# Voltage Sensor Analysis

## Prepared by Siddhart Patel

### November 19, 2024

## Contents

| 1 | Introduction              | 2 |
|---|---------------------------|---|
| 2 | Circuit Diagram           | 2 |
| 3 | Voltage Divider Formula   | 2 |
| 4 | Resistor Selection        | 2 |
| 5 | Experimental Observations | 2 |
| 6 | Verification of Factor    | 3 |
| 7 | Conclusion                | 3 |

#### 1 Introduction

This document provides an analysis of a simple voltage sensor circuit based on a voltage divider configuration. The sensor reduces the input voltage  $(V_{in})$  to a lower voltage  $(V_{out})$  that can be safely read by a microcontroller such as an Arduino.

### 2 Circuit Diagram

The voltage divider circuit used in the sensor is shown below:



### 3 Voltage Divider Formula

The output voltage of the circuit is determined by the voltage divider formula:

$$V_{\rm out} = V_{\rm in} \times \frac{R_2}{R_1 + R_2}$$

#### 4 Resistor Selection

From the calculation:

$$Factor = \frac{R_2}{R_1 + R_2}$$

Given:

$$Factor = 0.2$$

and resistors:

$$R_1 = 30k\Omega, \quad R_2 = 7.5k\Omega$$

Substitute into the equation:

$$0.2 = \frac{7.5 \text{k}\Omega}{30 \text{k}\Omega + 7.5 \text{k}\Omega}$$

### 5 Experimental Observations

• Input voltage  $(V_{\rm in})$  from the adapter: 12.11 V

• Output voltage  $(V_{\text{out}})$  read on the Arduino: 5.06 V

• Voltage reference on Arduino ( $V_{\rm CC}$ ): 5.06 V

#### 6 Verification of Factor

The factor for the voltage divider can also be determined as:

$$Factor = \frac{V_{in}}{V_{out}}$$

Substituting the values:

$$Factor = \frac{12.11}{5.06} \approx 2.43$$

#### **Key Observation**

The calculated factor matches the expected division ratio, validating the resistor selection and circuit performance.

#### 7 Conclusion

The voltage sensor successfully scales down the input voltage to a level that is readable by the Arduino. The calculated and measured values demonstrate consistency, and the voltage divider circuit provides a simple yet effective solution for voltage measurement in microcontroller-based applications.