This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

11-116875

(43) Date of publication of application: 27.04.1999

(51) Int. Cl.

CO9D 11/00 B41J 2/01 B41M 5/00 7/24 G11B G11B 7/24

(21) Application number: 09-294946

(71) Applicant: TEIKOKU INK SEIZO KK

(22) Date of filing:

13. 10. 1997

(72) Inventor: TAKADA NAOTO

KATO CHIKAKO URANAKA REIKO

(54) IONIZING RADIATION-CURABLE INK AND PRINTED MATTER USING THE SAME

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain the subject ink that has sufficient receptivity in no need of long-time heating on its coating by admixing a liquid, water-soluble monomer and a water-absorbing polymer powder thereto.

SOLUTION: This ink contains (A) 100 pts. wt. of a liquid and water soluble monomer and (B) 60-120 pts. wt., per 100 pts. wt. of the component A, of a powder of waterabsorbing polymer. As a component A, is used a monomer that is polymerizable with radiation and compatible with water usually at room temperature at any ratio, for example, a (meth)acrylic ester of a polyhydric alcohol. The component B is a powder of a cross linked polyacrylic acid salt or of polyisobutylene preferably with an average particle size of 2-20 μ m. In the case where ultraviolet rays or visible rays are used as the irradiation, the formulation of a photo-polymerization initiator is recommended thereto in an amount of 2-5 wt. %.

LEGAL STATUS

[Date of request for examination] [Date of sending the examiner's decision of rejection] [Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出關公開發号

特開平11-116875

(43)公開日 平成11年(1989)4月27日

(51) Int.CL.	識別紀号	PI
CO 9 D 11/00		C09D 11/00
B41J 2/01		B41M 5/00 E
B41M 5/00		G11B 7/24 534B
GI1B 7/24	534	5 3 5 A
	5 3 5	B41J 3/04 101Y
		審査部球 京部球 商求項の数8 FD (全 4 円)
(21)出職番号	特顧平9-294946	(71) 出願人 591017250
		帝国インキ製造株式会社
(22)出顧日	平成9年(1997)10月13日	東京都隆区三田4-4-12
	·	(72) 発明者 高田 直人
		東京都港区三田4-4-12 帝国イン牛般
		造媒式会社内
		(72) 発明者 加藤 千賀子
		東京都港区三田4-4-12 帝国インキ製
		造株式会社内
		(72)発明者 消中 玲子
		東京都隆区三田4-4-12 帝国インキ製
		造株式会社内
		(74)代理人 弗理士 三好 千明

(54) 【発明の名称】 電磁性放射線硬化性インキ及びこれを用いた印刷物

(57)【要約】

【課題】 塗工に除して長時間の加熱を必要とすることなく。充分な受理性を有する電離性放射線硬化性インキを提供する。

【解決手段】 本発明の電解性放射線硬化性インキは、 液状の水溶性モノマーと吸水性ポリマー粉末とを含んで なる。ここで、水溶性モノマーとは、常温において水と 任意の比率で溶解し合うことのできる放射線重合性のモ ノマーである。その例としては多価アルコールの(メ タ)アクリル酸エステル、Nーアルキルアミノアルコー ルの(メタ)アクリル酸エステル、ポリエチレングリコール(メタ)アクリル酸エステル、Nーアルキルでミノアルコー ルの(メタ)アクリル酸エステル、Nーアルキル(メ タ)アクリル酸アミド、多価アルコールのビニルエーテ ルなどを挙げることができる。また、吸水性ポリマー粉 末とは分子構造的に多数の観水基を持つ水溶性高分子を 架橋して水および他の溶剤に対して不溶化した樹脂の粉 末である。

