Table S1: Database of acuity (cycles/degree) in adult ray-finned fish, method of acuity measurement, environmental/ecological categories, and citations. Number of significant figures in the measure of acuity is based on the number of significant figures reported in the original citation.

Order	Family	Genus	Species	Acuity (CPD)	Method ¹	LL^2	T ³	H^4	D ⁵	Citation
Anguilliformes	Nemichthyidae	Avocettina	infans	8.3	LO	Dark	Clear	F	MB	[1]
Aulopiformes	Chlorophthalmidae	Chlorophthalmus	albatrossis	3.9	PR	Dim	Med	HD	P	[2]
	Evermannellidae	Coccorella	atlantica	2.9	LO					[1]
	Notosudidae	Scopelosaurus	hoedti	10.6	LO					[1]
	Scopelarchidae	Scopelarchus	michaelsarsi	5.6	RGC					[3]
Batrachoidiformes	Batrachoididae	Halophryne	diemensis	4	RGC					[4]
Beloniformes	Adrianichthyidae	Oryzias	latipes	0.563	В					[5]
	Adrianichthyidae	Oryzias	latipes	1.0	В					[6]
	Scomberesocidae	Cololabis	saira	7.1	PR	Dim	Clear	F	MB	[7]
Beryciformes	Anoplogastridae	Anoplogaster	cornuta	8.3	LO	Dark	Clear	F	P	[1]
Clupeiformes	Clupeidae	Alosa	pseudoharengus	2.4	PR	Dim	Med	HD	P	[8]
	Clupeidae	Clupea	harengus	9	PR	Dim	Med	HD	P	[9]
Cypriniformes	Cyprinidae	Abramis	brama	4	RGC	Dim	Med	HD	MB	[10]
	Cyprinidae	Aspius	aspius	4	RGC					[10]
	Cyprinidae	Carassius	auratus	1.1	В					[11]
	Cyprinidae	Carassius	auratus	3.0	В					[12]
	Cyprinidae	Carassius	auratus	3.0	В					[13]
	Cyprinidae	Carassius	auratus	3.2	В					[14]
	Cyprinidae	Carassius	auratus	3.4	В					[15]
	Cyprinidae	Carassius	auratus	1.2	В					[16]
	Cyprinidae	Carassius	auratus	13.64	В					[17]
	Cyprinidae	Carassius	auratus	2.5	PR					[12]
	Cyprinidae	Carassius	auratus	3	PR					[18]
	Cyprinidae	Carassius	auratus	3.7	PR					[15]
	Cyprinidae	Carassius	auratus	3.8	PR					[19]
	Cyprinidae	Cyprinus	carpio	4	RGC	Dim	Med	HD	S	[10]
	Cyprinidae	Danio	rerio	0.589	В	Dim	Murky	HD	MB	[5]
	Cyprinidae	Danio	rerio	0.871	PR	Dim	Murky	HD	MB	[20]

	Cyprinidae	Exoglossum	maxillingua	2.10	RGC	Dim	Med	HD	MB	[21]
	Cyprinidae	Pelecus	cultratus	5	RGC	Dim	Med	HD	P	[10]
	Cyprinidae	Phoxinus	laevis	5.56	В					[22]
	Cyprinidae	Phoxinus	laevis	5.45	PR					[22]
	Cyprinidae	Rutilus	rutilus	3	RGC	Bright	Murky	HD	S	[10]
	Cyprinidae	Rutilus	rutilus	4	PR	Bright	Murky	HD	S	[23]
	Cyprinidae	Semotilus	atromaculatus	2.69	RGC					[21]
Cyprinodontiformes	Poeciliidae	Lebistes	reticulatus	6.7	В					[24]
Gadiformes	Gadidae	Theragra	chalcogramma	6.0	PR	Dark	Med	F	P	[25]
Lampriformes	Regalecidae	Regalecus	glesne	5.9	LO	Dim	Clear	F	P	[1]
	Stylephoridae	Stylephorus	chordatus	9.2	RGC					[26]
Lepisosteiformes	Lepisosteidae	Lepisosteus	platyrhincus	2.3	RGC	Dim	Murky	HD	P	[27]
Myctophiformes	Myctophidae	Benthosema	suborbitale	13	LO			_		[1]
	Myctophidae	Lampanyctus	festivus	2.0	RGC	Dark	Clear	F	P	[26]
	Myctophidae	Lepidophanes	guentheri	3.2	LO					[1]
	Myctophidae	Myctophum	punctatum	3.6	RGC	Dark	Clear	F	P	[28]
	Myctophidae	Nannobrachium	atrum*	1.3	RGC	Dark	Clear	F	P	[26]
Osmeriformes	Alepocephalidae	Alepocephalus	bairdii	22.9	RGC					[26]
	Alepocephalidae	Alepocephalus	rostratus	11.9	RGC					[3]
	Alepocephalidae	Bathytroctes	microlepis	13.5	RGC					[3]
	Alepocephalidae	Conocara	macroptera	10.4	RGC					[26]
	Alepocephalidae	Conocara	salmonea	13.5	RGC					[26]
	Alepocephalidae	Narcetes	stomias	10.0	RGC					[26]
	Alepocephalidae	Rouleina	attrita	12.7	RGC	Dark	Clear	F	P	[3]
	Alepocephalidae	Xenodermichthys	copei	6.4	RGC	Dark	Clear	F	P	[3]
	Argentinidae	Glossanodon	semifasciatus*	6.5	PR					[2]
	Bathylagidae	Melanolagus	bericoides	5.0	LO					[1]
	Opisthoproctidae	Dolichopteryx	spp.	4.8	RGC					[26]
	Opisthoproctidae	Opisthoproctus	grimaldii	5.7	RGC					[26]
	Opisthoproctidae	Opisthoproctus	soleatus	12	LO					[1]
	Opisthoproctidae	Opisthoproctus	soleatus	4.3	RGC					[26]
	Opisthoproctidae	Winteria	telescopa	14.29	RGC					[28]
	Platytroctidae	Platytroctes	apus	9.3	RGC					[3]
Osmeriformes	Platytroctidae	Searsia	koefoedi	7.4	RGC					[3]

