

Deep Learning

00 Introduction and Course logistics

Dr. Konda Reddy Mopuri Dept. of Al, IIT Hyderabad Jan-May 2024

Dr. Konda Reddy Mopuri ${
m dl-00/Introduction}$

Time slot

B slot

Time slot

- B slot
- Monday 10 10:55 AM
- Wednesday 9 9:55 AM
- Thursday 11 11:55 AM

Time slot

- B slot
- Monday 10 10:55 AM
- Wednesday 9 9:55 AM
- Thursday 11 11:55 AM
- ALH-1

Logistics

• Course website: https://krmopuri.github.io/dl24/

Evaluation

- Programming Assignments 40% (best 4 of 5; 1 for each of the first 5 segments)
- Project 20%
- Viva 20%
- \bullet Written exams (best 4 of 5 surprise tests) 20%

TAs

- Susmit Agrawal (ai22mtech12002@iith.ac.in)
- Rupa Kumari (ai22mtech11002@iith.ac.in)
- Deepika Vemuri (ai22resch11001@iith.ac.in)
- Savarana Datta Reddy (ai20btech11008@iith.ac.in)
- Some more coming up!

Contents

Broadly: Building blocks of the Deep Learning based solutions

Contents

- Broadly: Building blocks of the Deep Learning based solutions
- ullet Artificial Neuron o Generative Al

Contents

Deep Learning (Al5100) Course Contents

Starting from an artificial neuron model, the aim of this course is to understand feed-forward, recurrent architectures of Artificial Neural Networks, all the way to the latest Generative AI models driven by Deep Neural Networks. Specifically, we will discuss the basic Neuron models (McCulloch Pitts, Perceptron), Multi-Layer Perceptron (MLP), Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN, LSTM and GRU). We will understand these models' representational ability and how to train them using the Gradient Descent technique using the Backpropagation algorithm. We will then discuss the encoder-decoder architecture, attention mechanism and its variants. That will be followed by self-attention and Transformers. The next part of the course will be on Generative AI, wherein we will discuss Variational Autoencoders, GANs, Diffusion Models, GPT, BERT, etc. We will briefly discuss multi-modal representation learning (e.g., CLIP). Towards the end, students will be briefly exposed to some of the advanced topics and/or recent trends in deep learning.

Prerequisites

 Programming in Python (Primer on PyTorch on 13 January, 10 AM -1 PM in ALH-1)

Prerequisites

- Programming in Python (Primer on PyTorch on 13 January, 10 AM -1 PM in ALH-1)
- A course on Machine Learning

Why Deep Learning?

Deep Learning drives the recent Al boom. Image Source: Artificial Intelligence Magazine

Textbooks and References

- Lot of online resources
 - Michael Nielsen's text book on NN & DL
 - NPTEL course on Deep Learning by Prof. Mitesh Khapra, IITM
 - DL course by François Fleuret, Uni. of Geneva
 - Deep Learning textbook by Ian Goodfellow et al.
 - PyTorch https://pytorch.org/
 - Many more that I could not list and am not aware of...

What is DL?

11

What is DL?

Subset of ML that is essentially Artificial Neural Networks with more layers

What is DL?

• Crude attempt to imitate the human brain in learning

- Classical ML: Handcrafted features + learnable model
- Need strong domain expertise

15

- Classical ML: Handcrafted features + learnable model
- Need strong domain expertise

Machine Learning

Figure credits: taken from Jay Shaw in Quora (not sure of authenticity)

- Deep Learning: Deep stack of parameterized processing
- End-to-End learning

17

- Deep Learning: Deep stack of parameterized processing
- End-to-End learning

Figure credits: taken from Jay Shaw in Quora (not sure of authenticity)

ANNs predate some of the classical ML techniques

- ANNs predate some of the classical ML techniques
- We are now dealing with a new generation ANNs

