第3章课后部分习题参考解答

1.

$$(1) \mid -(A \to (A \to B)) \to (A \to B)$$

①
$$(A \rightarrow B) \rightarrow (A \rightarrow B)$$
 定理 1

②
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$
 ①定理 6

$$\textcircled{3}(A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B) \textcircled{2}A2 r_{mp}$$

(2)
$$\neg A \mid -A \rightarrow B$$

$$(1) \neg A \rightarrow (\neg B \rightarrow \neg A)$$
 A1

$$3 \rightarrow A \quad 12 r_{mn}$$

$$\textcircled{4}(\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$$
 A3

$$(4) \left[-\left[A \to (B \to C) \right] \to \left[A \to (D \to B) \right] \to \left[A \to (D \to C) \right] \right\}$$

①
$$(B \rightarrow C) \rightarrow [(D \rightarrow B) \rightarrow (D \rightarrow C)]$$
 定理 5

②
$$A \rightarrow \{(B \rightarrow C) \rightarrow [(D \rightarrow B) \rightarrow (D \rightarrow C)]\}$$
 ①加前件

$$\center{B}$$
 $[A \rightarrow (B \rightarrow C)] \rightarrow \{A \rightarrow [(D \rightarrow B) \rightarrow (D \rightarrow C)]\}$ \center{A} \center{A}

$$4 \left\{ A \to \left[(D \to B) \to (D \to C) \right] \right\} \to \left\{ \left[A \to (D \to B) \right] \to \left[A \to (D \to C) \right] \right\} \quad A_2$$

⑤
$$[A \rightarrow (B \rightarrow C)] \rightarrow [A \rightarrow (D \rightarrow B)] \rightarrow [A \rightarrow (D \rightarrow C)]$$
 ③④传递

$$(5) \left[-\left[A \to (B \to C) \right] \to \left\{ (C \to D) \to \left[A \to (B \to D) \right] \right\}$$

1)
$$(B \rightarrow C) \rightarrow [(C \rightarrow D) \rightarrow (B \rightarrow D)]$$
 定理 7

2)
$$[A \to (B \to C)] \to \{A \to (C \to D)\} \to [A \to (B \to D)]$$

同理上题的证明

3) $[A \to (C \to D)] \to \{[A \to (B \to C)] \to [A \to (B \to D)]\}$ 2) 前件交换

4)

$$(C \to D) \to \{[A \to (C \to D)] \to \{[A \to (B \to C)] \to [A \to (B \to D)]\}\}$$
 3) 加前件

5)
$$(C \rightarrow D) \rightarrow \{ [A \rightarrow (B \rightarrow C)] \rightarrow [A \rightarrow (B \rightarrow D)] \}$$
 4) $A_2 + A_1 + r_{mn}$

6)
$$[A \rightarrow (B \rightarrow C)] \rightarrow \{(C \rightarrow D) \rightarrow [A \rightarrow (B \rightarrow D)]\}$$
 5) 前件交换

//注:上述 2)-6)的证明体现了把 ε 1 \to ($P \to \varepsilon$ 2)变为 ε 1 \to ($P' \to \varepsilon$ 2)的过程,其中 $P' \to P$ 。利用前件交换将 P 交换出来,加前件 P'。//

$$(7) \left| - \left[(A \to B) \to (B \to A) \right] \to (B \to A)$$

1)
$$[B \rightarrow (A \rightarrow B)] \rightarrow \{[(A \rightarrow B) \rightarrow (B \rightarrow A)] \rightarrow [B \rightarrow (B \rightarrow A)]\}$$
 传递

2)
$$[(A \rightarrow B) \rightarrow (B \rightarrow A)] \rightarrow [B \rightarrow (B \rightarrow A)]$$
 1) +A1+rmp

3)
$$(B \rightarrow A) \rightarrow (B \rightarrow A)$$
 定理

4)
$$B \rightarrow [(B \rightarrow A) \rightarrow A]$$
 3) 前件交换

5)
$$[B \rightarrow (B \rightarrow A)] \rightarrow (B \rightarrow A)$$
 4) $+A2+rmp$

6)
$$[(A \rightarrow B) \rightarrow (B \rightarrow A)] \rightarrow (B \rightarrow A)$$
 2) 5) +传递

