1. Nitrate salts of the compounds selected from the following classes:

Class (A1b) of formula (A1b):

$$X_{A1} = -COOH,$$
 $N - N$
 $N - N$
(IXa);

$$-CH = C - CH_{2} - CH_{2} - CH_{3} - CH_{41} = -CH_{2}OH,$$

$$+CCH_{2} - CH_{3} - CH_{41} - CH_{$$

 $R_{A1}^{I} = H, CI;$

 $R^{II}_{A1} = -(CH_2)_3 - CH_3$, $-O-CH_2-CH_3$;

R^{III}_{A1} = H, free valence;

R^{IV}_{A1} = free valence;

or $R_{A1} = -O$ and $R^{III}_{A1} =$ free valence form with the carbon atom in 5 position a keto group,

or R^{IV}_{A1} , R^{III}_{A1} , R^{I}_{A1} and the carbon atoms in 4 and 5 position of the heterocyclic ring of the formula (A1b) form group (IXc),

or R_{A1}^{I} , R_{A1}^{IV} and the carbon atom in 4 position of the heterocyclic ring of the formula (A1b) form group (1Xd);

and wherein R^{III}_{A1} = free valence and R^{IV}_{A1} = free valence there is a double bond between the carbon atoms in 4 and 5 position in the heterocyclic ring of the formula (A1b),

when X_{A1} = (Ixa), R_{A1} = CH₂OH, R_{A1}^{I} = CI, R_{A1}^{III} = R_{A1}^{IV} = free valences forming a –CH=CH- double bond with the carbon atoms in 4 to 5 position of the heterocyclic ring of the formula (A1b), R_{A1}^{II} = -(CH₂)₃-CH₃, Losartan residue;

as in Losartan but with R_{A1} = -O and R^{III}_{A1} free valence, so as to form in combination with the carbon atom in 5 position of the heterocyclic ring of the formula (A1b) a ketonic group, R^{I}_{A1} with R^{IV}_{A1} and with the carbon atom in 4 position of the heterocyclic ring are such as to form the saturated ring having 5 carbon atoms (IXd), Irbesartan residue;

as in Losartan but with $R^{II}_{A1} = -O-CH_2-CH_3$, R_{A1} together with R^{I}_{A1} and the carbon atoms in 4 and 5 position of the heterocyclic ring with R^{IV}_{A1} and R^{III}_{A1} free valences, are such as to form the aromatic radical containing a –COOH group (IXc) Candesartan residue;

as in Losartan but with $X_{A1} = -COOH$, $R_{A1} = (IXb)$, $R_{A1}^I = H$, and R_{A1}^{IV} and R_{A1}^{III} free valence from a double bond between the carbon atoms in 4 and 5 position in the heterocyclic ring of formula (A1b), Eprosartan; class (A1c): Valsartan.

2. Nitrate salts of compounds selected from the following class (A3) of formula (A3):

$$R^{I}_{B1} = C - NH - CH_{2} - CH - [C]_{n} - [X_{B1}]_{m} - R^{IV}_{B1}$$

$$R^{II}_{B1} = OR^{v}_{B1} R^{VII}_{B1}$$
(A3)

 $R^{VI}B_1 = H$;

 $R^{VII}_{B1} = H;$

 R_{B1}^{I} and R_{B1}^{II} , equal to or different from each other, are H, CH_{3} ,

$$R^{III}_{B1} = H, CH_3$$
 CH_2 OCH_3 OCH_3 OCH_3

$$--CH_{\overline{2}}-NH--CO-CH_{\overline{2}}---OH \qquad (XIc),$$

$$---CH_2---Y_{B1}$$
 (XIe),

wherein in the formula (XId) t= 0, 1;

in the formula (XIe) Y_{B1} can have the following meanings:

$$H \longrightarrow Z$$
 (XIf),

in the formula (XIf) Z = H, -OCH₃;

in the formula (A3);

$$X_{B1} = -O_{-}, -S_{-};$$

n and m, equal to or different from each other, are 0, 1;

$$R_{B1}^V = H, \quad C_{O}$$
 (XIh)

$$R^{IV}_{B1} =$$
 CH_3 (XIg),

$$S_1$$
 S_2 S_4 S_3 S_3

wherein in the formula (XIp):

