Multidisciplinary Optimization and Machine Learning for Engineering Design

19 July 2021 – 5 August 2021

https://mdoml2021.ftmd.itb.ac.id/

Jointly organized by

Design for Additive Manufacturing: Topology Optimization Prof. Joseph Morlier

DO ML 21

Multidisciplinary Optimization and Machine Learning for Engineering Design

19 July 2021 – 5 August 2021

https://mdoml2021.ftmd.itb.ac.id/

Jointly organized by

Part 4

Ecoptimization for Computational Fabrication

MDO ML 21

Can we Click and Print greener & lighter aerostructures?

Definitely the answer is NO!

but...in few years?

Click and Print i.e.

CAD > CAE > OPTIM and

CODE > 3DPRINTER

Current problems: Software, geometrical tolerence, mechanical performance, structural size, layer monitoring, post-curing, chemical support removal etc.

My Research Group

https://ica.cnrs.fr/author/jmorlier/

My Research Group (Joint research with ONERA on MDO) Artificial Intelligence For Engineers #**A**14E M=0.8 Baseline Multidisciplinary Design Optimization. 25 30 € 35 → Aeroelasticity **MAIRBUS** AEROSPACE ENGINEERING ONERA **CHAIR FOR ECO DESIGN OF AIRCRAFT** → New disciplines such as $f(x) = w_1k_h + w_2h_{max}(t, V_t^{CL})$ Path constraint $x = (k_h, Q, R)^{[q]}$ with 0.37 $V_I^{CL} > 1.2 V_{I \times c}^{OL}$ trajectory or control Ascent trajectory $\left|\beta_{min\left(cV_f^{c2}\right)}\right| < \beta_{ref}$ subject to $f_{\text{max}}^{i} < 3f_{\text{max},\epsilon_0}^{i}$ ViXI is the open loop (OL) or closed loop (CL) flutter β_{rvf} is the maximum control surface deflection finas is the maximum frequency of mode i $V_{\ell, \nu}^{OL}$ is the open-loop flutter velocity at the starting point Q, R are the LQR weight matrix to compute K SAC TWR (Lunar gravity)

MAIRBUS

«Costly code» reduction with GP

joseph morlier

Professor in Structural and Multidisciplinary Design Optimization, ... any i... 2 j

#ML

Have a look to one of our 2018 paper, where Machine Learning or Surrogate modelling technics help to understand Complex mechanical behaviour (impact on sandwich shield)

https://lnkd.in/dr_WSqA

IDO_ML_21

Surrogate modeling Recipes

O ML 21

Use SMT for your own apps

SMT: Surrogate Modeling Toolbox

The surrogate modeling toolbox (SMT) is an open-source Python package consisting of libraries of surrogate modeling methods (e.g., radial basis functions, kriging), sampling methods, and benchmarking problems. SMT is designed to make it easy for developers to implement new surrogate models in a well-tested and well-document platform, and for users to have a library of surrogate modeling methods with which to use and compare methods.

The code is available open-source on GitHub.

Cite us

To cite SMT: M. A. Bouhlel and J. T. Hwang and N. Bartoli and R. Lafage and J. Morlier and J. R. R. A. Martins.

A Python surrogate modeling framework with derivatives, Advances in Engineering Software, 2019.

```
@article{SMT2019,
    Author = {Mohamed Amine Bouhlel and John T. Hwang and Nathalie Bartoli and Rémi Lafage
    Journal = {Advances in Engineering Software},
    Title = {A Python surrogate modeling framework with derivatives},
    pages = {102662},
    year = {2019},
    issn = {0965-9978},
    doi = {https://doi.org/10.1016/j.advengsoft.2019.03.005},
    Year = {2019}}
```

Focus on derivatives

SMT is meant to be a general library for surrogate modeling (also known as metamodeling, interpolation, and regression), but its distinguishing characteristic is its focus on derivatives, e.g., to be used for gradient-based optimization.

and please cite us...

