

Attorney Docket No. 08372.0007 Customer Number 22,852

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:)
Yutaka ARIMA)) Group Art Unit: Not assigned)) Examiner: Not assigned)
Serial No.: 10/086,544	
Filed: March 4, 2002	
For: A COMPUTER DEVICE BASED ON ASSOCIATIVE MEMORY)))

Assistant Commissioner for Patents Washington, DC 20231

Sir:

CLAIM FOR PRIORITY

Under the provisions of 35 U.S.C. § 119, Applicant hereby claims the benefit of the filing date of Japanese Patent Application No. 2001-060514, filed March 5, 2001, for the above-identified U.S. patent application.

In support of this claim for priority, enclosed is one certified copy of the priority application.

Respectfully submitted,

FINNEGAN, HENDERSON, FARABOW, GARRETT & DUNNER, L.L.P.

Dated: June 4, 2002

David W. Hill

Reg. No. 28,220

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

1300 I Street, NW Washington, DC 20005 202.408.4000 Fax 202.408.4400 www.finnegan.com

DWH/FPD/dvz Enclosures

本 国 特 許 庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2001年 3月 5日

出願番号 Application Number:

特願2001-060514

[ST.10/C]:

[JP2001-060514]

出 顏 人
Applicant(s):

株式会社北九州テクノセンター

CERTIFIED COPY OF PRIORITY DOCUMENT

2002年 3月29日

特許庁長官 Commissioner, Japan Patent Office 及川耕

特2001-060514

【書類名】 特許願

【整理番号】 P366KTC

【提出日】 平成13年 3月 5日

【あて先】 特許庁長官殿

【国際特許分類】 G06F 19/00

【発明者】

【住所又は居所】 福岡県飯塚市川津680-4 九州工業大学 マイクロ

化総合技術センター内

【氏名】 有馬 裕

【特許出願人】

【識別番号】 80000046

【住所又は居所】 福岡県北九州市戸畑区中原新町2番1号

【氏名又は名称】 株式会社北九州テクノセンター

【代表者】 迎 静雄

【代理人】

【識別番号】 100094581

【弁理士】

【氏名又は名称】 鯨田 雅信

【手数料の表示】

【予納台帳番号】 032506

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 連想メモリーベースコンピュータ

【特許請求の範囲】

【請求項1】 単数あるいは複数の連想メモリーと、その連想メモリーの入力も しくは出力データを一時的に保持できる複数の連想データメモリーと、連想デー タメモリーに保持されたデータの一部を入力とする価値判断装置と、を含むこと を特徴とする連想メモリーベースコンピュータ。

【請求項2】 請求項1の連想メモリーが、カオスニューラルネットワークで構成されていることを特徴とする連想メモリーベースコンピュータ。

【請求項3】 請求項1の連想データメモリーが、連想メモリーと直接データを やり取りする第1の連想データメモリーと、第1の連想データメモリーを介して 連想メモリーとのデータをやり取りする複数の第2の連想データメモリーと、に より構成されていることを特徴とする連想メモリーベースコンピュータ。

【請求項4】 請求項2又は3に記載の連想メモリーベースコンピュータにおいて、連想データを形成するニューロンのしきい値をその発火頻度に従って変調する機能を備えていることを特徴とする連想メモリーベースコンピュータ。

【請求項5】 請求項4のしきい値変調方式として、ニューロンの発火頻度に比例してそのニューロンのしきい値を減少させることを特徴とする連想メモリーベースコンピュータ。

【請求項6】 請求項3において、前記価値判断装置は、前記第1の連想データメモリーの一部のデータを入力とし、連想メモリーで連想した出力結果が所望の結果であるか、あるいは目的にあったものであるのかを評価するものであり、その出力信号は、前記第1の連想データメモリーに保持されている連想データを前記第2の連想データメモリーへ転送するか否かを制御する信号となるものである、ことを特徴とする連想メモリーベースコンピュータ。

【請求項7】 請求項3において、前記価値判断装置は、前記の複数の第2の連想データメモリーの一部のデータを入力とし、前記の複数の第2の連想データメモリー内に保持されている複数の連想データ間に矛盾が無いかどうかを評価するものであり、その出力信号は、前記第2の連想データメモリーに保持されている

連想データを前記第1の連想データメモリーへ転送するか否かを制御する信号となるものである、ことを特徴とする連想メモリーベースコンピュータ。

【請求項8】 感覚器や筋肉など外界との作用を実現するローニューロンの集まりであるローニューロン群と、コンピュータ内部での情報処理の素となるシンボルニューロンの集まりであるシンボルニューロン群とを含むカオス連想メモリーと、

連想メモリーのシンボルニューロン群と直接接続され、前記シンボルニューロン群のニューロン信号の状態によって表現されるシンボルパターンを一時的に保持する機能を有している第1の連想データメモリーと、

前記第1の連想データメモリーに接続され、前記第1の連想データメモリー上 のシンボルパターンを必要に応じて複数パターン保持する機能を有している複数 の第2の連想データメモリーと、

前記第1の連想データメモリーの一部の信号を入力とし、前記第1の連想データメモリー上のパターンが前記第2の連想データメモリー上に保持する価値があるかどうかを判断する信号を出力する第1の価値判断器と、

前記第2の連想データメモリー内の各データの一部を入力とし、前記第2の連想データメモリー内に保持された複数のシンボルパターン同士が矛盾していないかを判断する機能を有している第2の価値判断器と、

を備えていることを特徴とする連想メモリーベースコンピュータ。

【請求項9】 複数のカオス連想メモリーで構成され、各々の連想メモリーは、その役割毎に目や耳などの感覚器からのローパターン信号入力あるいは声帯や手足などの筋肉や分泌器などへのローパターン信号出力がローニューロン群に接続されることにより外界とのインターフェースを実現しており、全てのカオス連想メモリーには各々抽象的な状態を表現するシンボルニューロン群が含まれており、それらには、後述のワーキングメモリー部との間に、全メモリー共通の状態パターン信号が入力される部分と共通シンボルパターンが入出力される部分及び各メモリー毎の固有シンボルパターンが入出力される部分とが備えられており、各連想メモリーは、各種感覚器からのローパターンと共通シンボルパターンに基づき学習により形成される抽象的な固有シンボルパターンを関連付け各メモリー間

