

Environmental Product Declaration

In accordance with ISO 14025 for:

Kissen Table & Workstation Range

Environmental Product Declaration (EPD)

in accordance with ISO 14025 EPD Registration No. S-P-04644 | Version 1.0 Issued 14/10/2021 | Valid until 14/10/2026

Company Information

Zenith Interiors designs, manufactures, and distributes leading-edge products for corporate and commercial environments that inspire people and organisations to excel (Zenith Interiors, 2019).

Product-related or management system-related certifications:

ISO 9001 - Quality management systems

ISO 14001 - Environmental Management Systems

AS 4801 Health and Safety

Name and location of production site: Zenith Interiors, Melbourne, Victoria.

Kissen Table & Workstations

Designed for the physical and functional requirements of today's diverse work modes, Kissen fosters connection whether in a social or collaborative setting. The family of tables and workstations features a strong timber aesthetic with a distinct leg profile. The under-structure design makes economic use of the components and accessory options to provide ease of team expression and identity.

Kissen tables provide work surfaces in a broad range of sizes for both seated and standing heights of 720 mm, 750 mm and 1050 mm respectively, with the option of mobility castors. Kissen legs are available linear or with a 45° corner leg for a softer domestic visual appeal.

Kissen Workstation is engineered to optimise team-based working with numerous configuration options and customisation to enrich the work environment. Integrated with ZENITH Ctrl™, KISSEN Workstation has access to a range of accessories.

UN CPC code: 3812/3813/3814 (EPD International, 2019).

<u>Geographical scope:</u> Final product produced in Melbourne, Victoria for the Australian market.

Functional unit / declared unit: One Kissen table with length 1.80 m, depth 1.65 m, height 0.72 m.

Scope: Cradle to grave life cycle of one Kissen table.

Reference service life: 15 years (EPD International, 2019).

<u>Databases and LCA software used:</u> AusLCI 2.2, ecoinvent 3.6, Industry Data 2.0 databases; SimaPro 9.1.0.11 software

Data collection period: July 2019 - February 2020

An Environmental Product Declaration, or EPD, is a standardised and verified way of quantifying the environmental impacts of a product that is based on a consistent set of rules known as Product Category Rules (PCR). EPDs within the same product category from different programs may not be comparable. This EPD is for a specific furniture product and follows the Product Category Rules 'Furniture,

except seats and mattresses v2.01'. The EPD owner has the sole ownership, liability, and responsibility for the EPD.

Declaration Owner:

Zenith Interiors

Web: zenithinteriors.com Email: info@zenithinteriors.com

Phone: 1300 013 013

EPD produced by:

Good Environmental Choice Australia (GECA)

Web: geca.eco

Email: enquiries@geca.org.au

Phone: 02 9699 2850

EPD program operator:

EPD Australasia Limited

Web: www.epd-australasia.com

Email: info@epd-australasia.com

Post: 315a Hardy Street, Nelson, New Zealand 7010

PCR Information

PCR:

Product Category Rules 'Furniture, except seats and mattressesv2.01'.

The International EPD System

THE INTERNATIONAL EPD® SYSTEM

Independent third-party verification

Independant verification of the declaration and data, according to ISO 14025:

☐EPD process certification (Internal)

☑ EPD verification (External)

Third party verifier

Jonas Bengtsson and Joana Almeida

Edge Environment

Product Information

The Kissen table is 1.80 m long, 1.65 m deep and 0.72 m high. It consists of a particleboard top, a beam with steel and aluminium components and legs made of either aluminium or timber (displayed as two separate options in this Environmental Product Declaration).

The materials used are sourced from different suppliers in Australia as well as Shanghai, China and transferred to Zenith's Melbourne factory for the manufacturing of the final product.

The final manufacturing process includes powder coating of the metals where the surfaces are first cleaned, then go through a powder coating process after which they are cured with heat. The rest of the components are assembled in the factory.

Background Data

Australian inputs were primarily modelled with the AusLCI database; the ecoinvent v3 database was used where suppliers were from overseas. All background data used was less than ten years old.

System Boundaries and Life Cycle Stages

Life Cycle Stages

This Environmental Product Declaration analyses the production of a Kissen table, including the raw material extraction, the manufacture of components from suppliers, the assembly of the table as well as the end of its service life. The different Kissen table components are transported to Sandringham, Victoria

where the table is assembled. The product is then packed in cardboard boxes and supplied to showrooms as well as clients in Australia.

