APPLICATION OF THE CINGEN PROGRAM

A THERMAL NETWORK DATA GENERATOR

William E Schultz and Ronald P. Schmitz

Sperry Support Services

INTRODUCTION

Since the introduction of the digital computer, analytical simulation of complex physical systems has become a major vocational entity. Although computer speed now makes formerly impossible solutions easily accessible, there is rarely enough lead time between design and fabrication to do a thorough computer analysis. Sperry Support Services engineers have increased their efficiency in analysis of thermal and structural systems by developing computer programs which automatically develop the necessary data for computer simulation and provide visual output to aid the analyst in verification of the model. The primary program for discussion in this paper is entitled CINGEN (Ref. 1), a contraction of CINDA data GENerator, after the CINDA thermal analysis program (Ref. 2). Supporting programs, COON3D (Ref. 3) and GEOMPLT (Ref. 4) developed for structural analysis and adapted for use with CINGEN, will also be discussed.

CINGEN TECHNIQUE

Present state-of-the-art mathematical modeling techniques for evaluation of structural and thermal performance of physical systems are distinctly different. The leading method for structural analysis is the finite element approach. The finite differencing technique is most frequently used for thermal analysis. Although thermal problems can be solved by finite element analysis (See Refs. 5 and 6), present state-of-the-art finite element programs cannot compete in computer execution speed with conventional thermal programs using the finite differencing method. Frequently separate thermal and structural math models must be developed which have a one-to-one positional correspondence to allow thermal loads to be evaluated in the structural analysis (Ref. 7). The duplication of modeling effort can be quite costly, especially if large systems are involved. Avoidance of this duplication effort and a desire for a geometrical representation of the thermal model to reduce modeling errors were key factors which prompted the development of CINGEN.

The CINGEN program simplifies the thermal modeling process by performing all of the capacitance and conductance calculations normally done by the analyst. Each solid element is divided into five tetrahedrons, allowing the total volume to be calculated precisely. The thermal capacitance is then calculated as the product of volume, density and specific heat. The center of gravity of each element is calculated, and the thermal resistance is based on the distance between element centroids divided by the product of the element interface area

and the thermal conductivity. There is no problem with elements of dissimilar materials having a common interface, since the total conductance between the elements is the reciprocal of the sum of the thermal resistances for each node to the interface.

Mathematical modeling of thermal systems is somewhat of an art and reliability depends greatly on the principle of subdivision of the system. A thermal analyst can use CINGEN without prior experience with finite element modeling techniques and without the aid of supporting programs. He needs only to determine the physical location of desired coordinates for each desired element. The sample problem chosen includes both manually developed and automatically developed input for CINGEN.

SAMPLE PROBLEM

Figure 1 lists seven basic steps in the utilization of CINGEN, and supporting programs COON3D and GEOMPLT. COON3D was developed by Sperry Support Services to automatically generate a three-dimensional solid-element grid mesh of desired systems. The program has the ability to generate multilayer models as exhibited in the sample problem. Figure 2 is the COON3D input which describes the four bounding curves for each surface. Figure 3 contains the COON3D output and the manually developed input for CINGEN. For verification of the COON3D model, program GEOMPLT is used to display the model on the CRT graphics screen. Figure 4 contains the GEOMPLT user options as viewed on the CRT screen. Figure 5 displays the GEOMPLT user option of plotting NASTRAN bulk data which was generated by COON3D and by manual development, and the option to plot the thermal network created by CINGEN. Figure 6 contains a sketch of the actual hardware and a side view of the CINGEN model.

When the analyst is satisfied with the appearance of the COON3D generated model, CINGEN is executed. Figure 7 contains the CINGEN output which is a format acceptable to the thermal analyzers CINDA, SINDA, and MITAS (Refs. 2, 8, and 9). Data files are also created which allow the analyst to view the thermal network created by CINGEN. Figures 8(a) to 8(h) are a series of partial views of the thermal network displayed by GEOMPLT. If the analyst is satisfied with the model, he can use the Text Editor processor capability of UNIVAC 1100 series computers to input the system boundary conditions and then execute SINDA. The resulting SINDA solution can be viewed using the special purpose line printer plotter routine (Ref. 10) for X-Y plotting, Figure 9.