The Biological Neuron

About 100 billion neurons in human brain

Figure credits: Wikipedia

McCulloch Pitts neuron (1943) - Threshold Logic Unit

Dr. Konda Reddy Mopuri dl-00/Introduction 20

- McCulloch Pitts neuron (1943) Threshold Logic Unit
- ${f 2}$ Donald Hebb (1949) **Hebbian Learning Principle**

Dr. Konda Reddy Mopuri dl-00/Introduction 20

- McCulloch Pitts neuron (1943) Threshold Logic Unit
- ② Donald Hebb (1949) Hebbian Learning Principle
- Marvin Minsky (1951) created the first ANN (Hebbian Learning, 40 neurons)

Dr. Konda Reddy Mopuri dl-00/Introduction 20

- McCulloch Pitts neuron (1943) Threshold Logic Unit
- ② Donald Hebb (1949) Hebbian Learning Principle
- Marvin Minsky (1951) created the first ANN (Hebbian Learning, 40 neurons)
- Frank Rosenblatt (1958) created perceptron to classify 20X20 images

- McCulloch Pitts neuron (1943) Threshold Logic Unit
- 2 Donald Hebb (1949) Hebbian Learning Principle
- Marvin Minsky (1951) created the first ANN (Hebbian Learning, 40 neurons)
- Frank Rosenblatt (1958) created perceptron to classify 20X20 images
- David H Hubel and Torsten Wiesel (1959) demonstrated orientation selectivity and columnar organization in cats visual cortex

Backpropagation

Paul Werbos (1982) proposed back-propagation for ANNs

Neocognitron by Fukushima (1980)

భారతీయ పొంకేతిక విజ్ఞావ పద్మ హైదరాజాద్ मारतीय प्रीद्योगिकी संस्थान हैवराबाव indian Institute of Technology Hyderabad

- Neocognitron by Fukushima (1980)
- 2 Implements the Hubel and Wiesel's principles

- Neocognitron by Fukushima (1980)
- 2 Implements the Hubel and Wiesel's principles
- Used for hand-written digit recognition

- Neocognitron by Fukushima (1980)
- 2 Implements the Hubel and Wiesel's principles
- Used for hand-written digit recognition
- Wiewed as precursor for the modern CNNs

1 Rumelhart (1986) trained with backprop

- Rumelhart (1986) trained with backprop
- Showed that hidden units learn meaningful representations

1 LeNet family (Lecun et al. 1989) is a "convent"

- 1 LeNet family (Lecun et al. 1989) is a "convent"
- Very similar to modern architectures

AlexNet (2012)

- ① AlexNet (2012)
- ② Network similar to LeNet-5, but of far greater size

25

- AlexNet (2012)
- 2 Network similar to LeNet-5, but of far greater size
- 3 Implemented using GPUs

- AlexNet (2012)
- 2 Network similar to LeNet-5, but of far greater size
- 3 Implemented using GPUs
- Oould beat the SoTA image classification methods by a large margin

AlexNet initiated a trend of more complex and bigger architectures

- AlexNet initiated a trend of more complex and bigger architectures
- ② GoogLeNet (2015) contains "inception" modules

- AlexNet initiated a trend of more complex and bigger architectures
- ② GoogLeNet (2015) contains "inception" modules
- 3 ResNet (2015) introduced "skip connections" that facilitate training deeper architectures

1 Transformers (2017) are attention-based architectures

Figure credits: Vaswani et al., 2017

- Transformers (2017) are attention-based architectures
- 2 Very popular in NLP, and CV

Figure credits: Vaswani et al., 2017

- $lue{1}$ Transformers (2017) are attention-based architectures
- Wery popular in NLP, and CV
- Some of these models are extremely large (e.g., GPT-3 has 175B, PaLM has 540B parameters, etc.)

