

533,812
10/533812

(12) NACH DEM VERTRÄG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
10. März 2005 (10.03.2005)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2005/021958 A1

(51) Internationale Patentklassifikation⁷: F02M 65/00,
47/02

(21) Internationales Aktenzeichen: PCT/EP2004/051658

(22) Internationales Anmeldedatum:
29. Juli 2004 (29.07.2004)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
103 38 489.8 21. August 2003 (21.08.2003) DE

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): SIEMENS AKTIENGESELLSCHAFT [DE/DE]; Wittelsbacherplatz 2, 80333 München (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): GERBER, Wolfgang [DE/DE]; Siedlungsweg 1, 84085 Langquaid (DE). LEUTERITZ, Uwe [DE/DE]; Agricolaweg 2, 93049 Regensburg (DE). NEUMAIER, Martin [DE/DE]; Andreasstr. 17e, 93059 Regensburg (DE). WONESCH, Jörg [DE/DE]; Kurt-Schumacher-Str. 16, 93049 Regensburg (DE).

(74) Gemeinsamer Vertreter: SIEMENS AKTIENGESELLSCHAFT; Postfach 22 16 34, 80506 München (DE).

(81) Bestimmungsstaaten (*soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,

[Fortsetzung auf der nächsten Seite]

(54) Title: INJECTION VALVE WITH A CAPACITIVE VALVE LIFT SENSOR

(54) Bezeichnung: EINSPRITZVENTIL MIT KAPAZITIVEM VENTILHUBSENSOR

(57) Abstract: The invention relates to an injection valve in which the movable valve parts and the valve seat (4) form the electrodes of a capacitor that is connected in an electric circuit, the capacity of said capacitor changing with the valve lift of the closing element. According to the invention, the valve seat (4) is configured in the form of an electrically conductive nozzle body (2) that is connected to the electric circuit and the closing element is configured in the form of a valve needle (5) that is connected to the electric circuit by its end surface opposite the valve seat (4).

(57) Zusammenfassung: Bei einem Einspritzventil, bei dem die bewegbaren Ventileile und der Ventilsitz (4) jeweils Elektroden eines in einem Stromkreis geschlossenen Kondensators bilden, dessen Kapazität sich mit dem Ventilhub des Verschlussglieds ändert, wird vorgeschlagen, dass der Ventilsitz (4) in einem elektrisch leitenden, an den Stromkreis angeschlossenen Düsenkörper (2) ausgebildet ist, und dass das Verschlussglied als Ventilnadel (5) ausgebildet ist, die an ihrer dem Ventilsitz (4) entgegengesetzten Endfläche an den Stromkreis angeschlossen ist.

WO 2005/021958 A1

FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (*soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart*): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK,

EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Beschreibung

Einspritzventil mit kapazitivem Ventilhubsensor

5 Die Erfindung betrifft ein Einspritzventil mit kapazitivem Ventilhubsensor für Brennkraftmaschinen.

Ein derartiges Einspritzventil ist bereits aus der DE 198 30 667 A1 bekannt.

10

Im Zusammenhang mit den wachsenden Anforderungen an ein geregeltes Motor-Einspritzsystem wird es zunehmend wichtiger, ein stabiles Regelsystem zur präzisen Regelung der einzuspritzenen Kraftstoffmenge aufbauen zu können. Im Serienbetrieb, beispielsweise in einem Diesel Piezo-Injektor mit Diesel-Motorsteuerungssystem, kann eine ausreichend genaue Erfassung bzw. Ermittlung des Zeitpunktes und der tatsächlichen Menge der einzelnen Einspritzung nicht direkt erfolgen, sondern nur mittelbar durch Erfassung der tatsächlichen Bewegung der Ventilnadel im Einspritzventil und einer darauf aufbauenden Berechnung der Einspritzmenge.

25

Zum Zweck der Erfassung der tatsächlichen Bewegung der Ventilnadel sind in den letzten Jahren bereits Nadelhubsensoren bekannt geworden, die berührungslos, beispielsweise auf der Basis von optischen Elementen oder von Hall-Elementen, arbeiten. Es ist jedoch – auch unter Kostengesichtspunkten – nicht unproblematisch, derartige Sensoren mit relativ hohem Raumbedarf in einen ohnehin eng dimensionierten Injektor, gegebenfalls in eine Umgebung, in der Kraftstoffdrücke bis zu 2000 bar herrschen, einzubauen. Zum anderen bedingt der Einbau eines Nadelhubsensors ein erhöhtes Risiko von Undichtigkeiten.

