1. Основные характеристики электромагнитного поля и среды.

Электромагнитная волна — это колебательный процесс, связанный с изменяющимися в пространстве и во времени взаимосвязанными электрическими и магнитными полями. Область распространения электромагнитных волн называется электромагнитным полем (ЭМП). Электромагнитное поле характеризуется векторами электрической напряженности Е и индукции D, магнитной напряженности Н и индукции В.

$$E = E(x_i, t), D = D(x_i, t), H = H(x_i, t), B = B(x_i, t).$$

Единица измерения напряженности электрического поля, согласно международной системе — вольт на метр (В/м), электрической индукции — кулон на квадратный метр (Кл/м2), напряженности магнитного поля — ампер на метр (А/м), магнитной индукции — тесла (Тл).Векторы Е и В однозначно определяются силовым воздействием поля на пробный заряд qп (точечный малый заряд, не изменяющий исследуемое поле). На пробный заряд qп, помещенный в какой-либо точке пространства и движущийся со скоростью v, действует сила Лоренца (Н), равная

$$\mathbf{F} = q_{\Pi} \mathbf{E} + q_{\Pi} [\mathbf{v} \mathbf{B}].$$

Отсюда вектор напряженности электрического поля E определяется как сила, действующая на неподвижный (v=0) единичный заряд

$$\mathbf{E} = \frac{\mathbf{F}}{q_{\pi}}.$$

Вектор индукции В определяется добавочной силой

$$\mathbf{F}_{_{\Pi}} = q_{_{\Pi}}[\mathbf{v}\mathbf{B}].$$

Электромагнитное поле можно характеризовать так называемыми электромагнитными потенциалами — векторным потенциалом A и скалярным ф. Эти величины связаны с векторами E и B следующим образом:

$$\mathbf{E} = -\operatorname{grad} \varphi - \frac{\partial \mathbf{A}}{\partial t},$$

$$\mathbf{B} = \operatorname{rot} \mathbf{A},$$

т. е. электрическое поле создается зарядами и изменением во времени магнитного поля; поле магнитной индукции имеет соленоидальный характер. Среда, в которой происходят электрические и

связанные с ними магнитные явления, характеризуется диэлектрической проницаемостью, магнитной проницаемостью и проводимостью. Связь векторов D и E, B и H определяется свойствами среды. В вакууме

$$\mathbf{D} = \boldsymbol{\varepsilon}_0 \mathbf{E}, \ \mathbf{B} = \boldsymbol{\mu}_0 \mathbf{H},$$

$$\varepsilon_0 = \frac{1}{36\pi} 10^{-9} \left(\frac{\Phi}{M} \right)$$
 — электрическая постоянная;

$$\mu_0 = 4\pi \cdot 10^{-7} \left(\frac{\Gamma_{\text{H}}}{\text{M}} \right) \quad \textbf{— магнитная постоянная}.$$

В зависимости от значения удельной проводимости среды делятся на

- проводники 104 См/м (сименс на метр),
- полупроводники $10-10 < \sigma < 104$ См/м,
- диэлектрики σ < 10–10 См/м

Проводники характеризуются наличием свободных зарядов, которые могут свободно перемещаться под действием электрического поля, при этом создается ток проводимости. В металлических проводниках это электроны, в жидких электролитах — ионы.

$$J = \sigma E$$
.

$$\mathbf{J} = \mathbf{\sigma}(\mathbf{E} + \mathbf{E}^{\mathbf{c}_{\mathrm{T}}}),$$

 $\mathbf{F}^{\text{ст}}$ — напряженность поля сторонних ЭДС, имеющих неэлектрическое происхождение, которое также вызывает ток проводимости. Если проводимость σ не

$$\sigma = \sigma(\mathbf{E}, \mathbf{H}).$$

Диэлектрики характеризуются наличием связанных зарядов, входящих в состав нейтральных молекул диэлектриков. Под действием электрического поля происходит смещение ядра атома, обладающего положительным зарядом, и искажение орбит отрицательных электронов. При этом

центр тяжести отрицательных зарядов уже не совпадает с положительным зарядом ядра. Такая система эквивалентна диполю.

$$\mathbf{p}_{3} = q\mathbf{l}.\tag{1.3}$$

$$\mathbf{P} = \mathbf{D} - \boldsymbol{\varepsilon}_0 \mathbf{E}. \tag{1.4}$$

$$\mathbf{P} = \lim \frac{\Delta \mathbf{p}_{9}}{\Delta V} = \sum_{i=1}^{n} q_{i} \mathbf{l}_{i}, (1.5)$$

где $\Delta \mathbf{p}_{\scriptscriptstyle 9}$ — вектор электрического момента объема ΔV , n — число диполей в единице объема. Если рассматривать связь зарядов в диполе как упругую, то

$$\mathbf{P} = \varepsilon_0 \chi_2 \mathbf{E}, \tag{1.6}$$

χ_э — безразмерный коэффициент, называемый электрической восприимчивостью.

$$\mathbf{D} = (1 + \chi_3) \varepsilon_0 \mathbf{E} = \varepsilon_a \mathbf{E},$$

где \mathcal{E}_a — коэффициент пропорциональности (Ф/м), называемый абсолютной диэлектрической проницаемостью

$$\mathcal{E}_a = \mathcal{E}\mathcal{E}_0$$
.