CONCLUDING REMARKS

With the aid of these analytical tools - CINGEN, COON3D, GEOMPLT - analysis cost and time can be drastically reduced from manual development of models. In addition, the visual verification of the models provides added confidence in the accuracy of the model. These tools will lead to reduced time between design, analysis, and fabrication and contribute to final development of the best design rather than one which is expedient.

REFERENCES

- 1. Schultz, W. E.: "Automated Data Generation for Thermal/Structural Models," Attachment 1. Sperry Support Services Memorandum, Humtsville, Alabama, October 17, 1974.
- 2. Gaski, J. D., Lewis, D. R., and Thompson, L. R.: "Chrysler Improved Numerical Differencing Analyzer for Third Generation Computers," TN-AP-67-287, October 20, 1967.
- 3. Chan, G. C.: "Automated Data Generation for Thermal/Structural Models," Attachment 2. Sperry Support Services Memorandum, Huntsville, Alabama, October 17, 1974.
- 4. Schmitz, Ronald P.: "GEOMPLT Interactive Graphics Program for Finite Element and Thermal Network Models." Sperry Support Services, Huntsville, Alabama, November 30, 1974.
- 5. Zienkiewiez, O. C.: The Finite Element Method in Engineering Science, Second Edition, McGraw-Hill Pub., Ltd., Berkshire, England, 1971.
- 6. McCormick, C. W.: Editor. "The NASTRAN User's Manual," (Level 15.6). NASA SP-222(01), January 1975. (Revised by Sperry Support Services, Huntsville, Alabama.)
- 7. Loafman, J. W., Schmitz, R. P., and Eldrige, C. M.: "NASTRAN Thermostructural Analysis of a High Energy Laser Mirror and Comparison with CINDA Thermal Analysis," Fifth Annual Navy-NASTRAN Colloquium." September 10, 1974.
- 8. Smith, J. P.: "SINDA User's Manual." NASA Contract 9-10435, TRW System Group, April 1971.
- 9. "Martin Interactive Thermal Analysis System." MDS-SPLPD-71-FD238, Martin Marietta Croporation Denver Data Center, Denver, Colorado, March 1971.
- 10. Schultz, W. E., and Stephen, L. A.: "A Self-Contained Line Printer Plotting Routine." Sperry Support Services Memorandum, Huntsville, Alabama, May 30, 1974.

STEPS	FUNCTION	HARDWARE	SOFTWARE	
1	GENERATE FINITE ELEMENT MODEL	TTY	COON3D/MANUAL	
2	DISPLAY MODEL	CRT	GEOMPLT/PLOT MODE	
3	EDIT MODEL	CRT	GEOMPLT/EDIT MODE	
4	GENERATE THERMAL NETWORK	TTY	CINGEN	
5	DISPLAY THERMAL NETWORK	CRT	GEOMPLT/THERMAL NETWORK PLOT	
6	SINDA DECK SET UP	TTY	FUR/PUR	£
7	SINDA ANALYSIS	TTY (BRKPT)	SINDA	

Figure 1.- Basic steps in the use of CINGEN.

			ENGINE ACTUATOR INT			
		CURVE II O				
					CURVE U 1	
		Y		X	*	
4	0.00000	2+30000+30	-6.5000p+p0	2+00000+00	0.0000	~6.5000÷0
ż	0.00000	3.30000+00	-6.50000+00	3+30000+00	0.00000	*6.50000+0
		CURVE & O			CURVE W 1	
	X	Y	Z	X	Y	Z
1	0.0000	2.00000+00	-6.50000+00	0.00000	3.30000+00	~6·5000g+0g
2	1+40500+30		-6.50000±00	3+10000+00	2.30000.00	-4.5000 <u>4</u> +0
3	2,00000+00	0.00000	-4.5000g+00	3+30000+00	0.0000	-6.5000ñ+0

Figure 2.- Sample COON3D input data.

