EE302 Lab #1 Report

Part 1: Resistive Load Inverter	2
Schematic	2
Transient Simulation Testbench	3
VTC Curves	7
Part 2: CMOS Inverter	7
Calculation of WP	7
Schematic	7
Pre-layout Simulations	8
Layout	9
Symbol Extraction	
Post-layout Simulations	11
VTC	12
Transient Simulation	13
Measuring TPLH and TPHL	15
C _{load} = 200f F - Measurements	16
C _{load} = 200f F - Calculation	
C _{load} = 500f F - Measurements	18
C _{load} = 500f F - Calculation	19
Evaluation	19

Part 1: Resistive Load Inverter

You may access the cellview of the resistive load inverter presented here by booting cadence and selecting the schematic under

"lab_1_resistive_load_inverter_schematic_only" > "res_load_inverter" in the library manager window.

Schematic

Fig 1. Resistive Load Inverter Schematic in Cadence Virtuoso. The resistance value of R_{load} has been tied to the parameter 'R_load' which could be specified in the simulation screen.

Fig 2. Configuration of MOSFET parameters for the NMOS driver transistor. The W_n value has been specified as $2\mu m$ and L_n as 180nm.

Transient Simulation Testbench

Transient testbench features a pulse voltage source for V_{in} that have been configured with the following parameters:

Zero Value: 0VOne value: 1.98 V

Period of waveform = 100μs

Rise and fall times = 70ps

One should note that the parameters above were copied from the design guides shared over SuCourse and do not represent an ideal square wave/step input signal.

Fig 3. Configuration of the pulse voltage source connected to V_{in}

Fig 4. Transient testbench simulation results

Zooming in to see rise and fall responses of the inverter better:

Figs 5-6. Fall and rise responses of the resistive load inverter.

VTC Curves

VTC curves for R_{load} values $\in \{10k\Omega,\,20k\Omega\,,\,30k\Omega\}$ are provided below. The curves have been obtained under a DC simulation with a sweep over values of V_{in} ranging from 0V to V_{DD} = 1.98V .

Fig 7. VTC curves for varying R_{load} values. The threshold voltages were found as: $V_{th, 30k}$ = 789.6mV, $V_{th, 20k}$ = 827.2mV, $V_{th, 10k}$ = 908.3mV

Part 2: CMOS Inverter

You may access the cellview of the CMOS inverter presented here by booting cadence and selecting the "cmos_inverter" (schematic), "cmos_inverter_layout" (layout and symbol), "post_layout_sim" (sim using extracted symbol) under "lab_1_cmos_inverter" in the library manager window.

Calculation of W_P

We know that when $V_{in} = V_{th}$, both the NMOS and PMOS transistors are in saturation. KCL at the output yields:

$$\frac{k_n}{2} (V_{GS,n} - V_{T0,n})^2 = \frac{k_p}{2} (V_{GS,p} - V_{T0,p})^2$$

Plugging in
$$V_{in} = V_{GS,n}$$
 and $V_{in} - V_{DD} = V_{GS,n}$:

$$= \frac{k_n}{2} (V_{in} - V_{T0,n})^2 = \frac{k_p}{2} (V_{in} - V_{DD} - V_{T0,p})^2$$

After algebraic arrangements:

$$V_{in} = V_{Th} = \frac{V_{T0,n} + \sqrt{\frac{1}{k_R}} \cdot (V_{DD} + V_{T0,p})}{1 + \sqrt{\frac{1}{k_R}}}$$

We know that:

$$k_n = k_n' \cdot (\frac{W}{L})_n = 160 \frac{\mu A}{V^2} \cdot (\frac{2 \mu m}{180 nm}) = 1.78 \, mA/V^2$$

Plugging in parameters and V_{Th} = V_{DD} / 2:

$$V_{Th} = 0.99 V = \frac{0.55 V + \sqrt{\frac{k_p}{1.78 \, mA/V^2}} \cdot (1.98 \, V + -0.57 \, V)}{1 + \sqrt{\frac{k_p}{1.78 \, mA/V^2}}}$$

$$\Rightarrow 1.048 = \sqrt{\frac{k_p}{1.78 \, mA/V^2}} \Rightarrow (\frac{W}{L})_p = 34.4 \Rightarrow W_p = 6.19 \, \mu m$$

Hence we need to set the "width per finger" parameter to 6.19µm in order to obtain a V_{Th} value of V_{DD} / 2 = 0.99 V

Schematic

The schematic of the CMOS inverter designed in this part of this lab is given below:

Fig 8. Schematic of a CMOS inverter

Pre-layout Simulations

The VTC curve of the inverter was obtained as provided below:

Fig 9. Pre-layout VTC of the CMOS inverter. The threshold voltage was found as 991.6mV which satisfies the V_{th} = V_{DD} / 2 requirement.

