dspNgs

June 17, 2020

```
Type Package
Title dspNgs Hydra Pipeline
Version 0.3.2
Author Hydra Team
Maintainer The package maintainer <yourself@somewhere.net>
Description More about what it does (maybe more than one line)
      Use four spaces when indenting paragraphs within the Description.
License What license is it under?
Encoding UTF-8
biocViews Infrastructure, org. Hs. eg.db, ReactomePA, fgsea, GSVA, reactome.db
Depends R (>= 3.5.0),
     circlize,
     config,
      dplyr,
      edgebundleR,
      EnvStats,
      factoextra,
      FactoMineR,
      fgsea,
      flux,
      futile.logger,
      GGally,
      ggraph,
     ggplot2,
      ggrepel,
      ggridges,
      ggthemes,
      GSVA,
      igraph,
      lattice,
      lme4,
      lmerTest,
      migest,
      org.Hs.eg.db,
      parallel,
      pheatmap,
      plotly,
```

2 R topics documented:

```
plotROC,
     processx,
     psych,
     RColorBrewer,
     ReactomePA,
     reactome.db,
     readxl,
     reshape2,
     rstudioapi,
     Rtsne,
     scales,
     stringr,
     tidyr,
     umap,
     pbapply
LazyData true
RoxygenNote 7.1.0
```

R topics documented:

Index

check_input	3
convert_target_notes	3
de_internal	4
de_logic	4
dsp_de_analysis	5
dsp_de_analysis_parallel	8
find_topGS	11
parallel_read	12
plot_ROI2D	12
plot_volcano	14
$qc_plots \ \dots $	16
read_config	17
ROC_plot	17
run_cell_decon	18
run_DE	19
run_GSEA	20
run_heatmap	21
run_ora	
run_pathways	23
run_PCA	24
run_Q3	
run_seqQC	
run_ssGSEA	26
run_tsne	26
run_umap	27
send_to_log	28

29

check_input 3

check_input

Internal helper function for checking input paratmeters

Description

Internal helper function for checking input paratmeters

Usage

```
check_input(
  de_results,
  norm_counts,
  samp_notes,
  grouping_var,
  base_level,
  control_var
)
```

Description

```
convert_target_notes

Converts target notes from Erin to DSP-DA format
```

Usage

```
convert_target_notes(targetNotes)
```

Arguments

```
targetNotes target notes data frame
```

Value

targetNotes data frame formatted like DSP-DA

```
targetNotes <- convert_target_notes(targetNotes)</pre>
```

4 de_logic

de_internal

Internal lower-level function that actually computes the DE. returns the data.frame of results. This function does the following: 1. Transposes and transforms the entire norm_counts dataset. 2. Facets the dataframe into a list of data.frames of base_line vs non-baseline level 3. lapply over each element of 2. 4. parellel::parLapply over each gene in 3. 5. Collate data.frames (or lists) and return.

Description

Internal lower-level function that actually computes the DE. returns the data.frame of results. This function does the following: 1. Transposes and transforms the entire norm_counts dataset. 2. Facets the dataframe into a list of data.frames of base_line vs non-baseline level 3. lapply over each element of 2. 4. parellel::parLapply over each gene in 3. 5. Collate data.frames (or lists) and return.

Usage

```
de_internal(
  norm_counts,
  samp_notes,
  grouping_var,
  base_level,
  control_var,
  n_processors,
  the_formula,
  show_pb
)
```

de_logic

Internal lower-level function that checks de_ressults attributes and runs de_internal if needed. Returns the de_results (whether it was computed, referenced by file, or referenced by object).

Description

Internal lower-level function that checks de_ressults attributes and runs de_internal if needed. Returns the de_results (whether it was computed, referenced by file, or referenced by object).

```
de_logic(
    de_results,
    norm_counts,
    samp_notes,
    grouping_var,
    base_level,
    control_var,
    n_processors,
    the_formula,
    show_pb
)
```

dsp_de_analysis 5

dsp_de_analysis

DSP NGS Analysis Pipeline for DSP NGS Analysis that creates ROC curves, calculates AUC, runs DE analysis and creates downstream visualizations Requires: rstudioapi to be installed prior to running on Rstudio

Description

DSP NGS Analysis

Pipeline for DSP NGS Analysis that creates ROC curves, calculates AUC, runs DE analysis and creates downstream visualizations Requires: rstudioapi to be installed prior to running on Rstudio

Usage

```
dsp_de_analysis(
    de_results = NULL,
    norm_counts,
    genes,
    grouping_var,
    base_level,
    results_dir,
    de_dir,
    control_var,
    residuals_dir,
    qq_dir,
    pval_cutoff,
    fc_cutoff,
    samp_notes
)
```

