Multivariate Statistical Analysis

Lecture 15

Fudan University

luoluo@fudan.edu.cn

- Principal Components Analysis
- Principal Coordinate Analysis
- 3 Kernel Principal Component Analysis
- Factor Analysis
- 5 Probabilistic Principle Component Analysis
- Course Summary

- Principal Components Analysis
- 2 Principal Coordinate Analysis
- 3 Kernel Principal Component Analysis
- 4 Factor Analysis
- 5 Probabilistic Principle Component Analysis
- 6 Course Summary

Let \mathbf{x} be a p-dimensional random vector with mean $\mathbf{0}$ and covariance matrix $\mathbf{\Sigma} \succ \mathbf{0}$.

Let $\mathbf{u}_1 \in \mathbb{R}^p$ with $\|\mathbf{u}_1\|_2 = 1$ and maximizing the variance of $\mathbf{u}_1^\top \mathbf{x}$, then

$$(\mathbf{\Sigma} - \lambda_1 \mathbf{I})\mathbf{u}_1 = \mathbf{0},$$

where λ_1 is the largest root of

$$\det(\mathbf{\Sigma} - \lambda \mathbf{I}) = 0.$$

- **1** We call $y_1 = \mathbf{u}_1^{\top} \mathbf{x}$ as the first principle component of \mathbf{x} .
- ② The pair $\lambda_1 \in \mathbb{R}$ and $\mathbf{u}_1 \in \mathbb{R}^p$ are the largest eigenvalue and corresponding eigenvector of Σ .

For the second principle components

$$y_2 = \mathbf{u}_2^{\mathsf{T}} \mathbf{x},$$

we determine $\mathbf{u}_2 \in \mathbb{R}^p$ by maximizing the variance of y_2 under the constraints $\|\mathbf{u}_2\|_2 = 1$ and y_2 be uncorrelated with y_1 .

For the k-th principle component

$$y_k = \mathbf{u}_k^{\mathsf{T}} \mathbf{x},$$

we determine \mathbf{u}_k by maximizing the variance of y_k under the constraints $\|\mathbf{u}_k\|_2 = 1$ and y_k be uncorrelated with y_1, \dots, y_{k-1} .

Let vector $\mathbf{u}_k \in \mathbb{R}^p$ the k-th principle component

$$y_k = \mathbf{u}_k^{\top} \mathbf{x}$$

holds that

$$(\mathbf{\Sigma} - \lambda_k \mathbf{I})\mathbf{u}_k = \mathbf{0},$$

where λ_k is the k-th largest root of

$$\det(\mathbf{\Sigma} - \lambda \mathbf{I}) = 0.$$

The pair $\lambda_k \in \mathbb{R}$ and $\mathbf{u}_k \in \mathbb{R}^p$ are the k-th largest eigenvalue and corresponding eigenvector of Σ .

Let vector $\mathbf{u}_k \in \mathbb{R}^p$ the k-th principle component

$$y_k = \mathbf{u}_k^{\top} \mathbf{x}$$

holds that

$$(\mathbf{\Sigma} - \lambda_k \mathbf{I})\mathbf{u}_k = \mathbf{0},$$

where λ_k is the k-th largest root of

$$\det(\mathbf{\Sigma} - \lambda \mathbf{I}) = 0.$$

The pair $\lambda_k \in \mathbb{R}$ and $\mathbf{u}_k \in \mathbb{R}^p$ are the k-th largest eigenvalue and corresponding eigenvector of Σ .

PCA for dimensionality Reduction

We can write

$$\mathbf{U}_k = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_k \end{bmatrix} \in \mathbb{R}^{p \times k} \quad \text{and} \quad \mathbf{\Lambda}_k = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_k \end{bmatrix} \in \mathbb{R}^{k \times k}$$

contains the top-k eigenvectors and eigenvalues pairs of Σ , that is

$$\Sigma \mathbf{U}_k = \mathbf{U}_k \mathbf{\Lambda}_k$$
 with $\mathbf{U}_k^{\top} \mathbf{U}_k = \mathbf{I}$.

