DATA CONSIDERATIONS

Dr. Aric LaBarr
Institute for Advanced Analytics

RARE EVENT MODELING

Rare Event Modeling

- 5% or smaller in a category can lead to classification problems.
- Common Situations:
 - Fraud
 - Default
 - Marketing Response
 - Weather Event

Telecomm Churn Data Set

- Model the association between various factors and a customer churning (leaving the company)
- 3004 observations in the data set

Telecomm Churn Data Set

- Model the association between various factors and a customer churning (leaving the company)
- Predictors:
 - account_length: length of time with company
 - international_plan: yes, no
 - voice_mail_plan: yes, no
 - customer_service_calls: number of service calls
 - total_day_minutes: minutes used during daytime
 - total_day_calls: calls used during daytime
 - total_day_charge: cost of usage during daytime
 - Same as previous three for evening, night, international

Rare Event Sampling Correction

Rare Event Sampling Correction

Oversampling

- Duplicate current event cases in training set to balance better with nonevent cases.
- Keep test set as original population proportion.

Undersampling

- Randomly sample current non-event cases to keep in the training set to balance with event cases.
- Keep test set as original population proportion.

Rare Event Sampling – SAS

Rare Event Sampling – SAS

The FREQ Procedure

Frequency Col Pct

Table of churn by Selected							
oburn	Selected(Selection Indicator)						
churn	0	1 Tot					
FALSE	2750 98.07	100 50.00	2850				
TRUE	54 1.93	100 50.00	154				
Total	2804	200	3004				

Effect of Oversampling

Adjustments to Oversampling

- When the sample proportion is out of line with the population proportion, adjustments need to be made to correct the bias.
- 2 Methods:
 - Adjusting the intercept
 - 2. Weighting observations

Adjusting the Intercept

- Population proportion: π_1 , π_0
- Sample proportion: ρ_1 , ρ_0
- Unadjusted predictions: \hat{p}_i^*

- Need to correct for the bias created by oversampling.
- Adjustment is only applied to intercept.
- This adjusts the predicted values:

$$\hat{p}_i = \frac{\hat{p}_i^* \rho_0 \pi_1}{(1 - \hat{p}_i^*) \rho_1 \pi_0 + \hat{p}_i^* \rho_0 \pi_1}$$

Weighting Observations

- Instead of adjusting the model after it is built, weighting observations adjusts while the model is being built.
- Uses weighted MLE instead each observation has potentially different weight to the MLE calculation.
- Need to create a weight variable in the oversampled data set:

$$weight = \begin{cases} \pi_1/\rho_1, & y = 1\\ \pi_0/\rho_0, & y = 0 \end{cases}$$

Weighting Observations

- Instead of adjusting the model after it is built, weighting observations adjusts while the model is being built.
- Uses weighted MLE instead each observation has potentially different weight to the MLE calculation.
- Need to create a weight variable in the oversampled data set:

$$weight = \begin{cases} \pi_1/\rho_1, & y = 1\\ \pi_0/\rho_0, & y = 0 \end{cases}$$

OR

$$weight = \begin{cases} 1, & y = 1 \\ \rho_1 \pi_0 / \rho_0 \pi_1, & y = 0 \end{cases}$$

When to Use Which Technique?

	Model Correct	Model Misspecified
Small Sample $(n \leq 1000)$	Adjust Intercept	Weighted Observations
Large Sample $(n>1000)$	Either	Weighted Observations

```
proc freq data=logistic.tele churn noprint;
    table churn / out=priors(drop=percent
                              rename=(count= prior ));
run;
proc logistic data=churn t;
    class international plan(ref='no')
          voice mail plan(ref='no') / param=ref;
    model churn(event='TRUE') = international plan
                                voice mail plan
                                 total day charge
                                 customer service calls
                                 / clodds=pl;
    score data=churn v prior=priors out=churn scored1;
run;
quit;
```

Type 3 Analysis of Effects						
Effect DF Wald Chi-Square Pr > Chi						
international_plan	1	24.5737	<.0001			
voice_mail_plan	1	5.6354	0.0176			
total_day_charge	1	17.1895	<.0001			
customer_service_calls	1	27.7822	<.0001			

