Университет ИТМО

Распределенные системы хранения данных

Лабораторная работа №3

ФИО студента: Готовко Алексей Владимирович

Вариант: 1

Направление подготовки: 09.03.04 (СППО)

Учебная группа: Р33101

ФИО преподавателя: Шешуков Дмитрий Михайлович

Содержание

1	Зад	ание	2	
2	Выполнение работы			
	2.1	Резервное копирование	3	
		2.1.1 do_backup.sh	3	
		2.1.2 backup_cron.sh	3	
		2.1.3 Подсчет суммарного объема файлов бэкапов за месяц	3	
	2.2	Потеря основного узла	4	
	2.3	Повреждение файлов БД	6	
	2.4	Логическое повреждение данных	6	

1 Задание

Лабораторная работа включает настройку резервного копирования данных с основного узла на резервный, а также несколько сценариев восстановления. Узел из предыдущей лабораторной работы используется в качестве основного; новый узел используется в качестве резервного. В сценариях восстановления необходимо использовать копию данных, полученную на первом этапе данной лабораторной работы.

1. Резервное копирование

- (а) Настроить резервное копирование с основного узла на резервный следующим образом:
 - Периодические полные копии с помощью SQL Dump.
 - По расписанию (cron) раз в сутки, методом SQL Dump с сжатием. Созданные архивы должны сразу перемещаться на резервных хост, они не должны храниться на основной системе. Срок хранения архивов на резервной системе 4 недели. По истечении срока хранения, старые архивы должны автоматически уничтожаться.
- (b) Подсчитать, каков будет объем резервных копий спустя месяц работы системы, исходя из следующих условий:
 - Средний объем новых данных в БД за сутки: ~100 МБ.
- (с) Проанализировать результаты.

2. Потеря основного узла

Этот сценарий подразумевает полную недоступность основного узла. Необходимо восстановить работу СУБД на резервном узле, продемонстрировать успешный запуск СУБД и доступность данных.

3. Повреждение файлов БД

Этот сценарий подразумевает потерю данных (например, в результате сбоя диска или файловой системы) при сохранении доступности основного узла. Необходимо выполнить полное восстановление данных из резервной копии и перезапустить СУБД на основном узле.

Ход работы:

- (a) Симулировать сбой: удалить с диска директорию любой таблицы со всем содержимым.
- (b) Проверить работу СУБД, доступность данных, перезапустить СУБД, проанализировать результаты.
- (c) Выполнить восстановление данных из резервной копии, учитывая следующее условие: Исходное расположение директории PGDATA недоступно разместить в другой директории и скорректировать конфигурацию.
- (d) Запустить СУБД, проверить работу и доступность данных, проанализировать результаты.

4. Логическое повреждение данных

Этот сценарий подразумевает частичную потерю данных (в результате нежелательной или ошибочной операции) при сохранении доступности основного узла. Необходимо выполнить восстановление данных на основном узле следующим способом:

Генерация файла на резервном узле с помощью **pg_dump** и последующее применение файла на основном узле.

Ход работы:

- (а) В каждую таблицу базы добавить 2-3 новые строки, зафиксировать результат.
- (b) Зафиксировать время и симулировать ошибку: Удалить любые две таблицы (DROP TABLE)
- (с) Продемонстрировать результат.
- (d) Выполнить восстановление данных указанным способом.
- (е) Продемонстрировать и проанализировать результат.

2 Выполнение работы

2.1 Резервное копирование

Реализуем скрипт, который будет раз в сутки создавать полный дамп базы, писать его через ssh на второй узел и удалять все бэкапы, старше четырех недель.

Использование cron не является возможным, так как на сервере crond не запущен.

2.1.1 do backup.sh

```
pg_dumpall -U postgres8 -p 9026 | gzip -c | ssh postgres3@pg128

"cat > /var/db/postgres3/backups/postgres_$(date +%F)_backup.gz

&& find /var/db/postgres3/backups/ -type f -mindepth 1 -mtime +28 -delete"
```

2.1.2 backup_cron.sh

while true; do ./do_backup.sh; sleep 86400; done

2.1.3 Подсчет суммарного объема файлов бэкапов за месяц

Положим, что изначально база пуста и оценим месяц в примерно четыре недели.

Если каждый день размер добавляемых данных равен 100 МБ, бэкапы создаются раз в сутки и хранятся в течение 4 недель, то за месяц примерный объем всех бэкапов будет равен (в МБ)

