GaAlAs Infrared Emitters (880 nm)

GaAlAs-IR-Lumineszensdioden (880 nm)

Version 1.0

SFH 485

Features:

- Very highly efficient GaAlAs-LED
- High reliability
- · UL version available
- Spectral match with silicon photodetectors
- Available on tape and reel (in Ammopack)
- · Available in bins
- · Same package as SFH 300, SFH 203

Applications

- · IR remote control
- Smoke detectors (UL-approval)
- Sensor technology
- · Discrete interrupters

Notes

Depending on the mode of operation, these devices emit highly concentrated non visible infrared light which can be hazardous to the human eye. Products which incorporate these devices have to follow the safety precautions given in IEC 60825-1 and IEC 62471.

Besondere Merkmale:

- GaAlAs-LED mit sehr hohem Wirkungsgrad
- Hohe Zuverlässigkeit
- UL Version erhältlich
- · Gute spektrale Anpassung an Si-Fotoempfänger
- Gegurtet lieferbar (im Ammo-Pack)
- Gruppiert lieferbar
- Gehäusegleich mit SFH 300, SFH 203

Anwendungen

- IR-Gerätefernsteuerung
- Rauchmelder (UL-Freigabe)
- Sensorik
- Diskrete Lichtschranken

Hinweise

Je nach Betriebsart emittieren diese Bauteile hochkonzentrierte, nicht sichtbare Infrarot-Strahlung, die gefährlich für das menschliche Auge sein kann. Produkte, die diese Bauteile enthalten, müssen gemäß den Sicherheitsrichtlinien der IEC-Normen 60825-1 und 62471 behandelt werden.

Ordering Information Bestellinformation

Туре:	Radiant Intensity	Ordering Code
Тур:	Strahlstärke	Bestellnummer
	I _F = 100 mA, t _p = 20 ms	
	I _e [mW/sr]	
SFH 485	I _e [mW/sr] 40 (25 160)	Q62703Q1093

Note: 5 mm LED package (T 1 3/4), violet-colored epoxy resin, solder tabs lead spacing 2.54 mm (1/10"), anode

marking: short lead

Anm:: 5-mm-LED-Gehäuse (T 1 3/4), klares violettes Epoxy-Gießharz, Anschlüsse im 2.54-mm-Raster (1/10"),

Anodenkennzeichung: kürzerer Anschluß

Maximum Ratings $(T_A = 25 \, ^{\circ}C)$ Grenzwerte

Parameter	Symbol	Values	Unit
Bezeichnung	Symbol	Werte	Einheit
Operation and storage temperature range Betriebs- und Lagertemperatur	$T_{op};T_{stg}$	-40 100	°C
Reverse voltage Sperrspannung	V _R	5	V
Forward current Durchlassstrom	I _F	100	mA
Surge current Stoßstrom $(t_p \le 10 \ \mu s, D = 0)$	I _{FSM}	2.5	A
Power consumption Leistungsaufnahme	P _{tot}	200	mW
Thermal resistance junction - ambient 1) page 12 Wärmewiderstand Sperrschicht - Umgebung 1) Seite 12	R _{thJA}	375	K/W

Characteristics $(T_A = 25 \, ^{\circ}C)$ Kennwerte

Parameter	Symbol	Values	Unit
Bezeichnung	Symbol	Werte	Einheit
Emission wavelength Zentrale Emissionswellenlänge $(I_F = 100 \text{ mA}, t_p = 20 \text{ ms})$	λ_{peak}	880	nm
Spectral bandwidth at 50% of I_{max} Spektrale Bandbreite bei 50% von I_{max} ($I_F = 100$ mA, $I_p = 20$ ms)	Δλ	80	nm
Half angle Halbwinkel	φ	± 20	0
Active chip area Aktive Chipfläche	A	0.09	mm ²
Dimensions of active chip area Abmessungen der aktiven Chipfläche	LxW	0.3 x 0.3	mm x mm
Distance chip surface to lens top Abstand Chipoberfläche bis Linsenscheitel	Н	4.2 4.8	mm
Rise and fall times of I_e (10% and 90% of $I_{e max}$) Schaltzeiten von I_e (10% und 90% von $I_{e max}$) ($I_F = 100$ mA, $R_L = 50$ Ω)	t _r / t _f	600 / 500	ns
Capacitance Kapazität (V _R = 0 V, f = 1 MHz)	C _o	15	pF
Forward voltage Durchlassspannung $(I_F = 100 \text{ mA}, t_p = 20 \text{ ms})$	V _F	1.5 (≤ 1.8)	V
Forward voltage Durchlassspannung $(I_F = 1 \text{ A}, t_p = 100 \mu\text{s})$	V _F	3 (≤ 3.8)	V
Reverse current Sperrstrom (V _R = 5 V)	I _R	0.01 (≤ 1)	μΑ
Total radiant flux Gesamtstrahlungsfluss (I_F = 100 mA, t_p = 20 ms)	Фе	25	mW

Parameter	Symbol	Values	Unit
Bezeichnung	Symbol	Werte	Einheit
Temperature coefficient of I_e or Φ_e Temperaturkoeffizient von I_e bzw. Φ_e ($I_F = 100$ mA, $I_p = 20$ ms)	TCı	-0.5	% / K
Temperature coefficient of V_F Temperaturkoeffizient von V_F ($I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$)	TC _v	-2	mV / K
Temperature coefficient of wavelength Temperaturkoeffizient der Wellenlänge $(I_F = 100 \text{ mA}, t_p = 20 \text{ ms})$	TC_λ	0.25	nm / K

