Grups

Problemes

Exercici 1. Determineu si els conjunts següents amb les operacions que s'indiquen són o no grups.

- (a) El conjunt dels nombres naturals N amb la suma.
- (b) El conjunt dels nombres racionals Q amb la suma; el mateix conjunt, però amb el producte.
- (c) El conjunt $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ amb el producte en \mathbb{C} .
- (d) El conjunt dels polinomis $P_n = \{p(x) \in \mathbb{R}[x] : \operatorname{gr}(p(x)) \leq n\}$ amb la suma habitual; el mateix conjunt, però amb el producte habitual.
- (e) Sigui E un espai vectorial sobre un cos K; el conjunt dels endomorfismes $\operatorname{End}(E) = \{f : E \to E \text{ aplicacions lineals} \}$ amb la composició.
- (f) Sigui E un espai vectorial sobre un cos K; el conjunt dels endomorfismes de E que tenen invers, que denotarem per Aut(E), amb la composició.

Exercici 2 (*). Sigui G un conjunt dotat d'una operació binària $(x,y) \mapsto xy$ associativa que compleix:

- 1) Existeix $e \in G$ que compleix ex = x, per a tot $x \in G$.
- 2) Per a tot $x \in G$, existeix $x' \in G$ tal que x'x = e.

Proveu que G amb aquesta operació és grup, el seu element neutre és e i el simètric de x és x'.

Exercici 3 (*). Siguin G un grup i $H \subseteq G$ un subconjunt no buit. Demostreu que els tres enunciats següents són equivalents:

- (a) H satisfà les propietats:
 - (1) Per a tot $x, y \in H$, es compleix $xy \in H$,
 - (2) H és un grup amb l'operació de G.
- (b) H satisfà les propietats:
 - $(1) 1 \in H$,
 - (2) Per a tot $x \in H$, es compleix $x^{-1} \in H$,
 - (3) Per a tot $x, y \in H$, es compleix $xy \in H$,
- (c) Per a tot $x, y \in H$, es compleix $xy^{-1} \in H$.

Exercici 4. Considerem

```
\operatorname{GL}(n,\mathbb{Z}) := \{M \in \operatorname{M}_{n \times n}(\mathbb{Z}) : \det(M) \in \mathbb{Z}^*\}, \text{ grup lineal,}

\operatorname{SL}(n,\mathbb{Z}) := \{M \in \operatorname{GL}(n,\mathbb{Z}) : \det(M) = 1\}, \text{ grup especial lineal,}

\operatorname{O}(n,\mathbb{Z}) := \{M \in \operatorname{GL}(n,\mathbb{Z}) : M^t M = Id\}, \text{ grup ortogonal,}

\operatorname{SO}(n,\mathbb{Z}) := \{M \in \operatorname{O}(n,\mathbb{Z}) : \det(M) = 1\}, \text{ grup especial ortogonal.}
```

- (a) Demostreu que $GL(n, \mathbb{Z})$ és un grup amb la multiplicació de matrius.
- (b) Demostreu que $SL(n, \mathbb{Z})$ i $O(n, \mathbb{Z})$ són subgrups del grup $GL(n, \mathbb{Z})$.

(c) Demostreu que $SO(n, \mathbb{Z})$ és un subgrup de $O(n, \mathbb{Z})$.

Exercici 5 (*). Demostreu que, donat un cos K, el grup SO(2, K) és abelià. Demostreu que, en canvi, el grup SO(3, K) no ho és.

Exercici 6. Demostreu que, per a $n \geq 2$, el subconjunt de $GL(n, \mathbb{Z})$ format per les matrius simètriques no és un subgrup de $GL(n, \mathbb{Z})$.

Exercici 7. Considerem el cos $K := \mathbb{Z}/2\mathbb{Z}$ i el grup G := GL(2, K). Escriviu els elements de G i la taula del producte de G. És G abelià?

Exercici 8. Demostreu que si tots els elements d'un grup G, llevat del neutre, són d'ordre 2, aleshores G és un grup abelià.

Exercici 9 (*). Sigui G un grup cíclic d'ordre n, generat per un element a. Per a tot nombre enter k, determineu l'ordre del subgrup generat per a^k i demostreu que a^k és un generador de G si, i només si, mcd(k, n) = 1.

Exercici 10. Sigui G un grup cíclic d'ordre n.

