Name: Farza Sageer

Task 1: To predict the percentage of a student based on the number of study hours using supervised machine learning.

```
In [1]: #Loading the packages

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sn
```

```
In [2]: #Importing the dataset

data = pd.read_excel("Data.xlsx")
    data
```

Out[2]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30
5	1.5	20
6	9.2	88
7	5.5	60
8	8.3	81
9	2.7	25
10	7.7	85
11	5.9	62
12	4.5	41
13	3.3	42
14	1.1	17
15	8.9	95
16	2.5	30
17	1.9	24
18	6.1	67
19	7.4	69
20	2.7	30
21	4.8	54

	Hours Sc			S	
	22	3.8	35	5	
	23	6.9	76	6	
	24	7.8	86	6	
ſ					
In [3]:	: data.describe()				
Out[3]:					
			Hours	Scores	
	count	25.00	00000	25.000000	
	mean	5.0	12000	51.480000	
	std	2.52	25094	25.286887	

1.10000017.0000002.70000030.0000004.80000047.0000007.40000075.0000009.20000095.000000

Fig1: Scatter plot between number of hours studied and the percentage scored

```
In [4]: x = data['Hours']
y = data['Scores']
plt.xlabel("Hours studied")
plt.ylabel("Percentage score of student")
plt.title("Hours v/s score ")
plt.scatter(x, y, color='red')
```

Out[4]: <matplotlib.collections.PathCollection at 0x1b309346760>

Interpretation: There is a positive correlation between the hours studied

by a student and the percentage scored.

Hours

Fig2: Box plot for the number of hours studied

```
In [5]: data.Hours.plot.box(color="red", figsize=(8,8))
        plt.title("Number of hours")
Out[5]: Text(0.5, 1.0, 'Number of hours')
                                  Number of hours
```

Interpretation: The plot shows that the median hours of study by a student is almost 5 hours per day. It also shows that there is no outliers and that it is not normally distributed since median is not equal to mean.

Fig3: Box plot for scores

```
In [6]: data.Scores.plot.box(color="red", figsize=(8,8))
   plt.title("Number of hours")
Out[6]: Text(0.5, 1.0, 'Number of hours')
```


Scores

Interpretation: The plot shows that the percentage of score by a student is around 48%. It also shows that there is no outliers and that it is not normally distributed since median is not equal to mean.

Fig4: Correlation heat map of number of hours studied and the percentage scored

Interpretation: The correlation coefficient obtained is 0.98 which implies that the hours of study and the percentage scored by a student is highly positively correlated.

Data preparation:

The next step is to divide the data into attributes (inputs) and labels (outputs)

```
In [8]: X=data.iloc[:, :-1].values
y=data.iloc[:, 1].values
```

Now we have our attributes and labels, the next step is to split the data into training and test sets using train_test_split() method.

Splitting data into training and testing sets

```
In [9]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

In [10]: print("Dimension of training set of scores =", X_train.ndim)
    print("Dimension of training set of hours =", y_train.ndim)

Dimension of training set of scores = 2
    Dimension of training set of hours = 1
```

Training the algorithm

```
In [11]: from sklearn.linear_model import LinearRegression
    model=LinearRegression()
    model.fit(X_train, y_train)
    print("The training is completed")
```

The training is completed

Making prediction on training set and checking RMSE

```
In [12]: from sklearn.metrics import r2_score
y_pred=model.predict(X_test)
r2_score(y_test, y_pred)
```

Out[12]: 0.9454906892105356

```
In [13]: from sklearn.metrics import mean_squared_error
    mean_squared_error(y_test, y_pred, squared=False)

Out[13]: 4.6474476121003665
```

Interpretation: The model has an accuracy score of 0.9454. i.e, it is 95 % good fit and its RMSE is 4.64%

Fig5: Plotting the regression line and the test data

```
In [14]: line=model.coef_*X + model.intercept_
plt.scatter(X, y, color="red")
plt.plot(X, line, color="green")
plt.title("Plotting for the test data and regression line")
Out[14]: Text(0.5, 1.0, 'Plotting for the test data and regression line')
```


Prediction:

_ _ _ _ _

```
In [15]: #To predict the of a student if he/ she studies 9.25 hours per day
    hours=9.25
    model.predict([[hours]])
Out[15]: array([93.69173249])
```

Interpretation: A student scores 93.69% if he/ she studies for 9.25 hours per day.