RELACYJNE BAZY DANYCH – PROJEKT	
Autor: Piotr Jadczak	Grupa: 1
Temat: Punkt serwisowy	Data: 04.05.2020 r.

1. Scenariusz

Baza danych przeznaczona jest dla punktu serwisowego telefonów komórkowych.

2. Potencjalne grupy użytkowników:

- a) Administrator główny zarządca bazy danych, posiada pełen dostęp do bazy danych.
- b) Pracownick pracownik punktu serwisowego, dostęp do informacji o klientach, naprawach, możliwość dodawania klientów, telefonów do naprawy, ich usterek, tworzenie napraw, dodawanie częsci zamiennych potrzebnych do naprawy.
- c) Klient klient oddający telefon do naprawy, brak możliwości edycji pozycji w bazie danych, możliwość jedynie sprawdzenia statusu naprawy swojego telefonu, jej kosztu.
- d) Kierownik kierownik punktu serwisowego, uprawnienia te same co pracownik + dodawanie pracowników, nadawanie im specjalizacji.

3. Wymagania funkcjonalne

Baza danych ma przechowywać informacje o danych kontaktowych klientów, telefonach oddanych do naprawy, usterkach, które są usuwane, częsciach zamiennych użytych do napraw, pracownikach punktu serwisowgo i rodzaju usterek w jakich się specjalizują.

Zgromadzone dane mają umożliwić zrealizowanie zadań:

- kontakt z klientem
- efektywną naprawę telefonów komórkowych
- zarządzanie pracownikami

4. Wymagania niefunkcjonalne

- system zarządzania bazą danych Postgres
- baza danych PosgreSOL
- Strona internetowa w PHP zintegrowana z bazą danych, służąca jako interfejs bazy danych, kontrolująca uprawnienia użytkowników poprzez profile zabezpieczone hasłem, umożliwiająca w wygodny sposób dodawanie pozycji do bazy poprzez pracowników, umożliwiająca klientom sprawdzenie statusu naprawy oddanego przez nich telefonu.

5. Diagram związków – encji

6. Przykłady zawartości najważniejszych tabel

```
TABELA klient
id | imie | nazwisko | email | telefon
 1 | Małgorzata | Kuśmierek | 5056252840
2 | Jan | Chodkiewicz | 6126240860
3 | Jadwiga | Szczesna | 6936243741
 2 | Jan | Chodkiewicz
3 | Jadwiga | Szczęsna
                                                                         6936243741
TABELA model
id | nazwa
 1 | Iphone 8
  2 | Iphone XS
  3 | Iphone 11
TABELA telefon
 id | klient_id | model_id | data_oddania | data_odbioru
1 | 1 | 2 | 2019-12-18 | 2019-12-25
2 | 2 | 3 | 2020-01-06 | 2020-01-12
3 | 2 | 5 | 2020-01-21 | 2020-02-01
TABELA rodzaj_usterki
id | nazwa
 1 | pękniety ekran
  2 | zepsuta bateria
  3 | zepsute wejście ładowania
TABELA usterka
 id | telefon_id | rodzaj
----+-----
 1 | 1 | 1
2 | 2 | 1
3 | 3 | 2
TABELA pracownik
id | imie | nazwisko
 1 | Marek | Nowak
 2 | Zbigniew | Mieczyński
 3 | Marcin | Kowalski
TABELA specjalizacja
 pracownik_id | rodzaj_id
1 | 1
1 | 3
1 | 5
TABELA naprawa
id | usterka_id | pracownik_id | koszt | data_rozpoczecia | data_zakonczenia
1 | 1 | 3 | 100,00 zł | 2019-12-18 | 2019-12-23 | 2 | 2 | 1 | 200,00 zł | 2020-01-06 | 2020-01-11 | 3 | 3 | 2 | 120,00 zł | 2020-01-22 | 2020-02-01 | TABELA czesc_zamienna id | model_id | rodzaj | cena | naprawa_id

    1 |
    2 | ekran LCD
    | 400,00 zł |
    1

    2 |
    3 | ekran LCD
    | 450,00 zł |
    2

    3 |
    5 | bateria
    | 150,00 zł |
    3
```

- 7. Przykłady kilku zapytań i ich wyników
- wypisz czas naprawy usterki dla danego telefonu

SELECT telefon.id, rodzaj_usterki.nazwa AS rodzaj_usterki, model.nazwa AS nazwa_modelu, (data_zakonczenia-data_rozpoczecia) AS czas_naprawy_dni

FROM (((rodzaj_usterki INNER JOIN usterka

ON rodzaj=rodzaj_usterki.id

) INNER JOIN naprawa

ON usterka_id=usterka.id

) INNER JOIN telefon

ON telefon_id=telefon.id

) INNER JOIN model

ON model.id=model_id

GROUP BY telefon.id, rodzaj_usterki.nazwa, model.nazwa,data_zakonczenia, data_rozpoczecia

HAVING data_zakonczenia IS NOT NULL

ORDER BY telefon.id

;

id	rodzaj_usterki	nazwa_modelu	czas_naprawy_dni	
1 p	ękniety ekran	Iphone XS	5	
2 p	ękniety ekran	Iphone 11	j 5	
3 z	epsuta bateria	Samsung S20	10	
4 p	ęknięta obudowa	Iphone XS	3	
4 z	epsute wejście ładowania	Iphone XS	5	
5 p	ękniety ekran	Huawei P30	2	
6 z	epsuta bateria	Xiaomi Redmi Note 8	5	
7 z	epsute wyjście słuchawkowe	Huawei Y7	5	
8 p	ęknięta obudowa	Iphone 8	4	
9 p	ęknięta obudowa	Huawei P20	2	
10 z	epsute wejście ładowania	Xiaomi Mi9	2	
(11 row	s)			

wypisz ile usterek danego typu zostało przyjetych do naprawy

```
SELECT nazwa,
```

(SELECT COUNT(id)

FROM usterka

WHERE rodzaj_usterki.id=rodzaj

) as ilosc

FROM rodzaj_usterki

ORDER BY nazwa

nazwa	ilosc
pęknięta obudowa	4
pękniety ekran	6
zepsuta bateria] 3
zepsute wejście ładowania	3
zepsute wyjście słuchawkowe	3
zepusty aparat	1
(6 rows)	

• wypisz naprawy które się zakończyły i nie wykorzystały części zamiennych

```
SELECT * FROM naprawa WHERE
```

```
id NOT IN (
```

SELECT naprawa_id FROM czesc_zamienna

AND data_zakonczenia IS NOT NULL