//注:上述 2), 5), 6) 的证明体现了把 ε 1 \to P 变为 ε 1 \to P' 的过程, 利用了 $P \to P'$ 和传递的定理。//

(9)
$$\left[-\left[(A \rightarrow B) \rightarrow A \right] \rightarrow A \right]$$

1)
$$[\neg A \rightarrow (A \rightarrow B)] \rightarrow \{[(A \rightarrow B) \rightarrow A] \rightarrow (\neg A \rightarrow A)\}$$
 定理

2)
$$\neg A \rightarrow (A \rightarrow B)$$
 定理

3)
$$[(A \rightarrow B) \rightarrow A] \rightarrow (\neg A \rightarrow A)$$
 1) 2) rmp

4)
$$(\neg A \rightarrow A) \rightarrow A$$
 定理

5)
$$[(A \rightarrow B) \rightarrow A] \rightarrow A$$
 3) 4) 传递

//同(7)题的处理思想。另,这里也可以运用定理 3.1.14 来证明形如 $(P \rightarrow Q) \rightarrow R$ 的结论。//

(10)
$$\left| -\left[(A \rightarrow B) \rightarrow C \right] \rightarrow \left[(C \rightarrow A) \rightarrow A \right] \right|$$

1)
$$[(A \rightarrow B) \rightarrow C] \rightarrow \{(C \rightarrow A) \rightarrow [(A \rightarrow B) \rightarrow A]\}$$
 传递

- 2) $[(A \rightarrow B) \rightarrow A] \rightarrow A$ 9 题已证
- 3) $(C \rightarrow A) \rightarrow \{[(A \rightarrow B) \rightarrow A] \rightarrow A\}$ 2) 加前件

4)
$$\{(C \rightarrow A) \rightarrow [(A \rightarrow B) \rightarrow A]\} \rightarrow [(C \rightarrow A) \rightarrow A]$$
 3) $+A2+rmp$

5)
$$[(A \rightarrow B) \rightarrow C] \rightarrow [(C \rightarrow A) \rightarrow A]$$
 1) 4) 传递

//注:上述 1)-5)证明体现了把 ε 1 \to (ε 2 \to P) 变为 ε 1 \to (ε 2 \to P') 的过程, 即利用 $P \to P'$,然后加前件 ε 2 用 A2 打开,再利用传递即可。//

$$(11) \left[-\left[(A \to B) \to C \right] \to \left[(A \to C) \to C \right]$$

- 1) $\neg C \rightarrow (C \rightarrow B)$ 已证定理
- 2) $A \rightarrow [\neg C \rightarrow (C \rightarrow B)]$ 1) 加前件
- 3) $\neg C \rightarrow [A \rightarrow (C \rightarrow B)]$ 2) 前件交换

4)
$$[A \rightarrow (C \rightarrow B)] \rightarrow [(A \rightarrow C) \rightarrow (A \rightarrow B)]$$
 A,

5)
$$\neg C \rightarrow [(A \rightarrow C) \rightarrow (A \rightarrow B)]$$
 3) 4) 传递

6)
$$[(A \rightarrow C) \rightarrow (A \rightarrow B)] \rightarrow [\neg (A \rightarrow B) \rightarrow \neg (A \rightarrow C)]$$
 定理

7)
$$\neg C \rightarrow [\neg (A \rightarrow B) \rightarrow \neg (A \rightarrow C)]$$
 5) 6) 传递

8)
$$[\neg C \rightarrow \neg (A \rightarrow B)] \rightarrow [\neg C \rightarrow \neg (A \rightarrow C)]$$
 7) $A_2 + r_{mn}$

9)
$$[(A \rightarrow B) \rightarrow C] \rightarrow [\neg C \rightarrow \neg (A \rightarrow B)]$$
 定理

10)
$$[(A \rightarrow B) \rightarrow C] \rightarrow [\neg C \rightarrow \neg (A \rightarrow C)]$$
 9) 8) 传递

11)
$$[\neg C \rightarrow \neg (A \rightarrow C)] \rightarrow [(A \rightarrow C) \rightarrow C]$$
 定理

12) $[(A \rightarrow B) \rightarrow C] \rightarrow [(A \rightarrow C) \rightarrow C)]$ 10) 11) 传递

