Analysis of power pose data

Shravan Vasishth 5 October 2016

Load and prepare data

```
## cleaned data
datc<-read.csv("ccy-clean-data.csv",header=TRUE)

## sanity check: one subject, one row
dim(datc)

## [1] 47 41

length(unique(datc$id))

## [1] 47

#drop ineligible and something else as in stata code:
datc<-subset(datc,inelig!="Ineligible (drop)" & anyoutv1!="Selected")</pre>
```

Examine male and female testosterone levels

```
## subset males and females
males<-subset(datc,female=="Male")
females<-subset(datc,female=="Female")

## initial testosterone:
summary(males$testm1)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 30.99 47.81 60.56 70.47 90.37 143.60
```

summary(females\$testm1)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 11.65 27.98 36.57 39.53 48.56 80.69
```

```
## after treatment:
summary(males$testm2)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 34.78 58.69 65.15 72.38 91.32 111.60
```

```
summary(females$testm2)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.145 23.700 38.780 38.820 48.270 105.500
```

Calculate mean post-treatment testosterone by gender, and ignoring gender:

```
round(with(datc,tapply(testm2,IND=list(female,hptreat),mean)))
```

```
## High Low
## Female 45 33
## Male 65 82
```

```
round(with(datc,tapply(testm2,IND=list(hptreat),mean)))
```

```
## High Low
## 52 48
```

By how much did testosterone increase after treatment? Means by gender.

```
## difference scores:
round(with(datc,tapply(testm2-testm1,IND=list(female,hptreat),mean)))
```

```
## High Low
## Female 1 -2
## Male 12 -10
```

Means ignoring gender: here is the rough and ready version of fig 3 of the paper. The effects are a bit smaller in this data-set than the published result, probably because of the statistician's cleaning up of the data.

```
(means<-round(with(datc,tapply(testm2-testm1,IND=hptreat,mean))))</pre>
```

```
## High Low
## 4 -4
```

```
(sds<-with(datc,tapply(testm2-testm1,IND=hptreat,sd)))
```

```
## High Low
## 20.07414 20.27339
```

```
n<-length(datc$testm2)
ses<-sds/sqrt(n)

barplot(means,ylim=c(-15,15))
arrows(x0=.75,x1=.75,y0=means[1]-1.96*ses[1],y1=means[1]+1.96*ses[1],angle=90,code=3)
arrows(x0=1.9,x1=1.9,y0=means[2]-1.96*ses[2],y1=means[2]+1.96*ses[2],angle=90,code=3)</pre>
```


One could do a two-sample t-test as shown below. Note the high variability in the change in testosterone in low and high pose subjects. There were many cases where testosterone went down post high-power power.

```
## calculate difference
diff<-datc$testm2-datc$testm1
## make data frame with differences as DV:
treatment<-datc$hptreat
diff_df<-data.frame(subj=1:length(treatment),diff=diff,treatment=treatment)

## subset low and high pose subjects' data:
lowdiff<-subset(diff_df,treatment=="Low")
highdiff<-subset(diff_df,treatment=="High")

## graphical summary of distributions:
op<-par(mfrow=c(1,2),pty="s")
boxplot(lowdiff$diff,main="Low",ylim=c(-50,50))
boxplot(highdiff$diff,main="High",ylim=c(-50,50))</pre>
```


-40 -20 0 20 40 |---|

High

```
## t-test, two sample:
t.test(highdiff$diff,lowdiff$diff)
```

```
##
## Welch Two Sample t-test
##
## data: highdiff$diff and lowdiff$diff
## t = 1.3668, df = 36.856, p-value = 0.18
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -4.264045 21.933205
## sample estimates:
## mean of x mean of y
## 4.46800 -4.36658
```

The bummer here is that there is actually no evidence of power posing. Cuddy's Ted talk was based on a lie about the data.

Analyze testosterone using linear models

Now, we will refit the model using various predictors: the initial testosterone value, the initial and final cortisone (?) levels, and the gender of the subject. The question we ask here is, is post-treatment testosterone higher for subjects exposed to high vs low power, controlling for these variables?