の相関を含めた複雑な連想を実現するようになっている連想メモリー部と、

前記連想メモリー部からの共通シンボルパターンと全ての固有シンボルパターンと状態パターンを一時的に記憶保持しておく機能と各々のシンボルニューロン毎にその活性値を時間的に積分して、その積分値に従って発火しきい値を変調する機能を有しているシンボルステージと、前記シンボルステージに保持されたパターン情報をある程度の期間保持できる機能を有している複数のワーキングメモリであって、複数あるワーキングメモリー毎にその保持している情報に対する活性度を示す値を有する機能を持っており、その活性度はある時定数をもって減衰すると同時に後述の制御シーケンスにより条件によっては一定の量増減される仕組みを持っているワーキングメモリと、外部からの目的信号に従っ連想の方向性(抽象化か具象化か)、各入力情報の無効化、各連想出力の無効化、及び各シンボル信号方向性(入力か出力か)などを規定するのに用いられる状態パターン信号を発生して前記各連想メモリーに共通に与えるための制御シーケンサと、から構成されているワーキングメモリ部と、

前記ワーキングメモリー部のシンボルステージの一部のパターン信号を入力とし、前記連想メモリー部で連想した結果が目的にあったものであるのかやその他の価値を評価し、保持されているシンボルパターンを新たに前記ワーキングメモリーへ転送するか否かを判断する機能を有している結果判定ネットワークと、前記ワーキングメモリーからの一部のパターン信号を入力とし、前記ワーキングメモリー内に保持されている複数のシンボルパターン間に矛盾が無いかどうかを判断し、その価値評価によって実際に運動を制御したりする動作へと制御シーケンスを展開する喫掛けを作る機能を有している矛盾判定ネットワークとから構成されており、各々の判定ネットワークは学習によって価値判断能力を高める機能を有した階層型のニューラルネットワークで構成され、それらの出力である価値信号は前記ワーキングメモリー部内にある制御シーケンサに与えられるようになっている価値判断ネットワーク部と、

を備えていることを特徴とする連想メモリーベースコンピュータ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】

本発明は、人間の思考感覚に近い直感的な情報処理を効率良く実施する装置を実現することを可能にする連想メモリーベースコンピュータに関する。

[0002]

【従来の技術】

従来の情報処理装置(コンピュータ)が不得意とする、パターン認識や文脈連想、組み合わせ最適化などの直感的情報処理は、情報処理機械が人間との自然なコミュニケーションを実現するために必要不可欠な技術であり、機械が社会の中で違和感なく利用され溶け込むためのブレークスルーを与えるものと期待されている。直感的情報処理を効率良く実行するために、脳の情報処理様式を参考にした全く新しいアーキテクチャに基づく脳型コンピュータの研究が活発に行われており、実用に耐えうるレベルの脳型コンピュータハードウエアの開発が強く求められている。

[0003]

現在、最も普及しているプログラム駆動型コンピュータは、1970年代初めの半導体集積回路の発明・実用化以来、MPUやMCUなどのLSIの製造技術の急速な進展に伴って、小型化、高機能化、高速化、低消費電力化、低コスト化、高信頼性化が順調に進み、あらゆる電子機器に組み込まれるに至り、我々の生活に欠かせないものとなっている。ノイマン型コンピュータに代表されるプログラム駆動型の情報処理機械は、データを貯える機能(メモリー部)とデータを処理加工(演算処理等)する機能(プロセッサー部)とで構成され、処理手続きを明示するプログラムを処理内容に応じ設定することで様々な情報処理を実行することができる。

[0004]

この従来型コンピュータが、半導体集積回路の進展と相まって、これだけ急速 に普及した理由としては、その作り易さと高い適応汎用性を上げることができる 。すなわち、作り易さとは、データ処理部とメモリー部が明確に分離している機 能構成であることに加えステップバイステップの時間直列的な処理方式により、 データ保持や線形演算などの同期処理表現に有利なバイナリデジタル回路との相 性が極めて良く、そのスイッチ回路(しきい値回路)故の設計容易性と大規模回路の動作安定性に起因して、半導体集積回路技術との相乗的な発展を実現することができた。また、適応汎用性とは、基本構造が同一のままその能力に応じて様々な応用に適応できると言うことで、集積回路が出現した初期においてハードウエアの性能が貧弱だった時でさえ、処理速度や装置サイズがそれなりのものに対応した実用的な利用が可能であった。従来型コンピュータはその出現以来今日まで、その基本的構造を変えず、装置サイズ、処理速度、消費電力などの量的改善と、部分的な機構改良だけで、その用途を急速に拡大してきたことが則ち、適用汎用性の高さを示している。

[0005]

しかしながら、その高い汎用性によっても効率的に表現できない情報処理分野が残されている。それはパターン認識、文脈連想、組み合わせ最適化などの我々人間が無意識に行っている、いわゆる直感的情報処理である。従来型コンピュータにとっては、このような直感的情報処理を効率良く実用に耐え得るレベルで表現することは、極めて困難である。それは従来型コンピュータアーキテクチャにおける原理的特徴として、プログラムで処理手続きを明示する必要があることと、大量の演算・非線形処理を高速に実行するのに非効率であることに起因している。我々人間にとって無意識のうちに行っている直感的処理をアルゴリズムとして明示的にプログラム記述することは、元来、極めて困難であるし、また、直感的情報処理を担う手段としてニューラルネットワークモデルをプログラミングしてシミュレートする方法をとった場合では、その要求される膨大な演算量によって、それを実用的な時間内に処理することは、従来の直列的逐次処理アーキテクチャでは到底困難である。