 S_1 = H, CN, OCH₃, CH₃, -CH₂-CH₃-, -O-CH₂-CONH-CH₃, -COCH₃, -CO-(CH₂)₂-CH₃, -O-CH₂-CH = CH₂, -CH₂-CH = CH₂, cyclopentyl, or

$$-O$$
 CH_2 O $(XIp^{II});$

 $S_2 = H$, CH_3 , CI, $-SOCH_3$, $-CONH_2$;

 $S_3 = H, F, CI, OH, NO_2, -CH_2-CO-NH_2, -(CH_2)_2-OCH_3, -NH-COCH_3, -CH_2-O-CH_2-CH_2-O-CH_2-CH_2-CH_2-COOCH_3, -NH-CO-N(C_2H_5)_2, -NH-CO-(CH_2)_2-CH_3, -NH-SO_2-CH_3, -NH-CO-NH-[cyclohexyl], -CH_2-CH_2-O-CH_2-[cyclopropyl];$

 $S_4 = H, CI, -CH_2-CH_2-;$

or S_1 , S_2 and the carbon atoms in 2 and 3 position of the C_6 aromatic ring of the radical (XIp) form the following ring:

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

wherein:

 $^{(\mbox{\tiny $^{\circ}$})}$ designates the atom adjacent to the aromatic ring of the formula XIp^{VII}

$$B = -CH_{2}-, -NH-, -CH=CH-, (*)-CO-CH_{2}-;$$

$$A = -O-$$
, (*)- CH_2 - $CH(OH)-$, (*)- $O-CH_2-$, (*)- $S-CH_2-$, - CH_2CH_2- , - CH_2- ,

 $W_1 = H$, free valence;

 W_2 = free valence, H, OH, -CH₃, -ONO₂, -O;

or A is a tertiary carbon atom and at the same time W_1 = free valence to form a double bond -CH=CH- between A and the carbon atom in 1' position, or W_1 , W_2 the carbon atom in 1' position and A form an aromatic ring having 6 carbon atoms to form the following group:

when $W_2 = -O$ and $W_1 =$ free valence at the carbon atom in 1' position of radical (XIp^{VII}) it is formed a ketonic group;

or when in formula (XIp) $S_4 = -CH_2-CH_2$ -, and in formula (A3) X_{B1} is oxygen, m = n = 1 and (R^{VII}_{B1}) is a free valence, the following ring is formed with the carbon atoms in 1 and 6 position of the aromatic ring of radical (XIp):

$$r^{r^{r}}$$
 (XIp V),

or when in formula (A3) n = m = 1, both R^{VII}_{B1} and R^{VI}_{B1} are free valences, S_4 and the carbon atoms in 1 and 6 position of the aromatic ring of formula (XIp), S_1 being -CH₂-CH₃, together with the carbon atom - $|C|_n$ - and X_{B1} = oxygen of formula (A3) form the following ring:

when $R_{B1}^{I} = H$, R_{B1}^{II} and $R_{B1}^{III} = CH_3$, $R_{B1}^{V} = H$, $R_{B1}^{VI} = R_{B1}^{VII} = H$, $R_{B1}^{II} = H$, R_{B1}^{I

as in Atenolol but with RIV_{B1} = (XIs), Befunolol residue;

as in Atenolol, but with $S_1 = S_2 = S_4 = H$, $S_1 = -CH_2-CH=CH_2$, Alprenolol residue;

as in Atenolol, but with $S_1 = COCH_3$, $S_3 = -NH-CO-(CH_2)_2-CH_3$, $S_2 = S_4 = H$, Acebutolol residue;

