

ADBIS 2020

Context-Free Path Querying by Kronecker Product

Egor Orachev, Ilya Epelbaum, Semyon Grigorev, Rustam Azimov

JetBrains Research, Programming Languages and Tools Lab Saint Petersburg University

August 26, 2020

Context-Free Path Querying

Navigation through a graph

- Are nodes A and B on the same level of hierarchy?
- Is there a path of form Upⁿ Downⁿ?
- Find all paths of form
 Upⁿ Downⁿ which start from the node A

- $\mathbb{G} = (\Sigma, N, P)$ context-free grammar in normal form
 - ▶ $A \rightarrow BC$, where $A, B, C \in N$
 - ▶ $A \rightarrow x$, where $A \in N, x \in \Sigma \cup \{\varepsilon\}$
 - $L(\mathbb{G}, A) = \{ \omega \mid A \Rightarrow^* \omega \}$

- $\mathbb{G} = (\Sigma, N, P)$ context-free grammar in normal form
 - ▶ $A \rightarrow BC$, where $A, B, C \in N$
 - ▶ $A \rightarrow x$, where $A \in N, x \in \Sigma \cup \{\varepsilon\}$
 - $L(\mathbb{G}, A) = \{ \omega \mid A \Rightarrow^* \omega \}$
- G = (V, E, L) directed graph
 - $v \stackrel{1}{\rightarrow} u \in E$
 - L ⊆ Σ

- $\mathbb{G} = (\Sigma, N, P)$ context-free grammar in normal form
 - ▶ $A \rightarrow BC$, where $A, B, C \in N$
 - ▶ $A \rightarrow x$, where $A \in N, x \in \Sigma \cup \{\varepsilon\}$
 - $L(\mathbb{G}, A) = \{ \omega \mid A \Rightarrow^* \omega \}$
- G = (V, E, L) directed graph
 - $\mathbf{v} \stackrel{l}{\rightarrow} u \in E$
 - L ⊆ Σ
- $\omega(\pi) = \omega(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \cdots \xrightarrow{l_{n-2}} v_{n-1} \xrightarrow{l_{n-1}} v_n) = l_0 l_1 \cdots l_{n-1}$

- $\mathbb{G} = (\Sigma, N, P)$ context-free grammar in normal form
 - ▶ $A \rightarrow BC$, where $A, B, C \in N$
 - ▶ $A \rightarrow x$, where $A \in N, x \in \Sigma \cup \{\varepsilon\}$
 - $L(\mathbb{G}, A) = \{\omega \mid A \Rightarrow^* \omega\}$
- G = (V, E, L) directed graph
 - $v \stackrel{l}{\rightarrow} u \in E$
 - $L \subset \Sigma$
- $\omega(\pi) = \omega(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \cdots \xrightarrow{l_{n-2}} v_{n-1} \xrightarrow{l_{n-1}} v_n) = l_0 l_1 \cdots l_{n-1}$
- $R_A = \{(n, m) \mid \exists n\pi m, \text{ such that } \omega(\pi) \in L(\mathbb{G}, A)\}$

CFPQ: Original Matrix-Based Algorithm

Algorithm Context-free path querying algorithm

- 1: function EVALCFPQ($D = (V, E, L), G = (\Sigma, N, P)$)
- 2: $n \leftarrow |V|$
- 3: $T \leftarrow \{T^{A_i} \mid A_i \in \mathbb{N}, T^{A_i} \text{ is a matrix } n \times n, T^{A_i}_{k,l} \leftarrow \text{false}\}$
- 4: for all $(i, x, j) \in E$, $A_k \mid A_k \to x \in P$ do $T_{i,j}^{A_k} \leftarrow \text{true}$
- 5: for all $A_k \mid A_k \rightarrow \varepsilon \in P$ do
- 6: for all $i \in \{0, \dots, n-1\}$ do $T_{i,i}^{A_k} \leftarrow \text{true}$
- 7: while any matrix in T is changing do
- 8: for $A_i \rightarrow A_j A_k \in P$ do $T^{A_i} \leftarrow T^{A_i} + (T^{A_j} \times T^{A_k})$
- 9: **return** *T*

