Review of chapter2 \sim chapter6

July 10, 2019

Chapter2 \sim Chapter3

Data features:

- Domain set: set of objects X
- Label set: set of objects Y
- Unknown distribution:
 - $\triangleright \mathcal{D} \sim \mathcal{X}$, with unknown fixed mapping function $f: \mathcal{X} \to \mathcal{Y}$
 - $\triangleright \mathcal{D} \sim (\mathcal{X}, \mathcal{Y})$
- Training data: finite sequence

$$S = \mathcal{X} \times \mathcal{Y} = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}$$

2. Learning framework:

- ▶ Label function: $h: \mathcal{X} \to \mathcal{Y}$
- Hypothesis set (or Hypothesis class): $\mathcal{H} = \{h_1, h_2, \dots\}$
- True error:

$$L_{\mathcal{D}}(h) := \underset{(x,y) \sim \mathcal{D}}{\mathbb{P}}[h(x) \neq y] := \mathcal{D}(\{(x,y) : h(x) \neq y\})$$

- ▶ Empirical error: $L_s(h) := \frac{|\{i \in [m]: h(x_i) \neq y_i\}|}{m}, [m] = \{1, \dots, m\}$ ▶ Empirical risk minimization: $h_s^{ERM} = \arg\min_{h \in \mathcal{H}} L_s(h)$
- ► ERM algorithm: $A^{ERM}: S \rightarrow h_S^{ERM}$

Chapter2 ∼ Chapter3

Definition 3.1 (PAC Learnability). A hypothesis class \mathcal{H} is PAC learnable if there exist a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ and a learning algorithm with the following property: For every $\epsilon, \delta \in (0,1)$, for every distribution \mathcal{D} over \mathcal{X} , and for every labeling function $f: \mathcal{X} \to \{0,1\}$, if the realizable assumption holds with respect to $\mathcal{H}, \mathcal{D}, f$, then when running the learning algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathcal{D} and labeled by f, the algorithm returns a hypothesis h such that, with probability of at least $1 - \delta$ (over the choice of the examples), $L_{(\mathcal{D}, f)}(h) \leq \epsilon$.

A hypothesis class ${\cal H}$ is PAC learnable if:

$$\exists m_{\mathcal{H}}(\delta, \epsilon) \to \mathbb{N}$$
 satisfies:
 $\forall \epsilon, \delta \in (0, 1), \{S : |S| \ge m_{\mathcal{H}}(\epsilon, \delta), S \sim \mathcal{D}^m\},$
 $\mathbb{P}\{\exists h_S = A(S) \in \mathcal{H}, L_{(\mathcal{D}, f)}(h_S) \le \epsilon\} \ge 1 - \delta$

Chapter2 ∼ Chapter3

Definition 3.3 (Agnostic PAC Learnability). A hypothesis class \mathcal{H} is agnostic PAC learnable if there exist a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ and a learning algorithm with the following property: For every $\epsilon, \delta \in (0,1)$ and for every distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$, when running the learning algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathcal{D} , the algorithm returns a hypothesis h such that, with probability of at least $1 - \delta$ (over the choice of the m training examples),

$$L_{\mathcal{D}}(h) \leq \min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') + \epsilon.$$

A hypothesis class ${\cal H}$ is agnostic PAC learnable if:

$$\exists m_{\mathcal{H}}(\delta,\epsilon)
ightarrow \mathbb{N}$$
 satisfies:

$$\forall \epsilon, \delta \in (0,1), \{S : |S| \ge m_{\mathcal{H}}(\epsilon,\delta), S \sim \mathcal{D}^m\}$$

$$\mathbb{P}\{\exists h_{\mathcal{S}} = A(\mathcal{S}) \in \mathcal{H}, L_{\mathcal{D}}(h_{\mathcal{S}}) \leq \min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') + \epsilon\} \geq 1 - \delta$$

Chapter4 ∼ Chapter5

Definition 4.1 (ϵ -representative sample). A training set S is called ϵ -representative (w.r.t. domain Z, hypothesis class \mathcal{H} , loss function ℓ , and distribution \mathcal{D}) if

$$\forall h \in \mathcal{H}, |L_S(h) - L_D(h)| \leq \epsilon.$$

Definition 4.3 (Uniform Convergence). We say that a hypothesis class \mathcal{H} has the *uniform convergence property* (w.r.t. a domain Z and a loss function ℓ) if there exists a function $m_{\mathcal{H}}^{\mathrm{UC}}: (0,1)^2 \to \mathbb{N}$ such that for every $\epsilon, \delta \in (0,1)$ and for every probability distribution \mathcal{D} over Z, if S is a sample of $m \geq m_{\mathcal{H}}^{\mathrm{UC}}(\epsilon, \delta)$ examples drawn i.i.d. according to \mathcal{D} , then, with probability of at least $1 - \delta$, S is ϵ -representative.

A hypothesis class ${\cal H}$ is *Uniform Convergence* if:

$$\exists m_{\mathcal{H}}^{UC}(\delta, \epsilon) \to \mathbb{N}$$
 satisfies:

$$\forall \epsilon, \delta \in (0,1), \{S : |S| \ge m_{\mathcal{H}}^{UC}(\epsilon, \delta), S \sim \mathcal{D}^m\}$$

$$\mathbb{P}\{\forall h \in \mathcal{H}, |L_S(h) - L_{\mathcal{D}}(h)| \le \epsilon\} \ge 1 - \delta$$

Chapter6

Definition 6.5 (VC-dimension). The VC-dimension of a hypothesis class \mathcal{H} , denoted VCdim(\mathcal{H}), is the maximal size of a set $C \subset \mathcal{X}$ that can be shattered by \mathcal{H} . If \mathcal{H} can shatter sets of arbitrarily large size we say that \mathcal{H} has infinite VC-dimension.

Theorem 6.7 (The Fundamental Theorem of Statistical Learning). Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0,1\}$ and let the loss function be the 0-1 loss. Then, the following are equivalent:

- 1. H has the uniform convergence property.
- 2. Any ERM rule is a successful agnostic PAC learner for \mathcal{H} .
- 3. H is agnostic PAC learnable.
- 4. H is PAC learnable.
- 5. Any ERM rule is a successful PAC learner for H.
- 6. H has a finite VC-dimension.