

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Addease COMMISSIONER FOR PATENTS PO Box 1430 Alexandria, Virginia 22313-1450 www.wopto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/661,696	09/12/2003	David D. Brandt	03AB014C/ALBRP303USC	7375
Susan M. Don	7590 06/01/200 ahue	EXAMINER		
Rockwell Automation, 704-P, IP Department 1201 South 2nd Street Milwaukee, WI 53204			BAUM, RONALD	
			ART UNIT	PAPER NUMBER
,			2439	
			MAIL DATE	DELIVERY MODE
			06/01/2009	PAPED

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/661.696 BRANDT ET AL. Office Action Summary Examiner Art Unit RONALD BAUM 2439 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 02 April 2009. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1-9.12-17.19-21.23.25-41 and 45-47 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1-9, 12-17, 19-21, 23, 25-41 and 45-47 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abevance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s)

Notice of References Cited (PTO-892) Notice of Draftsperson's Patent Drawing Review (PTO-948)	4) Interview Summary (PTO-413) Paper No(s)/Mail Date
3) Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date	5) Notice of Informal Patent Application 6) Other:
S. Patent and Trademark Office	

DETAILED ACTION

- 1. This action is in reply to applicant's correspondence of 02 April 2009.
- Claims 1-9, 12-17, 19-21, 23, 25-41 and 45-47 are pending for examination.
- Claims 1-9, 12-17, 19-21, 23, 25-41 and 45-47 are rejected.

Continued Examination Under 37 CFR 1.114

4. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 02 April 2009 has been entered.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

- (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 10.2 of this title, if the difference between the subject matter as whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter as whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentibility skall not be negatived by the manner in which the invention was made.
- 5. Claims 1-9, 12-17, 19-21, 23, 25-41 and 45-47 are rejected under 35 U.S.C. 103(a) as being unpatentable over Swiler et al, U.S. Patent 7,013,395 B1 in view of Townsend, U.S. Patent 6,374,358 B1.

Art Unit: 2439

It is noted that Swiler et al, does not disclose the specific type of action taken upon vulnerability assessment results determination, insofar as additional security components are required (i.e., installation) upon a vulnerability or detected security problem so determined. However, the examiner asserts that it would have been obvious to one ordinary skill in the art at the time the invention was made for the adaptive countermeasure selection method/apparatus of Townsend to be combined with the validation component vulnerability assessment results of Swiler et al, insofar as the Swiler et al teaching of a computer system analysis tool requiring a responding mechanism to make use of the analysis tool output (i.e., the Townsend countermeasure selection method/apparatus installation countermeasures aspects, col. 3.lines 17-33, col. 7, lines 33-65), and would be in itself an obvious intended use. A recitation directed to the manner in which a claimed apparatus is intended to be used does not distinguish the claimed apparatus from the prior art if prior art has the capability to do so (See MPEP 2114 and Ex Parte Masham, 2 USPO2d 1647 (1987). Such motivation to combine would clearly be an obvious requirement, insofar as using the validation component vulnerability assessment results of Swiler et al would require the vulnerability results to be utilized as a practical business aspect of requiring the vulnerability assessment in the first place (e.g., Townsend business concerns requiring countermeasures, col. 3.lines 1-50).

Prior Art's Broad Disclosure vs. Preferred Embodiments

As concerning the scope of applicability of cited references used in any art rejections below, as per MPEP § 2123, subsection R.5. Rejection Over Prior Art's Broad Disclosure Instead of Preferred Embodiments:

Art Unit: 2439

I. PATENTS ARE RILEVANT AS PRIOR ART FOR ALL THEY CONTAIN. "The use of patents as references not limited to what the patents as describes as their own inventions or to the problems with which they are concerned. They are part of the literature of the art, relevant for all they contain." In reflect, 699 F. 2d 1331, 1332-33, 216 USPQ 1038, 1039 (Fed. Cir. 1933) (quoting. In re Lemelson, 397 F. 2d 1056, 1099, 158 USPQ 275, 277 (CPCP, 1965)). A reference may be reflect upon for all that it would have reasonably suggested to one having ordinary skill the art, including nonpreferred embodiments. Merck & Co. v. Biocard Laboratories, 874 F.2d 894, 10 USPQ 2d 134, 1321 (Fed. Cir. 2005) (reference disclosing optional inclusion of a particular component teaches compositions that both do and do not contain that componently contained to the contained of the

