Einführung

- Internet der nächsten Generation: hochgradig verteilt, vernetzt, IoT → Durchdringung des Alltags mit IT

- Begriffe:

o Verwundbarkeit Schwachstelle des Systems, Umgehung der Sicherheitsrichtlinien

Angriff
 Versuch der Umgehung der Sicherheitsrichtlinien

o Bedrohung Angriffsmöglichkeiten eines Systems

o Risiko = Wahrscheinlichkeit für Eintritt des Schadens * potenzieller Schaden

Angriffsklassen

Benutzer & Daten
 Anwendungen
 Phishing, Spamming, Social Engineering
 XSS, SQL-Injection, LDAP-Injection

o Systeme Buffer-Overflow, Viren, Würmer, Trojaner

o Netzwerke Sniffen, Spoofen, DoS

- Definition von Schutzzielen wichtig, um abstraktes Ziel Informationssicherheit zu konkretisieren

Hauptschutzziele:

Integrität
 Schutz vor unautorisierter & unbemerkter Modifikation von Daten

- Vorgabe von Zugriffsrechten
- Isolierung
- Manipulationserkennung (Prüfwerte, digitales Watermarking)
- Vertraulichkeit Schutz vor unautorisierter Informationsgewinnung
 - Regeln für (un-)zulässige Informationsflüsse
 - Verschlüsselung von Daten
 - Klassifizierung von Objekten & Subjekten
- Verfügbarkeit
 Schutz vor unbefugter Beeinträchtigung der Funktionalität
 - Festlegen von Schwellenwerten
 - Hochverfügbarkeitslösungen (Hard- und Software)
 - Backup
- o Andere Schutzziele
 - Verbindlichkeit Schutz vor unzulässigem Abstreiten durchgeführter Handlungen
 - Festlegung welche Aktionen verbindlich sind
 - Protokollieren von Aktionen und Zeitpunkten
 - Beweissicherungen durchführen
 - Authentizität
 Nachweis der Echtheit und Glaubwürdigkeit der Identität
 - Regeln zur Vergabe von eindeutigen Identifikationen von Subjekten / Objekten
 - Verfahren zum Nachweis der Korrektheit der Identität
 - Privatheit Schutz der personenbezogenen Daten
 - Regeln zu Datenvermeidung und Datensparsamkeit
 - Festlegen von Verfallsdaten
 - Zweckbindung der erhobenen Daten
- Maßnahmen strukturiert in
 - Vermeidung und Verhinderung
 - o Erkennung
 - Schadensbegrenzung

Sicherheitsmodelle

- Komponenten
 - o Subjekt aktive Einheit, initiiert Zugriff auf Ressourcen (Person, Programm, ...)
 - o Objekt soll geschützt werden, Informationen oder Ressource (Daten, Drucker, ...)
 - Referenzmonitor
 - nicht unbedingt als physikalische Einheit im System
 - kontrolliert Zugriffsversuche, logged Zugriffe
 - muss vor Manipulation geschützt werden
 - o Richtlinie
 - definiert Bedingungen, unter denen Subjekt auf Objekt zugreifen darf
 - Beschreibt erwünschte, zulässige Zustände

Zugriffskontrolle

- Discretionary Access Control = DAC
 - o benutzerbestimmte Zugriffskontrolle
 - Eigentümer ist selbst für Schutz eines Objekts verantwortlich
 - o individuelle Rechtvergabe für Objekte, objektbezogene Sicherheitseigenschaften
 - o Problem: keine Betrachtung von Abhängigkeiten, implizite Vergabe von Leserechten durch Ausführung einer Aktion
- Mandatory Access Control = MAC
 - o systembestimmte Festlegung von Sicherheitseigenschaften
 - o systembestimmte Rechte > benutzerdefinierte Rechte
 - o OS oder Programm muss spezielle Maßnahmen / Dienste bereitstellen:
 - Zugriffsmatrix
 Grundlage der Zugriffskontrolle in allen Standard-OS
 - Matrix, die Rechte eines Subjekts auf andere Subjekte / Objekte festlegt
 - Vorteile
 - o einfach & intuitiv nutzbar, flexibel & feingranular
 - Nachteile
 - keine Rechtevergabe an Klassen mit Rechte-Vererbung
 - o schlechte Skalierung: zu viele und dynamische Menge von Subjekten
 - Bell-La Padula-Modell
 - Zugriffsoperatoren read, write, exec, append, control
 - systembestimmte Regeln wie no-read-up oder no-write-down über verschiedene Hierarchien
 - Probleme wie blindes Schreiben möglich, keine Integrität
 - Teil von umfassenden Sicherheitsregularien, einfach zu implementieren

- Role-Based Access Control (RBAC)
 - Rolle für bestimmte Aufgabe und damit verbundene Berechtigungen
 - Erfüllt Prinzipien need-to-know und separation-of-duty
 - verbreitet in ERP- (z.B. SAP) und CMS-Systemen
 - Ziel:
 - o Vereinfachung von Verwaltungsaufgaben
 - o Nachbilden hierarchischer Organisationsstrukturen
 - Subjekt kann nur in Rollen aktiv sein, in denen sie Mitglied ist, und besitzt immer nur die Rechte der aktiven Rolle

• Aufgabentrennung

- o Statisch wechselseitiger Ausschluss von Rollenmitgliedschaften
 - Kein Subjekt ist Mitglied in mehreren Rollen (z.B. Kassierer & Kassenprüfer)
- o Dynamisch wechselseitiger Ausschluss von Rollenaktivitäten
 - Kein Subjekt ist in mehreren Rollen gleichzeitig aktiv (Kontoinhaber & Kundenbetreuer)

Fazit

- Sehr flexibel verwendbar, skalieren gut
- o Direkte Nachbildung von bekannten Organisations- und Rechtestrukturen
- o Intuitive und einfache Abbildung der Rollen auf Geschäftsprozesse
- Einfache und effiziente Rechte-Verwaltung

Weitere Modelle:

- Conflict of Interest Modelle
 - Zugriff auf Information abhängig von Mitgliedschaft zugreifender Subjekte in Klassen mit kollidierendem Interesse (z.B. Autohersteller <> Ölfirma)
- Non-Interference Modelle
 - o Effekte von Aktionen sind nur für Berechtigte sichtbar

Schwachstellen

Typen

- Konzeptionelle Schwachstellen
 - Keine ausreichende Klassifizierung von Information
 - o Fehlende Rollenkonzepte & Sicherheitsregularien für Datenflüssen
 - Keine ausreichende Identifikation von Subjekten
 - Keine ausreichende Schulung der Mitarbeiter → Social Engineering
- Schwachstellen in der Konfiguration
 - Konfigurationsfehler
 - o Firewall erlaubt gefährliche Kommunikation
 - o Unsichere Verschlüsselungsverfahren erlaubt
 - o Patchmanagement
- Schwachstellen in der Programmierung eingesetzter Software
 - o Fehlende Validierung von Benutzereingaben
 - o Unverschlüsselte temporäre Daten zur Laufzeit
 - o Beliebige Fehler, die ein Programm abstürzen lassen

Keine ausreichende Identifikation von Objekten

- Es ist möglich, sich als jemand anderes auszugeben (spoofing = Verschleierung der Identität)
- Spoofing
 - ARP-Spoofing
 - Bei ARP-Broadcast zwischen verschiedenen Rechnern wird MAC-Adresse abgefragt
 - Wenn bösartiger Rechner statt dem Zielrechner schneller antwortet, wird Kommunikation mit diesem aufgebaut
 - Daten gehen an falschen Rechner
 - IP-Spoofing
 - Schadrechner möchte aus Internet Schadsoftware schicken, Firewall blockiert externe Absender
 - In IP-Paket wird zum Umgehen der Firewall eine interne IP-Adresse als Absender angegeben
 - Firewall lässt Paket durch
 - DNS-Spoofing
 - Bei Aufruf einer Homepage wird diese vom DNS-Server in IP-Adresse umgewandelt
 - DNS-Server unter Kontrolle des Angreifers liefert IP eines bösartigen Webservers zurück
 - User gibt Informationen auf bösartiger Seite Freitag
 - Web-Spoofing
 - User ist auf einer dubiosen Webseite, auf der eine Meldung angezeigt wird
 - User klickt auf "OK", Schadsoftware wird heruntergeladen, User installiert sie nach Anweisung der Webseite
- Identitäten sind leicht fälschbar, deshalb starke Authentifizierungs- und Autorisierungsverfahren benötigt

Programmierfehler

- All Input are evil -> Software muss auch mit unerwarteten Eingaben umgehen können
- Angriffe:
 - o Buffer Overflow
 - Überlauf des Speichers, mehr Daten in Speicherbereich als zugelassen
 - Rücksprungadresse wird überschrieben
 - Ungültiger Wert für Programmabsturz (DoS)
 - Rücksprungadresse kann auf andere Funktion des ausgeführten Programms zeigen
 - o Ausgabe von Informationen die nicht für Subjekt bestimmt sind
 - Rücksprungadresse zeigt auf Anfang des überschriebenen Stacks
 - Ausführung von eventuell platziertem Binärcode → Code Injection
 - Mögliche Angriffsszenarien
 - Angriff von Innen Schwachstellen im Programm, die mehr Rechte haben als der Angreifer
 - Angriff von Außen Schwachstellen in Serverdiensten
 - Ziel Systemabsturz oder Erlangen von Informationen, die Angreifer nicht zugänglich sein sollten
 - o Heap Overflow
 - Dynamisch allokierte Speicherblöcke, Überschreiben von Programmvariablen mit Usereingabe möglich
 - o BSS-Overflow
 - Betrifft globale Systemvariablen, z.B. überschreiben vor Variablen für aufgerufene Unterprogramme
- Abwehrmechanismen:
 - o Code und Audit
 - Secure Programming
 - Hardwarenahe Sprachen (C, C++) nur einsetzen wo nötig
 - Vermeidung von Befehlen, die die Eingabelänge nicht verifizieren
 - Manuelle Verifikation von Benutzereingaben
 - Code Audit
 - Qualitätssicherung durch von Programmierer unabhängigen Auditor
 - Automatisierte Code Audits durch Tools
 - Binary Audit
 - Identisch zu Aktionen von Angreifern, mit Ziel Schwachstellen zu identifizieren
 - Automaitisiert als Netzwerk- oder Hostbasierte Audits
 - Compiler und Library
 - Canary-Basierter Stack-Schutz
 - Zwischen gespeicherter Adresse und Variable wird ein Wert abgespeichert
 - Wenn dieser verändert wurde, wird das Programm abgebrochen
 - ABER: DoS funktioniert immer noch
 - Sicherung der Rücksprungadresse
 - Rücksprungadresse wird an weiterem Platz gesichert
 - Letzte Operation in Funktion schreibt Rücksprungadresse zurück
 - Safe Library
 - Normale Aufrufe unsicherer Funktionen werden mit Wrapper durch sichere ersetzt
 - o Betriebssystem
 - Non-Executable Stack
 - Daten im Stack als nicht ausführbar markiert
 - Address-Space-Layout-Randomisation (ASLR)
 - Zufällige Vergabe der Adressbereiche von OS
 - o Ermittlung der Rücksprungadresse erschwert
 - Unix- und Win-Kernel Standard

Web-Schwachstellen

- HTTP ist zustandsloses Protokoll, Cookies zum abspreichern von Benutzerinformationen
- Top Ten Schwachstellen
 - Cross Site Scripting (XSS)
 - Bösartiger Client greift anderen Client an, indem er ein Script auf dessen Rechner ausführt
 - Grundtypen
 - Stored
 - Schadcode auf Web-Server, i.d.R JavaScript in Benutzer-Browser
 - o Nutzer-Eingaben werden ungeprüft an Browser anderer Nutzer gesendet
 - o z.B. Script in Nutzereingabefeld, dass andere Nutzer aufrufen
 - Reflected
 - o Eingabefelder (z.B. Suchfelder) spiegeln Eingabe des Nutzers zurück
 - o Link mit Einträgen auf Eingabefeld wird an Opfer weitergeleitet
 - o z.B. Script im Link, wo Eingabe dargestellt wird
 - DOM-Injection
 - o Webserver verarbeitet Eingaben, die dem DOM mitgeliefert werden
 - Nicht sichtbar f
 ür den Nutzer, da Befehl im Code eingebettet ist
 - o z.B. Verarbeitung einer PathVariable im JS-Code der HTML-Code erzeugt
 - Nutzer vertrauen Inhalten die ihr Browser ihnen zeigt
 - Gegenmaßnahmen
 - Auf Serverseite Parameter auf Metazeichen testen/filtern oder konvertierten
 - Auf Clientseite Scripte nur von vertrauenswürdigen Seiten erlauben und vorsichtig sein bei Links
 - o (SQL) Injection
 - Manipulierte SQL-Eingabe in Webformular, Server erstellt daraus SQL-Befehl
 - SQL-Befehl wird auf Datenbank angewendet und greift mehr oder andere Daten ab als gewollt
 - Arten
 - Manipulation eines SQL-Befehls
 - Einschleusen eines Befehls, also Abschluss des Grundbefehls + Eingabe mehrerer danach
 - Ursache
 - Fehlende Eingabe-Prüfung / -Filterung / -Validierung
 - Programmierfehler
 - Weitere Schwachstellen
 - Broken Authentication
 - Sensitive Data Exposure
 - XML External Entities (XXE)
 - Brocken Access Control
 - Security Misconfiguration
 - Insecure Deserialization
 - Using Components with known vulnerabilities
 - Insufficient loggin and monitoring

