

计算机网络分层模型及 wireshark抓包

目录

- ◆ 分层模型
 - ◆ ISO/OSI七层模型
 - ◆ TCP/IP协议
- ◆ 数据传输过程
 - ◆ 数据封装与分用 (解封装)
- ◆ TCP/IP协议栈

分层思想

◆ 邮局寄信件

分层思想

- ◆ 1974年, ISO组织发布了OSI七层参考模型
- ◆ ISO/OSI七层参考模型
- ◆ 国际标准化组织 (ISO, International Organization for Standardization)
- ◆ 开放式系统互联通信参考模型 (OSI, Open System Interconnection Reference Model)

OSI模型特点

应用层协议 应用层 应用层 表示层协议 表示层 表示层 会话层协议 会话层 会话层 传输层协议 传输层 传输层 网络层协议 网络层 网络层 数据链路层协议 数据链路层 数据链路层 物理层协议 物理层 物理层

电脑A

电脑B

TCP/IP协议结构

目录

- ◆ 分层模型
 - ◆ ISO/OSI七层模型
 - ◆ TCP/IP协议
- ◆ 数据传输过程
 - ◆ 数据封装与分用 (解封装)
- ◆ TCP/IP协议栈

数据 应用层 数据 TCP/UDP头 数据 传输层 数据段 TCP/UDP头 数据 IP包头 报文/包 网络层 TCP/UDP头 帧头 帧尾 数据 IP包头 数据链路层 帧 比特 物理层

◆ 数据封装与分用 (解封装)

传输层协议-TCP (传输控制协议)

- ◆ 提供面向连接的、可靠的数据通信服务
- ◆ 提供可靠性服务
 - ◆数据包分块、发送接收确认、超时重发、数据校验、数据包排序、控制流量

16位源端口号								16位目的端口号
32位序号								
32位确认序号								
偏移量	保留位	U	A	P	R	S	F	16位窗口指针
16位校验和								16位紧急指针
数据								

- 1.在建立连接之前,B先创建TCB (传输控制块),准备接受客户进 程的连接请求,处于LISTEN(监 听)状态
- 2.A首先创建TCB,然后向B发出连接请求,SYN置1,同时选择初始序号seq=x,进入SYN-SEND(同步已发送)状态
- 3.B收到连接请求后向A发送确认, SYN置1,ACK置1,同时产生一个 确认序号ack=x+1。同时随机选择 初始序号seq=y,进入SYN-RCVD (同步收到)状态
- 4.A收到确认连接请求后,ACK置1,确认号ack=y+1,seq=x+1,进入到ESTABLISHED(已建立连接)状态。向B发出确认连接,最后B也进入到ESTABLISHED(已建立连接)状态。

TCP四次挥手

- 1.A发送一个FIN,用来关闭A到B的数据传送,A进入FIN WAIT 1状态。
- 2.B收到FIN后,发送一个ACK给A,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号),B进入CLOSE_WAIT状态。
- 3.B发送一个FIN,用来关闭B到A的数据传送,B进入LAST ACK状态。
- 4.A收到FIN后,A进入TIME_WAIT 状态,接着发送一个ACK给B,确 认 序号为收到序号+1,B进入 CLOSED状态,完成四次挥手

传输层协议-TCP(传输控制协议)

为什么建立连接是三次握手,关闭连接确是四次挥手呢?

建立连接的时候,服务器在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。 而关闭连接时,服务器收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,而自己也未必全部数据都发送给对方了,所以己方可以立即关闭,也可以发送一些数据给对方后,再发送FIN报文给对方来表示同意现在关闭连接,因此,己方ACK和FIN一般都会分开发送,从而导致多了一次。

传输层协议-UDP(用户数据报协议)

- ◆ 提供面向事务的简单不可靠信息传送服务
- ◆ 特点
 - ◆ 无连接、不可靠
 - ◆ 协议简单、占用资源少,效率高

16位源端口号	16位目的端口号					
16位UDP报文长度	16位校验和					
数据						

传输层安全问题

◆ 实验一:两台PC间tcp、udp通信

◆ 实验二: 使用wireshark抓tcp三次握手包

◆ 实验三: 使用wireshark抓tcp四次挥手包

目录

- ◆ 分层模型
 - ◆ ISO/OSI七层模型
 - ◆ TCP/IP协议
- ◆ 数据传输过程
 - ◆ 数据封装与分用 (解封装)
- ◆ TCP/IP协议栈

TCP/IP协议

应用层

传输层

网络层

数据链路层

物理层

TCP/IP协议

协议	端口号
FTP(简单数据传输)	20/21
SSH (安全加密外壳)	22
Telnet (远程登陆)	23
SMTP (电子邮件传输协议)	25
DNS (域名系统)	53
DHCP (动态主机配置协议)	67/68
HTTP (超文本传输协议)	80
POP3 (邮局协议的第三个版本)	110
HTTPS (超文本传输安全协议)	443
RDP (远程桌面协议)	3389
MySQL	3306
SQL server	1433
Oracle	1521

总结

- ◆ 分层模型
 - ◆ ISO/OSI七层模型
 - ◆ TCP/IP协议
- ◆ 数据传输过程
 - ◆ 数据封装与分用 (解封装)
- ◆ TCP/IP协议栈

谢谢