Teorija upodobitev

Urban Jezernik

23. junij 2022

Kazalo

1	Temelji teorije upodobitev		
	1.1	Osnovni pojmi	5
	1.2	Fundamentalne konstrukcije	8
2	Upodobitev pod mikroskopom		
	2.1	Razstavljanje upodobitve	21
	2.2	Matrični koeficienti	29
3	Upodobitve končnih grup		
	3.1	Polenostavnost	35
	3.2	Karakterji	39
	3.3	Razširjeni zgledi	46
4	Upodobitve linearnih grup		
	4.1	Ozaljšane upodobitve	49
	4.2	Liejeve grupe	49
	4.3	Kompaktne grupe	50

Kratek opis predmeta

Tile zapiski so kot eno drevo, ki se razraste v razne smeri. Pri vršičkih je ujame z drevesoma TGP in Expanderji.

Literatura

- E. Kowalski, An Introduction to the Representation Theory of Groups, American Mathematical Society, 2014.
- W. Fulton, J. Harris, *Representation Theory: A First Course*, Springer GTM 129, 2004.
- J. P. Serre, *Linear Representation of Finite Groups*, Springer GTM 42, 1977.

Poglavje 1

Temelji teorije upodobitev

V tem poglavju bomo vzpostavili temelje teorije upodobitev. Spoznali bomo koncept upodobitve in si ogledali mnogo primerov. Premislili bomo, kako upodobitve med sabo primerjamo in kako iz danih upodobitev sestavimo nove.

1.1 Osnovni pojmi

Upodobitve grup

Naj bo G grupa in V vektorski prostor nad poljem F. Upodobitev grupe G na prostoru V je delovanje G na množici V, ki upošteva dodatno strukturo množice V, namreč to, da je vektorski prostor. Natančneje, upodobitev (rekli bomo tudi $linearno\ delovanje$) grupe G na prostoru V je homomorfizem grup

$$\rho: G \to \operatorname{GL}(V)$$
.

Pri tem razsežnosti prostora V rečemo stopnja upodobitve in jo označimo z $\deg(\rho)$. Ko v prostoru V izberemo bazo in torej izomorfizem $V \cong F^{\deg(\rho)}$, lahko upodobitev ρ enakovredno zapišemo kot homomorfizem

$$\rho: G \to \mathrm{GL}_{\mathrm{deg}(\rho)}(F)$$

iz grupe G v obrnljive matrike razsežnosti deg (ρ) nad F.

Za element $g \in G$ in vektor $v \in V$ rezultat delovanja elementa g na vektorju v, se pravi $\rho(g)(v)$, včasih pišemo krajše kot $g \cdot v$ ali kar gv.

Zgled.

 Opazujmo grupo celih števil Z in vektorski prostor C nad poljem kompleksnih števil. Eksponentna funkcija podaja upodobitev

$$\gamma: \mathbf{Z} \to \mathrm{GL}(\mathbf{C}) = \mathbf{C}^*, \quad x \mapsto e^x.$$

Splošneje imamo za vsak parameter $\alpha \in \mathbb{C}$ upodobitev

$$\chi_{\alpha}: \mathbf{Z} \to \mathrm{GL}(\mathbf{C}) = \mathbf{C}^*, \quad x \mapsto e^{\alpha x}.$$

• Opazujmo grupo ostankov $\mathbb{Z}/q\mathbb{Z}$ za poljubno naravno število q. Za vsak parameter $m \in \mathbb{Z}/q\mathbb{Z}$ imamo upodobitev

$$\chi_m: \mathbf{Z}/q\mathbf{Z} \to \mathrm{GL}(\mathbf{C}) = \mathbf{C}^*, \quad x \mapsto e^{2\pi i m x/q}.$$

 Naj bo G grupa in V vektorski prostor nad poljem F. Trivialna upodobitev grupe G je homomorfizem

$$\rho: G \to \operatorname{GL}(V), \quad g \mapsto \operatorname{id}_V.$$

Kadar je vektorski prostor V razsežnosti 1, trivialno upodobitev in vektorski prostor sam označimo kot 1, v primerih višje razsežnosti pa ju označimo kot $\mathbf{1}^{\dim V}$.

• Naj bo V vektorski prostor in naj bo G poljubna podgrupa grupe GL(V). Tedaj je naravna vložitev $G \to GL(V)$ upodobitev grupe G na prostoru V.

Za konkreten zgled lahko vzamemo $V = \mathbf{C}^2$ in $G = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rangle \leq \operatorname{GL}(\mathbf{C}^2)$. Na ta način dobimo upodobitev grupe $G \cong \mathbf{Z}$ na prostoru \mathbf{C}^2 . Na istem prostoru lahko vzamemo tudi $G = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \rangle \leq \operatorname{GL}(\mathbf{C}^2)$. Na ta način dobimo upodobitev neskončne diedrske grupe $G \cong D_{\infty}$ na prostoru \mathbf{C}^2 .

• Naj bo G poljubna grupa, opremljena z delovanjem na neki množici X. Naj bo F[X] vektorski prostor z bazo $\{e_x\}_{x\in X}$. Grupa G deluje na F[X] s homomorfizmom

$$\pi: G \to \mathrm{GL}(F[X]), \quad g \mapsto (e_x \mapsto e_{g,x}),$$

kjer je $x \in X$. To delovanje imenujemo **permutacijska upodobitev** grupe G na F[X].

Za konkreten zgled lahko vzamemo $G = S_n$, ki naravno deluje na množici $X = \{1, 2, ..., n\}$. Na ta način dobimo permutacijsko upodobitev grupe S_n na prostoru $F[\{1, 2, ..., n\}]$ razsežnosti n.

- Naj bo G grupa in F polje. Grupa G vselej deluje na sebi s Cayleyjevim delovanjem. Prirejeni permutacijski upodobitvi grupe G na $F[G]^1$ rečemo **Cayleyjeva upodobitev** grupe G nad F. To delovanje označimo z π_{Cay} .
- Naj bo G grupa in F polje. Naj bo hom(G,F) množica vseh funkcij iz množice G v F. Te funkcije lahko po točkah seštevamo in množimo s skalarji, na ta način je hom(G,F) vektorski prostor. Grupa G deluje na hom(G,F) s homomorfizmom

$$\rho_{\text{hom}}: G \to \text{GL}(\text{hom}(G,F)), \quad g \mapsto (f \mapsto (x \mapsto f(xg))),$$

kjer je $f \in \text{hom}(G,F)$, $x \in G$. To delovanje izhaja iz (desnega) delovanja grupe G na sebi in ga zato imenujemo (**desna**) **regularna upodobitev** grupe G nad F.

Upodobitev ρ grupe G pohvalimo s pridevnikom **zvesta**, kadar je injektivna, se pravi ker $\rho=1$. Trivialna upodobitev netrivialne grupe ni zvesta, sta pa vselej zvesti Cayleyjeva in desna regularna upodobitev.

Ali tole sploh kje potrebujemo?

 $^{^1}$ Prostor F[G] je vektorski prostor nad F, generiran z množico G. Običajno mu pravimo **grupna algebra**, saj ta prostor na naraven način podeduje operacijo množenja iz grupe G.

Kategorija upodobitev

Naj bo G grupa. Opazujmo neki njeni upodobitvi ρ_1 in ρ_2 nad vektorskima prostoroma V_1 in V_2 , obema nad poljem F. Ti dve upodobitvi lahko *primerjamo* med sabo, in sicer tako, da hkrati primerjamo vektorska prostora in delovanji grupe G na teh dveh prostorih.

Natančneje, **spletična**² med upodobitvama ρ_1 in ρ_2 je linearna preslikava $\Phi: V_1 \to V_2$, za katero za vsak $g \in G$ in $v \in V_1$ velja³

$$\Phi(\rho_1(g) \cdot v) = \rho_2(g) \cdot \Phi(v)$$
.

Zgled. Opazujmo grupo **Z** in dve njeni upodobitvi, ki smo jih že videli. Prva naj bo upodobitev

$$\rho: \mathbf{Z} \to \mathrm{GL}(\mathbf{C}^2), \quad x \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^x,$$

druga pa naj bo kar trivialna upodobitev 1 na prostoru C. Predpišimo linearno preslikavo $\Phi: \mathbf{C} \to \mathbf{C}^2$ v standardni bazi z matriko $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Tedaj za vsak vektor $v \in \mathbf{C}$ in vsako število $x \in \mathbf{Z}$ velja

$$\Phi(x \cdot v) = \begin{pmatrix} xv \\ 0 \end{pmatrix} = x \cdot \begin{pmatrix} v \\ 0 \end{pmatrix} = x \cdot \Phi(v),$$

zato je Φ spletična med **1** in ρ .

Množica vseh spletičen med ρ_1 in ρ_2 je podmnožica množice linearnih preslikav hom (V_1, V_2) , za katero uporabimo oznako hom $_G(\rho_1, \rho_2)$ ali kar hom $_G(V_1, V_2)$.

Za dano upodobitev ρ grupe G na vektorskem prostoru V je identična preslikava id $_V$ seveda spletična med ρ in ρ . Prav tako lahko vsaki dve spletični Φ_1 med ρ_1 in ρ_2 ter Φ_2 med ρ_2 in ρ_3 skomponiramo do spletične $\Phi_2 \circ \Phi_1$ med ρ_1 in ρ_3 . Množica vseh upodobitev dane grupe G nad poljem F torej tvoji kategorijo upodobitev, katere objekti so upodobitve grupe G nad F, morfizmi pa so spletične med upodobitvami. To kategorijo označimo z Rep_G .

Izomorfnost upodobitev

Naj bo G grupa in F polje. Kadar je spletična $\Phi: V_1 \to V_2$ med ρ_1 in ρ_2 obrnljiva kot linearna preslikava, je tudi njen inverz Φ^{-1} spletična med ρ_2 in ρ_1 . V tem primeru spletični Φ rečemo *izomorfizem* upodobitev ρ_1 in ρ_2 .

Zgled. Opazujmo ciklično grupo $\mathbf{Z}/n\mathbf{Z}$ za poljuben n>1. Ta grupa naravno deluje na množici $\Omega=\left\{1,2,\ldots,n\right\}$, do koder izhaja permutacijska upodobitev

$$\pi: \mathbf{Z}/n\mathbf{Z} \to \mathrm{GL}(\mathbf{C}[\Omega]).$$

Grupa $\mathbf{Z}/n\mathbf{Z}$ ima tudi Cayleyjevo upodobitev,

$$\pi_{\text{Cav}}: \mathbf{Z}/n\mathbf{Z} \to \text{GL}(\mathbf{C}[\mathbf{Z}/n\mathbf{Z}]).$$

²Angleško *intertwiner*.

 $^{^3}$ Z opustitvijo eksplicitnih oznak za delovanja lahko ta pogoj pišemo krajše kot $\Phi(gv) = g\Phi(v)$.

Generator $\bar{1} = 1 + n\mathbf{Z} \in \mathbf{Z}/n\mathbf{Z}$ deluje kot cikel $(1 \ 2 \cdots n)$.

Ti dve upodobitvi sta izomorfni. Vektorska prostora lahko namreč naravno primerjamo z bijektivno linearno preslikavo

$$\Phi: \mathbf{C}[\Omega] \to \mathbf{C}[\mathbf{Z}/n\mathbf{Z}], \quad e_i \mapsto e_{\bar{i}},$$

kjer je $i \in \Omega$. Preslikava Φ je spletična, saj za vsak $\bar{x} \in \mathbb{Z}/n\mathbb{Z}$ in $i \in \Omega$ velja

$$\Phi(\bar{x}\cdot e_i) = \Phi(e_{x+i}) = e_{x+i} = \bar{x}\cdot e_{\bar{i}} = \bar{x}\cdot \Phi(e_i).$$

V to kratko zgodbo lahko vključimo še desno regularno upodobitev

$$\rho_{\text{hom}}: \mathbb{Z}/n\mathbb{Z} \to \text{GL}(\text{hom}(\mathbb{Z}/n\mathbb{Z},\mathbb{C})).$$

Vektorski prostor hom $(\mathbf{Z}/n\mathbf{Z},\mathbf{C})$ lahko na naraven način opremimo z bazo iz karakterističnih funkcij

$$1_{\bar{x}}: \mathbf{Z}/n\mathbf{Z} \to \mathbf{C}, \quad \bar{y} \mapsto \begin{cases} 1 & \bar{y} = \bar{x}, \\ 0 & \text{sicer} \end{cases}$$

za $\bar{x} \in \mathbb{Z}/n\mathbb{Z}$. Predpišimo linearno preslikavo⁵

$$\Phi': \mathbb{C}[\mathbb{Z}/n\mathbb{Z}] \to \text{hom}(\mathbb{Z}/n\mathbb{Z}, \mathbb{C}), \quad e_{\bar{x}} \mapsto 1_{-\bar{x}}.$$

Jasno je Φ' bijektivna. Preverimo še, da je res spletična. Za vsaka $\bar{x}, \bar{y} \in \mathbf{Z}/n\mathbf{Z}$ velja

$$\Phi'(\bar{x}\cdot e_{\bar{y}}) = \Phi'(e_{\overline{x+y}}) = 1_{-\overline{x+y}}.$$

Po drugi strani za vsak $\bar{z} \in \mathbf{Z}/n\mathbf{Z}$ velja

$$\left(\bar{x}\cdot\Phi'\left(e_{\bar{y}}\right)\right)\left(\bar{z}\right)=\left(\bar{x}\cdot1_{-\bar{y}}\right)\left(\bar{z}\right)=1_{-\bar{y}}\left(\bar{z}+\bar{x}\right)=\begin{cases}1&\bar{z}=-\overline{x+y},\\0&\text{sicer}.\end{cases}$$

Torej je res $\Phi'(\bar{x} \cdot e_{\bar{y}}) = \bar{x} \cdot \Phi'(e_{\bar{y}})$. S tem je Φ' izomorfizem med Cayleyjevo upodobitvijo in desno regularno upodobitvijo.

Eden pomembnih ciljev teorije upodobitev je razumeti vse upodobitve dane grupe do izomorfizma natančno. Kasneje bomo spoznali, kako lahko to v določenih⁶ primerih *precej dobro* uresničimo.

1.2 Fundamentalne konstrukcije

Naj bo ρ upodobitev grupe G na prostoru V nad poljem F. Premislili bomo, kako lahko prostor, grupo ali polje modificiramo na različne načine in tako dobimo neko drugo, novo upodobitev, oziroma kako lahko dano upodobitev vidimo kot rezultat kakšne od teh fundamentalnih konstrukcij.

Podupodobitve

Naj bo G grupa z upodobitvijo $\rho:G \to \operatorname{GL}(V)$. Denimo, da obstaja vektorski podprostor $W \leq V$, ki je invarianten za delovanje grupe G, se pravi $g \cdot w \in W$ za vsak $g \in G$, $w \in W$. V tem primeru upodobitev ρ inducira upodobitev $\tilde{\rho}:G \to \operatorname{GL}(W)$ in vložitev vektorskih prostorov $\iota:W \to V$ je spletična. Upodobitvi $\tilde{\rho}$ rečemo podupodobitev upodobitve ρ .

 $^{^5}$ Pozor, karakteristična funkcija je zasidrana priinverzuelementa \bar{x} v $\mathbf{Z}/n\mathbf{Z}.$

⁶Na primer, *precej dobro* bomo opisali upodobitve poljubne končne grupe nad poljem kompleksnih števil.

Zgled.

• Naj bo n naravno število. Opazujmo permutacijsko delovanje grupe $\mathbf{Z}/n\mathbf{Z}$ na množici $\Omega = \{1, 2, ..., n\}$, ki porodi permutacijsko upodobitev na prostoru $\mathbf{C}[\Omega]$ z baznimi vektorji e_i za $i \in \Omega$. Naj bo še $e_0 = e_n$.

Naj bo $\zeta \in \mathbb{C}$ primitiven n-ti koren enote. Za $j \in \Omega$ naj bo

$$f_j = \sum_{i \in \Omega} \zeta^{ij} e_i \in \mathbb{C}[\Omega].$$

Za vsak $\bar{x} \in \mathbb{Z}/n\mathbb{Z}$ velja

$$\bar{x} \cdot f_j = \sum_{i \in \Omega} \zeta^{ij} e_{\overline{x+i}} = \sum_{i \in \Omega} \zeta^{(i-\bar{x})j} e_i = \zeta^{-\bar{x}j} \cdot f_j,$$

zato je vsak podprostor $\mathbf{C} \cdot f_j \leq \mathbf{C}[\Omega]$ invarianten za delovanje grupe $\mathbf{Z}/n\mathbf{Z}$ in podupodobitev na tem podprostoru $\mathbf{C} \cdot f_j$ je očividno izomorfna upodobitvi χ_{-j} grupe $\mathbf{Z}/n\mathbf{Z}$. Na ta način smo sestavili n podupodobitev permutacijske in s tem regularne upodobitve ciklične grupe moči n.

• Naj bo G grupa in ρ njena upodobitev na prostoru V. Opazujmo množico vseh fiksnih vektorjev te upodobitve,

$$V^G = \{ v \in V \mid \forall g \in G \colon g \cdot v = v \}.$$

Množica V^G je vektorski podprostor prostora V, ki je invarianten za delovanje grupe G. Torej je $\tilde{\rho}:G\to \mathrm{GL}(V^G)$ podupodobitev upodobitve ρ . Na prostoru V^G po definiciji grupa G deluje trivialno, torej je $\tilde{\rho}$ izomorfna trivialni upodobitvi $\mathbf{1}^{\dim V^G}$.

Domača naloga. Naj boG grupa in F polje. Določi upodobitvi $F[G]^G$ in $\hom(G,F)^G.$

Prostor V^G lahko razumemo še na naslednji alternativen način, ki nam bo prišel zelo prav v nadaljevanju. Iz vsakega vektorja $v \in V^G$ izhaja injektivna spletična

$$\Phi_v: \mathbf{1} \to V, \quad x \mapsto xv$$

med $\mathbf{1}$ in ρ . S tem je določena preslikava $V^G \to \hom_G(\mathbf{1}, V)$. Ta preslikava ima jasen inverz, ki spletični $\Phi \in \hom_G(\mathbf{1}, V)$ priredi $\Phi(\mathbf{1})$. Na ta način lahko identificiramo prostor V^G z množico spletičen $\hom_G(\mathbf{1}, V)$.

• Naj bo G grupa in ρ njena upodobitev na prostoru V. Predpostavimo, da obstaja vektor $v \in V$, ki je lastni vektor vsake linearne preslikave $\rho(g)$ za $g \in G$.

Torej za vsak $g \in G$ obstaja $\chi(g) \in F$, da je $\rho(g) \cdot v = \chi(g)v$. Na ta način dobimo funkcijo $\chi: G \to F$, se pravi element prostora hom(G,F). Ta funkcija ni čisto poljubna; ker je ρ upodobitev, je χ nujno homomorfizem iz grupe G v grupo F^* . Torej je χ pravzaprav upodobitev grupe G na prostoru F razsežnosti 1.7

⁷Kadar je $\chi(g) = 1$ za vsak $g \in G$, je ta upodobitev izomorfna 1. Kadar je $\chi(g) \neq 1$ za vsaj kak $g \in G$, pa ta upodobitev ni trivialna.

Zdaj kot v zadnjem zgledu s predpisom

$$\Phi: F \to V$$
, $x \mapsto xv$

dobimo injektivno spletično med χ in ρ , torej lahko vidimo χ kot enorazsežno podupodobitev upodobitve ρ . Hkrati lahko iz te spletične obnovimo podatek o skupnem lastnem vektorju v in upodobitvi χ .⁸

Torej smo vzpostavili bijektivno korespondenco med množico enorazsežnih podupodobitev upodobitve ρ in skupnimi lastnimi vektorji vseh preslikav $\rho(g)$ za $g \in G$.

