}$$
$$\therefore T(\vec{v}) = -12\vec{e_1} + 12\vec{e_2}$$

Identity Function: Function id: $X \to X$ where id(x) = x for all $x \in X$ (ie. it does nothing).

Corresponding matrix is identity matrix I

Example: Prove $T: \mathbb{R}^2 \to \mathbb{R}^2$ projection onto x-axis isn't invertible.

Method 1: Prove T isn't one-to-one $\exists \vec{u}, \vec{v} \in \mathbb{R}, T(\vec{u}) = T(\vec{v}) \text{ and } \vec{u} \neq \vec{v}$

Pick
$$\vec{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$
 $\vec{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \neq \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \vec{v}$
 $T(\vec{u}) = \vec{0} = T(\vec{v})$

Method 2: Prove T isn't onto image $(f) \neq \text{codomain}(f)$ image(f) = the x-axis codomain $(f) = \mathbb{R}^2$

Example: Find inverse of $M = \begin{bmatrix} 3 & 6 \\ 2 & 1 \end{bmatrix}$

$$MM^{-1} = I$$

$$\begin{bmatrix} 3 & 6 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 3a + 6c & 3b + 6d \\ 2a + c & 2b + d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$Get \ a = -\frac{1}{9}, c = \frac{2}{9}, b = \frac{2}{3}, d = -\frac{1}{3},$$

$$\therefore M^{-1} = \frac{1}{9} \begin{bmatrix} -1 & 6 \\ 2 & -3 \end{bmatrix}$$

Or solve with elementary matrices: $\begin{bmatrix} 3 & 6 \\ 2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} -9 & 0 \\ 2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ Matrices corresponding to each step:

$$E_{1} = \begin{bmatrix} 1 & -6 \\ 0 & 1 \end{bmatrix}, E_{2} = \begin{bmatrix} -\frac{1}{9} & 0 \\ 0 & 1 \end{bmatrix} E_{3} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$
Plug into $M^{-1} = E_{3}E_{2}E_{1}$

Inverse Function: f is invertible if there exists inverse of f, $g: Y \to X$, where $f \circ g = g \circ f = \mathrm{id}$.

- $g = f^{-1}$.
- invertible \Leftrightarrow onto & one-to-one \Leftrightarrow rref(A) = I
- Inverse of matrix A is matrix $B = A^{-1}$ where AB = BA = I

One-to-One/Injective: $f: X \to Y$, if $\forall a, b \in \mathbb{R}$, $f(a) = f(b) \Rightarrow a = b$

Onto/Surjective: $f: X \to Y$, if image(f) = codomain(f)

• *Note:* Domain is *X*, codomain is *Y*, image is the set of every actual output value of *f*.

Given function $T: \mathbb{R}^n \to \mathbb{R}^m$ with corresponding matrix $M_{a \times b}$,

- ightharpoonup onto \Leftrightarrow range $(T) = \mathbb{R}^m \Leftrightarrow \operatorname{rank}(T) = m \Leftrightarrow \operatorname{rank}(M) = a$
- \triangleright one-to-one \Leftrightarrow nullity(T) = 0 \Leftrightarrow nullity(M) = 0
- invertible $\Leftrightarrow n = m \Leftrightarrow a = b \Leftrightarrow \operatorname{rref}(M) = I$

Elementary Matrix: An identity matrix but after one elementary row operation (multiplication, adding multiples of rows, swapping rows).

• invertible $\Leftrightarrow E_k \dots E_2 E_1 M = I \Leftrightarrow M = E_n \dots E_2 E_1$

Change of Basis Matrix: Converts any $\vec{x} \in \mathbb{R}^n$ from base \mathcal{A} to B.

- Notated $M[\vec{x}]_{\mathcal{A}} = [\vec{x}]_{\mathcal{B}}$
- $M = [\mathcal{B} \leftarrow \mathcal{A}]$ is a matrix converting from \mathcal{A} to \mathcal{B}
- invertible $\Leftrightarrow M$ is a change of basis matrix

Similar Matrix: Matrices *A* and *B*, if they're the same linearly transformation but in different bases.

