				-1-1
Reg. No				

B.Tech DEGREE EXAMINATION, DECEMBER 2023

Fifth to Seventh Semester

18CSE351T - COMPUTATIONAL LOGIC

(For the candidates admitted during the academic year 2020 - 2021 & 2021 - 2022)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
ii. Part - B and Part - C should be answered in answer booklet.

Time: 3 Hours			Max.	Max. Marks: 100			
PART - A (20 × 1 = 20 Marks) Answer all Questions			Mar	ks BL	СО		
1.	The valuation for P↔Q is (A) TFFT (C) FFTT	(B) TTFF (D) FTTF	1	1	1		
2.	If any formula derives true for all valuation (A) Consistent (C) Tautology	ons, then the formula is said to be (B) Inconsistent (D) Satisfiable	1	1	1		
3.	Disjunction can also be denoted by(A) \rightarrow (C) \downarrow	(B) ↑ (D) ↑	1	1	1		
4.	The Valuation of $(p \lor q) \land \neg p \land \neg q$ is (A) TTFF (C) TTTT	(B) FFTT (D) FFFF	1	2	1		
5.	The transitivity rule justifies the de (A) Theoritical (C) Logical	velopment of any mathematical theorem (B) Step-by-step (D) Detailed	1	1	2		
6.	Which of the following is Derived rules of (A) LEM (C) Moddus ponens	f the Propositional logic (B) Bottom Up Elimination (D) Rules for Implication	1	1	2		
7.	 Which one of the following is true in case (A) To prove φ Λ ψ, φ or ψ should be proved separately and then use the rule Λi. (C) To prove φ Λ ψ, first neither φ nor ψ should be proved separately and then use the rule Λi 	 of Ai Rule (B) To prove φ Λ ψ, first φ and ψ should be proved separately and then use the rule Ai. (D) To prove φ Λ ψ, first φ should be proved and then use the rule Ai 	1	1	2		
8.	Identify which one of the following is not ∧ (q ∨ (¬r)))). (A) p (C) q ∨ (¬r)	a sub tree for the formula $(((\neg p) \land q) \rightarrow (p \land q))$ (B) q (D) r	1	2	2		
9.	First-order logic is an extension of (A) temporal logic (C) propositional logic	(B) Predicate logic (D) Semantics	1	1	3		
	In a formula $\forall x \exists y P(x, y, z)$, Find the free (A) x (C) z		1	2	3		

11.	Let φ be $\varphi 1 \to \varphi 2$. If φ evaluates to F, the that $\varphi 1$ evaluates to T and $\varphi 2$ to F. (A) $\neg \varphi 1 \land \neg \varphi 2 \mid \neg (\varphi 1 \to \varphi 2)(\varphi 1 \to \varphi 2)$	en Completeness equation will be we know (B) $\varphi 1 \land \neg \varphi 2 \mid -(\varphi 1 \rightarrow \varphi 2)$	1	2	3
	(C) $\varphi 1 \land \neg \varphi 2 \mid \neg (\varphi 1 \rightarrow \varphi 2)$	(D) $\varphi 1 \wedge \neg \varphi 2 \mid -(\varphi 1 \rightarrow \varphi 2)(\varphi 1 \wedge \neg \varphi 2)$			
12.	is the existential quantifier and is read	1	2	3	
	$\overline{(A) \varphi}$	(B) μ			
	(C) V	E (C)			
13.	$\exists x (p \rightarrow q) - \parallel -$	ik száltalátás respeciálók ^a od karapitotta szált	1	1	4
	$(A) \forall x (p \rightarrow q)$	(B) $p \to \forall x q$			
	(C) $\forall x p \leftrightarrow q$	(D) $\forall x p \rightarrow q$			
14	$\forall x \phi / \phi[t/x]$. This is the rule for eliminating	19	1	1	4
1	νιφ, φ[σι]. Σπο ιο αιο τοιο τοι οιπιποσι				
	(A) over all quantifier (C) conjunction	(B) existential quantifier (D) disjunction			
15.	Let U be a set of closed formulas in firs following conditions hold for all formula according to the above statement.	st-order logic. "U is a Hintikka set iff the as $A \in U$ " Which of the following is true	1	2	4
	(A) If A is a γ -formula, then γ (c) \in U for some constants c in formulas in U.	(B) If A is a β-formula, then β1 ∉ U or β2 ∉ U.			
	(C) If A is a δ -formula, then $\delta(c) \notin U$ for some constant c.	(D) If A is a δ -formula, then $\delta(c) \in U$ for some constant c.			
16.	Which of the following is commutative proof $(A) \models \forall x (A(x) \leftrightarrow B(x)) \rightarrow (\exists x A(x) \leftrightarrow \exists x B(x))$	operty. (B) $\models \forall x \forall y A(x,y) \leftrightarrow \forall y \forall x A(x,y)$	1	1	4
	$(C) \models \exists x A(x) \leftrightarrow \neg \forall x \neg A(x)$	$(D) \models \forall x (A \rightarrow B(x)) \leftrightarrow (A \rightarrow \forall x B(x))$			
17.	□, read is	1967	1	1	5
	(A) Always	(B) Partially			
	(C) eventually	(D) rarely			
18.	In CTL All next state is represented as		1	1	5
	(A) EX	(B) EF			
	(C) AX	(D) AF			
19.	Computation Tree Logic, is		1	1	5
	(A) Branching Tree logic	(B) Graph			
	(C) Logical	(D) Hash			
20.	x - □q represents		1	1	5
20.	(A) All world associated with x has q (C) x has label q	(B) World Associated with x has q(D) q present in W			
	$PART - B (5 \times 4 = 20 Marks)$		Marl	ks BL	CO
	Answer any 5 Q				
21.	Write the conditions for the well-formed f		4	1	1
22.			4	3	1
	(i) $((p \land q) \leftrightarrow (q \leftrightarrow r)) \models (p \land r)$ (ii) $((p \rightarrow q) \leftrightarrow q) \models p \land q$				
23.	Draw the parse tree for the following formula and find the height of the parse tree $(p \rightarrow q \land \neg t) \rightarrow (r \rightarrow s \lor t)$	mula. Also check whether it is well formed ee.	4	3	2

