1. ARIKETA

Izan bedi ondoko PO problema:

Max
$$Z = 8x_1 + 5x_2$$

s.a. $x_1 + x_2 \le 6$
 $9x_1 + 5x_2 \le 45$
 $x_1, x_2 \ge 0$ eta x_1, x_2 osoak

Lortu problema honen soluzioa osoa grafikoki eta Adartze- eta bornatze metodoa erabiliz

2. ARIKETA

Izan bedi ondoko PO problema:

Min
$$Z = -x_1 - x_2$$

s.a. $2x_1 - 2x_2 \le 1$
 $2x_2 \le 9$
 $-x_1 \le 0$
 x_1, x_2 osoak

Lortu problema honen soluzioa osoa grafikoki eta Adartze- eta bornatze metodoa erabiliz

3. ARIKETA

Enpresa batek poltsak ekoizteko bi instalazio ditu. Poltsa hauek 3 lantegi ezberdinetara garraiatzen dira eta poltsa bakoitzeko garraio-kostu, poltsen eskaria eta eskaintzaren datuak ondoko taulan agertzen dira.

	1. lantegia	2. lantegia	3. lantegia	Eskaintza
1. instalazioa	25	17	23	173
2. instalazioa	19	12	18	215
Eskaria	92	74	86	

Planteatu programazio linealaren modeloaren bitartez, zein modutan egin daitekeen garraioa kostua minimoa atera dadin.

OHARRA: Ipar-mendebaldeko ertzaren metodoa erabiliz hasierako oinarrizko soluzio bideragarria lortu

4. ARIKETA

Izan bedi garraio problema non bere parametroak ondoko taulan agertzen diren:

		1	2	3	4	Baliabideak
Jatorria	Α	8	9	9	5	100
	В	4	5	8	7	200
	С	3	6	5	9	150
Eskaria		160	70	120	80	

Zehaztu zenbat artikulu bidali behar den jatorri bakoitzetik helburu bakoitzera garraio-kostua minimo izan dadin.

OHARRA: Vogel-en metodoa erabiliz hasierako oinarrizko soluzio bideragarria lortu.

5. ARIKETA

Ondorengo taulan lantegi bateko 6 langilek (O1, O2, O3, O4, O5, O6) 6 lan (T1, T2, T3, T4, T5, T6) desberdin egiteko behar duten denbora (minututan) laburbilduta agertzen da:

	T1	T2	T3	T4	T5	T6
01	6	10	16	6	18	12
02	8	14	6	3	2	10
03	16	18	8	4	3	10
04	12	4	14	6	2	8
05	10	12	10	8	6	14
06	4	2	6	16	10	8

Langileak lanetara esleitu, denbora minimoa izan dadin.

6. ARIKETA

Enpresa batek hiru lanpostu bete behar ditu: A, B eta C. Lanpostu horiek betetzeko asmoz, 5 langile aurkeztu dira hautapen frogara: 1, 2, 3, 4 eta 5. Ondoko taulan agertzen dira langile bakoitzak lanpostu bakoitzerako egindako frogan lortutako puntuazioa, 1etik 10era neurtuta

Taulako (C, 4) posizioan ez dago puntuaziorik, 4 langilea ez delako C lana egiteko gai izan.

Langile eta lanpostu arteko esleipen optimoa kalkulatu.

7. ARIKETA

Ondorengo sarean zehar higi daitekeen fluxu maximoa lortu nahi da. Irudian arku bakoitzaren gainean arkuak jasan dezakeen fluxu maximoa agertzen da:

