

Multivariate Fiat-Shamir signatures

SLMath summer school:

Introduction to Quantum-Safe Cryptography (IBM Zurich)

Simona Samardjiska

July, 2024

Institute for Computing and Information Sciences Radboud University

Recall the MQ problem from last time

Computational MQ problem

Given: m multivariate polynomials $p_1, p_2, \ldots, p_m \in \mathbb{F}_q[x_1, \ldots, x_n]$ of degree 2

Find: (if any) a vector $(u_1, \ldots, u_n) \in \mathbb{F}_q^n$ such that

$$\begin{cases} p_1(u_1,\ldots,u_n) = 0 \\ p_2(u_1,\ldots,u_n) = 0 \\ \ldots \\ p_m(u_1,\ldots,u_n) = 0 \end{cases}$$

- ► Recall also that traditionally MQ schemes are ad-hoc
 - the hard problem is not the MQ problem, and not only the MQ problem
- ▶ What does it take to get a provably secure MQ scheme?
 - MQDSS: first signature with (lossy) ROM reduction to MQ
 - SOFIA: first signature with (lossy) QROM reduction to MQ

Some brainstorming in Sofia with Andy and Peter

- ▶ Lack of provable MQ signature
- ▶ Inefficient signatures from 3-pass IDS [Sakumoto et al. '11]
 - big soundness error (2/3)

Some brainstorming in Sofia with Andy and Peter

- ▶ Lack of provable MQ signature
- ▶ Inefficient signatures from 3-pass IDS [Sakumoto et al. '11]
 - big soundness error (2/3)
- ► Can we gain smth. if we consider signatures from 5-pass IDS?
 - smaller soundness error $(\frac{q+1}{2q} \text{ over } \mathbb{F}_q) \Rightarrow \text{smaller signatures}$
 - FS transform for 5-pass already available [El Yousfi '12]
 - ▶ loose reduction in the ROM (as for 3-pass [Pointcheval & Stern '96])

Some brainstorming in Sofia with Andy and Peter

- ▶ Lack of provable MQ signature
- ▶ Inefficient signatures from 3-pass IDS [Sakumoto et al. '11]
 - big soundness error (2/3)
- ► Can we gain smth. if we consider signatures from 5-pass IDS?
 - smaller soundness error $(\frac{q+1}{2q} \text{ over } \mathbb{F}_q) \Rightarrow \text{smaller signatures}$
 - FS transform for 5-pass already available [El Yousfi '12]
 - ▶ loose reduction in the ROM (as for 3-pass [Pointcheval & Stern '96])

Canonical Identification Schemes

Informally:

- (1) Prover commits to some (randomized) value derived from sk
- (2) Verifier picks a challenge 'ch'
- (3) Prover computes response 'resp'
- (4) Verifier checks if response matches challenge

Properties of Canonical 3-pass IDS

Special soundness

There exists knowledge extractor ${\cal K}$ s.t. given two valid transcripts:

$$\mathsf{trans} = (\mathsf{com}, \mathsf{ch}, \mathsf{resp}), \ \mathsf{trans}' = (\mathsf{com}, \mathsf{ch}', \mathsf{resp}'), \quad \mathsf{ch} \neq \mathit{ch}',$$

extracts the secret sk with non-negligible probability

 \blacktriangleright (statistical) Honest-Verifier Zero-Knowledge There exists a PPT algorithm \mathcal{S} , called the simulator, such that the statistical distance between the real transcript and the simulated transcript is negligible in k.

The Fiat-Shamir transform

The Fiat-Shamir transform

The Fiat-Shamir transform

FS signature

$$trans = (com, ch, resp)$$

 $trans' = (com, ch', resp')$

Canonical 5-pass IDS

The Fiat-Shamir transform on 5-pass IDS

The Fiat-Shamir transform on 5-pass IDS

FS signature

Sakumoto-Shirai-Hiwatari 5-pass IDS

- ▶ Smaller soundness error $(\frac{q+1}{2q} \text{ over } \mathbb{F}_q) \Rightarrow$ smaller signatures
- ► Key technique: cut-and-choose for MQ

- ▶ Smaller soundness error $(\frac{q+1}{2q} \text{ over } \mathbb{F}_q) \Rightarrow$ smaller signatures
- ► Key technique: cut-and-choose for MQ
- ▶ Bilinear map G(x,y) = F(x+y) F(x) F(y)
 - Split s and F(s) into r_0, r_1 and $F(r_0), F(r_1)$
 - \blacktriangleright Since then $\textbf{s}=\textbf{r}_0+\textbf{r}_1\Rightarrow \textbf{F}(\textbf{s})=\textbf{G}(\textbf{r}_0,\textbf{r}_1)+\textbf{F}(\textbf{r}_0)+\textbf{F}(\textbf{r}_1)$
 - \bullet Split \textbf{r}_0 and $\textbf{F}(\textbf{r}_0)$ further into $\textbf{t}_0,\textbf{t}_1$ resp. $\textbf{e}_0,\textbf{e}_1$

- ▶ Smaller soundness error $(\frac{q+1}{2q} \text{ over } \mathbb{F}_q) \Rightarrow$ smaller signatures
- ► Key technique: cut-and-choose for MQ
- ▶ Bilinear map G(x,y) = F(x+y) F(x) F(y)
 - Split s and F(s) into r_0, r_1 and $F(r_0), F(r_1)$
 - \blacktriangleright Since then $\textbf{s}=\textbf{r}_0+\textbf{r}_1\Rightarrow \textbf{F}(\textbf{s})=\textbf{G}(\textbf{r}_0,\textbf{r}_1)+\textbf{F}(\textbf{r}_0)+\textbf{F}(\textbf{r}_1)$
 - \bullet Split \textbf{r}_0 and $\textbf{F}(\textbf{r}_0)$ further into $\textbf{t}_0,\textbf{t}_1$ resp. $\textbf{e}_0,\textbf{e}_1$

- ▶ Smaller soundness error $(\frac{q+1}{2q} \text{ over } \mathbb{F}_q) \Rightarrow$ smaller signatures
- ► Key technique: cut-and-choose for MQ
- ▶ Bilinear map G(x,y) = F(x+y) F(x) F(y)
 - Split s and F(s) into r_0, r_1 and $F(r_0), F(r_1)$
 - \blacktriangleright Since then $\textbf{s}=\textbf{r}_0+\textbf{r}_1\Rightarrow \textbf{F}(\textbf{s})=\textbf{G}(\textbf{r}_0,\textbf{r}_1)+\textbf{F}(\textbf{r}_0)+\textbf{F}(\textbf{r}_1)$
 - Split \mathbf{r}_0 and $\mathbf{F}(\mathbf{r}_0)$ further into $\mathbf{t}_0, \mathbf{t}_1$ resp. $\mathbf{e}_0, \mathbf{e}_1$
 - $r_0 = t_0 + t_1$
 - $F(r_0) = e_0 + e_1$
- \blacktriangleright Using bilinearity, $\textbf{v} = (\textbf{G}(t_0,\textbf{r}_1) + \textbf{e}_0) + (\textbf{F}(\textbf{r}_1) + \textbf{G}(t_1,\textbf{r}_1) + \textbf{e}_1)$
- ightharpoonup Result: reveal either \mathbf{r}_0 or \mathbf{r}_1 , and $(\mathbf{t}_1, \mathbf{e}_1)$
- Zero knowledge property satisfied

Sakumoto et al. 5-pass IDS

The extractor K needs 4 valid transcripts!