Perciformes	Acanthuridae	Prionurus	scalprum*	7.1	PR	Bright	Med	С	S	[2]
	Acropomatidae	Malakichthys	wakiyae	7.6	PR					[2]
	Apogonidae	Apogon	lineatus	4.2	PR					[2]
	Blenniidae	Petroscirtes	variabilis	4	RGC					[4]
	Carangidae	Carangoides	bartholomaei*	2.6	LO	Bright	Med	C	P	[1]
	Carangidae	Carangoides	equula	9.09	RGC	Dim	Med	C	P	[28]
	Carangidae	Selar	crumenophthalmus	2.9	LO	Dim	Clear	F	MB	[1]
	Carangidae	Seriola	dumerili	20	PR	Bright	Med	C	P	[29]
	Carangidae	Seriola	quinqueradiata	4.4	PR	Bright	Med	HD	P	[30]
	Carangidae	Seriola	quinqueradiata	6.90	PR	Bright	Med	HD	P	[2]
	Carangidae	Trachurus	declivis	9.1	PR	Dim	Med	HD	P	[31]
	Carangidae	Trachurus	japonicus	7.0	PR	Dim	Clear	F	P	[2]
	Centrarchidae	Ambloplites	rupestris	40	PR	Dim	Med	HD	MB	[32]
	Centrarchidae	Lepomis	macrochirus	5.00	В	Dim	Med	HD	MB	[33]
	Centrarchidae	Lepomis	macrochirus	6.7	PR	Dim	Med	HD	MB	[33]
	Centrarchidae	Lepomis	macrochirus	8.1	PR	Dim	Med	HD	MB	[34]
	Centrarchidae	Lepomis	macrochirus	22	PR	Dim	Med	HD	MB	[32]
	Centrarchidae	Micropterus	salmoides	5.9	PR	Dim	Med	HD	P	[35]
	Centrarchidae	Pomoxis	annularis	7.8	PR	Dim	Murky	HD	P	[36]
	Cichlidae	Astronotus	ocellatus	11	В					[37]
	Cichlidae	Cichlasoma	portalegrense	10	В					[38]
	Cichlidae	Haplochromis	bicolor	2.9	PR					[39]
	Cichlidae	Haplochromis	elegans	2.9	PR					[39]
	Cichlidae	Haplochromis	hiatus	3.3	PR					[39]
	Cichlidae	Haplochromis	microdon	3.5	PR					[39]
	Cichlidae	Haplochromis	mylodon	2	PR					[40]
	Cichlidae	Haplochromis	sauvagei	3.1	PR					[39]
	Cichlidae	Haplochromis	squamipinnis	2	PR	Dim	Med	HD	MB	[40]
	Cichlidae	Haplochromis	iris	3.3	PR					[39]
	Cichlidae	Hemichromis	bimaculatus	8.6	В					[24]
	Cichlidae	Xenotilapia	flavipinnis	0.591	В					[41]
	Cichlidae	Xenotilapia	leptura*	2.670	В					[41]
	Cichlidae	Xenotilapia	melanogenys*	1.367	В					[41]