as in Atenolol, but with $S_3 = -CH_2-CH_2-O-CH_2-$ (cyclopropyl), Betaxolol residue;

as in Atenolol but with S_3 = -CH₂-O-CH₂-CH₂-O-CH(CH₃)₂, Bisoprolol residue as in Alprenolol but with S_1 = (XIp^{II}) and R^I_{B1} = CH³, Bufetolol residue; as in Bufetolol, but with S_1 = -CN, Bunitrolol residue; as in Bufetolol, but with S_1 = H, S_4 = Cl, S_2 = CH₃, Bupranolol residue;

```
as in Bufetolol but with S_1 = -CO-(CH_2)_2-CH_3, S_3 = F, Butofilolol residue;
as in Mepindolol but in R^{IV}_{B1} = (XIp^{VII}) A = -O-CH_2, B = -CH_2, W2 = -ONO_2,
W1 = H, Nipradilol residue;
as in Alprenolol, but with S_1 = -O-CH_2-CH = CH_2, Oxprenolol residue;
as in Bufetolol, but with S_1 = cyclopentyl, Penbutolol residue;
as in Mepindolol but with W2 = H, Pindolol residue;
as in Atenolol but with S_3 = -NH-COCH_3, Practolol residue;
as in Bufetolol but with S_1 = H, S_3 = -NH-CO-NH-(cyclohexyl), Talinolol
residue;
as in Nipradilol but with R^{I}_{B1} = CH<sub>3</sub>, A = -S-CH<sub>2</sub>- and W2 = H, Tertatolol
residue;
as in Tertatolol but with R<sup>IV</sup><sub>B1</sub> = (XIn), Tilisolol residue;
as in Bufetolol but with R^{IV}_{B1} = (XIo), Timolol residue;
as in Bufetolol but with S_1 = S_2 = CH_3, Xibenolol residue;
as in Xibenolol but with R_{B1}^{I} = S_{1} = H, Toliprolol residue;
as in Toliprolol, but with R^{\parallel}_{B1} = H and R^{\parallel}_{B1} = (XIa), Bevantolol residue;
as in Carazolol but with R^{II}_{B1} = H and R^{III}_{B1} = (XIb), Carvedilol residue;
when in the formula (A3) R_{B1}^{I} = R_{B1}^{II} = R_{B1}^{III} = CH_3, R_{B1}^{V} = (XIh), n = m = 1,
R^{VI}_{B1} = R^{VII}_{B1} = H, X_{B1} = -O-, R^{IV}_{B1} = (XIg), Bopindolol residue;
as in Atenolol but with R^{IV}_{B1} = (XIp^{VIII}), wherein B = -NH-, Carazolol residue;
as in Bufetolol, but with R^{IV}_{B1} = (XIp^{VII}) wherein A = -CH_2- CH_2-, B = -NH-, W2
= -O which with W1 = free valence and the carbon atom in 1' position forms a
ketonic group, Carteolol residue;
as in Bufetolol but with S_3 = -NH-CO-N(C_2H_5)_2, S_1 = -CO-CH_3 Celiprolol
residue;
```

as in Bufetolol but with $S_1 = -O-CH_2-CONH-CH_3$, Cetamolol residue;

as in Bupranolol, but with $S_2 = CI$ Cloranolol residue;

as in Atenolol but with $S_3 = -CH_2-CH_2-COOCH_3$, Esmolol residue;

as in Atenolol but with R^{IV}_{B1} = (Xiu) Indenolol residue;

as in Carteolol, but in R^{IV}_{B1} = (XIp VII) A = -CH₂-, B = -COCH₂-, W1 = W2 = H,