Poseben primer te korespondence je zadnji zgled. Množico enorazsežnih trivialnih podupodobitev upodobitve ρ lahko identificiramo z množico neničelnih spletičen $\hom_G(\mathbf{1},V)\backslash\{x\mapsto 0\}$, ta pa ustreza skupnim lastnim vektorjem $\rho(g)$ za $g\in G$ z lastno vrednostjo 1, kar je ravno množica $V^G\backslash\{0\}$.

• Naj bo G grupa in F polje. Opazujmo Cayleyjevo upodobitev π_{Cay} na F[G] in desno regularno upodobitev ρ_{hom} na hom(G,F). Trdimo, da je π_{Cay} podupodobitev upodobitve ρ_{hom} .

V ta namen predpišimo linearno preslikavo⁹

$$\Phi: F[G] \to \text{hom}(G,F), \quad e_g \mapsto 1_{g^{-1}}$$

za $g \in G$. Jasno je Φ injektivna preslikava. Hkrati za vse $g,h,x \in G$ velja

$$\Phi(\pi_{\text{Cav}}(g) \cdot e_h) = \Phi(e_{gh}) = 1_{h^{-1}g^{-1}}$$

in

$$(\rho_{\text{hom}}(g) \cdot \Phi(e_h))(x) = 1_{h^{-1}}(xg) = 1_{g^{-1}h^{-1}}(x),$$

zato je Φ tudi spletična.

Kadar je grupa G končna, sta prostora F[G] in hom(G,F) enake razsežnosti, zato sta v tem primeru upodobitvi π_{Cay} in ρ_{hom} izomorfni. Kadar je grupa G neskončna, pa preslikava Φ vsekakor ni bijektivna. 10 V tem primeru upodobitvi nista izomorfni. 11

Domača naloga. Naj bo G grupa z upodobitvijo ρ na prostoru V. Naj bo N podgrupa edinka v G. Premisli, da množica fiksnih točk

$$V^N = \{ v \in V \mid \forall n \in \mathbb{N} \colon \rho(n) \cdot v = v \}$$

tvori podupodobitev upodobitve ρ , ki jo lahko identificiraš z množico $\hom_N(\mathbf{1},V)$.

⁸Namreč, $v = \Phi(1)$ in $\chi(g) = \rho(g) \cdot 1$.

 $^{^9}$ Poseben primer te preslikave smo videli za grupo ${\bf Z}/n{\bf Z}$, kjer smo premislili, da je celo bijektivna.

 $^{^{10}}$ Slika im Φ nam
reč sestoji iz funkcij, ki so neničelne le v končno mnogo elementih grup
eG.

¹¹To sledi na primer iz dejstva, da prostora $F[G]^G$ in hom $(G,F)^G$ nista izomorfna.

Jedro, slika, kvocient

Naj bo G grupa z upodobitvijo ρ na prostoru V. Ogledali smo si že, kako za vsak G-invarianten podprostor $W \leq V$ dobimo podupodobitev upodobitve ρ . Sorodno lahko za vsak G-invarianten podprostor $W \leq V$ tvorimo kvocient V/W, na njem linearno deluje grupa G s predpisom

$$G \to GL(V/W), \quad g \mapsto (v + W \mapsto \rho(g) \cdot v + W)$$

za $v \in V$.

Na vse do zdaj omenjene konstrukcije lahko gledamo na skupen način, in sicer s pomočjo spletične Φ , ki vlaga prostor W v V. Ni težko preveriti, da so standardne konstrukcije, ki jih lahko uporabimo na spletičnah vektorskih prostorov, na naraven način opremljene z linearnim delovanjem grupe G.

Trditev. Naj bo Φ spletična upodobitev grupe G. Tedaj prostori $\ker \Phi$, $\operatorname{im} \Phi$, $\operatorname{coker} \Phi$ podedujejo linearno delovanje grupe G.

Zgled. Naj bo G grupa in ρ njena upodobitev na prostoru V. Podprostor prostora V, na katerem grupa G deluje trivialno, je vselej G-invarianten. Največji tak podprostor je ravno prostor vseh fiksnih vektorjev V^G . Videli smo že, da lahko ta prostor identifiricamo z množico spletičen hom $_G(\mathbf{1}, V)$.

Oglejmo si sedaj še dual zgodnje konstrukcije. Naj bo $V_1 = \langle \rho(g) \cdot v - v | v \in V, g \in G \rangle$. Prostor V_1 je G-invarianten podprostor prostora V, zato kvocient V/V_1 podeduje linearno delovanje grupe G. Po konstrukciji je to delovanje trivialno in prostor V/V_1 je največji kvocient prostora V, na katerem grupa G deluje trivialno. Kvocient V/V_1 označimo z V_G in mu pravimo **prostor koinvariant** upodobitve ρ .

Domača naloga. Izračunaj prostor koinvariant regularne upodobitve ciklične grupe $\mathbf{Z}/n\mathbf{Z}$.

Prostor koinvariant je po konstrukciji dualen prostoru fiksnih vektorjev, zato lahko nanj prenesemo tudi interpretacijo s spletičnami. Opazujmo množico $\hom_G(V,\mathbf{1})$. Spletične iz te množice so ravno homomorfizmi $\lambda\colon V\to F$ z lastnostjo $\lambda(\rho(g)\cdot v)=\lambda(v)$ za vsaka $v\in V,\ g\in G$, kar je ekvivalentno pogoju $\lambda(V_1)=0$. Vsako tako spletično lahko zato interpretiramo kot linearno preslikavo iz $V/V_1=V_G$ v F. Na ta način je vzpostavljena bijektivna korespondenca med množico spletičen $\hom_G(V,\mathbf{1})$ in množico linearnih preslikav $\hom_F(V_G,F)$, slednja množica pa je ravno dual V_G^* prostora koinvariant V_G .

Direktna vsota

Naj ima grupa G družino upodobitev $\{\rho_i\}_{i\in I}$ na vektorskih prostorih $\{V_i\}_{i\in I}$. Tedaj lahko tvorimo direktno vsoto vektorskih prostorov $\bigoplus_{i\in I} V_i$, ki je opremljena z linearnim delovanjem

$$\bigoplus_{i \in I} \rho_i \colon G \to \operatorname{GL}(\bigoplus_{i \in I} V_i), \quad g \mapsto \left(\sum_{i \in I} v_i \mapsto \sum_{i \in I} \rho_i(g) \cdot v_i \right).$$

Na ta način dobimo *direktno vsoto* upodobitev $\bigoplus_{i \in I} \rho_i$. Pri tem je vsaka od upodobitev ρ_i podupodobitev te direktne vsote.

Zgled.

• Opazujmo permutacijsko upodobitev π grupe $\mathbf{Z}/n\mathbf{Z}$ na prostoru $\mathbf{C}[\Omega]$, kjer je $\Omega = \{1, 2, ..., n\}$. Premislili smo že, da ima ta upodobitev n podupodobitev. Za vsak $j \in \Omega$ imamo upodobitev na podprostoru $\mathbf{C} \cdot f_j$, ki je izomorfna upodobitvi χ_{-j} . Ker je množica vektorjev $\{f_j \mid j \in \Omega\}$ linearno neodvisna, 12 lahko permutacijsko upodobitev torej zapišemo kot direktno vsoto $\pi = \bigoplus_{j \in \Omega} \chi_j$.

Domača naloga. Prepričaj se, da so upodobitve χ_j za $j \in \Omega$ grupe $\mathbb{Z}/n\mathbb{Z}$ med sabo paroma neizomorfne.

• Opazujmo permutacijsko upodobitev simetrične grupe S_3 na prostoru $\mathbf{R}[\{1,2,3\}] = \mathbf{R}^3$. Delovanje grupe S_3 ohranja vektor $e_1 + e_2 + e_3$, zato ima ta upodobitev trivialno enorazsežno podupodobitev, dano s podprostorom $\langle e_1 + e_2 + e_3 \rangle$. Eden od komplementov tega podprostora je $\langle e_1 - e_2, e_2 - e_3 \rangle$, ki je hkrati S_3 -invariaten podprostor. Če označimo $u_1 = e_1 - e_2$ in $u_2 = e_2 - e_3$, lahko slednjo upodobitev opišemo s homomorfizmom

$$\rho \colon\! S_3 \to \operatorname{GL}(\langle u_1, u_2 \rangle), \quad (1 \ 2) \mapsto \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}, \quad (1 \ 2 \ 3) \mapsto \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}.$$

Permutacijska upodobitev S_3 je zato direktna vsota enorazsežne podupodobitve $\mathbf{1}$ in dvorazsežne podupodobitve ρ .

Premislimo, da upodobitve ρ ne moremo zapisati kot direktne vsote svojih pravih podupodobitev. V ta namen opazujmo njene morebitne enorazsežne podupodobitve. Premislili smo že, da te ustrezajo skupnim lastnim vektorjem vseh preslikav $\rho(x)$ za $x \in S_3$. Lastna vektorja $\rho((1\ 2))$ sta u_1 in $u_1 + 2u_2$. Noben od teh dveh vektorjev ni hkrati lastni vektor $\rho((1\ 2\ 3))$. Torej je upodobitev ρ stopnje 2, hkrati pa nima enorazsežnih podupodobitev in je torej ne moremo nadalje razstaviti.

Direktna vsota je najbolj preprost način, kako lahko iz danih upodobitev sestavimo novo upodobitev. V nadaljevanju bomo zato veliko časa posvetili obratnemu problemu: dano upodobitev bomo kot v zadnjem zgledu skušali razstaviti na direktno vsoto čim bolj enostavnih podupodobitev.

Tenzorski produkt

Naj ima grupa G upodobitvi ρ_1 in ρ_2 na prostorih V_1 in V_2 . Tedaj lahko tvorimo **tenzorski produkt** vektorskih prostorov $V_1 \otimes V_2$, ki je naravno opremljen z linearnim delovanjem

$$\rho_1 \otimes \rho_2 : G \to \operatorname{GL}(V_1 \otimes V_2), \quad g \mapsto (v_1 \otimes v_2 \mapsto \rho_1(g)v_1 \otimes \rho_2(g)v_2).$$

Zgled. Opazujmo simetrično grupo S_3 . Ogledali smo si že njeno permutacijsko upodobitev na prostoru \mathbb{R}^3 , ki smo jo razstavili na direktno vsoto trivialne upodobitve $\mathbf{1}$ in dvorazsežne upodobitve ρ . Poleg teh dveh ima

 $^{^{12}}$ Prehodna matrika iz baze e_i v bazo f_j je ravno Vandermondova matrika.

 $^{^{13}}$ Na primer, generator (1 3 2) preslika vektor $e_1 - e_2$ v $e_3 - e_1$, kar lahko zapišemo kot $-(e_1 - e_2) - (e_2 - e_3)$.

grupa S_3 še eno zanimivo upodobitev, ki izračuna predznak dane permutacije, se pravi

$$\operatorname{sgn}: S_3 \to \operatorname{GL}(\mathbf{R}) = \mathbf{R}^*, \quad \sigma \mapsto \operatorname{sgn}(\sigma).$$

To je netrivialna enorazsežna upodobitev.

Tvorimo tenzorski produkt upodobitev ρ in sgn. Dobimo upodobitev na vektorskem prostoru $\mathbf{R} \otimes \mathbf{R}^2$, ki ga lahko naravno identificiramo s prostorom \mathbf{R}^2 . V tem smislu je upodobitev sgn $\otimes \rho$ izomorfna dvorazsežni upodobitvi

$$S_3 \to GL(\mathbf{R}^2), \quad \sigma \mapsto (v \mapsto \operatorname{sgn}(\sigma) \cdot \rho(\sigma) \cdot v).$$

Domača naloga. Dokaži, da sta upodobitvi ρ in sgn $\otimes \rho$ izomorfni.

Naj ima grupa G upodobitev na prostoru V. Tedaj lahko tvorimo $tenzorske\ potence\ V^{\otimes n}$ za $n\in \mathbb{N}_0$. Vsaka od teh tvori upodobitev grupe G. Na prostoru $V^{\otimes n}$ deluje simetrična grupa S_n , in sicer na dva načina. Prvi način izhaja iz permutacijske upodobitve grupe S_n , in sicer dobimo delovanje

$$\pi: S_n \to \operatorname{GL}(V^{\otimes n}), \quad \sigma \mapsto (v_1 \otimes v_2 \otimes \cdots \otimes v_n \mapsto v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)}).$$

Drugi način delovanja grupe S_n na tenzorski potenci pa je sgn $\otimes \pi$, pri katerem delovanje π še utežimo s predznakom delujoče permutacije. Prostor koinvariant upodobitve π je

$$\operatorname{Sym}^n(V) = \frac{V^{\otimes n}}{\left\langle v_1 \otimes v_2 \otimes \cdots \otimes v_n - v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} \mid v_i \in V, \ \sigma \in S_n \right\rangle},$$

imenujemo ga **simetrična potenca** upodobitve G na V. Analogno prostor koinvariant upodobitve $\operatorname{sgn} \otimes \pi$ označimo z $\bigwedge^n(V)$ in imenujemo **alternirajoča potenca**. Obe potenci sta seveda upodobitvi grupe G. Vse potence hkrati zajamemo z direktnima vsotama

$$\operatorname{Sym}(V) = \bigoplus_{n \in \mathbb{N}_0} \operatorname{Sym}^n(V)$$
 in $\bigwedge V = \bigoplus_{n \in \mathbb{N}_0} \bigwedge^n(V)$.

Domača naloga. Naj bo G grupa s kompleksno upodobitvijo ρ na prostoru V razsežnosti $\deg(\rho) < \infty$. Dokaži, da je upodobitev G na alternirajoči potenci $\wedge^{\deg(\rho)} V$ izomorfna enorazsežni upodobitvi $G \to \mathbb{C}^*$, $g \mapsto \det(\rho(g))$.

Dual

Naj bo G grupa z upodobitvijo ρ na prostoru V nad poljem F. Tvorimo lahko *dualen prostor* $V^* = \hom(V, F)$, ki je naravno opremljen z linearnim delovanjem

$$\rho^*: G \to \operatorname{GL}(V^*), \quad g \mapsto (\lambda \mapsto (v \mapsto \lambda(\rho(g^{-1}) \cdot v)))$$

za $\lambda \in V^*$, $v \in V$. Na ta način dobimo **dualno upodobitev** ρ^* upodobitve ρ .

Za funkcional $\lambda \in V^*$ in vektor $v \in V$ včasih uporabimo oznako $\langle \lambda, v \rangle$ za aplikacijo $\lambda(v)$. S to oznako lahko zapišemo definicijo dualne upodobitve kot

$$\langle \rho^*(g) \cdot \lambda, v \rangle = \langle \lambda, \rho(g^{-1}) \cdot v \rangle.$$

Zgled. Opazujmo grupo **Z** in za parameter $a \in \mathbb{C}$ njeno upodobitev

$$\chi_a: \mathbf{Z} \to \mathrm{GL}(\mathbf{C}), \quad x \mapsto e^{ax}.$$

Za dualno upodobitev χ_a^* , funkcional $\lambda \in \mathbb{C}^*$ in vektor $z \in \mathbb{C}$ velja

$$\langle \chi_a^*(x) \cdot \lambda, z \rangle = \langle \lambda, \chi_a(-x) \cdot z \rangle = \lambda(e^{-ax} \cdot z).$$

Funkcionali v dualnem prostoru \mathbb{C}^* so skalarna množenja s kompleksnimi števili. Če funkcionalu λ ustreza število $l \in \mathbb{C}$, dobimo torej

$$\chi_a^*(x) \cdot l = e^{-ax} \cdot l$$
.

Dualna upodobitev χ_a^* je torej enorazsežna upodobitev, ki je izomorfna upodobitvi $\chi_{-a}.$

Domača naloga.

• Naj bosta ρ_1, ρ_2 upodobitvi grupe G. Dokaži, da je

$$(\rho_1 \oplus \rho_2)^* \cong \rho_1^* \oplus \rho_2^*$$
 in $(\rho_1 \otimes \rho_2)^* \cong \rho_1^* \otimes \rho_2^*$.

• Naj bo ρ upodobitev grupe G z deg $(\rho) < \infty$. Tedaj je $(\rho^*)^* \cong \rho$.

Naj bo zdaj G grupa z dvema upodobitvama ρ in σ na prostorih V in W. **Prostor linearnih preslikav** hom(V,W) je naravno opremljen z linearnim delovanjem

$$\hom(\rho,\sigma):G\to \mathrm{GL}(\hom(V,W)),\quad g\mapsto \left(\Phi\mapsto \left(v\mapsto \sigma(g)\cdot\Phi\cdot\rho(g^{-1})\cdot v\right)\right).$$

Invariante tega delovanja sestojijo iz linearnih preslikav, ki so invariantne glede na predpisano delovanje grupe G, se pravi ravno iz spletičen med ρ in σ . S simboli je torej hom $(V,W)^G = \hom_G(V,W)$.

Trditev. Naj bo G grupa z upodobitvama ρ in σ . Predpostavimo, da je $\deg(\sigma) < \infty$. Tedaj je $\hom(\rho, \sigma) \cong \rho^* \otimes \sigma$.

Dokaz. Naj bo ρ upodobitev na prostoru V in σ upodobitev na prostoru W. Izomorfizem med vektorskima prostoroma $V^* \otimes W$ in hom(V,W) podaja linearna preslikava

$$V^* \otimes W \to \text{hom}(V, W), \quad \lambda \otimes w \mapsto (v \mapsto \lambda(v) \cdot w).$$

Ni težko preveriti, da je ta preslikava spletična.

Skalarji

Naj bo G grupa z upodobitvijo ρ na prostoru V nad poljem F. Naj bo E razširitev polja F. Tedaj je prostor $E\otimes V$ naravno opremljen z linearnim delovanjem

$$E \otimes \rho : G \to GL(E \otimes V), \quad g \mapsto (e \otimes v \mapsto e \otimes \rho(g) \cdot v).$$

Ta postopek konstrukcije prostora $E \otimes V$ imenujemo *razširitev skalarjev*. Dano upodobitev lahko razširimo do ugodnejših skalarjev¹⁴, lahko pa tudi

¹⁴Na primer polja kompleksnih števil.

dano upodobitev nad velikim poljem E gledamo kot razširitev skalarjev neke upodobitve nad preprostejšim poljem $F.^{15}$ V tem slednjem primeru rečemo, da je dana upodobitev *definirana nad poljem* F. Včasih nam uspe najti celo preprost podkolobar polja F, nad katerim je definirana dana upodobitev.

Zgled. Opazujmo grupo S_3 in njeno permutacijsko upodobitev na realnem prostoru $\mathbf{R}[\{1,2,3\}]$. Poznamo že njeno dvorazsežno upodobitev ρ na podprostoru $\langle e_1-e_2,e_2-e_3\rangle$, ki nima enorazsežnih podupodobitev. Ta je definirana z matrikami, ki imajo zgolj celoštevilske koeficiente. Upodobitev ρ je zato definirana nad kolobarjem \mathbf{Z} . To upodobitev lahko zato projiciramo s homomorfizmom kolobarjev $\mathbf{Z} \to \mathbf{Z}/p\mathbf{Z}$ za poljubno praštevilo p do upodobitve

$$S_3 \to \operatorname{GL}_2(\mathbf{Z}/p\mathbf{Z}), \quad (1\ 2) \mapsto \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}, \quad (1\ 2\ 3) \mapsto \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix},$$

ki je definirana nad *končnim* poljem $\mathbb{Z}/p\mathbb{Z}$. Pri p=3 ima ta projicirana upodobitev enorazsežen invarianten podprostor $\langle e_1 + e_2 + e_3 \rangle$. Projekcije nam lahko torej dano upodobitev dodatno razstavijo.

