

2.º Teste de Introdução à Arquitetura de Computadores

IST – LEIC-Taguspark

	I Ji	1.° S	emestre 20	015/2016	Duração: 60 minu	itos	14	4 dezembro 2015
	INSTITUTO SUPERIOR TÉCNICO	NOM	IE				NÚMERO	
1.	(1 + 2 - display			dere o seguinte prog	grama, que usa rotinas	de interrup	pção para alter	ar o valor de um
	HexaD PLAC pilha: fim_pi	E	EQU 1000H TABLE	8000H 100H	rot0:	PUSH MOV EI SUB MOVB POP RFE	R2 R2, HexaDisple R1, 1 ; decr [R2], R1; atua R2	ementa
	PLAC	E	0 MOV	R1, 1 ; contador	rot2:	PUSH MOV ADD MOVB POP RFE	R2 R2, HexaDispl R1, 2 ; incre [R2], R1; atua R2	ementa
a)	interru	pções (necess	e 2 funcion	narem corretamente	dos e o programa pri e (rotinas no lado direit principal deve termin	o). <u>Preench</u>	na apenas os esp	paços que entender
b)					2 se alternam, com um a a sequência dos 8 pri			
c)	são pe a sequ	didas ex iência (xatamente a	no mesmo tempo), o eiros valores que	errupção 0 e 2 ligam ac que origina uma interr aparecem no display	upção em c	ada segundo. Ì	Indique de seguida

	SSD (Solid State Drive). O seu disco tem 5400 rotações/minuto, 6 ms de <i>seek-time</i> (procura de pista) e taxa de leitura de dados de 100 MBytes/seg. O SSD tem um tempo de acesso de 0,1 ms e taxa de leitura de dados de 200 MBytes/seg. Considera-se que o setor é a unidade de leitura nos dois casos.
a)	Para ter uma ideia de quanto o seu PC vai melhorar, fez um pequeno <i>benchmark</i> que lê 1000 setores de 1 KByte cada um, distribuídos pelo dispositivo de forma <u>aleatória</u> , quer no disco, quer no SSD. Estime o tempo que demorará <u>aproximadamente</u> a execução do seu <i>benchmark</i> no caso do disco e do SSD e qual a ordem de grandeza de quantas vezes (N) o SDD será mais rápido.
b)	Isto quererá dizer que o seu PC vai correr as aplicações N vezes mais rápido, em que N é o valor calculado na alínea anterior? <u>Justifique</u> ;

2. (2 + 1 valores) Agora que estamos quase no Natal decidiu renovar o seu portátil, substituindo o disco por um

3. (3 valores) Considere o seguinte sistema de descodificação de endereços utilizado por um processador de <u>bus</u> de dados de 8 bits e bus de endereços de 16 bits. Preencha a tabela com os bits de endereço a que cada dispositivo deve ligar, a sua capacidade (decimal) e os endereços de início e de fim (em <u>hexadecimal</u>) em que esse dispositivo está ativo (<u>não considerando endereços de acesso repetido</u> - espelhos).

Dispositivo	Bits de endereço	Capacidade (bytes) (decimal)	Início (hexadecimal)	Fim (hexadecimal)
Descodificador				
RAM		4 K		
Periférico	A0-A6		3000Н	
ROM1		1 K		
ROM2	A0-A8			

4. (2 valores) Considere a seguinte tabela de verdade, relativa a uma função de quatro entradas e uma saída. Simplifique a respetiva função, preenchendo a tabela de Karnaugh e escrevendo a expressão algébrica mais simplificada que lhe é equivalente.

A	В	C	D	Z
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

		CD						
	1	00 01 11 10						
	00							
A D	01							
AB	11							
	10							

5. (2 + 1 valores) Pretende-se implementar um controlador microprogramado para um microondas. O diagrama de estados seguinte indica os 4 estados possíveis, as saídas relevantes em cada estado e os eventos que podem fazer o controlador transitar de estado. Há três sensores (P - porta aberta, B - botão ligado e T - tempo acabou) e três dispositivos a controlar (lâmpada, magnetrão e campainha de fim de tempo). O temporizador de funcionamento é mecânico (só o sensor indica o fim). As negações nos sinais dos sensores permitem testar as condições negadas.

a) Preencha a tabela seguinte com os valores necessários para implementar o controlador. Cada estado é implementado por um ciclo que testa cada um dos sensores relevantes, podendo mudar de estado (saltar para a primeira microinstrução doutro estado). Indique apenas os sinais relevantes em cada ciclo de relógio e deixe em branco as restantes células.

Endereço na ROM	Estado	Microinstruções	LAMP	MAGN	CAMP	SEL_MICRO_ SALTO	MICRO_SAL TO
0	D. 1: 4 -	Muda para Ligado se botão ligar					
1	Desligado	Mantém estado se porta fechada					
2		Muda para Porta Aberta se porta abrir					
3	Ligado	Muda para Acabou se fim de tempo					
4		Caso contrário, mantém estado					
5	Danta Abanta	Muda para Desligado se porta fechar					
6	Porta Aberta	Caso contrário, mantém estado					
7	Acabou	Muda para Desligado					

b) Quantos bits de largura deve ter no mínimo a ROM de microprograma?

6.	(1 + 2 valores) Suponha que a <i>cache</i> do PEPE (processador com 16 bits de endereço, <u>endereçamento de byte</u>) é de mapeamento direto, usa blocos de 8 palavras e tem 7 bits de etiqueta.						
	a) Quantos blocos pode a cache armazenar, se estiver complet	amente cheia	?				
b) Suponha que o processador acedeu ao endereço 1234H, ficando o respetivo valor em cache, e que la a seguir acedeu a outro endereço, do qual conhece apenas os dígitos de maior e menor peso (8 e A) Indique <u>possíveis</u> dígitos intermédios do endereço, em duas situações:							
	O segundo valor acedido <u>retira</u> o primeiro da cache	8	A	Н			
	O segundo valor acedido <u>não retira</u> o primeiro da cache	8	A	Н			
7.	(2 valores) Imagine um processador com endereçamento de byt 000 000H até FFF FFFH, enquanto o espaço de endereçamento RAM de 0000H até 8000H. As páginas virtuais têm uma dimenassociativa de 8 entradas e tem atualmente o conteúdo da tabela é, não inicializadas).	físico vai de são de 100H	0000H até FF bytes. A TLB	FFH, mas só há é totalmente			

		NTO (:	NTO (:
Posição da	Bit	N.º página	N.º página
-		virtual	física
TLB	validade	(hexadecimal)	(hexadecimal)
0	0	3B9	1F
1	1	207	31
2	1	2A0	3E
3	1	1EF	0F
4	1	4B8	1F
5	0	0C3	1D
6	1	C31	1B
7	0	A25	0C

Preencha a tabela seguinte para este computador e para este conteúdo da TLB.

Número de bits do espaço virtual			
Número de páginas virtuais			
Número de páginas físicas			
Endereço virtual que corresponde ao endereço físico 1F3AH			