$$\begin{aligned} &(\mathsf{com}, \mathsf{ch}_1, \mathsf{resp}_1, \mathsf{ch}_2, \mathsf{resp}_2) \\ &(\mathsf{com}, \mathsf{ch}_1, \mathsf{resp}_1, \mathsf{ch}_2', \mathsf{resp}_2') \\ &(\mathsf{com}, \mathsf{ch}_1', \mathsf{resp}_1', \mathsf{ch}_2, \mathsf{resp}_2'') \\ &(\mathsf{com}, \mathsf{ch}_1', \mathsf{resp}_1', \mathsf{ch}_2', \mathsf{resp}_2''') \end{aligned}$$

Sakumoto et al. 5-pass IDS

The extractor K needs 4 valid transcripts!

```
 \begin{aligned} &(\mathsf{com}, \mathsf{ch_1}, \mathsf{resp_1}, \mathsf{ch_2}, \mathsf{resp_2}) \\ &(\mathsf{com}, \mathsf{ch_1}, \mathsf{resp_1}, \mathsf{ch_2}', \mathsf{resp_2'}) \\ &(\mathsf{com}, \mathsf{ch_1}', \mathsf{resp_1}', \mathsf{ch_2}, \mathsf{resp_2''}) \\ &(\mathsf{com}, \mathsf{ch_1}', \mathsf{resp_1}', \mathsf{ch_2}', \mathsf{resp_2'''}) \end{aligned}
```


- ▶ Focus attention on 5-pass IDS with second challenge space $|ChS_2| = 2$
 - Sakumoto et al. 5-pass IDS is such
 - Most in the literature are such

Next step ...

What is the problem with FS proof in the QROM?

- \blacktriangleright We need to see the signature σ before rewinding
- ▶ We need to see the oracle inputs
- ▶ Seeing (measuring) destroys the quantum state
- ► The proof fails terribly

Next step ...MQ signatures in the QROM

What is the problem with FS proof in the QROM?

- \blacktriangleright We need **to see** the signature σ before rewinding
- We need to see the oracle inputs
- ► Seeing (measuring) destroys the quantum state
- ► The proof fails terribly

A solution: Unruh transform [Unruh '14] adapted for q2 IDS

- ▶ Online extractability
- ▶ We can extract the witness without rewinding
- Enough transcripts directly available

Next step ...MQ signatures in the QROM

What is the problem with FS proof in the QROM?

- \blacktriangleright We need **to see** the signature σ before rewinding
- We need to see the oracle inputs
- Seeing (measuring) destroys the quantum state
- ► The proof fails terribly

A solution: Unruh transform [Unruh '14] adapted for q2 IDS

- ▶ Online extractability
- ▶ We can extract the witness without rewinding
- ► Enough transcripts directly available

We proposed SOFIA - MQ signature secure in the QROM

MQDSS vs **SOFIA**

	Sec.	q	n (= m)	r	pk (bytes)	sk (bytes)	Signature (bytes)
MQDSS-31-64 (AC '16)	128 (ROM)	31	48	269	72	64	40952
SOFIA-4-128 (PKC '18)	128 (QROM)	4	128	438	64	32	126176

- ▶ SOFIA still comparable to Picnic (with QROM proof),
- ▶ but much slower than SPHINCS + and lattice based schemes

NIST parameter sets MQDSS

	Sec. cat.	q	n (= m)	r	pk (bytes)	sk (bytes)	Signature (bytes)
MQDSS-31-48 (Round 2)	1-2	31	48	135	46	16	20854
MQDSS-31-64 (Round 2)	3-4	31	64	202	64	24	43728

An attack on MQDSS

- August 2019, Daniel Kales and Greg Zaverucha forgery in approx. 2⁹⁵ hash calls for MQDSS-31-48
- ▶ Can be mitigated by $\approx 1.4 \times (\text{number of rounds})$
- ▶ Proof still valid!
 - Attack is result of not taking into account non-tightness of proof for choosing parameters

An attack on MQDSS

- ▶ August 2019, Daniel Kales and Greg Zaverucha forgery in approx. 2⁹⁵ hash calls for MQDSS-31-48
- ▶ Can be mitigated by $\approx 1.4 \times (\text{number of rounds})$
- ▶ Proof still valid!
 - Attack is result of not taking into account non-tightness of proof for choosing parameters
- ► New parameters after attack (estimate):

	Sec. cat.	q	n	r	pk	sk	Signature
MQDSS-31-48 (new)	1-2	31	48	184	46B	16B	28400B
MQDSS-31-48 (Round 2)	1-2	31	48	135	46 B	16 B	20854 B
MQDSS-31-64 (new)	3-4	31	64	277	64B	24B	59928B
MQDSS-31-64 (Round 2)	3-4	31	64	202	64 B	24 B	43728 B

Developments during the NIST competition

- ► Fiat-Shamir shown secure in the QROM SOFIA becomes superfluous
- ▶ MQDSS proven secure in the QROM still, sizes are huge
- several approaches that drastically improve the signature size
- ▶ Mudfish [Beullens, Eurocrypt '20]
 - Idea to reduce soundness error by introducing a preprocessing phase with a trusted Helper
 - ullet And then have a regular Σ -protocol (satisfies completeness, special soundness, HVZK)
 - Takes inspiration from SOFIA and MPC-in-the-head [Katz, Kolesnikov, Wang, '18]
- ▶ MEDS, ALTEQ Fiat-Shamir Goldreich-Micali-Wigderson scheme based on variants of Isomorphism of Polynomials
- ▶ MQOM Fiat-Shamir based on MPC-in-the-head paradigm

[Goldreich-Micali-Wigderson '91]:

Let ϕ be an isomorphism s.t. $\mathcal{O}_1 = \phi(\mathcal{O}_0)$.

[Goldreich-Micali-Wigderson '91]:

Let ϕ be an isomorphism s.t. $\mathcal{O}_1 = \phi(\mathcal{O}_0)$.

[Goldreich-Micali-Wigderson '91]:

Let ϕ be an isomorphism s.t. $\mathcal{O}_1 = \phi(\mathcal{O}_0)$.

[Goldreich-Micali-Wigderson '91]:

Let ϕ be an isomorphism s.t. $\mathcal{O}_1 = \phi(\mathcal{O}_0)$.

[Goldreich-Micali-Wigderson '91]:

Let ϕ be an isomorphism s.t. $\mathcal{O}_1 = \phi(\mathcal{O}_0)$.

[Goldreich-Micali-Wigderson '91]:

Let ϕ be an isomorphism s.t. $\mathcal{O}_1 = \phi(\mathcal{O}_0)$.

[Goldreich-Micali-Wigderson '91]:

Let ϕ be an isomorphism s.t. $\mathcal{O}_1 = \phi(\mathcal{O}_0)$.

[Goldreich-Micali-Wigderson '91]:

Let ϕ be an isomorphism s.t. $\mathcal{O}_1 = \phi(\mathcal{O}_0)$.

[Goldreich-Micali-Wigderson '91]:

Let ϕ be an isomorphism s.t. $\mathcal{O}_1 = \phi(\mathcal{O}_0)$.

[Goldreich-Micali-Wigderson '91]:

Let ϕ be an isomorphism s.t. $\mathcal{O}_1 = \phi(\mathcal{O}_0)$.

[Goldreich-Micali-Wigderson '91]:

Let ϕ be an isomorphism s.t. $\mathcal{O}_1 = \phi(\mathcal{O}_0)$.

