

Claims:

1. A method of processing a digital image, comprising the
2 steps of:

3 providing digital data indexed to represent positions on
4 a display, said digital data being indicative of an intensity
5 value $I_i(x,y)$ for each position (x,y) in each i -th spectral
6 band;

7 adjusting said intensity value for said each position in
8 each i -th spectral band to generate an adjusted intensity
9 value for said each position in each i -th spectral band in
10 accordance with

$$\sum_{n=1}^N W_n (\log I_i(x,y) - \log [I_i(x,y) * F_n(x,y)]), \quad i=1, \dots, S$$

11 where S is the number of unique spectral bands included in
12 said digital data and, for each n , W_n is a weighting factor
13 and $F_n(x,y)$ is a unique surround function applied to said each
14 position (x,y) and N is the total number of unique surround
15 functions;

16 filtering said adjusted intensity value for said each
17 position of said image in each of said S spectral bands using
18 a filter function wherein a filtered intensity value $R_i(x,y)$
19 is defined; and

20 selecting a maximum intensity value $V_i(x,y)$ from the
21 group consisting of said intensity value $I_i(x,y)$ and said
22 filtered intensity value $R_i(x,y)$.

1 2. A method according to claim 1 wherein each said unique
2 surround function is a Gaussian function.

1 3. A method according to claim 2 wherein said Gaussian
2 function is of the form

$$e^{\frac{-x^2}{c_n^2}}$$

3 satisfying the relationship

$$k_n \iint e^{\frac{-r^2}{c_n^2}} dx dy = 1$$

where

$$r = \sqrt{x^2 + y^2}$$

and, for each n, k_n is a normalization constant and c_n is a unique constant for each of said N unique surround functions.

SEARCHED - SERIALIZED - INDEXED - FILED

1 4. A method according to claim 1 further comprising the step
2 of multiplying said filtered intensity value $R_i(x,y)$ by

$$\log \left[\frac{BI_i(x,y)}{\sum_{i=1}^s I_i(x,y)} \right]$$

3 to define a color-restored intensity value $R'_i(x,y)$, where B
4 is a constant, wherein said step of selecting using said
5 filtered intensity value $R_i(x,y)$ is replaced with the step of
6 selecting a maximum intensity value $V_i(x,y)$ from the group
7 consisting of said intensity value $I_i(x,y)$ and said color-
restored intensity value $R'_i(x,y)$.

5. A method according to claim 1 wherein said each position
(x,y) defines a pixel of said display.

6. A method according to claim 1 wherein, for each n, $W_n=1/N$.

7. A method according to claim 1 further comprising the step
of displaying an improved image using said maximum intensity
value $V_i(x,y)$.

8. A method according to claim 4 further comprising the step
of displaying an improved image using said maximum intensity
value $V_i(x,y)$.

1 9. A method according to claim 1 further comprising the steps
2 of:

3 defining a classification of said image based on dynamic
4 range of said image in each of said S spectral bands; and

5 selecting said filter function based on said
6 classification of said image.

1 10. A method according to claim 9 wherein said step of
2 defining comprises the step of using image statistics
3 associated with said image in each of said S spectral bands.

1 11. A method according to claim 10 wherein said image
2 statistics include brightness and contrast of said image in
3 each of said S spectral bands.

1 12. A method according to claim 4 further comprising the
2 steps of:

3 defining a classification of said image based on dynamic
4 range of said image in each of said S spectral bands; and

5 selecting said filter function based on said
6 classification of said image.

1 13. A method according to claim 12 wherein said step of
2 defining comprises the step of using image statistics
3 associated with said image in each of said S spectral bands.

1 14. A method according to claim 13 wherein said image
2 statistics include brightness and contrast of said image in
3 each of said S spectral bands.

