#import required libraries
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn import metrics

#loading the data from csv to pandas data frame
car_data = pd.read_csv('/content/car data.csv')

#printing the first five rows from the data set
car_data.head()

	Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmission	Owner	7
0	ritz	2014	3.35	5.59	27000	Petrol	Dealer	Manual	0	
1	sx4	2013	4.75	9.54	43000	Diesel	Dealer	Manual	0	
2	ciaz	2017	7.25	9.85	6900	Petrol	Dealer	Manual	0	
3	wagon r	2011	2.85	4.15	5200	Petrol	Dealer	Manual	0	
4	swift	2014	4.60	6.87	42450	Diesel	Dealer	Manual	0	

#printing the last five rows from the data set
car_data.tail()

	Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmission	Owner	1
296	city	2016	9.50	11.6	33988	Diesel	Dealer	Manual	0	
297	brio	2015	4.00	5.9	60000	Petrol	Dealer	Manual	0	
298	city	2009	3.35	11.0	87934	Petrol	Dealer	Manual	0	
299	city	2017	11.50	12.5	9000	Diesel	Dealer	Manual	0	

#Knowing basic information from the given data set
car_data.describe()

Owner	Kms_Driven	Present_Price	Selling_Price	Year	
301.000000	301.000000	301.000000	301.000000	301.000000	count
0.043189	36947.205980	7.628472	4.661296	2013.627907	mean
0.247915	38886.883882	8.644115	5.082812	2.891554	std
0.000000	500.000000	0.320000	0.100000	2003.000000	min
0.000000	15000.000000	1.200000	0.900000	2012.000000	25%
0.000000	32000.000000	6.400000	3.600000	2014.000000	50%
0.000000	48767.000000	9.900000	6.000000	2016.000000	75%
3.000000	500000.000000	92.600000	35.000000	2018.000000	max

car_data.shape

(301, 9)

fuel_type = car_data['Fuel_Type']
seller_type = car_data['Seller_Type']
transmission_type = car_data['Transmission']
selling_price = car_data['Selling_Price']

```
from matplotlib import style
#Showing the bar graph initialization
style.use('ggplot')
fig = plt.figure(figsize=(15,5))
fig.suptitle('Visualizing categorical data columns')
plt.subplot(1,3,1)
plt.bar(fuel type,selling price, color='royalblue')
plt.xlabel("Fuel Type")
plt.ylabel("Selling Price")
plt.subplot(1,3,2)
plt.bar(seller_type, selling_price, color='red')
plt.xlabel("Seller Type")
plt.subplot(1,3,3)
plt.bar(transmission type, selling price, color='purple')
plt.xlabel('Transmission type')
plt.show()
```

Visualizing categorical data columns

```
fig, axes = plt.subplots(1,3,figsize=(15,5), sharey=True)
fig.suptitle('Visualizing categorical columns')
sns.barplot(x=fuel_type, y=selling_price, ax=axes[0])
sns.barplot(x=seller_type, y=selling_price, ax=axes[1])
sns.barplot(x=transmission type, y=selling_price, ax=axes[2])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f60de56edd0>

Visualizing categorical columns


```
plt.figure(figsize=(10,7))
sns.heatmap(car_data.corr(), annot=True)
```

plt.title('Correlation between the columns')
plt.show()


```
fig=plt.figure(figsize=(7,5))
plt.title('Correlation between present price and selling price')
sns.regplot(x='Present_Price', y='Selling_Price', data=car_data)
```

X = car_data.drop(['Car_Name', 'Selling_Price'], axis=1)

Correlation between present price and selling price

X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.3, random_state=42)

```
print("X_test shape:", X_test.shape)
print("X_train shape:", X_train.shape)
print("y_test shape: ", y_test.shape)
print("y_train shape:", y_train.shape)

scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

```
model = LinearRegression()

model.fit(X_train, y_train)

pred = model.predict(X_test)

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score

print("MAE: ", (metrics.mean_absolute_error(pred, y_test)))

print("MSE: ", (metrics.mean_squared_error(pred, y_test)))

print("R2 score: ", (metrics.r2_score(pred, y_test)))

sns.regplot(x=pred, y=y_test)

plt.xlabel("Predicted Price")

plt.ylabel('Actual Price')

plt.title("ACtual vs predicted price")

plt.show()
```

X_test shape: (91, 7)
X_train shape: (210, 7)
y_test shape: (91,)

MSE: 3.493286026225147

R2 score: 0.8294933369778817

Colab paid products - Cancel contracts here

✓ 0s completed at 11:04 AM

×