//本题展示了此类 $(X \to P) \to (Y \to P)$ 即两个尾件均同为P的另一种证明方法,

即通过逆否变形转换为证 $(\neg P \rightarrow \neg X) \rightarrow (\neg P \rightarrow \neg Y)$,即由尾件相同转换为前件相同来处理,证明思想同书上定理 3. 1. 14 的证明思想。下面的(12)(13)题采用了相同的处理方法。//

$$(12) \left[- \left[\left[(A \to B) \to C \right] \to D \right] \to \left[(B \to D) \to (A \to D) \right]$$

1)
$$\neg (A \rightarrow B) \rightarrow [(A \rightarrow B) \rightarrow C)]$$
 定理

2)
$$\{\neg(A \to B) \to [(A \to B) \to C)]\}$$
 $\to \{\neg(A \to B) \to C\} \to (A \to B)\}$ 定理

3)
$$-[(A \rightarrow B) \rightarrow C] \rightarrow (A \rightarrow B)$$
 1) 2) r_{mn}

4)
$$\neg D \rightarrow \{\neg (A \rightarrow B) \rightarrow C \} \rightarrow (A \rightarrow B) \}$$
 3) 加前件

5)
$$\{\neg D \rightarrow \neg [(A \rightarrow B) \rightarrow C]\} \rightarrow [\neg D \rightarrow (A \rightarrow B)]$$
 4) $A_2 + r_{mn}$

6)
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$
 定理

7)
$$\neg D \rightarrow [(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)]$$
 6) 加前件

8)
$$[\neg D \rightarrow (A \rightarrow B)] \rightarrow [\neg D \rightarrow (\neg B \rightarrow \neg A)]$$
 7) $A_2 + r_{mn}$

9)
$$\{\neg D \rightarrow \neg [(A \rightarrow B) \rightarrow C]\} \rightarrow [\neg D \rightarrow (\neg B \rightarrow \neg A)]$$
 5) 8) 传递

10)
$$\{[(A \rightarrow B) \rightarrow C] \rightarrow D\} \rightarrow \{\neg D \rightarrow \neg [(A \rightarrow B) \rightarrow C]\}$$
 定理

11)
$$\{[(A \rightarrow B) \rightarrow C] \rightarrow D\} \rightarrow \{\neg D \rightarrow (\neg B \rightarrow \neg A)\}\ 10)$$
 9) 传递

12)
$$\{\neg D \rightarrow (\neg B \rightarrow \neg A)\} \rightarrow [(\neg D \rightarrow \neg B) \rightarrow (\neg D \rightarrow \neg A)] A$$

13)
$$[(B \to D) \to (\neg D \to \neg B)] \to$$

$$\{[(\neg D \to \neg B) \to (\neg D \to \neg A)] \to [(B \to D) \to (\neg D \to \neg A)]\}$$
 传递

14)
$$[(B \rightarrow D) \rightarrow (\neg D \rightarrow \neg B)]$$
 定理

15)
$$[(\neg D \rightarrow \neg B) \rightarrow (\neg D \rightarrow \neg A)] \rightarrow [(B \rightarrow D) \rightarrow (\neg D \rightarrow \neg A)]$$
 13) 14) r_{mn}

16)
$$[(\neg D \rightarrow \neg A) \rightarrow (A \rightarrow D)] A_3$$

17)
$$(B \rightarrow D) \rightarrow [(\neg D \rightarrow \neg A) \rightarrow (A \rightarrow D)]$$
 16) 加前件

18)
$$[(B \rightarrow D) \rightarrow (\neg D \rightarrow \neg A)] \rightarrow [(B \rightarrow D) \rightarrow (A \rightarrow D)]$$
 17) $A_2 + r_{mp}$

19)
$$[(\neg D \rightarrow \neg B) \rightarrow (\neg D \rightarrow \neg A)] \rightarrow [(B \rightarrow D) \rightarrow (A \rightarrow D)]$$
 15) 18) 传递

20)
$$\{\neg D \rightarrow (\neg B \rightarrow \neg A)\} \rightarrow [(B \rightarrow D) \rightarrow (A \rightarrow D)]$$
 12) 19) 传递