Arguments

config Configuration file, see config.yml example file

DSP counts DSP negative normalized counts spreadsheet with annotations

Value

Resulting visualizations and DE analysis

PNG file of ROC curve for top 5 genes with highest coeff

df of FC and Pvals above threshold specified in config file,

TODO

NA

Log Params

NA

6 dsp_de_analysis

Parsing Dataframe

NA

ROC curve

NA

DE Analysis

NA

```
#' @title DSP NGS Analysis
#'
#' Pipeline for DSP NGS Analysis that creates ROC curves, calculates AUC, runs DE analysis and creates downstrea
#' Requires: rstudioapi to be installed prior to running on Rstudio
\ensuremath{\text{\#'}} @param config Configuration file, see config.yml example file
#' @param DSPcounts DSP negative normalized counts spreadsheet with annotations
#'
#' @return Resulting visualizations and DE analysis
#'
#' @example R/DSP_NGS.R
#'
#' @export dsp_de_analysis
#'
#'
#' @section TODO
\# #### plot GOI's vs all other genes, one color per GOI vs background
# #### label top 20 DE genes
# #### box plots of top 5 groups of genes by median of de significance (-log10P) + GOI (or custom set) on y vs gene
# Plot log normalized counts for genes as a function of gene_group
# main function
dsp_de_analysis <- function(de_results = NULL,</pre>
                             norm_counts,
                             genes,
                             grouping_var,
                             base_level,
                             results_dir,
                             de_dir,
                             control_var,
                             residuals_dir,
                             qq_dir,
                             pval_cutoff,
                             fc_cutoff,
                             samp_notes) {
  #' @section Log Params
  # Write input parameters to log file
 flog.info("\n \n ######### Experimental Parameters ########### \n", name="DSP_NGS_log")
  flog.info(paste0("Gene(s) of interest: ", gene\_group), name="DSP_NGS_log")
  flog.info(paste0("Gene grouping variable: ", grouping\_var), name="DSP\_NGS\_log")
  flog.info(paste0("Base Level: ", base_level), name="DSP_NGS_log")
  flog.info(paste0("Control: ", control_var), name="DSP_NGS_log")
```

dsp_de_analysis 7

```
flog.info(paste0("Pvalue Cutoff: ", pval_cutoff), name="DSP_NGS_log")
flog.info(paste0("Fold Change Cutoff: ", fc_cutoff), name="DSP_NGS_log")
flog.info(paste0("Gene Set Colors: ", color_genes), name="DSP_NGS_log")
flog.info(paste0("Sample Colors: ", color_samples), name="DSP_NGS_log")
# log2 normalize counts and transpose dataframe
rownames(norm_counts) <- norm_counts$Gene</pre>
tdf <- within(norm_counts, rm("Gene"))</pre>
trans_df <- data.frame(t(tdf))</pre>
gene_log2 <- data.frame(log2(trans_df))</pre>
gene_log2$Sample_ID <- rownames(trans_df)</pre>
#' @section Parsing Dataframe
# Subset samp_notes for gene_grouping variable
sub_list <-c("Sample_ID", eval(grouping_var), eval(control_var))</pre>
samps <- samp_notes[,sub_list]</pre>
# add gene_grouping labels
goi_df <- merge(gene_log2, samps, by="Sample_ID")</pre>
# convert labels to binary classifier
class_label <- ifelse(goi_df[grouping_var] == eval(base_level), 1, 0)</pre>
if (sum(class_label) == 0){
print("Check that config base level variable matches a group in ROI/AOI annotations sheet")
flog.error("Check that config base level variable matches a group in ROI/AOI annotations sheet", name="DSP_N
colnames(class_label) <- "level"</pre>
goi_df <- cbind(goi_df, class_label) # add labels column to goi_df</pre>
#goi_df$level <- factor(goi_df$level, levels=c(0,1), ordered="True")</pre>
#' @section ROC curve
#' @return PNG file of ROC curve for top 5 genes with highest coeff
paste("Plot ROC Curve...")
# plot ROC curve for top5 genes
ROC_plot(goi_df, grouping_var, "poisson", gene_group, de_dir, genes)
#' @section DE Analysis
# Run LME4 linear mixed model on log negative normalized counts for genes of interest
#' @return df of FC and Pvals above threshold specified in config file,
# as well as residual and qqplots for goi
# reset goi_df and let them loop through levels
goi_df <- merge(gene_log2, samps, by="Sample_ID")</pre>
run_de_file <- paste(getwd(), "de_analysis.R", sep="/")</pre>
if(is.null(de_results)) {
  de_res <- run_DE(df = goi_df,</pre>
                    grouping_var = grouping_var,
                    control_var = control_var,
                    base_level = base_level,
                    residuals_dir = residuals_dir,
                    qq_dir = qq_dir,
                    pval_cutoff = pval_cutoff)
  results_file = paste(de_dir, "de_results.csv", sep="/")
  write.csv(de_res, results_file)
```

```
} else if(is.character(de_results)) {
   de_res <- read.delim(de_results, sep = ',', header = TRUE, as.is = TRUE)</pre>
} else if(is.data.frame(de_results) & all(c('FC','Pval','gene') %in% colnames(de_results))) {
   de_res <- de_results</pre>
 } else {
  stop('There is an issue with provided data frame, please cehck de_results variable\n')
 #### uncomment for testing ###
 # saveRDS(de_res, file="de_res.R")
 # de_results <- readRDS(file = "de_res.R")</pre>
 # Generate volcano plot
 # return PNG and Plotly versions of Volcano Plot
 tests <- unique(de_res$test)</pre>
 for (test in tests) {
   de_vol <- de_res[de_res$test == test, ]</pre>
   paste("Generating volcano plot...")
   volcano_file <- paste0(de_dir, "/", test, "_", gene_group, "_volcano.", fileType)</pre>
   plot_volcano(de_results = de_vol,
                base_level = base_level,
                target_group = gene_group,
                targets = genes,
                fav_targets = fav_genes,
                outfile = volcano_file,
                point_color = color_genes,
                n_targets = n_top,
                plt_title = test,
                color_list = colors$gene_groups)
 }
return(de_res)
}
```

