K - Nearest Neighbors

K-Nearest Neighbors (KNN) is a simple, supervised machine learning algorithm used for classification and regression tasks. It works based on the principle that similar data points are close to each other in the feature space:

Training Phase:

• KNN is a lazy learner, meaning it doesn't explicitly train a model. Instead, it memorizes the training dataset.

Prediction Phase:

- Classification: For a new data point, KNN finds the 'K' nearest neighbors (data points) in the feature space based on a distance metric (e.g., Euclidean distance).
- It then classifies the new data point by taking a majority vote among the 'K' nearest neighbors' classes.

Source Link - https://www.analyticsvidhya.com/blog/2018/03/introduction-k-neighbours-algorithm-clustering/

• Regression: For regression tasks, KNN predicts the value of the new data point by averaging the values of the 'K' nearest neighbors.

Distance Metrics:

- Euclidean Distance: Most common, calculates the straight-line distance between two points.
- Manhattan Distance: Sums the absolute differences of coordinates.
- Minkowski Distance: Generalization of Euclidean and Manhattan distances.

Advantages of KNN:

- 1. Simplicity: Easy to understand and implement.
- $2. \ \textbf{No Training Phase:} \ \textbf{As it stores the training data, there's no explicit training phase.} \\$
- 3. **Adaptability:** Can be used for both classification and regression problems.
- 4. Flexibility: Can handle multi-class problems and different types of features.

Disadvantages of KNN:

- 1. Computational Complexity: The algorithm can be slow, especially with large datasets, as it computes distances for all data points.
- 2. **Memory Consumption:** Requires storing the entire training dataset, which can be a problem for large datasets.
- 3. **Distance Metric Dependency:** Performance can be highly dependent on the choice of distance metric and scaling of features.
- 4. Curse of Dimensionality: As the number of features increases, the distance between points becomes less meaningful, which can degrade performance.

Working with Data:

- Feature Scaling: KNN is sensitive to the scale of features. Standardization or normalization is often necessary to ensure that all features contribute equally to the distance calculation.
- Choosing 'K': The value of 'K' (number of neighbors) is crucial. A small 'K' can be noisy and susceptible to outliers, while a large 'K' can smooth out the decision boundary and potentially overlook important details.
- **Distance Metric Selection:** Depending on the problem, different distance metrics may be more appropriate. Testing different metrics can help improve performance.
- Handling Missing Values: KNN can be sensitive to missing values. Imputation or other techniques might be needed to handle missing data effectively.
- Data Imbalance: For classification problems, if the classes are imbalanced, KNN might be biased towards the majority class. Techniques like weighting the neighbors or using different metrics can help address this.

Import Basic Libraries

```
In [3]: import pandas as pd
    pd.set_option('display.max_columns', None)
    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib_inline.backend_inline import set_matplotlib_formats
    set_matplotlib_formats('svg')
    import seaborn as sns
```

In [4]: import warnings
warnings.filterwarnings('ignore')

```
In [6]: df = pd.read_csv("diabetes.csv")
In [7]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
                   Non-Null Count Dtype
    Column
0
    Pregnancies
                   768 non-null
                                   int64
    Glucose
                   768 non-null
                                   int64
2
    BloodPressure 768 non-null
                                   int64
    SkinThickness 768 non-null
3
                                   int64
    Insulin
                   768 non-null
4
                                   int64
5
                   768 non-null
    BMI
                                   float64
6
    Pedigree
                   768 non-null
                                   float64
7
                   768 non-null
                                   int64
    Age
                   768 non-null
8
    Outcome
                                   int64
dtypes: float64(2), int64(7)
memory usage: 54.1 KB
```

