CS350: Principles of Programming Languages

Aditya Tanwar 200057

Aryan Sharma 200203

September 2023

Diamond Property: Let R be a binary relation. We say that R has diamond property if, whenever aRb and aRc, then $\exists d$ such that bRd and cRd.

 β -reduction as a binary relation: We can define $\xrightarrow{\beta}$ as a binary relation between two λ -terms t_1 and t_2 :

 $t_1 \xrightarrow{\beta} t_2$ iff t_2 can be obtained from t_1 using 1 β -reduction step.

- 1. Show that $\xrightarrow{\beta}$ does not have the Diamond property. That is, give an example λ -term t_1 such that
 - 1. $t_1 \xrightarrow{\beta} t_2$
 - 2. $t_1 \xrightarrow{\beta} t_3$
 - 3. $t_2 \neq t_3$
 - 4. $\nexists t_4$ s.t. $t_2 \xrightarrow{\beta} t_4$ and $t_3 \xrightarrow{\beta} t_4$
- Sol. We provide the following example to show that $\xrightarrow{\beta}$ does not have the Diamond property:
 - $t_1 \equiv (\lambda xy.y) ((\lambda u.uu) (\lambda v.v)) (\lambda z.z)$
 - $t_2 \equiv (\lambda y.y) (\lambda z.z)$ To verify, observe that:

$$t_1 \equiv (\underline{\lambda x y. y}) \ \underline{((\lambda u. uu) \ (\lambda v. v))} \ (\lambda z. z)$$

$$\xrightarrow{\beta} (\lambda y. y) \ (\lambda z. z) \equiv t_2$$

Therefore, $t_1 \xrightarrow{\beta} t_2$.

• $t_3 \equiv (\lambda xy.y) ((\lambda v_1.v_1) (\lambda v_2.v_2)) (\lambda z.z)$ To verify, observe that:

$$t_1 \equiv (\lambda xy.y) \ ((\underline{\lambda u}.uu) \ (\underline{\lambda v.v})) \ (\lambda z.z)$$

$$\xrightarrow{\beta} (\lambda xy.y) \ ((\underline{\lambda v.v}) \ (\lambda v.v)) \ (\lambda z.z)$$

$$\xrightarrow{\alpha} (\lambda xy.y) \ ((\lambda v.v.) \ (\lambda v.v.)) \ (\lambda z.z)$$

$$\xrightarrow{\alpha} (\lambda xy.y) \ ((\lambda v_1.v_1) \ \underline{(\lambda v.v)}) \ (\lambda z.z)$$

$$\xrightarrow{\alpha} (\lambda xy.y) ((\lambda v_1.v_1) (\lambda v_2.v_2)) (\lambda z.z) \equiv t_3$$

Therefore, $t_1 \xrightarrow{\beta} t_3$.

• Now, the only β -reduction possible in t_2 is:

$$t_2 \equiv (\underline{\lambda y}.y) \ \underline{(\lambda z.z)} \xrightarrow{\beta} \lambda z.z$$

However, the only β -reductions possible in t_3 are:

$$t_3 \equiv (\underline{\lambda x} y.y) \ \underline{((\lambda v_1.v_1) \ (\lambda v_2.v_2))} \ (\lambda z.z)$$
$$\xrightarrow{\beta} (\lambda y.y) \ (\lambda z.z)$$

and

$$t_3 \equiv (\lambda xy.y) \ ((\underline{\lambda v_1}.v_1) \ \underline{(\lambda v_2.v_2)}) \ (\lambda z.z)$$
$$\xrightarrow{\beta} (\lambda xy.y) \ (\lambda v_2.v_2) \ (\lambda z.z)$$

- 2. Uniqueness of One-step Evaluation (\rightarrow): Consider the language of arithmetic expressions. Prove that if $t \rightarrow t'$ and $t \rightarrow t''$, then t' = t''.
- Sol. We prove the same by applying induction on the size of the term. We assume that the term t under construction is well-formed, and **not** stuck, since otherwise, it cannot be evaluated further.

Base Case: Firstly, all the values are contained in the base case; as there are no derivation rules applicable on them, therefore, there is a unique representation of each value. Thus, the base case covers all terms of size 1 by default (0, true, false). It also covers some terms of size > 1, of the form $succ\ v$.

Inductive Step:

Case 1: t = if t1 then t2 else t3:

Note that if t is a well defined term then t1 can take only be either True or False or a non value. It cannot be 0 or some other value, since this would lead to t being stuck, and the non-existence of t', and t''.

