

"МАТЕМАТИКА БЕЗ ГРАНИЦИ" - 2014 г.

ФИНАЛ

21 юни 2014 г., гр. Несебър СЕДМИ КЛАС

	$\sqrt{2}$	$\sqrt{x^2}$	/	СЕДМ	ИИ КЛАС	
Зада	ча 1 . Оп	ростете изра	нза 2014- (x-(x-(x	a-(x-2014)))) .		
A) -2	2014	Б)	0	B) 2014	Γ) 4.x	
Зада	ча 2. Д	(адени са п	числа $a_1, a_2,$	a_n , всяко от	които е или 1, или (-1), и	1
a_1 . a	$_{2}+a_{2}.a_{3}$	$++a_{n-1}.a_n$	$a_n + a_n \cdot a_1 = 0$. q_{MC}	пото п НЕ може ;	да бъде:	
A) 20 Зада		,	2 012 ама краставици в	Б) 2 008 зодата е 99 %. Ка	Г) 4 028 то престояли известно време,	
вода	га в тези	краставици	намаляла до 98	%. Тогава теглот	го на краставиците	
	малява (ча 4. От	,		,	с 4 кг Г) намалява 4 пъти см след разтопяване са	
отлел	ти ново і	кубче. Ръбът	т на новото кубч	e e:		
А) 6 см Задача 5. Правоъг		,	7 см к е разделен ч	В) 5,5 см рез две пресича	Г) 6,5 см ащи се прави, успоредни на	a
стран	ните му,	на 4 по-м	алки правоъгъл	ника, три от ко	ито имат лица $3 cm^2$, $4 cm^2$ и	И
5 cm ²	² . (виж ч	ертежа) Да с	е намери лицето	на четвъртия пр	авоъгълник.	
	x	4 cm ²				
	$3 cm^2$	$5 cm^2$				
A) 5	cm^2	Б)	$3,75cm^2$	B) $4,25 cm^2$	Γ) 2,4 cm ²	
Зада	ча 6. Пј	оизведение	то на височини	ге на един прав	оъгълен триъгълник е четири	1
пъти	по-малк	ю от произв	едението на стра	ните му. Най-мал	пкият ъгъл на този триъгълнив	K
e:						
A) 6	0^0	Б)	45 ⁰	B) 30^{0}	Γ) 15 ⁰	
Зада	ча 7. На	мерете стойі	ността на израза	$2014^3 - 2015^3 + 3$. 2014. 2015 .	
A) 0		Б) —	1	B) -2015	Γ) – 2014	
Зада	ча 8. Де	сет ученици	решили общо 35	задачи. Има пон	е един от тях решил точно една	a
		-		-	пил точно три задачи. Намерете	e
колко	най-мал	ко е броят на	учениците, които	са решили най-ма	лко пет задачи.	
A) 1		Б)	2	B) 3	Γ) повече от 3	

Задача 9. Аля иска да оцвети някои от точките 1, 2, 3, 4, 5, 6, 7, 8, 9 върху числовата ос така, че разстоянието между всеки две оцветени точки да е различно от 4 и 7.

Най-много колко точки може да оцвети Аля?

Задача 10. Броят на участниците в математическо състезание е между 510 и 550. Ако броят на участвалите момичета е със 100 по—малък от утроения брой на участвалите момчета, най-малко колко момичета са участвали в състезанието?

Задача 11. Ако n и k са естествени числа, а $(-1)^{n+1}+n$ и $(-1)^k+2k$ са реципрочни, тогава n.k е

Задача 12. Кои са последните пет цифри на сбора на 2014 числа: 1, 11, 111, 1111, ..., 111...111?

Задача 13. Колко са възможните стойности на израза |a+b|, ако а и b са цели числа, такива че $|a| \le 1$ и $|b| \le 2$?

Задача 14. Ако $a^2 - b^2 - 2b = A.(a+b+1)+1$, определете A+1.

Задача 15. По колко начина можем да подредим 5 книги, така че две от тях винаги да са една до друга?

Задача 16. Кое е трицифреното число \overline{abc} , за което е изпълнено равенството $\overline{abc} = 2(\overline{ab} + \overline{bc})$?

Задача 17. В един град живеят лъжци, които винаги лъжат, както и почтени хора, които винаги казват истината. Всеки жител на града има или куче, или котка. На въпроса "*Имаш ли куче?*" 100 от жителите на града ще отговорят "Да", а останалите 140 жители ще отговорят "He". Ако 40% от жителите на града имат куче, а 55% от лъжците имат котка, колко са почтените хора в този град?

Задача 18. Коя е най-голямата възможна стойност на естествения параметър a, за която уравнението a(x-3) = 2x + 1 има единствено решение, което е естествено число?

Задача 19. Диагоналите на правоъгълника ABCD се пресичат вточката O, а перпендикулярът през B към AC пресича AC и DC съответно в E и F, като е показано на чертежа. Ако $\not ABFD = 2 \cdot \not ABOC$ и лицето на триъгълника EFC е равно

Задача 20. В полетата на дъска 6 х 6 са записани естествените числа от 1 до 36 така, че всеки две последователни числа са записани в съседни полета. (Две полета са съседни ако имат обща страна.) Колко най-малко е сборът от числата, записани в оцветените диагонални полета?

на 5, колко е лицето на правоъгълника АВСО?