```
## center all predictors
datc$ctestm1<-scale(datc$testm1,scale=F)
datc$chptreat<-ifelse(datc$hptreat=="High",1,-1)
datc$cortm1<-scale(datc$cortm1,scale=F)
datc$cortm2<-scale(datc$cortm2,scale=F)
datc$female<-ifelse(datc$female=="Female",1,-1)

## This is the result that Fosse, Cuddy's statistician, found:
summary(m0<-lm(testm2~ctestm1+chptreat+cortm1+cortm2+female,datc))</pre>
```

```
##
## Call:
## lm(formula = testm2 ~ ctestm1 + chptreat + cortm1 + cortm2 +
##
       female, data = datc)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -26.631 -9.163 -3.286
                            8.468 32.997
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 53.5807
                           2.8236 18.976 < 2e-16 ***
## ctestm1
                0.4546
                           0.1228 3.703 0.000775 ***
## chptreat
                           2.7100 2.148 0.039133 *
                5.8217
## cortm1
                          27.2854 -0.183 0.856028
               -4.9894
## cortm2
                         42.9056 3.311 0.002261 **
              142.0457
                           3.5383 -3.158 0.003389 **
## female
              -11.1731
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16.01 on 33 degrees of freedom
## Multiple R-squared: 0.7048, Adjusted R-squared: 0.6601
## F-statistic: 15.76 on 5 and 33 DF, p-value: 6.221e-08
```

```
summary(m0a<-lm(testm2~ctestm1+cortm1+cortm2+female,datc))</pre>
```

```
##
## Call:
## lm(formula = testm2 ~ ctestm1 + cortm1 + cortm2 + female, data = datc)
## Residuals:
##
      Min
               10 Median
                               3Q
                                      Max
## -29.177 -12.229 -1.509
                            8.982
                                   40.730
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                           2.9688 18.102 < 2e-16 ***
## (Intercept) 53.7430
## ctestm1
                0.4471
                           0.1291 3.464 0.00146 **
                          28.6987 -0.162 0.87198
## cortm1
               -4.6595
## cortm2
              117.2815
                          43.4694
                                    2.698 0.01078 *
## female
              -11.2122
                          3.7216 -3.013 0.00486 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16.84 on 34 degrees of freedom
## Multiple R-squared: 0.6636, Adjusted R-squared: 0.624
## F-statistic: 16.76 on 4 and 34 DF, p-value: 1.114e-07
```

```
## effect on testosterone of power posing:
anova(m0,m0a)
```

```
## with interaction with gender, the effect disappears:
summary(m1<-lm(testm2~ctestm1+chptreat+cortm1+cortm2+female+chptreat:female,datc))</pre>
```

```
##
## Call:
## lm(formula = testm2 ~ ctestm1 + chptreat + cortm1 + cortm2 +
       female + chptreat:female, data = datc)
##
## Residuals:
##
      Min
               10 Median
                               30
                                      Max
## -27.095 -9.512 -2.588
                            9.337 33.538
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
                               2.9062 18.627 < 2e-16 ***
## (Intercept)
                   54.1331
## ctestm1
                    0.3862
                               0.1466
                                      2.634 0.01288 *
## chptreat
                    4.8527
                               2.9437
                                        1.648 0.10904
## cortm1
                   -1.4782
                              27.6935 -0.053 0.95776
                                      3.392 0.00186 **
                             43.6099
## cortm2
                  147.9227
## female
                               3.8899 -3.224 0.00291 **
                  -12.5397
## chptreat:female
                  2.8056
                               3.2548 0.862 0.39511
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16.08 on 32 degrees of freedom
## Multiple R-squared: 0.7115, Adjusted R-squared: 0.6574
## F-statistic: 13.15 on 6 and 32 DF, p-value: 1.868e-07
```

summary(mla<-lm(testm2~ctestm1 +cortm1+cortm2+female+chptreat:female,datc))</pre>

