PROPOR 2018

Processamento de Linguagem Natural por meio de Redes Neurais Profundas

Teoria e aplicações

Cronograma

Parte 1 - Processamento de Linguagem com redes profundas:

- Introdução a Aprendizado de Máquina
- Redes Neurais Artificiais
- Melhorando a memória das Redes Recorrentes
- Aprendizado de máquina para PLN

Introdução a Aprendizado de Máquina

Algoritmos de **aprendizado de máquina** constroem modelos a partir de dados a fim de fazer previsões ou tomar decisões.

Regressão

Classificação: Fashion MNIST

Aprendizado de Máquina: Pipeline

Aprendizado de Máquina: Features

- São características ou traços do objeto do aprendizado

Exemplo 1: Na regressão para encontrar uma função de preço de casas, features podem ser dados como: área construída, distância do centro, tamanho do terreno, preço, etc.

Aprendizado de Máquina: Features

Exemplo 2: Em reconhecimento de imagem, feature pode ser um padrão de contorno, cor, textura, etc.

Redes Neurais Artificiais: Perceptron

...

Redes Neurais Artificiais: Ativação

Redes Neurais Artificiais: Feedforward Multi Layer

Versão resumida de uma Feedforward

Rede Neural Recorrente

Rede Neural Recorrente

 Redes neurais recorrentes são capazes de representar uma função de distribuição de probabilidade, que pode ser associada a muitos problemas do mundo real.

$$p(x_t = 1 | x_{t-1}, ..., x_1)$$

Rede Neural Recorrente: Vanishing gradient

Influência do 1º nó da rede nos seguintes

Influência do 1º nó da rede nos seguintes com LSTM

Rede Recorrente: LSTM

Aprendizado de Máquina em PLN

Algoritmos de aprendizado de máquina vem sendo utilizado largamente como proposta de solução de diversos problemas de processamento de linguagem natural:

- Detecção de Spam
- Modelo de linguagem
- Traduções automáticas
- Agentes Virtuais (chatbots)
- Análise de sentimento
- Reconhecimento de fala
- Legenda automática
- Extração de Entidades

Features em Processamento de Linguagem

Feature Engineering - Conhecimento de especialista para estabelecer features, essas features geralmente são baseadas em **n-gramas** que é uma subsequência de **n** elementos de uma sequência dada.

Word embeddings - Conjunto de técnicas para mapear sentenças para vetores de números reais, as mais conhecidas são: redes neurais recorrentes, redução de dimensionalidade (SVD,PCA,etc), matriz de co-ocorrência.

De Palavras para Vetores com Rede Recorrente

Mikolov propôs em 2012 um modelo para geração de vetores (word2vec),
onde o treinamento era realizado a partir de texto somente.

treinamento é uma representação vetorial para cada palavra, onde palavras que co-ocorrem no mesmo "contexto" possuem a norma vetorial pequena entre sim.

Projeção Bidimensional (PCA)

Classificação de Texto: Spam

Olha o DESCONTO! De São Paulo para Uberlândia por apenas 100.81, CLIQUE AQUI!

Classificação de Texto: Detecção de Spam

Documento 1 (Categoria SPAM):

Olha o DESCONTO! De São Paulo para Uberlândia por apenas 100.81, CLIQUE AQUI!

Documento 2 (Categoria HAM):

Oi João, preciso alinhar com você apenas alguns pontos para a reunião de amanhã

Documentos para o treinamento

Documentos vetorizados (1-grama)

Olha DESCONTO para preciso você apenas para reunião **CLIQUE**

Dicionário

Classificação de Texto: Detecção de Spam

Documento 1 (Categoria SPAM):

Olha o DESCONTO! De São Paulo para Uberlândia por apenas 100.81, CLIQUE AQUI!

