Fallod

高齢者の転倒問題

医療・介護業界への影響

高齢者の緊急搬送の内訳

要介護状態になる原因

12%

一倒事故件数の推移

SDGsの目標

Fallodの構造 H3IIOの構造

Fallodの構造

気圧センサー

○気圧の変化を検知

加速度センサ

○加速度の変化を検知

モーター

○パワフルな振動

PRESENSE

GNSS

○高精度な座標取得

Fallod 機能説明

~How it works~

転倒検知

センサによる転倒検出

センサによる転倒検出

高精度な座標の取得

SPRESENSEを用いた座標検出

サーバーにおける転倒位置の記録

受け取った座標を地図上に記録

記録した地図はPC・携帯で閲覧可能

ユーザーへの危険通知

転倒座標に近づくとユーザーに振動で伝える

記録した 転倒位置に近づくと...

進化したFallod

機体のさらなる小型化

国土交通省の段差データを追加

