Machine Learning and Risk Analysis

COMPSS 224B: Quantitative Political Risk

Mark Rosenberg, PhD and Iris Malone, PhD

11 April 2025

Recap

Where We've Been:

Recap

Where We've Been:

- Politics matters, but unclear how, when, why...
- · Existing approaches typically qualitative
- Explosion of big data creates new opportunities...and challenges

1

Recap

Where We've Been:

- Politics matters, but unclear how, when, why...
- Existing approaches typically qualitative
- Explosion of big data creates new opportunities...and challenges

New Terminology:

- · Event versus structural risks
- Enterprise risk management
- Scenario analysis

1

Where We're Headed:

• Focus mostly on analysis, not engineering

- Focus mostly on analysis, not engineering
- · Understanding your data:
 - Common data challenges
 - Mining your data

- Focus mostly on analysis, not engineering
- · Understanding your data:
 - · Common data challenges
 - · Mining your data
- · Modeling your data:

- · Focus mostly on analysis, not engineering
- · Understanding your data:
 - · Common data challenges
 - · Mining your data
- Modeling your data:
 - Estimation goals \rightarrow model selection techniques
 - Basic model intuition (and some technical details)

- · Focus mostly on analysis, not engineering
- · Understanding your data:
 - · Common data challenges
 - · Mining your data
- · Modeling your data:
 - Estimation goals \rightarrow model selection techniques
 - Basic model intuition (and some technical details)
- Monitoring and validation tools:

- Focus mostly on analysis, not engineering
- · Understanding your data:
 - · Common data challenges
 - · Mining your data
- · Modeling your data:
 - Estimation goals \rightarrow model selection techniques
 - Basic model intuition (and some technical details)
- Monitoring and validation tools:
- Interpretable ML and Analytics:

- · Focus mostly on analysis, not engineering
- · Understanding your data:
 - · Common data challenges
 - · Mining your data
- Modeling your data:
 - Estimation goals \rightarrow model selection techniques
 - Basic model intuition (and some technical details)
- · Monitoring and validation tools:
- Interpretable ML and Analytics:
 - · Understanding your results
 - Communicating your results

Agenda

1. Motivation

2. Types of ML for Political Risk

3. Prediction vs Inference

4. MLOps and Data Science Pipelines

Motivation

Machine Learning (ML) and AI are hot buzzwords in political risk...

Figure 1: AI Washing, Credit: Marketoonist

...but still misunderstood...

Figure 2: Faculty Director AI Now Institute, Research Prof NYU. Ex-Google.

...and prone to abuse.

Types of ML for Political Risk

Main Intuition Behind ML

Main Idea: ML is a form of artificial intelligence increasingly used in political risk analysis to solve complex prediction problems.

Main Intuition Behind ML

Main Idea: ML is a form of artificial intelligence increasingly used in political risk analysis to solve complex prediction problems. It involves a set of computer algorithms which 'learn' patterns in existing data to assist in prediction and description.

Main Intuition Behind ML

Main Idea: ML is a form of artificial intelligence increasingly used in political risk analysis to solve complex **prediction problems**. It involves a set of computer algorithms which 'learn' patterns in existing data to assist in prediction and description.

· Predict outcome of interest based on existing information

- · Predict outcome of interest based on existing information
- Predict who will win the 2026 Midterm Elections based on public opinion polls

- · Predict outcome of interest based on existing information
- Predict who will win the 2026 Midterm Elections based on public opinion polls
- Estimate a country's credit risk based on likelihood of default

- · Predict outcome of interest based on existing information
- Predict who will win the 2026 Midterm Elections based on public opinion polls
- · Estimate a country's credit risk based on likelihood of default
- · Anticipate government expropriation of commercial goods

- · Predict outcome of interest based on existing information
- Predict who will win the 2026 Midterm Elections based on public opinion polls
- · Estimate a country's credit risk based on likelihood of default
- · Anticipate government expropriation of commercial goods
- Forecast the risk of terrorism and insurgency using a country's socio-economic data

- Corporates
 - · Identify market entry opportunities
 - Assess risks to supply chains and operations

- Corporates
 - · Identify market entry opportunities
 - Assess risks to supply chains and operations
- Government
 - Improve early warning monitors (e.g. state collapse)
 - Mitigate risk of intelligence failures

- Corporates
 - · Identify market entry opportunities
 - Assess risks to supply chains and operations
- Government
 - Improve early warning monitors (e.g. state collapse)
 - Mitigate risk of intelligence failures
- Finance
 - Alpha generation in trading algorithms
 - · Manage downside risks to portfolios

- Corporates
 - Identify market entry opportunities
 - Assess risks to supply chains and operations
- Government
 - Improve early warning monitors (e.g. state collapse)
 - Mitigate risk of intelligence failures
- Finance
 - · Alpha generation in trading algorithms
 - · Manage downside risks to portfolios
- Academia
 - Measure polarization in political institutions (Clinton, Jackman, and Rivers 2004)
 - Infer extent and strategy of Chinese censorship (King, Pan, and Roberts 2014)
 - Assess risk of conflict onset and escalation (Malone 2022)

What is ML?

