esprit				
Se former autrement				
HONORIS UNITED UNIVERSITIES				

FX	A T	M	F	N
1 //	/ N			

Semestre: 1 2

Session : Principale

Rattrap	age	

Unité d'enseignement : Equipe complexité Module (s) : Complexité appliquée à la RO

 $Classe(s): 4^{\grave{e}me} \ ann\acute{e}e$

Nombre d'exercices : 3 Nombre de pages : 3 Date : 21/06/2023 Heure 15h Durée :1h30

Exercice 1: (6points)

Déterminer la complexité de chaque séquence ci-dessous en justifiant votre réponse.

Seq1:	Seq2:	Seq3:
Pour i=1 à N faire	S=0	i=1
S=0	Pour i=1 à N faire	S=0
M=N-i	Si (i mod 2=0)	Tant que (i <n) faire<="" td=""></n)>
Pour j=1 à M faire	N=N+1	S=S+i
S=S+j	Fin Si	N=N-1
Fin pour	S=S+i	i=i+1
Fin pour	Fin pour	Fin Tant que
$O(n^2)$	O(n)	O(n)
Seq4:	Seq5:	Seq6:
S=0	S=0	S=0
Pour j=1 à N faire	Pour i=1 à N faire	i=1
i=1	Pour j=i à N faire	Si (N mod 3==0)
Tant que (i <n) faire<="" td=""><td>S=S+i</td><td>Pour i=1 à N faire</td></n)>	S=S+i	Pour i=1 à N faire
i=i*2	Fin pour	S=S+i
S=S+i	Fin pour	Fin pour
Fin Tant que		Sinon
Fin pour		Tant que (i <n) faire<="" td=""></n)>
		i=i /3
		S=S+i
		Fin Tant que
		Fin Si
O(nlog ₂ n)	$O(n^2)$	O(n)

Exercice 2

Soit le code ci-dessous écrit en langage C où la fonction **Recherche** permet de vérifier en premier lieu si le tableau donné en paramètre est trié à l'aide de la fonction **Est_trie**. S'il est trié, on effectue une recherche d'une valeur **x** dans le tableau en utilisant la méthode dichotomique (**Recherche_dichotomique**), sinon on effectue une recherche en utilisant la méthode séquentielle (**Recherche sequentielle**).

1. Pour **n=4**, donner une proposition des valeurs des paramètres **tab** et **x** afin de maximiser le temps d'exécution du programme et donner d'autres valeurs qui le minimise.

(1pts) exemple de valeurs qui maximisent le nombre d'opérations : [2,3,4,1] et x=1 (1pts) exemple de valeurs qui minimisent le nombre d'opérations : [4,3,2,1] et x=4

2. Calculer la complexité du programme dans le pire et au meilleur des cas à O près (en terme de comparaison) 3pts

```
Est_trie a une complexité : au pire O(logn), au meilleur O(1)
Recherche_dichotomique : au pire O(logn), au meilleur O(1)
Recherche_sequentielle : au pire O(n), au meilleur O(1)

→ la complexité totale au pire O(n)+O(n)=O(n), au meilleur O(1)+O(1)=O(1)
```

3. Déduire une optimisation du programme.

```
Void Recherche ( int tab[], int n, int x)
int pos ;
if (Est trie(tab, n) == 1)
   pos=Recherche dichotomique(tab,n,x);
else
   pos=Recherche sequentielle(tab,n,x);
if(pos==-1)
   printf(''la valeur %d non trouvable dans le tableau'', x);
   printf("la valeur %d existe dans la position %d du tableau",x,pos);
}
                    int Est trie (int tab[], int n)
                       int i=0, trie=1;
                        while (trie==1 && i<n-2)
                             if (tab[i] <= tab[i+1])
                                i++ ;
                             else
                                trie=0 ;
                         }
                          return trie ;
                    }
```

```
L'algorithme optimisé :

Void recherche(int tab[],int n, int x)

{
    If (Recherche_sequentielle(tab,n,x)==-1) printf ('trouvé') ;
    Else printf('non trouvé') ;
}
au pire O(n), au meilleur O(1)
Exercice 3 :
```

On se propose de calculer le Produit Matriciel des deux matrices carrées \mathbf{A} et \mathbf{B} de taille \mathbf{n} . Soit \mathbf{C} la matrice carrée de taille \mathbf{n} résultantes. Pour ce faire, ils existent plusieurs algorithmes.

1. Un premier algorithme itératif appelé AlgoPM naïf (ci-dessous) Calculer la complexité

de AlgoPM naïf

```
AlgoPM_naïf (A, B, C)

For i = 1 to n do

For j=1 to n do

C(i,j)=0

For k=1 to n do

C(i,j)= C(i,j) +A(i,k)*B(k,j)

End For

End For

End For

End For

End_AlgoPM_naïf
```

$1pt : O(n^3)$

2. Un deuxième algorithme récursif se basant sur le principe « Diviser pour Régner » appelé $AlgoPM_Rec$. Cet algorithme décompose les matrices A, B et C en sousmatrices de taille n/2*n/2 comme suit :

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}; B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}; C = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

L'équation C = A*B peut alors se récrire :

$$\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} * \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix};$$
 avec $c_{11} = a_{11} * b_{11} + a_{12} * b_{21}$ $c_{12} = a_{11} * b_{12} + a_{12} * b_{22}$ $c_{21} = a_{21} * b_{11} + a_{22} * b_{21}$ $c_{22} = a_{21} * b_{12} + a_{22} * b_{22}$

Calculer le nombre d'opérations de multiplications de matrices carrées de taille n/2 et le nombre d'addition de telles matrices. Donner alors l'équation de récurrence de la complexité de **AlgoPM_Rec** puis la calculer.

2pts:
$$T(n)=8T(n/2)+O(n^2) \rightarrow T(n)=\Theta(n^{\log_2 8})=\Theta(n^3)$$

3. Un troisième algorithme récursif semblable à **AlgoPM_Rec** appelé **AlgoPM_Strassen**. Cet algorithme applique la méthode de Strassen utilisant 7 nouvelles matrices $\mathbf{M_i}$ qui servent à exprimer les $\mathbf{c_{ii}}$ avec uniquement 7 multiplications au lieu de 8.

 $M_1=(a_{11}+a_{22})^*(b_{11}+b_{22})$ Les c_{ij} sont alors exprimées comme suit :

 $M_2=(a_{21}+a_{22})*b_{11}$ $c_{11}=M_1+M_5-M_5+M_7$

 $M_3=a_{11}*(b_{12}-b_{22})$ $c_{12}=M_3+M_5$ $M_4=a_{22}*(b_{21}-b_{11})$ $c_{21}=M_2+M_4$

 $M_5 = (a_{11} + a_{12}) * b_{22}$ $c_{22} = M_1 - M_2 + M_3 + M_6$

 $M_6=(a_{21}-a_{11})*(b_{11}+b_{12})$ $M_7=(a_{12}-a_{22})(b_{21}+b_{22})$

Donner la formule de récurrence de la complexité de AlgoPM_DeStrassen puis la calculer.

3pts:
$$T(n)=7T(n/2)+O(n^2)=\Theta(n^{\log_2 7})=\Theta(n^{2,8})$$