Kadar imamo opravka s konkretnim poljem F, lahko dano upodobitev modificiramo tudi z *avtomorfizmi polja*. Te si najlažje predstavljamo po izbiri baze vektorskega prostora. Če je $\sigma \in \operatorname{Aut}(F)$, dobimo iz dane upodobitve $\rho: G \to \operatorname{GL}_n(F)$ modificirano upodobitev

$$\rho^{\sigma}: G \to \mathrm{GL}_n(F), \quad g \mapsto \rho(g)^{\sigma},$$

pri kateri vsak člen matrike $\rho(g)$ preslikamo z avtomorfizmom σ .

Zgled. Naj bo G grupa s kompleksno upodobitvijo ρ . Kompleksno konjugiranje je avtomorfizem polja \mathbb{C} , zato lahko s konjugiranjem členov matrik tvorimo **konjugirano upodobitev** $\overline{\rho}$.

Restrikcija

Naj bo G grupa z upodobitvijo $\rho:G\to \operatorname{GL}(V)$. Kadar je na voljo še ena grupa H s homomorfizmom $\phi:H\to G$, lahko upodobitev ρ sklopimo s ϕ in dobimo upodobitev $\rho\circ\phi$ grupe H na prostoru V. Temu postopku pridobivanja upodobitev grupe H iz upodobitev grupe G pravimo $\operatorname{restrikcija}$, pri tem pa novo upodobitev $\rho\circ\phi$ označimo kot $\operatorname{Res}_H^G(\rho)$. Predstavljamo si, da smo upodobitev ρ potegnili nazaj vzdolž homomorfizma ϕ . Restrikcija je funktor iz kategorije Rep_G v kategorijo Rep_H .

Zgled. Naj bo G grupa s podgrupo edinko N. Tvorimo kvocientni homomorfizem $\phi: G \to G/N$. Vsaki upodobitvi grupe G/N lahko z restrikcijo priredimo upodobitev grupe G. Vsaka taka pridobljena upodobitev grupe G vsebuje podgrupo N v svojem jedru. Na ta način dobimo bijektivno korespondenco med upodobitvami grupe G/N in upodobitvami grupe G, ki so trivialne na N.

Običajno ni res, da je vsaka upodobitev grupe G trivialna na N, se pa to lahko zgodi v kakšnih posebnih primerih. Na primer, enorazsežne upodobitve grupe G nad poljem F so homomorfizmi iz G v F^* , kar

¹⁵Na primer $E = \mathbf{C}$ in $F = \mathbf{Q}$.

ravno ustreza homomorfizmom iz abelove grupe G/[G,G] v F^* . Vsaka enorazsežna upodobitev grupe G je torej trivialna na [G,G].

Za konkreten primer si oglejmo simetrično grupo S_n . Njene kompleksne enorazsežne upodobitve ustrezajo homomorfizmom $S_n \to \mathbb{C}^*$. Ker je $[S_n, S_n] = A_n$, opazujemo torej homomorfizme $S_n/A_n \cong \mathbb{Z}/2\mathbb{Z} \to \mathbb{C}^*$. Na voljo sta le dva taka homomorfizma: trivialen in netrivialen (ki preslika generator grupe $\mathbb{Z}/2\mathbb{Z}$ v $-1 \in \mathbb{C}^*$). Prvi ustreza trivialni upodobitvi 1, drugi pa ustreza predznačni upodobitvi sgn.

Kadar imamo na voljo tri grupe, povezane s homomorfizmoma $\phi_2: H_2 \to H_1$ in $\phi_1: H_1 \to G$, lahko restrikcijo izvedemo dvakrat zaporedoma. Upodobitvi ρ v Rep_G tako priredimo upodobitev $\operatorname{Res}_{H_2}^{H_1}(\operatorname{Res}_{H_1}^G(\rho))$ v Rep_{H_2} . Od grupe H_2 do G imamo neposredno povezavo prek homomorfizma $\phi_1 \circ \phi_2$, s čimer dobimo upodobitev $\operatorname{Res}_{H_2}^G(\rho)$. Ni težko preveriti, da sta dobljeni upodobitvi izomorfni. Tej lastnosti restrikcije pravimo $\operatorname{tranzitivnost}$.

Indukcija

Naj bo kot zgoraj G grupa in H še ena grupa s homomorfizmom $\phi: H \to G$. *Indukcija* je postopek, ki s pomočjo homomorfizma ϕ upodobitvi ρ grupe H priredi upodobitev grupe G. Indukcija torej deluje ravno v obratno smer kot restrikcija in nam omogoča, da upodobitev ρ potisnemo naprej vzdolž homomorfizma ϕ . Ta postopek je nekoliko bolj zapleten kot restrikcija.

Začnimo z upodobitvijo $\rho: H \to \operatorname{GL}(V)$. Konstruirali bomo prostor, na katerem deluje grupa G. Odskočna deska za to bo regularna upodobitev grupe G, katere vektorski prostor je prostor funkcij $\operatorname{hom}(G,F)$. Ta prostor razširimo s prostorom V do prostora funkcij

$$hom(G,V) = \{f \mid f:G \to V\},\$$

na katerem linearno deluje grupa G z analogom regularne upodobitve, in sicer kot

$$g \cdot f = (x \mapsto f(xg))$$

za $g \in G$, $f \in \text{hom}(G,V)$. Po drugi strani na tej množici deluje tudi grupa H, in sicer na dva načina: prvič prek homomorfizma ϕ in pravkar opisanega delovanja grupe G, drugič pa prek svojega delovanja ρ na prostoru V. Ko ti dve delovanji združimo, dobimo delovanje grupe H na prostoru funkcij hom(G,V) s predpisom

$$h \cdot f = (x \mapsto \rho(h) \cdot f(\phi(h^{-1}) \cdot x))$$

za $h \in H$, $f \in \text{hom}(G, V)$. Opazujmo invariantni podprostor

$$\hom(G,V)^H = \left\{ f \in \hom(G,V) \mid \forall h \in H, x \in G. \ \rho(h) \cdot f(x) = f(\phi(h) \cdot x) \right\}.$$

Ker grupa G deluje na hom(G,V) prek množenja z desne, pogoj pripadnosti invariantam $hom(G,V)^H$ pa je izražen prek množenja z leve, je podprostor $hom(G,V)^H$ avtomatično G-invarianten. S tem smo dobili upodobitev grupe G na prostoru $hom(G,V)^H$. To je želena inducirana upodobitev. Zanjo uporabimo oznako $Ind_H^G(\rho)$.

 $^{^{16} \}mathrm{Delovanje} \ H$ na $\mathrm{hom}(G,V)$ je konstruirano analogno delovanju grupe na prostoru linearnih preslikav.

Zgled. Naj bo G grupa z vložitvijo $\phi: 1 \to G$ trivialne podgrupe. Vsaka upodobitev trivialne grupe nad poljem F je trivialna. Iz enorazsežne trivialne upodobitve $\mathbf 1$ dobimo prostor funkcij $\mathrm{hom}(G,F)$, na katerem grupa G deluje z regularno upodobitvijo. Inducirana upodobitev je v tem primeru torej kar regularna, se pravi $\mathrm{Ind}_1^G(\mathbf 1) = \rho_{\mathrm{hom}}$.

Inducirano upodobitev $\operatorname{Ind}_H^G(\rho) = \operatorname{hom}(G,V)^H$ smo konstruirali z invariantami grupe H. To pomeni, da vektorji v tem prostoru niso poljubne funkcije v $\operatorname{hom}(G,V)$, temveč zadoščajo določenim restriktivnim pogojem. Te funkcije so določene z vrednostmi, ki jih zavzamejo na predstavnikih desnih odsekov im $\phi \backslash G$, 17 in te vrednosti pripadajo podprostoru $V^{\ker \phi}$. 18

Zgled. Naj bo G grupa z upodobitvijo ρ in naj bo $\phi = \mathrm{id}_G$. Tedaj je vsaka funkcija $f \in \mathrm{hom}(G,V)^G$ določena že z vrednostjo f(1). Dodatnih restrikcij za to vrednost ni, zato dobimo izomorfizem vektorskih prostorov

$$hom(G,V)^G \to V, \quad f \mapsto f(1),$$

ki je spletična glede na regularno delovanje G na hom(G,V). S tem imamo torej izomorfizem upodobitev $\operatorname{Ind}_G^G(\rho) \cong \rho$.

Domača naloga. Naj bo G grupa z upodobitvijo ρ na prostoru V in naj bo $\phi\colon G\to G/N$ kvocientna projekcija za neko podgrupo edinko N v G. Dokaži, da je $\operatorname{Ind}_G^{G/N}(\rho)$ izomorfna upodobitvi G/N na prostoru V^N , ki izhaja iz upodobitve ρ .

Najpomembnejši primer indukcije, čeravno ne tudi najbolj preprost, je **indukcija iz podgrupe končnega indeksa**. Naj bo G grupa s podgrupo H in naj bo ϕ vložitev H v G. Predpostavimo, da je $|G:H| < \infty$. Naj bo ρ upodobitev grupe G na prostoru V. Premislimo, kako izgleda upodobitev $\operatorname{Ind}_H^G(\rho)$.

Naj bo R neka izbrana množica predstavnikov desnih odsekov H v G. Vsaka funkcija $f \in \text{hom}(G,V)^H$ je določena z vrednostmi f(r) za $r \in R$ in dodatnih restrikcij za te vrednosti ni, zato dobimo izomorfizem vektorskih prostorov 19

$$\Phi: \text{hom}(G, V)^H \to \text{hom}(R, V), \quad f \mapsto (r \mapsto f(r)).$$

Da dobimo spletično, moramo posplošitev regularnega delovanja G na hom(G,V) prenesti prek linearnega izomorfizma Φ na desno stran. V ta namen naj bo $v \in V$ in $f \in \text{hom}(G,V)^H$ z lastnostjo $f(r_0) = v$ in f(r) = 0 za $r \in R \setminus \{r_0\}$. Za vsak $g \in G$ mora tako veljati

$$g \cdot \left(r \mapsto \begin{cases} v & r = r_0, \\ 0 & r \neq r_0 \end{cases} \right) = \Phi \left(g \cdot f \right) = \Phi \left(x \mapsto f(xg) \right).$$

Za $x \in R$ z lastnostjo $xg \in Hr_0$, se pravi $x = hr_0g^{-1}$ za nek $h \in H$, velja $f(xg) = f(hr_0) = \rho(h) \cdot v$. Seveda je $|R \cap Hrg^{-1}| = 1$, torej obstaja natanko

 $^{^{17}}$ Če je R množica predstavnikov desnih odsekov im ϕ v G in če že poznamo vrednosti $f \in \text{hom}(G,V)$ na množici R, potem lahko vsako drugo vrednost f izračunamo kot $f(x \cdot r) = \rho(y) \cdot f(r)$ za $x = \phi(y) \in \text{im}\,\phi$.

¹⁸Če je $f \in \text{hom}(G, V)^H$, potem pogoj H-invariantnosti uporabimo z elementi $h \in \text{ker } \phi$ in dobimo $\rho(h) \cdot f(x) = f(x)$, torej je $f \in V^h$.

 $^{^{19}{\}rm Množico}$ funkcij hom(R,V) lahko vidimo kot direktno vsoto prostorov V, indeksirano z množico R.

en tak x. Za $x \in R$ z lastnostjo $xg \notin Hr_0$ pa velja f(xg) = 0. S tem je

$$g \cdot \left(r \mapsto \begin{cases} v & r = r_0, \\ 0 & r \neq r_0 \end{cases}\right) = \left(r \mapsto \begin{cases} \rho(h) \cdot v & r = hr_0g^{-1} \text{ za nek } h \in H, \\ 0 & r \notin Hr_0g^{-1} \end{cases}\right).$$

Da bo preslikava Φ spletična, moramo na hom(R,V) torej uvesti tako delovanje grupe G, ki dan vektor v pri vnosu $r_0 \in R$ preslika tako, da najprej izračuna odsek elementa r_0g^{-1} po H, ta element zapiše kot $r_0g^{-1} = h^{-1}r$ za $h \in H$, $r \in R$, nato pa na vektor v deluje z $\rho(h)$ in ga hkrati prestavi k vnosu r.

Opisan postopek si lahko nekoliko lažje predstavljamo tako, da množico hom(R,V) identificiramo z direktno vsoto $\bigoplus_{r\in R} Vr$, kjer je Vr kopija vektorskega prostora V pri komponenti r. Element $g\in G$ deluje na vektorju $vr_0\in Vr_0$ kot g^{-1} z desne. V teh domačih oznakah izračunamo

$$g \cdot v r_0 = v r_0 g^{-1} = v h^{-1} r = (h \cdot v) r = (\rho(h) \cdot v) r$$
,

kar ravno ustreza bolj zakompliciranemu zapisu zgoraj.

Poseben primer opisane indukcije dobimo z enorazsežnimi upodobitvami grupe H. Vsak homomorfizem $\rho : H \to F^*$ porodi prostor $\hom(G,F)^H$ razsežnosti |G : H|, ki je podprostor prostora funkcij $\hom(G,F)$ in na katerem torej grupa G deluje z regularno upodobitvjo. Inducirana upodobitev je v tem primeru podupodobitev regularne upodobitve ρ_{\hom} . Na ta način lahko dobimo mnogo različnih upodobitev grupe G.

Zgled. Opazujmo grupo S_n in njeno podgrupo A_n indeksa 2. Za $n \ge 5$ je grupa A_n enostavna, zato je $A_n = [A_n, A_n]$ in ni netrivialnih enorazsežnih upodobitev. Oglejmo si inducirano upodobitev $\operatorname{Ind}_{A_n}^{S_n}(1)$. A priori vemo, da je to dvorazsežna upodobitev. Za množico predstavnikov odsekov vzamemo $R = \{(), (1\ 2)\}$. V domačih oznakah je vektorski prostor upodobitve enak $F() \oplus F(1\ 2)$, na katerem deluje grupa S_n s predpisom

$$g \cdot x\sigma = x\sigma g^{-1} = \begin{cases} x\sigma & g \in A_n, \\ x((1\ 2)\sigma) & g \notin A_n \end{cases}$$

za $g \in S_n$, $x \in F$, $\sigma \in R$. To delovanje lahko zapišemo še enostavneje. Vektorski prostor identificiramo z dvorazsežnim prostorom F^2 , delovanje pa opišemo kot

$$g \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{cases} \begin{pmatrix} x \\ y \end{pmatrix} & g \in A_n, \\ \begin{pmatrix} y \\ x \end{pmatrix} & g \notin A_n \end{cases}$$

za $x,y\in F,\ g\in S_n$. Alternirajoča grupa A_n je v jedru te upodobitve, ki zato izhaja iz kvocienta $S_n/A_n\cong {\bf Z}/2{\bf Z}$. Opisana upodobitev je natanko permutacijska upodobitev grupe ${\bf Z}/2{\bf Z}$ na prostoru $F[\{1,2\}]$, inducirana upodobitev pa je ravno restrikcija te upodobitve vzdolž kvocientne projekcije $S_n\to S_n/A_n$. Inducirano upodobitev lahko zapišemo kot vsoto dveh enorazsežnih podupodobitev. Prva je podupodobitev z diagonalnim prostorom $\{(x,x)\,|\,x\in F\}\le F^2$, ta je izomorfna trivialni upodobitvi 1. Druga pa je podupodobitev z antidiagonalnim prostorom $\{(x,-x)\,|\,x\in F\}\le F^2$. Ta ni trivialna, saj element $(1\ 2)$ deluje na (1,-1) kot množenje z $-1\in F$. Ta podupodobitev je zato izomorfna predznačni upodobitvi sgn. Nazadnje je torej $\mathrm{Ind}_{A_n}^{S_n}(1)\cong 1\oplus \mathrm{sgn}$.

Naj bosta G,H grupi s homomorfizmom $\phi:H\to G$. Ni težko preveriti, da indukcija naravno presene spletično med dvema upodobitvama grupe H v spletično med induciranima upodobitvama. Indukcija je torej funktor iz kategorije Rep_H v kategorijo Rep_G .

Kadar imamo na voljo tri grupe, povezane s homomorfizmoma $\phi_2\colon H_2 \to H_1$ in $\phi_1\colon H_1 \to G$, lahko indukcijo izvedemo dvakrat zaporedoma. Upodobitvi ρ v Rep_{H_2} tako priredimo upodobitev $\operatorname{Ind}_{H_1}^G(\operatorname{Ind}_{H_2}^{H_1}(\rho))$ v Rep_G . Od grupe H_2 do G imamo neposredno povezavo prek homomorfizma $\phi_1 \circ \phi_2$, s čimer dobimo upodobitev $\operatorname{Ind}_{H_2}^G(\rho)$. Ni težko preveriti, da sta dobljeni upodobitvi izomorfni. Tej lastnosti indukcije pravimo $\operatorname{tranzitivnost}$.

Domača naloga. Dokaži tranzitivnost indukcije.

S tranzitivnostjo indukcije lahko vsako indukcijo vzdolž homomorfizma $\phi\colon H\to G$ razdelimo na tri korake: najprej induciramo vzdolž kvocientne projekcije $H\to H/\ker\phi$, nato vzdolž izomorfizma $H/\ker\phi\to\operatorname{im}\phi$ in nazadnje vzdolž vložitve $\operatorname{im}\phi\to G$. Vsako od teh posameznih indukcij razumemo precej dobro in zato lahko to znanje uporabimo pri razumevanju indukcije vzdolž ϕ . Na primer, iz povedanega in razmiselekov o preprostejših indukcijah, ki smo jih že naredili, sledi, da je razsežnost inducirane upodobitve ρ grupe H na prostoru V enaka

$$\deg(\operatorname{Ind}_H^G(\rho)) = |G:\operatorname{im} \phi| \cdot \dim(V^{\ker \phi}).$$

Adjunkcija restrikcije in indukcije

Indukcija in restrikcija vsekakor nista inverzna funktorja. Na primer, če je $H \leq G$ in ϕ vložitev, potem za upodobitev ρ v Rep_G velja $\operatorname{deg}(\operatorname{Res}_H^G(\rho)) = \operatorname{deg}(\rho)$ in zato $\operatorname{deg}(\operatorname{Ind}_H^G(\operatorname{Res}_H^G(\rho))) = |G:H| \cdot \operatorname{deg}(\rho)$, kar je lahko mnogo večje od $\operatorname{deg}(\rho)$. Sta pa funktorja restrikcije in indukcije vendarle tesno povezana. Tvorita namreč *adjungiran par* funktorjev. 20

Trditev. Naj bosta G,H grupi s homomorfizmom $\phi:H\to G$. Za vsako upodobitev ρ v Rep_G in upodobitev σ v Rep_H velja

$$\hom_H(\mathrm{Res}_H^G(\rho),\sigma) \, {\scriptstyle \, \cong \,} \, \hom_G(\rho,\mathrm{Ind}_H^G(\sigma)).$$

Dokaz. Naj bo ρ upodobitev na prostoru V in σ upodobitev na prostoru W. Naj bo

$$\Phi \in \text{hom}_H(\text{Res}_H^G(\rho), \sigma) = \text{hom}_H(V, W).$$

Sestavimo pripadajočo spletično

$$\Psi \in \operatorname{hom}_G(\rho, \operatorname{Ind}_H^G(\sigma)) = \operatorname{hom}_G(V, \operatorname{hom}(G, W)^H).$$

Za vektor $v \in V$ definirajmo

$$\Psi(v) = (x \mapsto \Phi(\rho(x) \cdot v)) \in \text{hom}(G, W).$$

Ni težko (je pa sitno) preveriti, da opisano prirejanje vzpostavi izomorfizem med prostoroma spletičen $\hom_H(V,W)$ in $\hom_G(V, \hom(G,W)^H)$.

 $^{^{20}\}mathrm{V}$ nadaljevanju bomo spoznali presenetljivo uporabnost tega navidez naključnega dejstva.

