$$\begin{array}{ll} & \text{f1, f2 gaussian variables} \Longrightarrow \\ & P(f_1) = \frac{1}{\sqrt{2\pi\sigma_1}} exp(-\frac{f_1^2}{2\sigma_2^2}) \\ & P(f_2) = \frac{1}{\sqrt{2\pi\sigma_2}} exp(-\frac{f_2^2}{2\sigma_2^2}) \\ & P(f_1, f_2) = \frac{exp(-Q)}{2\pi\sqrt{\det(M)}} \\ & \text{donde} \\ & M = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix} \\ & y \ Q = \frac{1}{2} \sum_{i,j} x_i x_j (M^{-1})_{ij} \ \text{(en el caso general)} \\ & \det(M) = \sigma_1^2 \sigma_2^2 - \sigma_{12}^2 \\ & M^{-1} = \frac{1}{\det(M)} \begin{pmatrix} \sigma_2^2 & -\sigma_{12} \\ -\sigma_{12} & \sigma_1^2 \end{pmatrix} \\ & Q = \frac{1}{2\det(M)} (f_1^2 \sigma_2^2 - 2f_1 f_2 \sigma_{12} + f_2^2 \sigma_1^2) \\ & P(f_1, f_2) = \frac{1}{2\pi(\sigma_1^2 \sigma_2^2 - \sigma_{12}^2)^2} exp(\frac{-f_1^2 \sigma_2^2 - f_2^2 \sigma_1^2 + 2f_1 f_2 \sigma_{12}}{2(\sigma_1^2 \sigma_2^2 - \sigma_{12}^2)}) \\ & P(f1|f2) = \frac{P(f_1, f_2)}{P(f2)} = \frac{1}{2\pi(\sigma_1^2 \sigma_2^2 - \sigma_{12}^2)^2} exp(\frac{-f_1^2 \sigma_2^2 - f_2^2 \sigma_1^2 + 2f_1 f_2 \sigma_{12}}{2(\sigma_1^2 \sigma_2^2 - \sigma_{12}^2)}) \sqrt{2\pi} \sigma_2 exp(\frac{f_2^2}{2\sigma_2^2}) \\ & \Longrightarrow P(f1|f2) = \frac{1}{\sqrt{2\pi}\sigma_1(1 - \frac{\sigma_{12}^2}{\sigma_1^2 \sigma_2^2})^2}} exp(\frac{-f_1^2 \sigma_2^2 - f_2^2 \sigma_1^2 + 2f_1 f_2 \sigma_{12}}{2(\sigma_1^2 \sigma_2^2 + \sigma_{12}^2)} + \frac{f_2^2}{2\sigma_2^2}) \\ & \text{el argumento del exponente dividido por -2:} \\ & \frac{f_1^2 \sigma_2^2 + f_2^2 \sigma_1^2 - 2f_{12}}{\sigma_1^2 \sigma_2^2 - \sigma_{12}^2} - \frac{f_2^2}{\sigma_2^2} = \frac{f_1^2 \sigma_2^4 + f_2^2 \sigma_1^2 \sigma_2^2 - 2f_1 f_2 \sigma_{12} \sigma_2^2 - f_2^2 \sigma_2^2 + f_2^2 \sigma_1^2}{\sigma_1^2 \sigma_2^2 - \sigma_{12}^2} = \frac{f_1^2 \sigma_2^4 + f_2^2 \sigma_1^2 \sigma_2^2 - 2f_1 f_2 \sigma_{12} \sigma_2^2 - f_2^2 \sigma_2^2 + f_2^2 \sigma_1^2}{\sigma_1^2 \sigma_1^2 \sigma_2^2 - \sigma_{12}^2} = \frac{f_1^2 \sigma_2^4 - f_1^2 \sigma_2^2 - \sigma_{12}^2}{\sigma_1^2 \sigma_1^2 \sigma_2^2 - \sigma_{12}^2} = \frac{f_1^2 \sigma_2^4 - f_1^2 \sigma_2^2 - \sigma_{12}^2}{\sigma_1^2 \sigma_1^2 \sigma_1^2 - \sigma_{12}^2} = \frac{f_1^2 \sigma_2^4 - f_1^2 \sigma_2^2 - \sigma_{12}^2}{\sigma_1^2 \sigma_1^2 \sigma_2^2 - \sigma_{12}^2}} = \frac{f_1^2 \sigma_2^4 - f_1^2 \sigma_2^2 - \sigma_{12}^2}{\sigma_1^2 \sigma_1^2 \sigma_1^2 \sigma_2^2 - \sigma_{12}^2}} = \frac{f_1^2 \sigma_2^4 - f_1^2 \sigma_2^2 - \sigma_{12}^2}{\sigma_1^2 \sigma_1^2 \sigma_2^2 - \sigma_{12}^2}} = \frac{f_1^2 \sigma_2^4 - f_1^2 \sigma_2^2 - \sigma_{12}^2}{\sigma_1^2 \sigma_1^2 \sigma_2^2 - \sigma_{12}^2}} = \frac{f_1^2 \sigma_2^4 - f_1^2 \sigma_2^2 - \sigma_{12}^2}{\sigma_1^2 \sigma_1^2 \sigma_2^2 - \sigma_{12}^2}} = \frac{f_1^2 \sigma_2^4 - f_1^2 \sigma_2^2}{\sigma_1^2 \sigma_2^2 - \sigma_{12}^2}} = \frac{f_1^2 \sigma_2^4 - f_1^2 \sigma_2^2}{\sigma_1^2 \sigma_2^2 - \sigma_{12}^2}}{\sigma_1^2 \sigma_1^2 \sigma_2^2 - \sigma_{12}^2} = \frac{f_1^2 \sigma_2^4 - f_1^2 \sigma_2^2}{\sigma_1^2 \sigma_2^2 - \sigma_{12}^2}} = \frac{$$