Verschlüsselung

- Ziele:
 - o Vertraulichkeit, Integrität, Authentizitä, Verbindlichkeit

Kryptographie:

- Anforderungen an kryptographische Verfahren:
 - Sicherheit nicht von Geheimhaltung der Ver- und Entschlüsselungsfunktionen abhängig
 - o Geheimer Schlüssel nicht durch Kenntnis der verwendeten Verfahren berechenbar
 - Stärke des Verfahrens nur von Güte des geheimen Schlüssels abhängig (Kerckhoffs Prinzip)
- Brute Force der Schlüssel soll nicht möglich sein
- Verfahren
 - o Symmetrisches Verfahren
 - Ver- und Entschlüsselungsschlüssel sind gleich oder einfach berechenbar
 - Gemeinsamer, geheimer Schlüssel (Secret Key) wird genutzt
 - z.B. ROT (Cäsar-Code), DES, AES
 - Problem ist sicherer Austausch des gemeinsamen Schlüssels K
 - Asymmetrisches Verfahren
 - Pro Kommunikationspartner ein Schlüsselpaar
 - Einwegfunktion mit Falltür zur Berechnung der Schlüssel
 - Invertierung der Funktion nur mit geheimen Schlüssel möglich
 - z.B. RSA, ElGamal-Verfahren
 - Hybride Verschlüsselung:
 - Nutzdaten symmetrisch Verschlüsselt, dafür nötige Schlüssel asymmetrisch verschlüsselt
 - Beide Kommunikationspartner müssen öffentliche & private Schlüssel besitzen
- Diffie-Hellman Schlüsselaustausch
 - Gegenseitiger Austausch von öffentlichen Schlüsseln & Berechnungen mit geheimen Schlüsseln führen zu schlussendlicher Berechnung des gleichen, geheimen Hauptschlüssels
 - o Problem: kein Schutz vor Man-in-the-Middle-Angriffen
 - Also Fehlende Authentizität
 - Lösung: Hash-Wert und und Dokument werden über verschieden Kanäle getauscht, bei Veränderung stimmt Hash-Wert nicht mehr überein
 - Anforderungen:
 - o Einfach berechenbarer Hash-Wert
 - o Keine Bestimmung der Hashfunktion mithilfe des Hash-Werts möglich
 - Keine Bestimmung eines anderen Wertes mit dem selben Hash-Wert mithilfe des Grundsätzlichen Werts möglich
 - → Wenn alle Eigenschaften erfüllt, heißt es eine kryptographische Hashfunktion

Verschlüsselung und Authentizität

- Ohne Überprüfung der Authentizität ist Verschlüsselung nicht viel wert
 - o Schutz vor Known-Ciphertext-Attacks gesucht
- MAC
 - o Für Zuordnung verschlüsselter Nachricht an Besitzer
 - o Gut für symmetrische Verschlüsselungsverfahren
- Digitale Signatur
 - o Idee:
 - Hash einer Nachricht mit privatem Schlüssel in asymmetrischen Verfahren verschlüsseln
 - Jeder kann prüfen, dass Sender einen privaten Schlüssel besitzt
 - o PKI = Public Key Infrastructur
 - Zuordnung von öffentlichen Schlüsseln zu Personen und Validierung dieser Zuordnung
 - Komponenten
 - Certification Authority (CA): stellt Zertifikate aus, signiert und veröffentlicht sie
 - Registration Authority (RA): bürgt für Verbindung zwischen öffentlichem Schlüssel und Identitäten
 - Validation Authority (VA): ermöglich validierung der Zertifikate
 - Verzeichnisdienst: Verteilung der Zertifikate
 - o Arten digitaler Signaturen
 - Einfache Signatur
 - Keine speziellen Anforderungen an Zertifikate und Erzeugung
 - Geschädigter muss Schaden nachweisen
 - Fortgeschritten Signatur
 - Anforderung an Zertifikataussteller, Signierumgebung und Verknüpfung der Signatur mit Dateien
 - Signaturanbieter haftet für Richtigkeit und Vollständigkeit
 - Qualifizierte Signatur
 - Forgeschrittene Signatur mit qualifizertem Zertifikat
 - Sichere Signaturerstellungseinheit
 - Rechtlich gleichgestellt mit Unterschrift
 - Hybride Verfahren
 - Kombinieren Vorteile der Einzelverfahren
 - Standard für Verschlüsselung im Internet

