* Методы исследования связей между случайными величинами

Это статистический метод анализа результатов наблюдений, зависящих от различных одновременно действующих факторов, с целью выбора наиболее значимых факторов и оценки их влияния на исследуемый процесс.

Предположения:

- ◆ распределения с.в. нормально;
- ♦ дисперсии экспериментальных данных одинаковы для всех условий эксперимента.

Основная идея: сравнение «факторной дисперсии», порождаемой воздействием фактора, и «остаточной дисперсии», обусловленной случайными признаками.

Если дисперсии отличаются значимо, то следует вывод о значимом влиянии фактора на среднее значение наблюдаемой случайной величины.

Виды дисперсионного анализа:

- ◊ одномерный (одна зависимая переменная) и многомерный (несколько зависимых переменных);
- ⋄ однофакторный (одна группирующая переменная) и многофакторный (несколько группирующих переменных) с возможным взаимодействием между факторами;
- ⋄ с простыми измерениями (зависимая переменная измеряется лишь один раз) и с повторными (зависимая переменная измеряется несколько раз).

Гипотезы:

Основная H_0 : $\mu_1 = \mu_2 = ... = \mu_c$ все средние одинаковы;

Альтернативная H_1 : не все μ_j одинаковы j = 1, 2, ..., c.

Результативные признаки (показатели, зависимые переменные) - их значения определяется с помощью измерений в ходе эксперимента - количественная шкала (например, цена, объем производства, урожайность).

Факторы - переменные, вызывающие изменчивость средних значений результативных признаков - номинальная шкала (например, тип производства, сорт сырья, изменения в законодательстве, климатические условия).

Уровень фактора - значения, которые может принимать фактор.

Отклик - значение измеряемого признака.

Однофакторный дисперсионный анализ

Анализируется влияние фактора A, изучаемого на k уровнях $(A_1, A_2,..., A_k)$. На каждом уровне A_i проведены n наблюдений $(x_{i1}, x_{i2},..., x_{in})$, т.е. на всех k уровнях фактора A произведены kn наблюдений.

Номер	Уровни фактора A					
наблюдения	A_1	A_2		A_i		A_k
1	x_{11}	x_{21}		x_{i1}		x_{k1}
2	x_{12}	x_{22}		x_{i2}		x_{k2}
	•					
j	x_{1j}	x_{2j}		$x_{i\jmath}$		x_{kj}
n	x_{1n}	x_{2n}		x_{in}		x_{kn}
Σ	X_1	X_2		X_i		X_k

Однофакторный дисперсионный анализ

Алгоритм:

1. Вычислить суммы

$$Q_1 = \sum_{i=1}^k \sum_{j=1}^n x_{ij}^2; \quad Q_2 = \frac{1}{n} \sum_{i=1}^k X_i^2; \quad Q_3 = \frac{1}{kn} \left(\sum_{i=1}^k X_i\right)^2$$

2. Получить оценки $S_0^2 = rac{Q_1 - Q_2}{k \, (n-1)}; \quad S_A^2 = rac{Q_2 - Q_3}{k-1}$

3. Если
$$\frac{k(n-1)}{k-1}\frac{Q_2-Q_3}{Q_1-Q_2} > F_{\alpha}[k-1;k(n-1)],$$

где $F\alpha(f_1, f_2)$ — α -квантиль F-распределения с f_1 и f_2 степенями свободы,

то влияние фактора A признается значимым, в противном случае всю выборку наблюдений считают однородной с общей дисперсией $S^2 = \frac{Q_1 - Q_3}{l_{m} - 1}.$

Однофакторный дисперсионный анализ

Пример. Провести однофакторный дисперсионный анализ данных при доверительной вероятности α =0,95.

