How to apply to college

Max Kapur

March 4, 2022

Abstract

This paper considers the maximization of the expected maximum value of a portfolio of random variables subject to a budget constraint. We refer to this as the optimal college application problem. When each variable's cost, or each college's application fee, is identical, we show that the optimal portfolios are nested in the budget constraint, yielding an exact polynomial-time algorithm. When colleges differ in their application fees, we show that the problem is NP-complete. We provide three algorithms for this more general setup. The first is a branch-and-bound routine. The second is an dynamic program that produces an exact solution in pseudopolynomial time. The third is a fully polynomial-time approximation scheme.

요약

본 논문은 다수의 확률 변수로 구성된 포트폴리오의 기대 최적값을 예산 조건 하에서 최대화하는 문제를 고려한다. 이를 최적 대학 지원 문제라고 부른다. 각 확률 변수의 비용, 즉 각대학의 지원비가 동일한 경우, 최적 포트폴리오는 예산 제약식으로 결정된 포함 사슬 관계를 가짐을 보이고 이에 따라 다항 시간 해법을 제시한다. 대학의 지원비가 서로 다른 경우, 문제가 NP-complete함을 증명한다. 일반적인 상황을 위해 세 가지 해법을 도출한다. 첫째는 분지한계 기반 해법이다. 둘째는 의사 다항 시간 안에 정확한 해를 출력하는 동적 계획이다. 셋째는 전체 다항 시간 근사 해법이다.

Contents

1	Intr 1.1	oduction Structure of this paper	3
2		ation and preliminary results	5
3	Homogeneous application costs		6
	3.1	Approximation properties of a naïve solution	6
	3.2	The nestedness property	7
	3.3	Polynomial-time solution	9
	3.4	Properties of the optimal portfolios	10
4	Hete	erogeneous application costs	12
	4.1	NP-completeness	12
	4.2	Branch-and-bound algorithm	13
	4.3	Pseudopolynomial-time dynamic program	16
	4.4	Fully polynomial-time approximation scheme	17
5	(WIP) Numerical experiments		21
6	6 Conclusion		23
7	References		24

1 Introduction

This paper considers the portfolio optimization problem

maximize
$$\mathbb{E}\left[\max\{t_0, \max\{t_j Z_j : j \in \mathcal{X}\}\}\right]$$

subject to $\mathcal{X} \subseteq \mathcal{C}, \sum_{j \in \mathcal{X}} g_j \leq H$ (1)

where $C = \{1 \dots m\}$ is an index set, H is a budget parameter, and for $j = 1 \dots m$, $g_j > 0$ is a cost parameter, Z_j is a random, independent Bernoulli variable with probability f_j .

We refer to this problem as the *optimal college application portfolio*, as follows: Consider a college market with m colleges. The jth college is named c_j . Consider a single prospective student in this market, and let each t_j -value indicate the utility she associates with attending c_j , where her utility is t_0 if she does not attend college. Let g_j denote the application fee for c_j and H the student's total budget to spend on application fees. Lastly, let f_j denote her probability of being admitted to c_j if she applies, so that Z_j equals one if she is admitted and zero if not. It is appropriate to assume that the Z_j are probabilistically independent as long as f_j are probabilities estimated specifically for this student (as opposed to generic acceptance rates). Then the student's objective is to maximize the expected utility associated with the best school she gets into within this budget. Her optimal college application strategy is given by the solution $\mathcal X$ to the problem above, where $\mathcal X$ represents the set of schools to which she applies.

As Chao (2014) remarked, college application represents a somewhat subtle portfolio optimization problem. In computational finance, traditional portfolio optimization models weigh the expected profit across all assets against a risk term, yielding a concave maximization problem with linear constraints (Meucci 2005). But college applicants maximize the value of their best asset: If a student is admitted to her jth choice, then she is indifferent as to whether she gets into her (j+1)th choice. As a result, the valuation function that students maximize is convex in the expected utility associated with individual applications. Risk management is implicit in the college application problem because, in a typical admissions market, college preferability is negatively correlated with competitiveness. That is, students negotiate a tradeoff between highly attractive, selective "reach schools" and less preferable "safety schools" where admission is a safer bet (Kim 2015). Finally, the combinatorial nature of the college application problem makes it difficult to solve using the gradient-based techniques used in continuous portfolio optimization. Chao estimated her model (which considers application as a cost rather than a constraint) by clustering the schools so that m=8, a scale at which enumeration is tractable. Our study pursues a more general solution.

We take special interest in the validity of greedy solution algorithms, such as that that iteratively adds the asset that yields the greatest increase in the objective function until the budget is exhausted. Greedy algorithms produce a *nested* family of solutions, parameterized by the budget H: If $H \leq H'$, then the greedy solution for budget H is a subset of the greedy solution for budget H'. As Rozanov and Tamir (2020) remark, the knowledge that the optima are nested aids not only in computing the optimal solution, but in the implementation thereof under uncertain information. For example, in the United States, many college applications are due at the beginning of November, and it is typical for students to begin working on their applications during

the prior summer because colleges expect students to tailor their essays to the target school. However, students may not know how many schools they can afford to apply to until late October. The nestedness property—or equivalently, the validity of a greedy algorithm—implies that even in the absence of complete budget information, students can begin to carry out the optimal application strategy by writing essays for schools in the order that they enter the maximal portfolio.

For certain classes of optimization problems, such as maximizing a submodular set function over a cardinality constraint, a greedy algorithm is known to be a good approximate solution and exact under certain additional assumptions (Fisher et al. 1978). For other problems, notably the binary knapsack problem, the most intuitive greedy algorithm can be made to perform arbitrarily poorly (Vazirani 2001). We show analogous results for the college application problem: In the special case where each $g_j=1$, the optimal portfolio satisfy a nestedness property that is equivalent to the validity of the greedy algorithm. This case mirrors the centralized college application process in Korea, where there is no application fee, but students are allowed to apply to only three schools during the main admissions cycle. Unfortunately, the nestedness property does not hold in the general case, nor does the greedy algorithm offers any performance guarantee. Instead, we offer a pseudopolynomial-time algorithm that is tractable for typical college market instances, as well as an approximation scheme that produces a $(1-\varepsilon)$ -optimal solution in fully polynomial time.

1.1 Structure of this paper

Section 2 introduces some additional notation and assumptions that can be imposed with trivial loss of generality.

In section 3, we solve the special case where each $g_j = 1$ and H is an integer $h \le m$. We show that an intuitive heuristic is in fact a 1/h-approximation algorithm. Then, we show that the optimal portfolios are nested in the budget constraint, which yields an exact algorithm that runs in O(hm)-time.

In section 4, we turn to the scenario in which colleges differ in their application fees. We show that the decision form of the portfolio optimization problem is NP-complete through a reduction from the binary knapsack problem. We provide three algorithms for this more general setup. The first is a branch-and-bound routine. The second is a dynamic program that iterates on total expenditures and produces an exact solution in pseudopolynomial time, namely $O(Hm + m \log m)$. The third is a dynamic program that iterates on truncated portfolio valuations. It yields a fully polynomial-time approximation scheme that produces a $(1 - \varepsilon)$ -optimal solution in $O(m^3/\varepsilon)$ time.

In section 5, we present the results of computational experiments that confirm the validity and time complexity results established in the previous two sections.

2 Notation and preliminary results

Before discussing the solution algorithms, we will introduce some additional notation and a few preliminary results that will come in handy.

