CHAPTER 8. SEQUENCES & INFINITE SERIES Section 8.2. Series.

Basic definitions and results about infinite series.

- Definition: A series is the sum of all the terms of sequence $\{a_n\}_{n=1}^{\infty}$.

 Notation: $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots$ Here again, note that a series does not always have to start at n=1.
- A series is an infinite sum. The question we will ask ourselves is: When is an infinite sum finite, when is it infinite? In other words, we will explore the convergence or divergence of an infinite series. This can be summarized by finding $\lim_{n\to\infty}\sum_{i=1}^n a_i$.
- Examples: Consider the following series.

1.
$$\sum_{n=1}^{\infty} n = 1 + 2 + \dots \text{ is divergent . Why?}$$

2.
$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{4} + \ldots = 1.$$
 This series is convergent.

• In order to show the convergence (or divergence) of a series, we will be using ideas developed in the previous section. We can view a series as being a sequence of partial sums. A partial sum is simply the sum of a finite number of terms of a series.

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$

$$S_n = a_1 + a_2 + a_3 + \ldots + a_n$$

The convergence of $\sum_{n=1}^{\infty} a_n$ is the same as the convergence of the sequence of partial sums $\{S_n\}_{n=1}^{\infty}$.

• Definition: A series is convergent if

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots = s$$

where s is a finite number. Otherwise, the series is said to be divergent.

An application of partial sums: Geometric series.

• A **geometric series** is a series of the form

example,
$$\frac{1}{2}$$
 $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{$

convergent? Let us look at the *n*-th partial sum.

$$S_n = a + ar + ar^2 + \ldots + ar^{n-1}.$$

Then multiply
$$S_n$$
 by r . $rS_n = ar + ar^2 + ar^3 + \ldots + ar^{n-1} + ar^n$. Now subtract: $S_n - rS_n = a - ar^n = a(1 - r^n)$. So
$$S_n = \frac{a(1 - r^n)}{1 - r}.$$

What is $\lim_{n\to\infty} S_n$? From Section \mathbb{A}_{\cdot} 1, we know that

$$\lim_{n \to \infty} r^n = 0 \quad \text{if} \quad -1 < r < 1$$

and
$$\{r^n\}$$
 is divergent if $|r|>1$. Here
$$\lim_{n\to\infty}S_n=\left\{\begin{array}{cc} \frac{a}{1-r} & \text{if } |r|<1\\ \text{divergent if } |r|>1 \end{array}\right.$$

Hence
$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$$
 if $|r| < 1$, and $\sum_{n=1}^{\infty} ar^{n-1}$ is divergent if $|r| > 1$.

1.
$$\sum_{n=1}^{\infty} \frac{4^{n+1}}{5^n} = \sum_{n=1}^{\infty} \frac{4}{5^n} \left(\frac{4}{5} \right)^n = \frac{4}{5}$$
1.
$$\sum_{n=1}^{\infty} \frac{4^{n+1}}{5^n} = \sum_{n=1}^{\infty} \frac{16}{5^n} = \frac{16}{5}$$
2.
$$\sum_{n=1}^{\infty} \frac{(-6)^{n-1}}{5^{n-1}} = \sum_{n=1}^{\infty} \frac{(-\frac{6}{5})^{n-1}}{5^{n-1}}$$
1.
$$\sum_{n=1}^{\infty} \frac{4^{n+1}}{5^n} = \sum_{n=1}^{\infty} \frac{16}{5^n} = \frac{16}{5^n}$$
2.
$$\sum_{n=1}^{\infty} \frac{(-6)^{n-1}}{5^{n-1}} = \sum_{n=1}^{\infty} \frac{(-\frac{6}{5})^{n-1}}{5^{n-1}}$$
1.
$$\sum_{n=1}^{\infty} \frac{4^{n+1}}{5^n} = \sum_{n=1}^{\infty} \frac{(-\frac{6}{5})^{n-1}}{5^{n-1}}$$
1.
$$\sum_{n=1}^{\infty} \frac{4^{n+1}}{5^n} = \sum_{n=1}^{\infty} \frac{(-\frac{6}{5})^{n-1}}{5^{n-1}}$$
1.
$$\sum_{n=1}^{\infty} \frac{(-\frac{6}{5})^{n-1}}{5^{n-1}} = \sum_{n=1}^{\infty} \frac{(-\frac{6}{5})^{n-1}}{5^{n-1}}$$
1.
$$\sum_{n=1}^{\infty} \frac{(-\frac{6}{5})^{n-1}}{5^{n-1}} = \sum_{n=1}^{\infty} \frac{(-\frac{6}{5})^{n-1}}{5^{n-1}}$$
1.
$$\sum_{n=1}^{\infty} \frac{(-\frac{6}{5})^{n-1}}{5^{n-1}} = \sum_{n=1}^{\infty} \frac{(-\frac{6}{5})^{n-1}}{5^{n-1}}$$
1.
$$\sum_{n=1}^{\infty} \frac{4^{n+1}}{5^n} = \sum_{n=1}^{\infty} \frac{(-\frac{6}{5})^{n-1}}{5^{n-1}} =$$

3
$$= 0$$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $=$

3. For what values of
$$x$$
 does the series $\sum_{n=0}^{\infty} (x-4)^n$ converge?

$$\sum_{n=0}^{\infty} (x-4)^n = 1 + (x-4) + (x-4)^2 + (x-4)^3 + \cdots$$
 "infinile polynomial"

$$\sum_{n=0}^{\infty} (x-4)^n$$
 is a geometric series with $r=x-4$
 $\sum_{n=0}^{\infty} (x-4)^n$ is convergent when $|x-4|<1=>-1< x-4<1$

If
$$3 < x < 5$$
, $\sum_{n=0}^{\infty} (x - 3)^n = \frac{1}{1 - (x - 4)} = \frac{1}{5 - x}$

Thicker

Conx = $x - x^2 + x^5 - x^7 + \cdots$

Fundamental of the second seco

Here is another example of partial sums: The telescoping sum.