Generic hard equivalence problem $EQ(\mathcal{O}_0, \mathcal{O}_1)$:

Generic hard equivalence problem $EQ(\mathcal{O}_0, \mathcal{O}_1)$:

Generic hard equivalence problem $EQ(\mathcal{O}_0, \mathcal{O}_1)$:

Given \mathcal{O}_0 and \mathcal{O}_1 , find (if any) an isomorphism ϕ s.t. $\mathcal{O}_1 = \phi(\mathcal{O}_0)$

▶ Isomorphism of polynomials - Patarin's signature, 1998

Generic hard equivalence problem $EQ(\mathcal{O}_0, \mathcal{O}_1)$:

- ▶ **Isomorphism of polynomials** Patarin's signature, 1998
- Quasigroup isotopy Identification scheme, Denes, 2001

Generic hard equivalence problem $EQ(\mathcal{O}_0, \mathcal{O}_1)$:

- ▶ Isomorphism of polynomials Patarin's signature, 1998
- ▶ Quasigroup isotopy Identification scheme, Denes, 2001
- ▶ Isogeny on eliptic curves SeaSign 2018, SqiSign 2020, De Feo et al.

Generic hard equivalence problem $EQ(\mathcal{O}_0, \mathcal{O}_1)$:

- ▶ Isomorphism of polynomials Patarin's signature, 1998
- Quasigroup isotopy Identification scheme, Denes, 2001
- ▶ **Isogeny on eliptic curves** SeaSign 2018, SqiSign 2020, De Feo et al.
- ▶ Code equivalence LESS Biasse et al. 2020, LESS-FM Barenghi et al. 2021

Generic hard equivalence problem $EQ(\mathcal{O}_0, \mathcal{O}_1)$:

- ▶ Isomorphism of polynomials Patarin's signature, 1998
- Quasigroup isotopy Identification scheme, Denes, 2001
- ▶ **Isogeny on eliptic curves** SeaSign 2018, SqiSign 2020, De Feo et al.
- ▶ Code equivalence LESS Biasse et al. 2020, LESS-FM Barenghi et al. 2021
- ▶ Alternate trilinear form equivalence Tang et al. 2022

Generic hard equivalence problem $EQ(\mathcal{O}_0, \mathcal{O}_1)$:

- ▶ Isomorphism of polynomials Patarin's signature, 1998
- Quasigroup isotopy Identification scheme, Denes, 2001
- ▶ **Isogeny on eliptic curves** SeaSign 2018, SqiSign 2020, De Feo et al.
- ▶ Code equivalence LESS Biasse et al. 2020, LESS-FM Barenghi et al. 2021
- ▶ Alternate trilinear form equivalence Tang et al. 2022
- ▶ Lattice isomorphism Ducas and van Woerden 2022

Generic hard equivalence problem $EQ(\mathcal{O}_0, \mathcal{O}_1)$: Given \mathcal{O}_0 and \mathcal{O}_1 , find (if any) an isomorphism ϕ s.t. $\mathcal{O}_1 = \phi(\mathcal{O}_0)$

- ▶ Isomorphism of polynomials Patarin's signature, 1998
- Quasigroup isotopy Identification scheme, Denes, 2001
- ▶ Isogeny on eliptic curves SeaSign 2018, SqiSign 2020, De Feo et al.
- ▶ Code equivalence LESS Biasse et al. 2020, LESS-FM Barenghi et al. 2021
- ▶ Alternate trilinear form equivalence Tang et al. 2022
- ▶ Lattice isomorphism Ducas and van Woerden 2022
- ▶ Matrix code equivalence with Tung Chou, Ruben Niederhagen, Edoardo Persichetti, Tovohery Hajatiana Randrianarisoa, Lars Ran, Krijn Reijnders, Monika Trimoska , 2022
- **▶** ...

Matrix code - a subspace of $\mathcal{M}_{m \times n}(\mathbb{F}_q)$ of dimension k endowed with **rank metric**

$$d(\mathbf{A},\mathbf{B}) = \mathsf{Rank}(\mathbf{A} - \mathbf{B})$$

Matrix code - a subspace of $\mathcal{M}_{m\times n}(\mathbb{F}_q)$ of dimension k endowed with rank metric

$$d(\mathbf{A}, \mathbf{B}) = \mathsf{Rank}(\mathbf{A} - \mathbf{B})$$

Matrix Code Equivalence (MCE) problem [Berger, 2003]

Input: Two *k*-dimensional matrix codes $\mathcal{C}, \mathcal{D} \subset \mathcal{M}_{m,n}(q)$

Question: Find – if any – $\mathbf{A} \in GL_m(q)$, $\mathbf{B} \in GL_n(q)$ (an isometry) s.t. for all $\mathbf{C} \in \mathcal{C}$, it holds

that

$$\textbf{ACB} \in \mathcal{D}$$

Matrix code - a subspace of $\mathcal{M}_{m\times n}(\mathbb{F}_q)$ of dimension k endowed with rank metric

$$d(\mathbf{A}, \mathbf{B}) = \mathsf{Rank}(\mathbf{A} - \mathbf{B})$$

Matrix Code Equivalence (MCE) problem [Berger, 2003]

Input: Two *k*-dimensional matrix codes $C, D \subset \mathcal{M}_{m,n}(q)$

Question: Find – if any – $\mathbf{A} \in GL_m(q)$, $\mathbf{B} \in GL_n(q)$ (an isometry) s.t. for all $\mathbf{C} \in \mathcal{C}$, it holds

that

$$\textbf{ACB} \in \mathcal{D}$$

Related problems

► Matrix Codes Right (Left) Equivalence problem (MCRE) – A (B) is trivial

Matrix code - a subspace of $\mathcal{M}_{m \times n}(\mathbb{F}_q)$ of dimension k endowed with **rank metric**

$$d(\mathbf{A}, \mathbf{B}) = \mathsf{Rank}(\mathbf{A} - \mathbf{B})$$

Matrix Code Equivalence (MCE) problem [Berger, 2003]

Input: Two k-dimensional matrix codes $\mathcal{C},\mathcal{D}\subset\mathcal{M}_{m,n}(q)$

Question: Find – if any – $\mathbf{A} \in GL_m(q)$, $\mathbf{B} \in GL_n(q)$ (an isometry) s.t. for all $\mathbf{C} \in \mathcal{C}$, it holds

that

$$\textbf{ACB} \in \mathcal{D}$$

Related problems

- ► Matrix Codes Right (Left) Equivalence problem (MCRE) A (B) is trivial
- ▶ \mathbb{F}_{q^m} -linear codes MCE reduces to MCRE

Known results - relations to other problems

Quadratic Maps Linear Equivalence (QMLE) problem

Introduced by Patarin 1996 as Isomorphism of Polynomials (IP) problem for building an identification scheme and FS signature!

Quadratic Maps Linear Equivalence (QMLE) problem

Input: Two *k*-tuples of quadratic multivariate polynomials $\mathcal{F},\ \mathcal{P}\in\mathbb{F}_q[x_1,\ldots,x_n]^k$

Question: Find – if any – invertible matrices $\boldsymbol{S}, \boldsymbol{T}$ such that

$$P(x) = TF(Sx).$$

Quadratic Maps Linear Equivalence (QMLE) problem

Introduced by Patarin 1996 as Isomorphism of Polynomials (IP) problem for building an identification scheme and FS signature!

Quadratic Maps Linear Equivalence (QMLE) problem

Input: Two *k*-tuples of quadratic multivariate polynomials $\mathcal{F},\ \mathcal{P}\in\mathbb{F}_q[x_1,\ldots,x_n]^k$

Question: Find – if any – invertible matrices S, T such that

$$\mathcal{P}(x) = T\mathcal{F}(Sx).$$

Related problems

ightharpoonup Isomorphism of Polynomials with one secret (IP1 $\mathcal S$), when T is trivial - easy

Quadratic Maps Linear Equivalence (QMLE) problem

Introduced by Patarin 1996 as Isomorphism of Polynomials (IP) problem for building an identification scheme and FS signature!

