Capítulo 1 Matemática Básica

Neste capítulo, faremos uma breve revisão de alguns tópicos de Matemática Básica necessários nas disciplinas de cálculo diferencial e integral. Os tópicos revisados neste capítulo são: conjuntos numéricos e intervalos, operações com frações, regras de potenciação e radiação e simplificação de expressões algébricas fracionárias. Ao começarmos nossos estudos é importante estabelecer um conjunto de ferramentas com as quais desenvolveremos conceitos mais elaborados. Na matemática, um conceito leva a outro; um conceito pressupõe outro mais elementar. Assim, descreveremos um conjunto básico de ferramentas que nos permitirá chegar ao nosso objetivo: entender as funções.

1.1 Conjuntos

Podemos classificar um número de acordo com os seguintes conjuntos:

Conjunto dos números naturais: $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$. Um asterisco colocado junto à letra que simboliza um conjunto significa que o zero foi excluído de tal conjunto. Desse modo, $\mathbb{N}^* = \{1, 2, 3, \ldots\}$.

Conjunto dos números inteiros¹: $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$. Alguns subconjuntos de \mathbb{Z} bastante úteis são:

- $-\mathbb{Z}^* = \{\ldots, -3, -2, -1, 1, 2, 3, \ldots\} = \mathbb{Z} \{0\}$, o conjunto dos números inteiros não nulos.
- $-\mathbb{Z}_{+}^{*} = \{1, 2, 3, \ldots\}$, o conjunto dos números inteiros positivos.
- $\mathbb{Z}_{-}^* = \{\ldots, -3, -2, -1\}$, o conjunto dos números inteiros negativos.
- $-\mathbb{Z}_{+}=\{0,1,2,3,\ldots\}$, o conjunto dos números inteiros não negativos.
- $-\mathbb{Z}_{-} = \{\ldots, -3, -2, -1, 0\}$, o conjunto dos números inteiros não positivos.

O conjunto dos números naturais está contido no conjunto dos números inteiros. Simbolicamente: $\mathbb{N} \subset \mathbb{Z}$.

 $^{^1}$ Os símbolos \mathbb{Z} e \mathbb{Q} derivam do alemão Zahl (número) e Quotient (quociente). Aparentemente, foram usados pela primeira vez no livro 'El'ements de math'ematique: $Alg\`ebre$, de Nicolas Bourbaki, pseudônimo coletivo de um grupo de matemáticos franceses criado em 1935. Adaptado de Weisstein (2014).

Conjunto dos números racionais: conjunto de números que podem ser representados por uma razão entre dois números inteiros $\mathbb{Q}=\{x\mid x=\frac{m}{n}, \text{com } m,\ n\in\mathbb{Z} \text{ e } n\neq 0\}$. Exemplos de números racionais são os números 8/5, 5/12 e -4/3. O conjunto dos números inteiros está contido no conjunto dos números racionais. Simbolicamente: $\mathbb{Z}\subset\mathbb{Q}$.

Conjunto dos números irracionais: conjunto de números que $n\tilde{a}o$ podem ser representados na forma racional. Números tais como $\sqrt{3}=1,7321\ldots$, o número de Euler, $e=2,7183\ldots$, e o número pi, $\pi=3,1416\ldots$ pertencem ao conjunto dos números irracionais. Esse conjunto é representado por \mathbb{Q}' .

Conjunto dos números reais: representado por \mathbb{R} , consiste de todos os números positivos e negativos racionais e irracionais, e também do zero. Assim, são subconjuntos dos números reais o conjunto dos números naturais, o conjunto dos números inteiros, o conjunto dos números racionais e o conjunto dos números irracionais.

A Figura 1.1 mostra como os conjuntos são inclusos.

Exemplo 1.1 Determine se os números a = 1,75; b = 3,7272727272727272... e $c = \sqrt{2} = 1,414213562373095...$ são racionais ou irracionais.

Solução: O número a é racional, pois sua representação decimal é finita (a=7/4). O número b é racional, pois sua representação decimal, embora infinita, é periódica (b=41/11). Já c é irracional, pois sua representação decimal é infinita e não periódica. Todos esses números também são números reais.

Exemplo 1.2 A quais conjuntos pertencem os números
$$a = \sqrt{49}$$
, $b = \sqrt{50} = 7,0711...$, $c = 7,0711$, $x = \frac{-33}{3}$, $y = 4,131313...$, $z = 0,12$?

Figura 1.1 Os conjuntos numéricos.

Solução: O número a=7 é inteiro, logo $a\in\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}$. O número b é irracional, logo $b\in\mathbb{Q}'\subset\mathbb{R}$. O número $c=\frac{70711}{10000}$ é racional, logo $c\in\mathbb{Q}\subset\mathbb{R}$. O número x=-11 é um inteiro negativo, logo $x\in\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}$. O número $y=\frac{409}{99}$ é racional, logo $y\in\mathbb{Q}\subset\mathbb{R}$. O número $z=\frac{12}{100}$ é racional, logo $z\in\mathbb{Q}\subset\mathbb{R}$.

1.2 Desigualdades e intervalos

O conjunto dos números reais é ordenado. Isso significa que podemos comparar a magnitude de quaisquer dois números reais que não são iguais usando desigualdades. As desigualdades também podem ser usadas para descrever intervalos de números reais. Os símbolos $<,>,\ge$ e \le são símbolos de desigualdade, e seu uso segue a notação mostrada na tabela a seguir, onde a e b são números reais.