Cichlidae	Xenotilapia	spilopterus*	0.592	В					[41]
Coryphaenidae	Coryphaena	hippurus	30	RGC	Dim	Med	F	P	[29]
Gempylidae 1	Diplospinus	multistriatus	4.8	LO	Dark	Med	F	P	[1]
Gerreidae 1	Parequula	melbournensis	16	PR	Bright	Med	HD	MB	[31]
Girellidae	Girella	punctata	7.7	PR	Bright	Med	C	MB	[2]
Istiophoridae 1	Istiophorus	albicans	32	PR	Dim	Clear	F	P	[29]
Istiophoridae I	Kajikia	albida*	33	PR					[29]
Istiophoridae 1	Makaira	nigricans	8.5	RGC	Dim	Clear	F	P	[42]
Kyphosidae 1	Microcanthus	strigatus	12	В	Dim	Med	C	MB	[43]
Kyphosidae 1	Microcanthus	strigatus	18	PR	Dim	Med	C	MB	[43]
Labridae	Choerodon	cyanodus*	15	RGC					[4]
Lateolabracidae 1	Lateolabrax	japonicus	7.1	PR	Bright	Med	C	P	[2]
Leiognathidae 1	Leiognathus	equulus*	5.2	PR	Dim	Med	C	MB	[2]
Lethrinidae (Gymnocranius	audleyi*	27	RGC					[4]
Lethrinidae 1	Lethrinus	miniatus*	22	RGC	Dim	Med	C	MB	[4]
Percidae I	Perca	flavescens	3.0	PR	Dim	Med	HD	MB	[8]
Percidae I	Perca	flavescens	3.5	PR	Dim	Med	HD	MB	[23]
Percidae I	Perca	flavescens	7	PR	Dim	Med	HD	MB	[44]
Percidae I	Perca	fluviatilis	2	PR	Dim	Med	HD	MB	[40]
Pinguipedidae 1	Parapercis	cylindrica	7	RGC	Bright	Med	C	MB	[4]
Pomacanthidae 1	Dascyllus	marginatus	1.3	В	Bright	Med	C	P	[45]
Pomacanthidae 1	Dascyllus	marginatus	8.6	PR	Bright	Med	C	P	[45]
Pomacanthidae I	Pomacanthus	semicirculatus	7	RGC	Bright	Med	C	S	[4]
Pomacentridae A	Amblyglyphidodon	curacao	8	RGC	Bright	Med	C	MB	[4]
Priacanthidae 1	Heteropriacanthus	cruentatus*	10.3	PR	Dim	Med	C	P	[2]
Scombridae A	Acanthocybium	solandri	25	PR	Bright	Clear	F	P	[29]
Scombridae 1	Euthynnus	affinis	8.11	В					[46]
Scombridae 1	Euthynnus	alletteratus	20	PR	Dim	Med	C	P	[29]
Scombridae I	Katsuwonus	pelamis	10.7	В	Dim	Clear	F	P	[46]
Scombridae I	Katsuwonus	pelamis	14.0	PR	Dim	Clear	F	P	[46]
Scombridae I	Katsuwonus	pelamis	26	PR	Dim	Clear	F	P	[29]
Scombridae S	Scomber	australasicus	10.8	PR	Dim	Clear	F	P	[47]
Scombridae S	Scomber	japonicus	8.0	PR	Dim	Clear	F	P	[2]

	Scombridae	Scomberomorus	cavalla	12	PR	Bright	Med	С	P	[29]
	Scombridae	Thunnus	albacares	16.4	В	Bright	Clear	F	P	[48]
	Scombridae	Thunnus	albacares*	27	PR	Bright	Clear	F	P	[29]
	Serranidae	Cephalopholis	miniatus	14	RGC	Bright	Med	C	P	[4]
	Serranidae	Epinephelus	chlorostigma	9.8	PR	Dim	Med	C	P	[2]
	Serranidae	Epinephelus	septemfasciatus	14.3	PR					[2]
	Sillaginidae	Sillago	flindersi	7.8	PR	Bright	Med	HD	MB	[31]
	Sparidae	Acanthopagrus	berda*	9.7	PR	Dim	Med	HD	MB	[2]
	Sparidae	Acanthopagrus	schlegelii*	8.7	PR	Bright	Med	HD	MB	[2]
	Sparidae	Dentex	tumifrons*	8.8	PR	Dim	Med	HD	MB	[2]
	Sparidae	Pagrus	auratus*	9.4	PR	Dim	Med	C	MB	[2]
	Sparidae	Pagrus	major	3.5	PR	Dim	Med	HD	MB	[49]
	Sphyraenidae	Sphyraena	barracuda	19	PR	Dim	Med	C	P	[29]
	Terapontidae	Rhynchopelates	oxyrhynchus*	6.2	PR					[2]
	Toxotidae	Toxotes	chatareus	3.23	В	Dim	Murky	C	P	[50]
	Toxotidae	Toxotes	chatareus	4.00	PR	Dim	Murky	C	P	[50]
	Trichiuridae	Trichiurus	lepturus	13.3	PR	Dim	Med	HD	P	[51]
	Tripterygiidae	Forsterygion	varium	1.1	В					[52]
	Tripterygiidae	Forsterygion	varium	6.7	PR					[52]
Pleuronectiformes	Bothidae	Lophonectes	gallus	4.6	PR	Dim	Med	HD	NB	[31]
	Pleuronectidae	Cleisthenes	pinetorum	7.64	PR					[53]
	Pleuronectidae	Hippoglossoides	dubius	6.52	PR	Dim	Med	HD	P	[53]
	Pleuronectidae	Microstomus	achne	5.51	PR	Dim	Med	HD	MB	[53]
	Pleuronectidae	Pleuronectes	platessa	5	В					[54]
	Pleuronectidae	Pleuronectes	platessa	2	PR					[54]
	Scophthalmidae	Scophthalmus	maximus	6	В					[54]
	Scophthalmidae	Scophthalmus	maximus	3	PR					[54]
Salmoniformes	Salmonidae	Coregonus	hoyi	3.0	PR					[8]
	Salmonidae	Oncorhynchus	mykiss	4.29	В					[55]
Scorpaeniformes	Cottidae	Alcichthys	elongatus	8.33	PR	~ .		**-	_	[56]
	Platycephalidae	Platycephalus	bassensis	9.4	PR	Dim	Med	HD	P	[31]
	Platycephalidae	Platycephalus	richardsoni*	9.5	PR	Dim	Med	HD	P	[31]
	Sebastidae	Helicolenus	dactylopterus	5.7	PR	Dim	Med	HD	P	[2]
	Sebastidae	Sebastes	schlegelii	6.32	PR	Bright	Med	HD	MB	[57]