• Example: Show that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent and find its sum.

$$S_{1} = \frac{1}{2}$$

$$S_{2} = \frac{1}{2} + \frac{1}{6}$$

$$S_{3} = \frac{1}{2} + \frac{1}{6} + \frac{1}{12}$$

$$\vdots$$

$$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \cdots + \frac{1}{n(n+1)}$$

Partial fractions

$$\frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n} = \frac{A}{n+1} + \frac{B}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n} = \frac{A}{n+1} + \frac{B}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{B}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{B}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{B}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{B}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{B}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{B}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{B}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{B}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{B}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{B}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{B}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{B}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{A}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{A}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{A}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{A}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{A}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{A}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{A}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{A}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{A}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{A}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{A}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{A}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{A}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{A}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{A}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\frac{A}{n+1} = \frac{A}{n+1} + \frac{A}{n+1} \Rightarrow (= A(n+1) + Bn)$$

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

$$Sz = (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3})$$

$$S_{3}=(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})$$

$$S_{n=1} = \frac{1}{n+1}$$

$$\lim_{n \to \infty} \left(\frac{1 - \frac{1}{n+1}}{n+1} \right) = 1$$

Conclusion: $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent, $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$ N=1 0 is DV

Is $\int_{-\infty}^{\infty} \frac{1}{x} dx$ convergent, divergent?

• The harmonic series.

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

is divergent.

Proof: Let us look at the S_{2^n} partial sums of $\sum_{n=1}^{\infty} \frac{1}{n}$.

$$n = 0, S_{1} = 1$$

$$n = 1, S_{2} = 1 + \frac{1}{2}$$

$$n = 2 S_{4} = 1 + \frac{1}{2} + (\frac{1}{3} + \frac{1}{4}) + (\frac{1}{2} + (\frac{1}{4} + \frac{1}{4})) = 1 + \frac{1}{2}$$

$$n = 3 S_{8} = 1 + \frac{1}{2} + (\frac{1}{3} + \frac{1}{4}) + (\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}) > 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{3}{2}$$

$$S_{2^n} = 1 + \frac{1}{2} + \ldots + \frac{1}{n} > 1 + \frac{n}{2}.$$

Then $\lim_{n \to \infty} 1 + \frac{n}{2} = \infty$ and $S_{2^n} > 1 + \frac{n}{2}.$ Therefore $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

Infinite series: Zan · lim Zan =? Sequence of partial ours: Sn Sizai , Sz=a 1+az1 ... Sh=a1+az+ ... an If lieu Sn= L Z' an is convergent · Geometric Series Za (1) power of n 10,0 montant (common catio)

Ageometric series is convergent

when [1/4] (-1<1<1) If IrICI, sum of the geometric serie =

• THEOREM: If
$$\sum_{n \to \infty} a_n$$
 is convergent then $\lim_{n \to \infty} a_n = 0$.
This theorem is not very useful in this form. We usually use its contrapositive form to show the divergence of $\sum_{n=1}^{\infty} a_n$.

• TEST for DIVERGENCE. If
$$\lim_{n\to\infty} a_n \neq 0$$
, then $\sum_{n=1}^{\infty} a_n$ is divergent.

• THEOREM. If
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ are convergent, then so are $\sum_{n=1}^{\infty} (a_n + b_n)$ and

 $\sum_{n=1}^{\infty} (a_n - b_n)$. We also have the following:

1.
$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$
, where c is a constant

2.
$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

3.
$$\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$$

Practice problem: Determine whether the series is convergent a divergent. If it is convergent, find its sem.

1)
$$\frac{e^{n}}{3^{n-1}} = \frac{2\pi}{3} \left(\frac{e}{3}\right)^n$$
 Geometric series with $r = \frac{e}{3}$
 $|r| < 1$, $\frac{e^n}{3^{n-1}} = \frac{e}{3^{n-1}}$ is convergent, $\frac{e^n}{n=1} = \frac{e}{3^{n-1}} = \frac{3e}{1-\frac{e}{3}} = \frac{3e}{3-e}$

2)
$$\sum_{n=1}^{\infty} \ln \left(\frac{n^2+1}{2n^2+1} \right)$$
Divergence test $\lim_{n \to \infty} \ln \left(\frac{n^2+1}{2n^2+1} \right) = \ln \frac{1}{2} \neq 0$

$$\sum_{n=1}^{\infty} \ln \left(\frac{n^2+1}{2n^2+1} \right) \text{ is divergent}$$

3)
$$\frac{4}{n}$$
 is divergent, therefore $\frac{2}{n}$ 4 is divergent

$$\sum_{n=1}^{\infty} \frac{\cos n\pi}{n^2} ? \lim_{n\to\infty} \frac{\cos n\pi}{n^2} = 0$$

the divergence

tet is inconclusive. if n is even Coontin = 1/n2

COS(nT) = (-1)