Komplexná analýza Derivácia funkcie komplexnej premennej

Aleš Kozubík

Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline

18. novembra 2011

Cauchy-Riemannove vzťahy

Nech u(x,y), v(x,y) sú funkcie diferencovateľ né na $G\subset \mathbb{C}$, f funkcia definovaná na G, taká, že $\mathrm{Re} f=u(x,y)$ a $\mathrm{Im} f=v(x,y)$. f je holomorfná práve vtedy, ak u(x,y) a v(x,y) spĺňajú Cauchy–Riemannove vzťahy:

$$u'_x(x,y) = v'_y(x,y)$$
 a $u'_y(x,y) = -v'_x(x,y)$.

Derivácia komplexnej funkcie

Na základe Cauchy-Riemannových vzťahov pre deriváciu komplexnej funkcie f(z) = u(x,y) + iv(x,y) platí:

$$f'(z)=u_x'(x,y)+\mathrm{i} v_x'(x,y)\quad \text{resp.}\quad f'(z)=v_y'(x,y)-\mathrm{i} u_y'(x,y).$$

Príklad

Rozhodnite, v ktorých bodoch existujú derivácie danej funkcie a určte ich.

- a) $f(z) = \overline{z}$,
- b) $f(z) = |z|^2$,
- c) $f(z) = e^z$
- d) $f(z) = x^2 y^2 + 2 \cdot i \cdot xy$, kde z = x + iy.

Príklad

Rozhodnite, či existuje holomorfná funkcia f, definovaná na $\mathbb{C} - \{0\}$ taká, že:

$$\operatorname{Re} f(z) = \frac{y}{x^2 + y^2}.$$

Príklady

Rozhodnite, či existuje holomorfná funkcia f, definovaná na $M\subset \mathbb{C}$ taká, že:

- Re $f(z) = \sin(x+1) \cdot (e^y + e^{-y})$, kde $M = \mathbb{C}$,
- **3** Re $f(z) = \ln((x+1)^2 + y^2)$, kde $M = \mathbb{C} \{-1\}$,
- **5** Re $f(z) = x \frac{x}{x^2 + y^2}$, kde $M = \mathbb{C} \{0\}$,
- **6** Im $f(z) = y \frac{y}{x^2 + y^2}$, kde $M = \mathbb{C} \{0\}$,
- Re $f(z) = \frac{x^2 y^2}{(x^2 + y^2)^2} y^2 + x^2$, kde $M = \mathbb{C} \{0\}$,
- $\text{Im } f(z) = \frac{2xy}{(x^2+y^2)^2} + 2xy, \text{ kde } M = \mathbb{C} \{0\},$
- **1** Re $f(z) = \frac{y^2 + x^2 + x}{y^2 + x^2 + 2x + 1}$, kde $M = \mathbb{C} \{-1\}$,