$igcap_i$	$У$ ровни фактора A_i							
	A_1	A_2	A_3	A_4	A_5			
1	3,2	2,6	2,9	3,6	3,0			
2	3,1	$3,\!1$	2,6	3,4	3,4			
3	3,1	2,7	$_{3,0}$	$_{3,2}$	3,2			
4	2,8	2,9	$3,\!1$	3,3	3,5			
5	3,3	2,7	3,0	$3,\!5$	2,9			
6	3,0	$2,\!8$	2,8	3,3	3,1			
\sum	18,5	16,8	17,4	20,3	19,1			

$$Q_1 = \sum_{i=1}^{5} \sum_{j=1}^{6} x_{ij}^2 = 284.8;$$

$$Q_2 = \frac{1}{6} \cdot \sum_{i=1}^{5} X_i^2 = \frac{1}{6} \cdot (18,5^2 + 16,8^2 + \dots + 19,1^2) = 284,025;$$

$$Q_3 = \frac{1}{5 \cdot 6} \cdot \left(\sum_{i=1}^5 X_i\right)^2 = \frac{1}{30} \cdot (18,5 + 16,8 + 17,4 + 20,3 + 19,1)^2 = 282,747.$$

$$S_0^2 = \frac{284,87 - 284,025}{5 \cdot (6-1)} = 0,0338; \quad S_A^2 = \frac{284,025 - 282,747}{5-1} = 0,319;$$

$$\frac{S_A^2}{S_0^2} = \frac{0,319}{0,0338} = 9,45.$$

Для
$$f_1$$
 = k - 1 = 4 и f_2 = $k(n$ - 1) = 25 находим $F_{0,95}(4;$ 25) = 2,8 Так как $\frac{S_A^2}{S_0^2} = 9{,}45 > F_{0,95}(4;25) = 2{,}8,$

то влияние фактора А на с.в. следует признать значимым.

Предположения:

- при различных сочетаниях уровней факторов *A* и *B* наблюдения независимы;
- при каждом сочетании уровней факторов A и B результативный признак Y имеет нормальный закон распределения с постоянной для различных сочетаний генеральной дисперсией σ^2 .

Разновидности:

- без повторений каждому уровню факторов соответствует только одна выборка данных,
- с повторениями определенным уровням факторов может соответствовать более одной выборки данных.

Факторы A и B независимы и фиксируются на уровнях $A_1, A_2, ..., A_k$ и $B_1, B_2, ..., B_m$ соответственно.

Результаты эксперимента представляют в виде таблицы:

D							
B	A_1	A_2	• • •	A_i		A_k	Σ
B_1	x_{11}	x_{21}		x_{i1}		x_{k1}	$X_{1'}$
B_2	x_{12}	x_{22}		x_{i2}	• • •	x_{k2}	$X_{2'}$
		•					.
	•	•		•	• • •		•
	•	•		•			
B_{j}	$x_{\imath \jmath}$	$x_{2\jmath}$		x_{ij}	$x_{k\jmath}$	$x_{k\jmath}$	$X_{\jmath'}$
•	•	•		•			
	•	•		•			.
	•	•		•			
B_m	x_{1m}	x_{2m}		x_{im}	• • •	x_{km}	$X_{m'}$
\sum	X_1	X_2		X_i	• • •	X_k	

Алгоритм:

1. Вычислить суммы

$$Q_{1} = \sum_{i=1}^{k} \sum_{j=1}^{m} x_{ij}^{2}; \quad Q_{2} = \frac{1}{m} \sum_{i=1}^{k} X_{i}^{2}; \quad Q_{3} = \frac{1}{k} \sum_{j=1}^{m} X_{j'}^{2};$$
$$Q_{4} = \frac{1}{mk} \left(\sum_{i=1}^{k} X_{i}\right)^{2} = \frac{1}{mk} \left(\sum_{j=1}^{m} X_{j'}\right)^{2}.$$

2. Оценить дисперсии

$$S_0^2 = \frac{Q_1 + Q_4 - Q_2 - Q_3}{(k-1)(m-1)}; \quad S_A^2 = \frac{Q_2 - Q_4}{k-1}; \quad S_B^2 = \frac{Q_3 - Q_4}{m-1}.$$

3. Принятие решения: если $\frac{S_A^2}{S_0^2} > F_{lpha}(f_1,f_2),$

где f_1 = k - 1 и f_2 = (k - 1)(m - 1), то влияние фактора A с достоверностью α признается значимым.

