Student Information

Full Name : Yarkın Özcan Id Number : 2580835

Answer 1

a-)

\mathbf{p}	q	$\neg \mathbf{q}$	$\mathbf{p} o \mathbf{q}$	$\mathbf{p} \wedge \neg \mathbf{q}$	$(\mathrm{p} ightarrow \mathrm{q}) \oplus (\mathrm{p} \wedge \lnot \mathrm{q})$
\mathbf{T}	\mathbf{T}	\mathbf{F}	${f T}$	\mathbf{F}	${f T}$
\mathbf{T}	\mathbf{F}	\mathbf{T}	F	\mathbf{T}	${f T}$
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	T
\mathbf{F}	\mathbf{F}	\mathbf{T}	T	F	T

• For every possible value of p and q, the statement $(p \to q) \oplus (p \land \neg q)$ is evaluated True. So the this statement is a **Tautology**.

b-)

$$\begin{split} p &\to ((q \vee \neg p) \to r) \\ \neg p \vee ((q \vee \neg p) \to r) \\ \neg p \vee (\neg (q \vee \neg p) \vee r) \\ (\neg p \vee \neg (q \vee \neg p)) \vee r \\ (\neg p \vee (\neg q \wedge p)) \vee r \\ ((\neg p \vee \neg q) \wedge (\neg p \vee p)) \vee r \\ ((\neg p \vee \neg q) \wedge T) \vee r \\ (\neg p \vee \neg q) \vee r \\ \neg (\neg p \vee \neg q) \to r \\ (p \wedge q) \to r \end{split}$$

Table-7, first rule, Implication elimination

Table-7, first rule, Implication elimination

Table-6, Associative Rule

Table-6, De Morgan's Laws

Table-6, Distributive laws

Table-6, Negation laws

Table-6, Identity Laws

Table-7, third rule, Implication introduction

Table-6, De Morgan's Laws

c-)

1. F

2. F

3. F

4. T

5. T

Answer 2

- 1. $\exists x (P(Can,x) \land T(x,L))$
- 2. $\forall x \exists y (T(x,S) \rightarrow (P(y,x) \land N(y,Turkish)))$
- 3. $\forall x \exists y \forall z ((T(x,S) \, \wedge \, T(y,S) \, \wedge \, T(z,S) \, \wedge \, R(x,z) \, \wedge \, R(x,y)) \, \rightarrow \, (y=z))$
- 4. $\forall x \forall y ((N(y,English) \land P(y,x)) \rightarrow \neg W(M,x))$
- 5. $\exists x \exists y \forall z (P(x,G) \land P(y,G) \land N(x,Turkish) \land N(y,Turkish) \land x \neq y \land ((P(z,G) \land N(z,Turkish)) \rightarrow (x=z \lor y=z)))$
- 6. $\exists x \exists y \exists z (T(x,y) \land T(x,z) \land y \neq z)$

Answer 3

1. $p \rightarrow q$	Premise
----------------------	---------

2.
$$(r \wedge s) \rightarrow p$$
 Premise

3.
$$r \land \neg q$$
 Premise

5. s	Assumed

6.
$$r \wedge s$$
 $\wedge i, 4, 5$

7. p
$$\rightarrow$$
e, 2, 6

8. q
$$\rightarrow$$
e, 1, 7

10.
$$\perp$$
 $\neg e, 8, 9$

11.
$$\neg s$$
 $\neg i, 5-10$

Answer 4

a-)

•
$$\exists x(P(x) \to S(x))$$
 Premise 1

•
$$\forall x P(x)$$
 Premise 2

	• $\exists x S(x)$	Claim
b)-)	
	1. $\exists x (P(x) \rightarrow S(x))$	Premise
	$2. \ \forall x P(x)$	Premise
	3. $P(c) \rightarrow S(c)$	Assumed
	4. P(c)	$\forall xe, 2$
	5. S(c)	\rightarrow e, 3, 4
	6. $\exists x S(x)$	∃i, 5
	7. ∃xS(x)	∃e, 1, 3-6