35

Aus der DE 31 17 779 ist ein Nadelhubsensor mit eingeschränkten Überwachungsmöglichkeiten in Form eines Nadelspitze / Ventilsitz-Kontaktschalters bekannt, dessen zwei Schaltposi-

tionen mit den Zeitpunkten des Schließens bzw. Öffnens der Ventilnadel korreliert sind, so dass die tatsächliche Einspritzdauer, nicht jedoch der genaue Einspritzverlauf, bzw. die tatsächliche Einspritzmenge, gemessen werden kann. Sitzkontakte schalten darüber hinaus in der Schließposition, also beim Auftreffen der Ventilnadel auf den Ventilsitz, einen guten elektrischen Kontakt zwischen der Spitze der Ventilnadel und dem Ventilsitz voraus, während neuere Bestrebungen eher dahin gehen, die hohen Schlagbeanspruchungen im Betrieb zu mindern.

Der Erfindung liegt daher die Aufgabe zu Grunde, in einfacher Weise ein Ventil der eingangs angegebenen Art als Einspritzventil, insbesondere als Piezo-Injektor, zu realisieren.

Diese Aufgabe wird erfindungsgemäß durch ein Einspritzventil gemäß Anspruch 1 gelöst. Weiterbildungen und bevorzugte Maßnahmen ergeben sich aus den Unteransprüchen.

Erfindungsgemäß ist bei einem Einspritzventil der eingangs genannten Art demnach vorgesehen, dass ein an den Stromkreis angeschlossener, elektrisch leitender Injektorkörper vorhanden ist, an dem ein Düsenkörper mit einem Ventilsitz ausgebildet ist, und dass das Verschlußglied als Ventilnadel ausgebildet ist, die an ihrer dem Ventilsitz entgegengesetzten, ventilaabgewandten Endfläche an den Stromkreis angeschlossen ist.

Die Erfindung beruht auf der Voraussetzung einer Ventilnadel, die bis auf einen elektrischen Kontaktpunkt am dem Ventilsitz entgegengesetzten Ende vollständig gegenüber dem Düsenkörper (Gehäuse) isoliert ist. Ventilnadel und Gehäuse bilden einen Kondensator. Durch die Bewegung der Ventilnadel ändert sich der Abstand zwischen der Spitze der Ventilnadel und dem Ventilsitz, während der Abstand zwischen Nadelführung und Gehäuse konstant bleibt. Da Ventilnadel und Düsenkörper beide elektrisch leitend sind und insbesondere durch eine isolieren-

de Schicht voneinander getrennt sind, erfüllen sie die Charakteristik eines in seinem Kapazitätswert veränderlichen Kondensators, wobei die Kapazität indirekt proportional zum Abstand zwischen Ventilsitz und Ventilnadelspitze ist. Mit 5 tels eines elektrischen Signals gelingt es erfindungsgemäß Bewegungsanfang und Position während der Bewegung der Ventilnadel reproduzierbar und dokumentierbar zu detektieren. Aus diesen Signalen können der Einspritzverlauf und die Einspritzmenge berechnet werden. Dadurch kann für den Serienbetrieb ein stabiles Regelsystem zur Regelung der einzuspritenden Kraftstoffmenge aufgebaut werden.

Zur weiteren mechanischen und elektrischen Realisierung ist es gemäß einer ersten Ausführungsform der Erfindung vorteilhaft, dass die Spannungsanbindung des Kondensator-Stromkreises über einen isoliert in einer axialen Bohrung im Injektorkörper geführten Leiter erfolgt, der mit einer isoliert im Injektorkörper angeordneten, elektrisch leitenden Kontaktfeder verbunden ist, die sich kontaktgebend an der Unterseite des Kopfes eines leitenden Injektorkolbens abstützt, der kontaktgebend gegen die ventilabgewandte Endfläche der Ventilnadel gedrückt ist. Im Einzelnen ist es bei dieser Ausführungsform vorteilhaft, dass der Injektorkörper oberhalb der ventilabgewandten Endfläche der Ventilnadel als Zwischenscheibe ausgebildet ist, und dass auf der ventilabgewandten Seite der Zwischenscheibe ein elektrisch leitendes Kontaktteil zur elektrischen Verbindung zwischen dem Leiter und der Kontaktfeder vorgesehen ist, das gegenüber dem Injektorkörper und der Zwischenscheibe elektrisch isoliert ist und auf dem 20 sich die Kontaktfeder mit ihrem ventilseitigen Ende abstützt. Dabei ist es ferner vorteilhaft, am Anfang und Ende der axialen Bohrung jeweils eine Abdichtung vorzusehen.

