Chinmay Talegaonkar

🛪 Website | 🗷 ctalegaonkar@ucsd.edu | 🖬 LinkedIn | 🗘 GitHub | 🞓 Google Scholar

EDUCATION

University of California, San Diego

Ph.D. in Electrical and Computer Engineering

Advisor: Prof. Nicholas Antipa

University of California, Los Angeles

M.S. in Electrical and Computer Engineering

Advisor: Prof. Achuta Kadambi

Indian Institute of Technology, Bombay

B. Tech. in Electrical Engineering Minor in Computer Science

Advisor: Prof. Ajit Rajwade

Selected Publications

Repurposing Marigold for Zero-Shot Metric Depth Estimation via Defocus Blur Cues

Chinmay Talegaonkar, Nikhil G. Suresh, Zachary Novack, Yash Belhe, Priyanka Nagasamudra, Nicholas Antipa NeurIPS, 2025 (Spotlight). arXiv PrePrint ☑.

Volumetrically Consistent 3D Gaussian Rasterization

Chinmay Talegaonkar, Yash Belhe, Ravi Ramamoorthi, Nicholas Antipa

CVPR, 2025 (Spotlight). Paper 🗹 Code 🗹

RnGCam: High-speed video from rolling and global shutter measurements

Kevin Tandi, Xiang Dai, *Chinmay Talegaonkar*, Gal Mishne, Nicholas Antipa ICCV, 2025.

Pose Estimation of Buried Deep-Sea Objects using 3D Deep Learning Models

 $\textbf{\textit{Chinmay Talegaonkar*}}, \ \text{Jerry Yan*}, \ \text{Nicholas Antipa}, \ \text{Eric Terrill}, \ \text{Sophia Merrifield}$

OCEANS Conference and Expositions, 2024. Paper 🗹 Code 🗹

Visual Physics: Discovering Physical Laws from Videos

Chinmay Talegaonkar*, Pradyumna Chari*, Yunhao Ba*, Achuta Kadambi

ICCP 2020 Poster, CVPR 2020 Tutorial. arXiv PrePrint Z

Journal Version: On learning mechanical laws of motion from video using neural networks.

IEEE Access, 2023. Paper 🗹

Compressive Phase Retrieval Under Poisson Noise

Chinmay Talegaonkar, Parthasarthi Khirwadkar, Ajit Rajwade

IEEE International Conference on Image Processing (ICIP) 2019. Paper

Work Experience

Research Intern

Sunnyvale, CA

San Diego, CA

GPA: 4.0/4.0

2019 - 2021

GPA: 4.0/4.0

Mumbai, India

GPA: 9.07/10.0

2015 - 2019

Los Angeles, CA

Sept 2022 - Present

Amazon Lab126

June 2025 - Sept 2025

- Designed a novel data augmentation technique for indoor 3D point clouds, yielding a 3–4× improvement in mean F1 score. Applied this strategy to curate a large-scale labeled dataset of 120,000 houses, containing real and synthetic examples with diverse floor plans.
- Engineered a hybrid multiprocessing pipeline combining CPU multi-threading with GPU concurrency, delivering an 80× speedup in data generation and processing; also built a custom pipeline from scratch for training a multimodal language model with 3D point cloud inputs.
- Fine-tuned a multimodal architecture integrating a 0.5B parameter LLM (Qwen-2.5) and a 3D point cloud encoder for floor plan estimation, matching state-of-the-art methods in performance.

Research Intern

San Diego, CA

Qualcomm AI June 2023 – Sept 2023

• Developed a memory-efficient generalizable NeRF-like method to create human avatars from monocular videos. Achieved comparable accuracy to existing methods. Patent Link 🗹

- Invented a point-based 3D scene representation for human modeling that reduces GPU memory usage by 10x and training time by 100x respectively.
- Engineered an end-to-end pipeline to estimate SMPL mesh, and segmentation masks from videos.

Senior Deep Learning Engineer

Mountain View, CA

Intrinsic.ai

May 2022 - Sept 2022

- Led the development of a novel HDR fusion algorithm, resulting in higher pose estimation accuracy for difficult lighting scenarios.
- Implemented a deep learning-based feature extractor to improve stereo matching and point cloud generation from a multi-view camera setup.

Senior Deep Learning Engineer

Palo Alto, CA

Akasha Imaging - acquired by Intrinsic.ai (an Alphabet company) in May 2022.

May 2021 - May 2022

- Developed an end-to-end deep learning based multi-view pose estimation pipeline with more than 99% reliability and sub-millimeter accuracy. This led to the company's first product order.
- Engineered a synthetic data generation pipeline to generate training data for segmentation and keypoint estimation algorithms.
- Contributed to tools for ML Ops, CI/CD testing, pose evaluation frameworks, and data collection setups.

Deep Learning Software Intern

Santa Clara, CA

June 2020 - Sept 2020

- Implemented a linearized thread launching algorithm to optimize CUDA kernels for backpropagation in 2D and 3D convolution layers in popular CNN architectures, resulting in 30% speedup.
- Enabled complex valued convolution kernels in CUTLASS achieving more than 90% compute resource utilization.

KEY SKILLS

NVIDIA

Programming Languages: Python, C & C++, CUDA, Bash, MATLAB

Frameworks: Pytorch, OpenCV, numpy, mitsuba3, Slang.D, scikit-learn, scipy, pandas, blender,

Development Tools: Github, Google Cloud, Docker, Jenkins

TEACHING ASSISTANT

• Software Systems Lab

UCLA, Winter 2020

• Reinforcement Learning

UCLA, Spring 2020

• Introduction to Computer Vision

UCLA, Winter 2021

• Computational Imaging

UCSD, Spring 2024, 2025

MENTORSHIP

- **Jerry Yan** (MS, UCSD → CS PhD at Purdue): Mentored on underwater pose estimation research, resulting in a conference paper at *OCEANS 2024* and a journal submission currently under review.
- Nikhil G. Suresh (MS, UCSD → Qualcomm): Supervised on real data collection for a monocular depth estimation project, resulting in a paper ∠ currently under review.