	Sebastidae	Sebastiscus	marmoratus	9.0	PR	Bright	Med	HD	MB	[2]
	Triglidae	Chelidonichthys	kumu	8.8	PR					[2]
	Triglidae	Lepidotrigla	mulhalli	7.1	PR					[31]
Stephanoberyciformes	Melamphaidae	Scopeloberyx	robustus	5.0	LO	Dark	Clear	F	P	[1]
Stomiiformes	Gonostomatidae	Sigmops	elongatus*	7.7	LO					[1]
	Sternoptychidae	Argyropelecus	aculeatus	7.7	LO	Dim	Clear	F	P	[1]
	Sternoptychidae	Argyropelecus	affinis	7.9	RGC	Dim	Clear	F	P	[26]
	Sternoptychidae	Argyropelecus	gigas	8.7	RGC	Dim	Clear	F	P	[26]
	Sternoptychidae	Argyropelecus	hemigymnus	5.0	RGC					[26]
	Sternoptychidae	Argyropelecus	sladeni	6.00	RGC	Dim	Clear	F	P	[3]
	Sternoptychidae	Sternoptyx	diaphana	11	LO					[1]
	Stomiidae	Astronesthes	lucifer	8.3	LO					[1]
	Stomiidae	Chauliodus	sloani	4.4	LO	Dark	Clear	F	P	[1]
	Stomiidae	Idiacanthus	antrostomus	6.3	LO	Dark	Clear	F	P	[1]
	Stomiidae	Malacosteus	niger	5.6	LO	Dark	Clear	F	P	[1]
Syngnathiformes	Aulostomidae	Aulostomus	chinensis	15	RGC	Bright	Med	C	P	[4]
• 0	Syngnathidae	Hippocampus	abdominalis	3.06	RGC	Dim	Med	HD	MB	[58]
	Syngnathidae	Hippocampus	abdominalis	11.4	PR	Dim	Med	HD	MB	[58]
	Syngnathidae	Hippocampus	taeniopterus	3.32	RGC					[58]
	Syngnathidae	Hippocampus	taeniopterus	13.0	PR					[58]
Tetraodontiformes	Balistidae	Balistoides	conspicillum	12	RGC	Bright	Med	C	MB	[4]
	Balistidae	Rhinecanthus	aculeatus	1.75	В	Bright	Med	C	MB	[59]
	Balistidae	Rhinecanthus	aculeatus	3.40	RGC	Bright	Med	C	MB	[59]
	Balistidae	Rhinecanthus	aculeatus	7.75	PR	Bright	Med	C	MB	[59]
	Monacanthidae	Thamnaconus	degeni	9.1	PR					[31]
	Monacanthidae	Thamnaconus	modestus*	9.4	PR	Bright	Med	C	P	[2]
	Tetraodontidae	Marilyna	pleurosticta*	5	RGC	-				[4]
	Tetraodontidae	Takifugu	chrysops*	4.2	PR					[2]
	Tetraodontidae	Takifugu	niphobles*	8.6	PR	Bright	Med	HD	MB	[2]

¹Methods are lens optics (LO), photoreceptor density (PR), peak retinal ganglion cell density (RGC), and behavior (B); ²Light level categories are: Bright, Dim, and Dark; ³Turbidity categories are Clear, Medium (Med), and Murky; ⁴Habitat Complexity categories are: Complex (C), horizon-dominated (HD), and featureless (F); ⁵Diet categories are: pelagic (P), motile-benthic (MB), and sessile (S) *Indicates species listed under a different name in the original publication; species in the database have had their names synonymized with updated taxonomies from Fishbase.org.

