Problem 1:

You survey households in your area to find the average rent they are paying. Find the standard deviation from the following data:

\$1550, \$1700, \$900, \$850, \$1000, \$950.

Solution:

Step 1 - Calculation of Mean - (x1+x2+x3+x4+x5+x6)/n

(1550+1700+900+850+1000+950) / 6 = 1158.33

Step 2 - Calculation of Variance -

$$S^2 = \frac{\sum (X - \overline{X})^2}{N - 1}$$

1158.33		677083.3	
950	-208	43403	
1000	-158	25069	
850	-308	95069	
900	-258	66736	
1700	542	293403	
1550	392	153403	

Variance -677083.3/(6-1) = 135416.7

Step 3 - Calculation of Standard Deviation -

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

 $\sqrt{135416.7}$ = 367.99 Therefore, Standard Deviation is **367.99**

Problem 2:

Find the variance for the following set of data representing trees in California (heights in feet):

3, 21, 98, 203, 17, 9

Solution:

Step 1 - Calculation of Mean - (x1+x2+x3+x4+x5+x6)/n

(3+21+98+203+17+9) / 6 = 58.5

Step 2 - Calculation of Variance -

3	-55.5	3080.25
21	-37.5	1406.25
98	39.5	1560.25
203	144.5	20880.25
17	-41.5	1722.25
9	-49.5	2450.25
58.5		31099.5

$$S^2 = \frac{\sum (X - \overline{X})^2}{N - 1}$$

Problem 3:

In a class on 100 students, 80 students passed in all subjects, 10 failed in one subject, 7 failed in two subjects and 3 failed in three subjects. Find the probability distribution of the variable for number of subjects a student from the given class has failed in.

Solution:

The probability of failing in 0 subjects, P(X=0) = 80/100 = 0.8The probability of failing in 1 subjects, P(X=1) = 10/100 = 0.1The probability of failing in 2 subjects, P(X=2) = 7/100 = 0.07The probability of failing in 3 subjects, P(X=3) = 3/100 = 0.03The probability distribution can be shown as:

X	0	1	2	3
P(X)	8.0	0.1	0.07	0.03