Здесь \mathcal{E} — относительная диэлектрическая проницаемость.

$$\chi_{\mathfrak{g}} = \chi_{\mathfrak{g}}(E), \ \varepsilon_a = \varepsilon_a(E).$$

$$D >> \epsilon_0 E$$
 и $\epsilon >> 1$.

Диэлектрическая проницаемость сегнетоэлектриков может составлять несколько тысяч единиц и $\varepsilon = \varepsilon(E)$. Пример - титанат бария.

Магнетики — это среды, способные намагничиваться. Аналогично вектору поляризации вектор намагниченности M (A/м) определяется выражением

$$\mathbf{M} = \lim \frac{\Delta \mathbf{p}_{\mathrm{M}}}{\Delta V} = \sum_{i=1}^{n} \mathbf{p}_{\mathrm{M}ai} = \chi_{\mathrm{M}} \mathbf{H},$$

где $\Delta \mathbf{p}_{\mathrm{M}}$ — вектор магнитного момента объема ΔV ;

 ${f p}_{{
m M}ai}$ — магнитный момент атома; n — число атомов в единице объема.

Вектор магнитной индукции определяется выражением

$$\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M}) = \mu_a \mathbf{H},$$

 μ_a — абсолютная магнитная проницаемость вещества,

$$\mu = \frac{\mu_a}{\mu_0}$$
 — относительная магнитная проницаемость

вещества.

Магнетики делят на диамагнетики, парамагнетики и ферромагнетики.

У **диамагнетиков** магнитный момент атома, определяемый магнитными моментами электронов, при отсутствии внешнего магнитного поля $\mathbf{p}_{Mai} = 0$.

У парамагнетиков и в отсутствие внешнего поля

$$\mathbf{p}_{\mathrm{M}ai} \neq 0$$
.

В ферромагнетиках существуют отдельные микроскопические области (домены) с линейными размерами порядка 10–3 см.

$$\mathbf{D} = \boldsymbol{\varepsilon}_0 \mathbf{E} + \mathbf{P} = \boldsymbol{\varepsilon}_a \mathbf{E},$$

$$\mathbf{B} = \boldsymbol{\mu}_0 (\mathbf{H} + \mathbf{M}) = \boldsymbol{\mu}_a \mathbf{H},$$

$$\mathbf{J} = \boldsymbol{\sigma} (\mathbf{E} + \mathbf{E}^{cT}).$$
(1.7)

Если анизотропия проявляется в магнитном поле (анизотропный магнетик), то

$$B_i = \mu_0 \mu_{ik} H_k.$$

Аналогично описывается анизотропия диэлектрических свойств и проводимости

$$D_{i} = \varepsilon_{0} \varepsilon_{ik} E_{k},$$

$$J_{i} = \sigma_{ik} (E_{k} + E_{k}^{\text{ct}}).$$

В случае анизотропных сред векторы **D**, **J** и **B** соответственно не параллельны **E** и **H**.

2. Классификация магнетиков. Намагниченность насыщения.

Магнетики делят на диамагнетики, парамагнетики и ферромагнетики.

У **диамагнетиков** магнитный момент атома, определяемый магнитными моментами электронов, при отсутствии внешнего магнитного поля $\mathbf{p}_{Mai} = 0$.

У парамагнетиков и в отсутствие внешнего поля

$$\mathbf{p}_{\mathrm{M}ai} \neq 0$$
.

В ферромагнетиках существуют отдельные микроскопические области (домены) с линейными размерами порядка 10–3 см.

$$\mathbf{D} = \boldsymbol{\varepsilon}_0 \mathbf{E} + \mathbf{P} = \boldsymbol{\varepsilon}_a \mathbf{E},$$

$$\mathbf{B} = \boldsymbol{\mu}_0 (\mathbf{H} + \mathbf{M}) = \boldsymbol{\mu}_a \mathbf{H},$$

$$\mathbf{J} = \boldsymbol{\sigma} (\mathbf{E} + \mathbf{E}^{cT}).$$
(1.7)

Если анизотропия проявляется в магнитном поле (анизотропный магнетик), то

$$B_i = \mu_0 \mu_{ik} H_k.$$

Аналогично описывается анизотропия диэлектрических свойств и проводимости

$$D_i = \varepsilon_0 \varepsilon_{ik} E_k,$$

$$J_i = \sigma_{ik} (E_k + E_k^{\text{CT}}).$$

В случае анизотропных сред векторы **D**, **J** и **B** соответственно не параллельны **E** и **H**.