Table 1: Life cycle stages of Kissen table

Process	Module	Description	Life cycle stages	Declared modules
Upstream	Al	Raw materials supply	A1-A3: Manufacturing stage	X
process	A2	Components/raw materials manufacture		Х
Core process	A3	Components transport to Zenith factory		X
	A4	Manufacturing of final products		Х
Downstream	B1	Transport of final product	B1: Final product transport	Х
process	B2	Maintenance	B2-B4: Usage stage	Х
	В3	Replacement		Х
	B4	Operational energy use		Х
	C1	Transport	C1-C3: End-of-life	Х
	C2	Manual dismantling		Х
	C3	Waste disposal		Х
Other Environment al Stage	D	Recycling	Other Environmental Stage	X

System Diagram

An 'upstream – core – downstream' flow is adopted in this study. The upstream processes include the flows of raw materials. The core processes include all activities which the manufacturing organisation is in control of, i.e. transportation of the components to the manufacturing factory and the actual process of manufacturing. The downstream processes include the steps that are controlled by the user and the disposal or recycling options of the products.

Figure 1: Process diagram Kissen table

End-of-life Scenarios

Zenith Interiors operates a take-back scheme for its furniture. Likewise, furniture owners resell or donate the furniture by themselves to extend its lifetime. In the end-of life for other environmental stages (represented as modules D), all aluminium and steel parts of the product are recycled after being manually dismantled. This is noted separately due to Polluter pays principle (PPP).

Data Quality, Temporal Scope and Geographical Scope

The modelling of Zenith products is of high quality as detailed company specific data about the product components, component suppliers, the annual energy consumption and the annual production rate was provided for this study. Data for upstream and downstream processes are retrieved from suitable averages in the AusLCI and ecoinvent databases.

The temporal scope of the study is the period for which the data was collected. The data collection process started with the visit to Zenith's Melbourne factory in July 2019. The energy consumption data taken into consideration range from September 2018 to 2019. The production volume data is for 2019. For the background data, temporal scope for AUSLCI VI.33, a shadow database of modified ecoinvent 2.2 processes is July 2020. For ecoinvent 3.6 the temporal scope is September 2019.

Table 2: Data sources, geographical scope and data quality

Materials/fuels		Module	Data source	Geographic	Data	
				al scope	quality	
Raw	Materials and	A1, A2	Information provided	Australia,	High	
materials	components for beam		by Zenith Interiors	China	quality	
supply,	Materials for the legs					
components	(aluminium/timber)					
/ raw	Particle board for					
materials	tabletop					
manufacture	Packaging of final					
, packaging	product					
	Packaging from					
	suppliers					
Components	Transportation of	A3, A4	Information provided	Australia,	High	
transport to	components from		by Zenith Interiors	China	quality	
Zenith	Shanghai, China					
factory,	Transportation of					
manufacturi	particle board					
ng of final	(Victoria, Australia)					
products	Electricity					
	consumption					
	Natural gas					
	consumption					
Transportati	Zenith Melbourne	B1	Assumption of	Australia	Medium	
on of final	factory to client		average distance of		quality	
product			1,000 km according			
			to Product Category			
			Rules			
Usage stage	Maintenance	B2	Regular cleaning	Australia	High	
			and dusting is		quality	
			recommended.			
	Replacement	В3	Not required		High	
					quality	
	Operational energy	B4	Not required		High	
	use				quality	
End of the	Transport	C1	Assumption of	Australia	Medium	
life-			average distance of		quality	
Downstream			1,000 km			

	Manual dismantling	C2	No impacts observed for manual dismantling		Medium quality
	Waste disposal	C3	Complete product along with packaging ends up in landfill.		Medium quality
Other environment al impacts Recycling	Recycling	D3	Aluminium and steel parts are recycled.	Australia	Medium quality

Allocations

No allocation between co-products in the core module was necessary as there were no co-products created during manufacturing.

The methodological choices for allocation for reuse, recycling and recovery have been set according to the polluter pays principle (PPP). This means that the generator of the waste shall carry the full environmental impact until the point in the product's life cycle at which the waste is transported to a scrapyard or the gate of a waste processing plant (collection site). The subsequent user of the waste shall carry the environmental impact from the processing and refinement of the waste, but not the environmental impact caused in the earlier life cycles. The cut-off system model from ecoinvent was used. Any allocations in the AusLCI unit system and Industry Data 2.0 were adopted.

