

Vorrichtung zur Erfassung der Temperatur im Innenraum eines Fahrzeuges

Die Erfindung betrifft eine Vorrichtung zur Erfassung der Temperatur im Innenraum eines Fahrzeugs, insbesondere für eine Klimaanlage eines Fahrzeugs.

- 5 Derzeitig wird im Rahmen der Kraftfahrzeugklimatisierung die Temperatur der Luft im Innenraum eines Fahrzeugs durch ein zwangsbelüftetes System, bestehen aus einem Belüftungsmotor und einem Temperatursensor, gemessen. Der Belüftungsmotor, der üblicherweise im Klimasteuergerät angebracht ist, saugt hierbei die Innenluft an und leitet sie durch einen Ansaugkanal zum
10 Temperatursensor.

Der Temperatursensor ist thermisch von der Platine und anderen Komponenten der Steuergerätes isoliert, um Störeinflüsse zu vermeiden. Die Zwangskonvektion durch den Belüftungsmotor bewirkt, dass der Temperatursensor
15 die Temperatur der einströmenden Luft aus dem Fahrzeuginneren erfasst. Dieses System ist mit einigen Nachteilen behaftet: Der Motor ist ein bewegliches Teil und somit verschließbehaftet, er erzeugt störende Geräusche und saugt Partikel aus dem Innenraum an, was dazu führen kann, dass der Sensor verschmutzt und u.U. der Ansaugkanal verstopft.

20 Aus DE-A-100 49 979 A1 ist eine Vorrichtung zur Innenraumtemperaturmessung in einem Fahrzeug ohne Einsatz eines Belüftungsmotors bekannt. Dort wird durch einen zusätzlichen Temperatursensor eine Kompensationsmessung durchgeführt. Der Kompensationstemperatursensor ist dabei relativ weit vom
25 eigentlichen Innenraumtemperatursensor entfernt angeordnet.

Eine Aufgabe der Erfindung ist es, eine Vorrichtung zur Berechnung der Innenraumtemperatur ohne Zwangsbelüftung eines Sensors zu schaffen, bei der thermische Einflussgrößen effektiv kompensiert werden können.

- 5 Zur Lösung dieser Aufgabe wird mit der Erfindung eine Vorrichtung zur Erfas-
sung der Temperatur im Innenraum eines Fahrzeuges, insbesondere für eine
Klimaanlage eines Fahrzeuges vorgeschlagen, die versehen ist mit
- einem Innenraumtemperatursensor, der in einem Gehäuse angeordnet
ist, das in oder an einer an den Innenraum des Fahrzeuges angrenzenden
10 Wand angeordnet ist und zumindest teilweise an den Innenraum des
Fahrzeuges angrenzt,
 - einem Strahlungssensor, der zur Erwärmung des Gehäuses des
Innenraumtemperatursensors führende Sonnenstrahlung erfasst, und
 - einem Kompensationstemperatursensor, der hinter der Wand und von
15 dem Innenraumtemperatursensor thermisch entkoppelt angeordnet ist
und Wärme von Luft und/oder Baugruppen hinter der Wand erfasst, die
zu einer Verfälschung des Messwertes des Innenraumtemperatursensors
führt,
 - wobei die beiden Temperatursensoren und der Strahlungssensor zu einer
20 gemeinsamen Baugruppe zusammengefasst sind.

Bei der erfindungsgemäßen Vorrichtung zur Erfassung der Temperatur im
Innenraum eines Fahrzeuges befindet sich ein Innenraumtemperatursensor
derart vor, an oder in einer an den Innenraum des Fahrzeuges angrenzenden
25 Wand, dass der Innenraumtemperatursensor in thermischem Kontakt mit der
Luft im Innenraum des Fahrzeuges steht. Der Innenraumtemperatursensor
selbst kann in einem Gehäuse angeordnet sein und ist insbesondere als NTC-
oder PTC-Bauelement in einem Vergussmaterial eingebettet. Hinter der Wand
befindet sich ein Kompensationstemperatursensor, der thermisch vom Innen-
30 raumtemperatursensor entkoppelt ist und störende thermische Einflüsse
erfasst, die hinter der Wand entstehen können. Dies kann beispielsweise durch
die Eigenerwärmung von Bedieneinheiten oder Fahrzeugkomponenten wie