PCA for dimensionality Reduction

We can keep $\mathbf{U}_k \in \mathbb{R}^{p \times k}$ and transform $\mathbf{x} \in \mathbb{R}^p$ to

$$\mathbf{U}_{k}^{\mathsf{T}}\mathbf{x}\in\mathbb{R}^{k},$$

where $k \ll p$.

The information of x can be estimated by

$$\hat{\mathbf{x}} = \mathbf{U}_k(\mathbf{U}_k^{\top}\mathbf{x}) \in \mathbb{R}^p$$
.

We have

$$\operatorname{Cov}[\hat{\mathbf{x}}] = \mathbf{U}_k \mathbf{\Lambda}_k \mathbf{U}_k^{\top},$$

which is the best rank-k approximation of Σ .

- Principal Components Analysis
- Principal Coordinate Analysis
- 3 Kernel Principal Component Analysis
- 4 Factor Analysis
- 5 Probabilistic Principle Component Analysis
- 6 Course Summary

Sample Principal Components Analysis

Given observation $\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathbb{R}^p$, we construct sample covariance

$$\mathbf{S} = rac{1}{N-1} \sum_{lpha=1}^N (\mathbf{x} - ar{\mathbf{x}}) (\mathbf{x} - ar{\mathbf{x}})^{ op}, \qquad ext{where } \ ar{\mathbf{x}} = rac{1}{N} \sum_{lpha=1}^N \mathbf{x}_lpha.$$

Let spectral decomposition of **S** be $\mathbf{S} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}$, where $\mathbf{U} \in \mathbb{R}^{p \times p}$ is orthogonal and $\boldsymbol{\Lambda} \in \mathbb{R}^{p \times p}$ is diagonal.

We write

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \vdots \\ \mathbf{x}_N^\top \end{bmatrix} \in \mathbb{R}^{N \times p},$$

which results the sample principle components

$$\mathbf{Y} = \begin{bmatrix} (\mathbf{x}_1 - \bar{\mathbf{x}})^\top \mathbf{U}_k \\ \vdots \\ (\mathbf{x}_N - \bar{\mathbf{x}})^\top \mathbf{U}_k \end{bmatrix} = \mathbf{H} \mathbf{X} \mathbf{U}_k \in \mathbb{R}^{N \times k}, \quad \text{where} \quad \mathbf{H} = \mathbf{I} - \frac{1}{N} \mathbf{1}_N \mathbf{1}_N^\top \in \mathbb{R}^{N \times N}.$$

Principal Coordinate Analysis

We consider the case of $p \ge N$ and define

$$\mathbf{T} = rac{1}{N-1}\mathbf{H}\mathbf{X}\mathbf{X}^{ op}\mathbf{H} \in \mathbb{R}^{N imes N}$$

with spectral decomposition

$$T = V\Gamma V^{\top},$$

where $\mathbf{V} \in \mathbb{R}^{N \times N}$ is orthogonal and $\mathbf{\Gamma} \in \mathbb{R}^{N \times N}$ is diagonal.

The matrix $\mathbf{Y} \in \mathbb{R}^{N \times k}$ can be written as

$$\mathbf{Y} = \mathbf{V}_k \mathbf{\Gamma}_k^{1/2} \in \mathbb{R}^{N \times k}.$$

- Principal Components Analysis
- Principal Coordinate Analysis
- 3 Kernel Principal Component Analysis
- 4 Factor Analysis
- 5 Probabilistic Principle Component Analysis
- 6 Course Summary

We map the sample $\mathbf{x}_{\alpha} \in \mathcal{X} \subseteq \mathbb{R}^p$ to the feature space $\mathcal{H} \subseteq \mathbb{R}^d$, that is

$$\phi: \mathcal{X} \to \mathcal{H}$$
,

and define the corresponding kernel function (inner product)

$$K(\mathbf{x}, \mathbf{y}) \triangleq \phi(\mathbf{x})^{\top} \phi(\mathbf{y}).$$