【特許請求の節囲】

【請求項 】】 液状の水溶性モノマーと吸水性ポリマー 粉末とを含んでなる電離性放射銀硬化性インキ。

【請求項2】 吸水性ポリマー粉末の平均粒径がり、5 ~35μmの筒囲であることを特徴とする請求項 1 記載 の電能性放射線硬化性インキ。

【請求項3】 吸水性ポリマーがポリアクリル酸の部分 ソーダ塩架橋物であることを特徴とする請求項 1 及び 2 記載の電離性放射銀硬化性インキ。

【請求項4】 モノマー可溶性のオリゴマー及びまたは 10 ボリマーをさらに含んでなる請求項1.2又は3記載の 電影性放射線硬化性インキ。

【請求項5】 水吸着性の有機または無機フィラーをさ らに含んでなる請求項1から4のいずれかに記載の電離 性放射線硬化性インキ。

【請求項6】 光重台開始剤をさらに含んでなる請求項 1から5のいずれかに記哉の電離性放射級硬化性イン

【請求項7】 合成樹脂基材上に、請求項1から6のい ずれかに記載されたインキによって印刷を施して得られ 20 た印刷物。

【請求項8】 合成樹脂基材がコンパクトデスクである ことを特徴とする請求項?記載の印刷物。

【発明の詳細な説明】

[0001]

【発明の周する技術分野】本発明は、電離性放射線硬化 性インキ及びこれを用いた印刷物に関する。

[0002]

【従来の技術】従来、紙やフィルム、仮などの益付にイ ングジェット印刷などを能す場合、インキの吸収を速 め、滲みを少なくするために、基材に受理層をコートす ることが行われている。受理圏形成用コート剤としては 水性媒体に水溶性ポリマーを溶解し、さらに、シリカ。 アルミナ、水酸化アルミニウムなどを充填剤として加え たものが用いられている。

【①①①3】また別のものとしては、液状の水溶性モノ マーに水吸着性の有機または無機充填剤を加え、これを 硬化させるインキなども提案されている。

[0004]

水性媒体を用いるコート剤は塗工に際して長時間の加熱 を必要とする。また前述の液状の水性性モノマーに充填 剤を加えた硬化性のインキは受理性の点で充分なもので はなかった。したがって、本発明の目的は、塗工に際し て長時間の加熱を必要とすることなく、充分な受理性を 有する電離性放射組硬化性インキを提供することであ る.

[0005]

【課題を解決するための手段】本発明は、液状の水溶性 モノマーと吸水性ポリマー紛末とを含んでなる電能性放 50

射線硬化性インキを提供する。

【①006】本発明において液状の水溶性モノマーと は、常温において水と任意の比率で溶解し合うことので きる放射設宜合性のモノマーである。その例としては多 価アルコールの (メタ) アクリル酸エステル, N-アル キルアミノアルコールの(メタ)アクリル酸エステル。 ポリエチレングリコール(メタ)アクリル酸エステル。 N-アルキル (メタ) アクリル酸アミド, 多価アルコー ルのビニルエーテルなどを挙げることができる。

【0007】さらに具体的な例としてはブタンジオール モノアクリレート、2-ヒドロキシエチルアクリレー ト、2-ヒドロキシエチルメタアクリレート,N、N-ジエチルアミノエチルアクリレート、N, Nージメチル アミノエチルアクリレート、N,N-ジメチルアミノエ チルメタアクリレート、N、Nージメチルアクリルアミ F. アクリロイルモルフォリン, 2-ヒドロキシエチル ビニルエーテルなどを挙げることができる。また、これ ちのモノマーの混合物を使用することもできる。

【0008】さらに、これらの水溶性モノマー100章 **豊部に対して80重量部以下の非水溶性モノマーを混合** して使用することもできる。またさらに重合性のオリゴ マーを併用することもできる。

【①①①9】非水溶性モノマーの例としては、フェノキ シエチルアクリレート,イソボルニルアクリレート,へ キサンジオールアクリレートなどを挙げることができ

【① ① 1 ① 】次に、本発明の必須成分である吸水性ポリ マー粉末について説明する。本発明における吸水性ボリ マー舒末とは分子機造的に多数の親水差を持つ水溶性高 30 分子を架橋して水および他の溶剤に対して不溶化した街 脂の粉末である。その例としてはポリアクリル酸塩架締 物、イソブチレン、マレイン酸共重合体架橋物、でんぷ ん、アクリル酸塩グラフト重合体架橋物,ポリビニルア ルコール架橋物、ポリエチレンイミン架橋物の粉末なで を挙げることができる。