<u>Намагниченность насыщения</u> — состояние ферромагнетика, при котором его намагниченность достигает предельного значения Jm, не меняющегося при дальнейшем увеличении напряженности намагничивающего поля. При этом образец состоит как бы из одного домена с намагниченностью насыщения, направленной по полю.

3. Диэлектрик электрическом поле. Индуцированная поляризация.

• Диэлектрик электрическом поле

Диэлектрики состоят из молекул. Заряды в диэлектрике не могут свободно перемещаться создавая ток. Тем не менее молекулы обладают электрическими свойствами. Под действием электрического поля заряды в диэлектрике смещаются на расстояния порядка межатомных из положения равновесия – происходит поляризация диэлектрика – молекулы становятся электрическими диполями, ориентированными положительно заряженными концами по полю. Возникшие заряды называются индукционными, или связанными. Помимо них в диэлектрике могут быть свободные (сторонние) заряды - нескомпенсированные макроскопические заряды, появившиеся в результате, например электризации трением.

p – дипольный электрический момент

l — плечо диполя

Для системы зарядов:

$$\vec{p} = \sum_{e,s} q_i \vec{r}_i$$

 $\vec{r}_{_i}$ - радиус-векторы зарядов

Дипольный момент определяет поведение молекулы во внешнем электрическом поле.

Неполярные молекулы (электронная поляризуемость): в отсутствие электрического поля «центры тяжести» отрицательных и положительных зарядов молекул совпадают (нет собственного дипольного момента). Возникший в электрическом поле индуцированный дипольный момент пропорционален напряженности электрического поля:

$$\vec{p} = \varepsilon_{_0} \beta \vec{E}$$
 β - *поляризуемость* молекулы

Полярные молекулы (ориентационная поляризуемость): в отсутствие электрического поля «центры тяжести» отрицательных и положительных зарядов молекул не совпадают (наличие собственного дипольного момента у молекул). В отсутствие электрического поля диполи совершают хаотическое тепловое движение, их ориентация беспорядочна. При внесении в поле происходит ориентация диполей по полю, сам дипольный момент не изменяется (жесткий диполь). Ионные диэлектрические кристаллы (ионная поляризуемость): 2 решетки из ионов противоположных знаков. При внесении в электрическое поле происходит сдвиг решеток.

• Поляризация диэлектриков

В отсутствие внешнего электрического поля суммарный дипольный момент диэлектрика равен нулю. При внесении в поле происходит поляризация диэлектрика — дипольный момент становится отличным от нуля. степень поляризации характеризуется дипольным моментом единицы объема диэлектрика:

$$\vec{P} = rac{1}{\Delta V} \sum_{\Delta V} \vec{p}$$
 - вектор поляризации (поляризованность).

Для изотропных диэлектриков:

$$P = \kappa \epsilon_0 E$$
 $\kappa - \partial u \partial n e \kappa m p u v e c \kappa a g o c n p u u m v u g o c m b$

Если внести в однородное электрическое поле диэлектрик, то поле возникших связанных зарядов будет направлено противоположно внешнему полю и ослабляет его. В результате внутри диэлектрика:

$$E = \frac{E_0}{\varepsilon}$$

є показывает во сколько раз поле ослабляется в диэлектрике

Связанные (индукционные) заряды

- входят в состав молекул диэлектрика
- не могут покинуть пределы молекулы, в состав которой они входят, под действием электрического поля.

Сторонние (свободные) заряды заряды, находящиеся в пределах диэлектрика, но не входящие в состав его молекул; расположенные за пределами диэлектрика.

Поверхностная плотность связанных зарядов:

$$\sigma_{\text{CBH3}} = P_n = \kappa \, \varepsilon_0 \, E_n$$

 P_n — нормальная составляющая поляризованности; E_n — нормальная составляющая поля внутри диэлектрика.

 $E_n > 0$ — на поверхности диэлектрика положительные заряды (линии напряженности выходят из диэлектрика).

 $E_n < 0$ — на поверхности диэлектрика отрицательные заряды (линии напряженности входят в диэлектрик).

Объемная плотность связанных зарядов внутри диэлектрика:

$$\rho_{_{\mathtt{CBA3}}} = -\nabla P$$

- при неоднородной поляризации: когда не все молекулы диэлектрика поляризованы и ориентированы одинаково.

В однородном диэлектрике $\rho_{\text{связ}} = 0$.

Введем вспомогательную величину, источником которой являются только сторонние заряды:

$$\vec{D} = \varepsilon_{0}\vec{E} + \vec{P}$$

 $\vec{D} = \epsilon_{_0} \vec{E} + \vec{P}$ - вектор электрического смещения (электрической индукции)

Распишем
$$P$$
: $D = \varepsilon_0 E + \varepsilon_0 \kappa E = \varepsilon_0 (1 + \kappa) E = \varepsilon_0 \varepsilon E$

$$D = \varepsilon_0 \varepsilon E$$

$$\varepsilon = 1 + \kappa -$$

диэлектрическая проницаемость среды:

число, показывающее, во сколько раз напряженность поля в вакууме больше напряженности поля в однородном диэлектрике.

$$D = \varepsilon_0 \varepsilon E = \varepsilon_0 E_0 = D_0$$

- электрическое смещение D внутри диэлектрика совпадает с электрическим смещением внешнего поля D_0 .

