Homework 1: Kernels for ML

You have three weeks to do this homework: it must be return by Wednesday, October 16.

- You can do it by group of 2/3.
- Send the code to titouan.vayer@inria.fr with the header "Homework 1 Name 1 Name 2 Name 3".
- For the maths send a scan by mail or give it by hand on 16th october.
 - Exercise 1: Coding a support vector machine algorithm (≈ 6 H). -

This exercise is long: focus on the practical part from question (v), the theoretical part can be done later on. Let $(\mathbf{x}_i, y_i)_{i \in \llbracket n \rrbracket}$ be a dataset with $\mathbf{x}_i \in \mathcal{X}, y_i \in \{-1, +1\}$. Let \mathcal{H} be a RKHS with reproducing kernel $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$. We consider the SVM problem with the Hinge loss

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i f(\mathbf{x}_i)) + \lambda ||f||_{\mathcal{H}}^2.$$
 (1)

(i) By using the representer theorem, show that in order to solve (1), it suffices to solve the optimization problem

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n \max(0, 1 - y_i [\mathbf{K}\boldsymbol{\theta}]_i) + \lambda \boldsymbol{\theta}^\top \mathbf{K}\boldsymbol{\theta},$$
 (2)

where $\mathbf{K} = (\kappa(\mathbf{x}_i, \mathbf{x}_j))_{(i,j) \in [\![n]\!]^2}$ is the Gram matrix.

The goal now is to reformulate the objective and to find the dual optimization problem of (2). The dual will be then solved with a simple projected gradient algorithm. Suppose that we define ξ_1, \dots, ξ_n with $\xi_i \geq 0$ as

$$\xi_i = \max(0, 1 - y_i [\mathbf{K}\boldsymbol{\theta}]_i). \tag{3}$$

Then, by definition, for any $i \in [n]$, $y_i[\mathbf{K}\boldsymbol{\theta}]_i \geq 1 - \xi_i$. Thus, by introducing slack variables $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)$, it is not too complicated to see that (2) is equivalent to

$$\min_{\substack{\boldsymbol{\theta} \in \mathbb{R}^n, \boldsymbol{\xi} \in \mathbb{R}_+^n \\ \forall i \in [n], y_i[\mathbf{K}\boldsymbol{\theta}]_i \ge 1 - \xi_i}} \frac{1}{n} \sum_{i=1}^n \xi_i + \lambda \boldsymbol{\theta}^\top \mathbf{K} \boldsymbol{\theta}.$$
 (4)

This is a convex constrained optimization problem that can be solved by solving its dual problem. To find it we look at the Lagrangian of the problem, which is, for $\alpha \in \mathbb{R}^n_+, \beta \in \mathbb{R}^n_+$,

$$L(\boldsymbol{\theta}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^{n} \xi_i + \lambda \boldsymbol{\theta}^{\top} \mathbf{K} \boldsymbol{\theta} - \sum_{i=1}^{n} \alpha_i \xi_i - \sum_{i=1}^{n} \beta_i (y_i [\mathbf{K} \boldsymbol{\theta}]_i - 1 + \xi_i).$$
 (5)

The variable α accounts for the non-negativity constraint on ξ and the β variable accounts for the constraint $\forall i \in [n], y_i[\mathbf{K}\boldsymbol{\theta}]_i \geq 1 - \xi_i$ (remember your optimization class, you can have a look at Section 8.6 in https://mathurinm.github.io/assets/2022_ens/class.pdf if needed).

(ii) Show that the minimization of the Lagragian with respect to the primal variables $\theta \in \mathbb{R}^n, \xi \in \mathbb{R}^n$ gives the conditions

$$\forall i \in [n], \ \theta_i = \frac{1}{2\lambda} \beta_i y_i$$

$$\forall i \in [n], \ \alpha_i + \beta_i = \frac{1}{n}.$$

$$(6)$$

(iii) Deduce that the dual problem writes

$$\max_{\substack{\beta \in \mathbb{R}^n \\ \forall i \in [n], \beta_i \in [0, \frac{1}{n}]}} \sum_i \beta_i - \frac{1}{2\lambda} \sum_{ij} K_{ij} \beta_i \beta_j y_i y_j.$$
 (7)

(iv) We set $g(\beta) = \frac{1}{2\lambda} \sum_{ij} K_{ij} \beta_i \beta_j y_i y_j - \sum_i \beta_i$. The dual problem is thus equivalent to

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^n} g(\boldsymbol{\beta}).$$

$$\forall i \in [n], \beta_i \in [0, \frac{1}{n}]$$
(8)

Show that it is a convex optimization problem.

We recall that an optimization problem of the form $\min_{\beta \in C} g(\beta)$ where g is convex and C is a convex set can be tackled with a projected gradient descent algorithm. More precisely, if $\Pi_C(\mathbf{y}) = \operatorname{argmin}_{\mathbf{x} \in C} \|\mathbf{x} - \mathbf{y}\|_2$ denotes the Euclidean projection of \mathbf{y} onto C, the algorithm writes

$$\beta_0 \in \mathbb{R}^n,$$
for $k \ge 0$, $\beta_{k+1} = \Pi_C(\beta_k - \eta \nabla g(\beta_k))$, (9)

for a step-size size parameter $\eta > 0$. For the set $C = \{\beta \in \mathbb{R}^n : \forall i \in [n], \beta_i \in [a, b]\}$ we recall that

$$\Pi_C(\mathbf{y}) = \left(\max(\min(y_1, b), a), \cdots, \max(\min(y_n, b), a) \right). \tag{10}$$

The interpretation is quite simple: if you are above b shrink it to b and if you are below a increase it to a, otherwise do not change the value.