	•									
C153.58	3004	5204	5203	5205	52(10	5304	5303	5005	3004	
3104 C15304	3342 - 6334	5301	>302	5303	5304	5401	5402	5403	005د	
3005	5404									
300₩ 300₩	3006 	5304	5303	5305	53()6	5404	5403	5405	3006	Manual
C15308	3007	5401	5402	5403	5404	5501	5502	5503	3007	
-3007 C15308	5504 3008	5404	5403	5405	54(16	5504				ļ
· •	५ 504	•	37()3		34(10	7507	5503	5505	3008 /	
C15308	10001	10001	10002	10005	10004	10101	10102	10105	10001	
-1009!		10002	10003	10006	10005	10102	10103	10106	10002	<u> </u>
10002 -	_									
_c1\$3na -100 03	1009 3 	10004	10005	10008	10007	10104	10105	10108	10003	COON 3D
C1530A	10004	10005	10006	10009	10008	10105	10106	10109	10004	
170004	- 10108	10101	10102	10105	10104	10001	100-3			<u> </u>
10191	10204		10104	10103	10101	10201	10202	10203	10101	
GRID.	5501		420	->423	3.530	}				
6810	5502 550 3		420 • 420		a.530- 3.530	(Name 1				
68-10	534 <u></u>		474_		ـدندمدــــ	Manual				
GRID	55.75		.420	• 420	3.530	}				
-	5596			- -	3.533_	!				
GRID	10001		•000	2.000	-6.500	1				
GRIO					6.500-	1				
GRID	17073		2.0n0	• 493	-6.500	COON 3D				
6812				-	6-5.)	t				
6817	10005		1.850	1.850	-6.500	1				
10	10006		2.650_		+6.500_	 				

Figure 3.- Sample element and grid data automatically developed by COON3D and manually developed input for CINGEN.

```
CXQT GEOM MPA
       XX
       XX
      XX XX
   XXXXX XXXXX
                      XXXXXXXXXXX XXXXX XXXXXXXXXX
                                  \times \times
                              X
                                           X
   XXXXX XXXXX
                      XXXX
                              XXXXX
                                     XXX
                                           XXXXX
                                           \times \times
      XX XX
                              X
                                     ×
                          ×
       XX
                              X
                                     XXXXX X
                                                           X
                      XXXX
       XX
                     INTERACTIVE GRAPHICS PROGRAM
                     **GEOMPLT** UERSION 3.0
                     GENERATED BY SPERRY SUPPORT SERVICES
                     NOU 74
      DIFFERTIAL TRANSDUCER MANUALLY DEVELOPED
 ** TYPE ( SINPUT (OPTIONS) $)
     NOTE- 1ST COLUMN IS IGNORED FOR NAMELIST INPUT.
 z t
            ( . ) AS LAST CHARACTER TO CONTINUE ON NEXT LINE.
 **
            ($) AS LAST CHARACTER TERMINATES NAMELIST INPUT
 INPUT PROGRM=3.NODENO=1.PU=1$
 ** TYPE ( $PUIEW JPU(1) = , (ELEMENT NUMBERS) $)
 ** TO DEFINE PARTIAL VIEW
 ** NOTE - 1ST COLUMN IS IGNORED FOR NAMELIST INPUT.
 **
            (,) AS LAST CHARACTER TO CONTINUE ON NEXT LINE,
 **
            ($) AS LAST CHARACTER TERMINATES NAMELIST INPUT
 XX
            (-0 OR 4HTHRU) IS USED FOR CONSECUTIVE NUMBERS
 **
                            EXAMPLE 1,-0,4 1.2.3,4
```

Figure 4.- GEOMPLT header page and typical user options.

TOTAL RESISTANCE NETWORK ** TYPE (C) TO CONTINUE

TOTAL RESISTANCE NETWORK
** TYPE (C) TO CONTINUE

Figure 5.- Total model NASTRAN type bulk data and resistance network.

Figure 6.- Sketch of the actuator and the CINGEN model.