При $\varepsilon = 3$:

- Густота линий в диэлектрике в 3 раза меньше, чем вне пластины.
- Линии равноудалены, т.к. поле однородно.

Можно показать, что
$$\sigma_{cers} = \frac{\varepsilon - 1}{\varepsilon} \sigma_{cmop}$$

Из трех линий \vec{E} , начинающихся (заканчивающихся) на сторонних зарядах, две должны начинаться (заканчиваться) на связанных зарядах.

4. Комплексные диэлектрическая и магнитная проницаемости.

Пусть среда имеет конечную проводимость $\sigma \neq 0$ и сторонние токи отсутствуют j_{cm} . Учтем, что $\dot{\vec{j}}_{m} = \sigma \dot{\vec{E}}_{m} \ \dot{\vec{D}}_{m} = \varepsilon \dot{\vec{E}}_{m}$. Тогда в комплексной форме первое уравнение Максвелла запишется в виде

$$\operatorname{rot} \dot{\vec{H}}_m = j \cos \vec{D}_m + \dot{\vec{j}}_m = j \cos \dot{\vec{E}}_m + \sigma \dot{\vec{E}}_m = j \cos \left(1 - j \frac{\sigma}{\cos}\right) \dot{\vec{E}}_m$$

Вводя обозначение

$$\dot{\varepsilon} = \varepsilon \left(1 - j \frac{\sigma}{\omega \varepsilon} \right) = \varepsilon - j \frac{\sigma}{\omega}$$

получим

$$\operatorname{rot} \dot{\vec{H}}_m = j \omega \dot{\hat{\mathbf{z}}} \dot{\vec{E}}_m$$

Как видно, величина $\dot{\epsilon}$ по тому месту, которое она занимает в уравнении, может рассматриваться в качестве диэлектрической проницаемости. Это так называемая комплексная абсолютная диэлектрическая проницаемость. Она зависит от проводимости среды, ее диэлектрической проницаемости и частоты. Преобразуем выражение для нее к виду

$$\dot{\varepsilon} = \varepsilon' - j\varepsilon''$$

Комплексная диэлектрическая проницаемость также часто обозначается в виде эпсилон с тильдой: $\widetilde{\epsilon}$.

Значение реальной части комплексной диэлектрической проницаемости говорит об интенсивности процесса поляризации, в то время как мнимая часть характеризует плотность токов проводимости.

Отношение реальной и мнимой частей комплексной диэлектрической проницаемости равно отношению амплитуд плотностей тока смещения и тока проводимости и называется тангенсом угла электрических потерь. Комплексные амплитуды векторов плотности тока проводимости и плотности

тока смещения равны соответственно $\dot{\bar{j}}_m = \sigma \dot{\bar{E}}_m \ \dot{\bar{j}}_m^{cm} = j \omega \epsilon \dot{\bar{E}}_m$, тогда

$$\frac{\left|\dot{\bar{j}}_{m}\right|}{\left|\dot{\bar{j}}_{m}\right|} = \frac{\sigma}{\omega \epsilon} = ig \delta$$

$$-j\frac{\sigma}{\omega}$$

$$= \frac{\delta}{\delta}$$

Рисунок 39 - Комплексная диэлектрическая проницаемость

Чем больше этот угол, тем большая часть электромагнитной энергии рассеивается в виде тепла.

Тангенс угла потерь определяет свойства среды в гармоническом электромагнитном поле и является критерием деления сред на проводники и диэлектрики:

$$1. \,\,$$
 tg $\delta \Box \,\, 1$, т.е. $j \, \Box \,\, j$ см – среда хорошо проводящая

2.
$${\sf tg} \delta \Box \ 1$$
 , т.е. $j \Box \ j_{\sf cm}$ — среда близка к диэлектрику

3.
$${\rm tg}\,\delta\!\approx\!1$$
 , т.е. $j\!\approx\!j_{\rm cm}$ —среда полупроводящая.

В силу частотной зависимости тангенса угла потерь, одна и та же среда на разных частотах может быть хорошо проводящей, полупроводящей и слабопроводящей (диэлектриком). С увеличением частоты все среды приобретают свойства диэлектрика. Металлы во всем диапазоне радиотехнических частот ведут себя как проводники.

5. Классификация электромагнитных полей.

Электромагнитное поле (ЭМП) представляет собой особый вид материи. Оно характеризуется четырьмя векторными величинами: Е - напряженностью электрического поля, D - электрической индукцией, Н - напряженностью магнитного поля, В - магнитной индукцией. Основными характеристиками ЭМП являются следующие: **период и частота.**

$$f = 1/T. \tag{8.1}$$

$$\omega = 2\pi f = 2\pi/T. \tag{8.2}$$

Угловая частота имеет размерность рад/с. ЭМП с частотой, равной нулю, называются статическими полями (электростатическими и магнитостатическими).

