Лабораторная работа № 3.4.5 Петля гистерезиса(динамический метод)

Илья Прамский

Ноябрь 2023

Цель работы: изучение петель гистерезиса ферромагнитных материалов с помощью осциллографа.

Оборудование: автотрансформатор, понижающий трансформатор, амперметр и вольтметр (мультиметры), резистор, делитель напряжения, интегрирующая цепочка, электронный осциллогра, тороидальные образцы с двумя обмотками..

1 Теоретическое введение

Рис. 1 — Петля гистерезиса ферромагнетика

Магнитная индукция \vec{B} и напряженность магнитного поля H в ферромагнитном материале неоднозначно связаны между собой: индукция зависит не только от напряженности, но и от предыстории образца. Связь между индукцией и напряженностью поля типичного ферромагнетика иллюстрирует рис. 1. Если к размагниченному образцу начинают прикладывать магнитное поле, то его намагничивание следует кривой OACD, выходящей из начала координат. Эту кривую называют основной кривой намагничивания.

Индукция \vec{B} в образце состоит из индукции, связанной с намагничивающим полем \vec{B} , и индукции, создаваемой самим намагниченным образцом. В системе СИ эта связь имеет вид

$$\vec{B} = \mu_0(\vec{H} + \vec{M}),$$

где \vec{M} - намагниченность - магнитный момент единичного объема образца, а μ_0 - магнитная постоянная.

Намагнитим образец до насыщения - до точки D. Соответствующее значение индукции B_s называют индукцией насыщения. При уменьшении поля H до нуля зависимость B(H) имеет вид кривой DCE, и при нулевом поле индукция имеет конечное ненулевое значение. Это остаточная индукция B_r . Чтобы размагнитить образец, то есть перевести его в состояние F, необходимо приложить "обратное" магнитное поле H_c , которое называют коэрцитивной силой.

Замкнутая кривая DEFD'E'F'D, возникающая при циклическом перемагничивании образца, намагниченного до насыщения, называется npedenbhoù nemneù vucmepesuca.

1.1 Измерение магнитной индукции в образцах.

Магнитную индукцию удобно определять с помощью ЭДС, возникающей при изменении магнитного потока Ф в катушке, намотанной на образец:

$$\mathcal{E} = -\frac{d}{dt}.$$

Тогда отсюда и из формулы = BSN получаем:

$$|B| = \frac{1}{SN} \int \mathcal{E}dt.$$

Для интегрирования сигнала применяют интегрирующие схемы (рис. 2).

Рис. 2 — Интегрирующая RC-цепь

Если выходной сигнал намного меньше входного $(U \ll U,)$ ток в цепи пропорционален входному напряжению: $I \simeq \frac{U}{R},$ а напряжение на емкости C

$$U \simeq \frac{1}{R} \int U dt.$$

Этот вывод тем ближе к истине, чем больше постоянная $\tau = RC$ превос-

ходит характерное время процесса (например, его период). Для синусоидальных напряжений

$$U = \frac{U}{RC\Omega},$$

где Ω - частота сигнала.

В итоге, обозначив параметры интегрирующей цепи через R и C, получаем

$$|B| = \frac{1}{SN} \int U dt = \frac{R}{SN} U.$$

2 Экспериментальная установка.

Схема экспериментальной установки показана на рис. 3.

Действующее значение переменного тока в обмотке N0 измеряется амперметром A (мультиметром GDM). Последовательно с амперметром включено сопротивление R_0 , напряжение с которого подается на вход X электронного осциллографа (ЭО). Это напряжение пропорционально току в обмотке N_0 , а следовательно и напряженности H магнитного поля в образце.

Для измерения магнитной индукции В с измерительной обмотки N на вход интегрирующей RC -цепочки подается напряжение U (UBX), пропорциональное производной \dot{B} , а с выхода снимается напряжение $U_C(U)$, пропорциональное величине B, и подается на вход Y осциллограа. Замкнутая кривая, возникающая на экране, воспроизводит в некотором масштабе (различном для осей X и Y) петлю гистерезиса. Чтобы придать этой кривой количественный смысл, необходимо установить масштабы изображения, т.е. провести калибровку каналов X и Y ЭО. Для этого, во-первых, надо узнать, каким напряжениям (или токам) соответствуют амплитуды сигналов, видимых на экране, и во-вторых, каким значениям B и H соответствуют эти напряжения (или токи).

Рис. 3 — Схема установки для исследования намагничивания образцов

3 Ход работы

Данные нашей установки: $R_0=0,3$ Ом, $R_{\scriptscriptstyle \rm H}=20$ кОм, $C_{\scriptscriptstyle \rm H}=20$ мк $\Phi.$

Теперь также выпишем данные каждой из обмоток:

Пермаллой (Fe-Ni HП50) $N_0=35$ витков, $N_{\rm H}=220$ витков, S=3,8 см², $2\pi R=24$ см;

Феррит 1000нн $N_0=35$ витков, $N_{\rm m}=400$ витков, $S=3~{\rm cm}^2,\,2\pi R=25~{\rm cm};$

Кремнистое железо(Fe-Si) $N_0=35$ витков, $N_{\tt m}=350$ витков, S=1,2 см², $2\pi R=10$ см;

Теперь добьемся появления предельной петли гистерезиса и запишем чувствительность по оси х и по оси у у осциллографа.

