

Amendments to the Claims

5 Please amend claims 1, 3-5 and 7-13 as shown in the following list of claims. This listing of claims will replace all prior versions, and listings, of claims in the application.

1 1. (currently amended) Computer graphics processor having a renderer for
2 rendering in parallel N, 3D 2D images of a 3D model, said renderer comprising:

3 [[-]] a rasterizer for transversing a surface grid over a surface of
4 primitives of said 3D images for all N different views of said 3D images,

5 [[-]] a shader unit for determining a color of the output of the rasteriser
6 and forwarding a shaded color sample along with its screen coordinates, and

7 [[-]] N screen space resamplers each for resampling the shaded color
8 sample determined by said shader unit means according to one of the N different
9 views.

1 2. (previously presented) Computer graphics processor according to claim 1,
2 further comprising:

3 a texture memory for storing texture maps,

4 wherein said surface grid is derived from a texture map being
5 associated with said primitive and being stored in said texture memory.

1 3. (currently amended) Computer graphics processor according to claim 2,
2 wherein a grid associated to one of the texture maps stored in the
3 texture memory is chosen as said surface grid, if three requirements are fulfilled,
4 said three requirements including:

5 said texture map is addressed independently,[[.]]

6 said texture map is based on a 2D texture, and

7 the texture coordinates at the vertices do not make up a degenerate
8 primitive.

1 4. (currently amended) Computer graphics processor according to claim 3,
2 wherein

3 the texture map with the largest area in texture space is chosen, if
4 more than one texture maps stored in said texture memory fulfill said three
5 requirements [[a)-c)].

1 5. (currently amended) Computer graphics processor according to claim 1 or
2 2, further comprising:

3 a means for addressing a display screen,
4 said renderer having an input for the [[a]] 3D model and an input
5 for at least one viewpoint for rendering image information for supplying to the
6 addressing means,

7 wherein the renderer further comprises an initial part having an
8 input for the 3-D model and for at least one main view point for rendering objects
9 in the form of at least one main view point Z-stack having stack layers with color
10 information and Z-values,

11 the renderer further comprising
12 a Z-stack constructor in which, from the at least one main view
13 point Z-stack generated by the initial stage, Z-stacks for additional viewpoints are
14 constructed, and a further image information occlusion semantics stage for
15 generating image information from the z-stacks.

1 6. (previously presented) Computer graphics processor according to claim 5,
2 wherein said renderer further comprises

3 an object extracter for extraction of objects from a view point z-
4 stack.

1 7. (currently amended) Computer graphics processor according to claim 6,
2 wherein the object extracter is arranged for extracting objects from the at least one
3 main view point view z-stack.

1 8. (currently amended) Computer graphics processor according to claim 5,
2 wherein the renderer comprises a DOF rendering stage

3 wherein the DOF rendering stage is arranged for DOF processing
4 of the at least one main view point view z-stack into [[a]] at least one main view
5 point z-stack comprising DOF blurring.

1 9. (currently amended) Method of rendering N different views of 3D images,
2 comprising the steps of:

3 [[-]] transversing a surface grid over a surface of primitives of said 3D
4 images for all the different N views of said 3D images,
5 [[-]] determining a color of the output of the transversing rasteriser and
6 forwarding a shaded color sample along with its screen coordinates, and
7 [[-]] resampling the shaded color sample ~~determined by said shader~~
8 ~~means~~ for each of the N different views.

1 10. (currently amended) Method of rendering N views of 3D images according
2 to claim 9, further comprising the steps of:

3 storing texture maps in a texture memory
4 wherein said surface grid is derived from a texture map being
5 associated with said primitive and being stored in said texture memory.

1 11. (currently amended) Method of rendering N views of 3D images according
2 to claim 10,

3 wherein a grid associated to one of the texture maps stored in the
4 texture memory is chosen as surface grid, if three requirements are fulfilled, said
5 three requirements including:

6 said texture map is addressed independently,[[.]]
7 said texture map is based on a 2D texture, and
8 the texture coordinates at the vertices do not make up a degenerate
9 primitive.

1 12. (currently amended) Method of rendering N views of 3D images according
2 to claim 11, wherein

the texture map with the largest area in texture space is chosen, if
more than one texture maps stored in said texture memory fulfill said three
requirements [[a)-c]]].

1 13. (currently amended) Method of rendering N views of 3D images according
2 to claim 11, further comprising the steps of:

3 supplying data and addressing means of a 3D display device
4 wherein for a main view point objects in the form of at least one main view point
5 Z-stack comprising stack layers are rendered with RGB and Z-values, and

constructing construction from the at least one main view point Z-
stack z-stacks for additional viewpoints, and

generating from the Z-stacks for additional viewpoints by means of
Z-tracing data to be supplied to the addressing means.

1 14. (previously presented) Computer program product comprising program
2 code means stored on a computer readable medium for performing a method
3 according to claim 9, when said program is run on a computer.