Gemäß einer zweiten Ausführungsform der Erfindung ist es von 35 Vorteil, den Kondensator-Stromkreis über eine elektrisch isoliert im Injektorkörper angeordnete Düsenhaltefeder zu führen, welche die Ventilnadel gegen den Ventilsitz drückt, wo-

bei sich die Düsenhaltefeder mit einem ventilabgewandten Ende an einer Einstellscheibe, die mit einem weiterführenden Anschlusskontakt elektrisch verbunden ist, und ventilseitig an einem leitenden Injektorkolbens abstützt, der kontaktgebend 5 gegen die ventilabgewandte Endfläche der Ventilnadel gedrückt ist.

Die elektrische Isolierung kann bei diesen Ausführungsformen in einfacher Weise sichergestellt bzw. verbessert werden, indem insbesondere die Ventilnadel und der Injektorkolben mindestens an einem Teil der nicht zur Kontaktgabe dienenden 10 Flächen eine isolierende Schicht aufweisen.

Im Hinblick auf eine elektrische Entkoppelung von bewegbaren 15 Ventilteilen bzw. von ventilseitigen Bereichen des Einspritzventils vom Kondensator, ist es von besonderem Vorteil, einen Steuerkolben vorzusehen, der mit seiner ventilseitigen Endfläche auf den zentralen Bereich der ventilabgewandten Kopffläche des Injektorkolbens drückt, wobei gleichzeitig an der 20 Kopffläche des Injektorkolbens eine isolierende Schicht vorzusehen ist.

Innerhalb bestehender konstruktiver Aufbauten von Injektoren kann der kapazitive Ventilhubsensor günstigerweise dadurch 25 integriert werden, dass der Injektorkörper oberhalb der ventilabgewandten Endfläche der Ventilnadel als Zwischenscheibe ausgebildet ist, und dass an der Endfläche der Ventilnadel eine axiale Ringschulter ausgebildet ist, der eine an der Unterseite der Zwischenscheibe ausgebildete Gegenschulter als 30 Anschlagfläche zugeordnet ist, wobei die Unterseite der Zwischenscheibe mindestens im Bereich der Anschlagfläche mit einer isolierenden Schicht versehen sein kann.

Mit Blick auf die Vermeidung von Leckströmen und von Korrosion ist es günstig, dass der jeweils vorliegende Ventilhub 35 durch Messung der jeweils an dem Ventilsitz($R_2 + C_{var}$) abfallenden Spannung U_{inj} ermittelbar ist, wobei als Betriebsspan-

nung U_B eine Wechselspannung angelegt ist. Dabei wird die Änderung des komplexen Widerstands $R_2 + C_{var}$ in einem vorgegebenen Zeitfenster gemessen, um die Position der Düsenadel bzw. den Ventilhub festzustellen.

5

Die isolierenden Schichten können bevorzugt, zumindest stellenweise, als Diamond-Like-Carbon (DLC)- oder Aluminiumoxid- oder als Zirkonoxynitrit-Schicht ausgebildet sein, die sich neben ihren isolierenden Eigenschaften durch hohe Abriebfestigkeit und Abschlagfestigkeit auszeichnet und die Bewegung der entsprechenden Teile nicht durch Reibung hemmt.

Der jeweils vorliegende Ventilhub H der Düsenadel ist durch Messung der jeweils an dem komplexen Widerstand $R_2 + C_{var}$ abfallenden Spannung ermittelbar, wobei als Betriebsspannung U_B eine Wechselspannung angelegt ist und der komplexe Widerstand im Wesentlichen zwischen Düsenadel und Düsenkörper gebildet wird.

20 Die axiale Position der Düsenadel hängt ab von der ermittelten Kapazität und dem Widerstand zwischen dem Injektorkörper und mindestens einem Ventilteil.

Der Zeitpunkt des Abhebens der Düsenadel vom Ventilsitz
25 hängt ab von der ermittelten Änderung der Kapazität zwischen Düsenadel und Düsenkörper und ist insbesondere erfassbar durch die ermittelte Verringerung der Kapazität.

Der Verschleiß der Isolierschicht zwischen Düsenadel und Düsenkörper hängt ab von dem ermittelten ohmschen Widerstand zwischen Düsenadel und Düsenkörper, wobei vorzugsweise bei erhöhtem Verschleiß eine Reduzierung des Widerstands (R_2) einhergeht.

35 Die Innenseite des Düsenkörpers und die Düsenadel sind dabei zumindest im Bereich des Ventilsitzes beschichtet.

Weitere Vorteile und Ausgestaltungen der Erfindung sind in der nachfolgenden Beschreibung des in den Figuren der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zeigt:

5

Figur 1 schematisch einen Längsschnitt durch den düsenseitigen Teil eines Einspritzventils gemäß der Erfindung,

10 Figur 2 eine andere Ausführungsform eines erfindungsgemäßen Einspritzventils in der Darstellung gemäß Figur 1,

Figur 3 ein elektrisches Ersatzschaltbild des zur kapazitiven Bestimmung des Ventilhubs herangezogenen Kondensator-Stromkreises.

