

Statistical Spatial Data Analysis with R and ArcGIS

Orhun Aydin, Mark Janikas, Marjean Pobuda, Shaun Walbridge

Introductions

R-ArcGIS Bridge Team

Seminar Overview

Today's Schedule

Sections, Topics, and Timing

Section	Topic	Time Frame
Section 1	Introduction to R and the R-ArcGIS Bridge	8:30am - 10:00am
Break	Coffee & Tea	10:00am - 10:15am
Section 2	The In's and Out's of Bridge Functionality and Microsoft R	10:15am - 11:30am
Section 3 (part 1)	Introducing R Script Tools	11:30am - 12:00pm
Lunch	Tasty Eats	12:00pm - 1:00pm
Section 3 (part 2)	A Deeper Dive into R Script Tools	1:00pm - 2:00pm
Section 4	Sharing R Functionality	2:00pm - 3:00pm
Break	Coffee & Tea	3:00pm - 3:15pm
Section 5	Hands-on Practice Session	3:15pm – 4:30pm
Conclusion	Resources and Final Questions	4:30pm – 5:00pm

The R Language

A programming language for data analysis

- Where did it come from?
 - S, from Bell Labs
 - 1976
 - R released 1993

- R is a free and open-source programming language.
 - Designed with data analysis in mind
 - Powerful core data structures and operations
- Unparalleled breadth of statistical routines
 - Both cutting-edge research and field specific methods
- CRAN: Over 12,700 available packages (doubled since 2016!)
- Versatile and powerful plotting

- R is a free and open-source programming language.
 - Designed with data analysis in mind
 - Powerful core data structures and operations
- Unparalleled breadth of statistical routines
 - Both cutting-edge research and field specific methods
- CRAN: Over 12,700 available packages (doubled since 2016!)
- Versatile and powerful plotting

Language features: core types

- Data types you're used to seeing:
 - Numeric Integer Character Logical timestamp
- But others that you may not be:
 - -vector matrix data.frame factor

Language features: data frames

- Treats tabular (and multi-dimensional) data as a *labeled, indexed* series of observations. Sounds simple, but is a game changer over typical software which is just doing 2D layout (e.g. Excel)
- This concept of the data frame is core, and matches nicely to how data is manipulated and managed in geographic contexts

- Reproducible research and results
 - Easy to share
 - R Markdown
 - Jupyter Notebooks
 - Shareable R Script Tools

R Resources

- A strong and engaged user community
 - Easy to find tutorials and resources for help
 - Cross-Validated https://stats.stackexchange.com/
 - R-bloggers https://www.r-bloggers.com/
 - Kaggle https://www.kaggle.com/competitions
 - Hadley Wickham's Advanced R http://adv-r.had.co.nz/
 - Introduction to Statistical Learning with Applications in R http://www-bcf.usc.edu/~gareth/ISL/
 - Applied Spatial Data Analysis with R http://www.asdar-book.org/
 - A variety of active user groups
 - R Consortium https://www.r-consortium.org/
 - Meetup Communities https://www.meetup.com/find/tech/
 - R-Ladies https://rladies.org/

Spatial R Packages

Connecting R to spatial

R Spatial Packages

Connecting R to spatial

- Spatial data has a strong support framework
 - Well-defined classes and methods for vector and raster data
 - Consistent handling across the language
 - Functions for simple tasks, like plotting, subsetting, and summarizing spatial objects
 - Functions for advanced, niche spatial analyses
 - Interfaces well with ArcGIS

R Spatial Packages

Connecting R to spatial

- Working with feature data (points, lines, areas):
 - Historically sp has been the main package for working with feature data
 - New effort going into the sf package, which contains more extensive integration, and a richer underlying data model
 - 100s of packages have interop
- Working with raster data:
 - GDAL and rgdal
 - raster package
 - Many others with specialized roles have interop
- https://www.r-spatial.org/projects/

