

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

62-019707

(43)Date of publication of application: 28.01.1987

(51)Int.CI.

G01B 15/02 H01L 21/66

(21)Application number : 60-158654

(71)Applicant : FUJITSU LTD

(22)Date of filing:

17.07.1985

(72)Inventor: KOBAYASHI KOICHI

SAKAMOTO JUICHI

(54) METHOD FOR MEASURING FILM THICKNESS

(57)Abstract:

PURPOSE: To exactly measure the thickness of a film having a small area in a non-contact and non-destructive state by projecting an electron beam of a square wave on the actual film surface and measuring the film thickness from the waveform of the current penetrating the film surface.

CONSTITUTION: A silicon dioxide film 12 (thin film) is formed on the surface of a silicon substrate 11. A synchroscope 14 is connected via a connecting terminal 13 and is grounded. The electron beam 15 of the square wave accelerated by a prescribed acceleration voltage is projected like an arrow on the surface region of the film 12. Then the beam current of the square wave flows to the substrate 11 and the film 12 and the current waveform is detected on the synchroscope 14. The waveform of the current past the film 12 and the substrate 11 is more approximate to the waveform of the original current as the acceleration voltage is larger and as the film thickness is smaller. The film thickness is thus made measurable by

measuring the delay time from the time when the original square wave of the peak value of the current waveform is impressed on the basis of said value.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

卵日本国特許庁(JP)

10 特許出願公開

四公開特許公報(A)

昭62 - 19707

@Int_Cl.4

識別記号

庁内整理番号

母公開 昭和62年(1987)1月28日

G 01 B 15/02 H 01 L 21/66 B-8304-2F 7168-5F

審査請求 未請求 発明の数 1 (全5頁)

膜厚の測定方法 の発明の名称

> ②特 頭 昭60-158654

❷出 願 昭60(1985)7月17日

林 您発 明 者 小

孝 川崎市中原区上小田中1015番地 富士通株式会社内

川崎市中原区上小田中1015番地 富士通株式会社内

個発 明 坂 本 樹一 者 富士 通株式会社 ①出 頭

川崎市中原区上小田中1015番地

弁理士 井桁 貞一 20代 理

1. 発明の名称

膜厚の測定方法

2. 特許請求の範囲

電子ピーム波形がパルス状の電子ピーム(15)を、 それぞれ異なる厚みを育する膜(12)の表面に印加

予めそれぞれの膜厚に対応して、核膜の導通電 液波形の印加時からピーク値迄の遅れ時間を測定 して、相関関係(第1図)を求めておき、

腰の厚さを測定する際には、該膜に矩形波の電 子ピームを印加して、該成膜に導通する電流波形 の印加時からピーク値迄の遅れ時間を求め、

この遅れ時間を前紀相関関係と比較することによ り、膜の膜厚を測定することを特徴とする膜厚の 测定方法。

3. 発明の幹細な説明

[概要]

本発明は、膜厚の測定方法であって、1000人以 下の極めて薄い膜厚を測定する方法であり、また

被測定膜を非接触、非破壊で膜厚を測定するため に、成蹟した腰面に加速電圧を変化した矩形波の 電子ピームを投射することにより、腰を流れる矩 形波の電子ピーム電流の波形を観測し、予め求め てある、膜厚と加速電圧と波形との相関を求めた 図裏と対照することにより膜厚の測定を行うもの である.

[廃棄上の利用分野]

化氯化物 化二氯化二氯酚基化二氮

本発明は、膜厚の測定方法に係わり、特に矩形 彼の電子ピームを使用することによる極薄膜の厚 みの測定方法に関する。

半導体装置の高集積化が進み、高密度化と緻密 化により、パターニングが微細になると共に、成 膜される腹厚も極めて痒い膜形成が必要になり、 さらにその頂厚を正確に測定することが要求され るようになった。

従来、1000 A 以下程度の薄膜では、膜厚の測定 には被測定腰に厚みの段差を形成し、それに光を 投射して、光学的反射法により測定するか、光学 的な干渉光を利用して膜厚を測定する方法等が採 用されている。

