METODE INTELIGENTE DE REZOLVARE A PROBLEMELOR REALE

Laura Dioşan Tema 9

- De ce?
- Problema învățării
- Algoritmi (câțiva)

- □ De ce?
 - Datele ne-adnotate sunt ieftine
 - Datele adnotate sunt greu de obţinut/creat
 - Adnotarea de către oameni este o activitate plictisitoare
 - Etichetarea necesită
 - profesioniști/experți în domeniul respectiv
 - Dispozitive speciale
 - Studentul este în vacanță :D
 - Exemple greu de etichetat
 - Analiza vorbirii
 - Transcrierea conversaţiilor (telefonice)
 - O oră de vorbit = 400 ore de adnotat
 - Parsarea limbajului natural
 - Exemple mai puţin dificile
 - Categorizare de imagini google image

- Problema învățării
 - Antrenarea unor modele utilizând atât date adnotate, cât și date ne-adnotate
 - Date de antrenare:
 - Etichetate (adnotate) $(X_l, Y_l) = \{(x_{1:l}, y_{1:l})\}$
 - □ Ne-etichetate $X_{ij} = \{x_{i+1:n}\}$ cu i << n
 - Model
 - $\Box f: X \rightarrow Y$
 - Date de testare:

$$X_t = \{x_{n+1:...}\}$$

- Algoritmi
 - Auto-antrenare
 - Modele generative
 - Maşini cu Suport Vectorial semi-supervizate
 - Algoritmi bazați pe grafe

- Algoritmi: Auto-antrenare (self-training)
 - Ideea de bază
 - 1. Antrenarea modelului f pe datele (X_l, Y_l)
 - 2. Folosirea modelului pentru a eticheta un $x \in X_u$
 - Adăugarea (x, f(x)) la setul de date etichetate
 - 4. Repetarea paşilor 1-3

- Algoritmi: Auto-antrenare
 - Exemple
 - Clasificarea imaginilor
 - O imagine este împărțită în mai multe regiuni (normalizate)

 Se definește un dicționar de "cuvinte vizuale" (centroizi ai clusterizării)

 Se reprezintă fiecare regiune prin indexul celui mai apropiat "cuvânt vizual"

- Algoritmi: Auto-antrenare
 - Exemple Clasificarea imaginilor
 - Se antrenează un clasificator pe imagin adnotate

 Se clasifică imaginile ne-etichetate (sortându-se pe baza unei măsuri de încredere)

14.lpeg

4. Se repetă pașii 1-3

Algoritmi: Auto-antrenare

- Avantaje
 - Metodă simplă
 - Metodă de tip wrapper, aplicată unor clasificatori existenți
 - Folosită des în task-uri reale (NLP)
- Dezavantaje
 - □ Erorile timpurii pot fi consolidate și propagate ușor
 - Eliminarea etichetei unui exemplu cu încrederea sub un anumit prag
 - Puţine informaţii despre convergenţă
 - În unele cazuri, auto-antrenare = maximizarea aşteptărilor

- Algoritmi: Modele generative
 - Ideea de bază
 - Date etichetate (X₁,Y₁)
 - Se presupune că datele dintr-o clasă respectă o distribuție Gaussiană
 - Clusterizarea datelor X_I şi X_u
 - Etichetarea datelor dintr-un cluster cu eticheta datelor etichetate majoritare

- □ Algoritmi: Maşini cu Suport Vectorial semisupervizate (S3VMs = Transductive SVMs)
 - Ideea de bază
 - Maximizarea marginilor datelor ne-etichetate
 - Se enumeră toate cele k^u posibilități de a eticheta datele X_u
 - Se construiește un SVM clasic pentru fiecare posibilitate
 - Se alege SVM cu cea mai largă margine

- Algoritmi: Algoritmi bazați pe grafe
 - Ideea de bază
 - Noduri: X_I U X_u
 - Muchii: ponderi pentru similaritatea diferitelor atribute ale nodurilor
 - K-cel mai apropiat vecin (ponderi booleene)
 - Grafe complete (ponderi invers proporționale cu distanța între noduri)
 - Stabilirea similarității pe toate căile
 - Algoritmi
 - Mincut
 - Harmonic functions
 - Consitență locală și globală
 - Regularizare manifold

Transductive learning

Inductive learning

- Algoritmi: Algoritmi bazați pe grafe Mincut
 - Pp că exemplele similare trebuie să fie adnotate (etichetate) similar

- □ Algoritmi: Algoritmi bazați pe grafe *Mincut*
 - Plecăm de la un set de date ((X_I, Y_I), X₊)

- Algoritmi: Algoritmi bazați pe grafe Mincut
 - Plecăm de la un set de date ((X_I, Y_I), X_U)
 - Construim un graf (ponderat/neponderat)

- □ Algoritmi: Algoritmi bazați pe grafe *Mincut*
 - Plecăm de la un set de date ((X_I, Y_I), X_U)
 - Construim un graf (ponderat/neponderat)
 - Adăugăm super-noduri auxiliare

- Algoritmi: Algoritmi bazați pe grafe Mincut
 - Plecăm de la un set de date ((X_I, Y_I), X_u)
 - Construim un graf (ponderat/neponderat)
 - Adăugăm super-noduri auxiliare
 - Obţinem o tăietură minimă

- □ Algoritmi: Algoritmi bazați pe grafe *Mincut*
 - Plecăm de la un set de date ((X_I, Y_I), X_u)
 - Construim un graf (ponderat/neponderat)
 - Adăugăm super-noduri auxiliare
 - Obţinem o tăietură minimă
 - Clasificăm

- Algoritmi: Algoritmi bazați pe grafe Mincut
 - Construcția grafului metode
 - □ k-NN
 - Graful poate să nu aibă tăieturi echilibrate
 - Cum se învață k?
 - Conectarea tuturor punctelor sub o distanță prag δ
 - Pot apărea componente de-conectate
 - Cum se învață pragul δ?
 - Arbore de acoperire minimă
 - Fără parametri
 - Rezultă grafe conectate și rare
 - Funcționează bine pe multe dintre date