II. NONPRIETERED AND ALTERNATIVE EMBODIMENTS CONSTITUTE PRIOR ART
Disclosed examples and preferred unbodiments do not constitute a teaching away from a boased risclosure or nonpreferred embodiments. In re
Susi, 440 F. 2d 442, 169 USPQ 423 (CCPA 1971). "A known or obvious composition does not become patentable simply because it has been
described as somewhat inferior to some other product for the same use." In re Gurley, 27 F. 2d 551, 554, 31 USPQ2d 1130, 1132 (Fed. Ctr. 1994).
Furthermore, "[He prior art's mere idsolosure of more than one alternative does not constitute a teaching away from any of these affernatives
because such disclosure does not criticize, discredit, or otherwise discourage the solution claimed...." In re Fulton, 391 F. 3d 1195, 1201, 73
USPQ2d 1141, 1146 (Fed. Cir. 2004).

Swiler et al *generally* teaches and suggests (i.e., Abstract, figures 1-2 and associated descriptions in general) the limitations set forth in the claims below, as modified by the Townsend teachings as described above.

 As per claim 1; "A security analysis tool for an automation system, comprising: an interface component that generates

a description of one or more industrial controllers, wherein

the description includes at least one of

shop floor access patterns,

Intranet access patterns,

Internet access patterns, and

wireless access patterns [ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system analysis tool using inputted computer system/network configuration/topology (i.e., description of factory assets whereas factory automation IT/network elements involved in the operation of a given

commercial/industrial/government environment (e.g., col. 1, lines 24-45, col. 5, lines 30-55) encompasses the use of at the very least programmable logic controllers of which industrial controllers are an associated architecture), clearly dealing with Intranet and Internet access patterns insofar as network security per se is concerned) and attack template (i.e., model) information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.];

Page 5

an analyzer component that generates

one or more security outputs

based on the description [ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system analysis tool using inputted computer system/network configuration/topology and attack template information, such that results (i.e., post analysis generated security outputs) used to evaluate (i.e., graphed output information)/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.];

a validation component

Art Unit: 2439

that periodically monitors the industrial network controllers

following deployment of the one or more security outputs

to determine one or more vulnerabilities related thereto

9,line 19, whereas the provided computer system analysis tool using inputted computer system/network configuration/topology and attack template information, such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended, by the operator/user of the computer system analysis tool, such that said

[ABSTRACT, figures 1-2 and associated descriptions, col. 3.lines 10-col.

attack analysis results are for the utilization on the target system analyzed such that said attacks (i.e., 'vulnerabilities related thereto ') can be

prevented/mitigated. The validation aspect applies insofar as the analysis

tool clearly is used, at least on a 'periodic basis' forming the basis for the

'following deployment of the one or more security outputs' aspect, clearly

encompassing the claimed limitations as broadly interpreted by the

examiner.] and

automatically installs one or more security components

in response to the one or more vulnerabilities [Townsend, above].".

As per claim 12, this claim is the method claim for the system claim 1 above, and is rejected for the same reasons provided for the claim 1 rejection. Application/Control Number: 10/661,696 Page 7

Art Unit: 2439

As per claim 16, this claim is the means plus function claim for the system claim 1 above, and is rejected for the same reasons provided for the claim 1 rejection.

7. Claim 2 additionally recites the limitation that; "The tool of claim 1,

at least one of

the interface component and

the analyzer component

operate on a computer and

receive

one or more factory inputs

that provide the description.".

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system analysis tool using inputted (i.e., interface component) computer system/network configuration/topology (i.e., description of factory assets) and attack template (i.e., model) information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

8. Claim 3 additionally recites the limitation that: "The tool of claim 2.

Application/Control Number: 10/661,696 Art Unit: 2439

the factory inputs include

user input.

model inputs,

schemas.

formulas.

equations,

files,

maps, and

codes"

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system analysis tool using inputted (i.e., interface component utilizing, at the very least, user input, model inputs, files, maps, and codes) computer system/network configuration/topology (i.e., description of factory assets) and attack template (i.e., model) information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

9. Claim 4 additionally recites the limitation that; "The tool of claim 2,

the factory inputs are processed by

the analyzer component to generate the security outputs,

Art Unit: 2439

the security outputs including

at least one of

manuals,

documents,

schemas.

executables,

codes,

files,

e-mails,

recommendations,

topologies,

configurations,

application procedures,

parameters,

policies,

rules,

user procedures, and

user practices

that are employed

to facilitate security measures in

an automation system.".