<u>Ziel</u>e

- Vertraulichkeit durch Schlüsselaustausch und Verschlüsselung
- Integrität durch Hashfunktion und MAC
- Verbindlichtkeit durch digitale Signatur, Zertifikate und PKI
- Authentizität durch MAC und Signaturen

Systemsicherheit

- Aspekte der IT-Systemsicherheit:
 - o Analyse von möglichen Angriffsvektoren / Schwachstellen
 - o Analyse der Ausbreitung von Angriffen
 - o Analyse von Schadensszenarien
 - Entwicklung von Abwehrmaßnahmen

Malware

- Malicious Software
 - Nutzt Systemschwachstellen aus, zentrale Komponente der Mehrzahl von Angriffen
 - o Hochentwickelte Technologie, verschiedenste Verbreitungswege
- Typen:
 - o Virus
 - Ausführbarer Code, nistet sich in anderes Programm ein
 - Beinhaltet Infektions- und Schadteil
 - Nur aktiv wenn Wirt aktiv ist, Verbreitung durch Datenaustausch
 - Arten
 - 2. Generation von Viren befällt Addons, Plugins und Interpreten, als Vorbereitung des eigentlichen Angriffs
 - Makro- und Datenviren eingebettet in Dokumenten, werden durch Lesezugriff ausgelöst
 - Ani-Viren sind verseuchte Dokumente, die Schwachstellen im Interpreter ausnutzen
 - Würmer
 - Selbstständig ausführbares Programm, fähig zur Reproduktion
 - Verbreitet sich aktiv selbst
 - Trojanisches Pferd
 - Schadprogramm oder -Code tarnt sich als ordnungsgemäßes Programm
 - Installiert Schadcode häufig nach (z.B. Backdoors oder Spionagesoftware)
- Infektionswege
 - o Downloads von Webseiten oder Emails
 - Soziale Netzwerke
 - o Eigene Verbreitunsgmechanismen

Rootkit

- Sammelbegriff für einen Satz von Werkzeugen
- Ziele:
 - o Erlangung von Root- oder Adminrechten
 - o Verbergen der eigenen Aktivität durch Einschleusung von Malware
- Typen:

App-Rootkit Modifikation von Systemprogrammen

o Kernel-Rootkit Modifikation von Kernel-Mode Code (z.B. Treiber)

Userland-Rootkit Modifikation von Usermode-Shared-Libs
 Speicher-Rootkit Modifiziert RAM von laufenden Prozessen

Botnet

- Gruppe von Programmen, die auf Anweisung Befehle auf einer vernetzten Rechnergruppe ausführen
- Illegales Botnet:
 - o Bots ohne Wissen und Zustimmung der Eigentümer auf Rechnern installiert
 - o Versenden von Spam, DDoS, Proxy für illegale Inhalte...

Abwehmechanismen

- Reaktive Maßnahmen

o Client: Virenscanner, Prüfung von Systemdateien auf Modifikation

o Server:

- Anti-Malware & Anti-Spam auf Email-, Anti-Malware auf File-Servern
- Klassifizierung und Verbot von Downloads
- Proaktive Maßnahmen

Windows: Application Whitelisting, Automatische Updates, Client-Firewall

o Unix: Partition mit ausführbarer Software read-only, User-Partition nonexec

- Problem → kein absoluter Schutz möglich
- Weiterführende Mechanismen
 - o Kontrolle von OS und Hardware außerdehalb des Systems
 - o Definition sicherer Zustände und erlaubter Veränderungen
 - o OS-Hersteller behalten Kontrolle (vgl. iOS, UEFI Boot, ...)
 - o Kryptographische Überprüfung ausführbarer Komponenten und Hardware-Schlüsselspeicher
 - o Komplett neue Betriebssysteme

