	DOCUMENTATION P	AFRI	L-SR-AR-T	R-05-
the data needed, and completing and reviewing	ormation is estimated to average 1 hour per respon- g this collection of information. Send comments reg	se, including the time for re garding this burden estimat	D.DIC 1777 =	aintaining ions for
Management and Budget, Paperwork Reduction			0040	Office of
1. AGENCY USE ONLY (Leave bia	ank) 2. REPORT DATE 3 Feb 05	3. REPORT TY. FINAL REPORT		3 To 31 Oct 04
4. TITLE AND SUBTITLE		***************************************	5. FUNDING	
	and EMI Shielding Properti	ies of SWNT	FA9550-0	4-1-0349
Buckypaper Nanocompos	ite			
6. AUTHOR(S)	ni 1771 n. n. 1		1	
Ben wang, Kichard Liang, C	Chuck Zhang, Percy Funches ar	id Leslie Kramer		
7. PERFORMING ORGANIZATION	NAME(S) AND ADDRESS(ES)		O DEDECIDAD	NG ORGANIZATION
			REPORT N	
Florida Advanced Center for Co		ockheed Martin		
Department of Industrial and M FAMU-FSU College of Engine		lissiles and Fire ontrol - Orlando		
2525 Pottsdamer Street	•	rlando, FL 32819-8907		
Tallahassee, FL 32310				
9. SPONSORING / MONITORING	AGENCY NAME(S) AND ADDRESS(E	ES)		RING / MONITORING
AFOSR/NL			AGENCY	REPORT NUMBER
4015 Wilson Blvd, Room				
Arlington, VA 22203-1	954			
11. SUPPLEMENTARY NOTES		•		
12a. DISTRIBUTION / AVAILABILIT	TY STATEMENT			12b. DISTRIBUTION CODE
Approve for Public Re	elease: Distribution Un	limited		
13. ABSTRACT (Maximum 200 W		1 1 1 1 .		
into conventional fiber-reinfor	roject, a unique technical approced and foam composite structu	each was developed to	incorporate t	SWNTs buckypaper materials
The EMI shielding and lightn	ing strike attenuation properties	of the composites wit	t and ngnunn th the surface	g strike protection properties.
nanocomposite were prelimina	rily characterized. Four types of	the designed EMI/light	tning strike te	esting composite samples with
buckypapers were produced. I	Each sample had two layers of a	random or magnetically	y aligned buc	kypapers covering at surface.
Each layer of the buckypapers	was only 15~25 µm thick. Eacl	h sample size was 6"x4	"x1/8" with a	pproximately 700mg purified
SWNTs covering its surface.	The results show that the foam s	structures with the buck	cypaper surfa	ce can achieve as much as 26
attenuation result was remarks	e test range of 455 to 500 MF	Iz, compared to the co	ontrol panel	of pure foam structure. This
results also show that the rand	able considering the fact that the om buckypaper samples exhibite	amount of nanotubes	was less tha	n /00 mg per test panel. The
EMI shielding occurred in the	carbon fiber composites with the	he buckvoaper surface.	compared to	the controlled panel. For the
lightning strike resistance, no	visible improvement was ob	served. Further improv	vements in e	lectrical conductivity of the
buckypaper composites are vi-	tal for utilizing SWNTs to real	ize EMI and lightning	strike resista	nce properties for composite
structures.				
14. SUBJECT TERMS				15. NUMBER OF PAGES
Nanocomposites, Buckyp	papers, EMI, Lightning	strike resistance)	
				16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFIC	CATION	20. LIMITATION OF ABSTRACT
UNCLASS	OF THIS PAGE UNCLASS	OF ABSTRACT UNCLASS		

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

UNCLASS

Investigation of Lightning and EMI Shielding Properties of SWNT Buckypaper Nanocomposites

(Final Report for Grant # FA9550-04-1-0349)

Ben Wang¹, Richard Liang¹, Chuck Zhang¹ Leslie Kramer², Percy Funchess²

¹Florida Advanced Center for Composite Technologies (FAC²T)

Department of Industrial and Manufacturing Engineering

Florida A&M University –Florida State University College of Engineering

2525 Pottsdamer Street, Tallahassee, FL 32310

²Lockheed Martin Missiles and Fire Control - Orlando Orlando, FL 32819-8907

20050218 082

Abstract

) ,

In this exploratory research project, a unique technical approach was developed to incorporate single-walled carbon nanotubes (SWNTs) buckypaper materials into conventional fiber-reinforced and foam composite structures for improved EMI and lightning strike properties. The research team, comprising of researchers from Florida Advanced Center for Composite Technologies (FAC²T) and Lockheed Martin Missiles and Fire Control, characterized both of the fiber-reinforced composites and foam structures with a surface layer of SWNT nanocomposite. These nanocomposites were manufactured using the buckypaper/resin infiltration technique developed at FAC²T to create conducting surfaces on the composite structures for improved EMI and lightning strike protection properties of composite structures. Buckypaper materials are thin preformed sheets of well-controlled and dispersed porous SWNT networks produced using a multiple-step process of dispersion and filtration of nanotube suspensions. This process can produce nanocomposites with uniform, controllable nanotube alignment and high nanotube loading. These features are critical for constructing directional conducting paths in the composites for EMI and lightning strike resistance applications. These resininfiltrated buckypaper materials can be easily incorporated into conventional manufacturing processes of fiber-reinforced composites, such as compression molding, vacuum bagging, RTM and VARTM, to effectively change the surface conductivity of composites without visible weight increase.

Four types of the EMI/lightning strike test composite samples with SWNT buckypapers were produced. Each sample had two layers of random or magnetically aligned buckypapers 15~25 µm thick. Each sample size was 6" x 4" x 1/8" with approximately 700mg purified SWNTs covering its surface. Lockheed Martin Missiles and Fire Control – Orlando conducted the EMI and lightning striking tests. The results shows that the foam structures with the random nanotube buckypaper surface can achieve as much as 26 dB of EMI attenuation over the test range of 455 to 500 MHz, compared to the control panel of pure foam structure. This is remarkable considering the amount of nanotubes was less than 700 mg per 6" x 4" test panel. The results also show that the random buckypaper samples have better EMI shielding properties. However, a slight reduction of EMI shielding occurred in the carbon fiber composites with the buckypaper surface, compared to the control panel. This reduction is inconclusive due to a very small number of test samples. For the lightning strike resistance, no visible improvement was observed with the use of buckypapers.

This project is the first attempt to explore and understand the EMI and lightning strike resistance properties of nanocomposites with controlled nanostructures, desired nanotube orientation and high SWNT loading. Further investigations to improve electrical conductivity of buckypaper composite surface layer are recommended to demonstrate the exceptional electrical properties of SWNTs in composite structures.

