1 Eigenvalue method

1. We are interested here in the synthesis of linear phase FIR filters. We consider the particular case of a type I filter, of odd length N and symmetrical impulse response, whose transfer function is denoted $H(z) = \sum_{n=0}^{N-1} h(n) z^{-n}$. Let $M = \frac{N-1}{2}$. Verify that we can write

$$H\left(e^{i2\pi\nu}\right) = e^{-i2\pi\nu M} H_R\left(e^{i2\pi\nu}\right) \tag{1}$$

where $H_R\left(e^{i2\pi\nu}\right)$ is a real-valued function, called the amplitude response of filter H, defined by the equality $H_R\left(e^{i2\pi\nu}\right) = \boldsymbol{a}^T\boldsymbol{c}(\nu)$, where $\boldsymbol{c}(\nu) = [1,\cos(2\pi\nu),\ldots,\cos(2\pi M\nu)]^T$, and where the coefficients of vector $\boldsymbol{a} = [a_0, a_1,\ldots,a_M]^T$ are to be expressed in terms of h(n).

We have

$$\begin{split} H(z) &= z^{-M} \left(\sum_{n=0}^{M-1} h(n) \, z^{-n+M} + h(M) + \sum_{n=M+1}^{N-1} h(n) \, z^{-n+M} \right) \\ &= z^{-M} \left(\sum_{n=0}^{M-1} h(n) \, z^{-n+M} + h(M) + \sum_{m=0}^{M-1} h(N-1-m) \, z^{m-M} \right) \\ &= z^{-M} \left(h(M) + \sum_{n=0}^{M-1} h(n) \, (z^{-n+M} + z^{n-M}) \right). \end{split}$$

At $z = e^{i2\pi v}$, we get

$$H(e^{i2\pi\nu}) = e^{-i2\pi\nu M} \left(H(M) + 2 \sum_{n=0}^{M-1} h(n) \cos(2\pi\nu (M-n)) \right).$$

We thus retrieve (1) with $a_0 = h(M)$ and $a_m = 2h(M - m) \ \forall m \in [[1, M]]$.

2. We wish to synthesize a low-pass filter with cutoff frequency $v_c \in \left]0, \frac{1}{2}\right[$ and whose stop-band starts at $v_a \in \left]v_c, \frac{1}{2}\right[$. The energy in the stop-band is $E_a = 2\int_{v_a}^{\frac{1}{2}}\left(H_R(e^{i2\pi v})\right)^2 dv$. Show that we can write $E_a = a^T P a$, where P is a positive semidefinite matrix, whose coefficients $\{P_{(m,n)}\}_{(m,n)\in[[0,M]]^2}$ are to be determined in function of v_a .

We have $E_a = 2 \int_{\nu_a}^{\frac{1}{2}} (\boldsymbol{a}^T \boldsymbol{c}(\nu))^2 d\nu = \boldsymbol{a}^T \boldsymbol{P} \boldsymbol{a}$ with $\boldsymbol{P} = 2 \int_{\nu_a}^{\frac{1}{2}} \boldsymbol{c}(\nu) \boldsymbol{c}(\nu)^T d\nu$. Matrix \boldsymbol{P} is positive semidefinite, as a sum of rank-1 positive semidefinite matrices. Moreover,

$$P_{(m,n)} = 2 \int_{\nu_a}^{\frac{1}{2}} \cos(2\pi\nu m) \cos(2\pi\nu n) d\nu$$

$$= \int_{\nu_a}^{\frac{1}{2}} \cos(2\pi\nu (m+n)) + \cos(2\pi\nu (m-n)) d\nu$$

$$= \left[\frac{\sin(2\pi\nu (m+n))}{2\pi (m+n)} + \frac{\sin(2\pi\nu (m-n))}{2\pi (m-n)} \right]_{\nu_a}^{\frac{1}{2}}$$

$$= \frac{\delta(m+n) + \delta(m-n)}{2} - \nu_a \left(\sin(2\pi\nu_a (m+n)) + \sin(2\pi\nu_a (m-n)) \right).$$

3. Ideally, the amplitude response $H_R(e^{i2\pi\nu})$ is equal to $H_R(1)$ in the bandwidth $[0, \nu_c]$. We therefore define the square error in the bandwidth as follows:

$$E_c = 2 \int_0^{\nu_c} \left(H_R(e^{i2\pi\nu}) - H_R(1) \right)^2 d\nu$$

Show that we can write $E_c = \boldsymbol{a}^T \boldsymbol{Q} \boldsymbol{a}$, where \boldsymbol{Q} is a positive semidefinite matrix, whose coefficients $\{\boldsymbol{Q}_{(m,n)}\}_{(m,n)\in[[0,M]]^2}$ are to be determined in function of ν_c .

