The Oblique Throw

2022-03-20

What is the project about?

When we throw a ball (ignoreing wind resistance) when the ball leaves our hand we know the only acceleration acting upon the ball is the gravatational constant.

The simulations

For the simulations i used the following equations to get the distance that the ball travelled

Using this I wrote the following python code to simulate the throws

```
import math
import sympy

def calc_dist(v, a, h = 10):
    """
    Take in an velocety, angle and a height and calculate the distance it will travel
    """
    g = 9.82 # Gravatational constant
    x = sympy.Symbol('x')

# Left side of the equation
    c1 = -1 * h

# Right side of the equation
    c2 = v * math.sin(math.radians(a)) * x - 1/2 * g * x**2

# Solve it, we can discard the negative solution
    t = max(sympy.solve(sympy.Eq(c1, c2), (x,)))
    s = v * math.cos(math.radians(a)) * t

return s
```

Here is an example

```
## 25.3608136859927 39.5736277406020 7.51523973272992
```

I wrote a script to run this 22860 times but i wont go over that in this document, its linked as main.py

Visualising the data

Lets first take at what type of data we are working with here

```
summary(data)
```

```
ang
##
         vel
                                         dist
##
           : 0.2
                           : 0.0
                                           : 0.00505
                    Min.
                                    Min.
                                    1st Qu.: 15.00609
    1st Qu.:12.8
                    1st Qu.:22.0
    Median:25.5
                    Median:44.5
                                    Median: 46.72623
##
##
    Mean
           :25.5
                    Mean
                           :44.5
                                    Mean
                                           : 66.86415
    3rd Qu.:38.2
                    3rd Qu.:67.0
                                    3rd Qu.:101.62410
##
    Max.
           :50.8
                    Max.
                           :89.0
                                    Max.
                                           :272.61055
```

From taking a look at the summary we can see that the higest distance we reached was 272 meters with an avrige of 66

str(data)

```
## spec_tbl_df [22,860 x 3] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
   $ ang : num [1:22860] 0 1 2 3 4 5 6 7 8 9 ...
##
   $ dist: num [1:22860] 0.285 0.285 0.285 0.285 ...
##
   - attr(*, "spec")=
##
    .. cols(
##
        vel = col_double(),
##
        ang = col_double(),
##
        dist = col_double()
##
    ..)
   - attr(*, "problems")=<externalptr>
```

From the str function we get a preview of our data and we find that we have 22860 datapoints Why not try and plot it?

The distance traveled corrosponding to angle and velocety

Now what can we do with this data?

Lets try to isolate a range of distances and with this range we can also try to use a regression $\frac{1}{2}$ Here i got all the datapoints with a dist value between 99 and $\frac{1}{2}$ and $\frac{1}{2}$

A slice of the above heatmap

From that parabalae we find the fomula to be $f(x) = 0.01369*x^2-1.14801*x+52.91235$ with a r^2 value of 0.975, so quite a nice fit

My theroy is that we can calculate the top of the parabulae and find the optimal angle for all velocties when the height is 10

```
a <- 0.01369 # To get the point we are looking for we only need the a and b constants b <- -1.14801 print((-1*b)/(2*a)) # -b/2a
```

[1] 41.92878

So the optimal angle for the oblique throw when the height is 10m would be 41.93 degree