Conda

An Introduction

Managing Software Complexity

Conda

- Software is composed of many smaller components, often called packages or libraries.
- But, sharing code is a hard problem. Do you have the same packages of the same versions as the developer did?
- Conda solves this by providing easy access to install packages of software, and managing their interactions with a dependency solver
- It also creates environments isolated collections of packages independent from the rest of the system

ArcGIS Pro includes Conda and a UI for interacting with it

Expand what is possible with packages and environments Conda

- Handle Python, R and many other languages and use cutting edge software from diverse fields (stats, AI, ML + many others)
- Works with R, Microsoft R, R-Studio and complex hybrid stacks (deeper look in Section 4)
- Command line tool, GUI available in Pro
- arcgispro-r environment on machines today for you to try out, and an <u>intro to conda</u> <u>notebook</u>

Terraria, isolated environments

Jupyter Notebooks

An Introduction

Notebooks and Interactive Computing

Jupyter Notebooks

- Intermingle code, text, plots and more into a single notebook, run in a browser – interactive computing
- New modality: great for sharing, exploration, and writing with code
- We use it today to help guide you through examples, but if you're interested, can show you more in hands-on sections

Hands-On Setup

Jupyter Notebooks

- 1. Visit https://github.com/R-ArcGIS/UC-2018
- 2. Click green "Clone or Download" button, then "Download Zip"
- 3. Using File Explorer, Copy the zip file to C:\Workspace, replace existing file
- 4. Still in Explorer, right click, select "Extract All", accept defaults. Should now see a folder, C:\workspace\UC-2018-master that contains "Extras-An-Introduction-To-Conda.ipynb"
- 5. Click Start Menu, Search for "Python Command Prompt", click to open
- 6. activate arcgispro-r
- 7. conda upgrade jupyter_console jupyter_core, press enter to accept
- 8. jupyter notebook C:\workspace\UC-2018-master

Hands-On Setup

Jupyter Notebooks

https://github.com/R-ArcGIS/UC-2018

- Marjean Pobuda <u>mpobuda@esri.com</u>
- Orhun Aydin <u>oaydin@esri.com</u>
- Mark Janikas mjanikas@esri.com
- Shaun Walbridge <u>swalbridge@esri.com</u>

The R-ArcGIS Bridge

Some Background

Introducing the R-ArcGIS Bridge

The R-ArcGIS Bridge

 The R-ArcGIS bridge allows you to connect ArcGIS to R and enables the seamless transfer of data back and forth, along with the ability to integrate R and ArcGIS functionality.

Who Can Use the R-ArcGIS Bridge?

The R-ArcGIS Bridge

ArcGIS users

R users

ArcGIS developers

Vector Support

The R-ArcGIS Bridge

- Ability to read and write vector data
- Support for key R objects and spatial packages
 - R data frame object
 - Compatibility with sp
 - Compatibility with sf
- Customize data manipulations
 - Craft SQL queries to make selections
 - Subset by specific columns
 - Reproject data as needed
- Maintain spatial geometries when working with dplyr

Reading your ArcGIS vector data: part 1

arcgisbinding Package Functionality

1) Open ArcGIS data, tables, layers

gis_data <- arc.open(path = 'C:/Data/Data.gdb/AfricanBuffalo')</pre>

2) Load dataset to R data frame

```
r_data <- arc.select(gis_data, fields, SQL, spatial ref)</pre>
```

Raster Support

The R-ArcGIS Bridge

- Ability to read and write raster data
 - Handle big data raster data with the ability to read in chunks by bands
 - Compatibility with CRF format and Mosaic Datasets
- Customize selections and subsets
 - Create subsets by bands or pixel rows and columns
 - Resample options available
 - Select desired pixel format for specific analyses

Reading your ArcGIS raster data: part 1

arcgisbinding Package Functionality

• 1) Open ArcGIS single band or multiband rasters:

2) Customize data details

 arc_data <- arc.raster(gis_data, nrow, ncol, bands, extent, pixel type, resample type)

