# Discrete Geometry – Third Assignment

#### **§1.** LOWER ENVELOPES

**LEMMA 1.1.** Let f, g be monotonically increasing functions. Then  $f \circ g$  is monotonically increasing.

PROOF OF LEMMA 1.1. Let  $x \le y$ . As g is monotonically increasing it follows that  $g(x) \le g(y)$ . Moreover, as f is monotonically increasing it follows that  $f(g(x)) \le f(g(y))$ .

**PROBLEM 1.** For every c there exists an  $n_0$  such that for all  $n \ge n_0$  we have that  $A_k(n) \ge A_{k-1}^{(c)}(n)$ .

SOLUTION FOR PROBLEM 1. It suffice to show that  $A_{k-1}^{(c)}(n) = o(A_k(n))$ . Note that

$$\lim_{n \to \infty} \frac{A_{k}(n)}{A_{k-1}^{(c)}(n)} = \lim_{n \to \infty} \frac{A_{k-1}(A_{k}(n-1))}{A_{k-1}^{(c)}(n)} = \lim_{n \to \infty} \frac{A_{k-1}(A_{k-1}(A_{k}(n-2)))}{A_{k-1}^{(c)}(n)} = \dots = \lim_{n \to \infty} \frac{A_{k-1}^{(c)}(A_{k}(n-c))}{A_{k-1}^{(c)}(n)} = \dots = \lim_{n \to \infty} \frac{A_{k-1}^{(c)}(A_{k}(n-c))}{A_{k-1}^{(c)}(n)} = \lim_{n \to \infty} \frac{A_{k-1}^{(c)}(A_{k}(n-c))}{A_{k-1}^{(c$$

where the first and the second inequalities hold due to the monotonicity of Ackermann's function. Indeed,  $A_1(n) = 2n$  and therefore monotonically increasing. In addition, Lemma 1.1 implies that the composition of monotonically increasing functions is also monotonically increasing.

**PROBLEM 2.** Let  $A(n) = A_n(3)$ . Prove that for every  $k \in \mathbb{N}$  there exists  $n_0 \in \mathbb{N}$  such that for every  $n \ge n_0$  it holds that  $A(n) \ge A_k(n)$ .

SOLUTION FOR PROBLEM 2. Let  $n_0$  satisfy  $A_{n_0}(2) \ge n_0$ , k. It then follows that for every  $n \ge n_0$  it holds that

$$A_n(3) = A_{n-1}(A_n(2)) \ge A_{n-1}(n) \ge A_k(n)$$
,

Where both inequality follows from the chose of  $n_0$ . Note that Corollary A.5 implies that  $f_k := A_k(n)$  is unbounded and therefore such choice for  $n_0$  is possible.

**PROBLEM 3.** In the lecture we defined  $x_k(m) := e_k(m)/n_k(m)$ . We claimed that  $x_k(m) \ge k/2$  and the proof was by induction on k and for each k by induction on m.

- 1. Complete the base case where k = 1.
- 2. Complete the base case where m = 1.
- 3. Check the details.

SOLUTION FOR PROBLEM 3.

1. Applying to the definition of  $S_1(m)$ , we have that the length of the lower envelope is m. That is,  $e_1(m) = m$ . In addition, the number of fans is defined to be 1, i.e.,  $f_1(m) = 1$ . It

follows that

$$x_1(m) = \frac{e_k(m)}{n_k(m)} = \frac{e_k(m)}{f_k(m) \cdot m} = \frac{m}{m} = 1 \ge \frac{1}{2} = \frac{k}{2}.$$

2. Following the recurrences relation that was stated in the class we have the following relations:

$$f_k(1) = 2 f_{k-1}(2)$$
 and  $e_k(1) = e_{k-1}(2) + 2 f_{k-1}(2)$ .

Therefore,

$$x_k(1) = \frac{e_k(1)}{n_k(1)} = \frac{e_k(1)}{f_k(1)} = \frac{e_{k-1}(2) + 2f_{k-1}(2)}{2f_{k-1}(2)} = \frac{e_{k-1}(2)}{n_{k-1}(2)} + 1 = x_{k-1}(2) + 1.$$

The induction hypothesis implies that  $x_k(1) \ge k/2$ .