1. Introduction

Recent investigations have shown that SWNTs possess exceptionally high elastic properties, as well as large elastic and fracture strain sustaining capabilities, exceeding those of any existing reinforcement materials used in composites. More importantly, SWNTs can be either pure metallic or semi-conducting depending on their construction chirality. They exhibit thermal conductivity about twice as high as diamond, and an electric-current-carrying capacity 1000 times higher than copper wires. SWNTs also have nanoscale dimension, similar to resin molecules. Thus, large quantities of SWNTs are much easier to form effective conducting paths in composites to protect against electromagnetic interference (EMI) and lightning strikes. SWNTs also possess exceptional mechanical properties and very lightweight. Thus, SWNT nanocomposites are very promising candidates for developing the next generation of high performance materials for protecting against EMI and lightning strikes.

This project is the first attempt to explore and understand the EMI and lightning strike resistance properties by incorporating SWNTs into current composite structures by using buckypaper/resin infiltration technique. This approach could effectively produce a thin and lightweight SWNT buckypaper nanocomposites layer on the surface of conventional composite structures. The buckypaper composites have controlled nanostructures, desired nanotube orientation and high SWNT loading, which are critical for improved EMI and lightning strike resistance performance.

2. Experimental Design

For the research, the research team manufactured both SWNT buckypapers and composite samples. Both random and magnetically aligned buckypapers 9" x 8" and 15~25 µm thick were produced using the filtration technique and custom-made filters [1~5] developed at FAC²T. The magnetically aligned buckypapers were fabricated using a 5 Tesla superconducting magnet, which resulted in significant operating cost savings compared to using a conventional 5 Tesla DC resistive magnet. Four types of the designed EMI/lightning strike testing composite samples were successfully produced: 1) random buckypaper/ROHACELL PMI foam panels; 2) magnetically-aligned buckypaper/ROHACELL PMI foam panels; 3) random buckypaper/carbon fiber composite panels; and 4) magnetically aligned buckypaper/carbon fiber composite panels. Two layers of resin-impregnated buckypapers were cured on the surface of the foam or carbon fiber composite substrates using a vacuum bagging process. The resin system used in the research was EPON862/ CURE EPI W. Each sample size was 6" x 4" x \frac{1}{8}" consisting of approximately 700mg purified SWNTs covering its surface. Lockheed Martin Missiles and Fire Control – Orlando conducted the EMI and lightning strike tests.

3. Results and Discussion

3.1 Sample Fabrication

The research team used custom-made filters to fabricate large, good quality buckypaper materials which are in turn used in preparing the samples. The nanotube materials used in the research were BuckyPearls TM , purified SWNTs from Carbon Nanotechnologies Inc. (CNI). Well-dispersed and stable SWNT aqueous suspensions were prepared by sonicating and adding a selected surfactant using a multiple-step dispersion procedure, previously developed by the research team [1~5]. The prepared suspension had a nanotube concentration of 40 mg/liter. The suspension was filtrated through a 0.45 μ m pore filter to produce random buckypapers. The filter setup and the produced buckypaper are shown in Figure 1. The nanostructure of the produced random buckypaper is shown in Figure 2, showing the clear nanotube network of a random buckypaper.

Figure 1. Custom-made filter and produced SWNT buckypaper

(a) Tube network of random buckypaper

(a) Design structure

(b) Tube network of aligned buckypaper (arrow indicating the alignment direction)

Figure 2. Nanostructures of random and magnetically aligned SWNT buckypaper

The magnetically aligned buckypapers were produced in a 5 Tesla superconducting magnet, shown in Figure 3. Compared to conventional DC resistive magnets, the superconducting magnet can achieve significant operating cost savings for producing magnetically aligned buckypaper materials. A more detailed operating cost analysis is provided in Figure 4. The cost analysis shows that the monthly cost for using a superconducting (SC) magnet is approximately 5% of that of a conventional DC resistive magnet. Furthermore, the SC magnet was available at any time, while the DC magnet is only available 7 hours a day. This cost analysis indicates that using a SC magnet could be an affordable manufacturing technique available to the government or industry for fabricating magnetically aligned SWNT buckypaper materials.

Figure 3. Structure and cooling down of the 5 Tesla superconducting magnet

(b) Cooling down using liquid helium

Figure 4. Operating cost analysis of both 5 Tesla superconducting and DC resistive magnet

In the research, five magnetically aligned buckypapers were successfully produced using the SC magnet. The nanostructure of the aligned buckypaper can be seen in Figure 2(b). A very fine network of the aligned nanotubes can be seen in the SEM image. The preferred tube orientation of the aligned buckypaper was also revealed in the image. To clearly quantify the tube alignment in the buckypapers, the anisotropy ratios were calculated based on the measurements of electrical resistivity perpendicular and parallel to tube alignment direction (B) in the aligned buckypaper, as shown in Figure 5.

Electrical Resistivity Anisotropy = $\frac{\text{Resistivity perpendicular to B}}{\text{Resistivity parallel to B}}$

(a) Sampling from the buckypaper (b) Setup of four-probe resistivity measurement

Figure 5. Electrical anisotropy measurements of the aligned buckypapers

The anisotropy ratio of electrical resistivity is a good indication of the nanotube alignment in the buckypapers. A four-probe method was adopted to measure the electrical resistivity perpendicular and parallel to the tube alignment direction of the magnetically aligned buckypapers. The results in Table 1 show the anisotropy ratios of electrical resistivity were around 3.06 to 3.49, which further indicates nanotube alignment existing in the magnetically aligned buckypapers. SWNT alignment in composites is critical for constructing directional paths of electrical current for both EMI and lightning protection features in composites.

In the research, four types of testing composite samples were fabricated. The sample list is shown in Table 2. Two layers of the produced buckypapers were cured on the surface of the foam or carbon fiber composite substrates using a vacuum bagging process. Each sample was 6" x 4" x \(^1/8\)" with approximately 700mg purified SWNTs covering its surface. In the buckypaper composite layer, the SWNT content was about 50w%. The foam materials used in the research were ROHACELL PMI foam from Hexcel. The carbon fiber composites were five-harness satin fabric and EPON 862/EPI CURE W laminates of 60v% fiber volume. The buckypapers were impregnated with EPON 862/EPI CURE W resin matrix and cured on the surface of the machined foam or carbon fiber composites. The buckypaper/foam and buckypaper/carbon fiber composite samples are shown in Figures 6 and 7, respectively. A total of eight composite samples with buckypaper (two for each type) were produced in the research.