We have $E_c = 2 \int_0^{v_c} (\boldsymbol{a}^T (\boldsymbol{c}(v) - \boldsymbol{c}(0))^2 dv = \boldsymbol{a}^T \boldsymbol{Q} \boldsymbol{a}$ with $\boldsymbol{Q} = 2 \int_0^{v_c} (\boldsymbol{c}(v) - \boldsymbol{c}(0)) (\boldsymbol{c}(v) - \boldsymbol{c}(0))^T dv$. Matrix \boldsymbol{Q} is positive semidefinite, as a sum of rank-1 positive semidefinite matrices. Moreover,

$$Q_{(m,n)} = 2 \int_0^{\nu_c} (\cos(2\pi\nu m) - 1)(\cos(2\pi\nu n) - 1) d\nu$$

=
$$\int_0^{\nu_c} \cos(2\pi\nu (m+n)) + \cos(2\pi\nu (m-n)) - 2\cos(2\pi\nu m) - 2\cos(2\pi\nu n) + 2 d\nu.$$

The end of the calculation is left to the reader.

4. The FIR filter synthesis method called *eigenvalue method* consists in minimizing with respect to \boldsymbol{a} the cost function $E(\boldsymbol{a}) = \alpha E_c + (1 - \alpha) E_a$, where $\alpha \in]0$, 1[is a trade-off parameter between pass-band and stop-band. We thus obtain $E(\boldsymbol{a}) = \boldsymbol{a}^T \boldsymbol{R} \boldsymbol{a}$, where $\boldsymbol{R} = \alpha \boldsymbol{Q} + (1 - \alpha) \boldsymbol{P}$ is a positive semidefinite matrix. Show that vector \boldsymbol{a} minimizes function E under unit norm constraint if and only if it is an eigenvector of \boldsymbol{R} , associated to the lowest eigenvalue (*Rayleigh's principle*).

The Lagrangian of this optimization problem is

$$\mathcal{L}(\boldsymbol{a},\lambda) = \boldsymbol{a}^T \boldsymbol{R} \, \boldsymbol{a} + \lambda (1 - ||\boldsymbol{a}||^2).$$

Its gradient w.r.t. a is $2Ra - 2\lambda a$. This gradient is zero when $Ra = \lambda a$ (therefore a is an eigenvector of R, associated to the eigenvalue λ), in which case $E(a) = \lambda$ when ||a|| = 1. Therefore vector a minimizes function E under unit norm constraint if and only if it is an eigenvector of R associated to the lowest eigenvalue λ .

2 Synthesis of an integrator filter

We consider a digital signal x(n), defined from an analog signal $x^a(t)$ sampled at sampling rate T: $x(n) = x^a(nT)$. This exercise aims at synthesizing a digital filter which allows to obtain, from the discrete signal x(n), a sampled version of the integrated signal $y^a(t) = \int_{-\infty}^{t} x^a(u) du$.

Question 1 Show that the integrated signal $y^a(t)$ can be written as the convolution product between the signal $x^a(t)$ and the analog filter $h^a(t) = 1$ if $t \ge 0$ and $h^a(t) = 0$ otherwise (Heaviside function). Is this filter causal? Is it stable? (reminder: the filter is stable if and only if $\int_{-\infty}^{+\infty} |h^a(t)| dt < +\infty$). Compute the transfer function $H^a(p) = \int_{-\infty}^{+\infty} h^a(t) \, e^{-pt} \, dt$ (Laplace transform of h^a , with $p \in \mathbb{C}$), and specify its domain of definition.

We have $(h^a * x^a)(t) = \int_{v \in \mathbb{R}} h^a(v) x^a(t-v) dv = \int_{v=0}^{+\infty} x^a(t-v) dv = \int_{u=-\infty}^t x^a(u) du$ with the change of variable v = t - u. Filter h^a is causal by definition, and it is unstable because $h^a \notin L^1(\mathbb{R})$. We get $H^a(p) = \int_0^{+\infty} e^{-pt} dt = \frac{1}{p}$, which is defined for Re(p) > 0.

2.1 Approximation by the rectangle method

We wish to approximate the integral of the signal $x^a(t)$ by the rectangle method (an example is given on Figure 1-(a)), which amounts to computing the integral of the interpolated signal

$$x_0^a(t) = \sum_{m=-\infty}^{+\infty} x^a(mT) f_0(t - mT)$$

Figure 1: Three synthesis methods of an integrator filter

where $f_0(t) = 1$ if $t \in [-T, 0]$ and $f_0(t) = 0$ otherwise (rectangle function). We define the discrete-time integrated signal $y_0(n) = \int_{-\infty}^{nT} x_0^a(t) dt$.

Question 2 Show that $y_0(n)$ can be written as the convolution product between the signal x(n) and a digital filter $h_0(n)$, and give the expression of its impulse response. Is this filter causal? Is it stable? Calculate the transfer function $H_0(z)$, and specify its domain of definition.

We have $y_0(n) = \sum_{m=-\infty}^{+\infty} x(m) \int_{-\infty}^{nT} f_0(t-mT) dt = T \sum_{m=-\infty}^{n} x(m) = \sum_{m \in \mathbb{Z}} h_0(n-m)x(m)$ with $h_0(m) = T \mathbb{1}_{\mathbb{N}}(m)$. Filter h_0 is causal by definition, and it is unstable because $h_0 \notin l^1(\mathbb{Z})$. We get $H_0(z) = T \sum_{m \in \mathbb{N}} z^{-m} = \frac{T}{1-z^{-1}}$, which is defined for |z| > 1.

