POLITECNICO DI MILANO

Elettrotecnica

Parte 4: Doppi Bipoli (caso tempo invariante)

Prof. Ing. Giambattista Gruosso, Ph. D.

Dipartimento di Elettronica, Informazione e Bioingegneria

Indice

- Doppi Bipoli: generalizzazione
- Matrice R
- Matrice G
- Matrice H
- Matrice H'
- Matrice T
- Matrice T'
- Definzione di Potenza
- Andrebbero inseriti i collegamenti tra i doppii bipoli e le proprietà dei doppi bipoli.

POLITECNICO DI MILANO

POLITECNICO DI MILANO

Prof. G. Gruosso

Si chiama m-polo un componente elettrico racchiuso da una superficie Σ , dalla quale fuoriescono m morsetti.

Tripoli come doppi bipoli

POLITECNICO DI MILANO

POLITECNICO DI MILANO

Prof. G. Gruosso

Si chiama n-bipolo un componente elettrico racchiuso da una superficie Σ , dalla quale fuoriescono n-coppie di morsetti.

POLITECNICO DI MILANC

Prof. G. Gruosso

La proprietà principali del n-bipolo sono:

 La corrente entrante dal morsetto k è uguale a quella uscente dal morsetto k' (k=1,... n);

 La tensione tra due morsetti (k, k') qualunque si può esprimere come differenza di potenziale tra tali morsetti.

POLITECNICO DI MILANO

Prof. G. Gruosso

Tra i possibili n-bipoli risulta particolarmente interessante il doppio bipolo.

La caratteristica del doppio bipolo è descritta dalla relazione:

$$F(I_1,I_2,V_1,V_2)=0$$

Il nostro obiettivo sarà determinare l'equazione caratteristica

Caratterizzazione del doppio Bipolo

POLITECNICO DI MILANO

$$\begin{array}{c|c} - & & \\ \hline &$$

Prof. G. Gruosso

$$\begin{cases} v_1 = r_{11}i_1 + r_{12}i_2 \\ v_2 = r_{21}i_1 + r_{22}i_2 \end{cases}$$

Rappresentazione In corrente

$$\begin{cases} v_1 = h_{11}i_1 + h_{12}v_2 \\ i_2 = h_{21}i_1 + h_{22}v_2 \end{cases}$$

Rappresentazione Ibrida

$$\begin{cases} i_1 = g_{11}v_1 + g_{12}v_2 \\ i_2 = g_{21}v_1 + g_{22}v_2 \end{cases}$$

Rappresentazione In tensione

$$\begin{cases} i_1 = h'_{11}v_1 + h'_{12}i_2 \\ v_2 = h'_{21}v_1 + h'_{22}i_2 \end{cases}$$

Rappresentazione Ibrida inversa

Caratterizzazione del doppio Bipolo

POLITECNICO DI MILANO

Prof. G. Gruosso

Un modo per caratterizzare il doppio bipolo è quello di imporre, tramite dei generatori esterni due grandezze e di valutare le rimanenti due.

Nel caso il doppio bipolo sia costituito da resistori lineari passivi è possibile applicare il principio di sovrapposizione degli effetti.

Caratterizzazione in tensione

POLITECNICO DI MILANO

Prof. G. Gruosso

Se le variabili indipendenti sono le tensioni si ha (caratterizzazione in tensione del doppio bipolo):

$$I_1 = G_{11}V_1 + G_{12}V_2$$
$$I_2 = G_{21}V_1 + G_{22}V_2$$

ovvero in forma matriciale:

$$\underline{I} = \mathbf{G} \cdot \underline{\mathbf{V}}$$

G è la matrice delle conduttanze del doppio bipolo.

Convenzione degli utilizzatori

Caratterizzazione in tensione(prove semplici)

POLITECNICO DI MILANO

Prof. G. Gruosso

Gli elementi della diagonale principale della matrice delle conduttanze (autoconduttanze) saranno dati da:

$$G_{11} = \frac{I_1}{V_1} \bigg|_{V_2 = 0}$$

$$G_{22} = \frac{I_2}{V_2} \bigg|_{V_1 = 0}$$

Caratterizzazione in tensione

POLITECNICO DI MILANO

Prof. G. Gruosso

Gli elementi della diagonale secondaria della matrice delle conduttanze (transconduttanze) saranno dati da:

Caratterizzazione in corrente

POLITECNICO DI MILANO

Prof. G. Gruosso

Se le variabili indipendenti sono le correnti si ha (caratterizzazione in corrente del doppio bipolo):

$$V_1 = R_{11}I_1 + R_{12}I_2$$
 ovvero in forma matriciale:
 $V_2 = R_{21}I_1 + R_{22}I_2$
$$\underline{V} = \mathbf{R} \cdot \underline{I}$$

$$\underline{V} = \mathbf{R} \cdot \underline{I}$$

R è la matrice delle resistenze del doppio bipolo.

