Guía 4- lenguejes y compiladores

Repaso. Decida si los siguiente argumentos son correctos:

- (1) Sea D un dominio y $f: D \to D$. Si f es continua, entonces f tiene un menor punto
- (2) Sea D un dominio y $f: D \to D$. Si f es continua, entonces \bot es el menor punto fijo de
- (3) Sea D un dominio y sea $f_1 \sqsubseteq f_2 \sqsubseteq f_3 \sqsubseteq \dots$ una cadena en $D \to D$. Si el supremo de la cadena pertenece a la cadena, entonces existe un índice k tal que $f_k = f_{k+1} = f_{k+2}$.

Verdodero. (3)

Ejercicios.

- (1) Utilizar la semántica denotacional para demostrar o refutar las siguientes equivalencias:
 - (a) c; **skip** $\equiv c$
 - (b) $c_1; (c_2; c_3) \equiv (c_1; c_2); c_3$
 - (c) (if b then c_0 else c_1); $c_2 \equiv \text{if } b \text{ then } c_0$; c_2 else c_1 ; c_2
 - (d) c_2 ; (if b then c_0 else c_1) \equiv if b then c_2 ; c_0 else c_2 ; c_1
 - (e) x := y; $z := w \equiv z := w$; x := y

- (2) Utilizar la semántica denotacional para demostrar o refutar las siguientes equivalencias:
 - (a) $newvar x := e in skip \equiv skip$
 - (b) **newvar** x := e **in** $y := x \equiv y := e$
 - (c) newvar $x := e_1$ in (newvar $y := e_2$ in c) \equiv newvar $y := e_2$ in (newvar $x := e_1$ in c)

(a) [newva,
$$x := e^{2n} s \times e^{2n}$$

 $= (\lambda \delta' \in \Sigma \cdot [\delta' | x : \sigma_x)) \perp ([s \times p](\delta | x : [e]\delta])$
 $= (\lambda \delta' \in \Sigma \cdot [\delta' | x : \sigma_x]) \delta'$

```
= [d'|x:5x]
         [ 6 | x: [e] 5 | x: Jx]
          = [6|x:5x]
          = [skip]s
(b) [ newvar x:=e in y:=x]6
        = ( )6' e 5. [6'| x:6x]) 4 ([y2=x] [6|x? [e]s))
        = (λο' e Σ. [ δ' | x : σx]) [ δ | x: [e] δ | y: x]
        = ( \d'e \( \) [ \d' \ \ \ \ \ \] \d'
        = [6'| x : 6x]
        = [olx: CeDoly: xlx:ox]
        = [ 8 | y: [e] 8]
         = [ y == e] &
(c) [ newvor x:=en in (newvor y:=ez inc)] o
    = ( ) o'e 2. [o'lx:ox]) 1 ( [newvar y:=ez inc] [o:x: [en]o])
   = ()6'e [6'|xi6x])4 ([newvar y:=ez in c] 6')
   = () 6'e [, (6'|x:01)) [ ( ) 6'e [, (6" | y: 0'y) ] [c] [6'|y:[e,]6,])
   (Asumiendo [[c]6' $] ya que la equivalencia reja trivial)
= (λό'ε Σ, [δ']x:0x]) μ ((λό"ε Σ. [δ"] γ:0'γ)μ [[c] ζ")
   - ( ) o' e E. [o' | x:0x]) + ( ( \o" e E. [o" | y: o'y]) 4 o")
   = (\d'E[.[o'|x:0x])[o"c|y:o'y]
   = [o" | yro'y | xrox)
 No son equivalentes
 Enewar x= yrs in (newvory:=5inc)] o
  = (X & E , [6 | X:2]) # ([newvar y= 5?n c]) [ & | x:11)
  = ( ) 6' E [. ( 6' 1x: 1) ] ( ( ) 0" 6 [ ( 6" 1 y: 0' y ] ] [ c] [ 6 1 x: 11 ] y: 6] )
                    ejentra a c on x=11 1=50
```

El estado que develue [cDo' (en caso de [c]o'+1) puede se distinto en ambuo efemciones.