- 1. **Pregnancies**: This column represents the number of times a woman has been pregnant. It's a count variable and is often considered because pregnancy-related glucose intolerance can affect diabetes
- 2. **Glucose**: This indicates the glucose concentration in the blood. High levels of glucose are a strong indicator of diabetes or prediabetes. Glucose measurements are usually taken after fasting.
- 3. **BloodPressure**: This is the diastolic blood pressure (measured in mm Hg). Blood pressure is a significant factor as high blood pressure is often associated with diabetes and cardiovascular risk.
- 4. **SkinThickness**: This represents the thickness of the triceps skinfold, measured in millimeters (mm). It is used to estimate the amount of subcutaneous fat, which is related to insulin resistance.
- 5. **Insulin**: This column measures the serum insulin level (in μU/mL). Abnormal insulin levels can indicate issues with insulin production or resistance, both of which are related to diabetes.
- 6. **BMI**: Body Mass Index (BMI) is a measure of body fat based on height and weight. It is calculated as weight in kilograms divided by the square of height in meters. A high BMI is a strong risk factor for diabetes.
- 7. **Pedigree**: The diabetes pedigree function provides a score that represents the likelihood of diabetes based on family history and other genetic factors. It's a measure of genetic predisposition.
- 8. Age : Age is a straightforward column representing the age of the individuals in years. Age is an important factor as the risk of diabetes typically increases with age.
- 9. Outcome: This is the target variable, which indicates whether or not the individual has diabetes. It is usually binary, where 0 represents non-diabetic and 1 represents diabetic.

In [9]: df.describe()

Out[9]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Pedigree	Age	Outcome
	count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
	mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	0.348958
	std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.476951
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	0.000000
	25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	0.000000
	50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	0.000000
	75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	1.000000
	max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000

Exploratory Data Analysis


```
In [12]: n_cols = 2
    n_rows = (len(df.columns) + 1) // n_cols

fig, axes = plt.subplots(n_rows, n_cols, figsize=(14, n_rows * 4), sharex=False)
axes = axes.flatten()
for i, col in enumerate(df.columns):
    sns.boxplot(ax=axes[i], y=df[col], palette='rocket')
    axes[i].set_ittle(f'Distribution of Data in {col}')
    axes[i].set_xlabel(col)
    axes[i].set_ylabel('Data Points')
for j in range(i+1, len(axes)):
    fig.delaxes(axes[j])
plt.figure(figsize=(10,8))
plt.tight_layout()
plt.show()
```


Distribution of Data in Glucose

Distribution of Data in Pregnancies

In [13]: n_cols = 2
 n_rows = (len(df.columns) + 1) // n_cols

fig, axes = plt.subplots(n_rows, n_cols, figsize=(14, n_rows * 4), sharex=False)
axes = axes.flatten()
for i, col in enumerate(df.columns):
 sns.distplot(ax=axes[i], x=df[col], color = 'blue')
 axes[i].set_xlabel(col)
for j in range(i+1, len(axes)):
 fig.delaxes(axes[j])
plt.figure(figsize=(10,8))
plt.tight_layout()
plt.show()