Convenzione degli utilizzatori

Caratterizzazione in corrente

POLITECNICO DI MILANO

Prof. G. Gruosso

Gli elementi della diagonale principale della matrice delle resistenze (autoresistenze) saranno dati da:

$$R_{11} = \frac{V_1}{I_1} \bigg|_{I_2 = 0}$$

$$R_{22} = \frac{V_2}{I_2} \bigg|_{I_1 = 0}$$

Caratterizzazione in corrente

Gli elementi fuori della diagonale principale della matrice delle resistenze (mutue resistenze) saranno dati da:

POLITECNICO DI MILANO

$$R_{12} = \frac{V_1}{I_2} \bigg|_{I_1 = 0}$$

$$R_{21} = \frac{V_2}{I_1} \bigg|_{I_2 = 0}$$

Esempi

POLITECNICO DI MILANO

$$G_{22} = G_{11} = \frac{I_1}{V_1} \bigg|_{V_2 = 0} = \frac{3}{8R}$$

$$\begin{array}{c|c}
 & I_1 \\
 & R \\
 & V_1 \\
 & R \\
 & 1'
\end{array}$$

$$G_{12} = G_{21} = \frac{I_2}{V_1} \bigg|_{V_2 = 0} = -\frac{1}{8R}$$

Esempi – Passaggio da rappresentazione in tensione a rappresentazione in corrente

$$\begin{cases} i_1 = G_{11}v_1 + G_{12}v_2 \\ i_2 = G_{21}v_1 + G_{22}v_2 \end{cases}$$

 $\begin{cases} i_{1} = G_{11}v_{1} + G_{12}v_{2} \\ i_{2} = G_{21}v_{1} + G_{22}v_{2} \end{cases} \Rightarrow \begin{cases} v_{1} = \frac{i_{1} - G_{12}v_{2}}{G_{11}} \\ v_{2} = \frac{i_{2} - G_{21}v_{1}}{G_{22}} \end{cases}$

$$\begin{cases} v_1 = \frac{G_{22}}{G_{22}G_{11} - G_{12}G_{21}} i_1 - \frac{G_{12}}{G_{22}G_{11} - G_{12}G_{21}} i_2 \\ v_2 = -\frac{G_{21}}{G_{22}G_{11} - G_{12}G_{21}} i_1 + \frac{G_{11}}{G_{22}G_{11} - G_{12}G_{21}} i_2 \end{cases}$$

Esempi – Presenza di Generatore pilotato

POLITECNICO DI MILANO

R₁ is R₂

Rappresentazione in corrente

$$\begin{cases} R_{11} = \frac{V_1}{I_1} = R_1 - R \\ R_{21} = \frac{V_2}{I_1} = -R \end{cases}$$

$$\begin{cases} R_{22} = \frac{V_2}{I_2} = R_2 - R \\ R_{12} = \frac{V_1}{I_2} = -R \end{cases}$$

Caratterizzazione ibrida

POLITECNICO DI MILANO

Prof. G. Gruosso

X vettore degli ingressi Y vettore delle uscite.

Convenzione degli utilizzatori

Caratterizzazione ibrida

POLITECNICO DI MILANO

Prof. G. Gruosso

I parametri ibridi *h* (di prima specie) risultano così definiti:

$$h_{11} = \frac{V_1}{I_1} \bigg|_{V_2 = 0}$$

Resistenza di ingresso con porta secondaria in c.c.

$$h_{21} = \frac{I_2}{I_1} \bigg|_{V_2 = 0}$$

Guadagno di corrente con porta secondaria in c.c.

Caratterizzazione ibrida

POLITECNICO DI MILANO

Prof. G. Gruosso

$$h_{22} = \frac{I_2}{V_2} \bigg|_{I_1 = 0}$$

Conduttanza di uscita con porta primaria a vuoto.

Attenuazione in tensione con porta primaria a vuoto.

