Machine Learning

Logistic Regression

Dr. Shuang LIANG

Recall: Linear Regression

Model
$$y = b + wx_1$$

 $e = |y - \hat{y}|$ L is mean absolute error (MAE)

Loss

$$e = (y - \hat{y})^2$$

 $e = (y - \hat{y})^2$ L is mean square error (MSE)

Optimization Gradient Descent

Regularization

L1 Regularization – Lasso

L2 Regularization – Ridge Regression

Recall: Gradient Descent

$$w^*, b^* = arg \min_{w,b} L$$

- (Randomly) Pick initial values w^0 , b^0
- Compute

$$\frac{\partial L}{\partial w}|_{w=w^{0},b=b^{0}} \qquad w^{1} \leftarrow w^{0} - \eta \frac{\partial L}{\partial w}|_{w=w^{0},b=b^{0}}$$

$$\frac{\partial L}{\partial b}|_{w=w^{0},b=b^{0}} \qquad b^{1} \leftarrow b^{0} - \eta \frac{\partial L}{\partial b}|_{w=w^{0},b=b^{0}}$$

$$w^1 \leftarrow w^0 - \frac{\partial L}{\partial w}|_{w=w^0,b=b^0}$$

$$b^1 \leftarrow b^0 - \frac{\eta}{\partial b} |_{w=w^0, b=b^0}$$

Update w and b interatively

Today's Topics

- Type of classifiers
- Logistic Regression
- Logistic Regression vs Linear Regression
- Limitation of Logistic Regression

Today's Topics

- Type of classifiers
- Logistic Regression
- Logistic Regression vs Linear Regression
- Limitation of Logistic Regression

Types of Classifiers

Model-based

Discriminative

directly estimate a decision rule/boundary

Logistic regression Decision tree Neural network

• • • • • •

Generative

build a generative statistical model

Naïve Bayes Bayesian Networks HMM

....

No Model

Instance-based

Use observation directly

KNN

Discriminative

- Only care about estimating the conditional probabilities P(y|x)
- Very good when underlying distribution of data is really complicated (e.g. texts, images, movies)

Generative

- Model observations (x, y) first (P(x, y)), then infer P(y|x)
- Good for missing variables, better diagnostics
- Easy to add prior knowledge about data

Types of Classifiers

Model-based

Discriminative

directly estimate a decision rule/boundary

Logistic regression

Decision tree Neural network

• • • • • •

Generative

build a generative statistical model

Naïve Bayes Bayesian Networks HMM

....

No Model

Instance-based

Use observation directly

KNN

Discriminative

- Only care about estimating the conditional probabilities P(y|x)
- Very good when underlying distribution of data is really complicated (e.g. texts, images, movies)

Generative

- Model observations (x, y) first (P(x, y)), then infer P(y|x)
- Good for missing variables, better diagnostics
- Easy to add prior knowledge about data

Today's Topics

- Type of classifiers
- Logistic Regression
- Logistic Regression vs Linear Regression
- Limitation of Logistic Regression

Motivation

- Rather than modeling the output y directly, we can model the probability that x belongs to a particular category.
- In the previous lecture, we used a linear regression model but
 - -The predicted value is not in [0,1]
- -Very large or small values of the prediction contribute to the error even if they indicate we are very confident in the resulting classification

• **Solution**: map the prediction from $(-\infty, +\infty)$ to [0,1]

Motivation

• **Solution**: map the prediction from $(-\infty, +\infty)$ to [0,1]

The Logistic Function - Sigmoid

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Try to calculate two formulas:

- $1 \sigma(z)$
- $\sigma'(z)$

Recall: Typical process of ML

Step 1: function with unknown param

Step 2: define loss from training data

Step 3: optimization

Step1: Function Set

- Label prediction: quantize the probability
 - If $p(1|x) \ge 1/2$, you predict class 1
 - If p(1|x) < 1/2, you predict class 0
- Logistic regression models the probability that X belongs to a particular class using the logistic function

$$p(1|x) = P(Y = 1|X = x) = \sigma\left(\sum_{i} w_i x_i + b\right)$$
$$p(0|x) = P(Y = 0|X = x) = 1 - \sigma\left(\sum_{i} w_i x_i + b\right)$$