 Non-Technical Take: ML involves a set of computer algorithms which 'learn' patterns in existing data to assist in prediction and inference.

What is ML?

- Non-Technical Take: ML involves a set of computer algorithms which 'learn' patterns in existing data to assist in prediction and inference.
- Technical Take: We want to build a model f that optimizes a given cost function in order to maximize model performance

2 Types of Machine Learning

- 1. Unsupervised Learning
- 2. Supervised Learning

Supervised vs Unsupervised Learning

Main Idea: Supervised learning includes information about an outcome of interest; unsupervised learning does not.

Supervised vs Unsupervised Learning

Main Idea: Supervised learning includes information about an outcome of interest; unsupervised learning does not.

Supervised vs Unsupervised Learning

Supervised Learning:

- · Predicts a given outcome
- Data includes x and y
- Evaluate accuracy

Unsupervised Learning:

- · Descriptive data analysis
- Data includes x
- · No standard evaluation

Unsupervised Learning

- Main Idea: Descriptive Data Analysis
- · Common Objectives:
 - Identify meaningful groupings of the data o clustering
 - Simplify high-dimensional data to explain variation in as few dimensions as possible → principal component analysis
 - Analyze unstructured text data \rightarrow sentiment analysis

Unsupervised Learning

Real-World Applications:

- Stock market anomaly detection (insider trading)
- · Define 'Nationalism' or 'State Capacity'
- · Measure state fragility
- Automated content analysis of the news

Types of Unsupervised Learning

- Principal Component Analysis (PCA)
- Clustering
 - K-Means Clustering
 - · Hierarchical Clustering
 - DBSCAN
- Text Analysis
 - Sentiment
 - Topic
 - Context (Embeddings)
 - LLMs

Supervised Learning

• Main Idea: Learn patterns in existing data and extrapolate good predictions based on this information.

Supervised Learning

- Main Idea: Learn patterns in existing data and extrapolate good predictions based on this information.
- Real-World Applications: Predict terrorist attacks, predict election results, predict market movements

(338)

Supervised Learning

- Common Objective: Learn relationship between outcome variable (Y) and input variables ($X=(X_1,X_2,\ldots,X_i)$) by estimating f
- Assume relationship between Y and X_i such that...

$$y = f(X) + \epsilon \tag{1}$$

- f is fixed, but unknown function.
- f captures information (systematic patterns) about how X affects Y
- ϵ is "noise" in the model (error term)

Prediction vs Inference

Why Learn the Relationship Between X and Y?

1. Inference

2. Prediction

Why Learn the Relationship Between X and Y?

- 1. Inference
 - 1.1 Inputs and outputs readily available
 - 1.2 Want to understand how Y changes as $X = (X_1, X_2, \dots, X_i)$ changes
 - 1.3 Better model \rightarrow more explanatory
- 2. Prediction

Why Learn the Relationship Between X and Y?

1. Inference

- 1.1 Inputs and outputs readily available
- 1.2 Want to understand how Y changes as $X = (X_1, X_2, \dots, X_i)$ changes
- 1.3 Better model \rightarrow more explanatory

2. Prediction

- 2.1 Inputs are readily available, but Y is not
- 2.2 Want to predict $\hat{Y} = \hat{f}(X)$
- 2.3 Better model ightarrow more accurate predictions ($\hat{Y} pprox Y$)

An Analogy

- Inference: Why is the car running?
- Prediction: Where is the car going?

A Real-World Example

 Inference: What explains Russia invasion of Ukraine?

 Prediction: What predicted Russia invasion of Ukraine?

Map of arms build-up prior to invasion.

Source: DW

A Real-World Example

- Inference: What explains
 Russia invasion of Ukraine?
 History, culture, rivalry,
 Putin's ambitions ...
- Prediction: What predicted Russia invasion of Ukraine?

Map of arms build-up prior to invasion.

Source: DW

A Real-World Example

- Inference: What explains
 Russia invasion of Ukraine?
 History, culture, rivalry,
 Putin's ambitions ...
- Prediction: What predicted Russia invasion of Ukraine?
 2021 spring scare, arms build-up, troop movements, training exercises

Map of arms build-up prior to invasion.

Source: DW

Warning!

Inference and prediction results can overlap, but...

Warning!

Inference and prediction results can overlap, but...

A statistically significant indicator is not necessarily a good predictor.

Warning!

Inference and prediction results can overlap, but...

A statistically significant indicator is not necessarily a good predictor. Why?

