Week9_sconde 10634529

TASK 1:

IASK 1:							
The weather today in Piacenza Thursday, 05 December 2019							
	15:00	4:00 pm	17:00	7:00 pm	8:00 pm	21:00	23:00
	*	*	*	*	*	*	*
	PartlyCloud	PartlyCloud	PartlyCloud	LightCloud	Sun	LightCloud	LightCloud
Effective temperature	8°C	6°C	6°C	2°C	1°C	1°C	1°C
Perceived temperature	8 ° C	5°C	5°C	0°C	-1 ° C	1 ° C	1°C
Rainfall	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm
Humidity	70 %	83 %	77 %	91 %	90 %	89 %	88 %
Atmospheric pressure	1026 hPa	1026 hPa	1026 hPa	1027 hPa	1027 hPa	1027 hPa	1027 hPa
Wind intensity	4 km / h	6 km / h	3 km / h	4 km / h			
Wind direction	←¬	←	←¬	Ĵ	Ţ	Ĵ	\hookrightarrow
	IS	IS	IS	S	S	S	OR
Probability of fog	0 %	0 %	0 %	0 %	0 %	0 %	0 %
Dew point	3 ° C	3 ° C	2 ° C	1 ° C	0 ° C	0 ° C	0 ° C
Clouds	56 %	57 %	39 %	13 %	10 %	22 %	17 %
Low clouds	4 %	6 %	7 %	11 %	4 %	5 %	11 %
Medium clouds	0 %	0 %	0 %	0 %	0 %	1 %	9 %
High clouds	54 %	54 %	34 %	4 %	7 %	19 %	1 %

$$T = 8^{\circ}$$

$$\omega = 70\%$$

$$P = 102.6 \text{ kPa}$$

Water saturation pressure of 4° 1.072 kPa

Area of Classroom = $12m \times 6m \times 5m$

From the Chart:

$$T_{wb} = 10^{\circ}$$

 $\omega = 0.005$
 $Pv = 0.656 \, kPa$
 $P = 102.6 \, kPa$
 $R_{sp} = 0.4615$

For ideal Gas

$$\begin{split} m_v = & \frac{Pv}{R_{sp}*T} = \frac{0.656(12*6*5)}{0.4615(273+8)} = 1.8210kg \\ m_g = & \frac{m_v}{\delta} = \frac{1.8210}{70\%} = 2.601\,kg \\ h_a = & 1.005*3 = 3.015\,kJ/kg_{water\,vapor} \\ h_v = & 2501.3 + 1.82*3 = 2506.76\,kJ/kg_{water\,vapor} \\ h = & h_a + \omega h_v = 3.015 + 0.005*2601.54 = 16.0227 \end{split}$$

Task 2:

 $H = 2.5m^2$ Floor Area = $200m^2$ Wall Area = $144m^2$

Internal Gains:

$$\begin{aligned} Q_{ig \ sensible} &= 136 + 2.2 \ A_{cf} + 22 \ N_{oc} \\ &= 136 + 2.2 * 200 + 12 * 2 = 620 \ W \\ Q_{ig.\ latent} &= 20 + 0.22 \ A_{cf} + 12 N_{oc} \\ &= 20 + 0.22 * 200 + 12 * 2 = 88 \ W \end{aligned}$$

Infiltration

From the table Good quality =>
$$A_{ul} = 1.4 \frac{cm^2}{m^2}$$

 $A_L = A_{cs} * A_{ul}$
(200+144)1.4 = 481.6 cm^3

$$Q_l = A_l * IDF$$
 From the Table; IDF heating = 0.073 $L/5cm^2$ V infiltration heating $(Q_L) = A_L * IDF = 481.6 * 0.073 = 35.16 \frac{L}{s}$ V infiltration cooling $(Q_L) = A_L * IDF = 481.6 * 0.033 = 15.89 \frac{L}{s}$

Ventilation

$$\begin{aligned} Q_v(V_{ventilation}) &= 0.05 * A_{cf} + 3.5(N_{br} + 1) \\ &= 0.05 * 200 + 3.5 * 2 = 17 \frac{L}{s} \\ Q_v(V_{inf-ventilation heating}) &= 35.16 + 17 = 52.16 \frac{L}{s} \\ Q_v(V_{inf-ventilation cooling}) &= 15.89 + 17 = 32.89 \frac{L}{s} \end{aligned}$$

 $Q_{inf-ventilation \ heating \ sensible} = C_{sensible} * V \delta T_{heating} = 1.23 * 52.16 * 25.1 = 1610.34 \ W_{sensible} = 1.23 * 52.16 * 25.10 \ W_{sensible} = 1.23 * 52.16 \ W_{sensible} =$

The required minimum of the whole building ventilation rate in Brindisi

$$\begin{split} \delta T_{cooling} &= 31.1^{\circ}C - 24^{\circ}C = 7.1^{\circ}C \ therefore \ 7.1 \ K \\ \delta T_{heating} &= 21^{\circ}C - (-4.1^{\circ}C) = 25.1^{\circ}C \ therefore \ 25.1 \ K \\ C_{sensible} &= 1.23 \ , \ C_{latent} = 3010 \\ \delta \omega_{cooling} &= 0,0039 \\ Q_{inf-ventilation \ cooling \ sensible} &= C_{sensible} * V \delta T_{cooling} = 1.23 * 32.89 * 7.1 = 287.25 \\ Q_{inf-ventilation \ cooling \ latent} &= C_{latent} * V \delta \omega_{cooling} = 3010 * 32.89 * 0.0039 = 386.13 \ W \end{split}$$