Analysis of Maximum Likelihood Estimates								
Parameter		DF	Estimate Standard Error		Wald Chi- Square	Pr > ChiSq		
Intercept		1	-3.9665	0.7663	26.7894	<.0001		
international_plan	yes	1	2.7737	0.5595	24.5737	<.0001		
voice_mail_plan	yes	1	-1.0891	0.4588	5.6354	0.0176		
total_day_charge		1	0.0754	0.0182	17.1895	<.0001		
customer_service_cal		1	0.6943	0.1317	27.7822	<.0001		

Odds Ratio Estimates and Profile-Likelihood Confidence Intervals

Effect	Unit	Estimate	95% Conf	idence Limits
international_plan yes vs no	1.0000	16.018	5.771	52.942
voice_mail_plan yes vs no	1.0000	0.337	0.131	0.804
total_day_charge	1.0000	1.078	1.042	1.119
customer_service_cal	1.0000	2.002	1.568	2.634

```
data churn t;
       set churn t;
      weights = 0.1026;
       if churn = 'FALSE' then weights = 1.8974;
run;
proc logistic data=churn t;
       class international plan(ref='no')
             voice mail plan(ref='no') / param=ref;
      model churn(event='TRUE') = international plan
                                   voice mail plan
                                    total day charge
                                    customer service calls
                                    / clodds=pl;
      weight weights;
       score data=churn v out=churn scored2;
run;
quit;
```

Type 3 Analysis of Effects							
Effect DF Wald Chi-Square Pr > ChiSq							
international_plan	1	8.8884	0.0029				
voice_mail_plan	1	1.4210	0.2332				
total_day_charge	1	3.5723	0.0588				
customer_service_calls	1	6.3759	0.0116				

Analysis of Maximum Likelihood Estimates								
Parameter		DF	Estimate Standard Error		Wald Chi- Square	Pr > ChiSq		
Intercept		1	-6.6834	1.6097	17.2391	<.0001		
international_plan	yes	1	2.4699	0.8285	8.8884	0.0029		
voice_mail_plan	yes	1	-1.2089	1.0142	1.4210	0.2332		
total_day_charge		1	0.0760	0.0402	3.5723	0.0588		
customer_service_cal		1	0.6111	0.2420	6.3759	0.0116		

Odds Ratio Estimates and Profile-Likelihood Confidence Intervals

Effect	Unit	Estimate	95% Conf	idence Limits
international_plan yes vs no	1.0000	11.822	2.172	62.024
voice_mail_plan yes vs no	1.0000	0.299	0.024	1.657
total_day_charge	1.0000	1.079	1.000	1.173
customer_service_cal	1.0000	1.842	1.138	2.997

MISSING VALUES

Target Dependent?

- Missing values in predictor variables are not necessarily bad.
- Might be randomly missing which doesn't necessarily pose a model problem.
- Are they dependent on the target variable?

Target Dependent?

- Missing values in predictor variables are not necessarily bad.
- Might be randomly missing which doesn't necessarily pose a model problem.
- Are they dependent on the target variable?
- Create missing value variable, is it significant?

Predictor Dependent?

- Missing values in predictor variables are not necessarily bad.
- Might be randomly missing which doesn't necessarily pose a model problem.
- Are they dependent on an independent variable?

Predictor Dependent?

- Missing values in predictor variables are not necessarily bad.
- Might be randomly missing which doesn't necessarily pose a model problem.
- Are they dependent on an independent variable?
- Is that independent variable recorded?

Complete Case Analysis

Complete Case Analysis

Scoring New Values?

- Complete cases analysis isn't necessarily bad.
- How to handle scoring new observations with missing values?
- Imputation might be necessary.

Categorical Imputation?

Continuous Imputation

General (not Strict) Imputation Rules

 If variable has more than 50% missing, consider deleting from analysis.

Categorical:

Create missing value category for categorical variables.

Continuous:

- Impute missing values for continuous variables (median is a popular choice)
- Create a missing value binary variable for each of the continuous variables you impute.

