Significance Tests and Clustering for GEO-based Omics Data

(a) We searched for the name Dehan on GEO, and as a result, we obtained information that the relevant data is in the GSE1987 dataset. (Figure 1).

Figure 1. Visualize GSE Number (GSE1987).

In continuation, after installing BiocManager, we specified the package we wanted to download. We called the GEOquery package to be able to use the getGEO function. Then, by entering the code GSE1987, we downloaded the relevant file. For the question A, since we were asked to remove the files related to Renal Metastasis and Colon Metastasis samples, we applied this in the final step and formatted the data as requested (Figure 2).

```
1 #Under the codes we runned the command line in R.
  3 #if (!require("BiocManager", quietly = TRUE))
  4 # install.packages("BiocManager")
  5 #BiodManager::install()
  8 BiocManager::install("GEOquery") #GSE1987
  9 library(GEOquery)
  10
 11 lung_c <- getGEO("GSE1987", AnnotGPL = TRUE)</pre>
 12
 13
      lung_c1 <- lung_c[[1]]</pre>
 14
 15 ExpInfo = lung_c1@phenoData@data
  16 ExpInfo$description
 17 #We would learn the renal and colon metastasis
 18 #remove the 2 Renal Metastasis 1 Colon metastasis
19 #[16] "Renal Metastasis. Male."
  20 #[18] "Colon Metastasis. Female."
  21 #[20] "Renal Metastasis. Male."
 22
 23 gse_lung <- lung_c1@assayData$exprs
  24
 25 columns_to_remove <- c(2, 4, 6)
 26
 27 gse_lung <- gse_lung[, -columns_to_remove]
```

Figure 2. Codes of question "a"

(b) At this stage, we removed genes that satisfy the condition of having zero standard deviation because their expression values are all the same. We applied the same modification to the featureData named feature_lung since we visualize gene names here, and we will need gene name information. Subsequently, we used the log2 function to take the logarithm of our data, which we will use in the t-test. Using the t.test function, we calculated the p-values for our tumor and normal cells. As a result, we displayed the number of genes with p-values less than 0.01 as 1534 (Figure 3).

```
#sd=0 genes, we removed the featureData
feature_lung <- lung_ci@featureData
feature_lung <- feature_lung[-zero_sd_genes, ]

log_gse_lung_filtered <- log2(gse_lung_filtered)
head(log_gse_lung_filtered)

#t-test
p_value = NULL
for (i in 1:nrow(log_gse_lung_filtered)) {
    p_value[i] <- t.test(log_gse_lung_filtered[i, c(1:24, 34)], log_gse_lung_filtered[i, 25:33])$p.value
    p_value <- length(which(p_value<0.01))
p.val1 <- length(which(p_value<0.01))
p.val1 #output 1534</pre>
```

Figure 3. Codes of question "b".

(c) At this stage, we applied the Benjamini-Hochberg correction using the p-values obtained in the previous question. After this correction, we identified the number of genes with p-values

less than 0.05 as our reference, considering them to be significant. Consequently, we learned that 1063 genes are significant based on the 0.05 cut-off value (Figure 4).

```
#question c

#Benjamini-Hochberg correction

corrected_p_values <- p.adjust(p_value, method = "BH")

# Find significantly changed genes using a corrected p-value cutoff of 0.05

significant_genes <- which(corrected_p_values < 0.05)

sig_genes <- length(significant_genes)

sig_genes #1063
```

Figure 3. Codes of question "c".

- (d) No, I checked, and the results are not exactly the same, but they are close. I think that the reason for this may be that during this study we removed genes with a standard deviation of 0 from the data set.
- **(e)** (Hint:use cor.testfunction). Repeat the same analysis with Spearman correlation. Do you see any difference in the pattern? Discuss the results.

