ESTIA 2021 -Transformées-Devoir Maison (texte complet) A remettre à l'accueil avant 17h le 21/10/2019

Exercice 1

On pose f(t)=0 pour t<0, f(t)=1 pour $0\leq t\leq \pi,$ f(t)=-1 pour $\pi< t\leq 2\pi$ et f(t)=0 pour $t>2\pi.$

- 1) Vérifier que $\widehat{f}(x) = 2i\pi e^{-i\pi x} sin\left(\frac{\pi x}{2}\right) sin_c\left(\frac{\pi x}{2}\right)$ pour $x \in \mathbb{R}^1$
- 2) Montrer sans calculs que \hat{f} n'est pas intégrable sur \mathbb{R} .
- 3) En appliquant à f la formule de Parseval et en effectuant un changement de variables, calculer $\int_0^{+\infty} \frac{\sin^4(s)}{s^2} ds$. vérifier ce résultat en utilisant Mupad ou Python.
- 4) On a vu en TD que si on pose $H(t) = e^{-|t|}$ pour $t \in \mathbb{R}$, alors on a $\widehat{H}(x) = \frac{2}{1+x^2}$. Existe t'il une fonction $g \in L^1(\mathbb{R})$ telle que f * g = H?

Exercice 2

- 1) Soit f = [7,7,5,5,3,3,1,1]. Calculer la transformée de Walsh de f en utilisant la "transformée de Walsh rapide."
- 2) Calculer le signal obtenu en compressant à 25% et à 50% le signal f. Que remarquez vous ?

Exercice 3

On considère l'image numérisée $A:=\begin{bmatrix} 1 & 3 & 1 & 3 \\ 3 & 1 & 3 & 1 \\ 1 & 3 & 1 & 3 \\ 3 & 1 & 3 & 1 \end{bmatrix}$.

- 1) En utilisant l'algorithme rapide sur les lignes et les colonnes de A, calculer la transformée de Walsh de A.
 - 2) Calculer la compression à 25% de A.

Exercice 4

a) On considère l'équation différentielle

$$y''(t) + 6y'(t) + 5y(t) = 12e^t,$$

avec la condition initiale y(0) = 1, y'(0) = -3.

Résoudre cette équation en utilisant la transformation de Laplace.

- b) Retrouver ce résultat en utilisant Mupad ou Python, et tracer le graphe de la solution obtenue sur l'intervalle [0,1].
- c) Tracer le graphe de la solution sur l'intervalle [0,1] en utilisant Matlab (on créera une M-file pour l'équation).

Exercice 5

^{1.} On rappelle que le sinus cardinal est défini par les formules $sin_c(t)=\frac{sin(t)}{t}$ pour $t\neq 0$ et $sin_c(0)=1$.

- 1) Rappeler la définition de la transformée de Fourier discrète sur \mathbb{C}^4 .
- 2) Calculer les transformées de Fourier discrètes de [4,1,2,0] et [1,8,0,0] par FFT, décimation temporelle.
- 3) En déduire le produit des polynômes $2x^2 + x + 4$ et 8x + 1, ainsi que le produit 214×81 .
- $4)^2$ Utiliser les commandes $\mathrm{fft}(\mathrm{u},\mathrm{n})$ et $\mathrm{ifft}(\mathrm{u},\mathrm{n})$ de Matlab permettant de calculer par FFT la transformée de Fourier discrète et la transformée de Fourier inverse discrète dans \mathbb{C}^n d'un signal u pour calculer $(2x^2+x+4)^4(8x+1)^7$, après avoir choisi un entier $n=2^k$ qui convient pour ce calcul. Imprimer la fiche de calcul sans afficher les résultats intermédiaires, et comparer le résultat obtenu avec un calcul direct effectué avec Mupad ou Python.

Exercice 6

On considère de nouveau la fonction f de l'exercice 1, définie par les formules f(t)=0 pour t<0, f(t)=1 pour $0 \le t \le \pi, f(t)=-1$ pour $\pi < t \le 2\pi$ et f(t)=0 pour $t>2\pi$. On pose g=f*f.

- 1) Montrer que g(t)=0 pour t<0 et pour $t>4\pi$, et que $g(t)=\int_0^t f(s)f(t-s)ds$ pour $t\in[0,4\pi]$. Vérifier plus précisément que g(t)=t pour $0\le t\le \pi$, $g(t)=4\pi-3t$ pour $\pi\le t\le 2\pi$, $g(t)=3t-8\pi$ pour $2\pi\le t\le 3\pi$ et $g(t)=4\pi-t$ pour $3\pi\le t\le 4\pi$, et esquisser le graphe de g.
 - 2) Calculer \hat{g} (on pourra utiliser la question 1 de l'exercice 1).
- 3) En appliquant à g la formule sommatoire de Poisson 3 avec $c=2\pi$, montrer que $\sum_{m=1}^{+\infty}\frac{1}{(2m+1)^2}=\frac{\pi^2}{8}$.

Exercice 7

Dans l'espace muni d'un repère orthonormé, on considère pour n entier, $n \geq 0$, le solide V_n défini par le système d'inéquations

$$\begin{cases} x^2 + y^2 \le z - n^2 \\ n^2 \le z \le n^2 + \frac{2}{2n+1} \end{cases}$$

- 1) Déterminer la nature géométrique de V_n , et calculer son volume en utilisant le théorème de Fubini.
- 2) On pose $V = \cup_{n \geq 0} V_n$. Esquisser un dessin de V, et calculer le volume de V.

^{2.} voir le calcul effectué p. 102 dans la dernière version du support de cours

^{3.} voir le théorème 9.3.1 p. 130 de la dernière version du support de cours