Supervised Learning Final Exam

Kaggle: Home Credit - Credit Risk Model Stability

- On-going Kaggle competition
- Goal is to predict client likely to default on their loans using bank data

- Challenges :
 - Large amount of data (several datasets, 400+ columns, different granularity)
 - Limited amount of computing resources
 - Very imbalance classes

What's the data look like?

	case_id	date_decision	монтн	WEEK_NUM	target
0	0	2019-01-03	201901	0	0
1	1	2019-01-03	201901	0	0
2	2	2019-01-04	201901	0	0
3	3	2019-01-03	201901	0	0
4	4	2019-01-04	201901	0	1

What's the data look like?

	case_id	actualdpdtolerance_344P	amtinstpaidbefduel24m_4187115A	annuity_780A	annuitynextmonth_57A	applicationcnt_361L	appli				
0	0	NaN	NaN	1917.6	0.0	0.0					
1	1	NaN	NaN	3134.0	0.0	0.0					
2	2	NaN	NaN	4937.0	0.0	0.0					
3	3	NaN	NaN	4643.6	0.0	0.0					
4	4	NaN	NaN	3390.2	0.0	0.0	-				
5 rows × 168 columns											

Data quality problem...

Class imbalance

Features selection

• We are still left with 46 columns (7 categorical, with a high number of possible values)

• To fit the computing resources constraint we need to reduce this number

Features selection

- We have use the Select K Best features approach
 - ANOVA test for continuous variables
 - Chi-square test for categorical

• Main idea is to measure the statistical significance of the difference in each features between the two class, and keep the most significant

Modelling

• As a first iteration, we use a simple Logistic Regression model to get a baseline

Results

```
[28]: print("Classification Report:\n", classification report(y test, y pred))
      print("ROC AUC Score:", roc_auc_score(y_test, y_pred_proba))
      Classification Report:
                                  recall f1-score
                     precision
                                                    support
                         0.98
                                   0.70
                                            0.82
                                                    295779
                         0.05
                                   0.53
                                            0.10
                                                      9553
                                            0.70
                                                    305332
          accuracy
                                            0.46
                                                    305332
         macro avg
                         0.52
                                   0.62
      weighted avg
                         0.95
                                   0.70
                                            0.80
                                                    305332
      ROC AUC Score: 0.6548672018092991
```

```
gini_stability(base)
0.2233886797396835
```

Results

- Good start but not satisfying
- Top public leaderboard score are much higher, usage in production is not possible

- Areas of improvement
 - More data
 - Explore specific techniques imbalanced class (sampling, others algorithms)
 - Tune logistic regression hyperparameters
 - Try other learning algorithms
 - Handle NaN values differently (inferring missing values, etc)
 - o Improve features and features selections method