Here I have shown the performance of my two approaches: BART-A and BART-B, on train and valid datasets.

BART-A: Finetuning with Augmentation

```
Num examples = 14364

Num Epochs = 3

Instantaneous batch size per device = 16

Total train batch size (w. parallel, distributed & accumulation) = 16

Gradient Accumulation steps = 1

Total optimization steps = 2694
```

[2694/2694 38:07, Epoch 3/3]

Step	Training Loss	Validation Loss
100	5.360100	4.292557
200	2.411200	1.818061
300	0.346900	0.329011
400	0.343800	0.349541
500	0.324200	0.294574
600	0.292600	0.356346
700	0.264700	0.252039
800	0.264000	0.244744
900	0.215900	0.234657
1000	0.197200	0.285489
1100	0.163700	0.234189
1200	0.160200	0.243582
1300	0.145900	0.236006
1400	0.132800	0.237120
1500	0.140000	0.229246
1600	0.139800	0.229793
1700	0.131200	0.239360

Step	Training Loss	Validation Loss
1800	0.083600	0.217151
1900	0.104500	0.237082
2000	0.089100	0.217283
2100	0.093200	0.227747
2200	0.083600	0.219020
2300	0.124800	0.212462
2400	0.067300	0.228526
2500	0.084300	0.216207
2600	0.070100	0.219425

BART-B: Finetuning without Augmentation

```
Num examples = 7182
  Num Epochs = 3
  Instantaneous batch size per device = 16
  Total train batch size (w. parallel, distributed & accumulation) = 16
  Gradient Accumulation steps = 1
  Total optimization steps = 1347
```

[1347/1347 17:16, Epoch 3/3]

Step	Training Loss	Validation Loss
100	5.066300	4.120363
200	2.238700	1.731243
300	0.174500	0.178013
400	0.149500	0.168917
500	0.137100	0.199508
600	0.136900	0.173199
700	0.103000	0.152560
800	0.118100	0.143438

Step	Training Loss	Validation Loss
900	0.090200	0.142074
1000	0.059500	0.152700
1100	0.059300	0.139933
1200	0.058800	0.140943
1300	0.074100	0.130499