The matrix

$$\mathbf{T} = rac{1}{N-1}\mathbf{H}\mathbf{X}\mathbf{X}^{ op}\mathbf{H} \in \mathbb{R}^{N imes N}$$

contains

$$\mathbf{H}\mathbf{X}\mathbf{X}^{\top}\mathbf{H} = \mathbf{H}\begin{bmatrix} \mathbf{x}_{1}^{\top}\mathbf{x}_{1} & \mathbf{x}_{1}^{\top}\mathbf{x}_{2} & \dots & \mathbf{x}_{1}^{\top}\mathbf{x}_{N} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_{N}^{\top}\mathbf{x}_{1} & \mathbf{x}_{N}^{\top}\mathbf{x}_{2} & \dots & \mathbf{x}_{N}^{\top}\mathbf{x}_{N} \end{bmatrix} \mathbf{H} \in \mathbb{R}^{N \times N}.$$

We replace the inner product $\mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j$ with

$$K(\mathbf{x}_i, \mathbf{x}_j) \triangleq \phi(\mathbf{x}_i)^{\top} \phi(\mathbf{y}_j).$$

We replace $\mathbf{X}\mathbf{X}^{\top} \in \mathbb{R}^{N \times N}$ with the kernel matrix

$$\mathbf{K} = \begin{bmatrix} K(\mathbf{x}_1, \mathbf{x}_1) & K(\mathbf{x}_1, \mathbf{x}_2) & \dots & K(\mathbf{x}_1, \mathbf{x}_N) \\ \vdots & \vdots & \ddots & \vdots \\ K(\mathbf{x}_N, \mathbf{x}_1) & K(\mathbf{x}_N, \mathbf{x}_2) & \dots & K(\mathbf{x}_N, \mathbf{x}_N) \end{bmatrix} \in \mathbb{R}^{N \times N}$$

and replace $\mathbf{T} \in \mathbb{R}^{N \times N}$ with

$$T_K = \frac{1}{N-1}HKH.$$

The kernel PCA is achieved by spectral decomposition on T_K .

We replace $\mathbf{X}\mathbf{X}^{\top} \in \mathbb{R}^{N \times N}$ with the kernel matrix

$$\mathbf{K} = \begin{bmatrix} K(\mathbf{x}_1, \mathbf{x}_1) & K(\mathbf{x}_1, \mathbf{x}_2) & \dots & K(\mathbf{x}_1, \mathbf{x}_N) \\ \vdots & \vdots & \ddots & \vdots \\ K(\mathbf{x}_N, \mathbf{x}_1) & K(\mathbf{x}_N, \mathbf{x}_2) & \dots & K(\mathbf{x}_N, \mathbf{x}_N) \end{bmatrix} \in \mathbb{R}^{N \times N}$$

and replace $\mathbf{T} \in \mathbb{R}^{N \times N}$ with

$$T_K = \frac{1}{N-1}HKH.$$

The kernel PCA is achieved by spectral decomposition on T_K .

Examples of kernel functions:

1 We define the polynomial kernel as

$$K(\mathbf{x},\mathbf{y}) = (\mathbf{x}^{\top}\mathbf{y} + c)^d$$

for some $c \in \mathbb{R}$ and $d \in \mathbb{N}$.

2 We define the Gaussian kernel (radial basis function kernel) as

$$\mathcal{K}(\mathbf{x}, \mathbf{y}) = \exp\left(-rac{\|\mathbf{x} - \mathbf{y}\|_2^2}{2\sigma^2}
ight).$$

- Principal Components Analysis
- Principal Coordinate Analysis
- 3 Kernel Principal Component Analysis
- Factor Analysis
- 5 Probabilistic Principle Component Analysis
- 6 Course Summary

Factor Analysis

Let the observable vector $\mathbf{y} \in \mathbb{R}^p$ be written as

$$\mathbf{y} = \mathbf{W}\mathbf{x} + \boldsymbol{\mu} + \boldsymbol{\epsilon},$$

where

- **1** $\mathbf{W} \in \mathbb{R}^{p \times q}$ is the loading matrix (parameter),
- $\mathbf{2} \mathbf{x} \in \mathbb{R}^q$ is the common factor (parameter/random vector),
- \bullet $\mu \in \mathbb{R}^p$ is the mean vector (parameter),
- $\epsilon \in \mathbb{R}^p$ is the specific factor (random vector).

