ī	· •	00	
ı	INTERROGATION ÉCRITE	$\mathbf{N}^{\circ}\mathbf{U}$	Į

NOM: Prénom: Note:

1. Soit $\mathcal{A} = \left\{ \frac{n+p}{n^2+p^2}, (n,p) \in (\mathbb{N}^*)^2 \right\}$. \mathcal{A} possède-telle un maximum? un minimum? une borne supérieure? une borne inférieure?

Pour tout $n \in \mathbb{N}^*$, $n \ge n^2$. Ainsi pour tout $(n, p) \in (\mathbb{N}^*)^2$, $n + p \le n^2 + p^2$ puis $\frac{n+p}{n^2+p^2} \le 1$. On en déuit que \mathcal{A} est majorée par

1. De plus, $1 = \frac{1+1}{1^2+1^2}$ donc $1 \in \mathcal{A}$. On en déduit que max $\mathcal{A} = 1$. A fortiori, sup $\mathcal{A} = 1$.

0 est clairement un minorant de \mathcal{A} . De plus, pour tout $n \in \mathbb{N}^*$, $\frac{n+1}{n^2+1} \in \mathcal{A}$ et $\lim_{n \to +\infty} \frac{n+1}{n^2+1} = 0$ donc $0 = \inf \mathcal{A}$. Si \mathcal{A} admettait un minimum, ce serait également la borne inférieure de \mathcal{A} , autrement dit 0. Mais en tant que minimum, on aurait $0 \in \mathcal{A}$, ce qui n'est pas. Ainsi \mathcal{A} n'admet pas de minimum.

2. Soit (u_n) la suite telle que $u_0 = 1$ et $u_{n+1} = \frac{u_n}{1 + u_n^2}$ pour tout $n \in \mathbb{N}$. Montrer que (u_n) converge vers 0.

Une récurrence évidente montre que $u_n > 0$ pour tout $n \in \mathbb{N}$. Alors, pour tout $n \in \mathbb{N}$,

$$u_{n+1} - u_n = -\frac{u_n^3}{1 + u_n^2} \le 0$$

donc (u_n) est décroissante. Comme elle est également minorée par 0, elle converge vers $\ell \in \mathbb{R}$. Puisque $\lim_{n \to +\infty} u_{n+1} = \ell$ et que

 $\lim_{n\to\infty}\frac{u_n}{1+u_n^2}=\frac{\ell}{1+\ell^2}. \text{ On en déduit successivement que } \ell=\frac{\ell}{1+\ell^2}, \ell(1+\ell^2)=\ell, \ell^3=0 \text{ et enfin } \ell=0. \text{ Par conséquent, } (u_n) \text{ converge vers } 0.$

- 3. Soit (u_n) la suite telle que $u_0=0$ et $u_{n+1}=u_n+e^{-u_n}$ pour tout $n\in\mathbb{N}$. Montrer que (u_n) diverge vers $+\infty$. Pour tout $n\in\mathbb{N}$, $u_{n+1}-u_n=e^{-u_n}>0$ donc (u_n) est croissante. On en déduit que (u_n) converge ou diverge vers $+\infty$. Supposons que (u_n) converge vers un réel ℓ . Alors $\lim_{n\to+\infty}u_{n+1}=\ell$ et $\lim_{n\to+\infty}u_n+e^{-u_n}=\ell+e^{-\ell}$. Par unicité de la limite, $\ell=\ell+e^{-\ell}$. On en déduit que $e^{-\ell}=0$, ce qui est absurde. Ainsi (u_n) diverge vers $+\infty$.
- 4. On pose $u_0 = 0$ et $u_{n+1} = \frac{1}{2}u_n 2$ pour tout $n \in \mathbb{N}$. Donner une expression de u_n en fonction de n et déterminer la limite de la suite (u_n) .

Posons $v_n = u_n + 4$ pour $n \in \mathbb{N}$. Alors

$$\forall n \in \mathbb{N}, \ v_{n+1} = u_{n+1} + 4 = \frac{1}{2}u_n + 2 = \frac{1}{2}(u_n + 4) = \frac{1}{2}v_n$$

La suite (v_n) est géométrique de raison $\frac{1}{2}$ et de premier terme $v_0=u_0+4=4$. Par conséquent, $v_n=\frac{4}{2^n}$ pour tout $n\in\mathbb{N}$ et

$$\forall n \in \mathbb{N}, \ u_n = v_n - 4 = \frac{4}{2^n} - 4$$

Puisque $-1 < \frac{1}{2} < 1$, $\lim_{n \to +\infty} \frac{1}{2^n} = 0$ et donc $\lim_{n \to +\infty} u_n = -4$.

5. On pose $u_0 = 1$, $u_1 = \frac{1}{2}$ et $u_{n+2} = u_{n+1} - u_n$ pour tout $n \in \mathbb{N}$. Donner une expression de u_n en fonction de n.

Pour tout $n \in \mathbb{N}$, $u_{n+2} - u_{n+1} + u_n = 0$. Le polynôme caractéristique associée à cette relation de récurrence linéaire d'ordre deux à coefficients constants est $X^2 - X + 1$. Ses racines sont $e^{\frac{i\pi}{3}}$ et $e^{-\frac{i\pi}{3}}$. Comme (u_n) est manifestement une suite réelle, il existe $(\lambda, \mu) \in \mathbb{R}^2$ tel que

$$\forall n \in \mathbb{N}, \ u_n = \lambda \cos\left(\frac{n\pi}{3}\right) + \mu\left(\frac{n\pi}{3}\right)$$

Puisque $u_0=1,\,\lambda=1$ et puisque $u_1=\frac{1}{2},\,\mu=0.$ On en déduit donc que

$$\forall n \in \mathbb{N}, \ u_n = \cos\left(\frac{n\pi}{3}\right)$$