Probabilités et statistiques Épreuve du 31 mai 2022

Durée 1h30 — Calculatrices et documents interdits Attention : toutes les réponses doivent être justifiées.

Exercice 1. À Nancy, la météo prévoit de la pluie avec probabilité 1/2 tous les jours. Les prévisions météorologiques sont correctes avec les probabilités suivantes : la probabilité qu'il pleuve sachant que la météo a prévu de la pluie est de 2/3 tandis que la probabilité qu'il ne pleuve pas sachant que la météo n'a pas prévu de pluie est de 2/3. Quand la météo annonce de la pluie, Bob prend son parapluie. Quand il n'y a pas de pluie annoncée, il le prend avec une probabilité de 1/3, sans savoir quel temps il va vraiment faire.

- 1. Quelle est la probabilité que Bob prenne son parapluie?
- 2. Sachant qu'il pleut, calculer la probabilité que Bob ait son parapluie sur lui.
- 3. Sachant que Bob sort avec son parapluie, calculer la probabilité qu'il ne pleuve pas.

Notons M l'évènement « la météo prévoit de la pluie », P l'évènement « il pleut » et U (pour l'évènement « Bob prend son parapluie ». L'énoncé donne les probabilités

$$\mathbb{P}(M) = 1/2$$
, $\mathbb{P}(P|M) = 2/3$, $\mathbb{P}(\bar{P}|\bar{M}) = 2/3$, $\mathbb{P}(U|M) = 1$, $\mathbb{P}(U|\bar{M}) = 1/3$.

On peut par exemple visualiser la situation sur les deux arbres suivants (on a entouré les probas données par l'énoncé, les autres s'en déduisent immédiatement), mais ce n'est pas obligatoire pour faire l'exercice :

Si besoin, ces deux arbres peuvent être visualisés en un seul arbre comme voici :

1. On a

$$\mathbb{P}(U) = \mathbb{P}(M)\mathbb{P}(U|M) + \mathbb{P}(\bar{M})\mathbb{P}(U|\bar{M}) = \frac{1}{2} \times 1 + \frac{1}{2} \times \frac{1}{3} = \frac{1}{2} + \frac{1}{6} = \frac{2}{3}.$$

2. On a cette fois

$$\mathbb{P}(U|P) = \frac{\mathbb{P}(U \cap P)}{\mathbb{P}(P)} = \frac{\mathbb{P}(M)\mathbb{P}(U \cap P|M) + \mathbb{P}(\bar{M})\mathbb{P}(U \cap P|\bar{M})}{\mathbb{P}(M)\mathbb{P}(P|M) + \mathbb{P}(\bar{M})\mathbb{P}(P|\bar{M})} = \frac{1/2 \times 2/3 \times 1 + 1/2 \times 1/3 \times 1/3}{1/2 \times 2/3 + 1/2 \times 1/3} = \frac{7/18}{1/2} = \frac{7}{9}.$$

3. Pour finir, on a

$$\mathbb{P}(\bar{P}|U) = \frac{\mathbb{P}(\bar{P}\cap U)}{\mathbb{P}(U)} = \frac{\mathbb{P}(M)\mathbb{P}(\bar{P}\cap U|M) + \mathbb{P}(\bar{M})\mathbb{P}(\bar{P}\cap U|\bar{M})}{\mathbb{P}(U)} = \frac{\frac{1}{2}\times\frac{1}{3}\times1 + \frac{1}{2}\times\frac{2}{3}\times\frac{1}{3}}{2/3} = \frac{3+2}{12} = \frac{5}{12}.$$

Exercice 2. Un parc informatique possède 100 machines, dont 30 sont infectées par un virus. L'administrateur ne connaît pas le nombre de machines infectées et décide d'en tester un certain nombre.

On tire 5 machines simultanément au hasard, et on note X le nombre de machines infectées parmi ces 5 machines. Déterminer la loi de X.

L'expérience aléatoire consiste à tirer cinq machines parmi 100, donc l'univers naturel équiprobable est de cardinal $\binom{100}{5}$.

La variable aléatoire *X* peut prendre comme valeurs 0, 1, ... 5, et on a :

$$\mathbb{P}(X=0) = \frac{\binom{70}{5}\binom{30}{0}}{\binom{100}{5}}; \quad \mathbb{P}(X=1) = \frac{\binom{70}{4}\binom{30}{1}}{\binom{100}{5}}; \quad \mathbb{P}(X=2) = \frac{\binom{70}{3}\binom{30}{2}}{\binom{100}{5}}; \quad \dots \mathbb{P}(X=5) = \frac{\binom{70}{0}\binom{30}{5}}{\binom{100}{5}};$$

On ne demandait bien sûr pas de simplifier les fractions.