Table 1. Electrical resistivity anisotropy ratios of the magnetically aligned buckypaper

		Res	lstivity	Test fo	r L-A-2 A	ligace Bu	ckypaper					
									Tester: Date:	Tr. 8/9/	1cy 2004	
No.	Sample No.	Direction	leagth. (cm)	Width (cm)	Thickness (cm)	Iffective Thickness (cm)	kesistivii - y (Q-cm)	Average	Mean	Std Dev.	C. Y.	Antsotrop
1	L-A-2-C-1	J (top)	2.945	0.649	0.0013	0.00098346	0.00157	1.558-03				
2	L-A-2-C-2	# (top)	2.978	0.653	0.0013	0.00104394	0.00158 0.00163	1.618-05	1.631-03	8.7864E-05	5.39%	
3	L-A-2-C-3	# (top)	2.954	0.614	0.0013	0.00101563	0.00172 0.00175	1.742-03				
4	L-A-2-C-4	⊥(tep)	2.225	0.686	0.0013	0.00096057	·0.00555 0.00563	5. 59E-05				3.062+00
5	L-A-2-C-5	⊥(top)	2.611	0.702	0.0013	0.00094348	8.00456 0.00465	4.612-03	4.998-03	0.00047564	9.54%	
6	L-4-2-C-6	L(top)	2.431	0.703	0.0013	0.0009679	0.00473	4:76E-03				
7	L-A-2-C-7	I (cat)	2.165	0.616	0.0013	0. 00 0 87386	0.00165 · 0.00159	1.62E-03				
8	L-A-2-C-8	I (cat)	2.165	0.607	0.0013	0.00091542	0.00188° 0.00180	1.841-03	1.698-03	0.00012323	7.31%	
,	L-A-2-C-9	f (cut)	2.199	0.685	0.0013	Q. 00097335	0.00160 0.00160	1.601-03				
10	L-A-2-C-10	L(cat)	3.084	0.552	0.0013	0.00103111	0.00592 0.00586	5. 891-03				3.496+00
11	L-A-2-C-11	L(cat)	3. 037	0.668	0.0013	0.00096361	0.00611	6.081-03	5.881-03	0.00018378	3.13X	
12	L-A-2-C-12	L(cat)	3.009	0.693	0.0013	0.00102763	0.00566 0.00568	5. 67E-03				

Table 2. Test samples of buckypaper/foam or carbon fiber composites

Sample #	Description	# BP Layers
1	Random BP / Foam - 1	2
2	Random BP / Foam - 2	2
3	Aligned BP / Foam - 1	2
4	Aligned BP / Foam - 2	2
5	Random BP / Carbon - 1	2
6	Random BP / Carbon - 2	2
7	Aligned BP / Carbon - 1	2
8	Aligned BP / Carbon - 2	2
9	Foam Control - 1	0
10	Foam Control - 2	. 0
11	Carbon Control - 1	0
12	Carbon Control - 2	0

Figure 6. Buckypaper/ ROHACELL PMI foam sample (Front and back surface)

Figure 7. Buckypaper/carbon fiber composite sample (Front and back surface)

3.2 Tests and Analysis of EMI and Lightning Strike Protection Properties

Lockheed Martin Missiles and Fire Control – Orlando conducted the EMI and lightning striking tests of the samples.

3.2.1 EMI Tests and Results

Four different buckypaper composite samples and two control samples were tested to determine the EMI attenuation effectiveness of random and aligned buckypaper materials. All specimens measured 4" x 6". For the aligned buckypaper specimens, the carbon nanotubes were aligned along the 6" direction.

The testing method was conducted in accordance with MIL-STD-285 guidelines. An aluminum box with one open side was used. The dimensions of the open side panel were approximately that of the buckypaper composite test panels, plus a metallic grounding structure required to prevent radiation from entering the aluminum box through gaps or holes between the test panel and the box structure. The RF attenuation at specific frequencies between 200 MHz and 500 MHz from the external transmitted RF field and the received energy penetrating the test panel and sensed within the shielded box produced the actual measurement of EMI resistance of the test samples. The setup of EMI test is shown in Figure 8.

Figure 8. Setup of EMI tests

The test results of the buckypaper/foam composites and the foam control panel are shown in Figure 9. The graph shows the baseline radiation emitted/received as the top solid black line. The second line down on the graph (orange dashed line) represents the aluminum box with the foam control panel over the opening. The next line down (dotted blue) represents the result of the aligned buckypaper/foam composites. The difference between the foam control panel and the aligned buckypaper/foam composites represents the attenuation or EMI shielding effectiveness attributable to the aligned buckypaper material. This ranged from a minimum of 2 dB at 290 MHz to a max of 16 dB at 500 MHz. The average was 11 db of attenuation over the test range. The next line down on the graph (dashed-dotted fuscia) represents the results of the random buckypaper/foam. The difference between the foam control and the random buckypaper/foam composites represents the attenuation of the random buckypaper material. This ranges from a minimum of 12 db at 290 MHz to a maximum of 26 dB at several frequencies in the 455 to 500 MHz range. The average was 21 dB of EMI shielding over the test range. Considering the very thin thickness (two layers of 15~25 µm buckypapers) and less than 700mg SWNTs in the samples, the EMI shielding effectiveness was significant. The random samples had much better EMI shielding performance since the SWNTs are easier to form continuous networks in the random buckypapers than in the aligned buckypapers. In the magnetically aligned buckypapers, the SWNTs tried to become parallel to each other rather than forming continuous tube networks.

Figure 9. EMI test results of the SWNT buckypaper/foam composites

For the buckypaper/carbon fiber composite samples, the team did not observe any improvements in the EMI shielding performance, as shown in Figure 10. This graph shows the baseline radiation emitted/received as the top solid black line. The second line down on the graph (orange dashed line) again represents the aluminum box with the foam control panel over the opening. The difference between the baseline and the foam control panel represents the attenuation of the test setup.

The dashed green line on the graph represents the carbon/epoxy control specimen. The difference between the foam control and the control panel of the carbon fiber composites represents the attenuation attributable to the carbon/epoxy control. This ranged from a minimum of 26 dB at 215 MHz to a max of 40 dB at 500 MHz. Rough average was 35 dB of EMI shielding over the test range due to the samples having high carbon fiber loading (60v%). The dashed-dotted fuscia line on the graph represents the carbon/epoxy specimen with random oriented buckypaper. The difference between the foam control panel and this line represents the attenuation attributable to the carbon/epoxy with random oriented buckypaper. This ranged from a minimum of 22 dB at 215 and 290 dB MHz to a max of 41 dB at 500 MHz. The rough average was 32 db of shielding over the test range, which was a slightly lower that that of the control panel of carbon fiber composites. The dotted blue line on the graph represents the carbon/epoxy specimen with aligned buckypapers. The difference between the foam control and this line represents the attenuation attributable to the carbon/epoxy with aligned buckypaper. This ranged from a minimum of 23 dB at 290 MHz to a max of 38 dB at 500 MHz. The rough average was 32 dB of shielding over the test range, which was the same as the result of the random

buckypaper/carbon fiber samples. The EMI shielding performance of both the random and aligned buckypaper/carbon fiber samples were slightly lower than that of the carbon fiber control panel. The possible reason was due to the carbon fiber samples of high fiber loading (60v%) already having a high EMI attenuation and the conductivity of the buckypaper surface layer was lower than that of the carbon fiber control panels (see Section 3.2.2).