3. The general case where  $k, m \ge 2$ . The way that  $S_k(m)$  was constructed implies that  $f_k(m) = f_{k-1}(M) \cdot M$  where  $M = f_k(m-1)$  is the number of fans in S'. We note that  $M-1 \ge M/2$  as  $M \ge 2$ . Applying to the recurrence relation that was proven in the class we have

$$e_k(m) = e_k(m-1) \cdot f_{k-1}(M) + e_{k-1}(M) + (M-1) \cdot f_{k-1}(M).$$

To see this note that we have  $f_{k-1}(M)$  copies of S' each contributes  $e_k(m-1)$  to the length. In addition, we should consider the contribution of  $S^*$ , that is,  $e_{k-1}(M)$ . Last but not least, one should take into account the M-1 additional parts gained from this clever (yet tedious) construction at each fun. It follows that

$$e_k(m) = e_{k-1}(M) + f_{k-1}(M) (e_k(m-1) + M - 1)$$
  
  $\ge e_{k-1}(M) + f_{k-1}(M) (e_k(m-1) + M/2).$ 

Dividing both sides by  $n_k(m)$  yields:

$$\begin{split} x_k(m) &\geq \frac{e_{k-1}(M) + f_{k-1}(M) \left(e_k(m-1) + M/2\right)}{n_k} \\ &\geq \frac{e_{k-1}(M) + f_{k-1}(M) \left(e_k(m-1) + M/2\right)}{m \cdot f_k(m)} \\ &\geq \frac{e_{k-1}(M) + f_{k-1}(M) \left(e_k(m-1) + M/2\right)}{mM \cdot f_{k-1}(M)} \\ &\geq \frac{e_k(m-1) + M/2}{mM} + \frac{e_{k-1}(M)}{m \cdot n_k} \\ &\geq \frac{e_k(m-1)}{mM} \cdot \frac{n_k(m-1)}{n_k(m)} + \frac{1}{2m} + \frac{x_{k-1}(M)}{m} \\ &\geq \frac{e_k(m-1)}{mM} \cdot \frac{(m-1) \cdot M}{n_k(m-1)} + \frac{1}{m} \cdot \left(\frac{1}{2} + x_{k-1}(M)\right) \\ &\geq \frac{e_k(m-1)}{n_k(m-1)} \cdot \frac{m-1}{m} + \frac{1}{m} \cdot \left(\frac{1}{2} + x_{k-1}(M)\right) \\ &\geq \left(1 - \frac{1}{m}\right) \cdot x_k(m-1) + \frac{1}{m} \cdot \left(\frac{1}{2} + x_{k-1}(M)\right). \end{split}$$

The induction hypothesis now implies that  $x_k(m-1) \ge k/2$  and that  $x_{k-1}(M) \ge (k-1)/2$ . Concluding that

$$\left(1 - \frac{1}{m}\right) \cdot \frac{k}{2} + \frac{1}{m} \left(\frac{1}{2} + \frac{k}{2} - \frac{1}{2}\right) \ge \frac{k}{2} \left(1 - \frac{1}{m} + \frac{1}{m}\right) = \frac{k}{2},$$

as claimed.

**PROBLEM 4.** Prove that if d, D are given in advance, and if r is chose large enough, then  $x_{23} < x_{12}$ .

SOLUTION FOR PROBLEM 4. Let  $\ell_1, \ell_2, \ell_3$  be the three segment from left to right as describe in Figure 1. Assume without loss of generality that the bottom left corner of the left segment (denoted by  $\ell_1$ ) is  $p_1 = (0,0)$  as describe in Figure 1.



Figure 1: A schematic illustration.

As we saw in the lecture, we can assume that the slopes of the lines are  $1 + \varepsilon m_1$ ,  $1 + \varepsilon m_2$ ,  $1 + \varepsilon m_3$ , where  $\varepsilon > 0$ . We start by finding the lines:

$$\ell_1: y_1(x) = (1 + \varepsilon m_1) x$$
,  $\ell_2: y_2(x) = (1 + \varepsilon m_2) \cdot (x - d)$ ,  $\ell_3: y_3(x) = (1 + \varepsilon m_3) \cdot (x - (d + D))$ .