CONVERGENCE PROBLEMS

Type 3 Analysis of Effects					
Effect	DF	Wald Chi-Square	Pr > ChiSq		
international_plan	1	7.9167	0.0049		
voice_mail_plan	1	1.2282	0.2678		
total_day_charge	1	1.9227	0.1656		
customer_service_calls	7	10.5543	0.1593		

Odds Ratio Estimates and Profile-Likelihood Confidence Intervals					
Effect	Unit	Estimate	95% Confidence Limits		
international_plan yes vs no	1.0000	11.072	1.921	60.907	
voice_mail_plan yes vs no	1.0000	0.278	0.017	1.962	
total_day_charge	1.0000	1.059	0.979	1.156	
customer_service_cal 1 vs 0	1.0000	1.082	0.117	11.674	
customer_service_cal 2 vs 0	1.0000	0.950	•	11.401	
customer_service_cal 3 vs 0	1.0000	1.246	•	•	
customer_service_cal 4 vs 0	1.0000	26.009	1.582	575.742	
customer_service_cal 5 vs 0	1.0000	13.653	0.486	334.790	
customer_service_cal 6 vs 0	1.0000	19.742		>999.999	
customer_service_cal 7 vs 0	1.0000	>999.999	•	•	

Odds Ratio Estimates and Profile-Likelihood Confidence Intervals					
Effect	Unit	Estimate	95% Confidence Limits		
international_plan yes vs no	1.0000	11.072	1.921	60.907	
voice_mail_plan yes vs no	1.0000	0.278	0.017	1.962	
total_day_charge	1.0000	1.059	0.979	1.156	
customer_service_cal 1 vs 0	1.0000	1.082	0.117	11.674	
customer_service_cal 2 vs 0	1.0000	0.950	•	11.401	
customer_service_cal 3 vs 0	1.0000	1.246	•		
customer_service_cal 4 vs 0	1.0000	26.009	1.582	575.742	
customer_service_cal 5 vs 0	1.0000	13.653	0.486	334.790	
customer_service_cal 6 vs 0	1.0000	19.742		>999.999	
customer_service_cal 7 vs 0	1.0000	>999.999			

Analysis of Maximum Likelihood Estimates						
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept		1	-5.3575	1.6969	9.9676	0.0016
international_plan	yes	1	2.4044	0.8545	7.9167	0.0049
voice_mail_plan	yes	1	-1.2811	1.1560	1.2282	0.2678
total_day_charge		1	0.0577	0.0416	1.9227	0.1656
customer_service_cal	1	1	0.0789	1.1028	0.0051	0.9429
customer_service_cal	2	1	-0.0517	1.1716	0.0019	0.9648
customer_service_cal	3	1	0.2199	1.3538	0.0264	0.8710
customer_service_cal	4	1	3.2584	1.4498	5.0514	0.0246
customer_service_cal	5	1	2.6140	1.5659	2.7868	0.0950
customer_service_cal	6	1	2.9827	2.2991	1.6831	0.1945
customer_service_cal	7	1	18.4993	4416.3	0.0000	0.9967

```
## Coefficients:
                                     Estimate Std. Error z value Pr(>|z|)
##
                                                 1.89291
                                                          -3.682 0.000232
##
  (Intercept)
                                     -6.96906
***
                                                           2.688 0.007178 **
## factor(international.plan)yes
                                      2.58133
                                                 0.96015
## factor(voice.mail.plan)yes
                                     -1.29504
                                                 1.11910
                                                          -1.157 0.247184
## total.day.charge
                                      0.11776
                                                 0.04691
                                                           2.510 0.012063 *
## factor(customer.service.calls)1
                                                 1.04269
                                                          -0.428 0.668757
                                     -0.44612
                                     -0.24863
## factor(customer.service.calls)2
                                                 1.09007
                                                          -0.228 0.819577
## factor(customer.service.calls)3
                                      0.13420
                                                 1.22748
                                                           0.109 0.912943
## factor(customer.service.calls)4
                                      0.86362
                                                 1.16391
                                                           0.742 0.458089
## factor(customer.service.calls)5
                                                 1.58254
                                                           1.462 0.143632
                                      2.31430
## factor(customer.service.calls)6
                                     20.52095 1865.26674
                                                           0.011 0.991222
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
##
       Null deviance: 86.595
                              on 213 degrees of freedom
##
## Residual deviance: 65.565
                              on 204
                                      degrees of freedom
## AIC: 39.538
```

