

Paris and Stanford at EPE 2017: Downstream Evaluation of Graph-based Dependency Representations

Sebastian Schuster, Éric Villemonte de la Clergerie, Marie Candito, Benoît Sagot, Christopher Manning, and Djamé Seddah

Stanford University/INRIA/Université Paris Diderot/Université Paris Sorbonne

September 20, 2017

Motivation

We developed **graph-based representations** that can be derived from Universal Dependency trees

Not clear whether these graph-based representations improve downstream task performance

Research questions

- 1. Do the enhancements improve downstream results?
- 2. How do the representations compare to other graph-based representations?
- 3. What is the best way of parsing to these representations?

Research questions

- 4. Is UD as good a representation for downstream tasks as SD?
- 5. Does higher parsing accuracy translate to better downstream performance?

Our setup

- 8 different representations
- 2 parsers and parsing strategies
- 2 data sets
 - **→** 23 runs

The representations

- 5 representations derived from Universal Dependencies:
 - UD basic
 - UD enhanced
 - UD enhanced++ (w/o empty nodes)
 - UD enhanced++diathesis
 - UD enhanced++diathesis --

The representations

- Stanford Dependencies basic
- DM
- Predicate Argument Structure (PAS)

UD basic

- A dependency tree representation that
 - aims to allow cross-linguistically consistent treebank annotations
 - contains dependencies between content words

UD enhanced

- A graph-based dependency representation that
 - contains additional edges for phenomena such as control, raising, and coordination
 - augments relation labels with function words

UD enhanced++

- A graph-based dependency representation that
 - is based on UD enhanced
 - modifies the structure such that there are more relations between content words

UD enhanced++

- A graph-based dependency representation that
 - is based on UD enhanced

UD enhanced++ diathesis

- A graph-based dependency representation that
 - is based on UD enhanced++
 - Neutralizes some syntactic alternations
 - Introduces dependencies for other forms of control

UD enhanced++ diathesis

- A graph-based dependency representation that
 - is based on UD enhanced++

UD enhanced++ diathesis --

Does not use augmented relation labels

Stanford Dependencies

- A dependency tree representation that
 - is less content-word centric than UD

Predicate Argument Structure (PAS)

- A graph-based representation derived from an automatic HPSG-style re-annotation of the Penn Treebank
- Relation names encode the index of the arguments and the POS tag of the head

Predicate Argument Structure (PAS)

 A graph-based representation derived from an automatic HPSG-style re-annotation of the Penn Treebank

DM

- A graph-based representation derived from the DeepBank HPSG annotations
- Most dependency labels encode the index of the argument
- Special relations for some phenomena such as bound variables, coordination, and partitives

DM

- A graph-based representation derived from the DeepBank HPSG annotations
- Most dependency labels encode the index of the argument

Parsing strategies

- **Directly parsing to graphs** with the dyalog-SRNN parser (Ribeyre et al., 2013; de la Clergerie et al., 2017)
- Parsing to dependency trees with the Dozat and Manning (2017) parser and applying rule-based augmentations

Data: DM Split

- WSJ data from SemEval 2014 Semantic Dependency Parsing Shared Task
- PAS and DM data from SDP Shared Task
- UD and SD representations converted from PTB constituency trees

Data: Full

- WSJ + Brown + GENIA
- not available for DM and PAS
- UD and SD representations converted from PTB constituency trees

Overview of our runs

		UD basic	UD enh.	UD enh.++	UD enh.++ diat	UD enh.++ diat	SD basic	DM	PAS
Graph	DM	yes	yes	yes	yes	yes	no	yes	yes
	FULL	yes	yes	yes	yes	yes	no	no	no
Dep parser	DM	yes	yes	yes	yes	yes	no	no	no
+ conv.	FULL	yes	yes	yes	yes	yes	yes	no	no

Research questions

1. Do the enhancements improve downstream results?

- 2. How do the representations compare to other graph-based representations?
- 3. What is the best way of parsing to these representations?
- 4. Is UD as good a representation for downstream tasks as SD?
- 5. Does higher parsing accuracy translate to better downstream performance?

