PSALTer results panel

$$S == \iiint \left(\frac{1}{3} \left(-2t_{3}^{2} \mathcal{A}^{\alpha i}_{\alpha} \mathcal{A}^{\theta}_{i} + 3 \mathcal{A}^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} + 3 f^{\alpha \beta}_{i} \tau_{(\Delta + \mathcal{K})_{\alpha \beta}} + 4t_{3}^{2} \mathcal{A}^{\theta}_{\alpha} \partial_{i} f^{\alpha i}_{i} - 4t_{3}^{2} \mathcal{A}^{\theta}_{\alpha} \partial_{i} f^{\alpha}_{\alpha} + 2t_{3}^{2} \partial_{i} f^{\theta}_{\alpha} \partial_{i} f^{\alpha}_{\alpha} + 2t_{3}^{2} \partial_{i} f^{\theta}_{\alpha} \partial_{i} f^{\alpha}_{\alpha} \partial$$

Wave operator

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities
$0^-\sigma^{\parallel} == 0$	$\epsilon \eta_{\alpha\beta\chi\delta} \ \partial^{\delta} \sigma^{\alpha\beta\chi} = 0$	1
^{Θ+} _• τ [⊥] == Θ	$\partial_{\beta}\partial_{\alpha\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1
$-2 i k^{0^+} \sigma^{\parallel} + 0^+ \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha\tau} \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}_{\tau} \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1
$\frac{2 i k \cdot 1^{-} \sigma^{\perp^{\alpha}} + \cdot 1^{-} \tau^{\perp^{\alpha}} = 0}{2 i k \cdot 1^{-} \sigma^{\perp^{\alpha}} + \cdot 1^{-} \tau^{\perp^{\alpha}}} = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta+\mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
1- _τ α == Θ	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta+\mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$\frac{1_{\bullet}^{+} \eta^{\parallel} \alpha \beta}{1_{\bullet}^{+} \eta^{\parallel}} = 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$\frac{1}{\cdot} \sigma^{\perp} \alpha^{\beta} = 0$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3
2 ⁺ _τ ^{αβ} == 0	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\chi}_{\chi} +$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi}_{\tau} (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi}_{\tau} (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi}_{\tau} (\Delta + \mathcal{K})^{\chi \delta} = 0$	
	$ 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}{}_{\tau} (\Delta + \mathcal{K})^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}{}_{\tau} (\Delta + \mathcal{K})^{\chi \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta}{}_{\tau} (\Delta + \mathcal{K})^{\alpha \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta}{}_{\tau} (\Delta + \mathcal{K})^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta}{}_{\tau} (\Delta + \mathcal{K})^{\chi} $	
$2^* \sigma^{\parallel \alpha \beta} = 0$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \beta \delta} + 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{\chi}_{\chi}^{\delta} = 2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma^{\chi}_{\chi}^{\delta} + 3 \left(\partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \alpha \chi} \right)$	5
Total expected gauge generators:		

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue:	- 	$-\frac{4}{r_1+r_1}$	$+\frac{3}{2r.+1}$	- > (r. 5
Polarisations:	2			

Unitarity conditions

$$\left(r. < 0 \&\& \left(r. < -r. || r. > -2 r.\right)\right) || \left(r. > 0 \&\& -2 r. < r. < -r.\right)$$