Intro to Econometrics: Recitation 10

Gustavo Pereira

December 9, 2019

This recitation

- This recitation is about boostrapping; based on Christoph Rothe's lecture notes
- Also our last meeting: if you haven't done so already, please submit a course evaluation

ullet Sample $\{x_1,\ldots,x_n\}$ drawn iid from an unknown CDF $F_0\in\mathcal{F}$

- ullet Sample $\{x_1,\ldots,x_n\}$ drawn iid from an unknown CDF $F_0\in\mathcal{F}$
- Statistic: $T_n = T_n(x_1, \ldots, x_n; F_0)$

- ullet Sample $\{x_1,\ldots,x_n\}$ drawn iid from an unknown CDF $F_0\in\mathcal{F}$
- Statistic: $T_n = T_n(x_1, \ldots, x_n; F_0)$
 - ► For example:

$$T_n = \sqrt{n} \left(\frac{\bar{x}_n - \int x dF_0(x)}{\hat{\sigma}} \right)$$

- Sample $\{x_1,\ldots,x_n\}$ drawn iid from an unknown CDF $F_0\in\mathcal{F}$
- Statistic: $T_n = T_n(x_1, \ldots, x_n; F_0)$
 - For example:

$$T_n = \sqrt{n} \left(\frac{\bar{x}_n - \int x dF_0(x)}{\hat{\sigma}} \right)$$

• We're interested in the CDF of T_n . We call it G_n :

$$G_n(u, F_0) = \mathbf{P}_{F_0}(T_n \leq u)$$

- Sample $\{x_1,\ldots,x_n\}$ drawn iid from an unknown CDF $F_0\in\mathcal{F}$
- Statistic: $T_n = T_n(x_1, \ldots, x_n; F_0)$
 - For example:

$$T_n = \sqrt{n} \left(\frac{\bar{x}_n - \int x dF_0(x)}{\hat{\sigma}} \right)$$

• We're interested in the CDF of T_n . We call it G_n :

$$G_n(u, F_0) = \mathbf{P}_{F_0}(T_n \leq u)$$

• The statistic is *pivotal* if $G_n(u, F)$ does not depend on $F \in \mathcal{F}$

- Sample $\{x_1,\ldots,x_n\}$ drawn iid from an unknown CDF $F_0\in\mathcal{F}$
- Statistic: $T_n = T_n(x_1, \dots, x_n; F_0)$
 - For example:

$$T_n = \sqrt{n} \left(\frac{\bar{x}_n - \int x dF_0(x)}{\hat{\sigma}} \right)$$

• We're interested in the CDF of T_n . We call it G_n :

$$G_n(u, F_0) = \mathbf{P}_{F_0}(T_n \leq u)$$

- ullet The statistic is *pivotal* if $G_n(u,F)$ does not depend on $F\in\mathcal{F}$
 - Our example T_n above is pivotal if \mathcal{F} is the set of normal distributions (why?)

3 / 10

- Sample $\{x_1,\ldots,x_n\}$ drawn iid from an unknown CDF $F_0\in\mathcal{F}$
- Statistic: $T_n = T_n(x_1, \ldots, x_n; F_0)$
 - For example:

$$T_n = \sqrt{n} \left(\frac{\bar{x}_n - \int x dF_0(x)}{\hat{\sigma}} \right)$$

• We're interested in the CDF of T_n . We call it G_n :

$$G_n(u, F_0) = \mathbf{P}_{F_0}(T_n \leq u)$$

- The statistic is *pivotal* if $G_n(u, F)$ does not depend on $F \in \mathcal{F}$
 - ▶ Our example T_n above is pivotal if \mathcal{F} is the set of normal distributions (why?)
 - ▶ Note that as F changes, the subtracted term $\int x dF$ changes

• The usual way of conducting inference:

$$G_{\infty}(u, F_0) = \lim_{n \to \infty} G_n(u, F_0)$$

• The usual way of conducting inference:

$$G_{\infty}(u,F_0)=\lim_{n\to\infty}G_n(u,F_0)$$

▶ Typically G_{∞} will be a normal distribution

• The usual way of conducting inference:

$$G_{\infty}(u,F_0)=\lim_{n\to\infty}G_n(u,F_0)$$

- ▶ Typically G_{∞} will be a normal distribution
- ▶ Find a consistent estimator F_n of F_0 (e.g., the empirical CDF)

• The usual way of conducting inference:

$$G_{\infty}(u,F_0)=\lim_{n\to\infty}G_n(u,F_0)$$

- ▶ Typically G_{∞} will be a normal distribution
- ▶ Find a consistent estimator F_n of F_0 (e.g., the empirical CDF)
- Make the approximation:

$$G_n(u, F_0) \approx G_\infty(u, F_n)$$

• The usual way of conducting inference:

$$G_{\infty}(u,F_0)=\lim_{n\to\infty}G_n(u,F_0)$$

- ▶ Typically G_{∞} will be a normal distribution
- ▶ Find a consistent estimator F_n of F_0 (e.g., the empirical CDF)
- Make the approximation:

$$G_n(u, F_0) \approx G_\infty(u, F_n)$$

ullet Example. Let ${\mathcal F}$ collect distributions with finite second moment