[0006]

今後のIT普及率の向上を実現するための鍵となるのが、より多くの人が電子機器をより快適に使える技術であり、ヒトと機械との自然なコミュニケーション機能の実現である。パターン認識、文脈連想、組み合わせ最適化などの直感的情報処理は、情報処理機械が人間との自然なコミュニケーションを実現するために必要不可欠な技術であり、機械が社会の中で違和感なく利用され溶け込むための

ブレークスルーを与えるものと期待されている。直感的情報処理を効率良く実行するために、脳の情報処理様式を参考にした全く新しいアーキテクチャに基づく 脳型コンピュータの研究が活発に行われており、実用に耐えうるレベルの脳型コ ンピュータハードウエアの開発が強く求められている

[0007]

直感的情報処理を担う新型コンピュータの実用化に対する期待が高まっている中で、そのハードウエア化に関する研究開発は、今まで、各種のニューラルネットワークLSIをはじめとした連想メモリー、パターン弁別、学習機能などを実現する機能単位レベルの開発・試作に留まっていた。

[0008]

【発明が解決しようとする課題】

そこで今回、それら機能単位を部品としてとらえ、それらを適切に組み合わせることにより、人間の思考感覚に近い直感的な情報処理を効率良く実施する装置を実現することを可能にする連想メモリーベースコンピュータの、制御シーケンスを含めたコンピュータ(情報処理機械)としての基本アーキテクチャを構築することを考案する。特にここでは、ニューラルネットワーク連想メモリーを機能主体として文脈連想を自発的に実行できる連想メモリーベースコンピュータのハードウエア構成とその制御シーケンスを提案する。

[0009]

【課題を解決するための手段】

このような従来技術の課題を解決するための本発明による連想メモリーベース コンピュータは、単数あるいは複数の連想メモリーと、その連想メモリーの入力 もしくは出力データを一時的に保持できる複数の連想データメモリーと、連想デ ータメモリーに保持されたデータの一部を入力とする価値判断装置と、を含むこ とを特徴とするものである。

[0010]

また、本発明の連想メモリーベースコンピュータは、前記連想メモリーが、カオスニューラルネットワークで構成されていることを特徴とするものである。

[0011]

また、本発明の連想メモリーベースコンピュータは、前記連想メモリーと直接 データをやり取りする第1の連想データメモリーと、第1の連想データメモリー を介して連想メモリーとのデータをやり取りする複数の第2の連想データメモリ ーと、により構成されていることを特徴とするものである。

[0012]

また、本発明の連想メモリーベースコンピュータは、前記連想データを形成するニューロンのしきい値をその発火頻度に従って変調する機能を備えているものである。

[0013]

また、本発明の連想メモリーベースコンピュータは、前記しきい値変調方式として、ニューロンの発火頻度に比例してそのニューロンのしきい値を減少させることを特徴とするものである。

[0014]

また、本発明の連想メモリーベースコンピュータにおいては、前記価値判断装置は、前記第1の連想データメモリーの一部のデータを入力とし、連想メモリーで連想した出力結果が所望の結果であるか、あるいは目的にあったものであるのかを評価するものであり、その出力信号は、前記第1の連想データメモリーに保持されている連想データを前記第2の連想データメモリーへ転送するか否かを制御する信号となるものであることを特徴としている。

[0015]

また、本発明の連想メモリーベースコンピュータにおいては、前記価値判断装置は、前記の複数の第2の連想データメモリーの一部のデータを入力とし、前記の複数の第2の連想データメモリー内に保持されている複数の連想データ間に矛盾が無いかどうかを評価するものであり、その出力信号は、前記第2の連想データメモリーに保持されている連想データを前記第1の連想データメモリーへ転送するか否かを制御する信号となるものであることを特徴としている。

[0016]

また、本発明の連想メモリーベースコンピュータは、感覚器や筋肉など外界と の作用を実現するローニューロンの集まりであるローニューロン群と、コンピュ ータ内部での情報処理の素となるシンボルニューロンの集まりであるシンボルニューロン群とを含むカオス連想メモリーと、連想メモリーのシンボルニューロン群と直接接続され、前記シンボルニューロン群のニューロン信号の状態によって表現されるシンボルパターンを一時的に保持する機能を有している第1の連想データメモリーと、前記第1の連想データメモリーに接続され、前記第1の連想データメモリー上のシンボルパターンを必要に応じて複数パターン保持する機能を有している複数の第2の連想データメモリーと、前記第1の連想データメモリーの一部の信号を入力とし、前記第1の連想データメモリー上のパターンが前記第2の連想データメモリー上に保持する価値があるかどうかを判断する信号を出力する第1の価値判断器と、前記第2の連想データメモリー内の各データの一部を入力とし、前記第2の連想データメモリー内に保持された複数のシンボルパターン同士が矛盾していないかを判断する機能を有している第2の価値判断器と、を備えていることを特徴とするものである。

[0017]

また、本発明の連想メモリーベースコンピュータは、複数のカオス連想メモリーで構成され、各々の連想メモリーは、その役割毎に目や耳などの感覚器からのローパターン信号入力あるいは声帯や手足などの筋肉や分泌器などへのローパターン信号出力がローニューロン群に接続されることにより外界とのインターフェースを実現しており、全てのカオス連想メモリーには各々抽象的な状態を表現するシンボルニューロン群が含まれており、それらには、後述のワーキングメモリー部との間に、全メモリー共通の状態パターン信号が入力される部分と共通シンボルパターンが入出力される部分及び各メモリー毎の固有シンボルパターンが入出力される部分及が格メモリーは、各種感覚器からのローパターンと共通シンボルパターンに基づき学習により形成される抽象的な固有シンボルパターンと共通シンボルパターンに基づき学習により形成される抽象的な固有シンボルパターンを関連付け各メモリー間の相関を含めた複雑な連想を実現するようになっている連想メモリー部と、前記連想メモリー部からの共通シンボルパターンと全ての固有シンボルパターンと状態パターンを一時的に記憶保持しておく機能と各々のシンボルニューロン毎にその活性値を時間的に積分して、その積分値に従って発火しきい値を変調する機能を有しているシンボルステージと、前記

