代数学1,第8回の内容の理解度チェックの解答

2024/11/21 担当:那須

 $\boxed{1}$ 4 次対称群 S_4 の元 σ, ρ, τ を

$$\sigma = (1\ 2)(3\ 4), \qquad \tau = (1\ 3)(2\ 4), \qquad \rho = (1\ 4)(2\ 3)$$

により定める. このとき部分群 (Klein の 4 元群) $V_4 = \{e, \sigma, \tau, \rho\}$ の演算表を完成せよ.

解答) 答えのみ記す.

a b	e	σ	τ	ρ
e	e	σ	τ	ρ
σ	σ	e	ρ	τ
τ	au	ρ	e	σ
ρ	ρ	au	σ	e

[2] (1) G を群とする. 部分群 $H \subset G$ が G の正規部分群であることの定義を述べよ.

解答) G の任意の元 a と H の任意の元 b に対し, $aba^{-1} \in H$ が成り立つ.

- (2) 次の群Gと部分群Hに対し、HがGの正規部分群になることを示せ、ただし、HがGの部分群であることは示さなくて (認めて) 良い.
 - (a) G が可換群, H は任意の部分群

解答) $a \in G, b \in H$ とする. G は可換群なので ab = ba. 従って $aba^{-1} = baa^{-1} = be = b \in H$ となる.

(b) G は群, H は G の中心 Z(G), すなわち

$$Z(G) = \{a \in G \mid$$
任意の $b \in G$ に対し $ab = ba\}$

解答) $a \in G, b \in Z(G)$ とする. b は G の任意の元と可換であるため, $aba^{-1} = baa^{-1} = be = b \in Z(G)$ となる.

(c) $G = S_n$ (n 次対称群), $H = A_n$ (n 次交代群)

解答) $\sigma \in S_n, \tau \in A_n$ とする. τ は偶置換であり、偶数個の互換の積として表される. σ が偶置換・奇置換のいずれであっても、 $\sigma\tau\sigma^{-1}$ は偶置換となるため、 $\sigma\tau\sigma^{-1} \in A_n$ となる.

(d) Gは2次の実正則行列全体のなす乗法群, すなわち

$$GL(2,\mathbb{R}) = \{A \mid A \text{ id } 2 \times \mathbb{E}$$
方行列で $\det(A) \neq 0\}$,

Hは、行列式が1に等しいものからなる部分群

$$SL(2,\mathbb{R}) = \{A \mid A \text{ は 2 次正方行列 } \text{で} \det(A) = 1\},$$

解答) $A \in GL(2,\mathbb{R}), B \in SL(2,\mathbb{R})$ とする. 行列式の性質により,

$$\det(ABA^{-1}) = \det A \cdot \det B \cdot \det A^{-1} = \det A \cdot 1 \cdot (\det A)^{-1} = 1$$

従って, $ABA^{-1} \in SL(2,\mathbb{R})$ となる.

 $\boxed{3}$ 群Gとその部分群Hにおいて、

$$a \sim b \iff a^{-1}b \in H$$

によって関係を定めると、 \sim は G 上の同値関係を定めることを示せ. すなわち、任意の $a,b,c \in G$ に対し

- (1) $a \sim a$ (反射律)
- (2) $a \sim b \Longrightarrow b \sim a$ (対称律)
- (3) $a \sim b$ かつ $b \sim c \Longrightarrow a \sim c$ (推移律)
- の3つが満たされることを示せ.

解答) 上記の3つの関係 (反射律, 対称律, 推移律) が満たされることを示せば良い.

- (1) H は G の部分群であり, H は単位元 e を含む. したがって $a^{-1}a = e \in H$ より, 任意の元 $a \in G$ に対し $a \sim a$ が成り立つ.
- (2) H は G の部分群であるため、H の任意の元の逆元が H に含まれる. したがって $a \sim b$ ならば、

$$b^{-1}a = (a^{-1}b)^{-1} \in H,$$

すなわち $b \sim a$ が成り立つ.

(3) $a \sim b$ かつ $b \sim c$ ならば, $a^{-1}b \in H$ かつ $b^{-1}c \in H$ である. H は G の演算について閉じている ため,

$$a^{-1}c = a^{-1}(b \cdot b^{-1})c = (a^{-1}b)(b^{-1}c) \in H.$$

したがって $a \sim c$ が成り立つ.