dsp_de_analysis_parallel

DSP differential expression analysis (parallel)

Description

Wrapper function to run differential expression in parallel. This function is used prior to dsp_de_analysis.

```
dsp_de_analysis_parallel(
  de_results = NULL,
  norm_counts,
  samp_notes,
  grouping_var,
  base_level,
  control_var,
  de_dir,
  n_processors = 4,
  the_formula = "classic",
  show_pb = TRUE
)
```

Arguments

de_results object that can be one of the following:

- 1. NULL. If not provided, the differential expression analysis will run
- 2. object of type character specifying the location of the previous saved DE
- 3. object of type data. frame providing the loaded DE results

norm_counts is data. frame containing the normalized count data to be analyzed. Each row

corresponds to a gene of interest. The first column is assumed to be labeled 'Gene'. Each additional column corresponds to a Sample_ID. Sample_ID values have a matching row in the annotations objects (see samp_notes argument

below).

samp_notes is a data. frame that provides annotations. If DE is to be run (i.e., !is.null(de_results)),

samp_notes must have the grouping_var column, with containing base_level

factor, and it must have a control_var column.

grouping_var is the column in the annotations data.frame (i.e., samp_notes) to use for group-

ing. This is the level 2 factor in the Mixed Effects model for which estimates are made. This can be a global object generated from read_config() if running

the Hydra pipeline.

base_level is a level in the grouping_var column used as base. This can be a global object

generated from read_config() if running the Hydra pipeline.

control_var is the column name in the annotations data.frame (i.e., samp_notes) used at the

level 1 random effect. For DSP, this is usually an individual ID for which several AOIs are nest within. If it is invariable (e.g., a vector of 1s), the default behavor is to run a linear model using R's base::lm function. Otherwise, a Mixed-effects

model will be used via lme4::lmer.

de_dir the parent directory to store the de_results

n_processors. The number of processors to use. Default is 4.

the_formula. Either the classic formula (default) or a custom formula. Do to customization

possibilities, there is no guarantee that this will run, converge, or make sense. Example of custom formula = 'a_gene ~ Disease * Tissue + (1 + Disease |

DSP_scan)'. Note that 'a_gene' should be left as is.

show_pb. Logical to show the progress bar (TRUE) or not (FALSE). Default is TRUE.

Details

The function strips down the main dsp_de_analysis function and performs the differential expression analysis over a specified number of processors. It uses parallel::parLapply to process the normalized expression for each gene across different groups of interest (i.e., as specified by the grouping_var object). By default, this function runs the same as dsp_de_analysis in terms of the formulas used. If the control_var column is invariant. A simple linaer model will be used. Otherwise, a Mixed effects model will be used of the form 'a_gene ~ grouping_var + (1 + grouping_var | control_var)'. In both of these scenarios, a data.frame will be saved to disk and returned. If, however, the_formula differs from its default value of "classic", a custom formula will be used. In such a case, a list of list where the final list provides the 1) gene, the 2) test (e.g., 'normal vs disease'), and the model. There is no error checking for convergence etc. if the_formual != "classic". In all Mixed effect models, REML=TRUE.

