Revisão - Unidade 3

Cálculo de Probabilidade 2 | $2^{o}/2024$

Tailine J. S. Nonato

2024-07-21

Distribuição	Tipo	f(x)	E[X]	Var(X)	$M_X(t)$	$\phi_X(t)$
Binomial	Discreta	$P(X = k) = \binom{n}{k} p^k (1 - k)$	np	np(1-p)	$(1 - p + pe^t)^n$	$(1 - p + pe^{it})^n$
		$(p)^{n-k}$				
Poisson	Discreta	$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$	λ	λ	$\exp(\lambda(e^t-1))$	$\exp(\lambda(e^{it}-1))$
Geométrica	Discreta	$P(X = k) = (1-p)^{k-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1-(1-p)e^t}, t$	$\frac{pe^{it}}{1 - (1 - p)e^{it}}$
			•	•	$-\ln(1-p)$	
Uniforme (contínua)	Contínua	$f(x) = \frac{1}{b-a}, \ a \le x \le b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$
Normal	Contínua	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $f(x) = \lambda e^{-\lambda x}, x \ge 0$	μ	σ^2	$\exp(\mu t + \frac{\sigma^2 t^2}{2})$	$\exp(i\mu t - \frac{\sigma^2 t^2}{2})$
Exponencial	Contínua		$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t}$, $t < \lambda$	$\frac{\lambda}{\lambda - it}$
Gamma	Contínua	$f(x) = \frac{\lambda^k x^{k-1} e^{-\lambda x}}{\Gamma(k)}, x \ge $	$\frac{k}{\lambda}$	$\frac{k}{\lambda^2}$	$\left(\frac{\lambda - t}{\lambda - t}\right)^k, \ t < \lambda$	$\left(\frac{\lambda}{\lambda - it}\right)^k$
		U				

Observações

- 1. Função de densidade/probabilidade (f(x)): Representa a função que define a distribuição de probabilidade. Para distribuições discretas, é a função de probabilidade de massa; para distribuições contínuas, é a função de densidade de probabilidade.
- 2. Esperança (E[X]): Média esperada ou valor esperado da variável aleatória.
- 3. Variância (Var(X)): Medida da dispersão dos valores da variável aleatória em relação à média.
- 4. Função Geradora de Momentos ($M_X(t)$): Função utilizada para obter os momentos da distribuição, definida como ($M_X(t) = E[e^{tX}]$).
- 5. Função Característica ($\phi_X(t)$): Função que fornece a transformada de Fourier da distribuição de probabilidade, definida como ($_X(t) = E[e^{itX}]$).