シンボルステージに保持されたパターン情報をある程度の期間保持できる機能を 有している複数のワーキングメモリであって、複数あるワーキングメモリー毎に その保持している情報に対する活性度を示す値を有する機能を持っており、その 活性度はある時定数をもって減衰すると同時に後述の制御シーケンスにより条件 によっては一定の量増減される仕組みを持っているワーキングメモリと、外部か らの目的信号に従っ連想の方向性(抽象化か具象化か)、各入力情報の無効化、 各連想出力の無効化、及び各シンボル信号方向性(入力か出力か)などを規定す るのに用いられる状態パターン信号を発生して前記各連想メモリーに共通に与え るための制御シーケンサと、から構成されているワーキングメモリ部と、前記ワ ーキングメモリー部のシンボルステージの一部のパターン信号を入力とし、前記 連想メモリー部で連想した結果が目的にあったものであるのかやその他の価値を 評価し、保持されているシンボルパターンを新たに前記ワーキングメモリーへ転 送するか否かを判断する機能を有している結果判定ネットワークと、前記ワーキ ングメモリーからの一部のパターン信号を入力とし、前記ワーキングメモリー内 に保持されている複数のシンボルパターン間に矛盾が無いかどうかを判断し、そ の価値評価によって実際に運動を制御したりする動作へと制御シーケンスを展開 する喫掛けを作る機能を有している矛盾判定ネットワークとから構成されており 、各々の判定ネットワークは学習によって価値判断能力を高める機能を有した階 **層型のニューラルネットワークで構成され、それらの出力である価値信号は前記** ワーキングメモリー部内にある制御シーケンサに与えられるようになっている価 値判断ネットワーク部と、を備えていることを特徴とするものである。

[0018]

【発明の実施の形態】

[基本構成要素]

まず最初に、連想メモリーに基づくコンピュータ(以後、「連想メモリーベースコンピュータ」と称す)を構成するのに最低限必要な基本構成要素について説明する。ここでは連想メモリーとしてカオスニューラルネットワークを用いる。カオスニューラルネットワークとそれによるカオス連想に関する基礎的説明については、参考文献1(高橋文之著、「第7章:カオスとメモリ」、合原一幸編:

カオスセミナー、海文堂、1994年4月) および、参考文献2 (安達雅春著、「カオスと連想記憶」、Computer Today 1999.7 No. 92、サイエンス社、1999年7月) を参照。

[0019]

図1に本発明の連想メモリーベースコンピュータにおける最も基本的な機能構成例を示す。図1内に示すように、カオスニューラルネットワークで構成されるカオス連想メモリー1は、感覚器や筋肉など、外界との作用4,5を実現するローニューロンや、コンピュータ内部での情報処理の素となるシンボルニューロンが含まれている。ローニューロンの集まりをここではローニューロン群2と呼び、外界のパターン情報を生のまま(殆ど加工しないで)投影していると言う意味で"ロー:raw"と名付けている。また、シンボルニューロンの集まりはシンボルニューロン群3と呼び、ローニューロン群で表現されるローパターンとの間で連想相関があり、ローパターンに対して抽象化されたパターンを表現するという意味から"シンボル:symbol"と名付けている。

[0020]

このシンボルニューロン群のニューロン信号の状態(信号パターン)によって、シンボルパターンが表現される。連想メモリーのシンボルニューロン群と直接接続された第1の連想データメモリー7(以後、「シンボルステージ」と称す)には、一時的にシンボルパターンを保持する機能が備わっている。また、このシンボルステージ7に接続された複数の第2の連想データメモリー8(以後、「ワーキングメモリー」と称す)は、シンボルステージ7上のシンボルパターンを必要に応じて複数パターン保持する機能を有している。シンボルステージ7の一部の信号を入力とする価値判断器9は、シンボルステージ7上のパターンをワーキングメモリー8上に保持する価値があるかどうかを判断する信号13を出力する。また、ワーキングメモリー8内の各データの一部を入力とする価値判断器10は、ワーキングメモリー8内に保持された複数のシンボルパターン同士が矛盾していないかを判断する機能を有している。

[0021]

[動作原理]

次に、連想メモリーベースコンピュータの基本的な動作原理について説明する。このコンピュータでは連想メモリーのシンボルニューロン群で表現されるシンボルパターンを、全ての情報処理における基本要素(素データ)としている。シンボルパターンは、例えば、図2で示すようなシンボルカテゴリで分類することができる。ここでいうシンボルカテゴリとは、異なった認識対象レベル毎にシンボルパターンをグループ分けした集合で、その抽象度によって、この例では8つのカテゴリに分類している。

[0022]

図2内に示す各種の円は各々のシンボルカテゴリに属するシンボルパターンの集合を示しており、抽象度が低い方から、知覚、形態、名詞、形容詞、動詞、副詞、基本文、論と続き、各々のカテゴリ間を結ぶ太線が各パターン集合間の連想相関関係を示している。つまり、太線で結ばれたカテゴリ同士のパターン集合要素間のみで連想の相関があると考える。この例では、知覚、名詞、動詞、基本文、論の各シンボルカテゴリは認識対象を表現するのに用いられ、形態、形容詞、副詞の各シンボルカテゴリは相対的特徴表現に用いられる。

[0023]