15

Figur 1 zeigt im Längsschnitt beispielhalber ein piezoelektrisch angetriebenes Einspritzventil, das, zusammen mit anderen Piezo-Injektoren, in an sich bekannter Weise mit einem nicht dargestellten zentralen Druckspeicher (Common Rail) für 20 Diesel-Kraftstoff verbindbar ist und dessen elektrische Ansteuerung mittels eines externen Steuergerätes (ECU) erfolgt. Der Piezo-Aktuator selbst befindet sich üblicherweise im hier nicht dargestellten oberen Teil des Injektorkörpers 14.

25 Der dargestellte untere Teil des Einspritzventils ist hauptsächlich aus elektrisch leitenden Materialien hergestellt und bezüglich der Ventilachse 1 vorzugsweise rotationssymmetrisch ausgebildet. Er weist einen Düsenkörper 2 auf, an dessen Düsenöffnung 3 ein Ventilsitz 4 ausgebildet ist, auf welchem eine Ventilnadel 5 sitzt. Die Ventilnadel 5 ist in ihrem oberen, im Querschnitt vergrößerten Abschnitt eng im Düsenkörper 2 geführt, wobei eine Isolierschicht 22, in jedem Fall jedoch eine abriebfeste und reibarme Isolierung, zwischen diesem Abschnitt der Ventilnadel 5 und dem Düsenkörper 2 vorgesehen 30 ist. Am Übergang des oberen zum unteren, im Querschnitt verengten Abschnitts der Ventilnadel 5 ist eine (über einen nicht dargestellten Zulauf) mit Kraftstoff versorgte Hoch-

35

druckkammer 13 vorgesehen, von der aus die Zuführung von Kraftstoff entlang der Ventilnadel 5, über den Ventilsitz 4, zur Düsenöffnung 3 hin erfolgen kann. Dadurch ist entlang des unteren Abschnittes der Ventilnadel 5 im Normalfall bereits 5 eine ausreichende elektrische Isolierung zum Düsenkörper 2 gegeben.

Die obere Endfläche der Ventilnadel 5 grenzt an eine Zwischenscheibe 6, die, zusammen mit der engen Führung der Ventilnadel 5, bei dieser Ausführungsform einen ventilseitigen Hochdruckbereich des Kraftstoff-Einspritzventils von einem darüber befindlichen Niederdruckbereich trennt und die mit den darüber und darunter angeordneten weiteren Bereichen des Düsenkörpers 2 bzw. des Injektorkörpers 14 leitend verbunden 10 ist. Oberhalb der Zwischenscheibe 6 ist im Injektorkörper 14 ein stirnseitig offener Federraum 7 ausgespart, in dem eine Düsenhaltefeder 8 angeordnet ist. Die Düsenhaltefeder 8 15 stützt sich nach unten hin auf die Oberseite eines als T-Stück ausgebildeten Injektorkolbens 9 ab, der durch eine Bohrung im Zwischenstück 6 hindurchgeführt ist und mit seiner Unterseite auf die obere Endfläche der Ventilnadel 5 drückt. Gegenüberliegend stützt sich die Düsenhaltefeder 8 an einer gegenüber dem Injektorkörper 14 isoliert angeordneten Einstell scheibe 10 ab, die durch eine nach außen führende Bohrung mit einem gegenüber dem Injektorkörper 14 isolierten Anschlusskontakt 11 elektrisch verbunden ist. 20 25

Axial durch die Düsenhaltefeder 8 hindurch ist ein Steuerkolben 12 geführt, der mit einer Endfläche auf die Oberseite des Injektorkolbens 9 drückt und mit dem gegenüberliegenden Ende 30 in den oberen Teil des Einspritzventils hineinreicht.

Die in den mechanisch-hydraulischen Aspekten an sich bekannte Funktionsweise dieser Konstruktion beruht darauf, dass, so lange der Injektor nicht angesteuert wird, der hohe Kraftstoffdruck gleichzeitig an der Spitze der Ventilnadel 5 und 35 in einem an der oberen Endfläche des Steuerkolbens 12 ange-

ordneten Steuerraum anliegt, sich dort, wegen der größeren Fläche, jedoch mit einer größeren wirksamen Druckkraft äußert und somit das Ventil schließt. Wird der Injektor angesteuert, so öffnet der sich ausdehnende Piezo-Aktuator einen Kraftstoffrücklauf vom Steuerraum, wodurch der Druck an der Spitze der Ventilnadel 5 das Übergewicht erhält, die Ventilnadel 5 nach oben drückt und das Düsenventil öffnet. Grundsätzlich sind erfindungsgemäß jedoch auch andere Ausführungen möglich, bei denen ein Piezo-Aktor oder ein Magnetventil beim Schließen des Ventils bestromt wird.