Пермаллой $K_x=20$ мВ/дел, $K_y=50$ мВ/дел;

Феррит $K_x = 20$ мВ/дел, $K_y = 20$ мВ/дел;

Кремнистое железо $K_x = 50 \text{мB/дел}$, $K_y = 50 \text{ мB/дел}$;

Зная чувствительность для каждого из торойдов, найдем коэффициенты преобразования по осям электронного осциллографа в напряженность Н и индукцию В.

$$H = \frac{I \cdot N_0}{2 \cdot \pi \cdot R}$$

Где $I = \frac{K_x}{R_0}$.

$$B = \frac{R_{\text{\tiny M}} \cdot C_{\text{\tiny M}}}{S \cdot N_{\text{\tiny M}}} \cdot U_{\text{\tiny BMX}}$$

Где $U_{\text{вых}} = K_y$.

Получается

Пермаллой H=9,72 Тл/дел, B=0,24 Тл/дел;

Феррит H = 9,3Тл/дел, B = 0,06 Тл/дел;

Кремнистое железо H = 58,3Тл/дел, B = 0,47 Тл/дел.

Теперь, зная коэффициенты преобразования, найдем максимальные значения B и H у предельной петли для каждого из образцов. Полученные результаты занесём в таблицу.

Также найдем значения коэрцитивного поля H_c и остаточной индукции B_r . Их тоже занесем в таблицу.

Дальше, проследив за движением крайней точки у гистерезиса, изобразим начальные кривые намагничивания B(H) для каждого из образцов. По этим графикам оценим начальное и максимальное значения магнитной проницаемости $\mu_{\text{диф}}$. Результаты занесем в таблицу.

Пермал.	лой			Феррит				Кремнисто	е железо		
X	У	Н, Тл	В, Тл	x	У	Н, Тл	В, Тл	x y	/	Н, Тл	В, Тл
2	,8 3,55	27,216	0,852	2	1,7	18,6	0,102	2,75	2,25	160,325	1,0575
2	,5 3,4	24,3	0,816	1,5	1,5	13,95	0,09	2,4	2,2	139,92	1,034
2	,2 2,7	21,384	0,648	1	1,2	9,3	0,072	2,2	2,1	128,26	0,987
	2 2,3	19,44	0,552	0,8	0,9	7,44	0,054	2,1	2	122,43	0,94
1	,9 1,6	18,468	0,384	0,6	0,57	5,58	0,0342	1,55	1,6	90,365	0,752
1,7	78 1,15	17,3016	0,276	0,58	0,45	5,394	0,027	1,1	1,1	64,13	0,517
1	,6 0,63	15,552	0,1512	0,5	0,3	4,65	0,018	0,8	0,8	46,64	0,376
1	,5 0,5	14,58	0,12	-0,4	-0,4	-3,72	-0,024	0,6	0,58	34,98	0,2726
1	,4 0,37	13,608	0,0888	-0,8	-0,87	-7,44	-0,0522	0,3	0,1	17,49	0,047
	1 0,2	9,72	0,048	-1	-1,1	-9,3	-0,066	-0,6	-0,5	-34,98	-0,235
	-1 -0,1	-9,72	-0,024	-1,6	-1,7	-14,88	-0,102	-0,9	-1	-52,47	-0,47
-1	,3 -0,4	-12,636	-0,096	-2	-1,75	-18,6	-0,105	-1,2	-1,3	-69,96	-0,611
-1	,5 -0,8	-14,58	-0,192					-1,5	-1,6	-87,45	-0,752
-1	,7 -1,6	-16,524	-0,384					-2,1	-2,1	-122,43	-0,987
-1	,9 -2,2	-18,468	-0,528					-2,6	-2,4	-151,58	-1,128
	-2,6	-19,44	-0,624					-2,8	-2,5	-163,24	-1,175
-2	,4 -3,15	-23,328	-0,756								

Рис. 4 — Пермаллой

Рис. $5 - \Phi$ еррит

Рис. 6 — Кремнистое железо

Рис. 7 — Пермаллой

Рис. 8 — Феррит(график был нестабильным, из-за чего не удавалось получить на фото полный гистерезис)

Рис. 9 — Кремнистое железо

Итоговая таблица

H	łmax,Тл	Bmax,Tл	Нс,Тл	Bs,Тл	μнач	μmax
Пермаллой	28,188	0,888	22,356	0,864	0,005	0,17
Феррит	18,6	0,108	7,44	0,06	0,004	0,01
Кремнистое железо	198,22	1,222	58,3	0,611	0,003	0,008

4 Вывод

В ходе работы были изучены петли гистерезиса различных торойдных образцов при помощи электронного осциллографа. При калибровке осциллографа также было получено, что его чувствительность достаточно точная(различие 10^{-3} порядка). С помощью изменения поданного питания, была получена начальная кривая намагничивания. При помощи её, а также предельной картины гистерезиса были оценены параметры торойдов, многие из которых порядка справочных (μ сильно отличается от справочного значения. Связано это с тем, что при помощи отснятого процесса движения краевой точки, очень затруднительно фиксировать ее координаты каждый отрезок времени, из-за чего кривая намагничивания получилась неточной).