USE OF DAMAGE LINES IN PREDICTING CUMULATIVE DAMAGE IN FATIGUE

WARREN R. COLEGROVE

Library U. S. Naval Postgraduate School Monterey, California

USE OF DAMAGE LINES IN PREDICTING CUMULATIVE DAMAGE IN FATIGUE

by

Warren R. Colegrove
Lieutenant, U. S. Navy

Li Chapat

USE OF DAMAGE LIMES IN PREDICTING CUMULATIVE

DAMAGE IN FATIGUE

by

Warren R. Colegrove
()
Lieutenant, U. S. Navy

Submitted in partial fulfillment

of the requirements

for the degree of

Master of Science

United States Naval Postgraduate School

Monterey, California

1953

C523

.

• • •

.

¢

This work is accepted as fulfilling the thesis requirements for the degree of

MASTER OF SCIENCE

IN

MECHANICAL ENGINEERING

from the

United States Nava 1 Postgraduate School

PREFACE

This study was performed during the period February through May 1953 in the Materials Testing Laboratory of the U. S. Naval Postgraduate School, Monterey, California. The work was undertaken in an effort to tost a means of predicting cumulative fatigue life for machine parts subjected to varying loads.

The author wishes to acknowledge the helpful suggestions and efforts in the proparation of this study received from Dr. Robert E. Newton, Professor of Mechanical Engineering at the U. S. Naval Postgraduate School. In addition the author wishes to thank Mr. J. A. Octavec for the extreme care exercised in the preparation of the test specimens.

TABLE OF CONTEMS

PART	TITLE	PAGE
	Title Page	
	Certificate of Approval	i
	Preface	ii
	Table of Contents	iii
	List of Tables	iv
	List of Figures	Δ
	Table of Symbols and Abbreviations	vi
	Summary	1
I	Introduction	2
II	Materials, Method of Testing and	
	Procedure	6
III	Results and Discussion	12
IV	Conclusions and Recommendations	19
	List of References	21
	Figures 2 - 9	
	Tables 1- 7	

× 1 ۵ ę £(= .

LIST OF TABLES

- 1. Tests made to establish S-N curves.
- 2. Tests made to establish damage lines.
- 3. Tests made to determine accuracy of damage lines.
- 4. Standard deviation and mean log N obtained in establishing S-N curves.
- 5. Standard deviation and mean log N obtained in establishing "1/3" damage line.
- 6. Standard deviation and mean log N obtained in establishing "2/3" damage line.
- 7. Standard deviation and mean log N obtained in testing damage lines obtained.

the second

LIST OF FIGURES

- 1. Plot showing damage lines on S-N diagram.
- 2. Sketch of test specimen employed.
- 3. Composite S-N curves for various probabilities of failure, P.
- 4. Plot showing "1/3" damage points and scatter obtained in establishing these points.
- 5. Plot showing "2/3" damage points and scatter obtained in establishing these points.
- 6. Plot showing scatter resulting in tests to check the accuracy of the "1/3" damage points at two stress levels.
- 7. Plot showing scatter resulting in tests to check the accuracy of the "2/3" damage points at two stress levels.
- 8 and 9. Plots showing scatter resulting in tests to check the accuracy of the damage points at three stress levels.

100

. . .

- 151

12 3 4 1 1 1 1 1

and the second s

4 4

*-

TABLE OF SYMBOLS AND ABBREVIATIONS

n_1 , n_2 , etc	Cycles of stress at S1,
	S2, etc.
N_1 , N_2 , etc \cdots	Cycles of stress to failure on
	S-N diagram at S1, S2, etc.
n_1/N_1 , n_2/N_2 , etc	Cycle ratio at S1, S2, etc.
<i>Σ</i> η/ _N	Cumulative cycle ratio or
·	cumulative fatigue life.
np	Cycles of stress at Prestress
n_t	Cycles of stress at Test Stress

1 74 (117) (202

SUMMARY

The purpose of this study was to determine the feasibility of damage lines for predicting the cumulative fatigue life of machine parts subjected to varying loads. Four type SF-2, Sonntag Flexure Fatigue Machines were employed using type SF-2, specification #1, specimens. The specimens were manufactured from 24S-T4 0.065 inches thick sheet aluminum. The test results were analyzed statistically because of the large scatter normally encountered in fatigue testing.

The basic S-N curves were established with limits of scatter represented by probability limits of 90% determined from the standard deviation at the four stress levels used. Two damage lines were then established using the same methods as above and tested for reliability. Two hundred ninety-seven tests were conducted in all.

The results indicate that damage lines can be constructed on the S-N diagram with great time and cost involved. The tests to determine their accuracy showed them reasonably reliable. There was an indication that a simpler theory based on predicting the value of many equal to unity could be used for a portion of the stress spectrum for the aluminum tested.

. . . the artists of any local based in the state of and the second s

CHAPTER I

Introduction

The study of the behavior of metals under load application of varying amplitude is an important problem facing the design engineer.

Since most fatigue tests are run under conditions of constant load amplitude during the application of cycles of stress, producing the familiar S-N diagram, the question is raised as to whether we can use the S-N diagram for predicting the life of a part subjected to varying loads.

One of the earlier investigations in this field was made by M. S. Miner, [2], in which he proposed that the cumulative fatigue life of a part under varying loads be computed using the following equation:

$$m_1/N_1 + m_2/N_2 + \cdots = \sum m/N = 1.0$$

where

n₁ = number of cycles applied at stress S₁.

N₁ = number of cycles of fatigue life on S-N curve at stress S₁.

n2 = number of cycles applied at Stress S2.

N₂ = number of cycles of fatigue life on S-N curve at stress S₂.

 $m_1/N_1 = \text{cycle ratio at S}_1, m_2/N_2 = \text{cycle ratio at S}_2.$

€ %= cumulative cycle ratio or cumulative fatigue life.

e = 1 - 4

the second secon

. . .

the second secon

e C

11 / 1 1 T

the second of the second of the

*

• 1

In the experiments carried out to support this hypothesis, Miner obtained an average value of cumulative cycle ratio equal to unity, however, his tests were too few in number to sustain the hypothesis. Subsequent to Miner's work many investigators have concluded that very often the individual results have been too far removed from unity to justify use of this hypothesis.

A study of the work in this phase of fatigue seems to indicate that when the stress is reduced in a series of stages the value of \(\sum_{\text{NN}} \) is less than unity. When the stress is increased in a series of stages the value of \(\sum_{\text{NN}} \) is greater than unity.

