MH4518 Project

Done by Keerthana Jayaraman Karthikeyan (U2123613E), Nicholas Yap (U2020269C), Peh Wei Hang (U2022903K) and Kng Yew Chian (U2021777G)

Importing the Dataset

The dataset we are using in this project is the average annual daily traffic dataset, given in a file named aadt.txt.

In this project, we aim to predict the average no. of vehicles passing through a particular section of the road each day (Y), using the following predictor variables:

- Population of county in which road section is located (X1)
- No. of lanes in road section (X2)
- Width of road section (X3)
- Whether there is control of access to the section, a 2-category variable (X4)

We first import the dataset below:

```
data <- readLines("aadt.txt")
## Warning in readLines("aadt.txt"): incomplete final line found on 'aadt.txt'</pre>
```

```
data <- gsub("\\s+", " ", data) # replace spaces with a single space
con <- textConnection(data)
aadt <- read.table(con, header=F)
close(con)
colnames(aadt) = c("Y", "X1", "X2", "X3", "X4", "X5", "X6", "X7")
data_raw <- read.table("aadt.txt", header=FALSE)
aadt <- data.frame(y=data_raw$V1,x1=data_raw$V2,x2=data_raw$V3,x3=data_raw$V4,x4=data_raw$V5)
colnames(aadt) = c("Y", "X1", "X2", "X3", "X4")</pre>
```

Investigating response/predictor relationships

We first investigate the individual linear relationships between Y and $X_1 / X_2 / X_3 / X_4$, as they are our primary variables of interest.

```
plot(aadt[c("Y", "X1", "X2", "X3", "X4")])
```


We see a slight indication of a positive linear relationship between X_1 and Y, as well as X_2 and Y, but we are unable to tell whether a linear relationship exists between X_3 / X_4 and Y.

For the predictor variables (X_1, X_2, X_3, X_4) , we also do not see any strong indication of relationships among them.

Fitting SLR models

We attempt to fit SLR models to each of the predictor variables to examine their individual relationships with Y.

```
slr_x1 = lm(Y^X1, data=aadt)
summary(slr_x1)
##
## Call:
## lm(formula = Y ~ X1, data = aadt)
##
## Residuals:
##
               1Q Median
                              3Q
                                    Max
##
   -57290
           -6597
                   -3667
                            5884
                                  97501
##
## Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.437e+03 2.776e+03 1.598
                                           0.113
## X1
              5.695e-02 6.598e-03 8.631 3.18e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 23810 on 119 degrees of freedom
## Multiple R-squared: 0.385, Adjusted R-squared: 0.3798
## F-statistic: 74.5 on 1 and 119 DF, p-value: 3.183e-14
slr_x2 = lm(Y^X2, data=aadt)
summary(slr_x2)
##
## Call:
## lm(formula = Y ~ X2, data = aadt)
## Residuals:
             1Q Median
     Min
                           3Q
                                 Max
## -34036 -13493
                 1332
                       4417 84534
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -35664
                            4617 -7.724 3.92e-12 ***
## X2
                 17780
                             1375 12.934 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 19580 on 119 degrees of freedom
## Multiple R-squared: 0.5843, Adjusted R-squared: 0.5808
## F-statistic: 167.3 on 1 and 119 DF, p-value: < 2.2e-16
slr_x3 = lm(Y^X3, data=aadt)
summary(slr_x3)
##
## Call:
## lm(formula = Y ~ X3, data = aadt)
## Residuals:
##
     Min
             1Q Median
                           3Q
                                 Max
## -27329 -15936 -11727 3521 134552
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9499.2
                         7912.8
                                  1.200
                                            0.232
## X3
                 319.3
                            238.5
                                  1.339
                                            0.183
## Residual standard error: 30140 on 119 degrees of freedom
## Multiple R-squared: 0.01484,
                                  Adjusted R-squared:
## F-statistic: 1.792 on 1 and 119 DF, p-value: 0.1832
slr_x4 = lm(Y^X4, data=aadt)
summary(slr_x4)
```

##

```
## Call:
## lm(formula = Y ~ X4, data = aadt)
##
## Residuals:
##
     Min
              1Q Median
                            3Q
                                  Max
   -52254
          -7498 -4578
                          6600
                                97596
##
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
##
  (Intercept)
                 107526
                              8810
                                     12.21
                                             <2e-16 ***
## X4
                 -49575
                              4827
                                    -10.27
                                             <2e-16 ***
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22110 on 119 degrees of freedom
## Multiple R-squared: 0.4699, Adjusted R-squared: 0.4654
## F-statistic: 105.5 on 1 and 119 DF, p-value: < 2.2e-16
```

From the above t-test results, we see that X_1 , X_2 , and X_4 individually have very significant linear relationships with Y, while X_3 does not.

