Redistribution and the wage-price dynamics: Optimal fiscal and monetary policy

François Le Grand^a Xavier Ragot^b Thomas Bourany^c

 a Rennes School of Business and ETH Zurich b SciencesPo, OFCE, and CNRS c University of Chicago

AFSE, Paris, June 16 2023

Introduction

Motivation: Surge in inflation since 2020 partly handled with fiscal tools in Europe (tax shields) – but also more standard monetary tools.

ightarrow What is the right fiscal-monetary mix to deal with inflation while accounting for distributional issues?

HANK models: credible setup to analyze these questions. But with rigidities?

- Debate about the "right" rigidity (Auclert et al. 2023a).
- With price rigidity alone: small role for inflation (LeGrand et al. 2023).
- → introduce both wage and price rigidities.

Introduction

Question: What is the optimal joint monetary and fiscal policy with a rich set of tools, when both prices and wages are rigid after negative TFP (energy) shock?

A small literature (with RANK and TANK) mostly.

- Blanchard (1986), Blanchard and Galí (2007a and 2007b).
- Optimal policies in Erceg et al. (2000), Galí (2015, chap. 6), Ascari et al. (2017), Lorenzoni and Werning (2023).

What we do

Theory side.

- Study HANK model with both sticky prices and sticky wages.
- Derive optimal monetary and fiscal policies with many fiscal instruments (see below).
- Compare HANK and RANK.

Quantitative side. Full-fledged quantitative model, with time-varying tax and monetary policy.

- Computation: Factorization of Lagrangian (Marcet & Marimon, 2019 and LeGrand and Ragot, 2022a).
- Refined truncation (improving on LeGrand and Ragot, 2022b) to solve for the curse of dimensionality.

What we find

- When the fiscal system is sufficiently rich, we restore price and/or wage stability.
- → Prove equivalence results (in the spirit of Correia et al. 2008-2013 for RA and LeGrand et al. 2022 for HA) but need surprisingly many tools.
 - Identification of a fiscal instrument that is key for the monetary response: the time-varying social contribution.
 - When present, almost price-wage stability.
 - When absent, important deviations from price stability + RA ≠ HA for policy recommendations.

The Model: Households

- Stochastic idiosyncratic productivity y_t^i , first-order Markov chain (Mitman, Krueger, Perri, 2018). Aggregate TFP shock.
- Separable utility function u(c)-v(l) with constant IES and constant Frisch elast. (Auclert et al., 2023b or Lorenzoni and Werning, 2023).
- ullet Labor unions set the common labor supply $L_t.$
- A rich fiscal system:

+ capital tax τ_t^K .

The Model: Households

- agent's choices: consumption $c_{i,t} > 0$ and savings $a_{i,t} \ge 0$.
- agent's budget constraint:

$$\begin{split} c_{i,t} + a_{i,t} &= a_{i,t-1} + (1 - \tau_t^E) \bigg((1 - \hat{\tau}_t^K) \underbrace{\tilde{r}_t a_{i,t-1}}_{\text{capital income}} + (1 - \tau_t^L) \underbrace{\hat{w}_t y_{i,t} L_t}_{\text{labor income}} \bigg), \\ &= a_{i,t-1} + (1 - \tau_t^K) \tilde{r}_t a_{i,t-1} + (1 - \tau_t^E) (1 - \tau_t^L) \hat{w}_t y_{i,t} L_t, \\ \hat{w}_t &= (1 - \tau_t^S) \underbrace{\tilde{w}_t}_{\text{labor cost}}. \end{split}$$

LeGrand, Ragot & Bourany Wage-price dynamics 6/20

Sticky wages

Unions bargain for workers, same hours for all workers, Rotemberg adjustment cost for workers, as in Auclert et al. (2023b).