- (3) Teniendo en cuenta los ejercicios anteriores, discuta en grupo las siguientes afirmaciones:
 - (a) El parser puede eliminar toda ocurrencia de **skip**.
 - (b) El parser puede elegir inclinar las secuencias de más de dos comandos hacia la derecha o hacia la izquierda.

- (4) Considere el comando while true do x := x 1
 - (a) Dar la función F que define su semántica. Calcular la expresión más sencilla que pueda para F.
 - (b) Existe algún n tal que $F^n \perp_{\Sigma \to \Sigma_{\perp}}$ no sea idénticamente \perp ?
 - (c) Considere la cadena en $\Sigma \to \Sigma_{\perp}$ dada por

$$\omega_i \ \sigma = \left\{ \begin{array}{ll} \sigma & \text{si } 0 \leq \sigma x \leq i \\ \bot & \text{caso contrario} \end{array} \right.$$

Es sabido que la continuidad de F garantiza la igualdad $F(\bigsqcup \omega_i) = \bigsqcup F\omega_i$. Compruebe la misma calculando cada miembro de la igualdad para el caso de la cadena dada.

(a)
$$F w w = \begin{cases} \omega \mu \left[x := x - 1 \right] v & \text{si} & \text{thue} v \end{cases}$$

como [x3=x-1]o / L siempie entones

$$= (\bigcup_{i=0}^{\infty} w_i) \left[\sigma(x: \sigma x - 1) \right]$$

$$= \bigcup_{i=0}^{\infty} w_i \left[\sigma(x: \sigma x - 1) \right]$$

$$= \left\{ \left[\sigma(x: \sigma x - 1) \right] = \left[\sigma(x: \sigma x - 1) \right] \right\}$$

$$= \left\{ \left[\sigma(x: \sigma x - 1) \right] = \left[\sigma(x: \sigma x - 1) \right] \right\}$$

$$= \left\{ \left[\sigma(x: \sigma x - 1) \right] = \left[\sigma(x: \sigma x - 1) \right] \right\}$$

Fw:
$$\sigma = \begin{cases} w_{i,1} & [x:x-1]_{\sigma} & \text{if [true]}_{\sigma} \end{cases}$$

$$= \begin{cases} w_{i} & [s|x:x-1]_{\sigma} & \text{if [true]}_{\sigma} \end{cases}$$

$$= \begin{cases} [s|x; \delta x-1] & \text{if } \delta \leq [\sigma|x:\sigma x-1]_{x} \leq i \end{cases}$$

$$= \begin{cases} [s|x; \delta x-1] & \text{if } \delta \leq [\sigma|x:\sigma x-1]_{x} \leq i \end{cases}$$

$$= \begin{cases} [s|x; \delta x-1] & \text{if } \delta \leq [\sigma|x:\sigma x-1]_{x} \leq i \end{cases}$$

- (5) Calcule la semántica denotacional de los siguientes comandos:
 - (a) while x < 2 do if x < 0 then x := 0 else x := x + 1
 - (b) while x < 2 do if y = 0 then x := x + 1 else skip

$$F^{0}_{12-21}\sigma = 12-21$$

$$F^{1}_{12-21}\sigma = 12-21$$

$$= \left((1_{2-21})_{11}\left((1_{11}^{2}\times 0_{11}^{2}) + 0_{11}^{2}\times 0_{11}^{2}\right)\right)$$

$$= \left((1_{2-21})_{11}\left((1_{11}^{2}\times 0_{11}^{2}) + 0_{11}^{2}\times 0_{11}^{2}\right)\right)$$

$$= \left((1_{2-21})_{11}\left((1_{11}^{2}\times 0_{11}^{2}) + 0_{11}^{2}\times 0_{11}^{2}\right)\right)$$

$$= \left((1_{2-21}^{2})_{11}\left((1_{11}^{2}\times 0_{11}^{2}) + 0_{11}^{2}\times 0_{11}^{2}\right)\right)$$