$$\sum_{i=1}^{28} i \cdot 100 = 40600.$$

2.2 Потеря основного узла

Поднимем базу на втором узле, восстановим ее состояние с помощью файла бэкапа и проверим доступность данных.

```
[postgres3@pg128 ~]$ mkdir -p u23/znt06
    [postgres3@pg128 ~] $ pg_ctl init -D u23/znt06 -o "--locale=en_US.UTF-8"
   Файлы, относящиеся к этой СУБД, будут принадлежать пользователю "postgres3".
   От его имени также будет запускаться процесс сервера.
   Кластер баз данных будет инициализирован с локалью "en_US.UTF-8".
6
   Кодировка БД по умолчанию, выбранная в соответствии с настройками: "UTF8".
   Выбрана конфигурация текстового поиска по умолчанию "english".
   Контроль целостности страниц данных отключён.
11
   исправление прав для существующего каталога u23/znt06... ок
12
   создание подкаталогов... ок
13
   выбирается реализация динамической разделяемой памяти... posix
   выбирается значение max_connections по умолчанию... 100
15
   выбирается значение shared_buffers по умолчанию... 128МВ
16
   выбирается часовой пояс по умолчанию... W-SU
17
   создание конфигурационных файлов... ок
18
   выполняется подготовительный скрипт... ок
19
   выполняется заключительная инициализация... ок
20
   сохранение данных на диске... ок
21
22
   initdb: предупреждение: включение метода аутентификации "trust" для локальных подключений
23
   Другой метод можно выбрать, отредактировав pg_hba.conf или используя ключи -A,
24
    --auth-local или --auth-host при следующем выполнении initab.
25
   Готово. Теперь вы можете запустить сервер баз данных:
27
28
        /usr/local/bin/pg_ctl -D u23/znt06 -l файл_журнала start
29
30
    [postgres3@pg128 ~]$ pg_ctl -D u23/znt06 -l postgresql.log start
31
   ожидание запуска сервера... готово
32
   сервер запущен
33
34
    [postgres3@pg128 ~] $ psql -p 9026 -f backups/postgres_2024-03-24_backup postgres
35
   SET
36
   SET
37
   SET
38
   CREATE ROLE
   ALTER ROLE
40
   <...>
41
   SET
   CREATE TABLE
43
   ALTER TABLE
44
   COPY 2
   ALTER TABLE
46
    [postgres3@pg128 ~]$ psql -p 9026 postgres
47
   psql (14.2)
48
   Введите "help", чтобы получить справку.
49
   postgres=# \1
50
                                          Список баз данных
51
```

```
| Владелец | Кодировка | LC_COLLATE | LC_CTYPE | Права доступа
52
     53

        postgres
        | postgres3 | UTF8
        | en_US.UTF-8 | en_US.UTF-8 |
        | ec/postgres3 |
        +

        template0
        | postgres3 | UTF8 | en_US.UTF-8 | en_US.UTF-8 | en_US.UTF-8 |
        | postgres3=CTc/postgres3
        +

        template1
        | postgres3 | UTF8 | en_US.UTF-8 | en_US.UTF-8 | ec/postgres3 |
        +
        | postgres3=CTc/postgres3
        +

54
55
56
57
58
     theovermind4 | postgres8 | UTF8 | en_US.UTF-8 | en_US.UTF-8 |
59
     (4 строки)
60
61
     [postgres3@pg128 ~]$ psql -p 9026 theovermind4
62
    psql (14.2)
63
    Введите "help", чтобы получить справку.
64
65
    theovermind4=# \d
66
                     Список отношений
67
                 Имя | Тип | Владелец
68
     -------
69
     public | chipichipi | таблица | testrole
70
     (1 строка)
71
72
    theovermind4=# select * from chipichipi;
73
     id | chapachapa
74
     ---+----
75
     1 | 1
76
       2 | 2
77
    (2 строки)
```

