Climactic Drivers of Mosquito Abundance

Anne Marie Saunders

MSc Computational Methods in Ecology and Evolution Imperial College London

Supervisors: Samraat Pawar, Lauren Cator, Ruiyun Li, Matthew Watts

April 31, 2020

Outline

Introduction

Research Questions

Data

Methods

Progress

Next Steps

Questions

Introduction

- ► Mosquitoes are vectors of many human diseases

Imperial College London

From www.cdc.gov

Introduction

- Mosquitoes are vectors of many human diseases
- ► The ability to predict changes in abundance could help optimize control measures

Imperial College London

From www.cdc.gov

Introduction

- Mosquitoes are vectors of many human diseases
- ► The ability to predict changes in abundance could help optimize control measures
- ► Abundance dynamics are dependent on environmental factors that are likely to be affected by climate change

Adapted from Shapiro et al. 2017

Questions

1. Which length of temporal lag of meteorological variables is most appropriate for estimating mosquito abundance dynamics?

2.

3.

Questions

- 1. Which length of temporal lag of meteorological variables is most appropriate for estimating mosquito abundance dynamics?
- 2. Which temporal scale of environmental drivers best predicts mosquito abundance changes?

3.

Questions

- 1. Which length of temporal lag of meteorological variables is most appropriate for estimating mosquito abundance dynamics?
- 2. Which temporal scale of environmental drivers best predicts mosquito abundance changes?
- **3.** Can a model developed from these questions predict West Nile Virus risk?

Data

- VectDyn: 206 datasets worldwide
- 7 Florida counties, 5 of which have high quality datasets
- Climate data from NOAA

Methods

- 1. Extract Florida abundance datasets from large raw data file
- 2. Extract climate data from NOAA temperature and precipitation rasters and map to abundance data
- **3.** Aggregate datasets to weekly, biweekly, and monthly scales to create time series
- 4.
- 5.
- 6.
- 7.

Methods

- 1. Extract Florida abundance datasets from large raw data file
- 2. Extract climate data from NOAA temperature and precipitation rasters and map to abundance data
- 3. Aggregate datasets to weekly, biweekly, and monthly scales to create time series
- **4.** Fit time series models with a range of temporal lags at different time scales
- 5. Conduct model selection
- 6. Use SIR models with abundance incorporated to transmission rate to estimate disease risk
- 7. Compare to disease surveillance data Imperial College London

Extraction

- 1. Extract Florida abundance datasets
- 2. Extract climate data
- 3. Aggregate to weekly, biweekly, and monthly scales

Extraction

- 1. Extract Florida abundance datasets
- 2. Extract climate data
- 3. Aggregate to weekly, biweekly, and monthly scales

Aggregation

- 1. Extract Florida abundance datasets
- 2. Extract climate data
- 3. Aggregate to weekly, biweekly, and monthly scales

Aggregation

- 1. Extract Florida abundance datasets
- 2. Extract climate data
- 3. Aggregate to weekly, biweekly, and monthly scales

Aggregation

- 1. Extract Florida abundance datasets
- 2. Extract climate data
- 3. Aggregate to weekly, biweekly, and monthly scales

Model Fit and Selection

- **4.** Fit time series models: vary time scales and temporal lags using GLM, GAM, or ZIGAM
- 5. Model selection: AIC/BIC/Likelihood Ratio Test

General Model Format:

 $Abundance_t = Temperature_{t-lag} + Precipitation_{t-lag}$

Model Fit and Selection

- 4. Fit time series models: vary time scales and temporal lags using GLM, GAM, or ZIGAM
- 5. Model selection: AIC/BIC/Likelihood Ratio Test

General Model Format:

$$Abundance_t = Temperature_{t-lag} + Precipitation_{t-lag}$$

Generalized Linear Model:

$$M_t = a_1 T_{t-lag}^2 + a_2 T_{t-lag} + b_1 P_{t-lag}^2 + b_2 P_{t-lag} + c$$

Wang et al 2011

Tentative Next Steps

- **6.** Use SIR models with abundance incorporated to transmission rate to estimate disease risk
- 7. Compare to disease surveillance data

Questions?

References

Shapiro, L., Whitehead, S. A., & Thomas, M. B. (2017). Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria. PLoS biology, 15(10), e2003489.

Wang, J. Ogden, N.H., & Zhu, H. (2011). The Impact of Weather Conditions on Culex pipiens and Culex restuans (Diptera: Culicidae) Abundance: A Case Study in Peel Region. Journal of Medical Entomology, 48(2), pages 468-475