Exercice 3. Soit $g : \mathbb{R} \to \mathbb{R}$ la fonction définie comme suit :

$$g(t) = \begin{cases} 1 - t & \text{si } t \in [0, 1] \\ 1 + t/2 & \text{si } t \in [-2, 0] \\ 0 & \text{sinon} \end{cases}$$

- 1. Que vaut $\int_{-\infty}^{+\infty} g(t) dt$?
- 2. Soit C le nombre réel tel que $\int_{-\infty}^{+\infty} Cg(t) dt = 1$, et posons f(t) = Cg(t). Vérifier que f est la densité de probabilité d'une certaine variable aléatoire, notée X.
- 3. Quelle est l'espérance de *X*?
- 4. Calculer $\mathbb{P}(X > 0)$.
- 5. Calculer la probabilité que X > 0 sachant que $X \ge -1$.
 - 1. On a $\int_{-\infty}^{+\infty} g(t) dt = 1 + \frac{1}{2} = \frac{3}{2}$
 - 2. Notons que d'après la question précédente, $C = \frac{2}{3}$. La fonction f est continue par morceaux, positive, et son intégrale vaut 1, donc c'est une densité de probabilité.
 - 3. L'espérance de X vaut $\int_{\mathbb{R}} t f(t) dt = C \int_{\mathbb{R}} t g(t) dt = \frac{2}{3} \int_{\mathbb{R}} t g(t) dt$. Calculons donc $\int_{\mathbb{R}} t g(t) dt$:

$$\int_{\mathbb{R}} tg(t)dt = \int_{-\infty}^{-2} tg(t)dt + \int_{-2}^{0} tg(t)dt + \int_{0}^{1} tg(t)dt + \int_{1}^{+\infty} tg(t)dt$$

$$= 0 + \int_{-2}^{0} t(1+t/2)dt + \int_{0}^{1} t(1-t)dt + 0$$

$$= \left[t^{2}/2 + t^{3}/6\right]_{-2}^{0} + \left[t^{2}/2 - t^{3}/3\right]_{0}^{1}$$

$$= -(4/2 + (-2)^{3}/6) + (1/2 - 1/3) = -2/3 + 1/6 = -1/2.$$

On en déduit que $\mathbb{E}(X) = C \int_{\mathbb{R}} t g(t) dt = \boxed{-\frac{1}{3}}.$

- 4. On a $\mathbb{P}(X > 0) = \int_0^{+\infty} f(t) dt = \int_0^1 f(t) dt = C \int_0^1 g(t) dt = \frac{C}{2} = \boxed{\frac{1}{3}}.$
- 5. On a, d'après la formule pour les probabilités conditionnelles :

$$\mathbb{P}(X > 0 | X \ge -1) = \frac{\mathbb{P}(X > 0)}{\mathbb{P}(X \ge -1)} = \frac{\int_0^{+\infty} f(t) dt}{\int_{-1}^{+\infty} f(t) dt} = \frac{C \int_0^{+\infty} g(t) dt}{C \int_{-1}^{+\infty} g(t) dt} = \frac{1/2}{3/4 + 1/2} = \boxed{\frac{2}{5}}.$$

Exercice 4. Une entreprise commercialise une offre d'hébergement cloud avec un système de redondance (type RAID) intégré pour limiter les accidents. L'originalité de l'entreprise tient à ce que les clients peuvent choisir la façon dont fonctionne la redondance, parmi deux choix possibles : le système utilisera soit quatre disques durs de 1 To, soit deux disques durs de 2 To, et le système de redondance fonctionne du moment qu'au moins 50% des disques fonctionnent correctement. Tous les disques durs, quelle que soit leur capacité, ont la même probabilité de tomber en panne, de façon indépendante les uns des autres. On note p cette probabilité.