Value

Objects and files returned depend on the input:

- 1. If the_formula=="classic", an object of class data.frame is returned. The dataframe is also sent to disk.
- 2. Otherwise, a list of list is return (see details)

Author(s)

Tyler Hether

See Also

```
dsp_de_analysis
```

```
# Simulate 2 genes in log2 space. Look at the true fold
# change (for gene_a) and compare to the estimated fold change.
n_samples <- 50
n_aois <- 10
constant <- 4.5
# Simulate normalized, log2
make_aois <- function(mu, sd, n_aois, group){</pre>
out <- data.frame(Group=rep(group, n_aois),</pre>
     gene_a=rnorm(n=n_aois, mean=mu, sd=sd))
     return(out)
# Different effect size of group A from mean
diff_a <- rnorm(n=n_samples, mean=2, sd=1)</pre>
# Make samples.
A <- do.call(rbind, lapply(1:n_samples, function(i){
 samp <- make_aois(constant+diff_a[i], 1, n_aois, "A")</pre>
 samp$ind <- i</pre>
 return(samp)
}))
diff_b <- rnorm(n=n_samples, mean=-2, sd=1)</pre>
B <- do.call(rbind, lapply(1:n_samples, function(i){</pre>
 samp <- make_aois(constant+diff_b[i], 1, n_aois, "B")</pre>
 samp$ind <- i+max(A$ind)</pre>
 return(samp)
}))
df <- rbind(A, B)</pre>
require(plyr)
require(dplyr)
df <- ddply(df, .(Group, ind), function(x){</pre>
 x$aoi <- 1:nrow(x)
 return(x)
})
df <- df %>% mutate(Sample_ID=paste(Group, ind, aoi, sep="_"), gene_b=gene_a+rnorm(1))
# Make sure there's no negative values.
df$gene_a[which(df$gene_a<=0)] <- 1e-03</pre>
dfgene_b[which(df$gene_b<=0)] <- 1e-03
library(tidyr)
norms <- rbind(spread(df %>% dplyr::select(-aoi, -gene_b, -Group, -ind), Sample_ID, gene_a),
 spread(df %>% dplyr::select(-aoi, -gene_a, -Group, -ind), Sample_ID, gene_b))
```

find_topGS 11

```
# "Convert" to linear scale since the function will log2 transform internally
norms <- 2^norms
# Combine
norms <- cbind(data.frame(Gene=c("gene_a", "gene_b")), norms)</pre>
row.names(norms) <- norms$Gene</pre>
# Convert the df to respective dataframes
annotations <- df %>% select(Sample_ID, Group, ind)
library(ggplot2)
ggplot(df, aes(x=factor(ind), y=gene_a)) +
geom_jitter(height=0) + ylab("log2 expression for simulated gene_a")
# Means of the groups in log2 space
means <- ddply(df, .(Group), summarize, mean(gene_a))[,2]</pre>
# Fold change where vec is the means in log2 space
# returns FC in linear space
calc_fc <- function(vec){</pre>
vec2 <- 2^vec
return(vec2[2] / vec2[1])
# This is the simulated fold change in log2 space
print(log2(calc_fc(means)))
#Compare that fold change to the estimate for gene_a
library(dspNgs)
dsp_de_analysis_parallel(de_results=NULL, norm_counts=norms,
samp_notes=annotations, grouping_var="Group", base_level="A";
control_var="ind", de_dir="./", n_processors=4, the_formula="classic")
# End run.
```

find_topGS

find_topGS Generic call to heatmap functionality

Description

find_topGS

Generic call to heatmap functionality

Usage

```
find_topGS(
  targetNotes = NULL,
  de_results = NULL,
  name = NULL,
  outdir = NULL,
  fileType = NULL,
  width = 1500,
  height = 850
)
```