- (a) Demostreu que tot subgrup de G és cíclic.
- (b) Demostreu que, per a cada divisor d de n, existeix un únic subgrup de G d'ordre d.

Exercici 11. Sigui $\mu_n = \{z \in \mathbb{C} : z^n = 1\}$ el conjunt de les arrels *n*-èsimes de la unitat complexes. Demostreu que μ_n amb el producte de \mathbb{C} és un grup cíclic.

Exercici 12. Siguin p, q nombres primers differents i r, $s \ge 1$ nombres enters.

- (a) Determineu quants elements del grup $\mathbb{Z}/p\mathbb{Z}$ el generen.
- (b) Determine quants elements del grup $\mathbb{Z}/p^r\mathbb{Z}$ el generen.
- (c) Determineu quants elements del grup $\mathbb{Z}/p^rq^s\mathbb{Z}$ el generen.

Exercici 13. Siguin $\sigma, \tau \in S_9$ les permutacions següents:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 9 & 1 & 8 & 7 & 6 & 3 & 4 & 5 \end{pmatrix}, \qquad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 1 & 3 & 5 & 8 & 2 & 9 & 6 & 4 \end{pmatrix}.$$

- (a) Calculeu $\sigma \tau$ i $\tau \sigma$.
- (b) Descomponeu σ i τ com a producte de cicles disjunts, i també com a producte de transposicions; calculeu les seves signatures.
- (c) Calculeu σ^{2012} .

Exercici 14. Determineu la signatura de totes les permutacions de S_3 . Determineu tots els subgrups de S_3 .

Exercici 15. Demostreu que, per a $n \geq 2$, S_n té el mateix nombre de permutacions parelles que de permutacions senars.

Exercici 16 (*). (a) Demostreu que, donada una permutació $\sigma \in S_n$, llavors

$$\sigma \circ (a_1, \cdots, a_r) \circ \sigma^{-1} = (\sigma(a_1), \cdots, \sigma(a_r)).$$

- (b) Demostreu que, donats dos cicles del mateix ordre σ_1 , σ_2 , existeix una permutació $\sigma \in S_n$ tal que $\sigma \circ \sigma_1 \circ \sigma^{-1} = \sigma_2$.
- (c) Siguin $\sigma_1, \ldots, \sigma_k \in S_n$ cicles disjunts dos a dos, i també $\tau_1, \ldots, \tau_k \in S_n$, cicles disjunts dos a dos. Posem $\sigma := \sigma_1 \circ \cdots \circ \sigma_k$ i $\tau := \tau_1 \circ \cdots \circ \tau_k$. Demostreu que si, per a $1 \leq i \leq k$, la longitud del cicle σ_i coincideix amb la del cicle τ_i , aleshores existeix una permutació $\rho \in S_n$ tal que $\rho \circ \sigma \circ \rho^{-1} = \tau$.

Exercici 17. Demostreu que S_n admet els sistemes de generadors següents:

- (a) $(1,2), (1,3), \dots, (1,n)$.
- (b) $(1,2), (2,3), \dots, (n-1,n).$
- (c) $(1, 2, \dots, n), (1, 2).$

Exercici 18 (*). Sigui A_n el conjunt de permutacions parelles de S_n . Demostreu que A_n és un subgrup d'índex 2 de S_n i que A_n és generat pels cicles d'ordre 3. A_n rep el nom de subgrup alternat de S_n .

Exercici 19 (*). El grup diedral D_{2n} és el grup de desplaçaments del pla que deixen invariant un polígon regular de n costats. És a dir, $D_{2n} = \langle \rho, \sigma \rangle$, on ρ és una rotació d'angle $2\pi/n$ centrada en el centre de simetria del polígon, i σ és una simetria axial respecte d'un dels radis del polígon.

- (a) Proveu que $\rho^n = \sigma^2 = Id$ i $\rho\sigma = \sigma\rho^{-1}$.
- (b) Escriviu tots els elements de D_{2n} . Quants n'hi ha?
- (c) Definiu un morfisme injectiu de D_{2n} en el grup simètric S_n .
- (d) Demostreu que els grups $D_{2\cdot 4}$ i $\mathbb{Z}/8\mathbb{Z}$ no són isomorfs.