We first identify the top 3 genes based on their p-values, and then apply Pearson correlation tests for these genes in both normal and tumor conditions. We chose to implement the tests within a loop instead of printing each of the 3 genes separately.

```
65 #question e
 66 #3 genes-most significant p-values, Find the indices of the smallest three values
 67
    most_3 <- order(corrected_p_values)[1:3]</pre>
 68 print(most_3) #4346-1183-1922
 69
 70 a <- feature_lung@data$`Gene symbol`
 71 a[most_3] #most common 3 genes; "SPP1" "SPP1" "DDX11"
 72
 73 #Select columns for tumor (1:24 and 34) and normal tissue (25:33)
 74
 75 #CORRELATION TEST
 76 top3_genes <- log_gse_lung_filtered[most_3, ]
 78 c_top3_genes <- data.frame(t(top3_genes[, c(1:24, 34)]))</pre>
 79 colnames(c_top3_genes) <- rownames(top3_genes)
 80 n_top3_genes <- data.frame(t(top3_genes[, 25:33]))
 81 colnames(n_top3_genes) <- rownames(top3_genes)
 82
 83 # Cancer samples correlation tests
 84 p_values_cancer <- matrix(NA, nrow = 3, ncol = 3)
 85
 86 - for (i in 1:3)
 87 - for (j in 1:3)
 88
        p_values_cancer[i, j] <- cor.test(c_top3_genes[, i], c_top3_genes[, j], method = 'pearson')$p.value
 90 - }
 91
92 # Normal samples correlation tests
 93 p_values_normal <- matrix(NA, nrow = 3, ncol = 3)
 95 - for (i in 1:3) {
 96 - for (j in 1:3) {
 97
        p_values_normal[i, j] <- cor.test(n_top3_genes[, i], n_top3_genes[, j], method = 'pearson')$p.value
 98 ^ }
99 ^ }
100
101 # Print the results asthe pvalues-cancer and pvalues-normal
102 print("Cancer Samples Correlation P-Values:")
103 print(p_values_cancer)
104 print("Normal Samples Correlation P-Values:")
105 print(p_values_normal)
```

Figure 4. Codes of question "e".

In the context of the results obtained for cancerous cells, given that the p-values are very small, we can state that these relationships are statistically significant. Similarly, when looking at the p-values for normal cells, the results are also highly significant (Figure 5).

```
[1] "Cancer Samples Correlation P-Values:"
> print(p_values_cancer)
              [,1]
                           [,2]
                                         Γ.31
[1,] 1.586425e-181 0.0002387822 7.951017e-02
[2,] 2.387822e-04 0.0000000000 8.309627e-02
[3,] 7.951017e-02 0.0830962666 1.586425e-181
> print("Normal Samples Correlation P-Values:")
[1] "Normal Samples Correlation P-Values:"
> print(p_values_normal)
                          [,2]
             [,1]
                                       [,3]
[1,] 0.000000e+00 6.603003e-05 1.837054e-01
[2,] 6.603003e-05 0.000000e+00 1.107678e-01
[3,] 1.837054e-01 1.107678e-01 2.220226e-54
```

Figure 5. Results of Pearson Correlation Most Significat 3 Genes.

At this stage, we applied a Spearman correlation similar to what we did in Pearson correlation. Similarly, we have used loops here as well (Figure 6).

```
107 #Cancer samples Spearman correlation tests
108 p_values_cancer_spearman <- matrix(NA, nrow = 3, ncol = 3)
109
110 - for (i in 1:3)
111 - for (j in 1:3) {
         p_values_cancer_spearman[i, j] <- cor.test(c_top3_genes[, i], c_top3_genes[, j], method = 'spearman')$p.value
112
113 -
114 . }
115
116 # Normal samples Spearman correlation tests
p_values_normal_spearman <- matrix(NA, nrow = 3, ncol = 3)</pre>
118
     for (j in 1:3)
120 -
         p_values_normal_spearman[i, j] <- cor.test(n_top3_genes[, i], n_top3_genes[, j], method = 'spearman')$p.value
121
122 *
123 * }
124
125 # Print the results for Spearman correlation
126 print("Cancer Samples Spearman Correlation P-Values:")
print(p_values_cancer_spearman)
print("Normal Samples Spearman Correlation P-Values:")
print(p_values_normal_spearman)
```

Figure 6. Spearman Correlation for Normal and Tumor Cells.