【()() 1 1 】 さらに具体的には次に挙げる商品の紛末が 例示できる。すなわち、アラソープ(荒川化学)、ポイ ズSA (花王)、KIゲル (クラレ)、サンウエット (三津化成工業), スミカゲル(住友化学工業)、アリ 【発明が解決しようとする課題】しかしながら、前述の 46 アキープ(住友籍化)、アロンザップ(泉亜合成化学工 葉)、アクアリザーブ(日本台成化学工業)、アクアリ ック(日本院媒), ダイヤウエット(三菱化学). AR iDAL (Chemdal 米国). DRYTECH (Dow Chemical 米国). WATERLO CK (Grain Processing 米国)、S ANWET (Hoechst Celanese 米 国). AQUALIC (NA Industry 米 国) LUQUASORB (BASF ドイツ) などの 粉末である。

【①①12】殴水性ポリマー粉末の平均粒子径は一般的

に0.5~35 µ血程度が好ましい。 さらに好ましく は、2~20 mm程度である。粒子径が0.5 mm以下 あるいは35μm以上ではインキの印刷特性が失われ、 あるいはED刷物の受理性が劣ることがある。

【0013】本発明の放射性硬化性インキは、液状の水 溶性モノマーと吸水性ポリマー粉末とを含んでなるもの であるが、好ましくは吸水性ポリマー紛末の登は液状の 水溶性モノマー100重量部当たり、1~300重量部 使用される。さらに好ましくは、吸水性ポリマー紛末の 置は液状の水溶性モノマー100重星部当たり、30~ 19 150重量部使用され、一層好ましくは60~120重 置部使用される。吸水性ポリマー粉末の置が300重置 部を超えるとインキの印刷特性が低下することがあり、 また1 重置部未満では受理性能が低下することがある。 【①①14】また本発明において、吸水性ポリマー粉末

以外のフィラーとして、シリカ、アルミナ、水酸化アル ミニウム、プロティーン、バルブなどの粉末を必要に応 じて併用することもできる。

【0015】その他の添加物の例としては、オリゴエス エステルのオリゴマー, オリゴウレタンアクリレートな どのオリゴマーを挙げることができる。またモノマー可 溶性のポリマーを挙げることができる.

【① ① 1 6 】さらに詳細なオリゴマーの例は加藤清視著 「紫外銀硬化システム」株式会社総合技術センター発行 (平成元年2月28日発行)の第149~333頁に示 されている。

【0017】またポリマーの例としては (メタ) アクリ レート(共)重合体,塩化ビニル酢酸ビニル共重合体, ポリエステル、セルローズアセテート、ブチレート、ブ 30 チラール樹脂などを挙げることがでる。

【①①18】本発明においてモノマーの重合を進行させ るための電離性放射線としてはα線、r線、X線、紫外 組 可視光観などを使用することができる。

【①①19】放射線として紫外線、可視光線などを使用 する場合は、重合を開始するための光重合開始剤が併用 される。

【0020】したがって本発明の他の構成にかかる電離 性放射銀硬化性インキは、モノマー類の重合を開始する ための光重台開始剤を含有するものを含むものである。 【0021】光重台開始剤の例としては、光により発生 したラジカルや他の活性種が上記モノマー。オリゴマー 中の重合性二重結合と反応するものであれば特に制限は ない。例としては、ベンゾインエチルエーテル、2-ヒ ドロキシー2-メチルー1-フェニルプロパン-1-オ ン、1-ヒドロキシシクロヘキシルフェニルケトン、2 ーメチルー1-(4-(メチルチオ)フェニル)-2-モルフォリノプロパノン・1 , ビスアシルフォスフィン オキサイド等を挙げることができる。これらの光重合関 始削は1種或は2種以上を組み合わせて用いることがで

【0022】さらに光重合開始剤の例としては、加醛清 視著「紫外線硬化システム」株式会社総合技術センター 発行(平成元年2月28日発行)の第65~148頁に 記載されている光重合開始剤などを挙げることができ る。これらの光重合開始剤の使用量は特に制限されてい ないが、一般に1~10重量%程度とのましくは2~5 重量%程度使用される。