Application Control Ivanie

Art Unit: 2439

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system analysis tool using inputted computer system/network configuration/topology and attack template information, such that results (i.e., post analysis generated security outputs) used to evaluate (i.e., graphed output information, utilizing, at the very least, topologies, recommendations, files, rules, configurations)/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

10. Claim 5 additionally recites the limitation that; "The tool of claim 1,

the interface component includes

at least one of

a display output having associated display objects and

at least one input

to facilitate operations with

the analyzer component.

the interface component is associated with

at least one of

an engine,

an application,

an editor tool.

Art Unit: 2439

a web browser, and

a web service.".

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system analysis tool using inputted (i.e., interface component, utilizing, at the very least, input editing tools, and a display output having associated display objects for the results graphic output) computer system/network configuration/topology (i.e., description of factory assets) and attack template (i.e., model) information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

11. Claim 6 additionally recites the limitation that; "The tool of claim 5,

the display objects include

at least one of

configurable icons,

buttons.

sliders.

input boxes,

selection options.

menus, and

tabs.

Art Unit: 2439

the display objects having

multiple configurable

dimensions.

shapes,

colors.

text.

data and

sounds

to facilitate operations with

the analyzer component.".

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system analysis tool using inputted (i.e., interface component, utilizing, at the very least, GUI oriented input editing tools, and a display output having associated display objects for the results graphic output) computer system/network configuration/topology (i.e., description of factory assets) and attack template (i.e., model) information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

 Claim 7 additionally recites the limitation that; "The tool of claim 5, the at least one inputs includes Application/Control Number: 10/661,696 Page 13

Art Unit: 2439

receiving user commands from

a mouse,

keyboard,

speech input,

web site,

remote web service,

camera, and

video input

to affect operations of

the interface component and

the analyzer component.".

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system analysis tool using inputted (i.e., interface component, utilizing, at the very least, GUI oriented input editing tools, and a display output having associated display objects for the results graphic output) computer system/network configuration/topology (i.e., description of factory assets) and attack template (i.e., model) information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

13. Claim 8 additionally recites the limitation that; "The tool of claim 1.

Art Unit: 2439

the description includes

a model of one or more industrial automation assets

to be protected and

associated network pathways

to access the industrial automation assets.".

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system analysis tool using inputted computer system/network configuration/topology (i.e., description of factory assets whereas factory automation IT/network elements involved in the operation of a given commercial/industrial/government environment (e.g., col. 1,lines 24-45, col. 5,lines 30-55) encompasses the use of at the very least programmable logic controllers of which industrial controllers are an associated architecture) and attack template (i.e., model) information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

 Claim 9 additionally recites the limitation that; "The tool of claim 1, the description

includes at least one of

risk data and

cost data

Page 15

Application/Control Number: 10/661,696

Art Unit: 2439

that is employed by

the analyzer component

to determine suitable security measures.".

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system analysis tool using inputted computer system/network configuration/topology (i.e., description of factory assets) and attack template (i.e., model, clearly dealing with risk and effective cost insofar as network security per se is concerned) information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

As per claim 13, this claim is the method claim for the system claim 9 above, and is rejected for the same reasons provided for the claim 9 rejection.

15 Claim 14 additionally recites the limitation that: "The method of claim 12.

the security outputs include at least one of recommended

security components,

codes.

parameters,

settings.

Application/Control Number: 10/661,696 Art Unit: 2439

related interconnection topologies,

connection configurations,

application procedures,

security policies,

rules.

user procedures, and

user practices.".

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system analysis tool using inputted computer system/network configuration/topology and attack template information, such that results (i.e., post analysis generated security outputs) used to evaluate (i.e., graphed output information, utilizing, at the very least, topologies, recommendations, files, rules, configurations)/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

16. Claim 15 additionally recites the limitation that; "The method of claim 12, further comprising at least one of:

automatically deploying the security outputs

to one or more entities; and

utilizing the security outputs

Art Unit: 2439

to mitigate at least one of

unwanted network access and

network attack.".

