IIIT Hyderabad

Scribed By: Rushil Kaul (2021101063) Siddharth Mangipudi (2021101060)

Optimization Methods (CS1.404) Instructor: Dr. Naresh Manwani Lecture #4 27th Jan 2024

Outline. The lecture covers fundamental concepts in the Optimization Methods course, including affine and convex sets, their properties, and operations such as intersections and unions. It also discusses hyperplanes, half-spaces, and important theorems like Weierstrass' Theorem and the Closest Point Theorem. The main topics are:

- Affine Sets
 - Definition and properties
- Convex Sets and Convex Combinations
 - Definition of convex sets
 - Convex combinations
 - Intersection and union of convex sets
- Hyperplanes and Half-spaces
 - Definition and equations
- Key Theorems
 - Weierstrass' Theorem
 - Closest Point Theorem

1 Affine Sets

Definition 1. A set $C \subseteq \mathbb{R}^d$ is called **affine** if, for any two distinct points in C, the entire affine line passing through these points also lies in C. Formally,

If
$$\bar{x}_1, \bar{x}_2 \in C$$
, then $\theta \bar{x}_1 + (1 - \theta) \bar{x}_2 \in C$, $\forall \theta \in \mathbb{R}$.

Key properties of affine sets:

- A set is affine if and only if it contains every **affine combination** of its points.
- An affine set must include the **entire line** extending through any two of its points.

2 Convex Sets and Convex Combinations

2.1 Convex Sets

Definition 2. A set $X \subseteq \mathbb{R}^d$ is called **convex** if, for any two points in X, the line segment joining them also lies entirely within X. Formally,

If
$$\bar{x}_1, \bar{x}_2 \in X$$
, then $\lambda \bar{x}_1 + (1 - \lambda)\bar{x}_2 \in X$, $\forall \lambda \in [0, 1]$.

Figure 1: An example of a convex set (left), example of non-convex set (right).

Key properties of convex sets:

- Convexity ensures that only the **line segment** between \bar{x}_1 and \bar{x}_2 is included in X, not the entire line
- Every **affine set** is convex, but the converse is not necessarily true; there exist convex sets that are not affine.

2.2 Convex Combinations

Definition 3. A convex combination of a set of points $\bar{x}_0, \bar{x}_1, \dots, \bar{x}_n$ is a linear combination of these points where all coefficients are **non-negative** and sum to 1. That is,

$$\bar{x} = \sum_{i=0}^{n} \lambda_i \bar{x}_i$$
, where $\lambda_i \ge 0$ and $\sum_{i=0}^{n} \lambda_i = 1$.

This ensures that the resulting point \bar{x} is a **weighted average** of the given points, staying within their convex hull.

2.3 Intersection of Convex Sets

Theorem 1. The intersection of convex sets is convex. Specifically, if $X_1, X_2, ..., X_k$ are convex subsets of \mathbb{R}^d , then their intersection

$$X = \bigcap_{i=1}^{k} X_i$$

is also convex.

Proof. Let $\bar{z}_1, \bar{z}_2 \in X$. By the definition of intersection, this means

$$\bar{z}_1, \bar{z}_2 \in X_i, \quad \forall i = 1, \dots, k.$$

Since each X_i is convex, for any $\lambda \in [0, 1]$,

$$\lambda \bar{z}_1 + (1 - \lambda)\bar{z}_2 \in X_i, \quad \forall i = 1, \dots, k.$$

Since this holds for all i, we conclude that

$$\lambda \bar{z}_1 + (1 - \lambda)\bar{z}_2 \in \bigcap_{i=1}^k X_i = X.$$

Thus, the intersection of convex sets remains convex. \Box

2.4 Union of Convex Sets is Not Convex

Theorem 2. The union of convex sets is not necessarily convex.

Proof. Consider the two convex sets C_1 and C_2 defined as:

$$C_1 = \{(\bar{x}_1, \bar{x}_2) \in \mathbb{R}^2 : \bar{x}_1^2 + \bar{x}_2^2 \le 1\},\$$

the unit disk, and

$$C_2 = \{(\bar{x}_1, \bar{x}_2) \in \mathbb{R}^2 : (\bar{x}_1 - 2)^2 + \bar{x}_2^2 \le 1\},\$$

a disk centered at (2,0).