For the remainder of the paper, unless otherwise noted, we assume with trivial loss of generality that each $g_j \leq H$, each $f_j \in (0,1]$, and $t_0 < t_1 \leq \cdots \leq t_m$. Below, we will show how to transform an arbitrary instance so that $t_0 = 0$, in which case each $t_j > 0$.

We refer to the set $\mathcal{X} \subseteq \mathcal{C}$ of schools to which a student applies as her *application portfolio*. The expected utility the student receives from \mathcal{X} is called its *valuation*.

Definition 1 (Portfolio valuation function). $v(\mathcal{X}) = \mathbb{E}\left[\max\{t_0, \max\{t_j Z_j : j \in \mathcal{X}\}\}\right]$.

It is helpful to define the random variable $X = \max\{t_j Z_j : j \in \mathcal{X}\}$ as the utility achieved by the schools in the portfolio, so that when $t_0 = 0$, $v(\mathcal{X}) = \mathrm{E}[X]$. Similar pairs of variables with italic and script names such as \mathcal{Y}_h and Y_h carry an analogous meaning.

Given an application portfolio, let $p_j(\mathcal{X})$ denote the probability that the student attends c_j . This occurs if and only if she *applies* to c_j , is *admitted* to c_j , and is *rejected* from any school she prefers to c_j ; that is, any school with higher index. Hence, for $j = 0 \dots m$,

$$p_{j}(\mathcal{X}) = \begin{cases} f_{j} \prod_{\substack{i \in \mathcal{X}:\\i > j}} (1 - f_{i}), & j \in \{0\} \cup \mathcal{X}\\0, & \text{otherwise} \end{cases}$$
 (2)

where the empty product equals one. The following proposition follows immediately.

Proposition 1 (Closed form of portfolio valuation function).

$$v(\mathcal{X}) = \sum_{j=0}^{m} t_j p_j(\mathcal{X}) = \sum_{j \in \{0\} \cup \mathcal{X}} \left(t_j f_j \prod_{\substack{i \in \mathcal{X}:\\i > j}} (1 - f_i) \right)$$
(3)

Next, we show that without loss of generality, we may assume that $t_0 = 0$ (or any constant less than t_1).

Theorem 1. Let $\bar{t}_j = t_j - \gamma$ for $j = 0 \dots m$. Then $v(\mathcal{X}; \bar{t}_j) = v(\mathcal{X}; t_j) - \gamma$ regardless of \mathcal{X} .

Proof. By definition, $\sum_{j=0}^m p_j(\mathcal{X}) = \sum_{j \in \{0\} \cup \mathcal{X}} p_j(\mathcal{X}) = 1$. Therefore

$$v(\mathcal{X}; \bar{t}_j) = \sum_{j \in \{0\} \cup \mathcal{X}} \bar{t}_j p_j(\mathcal{X}) = \sum_{j \in \{0\} \cup \mathcal{X}} (t_j - \gamma) p_j(\mathcal{X})$$

$$\tag{4}$$

$$= \sum_{j \in \{0\} \cup \mathcal{X}} t_j p_j(\mathcal{X}) - \gamma = v(\mathcal{X}; t_j) - \gamma \tag{5}$$

which completes the proof.

3 Homogeneous application costs

In this section, we derive a polynomial-time algorithm for the special case in which $g_j=1$ and H is a constant $h \leq m$. This case is similar to the centralized college admissions process in Korea, where there is no application fee, but by law, students are allowed to apply to no more than h schools. (In the Korean case, m=202 and h=3.) Applying Theorem 1, we assume that $t_0=0$ unless otherwise noted. Throughout this section, we will call the applicant Alma, and refer to the corresponding optimization problem as Alma's problem.

Problem 1 (Alma's problem). Alma's optimal college application portfolio is given by the solution to the following combinatorial optimization problem:

$$\text{maximize} \quad v(\mathcal{X}) = \sum_{j \in \mathcal{X}} \Big(t_j f_j \prod_{\substack{i \in \mathcal{X}: \\ i > j}} (1 - f_i)$$
 subject to $\mathcal{X} \subseteq \mathcal{C}, \quad |\mathcal{X}| \le h$ (6)

3.1 Approximation properties of a naïve solution

The expected utility associated with a single school c_j is simply $E[t_j Z_j] = t_j f_j$. It is therefore tempting to adopt the following strategy, which turns out to be inoptimal.

Definition 2 (Naïve algorithm for Alma's problem). Apply to the h schools having the highest expected utility $t_j f_j$.

The basic error of this algorithm is that it maximizes $E\left[\sum t_j Z_j\right]$ instead of $E\left[\max\{t_j Z_j\}\right]$. The latter is what Alma is truly concerned with, since in the end she can attend only one school. The following example shows that the naïve algorithm can produce a suboptimal solution.

Example 1. Suppose m=3, h=2, t=(70,80,90), and f=(0.4,0.4,0.3). Then the naïve algorithm picks $\mathcal{T}=\{1,2\}$ with $v(\mathcal{T})=70(0.4)(1-0.4)+80(0.4)=48.8$. But $\mathcal{X}=\{2,3\}$ with $v(\mathcal{X})=80(0.4)(1-0.3)+90(0.3)=49.4$ is the optimal solution.

In fact, the naïve algorithm is a (1/h)-approximation algorithm for Alma's problem, as expressed in the following theorem.

Theorem 2. When the application limit is h, let \mathcal{X}_h denote the optimal portfolio, and \mathcal{T}_h the set of the h schools having the largest values of $t_j f_j$. Then $v(\mathcal{T}_h)/v(\mathcal{X}_h) \geq 1/h$.

Proof. Because \mathcal{T}_h maximizes the quantity $\mathbb{E}\left[\sum_{j\in\mathcal{T}_h}\{t_jZ_j\}\right]$, we have

$$v(\mathcal{X}_{h}) = \mathbb{E}\left[\max_{j \in \mathcal{X}_{h}} \{t_{j}Z_{j}\}\right] \leq \mathbb{E}\left[\sum_{j \in \mathcal{X}_{h}} \{t_{j}Z_{j}\}\right] \leq \mathbb{E}\left[\sum_{j \in \mathcal{T}_{h}} \{t_{j}Z_{j}\}\right]$$

$$= h \,\mathbb{E}\left[\frac{1}{h} \sum_{j \in \mathcal{T}_{h}} \{t_{j}Z_{j}\}\right] \leq h \,\mathbb{E}\left[\max_{j \in \mathcal{T}_{h}} \{t_{j}Z_{j}\}\right] = h \,v(\mathcal{T}_{h})$$
(7)

where the final inequality follows from the concavity of the $\max\{\}$ operator.

The following example establishes the tightness of the approximation factor.

Example 2. Pick any h and let m = 2h. For a small constant $\varepsilon \in (0, 1)$, let

$$t = \left(\underbrace{1,\dots,1}_h,\ \underbrace{\varepsilon^{-1},\varepsilon^{-2},\dots,\varepsilon^{-(h-1)},\varepsilon^{-h}}_h\right)$$
 and
$$f = \left(\underbrace{1,\dots,1}_h,\ \underbrace{\varepsilon^1,\varepsilon^2,\dots,\varepsilon^{h-1},\varepsilon^h}_h\right)$$

Since all $t_j f_j = 1$, the naïve algorithm can choose $\mathcal{T}_h = \{1, \dots, h\}$, with $v(\mathcal{T}_h) = 1$. But the optimal solution is $\mathcal{X}_h = \{h+1, \dots, m\}$, with

$$v(\mathcal{X}_h) = \sum_{j=h+1}^m \left(t_j f_j \prod_{j'=j+1}^m (1 - f_{j'}) \right) = \sum_{j=1}^h (1 - \varepsilon)^j \approx h.$$

Thus, as ϵ approaches zero, we have $v(\mathcal{T}_h)/v(\mathcal{X}_h) \to 1/h$. (The optimality of \mathcal{X}_h follows from the fact that it achieves the upper bound of Theorem 7.)

