Introduction to Machine Learning, Spring 2023

Homework 1

(Due Friday, Mar. 7 at 11:59pm (CST))

February 21, 2023

1. [10 points] Given the input variables $X \in \mathbb{R}^p$ and output variable $Y \in \mathbb{R}$, the Expected Prediction Error (EPE) is defined by

$$EPE(\hat{f}) = \mathbb{E}[L(Y, f(X))], \tag{1}$$

where $\mathbb{E}(\cdot)$ denotes the expectation over the joint distribution $\Pr(X,Y)$, and L(Y,f(X)) is a loss function measuring the difference between the estimated f(X) and observed Y. We have shown in our course that for the squared error loss $L(Y,f(X))=(Y-f(X))^2$, the regression function $f(x)=\mathbb{E}(Y|X=x)$ is the optimal solution of $\min_f \operatorname{EPE}(f)$ in the pointwise manner.

(a) In Least Squares, a linear model $X^{\top}\beta$ is used to approximate f(X) according to

$$\min_{\beta} \mathbb{E}[(Y - X^{\top}\beta)^2]. \tag{2}$$

Please derive the optimal solution of the model parameters β . [3 points]

- (b) Please explain how the nearest neighbors and least squares approximate the regression function, and discuss their difference. [3 points]
- (c) Given absolute error loss L(Y, f(X)) = |Y f(X)|, please prove that f(x) = median(Y|X = x) minimizes EPE(f) w.r.t. f. [4 points]

2. [10 points]

(a) Ridge regression can be considered as an unconstrained optimization problem

$$\min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_2^2. \tag{3}$$

where $\mathbf{X} \in \mathbb{R}^{n \times d}$ is a data matrix, and $\mathbf{y} \in \mathbb{R}^n$ is the target vector. Consider the following augmented target vector $\hat{\mathbf{y}}$ and data matrix $\hat{\mathbf{X}}$

$$\hat{\mathbf{y}} = \begin{bmatrix} \mathbf{y} \\ \mathbf{0}_d \end{bmatrix} \hat{\mathbf{X}} = \begin{bmatrix} \mathbf{X} \\ \sqrt{\lambda} \mathbf{I}_d \end{bmatrix}$$

where $\mathbf{0}_d$ is the zero vector in \mathbb{R}^d and $\mathbf{I}_d \in \mathbb{R}^{d \times d}$ is an identity matrix. Please derive the optimal solution of the optimization problem $\min_{\omega} \|\hat{\mathbf{y}} - \hat{\mathbf{X}}\mathbf{w}\|_2^2$ only use \mathbf{X}, \mathbf{y} . [3 points]

(b) Let's consider another situation by constructing an augmented matrix in the following way

$$\hat{\mathbf{X}} = \begin{bmatrix} \mathbf{X} & \alpha \mathbf{I}_n \end{bmatrix}$$

where α is a scalar multiplier. Then consider the following problem

$$\min_{\beta} \|\beta\|_2^2 \quad \text{s.t. } \hat{\mathbf{X}}\beta = \mathbf{y} \tag{4}$$

If β^* is the optimal solution of (4), show that the first d coordinates of β^* form the optimal solution of (3) for a specific α , and find the α . And What the final n coordinates of β^* represent? [3 points]

(c) As we all know, the standard formula for Ridge Regression is the optimal solution of (3). Suppose the SVD of \mathbf{X} is $\mathbf{X} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathrm{T}}$, then we can make some changes on coordinates in the feature space, so that \mathbf{V} becomes identity, where $\mathbf{X}' = \mathbf{X}\mathbf{V}$ and $\mathbf{w}' = \mathbf{V}^{\mathrm{T}}\mathbf{w}$, and denote $\hat{\mathbf{w}}'$ as the solution of the ridge regression in new coordinates. Please write down the *i*-th coordinate of $\hat{\mathbf{w}}'$. (Hints: try to use σ_i to represent the *i*-th singular value of $\boldsymbol{\Sigma}$) [4 points]

- 3. [10 points] A random variable \mathbf{X} has unknown mean and variance: μ , σ^2 . n iid realizations $\mathbf{X}_1 = \mathbf{x}_1, \mathbf{X}_2 = \mathbf{x}_2, \cdots, \mathbf{X}_n = \mathbf{x}_n$ from the random variable \mathbf{X} are used to estimate the mean of \mathbf{X} . We will call our estimate of μ the random variable $\hat{\mathbf{X}}$, which has mean $\hat{\mu}$. There are two possible ways to estimate μ with the realizations of n samples:
 - 1. Average the *n* samples: $\frac{\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_n}{n}$
 - 2. Average the *n* samples and n_0 samples of 0: $\frac{\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_n}{n + n_0}$

The bias is defined as $\mathbb{E}[\hat{\mathbf{X}} - \mu]$ and the variance of $Var[\hat{\mathbf{X}}]$

- (a) What are the bias and the variance of each of the two estimators above? [2 points]
- (b) Now we denote a new independent sample of \mathbf{X} as \mathbf{X}' , in order to test how well $\hat{\mathbf{X}}$ estimates a new sample of \mathbf{X} . Please derive an expression for $\mathbb{E}[(\hat{\mathbf{X}} \mu)^2]$ and $\mathbb{E}[(\hat{\mathbf{X}} \mathbf{X}')^2]$, and then make some comments on the differences between them. (Hints: Using the Bias-Variance Tradeoff) [6 points]
- (c) Compute $\mathbb{E}[(\hat{\mathbf{X}} \mu)^2]$ for each of the estimators above. [2 points]