AEL apply to SARAR model

Tang Jie

2021年11月12日

摘要

这是一篇关于调整经验似然应用于 SARAR 模型的论文进度报告。

第一次汇报,单参数情形下,小样本情形下 AEL 明显好于 EL。

第二次汇报,多参数情形下,小样本情形下 AEL 明显好于 EL。

第三次汇报,寻找新算法使得 λ 满足 AEL 约束条件。

第四次汇报,新算法下,不仅 λ 满足 AEL 约束条件,还证明了多参数 情形下,AEL 效果好于 EL,尤其在小样本情形下。并应用到 SARAR 模型中。

同时提到了接下来的任务,一是复刻 Chen431 页图 1,二是复刻 Chen435 页表 2 的数据,三是实现 Chen433 页算法,四是理论证明。

第五次汇报,复刻 Chen431 页图 1;阅读文献并整理部分证明。

目录

1	第一次汇报	1									
	1.1 单参数情形下: AEL 比 EL 好	1									
	1.1.1 标准正态样本-单参数-小样本	1									
	1.1.2 标准正态样本-单参数-大样本	1									
2	第二次汇报	2									
	2.1 多参数情形下: AEL 比 EL 好	2									
3	第三次汇报	3									
	3.1 发现问题	3									
	3.2 解决问题	3									
	3.2.1 Chen 算法	3									
4	第四次汇报										
	4.1 多参数情形下: AEL 比 EL 好	4									
	4.1.1 线性模型	4									
	4.1.2 SARAR 模型	5									
5	第五次汇报	7									
6	题外话	8									

1 第一次汇报 1

1 第一次汇报

1.1 单参数情形下: AEL 比 EL 好

对 n 个来自标准正态分布的同一个样本,分别进行 EL 与 AEL 数值模拟,并进行重复 nsim 次。

1.1.1 标准正态样本-单参数-小样本

表 1: Coverage probabilities of population mean

Normal data										
		n=10			n=20					
NV	0.80	0.90	0.95	0.99	0.80	0.90	0.95	0.99		
EL	?				0.7768	0.8790	0.9282	0.9816		
AEL	0.8	0.896	0.939	0.999	0.8140	0.9076	0.9452	0.9906		

NV = nominal value; EL = empirical likelihood; AEL = Adjusted EL.

小样本情形下,当 n=10 时, EL 出现无法计算的情况。与此相比, AEL 一定有解,并且仍有不错的结果。当 n=20 时,分别在名义水平 0.8、0.9、0.95、0.99 情形下,明显可看出 AEL 比 EL 效果更好。

1.1.2 标准正态样本-单参数-大样本

表 2: Coverage probabilities of population mean

Normal data											
		n=100		n=500							
NV	0.80	0.90	0.95	0.99	0.80	0.90	0.95	0.99			
EL	0.7926	0.892	0.9494	0.9904	0.8024	0.9026	0.9508	0.9884			
AEL	0.8042	0.9012	0.9556	0.9918	0.8064	0.9044	0.9520	0.9890			

NV = nominal value; EL = empirical likelihood; AEL = Adjusted EL.

大样本情形下, AEL 与 EL 趋于一致, AEL 仍比 EL 的覆盖率高一些。 结论: 单参数情形下, 无论大样本还是小样本, AEL 都比 EL 好。 2 第二次汇报 2

2 第二次汇报

2.1 多参数情形下: AEL 比 EL 好

重新计算,结果见第四次汇报。

3 第三次汇报 3

3 第三次汇报

3.1 发现问题

牛顿迭代法求解 $G(\lambda)=0$ 的程序,在经验似然下, λ 计算上满足 $G(\lambda)=0$ 的约束条件,而在调整经验似然下,求解出的 λ 都没有满足 $G(\lambda)=0$ 的约束条件。于是寻找新的算法,能在调整经验方法下,求得满足所有约束下的 λ 的值。

3.2 解决问题

踏上寻"根"之路。

此根须同时满足 (A1) $G(\lambda) = 0$; (A2) $1 + \lambda' g_i > 0, i = 1, 2, ..., n, n + 1$.