しかしながら、この場合には、被測定物を破壊 することになり、また、微小領域の膜厚を光学的 な手段で測定するためには原理的に不利であり、 精度も不正確になるという欠点がある。

このような理由から、被測定物を非接触で非破 壊の状態で、小面積の癖い膜厚でも正確に測定で きる方法が要望されている。

[従来の技術]

第5図は、従来の膜厚を測定するための模式要 部断面図である。

被測定物が光反射性であるシリコン等の場合には、下層物体1を例えばシリコンとし、その表面に薄膜2として、例えば二酸化シリコン膜があるものとし、その二酸化シリコン膜の膜厚を測定する場合には、薄膜2を破壊して改差3を形成してもの改差部分に、膜厚とほぼ同程度の波長を有る、例えば波長が約6000人のタリウム光源等を用

定物の複雑な光学的特性のために、精度が低く、 さらに小面積領域の膜厚が測定不可能等の問題が ある。

[問題点を解決するための手段]

[作用]

いた矢印のような光を投射して、それぞれの段差の差異による反射光をディスプレイ装置4に協画して、その画像5から、瞑厚を測定する方法が広く採用されている。

第6図は、従来の他の測定方法として、下層物体6の上層に光透過性の薄膜7の膜厚を測定する際に採用されるもので、被測定物の薄膜7に斜め方向から投射光8を投射し、薄膜7を透過して基板6から反射される反射光9と、薄膜6の表面から反射される反射光10との位相差の比較から、薄膜の厚みを求める方法である。

このような従来の方法では、光の被測定物からの光反射や光屈折が、膜厚測定領域との形状にも関連して複雑になり、その結果測定精度が低く、また被測定物に段差を形成する場合には、被測定物を破壊しなければならぬという欠点がある。

[発明が解決しようとする問題点]

従来の光学的方法による関厚測定方法では、被 測定物を破壊して段差を形成するとか、また被測

本発明は、よの物質に所定と、電子としていると、電子質にはできると、できると、できるでは、またでは、ないののでは、ないののでは、できるでは、できるでは、できるでは、できるでは、できるでは、できるでは、できるでは、できるできる。

そのため、予め、それぞれ異なる厚みの物質について、加速電圧をパラメータにして膜を貫通する矩形波の電波波形を測定すると、その物質について、加速電圧、波形のピーク値迄の遅れ時間,膜厚の相関関係が得られる。

この既知の相関関係を利用して、実際の膜面に 矩形波の電子ピームを投射して、その膜面貫通電 流波形から、膜厚を測定するものである。

THE PROOF STATES OF STATES

(实施例)

一般に、物質に電子ビームを投射すると、電子 はその物質の或る深さ迄到達するが、この場合に 周知の下記の式が成立する。

 $R_{g} = 4.6 \times 10^{-6} E / \rho$ (1)

(1)式で、

Rg = 物質内の電子の到達深さ(cm)

·ρ =物質の密度 (g/cd)

B. 一電子ピームの加速電圧(KV)

従って、加速電圧が大きい程、また密度が小である程、電子はその物質の深い部分まで到達し、 反対に加速電圧が小で、密度が大である程、電子 はその物質の後い部分までしか到達できない。

第1図は、所定の物質で薄膜を形成し、その薄膜に矩形波の電子ピームを投射した時に、矩形波の電子ピームが薄膜を通過した矩形波が、矩形波が印加されてからピーク値迄の時間と、矩形波の電子ピームの加速電圧との相関図であり、薄膜の厚みをパラメータにして表している。

第2図は、上記の関係図を求めるために行った 関揮の測定方法の断面図である。

シリコン基板11の表面に、例えば二酸化シリコン膜12の薄膜を形成し、基板には接続用線子13を介してシンクロスコープ14に接続して接地し、その薄膜の裏面領域に、所定の加速電圧で加速された矩形波の電子ピーム15で、矢印のように投射する。

シリコン基板11と二酸化シリコン膜12には、矩形波のピーム電流が流れ、シンクロスコープ14に電流波形が検知されるので、この被形からピーク 値にの遅れ時間を求めることができる。

