MOST ESSENTIAL LEARNING COMPETENCIES (MELC)

GRADE LEVEL : GRADE 12 SUBJECT: GENERAL CHEMISTRY 2

Quarter	The learners demonstrate understanding of	Performance Standard The learners should be able to	Most Essential Learning Competencies	Duration	K to 12 CG Code
1st	1. the properties of liquids and solids to	Design a simple investigation to	Use the kinetic molecular model to explain properties of liquids and solids	Week 1	STEM_GC11IMFIIIa-c-99
	the nature of forces between particles	determine the effect on boiling point or freezing	Describe and differentiate the types of intermolecular forces	Week 1	STEM_GC11IMFIIIa-c-100
	2. phase changes in terms of the accompanying changes in energy and forces between	point when a solid is dissolved in water	Describe the following properties of liquids, and explain the effect of intermolecular forces on these properties: surface tension, viscosity, vapor pressure, boiling point, and molar heat of vaporization	Week 1	STEM_GC11IMFIIIa-c-102
	particles		Explain the properties of water with its molecular structure and intermolecular forces	Week 1	STEM_GC11IMFIIIa-c-103
			Describe the difference in structure of crystalline and amorphous solids	Week 1	STEM_GC11IMFIIIa-c-104
			Interpret the phase diagram of water and carbon dioxide	Week 2	STEM_GC11IMFIIIa-c-107
			Determine and explain the heating and cooling curve of a substance	Week 2	STEM_GC11IMFIIIa-c-109
	properties of solutions, solubility, and the stoichiometry of		Use different ways of expressing concentration of solutions: percent by mass, mole fraction, molarity, molality, percent by volume, percent by mass, ppm	Week 2	STEM_GC11PPIIId-f-111
	reactions in solutions		Perform stoichiometric calculations for reactions in solution	Week 2	STEM_GC11PPIIId-f-112
			Describe the effect of concentration on the colligative properties of solutions	Week 2	STEM_GC11PPIIId-f-115

			Differentiate the colligative properties of nonelectrolyte solutions and of electrolyte solutions	Week 3	STEM_GC11PPIIId-f-116
			Calculate boiling point elevation and freezing point depression from the concentration of a solute in a solution	Week 3	STEM_GC11PPIIId-f-117
			Calculate molar mass from colligative property data	Week 3	STEM_GC11PPIIId-f-118
			Describe laboratory procedures in determining concentration of solutions	Week 3	STEM_GC11PPIIId-f-119
	energy changes in chemical reactions		Explain the first law of thermodynamics	Week 3	STEM_GC11TCIIIg-i-124
			Explain enthalpy of a reaction	Week 3	STEM_GC11TCIIIg-i-125
			Calculate the change in enthalpy of a given reaction using Hess Law		STEM_GC11TCIIIg-i-127
	1. the rate of a reaction and the		Describe how various factors influence the rate of a reaction	Week 4	STEM_GC11CKIIIi-j-130
	various factors that influence it		Differentiate zero, first-, and second-order reactions	Week 4	STEM_GC11CKIIIi-j-132
	2. the collision theory		Explain reactions qualitatively in terms of molecular collisions	Week 4	STEM_GC11CKIIIi-j-136
			Explain activation energy and how a catalyst affects the reaction rate	Week 4	STEM_GC11CKIIIi-j-137
			Cite and differentiate the types of catalysts	Week 4	STEM_GC11CKIIIi-j-138
2nd	spontaneous change, entropy, and free	Prepare a poster on a specific application of	Predict the spontaneity of a process based on entropy	Week 5	STEM_GC11CTIVa-b-140
	energy	one of the following: A. Acid-base equilibrium	Explain the second law of thermodynamics and its significance	Week 5	STEM_GC11CTIVa-b-142
		B. Electrochemistry Include in the poster the	Use Gibbs' free energy to determine the direction of a reaction	Week 5	STEM_GC11CTIVa-b-143
	Chemical equilibrium and Le Chatelier's Principle	concepts, principles, and chemical reactions involved, and diagrams	Explain chemical equilibrium in terms of the reaction rates of the forward and the reverse reaction	Week 5	STEM_GC11CEIVb-e-145

	of processes and other relevant materials	Calculate equilibrium constant and the pressure or concentration of reactants or products in an equilibrium mixture	Week 5	STEM_GC11CEIVb-e-148
		State the Le Chatelier's principle and apply it qualitatively to describe the effect of changes in pressure, concentration and temperature on a system at equilibrium	Week 5	STEM_GC11CEIVb-e-149
1. acid-base equilibrium and its		Define Bronsted acids and bases	Week 6	STEM_GC11ABIVf-g-153
applications to the pH of solutions and		Discuss the acid-base property of water	Week 6	STEM_GC11ABIVf-g-154
the use of buffer solutions		Calculate ph from the concentration of hydrogen ion or hydroxide ions in aqueous solutions	Week 6	STEM_GC11ABIVf-g-156
2. solubility equilibrium and its		Describe how a buffer solution maintains its ph	Week 6	STEM_GC11ABIVf-g-160
applications		Calculate the ph of a buffer solution using the Henderson Hasselbalch equation	Week 6	STEM_GC11ABIVf-g-161
Redox reactions as applied to galvanic		Define oxidation and reduction reactions	Week 7	STEM_GC11ABIVf-g-169
and electrolytic cells		Balance redox reactions using the change in oxidation number method	Week 7	STEM_GC11ABIVf-g-170
		Identify the reaction occurring in the different parts of the cell	Week 8	STEM_GC11ABIVf-g-172
		Define reduction potential, oxidation potential, and cell potential		STEM_GC11ABIVf-g-176
		Calculate the standard cell potential	Week 8	STEM_GC11ABIVf-g-178
		Relate the value of the cell potential to the feasibility of using the cell to generate an electric current	Week 8	STEM_GC11ABIVf-g-179
		Describe the electrochemistry involved in some common batteries: a. Leclanche dry cell b. Button batteries c. Fuel cells	Week 8	STEM_GC11ABIVf-g-180

d. Lead storage battery		
Apply electrochemical principles to explain corrosion	Week 8	STEM_GC11ABIVf-g-181
Explain the electrode reactions during electrolysis	Week 8	STEM_GC11ABIVf-g-182
Describe the reactions in some commercial electrolytic processes	Week 8	STEM_GC11ABIVf-g-183