Table S2. Comparison of PGLS regression lines of acuity on eye size obtained using photoreceptor density only, RGC density only, or a combined dataset.

Dataset	Slope [95%CI]	Intercept	F-	р	r ²	Power
		[95%CI]	Statistic			
Photoreceptor	0.773 [0.56-0.98]	0.354 [0.19-0.52]	51.5	< 0.001	0.51	0.76
Density $(n=54)$						
Retinal Ganglion Cell	0.862 [0.51-1.21]	0.330 [-0.08-0.74]	23.46	< 0.001	0.54	0.40^{1}
Density (n= 27)						
Combined (n= 81)	0.806 [0.63-0.97]	0.341 [0.21-0.47]	84.41	< 0.001	0.55	0.89

¹Power analyses showed that to achieve significance at an effect size and power equivalent to that of the photoreceptor-only analysis, a sample size of 47 would be necessary in the RGC-only dataset.

Table S3. PGLS multivariate models of acuity versus eye size (ES), while controlling for method of acuity measurement. \triangle AIC values were calculated relative to the best-fit model.

Morphological Variable	Model	AIC	ΔAIC	L i	Wi
Eye size	Log(Acuity)~Log(ES)	-16.33	0	1.00	0.59
	Log(Acuity)~Log(ES)+Method	-14.81	1.52	0.47	0.28
	Log(Acuity)~Log(ES)*Method	-13.41	2.92	0.23	0.14
	Log(Acuity)~Method	26.7	43.03	0.00	0.00

Table S4. The results of stepwise model selection on PGLS regressions of acuity versus lens diameter and ecological variables. Initial models are shown for each step, along with the AIC values of each model considered during each step. The final model from each step is the initial model in the following step. LD=lens diameter, LL=light level, T=turbidity, HC=habitat complexity, and D=diet.

Step	Model (or factor subtracted)	Degrees of Freedom	AIC
1	Log(Acuity)~Log(LD)+LL+T+HC+D	rreedom	57.59
1	-LL	2	54.219
	-LL -D		
		2 2	54.219
	-T	2	56.023
	-none		57.591
	$-\log(LD)$	1	59.915
	-HC	2	66.930
2	Log(Acuity)~Log(LD)+T+HC+D		53.76
	-D	2	50.290
	-T	2	52.117
	-none		53.759
	-log(LD)	1	56.327
	-HC	2	63.320
3	Log(Acuity)~Log(LD)+T+HC		50.29
	-T	2	48.484
	-none		50.290
	-log(LD)	1	53.246
	-HC	2	60.002
4	Log(Acuity)~Log(LD)+HC		48.48
	-LD	1	52.142
	-HC	2	56.613
Final Model	Log(Acuity)~Log(LD)+HC		48.48

Supplementary Figures

Figure S1. Number of species in the acuity database for which acuity has been measured using each method, or a combination of methods.

Journal of Experimental Biology • Supplementary information

Figure S2. Acuity across the fish phylogeny, for the 81 species for which we had phylogeny data, and for which acuity had been measured using either photoreceptor density or peak retinal ganglion cell density. Colored boxes and labels designate families. The gray bars represent acuity in cycles/degree. Phylogeny from [60].

Figure S3. (A) Raw acuity (uncorrected for morphology or phylogeny), in cycles/degree, (b) relative eye investment, and (c) residual acuity across light level (pink), turbidity (blue), habitat spatial complexity (green), and diet (yellow) categories. Sample sizes are presented below each box. Statistics are from pairwise Student's t-tests. Because each panel involved three pairwise comparisons, we used a Bonferroni-correction to correct for multiple comparisons; therefore, only comparisons with p-values of 0.02 or less are significant, as 0.02 is the Bonferroni-corrected significance level. See Figure 3 for further details about units.

