Progetto di una rete IP **Routing**

Mario Baldi Flavio Marinone Fulvio Risso

Copyright: si veda nota a pag. 2

In ogni caso non può essere dichiarata conformità all'informazione contenuta in queste slides.

dell'informazione).

Nota di Copyright

autori indicati a pag. 1.

In ogni caso questa nota di copyright non deve mai essere rimossa e deve essere riportata anche in utilizzi parziali.

limitatamente, la correttezza, completezza, applicabilità, aggiornamento

 Questo insieme di trasparenze (detto nel seguito slides) è protetto dalle leggi sul copyright e dalle disposizioni dei trattati internazionali. Il titolo ed i copyright relativi alle slides (ivi inclusi, ma non limitatamente, ogni immagine, fotografia, animazione, videò, audio, musica e testo) sono di proprietà degli

Le slides possono essere riprodotte ed utilizzate liberamente dagli istituti di ricerca, scolastici ed universitari afferenti al Ministero della Pubblica Istruzione e al Ministero dell'Università e Ricerca Scientifica e Tecnologica, per scopi istituzionali, non a fine di lucro. In tal caso non è richiesta alcuna

Ogni altra utilizzazione o riproduzione (ivi incluse, ma non limitatamente, le riproduzioni su supporti magnetici, su reti di calcolatori e stampate) in toto o in

parte è vietata, se non esplicitamente autorizzata per iscritto, a priori, da parte L'informazione contenuta in queste slides è ritenuta essere accurata alla data della pubblicazione. Essa è fornita per scopi meramente didattici e non per

essere utilizzata in progetti di impianti, prodotti, reti, ecc. In ogni caso essa è soggetta a cambiamenti senza preavviso. Gli autori non assumono alcuna responsabilità per il contenuto di queste slides (ivi incluse, ma non

Copyright: si yeda nota a pag. 2

Novembre 2004

L'instradamento (forwarding)

- Operazione necessaria per far comunicare tra loro reti diverse
- Viene eseguito da tutte le macchine con stack TCP/IP
- Il procedimento si applica:
 - Se l'host in esame è il mittente del pacchetto
 - Se l'host in esame non è il mittente del pacchetto
 - Router intermedio sul percorso verso la destinazione

RoutingIP - 2

e 2 (a parte eventuali ARP request)

tramite l'HW address

- Identificatori DLCI in Frame Relay

Indiretto

- Tra hosts in net diverse
- L'instradamento coinvolge i livelli 1, 2 e
- Hosts identificati tramite l'IP address
- Gli host devono conoscere almeno un gateway presente sulla loro rete fisica: tabella di instradamento

Domanda fondamentale: la destinazione appartiene alla mia stessa rete IP?

Copyright: si veda nota a pag. 2

RoutingIP - 3

RoutingIP - 1

RoutingIP - 4

Copyright: si veda nota a pag. 2

Novembre 2004

Instradamento diretto e indiretto

Diretto

Tra hosts nella stessa rete

L'instradamento coinvolge solo i livelli 1

Hosts identificati

Indirizzi MAC sulle LAN

■ Indirizzi di DTE in X.25

Tabella di instradamento

- Presente (obbligatoria) in tutti gli host IP
 - Più sviluppata sui router
- Elenco di coppie:

- Destinazioni raggiungibili dall'host
- Next hop "migliore"
- Esempio: da qui, per arrivare a Napoli, vai a Roma
- Non ho informazioni sul percorso completo, solo sul prossimo passo.

Nell'esempio: A Roma qualcuno si preoccuperà di indicarci il passo successivo

- Informazione aggiuntiva: <u>costo</u>
 - Discrimina tra percorsi alternativi verso una stessa destinazione (backup, load balancing)

RoutingIP - 5

Copyright: si veda nota a pag. 2

Tabella di instradamento: Next Hop ■ Next hop ⇔ Gateway ⇔ Router Deve essere obbligatoriamente un indirizzo direttamente raggiungibile Percorsi asimmetrici ■ Normali nel mondo TCP/IP ■ Il next hop è configurato in una sola direzione; la direzione opposta può scegliere un altro percorso ■ Di solito è presente almeno una "default route" ■ Default router: nodo con una conoscenza migliore della rete in grado di instradare i pacchetti verso reti altrimenti sconosciute Copyright: si yeda nota a pag. 2 RoutingIP - 6