Notação	Leitura
a < b	a é menor que b
a > b	a é maior que b
$a \leq b$	aé menor ou igual a b
$a \ge b$	\boldsymbol{a} é maior ou igual a \boldsymbol{b}

O eixo, ou reta real, é uma reta horizontal usada para representar números reais, onde o número zero define a origem e os números reais positivos ficam à direita da origem, enquanto os números reais negativos ficam à esquerda da origem, como mostra a Figura 1.2.

Geometricamente:

- a > b significa que a está à direita de b ou que b está à esquerda de a no eixo real.
- a < b significa que a está à esquerda de b ou que b está à direita de a no eixo real.

Figura 1.2 O eixo real.

Exemplo 1.3 Descreva os números reais que pertencem a cada uma das desigualdades a seguir:

- (a) x < 2;
- (b) $-1 < x \le 3$;
- (c) 0 < x < 2;
- (d) $-2 \le x \le 2$.

Solução:

- (a) A desigualdade x < 2 descreve todos os números reais menores que 2.
- (b) A dupla desigual dade $-1 < x \le 3$ representa todos os números reais entre -1 e 3, excluindo -1 e incluindo 3.
- (c) A dupla desigualdade 0 < x < 2 representa todos os números reais entre 0 e 2, excluindo 0 e excluindo 2.
- (d) A dupla desigualdade $-2 \le x \le 2$ representa todos os números reais entre -2 e 2, incluindo -2 e incluindo 2.

A seguir, listaremos tipos de intervalos com a notação usual para indicálos. As letras a e b designam números reais, fixados com a < b, denominados extremos do intervalo. Serão utilizados os símbolos $+\infty$ (lê-se "infinito" ou "mais infinito") e $-\infty$ (lê-se "menos infinito"). Esses símbolos não representam números reais. Eles são usados para representar intervalos não limitados. Relembramos que as chaves $\{\}$ são utilizadas para descrever conjuntos com seus elementos, o símbolo \in lê-se "pertence a" e a barra vertical lê-se "tal que" ou "com a propriedade de".

1.3 Intervalos limitados e ilimitados de números reais

Nesta seção, definiremos a notação e os tipos de intervalos usados quando trabalhamos com intervalos limitados de números reais. A Tabela 1.1 apresenta os tipos de intervalo numéricos limitados e a Tabela 1.2 lista os tipos de intervalo numérico não limitados. O intervalo $(-\infty, +\infty)$ representa o conjunto dos números reais; isto é, $(-\infty, +\infty) = \mathbb{R}$.

Exemplo 1.4 Classifique cada sentença abaixo como Verdadeira ou Falsa:

- (a) ∞ não é um número real;
- (b) [4, 6) é um intervalo aberto;
- (c) $(-\infty, -1]$ é um intervalo aberto;
- (d) $(-\infty, 1)$ é um intervalo aberto;
- (e) $2 \in (2, 4]$;

- (f) $-3 \in (-\infty, -1);$
- (g) [-20, 4) está contido em (-21, 4].

- (a) Verdadeira. O símbolo é utilizado na representação de intervalos não limitados.
- (b) Falsa. O intervalo [4, 6) é um intervalo fechado à esquerda e aberto à direita.
- (c) Falsa. O intervalo $(-\infty, -1]$ não é limitado e é fechado.
- (d) Verdadeira.
- (e) Falsa. O intervalo (2, 4] representa todos os números reais entre -2 e 4, excluindo 2 e incluindo 4.
- (f) Verdadeira. O intervalo $(-\infty, -1)$ representa todos os números reais menores que -1. Como -3 < -1, ele pertence ao intervalo.
- (g) Verdadeira.

Tabela 1.1 Tipos de intervalos numéricos limitados na reta real

Notação	Tipo	Conjunto	Representação gráfica
[a, b]	fechado	$\{x \in \mathbb{R} : a \le x \le b\}$	a b
(a, b)	aberto	$\{x \in \mathbb{R} : a < x < b\}$	
[a, b)	fechado à esquerda, aberto à direita	$\{x \in \mathbb{R} : a \le x < b\}$	
(a, b]	aberto à esquerda, fechado à direita	$\{x \in \mathbb{R} : a < x \le b\}$	<u>a</u> b

Tabela 1.2 Tipos de intervalos numéricos não limitados na reta real

Notação	Tipo	Conjunto	Representação gráfica
$[a, +\infty)$	fechado	$\{x \in \mathbb{R} : a \le x\}$	<u>a</u>
$(a, +\infty)$	aberto	$\{x \in \mathbb{R} : a < x\}$	a
$(-\infty,\ b]$	fechado	$\{x \in \mathbb{R} : x \le b\}$	<u> </u>
$(-\infty,\ b)$	aberto	$\{x \in \mathbb{R} : x < b\}$	<u> </u>

Exemplo 1.5 Para cada item do Exemplo 1.3, reescreva as desigualdades usando a notação de intervalo e de conjunto. Desenhe também sua representação gráfica.

Solução: A Tabela 1.3 mostra cada desigualdade e seus respectivos intervalos, conjuntos numéricos e representação gráfica.

Desigualdade Intervalo Conjunto Representação gráfica $(-\infty, 2)$ $\{x \in \mathbb{R}: x < 2\}$ x < 22 $\{x \in \mathbb{R}: -1 < x \le 3\}$ $-1 < x \le 3$ (-1, 3]-13 $\{x \in \mathbb{R}: 0 < x < 2\}$ 0 < x < 2(0, 2)0 2 [-2, 2] $\{x \in \mathbb{R}: -2 < x < 2\}$ -2 < x < 2

Tabela 1.3 Desigualdades do Exemplo 1.3

1.4 Operações com frações

Nesta seção, revisaremos as técnicas para efetuar operações com frações.