例えば、基本文のシンボルカテゴリでは複数の対象物で構成される系の構造を 認識する表現に用いられ、論のシンボルカテゴリでは基本文で表現される系の構造を汎用化した概念を認識する表現に用いられると解釈することができる。連想 メモリーベースコンピュータにおいて、情報として具体的にこれらのシンボルカ テゴリーを区別する手段としては、シンボルニューロン群の一部に抽象レベルを 表現する抽象度表現専用ニューロン群を設け、各々のパターンを学習する時に、 各々の具体的な抽象レベルに対応したパターン状態を銘記する方法が考えられる 。この抽象度表現専用ニューロン群で表現される抽象レベルパターンによって、 連想されたシンボルパターンのカテゴリを識別したり、目的にあった連想結果で あるかを判断することが可能となる。また、この抽象度表現専用ニューロン信号 は価値判断器 9 の入力の一部とすることができる。

[0024]

図3と図4を用いて文脈連想を行う原理を説明する。カオス連想メモリーは、

前述のような異なった抽象レベルのシンボルパターン同士の連想相関を、予め学習によって記憶しているものと仮定する。図3には、下位の抽象レベルのシンボルパターンa, b, cから、その上位抽象レベルのシンボルパターンを連想する場合の例を示している。

[0025]

まず、シンボルパターン a を連想の素(パターン初期状態)にして、その上位のシンボルパターンを連想する。その際、カオス連想メモリーの特徴から、パターン a に連想相関のある状態集合 A に含まれる複数の上位シンボルパターン間をダイナミックに遷移しながら複数のパターンが想起される。次に、シンボルパターン b を連想の素にして同様に状態集合 B の上位シンボルパターンをカオス連想し、さらに、シンボルパターン c を素にして同様に状態集合 C の上位シンボルパターンをカオス連想する。これらの連想過程において、各ニューロン毎にその発火頻度を固有の活性値として累積しておけば、つまり発火頻度に比例して発火し易くしておけば、最終的には、状態集合 A, B, C の積集合の要素である状態パターン x が、最も発現し易い状態になることが期待される。つまり、シンボルパターン a, b, c を素に順次連想を進めて行く過程で、次第に、それらの連想積集合の要素が出現し易くなることになり、状態 a, b, c の全てに連想相関がある上位シンボルパターン x が最終的に連想されることになる。

[0026]

また、図4に示すように、上位抽象レベルから下位の抽象レベルのシンボルパターンを連想する場合にも同様の原理で最終的にはシンボルパターンをが連想される。このように、複数の状態パターンを連想の素にして、その連想相関積集合の要素であるシンボルパターンを選別連想する原理を利用することで、いわゆる文脈連想を実現することが可能となる。ここで、抽象レベルの下位か上位への連想方向については、連想方向を規定するシンボルニューロンを学習によって形成し、連想時にそれに与える信号を境界条件として与えることによって連想方向を制御することができる。

[0027]

図3、図4で示した原理に基づく文脈連想を実行するための処理手続きについ

て、模式的に図5~図8を使って、簡単な信号の流れと基本動作を説明する。図5は連想の素となるパターンによって連想が実施される過程の動作を示している。ワーキングメモリーは複数のシンボルパターンを記憶保持できる機能を有しており、予め、連想の素となる複数のパターン、例えばa.b.cが保持されているものとする。

[0028]

まず最初に、ワーキングメモリー内のシンボルパターンaがシンボルステージに転送され一時保持される。そして、連想メモリーに対してシンボルステージ上のシンボルパターンaが連想の素となるようにシンボルニューロン群の初期状態パターンとして与えられる。次に連想メモリーは、シンボルニューロン群に与えられた連想の素パターンと、その時に入力されているローパターンを連想の初期境界条件としてカオス連想を開始する。ここで、場合によっては、連想メモリーに対する特定の制御信号により外部からのローパターン情報の一部もしくは全部を故意に遮断することも可能とし、外部からの情報をある程度コントロールできるような仕組みを備えることも可能である。このカオス連想によって、複数のシンボルパターンが連想されるが、図6で示すように、シンボルパターンが連想される毎にシンボルステージ内の各ニューロンはその発火頻度を蓄積して行く。

[0029]

シンボルパターンaを素にした一通りの連想が終わると、次に、ワーキングメモリーはシンボルパターンbをシンボルステージに転送して、それを素にした連想を実行する。同様に、ワーキングメモリー内の連想の素となるシンボルパターンが順次、連想の素となってカオス連想を行い、全ての素パターンの連想が終わった段階で、最終的に最も安定に出現した連想シンボルパターンxをシンボルステージ上で一時保持する。

[0030]

次に、図7で示すように、シンボルステージに保持されたシンボルパターンを 評価し、そのパターンが価値あるものと判断された時には、そのシンボルパター ンはワーキングメモリー内へ移されることになる。これら図5~7で示す一連の 連想処理が、連想すべくワーキングメモリー内に用意された全ての連想の素パタ ーンに関して実行終了し、また、最終の想起された連想シンボルパターンが十分 満足でき目的を達成できたと判断された場合には、図8で示す出力動作へと移行 する。但し、連想結果が不十分と判断された場合には、再度、図5~7で示す連 想動作へと戻され、新しい条件ないしは新しい素パターンでの連想が再度実行さ れる。

[0031]

連想結果が十分と判断され図8の状態になると、ワーキングメモリー内に格納された複数のシンボルパターン同士が矛盾していないかを評価し、問題ないと判断された場合には、各々の答えとなるシンボルパターンがシンボルステージに呼び出され、それは連想メモリーのシンボルニューロン群へと与えられ、それを境界条件として連想メモリーは筋肉や分泌器などへ信号を出力し、外界への作用を実現する。各々の価値判断器における価値判断は、コンピュータへ与えられる目的に従って各種パラメータを調整することで、指示した目的に沿った連想処理を実現することができる。

[0032]

