

Statistical Learning II

Lecture 1 - Introduction & preliminaries

Bruno Loureiro

@ CSD, DI-ENS & CNRS

brloureiro@gmail.com

Course Organisation

- 12 classes of 3h, divided in:
 - 1h30 lectures
 - 1h30 exercises & lab (Python)
 (with Leonardo De Filippis)

Course Organisation

- 12 classes of 3h, divided in:
 - 1h30 lectures
 - 1h30 exercises & lab (Python)
 (with Leonardo De Filippis)

Contact us: via Microsoft Teams or e-mail:

<u>bruno.loureiro@di.ens.fr</u> and <u>leonardo.defilippis99@gmail.com</u>

Course Organisation

- 12 classes of 3h, divided in:
 - 1h30 lectures
 - 1h30 exercises & lab (Python)
 (with Leonardo De Filippis)

Contact us: via Microsoft Teams or e-mail:

<u>bruno.loureiro@di.ens.fr</u> and <u>leonardo.defilippis99@gmail.com</u>

Evaluation: 2 x exams (midterm and final)

Menu for the semester

Goal: Develop a *mathematical* understanding of *classical* and *modern* machine learning models

Menu for the semester

Goal: Develop a *mathematical* understanding of *classical* and *modern* machine learning models

- Classical methods:
 - Ridge regression
 - · LASSO
 - Generalised linear models
 - Kernel methods
 - Principal component analysis (PCA)

Menu for the semester

Goal: Develop a *mathematical* understanding of *classical* and *modern* machine learning models

- Classical methods:
 - Ridge regression
 - · LASSO
 - Generalised linear models
 - Kernel methods
 - Principal component analysis (PCA)
- Modern methods:
 - Neural networks
 - Diffusion models
 - Your suggestions?

Introduction & Motivation

Or: why should I care about Statistical Learning?

A brief history of ML

J. Bardeen W.H. Brattain W. Shockley

What about the maths?

Yet, on the mathematical side...

Leo Breiman

Statistics Department, University of California, Berkeley, CA 94305; e-mail: leo@stat.berkeley.edu

Reflections After Refereeing Papers for NIPS

For instance, there are many important questions regarding neural networks which are largely unanswered. There seem to be conflicting stories regarding the following issues:

- Why don't heavily parameterized neural networks overfit the data?
- What is the effective number of parameters?
- Why doesn't backpropagation head for a poor local minima?
- When should one stop the backpropagation and use the current parameters?

Leo Breiman 1928

What about the maths?

Yet, on the mathematical side...

Leo Breiman

Statistics Department, University of California, Berkeley, CA 94305; e-mail: leo@stat.berkeley.edu

Reflections After Refereeing Papers for NIPS

For instance, there are many important questions regarding neural networks which are largely unanswered. There seem to be conflicting stories regarding the following issues:

- Why don't heavily parameterized neural networks overfit the data?
- What is the effective number of parameters?
- Why doesn't backpropagation head for a poor local minima?
- When should one stop the backpropagation and use the current parameters?

Leo Breiman 1928

This was written in 1995!!!

What about the maths?

Yet, on the mathematical side...

Leo Breiman

Statistics Department, University of California, Berkeley, CA 94305; e-mail: leo@stat.berkeley.edu

Reflections After Refereeing Papers for NIPS

For instance, there are many important questions regarding neural networks which are largely unanswered. There seem to be conflicting stories regarding the following issues:

- Why don't heavily parameterized neural networks overfit the data?
- What is the effective number of parameters?
- Why doesn't backpropagation head for a poor local minima?
- When should one stop the backpropagation and use the current parameters?

Leo Breiman 1928

This was written in 1995!!!

But why should I care?

Reliability and Liability

If a model does something unexpected, who is responsible?

Crucial in sensitive applications, e.g. medicine, law, self-driving cars/planes...

Reliability and Liability

If a model does something unexpected, who is responsible?