• The usual way of conducting inference:

$$G_{\infty}(u,F_0)=\lim_{n\to\infty}G_n(u,F_0)$$

- ▶ Typically G_{∞} will be a normal distribution
- ▶ Find a consistent estimator F_n of F_0 (e.g., the empirical CDF)
- Make the approximation:

$$G_n(u, F_0) \approx G_\infty(u, F_n)$$

- ullet Example. Let ${\mathcal F}$ collect distributions with finite second moment
 - ► Suppose $T_n(\mathbf{x}, F_0) = \sqrt{n}(\bar{x}_n \int x dF_0(x))$

The usual way of conducting inference:

$$G_{\infty}(u,F_0)=\lim_{n\to\infty}G_n(u,F_0)$$

- ▶ Typically G_{∞} will be a normal distribution
- ▶ Find a consistent estimator F_n of F_0 (e.g., the empirical CDF)
- Make the approximation:

$$G_n(u, F_0) \approx G_\infty(u, F_n)$$

- ullet Example. Let ${\mathcal F}$ collect distributions with finite second moment
 - ► Suppose $T_n(\mathbf{x}, F_0) = \sqrt{n}(\bar{\mathbf{x}}_n \int x dF_0(\mathbf{x}))$
 - ▶ Then $G_{\infty}(u, F_0)$ is the CDF of $N(0, \sigma_0^2)$

The usual way of conducting inference:

$$G_{\infty}(u,F_0)=\lim_{n\to\infty}G_n(u,F_0)$$

- ▶ Typically G_{∞} will be a normal distribution
- ▶ Find a consistent estimator F_n of F_0 (e.g., the empirical CDF)
- Make the approximation:

$$G_n(u, F_0) \approx G_{\infty}(u, F_n)$$

- ullet Example. Let ${\mathcal F}$ collect distributions with finite second moment
 - ► Suppose $T_n(\mathbf{x}, F_0) = \sqrt{n}(\bar{\mathbf{x}}_n \int x dF_0(\mathbf{x}))$
 - ▶ Then $G_{\infty}(u, F_0)$ is the CDF of $N(0, \sigma_0^2)$
 - ▶ Procedure: inference based on $G_{\infty}(u, F_n)$; this means $N(0, \hat{\sigma}^2)$

Bootstrap inference

- Bootstrap inference: instead of $G_{\infty}(u, F_n)$, use $G_n^*(u) := G_n(u, F_n)$.
 - ▶ In our T_n example,

$$G_n(u, F_n) = \mathbf{P}_{F_n} \left\{ \sqrt{n} (\bar{x}_n^* - \bar{x}_n) \le u \right\}$$

- ► Here $\bar{x}_n = \int x dF_n(x)$ and x_i^* are drawn iid from F_n
- Note: the distribution of \bar{x}_n^* is known (given F_n)
- We use computational methods because the distribution is often not tractable

• Possibilities:

- Possibilities:
 - Empirical CDF

- Possibilities:
 - ► Empirical CDF
 - lacktriangle Parametric bootstrap (if we make parametric assumptions on ${\cal F}$)

- Possibilities:
 - ► Empirical CDF
 - lacktriangle Parametric bootstrap (if we make parametric assumptions on ${\cal F}$)
 - Wild bootstrap (in the linear regression context)

• For $b \in \{1, 2, ..., B\}$, do:

- For $b \in \{1, 2, ..., B\}$, do:
 - ▶ Draw sample $\{x_{1,b}^*, \dots, x_{n,b}^*\}$ from F_n

- ullet For $b \in \{1, 2, \dots, B\}$, do:
 - ▶ Draw sample $\{x_{1,b}^*, \dots, x_{n,b}^*\}$ from F_n
 - $\qquad \qquad \text{compute } T_{n,b}^* = T_n(\mathbf{x}_b^*; F_n)$

- For $b \in \{1, 2, ..., B\}$, do:
 - ▶ Draw sample $\{x_{1,b}^*, \dots, x_{n,b}^*\}$ from F_n
 - compute $T_{n,b}^* = T_n(\mathbf{x}_b^*; F_n)$
- Approximate

$$G_n^*(u) \approx \frac{1}{B} \sum_{b=1}^B \mathbf{1}(T_{n,b}^* \leq u)$$

Variance estimation:

- Variance estimation:
 - ▶ Idea: suppose variance of $\hat{\theta}_n = \theta(F_n)$ is hard to compute