Bouhlel, M. A., Hwang, J. T., Bartoli, N., Lafage, R., Morlier, J., & Martins, J. R. (2019). A Python surrogate modeling framework with derivatives. *Advances in Engineering Software*, 135, 102662.

MDO_ML_21

« LOW SPEED » INDUSTRIAL DESIGN

Results SIMP nelx=nely=40→ 1600 design variables minC st Volfrac=0.25, Ku=f

Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B. S., & Sigmund, O. (2011). Efficient topology optimization in MATLAB using 88 lines of code. Structural and Multidisciplinary Optimization, 43(1), 1-16.

http://www.topopt.mek.dtu.dk

MDO_ML_21

11

Use HPC and lot of time

Niels Aage, Erik Andreassen, Boyan S Lazarov, and Ole Sigmund. Giga-voxel computational morphogenesis for structural design. Nature, 550(7674):84, 2017.

ML 21

Explicit TopOpt

joseph morlier

Professor in Structural and Multidisciplinary Design Optimization, ... any i... 5 i

Very proud of this work thanks to Simone Coniglio !!!

Geometric Feature Based Topopt

#TOPOPT #ISAE #ICA #SUPAERO

Generalized Geometry Projection: A Unified Approach for Geometric Feature Based Topology Optimization

link.springer.com

https://github.com/topggp/blog

MDO_ML_21 1

Results MNA, 9*5=45 design variables minC st Volfrac=0.25, Ku=f

At the end, explicit assembly of beams!

Raze, G., & Morlier, J. (2021). Explicit topology optimization through moving node approach: beam elements recognition. arXiv preprint arXiv:2103.08347..

Common Geometric Primitive Description

Configuration vector

$$\{x_i\} = \{X_i, Y_i, L_i, h_i, \theta_i, m_i\}^T$$

Polar coordinates computation

$$\varrho(x,y,X,Y) = \sqrt{(x-X)^2 + (y-Y)^2}$$

$$\phi(x,y,X,Y,\theta) = \begin{cases} \arctan\left(\frac{y-Y}{x-X}\right) - \theta & \text{if } x \neq X, \\ \frac{\pi}{2} \mathrm{sign}(y-Y) - \theta & \text{if } x = X. \end{cases}$$

Bar axis distance computation

$$\begin{split} \upsilon(\varrho,\phi,L,h) = \\ \begin{cases} \sqrt{\varrho^2 + \frac{L^2}{4} - \varrho L |\cos\phi|} & \text{if } \varrho^2 \cos\phi^2 \geq \frac{L^2}{4}, \\ \varrho |\sin\phi| & \text{otherwise} \end{cases} \end{split}$$

MDO ML 21 15

Moving Morphable Components (MMCs) with Esartz Material model [7]

Adapted to round ended bar components

Topology Description Function Computation

$$\begin{cases} \chi_i > 0 & \text{if } \{X_g\} \in \omega_i, \\ \chi_i = 0 & \text{if } \{X_g\} \in \partial \omega_i, \\ \chi_i < 0 & \text{if } \{X_g\} \in D \setminus \omega_i. \end{cases}$$

$$\chi_i = 1 - \left(\frac{4v_i^2}{h_i^2}\right)^{\alpha}$$
 with $\alpha \ge 1$

Smooth Heaviside Function application

$$H_{\epsilon}(x) = \begin{cases} 1, & \text{if } x > \epsilon, \\ \frac{3(1-\beta)}{4} \left(\frac{x}{\epsilon} - \frac{x^3}{3\epsilon^3}\right) + \frac{1+\beta}{2} & \text{if } -\epsilon \le x \le \epsilon, \\ \beta & \text{otherwise.} \end{cases}$$

Element Material update

$$E^{el} = \frac{E\left(\sum_{j=1}^{4} (H_{\epsilon}(\chi_j^{el}))^q\right)}{4}$$
$$\rho^{el} = \frac{\sum_{j=1}^{4} (H_{\epsilon}(\chi_j^{el}))}{4}$$

[7] Zhang, Weisheng, et al. "A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model." Structural and Multidisciplinary Optimization 53.6 (2016): 1243-1260.