Wie in Figur 1 erkennbar, ist der Querschnitt des oberen Abschnittes der Ventilnadel 5 etwas größer als der Querschnitt der in der Zwischenscheibe 6 für den Injektorkolben 9 vorgesehenen Bohrung. Auf diese Weise ist an der oberen Endfläche der Ventilnadel 5 eine axiale Ringschulter gebildet, der eine an der Unterseite der Zwischenscheibe 6 ausgebildete Gegen-

schulter als Anschlagfläche zugeordnet ist.

Figur 2 zeigt eine Ausführungsform des erfindungsgemäßen Einspritzventils, die sich in der Kontaktierung von der in Figur 1 gezeigten Ausführungsform unterscheidet. Die Spannungsbindung erfolgt, wie erkennbar, über einen Anschluss 15 und eine axiale Bohrung 19 im Injektorkörper 14, durch die ein isolierter Leiter (Draht) 16 geführt wird. Auf der ventilabgewandten Seite der Zwischenscheibe (Anschlagscheibe) 6 wird ein elektrisch leitendes Kontaktteil 18 eingearbeitet, das gegenüber der Zwischenscheibe 6 und dem Injektorkörper 14, z.B. durch eine isolierende Einlage, elektrisch isoliert ist, und eine feste elektrische Verbindung zum Leiter 16 hat. Auf das Kontaktteil 18 stützt sich eine elektrisch leitende Kontaktfeder 17, die sich an ihrem anderen Ende an der Unterseite des Kopfes des Injektorkolbens 9 abstützt und so die Spannung an den Injektorkolben 9 weiterführt. Der Injektorkolben 9 ist zur elektrischen Entkopplung und zur Verringerung der parasitären Kapazitäten gegenüber dem Steuerkolben 12 an der Kopffläche und den Seitenflächen des Kopfes mit einer elekt-

risch isolierenden Schicht 21 versehen. Über das ventilseitige Ende des Hubeinstellbolzens 9 wird die Spannung zur Ventilnadel 5 (die seitlich isoliert zum Düsenkörper 2 geführt ist) geleitet. Vorteile dieser Kontaktierungsvariante sind
5 die einfachere Verbaubarkeit im Motorraum und die Möglichkeit, den Anschluss 15 im Einspritzventil nach oben weiterzuführen und damit insbesondere eine elektrische Anbindung an den Stecker des Piezo-Aktors zu schaffen. Die Bohrung 19 sollte, wie dargestellt, von innen nach außen sowie von außen
10 nach innen mittels einer Abdichtung 20 abgedichtet sein, um ein Eindringen von Fremdstoffen bzw. einen Druckverlust zu vermeiden.

Die Düsenadel 5 und der Injektorkörper 14 (Gehäuse) des beschriebenen Einspritzventils bilden einen in einem Stromkreis angeschlossenen Kondensator, der wie folgt als kapazitiver Ventilhubsensor wirkt:
15

Um ein mit der Position der Ventilnadel 5 und dem damit verbundenen Ventilhub H korrespondierendes elektrisches Signal zu erhalten, wird der Düsenkörper 2 auf Massepotenzial gelegt und der Anschlusskontakt 11 wird über einen Vorwiderstand R_{vor} mit einer Spannungsquelle U_B verbunden. Bei dieser in Figur 3 dargestellten Schaltungsanordnung wird direkt der Abfall der Spannung U_{inj} an $R_2 + C_{var}$ gemessen und zur Auswertung, z. B. im Rahmen einer zentralen Steuereinheit (ECU), herangezogen.
20 Die Spannung U_B wird der Einstellscheibe 10 der Düsenhaltefeder 8 oder dem Anschluss 15 zugeführt und, je nach Kontaktvariante, zur Ventilnadel 5 weitergeleitet. Dabei ist zu beachten, dass alle stromführenden Teile außer den Kontaktstellen ausreichend gut gegenüber dem Düsenkörper 2 isoliert sind.
25 Dies wird durch eine aufgesputterte Diamond-Like-Carbon (DLC)- oder eine Aluminiumoxid- oder eine Zirkonoxydnitrit-Schicht gewährleistet, die neben einer hohen Abriebfestigkeit auch einen niedrigen elektrischen Leitwert besitzt und sich daher auch als Isolationsschicht eignet, auch wenn Leckströme nicht auszuschließen sind. Eine Isolierschicht muss insbeson-

dere an den Stellen der Einstellscheibe 10 und des Hubein-
stellbolzens 9 vorgesehen werden, an denen eine Engführung
zum Düsenkörper 2 hin besteht. Bei dieser Isolierschicht ist
es weiterhin von Vorteil, wenn sie auch einen sehr niedrigen
5 Reibbeiwert, der eine gute Laufeigenschaft der bewegten Teile
garantiert, aufweist.