Authentifizierung

- Ziel:
 - o Eindeutige Identifikation und Nachweis der Identität, Abwehr von Identitätsdibstahl
- Problem:
 - o Nicht nur Mensch Gerät, sondern auch Gerät Gerät oder Gerät Dienst Interaktion
- Personen, Geräte und Dienste müssten identifizert und authentifiziert werden
- Mehrfaktor Authentifizierung
 - o z.B. 2-Faktor Authentifikation
 - o einseitige oder wechselseitige Authentifizierung möglich

Authentifizierung durch biometrische Merkmale

- Merkmal muss universal, eindeutig und beständig sein (z.B. Fingerabdruck)
- Außerdem muss Merkmal performant erfassbar und fälschungssicher sein
- Unterscheidung in physiologische und Verhaltensmerkmale

Physiologisch: keine oder begrenzte Möglichkeit zur Auswahl oder Änderung (z.B. Gesicht)

Verhalten: Merkmal nur bei bestimmter Aktion vorhanden (z.B. Sprache)

- Vorgehen: Messdatenerfassung durch Sensor, Registrierung des Nutzers mit Daten

- Authentifizierung: Erfassen, Verifikation digitalisieren, mit Referenzwert vergleichen

- Probleme:

o Angriffe: Täuschung des Sensors durch Attrape, Einspielen von Daten

o Kopplung zwischen Merkmal und Person, Gefahr gewaltsamer Angriffe auf Personen

Fazit

- Nicht geeignet als ausschließliches Verfahren, idealer Einsatz als Mehrfaktor-Authentifizierung
- Weiterentwicklung in Zukunft

Authentifizierung durch Wissen

- Passwortbasierte Zugangskontrolle
 - o Eingabe von Benutzername und Passwort, anschließender Abgleich mit gespeicherten Daten
 - Statische oder Einmal-Passworte möglich
 - Statische Passwörter können gestohlen werden → unsicher
 - In sicheren Systemen sollte Passwort nur eine Komponente sein
 - PAP = Password Authentication Protocol
 - unverschlüsselte Übertragung von Passwort und Benutzerkennung

Protokolle

- Challenge Response Verfahren
 - Subjekt und Instanz haben gemeinsames Geheimnis, Subjekt muss Challenge von Instanz mithilfe von Geheimnis lösen, Instanz überprüft die Lösung
 - o Einfache Authentifizierung über Netzwerke, Geheimnis muss nicht extra übertragen werden (Passwort)
 - o z.B. CHAP
 - Subjekt sendet ID and Instanz
 - Intanz generiert Challenge bzw. Zufallszahl RAND und sendet diese an Subjekt
 - Subjekt berechnet Lösung R durch Hashing mit Passwort und sendet Ergebnis an Instanz
 - Instanz prüft Ergebnis
- Kryptographische gesicherte Authentifizierung
 - o Nutzen Authentifizierungsserver, der geheimen Schlüssel mit allen Instanzen / Subjekten besitzt
 - Sicherheit des Verfahrens von Sicherheit der beteiligten Systeme abhängig, Authentifizierungsserver ermöglicht einfachen Betrieb
 - o ABER: Authentifizierende Instanz muss Passwort wärhend des Prozesses besitzen
 - o z.B. Needham-Schroeder Protokoll
 - A und B haben jeweils Schlüssel mit Authentifizierungsserver
 - A sendet ID von A, B und Nonce an AS
 - AS verschlüsselt Rückgabe mit Session Key und Paket für B mit Schlüssel von A und sendet zurück an A
 - A sendet Paket an B (beinhaltet Session Key)
 - B sendet Nonce verschlüsselt mit Session Key zurück an A
 - A beweißt Empfang der Nonce durch Ent- und Verschlüsselung + geheimer Operation
- Zero Knowledge Verfahren
 - o Dritter soll Authentifzieren, ohne Kenntniss über Geheimnis zu erlangen
 - o z.B. Feige-Fiat-Shamir Verfahren, gegeben 2 Primzahlen (p, q) und x=r² mod n → gesucht r
 - Instanz berechnet x durch r und Vorzeichen, schickt x an Server
 - Server wählt Zufallszahlen und schickt an Instanz
 - Instanz berechnet y mit Zufallszahlen und r
 - Server überprüft y