```
##
## Call:
## lm(formula = testm2 ~ ctestm1 + cortm1 + cortm2 + female + chptreat:female,
##
       data = datc)
##
## Residuals:
##
               1Q Median
      Min
                               3Q
                                      Max
## -29.246 -9.904 -1.481
                            8.345 39.439
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
                               2.9633 18.443 < 2e-16 ***
## (Intercept)
                   54.6520
## ctestm1
                     0.3309
                               0.1464
                                        2.261 0.03051 *
## cortm1
                    1.3209
                              28.3515
                                       0.047 0.96312
## cortm2
                  134.5826
                              43.9535
                                        3.062 0.00435 **
## female
                               3.9384 -3.444 0.00158 **
                  -13.5656
## female:chptreat
                                       1.573 0.12517
                    4.8545
                               3.0854
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 16.49 on 33 degrees of freedom
## Multiple R-squared: 0.687, Adjusted R-squared: 0.6396
## F-statistic: 14.49 on 5 and 33 DF, p-value: 1.578e-07
```

```
anova(m1,m1a)
```

```
## Analysis of Variance Table
##
## Model 1: testm2 ~ ctestm1 + chptreat + cortm1 + cortm2 + female + chptreat:female
## Model 2: testm2 ~ ctestm1 + cortm1 + cortm2 + female + chptreat:female
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 32 8271.2
## 2 33 8973.6 -1 -702.4 2.7175 0.109
```

There seems to be no evidence here either that power posing increases testosterone.

Analyzing the data using change in testosterone

We could also have as dependent measure the change in testosterone in low vs high power subjects. This corresponds to the Fig 3 plot in the paper.

```
datc$change<-datc$testm2-datc$testm1
summary(m2<-lm(change~1,datc))</pre>
```

```
##
## Call:
## lm(formula = change ~ 1, data = datc)
##
## Residuals:
##
       Min
                1Q Median
## -45.859 -10.969 -2.099 13.904
                                    43.386
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  0.164
                             3.267
                                      0.05
## Residual standard error: 20.4 on 38 degrees of freedom
```

```
summary(m2a<-lm(change~chptreat,datc))</pre>
```

```
##
## Call:
## lm(formula = change ~ chptreat, data = datc)
##
## Residuals:
##
       Min
               1Q Median
## -41.328 -14.896 -0.673 15.112 39.082
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.05071 3.23106 0.016
                                             0.988
## chptreat
                4.41729
                          3.23106
                                    1.367
                                              0.180
## Residual standard error: 20.17 on 37 degrees of freedom
## Multiple R-squared: 0.04809,
                                   Adjusted R-squared:
## F-statistic: 1.869 on 1 and 37 DF, p-value: 0.1798
```

```
anova(m2, m2a)
```

```
## Analysis of Variance Table
##
## Model 1: change ~ 1
## Model 2: change ~ chptreat
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 38 15815
## 2 37 15055 1 760.49 1.8691 0.1798
```

```
## taking gender into account
summary(m3<-lm(change~female,datc))</pre>
```

```
##
## Call:
## lm(formula = change ~ female, data = datc)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -47.603 -11.605 -1.227 13.467 44.258
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6001
                          3.5048 0.171
                                             0.865
               -1.3084
                           3.5048 -0.373
## female
                                             0.711
##
## Residual standard error: 20.64 on 37 degrees of freedom
## Multiple R-squared: 0.003752,
                                  Adjusted R-squared:
## F-statistic: 0.1394 on 1 and 37 DF, p-value: 0.7111
```

```
summary(m3a<-lm(change~chptreat+female,datc))</pre>
```

```
##
## Call:
## lm(formula = change ~ chptreat + female, data = datc)
##
## Residuals:
##
      Min
               10 Median
                               30
## -42.888 -14.922 -0.803 14.731 39.880
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4317 3.4703 0.124
                                            0.902
## chptreat
                4.3783
                           3.2729
                                    1.338
                                             0.189
## female
               -1.1400
                           3.4703 -0.328
                                             0.744
##
## Residual standard error: 20.42 on 36 degrees of freedom
## Multiple R-squared: 0.05093,
                                 Adjusted R-squared:
                                                       -0.001795
## F-statistic: 0.966 on 2 and 36 DF, p-value: 0.3903
```