Zgled. Naj bo G grupa s podgrupo H končnega indeksa. Grupa G deluje na množici desnih odsekov $H\backslash G$ s homomorfizmom

$$G \to \operatorname{Sym}(H \backslash G), \quad g \mapsto (Hx \mapsto Hxg^{-1}).$$

Iz tega delovanja izhaja permutacijska upodobitev π grupe G na prostoru $F[H\backslash G]$. Po konstrukciji je $\pi\cong \operatorname{Ind}_H^G(\mathbf{1})$. Iz adjunkcije med restrikcijo in indukcijo za trivialni upodobitvi grup G in H od tod izpeljemo izomorfizem

$$hom_H(\mathbf{1},\mathbf{1}) \cong hom_G(\mathbf{1},\pi) \cong F[H\backslash G]^G$$
.

Prostor $\hom_H(\mathbf{1},\mathbf{1}) = \hom(F,F)$ sestoji zgolj iz skalarnih množenj in je torej enorazsežen. Zato je enorazsežen tudi prostor invariant $F[H\backslash G]^G$. Vektor, ki ga razpenja, lahko dobimo kot sliko $\mathrm{id}_F \in \hom_H(\mathbf{1},\mathbf{1})$. Tej spletični po adjunkciji ustreza spletična

$$\Psi \mathpunct{:} F \to F \big[H \backslash G \big], \quad 1 \mapsto \sum_{Hx \in H \backslash G} e_{Hx},$$

od koder sledi

$$F[H \backslash G]^G = \left(\sum_{Hx \in H \backslash G} e_{Hx} \right).$$

Domača naloga. Naj bosta G,H grupi s homomorfizmom $\phi:H\to G$. Za vsako upodobitev ρ v Rep_G in upodobitev σ v Rep_H velja

$$\operatorname{Ind}_H^G(\operatorname{Res}_H^G(\rho)\otimes\sigma)\cong\rho\otimes\operatorname{Ind}_H^G(\sigma).$$

Domača naloga. Premisli, kako se restrikcija in indukcija ujameta z dualom, direktno vsoto in tenzorskim produktom.

Poglavje 2

Upodobitev pod mikroskopom

V tem poglavju bomo pribili upodobitev dane grupe in se ji tesno približali, kot da bi jo pogledali pod mikroskopom. Pri tem bomo najprej uzrli osnovne kose, iz katerih je sestavljena upodobitev. Ti osnovni kosi ustrezajo celicam, ki jih vidimo pod mikroskopom. Za tem se bomo približali še sestavi teh osnovnih kosov: vsak je dan s homomorfizmom v matrike, zato bomo raziskali koeficiente te matrike. Ti ustrezajo organelom, ki jih v celici vidimo pod mikroskopom. Nazadnje bomo premislili, da so te upodobitvene celice dovolj diferencirane med sabo, da za njihovo identifikacijo zadošča poznavanje le nekaterih njihovih organelov.

2.1 Razstavljanje upodobitve

Pogosto nas zanima, ali lahko dano upodobitev ρ grupe G na prostoru V zapišemo kot direktno vsoto nekih podupodobitev in na ta način upodobitev ρ razstavimo na preprostejše upodobitve, podobno kot razstavimo števila na manjše faktorje.

Nerazcepnost

Naj bo G grupa z upodobitvijo ρ na prostoru $V \neq 0$. Kadar ne obstaja noben G-invarianten podprostor prostora V (razen prostorov 0 in V), tedaj rečemo, da je upodobitev ρ nerazcepna. V tem primeru upodobitve seveda ne moremo razstaviti na enostavnejše v smislu direktne vsote.

Zgled. Opazujmo permutacijsko upodobitev simetrične grupe S_3 na prostoru $\mathbf{R}[\{1,2,3\}] = \mathbf{R}^3$. Premislili smo že, da je ta upodobitev direktna vsota enorazsežne podupodobitve $\mathbf{1}$ in dvorazsežne podupodobitve ρ , pri čemer slednja nima nobene enorazsežne podupodobitve. S tem je permutacijska upodobitev razstavljena kot direktna vsota dveh nerazcepnih upodobitev.

Preverimo, da so nerazcepne upodobitve dane grupe med sabo *neprimerljive*, tudi če so enake razsežnosti. Zatorej si jih lahko predstavljamo kot neodvisne osnovne kose kategorije upodobitev dane grupe.²

¹Rečemo tudi, da je *V enostavna* upodobitev. Te terminologija izhaja iz alternativne obravnave upodobitev kot *modulov nad grupnimi algebrami*.

²Po analogiji s faktorizacijo števil si nerazcepne upodobitve lahko predstavljamo kot praštevila.

Lema (Schurova lema). Naj bo G grupa z upodobitvijo ρ in nerazcepno upodobitvijo π . Tedaj je vsaka spletična v hom $_G(\pi,\rho)$ bodisi injektivna bodisi ničelna in vsaka spletična v hom $_G(\rho,\pi)$ je bodisi surjektivna bodisi ničelna. V posebnem je vsaka spletična med dvema nerazcepnima upodobitvama grupe G bodisi izomorfizem bodisi ničelna.

Dokaz. Naj bo Φ ∈ hom_G(π , ρ). Tedaj je ker Φ podupodobitev π , zato je po nerazcepnosti bodisi ker Φ = 0 bodisi Φ = 0. Prvi primer ustreza možnosti, da je Φ injektivna, v drugem primeru pa je Φ ničelna. Sorođen razmislek dokaže trditev o spletičnah v hom_G(ρ , π).

Nad algebraično zaprtimi polji lahko to neprimerljivost raztegnemo do ene same upodobitve: osnovni kosi nimajo netrivialnih simetrij.

Posledica. Naj bo G grupa z nerazcepno upodobitvijo π končne razsežnosti nad algebraično zaprtim poljem. Tedaj je $\dim \hom_G(\pi,\pi) = 1$. Povedano še drugače: $množica \hom_G(\pi,\pi)$ sestoji le iz skalarnih večkratnikov identitete.

Dokaz. Naj bo $0 \neq \Phi \in \text{hom}_G(\pi, \pi)$. Ker je polje algebraično zaprto, ima linearna preslikava Φ vsaj kakšno lastno vrednost, recimo λ . Preslikava $\Phi - \lambda \cdot \text{id} \in \text{hom}_G(\pi, \pi)$ zato ni injektivna, s čimer mora biti po Schurovi lemi ničelna, se pravi $\Phi = \lambda \cdot \text{id}$.

Množico vseh izomorfnostnih razredov nerazcepnih upodobitev dane grupe G označimo z Irr(G).

Zgled. Naj bo G grupa z nerazcepno upodobitvijo π končne razsežnosti nad poljem kompleksnih števil. Spletične $\hom_G(\pi,\pi) = \hom(\pi,\pi)^G$ so endomorfizmi vektorskega prostora, ki so G-invariatni, se pravi komutirajo z delovanjem grupe G. Zglede takih endomorfizmov lahko dobimo iz delovanj centralnih elementov grupe G; za vsak $z \in Z(G)$ je $\pi(z) \in \hom_G(\pi,\pi)$. Po Schurovi lemi je zato $\pi(z) = \omega(z)$ id za nek skalar $\omega(z)$. Ker je π homomorfizem, je $\omega: Z(G) \to \mathbb{C}^*$ enorazsežna upodobitve centra grupe G. Tej upodobitvi rečemo **centralni karakter** upodobitve π .

Še posebej zanimiv je primer, ko je G abelova grupa. Takrat za vsako nerazcepno upodobitev π končne razsežnosti nad poljem \mathbf{C} velja $\pi(g) = \omega(g) \cdot \mathrm{id}$ za vsak $g \in G$. Vsak enorazsežen podprostor je zato avtomatično podupodobitev. Ker je π nerazcepna, od tod sklepamo $\deg(\pi) = 1$ in s tem $\pi = \omega$. Upodobitev π je tako enorazsežna.

Domača naloga. Poišči kakšno nerazcepno upodobitev ciklične grupe $\mathbb{Z}/3\mathbb{Z}$ nad poljem \mathbb{Q} , ki ni enorazsežna.

Komplementarna podupodobitev

Predpostavimo zdaj, da ima dana upodobitev ρ grupe G na prostoru V neko podupodobitev $\tilde{\rho}$ na podprostoru $W \leq V$. Seveda lahko vselej najdemo vektorski prostor $U \leq V$, za katerega je $V = U \oplus W$, vsekakor pa ni jasno, če lahko najdemo tak podprostor U, ki je celo G-invarianten. Kadar je temu tako, rečemo, da smo našli *komplementarno podupodobitev* podupodobitve $\tilde{\rho}$. Ni vsaka podupodobitev komplementirana.

 $^{^3}$ Če komplementarna podupodobitev obstaja, potem je enolično določena (do izomorfizma upodobitev), saj je izomorfna kvocientu $\rho/\tilde{\rho}$.

Zgled. Naj grupa \mathbf{R} deluje na realnem prostoru \mathbf{R}^2 s homomorfizmom

$$\rho \colon\! \mathbf{R} \to \mathrm{GL}_2(\mathbf{R}), \quad x \mapsto \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}.$$

Oglejmo si enorazsežne podupodobitve. Premislili smo že, da te ustrezajo skupnim lastnim vektorjem vseh preslikav $\rho(x)$ za $x \in \mathbf{R}$. Pri x = 1 imamo linearno preslikavo $\rho(1)$ z enim samim lastnim vektorjem, in sicer $e_1 \in \mathbf{R}^2$. Hkrati je e_1 lastni vektor vseh preslikav $\rho(x)$ za $x \in \mathbf{R}$. Torej ima ρ eno samo enorazsežno podupodobitev, in sicer je to $\mathbf{R} \cdot e_1 \leq \mathbf{R}^2$. Ta vektorski podprostor ima mnogo komplementov v \mathbf{R}^2 , noben od teh pa ni hkrati enorazsežna podupodobitev ρ .

Ni težko preveriti, da obstoj komplementirane podupodobitve vselej izhaja iz *projekcijskih spletičen*.⁴

Trditev. Naj bo G grupa z upodobitvijo ρ na prostoru V in naj bo $\tilde{\rho}$ njena podupodobitev na prostoru $W \leq V$. Tedaj ima $\tilde{\rho}$ komplementirano podupodobitev, če in samo če obstaja spletična $\Phi \in \text{hom}_G(V,V)$, ki je projekcija na W. V tem primeru je $\ker \Phi$ komplementirana upodobitev.

Polenostavnost

Vrnimo se k začetni ideji o razstavljanju dane upodobitve. Kadar lahko dano upodobitev ρ zapišemo kot direktno vsoto nerazcepnih upodobitev $\bigoplus_{i \in I} \rho_i$, tedaj rečemo, da je ρ polenostavna upodobitev. Če so pri tem vse podupodobitve ρ_i izomorfne med sabo, upodobitev ρ imenujemo izoti-pična upodobitev.

Zgled.

- Permutacijska upodobitev grupe S_3 na ${\bf R}^3$ je polenostavna.
- Regularna upodobitev ciklične grupe $\mathbf{Z}/n\mathbf{Z}$ nad \mathbf{C} je polenostavna.

Vseh upodobitev žal ne moremo razstaviti na direktno vsoto nerazcepnih.⁵ Polenostavnost dane upodobitve je namreč tesno povezana z obstojem komplementiranih podupodobitev.

Trditev. Upodobitev grupe G je polenostavna, če in samo če ima vsaka njena podupodobitev komplementirano podupodobitev.

Dokaz. (\Rightarrow): Naj bo najprej $\rho:G \to \operatorname{GL}(V)$ polenostavna upodobitev, pri kateri je $V = \bigoplus_{i \in I} V_i$ in upodobitve G na podprostorih V_i so nerazcepne. Naj bo $W \le V$ poljuben G-invarianten podprostor. Po Zornovi lemi obstaja maksimalen G-invarianten podprostor $U \le V$ z lastnostjo $U \cap W = 0$. Izberimo poljuben $i \in I$. Presek $(U \oplus W) \cap V_i$ je G-invarianten podprostor prostora V_i , zato je po nerazcepnosti bodisi trivialen bodisi enak V_i . Če bi bil trivialen, bi lahko U povečali do prostora $U \oplus V_i$, kar je v nasprotju z maksimalnostjo izbire U. Zatorej je $(U \oplus W) \cap V_i = V_i$ in tako $(U \oplus W) \ge V_i$.

⁴Linearna preslikava $A: X \to X$ je projekcija na podprostor $Y \le X$, če je $A^2 = A$ in im A = Y. Projekcijska spletična je torej spletična, ki je hkrati projekcija na nek podprostor.

⁵V nadaljevanju bomo pokazali, da so upodobitve *končnih* grup nad poljem karakteristike 0 vselej poenostavne.

Ker je bil i poljuben, od tod sledi $U \oplus W = V$. Podupodobitev W ima torej komplementirano podupodobitev U. \checkmark

 (\Leftarrow) : Naj bo $\rho: G \to \operatorname{GL}(V)$ upodobitev, v kateri je vsaka podupodobitev komplementirana. Dokazati želimo, da je ρ polenostavna. Uporabili bomo naslednjo pomožno trditev, ki je ni težko preveriti.

Domača naloga. Naj bo ρ upodobitev, v kateri je vsaka podupodobitev komplementirana. Tedaj ima ρ nerazcepno podupodobitev.

Naj bo W vsota vseh G-invariantnih podprostorov v V, ki so nerazcepne upodobitve, se pravi $W = \sum_{i \in I} V_i$, a ta vsota ni nujno direktna. Po pomožni trditvi je $W \neq 0$. Po predpostavki je W komplementirana z G-invariantnim podprostorom U. Po pomožni trditvi ima tudi U nerazcepno podupodobitev, zato je ta vsebovana v W, kar implicira W = V. Dokažimo zdaj še, da je W direktna vsota podprostorov V_i . V ta namen naj bo J maksimalna podmnožica indeksne množice I, za katero je $\sum_{j \in J} V_j$ direktna vsota. Taka podmnožica obstaj po Zornovi lemi. Označimo $\tilde{V} = \bigoplus_{j \in J} V_j$. Če velja $\tilde{V} \neq V$, potem mora za nek $i \in I \setminus J$ po nerazcepnosti veljati $V_i \cap \tilde{V}$, kar pa je v nasprotju z maksimalnostjo množice J. Tako je res $\tilde{V} = V$ in upodobitev V je polenostavna. \checkmark

Zgled. Eničnozgornjetrikotna upodobitev grupe \mathbf{R} na \mathbf{R}^2 ni nerazcepna, hkrati pa njena podupodobitev $\mathbf{R} \cdot e_1 \cong \mathbf{1}$ ni komplementirana. Ta upodobitev zatorej ni polenostavna.

Z uporabo zadnjega kriterija lahko dokažemo, da je polenostavnost zaprta za osnovne konstrukcije z upodobitvami.

Posledica. Podupodobitve, kvocienti in direktne vsote polenostavnih upodobitev dane grupe so polenostavne.

Dokaz. Preverimo le zaprtost za podupodobitve. Naj bo ρ polenostavna upodobitev grupe G na prostoru V in naj bo $W \leq V$ podupodobitev. Naj bo $U \leq W$ poljubna podupodobitev upodobitve na W. Po polenostavnosti obstaja komplementirana podupodobitev $\tilde{U} \leq V$ upodobitve $U \leq V$. Tedaj je $\tilde{U} \cap W$ podupodobitev, ki je komplementirana podupodobitvi $U \vee W$. \square

Nazadnje lahko s pomočjo projekcijskih spletičen naredimo še en korak naprej pri razumevanju simetrij upodobitev. Premislili smo že, da so osnovni kosi brez netrivialnih simetrij. V primeru polenostavnih upodobitev drži tudi obratno.

Posledica. Naj bo G grupa s polenostavno upodobitvijo ρ končne razsežnosti nad algebraično zaprtim poljem. Če je dim $\hom_G(\rho,\rho)=1$, potem je ρ nerazcepna.

Dokaz. Naj ρ upodablja grupo G na prostoru V. Naj bo $W \leq V$ nerazcepna podupodobitev in naj bo U njena komplementirana podupodobitev. Naj bo $\Phi\colon V \to V$ pripadajoča projekcija na podprostor W z jedrom U. Ker je $\Phi \in \hom_G(\rho,\rho)$, iz predpostavke sledi, da je Φ skalarni večkratnik identitete. To je mogoče le v primeru, ko je V=W in U=0, torej je ρ nerazcepna.

Kompozicijska vrsta

Vsake upodobitve ne moremo razstaviti kot direktno vsoto nerazcepnih upodobitev. Kljub temu pa je res, da lahko vsako upodobitev (na končno razsežnem prostoru) razstavimo na nerazcepne upodobitve, le da moramo pri tem poseči po nekoliko zahtevnejšem načinu razstavljanja.

Naj bo G grupa z upodobitvijo na prostoru V. Predpostavimo, da obstaja zaporedje G-invariantnih podprostorov

$$0 = V_0 \le V_1 \le V_2 \le \cdots \le V_n = V,$$

pri čemer so vsi zaporedni kvocienti V_i/V_{i-1} za $1 \le i \le n$, gledani kot upodobitve grupe G, nerazcepni. Tako zaporedje imenujemo kompozicijska vrsta upodobitve na prostoru V. Kvocienti V_i/V_{i-1} se pri tem imenujejo kompozicijski faktorji.

Zgled. Naj bo ρ eničnozgornjetrikotna upodobitev grupe \mathbf{R} na $V = \mathbf{R}^2$. Ta upodobitev ima podupodobitev $V_1 = \mathbf{R} \cdot e_1$. Kvocient V/V_1 je enorazsežen in na njem grupa \mathbf{R} deluje trivialno. Dobimo torej kompozicijsko vrsto

$$0 = V_0 \le V_1 \le V$$
,

katere kompozicijska faktorja sta kot upodobitvi izomorfna 1. Sama upodobitev grupe ${\bf R}$ na V pa seveda ni trivialna.

Izrek (Jordan-Hölder-Noether). Vsaka upodobitev na končno razsežnem prostoru ima kompozicijsko vrsto. Vsaki dve kompozicijski vrsti imata enako število členov in do permutacije natančno enake kompozicijske faktorje.

Dokaz. Naj grupa deluje linearno na končno razsežnem prostoru V. Da kompozicijska vrsta res obstaja, ni težko preveriti. Najprej izberemo neko nerazcepno podupodobitev V_1 . Če je $V_1 < V$, potem izberemo podupodobitev V_2 , ki vsebuje V_1 in je med vsemi takimi minimalne razsežnosti. S tem je V_2/V_1 nerazcepna. Induktivno nadaljujemo z grajenjem kompozicijske vrste. Ker je V končno razsežen, se ta postopek ustavi.

Premislimo še, kako lahko vsaki dve kompozicijski vrsti povežemo med sabo. Opazujmo dve taki vrsti,

$$0 = V_0 \le V_1 \le \cdots \le V_n = V$$
 in $0 = W_0 \le W_1 \le \cdots \le W_m = V$.

S pomočjo druge vrste bomo skušali *pofiniti* prvo vrsto in obratno. ⁶ Za $0 \le i < n$ in $0 \le j \le m$ naj bo

$$V_{i,j} = V_i + (V_{i+1} \cap W_i),$$

S tem dobimo verigo

$$V_i = V_{i,0} \le V_{i,1} \le \cdots V_{i,m} = V_{i+1}$$

med V_i in V_{i+1} . Ker je kvocient V_{i+1}/V_i nerazcepen in je vsak $V_{i,j}$ podupodobitev, mora za natanko en indeks j veljati $V_i = V_{i,j}$ in $V_{i+1} = V_{i,j+1}$. Kompozicijski faktor V_{i+1}/V_i je tedaj izomorfen kvocientu

$$\frac{V_i + (V_{i+1} \cap W_{j+1})}{V_i + (V_{i+1} \cap W_j)}.$$

⁶Ta argument je sorođen premisleku o obstoju Hirschove dolžine v policikličnih grupah iz (Teorija grup).