Quadratic Maps Linear Equivalence (QMLE) problem

Input: Two *k*-tuples of quadratic multivariate polynomials $\mathcal{F},\ \mathcal{P}\in\mathbb{F}_q[x_1,\ldots,x_n]^k$

Question: Find – if any – invertible matrices $\boldsymbol{S}, \boldsymbol{T}$ such that

$$P(x) = TF(Sx).$$

Related problems

- ▶ Isomorphism of Polynomials with one secret (IP1S), when T is trivial easy
- homogenous version hQMLE hard
- ▶ inhomogenous version easy (heuristic result [FP06])

Alternating trilinear form equivalence problem (ATFE)

Alternating trilinear form:
$$\phi(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \sum_{1 \leq i < j < s \leq n} c_{ijs} \begin{vmatrix} x_i & y_i & z_i \\ x_j & y_j & z_j \\ x_s & y_s & z_s \end{vmatrix}$$
 where $c_{ijs} \in \mathbb{F}_q$.

▶ Can be stored using $\binom{n}{3}$ entries: one for each c_{ijs} coefficient

Alternating trilinear form equivalence (ATFE) problem

Input: Two alternating trilinear forms $\phi, \psi \in \mathbb{F}_q[\mathbf{x}, \mathbf{y}, \mathbf{z}]$.

Question: Find – if any – invertible A such that $\psi(\mathbf{x},\mathbf{y},\mathbf{z})=\phi(\mathbf{A}\mathbf{x},\mathbf{A}\mathbf{y},\mathbf{A}\mathbf{z}).$

Alternating trilinear form equivalence problem (ATFE)

Alternating trilinear form:
$$\phi(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \sum_{1 \leq i < j < s \leq n} c_{ijs} \begin{vmatrix} x_i & y_i & z_i \\ x_j & y_j & z_j \\ x_s & y_s & z_s \end{vmatrix}$$
 where $c_{ijs} \in \mathbb{F}_q$.

▶ Can be stored using $\binom{n}{3}$ entries: one for each c_{ijs} coefficient

Alternating trilinear form equivalence (ATFE) problem

Input: Two alternating trilinear forms $\phi, \psi \in \mathbb{F}_q[\mathbf{x}, \mathbf{y}, \mathbf{z}]$.

Question: Find – if any – invertible A such that $\psi(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \phi(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y}, \mathbf{A}\mathbf{z})$.

- ▶ Used by Tang et al. '22 to build a signature scheme with competitive signature sizes
- ▶ Shown to be equivalent to hQMLE (Grochow et al. '21)

Matrix codes:

MCE:

▶ matrix codes of rectangular matrices

Matrix codes:

MCE:

- matrix codes of rectangular matrices
- ightharpoonup isometry (\mathbf{A},\mathbf{B})

Systems of polynomials in matrix representation:

Systems of polynomials in matrix representation:

hQMLE:

matrix codes of symmetric matrices

Systems of polynomials in matrix representation:

hQMLE:

- matrix codes of symmetric matrices
- ▶ isometry $(\mathbf{A}, \mathbf{A}^\top)$

MCE, QMLE and ATFE look very similar!

Systems of polynomials in matrix representation:

hQMLE:

- matrix codes of symmetric matrices
- ▶ isometry $(\mathbf{A}, \mathbf{A}^\top)$
- ▶ hQMLE can be seen as MCE, and vice versa

MCE, QMLE and ATFE look very similar!

Trilinear forms in matrix representation:

ATFE:

matrix codes of skew symmetric matrices

We will come back to cryptanalysis of this problem!

MCE, QMLE and ATFE look very similar!

Trilinear forms in matrix representation:

ATFE:

- matrix codes of skew symmetric matrices
- ▶ isometry $(\mathbf{A}, \mathbf{A}^\top)$
- ▶ ATFE can be seen as MCE, and as hQMLE (and vice versa)

We will come back to cryptanalysis of this problem!

▶ Challenge space is of size $2 \Rightarrow$ Soundness error is 1/2

- ▶ Challenge space is of size $2 \Rightarrow$ Soundness error is 1/2
- ▶ For security of λ bits, needs to be repeated $r = \lambda$ times!

- ▶ Challenge space is of size $2 \Rightarrow$ Soundness error is 1/2
- ▶ For security of λ bits, needs to be repeated $r = \lambda$ times!
- ightharpoonup \Rightarrow Signature contains λ isometries (from λ rounds)

- ▶ Challenge space is of size $2 \Rightarrow$ Soundness error is 1/2
- ▶ For security of λ bits, needs to be repeated $r = \lambda$ times!
- ightharpoonup \Rightarrow Signature contains λ isometries (from λ rounds)
- $\blacktriangleright \ \Rightarrow$ All operations in signing and verification need to be repeated λ times

▶ Challenge space is now of size $N \Rightarrow$ Soundness error is 1/N

- ▶ Challenge space is now of size $N \Rightarrow$ Soundness error is 1/N
- ▶ For security of λ bits, needs to be repeated $r = \frac{\lambda}{\log N}$ times!

- ▶ Challenge space is now of size $N \Rightarrow$ Soundness error is 1/N
- ▶ For security of λ bits, needs to be repeated $r = \frac{\lambda}{\log N}$ times!
- ightharpoonup \Rightarrow Signature contains $\frac{\lambda}{\log N}$ isometries

- ▶ Challenge space is now of size $N \Rightarrow$ Soundness error is 1/N
- ▶ For security of λ bits, needs to be repeated $r = \frac{\lambda}{\log N}$ times!
- ightharpoonup \Rightarrow Signature contains $\frac{\lambda}{\log N}$ isometries
- ightharpoonup \Rightarrow All operations in signing and verification need to be repeated $\frac{\lambda}{\log N}$ times

- ▶ Challenge space is now of size $N \Rightarrow$ Soundness error is 1/N
- ▶ For security of λ bits, needs to be repeated $r = \frac{\lambda}{\log N}$ times!
- ightharpoonup \Rightarrow Signature contains $\frac{\lambda}{\log N}$ isometries
- ightharpoonup \Rightarrow All operations in signing and verification need to be repeated $\frac{\lambda}{\log N}$ times
- ► There is a cost N-fold increase in public and private key

- ▶ Challenge space is now of size $N \Rightarrow$ Soundness error is 1/N
- ▶ For security of λ bits, needs to be repeated $r = \frac{\lambda}{\log N}$ times!
- ightharpoonup \Rightarrow Signature contains $\frac{\lambda}{\log N}$ isometries
- ightharpoonup \Rightarrow All operations in signing and verification need to be repeated $\frac{\lambda}{\log N}$ times
- ► There is a cost *N*-fold increase in public and private key
- ► Always necessary to find the best trade-off

▶ The map ψ_0 is chosen at random \Rightarrow one can include only seed in signature

- lacktriangle The map ψ_0 is chosen at random \Rightarrow one can include only seed in signature
 - ullet ψ_0 can be reconstructed from the seed

- ▶ The map ψ_0 is chosen at random \Rightarrow one can include only seed in signature
 - ullet ψ_0 can be reconstructed from the seed
- **Problem:** This works only for ch = 0, and probability of choosing challenge 0 is 1/N