las ecuaciones de continuidad y movimiento linealizadas de los fluidos en coordenadas fijas en el tiempo (las coordenadas comóviles R están relacionadas a las fijas r a través del factor de escala: R = r a) y donde \vec{v} representa la velocidad peculiar:

$$\nabla \cdot \vec{v} = -a\dot{\delta}$$

$$\frac{\partial \vec{v}}{\partial t} + \frac{\dot{a}}{a}\vec{v} = -\frac{1}{a}\frac{1}{\rho}\vec{\nabla}p - \frac{1}{a}\vec{\nabla}\Phi$$

se ha supuesto el background con las variables $\rho_b(t)$, $p_b(t)$ (no son funciones de x \implies sin gradientes espaciales) y con el campo de velocidades (peculiares) 0 y la perturbación: $\delta \rho_b, \delta_p p$ con $\delta, \delta_p \ll 1$ necesario para hacer la aprox lineal de tal forma que $\rho(x,t) = \rho_b(t) + \rho_b(t)\delta(x,t)$ y $p(x,t) = p_b(t) + p_b(t)\delta_p(x,t)$ Definimos c_s la velocidad de sonido como $c_s^2 = \frac{dp}{d\rho}$

hacemos
$$\nabla \cdot$$
 de la segunda ec. (de movimiento): $\frac{\partial}{\partial t}(\nabla \cdot \vec{v}) + \frac{\dot{a}}{a}\nabla \cdot \vec{v} = -\frac{1}{a}\frac{1}{\rho_b}\nabla^2 p - \frac{1}{a}\nabla^2 \Phi$

y reemplazamos $\nabla \cdot \vec{v} = -a\dot{\delta}$, $\vec{\nabla}p = \vec{\nabla}\rho \frac{dp}{d\rho} \implies \nabla^2 p = c_s^2 \nabla^2 \rho = c_s^2 \rho_b \nabla^2 \delta$, $\nabla^2 \Phi = 4\pi \rho_b \delta a^2 \delta$

$$\implies \ddot{\delta} + 2\frac{\dot{a}}{a}\delta = c_s^2 \frac{1}{a^2} \nabla^2 \delta + 4\pi G \rho_b \delta$$

si consideramos soluciones de ondas en el espacio de forma:

$$\delta(x,t) = \delta_k(t) exp(i\vec{k} \cdot \vec{x})$$

reemplazamos arriba (observando que $\vec{\nabla}\phi = i\vec{k}\phi$ para ϕ solución de onda monocromática como arriba)

$$\implies \ddot{\delta}_k + 2\frac{\dot{a}}{a}\delta_k = -k^2c_s^2\frac{1}{a^2}\delta_k + 4\pi G\rho_b\delta_k$$