Content Declaration

Table 3: Materials used for Kissen table

Materials	Quantity	Unit
Particle board tabletop	0.072	m3
Aluminium extruded	10.46	kg
Steel sheet	8.04	kg
Steel alloyed	1.968	kg
Aluminium die cast (including leg)	7.4	kg
American oak timber	6.3936	kg
Packaging materials from suppliers – plastic film	0.325	kg
Packaging materials from suppliers – folding box	0.081	kg
Packaging for final product – cardboard box	0.325	kg

Table 4: Energy consumption per product

Energy consumption	Quantity	Unit
Electricity	4.97	kWh
Gas usage	42.42	MJ

Environmental Performance

Environmental Impact Assessment Methods

Table 5: Overview of environmental impact assessment methods used in the study

Impact cat	egory	Unit	Assessment method		
Global	Fossil	kg CO₂eq.	Greenhouse Gas Protocol V1.02		
warming potential	Biogenic	kg CO₂eq.			
(GWP)	CO ₂ eq. from land transformatio n	kg CO₂eq.			
	Total	kg CO₂eq.			
Abiotic dep	letion	kg Sb eq.	CML-IA baseline V3.6		
Abiotic dep	letion (fossil	MJ			
Ozone laye (ODP)	r depletion	kg CFC-11 eq.			
Photochem	nical oxidation	kg C₂H₄ eq.	Recipe 2008 Midpoint		
Acidificatio	n	kg SO ₂ eq.	CML-IA baseline V3.6		
Eutrophicat	tion	kg PO ₄ ³- eq.			
Water use		m³	AWARE VI.01		
Land use		species.yr	Recipe 2016 Endpoint V1.04		
Human toxi	icity, cancer	CTUh	USEtox 2		
Human toxi cancer	icity, non-	CTUh			
Freshwater	ecotoxicity	CTUe			
Radioactive	e waste	kg	EDIP 2003 method		
Hazardous	waste	kg	EDIP 2003 method		
Non-hazard	dous waste	kg	EDIP 2003 method (Sum of Bulk waste and Slag waste)		
Primary energy resources	Use as energy carrier	MJ	Cumulative Energy Demand V1.11 method: calculated as sum of renewable – biomass, renewable – wind, solar, geothermal, and renewable – water.		
Renewabl e	Use as raw materials	MJ	Manual calculation		
Primary energy resources	Use as energy carrier	MJ	Cumulative Energy Demand V1.11 method: calculated as sum of non-renewable – fossil, non-renewable – nuclear, and non-renewable – biomass.		
Non- renewabl e	Use as raw materials	MJ	Manual calculation		
Secondary resources	Secondary material I resources		Manual calculation		
Renewable	secondary fuels	MJ	0		
Non-renew fuels	able secondary	MJ	0		
Net use of f	resh water	m³	Recipe 2016 Midpoint V1.04		

Environmental Impacts

The Kissen table is either manufactured with a timber leg or aluminium leg. The aluminium leg has an extra core process where it is powder coated in the Zenith factory itself.

The following tables show the environmental impacts of the Kissen table with respect to upstream, core and downstream processes, including all processes listed in Table 1.

Kissen Table with Aluminium Legs

Table 6: Life cycle impacts – Kissen table with aluminium legs

Impact category		Unit	Upstrea m processe s	Core processe s	Downstrea m processes with landfill	Total	Other environme ntal stage- Recycling
			A1-A2	A3-A4	B1-C4		D
Global	Fossil	kg CO₂eq.	3.84E+02	2.13E+01	1.23E+02	5.25E+02	-3.58E+02
warming	Biogenic	kg CO2 eq.	-8.54E+01	1.76E-02	9.26E+01	7.23E+00	-4.83E-01
potential (GWP)	CO ₂ eq. from land transformatio n	kg CO₂ eq.	1.36E+00	2.75E-05	4.13E-04	1.29E+00	-1.79E-03
	Total	kg CO2 eq.	3.00E+02	2.14E+01	2.15E+02	5.34E+02	-3.58E+02
Abiotic depl	etion	kg Sb eq.	2.62E-03	2.30E-05	9.72E-05	2.74E-03	-1.39E-04
Abiotic depl fuels)	etion (fossil	MJ	3.05E+03	1.92E+02	1.65E+03	4.89E+03	-2.34E+03
Ozone layer (ODP)	depletion	kg CFC-11 eq.	1.39E-05	9.52E-07	1.84E-05	3.32E-05	-9.54E-06
Photochemical oxidation		kg NMVOC	1.19E+00	1.05E-01	1.64E-01	1.46E+00	-8.72E-02
Acidification	Acidification		1.25E+00	5.87E-02	5.77E-01	1.88E+00	-9.26E-01
Eutrophicati	ion	kg PO ₄ ³- eq.	3.31E-01	1.54E-02	1.28E-01	4.75E-01	-1.89E-01
Water use		m³	6.70E+03	2.79E+02	2.16E+02	7.20E+03	-8.45E+03