「機能構成例」

ここではまず、前に述べた文脈連想を可能にする為に必要な機能、つまり、連想過程において、各ニューロン毎にその発火頻度に比例して発火し易くする機能を実現する機能構成例について図9~11を使って説明する。この説明の前に、ニューラルネットワークを実現する電子回路に関する構成例については、参考文献3(有馬裕著、「第3章:学習機能を搭載したニューラルネットワークの高集積化」、学習機能を搭載した連想記憶アナログニューラルネットワークLSIに関する研究、東京大学博士論文、1998年1月)を参照のこと。

[0033]

図9はシンボルステージ7の構成例を示す。シンボルステージは連想メモリーのシンボルニューロン群で表現されるシンボルパターンを一時保持する機能を備えており、図10で例示するような複数のシンボルセル15で構成されている。各シンボルセルは接続された連想メモリーのシンボルニューロンの一つ一つに対応して用意されており、それら全てへの共通の制御信号16が与えられている。

シンボルセル15は図10に示すように、対応するシンボルニューロンの状態を保持する状態メモリー17と、その状態メモリーの入力をワーキングメモリーの対応する状態信号か連想メモリーの対応する信号かを選択するセレクター18、対応するシンボルニューロンの活性度を変調する為のしきい値調整用メモリー19、そして、調整しきい値メモリーの値を変調する修正器20により構成されている。

[0034]

状態メモリー17は、ニューロンの状態が2値(発火、非発火)の場合、通常の1bitデジタルラッチ回路でよい。また、調整しきい値メモリー19としては、例えば、アナログ電圧をキャパシターで保持し、修正器20はチャージポンプ回路等で表現(参考文献3を参照)することができる。

[0035]

図11に連想メモリー内のシンボルニューロンの回路構成例を示す。ニューロン回路は、コンパレータ21、コンパレータの出力信号を遅延させる遅延回路28、コンパレータの出力信号とシンボルステージ内の対応するシンボルセルから出力される状態信号60utを選択するセレクター23、ニューロンの状態信号を出力する為のバッファー22、ニューロンのしきい値を表現するしきい値電流源25、しきい値電流とシナプス電流を各々の電圧に変換する2つの抵抗器26、対応するシンボルセルから出力されるしきい値調整信号6Tmdによってしきい値調整電流を表現するしきい値調整電流源27、カオスニューラルネットワークを表現するのに必要なニューロンの絶対不応期間を実現するために状態信号に遅延して反応しその期間しきい値を実質的に大きくして発火しないようにする絶対不応期間表現用電流源29によって構成される。

[0036]

コンパレータ21はこのニューロンに接続されたシナプスからのシナプス信号を電流として受け、その全てが抵抗器26によって電圧に変換されて、しきい値電流と調整しきい値電流による実質的なしきい値電圧とを比較し、シナプスからの信号が実質しきい値を超えた場合に発火信号を出力する。その信号は遅延回路28を介して一定の遅延後、絶対不応期間表現用電流源29にに与えられ、実質

的なしきい値が増大して発火状態が解消される。この遅延時間を調整することでニューロンの絶対不応期間を制御でき、カオスニューラルネットワークの連想検索挙動を調整することができる。セレクター23は、連想を開始する時、連想の素パターンデータでシンボルパターンを初期状態に固定する時にシンボルセルからの6out信号を選択する。このように図9~11で示した回路構成例によって、連想過程において、各ニューロン毎にその発火頻度に比例して発火し易くする機能を実現することができる。

[0037]

次に、より一般的な連想メモリーベースコンピュータの機能構成例について説明する。図12は、連想メモリーベースコンピュータの一般的な機能構成例を示しており、各々の機能構造上の特徴から3つの機能部に別けることができる。すなわち、連想メモリー部とワーキングメモリー部、そして価値判断ネットワーク部である。

[0038]

連想メモリー部は、複数のカオス連想メモリーで構成され、各々の連想メモリーは、その役割毎に、目や耳などの感覚器からのローパターン信号入力、あるいは声帯や手足などの筋肉や分泌器などへのローパターン信号出力がローニューロン群に接続されており、これにより外界とのインターフェースを実現している。また、全てのカオス連想メモリーには各々抽象的な状態を表現するシンボルニューロン群が含まれており、それらには、ワーキングメモリー部との間に、全メモリー共通の状態パターン信号が入力される部分と共通シンボルパターンが入出力6bされる部分および各メモリー毎の固有シンボルパターンが入出力6bされる。

[0039]

各連想メモリーは、各種感覚器からのローパターンと共通シンボルパターンに基づき学習により形成される抽象的な固有シンボルパターンを関連付け各メモリー間の相関を含めた複雑な連想を実現する。各連想メモリーに共通に与えられる状態パターン信号32は、ワーキングメモリー部内の制御シーケンサ38から発せられ、本コンピュータの情報処理の方向性を制御する為に導入されている。状

態パターン信号32には、連想の方向性(抽象化か具象化)、各入力情報の無効化、各連想出力の無効化、各シンボル信号方向性(入力か出力)などを規定するのに用いられる。

[0040]

生体脳の場合、脳以外とのインターフェースは、神経束を介して、目や耳などの感覚器や口や手足などを動かす筋肉、そしてホルモンなど体内物質の分泌器などによってなされている。生体の場合、自分自身の脳によって意志(情報処理したい内容あるいは方向性)を発現するので、脳をコントロールするための特別な機能を意識する必要はない。しかし、機械としての脳型コンピュータを工学的に利用するためには、意志に対応する制御可能性を組み込む必要がある。そこで、提案するコンピュータでは、外部からの目的信号37に従って、情報処理の方向性を制御するための状態パターン信号32を発生する制御シーケンサ38を導入している。制御フローの例は後で述べる。

[0041]