(v) Based on the previous answer write a function in python that solves the dual problem (8). It must take as input λ , a step-size η , labels \mathbf{y} , a Gram matrix \mathbf{K} and a stopping criterion. You can choose $\beta_0 = 0$ for simplicity.

Once the optimization problem is solved you get parameters β^* . With the conditions (6) the optimal θ^* is defined by $\forall i \in [n], \theta_i^* = \frac{1}{2\lambda} \beta_i^* y_i$. From the representer theorem, the optimal f^* used for classification is then $f^* = \sum_{i=1}^n \theta_i^* \kappa(\cdot, \mathbf{x}_i)$. A classification rule is just given by $\operatorname{sign}(f^*)$.

(vi) The goal now is to compare with the scikit-learn implementation. The SVM used in classification can be found in sklearn.svm.SVC. To compare both we will use the following d=2 dataset.

```
from sklearn.model_selection import train_test_split
from sklearn import datasets
X, y = datasets.make_moons(n_samples=500, random_state=42, noise=0.1)
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.5, shuffle=True
)
```

First plot the dataset with matplotlib and change the labels to match $\{+1, -1\}$ (by default the classes are $\{+1, 0\}$). For the rest of the practical exercise we will use the Gaussian kernel $\kappa(\mathbf{x}, \mathbf{y}) = \exp(-\|\mathbf{x} - \mathbf{y}\|_2^2)$.

- (vii) Based on question (v) create a SVM classifier in python that takes as input a dataset **X**, labels **y** a regularization parameter λ , and outputs the optimal SVM classifier sign(f^*) where $f^* = \sum_{i=1}^n \theta_i^* \kappa(\cdot, \mathbf{x}_i)$.
- (viii) Compare the performances on the test set of this classifier to the one of the scikit-learn implementation. Be careful on the influence of the hyperparameters: you must properly choose λ (you can choose λ in a grid so as to minimize the classification error on the training set for example, or do some proper cross-validation). Also be careful on the train/test split: the θ_i^* must be found by using the training data only!
- (ix) What are the performances when you use a linear kernel instead? Can you explain why?

Remark 1 (The correct implementation). The aim of this exercise to implement a SVM classifier. However, note that the optimization problem tackled is slightly different than the "traditional" SVM classifier that considers also a bias term $b \in \mathbb{R}$ and solves

$$\min_{f \in \mathcal{H}, b \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i(f(\mathbf{x}_i) + b)) + \lambda ||f||_{\mathcal{H}}^2.$$
 (11)

Despite being quite similar the resulting optimization problem is quite different, and a less direct to solve (a simple projected gradient descent cannot be used).

- Exercise 2: The quadratic Kernel ($\approx 1 \mathrm{H}$) -

What is the RKHS corresponding to the kernel $\kappa(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle^2$?

- Exercise 3 (Bonus): Positive definiteness of the Gaussian Kernel (≈ 1 H30) -

The purpose of this exercise is to show that the Gaussian kernel $\kappa(\mathbf{x}, \mathbf{y}) = \exp(-\|\mathbf{x} - \mathbf{y}\|_2^2/2\sigma^2)$ is a PD kernel for any $\sigma > 0$. In the following $\kappa_1, \kappa_2, \cdots$ are fixed PD kernels.

- (x) Show that $\gamma \kappa_1$ for any $\gamma > 0$ is a PD kernel.
- (xi) Show that $\kappa_1 + \kappa_2$ is a PD kernel.
- (xii) Suppose that $\kappa(\mathbf{x}, \mathbf{y}) := \lim_{m \to +\infty} \kappa_m(\mathbf{x}, \mathbf{y})$ exists for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$. Show that it defines a PD kernel.
- (xiii) Consider two $n \times n$ PSD matrices $\mathbf{K}_1, \mathbf{K}_2$ and the matrix $\mathbf{K}_1 \odot \mathbf{K}_2$ defined by $\forall (i,j) \in [n]^2$, $[\mathbf{K}_1 \odot \mathbf{K}_2]_{ij} = [\mathbf{K}_1]_{ij} [\mathbf{K}_2]_{ij}$ (this is known as the *Hadamard product* of two matrices). Show that $\mathbf{K}_1 \odot \mathbf{K}_2$ is a PSD matrix. Tips: for matrices \mathbf{A}, \mathbf{B} and $\mathbf{D} = \operatorname{diag}(\mathbf{x})$ show that we have $\langle \mathbf{D}\mathbf{A}, \mathbf{B}\mathbf{D} \rangle_F = \mathbf{x}^{\top}(\mathbf{A} \odot \mathbf{B})\mathbf{x}$.
- (xiv) Deduce that $\kappa(\mathbf{x}, \mathbf{y}) := \kappa_1(\mathbf{x}, \mathbf{y}) \kappa_2(\mathbf{x}, \mathbf{y})$ is a PD kernel.
- (xv) Consider $f: \mathcal{X} \to \mathbb{R}$ then show that $\kappa(\mathbf{x}, \mathbf{y}) := f(\mathbf{x}) \kappa_1(\mathbf{x}, \mathbf{y}) f(\mathbf{y})$ is a PD kernel.
- (xvi) From the previous answers prove that $\kappa(\mathbf{x}, \mathbf{y}) := \exp(-\|\mathbf{x} \mathbf{y}\|_2^2/2\sigma^2)$ is a PD kernel.