Arguments

targetNotes target annotations - list of lists of genes output from parse_GeneSets

de_results table of DE results

name annotations to include on heatmap

plot_ROI2D

outdir where to print file

fileType function to call for file printing

width file width height file height

parallel_read

Reads in DSP dataset

Description

Reads in dsp excel workbook for DE analysis and visualiation

Usage

```
parallel_read(file)
```

Arguments

data_path

path to dsp dataset excel workbook

Value

list of dataframes, one for each tab

Examples

```
read_dataset(data_path)
```

plot_ROI2D

ROI Plot

Description

Takes data matrix, including expression, signatures, pathways and segment annotations, and creates graphs based on the ROI ID

```
plot_ROI2D(
  data_df = NULL,
  annot_df = NULL,
  title = NULL,
  plot_type = "joy",
  skip_ROIs = TRUE,
  targets = "median",
  target_thresh = 0.5,
  target_quantile = TRUE,
  plot_clusters = TRUE,
```

plot_ROI2D 13

```
cluster_pal = "Set1",
 cluster_method = "complete",
 cluster_dist = "pearson",
 cluster_n = 6,
 cluster_min = 20,
 ROI_ID = "ROI_ID",
 AOI_ID = "Sample_ID",
 segment_ann = "Segment",
  segment_names = c("Tumor", "Stroma"),
 segment_colors = c("green3", "magenta3"),
  transf = NULL,
 cluster_transf = NULL,
 scale = TRUE,
 shape = "circle",
 hole_diameter = 5,
 width = 1,
 draw_bgd = TRUE,
 split_groups = TRUE,
 bgd_color = "white",
 bgd_fill = alpha("black", 0.5),
 joy_scale = 5,
  joy_alpha = 0.6,
  joy_lwd = 0.5,
 heat_theme = "Dark",
 heat_alpha = c(0, 0.9),
 heat_color = alpha("white", 0.5),
)
```

Arguments

data_df	a data frame of targets / pathways / signatures scores / cell types vs AOIs to be plotted
annot_df	a data frame of AOI annotations necessary to plot the data
title	title to be added after ROI ID to each plot
plot_type	type of plot, values include 'joy', 'bar', 'heatmap'
skip_ROIs	convenience to just plot legend & grab gene sets
targets	subset list or logic, either vector of booleans, character vector, or function for subseting including 'CV', 'IQR', 'sd', and other standard functions
target_thresh	if a function is provided, use this threshold value to pick samples with value > thresh
target_quantile	
	whether the target_thresh is a value or a quantile to filter to
plot_clusters	whether clusters should be plotted in the static graph as well
cluster_pal	cluster palette to use when plotting
cluster_method	clustering type, 'average', 'complete', or 'ward' recommended
cluster_dist	clustering distance, 'pearson', 'spearman', or values used by dist
cluster_n	number of clusters to idenitfy
cluster_min	the minimum size of a cluster for it to be considered distinct, otherwise breaks will be plotted with a neighboring cluster

14 plot_volcano

ROI_ID name of ROI column or columns, list if multiple

AOI_ID name of AOI column

segment_ann segment annotation column

segment_names labels for segment, must be labels within the segment_ann column

segment_colors colors for segments used in joy plots and heatmap, not bar

transf 'log2','logit','fraction','scale'
cluster_transf 'log2','logit','fraction','scale'

shape type of plot to make based on original AOI shape - 'circle' or 'rect', rectangular

is still in development

hole_diameter relative center diameter for window into ROI

width relative plotting area width

draw_bgd whether to draw the background behind plot if 'joy' or 'bar' used

split_groups whether to add a buffer between clusters and draw backgrounds seperately

bgd_color color for the border around backgrounds

bgd_fill color for the background fill joy_scale scaling factor for joy plot joy_alpha alpha for the fill of the joy plot

joy_lwd lwd for the joyplot

heat_theme Dark' = blacks with alpha, 'Light' = whites with alpha

heat_alpha range of alpha to used with the heatmap. 0 is pure color and 1 is a total overlay

of the color

heat_color color for the border around the heatmap

Value

a list of ROI plots and legends to be subsequently saved to pdf or plotted with ggplotly

plot_volcano Volcano Plot

Description

Takes results of differential expression analysis and generates a volcano plot

```
plot_volcano(
  de_results = NULL,
  base_level = NULL,
  target_group = "All Probes",
  fav_targets = NULL,
  targets = NULL,
  outfile = "VolcanoePlot-AllGenes",
  point_color = "RdPu",
  top_method = "Significance",
```

plot_volcano 15

```
n_targets = 15,
plt_title = "Volcano Plot for All Genes",
target_ID = "gene",
FC_ID = "FC",
Pval_ID = "Pval",
color_list = NULL,
save_plot = TRUE
)
```