ワーキングメモリー部はシンボルステージ7と複数のワーキングメモリー8、そして全ての機能を制御する制御シーケンサ37で構成されている。シンボルステージ7は、連想メモリー部からの共通シンボルパターン6bと全ての固有シンボルパターン6a、そして状態パターンを一時的に記憶保持しておく機能17と各々のシンボルニューロン毎にその活性値を時間的に積分して、その積分値に従って発火しきい値を変調する機能19,20を有している。この機能の導入によって文脈連想を可能にしている。ワーキングメモリー8はシンボルステージ7に保持されたパターン情報をある程度の期間保持できる機能を有しており、複数あるワーキングメモリー毎にその保持している情報に対する活性度(有効度)を示す値を有する機能を持っている。その活性度(有効度)はある時定数をもって減衰すると同時に制御シーケンスにより条件によっては一定の量増減される仕組みを持っている。

[0042]

価値判断ネットワーク部は、ワーキングメモリー部のシンボルステージの一部 のパターン信号30を入力とする結果判定ネットワーク9とワーキングメモリー からの一部のパターン信号31を入力とした矛盾判定ネットワーク10から構成されている。各々の判定ネットワークは学習によって価値判断能力を高める機能を有した、階層型のニューラルネットワークで構成され、それらの出力である価値信号はワーキングメモリー部内にある制御シーケンサ38に与えられる。

[0043]

この結果判定ネットワーク9では、連想メモリー部で連想した結果が目的にあったものであるのかやその他の価値を評価し、保持されているシンボルパターンを新たにワーキングメモリー8へ転送するか否かを判断する。また、矛盾判定ネットワーク10では、ワーキングメモリー8内に保持されている複数のシンボルパターン間に矛盾が無いかどうかを判断し、その価値評価によって実際に運動を制御したりする動作へと制御シーケンスを展開する喫掛けを作る機能も有している。

[0044]

次に、本構成に基づく連想メモリーベースコンピュータによる文脈連想や自律 的連想展開に対する基本的な制御シーケンスについて、その概要を述べる。

[0045]

[制御シーケンス]

前章で述べた機能構成による連想メモリーベースコンピュータにおいて実行される、自発的文脈連想に関する、基本的な制御シーケンスのフローを図13に示す。まず最初に、コンピュータに対して目的を指示設定しなければならない。但しここでは、比較的明確な目的の問題設定に関してその制御シーケンスを述べることにする。

[0046]

目的の設定ではまず、要求する答えのシンボルカテゴリに対応する抽象レベルを明らかにする。次に、現時点で得られているシンボルパターンに関して、そのシンボルカテゴリを調べ、答えのシンボルカテゴリに到達するまでの連想相関パスを明らかにする。必要な連想相関パスを基に各種の制御パターン信号と評価用パラメータの値を設定する。制御パターン信号には、連想の方向(抽象レベルの上位か下位か)を規定する信号が含まれている。評価用パラメータには、連想さ

れたシンボルパターンがワーキングメモリーに保持する価値があるかを判断する ための活性しきい値と経験的価値しきい値などがあり、目的を満足しているかを 判定するための抽象レベル一致しきい値や確度しきい値などがある。また、ワー キングメモリー内複数のシンボルパターン間に矛盾が無いかを判定するための矛 盾許容しきい値などがある。これらのパラメータ値の設定は予め決められたルー ルに従い一義的に決定されるが、学習によって、ある程度のルール修正は可能と することもできる。

[0047]

与えられた目的に基づく各種パラメータの設定が完了すると、次に、連想の素となるべきシンボルパターンがワーキングメモリー内に格納される。つまり、コンピュータに与えられた目的に関連して、コンピュータに入力される様々なローパターンに基づき連想されたシンボルパターンなどがワーキングメモリー内に格納される。これら素シンボルパターンは既に格納済みの場合もありうる。

[0048]

次に、ワーキングメモリー内の素シンボルパターンを選定しシンボルステージに送る。シンボルステージへ送るパターンは、各々のワーキングメモリー毎に保持しているパターン活性度と各パターンの一部で表現される抽象レベルによって選定される。目標設定時に計画されたシンボルカテゴリであることと最も活性度が高いものから選定される。選ばれたシンボルパターンがシンボルステージへ送られ連想が実行されると、そのシンボルパターンに関する活性度は一定値減らされる。

[0049]

連想の素になるシンボルパターンがシンボルステージにセットされると、発火しているニューロンのみ固定され、連想メモリーに与えられて連想の境界条件となり、その素シンボルパターンと相関のある複数のシンボルが順次連想される。その間に、シンボルステージ内の各ニューロンは各々の発火状態をモニターし活性度として蓄積し、その値を自分自身のしきい値などへ反映させることで各ニューロン毎の発火し易さを変調する。全ニューロンの活性度は一連の連想の前には一定の値にリセットされる場合もある。

一つの素シンボルパターンでの連想は、全てのパターンが一通り連想されるか、一定の期間が経過したところで終了する。それぞれの連想過程では、必要に応じて状態パターン信号によって、各連想メモリー毎に各々のローニューロン群の入出力を無効にしたり、シンボルニューロン群の入出力方向を制御したりして、連想に必要な境界条件を設定することができる。一つの素シンボルパターンでの連想が終わると、次の連想素となるシンボルパターンを選定し、同様な連想を実行し、全ての素シンボルパターンでの一連の連想が終わるまで、これらの制御シーケンスがくり返される。

[0051]

全ての素シンボルパターンでの一連の連想が完了したことを、各ワーキングメモリーの活性度などによって検知した場合には、最終的に想起され、シンボルステージに想起されたシンボルパターンについて価値判断ネットワークにより評価される。ここではまず、想起されたシンボルパターンがワーキングメモリーに格納する価値があるかどうかを判定する。その価値判断として、パターン内に埋め込まれた経験によって銘記された価値や活性度などの値と、設定されたしきい値との比較により判定される。

[0052]

ここで、価値が無いと判断された場合には、連想の素となるシンボルパターンのワーキングメモリー内への格納からやり直す。この際、ワーキングメモリー内の活性度の低いシンボルパターンのみが新しい素シンボルパターンと入れ代わる様に制御する場合がある。