insbesondere das Steuergerät einer Klimaanlage verursacht sein. Über einen Strahlungssensor werden durch die Sonneneinstrahlung direkt und indirekt erzeugte thermische Einflüsse erfasst, die sich auf das Messsignal des Innenraumtemperatursensors auswirken. Die beiden Temperatursensoren sind
5 zu einer Baugruppe zusammengefasst, also beispielsweise auf einer gemeinsamen Platine oder einem anderen Träger bzw. einer Trägerplatte angeordnet.

Durch die Anordnung des Kompensationstemperatursensors vom Innenraum-
10 temperatursensor entkoppelt und dennoch im Bereich des Innenraumtempe-
ratursensors wird erreicht, dass sämtliche Temperatureinflüsse erfassbar sind,
die sich auf das Innenraumtemperatursensor-Ausgangssignal auswirken und
nicht durch die Temperatur der Luft im Innenraum des Fahrzeuges bedingt
sind. Damit lässt sich das Ausgangssignal des Innenraumtemperatursensors
15 wesentlich exakter kompensieren, was für eine exakte Innenraumtemperatur-
messung und demzufolge eine genaue Regelung der Innenraumtemperatur
von Vorteil ist. Darüber hinaus ist es möglich, die Kompensation der thermo-
schen Einflussgrößen, wie sie auf den Innenraumtemperatursensor einwirken,
Fahrzeugtyp unabhängig zu berücksichtigen, da sich nun die Kompensation
20 einzig und allein anhand des Signals des Kompensationstemperatursensors
bemisst. Andere Einflussgrößen können im Regelfall vernachlässigt werden.
Wenn der Strahlungssensor möglichst nahe am Innenraumtemperatursensor
angeordnet ist, so lassen sich auch die durch die Sonneneinstrahlung verur-
sachten thermischen Einflüsse einzig und allein aus dem Signal des Strah-
25 lungssensors errechnen und berücksichtigen. Zweckmäßig ist es insbesondere,
wenn der Strahlungssensor im Gehäuse des Innenraumtemperatursensors an-
geordnet ist.

In vorteilhafter Weiterbildung der Erfindung ist ferner vorgesehen, dass der
30 Kompensationstemperatursensor thermisch mit mindestens einer Wärmeleit-
fläche verbunden ist, die hinter der Wand angeordnet ist. Diese Wärmeleitflä-
che ist vorzugsweise auf einer Trägerplatte, beispielsweise einer Platine ange-

ordnet. Aufgabe der Wärmeleitfläche ist das "Einfangen" von Wärme und insbesondere Konvektionswärme, wie sie beispielsweise durch Luftbewegungen hinter der Wand entsteht. Vorzugsweise sind mehrere Wärmeleitflächen vorgesehen. Sofern diese Wärmeleitflächen auf beiden Flächen der Trägerplatte angeordnet sind, sind sie zweckmäßigerweise untereinander thermisch gekoppelt, was beispielsweise mittels Durchkontaktierungen erfolgt, wie sie vom Layout von Platinen her bekannt sind. Vorzugsweise befinden sich beidseitig des Kompensationstemperatursensors jeweils mindestens eine Wärmeleitfläche oder mindestens ein Paar auf beiden Flächen der Trägerplatte angeordneter Wärmeleitflächen.

