1. According to the degree 3 plot.

We can observe that the data

75 normal distribution by Residual

Plot and Normal Distribution Plot

Compare different degrees plots,

We can infer that degree 3 most

fits to the data by its Residual

Plot.

2. Y-E(Y)=(Xw-E)-E[Xw+E]=Xw+E-E[Xw]=E $Vor(Z)=E[(Z-E[Z])(Z-E[Z])^{T}]$ $Vor(\widehat{\omega})=E[(\widehat{\omega}-E[\widehat{\omega}])(\widehat{\omega}-E[\widehat{\omega}])^{T}]$

= E[((X^TX)⁻¹X^TY- E[(X^TX)⁻¹X^TY]) × ((X^TX)⁻¹X^TY- E[(X^TX)⁻¹X^TY])^T]

 $= (X^TX)^TX^T E[(Y-ELY1) \times ((X^TX)^TX^TY-E[(X^TX)^TX^TY])^T]$

 $= (X^TX)^TX^T E[(Y-E[Y])(Y-E[Y])]((X^TX)^TX^T)^T$

= (XTX)-1XT E(EET) ((XTX)-1XT)T

 $= (X^{\dagger}X)^{\dagger}X^{\dagger}(\nabla^{2}I)((X^{\dagger}X)^{\dagger}X^{\dagger})^{T}$

 $= \left(X^{\dagger} X \right)^{4} X^{\dagger} X \left(X^{\dagger} X \right)^{4} \mathcal{T}^{\geq}$

=(XTX)-12

- 3. (a) The yields increase as maturity when the maturity is over 50.
 - (b) The R2 values morease slowly after the oder of 3.
 - (c) When maturity is small, the residual is large. But when the maturity is larger than 60, the residual becomes a stable level.

 (d) By the two plots, we are able to infer that the data is normal

distribution.

