

Context

- Deforestation is a major problem in the Amazon Rainforest
- Exact year of deforestation largely unknown for certain areas
- Effects of deforestation/importance of knowing exact deforestation year
 - CO2 Emissions
 - Regulation and planning
 - Community Impact
- Threat of deforestation driven by agricultural expansion

Goals

- Predict deforestation year for over 2,000 plantations in Peru and Brazil
- Use data from satellites to predict deforestation year
 - Landsat Satellite
 - Enhanced Vegetation Index (EVI)
 - Measure of photosynthetic activity in vegetation
 - ALOS-PALSAR-2 Satellite
 - Horizontal-Horizontal Polarization (HH)
 - Measure surface and vegetation roughness
 - Horizontal-Vertical Polarization (HV)
 - Measure of vertical structure of the surface and vegetation

Goals

- Compare the results of the Landsat and ALOS methods
- Adapt the "LandsatTS" R package to work with tropical areas
- Create a reproducible workflow for expansion to other areas of interest

Areas of Interest

Landsat Workflow

Years

Time

Vegetation

Sample and Export Points

- Computational Limits
- Random sample of points/pixels based on plantation size
- Measurements from 1984 to 2024
- Gaps due to weather conditions and orbital nature of the satellite

Calibrate EVI

- Multiple Landsat Satellites
 - o Landsat 5, 7, and 8
- In orbit for different years with some overlap
- Two random forest models
 - Predict EVI 7 from EVI 5
 - Predict EVI 7 from EVI 8

1984-2013

1999-2022

2013-2024

Aggregate Measurements

- Currently have data for multiple points within each plantation
- Average the EVI measurements grouped by date
- End with 1 measurement for each time for each plantation

Model EVI Over Time

- Fit cubic splines by year for each plantation
- Refit until all predicted EVI values for observed time points fell within 30% of each other
- Robustness to outliers

Identify Deforestation Years

- Year in which the predicted EVI value was at a minimum selected as deforestation year
- Small EVI value signals low greeness
- Deforested areas typically have small EVI values

Predicted Deforestation Year Map

Predicted Deforestation Year Density Plot

Subset by Vegetation

- In Brazil there were palm oil, cocoa, and acai plantations
- Association between certain types of plantation and year of deforestation

ALOS Analysis

- New predictions using information from the ALOS-PALSAR 2 Satellite
- Shoots radar signals and measures how they bounce back from the ground
- Horizontal-Horizontal (HH) and Horizontal-Vertical (HV) polarization measurements
- Compare deforestation predictions from ALOS to Landsat

ALOS Workflow

Sample and Export Points

Aggregate
Measurements
and HH to HV
Ratio

Model HH to HV Ratio Over Time

Identify Deforestation Years

Sample and Export Points

- Measurements from 2015 to 2024
- Only use plantations that were predicted to be deforested 2015 and more recently from Landsat analysis
- Random sample of 30 points/pixels
- Attempted to retrieve one HH and one HV measurement per month per point

Aggregate Measurements and HH to HV Ratio

- Average the HH and HV measurements grouped by date
- End with 1 measurement of HH and 1 measurement of HV for each time for each plantation
- Calculate HH to HV ratio

Model HH to HV Ratio Over Time

 Fit a spline over time for each plantation with a smoothing parameter of .2

Identify Deforestation Years

- Year in which the predicted HH to HV ratio was at a maximum selected as deforestation year
- Large HH to HV ratio signals deforestation
- Increase in HH, decrease HV

Comparing Methods

Conclusion

- Predicted deforestation years (1984-2024) from Landsat Satellite data
- Predicted deforestation years (2015-2024) from ALOS Satellite data
- Some disagreement between the two methods
- Comprehensive codebase and documentation in GitHub for continued development and application to new areas of interest/plantations in the Amazon

Future Work

- Dealing with larger polygons which could be made up of multiple plantations
- Exporting pixels more efficiently, leading to being able to sample more points
- Considering different metrics to signal deforestation
- Quantifying confidence in predictions

Reproducibility

Workflow Section	Landsat Functions	ALOS Functions
Sample & Export	num_pts_per_poly(), sample_pts(), lsat_export_ts()	sample_pts(), export_alos(), export_points()
Calibration/Metrics	<pre>lsat_calc_spectral_index(), lsat_calibrate_rf()</pre>	calc_ratio()
Aggregation	extract_group(), calc_grouped_means()	extract_group(), calc_grouped_means()
Modeling Over Time	curve_fit_mean(), curve_fit()	fit_splines()

Workflow Section	Landsat Functions	ALOS Functions
Identify Deforestation Years	predict_deforestation_lsat()	predict_deforestation_alos()

Questions?