Recall Zeris lemma (X, \leq) a poset such that every $Y \subseteq X$ has an upper bound $\Rightarrow X$ has a maximal element

Zern's levino =) Arion of Choice: Let $x \neq \emptyset$ be non-empty. Consider the set P of points (Y, f), $Y \subseteq X$ and f is a choice function on Y. Introduce a postiol order on P by setting $(Y, f) \leq (Y', f')$ if $Y \subseteq Y'$ and $f = f'|_{Y}$ (P, \leq) is non-empty since $Y \times E \times X$, we have an abrian choice function on $\{X\}$

Let C be a chain in P. Then let $\overline{Y} = \bigcup_{(Y,t) \in C} Y$ and

define \bar{f} by setting $\bar{f}(s) = f(s)$ for any s st f is defined on s (Note that \bar{f} is well-defined). Then (\bar{r},\bar{t}) is an upper bound for c.

By Zoxus lemma, \exists a morninal element (\exists, g) of f. If $x \in X \setminus Z$, we can extend f from Z to $Z \cup \{x\}$ by setting g(s) = x for every S containing x. But now, we have a new maximal element. [Contradiction] = g is a choice function for X.

Done with set theory.

Integezs

Defin: An integer is an expression of the form a/b where $a,b \in N$. Two integers are equal, a/b = c/d if a+d = b+c. Let $\mathbb Z$ denote the set of integers.

Exercise: - Show that the notion of equality is an equivalence relation. (Done in UM204)

Det'n: The sum (seep product) of a/b and c/d is defined by

Property: - Both one well-defined.

Since n/0 behaves like n + n EN, we identify N = {n/0|new

Defin: It all $\in \mathbb{Z}$, then its negation is -(a/b)=(b/a). In posticular if $n \in \mathbb{N}$, we identify -n=o/n

of Algoria:- Let Jr,y,zEZ. d, x+y = y+x 2, X+(y+2)= (x+y)+Z 3, 2+0=0+x=x $u_{i}, \quad \mathcal{X} + (-x) + (-x) + x = 0$,s, xy = yx (p) (m) = x(2) X.1:1.71 = X τ, x(y+z) = xy + xz

(g+z)x= yx+ zx

۹,

These proposties make Z a commutative sing.

ightarrow Omitting ,5, will give

Subtraction: -For $x,y \in \mathbb{Z}$, we write x-y = x+(-y)

Property :i, a, b ∈ Z st ab= 0 => a= 0 0 0 6=0 (No Zero Divisor) ii, a, b, c ∈ Z st ac= bc and c ≠0 =) a= b

(Concellation)

Order proporties are exactly as for N. Lemna :- Trichotomy holds.

Rationals:-Defin: A rotional number is of the form all, where $a, b \in \mathbb{Z}$ and $b \neq 0$. a//0 = nevex a rational number

Two sational numbers are equal, $\alpha \|b = c\|d$ if od: be Let Q denote the set of rationals. Example: $-3\|L = -6\|-8 \neq 4\|_3$

Detin: The sum (resp. product) of rational numbers is given by $(\alpha/b) + (c/d) = (ad+bc/bd)$

Property: - These se well-defined.

Note that (a//) + (b//) = (a+b)// and (a//) * (b//) = (b//)

 \Rightarrow We can identify \mathbb{Z} with $\{a/|i|, a \in \mathbb{Z}\}$ $\Rightarrow 0 \in \mathcal{Y}_i$

Def'n:- The reciprocal of a non-zero rational $\alpha \parallel_b = \alpha \pmod{\alpha}$ (all $\alpha = \alpha \pmod{\alpha}$).

Note that numerator denominator of $a \in Q$ is not well-defined.

Land of Algebra for Q:- \longrightarrow 1-10 define a field.

Assume as those for Z(1-9) \longrightarrow 1-10 define a field.

10, If $x \neq 0$, $x \cdot x^{-1} = x^{-1} \cdot x = 1$ \longrightarrow 0 mitting $x \in 0$, gives a division ring.

Wedderburn's Little theorem:

Every finite division sing is a field.

Qualient: - For $x,y \in \Omega$, $y \neq 0$, the qualient of x,yis x/y = x *(y')

Charle #2 + a/ = a//1

meck that 16 115

Det'n: We say that $x \in D$ is positive (responsedive) if x = a/b for $a,b \in D$ (resp x = -y for some positive y).

Usual ordering proporties =) Q is an exdered field.

Read Section 4.3 (Abs values and exponents)

Property:- Let $x \in \mathbb{Q}$. Then $\exists a$ unique $n \in \mathbb{Z}$ st $n \leq x \leq n+1$. This is denoted [x]-stocotx. Property:- If $x,y \in \mathbb{Q}$ st x < y, $\exists z \in \mathbb{Q}$ st x < z < y.

There is no $x \in \mathbb{Q}$ st $x^2 = 2$