CINDA	MODI	EL.	BE	5 1	N 5		17	H	A	BL	ANE		CARD	
	вср	31	HE	₹ M	ΑL	5	PC	s			•			
	всо		171			5	PA	CE	5	HU	TTL	٤	HYDRAULIC	ENGI
	900	_6 N	E1	۱ C	ŢU	ATI	D R	_!	NT	ER	FAC	E	RING	
	END	• • •			- 4	- 4								
	BCD			_										
			001	-			-		-		262			
·			ָם. מפס								666			
			003		*		-				666			
			009								6 6 <u>6</u>			
			000								383			
			מכ כ								3 8 3			
			001						-	-	383			
	 ;		009		-			_			383	_		
			201				-		-	-	287			
			20:								277	_		
			an:								230			
			90							00	235	,		
		2	009	5 ,	10	<u> </u>	•		_ •	00	227	<u>"</u> _		
			00							00	557	,		
		3	50:	Ξ,	10	٠.	•		_ •	30	557	, 		
		3	00	3,	10	G •	•		•	nο	557	7		
			00			-			_	-	557			
			509	-			-		-		557	_		
			20				_				557			
			00								557			
		-	001						-		557 ::::::	_		
			00	-					-		370			
		_	30:			_		_			375	_		
			00:	-							029			
			00				_		_		796	-		
			10:								7 T G			
			10					-	_		434	_		
			10								655			
			20								216			
			20								919			
			20					-			521	_	···	
			20	-			-				513			
			30					_		-	B 3 i			
		10	30	2,	10	0 •	•		•	07	844	1_		
		10	30	3,	10	0 .	,				928			
		10	30	4,	10	D.	,			_	653	_		
			40								08			
		_10	40.	Ζ,	10	c.	•				697		·	
			40								431			-
		1.0	140	4.	10	<u>.</u>				13	38	B		
	END													

Figure 7.- Computer printout of the model generated by CINGEN.

800 30	ONDUCTOR DAT	ΓĄ	
	1, 1001, 1	002,	3.86207
	2, 1001,	003,	3.86207
		004.	3.86287
		005	3.7
		1006; 1009;	5.51663 5.51663
	· ·	007	5.51663
		908.	5.51663
	•	008.	4.15913
		009+	_4.15913
		006, 007,	4.15913 4.15913
		2002	2.40120
		2003	.82993
	15, 2001, 2	004.	.82993
		005,	1.43174
		002.	11.20000
		003.	4.03200
		004	11.20000
		005.	4.03200
		006	4.03200
		006.	11.20000
	•	007. 008.	.4.03200
		008,	4.03200 11.20000
		0021	2.68636
		1003	26.72456
	29,10001,10		2.92444
	30,10002,10		26.72456
		1102,	3.03076
		103	3.20498
		104.	3.37718
		102.	5.12264
	36,10101,10		71 - 09416
	37,10101,10 38,10102,10		2 • 6 6 5 5 8 7 4 • 8 5 9 1 7
	39,10102,10		2.80583
	40,10103,10		4.19219
	41,10103,10		2.04396
	42,10104,10		2.39383
	43,10201,10		6.07447
	44,10201,10		15.45426
	45,10201.10		8 • 18221 20 • 24132
	47,10207,10		8.40394
	48,10203,10		3.93730
	49,10203,10		4 . 27694
	50,10204,10		5.56573
	51,10301,10		9.93401
	52,10301,10 53,10301,10		8.42990
	54,10302,10		9,99392
	::::===::::::::::		7 , , , , ,

Figure 7.- Continued.