-2

2

1.4.1 Adição e subtração de frações

A chave para o cálculo da soma ou da diferença entre frações (que resultará sempre em outra fração) está em seus denominadores.

• Frações com denominadores iguais: Adicionamos ou subtraímos os numeradores e mantemos o denominador comum, simplificando o resultado final sempre que possível.

Exemplo 1.6 Resolva as seguintes operações:

- (a) $\frac{3}{5} + \frac{1}{5}$;
- (b) $\frac{4}{9} + \frac{8}{9}$;
- (c) $\frac{7}{6} \frac{3}{6}$.

(a)
$$\frac{3}{5} + \frac{1}{5} = \frac{3+1}{5} = \frac{4}{5}$$
;

(b)
$$\frac{4}{9} + \frac{8}{9} = \frac{4+8}{9} = \frac{12}{9} = \frac{4}{3}$$
;

(c)
$$\frac{7}{6} - \frac{3}{6} = \frac{7-3}{6} = \frac{4}{6} = \frac{2}{3}$$
.

Frações com denominadores diferentes: Reduzimos as frações ao mesmo denominador por meio do mínimo múltiplo comum. O mínimo múltiplo comum é o produto de todos os fatores primos nos denominadores, em que cada fator está elevado ao maior expoente encontrado em qualquer um dos denominadores.

Exemplo 1.7 Resolva as seguintes operações:

(a)
$$\frac{1}{3} + \frac{2}{4}$$
;

(b)
$$\frac{1}{2} - \frac{1}{3}$$
;

(c)
$$\frac{7}{10} - \frac{2}{5}$$
;

(d)
$$\frac{3}{4} + \frac{5}{6} + \frac{1}{8} + \frac{1}{2}$$
.

Solução:

(a)
$$\frac{1}{3} + \frac{2}{4} = \frac{4+6}{12} = \frac{10}{12} = \frac{5}{6}$$
;

(b)
$$\frac{1}{2} - \frac{1}{3} = \frac{3-2}{6} = \frac{1}{6}$$
;

(c)
$$\frac{7}{10} - \frac{2}{5} = \frac{7-4}{10} = \frac{3}{10}$$
;

(d)
$$\frac{3}{4} + \frac{5}{6} + \frac{1}{8} + \frac{1}{2} = \frac{18 + 20 + 3 + 12}{24} = \frac{53}{24}$$
.

1.4.2 Multiplicação

Para esta operação, basta multiplicarmos numerador por numerador e denominador por denominador, simplificando o resultado quando possível.

Exemplo 1.8 Resolva as seguintes operações:

(a)
$$\frac{2}{3} \times \frac{5}{7}$$
;

(b)
$$-\frac{6}{11} \times \frac{9}{5}$$
;

(c)
$$\frac{13}{5} \times \frac{7}{2}$$
.

(a)
$$\frac{2}{3} \times \frac{5}{7} = \frac{2 \times 5}{3 \times 7} = \frac{10}{21}$$
;

(b)
$$-\frac{6}{11} \times \frac{9}{5} = \frac{-6 \times 9}{11 \times 5} = -\frac{54}{55}$$
;

(c)
$$\frac{13}{5} \times \frac{7}{2} = \frac{13 \times 7}{5 \times 2} = \frac{91}{10}$$
.

1.4.3 Divisão

A divisão de frações deve ser efetuada aplicando uma regra prática e de fácil assimilação, que diz: repetir a fração no numerador e multiplicar pela fração do denominador, invertendo seu numerador e seu denominador.

Exemplo 1.9 Resolva as seguintes operações:

(a)
$$\frac{9}{2} \div \frac{7}{3}$$
;

(b)
$$-\frac{8}{3} \div \left(-\frac{5}{9}\right)$$
;

(c)
$$-\frac{12}{5} \div \frac{6}{7}$$
;

(d)
$$\frac{4}{\frac{3}{9}}$$
.

Solução:

(a)
$$\frac{9}{2} \div \frac{7}{3} = \frac{9}{2} \times \frac{3}{7} = \frac{9 \times 3}{2 \times 7} = \frac{27}{14}$$
;

(b)
$$-\frac{8}{3} \div \left(-\frac{5}{9}\right) = -\frac{8}{3} \times \left(-\frac{9}{5}\right) = \frac{8 \times 9}{3 \times 5} = \frac{72}{15}$$
;

(c)
$$-\frac{12}{5} \div \frac{6}{7} = -\frac{12}{5} \times \frac{7}{6} = \frac{-12 \times 7}{5 \times 6} = -\frac{84}{30}$$
;

(d) Considerando que o número real 4 pode ser reescrito como $\frac{4}{1}$, temos: $\frac{4}{3} = \frac{4}{1} \times \frac{9}{3} = \frac{4 \times 9}{1 \times 3} = \frac{36}{3} = 12$.

1.5 Potenciação

A notação de potência é usada para "encurtar" produtos de fatores que se repetem. Sejam a um número real e n um número real inteiro positivo. Então, denomina-se potência de base a e expoente n o número a^n , que é igual ao produto de n fatores iguais a a da forma:

$$a^n = \underbrace{a \times a \times a \times \dots \times a}_{n \text{ fatores}}$$

Exemplo 1.10 Desenvolva as potências 2^5 , $\left(\frac{1}{2}\right)^3$ $e(-1)^4$.

(a)
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$
;

(b)
$$\left(\frac{1}{2}\right)^3 = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8};$$

(c)
$$(-1)^4 = (-1) \times (-1) \times (-1) \times (-1) = 1$$
.

