

PROGRAMA INTENSIVO EN CIENCIA DE DATOS: DE LOS FUNDAMENTOS AL DEEP LEARNING

Módulo 3. Redes Neuronales Artificiales Redes neuronales convolucionales

Dra. Blanca Vázquez Dra. Nidiyare Hevia Montiel Ing. Gabriel Carcedo Rodríguez

Motivación

Convolution Neural Network (CNN)

Motivación

Operación de convolución

Es una operación matemática que combina dos funciones (f, g) para describir la superposición entre ambas.

La convolución toma dos funciones:

- "Desliza" una función sobre la otra,
- Multiplica los valores de las funciones en todos los puntos de superposición, y
- Suma los productos para crear una nueva función.

La nueva función representa cómo interactúan las dos funciones originales entre sí.

La salida de una convolución se le conoce como: mapa de características

Stride y padding

- Stride: define el tamaño del desplazamiento del kernel a través de los datos de entrada.
- Padding: determina si existe o no un aumento en la resolución del mapas de segmentación de entrada. Normalmente este aumento se consigue añadiendo píxeles de valor nulo.
- Kernel: define el tamaño del campo de visión de la convolución. Un tamaño común es k = 3.

Convolución 2D usando un kernel de tamaño 3, stride de 1 and padding.

Submuestreo: capas de agrupación

Son utilizadas para sintetizar / reducir la información proveniente de capas anteriores mediante una operación en particular.

Existen dos tipos principales

de capas de agrupación:

- Max Pooling: Toma el máximo elemento dentro de la ventana de aplicación.
- Average Pooling: Toma el promedio de los elementos dentro de la ventana de aplicación.

Submuestreo: capas de agrupación

Función de activación

- Se aplica una función de activación ReLU después de cada operación de convolución.
- Esta función ayuda a la red a aprender relaciones no lineales entre las características de la imagen, lo que hace la red más robusta para identificar distintos patrones.

Time to Code

Arquitecturas de redes neuronales convolucionales

Convolution Neural Network (CNN)

Arquitecturas de redes neuronales convolucionales: LeNet

Características:

- Propuesta por LeCun et al. en 1998.
- Conjunto de entrenamiento: imágenes de dígitos a mano (MNIST).
- Entrada: imágenes de tamaño 32 x 32 en escala de grises.
- Salida: 10 clases (una por cada dígito)

Total de parámetros: 60,000

Arquitecturas de redes neuronales convolucionales: AlexNet

Total de parámetros: 62.3 millones

Características:

- Propuesta por Krizhevsky et al. en 2012.
- Conjunto de entrenamiento: ImageNet LSVRC-2010 (1.2 millones de imágenes).
- Entrada: imágenes de tamaño 227 x 227 a color.
- Salida: 1000 clases.

Arquitecturas de redes neuronales convolucionales: VGGNet-16

Características:

- Propuesta por Visual Geometry Group en el 2014.
- Conjunto de entrenamiento: ImageNet (14 millones de imágenes).
- Entrada: imágenes de tamaño 224 x 224 a color.
- Salida: 1000 clases.

Total de parámetros: 138.4 millones

Total de capas: 16 capas (13 convolucionales y 3 completamente conectadas).

Time to Code

Sitios importantes a considerar

- Hugging Face
- Pytorch
- <u>Vision group</u>
- SAM
- Robotic Instrument Segmentation Sub-Challenge

Referencias

- Zhang A, Lipton Z, Li M, and Smola J. Dive into Deep Learning. 2020. Disponible en https://d2l.ai/
- Murphy, K. P. (2022). Probabilistic Machine Learning: An introduction. MIT Press. Capítulo 8, 10 y
 11. Disponible en https://probml.github.io/pml-book/book1.html
- Nielsen, M. (2019). Neural Networks and Deep Learning. Capítulo 1. Disponible en http://neuralnetworksanddeeplearning.com/index.html

Contacto

Dra. Blanca Vázquez

blanca.vazquez@iimas.unam.mx
https://github.com/blancavazquez