Both C_1 and C_2 are convex, but their union $C_1 \cup C_2$ is not convex. For example, the line segment joining the points (0,0) in C_1 and (2,0) in C_2 passes outside of the union, violating the convexity condition.

Thus, the union of convex sets is not necessarily convex. \Box

2.5 Hyperplane and Half-space

A hyperplane in \mathbb{R}^d is the set of points \bar{x} that satisfy the equation:

$$\{\bar{x} \mid \bar{w}^T \bar{x} = b\},\$$

where $\bar{w} \in \mathbb{R}^d$ is a vector normal to the hyperplane, and $b \in \mathbb{R}$ is the offset.

- The vector \bar{w} defines the orientation of the hyperplane. - The scalar b controls the position of the hyperplane relative to the origin.

A half-space is one of the two parts of \mathbb{R}^d divided by a hyperplane. A half-space can be represented by one of the following sets:

$$\{\bar{x} \mid \bar{w}^T \bar{x} \leq b\}$$
 or $\{\bar{x} \mid \bar{w}^T \bar{x} \geq b\}$.

- A half-space is **convex** because, for any two points in the half-space, the line segment joining them remains inside the half-space. - We distinguish between **closed** and **open** half-spaces: - **Closed half-space**: $\{\bar{x} \mid \bar{w}^T\bar{x} \leq b\}$ includes the hyperplane. - **Open half-space**: $\{\bar{x} \mid \bar{w}^T\bar{x} \leq b\}$ excludes the hyperplane.

Both open and closed half-spaces are convex.

Figure 2: An example of a hyperplane in \mathbb{R}^3 .

3 Weierstrass Theorem

Theorem 3 (Weierstrass Theorem). Let $X \subseteq \mathbb{R}^n$ be a non-empty compact (closed and bounded) set, and let $f: X \to \mathbb{R}$ be a continuous function on X. Then, f attains both a minimum and a maximum on X, i.e., there exist points $\bar{x}_{min}, \bar{x}_{max} \in X$ such that:

$$f(\bar{x}_{min}) \le f(\bar{x}) \le f(\bar{x}_{max}), \quad \forall \bar{x} \in X.$$

Proof. Since $X \subseteq \mathbb{R}^n$ is compact (closed and bounded) and $f: X \to \mathbb{R}$ is continuous, the image f(X) is also compact in \mathbb{R} . By the Heine-Borel theorem, f(X) is closed and bounded. Because f(X) is bounded, the supremum $M = \sup_{\bar{x} \in X} f(\bar{x})$ and infimum $m = \inf_{\bar{x} \in X} f(\bar{x})$ exist in \mathbb{R} . Moreover, since f(X) is closed, it contains its supremum and infimum, meaning $M, m \in f(X)$.

To show that f attains its maximum, consider a sequence $\{\bar{x}_k\} \subseteq X$ such that $f(\bar{x}_k) \to M$. By the Bolzano-Weierstrass theorem, there exists a convergent subsequence $\{\bar{x}_{k_j}\}$ that converges to some $\bar{x}_{\max} \in X$ (as X is closed).

By the continuity of f, it follows that $f(\bar{x}_{\max}) = \lim_{j \to \infty} f(\bar{x}_{k_j}) = M$. Similarly, for the minimum, take a sequence $\{\bar{y}_k\} \subseteq X$ with $f(\bar{y}_k) \to m$. Extract a convergent subsequence $\{\bar{y}_{k_j}\}$ converging to $\bar{x}_{\min} \in X$. By continuity, $f(\bar{x}_{\min}) = \lim_{j \to \infty} f(\bar{y}_{k_j}) = m$.

Therefore, f attains its maximum and minimum values at \bar{x}_{max} and \bar{x}_{min} , respectively, completing the proof.

4 Closest Point Theorem

Theorem 4 (Closest Point Theorem). Let $S \subseteq \mathbb{R}^n$ be a non-empty closed convex set, and let $\bar{y} \notin S$. Then, there exists a unique point $\bar{x}_0 \in S$ such that the distance from \bar{y} to \bar{x}_0 is minimized. Specifically, the point \bar{x}_0 minimizes the distance between \bar{y} and points in S, i.e.,

$$dist(\bar{y}, \bar{x}_0) = \min_{\bar{x} \in S} dist(\bar{y}, \bar{x}).$$

Furthermore, \bar{x}_0 is the closest point to \bar{y} if and only if the following condition holds:

$$(\bar{y} - \bar{x}_0)^T (\bar{x} - \bar{x}_0) \le 0 \quad \forall \bar{x} \in S.$$

This condition implies that the vector $\bar{y} - \bar{x}_0$ forms an angle of at least 90 degrees with any vector $\bar{x} - \bar{x}_0$ for $\bar{x} \in S$.