Das in Figur 3 dargestellte elektrische Ersatzschaltbild
macht ferner die Widerstandsverhältnisse im Injektor deutlich
10 und zeigt den einfachen Aufbau des Messkreises mit der Span-
nungsquelle U_B , dem Kondensator C_{var} und dem in Reihe zu C_{var}
geschalteten Widerstand R_{vor} . R_2 ist der ohmische Widerstands-
anteil, C_{var} der entsprechende kapazitive Blindanteil zwischen
Düsennadel und dem Ventilsitz. R_{ISO} bezeichnet den Isolations-
widerstand der Isolierschicht und R_{FG} den Übergangswiderstand
15 zwischen der Führung der Ventilnadel 5 und dem Düsenkörper 2.
Dabei gilt $R_2 \ll (R_{ISO} + R_{FG})$. C_{var} und R_2 stellen im Wesentli-
chen den komplexen Widerstand zwischen dem Ventilsitz dar,
der durch Düsennadelspitze 4 und der zugehörigen Innenseite
20 des Düsenkörpers 2 dar.

Zur Vermeidung von Korrosion durch Kontaktabbrand und/oder
galvanische Prozesse offenliegender Kontaktflächen und da an
den Isolierschichten Leckströme zu erwarten sind, wird die
25 Betriebsspannung U_B als Wechselspannung ausgelegt.

Der Gesamthub der Ventilnadel 5 kann beispielsweise 100-250
 μm betragen. Die elektrische Auswertung kann, abgesehen von
der bereits beschriebenen Messung des Spannungsabfalls U_{inj} ,
30 auch nach einem anderen elektrischen Prinzip bzw. auch in
Kombination mit einer geeigneten Spule durch Verstimmung der
Resonanzfrequenz realisiert werden.

Bei der elektrischen Auswertung muss die Tatsache beachtet
35 werden, dass die zu messenden, relativ kleinen Kapazitätsän-
derungen einer – auch durch parallel geschaltete Kapazitäten
bedingten, vgl. C_{konst} und zugehörigen R_1 in Figur 3, – großen

Gesamtkapazität gegenüberstehen. Es ist deshalb vorteilhaft, die Gesamtkapazität insbesondere dadurch zu verringern, dass zwischen der unteren Endfläche des Steuerkolbens 12 und der oberen Endfläche des Injektorkolbens 9 eine Isolierschicht 5 eingefügt wird, die die Gesamtkapazität durch Reihenschaltung von Teilkapazitäten verringert.

Erfindungsgemäß kann mit relativ einfachen Mitteln, insbesondere ohne größerem mechanischen Aufwand, die Position der 10 Ventilnadel 5 in direkter Weise detektiert werden. Daraus kann im Weiteren eine Regelkette aufgebaut werden, die aus den gemessenen Werten über wenige Rechenschritte auf die tatsächliche Einspritzmenge schließt, diese mit den nach Betriebsart vordefinierten Sollwerten vergleicht und über eine 15 Auswertung der Differenzen die Ansteuerparameter entsprechend anpasst.