Crucial in sensitive applications, e.g. medicine, law, self-driving cars/planes...

Efficient design

Data centres are responsible for 4% of the energy consumption in the US.

Can we design models and algorithms that learn more efficiently from data?

Reliability and Liability

If a model does something unexpected, who is responsible?

Crucial in sensitive applications, e.g. medicine, law, self-driving cars/planes...

Efficient design

Data centres are responsible for 4% of the energy consumption in the US.

Can we design models and algorithms that learn more efficiently from data?

Scientific curiosity

Reliability and Liability

If a model does something unexpected, who is responsible?

Crucial in sensitive applications, e.g. medicine, law, self-driving cars/planes...

Efficient design

Data centres are responsible for 4% of the energy consumption in the US.

Can we design models and algorithms that learn more efficiently from data?

- Scientific curiosity
- And in the worst case, understanding the maths will make you a better engineer / data scientist.

Our expectations

My expectations: By the end of the term, I expect you to:

Get acquainted with the most popular machine learning algorithms

Our expectations

My expectations: By the end of the term, I expect you to:

- Get acquainted with the most popular machine learning algorithms
- Appreciate (some) of the mathematics behind the methods.

Our expectations

My expectations: By the end of the term, I expect you to:

- Get acquainted with the most popular machine learning algorithms
- Appreciate (some) of the mathematics behind the methods.
- Be able to implement these methods from scratch.

99% of books in statistical learning:

Let $(\mathbf{x}_i, y_i) \in \mathbb{R}^d \times \mathbb{R}, i = 1, ..., n$, denote independently drawn samples from a probability distribution....

99% of books in statistical learning:

Let $(\mathbf{x}_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$, i = 1,...,n, denote independently drawn samples from a probability distribution....

Recap of Linear Algebra

The bread of statistical learning

The Euclidean space \mathbb{R}^d is the vector space of d-tuples:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix} \in \mathbb{R}^d \ (\mathbb{R}^{d \times 1})$$
"column vector"

The Euclidean space \mathbb{R}^d is the vector space of d-tuples:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix} \in \mathbb{R}^d \ (\mathbb{R}^{d \times 1})$$
"column vector"

Recall, \mathbb{R}^d is a vector space of dimension d with basis:

$$e_i = \begin{bmatrix} 0 \\ \vdots \\ 1 \end{bmatrix}$$
 Position i

The Euclidean space is endowed with an inner (or scalar) product

$$u, v \in \mathbb{R}^d$$
 $\langle u, v \rangle = \sum_{i=1}^d u_i v_i$

The Euclidean space is endowed with an inner (or scalar) product

$$u, v \in \mathbb{R}^d$$
 $\langle u, v \rangle = \sum_{i=1}^d u_i v_i$

Which induces a natural notion of distance and size:

$$||u||_2^2 = \langle u, u \rangle = \sum_{i=1}^d u_i^2$$

$$d(u, v) = ||u - v||_2^2$$
 "Euclidean or ℓ_2 norm" "Euclidean distance"

We say two vectors $u, v \in \mathbb{R}^d$ are orthogonal if $\langle u, v \rangle = 0$

Euclidean geometry

$$||u||_2^2 = \langle u, u \rangle = \sum_{i=1}^d u_i^2$$

$$d(u, v) = ||u - v||_2^2$$
 "Euclidean or ℓ_2 norm" "Euclidean distance"