Of the various hypotheses presented in this field, the one analyzed and tested by Newmark and Richart $\mathbb{L} 4$ \mathbb{J} seems to offer the most promise of overcoming the above mentioned short-comings of Miner's hypothesis. In brief, the hypothesis is based on the assumption that the damage to a fatigue test specimen depends on the cycle ratio, $n \mathbb{A}$, but the dependence is different at different stress levels.

The implications of this statement can best be explained by use of Fig. 1 below.

< ę ę • - . . ь «

FIG 1. PLOT SHOWING DAMAGE LINES ON S-N DIAGRAM.

In this plot the basic S-N curve is supplemented by the curves D_1 and D_2 which are called constant damage lines. These constant damage lines are defined as the lines connecting points at different stress levels which have an equal "degree of damage". We note that the parameter assigned D_1 and D_2 must necessarily be arbitrary.

As can be seen by analyzing Fig. 1, damage lines constructed in accordance with Miner's hypothesis would consist of a series of S-N curves displaced to the left. The latter hypothesis mentioned, however, indicates that these lines will be skewed with reference to the basic S-N curve.

The method of obtaining cumulative effects at different stress levels is illustrated in Fig. 1.

the state of the s . -----, the second secon ر و 9 144 a to the second second

Consider that we stress a specimen as follows; apply n₁ cycles of Stress S₁, n₂ cycles of stress S₂, followed by stressing to failure at stress S₃. Using the diagram, we first proceed at stress S₁ for m₁ cycles to the point a on D₁. We then proceed a long D₁ to point b, move out at constant stress S₂ for n₂ cycles to the point c on D₂, proceed along the constant damage line D₂ to point d a nd stress to failure at S₃. Theoretically there should be n₃ cycles remaining at stress S₃. The resulting value of cumulative cycle ratio is obtained by adding the individual cycle ra tios at the three stress levels. Newmark and Richart made a series of tests to verify this hypothesis but their tests were too few in number to validate it.

Past experimental evidence gathered on all types of fatigue testing indicates that the problem of fatigue is statistical in nature, hence any attempt to prove or disprove the hypothesis s hould be subjected to statistical methods. In view of this, it is the purpose of this paper to describe an experimental program carried out to determine the feasibility of the damage line hypothesis, using statistical methods of analysis.

. ę .

CHAPTER II

Material, Method of Testing and Procedure.

The 24S-T4 0.065 inches thick sheet aluminum alloy used in the testing was obtained from standard Navy stock. It was packaged for shipment to prevent damage from handling. Standard 1 5/8 inch cantilever specimens, SF-2, specification #1, detailed in Fig. 2, were machined in the machine shop of the U.S. Naval Postgraduate School for use with four Sonntag Flexure Fatigue machines, type SF-2. The machines are constant repeated force fatigue machines using an eccentric mass to generate the force. The eccentricity of the mass is adjustable giving a maximum force P at the free end of the specimen according to the following formula for the specimen used:

$$\sigma = \frac{9.235P}{4^2}$$

O = STRESS AT OUTER FIBRES.

P = LOAD AT FREE END OF CANTILEVER.

L = SPECIMEN THICKNESS.

The machines were carefully tuned for natural frequency using the procedure as outlined in the manufacturer's instruction book.

The specimens were machined from the sheet stock so that the length of the cantilever was in the direction of rolling. This direction was chosen because previous tests by Oberg, T. T. and Rooney, R. J. [3] indicate that this direction yields the least

ę * · · · ·

scatter in test results. Upon final machining the specimens were polished with 00 and 000 polishing paper to remove the oxide film and any machining scratches. Specimen thickness was measured using a micrometer and interpolating to the nearest ten-thousandth of an inch. Five specimens were rejected prior to testing. Specimens 36 and 55 were not used in establishing the S-N curves because the eccentric mass shifted during the run.

The S-N curves were established by conducting fourteen tests at each of four different stress levels, namely 39,400,33,000, 29,600 and 25,400 psi. Frequency distribution diagrams of the number of cycles to failure, N, at a given stress level were skewed whereas the frequency distribution of log N assumed a more nearly normal shape. Therefore, for purposes of this paper the logarithmic - normal distribution was assumed. This procedure is in agreement with the majority of investigations of this nature, e.g. Epremian, E. and Mehl, R. F. [/] and Sinclair, G. M. and Dolan, T. J. [6]

The fourteen tests at each stress level were analyzed using established methods for determining standard deviation as described by Scarborough, J. B. [5]. Using the standard deviation obtained, probability limits for 90% were obtained for representing the scatter at each of these stress levels. The results are plotted in Fig. 3 with P = 0.50 representing the mean value of these tests

The second secon a ... the state of the s , , , * - * ξ ξ . . = 1., . . . - 27 1111 1 1 2 1111 ris s il

and P= 0.05 and P = 0.95 representing the upper and lower limits of the 90% proba bality band. The standard deviations and mea n values of log N are listed in Table 4.

The next step in the procedure was to establish damage lines. The decision was made to use the stress levels 39,400, 33,000, and 29,600 psi for establishing these lines, inas much as time involved in testing at those levels would be less and would permit more thorough analysis. During the course of the test program it became apparent that the inclusion of the 25,400 psi level would be desirable. This stress was, therefore, included in the procedure during the latter stages of the program.

The first damage line was established by pre-stressing the specimens at 39,400 psi for 1/3 N, or 17,500 cycles, followed by testing to failure at the lower levels. Fourteen tests were conducted for each variation of this procedure. The damage points were obtained at each stress level by assuming logarithmic-normal distribution as before, and working back from the mean value of log N at each level with the values of cycles remaining at that stress after the prestress. The results of these tests were analyzed in the same manner as the first group of tests for obtaining standard deviation and the 90% probability limits. These results are plotted in Fig.4 with the probability limits

* , The second secon

plotted as points superimposed on the original S-N band shown in Fig. 3 and reproduced in Fig. 4. (The original S-N band is reproduced similarly in Figs. 5, 6, 7, 8 and 9.) It is noted that these damage points represent 1/3 N only at the prestress level, 39,400 psi, therefore future reference to these damage points or the damage line will be enclosed in quotation marks, e.g., "1/3" damage line.