The model is similar to regression, but \mathbf{x} is unobserved.

Factor Analysis

Example of sports games:

$$y = Wx + \mu + \epsilon$$
.

- 1 y: performance in real-world
- W: system of the game
- 3 x: attributes in the game
- $oldsymbol{\Phi}$: average attributes
- \bullet : noise/exception

- Principal Components Analysis
- 2 Principal Coordinate Analysis
- 3 Kernel Principal Component Analysis
- 4 Factor Analysis
- 5 Probabilistic Principle Component Analysis
- 6 Course Summary

Probabilistic Principle Component Analysis

Let $\mathbf{y}_1, \dots, \mathbf{y}_N \in \mathbb{R}^p$ be N independent observations and we have

$$\mathbf{y}_{\alpha} = \mathbf{W}\mathbf{x}_{\alpha} + \boldsymbol{\mu} + \boldsymbol{\epsilon}_{\alpha},$$

where

$$\mathbf{x}_{lpha} \sim \mathcal{N}_{q}(\mathbf{0}, \mathbf{I})$$
 and $\epsilon_{lpha} \sim \mathcal{N}_{p}(\mathbf{0}, \sigma^{2} \mathbf{I})$

are independent for some $\sigma^2 > 0$ and $q < \min\{N, p\}$.

We target to estimate parameters

$$\mathbf{W} \in \mathbb{R}^{p \times q}, \quad \boldsymbol{\mu} \in \mathbb{R}^p \quad \text{and} \quad \sigma \in (0, +\infty)$$

by maximum likelihood estimation for given y_1, \ldots, y_N .

Probabilistic Principle Component Analysis

Consider that

$$\mathbf{y}_{lpha} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \mathbf{W} \mathbf{W}^{\top} + \sigma^{2} \mathbf{I}).$$

We construct the likelihood function

$$\begin{split} & L(\boldsymbol{\mu}, \mathbf{W}, \sigma^2) \\ &= \prod_{\alpha=1}^N \frac{1}{\sqrt{(2\pi)^p \det(\boldsymbol{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{y}_\alpha - \boldsymbol{\mu})^\top (\mathbf{W} \mathbf{W}^\top + \sigma^2 \mathbf{I})^{-1} (\mathbf{y}_\alpha - \boldsymbol{\mu})\right), \end{split}$$

then we have

$$\ln L(\mu, \mathbf{W}, \sigma^2)$$

$$\propto -\frac{N}{2} \ln \det(\mathbf{W} \mathbf{W}^\top + \sigma^2 \mathbf{I}) - \frac{1}{2} \sum_{\alpha=1}^{N} (\mathbf{y}_{\alpha} - \mu)^\top (\mathbf{W} \mathbf{W}^\top + \sigma^2 \mathbf{I})^{-1} (\mathbf{y}_{\alpha} - \mu).$$

The Maximum Likelihood Estimators

The maximum likelihood estimators of μ , **W** and σ^2 are

$$\hat{\boldsymbol{\mu}} = \bar{\mathbf{y}} = \frac{1}{N} \sum_{\alpha=1}^N \mathbf{y}_\alpha, \quad \hat{\mathbf{W}} = \mathbf{U}_q (\mathbf{\Lambda}_q - \hat{\sigma}^2 \mathbf{I}) \mathbf{R} \quad \text{and} \quad \hat{\sigma}^2 = \frac{1}{p-q} \sum_{j=q+1}^p \lambda_j,$$

where

① $\mathbf{\Lambda}_q \in \mathbb{R}^{q imes q}$ is diagonal with the largest q eigenvalues $\lambda_1, \dots, \lambda_q$ of

$$\hat{oldsymbol{\Sigma}} = rac{1}{N} \sum_{lpha=1}^N (\mathbf{y}_lpha - ar{\mathbf{y}}) (\mathbf{y}_lpha - ar{\mathbf{y}})^ op;$$

- **2** $\mathbf{U}_q \in \mathbb{R}^{p \times q}$ is orthogonal column consisting of the eigenvectors associate with $\lambda_1, \ldots, \lambda_q$;
- **3** $\mathbf{R} \in \mathbb{R}^{q \times q}$ is any orthogonal matrix.