Corollary 1. The function $v(\mathcal{X})$ is not submodular.

Proof. If $v(\mathcal{X})$ is submodular, then theorem 4.2 of Fisher et al. (1978) implies that the naïve algorithm achieves an optimality ratio of $v(\mathcal{T}_h)/v(\mathcal{X}_h) \geq 1 - \left(\frac{h-1}{h}\right)^h$. Example 2 provides a counterexample.

Hope is not lost. We can still find the optimal solution in time polynomial in h and m, as we will now show.

3.2 The nestedness property

It turns out that the solution to Alma's problem possesses a special structure: An optimal portfolio of size h+1 includes an optimal portfolio of size h as a subset.

Theorem 3 (Nestedness of optimal application portfolios). There exists a sequence of portfolios $\{\mathcal{X}_h\}_{h=1}^m$ satisfying the nestedness relation

$$\mathcal{X}_1 \subset \mathcal{X}_2 \subset \cdots \subset \mathcal{X}_m.$$
 (8)

such that each X_h is an optimal application portfolio when the application limit is h.

Proof. By induction on h. Applying Theorem 1, we assume that $t_0 = 0$.

(Base case.) First, we will show that $\mathcal{X}_1 \subset \mathcal{X}_2$. To get a contradiction, suppose that the optima are $\mathcal{X}_1 = \{j\}$ and $\mathcal{X}_2 = \{k, l\}$, where we may assume that $t_k \leq t_l$. Optimality requires that

$$v(\mathcal{X}_1) = f_j t_j > v(\{k\}) = f_k t_k \tag{9}$$

and

$$v(\mathcal{X}_2) = f_k(1 - f_l)t_k + f_l t_l > v(\{j, l\})$$
(10)

$$= f_j(1 - f_l)t_j + (1 - f_j)f_lt_l + f_jf_l \max\{t_j, t_l\}$$
 (11)

$$\geq f_j(1 - f_l)t_j + (1 - f_j)f_lt_l + f_jf_lt_l \tag{12}$$

$$= f_i(1 - f_l)t_i + f_l t_l \tag{13}$$

$$\geq f_k(1 - f_l)t_k + f_l t_l = v(\mathcal{X}_2) \tag{14}$$

which is a contradiction.

(Inductive step.) Assume that $\mathcal{X}_1 \subset \cdots \subset \mathcal{X}_h$, and we will show $\mathcal{X}_h \subset \mathcal{X}_{h+1}$. Let $k = \arg \max\{t_k : k \in \mathcal{X}_{h+1}\}$ and write $\mathcal{X}_{h+1} = \mathcal{Y}_h \cup \{k\}$.

Suppose $k \notin \mathcal{X}_h$. To get a contradiction, assume that $v(\mathcal{Y}_h) < v(\mathcal{X}_h)$. Then

$$v(\mathcal{X}_{h+1}) = v(\mathcal{Y}_h \cup \{k\})$$

$$= (1 - f_k)v(\mathcal{Y}_h) + f_k t_k$$

$$< (1 - f_k)v(\mathcal{X}_h) + f_k \operatorname{E}[\max\{t_k, X_h\}]$$

$$= v(\mathcal{X}_h \cup \{k\})$$
(15)

contradicts the optimality of \mathcal{X}_{h+1} .

Now suppose that $k \in \mathcal{X}_h$. We can write $\mathcal{X}_h = \mathcal{Y}_{h-1} \cup \{k\}$, where \mathcal{Y}_{h-1} is some portfolio of size h-1. It suffices to show that $\mathcal{Y}_{h-1} \subset \mathcal{Y}_h$. By definition, \mathcal{Y}_{h-1} (respectively, \mathcal{Y}_h) maximizes the function $v(\mathcal{Y} \cup \{k\})$ over portfolios of size h-1 (respectively, h) that do not include k. That is, \mathcal{Y}_{h-1} and \mathcal{Y}_h are the optimal *complements* to the singleton portfolio $\{k\}$.

We will use the function $w(\mathcal{Y})$ to grade portfolios $\mathcal{Y} \subseteq \mathcal{C} \setminus \{k\}$ according to how well they complement $\{k\}$. To construct $w(\mathcal{Y})$, let \tilde{t}_j denote the expected utility Alma receives from school c_j given that she has been admitted to c_j and applied to c_k . For j < k, including j = 0, this is $\tilde{t}_j = t_j(1 - f_k) + t_k f_k$; for j > k, this is $\tilde{t}_j = t_j$. This means that

$$v(\mathcal{Y} \cup \{k\}) = \sum_{j \in \{0\} \cup \mathcal{Y}} \tilde{t}_j p_j(\mathcal{Y}). \tag{16}$$

The transformation to \tilde{t} does not change the order of the t_j -values. Therefore, the expression on the right side of (16) is itself a portfolio valuation function. In the corresponding market, t is replaced by \tilde{t} and \mathcal{C} is replaced by $\mathcal{C} \setminus \{k\}$. Now, we obtain $w(\mathcal{Y})$ through one more transformation: Define $\bar{t}_j = \tilde{t}_j - \tilde{t}_0$ so that $t_0 = 0$ and let

$$w(\mathcal{Y}) = \sum_{j \in \{0\} \cup \mathcal{Y}} \bar{t}_j p_j(\mathcal{Y}) = \sum_{j \in \{0\} \cup \mathcal{Y}} \tilde{t}_j p_j(\mathcal{Y}) - \tilde{t}_0 = v(\mathcal{Y} \cup \{k\}) - t_k f_k \tag{17}$$

where the second equality follows from Theorem 1. This identity says that the optimal complements to $\{k\}$, given by \mathcal{Y}_{h-1} and \mathcal{Y}_h , are themselves optimal portfolios of size h-1 and h for the market whose objective function is $w(\mathcal{Y})$. Since $\bar{t}_0=0$ in the latter market, the inductive hypothesis implies that $\mathcal{Y}_{h-1}\subset\mathcal{Y}_h$, which completes the proof. \square

¹We thank Yim Seho for discovering this critical transformation.

3.3 Polynomial-time solution

Applying the result above yields an efficient algorithm for the optimal portfolio: Start with the empty set and add schools one at a time, maximizing $v(\mathcal{X} \cup \{k\})$ at each addition. Sorting t is $O(m \log m)$. At each of the h iterations, there are O(m) candidates for k, and computing $v(\mathcal{X} \cup \{k\})$ is O(h) using (3); therefore, the time complexity of this algorithm is $O(h^2m + m \log m)$.

We reduce the computation time to O(hm) by taking advantage of the transformation from the inductive step in the proof of Theorem 3. Once school k is added to \mathcal{X} , we remove it from the set $\mathcal{C} \setminus \mathcal{X}$ of candidates, and update the t_j -values of the remaining schools according to the following transformation:

$$\bar{t}_j = \begin{cases} t_j (1 - f_k), & t_j \le t_k \\ t_j - t_k f_k, & t_j > t_k \end{cases}$$
 (18)

It is easy to verify that this is the composition of the two transformations (from t to \tilde{t} , and from \tilde{t} to \bar{t}) given in the proof. Now, the *next* school added must be the optimal singleton portfolio in the modified market. But the optimal singleton portfolio consists simply of the school with the highest value of $f_j\bar{t}_j$. Therefore, by updating the t_j -values at each iteration according to (18), we eliminate the need to compute $v(\mathcal{X})$ entirely. Moreover, this algorithm does not require the schools to be indexed in ascending order by t_j , which removes the $O(m\log m)$ sorting cost.

