Q1 Soit f une fonction dérivable sur un intervalle I et a un réel de I. Donner la formule qui donne l'équation de la tangente à la courbe représentative de la fonction f au point d'abscisse a.

O2 Complétez le tableau suivant.

Fonctions	f(x)	Dérivable sur	f'(x)
constante			
identité			
linéaire			
affine			
carrée			
cube			
inverse			
racine carrée			

Q3 Donnez les conditions de dérivabilité si nécessaire et les formules de dérivations dans chacune situation.

- a. Dérivée de la somme de deux fonctions.
- b. Dérivée du produit par une constante.
- c. Dérivée du produit de deux fonctions.
- d. Dérivée du carré d'une fonction.
- e. Dérivée de l'inverse d'une fonction.

lacksquare Soit f la fonction définie et dérivable sur $]0\ ;\ +\infty[$ par $f(x)=4x^3-2x^2+8+rac{4}{\pi}-3\sqrt{x}$. Montrez que l'équation de la tangente à la courbe représentative de f au point d'abscisse 1 est 5x + 172

En choisissant la formule la plus adaptée, calculer la dérivée des fonctions suivantes sur I.

- a. $f(x) = 5\sqrt{x}$ sur I =]0; $+\infty[$.
- b. $f(x) = 5x \frac{8}{x} \text{ sur } I = \mathbb{R}^*.$ c. $f(x) = (2x^3 3x + 1)(x^2 1) \text{ sur } I = \mathbb{R}.$
- d. $f(x)=rac{1}{4x^2+8}$ sur $I=\mathbb{R}.$

lacksquare Soit f la fonction définie sur ${\mathbb R}$ par f(x) = (x-3)(x+4).

- **a.** Développer l'expression de f(x).
- **b.** Calculer f'(x) de deux manières différentes.
- c. En déduire l'équation réduite de la tangente à la courbe représentative de f en -2.
- **d.** Factorisez f(x) (ax + b) où y = ax + b est l'équation réduite de la tangente à la courbe représentative de f au point d'abscisse -2.
- e. En déduire la position relative de la courbe représentative de f par rapport à sa tangente en -2.