A seguir, são apresentadas as regras de potenciação. Sejam a e b dois números reais, com $a \neq 0$ e $b \neq 0$, e m e n números racionais.

Regra 1 Multiplicação de potências de mesma base. Ao multiplicarmos duas ou mais potências de mesma base, conservamos a base e somamos os expoentes:

$$a^m \times a^n = a^{m+n}$$

Regra 2 Divisão de potências de mesma base. Ao dividirmos duas potências de mesma base, conservamos a base e subtraímos os expoentes:

$$a^m \div a^n = \frac{a^m}{a^n} = a^{m-n}$$

Regra 3 Potência de potência. Neste caso, conservamos a base e multiplicamos os expoentes:

$$(a^m)^n = a^{m \times n}$$

Regra 4 Potência de expoente nulo com base $a \neq 0$. Temos que $\frac{a^n}{a^n} = 1$ e também que $a^n \div a^n = a^{n-n} = a^0$. Então,

$$a^0 = 1$$

Regra 5 Potência de expoente negativo. Uma potência com expoente negativo a^{-n} indica o recíproco de a^{n} . Ou seja,

$$a^{-n} = \frac{1}{a^n}$$

Regra 6 Potência com expoente fracionário. Uma potência com expoente fracionário $a^{\frac{m}{n}}$ é uma forma alternativa para representar radicais:

$$a^{m/n} = \sqrt[n]{a^m}$$

Assim, combinando as Regras 5 e 6, temos que

$$a^{-m/n} = \frac{1}{\sqrt[n]{a^m}}$$

Regra 7 Potência de produto.

$$(ab)^n = a^n \times b^n$$

Regra 8 Potência de divisão.

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

Essas regras estão resumidas na Seção A.3.

Exemplo 1.11 Simplifique as seguintes expressões utilizando as regras de potenciação:

(a)
$$2^2 \times 2^3 \times 2^5$$
; (e) $8^{1/3}$; (i) $(2x)^2$; (l) $(\frac{4}{5})^2$;

(e)
$$8^{1/3}$$
;

$$(2x)^2;$$
 (1)

(b)
$$3^3 \times 3^{-1}$$

(f)
$$2^{4/2}$$

(a)
$$2^2 \times 2^3 \times 2^3$$
; (b) $3^3 \times 3^{-1}$; (c) $\frac{2^4}{2}$; (e) $8^{1/3}$; (f) $2^{4/2}$; (g) $(3xy)^4$; (m) $125^{2/3}$. (e) $\frac{2^5}{2^2}$; (g) $7^{3/4}$; (k) $(\frac{3}{x})^3$;

(c)
$$\frac{2^5}{2^2}$$
;

(g)
$$7^{3/4}$$

$$(k) \left(\frac{3}{\pi}\right)^3$$

(d)
$$a^5 \div a^7$$
;

(h)
$$9^{0.5}$$
;

Solução:

(a)
$$2^2 \times 2^3 \times 2^5 = 2^{2+3+5} = 2^{10} = 1024$$
; (b) $9^{0,5} = 9^{\frac{1}{2}} = \sqrt{9} = 3$;

(h)
$$9^{0.5} = 9^{\frac{1}{2}} = \sqrt{9} = 3;$$

(b)
$$3^3 \times 3^{-1} = 3^{3+(-1)} = 3^{3-1} = 3^2 = 9;$$
 (i) $(2x)^2 = 2^2 \times x^2 = 4x^2;$

(i)
$$(2x)^2 = 2^2 \times x^2 = 4x^2$$
;

(c)
$$\frac{2^5}{2^2} = 2^{5-2} = 2^3 = 8;$$

(j)
$$(3xy)^4 = 3^4 \times x^4 \times y^4 = 81x^4y^4$$
;

(d)
$$a^5 \div a^7 = a^{5-7} = a^{-2}$$
;

(k)
$$\left(\frac{3}{x}\right)^3 = \frac{3^3}{x^3} = \frac{27}{x^3}$$
;

(e)
$$8^{1/3} = \sqrt[3]{8} = \sqrt[3]{2^3} = 2^{3/3} = 2$$
;

(l)
$$\left(\frac{4}{5}\right)^2 = \frac{4^2}{5^2} = \frac{16}{25}$$
;

(f)
$$2^{4/2} = \sqrt[2]{2^4} = 2^{4/2} = 2^2 = 4$$
;

(m)
$$125^{2/3} = (5^3)^{2/3} = 5^2 = 25$$
.

(g)
$$7^{3/4} = \sqrt[4]{7^3}$$
;

1.6 Radiciação

Sejam $a \in b$ dois números reais e n um número inteiro maior que 1. Então, define-se:

$$\sqrt[n]{a} = b \Leftrightarrow b^n = a,$$

onde $\sqrt[n]{a}$ a é o radical, n é o índice e a é o radicando.

Exemplo 1.12 Obtenha o valor dos radicais a seguir:

- (a) $\sqrt[3]{8}$;
- (b) $\sqrt{9}$;
- (c) $\sqrt[5]{0}$;
- (d) $\sqrt[3]{-8}$;
- (e) $\sqrt[5]{-1}$.

(a)
$$\sqrt[3]{8} = 2$$
, pois $2^3 = 8$;

(d)
$$\sqrt[3]{-8} = -2$$
, pois $(-2)^3 = -8$;

(b)
$$\sqrt{9} = 3$$
, pois $3^2 = 9$;

(e)
$$\sqrt[5]{-1} = -1$$
, pois $(-1)^5 = -1$.

