ANOVA Test

Stats Project

Purpose & Why it's needed

- ANOVA (Analysis of Variance)
- A way to find out if the results of a survey or experiment are significant
- Compare the means of two or more groups
- Helps resolve the need to reject a null hypothesis or accept an alternate hypothesis
- See whether the independent variable causes effect, or just randomness
- Form of statistical hypothesis testing

Assumptions

- Assumption #1: Continuous dependent variable
- Assumption #2: Two or more levels in the IV
- Assumption #3: Independence of Observations
- Assumption #4: No significant outliers
- Assumption #5: Dependent variable is normally distributed
- Assumption #6: Homogeneity of Variances

General Terminology

- Null Hypothesis No significant differences among groups, and changes are caused only by randomness
- Alternate Hypothesis Assumes at least one significant difference among the groups, and changes are caused by the IVs
- P value Area under bell curve that is right of the 2nd variance
- Levels Different independent variables

Conditions of Use

One Way ANOVA Test

- One independent variable
- Two levels

Two Way ANOVA Test

- Two independent variables
- Multiple levels

Manova Test

- Multiple Dependent variables
 - One way vs. Two Way

Procedure & Math (Overview)

- Antidepressant efficacy
- 3 Levels (2 Experimental + Control)
- IV: Treatment Type
- DV: Beck Depression InventoryScore (Score ↑ = Depression ↑)
- One-Way ANOVA (1 IV, 1 DV)

Moderate Dose	14	26		18	5
Low Dose Mo	22	19	8	23	31
<u>Placebo</u>	38	47	39	25	42

Analysis of Variance Results

F-statistic value = 11.26657

P-value = 0.00176

Critical F-Value: 6.93 $(F_{(2,12)} \text{ for p} = 0.01)$

		Data	Data Summary	
Groups	z	Mean	Std. Dev.	Std. Error
Group 1	5	38.2	8.167	3.6524
Group 2	2	20.6	8.3247	3.7229
Group 3	2	14.8	7.8549	3.5128

Source Degrees of Freedom Source DF Between Groups 2					
		Sum of Squares	Mean Square	F-Stat	P-Value
		SS	MS		
	2	1484.9333	3 742.4667	4 11.2666	0.0018
Within Groups 12	2	790.7999	3 65.9		
Total: 14	_	2275.7332			

Interpret the Test

- F-statistic is calculated
- Represents ratio of SSB to SSW
- Larger the number represents more difference between groups
- Small number represents more variance in a group
- Tells you if the independent variable is causing significant change
- Significance test also needs to be conducted

How to Present

- APA format for reporting an ANOVA test
- You have to report IV, DV, degrees of freedom, F stat and P Value
- Reporting goes in Results Section
- Interpretation goes in Discussion or Conclusion
- at the p<.05 level for the three conditions $[F(\underline{\hspace{1cm}},\underline{\hspace{1cm}})=\underline{\hspace{1cm}},$ p = "There was a significant (not a significant) effect of IV .
- If significant Results are found, have to conduct a post hoc test
- Post Hoc Explores differences between multiple group means
- Helps find where the condition had effect

Use in a Journal Article

ANOVA Analysis of Student Daily Test Scores in Multi-Day Test Periods

Link: https://eric.ed.gov/?id=EJ1139744

IV: Test day (Out of a 4-day exam block)

DV: Test score

Controls: Cumulative GPA # of Tests Taken

EXHIBIT 4 MEAN TEST PERCENT SCORE	ANOVA RESULTS AND BROWN FORSYTH FOR NON-HOMOGENEITY OF VARIANCE
-----------------------------------	---

Descriptives

6	2	7		2.1.5	95% Confidence	95% Confidence Interval for Mean
Day	Z,	Mean	ord. Deviation	Std. Error	Lower Bound	Upper Bound
1	174	.851935	.1332764	7601010.	.831993	.871877
2	207	.822888	.1571310	.0109214	.801356	.844420
3	338	799901	.1418721	.0077168	.784722	.815080
4	738	.713808	.1708646	.0062896	.701460	.726155
Total	1457	.765773	.1674227	.0043862	.757169	.774377

ANONA

200		100	200		36
	Sum of Squares	JÞ	Mean Square	F	Sig.
Between Groups	4.354	3	1.451	57.835	000
Within Groups	36.459	1453	.025		
Total	40.812	1456		18	

Interpretation of Journal Data

"There was a significant effect of test day on test scores at the p<.05 level for the three conditions [F(3, 1453) = 113.07, p = .000]"

To Note:

- Post-hoc tests required to determine specific effect
- (p=.000) is APA format to report (p < 0.001)

Infographic

https://create.piktochart.com/o utput/42427406-stats-project

(Analysis of Variance) **ANOVA Test**

Conditions

Two+ Dependent Variables

One Dependent Variable ANONA Purpose & Use? The ANOVA tests are used to analyze differences among multiple different groups. This analysis of variance between and in groups helps to determine whether the

How to Take the Test

Two Way ANOVA

One Way ANOVA

Same Variance in Population

Example Dataset

Interpretation

F Statistic

Significant differences 1 between groups

1 No Significant differences between groups

If the F statistic is Greater than 1, then the variance between groups is larger than just the variance in groups. This number signifies that the independent variable did cause a

Presentation

When the ANOVA test result is presented the degrees of freedom, F value, and significance value(p) need to be reported, with the interpretation of significance. The statistic should be presented in the results section but interpreted in the discussion or conolusions sections.

			П	ı
14	26	11	18	
22	19	80	23	1000
38	47	39	25	
Į.			ļ	į

One Way ANOVA Test SST = 2275.7332

F stat=11.726657

The independent variable has dependent variable. The null hypothese can be rejected

References (1)

Dinov, I. (2019, March 25). F Distribution Tables. Retrieved November 21, 2019, from http://www.socr.ucla.edu/Applets.dir/F_Table.html.

Good Calculators. (2019). ANOVA Calculator: One-Way Analysis of Variance Calculator. Retrieved November 21, 2019, from

https://goodcalculators.com/one-way-anova-calculator/.

Höner, O., Leyhr, D., & Kelava, A. (2017). The influence of speed abilities and technical skills in early adolescence on adult success in soccer: A

long-term prospective analysis using ANOVA and SEM approaches. Plos One, 12(8). doi: 10.1371/journal.pone.0182211

Lund Research Ltd. (2018). One-way ANOVA in SPSS Statistics. Retrieved November 21, 2019, from

https://statistics.laerd.com/spss-tutorials/one-way-anova-using-spss-statistics.php.

Singh, G. (2019, March 11). A Simple Introduction to ANOVA (with applications in Excel). Retrieved November 21, 2019, from

https://www.analyticsvidhya.com/blog/2018/01/anova-analysis-of-variance/.

References (2)

Woolf, L. M. (n.d.). Practice Problems: ANOVA. Retrieved November 21, 2019, from http://faculty.webster.edu/woolflm/anova.html