Theory of Automata & Formal Languages (Theory of Computation)

Compiled By

Prof. M. S. Bhatt

Rule: 1 Remove all inaccessible States.

Can We reach to all states from the initial State?

Rule: 2 Consider all pairs of states (p, q).

If p belongs to A and q does not belong to A

OR

If p does not belong to A and q belongs to A

- MARK THE PAIR (p, q).

	0	1
(q0,q1)	(q1,q2)	(q3,q4)
(q0,q2)	(q1,q1)	(q3,q4)
(q0,q3)	(q1,q2)	(q3,q4)
(q0,q4)	(q1,q4)	(q3,q4)
(q1,q2)	(q2,q1)	(q4,q4)
(q1,q3)	(q2,q2)	(q4,q4)
(q2,q3)	(q1,q2)	(q4,q4)

Rule:3

Repeat step until no previously unmarked pairs are marked

For all pairs (p, q) and all a belongs to \sum . Compute $\delta(p, a) = m$ and $\delta(q, a) = n$

If pair (m, n) is already marked then MARK THE PAIR (p, q).

Here, (q0,q1) is one pair. Input alphabet is '0' and '1'

Calculating δ (q0, 0) = q1 and δ (q1, 0) = q2 . New pair is (q1,q2) which is not marked so we can't mark (q0,q1)

Calculating δ (q0, 1) = q3 and δ (q1, 1) = q4 . New pair is (q3,q4) which is marked so we can mark (q0,q1)

	0	1
(q0,q1)	(q1,q2)	(q3,q4)
(q0,q2)	(q1,q1)	(q3,q4)
(q0,q3)	(q1,q2)	(q3,q4)
(q0,q4)	(q1,q4)	(q3,q4)
(q1,q2)	(q2,q1)	(q4,q4)
(q1,q3)	(q2,q2)	(q4,q4)
(q2,q3)	(q1,q2)	(q4,q4)

q1 x q2 x q3 x x x x x x

q1

q3

q0

Rule:3

Repeat step until no previously unmarked pairs are marked For all pairs (p, q) and all a belongs to \sum .

Compute δ (p, a) = m and δ (q, a) = n

If pair (m, n) is already marked then MARK THE PAIR (p, q).

	0	1
(q1,q2)	(q2,q1)	(q4,q4)
(q1,q3)	(q2,q2)	(q4,q4)
(q2,q3)	(q1,q2)	(q4,q4)

Rule:3

Repeat step until no previously unmarked pairs are marked

For all pairs (p, q) and all a belongs to \sum . Compute δ (p, a) = m and δ (q, a) = n

If pair (m, n) is already marked then MARK THE PAIR (p, q).

New pairs can not be marked after 2nd iteration.

Unmarked Pairs are:

(q1,q2), (q2,q3) and (q1,q3)

Here,

Transitivity property holds. I can combine 3 states together

	0	1
(q1,q2)	(q2,q1)	(q4,q4)
	(q2,q2)	
(q2,q3)	(q1,q2)	(q4,q4)

Rule: 1 Remove all inaccessible States.

Can We reach to all states from the initial State?

Rule :2 Consider all pairs of states (p, q).

If p belongs to A and q does not belong to A

OR

If p does not belong to A and q belongs to A

MARK THE PAIR (p, q).

	0	1
(q0,q1)	(q1,q0)	(q3,q3)
(q3,q5)	(q5,q5)	(q5,q5)

New pairs can not be marked after applying rule -3.

Unmarked Pairs are:

(q0,q1) and (q3,q5)

Here,

Transitivity property does not hold.

I can combine only 2 states together

q1

q0

q3

Example -3

Example -3

	0	1	2	3	4	5	6	7	8
9	1	1	1	2	3	1	1	1	2
8	1	1	1			1	1	1	
7	2	2	2	1	1	2			
6	2	2	2	1	1	2			
5	2			1	1				
4	1	1	1						
3	1	1	1						
2	2								
1	2								

Example -3