Now, we find the intersection between the points that satisfies  $\ell_1$  and  $\ell_2$ :

$$y_{1}(x) = y_{2}(x)$$

$$(1 + \varepsilon m_{1}) x = (1 + \varepsilon m_{2}) \cdot (x - d)$$

$$x (1 + \varepsilon m_{2} - (1 + \varepsilon m_{1})) = d \cdot (1 + \varepsilon m_{2})$$

$$x \varepsilon (m_{2} - m_{1}) = d \cdot (1 + \varepsilon m_{2})$$

$$x_{12} = \frac{d \cdot (1 + \varepsilon m_{2})}{\varepsilon \cdot (m_{2} - m_{1})}$$

Similarly we find  $x_{23}$ , namely, the intersection of  $\ell_2$ ,  $\ell_3$ :

$$(1+\varepsilon m_2)\cdot(x-d) = (1+\varepsilon m_3)\cdot(x-(d+D))$$

$$x(1+\varepsilon m_2 - (1+\varepsilon m_3)) = d\cdot(1+\varepsilon m_2 - (1+\varepsilon m_3)) - D\cdot(1+\varepsilon m_3)$$

$$\varepsilon x(m_2 - m_3) = \varepsilon d(m_2 - m_3) - D(1+\varepsilon m_3)$$

$$x_{23} = d+D\cdot\frac{(1+\varepsilon m_3)}{\varepsilon(m_3 - m_2)}$$

As the question ask for satisfying  $x_{23} < x_{12}$  we have the constrain:

$$x_{23} = d + \frac{D \cdot (1 + \varepsilon m_3)}{\varepsilon (m_3 - m_2)} < \frac{d \cdot (1 + \varepsilon m_2)}{\varepsilon \cdot (m_2 - m_1)} = x_{12}$$

$$d (m_3 - m_2) \left[ \varepsilon (m_2 - m_1) - (1 + \varepsilon m_2) \right] < -D \cdot (1 + \varepsilon m_3) (m_2 - m_1)$$

$$D \cdot (1 + \varepsilon m_3) (m_2 - m_1) < d (m_3 - m_2) \left[ (1 + \varepsilon m_2) - \varepsilon (m_2 - m_1) \right]$$

Reordering,

$$\frac{D}{d} < \frac{(m_3 - m_2) \left[ (1 + \varepsilon m_2) - \varepsilon (m_2 - m_1) \right]}{(1 + \varepsilon m_3) (m_2 - m_1)} 
= (m_3 - m_2) \cdot \left( \frac{1 + \varepsilon m_2}{(1 + \varepsilon m_3) (m_2 - m_1)} - \frac{\varepsilon}{1 + \varepsilon m_3} \right) 
< \frac{m_3 - m_2}{m_2 - m_1} \cdot \frac{1 + \varepsilon m_2}{1 + \varepsilon m_3} 
\le \frac{m_3 - m_2}{m_2 - m_1} 
= r$$

To see the last equality note that

$$\frac{m_3 - m_2}{m_2 - m_1} = \frac{\frac{m_3 - m_2}{m_2}}{\frac{m_2 - m_1}{m_2}} = \frac{r - 1}{1 - \frac{1}{r}} = \frac{r - 1}{\frac{r - 1}{r}} = r.$$

We established the following relation:

$$r(d,D) \ge \frac{D}{d}$$

4

Let  $\lambda_s(n)$  denote the maximum length of a Davenport-Schinzel sequence of order s.

### **PROBLEM 5.** Prove that:

- 1.  $\lambda_1(n) = n$ .
- 2.  $\lambda_2(n) = 2n 1$ .
  - **HINT (Upper-Bound).** Let *z* be the last symbol to appear for the first time. Show that *z* can appear only one. Delete *z* and use induction on *n*.