Patentansprüche

1. Einspritzventil mit kapazitivem Ventilhubsensor für Brennkraftmaschinen, mit einem Ventilsitz (4) und bewegbaren Ventilteilen, die ein dem Ventilsitz (4) zugeordnetes längsgeführtes Verschlußglied umfassen, das elektrisch isoliert geführt ist, wobei das Verschlußglied und der Ventilsitz (4) jeweils Elektroden eines in einem Stromkreis angeschlossenen Kondensators bilden, dessen Kapazität sich mit dem Ventilhub des Verschlußglieds ändert,
dadurch gekennzeichnet,
dass ein an den Stromkreis angeschlossener, elektrisch leitender Injektorkörper (14) vorgesehen ist, an dem ein Düsenkörper (2) mit einem Ventilsitz (4) ausgebildet ist, und dass
das Verschlußglied als Ventilnadel (5) ausgebildet ist, die an ihrer dem Ventilsitz (4) entgegengesetzten, ventילabgewandten Endfläche an den Stromkreis angeschlossen ist.
2. Einspritzventil nach Anspruch 1,
dadurch gekennzeichnet, dass die Spannungsanbindung des Stromkreises über einen isoliert in einer axialen Bohrung (19) im Injektorkörper (14) geführten Leiter (16) erfolgt, der mit einer isoliert im Injektorkörper (14) angeordneten, elektrisch leitenden Kontaktfeder (17) verbunden ist, die sich kontaktgebend an der Unterseite des Kopfes eines leitenden Injektorkolbens (9) abstützt, der kontaktgebend gegen die ventilabgewandte Endfläche der Ventilnadel (5) gedrückt ist.
3. Einspritzventil nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass der Injektorkörper (14) oberhalb der ventilabgewandten Endfläche der Ventilnadel (5) als Zwischenscheibe (6) ausgebildet ist, und dass auf der ventilabgewandten Seite der Zwischenscheibe (6) ein elektrisch leitendes Kontaktteil (18) zur elektrischen Verbindung zwischen dem Leiter (16) und der Kontaktfeder (17) vorgesehen ist, das gegenüber dem Injektorkörper (14) und der Zwischenscheibe (6)

elektrisch isoliert ist und auf dem sich die Kontaktfeder (17) mit ihrem ventilseitigen Ende abstützt.

4. Einspritzventil nach Anspruch 2 oder 3,
5 dadurch gekennzeichnet, dass am Anfang und Ende der axialen Bohrung (19) jeweils eine Abdichtung (20) vorgesehen ist.
5. Einspritzventil nach Anspruch 1,
10 dadurch gekennzeichnet, dass der Stromkreis über eine elektrisch isoliert im Injektorkörper (14) angeordnete Düsenhaltefeder (8) führt, welche die Ventilnadel (5) gegen den Ventilsitz (4) drückt, wobei sich die Düsenhaltefeder (8) mit einem ventilabgewandten Ende an einer Einstellscheibe (10), die mit einem weiterführenden Anschlusskontakt (11) elektrisch verbunden ist, und ventilseitig an einem leitenden Injektorkolbens (9) abstützt, der kontaktgebend gegen die ventilabgewandte Endfläche der Ventilnadel (5) gedrückt ist.
6. Einspritzventil nach einem der Ansprüche 2 bis 5,
20 dadurch gekennzeichnet, dass die Ventilnadel (5) und der Injektorkolben (9) mindestens an einem Teil der nicht zur Kontaktgabe dienenden Flächen eine isolierende Schicht aufweisen.
- 25 7. Einspritzventil nach Anspruch 5 oder 6,
dadurch gekennzeichnet, dass ein Steuerkolben (12) vorgesehen ist, der mit seiner ventilseitigen Endfläche auf den zentralen Bereich der ventilabgewandten Kopffläche des Injektorkolbens (9) drückt, und dass an der Kopffläche des Hubeinstellbolzens (9) eine isolierende Schicht vorgesehen ist.
- 35 8. Einspritzventil nach einem der vorherigen Ansprüche,
dadurch gekennzeichnet, dass der Injektorkörper (14) oberhalb der ventilabgewandten Endfläche der Ventilnadel (5) als Zwischenscheibe (6) ausgebildet ist, und dass an der Endfläche der Ventilnadel (5) eine axiale Ringschulter ausgebildet ist, der eine an der Unterseite der Zwischenscheibe (6) ausgebil-

dete Gegenschulter als Anschlagfläche zugeordnet ist, wobei die Unterseite der Zwischenscheibe (6) mindestens im Bereich der Anschlagfläche mit einer isolierenden Schicht versehen ist.

5

9. Einspritzventil nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die elektrisch isolierende Schicht als Diamond-Like-Carbon (DLC)- oder Aluminiumoxid- oder als Zirkonoxynitrit-Schicht ausgebildet ist.

10

10. Einspritzventil nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der jeweils vorliegende Ventilhub (H) durch Messung der jeweils an dem komplexen Widerstand ($R_2 + C_{var}$) abfallenden Spannung U_{inj} ermittelbar ist, wobei als Betriebsspannung U_B eine Wechselspannung angelegt ist und der komplexe Widerstand im Wesentlichen zwischen Düsenadel und Düsenkörper gebildet wird.

15

11. Einspritzventil nach einem der vorherigen Ansprüche, da- durch gekennzeichnet, dass die axiale Position der Düsenadel (5) abhängt von der ermittelten Kapazität (C_{var}) und Wider- stand (R_2) zwischen dem Injektorkörper (14) und mindestens einem Ventilteil (5, 6, 9, 12).