In each of these 3 cases exactly one rule is applicable:

i.e. if $t1 \equiv True$, then $t \leftarrow t2$.

else if $t1 \equiv False$, then $t \leftarrow t3$

else $t \leftarrow if \ t1' \ then \ t2 \ else \ t3$, where t1' is unique by induction hypothesis since t1 is a term of a smaller size. In the case when t1 is true (or false), it is trivial to show that t' = t2 = t'' (or t' = t3 = t'') as only one rule is applicable.

Case 2: t = succ t1:

Note that if t is a well defined term then t1 can take only be either a value or a non value. In each of these cases exactly one rule is applicable:

i.e. if $t1 \equiv value$, then t is also a value by definition and hence unique.

else $t \leftarrow succ\ t1'$ where t1' is unique by inductive hypothesis since t1 is a term of smaller size, thus $succ\ t1'$ is also unique, and hence $t' = succ\ t1' = t''$.

Case 3: t = pred t1:

Note that if t is a well defined term then t1 can take only be either a 0, or $succ\ v$ or a non value.

In each of these cases exactly one rule is applicable:

i.e. if $t1 \equiv 0$, then $t \leftarrow 0$ which is a value by and hence unique by definition,

else if $t \equiv succ v$ then $t \leftarrow v$ which is a value and hence unique by definition,

else $t \leftarrow pred\ t1'$ where t1' is unique by inductive hypothesis since t1 is a term of smaller size.

Case 4: t = iszerot1:

Note that if t1 is a value, then either $t1 = 0 \Rightarrow$ the only evaluation possible is $t \to true$, in which case t' = true = t'', or

 $t1 = succ \ v \Rightarrow$ the only evaluation possible is $t \to false$, in which case t' = false = t''.

Otherwise, t1 is a non-value, then the only evaluation possible is $t \to iszero\ t1'$, where $t1 \to t1'$. Then, by IH, as size of t1 is lesser than t, t1' will be unique, and thus $iszero\ t1'$ is also unique, resulting in t' = t''.

Thus, we have shown using structural induction that in each one-step evaluation rule, if $t \to t'$ and $t \to t''$, then we have that t' = t'' necessarily.

3. Non-associativity of Substitutions: Let M, N, and P be λ -terms. Assume $x \neq y$. Show that the order of substitution matters, i.e., in general

$$M[x := N][y := P] \not\equiv M[y := P][x := N]$$

Sol. We show the above by providing an example as follows:

•
$$M \equiv xy$$

- $N \equiv y$
- $\bullet P \equiv x$

Now,

$$\begin{split} M[x \coloneqq N][y \coloneqq P] &\equiv (xy)[x \coloneqq N][y \coloneqq P] \\ &\equiv ((xy) \ [x \coloneqq N]) \ [y \coloneqq P] \\ &\equiv ((\underline{x}y) \ [x \coloneqq y]) \ [y \coloneqq P] \\ &\equiv (yy) \ [y \coloneqq P] \\ &\equiv (\underline{y}\underline{y}) \ [y \coloneqq x] \\ &\equiv xx \end{split}$$

and

$$M[y \coloneqq P][x \coloneqq N] \equiv (xy)[y \coloneqq P][x \coloneqq N]$$

$$\equiv ((xy) \ [y \coloneqq P]) \ [x \coloneqq N]$$

$$\equiv ((x\underline{y}) \ [y \coloneqq x]) \ [x \coloneqq N]$$

$$\equiv (xx) \ [x \coloneqq N]$$

$$\equiv (\underline{xx}) \ [x \coloneqq y]$$

$$\equiv yy$$

As $xx \neq yy$ in general, we arrive at $M[x := N][y := P] \not\equiv M[y := P][x := N]$.

4. Constrained-associativity of Substitutions: Let M, N, and P be λ -terms. Assume $x \neq y$ and $x \notin FV(P)$. Show that

$$M[x\coloneqq N][y\coloneqq P]\not\equiv M[y\coloneqq P][x\coloneqq N']$$
 where $N'=N[y\coloneqq P]$

- Sol. In order to prove the above result we perform an induction on the size of M. We define the size of a λ -term as follows (using derivation rules):
 - $t \to x \Rightarrow size(t) = 1$
 - $t \to \lambda x$. $t_1 \Rightarrow size(t) = 1 + size(t_1)$
 - $t \rightarrow t_1 \ t_2 \Rightarrow size(t) = size(t_1) + size(t_2)$

Base case: Size of M is one, i.e., M is a variable:

Case 1: M = x:

$$LHS:\ M[x:=N][y:=P]=x[x:=N][y:=P]=N[y:=P]$$

$$RHS:\ M[y:=P][x:=N]=x[y:=P][x:=N[y:=P]]=x[x:=N[y:=P]]=N[y:=P]$$

$$Clearly,\ LHS=RHS.$$

Case 2: M = y:

LHS:
$$M[x := N][y := P] = y[x := N][y := P] = y[y := P]] = P$$

RHS: $M[y := P][x := N[y := P]] = y[y := P][x := N[y := P]] = P[x := N[y := P]] = P$
 $P[y := P] = P$
Clearly, $P[y := P] = P$

Case 3: M = z, where $z \neq x$, $z \neq y$

$$LHS:\ M[x:=N][y:=P]=z[x:=N][y:=P]=z[y:=P]]=z$$

$$RHS:\ z[y:=P][x:=N[y:=P]]=z[y:=P][x:=N[y:=P]]=z[x:=N[y:=P]]=z$$

$$Clearly,\ LHS=RHS.$$

Now let us assume that our claim holds for all terms with size less than n Inductive Step:

Case 1: $M = \lambda z.M_1$

We can use α -renaming in M, to make sure that $z \neq x, z \neq y, z \notin FV(N), z \notin FV(P), z \notin FV(N')$. So, we now assume WLOG that all of the above holds true for z, therefore,

$$\begin{split} M[x \coloneqq N][y \coloneqq P] &\equiv (\lambda z. M_1)[x \coloneqq N][y \coloneqq P] \\ &\equiv \lambda z. (M_1[x \coloneqq N][y \coloneqq P]) \\ &\equiv \lambda z. (M_1[y \coloneqq P][x \coloneqq N']) \\ &\equiv (\lambda z. M_1)[y \coloneqq P][x \coloneqq N'] \\ &\equiv M[y \coloneqq P][x \coloneqq N'] \end{split} \tag{As } size(M_1) < size(M))$$

This completes the proof for this case, i.e., the abstraction rule.

Case 2: $M = M_1 M_2$.

Before we jump into the main step of the proof, we first claim that $M[x := N] = M_1[x := N]M_2[x := N]$. For the same, we recall the definition of a substitution, which in this case is replacing each *free occurrence* of x in M by the term N.

Now, each free occurrence of x in M_2 , has to be a free occurrence in M as well. This is because the only way x can be a free occurrence in M_2 , but not in M is if x is somehow bound to a corresponding λx . x was not bound to any λx in $M_2 \Rightarrow$ there was no λx in M_2 . But, x is not free in $M \Rightarrow$ there is λx in M. The only way this can happen is if there is λx in M_1 .

WLOG, let $M_1 \equiv M3\lambda x.M4$ for some M_3, M_4 . Then, the derivation of M will have looked something like, $M \to M_1M_2 \to (M_3\lambda x.M_4)M_2$, but this means that the scope of λx , does not go beyond M_4 . We have thus arrived at a contradiction; "It is possible for a free occurrence of x in M_2 to be not a free occurrence in M."

More concisely, it can be said that each free occurrence of x in M_2 is a free occurrence in M as well.

A similar argument can be run to prove that each free occurrence of x in M_1 is a free occurrence in M as well.

Finally then, when we want to substitute x in M, it is the same as replacing each free occurrence of x in M_1 as well as replacing each free occurrence of x in M_2 at the same time. More formally, we get that:

$$M[x \coloneqq N] \equiv (M_1 M_2)[x \coloneqq N] \equiv M_1[x \coloneqq N] \ M_2[x \coloneqq N]$$

We therefore have the following result:

$$M[x \coloneqq N][y \coloneqq P] \equiv (M_1 M_2)[x \coloneqq N][y \coloneqq P]$$

$$\equiv (M_1[x \coloneqq N] \ M_2[x \coloneqq N])[y \coloneqq P]$$

$$\equiv M_1[x \coloneqq N][y \coloneqq P] \ M_2[x \coloneqq N][y \coloneqq P]$$

$$\equiv M_1[y \coloneqq P][x \coloneqq N'] \ M_2[y \coloneqq P][x \coloneqq N']$$

$$\equiv (M_1[y \coloneqq P] \ M_2[y \coloneqq P])[x \coloneqq N']$$

$$\equiv (M_1 M_2)[y \coloneqq P][x \coloneqq N']$$

$$\equiv M[y \coloneqq P][x \coloneqq N']$$

$$M[x \coloneqq N][y \coloneqq P] \equiv M[y \coloneqq P][x \coloneqq N']$$

This completes the proof for this case, i.e., the application rule.

Since the constrained-associativity of substitutions has been shown for each derivation rule, we can conclude that the rule holds for all λ -terms.