Step1: Function Set

Interpretation

- Very large $|\sum_i w_i x_i + b|$ corresponds to p(1|x) very close to 0 or 1 (high confidence)
- Small $|\sum_i w_i x_i + b|$ corresponds to p(1|x) very close to 0.5 (low confidence)

Logistic Regression

 $f_{w,b}(x) = \sum_{i} w_i x_i + b$

Step 1: $f_{w,b}(x) = \sigma \left(\sum_{i} w_i x_i + b \right)$

Linear Regression

Output: between 0 and 1

Output: any value

Dr. Shuang LIANG, Tongji

Step 2:

Step 3:

Machine Learning

Step2: Goodness of a function

Training
$$x^1$$
 x^2 x^3 x^N
Data C_1 C_2 C_1

Assume the data is generated based on $f_{w,b}(x) = P_{w,b}(C_1|x)$

Given a set of w and b, what is its probability of generating the data?

$$L(w,b) = f_{w,b}(x^1) f_{w,b}(x^2) \left(1 - f_{w,b}(x^3) \right) \cdots f_{w,b}(x^N)$$

The most likely w^* and b^* is the one with the largest L(w,b).

$$w^*, b^* = \arg\max_{w,b} L(w,b)$$

 \hat{y}^n : 1 for class 1, 0 for class 2

$$L(w,b) = f_{w,b}(x^1) f_{w,b}(x^2) \left(1 - f_{w,b}(x^3)\right) \cdots$$

$$w^*, b^* = arg \max_{w,b} L(w,b)$$

$$= w^*, b^* = arg \min_{w,b} -lnL(w,b)$$

$$= -lnf_{w,b}(x^1) \longrightarrow -\left[1 \ln f(x^1) + \frac{0}{0} \ln \left(1 - f(x^1)\right)\right]$$

$$-lnf_{w,b}(x^2) \longrightarrow -\left[1 \ln f(x^2) + \frac{0}{0} \ln \left(1 - f(x^2)\right)\right]$$

$$-ln\left(1 - f_{w,b}(x^3)\right) \longrightarrow -\left[0 \ln f(x^3) + \frac{1}{0} \ln \left(1 - f(x^3)\right)\right]$$

Step2: Goodness of a function

$$\begin{split} L(w,b) &= f_{w,b}(x^1) f_{w,b}(x^2) \left(1 - f_{w,b}(x^3)\right) \cdots f_{w,b}(x^N) \\ -lnL(w,b) &= -\left[lnf_{w,b}(x^1) + lnf_{w,b}(x^2) + ln\left(1 - f_{w,b}(x^3)\right)\right] \cdots \\ \hat{y}^n \colon \text{1 for class 1, 0 for class 2} \\ &= \sum_n -\left[\hat{y}^n lnf_{w,b}(x^n) + (1 - \hat{y}^n) ln\left(1 - f_{w,b}(x^n)\right)\right] \\ &\text{Cross entropy between two Bernoulli distribution} \end{split}$$

$$H(p,q) = -\sum p(x)ln(q(x))$$

Distribution p:

$$p(x = 1) = \hat{y}^n$$
$$p(x = 0) = 1 - \hat{y}^n$$

cross

Distribution q:

$$q(x = 1) = f(x^n)$$

$$q(x=0) = 1 - f(x^n)$$

Step2: Goodness of a function

$$L(w,b) = f_{w,b}(x^1) f_{w,b}(x^2) \left(1 - f_{w,b}(x^3)\right) \cdots f_{w,b}(x^N)$$

$$-lnL(w,b) = -\left[lnf_{w,b}(x^1) + lnf_{w,b}(x^2) + ln\left(1 - f_{w,b}(x^3)\right)\right] \cdots$$

$$\hat{y}^n \colon 1 \text{ for class } 1, 0 \text{ for class } 2$$

$$= \sum_n -\left[\hat{y}^n lnf_{w,b}(x^n) + (1 - \hat{y}^n) ln\left(1 - f_{w,b}(x^n)\right)\right]$$
Cross entropy between two Bernoulli distribution