Arguments

de_results	output of dsp_de_analysis function with list of up and downregulated targets, e.g. genes or gene sets
base_level	baseline level for DE analysis, used for plotting x-axis label
target_group	name of target groups, or , used for adding color contrast to graph
targets	a list of targets, e.g. genes, within the target_group, used for subsetting graph
outfile	name of file for output
point_color	a specific color to be used for plotting points, should be updated to a gradient method
top_method	column within the de_results that should be used to select the top genes, selecting highest values from the column. Use Significance rather than Pval for this purpose
n_targets	number of genes to show in the cloud
target_ID	column within the de_results data frame that contains the target names to be used for labeling graphs
FC_ID	column within the de_results data frame that contains the FC x-axis values to be used for plotting
Pval_ID	column within the de_results data frame that contains the P-value y-axis values to be used for plotting
color_list	the targetset color values if multiple targetsets are being used, can be NULL if only one targetset passed
save_plot	boolean of whether to save the plot as a file or just output to the console, defaults to TRUE and uses config information for file format

Value

```
image file of volcano plot
plotly interactive volcano plot
```

```
plot_volcano(de_results, base_level)
```

16 qc_plots

qc_plots

QC_plots Creates QC plots of normalization factors and distributions of counts

Description

```
QC_plots
```

Creates QC plots of normalization factors and distributions of counts

Usage

```
qc_plots(
  data_matrix,
  norm_method = NULL,
  grp_var = NULL,
  ctrl_var = NULL,
  HKs = NULL,
  outdir,
  colors
)
```

Arguments

data_matrix	the data matrix list
norm_method	the selected norm method for output data matrix
grp_var	the selected column name for the grouping analysis
HKs	the list of housekeeping genes
outdir	the output directory for plots
colors	the list of specified colors
ctr_var	the selected column name to control by for DE

Value

norm_counts chosen normalization method

```
qc_plots(data_matrix = dfs, norm_method = "Q3", outdir = od)
```

read_config 17

read_config

DSP_utils Collection of DSP_hydra functions

Description

DSP_utils

Collection of DSP_hydra functions

Usage

read_config()

ROC_plot

Plot ROC Curve

Description

Transposes counts df and creates ROC curve plot with top 5 genes with largest coefficients

Usage

```
ROC_plot(df, grouping_var, family, gene_group, outdir, genes)
```

Arguments

df negative normalized DSP count data transposed to wide format, one column per

gene

grouping_var column from annotations to group by

family glm distribution, aka poisson

gene_group gene group of interest
outdir path to output directory
genes list of genes of interest

Value

```
image file of top 5 genes ROC curve dataframe of AUC for each gene
```

```
ROC_plot(top5_coeff, gene_group, outdir)
```

run_cell_decon

Description

run_cell_decon

Runs our internal immune cell deconvolution algorithm, "InSituSort"

Usage

```
run_cell_decon(
   df = dfs,
   norm_method,
   outdir = cellType_dir,
   tumor_high_ids = NULL,
   tumor_low_ids = NULL,
   x = NULL,
   y = NULL,
   xlab = "",
   ylab = ""
)
```

Arguments

norm_method	Raw data matric
tumor_high_ids	Names of AOIs with nearly 100 If NULL, the decon model will ignore tumo-intrinsic expression, which usually works just fine.
tumor_low_ids	Names of AOIs with low tumor content. Must be elements of the colnames of norm_counts. If NULL, the decon model will ignore tumo-intrinsic expression, which usually works just fine.
Х	Horizontal coordinates on which to plot decon results (e.g. from t-SNE) (optional)
У	Vertical coordinates on which to plot decon results (e.g. from t-SNE) (optional)
xlab	Name of the x-dimension on which results are plotted
ylab	Name of the y-dimension on which results are plotted
counts	Raw data matrix
norm_counts	Normalized data matrix
samp_notes	Raw data matric
probe_notes	Raw data matric

Value

clustering information

run_DE 19

Examples

run_DE

DE Analysis

Description

Runs a linear mixed effects model on the dataset to analyze differential expression using the LME4 package

Usage

```
run_DE(
    df,
    control_var,
    grouping_var,
    base_level,
    residuals_dir,
    qq_dir,
    pval_cutoff,
    make_plots = TRUE,
    random_slope = TRUE)
```

Arguments

df	negative normalized DSP count data transposed to wide format, one column per gene
control_var	column from annotations to use as experimental control variable
grouping_var	column from annotations to test during DE analysis
base_level	variable to use as base level for testing, all other vars looped through during analysis
residuals_dir	path to output directory image subfolder for residual images
qq_dir	path to output directory image subfolder for qq plots
pval_cutoff	pvalue cutoff for significance from config file
make_plots	logical as to whether qq & residual plots should be written
random_slope	logical to turn on or off random slopes depending on study