Levobunolol residue;

as in Carteolol but with R_{B1}^{I} = H and in R_{B1}^{IV} = (XIpVII) A is a tertiary carbon atom and W1 free valence, so as to form a –CH=CH- double bond between A and the carbon atom in 1' position of (XIpVII), W2 = CH₃, Mepindolol residue;

as in Atenolol, but with $S_3 = -(CH_2)_2$ -OCH₃, Metoprolol residue;

as in Carteolol but in $R^{IV}_{B1} = (XIp^{VII}) A = -CH_2-CH(OH)$ -, $B = -CH_2$ -, W2 = OH, W1 = H, Nadolol residue;

as in Atenolol but with $S_3 = NO_2$, Nifenalol residue;

the -OR^{IV}_{B1} substituent, Pronethalol residue;

as in Bufetolol but with $R^{IV}_{B1} = (XIt)$, Bucumolol residue;

when in the (A3) formula m = n = 0 and $R^{IV}_{B1} = (XIz) R^{I}_{B1} = R^{II}_{B1} = R^{III}_{B1} = CH_3$, $R^{V}_{B1} = H$, Bufuralol residue;

as in Atenolol but with $R^{III}_{B1} = (XIe)$ with $Y_{B1} = H$, n = m = 0, $R^{IV}_{B1} = (XIi)$ Butidrine residue;

as in Butidrine, but with $R^{III}_{B1} = (XIe)$ with $Y_{B1} = (XIf)$ with Z = H, $R^{IV}_{B1} = (XIp)$ wherein $S_3 = OH$ and $S_2 = CONH_2$, $S_1 = S_4 = H$, Dilevalol residue; as in Bevantolol but with $S_2 = H$, $S_1 = CN$, $R^{III}_{B1} = (XIc)$, Epanolol residue; as in Butidrine but with $R^{III}_{B1} = CH_3$, $R^{IV}_{B1} = (XIm)$, wherein the naphthalenic residue is linked by the carbon atom in 2 position to the carbon atom bringing

as in Pronethalol but with m = 1 and X_{B1} = -O-, and R^{IV}_{B1} is the naphthalenic residue (XIm) linked by the carbon atom in 1 position to X_{B1} Propranolol residue;

as in Pronethalol but with R^{IV}_{B1} = (XIp) with S_1 = S_2 = S_4 = H and S_3 = -NH-SO₂-CH₃, Sotalol residue;

as in Dilevalol but with S_2 = -SOCH₃, and in para position to the other aromatic ring (form. XIf) Z = -OCH₃, Sulfinalol residue;

when in the formula (A3) $R_{B1}^{I} = R_{B1}^{II} = H$, $R_{B1}^{III} = (XId)$ with t = 1, $R_{B1}^{V} = H$, n = m = 0, $R_{B1}^{IV} = (XId)$ with t = 0, Nebivolol residue;

2-hydroxy-5-[1-hydroxy-2-[(1-methyl-3-phenylpropyl)amino]ethyl] benzamide (Labetalol), 1-(4-amino-6, 7-dimethoxy-2-quinazolinyl)-4-[(tetrahydro-2-furanyl)carbonyl]piperazine(Terazosin), 1-(4-amino-6,7-dimethoxy-2-quinazolinyl)-4-(2-furanylcarbonyl)piperazine (Prazosin).

3. Nitrate salts of the following compounds of class (A4): (A4a):

(2S-cis)-3-(acetyloxy)-5-[2-(dimethylamino)ethyl]-2,3-di-hydro -2-(4-methoxyphenyl)-1.5-benzothiazepin-4(5H)-one (Diltiazem), α -[3-[[2-(3, 4-dimethoxyphenyl)ethyl]-methylamino]propyl]-3, 4-dimethoxy- α -(1-methylethyl)-benzeneacetonitrile (Verapamil):

(A4b):