They correspond to our intuitive notion of geometry in the plane

Euclidean geometry

They correspond to our intuitive notion of geometry in the plane

In particular, we say two vectors $u,v\in\mathbb{R}^d$ are orthogonal if

$$\langle u, v \rangle = 0$$

Other norms

One can define other notions of size in \mathbb{R}^d

$$||u||_p = \left(\sum_{i=1}^d u_i^p\right)^{1/p}$$

$$p \ge 1$$
"\$\mathcal{e}_p \text{ norm"}

Other norms

One can define other notions of size in \mathbb{R}^d

$$||\mathbf{u}||_p = \left(\sum_{i=1}^d u_i^p\right)^{1/p} \qquad p \ge 1$$

$$\mathscr{C}_p \text{ norm}$$

 $||\cdot||_p$ is not associated to an inner product for $p \neq 2$

Other norms

One can define other notions of size in \mathbb{R}^d

$$||\mathbf{u}||_p = \left(\sum_{i=1}^d u_i^p\right)^{1/p} \qquad p \ge 1$$

$$\mathscr{C}_p \text{ norm}$$

 $||\cdot||_p$ is not associated to an inner product for $p \neq 2$

Not a norm

A real-valued matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ is a table of real numbers.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nd} \end{bmatrix} \in \mathbb{R}^{n \times d}$$

A real-valued matrix $A \in \mathbb{R}^{n \times d}$ is a table of real numbers.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nd} \end{bmatrix} \in \mathbb{R}^{n \times d}$$

It is most often used to describe the coordinates of linear transformations $A: \mathbb{R}^d \to \mathbb{R}^n$ with respect to a basis.

A real-valued matrix $A \in \mathbb{R}^{n \times d}$ is a table of real numbers.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nd} \end{bmatrix} \in \mathbb{R}^{n \times d}$$

$$A_1 \quad A_2 \qquad A_d$$

. The columns of $\mathbf{A} \in \mathbb{R}^{n \times d}$ are vectors $\mathbf{A}_i \in \mathbb{R}^n$ with $(\mathbf{A}_i)_j = a_{ij}$

"Column space" $\operatorname{col}(A) = \operatorname{span}(A_1, \dots, A_d) \subset \mathbb{R}^n$

A real-valued matrix $A \in \mathbb{R}^{n \times d}$ is a table of real numbers.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nd} \end{bmatrix} \stackrel{a_1}{\leftarrow} a_1$$

$$\stackrel{a_2}{\leftarrow} \mathbb{R}^{n \times d}$$

- . The columns of $A\in\mathbb{R}^{n\times d}$ are vectors $A_i\in\mathbb{R}^n$ with $(A_i)_j=a_{ij}$ "Column space" $\mathrm{col}(A)=\mathrm{span}(A_1,\cdots,A_d)\subset\mathbb{R}^n$
 - . The rows of $A\in\mathbb{R}^{n\times d}$ are vectors $\pmb{a}_j\in\mathbb{R}^d$ with $(\pmb{a}_j)_i=a_{ij}$ "Row space" of $\mathrm{row}(A)=\mathrm{span}(\pmb{a}_1,\cdots,\pmb{a}_n)\subset\mathbb{R}^d$

Flattening matrices

The space of matrices $A \in \mathbb{R}^{n \times d}$ is itself a vector space of dimension nd. Therefore we can identify:

$$\mathbb{R}^{n \times d} \simeq \mathbb{R}^{nd}$$

By flattening the matrices into vectors.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nd} \end{bmatrix} \mapsto \begin{bmatrix} a_{11} \\ a_{12} \\ \vdots \\ a_{1n} \\ a_{21} \\ \vdots \end{bmatrix} \in \mathbb{R}^{nd}$$

Rank of a matrix

• The rank of a matrix $A \in \mathbb{R}^{n \times d}$ is the dimension of column space

$$rank(A) = dim(col(A))$$

This is equivalent to the number of independent columns.

Rank of a matrix

• The rank of a matrix $A \in \mathbb{R}^{n \times d}$ is the dimension of column space

$$rank(A) = dim(col(A))$$

This is equivalent to the number of independent columns.

Proposition rank(A) = dim(col(A)) = dim(row(A))

Rank of a matrix

• The rank of a matrix $A \in \mathbb{R}^{n \times d}$ is the dimension of column space

$$rank(A) = dim(col(A))$$

This is equivalent to the number of independent columns.

