Berechnungen und Logik Hausaufgabenserie 3

Henri Heyden, Nike Pulow stu240825, stu239549

 $\mathbf{A1}$

a)

 f_1 erfüllt nicht das notwendige Kriterium des linear beschränktem Wachstums, denn es gilt folgendes: Für alle $w \in A^*$ gilt: $|f_1(w)| = |1^{|w|^2}| = |w|^2$. Des Weiteren gilt jedoch: $\forall c \in \mathbb{N} : \exists w \in A^* : |w|^2 > c \cdot (|x|+1)$, mit w: |w| = 2c > 0, denn es gilt dann: $|w|^2 = 4c^2 > 2c^2 + c$ (Beachte |w| > 0).

b)

 f_2 erfüllt auch nicht das notwendige Kriterium des linear beschränktem Wachstums. Wir zeigen dafür $\forall c \in \mathbb{N}: \exists w \in A^*: |f_2(w)| > c \cdot (|w|+1)$ Hierfür wähle $w:=v_0v_1v_3\dots v_n$ mit $n:=\max(2c,3)$ und $v_i \neq \epsilon$ für $i \in [n]$, dann gilt: $|f_2(w)| = \frac{n^2+n}{2} = \frac{4c^2+2c}{2} = 2c^2+c > 2c^2+2$ aufgrund der gaußschen Summenformel und der Definition von f_2 .

Dann gilt: $|f_2(w)| > c \cdot (|w| + 1)$, was zu zeigen war.

 $\mathbf{A2}$

A3

Da f und $\lambda:B^*\to B^*, w\mapsto wv$ sequenziell sind, gilt nach Bonusaufgabe 7, dass \tilde{f} sequenziell ist, da $\tilde{f}=\lambda\circ f$ gilt.

A4

a)

Induktionsbasis: Sei $u,v\in A^*, |u|=|v|=1.$ Dann gilt:

$$\begin{split} \hat{\delta}(q,uv) \\ =& \delta(\hat{\delta}(q,u),v) & | \text{ Def. } \hat{\delta} \\ =& \delta(\delta(\hat{\delta}(q,\epsilon),u),v) \\ =& \delta(\delta(q,u),v) & | 2 \cdot \text{ Def. } \hat{\delta} \\ =& \delta(\delta(\hat{\delta}(\hat{\delta}(q,\epsilon),\epsilon),u),v) \\ =& \delta(\hat{\delta}(\hat{\delta}(\hat{\delta}(q,\epsilon),u),v) & | \text{ Def. } \hat{\delta} \\ =& \delta(\hat{\delta}(\hat{\delta}(\hat{\delta}(q,\epsilon),u),v) & | \text{ Def. } \hat{\delta} \\ =& \delta(\hat{\delta}(\hat{\delta}(\hat{\delta}(q,\epsilon),u),v) & | \text{ Def. } \hat{\delta} \\ =& \delta(\hat{\delta}(\hat{\delta}(q,\epsilon),u),v) & | \text{ Def. } \hat{\delta} \end{split}$$

 $^{^{-1}\}lambda$ ist tatsächlich sequenziell, betrachte dafür die jeweiligen Identitätsfunktionen als Zustands und Ausgabefunktionen und $\phi: Q \to B^*, q \mapsto v$ als die finale Ausgabefunktion, für $Q:=\{z_0\}$.

Hier sieht man auch, dass die Basis gilt, wenn eines der Wörter das leere Wort ist, da wir das im Beweis selber gezeigt hatten zwischen Schritt 3 und 6.

Induktionsschritt: Sei $w \in A^*, a \in A.$ Dann gilt:

$$\hat{\delta}(q,wa)$$

$$=\delta(\hat{\delta}(q,w),a)$$

| Def. $\hat{\delta}$

$$= \! \delta(\hat{\delta}(\hat{\delta}(q,w),\epsilon),a)$$

$$= \hat{\delta}(\hat{\delta}(q, w), a)$$

Damit wurde die Aussage induktiv gezeigt.

b)

A7

maybe baby