Exercici 20. (El grup dels quaternions) Sigui H_8 el subgrup de $GL(2,\mathbb{C})$ generat per les matrius

$$\mathrm{Id} := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \, \mathbf{i} := \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \, \mathbf{j} := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \, \mathbf{k} := \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

- (a) Demostreu que H_8 és un grup tal que Id és l'element neutre, $\mathbf{i}^4 = \mathrm{Id}$, $\mathbf{i}^2 = \mathbf{j}^2$ i $\mathbf{ij} = \mathbf{ji}^3$.
- (b) Calculeu l'ordre de cadascun dels elements de H_8 .
- (c) Demostreu que, si H és un grup qualsevol generat per dos elements a, b tals que $a^4 = 1$, $a^2 = b^2$ i $ab = ba^3$, llavors H és isomorf a H_8 .

Exercici 21 (*). Demostreu que tot subgrup d'índex 2 d'un grup G és normal.

Exercici 22. Demostreu que, si G és un grup, el seu centre $Z(G) := \{g \in G : gh = hg, \text{ per a tot } h \in G\}$ és un subgrup normal de G.

Exercici 23. Sigui K un cos. Demostreu que el centre de $\mathrm{GL}(n,K)$ és format per les matrius de la forma $M=\lambda\mathrm{Id}$, per a algun $\lambda\in K^*$.

Exercici 24. Demostreu que, si $n \geq 3$, el centre de S_n només conté la identitat.

Exercici 25. Siguin $f: G_1 \to G_2$ un morfisme de grups i $H_1 \subseteq G_1$, $H_2 \subseteq G_2$ subgrups.

(a) Demostreu que $f(H_1)$ és subgrup de G_2 i $f^{-1}(H_2)$ ho és de G_1 .

- (b) Demostreu que si H_2 és normal en G_2 , llavors $f^{-1}(H_2)$ és normal en G_1 .
- (c) Demostreu que si H_1 és normal en G_1 , llavors $f(H_1)$ és un subgrup normal de la imatge $f(G_1)$; i que no és necessàriament normal en G_2 .

Exercici 26 (*). Teoremes d'isomorfia de grups.

(a) Siguin G un grup, H un subgrup normal i F un subgrup qualsevol. Proveu que HF és un subgrup de G, que $F \cap H$ és un subgrup normal de F, que H és un subgrup normal de HF i que tenim un isomorfisme de grups

$$HF/H \simeq F/F \cap H$$
.

- (b) Siguin $\varphi: G \to G'$ un morfisme exhaustiu de grups, H' un subgrup normal de G' i $H = \varphi^{-1}(H')$. Proveu que φ indueix un isomorfisme entre G/H i G'/H'.
- (c) Siguin G un grup i $F \subset H$ dos subgrups normals de G. Demostreu que H/F és un subgrup normal de G/F i que tenim un isomorfisme de grups

$$(G/F)/(H/F) \simeq G/H$$
.

Exercici 27 (*). (Examen, gener 2011) Sigui $GL(2,\mathbb{C})$ el grup de matrius 2×2 , invertibles, i de coeficients complexos. Considerem $T \subset GL(2,\mathbb{C})$ el subgrup de matrius diagonals i $D = \langle T, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \rangle \subset GL(2,\mathbb{C})$ el subgrup generat per les matrius diagonals i $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

- (a) Demostreu que T és un subgrup normal de D.
- (b) Descriviu un isomorfisme entre D/T i $\mathbb{Z}/2\mathbb{Z}$.
- (c) Estudieu si D és normal en $GL(2,\mathbb{C})$.

Exercici 28. Considerem el grup diedral D_{2n} .

- (a) Expliciteu tots els subgrups de $D_{2\cdot 4}$ i digueu quins són normals.
- (b) Demostreu que D_{2n} té un subgrup normal d'ordre n, que és cíclic.
- (c) Demostreu $D_{2\cdot 3} \simeq S_3$.

Exercici 29. Calculeu tots els subgrups del grup dels quaternions H_8 i digueu quins són normals.

Exercici 30 (*). (a) Demostreu que A_4 és l'únic subgrup d'índex 2 de S_4 . És cert que A_n és l'únic subgrup d'índex 2 de S_n , per a un n qualsevol?

(b) Demostreu que A_4 no té subgrups d'index 2. En té A_n quan $n \geq 5$?

Exercici 31. Determineu, llevat d'isomorfisme, tots els grups d'ordre menor o igual que 8.