2-[(2-aminoethoxy)methyl]-4-(2-chlorophenyl)-1,4-di-hydro-6-methyl-3,5-pyridynedicarboxylic acid 3-ethyl 5-methyl ester (Amlodipine), 4-(2,3-dichlorophenyl)-1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylic acid methyl ester (Felodipine) 4-(4-benzofurazanyl)-1, 4-dihydro-2,6-dimethyl-3,5-

pyridinedicarboxylic acid 5-methyl 3-(1-methyl)ethyl ester (Isradipine), Lercanidipine, 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3, 5-pyridinedicarboxylic acid methyl 2[methyl(phenylmethyl)amino]ethyl ester (Nicardipine), 1, 4-dihydro-2,6-dimethyl-4-(2-nitro-phenyl)-3, 5pyridinedicarboxilic acid dimethyl ester (Nifedipine), 1,4-dinhydro-2,6dimethyl-4-(3-nitrophenil)-3,5-pyridinedicarboxylic acid 2-methoxyethyl 1methylethyl ester (Nimodipine), 1,4-dihydro-2,6-dimethyl-4-(2-nitro-phenyl)-3,5-pyridinedicarboxylic acid methyl 2-methyl-propyl ester (Nisoldipine) 1,4dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylic acid ethyl methyl ester (Nitrendipine); (A4c):

(E)-1-[bis(4-fluorophenyl)methyl]4-(3-phenyl -2-propenyl) piperazine (Flunarizine).

4. Nitrate salts of the following compounds of class (A7): (A7a):

6-chloro-2H-1,2,4-benzothiadiazine-7-sulphonamide 1,1-dioxide (Chlorothiazide), 2-chloro-5-(2,3-dihydro-1-hydroxy-3-oxo-1H-isoindol-1yl)benzebesulphonamide (Chlortalidone), 6-chloro-3,4-dihydro-2H-1,2,4benzothiadiazine-7-sulphonamide 1,1-dioxide (Hydrochlorothiazide), 3-(aminosulphonyl)-4-chloro-N-(2,3-dihydro-2-methyl-1H-indol-1-yl)benzamide (Indapamide), 7-chloro-1,2,3,4-tetrahydro-2-methyl-3-(2-methylphenyl)-4-oxo-6-quinazolinesulphonamide (Metolazone), 7-chloro-2-ethyl-1,2,3,4-tetra hydro-4-oxo-6-quinazolinesulphonamide (Quinethazone); (A7d):

3,5-diamino-N-(aminoiminomethyl)-6-chloropyrazinecarboxamide (Amiloride), 6-phenyl-2,4,7-pteridinetriamine (Triamterene),3-(aminosulphonyl)-5-(butylamino)-4-phenoxy-benzoic acid (Bumetanide), 5-(amino sulphonyl)-4-chloro-2-[(2-furanylmethyl)amino]benzoic acid (Furosemide), N-[[(1-methylethyl)amino]carbonyl]-4-[(3-methylphenyl)amino]-3-pyridinesulphonamide (Torasemide); (A8):

Apomorphine.

5. Nitrate salts according to claims 1-4 of the following compounds:

class A1b): Losartan;

Class A3): Atenolol, Labetalol, Timolol, Prazosin, Terazosin, Propranolol;

Class A4): Nicardipine, Nifedipine, Nimodipine;

Class A7): Chlorothiazide, Amiloride, Furosemide.

6. Salts according to claims 1-4, wherein the salts of said compounds contain at least one nitrate ion mole/compound mole.

- 7. Pharmaceutical compositions of the nitrate salts according to claims 1-4 and a pharmaceutically acceptable carrier.
- 8. A method for treating hypertension, said method comprising administering to a patient in need thereof a hypertension treating effective amount of at least one compound of claims 1-4.

- 9. A method for treating cardiovascular disease, said method comprising administering to a patient in need thereof a cardiovascular disease treating effective amount of at least one compound of claims 1-4.
- 10. A method for treating hypertension, said method comprising local administration to a patient in need thereof a hypertension treating effect amount of at least one compound of claims 1-4.