		UD basic	UD enh.	UD enh.++	UD enh.++ diat	UD enh.++ diat	SD basic	DM	PAS
Graph	DM	yes	yes	yes	yes	yes	no	yes	yes
	FULL	yes	yes	yes	yes	yes	no	no	no
Dep parser + conv.	DM	yes	yes	yes	yes	yes	no	no	no
	FULL	yes	yes	yes	yes	yes	yes	no	no

		UD basic	UD enh.	UD enh.++	UD enh.++ diat	UD enh.++ diat	SD basic	DM	PAS
Graph	DM	2	1	4	3	5	no	yes	yes
	FULL	3	1	2	5	4	no	no	no
Dep parser	DM	4	2	1	3	5	no	no	no
+ conv.	FULL	5	1	3	2	4	yes	no	no

		UD basic	UD enh.	UD enh.++	UD enh.++ diat	UD enh.++ diat	SD basic	DM	PAS
Graph	DM	-0.1	56.44	-1.06	-0.26	-1.19	no	yes	yes
	FULL	-0.55	56.81	-0.42	-1.95	-1.11	no	no	no
Dep parser	DM	-0.74	-0.51	59.08	-0.66	-1.06	no	no	no
conv.	FULL	-0.97	60.51	-0.91	-0.64	-0.95	yes	no	no

- UD enhanced, on average, consistently lead to better downstream results than UD basic
- UD enhanced++ and enhanced++ diathesis also good representations for downstream tasks, but higher variance

Task-specific findings: Event extraction and opinion analysis

- Representations that worked well:
 - UD enhanced
 - UD enhanced++
 - UD enhanced++ diathesis
- Representations that worked less well:
 - basic UD
 - UD diathesis ---
- Augmented relation labels seem to be useful for this task!

Task-specific findings: Negation scope resolution

- Representations that worked well
 - enhanced UD
- Much more variance in results
- Augmented relation labels don't seem to add anything

Research questions

1. Do the enhancements improve downstream results?

2. How do the representations compare to other graph-based representations?

- 3. What is the best way of parsing to these representations?
- 4. Is UD as good a representation for downstream tasks as SD?
- 5. Does higher parsing accuracy translate to better downstream performance?

UD representations > other graph representations?

		UD basic	UD enh.	UD enh.++	UD enh.++ diat	UD enh.++ diat	SD basic	DM	PAS
Graph	DM	yes	yes	yes	yes	yes	no	yes	yes
	FULL	yes	yes	yes	yes	yes	no	no	no
Dep parser + conv.	DM	yes	yes	yes	yes	yes	no	no	no
	FULL	yes	yes	yes	yes	yes	yes	no	no

UD representations > other graph representations?

		UD basic	UD enh.	UD enh.++	UD enh.++ diat	UD enh.++ diat	SD basic	DM	PAS
Graph	DM	2	1	4	3	5	no	6	7
	FULL	yes	yes	yes	yes	yes			no
Dep parser + conv.	DM	yes	yes	yes	yes	yes			no
	FULL	yes	yes	yes	yes	yes	yes	no	no

UD representations > other graph representations?

- No evidence that DM/PAS are better representations for downstream tasks than more surface-syntax aligned UD representations
- Especially true for event extraction and opinion analysis tasks
 - Suggests again that rich label sets are important for these tasks
- Gap widens much more if one uses more data, which is not available for DM and PAS!

Research questions

- 1. Do the enhancements improve downstream results?
- 2. How do the representations compare to other graph-based representations?
- 3. What is the best way of parsing to these representations?
- 4. Is UD as good a representation for downstream tasks as SD?
- 5. Does higher parsing accuracy translate to better downstream performance?

