DEVOIR SURVEILLÉ 3

Calculatrice interdite Mardi 11 février 2025

EXERCICE 1 (4 POINTS)

- 1. Énoncer les trois caractéristiques d'un vecteur.
- **2.** Soient $\vec{u} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ dans une base orthonormée.

Calculer les coordonnées de $\vec{w} = -5\vec{u} + 2\vec{v}$.

CORRECTION

- 1. direction
 - sens
 - norme

2.
$$\vec{w} \begin{pmatrix} -5 \times 2 + 2 \times (-1) \\ -5 \times (-3) + 2 \times (-1) \end{pmatrix} = \vec{w} \begin{pmatrix} -12 \\ 13 \end{pmatrix}$$

EXERCICE 2 (3 POINTS)

Soient \vec{u} et \vec{v} deux vecteurs, dire si les affirmations suivantes sont vraies ou fausses. Justifier chaque réponse.

- 1. $\|\vec{u}\|$ est un réel strictement positif.
- **2.** Si $\|\overrightarrow{u}\| = \|\overrightarrow{v}\|$, alors $\overrightarrow{u} = \overrightarrow{v}$.
- **3.** Si $\overrightarrow{u} = \overrightarrow{v}$, alors $\|\overrightarrow{u}\| = \|\overrightarrow{v}\|$.

CORRECTION

- 1. C'est faux, tous les vecteurs non nuls ont une norme strictement supérieure à 0 mais $\|\vec{0}\| = 0$.
- **2.** C'est faux, des vecteurs de direction différentes peuvent avoir la même norme mais ne sont pas égaux. C'est le cas de $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ et $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
- 3. C'est vrai. Si des vecteurs sont égaux, leurs trois caractéristiques sont égales dont la norme.

EXERCICE 3 (4 POINTS)

Déterminer x, y, z et t tels que : $\overrightarrow{AB} = x\overrightarrow{CB}$; $\overrightarrow{BC} = y\overrightarrow{BD}$; $\overrightarrow{AD} = z\overrightarrow{BC}$; $\overrightarrow{DB} = t\overrightarrow{AB}$.

CORRECTION

- $\overrightarrow{AB} = -\overrightarrow{CB}$ donc x = -1.
- $\overrightarrow{BC} = \frac{1}{3}\overrightarrow{BD}$ donc $y = -\frac{1}{3}$.
- $\overrightarrow{AD} = 4\overrightarrow{BC}$ donc z = 4.
- $\overrightarrow{DB} = -3\overrightarrow{AB}$ donc t = -3.

EXERCICE 4 (6 POINTS)

On considère un rectangle MNPQ et on désigne par A, B, C et D les milieux respectifs de [MN], [NP], [PQ] et [QM].

Compléter les égalités suivantes en utilisant la figure précédente. Pas de justification attendue.

1.
$$\overrightarrow{AB} + \overrightarrow{BQ} = \dots$$

$$3. \overrightarrow{AP} + \overrightarrow{QC} = \dots$$

$$5. \overrightarrow{NB} + \frac{1}{2}\overrightarrow{NQ} = \dots$$

2.
$$\overrightarrow{CB} + \overrightarrow{CD} = \dots$$

4.
$$\overrightarrow{AC} - \overrightarrow{BD} = \dots$$

6.
$$2\overrightarrow{QD} + \overrightarrow{DB} - \overrightarrow{PN} = \dots$$

CORRECTION

Plusieurs réponses sont possibles pour chaque question.

1.
$$\overrightarrow{AB} + \overrightarrow{BQ} = \overrightarrow{AQ} = \overrightarrow{NC}$$

2.
$$\overrightarrow{CB} + \overrightarrow{CD} = \overrightarrow{QM} = \overrightarrow{CA} = \overrightarrow{PN}$$

$$3. \overrightarrow{AP} + \overrightarrow{QC} = \overrightarrow{MP}$$

4.
$$\overrightarrow{AC} - \overrightarrow{BD} = \overrightarrow{QP} = \overrightarrow{DB} = \overrightarrow{MN}$$

$$\mathbf{5.} \ \overrightarrow{NB} + \frac{1}{2}\overrightarrow{NQ} = \overrightarrow{AQ} = \overrightarrow{NC}$$

6.
$$2\overrightarrow{QD} + \overrightarrow{DB} - \overrightarrow{PN} = \overrightarrow{QP} = \overrightarrow{DB} = \overrightarrow{MN}$$

EXERCICE 5 (3 POINTS)

Soient R, S et T trois points.

1. Posons P tel que $\overrightarrow{RP} = \overrightarrow{RS} + \overrightarrow{RT}$.

À l'aide de la relation de Chasles, montrer que $\overrightarrow{TP} = \overrightarrow{RS}$.

Indication : on pourra utiliser que $\overrightarrow{TP} = \overrightarrow{TR} + \overrightarrow{RP}$.

2. Posons *U* tel que $\overrightarrow{SU} = \overrightarrow{SR} + \overrightarrow{ST}$.

À l'aide de la relation de Chasles, montrer que $\overrightarrow{RU} = \overrightarrow{ST}$.

3. En déduire la nature du quadrilatère *RUTS*.

CORRECTION

- 1. On sait que $\overrightarrow{TP} = \overrightarrow{TR} + \overrightarrow{RP}$ et que $\overrightarrow{RP} = \overrightarrow{RS} + \overrightarrow{RT}$ donc $\overrightarrow{TP} = \overrightarrow{TR} + \overrightarrow{RS} + \overrightarrow{RT} = \overrightarrow{TT} + \overrightarrow{RS} = \overrightarrow{RS}$ d'après la relation de Chasles.
- **2.** On sait que $\overrightarrow{RU} = \overrightarrow{RS} + \overrightarrow{SU}$ d'après la relation de Chasles et que $\overrightarrow{SU} = \overrightarrow{SR} + \overrightarrow{ST}$ donc : $\overrightarrow{RU} = \overrightarrow{RS} + \overrightarrow{SR} + \overrightarrow{ST} = \overrightarrow{RR} + \overrightarrow{ST} = \overrightarrow{ST}$ d'après la relation de Chasles.
- **3.** D'après la question précédente, $\overrightarrow{RU} = \overrightarrow{ST}$ et on sait que $\overrightarrow{RU} = \overrightarrow{ST} \Leftrightarrow RUTS$ est un parallélogramme.