20

12. Einspritzventil nach Anspruch 10 oder 11, dadurch gekenn- zeichnet, dass der Zeitpunkt des Abhebens der Düsenadel vom Ventilsitz abhängt von der ermittelten Änderung der Kapazität zwischen Düsenadel und Düsenkörper und insbesondere erfass- bar ist durch die ermittelte Verringerung der Kapazität.

25

13. Einspritzventil nach einem der vorherigen Ansprüche, da- durch gekennzeichnet, dass der Verschleiß der Isolierschicht zwischen Düsenadel und Düsenkörper abhängt von dem ermittel- ten ohmschen Widerstand (R_2) zwischen Düsenadel (5) und Dü- senkörper (2) und vorzugsweise bei erhöhtem Verschleiß eine Reduzierung des Widerstands (R_2) einhergeht.

14. Einspritzventil nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Innenseite des Düsenkörpers (2) und die Düsenneedle (5) zumindest im Bereich des Ventilsitzes (4) beschichtet sind.

FIG 1

FIG 2

FIG 3

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP2004/051658

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 F02M65/00 F02M47/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 F02M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	FR 2 295 247 A (CAV LTD) 16 July 1976 (1976-07-16) page 2, line 18 - line 29; figures 1,2 -----	1-14
A	DE 34 38 048 A (DIESEL KIKI CO) 2 May 1985 (1985-05-02) page 5, line 30 - page 6, line 20 -----	1-9
A	US 4 183 467 A (SHERATON RONALD F ET AL) 15 January 1980 (1980-01-15) column 1, line 56 - line 68 -----	1-9

 Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
5 October 2004	11/10/2004
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Jucker, C

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP2004/051658

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
FR 2295247	A	16-07-1976	DE	2557224 A1		01-07-1976
			FR	2295247 A1		16-07-1976
			IT	1050083 B		10-03-1981
			JP	51089027 A		04-08-1976
DE 3438048	A	02-05-1985	JP	1029987 B		15-06-1989
			JP	1545381 C		15-02-1990
			JP	60085248 A		14-05-1985
			DE	3438048 A1		02-05-1985
US 4183467	A	15-01-1980	GB	1586254 A		18-03-1981
			AR	212727 A1		15-09-1978
			AU	513678 B2		18-12-1980
			AU	2813777 A		01-03-1979
			BR	7705793 A		27-03-1979
			CA	1104232 A1		30-06-1981
			DD	132145 A5		30-08-1978
			DE	2739628 A1		11-01-1979
			ES	462130 A1		01-06-1978
			FR	2395440 A1		19-01-1979
			IN	147413 A1		23-02-1980
			IT	1086139 B		28-05-1985
			JP	54017525 A		08-02-1979
			PL	201048 A1		26-03-1979
			ZA	7704951 A		27-09-1978

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2004/051658

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 F02M65/00 F02M47/02

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 F02M

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	FR 2 295 247 A (CAV LTD) 16. Juli 1976 (1976-07-16) Seite 2, Zeile 18 - Zeile 29; Abbildungen 1,2 -----	1-14
A	DE 34 38 048 A (DIESEL KIKI CO) 2. Mai 1985 (1985-05-02) Seite 5, Zeile 30 - Seite 6, Zeile 20 -----	1-9
A	US 4 183 467 A (SHERATON RONALD F ET AL) 15. Januar 1980 (1980-01-15) Spalte 1, Zeile 56 - Zeile 68 -----	1-9

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benützung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche	Absendedatum des Internationalen Recherchenberichts
5. Oktober 2004	11/10/2004
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Jucker, C

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2004/051658

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
FR 2295247	A	16-07-1976	DE	2557224 A1		01-07-1976
			FR	2295247 A1		16-07-1976
			IT	1050083 B		10-03-1981
			JP	51089027 A		04-08-1976
DE 3438048	A	02-05-1985	JP	1029987 B		15-06-1989
			JP	1545381 C		15-02-1990
			JP	60085248 A		14-05-1985
			DE	3438048 A1		02-05-1985
US 4183467	A	15-01-1980	GB	1586254 A		18-03-1981
			AR	212727 A1		15-09-1978
			AU	513678 B2		18-12-1980
			AU	2813777 A		01-03-1979
			BR	7705793 A		27-03-1979
			CA	1104232 A1		30-06-1981
			DD	132145 A5		30-08-1978
			DE	2739628 A1		11-01-1979
			ES	462130 A1		01-06-1978
			FR	2395440 A1		19-01-1979
			IN	147413 A1		23-02-1980
			IT	1086139 B		28-05-1985
			JP	54017525 A		08-02-1979
			PL	201048 A1		26-03-1979
			ZA	7704951 A		27-09-1978