Fig 10. Layout of the CMOS Inverter.

Fig 11. DRC results screen.

Fig 12. LVS check results screen.

Symbol Extraction

You may access the symbol by selecting "lab1_2_cmos_inverter" > "cmos_inverter_layout" > "symbol" in the library manager window.

I chose to model my inverter layout's symbol after the inverter logic gate symbol:

Fig 13. Symbol I chose for the CMOS inverter.

Post-layout Simulations

For post-layout transient simulations, a capacitor was connected between V_{out} and GND. The resulting testbench schematic is provided below:

Fig 14. Testbench schematic for post-layout simulation. I chose to set the values for *C_load* in the simulation window.

VTC

The VTC of the created layout is provided below:

Fig 15. VTC of the created layout. V_{th} was found as ~0.9916 V which matches the design requirements as well as the created schematic.

Transient Simulation

Transient simulation was run for $C_{load} \in \{200f \text{ F}, 500f \text{ F}\}\ \text{with } V_{in} \text{ configured as follows:}$

CDF Parameter	Value	Display
DC voltage	0 V	off
Source type	pulse	off
Frequency name 1		off
Delay time	500.0u s	off
Zero value	0 V	off
One value	1.98 V	off
Period of waveform	100m s	off
Rise time	1p s	off
Fall time	1p s	off
Type of rising & falling edge		off
Pulse width	50m s	off
Display small signal params		off
Display temperature params		off
Display noise parameters		off
Multiplier		off

Fig 16. V_{in} pulse input configuration used for transient simulations.

Measuring τ_{PLH} and τ_{PHL}

 au_{PLH} and au_{PHL} have been defined as t_1 - t_0 and t_3 - t_2 respectively for the plot above. Measuring au_{PLH} and au_{PHL} requires measurement of the time stamps at which V_{out} begins rising from V_{OL} /falling from V_{OH} and reaches $V_{50\%}$ = 0.99 V. You may find the plots obtained for C_{load} values 200f F and 500f F below.

C_{load} = 200f F - Measurements

Fig 17. $t_{50\%}$ and t_{OL} measurements from transient simulation with 200f C_{load} during rising input

Using the markers on the plot outlining timestamps at which V_{OL} and $V_{\text{50\%}}$ values are attained at V_{out}

 $\tau_{PLH} = 350.500000156233 - 350.500000002007 = 1.54 \cdot 10^{-7} ms = 154.2 \, ps$

Fig 18. $t_{50\%}$ and t_{OL} measurements from transient simulation with 200f C_{load} during rising input

Using the markers on the plot outlining timestamps at which V_{OL} and $V_{\text{50\%}}$ values are attained at V_{out}

$$\tau_{PHL} = 300.50000019889 - 300.500000001 = 1.9889 \cdot 10^{-7} ms = 198.9 ps$$

 C_{load} = 200f F - Calculations

For a CMOS inverter (V $_{\text{OH}}$ = V $_{\text{DD}}$, V $_{\text{OL}}$ = 0V), T $_{\text{PHL}}$ is given as:

$$\tau_{PHL} = \frac{C_{load}}{k_{n}(V_{DD} - V_{T0,n})} \cdot \left[\frac{2V_{T0,n}}{V_{DD} - V_{T0,n}} + ln \left(\frac{4(V_{DD} - V_{T0,n})}{V_{DD}} - 1 \right) \right]$$