Logistic Regression

Linear Regression
$$f_{w,h}(x) = \sum w_i x_i + h$$

$$f_{\nu}$$

$$f_{w,b}(x) = \sum_{i} w_i x_i + b$$

Output: any value

Step 1:
$$f_{w,b}(x) = \sigma \left(\sum_{i} w_i x_i + b \right)$$

Output: between 0 and 1

Training data: (x^n, \hat{y}^n)

Step 2:

$$\hat{y}^n$$
: 1 for class 1, 0 for class 2

$$L(f) = \sum_{n} l(f(x^n), \hat{y}^n)$$

Training data: (x^n, \hat{y}^n)

 \hat{y}^n : a real number

$$L(f) = \frac{1}{2} \sum_{n} (f(x^n) - \hat{y}^n)^2$$

Cross entropy:

$$l(f(x^n), \hat{y}^n) = -[\hat{y}^n ln f(x^n) + (1 - \hat{y}^n) ln (1 - f(x^n))]$$

• Loss: Cross-Entropy $\left(1 - f_{w,b}(x^n)\right) x_i^n$

$$\frac{-\ln L(w,b)}{\partial w_i} = \sum_{n} - \left[\hat{y}^n \frac{\ln f_{w,b}(x^n)}{\partial w_i} + (1 - \hat{y}^n) \frac{\ln \left(1 - f_{w,b}(x^n) \right)}{\partial w_i} \right]$$

$$\frac{\partial lnf_{w,b}(x)}{\partial w_i} = \frac{\partial lnf_{w,b}(x)}{\partial z} \frac{\partial z}{\partial w_i} \qquad \frac{\partial z}{\partial w_i} = x_i$$

$$\frac{\partial ln\sigma(z)}{\partial z} = \frac{1}{\sigma(z)} \frac{\partial \sigma(z)}{\partial z} = \frac{1}{\sigma(z)} \sigma(z) \left(1 - \sigma(z)\right)^{\frac{1}{0}} \frac{\partial \sigma(z)}{\partial z}$$

$$f_{w,b}(x) = \sigma(z)$$

$$= 1/1 + exp(-z)$$

$$z = w \cdot x + b = \sum_{i} w_i x_i + b$$

• Loss: Cross-Entropy
$$\left(1 - f_{w,b}(x^n)\right) x_i^n - f_{w,b}(x^n) x_i^n$$

$$\frac{-\ln L(w,b)}{\partial w_i} = \sum_n - \left[\hat{y}^n \frac{\ln f_{w,b}(x^n)}{\partial w_i} + (1 - \hat{y}^n) \frac{\ln \left(1 - f_{w,b}(x^n)\right)}{\partial w_i}\right]$$

$$\frac{\partial \ln\left(1 - f_{w,b}(x)\right)}{\partial w_i} = \frac{\partial \ln\left(1 - f_{w,b}(x)\right)}{\partial z} \frac{\partial z}{\partial w_i} \qquad \frac{\partial z}{\partial w_i} = x_i$$

$$\frac{\partial \ln(1-\sigma(z))}{\partial z} = -\frac{1}{1-\sigma(z)} \frac{\partial \sigma(z)}{\partial z} = -\frac{1}{1-\sigma(z)} \sigma(z) (1-\sigma(z))$$