Die thermische Entkopplung der beiden Temperatursensoren erfolgt vorzugsweise durch eine entsprechende Bedrahtung bzw. Anordnung von Leiterbahnen auf dem beide Temperatursensoren tragenden Träger. Werden beispielsweise die Leiterbahnen für die Energieversorgung beider Temperatursensoren mäanderförmig S-förmig oder auf andere Art und Weise wellenförmig ausgebildet, so tritt aufgrund der damit verbundenen Verlängerung der elektrischen Verbindungen eine thermische Entkopplung ein. Die thermische Entkopplung der gesamten Baugruppe über deren Zuleitungen kann ebenfalls auf die oben beschriebene Weise erfolgen. Zusätzlich bzw. alternativ kann man sich aber auch spezieller elektrischer Leitungen bedienen, die trotz guter elektrischer Leitfähigkeit thermisch schlecht leitend sind.

In vorteilhafter Weiterbildung der Erfindung ist ferner vorgesehen, dass die Anschlussbeinchen des Innenraumtemperatursensors und die Leiterbahnen auf der Trägerplatte sowie der Kompensationstemperatursensor von einer Vergussmasse umschlossen sind, die der thermischen Isolierung gegenüber der Umgebung und der mechanischen Fixierung dient.

Die Erfindung wird nachfolgend unter Bezugnahme auf die Zeichnung näher erläutert. Im einzelnen zeigen:

- Fig. 1 eine Seitenansicht eines Ausführungsbeispiels der erfindungsgemäßen Vorrichtung im in einem Klimaanlagen-Steuengerät eingebauten Zustand,
- 5 Fig. 2 eine Ansicht auf die Baugruppe in Richtung des Pfeils II der Fig. 1 im nicht eingebauten Zustand und
- Fig. 3 eine Ansicht auf die Baugruppe in Richtung des Pfeils III der Fig. 1 im nicht eingebauten Zustand.
- 10 Fig. 1 zeigt ein bevorzugtes Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung 10 zur Erfassung der Temperatur im Innenraum eines Fahrzeuges im eingebauten Zustand. Mit 12 ist eine an den Innenraum 14 angrenzende Wand dargestellt, bei der es sich beispielsweise um die Frontblende der
- 15 Bedieneinheit einer Fahrzeug-Klimaanlage handelt. Die Wand 12 weist eine Öffnung 16 auf, in der ein Gehäuse 18 eines Bauteils der Vorrichtung 10 angeordnet ist. Das Gehäuse 18 beinhaltet einen Lead Frame 20 mit drei Anschlussbeinen 22,24,26, die der elektrischen Kontaktierung eines Innenraumtemperatursensors 28 und eines Strahlungssensors 30 dienen
- 20 (siehe auch Fign. 2 und 3). Bei dem Innenraumtemperatursensor 28 handelt es sich in diesem Ausführungsbeispiel um ein NTC-Widerstandselement, während der Strahlungssensor 30 als Fotodiode ausgebildet ist.
- Wie in den Fign. zu erkennen ist, ist der Lead Frame 20 auf einer Platine 32 verlötet, zu der eine mehradrige elektrische Zuleitung 34 führt. Auf der Platine 32 befindet sich ein Kompensationstemperatursensor 36, der elektrisch mit der Zuleitung 34 und thermisch mit mehreren Wärmeleitflächen 38,40 und 42,44 verbunden ist. Diese Wärmeleitflächen erstrecken sich beidseitig des Kompensationstemperatursensors 36, wobei jeweils zwei der Wärmeleitflächen auf der
- 30 oberen Hauptfläche 46 der Platine 32 und die anderen beiden Wärmeleitflächen auf der unteren Hauptfläche 48 der Platine 32 angeordnet sind. Untereinander sind die Wärmeleitflächen 38 und 40 sowie 42 und 44 jeweils paarweise

verbunden, was durch Durchkontakteierungen 50 erfolgt, bei denen es sich um metallisierte Durchgangsöffnungen handelt, die durch die Platine 32 hindurch verlaufen und die Wärmeleitflächen jedes Wärmeleitflächenpaars untereinander thermisch verbinden.