Proposition
$$rank(A) = dim(col(A)) = dim(row(A))$$

• A matrix $A \in \mathbb{R}^{n \times d}$ is said to be full-rank if

$$rank(A) = min(n, d)$$

Another point of view

• Alternatively, we can see the column space $col(A) \subset \mathbb{R}^n$ as The image of the associated linear map.

 $\operatorname{im}(A) = \operatorname{col}(A) = \{ v \in \mathbb{R}^n : Au = v \text{ for some } u \in \mathbb{R}^d \}$

Another point of view

• Alternatively, we can see the column space $col(A) \subset \mathbb{R}^n$ as The image of the associated linear map.

$$\operatorname{im}(A) = \operatorname{col}(A) = \{ v \in \mathbb{R}^n : Au = v \text{ for some } u \in \mathbb{R}^d \}$$

• The null-space or kernel of a matrix $A \in \mathbb{R}^{n \times d}$ is defined as:

$$\ker(A) = \{ u \in \mathbb{R}^d : Au = 0 \}$$

Note that $\ker(A) \subset \mathbb{R}^d$ and $\mathbf{0} \in \ker(A)$

Image and null-space

Proposition

Let $A \in \mathbb{R}^{n \times d}$ denote a linear map. We have: $\operatorname{rank}(A) + \dim(\ker(A)) = n$

A square matrix $A \in \mathbb{R}^{d \times d}$ is said to be invertible if there exists $B \in \mathbb{R}^{d \times d}$ such that:

$$AB = I_d$$

In this case, we denote $\mathbf{B} = \mathbf{A}^{-1}$.

A square matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ is said to be invertible if there exists $\mathbf{B} \in \mathbb{R}^{d \times d}$ such that:

$$AB = I_d$$

In this case, we denote $\mathbf{B} = \mathbf{A}^{-1}$.

For any invertible matrix $A \in \mathbb{R}^{d \times d}$ $(A^{-1})^{-1} = A$.

$$(\boldsymbol{A}^{-1})^{-1} = \boldsymbol{A}.$$

A square matrix $A \in \mathbb{R}^{d \times d}$ is said to be invertible if there exists $B \in \mathbb{R}^{d \times d}$ such that:

$$AB = I_d$$

In this case, we denote $\mathbf{B} = \mathbf{A}^{-1}$.

For any invertible matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$.

Proposition

A square matrix $A \in \mathbb{R}^{d \times d}$ is invertible if and only if it is full-rank $\operatorname{rank}(A) = d$

Proposition

A square matrix $A \in \mathbb{R}^{d \times d}$ is invertible if and only if it is full-rank $\operatorname{rank}(A) = d$

Matrix transpose

• The transpose of a matrix $A \in \mathbb{R}^{n \times d}$ with elements a_{ij} the matrix with $A^{\top} \in \mathbb{R}^{d \times n}$ with elements a_{ji}

Matrix transpose

• The transpose of a matrix $A \in \mathbb{R}^{n \times d}$ with elements a_{ij} the matrix with $A^\top \in \mathbb{R}^{d \times n}$ with elements a_{ji}

$$A^{\mathsf{T}} =$$

We have:

$$(\mathbf{A}^{\mathsf{T}})^{\mathsf{T}} = \mathbf{A}$$

$$(a\mathbf{A} + b\mathbf{B})^{\mathsf{T}} = a\mathbf{A}^{\mathsf{T}} + b\mathbf{B}^{\mathsf{T}}$$

$$(\mathbf{A}^{-1})^{\mathsf{T}} = (\mathbf{A}^{\mathsf{T}})^{-1}$$

$$(\mathbf{A}\mathbf{B})^{\mathsf{T}} = \mathbf{B}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}} \stackrel{\text{(a)}}{=} \underbrace{\mathsf{Exercise}}_{\mathsf{Const.}} \mathsf{check this.}$$

Matrix transpose

• The transpose of a matrix $A \in \mathbb{R}^{n \times d}$ with elements a_{ii} the matrix with $\mathbf{A}^{\mathsf{T}} \in \mathbb{R}^{d \times n}$ with elements a_{ii}

• Note that by seeing $u, v \in \mathbb{R}^{d \times 1}$ as column vectors, we can also write the Euclidean inner product as:

$$\langle u, v \rangle = u^{\mathsf{T}} v$$

Exercise: check this.

