Group Theory

Involutions

by Lukas Wrana

Table of contents

- 01 Fundamentals
- 02 Main theorem
- 03 Counter example

Chapter 01

Fundamentals

Definition

A **Group** is an ordered pair (G,*) of a set G and a binary operator

$$*: egin{cases} G imes G o G\ (a,b)\mapsto a*b \end{cases}$$

that satisfies the group axioms:

Associativity

$$orall a,b,c\in G: \quad (a*b)*c=a*(b*c)$$

Identity element

$$\exists e \in G$$
 such that $\forall a \in G$: $a*e=e*a=a$

Inverse element

$$orall g \in G \ \exists a^{-1} \in G: \quad a*a^{-1} = a^{-1}*a = e$$

Definition

Given two groups, (G,*) and (H,\cdot) , a group homomorphism from (G,*) to (H,\cdot) is a function

$$f:\ G\to H$$

such that $\forall u,v\in G$ it holds that

$$f(u*v) = f(u) \cdot f(v)$$

Further remarks

From this property, we can also deduce that

- $\bullet \quad f(e_G)=e_H$
- $ullet f(u^{-1}) = h(u)^{-1}$

Definition

An <u>automorphism</u> is a bijective homomorphism of an object into itself.

Definiton

Given a group (G,st), a group automorphism σ is an <code>involution</code>, if

$$\sigma(\sigma(x)) = x \qquad orall x \in G$$

Definiton

An involution σ on a group (G,*) has <u>no non-trivial-fixpoints</u> if the identity element $e \in G$ is the only fixpoint of σ :

$$orall g \in G: \quad (\ \sigma(g) = g \Rightarrow g = e\)$$

We call $e \in G$ a trivial fixpoint of σ .

Lemma

Every group (G,*) has a trivial involution, namely the identity id.

proof:

Let (G,*) be an arbitrary Group. For every $x\in G$:

$$x=\operatorname{id}(x)=\operatorname{id}(\operatorname{id}(x))$$

 \Rightarrow id is an involution.

Example

Real negation

$$-: \left\{egin{array}{l} \mathbb{R}
ightarrow \mathbb{R}, \ x \mapsto -x \end{array}
ight.$$

is an involution on $(\mathbb{R},+)$.

proof:

For $x,y\in\mathbb{R}$:

$$-(x+y)=-x+(-y)$$

and

$$x=-(-x)=-(-(x))$$

... \Rightarrow real negation is an involution on $(\mathbb{R},+)$.

Chapter 02 Main theorem

Theorem

Let (G,*) be a finite group. If an involution with no non-trivial fixpoints on (G,*) exists, then (G,*) is commutative.

proof: Later ...

Lemma

Let (G,*) be a finite group and σ be an involution on G. If σ has no non-trivial fixpoints, then:

$$orall g \in G \ \exists x \in G: \quad g = x^{-1} * \sigma(x)$$

proof:

In essence, we want to show surjectivity of a function:

$$x \mapsto x^{-1} * \sigma(x)$$

Because G is finite, we can conclude surjectivity by injectivity.

So, lets prove injectivity...

Suppose $x,y\in G$ with $x^{-1}*\sigma(x)=y^{-1}*\sigma(y)$.

$$x = \sigma(\sigma(x)) \tag{1}$$

$$= \sigma(x * x^{-1} * \sigma(x)) \tag{2}$$

$$= \sigma(x * y^{-1} * \sigma(y)) \tag{3}$$

$$= \sigma(x) * \sigma(y^{-1}) * \sigma(\sigma(y)) \tag{4}$$

$$= \sigma(x) * \sigma(y^{-1}) * y \tag{5}$$

$$\Rightarrow x * y^{-1} = \sigma(x) * \sigma(y^{-1}) \tag{6}$$

$$= \sigma(x * y^{-1}) \tag{7}$$

We have no non-trivial fixpoints, so $x * y^{-1}$ has to be the trivial fixpoint:

$$\Rightarrow x * y^{-1} = e$$
 $\Leftrightarrow x = y$

 $\Rightarrow x \mapsto x^{-1} * \sigma(x)$ is injective.

Since G is finite, we can conclude that $x\mapsto x^{-1}*\sigma(x)$ is also surjective on G.

$$\Rightarrow orall g \in G \ \exists x \in G: \quad g = x^{-1} * \sigma(x)$$

Lemma

Let (G,*) be a finite group and σ be an involution on G. If σ has no non-trivial fixpoints, then:

$$orall g \in G: \quad \sigma(g) = g$$

proof:

In the previous Lemma, we showed that

$$\forall g \in G \ \exists x \in G: \quad g = x^{-1} * \sigma(x)$$

We can expand on that result:

$$\Rightarrow \sigma(g) = \sigma(x^{-1} * \sigma(x))$$
(8)
= $\sigma(x^{-1}) * \sigma(\sigma(x))$ (9)
= $\sigma(x^{-1}) * x$ (10)
= $(\sigma(x))^{-1} * x$ (11)
= $(x^{-1} * \sigma(x))^{-1}$ (12)

(13)

Theorem

Let (G, *) be a finite group. If an involution with no non-trivial fixpoints on (G, *) exists, then (G, *) is commutative.

= b * a

proof:

Let $a,b\in G$.

$$a * b = (a^{-1})^{-1} * (b^{-1})^{-1}$$
 (14)
 $= (b^{-1} * a^{-1})^{-1}$ (15)
 $= \sigma(b^{-1} * a^{-1})$ (16)
 $= \sigma(b^{-1}) * \sigma(a^{-1})$ (17)

(18)

$$\Rightarrow$$
 $(G,*)$ is commutative

Chapter 03

Counter example

Definiton

A <u>free group</u> $(F_S, *)$ over a given set S consists of all words that can be build by elements of S or their inverse.

Elements of S are called **generators**. Two constructed words are considered different unless their equality follows from the group axioms.

Universal property

Given any function f from S to a group (G,st), there exists a unique homomorphism

$$\phi: F_S \mapsto G$$

Counter-Example

We will look at a free group $(F_2,*)$ on two generators $\{a,b\}$:

 $e, \quad ab, \quad a^{-1}bb, \quad a^{-1}bbaab^{-1}a, \quad ...$

We can define an automorphism s that swaps the generators over a free group $(F_2,*)$.

$$s(x) := \left\{egin{array}{ll} a, & ext{if} \,\, x = b \ b, & ext{if} \,\, x = a \end{array}
ight.$$

This function is just defined on the generators, but by the universal property of free groups, it also constructs a unique automorphism on the whole group.