Geometry Projection Method [10]

Signed distance computation

Local volume fraction computation

$$\delta_i^{el} = \frac{|\mathbf{B}_P^r \cap \omega_i|}{|\mathbf{B}_P^r|}$$

$$\delta_i^{el} \approx \begin{cases} 0 & \text{if } \varsigma > r, \\ \frac{1}{\pi r^2} \left[r^2 \arccos\left(\frac{\varsigma}{r}\right) - \varsigma \sqrt{r^2 - \varsigma^2} \right] & \text{if } -r \le \varsigma \le r, \\ 1 & \text{otherwise.} \end{cases}$$

Element Material update

$$\tilde{\delta}_i^{el} = \delta_{min} + (1 - \delta_{min})\delta_i^{el}$$

$$\hat{\delta}_i^{el}(m_i, \gamma) = \tilde{\delta}_i^{el} m_i^{\gamma}$$

$$\rho^{el}(\gamma_v, \kappa) = \Pi(\{\hat{\delta}^{el}(\{m\}, \gamma_v)\}, \kappa)$$

$$E^{el} = \rho^{el}(\gamma_c, \kappa)E$$

$$\varsigma(\upsilon,h) := \upsilon - \frac{h}{2}$$

[10] Zhang, Shanglong, et al. "A geometry projection method for the topology optimization of plate structures." Structural and Multidisciplinary Optimization 54.5 (2016): 1173-1190.

MDO ML 21

17

Moving Node Approach (MNA) [11]

Smooth characteristic function computation

$$\begin{split} w(\upsilon,h,\varepsilon) &= \\ \begin{cases} 1 & \text{if} \quad \upsilon \leq l, \\ a_3 \upsilon^3 + a_2 \upsilon^2 + a_1 \upsilon + a_0 & \text{if} \quad l < \upsilon < u, \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

$$l = \frac{h}{2} - \frac{\varepsilon}{2}$$

$$u = \frac{h}{2} + \frac{\varepsilon}{2}$$

$$a_3 = \frac{2}{\varepsilon^3}$$

$$a_2 = -\frac{3h}{\varepsilon^3}$$

$$a_1 = 3\frac{(h^2 - \varepsilon^2)}{\varepsilon^3}$$

$$a_0 = -\frac{(h + \varepsilon)^2(h - 2\varepsilon)}{4\varepsilon^3}$$

Local density computation

$$\delta_i^{el} = m_i^{\gamma} w(v_i^{el}, h_i, \varepsilon_i) = m_i^{\gamma} w_i^{el}$$

Element Material update

$$\rho^{el} = \Pi(\{\delta\}_v^{el}, \kappa)$$

$$E^{el} = E_{min} + (E - E_{min})(\Pi(\{\delta\}_c^{el}, \kappa))^{p_b}$$

[11] Overvelde, Johannes TB. "The Moving Node Approach in Topology Optimization." (2012).

MDO ML 21

18

Generalized Geometry Projection (GGP)

Geometric features

Characteristic functions

Generalized Geometry Projection

Fixed mesh model update

$$\mathbf{D}(\{X_g\}, p, R) = \{\{X\} \in \mathbb{R}^{d_g} \mid || \{X\} - \{X_g\}||_{2p} \le R\}$$

$$\delta_{i}^{el}(W_{i},p,R) = \frac{\int_{\mathcal{D}(\left\{X_{g}^{el}\right\},p,R)} W_{i}(\left\{X\right\},\left\{X_{i}\right\},\left\{r\right\}) d\Omega}{\int_{\mathcal{D}(\left\{X_{g}^{el}\right\},p,R)} d\Omega}$$

$$E^{el} = \mathbb{M}(\{\delta^{el}\}_c, E, E_{min}, \kappa)$$

$$\delta^{el} = \mathbb{M}(\{\delta^{el}\}_c, \kappa)$$

$$\rho^{el} = \mathbb{V}(\{\delta^{el}\}_v, \kappa)$$

Generalized Geometry Projection (GGP)