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system analysis tool using inputted computer system/network configuration/topology and attack template information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

- 17. As per claim 17; "A security validation system, comprising:
 - a scanner component

to automatically interrogate an industrial automation device

at periodic intervals for

security related data [ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system analysis tool using inputted computer system/network configuration/topology (i.e., polling/automatically interrogating of network machines (periodic interval scanning) and gathering associated data such as IP address, machine type, operating system, file system structure, etc.,) and attack template (i.e., model) information dealing with

Application/Control Number: 10/661,696 Page 18

Art Unit: 2439

hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.]:

a validation component

to automatically assess security capabilities of the industrial automation device based upon a comparison of

the security related data and

whereas the provided computer system analysis tool using inputted computer system/network configuration/topology (i.e., polling/automatically interrogating of network machines (periodic interval scanning) and gathering associated data such as IP address, machine type, operating system, file system structure, etc...) and attack template (i.e., model) information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities (i.e., a validation component ...) as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.]; and

one or more predetermined security guidelines [ABSTRACT, figures 1-2 and associated descriptions, col. 3.lines 10-col. 9.line 19.

Application/Control Number: 10/661,696 Page 19

Art Unit: 2439

a security analysis tool

that recommends interconnection of

one or more industrial automation devices

to achieve a specified security goal [ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system analysis tool using inputted computer system/network configuration/topology and attack template information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes (i.e., 'security analysis tool ... recommends interconnection ... a specified security goal') in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.]; and

a component to automatically install one or more security components in response to detected security problems [Townsend, above].".

As per claim 30, this claim is the means plus function claim for the system claim 17 above, and is rejected for the same reasons provided for the claim 17 rejection.

 Claim 19 additionally recites the limitation that; "The system of claim 17, the validation component performs at least one of a security audit,

Art Unit: 2439

a vulnerability scan,

a revision check,

an improper configuration check,

file system check.

a registry check,

a database permissions check,

a user privileges check,

a password check, and

an account policy check.".

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system analysis tool using inputted computer system/network configuration/topology and attack template information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended (i.e., validation component, insofar as associated with improper configuration, vulnerability, file system check, user privileges check, etc.,), clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

19. Claim 20 *additionally recites* the limitation that; "The system of claim 17,

the security guidelines

are automatically determined.".

Art Unit: 2439

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system analysis tool using inputted computer system/network configuration/topology and attack template information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

20. Claim 21 additionally recites the limitation that; "The system of claim 46,

the host-based component performs

vulnerability scanning and

auditing on devices,

the network-based component performs

vulnerability scanning and

auditing on networks.".

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system (i.e., host-based/network-based component) analysis tool using inputted (i.e., vulnerability scanner component) computer system/network configuration/topology (i.e., auditing factory assets) and attack template (i.e., model) information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes

Art Unit: 2439

recommended (i.e., validation component), clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

Claim 23 additionally recites the limitation that; "The system of claim 21.

at least one of

host-based component and

the network-based component

at least one of

includes

non-destructively mapping a topology of

IT and

industrial automation devices.

checking revisions and configurations,

checking user attributes, and

checking access control lists.".

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system (i.e., host-based/network-based component) analysis tool using inputted (i.e., vulnerability scanner component) computer system/network configuration/topology (i.e., auditing of factory assets whereas factory automation IT/network elements involved in the operation of a given commercial/industrial/government environment (e.g., col. 1,lines 24-45, col. 5,lines 30-55) encompasses the use of at the very least programmable logic controllers of which industrial

Art Unit: 2439

controllers are an associated architecture) and attack template (i.e., model) information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended (i.e., validation component), clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

22. As per claim 31; "A security learning system for an industrial automation environment, comprising:

a learning component

to monitor and learn industrial automation activities during

a training period [ABSTRACT, figures 1-2 and associated descriptions, col. 3, lines 10-col. 9, line 19, whereas the provided computer system analysis tool (i.e., learning/monitoring/scanning component) using inputted computer system/network configuration/topology (i.e., polling/automatically interrogating of network machines (periodic interval scanning of automation activities) and gathering associated data such as IP address, machine type, operating system, file system structure, etc..) and attack template (i.e., model) information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.]; and