Page 2 of 4

08DF5-7-18CS

24.	"Biconditional binds tightly than implication" State the validity of the statement with justification	4	3	2
25.	With suitable example, list the conditions of parse tree in predicate logic and give the backus-naur form for predicate logic. With an example, define free varibles and bound variables	4	2	3
26.	Solve the following sequences. $\forall x (P(x) \land Q(x)) \mid \neg \forall x (P(x) \rightarrow Q(x))$	4	3	4
27.	Draw the parse tree for the following: $(\lozenge \Box p - > \Box \lozenge (\lozenge q - > \neg p) \land \lozenge (p \lor q))$	4	3	5
	PART - C ($5 \times 12 = 60$ Marks) Answer all Questions	Marks	BL	CO
28.	 (a) With the help of truth table identify which among the listed are tautology. (i). (x → y) V (y → x) (ii). ~A∧B → ~(A∨B) (iii). (P ↔ Q) V (S → A) ∧ ¬Q (iv). ((P∧Q) → P) V ((P∧Q) ∧ ¬T) (OR)	12	3	1
	 (b) Draw the parse tree and mention sub-formula for the following. (i) ((p ∧ q) ∨ (q ∨ r)) ↔ (p → r) (ii)((p → q) A q) → p (iii)(p ↔ r) ∧ (q ↔ p) ↔ (p ∨ r) 			
29.	(iv)(p $\vee \neg q$) \rightarrow (r A p) (a) Solve the following sequent. (i) $p \rightarrow q, r \rightarrow \neg t, q \rightarrow r + p \rightarrow \neg t$ (ii) $\vdash (p \rightarrow q) \rightarrow ((r \rightarrow s) \rightarrow (p \land r \rightarrow q \land s))$ (iii) $p \rightarrow (q \lor r), \neg q, \neg r \vdash \neg p$ (OR)	12	3	2
	(b) State and prove completeness theorem for propositional logic			
30.	 (a) Consider a world with objects A, B, and C. We'll look at a logical language with constant symbols X, Y, and Z, function symbols f and g, and predicate symbols p, q, and r. Consider the following interpretation: I(X) = A, I(Y) = A, I(Z) = B I(f) = {(A, B),(B, C),(C, Ci)} I(p) = {A, B} I(q) = {C} I(r) = {(B, A),(C, B),(C, C)} 	12	3	3
	For each of the following sentences, say whether it is true or false in the given interpretation I: a. $q(f(Z))$ b. $r(X, Y)$ c. $\exists_{w}.f(w) = Y$ d. $\forall_{w}.r(f(w), w)$ e. $\forall_{w}.f(w) = Y$ (OR)			
	(b) Let P be a unary predicate, Q a binary predicate, f a binary function symbol, and let x, y,z be variables. Let I = (N,P,Q,f) be an interpretation where P = {m ∈ N : m is prime}, Q be the 'greater than' relation, and f (m,n) = (m + n)/2. Let l(x) = 12, l(y) = 8, l(z) = 4. Decide whether the state I₁ satisfies the following formulas: (a) P f x f x f x f xy (b) ∀x∀yQx f(xy) → ∀zQz f(xz) (c) ∀x∀y(Px∧Py → P f(xy)) ↔ ∀z(Px∧Py → P f(xy)) (d) ∀y(¬P f(xy) ↔ P f(yz))∨ ∀x(Qxy → ∃y(Qzy∧Qyz))			

31.	(a) Articulate the provable equivalences in predicate logic. Prove the following sequent:	12	3	4
	$(\Psi V \Psi) = - \ - (\Psi x E) \ $			
	(OR)			
	(b) (i)State the natural deduction of first order logic(8 Marks)(ii) Justify the need of first order logic.(4 Marks)			
32.	(a) Demonstrate the connectives in CTL and their binding priority with Backus Naur Form.(6 Marks)	. 12	3	5
	Draw the parse tree for the following CTL formula.(6 Marks)			
	(a) $F p \wedge G q \rightarrow p W r$			
	(b) $F(p \rightarrow Gr) \lor \neg q U p$ (c) $p W(q Wr)$			
	(OR)			

(b) Demonstrate Modal logic with suitable example.

* * * * *