Fitting a MLR model

Here, we fit a MLR model to regress Y on X_1 , X_2 , X_3 and X_4 .

Residual standard error: 15290 on 116 degrees of freedom

F-statistic: 88.29 on 4 and 116 DF, p-value: < 2.2e-16

Multiple R-squared: 0.7527, Adjusted R-squared:

```
mlr_model_1 \leftarrow lm(Y\sim X1+X2+X3+X4, data=aadt)
summary(mlr_model_1)
##
## Call:
## lm(formula = Y \sim X1 + X2 + X3 + X4, data = aadt)
##
## Residuals:
              1Q Median
##
      Min
                             ЗQ
                                   Max
  -36263 -8501
                    3493
                           6018
                                 68317
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                2.118e+04
                            1.163e+04
                                         1.821
                                                 0.0712 .
                3.303e-02
                            4.708e-03
                                         7.017 1.63e-10 ***
## X1
## X2
                9.158e+03
                            1.531e+03
                                         5.983 2.49e-08 ***
## X3
                1.003e+02
                            1.243e+02
                                        0.807
                                                 0.4213
## X4
               -2.361e+04 4.520e+03
                                       -5.223 7.83e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

As $F = 88.29 > F_{4,116}^{0.05} = 3.006917$, the correlation between our MLR model and Y is significant. Next, we look at goodness-of-fit of the model. Since $0.6 < R_{adjusted} = 0.7442 < 0.95$, we conclude that the MLR model is a good fit, and is able to explain 74.42% of variance in the response variable.

As the t-test for X_3 is not significant, we try removing it and forming another MLR model with only X_1 , X_2 and X_4 as the predictors.

```
mlr_model_2 <- lm(Y~X1+X2+X4, data=aadt)
summary(mlr_model_2)
##
## Call:
## lm(formula = Y \sim X1 + X2 + X4, data = aadt)
##
## Residuals:
      Min
##
              1Q Median
                             3Q
                                   Max
##
   -35593 -7883
                   4010
                          5770
                                 68441
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.270e+04 1.146e+04
                                        1.981
                                                  0.05 *
                3.356e-02 4.655e-03
                                        7.211 5.93e-11 ***
## X1
                9.310e+03 1.517e+03
                                        6.138 1.18e-08 ***
## X4
               -2.305e+04 4.460e+03 -5.168 9.85e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 15270 on 117 degrees of freedom
## Multiple R-squared: 0.7514, Adjusted R-squared: 0.745
## F-statistic: 117.8 on 3 and 117 DF, p-value: < 2.2e-16
As F = 117.8 > F_{3,117}^{0.05} = 2.682132, the correlation between our MLR model and Y is also significant. As
```

Transformations of Variables

We next perform transformations for X_1 and X_3 . We exclude X_2 as it represents the number of lanes with 5 discrete values from 2 to 8, which we treat as a categorical variable. We exclude X_4 as it is a categorical variable as well.

 $R_{adjusted}^2 = 0.745 > 0.7442$, this model is a slightly better fit than the earlier model.

We first perform log-transformations and plot a scatterplot between Y and the log-transformed variables.

```
aadt$X1_log <- log(aadt$X1)
aadt$X3_log <- log(aadt$X3)
plot(aadt[c("Y", "X1_log", "X3_log")])</pre>
```


From the above scatterplot, we see that Y and X_1 seem to have a linear relationship, but we are unable to conclude that for Y and X_3 .

We next perform square transformation of Y, X_1^2 , and X_3^2 , and plot a scatterplot between them.