Context-Free Path Querying: Grammar Transformation

- ullet $\mathbb{G}=(\Sigma, N, P)$ context-free grammar in general form
 - ▶ $A \rightarrow \alpha$, where $A \in N, \alpha \in (N \cup \Sigma \cup \{\varepsilon\})^*$

Context-Free Path Querying: Grammar Transformation

- $\mathbb{G} = (\Sigma, N, P)$ context-free grammar in general form • $A \to \alpha$, where $A \in N, \alpha \in (N \cup \Sigma \cup \{\varepsilon\})^*$
- Every context-free grammar can be transformed to binary normal form

Context-Free Path Querying: Grammar Transformation

- $\mathbb{G} = (\Sigma, N, P)$ context-free grammar in general form • $A \to \alpha$, where $A \in N, \alpha \in (N \cup \Sigma \cup \{\varepsilon\})^*$
- Every context-free grammar can be transformed to binary normal form
- The transformation takes time and can lead to a significant grammar size increase

Research Questions

- Can we create the matrix-based CFPQ algorithm that does not require grammar transformation?
- What matrix operations should be used?
- Does using matrix optimizations still significantly increases performance?

Recursive State Machines (RSM)

- RSM behaves as a set of finite state machines (FSM)
- Each FSM (box) works almost the same as a classical FSM, but it also handles additional recursive calls and employs an implicit call stack to call one component from another and then return execution flow back
- Any CFG can be easily encoded by an RSM with one box per nonterminal

Figure: The RSM for grammar with rules $S o aSb \mid ab$

Kronecker Product

- Kronecker product $A \otimes B$ for matrix A of size $m \times n$ and matrix B of size $p \times q$
 - Multiply each element of A and the matrix B
 - As a result we have $pm \times qn$ block matrix
- We need to intersect the FSMs from RSM generated by the context-free grammar and FSM generated by the graph
- Kronecker product can be used for constructing such intersections

Kronecker Product Based CFPQ Algorithm

Algorithm Kronecker product based CFPQ

```
1: function ContextFreePathQuerying(G, \mathcal{G})
 2:
         R \leftarrow \text{Recursive automata for } G
 3:
         M_1, M_2 \leftarrow \text{Adjacency matrices for } R \text{ and } \mathcal{G}
 4:
         for s ∈ 0..dim(M_1) - 1 do
 5:
             for i \in 0..dim(M_2) - 1 do
 6:
                  M_2[i,i] \leftarrow M_2[i,i] \cup getNonterminals(R,s,s)
 7:
         while Matrix M_2 is changing do
 8:
             M_3 \leftarrow M_1 \otimes M_2
                                                                       9:
             C_3 \leftarrow transitiveClosure(M_3)
10:
             n \leftarrow \dim(M_3)
                                                                            \triangleright Matrix M_3 size = n \times n
11:
             for i \in 0..n - 1 do
12:
                  for j \in 0..n - 1 do
                      if C_3[i,j] then
13:
14:
                           s, f \leftarrow getStates(C_3, i, j)
                           if getNonterminals(R, s, f) \neq \emptyset then
15:
16:
                               x, y \leftarrow getCoordinates(C_3, i, i)
                               M_2[x,y] \leftarrow M_2[x,y] \cup getNonterminals(R,s,f)
17:
18.
         return Mo
```

Kronecker Product Based CFPQ Algorithm: Technical Details

- We can use the sparse and block nature of the obtained matrices to apply wide class of optimizations
- We can operate over Boolean matrices
- We still can use existing high-performance math libraries for intersection if they provide a satisfying operation of element-wise multiplication

Implementations

 Kron — implementation of the proposed algorithm using SuiteSparse C implementation of GraphBLAS API, which provides a set of sparse matrix operations

Implementations

- Kron implementation of the proposed algorithm using SuiteSparse
 C implementation of GraphBLAS API, which provides a set of sparse matrix operations
- We compare our implementation with Orig the best CPU implementations of the original matrix-based algorithm using M4RI library with sparse matrix representation