5

Wie ferner insbesondere anhand von Fig. 3 zu erkennen ist, sind die Leiterbahnen 52,54,56 auf der Platine 32 durch eine in diesem Fall wellenförmige Ausbildung verlängert, so dass eine thermische Entkopplung der beiden Temperatursensoren untereinander und mit der elektrischen Zuleitung 34 erzielt wird. Die Platine 32 und der Lead Frame 20 sind von einer Vergussmasse 58 umschlossen, was bezüglich der Platine 32 lediglich teilweise, nämlich im mittleren Teil zwischen den Wärmeleitflächenpaaren, gegeben ist.

- 15 Die erfindungsgemäße Vorrichtung erlaubt die Messung der Innentemperatur ohne die obengenannten Nachteile. Die Vorrichtung weist drei Sensoren auf, die in einer festen geometrischen und thermischen Beziehung zueinander stehen, nämlich den Innenraumtemperatursensor, der in das Fahrzeugginnere ragt und die Temperatur der Luft misst, den Strahlungssensor, der die einfal-
20 lende Strahlungsintensität misst, welche auf den Innenraumtemperatursensor trifft, und den Kompensationstemperatursensor, der die thermische Energie erfasst, welche den Innenraumtemperatursensor über die Befestigung oder das Gehäuse beeinflusst. Der Messwert des Innenraumtemperatursensors wird durch Wärmeeintrag vom Steuergerät und/oder durch das Gehäuse verfälscht.
25 Ebenso hat direkte Sonneneinstrahlung, die den ersten Temperatursensor trifft, einen störenden Einfluss. Diese Störeinflüsse werden aber durch die zusätzlichen Sensoren erfasst und können somit rechnerisch kompensiert wer-
den. Dies geschieht üblicherweise im Klimasteuergerät.
30 Die Besonderheit der erfindungsgemäßen Vorrichtung besteht in der Anord-
nung und thermischen Ankopplung der drei Sensoren. Die beiden Temperatur-
sensoren sind voneinander thermisch entkoppelt. Ihre Anschlusskontakte und

-leitungen sind thermisch von der Beschaltung der Temperatursensoren ebenfalls thermisch entkoppelt. Über Wärmeleitflächen, mit denen der Kompensationssensor in thermischem Kontakt steht, wird die Umgebungswärme des Kompensationstemperatursensors "eingefangen". Die Anschlussbeinchen und Leiterbahnen, welche zu den drei Sensoren führen, sind in einer Vergussmasse eingebettet; dies gilt auch für den Kompensationstemperatursensor, nicht jedoch für die Wärmeleitflächen. Die die drei Sensoren aufweisende Baugruppe kann außerhalb der Bedieneinheit der Klimaanlage angeordnet sein.

BEZUGSZEICHENLISTE

- 10 Vorrichtung
- 12 Wand zum Fahrzeuginnenraum
- 14 Innenraum
- 16 Öffnung
- 18 Gehäuse
- 20 Frame
- 22 Anschlussbeinen
- 24 Anschlussbeinen
- 26 Anschlussbeinen
- 28 Innenraumtemperatursensor
- 30 Strahlungssensor
- 32 Platine
- 34 mehradrige elektrische Zuleitung
- 36 Kompensationstemperatursensor
- 38 Wärmeleitflächen
- 40 Wärmeleitflächen
- 42 Wärmeleitflächen
- 44 Wärmeleitflächen
- 46 oberen Hauptfläche
- 48 Hauptfläche
- 50 Durchkontaktierungen
- 52 Vergussmasse
- 58 Vergussmasse