The algorithm below outputs a list X of the h schools to which Alma should apply. The schools appear in the order of entry such that when the algorithm is run with h=m, the optimal portfolio of size h is given by $\mathcal{X}_h=\{\mathtt{X}[\mathtt{1}],\ldots,\mathtt{X}[\mathtt{h}]\}$. The entries of the list V give the valuation thereof.

Algorithm 1: Optimal portfolio algorithm for Alma's problem.

```
Data: Utility values t \in [0, \infty)^m, admissions probabilities f \in [0, 1]^m, application
             limit h \leq m.
 1 \mathcal{C} \leftarrow \{1 \dots m\};
 2 X, V \leftarrow empty lists;
 3 for i = 1 ... h do
         k \leftarrow \arg\max_{j \in \mathcal{C}} \{f_j t_j\};
         \mathcal{C} \leftarrow \mathcal{C} \setminus \{k\};
 5
         append!(X, k);
         if i = 1 then append!(V, f_k t_k) else append!(V, V[i - 1] + f_k t_k);
         for j \in \mathcal{C} do
 8
              if t_j \le t_k then t_j \leftarrow t_j (1 - f_k) else t_j \leftarrow t_j - f_k t_k;
 9
         end
10
11 end
12 return X, V
```

Theorem 4 (Validity of Algorithm 1). Algorithm 1 produces an optimal application portfolio for Alma's problem in O(hm) time.

Proof. Optimality follows from the proof of Theorem 3. Suppose C is stored as a list. Then at each of the h iterations of the main loop, finding the top school costs O(m), and the t_i -

values of the remaining O(m) schools are each updated in unit time. Therefore, the overall time complexity is O(hm).

In our numerical experiments, we found it effective to store \mathcal{C} as a binary max heap rather than a list. The heap is ordered according to the criterion $i \geq j \iff f_i t_i \geq f_j t_j$. Nominally, using a heap increases the cost of the main loop from O(hm) to $O(hm\log m)$ because the heap is rebalanced when each t_j -value is updated. However, typical problem instances do not achieve this upper bound because the order of the $f_j t_j$ -values changes only slightly between iterations. The cost of updating each t_j -value can be reduced to unit time using a Fibonacci heap (Fredman and Tarjan 1987), yielding the same overall computation time.

3.4 Properties of the optimal portfolios

The nestedness property implies that Alma's expected utility is a discretely concave function of h.

Theorem 5 (Optimal portfolio valuation concave in h). For $h = 2 \dots (m-1)$,

$$v(\mathcal{X}_h) - v(\mathcal{X}_{h-1}) \ge v(\mathcal{X}_{h+1}) - v(\mathcal{X}_h). \tag{19}$$

Proof. We will prove the equivalent expression $2v(\mathcal{X}_h) \geq v(\mathcal{X}_{h+1}) + v(\mathcal{X}_{h-1})$. Applying Theorem 3, we write $\mathcal{X}_h = \mathcal{X}_{h-1} \cup \{j\}$ and $\mathcal{X}_{h+1} = \mathcal{X}_{h-1} \cup \{j,k\}$. Define the random variables X_i as above. If $t_k \leq t_j$, then

$$2v(\mathcal{X}_{h}) = v(\mathcal{X}_{h-1} \cup \{j\}) + v(\mathcal{X}_{h-1} \cup \{j\})$$

$$\geq v(\mathcal{X}_{h-1} \cup \{k\}) + v(\mathcal{X}_{h-1} \cup \{j\})$$

$$= v(\mathcal{X}_{h-1} \cup \{k\}) + (1 - f_{j})v(\mathcal{X}_{h-1}) + f_{j} \operatorname{E}[\max\{t_{j}, X_{h-1}\}]$$

$$= v(\mathcal{X}_{h-1} \cup \{k\}) - f_{j}v(\mathcal{X}_{h-1}) + f_{j} \operatorname{E}[\max\{t_{j}, X_{h-1}\}] + v(\mathcal{X}_{h-1})$$

$$\geq v(\mathcal{X}_{h-1} \cup \{k\}) - f_{j}v(\mathcal{X}_{h-1} \cup \{k\}) + f_{j} \operatorname{E}[\max\{t_{j}, X_{h-1}\}] + v(\mathcal{X}_{h-1})$$

$$= (1 - f_{j})v(\mathcal{X}_{h-1} \cup \{k\}) + f_{j} \operatorname{E}[\max\{t_{j}, X_{h-1}\}] + v(\mathcal{X}_{h-1})$$

$$= v(\mathcal{X}_{h-1} \cup \{j, k\}) + v(\mathcal{X}_{h-1})$$

$$= v(\mathcal{X}_{h+1}) + v(\mathcal{X}_{h-1}).$$
(20)

The first inequality follows from the optimality of \mathcal{X}_h , while the second follows from the fact that adding k to \mathcal{X}_{h-1} can only increase its valuation.

If $t_k \ge t_j$, then the steps are analogous:

$$2v(\mathcal{X}_{h}) = v(\mathcal{X}_{h-1} \cup \{j\}) + v(\mathcal{X}_{h-1} \cup \{j\})$$

$$\geq v(\mathcal{X}_{h-1} \cup \{k\}) + v(\mathcal{X}_{h-1} \cup \{j\})$$

$$= (1 - f_{k})v(\mathcal{X}_{h-1}) + f_{k} \operatorname{E}[\max\{t_{k}, X_{h-1}\}] + v(\mathcal{X}_{h-1} \cup \{j\})$$

$$= v(\mathcal{X}_{h-1}) - f_{k}v(\mathcal{X}_{h-1}) + f_{k} \operatorname{E}[\max\{t_{k}, X_{h-1}\}] + v(\mathcal{X}_{h-1} \cup \{j\})$$

$$\geq v(\mathcal{X}_{h-1}) - f_{k}v(\mathcal{X}_{h-1} \cup \{j\}) + f_{k} \operatorname{E}[\max\{t_{k}, X_{h-1}\}] + v(\mathcal{X}_{h-1} \cup \{j\})$$

$$= v(\mathcal{X}_{h-1}) + (1 - f_{k})v(\mathcal{X}_{h-1} \cup \{j\}) + f_{k} \operatorname{E}[\max\{t_{k}, X_{h-1}\}]$$

$$= v(\mathcal{X}_{h-1}) + v(\mathcal{X}_{h-1} \cup \{j, k\})$$

$$= v(\mathcal{X}_{h-1}) + v(\mathcal{X}_{h+1})$$

It follows that when \mathcal{X}_h is the optimal h-portfolio, for a given market, $v(\mathcal{X}_h)$ is O(h). Example 2, in which $v(\mathcal{X}_h)$ can be made arbitrarily close to h, establishes the tightness of this bound.

4 Heterogeneous application costs

Now we turn to the more general problem in which the constant g_j represents the *cost* of applying to c_j and the student, whom we now call Ellis, has a *budget* of H to spend on college applications. Applying Theorem 1, we assume $t_0 = 0$ and disregard the outside option throughout.

Problem 2 (Ellis's problem). Ellis's optimal college application portfolio is given by the solution to the following combinatorial optimization problem.

maximize
$$v(\mathcal{X}) = \sum_{j \in \mathcal{X}} \left(t_j f_j \prod_{\substack{i \in \mathcal{X}:\\i > j}} (1 - f_i) \right)$$
 subject to $\mathcal{X} \subseteq \mathcal{C}, \ \sum_{j \in \mathcal{X}} g_j \le H$ (22)

In this section, we show that this problem is NP-complete, then provide three algorithmic solutions: an exact branch-and-bound routine, an exact dynamic program, and a fully polynomial-time approximation scheme.