$$= \left((1_{2-21}^{2}\times 0_{11}^{2}) + 0_{11}^{2}\times 0_{11}^{2}\right)$$

$$= \left((1_{2-21}^{2}\times 0_{11$$

```
= }(Lz-oz]) A (if Oxco then (6/x:0) else [0/x:0x+1)) si oxcz

\begin{array}{c}
\left(\begin{array}{c}
\left(\begin{array}{c}
\left(\begin{array}{c}
1\\2 \rightarrow 21\right) \end{array}\right) & \left(\begin{array}{c}
1\\2 \rightarrow 21\right) \end{array}\right) & \left(\begin{array}{c}
1\\2 \rightarrow 21\right) & \left(\begin{array}
F212-02, 5= F(F18-0210)
                                                                                                                                                        = (F_{12\rightarrow\xi\downarrow})11 (lif x cothen x;=0 else x:=x+1]\delta) si \deltax<2
                                                                                                                                                                             = \{(F_{12} - \varepsilon_{\perp}) \downarrow (\hat{i} f \, \sigma_{\times}(0 \, then \, [\delta] \, x:\delta] \, dse \, [\delta] \, x:\delta \lambda + 1]\} si \delta \wedge \epsilon_{\perp}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   C .c
                                                                                                                                                                       (ELS-ST)0 [2/x:0] 2: 0x45 0x40
```

```
F3 2-210 = F(F2 2-21)0
            (F2+E=EL) L((lif yeo then x=0 else x==x+1) si 5x42
                                                  c.c
              (f2222) 4 ( % oxcothen [slx=0] doe (slx:ox+1)) si oxc2
                                                    e. c
              ((F312-021)[0|x20] si 5x 20
             (F2 [201]) [6|x:0x+1) 51 050x22
                                  si yx10- [dx:0]<1
                \mathcal{T}
                [0/x:0/x:0x+1] si 6x40 14[0/x:0]x 62
                                  >1 0xco ^ [0/x20]x >2
                [61 x:0]
                                  (1 050x62 "[0/x:0x17]x<2
                [6/x:0x+1/x,0x+1] si 0=0x<<2~ )=[0/x:0x+0x<2
                                    Si DEOXEZ [6/x:541] ?2
                 Colx: oxta)
                  Q
                                   C.C
                   7
                                  51 0x10 0<1
                 [6/x21]
                                  Si 6x20 1 16052 x
                                    si δxc0 ° 0≥2 x
                  [8/x".0]
                                    51 058x22 0x<0 x
                                     51 040x <2 040x<1
                 [6/x: 0x+2]
                  [ 8 | x:0x+1]
                                    51 040x22 ~ 5x21
                    Q
                                     C. C
                                    53° 8x < 0
                                   5, 0=5x22
                                   51 168x12
                                       (.,
```