$$\implies \ddot{\delta_k} + 2\frac{\dot{a}}{a}\delta_k = (4\pi G\rho_b - k^2c_s^2\frac{1}{a^2})\delta_k$$

si $4\pi G\rho_b - k^2c_s^2\frac{1}{a^2} < 0$

$$\sin 4\pi G \rho_b - k^2 c_s^2 \frac{1}{a^2} < 0$$

 δ_k oscila y k para cual el término a la derecha se anula es: $k^2=\frac{4\pi G\rho_ba^2}{c_s^2}$

$$k^2 = \frac{4\pi G \rho_b a^2}{c^2}$$

Notamos la longitud de Jeans la longitud de onda correspondiente a este k: $\lambda = \frac{2\pi}{k}$ de donde:

$$\lambda_J = \sqrt{\frac{\pi c_s^2}{4G\rho_b a^2}}$$

(para oscilaciones con longitud de onda menores que λ_J δ_k va a oscilar)

la masa Jeans correspondiente:

$$M_J = \frac{4\pi\lambda_J^3}{3}\rho_b(t=t_0)$$

```
(aqui evaluamos \rho_b en t=t_0 porque las ecuaciones están en las coordenadas fijas)
Para calcular c_s^2 = \frac{dp}{d\rho}: de la relación \rho = \rho_c (\Omega_m (\frac{p}{p_b})^{\frac{3}{4}} + \Omega_r \frac{p}{p_b})
\frac{d\rho}{dp} = \rho_c (\Omega_m p_b^{-\frac{3}{4}} \frac{3}{4} p^{-\frac{1}{4}} + \frac{\Omega_r}{p_b})que evaluamos para p = p_l
que evaluamos para p = p_b

\frac{d\rho}{dp}(p = p_b) = \rho_c(\frac{3}{4}\Omega_m p_b^{-\frac{3}{4}} p_b^{-\frac{1}{4}} + \Omega_r p_b^{-1}) = \rho_c(\frac{3}{4}\Omega_m + \Omega_r) p_b^{-1}
 \Rightarrow c_s^2 = p_b(\rho_c(\frac{3}{4}\Omega_m + \Omega_r))^{-1}
\Rightarrow \lambda_J = \sqrt{\frac{\pi p_b}{4G\rho_c(\frac{3}{4}\Omega_m + \Omega_r)\rho_b a^2}}
```

Fluctuación tipo top-hat:

background: ρ_b en una esfera de radio R (comóvil)

perturbación: $\rho_b \delta$ en una esfera de radio R(1+a)

condición para hacer la aproximación lineal: $a, \delta \ll 1$

en la aprox. lineal solo guardamos términos de primer orden (términos de forma $a\delta \approx 0$) universo dominado por la radiación $\implies \rho \propto R^{-4}$ (conservación de la masa) que aplicamos para el background y para la perturbación \implies

$$\rho_b R^4 = \rho_b (1+\delta) R^4 (1+a)^4 \implies$$

 $(1+\delta)(1+a)^4=1 \implies$ guardando solo térm. de primer orden:

$$1 + \delta + 4a = 1 \implies a = -\frac{\delta}{4}$$

Ec Friedmann(sin const. cosmológica):

$$\ddot{R} = -\frac{4\pi G}{3}(\rho + 3p)R$$

para la radiación: $p = \frac{1}{3}\rho \implies$ reemplazando en la ec de arriba:

$$\ddot{R} = -\frac{8\pi G}{3}\rho R$$

que escribimos para background y fluctuación:

$$\ddot{\ddot{R}} = -\frac{8\pi G}{3}\rho_b R$$

 $(R + a) = -\frac{8\pi G}{3}\rho_b(1+\delta)R(1+a) \implies$ guardando solo term de primer orden:

$$\ddot{R}(1+a) + 2\dot{R}\dot{a} + R\ddot{a} = -\frac{8\pi G}{3}R\rho_b(1+\delta+a)$$

$$\ddot{R}(1+a) + 2\dot{R}\dot{a} + R\ddot{a} = -\frac{8\pi G}{3}R\rho_b(1+\delta+a)$$

$$\implies 2\dot{R}\dot{a} + R\ddot{a} = -\frac{8\pi G}{3}R\rho_b\delta = \frac{32\pi G}{3}R\rho_ba(\iff a = -4\delta)$$

pasamos de a a δ (que tienen una relación lineal) \Longrightarrow :

$$\implies 2\dot{R}\dot{\delta} + R\ddot{\delta} = \frac{32\pi G}{3}R\rho_b\delta$$

$$\implies \ddot{\delta} + 2\frac{\dot{R}}{R}\dot{\delta} = \frac{32\pi G}{3}\rho_b\delta$$