In a similar manner the second damage line was established by prestressing the specimens at 39,400 psi for 2/3 N or 35,000 cycles and testing to failure at the lower levels. These results are represented in Fig. 5. This line will be referred to as the "2/3" damage line. Individual test results for both the "1/3" and the "2/3" damage points are tabulated in Table 2. Standard deviation and mean log N are given in Tables 5 and 6 for these tests.

Having established the damage points, tests were then made to determine their validity when the prestress and the test stress were interchanged. For maximum testing it was decided to run only five specimens for each of the variations of this set. The following program was set up to include testing at two and three stress levels.

*** * * * * t t e e Water to the property of the company that . -. and the same of th . 1

TWO STRESS LEVEL TESTS (80 TESTS)

Prestress	to "1/3" Damage	Test S	Stress	to	Failure
	33,000		39,4	100	
	33,000		29,6	500	
	33,000		25,4	100	
	29,600		39,4	100	
	29,600		33,0	000	
	25,400		39,4	100	
	25,400		33,0	000	
	25,400		29,6	500	
Prestress	to "2/3" Damage	Test S	Stress	to	Failure
Prestress	to "2/3" Damage	Test S	Stress		Failure
Prestress		Test S		100	Failure
Prestress	33,000	Test S	39,4	100 300	Failure
Prestress	33,000 33,000	Test S	39,4 29,6	400 600 400	Failure
Prestress	33,000 33,000	Test S	39,4 29,6 25,4	400 600 400 400	Failure
Prestress	33,000 33,000 29,600	Test S	39,4 29,6 25,4 39,4	100 300 100 100	Failure
Prestress	33,000 33,000 29,600 29,600	Test S	39,4 29,6 25,4 39,4	100 100 100 100 100	Failure

* 5 ٨, e . 2 ŧ Ę • < ٤ 7 < 27 ζ c < . **^** Ŗ * e < ય ૧ * ٠, \$ •

e

<

THREE STRESS LEVEL TESTS (60 TESTS)

Prestress to "1/3" Damage	Test Stress to "2/3" Damage	Test Stress to Failure
39,400	33,000	39,400
39,400	33,000	29,600
39,400	29,600	39,400
39,400	29,600	33,000
33,000	39,400	33,000
33,000	39,400	29,600
33,000	29,600	39,400
33,000	29,600	33,000
29,600	39,400	33,000
29,600	39,400	29,600
29,600	33,000	39,400
29,600	33,000	29,600

The results of the individual tests are given in Table 3 and the limits of scatter are shown graphically in Figs. 6,7,8, and 9 in a manner similar to that previously mentioned for the damage points. These tests were analyzed to determine standard deviation and the 90% probability limits as before. Tables 7 lists the values of standard deviation and mean log N obtained.

and the same of the same of

)- ')				
¢	•	19.00				
ξ	ę					
¢	2	,				
ę	ę	ę				
e	ς.	ę				
ę	ξ	,				
ę	ę	26 g				
٠	ę	e				
ę	ę	30 .				
-1.	¢					
*	*	ξ				
ę	ę	8				
e		-				
		17				

CHAPTER III

Results and Discussion

The results obtained from this study are subject to many types of errors. Some of the errors would be present in any fatigue testing, whereas others are peculiar to the type machines used and techniques used.

In the former category are non-homogeniety of the material and minor machining defects. In any metal it is impossible to obtain homogeniety of structure in sizes larger than single crystals of the metal. This is the largest single factor which necessitates handling fatigue results statistically. No control of machining defects was exercised other than the polishing technique previously mentioned.

Four type SF-2 Sonntag machines were available at the outset for testing, however, various troubles arose with Machines #1 and #3 which rendered them out of commission temporarily. Machine #1 was used throughout the majority of the testing. Only nine tests were performed on Machine #3. Machines #2 and #4 were used throughout the program and no difficulty was encountered with them. The results obtained from the latter two machines appeared to agree quite well whereas Machine #1 tended to give lower results. The use of four machines contributed to some of the scatter encountered but due to the low speed of this type machine multiple units were requisite to complete the testing program.

-1----

Some errors introduced by experimental procedure include inaccuracy in reading specimen thickness with the micrometer, inaccuracy in setting the correct load on the machine, bending the specimen while loading, bending produced while changing the load with a specimen installed, inability to read the counter on the machines closer than 1000 cycles, and the variables entering during the starting and stopping of the machines. For varying the stress levels in the two and three stress level programs it was necessary to stop and start the machine once and twice, respectively, and to reset the load each time. It is considered practically impossible to change the load with the specimen in place without producing some bending in the specimen. This was avoided in the one stress level tests by setting the load before installing the specimen. With care the specimens can be loaded without producing any bending by first clamping the end of the specimen to which the force is applied and then setting up on the "built-in" end.

The composite S-N curves obtained for P = 0.05, 0.50, and 0.95 are presented in Fig. 3. The width of the scatter band is determined by the standard deviation and, as can be noted by referring to Fig. 3, tends to broaden at the lower level of stress. The values of standard deviation agree reasonably well with other investigations made on aluminum and it is therefore felt that the scatter encountered was normal.

The damage points established for "1/3" and "2/3" damage are shown graphically in Figs. 4 and 5. These points were established using the same number of tests as for the basic S-N curves and they must be given equal validity to the S-N curves. As will be readily noted it would be very difficult to fair a curve through these points. Displacing B and B' slightly to the left for approximately 10,000 cycles and C and C' to the right about 15,000 cycles (not an inordinate amount considering the total N at these levels) would make possible a faired curve for establishing the complete damage lines. It is interesting to note that the scatter bands obtained with these tests are smaller than those resulting when the specimens were tested to failure at one stress level. This is to be expected since part of the specimens' life was "spent" at the high stress level where the scatter band was only 25,000 cycles in width. Conversely, when the low stress level is the prestress it is to be expected that the scatter band will be wider at the higher stress.

Another interesting feature of these damage points is that the points A, B, C and A', B', C' establish lines which closely parallel the S-N curves. This would indicate that for stress variation in this range the prediction by Miner's hypothesis of $\sum \frac{m}{N} = 1.0$ is reasonably accurate.

The tests at two and three stress levels to determine the validity of the damage points as established are shown graphically

L'ambient de la company de la .0 the state of the s . · · 1 1 1 6 6 A see

in Figs. 6, 7, 8 and 9. The scatter of these tests is in the same general range as that previously determined. There is, however, a displacement of mean life. This might be expected since the exact location of the equal damage points is not known, and yet in these tests we have applied the various cycle blocks considering them as definite points on the S-N curve. The general trend was for the mean life to be displaced to the right on the S-N curve when going from a low stress to a higher stress. This was not true in all cases.

