

• Сигнал - разность напряжений между линиями Логический 1 - +350 мВ на линии А, -350 мВ на линии В

Передающая сторона (Driver)

• Логический 0 - -350 мВ на линии A, +350 мВ на линии В

• Источник постоянного тока -> к двум выходым линиям черещ MOSFET-транзисторы

- Принимающая сторона (Receiver)
 - Диф. усилитель сравнивает напряжения на линиях ТХ+ & ТХ-

• Нагрузочный рещистор (100 Ом) между линиями завершает диф. пару

Ключевые параметры

• Скорость передачи - до 3.125 Гбит/с на одну пару

Преимущества диф. передачи

Размах каждого сигнала +-350 мВ

• Снижение ЕМІ (электромагнитных помех) - противоположные токи в диф. линиях компенсируют магнитные поля

Примеры применения LVDS:

• Низкое энергопотребление - ток через нагрузку всего 3.5 мА -> Мощность около 11.5 мВт • Высокая скорость - малая амплитуда сигнала позволяет быстрее перключать состояния

- PCIe (до 5 поколения) • Линии - 1-16 пар в зависимости от версии • Скорость

Скорость - HDMI 2.1 - до 48 Гбит/с (с использованием LVDS-like технологии TMDS)

■ Gen 4 - 16 ГТ/с на линию (ГТ - Гига Трансферы, полезные переносы информации)

CML

2.5-3.3 B

Высокое

До 10 Гбит/с

■ Gen 7 - 128 ГТ/с на линию (но там уже не LVDS лол)

- Gen 5 32 ГТ/с на линию
- SATA (Serial ATA) 2 пары линий (приём-передача)
- Скорость SATA III 6Гбит/с HDMI
- Мобильные дисплеи (eDP) 1-4 пар линий

• Линии - 3 пары видео, 1 пара тактирования

- Скорость до 8.1 Гбит/с на пару
- Сравнение LVDS с другими стандартами диф. передачи

Напряжение питания 3.3 В

- LVDS Параметр RS-422
- до 3.125 Гбит/с До 10 Мбит/с Скорость Потребление Низкое Среднее

Применение Дисплеи, PCIE Промышленность Сети, SerDes

Согласование уровней
TTL, CMOS, LVCMOS, LVDS - как их связать то блять?
Согласование логических стандартов - важная задача при проектировании систем, где используются компоненты с разными уровнями напряжения и требованиями к сигналам

5 B

V_{CC} 5 V V_{CC}

 V_{OH} 4.44

Yes

Yes

5 CMOS

3 LVTTL

	2.5 CMOS	Yes	No	Yes	Yes	Yes*		
	1.8 CMOS	No	No	No	No	Yes*		
* Requires V _{IH} Tolerance								
^ Таблица совместимостей сигналов								
Универсальные методы согласования уровней								
 Резисторные делители - подходят для согласования уровней напряжения, но не высокоскоростных сигналов, односторонние 								
• Буферные специализированные микросхема - преобразователи уровня по типу TXB0108, SN74LVC1T45								
• Опторазвязка - для гальванический изоляции и согласования уровней								
• MOSFET-ключи - простые дешёвые решения для согласования уровней								
Ссылки на схемы согласования лог. уровней								
	https://microchip.my.site.com/s/article/Level-Shifting-Methods							
	https://analogcircuitdesign.com/level-shifter-circuit/							

https://we.easyelectronics.ru/Shematech/soglasovanie-logicheskih-urovney-5v-i-33v-ustroystv.html

Yes

No

2.5 CMOS

Yes*

Yes*

Yes*

Q3

Q4

Device I²C

logic

3 LVTTL

Yes*

Yes*

Yes

1.8 CMOS

Yes*

Yes*

Yes*

Проблемы: • CMOS - односторонний сигнал (однофзный, несимметричный, с общей землёй, single-ended) - 0-5 В • LVCMOS - односторонний сигнал (0-1.8 В)

Методы согласования:

Согласование TTL и LVDS

Согласование CMOS/LVCMOS и LVDS

Преобразователь CMOS/LVCMOS -> LVDS - микросхемы по типу DS90LV011A Преобразователь LVDS -> CMOS/LVCMOS - микросхемы по типу DS90LV012A

• LVDS - дифференциальный сигнал (+-350 мВ)

пожар в квартире **Push-Pull Output**

Bus contention, output at indeterminate

state

• Пример - шина данных в МПС Выходы GPIO MK

• Не формирует ни 0 ни 1

Особенности третьего состояния выхода:

- Открытый коллектор / Открытый сток
- Физическая реализация выхода, а не отдельное состояние
- Принцип работы: • Выход может только притягивать линию к земле (лог. 0) или переходить в Z-состояние
 - Высокий уровент (лог. 1) формируется внешним подтягивающим резистором Ключевая особенность - всегда два состояния - 0 и Z Примеры - шины I^2C , 1-Wire

Проблемы: • TTL - односторонний сигнал (0-5 B) • LVDS - диф. сигнал (+-350 мВ) Методы согласования: • Преобразователь TTL -> LVDS //революционно Используются микросхемы по типу SN65LVDS1 • Преобразователь LVDS -> TTL - микросхемы по типу SN65LVDS2 Практические вопросы Проблема объединения выходов логических схем на шину • При объединении выходов push-pull нескольких логических элементов все формируют активный уровень • Никто не может "освободить" шину • При формировании разных лог. уровней двумя элементами в один момент времени - КЗ пизда туши свет и

Device I²C logic

- Q2 Push-pull
- Позволяет нескольким устройствам работать на одной шине не конфликтуя • Активируется сигналом Output Enable (OE)

TTL

CMOS

- С общим коллектором (open collector) totem-pole
- С общим стоком (open drain)

push-pull