לוגיקה - תרגול 4

השמות

הערה: מכאן ואילך נשמיט סוגריים 'מיותרים' מהפסוק על ידי הגדרת סדר קדימיות בין הקשרים:

- (הקשר בעל הקדימות הגבוהה ביותר) .1
 - \vee, \wedge .2
- (הקשר בעל הקדימות הנמוכה ביותר) ightarrow 3.

שימו לב: בשאלות הנוגעות לתחביר אין להשמיט סוגריים!

. השמה נקראת $v:\{p_0,p_1,p_2,\ldots\}\to \{{\rm F,T}\}$ נקראת פונקציה דוגמאות:

- $v_{\mathrm{F}}(p_i)=\mathrm{F}$ מתקיים $i\in\mathbb{N}$ מוגדרת כך שלכל v_{F} .1
- $v_{\mathrm{T}}(p_i)=\mathrm{T}$ מתקיים $i\in\mathbb{N}$ מוגדרת כך שלכל .2

<u>סימונים:</u>

- איא קבוצת כל ההשמות. Ass ●
- . כלשהו סבלת האמת של היא טבלת האמת TT_{\circ}

המוגדרת באינדוקציה: $\overline{v}: \mathrm{WFF} o \{\mathrm{F}, \mathrm{T}\}$ היא פונקציה השמה המוגדרת השמה v המוגדרת באינדוקציה:

. $\overline{v}\left(p_{i}
ight)=v\left(p_{i}
ight)$, $i\in\mathbb{N}$ בסיס: לכל

 $\alpha, \beta \in \mathrm{WFF}$ סגור: לכל

- $\overline{v}(\neg \alpha) = TT_{\neg}(\overline{v}(\alpha)) \bullet$
- $\overline{v}\left(\alpha\circ\beta\right)=TT_{\circ}\left(\overline{v}\left(\alpha\right),\overline{v}\left(\beta\right)\right)$, $\circ\in\left\{ \lor,\land,\rightarrow\right\}$ לכל

, אם α טאוטולוגיה, אם $v \models \alpha$ ונסמן α , ונסמן $v \models \alpha$ אם $\overline{v}(\alpha) = T$ אם $\alpha \in \mathrm{WFF}$. אם $v \in \mathrm{Ass}$ נסמן $\alpha \models \alpha$.

מתקיים p_i המופיע החלות הסופית: יהי פסוק α ושתי השמות v_1,v_2 אם לכל אטום v_i המופיע ב־ $\overline{v}_1(\alpha)=\overline{v}_2(\alpha)$ אז י $v_1(p_i)=v_2(p_i)$

מושגי יסוד סמנטיים

 $\overline{v}(\alpha)=\mathrm{T}$ הגדרה 4: נאמר כי פסוק α הוא ספיק אם קיימת השמה המספקת אותו (קיימת α כך ש

 $p_0 \lor p_1$, p_0 :דוגמאות

.($\overline{v}(lpha)=\mathrm{T}$,v נקרא נקרא כל השמה מספקת אותו (לכל ינקרא נקרא נקרא הגדרה 5: פסוק lpha

 $p_0 \lor \lnot p_0$, $p_0 \to p_0$:דוגמאות

.($\overline{v}(lpha)=\mathrm{F}$,v נקרא סתירה אם לא קיימת השמה המספקת אותו (לכל מקרא סתירה אם לא הגדרה 6: פסוק

 $p_0 \wedge \neg p_0$:דוגמה

<u>שימו לב</u>: אם פסוק אינו סתירה אז הוא ספיק (ולא בהכרח טאוטולוגיה).

. עסאוטולוגיה או β אם טאוטולוגיה או $\alpha \lor \beta$ טאוטולוגיה או $\alpha \lor \beta$ הפריכו: הפריכו

את β את ש־ α נאמר ש־ α נאמר ש־ α מספקת את המספקת אם כל השמה המספקת. אם כל השמה המספקת אם α (או $\alpha \models \beta$ נובע לוגית מ־ α), ונסמן $\alpha \models \beta$

:טענות

- . אם β טאוטולוגיה ו־ $\beta \models \beta$, אז א טאוטולוגיה.
 - . אם eta סתירה ו־ $eta\models eta$, אז eta סתירה.
- $\alpha \models \beta$ מתקיים β מתקיים מחירה אז לכל פסוק .3
- $lpha \models eta$ טאוטולוגיה אז לכל פסוק lpha מתקיים 4.
 - .5 \models הוא יחס רפסלקסיבי וטרנזיטיבי (לא סימטרי).