(c)
$$\sqrt[5]{0} = 0$$
, pois $0^5 = 0$;

A seguir, são apresentadas as regras da radiciação. Sejam a e b dois números reais, com a e b não negativos e $b \neq 0$, e m e n números inteiros maiores que 1.

Regra 1 Multiplicação de radicais de mesmo índice. Ao multiplicarmos dois ou mais radicais de mesmo índice, conservamos o índice e multiplicamos os radicandos:

$$\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{ab}$$

Regra 2 Divisão de radicais de mesmo índice. Ao dividirmos dois radicais de mesmo índice, conservamos o índice e dividimos os radicandos:

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

Radical de radical. Ao extrair raiz de raiz, conservamos o radicando e multiplicamos os índices:

$$\sqrt[n]{\sqrt[m]{a}} = \sqrt[nm]{a}$$

Regra 4 Radical de potência. Ao extrairmos uma raiz de uma potência, podemos dividir o índice e o expoente por um divisor comum. Suponha que $n = n' \times d$ e que $m = m' \times d$, então:

$$\sqrt[n]{a^m} = \sqrt[n'd]{a^{m'd}} = \sqrt[n']{a^{m'}}$$

Radical de potência com índice e expoente iguais. Neste caso, é possível simplificar a expressão, observando a paridade do índice e do expoente:

$$\sqrt[n]{a^n} = \begin{cases} a, \text{ se } n \text{ \'e impar} \\ |a|, \text{ se } n \text{ \'e par} \end{cases}$$

Utilizando as regras de radiciação, simplifique as seguintes Exemplo 1.13 expressões:

(a)
$$\sqrt[3]{5} \times \sqrt[3]{2}$$
; (c) $\sqrt[6]{5^4}$;

(c)
$$\sqrt[6]{5^4}$$

(e)
$$\sqrt[3]{\sqrt{7}}$$
;

(g)
$$\sqrt[4]{(-2)^4}$$
;

(b)
$$\frac{\sqrt[5]{8}}{\sqrt[5]{2}}$$
;

(d)
$$\sqrt[3]{8^5}$$

(b)
$$\frac{\sqrt[5]{8}}{\sqrt[5]{2}}$$
; (d) $\sqrt[3]{8^5}$; (f) $\sqrt[3]{(-2)^3}$;

(h)
$$\sqrt[3]{2^3}$$
.

(a)
$$\sqrt[3]{5} \times \sqrt[3]{2} = \sqrt[3]{5 \times 2} = \sqrt[3]{10}$$
;

(e)
$$\sqrt[3]{\sqrt{7}} = \sqrt[3 \times 2]{7} = \sqrt[6]{7}$$
;

(b)
$$\frac{\sqrt[5]{8}}{\sqrt[5]{2}} = \sqrt[5]{\frac{8}{2}} = \sqrt[5]{4}$$
;

(f)
$$\sqrt[3]{(-2)^3} = \sqrt[3]{-8} = -2;$$

(c)
$$\sqrt[6]{5^4} = \sqrt[3]{5^2}$$
;

(g)
$$\sqrt[4]{(-2)^4} = \sqrt[4]{(2)^4} = 2;$$

(d)
$$\sqrt[3]{8^5} = (\sqrt[3]{8})^5 = 2^5 = 32;$$

(h)
$$\sqrt[3]{2^3} = 2$$
.

1.6.1 Simplificação

Algumas vezes, é possível simplificar um radical decompondo o radicando. Por exemplo:

$$\sqrt{50} = \sqrt{5^2 \times 2} = \sqrt{5^2} \times \sqrt{2} = 5\sqrt{2}.$$

E também

$$\sqrt[3]{16} = \sqrt[3]{2^4} = \sqrt[3]{2^3 \times 2} = 2\sqrt[3]{2}.$$

Ou, ainda,

$$\sqrt{160} = \sqrt{2^5 \times 5} = \sqrt{2^4 \times 2 \times 5} = 2^2 \sqrt{10} = 4\sqrt{10}.$$

1.6.2 Operações

Nesta seção, revisaremos as técnicas para efetuar operações com radicais.

Soma e subtração. Somamos ou subtraímos os radicais de mesmo índice e mesmo radicando. Por exemplo:

$$6\sqrt{5} + 3\sqrt{5} - 2\sqrt{5} = 7\sqrt{5}.$$

ou

$$4\sqrt{18} + 3\sqrt{8} = 4\sqrt{2 \times 3^2} + 3\sqrt{2^3} = 4 \times 3\sqrt{2} + 3 \times 2\sqrt{2} = 12\sqrt{2} + 6\sqrt{2} = 18\sqrt{2}.$$

Multiplicação. O produto de dois ou mais radicais de mesmo índice é um radical com o mesmo índice dos fatores e cujo radicando é igual ao produto dos radicando dos fatores. Por exemplo:

$$\sqrt{2} \times \sqrt{7} = \sqrt{14}.$$

E também

$$\sqrt[3]{5} \times \sqrt[3]{6} = \sqrt[3]{5 \times 6} = \sqrt[3]{30}.$$

Ou, ainda,

$$2\sqrt{6} \times 5\sqrt{2} = 10\sqrt{2 \times 6} = 10\sqrt{12} = 10\sqrt{2^2 \times 3} = 10 \times 2\sqrt{3} = 20\sqrt{3}.$$

Divisão. O quociente de dois radicais de mesmo índice é um radical com o mesmo índice dos termos e cujo radicando é igual ao radicando dos termos. Por exemplo:

$$\sqrt{40} \div \sqrt{2} = \frac{\sqrt{40}}{\sqrt{2}} = \sqrt{\frac{40}{2}} = \sqrt{20} = \sqrt{2^2 \times 5} = 2\sqrt{5}.$$