21)
$$[[(A \rightarrow B) \rightarrow C] \rightarrow D] \rightarrow [(B \rightarrow D) \rightarrow (A \rightarrow D)]$$
 11)20) 传递

$$(13) \left[-(A \to C) \to \left\{ (B \to C) \to \left[\left[(A \to B) \to B \right] \to C \right] \right\}$$

1)
$$[\neg A \rightarrow (A \rightarrow B)] \rightarrow \{[(A \rightarrow B) \rightarrow B] \rightarrow (\neg A \rightarrow B)\}$$
 定理

$$(2)$$
 $\neg A \rightarrow (A \rightarrow B)$ 定理

3)
$$[(A \rightarrow B) \rightarrow B] \rightarrow (\neg A \rightarrow B)$$
 1) 2) r_{mn}

4)
$$\neg A \rightarrow \{ [(A \rightarrow B) \rightarrow B] \rightarrow B \}$$
 3) 前件交换

5)
$$\{ [(A \rightarrow B) \rightarrow B] \rightarrow B \} \rightarrow \{ \neg B \rightarrow \neg [(A \rightarrow B) \rightarrow B] \}$$
 定理

6)
$$\neg A \rightarrow \{\neg B \rightarrow \neg \{(A \rightarrow B) \rightarrow B\}\}\$$
 4) 5) 传递

7)
$$\neg C \rightarrow \{\neg A \rightarrow [\neg B \rightarrow \neg (A \rightarrow B) \rightarrow B]\}$$
 6) 加前件

8)
$$(\neg C \rightarrow \neg A) \rightarrow \{\neg C \rightarrow [\neg B \rightarrow \neg ((A \rightarrow B) \rightarrow B)]\}$$
 7) $A_2 + r_{mp}$

9)
$$\{\neg C \rightarrow [\neg B \rightarrow \neg [(A \rightarrow B) \rightarrow B]]\} \rightarrow$$

 $\{(\neg C \rightarrow \neg B) \rightarrow [\neg C \rightarrow \neg [(A \rightarrow B) \rightarrow B]\}\ A,$

10)
$$(\neg C \rightarrow \neg A) \rightarrow \{(\neg C \rightarrow \neg B) \rightarrow [\neg C \rightarrow \neg (A \rightarrow B) \rightarrow B]\} \ 8) \ 9)$$
 传递

11)
$$[\neg C \rightarrow \neg ((A \rightarrow B) \rightarrow B)] \rightarrow [[(A \rightarrow B) \rightarrow B] \rightarrow C]$$
 A_3

12)
$$(\neg C \to \neg B) \to \{ [\neg C \to \neg [(A \to B) \to B]] \to$$

 $[[(A \to B) \to B] \to C] \}$ 11) 加前件

13)
$$\{(\neg C \rightarrow \neg B) \rightarrow [\neg C \rightarrow \neg [(A \rightarrow B) \rightarrow B]]\} \rightarrow$$

 $\{(\neg C \rightarrow \neg B) \rightarrow [[(A \rightarrow B) \rightarrow B] \rightarrow C]\}$ 12) $A_2 + r_{mn}$

14)
$$(\neg C \rightarrow \neg A) \rightarrow \{(\neg C \rightarrow \neg B) \rightarrow [[(A \rightarrow B) \rightarrow B] \rightarrow C]\}$$
 10) 13) 传递

15)
$$(A \rightarrow C) \rightarrow (\neg C \rightarrow \neg A)$$
 定理

16)
$$(A \rightarrow C) \rightarrow \{(\neg C \rightarrow \neg B) \rightarrow [[(A \rightarrow B) \rightarrow B] \rightarrow C]\}$$
 14) 15) 传递

17)
$$(\neg C \rightarrow \neg B) \rightarrow \{(A \rightarrow C) \rightarrow [[(A \rightarrow B) \rightarrow B] \rightarrow C]\}$$
 16) 前件交换

18)
$$(B \rightarrow C) \rightarrow (\neg C \rightarrow \neg B)$$
 定理

19)
$$(B \to C) \to \{(A \to C) \to [[(A \to B) \to B] \to C]\}$$
 17) 18) 传递

20)
$$(A \rightarrow C) \rightarrow \{(B \rightarrow C) \rightarrow [[(A \rightarrow B) \rightarrow B] \rightarrow C]\}$$
 19) 前件交换

$$(14) \left[-(A \to C) \to \left\{ (B \to C) \to \left[\left[(B \to A) \to A \right] \to C \right] \right\}$$

1)
$$(B \to C) \to \{(A \to C) \to [[(B \to A) \to A] \to C]\}$$

由上题的已证结论

2)
$$(A \rightarrow C) \rightarrow \{(B \rightarrow C) \rightarrow [[(B \rightarrow A) \rightarrow A] \rightarrow C]\}$$
 1) 前件交换

//上述各题的证明方法都不唯一,大家也可以用习题课上讲述的其他处理方案 做一下。//

2.