The values of cumulative cycle ratio tended to be lower for the three level tests than the two level tests. This could be attributable to the fact that the machines were stopped and started an additional time in the three level tests.

In Table 3 are listed the cumulative cycle ratio predicted and that actually obtained. The predicted ratio is based on the damage points and the mean life. A study of these values indicates that for the tests conducted in the range from 29,600 psi to 39,400 psi the predicted cycle ratio is no more accurate than the simpler prediction of Miner's, \(\sum_{\text{p/o}}\). This indicates that if the stress spectrum for a given application has a short stress range, the hypothesis of Miner's is sufficient for predicting the cumulative cycle ratio.

The locations of points D and D' indicate severe damage at

* t 4 * t e . - - - - 2 12 10 10 1 . A contract of the second secon and the second second

25,400 psi from a prestress at 39,400 psi. The tests to check the validity of these points are not as numerous as is desirable due to the great amount of time required to make them. Of those tests made from this lower level the general tendency is to substantiate the prediction of cumulative cycle ratio greater than one. There are however, sufficient tests where the actual value of the sis would be a safer prediction.

The location of D and D' inside the 90% probability limits raises an interesting point. If the designer were to use these curves and desire to stay to the left of the P = 0.05 line,

Figs. 2 and 3 would indicate that having prestressed a part to the 1/3 damage point at 39,400 psi, there would be no fatigue life remaining at the 25,400 psi level. And yet there would be some fatigue life remaining at the higher and hence more severe stresses of 29,600 psi and 33,000 psi. This seemingly anomalous condition is caused by the large scatter band in terms of cycles, N, at the 25,400 psi stress level. In testing from 1/3 N at 39,400 psi to this level the average life actually remaining at the lower level was approximately 200,000 cycles, with a low value of 129,000. This same condition prevails using the "2/3" damage line. This would indicate some conservatism in using the damage lines in predicting total life.

A check was made of the 140 tests listed in Table 3 to see

^ **%** - | | - ' and the same of the same of • ~ , , t c ę , 4 - ·

what the result would be if Miner's hypothesis were used to predict the Σ^{n}/N , basing the prediction on the P = 0.05 S-N line. Seven of these tests (5%) fell on the low side of this prediction and in each of these cases the prediction was only slightly low. In contrast, where the damage line and mean life was used to predict Σ^{n}/N , fifty-four tests (38.5%) fall on the unsafe side.

Due to the large number of specimens tested, the writer had occasion many times to watch the fracture develop in the specimen. The appearance of cracks on the upper surface of the specimens preceded complete fracture by a very few cycles of stress in the majority of cases. It was noted in some instances that a great number of cracks might develop on the surface before fracture. In the great majority of these cases the fatigue life of the specimen was very high when compared to those specimens undergoing similar stressing. In all cases where the crack density was great the specimen was being stressed at the lower levels of stress included in the study. This raises the question: "Do the cracks stress relieve one another?" It appears that the cracks might be so oriented as to bring about mutual stress relief and thus prolong life.

In view of the above a good portion of the scatter encountered in fatigue testing might be attributable to this stress relief phenomenon. If means were available for determining when the

- - -. v · ~ 4 Cultivation for the second

first crack appeared, the scatter might be substantially reduced.

CHAPTER IV

Conclusions and Recommendations for Future Study

The following conclusions are drawn from the results obtained in this study.

- 1. For the aluminum alloy used, this study indicates that reliable constant damage lines can be obtained by the process of prestressing at a high stress level and testing to failure at lower levels.
- 2. In the stress range from 39,400 to 29,600 psi the damage lines closely parallel the S-N curve so that in this range the damage line hypothesis is substantially the same as the hypothesis of Miner. In this range there is no advantage in the use of damage lines.
- 3. The damage lines drawn to include the lower stress level, 25,400 psi., skew to the right with reference to the basic S-N curve in such a manner as to predict values of \(\sum_{\text{N}} \sum_{\text{N}} \) less than unity when decreasing stress and greater than unity when increasing stress. The tests made including this lower level of stress show an overall tendency to substantiate this prediction. The tests were too few in number, however, for any definite conclusions to be drawn as to the feasibility of the damage lines in this lower band.

- ÷ (,

4. The two damage lines obtained in this work have a similar shape over the complete stress spectrum investigated. This indicates the possibility that a complete band of constant damage lines might be made by obtaining a low and high value damage line experimentally and constructing the intermediate lines by graphical interpolation.

The conclusion expressed under 2 above is very important from the designer's viewpoint. If he were fortunate enough to have a stress spectrum in the range from 39,400 to 29,600 psi., this study indicates that the best procedure open to him would be to use Miner's hypothesis basing his cycle ratios on the lower limit of the S-N band, or a curve such as P = 0.05. This would eliminate costly and time-consuming experiments to establish damage lines.

It is recommended that any future studies in this field should be pointed toward a program which will show conclusively the effects of the tendency of the damage lines to skew to the right at the lower levels.

With regard to the damage lines it is felt that the similarity of the two lines constructed in this study indicate a strong possibility that the damage lines follow a pattern that would allow graphical interpolation. This requires further proof, however, with a program set up primarily to test its feasibility.

• . . e u T 4 40 . . v 11=11 === 1 . .

LIST OF REFERENCES

- 1. Epremian, E. and Mehl, R. F.
- "Investigation of Statistical
 Nature of Fatigue Properties"
 NACA Technical Note 2719.

2. Miner, M. A.

- "Cumulative Damage in Fatigue"

 Journal of Applied Mechanics,
- 3. Oberg, T. T. & Rooney, R. J.
- Vol 12, 1945, pp A-159-164.

- 4. Richart, F. E., Jr., and
- "Fatigue Characterists of
 Aluminum Alloy 75S-T6". ASTM
 Proceedings Vol. 49, 1949
 pp 804-812.

5. Scarborough, J. B.

Newmark, N. M.

- "An Hypothesis for the Determination of Cumulative Damage in Fatigue". ASTM Proceedings
 Vol. 48, 1948 pp 767-800.
- 6. Sinclair, G. M. & Dolan, T. J.
- "Numerical Mathematical Analysis"
- "Effect of Stress Amplitude on Statistical Variability in Fatigue Life of 755-T6 Aluminum Alloy." Advanced Copy of Paper on Technical Report No. 31 under Study at University of Illinois.