Art Unit: 2439

a detection component

to automatically trigger

a security event based upon

detected deviations of subsequent industrial automation activities after the training period [ABSTRACT, figures 1-2 and associated descriptions, col. 3.lines 10-col. 9.line 19, whereas the provided computer system analysis tool using inputted computer system/network configuration/topology (i.e., polling/automatically interrogating of network machines (periodic interval scanning) and gathering associated data such as IP address, machine type, operating system, file system structure, etc.,) and attack template (i.e., model) information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities (i.e., a detection component ... trigger a security event ... after the training period) as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.],

wherein the security event includes

automatically installing one or more security components [Townsend, above].".

Art Unit: 2439

As per claim 39, this claim is the method claim for the system claim 31 above, and is rejected for the same reasons provided for the claim 31 rejection.

As per claim 41, this claim is the means plus function claim for the system claim 31 above, and is rejected for the same reasons provided for the claim 31 rejection.

23. Claim 32 additionally recites the limitation that; "The system of claim 31,

the industrial automation activities includes at least one of

a network activity and

a device activity.".

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system (i.e., host-based device activity /network-based activity component) analysis tool using inputted (i.e., scanner automation activities component) computer system/network configuration/topology and attack template information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended (i.e., validation component), clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

 Claim 33 additionally recites the limitation that; "The system of claim 31, the learning component including

Page 26

Application/Control Number: 10/661,696

Art Unit: 2439

at least one of

a learning model and

a variable.".

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system analysis tool (i.e., learning/ monitoring/scanning component) using inputted computer system/network configuration/topology (i.e., polling/automatically interrogating of network machines (periodic interval scanning of automation activities) and gathering associated data such as IP address, machine type, operating system, file system structure, etc.,) and attack template (i.e., learning model) information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

 Claim 34 additionally recites the limitation that; "The system of claim 31, the industrial automation activities include

at least one of

- a number of network requests,
- a type of network requests.
- a time of requests,
- a location of requests,
- status information, and

Art Unit: 2439

counter data.".

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system analysis tool (i.e., learning/ monitoring/scanning component) using inputted computer system/network configuration/topology (i.e., polling/automatically interrogating of network machines (periodic interval scanning of automation activities, such as number of network requests, type of network requests, location of requests, etc.,) and gathering associated data such as IP address, machine type, operating system, file system structure, etc.,) and attack template (i.e., learning model) information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

 Claim 35 additionally recites the limitation that; "The system of claim 31, the detection component employs

at least one of

a threshold and

a range to determine the deviations.".

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system analysis tool (i.e., learning detection/monitoring/scanning component) using inputted computer system/network configuration/topology (i.e., polling/automatically interrogating of network

Art Unit: 2439

machines (periodic interval scanning of automation activities, such as number of network requests, type of network requests, location of requests, etc.,) and gathering associated data such as IP address, machine type, operating system, file system structure, etc.,) and attack template (i.e., learning model) information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

27. Claim 36 additionally recites the limitation that; "The system of claim 35,

the threshold and

the range

are dynamically adjustable.".

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system analysis tool (i.e., learning detection/monitoring/scanning component) using inputted computer system/network configuration/topology (i.e., polling/automatically interrogating of network machines (periodic interval scanning of automation activities, such as number of network requests, type of network requests, location of requests, etc.,) and gathering associated data such as IP address, machine type, operating system, file system structure, etc.,) and attack template (i.e., learning model) information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a

Art Unit: 2439

function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

28. Claim 37 additionally recites the limitation that; "The system of claim 33,

the learning model includes

at least one of

mathematical models,

statistical models,

probabilistic models.

functions,

algorithms, and

neural networks.

classifiers.

inference models.

Hidden Markov Models (HMM),

Bayesian models,

Support Vector Machines (SVM),

vector-based models, and

decision trees.".

