Отчет по лбораторной работе №4

Создание и процесс обработки программ на языке ассемблера NASM

Карапетян Мари Рафаеловна

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	9
Список литературы		13

Список иллюстраций

4.1	Создание каталога
4.2	Переход в каталог
4.3	Создание текстового файла
4.4	Открытие файла
4.5	Ввод текста
4.6	Компиляция текста
4.7	Проверка объектного файла
4.8	Создание файлов
4.9	Проверка файлов
4.10	Передача файла на компоновку
4.11	Проверка исполняемого файла hello
4.12	Запуск на выполнение созданный исполняемый файл
4.13	Создание копию файла hello.asm с именем lab4.asm
4.14	Внесем изменения в текст программы
4.15	Оттранслирование, компоновка, запуск
4.16	Копирование файлов в локальный репозиторий

Список таблиц

1 Цель работы

Основные процедуры компиляции и сборки программ, написанных на ассемблере NASM

2 Задание

- Программа Hello world!
- Транслятор NASM
- Расширенный синтаксис командной строки NASM
- Компоновщик LD
- Запуск исполняемого файла

3 Теоретическое введение

Основные принципы работы компьютера Основными функциональными элементами любой электронно-вычислительной машины (ЭВМ) являются центральный процессор, память и периферийные устройства (рис. 4.1). Взаимодействие этих устройств осуществляется через общую шину, к которой они подклю- чены. Физически шина представляет собой большое количество проводников, соединяющих устройства друг с другом. В современных компьютерах проводники выполнены в виде элек- тропроводящих дорожек на материнской (системной) плате. Основной задачей процессора является обработка информации, а также организация координации всех узлов компьютера. В состав центрального процессора (ЦП) входят следующие устройства: • арифметико-логическое устройство (АЛУ) — выполняет логические и арифметиче- ские действия, необходимые для обработки информации, хранящейся в памяти; • устройство управления (УУ) — обеспечивает управление и контроль всех устройств компьютера; • регистры — сверхбыстрая оперативная память небольшого объёма, входящая в со- став процессора, для временного хранения промежуточных результатов выполнения инструкций; регистры процессора делятся на два типа: регистры общего назначения и специальные регистры. Для того, чтобы писать программы на ассемблере, необходимо знать, какие регистры процессора существуют и как их можно использовать. Большинство команд в программах написанных на ассемблере используют регистры в качестве операндов. Практически все команды представляют собой преобразование данных хранящихся в регистрах процессора, это например пересылка данных между регистрами или между регистрами и

памятью, пре- образование (арифметические или логические операции) данных хранящихся в регистрах.

4 Выполнение лабораторной работы

Создаем каталог для работы с программами на языке ассемблера NASM (Рис.@fig:001)

mrkarapetyan@dk2n26 ~ \$ mkdir -p ~/work/arch-pc/lab04

Рис. 4.1: Создание каталога

Перейдем в созданный каталог (Рис.@fig:002)

mrkarapetyan@dk2n26 ~ \$ cd ~/work/arch-pc/lab04

Рис. 4.2: Переход в каталог

Создайте текстовый файл с именем hello.asm (Рис.@fig:003)

mrkarapetyan@dk2n26 ~/work/arch-pc/lab04 \$ touch hello.asm mrkarapetyan@dk2n26 ~/work/arch-pc/lab04 \$ ls hello.asm

Рис. 4.3: Создание текстового файла

Откроем этот файл с помощью любого текстового редактора (Рис.@fig:004)

mrkarapetyan@dk2n26 ~/work/arch-pc/lab04 \$ gedit hello.asm

Рис. 4.4: Открытие файла

Введем в него текст (Рис.@fig:005)

```
hello.asm
-/work/arch-pc/lab04

1; hello.asm
2 SECTION .data; Начало секции данных
3 hello: DB 'Hello world!',10; 'Hello world!' плюс
4; символ перевода строки
5 helloLen: EQU $-hello; Длина строки hello
6 SECTION .text; Начало секции кода
7 GLOBAL _start
8 _start:; Точка входа в программу
9 mov eax,4; Системный вызов для записи (sys_write)
10 mov ebx,1; Описатель файла '1' - стандартный вывод
11 mov ecx,hello; Адрес строки hello в есх
12 mov edx,helloLen; Размер строки hello
13 int 80h; Вызов ядра
14 mov eax,1; Системный вызов для выхода (sys_exit)
15 mov ebx,0; Выход с кодом возврата '0' (без ошибок)
16 int 80h; Вызов ядра
```

Рис. 4.5: Ввод текста

Скомпилируем данный текст (Рис.@fig:006)

```
mrkarapetyan@dk2n26 ~/work/arch-pc/lab04 $ nasm -f elf hello.asm
```

Рис. 4.6: Компиляция текста

Проверим, что объектный файл был создан (Рис. 4.7).

```
mrkarapetyan@dk2n26 ~/work/arch-pc/lab04 $ ls
hello.asm hello.o
```

Рис. 4.7: Проверка объектного файла

Скомпилируем исходный файл hello.asm в obj.o и создадим файл листинга list.lst(Puc.@fig:008)

```
mrkarapetyan@dk2n26 ~/work/arch-pc/lab04 $ nasm -o obj.o -f elf -g -l list.lst hello.asm
```