(a) Church Numerals: Explain with suitable examples, what simple arithmetic function does the following λ -term represents:

$$\lambda n. \ n \ (\lambda p \ z. \ z \ (succ \ (p \ true))(p \ true))(\lambda z. \ z \ zero \ zero) \ false$$

Here, succ, true, zero, false represent the λ -terms defined in the lectures.

Sol. For the sake of brevity, we use the following shorthand:

$$s \equiv succ$$
 $0 \equiv zero$ $T \equiv true$ $F \equiv false$ $\mathcal{G} \equiv (\lambda p \ z. \ z \ (s \ (p \ T)) \ (p \ T))$

Now let us try applying $(\lambda n.\ n\ \mathcal{G}\ (\lambda\ z.\ z\ 0\ 0)F)$ to some values of n (i.e., natural numbers) and try to build an intuition for this function.

$$\begin{array}{c} (\underline{\lambda n}.\ n\ \mathcal{G}\ (\lambda\ z.\ z\ 0\ 0)\ F)\ \underline{0} \\ \xrightarrow{\beta} 0\ \mathcal{G}\ (\lambda\ z.\ z\ 0\ 0)\ F \\ \xrightarrow{\beta} (\underline{\lambda m}\ z.\ z)\ \underline{\mathcal{G}}\ (\lambda\ z.\ z\ 0\ 0)\ F \\ \xrightarrow{\beta} (\underline{\lambda z}.\ z)\ (\underline{\lambda\ z.\ z\ 0\ 0)}\ F \\ \xrightarrow{\beta} (\underline{\lambda z}.\ z\ 0\ 0)\ \underline{F} \\ \xrightarrow{\beta} \underline{F}\ 0\ \underline{0} \\ \rightarrow 0 \end{array}$$

Similarly on applying the function to 1 we get:

$$(\lambda z. z 1 0) F \xrightarrow{\beta} F 1 0 \rightarrow 0$$

Thus, we claim that $(n \mathcal{G}(\lambda z. z 0 0))$ reduces to $(\lambda z. z n pred(n))$ after a finite number of β -reductions.

We now prove our claim using induction on n:

- Base case: The claim clearly holds for n = 0 and n = 1.
- Inductive case: Let us assume, that the Inductive Hypothesis holds for n = k. Now, for n = k + 1,

$$(k+1) \mathcal{G} (\lambda z. z \ 0 \ 0) \equiv (\underline{\lambda m} \ \underline{w}. \ m \ (m(\dots \{k\text{-times}\}w))) \ \underline{\mathcal{G}} \ (\underline{\lambda z. z \ 0 \ 0})$$

$$\rightarrow \mathcal{G} \ (\underline{\mathcal{G}} \ (\mathcal{G} \ \dots \{k\text{-times}\}(\lambda z. z \ 0 \ 0)))$$

$$\rightarrow \mathcal{G} \ (\lambda z. z \ k \ pred(k))$$

$$\rightarrow (\underline{\lambda p} \ z. \ z \ (s \ (p \ T)) \ (p \ T)) \ (\underline{\lambda z. z \ k \ pred(k)})$$

$$\xrightarrow{\beta} (\lambda z. \ z \ (s \ (\underline{\lambda z. z \ k \ pred(k)}) \ \underline{T})) \ ((\lambda z. \ z \ k \ pred(k)) \ \underline{T}))$$

$$\xrightarrow{\beta} \lambda z. \ z \ (s \ (\underline{T \ k \ pred(k)}) \ (\underline{T \ k \ pred(k)})$$

$$\xrightarrow{\beta} \lambda z. \ z \ (s \ (\underline{T \ k \ pred(k)}) \ (\underline{T \ k \ pred(k)}))$$

$$\rightarrow \lambda z. \ z \ (s \ k) \ k$$

$$\equiv \lambda z. \ z \ (k+1) \ pred(k+1)$$

Hence, proved

Now, applying n_0 to $(\lambda n. n \mathcal{G} (\lambda z. z 0 0)F)$, we get:

$$(\underline{\lambda n}.\ n\ \mathcal{G}\ (\lambda\ z.\ z\ 0\ 0)F)\ \underline{n_0}\ \stackrel{\beta}{\longrightarrow} (n_0\ \mathcal{G}\ (\lambda z.\ z\ 0\ 0)\ F)$$

$$\equiv (\underline{\lambda z}.\ z\ n_0\ pred(n_0))\ \underline{F} \qquad \text{(Using our claim above)}$$

$$\stackrel{\beta}{\longrightarrow} (\underline{F}\ n_0\ \underline{pred(n_0))}$$

$$\to pred(n_0)$$

Therefore the given function is a ${f natural\ number\ predecessor}$ function.

References

[1] https://isabelle.in.tum.de/nominal/example.html