Zgodbo zdaj ponovimo še za drugo verigo. Pofinimo jo s pomočjo prve, definiramo $W_{j,i} = W_j + (W_{j+1} \cap V_i)$. Kvocient W_{j+1}/W_j je enak

$$\frac{W_j + (W_{j+1} \cap V_{i+1})}{W_j + (W_{j+1} \cap V_i)}.$$

Domača naloga. Prepričaj se, da velja

$$\frac{V_i + (V_{i+1} \cap W_{j+1})}{V_i + (V_{i+1} \cap W_i)} \cong \frac{W_j + (W_{j+1} \cap V_{i+1})}{W_i + (W_{i+1} \cap V_i)}.$$

S tem smo za vsak $0 \le i < n$ našli natanko določen j, da je $V_{i+1}/V_i \cong W_{j+1}/W_j$. Premislimo še, da je to prirejanje injektivno. Indeks j je enolično določen s pogojem, da je $V_{i,j+1}/V_{i,j} \ne 0$, kar je po gornjem izomorfizmu enakovredno pogoju $W_{j,i+1}/W_{j,i} \ne 0$. Ker je W_{j+1}/W_j nerazcepen, je slednji pogoj lahko izpolnjen le za en indeks i.

Iz izreka sledi, da lahko za vsako upodobitev ρ grupe G na končno razsežnem prostoru najdemo bazo prostora, v kateri imajo vse matrike $\rho(g)$ za $g \in G$ bločnozgornjetrikotno obliko. Po drugi strani lahko za polenostavno upodobitev najdemo bazo prostora, v kateri imajo vse matrike bločnodiagonalno obliko.

Izotipične komponente

Po zadnjem izreku je za dano upodobitev ρ in nerazcepno upodobitev π število kompozicijskih faktorjev, ki so izomorfni π , neodvisno od kompozicijske vrste. Temu številu pravimo $ve\check{c}kratnost$ π v ρ in ga označimo z $mult_{\rho}(\pi)$.

Kadar je dana upodobitev *polenostavna*, je do izomorfizma natančno enolično določena s svojimi večkratnostmi. Če je $\rho = \bigoplus_{i \in I} \rho_i$, potem je

$$\hom_G(\pi, \rho) = \bigoplus_{i \in I} \hom_G(\pi, \rho_i).$$

Po Schurovi lemi je (nad algebraično zaprtim poljem) vsak od zadnjih prostorov spletičen bodisi trivialen bodisi enorazsežen. Večkratnost π v ρ lahko zatorej izračunamo kot

$$\operatorname{mult}_{\rho}(\pi) = \dim \operatorname{hom}_{G}(\pi, \rho).$$

Zgled.

- Za eničnozgornjetrikotno upodobitev ρ grupe R na R² je mult_ρ(1) =
 2. Ker ta upodobitev ni trivialna, ne more biti polenostavna, saj bi sicer bila izomorfna 1².
- Opazujmo permutacijsko upodobitev π grupe S₃ na R³. To upodobitev smo že razstavili na direktno vsoto 1 ⊕ ρ, kjer je ρ dvorazsežna nerazcepna upodobitev na podprostoru ⟨u₁ = e₁ e₂, u₂ = e₂ e₃⟩. Premislili smo, kako lahko to upodobitev projiciramo do upodobitve ρ̃ grupe S₃ na prostoru (Z/3Z)² nad končnim poljem Z/3Z.

Upodobitev $\tilde{\rho}$ ni nerazcepna, saj ima invarianten podprostor $\langle u_1 - u_2 = e_1 + e_2 + e_3 \rangle$. Na tem podprostoru grupa S_3 deluje trivialno. V kvocientu $(\mathbf{Z}/3\mathbf{Z})^2/\langle u_1 - u_2 \rangle \cong \mathbf{Z}/3\mathbf{Z}$ generatorja (1 2) in (1 2 3)

grupe S_3 preslikata odsek vektorja u_1 v odsek $-u_1$ oziroma u_1 . V tem prepoznamo predznačno upodobitev, interpretirano kot homomorfizem $\mathrm{sgn}: S_3 \to \mathrm{GL}_1(\mathbf{Z}/3\mathbf{Z}) \cong \{1,-1\}$. Nad poljem $\mathbf{Z}/3\mathbf{Z}$ za permutacijsko upodobitev π tako velja $\mathrm{mult}_{\pi}(\mathbf{1}) = 2$ in $\mathrm{mult}_{\pi}(\mathrm{sgn}) = 1$.

Premislimo, da upodobitev π nad $\mathbb{Z}/3\mathbb{Z}$ ni polenostavna. Če bi namreč bila, bi po zgornjem morala biti izmorfna direktni vsoti $1 \oplus 1 \oplus \operatorname{sgn}$. Prostor $(\mathbb{Z}/3\mathbb{Z})^3$ bi zatorej imel bazo, v kateri bi matriki za $\pi((1\ 2))$ in $\pi((1\ 2\ 3))$ bili hkrati diagonalni. Ti dve matriki bi zato komutirali, kar pomeni, da bi morali komutirati tudi linearni preslikavi $\pi((1\ 2))$ in $\pi((1\ 2\ 3))$. Temu pa ni tako, saj na primer velja $\pi((1\ 2\ 3)(1\ 2))e_1=e_3$ in $\pi((1\ 2\ 3)(1\ 2\ 3))e_1=e_1$.

Čeravno so kompozicijski faktorji upodobitve enolično določeni do permutacije natančno, pa ni res, da so enolično določeni tudi členi kompozicijske vrste, niti kadar je dana upodobitev polenostavna. Lahko se namreč zgodi, da neka nerazcepna podupodobitev nastopa z večkratnostjo vsaj 2.7

Oglejmo si tako situacijo še podrobneje. Naj bo G grupa z upodobitvijo ρ na prostoru V. Naj bo π neka nerazcepna upodobitve grupe G. Opazujmo vse G-invariantne podprostore v V, ki so kot upodobitve izomorfni π . Vsota (ne nujno direktna) vseh teh podprostorov

Izotip_{$$\rho$$} $(\pi) = \sum_{W \leq V, W \cong \pi} W$

je π -izotipična komponenta upodobitve ρ . Ta je sicer definirana za vsako upodobitev, a jo je za polenostavne upodobitve še posebej lahko določiti.

Trditev. Naj bo G grupa s polenostavno upodobitvijo $\rho = \bigoplus_{i \in I} \rho_i$ na prostoru $V = \bigoplus_{i \in I} V_i$, kjer je vsak ρ_i nerazcepna podupodobitev. Za vsako nerazcepno upodobitev π grupe G je

Izotip_{$$\rho$$} $(\pi) = \bigoplus_{i \in I: \rho_i \cong \pi} V_i$.

Dokaz. Naj bo W direktna vsota podprostorov V_i , ki so kot upodobitev izomorfni π . Seveda je $W \leq \operatorname{Izotip}_{\rho}(\pi)$. Dokažimo, da velja tudi obratna neenakost. Naj bo U direktna vsota tistih prostorov V_i , ki kot upodobitev niso izomorfni π . Velja $V = W \oplus U$. Opazujmo projekcijo $p: V \to U$ z jedrom W. Naj bo $Z \leq \operatorname{Izotip}_{\rho}(\pi)$ podprostor, ki je kot upodobitev izomorfen π . Zožitev $p|_Z$ je spletična v hom $_G(Z,U)$, ki je po Schurovi lemi ničeln prostor. Torej je p(Z) = 0 in s tem $Z \leq W$. Ker je bil Z poljuben, smo s tem dokazali $\operatorname{Izotip}_{\rho}(\pi) \leq W$.

Naj bo G grupa z upodobitvijo ρ na prostoru V in nerazcepno upodobitvijo π na prostoru W. Vsak G-invarianten podprostor v V, ki je kot upodobitev izomorfen π , lahko dobimo kot sliko prostora W z neko spletično v $\hom_G(\pi,\rho)$. Vsoto vseh takih G-invariatnih podprostorov lahko torej zajamemo kot sliko linearne preslikave

$$\Sigma_{\pi,\rho}$$
: $hom_G(\pi,\rho) \otimes W \to V$, $\Phi \otimes w \mapsto \Phi(w)$.

S tem je im $\Sigma_{\pi,\rho}$ = Izotip $_{\rho}$ π . Grupa G deluje na hom $_{G}(\pi,\sigma)$ = hom $(W,V)^{G}$ trivialno, na W pa prek π . Na ta način je $\Sigma_{\pi,\rho}$ celo spletična upodobitev.

 $^{^7}$ Na primer, kadar je upodobitev trivialna, se pravi $V = \mathbf{1}^k$ za nek k > 1, lahko izberemo poljubno bazo prostora V in prek nje dobimo nek drug izomorfizem $V \cong \mathbf{1}^k$.

 $^{^8}$ Vsaka neničelna spletična v hom $_G(\pi, \rho)$ je namreč injektivna.

Trditev. Naj bo G grupa z upodobitvijo ρ in nerazcepno upodobitvijo π nad algebraično zaprtim poljem. Predpostavimo, da je $\dim \hom_G(\pi, \rho) < \infty$. Tedaj je $\Sigma_{\pi, \rho}$ injektivna.

Dokaz. Naj bo $\{\Phi_i\}_{i\in I}$ baza prostora $\hom_G(\pi,\rho)$. Premislimo, da prostori $\operatorname{im}\Phi_i$ tvorijo notranjo direktno vsoto v V. Injektivnost $\Sigma_{\pi,\rho}$ od tod neposredno sledi.

Dokazujemo s protislovjem. Naj bo $J\subseteq I$ množica najmanjše moči, za katero prostori im Φ_j za $j\in J$ ne tvorijo direktne vsote. Obstaja torej $k\in J$, da je

$$\operatorname{im}\Phi_k\cap\sum_{j\in J\setminus\{k\}}\operatorname{im}\Phi_j
eq 0.$$

Po nerazcepnosti π je spletična Φ_k injektivna, zato je im Φ_k nujno vsebovana v vsoti $\sum_{j\in J\setminus\{k\}} \operatorname{im}\Phi_j$. Po minimalnosti J je zadnja vsota direktna, zato je

$$\Phi_k \in \hom_G\big(W, \bigoplus_{j \in J \setminus \{k\}} \operatorname{im} \Phi_j\big).$$

Slednji prostor je direktna vsota prostorov $\hom_G(W, \operatorname{im} \Phi_j)$. Po Schurovi lemi je vsak od teh bodisi ničeln bodisi enorazsežen. V neničelnem primeru je seveda $\hom_G(W, \operatorname{im} \Phi_j)$ generiran s spletično Φ_j . Od tod sledi, da je Φ_k linearna kombinacija spletičen Φ_j za $j \in J \setminus \{k\}$. To je protislovno z dejstvom, da je $\{\Phi_i\}_{i \in I}$ baza prostora $\hom_G(\pi, \rho)$.

Posledica. Naj bo G grupa z upodobitvijo ρ in nerazcepno upodobitvijo π nad algebraično zaprtim poljem. Predpostavimo, da je $\hom_G(\pi,\rho) < \infty$. Izotipična komponenta Izotip $_\rho(\pi)$ je polenostavna, π -izotipična in vsebuje π z večkratnostjo $\dim \hom_G(\pi,\rho)$.

Dokaz. Iz injektivnosti $\Sigma_{\pi,\rho}$ sledi Izotip $_{\rho}(\pi)\cong \hom_G(\pi,\sigma)\otimes W$. Ker grupa G deluje trivialno na $\hom_G(\pi,\sigma)$, je prostor $\hom_G(\pi,\sigma)\otimes W$ kot upodobitev izomorfen direktni vsoti $\dim \hom_G(\pi,\sigma)$ kopij prostora W, na katerem G deluje s π .

Domača naloga. Naj bo G grupa s končnorazsežno upodobitvijo ρ na prostoru V. Premisli, da se izotipične komponente, ki pripadajo paroma neizomorfnim nerazcepnim upodobitvam, sekajo trivialno.

Zgled.

• Naj bo G grupa s polenostavno upodobitvijo $\rho = \bigoplus_{i \in I} \rho_i$ na prostoru $V = \bigoplus_{i \in I} V_i$, v kateri vsaka nerazcepna podupodobitev nastopa z večkratnostjo 1. Upodobitve ρ_i so torej paroma neizomorfne. Izotipične komponente so torej kar enake podprostorom V_i . Ker so te komponente neodvisne od izbire dekompozicije, so torej podprostori V_i polenostavne dekompozicije enolično določeni.

Naj bo $W \leq V$ nek G-invarianten podprostor. Upodobitev G na tem podprostoru je tudi polenostavna. Vsaka njena nerazcepna podupodobitev je hkrati podupodobitev ρ , zato po enoličnosti podprostorov V_i sestoji iz nekaterih teh podprostorov. Prostor W je zato enak $\bigoplus_{i \in J} V_i$ za neko podmnožico $J \subseteq I$.

Za konkreten zgled lahko vzamemo ciklično grupo $\mathbf{Z}/n\mathbf{Z}$ in njeno regularno upodobitev, ki smo jo razcepili na direktno vsoto upodobitev $\bigoplus_{j\in\{1,2,\dots,n\}}\chi_j$. Po zadnjem komentarju je vsaka podupodobitev regularne upodobitve torej enaka direktni vsoti nekaterih od upodobitev χ_j .

• Naj bo G grupa z upodobitvijo ρ na prostoru V in naj bo π neka njena enorazsežna upodobitev. Taka upodobitev je seveda nerazcepna. Vektor $v \in V$ pripada izotipični komponenti Izotip $_{\rho}(\pi)$, če in samo če grupa G na prostoru $\langle v \rangle$ deluje kot s π , se pravi

Izotip_o
$$(\pi) = \{ v \in V \mid \forall g \in G : \rho(g) \cdot v = \pi(g)v \}.$$

Kadar je grupa G abelova, je vsaka njena nerazcepna upodobitev nad algebraično zaprtim poljem enorazsežna. Vsaka polenostavna upodobitev take grupe je zato direktna vsota podprostorov, na katerih grupa deluje s skalarnimi množenji prek svojih enorazsežnih upodobitev.

2.2 Matrični koeficienti

Vsaka upodobitev dane grupe je homomorfizem v grupo obrnljivih matrik $\operatorname{GL}(V)$. Do sedaj smo na upodobitve gledali z bolj konceptualnega stališča: govorili smo o strukturi prostora V in o njegovi morebitni dekompoziciji na nerazcepne upodobitve. Zdaj si bomo z vsako od teh umazali roke in jo pogledali še podrobneje.

Predpostavimo, da je prostor V končnorazsežen. Izberimo bazo prostora V in s tem izomorfizem $V \cong F^n$ za nek n, tako da je upodobitev dana s homomorfizmom $\rho: G \to \mathrm{GL}_n(F)$. Vsak tak homomorfizem je po komponentah podan s svojimi **matričnimi koeficienti**; to so funkcije

$$f_{i,j}:G\to F$$
, $g\mapsto \langle e_i^*,\rho(g)\cdot e_i\rangle = \rho(g)_{i,j}$

$$za i, j \in \{1, 2, ..., n\}.$$

O matričnih koeficientih upodobitve ρ lahko abstraktneje govorimo tudi brez izbire baze prostora. Za vsak vektor $v \in V$ in kovektor $\lambda \in V^*$ definiramo $f_{v,\lambda}:G \to F$, $g \mapsto \langle \lambda, \rho(g) \cdot v \rangle$. To so **posplošeni matrični koeficienti**. Kadar je prostor V končnorazsežen, lahko vsak vektor razvijemo po izbrani bazi in vsak kovektor po dualni bazi, s čimer posplošeni matrični koeficient razvijemo po običajnih matričnih koeficientih.

Matrični koeficienti in regularna upodobitev

Matrične koeficiente lahko vidimo kot elemente vektorskega prostora funkcij $\hom(G,F)$ iz G v F. Na tem prostoru deluje grupa G z regularno upodobitvijo ρ_{\hom} . Naj bo $\operatorname{MK}(\pi) \leq \operatorname{hom}(G,F)$ podprostor, ki ga razpenjajo matrični koeficienti neke končnorazsežne nerazcepne upodobitve π .

Trditev. $MK(\pi)$ *je G-invarianten podprostor.*

⁹Prostor $MK(\pi)$ je enak prostoru, ki ga razpenjajo posplošeni matrični koeficienti upodobitve π , zato je neodvisen od izbire baze.

Dokaz. Naj bo $g \in G$ in $f_{v,\lambda}$ posplošen matrični koeficient. Velja

$$g \cdot f_{v,\lambda} : x \mapsto f_{v,\lambda}(xg) = \langle \lambda, \pi(xg) \cdot v \rangle = f_{\pi(g) \cdot v,\lambda}(x),$$

zato je
$$g \cdot f_{v,\lambda} = f_{\pi(g)\cdot v,\lambda} \in MK(\pi)$$
.

Matrični koeficienti upodobitve π nam torej dajejo podupodobitev na prostoru $MK(\pi)$ znotraj regularne upodobitve ρ_{hom} na hom(G,F). Ni presenetljivo, da je ta podupodobitev v resnici tesno povezana s π .

Izrek. Naj bo G grupa s končnorazsežno nerazcepno upodobitvijo π . Tedaj je

$$MK(\pi) = Izotip_{\rho_{hom}}(\pi)$$

Nad algebraično zaprtim poljem je večkratnost π v slednji upodobitvi enaka $deg(\pi)$.

Dokaz. Naj bo π upodobitev na prostoru W. Spomnimo se, da je π -izotipična komponenta v ρ_{hom} napeta na vektorje oblike $\Phi(w)$ za $\Phi \in \mathrm{hom}_G(\pi, \rho_{\mathrm{hom}})$ in $w \in W$. Regularno upodobitev predstavimo kot inducirano upodobitev $\rho_{\mathrm{hom}} = \mathrm{Ind}_1^G(\mathbf{1})$. Po adjunkciji med restrikcijo in indukcijo je

$$\hom_G(\pi,\rho_{\mathrm{hom}})\cong \hom_1(\mathrm{Res}_1^G(\pi),\mathbf{1})\cong \hom(\mathbf{1}^{\deg(\pi)},\mathbf{1}).$$

Standardna dualna baza $\{e_i^* \mid 1 \le i \le \deg(\pi)\}$ v zadnjem vektorskem prostoru nam po tej adjunkciji porodi bazo

$$\Phi_i: W \to \text{hom}(G, F), \quad w \mapsto (g \mapsto \langle e_i^*, \pi(g) \cdot w \rangle) = f_{e_i^*, w}$$

za $1 \le i \le \deg(\pi)$ prostora spletičen $\hom_G(\pi, \rho_{\hom})$. Ko te bazne spletične evalviramo na neki izbrani bazi $\{f_j \mid 1 \le j \le \deg(\pi)\}$ prostora W, dobimo torej ravno prostor $\operatorname{MK}(\pi)$. Nad algebraično zaprtim poljem te evalvacije tvorijo celo bazo 10

$$\Phi_i(f_i) = f_{i,i}$$

prostora Izotip $_{\rho_{\mathrm{hom}}}(\pi)$. V izbranih bazah torej matrični koeficienti tvorijo bazo za π -izotipično komponento regularne upodobitve. Večkratnost π v njej je enaka dim hom $_G(\pi,\rho_{\mathrm{hom}})=\deg(\pi)$.

Izpostavimo pomembno posledico, ki nam pove, da lahko vse nerazcepne upodobitve najdemo v regularni.

Posledica. Vsaka končnorazsežna nerazcepna upodobitev dane grupe je uresničljiva kot podupodobitev regularne.