The Maximum Likelihood Estimators

The maximum likelihood estimators also minimize the error with respect to Frobenius norm

$$\left(\hat{\mathbf{W}},\ \hat{\sigma}^2\right) = \underset{\mathbf{W} \in \mathbb{R}^{p \times q}, \sigma^2 \in \mathbb{R}^+}{\arg\min} \left\|\hat{\mathbf{\Sigma}} - \left(\mathbf{W}\mathbf{W}^\top + \sigma^2\mathbf{I}\right)\right\|_F.$$

The Expectation-Maximization Algorithm

For the model

$$\mathbf{y} = \mathbf{W}\mathbf{x} + \boldsymbol{\mu} + \boldsymbol{\epsilon},$$

where $\mathbf{x} \sim \mathcal{N}_q(\mathbf{0}, \mathbf{I})$ and $\epsilon \sim \mathcal{N}_p(\mathbf{0}, \sigma^2 \mathbf{I})$ are independent.

We regard $\{\mathbf{x}_{\alpha}\}_{\alpha=1}^{N}$ as missing data and $\{\mathbf{x}_{\alpha},\mathbf{y}_{\alpha}\}_{\alpha=1}^{N}$ as the complete data, then we can achieve

$$\mathbf{y}_{lpha} \, | \, \mathbf{x}_{lpha} \sim \mathcal{N}_{p}(\mathbf{W}\mathbf{x}_{lpha} + oldsymbol{\mu}, \sigma^{2}\mathbf{I})$$

and

$$\mathbf{x}_{\alpha} \mid \mathbf{y}_{\alpha} \sim \mathcal{N}_{q}(\mathbf{M}^{-1}\mathbf{W}^{\top}(\mathbf{y}_{\alpha} - \boldsymbol{\mu}), \sigma^{2}\mathbf{M}^{-1}),$$

where $\mathbf{M} = \mathbf{W}^{\mathsf{T}} \mathbf{W} + \sigma^2 \mathbf{I}$.

The Expectation-Maximization Algorithm

The update of the EM algorithm

1 In E-step, we take the expectation

$$I_C = \mathbb{E}\left[\ln\left(\prod_{lpha=1}^N f(\mathbf{x}_lpha \,|\, \mathbf{y}_lpha)
ight)
ight].$$

② In the M-step, we maximized I_C with respect to **W** and σ^2 :

$$\begin{aligned} \mathbf{W}_{+} = & \hat{\mathbf{\Sigma}} \mathbf{W} (\sigma^{2} \mathbf{I} + \mathbf{M}^{-1} \mathbf{W}^{\top} \hat{\mathbf{\Sigma}} \mathbf{W})^{-1}, \\ \sigma_{+}^{2} = & \frac{1}{\rho} \mathrm{tr} \left(\hat{\mathbf{\Sigma}} - \hat{\mathbf{\Sigma}} \mathbf{W} \mathbf{M}^{-1} \mathbf{W}_{+}^{\top} \right). \end{aligned}$$

Note that the computational complexity of EM is $\mathcal{O}(Npq)$, while the spectral decomposition in MLE requires $\mathcal{O}(Np^2 + p^3)$.

- Principal Components Analysis
- Principal Coordinate Analysis
- 3 Kernel Principal Component Analysis
- 4 Factor Analysis
- 5 Probabilistic Principle Component Analysis
- 6 Course Summary

Multivariate Statistics

Good Luck on Finals!