. . .

. .

- - -

e -

٠ - و و

-

.

· · ·

2

.

1号"SPECIMEN SF-2 SPEC#1

3/16

3/16

3/16

3/16

3/16

3/16

Fig 2. Showing Specimen and Mounting.

Fatigue Life at 39 400 psi with Limits of scarter from P=0.05 to P=0.95. (14 tests at each bre).

Fig 6 Plot Showing Lim. is or Scarter from P=0.05 to P=0.95 for Specimens Prestressed to "1/3" Dimage Point at one sinssievel and two atotal reat another Stress evel (Stests at each variation).

prestressed at , 400ps, +01 428 20 y ES

43" Damoge) as a

19 400 p.

0

Limits that at 29400ps for st mens

LESENE

4

Line , after \$39400p" "or spe inten

Plot Showing Limits of scatter from P=0.05 to P=0.95 for Specimens Prestressed to "1/5" Damage Poirt at one tress Level and tested to to live at another tres evel. 'S Lests at each Jaylation, F197.

101

901

Fig 8. Plot. Showing Limits of scatter from P.O.OS to P.O.95 for Specimens Prestressed to "15" Dimage Aint at one Stress Love, stressed to "43" Damage foire at another stress cevel and tested totallure at a thing stress Level.

LEGEND

139,400 pt 101,1500 y 163 (c 13 2m 9c) as 33,400 pt 101,1500 y 163 (c 13 2m 9c) as 32, 36) 1 -- d fita 18 3 - 44.0 p w. 0

L " is or scarles or 30 40 p dar p " sprestre, ed at 39,400p to 1750 1 'es(10 % , 7 51essed + 29 00p for 64 100 cycles(fr 3 2 2n 21 2nd ~ sred of 1 r at 39,4001 6.

Lm 13 313 after 27 33,000 pse tox spe con per 2 tested : lai uie + 33,000 / si 9

W,

Lim to of scatter at 33,000 put tox spe specific 21 2 at 33,000ps, tor 59,500 , test = 3 ham - 1, et = 561 * 29,600pse + r .40

1129,600p tor 1500 y c 3 D, 11) 7, 114 In that cather 1º 19600, for spe infers protection 116510 9 210 " = 0 to tal live at 33,000 p .. Fo 1 315

3124600p 11 4CT 71320 CYCR 5 100 13 WILL J Tresset miser arer 31 Lybool . 1 spermens file wo 12 39,400 ps, 41 17 500 1y, 10 10"2/3 Danage) ins + + 21 ure 3t 29,000 pst. , fa ure t 23 .00 ps . 0

i.

ω,

8

100

461

101

Cycles, N, to failure

Figg. Plot. Showing Limits of scatter from P. C. OS to P. C. 95 for Specimens Prestress to "1,3" Damase Point at one Stress Level, Stressed to 2/3" Damage Point at another Stress level and tested to tall reat the Original Striss Livel (Stests a each variation)

35

75d+ 5,0001 STOATS TEAT X2 &

2

TABLE 1
TESTS MADE IN ESTABLISHING S-N CUPVES

ECIMEN I	MACHINE	STRESS	CYCLES TO FAILURE	SPECIMEN	MACHINE	STRESS	CYCLES TO
1	2	44,600	36,000	38	2	33,800	92,0 0
5	2	44,000	33,000	39	4	33,800	80,000
3	4	44,600	20,000	40	1	33,800	114,000
4	2	39,400	64,000	41	2	29,600	211,000
5	4	39,400	49,000	42	1	29,600	219,000
6	2	33,000	159,000	45	4	29,600	218,000
7	4	33,000	110,000	44	4	29,600	212,000
8	2	33,000	159,000	45	2	29,600	227,000
9	4	33,000	114,000	46	1	29,600	199,000
.0	2	33,000	161,000	47	2	29,500	170,000
.1	4	33,000	135,000	48	1	29,600	215,300
12	2	39,400	60,000	49	4	33,000	115,000
13	4	39,400	62,000	50	2	33,000	148,000
.4	3	39,400	52,000	51	1	33,000	110,000
.5	2	29,600	297,000	52	4	25,400	512,000
6	4	29,600	203,000	53	1	25,400	597,300
7	3	29,600	195,000	54	2	25,400	572,000
.8	2	29,600	172,000	55	4	95,400	296,000
9	4	29,600	185,000	56		25,400	375,000
0	3	29,600	273,000	57	1	25,400	501,000
1	4	40,500	47,000	58	2	25,400	517,000
2	2	40,500	59,000	59	4	25,400	406,000
3	3	40,500	48,000	60	1	25,400	363,000
4	4	39,400	54,300	61	4	25,400	465,000
5	2	39,400	47,000	62	?	39,400	625,000
6	3	39,400	61,000	63	2	39,400	51,000
7	4	25,400	1,054,000	64	4	39,400	53,000
3	2	25,400	1,015,000	65	1	39,400	41,000
9	2	25,400	613,000	66	2	39,400	53,000
)	4	25,400	669,000	67	2	33,000	131,000
1	1	25,400	490,000	68	1	33,000	128,000
2	2	39,400	49,000	69	4	33,000	143,000
3	4	39,400	53,000	70	2	33,300	91,000
4	1	39,400	48,000	71	1	33,000	97,300
5	2	39,400	71,000	72	4	25,400	440,000
5	4	39,400	86,500	73	1	25,400	588,000
7	1	39,400	55,000				