E, ainda,

$$\sqrt[3]{96} \div \sqrt[3]{2} = \sqrt[3]{\frac{96}{2}} = \sqrt[3]{\frac{96}{2}} = \sqrt[3]{48} = \sqrt[3]{2^3 \times 2 \times 3} = 2\sqrt[3]{6}.$$

Exemplo 1.14 Utilizando as regras de radiciação, simplifique as seguintes expressões:

(a)
$$2\sqrt{5} + 8\sqrt{2} - 6\sqrt{2} + 8\sqrt{5} - 2\sqrt{2}$$
; (d) $\frac{\sqrt{162}}{\sqrt{3}}$

(b)
$$\sqrt{50} + \sqrt{18}$$
; (e) $\frac{\sqrt[7]{x^{11}}}{\sqrt[7]{x^2}}$;

(c)
$$\sqrt[5]{a^3b} \times \sqrt[5]{a^2b}$$
; (f) $\frac{\sqrt{12} + \sqrt{75}}{2\sqrt{147}}$

Solução:

(a)
$$2\sqrt{5} + 8\sqrt{2} - 6\sqrt{2} + 8\sqrt{5} - 2\sqrt{2} = 10\sqrt{5} + 8\sqrt{2} - 8\sqrt{2} = 10\sqrt{5}$$
;

(b)
$$\sqrt{50} + \sqrt{18} = \sqrt{2 \times 5^2} + \sqrt{2 \times 3^2} = 5\sqrt{2} + 3\sqrt{2} = 8\sqrt{2}$$
;

(c)
$$\sqrt[5]{a^3b} \times \sqrt[5]{a^2b} = \sqrt[5]{a^3} \times \sqrt[5]{b} \times \sqrt[5]{a^2} \times \sqrt[5]{b} = a^{3/5} \times a^{2/5} \times b^{1/5} \times b^{1/5} = a\sqrt[5]{b^2}$$

(d)
$$\frac{\sqrt{162}}{\sqrt{3}} = \frac{\sqrt{2} \times 3^4}{\sqrt{3}} = \frac{\sqrt{2} \times \sqrt{3^4}}{\sqrt{3}} = \frac{9\sqrt{2}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{9\sqrt{6}}{\sqrt{9}} = \frac{9\sqrt{6}}{3} = 3\sqrt{6};$$

(e)
$$\frac{\sqrt[7]{x^{11}}}{\sqrt[7]{x^3}} = \frac{\sqrt[7]{x^7 \times x^4}}{\sqrt[7]{x^3}} = \frac{x\sqrt[7]{x^4}}{\sqrt[7]{x^3}} = x\sqrt[7]{\frac{x^4}{x^3}} = x\sqrt[7]{x};$$

(f)
$$\frac{\sqrt{12}+\sqrt{75}}{2\sqrt{147}} = \frac{\sqrt{2^2\times3}+\sqrt{3\times5^2}}{2\sqrt{3\times7^2}} = \frac{2\sqrt{3}+5\sqrt{3}}{17\sqrt{3}} = \frac{7\sqrt{3}}{14\sqrt{3}} = \frac{1}{2}.$$

1.7 Simplificação de expressões algébricas fracionárias

A simplificação de expressões algébricas fracionárias ocorre com frequência no Cálculo Diferencial e Integral. As regras que você utilizou na Seção 1.4 para operar com frações também podem ser utilizadas para simplificar expressões algébricas fracionárias. Vejamos alguns exemplos.

Exemplo 1.15 Simplifique a expressão $\frac{\frac{1}{x} - \frac{1}{y}}{\frac{1}{x^2} - \frac{1}{y^2}}$.

Solução: Resolvendo a subtração de expressões algébricas fracionárias que aparece no numerador e também no denominador, temos:

$$\frac{\frac{1}{x} - \frac{1}{y}}{\frac{1}{x^2} - \frac{1}{y^2}} = \frac{\frac{y - x}{xy}}{\frac{y^2 - x^2}{x^2 y^2}}$$

Agora, resolvemos a divisão de expressões algébricas fracionárias e simplificamos, obtendo:

$$\frac{\frac{y-x}{xy}}{\frac{y^2-x^2}{x^2y^2}} = \left(\frac{y-x}{xy}\right) \left(\frac{x^2y^2}{y^2-x^2}\right).$$

Os termos x^2y^2 e xy podem ser simplificados. Além disso, a expressão $y^2 - x^2$ (que é uma diferença de dois termos ao quadrado) pode ser fatorada como $y^2 - x^2 = (y - x)(y + x)$, de forma que a expressão fica

$$\left(\frac{y-x}{xy}\right)\left(\frac{x^2y^2}{y^2-x^2}\right) = \left(\frac{y-x}{xy}\right)\left(\frac{x^2y^2}{(y-x)(y+x)}\right) = \frac{xy}{y+x}.$$

Caso você tenha dificuldades em fatorar expressões, isto é, em como escrever uma expressão como um produto, reveja esse tópico na Seção 5.2.