- Small Effect Size
- Spurious Correlations
- · Omitted Variable Bias
- · External Validity

 $\bullet \ \, \text{Better model} \to \text{smaller test MSE}$

- Better model → smaller test MSE
- Select modeling method (learning algorithm) to minimize average test error:

$$E(y_m - f(x_m))^2$$

- Better model → smaller test MSE
- Select modeling method (learning algorithm) to minimize average test error:

$$E(y_m - f(x_m))^2 (2)$$

- · Best Model will achieve:
 - · Low Variance
 - · Low Bias

- Better model → smaller test MSE
- Select modeling method (learning algorithm) to minimize average test error:

$$E(y_m - f(x_m))^2 (2)$$

- · Best Model will achieve:
 - Low Variance
 - Low Bias
- Problem: Easier said than done.

Bias-Variance Trade-Off

 Bias-Variance Trade-Off: Models tend to result in either (1) low variance and high bias (under-fitting) or (2) high variance and low bias (over-fitting).

Bias-Variance Trade-Off

 Bias-Variance Trade-Off: Models tend to result in either (1) low variance and high bias (under-fitting) or (2) high variance and low bias (over-fitting).

- A central ML challenge is finding a method that minimizes both variance and bias.
- Rule of Thumb: More flexible methods will result in higher variance, but lower bias and less interpretability.

How do I pick a "good" model?

Supervised learning algorithms fall into 2 classes:

1. Parametric

2. Non-Parametric

How do I pick a "good" model?

Supervised learning algorithms fall into 2 classes:

- 1. Parametric
 - 1.1 More rigid \rightarrow low variance
 - 1.2 Assumes f has fixed form with fixed number of parameters $(\beta_1, \ldots \beta_p)$
 - 1.3 Estimating $f \rightarrow$ estimating parameters
 - 1.4 Ex. Linear Regression Model

$$\hat{f}(X) = X_1 \beta_1 + \dots + X_p \beta_p \tag{3}$$

- 1.5 \hat{f} is less of a "black box"
- 2. Non-Parametric

How do I pick a "good" model?

Supervised learning algorithms fall into 2 classes:

- 1. Parametric
 - 1.1 More rigid \rightarrow low variance
 - 1.2 Assumes f has fixed form with fixed number of parameters $(\beta_1, \ldots \beta_p)$
 - 1.3 Estimating $f \rightarrow$ estimating parameters
 - 1.4 Ex. Linear Regression Model

$$\hat{f}(X) = X_1 \beta_1 + \dots + X_p \beta_p \tag{3}$$

- 1.5 \hat{f} is less of a "black box"
- 2. Non-Parametric
 - 2.1 More flexible \rightarrow low bias
 - 2.2 No fixed f to describe data
 - 2.3 \hat{f} is "black box"

MLOps and Data Science

Pipelines

• What do I do with a political risk problem y?

• What do I do with a political risk problem y? Create a **product** (f(x)) that solves it

- What do I do with a political risk problem y? Create a **product** (f(x)) that solves it
- How do I create a product?

- What do I do with a political risk problem y? Create a **product** (f(x)) that solves it
- How do I create a product?
 Use MLOps and a data science pipeline

- What do I do with a political risk problem y? Create a **product** (f(x)) that solves it
- How do I create a product?
 Use MLOps and a data science pipeline
- What do I do with the product?

- What do I do with a political risk problem y? Create a **product** (f(x)) that solves it
- How do I create a product?
 Use MLOps and a data science pipeline
- What do I do with the product?
 Provide data, analytics, and communication around it

Theory: Solution is the ML model that best minimizes loss function $(y_i - \hat{y}_i)$

Theory: Solution is the ML model that best minimizes loss function $(y_i - \hat{y}_i)$

Real-World: Solving for political risk is...hard.

Theory: Solution is the ML model that best minimizes loss function $(y_i - \hat{y}_i)$

Real-World: Solving for political risk is...hard.

1. Conceptual:

- What do we mean by political risk?
- · What is a risk solution? Mitigate? Monitor? Management?
- This is a story about...

Theory: Solution is the ML model that best minimizes loss function $(y_i - \hat{y}_i)$

Real-World: Solving for political risk is...hard.

1. Conceptual:

- · What do we mean by political risk?
- What is a risk solution? Mitigate? Monitor? Management?
- This is a story about...

2. Practical:

- Costs
- · Transparency and regulatory requirements
- Data Availability
- · Performance Metrics

ML Operations: Project Life Cycle

Discovery

Business Understanding

- What is the problem? How do you define risk?
- · What's the current approach to the problem?
- · What's the limit to this approach?
- Who is affected by this?

