

Basics of Neural Network Programming

Binary Classification

Binary Classification

1 (cat) vs 0 (non cat)

Notation

Basics of Neural Network Programming

Logistic Regression

Logistic Regression

Basics of Neural Network Programming

Logistic Regression cost function

Logistic Regression cost function

$$\hat{y} = \sigma(w^T x + b)$$
, where $\sigma(z) = \frac{1}{1 + e^{-z}}$

Given
$$\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$$
, want $\hat{y}^{(i)} \approx y^{(i)}$.

Loss (error) function:

Basics of Neural Network Programming

Gradient Descent

Gradient Descent

Recap:
$$\hat{y} = \sigma(w^T x + b)$$
, $\sigma(z) = \frac{1}{1 + e^{-z}}$

$$J(w, b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Want to find w, b that minimize I(w, b)

Gradient Descent

Basics of Neural Network Programming

deeplearning.ai

Derivatives

Intuition about derivatives

Basics of Neural Network Programming

deeplearning.ai

More derivatives examples

Intuition about derivatives

More derivative examples

Basics of Neural Network Programming

Computation Graph

Computation Graph

Basics of Neural Network Programming

Derivatives with a Computation Graph

Computing derivatives

Computing derivatives

Basics of Neural Network Programming

Logistic Regression Gradient descent

Logistic regression recap

$$z = w^{T}x + b$$

$$\hat{y} = a = \sigma(z)$$

$$\mathcal{L}(a, y) = -(y \log(a) + (1 - y) \log(1 - a))$$

Logistic regression derivatives

Basics of Neural Network Programming

deeplearning.ai

Gradient descent on m examples

Logistic regression on m examples

Logistic regression on m examples