3.2.2 Test and Results of Lighting Strike Resistance

Four different buckypaper/carbon fiber and foam composite samples along with their control samples were tested to determine the impact of lightning strikes on random and aligned SWNT buckypapers. All specimens measured 4" x 6". For the aligned buckypaper specimens, the carbon nanotubes were magnetically aligned along the 6" direction.

The lightning current component, which is typically defined as a 6.4 x 70 microsecond double exponential current pulse for analysis purposes, applied current across the composite samples. A maximum current level of 20 kA can be achieved with the 6.4 x 70 microsecond waveshape, depending on the characteristics of the test article. The experiment setup developed at LTI, Lockheed Martin is shown in Figure 11.

Figure 10. EMI test results of the SWNT buckypaper/foam composites

Figure 11. Experiment setup of lightning striking tests

Tests were conducted in the following manner:

- a) A 6 x 4" panel was installed in a conductive test fixture that provided full edge contact along two opposite sides of the panel. The two halves of the conductive test fixture were joined with insulated threaded rods such that conduction of the lightning currents was only across the panel under test. Threaded rods were used to clamp the test fixture to the panel.
- b) The end-to-end resistance of the panel under test was measured.
- c) The two halves of the test fixture were connected between the output terminals of a pulse generator such that the current would be conducted across the panel under test (along the long 6" direction). The pulse generator was capable of producing a nominal 6.4 x 70 microsecond current waveform.
- d) An initial current of 5 kA was applied to the panel and post-test panel resistance was measured. The panel was examined for signs of physical damage.
- e) If physical damage was noted, a second sample of the same panel configuration was installed and steps (b) through (d) were repeated at the same test current level. If no physical damage was noted, the current was increased an additional 5 kA and steps (d) and (e) were repeated until the maximum generator current limit of 20 kA was reached.

f) Steps (a) through (e) on each panel configuration were repeated for all the test samples. Figure 12 shows the lightning strike test in the research.

The test results are documented in Table 3. In the table, the "Generator Charge" column indicates voltage of the generator (in kV) applied to the sample and the "Ipk" column is the peak current (in amps) applied to the panel. The "Resistance" column shows the resistance (in ohms) before and after the current was applied to the panel.

The failure current for the samples was determined by visual evidence of arcing/flashing on the surface of the samples since no noticeable increase in resistance for any of the samples was observed. The buckypaper/foam samples were not subjected to the exact current outlined in the test procedure above since they could not handle the starting point of 5kA. The buckypaper/carbon fiber control specimen is the last group listed on the chart and shows a maximum current of 28kA with no evidence of failure.

The aligned and random buckypapers/foam samples showed relatively poor current carrying ability relative to the buckypaper/carbon fiber control sample before visual evidence of arcing was detected. The resultant current carrying abilities are on the order of 200 amps for aligned buckypaper/foam and 700 amps for random buckypaper/foam samples. The random oriented buckypaper samples carried slightly more current than the aligned samples but probably not enough to be significant. The aligned and random buckypapers/carbon fiber panels showed better performance than that of the foam samples but still short of the carbon fiber control. The random buckypaper/carbon fiber sample showed contact sparking at approximately 24kV.

One possible reason that no improvement in the lighting strike resistance of the buckypaper samples was observed could be due to the relatively lower surface conductivity, which can be seen in Table 3. This is because the buckypaper/EPON 862 surface layers had a higher resin content (>50w%) than the carbon fiber laminates. A resin rich area may exist on the surface of the buckypaper samples since buckypaper materials have an extremely low permeability due to fabrication [1~5]. The team believes that a further increase of buckypaper composite conductivity could improve lighting strike resistance properties.