Parsing method

		UD basic	UD enh.	UD enh.++	UD enh.++ diat	UD enh.++ diat	SD basic	DM	PAS
Graph	DM	yes	yes	yes	yes	yes	no	yes	yes
	FULL	yes	yes	yes	yes	yes	no	no	no
Dep parser	DM	yes	yes	yes	yes	yes	no	no	no
+ conv.	FULL	yes	yes	yes	yes	yes	yes	no	no

		UD basic	UD enh.	UD enh.++	UD enh.++ diat	UD enh.++ diat	SD basic	DM	PAS
Graph	DM	yes	yes	yes	yes	yes	no	yes	yes
	FULL	yes	yes	yes	yes	yes	no	no	no
Dep parser + conv.	DM	yes	yes	yes	yes	yes	no	no	no
	FULL	yes	yes	yes	yes	yes	yes	no	no

		UD basic	UD enh.	UD enh.++	UD enh.++ diat	UD enh.++ diat	SD basic	DM	PAS
Graph	DM	2	2	2	2	2	no	yes	yes
parser	FULL	yes	yes	yes	yes	yes			no
Dep parser	DM	1	1	1	1	1	no		no
+ conv.	FULL	yes	yes	yes	yes	yes	yes	no	no

		UD basic	UD enh.	UD enh.++	UD enh.++ diat	UD enh.++ diat	SD basic	DM	PAS
Graph	DM	yes	yes	yes	yes	yes		yes	yes
	FULL	2	2	2	2	2	no		no
Dep parser + conv.	DM	yes	yes	yes	yes	yes	no		no
	FULL	1	1	1	1	1	yes	no	no

- Two-step parsing consistently outperformed direct graph parser
- In particular true for negation scope task (up 8 points difference)
- Very small difference for event extraction and small difference for opinion analysis tasks

Research questions

- 1. Do the enhancements improve downstream results?
- 2. How do the representations compare to other graph-based representations?
- 3. What is the best way of parsing to these representations?
- 4. Is UD as good a representation for downstream tasks as SD?
- 5. Does higher parsing accuracy translate to better downstream performance?

SD vs. UD

		UD basic	UD enh.	UD enh.++	UD enh.++ diat	UD enh.++ diat	SD basic	DM	PAS
Graph	DM	yes	yes	yes	yes	yes	no	yes	yes
	FULL	yes	yes	yes	yes	yes	no	no	no
Dep parser + conv.	DM	yes	yes	yes	yes	yes	no	no	no
	FULL	yes	yes	yes	yes	yes	yes	no	no

SD vs. UD

		UD basic	UD enh.	UD enh.++	UD enh.++ diat	UD enh.++ diat	SD basic	DM	PAS
Graph	DM	yes	yes	yes	yes	yes		yes	yes
	FULL	yes	yes	yes	yes	yes			no
Dep parser	DM	yes	yes	yes	yes	yes			no
+ conv.	FULL	59.5	yes	yes	yes	yes	59.7	no	no

SD vs. UD

- Both seem on average similarly good representations for downstream tasks
- SD slightly better for event extraction, UD better for opinion analysis
- No evidence that striving for cross-linguistic consistency hurts downstream performance

Research questions

- 1. Do the enhancements improve downstream results?
- 2. How do the representations compare to other graph-based representations?
- 3. What is the best way of parsing to these representations?
- 4. Is UD as good a representation for downstream tasks as SD?
- 5. Does higher parsing accuracy translate to better downstream performance?

Correlation between parsing and downstream performance

	LAS	UAS	Task F1
Graph parser	88.99	90.43	56.26
Dep. parser	91.13 (+ 2.14)	93.26 (+ 2.83)	59.54 (+ 3.28)

Conclusions

- Adding explicit dependency relations for long distance dependencies and augmenting relation labels seems to be useful for downstream tasks
- No evidence that representations that explicitly encode predicate-argument structures are better than representations derived from surface syntax trees
- Two-step parsing (currently) seems to be the best parsing approach
- UD as good a representation as SD for downstream tasks

Sponsored slide

- The UD representations seem to be good representations for downstream tasks because
 - they have expressive labels
 - high-performing parsers and accurate converters exist
 - lots of data can be obtained through conversion
 - enhanced variants recover predicate-argument structures in many cases

Thank you!