1 Compactness

- 1. \mathcal{T} is satisfiable iff every finite subset of it is satisfiable
- 2. $\mathcal{T} \models \varphi$ iff there is a finite $\mathcal{T}' \subseteq \mathcal{T}$ such that $\mathcal{T} \models \varphi$

Proof:

(2) \Rightarrow (1): Fact: \mathcal{T} is not satisfiable iff $\mathcal{T} \models (P \land (\neg P))$. For a sentence symbol P, as a truth assignment cannot satisfy $(P \land (\neg P))$. By (2), $\mathcal{T} \models (P \land (\neg P))$ iff there is finite $\mathcal{T}' \models (P \land (\neg P))$. So \mathcal{T} is not satisfiable iff there is a finite \mathcal{T}' which is not satisfiable.

(1) \Rightarrow (2): $\mathcal{T} \models \varphi$ iff $\mathcal{T} \cup \{(\neg \varphi)\}$ is not satisfiable. Suppose (1) holds $\mathcal{T} \models \varphi$ iff $\mathcal{T} \cup \{(\neg \varphi)\}$.

By (1), $\mathcal{T} \cup \{(\neg \varphi)\}$ is not satisfiable iff $\mathcal{T}' \cup \{(\neg \varphi)\}$ is not satisfiable for a finite $\mathcal{T}' \subseteq \mathcal{T}$.

By the fact, this is the case iff $\mathcal{T}' \models \varphi$.

Why Compactness? The set of all truth assignment can be equiped with the product/Tychonoff/Positive-Convergence topology.

Compactness \Leftrightarrow This space is compact.

2 Relevance Lemma

If Σ, Σ' are two assignments that agree on the sentence symbols arising in φ , then Σ satisfies φ iff Σ' satisfies φ .

 $\textbf{Definition 2.0.1} \qquad \bullet \ \zeta(\varphi) = \{\varphi\}$

- $\zeta((\neg \varphi)) = \zeta(\varphi)$ for any wff φ
- $\zeta((\varphi \circ \phi)) = \zeta(\varphi) \cup \zeta(\psi)$ for any wff's φ, ψ and any binary connective \circ .