Диапазон частот, Г и	Диапазон	Наименование диапазонов	
		частотное	Метрическое
ОД-10-3-10	10 ⁵ -10 ⁴ км	Крайне низкие частоты (КНЧ)	Декамегаметровые волны
0,3102-3102	10 ⁴ -10 ³ км	Сверхнизкие частоты (СЫЧ)	Мегаметровые волны
0,3-10 ³ -310 ³	10 ³ -10 ² км	Инфранизкие частоты (ИНЧ)	Г «стокилометровые волны
0,3-104-3104	10 ² —10 км	Очень низкие частоты (ОНЧ)	Мириаметровые волны
0,3105-3105	10-1 км	Низкие частоты (НЧ)	Километровые волны
0,3-10 ⁶ -310 ⁶	10 ³ -10 ² м	Средние частоты (СЧ)	Г «стометровые волны
0,3-107-3-107	10 ² —10 м	Высокие частоты (ВЧ)	Декаметровые волны
0,3-108-3-108	10-1 м	Очень высокие частоты (ОВЧ)	Метровые волны
0,3-10-3-104	Кр-Ю см	Ультравысокие частоты (УВЧ)	Дециметровые волны
0,3-10 ¹⁰ -3-Ю ¹⁰	10-1 см	Сверхвысокие частоты (СВЧ)	Сантиметровые волны
0,310 ⁿ -3-10 ⁿ	10-1 мм	Крайне высокие частоты (КВЧ)	Миллиметровые волны
0,3-10 ¹² -3-10 ¹²	1-0,1 мм	Г ипервысокие частоты (ГВЧ)	Децимиллиметровые волны

Наряду с «радиотехнической» шкалой в электротехнике находит применение упрощенная шкала ЭМП, предложенная Международной электротехнической комиссией (МЭК):

- низкочастотные (HЧ) от 0 до 60Γ ц;
- среднечастотные (СЧ) от 60 Гц до 10 кГц;
- высокочастотные (ВЧ) от 10 кГц до 300 МГц;
- сверхвысокочастотные (СВЧ) от 300 МГц до 300 ГГц.

Скорость и длина волны. Скорость (ц, м/с) распространения электромагнитной волны определяется свойствами среды:

$$v = \frac{1}{\sqrt{\varepsilon \cdot \mu}}, \tag{8.3}$$

$$v = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = 2,998 \cdot 10^8 \,. \tag{8.4}$$

$$\lambda = v/f. \tag{8.5}$$

Зоны воздействия. У переменных ЭМП различают ближнюю и дальнюю зоны воздействия.

Интенсивность. В гигиенической практике интенсивность ЭМП в диапазоне частот 0 Гц - 300 МГц характеризуется следующими величинами:

- E среднеквадратическим значением напряженности электрического поля, выражаемой в вольтах на метр (B/M).
- Н— среднеквадратическим значением напряженности магнитного поля, имеющей размерность амперы на метр (A/M).

Для поля в вакууме справедливо соотношение:

$$B = \mu_0 \cdot H. \tag{8.6}$$

$$E/H = Z_0, (8.7)$$

где Z₀ - волновое сопротивление свободного пространства, равное 377 Ом.

По энергетическому спектру различают ЭМП:

- синусоидальные (монохроматические);
- модулированные;
- импульсные;
- флуктуационные (шумовые).

По виду источника принято разделять ЭМП от естественных источников (земных и внеземных) и ЭМП от искусственных (антропогенных) источников.

По видам воздействия различают ЭМП:

- изолированное (от одного источника);
- сочетанное (от двух и более источников одного частотного диапазона);
- смешанное (от двух и более источников различных частотных диапазонов);
- комбинированное (в случае одновременного действия какого- либо другого неблагоприятного фактора).

По времени облучение может быть постоянным и прерывистым.

6. Классификация электромагнитных волн.

Наряду с «радиотехнической» шкалой в электротехнике находит применение упрощенная шкала ЭМП, предложенная Международной электротехнической комиссией (МЭК):

- низкочастотные (HЧ) от 0 до 60Γ ц;
- среднечастотные (СЧ) от 60 Гц до 10 кГц;
- высокочастотные (ВЧ) от 10 кГц до 300 МГц;
- сверхвысокочастотные (СВЧ) от 300 МГц до 300 ГГц.

Скорость и длина волны. Скорость (ц, м/с) распространения электромагнитной волны определяется свойствами среды:

$$v = \frac{1}{\sqrt{\varepsilon \cdot \mu}}, \tag{8.3}$$

$$v = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = 2,998 \cdot 10^8 \,. \tag{8.4}$$

$$\lambda = v/f. \tag{8.5}$$

Зоны воздействия. У переменных ЭМП различают ближнюю и дальнюю зоны воздействия.