- ▶ The map ψ_0 is chosen at random \Rightarrow one can include only seed in signature
 - ullet ψ_0 can be reconstructed from the seed
- **Problem:** This works only for ch = 0, and probability of choosing challenge 0 is 1/N
 - ⇒ not a big benefit in general

- ▶ The map ψ_0 is chosen at random \Rightarrow one can include only seed in signature
 - ullet ψ_0 can be reconstructed from the seed
- **Problem:** This works only for ch = 0, and probability of choosing challenge 0 is 1/N
 - ⇒ not a big benefit in general
 - ⇒ signature is not of constant size

- ▶ The map ψ_0 is chosen at random \Rightarrow one can include only seed in signature
 - ullet ψ_0 can be reconstructed from the seed
- **Problem:** This works only for ch = 0, and probability of choosing challenge 0 is 1/N
 - ⇒ not a big benefit in general
 - ⇒ signature is not of constant size
- ▶ Idea: Always have a fixed number *M* of 0 challenges

- ▶ The map ψ_0 is chosen at random \Rightarrow one can include only seed in signature
 - ullet ψ_0 can be reconstructed from the seed
- **Problem:** This works only for ch = 0, and probability of choosing challenge 0 is 1/N
 - ⇒ not a big benefit in general
 - ⇒ signature is not of constant size
- \blacktriangleright Idea: Always have a fixed number M of 0 challenges
 - We need a special hash function that always produces fixed weight outputs

- ▶ The map ψ_0 is chosen at random \Rightarrow one can include only seed in signature
 - ullet ψ_0 can be reconstructed from the seed
- **Problem:** This works only for ch = 0, and probability of choosing challenge 0 is 1/N
 - ⇒ not a big benefit in general
 - ⇒ signature is not of constant size
- ▶ Idea: Always have a fixed number *M* of 0 challenges
 - We need a special hash function that always produces fixed weight outputs
 - Always necessary to find the best trade-off

- ▶ The map ψ_0 is chosen at random \Rightarrow one can include only seed in signature
 - ullet ψ_0 can be reconstructed from the seed
- **Problem:** This works only for ch = 0, and probability of choosing challenge 0 is 1/N
 - ⇒ not a big benefit in general
 - ⇒ signature is not of constant size
- ▶ Idea: Always have a fixed number *M* of 0 challenges
 - We need a special hash function that always produces fixed weight outputs
 - Always necessary to find the best trade-off

So how better are these schemes in terms of performance?

For example, MEDS:

MEDS	q	n (≈ m)	r	pk (bytes)	Signature (bytes)
level 1	4093	25	144	21595	5456
level 2	4093	34	208	55520	10786
level 3	4093	44	272	122000	21052

Important to note:

- QMLE/MCE still not so well understood
- Not NP-hard but likely still hard
- ▶ Secure practical parameters significantly changed in the last few years, as our understanding improved

Solving matrix code equivalence

problems

Solving matrix code equivalence problems

Several approaches:

► Graph-based techniques

Solving matrix code equivalence problems

Several approaches:

- ▶ Graph-based techniques
- ► Algebraic models

Solving matrix code equivalence problems

Several approaches:

- ► Graph-based techniques
- ► Algebraic models
- ▶ Leon-like approach (graph-based+algebraic)

ightharpoonup [Faugére, Peret, 2006] – inhomogenous version is easy ($\mathcal{O}(n^9)$ heuristically)

- ▶ [Faugére, Peret, 2006] inhomogenous version is easy ($\mathcal{O}(n^9)$ heuristically)
- ▶ [Bouillaguet, Fouque & Véber, 2013] **Graph based approach** $\mathcal{O}(q^{\frac{2}{3}n}n^9)$

- ▶ [Faugére, Peret, 2006] inhomogenous version is easy ($\mathcal{O}(n^9)$ heuristically)
- ▶ [Bouillaguet, Fouque & Véber, 2013] **Graph based approach** $\mathcal{O}(q^{\frac{2}{3}n}n^9)$
 - ullet Crucial observation: One collision point ullet = aS turns a hard homogenous instance into easy inhomogenous one

- ▶ [Faugére, Peret, 2006] inhomogenous version is easy $(\mathcal{O}(n^9)$ heuristically)
- ▶ [Bouillaguet, Fouque & Véber, 2013] Graph based approach $\mathcal{O}(q^{\frac{2}{3}n}n^9)$
 - ullet Crucial observation: One collision point ullet = aS turns a hard homogenous instance into easy inhomogenous one

if
$$\mathbf{b} = \mathbf{aS}$$
, then $\mathcal{P}(\mathbf{x} + \mathbf{a}) = \mathcal{F}(\mathbf{xS} + \mathbf{b})\mathbf{T}$.

- ▶ [Faugére, Peret, 2006] inhomogenous version is easy $(\mathcal{O}(n^9)$ heuristically)
- ▶ [Bouillaguet, Fouque & Véber, 2013] Graph based approach $\mathcal{O}(q^{\frac{2}{3}n}n^9)$
 - Crucial observation: One collision point b = aS turns a hard homogenous instance into easy inhomogenous one

```
if \mathbf{b} = \mathbf{aS}, then \mathcal{P}(\mathbf{x} + \mathbf{a}) = \mathcal{F}(\mathbf{xS} + \mathbf{b})\mathbf{T}.

\Rightarrow \mathcal{P}'(\mathbf{x}) = \mathcal{P}(\mathbf{x} + \mathbf{a}), \mathcal{F}'(\mathbf{x}) = \mathcal{F}(\mathbf{x} + \mathbf{b}) is easy instance!
```

- ▶ [Faugére, Peret, 2006] inhomogenous version is easy $(\mathcal{O}(n^9)$ heuristically)
- ▶ [Bouillaguet, Fouque & Véber, 2013] **Graph based approach** $\mathcal{O}(q^{\frac{2}{3}n}n^9)$
 - ullet Crucial observation: One collision point ullet = aS turns a hard homogenous instance into easy inhomogenous one

```
if \mathbf{b} = \mathbf{aS}, then \mathcal{P}(\mathbf{x} + \mathbf{a}) = \mathcal{F}(\mathbf{xS} + \mathbf{b})\mathbf{T}.

\Rightarrow \mathcal{P}'(\mathbf{x}) = \mathcal{P}(\mathbf{x} + \mathbf{a}), \mathcal{F}'(\mathbf{x}) = \mathcal{F}(\mathbf{x} + \mathbf{b}) is easy instance!
```

Problem is reduced to finding the collision

Algebraic modelling of MCE - the straightforward way

For $(\mathbf{C}^{(1)},\ldots,\mathbf{C}^{(k)})$ and $(\mathbf{D}^{(1)},\ldots,\mathbf{D}^{(k)})$ bases of \mathcal{C} and \mathcal{D} , find invertible \mathbf{A},\mathbf{B} and $\mathbf{T}=(t_{ij})$ s.t.:

$$\sum_{1 \le s \le k} t_{rs} \mathbf{D}^{(s)} = \mathbf{AC}^{(r)} \mathbf{B}, \quad \forall r, 1 \leqslant r \leqslant k$$

Algebraic modelling of MCE - the straightforward way

For $(\mathbf{C}^{(1)},\ldots,\mathbf{C}^{(k)})$ and $(\mathbf{D}^{(1)},\ldots,\mathbf{D}^{(k)})$ bases of \mathcal{C} and \mathcal{D} , find invertible \mathbf{A},\mathbf{B} and $\mathbf{T}=(t_{ij})$ s.t.:

$$\sum_{1\leqslant s\leqslant k}t_{rs}\mathbf{D}^{(s)}=\mathbf{AC}^{(r)}\mathbf{B},\ \forall r,1\leqslant r\leqslant k$$