Matrix trace

• The trace of a square matrix $A \in \mathbb{R}^{d \times d}$ is the sum of its diagonal:

$$\operatorname{Tr} A = \sum_{i=1}^{d} a_{ii}$$

Matrix trace

• The trace of a square matrix $A \in \mathbb{R}^{d \times d}$ is the sum of its diagonal:

$$\operatorname{Tr} A = \sum_{i=1}^{d} a_{ii}$$

• It satisfies: $\operatorname{Tr} AB = \operatorname{Tr} BA$

$$\operatorname{Tr} (a\mathbf{A} + b\mathbf{B}) = a\operatorname{Tr} \mathbf{A} + b\operatorname{Tr} \mathbf{B}$$

$$\operatorname{Tr} A^{\top} = \operatorname{Tr} A$$

Symmetric matrices

• A square matrix $A \in \mathbb{R}^{d \times d}$ is symmetric if $A^{\top} = A$

Symmetric matrices

• A square matrix $A \in \mathbb{R}^{d \times d}$ is symmetric if $A^{\top} = A$

For any $A \in \mathbb{R}^{n \times d}$, $A^{\top}A \in \mathbb{R}^{d \times d}$ and $AA^{\top} \in \mathbb{R}^{n \times n}$ are symmetric matrices.

Symmetric matrices

• A square matrix $A \in \mathbb{R}^{d \times d}$ is symmetric if $A^\top = A$

For any $A \in \mathbb{R}^{n \times d}$, $A^{\top}A \in \mathbb{R}^{d \times d}$ and $AA^{\top} \in \mathbb{R}^{n \times n}$ are symmetric matrices.

Letting $\mathbf{a}_i \in \mathbb{R}^d$ denote the rows of $\mathbf{A} \in \mathbb{R}^{n \times d}$, we have:

$$(AA^{\top})_{ij} = \langle a_i, a_j \rangle$$

Note: a similar representation holds for columns of $oldsymbol{A}$

Orthogonal matrices

• A square matrix $A \in \mathbb{R}^{d \times d}$ is orthogonal if $A^{\top} = A^{-1}$

Orthogonal matrices

• A square matrix $A \in \mathbb{R}^{d \times d}$ is orthogonal if $A^{\top} = A^{-1}$

Orthogonal matrices preserve the norm and distance between vectors (they are isometries):

$$||Au||_2 = ||u||_2$$
 Exercise: check this.

Orthogonal matrices

• A square matrix $A \in \mathbb{R}^{d \times d}$ is orthogonal if $A^{\top} = A^{-1}$

Orthogonal matrices preserve the norm and distance between vectors (they are isometries):

$$||Au||_2 = ||u||_2$$
 Exercise: check this.

Geometrically, they define rotations

$$e_{2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$$e_{1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Projection matrix

• A square matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ is a projection if $\mathbf{A}^2 = \mathbf{A}$

Moreover, if A is also orthogonal, we call it a orthogonal projection.

Projection matrix

• A square matrix $A \in \mathbb{R}^{d \times d}$ is a projection if $A^2 = A$

Moreover, if A is also orthogonal, we call it a orthogonal projection.

Proposition

Any $\mathbf{v} \in \mathbb{R}^d$ can be uniquely written as:

$$v = u + Av$$
 $u \in \ker(A)$

Projection matrix

• A square matrix $A \in \mathbb{R}^{d \times d}$ is a projection if $A^2 = A$

Moreover, if A is also orthogonal, we call it a orthogonal projection.