Интенсивность. В гигиенической практике интенсивность ЭМП в диапазоне частот 0 Гц - 300 МГц характеризуется следующими величинами:

- E среднеквадратическим значением напряженности электрического поля, выражаемой в вольтах на метр (B/м).
- Н— среднеквадратическим значением напряженности магнитного поля, имеющей размерность амперы на метр (A/M).

Для поля в вакууме справедливо соотношение:

$$B = \mu_0 \cdot H. \tag{8.6}$$

$$E/H = Z_0, (8.7)$$

где Z₀ - волновое сопротивление свободного пространства, равное 377 Ом.

По энергетическому спектру различают ЭМП:

- синусоидальные (монохроматические);
- модулированные;
- импульсные;
- флуктуационные (шумовые).

По виду источника принято разделять ЭМП от естественных источников (земных и внеземных) и ЭМП от искусственных (антропогенных) источников.

По видам воздействия различают ЭМП:

- изолированное (от одного источника);
- сочетанное (от двух и более источников одного частотного диапазона);
- смешанное (от двух и более источников различных частотных диапазонов);
- комбинированное (в случае одновременного действия какого- либо другого неблагоприятного фактора).

По времени облучение может быть постоянным и прерывистым.

7. Волновые уравнения для напряженностей поля.

Существование электромагнитных волн — переменного электромагнитного поля, распространяющегося в пространстве с конечной скоростью, следовало из уравнений Максвелла. В однородной и изотропной среде, не поглощающей энергию, вдали от зарядов и токов, создающих электромагнитное поле, векторы напряженностей \overline{E} и \overline{H} переменного электромагнитного пол удовлетворяют так называемому волновому уравнению:

$$\Delta \overline{E} = \frac{1}{v^2} \frac{\partial^2 \overline{E}}{\partial t^2}$$

$$\Delta \overline{H} = \frac{1}{v^2} \frac{\partial^2 \overline{H}}{\partial t^2}$$
(1)

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
- оператор Лапласа; $\boldsymbol{\upsilon}$ - фазовая скорость.

Всякая функция, удовлетворяющая уравнениям (1), описывает некоторую волну. Следовательно, электромагнитные поля действительно могут существовать в виде электромагнитных волн. Фазовая скорость электромагнитных волн определяется выражением

$$\upsilon = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} \frac{1}{\sqrt{\varepsilon \mu}} = \frac{c}{\sqrt{\varepsilon \mu}}$$

 \mathcal{E}_0, μ_0 - соответственно электрическая и магнитная постоянные;

 ${\cal E}, \mu$ -соответственно электрическая и магнитная проницаемости среды;

$$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}$$
 - скорость электромагнитных волн в вакууме.

Совпадение размерного коэффициента в (2) со скоростью распространения света в вакууме указывает на глубокую связь между электромагнитными и оптическими явлениями, позволившую Максвеллу создать электромагнитную теорию света, согласно которой свет представляет собой электромагнитные волны.

8. Интегральные уравнения электромагнитного поля.

В основу уравнений электромагнитного поля легли следующие экспериментально установленные законы и факты.

1. Закон о возбуждении магнитного поля — закон Ампера

$$\oint_{L} \mathbf{H} \, \mathbf{dl} = \sum_{k} i_{k}. \quad (1.8)$$

Циркуляция напряженности магнитного поля равна алгебраической сумме токов, охватываемых контуром (рис. 1.1). Этот закон указывает, что причиной существования магнитного поля является ток.

2. Закон электромагнитной индукции — закон Фарадея

Наводимая в контуре ЭДС, равная циркуляции напряженности электрического поля Е вдоль всего контура проводника L, равна изменению во времени потока магнитной индукции Ф (Вб) через площадь, ограниченную этим контуром (рис. 1.2). Это означает, что причиной создания электрического поля (ЭДС) является изменение магнитного потока во времени.

3. Закон взаимодействия электрических зарядов — закон Кулона

$$\mathbf{F} = \mathbf{e}_r \, \frac{qq'}{4\pi\varepsilon_a r^2}. \tag{1.10}$$

Между двумя покоящимися зарядами действует сила, прямо пропорциональная произведению зарядов и обратно пропорциональная квадрату расстояния между ними. Эта сила направлена от одного заряда к другому.

4. Отсутствие магнитных зарядов, аналогичных электрическим.