Table 3. Results of lightning strike tests

No. Charts 2004 Applied Current LII 3045 Test No. Charge Hortz Nett Ratio Ipk Action Integral Sample No. Charge Hortz Vert RAV A X10 ⁴ A ² s Test 1 2.75 10 0.2 2 100 0.000059 Metal Bar 1 2.75 40 0.2 2 176 Aligned Foam #1 1 11.1 100 0.2 2 176 Aligned Foam #1 2 1.5 10 0.2 2 176 Aligned Foam #1 1 1.1 100 0.2 2 480 Aligned Foam #1 2 2.75 100 0.2 2 480 Random Foam #1 3 5.5 100 0.2 2 480 Random Foam #2 1 1.1 1.0 0.2 2 2.0 Random Foam #1 5 1.0 0.2					تَدُ	ghtning Test of (Lightning Test of Carbon Nanotube Bucky Paper	Bucky Paper				
Generator Applied Current Charge Applied Current Hortz Applied Current NAV Action Integral A volts Action Integral A volts Action Integral A volts 2.75 10 0.2 2 1000 0.00059 2.75 40 0.2 2 88 0.000059 2.75 100 0.2 2 176 0.000059 2.75 100 0.2 2 460 0.000059 2.75 100 0.2 2 480 0.000059 2.75 100 0.2 2 480 0.000059 2.75 100 0.2 2 480 0.000059 8.3 100 0.2 2 250 0.0004 8.3 100 0.2 2 250 0.00059 8.3 100 0.2 2 250 0.00059 8.3 100 0.2 2 250 0.00059 8.3 100 0.2 2 250 0.00059<		OCT 14-15 2004					L113045				DB 182 Pg 92-93	
Charge Horz, Vert Neth Ratio lpk Action integral 2.75 10 0.2 2 1000 0.00059 2.75 10 0.2 2 176 0.00059 8.3 100 0.2 2 176 0.00059 8.3 100 0.2 2 400 (3.2kA pk) 0.00059 11.1 100 0.2 2 480 0.00059 2.75 100 0.2 2 480 0.00059 2.75 100 0.2 2 480 0.00059 8.3 100 0.2 2 480 0.00059 8.3 100 0.2 2 260 0.00059 8.3 100 0.2 2 260 0.00059 8.3 100 0.2 2 260 0.00059 8.3 100 0.2 2 260 0.00059 8.3 100 0.2 2	Test	Generator	[Applie	Current		Test	Resis			Comments
KV us volts KAV A x10° A's 2.75 10 0.2 2 1000 0.000059 2.75 10 0.2 2 1000 0.000059 5.5 100 0.2 2 176 0.000059 11.1 100 0.2 2 176 0.000059 2.75 100 0.2 2 176 0.000059 2.75 100 0.2 2 2.00 0.000059 8.3 100 0.2 2 2.00 0.0014 2.75 100 0.2 2 2.00 0.0014 8.3 100 0.2 2 2.00 0.0014 8.3 100 0.2 2 2.00 0.0014 8.3 100 0.2 2 2.00 0.0014 8.3 100 0.2 2 2.00 0.0014 8.3 100 0.2 2 2.0	9	Charge	Horiz.	Vert.	Ratio	늄	Action Integral	Sample	Pretest	Post Test		
2.75 10 0.2 2 1000 0.000059 2.75 40 0.2 2 88 0.000059 5.75 40 0.2 2 176 0.2 2 176 0.2 176 0.2 176 0.2 176 0.2 176 0.0 176 0.2 2 176 0.0 176 0.2 2 176 0.0 0.2 2 176 0.0 0.0 2 2 480 0.0 0.0 0.0 0.0 2 2 480 0.		\$	S	vofts	₹	A	x10° A²s		ohms	ohms		
2.75 40 0.2 2 176 8.3 100 0.2 2 176 8.3 100 0.2 2 176 11.1 100 0.2 2 400 (3.2kA pk) 11 100 0.2 2 2400 5.5 100 0.2 2 250 5.5 100 0.2 2 250 8.3 100 0.2 2 250 8.3 100 0.2 2 250 8.3 100 0.2 2 250 8.3 100 0.2 2 250 8.3 100 0.2 2 250 8.3 100 0.2 2 250 8.3 100 0.2 2 250 8.3 100 0.2 2 256 71 100 0.2 2 24,900 0.0128 71 100	<u>S</u>	2.75	10	0.2	2	1000	0.000059	Metal Bar	n/a	n/a	6.0 x 81 us	Short Circuit Current
5.5 100 0.2 2 176 8.3 100 0.2 2 176 11.1 100 0.2 2 400 (3.2kA pk) 11.1 100 0.2 2 480 2.75 100 0.2 2 260 8.3 100 0.2 2 760 8.3 100 0.2 2 760 8.3 100 0.2 2 760 8.3 100 0.2 2 760 8.3 100 0.2 2 760 8.3 100 0.2 2 760 8.3 100 0.2 2 760 8.3 100 0.2 2 260 8.3 100 0.2 2 260 8.3 100 0.2 2 24,900 0.0128 7.1 100 0.2 2 24,000 0.024 8.5<	-	9.75	Ş	60	c	88		Alicand Form #1	S	ę		
8.3 100 0.2 2 400 (3.2kA pk) 11.1 100 0.2 2 2 400 (3.2kA pk) 11.1 100 0.2 2 2 400 (3.2kA pk) 11.1 100 0.2 2 2 250 250 2 480 2.2 2 250 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.		244	2 5	300	16	3 5		Aligned Foall #1	3 8	8 2		
2.75 100 0.2 2 400 (3.2kA pk) 11.1 100 0.2 2 400 (3.2kA pk) 11.1 100 0.2 2 250 5.5 100 0.2 2 250 8.3 100 0.2 2 250 8.3 100 0.2 2 250 8.3 100 0.2 2 250 8.3 100 0.2 2 250 8.3 100 0.2 2 250 8.3 100 0.2 2 250 8.3 100 0.2 2 250 8.3 100 0.2 2 250 8.3 100 0.2 2 250 8.3 100 0.2 2 256 7.1 100 0.2 2 256 7.1 100 0.2 2 14,900 0.046 8.5 <td< td=""><td>٥</td><td>0.0</td><td>3 5</td><td>2.0</td><td>V</td><td>9/-</td><td></td><td>Aligned Foam #1</td><td>39.9</td><td>37.3</td><td></td><td></td></td<>	٥	0.0	3 5	2.0	V	9/-		Aligned Foam #1	39.9	37.3		
11.1 100 0.2 2 400 (3.2kA pk) 2.75 100 0.2 2 250 5.5 100 0.2 2 250 5.5 100 0.2 2 250 5.5 100 0.2 2 250 5.5 100 0.2 2 250 5.5 100 0.2 2 250 5.5 100 0.2 2 250 6.5 100 0.2 2 250 8.3 100 0.2 2 250 8.3 100 0.2 2 200 6.5 100 0.2 2 200 8.3 100 0.2 2 256 71 100 0.2 2 256 71 100 0.2 2 256 71 100 0.2 2 24,900 0.0128 85 100	5	8.3	3	0.2	2			Aligned Foam #1		38.6		Flashed Surface
2.75 100 0.2 2 250 5.5 100 0.2 2 250 5.5 100 0.2 2 480 8.3 100 0.2 2 480 8.3 100 0.2 2 480 8.3 100 0.2 2 250 8.3 100 0.2 2 500 8.3 100 0.2 2 500 8.3 100 0.2 2 500 8.3 100 0.2 2 500 8.3 100 0.2 2 500 8.3 100 0.2 2 200 8.3 100 0.2 2 2.56 71 100 0.2 2 2.56 71 100 0.2 2 2.4400 0.025 85 100 0.2 2 2.4400 0.046 85 <td< td=""><td>의</td><td>11.1</td><td>8</td><td>0.2</td><td>2</td><td>400 (3.2kA pk)</td><td></td><td>Aligned Foam #1</td><td></td><td>39.3</td><td></td><td>Flashed Surface</td></td<>	의	11.1	8	0.2	2	400 (3.2kA pk)		Aligned Foam #1		39.3		Flashed Surface
2.75 100 0.2 2 250 5.5 100 0.2 2 480 8.3 100 0.2 2 480 8.3 100 0.2 2 480 5.5 100 0.2 2 250 8.3 100 0.2 2 250 8.3 100 0.2 2 760 8.3 100 0.2 2 760 8.3 100 0.2 2 168 8.3 100 0.2 2 168 8.3 100 0.2 2 1600 8.3 100 0.2 2 4,900 0,0014 8.3 100 0.2 2 10,000 0,005 7.1 100 0.2 2 10,000 0,005 8.5 100 0.2 2 24,000 0,046 8.5 100 0.2 2 24,20	=	=	8	0.2	2			Aligned Foam #1			Visually Observed	Flashed Surface