Solo se toma como variables a enteros, podemos simplificar

```
Si EXCO
                                      [6| x2,2]
                                                                              si ox 6 {0,1}
                                                                              5, 6, 22
F412-21 = F(F312-21)
                  = \begin{cases} (F^3 \perp z \rightarrow z \perp)_{\perp} (\mathbb{C}^2 f \times 0 \text{ then } x = 0 \text{ else } x = x + x + y) \\ \emptyset \end{cases}
                                                                                                    Si OXZZ
                                                                                                          0,0
                 = \begin{cases} (F_{+2}^3 \times 21) & [6] \times 20 \\ (F_{+2}^3 \times 21) & [6] \times 20 \end{cases}
= \begin{cases} (F_{+2}^3 \times 21) & [6] \times 20 \\ (F_{+2}^3 \times 21) & [6] \times 20 \end{cases}
= \begin{cases} (F_{+2}^3 \times 21) & [6] \times 20 \\ (F_{+2}^3 \times 21) & [6] \times 20 \end{cases}
= \begin{cases} (F_{+2}^3 \times 21) & [6] \times 20 \\ (F_{+2}^3 \times 21) & [6] \times 20 \end{cases}
                                                                        Si DEOX < 2
                                                                        51 6460 x [6/x:0] x <0 x
                            [61x:01 x:27
                                                                           51 5xco ^ [6]xco]xe{91}~
                           [81x:0]
                                                                          si uxco ^ [blxio]x=2 x
                                                                          Si DEGKZ ^ [olx: 6x+2] NO X
                              [olx:0x+1/x=2]
                                                                          Si OLOXC2 [DIX: 5xt] x ({0,7} /
                                  [01x:0x+1)
                                                                            Si OSOX (2 ^ [Sl x: 0x+1] x = 2
                                       5
                                                                             C.O
                                   [6| x:2]
                                                                             5, 6 x 2 0
                                   [8/x:2]
                                                                             5, 0 50 x 62 ^ [ o | x : o x]x e { 1,0}
                                   [6/x:0x+1]
                                                                             51 050x12 0x21
                                                                                6.0
                                     [6|x.2]
                                                                            si oxed
                                     [ olx: ox+2]
                                                                            (1 5x=1
                                                                                C. C
                                                                             Si OxEL
                                    [61x:2]
                                                                                C.C
                                                                              si Jx22
                                                                                   Jx ≥ 2
```

```
si 6x=1 " 6y=0
                                          si (6x<1 ^ бу=0) u (бx<2 ^буf0)
                                              じょこひ
 F3 1 2 + 21 0 = F(F2 1 2 + 21) 6
            = \begin{cases} (F^{2} + \varepsilon + \varepsilon) & [\sigma \mid x : \delta x + 1] \\ (F^{2} + \varepsilon + \varepsilon) & \delta \end{cases}
                                         si δx<2 ^ δy=0
                                               Si 8x2 ^ 8 y 10
                                                 8x22
                 [61x:5x+21x:2]
                                              5, 6x2 7 8y=0 " 6x11=1
                                              Si 6xc2 " 5y=0" 6x+1<1
                    [61x:0x+1]
                                               5; 5K2 "54=0 " 5x+1=2
                                                si 5x22 0y to 0x=1 0y=0 x
                    [61 x:2]
                                               s? 5x22^8y$0 ~
                                                 Si gxc2 rg fo A rx 22 x
                                               SI EXEL /
                    [5 | x:2]
                                              si 6x=0 ^ 5y=0
                                               si 6x co 1 8 y=0
                     (5 1x:2)
                                              s: 5x =1 1 54=0
                                               51 6962 " 54 FO
                                                si ox≥2
                     [s] x:2]
                                           sidx 6 { 0, 0} ^ 6y = 0
                                           s? (5xc0 ^ 5y=0) ~ (6xc2 ^ 5y 10)
                                       ς; δχε {=i+3,.., 1} ^ σγ =0
    F° 1 ε- 21: [ [δ[ x:2]
                                         Si Uxez " by to
                                                 6×35
(Faltoría probarlo por inducción)
         5K=2
```

(6) Sup	onga que $\llbracket \mathbf{while} \ b \ \mathbf{do} \ c \rrbracket \sigma \neq \perp$.	
(a)	Demuestre que existe $n \geq 0$ tal que F^n .	$\perp \sigma \neq \perp$.
/- \		

(b) Demuestre que si
$$\sigma' = \llbracket \mathbf{while} \ b \ \mathbf{do} \ c \rrbracket \sigma \text{ entonces } \neg \llbracket b \rrbracket \sigma'$$

$$F_{\omega} := \begin{cases} \omega_{\perp} [c] \delta & s \in b] \delta \\ \delta & c \cdot c \end{cases}$$

Supongamo que no existe
$$n \ge 0$$
 tal que $f^n \perp 0 \ne \bot$ entonues ($\bigcup_{i=0}^{\infty} f^i \perp_{z=2,16}$) =

Sup ($f^n \perp_{z=2,16}$, $f \perp_{z=2,16}$, \dots) =

sup (\bot , \bot , \bot , \dots) = \bot

pero [while b do $\Box 0 = (\bigcup_{i=0}^{\infty} f + \bigcup_{z=2,16}) = \bot$

by wal contrada la hipótens.

```
(7) Demostrar o refutar las siguientes equivalencias usando semántica denotacional:
```