Правую часть уравнения закона Ампера (1.8) можно представить в виде

$$\sum_{k} i_{k} = \int_{S} (\mathbf{J} + \mathbf{J}_{cM}) \, d\mathbf{S},$$

где

$$\mathbf{J} = \sigma(\mathbf{E} + \mathbf{E}^{cT})$$

– плотность тока проводимости, обусловленного движением свободных зарядов;

Јсм — плотность тока смещения, обусловленного изменением электрического поля.Изменение электрического момента единицы объема, т. е. изменение вектора поляризации, согласно (1.5) определяется выражением

$$\mathbf{P} = \lim \frac{\Delta \mathbf{p}_{9}}{\Delta V} = \sum_{i=1}^{n} q_{i} \mathbf{l}_{i}, (1.5)$$

$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \sum_{i=1}^{n} q_{i} \mathbf{l}_{i} = \mathbf{v} \sum_{i=1}^{n} q_{i} = \rho_{\mathrm{CB}} \mathbf{v} = \mathbf{J}_{\mathrm{пол}},$$

где (po)св – объемная плотность одноименных связанных смещающихся зарядов; Jпол – плотность тока поляризации. Ток смещения в вакууме определяется выражением

$$\mathbf{J}_{\text{CM.BAK}} = \mathbf{\varepsilon}_0 \, \frac{\partial \mathbf{E}}{\partial t}.$$

Полный ток, создающий магнитное поле

$$\mathbf{J}_{\text{полн}} = \mathbf{J} + \frac{\partial \mathbf{P}}{\partial t} + \boldsymbol{\varepsilon}_0 \frac{\partial \mathbf{E}}{\partial t} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t},$$

и первое интегральное уравнение электромагнитного поля имеет вид

$$\oint_{L} \mathbf{H} \, d\mathbf{l} = \int_{S} (\mathbf{J} + \mathbf{J}_{cM}) \, d\mathbf{S} = \int_{S} \left(\mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \right) d\mathbf{S}. \quad (1')$$

Представим правую часть уравнения в законе электромагнитной индукции (1.9) в виде

$$-\frac{\partial \Phi}{\partial t} = -\frac{\partial}{\partial t} \int_{S} \mathbf{B} \, d\mathbf{S},$$

и получим второе интегральное уравнение электромагнитного поля

$$\oint_{L} \mathbf{E} \, d\mathbf{l} = -\frac{\partial}{\partial t} \int_{S} \mathbf{B} \, d\mathbf{S}. \quad (||')$$

Определяя поток электрической индукции через поверхность сферы радиуса г, получим

$$\oint_{S} \mathbf{D} \, \mathrm{d}\mathbf{S} = q.$$

В общем случае

$$q = \int_{V} \rho \, dV,$$

где (po) — объемная плотность заряда (Кл/м3). С учетом этого получим третье интегральное уравнение электромагнитного поля

$$\oint_{S} \mathbf{D} \, d\mathbf{S} = \int_{V} \rho \, dV, \qquad (III')$$

представляющее известную теорему Гаусса: поток вектора электрической индукции D через замкнутую поверхность S равен величине заряда q, расположенного в объеме V, ограниченном этой поверхностью. Это уравнение является обобщением опытного факта о прерывности электрических силовых линий на поверхности зарядов. Обобщая опытный факт об отсутствии магнитных зарядов, аналогичных электрическим, получим четвертое интегральное уравнение электромагнитного поля

$$\oint_{S} \mathbf{B} d\mathbf{S} = 0.$$
 (IV)

9. Дифференциальные уравнения электромагнитного поля.

Эти уравнения применимы к более широкому диапазону волн. Однако они не пригодны для описания электромагнитных процессов на частотах, соответствующих волнам, длина которых λ сравнима с расстоянием между элементарными частицами вещества d.

Первое дифференциальное уравнение электромагнитного поля получается из первого интегрального уравнения (I') путем применения теоремы Стокса и приравнивания подынтегральных выражений

$$rot \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}.$$
 (I)

Из этого уравнения следует, что вихревое магнитное поле связано с наличием токов проводимости и смещения.

Второе дифференциальное уравнение получается аналогично первому из второго интегрального уравнения (II')

$$\operatorname{rot} \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}.$$
 (II)

Отсюда следует, что вихревое электрическое поле связано с изменением во времени магнитной индукции. Из уравнений (I) и (II) следует возможность распространения электромагнитных волн вдали от проводников с током, так как электрическое и магнитное поля могут существовать, взаимно возбуждая друг друга.

Третье дифференциальное уравнение получается из третьего интегрального уравнения (III') путем применения теоремы Остроградского–Гаусса и приравнивания подынтегральных выражений

$$\operatorname{div} \mathbf{D} = \rho. \tag{III}$$

Из этого уравнения следует, что электрическое поле кроме вихревой компоненты может иметь и потенциальную, определяемую электрическими зарядами.

Четвертое дифференциальное уравнение получается аналогично предыдущему из четвертого интегрального уравнения (IV')

$$\operatorname{div} \mathbf{B} = 0. \quad \text{(IV)}$$

Из этого уравнения следует, что нет магнитных зарядов, аналогичных электрическим.

Четыре уравнения Максвелла в дифференциальной форме представляют пространственно-временное описание электромагнитного процесса. Однако этих уравнений еще недостаточно для решения задач, так как они не учитывают свойств среды, которые задаются зависимостью векторов D, J и B от E и H.