【①023】さらに本発明のインキは必要に応じてレベ リング剤、消泡剤、染料、顔料などを含有してもよい。 【①①24】本発明のインキはグラビア印刷、フレキソ 印刷、スクリーン印刷など一般にいずれの印刷法によっ ても印刷できるが、印刷層に充分な受理性能を与えるた めには、印刷層の厚みを好ましくは5~100μmさら に好ましくは10~40μm程度にすることが望まし

【①①25】したがって印刷層の厚みを上記範囲に調整 し易いスクリーン印刷が最も好ましい例である。 また本 テルアクリレート,重台性二重結合を有するアクリル酸 20 発明のインキはコート祛によってコートして使用するこ ともできる。

> 【0026】いずれにしても本発明のインキは印刷やコ ートの後に電影性放射視や光重台開始剤に作用する光を 照射することによって硬化され印刷層を与える。

> 【0027】とのようにして得られた印刷層は受理性に 言み、好ましい受理層を提供するものである。しかもこ の受理圏は紙のみならず、プラスチックフィルム、プラ スチック板、金属板などの基材の上にも容易に形成でき

【0028】またこの受理層上にインクジェット印刷な どを縮すと、印刷されたインクは速やかに受理層に受理 吸収されるので、ほとんど滲みなしにインクジェット印 剧を行うことができる。

【0029】特に本発明のインキを使用して、光情報媒 体であるコンパクトディスクの裏面に受理層を設けれ は、その上に水性インクジェット印刷などで、そのコン パクトディスクの用途、特性などを容易に記録すること ができるので極めて利用価値が高い。

[0030]

【実施例】以下、実施例を挙げて説明するが、基村上に 印刷された受理層の性能は、受理層上にインクジェット 印刷を施したときの画像の鮮明度で判定した。

[0031] 実能例1~4および比較例1~3 下記表 1 に示す重置割合で各種原料を配合し、これらを 親왉機を用いて分散させ、 繁外級硬化性インキを調整し

[0032]

【表1】

た.

(4)

待関平11-116875

) .									
	T	実施資				比較例			
The same and same to a	1	2	3	4	,	2	3		
アクリル酸エステル共革合体	8	8	8	8	8	8	8		
ポリアクリル酸ナトリウム発信体	39	21	2	22	0	o	0		
ウレタンアクリレート	3	3	3	а	3	3	3		
アクリロイルモルフォリン	46	47	51	57	47	51	57		
光重合實施劑	3	3	3	3	3	3	3		
消泡剤および分散剤	1	1	l i	1	1	1	1		
相紛宋	0	17	32	0	17	32	0		
シリカ粉末	0	0	ű	6	Ü	0	6		

このようにして調整したインキをボリカーボネート製コ ンパクトディスクの裏面に300メッシュのスクリーン - を用いてスクリーン印刷した後、紫外線を照射して受理 層を形成した。

【0033】次に、インクジェットプリンターを用い、 水性カラーインキで受理層上に印刷を縮し、画像の鮮明* *度(発色性の良いことと滲みの少ないことの総合評価) を評価した。その結果を表2に示した。表2における評 価は ②: 非常に良好、○:良好、△:やや不良、×: 不良 を示す。

[0034]

【表2】

	実 施例				比較例			
	1	2	3	4	1	2	3	
国僚の鮮明度	0	0	0	0	×	Δ	×	

【発明の効果】以上説明した通り、本発明の電解放射線 硬化性インキにより、基材全面だけでなく、必要部分の みを印刷することもでき、しかも水を蒸発する工程を必 要とせずに速やかに印刷を完了することができる。そし て得られた印刷層は、受理性に富んだものとなり、よっ て、好ましい受理層を有する印刷物を提供することがで

きる。また、彼印刷物がコンパクトディスクであれば、 その上に水性インクジェット印刷などで、当該コンパク トディスクの用途、特性などを容易に記録することが可 能となる。

[0035]