0.1 Теорема поста

Теорема 0.2. Множество булевых функций полно тогда и только тогда, когда оно не содержится (целиком) ни в одном из классов Поста.

Доказательство. Необходимость. Полагая, что множество булевых функций содержится в каком-то классе Поста, получим, в силу замкнутости каждого класса Поста, что формулами над этим множеством могут быть представлены только функции этого класса, а, стало быть, не может быть представлена ни одна функция, не содержащаяся ни в одном из классов Поста, например, штрих Шеффера. Значит, такое множество не может быть полным.

Достаточность. Достаточно показать, что формулами над множеством \mathcal{F} , удовлетворяющем условию теоремы, могут быть представлены функции какого-то уже известного полного множества. В качестве такого множества можно взять такое, состоящее из конъюнкции и дизъюнкции.

Так как множество $\{*, \overline{\ }\}$ является полным, достаточно указать способ построения формул для конъюнкции и отрицания над базисом \mathcal{F} , который удовлетворяет условию теоремы Поста, то есть не содержится ни в одном из классов Поста, что можно выразить следующим образом:

$$(\forall C \in \{T_0, T_1, S, M, L\})(\exists f_c \in F \setminus C)$$

1 случай) Представим константу 1:

$$1 = f_0(x, \dots, x),$$

а константу 0 представим с использованием какой-нибудь функции $g_1 \in F \setminus T_1$:

$$0 = g(1, \dots, 1) = g(f(x, \dots, x), \dots, f(x, \dots, x))$$

Имея формулы для обеих констант, отрицание представим формулой, используя немонотонную функцию.

2 случай) Всякая функция $f_0 \in F \setminus T_0$ не сохраняет и константу 1, а всякая функция $f_1 \in F \setminus T_1$ не сохраняет и константу 0. В этом случае сразу получаем формулу для отрицания.

$$\overline{x} = f_0(x, \dots, x)$$

Тут используется лемма о несамодвойственной функции.

Элементы математической логики

1.1 Предпосылки возникновения математической логики

Пример Гиберта.

$$Y = \{x : |x| \ge 3\}$$
 х - множество

То есть возьмем такие примеры и получим:

$$\{1,2,3\} \in Y, \{1,2,3,4\} \in Y, \{1,2,3,4,5\} \in Y \implies Y \in Y$$

Определение 1. Нормальные множества - это такие множества, которые не содержат самих себя.

Пусть мы хотим найти все Нормальные множества: $Z = \{x : x \notin x\} \quad Z \notin Z \implies Z \in Z \implies Z \notin Z.$ Это называется парадокс Рассела.

1.2 Понятие формальной аксиоматической теории

Определение 2.
$$\mathcal{T} = (\underbrace{V}_{\text{алфавит формулы Mh. аксиом Mh. правил вывода}}, \underbrace{\mathcal{F}}_{\text{Мн. правил вывода}})$$
 называется теорией.

Определение 3. Фиксируется некоторое множество $\Gamma \subseteq \mathcal{F}$ - гипотеза. Среди гипотез нет ни одной аксиомы: $\Gamma \cap \mathcal{A} = \varnothing$.

Определение 4. Вывод теории \mathcal{T} из множества гипотез Γ - это последовательность формул (конечная или бесконечная): $\theta_0, \theta_1, \ldots, \theta_n, \ldots, \quad n \geq 0$, где для каждого $\forall i \geq 0 : 1$) $\theta_i \in \Gamma$, 2) $\theta_i \in \mathcal{A}$, 3) существует правило вывода в \mathcal{P} : $\frac{\theta_{j1} \ldots \theta_{jm}}{\theta_i}$, где $j_1, \ldots, j_m < j$.

Если $\Phi = \theta_i$, то $\Gamma \vdash_{\mathcal{T}} \Phi$. Если $\Gamma = \emptyset$, то пишем $\vdash_{\mathcal{T}} \Phi$.

Теорема 1.1. Если формула Φ выводима из гипотезы ($\Gamma \vdash_{\mathcal{T}} \Phi$), то для любого $\Gamma' \supset \Gamma$ верно $\Gamma' \vdash_{\mathcal{T}} \Phi$.

Следствие. Если $\vdash_{\mathcal{T}} \Phi$, то для любого $\Gamma : \Gamma \vdash_{\mathcal{T}} \Phi$.