Grouping $(T_A = 25 \, ^{\circ}C)$ **Gruppierung**

Group	Min Radiant Intensity	Max Radiant Intensity	Typ Radiant Intensity
Gruppe	Min Strahlstärke	Max Strahlstärke	Typ Strahlstärke
	I _F = 100 mA, t _p = 20 ms	I _F = 100 mA, t _p = 20 ms	$I_F = 1 A, t_p = 100 \mu s$
	I _{e, min} [mW / sr]	I _{e, max} [mW / sr]	I _{e, typ} [mW / sr]
SFH 485	25	160	350
3FH 463	23	100	330

Note: at a solid angle of $\Omega = 0.01$ sr at SFH 485

Anm.: gemessen bei einem Raumwinkel Ω = 0.01 sr bei SFH 485

Relative Spectral Emission Relative spektrale Emission

$$I_{rel} = f(\lambda), T_A = 25^{\circ}C$$

Radiant Intensity Strahlstärke

$$I_{e}\,/\,I_{e}(100$$
 mA) = f(I $_{F}),$ single pulse, t_{p} = 25 $\mu s,$ T_{A} = 25 $^{\circ}C$

Max. Permissible Forward Current Max. zulässiger Durchlassstrom

$$I_{F, max} = f(T_A)$$

Forward Current Durchlassstrom

$$I_F = f(V_F)$$
, single pulse, $t_D = 100 \mu s$, $T_A = 25^{\circ} C$

Permissible Pulse Handling Capability Zulässige Pulsbelastbarkeit

 $I_F = f(t_p)$, $T_A = 25$ °C, duty cycle D = parameter

Forward Current vs. Lead Length between the package bottom and the PCB

Flussstrom gg. Beinchenlänge zwischen Gehäuseunterseite und PCB

$$I_F = f(I), T_A = 25 \, ^{\circ}C$$

Radiation Characteristics Abstrahlcharakteristik

 $I_{rel} = f(\phi)$

Package Outline Maßzeichnung

Dimensions in mm (inch). / Maße in mm (inch).

Package

5mm Radial (T 1 %), solder tabs lead spacing 2.54 mm ($^{1/}_{10}$ "), anode marking: short lead, Epoxy, violet-coloured, clear

Gehäuse

5mm Radial (T 1 3 4), Anschlüsse im 2.54 mm-Raster (1 / $_{10}$ "), Anodenkennzeichnung: kürzerer Anschluss, Harz, violett, klar

Recommended Solder Pad Empfohlenes Lötpaddesign TTW Soldering / Wellenlöten (TTW)

Dimensions in mm (inch). / Maße in mm (inch).

TTW Soldering Wellenlöten (TTW)

IEC-61760-1 TTW / IEC-61760-1 TTW

Disclaimer

Attention please!

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version in the Internet.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office.

By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose!

Critical components* may only be used in life-support devices** or systems with the express written approval of OSRAM OS.

- *) A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or the effectiveness of that device or system.
- **) Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health and the life of the user may be endangered.

Disclaimer

Bitte beachten!

Lieferbedingungen und Änderungen im Design vorbehalten. Aufgrund technischer Anforderungen können die Bauteile Gefahrstoffe enthalten. Für weitere Informationen zu gewünschten Bauteilen, wenden Sie sich bitte an unseren Vertrieb. Falls Sie dieses Datenblatt ausgedruckt oder heruntergeladen haben, finden Sie die aktuellste Version im Internet.

Verpackung

Benutzen Sie bitte die Ihnen bekannten Recyclingwege. Wenn diese nicht bekannt sein sollten, wenden Sie sich bitte an das nächstgelegene Vertriebsbüro. Wir nehmen das Verpackungsmaterial zurück, falls dies vereinbart wurde und das Material sortiert ist. Sie tragen die Transportkosten. Für Verpackungsmaterial, das unsortiert an uns zurückgeschickt wird oder das wir nicht annehmen müssen, stellen wir Ihnen die anfallenden Kosten in Rechnung.

Bauteile, die in lebenserhaltenden Apparaten und Systemen eingesetzt werden, müssen für diese Zwecke ausdrücklich zugelassen sein!

Kritische Bauteile* dürfen in lebenserhaltenden Apparaten und Systemen** nur dann eingesetzt werden, wenn ein schriftliches Einverständnis von OSRAM OS vorliegt.

- *) Ein kritisches Bauteil ist ein Bauteil, das in lebenserhaltenden Apparaten oder Systemen eingesetzt wird und dessen Defekt voraussichtlich zu einer Fehlfunktion dieses lebenserhaltenden Apparates oder Systems führen wird oder die Sicherheit oder Effektivität dieses Apparates oder Systems beeinträchtigt.
- **) Lebenserhaltende Apparate oder Systeme sind für
- (a) die Implantierung in den menschlichen Körper oder
- (b) für die Lebenserhaltung bestimmt. Falls Sie versagen, kann davon ausgegangen werden, dass die Gesundheit und das Leben des Patienten in Gefahr ist.

Glossary

Thermal resistance: junction -ambient, lead length between package bottom and PC-board max. 10 mm

Glossar

Wärmewiderstand: Sperrschicht -Umgebung, freie Beinchenlänge max. 10 mm

Published by OSRAM Opto Semiconductors GmbH Leibnizstraße 4, D-93055 Regensburg www.osram-os.com © All Rights Reserved.

HS and China RoHS compliant product

符合欧盟 RoHS 指令的要求;

国的相关法规和标准,不含有毒有害物质或元素。