<Figure size 1000x800 with 0 Axes>

Data Preprocessing

Q3 = df.quantile(0.75)

```
In [15]: means = df.mean()
        stds = df.std()
        def calculate_zscore(value, mean, std):
           return (value - mean) / std
        z_scores = {}
           z_scores[col] = [calculate_zscore(value, means[col], stds[col]) for value in df[col]]
        threshold = 3
        outliers = {}
        for col, scores in z_scores.items():
           outliers[col] = [value for value, score in zip(df[col], scores) if np.abs(score) > threshold]
        for col, outlier_values in outliers.items():
           print(f"{col}: {outlier_values}")
       Pregnancies: [15, 17, 14, 14]
       Glucose: [0, 0, 0, 0, 0]
       SkinThickness: [99]
       Insulin: [543, 846, 495, 485, 495, 478, 744, 680, 545, 465, 579, 474, 480, 600, 440, 540, 480, 510]
       BMI: [0.0, 0.0, 0.0, 0.0, 0.0, 67.1, 0.0, 0.0, 59.4, 0.0, 0.0, 57.3, 0.0, 0.0]
       Pedigree: [2.288, 1.893, 1.781, 2.329, 1.476, 2.137, 1.731, 1.6, 2.42, 1.699, 1.698]
       Age: [69, 72, 81, 70, 69]
       Outcome: []
In [16]: def calculate_whiskers(df):
           Q1 = df.quantile(0.25)
```

```
IQR = Q3 - Q1
             lower_whisker = df.apply(lambda x: x[x >= (Q1[x.name] - 1.5 * IQR[x.name])].min())
             upper_whisker = df.apply(lambda x: x[x \le (Q3[x.name] + 1.5 * IQR[x.name])].max())
             return lower_whisker, upper_whisker
         lower_whisker, upper_whisker = calculate_whiskers(df)
         whiskers_df = pd.DataFrame({
             'Column': df.columns,
             'Lower Whisker': lower_whisker,
             'Upper Whisker': upper_whisker
         }).reset_index(drop=True)
         print(whiskers_df)
                  Column Lower Whisker Upper Whisker
             Pregnancies
                                  0.000
                                               13.000
                 Glucose
                                 44.000
                                               199.000
        2 BloodPressure
                                 38.000
                                               106.000
           SkinThickness
                                  0.000
        3
                                               63.000
                 Insulin
                                  0.000
                                               318.000
                                 18.200
                                               50.000
                     BMI
        6
                Pedigree
                                  0.078
                                                1.191
        7
                                 21.000
                     Age
                                                66.000
        8
                 Outcome
                                  0.000
                                                1.000
In [17]: whiskers = {
             'Pregnancies': (0.000, 13.000),
             'Glucose': (44.000, 199.000),
             'BloodPressure': (38.000, 106.000),
             'SkinThickness': (0.000, 63.000),
             'Insulin': (0.000, 318.000),
             'BMI': (18.200, 50.000),
             'Pedigree': (0.078, 1.191),
             'Age': (21.000, 66.000),
             'Outcome': (0.000, 1.000)
         for column, (lower, upper) in whiskers.items():
             df = df[(df[column] >= lower) & (df[column] <= upper)]</pre>
In [18]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        Index: 639 entries, 0 to 767
        Data columns (total 9 columns):
         # Column
                            Non-Null Count Dtype
             Pregnancies
                            639 non-null
                                            int64
             Glucose
                            639 non-null
                                            int64
             BloodPressure 639 non-null
                                            int64
         3
             SkinThickness 639 non-null
                                            int64
                            639 non-null
         4
             Insulin
                                            int64
         5
             BMI
                            639 non-null
                                            float64
                            639 non-null
         6
             Pedigree
                                            float64
         7
             Age
                            639 non-null
                                            int64
         8 Outcome
                            639 non-null
                                            int64
        dtypes: float64(2), int64(7)
        memory usage: 49.9 KB
```

Exploring Preprocessed Data

```
In [20]: n_cols = 2
    n_rows = (len(df.columns) + 1) // n_cols

fig, axes = plt.subplots(n_rows, n_cols, figsize=(14, n_rows * 4), sharex=False)
axes = axes.flatten()
for i, col in enumerate(df.columns):
    sns.boxplot(ax=axes[i], y=df[col], palette='rocket')
    axes[i].set_title(f'Distribution of Data in {col}')
    axes[i].set_xlabel(col)
    axes[i].set_ylabel('Data Points')
for j in range(i+1, len(axes)):
    fig.delaxes(axes[j])
plt.figure(figsize=(10,8))
plt.tight_layout()
plt.show()
```


plt.figure(figsize=(10,8))

plt.tight_layout()

plt.show()

<Figure size 1000x800 with 0 Axes>

Deifining X and y varaible as independent and dependent variable.

```
In [23]: X = df.drop(['Outcome'], axis =1)
In [24]: y = df['Outcome']
```

Model Building

```
In [26]: from sklearn.model_selection import train_test_split
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.model_selection import train_test_split, cross_val_score
    from sklearn.metrics import accuracy_score, classification_report, confusion_matrix, roc_curve, auc
```