2.2 Approximation by the trapezoid method

We wish to approximate the integral of signal $x^a(t)$ by the trapezoid method (an example is given in Figure 1-(b)), which amounts to computing the integral of the interpolated signal

$$x_1^a(t) = \sum_{m=-\infty}^{+\infty} x^a(mT) f_1(t - mT)$$

where $f_1(t) = 1 - |t|/T$ if $t \in [-T, T]$ and $f_1(t) = 0$ elsewhere (triangle function). We define the discrete-time integrated signal $y_1(n) = \int_{-\infty}^{nT} x_1^a(t) dt$.

Question 3 Show that $y_1(n)$ can be written as the convolution product between the signal x(n) and a digital filter $h_1(n)$, and give the expression of its impulse response. Is this filter causal? Is it stable?

We have $y_1(n) = \sum_{m=-\infty}^{+\infty} x(m) \int_{-\infty}^{nT} f_1(t-mT) dt = T(\frac{1}{2}x(n) + \sum_{m=-\infty}^{n-1} x(m)) = \sum_{m \in \mathbb{Z}} h_1(n-m)x(m)$ with $h_1(m) = T(\frac{1}{2}\delta_0(m) + 1_{\mathbb{N}^*}(m))$. Filter h_1 is causal by definition, and it is unstable because $h_1 \notin l^1(\mathbb{Z})$.

Question 4 Show that this method is equivalent to determining the digital filter from the analog filter of Question 1 by using the bilinear transformation (hint: we can identify the two transfer functions). We get $H_1(z) = \frac{1}{2} + \sum_{m \in \mathbb{N}^*} z^{-m} = \frac{T}{2} \frac{1+z^{-1}}{1-z^{-1}}$, which is defined for |z| > 1. With the bilinear transform, we retrieve $H_1(z) = H^a(p) = \frac{1}{p}$ with $p = \frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}$.

2.3 Synthesis by the window method

We now wish to determine the integral of the signal $x^a(t)$ exactly. To do this, we assume that $x^a(t)$ satisfies the assumptions of the Shannon-Nyquist's theorem. It can then be reconstructed exactly from its samples:

$$x^{a}(t) = \sum_{m=-\infty}^{+\infty} x^{a}(mT) f(t - mT)$$

where $f(t) = \text{sinc}\left(\frac{t}{T}\right)$ avec $\text{sinc}(u) = \frac{\sin(\pi u)}{\pi u}$. We define the discrete time integrated signal $y(n) = \int_{-\infty}^{nT} x^a(t) dt$.

Question 5 Show that y(n) can be written as the convolution product between the signal x(n) and the digital filter $h(n) = T \int_{-\infty}^{n} \operatorname{sinc}(u) du$ (hint: we will assume that $x^{a}(t)$ satisfies strong enough assumptions to be able to switch \int and Σ).

We have
$$y(n) = \sum_{m=-\infty}^{+\infty} x(m) \int_{-\infty}^{nT} f(t-mT) dt = \sum_{m=-\infty}^{+\infty} x(m) \int_{-\infty}^{(n-m)T} f(t) dt = \sum_{m\in\mathbb{Z}} h(n-m)x(m)$$
 with $h(m) = \int_{-\infty}^{mT} f(t) dt = \int_{-\infty}^{mT} \operatorname{sinc}\left(\frac{t}{T}\right) dt = T \int_{-\infty}^{m} \operatorname{sinc}(u) du$ with the change of variable $t = uT$.

Question 6 The impulse response of filter h is represented in Figure 1-(c) (for T=1). What phenomenon can be observed compared to the impulse responses calculated previously? Is this filter causal? Is it stable? (hint: $h(n) \xrightarrow[n \to +\infty]{} T$)

In Figure 1-(c), we observe a Gibbs phenomenon in the time domain. This filter is non longer causal, nor stable because $h \notin l^1(\mathbb{Z})$.

Since $h(n) \xrightarrow[n \to +\infty]{} T$, it does not seem reasonable to synthesize filter h by directly applying the window method, which consists in truncating the impulse response. Instead, we define filter $G(z) = (1 - z^{-1})H(z)$, whose impulse response decreases towards 0 at infinity. This filter G(z) can be synthesized by the window method. We can then deduce an integrating filter $H(z) = \frac{G(z)}{1-z^{-1}}$.

Question 7 Show that the impulse response of the filter g(n) is symmetrical with respect to $\frac{1}{2}$, and is upper bounded in absolute value by $O\left(\frac{1}{n}\right)$ (the proof is simple but it may be useful to make a drawing). We have $G(z) = (1-z^{-1})H(z)$, therefore $g(n) = h(n) - h(n-1) = T\int_{n-1}^{n} \mathrm{sinc}(u) \, du = O(\frac{1}{n})$. Moreover, $g(1-n) = T\int_{-n}^{1-n} \mathrm{sinc}(u) \, du = g(n)$, thus the impulse response g(n) is symmetrical with respect to $\frac{1}{2}$.