Wage Phillips curve:

$$\pi_t^W(\pi_t^W + 1) = \frac{\varepsilon_W}{\psi_W} \left(v'(L_t) - \frac{\varepsilon_W - 1}{\varepsilon_W} \frac{w_t}{1 - \tau_t^E} \int_i y_{i,t} u'(c_{i,t}) \ell(di) \right) L_t,$$
$$+ \beta \mathbb{E}_t \left[\pi_{t+1}^W(\pi_{t+1}^W + 1) \right].$$

- π_t^W : wage inflation;
- ullet ψ_W : cost of wage inflation and $rac{arepsilon_W}{\psi_W}$: slope of the Phillips curve.

Sticky prices

Firms produce with labor (CRS) with productivity Z. Rotemberg pricing for firms.

Price Phillips curve:

$$\pi_t^P(1 + \pi_t^P) = \frac{\varepsilon_P - 1}{\psi_P} \left(\frac{w_t}{Z_t (1 - \tau_t^E)(1 - \tau_t^L)(1 - \tau_t^S)} - 1 \right) + \beta \mathbb{E}_t \left[\pi_{t+1}^P (1 + \pi_{t+1}^P) \frac{Y_{t+1}}{Y_t} \right].$$

- π_t^P : price inflation;
- ψ_P : cost of wage inflation and $\frac{\varepsilon_P-1}{\psi_P}$: slope of the Phillips curve.

Planner

Governmental budget constraint: financing of a public spending stream $(G_t)_t$:

$$G_t + (1 + r_t) \int_i a_{i,t-1} \ell(di) + w_t L_t \le \left(1 - \frac{\psi_P}{2} (\pi_t^P)^2\right) Z_t L_t + \int_i a_{i,t} \ell(di).$$

Objective:

$$\mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t \int_i \omega(y_t^i) \left(u(c_t^i) - v(L_t) \right) \ell(di) - \frac{\psi_W}{2} (\pi_t^W)^2 \right]$$

• $\omega(y_t^i)$: planner's weights associated to productivity level y_t^i for solving the *inverse optimum taxation problem*, as in Heathcote and Tsujiyama (2021).

The Ramsey problem

$$\begin{aligned} & \text{max over } (\tau_t^S, \tau_t^E, \tau_t^L, \pi_t^P, \pi_t^W, w_t, r_t, L_t, (c_{i,t}, a_{i,t})_{t \geq 0} \text{ of } \\ & \mathbb{E}_0 \left[\sum_{t=0}^\infty \beta^t \int_i \omega(y_t^i) \left(u(c_t^i) - v(L_t) \right) \ell(di) - \frac{\psi_W}{2} (\pi_t^W)^2 \right] \text{ s.t.:} \\ & G_t + (1+r_t) \int_i a_{i,t-1} \ell(di) + w_t L_t \leq \left(1 - \frac{\psi_P}{2} (\pi_t^P)^2 \right) Z_t L_t + \int_i a_{i,t} \ell(di), \\ & \text{for all } i \in \mathcal{I}: \ c_{i,t} + a_{i,t} = (1+r_t) a_{i,t-1} + w_t y_{i,t} L_t, \\ & u'(c_{i,t}) = \beta \mathbb{E}_t \left[(1+r_{t+1}) u'(c_{i,t+1}) \right] + \nu_{i,t}, \\ & \pi_t^W (\pi_t^W + 1) = \frac{\varepsilon_W}{\psi_W} \left(v'(L_t) - \frac{\varepsilon_W - 1}{\varepsilon_W} \frac{w_t}{1 - \tau_t^E} \int_i y_{i,t} u'(c_{i,t}) \ell(di) \right) L_t + \beta \mathbb{E}_t [\cdots], \\ & \pi_t^P (1+\pi_t^P) = \frac{\varepsilon_P - 1}{\psi_P} (\frac{1}{Z_t} \frac{w_t}{(1-\tau_t^E)(1-\tau_t^E)} - 1) + \beta \mathbb{E}_t [\cdots], \\ & (1+\pi_t^W) \frac{w_{t-1}}{(1-\tau_t^E)(1-\tau_t^E)} = \frac{w_t}{(1-\tau_t^E)(1-\tau_t^E)} (1+\pi_t^P) \end{aligned}$$

Equivalence result

Proposition (An equivalence result)

When all instruments are available, the government implements an allocation with zero inflation for prices and wages in all periods.