- 1. On suppose que p = 1/2. Laquelle des deux solutions faut-il choisir?
- 2. Pour quelles valeurs de *p* faut-il choisir le système à deux grands disques durs, et pour quelles autres valeurs de *p* faut-il choisir le système à quatre petits disques durs? (Indication : la réponse dépend des racines d'un trinôme simple en *p*).
 - 1. Avec les deux grands disques durs, la probabilité de dysfonctionnement, c'est-à-dire la probabilité que les deux tombent en panne est de 1/4. Avec les quatre petits disques durs, la probabilité de dysfonctionnement, c'est-à-dire la probabilité qu'au moins trois disques durs tombent en panne est de $4 \times 1/2^4 + 1/2^4 = 5/16 > 1/4$. Il vaut mieux prendre le système à deux disques durs, qui a moins de chances de dysfonctionner
 - 2. Il s'agit du cas général. La probabilité de dysfonctionnement avec deux disques est de $f(p)=p^2$. Pour quatre disques, la probabilité de dysfonctionnement est de $g(p)=4p^3(1-p)+p^4=4p^3-3p^4$. Il s'agit donc de voir pour quels p est-ce que $f \ge g$. Pour cela, on étudie la différence $h(p)=f(p)-g(p)=p^2-4p^4+3p^4=p^2(1-4p+3p^2)$. Le trinôme $1-4p+3p^2$ s'annule en $\frac{4\pm\sqrt{16-12}}{6}=\frac{2}{3}\pm\frac{1}{3}$, autrement dit en 1/3 et en 1. Il est positif si p<1/3, négatif si 1/3< p<1 et positif si p>1 mais ce cas ne nous intéresse pas car p est une probabilité donc $0\le p\le 1$. Donc si 0< p<1/3, on a $b\ge 0$ et donc $f\ge g$, autrement dit il faut choisir la solution avec quatre disques durs. Si par contre p>1/3, il vaut mieux choisir la solution avec deux disques durs. Notons que le résultat de la première question est cohérent avec cette réponse.

Exercice 5. On tire trois nombres entiers a, b et c aléatoirement pour la loi uniforme sur $\{-1,0,1\}^1$. On forme ensuite le polynôme $P(X) = aX^2 + bX + c$. C'est donc un « polynôme aléatoire », au sens où ses coefficients sont aléatoires.

- 1. Quelle est la probabilité que *P* soit un trinôme du second degré?
- 2. Sachant que P est un trinôme du second degré, quelle est la probabilité qu'il ait deux racines réelles distinctes?
 - 1. Le mot « trinôme » pouvait éventuellement être interprété de plusieurs manières (somme de trois monômes non nuls, ou bien terme générique pour désigner un polynôme du type $ax^2 + bx + c$ y compris lorsque les réles a, b ou c sont nuls. Les deux interprétations ont été accpetées. Le polynôme P est un polynôme du second degré si et seulement si $a \ne 0$. La probabilité que ce soit le cas est donc de 2/3. Si on veut que les trois monômes soient tous non nuls, la proba est de 8/27.
 - 2. Si $a \neq 0$, le trinôme P possède deux racines réelles distinctes si et seulement si $b^2 4ac > 0$. Dénombrons

Si a = 1, il y a neuf cas pour b et c, on calcule dans chaque des cas $b^2 - 4ac = b^2 - 4c$ (b en abscisse, c en ordonnée):

$$(-1)^2 - (1 \times 4) = -3.0$$
 $(0)^2 - (1 \times 4) = -4.0$ $(1)^2 - (1 \times 4) = -3.0$

$$(-1)^2 - (0 \times 4) = 1.0$$
 $(0)^2 - (0 \times 4) = 0.0$ $(1)^2 - (0 \times 4) = 1.0$

$$(-1)^2 - (-1 \times 4) = 5.0$$
 $(0)^2 - (-1 \times 4) = 4.0$ $(1)^2 - (-1 \times 4) = 5.0$

Si a = -1, il y a à nouveau neuf cas pour b et c, on calcule dans chaque des cas $b^2 - 4ac = b^2 + 4c$ (b en abscisse, c en ordonnée):

$$(-1)^2 + (1 \times 4) = 5.0$$
 $(0)^2 + (1 \times 4) = 4.0$ $(1)^2 + (1 \times 4) = 5.0$

$$(-1)^2 + (0 \times 4) = 1.0$$
 $(0)^2 + (0 \times 4) = 0.0$ $(1)^2 + (0 \times 4) = 1.0$

$$(-1)^2 + (-1 \times 4) = -3.0$$
 $(0)^2 + (-1 \times 4) = -4.0$ $(1)^2 + (-1 \times 4) = -3.0$

Finalement, la proba qu'il y ait deux racines réelles distinctes (sachant qu'on a un trinôme) est de 5/9.

^{1.} Il y avait une faute de frappe dans l'énoncé : {-1,01} (une virgule manquante). L'erreur a été corrigée pendant l'épreuve, mais pour ceux qui auraient interprété comme -1,1 et correctement mené le raisonnement et fait les calculs, on n'a pas pénalisé.