Value

```
PNG file of top 5 genes ROC curve dataframe of AUC for each gene
```

zun_GSEA

Examples

```
run_DE(df, control_var, base_level, genes,residuals_dir, qq_dir, pval_cutoff)
```

run_GSEA

run_GSEA Pathway Analysis helper function to run GSEA

Description

run_GSEA

Pathway Analysis helper function to run GSEA

Usage

```
run_GSEA(
  geneList = geneList,
  pathways = pathways,
  test = test,
  outdir = outdir
)
```

Arguments

geneList a list of ranked genes, the way that they are ranked is determined in run_pathways.R

pathways are the genesets that we are working with, default is Reactome

is the test or contrast that is being compared for pathway analysis, from DE

results

outdir the output directory for plots

Value

fgseaRes The results from GSEA analysis

```
run_GSEA(geneList = geneList, pathways = pathways, test = test, outdir = outdir)
```

run_heatmap 21

run_heatmap

run_heatmap Generic call to heatmap functionality

Description

```
run_heatmap
Generic call to heatmap functionality
```

Usage

```
run_heatmap(
  data = NULL,
  data_TargetID = "Gene",
  annot = NULL,
  samp_vars = NULL,
  fav_genes = NULL,
  ann_colors = NULL,
  logData = TRUE,
  targets = NULL,
  name = NULL,
  scale = "row",
  outdir = ".",
  fileType = "tiff",
  sortBy = NULL,
  sortBaseline = NULL,
  ...
)
```

Arguments

height

file height

data	the data to plot, assumed targets * samples
annot	sample annotations
samp_vars	annotations to include on heatmap
fav_genes	favorite genes to highlight
ann_colors	list of lists of colors
logData	T/F - log2 transform data
targets	used to subset dataset to only genes of interest or NULL for all
name	title of graph and file
scale	passed to pheatmap
outdir	where to print file
fileType	function to call for file printing
sortBy	annotation variable to use for sorting the heatmap
width	file width

22 run_ora

run_ora	run_ora Pathway Analysis helper function to run Over Representation Analysis

Description

```
run_ora
```

Pathway Analysis helper function to run Over Representation Analysis

Usage

```
run_ora(
  geneList = geneList,
  pathways = pathways,
  test = test,
  path_fc = path_fc,
  path_pval = path_pval,
  outdir = outdir
)
```

Arguments

geneList	a list of ranked genes, the way that they are ranked is determined in run_pathways.R
pathways	are the genesets that we are working with, default is Reactome
test	is the test or contrast that is being compared for pathway analysis, from DE results
path_fc	the fold change cutoff to use for gene list
path_pval	the pvalue to threshold the enrichment results by
outdir	the output directory for plots

Value

ora The results from over representation analysis

```
run_ora(geneList = geneList, pathways = pathways, test = test, path_fc = path_fc, path_pval = path_pval, outdir
```

run_pathways 23

run_pathways

run_pathways Pathway Analysis giving either coverage or GSEA

Description

```
run_pathways
Pathway Analysis giving either coverage or GSEA
```

Usage

```
run_pathways(
  norm_data,
  de_results,
  geneListrank,
  path_fc,
  path_pval,
  enrichment,
  outdir,
  custom_pathways_path = NULL,
  exclude_reactome = FALSE,
  ...
)
```

Arguments

```
the chosen normalized data
norm_data
de_results
                  the differential expression data
path_fc
                  the fold change cutoff to use for gene list
path_pval
                  the pvalue to threshold the enrichment results by
enrichment
                  the type of enrichment to be returned
outdir
                  the output directory for plots
custom_pathways_path
                  the directory where custom gmt files are located
exclude_reactome
                  to exclude reactome pathways from custom pathway analysis
                  the way to rank the gene list either by foldchange, pval or FDR
genListrank
```

Value

enrich_res The results from your chosen enrichment

```
run_pathways(norm_data = norm_counts, de_data = de_results, geneListrank=geneListrank, path_fc=path_fc, path_
```

24 run_Q3

run_PCA

run_PCA Runs principle component analysis (PCA) on dsp data

Description

```
run_PCA
```

Runs principle component analysis (PCA) on dsp data

Usage

```
run_PCA(
 df,
 outdir,
 color = "cluster",
 symbol = "dsp_slide",
 size = TRUE,
 colors = colors
)
```

Arguments

df read in dsp excel workbook dataset outdir output directory for figures color category to color the graph by category to change symbols in the graph symbol should the size of the points change by gene_count size

outlier_cutoff multiplier for outlier cutoff

Value

clustering information

Examples

```
pca <- run_PCA(df, "file/path", outlier_cutoff)</pre>
```

run_Q3

run_Q3 Run Q3 normalization

Description

```
run_Q3
```

Run Q3 normalization

```
run_Q3(dataset = dfs)
```

 run_seqQC 25

Arguments

dataset the full dataset

Value

dfs the new data object post q3 normalization, updated norm counts and properties with new q3 norm factor