▶ Directly: bilinear system of knm eqns in $m^2 + n^2 + k^2$ vars (bilinear $a_{ij}b_{i'j'}$, linear t_{rs})

Algebraic modelling of MCE - the straightforward way

For $(\mathbf{C}^{(1)},\ldots,\mathbf{C}^{(k)})$ and $(\mathbf{D}^{(1)},\ldots,\mathbf{D}^{(k)})$ bases of \mathcal{C} and \mathcal{D} , find invertible \mathbf{A},\mathbf{B} and $\mathbf{T}=(t_{ij})$ s.t.:

$$\sum_{1\leqslant s\leqslant k}t_{rs}\mathbf{D}^{(s)}=\mathbf{AC}^{(r)}\mathbf{B},\ \forall r,1\leqslant r\leqslant k$$

- ▶ Directly: bilinear system of knm eqns in $m^2 + n^2 + k^2$ vars (bilinear $a_{ij}b_{i'j'}$, linear t_{rs})
 - Security estimates too high

For $(\mathbf{C}^{(1)},\ldots,\mathbf{C}^{(k)})$ and $(\mathbf{D}^{(1)},\ldots,\mathbf{D}^{(k)})$ bases of \mathcal{C} and \mathcal{D} , find invertible \mathbf{A},\mathbf{B} and $\mathbf{T}=(t_{ij})$ s.t.:

$$\sum_{1\leqslant s\leqslant k}t_{rs}\mathsf{D}^{(s)}=\mathsf{AC}^{(r)}\mathsf{B},\ \ orall r,1\leqslant r\leqslant k$$

- **Directly:** bilinear system of *knm* eqns in $m^2 + n^2 + k^2$ vars (bilinear $a_{ij}b_{i'j'}$, linear t_{rs})
 - Security estimates too high
- ▶ Coefs of $\mathbf{A}_{i_{-}}$ and $\mathbf{A}_{j_{-}}$ (\mathbf{B}_{-i} and \mathbf{B}_{-j}) don't appear in same equation

For $(\mathbf{C}^{(1)},\ldots,\mathbf{C}^{(k)})$ and $(\mathbf{D}^{(1)},\ldots,\mathbf{D}^{(k)})$ bases of \mathcal{C} and \mathcal{D} , find invertible \mathbf{A},\mathbf{B} and $\mathbf{T}=(t_{ij})$ s.t.:

$$\sum_{1\leqslant s\leqslant k}t_{rs}\mathsf{D}^{(s)}=\mathsf{AC}^{(r)}\mathsf{B},\ \ \forall r,1\leqslant r\leqslant k$$

- ▶ **Directly:** bilinear system of *knm* eqns in $m^2 + n^2 + k^2$ vars (bilinear $a_{ij}b_{i'j'}$, linear t_{rs})
 - Security estimates too high
- ▶ Coefs of A_{i_-} and A_{j_-} (B_{-i} and B_{-j}) don't appear in same equation
- ▶ Consider only a small number α of rows of A, i.e.,

$$\sum_{1 \leq s \leq k} t_{rs} \mathbf{D}_{i}^{(s)} = \mathbf{A}_{i} \mathbf{C}^{(r)} \mathbf{B}, \quad \forall r, i, \ 1 \leqslant r \leqslant k, \ 1 \leqslant i \leqslant \alpha.$$

For $(\mathbf{C}^{(1)},\ldots,\mathbf{C}^{(k)})$ and $(\mathbf{D}^{(1)},\ldots,\mathbf{D}^{(k)})$ bases of \mathcal{C} and \mathcal{D} , find invertible \mathbf{A},\mathbf{B} and $\mathbf{T}=(t_{ij})$ s.t.:

$$\sum_{1\leqslant s\leqslant k}t_{rs}\mathsf{D}^{(s)}=\mathsf{AC}^{(r)}\mathsf{B},\ \ orall r,1\leqslant r\leqslant k$$

- ▶ Directly: bilinear system of knm eqns in $m^2 + n^2 + k^2$ vars (bilinear $a_{ij}b_{i'j'}$, linear t_{rs})
 - Security estimates too high
- ▶ Coefs of A_{i_-} and A_{j_-} (B_{-i} and B_{-j}) don't appear in same equation
- ▶ Consider only a small number α of rows of A, i.e.,

$$\sum_{1\leqslant s\leqslant k} t_{rs} \mathbf{D}_{i_{-}}^{(s)} = \mathbf{A}_{i_{-}} \mathbf{C}^{(r)} \mathbf{B}, \quad \forall r, i, \ 1\leqslant r\leqslant k, \ 1\leqslant i\leqslant \alpha.$$

▶ Guess αm coefs of A_{i_-} , and solve linear system of αkn equations in $n^2 + k^2$ variables

For $(\mathbf{C}^{(1)},\ldots,\mathbf{C}^{(k)})$ and $(\mathbf{D}^{(1)},\ldots,\mathbf{D}^{(k)})$ bases of \mathcal{C} and \mathcal{D} , find invertible \mathbf{A},\mathbf{B} and $\mathbf{T}=(t_{ij})$ s.t.:

$$\sum_{1\leqslant s\leqslant k}t_{rs}\mathsf{D}^{(s)}=\mathsf{AC}^{(r)}\mathsf{B},\ \ orall r,1\leqslant r\leqslant k$$

- **Directly:** bilinear system of knm eqns in $m^2 + n^2 + k^2$ vars (bilinear $a_{ij}b_{i'j'}$, linear t_{rs})
 - Security estimates too high
- ▶ Coefs of A_{i_-} and A_{j_-} (B_{-i} and B_{-j}) don't appear in same equation
- ▶ Consider only a small number α of rows of A, i.e.,

$$\sum_{1\leqslant s\leqslant k} t_{rs} \mathbf{D}_{i_{-}}^{(s)} = \mathbf{A}_{i_{-}} \mathbf{C}^{(r)} \mathbf{B}, \quad \forall r, i, \ 1\leqslant r\leqslant k, \ 1\leqslant i\leqslant \alpha.$$

- ▶ Guess αm coefs of $\mathbf{A}_{i.}$, and solve linear system of αkn equations in $n^2 + k^2$ variables
- ▶ For m = n = k, $\alpha = 2$ is enough \rightarrow complexity is $\mathcal{O}(q^{2n}n^6)$

Make use of coding theory!

▶ **G** and **G**' – the $k \times mn$ generator matrices of C and D

- ▶ **G** and **G**' the $k \times mn$ generator matrices of $\mathcal C$ and $\mathcal D$
 - "Flatten" the matrices into vectors

- ▶ **G** and **G**' the $k \times mn$ generator matrices of $\mathcal C$ and $\mathcal D$
 - "Flatten" the matrices into vectors
- $\blacktriangleright~\mathbf{G}'^{\perp}$ the generator matrix of the dual code of $\mathcal D$

- ▶ **G** and **G**' the $k \times mn$ generator matrices of $\mathcal C$ and $\mathcal D$
 - "Flatten" the matrices into vectors
- $ightharpoonup \mathbf{G}'^{\perp}$ the generator matrix of the dual code of \mathcal{D}
- ▶ Take $\tilde{G}(A, B)$ generator matrix of ACB (i.e. D) for A and B with unknown coefficients

Make use of coding theory!