	55,10302,10402, 15,41091
	56,10303,10304, 4.60041
	57,10303,10403, 27,92661
	58,10304,10404, 33.33628
	59,10401,10402, 13.20353
	60,10401,10403, 6,82662
	61,10402,10404, 7.37689
	62,10403,10404, 5,27584
	END
	BCD SCONSTANTS DATA
	TIMEND, D. DI, DUTPUT, D. DDI, ITEST, D END
	BCD BARRAY DATA
	-100, SPACE, 100, END S TIME ARRAY
	-101, SPACE, 100, END & TEMP ARRAY
	-102, SPACE, 100, END & TEMP ARRAY
	200
	BCD 6 TIME IN HOURS
	BCD 6 LEND
	201
	BCD 6 TEMPERATURE -DEGREES F
	BCD 6 ,END
	202
	BCD 6 LINE PRINTER PLOT OF SAMPLE PROBLEM
	BCD 4 ,END
	END
	BCD SEXECUTION
-	DIMENSION X(4000) NOIM=4000
-	NTH=0
	CNFRWD
	PLOTIT (D.2,48.70.1TEST.A100.A101.A202.A200.A201)
	PLOTIT(1,2,40,70,1TEST,4100,4102,4202,4200,4201)
	END
	BCD 3VARIABLES 1
	END
	BCD SVARIABLES 2
	END
	BCO BOUTPUT CALLS
	TPRINT
F	ITEST=ITEST+1
	STOARY(ITEST, TIMEN, ALDD) & TIME
	STOARY(ITEST, TIDDO1, AIDI) & RING
	STOARY(ITEST, TIDIOI, ALOZIS CONE
	END
	BCD SEND OF DATA

Figure 7.- Concluded.

RUDT DIFFERTIAL TRANSDUCER MANUALLY D EVELOPED ** TYPE (C) TO CONTINUE

(a) Partial view of the RVDT.

Figure 8.- Resistance network.

MOUNTING BRACKET MANUALLY DEVELOPED ** TYPE (C) TO CONTINUE

(b) Partial view of the mounting bracket.

Figure 8.- Continued.

TOP PLATE 360 DEGREE MANUALLY DEVELOP ED GRID ** TYPE (C) TO CONTINUE

(c) Partial view of the top plate.

Figure 8.- Continued.

BODY SEGMENT NUMBER 3 ** TYPE (C) TO CONTINUE

(d) Partial view of body segment 3.

Figure 8.- Continued.

BODY SEGMENT NUMBER 2 ** TYPE (C) TO CONTINUE

(e) Partial view of body segment 2.

Figure 8.- Continued.

BODY SEGMENT NUMBER 1 ** TYPE (C) TO CONTINUE

(f) Partial view of body segment 1.

Figure 8.- Continued.

PISTON CONE .. TYPE (C) TO CONTINUE

(g) Partial view of the piston cone.

Figure 8.- Continued.

INTERFACE RING RESISTANCE NETWORK ** TYPE (C) TO CONTINUE

(h) Partial view of the interface ring.

Figure 8.- Concluded.

••••••	The state of the s	
T1HE= 1-0	OFFICE STATES S-33-65 CSGHING	20051- 1-U4359-04 TEMPCC(100031- 5-81692-01 RELXCCI 01- 0-00000
T 1007* T 2504* T 3045*	-9-96132+01 .T1008m9-94132+01T 9-97333+01 T 2005m 9-97324+01 T 9-9976+010 .T. 3004m9-99764+01T	1003# 9.90282+01 T 1009# 9.96294+01 T 1805# 9.96294+01 T 1006# 9.96132+01 1009# 9.96132+01_T. 2001# 9.97057*01_T. 2002# 9.97060+01.T. 2003# 9.9708+01 3001# 9.96782+01 T 3002# 9.98764+01 T 363# 9.99465+01 T 300# 9.99465+01
		10101P 4-38727-00 T 10102= 4-55408-00 T 10103= 4-21718-00 T 10104- 4-77771-00 10101P 4-38727-00 T 10102= 4-55408-00 T 10103= 4-21718-00 T 10104- 4-77771-00 10203= 8-62353-01 T 10207= 8-73650=01 T 10403= 9-97069-01 T 10404= 9-95150-01
T -9994#**	9.41826+01 1 103044 9.88426+01 T	10401 9.94782-01 T 10402- 9.90629-01 T 10403- 9.97069-01 T 10404- 9.95150-01
	LINE PRINTER PLOT OF SAMPLE PROBLEM	
	1	
90.	•=====2	
	1	
! ;	1	
* U.		
	1	
3u		******2
		•••2
u	•	
	••	
-30	•1	
	•• .	
ه و درا 6 هـ 1	71	
) !		
		•
		. #R-L
		3***}
 1		***
,		+4.7

FNU OF DATA

Figure 9.- Sample SINDA output and line printer plots which can be viewed on the CRT.