Linear Separation

 Complete linear separation occurs when some combination of the predictors perfectly predict every outcome:

	Yes	No
Group A	100	0
Group B	0	50

 Quasi-complete separation occurs when the outcome can be perfectly predicted for only a subset of the data:

	Yes	No
Group A	77	23
Group B	0	50

Linear Separation

 Complete linear separation occurs when some combination of the predictors perfectly predict every outcome:

	Yes	No	Logit
Group A	100	0	∞
Group B	0	50	-∞

 Quasi-complete separation occurs when the outcome can be perfectly predicted for only a subset of the data:

	Yes	No	Logit
Group A	77	23	1.39
Group B	0	50	$-\infty$

Problems with Convergence

Linear Separation – SAS

- SAS Warning Message:
 - WARNING: There is a complete separation of data points. The maximum likelihood estimate does not exist.
 - WARNING: The LOGISTIC procedure continues in spite of the above warning. Results shown are based on the last maximum likelihood iteration. Validity of the model fit is questionable.

Linear Separation – SAS

Odds Ratio Estimates and Profile-Likelihood Confidence Intervals					
Effect	Unit	Estimate	95% Confid	ence Limits	
international_plan yes vs no	1.0000	11.072	1.921	60.907	
voice_mail_plan yes vs no	1.0000	0.278	0.017	1.962	
total_day_charge	1.0000	1.059	0.979	1.156	
customer_service_cal 1 vs 0	1.0000	1.082	0.117	11.674	
customer_service_cal 2 vs 0	1.0000	0.950		11.401	
customer_service_cal 3 vs 0	1.0000	1.246			
customer_service_cal 4 vs 0	1.0000	26.009	1.582	575.742	
customer_service_cal 5 vs 0	1.0000	13.653	0.486	334.790	
customer_service_cal 6 vs 0	1.0000	19.742		>999.999	
customer_service_cal 7 vs 0	1.0000	>999.999			

Linear Separation – SAS

Analysis of Maximum Likelihood Estimates						
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept		1	-5.3575	1.6969	9.9676	0.0016
international_plan	yes	1	2.4044	0.8545	7.9167	0.0049
voice_mail_plan	yes	1	-1.2811	1.1560	1.2282	0.2678
total_day_charge		1	0.0577	0.0416	1.9227	0.1656
customer_service_cal	1	1	0.0789	1.1028	0.0051	0.9429
customer_service_cal	2	1	-0.0517	1.1716	0.0019	0.9648
customer_service_cal	3	1	0.2199	1.3538	0.0264	0.8710
customer_service_cal	4	1	3.2584	1.4498	5.0514	0.0246
customer_service_cal	5	1	2.6140	1.5659	2.7868	0.0950
customer_service_cal	6	1	2.9827	2.2991	1.6831	0.1945
customer_service_cal	7	1	18.4993	4416.3	0.0000	0.9967

Linear Separation – R

R Warning Message:

Linear Separation – R

```
## Coefficients:
                                     Estimate Std. Error z value Pr(>|z|)
##
##
                                                 1.89291
                                                          -3.682 0.000232
  (Intercept)
                                     -6.96906
***
                                                           2.688 0.007178 **
## factor(international.plan)yes
                                      2.58133
                                                 0.96015
## factor(voice.mail.plan)yes
                                     -1.29504
                                                 1.11910
                                                          -1.157 0.247184
## total.day.charge
                                      0.11776
                                                 0.04691
                                                           2.510 0.012063 *
## factor(customer.service.calls)1
                                                          -0.428 0.668757
                                     -0.44612
                                                 1.04269
## factor(customer.service.calls)2
                                     -0.24863
                                                 1.09007
                                                          -0.228 0.819577
## factor(customer.service.calls)3
                                      0.13420
                                                 1.22748
                                                           0.109 0.912943
## factor(customer.service.calls)4
                                      0.86362
                                                 1.16391
                                                           0.742 0.458089
## factor(customer.service.calls)5
                                                 1.58254
                                                           1.462 0.143632
                                      2.31430
## factor(customer.service.calls)6
                                     20.52095 1865.26674
                                                           0.011 0.991222
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
##
       Null deviance: 86.595
                              on 213 degrees of freedom
##
## Residual deviance: 65.565
                              on 204
                                      degrees of freedom
## AIC: 39.538
```

Solutions

- Possible Solutions:
 - Penalized maximum likelihood.
 - Collapse the categories of the predictor variable to eliminate the 0 cell count.
 - Eliminate the category altogether probably not reasonable since the category seems important!
 - Add a very small constant to the cell counts.

