Lecture-33

Sushrut Tadwalkar; 55554711

April 6, 2024

Quotes of the day: Dr. Joshua Zahl 04/06/2024

No quotes today:(

Note (Remarks). We note the following things:

- 1. $S_N(f;x) = \sum_{n=-N}^{N} c_n e^{2\pi i nx}$ might not be the polynomial "found" by Baby Rudin theorem 8.15.
- 2. There exists continuous, 1-periodic functions where $S_n(f)$ does not converge pointwise to f.
- 3. There exist continuous, 1-periodic functions f where $S_n(f) \to f$ pointwise, but not uniformly.
- 4. $(\mathcal{R}[0,1]/\sim,\langle\cdot,\cdot\rangle)$ is a set of functions for which $S_n(f)\to f$ almost everywhere (<u>Carleson's theorem</u>).
- 5. Baby Rudin problem 8.15 describes an explicit sequence of trigonometric polynomial functions that converge uniformly to f:

$$\sigma_N = \frac{s_0 + s_1 + \dots + s_N}{N+1}$$
 (Cesàro mean),

where s_i is the i^{th} Fourier coefficient.

Food for thought 1 (Importance of Fourier series). Given the shortcomings of S_N , why do we study Fourier series?

Answer. The Fourier series might not converge pointwise or uniformly to f, but we do expect it to converge in some metric space (in L^2 space). This turns out to work for my integrable function, because we can approximate it arbitrarily well in L^2 space by continuous functions.

Theorem: Plancherel theorem/Parseval-Plancherel identity

Let
$$f: \mathbb{R} \to \mathbb{C}$$
 be 1-periodic and integrable on $[0,1]$. Then $\lim_{N \to \infty} \|f - S_N\|_2 = 0$, i.e., $S_N \to f$ in $(L^2([0,1]), \|\cdot\|_2)$.

Proof. Since $\|\cdot\|_2$ is a metric, we have $\|f+g\|_2 \leq \|f\|_2 + \|g\|_2$ (Minkowski's identity as well). For $f \in \mathcal{R}[0,1]$ and $\varepsilon > 0$, there exists $g:[0,1] \to \mathbb{C}$ continuous so that $\|f-g\|_2 < \varepsilon$ (Baby Rudin problem 6.12).

Given $\varepsilon>0$, select some continuous $g:[0,1]\to\mathbb{C}$ such that $\|f-g\|_2\leq \frac{\varepsilon}{3}$. Hence, we have

$$||S_N(f) - f||_2 \le \underbrace{||S_N(f) - S_N(g)||_2}_{:(A)} + \underbrace{||S_N(g) - g||_2}_{:(B)} + \underbrace{||g - f||_2}_{<\varepsilon/3}.$$
 (\\(\lambda\)

Here,

$$A: ||S_N(f) - S_N(g)||_2 = ||S_N(f - g)||_2 \le ||f - g||_2 < \frac{\varepsilon}{3}$$

For (B), recall that by theorem 8.15, there exists a trigonometric polynomial function p having degree N_0 , such that $\|g-p\|_{\infty}<\varepsilon/3$; hence, $\|g-p\|_2<\varepsilon/3$. Thus, for all $n>N_0$, by theorem 8.11,

$$||S_N(g) - g||_2 \le ||p - g||_2 < \frac{\varepsilon}{3}.$$

Therefore, resolving these in eq. (\spadesuit) , we get

$$||S_N(f) - f|| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon,$$

concluding the proof.