Exemplo 1.16 Simplifique as seguintes expressões algébricas fracionárias:

(a)
$$3x^{-2}y^4 + 6x^{-4}$$
;

(f)
$$\frac{2x^2-18}{4x^2-24x+36}$$
;

(b)
$$3x^{-1/2} + 4x^{1/2}$$
;

(g)
$$\frac{a^2-x^2}{a^2-2ax+x^2}$$
;

(c)
$$\frac{a^2+ab+(b+a)(b-a)}{3a+3b}$$
;

(h)
$$\frac{x-1}{x+1} + \frac{x+1}{x-1}$$
;

(d)
$$\frac{(x+y)(x+y)-y^2}{x+2y}$$
;

(i)
$$\left(\frac{3x-9}{8x-4}\right) \left(\frac{10x-5}{5x-15}\right)$$
;

(e)
$$\frac{2x+14}{x^2-49}$$
;

$$(j) \frac{\frac{7}{x^2-4}}{\frac{xy}{x+2}}.$$

(a)
$$3x^{-2}y^4 + 6x^{-4} = \frac{3y^4}{x^2} + \frac{6}{x^4} = \frac{3x^2y^4 + 6}{x^4}$$
;

(b)
$$3x^{-1/2} + 4x^{1/2} = \frac{3}{\sqrt{x}} + 4\sqrt{x} = \frac{3+4\sqrt{x}\sqrt{x}}{\sqrt{x}} = \frac{3+4x}{\sqrt{x}}$$
;

(c)
$$\frac{a^2 + ab + (b+a)(b-a)}{3a + 3b} = \frac{a^2 + ab + b^2 - ba + ab - a^2}{3(a+b)} = \frac{ab + b^2}{3(a+b)} = \frac{b(a+b)}{3(a+b)} = \frac{b}{3};$$
(d)
$$\frac{(x+y)(x+y) - y^2}{x+2y} = \frac{x^2 + xy + yx + y^2 - y^2}{x+2y} = \frac{x^2 + 2xy}{x+2y} = \frac{x(x+2y)}{x+2y} = x;$$

(d)
$$\frac{(x+y)(x+y)-y^2}{x+2y} = \frac{x^2+xy+yx+y^2-y^2}{x+2y} = \frac{x^2+2xy}{x+2y} = \frac{x(x+2y)}{x+2y} = x;$$

(e)
$$\frac{2x+14}{x^2-49} = \frac{2(x+7)}{(x+7)(x-7)} = \frac{2}{x-7}$$
;

(f)
$$\frac{2x^2-18}{4x^2-24x+36} = \frac{2(x^2-9)}{4(x^2-6x+9)} = \frac{2(x+3)(x-3)}{4(x-3)(x-3)} = \frac{2(x+3)}{4(x-3)} = \frac{x+3}{2(x-3)};$$

(g)
$$\frac{a^2-x^2}{a^2-2ax+x^2} = \frac{(a-x)(a+x)}{(a-x)^2} = \frac{a+x}{a-x}$$
;

(h)
$$\frac{x-1}{x+1} + \frac{x+1}{x-1} = \frac{(x-1)(x-1) + (x+1)(x+1)}{(x+1)(x-1)} = \frac{(x-1)^2 + (x-1)^2}{x^2 - 1} = \frac{x^2 - 2x + 1 + x^2 + 2x + 1}{x^2 - 1} = \frac{2x^2 + 2}{x^2 - 1} = \frac{2(x^2 + 1)}{x^2 - 1}$$

(i)
$$\left(\frac{3x-9}{8x-4}\right)\left(\frac{10x-5}{5x-15}\right) = \frac{3(x-3)}{4(2x-1)} \times \frac{5(2x-1)}{5(x-3)} = \frac{3}{4};$$

(j)
$$\frac{\frac{7}{x^2-4}}{\frac{xy}{x+2}} = \frac{7}{(x-2)(x+2)} \times \frac{x+2}{xy} = \frac{7}{(x-2)xy}$$
.

Neste capítulo, fizemos uma breve revisão de vários assuntos de Matemática Básica necessários ao estudo do cálculo. Sugerimos que você realize os exercícios propostos antes de começar a estudar o capítulo seguinte.

1.8 Problemas

Conjunto A: Básico

- 1.1 Reescreva os seguintes subconjuntos dos conjuntos dos números reais utilizando a notação de intervalo:
 - (a) \mathbb{R}^* ;
 - (b) \mathbb{R}_+^* ;
 - (c) \mathbb{R}_{-}^{*} :
 - (d) \mathbb{R}_+ ;
 - (e) \mathbb{R}_{-} .
- 1.2 Descreva e represente graficamente o intervalo de números reais:
 - (a) x < 3;
 - (b) -2 < x < 4;
 - (c) $(-\infty, 5]$:

- (d) $(-3, +\infty)$:
- (e) x é positivo;
- (f) x é maior ou igual a 0 e menor ou igual a 3.
- 1.3 Use a notação de conjunto para descrever:
 - (a) [-2, 2];
 - (b) $[5, +\infty)$;
 - (c) x é negativo;
 - (d) x é maior que 2 e menor ou igual a
 - (e) o intervalo:

- 1.4 Reescreva os seguintes números conforme o solicitado:
 - (a) 0,7 como uma fração;
 - (b) $-\frac{10}{20}$ como um número decimal;
 - (c) a expressão "90% de 400" como um número inteiro;
 - (d) a expressão "180% de 400" como um número inteiro.
- 1.5 Resolva as seguintes operações:
 - (a) $\frac{2}{3} + \frac{4}{5}$;
 - (b) $\frac{3}{7} + \frac{1}{5} \frac{1}{2}$;
 - (c) $\frac{1}{3} \frac{1}{6} \frac{2}{8}$;
 - (d) $\frac{3}{5} + \frac{9}{5} + \frac{2}{8} \frac{1}{4} + \frac{2}{10};$ (e) $\frac{12/5}{7} \times 4;$