Documento 2 (Categoria HAM):

Oi João, preciso alinhar com você apenas alguns pontos para a reunião de amanhã

caso geral:

$$f(x) = y$$

caso Spam:

$$f(Documento) = Categoria$$

Modelo de Linguagem com Redes Neurais

Chamamos modelo de linguagem uma distribuição de probabildiade sobre uma sequencia de tokens em uma lingua natural.

$$P(x_1, x_2, x_3, x_4) = p$$

Modelos de linguagem podem ser utilizados para:

- Reconhecimento de fala
- Tradução automática
- Autocompletar texto
- Correção de texto
- Sumarização de texto
- Resposta automatizada

Modelo de Linguagem com Redes Neurais

Podemos usar um modelo para predição de dados sequencias: uma rede recorrente (RNN). Nossa tarefa de aprendizado é estimar a distribuição de probabilidade:

$$P(x_n = \text{palavra}_{j^*} | x_1, ..., x_{n-1})$$

Para qualquer (n-1) sequência de palavras $x_1,...,x_{n-1}$.

Modelo de Linguagem: Exemplo

Cronograma

Parte 2 - Arquitetura de codificação decodificação com Atenção Neural:

- Rede Recorrente Bidirecional
- Codificação-Decodificação
- Exemplo: Aprendizado de diálogo
- Exemplo: Tradução automática
- Mecanismo Atenção Neural

Redes Recorrentes: Pra frente

Redes Recorrentes: Para trás

Redes Recorrentes: Bidirecionais

$$h_k = \overrightarrow{h_k} \cdot \overleftarrow{h_k}$$

Exemplos: (Diálogo)

Algumas considerações sobre o modelo

- O que é esperado de um bom modelo de tradução ?
- É correto associar um problema de tradução a um problema de aprendizagem de sequência ?
- Associação direta entre objetos inteiros ?
- Aprendizado composicional ?

Alinhamento entre traduções

- É possível capturar a ideia de alinhamento entre subsequências dentro no contexto de uma tradução?
- Composicionalidade "semântica" melhora o aprendizado de maneira geral.

Atenção Neural

- Inspirado pela atenção visual dos humanos;
- Humanos estabelecem uma região focal no campo visual;

A woman is throwing a <u>frisbee</u> in a park.

A <u>dog</u> is standing on a hardwood floor.

Codificador Decodificador com Atenção

Mudança no codificador (Bidirecional)

Codificador Decodificador com Atenção

Mudança no decodificador

$$p(y_i|y_1,...,y_{i-1},c)=g(y_{i-1},h_t,c)$$
 antigo $p(y_i|y_1,...,y_{i-1},c_i)=g(y_{i-1},s_i,c_i)$ novo $s_i=f(s_{i-1},y_{i-1},c_i)$

Atenção Neural: Quem é o c_i ? (Exemplo)

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$
 $lpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$ $e_{ij} = a(s_{i-1}, h_j)$

Atenção Neural: Quem é o c_i ? (Exemplo)

Na medida em que o treinamento vai passando por exemplos em que a palavra "I" se está associada a palavra "Eu", a posição α(I, Eu) tende a aumentar de valor, consequência da softmax.

Atenção Neural (Exemplo)

Atenção Neural (Exemplo)

Exemplos: (Sumarização)

Exemplos: (Similaridade semântica entre tarefas)

Exemplos: (Tradução)

Atenção neural (Erros)

Assim como a atenção visual humana, o mecanismo de atenção neural artificial também pode errar.

A large white bird standing in a forest.

Referências Bibliográficas

HAYAT, Aadil; SUNIL, Masare Akshay. A Neural Conversational Model.

Mikolov, Tomas - Efficient Estimation of Word Representations in Vector Space, 2013.

BAHDANAU, Dzmitry; CHO, Kyunghyun; BENGIO, Yoshua. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Bishop, Christopher M - Neural networks for pattern recognition, 1995.

Graves, Alex - Neural Networks: Supervised Sequence Labelling with Recurrent Neural Networks, 2012.

KIM, Yoon et al. Structured attention networks. arXiv preprint arXiv:1702.00887, 2017.

Obrigado!

Fabiano Luz

https://www.linkedin.com/in/fabianoluzbr/fluz@ime.usp.br

Felipe Salvatore

https://www.linkedin.com/in/felipe-salvatore-99522576/felsal@ime.usp.br

Marcelo finger

https://www.linkedin.com/in/marcelo-finger-89b258/mfinger@ime.usp.br