CSPB 4622 - Truong - Machine Learning

<u>Dashboard</u> / My courses / <u>2247:CSPB 4622</u> / <u>21 October - 27 October</u> / <u>Quiz 9. Matrix Factorization</u>

Started on	Monday, 28 October 2024, 12:03 AM
State	Finished
Completed on	Monday, 28 October 2024, 12:05 AM
Time taken	2 mins 7 secs
Marks	8.00/8.00
Grade	10.00 out of 10.00 (100 %)
Question 1	
Correct Mark 1.00 out of 1.00	
In SVDs $A=U\Sigma V^T$ and $AA^T=X\Lambda Y^T$, $\Lambda=\Sigma^2$ for any matrix A . True or False.	
Your answer is correct. ## In SVDs $A=U\Sigma V^T$ and $AA^T=X\Lambda Y^T$, $\Lambda=\Sigma^2$ for any matrix A . The correct answer is: True	
Question 2 Correct Mark 1.00 out of 1.00	
Eigenvectors from	eigenvalue decomposition are always orthogonal. True or False.
a. True	
● b. False	
Your answer is correct. If A is not symmetric, eigenvetors may not be orthogonal. The correct answer is: False	

Question 3

Correct

Mark 1.00 out of 1.00

In SVD: $A = U\Sigma V^T$, $UV^T = \mathbf{I}$ True or False.

a. True

o b. False

Your answer is correct. In SVD: ## $A = U\Sigma V^T$, UV^T ! = \mathbf{I} In SVD: ## $A = U\Sigma V^T$, $UU^T = \mathbf{I}$

The correct answer is: False

Question 4

Correct

Mark 1.00 out of 1.00

Matrix A needs to be a symmetric matrix in Eigenvalue decomposition. True or False

a. True

o b. False

Your answer is correct. Eigenvalue decomposition can still work for a non-symmetric matrix. Matrix A needs to be square shaped.

The correct answer is: False

Question 5

Correct

Mark 1.00 out of 1.00

How many non-zero eigenvalues does this matrix have? $\begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 4 & 7 \\ 3 & 9 \end{bmatrix}$

- a. 1
- o b. 2
- c. 3
- d. 4

Your answer is correct. This matrix has two non-zero eigenvalues.

The correct answer is: 2

Question 6

Correct

Mark 1.00 out of 1.00

For any matrix $\(A\)$, both $\(AA^T\)$ and $\(A^TA\)$ are symmetric. **True/False**

- a. True
- b. False

Your answer is correct. For any matrix $(A\)$, both $(AA^T\)$ and $(A^TA\)$ are symmetric.

The correct answer is: True

Question 7

Correct

Mark 1.00 out of 1.00

For any matrix $\(A\)$, $\(AA^T\)$ and $\(A^TA\)$ have the same dimension. **True or False.**

a. True

o b. False

Your answer is correct. For any matrix (A), (AA^T) and (A^TA) have the same dimension.

The correct answer is: False

Question 8

Correct

Mark 1.00 out of 1.00

In SVD: $(A = U \times V^T), (U V^T = \text{textbf{I}})$

•

a. True

b. False

Your answer is correct. ## \(A = U \Sigma V^T\), \(U U^T = \text{textbf{I}}\)

The correct answer is: True