Plugging in provided parameters and C_{load} = 200f F:

$$\tau_{PHL} = \frac{200 \cdot 10^{-15} \, F}{(1.78 \, \frac{mA}{V^2})(1.98 \, V - 0.55 \, V)} \cdot \left[\frac{2 \cdot 0.55 \, V}{1.98 \, V - 0.55 \, V} + ln \left(\frac{4(1.98 \, V - 0.55 \, V)}{1.98 \, V} - 1 \right) \right] = 110.4 \, ps$$

For a CMOS inverter ($V_{OH} = V_{DD}$, $V_{OL} = 0V$), T_{PLH} is given as:

$$\tau_{PLH} = \frac{c_{load}}{k_{p}(V_{DD} - |V_{T0,p}|)} \cdot \left[\frac{2 |V_{T0,p}|}{V_{DD} - |V_{T0,p}|} + ln \left(\frac{4(V_{DD} - |V_{T0,p}|)}{V_{DD}} - 1 \right) \right]$$

Plugging in provided parameters and C_{load} = 200f F:

$$\tau_{PLH} = \frac{200 \cdot 10^{-15} \, F}{(1.95 \, \frac{mA}{V^2})(1.98 \, V - 0.57 \, V)} \cdot \left[\frac{2 \cdot 0.57 \, V}{1.98 \, V - 0.57 \, V} + ln \left(\frac{4(1.98 \, V - 0.57 \, V)}{1.98 \, V} - 1 \right) \right] = 103.5 \, ps$$

C_{load} = 500f F - Measurements

Fig 19. t_{50%} and t_{OL} measurements from transient simulation with 500f C_{load} during rising input

Using the markers on the plot outlining timestamps at which V_{OL} and $V_{\text{50\%}}$ values are attained at V_{out}

$$\tau_{pHL} = 300.50000046649 - 300.50000000101 = 3.65 \cdot 10^{-7} ms = 465.5 \, ps$$

Fig 20. t_{50%} and t_{OL} measurements from transient simulation with 500f C_{load} during falling input

Using the markers on the plot outlining timestamps at which V_{OL} and $V_{\text{50\%}}$ values are attained at V_{out}

$$\tau_{PLH} = 350.5000003697 - 350.5000000021 = 3.68 \cdot 10^{-7} ms = 367.6 \, ps$$

Using the same formulas as the previous part we get:

$$\tau_{PHL} = \frac{\frac{500 \cdot 10^{-15} \, F}{(1.78 \, \frac{mA}{V^2})(1.98 \, V - 0.55 \, V)} \cdot \left[\frac{2 \cdot 0.55 \, V}{1.98 \, V - 0.55 \, V} + ln \left(\frac{4(1.98 \, V - 0.55 \, V)}{1.98 \, V} - 1 \right) \right] = 276.0 \, ps$$

$$\tau_{PLH} = \frac{500 \cdot 10^{-15} \, F}{(1.95 \, \frac{mA}{V^2})(1.98 \, V - 0.57 \, V)} \cdot \left[\frac{2 \cdot 0.57 \, V}{1.98 \, V - 0.57 \, V} + ln \left(\frac{4(1.98 \, V - 0.57 \, V)}{1.98 \, V} - 1 \right) \right] = 258.8 \, ps$$

Evaluation

Calculated and measured values for low-to-high and high-to-low propagation delay are summarized below:

C _{load}	Propagation Delay		Value	Percentage Error
200f F	$ au_{_{PHL}}$	measured	198.9 ps	80.2%
	1112	calculated	110.4 ps	
	$ au_{_{PLH}}$	measured	154.2 ps	50.0%
	1 211	calculated	103.5 ps	
500f F	$ au_{_{PHL}}$	measured	465.5 ps	68.7%
	1112	calculated	276.0 ps	
	$ au_{_{PLH}}$	measured	367.6 ps	42.0%
	. 211	calculated	258.8 ps	

 V_{Th} values obtained from pre-layout and post-layout simulations were found to be identical (after truncating digits beyond the required precision). The measured V_{Th} value, 991.6mV shows a percentage error of 0.016%.

Overall the design shows desirable VTC characteristics with V_{Th} matching the desired value. Unfortunately, the design is slower than expected as the difference between measured and calculated values of propagation delays demonstrate. It is interesting to note that τ_{PLH} shows less discrepancy between calculated and measured values compared to τ_{PHL} .