Daily struggles of the visually impaired

- Depth perception
- Identifying objects
- Navigating their way through

The Plan

Depth Map Generation Object Detection Distance to Object Mapping We use **triangulation** by Based on the depth Simultaneously, our map and the objects clicking two images at application uses a the same time from detected, we inform the ML model to **identify** slightly different observer about the objects. viewpoints. nearest objects, their It is able to **classify** directions and This generates a **depth** multiple objects and map indicating the distances. also localise them in distances of objects For Examplethe image provided. from the observer. Car 20m away at your

11 O'Clock

Object Detection

Our objective is to detect objects in the surroundings of the person and classify them. The closer objects will be notified to the user along with the distance and direction.

How does depth perception work?

- Our eyes take two images at the same time
- Using triangulation they are able to perceive how far an object is
- Smart phones commonly have multiple slightly displaced cameras which can mimic this.

Depth Map Generation

Using two images from slightly displaced but identical cameras depth can be estimated. A depth map is a colour coded representation of the depths of every pixel.

Mobile App Architecture

Machine Learning Model Architecture

Image with localised objects (With bounding box around them)

M1 - Depth Map Estimation

M2 - Object Detection

Image with localised objects (With bounding box around them)

An Example

- A car is 17m at 11'o clock
- A car is 39m at 10`o clock
- A traffic light is 49m at 12`o clock
- A person is 45m at 2`o clock
- and a few more