Monday, 15 January 2024 9:16 AM

SCATTER PLOTS

FORM -> Linear / parabolic / Exponential

DIRECTION -> POSITIVE OR NEGATIVE

Question 1 : Correlations

Correlation value - STRENGTH - STRONG/MODERATE /WEAK

Order the correlation magnitudes corresponding to the following scatterplots from highest (strongest) to lowest (weakest).

Age												
BP	122	120	126	137	134	145	136	130	142	144	160	158

Using Statskingdom. Com

R-Squared (R²) equals **0.7942.** Correlation (R) equals 0.8912.

$$\hat{\mathbf{Y}} = 106.5577 + 0.6726\mathbf{X}$$

• The correlation coefficient (r) gives us a numerical measurement of the strength of the linear relationship between the explanatory and response (y-value)

variables.

Horisontal Axis Independent Variable

(X-Value)

Vertical Axis J Dependent Variable

RESIDUALS !

 $residual = observed - predicted = y - \hat{y}$

- A negative residual means the predicted value (the line) is above the observation
- A positive residual means the predicted value (line) lies below the observation

LINEAR REGRESSION EQUATION

→ LINEAR MODEL

$$Y = mX + C$$

$$\gamma = b_0 + b_1 X$$

Slope =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{RISE}{RUN} = 0.6726 = m \text{ or } b_1$$

Fat Versus Protein Example

- The regression line for the Burger King data fits the data well:
 - The equation is $\widehat{fat} = 6.8 + 0.97$ protein.
 - The predicted fat content for a BK Broiler chicken sandwich (30gm protein) is 6.8 + 0.97(30) = 35.9 grams of fat. (Note SPSS will compute the linear model for you.

 $b_1 \rightarrow Slope = 0.97$ $b_0 \rightarrow Y-intercept = 6.8$ Correlation, R = 0.83 $R^2 = (0.83)^2 = 0.69$

69% of the varietien in fat is explained by the Linear Model OR

31% of the variability in Fat is left in the Residual

R-value - strength of the linear model

R2-value - How much of the variation is explained by the Linear Model.

SLOPE (m or b1):

For each unit of X-value, Y-value increase by by
For 19 of protein, Fat increase by 0.97g.

Y-intercept (Corbo)

When X = 0, Y = C-value or b_6 When there is no protein, Fat content is 6.8 g

Question 3: Interpreting the linear regression equation

Using the calculated regression equation $\hat{y}=6.8+0.97x$ for the Burger King fat and protein data, answer the following:

- 1. Interpret the slope in the context of the variables fat and protein.
- 2. Is it appropriate to interpret the intercept? Explain.
- 3. Use the equation to predict the fat content for a menu item that has 40 grams of protein
- 4. Calculate the residual for a chicken sandwich that has 31 grams of protein and 22 grams of fat.
- 5. Should the regression equation be used to predict the fat content for a menu item with 100 grams of protein? Explain.

3)
$$\hat{y} = 6.8 + 0.97x$$

$$\hat{y} = 6.8 + (0.97 \times 40)$$

$$\hat{y} = 6.8 + 38.8 = 45.69$$
Reliable as interpolation

5)
$$x = loog$$

Not reliable as we have to do extrapolation.

 $\hat{y} = 6.8 + (0.97 \times 100)$
= $lo3.89$

observed

4) protein,
$$\chi = 3 \log x$$

$$\hat{y} = 6.8 + 0.97x$$

predicted Fat, y = 36.87

residual = observed - predicted =
$$y - \hat{y}$$

= $22 - 36.87 = -14.87$

Negulive recidual of 14.87

	19											
BP	122	120	126	137	134	145	136	130	142	144	160	158

Model Summary									
Model R Square Adjusted R Std. Error of the Estimate									
1	.891 ^a	.794	.774	6.07546					
a. Predictors: (Constant), Age									

	Coefficients ^a											
		Un	standardize	d Coefficients	Standardized Coefficients							
Model			В	Std. Error	Beta	t	Sig.					
Y-inkness &	(Constant)	p.	106.558	5.331		19.988	<.001					
Y-inknept 610 pe	Age	p	.673	.108	.891	6.212	<.001					
	pendent Vari	able:	BP									

Y-intercept, bo = 106.558 Slope, b1 = 0.673 y=bo+b, z y=106.558+0.6732

Ho: There is no Linear relationship

HA: There is a Linear relationship

OR

Ho: slope is equal to sero, b1=0

HA: slope is not equal le zero, b1 #6

Test-statistic = 6.212

P-value = <0.001

P-value is Low, Reject Null Hypothesso

. There is a linear relationship