- Notated $A \sim B$
- $A \sim B \iff \exists X, A = XBX^{-1}$

Example:
$$\mathcal{A} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}_{\varepsilon}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}_{\varepsilon} \right\}, \mathcal{B} = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}_{\varepsilon}, \begin{bmatrix} 5 \\ 3 \end{bmatrix}_{\varepsilon} \right\},$$

$$[\vec{x}]_{\mathcal{A}} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}. \text{ Find } [\vec{x}]_{\mathcal{B}} \text{ and } M = [\mathcal{B} \leftarrow \mathcal{A}].$$

$$\vec{x} = 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}_{\varepsilon} - 3 \begin{bmatrix} 1 \\ -1 \end{bmatrix}_{\varepsilon} = \begin{bmatrix} -1 \\ 5 \end{bmatrix}_{\varepsilon}$$

$$\vec{x} = a \begin{bmatrix} 2 \\ 1 \end{bmatrix}_{\varepsilon} + b \begin{bmatrix} 5 \\ 3 \end{bmatrix}_{\varepsilon} = \begin{bmatrix} -1 \\ 5 \end{bmatrix}_{\varepsilon}$$

$$\begin{cases} 2a + 5b = -1 \\ a + 3b = 5 \end{cases}, \text{ solved to } a = -28, b = 11$$

$$[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} -28\\11 \end{bmatrix}$$
Find $\begin{bmatrix} 1\\1 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} -2\\1 \end{bmatrix}_{\mathcal{E}}, \begin{bmatrix} 1\\-1 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 8\\-3 \end{bmatrix}_{\mathcal{E}}$, combine the results into a matrix

$$M[\mathcal{B} \leftarrow \mathcal{A}] = \begin{bmatrix} -2 & 8 \\ 1 & -3 \end{bmatrix}$$

Example:
$$\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ -3 \end{bmatrix}_{\mathcal{E}}, \begin{bmatrix} 5 \\ -7 \end{bmatrix}_{\mathcal{E}} \right\}, \mathcal{S} \colon \mathbb{R}^2 \to \mathbb{R}^2 \text{ stretches}$$
 in $\overrightarrow{b_1}$ direction by a factor of 2, reflects vectors in $\overrightarrow{b_2}$ direction. Find $[\mathcal{S}]_{\mathcal{E}}$ and $[\mathcal{S}]_{\mathcal{B}}$.

$$\mathcal{S}\overrightarrow{b_1} = 2\overrightarrow{b_1}, \mathcal{S}\overrightarrow{b_2} = -\overrightarrow{b_2}, \text{ therefore } [\mathcal{S}]_{\mathcal{B}} = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$$

We know $[\mathcal{S}]_{\mathcal{E}} = [\mathcal{E} \leftarrow \mathcal{B}][\mathcal{S}]_{\mathcal{E}}[\mathcal{B} \leftarrow \mathcal{E}]$

$$[\mathcal{E} \leftarrow \mathcal{B}] = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix}$$
$$[\mathcal{B} \leftarrow \mathcal{E}] = [\mathcal{E} \leftarrow \mathcal{B}]^{-1} = \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix}$$
$$\therefore [\mathcal{S}]_{\mathcal{E}} = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} -43 & -30 \\ 63 & 44 \end{bmatrix}$$

Unit n-cube: Cube in \mathbb{R}^n with side lengths corresponding to basis vectors and volume 1.

- $C_N = \{ \vec{x} \in \mathbb{R}^n : \vec{x} = \sum_{i=1}^n a_i \overrightarrow{e_i} \text{ for some } a_1, \dots, a_n \in [0,1] \} = [0,1]^n$
- $C_N = \{\vec{x}: \vec{x} = t\vec{e_1} + s\vec{e_2} \text{ for some } t, s \in [0, 1]\} \text{ (2D unit square)}$

Determinant: Oriented volume of the unit n-cube in a basis. Notated det(M) or M.