- ▶ **G** and **G**' the $k \times mn$ generator matrices of C and D
 - "Flatten" the matrices into vectors
- $ightharpoonup \mathbf{G}'^{\perp}$ the generator matrix of the dual code of $\mathcal D$
- ightharpoonup Take $ilde{\textbf{G}}(\textbf{A},\textbf{B})$ generator matrix of $\textbf{A}\mathcal{C}\textbf{B}$ (i.e. \mathcal{D}) for A and B with unknown coefficients
- ► Construct the system:

$$\mathbf{G}'^{\perp} \cdot \tilde{\mathbf{G}}(\mathbf{A}, \mathbf{B})^{\top} = \mathbf{0},$$

of (mn - k)k bilinear equations in only $m^2 + n^2$ variables

Make use of coding theory!

- ▶ **G** and **G**' the $k \times mn$ generator matrices of C and D
 - "Flatten" the matrices into vectors
- ightharpoonup the generator matrix of the dual code of ${\cal D}$
- ightharpoonup Take $ilde{\textbf{G}}(\textbf{A},\textbf{B})$ generator matrix of $\textbf{A}\mathcal{C}\textbf{B}$ (i.e. \mathcal{D}) for A and B with unknown coefficients
- ► Construct the system:

$$\mathbf{G}'^{\perp} \cdot \tilde{\mathbf{G}}(\mathbf{A}, \mathbf{B})^{\top} = \mathbf{0},$$

of (mn - k)k bilinear equations in only $m^2 + n^2$ variables

- we got rid of t² variables!
- ▶ Solve system with Bilinear XL for example

Make use of coding theory!

- ▶ **G** and **G**' the $k \times mn$ generator matrices of C and D
 - "Flatten" the matrices into vectors
- $ightharpoonup \mathbf{G}'^{\perp}$ the generator matrix of the dual code of $\mathcal D$
- ▶ Take $\tilde{G}(A, B)$ generator matrix of ACB (i.e. D) for A and B with unknown coefficients
- ► Construct the system:

$$\mathbf{G}'^{\perp} \cdot \tilde{\mathbf{G}}(\mathbf{A}, \mathbf{B})^{\top} = \mathbf{0},$$

of (mn - k)k bilinear equations in only $m^2 + n^2$ variables

- we got rid of t^2 variables!
- ▶ Solve system with Bilinear XL for example
- ▶ Dimension of code crucial for complexity
 - smallest for k = mn/2, and grows as k reduces or grows

$$\mathcal{C}(\mathbf{A}\mathbf{x},\mathbf{B}\mathbf{y},\mathbf{T}\mathbf{z})=\mathcal{D}(\mathbf{x},\mathbf{y},\mathbf{z})$$

$$\mathcal{C}(\mathbf{A}\mathbf{x},\mathbf{B}\mathbf{y},\mathbf{T}\mathbf{z})=\mathcal{D}(\mathbf{x},\mathbf{y},\mathbf{z})$$

$$\mathcal{C}(\mathbf{A}\mathbf{x},\mathbf{B}\mathbf{y},\mathbf{T}\mathbf{z})=\mathcal{D}(\mathbf{x},\mathbf{y},\mathbf{z})$$

$$\mathcal{C}(\mathsf{Ax},\mathsf{By},\mathsf{z})=\mathcal{D}(\mathsf{x},\mathsf{y},\mathsf{T}^{-1}\mathsf{z})$$

$$\mathcal{C}(\mathsf{x},\mathsf{B}\mathsf{y},\mathsf{T}\mathsf{z})=\mathcal{D}(\mathsf{A}^{-1}\mathsf{x},\mathsf{y},\mathsf{z})$$

$$\mathcal{C}(\mathbf{x},\mathbf{B}\mathbf{y},\mathbf{T}\mathbf{z}) = \mathcal{D}(\mathbf{A}^{-1}\mathbf{x},\mathbf{y},\mathbf{z}) \qquad \qquad \mathcal{C}(\mathbf{A}\mathbf{x},\mathbf{y},\mathbf{T}\mathbf{z}) = \mathcal{D}(\mathbf{x},\mathbf{B}^{-1}\mathbf{y},\mathbf{z})$$

$$\mathcal{C}(\mathbf{A}\mathbf{x},\mathbf{B}\mathbf{y},\mathbf{T}\mathbf{z})=\mathcal{D}(\mathbf{x},\mathbf{y},\mathbf{z})$$

$$\begin{split} \mathcal{C}(\mathbf{A}\mathbf{x},\mathbf{B}\mathbf{y},\mathbf{z}) &= \mathcal{D}(\mathbf{x},\mathbf{y},\mathbf{T}^{-1}\mathbf{z}) \\ \mathbf{G}_{\mathbf{z}}^{\prime\perp} \cdot \tilde{\mathbf{G}}_{\mathbf{z}}^{\top}(\mathbf{A},\mathbf{B}) &= \mathbf{0}, \end{split}$$

$$\mathcal{C}(\mathsf{x},\mathsf{B}\mathsf{y},\mathsf{Tz})=\mathcal{D}(\mathsf{A}^{-1}\mathsf{x},\mathsf{y},\mathsf{z})$$

$$\mathcal{C}(\mathsf{Ax},\mathsf{y},\mathsf{Tz}) = \mathcal{D}(\mathsf{x},\mathsf{B}^{-1}\mathsf{y},\mathsf{z})$$

$$\mathcal{C}(\mathbf{A}\mathbf{x},\mathbf{B}\mathbf{y},\mathbf{T}\mathbf{z})=\mathcal{D}(\mathbf{x},\mathbf{y},\mathbf{z})$$

$$\begin{split} \mathcal{C}(\mathbf{A}\mathbf{x},\mathbf{B}\mathbf{y},\mathbf{z}) &= \mathcal{D}(\mathbf{x},\mathbf{y},\mathbf{T}^{-1}\mathbf{z}) \\ \mathbf{G}_{\mathbf{z}}^{\prime\perp} \cdot \tilde{\mathbf{G}}_{\mathbf{z}}^{\top}(\mathbf{A},\mathbf{B}) &= \mathbf{0}, \end{split}$$

$$\begin{split} \mathcal{C}(\mathbf{x},\mathbf{B}\mathbf{y},\mathbf{T}\mathbf{z}) &= \mathcal{D}(\mathbf{A}^{-1}\mathbf{x},\mathbf{y},\mathbf{z}) \\ \mathbf{G}_{\mathbf{x}}^{\prime\perp} \cdot \tilde{\mathbf{G}}_{\mathbf{x}}^{\top}(\mathbf{B},\mathbf{T}) &= \mathbf{0}, \end{split}$$

$$\mathcal{C}(\mathbf{A}\mathbf{x},\mathbf{y},\mathbf{T}\mathbf{z}) = \mathcal{D}(\mathbf{x},\mathbf{B}^{-1}\mathbf{y},\mathbf{z})$$

$$\mathcal{C}(\mathbf{A}\mathbf{x},\mathbf{B}\mathbf{y},\mathbf{T}\mathbf{z})=\mathcal{D}(\mathbf{x},\mathbf{y},\mathbf{z})$$

$$\begin{split} \mathcal{C}(\mathbf{A}\mathbf{x},\mathbf{B}\mathbf{y},\mathbf{z}) &= \mathcal{D}(\mathbf{x},\mathbf{y},\mathbf{T}^{-1}\mathbf{z}) \\ \mathbf{G}_{\mathbf{z}}^{\prime\perp} \cdot \tilde{\mathbf{G}}_{\mathbf{z}}^{\top}(\mathbf{A},\mathbf{B}) &= \mathbf{0}, \end{split}$$