Table 1: Choice to be made to recover all other approaches using Generalized Geometric Projection

Method	MMC	GP	MNA
W^c	$H_{\epsilon}(\chi^{el})^q$	$ ilde{\delta}_i^{el} m_i^{\gamma_c}$	$m_i^{\gamma_c}w_i^{el}$
W^v	$H_{\epsilon}(\chi^{el})$	$egin{array}{l} ilde{\delta}_i^{el} m_i^{\gamma_c} \ ilde{\delta}_i^{el} m_i^{\gamma_v} \end{array}$	$m_i^{\gamma_c}w_i^{el} \ m_i^{\gamma_v}w_i^{el}$
p	∞	∞	∞
$R \over N_{GP}$	$\frac{\sqrt{3}}{2}dx$	$\frac{1}{2}dx$	$\frac{1}{2}dx$
N_{GP}		ĩ	ĩ
\mathbb{V}	$\frac{\sum_{j=1}^4 H_{\epsilon}(\chi_j^{el})}{4}$	$\Pi(\left\{\hat{\delta}^{el}\right\}_v,\kappa)$	$\Pi(\left\{\delta^{el} ight\}_v,\kappa)$
M	$\frac{\sum_{j=1}^4 (H_{\epsilon}(\chi_j^{el}))^q}{4}$	$\Pi(\left\{\hat{\delta}^{el}\right\}_c^v,\kappa)E$	$E_{min} + (E - E_{min})\Pi(\left\{\delta^{el}\right\}_c, \kappa)^{p_b}$

- All reviewed approach can be represented as a special case of Generalized Geometry Projection
- One can moreover change sampling window size (R), shape (p), Gauss Points number (N_{GP})
- Changing the number of Gauss point one can avoid optimization saddle points induced by the projection

MDO ML 21 20

Generalized Geometry Projection (GGP)

$$\begin{cases} \min_{\{x\}} C = \{U\}^T \{F\} \\ s.t. \\ V = \frac{\sum_{el=1}^{N} \rho^{el}}{N} \le V_0 \\ \{l_b\} \le \{x\} \le \{u_b\} \end{cases}$$

MDO ML 21

Continuation strategy for MNA approach and stress allowable update

- · Try to achieve improved local optima
- Sequentially increasing the problem non-convexity evolving hyper parameters:
 - p_b is initially set to 2 increased of 1 every 300 iterations or after reaching convergence stopped at 3
 - E is initially set to 6-12 elements is decreased of 1-2 elements every 300 iterations or after reaching convergence stopped at 3 elements
 - Limit stress for stress constraints is updated every 20 iteration to account of KS function maximum approximation

$$\begin{cases} \min \left\{ |\Omega_{el}| \right\}^T \left\{ x \right\} \\ s.t. \\ \left\{ l_b \right\} \le \left\{ x \right\} \le \left\{ u_b \right\} \\ G_{KS}^l \le 0 \end{cases}$$

$$(\sigma_{lim})_{(n+1)k} = \frac{1}{C}\sigma_{alw} = \frac{(\sigma_{lim})_{nk}}{(\sigma_{max})_{nk}}\sigma_{alw}$$

$$|\sigma_{alw} - \sigma_{max}| < tol_{\sigma}$$

 $\sigma_{max} = C\sigma_{lim}$

IDO ML 21 22

L-shape stress based TO

23

Bionic SIMP vs EXP TRUSS vs EXP WINGBOX

RESULTS OF SIMONE CONIGLIO'S PHD at AIRBUS

under my supervision

Bionic Design (Engine)

MDO_ML_21

How to **ECO**design tomorrow's structures?