Table 7: Resource use - Kissen table with aluminium legs

Impact category		Unit	Upstream processes	Core processes	Downstrea m processes with landfill B1-C4	Total	Other environme ntal stage- Recycling
Primary	Use as energy	MJ	1.61E+03	7.29E+00	3.14E+00	1.62E+03	-2.61E+02
energy	carrier						
resources	Use as raw	MJ	0	0	0	0	0
Renewabl	materials						
е	Total	MJ	1.73E+03	7.29E+00	3.14E+00	1.74E+03	-2.61E+02
Primary	Use as energy	MJ	3.46E+03	2.10E+02	1.76E+03	5.42E+03	-2.49E+03
energy	carrier						
resources	Use as raw	MJ	3.26E+00	0	0	3.26E+00	0
Non-	materials						
renewable	Total	MJ	3.46E+03	2.10E+02	1.76E+03	5.42E+03	-2.49E+03
Secondary r	material	kg	0	0	0	0	0
resources							
Renewables	secondary fuels	MJ	0	0	0	0	0
Non-renewable secondary		MJ	0	0	0	0	0
fuels							
Net use of fr	esh water	m³	1.57E+02	6.49E+00	-1.87E+02	-2.29E+01	-4.94E+00

Table 8: Other impacts – Kissen table with aluminium legs

Impact category	Unit	Upstream processes	Core processes	Downstrea m processes with landfill	Total	Other environmen tal stage- Recycling
		A1-A2	A3-A4	B1-C4		D
Land use	speci	2.18E-07	5.29E-09	9.82E-09	2.33E-07	-1.15E-07
	es.yr					
Human toxicity, cancer	CTUh	1.39E-07	4.29E-10	3.31E-09	1.43E-07	-2.02E-08
Human toxicity, non-cancer	CTUh	1.20E-08	1.10E-10	1.74E-09	1.39E-08	-1.25E-08
Freshwater ecotoxicity	CTUe	5.31E-01	3.78E-02	1.64E-01	7.33E-01	-2.58E-01

Table 9: Waste flow categories – Kissen table with aluminium legs

Impact category	Unit	Upstream processes	Core processes	Downstrea m processes with landfill B1-C4	Total	Other environmen tal stage- Recycling D
Radioactive waste	kg	4.52E-03	1.27E-05	2.54E-06	4.54E-03	-2.10E-05
Hazardous waste	kg	4.99E-03	1.20E-03	7.16E-04	6.90E-03	1.22E-02
Non-hazardous waste	kg	5.78E+01	1.03E+00	5.32E+01	1.12E+02	-4.27E+01

Table 10: Output flow categories – Kissen table with aluminium legs

Impact category	Unit	Upstream processes	Core processes	Downstrea m processes with landfill	Total	Other environmen tal stage- Recycling
		A1-A2	A3-A4	B1-C4		D
Reuse	kg	0	0	0	0	0
Materials for recycling	kg	0	0	0	0	0
Energy recovered	MJ	0	0	0	0	0
Energy exported	MJ	0	0	0	0	0
Energy exported, thermal	MJ	0	0	0	0	0