TABLE 2
TESTS MADE IN ESTABLISHING DAMAGE POINTS

SPECIMEN	MACHINE	Pods. ods	SS n _p	TESTSTR	esa ne	:	SPECIMEN	PACTINE	PRESTRESS	n	TESTSTR	FSS n
4A	4	39,400	17,500	33,000	69,000		57 A	1	39,400	35,000	33,000	17,000
5.4	2	19	11	19	40,000		58A	2	79	19	19	51,000
6 A	1	н	4	17	52,000		59A	4	11	17	11	27,000
7A	4	19	п	19	68,000		60A	4	11	**	Ħ	33,000
84	2	19	"	**	57,000		61A	- 1	17	19	19	31,500
9 A	4	19	11	11	81,000		62A	2	19	19	19	37,000
10A	2	17	11	17	87,000		66A	4	11	99	11	36,∪00
11A	1	19	**	**	63,000		67 A	2	Ħ	19	,,	55,000
12 A	4	17	19	18	104,000		68A	1	11	11	-1	30,300
13A	2	19	17	11	63,000		69A	1	11	12	11	56,000
14A	1	н	11	17	62,000		70A	4	TT	**	17	50,000
15A	2	17	11	Ħ	65,000		1A	1	17	11	*1	20,000
16A	4	19	19	97	99,300		2A	4	15	19	19	29,000
17A	1	17	11	17	50,000		3A	2	н	п	19	12,000
18A	4	39,400	17,500	29,600	175,000		71A	2	39,400	35,000	29,600	98,300
19A	2	10		19	125,000		72A	4	19	19	49	109,000
20 A	1	99	9	19	121,300		73A	1	17	11	17	93,000
21A	2	12	11	11	170,000		74A	2	11	19	19	88,000
22A	4	19	19	19	148,300		75A	4	19	11	19	55,000
23A	4	19	п	19	114,000		76A	1	19	19	12	70,000
24A	2	11	17	FT	141,000		77A	2	17	п	17	69,000
25A	4	н	**	17	161,000		75A	4	19	19	12	92,000
26 A	1	19	н	**	139,000		79 A	2	99	17	п	57,000
27 A	•>	19	**	11	117,000		80A	1	10	17	**	61,000
28A	4	17	11	17	179,300		81A	4	12	17	19	92,000
2: A	1	п	19	17	145,000		BOA	2	11	11	11	64,000
30A	2	н	19	н	133,000		83A	1	Ħ	17	19	56,000
31A	1	n	п	11	113,000		84A	4	**	12	11	72,000
51A	4	39,400	17,500	25,400	279,000		7D	4	39,400	35,000	25,400	98,000
52A	2	11	97	12	?93,000		8D	2	11	17	11	80,000
53 A	1	n	17	17	157,000		9D	3	99	11	17	86,000
54A	1	17	11	17	129,000		10D	4	11	19	17	160,000
55A	4	77	17	79	228,000		11D	2	16	78	19	93,000
56A	2	97	99	99	184,300		120	3	TT .	17	19	88,000
63A	4	17	17	11	274,000		13D	1	19	11	19	171,000
64A	1	**	11	11	220,000		14D	2	17	11	**	124,000
65A	2	н	11	11	220,000		15D	3	n	н	n	188,000
208	4	н	17	**	274,000		16D	4	17	Ħ	17	75,000
218	2	19	17	99	146,000		17D	1	н	19	eq	123,000
22B	1	н	19	**	138,000		18D	2	н	19	Ħ	131,000
39B	4	PF	17	10	232,000		19D	3	19	11	19	93,000
408	2	Ħ	H .	15	224,000		20D	4	17	11	11	237,000

TABLE 3
TESTS MADE IN VERIFYING DAMAGE POINTS

TWO STRESS LEVEL TESTS

SP.	M.	PRE-	n,	TEST STRESS	n-	Σ^{η}_{k} 1	PREDICTED	SP.	M.	PRE-	n _F	TEST	n	IT, P	PEDICTOD
32A	4	33000	59500	39400	43000	1.286	1.135	2 1 D		25400	340000	39400	19000	0.970	1.383
33A	2	11	11	11	35000	1.135	1.135	32D	4	77	17	13	50000	1.757	1.383
34A	1	11	17	17	33000	1.096	1.135	23D	1	10	11	4	₹7000	1.131	1.383
35 A	4	11	17	11	38000	1.192	1.135	24D	3	11	17	19	78000	2.097	1.383
36A	2	17	10	11	58000	1.573	1.135	25D	1	17	**	11	3-000	1.341	1.381
37A	4	29600	71500	39400	30000	0.860	1.005	26D	2	25400	428000	59 400	52000	1.767	1.110
38A	2	19	17	11	53000	1.348	1.005	27D	4	+1	17	N	5,000	1.38	1.110
39 A	1	21	17	12	39000	1.082	1.005	30D	4	11	11	71	14000	1.044	1.110
40A	2	11	11	11	69000	1.653	1.005	31D	1	11	· It	11	42000	1.577	1.110
41A	4	17	17	11	59000	1.463	1.005	32D	2	19	414000			0.752	1.110
42A	1	29600	71500	33000	108000	1.266	0.870	2cD	4	25400	340000	33000	159000	1.367	1.150
43A	4	17	11	п	1:4000	1.314	0.870	33D	4	17	п	19	156000	1.687	1.150
44A	2	н	17	11	70000	0.389	0.370	34D	1	11	11	**	1 1000	1.572	1.150
45A	1	19	17	18	106000	1.173	0.370	35D	0	17	19	17	104000	1.457	1.150
361	1	11	**	п	98000	1.111	0.370	37D	4	19	19	н	140000	1.717	1.150
46 A	2	33000	59500	29600	136000	1.076	1.130	38D	1	25400	÷40000	29600	168000	1.412	1.279
47A	4	11	н	17	187000	1.303	1.130	39D	5	11	11	11	197000	1.550	1.279
48A	4	17	н	17	168000	1.290	1.130	40D	4	17	77	11	84000	1.015	1.279
49 A	2	11	17	17	150000	1.136	1.130	410	1	11	11	11	27.1000	1.947	1.279
50 A	1	N	11	17	122000	1.013	1.130	42D	2	11	19	11	1000	1.048	1.279
85A	2	33000	91000	39400	9000	0.987	1.051	43D	4	25400	411000			J.745	1.137
86A	1	**	11	17	7000	0.849	1.051	44D	1	H	428000	**9600	218000	1.807	1.137
87A	4	11	19	10	27000	1.232	1.051	46D	4	11	386000			0.700	1.137
88 A	2	77	n	19	15000	1.004	1.051	47D	1	17	428000	29600	197000	1.711	1.137
89 A	1	11	17	17	7000	0.851	1.051	48D	2	17	368000			0.138	1.137
90A	2	29600	135500	39400	50000	1.595	0.973	49D	4	25400	428000	33000	16000	0.903	1.039
9 1 A	4	н	17	11	29000	1.193	0.973	500	1	19	17	17	31000	1.021	1.059
92A	1	19	19	17	29000	1.193	0.973	510	2	11	17	**	240	1.366	1.059
93A	4	11	17	99	36000	1.326	0.973	52D	4	11	n	11	12000	0.972	1.059
94A	2	n	11	te	12000	0.868	0.973	53D	1	29600			50000	0.788	0.742
95A	1	29600	135500	33000	44000	0.986	0.923	54D	2	29000	71500	25400		0.730	0.742
96A	4	H	17	17	63000	1.136	0.922	55D	4	-	17	17	215000	0.108	0.743
97A	5	11	19	FT.	79000	1.262	0.922	56D	1	19	n	19		J.768	
98A	1	н	н	14			0.922	57D	2	н	11		2780 0		
99 A	4	19	19	19			0.922				135500		219000		0.864
100A	2	33000	91000	29600			1.078	58D	1	59000	135500		274000		0.564
101A	1	19	PI	11	8000			59D	2	11	19		224000		
102A	1	11	11	11	39000		1.078	61D	4	17	11		090 0	1.021	0.864
103A	2	Pl	11	11		1.162			1	H	11		463000		
104A	4	f1	11	11	66000	1.030	1.078	000	_				10000		