Scoping

- Translate non-technical needs into technical action items
- Research Design and Mapping
- Hypotheses
- · Requirements
- Minimum Viable Product

Data Science Pipeline: Post-Discovery

Data Engineering

Not So Fun Part

- Data Wrangling
- Data Cleaning
- · Data Preparation

Fun Part

- Exploratory Data Analysis
- Signals Analysis
- · Data Mining
- Index Creation

Data Engineering

Figure 3: Go directly to deployment!

Fun Part

- Exploratory Data Analysis
- Signals Analysis
- Data Mining
- Index Creation

Data Science Pipeline: Modeling

- 1. Data Collection and Processing
 - 1.1 Collect a set of n data points with p predictors

- 1. Data Collection and Processing
 - 1.1 Collect a set of n data points with p predictors
 - 1.2 Partition the data into a training (in-sample) and test (out-of-sample) set of observations

- 1. Data Collection and Processing
 - 1.1 Collect a set of n data points with p predictors
 - 1.2 Partition the data into a training (in-sample) and test (out-of-sample) set of observations
 - 1.3 Select a learning algorithm to estimate f

- 1. Data Collection and Processing
 - 1.1 Collect a set of n data points with p predictors
 - 1.2 Partition the data into a training (in-sample) and test (out-of-sample) set of observations
 - 1.3 Select a learning algorithm to estimate f
- 2. Model Training and Assessment
 - 2.1 Use training data to fit prediction function estimate \hat{f}

- 1. Data Collection and Processing
 - 1.1 Collect a set of n data points with p predictors
 - 1.2 Partition the data into a training (in-sample) and test (out-of-sample) set of observations
 - 1.3 Select a learning algorithm to estimate f
- 2. Model Training and Assessment
 - 2.1 Use training data to fit prediction function estimate \hat{f}
 - 2.2 Use \hat{f} to predict outcomes $\hat{f}(x)$ using test set inputs

- 1. Data Collection and Processing
 - 1.1 Collect a set of n data points with p predictors
 - 1.2 Partition the data into a training (in-sample) and test (out-of-sample) set of observations
 - 1.3 Select a learning algorithm to estimate f
- 2. Model Training and Assessment
 - 2.1 Use training data to fit prediction function estimate \hat{f}
 - 2.2 Use \hat{f} to predict outcomes $\hat{f}(x)$ using test set inputs
 - 2.3 Evaluate whether \hat{f} good model by comparing predicted response $\hat{f}(x)$ (aka \hat{Y}) with true response Y

Data Set

Data: $(x_1, y_1), (x_2, y_2), \dots (x_n, y_n)$

Test and Training Set

Partition Data into Test and Training Set

Python Rec: Use sklearn.train_test_split

Step 2: Predict Outcome

Step 2: Predict Outcome

Step 3: Evaluate Test Predictions

$$\hat{f}(x)_{test} \approx Y_{test}$$
?

Common Supervised Models

- · OLS (bread and butter)
- Lasso and ridge
- · CART, esp. GBM and RF
- NN, esp. LSTM RNN and increasingly transformers
- Markov models

For good overview of examples, see Rod, Gasste, and Hegre (2024).

Deployment

- · Work with broader dev team
- Refactor code to be efficient
- Scale up process to larger and dynamic datasets
- · Deploy to production
- · Create automated pipelines for output and monitoring

Figure 6: Source: Yashaswi Nayak

Monitoring is a constant and iterative process

- Translate technical results back to non-technical terms.
- Provide end users actionable insights to better monitor, understand, and better manage risks.
- **Narratives from numbers:** data storytelling, written work, and other risk communications.

- Translate technical results back to non-technical terms.
- Provide end users actionable insights to better monitor, understand, and better manage risks.
- Narratives from numbers: data storytelling, written work, and other risk communications.

Unsupervised ML Products

Supervised ML Products

- Translate technical results back to non-technical terms.
- Provide end users actionable insights to better monitor, understand, and better manage risks.
- Narratives from numbers: data storytelling, written work, and other risk communications.

Unsupervised ML Products

Supervised ML Products

- Risk Monitoring
- Text Data \rightarrow Structured Data
- Index Creation
- Clusters
- · Scorecards and Dashboards

- Translate technical results back to non-technical terms.
- Provide end users actionable insights to better monitor, understand, and better manage risks.
- Narratives from numbers: data storytelling, written work, and other risk communications.

Unsupervised ML Products

- · Risk Monitoring
- $\bullet \ \, \text{Text Data} \to \text{Structured Data}$
- Index Creation
- Clusters
- · Scorecards and Dashboards

Supervised ML Products

- Risk Management
- (Trading) Algorithms
- Politically Oriented Risk Signals
- Forecasts
- LLM Tools

Conclusion

- · Real-world is interested in prediction more than inference
- ML for political risk aims to learn patterns and make good predictions about out-of-sample (test) data
- Picking best model means optimizing bias-variance trade-off
- ML Ops is an iterative process, requiring cross-functional skills (this is your super power: non-technical and technical, computational and social scientific)