Methodic and Practical Foundations of Computer Science 1 09-Quick Sort

Sayed Ahmad Sahim

Kandahar University Computer Science Faculty algprog17@gmail.com

October 29, 2017

Objectives

Quick Sort

Quick Sort

Question

Two classic sorting algorithms: mergesort and quicksort

- ► Full scientific understanding of their properties has enabled us to develop them into practical system sorts.
- ▶ Quicksort honored as one of top 10 algorithms of 20th century in science and engineering.

Quicksort overview

- 1. Shuffle the array.
- 2. Partition the array so that, for some j
 - ► Entry a[j] is in place.
 - ▶ No larger entry to the left of j .
 - ▶ No smaller entry to the right of j .
- 3. Sort each subarray recursively.

Quick Sort vs other algorithms

- Quicksort works in place.
- its worst-case running time is as bad as selection sort's and insertion sorts: $O(n^2)$

Sorting Files That are Almost in Order

- ► Selection sort?
 - ▶ NO, always takes quadratic time
- ▶ Bubble sort?
 - ▶ NO. bad for some definitions of almost in order
 - ► Ex: B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
- ► Insertion sort?
 - YES, takes linear time for most definitions of almost in order
- Mergesort or custom method?
 - Probably not: insertion sort simpler and faster

Quick Sort

Sort an array A[p...r]

Divide

- Partition the array A into 2 sub arrays A[p..q] and A[q+1..r], such that each element of A[p..q] is smaller than or equal to each element in A[q+1..r]
- Need to find index q to partition the array

Quick Sort

Conquer

 Recursively sort A[p..q] and A[q+1..r] using Quick sort

Combine

- Trivial: the arrays are sorted in place
- No additional work is required to combine them
- The entire array is now sorted

Question