PREDICTED	0.914	0.914	0.914	0.914	0.914	1,083	1,083	1,083	1,083	1,083	1,052	1.05:	1.052	1,052	1,052	0.968	0.968	0.968	896.0	0.968	1.031	1.031	1,031	1.031	1.031	0.94-	0.945	0.945	0.945	945
XX	0.981	0.810	0.866	1,000	1,134	1,006	0,933	0,833	0.864	1,124	0.928	0.817	0.817	0.872	0.794	0.598	0.711	1,093	0,939	0.845	1.260	1,259	0.974	1,026	0.955	0.808	1,049	0.91	1,372	956
ū	21000	12000	15000	22000	00062	26000	13000	4000	8000	41000	30000	00009	0009	13000	3000		4000	24000	16000	11000	125000	124000	64000	7 5000	00019	47000	00086	00069	145000	74000
TEST STRESS(2)	39400	2	2:	z	=	33000	=	0: 2:	4:	ŧ	33000	E	÷	=	=		29400	=	=	=	29600	=	=	de au	E	0096	Øn.	0.0	2	
ù	31500	ε	=	=	E	17500	2	=	=	=	64000	z	Ε	=	=	26000	64000	2	÷ 10		17500	*	±	=	-	31500	#	2	=	r
TEST STRESS(1)	33000	z	E	E	=	39400	=	=	Ε	2	29600	£	2	2	E	00966	29600	2	2	=	29400	£	=	E-	=	33000	*	=	=	=
n o	17500	£	£	E	Ξ	59500	=	z	£	=	59500	2	2		z	17500	17500	Ξ	2	=	71500	2	=	=	=	71500	~	=	=	*
PRE-SERES	39400	z	2	£	2	33000	*	4	÷	*	33000	2	E	=	=	39400	39400	=	t	÷	00963	=	E	=	*	29600	=	=	2	=
*	cv	c)	7	4	¢2	4	C)	7	CV2	4	1	63	4	4	-00	-	7	4	c)	_	4	CV	7	4		٦	4	00	<"	
S. C.	34B	35B	36B	378	38B	418	42P	43B	44B	45B	46B	47B	488	498	50B	51B	52B	53B	54P	55B	56B	57B	58B	59 H	63.8	809	62B	63B	6413	65B
PREDICTED		14 0.941	36 0.941	0.941	0.941	0.917	59 0.917	11 0.917	.917	0.917	72 1.161	17 1,161	15 1.161	1.161	1.161	1,10.	30 1.103	24 1.103	39 1.103	3 1.10	.2 0.953	0.953	7 0.953	0.153	0.95.0	0.319	4 0.919	4 0.19	4 0.919	0.919
Z A PREDICTED	0.747 0.941	1.044 0.941	1.196 0.941	870 0.941	0.789 0.941	0.03 0.917	0,769 0,917	0.911 0.917	1.61 .917	0.698 0.917	0.872 1.161	1.147 1.161	1.95 1.161	0.801 1.161	1,998 1,161	.~6 1.10.	0.980 1.103	0.724 1.103	.789 1.103	,303 1,10	1,112 0,953	0.891 0.953	0,907 0,953	1,0-11	1,017 0,95.	1.065 0.319	1.0 4 0.91	1.254 0.419	1,004 0,919	1, 72 0,919
n;2	35000 0.747																													
M	35000 0.747	1.044	1,196	870	0.789	0.03	0.769	0.911	1.61	0.698	0.872	73000 1.147	1.95		898.4		086.0		.789	,303	1,112	0.891	0.907	1.0-01	1,017	1,060	1.0 4	1.754	1,004	1. 72
nt, TEST n:2 Z K	31500 29500 35000 0.747	98000 1.044	130000 1,196	870	44010 0.789	>4000 0.03	17000 0.769	35000 0.911	1400 0.61	8000 0.698	15000 0.872	73000 1.147	62000 1.95		41000		11000 0.980		1 00 1.789	28000 .303	560 1.112	28 (190 0.891	300 11 0.907	55000 1.0-0	44000 1.017	00000 1.060	25000 1.0 4	1.754	1,004	36000 1. 72
TEST n:2 E K	31500 29500 35000 0.747	" 98000 1.044	130000 1,196	. 61000870	" 440°O 0.789	33000 >4000 0.03	17000 0.769	35000 0.911	120.0	8030 0.698	29600 15000 0.872	73000 1.147	" 62000 1.95	0.801	29600 41000 A995	200	39400 11000 0.980	0.724	.9470 1 00 1.789	28000 .303	33000 560 , 1.112	" 28 COUNTY 0.891	300 11 0.907	58000 1.04	44000 1,017	39400 00000 1.060	1,04	1,254	1,004	36000 1. 72
nt, TEST n:2 Z K	31500 29500 35000 0.747	n 98000 1.044	n 130000 1.196	. 61000 . 870	n 440°O 0.789	64000 33000 >4000 0.03	17000 0.769	35000 0,911	n n 1,5 5.63	" " 80JO U.698	17500 >9600 15000 0.872	и и 73000 1.147	" 62000 1 _• :95	17000	17500 29600 41000995	62000	64000 39400 11000 0.980	54,000	64000 8400 1 00789	# 28000 .303	17500 33000 560 1,112	" " 26 COUNTY 0.891	300 11 0.907	1.0-0-1	" " 440 JC 1,017	31500 39400 00000 1.060	" 25000 1.0 4	1,254	" " " 92000 1,004	36000 1, 72
TEST nt. TEST n: E K	17500 33000 31500 29600 35000 0.747	" " 98000 1.044	" " 130000 1,196	" 61000 ", 970	n n n 440°0 0.789	29600 64000 33000 54000 5.03	17000 0,769	" 35000 0,911	n n n 24.63	# # 8030 O.698	39400 17500 29600 15000 0.872	" " " 73000 1.147	" 62000 1.95	" 17000	n 17500 99600 41000 ±,995	55.00 62000	" 64000 39400 11000 0.980	" 54000 0.724	., 64000 '9400 1 00 .,789	1 28000 ,303	38 400 17500 33000 560 0 1.112	" " 28 CODO 0.891	" 300 II 0.907	1,0-1	" " 440.00 1.017	31500 39400 00000 1.065	" " 25000 1.0 4	" " " J. [54	" " " 92000 1,004	n n 36000 1, 79
n TEST nt. TEST nt. ENRESS(2)	17500 33000 31500 29600 35000 0.747	" " 98000 1.044	" " 130000 1,196	и и в 1000 870	n n n 440°0 0.789	17500 29600 64000 33000 ,4000 0.03	" 17000 0,769	" 35000 0.911	4 H H H 15-1 14-63	" " 8000 U.698	59500 39400 17500 >9600 15000 0.872	" " " 73000 1.147	и и и 69000 1.95	" 17000 0.801	17500 99600 41000	59500 29600 62000	" " 64000 39400 11000 0.980	" 54,000 0,724	" 64000 9400 1 00 1.789	" " " 280000 ,303	71500 3:400 17500 33000 560 0 1.112	" " " " " " " " " " " " " " " " " " "	" " " " 300 H 0.907	1,000	" " 440.00 1.017	71500 00000 31500 39400 00000 1.060	" " " 25000 1.0 4	" " " J. [54	" " " " D2000 1.004	" " " 36000 1. 72