- $\det(S \circ T) = \det(S_M T_M) = \det(S)\det(T) = \det(S_M)\det(T_M)$
- invertible \Leftrightarrow det(T) \neq 0
- positively-oriented basis $\Leftrightarrow \det(T) > 0$

$$\mathbb{R}^2$$
: det(M) = $ad - bc$

$$\mathbb{R}^3$$
: $det(M) = aei + bfg + cdh - gec - hfa - idb$

$$\mathbb{R}^n$$
: det(M) = $\lambda_1 \times \lambda_2 \times \lambda_3 \times ...$

- Multiply row by k: det(M) = k
- Swap rows: det(M) = -1
- Adding multiple of rows: det(M) = 1

Eigenvector: A vector \vec{v} for T where $T_M \vec{v} =$ $\lambda \vec{v}$. Has a corresponding eigenvalue, λ .

- They want us to find it by doing $(T_M - \lambda I)\vec{v} = 0$, setting $E_{\lambda} = T_M - \lambda I$.
- Eigenvector exists $\Leftrightarrow \text{null}(E_{\lambda}) \neq \vec{0}$
- Eigenvectors aren't $\overrightarrow{0}$ by definition
- 0 is an eigenvalue \Leftrightarrow not invertible

Characteristic Polynomial: char(M) = $\det(E_{\lambda}) = \det(M - \lambda I)$

- Solve char(M) = 0 for eigenvalues
- Solve $\text{null}(M \lambda I)$ for eigenvectors

Example: Find det
$$\begin{pmatrix} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 3 & -2 & 4 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$
.

No easy determinant formula for 4×4 . Row-reduce to diagonals (but not further).

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

Determinant stays same: adding multiples of rows changes nothing. Calculate remaining determinant: $1 \times 3 \times -1 \times 4 = -12$

Example: Find eigenvectors/values of $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

Method 1. My way

Expand, solve
$$T_M \vec{v} = \lambda \vec{v}$$
.

$$\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{cases} x + 2y = \lambda x \\ 3x + 2y = \lambda y \end{cases}$$

$$\{(\lambda - 1)x = 2y \\ 3x = (\lambda - 2)y \\ \frac{\lambda - 1}{3} = \frac{2}{\lambda - 2}$$

$$(\lambda - 1)(\lambda - 2) = 6$$

$$\lambda^2 - 3\lambda - 4 = 0$$

$$(\lambda + 1)(\lambda - 4) = 0$$

$$\lambda = -1, 4$$

Substitute back into system, get eigenvectors:

$$x + 2y = (-1)x$$

$$\therefore y = -x$$

$$x + 2y = (4)x$$

$$y = \frac{3}{2}x$$

Method 2. Their way

pand, solve
$$T_M \vec{v} = \lambda \vec{v}$$
. Solve char $(M) = 0$

$$\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} x \\ y \end{bmatrix} \qquad \det \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{cases} x + 2y = \lambda x \\ 3x + 2y = \lambda y \\ (\lambda - 1)x = 2y \end{cases} \qquad = \det \begin{bmatrix} 1 - \lambda & 2 \\ 3 & 2 - \lambda \end{bmatrix}$$

$$= (2 - \lambda)(1 - \lambda) - 6$$

$$= \lambda^2 - 3\lambda - 4 = 0$$

$$(\lambda + 1)(\lambda - 4) = 0$$

$$\lambda = -1, 4$$

Now find null (char(M)) $\text{null}(M - \lambda I)$ $= \operatorname{null} \left(\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} + 1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right)$ $= \operatorname{null} \left(\begin{bmatrix} 2 & 2 \\ 3 & 3 \end{bmatrix} \right)$ $\begin{bmatrix} 2 & 2 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \vec{0}$ $2x + 2y = 0 \Rightarrow y = -x$ Repeat for the $\lambda = 4$, get $y = \frac{3}{2}x$.

