Data Analytics and Mining

Intro and Course overview

Majid Sohrabi

National Research University Higher School of Economics

Teaching Team Contacts

- Majid Sohrabi (lectures)
 - Email: msohrabi@hse.ru
 - Telegram: @MSohrabi_CS
- Alexandra Kogan (seminars)
 - Email: akogan@hse.ru
 - Telegram: @horror_in_black

Repository with course material

https://github.com/Majid-Sohrabi/DAM-2024

Timetable

Lectures	Seminars	Location	Duration
Fridays 6:10 pm	Fridays 7:40 pm	Online	Modules 1-2
Link	Check your timetable.		

Course content

- Introduction to Data Analytics and Mining
 - Overview of data analytics and mining
 - Importance and applications
 - Types of data, structured vs. unstructured
- Data Processing and Cleaning
 - Handling missing data, outliers, noise
 - Data transformation, normalization, standardization, encoding
 - Feature selection and dimensionality reduction
- Exploratory Data Analysis (EDA)
 - Descriptive Statistics and Data Summarization
 - Data Visualization Techniques (Histograms, Scatter Plots, Box Plots)
 - Identifying Patterns, Trends, and Anomalies

Course content

- Statistical Foundations for Data Analysis
 - Probability Theory and Distributions
 - Correlation and Causation, introduction to Regression Analysis

Machine Learning Fundamentals

- Supervised vs. Unsupervised Learning
- Linear and Logistic Regression
- Support Vector Machines
- Model Evaluation (accuracy, precision, recall, F1-score, ROC AUC), Cross-Validation

Data Mining Techniques

- Classification, decision tree, Naïve Bayes, k-Nearest Neighbors
- Clustering, k-Means, Hierarchical Clustering, DBSCAN

Course content

- Advanced-Data Mining and Machine Learning
 - Ensemble Methods: Random Forests, Gradient Boosting
- Data Visualization and Reporting
 - Advanced Visualization Techniques: Heatmaps, Geospatial Data Visualization

Overview

- Compulsory course for year 2
- Duration: 1st half of the academic year (modules 1 and 2)
- Assessment elements:
 - Homework assignments (40% weight)
 - Tests (20% weight)
 - Exam (40% weight), in the form of a project, with progress tracked during the
 semester (topic choice deadline, preliminary results deadline, final result deadline)
- Format:
 - Online (lectures & seminars)

Grade Formula

Grade Component	Percentage	Evaluation Criteria
Homework (module 1)	20%	Weekly homework with deadline, each homework consists of several tasks and a single homework is a 10-point scale.
Test (module 1)	10%	In-class mini tests once a week or once in two weeks, each test consists of several questions and a single test is 10-point scale.

Grade Formula

Grade Component	Percentage	Evaluation Criteria
Homework (module 2)	20%	Weekly homework with deadline, each homework consists of several tasks and a single homework is a 10-point scale.
Test (module 2)	10%	In-class mini tests once a week or once in two weeks, each test consists of several questions and a single test is a 10-point scale.
Final Project	40%	The final project is a 10-point scale (in groups), choose a dataset, make relevant analysis, write a report, and present their works.

The formula

```
Final grade = 0.2 \cdot \text{Homework}\_1 + 0.1 \cdot \text{Test}\_1 + 0.2 \cdot \text{Homework}\_2 + 0.1 \cdot \text{Test}\_2 + 0.4 \cdot \text{Final Project}
```

 $0 \le \text{Homework score} \le 10$

 $0 \le \text{Test score} \le 10$

 $0 \le Final Project score \le 10$

Rounding to the closest integer

Arithmetic rounding. E.g. 3.5 is rounded to 4, 3.49 is rounded to 3.

Homework

- ► A small set of tasks each week (or 2 weeks) (jupyter notebooks)
- Solve tasks to earn points
- ▶ Deadline: 1-2 weeks per homework
- ► Homework grade = $10 \cdot \min\left(1, \frac{\sum points}{total}\right)$

Exam

- Exam in the form of project defense
- ► The project is either:
 - Participation in a competition (on <u>www.kaggle.com</u> or similar)
 - Teams of up to 3 people are OK (roles of all members of a team should be clear and significant)
- Or:
 - Implementation of some technique or study from an advanced machine learning or data analytics paper
 - I'll provide some suggestions later,
 - or you can find something that interests you by yourself
 - Individual work
- Please discuss your choice with me

Exam project timeline

- Missing any of the 3 stages has a negative point on the final mark for the project.
- The intermediate status report is a "MUST" to be eligible for final defense.
- ▶ All members of a group need to attend the final defense.

Motivation

- Statistics and data analysis underlie machine learning and artificial intelligence (AI) technologies
- Comprehension of its basic principles helps to understand the world we live in

https://www.youtube.com/watch?v=RNnZwvklwa8&ab_channel=AdamEubanks

Thank you!

Majid Sohrabi

msohrabi@hse.ru

