

Introdução a Redes Neurais

Marlon Sproesser Mathias

Ementa

- Conceitos básicos e introdução às redes neurais artificiais.
- Treinamento supervisionado e não supervisionado.
- Principais arquiteturas de redes.
- Redes "alimentadas-adiante".
- Perceptrons, unidades lineares e não lineares.
- Redes rasas e redes profundas.
- O algoritmo de retro-propagação.
- Ajuste de funções e classificação de padrões usando redes neurais artificiais.
- Introdução à plataforma TensorFlow/Keras.
- Criação, treinamento e avaliação de redes neurais sequenciais usando o Keras.
- Configuração de conjunto de dados: normalização de dados, dados de treinamento, dados de desenvolvimento e dados de teste.
- Inicialização dos parâmetros da rede.
- Métodos de otimização.

Bibliografia

- https://www.deeplearningbook.org/
- Haykin, S., REDES NEURAIS -Princípios e Prática, Bookman. 2ª. Edição, 2003.
- Chollet, F. Deep Learning with Python, Manning Shelter Island Editor, 2018.
- Jurafsky, D. & Martin, J., Speech and Language Processing, 3rd. Ed. Draft, chapter 7, https://web.stanford.edu/~jurafsky/slp3/7.pdf, 2020.

Aula 1

O que são Redes Neurais Artificiais?

Histórico das RNAs Estrutura de uma RNA

Treinamento supervisionado e não-supervisionado

Conceito de Redes Neurais

Conceito de Redes Neurais

Conceito de Redes Neurais

Histórico

~1950 – Primeiros conceitos de redes neurais

Não havia uma forma eficiente de se treinar

1980 – Pesquisas com backpropagation

Essencial para o treinamento eficiente

1990 – Primeiro uso no mundo real

Leitura de códigos postais

Chollet, F. Deep Learning with Python, Manning Shelter Island Editor, 2018.

Histórico

• 1990-2000 – "Superadas" por SVM

• 2000-2010 – "Superadas" por *Random Forests*

Histórico

- 2010 Uso em classificação de imagens
- Desafio ImageNet 1.4 milhão de imagens em 1000 categorias

IM GENET

- 2011 Métodos "clássicos" → 74.3% de acerto (top-five)
- 2012 RNA → 83.6% de acerto
- 2015 RNA → 96.4% de acerto → Problema considerado resolvido

https://image-net.org/

Chollet, F. Deep Learning with Python, Manning Shelter Island Editor, 2018.

O que é uma RNA?

- Uma grande função
- Mapeia um conjunto de dados de entrada $x_i \in X$ para o valor alvo desejado $y_i \in Y$.
- Entrada definida por uma matriz $X \in \mathbb{R}^{n_x,m}$
 - n_x é o número de *features* do problema (número de entradas de cada exemplo)
 - m é o número de dados disponíveis (número total de exemplos de treinamento)
- Saída definida por $Y \in \mathbb{R}^{n_y,m}$
 - n_y é o número de saídas da RNA

Imagem retirada de:

https://www.oficinadanet.com.br/tecnologia/25007-o-que-sao-as-redes-neurais-artificiais

Principais características das redes neurais biológicas estão presentes nas RNAs

- Uma RNA consiste de uma grande quantidade de unidades de processamento simples (neurônios) interconectados;
- Cada neurônio artificial recebe muitos sinais;
- Os sinais recebidos pelos neurônios são modificados por um peso nas sinapses receptoras;
- Os neurônios artificiais somam de forma ponderada as entradas;
- Os neurônios definem a importância da informação e transmitem uma única saída;
- A saída de um neurônio é transmitida para muitos outros neurônios;
- Uma rede pode possuir várias camadas de neurônios.

Imagem retirada de:

https://www.oficinadanet.com.br/tecnologia/25007-o-que-sao-as-redes-neurais-artificiais

Tipos de Camadas de uma RNA

Exemplo de RNA com L=3 camadas intermediárias (veja que a camada de saída entra na conta)

Variáveis de uma RNA

Camadas intermediárias

Avaliação de uma RNA

Combinação linear

Função de ativação

Combinação linear

Eduardo Lobo Lustosa Cabral

Avaliação de uma RNA

Combinação linear

Função de ativação

Combinação linear

Função de ativação

Combinação linear

Eduardo Lobo Lustosa Cabral

Como treinar uma RNA?

- Uma RNA deve ser treinada para que ela consiga mapear um problema
 - Seja de regressão ou de classificação
- Treinamento é o processo de definir os pesos da rede
- O aprendizado supervisionado de uma RNA exige um conjunto de dados rotulados e classificados.
- No aprendizado não-supervisionado, a RNA encontra padrões em dados não rotulados

Tipos de treinamento

Supervisionado

Nãosupervisionado

Autosupervisionado

Por reforço

Treinamento supervisionado

- Dados de entrada e de saída são conhecidos
- Problemas de classificação
- Problemas de regressão

Fotos de Wikimedia commons

Treinamento não-supervisionado

- Somente dados de entrada são conhecidos
- Redução de dimensões
- Clusterização

Fotos de Wikimedia commons

Treinamento auto-supervisionado

- As saídas (categorias) não são definidas por humanos, mas sim, extraídas dos dados
- Predição da próxima palavra num texto
- Séries temporais

Aprendizado por reforço

- Treinamento faz rede buscar uma recompensa
- Pontuação em um jogo
- Robótica

Próxima aula

Perceptrons

Classificação binária

Gradientes descendentes

Trabalho 1