Supplementary Literature Cited

- 1. Gagnon, Y. L., Sutton, T. T. & Johnsen, S. 2013 Visual acuity in pelagic fishes and mollusks. *Vision Res.* **92**, 1–9. (doi:10.1016/j.visres.2013.08.007)
- 2. Tamura, T. 1957 A study of visual perception in fish, especially on resolving power and accommodation. *Bull. Japanese Soc. Sci. Fish.* **22**, 536–557.
- 3. Collin, S. P. & Partridge, J. C. 1996 Retinal specializations in the eyes of deep-sea teleosts. *J. Fish Biol.* **49**, 157–174.
- 4. Collin, S. P. & Pettigrew, J. D. 1989 Quantative comparisons of the limits on visual spatial resolution set by the ganglion cell layer in twelve species of reef teleosts. *Brain, Behav. Evol.* **34**, 184–192.
- 5. Tappeiner, C., Gerber, S., Enzmann, V., Balmer, J., Jazwinska, A. & Tschopp, M. 2012 Visual acuity and contrast sensitivity of adult zebrafish. *Front. Zool.* **9**, 10. (doi:10.1186/1742-9994-9-10)
- 6. Carvalho, P. S. ., Noltie, D. B. & Tillitt, D. E. 2002 Ontogenetic improvement of visual function in the medaka Oryzias latipes based on an optomotor testing system for larval and adult fish. *Anim. Behav.* **64**, 1–10. (doi:10.1006/anbe.2002.3028)
- 7. Hajar, M. A. I., Inada, H., Hasobe, M. & Arimoto, T. 2008 Visual acuity of Pacific Saury Cololabis saira for understanding capture process. *Fish. Sci.* **74**, 461–468. (doi:10.1111/j.1444-2906.2008.01547.x)
- 8. Miller, T. J., Crowder, L. B. & Rice, J. A. 1993 Ontogenetic changes in behavioural and histological measures of visual acuity in three species of fish. *Environ. Biol. Fishes* **37**, 1–8. (doi:10.1007/BF00000707)
- 9. Blaxter, J. H. S. & Jones, M. P. 1967 The development of the retina and retinomotor responses in the herring. *J. Mar. Biol. Assoc. UK* **47**, 677–697. (doi:10.1017/S002531540003527X)
- 10. Zaunreiter, M., Junger, H. & Kotrschal, K. 1991 Retinal morphology of cyprinid fishes: a quantitative histological study of ontogenetic changes and interspecific variation. *Vision Res.* **31**, 383–394. (doi:10.1016/0042-6989(91)90091-I)
- 11. Hodos, W. & Yolen, N. M. 1976 Behavioral correlates of tectal compression in goldfish 2. Visual acuity. *Brain. Behav. Evol.* **13**, 468–474.
- 12. Hester, F. J. 1968 Visual contrast thresholds of the goldfish (Carassius auratus). *Vision Res.* **8**, 1315–1335. (doi:10.1016/0042-6989(68)90053-9)
- 13. Wilkinson, F. 1972 A behavioral measure of grating acuity in the goldfish.
- 14. Bilotta, J. & Powers, M. K. 1991 Spatial contrast sensitivity of goldfish: Mean luminance, temporal frequency and a new psychophysical technique. *Vision Res.* **31**, 577–585. (doi:10.1016/0042-6989(91)90108-H)
- 15. Northmore, D. & Dvorak, C. A. 1979 Sensitivity and acuity of the goldfish. *Vision Res.* **19**, 255–261.
- 16. Neumeyer, C. 2003 Wavelength dependence of visual acuity in goldfish. *J. Comp. Physiol. A Neuroethol. Sensory, Neural, Behav. Physiol.* **189**, 811–821. (doi:10.1007/s00359-003-0457-4)
- 17. Penzlin, V. H. & Stubbe, M. 1977 Studies on the visual acuity in the Goldfish. *Zool. Jb. Physiol. Bd.* **81**, 310–326.
- 18. Johns, P. R. & Easter, S. S. J. 1977 Growth of the adult goldfish eye. II. Increase in retinal cell number. *J. Comp. Neurol.* **176**, 331–342. (doi:10.1002/cne.901760303)

