

UNIVERSITÀ DEGLI STUDI DI MILANO

FACOLTÀ DI SCIENZE E TECNOLOGIE

Dynamical Resonances in a Bistable Molecular Model

Alessandro Rizzi

Relatore: Prof. Nicola Manini Correlatore: Prof. Luciano Reatto

Laurea Triennale in Fisica - 6 Ottobre 2021

Introduzione

- Dimero monoatomico bistabile
- Corrugazione periodica
- Moto in 1 dimensione
- Forza esterna costante
- Dissipazione viscosa

- Macromolecole biologiche bistabili
- Attrito statico già studiato da G. Cavallini
- Osservazione di oscillazioni peculiari del moto interno molecolare in regime di avanzamento costante

Il Modello

Il potenziale molecolare bistabile

 R_1 : massimo locale

 R_2 : secondo minimo

U: prefattore

$$\delta = V_{\rm int}(R_1) - V_{\rm int}(R_2)$$

$$V_{\text{int}}(r) = f(\zeta = r^2) = U \left[\zeta^3 - \frac{3}{2} (R_1^2 + R_2^2) \zeta^2 + 3R_1^2 R_2^2 \zeta \right]$$

Le equazioni del moto

$$H = \sum_{i=1}^{2} \left(\frac{p_i^2}{2m} + V_{\text{ext}}(x_i) - Fx_i \right) + V_{\text{int}}(|x_2 - x_1|)$$

Jm

$$\ddot{x}_1 = F + \dots - m\gamma \dot{x}_1$$

$$\ddot{x}_2 = F + \dots - m\gamma \dot{x}_2$$

$$\mu\ddot{r} = -\frac{V_0\pi}{a}\cos\left(\frac{2\pi x_{\rm cm}}{a}\right)\sin\left(\frac{\pi r}{a}\right) - V'_{\rm int}(r) - 2\gamma\mu\dot{r}$$

Oscillazioni coprenti massimo

e minimo

Esempio di oscillazione

Minimo
$$R_1=\frac{\sqrt{3}}{12}a$$

Massimo $R_2=\frac{1}{4}a$
Forza $F=7.5\frac{V_0}{a}$
Viscosità $\gamma=10$ $\frac{1}{a}\sqrt{\frac{V_0}{m}}$
Prefattore $U=1\frac{V_0}{a^6}$
Barriera $\delta=3.6\times 10^{-5}V_0$

La Effective Driving Force $F_{\text{dri}}^{\text{eff}}$

- Stessa frequenza del moto, la washboard frequency
- In ritardo rispetto a *r*
- Lavoro monotonamente

crescente

La Effective Driving Force $F_{\text{dri}}^{\text{eff}}$

$$F_{\text{dri}}^{\text{eff}} := -\frac{2V_0\pi}{a} \cos\left(\frac{2\pi x_{\text{cm}}}{a}\right) \sin\left(\frac{\pi r}{a}\right)$$

Termine propriamente oscillatorio

Assume solo un certo range di valori

Ipotesi: $\sin\left(\frac{\pi r}{a}\right)$ non deve cambiare segno durante l'oscillazione

Valori sempre negativi di sin

(a) Prefattore
$$U = 0.1 \frac{V_0}{a^6}$$

Barriera
$$\delta = 8.1 \times 10^{-4} V_0$$

Barriera
$$\delta = 8.1 \times 10^{-3} V_0$$

Cambio segno di $\sin\left(\frac{\pi r}{a}\right)$

Minimo
$$R_1=\frac{5\sqrt{3}}{12}a$$

Massimo $R_2=\frac{5}{4}a$
Forza $F=4\frac{V_0}{a}$
Viscosità $\gamma=10$ $\frac{1}{a}\sqrt{\frac{V_0}{m}}$
Prefattore $U=0.01\frac{V_0}{a^6}$
Barriera $\delta=5.7\times 10^{-3}V_0$

$$R_1 < a < R_2$$

Risonanze al variare della velocità

Risonanze

Extra Attrito

Studiati anche:

> Caso sottosmorzato

 \rightarrow Diversi γ per le due particelle

FACOLTÀ DI SCIENZE E TECNOLOGIE, UNIMI

Discussione e Conclusioni

Possibili sviluppi futuri:

- > Effetti di una temperatura finita
- > Diverse masse per le particelle
- > Modello bidimensionale

Possibili applicazioni:

Macromolecole biologiche (proteine o DNA)

Grazie per l'ascolto

Caso sottosmorzato

Minimo
$$R_1 = 0.3a$$

Massimo
$$R_2 = 0.7a$$

Forza F =
$$2.6 \frac{V_0}{a}$$

Viscosità
$$\gamma = 2 \frac{1}{a} \sqrt{\frac{V_0}{m}}$$

Prefattore
$$U = 1 \frac{V_0}{a^6}$$

Barriera
$$\delta = 3.2 \times 10^{-2} V_0$$

Caso sottosmorzato

Diversi γ

Minimo
$$R_1=\frac{\sqrt{3}}{4}a$$

Massimo $R_2=\frac{3}{4}a$
Forza $F=7.5\frac{V_0}{a}$
Prefattore $U=10\frac{V_0}{a^6}$
Barriera $\delta=0.26V_0$
Viscosità $\gamma_1=10$ $\frac{1}{a}\sqrt{\frac{V_0}{m}}$

(a):
$$\gamma_2 = 0.5 \gamma_1$$

(b):
$$\gamma_2 = 0.8 \gamma_1$$

Sistema di unità naturali

Physical quantities	Model units
length	а
mass	m
energy	V_0
time	$a\sqrt{\frac{m}{V_0}}$
frequency and viscosity γ	$\frac{1}{a}\sqrt{\frac{V_0}{m}}$
force	$\frac{V_0}{a}$
velocity	$\sqrt{rac{V_0}{m}}$
potential prefactor U	$\frac{V_0}{a^6}$

Equazioni del moto

$$m\ddot{x}_1 = F - \frac{V_0\pi}{a}\sin\left(\frac{2\pi}{a}x_1\right) + V'_{\text{int}}(r) - m\gamma\dot{x}_1$$

$$m\ddot{x}_2 = F - \frac{V_0\pi}{a}\sin\left(\frac{2\pi}{a}x_2\right) - V'_{\text{int}}(r) - m\gamma\dot{x}_2$$

$$V'_{\text{int}}(r) = U \left[6 (x_2 - x_1)^5 - 6 (x_2 - x_1)^3 \left(R_1^2 + R_2^2 \right) + 6 (x_2 - x_1) R_1^2 R_2^2 \right]$$

Spettro di Potenza

Metodo di integrazione RKF45

- > Migliora il tradizionale RK al quarto ordine
- > Passo di integrazione adattivo
- Consente di ottenere la precisione desiderata ottimizzando lo sforzo computazionale