Evaluation

OS: Ubuntu 18.04

CPU: Intel(R) Core(TM) i7-4790 CPU 3.60GHz

RAM: DDR4 32 Gb

Evaluation results^{1 2}

	Graph	#V	#E	Kron	Orig		Graph	#V	#E	Kron	Orig
RDF	generations	129	351	0.04	0.03	RDF	core	1323	8684	0.28	0.12
	travel	131	397	0.05	0.05		pways	6238	37196	4.88	0.18
	skos	144	323	0.02	0.04	Worst case	WC_1	64	65	0.03	0.04
	unv-bnch	179	413	0.05	0.04		WC_2	128	129	0.16	0.23
	foaf	256	815	0.07	0.02		WC_3	256	257	0.96	1.99
	atm-prim	291	685	0.24	0.02		WC_4	512	513	7.14	23.21
	ppl_pets	337	834	0.18	0.03		WC_5	1024	1025	121.99	528.52
	biomed	341	711	0.24	0.05	Full	F_1	100	100	0.17	0.02
	pizza	671	2604	1.14	0.08		F_2	200	200	1.04	0.03
	wine	733	2450	1.71	0.06		F_3	500	500	18.86	0.03
	funding	778	1480	0.43	0.07		F_4	1000	1000	554.22	0.07

 $^{^1\}mbox{\sc Queries}$ are based on the context-free grammars for nested parentheses

²Time is measured in seconds

 We show that in some cases our algorithm outperforms the original matrix-based algorithm

- We show that in some cases our algorithm outperforms the original matrix-based algorithm
- We still can use existing high-performance libraries for matrix operations

- We show that in some cases our algorithm outperforms the original matrix-based algorithm
- We still can use existing high-performance libraries for matrix operations
- The idea of the proposed algorithm looks viable

- We show that in some cases our algorithm outperforms the original matrix-based algorithm
- We still can use existing high-performance libraries for matrix operations
- The idea of the proposed algorithm looks viable
- Dataset is published: both graphs and queries
 - ► Link: https://github.com/JetBrains-Research/CFPQ_Data

 Improve our implementation to make it applicable for real-world graphs analysis

- Improve our implementation to make it applicable for real-world graphs analysis
- Investigate such formal properties of the proposed algorithm as time and space complexity

- Improve our implementation to make it applicable for real-world graphs analysis
- Investigate such formal properties of the proposed algorithm as time and space complexity
- Analyze how the behavior depends on the query type and its form
 - Analyze regular path queries evaluation and context-free path queries in the form of extended context-free grammars (ECFG)

- Improve our implementation to make it applicable for real-world graphs analysis
- Investigate such formal properties of the proposed algorithm as time and space complexity
- Analyze how the behavior depends on the query type and its form
 - Analyze regular path queries evaluation and context-free path queries in the form of extended context-free grammars (ECFG)
- Compare our algorithm with the matrix-based one in cases when the size difference between Chomsky Normal Form and ECFG representation of the query is significant.

- Improve our implementation to make it applicable for real-world graphs analysis
- Investigate such formal properties of the proposed algorithm as time and space complexity
- Analyze how the behavior depends on the query type and its form
 - ► Analyze regular path queries evaluation and context-free path queries in the form of extended context-free grammars (ECFG)
- Compare our algorithm with the matrix-based one in cases when the size difference between Chomsky Normal Form and ECFG representation of the query is significant.
- Extend our algorithm to single-path and all-path query semantics

Contact Information

- Semyon Grigorev:
 - s.v.grigoriev@spbu.ru
 - Semen.Grigorev@jetbrains.com
- Rustam Azimov:
 - rustam.azimov19021995@gmail.com
 - Rustam.Azimov@jetbrains.com
- Egor Orachev: egor.orachev@gmail.com
- Ilya Epelbaum: iliyepelbaun@gmail.com
- Dataset: https://github.com/JetBrains-Research/CFPQ_Data

Thanks!