09639616 - 052501

1 15. A method of processing a digital image, comprising the
2 steps of:

3 providing digital data indexed to represent the positions
4 of a plurality of pixels of a J-row by K-column display, said
5 digital data being indicative of an intensity value $I(x,y)$ for
6 each of said plurality of pixels where x is an index of a
7 position in the J -th row of said display and y is an index of
8 a position in the K -th column of said display wherein a $J \times K$
9 image is defined;

10 convolving said digital data associated with each of said
11 plurality of pixels with a function

$$e^{\frac{-r^2}{c^2}}$$

12 to form a discrete convolution value for each of said
13 plurality of pixels, said function satisfying the relationship

$$k \iint e^{\frac{-r^2}{c^2}} dx dy = 1$$

14 where

$$r = \sqrt{x^2 + y^2}$$

15 k is a normalization constant and c is a constant;

16 converting, for each of said plurality of pixels, said
17 discrete convolution value into the logarithm domain;

18 converting, for each of said plurality of pixels, said
19 intensity value into the logarithm domain;

20 subtracting, for each of said plurality of pixels, said
21 discrete convolution value so-converted into the logarithm
22 domain from said intensity value so-converted into the
23 logarithm domain, wherein an adjusted intensity value is
24 generated for each of said plurality of pixels;

25 filtering said adjusted intensity value for each of said
26 plurality of pixels with a filter function wherein a filtered
27 intensity value $R(x,y)$ is defined; and

28 selecting, for each of said plurality of pixels, a
29 maximum intensity value $V(x,y)$ from the group consisting of
30 said intensity value $I(x,y)$ and said filtered intensity value
31 $R(x,y)$.

16. A method according to claim 15 wherein the value of said
constant c is selected to be in the range of approximately
0.01 to approximately 0.5 of the larger of J and K .

17. A method according to claim 15 further comprising the
step of displaying an improved image using said maximum
intensity value $V(x,y)$.

18. A method according to claim 15 wherein said step of
filtering includes the step of selecting said filter function
based on dynamic range of said $J \times K$ image.

1 19. A method of processing a digital image, comprising the
2 steps of:

3 providing digital data indexed to represent the positions
4 of a plurality of pixels of an J-row by K-column display, said
5 digital data being indicative of an intensity value $I_i(x,y)$
6 for each i-th spectral band of S spectral bands for each of
7 said plurality of pixels where x is an index of a position in
8 the J-th row of said display and y is an index of a position
9 in the K-th column of said display wherein a $(J \times K)_i$ image is
10 defined for each of said S spectral bands and a $J \times K$ image is
11 defined across all of said S spectral bands;

12 convolving said digital data associated with each of said
13 plurality of pixels in each i-th spectral band with a function

$$e^{\frac{-r^2}{c_n^2}}$$

14 for $n=2$ to N to form N convolution values for each of said
15 plurality of pixels in each said i-th spectral band, said
16 function satisfying the relationship

$$k_n \iint e^{\frac{-r^2}{c_n^2}} dx dy = 1$$

17 where

$$r = \sqrt{x^2 + y^2}$$

18 and, for each n, k_n is a normalization constant and c_n is a
19 unique constant;

20 converting, for each of said plurality of pixels in each

21 said i-th spectral band, each of said N convolution values
22 into the logarithm domain;

23 converting, for each of said plurality of pixels in each
24 said i-th spectral band, said intensity value into the
25 logarithm domain;

26 subtracting, for each of said plurality of pixels in each
27 said i-th spectral band, each of said N convolution values so-
28 converted into the logarithm domain from said intensity value
29 so-converted into the logarithm domain, wherein an adjusted
30 intensity value is generated for each of said plurality of
31 pixels in each said i-th spectral band based on each of said
32 N convolution values;

33 forming a weighted sum for each of said plurality of
34 pixels in each said i-th spectral band using said adjusted
35 intensity values;

36 filtering said weighted sum for each of said plurality of
37 pixels in each said i-th spectral band with a filter function
38 wherein a filtered intensity value $R_i(x,y)$ is defined; and

39 selecting a maximum intensity value $V_i(x,y)$ from the
40 group consisting of said intensity value $I_i(x,y)$ and said
41 filtered intensity value $R_i(x,y)$.

1 20. A method according to claim 19 wherein the value for each
2 said unique constant c_n is selected to be in the range of
3 approximately 0.01 to approximately 0.5 of the larger of J and
4 K.

1 21. A method according to claim 19 further comprising the
2 step of multiplying said filtered intensity value $R_i(x,y)$ by

$$\log \left[\frac{BI_i(x, y)}{\sum\limits_{i=1}^s I_i(x, y)} \right]$$

to define a color-restored intensity value $R'_i(x, y)$, where B is a constant and S is a whole number greater than or equal to 2, wherein said step of selecting using said filtered intensity value $R_i(x, y)$ is replaced with the step of selecting a maximum intensity value $V_i(x, y)$ from the group consisting of said intensity value $I_i(x, y)$ and said color-restored intensity value $R'_i(x, y)$.