4.1 NP-completeness

The optima for Ellis's problem are not necessarily nested, nor is the number of schools in the optimal portfolio necessarily increasing in H. For example, if f=(0.5,0.5,0.5), t=(1,1,219), and g=(1,1,3), then it is evident that the optimal portfolio for H=2 is $\{1,2\}$ while that for H=3 is $\{3\}$. In fact, Ellis's problem is NP-complete, as we will show by a transformation from the binary knapsack problem, which is known to be NP-complete (Garey and Johnson 1979).

Problem 3 (Decision form of knapsack problem). An *instance* consists of a set \mathcal{B} of m objects, utility values $u_j \in \mathbb{N}$ and weight $w_j \in \mathbb{N}$ for each $j \in \mathcal{B}$, and target utility $U \in \mathbb{N}$ and knapsack capacity $W \in \mathbb{N}$. The instance is called a *yes-instance* if and only if there exists a set $\mathcal{B}' \subseteq \mathcal{B}$ having $\sum_{j \in \mathcal{B}'} u_j \geq U$ and $\sum_{j \in \mathcal{B}'} w_j \leq W$.

Problem 4 (Decision form of Ellis's problem). An *instance* consists of an instance of Ellis's problem and a target valuation V. The instance is called a *yes-instance* if and only if there exists a portfolio $\mathcal{X} \subseteq \mathcal{C}$ having $v(\mathcal{X}) \geq V$ and $\sum_{j \in \mathcal{X}} g_j \leq H$.

Theorem 6. The decision form of Ellis's problem is NP-complete.

Proof. It is obvious that the problem is in NP.

Consider an instance of the knapsack problem, and we will construct an instance of Ellis's problem that is a yes-instance if and only if the corresponding knapsack instance is a yes-instance. Without loss of generality, we may assume that the objects in \mathcal{B} are indexed in increasing order of u_j , that each $u_j > 0$, and that the knapsack instance admits a feasible solution other than the empty set.

Let $U_{\max} = \sum_{j \in \mathcal{B}} u_j$ and $\delta = 1/mU_{\max} > 0$, and construct an instance of Ellis's problem with $\mathcal{C} = \mathcal{B}$, H = W, all $f_j = \delta$, and $t_j = u_j/\delta$ for all j. Clearly, $\mathcal{X} \subseteq \mathcal{C}$ is feasible for Ellis's

problem if and only if it is feasible for the knapsack instance. Now, we observe that for any nonempty \mathcal{X} ,

$$\sum_{j \in \mathcal{X}} u_j = \sum_{j \in \mathcal{X}} t_j f_j > \sum_{j \in \mathcal{X}} \left(t_j f_j \prod_{\substack{j' \in \mathcal{X}:\\j' > j}} (1 - f_{j'}) \right) = v(\mathcal{X})$$

$$= \sum_{j \in \mathcal{X}} \left(u_j \prod_{\substack{j' \in \mathcal{X}:\\j' > j}} (1 - \delta) \right) \ge (1 - \delta)^m \sum_{j \in \mathcal{X}} u_j$$

$$\ge (1 - m\delta) \sum_{j \in \mathcal{X}} u_j \ge \sum_{j \in \mathcal{X}} u_j - m\delta U_{\max} = \sum_{j \in \mathcal{X}} u_j - 1.$$
(23)

This means that the utility of an application portfolio \mathcal{X} in the corresponding knapsack instance is the smallest integer greater than $v(\mathcal{X})$. That is, $\sum_{j\in\mathcal{X}}u_j\geq U$ if and only if $v(\mathcal{X})\geq U-1$. Taking V=U-1 completes the transformation and concludes the proof.

An intuitive extension of the greedy algorithm for Alma's problem is to iteratively add to \mathcal{X} the school k for which $[v(\mathcal{X} \cup \{k\}) - v(\mathcal{X})]/g_k$ is largest. However, the construction above shows that the objective function of Ellis's problem can approximate that of a knapsack problem with arbitrary precision. Therefore, in pathological examples such as the following, the greedy algorithm can achieve an arbitrarily poor approximation ratio.

Example 3. Let t = (10, 2021), f = (1, 1), g = (1, 500), and H = 500. Then the greedy approximation algorithm produces the clearly inoptimal solution $\mathcal{X} = \{1\}$.

4.2 Branch-and-bound algorithm

A traditional approach to knapsack problems is the branch-and-bound framework, which generates subproblems in which the values of one or more decision variables are fixed and uses an upper bound on the objective function to exclude, or *fathom*, branches of the tree of subproblems that cannot yield a solution better than the best solution on hand (Martello and Toth 1990; Kellerer et al. 2004). In this subsection, we present an integer formulation of Ellis's problem and a linear program (LP) that bounds the objective value from above. We tighten the LP bound for specific subproblems by reusing the conditional transformation of the t_j -values from Algorithm 1. A branch-and-bound routine emerges naturally from these ingredients.

To begin, let us characterize the portfolio \mathcal{X} as the binary vector $x \in \{0,1\}^m$, where $x_j = 1$ if and only if $j \in \{X\}$. Then it is not difficult to see that Ellis's problem is equivalent to the following integer nonlinear program.

Problem 5 (Integer NLP for Ellis's problem).

maximize
$$v(x) = \sum_{j=1}^{m} \left(t_j f_j x_j \prod_{i>j} (1 - f_i x_i) \right)$$
subject to
$$\sum_{j=1}^{m} g_j x_j \le H, \quad x_i \in \{0, 1\}^m$$
(24)

Since the product in v(x) does not exceed one, the following LP relaxation is an upper bound on the valuation of the optimal portfolio.

Problem 6 (LP relaxation for Ellis's problem).

maximize
$$v_{\text{LP}}(x) = \sum_{j=1}^m t_j f_j x_j$$
 subject to
$$\sum_{j=1}^m g_j x_j \leq H, \ x \in [0,1]^m$$
 (25)

Problem 6 is a continuous knapsack problem, which is easily solved in $O(m \log m)$ time by the following greedy algorithm: Start with x = 0. While H > 0, select the school k for which $t_j f_j/g_j$ is highest, set $x_k \leftarrow \min\{1, H/g_k\}$, and set $H \leftarrow H - g_k$ (Dantzig 1957).

In our branch-and-bound architecture, a *node* is characterized by a three-way partition of schools $\mathcal{C} = \mathcal{I} \cup \mathcal{O} \cup \mathcal{N}$ satisfying $\sum_{j \in \mathcal{I}} g_j \leq H$. \mathcal{I} consists of schools that are "in" the application portfolio, \mathcal{O} consists of those that are "out," and \mathcal{N} consists of those that are "negotiable." The choice of partition induces a pair of subproblems. The first subproblem is an instance of Problem 5, namely

maximize
$$w(y) = \gamma + \sum_{j \in \mathcal{N}} \left(\bar{t}_j f_j y_j \prod_{\substack{i \in \mathcal{N}: \\ i > j}} (1 - f_i y_i) \right)$$
 subject to
$$\sum_{j \in \mathcal{N}} g_j y_j \leq \bar{H}; \ y_j \in \{0, 1\}, \ j \in \mathcal{N}.$$
 (26)

The second is the corresponding instance of Problem 6:

maximize
$$w_{\mathrm{LP}}(y) = \gamma + \sum_{j \in \mathcal{N}} \bar{t}_j f_j y_j$$

subject to $\sum_{j \in \mathcal{N}} g_j y_j \leq \bar{H}; \ y_j \in [0,1], \ j \in \mathcal{N}$ (27)

In both subproblems, $\bar{H} = H - \sum_{j \in \mathcal{I}} g_j$ denotes the residual budget. The parameters γ and \bar{t} are obtained by iteratively applying the transformation (18) to the schools in \mathcal{I} . For each $j \in \mathcal{I}$, we increment γ by the current value of $f_j\bar{t}_j$, eliminate j from the market, and update the remaining \bar{t}_j -values using (18).