Caratterizzazione ibrida inversa

POLITECNICO DI MILANO

Prof. G. Gruosso

Convenzione degli utilizzatori

Caratterizzazione ibrida inversa

POLITECNICO DI MILANO

Prof. G. Gruosso

I parametri ibridi h' (di seconda specie) risultano così definiti:

$$h'_{11} = \frac{I_1}{V_1} \bigg|_{I_2 = 0}$$

Conduttanza di ingresso con porta secondaria a vuoto

$$h'_{21} = \frac{V_2}{V_1} \bigg|_{I_2 = 0}$$

Guadagno di tensione con porta secondaria a vuoto.

Caratterizzazione ibrida inversa

POLITECNICO DI MILANO

Prof. G. Gruosso

$$h'_{22} = \frac{V_2}{I_2} \bigg|_{V_1 = 0}$$

Resistenza di uscita con porta primaria in c.c.

$$\begin{array}{c|c}
 & I_1 \\
\hline
V_1 = 0 \\
\hline
V_1
\end{array}$$

$$\begin{array}{c|c}
 & I_2 & 2 \\
\hline
V_2 & \downarrow & \downarrow \\
\hline
D & 1' & \downarrow \\
\end{array}$$

$$\begin{array}{c|c}
 & h'_{12} = -1 \\
\hline
D & 2'
\end{array}$$

Attenuazione in corrente con porta primaria in c.c.

Esempi (passaggio di rappresentazione metodo alternativo)

POLITECNICO DI MILANO

 $v_1 = r_{11}i_1 + r_{12}i_2$ $v_2 = r_{21}i_1 + r_{22}i_2$

$$v_1 = h_{11}i_1 + h_{12}v_2$$
$$i_2 = h_{21}i_1 + h_{22}v_2$$

$$h_{11} = \frac{v_1}{i_1}\Big|_{v_1=0}$$

$$h_{11} = \frac{v_1}{i_1}\Big|_{v_2=0}$$
 $h_{21} = \frac{i_2}{i_1}\Big|_{v_2=0}$

(si pone
$$v_2 = 0$$
)

$$v_2 = 0$$

$$v_2 = 0$$
 \Rightarrow $v_1 = r_{11}i_1 + r_{12}i_2$ $0 = r_{21}i_1 + r_{22}i_2$

$$i_{2} = -\frac{r_{21}}{r_{22}}i_{1}$$

$$v_{1} = \left(r_{11} - r_{12} \frac{r_{21}}{r_{22}}\right)i_{1}$$

$$h_{11} = \left(r_{11} - r_{12} \frac{r_{21}}{r_{22}}\right)$$

$$h_{21} = -\frac{r_{21}}{r_{22}}$$

Esempi (passaggio di rappresentazione metodo alternativo)

POLITECNICO DI MILANO

$$v_1 = r_{11}i_1 + r_{12}i_2$$
$$v_2 = r_{21}i_1 + r_{22}i_2$$

$$v_1 = h_{11}i_1 + h_{12}v_2$$
$$i_2 = h_{21}i_1 + h_{22}v_2$$

$$h_{12} = \frac{v_1}{v_2}\Big|_{i_1=0}$$
 $h_{22} = \frac{i_2}{v_2}\Big|_{i_1=0}$

$$h_{22} = \frac{i_2}{v_2} \bigg|_{i_1 = 0}$$

(si pone
$$i_1 = 0$$
)

$$i_1 = 0$$

$$i_1 = 0$$
 $v_1 = r_{12}i_2$ $v_2 = r_{22}i_2$

$$i_{2} = \frac{1}{r_{22}} v_{2}$$

$$v_{1} = \frac{r_{12}}{r_{22}} v_{2}$$

$$h_{12} = \frac{r_{12}}{r_{22}} \qquad h$$

$$h_{22} = \frac{1}{r_{22}}$$

POLITECNICO DI MILANO

$$\begin{cases} H_{11} = \frac{V_1}{I_1} = R_1 + \frac{R_3 R_2}{R_2 + R_3} \\ H_{21} = \frac{I_2}{I_1} = -\frac{R_3}{R_2 + R_3} \end{cases}$$

$$R_1$$
 R_2
 V_1
 R_3
 V_2

$$\begin{cases} H_{22} = \frac{I_2}{V_2} = R_2 + R_3 \\ H_{12} = \frac{V_1}{V_2} = \frac{R_3}{R_2 + R_3} \end{cases}$$

