1 Lake Model

These are variations on the https://lectures.quantecon.org/jl/lake_model.html with annotated code in https://github.com/jlperla/ECON407_2018/blob/master/notebooks/lake_model_annotated.ipynb. Recall that in the example, the fiscal policy had a lump-sum tax paid by all in the workforce (i.e. τN_t was the revenue) which paid for the unemployment benefits, and the balanced budget constraint is $\tau N_t = cU_t$.

Taxing Only Workers

Consider a variation where the government only taxes those who are working, but maintains the lump-sum tax. That is, the post-tax income for the unemployed is c and the post-tax income for workers is $w - \tau$. With this, the revenue generated is now τE_t and the balanced budget is now $\tau E_t = cU_t$, or after normalizing by the population $\tau e = cu$

- 1. Replicate the key figures from the code which show the Unemployment Rate, Employment Rate, Tax, and Welfare as a function of the unemployment benefits in equilibrium.
- 2. Given your solution above, compare it to the highest welfare in the previous example with a lump-sum paid by the entire workforce. Which policy should a the government implement to maximize welfare? Interpret the results.

(Optional) Proportional Tax

As a bonus, and/or consider it as a final project.

Consider another variation where the tax is a fraction of income for the employed. That is, for some τ_w , the post-tax income of a worker is $(1 - \tau_w)w$ while the unemployed are not taxed. Replicate the key figures from the code, as before, and compare the policy to the others.¹

You can even consider a variation with a progresive tax. That is, τ_w is a function of w itself. For example, each wage could have its own $\tau_w(w)$ tax-rate, which is typically increasig in w.

2 Asset Pricing

These are variations on the https://lectures.quantecon.org/jl/markov_asset.html with annotated code in https://github.com/jlperla/ECON407_2018/blob/master/notebooks/markov_asset.ipynb

Pricing a High-Low Markov Chain Assume that the consumer's preferences and parameters are identical to those in the "Asset Prices under Risk Aversion" case https://lectures.quantecon.org/jl/markov_asset.html#asset-prices-under-risk-aversion

However, instead of the discretized AR(1) process in that section, assume that aggregate consumption is either c_{ℓ} or c_h . If aggregate consumption is c_{ℓ} at time t, then the probability that it is c_{ℓ} at time t + 1 is $\lambda_{\ell} \in (0, 1)$. If it is c_h at time t, then the probability that it remains at c_h at time t + 1 is $\lambda_h \in (0, 1)$.

¹Hint: the tricky part of this problem is figuring out what the balanced budget requirement is. The revenue the government spends is still cU_t , but to find the revenue collected you will need to use the distribution of wages conditional on working and use it to find the revenue required.

- 1. Setup the markov chain P for this stochastic process
- 2. Adapt the existing code to calculate the price of a claim to the dividends $d_t = c_t$ given the current state ℓ or h
- 3. Let $\lambda_{\ell} = \lambda_h = 0.5, c_{\ell} = 1.0$. Plot the price to dividends ratio for the different states for a grid of $c_h \in [1.0, 2.0]$
- 4. Now, let $c_h = 1.1$ and $\lambda_{\ell} = 0.2$. Plot the price to dividend ratio for a grid of $\lambda_h \in [0.5, 0.99)$ and interpret the results.

Pricing a Consol under Log Utility This problem adapts the https://lectures.quantecon.org/jl/markov_asset.html#a-risk-free-consol code described in the "Pricing the Consol" code in https://github.com/jlperla/ECON407_2018/blob/master/notebooks/markov_asset.ipynb

Take the existing model, with the discretized AR(1) process in the existing code and make a single change to the structure. Recall that the definition of the stochastic discount factor is $m_{t+1} = \beta \frac{u'(c_{t+1})}{u'(c_t)}$.

- 1. Instead of the stochastic discount factor being CRRA (i.e. $u(c) = \frac{c^{1-\gamma}}{1-\gamma}$), assume that the utility is $u(c) = \log(c)$. Derive the stochastic discount factor and adapt the code to solve for the price of a consol.
- 2. Let $\zeta = 1.0$. From an initial condition, simulate the price of the consol with the log utility from an initial condition of your choice, and graph the results