

DEP is ild normal with both 0 and 52 unknown, and some $\frac{\widehat{\theta} - \theta}{\frac{S}{\sqrt{n}}} \sim T_{n-1} = 7 + \frac{\widehat{\theta} - \theta_0}{\frac{S^2}{\sqrt{n}}} \sim F_{1,n-1}$ Let's say you want to prove a coin is weighted unfairly. So you assume it's flips have the DGP ild Benn (0), and you test Hq: 0 is not '2.

\$\hat{\text{0}} \text{std} = \hat{\text{0}} - \frac{1}{2} \hat{\text{c}} \text{[-1.96, 1.96]} Let's say you want to prove a 6-sided die is unfoir. At least one 0 is Haidie is fair $\theta_1 = \theta_2 = \dots = \theta_6 = \frac{1}{6}$ or $\theta = \theta_0 = \frac{1}{6}$ $\theta_1 = P(die = 1)$ $\theta_2 = P(die = 2)$ $\theta_3 = P(die = 2)$ [0] = P(de=6) Given n rolls of the die x,,, xn, how do we do our test? We need some way to measure / gauge departure from Ho (a statistic or a set of statistics). Let's look at a frequency table e.g. 1 2 3 4 5 6 n

observed Quantity 4 1 3 2 1 4 h=15

expected Quantity 2.5 2.5 2.5 2.5 2.5 h=15 0, 0, 0, ... 06 r.v.'s E1, E2, ... E6 constants \$ = (0,-E,)+(0,-E)+...+(0,-E) if \$ large => Reject Ho maybe...

\$\hat{\phi} = |0,-E, |+...+ |06-E6| +his is a good estimator for departure

from the null hypothesis...

but we don't know its sampling distribution making it unusable in practice D= (0,-E1)2, (06-E6)2 d > X's this fact is proved in Hath 368

Karl Pegesen (1900) and its named the " χ^2 goodness of fit test" In general, if there are K categories (e.g. here K=6), then the following: $\hat{\phi} = \sum_{K=1}^{K} \frac{(O_K - E_K)^2}{d} \xrightarrow{\chi^2_{K-1}} \frac{d}{\chi^2_{K-1}}$

Let's run over "die unfair test" for the data above at alpha = 5%.

Fx = (11.07) = 95%

 $\hat{\theta} = (4-2.5)^2 \dots (4-1.5)^2 \cdot 3.8 \in RET$

New Situation. Let's look at data for n=279 men and record their hair color and eye culor. Here's the raw data as a "contingency table" or "cross tabilation."

		Eye	(0)01			
		Brown (EB)	Blue (E4)	Hazel (EZ)	Green (EG)	Total
Halm	Black (HB)	32=0,,	2 11	(0	3	56 = nHE= n.
Color	Brown (40)	53 = 021	50	27	15=0,4	143 = nHo=nz.
	Red (HR)	10	10	7 = 025	7	30 = nHE= ng.
	Bloode (HL)	3	3 0	5	8	46 = NHL = NH.
	L.	98=neg=h1	101=n=1=n-2	47= nee = n.3		

I want to test

Ha: hair color and eye color are dependent events

Ho: hair color and eye color are independent events

Let O denote a true population probability e.g.

OHE/EB = Oir = P(Black hair and brown eyes),

OHB = Oir = P(Black hair)

Ha: Fix such that Gix & Oj. O.K ie. at least one is unequal Ho: Oi, = Oi. Oi, Giz = Oi. Oiz, ... Ou, u = Ou. Oi, u

Ho is rxc = 4x4 = 16 equalities.

. 1	asoning train	the previous	example. W	e hor	100 600				
the		expect if Ho							
		Eye Colo			1-1				
ahr		2		4	Total				
100/1	E11 = n01.0.1	F12= n01.0.2							
3	-								
4			PARRE	16 11	121 22 22				
Tot		True Control							
	0 = (O - E)2 + (04	+-E++)2		Mary Last				
	E++								
			-						
	= (0,-n0.0.1) ++ (10 044-n04.0.4)2								
	n 0 8., n 04. 0.4								
	Can be compute \$? No. You do not know any of the								
	0	75 7	1		D				
				crow any	of the				
	911 00 900	of the O.							
	911 00 900	of the O.							
ŀ	Oi or any	ue [Richardily	, and] replace						
ŀ	Oi or any	of the O.	, and] replace						
ŀ	Oir or any don about with Oir a	we [Richardily d 8.j. Yes.	, and] replace						
ŀ	Oir or any Jon about with Oir a	we [Richardily, d 8.j . Yes.	and] replace	e the Oi.	is and 0.j.'s				
ŀ	Oi er any You about with Oi. a.	we [Richard: Py	and] replace	e the Oi.	25 and 0.3.35				
ŀ	Oir or any for about with Oir a	we [Richardily d 8.j. Yes.	and] replace	e the Oi	25 and 0.j.5				
ŀ	Oir or any for about with Oir a	we [Richard: Py	and] repla	e the Oi	25 and 0.j.5				
ŀ	Oir or any for about with Oir a	we [Richardily d 8.j. Yes.	and] replace	e the Oi	25 and 0.j.5				
ŀ	Oir or any for about with Oir a	we [Richardily d 8.j. Yes.	and] replace	e the Oi	25 and 0.3.25				
ŀ	Oil or any four about with Oil a	we [Richardily d 8.j. Yes.	and] replace	e the Oi	is and Oij's				
ŀ	Oil or any four about with Oil a	we [Richardily d 8.j . Yes.	and] replace	e the Oi	is and 0.j.'s				