CARATTERIZZAZIONE MEDIANTE MATRICE DI **TRASMISSIONE**

POLITECNICO DI MILANO

Prof. G. Gruosso

$$V_{1} = t_{11}V_{2} + t_{12}I_{2}$$

$$I_{1} = t_{21}V_{2} + t_{22}I_{2}$$

$$Y = T \cdot X$$

$$V_{2} = t'_{11}V_{1} + t'_{12}I_{1}$$

$$I_{2} = t'_{21}V_{1} + t'_{22}I_{1}$$

$$\mathbf{Y'} = \mathbf{T'} \cdot \mathbf{X'}$$

$$\mathbf{Y'} = \mathbf{T'} \cdot \mathbf{X'}$$

Convenzione dei generatori sulla porta 2

CARATTERIZZAZIONE MEDIANTE MATRICE DI TRASMISSIONE

POLITECNICO DI MILANO

Prof. G. Gruosso

Si osserva che <u>non è possibile imporre</u> contemporaneamente corrente e tensione alla stessa porta: pertanto, i parametri si determinano alimentando dalla porta di uscita (grandezza a numeratore del rapporto che definisce il parametro) e valutando le grandezze di ingresso corrispondenti.

CARATTERIZZAZIONE MEDIANTE MATRICE DI TRASMISSIONE

POLITECNICO DI MILANO

Prof. G. Gruosso

$$t_{11} = \frac{V_1}{V_2} \bigg|_{I_2 = 0}$$

Rapporto di tensione con porta secondaria aperta.

$$t_{12} = \frac{V_1}{I_2} \bigg|_{V_2 = 0}$$

Trans-resistenza con porta secondaria in corto circuito.

CARATTERIZZAZIONE MEDIANTE MATRICE DI TRASMISSIONE

POLITECNICO DI MILANO

Prof. G. Gruosso

Trans-conduttanza con porta secondaria aperta.

Rapporto di corrente con porta secondaria in corto circuito.