- ullet au_t^E neutralizes the gap between mrs and wage o turns off wage Phillips curve.
- $m{ ilde{ au}}_t^S$ neutralizes the gap between mpl and wage ightarrow turns off price Phillips curve.
- \Rightarrow inflation rates can be set to 0.

Remark. It *undoes* the union labor constraint. Higher welfare than in the flex-price allocation with union.

Other results

What about missing instruments?

Instruments	RA	НА	
$ au^L + au^S + au^E$	$\pi^P=0$ and $\pi^W=0$	$\pi^P=0$ and $\pi^W=0$	
	(First-best)	(optimal labor supply)	
$ au^L + au^S$	$\pi^P=0$ and $\pi^W=0$	$\pi^P=0$ and $\pi^W\neq 0$	
		("better" than flex P)	
$ au^L$	$\pi^P \neq 0$ and $\pi^W = 0$	$\pi^P \neq 0$ and $\pi^W \neq 0$	

- Compared to price rigidity only (Le Grand et al, 2022): +1 friction (sticky wages) but +2 tools to restore price-wage stability.
- When removing τ^E : flex-price allocation can be implemented but τ^S is used to partly undo the union labor constraint.
- Missing fiscal tools: Deviation from price-wage stability, but precise quantification is needed to assess the importance of fiscal tools.

Quantitative exercise: the numerical method

Three aspects of the method:

- 1. The reformulation: Lagrangian Approach (Marcet and Marimon, 2019; Le Grand and Ragot, 2022; Acikgoz et al. 2022).
 - Introduce Lagrange multipliers λ^i_t on Euler equations. $\lambda^i_t=0$ if credit constraints bind for agents i.
 - ullet Introduce Lagrange μ_t on the budget of the state.
 - Rearrange the Lagrangian before taking the first-order conditions.
- 2. Simulate the FOCs of the planner: Truncation methods.
- Compute the weights by solving inverse optimum taxation problem,i.e., such that the actual fiscal system is optimal at the steady state.

Calibration

Parameter	Description	Value	
Preference and technology			
$egin{array}{c} eta \ rac{\sigma}{ar{a}} \ \chi \ arphi \end{array}$	Discount factor Curvature utility Credit limit Scaling param. labor supply Frisch elasticity labor supply	0.99 0 0 0.11 0.5	
Shock process			
$rac{ ho_y}{\sigma_y}$	Autocorrelation idio. income Standard dev. idio. income	0.993 6%	
Tax system			
$ au^L au^S$	Labor tax Labor subsidy	$25\% \\ 0\%$	
Monetary parameters			
$ \begin{array}{c} (\varepsilon_p - 1)/\psi_p \\ \varepsilon_w/\psi_w \\ \varepsilon_p \\ \varepsilon_w \end{array} $	Price Phillips slope Wage Phillips slope Elasticity of sub. between goods Elasticity of sub. labor inputs	5% 5% 7 31	

Quantitative assessment

Key instrument: time-varying wage tax τ_t^S .

In the *presence* of τ_t^S :

- small deviation from price-wage stability;
- quantitatively close predictions in HA and RA economies.

In the absence of τ_t^S :

- sizable deviation from price-wage stability + (small) drop in consumption.
- Optimal policies quantitatively differ in RA and HA economies.
- ⇒ Relevant for fiscal and monetary policy making?

Simulation: Benchmark (0.95 persistence)

Simulation: Higher persistence (0.99)

Simulation: Role of Phillips curve slopes

Quantitative assessment (bis)

- Higher persistence increases the inflation responses (both for price and wage),...
- ...and makes the lack of τ_t^S costlier.
- Lowering the cost of wage inflation / increasing the cost of price inflation raises wage inflation and lowers price inflation, . . .
- ullet ...and makes the lack of au_t^S cheaper.
- ightarrow Easier to substitute wage inflation to au_t^S .

Conclusion

- Possible new identification of stabilization tools.
- Sticky prices + wages HANK may be a relevant environment.
- More to come on the quantitative side.