3.2.1 Chen 算法

Chen 在 433 页给了他的算法, 那就试试看吧。

$$a_n = \max(1, \log(n)/2)$$

$$g_{n+1} = -a_n \bar{g}_n$$

$$R(\lambda) = \sum_{i=1}^{n+1} \log(1 + \lambda' g_i)$$
(1)

开始 Chen 的程序之前,先分别计算 $R(\lambda)$ 的一阶偏导数 \dot{R} 和二阶偏导数 \ddot{R} 。

$$\dot{R} = \sum_{i=1}^{n+1} \frac{g_i}{1 + \lambda' g_i}
\ddot{R} = \sum_{i=1}^{n+1} -\frac{g_i g_i'}{(1 + \lambda' g_i)^2}$$
(2)

最后经过部分调整, Chen 算法落地成功。

Chen 算法不论在经验似然还是调整经验似然下,求解的 λ 都满足约束要求, λ 百分之百满足 $|G(\lambda)| \le 10^{-6}$ 。

4 第四次汇报 4

4 第四次汇报

4.1 多参数情形下: AEL 比 EL 好

来自多参数模型的 n 个样本,名义水平为 0.95,分别计算 EL 与 AEL 方法下的覆盖率,并进行重复 2000 次。

4.1.1 线性模型

图 1: 线性模型 EL 与 AEL 对比图

由图可见,小样本 (n=10, 15, 20) 的表现在 AEL 方法下显著提高, 在大样本 (n=100, 200) 下,EL 与 AEL 趋于相近。

结论:线性模型下,无论大样本还是小样本,AEL都比EL好。

4 第四次汇报 5

4.1.2 SARAR 模型

图 2: Wn 分别取 grid₉、grid₁₆、grid₂₅、grid₃₆

模拟 2000 次, 置信水平为 0.95, β =3.5, (ρ_1,ρ_2) =(-0.85, -0.15), Xn 由标准正态数据的平方生成时,并分别在样本为 9、16、25、36 个的情形下计算覆盖率。由图可知,小样本情形下,AEL 明显比 EL 效果更好。

图 3: Wn 分别取 grid₄₉、grid₁₀₀、grid₁₆₉

参数同上,分别在样本为 49、100、169 个的情形下计算覆盖率。图 6 可看出,大样本情形下,AEL 与 EL 很接近,但 AEL 仍比 EL 略好一些。

结论: SARAR 模型下,无论大样本还是小样本,AEL 都比 EL 好。

4 第四次汇报 6

表 3: Coverage probabilities of the EL and AEL confidence regions with $\epsilon_i \sim \! {\rm N}(0,\,1)$

$(\rho_1,\!\rho_2)$	Wn=Mn	EL	AEL	$(ho_1,\! ho_2)$	Wn=Mn	EL	AEL
(-0.85, -0.15)	$grid_9$	0.2670	1	(-0.85, 0.15)	$grid_9$	0.2800	1
	$grid_{16}$	0.5335	0.8300		$grid_{16}$	0.5160	0.8385
	$grid_{25}$	0.6580	0.7925		$grid_{25}$	0.6910	0.7925
	$grid_{36}$	0.7975	0.8485		$grid_{36}$	0.7515	0.8105
	$grid_{49}$	0.8100	0.8515		$grid_{49}$	0.8400	0.8655
	$grid_{100}$	0.8915	0.9040		$grid_{100}$	0.899	0.9110
	$grid_{169}$	0.9210	0.9340		$grid_{169}$	0.925	0.9325
(0.85, -0.15)	$grid_9$	0.2470	1	(0.85, 0.15)	$grid_9$	0.2440	1
	$grid_{16}$	0.5310	0.813		$grid_{16}$	0.4795	0.8120
	$grid_{25}$	0.6805	0.7895		$grid_{25}$	0.6810	0.7815
	$grid_{36}$	0.7710	0.8310		$grid_{36}$	0.7430	0.8075
	$grid_{49}$	0.8305	0.8530		$grid_{49}$	0.8130	0.8505
	$grid_{100}$	0.9070	0.9170		$grid_{100}$	0.9070	0.9205
	$grid_{169}$	0.9240	0.9310		$grid_{169}$	0.9270	0.9325

5 第五次汇报 7

5 第五次汇报

来自独立的标准二维正态分布 50 个观测值,截面似然于真值 (μ,σ^2) =(0,1),可以画出 $\mathbf{g}_i,i=1,2,...,n,n+1$ 值。

图 4: 真值: 凸包 (左) 和调整凸包 (右), 黑点是 (0, 0).

图 5: 非真值: 凸包 (左) 和调整凸包 (右), 黑点是 (0, 0).

截面似然于非真值 $(\mu, \sigma^2)=(4,1)$ 。

6 题外话 8

6 题外话

非常感谢老师的耐心指导! 向老师致敬!

我真的差不多就要放弃问问题了,觉得自己好像没有必要追问,而且怕 耽误后面同学问问题的时间。不过老师真的太强了,这种犄角旮旯的问题也 能解决!老师的储备真的吓人。谢谢老师没有打击我,我问问题,舌头都捋 不直,哎~师兄还说我在说啥,但是老师依旧认真在听我讲述,太感动了。

2021.11.11