Riepilogo

POLITECNICO DI MILANO

	R	G	H	\mathbf{H}'	T	T'
R	$egin{array}{ccc} m{r}_{\!\!\!\!\!\!11} & m{r}_{\!\!\!\!\!\!12} \ m{r}_{\!\!\!\!\!\!21} & m{r}_{\!\!\!\!\!22} \end{array}$	$\begin{array}{c c} \underline{g_{22}} & -\underline{g_{12}} \\ \Delta G & \Delta G \\ -\underline{g_{21}} & \underline{g_{11}} \\ \Delta G & \Delta G \end{array}$	$ \begin{array}{c cccc} $	$ \frac{\frac{1}{h'_{11}} - \frac{h'_{12}}{h'_{11}}}{\frac{h'_{21}}{h'_{11}} - \frac{\Delta H'}{h'_{11}}} $	$\begin{array}{c c} A & \Delta T \\ \hline C & C \\ \hline 1 & D \\ \hline C & C \\ \end{array}$	$\begin{array}{c c} \underline{D'} & \underline{1} \\ \underline{C'} & \underline{C'} \\ \underline{\Delta T'} & \underline{A'} \\ \underline{C''} & \underline{C''} \end{array}$
G	$\begin{array}{ccc} \frac{r_{22}}{\Delta R} & -\frac{r_{12}}{\Delta R} \\ -\frac{r_{21}}{\Delta R} & \frac{r_{11}}{\Delta R} \end{array}$	g ₁₁ g ₁₂ g ₂₁ g ₂₂	$\begin{array}{ccc} \frac{1}{h_{11}} & -\frac{h_{12}}{h_{11}} \\ \frac{h_{21}}{h_{11}} & \frac{\Delta H}{h_{11}} \end{array}$	$\begin{array}{c c} \hline h_{11}' & \hline h_{11}' \\ \hline \Delta H' & h_{12}' \\ \hline h_{22}' & h_{22}' \\ - \frac{h_{21}'}{h_{22}'} & \frac{1}{h_{22}'} \\ \end{array}$	$\begin{array}{cc} \frac{D}{B} & -\frac{\Delta T}{B} \\ -\frac{1}{B} & \frac{A}{B} \end{array}$	$-\frac{\frac{A'}{B'}}{\frac{\Delta \mathbf{T}'}{B'}} -\frac{1}{\frac{B'}{B'}}$
Н	$ \frac{\Delta R}{r_{22}} $ $ \frac{r_{12}}{r_{22}} $ $ \frac{r_{22}}{r_{21}} $ $ \frac{1}{r_{22}} $	$ \begin{array}{c c} \underline{1} & \underline{g_{12}} \\ \underline{g_{11}} & \underline{g_{11}} \\ \underline{g_{21}} & \underline{\Delta G} \\ \underline{g_{11}} & \underline{g_{11}} \end{array} $	h_{11} h_{12} h_{21} h_{22}	$\begin{array}{ccc} \frac{h'_{22}}{\Delta H} & -\frac{h'_{12}}{\Delta H} \\ -\frac{h'_{21}}{\Delta H} & \frac{h'_{11}}{\Delta H} \end{array}$	$\begin{array}{ccc} \frac{B}{D} & \frac{\Delta T}{D} \\ -\frac{1}{D} & \frac{C}{D} \end{array}$	$-\frac{\frac{B'}{A'}}{\frac{\Delta T'}{A'}} \frac{\frac{1}{A'}}{\frac{C'}{A'}}$
H'	$ \frac{1}{r_{11}} - \frac{r_{12}}{r_{11}} \\ \underline{r_{21}} - \frac{\Delta R}{r_{11}} $	$ \begin{array}{c c} \underline{\Delta G} & \underline{g}_{12} \\ \underline{g}_{22} & \underline{g}_{22} \\ \underline{g}_{21} & \underline{1} \end{array} $	$\begin{array}{ccc} \frac{h_{22}}{\Delta \mathbf{H}} & -\frac{h_{12}}{\Delta \mathbf{H}} \\ -\frac{h_{21}}{\Delta \mathbf{H}} & \frac{h_{11}}{\Delta \mathbf{H}} \end{array}$	h'_{11} h'_{12} h'_{21} h'_{22}	$\begin{array}{c} \frac{C}{A} & -\frac{\Delta \mathbf{T}}{A} \\ \frac{1}{A} & \frac{B}{A} \end{array}$	$\begin{array}{cc} \frac{C'}{D'} & -\frac{1}{D'} \\ \frac{\Delta \mathbf{T'}}{D'} & \frac{A'}{D'} \end{array}$
Т	$\begin{array}{c c} r_{21} & r_{21} \\ \hline 1 & r_{22} \end{array}$	$ \begin{array}{cccc} -\underline{g_{22}} & -\underline{1} \\ \underline{g_{21}} & \underline{g_{21}} \\ -\underline{\Delta G} & \underline{g_{11}} \\ \underline{g_{21}} & \underline{g_{21}} \end{array} $	$-\frac{\Delta H}{h_{21}}$ $-\frac{h_{11}}{h_{21}}$ $-\frac{h_{21}}{h_{21}}$ $-\frac{1}{h_{21}}$	$\begin{array}{c c} \frac{1}{h'_{21}} & \frac{h'_{22}}{h'_{21}} \\ \frac{h'_{11}}{h'_{21}} & \frac{\Delta H'}{h'_{21}} \end{array}$	A B C D	$ \frac{D'}{\Delta T'} \frac{B'}{\Delta T'} $ $ \frac{C'}{\Delta T'} \frac{A}{\Delta T'} $
T'	r_{21} r_{21} r_{22} ΔR r_{21} r_{12} r_{12} r_{12} r_{12} r_{12}	$ \begin{array}{c cccc} g_{21} & g_{21} \\ -g_{11} & 1 \\ g_{12} & g_{12} \\ -\Delta G & g_{11} \\ g_{12} & g_{12} \end{array} $	$ \begin{array}{c cccc} \hline h_{21} & \hline h_{21} \\ \hline 1 & h_{11} \\ \hline h_{12} & h_{12} \\ \hline h_{22} & \Delta H \\ \hline h_{12} & h_{12} \end{array} $	$ \begin{array}{c c} \hline h'_{21} & \hline h'_{21} \\ \hline -\frac{\Delta H'}{h'_{12}} & \frac{h'_{22}}{h'_{12}} \\ -\frac{h'_{11}}{h'_{12}} & -\frac{1}{h'_{12}} \\ \end{array} $	$\begin{array}{c c} D & B \\ \hline \Delta T & \Delta T \\ \hline C & A \\ \hline \Delta T & \Delta T \end{array}$	A' B' C' D'

Riepilogo

POLITECNICO DI MILANO

Rappresentazione	Variabili indipendenti	Variabili dipendenti
Comandata in corrente	i_1, i_2	v_1, v_2
Comandata in tensione	v_1, v_2	i_1, i_2
Ibrida (diretta)	i_1, v_2	v_1, i_2
Ibrida inversa	v_1, i_2	i_1, v_2
Trasmissione (diretta)	$v_2, -i_2$	v_1, i_1
Trasmissione inversa	$v_1, -i_1$	v_2, i_2

Riepilogo

Dato un doppio bipolo lineare passivo è sempre possibile determinare una qualunque sua matrice caratteristica (R, G, H,)?