Given a node $n=(\mathcal{I},\mathcal{O},\mathcal{N})$, its children are generated as follows. Every node has zero, one, or two children. In the typical case, we select a school $j\in\mathcal{N}$ for which $g_j\leq\bar{H}$ and generate one child by moving j to \mathcal{I} , and another child by moving j it to \mathcal{O} . Equivalently, we set $x_j=1$ in one child and $x_j=0$ in the other. In principle, any school in \mathcal{N} can be chosen for j, but as a greedy heuristic, we choose the school for which the ratio t_jf_j/g_j is highest. Notice that this method of generating children ensures that each node's \mathcal{I} -set differs from its parent's by at most a single school, so the constant γ and transformed \bar{t}_j -values for the new node can be obtained by a single application of (18).

There are two atypical cases. First, if every school in \mathcal{N} has $g_j > \overline{H}$, then there is no school that can be added to \mathcal{I} in a feasible portfolio, and the optimal portfolio on this branch is \mathcal{I} itself.

In this case, we generate only one child by moving all the schools from \mathcal{N} to \mathcal{O} . Second, if $\mathcal{N} = \emptyset$, then the node has zero children, and as no further branching is possible, the node is called a *leaf*.

In the branch-and-bound algorithm, we store nodes in a tree \mathfrak{T} , which contains nodes alongside pointers to their children. Each time a node $n=(\mathcal{I},\mathcal{O},\mathcal{N})$ is generated, we record the values $v_{\mathcal{I}}[n]=v(\mathcal{I})$ and $v_{\mathrm{LP}}^*[n]$, the optimal objective value of the LP relaxation (27). Because \mathcal{I} is a feasible portfolio, $v_{\mathcal{I}}[n]$ is a lower bound on the optimal objective value. Moreover, by the argument given in the proof of Theorem 3, the objective function of (26) is identical to the function $v(\mathcal{I} \cup \mathcal{Y})$, where $\mathcal{Y} = \{j: y_j = 1\}$. This means that the optimal objective value v_{LP}^* is an upper bound on the valuation of any portfolio that contains \mathcal{I} as a subset and does not include any school in \mathcal{O} , and hence on the valuation of any portfolio on this branch. Therefore, if upon generating a new node n_2 , we discover that its objective value $v_{\mathcal{I}}[n_2]$ is greater than $v_{\mathrm{LP}}^*[n_1]$ for some other node n_1 , then n_1 and all its descendants can be eliminated from consideration.

The algorithm is initialized by populating \mathfrak{T} with the root node $n_0 = (\emptyset, \emptyset, \mathcal{C})$. The algorithm terminates when all the nodes that remain on the tree are either leaf nodes, or have had their children explored.

Algorithm 2: Branch and bound for Ellis's problem.

```
Data: Utility values t \in (0, \infty)^m, admissions probabilities f \in (0, 1]^m, application
             costs g \in (0, \infty)^m, budget H \in (0, \infty).
 1 Root node n_0 \leftarrow (\emptyset, \emptyset, \mathcal{C});
 2 Current lower bound L \leftarrow 0;
3 Initialize tree \mathfrak{T} \leftarrow \{n_0\};
 4 while not finished do
         \mathfrak{S} \leftarrow the set of non-leaf nodes whose children have not yet been generated;
 5
         if \mathfrak{S} = \emptyset then
 6
              \mathcal{X} \leftarrow \mathcal{I} from node associated with current value of L;
 7
              return \mathcal{X}, L
 8
         else
 9
              n \leftarrow \arg\max\{v_{\text{LP}}^*[n] : n \in \mathfrak{S}\};
10
              Generate children of n;
11
              for each child n' of n do
12
                    L \leftarrow \max\{L, v_{\mathcal{I}}[n']\};
13
              end
14
         end
15
         for n'' in \mathfrak{T} do
16
              if L > v_{LP}^*[n''] then fathom n'';
17
18
         end
19 end
```

Theorem 7 (Validity of Algorithm 2). Algorithm 2 produces an optimal application portfolio for Ellis's problem.

Proof. The discussion above implies that the algorithm only fathoms branches when justified; therefore, if the algorithm terminates, then an optimal solution exists among the leaves of the tree, and it is therefore returned.

To show that the algorithm does not cycle, it suffices to show that no node is generated twice. Suppose not: that two distinct nodes n_1 and n_2 share the same partition $(\mathcal{I}_{12}, \mathcal{O}_{12}, \mathcal{N}_{12})$. Trace each node's lineage up the tree and let n denote the *first* node at which the lineages meet. n must have two children, or else its sole child is a common ancestor of n_1 and n_2 , and one of these children, say n_3 , must be an ancestor of n_1 while the other, say n_4 , is an ancestor of n_2 . Write $n_3 = (\mathcal{I}_3, \mathcal{O}_3, \mathcal{N}_3)$ and $n_4 = (\mathcal{I}_4, \mathcal{O}_4, \mathcal{N}_4)$. By the node-generation rule, there is a school j in $\mathcal{I}_3 \cap \mathcal{O}_4$, and the \mathcal{I} -set (respectively, \mathcal{O} -set) for any descendant of \mathcal{I}_3 (respectively, \mathcal{O}_4) is a superset of \mathcal{I}_3 (respectively, \mathcal{O}_4). Therefore, $j \in \mathcal{I}_{12} \cap \mathcal{O}_{12}$, meaning that $(\mathcal{I}_{12}, \mathcal{O}_{12}, \mathcal{N}_{12})$ is not a partition of \mathcal{C} , a contradiction.

The branch-and-bound algorithm is an interesting benchmark, but as a kind of enumeration algorithm, its computation time grows rapidly in the problem size, and unlike the approximation scheme we propose later on, there is no guaranteed bound on the approximation error after a fixed number of iterations. In our numerical experiments, Algorithm 2 was impractical for instances containing more than about m=40 schools.

4.3 Pseudopolynomial-time dynamic program

In this subsection, we assume, with a small loss of generality, that $g_j \in \mathbb{N}$ for $j = 1 \dots m$ and $H \in \mathbb{N}$, and provide an algorithmic solution to Ellis's problem that runs in $O(Hm + m \log m)$ time and O(Hm) space. The algorithm resembles a familiar dynamic programming algorithm for the binary knapsack problem (Dantzig 1957; Wikipedia, s.v. "Knapsack problem"). Because we cannot assume that $H \leq m$ (as was the case in Alma's problem), this represents a pseudopolynomial-time solution (Garey and Johnson 1979).

For $j=0\ldots m$ and $h=0\ldots H$, let $\mathcal{X}[j,h]$ denote the optimal portfolio using only the schools $\{1,\ldots,j\}$ and costing no more than h, and let $V[j,h]=v(\mathcal{X}[j,h])$. It is clear that if j=0 or h=0, then $\mathcal{X}[j,h]=\emptyset$ and V[j,h]=0. For convenience, we also define $V[j,h]=-\infty$ for all h<0.