Autorisierung

- Einsatzbereich:
 - o Zugriff auf Ressourcen in einem Netzwerk, Installation und Benutzung von Software
- Generelle Lösung ist Zugriffsmatrix, wo die Rechte jedes Subjekts auf jede Datei inbegriffen sind
 - Zugriffskontrolllisten (Access List)
 - Vorteile
 - Rechte von Objekt effizient bestimmbar, Rechterücknahme effizient realisierbar
 - dezentrale Kontrolle möglich
 - Nachteile
 - Bestimmung von Subjektrechten sehr aufwändig
 - schlechte Skalierbarkeit bei dynamisch wechselnder Menge von Subjekten
 - o Capability-Listen
 - Vorteile
 - Einfache Bestimmung von Subjekt-Rechten
 - Zugriffskontrolle einfach → nur Ticketkontrolle
 - Nachteile
 - schwierige Rechterücknahme
 - keine Subjekt-Ticket-Kopplung, Besitzt berechtig zur Wahrnehmung der Rechte
 - unübersichtliche Rechte für Objekt
 - o Domain-Type-Enforcement
 - Lock-Key-Konzept
- Zugriffskontrolle
 - o Unix
 - Angabe des Zwecks: r, w, x
 - Unix Kern überprüft ob Zugriff laut Access List (ACL) für Prozess genehmigt ist
 - am Ende Erstellung eines Filehandles (Capability) → in Capability List
 - Windows
 - Zugriffskontrolle mit Security Descriptoren, enthalten verschiedene Infos zu User und Rechten
 - Zugriff immer erlaubt, wenn keine ACL festgelegt ist
 - Subjekt hat automatisch Zugriffsrechte, wenn es Owner von Objekt ist
 - Security Descriptoren durchlaufen, IDs checken, wenn ID stimmt → Entscheidung ob access allowed oder denied

Kombination Authentifizierung und Autorisierung:

- Kerberos-Protokoll
 - o Ziele:
 - Authentifizierung von Subjekten (Principals), Austausch von Sitzungs-Schlüsseln für Principals
 - Single-Sign-On für Dienste / Personen
 - o Ablauf:
 - Nutzer gib ID und Passwort ein
 - Client sendet Daten an Authentication Server, bekommt verschlüsselte Daten zurück
 - Client sendet Daten an Ticket Granting Server, bekommt verschlüsselte Daten zurück
 - Client sendet Ticket an Server

Kommunikationssverschlüsselung

IPSec

- löst Sicherheitsprobleme von IPv4 und IPv6 durch Erweiterung des Headers
 - o Transport Mode sichere Kommunikation zwischen Quelle und Ziel
 - IPSec header nach IP header, weil Kommunikation direkt zwischen Quelle und Ziel
 - Tunnel Mode
 Sicherung der Kommunikation nur zwischen Gateways
 - IPSec header nach outer IP header, weil Kommunikation zwischen Gateways
 - inner IP Header wird erst im Netzwerk gebraucht
 - → am Ende immer IPSec trailer
- Security Association (SA)
 Sicherheitsvorgaben f
 ür Kommunikation
 - o bestimmt durch
 - Security Paramter Index (SPI)
 - Destination Address
 - Security Protocol Identifier
 - o Datenbanken erforderlich für Verwaltung der Sicherheitsassoziationen
 - Association Database (SADB) enthält aktive SAs des Systems
 - Policy Database (SPD)
 gibt vor, für welche Datenströme SAs wie eingerichtet werden müssen
- Authentication Header (AH)
 - o Sicherung von Authentizität und Integrität verbindungslos übertragener IP-Pakete
 - o schützt gegen Spoofing, Modifikation des Inhalts und Replay-Attacken
 - o HMAC-Algorithmus zur Verschlüsselung der unveränderlichen Teile
- Encapsulated Security Payload (ESP)
 - o Vertraulichkeit der Übertragung und Authentizitätsprüfung
 - o optionale symmetrische Verschlüsselung
 - o optionale Authentifizierung durch HMAC-Algorithmus

HMAC zur Verschlüsselung des Headers, IP-Datenteils und des Trailers

Schlüsselmanagement

- ISAKMP (Internet Security Association and Key Management Protocol)
 - o Protokoll zur Aushandlung von Sicherheitsparametern
 - Authentifizierung von Instanzen
- IKE (Internet Key Exchange)
 - Auf Diffie-Hellman basierendes Authentisierung- und Schlüsselaustauschprotokoll
 - o Aushandlung von Sicherheitsassoziationen
 - Austausch einiger Informationen zwischen Initiator und Responder, benutzt Zertifikate zur Authentisierung

Transport Layer Security (TLS)

