

Kernel Integration Flow Report

김동민 교육생

Table of Contents

- 1. 전체 구조도 및 관련 서브시스템
- 2. 송신
 - 2-1) 송신 흐름
 - 2-2) stmmac_xmit
 - 2-3) 송신 완료 처리
- 3. 수신
 - 3-1) 수신 흐름
 - 3-2) stmmac_rx
- 4. 송수신에서 DMA 작동 방식

전체 구조도 및 연관 서브시스템

[Network subsystem]

네트워크 로직을 구현한 계층.

사용자가 네트워크 송수신을 요청하면 Network subsystem을 거쳐 Stmmac Driver에서 송수신을 수행

[Stmmac Driver]

네트워크 장치 초기화, 송신, 수신 등 실제 이더넷 기능은 여기서 구현된다.

[dwmac4 subsystem]

GMAC 디바이스의 HSIO_GMAC레지스 터에 직접 read/write하는 역할

전체 구조도 및 연관 서브시스템

[interrupt management subsystem]

수신과 송신 완료 처리 작업을 수행하기 위해 NET_RX_SOFTIRQ 서비스를 요청

- -ksoftirqd 커널스레드에서 아래의 작업을 수행

 - 송신 완료 처리

전체 구조도 및 연관 서브시스템

[Clock subsystem] GMAC 디바이스에 필요한 클럭소스를 설정

송신

2-1) 송신 흐름

- 송신함수 등록
 - probe과정에서 stmmac_netdev_ops를 등록 해당 구조체에 송신함수(stmmac_xmit)포함
- 송신 수행과정
 - 1. application에서 send()
 - 2. network subsystem
 - 2. stmmac_xmit()
 - ■송신 프레임에 대해서 descriptor 준비
 - ■DMA에게 전송 지시
 - ■DMA가 TxFIFO로 데이터 복사
 - ■TxFIFO가 threshold를 초과하면 전송시작

- 송신함수 등록
 - probe과정에서 stmmac_netdev_ops를 등록 해당 구조체에 송신함수(stmmac_xmit)포함
- 송신 수행과정
 - 1. application에서 send()
 - 2. network subsystem
 - 2. stmmac_xmit()
 - ■송신 프레임에 대해서 descriptor 준비
 - ■DMA에게 전송 지시
 - ■DMA가 TxFIFO로 데이터 복사
 - ■TxFIFO가 threshold를 초과하면 전송시작

송신

2-2) stmmac_xmit

송신(2-2 stmmac_xmit)

1. 송신에 descriptor 수가 충분한지 확인한다. (부족하면 송신 중지)

왜 nfrags + 1?:

- skb->data = 1
- nfrags = 프레임의 fragment개수(>=0)

송신(2-2 stmmac_xmit)

• fragment에 대해서 descriptor 준비

이후 DMA가 시스템메모리에 있는 fragment에 접근할 수 있도록 descriptor에 fragment의 주소를 저장

*fragment = 프레임의 payload부분을 저장

● 마찬가지로 skb->data에 대해서도 descriptor를 준비

*skb->data = 프레임의 헤더 + payload 일부 저장

송신(2-2 stmmac_xmit)

- DMA에게 tx ring의 tail pointer를 업데이트 -> 전송 지시
 - DMA는 descriptor를 읽고 프레임 조각을 TxFIFO로 복사
 - TxFIFO가 threshold를 넘으면 PHY로 데이터를 보내어 송신

송신

2-3) 송신 완료 처리

stmmac_tx_clean에서 송신완료 처리작업 수행

- dma 매핑 해제
- 송신에 사용했던 descriptor 정리 (재사용 가능하도록)

수신

3-1) 수신 흐름

수신(3-1 수신흐름) -4. ksoftirqd 커널스레드가 수행-**NETWORK** subsystem net_rx_action netif_napi_add(.., stmmac_napi_poll_rx, ..) napi_poll 5. napi 디큐잉(rx_napi) Stmmac Driver -2. rx_napi 큐잉-Interrupt management subsystem stmmac_napi_poll_rx stmmac_napi_check 7. 수신 횟수가 임계치를 초과하면 다시 GMAC DMA interrupt 활성화 _raise_softirq_irqoff(NET_RX_ACTION) 3. GMAC DMA interrupt 비활성화 & SOFTIRQ서비스 요청 **Telechips Driver** stmmac_interrupt stmmac_rx 6.프레임 수신&network subsystem으로 전달 tcc_dwmac_probe stmmac_dvr_probe dwmac4 subsystem 1,수신 interrupt **GMAC** device HSIO_GMAC TxFIFO 레지스터 시스템 메모리 MTL MAC core DMA

- 수신 핸들러 등록
 - probe과정에서 수신 napi poll 핸들러 등록 (stmmac_napi_poll_rx)
- stmmac_napi_poll_rx -> stmmac_rx
 - 1. DMA가 복사해놓은 데이터를 모아 프레임을 완성해나감.
 - 2. 프레임을 완성하면 상위 네트워크 계층에 전송

수신(3-1 수신흐름) -4. ksoftirqd 커널스레드가 수행-**NETWORK** subsystem net_rx_action netif_napi_add(.., stmmac_napi_poll_rx, ..) napi_poll 5. napi 디큐잉(rx_napi) Stmmac Driver -2. rx_napi 큐잉-Interrupt management subsystem stmmac_napi_poll_rx stmmac_napi_check _raise_softirq_irqoff(NET_RX_ACTION) 다시 GMAC DN A interrupt 활성화 3. GMAC DMA interrupt 비활성화 & SOFTIRQ서비스 요청 **Telechips Driver** stmmac_interrupt stmmac_rx 6 프레임 수신&network subsystem으로 tcc_dwmac_probe stmmac_dvr_probe dwmac4 subsystem 1,수신 interrupt **GMAC** device HSIO_GMAC TxFIFO 레지스터 시스템 메모리 MTL MAC core DMA

- 수신 핸들러 등록
 - probe과정에서 수신 napi poll 핸들러 등록 (stmmac_napi_poll_rx)
- stmmac_napi_poll_rx -> stmmac_rx
 - 1. DMA가 복사해놓은 데이터를 모아 프레임을 완성해나감.
 - 2. 프레임을 완성하면 상위 네트워크 계층에 전송

수신

3-2) stmmac_rx

1. rx descriptor 갱신

*goto read_again? : RxFIFO로부터 데이터를 가져오는데, 아직 전체프레임을 완성하지 못했다?

-> 다시 이 지점으로 와서 다음 데이터를 수신

2. 현재 rx descriptor의 dma_own 플래그 check
set -> 더이상 수신을 진행할 수 없으므로 수신 종료 (break)
clear -> DMA가 버퍼로 데이터 복사를 완료. 이어서 진행

3. 수신한 프레임 길이를 갱신

- 마지막 세그먼트 X : len += descriptor로 전송할 수 있는 최대 사이즈
- 마지막 세그먼트 O : len = 전체 프레임길이(프레임 완성)

- 4. DMA가 버퍼에 복사해둔 프레임 세그먼트를 가져와 프레임을 완성해간다.
- 만약 전체 프레임을 완성했다면 상위네트워크계층으로 전달
- 아직 전체 프레임을 수신하지 못했다면 이어서 수신 진행

송수신에서 DMA 작동 방식

송신 시 DMA가 데이터를 GMAC으로 보내는 방법

수신 시 DMA가 데이터를 system memory로 넘기는 방법

End