For the remaining indices, $\mathcal{X}[j,h]$ either contains j or not. If it does not contain j, then $\mathcal{X}[j,h] = \mathcal{X}[j-1,h]$. On the other hand, if $\mathcal{X}[j,h]$ contains j, then its valuation is $(1-f_j)v(\mathcal{X}[j,h]\setminus\{j\})+f_jt_j$. This requires that $\mathcal{X}[j,h]\setminus\{j\}$ make optimal use of the remaining budget over the remaining schools; that is, $\mathcal{X}[j,h] = \mathcal{X}[j-1,h-g_j] \cup \{j\}$. From these observations, we obtain the following Bellman equation for $j=1\dots m$ and $h=1\dots H$:

$$V[j,h] = \max\{V[j-1,h], (1-f_j)V[j-1,h-g_j] + f_j t_j\}$$
(28)

with the convention that $-\infty \cdot 0 = -\infty$. The corresponding optimal portfolios can be computed by observing that $\mathcal{X}[j,h]$ contains j if and only if V[j,h] > V[j-1,h]. The optimal solution is given by $\mathcal{X}[m,H]$. The algorithm below performs these computations and outputs the optimal

portfolio \mathcal{X} .

Algorithm 3: Dynamic program for Ellis's problem with integral application costs.

```
Data: Utility values t \in [0, \infty)^m, admissions probabilities f \in (0, 1]^m, application costs g \in \mathbb{N}^m, budget H \in \mathbb{N}.

1 Index schools in ascending order by t;

2 Fill a lookup table with the entries of V[j, h];

3 h \leftarrow H;

4 \mathcal{X} \leftarrow \emptyset;

5 for j = m, m - 1, \ldots, 1 do

6 | if V[j - 1, h] < V[j, h] then

7 | \mathcal{X} \leftarrow \mathcal{X} \cup \{j\};

8 | h \leftarrow h - g_j;

9 | end

10 end

11 return \mathcal{X}
```

Theorem 8 (Validity of Algorithm 3). Algorithm 3 produces an optimal application portfolio for Ellis's problem in $O(Hm + m \log m)$ time and O(Hm) space.

Proof. Optimality follows from the foregoing discussion. Sorting t is $O(m \log m)$. The bottleneck step is the creation of the lookup table for V[j,h] in line 2. Each entry is generated in unit time, and the size of the table is O(Hm).

4.4 Fully polynomial-time approximation scheme

As with the knapsack problem, Ellis's problem admits a complementary dynamic program that iterates on the value of the cheapest portfolio instead of on the cost of the most valuable portfolio. We will use this algorithm as the basis for a fully polynomial-time approximation scheme for Ellis's problem that uses $O(m^3/\varepsilon)$ time and space. Here we assume, with a small loss of generality, that each t_i is a natural number.

We will represent approximate portfolio valuations using a fixed-point decimal with a precision of P, where P is the number of digits to retain after the decimal point. Let $r[x] = \lfloor 10^P x \rfloor 10^{-P}$ denote the value of x rounded down to its nearest fixed-point representation. Since $\bar{U} = \sum_{j \in \mathcal{C}} f_j t_j$ is an upper bound on the valuation of any portfolio, and since we will ensure that each fixed-point approximation is an underestimate of the portfolio's true valuation, the set \mathcal{V} of possible valuations possible in the fixed-point framework is finite:

$$\mathcal{V} = \left\{ 0, 1 \times 10^{-P}, 2 \times 10^{-P}, \dots, r[\bar{U} - 1 \times 10^{-P}], r[\bar{U}] \right\}$$
 (29)

Then $|\mathcal{V}| = \bar{U} \times 10^P + 1$.

For the remainder of this subsection, unless otherwise specified, the word *valuation* refers to a portfolio's valuation within the fixed-point framework, with the understanding that this is an approximation. We will account for the approximation error below when we prove the dynamic program's validity.

For integers $0 \le j \le m$ and $v \in [-\infty, 0) \cup \mathcal{V}$, let $\mathcal{W}[j, v]$ denote the least expensive portfolio that uses only schools $\{1, \ldots, j\}$ and has valuation at least v, if such a portfolio exists. Denote its cost by G[j, v], where $G[j, v] = \infty$ if W[j, v] does not exist. It is clear that if $v \le 0$, then $\mathcal{W}[j,v]=\emptyset$ and G[j,h]=0, and that if j=0 and v>0, then $G[j,h]=\infty$. For the remaining indices (where j, v > 0), we claim that

$$G[j, v] = \begin{cases} \infty, & t_j < v \\ \min\{G[j-1, v], g_j + G[j-1, v - \Delta_j(v)]\}, & t_j \ge v \end{cases}$$
(30)

$$G[j,v] = \begin{cases} \infty, & t_j < v \\ \min\{G[j-1,v], g_j + G[j-1,v-\Delta_j(v)]\}, & t_j \ge v \end{cases}$$

$$\Delta_j(v) = \begin{cases} r\left[\frac{f_j}{1-f_j}(t_j-v)\right], & f_j < 1 \\ \infty, & f_j = 1 \end{cases}$$

$$(30)$$

In the $t_i < v$ case, any feasible portfolio must be composed of schools with utility less than v, and therefore its valuation can not equal v, meaning that $\mathcal{W}[j,v]$ is undefined. In the $t_j \geq v$ case, the first argument to min{} says simply that omitting j and choosing W[j-1,v] is a permissible choice for $\mathcal{W}[j,v]$. If, on the other hand, $j \in \mathcal{W}[j,v]$, then

$$v(\mathcal{W}[j,v]) = (1 - f_j)v(\mathcal{W}[j,v] \setminus \{j\}) + f_j t_j. \tag{32}$$

Therefore, the subportfolio $\mathcal{W}[j,v]\setminus\{j\}$ must have a valuation of at least $v-\Delta$, where Δ satisfies $v = (1 - f_j)(v - \Delta) + f_j t_j$. When $f_j < 1$, the solution to this equation is $\Delta =$ $\frac{f_j}{1-f_i}(t_j-v)$. By rounding this value down, we ensure that the true valuation of $\mathcal{W}[j,v]$ is at least $v - \Delta$. When $t_j \geq v$ and $f_j = 1$, the singleton $\{j\}$ has $v(\{j\}) \geq v$, so

$$G[j, v] = \min\{G[j-1, v], g_j\}.$$
(33)

Defining $\Delta_j(v)=\infty$ in this case ensures that $g_j+G[j-1,v-\Delta_j(v)]=g_j+G[j-1,v-\infty]=g_j$ as required.

Once G[j,v] has been calculated at each index, the associated portfolio can be found by applying the observation that $\mathcal{W}[j,v]$ contains j if and only if G[j,v] < G[j-1,v]. Then an approximate solution to Ellis's problem is obtained by computing the largest achievable objective value $\max\{w: G[m,w] \leq H\}$ and corresponding portfolio.