Proposition

Any $\mathbf{v} \in \mathbb{R}^d$ can be uniquely written as:

$$v = u + Av$$
 $u \in \ker(A)$

The only projection matrix which is invertible is the identity.

Eigen-(values, vectors)

Let $A \in \mathbb{R}^{d \times d}$ denote a square matrix. An eigenvector is a vector that is only re-scaled under the action of A:

$$Av = \lambda v$$

Where $\lambda \in \mathbb{R}$ is known as an eigenvalue.

Eigen-(values, vectors)

Let $A \in \mathbb{R}^{d \times d}$ denote a square matrix. An eigenvector is a vector that is only re-scaled under the action of A:

$$Av = \lambda v$$

Where $\lambda \in \mathbb{R}$ is known as an eigenvalue.

We call the set of eigenvalues the spectrum of A:

$$\operatorname{spec}(A) = \{\lambda \in \mathbb{R} : Av = \lambda v\}$$

Eigen-(values, vectors)

Let $A \in \mathbb{R}^{d \times d}$ denote a square matrix. An eigenvector is a vector that is only re-scaled under the action of A:

$$Av = \lambda v$$

Where $\lambda \in \mathbb{R}$ is known as an eigenvalue.

We call the set of eigenvalues the spectrum of A:

$$\operatorname{spec}(A) = \{\lambda \in \mathbb{R} : Av = \lambda v\}$$

- A square matrix $A \in \mathbb{R}^{d \times d}$ can have at most d independent eigenvectors.
- An eigenvalue λ can be associated to more than one independent eigenvector.

• A square matrix $A \in \mathbb{R}^{d \times d}$ is called positive definite if all eigenvalues are positive:

$$\lambda \in \operatorname{spec}(A) \Rightarrow \lambda > 0$$

• A square matrix $A \in \mathbb{R}^{d \times d}$ is called positive definite if all eigenvalues are positive:

$$\lambda \in \operatorname{spec}(A) \Rightarrow \lambda > 0$$

• A square matrix $A \in \mathbb{R}^{d \times d}$ is called positive semi-definite if all eigenvalues are non-negative:

$$\lambda \in \operatorname{spec}(A) \Rightarrow \lambda \geq 0$$

• A square matrix $A \in \mathbb{R}^{d \times d}$ is called positive definite if all eigenvalues are positive:

$$\lambda \in \operatorname{spec}(A) \Rightarrow \lambda > 0$$

• A square matrix $A \in \mathbb{R}^{d \times d}$ is called positive semi-definite if all eigenvalues are non-negative:

$$\lambda \in \operatorname{spec}(A) \Rightarrow \lambda \geq 0$$

Proposition

Symmetric matrices $A \in \mathbb{R}^{d \times d}$ are positive semi-definite

• A square matrix $A \in \mathbb{R}^{d \times d}$ is called positive definite if all eigenvalues are positive:

$$\lambda \in \operatorname{spec}(A) \Rightarrow \lambda > 0$$

• A square matrix $A \in \mathbb{R}^{d \times d}$ is called positive semi-definite if all eigenvalues are non-negative:

$$\lambda \in \operatorname{spec}(A) \Rightarrow \lambda \geq 0$$

Proposition

Symmetric matrices $A \in \mathbb{R}^{d \times d}$ are positive semi-definite

Spectral theorem

Theorem

Any symmetric matrix $A \in \mathbb{R}^{d \times d}$ can be decomposed as

$$A = UDU^{\top}$$

 $\pmb{U} \in \mathbb{R}^{d imes d}$ are orthogonal matrices and \pmb{D} is a diagonal matrix with elements given by the eigenvalues.

Spectral theorem

Theorem

Any symmetric matrix $A \in \mathbb{R}^{d \times d}$ can be decomposed as

$$A = UDU^{\top}$$

 $\pmb{U} \in \mathbb{R}^{d imes d}$ are orthogonal matrices and \pmb{D} is a diagonal matrix with elements given by the eigenvalues.