#### SOLUTION FOR PROBLEM 5.

1. We start by showing that  $\lambda_1(n) \ge n$ . Consider the following Davenport-Schinzel sequence of order 1 of length  $n: \langle 1, 2, 3, ..., n \rangle$ .



The upper bound is trivial. The appearance of any additional segment would form an a...b...a for some  $a,b \in \Sigma = \{1,...,n\}$ , and hence negates the definition of Davenport-Schinzel sequence of order 1.

2. **Upper-Bound.** As the hint suggests, we prove the claim by induction on n. For n=1 then there is only one element, and indeed  $\lambda_2(1)=2\cdot 1-1=1$ . Assuming  $\lambda_2(n-1)=2n-3$  and let A be a Davenport-Schinzel sequence of order 2. Let z be the last symbol to appear for the first time and let y be the successive element in the sequence. We show that z appears only once in A. Assume towards a contradiction that the claim is false, then A cannot be a Davenport-Schinzel sequence of order 2 as it forms (see Figure 2) the configuration  $(\cdots y \cdots z y \cdots y \cdots)$  which violates the definition of Davenport-Schinzel sequence of order 2.



Figure 2: The assumption that z at least twice yields the configuration  $y \rightarrow z \rightarrow y \rightarrow z$ .

Removing the single appearance of z from U can yield a violation of the definition of Davenport-Schinzel sequence if the two neighbours of z share the same symbol. In this

case, choose one of the neighbours arbitrarily and remove also the chosen neighbour. The resulting sequence is a Davenport-Schinzel sequence of order 2 with n-1 segments (cause we remove the segment z). It follows by the induction hypothesis that the maximum length of A' is 2(n-1), and by the way A' was formed, we have that A' is shorter by at most 2 elements from A. Hence, the maximum length of A is at most 2n-1, as claimed. **Lower-Bound.** The sequence  $(1,2,\ldots,n-1,n,n-1,\ldots,2,1)$  is a Davenport-Schinzel sequence of order 2 with n segments of length 2n-1.

## **§2.** TVERBERG'S THEOREM

**PROBLEM 6.** Write that last part of the proof formally (and not just with an example).

*Proof.* We adopt the notation from the slides and note that for every  $1 \le i \le N+1$  it holds that  $\sum_{j=1}^r q_{i,j}^2 = \hat{0}$ . As we want to show that  $\hat{0} \in \mathbf{conv}(q_{i,r}^2, \dots, q_{i,r}^2)$ , we normalize the last equation by dividing by r and driving that there exists a convex combination of  $q_{i,r}^2, \dots, q_{i,r}^2$  which forms  $\hat{0}$ . The colorful Carathéodory Theorem implies that there exists a sequence  $j_1, \dots, j_{N+1}$  such that  $\hat{0} \in \mathbf{conv}(\hat{q}_{1,j_1}, \dots, \hat{q}_{N+1,j_{N+1}})$ . Hence there exists scalars  $\alpha_1, \dots, \alpha_{N+1} \ge 0$  such that  $\sum_{i=1}^{N+1} \alpha_i = 1$  and  $\hat{0} = \sum_{i=1}^{N+1} \alpha_i \hat{q}_{i,j_i}$ . As vector are equal iff the entries are element-wise equals we have

$$0 = \sum_{i: j_i = k} \alpha_i q_i + \sum_{i: j_i = r} \alpha_i \cdot (-q_i) \iff \sum_{i: j_i = r} \alpha_i q_i = \sum_{i: j_i = k} \alpha_i q_i,$$

for every  $1 \le k \le r-1$ . Recall that each  $q_i = (p_i, 1)$  and hence the sum of the coefficient at each side of the equation sums to the same quantity, say  $\lambda$ . Hence, dividing all equations by  $\lambda$  yields a point  $\rho \coloneqq \frac{1}{\lambda} \cdot \sum_{i: j_i = r} \alpha_i q_i$  such that  $\rho$  can be expressed as r convex combinations, say  $\operatorname{\mathbf{conv}}(\mathcal{G}_1), \ldots, \operatorname{\mathbf{conv}}(\mathcal{G}_r)$  where  $\bigcup_{i=1}^r \mathcal{G}_i = \mathcal{U} \coloneqq \{p_1, \ldots, p_{N+1}\}$ , i.e.  $\mathcal{G}_1, \ldots, \mathcal{G}_r$  is a partition of  $\mathcal{U}$ .