- (a) while false do $c \equiv \text{skip}$
- (b) while $b \operatorname{do} c \equiv \operatorname{while} b \operatorname{do} (c; c)$
- (c) (while $b \operatorname{do} c$); if $b \operatorname{then} c_0 \operatorname{else} c_1 \equiv (\operatorname{while} b \operatorname{do} c)$; c_1

$$F^{2} + 2 - 216 = 1 = 1 = 21$$

$$F + 2 - 216 = \{(1 + 2 - 21), (1 + 1)6\}$$

$$= 6$$

$$F^{2} + 2 - 2 + 6 = \{6\}$$

$$= 6$$

$$= 7' + 2 + 16$$

$$= 6$$

$$= 7' + 2 + 16$$

$$= 7' + 2 + 16$$

$$= 7' + 2 + 16$$

(b) [while xe1 do (x:x+1)]
$$\delta$$
 δ x=0
$$= (\sqcup_{i=0}^{\infty} F^{i} + 5 \rightarrow 2 +)$$

$$F^{i} + 2 \rightarrow 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$F^{i} + 2 \rightarrow 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta \times 2 + \delta = \sum_{i=0}^{\infty} E + i$$

$$\delta$$

$$(\bigcup_{i=0}^{\infty} F^{i} + 2 - 21) \circ = \begin{cases} [\delta | \chi; 2] & \delta_{\chi \geq 1} \\ [\delta | \chi; 2] & \delta_{\chi < 0} \end{cases}$$

$$\delta_{\chi \leq 1}$$

Entoneo [while x21 do x:=x+1] σ = [σ | x:1] con σ x=0 [while x21 do (x:=x+1); x:=x+1)] σ = [σ | x:2] No son equivalentes.

(a) [(while b do a) ? if b then (o come ca) o = Cifb then to else Ca] 4 [while b do cD o Supargamo [while b do c] & + L (si no la equivalencia es trivial) '= lifb then co close call o' = if [b] 6' then [co] o' else [cs] o' daramente alblo' ja que sino no hubieremos salido del brude o

= [[c]] [while b do c] g = [(while b do c) g cs] g

- (8) Considerar las siguientes definiciones como syntactic sugar del comando for $v := e_0$ to e_1 do e_2 :
 - (a) $v := e_0$; while $v \le e_1$ do c; v := v + 1.
 - (b) newvar $v := e_0$ in while $v \le e_1$ do c; v := v + 1.
 - (c) newvar $w := e_1$ in newvar $v := e_0$ in while $v \le w$ do c; v := v + 1 ¿Hay alguna que pueda considerarse satisfactoria? Justificar.

Ninguna. En un for la variable v reria local, & rea, a peror de que cambrara su valor durante la éjención del for que emos que el terminar retorne su valor original, vinguna de las opciones restruva el valor variable.

Indusori quisieramo que e que deva son el último valor obtenido devante la yeurión en ninguna de las opciones se aumenta el valor de ven cada paso de la operación, sobo e aumenta 1 vez al finel.

(9) Enunciar de manera completa el teorema de coincidencia y demostrar el caso while.

(10) Usando el Teorema de coincidencia para comandos probar que para todo par de comandos c_0 , c_1 , si
$FV \ c_0 \cap FA \ c_1 = FV \ c_1 \cap FA \ c_0 = \emptyset,$
entonces $[\![c_0; c_1]\!] = [\![c_1; c_0]\!].$

(11) Considere los siguientes comandos: $c_0 \doteq \mathbf{newvar} \ \mathbf{x} := \mathbf{x} + \mathbf{y} \ \mathbf{in}$ $c; \mathbf{while} \ \mathbf{x} > 0 \ \mathbf{do} \ \mathbf{y} := \mathbf{y} + 1; \ \mathbf{x} := \mathbf{x} - 1$ $c_1 \doteq \mathbf{newvar} \ \mathbf{y} := \mathbf{x} + \mathbf{z} \ \mathbf{in}$ $c; \mathbf{while} \ \mathbf{y} > 0 \ \mathbf{do} \ \mathbf{z} := \mathbf{z} + 1; \ \mathbf{y} := \mathbf{y} - 1$ Asuma que c es un comando que satisface $(FV \ c) \cap \{\mathbf{x}, \mathbf{y}, \mathbf{z}\} = \emptyset$. Formule la relación que existe entre estos comandos (vistos como funciones que transforman estados), \mathbf{y} pruebe tal relación sin calcular semántica.

(12) Considere la siguiente cadena en $\Sigma \to \Sigma_{\perp}$. Decida si existe un programa cuya semántica
sea el supremo de la cadena. $f_i \sigma = \begin{cases} \sigma & \text{si } \sigma \mathbf{x} \leqslant \sigma \mathbf{y} \\ \bot & \text{en caso contrario} \end{cases}$
en caso contrario