 $lpha\equiv eta$ ונסמן eta שקולים לוגית ונסמן $\overline{v}(lpha)=\overline{v}(eta)$ מתקיים ש־מתקיים אם לכל השמה v מתקיים לוגית ונסמן $\overline{v}(lpha)=\overline{v}(eta)$

 $etaeta \models lpha$ וגם $lpha \models eta$ משפט 2: lpha ווגם eta שקולים לוגית אמ"מ

מושגים סמנטיים עבור קבוצות פסוקים

 $v \vDash \Sigma$ ונסמן בי את מספקת ער כי נאמר כי מספקת את מספקת את גברה פונסמן בי מספקת את גברה פונסמן $\Sigma \subseteq \mathrm{WFF}$

 $v_{\mathrm{T}} \models \{p_1, p_2\}$:דוגמה

 Σ את מספקת שרים כך ש־v כך אם קיימת השמה בקיה אם נקראת מספקת את בוצת פסוקים בוצת מספקת את בוצת מספקת את

 α את אם כל השמה המספקת את Σ מספקת גם את α נאמר כי Σ בוררת לוגית את Σ את Σ (או Σ נובע לוגית מ־ Σ) ונסמן Σ ונסמן Σ .

 $\{p_0, p_1\} \models p_0 \land p_1$ דוגמה:

 $\{p_0,p_1\}\equiv\{p_0\wedge p_1\}$ דוגמה:

<u>תרגיל 3:</u>

. ספיקה בהכרח Σ בהכרח מפיק. ספיק. מניח שכל פסוק כניח $\Sigma\subseteq \mathrm{WFF}$

<u>תרגיל 4:</u>

יהיו ספיקה בהכרח $\Sigma \cup \{\neg \alpha\}$ ופסוקים ספיקה. האם האט $\Sigma \cup \{\alpha\}$ ופסוקים ופסוקים יהיו קבוצת יהיו שי

תרגול 4 לוגיקה

תזכורת:

 $TT_{
ightarrow}: \{T,F\} imes \{T,F\}
ightarrow \{T,F\}$ הפונקצייה

:מוגדרת כך ש $TT_{
ightarrow}(lpha,eta)$ היא

α	β	$\alpha \to \beta$
F	F	T
F	Т	T
T	F	F
T	Т	T

הגדרה 2 (המשך):

דוגמה:

וגבווו.

$$v(p_i) = egin{cases} F & i = 1 \ T & ext{else} \end{cases}$$

 $p_0 o (\neg p_1)$ נחשב את הערך של הפסוק .v ההשמה

$$\begin{split} \overline{v}(p_0 \to (\neg p_1)) &= \\ TT_{\to}(\overline{v}(p_0), \overline{v}(\neg p1)) \\ TT_{\to}(v(p_0), TT_{\neg}(\overline{v}(p1))) \\ TT_{\to}(T, TT_{\neg}(v(p_1))) \\ TT_{\to}(T, TT_{\neg}(F)) \end{split}$$

 $TT_{\rightarrow}(T,T) = T.$

:סיכום

: כלומר

$$\overline{v}(p_0 \to (\neg p_1)) = T$$

כדי להראות ש $p_0 \lor , \neg p_0$ טאוטולוגיה, נבדוק את כל ההשמות כדי להראות הלווינטים ($p_0 \lor , \neg p_0$), ובעזרת טבלת אמת:

p_0	$\neg p_0$	$p_0 \vee \neg p_0$
F	T	T
T	F	Т

:טענות

.1 אם β טאוטולוגיה ו- $\beta \models \beta$, אז β טאוטולוגיה.

:הפרכה

סימונים:

$$\alpha \lor \beta = p_0 \lor \lnot p_0$$
 , $\beta = \lnot p_0$, $\alpha = p_0$ נראה שזו אכן דוגמה נגדית:

נראה שכל תנאי השאלה מתקיימים

 $\stackrel{\cdot}{}$ נראה ש $p_0 \lor \neg p_0 \lor \neg p_0$ טאוטולוגיה-הוכחה

בעזרת טבלת אמת נראה שמספקת

אטוטולוגיה ש- p_0 לא אוטולוגיה (א)

$$\overline{v}_F(\alpha)$$

$$\overline{v}_F(p_0) = v_F(p_0) = F$$

הראינו שקיימת לפחות השמה אחת שאינה מספקת אראינו שקיימת לא אוטולוגיה. את p_0 ולכן זו לא טאוטולוגיה.

(ב) נראה כי $eta=
eg p_0$ לא טאוטולוגיה

$$\overline{v}_T(\beta) = \overline{v}_T(\neg p_0) = TT_\neg(v_T(p_0)) = TT_\neg(T) = F$$

תרגיל 3:

הפרכה:

דוגמה נגדית:

$$\Sigma = \{p_0, \neg p_0\}$$

ספיקים ק p_0,p_0

ספיקה בשלילה ש- Σ לא ספיקה נניח בשלילה ביקה ביקה נראה נראה

: אז Σ את מספקת ער ער כך v אז קיימת אז קיימת ,

$$\overline{v}(p_0) = T$$

$$\overline{v}(\neg p_0) = T$$

$$\overline{v}(\neg p_0) = TT_{\neg}(\overline{v}(p_0)) = TT_{\neg}(T) = F$$

:4 תרגיל

 $.
eg lpha =
eg p_0$, $lpha = p_0$, $\Sigma = \emptyset$ הטענה אינה נכונה