22. A method according to claim 19 further comprising the step of displaying an improved image using said maximum intensity value $V_i(x,y)$.

1 23. A method according to claim 21 further comprising the
2 step of displaying an improved image using said maximum
3 intensity value $V_i(x,y)$.

1 24. A method according to claim 19 further comprising the
2 steps of:

3 defining a classification of said $J \times K$ image based on
4 dynamic range of each said $(J \times K)_i$ image; and

5 selecting said filter function based on said
6 classification of said $J \times K$ image.

25. A method according to claim 24 wherein said step of defining comprises the step of using image statistics associated with each said $(J \times K)_i$ image.

26. A method according to claim 25 wherein said image statistics include brightness and contrast of each said $(J \times K)_i$ image.

27. A method according to claim 21 further comprising the steps of:

 defining a classification of said $J \times K$ image based on dynamic range of each said $(J \times K)_i$ image; and

 selecting said filter function based on said classification of said $J \times K$ image.

1 28. A method according to claim 27 wherein said step of
2 defining comprises the step of using image statistics
3 associated with each said $(J \times K)_i$ image.

1 29. A method according to claim 28 wherein said image
2 statistics include brightness and contrast of each said $(J \times K)_i$
3 image.

02528646 062501

1 30. A method of processing a digital image, comprising the
2 steps of:

3 providing digital data indexed to represent positions of
4 an image having S spectral bands for simultaneous output on a
5 display, said digital data being indicative of an intensity
6 value $I_i(x,y)$ for each position (x,y) in each i-th spectral
7 band;

8 adjusting said intensity value for said each position in
9 each i-th spectral band to generate an adjusted intensity
10 value for said each position in each i-th spectral band in
accordance with

$$\sum_{n=1}^N W_n (\log I_i(x,y) - \log [I_i(x,y) * F_n(x,y)]), \quad i=1, \dots, S$$

where S is a whole number greater than or equal to 2 and defines the total number of spectral bands included in said digital data and, for each n, W_n is a weighting factor and $F_n(x,y)$ is a unique surround function of the form

$$e^{\frac{-r^2}{c_n^2}}$$

satisfying the relationship

$$k_n \iint e^{\frac{-r^2}{c_n^2}} dx dy = 1$$

where

$$r = \sqrt{x^2 + y^2}$$

and, for each n, k_n is a normalization constant and c_n is a

19 unique constant where N is the total number of unique surround
20 functions;

21 filtering said adjusted intensity value for said each
22 position in each i-th spectral band with a filter function
23 wherein a filtered intensity value $R_i(x,y)$ is defined;

24 multiplying said filtered intensity value $R_i(x,y)$ by

$$\log \left[\frac{BI_i(x,y)}{\sum_{i=1}^S I_i(x,y)} \right]$$

25 to define a color-restored intensity value $R'_i(x,y)$, where B
26 is a constant; and

27 selecting a maximum intensity value $V_i(x,y)$ from the
28 group consisting of said intensity value $I_i(x,y)$ and said
29 color-restored intensity value $R'_i(x,y)$.

31. A method according to claim 30 wherein, for each n,
 $W_n = 1/N$.

1 32. A method according to claim 30 wherein the value for each
2 said unique constant c_n is selected to be in the range of
3 approximately 0.01 to approximately 0.5 of the larger of J and
4 K.

1 33. A method according to claim 30 further comprising the
2 step of displaying an improved image using said maximum
3 intensity value $V_i(x,y)$.

1 34. A method according to claim 30 further comprising the
2 steps of:

3 defining a classification of said image based on dynamic
4 range of said image in each of said S spectral bands; and

5 selecting said filter function based on said
6 classification of said image.

1 35. A method according to claim 34 wherein said step of
2 defining comprises the step of using image statistics
3 associated with said image in each of said S spectral bands.

3 36. A method according to claim 35 wherein said image
4 statistics include brightness and contrast of said image in
5 each of said S spectral bands.

B20200215_05252591