We can equivalently write the spectral decomposition as:

$$A = \sum_{i=1}^{\operatorname{rank}(A)} \lambda_i \mathbf{v}_i \mathbf{v}_i^{\mathsf{T}}$$

Where $\mathbf{v}_i \in \mathbb{R}^d$ are orthonormal eigenvectors.

Important facts

- The trace of a symmetric matrix $A \in \mathbb{R}^{d \times d}$ is the sum of its eigenvalues

$$\operatorname{Tr} A = \sum_{i=1}^{d} \lambda_i$$

Important facts

• The trace of a symmetric matrix $A \in \mathbb{R}^{d \times d}$ is the sum of its eigenvalues

$$\operatorname{Tr} A = \sum_{i=1}^{d} \lambda_i$$

• A square matrix $A \in \mathbb{R}^{d \times d}$ is invertible i.f.f. $0 \notin \operatorname{spec}(A)$

Important facts

• The trace of a symmetric matrix $A \in \mathbb{R}^{d \times d}$ is the sum of its eigenvalues

$$\operatorname{Tr} A = \sum_{i=1}^{d} \lambda_i$$

- A square matrix $A \in \mathbb{R}^{d \times d}$ is invertible i.f.f. $0 \notin \operatorname{spec}(A)$
- The eigenvalues of a projection matrix $\mathbf{P} \in \mathbb{R}^{d \times d}$ are 0 or 1

$$P = \sum_{i=1}^{\text{rank}(P)} v_i v_i^{\mathsf{T}}$$
 Exercise: show this.

Moreover, $P \in \mathbb{R}^{d \times d}$ is orthogonal if v_i are orthogonal vectors.

Note that for any real matrix $A \in \mathbb{R}^{n \times d}$, $A^{\top}A \in \mathbb{R}^{d \times d}$ and $AA^{\top} \in \mathbb{R}^{n \times n}$ are a symmetric matrices.

Note that for any real matrix $A \in \mathbb{R}^{n \times d}$, $A^{\top}A \in \mathbb{R}^{d \times d}$ and $AA^{\top} \in \mathbb{R}^{n \times n}$ are a symmetric matrices.

Therefore, $oldsymbol{A}^{\mathsf{T}} oldsymbol{A}$ and $oldsymbol{A} oldsymbol{A}^{\mathsf{T}}$ can be diagonalised:

$$\mathbf{A}^{\mathsf{T}} \mathbf{A} = \sum_{i=1}^{r} \lambda_i \mathbf{v}_i \mathbf{v}_i^{\mathsf{T}} \qquad \mathbf{A} \mathbf{A}^{\mathsf{T}} = \sum_{i=1}^{r} \lambda_i \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}}$$

Where: $r = \operatorname{rank}(A^{\top}A) = \operatorname{rank}(AA^{\top})$

 $\mathbf{u}_i \in \mathbb{R}^n$, $\mathbf{v}_i \in \mathbb{R}^d$ are orthonormal vectors.

 $\lambda_i \geq 0$

Note that for any real matrix $A \in \mathbb{R}^{n \times d}$, $A^{\top}A \in \mathbb{R}^{d \times d}$ and $AA^{\top} \in \mathbb{R}^{n \times n}$ are a symmetric matrices.