V posebnem smo tekom zadnjega dokaza izpeljali, da so po izbiri baze matrični koeficienti končnorazsežne nerazcepne upodobitve nad algebraično zaprtim poljem π vselej linearno neodvisni. Vseh je ravno $\deg(\pi)^2$ in znotraj regularne upodbitve tvorijo podupodobitev $\mathrm{MK}(\pi)$, ki sestoji iz $\deg(\pi)$ mnogo kopij upodobitve π .

Vse podobno velja, kadar imamo namesto ene same nerazcepne upodobitve končno mnogo paroma neizomorfnih nerazcepnih upodobitev $\{\pi_i\}_{i\in I}$ dane grupe G. Vsaka od njih nam po izbiri baze podari svoje matrične koeficiente. Ti razpenjajo prostore, ki so enakim izotipičnim komponentam

 $^{^{10} \}text{Preslikava } \Sigma_{\pi,\rho_{\text{hom}}} \text{ je injektivna, ker je } \dim \text{hom}_{G}(\pi,\rho_{\text{hom}}) = \deg(\pi) < \infty.$

 $^{^{11}\}mathrm{Temu}$ dejstvu včasih pravimo Burnsideov~izrek~o~neracepnosti.

v regularni upodobitvi in te komponente tvorijo notranjo direktno vsoto. Matrični koeficienti vseh teh upodobitev so torej linearno neodvisni med sabo. Vseh skupaj je $\sum_{i \in I} \deg(\pi_i)^2$.

Matrični koeficienti so elementi prostora funkcij $\hom(G,F)$. V primeru, ko je grupa končna, lahko po primerjanju dimenzij zato izpeljemo neenakost

$$\sum_{i \in I} \deg(\pi_i)^2 \leq \dim \hom(G, F) = |G|.$$

Posledica. Končna grupa ima le končno mnogo končnorazsežnih nerazcepnih upodobitev. Nad algebraično zaprtim poljem je vsaka od njih stopnje kvečjemu $\sqrt{|G|}$.

Dokaz. Vsaka končnorazsežna nerazcepna upodobitev je vsebovana v regularni in se zatorej pojavi kot njen kompozicijski faktor. Vseh možnih kompozicijskih faktorjev je končno mnogo, ker je prostor hom(G,F) končnorazsežen. Drugi del posledice sledi neposredno iz neenakosti pred njo.

Zgled. Opazujmo grupo S_3 nad poljem \mathbb{C} . Njeno regularno upodobitev smo že razstavili na direktno vsoto $\mathbf{1} \oplus \rho$, kjer je ρ dvorazsežna nerazcepna upodobitev. Poleg tega poznamo še enorazsežno predznačno upodobitev sgn. Vsota kvadratov stopenj teh treh upodobitev je $1^2 + 1^2 + 2^2 = 6$, kar je ravno enako moči grupe S_3 . Od tod sledi, da so te tri vse končnorazsežne nerazcepne upodobitve grupe S_3 .

Več o upodobitvah končnih grup si bomo pogledali nekoliko kasneje.

Karakterji

Naj bo G grupa in ρ njena končnorazsežna upodobitev. Po izbiri baze dobimo matrične koeficiente $f_{i,j}$. Te lahko kombiniramo na različne načine, da dobimo funkcije v hom(G,F), ki so nazadnje neodvisne od izbire baze. Najosnovnejša¹² taka funkcija je sled linearnega operatorja, se pravi

$$\chi_{\rho}: G \to F$$
, $g \mapsto \operatorname{tr}(\rho(g)) = \sum_{i=1}^{\operatorname{deg}(\rho)} f_{i,i}(g)$.

To funkcijo imenujemo *karakter* upodobitve ρ . Kadar je upodobitev ρ nerazcepna, tudi njenemu karakterju dodamo pridevnik *nerazcepen*.

Karakter je neodvisen od izbire baze, zato za vsaka $x,g \in G$ velja $\chi_{\rho}(xgx^{-1}) = \chi_{\rho}(g)$. Karakterji so torej funkcije na G, ki so konstantne na konjugiranostnih razredih. Takim funkcijam pravimo *razredne funkcije* in jih označimo s

$$hom_{cl}(G,F) = \{ f \in hom(G,F) \mid \forall x,g \in G : f(xgx^{-1}) = f(g) \}.$$

Zgled. Opazujmo grupo S_3 nad poljem \mathbb{C} . Poznamo že vse tri njene končnorazsežne nerazcepne upodobitve. Določimo karakterje teh nerazcepnih

 $^{^{12}\}mathrm{V}$ resnici je sled do skalarja natančno edinataka funkcija.

 $^{^{13}}$ Konjugiranostni razred elementa $g \in G$ je množica $\{xgx^{-1} \mid x \in G\}$. Grupa G je disjunktna unija konjugiranostnih razredov svojih elementov.

upodobitev. Karakterji enorazsežnih upodobitev so kot funkcije kar enaki upodobitvam. Za karakter χ_{ρ} velja

$$()\mapsto tr\begin{pmatrix}1&0\\0&1\end{pmatrix}=2,\quad (1\ 2)\mapsto tr\begin{pmatrix}-1&1\\0&1\end{pmatrix}=0,\quad (1\ 2\ 3)\mapsto tr\begin{pmatrix}0&-1\\1&-1\end{pmatrix}=-1.$$

V grupi S_3 je vsak element konjugiran enemu od (), (1 2) ali (1 2 3). S tem so torej vse vrednosti karakterja χ_{ρ} določene.

Vse podatke o vrednostih karakterjev dane grupe ponavadi zložimo v *tabelo karakterjev*. Stolpce indeksiramo s predstavniki konjugiranostnih razredov, vrstice pa z nerazcepnimi karakterji. Vrednosti v tabeli so vrednosti karakterjev v konjugiranostnih razredih.

$$egin{array}{c|cccc} & () & (1\,2) & (1\,2\,3) \\ \hline \chi_1 & 1 & 1 & 1 \\ \chi_{
m sgn} & 1 & -1 & 1 \\ \chi_
ho & 2 & 0 & -1 \\ \hline \end{array}$$

Tabela 2.1: Tabela karakterjev S_3

Že samo imenovanje karakterjev odzvanja, da to niso poljubne funkcije v hom(G,F), temveč da v nekem smislu zajemajo srž upodobitve.

Trditev. Naj bo G grupa s končnorazsežnima nerazcepnima upodobitvama nad algebraično zaprtim poljem. Ti dve upodobitvi sta izomorfni, če in samo če imata enaka karakterja.

Dokaz. Ker so matrični koeficienti različnih nerazcepnih upodobitev linearno neodvisni med sabo, so tudi njihovi karakterji linearno neodvisni kot elementi prostora hom(G,F).

Karakterjev fundamentalnih konstrukcij različnih upodobitev ni težko izračunati.

Trditev. Naj bo G grupa s končnorazsežnimi upodobitvami ρ , ρ_1 , ρ_2 . Tedaj za vse $g \in G$ velja

$$\chi_{\rho}(1) = \deg(\rho), \quad \chi_{\rho_1 \oplus \rho_2} = \chi_{\rho_1} + \chi_{\rho_2}, \quad \chi_{\rho_1 \otimes \rho_2} = \chi_{\rho_1} \cdot \chi_{\rho_2}, \quad \chi_{\rho^*}(g) = \chi_{\rho}(g^{-1}).$$

 $Za \ podgrupo \ H \leq G \ in \ poljuben \ h \in H \ velja$

$$\chi_{\mathrm{Res}_H^G(
ho)}(h) = \chi_{
ho}(h).$$

Kadar je $H \leq G$ končnega indeksa in ρ upodobitev grupe H, za poljubno izbiro predstavnikov desnih odsekov R grupe H v G velja

$$\chi_{\operatorname{Ind}_H^G(\rho)}(g) = \sum_{r \in R: r \circ r^{-1} \in H} \chi_{\rho}(r \circ r^{-1}).$$

Dokaz. Netrivialna je le zadnja enakost o indukciji. Naj H deluje na prostoru V prek ρ . Spomnimo se, da lahko induciran prostor identificiramo z direktno vsoto $\bigoplus_{r \in R} Vr$, kjer je Vr kopija prostora V pri komponenti r. Element $g \in G$ deluje na $vr_0 \in Vr_0$ kot

$$g \cdot v r_0 = (\rho(h) \cdot v) r$$
,

kjer je $r = hr_0g^{-1}$ za enolično določena $r \in R$, $h \in H$. Prostori Vr se torej pri delovanju med sabo permutirajo, poleg tega pa grupa deluje netrivialno še na vsaki komponenti posebej. Za izračun sledi so zato relevantne samo komponente, ki so fiksne pri tej permutaciji. To so komponente Vr_0 , za katere je $r = r_0$, se pravi komponente z lastnostjo $Hr_0g^{-1} = Hr_0$, kar je nazadnje enakovredno pogoju $r_0gr_0^{-1} \in H$. Za tako komponento Vr_0 element g deluje na vektorju vr_0 kot

$$g \cdot v r_0 = \left(\rho \left(r_0 g r_0^{-1}\right) \cdot v\right) r_0,$$

zato je sled induciranega delovanja g na Vr_0 enaka $\chi_\rho(r_0gr_0^{-1})$. Ko seštejemo prispevke po vseh relevantnih predstavnikih $r_0 \in R$, dobimo želeno formulo za induciran karakter.

Zgled. Naj bo G končna grupa. V tem primeru je regularna upodobitev ho_{\hom} končnorazsežna. Določimo njen karakter najprej na roke. V regularni upodobitvi imamo naravno bazo iz karakterističnih funkcij

$$1_x: G \to F, \quad y \mapsto \begin{cases} 1 & y = x, \\ 0 & \text{sicer.} \end{cases}$$

Na vsaki od teh element grupe $g \in G$ deluje kot $\rho_{\mathrm{hom}}(g) \cdot 1_x = 1_{xg^{-1}}$. Grupa G torej permutira karakteristične funkcije. Sled preslikave $\rho_{\mathrm{hom}}(g)$ je zato enaka številu karakterističnih funkcij, ki jih ta preslikava fiksira. To je mogoče le, če je $x = xg^{-1}$, kar pa se zgodi zgolj pri g = 1, ko je $\rho_{\mathrm{hom}}(1) = \mathrm{id}$ s sledjo dim $\mathrm{hom}(G,F) = |G|$. Torej je karakter regularne upodobitve končne grupe enak

$$\chi_{\rho_{\text{hom}}}:G o F,\quad g\mapsto \begin{cases} |G| & g=1,\\ 0 & \text{sicer.} \end{cases}$$

Ta karakter bi lahko hitreje izračunali s pomočjo znane identifikacije $\rho_{\text{hom}} \cong \text{Ind}_1^G(\mathbf{1})$. V tem primeru je R=G in za $g\neq 1$ je vsota v formuli za induciran karakter prazna, torej se evalvira v 0, za g=1 pa dobimo $\sum_{r\in G} \chi_1(1) = |G|$.

Lastnost karakterjev kot srža upodobitve se prenese na končnorazsežne polenostavne upodobitve, če je le polje ničelne karakeristike. Karakter dane polenostavne upodobitve ρ namreč lahko razvijemo kot

$$\chi_{\rho} = \sum_{\pi \in Irr(G)} mult_{\rho}(\pi) \cdot \chi_{\pi}.$$

Polenostavna upodobitev je enolično določena s svojimi nerazcepnimi komponentami in njihovimi večkratnostmi. Če je torej $\chi_{\rho_1} = \chi_{\rho_2}$ za polenostavni upodobitvi ρ_1 , ρ_2 , potem od tod iz neodvisnosti nerazcepnih karakterjev sledi enakost $\operatorname{mult}_{\rho_1}(\pi) = \operatorname{mult}_{\rho_2}(\pi)$ za vsako nerazcepno upodobitev π . To je enakost v polju F, od koder po predpostavki o ničelni karakteristiki sledi, da ta enakost velja tudi v kolobarju celih števil. S tem je $\rho_1 \cong \rho_2$.

Posledica. Nad algebraično zaprtim poljem ničelne karakteristike je polenostavna upodobitev do izomorfizma natančno določena s svojim karakterjem.

Karakterji so torej funkcije na grupi, s katerimi so v mnogih primerih upodobitve, ki so sicer mnogo bolj kompleksni objekti kot le funkcije na grupi, natančno določene. V nadaljevanju bomo videli, da lahko včasih eksplicitno izračunamo vse nerazcepne karakterje, brez da bi sploh poznali same nerazcepne upodobitve. Na ta način lahko dodobra razumemo kategorijo upodobitev dane grupe zgolj z uporabo karakterjev.

Poglavje 3

Upodobitve končnih grup

V tem poglavju bomo raziskali kategorijo upodobitev končne grupe s posebnim poudarkom na situaciji, ko je karakteristika polja tuja moči grupe. V tem primeru je, kot bomo videli, vsaka upodobitev polenostavna, zato lahko vprežemo karakterje za razumevanje kategorije upodobitev. Ogledali si bomo nekaj konkretnih zgledov in podrobneje analizirali dve pomembni družini grup: linearne grupe nad končnim poljem in simetrične grupe.

3.1 Polenostavnost

Nerazcepne upodobitve

Prepričajmo se najprej, da končne grupe nimajo *prevelikih* nerazcepnih upodobitev.

Trditev. Vsaka nerazcepna upodobitev končne grupe je končnorazsežna.

Dokaz. Naj boGkončna grupa z upodobitvijo ρ na prostoru V. Izberimo poljuben neničeln vektor $v \in V.$ Opazujmo podprostor

$$W = \langle \rho(g) \cdot v \mid g \in G \rangle$$

prostora V. Ker je G končna, je W končnorazsežen. Hkrati je po konstrukciji ta podprostor G-invarianten. Vsaka upodobitev končne grupe ima torej končnorazsežno podupodobitev. V posebnem to pomeni, da ni neskončnorazsežne nerazcepne upodobitve. \Box

Iz trditve in razmislekov v prejšnjem poglavju sledi, da je vsaka nerazcepna upodobitev končne grupe vsebovana v regularni upodobitvi. Nad algebraično zaprtim poljem dodatno velja, da je razsežnosti kvečjemu $\sqrt{|G|}$.

Maschkejev izrek

Spoznali smo že, da niso vse upodobitve polenostavne, niti kadar je grupa končna. Videli smo primer grupe S_3 z dvorazsežno upodobitvijo ρ , ki je bila definirana nad kolobarjem ${\bf Z}$ in katere projekcija po modulu 3 ni bila polenostavna. Naslednji izrek razkrije, da je to mogoče le v primeru, ko karakteristika polja deli moč grupe.

Izrek (Maschke). Naj bo G končna grupa in F polje. Tedaj je vsaka upodobitev G nad poljem F polenostavna, če in samo če char(F) + |G|.

Preden dokažemo izrek, pojasnimo, kako in zakaj nam prideta prav končnost grupe G in ustrezna karakteristika polja F. Ti dve predpostavki namreč odpirata vrata orodju **povprečenja po grupi**. Za dano funkcijo $f \in \text{hom}(G,F)$ lahko v tej ugodni situaciji izračunamo njeno povprečno vrednost¹

$$\mathbf{E}(f) = \frac{1}{|G|} \sum_{g \in G} f(g) \in F.$$

Te račune povprečij lahko razširimo na izračun povprečne linearne preslikave upodobitve. Za dano upodobitev ρ grupe G na prostoru V lahko v tej ugodni situaciji izračunamo njeno povprečno vrednost

$$\mathbf{E}(\rho) = \frac{1}{|G|} \sum_{g \in G} \rho(g) \in \text{hom}(V, V).$$

Domača naloga. Preveri, da je $\mathbf{E}(\rho) \in \text{hom}_G(V, V)$ projekcijska spletična na podprostor fiksnih vektorjev V^G .

Dokaz Maschkejevega izreka. (\Leftarrow): Predpostavimo char(F) + |G|. Naj bo ρ upodobitev grupe G na prostoru V in naj bo W poljuben G-invarianten podprostor. Naj bo $P \in \text{hom}(V,V)$ projektor na W. Grupa G deluje na prostoru linearnih preslikav hom(V,V). Povprečna vrednost tega delovanja je projekcijska spletična na podprostor spletičen $\text{hom}(V,V)^G = \text{hom}_G(V,V)$. Ko to povprečno vrednost uporabimo na projektorju P, dobimo torej linearno preslikavo

$$Q = \frac{1}{|G|} \sum_{g \in G} g \cdot P \in \text{hom}_G(V, V),$$

za katero velja $Q|_W=\mathrm{id}_W$ in imQ=W. Torej je Q projekcijska spletična na W. Njeno jedro je zato G-invarianten komplement prostora W v V. \checkmark

 (\Rightarrow) : Predpostavimo, da char(F) | |G|. Opazujmo regularno upodobitev ρ_{hom} na prostoru $\mathrm{hom}(G,F)$. Ta prostor ima vselej G-invarianten podprostor

$$\hom_0(G,F) = \left\{ f \in \hom(G,F) \mid \sum_{g \in G} f(g) = 0 \right\}$$

korazsežnosti 1 v hom(G,F). Dokažimo, da upodobitev na tem podprostoru ni komplementirana in da torej vsaka upodobitev ni polenostavna.

Zavoljo protislovja predpostavimo, da komplement obstaja. Imamo torej funkcijo $0 \neq \phi \in \text{hom}(G,F)$, za katero velja $\sum_{g \in G} \phi(g) \neq 0$ in prostor $F \cdot \phi$ je G-invarianten. Torej obstaja enorazsežna upodobitev $\chi : G \to F^*$, da pri vsakem $g \in G$ velja $g \cdot \phi = \chi(g) \cdot \phi$, se pravi $\phi(g) = \chi(g) \cdot \phi(1)$. Od tod sledi

$$\sum_{g \in G} \phi(g) = \phi(1) \cdot \sum_{g \in G} \chi(g).$$

 $^{^1}$ Tukaj uporabljamo verjetnostno oznako za povprečno vrednost. Mislimo si, da enakomerno naključno izberemo element X iz grupe G in v njem izračunamo vrednost f. Število $\mathbf{E}(f)$ je pričakovana vrednost slučajne spremenljivke f(X).

²V tem primeru sicer nimamo dostopa do povprečenja v celoti, lahko pa uporabimo *delno* povprečenje, ki izračuna le vsoto po grupi.

Trdimo, da je zadnja vsota vselej ničelna, kar nas privede v protislovje s predpostavko $\sum_{g \in G} \phi(g) \neq 0$. Če je namreč χ trivialna upodobitev, potem iz predpostavke o karakteristiki izpeljemo

$$\sum_{g \in G} \chi(g) = |G| = 0.$$

Če pa χ ni trivialna, potem za nek $x \in G$ velja $\chi(x) \neq 1$ in v tem primeru izračunamo

$$(\chi(x)-1)\cdot\sum_{g\in G}\chi(g)=\sum_{g\in G}\chi(xg)-\sum_{g\in G}\chi(g)=0,$$

kar zopet implicira $\sum_{g \in G} \chi(g) = 0$. $\sqrt{ }$

Zgled. V ekstremni situaciji, ko je char(F) = p > 0 in $|G| = p^n$ za nek $n \in \mathbb{N}$, kategorija upodobitev izgleda precej nenavadno. V takih neugodnih razmerah *netrivialnih nerazcepnih upodobitev ni*. Poglejmo si, zakaj je temu tako v primeru $F = \mathbb{F}_p$ za neko praštevilo p.

Imejmo netrivialno nerazcepno upodobitev p-grupe G na prostoru V nad poljem \mathbf{F}_p . Vemo že, da je V nujno končnorazsežen, zato je $|V| = p^k$ za nek $k \in \mathbf{N}$. Grupa G permutacijsko deluje na množici neničelnih vektorjev $V\setminus\{0\}$. Po lemi o orbiti in stabilizatorju je velikost orbite vsakega neničelnega vektorja enaka indeksu stabilizatorja, ki je po predpostavki o moči grupe nujno potenca praštevila p. Ker pa moč $|V\setminus\{0\}|$ ni deljiva s p, mora obstajati vektor $0 \neq v \in V$ z orbito moči 1. Ta vektor je torej fiksen za delovanje grupe G in zato razpenja enorazsežen podprostor $\mathbf{F}_p \cdot v$, ki je kot upodobitev izomorfen 1. To je seveda sprto s predpostavko o nerazcepnosti upodobitve G na V.