- Variance estimation:
 - ▶ Idea: suppose variance of $\hat{\theta}_n = \theta(F_n)$ is hard to compute
 - Adapt algorithm above to estimate

$$V_n^* = \mathsf{E}^* \left[\left(\hat{\theta}_n^* - \mathsf{E}^* (\hat{\theta}_n^*) \right)^2 \right]$$

- Variance estimation:
 - ▶ Idea: suppose variance of $\hat{\theta}_n = \theta(F_n)$ is hard to compute
 - Adapt algorithm above to estimate

$$V_n^* = \mathsf{E}^* \left[\left(\hat{\theta}_n^* - \mathsf{E}^* (\hat{\theta}_n^*) \right)^2 \right]$$

 If approximation of F_n is empirical distribution, this is simply average variance from bootstrap samples

Confidence intervals/hypothesis testing

- Onfidence intervals/hypothesis testing
 - ▶ Interested in population parameter $\theta_0 = \theta(F_0)$, have estimator $\hat{\theta} = \theta(F_n)$

- Confidence intervals/hypothesis testing
 - ▶ Interested in population parameter $\theta_0 = \theta(F_0)$, have estimator $\hat{\theta} = \theta(F_n)$
 - ▶ Want to conduct two sided test of H_0 : $\theta = \theta_0$

- Confidence intervals/hypothesis testing
 - ▶ Interested in population parameter $\theta_0 = \theta(F_0)$, have estimator $\hat{\theta} = \theta(F_n)$
 - ▶ Want to conduct two sided test of H_0 : $\theta = \theta_0$
 - Procedure:

- Confidence intervals/hypothesis testing
 - ▶ Interested in population parameter $\theta_0 = \theta(F_0)$, have estimator $\hat{\theta} = \theta(F_n)$
 - ▶ Want to conduct two sided test of H_0 : $\theta = \theta_0$
 - Procedure:
 - ★ Construct the test statistic

$$T_n = \frac{\hat{\theta} - \theta_0}{\mathsf{se}(\hat{\theta})}$$

- Confidence intervals/hypothesis testing
 - ▶ Interested in population parameter $\theta_0 = \theta(F_0)$, have estimator $\hat{\theta} = \theta(F_n)$
 - ▶ Want to conduct two sided test of H_0 : $\theta = \theta_0$
 - Procedure:
 - ★ Construct the test statistic

$$T_n = \frac{\hat{\theta} - \theta_0}{\mathsf{se}(\hat{\theta})}$$

* Get the bootstrap approximation $G_n^*(u)$ of CDF of T_n

- Confidence intervals/hypothesis testing
 - ▶ Interested in population parameter $\theta_0 = \theta(F_0)$, have estimator $\hat{\theta} = \theta(F_n)$
 - ▶ Want to conduct two sided test of H_0 : $\theta = \theta_0$
 - Procedure:
 - * Construct the test statistic

$$T_n = \frac{\hat{\theta} - \theta_0}{\mathsf{se}(\hat{\theta})}$$

- * Get the bootstrap approximation $G_n^*(u)$ of CDF of T_n
- ★ One possibility is to have rule that rejects when

$$T_n > G_n^{*-1}(1-\alpha/2) \text{ or } T_n < G_n^{*-1}(\alpha/2)$$

(aka equal-tailed testing)

- Confidence intervals/hypothesis testing
 - ▶ Interested in population parameter $\theta_0 = \theta(F_0)$, have estimator $\hat{\theta} = \theta(F_n)$
 - ▶ Want to conduct two sided test of H_0 : $\theta = \theta_0$
 - ► Procedure:
 - ★ Construct the test statistic

$$T_n = \frac{\hat{\theta} - \theta_0}{\mathsf{se}(\hat{\theta})}$$

- * Get the bootstrap approximation $G_n^*(u)$ of CDF of T_n
- ★ One possibility is to have rule that rejects when

$$T_n > G_n^{*-1}(1-\alpha/2) \text{ or } T_n < G_n^{*-1}(\alpha/2)$$

(aka equal-tailed testing)

• Q: why not construct $H_n^*(t)$ for $\tilde{T}_n = \hat{\theta}$, and reject based on

$$\tilde{T}_n > H_n^{*-1}(1 - \alpha/2) \text{ or } \tilde{T}_n < H_n^{*-1}(\alpha/2) ?$$

Bootstrap consistency

- Bootstrap is consistent if $G_n^*(u)$ is uniformly consistent for $G_\infty(u, F_0)$.
- That is, for any $F_0 \in \mathcal{F}$ and $\epsilon > 0$:

$$\lim_{n\to\infty} \mathbf{P}\left(\sup_{u} |G_n^*(u) - G_\infty(u, F_0)| > \epsilon\right) = 0$$