Getting Optimal value of k

```
In [28]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

k_range = range(1, 31)
k_scores = []

for k in k_range:
    knn_optimal = KNeighborsClassifier(n_neighbors=k, weights='distance', algorithm='auto', leaf_size=30, p=2, metric='minkowski', n_jobs=-1)
    scores = cross_val_score(knn_optimal, X_train, y_train, cv=10, scoring='accuracy') # 10-fold cross-validation
    k_scores.append(scores.mean())

# Plot the accuracy scores vs. k values
plt.figure(figsize=(10, 6))
plt.plot(k_range, k_scores, marker='o', label = 'Cross-Validation Accuracy')
plt.xlabel('Value of K for KNN')
```

```
plt.ylabel('Cross-Validated Accuracy')
plt.title('Optimal K Value')
plt.legend()
plt.show()

# Find the best k value
optimal_k = k_range[np.argmax(k_scores)]
print(f"The optimal k value is: {optimal_k}")
```


The optimal k value is: 8

Building KNN Model on Optimal Value of K

Getting Feature Importance

Model Explained

- 1. **n_neighbors=optimal_k**: This specifies the number of neighbors to consider when making predictions. **optimal_k** is the value you've determined to be most effective for your model. A typical approach to finding this value is through cross-validation.
- 2. **weights='distance**: This parameter controls how the neighbors' votes are weighted. With 'distance', closer neighbors have a greater influence on the prediction than farther ones. This can help improve accuracy if the distribution of data points is uneven.
- 3. algorithm='auto': This tells KNN to choose the best algorithm based on the data provided. The algorithms available are:
 - 'ball_tree': Efficient for high-dimensional data.
 - 'kd_tree' : Good for low-dimensional data.
 - 'brute': Uses a brute-force approach to compute distances.
 - 'auto': Automatically selects the best algorithm based on the input data.
- 4. **leaf_size=30**: This is used only when algorithm='ball_tree' or algorithm='kd_tree'. It controls the size of the leaf nodes in the tree. A smaller leaf size means the tree is more detailed, which can speed up queries but slow down the training. Conversely, a larger leaf size makes the tree simpler, which can make queries faster but might increase training time.
- 5. p=2: This parameter is used with the metric='minkowski'. The value of p determines the type of distance metric to use:
 - p=1 corresponds to Manhattan distance.
 - p=2 corresponds to Euclidean distance.
- 6. **metric='minkowski'**: This specifies the distance metric to use for calculating the distance between data points. 'minkowski' is a generalization of Euclidean and Manhattan distances, depending on the value of p.
- 7. **n_jobs=-1**: This parameter controls the number of parallel jobs to run. **-1** means using all available cores to speed up computation.

Summary:

Model uses optimal_k neighbors and weights the neighbors based on their distance from the query point. It selects the most suitable algorithm automatically for distance computation and uses the Minkowski distance with p=2 (Euclidean distance). This configuration is designed to balance accuracy and efficiency, especially with the weights='distance' setting which often improves performance by giving more importance to nearer neighbors.

Model Evaluation

```
In [35]: y_pred = knn.predict(X_test)
In [36]: accuracy_optimal = accuracy_score(y_test, y_pred)
         print(f"Accuracy with optimal k={optimal_k}: {accuracy_optimal:.2f}")
        Accuracy with optimal k=8: 0.77
In [37]: print("\nClassification Report:")
         print(classification_report(y_test, y_pred))
        Classification Report:
                                   recall f1-score support
                     precision
                           0.79
                   0
                                    0.91
                                              0.85
                                                         132
                           0.70
                                    0.47
                   1
                                              0.56
                                                          60
                                              0.77
                                                         192
            accuracy
                                    0.69
           macro avg
                           0.74
                                              0.70
                                                         192
                           0.76
                                    0.77
                                              0.76
                                                         192
        weighted avg
```

```
In [38]: print("Confusion Matrix:")
         cm = confusion_matrix(y_test, y_pred)
         sns.heatmap(cm, cmap = 'Blues', cbar = True, annot = True, fmt= ".4g")
         plt.xlabel('Prediction')
         plt.ylabel('Target')
         plt.title('Confusion Matrix')
         plt.show()
```