 - (f) $4 + \frac{1}{2} \times \frac{1}{3} \times \frac{1}{4}$;
 - (g) $\frac{\frac{1}{7}}{\frac{3}{7}} \times \frac{\frac{2}{5}}{\frac{1}{2}};$
 - (h) $\frac{4}{5} \div \frac{3}{6}$;
 - (i) $\frac{7}{3} \div 21$
- 1.6 Identifique a base da potência:
 - (a) -4^2
 - (b) $(-3)^5$
- 1.7 Determine o valor de x
 - (a) $(\frac{1}{3})^x \cdot 3^{-1} \cdot (\frac{1}{3})^x$
 - (b) $\frac{3}{3x} \cdot 3^{1+x} = -8$
- **1.8** Para a = 1 e b = -2, calcule:
 - (a) $\frac{a+b}{3} + \frac{2b}{5}$;
 - (b) $\frac{a^2-b^3}{2}$;
 - (c) $\frac{a}{2} + \frac{b^{-1}}{2}$;
 - (d) $\frac{1}{2}b + 3b$.
- 1.9 Simplifique as expressões a seguir:
 - (a) $\left(-\frac{mn}{3}\right) \cdot \left(\frac{n}{5}\right)$;
 - (b) $\left(\frac{4a^2b^2}{9}\right)\cdot\left(-\frac{9m^2b}{4}\right);$
 - (c) $-6am \cdot (\frac{2}{3}m^2n) \cdot (\frac{5}{3}an);$
 - (d) $\left(-\frac{1}{2}am^6\right) \div \left(-\frac{1}{4}an^3\right)$;
 - (e) $(a^4m^3n^{-1}) \div (a^2m^2n)$.

- 1.10 Simplifique as seguintes expressões:
 - (a) $x^{12}x^5 + x$:
 - (b) $4x^4x^8$;
 - (c) $\frac{7x^{18}}{2x^{11}}$;

 - (d) $(3x)^3$; (e) $\frac{(-x)^5}{(-x)^4}$;

 - (g) $\left(\frac{-1}{3}\right)^3 + \left[3^{-1} (-3)^{-1}\right]^{-2}$;
 - (h) $\frac{2^{-2}+2^2-2^{-1}}{2^{-2}-2^{-1}}$.
- 1.11 Reescreva as expressões sem utilizar expoentes negativos:
 - (a) $(x+y^{-1})^{-1}$;
 - (b) $\left(\frac{a^{-2}}{b^{-3}}\right)^{-2}$;
 - (c) $(7x^{-3}y^5)^{-2}$
 - (d) $(5x^7y^{-8})^{-3}$.
- 1.12 Converta os radicais em forma de potência e vice-versa:
 - (a) $\sqrt[3]{x^2}$;
 - (b) $\sqrt{(x+y)^5}$;
 - (c) $x^{2/5}y^{1/5}$:
 - (d) $2x\sqrt[5]{x^3}$:
 - (e) $5x^{-2/3}$.
- 1.13 Simplifique as seguintes expressões:
 - (a) $\sqrt[3]{-512}$;

 - (b) $\sqrt[4]{\frac{81}{16}}$; (c) $\frac{\sqrt[3]{-16}}{\sqrt[3]{-2}}$;
 - (d) $5\sqrt{12} + 3\sqrt{75}$.
- 1.14 Escreva usando somente um radical:
 - (a) $\sqrt[3]{2x}$;
 - (b) $\sqrt[5]{\sqrt{ab}}$;
 - (c) $\frac{\sqrt[3]{x^2}}{\sqrt[5]{x}}$;
 - (d) $\sqrt{a^3} \sqrt[3]{a^2}$.
- 1.15 Calcule os seguintes produtos:
 - (a) $\sqrt{x} \left(\sqrt{2x} \sqrt{x} \right)$;
 - (b) $(\sqrt{x} 2\sqrt{y}) (2\sqrt{x} + \sqrt{y}).$

- **1.16** Se $a = 3 + \sqrt[3]{5}$ e $b = 3 \sqrt[3]{5}$, calcule o valor de $(a b)^3$.
- 1.17 Simplifique as seguintes expressões algébricas fracionárias:

(a)
$$\frac{10x^3y^3 + 3xy^2}{2xy^2}$$
;

(b)
$$\frac{6x^2y^3 - 9x^3y^2}{3x^2y}$$
;
(c) $\frac{x^2 + 5}{x^3 + 5x}$;

(c)
$$\frac{x^2+5}{x^3+5x}$$

(d)
$$\frac{5x+25}{x^2+10x+25}$$
;

(e)
$$\frac{2x^2+8x+8}{x^2-4}$$
;

(f)
$$\frac{16x^2y}{10xy^2}$$
;

(g)
$$\frac{2xy+2}{x^2y^2-1}$$
.

1.18 Efetue as operações indicadas no numerador e no denominador das frações a seguir e, então, simplifique:

(a)
$$\frac{2x^2 + (x+y)(x-y) - 2y^2}{2x^2 - 2y^2}$$
;

(b)
$$\frac{x(x-4)-4(y^2-x)}{(x-y)^2-y^2}$$
;

(c)
$$\frac{2x+2y}{x^2+(y+x)(x+y)+xy}$$
.

Conjunto B: Além do básico

1.19 Simplifique a expressão

$$\frac{ab^{-2}(a^{-1}b^2)^4(ab^{-1})^2}{a^{-3}b(a^2b^{-1})(a^{-1}b)},$$

e, a seguir, determine seu valor quando $a = 10^{-3}$ e $b = 10^{-2}$.

1.20 Calcule o valor de

$$\left(\sqrt{7+\sqrt{13}}+\sqrt{7-\sqrt{13}}\right)^2.$$