In the context of the results as the spearman correlation, obtained for cancerous cells, given that the p-values are very small, we can state that these relationships are statistically significant. Similarly, when looking at the p-values for normal cells, the results are also highly significant (Figure 7).

```
[1] "Cancer Samples Spearman Correlation P-Values:"
> print(p_values_cancer_spearman)
             [,1]
                          [,2]
                                       [,3]
[1,] 0.0000000000 0.0003271861 1.582656e-02
[2,] 0.0003271861 0.0000000000 3.286291e-02
[3,] 0.0158265591 0.0328629064 3.195672e-07
> print("Normal Samples Spearman Correlation P-Values:")
[1] "Normal Samples Spearman Correlation P-Values:
> print(p_values_normal_spearman)
             [,1]
                          [,2]
                                       [,3]
[1,] 5.511464e-06 3.112324e-02 7.435406e-01
    3.112324e-02 5.511464e-06 5.888999e-02
[3,] 7.435406e-01 5.888999e-02 5.511464e-06
```

Figure 7. Result of Spearman Correlation for Normal and Tumor Cells.

Spearman and Pearson correlation tests are two distinct statistical methods that assess the relationship between two variables, measuring different types of associations. According to the results, the Spearman correlation test has produced lower p-values than the Pearson test. This indicates the presence of a non-linear relationship between the variables. In this case, the relationship among the ordered versions of the data appears to be better captured by Spearman.

(f) In this context, we set the cut-off value to 0.01 and applied the Benjamini-Hochberg correction. Then we did the rerun query as the ensembl IDs.

Figure 8. Perform gProfiler for KEGG.

Figure 9. Displayed GO-Molecular Function, GO-Biological Process, and KEGG(point of 36 and 37). We interested in the point of 36 and 37.

ID	Source	Term ID	Term Name	p _{adj} (query_1) ↑
15	GO:BP	GO:0048513	animal organ development	1.230×10 ⁻²⁶
16	GO:BP	GO:0000278	mitotic cell cycle	4.843×10 ⁻¹⁹
1	GO:MF	GO:0005515	protein binding	2.495×10 ⁻¹³
38	GO:RP	GO:2000145	regulation of cell motility	1.878×10 ⁻¹¹
36	KEGG	KEGG:04110	Cell cycle	2.823×10 ⁻⁶
2	GO:MF	GO:0019199	transmembrane receptor protein kinase activity	1.434×10 ⁻⁵
3	GO:MF	GO:0005509	calcium ion binding	2.279×10 ⁻⁵
17	GO:BP	GO:0048251	elastic fiber assembly	3.672×10 ⁻⁵
4	GO:MF	GO:0005201	extracellular matrix structural constituent	5.466×10 ⁻⁵
5	GO:MF	GO:0098772	molecular function regulator activity	1.775×10 ⁻⁴
6	GO:MF	GO:0003684	damaged DNA binding	1.829×10 ⁻⁴
18	GO:BP	GO:0006271	DNA strand elongation involved in DNA replication	1.873×10 ⁻⁴
7	GO:MF	GO:0016538	cyclin-dependent protein serine/threonine kinase	3.264×10 ⁻⁴
19	GO:BP	GO:0034504	protein localization to nucleus	7.910×10 ⁻⁴
8	GO:MF	GO:0003824	catalytic activity	2.362×10 ⁻³
20	GO:BP	GO:0034501	protein localization to kinetochore	
24	CORD	CO 0007100		2.642.403
37	KEGG	KEGG:00350	Tyrosine metabolism	2 681 × 10−3
22	GO:BP	GO:0051258	protein polymerization	3.760×10 ⁻³
9	GO:MF	GO:0005160	transforming growth factor beta receptor binding	
23	GO:BP	GO:0009411	response to UV	
24	GO:BP	GO:0006066	alcohol metabolic process	
25	GO:BP	GO:0050798	activated T cell proliferation	
26	GO:BP	GO:0098886	modification of dendritic spine	
27	GO:BP	GO:0033030	negative regulation of neutrophil apoptotic process	
28	GO:BP	GO:0002693	positive regulation of cellular extravasation	
29	GO:BP	GO:0001554	luteolysis	
30	GO:BP	GO:0016101	diterpenoid metabolic process	

Figure 10. Displayed GO-Molecular Function, GO-Biological Process, and KEGG Details. Term ID, Term Name, and adjective p-value.