Рис. 4.8: Создание файлов

Проверим, что файлы были созданы (Рис.@fig:009)

```
mrkarapetyan@dk2n26 ~/work/arch-pc/lab04 $ ls
hello.asm hello.o list.lst obj.o
```

Рис. 4.9: Проверка файлов

Передадим объектный файл на обработку компоновщику (Рис.@fig:010)

mrkarapetyan@dk2n26 ~/work/arch-pc/lab04 \$ ld -m elf_i386 hello.o -o hello

Рис. 4.10: Передача файла на компоновку

Проверим, что исполняемый файл hello был создан (Рис.@fig:011)

mrkarapetyan@dk2n26 ~/work/arch-pc/lab04 \$ ls hello hello.asm hello.o list.lst obj.o

Рис. 4.11: Проверка исполняемого файла hello

Зададим имя создаваемого исполняемого файла (Рис.@fig:012)

[Зададим имя создаваемого исполняемого файла] (image/12.jpg){#fig:012 width=70%}

Запустим на выполнение созданный исполняемый файл, находящийся в текущем каталоге (Рис.@fig:013)

mrkarapetyan@dk2n26 ~/work/arch-pc/lab04 \$./hello Hello world!

Рис. 4.12: Запуск на выполнение созданный исполняемый файл

Создадим копию файла hello.asm с именем lab4.asm (Рис.@fig:014)

mrkarapetyan@dk2n26 ~/work/arch-pc/lab04 \$ cp hello.asm lab4.asm

Рис. 4.13: Создание копию файла hello.asm с именем lab4.asm

Внесем изменения в текст программы в файле lab4.asm (Рис.@fig:015)

```
hello.asm
//work/arch-pc/lab04

1; hello.asm
2 SECTION .data; Начало секции данных
3 hello: DB 'Karapetyan Mari',10; 'Hello world!' плюс
4; символ перевода строки
5 helloten: EQU 5-hello; Длина строки hello
6 SECTION .text; Начало секции кода
7 GLOBAL _start
8 _start: ; Точка входа в программу
9 mov eax,4; Системный вызов для записи (sys_write)
10 mov ebx,1; Описатель файла '1' - стандартный вывод
11 mov ecx,hello; Адрес строки hello в есх
12 mov edx,helloten; Размер строки hello в вох
12 mov edx,helloten; Размер строки hello
13 int 80h; Вызов ядра
14 mov eax,1; Системный вызов для выхода (sys_exit)
15 mov ebx,0; Выход с кодом возврата '0' (без ошибок)
16 int 80h; Вызов ядра
```

Рис. 4.14: Внесем изменения в текст программы

Оттранслируем полученный текст программы lab4.asm в объектный файл. Выполним компоновку объектного файла и запустим получившийся исполняемый файл (Puc.@fig:016)

```
mrkarapetyan@dk2n26 ~/work/arch-pc/lab04 $ gedit hello.asm
mrkarapetyan@dk2n26 ~/work/arch-pc/lab04 $ cp hello.asm lab4.asm
mrkarapetyan@dk2n26 ~/work/arch-pc/lab04 $ nasm -f elf lab4.asm
mrkarapetyan@dk2n26 ~/work/arch-pc/lab04 $ nasm -o obj.o -f elf -g -l list.lst lab4.asm
mrkarapetyan@dk2n26 ~/work/arch-pc/lab04 $ nasm -o Karapetyan.o -f elf -g -l list.lst lab4.asm
mrkarapetyan@dk2n26 ~/work/arch-pc/lab04 $ ld -m elf_i386 Karapetyan.o -o Karapetyan
mrkarapetyan@dk2n26 ~/work/arch-pc/lab04 $ ./Karapetyan
Karapetyan Mari
```

Рис. 4.15: Оттранслирование, компоновка, запуск

Скопировала файлы hello.asm и lab4.asm в локальный репозиторий в каталог ~/work/study/2023-2024/"Архитектура компьютера"/arch-pc/labs/lab04/с помощью утилиты ср и проверила наличие файлов с помощью утилиты ls (Puc.@fig:017)

```
mrkarapetyan@dk2n26 -/work/arch-pc/lab04 $ cp hello.asm -/work/study/2023-2024/"Архитектура компьютера"/arch-pc/lab04/report
mrkarapetyan@dk2n26 -/work/arch-pc/lab04 $ cp labd.asm -/work/study/2023-2024/"Архитектура компьютера"/arch-pc/lab04/report
mrkarapetyan@dk2n26 -/work/arch-pc/lab04 $ cd -/work/study/2023-2024/"Архитектура компьютера"/arch-pc/lab04/report
mrkarapetyan@dk2n26 -/work/arch-pc/lab04 $ cd -/work/study/2023-2024/"Aрхитектура компьютера"/arch-pc/lab04/report
blb hello.asm image labd.asm Makefile pandoc report.md

1 bl hello.asm image labd.asm Makefile pandoc report.md
```

Рис. 4.16: Копирование файлов в локальный репозиторий

Загружаю файлы на Github # Выводы

В ходе выполнения работы, я освоила процедуры компиляции и сборки программ, написанных на ассемблере NASM

Список литературы