INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE ELECTRÓNICA CURSO: EL-4408 CONTROL AUTOMÁTICO

PRÁCTICA 2

PROF: Ing. Eduardo Interiano

Reguladores PID y compensadores de filtro de muesca

- 1. Encuentre una ecuación para ubicar el par de polos de un compensador de filtro de muesca, de tal forma que se cumplan las características dinámicas solicitadas.
- 2. Para la planta G_P(s) que se muestra a continuación, sintetice un controlador que haga que la respuesta de lazo cerrado ante un escalón tenga:
 - Un sobreimpulso M_P menor o igual al 5%
 - Un tiempo de estabilización t_s menor a 2s
 - Un error de estado estacionario e_{SS} menor al 2%

$$G_P(s) = \frac{5}{(s+2)(s^2+0.5s+4)}$$

- 3. Para la planta $G_P(s)$ dada a continuación haga que:
 - El error de estado estacionario ess sea cero
 - El sobrepaso máximo M_P no supere el 5%
 - El tiempo de estabilización t_s máximo sea de 1s

$$G_P(s) = \frac{1}{(s+3)(s^2+s+10)}$$

- 4. Para la planta G_P(s) dada a continuación haga que:
 - El error de estado estacionario ess sea cero
 - El sobrepaso máximo M_P no supere el 5%
 - El tiempo de estabilización t_s máximo sea de 5s

$$G_P(s) = \frac{2820s^2 + 15020s + 500000}{800000(s^2 + 47.95s + 1813)(s^2 + 0.22s + 27.6)}$$

- 5. Para la planta $G_P(s)$ dada a continuación haga que:
 - El error de estado estacionario ess sea cero ante entrada de referencia y de perturbación
 - El sobrepaso máximo M_P no supere el 16%
 - El tiempo de estabilización t_s máximo sea de 0.04s

$$G_P(s) = \frac{1}{s(s+60)(s+1000000)}$$

EIS/eis 2002