2.75 100 0.2 2 250 8.3 100 0.2 2 480 8.3 100 0.2 2 480 2.75 100 0.2 2 250 5.5 100 0.2 2 250 8.3 100 0.2 2 250 8.3 100 0.2 2 250 8.3 100 0.2 2 250 8.3 100 0.2 2 250 8.3 100 0.2 2 2 8.3 100 0.2 2 160 9.0 0.2 2 1600 0.0014 14 100 0.2 2 14,000 0.0057 43 100 0.2 2 14,000 0.0057 43 100 0.2 2 14,000 0.0054 85 100 0.2 2 24,400 0.046<												
5.5 100 0.2 2 480 8.3 100 0.2 2 760 8.5 100 0.2 2 250 8.5 100 0.2 2 250 8.3 100 0.2 2 500 8.3 100 0.2 2 500 8.3 100 0.2 2 500 8.3 100 0.2 2 500 8.3 100 0.2 2 760 8.3 100 0.2 2 760 8.3 100 0.2 2 260 8.3 100 0.2 2 260 71 100 0.2 2 4,300 0,0128 71 100 0.2 2 14,900 0,0128 85 100 0.2 2 24,400 0,0128 85 100 0.2 2 28,400 0,046	7	2.75	5	0.2	2	250		Random Foam #1	11.4	10.8		
8.3 100 0.2 2 760 2.75 100 0.2 2 250 5.5 100 0.2 2 550 8.3 100 0.2 2 500 8.3 100 0.2 2 500 5.5 100 0.2 2 760 6.3 100 0.2 2 760 7 100 0.2 2 760 8.3 100 0.2 2 168 14 100 0.2 2 4,900 0,0014 29 100 0.2 2 10,000 0,005 57 100 0.2 2 14,900 0,0128 71 100 0.2 2 14,900 0,0128 85 100 0.2 2 14,900 0,0128 85 100 0.2 2 14,900 0,0128 85 100 <td< td=""><td>က</td><td>5.5</td><td>100</td><td>0.2</td><td>2</td><td>480</td><td></td><td>Random Foam #1</td><td></td><td>12</td><td></td><td></td></td<>	က	5.5	100	0.2	2	480		Random Foam #1		12		
2.75 100 0.2 2 250 5.5 100 0.2 2 500 8.3 100 0.2 2 760 5.5 100 0.2 2 80 5.5 100 0.2 2 168 6.5 100 0.2 2 168 8.3 100 0.2 2 256 8.3 100 0.2 2 256 14 100 0.2 2 256 29 100 0.2 2 2,56 71 100 0.2 2 10,000 0.018 71 100 0.2 2 10,000 0.018 85 100 0.2 2 24,400 0.046 85 100 0.2 2 24,400 0.046 85 100 0.2 2 28,600 0.046 85 100 0.2 2	4	8.3	1 00	0.2	2	760		Random Foam #1		17.5		Flashed Surface
2.75 100 0.2 2 250 8.3 100 0.2 2 500 8.3 100 0.2 2 500 5.5 100 0.2 2 80 5.5 100 0.2 2 168 8.3 100 0.2 2 168 8.3 100 0.2 2 168 8.3 100 0.2 2 2.56 8.3 100 0.2 2 2.56 8.3 100 0.2 2 2.56 43 100 0.2 2 2.56 71 100 0.2 2 10,000 71 100 0.2 2 24,000 0.0246 85 100 0.2 2 24,000 0.046 85 100 0.2 2 24,200 0.046 85 100 0.2 2 28,600 0.046 </td <td></td>												
5.5 100 0.2 2 500 8.3 100 0.2 2 760 8.3 100 0.2 2 760 5.5 100 0.2 2 168 5.5 100 0.2 2 168 8.3 100 0.2 2 168 14 100 0.2 2 256 43 100 0.2 2 256 71 100 0.2 2 10,000 0.0057 71 100 0.2 2 14,900 0.0057 71 100 0.2 2 14,900 0.0057 85 100 0.2 2 14,900 0.022 85 100 0.2 2 24,400 0.046 85 100 0.2 2 24,200 0.046 85 100 0.2 2 24,200 0.046 85 <	2	2.75	100	0.2	2	250		Random Foam #2	39.4	42.5		
8.3 100 0.2 2 760 2.75 100 0.2 2 80 5.5 100 0.2 2 168 8.3 100 0.2 2 168 8.3 100 0.2 2 256 14 100 0.2 2 256 29 100 0.2 2 10,000 0.0057 57 100 0.2 2 10,000 0.0057 71 100 0.2 2 14,900 0.0128 71 100 0.2 2 14,900 0.0128 85 100 0.2 2 14,900 0.022 85 100 0.2 2 24,400 0.046 85 100 0.2 2 24,400 0.046 85 100 0.2 2 28,400 0.046 85 100 0.2 2 28,400 0.046 </td <td>9</td> <td>5.5</td> <td>100</td> <td>0.2</td> <td>⁻2</td> <td>200</td> <td></td> <td>Random Foam #2</td> <td></td> <td>39.9</td> <td></td> <td></td>	9	5.5	100	0.2	⁻ 2	200		Random Foam #2		39.9		
2.75 100 0.2 2 80 5.5 100 0.2 2 168 8.3 100 0.2 2 4,900 0.0014 29 100 0.2 2 10,000 0.0057 43 100 0.2 2 14,900 0.0057 57 100 0.2 2 14,900 0.0128 71 100 0.2 2 14,900 0.0128 71 100 0.2 2 14,900 0.0128 71 100 0.2 2 14,900 0.0128 71 100 0.2 2 14,900 0.0128 85 100 0.2 2 24,400 0.0128 85 100 0.2 2 24,400 0.046 85 100 0.2 2 24,400 0.046 85 100 0.2 2 24,200 0.046 85 100 0.2 2 28,600 0.047 86 100 0.2 2 28,200 0.047 43 100 0.2 2 28,200 0.019 57 100 0.2 <td>7</td> <td>8.3</td> <td>100</td> <td>0.2</td> <td>2</td> <td>260</td> <td></td> <td>Random Foam #2</td> <td></td> <td>.47.6</td> <td></td> <td>Flashed Surface</td>	7	8.3	100	0.2	2	260		Random Foam #2		.47.6		Flashed Surface
2.75 100 0.2 2 80 5.5 100 0.2 2 168 8.3 100 0.2 2 256 14 100 0.2 2 4,900 0.0014 29 100 0.2 2 10,000 0.0057 43 100 0.2 2 14,900 0.0128 57 100 0.2 2 14,900 0.0128 71 100 0.2 2 14,900 0.022 71 100 0.2 2 14,900 0.0128 71 100 0.2 2 14,000 0.022 85 100 0.2 2 24,400 0.046 85 100 0.2 2 24,400 0.046 85 100 0.2 2 24,400 0.046 85 100 0.2 2 24,400 0.046 85 100												
5.5 100 0.2 2 168 8.3 100 0.2 2 256 14 100 0.2 2 4,900 0.0014 29 100 0.2 2 10,000 0.025 57 100 0.2 2 14,900 0.0128 71 100 0.2 2 19,600 0.0027 71 100 0.2 2 19,600 0.0128 71 100 0.2 2 19,600 0.022 71 100 0.2 2 19,600 0.022 85 100 0.2 2 24,400 0.026 85 100 0.2 2 24,400 0.046 85 100 0.2 2 24,400 0.046 85 100 0.2 2 28,600 0.046 85 100 0.2 2 28,400 0.047 86	12	2.75	9	0.2	2	80		Aligned Foam #2	37.6	36		
8.3 100 0.2 2 256 14 100 0.2 2 4,900 0.0014 29 100 0.2 2 10,000 0.0057 43 100 0.2 2 14,900 0.0128 71 100 0.2 2 19,600 0.0128 71 100 0.2 2 19,600 0.022 71 100 0.2 2 24,400 0.0386 85 100 0.2 2 24,400 0.046 85 100 0.2 2 24,400 0.046 85 100 0.2 2 24,400 0.046 85 100 0.2 2 24,400 0.046 85 100 0.2 2 28,400 0.046 85 100 0.2 2 28,400 0.047 86 100 0.2 2 28,400 0.0019 <t< td=""><td>5</td><td>5.5</td><td>8</td><td>0.2</td><td>2</td><td>168</td><td></td><td>Aligned Foam #2</td><td></td><td>35.9</td><td></td><td></td></t<>	5	5.5	8	0.2	2	168		Aligned Foam #2		35.9		
14 100 0.2 2 4,900 0.0014 29 100 0.2 2 10,000 0.0057 43 100 0.2 2 14,900 0.0128 57 100 0.2 2 14,900 0.0128 71 100 0.2 2 19,600 0.0128 71 100 0.2 2 19,600 0.022 85 100 0.2 2 24,400 0.0366 85 100 0.2 2 24,400 0.046 85 100 0.2 2 28,600 0.046 85 100 0.2 2 28,400 0.046 85 100 0.2 2 28,400 0.046 85 100 0.2 2 28,400 0.004 14 100 0.2 2 28,400 0.0019 57 100 0.2 2 24,000 0	4	8.3	8	0.2	2	256		Aligned Foam #2		36	Photographed	Flashed Surface
