1 We prove that the given identities are true using induction on "n" as follows: BASIS STEP: We have that, for n=1, $\overline{\overline{U}S_i} = \overline{\overline{U}S_i} = \overline{S_1} = \overline{\overline{S_i}} = \overline{\overline{S_i}}$ i=1 i=1 i=1 $\int_{i=1}^{\infty} S_i = \int_{i=1}^{\infty} S_i = \int_{i=1}^{\infty$

Hence, the identities are true for n=10 Next, we show that the identities chold for n=2.

$$\frac{\mathbb{T}S_{i}}{\mathbb{T}S_{i}} = \frac{\mathbb{T}S_{i}}{\mathbb{T}S_{i}} = \frac{\mathbb{T}S_{i}}{\mathbb{T$$

INDUCTIVE STEP: Assume that, for some n>2. We show that the identities hold for n+1. USi = USi USnt1 = USi N Snt1 (:'BASIS) = MSi NSn+1 (: Inductive Hypothesis) The sile of the si Henre, Proved.

Scanned with CamScanner

2. We shave that,
$$S_1 \cup S_2 - (S_1 \cap \overline{S_2}) = (S_1 \cup S_2) \cap (S_1 \cap \overline{S_2})$$

$$(: S - T = S \cap \overline{T})$$

$$= (S_1 \cup S_2) \cap (S_1 \cup S_2) \quad (: Demogram's laws)$$

$$= ((S_1 \cup S_2) \cap \overline{S_1}) \cup ((S_1 \cup S_2) \cap S_2) \quad (: Dishibutive law)$$

$$= ((S_1 \cup S_2) \cap \overline{S_1}) \cup (S_2 \cup (S_1 \cup S_2) \cap S_2) = S_2)$$

$$= ((S_1 \cup S_2) \cap \overline{S_1}) \cup (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= ((S_1 \cap \overline{S_1}) \cup (\overline{S_1} \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= ((S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= ((S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law)$$

$$= (S_1 \cap S_2) \cup S_2 \quad (: Oishibutive law$$

Hence, Proved.

3. The given grammar generates strings of the form $(aab)^{\dagger}$, i.e. strings that have zero or more copies of the substring "oab" coneatenated $S \to \lambda$

 $S \rightarrow \lambda$ $S \rightarrow aaA \rightarrow cabS \rightarrow aab$

S -> aaA -> aabS-> aabaaA -> aabaabS-> aabaab

Hence the tanguage generaled by the given grammar is

L={we {a,b}**} w has zero or more copies of "aab"}

concatenated

4. The given grammar generates an empty language $L^2 p$.

This is because none of the rules in the grammar that a non-terminal on the right hand side. Here, none of the derivations ever complete into a

sequence of turninals.

Thus, no sking is generated by the grammas.

5(a) The following grammer generales skings with attest two as:

S-> AaAaA A-> aA|bA| A

The grammar generates skings with two a's fixed & then any sking following the first a, in the beginning, & in the end of the sking.

(b) $S \rightarrow AXAXAXA$ $A \rightarrow bAJ\lambda$ $X \rightarrow a|b|\lambda$

The string consists of only 3 a's at max, as 'a' is only generated using the non-turninal X, and there are only 3 X's in the string derived from the string derived from the struct symbol S.