- Idee: Vertraulichkeit und Authentizität, länger gültig als eine Verbindung, verwendet Sitzungskonzept
- TLS Record
 - o Berechnung eines MAC, Verschlüsselung der Daten und MAC
 - o Fragmentierung und Komprimierung der übertragenden Daten
- TLS Handshake
 - Aushandlung von Sitzungsparametern
 - o Sicherung der Konsistenz der Sitzungsinformationen
 - o Austausch der Informationen, wie Key, Ciphers und Certificates
- Vorteile:
 - o jedes Protokoll kann auf Basis von TLS impl. werden, Unabhängigkeit von App und System
- Nachteile:
 - o rechenintensiver Verbindungsaufbau auf Serverseite
 - Authentifizierungs und Verschlüsselungsalgorithmen nicht klar getrennt

Firewalls

- zum Schützen aller möglichen Übergänge zwischen Netzwerksegmenten, Einschränkung der versuchten zur tatsächlich erforderlichen Kommunikation
- TCP/UDP
 - o Filterung nach Empfänger- und Absenderadresse, Quell- und Zielport
 - o Je nach Kommunikation weiter Filterkriterien wie Benutzer, HTTP-Header, Mailempfänger

Arten

- Paketfilter
 - zustandslos
 - o Filterung der Datenpakete nach Sender/Empfänger-IP, Ports, Protokollen, Paketgröße
 - o Probleme:
 - filtert einzelne Pakete, keine zusammenhängeden Ströme
 - keine Zustandsinformationen (Callback-Problem)
- Stateful Inspection
 - o zustandsbasierter Paketfilter, Filterentscheidung abhängig von Paketverkehr
 - Filterung von UDP (Überwachung ausgehender UDP-Verbindungen, Protokollieren des spezifizierten Ports, Antwort nur an diesen Port akzeptieren)
 - o Filterung nach Kontext (Paket ist Antwort auf Anfrage, ...)
 - Abwehr von DoS-Angriffen (Erkennen von SYN-Flooding, ...)
- Filtering Proxy
 - Proxy prüft die Zulässigkeit des Verbindungsaufbaus, legt Zustandsinformationen ab und verwaltet diese, über Filterung hinausgehende Sicherheitsdienste (z.B. Logging)
 - Application-Level-Gateway = anwendungsspezifischer Proxy-Dienst
 - zugeschnitten auf spezifische Protokolle (FTP, SMTP, ...)
 - Filterregeln erfordern Kenntnisse über Protokoll, spezifische Regeln
 - Vorteile
 - differenzierte Authentifikationen, feingranulare Kontrollen
 - Dienste können mit eingeschränkter Funktionalität betrieben werden
 - Problem: in der Regel nicht transparent, ursprüngliche Client-Server Verbindung ersetzt durch 2
 Verbindungen
 - End-to-End Sicherheit unterbrochen, Man-in-the-Middle Attacken möglich
 - Zeitverzögerung durch Vermittlung

Hybride Firewalls

- Stand der Technik
- versuchen das Beste aus allen Welten zu bieten
- Kombination von
 - Stateful Inspection
 - o Application-Gateways und Proxies
 - o zusätzliche Funktionalitäten
 - VPN-Einwahl
 - Content-Filterung
 - Authentifizierung
 - Virenscanner ...
- Risiko: Zu viele Funktionalitäten erhöhen Fehlerrate, vergrößern Angriffsmöglichkeiten der Firewall

Personal Firewalls

- auf eigenem Computer installiert, schützen vor Angriffen

o von außen: DoS-Angriffe, Einbruchsversuche

o von innen: offene Ports, Abschottung lokaler Schädlinge (Viren)

Vorteile:

- o skalieren, anwendungsnah, Ausbreitungsbekämpfung von Viren an der Quelle
- o bietet Grundschutz
- Nachteile:
 - o Unkenntnis der Nutzer
 - o ohne klar definierte Security-Policies untauglich (schnelle Bestätigung bei Verbindungserlaubnis)
 - o unsicher durch Fehler im OS, Bedienungsfehler, Viren die Firewall aushebeln, ...

Policy-Designs

- stealth Regel: Zugriff auf Firewall ausschließlich zu Administrationszwecken

default deny: verbietet alles, was nicht vorher erlaubt wurde

Change-Management

- Firewall wird von selbst mit der Zeit unsicher
- Betriebsprozesse müssen immer ein Teil des Firewalldesigns selbst sein