Proof. Let $f(\bar{x}) = \|\bar{x} - \bar{y}\|^2$. We want to find the minimizer of $f(\bar{x})$ over S. Formally, we are looking for:

$$\min_{\bar{x} \in S} f(\bar{x}) = \min_{\bar{x} \in S} ||\bar{x} - \bar{y}||^2.$$

Since $f(\bar{x})$ is continuous over S, and S is closed, we can apply the Weierstrass Theorem. However, S may not be bounded, so the minimum might not exist on S alone.

To resolve this, consider a point $\bar{z} \in S$ and define $r = ||\bar{z} - \bar{y}||$. Let $S_1 = S \cap B[\bar{y}, r]$, where $B[\bar{y}, r]$ is the closed ball centered at \bar{y} with radius r. The set S_1 is closed and bounded, so by the Weierstrass Theorem, a minimum of $f(\bar{x})$ exists on S_1 .

Let $\bar{x}_0 = \arg\min_{\bar{x} \in S_1} \|\bar{x} - \bar{y}\|^2$. It is easy to verify that:

$$\|\bar{y} - \bar{x}_0\| < \min_{\bar{x} \in S \setminus S_1} \|\bar{x} - \bar{y}\|^2,$$

showing that \bar{x}_0 is indeed the closest point to \bar{y} .

Now, to show the uniqueness of \bar{x}_0 , suppose there exists another point $\bar{x}_1 \in S$ such that $\|\bar{y} - \bar{x}_1\| = \|\bar{y} - \bar{x}_0\| = \gamma$. Consider the point

$$\bar{x}_2 = \frac{\bar{x}_0 + \bar{x}_1}{2}.$$

We now compute the distance $\|\bar{y} - \bar{x}_2\|$:

$$\|\bar{y} - \bar{x}_2\| = \left\|\bar{y} - \frac{\bar{x}_0 + \bar{x}_1}{2}\right\| = \left\|\frac{1}{2}(\bar{y} - \bar{x}_0) + \frac{1}{2}(\bar{y} - \bar{x}_1)\right\|.$$

By the triangle inequality, we have:

$$\|\bar{y} - \bar{x}_2\| \le \frac{1}{2} \|\bar{y} - \bar{x}_0\| + \frac{1}{2} \|\bar{y} - \bar{x}_1\| = \frac{1}{2} \gamma + \frac{1}{2} \gamma = \gamma.$$

Case 1: Strict Inequality If $\|\bar{y} - \bar{x}_2\| < \gamma$, this would imply \bar{x}_2 is closer to \bar{y} than both \bar{x}_0 and \bar{x}_1 , contradicting minimality.

Case 2: Equality Condition Equality $\|\bar{y}-\bar{x}_2\| = \gamma$ holds if and only if $\bar{y}-\bar{x}_1 = k(\bar{y}-\bar{x}_0)$ for some $k \geq 0$. If $\bar{x}_0 \neq \bar{x}_1$, this requires collinearity of $\bar{y}, \bar{x}_0, \bar{x}_1$. Substituting k = 1 yields $\bar{y} - \bar{x}_1 = \bar{y} - \bar{x}_0$, forcing $\bar{x}_0 = \bar{x}_1$. Thus, equality cannot occur for distinct \bar{x}_0, \bar{x}_1 .

The strict convexity of $f(\bar{x})$ on convex S provides an alternative proof that the inequality must be strict. Therefore, \bar{x}_0 is unique.