Prof. Joseph Morlier, Vilas Bhat* (MAE 2019), Edouard Duriez (X-SUPAERO 2018), Enrico Stragiotti (Polito 2020, Onera)

Simone Coniglio, Gabriele Capasso Airbus

#Disruptive aerostructures
#Reasoned HPC
#AI4E
#MDO including Ecodesign Materials &
Process

ONERA
THE FRENCH AFROSDACE LAB

How to **ECO**design tomorrow's structures?

#Structural materials used in a massive way → huge environmental impact

#The essential technologies for the transition, in particular green energy, will translate into considerable demand for metals that have become strategic.

#In anticipation of 2050, the total tonnage of concrete, steel, aluminum etc... necessary for the development of these energies will be 2 to 8 times the world production of 2010. !!!

Why Metallic 3D printing?

1DO ML 21 28

Why Compoistes 3D printing?

Regular and periodic

Natural (optimal?)

Random

Non-periodic and specific (optimal)

+ Automatic Fiber Placemen t

MDO ML 21

How to **ECO**design tomorrow's structures?

https://github.com/topggp/blog

GGP For ALM?

- S. Coniglio, J. Morlier, C. Gogu, An introduction to Generalized Geometry Projection, a unified framework for feature-based topology optimization methods, WCCM-ECCOMAS 2020
- G. Capasso, V. Bhat, S. Coniglio, J. Morlier, C. Gogu, Topology Optimization of Additive Layer Manufacturing products using Generalized Geometric Projection, WCCM-ECCOMAS 2020

ALM based GGP

ALM based GGP

A solution is determined by its manufacturing process: (in this case printing path)

- MNA Components are replaced by printed branches
- Design variables will be printed branch position and width per layer: x_{li} , w_{li}
- For each layer a projection is made to get the solid model modulus

ALM based GGP

Optimization formulation

$$\begin{cases} \min_{X} c = F^T \cdot U & \text{External forces work} \\ s.t. & \\ \sum_{i=1}^{N} \rho_i - v_f N \leq 0 & \text{Mass constraint} \\ \theta_l \leq \theta & \leq \pi - \theta_l & \text{Overhang angle constraint} \end{cases}$$

MDO ML 21

ALM based GGP: Very First Results

$$N_x = N_y = 52$$

 $v_f = 0.4$
5 printing components
18 printing intervals
 $5 \times 18 \times 2$ design variables

MDO ML 21

Current approaches

	Check on	Overhang angle	Bridge length	Optimal printing plane	Comment
SIMP [Leary et al. 2014]	Boundaries	Yes	No	No	Additional iterations
AM Filter (SIMP-based) [Langelaar 2015]	Densities	Yes	No	No	One constraint per element
Level-set [Allaire et al. 2017]	Boundaries	Yes	Yes	No	Implicit constraints
MMV [Guo et al. 2017]	Boundaries	Yes	No	No	
MMC [Xian et al. 2019]	Components angles	Yes	No	Yes	Difficult quality check

MDO_ML_21 38

ALM based GGP: Last Results

Problem Statement

$$\begin{cases} min & C(X, U_f) \\ S.t.: & V \leq V_0 \\ \theta_{ij} \leq \theta_{max} & \forall i = 1, ..., N \quad j = 1, ..., M \\ BL_{ij} \leq BL_{max} & \forall i = 1, ..., N \quad j = 1, ..., M \end{cases}$$

- > N layers per component
- > N+1 segments per component
- > M components
- \triangleright 2 features per segment (X_k, L_k)
- \triangleright 2 features per component (h_i, m_i)
- \triangleright 2 global features (h_0, θ_0)

2M(N+2)+2design variables

MBB Results: convergence

MBB Results: convergence

Click and Print?