Diagonalization: For a matrix M, a similar diagonal matrix D where $M = PDP^{-1}$.

D is diagonalizable $\Leftrightarrow P$ is a "change-of-basis matrix for a basis of eigenvectors"

Eigenspace: For a matrix M, null($M - \lambda I$) for all λ Geometric Multiplicity: Dimension of eigenspace Algebraic Multiplicity: # of $x - \lambda$ in char(M)

- geometric $\operatorname{mult}(\lambda) \leq \operatorname{algebraic} \operatorname{mult}(\lambda)$
- \sum geometric mult(λ) = $n \Leftrightarrow$ $\forall \lambda$, algebraic mult(λ) = geometric mult(λ) \Leftrightarrow $n \times n$ matrix M is diagonalizable

Example: Is $\begin{bmatrix} 5 & 1 \\ 0 & 2 \end{bmatrix}$ diagonalizable?

$$\operatorname{char}\left(\begin{bmatrix} 5 & 1 \\ 0 & 2 \end{bmatrix}\right) = \operatorname{det}\left(\begin{bmatrix} 5 - \lambda & 1 \\ 0 & 2 - \lambda \end{bmatrix}\right)$$

$$= (\lambda - 5)(\lambda - 2), \therefore \lambda = 5, 2$$

$$\operatorname{null}(M - \lambda_1 I) = \operatorname{null}\left(\begin{bmatrix} 0 & 1 \\ 0 & -3 \end{bmatrix}\right) = \operatorname{span}\left\{\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right\}$$

$$\operatorname{null}(M - \lambda_2 I) = \operatorname{null}\left(\begin{bmatrix} 3 & 1 \\ 0 & 0 \end{bmatrix}\right) = \operatorname{span}\left\{\begin{bmatrix} -1 \\ 3 \end{bmatrix}\right\}$$

$$\left\{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \end{bmatrix}\right\} \text{ is eigenvector basis, diagonalizable}$$

Example: Diagonalize
$$M = \begin{bmatrix} 1 & 2 & 5 \\ -11 & 14 & 5 \\ -3 & 2 & 9 \end{bmatrix}$$

Find eigenvectors and eigenvalues.

$$\operatorname{char}(M) = \det \begin{pmatrix} \begin{bmatrix} 1 - \lambda & 2 & 5 \\ -11 & 14 - \lambda & 5 \\ -3 & 2 & 9 - \lambda \end{bmatrix} \end{pmatrix}$$

$$= (1 - \lambda)(14 - \lambda)(9 - \lambda) + (2)(5)(-3) + (5)(-11)(2) - (-3)(14 - \lambda)(5) - (2)(5)(1 - \lambda) - (9 - \lambda)(-11)(2)$$

$$= -\lambda^3 + 24\lambda^2 - 176\lambda + 384$$

$$= -(\lambda - 4)(\lambda - 8)(\lambda - 12) = 0$$

$$\therefore \lambda = 4.8.12$$

$$\operatorname{null}(M - \lambda I)$$

$$= \operatorname{null}\left(\begin{bmatrix} -3 & 2 & 5 \\ -11 & 10 & 5 \\ -3 & 2 & 5 \end{bmatrix}\right)$$

$$= \operatorname{null}\left(\begin{bmatrix} -7 & 2 & 5 \\ -11 & 6 & 5 \\ -3 & 2 & 1 \end{bmatrix}\right)$$

$$= \operatorname{null}\left(\begin{bmatrix} -11 & 2 & 5 \\ -11 & 2 & 5 \\ -3 & 2 & 3 \end{bmatrix}\right)$$

$$= \operatorname{null}\left(\begin{bmatrix} -11 & 2 & 5 \\ -11 & 2 & 5 \\ -3 & 2 & -3 \end{bmatrix}\right)$$

