Generative Models - Autoencoders

S. Dakurah 03/04/20

Autoencoders

Introduction
Autoencoder Representation
Usage of Autoencoders

Variational Autoencoders

Implementation

Summary

Autoencoders

Introduction
Autoencoder Representation
Usage of Autoencoders

Variational Autoencoders

Implementation

Summary

Introduction

- These help us encode data well, automatically
- A high level example
 - 1. Assume you're trying to introduce a course (STAT 697L) offering to a group of newly admitted grad students.
 - You have only a couple of minutes to woo them given their current understanding of the subject matter.
 - 3. It's possible they've forgotten certain statistical concepts.
 - 4. In a sense, their learned transformation from latent space h(x) into g(h(x)) has been randomly initialized.
 - 5. You'll have to briefly refresh their memory.
 - 6. That's you'll have to train their autoencoders by passing in concepts x and observing whether they managed to reproduce them(g(h(x))) in a meaningful way.

Autoencoder Representation

Figure: Autoencoder Representation

1. Encoder Network

- ightharpoonup Take a representation x^1 of say dimension m
- ▶ Reduce it's dimension to d by using a learned² encoder h(.)

¹e.g. image

²An example could be a MLP or NN

Autoencoder Representation

2. Latent Space

- ► This is basically a representation of your input space in a smaller dimensional setting
- For example, a CNN could transform a $256 \times 256 \times 3$ image into a $28 \times 28 \times 3$ representation

3. Decoder Network

- Reconstruct the original object into the original dimension by using a decoder
- ► The decoder is typically a mirror image of the encoder. We could use a MLP or NN
- At the end, you have an explicit objective function L(x, g(h(x)))
- ► The goal is now to find³ the set of parameters for the encoder and decoder that will optimize this objective

³Often a variant of GD is applied depending on the problem domain =

Usage & Importance of Autoencoders

- 1. Can be used to achieve good compression
- 2. It can model a given population in an intelligent way! This can assist in fake detection
- 3. Training Autoencoders does not require labelled data!
- 4. Autoencoders can be used to generate new data. More on that later!
- At this point it might sound like Autoencoders are glorified PCAs! To some extent yes.
 - If we stop at the hidden layer of AE, we potentially have a PCA

Autoencoders

Introduction
Autoencoder Representation
Usage of Autoencoders

Variational Autoencoders

Implementation

Summary

Variational Autoencoders

- How is this different from Regular Autoencoders?
 - ► They differ in their representation of the latent space
 - Regular autoencoders represent the latent space as a "set of numbers" 4
 - ► Variational autoencoders choose to represent the latent space as a distribution⁵ with a set of learned parameters⁶.
- ► We then sample from this latent distribution to get some numbers, which are then fed to the decoder
- We get an output that looks like the original input, except it has been created by the model
- ► In addition to the abilities of an AE, VAE has more parameters to tune that gives significant control over how we want to model our latent distribution

⁴Frequentist autoencoders

⁵Bayesian autoencoders

⁶Requires additional assumptions

Autoencoders

Introduction
Autoencoder Representation
Usage of Autoencoders

Variational Autoencoders

Implementation

Summary

Implementation

Autoencoders

Introduction
Autoencoder Representation
Usage of Autoencoders

Variational Autoencoders

Implementation

Summary

Summary

- Autoencoders are composed of encoders, latent space and decoders
- They're trained using a common objective function measure
- Autoencoders has many applications, example as generative models, compressors
- VAE, an improvement of AE has limitations. The development of GANs corrects for these limitations.

Autoencoders

Introduction
Autoencoder Representation
Usage of Autoencoders

Variational Autoencoders

Implementation

Summary

- 1. GANs in Action ~ Jakub Langr & Vladimir Bok
 - ► Chapter 2