Exercici 32. Sigui G un grup i considerem l'aplicació $f: G \to G \times G$ definida per f(x) := (x, x), per a $x \in G$. Demostreu que f és un morfisme injectiu i que f(G) és un subgrup normal de $G \times G$ si, i només si, G és abelià.

Exercici 33. Determineu tots els subgrups de $\mathbb{Z}/4\mathbb{Z}$, els de $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ i els de $\mathbb{Z}/6\mathbb{Z}$.

Exercici 34. Sigui G un grup cíclic finit. Calculeu Aut(G), el grup dels automorfismes de G.

Exercici 35 (*). Donat un grup G, denotem per $\operatorname{Aut}(G)$ el grup dels automorfismes de G. Denotem per $\operatorname{Int}(G)$ el conjunt dels automorfismes interns de G, és a dir, dels automorfismes φ_g definits per $\varphi_g(h) := ghg^{-1}$, per a $h \in G$ i $g \in G$ donat.

- (a) Demostreu que Int(G) és un subgrup de Aut(G).
- (b) Siguin $\sigma \in \text{Aut}(G)$ i $\varphi_g \in \text{Int}(G)$. Demostreu que $\sigma \varphi_g \sigma^{-1} = \varphi_{\sigma(g)}$.
- (c) Demostreu que Int(G) és un subgrup normal de Aut(G).

Exercici 36. Demostreu que, si G és un grup, llavors

$$G/Z(G) \simeq \operatorname{Int}(G)$$
.

En particular, si $Z(G) = \{1\}$, llavors $\operatorname{Int}(G) \simeq G$. Quin és el grup $\operatorname{Int}(G)$ quan G és abelià?

Exercici 37. (a) Calculeu les classes de conjugació del grup S_3 .

(b) Calculeu les classes de conjugació del grup S_4 .

Exercici 38. Demostreu que les matrius

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

són elements conjugats en el grup $GL(2,\mathbb{R})$, però que no ho són en $SL(2,\mathbb{R})$.

Exercici 39. Calculeu totes les classes de conjugació del grup diedral $D_{2\cdot 4}$.

Exercici 40. Siguin n un nombre enter i d un divisor propi de n. Demostreu que el subgrup (ρ^d) de D_{2n} és un subgrup normal i que el grup quocient és isomorf a D_{2d} .

Exercici 41 (*). (a) Escriviu la definició de grup (finit) resoluble.

- (b) Demostreu que A_2 , A_3 i A_4 són resolubles.
- (c) Demostreu que, per a $n \geq 5$, A_n no és resoluble.

Exercici 42 (*). (a) Escriviu la definició de grup finit simple.

(b) Demostreu la simplicitat de A_n per a $n \geq 5$.

Exercici 43. En aquest exercici calcularem els subgrups de Sylow del grup simètric S_4 .

- (a) Calculeu els 3-subgrups de Sylow de S_4 . De quin ordre són?
- (b) Descriviu els elements de S_4 que són d'ordre una potència de 2 i recordeu que aquests elements estan continguts en un 2-subgrup de Sylow. Deduïu que un 2-subgrup de Sylow conté un subgrup cíclic d'ordre 4. Expliciteu els 2-subgrups de Sylow de S_4 .

Exercici 44. Sigui G un grup finit. Demostreu que si |G| = 96, aleshores G no és simple.

Exercici 45. Proveu que tot grup d'ordre 15 és cíclic

Exercici 46 (*). Proveu que tot grup d'ordre 255 és cíclic.

Exercici 47 (*). Sigui G un grup finit d'ordre 2p, on p és un nombre primer més gran que 2. Demostreu que o bé G és cíclic o bé G és isomorf al grup diedral D_{2p} .

Exercici 48 (*). Sigui G un grup d'ordre pq amb p, q nombres primers. Demostreu que G és resoluble.

Exercici 49. Sigui G un grup d'ordre pqr, amb p, q, r nombres primers. Demostreu que G és resoluble.

Exercici 50. (Examen, gener 2011) Siguin p, q dos nombres primers, amb 0 .

- (a) Demostreu que tot grup d'ordre p^2 és resoluble.
- (b) Sigui G un grup d'ordre p^2q . Demostreu que G té un únic subgrup normal d'ordre p^2 o bé un únic subgrup normal d'ordre q.
- (c) Demostreu que G és resoluble.