Solutions

- Possible Solutions:
 - Penalized maximum likelihood.
 - Collapse the categories of the predictor variable to eliminate the 0 cell count.
 - Eliminate the category altogether probably not reasonable since the category seems important!
 - Add a very small constant to the cell counts.

Penalized Likelihood – SAS

```
proc logistic data=churn t;
       class international plan(ref='no')
             voice mail plan(ref='no')
             customer service calls(ref='0') / param=ref;
      model churn(event='TRUE') = international plan
                                   voice mail plan
                                   total day charge
                                    customer service calls
                                    / firth;
      weight weights;
run;
quit;
```

Penalized Likelihood – SAS

Odds Ratio Estimates					
Effect	Point Estimate		5% Wald dence Limits		
international_plan yes vs no	8.878	1.996	39.491		
voice_mail_plan yes vs no	0.426	0.072	2.525		
total_day_charge	1.048	0.977	1.125		
customer_service_cal 1 vs 0	1.016	0.159	6.482		
customer_service_cal 2 vs 0	0.934	0.131	6.654		
customer_service_cal 3 vs 0	1.371	0.151	12.435		
customer_service_cal 4 vs 0	18.640	1.344	258.420		
customer_service_cal 5 vs 0	11.596	0.666	201.894		
customer_service_cal 6 vs 0	19.526	0.530	719.576		

Penalized Likelihood – R

Penalized Likelihood – R

```
## Coefficients:
                                  Estimate Std. Error z value Pr(>|z|)
##
                                             1.63131
                                                      -3.740 0.000184
## (Intercept)
                                  -6.10051
                                                       2.639 0.008323 **
## factor(international.plan)yes
                                   2.30352
                                             0.87299
## factor(voice.mail.plan)yes
                                  -0.93552
                                             0.91055
                                                      -1.027 0.304219
## total.day.charge
                                   0.10157
                                             0.04079 2.490 0.012773 *
## factor(customer.service.calls)1
                                  -0.43647
                                             0.91200
                                                      -0.479 0.632235
## factor(customer.service.calls)2 -0.21697
                                             0.95968
                                                      -0.226 0.821132
                                             1.05547 0.168 0.866302
## factor(customer.service.calls)3
                                   0.17770
## factor(customer.service.calls)4
                                   0.75983
                                             1.06167
                                                      0.716 0.474181
## factor(customer.service.calls)5 2.21092
                                             1.48426
                                                       1,490 0,136336
## factor(customer.service.calls)6 5.12629
                                                       1,451 0,146757
                                             3.53274
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
   (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 74.462
                             on 213 degrees of freedom
##
## Residual deviance: 66.954
                             on 204
                                     degrees of freedom
## Penalized deviance: 59.44305
## AIC:
       45.797
```

Solutions

- Possible Solutions:
 - Penalized maximum likelihood.
 - Collapse the categories of the predictor variable to eliminate the 0 cell count.
 - Eliminate the category altogether probably not reasonable since the category seems important!
 - Add a very small constant to the cell counts.

Thresholding – Ordinal Option

Level	Sample Size	0	1
Α	1562	1230	332
В	970	917	53
С	223	206	17
D	111	101	10
E	85	81	4
F	50	40	10
G	23	22	1
Н	17	17	0
1	12	11	1
J	5	5	0

Thresholding – Ordinal Option

Level	Sample Size	0	1
Α	1562	1230	332
В	970	917	53
С	223	206	17
D	111	101	10
E	85	81	4
F	50	40	10
G	23	22	1
Н	17	17	0
1	12	11	1
J	5	5	0

Recombine to single new level, OTHER.