- 19. Charman, W. N. & Tucker, J. 1973 The optical system of the goldfish eye. *Vision Res.* **13**, 1–8.
- 20. Haug, M. F., Biehlmaier, O., Mueller, K. P. & Neuhauss, S. C. 2010 Visual acuity in larval zebrafish: behavior and histology. *Front. Zool.* **7**, 8. (doi:10.1186/1742-9994-7-8)
- 21. Collin, S. P. & Ali, M. A. 1994 Multiple areas of acute vision in two freshwater teleosts, the creek chub, Semotilus atromaculatus (Mitchill) and the cutlips minnow, Exoglossum maxillingua (Lesueur). *Can. J. Zool.* **72**, 721–730.
- 22. Brunner, G. 1934 Ueber dis Sehschärfe der Erlitze (Phoxinus laevis) bei verschiedenen Helligkeiten. Z. vergl Physiol. **21**, 296.
- 23. Wanzenböck, J., Zaunreiter, M., Wahl, C. M. & Noakes, L. G. 1996 Comparison of behavioral and morphological measures of visual resolution during ontogeny of roach (Rutilus rutilus) and yellow perch (Perca flavescens). *Can. J. Fish. Aquat. Sci.* **53**, 1506–1512.
- 24. Baburina, E. A., Bogatyrev, P. B. & Protasov, V. R. 1968 A study of age variation of acuity of sight of some fish. *Zool Zhurnal* **48**, 1364–1369.
- 25. Zhang, X. M. & Arim, T. 1993 Visual physiology of walleye pollock (Theragra chalcogramma) in relation to capture by trawl nets. *ICES mar. Sci. Symp.* **196**, 113–116.
- Wagner, H.-J., Frölich, E., Negishi, K. & Collin, S. P. 1998 The eyes of deep-sea fish II. Functional morphology of the retina. *Prog. Retin. Eye Res.* **17**, 637–685.
- 27. Collin, S. P. & Northcutt, R. G. 1993 The visual system of the Florida garfish, Lepisoteus platyrhinchus (Ginglymodi). III. Retinal ganglion cells. *Brain. Behav. Evol.* **42**, 295–320.
- 28. 2011 Evolutionary shifts in vertebrate visual ecology and visual system morphology. Durham, NC: A working group of the National Evolutionary Synthesis Center.
- 29. Tamura, T. & Wisby, W. J. 1963 The visual sense of pleagic fishes especially the visual axis and accommodation. *Bull. Mar. Sci.* **13**, 433–448.
- 30. Miyagi, M., Akiyama, S. & Arimoto, T. 2001 The development of visual acuity in Yellowtail Seriola quinqueradiata. *Nippon Suisan Gakkaishi* **67**, 455–459. (doi:10.1248/cpb.37.3229)
- 31. Hunt, D. E., Rawlinson, N. J. F., Thomas, G. A. & Cobcroft, J. M. 2015 Investigating photoreceptor densities, potential visual acuity, and cone mosaics of shallow water, temperate fish species. *Vision Res.* **111**, 13–21. (doi:10.1016/j.visres.2015.03.017)
- 32. Williamson, M. & Keast, A. 1988 Retinal structure relative to feeding in the rock bass (Ambloplites rupestris) and bluegill (Lepomis macrochirus). *Can. J. Zool.* **66**, 2840–2846.
- 33. Northmore, D. P. M., Oh, D.-J. & Celenza, M. A. 2007 Acuity and contrast sensitivity of the bluegill sunfish and how they change during optic nerve regeneration. *Vis. Neurosci.* **24**, 319–331. (doi:10.1017/S0952523807070307)
- 34. Hairston, N. G. J., Li, K. T. & Easter, S. S. J. 1982 Fish vision and the detection of planktonic prey. *Science* (80-.). **218**, 1240–1242.
- 35. Kawamura, G. & Kishimoto, T. 2002 Color vision, accommodation and visual acuity in the largemouth bass. *Fish. Sci.* **68**, 1041–1046. (doi:10.1046/j.1444-2906.2002.00530.x)
- 36. Browman, H. I., Gordon, W. C., Evan, B. I. & O'Brien, W. J. 1990 Correlation between histological and behavioral measures of visual acuity in a zooplanktivorous fish, the white crappie (Pomoxis annularis). *Brain. Behav. Evol.* **35**, 85–97. (doi:10.1159/000115858)
- 37. Weiler, I. J. 1966 Regeneration of visual acuity after optic nerve section and regeneration, in Astronotus ocellatus. *Exp. Neurol.* **15**, 377–386.

