

天津市区域能源站

——规划与实践

天津市建筑设计院 伍小亭

主要内容

- ♣ 发展
- ▲ 运作模式
- ◆ 技术形式
- ◆ 研究与实践

♣ 发展

♣ 发展 ——2014年

▶ 单体自建能源站 — 5座
 天津大学新校区1#、3#,
 南开大学新校区1#,
 滨海汽车园1座,
 东丽湖国家电网客服中心1座。

天津大学新校区能源站设计

发展 ——2014年

侯台1#、2#

万平米

解放南路1#、2#

40+55=95万平米

张贵庄能源站

天钢柳林1#、2#

20+14=34万平米

已完成招标

尚未招标

未实施

黑牛城道1#、2# 20+30=50万平米

- ♣ 发展 ——2015年
 - ▶ 2015年区域集中能源站:规划 11座。

- ♣ 发展 —— 十三五规划
 - ▶ 共计设置能源站85处197座,
 总供热面积约5575万平米。

▲ 区域能源规划

- ▶ 非城市级的,仅为园区级的;
- ▶ 非总体能源规划,仅为基于可再生能源的供冷供热的规划;
- ▶ 以工程规划(基于次城市级或城市级总体规划)为基础,

为区域能源站的建设提供前提和依据。

♣ 能源站运作模式

- ✓ 业主自建自营
- ✓ 自建他营
- ✓ 特许经营

▲ 运作模式—— 特许经营

特许经营,指由一家能源公司独立承担投资、建设、运营的全过程服务。

- ▶ 意义:作为项目投资商的能源公司全过程服务,通过高效的专业化节能服务,真正实现区域内的节能减排,同时向用户收取相应的能源使用费,实现公司的投资回报。
- > 投融资模式

建设-经营-移交(BOT)

公私合营制 (PPP)

- ▲ 运作模式—— 特许经营
 - > 运作流程

◆ 技术形式 —— 资源条件

深层地热异常区分布图

地下水地源热泵系统适应性分区

埋管地源热泵系统适应性分区

- ▶ 天津市处于属于断陷盆地型中低温地热资源,具有热储类型全、热储分布广、资源潜力大的特征;
- ▶ 处于适宜采用浅层地能开采方式区域;

◆ 技术形式 —— 多种系统耦合应用

- 1. 设有冷、热调峰的土壤源热泵系统; (地源热泵+冷却塔+燃气锅炉)
- 2. 带调峰的复合式三工况地源热泵系统;(地源热泵+冰蓄冷+冷却塔+热网)
- 3. 带调峰的地源热泵耦合水蓄能系统; (地源热泵+水蓄能+冷却塔+燃气锅炉)
- 4. 深层地热能耦合设有冷、热调峰的土壤源热泵系统; (深层地热梯级利用+地源热泵+冷却塔+燃气锅炉)
- 5. 结合城市污水厂的污水源热泵系统;

◆ 技术形式 —— 多种系统耦合应用

> 设有冷、热调峰的土壤源热泵系统;

• 技术构成: 埋管地源热泵+冷却塔+燃气锅炉

•系统示意:

• 代表项目:天津大学新校区A、C能源站

▲ 技术形式 —— 多种系统耦合应用

- ▶ 带调峰的复合式三工况地源热泵系统;
- 技术构成: 埋管地源热泵+冰蓄冷+冷却塔+热网
- 系统示意:

• 代表项目: 文化中心能源站

▲ 技术形式 —— 多种系统耦合应用

- ▶ 带调峰的地源热泵耦合水蓄能系统;
- 技术构成: 埋管地源热泵+水蓄能+冷却塔+燃气锅炉
- 系统示意:

• 代表项目:黑牛城道1#、2#能源站

◆ 技术形式 —— 多种系统耦合应用

- > 深层地热能耦合设有冷、热调峰的土壤源热泵系统;
- 技术构成:深层地热梯级利用+地源热泵+冷却塔+燃气锅炉
- 系统示意:

• 代表项目:解放南路1#、2#能源站

◆ 技术形式 —— 多种系统耦合应用

- > 结合城市污水厂的污水源热泵系统
- 技术构成:污水源热泵
- 系统示意:

• 代表项目: 东郊污水厂1#能源站

♣ 技术形式 —— 主要影响因素

资源条件 —— 地热、浅层地能、城市污水、工业余热

对象特征 —— 住宅、公建(办公/商业/文化/医疗)

适 宜 性 —— 由对象特征决定

经济评价 —— 财务意义上经济评价

♣ 研究与实践

- 规划与设计原则:
- 1. 技术方案成熟、可靠,从建筑能源应用角度体现可持续发展理念;
- 2. 充分利用项目所在地资源条件,合理利用可再生能源,避免市政资源浪费,实现节能、节水、低碳;
- 3. 符合建筑规划特点,降低项目建设对环境的不利影响 (热岛效应),最大限度减少冷、热源设施对景观的影响 (第五立面);
- 4. 符合行业管理要求,利于实施;
- 5. 通过集约化、专业化降低能源系统的初投资与运行费用;
- 6. 基于全生命周期成本评价技术方案优劣。

♣ 研究与实践

■ 基于模拟与运行数据长期观测的区域(冷、热)负荷预测;

区域能源站传统负荷获得方法:

- ▶ 面积指标估算法 —— 过于粗糙,往往偏大很多
- 提资法 —— 单体最大负荷叠加,负荷过大
- 单纯模拟法 —— 看似准确,但边界条件为单体末端所设

- ♣ 研究与实践
- 多重约束条件下多方案比选

约束

资源条件约束

技术水平约束

区域定位约束

投资规模约束

比选

能源利用等级

参数适应性

经济性

客观环境影响

城市景观影响性

某项目冷热源方案多因素比选汇总表

冷、热源形式。		鬼冷机+← 市政热网←		燃气直燃。 溴化锂。 冷、热、电。 冷、温水机组。 三联供。		埋管↓ 地源热泵←	曳冷机+↓ 市政热网+↓ 燃气热水机组↓		
能源利用等级。		60₽	73.3₽	73.3₽	86.6₽	100€	60₽		
权重赋值₽		0.15₽							
参数适应性₽		70₽	100₽	60₽	70₽	70₽	70₽		
权重赋值₽		0.25₽							
经↩	赤公₽	60₽	63₽	72₽	93₽	100₽	ę.		
济↩	商业₽	76₽	76₽ 87₽ 60₽		91₽	100₽	φ.		
性↩	酒店₽	ę.	4	60₽	98₽	78₽	100€		
权重赋值₽		0.4₽							
客观环境↓ 影响↓		84.2₽	83.9₽	66.1₽	70₽	90.1₽	67.7₽		
权重赋值₽		0.15₽							
城市景观↩		90₽	92₽	60₽	60₽		66₽		
权重赋值₽		0.05₽							
得₽	办公₽	67.6₽	78.5₽	67.5₽ 81.0₽		91.0₽	φ.		
分₽	商业	73.9₽	73.9\$\oplus 88.0\$\oplus 62.9\$\oplus 80.4\$\oplus \tag{80.4}		91.0₽	٩			
₽	酒店₽	ę.	₽	62.9₽	83.3₽	82.3₽	80.0₽		

♣ 研究与实践

■ 提高能源站效率的关键技术

- ▶ 准确的负荷预测 —— 提高能源站效率的关键所在
- 能源形式 —— 优先充分利用高效、经济的能源形式,并优化 利用方式;
- ▶ 优化配置 —— 主机、水泵的配置考虑部分负荷运行策略;
- 参数优化 —— 源侧参数、用户侧参数、地热梯级利用各级参数等
- ▶ 高效设备 —— 主机、水泵、调峰热源设备

♣ 研究与实践

■ 基于负荷预测与自适应的能源系统智能运行

实践 —— 文化中心集中能源站

> 能源站设置

规划设置三处集中能源站:南区站、北区站、西区站

> 负荷

冷、热源站名称	服务建筑面积 (万m²)	冷负荷 (MW)	热负荷 (MW)
北区能源站	14.9	18.48	10.58
西区能源站	49.07	44.33	25.4
南区能源站	26.81	27.35	19.10
总计	90.0	90.16	55.08

✓ 平均冷负荷指标:100.2W/m²

✓ 平均热负荷指标: 61.2W/m²

> 总体思路

> 总体方案

带冷、热调峰的复合式三工况地源热泵系统

- ▶ 冷调峰 —— 冷却塔
- 热调峰 —— 市政热网(25%)
- ▶ 复合式 —— 复合以冰蓄冷系统
- ▶ 三工况 —— 制冷、制热、制冰
- ▶ 地源热泵 —— 南区、北区:垂直埋管土壤源热泵系统

西区:浅层地下水水源热泵系统

> 埋管与浅井

天津市建筑设计院 TIANJIN ARCHITECTURE DESIGN INSTITUTE

> 主要设备配置

站房	空调负荷 (kV		蓄冷量 (kWh/RTh)	调峰 冷却塔 (m³/h)	调峰 热负荷 (kW)	调峰换热器负 荷	
	冷	热				(kW)	
西	44330	25401	119465/34000	4500	7341	8442	
南	27351	20457	77000/21900	1500	5215	5997	
北	18476	10579	57685/16406	1000	2679	3081	

站房	空调负荷冷/热 (kW)		设计日 冷负荷	三工况主机负荷 冷/冰/热(kW)		台数	基载主机负荷冷/热 (kW)		台数	
	冷	热	(kWh)	冷	冰	热	**	冷	热	
西	44330	25401	505488	3650	2263	4015	6	2217	2438	2
南	27351	20457	360478	2865	1776	3150	5	2100	2310	2
北	18476	10579	209998	2326	1442	3200	5			

逐时负荷分布与融冰供冷匹配(以北区站为例)

75%负荷

> 管网布置

> 实践 —— 文化中心

- 安全、高效、低碳、经济,运行了4年;
- 经独立第三方研究, 供冷/热季系统综合能效>3(含一次泵);

♣ 体会

- 尽管进行了详细的负荷计算,但冷热负荷容量依然偏大,约15%~25%;
- 尽管经过认真的水力计算,实际运行数据表明水泵扬程依然偏高;
- 尽管对于闭式水系统不应有"并联损失",实际运行表明并联运行台数超过三台时,并联损失明显;
- 大规模井群并未出现想象的核心区域显著恶化的现象;
- 尽管土壤换热器24小时工作,但换热效果依然能够保证;
- 土壤换热器的恢复能力比想象的好, 没有明显的季节热堆积现象出现;
- 浅层地下水经尽管采用"以灌定采、一采一灌"形式设置,但回灌情况依然不理想;
- 蓄能系统地采用确有明显的经济效益;
- 实测系统COP与设计工况系统COP之比为0.9;

谢 谢!