Part a: Proof of Closest Point Condition

We now show that \bar{x}_0 is the closest point to \bar{y} if and only if:

$$(\bar{y} - \bar{x}_0)^T (\bar{x} - \bar{x}_0) \le 0 \quad \forall \bar{x} \in S.$$

Let \bar{x}_0 be the point such that:

$$(\bar{y} - \bar{x}_0)^T (\bar{x} - \bar{x}_0) < 0 \quad \forall \bar{x} \in S.$$

We need to show that \bar{x}_0 is the closest point to \bar{y} . First, let's expand $\|\bar{y} - \bar{x}\|^2$ for any point $\bar{x} \in S$:

$$\|\bar{y} - \bar{x}\|^2 = \|(\bar{y} - \bar{x}_0) + (\bar{x}_0 - \bar{x})\|^2.$$

Expanding the square:

$$\|\bar{y} - \bar{x}\|^2 = \|\bar{y} - \bar{x}_0\|^2 + \|\bar{x}_0 - \bar{x}\|^2 + 2(\bar{y} - \bar{x}_0)^T(\bar{x}_0 - \bar{x}).$$

By the given condition, we know that:

$$(\bar{y} - \bar{x}_0)^T (\bar{x}_0 - \bar{x}) \le 0.$$

This implies:

$$\|\bar{y} - \bar{x}\|^2 \ge \|\bar{y} - \bar{x}_0\|^2 + \|\bar{x}_0 - \bar{x}\|^2.$$

Thus, we conclude that:

$$\|\bar{y} - \bar{x}\|^2 \ge \|\bar{y} - \bar{x}_0\|^2 \quad \forall \bar{x} \in S.$$

Since the squared distance is minimized when $\bar{x} = \bar{x}_0$, we conclude that \bar{x}_0 is the closest point to \bar{y} . Thus, \bar{x}_0 is the unique point minimizing the distance from \bar{y} to S.

Part b:

Let \bar{x}_0 be the closest point to \bar{y} , i.e., the point $\bar{x}_0 \in S$ such that:

$$\|\bar{y} - \bar{x}_0\|^2 \le \|\bar{y} - \bar{x}\|^2 \quad \forall \bar{x} \in S.$$

Now, consider a point $\bar{x}_1 \in S$, and let $\bar{x}_2 = (1 - \lambda)\bar{x}_0 + \lambda\bar{x}_1$, where $\lambda \in (0, 1]$ which ensures \bar{x}_2 lies on the line segment between \bar{x}_0 and \bar{x}_1 . We want to show that:

$$\|\bar{y} - \bar{x}_2\|^2 \ge \|\bar{y} - \bar{x}_0\|^2.$$

First, expand $\|\bar{y} - \bar{x}_2\|^2$:

$$\|\bar{y} - \bar{x}_2\|^2 = \|\bar{y} - (1 - \lambda)\bar{x}_0 - \lambda\bar{x}_1\|^2$$
.

This simplifies to:

$$\|\bar{y} - \bar{x}_2\|^2 = \|(\bar{y} - \bar{x}_0) - \lambda(\bar{x}_1 - \bar{x}_0)\|^2.$$

Expanding the square:

$$\|\bar{y} - \bar{x}_2\|^2 = \|\bar{y} - \bar{x}_0\|^2 + \lambda^2 \|\bar{x}_1 - \bar{x}_0\|^2 - 2\lambda(\bar{y} - \bar{x}_0)^T (\bar{x}_1 - \bar{x}_0).$$

Now, we know that $\|\bar{y} - \bar{x}_0\|^2 \le \|\bar{y} - \bar{x}\|^2$ for all $\bar{x} \in S$, so:

$$\lambda^2 \|\bar{x}_1 - \bar{x}_0\|^2 - 2\lambda (\bar{y} - \bar{x}_0)^T (\bar{x}_1 - \bar{x}_0) \ge 0.$$

Taking the limit as $\lambda \to 0^+$, we get:

$$-2(\bar{y} - \bar{x}_0)^T (\bar{x}_1 - \bar{x}_0) \ge 0,$$

which implies:

$$(\bar{y} - \bar{x}_0)^T (\bar{x}_1 - \bar{x}_0) \le 0.$$

Thus, for any point $\bar{x}_1 \in S$, we have:

$$(\bar{y} - \bar{x}_0)^T (\bar{x}_1 - \bar{x}_0) \le 0.$$

This completes the proof of part b. \Box

References

- [1] Convex Optimization by Stephen Boyd
- [2] An Introduction to Optimization by Chong and Zak
- [3] Introduction to Nonlinear Optimization by Amir Beck