$$\begin{split} \mathcal{C}(\textbf{x},\textbf{B}\textbf{y},\textbf{T}\textbf{z}) &= \mathcal{D}(\textbf{A}^{-1}\textbf{x},\textbf{y},\textbf{z}) \\ \textbf{G}_{\textbf{x}}^{\prime\perp} \cdot \tilde{\textbf{G}}_{\textbf{x}}^{\top}(\textbf{B},\textbf{T}) &= \textbf{0}, \end{split}$$

$$\begin{split} \mathcal{C}(\mathbf{A}\mathbf{x},\mathbf{y},\mathbf{T}\mathbf{z}) &= \mathcal{D}(\mathbf{x},\mathbf{B}^{-1}\mathbf{y},\mathbf{z}) \\ \mathbf{G}_{\mathbf{y}}'^{\perp} \cdot \tilde{\mathbf{G}}_{\mathbf{y}}^{\top}(\mathbf{A},\mathbf{T}) &= \mathbf{0}, \end{split}$$

$$\mathcal{C}(\mathsf{Ax},\mathsf{By},\mathsf{Tz}) = \mathcal{D}(\mathsf{x},\mathsf{y},\mathsf{z})$$

$$\begin{split} \mathcal{C}(\mathbf{A}\mathbf{x},\mathbf{B}\mathbf{y},\mathbf{z}) &= \mathcal{D}(\mathbf{x},\mathbf{y},\mathbf{T}^{-1}\mathbf{z}) \\ \mathbf{G}_{\mathbf{z}}^{\prime\perp} \cdot \tilde{\mathbf{G}}_{\mathbf{z}}^{\top}(\mathbf{A},\mathbf{B}) &= \mathbf{0}, \end{split}$$

$$\begin{split} \mathcal{C}(\mathbf{x}, \mathbf{B}\mathbf{y}, \mathbf{T}\mathbf{z}) &= \mathcal{D}(\mathbf{A}^{-1}\mathbf{x}, \mathbf{y}, \mathbf{z}) \\ \mathbf{G}_{\mathbf{x}}^{\prime \perp} \cdot \tilde{\mathbf{G}}_{\mathbf{x}}^{\top}(\mathbf{B}, \mathbf{T}) &= \mathbf{0}, \end{split}$$

$$\begin{split} \mathcal{C}(\mathbf{A}\mathbf{x},\mathbf{y},\mathbf{T}\mathbf{z}) &= \mathcal{D}(\mathbf{x},\mathbf{B}^{-1}\mathbf{y},\mathbf{z}) \\ \mathbf{G}_{\mathbf{y}}^{\prime\perp} \cdot \tilde{\mathbf{G}}_{\mathbf{y}}^{\top}(\mathbf{A},\mathbf{T}) &= \mathbf{0}, \end{split}$$

$$\mathbf{G}_{\mathbf{z}}^{\prime\perp}\cdot\tilde{\mathbf{G}}_{\mathbf{z}}^{\top}(\mathbf{A},\mathbf{B})=\mathbf{0},\tag{1}$$

$$\mathbf{G}_{\mathbf{x}}^{\prime\perp}\cdot\tilde{\mathbf{G}}_{\mathbf{x}}^{\top}(\mathbf{B},\mathbf{T})=\mathbf{0},$$
 (2)

$$\mathbf{G}_{\mathbf{y}}^{\prime\perp}\cdot\tilde{\mathbf{G}}_{\mathbf{y}}^{\top}(\mathbf{A},\mathbf{T})=\mathbf{0}.\tag{3}$$

▶ A total of (mn - k)k + (nk - m)m + (mk - n)n equations in $n^2 + m^2 + k^2$ variables

$$\mathbf{G}_{\mathbf{z}}^{\prime\perp}\cdot\tilde{\mathbf{G}}_{\mathbf{z}}^{\top}(\mathbf{A},\mathbf{B})=\mathbf{0},\tag{1}$$

$$\mathbf{G}_{\mathbf{x}}^{\prime\perp}\cdot\tilde{\mathbf{G}}_{\mathbf{x}}^{\top}(\mathbf{B},\mathbf{T})=\mathbf{0},\tag{2}$$

$$\mathbf{G}_{\mathbf{y}}^{\prime\perp}\cdot\tilde{\mathbf{G}}_{\mathbf{y}}^{\top}(\mathbf{A},\mathbf{T})=\mathbf{0}.\tag{3}$$

- ▶ A total of (mn k)k + (nk m)m + (mk n)n equations in $n^2 + m^2 + k^2$ variables
- ► The system is not semi-regular though!
 - Syzygies in degree 3 from linear combination of types $t_{ij} \cdot (1)$, $a_{ij} \cdot (2)$, $b_{ij} \cdot (3)$

$$\mathbf{G}_{\mathbf{z}}^{\prime\perp}\cdot\tilde{\mathbf{G}}_{\mathbf{z}}^{\top}(\mathbf{A},\mathbf{B})=\mathbf{0},\tag{1}$$

$$\mathbf{G}_{\mathsf{x}}^{\prime\perp}\cdot\tilde{\mathbf{G}}_{\mathsf{x}}^{\top}(\mathsf{B},\mathsf{T})=\mathbf{0},\tag{2}$$

$$\mathbf{G}_{\mathbf{y}}^{\prime\perp}\cdot\tilde{\mathbf{G}}_{\mathbf{y}}^{\top}(\mathbf{A},\mathbf{T})=\mathbf{0}.\tag{3}$$

- ▶ A total of (mn k)k + (nk m)m + (mk n)n equations in $n^2 + m^2 + k^2$ variables
- The system is not semi-regular though!
 - Syzygies in degree 3 from linear combination of types $t_{ij} \cdot (1)$, $a_{ij} \cdot (2)$, $b_{ij} \cdot (3)$
- ▶ We can estimate the Hilbert series and complexity for solving using Bilinear XL

$$\mathbf{G}_{\mathbf{z}}^{\prime\perp}\cdot\tilde{\mathbf{G}}_{\mathbf{z}}^{\top}(\mathbf{A},\mathbf{B})=\mathbf{0},\tag{1}$$

$$\mathbf{G}_{\mathbf{x}}^{\prime\perp}\cdot\tilde{\mathbf{G}}_{\mathbf{x}}^{\top}(\mathbf{B},\mathbf{T})=\mathbf{0},\tag{2}$$

$$\mathbf{G}_{\mathbf{y}}^{\prime\perp}\cdot\tilde{\mathbf{G}}_{\mathbf{y}}^{\top}(\mathbf{A},\mathbf{T})=\mathbf{0}.\tag{3}$$

- ▶ A total of (mn k)k + (nk m)m + (mk n)n equations in $n^2 + m^2 + k^2$ variables
- ► The system is not semi-regular though!
 - Syzygies in degree 3 from linear combination of types $t_{ij} \cdot (1)$, $a_{ij} \cdot (2)$, $b_{ij} \cdot (3)$
- ▶ We can estimate the Hilbert series and complexity for solving using Bilinear XL

n = m = k	plain	improved
14	169	148
22	255	218
30	349	299
30	349	299

Summary of the course

- Monday Designs
 - General
 - Classic designs
- ► Tuesday Design and general MQ solving techniques
 - Key size optimization techniques
 - Algorithms for solving the MQ problem
- Wednesday Cryptanalysis
 - MinRank
 - Equivalent keys attacks
- ► Thursday Cryptanalysis
 - Attacks on UOV
- ► Friday Provably secure designs
 - Fiat-Shamir signatures MQDSS, SOFIA, MEDS

Thank you for listening!

And attending this course!