Novembre 2004

Popolamento della tabella di routing

- Le route vengono apprese da qualunque informazione utile nella configurazione
 - Configurazione delle interfacce: le reti direttamente connesse sono tradotte in route:
 - Next-hop pari all'indirizzo IP dell'interfaccia attestata su quella rete
 - Peso minimo → Se il destinatario è direttamente connesso ad una mia rete faccio la consegna senza inoltrare ulteriormente
 - Route statiche
 - Immesse dall'amministratore per raggiungere reti remote. L'amministratore deve conoscere la topologia di rete.
 - Conoscere le reti raggiungibili
 - Scegliere i percorsi migliori
 - Routing dinamico
 - I dispositivi si scambiano le informazioni locali

RoutingIP - 9

Copyright: si veda nota a pag. 2

Route di backup

- Forniscono percorsi multipli per raggiungere altre reti
 - Viene assegnato un peso ad ogni percorso. E' utilizzato il percorso a peso inferiore (e ritenuto funzionante)
 - Impiego frequente: collegamenti dial-up di backup

Route di backup

Mezzi trasmissivi LAN e route statiche:
backup problematico

Rete A

Nessun
problema; link attivo

Rete B

RoutingIP - 12

Copyright: si veda nota a pag. 2

Copyright: si veda nota a pag. 2

Novembre 2004

- Assegnazione indirizzi
- Calcolo dei costi

RoutingIP - 13

Configurazione del routing statico

■ Si vogliono raggiungere anche le punto-punto

Copyright: si veda nota a pag. 2

Soluzione Router Milano

- Reti direttamente connesse
 - **172.16.2.88/30**
 - **172.16.2.92/30**
 - Punto punto verso Internet →si ipotizza una rete 80.83.100.252/30 assegnata dal provider

Novembre 2004

Novembre 2004

- Ognuna di esse è configurata presso R_{MI}
- Per ognuna di esse il router genera autonomamente una route diretta ponendo se stesso come gateway

Tipo	Rete dest.	Gateway	Metrica
D	172.16.2.88/30	172.16.2.90	1
D	172.16.2.92/30	172.16.2.94	1
D	80.83.100.252/30	80.83.100.253	1

RoutingIP - 22

RoutingIP - 24

Copyright: si veda nota a pag. 2

Soluzione

RoutingIP - 21

Router Milano

Gateway disponibili

- $R_{TO} \rightarrow 172.16.2.89$
- $R_{GF} \rightarrow 172.16.2.93$
- 80.83.100.254 → Internet

Novembre 2004

Soluzione

■ LAN_{AO1} → 172.16.2.0/27

■ LAN_{MV2} \rightarrow 172.16.2.32/28

■ LAN_{AO2} → 172.16.2.48/28 ■ P-P_{TO-GF} → 172.16.2.96/30

• P-P_{TO-AO} → 172.16.2.100/30

■ P-P_{TO-MV} → 172.16.2.104/30

■ P-P_{TO-VC} → 172.16.2.108/30

■ Reti raggiungibili tramite R_{GE}

■ LAN_{GE} → 172.16.1.0/25

■ LAN_{IM} → 172.16.2.64/28

■ LAN_{SV} → 172.16.2.80/29 ■ P-P_{GF-IM} → 172.16.2.112/30

■ P-P_{GF-SV} → 172.16.2.116/30

■ P-P_{GE-FORN} → 172.16.2.120/30

Fornitore → 192.168.1.0/24

Copyright: si veda nota a pag. 2

Novembre 2004

Novembre 2004

Novembre 2004

Novembre 2004

Soluzione

 Dobbiamo configurare manualmente una route per ogni rete da raggiungere

```
# ip route 172.16.0.0 255.255.255.0 172.16.2.89 2
# ip route 172.16.1.128 255.255.255.192 172.16.2.89 2
# ip route 172.16.1.192 255.255.224 172.16.2.89 2
...
...
```

