Методы оптимизации, Лабораторная работа $N^{0}4$

Кирилл Кадомцев

Май 2025

Содержание

1	Описание	1
2	Тестирование	2
3	Результаты тестирования 3.1 В зависимости от параметра α (коэффициент остывания) 3.2 В зависимости от $start_t$	
4	Метаоптимизация	4

1 Описание

Был реализован метод симуляции отжига с возможностью выбора различных гиперпараметров

2 Тестирование

В первую очередь, для тестирования были выбраны зашумлённые функции, на которых методы из предыдущих лабораторных банально не смогли вычислить результат, в то время как метод симуляции отжига должен быть устойчив:

Периодическая зашумлённая функция:

$$f(x) = \sin(x) + 0.5 \cdot \sin(3x) + \text{Noise}(x)$$
, где $\sin(x) = 0.1 \cdot \sin(20x) + 0.05 \cdot \mathcal{N}(0, 1)$

Непериодическая зашумлённая функция:

$$f(x) = 0.02x^2 - 0.5x + \underbrace{0.3 \cdot e^{-0.5(x-2)^2} - 0.4 \cdot e^{-0.3(x+3)^2}}_{\text{локальные "бугры}} + \underbrace{0.1 \cdot \mathcal{N}(0,1)}_{\text{шум}}$$

Также, некоторые другие функции, использовавшиеся для тестирования:

- Параболоид: $f(x,y) = x^2 + y^2$
- Функция Розенброка: $f(x,y) = (1-x)^2 + 100 \cdot (y-x^2)^2$
- Квадратичная форма (min3m2): $f(x,y) = (x-3)^2 + (y+2)^2$
- Квадратичная форма (min2m1): f(x,y) = x + y
- Функция Химмельблау: $f(x,y) = (x^2 + y 11)^2 + (x + y^2 7)^2$

3 Результаты тестирования

Важно отметить, что тестирования производилось с ограничением в 100000 итераций

3.1 В зависимости от параметра α (коэффициент остывания)

Alpha	Best x	Function Value
0.5	[-2075.733258386746]	-1.143854
0.9	[-580.2988103253542]	-1.073550
0.99	[1255.971884522375]	-1.092126

Таблица 1: noisy periodic (start t=1000, final t=0.001)

Alpha	Best x	Function Value
0.5	[12.76986017115421]	-3.027205295394961
0.9	[13.000829261723327]	-3.1884971716494124
0.99	[11.54719088183137]	-2.931912130302153

Таблица 2: noisy nonperiodic (start t=1000, final t=0.001)

В итоге лучшим значением оказалось среднее. В первом случае, скорость остывания была слишком быстрой и функция "застряла во втором - слишком медленной и упёрлась в количество итераций.

3.2 В зависимости от $start_t$

Start t	Best x	Function Value
100	[24.44007420608933]	-1.175309
1000	[-580.2988103253542]	-1.073550

Таблица 3: noisy periodic ($\alpha = 0.9$, final t = 0.001)

Start t	Best x	Function Value
100	[12.774633155205372]	-3.177636
1000	[13.000829261723327]	-3.188497

Таблица 4: noisy_nonperiodic ($\alpha = 0.9$, $final_t = 0.001$)

3.3 В зависимости от final_t

Final t	Best x	Function Value
1e-3	[-580.2988103253542]	-1.073550
1e-5	[-220.62114482011734]	-1.043032

Таблица 5: noisy periodic ($\alpha = 0.9$, start t = 1000)

Final t	Best x	Function Value
1e-3	[13.000829261723327]	-3.188497
1e-5	[12.488401777145537]	-3.113249

Таблица 6: noisy_nonperiodic ($\alpha=0.9,\,start_t=1000)$

Результат ухудшился - алгоритм застревал в локальных минимумах при слишком медленном замораживании

4 Метаоптимизация

Метод отжига был применён для оптимизации размера батча для предыдущей лабораторной. При ограничении итераций для линейной регрессии в 100 закономерно выдавался результат 1, данный тест ничего особо не показывает. В то время как при 1000 оптимальным оказался размер батча в 35.