Dekompozicija regularne upodobitve

Naj bo G končna grupa in F algebraično zaprto polje karakteristike tuje |G|. Vsaka nerazcepna upodobitev π grupe G nad F je uresničljiva kot podupodobitev regularne ρ_{hom} . Slednja je po Maschkejevem izreku polenostavna, zato jo lahko zapišemo kot direktno vsoto izotipičnih komponent nerazcepnih upodobitev. Vsaka π -komponenta pri tem sestoji iz $\deg(\pi)$ mnogo kopij upodobitve π . Izpostavimo in povzemimo.

Izrek. Naj bo G končna grupa in F algebraično zaprto polje karakteristike tuje |G|. Velja

$$\rho_{\mathrm{hom}} \cong \bigoplus_{\pi \in \mathrm{Irr}(G)} \underbrace{\pi \oplus \pi \oplus \cdots \oplus \pi}_{\mathrm{deg}(\pi)}.$$

V posebnem iz izreka po primerjavi razsežnosti izpeljemo

$$\sum_{\pi \in \mathrm{Irr}(G)} \deg(\pi)^2 = |G|.$$

Zgled. Opazujmo permutacijsko upodobitev π grupe $\mathbf{Z}/n\mathbf{Z}$ na prostoru $\mathbf{C}[\Omega]$, kjer je $\Omega = \{1,2,\ldots,n\}$. Premislili smo že, da je π izomorfna regularni upodobitvi in da jo lahko razstavimo kot direktno vsoto $\pi = \bigoplus_{j \in \Omega} \chi_j$, kjer je $\chi_j : \mathbf{Z}/n\mathbf{Z} \to \mathbf{C}^*$, $x \mapsto e^{2\pi i j x/n}$, enorazsežna upodobitev. V posebnem od tod sledi, da so $\{\chi_j \mid j \in \Omega\}$ vse neizomorfne nerazcepne upodobitve ciklične grupe $\mathbf{Z}/n\mathbf{Z}$.

 $^{^3}$ Splošen primer hitro sledi iz tega posebnega. Če je namreč F karakteristike p, ima prapolje \mathbf{F}_p . Upodobitev v tem primeru obravnavamo nad tem prapoljem.

Ortogonalnost matričnih koeficientov

Na prostor funkcij hom(G,F) uvedimo **skalarni produkt** s predpisom

$$\langle f_1, f_2 \rangle = \frac{1}{|G|} \sum_{g \in G} f_1(g) f_2(g^{-1})$$

za $f_1, f_2 \in \text{hom}(G, F)$. Ker je polje F v splošnem abstraktno, to sicer ni običajen skalarni produkt, je pa to vendarle nedegenerirana simetrična bilinearna forma na hom(G, F), zato zanjo uporabljamo vso standardno terminologijo iz običajnih skalarnih produktov.

Z uporabo povprečenja na prostoru linearnih preslikav (podobno kot pri dokazu Maschkejevega izreka) bomo nadgradili dekompozicijo regularne upodobitve na *ortogonalno* direktno vsoto.

Trditev. Naj bo G končna grupa z neizomorfnima nerazcepnima upodobitvima π_1 , π_2 nad algebraično zaprtim poljem karakteristike tuje |G|. Tedaj sta prostora $MK(\pi_1)$ in $MK(\pi_2)$ ortogonalna.

Dokaz. Naj upodobitvi π_1 , π_2 delujeta na prostorih V_1 , V_2 . Grupa G deluje na prostoru linearnih preslikav hom (V_1,V_2) . Povprečje tega delovanja je projekcijska spletična na podprostor hom $(V_1,V_2)^G = \hom_G(V_1,V_2)$, ki je po Schurovi lemi trivialen. Za poljubno linearno preslikavo $A \in \hom(V_1,V_2)$ je torej

$$\frac{1}{|G|} \sum_{g \in G} g \cdot A = 0.$$

Konkretizirajmo preslikavo A. Naj bo $\{e_i\}_i$ baza prostora V_1 in $\{f_j\}_j$ baza prostora V_2 . Vzemimo

$$A_{i,l}: V_1 \to V_2, \quad v \mapsto \langle e_i^*, v \rangle f_l.$$

S to izbiro dosežemo enakost

$$0 = \frac{1}{|G|} \sum_{g \in G} g \cdot A_{i,l}(g^{-1} \cdot e_j) = \frac{1}{|G|} \sum_{g \in G} \langle e_i^*, g^{-1} \cdot e_j \rangle g \cdot f_l = \frac{1}{|G|} \sum_{g \in G} f_{i,j}^{\pi_1}(g^{-1}) g \cdot f_l.$$

Na zadnjem uporabimo še f_k^* , pa dobimo

$$0 = \frac{1}{|G|} \sum_{g \in G} f_{i,j}^{\pi_1}(g^{-1}) \langle f_k^*, g \cdot f_l \rangle = \frac{1}{|G|} \sum_{g \in G} f_{i,j}^{\pi_1}(g^{-1}) f_{k,l}^{\pi_2}(g),$$

kar je enakovredno $\langle f_{i,j}^{\pi_1}, f_{k,l}^{\pi_2} \rangle$ = 0, se pravi ortogonalnosti matričnih koeficientov.

Na soroden način lahko analiziramo skalarne produkte znotraj matričnih koeficientov ene same nerazcepne upodobitve.

Trditev. Naj bo G končna grupa z nerazcepno upodobitvijo π nad algebraično zaprtim poljem karakteristike tuje |G|. Po izbiri poljubne baze za matrične koeficiente velja

$$\langle f_{i,j}, f_{k,l} \rangle = \begin{cases} 1/\deg(\pi) & (i,j) = (l,k) \\ 0 & sicer. \end{cases}$$

Dokaz. Pristopimo kot pri zadnjem dokazu, pri čemer prostor spletičen $hom_G(V,V)$ po Schurovi lemi zdaj sestoji le iz skalarnih večkratnikov identitete. Za linearno preslikavo $A \in hom(V,V)$ je zato

$$\frac{1}{|G|} \sum_{g \in G} g \cdot A = \lambda_A \cdot \mathrm{id}_V$$

za nek $\lambda_A \in F^*$. Velja $g \cdot A = \pi(g)A\pi(g)^{-1}$, zato je $\operatorname{tr}(g \cdot A) = \operatorname{tr}(A)$, od koder izpeljemo

 $\lambda_A = \frac{\operatorname{tr}(A)}{\operatorname{deg}(\pi)}.$

Kot v zadnjem dokazu dobljeno uporabimo s preslikavo $A_{i,l}(v) = \langle e_i^*, v \rangle e_l$ za neko izbrano bazo $\{e_i\}_i$ prostora V. Velja $\operatorname{tr}(A_{i,l}) = \langle e_i^*, e_l \rangle = 1_{i=l}$, od koder kot v zadnjem dokazu izpeljemo

$$\langle f_{i,j}, f_{k,l} \rangle = \langle e_k^*, e_j \rangle \frac{1_{i=l}}{\deg(\pi)} = \frac{1_{i=l,j=k}}{\deg(\pi)},$$

kar je natanko želeno.

3.2 Karakterji

Iz rezultatov zadnjega razdelka sledi, da je nad algebraično zaprtim poljem ničelne karakteristike (na primer zelo ugodnim poljem **C**) kategorija upodobitev dane končne grupe popolnoma določena z nerazcepnimi upodobitvami, ki jih lahko razumemo s pomočjo karakterjev. V tem razdelku bomo podrobneje razvili to teorijo.

Ortonormiranost karakterjev

Iz ortogonalnosti matričnih koeficientov z lahkoto izpeljemo ortonormiranost karakterjev.

Posledica. Naj bo G končna grupa z nerazcepnima upodobitvama π_1 , π_2 nad algebraično zaprtim poljem karakteristike tuje |G|. Velja

$$\langle \chi_{\pi_1}, \chi_{\pi_2} \rangle = \begin{cases} 1 & \pi_1 \cong \pi_2, \\ 0 & sicer. \end{cases}$$

Dokaz. Izberemo bazo, izrazimo $\chi_{\pi} = \sum_{i} f_{i,i}^{\pi}$ in uporabimo zadnji dve trditvi o skalarnih produktih matričnih koeficientov.

V skladu z običajno terminologijo za funkcijo $f \in \text{hom}(G,F)$ označimo $||f|| = \sqrt{\langle f,f \rangle}$, to je **norma** funkcije f. Nerazcepni karakterji tvorijo ortonormiran sistem vektorjev v hom(G,F).

Razredne funkcije

Karakterji niso poljubne funkcije v $\hom(G,F)$, temveč vselej pripadajo prostoru $\hom_{\mathrm{cl}}(G,F)$ razrednih funkcij. Vemo že tudi, da so karakterji nerazcepnih upodobitev tudi linearno nedovisni. S pomočjo ortonormiranosti karakterjev bomo sedaj dokazali, da tvorijo celo bazo prostora razrednih funkcij.

Izrek (o bazi razrednih funkcij). Naj bo G grupa in F algebraično zaprto polje karakteristike tuje |G|. Tedaj karakterji nerazcepnih upodobitev tvorijo ortonormirano bazo prostora $hom_{cl}(G,F)$.

Zopet bomo za dokaz uporabili metodo povprečenja po grupi, a bomo to povprečenje še utežili. Za dano funkcijo $f \in \text{hom}(G,F)$ definiramo njeno nekomutativno Fourierovo transformacijo \hat{f} kot funkcijo, ki poljubni upodobitvi ρ grupe G na prostoru V priredi

$$\hat{f}(\rho) = \sum_{g \in G} f(g)\rho(g^{-1}) \in \text{hom}(V, V).$$

Fourierova transformacija funkciji f torej priredi njeno uteženo povprečje poljubne upodobitve vzdolž f, pri čemer se zgleduje po skalarnem produktu na prostoru funkcij hom(G,F). V primeru, ko je f konstantna funkcija 1/|G|, z njeno Fourierovo transformacijo najdemo običajno povprečno vrednost upodobitve $\mathbf{E}(\rho)$.

Zgled.

• Naj bo f poljubna periodična funkcija na množici ${\bf Z}$ s periodo n>1 in vrednostmi v ${\bf C}$. Funkcijo f lahko torej obravnavamo kot funkcijo na ciklični grupi ${\bf Z}/n{\bf Z}$. Nerazcepne kompleksne upodobitve slednje grupe so ravno enorazsežne upodobitve $\chi_j(x)=e^{2\pi i jx/n}$ za $j\in\Omega=\{1,2,\ldots,n\}$. Nekomutativna Fourierova transformacija funkcije f v teh upodobitvah je

$$\hat{f}(\chi_j) = \sum_{x \in \mathbf{Z}/n\mathbf{Z}} f(x) e^{-2\pi i j x/n}.$$

Vektorju števil $(f(1), f(2), ..., f(n)) \in \mathbb{C}^n$ na ta način priredimo vektor števil $(\hat{f}(\chi_1), \hat{f}(\chi_2), ..., \hat{f}(\chi_n)) \in \mathbb{C}^n$. To prirejanje je v numerični matematiki znano pod imenom **diskretna Fourierova transformacija** in je fundamentalno v digitalnem procesiranju signalov.

• Naj bo $f \in \text{hom}(G,F)$ funkcija na G in ρ_{hom} regularna upodobitev grupe G. Vrednost $\hat{f}(\rho_{\text{hom}})$ je linearni endomorfizem prostora hom(G,F). Pri tem se karakteristična funkcija 1_x za $x \in G$ preslika v

$$\hat{f}(\rho_{\text{hom}}) \cdot 1_x = \sum_{g \in G} f(g) \rho_{\text{hom}}(g^{-1}) \cdot 1_x = \sum_{g \in G} f(g) 1_{xg} = \sum_{g \in G} f(x^{-1}g) 1_g.$$

V posebnem pri x = 1 dobimo $\hat{f}(\rho_{\text{hom}}) \cdot 1_1 = f$. Funkcijo f lahko torej rekonstruiramo iz vrednosti njene Fourierove transformacije v regularni upodobitvi.

Regularna upodobitev končne grupe nad ugodnim poljem je direktna vsota nerazcepnih upodobitev grupe, zato je tudi Fourierova transformacija v regularni upodobitvi direktna vsota Fourierovih transformacij v nerazcepnih upodobitvah. Iz zgornjega premisleka sledi, da je vsaka funkcija zatorej enolično določena z vrednostmi svoje Fourierove transformacije v vseh nerazcepnih upodobitvah.

Lema (o Fourierovi transformaciji razredne funkcije). Naj bo G končna grupa in F algebraično zaprto polje karakteristike tuje |G|. Za vsako razredno funkcijo f in nerazcepno upodobitev π na prostoru V je

$$\hat{f}(\pi) = \frac{|G|}{\deg(\pi)} \cdot \langle f, \chi_{\pi} \rangle \cdot \mathrm{id}_{V}.$$

Dokaz. Za vsak $h \in G$ velja

$$\hat{f}(\pi) \cdot \pi(h) = \sum_{g \in G} f(g) \pi(g^{-1}h) = \sum_{g \in G} f(g) \pi(h) \pi(h^{-1}g^{-1}h).$$

Izpostavimo $\pi(h)$ in na grupi G uporabimo avtomorfizem $g\mapsto hgh^{-1}$, pa lahko zadnjo vsoto zapišemo kot

$$\pi(h) \sum_{g \in G} f(hgh^{-1})\pi(g^{-1}).$$

Ker je f razredna funkcija, je dobljeno ravno enako $\pi(h) \cdot \hat{f}(\pi)$. Vrednost Fourierove transformacije v π je torej spletična v $\hom_G(\pi,\pi)$. Po Schurovi lemi sklepamo, da je $\hat{f}(\pi)$ skalarni večkratnik identitete. Njegova sled je enaka

$$\operatorname{tr}\left(\hat{f}(\pi)\right) = \sum_{g \in G} f(g) \chi_{\pi}(g^{-1}) = |G| \cdot \langle f, \chi_{\pi} \rangle.$$

Od tod izračunamo relevantni skalar kot $|G| \cdot \langle f, \chi_{\pi} \rangle / \deg(\pi)$.

Opremljeni lahko z lahkoto izpeljemo izrek.

Dokaz izreka o bazi razrednih funkcij. Predpostavimo, da nerazcepni karakterji ne razpenjajo prostora razrednih funkcij. Torej obstaja funkcija $f \in \text{hom}_{\text{cl}}(G,F)$, ki je vsebovana v ortogonalnem komplementu vseh nerazcepnih karakterjev. Za vsak $\pi \in \text{Irr}(G)$ velja torej $\langle f, \chi_{\pi} \rangle = 0$. Preslikava $\hat{f}(\pi)$ je po lemi zato ničelna. Ker to velja za vsako nerazcepno upodobitev, mora veljati tudi za regularno upodobitev, se pravi $\hat{f}(\rho_{\text{hom}}) = 0$. Po zadnjem zgledu to implicira f = 0.

Vsaka razredna funkcija je enolično določena s svojimi vrednostmi v predstavnikih konjugiranostnih razredov. Če **število konjugiranostnih razredov** označimo s k(G), velja torej dim $\hom_{\operatorname{cl}}(G,F)=k(G)$. Ker karakterji tvorijo bazo prostora razrednih funkcij, lahko *število* nerazcepnih upodobitev torej izračunamo neposredno iz algebraične strukture grupe.

Posledica. Za končno grupo G nad algebraično zaprtim poljem karakteristike tuje |G| velja $|\operatorname{Irr}(G)| = k(G)$.

Zgled. Opazujmo simetrično grupo S_n nad poljem ${\bf C}$. Vsako njeno permutacijo $\sigma \in S_n$ lahko zapišemo kot produkt disjunktnih ciklov. Recimo, da so dolžine teh ciklov enake $k_1 \geq k_2 \geq \cdots \geq k_\ell$. Seveda velja $\sum_{i=1}^\ell k_i = n$. Zaporedju $(k_1, k_2, \ldots, k_\ell)$ pravimo **ciklični tip** permutacije α .

Domača naloga. Konjugiranostni razredi v S_n so določeni s cikličnim tipom. Natančneje, če je $(k_1,k_2,...,k_\ell)$ ciklični tip permutacije σ , potem konjugiranostni razred σ^{S_n} sestoji natanko iz vseh permutacij s tem cikličnim tipom.

V teoriji števil in kombinatoriki cikličnim tipom rečemo tudi **particije** števila n. Število vseh particij označimo sp(n). Velja torej $p(n) = k(S_n) = |\operatorname{Irr}(S_n)|$. Splošna eksplicitna formula za to število ne obstaja, poznamo pa njeno asimptotsko oceno 5

$$p(n) \sim \frac{1}{4n\sqrt{3}}e^{\pi\sqrt{\frac{2n}{3}}}$$

⁴Pri tem fiksne točke permutacije obravnavamo kot cikle dolžine 1.

⁵G. H. Hardy in S. Ramanujan, *Asymptotic formulae in combinatory analysis*, Proceedings of the London Mathematical Society, Second Series, **17** (1918) 75–115.

 $za n \to \infty$.

V konkretnem primeru n=3 velja p(3)=3, namreč 3=3=2+1=1+1+1. Res smo našli natanko 3 nerazcepne upodobitve grupe S_3 . V primeru n=4 pa velja p(4)=5. Temu ustrezajo konjugiranostni razredi identične permutacije () (4=1+1+1+1), transpozicije $(1\ 2)\ (4=2+1+1)$, tricikla $(1\ 2\ 3)\ (4=3+1)$, štiricikla $(1\ 2\ 3\ 4)\ (4=4)$ in produkta dveh tranzpozicij $(1\ 2)(3\ 4)\ (4=2+2)$. Ti konjugiranostni razredi so zaporedoma velikosti 1,6,8,6,3.

Ker nerazcepni karakterji tvorijo ortonormirano bazo prostora razrednih funkcij, lahko vsako razredno funkcijo $f \in \mathrm{hom_{cl}}(G,F)$ razvijemo po tej bazi kot

$$f = \sum_{\pi \in \mathrm{Irr}(G)} \langle f, \chi_{\pi} \rangle \chi_{\pi}.$$

Alternativna baza prostora razrednih funkcij sestoji iz karakterističnih funkcij konjugiranostnih razredov v G. Razvoj te baze po karakterjih nam podaja še eno relacijo med karakterji, ki je ortogonalna⁶ ortonormiranosti.

Posledica. Naj bo G končna grupa nad algebraično zaprtim poljem karakteristike tuje |G|. Za vsaka elementa $g,h \in G$ velja

$$\sum_{\pi \in \operatorname{Irr}(G)} \chi_{\pi}(g) \chi_{\pi}(h^{-1}) = \begin{cases} \frac{|G|}{|g^{G}|} & g^{G} = h^{G}, \\ 0 & sicer. \end{cases}$$

 $Dokaz.\,$ Karakteristično funkcijo 1_{h^G} razvijemo po nerazcepnih karakterjih kot

$$1_{h^G} = \sum_{\pi \in \operatorname{Irr}(G)} \langle 1_{h^G}, \chi_\pi \rangle \chi_\pi = \sum_{\pi \in \operatorname{Irr}(G)} \frac{|h^G|}{|G|} \chi_\pi(h^{-1}) \chi_\pi$$

in dobljeno evalviramo v elementu g.

Kompleksni karakterji in stopnje

Omenimo še eno lastnost karakterjev upodobitev naj naugodnejšim poljem **C**. Njihove vrednosti namreč niso čisto poljubna kompleksna števila, temveč so algebraična cela števila⁷ omejene absolutne vrednosti.