Examples

```
run_Q3(dataset = dfs)
```

run_seqQC

DSP-NGS Sequencing QC

Description

Generates sequecing QC metrics for provided dataset

Usage

```
run_seqQC(
  dataframelist,
  loq = 2.5,
  qc_dir = "./",
  facet_column = ""
  fileType = "pdf"
)
```

Arguments

dataframelist List of all 5 dataframes

loq Number of standard deviations desired for loq. Column must exist as Ge-

oLOQISDI_IPooll for each pool in the dataset, ex. GeoLOQ2.5_01. Default

= 2.5

qc_dir Directory to output plot + QC table. Default = './'

facet_column Column to facet the line plot on if desired. Default = No facet.

fileType Type of file for ggsave to generate for the QC Line plot.

Value

```
Write PDF/PNG/... file with the QC line plot
Write QC metrics to file in QC Directory
```

```
run_seqQC(dataframelist=dfs, loq=2.5, qc_dir='/QC_Dir/', facet_column='dsp_slide', fileType='pdf')
```

26 run_tsne

run_ssGSEA

run_ssGSEA Pathway Analysis helper function to run ssGSEA

Description

```
run_ssGSEA
```

Pathway Analysis helper function to run ssGSEA

Usage

```
run_ssGSEA(
  norm_data = norm_data,
  pathways = pathways,
  test = test,
  outdir = outdir
)
```

Arguments

norm_data the normalized log2 transformed data matrix

pathways are the genesets that we are working with, default is Reactome

is the test or contrast that is being compared for pathway analysis, from DE

results

outdir the output directory for plots

Value

gsvaRes The results from ssGSEA analysis

Examples

```
\verb"run_ssGSEA" (norm_data = norm_data, pathways = pathways, test = test, outdir = outdir)
```

run_tsne run_tsne Runs t-Distributed Stochastic Neighbor Embedding (tsne) on

dsp data

Description

```
run\_tsne
```

Runs t-Distributed Stochastic Neighbor Embedding (tsne) on dsp data

run_umap 27

Usage

```
run_tsne(
   df,
   pca = NULL,
   outdir,
   color = "cluster",
   symbol = "dsp_slide",
   size = TRUE,
   perplexity = 30,
   colors = colors
)
```

Arguments

```
df read in dsp excel workbook dataset
outdir output directory for figures
color category to color the graph by
symbol category to change symbols in the graph
size should the size of the points change by gene_count
outlier_cutoff multiplier for outlier cutoff
```

Value

none

Examples

```
run_tsne(df, "file/path", outlier_cutoff, color = "slide_id", symbol = "TIS", size = TRUE)
```

run_umap

run_umap Runs t-Distributed Stochastic Neighbor Embedding (tsne) on dsp data

Description

```
run_umap
```

Runs t-Distributed Stochastic Neighbor Embedding (tsne) on dsp data

```
run_umap(
   df,
   pca = NULL,
   outdir,
   color = "cluster",
   symbol = "dsp_slide",
   size = TRUE,
   colors = colors
)
```

28 send_to_log

Arguments

df read in dsp excel workbook dataset

outdir output directory for figures color category to color the graph by

symbol category to change symbols in the graph

size should the size of the points change by gene_count

outlier_cutoff multiplier for outlier cutoff

Value

none

Examples

```
run_umap(df, "file/path", outlier_cutoff, color = "slide_id", symbol = "TIS", size = TRUE)
```

 $send_to_log$

Internal helper function for writing to log.

Description

Internal helper function for writing to log.

```
send_to_log(grouping_var, base_level, control_var)
```

Index

```
check_input, 3
{\tt convert\_target\_notes}, 3
de_internal, 4
\texttt{de\_logic}, \textcolor{red}{4}
dsp_de_analysis, 5, 8-10
dsp_de_analysis_parallel, 8
find_topGS, 11
parallel_read, 12
plot_ROI2D, 12
plot_volcano, 14
qc_plots, 16
read_config, 17
ROC_plot, 17
run_cell_decon, 18
run_DE, 19
run_GSEA, 20
run_heatmap, 21
run_ora, 22
run_pathways, 23
run_PCA, 24
run_Q3, 24
run_seqQC, 25
run_ssGSEA, 26
run_tsne, 26
run_umap, 27
send_to_log, 28
```