Algorithm 4: Fully polynomial-time approximation scheme for Ellis's problem.

```
Data: Utility values t \in \mathbb{N}^m, admissions probabilities f \in (0,1]^m, application costs g \in (0,\infty)^m, budget H \in (0,\infty)^m, tolerance \varepsilon \in (0,1).

1 Index schools in ascending order by t;

2 Set precision P \leftarrow \left\lceil \log_{10} \left( m^2 / \varepsilon \bar{U} \right) \right\rceil;

3 Fill a lookup table with the entries of G[j,h];

4 v \leftarrow \max\{w \in \mathcal{V} : G[m,w] \leq H\};

5 \mathcal{X} \leftarrow \emptyset;

6 for j = m, m - 1, \ldots, 1 do

7 \left| \begin{array}{c} \mathbf{if} \ G[j,v] < \infty \ and \ G[j,v] < G[j-1,v] \ \mathbf{then} \\ \mathbf{8} \quad \left| \begin{array}{c} \mathcal{X} \leftarrow \mathcal{X} \cup \{j\}; \\ \mathbf{9} \quad \left| \begin{array}{c} v \leftarrow v - \Delta_j(v); \\ \mathbf{end} \end{array} \right. \right|

10 \left| \begin{array}{c} \mathbf{end} \\ \mathbf{11} \\ \mathbf{end} \\ \mathbf{12} \\ \mathbf{return} \ \mathcal{X} \right|
```

Theorem 9 (Validity of Algorithm 4). Algorithm 4 produces a $(1 - \varepsilon)$ -optimal application portfolio for Ellis's problem in $O(m^3/\varepsilon)$ time.

Proof. (Optimality.) Let \mathcal{W} denote the output of Algorithm 4 and \mathcal{X} the true optimum. We know that $v(\mathcal{X}) \leq \bar{U}$, and because each singleton portfolio is feasible, \mathcal{X} must be more valuable than the average singleton portfolio; that is, $v(\mathcal{X}) \geq \bar{U}/m$.

Because $\Delta_j(v)$ is rounded down in the recursion relation defined by (30) and (31), if $j \in \mathcal{W}[j,v]$, then the true value of $(1-f_j)v\big(\mathcal{W}[j-1,v-\Delta_j(v)]\big)+f_jt_j$ may exceed the fixed-point valuation v of $\mathcal{W}[j,v]$, but not by more than 10^{-P} . This error accumulates with each school added to \mathcal{W} , but the number of additions is at most m. Therefore, where $v'(\mathcal{W})$ denotes the fixed-point valuation of \mathcal{W} recorded in line 4 of the algorithm, $v(\mathcal{W})-v'(\mathcal{W})\leq m10^{-P}$.

We can define $v'(\mathcal{X})$ analogously as the fixed-point valuation of \mathcal{X} when its elements are added in index order and its valuation is updated and rounded down to the nearest multiple of 10^{-P} at each addition in accordance with (32). By the same logic, $v(\mathcal{X}) - v'(\mathcal{X}) \leq m10^{-P}$. The optimality of \mathcal{W} in the fixed-point environment implies that $v'(\mathcal{W}) \geq v'(\mathcal{X})$.

Applying these observations, we have

$$v(\mathcal{W}) \ge v'(\mathcal{W}) \ge v'(\mathcal{X}) \ge v(\mathcal{X}) - m10^{-P} \ge \left(1 - \frac{m^2 10^{-P}}{\bar{U}}\right) v(\mathcal{X}) \ge (1 - \varepsilon) v(\mathcal{X}) \quad (34)$$

which establishes the approximation bound.

(Computation time.) The bottleneck step is the creation of the lookup table in line 3, whose size is $O(|\mathcal{V}|m)$. Since

$$|\mathcal{V}| = \bar{U} \times 10^P + 1 = \bar{U} \times 10^{\left\lceil \log_{10} \left(m^2 / \varepsilon \bar{U} \right) \right\rceil} + 1 \le \frac{m^2}{\varepsilon} \times \text{const.}$$
 (35)

is $O(m^2/\varepsilon)$, the time complexity is as promised.

Since these bounds are polynomial in m and $1/\varepsilon$, Algorithm 4 is a fully polynomial-time approximation scheme for Ellis's problem (Vazirani 2001).

Algorithms 3 and 4 can be written using recursive functions instead; however, since each function references itself *twice*, the function values at each index must be recorded in a lookup table or otherwise memoized to prevent an exponential number of calls from forming on the stack.

5 (WIP) Numerical experiments

In this section, we present the results of numerical experiments designed to confirm the time complexity results established above. In both experiments, markets were generated by drawing t_j independently from an exponential distribution with a scale parameter of ten and rounding up to the nearest integer. To achieve partial negative correlation between t_j and f_j , we then set $f_j = 1/(t_j + 10Q)$, where Q is drawn uniformly from the interval [0,1). In Experiment 1, which concerns Algorithm 1, we take each $g_j = 1$ and set $H = h = \lfloor m/2 \rfloor$. In Experiment 2, which concerns Algorithms 3 and 4, each g_j is drawn uniformly from the set $\{5, \ldots, 10\}$ and we take $H = \lfloor \frac{1}{2} \sum g_j \rfloor$. At each combination of the experimental variables, we generated 50 markets, and each computation was repeated three times, with the fastest of the three recorded as the computation time. Therefore, each cell of each table represents 150 computations. We report the mean and standard deviation across the 50 markets. Where applicable, we do not count the time required to sort the entries of t.

Figure 1: A typical randomly-generated instance with m = 60 schools.

The dynamic programs, namely Algorithms 3 and 4, were implemented using recursive functions and memoization. Our implementation of Algorithm 4 differed slightly from that given above: We represented portfolio valuations in *binary* rather than decimal, with the definitions of P and V modified accordingly, and instead of fixed-point numbers, we worked in integers by multiplying each t_i -value by 2^P . These modifications yield a substantial performance

improvement without changing the fundamental algorithm design or complexity analysis.

6 Conclusion

7 References

- Budish, Eric. 2011. "The Combinatorial Assignment Problem: Approximate Competitive Equilibrium from Equal Incomes." *Journal of Political Economy* 119 (6): 1061–1103. https://doi.org/10.1086/664613.
- Dantzig, George B. 1957. "Discrete-Variable Extremum Problems." *Operations Research* 5 (2): 266–88.
- Kellerer, Hans, Ulrich Pferschy, and David Pisinger. 2004. *Knapsack Problems*. Berlin: Springer. Kim, Minhee. 2015. "[College application strategy] Six chances total...divide applications across reach, target, and safety schools" (in Korean). Jungang Ilbo, Aug. 26. https://doi.org/10.1086/664613
- Fisher, Marshall, George Nemhauser, and Laurence Wolsey. 1978. "An analysis of approximations for maximizing submodular set functions—I." *Mathematical Programming* 14: 265–94.
- Fredman, Michael Lawrence and Robert Tarjan. 1987. "Fibonacci heaps and their uses in improved network optimization algorithms." *Journal of the Association for Computing Machinery* 34 (3): 596–615.
- Fu, Chao. 2014. "Equilibrium Tuition, Applications, Admissions, and Enrollment in the College Market." *Journal of Political Economy* 122 (2): 225–81. https://doi.org/10.1086/675503.
- Garey, Michael and David Johnson. 1979. *Computers and Intractability: A Guide to the Theory of NP-Completeness*. New York: W. H. Freeman and Company.
- Martello, Silvano and Paolo Toth. 1990. *Knapsack Problems: Algorithms and Computer Implementations*. New York: John Wiley & Sons.
- Meucci, Attilio. 2005. Risk and Asset Allocation. Berlin: Springer-Verlag, 2005.
- Othman, Abraham, Eric Budish, and Tuomas Sandholm. 2010. "Finding Approximate Competitive Equilibria: Efficient and Fair Course Allocation." In *Proceedings of 9th International Conference on Autonomous Agents and Multiagent Systems*. New York: ACM. https://dl.acm.org/doi/abs/10.5555/1838206.1838323.
- Rozanov, Mark and Arie Tamir. 2020. "The nestedness property of the convex ordered median location problem on a tree." *Discrete Optimization* 36: 100581. https://doi.org/10.1016/j. disopt.2020.100581.
- Vazirani, Vijay. 2001. Approximation Algorithms. Berlin: Springer.