Prof. Joseph Morlier, Enrico Stragiotti, Frederic Lachaud

#Our very First Results #Fiber Placement

Formulation of the optimization problem

minimize :
$$J = \frac{1}{2}q^T K(\theta(x, y))q$$

subject to :
$$\begin{cases} f = K(\theta(x, y))q \\ -\pi/2 \le \theta(x, y) \le \pi/2 \end{cases}$$

- The algorithm is implemented in MATLAB and it features Multistart and Parallel computation.
- Spatial filter used to achieve fiber continuity
- Hybrid formulation that use Tsai and Pagano Parameters.

https://github.com/mid2SUPAERO/FCFAO-with-manufacturing-constraints

G-Code and 3D printing

Computational fabrication @TUdelft

http://homepage.tudelft.nl/z0s1z/projects/2021-multiscale-review.html

MDO_ML_21 55

Prof...and lattice structures?

Lattice (or cellular architected) structures are:

- Cellular
- Reticulated

Lattice structures have interesting properties:

- Ultralight
- Fast assembly
- Easier to manufacture compared to traditional structures.

Interesting application in the aerospace field > NASA MADCAT project > Extremely light structures, good aeroelastic properties.

Cramer, N. B. et al. (2019

1.0m

O ML 21

Topology vs layout optimization

Conclusions

Proof of concept with Python/Matlab/Julia Optimisation code for 3D printed structures

This is not NEW ©
Supermarine
Southampton, 1925

Modern computational approach automates the process!

NextGen Aerostructures:

Structural mass optimization: CO2 optimization & Manufacturable solution using ALM & AFP

Revolution is. **Material discovery** through **ML&TopOpt**

VDO ML 21 58

1945 AD

Skyscrapers

MDO_ML_21 59

PRESENT DAY

AND TOMORROW?

Chris Spadaccini (IInI,USA) "By controlling the architecture of a microstructure, we can create materials with previously unobtainable properties in the bulk form."

MDO_ML_21

61

How to **ECO**design tomorrow's structures?

Prof. Joseph Morlier, Edouard Duriez, Miguel Charlotte, Catherine Azzaro-Pantel

https://github.com/mid2SUPAERO/EMTO

Multi-scale TO

Topology optimization Macro-scale for material design topology optimization Multi-scale topology optimization

Xia L, Breitkopf P (2015) Design of materials using topology optimization and energy-based homogenization approach in Matlab. Struct Multidisc Optim 52(6):1229-1241. https://doi.org/10.1007/s00158-015-1294-0

MDO ML 21

MTO challenges

- Adaptation to local stress
- Speed

Main MTO methods

Approach	Examples	Connectivity	Locally adapted	Speed	Manufacturability
De-homogenization	[1],[2]				
Parametrized lattice	[3]				
Connectors	[4]				
2	Relative density (1)	★ ★ Aspect ratio (c)		Base Cell 1 Prescribed Connectors	Base Cell NL Periodic Direction

• More: review [5], topwebinar: https://topwebinar.weblog.tudelft.nl/

[1] Pantz, Olivier, and K. Trabelsi. "A Post-Treatment of the Homogenization Method for Shape Optimization." SIAM J. Control and Optimization [2] Groen, Jeroen P., and Ole Sigmund. "Homogenization-Based Topology Optimization for High-Resolution Manufacturable Microstructures: "International Journal for Numerical Methods in Engineering [3] Wang, Chuang, et al. "Concurrent Design of Hierarchical Structures with Three-Dimensional Parameterized Lattice Microstructures for Additive Manufacturing." Structural and Multidisciplinary Optimization

[4] Zhou S, Li Q (2008) Design of graded two-phase microstructures for tailored elasticity gradients. Journal of Materials Science

[5] Wu, Jun, et al. "Topology Optimization of Multi-Scale Structures: A Review." Structural and Multidisciplinary Optimization

Scale-bridging variables

Density

Orientation

Cubicity

Micro-optimization objective function:

Rotated homogenized stiffness tensor

$$\boldsymbol{E}^{\alpha} = \boldsymbol{M}_{\alpha}^{T} * \mathbf{E} * \boldsymbol{M}_{\alpha}$$
$$= (E_{klmn}^{\alpha})_{k,l,m,n \in \{1,2\}}$$