[0053]

ワーキングメモリーに格納する価値があると判定された場合には、ワーキングメモリー内のもっとも活性度の低いシンボルパターンを破棄して、その代わりに、シンボルステージ上のシンボルパターンを格納する。その際、そのワーキングメモリーの活性度は高い値に設定される。その場合はさらに、このシンボルパターンが目的を満足しているかの判定も行われる。ここではシンボルパターン内に埋め込まれている抽象レベルが目的の抽象レベルと一致しているかや経験により

銘記された確度情報などを基にして判定が行われる。ここで、不十分と判定されると、各種パラメータの設定処理へ戻り、場合によってはパラメータの調整を行う。

[0054]

また、目的を十分に満足していると判定された場合には、ワーキングメモリー内に格納されている複数のシンボルパターン間で矛盾が無いか判定され、矛盾があれば、各種パラメータ設定に戻り、矛盾が無ければ、ワーキングメモリー内のシンボルパターンに基づき連想メモリーを介しての外界作用シーケンスを実行に移し、コンピュータは答えを出力する。この判定には、各シンボルパターンに含まれている相関ニューロンの一致程度を用いる。

[0055]

【発明の効果】

以上のように、本発明によれば、従来のコンピュータが不得意とする、文脈連想等の直感的情報処理を効率的に実行することができ、連想メモリーによる連想処理を情報処理の基本としていることから、より人間に近い連想が実現でき、学習による連想相関の設定も可能である。これらのことから、この発明による連想メモリーベースコンピューターは、そのシンプルな機能構成と制御フローによって、情報処理機械が人間との自然なコミュニケーションを柔軟かつ容易に実現できる効果がある。

【図面の簡単な説明】

- 【図1】本発明の連想メモリーベースコンピュータの最も基本的な構成例を示す 図。
- 【図2】本発明のコンピュータで処理されるパターンの抽象カテゴリ例を示す図
- 【図3】本発明のコンピュータにおける文脈連想の仕組みを説明する図。
- 【図4】本発明のコンピュータにおける文脈連想の仕組みを説明する図。
- 【図5】本発明の基本シーケンス例を説明する図。
- 【図6】本発明の基本シーケンス例を説明する図。
- 【図7】本発明の基本シーケンス例を説明する図。

- 【図8】本発明の基本シーケンス例を説明する図。
- 【図9】本発明の第1の連想データメモリーの構成例を示す図。
- 【図10】本発明の第1の連想データメモリーを構成する要素回路例を示す図。
- 【図11】本発明の連想メモリー内のニューロン回路構成例を示す図。
- 【図12】本発明の実施例を示す図。
- 【図13】本発明のコンピュータにおける制御フロー実施例を示す図。

【符号の説明】

1は連想メモリー、2は連想メモリーを構成するローニューロン群、3は連想 メモリーを構成するシンボルニューロン群、 4 は連想メモリーへ入力される外界 から信号、5は連想メモリーから外界への出力信号、6は連想メモリーと第1の 連想データメモリー間のデータ信号、7は第1の連想データメモリー、8は第2 の連想データメモリー、9は第1の連想データメモリーの一部のデータを入力と する価値判断装置、10は第2の連想データメモリーの一部のデータを入力とす る価値判断装置、11と12は第1と第2の連想データメモリー間のデータ信号 13は第1の連想データメモリーに保持されている連想データを第2の連想デ ータメモリーへ転送するか否かを制御する信号、14は第2の連想データメモリ ーに保持されている連想データを第1の連想データメモリーへ転送するか否かを 制御する信号、15は第1の連想データメモリーを構成する構成要素、16は1 5を制御する共通の制御信号、17はニューロンの状態を保持するメモリー、1 8はセレクター、19はニューロンの調整しきい値メモリー、20は調整しきい 値の修正器、21はコンパレータ、22はバッファー、23はセレクター、24 はシナプス荷重値を表現する電流源、25はニューロンのしきい値を表現する電 流源、26は抵抗器、27はしきい値を調整する為の電流源、28は信号の時間 遅延器、29は絶対不応期間を表現する為の電流源、30は第1の連想データメ モリーから価値判断装置へ与えられる信号、31は複数の第2の連想データメモ リーから価値判断装置へ与えられる信号、32は複数の連想メモリーへ与えられ る共通の連想データ信号、33は複数の連想メモリーへ与えられる共通の制御信 号、34は第1の連想データメモリーへ与えられる制御信号、35は第2の連想 データメモリーへ与えられる制御信号、36は価値判断装置へ与えられる制御信

号、37は外界から連想メモリーベースコンピュータへ与えれれる制御信号、3 8は連想メモリーベースコンピュータを制御するシーケンサ、39は外界と連想 メモリーに接続された器官との作用線。

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

前提:各連想メモリーには予め学習により連想相関が記憶されているものとする。

【要約】

【目的】 人間の思考感覚に近い直感的な情報処理を効率良く実施する装置を実現することを可能にする連想メモリーベースコンピュータを提供する。

【構成】 単数あるいは複数の連想メモリーと、その連想メモリーの入力もしくは出力データを一時的に保持できる複数の連想データメモリーと、連想データメモリーに保持されたデータの一部を入力とする価値判断装置と、を含むことを特徴とする連想メモリーベースコンピュータである。前記連想メモリーは、カオスニューラルネットワークで構成されている。また、前記連想データメモリーは、連想メモリーと直接データをやり取りする第1の連想データメモリーと、第1の連想データメモリーを介して連想メモリーとのデータをやり取りする複数の第2の連想データメモリーとで構成されている。

【選択図】 図1

出願人履歷情報

識別番号

[800000046]

1. 変更年月日 2000年 5月 8日

[変更理由] 新規登録

住 所 福岡県北九州市戸畑区中原新町2番1号

氏 名 株式会社北九州テクノセンター