The question asks us to define KEGG pathways. According to the information obtained from gProfiler, genes with high expression levels and correlation, using a cut-off value of 0.01 as a reference, are significant in the Cell Cycle and Tyrosine Metabolism pathways.

It is associated with KEGG:00350 Tyrosine Metabolism. The genes identified here are: **AOC3**, **ADH1A**, **ADH1B**, **ADH1C**, **TYRP1**, **AOX1**, **MAOB**, and **ALDH3B2**.

It is associated with KEGG04110 Cell Cycle. The genes identified here are: *TGFB2, CDC6, CDKN1C, CCND3, CDK1, PCNA, CCNB1, DDX11, CCNB2, MCM2, BUB1B, ATR, MAD2L1, ORC5, ESPL1, MCM6, PTTG1, CCNE1, BUB1, BUB3, TTK,* and *MCM7*.

Figure 11. KEGG Pathways, p-values and Gene Names.

(g) At this stage, to obtain the requested graph, it is necessary to install and call the gplots package. Afterwards, to simplify the view, we defined the log_gse_lung_filtered dataset as 'data'. Subsequently, the as.dist function is used. The as.dist function is crucial for converting correlation matrices into a format suitable for hierarchical clustering algorithms. The resulting condensed distance vectors are later used in constructing dendrograms, and these dendrograms represent the hierarchical relationships between the rows and columns of the original data matrix (Figure 12).

```
145 #question g
 146 # Load required libraries
 147 install.packages(c("gplots", "RColorBrewer"))
 148 library(gplots)
 149 # Read the data
 150 data <- log_gse_lung_filtered[significant_genes,]</pre>
 151
 152 # Perform hierarchical clustering using Spearman correlation
 153 sg <- as.dist(1 - cor(data, method = "spearman"))
154 ss <- as.dist(1 - cor(t(data), method = "spearman"))
 155
 156 hc_sg <- hclust(sg, method = "complete")
      hc_ss <- hclust(ss, method = "complete")
 157
 158
 159 dend_sg <- as.dendrogram(hc_sg)</pre>
 160 dend_ss <- as.dendrogram(hc_ss)
 161
 heatmap(data, Colv = dend_sg, Rowv = dend_ss, scale = "row")
```

Figure 12. Perform Hierarchical Clustering Using Spearman Correlation on R.

Figure 13. Spearman Correlation on Heatmap.

Bir önceki aşamada uygulama sırasında kullanılan scriptler method olarak pearson tercih edilerek uygulanmıştır. Pearson dışında kullanılan tüm parametreler spearman correleation için kullanılanlar ile aynıdır (Figure 14).

```
# Perform hierarchical clustering using pearson correlation
pg <- as.dist(1 - cor(data, method = "pearson"))
ps <- as.dist(1 - cor(t(data), method = "pearson"))

hc_pg <- hclust(pg, method = "complete")
hc_ps <- hclust(ps, method = "complete")

dend_pg <- as.dendrogram(hc_pg)
dend_ps <- as.dendrogram(hc_ps)

heatmap(data, Colv = dend_pg, Rowv = dend_ps, scale = "row")
```

Figure 14. Perform Hierarchical Clustering Using Pearson Correlation On R.

Figure 15. Pearson Correlation on Heatmap.

According to the Pearson and Spearman correlation heatmaps, while some genes show high correlation in Pearson, the same genes exhibit even higher correlation in Spearman. However, when comparing these two heatmaps overall, we observe that the clusters are focused on similar regions. We think that in the Spearman result, there are 8 clusters in the heatmap. On the other hand, in the Pearson result, we estimate that there are 7 clusters. We note that the high correlation regions observed in Pearson are more distinctly delineated on the color scale. This characteristic can be considered important for clearer separation of the groups, but it may be specific to our dataset. In our effort to determine the number of clusters, in addition to examining the color distribution on the heatmap, we considered how the upper dendrogram was constructed and how dendroid lengths varied(Figure 13 and Figure 15).