$$= \operatorname{null}\left(\begin{bmatrix} -11 & 2 & 5 \\ -11 & 2 & 5 \\ -3 & 2 & -3 \end{bmatrix}\right)$$

$$= \operatorname{null}\left(\begin{bmatrix} -11 & 2 & 5 \\ -11 & 2 & 5 \\ -3 & 2 & -3 \end{bmatrix}\right)$$

$$= \operatorname{null}\left(\begin{bmatrix} -11 & 2 & 5 \\ -11 & 2 & 5 \\ -3 & 2 & -3 \end{bmatrix}\right)$$

$$= \operatorname{null}\left(\begin{bmatrix} -11 & 2 & 5 \\ -11 & 2 & 5 \\ -3 & 2 & -3 \end{bmatrix}\right)$$

$$= \operatorname{null}\left(\begin{bmatrix} -11 & 2 & 5 \\ -11 & 2 & 5 \\ -3 & 2 & -3 \end{bmatrix}\right)$$

$$= \operatorname{null}\left(\begin{bmatrix} -11 & 2 & 5 \\ -11 & 2 & 5 \\ -3 & 2 & -3 \end{bmatrix}\right)$$

$$= \operatorname{null}\left(\begin{bmatrix} -11 & 2 & 5 \\ -11 & 2 & 5 \\ -3 & 2 & -3 \end{bmatrix}\right)$$

$$= \operatorname{null}\left(\begin{bmatrix} -11 & 2 & 5 \\ -11 & 2 & 5 \\ -3 & 2 & -3 \end{bmatrix}\right)$$

$$= \operatorname{null}\left(\begin{bmatrix} -11 & 2 & 5 \\ -11 & 2 & 5 \\ -3 & 2 & -3 \end{bmatrix}\right)$$

$$= \operatorname{null}\left(\begin{bmatrix} -11 & 2 & 5 \\ -11 & 2 & 5 \\ -3 & 2 & -3 \end{bmatrix}\right)$$

$$= \operatorname{null}\left(\begin{bmatrix} -11 & 2 & 5 \\ -11 & 2 & 5 \\ -3 & 2 & -3 \end{bmatrix}\right)$$

$$= \operatorname{null}\left(\begin{bmatrix} -11 & 2 & 5 \\ -11 & 2 & 5 \\ -3 & 2 & -3 \end{bmatrix}\right)$$

$$= \operatorname{null}\left(\begin{bmatrix} -11 & 2 & 5 \\ -11 & 2 & 5 \\ -3 & 2 & -3 \end{bmatrix}\right)$$

$$= \operatorname{null}\left(\begin{bmatrix} -11 & 2 & 5 \\ -11 & 2 & 5 \\ -3 & 2 & -3 \end{bmatrix}\right)$$

$$= \operatorname{null}\left(\begin{bmatrix} -11 & 2 & 5 \\ -11 & 2 & 5 \\ -3 & 2 & -3 \end{bmatrix}\right)$$

$$= \operatorname{null}\left(\begin{bmatrix} -11 & 2 & 5 \\ -11 & 2 & 5 \\ -3 & 2 & -3 \end{bmatrix}\right)$$

$$= \operatorname{null}\left(\begin{bmatrix} -11 & 2 & 5 \\ -11 & 2 & 5 \\ -3 & 2 & -3 \end{bmatrix}\right)$$

$$= \operatorname{null}\left(\begin{bmatrix} -11 & 2 & 5 \\ -11 & 2 & 5 \\ -3 & 2 & -3 \end{bmatrix}\right)$$

$$= \operatorname{null}\left(\begin{bmatrix} -11 & 2 & 5 \\$$

$$D = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 12 \end{bmatrix}, P = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}, P^{-1} = \begin{bmatrix} 1 & 0 & -1 \\ 1/2 & -1/2 & 1 \\ -1/2 & 1/2 & 0 \end{bmatrix}$$

$$M = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 12 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 1/2 & -1/2 & 1 \\ -1/2 & 1/2 & 0 \end{bmatrix}$$

Example: Find examples of all combinations of invertible/diagonalizable matrices.