10. Уравнения непрерывности в интегральной и дифференциальной форме.

Из первого уравнения Максвелла в дифференциальной форме (I), применяя к нему операцию дивергенции, с учетом формулы

$$\operatorname{div} \operatorname{rot} \mathbf{H} = 0$$
, получим

$$\operatorname{div}\left(\mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}\right) = 0,$$

т. е. линии полного тока должны быть замкнуты. Если контур тока проходит через проводники, диэлектрики или вакуум, то ток проводимости, протекающий в проводниках, замыкается на токсмещения в вакууме и диэлектрике. Учитывая (III) и поменяв местами операции div и ∂

 $\frac{\partial}{\partial t}$, получим пятое дифференциальное уравнение

$$\operatorname{div} \mathbf{J} = -\frac{\partial \rho}{\partial t}, \quad (V)$$

выражающее закон сохранения заряда и называемое уравнением непрерывности. Интегрируя по объему V и применяя теорему Остроградского-Гаусса

$$\int_{V} \operatorname{div} \mathbf{J} \, dV = \oint_{S} \mathbf{J} \, d\mathbf{S} ,$$

получим этот закон в интегральной форме

$$\oint_{S} \mathbf{J} \, d\mathbf{S} = -\frac{\partial}{\partial t} \int_{V} \rho \, dV. \quad (V')$$

Ток через замкнутую поверхность равен убыли заряда в объеме, ограниченном этой поверхностью.

- 11. Волновые уравнения для электромагнитных потенциалов поля.
- 12. Решения уравнений для запаздывающих потенциалов.
- 13. Теорема единственности решений уравнений Максвелла.
- 14.Граничные условия для нормальных составляющих электромагнитного поля.
- 15. Граничные условия для тангенциальных составляющих электромагнитного поля.
- 16. Граничные условия Леонтовича.
- 17. Теорема Умова-Пойнтинга.
- 18. Вектор Пойнтинга. Баланс энергии.
- 19. Комплексная теорема Умова Пойнтинга
- 20. Электрический резонанс.
- 21.Излучение электрического диполя Герца. Вывод общих выражений для напряженностей электрического и магнитного полей.
- 22.Излучение электрического диполя Герца. Диаграмма излучения.
- 23.Излучение электрического диполя Герца. Особенности полей ближней и дальней зон.
- 24. Фазовая и групповая скорости электромагнитной волны.
- 25.Поляризация электромагнитных волн.
- 26. Распространение плоской электромагнитной волны в безграничной изотропной среде с потерями. Дисперсия.
- 27. Распространение плоской электромагнитной волны в безграничной изотопной среде без потерь.
- 28. Распространение плоской электромагнитной волны в анизотропной ферромагнитной среде при продольном подмагничивании. Вращение плоскости поляризации (эффект Фарадея).
- 29. Распространение электромагнитной волны в анизотропной ферромагнитной среде при поперечном подмагничивании. Двойное лучепреломление (Эффект Коттона-Мутона).
- 30. Распространение электромагнитной волны в изотропной плазме.
- 31. Распространение электромагнитной волны в плазме с продольным подмагничиванием.
- 32.Распространение электромагнитной волны в плазме с поперечным подмагничиванием.
- 33.Переход электромагнитной волны через плоскопараллельную диэлектрическую пластину.
- 34. Нормальное падение на границу раздела двух сред. Коэффициент стоячей волны.
- 35. Наклонное падение на границу раздела двух сред без потерь.
- 36. Формулы Френеля для горизонтально-поляризованной волны.
- 37. Формулы Френеля для вертикально-поляризованной волны.
- 38.Полное прохождение электромагнитной волны при наклонном падении на границу раздела сред без потерь. Угол Брюстера.
- 39.Полное отражение от границы раздела двух диэлектрических сред.
- 40. Нормальное падение электромагнитного поля на движущуюся плоскость раздела. Эффект Доплера.

- 41. Направляющие системы.
- 42. Концепция парциальных волн.
- 43. Волны типов Е, Н и Т.
- 44.Основные свойства направляемых электромагнитных волн.
- 45. Распространение волны типа Е в прямоугольном волноводе.
- 46. Распространение волны типа Н в прямоугольном волноводе.
- 47.Волна Н₁₀ в прямоугольном металлическом волноводе.
- 48. Распространение волны типа Н в круглом металлическом волноводе.
- 49. Распространение волны типа Е в круглом металлическом волноводе.
- 50.Волна H_{11} в круглом металлическом волноводе.
- 51. Коаксиальный волновод. Характеристики волны основного типа.
- 52. Микрополосковые линии передачи. Характеристики волны основного типа.
- 53. Линии передачи с волной типа Т. Основные характеристики.
- 54. Распространение электромагнитной волны в диэлектрическом волноводе.
- 55. Потери в волноводах.
- 56.Поверхностные волны и замедляющие структуры.
- 57.Поверхностный эффект.
- 58. Четвертьволновый трансформатор.