ANSPRÜCHE

1. Vorrichtung zur Erfassung der Temperatur im Innenraum eines Fahrzeuges, insbesondere für eine Klimaanlage eines Fahrzeuges, mit
 - einem Innenraumtemperatursensor (28), der in einem Gehäuse (18) angeordnet ist, das in oder an einer an den Innenraum (14) des Fahrzeuges angrenzenden Wand (12) angeordnet ist und zumindest teilweise an den Innenraum (14) des Fahrzeuges angrenzt,
 - einem Strahlungssensor (30), der zur Erwärmung des Gehäuses (18) des Innenraumtemperatursensors (28) führende Sonnenstrahlung erfasst, und
 - einem Kompensationstemperatursensor (36), der hinter der Wand (12) und von dem Innenraumtemperatursensor (28) thermisch entkoppelt angeordnet ist und Wärme von Luft und/oder Baugruppen hinter der Wand (12) erfasst, die zu einer Verfälschung des Messwertes des Innenraumtemperatursensors (28) führt,
 - wobei die beiden Temperatursensoren (28,36) und der Strahlungssensor (30) zu einer gemeinsamen Baugruppe zusammengefasst sind.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die beiden Temperatursensoren (28,36) und der Strahlungssensor (30) von einer gemeinsamen Trägerplatte (32) gehalten sind.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Kompensationstemperatursensor (36) thermisch mit mindestens einer hinter der Wand (12) angeordneten Wärmeleitfläche (38,40,42,44) verbunden ist.
4. Vorrichtung nach Anspruch 2 und 3, dadurch gekennzeichnet, dass Wärmeleitflächen (38,40,42,44) auf mindestens einer Fläche (46,48) der

Trägerplatte (32) beidseitig des Kompensationstemperatursensors (36) angeordnet sind.

5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass Wärmeleitflächen (38,40,42,44) auf beiden Flächen (46,48) der Trägerplatte (32) beidseitig des Kompensationstemperatursensors (36) angeordnet sind, wobei die auf den beiden Flächen (46,48) der Trägerplatte (32) jeweils gegenüberliegenden Wärmeleitflächen (38,40,42,44) mittels sich durch die Trägerplatte (32) hindurch erstreckenden Durchkontakteierungen (50) thermisch untereinander verbunden sind.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die elektrische Anbindung des Innenraumtemperatursensors (28) und/oder des Strahlungssensors (30) thermisch entkoppelt ist/sind.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Gehäuse (18) des Innenraumtemperatursensors (28) elektrische Anschlussbeinchen (20,22,24,26) und die Baugruppe elektrische Leiterbahnen aufweist und dass die Anschlussbeinchen (20,22,24,26) und die Leiterbahnen (52,54,56) zur thermischen Isolation und zur mechanischen Fixierung mindestens teilweise von einer Vergussmasse (52) eingeschlossen sind.
8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Baugruppe außerhalb eines Bedien- und/oder Steuergeräts einer Fahrzeug-Klimaanlage angeordnet ist.

ZUSAMMENFASSUNG

Vorrichtung zur Erfassung der Temperatur im Innenraum eines Fahrzeuges

Die Vorrichtung zur Erfassung der Temperatur im Innenraum eines Fahrzeuges, insbesondere für eine Klimaanlage eines Fahrzeuges, ist versehen mit einem Innenraumtemperatursensor (28), der in einem Gehäuse (18) angeordnet ist, das in oder an einer an den Innenraum (14) des Fahrzeuges angrenzenden Wand (12) angeordnet ist und zumindest teilweise an den Innenraum (14) des Fahrzeuges angrenzt und einem Strahlungssensor (30), der zur Erwärmung des Gehäuses (18) des Innenraumtemperatursensors (28) führende Sonnenstrahlung erfasst. Ferner ist die Vorrichtung versehen mit einem Kompensationstemperatursensor (36), der hinter der Wand (12) und von dem Innenraumtemperatursensor (28) thermisch entkoppelt angeordnet ist und Wärme von Luft und/oder Baugruppen hinter der Wand (12) erfasst, die zu einer Verfälschung des Messwertes des Innenraumtemperatursensors (28) führt. Die beiden Temperatursensoren (28,36) und der Strahlungssensor (30) sind zu einer gemeinsamen Baugruppe zusammengefasst.

(Fig. 1)