The "Cybersecurity" Specialization

Learn More

X

Feedback — Quiz_week1

Help

You submitted this quiz on **Tue 20 Jan 2015 10:07 AM PST**. You got a score of **13.00** out of **15.00**. You can attempt again, if you'd like.

Question 1

As her Christmas gift, Joyce received a toy doll with a small computer chip embedded. When she presses the tummy of the doll, it says "Hello, Joyce!"; when she presses again, it says "Merry Christmas!"; on the next press, it says "I love you!"; and whenever Joyce presses twice quickly, it says "Good-bye!". Which of the following statements about the doll are correct? Check all that apply.

Your Answer		Score	Explanation
the chip is a synchronous system	~	0.50	the system responses at the press any time
the chip is a combinational system	~	0.50	on the same press, it may have different outputs
the chip contains memory elements	~	0.50	otherwise, it cannot give different outputs on the same single press

the chip can recongize two different inputs	✓ 0.50	at least single press and double press
Total	2.00 / 2.00	

Bob is designing a digital system to implement the multiplication table. When two single-digit integers (0-9), e.g. 4 and 7, are entered, the system will output their product (28 in this case). The system should have x bits as input, y bits as output, and z input combinations as don't care conditions. What are the values of (x, y, z)?

You entered:

8, 7, 2

Your Answer		Score	Explanation
8	~	0.50	8-bit input, 4-bit for each input 0-9
7	~	0.50	7-bit output for values 0-81
2	×	0.00	
Total		1.00 / 2.00	

Question 3

Which of the following gate(s) are universal? Check all that apply. hint: A universal gate should be able to implement {AND,

OR, NOT}			
Your Answer		Score	Explanation
XOR	✓	0.50	
{OR, NOT}	✓	0.50	
NAND	✓	0.50	
{AND, OR}	✓	0.50	
Total		2.00 / 2.00	

For the 3-input gate f(x,y,z) = x'yz + xy' + y'z defined in slide "More on Universal Gate", what is the value of f(x,0,1)?

Your Answer	Score	Explanation
x'		
O 0		

Slide "Design Example: An Encoder" gives two different implementations of signals a and b as functions of input x, y, z. Including these two, how many different implementations can we have? (hint: when the values of a and b on each don't care conditions are given, the implementation becomes unique.)

You entered:

2

Your Answer		Score	Explanation
2	×	0.00	
Total		0.00 / 1.00	

For the four 2-input logic gates (NAND, NOR, XOR, XNOR) defined in the slide "Example: System Implementation", which of the following statements about observability don't care (ODC) are true? Check all that apply.

Your Answer		Score	Explanation
there is no ODC for XNOR gate	~	0.50	
when y=0, x input is ODC for XOR gate	~	0.50	
when y=0, x input is ODC for NAND gate	~	0.50	
when x=0, y input is ODC for NOR gate	~	0.50	
Total		2.00 / 2.00	

Question 7

Consider the circuit on slide "Example: System Implementation" where the two output signals S and C are defined on three inputs x, y, z as S(x,y,z) = x\$y\$z, C(x,y,z) = xy+z(x\$y), where \$ represents the XOR gate. Which of the following conditions are satisfiability don't cares? Check all that apply.

Your Answer		Score	Explanation
x=1, y=1, z=0, C=1	~	0.50	
x=0, y=0, z=1, S=0	~	0.50	
x=0, z=0, C=1	~	0.50	
x=1, y=1, z=1, S=1	~	0.50	
Total		2.00 / 2.00	

In the slide "Example: Design Vulnerabilities", for the optimal design, a=z' and b=y', there is a backdoor for the output to be 01. To enter this backdoor, what should be the input values for (x,y,z)? (enter your answer in the format of 0 1 0 or 0, 1, 0)

You entered:

101

Your Answer		Score	Explanation
1	~	0.34	

0	~	0.33
1	~	0.33
Total		1.00 / 1.00

In the slide "Finding the Backdoors", suppose that we start from state 11, on input 0, we move to state xx; then on input 0, we move to state yy; then on input 1, we move to state zz. What are these states (xx, yy, zz)?

You entered:

10, 10, 00

Your Answer		Score	Explanation	
10	~	0.34		
10	~	0.33		
00	~	0.33		
Total		1.00 / 1.00		

In the slide "HW Trojan and Countermeasure", suppose that we start from state 11 in the FSM with countermeasures, on input 0, we move to state xx; then on input 0, we move to state yy; then on input 1, we move to state zz. What are these states (xx, yy, zz)?

You entered:

10, 10, 10

Your Answer		Score	Explanation
10	~	0.34	
10	~	0.33	
10	✓	0.33	
Total		1.00 / 1.00	