Recommender Systems

CS6780 – Advanced Machine Learning Spring 2019

Thorsten Joachims Cornell University

Reading:

Y. Koren, R. Bell, C. Volinsky, Matrix Factorization Techniques for Recommender Systems, IEEE Computer, 42:8, 2009. (link)

Movie Recommender

Recommendation

Movie to watch

News Recommender

Recommendation

Portfolio of newsarticles

Voice Assistant

Recommendation for "Alexa, play music" Playlist

Recommender Systems

Examples

- Netflix: Movies
- Amazon: Products
- Spotify: Music
- YouTube: Videos
- Xbox Live:Games/Players
- Facebook: News

Problem

There are far more
 "items" than an
 individual user could
 browse.

Goal

 Narrow down the choices to the items that are likely of interest to user.

The Long Tail

(Chris Anderson, 2004)

When do Recommender Systems work?

Main Ideas

- Past user preferences are predictive of future user preferences.
 - Example: If user u enjoyed action movies with Arnold Schwarzenegger in the past, recommend more action movies with Arnold Schwarzenegger.
- There is a small number of user types.
 - Example: Users u_1 and u_2 both like the Red Hot Chilli Peppers. If u_1 also likes Linkin Park, then recommend Linkin Park to u_2 .

Setup

- Set of users: U
- Set of items: V
- Ratings Y: $U \times V \rightarrow \mathfrak{R}$
 - Explicit Feedback
 - Star rating [1-5]
 - Implicit Feedback
 - Watched/skipped [0,1]
 - Visited web pages [1]

Observed Rating Matrix $ilde{Y}$

Content-Based Recommendation

Idea:

Supervised learning for each row or column

$$h_u: X_v \to Y$$

 $h_v: X_u \to Y$

Challenge:

Need to come up with features for users and/or items.

Observed Rating Matrix $ilde{Y}$

Collaborative Recommendation

Idea:

Find users with similar ratings and fill in unobserved ratings.

Find items with similar ratings and fill in unobserved ratings.

Observed Rating Matrix $ilde{Y}$

Matrix Completion Model

Observed Rating Matrix $ilde{Y}$

- Low rank assumption: rank k
- For each user u_i and item v_j

$$Y_{ij} = u_i v_j$$

Learn feature vectors u_i and v_j for each user/item

Matrix Completion Training

Observed Rating Matrix $ilde{Y}$

Given: Sample S of observed entries of $ilde{R}$

Training: Solve for U and V with k rows/cols respectively

$$\min_{U,V} \sum_{(i,j)\in S} (\tilde{Y}_{ij} - u_i v_j)^2$$

Prediction: Fill in entries not in S with $Y_{ij} = u_i v_j$

Movie Recommendation

→ Missing Not At Random (MNAR) Problem

MNAR and Evaluation

→ Severly biased performance estimates!

 $MAE(\widehat{Y}_2, \widetilde{Y}) = 22$

Why is the Data MNAR?

User Induced MNAR

Why is the Data MNAR?

System Induced MNAR