120 12

Confusion Matrix:

```
- 100
                                                 - 80
                                                 - 60
                                                 - 40
32
                           28
                                                - 20
0
                            1
          Prediction
```

Confusion Matrix

```
In [39]: if len(set(y_test)) == 2: # because binary classification problem
             y_prob = knn.predict_proba(X_test)[:, 1]
             fpr, tpr, thresholds = roc_curve(y_test, y_prob)
             roc_auc = auc(fpr, tpr)
             print(roc_auc)
             plt.figure()
             plt.plot(fpr, tpr, color='red', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
             plt.plot([0, 1], [0, 1], color='lightblue', lw=2, linestyle='--')
             plt.xlim([0.0, 1.0])
             plt.ylim([0.0, 1.05])
             plt.xlabel('False Positive Rate')
             plt.ylabel('True Positive Rate')
             plt.title('Receiver Operating Characteristic (ROC)')
             plt.legend(loc="lower right")
             plt.show()
```

0.7765151515151515

Model Performance

Metric	Class 0	Class 1	Overall	Interpretation
Precision	0.79	0.70	0.76 (Weighted Average)	Precision measures the accuracy of positive predictions. Class 0 has higher precision, indicating fewer false positives compared to Class 1.
Recall	0.91	0.47	0.77 (Weighted Average)	Recall measures the ability to capture all relevant instances. Class 0 has high recall, meaning it successfully identifies most of its instances. Class 1 has lower recall, indicating missed instances.
F1-Score	0.85	0.56	0.76 (Weighted Average)	The F1-Score balances precision and recall. Class 0 has a higher F1-Score, reflecting a better balance between precision and recall compared to Class 1.
Support	132	60	192	Support indicates the number of actual occurrences of each class in the test dataset. Class 0 has more instances than Class 1.
Accuracy	-	-	0.77	Accuracy is the proportion of correctly predicted instances out of all instances. The model correctly predicts 77% of the cases.
ROC AUC	-	-	0.7765	ROC AUC measures the model's ability to distinguish between classes. An AUC of 0.7765 indicates a good level of discrimination.

Confusion Matrix:

[[120 12] [32 28]] means:

- True Negatives (TN): 120 (correctly predicted negatives, i.e., Class 0).
- False Positives (FP): 12 (incorrectly predicted as positive, i.e., Class 1).
- False Negatives (FN): 32 (incorrectly predicted as negative, i.e., Class 0).
- True Positives (TP): 28 (correctly predicted positives, i.e., Class 1).
- Out of 192 test cases, the model made 44 errors (32 false negatives and 12 false positives), reflecting a mixed performance with room for improvement in classifying positives and minimizing false negatives.

```
In [41]: feature_names = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'Pedigree', 'Age']
         user_input = {}
         for feature in feature_names:
             while True:
                 try:
                     value = float(input(f"Enter value for {feature}: "))
                     print(f'Enter {feature} value : {value}')
                     user_input[feature] = value
                     break
                 except ValueError:
                     print("Invalid input. Please enter a numeric value.")
         user_data = np.array([user_input[feature] for feature in feature_names]).reshape(1, -1)
         prediction = knn.predict(user_data)
         print(f"The predicted class for the input data is: {prediction[0]}")
        Enter Pregnancies value : 4.0
        Enter Glucose value : 89.0
        Enter BloodPressure value : 110.0
        Enter SkinThickness value : 32.0
        Enter Insulin value : 150.0
        Enter BMI value : 45.0
        Enter Pedigree value : 0.8
        Enter Age value : 23.0
        The predicted class for the input data is: 0
```