Exercici 51 (*). Determineu els factors invariants i els divisors elementals dels grups abelians definits pels generadors i les relacions següents.

- a) Generadors a, b, c, d; relacions $\begin{cases} 2a + 3b = 0 \\ 4a = 0 \\ 5c + 11d = 0 \end{cases}$
- b) Generadors a, b, c, d, e; relacions $\begin{cases} a 7b + 14c 21d = 0 \\ 5a 7b 2c + 10d 15e = 0 \\ 3a 3b 2c + 6d 9e = 0 \\ a b + 2d 3e = 0 \end{cases}$

Exercici 52. Determineu els factors invariants i els divisors elementals dels grups abelians definits pels generadors i les relacions següents.

- a) Generadors a, b; relacions $\begin{cases} 2a + 4b = 0 \\ 3b = 0 \end{cases}$
- b) Generadors a, b, c, d, e; relacions $\begin{cases} a 7b 21c + 14d = 0 \\ 5a 7b 2c + 10d 15e = 0 \\ 3a 3b 2c + 6d 9e = 0 \\ a b + 2d 3e = 0 \end{cases}$

Exercici 53. Sigui G el grup abelià $\langle a, b, c | 2a = 5b, 2b = 5c, 2c = 5a \rangle$. Proveu que G és finit i trobeu el seu ordre. Escriviu els divisors elementals i els factors invariants dels grups abelians de mateix ordre que G i no isomorfs a G.

Exercici 54. Siguin G_1 i G_2 els grups abelians donats per generadors a, b, c i relacions

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 6 & 8 \\ 0 & 3 & 6 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad i \quad \begin{pmatrix} 1 & 0 & -3 \\ 3 & 12 & 3 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

- (a) Determineu els factors invariants i els divisors elementals de G_1 i de G_2 .
- (b) Determineu un morfisme injectiu $G_1 \longrightarrow G_2$.

Exercici 55. (a) Trobeu els divisors elementals i els factors invariants de tots els grups abelians d'ordre 200.

(b) Classifiqueu el grup abelià $\mathbb{Z}/(2) \oplus \mathbb{Z}/(5) \oplus \mathbb{Z}/(20)$.

Exercici 56. Determineu tots els grups abelians G d'ordre 24 que no contenen cap element d'ordre més gran que 12.

Problemes

Exercici 57. Demostreu que un grup abelià finit és cíclic si, i només si, tots els seus subgrups de Sylow ho són.

Exercici 58. Demostreu que si G és un grup abelià finit no cíclic, aleshores existeix un nombre primer p tal que G conté un subgrup isomorf a $C_p \times C_p$.

Exercici 59. Demostreu que si G és un grup abelià finit no cíclic, aleshores existeix un nombre primer p tal que G admet un quocient isomorf a $C_p \times C_p$.

Exercici 60. Demostreu que un sistema d'equacions lineals MX = b, on $M \in M_{m \times n}(\mathbb{Z})$, $b = (b_1, \ldots, b_m)^t \in M_{m \times 1}(\mathbb{Z})$, té solució $X = (x_1, \ldots, x_n)^t \in M_{n \times 1}(\mathbb{Z})$ si, i només si, per a tot r, el màxim comú divisor dels menors d'ordre r de la matriu M i el màxim comú divisor dels menors d'ordre r de la matriu ampliada (M:b) coincideixen.

Exercici 61. (a) Demostreu que el grup multiplicatiu dels nombres racionals positius no és finitament generat.

(b) Sabeu donar-ne un conjunt de generadors?

Exercici 62. (a) Demostreu que el grup multiplicatiu dels nombres racionals no nuls no és finitament generat.

(b) Doneu-ne un conjunt de generadors.

Exercici 63. Classifiqueu els grups abelians donats pels grups multiplicatius $(\mathbb{Z}/p\mathbb{Z})^*$, on p és un nombre primer ≤ 20 .

Exercici 64. Classifiqueu els grups abelians donats pels grups multiplicatius $(\mathbb{Z}/n\mathbb{Z})^*$, per a $2 \le n \le 15$.

Exercici 65. Doneu l'estructura dels grup abelians donats pels grups multiplicatius $(\mathbb{Z}/n\mathbb{Z})^*$. (*Indicació:* reviseu el concepte d'arrel primitiva, explicat en l'assignatura d'Aritmètica.)