La risposta è no!

POLITECNICO DI MILANO

Non ammette rappresentazione G

Non ammette rappresentazione R

Proprietà di reciprocità

POLITECNICO DI MILANO

Ipotesi:

$$\left\{ v_1', v_2', i_1', i_2' \right\}$$

$$\left\{ v_1'', v_2'', i_1'', i_2'' \right\}$$

insiemi arbitrari di tensioni e correnti che soddisfano le equazioni del doppio bipolo

Prof. G. Gruosso

Definizione:

si dice che il doppio bipolo è reciproco se

$$v_1'i_1'' + v_2'i_2'' = v_1''i_1' + v_2''i_2'$$

 Per interpretare il significato di questa relazione e ricavare le condizioni che devono soddisfare i parametri delle matrici del doppio bipolo si fa riferimento alle situazioni in cui una sola delle variabili indipendenti è diversa da zero

Proprietà di reciprocità

POLITECNICO DI MILANO

Prof. G. Gruosso

Condizione 1

$$v_2' = r_{21}i_1' + r_{22}i_2' = r_{21}I$$

Condizione 2

$$i_1'' = 0 \qquad i_2'' = \mathbf{I}$$

$$v_1'' = r_{11}i_1'' + r_{12}i_2'' = r_{12} I$$

Condizione di reciprocità

$$v_1'i_1'' + v_2'i_2'' = v_1''i_1' + v_2''i_2'$$
 \Rightarrow $v_1' \cdot 0 + v_2' I = v_1''I + v_2'' \cdot 0$ \Rightarrow $v_2' = v_1''$

$$r_{12} = r_{21}$$

Proprietà di simmetria

POLITECNICO DI MILANO

Prof. G. Gruosso

 Si dice che un doppio bipolo è simmetrico se, per ogni insieme di tensioni e di correnti alle porte che soddisfano le sue equazioni caratteristiche, anche l'insieme ottenuto scambiando la porta 1 con la porta 2 soddisfa le equazioni caratteristiche

 Si può dimostrare che le matrici di un due porte simmetrico soddisfano le seguenti proprietà

• matrice **R**: $r_{11} = r_{22}$ $r_{12} = r_{21}$

• matrice **G**: $g_{11} = g_{22}$ $g_{12} = g_{21}$

• matrice **H**: $h_{12} = -h_{21}$ det(**H**) = 1

• matrice \mathbf{H}' : $h'_{12} = -h'_{21} \det (\mathbf{H}') = 1$

• matrice **T**: A = D $det(\mathbf{T}) = 1$

• matrice \mathbf{T}' : A' = D' $\det(\mathbf{T}') = 1$

→ La simmetria implica anche la reciprocità

Esempi: adattamento del carico

POLITECNICO DI MILANO

Prof. G. Gruosso

Sostituendo nella prima equazione si ottiene:

$$V_1 = \left(R_{11} - \frac{R_m^2}{R_L + R_{22}}\right) I_1$$

e quindi la resistenza equivalente vista dal generatore risulta:

$$R_{eq} = \frac{V_1}{I_1} = R_{11} - \frac{R_m^2}{R_L + R_{22}}$$

POLITECNICO DI MILANO

Prof. G. Gruosso

<u>Problema di sintesi</u>: Data una matrice di conduttanze (resistenze), descritta da 3 parametri indipendenti, si deve determinare una configurazione di resistori lineari passivi che la ammetta come matrice.

POLITECNICO DI MILANO

Prof. G. Gruosso

Tra le possibili configurazioni, due assumono particolare rilievo: la configurazione a stella o a T e quella a triangolo o a π .