Если A и B зависимы, то при каждом сочетании факторов A и B на уровнях A_i , B_j необходима серия наблюдений x_{ij1} , x_{ij2} ,..., x_{ijn} со средним $\frac{n}{1}$

 $x_{ij} = \frac{1}{n} \sum_{\nu=1}^{n} x_{ij\nu}$

Далее вычисления аналогичны:

- 1. Вычислить дополнительную сумму $Q_5 = \sum_{i=1}^n \sum_{j=1}^m \sum_{\nu=1}^n x_{ij\nu}^2$.
- **2.** Вычислить дисперсию $S_{AB}^{2} = rac{Q_{5} nQ_{1}}{mk\left(n-1
 ight)}$
- 3. Проверить значимость взаимодействия: если

$$\frac{nS_0^2}{S_{AB}^2} > F_{\alpha}(f_1, f_2)$$

где f_1 = (k-1)(n-1) и f_2 = mk(n-1), то влияние признается значимым

Пример. Провести двухфакторный дисперсионный анализ данных, представленных следующей таблицей при доверительной вероятности α = 0,95:

D								
B	A_1			A_2			A_3	
B_1	3,6 3,8	4, 1	2,9	3, 1	3,0	2,6	2,5	2,9
B_2	$\begin{vmatrix} 4,2 & 4,0 \end{vmatrix}$	4, 1	3,3	2, 9	3, 2	3,7	3, 5	3,6
B_3	3,8 $3,5$	3,6	3,6	3, 7	3, 5	3,2	3,0	3,4
B_4	$\begin{array}{ c c c c }\hline 3,4 & 3,2 \\ \end{array}$	3, 2	3,4	3,6	3, 5	3,6	3,8	3,7

Для серий значений вычисляют средние:

D				
B	A_1	A_2	A_3	\sum
B_1	3,83	3,00	2,67	$9,\!50$
B_2	4,10	3,13	3,60	10,83
B_3	3,63	$3,\!60$	$3,\!20$	10,43
B_4	3,27	3,50	3,70	$10,\!47$
\sum	14,83	13,23	13,17	41,23

По данным таблицы вычисляем

$$Q_1 = \sum_{i=1}^{3} \sum_{j=1}^{4} x_{ij}^2 = 143,34; \quad Q_2 = \frac{1}{4} \cdot \sum_{i=1}^{3} X_i^2 = 142,102675;$$

$$Q_3 = \frac{1}{3} \cdot \sum_{j=1}^{4} X_j^2 = 141,98157;$$

$$Q_4 = \frac{1}{4 \cdot 3} \cdot \left(\sum_{i=1}^3 X_i\right)^2 = 141,6594; \quad Q_5 = \sum_{i=1}^3 \sum_{j=1}^4 \sum_{\nu=1}^3 x_{ij\nu}^2 = 430,79.$$

$$S_0^2 = rac{Q_1 + Q_4 - Q_2 - Q_3}{(k-1) \cdot (m-1)} =$$

$$=\frac{143,3745+141,6594-142,102675-141,98157}{2\cdot 3}=0,1582;$$

$$S_A^2 = \frac{Q_2 - Q_4}{k - 1} = \frac{142,3745 - 141,6594}{2} = 0,223675;$$

$$S_B^2 = \frac{Q_3 - Q_4}{m - 1} = \frac{141,98157 - 141,6594}{3} = 0,10739;$$

$$S_{AB}^2 = \frac{Q_5 - n \cdot Q_1}{mk \cdot (n - 1)} = \frac{430,79 - 3 \cdot 143,3745}{4 \cdot 3 \cdot 2} = 0,02777;$$

$$\frac{S_A^2}{S_0^2} = \frac{0,223675}{0,1582} = 1,41; \quad \frac{S_B^2}{S_0^2} = \frac{0,10739}{0,1582} = 0,679;$$

$$\frac{n \cdot S_0^2}{S_{AB}^2} = \frac{3 \cdot 0,1582}{0,02777} = 19,98$$

Проверка значимости

$$F_{0.95}[k-1;(k-1)\cdot(m-1)] = F_{0.95}(2;6) = 5,1;$$

$$F_{0,95}[m-1;(k-1)\cdot(m-1)]=4.8;$$

$$F_{0.95}[(k-1)\cdot(m-1);mk\cdot(n-1)]=F_{0.95}(6;24)=2.5.$$

$$\frac{S_A^2}{S_0^2} = 1,41 < F_{0,95}(2;6) = 5,1;$$

$$\frac{S_B^2}{S_0^2} = 0,679 < F_{0,95}(3;6) = 4,8;$$

$$\frac{n \cdot S_0^2}{S_{AB}^2} = 17,09 > F_{0,95}(6;24) = 2,5.$$

Следовательно, влияние факторов *А* и *В* должно быть признано незначимым. Однако существенно значимым является взаимодействие факторов A и B.