14 100 0.2 2 4,900 0.0014 29 100 0.2 2 10,000 0.0057 43 100 0.2 2 14,900 0.0128 71 100 0.2 2 14,900 0.0128 71 100 0.2 2 24,400 0.022 85 100 0.2 2 24,400 0.046 85 100 0.2 2 24,400 0.046 85 100 0.2 2 24,400 0.046 85 100 0.2 2 24,200 0.046 85 100 0.2 2 24,200 0.046 85 100 0.2 2 28,400 0.046 85 100 0.2 2 28,400 0.047 86 100 0.2 2 28,200 0.0019 71 100 0.2 2 24,000 0.0												
29 100 0.2 2 10,000 0.0057 43 100 0.2 2 14,900 0.0128 57 100 0.2 2 14,900 0.022 71 100 0.2 2 No Oscillogram 0.032 85 100 0.2 2 24,400 0.034 71 100 0.2 2 22,400 0.046 85 100 0.2 2 24,200 0.046 85 100 0.2 2 24,200 0.046 85 100 0.2 2 28,400 0.046 85 100 0.2 2 28,400 0.046 85 100 0.2 2 28,200 0.004 43 100 0.2 2 2,200 0.0019 57 100 0.2 2 24,000 0.019 71 100 0.2 2 24,000 <	2	14	8	0.2	2	4,900	0.0014	Random CFRP #1	9.1	2.75		
43 100 0.2 2 14,900 0.0128 57 100 0.2 2 No Oscillogram 0.022 71 100 0.2 2 24,400 0.0336 85 100 0.2 2 28,600 0.046 71 100 0.2 2 28,600 0.046 85 100 0.2 2 28,400 0.046 85 100 0.2 2 28,400 0.046 85 100 0.2 2 28,400 0.046 85 100 0.2 2 28,400 0.046 85 100 0.2 2 28,400 0.047 85 100 0.2 2 28,200 0.0014 86 100 0.2 2 5,000 0.0019 71 100 0.2 2 24,000 0.019 71 100 0.2 2 24,000	16	88	8	0.2	2	10,000	0.0057	Random CFRP #1		3.4		
57 100 0.2 2 19,600 0.022 71 100 0.2 2 No Oscillogram 0.0336 71 100 0.2 2 24,400 0.036 85 100 0.2 2 24,200 0.046 85 100 0.2 2 28,400 0.034 85 100 0.2 2 28,400 0.046 14 100 0.2 2 28,400 0.047 28 100 0.2 2 28,200 0.047 43 100 0.2 2 5,000 0.0014 57 100 0.2 2 14,600 0.019 57 100 0.2 2 2,000 0.019 71 100 0.2 2 24,000 0.019 85 100 0.2 2 24,000 0.019 85 100 0.2 2 24,000 <td< td=""><td>4</td><td>43</td><td>8</td><td>0.2</td><td>2</td><td>14,900</td><td>0.0128</td><td>Random CFRP #1</td><td></td><td>3.4</td><td></td><td></td></td<>	4	43	8	0.2	2	14,900	0.0128	Random CFRP #1		3.4		
71 100 0.2 2 No Oscillogram 71 100 0.2 2 24,400 0.0336 85 100 0.2 2 24,400 0.046 71 100 0.2 2 24,200 0.034 85 100 0.2 2 28,400 0.046 85 100 0.2 2 28,400 0.046 14 100 0.2 2 28,200 0.047 28 100 0.2 2 5,000 0.0014 43 100 0.2 2 8,800 0.0017 57 100 0.2 2 14,600 0.019 71 100 0.2 2 14,600 0.019 71 100 0.2 2 24,000 0.019 85 100 0.2 2 24,000 0.018 85 100 0.2 2 28,400 0.019	9	57	8	0.2	2	19,600	0.022	Random CFRP #1		3.6		
71 100 0.2 2 24,400 0.0336 85 100 0.2 2 28,600 0.046 71 100 0.2 2 24,200 0.034 85 100 0.2 2 28,400 0.046 85 100 0.2 2 28,400 0.046 14 100 0.2 2 28,200 0.047 28 100 0.2 2 5,000 0.0014 43 100 0.2 2 9,800 0.0019 57 100 0.2 2 14,600 0.019 71 100 0.2 2 19,400 0.019 71 100 0.2 2 24,000 0.018 85 100 0.2 2 28,400 0.018	19	71	8	0.2	2	No Oscillogram		Random CFRP #1		3.2	Photographed	Contact Sparking
85 100 0.2 2 28,600 0.046 71 100 0.2 2 24,200 0.034 85 100 0.2 2 28,400 0.046 14 100 0.2 2 28,200 0.047 28 100 0.2 2 5,000 0.0014 43 100 0.2 2 9,800 0.0027 57 100 0.2 2 14,600 0.019 71 100 0.2 2 19,400 0.019 71 100 0.2 2 24,000 0.019 85 100 0.2 2 24,000 0.018 85 100 0.2 2 28,400 0.018	ଷ	71	8	0.2	2	24,400	0.0336	Random CFRP #1		3.7	Photographed	Contact Sparking
71 100 0.2 2 24,200 0.034 85 100 0.2 2 28,400 0.046 85 100 0.2 2 28,200 0.047 14 100 0.2 2 5,000 0.0014 28 100 0.2 2 8,800 0.0027 43 100 0.2 2 14,600 0.019 57 100 0.2 2 19,400 0.019 71 100 0.2 2 24,000 0.018 85 100 0.2 2 24,000 0.018 85 100 0.2 2 28,400 0.018	21	88	8	0.2	7	28,600	0.046	Random CFRP #1		2.5	Photographed	Contact Sparking
85 100 0.2 2 24,600 0.034 85 100 0.2 2 28,400 0.046 14 100 0.2 2 26,200 0.047 28 100 0.2 2 5,000 0.0014 43 100 0.2 2 14,600 0.019 57 100 0.2 2 19,400 0.019 71 100 0.2 2 24,000 0.019 85 100 0.2 2 24,000 0.018 85 100 0.2 2 28,400 0.047	8	7	ξ	cc	,	24 200	7600	Cit Caroparo	┙	900	100	
85 100 0.2 2 28,400 0.046 85 100 0.2 2 28,200 0.047 14 100 0.2 2 5,000 0.0014 28 100 0.2 2 9,800 0.0027 43 100 0.2 2 14,600 0.019 57 100 0.2 2 19,400 0.019 71 100 0.2 2 24,000 0.018 85 100 0.2 2 28,400 0.018	3 8		3 3	3 0	,	20,52	13.5	המווסווו הדרי #2	70	8.3	LIMORIADIIEO	Contact Sparking
85 100 0.2 2 28,200 0.047 14 100 0.2 2 5,000 0.0014 28 100 0.2 2 9,800 0.0027 43 100 0.2 2 14,600 0.019 57 100 0.2 2 19,400 0.019 71 100 0.2 2 24,000 0.019 85 100 0.2 2 22,000 0.018	3	8	3	0.2	7	28,400	0.046	Handom CFHP #2		3.9		
14 100 0.2 2 5,000 0,0014 28 100 0.2 2 8,800 0,0027 43 100 0.2 2 14,600 0,019 57 100 0.2 2 19,400 0,019 71 100 0.2 2 24,000 0,019 85 100 0.2 2 22,000 0,018	20	AG.	٤	000	,	000 000	7,000	Aliand Octob #0	100	ŝ		
14 100 0.2 2 5,000 0,0014 28 100 0.2 2 9,800 0,0027 43 100 0.2 2 14,600 0,019 57 100 0.2 2 19,400 0,019 71 100 0.2 2 24,000 0,018 85 100 0.2 2 28,400 0,047	5	3	3	7,7	,	50,500	100	Ailgiled Ornr #2	0.0	200		
28 100 0.2 2 9,800 0.0027 43 100 0.2 2 14,600 0.019 57 100 0.2 2 19,400 0.019 71 100 0.2 2 24,000 0.018 85 100 0.2 2 28,400 0.047	25	14	8	0.2	2	5,000	0.0014	Graphite Control	0.64	0.083		
43 100 0.2 2 14,600 0.019 57 100 0.2 2 19,400 0.019 71 100 0.2 2 24,000 0.018 85 100 0.2 2 28,400 0.047	8	28	100	0.2	2	9,800	0.0027	Graphite Control		0.0623		
57 100 0.2 2 19,400 0.019 71 100 0.2 2 24,000 0.018 85 100 0.2 2 28,400 0.047	27	43	100	0.2	2	14,600	0.019	Graphite Control		0.0531		
71 100 0.2 2 24,000 0.018 85 100 0.2 2 28,400 0.047	82	25	100	0.2	2	19,400	0.019	Graphite Control		0.0485		
85 100 0.2 2 28,400 0.047	8	71	5	0.5	2	24,000	0.018	Graphite Control		0.0452		
	8	88	<u>8</u>	0.2	~	28,400	0.047	Graphite Control		0.0429		