**PROBLEM 7.** Let  $p_1, ..., p_{d+1} \in \mathbb{R}^d$  form the vertices of a simplex. Let q be the center of the simplex (i.e.,  $q = (p_1 + ... + p_{d+1})/(d+1)$ ). Replace each  $p_i$  by a tiny cloud of r-1 points. What are **all** the Tverberg partitions of the set? And how many Tverberg partitions are there?

*Proof.* Note that the number of points is  $(r-1) \cdot (d+1) + 1$ , that is a Tverberg's number. For the first set in the partition there are  $(r-1)^{d+1}$  options, since in each cloud there are (r-1) option and there are (d+1) clouds. Once it has been chosen, the second set in the partition has  $(r-2)^{d+1}$  as at each cloud one vertex has been discarded cause repetition is not allowed in a partition. Finally, the last set has  $1^{d+1} = 1$  options. The element q is also taken as a set in the partition, i.e., the set  $\{q\}$  is a set in the partition. Therefore, we have

$$(r-1)^{d+1} \cdot (r-2)^{d+1} \cdot \dots \cdot 2^{d+1} \cdot 1^{d+1} = (1 \cdot 2 \cdot \dots \cdot r-1)^{d+1} = ((r-1)!)^{d+1}$$
 Options.

\_

#### **§A.** THE ACKERMANN'S HIERARCHY

**LEMMA A.1.** Prove that  $A_k(n+1) \ge A_k(n) + 2$  whenever  $k, n \in \mathbb{N}$ .

**COROLLARY A.2.**  $A_k(n) \ge 2n$  whenever  $k, n \in \mathbb{N}$ .

PROOF OF LEMMA A.1. We prove it using induction over  $(k, n) \in \mathbb{N} \times \mathbb{N}$ , where (a, b) < (c, d) if either a < c, or a = c and b < d. Observe that the claim holds for k, n = 0 as  $A_0(1) = 2 \ge 0 + 2 = A_0(0) + 2$ . Assume the claim holds for every (k', n') < (k, n) and show for (k, n). Note that

$$A_k(n+1) = A_{k-1}(A_k(n)) \ge 2 \cdot A_k(n) \ge A_k(n) + 2n \ge A_k(n) + 2.$$

**COROLLARY A.3.** Prove that  $A_k(n+1) > A_k(n)$  whenever  $k, n \in \mathbb{N}$ .

**LEMMA A.4.** Prove that  $A_{k+1}(n) \ge A_k(n)$  whenever  $m, n \in \mathbb{N}$ .

PROOF OF LEMMA A.4. Note that  $A_1(0) = 0 = A_0(0)$ . Assume the claim holds for all (k', n') < (k, n) and show for (k, n). To that end, note

$$A_{k+1}(n) = A_k(A_{k+1}(n-1)) \ge A_k(2(n-1)) \ge A_k(n)$$

where the first inequality is due to Lemma A.1.

**COROLLARY A.5.** Fix  $n \in \mathbb{N}$ . Then  $f_k = A_k(n)$  is unbounded.

PROOF OF COROLLARY A.5. In the proof of Lemma A.4 we showed that:

$$A_{k+1}(n) = A_k(A_{k+1}(n-1)) \ge A_k(2(n-1))$$
.

Continue this fashion one obtains:

$$A_{k+1}(n) \ge A_k(2(n-1)) \ge A_{k-1}(2^2(n-1)) \ge \dots \ge A_{k-k'}(2^{k'}(n-1)) \ge A_1(2^k(n-1)) = 2^{k+1}(n-1).$$

Clearly, as the last expression in the right hand side tends to infinity as k tends to infinity the claim follows.

## REFERENCES

[1] J. Matoušek. *Lectures on discrete geometry*, volume 212 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 2002.