Trditev. Naj bo G končna grupa. Za vsako nerazcepno kompleksno upodobitev π in vsak $g \in G$ je

$$|\chi_{\pi}(g)| \leq \deg(\pi), \quad \chi_{\pi}(g) \in \overline{\mathbf{Z}}, \quad \chi_{\pi}(g^{-1}) = \overline{\chi_{\pi}(g)}.$$

Dokaz. Če je $g \in G$ in $\pi \in Irr(G)$, potem je $\pi(g^{|G|}) = \pi(1) = id$, zato je $\pi(g)$ linearna preslikava končnega reda. Take preslikave so diagonalizabilne.

⁶Relaciji sta ortogonalni v smislu tabele karakterjev. Ortonormiranost karakterjev preberemo tako, da fiksiramo vrstice. To drugo relacijo pa preberemo tako, da fiksiramo stolpce. Tej relaciji včasih rečemo *druga ortogonalnostna relacija*.

 $^{^7}$ Algebraično celo število je kompleksno število, ki je ničla moničnega polinoma s celoštevilskimi koeficienti. Množico algebraičnih celih števil označimo z $\bar{\mathbf{Z}}$. Ni se težko prepričati, da $\bar{\mathbf{Z}}$ tvori kolobar in da velja $\mathbf{Q} \cap \bar{\mathbf{Z}} = \mathbf{Z}$.

⁸Diagonalizabilnost sledi iz obravnave Jordanove normalne forme preslikave $\pi(g)$.

V posebnem je zato vsaka lastna vrednost $\lambda \in \text{Eig}(\pi(g))$ končnega reda v \mathbb{C}^* . S tem je seveda

$$\chi_{\pi}(g) = \sum_{\lambda \in \operatorname{Eig}(\pi(g))} \lambda \in \bar{\mathbf{Z}}, \quad |\chi_{\pi}(g)| \leq \sum_{\lambda \in \operatorname{Eig}(\pi(g))} |\lambda| = \operatorname{deg}(\pi)$$

in hkrati

$$\chi_{\pi}(g^{-1}) = \sum_{\lambda \in \operatorname{Eig}(\pi(g))} \lambda^{-1} = \sum_{\lambda \in \operatorname{Eig}(\pi(g))} \overline{\lambda} = \overline{\chi_{\pi}(g)}.$$

S pomočjo te restriktivne lastnosti vrednosti karakterjev lahko izpeljemo pomembno lastnost stopenj nerazcepnih kompleksnih upodobitev.

Izrek (o stopnjah upodobitev). *Stopnja vsake nerazcepne kompleksne upodobitve končne grupe deli moč grupe.*

Dokaz bomo navezali na edino mesto, kjer smo že videli ulomek $|G|/\deg(\pi)$, in sicer je to lema o Fourierovi transformaciji razredne funkcije. Ko funkcija, vzdolž katere izvedemo transformacijo, slika v kolobar algebraičnih celih števil, lahko lemo o Fourierovi transformaciji razredne funkcije zaostrimo na naslednji način.

Lema. Naj bo G končna grupa. Za vsako funkcijo $f \in \text{hom}_{cl}(G, \bar{\mathbf{Z}})$ in nerazcepno upodobitev π nad \mathbf{C} in je $\hat{f}(\pi)$ skalarno množenje z algebraičnim celim številom.

Dokaz. Vemo že, da je $\hat{f}(\pi)$ skalarno množenje s številom

$$\frac{|G|}{\deg(\pi)} \cdot \langle f, \chi_{\pi} \rangle.$$

Preveriti moramo torej, da je to algebraično celo število. Funkcijo f lahko razvijemo kot vsoto karakterističnih funkcij konjugiranostnih razredov s koeficienti v $\bar{\mathbf{Z}}$. Ker $\bar{\mathbf{Z}}$ tvori kolobar, bo torej trditev dovolj preveriti za primer, ko je $f = 1_C$ za nek konjugiranostni razred C v G.

Vse narazcepne upodobitve lahko obravnavamo v enem zamahu, in sicer tako, da opazujemo regularno upodobitev in s tem linearno preslikavo $\widehat{1_C}(\rho_{\text{hom}})$. Na vsaki od podupodobitev, ki je izomorfna π , ta preslikava deluje kot $\widehat{1_C}(\pi)$, torej kot skalarno množenje z gornjim številom. To število je zato lastna vrednost preslikave $\widehat{1_C}(\rho_{\text{hom}})$.

Vemo že, da $\widehat{1_C}(\rho_{\text{hom}})$ deluje na naravni bazi iz karakterističnih funkcij 1_x za $x \in G$ kot

$$\widehat{1_C}(\rho_{\text{hom}}) \cdot 1_x = \sum_{g \in G} 1_C(x^{-1}g) 1_g \in \text{hom}(G, \{0, 1\}).$$

V tej bazi ima torej $\widehat{1_C}(\rho_{\text{hom}})$ matriko s koeficienti v množici $\{0,1\}$. Karakteristični polinom te matrike ima zato celoštevilske koeficiente, torej so lastne vrednosti preslikave $\widehat{1_C}(\rho_{\text{hom}})$ algebraična cela števila.

 $Dokaz\ izreka\ o\ stopnjah\ upodobitev.$ Naj bo $\pi\in{\rm Irr}(G).$ Uporabimo lemo s funkcijo $f=\chi_\pi$ in zaključimo

$$\frac{|G|}{\deg(\pi)} \cdot \langle \chi_{\pi}, \chi_{\pi} \rangle = \frac{|G|}{\deg(\pi)} \in \bar{\mathbf{Z}} \cap \mathbf{Q} = \mathbf{Z}.$$

Razstavljanje upodobitve

S pomočjo ortonormirane baze karakterjev lahko z lahkoto razumemo vsako končnorazsežno upodobitev končne grupe nad ugodnim poljem.

Posledica. Naj bo G končna grupa s končnorazsežno upodobitvijo ρ nad algebraično zaprtim poljem karakteristike 0.

- 1. Za vsako nerazcepno upodobitev π velja $\operatorname{mult}_{\rho}(\pi) = \langle \chi_{\rho}, \chi_{\pi} \rangle$.
- 2. $||\chi_{\rho}||^2 = \sum_{\pi \in Irr(G)} mult_{\rho}(\pi)^2$.
- 3. Upodobitev ρ je nerazcepna, če in samo če $||\chi_{\rho}|| = 1$.

Dokaz.~ Upodobitev ρ je polenostavna, zato lahko njen karakter zapišemo kot

$$\chi_{\rho} = \sum_{\pi \in \mathrm{Irr}(G)} \mathrm{mult}_{\rho}(\pi) \cdot \chi_{\pi}.$$

Skalarno pomnožimo s χ_{π} in uporabimo ortonormiranost, pa dobimo mult $_{\varrho}(\pi) = \langle \chi_{\varrho}, \chi_{\pi} \rangle$. Od tod izračunamo

$$||\chi_{\rho}||^2 = \langle \chi_{\rho}, \chi_{\rho} \rangle = \sum_{\pi \in \operatorname{Irr}(G)} \operatorname{mult}_{\rho}(\pi) \cdot \langle \chi_{\rho}, \chi_{\pi} \rangle = \sum_{\pi \in \operatorname{Irr}(G)} \operatorname{mult}_{\rho}(\pi)^2.$$

Nazadnje je $||\chi_{\rho}|| = 1$, če in samo če je za natanko eno nerazcepno upodobitev π njena večkratnost v ρ enaka 1, se pravi če je ρ nerazcepna.

Zgled. Opazujmo grupo S_4 nad poljem \mathbb{C} . Vemo že, da za predstavnike konjugiranostnih razredov lahko izberemo elemente 1 = (), (12), (123), (1234) in (12)(34). S tem je število nerazcepnih upodobitev enako 5. Določimo jih.

Vemo že, da imamo natanko dve enorazsežni upodobitvi, in sicer 1 in sgn. Naj bo π permutacijska upodobitev na prostoru $\mathbf{C}[\Omega]$, kjer je $\Omega = \{1,2,3,4\}$. V standardni bazi je vsaka matrika te upodobitve permutacijska, zato je vrednost karakterja χ_{π} v permutaciji σ ravno število fiksnih točk σ . V izbranih predstavnikih konjugiranostnih razredov ima torej χ_{π} vrednosti 4,2,1,0,0. Od tod izračunamo normo

$$||\chi_{\pi}||^2=\frac{1}{4!}\left(\right)$$

Dekompozicijo regularne upodobitve smo dobili iz matričnih koeficientov nerazcepnih upodobitev, torej gre za nekakšno *notranjo* dekompozicijo. Obstaja pa tudi *zunanja* dekompozicija, pri kateri iz upodobitve same s pomočjo ustreznih projekcijskih spletičen najdemo izotipične komponente upodobitve. Za te seveda najprej potrebujemo vse nerazcepne karakterje.

Take projekcije ni težko najti za 1-izotipično komponento. Naj bo G končna grupa z upodobitvijo ρ na prostoru V nad ugodnim poljem. Povprečna vrednost upodobitve $\mathbf{E}(\rho)$ je projekcijska spletična v $\hom_G(V,V)$ na podprostor fiksnih vektorjev V^G , se pravi na 1-izotipično komponento v V. Za splošnejše izotipične komponente uporabimo utežena povprečja, se pravi Fourierovo transformacijo.

Trditev. Naj bo G končna grupa in F algebraično zaprto polje karakteristike tuje |G|. Za vsako končnorazsežno upodobitev ρ in nerazcepno upodobitev π je

$$rac{\deg(\pi)}{|G|}\cdot\widehat{\chi_{\pi}}(
ho)$$

projektor na π -izotipično komponento $v \rho$.

Dokaz. Iz leme o Fourierovi transformaciji razredne funkcije izpeljemo, da za vsaki nerazcepni upodobitvi π_1 , π_2 na prostorih V_1 , V_2 velja

$$\frac{\deg(\pi_1)}{|G|} \cdot \widehat{\chi_{\pi_1}}(\pi_2) = \begin{cases} \mathrm{id}_{V_2} & \pi_1 \cong \pi_2, \\ 0 & \mathrm{sicer.} \end{cases}$$

Ko upodobitev ρ razstavimo na direktno vsoto nerazcepnih podupodobitev, je linearni endomorfizem $\deg(\pi)/|G|\cdot\widehat{\chi_{\pi}}(\rho)$ torej ničeln na podupodobitvah, ki niso izomorfne π , in identiteta na podupodobitvah, ki so izomorfne π . Ta endomorfizem je torej projektor na direktno vsoto podupodobitev, ki so izomorfne π , torej ravno na π -izotipično komponento.

Zgled. Naj bo ρ_{hom} regularna upodobitev grupe G. Vemo že, da za vsako funkcijo $f \in \text{hom}(G,F)$ velja $\hat{f}(\rho_{\text{hom}}) \cdot 1_1 = f$. Torej je projekcija funkcije 1_1 na π -izotipično komponento enaka

$$\frac{\deg(\pi)}{|G|} \cdot \widehat{\chi_{\pi}}(\rho_{\text{hom}}) \cdot 1_1 = \frac{\deg(\pi)}{|G|} \cdot \chi_{\pi}.$$

S tem dobimo razvoj

$$1_1 = \frac{1}{|G|} \sum_{\pi \in \operatorname{Irr}(G)} \chi_{\pi}(1) \cdot \chi_{\pi},$$

ki je le poseben primer druge ortogonalnostne relacije.

Harmonična analiza

Večina rezultatov v zvezi z upodobitvami končnih grup je temeljila na uteženem povprečju. *Harmonična analiza* v kontekstu končnih grup je teorija, ki se ubada z globljim razumevanjem uteženih povprečij oziroma Fourierove transformacije in z aplikacijami, ki same po sebi niti niso izražene v jeziku teorije upodobitev. V tem razdelku si bomo na primeru pogledali del te zgodbe.

Naj bo G končna grupa in K(G) njena podmnožica, ki sestoji iz elementov, ki so komutatorji 9 v G, se pravi

$$K(G) = \{ \lceil x, y \rceil \mid x, y \in G \}.$$

Ta množica v splošnem ni podgrupa, zato je teoriji grup vsekakor v interesu, da bi razumela, kdaj dan element $g \in G$ pripada množici K(G). Lahko smo celo bolj natančni in se vprašamo, na koliko načinov lahko g zapišemo kot komutator. V ta namen predpišimo funkcijo

$$N: G \to \mathbf{N}_0$$
, $g \mapsto |\{(x,y) \in G \times G \mid g = [x,y]\}|$.

⁹**Komutator** elementov $x, y \in G$ je element $[x, y] = x^{-1}y^{-1}xy$.

Funkcijo N obravnavajmo kot element prostora hom (G, \mathbb{C}) .

Prvi princip harmonične analize je, da lahko vsako razredno funkcijo razumemo s pomočjo močnih orodij teorije upodobitev. Da to drži v konkretnem primeru funkcije N, se ni težko prepričati. Za vsak $z \in G$ namreč velja $[zxz^{-1},zyz^{-1}]=z[x,y]z^{-1}$, torej vsak par (x,y) z lastnostjo [x,y]=g porodi par (zxz^{-1},zyz^{-1}) z lastnostjo $[zxz^{-1},zyz^{-1}]=zgz^{-1}$. S tem je $N(g)=N(zgz^{-1})$.

Drugi princip harmonične analize je, da dano razredno funkcijo zapišemo karseda neodvisno od predstavnikov konjugiranostnih razredov. Našo funkcijo N bomo zato prepisali v malo bolj nenavadno obliko, ki pa nam bo dobro služila v nadaljevanju. Recimo, da za elementa $x,y \in G$ velja [x,y]=g. To enakost interpretiramo kot $x^{-1}\cdot y^{-1}xy=g$, torej je g zapisan kot produkt elementa x^{-1} in elementa, ki je konjugiran x. Vsakemu takemu paru (x,y) lahko zato priredimo konjugiranostni razred $C=x^G$ in elementa $a=x^{-1}\in C^{-1}$ ter $b=y^{-1}xy\in C$, za katera velja $a\cdot b=g$. S tem smo opisali prirejanje

$$\{(x,y) \in G \times G \mid g = [x,y]\} \to \{(C,a,b) \mid C = (a^{-1})^G, b \in C, a \cdot b = g\}.$$

To prirejanje *ni* injektivno.

Tretji princip harmonične analize je, da z novim zapisom uporabimo Fourierovo transformacijo, ki jo karseda dokončno izračunamo.

Naj bosta $f_1, f_2 \in \text{hom}(G, F)$ funkciji in ρ upodobitev grupe G. Kompozicija Fourierovih transformacij $\widehat{f}_1(\rho) \cdot \widehat{f}_2(\rho)$ je enaka

$$\sum_{g_1,g_2\in G} f_1(g_1)f_2(g_2)\rho(g_1^{-1}g_2^{-1}) = \sum_{g\in G} \left(\sum_{g_1,g_2\in G: g_2g_1=g} f_2(g_2)f_1(g_1)\right)\rho(g^{-1}).$$

Člen v notranji vsoti je **konvolucija** funkcij f_2 in f_1 , se pravi

$$(f_2 * f_1)(g) = \sum_{g_1, g_2 \in G: g_2 g_1 = g} f_2(g_2) f_1(g_1).$$

Torej velja

$$\widehat{f}_1(\rho) \cdot \widehat{f}_2(\rho) = \widehat{f}_2 * \widehat{f}_1(\rho)$$

in Fourierova transformacija pretvarja konvolucijo funkcij v produkt linearnih preslikav, pri čemer moramo biti pozorni na vrstni red operacij zaradi morebitne nekomutativnosti grupe.

Četrti princip harmonične analize je, da iz Fourierove transformacije izvlečemo podatke o začetni funkciji.

- frobeniusova formula za komutatorje (tu rabimo izotipične komponente)

3.3 Razširjeni zgledi

Abelove grupe

- dualnost, Fourier - Dirichleta izpustimo ... - Diaconis str 48 (random walks)

GAP

- izračunljivost tabele karakterjev Proposition 4.6.2 - konkreten zgled, pokaži, kaj vse se da prebrati o grupi iz tega zgleda, morda $\mathrm{GL}_2(\mathbf{F}_2)$ in S_5 - upodobitve v potencah: vključi kakšen preprost zgled; omeni, da gre za to, da ni treba razstavljati regularne upodobitve; ta zgled lahko potem kasneje razširimo z **GAP.**

 $\mathrm{GL}_2(\mathbf{F}_p)$

 S_n

- abelove grupe, Dirichletov izrek - tabela karakterjev - $\operatorname{GL}_2(\mathbf{F}_p)$ - burnside two primes theorem (najbrž izpustimo, brez veze) - simetrične grupe (!!!, napiši tabelo za S_5) - ? mixing in simetrične grupe (konkreten primer, simetrična grupa S_5 , matrika sosednosti (katero mešanje?), spletična, lastne vrednosti po komponentah, kako dolgo moramo mešati?)

Poglavje 4

Upodobitve linearnih grup

4.1 Ozaljšane upodobitve

Zvezne upodobitve

Unitarne upodobitve

- topološke grupe (zvezne upodobitve) - unitarne na hilbertovih prostorih (končne, še enkrat se ozremo na Maschkeja in karakterje v luči tega, SU_2)

 S^1

fourier

4.2 Liejeve grupe

 $\mathrm{SL}_2(\mathbf{C})$

 $\operatorname{SL}_2({\bf Z})$

- obravnavamo kot Liejevo grupo - pokažemo povezavo z sl_2 (lahko eksplicitno opišemo vse nerazcepne, pokažemo kako so bijektivno (!) povezane z gladkimi upodobitvami SL_2 , glej Fulton-Harris) - naštejemo upodobitve SL_2 - dokažemo, da so nerazcepne (potrebujemo izotipične komponente) - diferencial teh upodobitev nam da upodobitve sl_2 - dokažemo, da so to vse upodobitve sl_2 (Fulton-Harris) - zvezne upodobitve SL_2 : te plus konjugiranke (samo rezultat, glej Example 2.7.41 za karakter) - abstraktne upodobitve: divji avtomorfizmi ${\bf C}$ - dokažemo Clebsch-Gordan (najbrž izpustimo ..) - $SL_2(Z)$? (-> https://math.stackexchange.com/questions/786303/the-presentation-of-sl2-mathbbz, glej zadnji odgovor, kjer poda prezentacijo, napiši na primer enačbe za raznoterost dvorazsežnih realnih upodobitev) - random groups, model Gromova https://arxiv.org/abs/1810.01529 - $SL_n(Z)$? (-> The representation theory of SLn(Z), Andrew Putman, povezano s p-adičnimi števili – Lubotzky)

Theorem 2.6.7 Baumslag-Solitar grupa je končno prezentirana, ni pa linearna (ampak za to bi potrebovali končno prezentirane grupe ...) Ta dokaz bi lahko dodali v del o RASTi, kjer že imamo vse potrebno razvito! Dodaj referenco o obstoju grupe, ki nima upodobitve, tukaj. Po tem lahko še omenimo rezultat Lubotzky o random grupah.

4.3 Kompaktne grupe

 $\mathrm{SU}_2(\mathbf{C})$

- lahko bi geometrijsko iz sl_2 , ampak pokažemo alternativen pristop, ker je kompaktna - naštejemo upodobitve, so nerazcepne: isti dokaz kot za SL_2 bolj ali manj deluje tudi tukaj - Clebsch-Gordan je trivialen iz karakterjev - dokažemo, da so to vse zvezne nerazcepne: rabimo karakterje - Peter-Weyl na tem primeru (samo izrek, da smo s tem pokrili vse unitarne upodobitve)

p-adične grupe. Omenimo lahko na primer rezultat Jaikin (representation growth) in Aizenbud-Avni (Representation Growth and Rational Singularities of the Moduli Space of Local Systems).

- ? lastnost (T), dodaj referenco na TGP in expanderje