Ec Friedmann(sin curvatura y const. cosmológica):

$$(\frac{\dot{R}}{R})^2 = \frac{8\pi G}{3}\rho_b$$

$$\implies \ddot{\delta} + 2\frac{\dot{R}}{R}\dot{\delta} = 4(\frac{\dot{R}}{R})^2\delta$$

universo dominado por radiación:

$$R = R_0(\frac{t}{t_0})^{\frac{1}{2}}$$

$$\dot{R} = R_0 \frac{1}{t_0} \frac{1}{2} \left(\frac{t}{t_0}\right)^{-\frac{1}{2}}$$

$$\implies \frac{\dot{R}}{R} = \frac{1}{2t}$$

reemplazamos en la ec de mas arriba \implies

$$\implies \ddot{\delta} + \frac{1}{t}\dot{\delta} - \frac{1}{t^2}\delta = 0$$

Buscamos soluciones de forma $\delta = Ct^{\alpha}$ y después de reemplazar :

$$\alpha(\alpha - 1) + \alpha - 1 = 0 \implies \alpha = 1 \text{ o } \alpha = -1$$

la solución general es de forma $\delta = C_1 t + C_2 t^{-1}$

donde C_1t se llama modo creciente y C_2t^{-1} se llama modo decreciente

Consideramos solo el modo creciente: $\delta \propto t$

la fluctuación en el campo grav: $\delta_{\Phi} = \frac{G\delta_{M}}{R}$ donde

 $\delta_M = \frac{4\pi R^3}{3} \rho_b \delta = R^2 \frac{1}{2G} (\frac{\dot{R}}{R})^2 \delta$ (ee friedmann de la energía sin curv y const cosm.)

 $\implies \delta_{\Phi} \propto \dot{R}^2 t = const \ (\iff \dot{R} \propto t^{-\frac{1}{2}} \text{ en un universo dominado por radiación})$

4 $<\delta_r^2> = \frac{1}{2\pi^2} \int_0^\infty P(k) W_r^2(k) k^2 dk$

donde $W_r(k)$ es la función ventana que es la transformada fourier de la función de apartenencia a la esfera de radio r (tiene valor 1 para los puntos dentro de la esfera y 0 para los de afuera)

$$\begin{aligned} W_r(k) &= \frac{3}{k^r} (sin(kr) - krcos(kr)) \\ &\Longrightarrow < \delta_r^2 > = \frac{9}{2\pi^2 r^2} \int_0^\infty P(k) (sin(kr) - krcos(kr))^2 dk \\ &= \frac{9\sigma_8^2 19843}{2\pi^2 r^2} \int_0^\infty \frac{1}{k} (ln(1+11.14k))^2 (1+18.5k+5880k^2+17520k^3+1.04\cdot 10^8 k^4)^{\frac{1}{2}} (sin(kr) - krcos(kr))^2 dk \end{aligned}$$

universo dominado por radiación $\implies a \propto t^{\frac{1}{2}}$

modo creciente: $\delta \propto t$

si definimos el factor de crecimiento: $D(a) = a^2$

$$\implies \delta \propto D(a) \implies \delta = \delta_{in} \frac{D(a)}{D(a_{in})} \text{ (considerando que } D(a_{in}) \neq 0)$$

modo creciente $\delta = Ct$, $\dot{\delta} = C$

$$\delta_{in} = \delta(t_{in}) = Ct_{in}$$

$$\dot{\delta}_{in} = C$$

$$\delta_{in} = 0, \dot{\delta}_{in} \neq 0 \implies C \neq 0 \implies t_{in} = 0$$

$$\delta_{in} = 0, \dot{\delta}_{in} \neq 0 \implies C \neq 0 \implies t_{in} = 0$$

 $\delta_{in} \neq 0, \dot{\delta}_{in} \neq 0 \implies C = 0 \implies \delta_{in} = 0$ imposible