(1)

只需证:
$$B \rightarrow A - -A \rightarrow -B$$

只需证:
$$B \rightarrow A \mid \neg \neg B \rightarrow \neg \neg A$$

只需证:
$$B \rightarrow A, \neg \neg B \mid \neg \neg \neg A$$

¬¬B→B 定理

//这里也可以不调用该定理,可以把书上的¬¬В|-В演绎代码代入即可。

3)
$$B$$
 1)2) r_{mp}

4)
$$B \rightarrow A$$
 前提

5)
$$A$$
 3)4) r_{mn}

//同上也可以不调用,只需先证 $\neg\neg\neg A$ $|\neg\neg A$,显然上述已征。

7)
$$\neg \neg A$$
 6)7) r_{mn}

(2)

只需证: $A \rightarrow B, B \rightarrow C, A \mid -C$, 显然。

(3)

只需证:
$$(A \rightarrow B) \rightarrow A - A$$

- ① $\neg A \rightarrow (A \rightarrow B)$ 定理
- ② $(A \rightarrow B) \rightarrow A$ 前提
- ③ ¬A → A ①②传递
- $④(\neg A \rightarrow A) \rightarrow A$ 定理
- (5) A

(4)

只需证:
$$\neg (A \rightarrow B), B \mid -A$$

- $\widehat{(1)} B \rightarrow (A \rightarrow B)$
- $\bigcirc B$
- $\textcircled{3} A \rightarrow B$

$$④ \neg (A \rightarrow B) \rightarrow ((A \rightarrow B) \rightarrow A)$$
 定理

- ⑤ $\neg(A \rightarrow B)$ 前提
- (6) A

3.

(1)

$$1) \neg B \rightarrow (B \rightarrow A)$$
 定理

2)
$$\neg A \rightarrow (\neg B \rightarrow (B \rightarrow A))$$
 1) 加前件

3)
$$(\neg A \rightarrow \neg B) \rightarrow (\neg A \rightarrow (B \rightarrow A))$$
 2) +A2

4)
$$(\neg A \rightarrow (B \rightarrow A)) \rightarrow ((\neg A \rightarrow B) \rightarrow (\neg A \rightarrow A))$$
 A2

$$(\neg A \rightarrow \neg B) \rightarrow ((\neg A \rightarrow B) \rightarrow (\neg A \rightarrow A))$$
 3)4)传递

$$6)$$
 ($\neg A \rightarrow A$) $\rightarrow A$ 定理

7)
$$(\neg A \rightarrow B) \rightarrow ((\neg A \rightarrow A) \rightarrow A)$$
 6) 加前件

(3)

先证 $((A \lor B) \to C) \to (A \to C) \land (B \to C)$

①
$$((A \lor B) \to C), A \vdash A$$
 公理

$$2((A \lor B) \to C), A - A \lor B \quad 1 \lor \exists |\lambda|$$

③
$$((A \lor B) \to C), A \vdash A \lor B \to C$$
 公理

$$4((A \lor B) \to C), A \vdash C$$
 ②③ → 消去

$$(5)((A \lor B) \to C) - A \to C \quad (4) \to \exists |\lambda|$$

⑥
$$((A \lor B) \to C) - B \to C$$
 同理可得

再证
$$A \rightarrow C$$
) \land $(B \rightarrow C) \rightarrow ((A \lor B) \rightarrow C)$

只需证:
$$A \rightarrow C$$
) \land $(B \rightarrow C)$, $A \lor B \mid -C$

①
$$A \rightarrow C$$
) $\wedge (B \rightarrow C)$, $A \vee B$; $A \mid -A$ 公理

$$(2A \rightarrow C) \land (B \rightarrow C), A \lor B; A \mid -A \rightarrow C$$
 公理+ \land 消除