Kissen table with timber legs

Table 11: Life cycle impacts – Kissen table with timber legs

Impact category		Unit	Upstream	Core	Downstream	Total	Other		
			processes	processe	processes		environme		
				s	with landfill		ntal		
							stage-		
							Recycling		
			A1-A2	A3-A4	B1-C4		D		
Global	Fossil	kg CO ₂	3.35E+02	1.77E+01	1.21E+02	4.73E+02	-2.73E+02		
warming		eq.							
potential	Biogenic	kg CO ₂	-1.01E+02	-5.64E-02	9.15E+01	-9.33E+00	-3.60E-01		
(GWP)		eq.							
	CO ₂ eq. from	kg CO ₂	5.65E-01	2.09E-05	4.06E-04	5.65E-01	-1.16E-03		
	land	eq.							
	transformatio								
	n								
	Total	kg CO ₂	2.35E+02	1.76E+01	2.12E+02	4.64E+02	-2.74E+02		
	1	eq.							
Abiotic dep	letion	kg Sb	1.35E-03	2.08E-05	9.57E-05	1.47E-03	-8.95E-05		
Abiotic dep	letion	_	1.552 05	2.001 03	9.572 05	1.471 03	0.93L 03		
		eq.	0.515 : 0.0	1505.00	1005.00	4.005 - 00	1545.00		
	letion (fossil	MJ	2.51E+03	1.52E+02	1.62E+03	4.28E+03	-1.54E+03		
fuels)									
Ozone laye	r depletion	kg CFC-	1.01E-05	6.70E-07	1.81E-05	2.88E-05	-6.22E-06		
(ODP)		11 eq.							
Photochem	ical oxidation	kg	1.05E+00	2.18E-01	2.67E+00	3.94E+00	-5.96E-02		
		NMVOC							
Acidification		kg SO ₂	9.44E-01	3.64E-02	5.68E-01	1.55E+00	-6.13E-01		
		eq.							
Eutrophication		kg PO ₄ 3-	2.37E-01	1.07E-02	1.26E-01	3.74E-01	-1.24E-01		
		eq.							
Water use		m ³	6.85E+03	2.08E+02	2.12E+02	7.27E+03	-6.39E+03		
					1				

Table 12: Resource use - Kissen table with timber legs

Impact category		Unit	Upstream processes	Core processes	Downstrea m processes with landfill	Total	Other environmen tal stage- Recycling
			A1-A2	A3-A4	B1-C4		D
Primary energy resources Renewable	Use as energy carrier	MJ	1.89E+03	7.86E+00	3.07E+00	1.90E+03	-1.68E+02
	Use as raw materials	MJ	1.20E+02	0	0	1.20E+02	0
	Total	MJ	1.90E+03	7.86E+00	3.07E+00	2.00E+03	-1.68E+02
Primary energy resources	Use as energy carrier	MJ	2.77E+03	1.67E+02	1.73E+03	4.66E+03	-1.64E+03
Non- renewable	Use as raw materials	MJ	3.26E+00	0	0	3.26E+00	0
	Total	MJ	2.77E+03	1.67E+02	1.73E+03	4.66E+03	-1.64E+03
Secondary material resources		kg	0	0	0	0	0
Renewable secondary fuels		MJ	0	0	0	0	0
Non-renewable secondary fuels		MJ	0	0	0	0	0
Net use of fresh water		m³	1.60E+02	4.83E+00	4.93E+00	1.70E+02	-1.49E+02

Table 13: Other impacts – Kissen table with timber legs

Impact category	Unit	Upstream processes	Core processes	Downstrea m processes with landfill B1-C4	Total	Other environmen tal stage- Recycling D
Land use	species	1.53E-06	5.83E-09	9.66E-09	1.55E-06	-7.44E-08
Human toxicity, cancer	.yr CTUh	1.26E-07	3.03E-10	-1.50E-11	1.27E-07	-1.59E-08
Human toxicity, non- cancer	CTUh	1.08E-08	1.62E-10	2.28E-02	2.28E-02	-9.47E-09
Freshwater ecotoxicity	CTUe	5.03E-01	1.48E-01	0.00E+00	6.52E-01	-1.96E-01

Table 14: Waste flow categories – Kissen table with timber legs

Impact category	Unit	Upstream processes	Core processes	Downstrea m processes with landfill B1-C4	Total	Other environmen tal stage- Recycling D
Radioactive waste	kg	2.10E-03	8.26E-06	2.50E-06	2.12E-03	-1.59E-05
Hazardous waste	kg	3.18E-03	7.86E-04	6.00E-04	4.56E-03	8.80E-03
Non-hazardous waste	kg	4.51E+01	8.38E-01	5.03E+01	9.62E+01	-3.24E+01

Impact category	Unit	Upstream processes	Core	Downstrea m processes with landfill	Total	Other environmen tal stage- Recycling
		A1-A2	A3-A4	B1-C4		D
Reuse	kg	0	0	0	0	0
Materials for recycling	kg	0	0	0	0	0
Energy recovered	MJ	0	0	0	0	0
Energy exported	MJ	0	0	0	0	0
Energy exported, thermal	MJ	0	0	0	0	0

