

EXAMEN DE FIN D'ÉTUDES SECONDAIRES 2018

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE	
MATHÉMATIQUES II	B	Durée de l'épreuve :	4 heures
		Date de l'épreuve :	29 mai 2018

Question 1

Soit
$$f_m$$
 la fonction définie sur $\mathbb R$ par
$$f_m(x)=x+\ln\frac{m-x}{m+x} \quad \text{avec } m>0$$
 et soit $\mathcal C_{f_m}$ sa courbe représentative dans un repère orthonormé.

- a) Déterminer, en fonction de m, le domaine de définition de f_m .
- b) Montrer que f_m est impaire, puis déterminer, s'il y en a, les asymptotes de C_{f_m} .
- c) Discuter, en fonction de m, les variations de f_m (Les valeurs des extrema éventuels ne sont pas demandées!). Indication: Il y a 3 cas!
- d) Déterminer la concavité de \mathcal{C}_{f_m} . Démontrer que \mathcal{C}_{f_m} admet exactement un point d'inflexion I_m et donner les valeurs exactes des coordonnées de I_m .
- e) Déterminer les valeurs de m pour lesquelles la tangente à \mathcal{C}_{f_m} au point I_m passe par le point A(-1;2).
- f) Calculer et simplifier au maximum l'intégrale J_m définie par

$$J_m = \int_0^{\frac{m}{2}} f_m(x) \ dx \ .$$

(1+3+7+3+2+5) 21 points

Question 2

Soit
$$f$$
 la fonction définie sur \mathbb{R} par $f(x) = \begin{cases} -x^2 + \left(2 + \frac{2}{e}\right)x - 1 - \frac{3}{e} & \text{si } x < 1 \\ \left(x - 2\right)e^{\left(\frac{1}{x - 2}\right)} & \text{si } x \ge 1 \text{ et } x \ne 2 \end{cases}$.

et soit C_f sa courbe représentative dans un repère orthonormé.

- a) Déterminer le domaine de définition de f. Étudier la continuité de f en 1 et donner le domaine de continuité de f.
- b) Déterminer, s'il y en a, les asymptotes et les branches paraboliques de C_f .
- c) Étudier la dérivabilité de f en 1. Donner le domaine de dérivabilité de f, calculer la dérivée de f et dresser le tableau de variation de f.
- d) Vérifier s'il existe des tangentes à C_f en un point d'abscisse supérieure ou égale à 1, qui passent par le point A(3;0). Le cas échéant, donner une équation cartésienne de chaque tangente.
- e) Représenter avec précision la fonction *f* dans un repère orthonormé.

(2+6+5+2,5+2,5) 18 points

Question 3

On donne les fonctions $f:[0;\pi] \to \mathbb{R}: x \mapsto \cos x$ et $g:\left[-\frac{\pi}{2};\frac{\pi}{2}\right] \to \mathbb{R}: x \mapsto \sin x$ et leurs courbes représentatives C_f et C_g dans un repère orthonormé.

a) Calculer l'aire de la surface S_1 (en gris sur la figure ci-dessous) :

b) Calculer le volume du solide révolution engendré par la rotation de la surface S_2 (en gris sur la figure ci-dessous) <u>autour de l'axe des abscisses</u>.

c) Calculer le volume du solide révolution engendré par la rotation de la surface S_2 (en gris sur la figure ci-dessus) <u>autour de l'axe des ordonnées</u>.

(2,5+1,5+6) 10 points

Question 4

a) Résoudre dans \mathbb{R} : $\log_{15}(\log_{0,2} x) \le 1 - \log_{15}(-1 + \log_{0,2} x^2)$

b) Calculer: $\int \frac{1}{3 + \sin x} dx$

(6+5) 11 points