$$f_{w,b}(x) = \sigma(z)$$

= 1/1 + exp(-z) $z = w \cdot x + b = \sum_{i} w_i x_i + b$

• Loss: Cross-Entropy
$$\left(1-f_{w,b}(x^n)\right)x_i^n$$
 $-f_{w,b}(x^n)x_i^n$ $-\ln L(w,b) = \sum_n -\left[\hat{y}^n \frac{\ln f_{w,b}(x^n)}{\partial w_i} + (1-\hat{y}^n) \frac{\ln \left(1-f_{w,b}(x^n)\right)}{\partial w_i}\right]$ $= \sum_n -\left[\hat{y}^n \left(1-f_{w,b}(x^n)\right)x_i^n - (1-\hat{y}^n)f_{w,b}(x^n)x_i^n\right]$ $= \sum_n -\left[\hat{y}^n -\hat{y}^n f_{w,b}(x^n) - f_{w,b}(x^n) + \hat{y}^n f_{w,b}(x^n)\right]x_i^n$ $= \sum_n -\left(\hat{y}^n - f_{w,b}(x^n)\right)x_i^n$ Larger difference, larger update $w_i \leftarrow w_i - \eta \sum_n -\left(\hat{y}^n - f_{w,b}(x^n)\right)x_i^n$

Machine Learning

Logistic Regression

$$f_{w,b}(x) = \sigma\left(\sum_{i} w_{i} x_{i} + b\right)$$

 $f_{w,b}(x) = \sum_{i} w_i x_i + b$

Output: between 0 and 1

Output: any value

Training data: (x^n, \hat{y}^n)

Training data: (x^n, \hat{y}^n)

 \hat{y}^n : 1 for class 1, 0 for class 2

 \hat{y}^n : a real number

$$L(f) = \sum_{n} l(f(x^n), \hat{y}^n)$$

$$L(f) = \frac{1}{2} \sum_{n} (f(x^{n}) - \hat{y}^{n})^{2}$$

Logistic regression: $w_i \leftarrow w_i - \eta \sum_{i=1}^{n} -\left(\hat{y}^n - f_{w,b}(x^n)\right) x_i^n$

Step 1:

Step 2:

Step 3: Linear regression:
$$w_i \leftarrow w_i - \eta \sum_{i=1}^{n} -\left(\hat{y}^n - f_{w,b}(x^n)\right) x_i^n$$

• Loss: Square Error Step 1: $f_{w,b}(x) = \sigma \left(\sum_{i} w_i x_i + b \right)$

Step 2: Training data: (x^n, \hat{y}^n) , \hat{y}^n : 1 for class 1, 0 for class 2

$$L(f) = \frac{1}{2} \sum_{n} (f_{w,b}(x^n) - \hat{y}^n)^2$$

Step 3:
$$\frac{\partial (f_{w,b}(x) - \hat{y})^2}{\partial w_i} = 2(f_{w,b}(x) - \hat{y}) \frac{\partial f_{w,b}(x)}{\partial z} \frac{\partial z}{\partial w_i}$$
$$= 2(f_{w,b}(x) - \hat{y})f_{w,b}(x) (1 - f_{w,b}(x))x_i$$
$$\hat{y}^n = 1 \quad \text{If } f_{w,b}(x^n) = 1 \quad \text{(close to target)} \longrightarrow \frac{\partial L}{\partial w_i} = 0$$

If
$$f_{w,b}(x^n) = 0$$
 (far from target) $\partial L/\partial w_i = 0$

• Loss: Square Error Step 1: $f_{w,b}(x) = \sigma \left(\sum_{i} w_i x_i + b \right)$

Step 2: Training data: (x^n, \hat{y}^n) , \hat{y}^n : 1 for class 1, 0 for class 2

$$L(f) = \frac{1}{2} \sum_{n} (f_{w,b}(x^n) - \hat{y}^n)^2$$

Step 3:

$$\frac{\partial (f_{w,b}(x) - \hat{y})^2}{\partial w_i} = 2(f_{w,b}(x) - \hat{y}) \frac{\partial f_{w,b}(x)}{\partial z} \frac{\partial z}{\partial w_i}$$

$$= 2(f_{w,b}(x) - \hat{y})f_{w,b}(x) (1 - f_{w,b}(x)) x_i$$

$$\hat{y}^n = 0$$
 If $f_{w,b}(x^n) = 1$ (far from target) $\partial L/\partial w_i = 0$ If $f_{w,b}(x^n) = 0$ (close to target) $\partial L/\partial w_i = 0$