Invertible, Diagonalizable

$$M = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

 $det(M) = 1 \neq 0$, thus *M* is invertible

 $\lambda = 1.2 \neq 0$, thus *M* is invertible

(2 unique λ) = n, thus M is diagonalizable algebraic mult(1) = 1, geometric mult(1) = 1 algebraic mult(2) = 1, geometric mult(2) = 1 Thus diagonalizable

Invertible, Not Diagonalizable

$$M = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

 $det(M) = 1 \neq 0$, thus M is invertible

 $\lambda = 1 \neq 0$, thus *M* is invertible

(1 unique λ) $\neq n$, thus M is not diagonalizable algebraic mult(1) = 2, geometric mult(1) = 1 $1 \neq 2$, not diagonalizable

Not Invertible, Diagonalizable

$$M = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

det(M) = 0, thus M is not invertible

 $\lambda = 0.1$ thus *M* is not invertible

Not Invertible, Not Diagonalizable

$$M = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

det(M) = 0, thus M is not invertible

 $\lambda = 0$ thus *M* is not invertible

2 unique λ) = n, thus M is diagonalizable

algebraic mult(0) = 1, geometric mult(1) = 1

algebraic $\operatorname{mult}(1) = 1$, geometric $\operatorname{mult}(2) = 1$

Thus diagonalizable

(1 unique λ) $\neq n$, thus M is not diagonalizable

algebraic mult(0) = 2, geometric mult(0) = 1

 $0 \neq 1$, not diagonalizable

A matrix's determinant is the product of all eigenvalues.

Let M = a matrix, $\lambda_1, \lambda_2, \lambda_3 \dots =$ its eigenvectors. Then the following relation is true

$$char(M) = det(M - \lambda I) = \cdots (\lambda_1 - \lambda)(\lambda_2 - \lambda) \dots$$

Set $\lambda = 0$, then

$$det(M) = \lambda_1 \lambda_2 \dots$$

A triangular matrix's eigenvalues are its diagonals.

To prove it, just do the math with arbitrary variables, it works out.

Positive orientation = det(M) > 0

 $\underline{n} \times \underline{n} \text{ matrix is invertible} = \underline{rank(M)} = \underline{n}, \text{ nullity}(\underline{M}) = 0, \det(\underline{M}) != 0, \underline{rref(M)} = \underline{I}, \underline{rows/cols linearly indep}, 0$ $\underline{not \ eigenvalue}$

Elementary row operations change column space, not row space

A $n \times n$ matrix is diagonalizable if it has n eigenvalues. This way, there're n eigenvectors, and they're linearly independent, meaning they form an "eigenvector basis of R".

- If there're under n eigenvalues, one of them has a double solution for char(M) (ie. you get a situation like $(1 - \text{lambda})^2 = 0$), and not all eigenvectors would be linearly independent then

Uses of diagonalization:

$$\begin{split} M^n &= (PDP^{-1})^n \\ &= (PDP^{-1})(PDP^{-1})(PDP^{-1}) \dots \\ &= PD(P^{-1}P)D(P^{-1}P)D(P^{-1}\dots)DP^{-1} \\ &= PD^nP^{-1} \\ &= P \begin{bmatrix} d_1^n & 0 & \cdots \\ 0 & d_2^n & \ddots \\ \vdots & \ddots & \ddots \end{bmatrix} P^{-1} \end{split}$$

Recommended Watch List:

★ 3Blue1Brown - Essence of linear algebra

Must watch series. Beautiful visuals, gives very strong intuitive understanding of concepts.

https://textbooks.math.gatech.edu/ila/

Jason Siefken - <u>MAT223 Playlists</u>

Professor's weekly videos to watch. Pretty good, a little slow, recommend watching at 1.5 speed.