```
aadt$X1_squared <- aadt$X1^2
aadt$X3_squared <- aadt$X3^2
plot(aadt[c("Y", "X1_squared", "X3_squared")])</pre>
```


We see that majority of the values for both X_1^2 and X_3^2 are clustered towards the left, which does not look desirable.

We next try to form a model using $log(X_1)$, X_2 and X_4 as predictors for Y.

Residual standard error: 16760 on 117 degrees of freedom ## Multiple R-squared: 0.7004, Adjusted R-squared: 0.6927

```
mlr_model_3 <- lm(Y~X1_log+X2+X4, data=aadt)</pre>
summary(mlr_model_3)
##
  lm(formula = Y ~ X1_log + X2 + X4, data = aadt)
##
##
  Residuals:
      Min
              10 Median
                             3Q
                                   Max
  -34732 -8949
                    741
                           7529
                                 77362
##
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 -34238
                                     -2.022
                                              0.0455 *
                              16936
                   5714
                                      4.821 4.34e-06 ***
## X1_log
                               1185
                   9580
                                      5.583 1.55e-07 ***
## X2
                               1716
## X4
                                     -4.828 4.21e-06 ***
                 -23648
                               4898
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
## F-statistic: 91.16 on 3 and 117 DF, p-value: < 2.2e-16
```

This model does not perform as well, as its $R_{adjusted}^2 = 0.693$ which is significantly lower than the first two models.

We then try to fit a model using X_1 , X_2 , $log(X_3)$ and X_4 next.

```
mlr_model_4 <- lm(Y~X1+X2+X3_log+X4, data=aadt)</pre>
summary(mlr_model_4)
##
## Call:
## lm(formula = Y ~ X1 + X2 + X3_log + X4, data = aadt)
##
## Residuals:
     Min
              1Q Median
                            3Q
                                  Max
## -36603 -8272
                   3038
                          6286
                                68130
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                                       0.508
## (Intercept) 8.920e+03 1.756e+04
                                                0.612
## X1
                3.277e-02 4.716e-03
                                       6.948 2.30e-10 ***
## X2
                9.110e+03
                          1.529e+03
                                       5.960 2.78e-08 ***
## X3_log
                4.653e+03 4.493e+03
                                       1.036
                                                0.302
               -2.368e+04 4.501e+03
                                     -5.263 6.59e-07 ***
## X4
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 15270 on 116 degrees of freedom
## Multiple R-squared: 0.7536, Adjusted R-squared: 0.7451
## F-statistic: 88.71 on 4 and 116 DF, p-value: < 2.2e-16
```

This model has $R_{adjusted}^2 = 0.7451$, which is the highest among all the models.

Comparing Models with ANOVA

From above, we have 4 MLR models using the following predictor variables:

```
1. X_1, X_2, X_3, X_4
2. X_1, X_2, X_4
3. log(X_1), X_2, X_4
4. X_1, X_2, log(X_3), X_4
```

As model 2 is a reduced model of model 1 and model 4, we run an ANOVA between model 2 and 1, and between model 2 and 4.

```
anova(mlr_model_1, mlr_model_2)
```

```
## Analysis of Variance Table
## Model 1: Y ~ X1 + X2 + X3 + X4
## Model 2: Y ~ X1 + X2 + X4
     Res.Df
                   RSS Df Sum of Sq
                                          F Pr(>F)
## 1
        116 2.7128e+10
        117 2.7281e+10 -1 -152302593 0.6512 0.4213
## 2
```

As Pr(>F) = 0.4213 which is non-significant, we conclude that model 1 does not lead to a significant improvement over model 2.

Similarly, as Pr(>F)=0.3025 which is non-significant, we conclude that model 4 does not lead to a significant improvement over model 2.

Prediction

```
Lastly, we try to predict Y given X_1 = 50000, X_2 = 3, X_3 = 60, X_4 = 2 on all the models.

new\_data = data.frame(X1=50000, X1\_log=log(50000), X2=3, X3=60, X3\_log=log(60), X4=2)

predict(mlr\_model\_1, new\_data)

## 1

## 9106.94

predict(mlr\_model\_2, new\_data)

## 1

## 6207.477

predict(mlr\_model\_3, new\_data)

## 1

## 9026.108

predict(mlr\_model\_4, new\_data)

## 1

## 9570.147
```