2.3 Повреждение файлов БД

Симулируем повреждение БД, удалив директорию базы с данными.

```
[postgres8@pg199 ~]$ psql -p 9026 theovermind4
   theovermind4=# \d
2
               Список отношений
3
    Схема | Имя | Тип | Владелец
   -----+-----
    public | chipichipi | таблица | testrole
6
   (1 строка)
   theovermind4=# select * from chipichipi;
9
    id | chapachapa
10
   ---+----
    1 | 1
12
    2 | 2
13
   (2 строки)
14
15
   theovermind4=# SELECT *, pg_tablespace_location(oid) FROM pg_tablespace;
16
     oid | spcname | spcowner | spcacl | spcoptions | pg_tablespace_location
17
   18
    1663 | pg_default | 10 |
                                     19
     1664 | pg_global |
                           10 |
                                      20
                          10 |
    16384 | znt08_ts |
                                      | /var/db/postgres8/u23/znt08
21
   (3 строки)
22
23
   theovermind4=# select datname, oid from pg_database;
24
     datname | oid
25
   -----+----
26
              | 14115
27
    postgres
              | 1
    template1
28
    template0 | 14114
29
    my_template | 16385
30
    theovermind4 | 16386
31
   (5 строк)
32
   [postgres8@pg199 ~]$ pg_ctl -D u23/znt06/ -l logfile.log stop
33
   ожидание завершения работы сервера.... готово
34
   сервер остановлен
35
36
   [postgres8@pg199 ~]$ rm -rf u23/znt06/base/16386/
37
   [postgres8@pg199 ~]$ pg_ctl -D u23/znt06/ -l logfile.log start
38
   ожидание запуска сервера.... готово
39
   сервер запущен
40
   [postgres8@pg199 ~]$ psql -p 9026 theovermind4
41
   psql: ошибка: подключиться к серверу через сокет "/tmp/.s.PGSQL.9026" не удалось:
   FATAL: database "theovermind4" does not exist
43
   ПОДРОБНОСТИ: The database subdirectory "base/16386" is missing.
```

```
[postgres8@pg199 ~]$ mkdir u23_restored
    [postgres8@pg199 ~] $ pg_ctl init -D u23_restored/ -o "--locale=en_US.UTF-8"
   Файлы, относящиеся к этой СУБД, будут принадлежать пользователю "postgres8".
   От его имени также будет запускаться процесс сервера.
   Кластер баз данных будет инициализирован с локалью "en_US.UTF-8".
6
   Кодировка БД по умолчанию, выбранная в соответствии с настройками: "UTF8".
   Выбрана конфигурация текстового поиска по умолчанию "english".
   Контроль целостности страниц данных отключён.
10
11
   исправление прав для существующего каталога u23_restored... ок
12
   создание подкаталогов... ок
13
   выбирается реализация динамической разделяемой памяти... posix
   выбирается значение max_connections по умолчанию... 100
15
   выбирается значение shared_buffers по умолчанию... 128MB
16
   выбирается часовой пояс по умолчанию... W-SU
17
   создание конфигурационных файлов... ок
18
   выполняется подготовительный скрипт... ок
19
   выполняется заключительная инициализация... ок
   сохранение данных на диске... ок
21
22
   initdb: предупреждение: включение метода аутентификации "trust" для локальных подключений
23
   Другой метод можно выбрать, отредактировав pg_hba.conf или используя ключи -A,
    --auth-local или --auth-host при следующем выполнении initdb.
25
26
   Готово. Теперь вы можете запустить сервер баз данных:
27
28
        /usr/local/bin/pg_ctl -D u23_restored -l файл_журнала start
29
    [postgres8@pg199 ~] $ cp u23/znt06/pg_hba.conf u23/znt06/postgresql.conf u23_restored/
31
32
    [postgres3@pg128 ~] $ scp backups/postgres_2024-03-24_backup postgres8@pg199:/var/db/postgres8
33
   postgres_2024-03-24_backup
34
35
    [postgres8@pg199 ~]$ pg_ctl -D u23_restored -l logfile.log start
36
   ожидание запуска сервера.... готово
37
   сервер запущен
38
39
    [postgres8@pg199 ~] $ psql -d postgres -p 9026 -f postgres_2024-03-24_backup
40
41
   SET
   SET
43
   <...>
44
   SET
45
   SET
46
   CREATE TABLE
47
   ALTER TABLE
48
   COPY 2
   ALTER TABLE
50
51
    [postgres8@pg199 ~]$ psql -p 9026 theovermind4
52
   psql (14.2)
53
```

```
Введите "help", чтобы получить справку.
   theovermind4=# \d
56
              Список отношений
57
   Схема | Имя | Тип | Владелец
58
   -----+------
59
   public | chipichipi | таблица | testrole
60
   (1 строка)
61
62
   theovermind4=# select * from chipichipi;
63
    id | chapachapa
64
65
   1 | 1
66
   2 | 2
  (2 строки)
```

2.4 Логическое повреждение данных

Добавим новые данные в таблицу, удалим таблицу, а затем восстановим ее из бэкапа.

```
[postgres8@pg199 ~]$ pg_ctl -D u23/znt06 -l logfile.log start
   ожидание запуска сервера.... готово
   сервер запущен
    [postgres8@pg199 ~]$ psql -p 9026 theovermind4
   psql (14.2)
   Введите "help", чтобы получить справку.
   theovermind4=# insert into chipichipi values(12, 'a');
   INSERT 0 1
   theovermind4=# insert into chipichipi values(144, 'b');
   INSERT 0 1
10
   theovermind4=# select * from chipichipi;
    id | chapachapa
12
13
      1 | 1
      2 | 2
15
     12 | a
16
    144 | b
    (4 строки)
18
19
   theovermind4=# drop table chipichipi;
20
   DROP TABLE
21
   theovermind4=# select * from chipichipi;
22
   ERROR: relation "chipichipi" does not exist
23
   CTPOKA 1: select * from chipichipi;
24
25
    [postgres8@pg199~]$ psql -p 9026 postgres -f postgres_2024-03-24_backup
26
   SET
27
   SET
28
   SET
29
   <...>
30
   SET
31
   SET
32
   CREATE TABLE
33
   ALTER TABLE
34
   COPY 2
35
   ALTER TABLE
36
37
    [postgres8@pg199 ~]$ psql -p 9026 theovermind4
38
   psql (14.2)
39
   Введите "help", чтобы получить справку.
40
41
   theovermind4=# select * from chipichipi;
42
    id | chapachapa
43
44
     1 | 1
45
     2 | 2
46
    (2 строки)
47
```