③
$$A \rightarrow C$$
) $\land (B \rightarrow C), A \lor B; A \mid -C$ ①② \rightarrow 消去

$$(4) A \rightarrow C) \land (B \rightarrow C), A \lor B; B \mid -C$$
 同理可得

⑤
$$A \rightarrow C$$
) \land $(B \rightarrow C)$, $A \lor B \mid -A \lor B$ 公理

⑥
$$A \to C$$
) \land ($B \to C$), $A \lor B | -C$ ③④⑤∨消除

(5)

先证
$$|-\neg(A \to B) \to A \land \neg B|$$

1)
$$\neg (A \rightarrow B)$$
, $\neg A | \neg \neg A \rightarrow (A \rightarrow B)$ PC 已证定理

$$3)$$
 $\neg (A \rightarrow B)$, $\neg A | \neg A \rightarrow B \ 1) 2) \rightarrow 消除$

$$4)$$
 ¬ $(A \rightarrow B)$,¬ A |¬ $(A \rightarrow B)$ 公理

5)
$$\neg (A \rightarrow B) | \neg \neg A \quad 3) \quad 4) \quad \neg \vec{\beta} \mid \lambda$$

7)
$$\neg (A \rightarrow B), B \mid \neg B \rightarrow (A \rightarrow B)$$
 ND 中已证定理

8)
$$\neg (A \rightarrow B), B \mid -B$$
 公理

9)
$$\neg (A \rightarrow B), B \mid -A \rightarrow B$$
 7)8) \rightarrow 消除

10)
$$\neg (A \rightarrow B), B \mid \neg (A \rightarrow B)$$
 公理

11)
$$\neg (A \rightarrow B) | \neg B \quad 9)$$
 10) $\neg \exists | \lambda$

12)
$$\neg (A \rightarrow B) | -A \land \neg B = 6) 11) \land \exists | \lambda$$

13)
$$|-\neg(A \rightarrow B) \rightarrow A \land \neg B$$
 12) $\rightarrow \exists | \lambda$

再证:
$$|-(A \land \neg B) \rightarrow \neg (A \rightarrow B)$$

1)
$$A \land \neg B, A \rightarrow B \mid -A \land \neg B$$
 公理

2)
$$A \land \neg B, A \rightarrow B \mid \neg A \mid 1$$
) \land 消除

3)
$$A \land \neg B, A \rightarrow B \mid -A \rightarrow B$$
 公理

4)
$$A \land \neg B, A \rightarrow B | \neg B \ 2)$$
 3) \rightarrow 消除

5)
$$A \land \neg B, A \rightarrow B \mid \neg \neg B$$
 1) \land 消除

6)
$$A \land \neg B | \neg \neg (A \rightarrow B)$$
 4) 5) $\neg \exists | \lambda$

7)
$$|-(A \land \neg B) \rightarrow \neg (A \rightarrow B) \ 6) \rightarrow \exists | \lambda$$

1)
$$(A \lor B) \land (\neg B \lor C), A \mid \neg A$$
 公理

3)
$$(A \lor B) \land (\neg B \lor C), B; C \mid \neg C$$
 公理

4)
$$(A \lor B) \land (\neg B \lor C), B; C | \neg A \lor C$$
 3) \lor 引入

- 5) $(A \lor B) \land (\neg B \lor C), B; \neg B \mid \neg B$ 公理
- 6) $(A \lor B) \land (\neg B \lor C), B; \neg B \mid \neg B$ 公理
- 7) $(A \lor B) \land (\neg B \lor C), B; \neg B | \neg A \lor C \quad 5) 6)$ ¬消除
- 8) $(A \lor B) \land (\neg B \lor C), B | \neg (A \lor B) \land (\neg B \lor C)$ 公理
- 9) $(A \lor B) \land (\neg B \lor C), B | \neg \neg B \lor C$ 8) \land 消除
- 10) $(A \lor B) \land (\neg B \lor C), B | \neg A \lor C \ 4) \ 7) \ 9) \ \lor 消除$
- 11) $(A \lor B) \land (\neg B \lor C) | \neg A \lor B \ 8) \land$ 消除
- 12) $(A \lor B) \land (\neg B \lor C) | \neg A \lor C \ 2)$ 10) 11) \lor 消除
- 13) $|-(A \lor B) \land (\neg B \lor C) \rightarrow (A \lor C)$

先证: $|-(A \land B) \rightarrow A \land (\neg A \lor B)$

- ① A ∧ B | -A 公理+ ∧ 消除
- ② $A \wedge B \mid -B$ 公理+ \wedge 消除
- $4A \wedge B A \wedge (-A \vee B) \quad 3 \wedge \beta \lambda$

再证: $|-A \wedge (-A \vee B) \rightarrow (A \wedge B)$

- ① A ^ (¬A ∨ B) | A 公理+ ^ 消除
- ② $A \land (\neg A \lor B); \neg A \mid -A$ 公理+ \land 消除
- ③ $A \wedge (\neg A \vee B)$; $\neg A \mid \neg \neg A$ 公理
- \bigcirc $A \land (\neg A \lor B); B \mid -B$
- ⑥ *A* ∧ (¬*A* ∨ *B*) | − ¬*A* ∨ *B* 公理+∧消除

- ⑦ A ∧ (¬A∨B) | −B 456∨消除

先证 $|-B \rightarrow ((A \leftrightarrow B) \leftrightarrow A)|$

只需证: $B, A \leftrightarrow B \mid -A \nearrow B, A \mid -A \leftrightarrow B$

- 1) $B, A \leftrightarrow B \mid -B \to A$ 公理及 \leftrightarrow 消除
- 2) B,A ↔ B|-B 公理
- 3) $B, A \leftrightarrow B \mid -A$ 1) 2) →消除
- 4) $B,A \mid -B \rightarrow (A \rightarrow B)$ 已证定理
- 5) B, A -B 公理
- 6) *B*, *A*|−*A* → *B* 4) 5) →消除
- 7) $B,A \mid -B \rightarrow A$ 同理 6)
- 8) $B,A \mid -A \leftrightarrow B$ 6) 7) $\leftrightarrow \exists \mid \lambda$

再证 $|-((A \leftrightarrow B) \leftrightarrow A) \rightarrow B$

- 1) $(A \leftrightarrow B) \leftrightarrow A, A A$ 公理
- 2) $(A \leftrightarrow B) \leftrightarrow A, A A \rightarrow (A \leftrightarrow B)$ 公理及 \leftrightarrow 消除
- 3) $(A \leftrightarrow B) \leftrightarrow A, A A \leftrightarrow B$ 1) 2) \rightarrow 消除
- 4) $(A \leftrightarrow B) \leftrightarrow A, A \mid -A \to B$ 3) \leftrightarrow 消除
- 5) $(A \leftrightarrow B) \leftrightarrow A, A \mid -B \mid 1) \mid 4) \rightarrow$ 消除
- 6) $(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B \mid -\neg A \rightarrow (A \rightarrow B)$ 定理
- 7) $(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B \mid -\neg A$ 公理
- 8) $(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B \mid -A \to B$ 6) 7) \rightarrow 消除

- 9) $(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B \mid \neg \neg B \rightarrow (B \rightarrow A)$ 定理
- 10) $(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B \mid -\neg B$ 公理
- 11) $(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B \mid -B \to A$ 9) 10) \rightarrow 消除
- 12) $(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B | -A \leftrightarrow B \ 8) \ 11) \leftrightarrow \exists | \lambda$
- 13) $(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B | \neg (A \leftrightarrow B) \to A$ 公理及 \leftrightarrow 消除
- 14) $(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B \mid -A$ 12) 13) \rightarrow 消除
- 15) $(A \leftrightarrow B) \leftrightarrow A, \neg A; \neg B \mid -\neg A$ 公理
- 16) $(A \leftrightarrow B) \leftrightarrow A, \neg A \mid \neg \neg B$ 14) 15) $\neg \exists \mid \lambda$
- 17) $(A \leftrightarrow B) \leftrightarrow A, \neg A \mid -B \neg \neg 消除$
- 18) $(A \leftrightarrow B) \leftrightarrow A B$ 5) 17) 假设消除
- 19) $\left| -((A \leftrightarrow B) \leftrightarrow A) \rightarrow B \ 18) \rightarrow \exists | \lambda$