Based on Gradient Descent Method

Loss: Cross-Entropy

Larger difference, larger update

$$w_i \leftarrow w_i - \eta \sum_n - \left(\hat{y}^n - f_{w,b}(x^n) \right) x_i^n$$

Loss: Square Error

$$L(f) = \frac{1}{2} \sum_{n} \left(f_{w,b}(x^n) - \hat{y}^n \right)^2$$
$$\frac{\partial \left(f_{w,b}(x) - \hat{y} \right)^2}{\partial w_i}$$
$$= 2 \left(f_{w,b}(x) - \hat{y} \right) f_{w,b}(x) \left(1 - f_{w,b}(x) \right) x_i$$

Cross Entropy v.s. Square Error

Logistic Regression

- Summary
 - Function set

$$f_{w,b}(x) = \sigma\left(\sum_{i} w_{i} x_{i} + b\right)$$

Output: between 0 and 1

Loss: Cross Entropy

$$= \sum_{n} -\left[\hat{y}^{n} ln f_{w,b}(x^{n}) + (1 - \hat{y}^{n}) ln \left(1 - f_{w,b}(x^{n})\right)\right]$$

Optimization: Gradient Descent

$$w_i \leftarrow w_i - \eta \sum_n - \left(\hat{y}^n - f_{w,b}(x^n)\right) x_i^n$$

Today's Topics

- Type of classifiers
- Logistic Regression
- Logistic Regression vs Linear Regression
- Limitation of Logistic Regression

Logistic Regression

Step 1:
$$f_{w,b}(x) = \sigma\left(\sum_{i} w_i x_i + b\right)$$

Output: between 0 and 1

Linear Regression

$$f_{w,b}(x) = \sum_{i} w_i x_i + b$$

Output: any value

Training data: (x^n, \hat{y}^n)

Step 2: \hat{y}^n : 1 for class 1, 0 for class 2

$$L(f) = \sum_{n} l(f(x^n), \hat{y}^n)$$

Training data: (x^n, \hat{y}^n)

 \hat{y}^n : a real number

$$L(f) = \frac{1}{2} \sum_{n} (f(x^n) - \hat{y}^n)^2$$

Step 3:

Linear regression: $w_i \leftarrow w_i - \eta \sum_{i=1}^{n} -\left(\hat{y}^n - f_{w,b}(x^n)\right) x_i^n$

Logistic regression: $w_i \leftarrow w_i - \eta \sum_{i=1}^{n} -\left(\hat{y}^n - f_{w,b}(x^n)\right) x_i^n$

Logistic Regression v.s. Linear Regression

From Data

Comparison of logistic and linear regression for balanced data

Logistic Regression v.s. Linear Regression

From Data

Comparison of logistic and linear regression for unbalanced data

3000

Logistic Regression v.s. Linear Regression

From Data

Comparison of logistic and linear regression for data with extreme values

Today's Topics

- Type of classifiers
- Logistic Regression
- Logistic Regression vs Linear Regression
- Limitation of Logistic Regression

- Logistic Regression has some advantages
 - No prior assumptions about data distribution
 - Useful for tasks that require probabilities to make decision
 - Sigmoid is a derivable convex function of any order, and it is easy to find the optimal solution
- But there are situations where logistic regression is powerless

Class1		
Class 2	y < 0.5	(z < 0)

Input F	Label	
x_1	X_2	Labei
0	0	Class 2
0	1	Class 1
1	0	Class 1
1	1	Class 2

• Feature transformation

 x_1' : distance to $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

 x_2' : distance to $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Cascading logistic regression models

All the parameters of the logistic regressions are jointly learned.

(ignore bias in this figure)

Summary

Logistic Regression

- Motivation
- Sigmoid
- model, loss, optimization
- Difference with Linear Regression
- Limitation

Some questions...

- Usually we call logistic regression "逻辑回归". Is this a reasonable name?
- Can you learn more about the structure?

