实验四 射极跟随电路

GEORGEDONG32

一、实验目的

- 1. 掌握射极跟随电路的特性及测量方法。
- 2. 进一步学习放大电路各项参数测量方法。

二、实验仪器

- 1. 示波器
- 2. 信号发生器
- 3. 数字万用表

三、预习要求

- 1. 参照教材有关章节内容,熟悉射极跟随电路原理及特点,
- 2. 根据图 4.1 元器件参数,估算静态工作点。画交直流负载线。

图 4.1 射极跟随电路

表式(45) Uc = Vcc = 12V UE = 12- IBa· (Rb+Rp) UG= UB- VBE UE = Blea· Re Uc = 12V Uc = 12V Uc = 12V Uc = 6.7V Uc = 6.7V Uc = 6.7V Uc = 6.7V Ug = 0.7V

四、实验内容与步骤

- 1. 按图 4.1 电路接线。
- 2. 直流工作点的调整。

将电源+12V 接上,调整 R_P 使 U_E =6V。在 B 点加 f=1kHz 正弦波信号,输出端用示波器监视,反复调整 R_P 及信号源输出幅度,使输出幅度在示波器屏幕上得到一个最大不失真波形,然后断开输入信号,用万用表测量晶体管各级对地的电位,即为该放大器静态工作点,将所测数据填入表 4.1。

表 4.

U _E (V)	U _B (V)	U _C (V)	$I_E = \frac{U_E}{R_e}$	
6.5	7. 12	11. 955	3.42mA	

3. 测量电压放大倍数 Au 和输出电阻 R。

在 B 点加入 f=1kHz 幅度 3V 正弦波信号,记录输出波形。接入负载 $R_L=1k$,记录此时 波形并与无负载时比较,分析原因。调整输入信号幅度(此时 t 偏置电位器 R_P 不能再 旋动) 使输出无失真,用示波器观察,在带载输出最大不失真情况下测 U_i 、 U_o 和 U_L 值,将所测数据填入表 4.2中。

无负载

负载为 1K

接入负载后波形几乎没有变化,原因是射极跟随器的输出电阻小,接入负载后对原电路影响很小。

表 4.2

$R_{\rm L}$	U _i (V)	U _o (V)	U _L (V)	$A_{u} = \frac{U_{o}}{U_{i}}$	Ro
1k	1.712	1. 704	1.66	0. 995	25. 82
2k2	2. 57	2. 556	2. 521	0.995	30. 12

100	0. 280	0. 278	0.233	0. 993	16, 18
100	0.200	0.2.0	0. 255	0.000	10.10

接入负载 R_L =2k2、100 Ω ,重复以上步骤,并讨论不同负载时对波形失真产生影响不同的原因。使用以上数据计算输出电阻 R_o

$$R_o = (\frac{U_o}{U_L} - 1)R_L$$

4. 测量放大电路输入电阻 R_i (采用换算法)

在 A 点加入 f=1KHz 的正弦波信号,用示波器观察输出波形,分别测 A、B 点对地电位 U_s 、 U_i 。

则
$$R_i = \frac{U_i}{U_s - U_i} \cdot R = \frac{R}{\frac{U_s}{U_i} - 1}$$

将测量数据填入表 4.3。

表 4.3

U _s (V)	$U_i(V)$	$R_i = \frac{R}{U_s/U_i - 1}$
1.787	1.556	22K

的跟随特性并测量输

5. 测射极跟随电路 出电压峰峰值 U_{oP-P}。

接入负载 R_L =2k2,在 B 点加入 f=1kHz 的正弦波信号,逐点增大输入信号幅 ss 度 U_i ,用示波器监视输出端,在波形不失真时,测对应的 U_L 值,计算出 A_u ,并用示波器测量输出电压的峰峰值 U_{oP-P} ,与电压表(读)测的对应输出电压有效值比较。将所测数据填入表 4. 4。

表 4.4

Ui	1. 783	2. 138	2. 494	2. 57
$ m U_L$	1. 761	2. 108	2. 454	2. 53
U_{oP-P}	4. 981	5. 962	6. 941	7. 156
U_{iP-P}	5	6	7	7. 2
A_{u}	0. 996	0.994	0.992	0.994

五、实验数据分析与总结

1. 实验原理电路和器件实测数据:

三极管: $V_{BE} = 0.62$ V, $\beta = 20.4$

射极跟随器: R_i =22k, R_o =24.04, A_u =0.995

2. 实验数据分析和规律总结:

实测得到射极跟随器的电压增益略小于 1, 且非常接近 1。同时输入电阻大, 输出电阻小, 且输出信号与输入信号同相。

3. 误差分析:

实测的 R_o 比计算值偏大且波动较大,而实测的 R_i 比计算值偏小。导致误差的原因可能为实验时操作的不规范,接地不良,还有电线的电阻较大。