第3図(4)〜第3図(1)は、薄膜に印加する矩形波の電子ピームと薄膜の厚さと基板と薄膜を貫通した電流波形とを、それぞれ比較している。

第3図(a)は薄膜に印加する原矩形波であり、第3図(b)~第3図(f)は、それぞれ加速徴圧が5KV、10KV、20KVが印加された際の膜厚を示している。

即ち第3図(a)の波形は加速電圧が5 K V で5000

人の厚み、10 K V で15000 人の厚み、20 K V で20 000 人の腹厚の時の波形を示している。

同様に第3図(e)の波形は加速電圧が5 K V で4000人の厚み、10 K V で12000 人の厚み、20 K V で40000 人の厚み、20 K V で40000 人の厚み、10 K V で2000人の厚み、10 K V で2000人の厚み、10 K V で2000人の厚み、10 K V で2000人の厚み、20 K V で2000人の厚み、20 K V で1000人の厚み、10 K V で3000人の厚み、20 K V で10000 人の厚厚の時の波形を示し、第3図(f)の波形は加速電圧が5 K V で5000人の厚み、10 K V で1500人の厚み、20 K V で5000人の厚み、10 K V で1500人の厚み、20 K V で5000人の厚み、10 K V で

即ち第3図(b)の波形はシンクロスコープで測定された、薄膜と基板を通過する電流波形図であるが、それぞれ加速電圧が大きくなる程、また膜厚が薄くなる程、薄膜と基板を通過してきた電流波形図は、原電波波形図に近似してくる。

従って、電流波形のピーク値(図でPで示して いる)を基準にして、その値の原矩形波を印加し

た時間からの遅れ時間を測定することにより、膜 厚が測定できることになる。

この遅れ時間は、加速電圧によるが n Sec 乃至 mSec程度である。

第4回は、本発明の実施例である薄膜の測定方法を示す模式断面図である。

シリコン基板21の表面に、二酸化シリコン膜22 があり、特に直径が数μα 程度の凹部23を形成して、その部分の薄膜24の厚みを測定するものとする。

測定方法は、矢印で示す矩形彼の電子ビーム25のビームスポットを、凹部にある環膜24の寸法に合わせて絞り、環膜にビーム投射することにより、シンクロスコープ26に映像される電流波形を観測して、ピーク値の遅れを測定し、第1図で説明した予め求めてある相関図に照合して、容易に膜厚を測定することができる。

[発明の効果]

以上、詳細に説明したように、本発明による頭

特開昭62-19707(4)

厚測定方法により、極薄膜の厚みを測定すること が可能となり、膜厚の正確測定により高精度の高 集積回路半導体装置を供し得るという効果大なる ものである。

4. 図面の簡単な説明

第1図は、譲厚をパラメータとした矩形彼のピーク値迄の時間と、電子ピームの加速電圧との相関図、

第2回は、本発明による膜原測定方法を説明するための模式要部断面図である。

第3図(4)~第3図(1)は、電流波形図、

第4回は、本発明の実施例である薄膜の湖定方法を示す模式断面図、

第5図は、従来の護厚を測定するための模式要 部断面図である。

第6図は、従来の他の隷厚を測定するための模式要部断面図、

図において、

世界域の 15 度を4 12 = 酸化シリコン度 11 ミリコン落板 11 キャランカスコーファ 11 シンプロスコーファ

類膜a测定方法e才T對面图

95 2 Ø

11はシリコン基板、 12は二酸化シリコン膜 13は段続端子 14はシンクロスコープ 15は矩形波の電子ピーム、 21はシリコン基板、 22は二酸化シリコン膜 23は凹部、 24は専膜、 25は電子ピーム、 26はシンクロスコープ をそれぞれ示している。

代理人 弁理士 井桁貞一

本発明の薄膜の測定方法をホの断面図 第 4 図

使未1限厚色测定73方法e末7厚现断面图 第 5 图

7 薄膜 9 反射光

從未內限厚在測定打法法在不十原理断面图 第 6 图