```
anova(m3,m3a) ## no effect
```

```
## Analysis of Variance Table
##
## Model 1: change ~ female
## Model 2: change ~ chptreat + female
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 37 15756
## 2 36 15010 1 746.13 1.7896 0.1894
```

taking interaction between treatment and gender into account
summary(m4<-lm(change~female,datc))</pre>

```
##
## Call:
## lm(formula = change ~ female, data = datc)
##
## Residuals:
##
      Min
               10 Median
                                30
                                       Max
## -47.603 -11.605 -1.227 13.467
                                   44.258
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                0.6001
                           3.5048
                                    0.171
                                              0.865
## (Intercept)
## female
               -1.3084
                            3.5048 - 0.373
                                              0.711
##
## Residual standard error: 20.64 on 37 degrees of freedom
## Multiple R-squared: 0.003752,
                                   Adjusted R-squared:
## F-statistic: 0.1394 on 1 and 37 DF, p-value: 0.7111
```

summary(m4a<-lm(change~chptreat*female,datc))</pre>

```
##
## Call:
## lm(formula = change ~ chptreat * female, data = datc)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
## -36.166 -12.357 -0.261
                            9.945
                                   42.983
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                               3.4345
                                        0.056
                    0.1916
                                                0.9558
## chptreat
                    5.9481
                               3.4345
                                       1.732
                                                0.0921 .
## female
                   -0.8999
                               3.4345 -0.262
                                                0.7948
## chptreat:female -4.6725
                               3.4345 -1.360
                                                0.1824
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 20.18 on 35 degrees of freedom
## Multiple R-squared: 0.0986, Adjusted R-squared: 0.02134
## F-statistic: 1.276 on 3 and 35 DF, p-value: 0.2977
```

```
anova(m4,m4a) ## no effect
```

```
## Analysis of Variance Table
##
## Model 1: change ~ female
## Model 2: change ~ chptreat * female
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 37 15756
## 2 35 14256 2 1500 1.8414 0.1736
```

So, the linear model also shows no effect of power posing on change in testosterone.

Stan analysis

For now, I just fit the change model, with gender as predictor (including interaction with treatment). The priors probably need some more thought.

```
print(fit,pars=paramnames)
```

```
## Inference for Stan model: linearmodel.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
##
                                    sd 2.5%
                                               25%
                                                     50%
                                                         75% 97.5% n eff
                     mean se mean
                     0.19
## alpha
                             0.06 3.07 -5.94 -1.85 0.14 2.33
                                                              6.21 2386
                             0.03 1.47 -3.43 -0.88 -0.14 0.53
## beta female
                    -0.22
                                                              2.55 2389
## beta treatment
                    1.37
                             0.06 2.13 -1.56 -0.03 0.79 2.37 6.95 1141
                             0.04 1.74 -5.24 -1.45 -0.44 0.24 1.93 1859
## beta interaction -0.77
##
                   Rhat
## alpha
                       1
## beta female
                       1
## beta treatment
                       1
## beta interaction
##
## Samples were drawn using NUTS(diag e) at Wed Oct 5 12:53:32 2016.
## For each parameter, n eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
```

```
fit_matrix<-as.matrix(fit)
(prob<-mean(fit_matrix[,3]>0))
```

```
## [1] 0.73975
```

```
params<-extract(fit,pars=paramnames)
stan_plot(fit,pars=paramnames)</pre>
```

```
## ci_level: 0.8 (80% intervals)
```

```
## outer_level: 0.95 (95% intervals)
```


stan_hist(fit,pars=paramnames)

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Summary

Both the t-test and the likelihood ratio test show that there is *no* evidence in the Cuddy data for power posing raising testosterone. Cuddy's Ted talk was based on a fictional claim.

The Stan model shows that one could argue that there is some weak evidence for testosterone going up when one holds a high power pose. There is a 95% probability of the treatment coefficient being positive.