Figure credits: Vaswani et al., 2017

Deep Learning

Natural generalization to ANNs - Doesn't differ much from the 90s NNs

Deep Learning

- Natural generalization to ANNs Doesn't differ much from the 90s NNs
- 2 Computational graph of tensor operations that take advantage of
 - Chain rule (back-propagation)
 - SGD
 - GPUs
 - Huge datasets
 - Convolutions, attention, self-attention, etc.

ILSVRC Error

Figure credits: Gershgorn, 2017

LLM performance on the MMLU benchmark on the model by the street because the street of the street because th

Figure credits: W. Zi, L. El Asri, S. Prince

32

• Huge research and progress in ML

- Huge research and progress in ML
- ② Hardware developments CPUs/GPUs/Storage technologies

- Huge research and progress in ML
- ② Hardware developments CPUs/GPUs/Storage technologies
- Piles of data over the Internet

- 4 Huge research and progress in ML
- ② Hardware developments CPUs/GPUs/Storage technologies
- 3 Piles of data over the Internet
- 4 Collaborative development (open source tools and fora for sharing/discussions, etc.)

- Huge research and progress in ML
- ② Hardware developments CPUs/GPUs/Storage technologies
- 3 Piles of data over the Internet
- 4 Collaborative development (open source tools and fora for sharing/discussions, etc.)
- Sollective efforts from large institutions/corporations

- Huge research and progress in ML
- ② Hardware developments CPUs/GPUs/Storage technologies
- 3 Piles of data over the Internet
- 4 Collaborative development (open source tools and fora for sharing/discussions, etc.)
- © Collective efforts from large institutions/corporations
- **6** . . .

Doesnt require a deep mathematical grasp

- Doesnt require a deep mathematical grasp
- Makes the design of large models a system/software development task

- Doesnt require a deep mathematical grasp
- Makes the design of large models a system/software development task
- 3 Leverages modern hardware

- Doesnt require a deep mathematical grasp
- Makes the design of large models a system/software development task
- 3 Leverages modern hardware
- Doesnt seem to plateau with more data

- Doesnt require a deep mathematical grasp
- Makes the design of large models a system/software development task
- 3 Leverages modern hardware
- Doesnt seem to plateau with more data
- Makes the trained models a commodity

Compute getting cheaper

34

Figure Credits: Wikipedia

Storage getting cheaper

Figure Credits: John C Mccallum

AlexNet to AlphaGo: 300000X increase in the latter of the coloning by the compute

Figure Credits: Radford, 2018. 1 petaflop/s-day \approx 100 GTX 1080 GPUs for a day, \approx 500kwh

LLM compute

Figure Credits: NVIDIA blog

Datasets

Data-set		Year	Nb. images	Size
MNIST	(classification)	1998	60K	12Mb
Caltech 101	(classification)	2003	9.1K	130Mb
Caltech 256	(classification)	2007	30K	1.2Gb
CIFAR10	(classification)	2009	60K	160Mb
ImageNet	(classification)	2012	1.2M	150Gb
MS-COCO	(segmentation)	2015	200K	32Gb
Cityscape	(segmentation)	2016	25K	60Gb

Data-set		Year	Size
SST2	(sentiment analysis)	2013	20Mb
WMT-18	(translation)	2018	7Gb
OSCAR	(language model)	2020	6Tb

Figure Credits: François Fleuret

Datasets

• GPT-3 uses 45TB of text data for training

Implementation

40

	Language(s)	License	Main backer
PyTorch	Python, $C++$	BSD	Facebook
TensorFlow	Python, $C++$	Apache	Google
JAX	Python	Apache	Google
MXNet	Python, C++, R, Scala	Apache	Amazon
CNTK	Python, C++	MIT	Microsoft
Torch	Lua	BSD	Facebook
Theano	Python	BSD	U. of Montreal
Caffe	C++	BSD 2 clauses	U. of CA, Berkeley

Figure Credits: François Fleuret

References

- Please visit lectures tab in the course website for the full list of references
- Please share your comments/suggestions/any errors (technical or references) with the instructor (krmopuri@ai.iith.ac.in)
- Thank You!