Copyright: si veda nota a pag. 2

Soluzione

- Tabella di routing di R_{MI} (1)
 - NB: Alle route statiche vanno sempre aggiunte le route dirette per avere la tabella di routing completa

Tipo	Rete dest.	Gateway	Metrica
s	0.0.0.0/0	80.83.100.254	2
s	172.16.0.0/24	172.16.2.89	2
s	172.16.1.128/26	172.16.2.89	2
S	172.16.1.192/27	172.16.2.89	2
S	172.16.1.224/27	172.16.2.89	2
s	172.16.2.0/27	172.16.2.89	2
s	172.16.2.32/28	172.16.2.89	2
S	172.16.2.48/28	172.16.2.89	2
S	172.16.2.96/30	172.16.2.89	2
S	172.16.2.100/30	172.16.2.89	2
S	172.16.2.104/30	172.16.2.89	2
S	172.16.2.108/30	172.16.2.89	2
			_

RoutingIP - 26

Copyright: si veda nota a pag. 2

Soluzione

■ Tabella di routing di R_{MI} (2)

Tipo	Rete dest.	Gateway	Metrica
S	172.16.1.0/25	172.16.2.93	2
S	172.16.2.64/28	172.16.2.93	2
S	172.16.2.80/29	172.16.2.93	2
S	172.16.2.112/30	172.16.2.93	2
S	172.16.2.116/30	172.16.2.93	2
S	172.16.2.120/30	172.16.2.93	2
S	192.168.1.0/24	172.16.2.93	2

- 19 route
 - Dobbiamo cercare aggregazioni nelle route con lo stesso gateway
 - In alternativa: dobbiamo rivedere il piano di indirizzamento prevedendo l'aggregazione

Soluzione

■ Tabella di routing R_{MI} con aggregazione (1)

	Tipo	Rete dest.	Gateway	Metrica
	s	0.0.0.0/0	80.83.100.254	2
	S	172.16.0.0/24	172.16.2.89	2
	ន	172.16.1.128/26	172.16.2.89	2
/25 ≺	s	172.16.1.192/27	172.16.2.89	2
	ន	172.16.1.224/27	172.16.2.89	2
	ន	172.16.2.0/27	172.16.2.89	2
/26 -	S	172.16.2.32/28	172.16.2.89	2
	ន	172.16.2.48/28	172.16.2.89	2
	s	172.16.2.96/30	172.16.2.89	2
100	s	172.16.2.100/30	172.16.2.89	2
/28	ន	172.16.2.104/30	172.16.2.89	2
	s	172.16.2.108/30	172.16.2.89	2

RoutingIP - 25

RoutingIP - 28

- Tabella di routing R_{MI}
 - con aggregazione

Tipo	Rete dest.	Gateway Met	rica
S	0.0.0.0/0	80.83.100.254	2
S	172.16.0.0/24	172.16.2.89	2
S	172.16.1.128/25	172.16.2.89	2
S	172.16.2.0/26	172.16.2.89	2
S	172.16.2.96/28	172.16.2.89	2
S	172.16.1.0/25	172.16.2.93	2
S	172.16.2.64/28	172.16.2.93	2
S	172.16.2.80/29	172.16.2.93	2
S	172.16.2.112/29	172.16.2.93	2
s	172.16.2.120/30	172.16.2.93	2
S	192.168.1.0/24	172.16.2.93	2

Soluzione

■ Tabella di routing R_{MI} con aggregazione (2)

Tipo	Rete dest.	Gateway	Metrica
S	172.16.1.0/25	172.16.2.93	2
s	172.16.2.64/28	172.16.2.93	2
s	172.16.2.80/29	172.16.2.93	2
ſs	172.16.2.112/30	172.16.2.93	2
{ន ន	172.16.2.116/30	172.16.2.93	2
S	172.16.2.120/30	172.16.2.93	2
s	192.168.1.0/24	172.16.2.93	2

Se fossimo certi di non utilizzare mai la rete 172.16.2.124/30 potremmo aggregare ulteriormente in 172.16.2.112/28