Clustering Levels – Nominal Option

	0	1
Α	28	7
В	16	0
С	94	11
D	23	21

Clustering Levels – Nominal Option

Clustering Levels – Greenacre Method

γ^2	=	31	.7
Λ		$\mathbf{J}_{\mathbf{L}}$	• /

	0	1
Α	28	7
B/C	110	11
D	23	21

0	
0	4
23	21
110	1 1

		_
A/B	44	7
С	94	11
D	23	21

	0	1
A	28	7
С	110	11
B/D	39	21

$$\chi^2 = 18.3$$

 $\chi^2 = 30.7$

 $\chi^2 = 28.9$

Clustering Levels – Greenacre Method

	0	1
Α	28	7
В	16	0
С	94	11
D	23	21

Least amount information lost

	0	1
A	28	7
B/C	110	11
D	23	21

$$\chi^2 = 31.7$$

$$\chi^2 = 30.7$$

Combining Categories – SAS

```
data churn t;
   set churn t;
   customer service calls c = put(customer service calls, 2.);
   if customer service calls > 3
   then customer service calls c = '4+';
run;
proc logistic data=churn t;
   class international plan(ref='no') voice mail plan(ref='no')
         customer service calls c(ref='0') / param=ref;
   model churn(event='TRUE') = international plan
                                voice mail plan
                                total day charge
                                customer service calls c
                                / clodds=pl;
   weight weights;
run;
quit;
```

Combining Categories – SAS

Type 3 Analysis of Effects			
Effect	DF	Wald Chi-Square	Pr > ChiSq
international_plan	1	7.9899	0.0047
voice_mail_plan	1	1.4798	0.2238
total_day_charge	1	1.9598	0.1615
customer_service_cal	4	11.0065	0.0265

Combining Categories – SAS

Analysis of Maximum Likelihood Estimates						
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept		1	-5.2962	1.6611	10.1657	0.0014
international_plan	yes	1	2.4044	0.8506	7.9899	0.0047
voice_mail_plan	yes	1	-1.2762	1.0491	1.4798	0.2238
total_day_charge		1	0.0560	0.0400	1.9598	0.1615
customer_service_cal	1	1	0.0744	1.1007	0.0046	0.9461
customer_service_cal	2	1	-0.0559	1.1677	0.0023	0.9618
customer_service_cal	3	1	0.2087	1.3518	0.0238	0.8773
customer_service_cal	4+	1	3.0129	1.1695	6.6366	0.0100

Combining Categories – R

```
train u$customer.service.calls.c <-
       as.character(train u$customer.service.calls)
train u$customer.service.calls.c[
       which(train u$customer.service.calls > 3)] <- "4+"</pre>
table(train u$customer.service.calls.c, train u$churn)
##
       FALSE TRUE
##
##
          17
               23
    1 46 21
##
   2 24 18
##
    3 14 12
##
##
    4+
         6
               33
```

Combining Categories – R

```
## Coefficients:
                                     Estimate Std. Error z value Pr(>|z|)
##
                                                 1.76972
                                                          -3.491 0.000481
## (Intercept)
                                     -6.17785
## factor(international.plan)yes
                                      2.29115
                                                 0.92121
                                                           2.487 0.012879 *
## factor(voice.mail.plan)yes
                                     -1.22099
                                                 1.05706
                                                          -1.155 0.248056
                                      0.09754
## total.day.charge
                                                 0.04454 2.190 0.028534 *
## factor(customer.service.calls.c)1
                                     -0.50788
                                                 1.02479
                                                          -0.496 0.620178
## factor(customer.service.calls.c)2
                                                 1.06926
                                     -0.29731
                                                          -0.278 0.780969
## factor(customer.service.calls.c)3
                                    0.04458
                                                 1.20849
                                                          0.037 0.970572
## factor(customer.service.calls.c)4+ 1.38862
                                                 1.00660
                                                           1.380 0.167737
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 86.595 on 213 degrees of freedom
## Residual deviance: 69.247 on 206
                                     degrees of freedom
## AIC: 37.024
```

Watch out for Interactions!

	Yes	No
Group A	77	23
Group B	16	50

Group variable seems good

Watch out for Interactions!

	Yes	No
Group A	77	23
Group B	16	50

	Yes	No
High	43	11
Low	0	41

	Yes	No
High	34	12
Low	16	9