- 38. Baerends, G. P., Bennema, B. E. & Vogelzang, A. A. 1960 Über die Änderung der Sehschärfe mit dem Wachstum bei Aequidens portalegrensis (Hensel) (Pisces, Cichlidae). *Zool. Jahhbücher Abteilung für Syst. Oecologie und Geogr. der Tiere* **88**, 67–78.
- 39. Van der Meer, H. J. & Anker, G. C. 1984 Retinal resolving power and sensitivity of the photopic system in seven Haplochromine species (Teleostei, Cichlidae). *Netherlands J. Zool.* **34**, 197–209. (doi:10.1017/CBO9781107415324.004)
- 40. Otten, E. 1981 Vision during growth of a generalized Haplochromis species: H. elegans Trewavas 1933 (Pisces, Cichlidae). *Netherlands J. Zool.* **31**, 650–700. (doi:10.1017/CBO9781107415324.004)
- 41. Dobberfuhl, A. P., Ullmann, J. F. P. & Shumway, C. A. 2005 Visual acuity, environmental complexity, and social organization in African cichlid fishes. *Behav. Neurosci.* **119**, 1648–1655. (doi:10.1037/0735-7044.119.6.1648)
- 42. Fritsches, K. A., Marshall, N. J. & Warrant, E. J. 2003 Retinal specializations in the blue marlin: Eyes designed for sensitivity to low light levels. *Mar. Freshw. Res.* **54**, 333–341. (doi:10.1071/MF02126)
- 43. Yamanouchi, T. 1956 The visual acuity of the coral fish Microcanthus strigatus (Cuvier & Valenciennes). *Publ. Seto Mar. Biol. Lab.* **5**, 133–156. (doi:10.1113/jphysiol.1902.sp000918)
- 44. Wahl, C. M., Mills, E. L., McFarland, W. N. & DeGisi, J. S. 1993 Ontogenetic changes in prey selection and visual acuity of the Yellow Perch, Perca flavescens. *Can. J. Fish. Aquat. Sci.* **50**, 743–749.
- 45. Brokovich, E., Ben-Ari, T., Kark, S., Kiflawi, M., Dishon, G., Iluz, D. & Shashar, N. 2010 Functional changes of the visual system of the damselfish Dascyllus marginatus along its bathymetric range. *Physiol. Behav.* **101**, 413–421. (doi:10.1016/j.physbeh.2010.07.006)
- 46. Nakamura, E. L. 1968 Visual acuity of two tunas, Katsuwonus pelamis and Euthynnus affinis. *Copeia* **1968**, 41–49.
- 47. Kawamura, G. 1979 Fundamental study on application of the vision of spotted mackerel, Pneumatophorus tapeinocephalus (Bleeker), to angling techniques-I. Importance of vision estimated from brain pattern, visual acuity of the retina, and accommodation. *Bull. Japanese Soc. Sci. Fish.* **45**, 281–286.
- 48. Nakamura, E. L. 1979 Visual acuity of yellowfin tuna, Thunus albacares. *FAO Fish. Aquac. Rep.* **3**, 463–468.
- 49. Shiobara, Y., Akiyama, S. & Arimoto, T. 1998 Developmental changes in the visual acuity of Red Sea Bream Pagrus major. *Fish. Sci.* **64**, 944–947.
- Temple, S. E., Manietta, D. & Collin, S. P. 2013 A comparison of behavioural (Landolt C) and anatomical estimates of visual acuity in archerfish (Toxotes chatareus). *Vision Res.* 1–8. (doi:10.1016/j.visres.2013.02.014)
- 51. Kawamura, G. & Ohashi, S. 1988 The habit of cutlassfish as inferred from the retina. *Nippon Suisan Gakkaishi* **54**.
- 52. Pankhurst, P. M., Pankhurst, N. W. & Montgomery, J. C. 1993 Comparison of behavioural and morphological measures of visual acuity during ontogeny in a teleost fish, Forsterygion. *Brain. Behav. Evol.* **42**, 178–188.
- 53. Matsuda, K., Torisawa, S., Hiraishi, T. & Yamamoto, K. 2008 Comparison of visual acuity and visual axis of three flatfish species with different ecotypes. *Fish. Sci.* **74**, 562–572. (doi:10.1111/j.1444-2906.2008.01559.x)
- 54. Neave, D. A. 1984 The development of visual acuity in larval plaice (Pleuronectes

- platessa L.) and turbot (Scophthalmus maximus L.). *J. Exp. Mar. Biol. Ecol.* **78**, 167–175. (doi:10.1016/0022-0981(84)90077-7)
- 55. Rahmann, H., Jeserich, G. & Zeutzius, I. 1979 Ontogeny of visual acuity of rainbow trout under normal conditions and light deprivation. *Behaviour* **68**, 315–322.
- 56. Matsuda, K., Torisawa, S., Hiraishi, T., Nashimoto, K. & Yamamoto, K. 2005 Visual acuity and spectral sensitivity of the elkhorn sculpin Alcichthys alcicornis. *Fish. Sci.* **71**, 1136–1142. (doi:10.1111/j.1444-2906.2005.01073.x)
- 57. Torisawa, S., Hiraishi, T., Yamamoto, K. & Nashimoto, K. 2002 Visual acuity and spectral sensitivity of Jacopever Sebastes schlegeli. *Fish. Sci.* **68**, 984–990. (doi:10.1046/j.1444-2906.2002.00522.x)
- 58. Lee, H. R. & O'Brien, K. M. B. 2011 Morphological and behavioral limit of visual resolution in temperate (Hippocampus abdominalis) and tropical (Hippocampus taeniopterus) seahorses. *Vis. Neurosci.* **28**, 351–360. (doi:10.1017/S0952523811000149)
- 59. Champ, C., Wallis, G., Vorobyev, M., Siebeck, U. & Marshall, J. 2014 Visual acuity in a species of coral reef fish: Rhinecanthus aculeatus. *Brain. Behav. Evol.* **83**, 31–42. (doi:10.1159/000356977)
- 60. Rabosky, D. L., Santini, F., Eastman, J., Smith, S. A., Sidlauskas, B., Chang, J. & Alfaro, M. E. 2013 Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. *Nat. Commun.* **4**, 1958. (doi:10.1038/ncomms2958)