POLITECNICO DI MILANO

Prof. G. Gruosso

Determiniamo la matrice delle resistenze per la configurazione a stella

$$\left. R_{11} = \frac{V_1}{I_1} \right|_{I_2 = 0} = R_a + R_c$$

$$R_{m} = \frac{V_{2}}{I_{1}} \bigg|_{I_{2}=0} = R_{c}$$

Inoltre, per la simmetria del circuito si ha:

$$R_{22} = \frac{V_2}{I_2} \bigg|_{I_1 = 0} = R_b + R_c$$

POLITECNICO DI MILANO

Prof. G. Gruosso

Determiniamo la matrice delle conduttanze per la configurazione a triangolo o a π .

$$G_{11} = \frac{I_1}{V_1} \bigg|_{V_2=0} = G_{ac} + G_{ab}$$

$$G_{m} = \frac{I_{2}}{V_{1}} \bigg|_{V_{2}=0} = -G_{ab}$$

Inoltre, per la simmetria della struttura:

$$G_{22} = \frac{I_2}{V_2} \Big|_{V_1=0} = G_{bc} + G_{ab}$$

POLITECNICO DI MILANO

Prof. G. Gruosso

Collegamento in serie: Due doppi bipoli N_a e N_b sono collegati in serie quando si ha:

POLITECNICO DI MILANO

Prof. G. Gruosso

$$\mathbf{V} = \mathbf{V}_{\mathbf{a}} + \mathbf{V}_{\mathbf{b}} = (\mathbf{R}_{\mathbf{a}} + \mathbf{R}_{\mathbf{b}})\mathbf{I} = \mathbf{R}\mathbf{I}$$

POLITECNICO DI MILANO

Prof. G. Gruosso

Collegamento in parallelo: Due doppi bipoli N_a e N_b sono collegati in parallelo quando si ha:

POLITECNICO DI MILANO

Prof. G. Gruosso

<u>Doppi bipoli collegati in cascata</u>: Due doppi bipoli si dicono collegati in cascata quando:

Circuiti Equivalenti di Doppi bipoli

POLITECNICO DI MILANO

Prof. G. Gruosso

Supponendo di conoscere una delle rappresentazioni è è possibile ricavare un circuito equivalente che la descriva?

Rappresentazione In corrente

$$\begin{cases} v_1 = r_{11}i_1 + r_{12}i_2 \\ v_2 = r_{21}i_1 + r_{22}i_2 \end{cases}$$

Rappresentazione In Tensione

$$\begin{cases} i_1 = g_{11}v_1 + g_{12}v_2 \\ i_2 = g_{21}v_1 + g_{22}v_2 \end{cases}$$

Circuiti Equivalenti di Doppi bipoli

POLITECNICO DI MILANO

Prof. G.

Rappresentazione ibrida

$$\begin{cases} v_1 = h_{11}i_1 + h_{12}v_2 \\ i_2 = h_{21}i_1 + h_{22}v_2 \end{cases}$$

Rappresentazione Trasmissione

$$\begin{cases} v_1 = Av_2 - Bi_2 \\ i_1 = Cv_2 - Di_2 \end{cases}$$

Doppi Bipoli Attivi (o affini) Equivalente Thevenin e Norton di doppi bipoli

POLITECNICO DI MILANO

Se i doppi bipoli contengono generatori ideali allora le loro rappresentazioni di modificano

1) Rappresentazione in corrente

$$v_1 = R_{11}i_1 + R_{12}i_2 + E_1$$

 $v_2 = R_{21}i_1 + R_{22}i_2 + E_2$

2) Rappresentazione in tensione

$$i_1 = G_{11}v_1 + G_{12}v_2 + A_1$$

$$i_2 = G_{21}v_1 + G_{22}v_2 + A_2$$

Doppi Bipoli Attivi (o affini) Equivalente Thevenin e Norton di doppi bipoli

POLITECNICO DI MILANO

Se i doppi bipoli contengono generatori ideali allora le loro rappresentazioni di modificano

1) Rappresentazione ibrida

Prof. G. Gruosso

$$\begin{bmatrix} v_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix} \begin{bmatrix} i_1 \\ v_2 \end{bmatrix} + \begin{bmatrix} E \\ A \end{bmatrix}$$

$$v_1 \downarrow v_1 \downarrow v_1 \downarrow v_1 \downarrow v_1 \downarrow v_2 \downarrow$$

2) Rappresentazione ibrida inversa

$$\begin{bmatrix} i_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} H'_{11} & H'_{12} \\ H'_{21} & H'_{22} \end{bmatrix} \begin{bmatrix} v_1 \\ i_2 \end{bmatrix} + \begin{bmatrix} A \\ E \end{bmatrix}$$