RoutingIP - 29

/29 -

Copyright: si veda nota a pag. 2

Soluzione

- Tabella di routing R_{MI}
 - Aggregando durante l'assegnazione degli indirizzi IP (si vedano le slide "AddressinglP")
 - 4 route

${ t Tipo}$	Rete dest.	Gateway	<i>Metrica</i>
S	0.0.0.0/0	80.83.100.254	. 2
S	172.16.0.0/23	172.16.2.89	2
S	172.16.2.0/24	172.16.2.93	2
S	192.168.1.0/24	172.16.2.93	2

Novembre 2004

Soluzione

- Le tabelle di routing per R_{TO} e R_{GE} sono più semplici
 - L'albero di instradamento verso una parte della rete passa per il default gateway
 - Anche in una rete non connessa ad Internet il default gateway è uno "strumento" molto utile

RoutingIP - 32

RoutingIP - 30

Copyright: si veda nota a pag. 2

RoutingIP - 31

Novembre 2004

Novembre 2004

Soluzione

■ 11 route

Copyright: si veda nota a pag. 2

Soluzione

Router Torino

■ Route dirette

D	172.16.0.0/24	172.16.0.254	1
D	172.16.2.88/30	172.16.2.89	1
D	172.16.2.96/30	172.16.2.98	1
D	172.16.2.100/30	172.16.2.102	1
D	172.16.2.104/30	172.16.2.106	1
D	172,16,2,108/30	172,16,2,110	1

■ Gateway disponibili

- R_{MI} → 172.16.2.90
- R_{GE} → 172.16.2.97
- R_{AO} → 172.16.2.101
- R_{MV} → 172.16.2.105
- $R_{VC} \rightarrow 172.16.2.109$

RoutingIP - 33 Copyright: si veda nota a pag. 2

Soluzione

■ Tabella di routing di R_{TO}

Tipo	Rete dest.	Gateway	Metrica
s	0.0.0.0/0	172.16.2.90	2
S	172.16.1.128/26	172.16.2.109	2
s	172.16.1.224/27	172.16.2.105	2
S	172.16.2.0/27	172.16.2.101	2
s	172.16.2.32/28	172.16.2.105	2
S	172.16.2.48/28	172.16.2.101	2

Non ho nulla da aggregare. I gateway sono diversi!

Copyright: si veda nota a pag. 2

Novembre 2004

Novembre 2004

Soluzione

Router Genova

■ Route dirette

D	172.16.1.0/25	172.16.1.127	1
D	172.16.2.92/30	172.16.2.93	1
D	172.16.2.96/30	172.16.2.97	1
D	172.16.2.112/30	172.16.2.114	1
D	172.16.2.116/30	172.16.2.118	1
D	172.16.2.120/30	172.16.2.122	1

Copyright: si veda nota a pag. 2

■ Gateway disponibili

- R_{MI} → 172.16.2.94
- R_{TO} → 172.16.2.98
- R_{IM} → 172.16.2.113
- \blacksquare R_{SV} \rightarrow 172.16.2.117
- Fornitore → 172.16.2.121

Soluzione

RoutingIP - 34

■ Tabella di routing di R_{GE}

Tipo	Rete dest.	Gateway	Metrica
s	0.0.0.0/0	172.16.2.94	2
s	172.16.2.64/28	172.16.2.113	2
s	172.16.2.80/29	172.16.2.117	2
s	192,168,1,0/24	172,16,2,121	2

Copyright: si veda nota a pag. 2

RoutingIP - 37

Novembre 2004 **Soluzione** Utilizzando il routing statico le route di

- backup funzionano bene solo se
 - I link di backup duplicano esattamente il percorso dei link ridondati
 - Il rilevamento del guasto è affidabile ad entrambi i capi del link
- La presenza del link TO-GE non offre particolari vantaggi in termini di resistenza ai guasti della rete
 - Eliminare il link per risparmiare
 - Impostare le tabelle di routing in modo che il link sia utilizzato (magari per applicazioni particolari che richiedano ritardi e perdite bassi? Es: VoIP)

RoutingIP - 41

Copyright: si veda nota a pag. 2