Therefore, $oldsymbol{A}^{\mathsf{T}} oldsymbol{A}$ and $oldsymbol{A} oldsymbol{A}^{\mathsf{T}}$ can be diagonalised:

$$A^{\mathsf{T}}A = \sum_{i=1}^{r} \lambda_i v_i v_i^{\mathsf{T}}$$
 $AA^{\mathsf{T}} = \sum_{i=1}^{r} \lambda_i u_i u_i^{\mathsf{T}}$

Where: $r = \operatorname{rank}(A^{\top}A) = \operatorname{rank}(AA^{\top})$ $u_i \in \mathbb{R}^n, v_i \in \mathbb{R}^d \text{ are orthonormal vectors.}$ $\lambda_i \geq 0$

Therefore, defining the singular values $\sigma_i = \sqrt{\lambda_i}$

Theorem

Any real matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ can be decomposed as

$$A = \sum_{i=1}^{\operatorname{rank}(A)} \sigma_i u_i v_i^{\top}$$

Theorem

Any real matrix $A \in \mathbb{R}^{n \times d}$ can be decomposed as

$$A = \sum_{i=1}^{\operatorname{rank}(A)} \sigma_i u_i v_i^{\top}$$

This can be equivalently written as:

$$A = UDV^{\top}$$

With: $U \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{d \times d}$ orthogonal matrices

 $oldsymbol{D} \in \mathbb{R}^{n imes d}$ a rectangular matrix with the singular values σ_i

Theorem

Any real matrix $A \in \mathbb{R}^{n \times d}$ can be decomposed as

$$\mathbf{A} = \sum_{i=1}^{\operatorname{rank}(\mathbf{A})} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$$

This can be equivalently written as:

$$A = UDV^{\top}$$

With: $\pmb{U} \in \mathbb{R}^{n \times n}$ and $\pmb{V} \in \mathbb{R}^{d \times d}$ orthogonal matrices

 $m{D} \in \mathbb{R}^{n imes d}$ a rectangular matrix with the singular values σ_i

Computationally, it is more efficient to define $U \in \mathbb{R}^{n \times r}$, $V \in \mathbb{R}^{d \times r}$ and $D \in \mathbb{R}^{r \times r}$

The SVD allow us to define a generalised notion of matrix inverse. Let $A \in \mathbb{R}^{n \times d}$ with SVD:

$$A = \sum_{i=1}^{\operatorname{rank}(A)} \sigma_i u_i v_i^{\top}$$

The pseudo-inverse $A^+ \in \mathbb{R}^{d \times n}$ is defined via its SVD:

$$A^{+} = \sum_{i=1}^{\operatorname{rank}(A)} \frac{1}{\sigma_{i}} v_{i} u_{i}^{\top}$$

The pseudo-inverse $A^+ \in \mathbb{R}^{d \times n}$ is defined via its SVD:

$$A^{+} = \sum_{i=1}^{\operatorname{rank}(A)} \frac{1}{\sigma_{i}} v_{i} u_{i}^{\top}$$

It satisfies:

$$AA^+A = A$$
 $A^+AA^+ = A^+$

$$(A^+)^+ = A$$

If A is invertible, $A^+ = A^{-1}$

If
$$A$$
 is full-rank,
$$A^{+} = \begin{cases} (A^{T}A)^{-1}A^{T} & \text{if } n \geq d \\ A^{T}(AA^{T})^{-1}A^{T} & \text{if } n < d \end{cases}$$

The pseudo-inverse is useful to define orthogonal projectors

For any real matrix $A \in \mathbb{R}^{n \times d}$:

$$A^+A \in \mathbb{R}^{d \times d}$$

$$AA^+ \in \mathbb{R}^{n \times n}$$

Define orthogonal projection operators in the column and row space of A, respectively.

The pseudo-inverse is useful to define orthogonal projectors

For any real matrix $A \in \mathbb{R}^{n \times d}$:

$$A^+A \in \mathbb{R}^{d \times d}$$

$$AA^+ \in \mathbb{R}^{n \times n}$$

Define orthogonal projection operators in the column and row space of A, respectively.

Similarly,

$$I_d - A^+A \in \mathbb{R}^{d \times d}$$

$$I_n - AA^+ \in \mathbb{R}^{n \times n}$$

Define orthogonal projection operators in the kernel of ${A\!\!\!\! A}$ and ${A\!\!\!\!\!\! A}^{\rm T}$, respectively.