Figure 12. Lighting strike testing

4. Conclusions

In this exploratory research project, a unique technical approach was developed to incorporate SWNTs buckypaper materials into conventional fiber-reinforced and foam composite structures for improved EMI and lightning strike protection properties. The EMI shielding and lightning strike attenuation properties of the carbon fiber-reinforced composites and foam structures with the surface layer of SWNT Buckypaper nanocomposite were preliminarily characterized. Four types of the designed EMI/lightning strike testing composite samples with SWNT buckypapers were successfully produced. Each sample had two layers of random or magnetically aligned buckypapers 15~25 µm thick. Each sample size was 6"x4"x1/8" with approximately 700mg purified SWNTs covering its surface. The results show that the foam structures with the buckypaper surface can achieve an average 21 dB of EMI shielding over the test range of 455 to 500 Mhz, compared to the control panel of pure foam structure. The results also show that the random buckypaper samples exhibited better EMI shielding properties. However, there was a slight reduction of EMI shielding of the carbon fiber composites with the buckypaper surface, compared to the controlled panel. For the lightning strike resistance, no visible improvement was observed. Further improvements in electrical conductivity of the SWNT buckypaper composites are vital for utilizing SWNTs to achieve EMI and lightning strike resistance properties for composite structures.

5. Acknowledgements

•

•

)

This work is supported by AFOSR/NL (Grand# FA9550-04-1-0349). The authors would like to thank the project managers, Dr. Charles Y-C Lee, for supporting this research

effort. The authors would also like to thank the support of the National High Magnetic Field Laboratory (NHMFL). We also would like to acknowledge the other contributors for this research at the FAMU-FSU College of Engineering and NHMFL:

Dr. James Brooks Mr. Olivier Marietta-Tondin Ms. Liao (Ashley) Yu-Hsuan

6. References

- 1. Ben Wang, Richard Liang, Chuck Zhang and Leslie Kramer, "Comprehensive Property Characterization of Nanotube Buckypaper-Reinforced Composite Materials," final report for the Grant #: F08630-01-1-0010 submitted to AFRL, 2004.
- 2. Z. Wang, Z. Liang, B. Wang, C. Zhang and L. Kramer, "Processing and Property Investigation of Single-Walled Carbon Nanotube (SWNT) Buckypaper/Epoxy Resin Matrix Nanocomposites," *Composite, Part A: Applied Science and Manufacturing*, Vol.35 (10), 1119-1233, 2004.
- 3. Z. Liang, R. Shankar, K. Barefield, C. Zhang, B. Wang and L. Kramer, "Electrical Resistivity and Mechanical Properties of Magnetically Aligned SWNT Buckypaper and Nanocomposites," 49th International SAMPE Symposium and Exhibition, Long Beach, California, May 16-20, 2323-2330, 2004.
- 4. B. Wang, R. Shankar, K. Barefield, G. Philippe, Z. Liang, C. Zhang and L. Kramer, "Fabrication and Characterization of Large Magnetically Aligned Carbon Nanotube Buckypapers and Their Composites," Proceedings of the 11th Foresight Conference on Molecular Nanotechnology, Burlingame, CA, October 9-12, 2003.
- 5. Z. Liang, K.R. Shankar, K. Barefield, C. Zhang, L. Kramer and B. Wang, "Investigation of Magnetically Aligned Carbon Nanotube Bucky Papers/Epoxy Composites," Proceedings of SAMPE 2003 (48th ISSE), Long Beach, CA, May 12-14, 1627-34, 2003.