

Policy Gradient Methods Graded Quiz • 45 min

Policy Gradient Methods

TOTAL POINTS 12

1.	Which of the following is true about policy gradient methods? (Select all that apply)	1 point
	Policy gradient methods do gradient ascent on the policy objective.	
	Policy gradient methods use generalized policy iteration to learn policies directly.	
	$oxed{oxed}$ If we have access to the true value function v_π , we can perform unbiased stochastic gradient updates using the result from the Policy Gradient Theorem.	
	The policy gradient theorem provides a form for the policy gradient that does not contain the gradient of the state distribution \mu, which is hard to estimate.	
2.	Which of the following statements about parameterized policies are true? (Select all that apply)	1 point
	☐ The probability of selecting any action must be greater than or equal to zero.	
	For each state, the sum of all the action probabilities must equal to one.	
	The policy must be approximated using linear function approximation.	
	The function used for representing the policy must be a softmax function.	
3.	Assume you're given the following preferences $h_1=44$, $h_2=42$, and $h_3=38$, corresponding to three different actions (a_1,a_2,a_3), respectively. Under a softmax policy, what is the probability of choosing a_2 , rounded to three decimal numbers?	1 point
	O.879	
	O.002	
	0.42	
	0.119	
4.	Which of the following is true about softmax policy? (Select all that apply)	1 point
	It cannot represent an optimal policy that is stochastic, because it reaches a deterministic policy as one action preference dominates others.	
	It can be parameterized by any function approximator as long as it can output scalar values for each available action, to form a softmax policy.	
	Similar to epsilon-greedy policy, softmax policy cannot approach a deterministic policy.	
	It is used to represent a policy in discrete action spaces.	

5.	What are the differences between using softmax policy over action-values and using softmax policy over action-preferences? (Select all that apply)		
	When using softmax policy over action-preferences, assuming a tabular representation, the policy will converge to the optimal policy regardless of whether the optimal policy is stochastic or deterministic.		
	When using softmax policy over action-values, even if the optimal policy is deterministic, the policy may never approach a deterministic policy.		
	When using softmax policy over action-values, assuming a tabular representation, the policy will converge to the optimal policy regardless of whether the optimal policy is stochastic or deterministic.		
6.	What is the following objective, and in which task formulation?	1 point	
	$r(\pi) = \Sigma_s \mu(s) \Sigma_a \pi(a s, heta) \Sigma_{s^{,}r} p(s^{,}r s,a) r$		
	Discounted return objective, continuing task		
	Average reward objective, continuing task		
	Average reward objective, episodic task		
	Undiscounted return objective, episodic task		
7.	The following equation is the outcome of the policy gradient theorem. Which of the following is true about the policy gradient theorem? (Select all that apply)	1 point	
	$\nabla r(\pi) = \Sigma_s \mu(s) \Sigma_a \nabla \pi(a s,\theta) q_{\pi}(s,a)$		
	$\hfill \square$ The true action value q_π can be approximated in many ways, for example using TD algorithms.		
	$oxed{oxed}$ We do not need to compute the gradient of the state distribution μ .		
	$lacksquare$ This expression can be converted into the following expectation over π :		
	$\mathbb{E}_{\pi}[abla ln\pi(A S, heta)q_{\pi}(S,A)]$		
	☐ This expression can be converted into:		
	$\mathbb{E}_{\pi}[\Sigma_a abla \pi(a S, heta)q_{\pi}(S,a)]$		
	In discrete action space, by approximating q_pi we could also use this gradient to update the policy.		
8.	Which of the following statements is true? (Select all that apply)	1 point	
	TD methods do not have a role when estimating the policy directly.		
	Subtracting a baseline in the policy gradient update tends to reduce the variance of the update, which results in faster learning.		

	To update the actor in Actor-Critic	, we can use TD error in place	of q_π in the Policy Gradient Theorem.
--	-------------------------------------	--------------------------------	--

☐ The Actor-Critic algorithm consists of two parts: a parameterized policy — the actor — and a value function — the critic.

9. We usually want the critic to update at a faster rate than the actor.

1 point

True

False

10. Consider the following state features and parameters θ for three different actions (red, green, and blue):

1 point

$$\mathbf{X}(s) = \begin{bmatrix} 0.1 \\ 0.3 \\ 0.6 \end{bmatrix}$$

$$\theta = \begin{bmatrix} 130 \\ 73 \\ 21 \\ 120 \\ 120 \\ -10 \\ -100 \\ 200 \\ -25 \end{bmatrix} a_{0}$$

Compute the action preferences for each of the three different actions using linear function approximation and stacked features for the action preferences.

What is the action preference of a_1 (green)?

42

() 40

35

32

Since the policy is w for each state.	Since the policy is written as a function of the current state, it is like having a different softmax distribution for each state.				
The preferences mu	The preferences must be approximated using linear function approximation.				
The learning rate pa	The learning rate parameter of the actor and the critic can be different.				
The actor and the co	The actor and the critic share the same set of parameters.				
12. Which of the following is an advantage of Gaussian policy parameterization over discretizing the action space? 1 point (Select all that apply)					
☐ There might not be	☐ There might not be a straightforward way to choose a discrete set of actions.				
Even if the true acti	Even if the true action set is discrete, but very large, it might be better to treat them as a continuous range.				
Continuous actions	also allow learning to generalize over	actions.			
Gaussian policies ar	re differentiable, whereas policies over	discretized actions are not.			
	derstand that submitting work that isn't m or deactivation of my Coursera account. ursera's Honor Code	y own may result in permanent		6 P	
			Save	Submit	