Objective function

$$c = \left(1 - \frac{x_{cub}}{2}\right)E_{1111}^{\alpha} + \frac{x_{cub}}{2}E_{2222}^{\alpha}$$

$$\begin{array}{ll}
minimize & u^T K u \\
x_{dens}^i, x_a^i, x_b^i, \dots
\end{array} (2a)$$

subject to
$$Ku = f$$
 (2b)

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \rho_{i,j} \le n * m * vf$$
 (2c)

$$\epsilon < \rho_{i,j} < 1$$
 (2d)

Fig. 8: Scheme of the two databases illustrating the inputs and outputs.

Surrogate modeling with GPs

Validation on classical test cases

- Validation on small grid
- ⇒ Evaluate

full-scale design

MDO ML 2

Validation on classical test cases

- Comparison to top88 (0/1) and oriented-grid method on same grid
- Final compliances:

Case	EMTO	Top88 (0/1)	EMTO	Oriented grid*
L-shaped	90.7 (28*28)	93.6 (28*28)	94.3(14*14)	108.1 (14*14)
MBB	202.3 (60*20)	211.7 (60*20)	203.8(30*10)	316.9 (75*25)

*Kumar T, Suresh K (2020) A density-and-strain-based K-clustering approach to microstructuraltopology optimization. Structural and Multidisci-plinary Optimization 61(4):1399-1415, DOI 10.1007/s00158-019-02422-4

Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Structural and Mul-tidisciplinary Optimization 43(1):1-16, DOI 10.1007/s00158-010-0594-7

MDO ML 21

Aircraft rib design

SIMP: c=0.198

EMTO: c=0.172(homogenized) c=0.178-0.206(estimate)

DO_ML_21 70

Aircraft rib design

Multidisciplinary Optimization and Machine Learning for Engineering Design

19 July 2021 – 5 August 2021

https://mdoml2021.ftmd.itb.ac.id/

Jointly organized by

"The art of structure is where to put the holes." ~Robert Le Ricolais (1894-1977)

MDO ML 21 7:

ML and TOPOPT

Data sciences view of design

not compatible

with engineer approach

Neural reparameterization improves structural optimization

Figure 1: A multi-story building task. Figure (a) is a structure optimized in CNN weight space. Figures (b) and (c) are structures optimized in pixel space.

Remember

Optimal topology is defined for a certain mesh

Even more complex problem for multimaterial

- (a) 20x10 elements with C=88.8544
- (b) 40x20 elements C=69.0953 (
- c) 60x30 elements C=66.6591.
- (d) 80x40 elements C=65.0711
- (e) 100x50 elements C=65.1185
- (f) 120x60 elements C=64.9388.

Can we predict f using info from lower resolution, a/b...or e for example?

MDO_ML_21

Can we Predict HR Multimaterial Topopt from LR results?

Quasi a Yes...

https://github.com/Anirudh-Kanthamraju/Multi-Material-Topology-Optimisation

• Experiment 1 – Cantilever BC Input Img 40x20 Output Image 80x40 5000 Epochs

Popularization

https://www.linkedin.com/pulse/optimiz ation-mdo-connecting-people-josephmorlier/

Join us on #AI4E on linkedin

http://mdolab.engin.umich.edu

Optimization [MDO] for connecting people?

MDO ML 21

78

Multidisciplinary Optimization and Machine Learning for Engineering Design

19 July 2021 - 5 August 2021

https://mdoml2021.ftmd.itb.ac.id/

Jointly organized by

Thanks To All My Co-authors (Students, Researchers, Professors All Over The World)

And Thanks To **Pram**For The Invitation!

IDO_ML_21 79

Multidisciplinary Optimization and Machine Learning for Engineering Design

19 July 2021 - 5 August 2021

https://mdoml2021.ftmd.itb.ac.id/

Jointly organized by

More Questions ? Email me →

joseph.morlier@isae-supaero.fr

VDO_ML_21 80