TABLE 4

STANDARD DEVIATION AND MEAN LOG N FOR TESTS

MADE IN ESTABLISHING THE S-N CURVES

STRESS	NO. OF TESTS	MEAN LOG N	STANDARD DEVIATION
39400	14	4.725	0.0600
33000	14	5.104	0.0800
29600	14	5.325	0.0670
25400	14	5.741	0.1420

TABLE 5

STANDARD DEVIATION AND MEAN LOG N FOR TESTS

MADE IN ESTABLISHING "1/3" DAMAGE POINTS

PRESTRESS	TEST STRESS TO FAILURE	NO. OF TESTS	MEAN LOG N	STANDARD DEVIATION
39400	33000	14	5.104	0.0623
39 400	29600	14	5.325	0.0455
39400	25400	14	5.741	0.0440

TABLE 6

STANDARD DEVIATION AND MEAN LOG N FOR TESTS

MADE IN ESTABLISHING "2/3" DAMAGE POINTS

PRESTRESS	TEST STRESS TO FAILURE	NO. OF TESTS	ME AN LOG N	STANDARD DEVIATION
39400	33000	14	5.104	0.0555
39400	29600	14	5.325	0.0332
39 400	25400	14	5.741	0.0367

TABLE 7

SHOWING STANDARD DEVIATION AND MEAN LOG N

ENCOUNTERED IN TESTING DAMAGE POINTS

TWO STRESS LEVEL TESTS

PRESTRESS TO "1/3" DAMAGE	TEST STRESS TO FAILURE	NO. OF	MEAN LOG N	STANDARD DEVIATION
33,000	39,400	5	4.766	0.0695
33,000	29,600	5	5.346	0.0481
33,000	25,400	5	5.776	0.0248
29,600	39,400	5	4.820	0.1402
29,600	33,000	5	5.201	0.0563
25,400	39,400	5	4.765	0.1705
25,400	33,000	5	5.281	0.0478
25,400	29,600	5	5.351	0.1510
PRESTRESS TO "2/3" DAMAGE	TEST STRESS TO FAILURE	NO. OF TESTS	MEAN LOG	N STD. DEV.
			MEAN LOG 1	N STD. DEV.
"2/3" DAMAGE	TO FAILURE	TESTS		
"2/3" DAMAGE	TO FAILURE 39,400	TESTS 5	4.677	0.0714
"2/3" DAMAGE 33,000 33,000	TO FAILURE 39,400 29,600	TESTS 5 5	4.677 5.278	0.0714
"2/3" DAMAGE 33,000 33,000	TO FAILURE 39,400 29,600 25,400	TESTS 5 5 5	4.677 5.278 5.845	0.0714 0.0815 0.0609
"2/3" DAMAGE 33,000 33,000 29,600	TO FAILURE 39,400 29,600 25,400 39,400	TESTS 5 5 5 5	4.677 5.278 5.845 4.853	0.0714 0.0815 0.0609 0.1035
"2/3" DAMAGE 33,000 33,000 29,600 29,600	TO FAILURE 39,400 29,600 25,400 39,400 33,000	TESTS 5 5 5 5 5	4.677 5.278 5.845 4.853 5.171	0.0714 0.0815 0.0609 0.1035 0.0416

TABLE 7 (ont'd)

THREE STRESS LEVEL TESTS

PRESTRESS TO 1/3 DAMAGE	STRESS TO 2/3 DAMAGE	STRESS TO FAILURE	NO. OF TESTS	MEAN LOG N	ST ANDARD DEVIATION
39 400	33.000	29600	5	5.314	0.0809
39400	29600	33000	5	5.057	0.0438
39400	33000	39 400	5	4.736	0.0522
39400	29600	39 400	5	4.645	0.1078
33000	39 400	33000	5	5.036	0.0578
33 000	39400	29600	5	5.233	0.0790
33000	29600	39400	5	4.605	0.1275
33,000	29600	33000	5	5.002	0.0325
29600	39400	33.000	5	5.123	0.0424
29600	39400	29600	5	5.348	0.0615
29 600	33,000	39400	5	4.799	0.0458
29600	33000	29600	5	5.368	0.1315

JUL 2 OC 857 BINDERY 321 RELEVED 4778.

Thesis Colegrove

20646

C533 Use of damage lines in predicting cumulative damage in fatigue.

★ 3

OC 857

BINDERY 521 711110 4778

> 6 ge

Thesis Colegrove

20646

C533 Use of damage lines in predicting cumulative damage in fatigue.

Use of damage lines in predicting cumula

3 2768 002 08355 2

DUDLEY KNOX LIBRARY