Guidelines of B.Sc. (H) Computer Science VI Semester/ B.A. Programme V Semester/ Generic Elective VII Semester (NEP UGCF 2022)

MACHINE LEARNING

DSC17/DSC-A5/GE7c

(Effective from Academic Year 2024-25)

S.No	Topic	Chapter	Reference	No of Hours
1.	Unit 1: Introduction Basic definitions and concepts, key elements, supervised and unsupervised learning, introduction to reinforcement learning, applications of ML.	Chapter 1	[3]	5
2.	Unit 2: Preprocessing Feature scaling, feature selection methods, dimensionality reduction (Principal Component Analysis).	Chapter 6 (6.1.1, 6.1.2) Chapter 12 (12.2)	[2] [2]	6
3.		Chapter 3 (3.1, 3.2)	[2]	12
	over-fitting, regularization. Regression evaluation metrics.	Chapter 6 (6.2.1)	[2]	
4.	Unit 4: Classification Decision trees, Naive Bayes classifier, logistic regression,	Chapter 3 (3.1, 3.2, 3.3, 3.4) Chapter 6 (6.1, 6.2, 6.7, 6.9) Chapter 4 (4.3.1, 4.3.2, 4.3.3, 4.3.4)	[1] [1] [2]	
	k-nearest neighbor classifier, perceptron, multilayer perceptron, neural networks,	Chapter 8 (8.1, 8.2) Chapter 10 (10.1, 10.2, 10.7)	[1]	15
	Support Vector Machine (SVM), Classification evaluation metrics	Chapter 9 (9.1, 9.2, 9.3, 9.4) Chapter 5 (5.1) Chapter 19 (19.7)	[2] [2] [3]	
5	Unit 5: Clustering Approaches for clustering, distance metrics, K-means clustering, hierarchical clustering.	Chapter 12 (12.4.1, 12.4.2)	[2]	7

Essential/recommended readings

- 1. Mitchell, T.M. Machine Learning, McGraw Hill Education, 2017.
- 2. James, G., Witten. D., Hastie. T., Tibshirani., R. An Introduction to Statistical Learning with Applications in Python, Springer, 2023.
- 3. Alpaydin, E. Introduction to Machine Learning, MIT press, Third Edition.

Additional References

- 1. Flach, P., Machine Learning: The Art and Science of Algorithms that Make Sense of Data, Cambridge University Press, 2015.
- 2. Christopher & Bishop, M., Pattern Recognition and Machine Learning, New York: Springer-Verlag, 2016.
- 3. Sebastian Raschka, Python Machine Learning, Packt Publishing Ltd, 2019.

Practicals

For practical Labs for Machine Learning, students may use softwares like MATLAB/ Octave/ Python/ R. Utilize publically available datasets from online repositories like https://data.gov.in/ and https://archive.ics.uci.edu/ml/datasets.php

For evaluation of the regression/classification models, perform experiments as follows:

- Split datasets into training and test sets and evaluate the decision models
- Perform k-cross-validation on datasets for evaluation

Report the efficacy of the machine learning models as follows:

- MSE and R² score for regression models
- Accuracy, TP, TN, FP, TN, error, Recall, Specificity, F1-score, AUC for classification models

For relevant datasets make prediction models for the following:

- 1. Naïve Bayes Classifier
- 2. Simple Linear Regression
- 3. Multiple linear regression
- 4. Polynomial Regression
- 5. Lasso and Ridge Regression
- 6. Logistic regression
- 7. Artificial Neural Network
- 8. K-NN classifier
- 9. Decision tree classification
- 10. SVM classification
- 11. K-means clustering
- 12. Hierarchical clustering