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system analysis tool (i.e., learning/monitoring/scanning component) using inputted computer

Art Unit: 2439

system/network configuration/topology (i.e., polling/automatically interrogating of network machines (periodic interval scanning of automation activities) and gathering associated data such as IP address, machine type, operating system, file system structure, etc.,) and attack template (i.e., learning model) information dealing with hypothesized (i.e., mathematical, statistical, probabilistic models, etc.,) attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

 Claim 38 additionally recites the limitation that; "The system of claim 31, the security event further includes

at least one of

automatically performing corrective actions,

altering network patterns,

adding security components,

removing security components,

adjusting security parameters,

firing an alarm, notifying an entity,

generating an e-mail,

interacting with a web site, and

generating security data

to mitigate network security problems.".

Art Unit: 2439

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system analysis tool using inputted computer system/network configuration/topology (i.e., polling/automatically interrogating of network machines (periodic interval scanning) and gathering associated data such as IP address, machine type, operating system, file system structure, etc.,) and attack template (i.e., model) information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities (i.e., security event ... altering network patterns ... adjusting security parameters, generating security data, etc.,) as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

30. Claim 40 additionally recites the limitation that; "The method of claim 39,

the at least one data pattern

employed as input for

a security analysis process.".

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system analysis tool (i.e., learning/ monitoring/scanning component) using inputted computer system/network configuration/topology (i.e., polling/automatically interrogating of network machines (periodic interval scanning of automation activities) and gathering associated data such as IP address, machine type, operating system, file system structure, etc.,) and attack template

Art Unit: 2439

(i.e., learning model) information dealing with hypothesized (i.e., mathematical, statistical, probabilistic models, etc.,) attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

31. Claim 45 additionally recites the limitation that; "The tool of claim 1,

the analyzer component is adapted for

partitioned security specification entry and

sign-off from various groups.".

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system analysis tool using inputted computer system/network configuration/topology (i.e., the network partitioned security specification) and attack template (i.e., inclusive of authentication aspects, insofar as sign-on/sign-off, at the very least would be concerned) information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended, clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

 Claim 46 additionally recites the limitation that; "The system of claim 17, the scanner component and

Art Unit: 2439

the validation component

are at least one of

a host-based component and

a network-based component.".

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system (i.e., host-based/network-based component) analysis tool using inputted (i.e., scanner component) computer system/network configuration/topology (i.e., description of factory assets) and attack template (i.e., model) information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes recommended (i.e., validation component), clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

33. Claim 47 additionally recites the limitation that; "The system of claim 21,

at least one of

host-based component and

the network-based component

at least one of

determines susceptibility to

common network-based attacks.

searches for

Application/Control Number: 10/661,696 Page 34

Art Unit: 2439

open TCP/UDP ports,

scans for

vulnerable network services.

attempts to gain identity information about

end devices that relates to

hacker entry,

performs vulnerability

scanning and

auditing

on

firewalls.

routers.

security devices, and

factory protocols.".

The teachings of Swiler et al are directed towards such limitations (i.e., ABSTRACT, figures 1-2 and associated descriptions, col. 3,lines 10-col. 9,line 19, whereas the provided computer system (i.e., host-based/network-based component) analysis tool using inputted (i.e., vulnerability scanner component) computer system/network configuration/topology (i.e., auditing factory assets) and attack template (i.e., model) information dealing with hypothesized attack scenario(s), such that results used to evaluate/make configuration changes in the network to counter vulnerabilities as a function of the risks and costs associated with the changes

Application/Control Number: 10/661,696 Page 35

Art Unit: 2439

recommended (i.e., validation component), clearly encompassing the claimed limitations as broadly interpreted by the examiner.).

Response to Amendment

34. As per applicant's argument concerning the lack of teachings by Swiler et al of the automatic installation of security components, the argument is moot, given the new basis for rejection.

Conclusion

35. Any inquiry concerning this communication or earlier communications from examiner should be directed to Ronald Baum, whose telephone number is (571) 272-3861, and whose unofficial Fax number is (571) 273-3861 and unofficial email is Ronald.baum@uspto.gov. The examiner can normally be reached Monday through Thursday from 8:00 AM to 5:30 PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Edan Orgad, can be reached at (571) 272-7884. The Fax number for the organization where this application is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. For more information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Ronald Baum

Patent Examiner

/R. B./

Examiner, Art Unit 2439

/Christian LaForgia/

Primary Examiner, Art Unit 2439