Analysis I: Homework III

Thomas Fleming

Fri 10 Sep 2021 12:58

Problem (14). Let (x_n) be a sequence. A point x^* is called an accumulation point of (x_n) if for each ε ?0 and each $N \in \mathbb{N}$ there is a $n \in \mathbb{N}$ with $n \geq N$ such that $|x_n - x^*| < \varepsilon$. Show the set of all accumulation points is closed.

Solution. Denote the set of all accumulation points X of (x_n) and let $x \in \overline{X}$. Then, for all $\varepsilon > 0$, we have $X \cap (x - \varepsilon, x + \varepsilon) \neq \emptyset$. Hence, for every $\frac{\varepsilon}{2} > 0$ there is an accumulation point $x^* \in X$ such that $x^* \in (x - \frac{\varepsilon}{2}, x + \frac{\varepsilon}{2})$. Thus, $|x - x^*| < \frac{\varepsilon}{2}$. Furthermore, for each $\frac{\varepsilon}{2} > 0$ and $N \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that $|x^* - x_n| < \frac{\varepsilon}{2}$. Combining these yields for each $\varepsilon > 0$ and $N \in \mathbb{N}$, a $n \in \mathbb{N}$ with $n \geq N$ such that

$$|x_n - x| = |x_n - x^* - (x - x^*)|$$

$$\leq |x_n - x^*| + |x - x^*|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Hence, x is an accumulation point, so $X \subseteq \overline{X} \subseteq X$, so $X = \overline{X}$ and X is closed.

1

Problem (15). Let S be a set of nonnegative real numbers. Define $\sum_{x \in S} x = \sup\{\sum_{x \in S_0} x : S_0 \subseteq S \text{ is finite}\}$. Prove if $\sum_{x \in S} x < \infty$, then S is countable.

Solution. We induce a countable covering of S by finite sets. Note that for each $n \in \mathbb{N}$ we must have at most finitely many $x \in S$ such that $x \geq \frac{1}{n}$. Otherwise, there would be a family of sets \hat{S}_i where \hat{S}_i contains i elements $x \geq \frac{1}{n}$, hence $\sum_{x \in S_i} x \geq \frac{i}{n}$ for all $i \in \mathbb{N}$, hence we would have

$$\sup\{\sum_{x\in S_0}x:S_0\subseteq S \text{ is finite}\}\geq \sup\{\sum_{x\in \hat{S}_i}x:i\in\mathbb{N}\}\geq \sup\{\frac{i}{n}:i\in\mathbb{N}\}>M$$

for all $M \in \mathbb{R}$, hence our sum would be unbounded, so $\sum_{x \in S} x \not< \infty \not \downarrow$. Thus, the set $\{x \in S : x \ge \frac{1}{n}\}$ is finite for all $n \in \mathbb{N}$. Then, we have that

$$\bigcup_{n\in\mathbb{N}}\{x\in S:x\geq\frac{1}{n}\}=(0,\infty)\cap S=S\setminus\{0\}\text{ by nonnegative assumption}.$$

Hence, we have a countable covering of $S\setminus\{0\}$ by finite sets, so $S\setminus\{0\}$ is countable. Thus, S is countable. \blacksquare

Problem (16). For a collection $\mathscr S$ of subsets of X, denote the smallest σ -algebra containing $\mathscr S$ by $\sigma(\mathscr S)$. Let $\mathscr C$ be a collection of subsets of X and let $\mathscr U$ be the collection of all countable subcollections $\mathscr F\subseteq\mathscr C$. Hence, each subcollection $\mathscr F$ contains only countable many subsets of X. Prove $\bigcup_{\mathscr F\in\mathscr U}\sigma(\mathscr F)$ is a σ -algebra which is equal with $\sigma(\mathscr C)$.

Solution. First, we show $\bigcup_{\mathscr{F}\in\mathscr{U}}\sigma(\mathscr{F})$ is a σ -algebra. As each $\sigma(\mathscr{F})$ is a σ -algebra, we have that $X\in\sigma(\mathscr{F})$ so $X\in\bigcup_{\mathscr{F}\in\mathscr{U}}\sigma(\mathscr{F})$. Next, let $A\in\bigcup_{\mathscr{F}\in\mathscr{U}}\sigma(\mathscr{F})$. Then, $A\in\sigma(\mathscr{F})$ for some $\mathscr{F}\in\mathscr{U}$, hence $A^c\in\sigma(\mathscr{F})$, so $A^c\in\bigcup_{\mathscr{F}\in\mathscr{U}}\sigma(\mathscr{F})$. Lastly, let $(A_k)_{k\in\mathbb{N}}$ be a countable collection of elements $A_k\in\bigcup_{\mathscr{F}\in\mathscr{U}}\sigma(\mathscr{F})$. Then, each $A_k\in\sigma(\mathscr{F}_k)$ for some $\mathscr{F}_k\in\mathscr{U}$. As each \mathscr{F}_k is countable, then

Lastly, let $(A_k)_{k\in\mathbb{N}}$ be a countable collection of elements $A_k\in\bigcup_{\mathscr{F}\in\mathscr{U}}\sigma(\mathscr{F})$. Then, each $A_k\in\sigma(\mathscr{F}_k)$ for some $\mathscr{F}_k\in\mathscr{U}$. As each \mathscr{F}_k is countable, then $\bigcup_{k\in\mathbb{N}}\mathscr{F}_k$ is countable, hence $\bigcup_{k\in\mathbb{N}}\mathscr{F}_k\in\mathscr{U}$ by definition of \mathscr{U} . Thus, $\sigma\left(\bigcup_{k\in\mathbb{N}}\mathscr{F}_k\right)\subseteq\bigcup_{\mathscr{F}\in\mathscr{U}}\sigma(\mathscr{F})$ and as $\bigcup_{k\in\mathbb{N}}A_k\in\sigma\left(\bigcup_{k\in\mathbb{N}}\mathscr{F}_k\right)$, we see $\bigcup_{k\in\mathbb{N}}A_k\in\bigcup_{\mathscr{F}\in\mathscr{U}}\sigma(\mathscr{F})$.

Note that it is clear as each $\mathscr{F} \subseteq \mathscr{C}$ that each $\sigma(\mathscr{F}) \subseteq \sigma(\mathscr{C})$ hence $\bigcup_{\mathscr{F} \in \mathscr{U}} \sigma(\mathscr{F}) \subseteq \sigma(\mathscr{C})$.

Now, we show equality. Let $A \in \mathscr{C}$, then $A \in \mathscr{F}$ for some $\mathscr{F} \in \mathscr{U}$, hence $A \in \sigma(\mathscr{F})$ and $A \in \bigcup_{\mathscr{F} \in \mathscr{U}} \sigma(\mathscr{F})$. Hence, $\mathscr{C} \subseteq \bigcup_{\mathscr{F} \in \mathscr{U}} \sigma(\mathscr{F})$. As $\sigma(\mathscr{C})$ is the smallest σ =algebra containing \mathscr{C} and $\bigcup_{\mathscr{F} \in \mathscr{U}} \sigma(\mathscr{F})$ is a σ -algebra containing \mathscr{C} , then $\sigma(\mathscr{C}) \subseteq \bigcup_{\mathscr{F} \in \mathscr{U}} \sigma(\mathscr{F})$. Hence, equality holds.