Big Data Support

The R-ArcGIS Bridge

- Supports all versions of Microsoft R
 - Microsoft Open
 - Microsoft Client
 - Microsoft Server

Working With The Bridge

A Guide to The Various Ways

Ways to Work with the Bridge

Demo - Shaun Walbridge

Break

Resuming at 10:15 am

ESRI USER CONFERENCE

R Script Tools

An Introduction

Why Create Script Tools R Script Tools

- Automation
- Reproducibility
- Sharing
- Ease of use, accessibility
- Empowering for the non-R pro

Create Script Tools in R

R Script Tools

Generic, reusable script template

Wrapping functionality

Defining input and output parameters

```
animal_presence_input <- in_params [[1]]
environmental_input <- in_params [[2]]
covariate_input <- in_params [[3]]
axes_input <- in_params [[4]]

prediction_output <- out_params [[1]]</pre>
```

Create Script Tools in ArcGIS

R Script Tools

How to Create a Script Tool

The R script behind the scenes

```
require(ade4)
require(adehabitatHS)
require(sp)
require(raster)
### Define input/output parameters
presence_input <- in_params[[1]]</pre>
env_input <- in_params[[2]]</pre>
covariate_input <- in_params[[3]]</pre>
axes_input <- in_params[[4]]
prediction_output <- out_params[[1]]</pre>
### Load Data and Create Dataframe R Object
arc.progress_label("Loading data...")
arc.progress_pos(40)
presence_path <- arc.open(presence_input)</pre>
presence_raster <- arc.raster(presence_path)</pre>
env_path <- arc.open(env_input)</pre>
env_raster <- arc.raster(env_path)</pre>
### Ecological Niche Factor Analysis Data Formating
arc.progress_label("Formating datasets...")
arc.progress_pos(60)
```

Essential R Script Tool Components

Demo – Shaun Walbridge

Microsoft R and R-ArcGIS Bridge

Patterns and best practices

Using the R-ArcGIS Bridge with Microsoft R Microsoft Open R

- Microsoft Open R is a publicly available R-version
- Contains almost all CRAN libraries
 - It lags CRAN in functionality, Microsoft follows CRAN releases to update
- Provides integration to other Microsoft tools such as R-Server

Using the R-ArcGIS Bridge with Microsoft R

ArcGIS Bridge- Microsoft R Connection

- Connection to argisbinding package is same as CRAN version of R
- Can be used as the background R version within ArcGIS Pro
- Usage from Pro is exactly the same as CRAN

Comparing Different R Distributions

Allows multi-thread parallelization

Allows parallelization and remote computing
Processing limited to 2 threads
All processing is handled locally

Microsoft's implementation of R Publicly available Efficient matrix operations

- Open-source Contains newest libraries

Microsoft R Server

Microsoft R Client

Microsoft R Open

CRAN

Matrix Multiplication Benchmark on Rasters

Comparing Open R to CRAN R

Using the R-ArcGIS Bridge Microsoft R

- Image convolutions are matrix multiplications
- Window-based operations and image operators speed up drastically
- Integrates to bigger data platforms of Microsoft such as Azure and R-Server

Integration Points for R + Python

Patterns and best practices

Conda for managing software Conda

- If you don't need it now, no problem keep things simple
- But a good place to explore, and progress in your coding abilities. Helps future you, but also helps you share with others
- Mix together both R and Python dependencies into a consistent, reproducible environment

Best practices Conda

- arcgispro-renvironment
- Use editors that respect environments (Rstudio, Visual Studio Code, ...)
- Start now on building up reproducible habits

Broader Integration Points

R integration options

In order of level of effort:

- Jupyter Notebooks (+leaflet.esri)
- Microsoft GeoAl VM
- Geoprocessing Services
 - R runs on the server
 - Share real time outputs from R code
 - Build into live applications
 - Use as a component of a story map
- Conda packages

