```
ML Techniques for Detecting
{ Credit Card Fraud
  In Imbalanced Datasets
  < Alejandra Cuadros Rivas >
```





## 01. Introduction; { Challenges of fraud detection - Fraudulent transactions make up a very small percentage of all transactions - High class imbalance affects model performance Importance of reducing false negatives Protect financial assets (reduce financial losses) - Maintain system trust

## 02. Dataset Overview; {





- Features: Time, Amount, anonymized features (V1-V28).
- Preprocessing:
- Scaling: Standardized

Amount and Time.

- Balancing



## 04. Data Balancing Techniques; {



< Under-sampling: Low
precision and F1score.</pre>

SMOTE: Best recall.

Combination: Balanced

performance>

## 05. Unsupervised Learning; {

#### **Isolation Forest**

< Anomaly detection, useful for exploratory analysis.>



- Overlap between fraud and non-fraud transactions
- Challenge in separating the two classes and potentially contributing to false positives



- Reasonably separating transactions.
- Model's challenges in distinguishing.

n\_estimators=200, # Increase number of trees for better partitionin
max\_samples=0.8, # Use 80% of the data to fit each tree
contamination=0.002, # Approximate proportion of fraud transactions

## 05. Unsupervised Learning; {

#### Isolation Forest

| Comparison of Untuned vs Tuned Isolation Forest Metrics |               |             |
|---------------------------------------------------------|---------------|-------------|
| Metric                                                  | Untuned Model | Tuned Model |
| True Negatives                                          | 273961.0      | 283746.0    |
| False Positives                                         | 10354.0       | 569.0       |
| False Negatives                                         | 80.0          | 215.0       |
| True Positives                                          | 412.0         | 277.0       |
| Precision (Fraud)                                       | 0.04          | 0.33        |
| Recall (Fraud)                                          | 0.84          | 0.56        |
| F1-Score (Fraud)                                        | 0.07          | 0.41        |
| ROC-AUC                                                 | 0.047         | 0.046       |

< The tuned model strikes a
better balance, improving
overall fraud detection
reliability.>

### 06. Supervised Learning; { 6.1 Logistic Regression **ROC Curve - Logistic Regression** 1.0 -0.8 2.0 Coefficient 1.5 Rate 9.0 0.4 Lue 0.2

Logistic Regression (AUC = 0.9902)



- < Good performance on SMOTE balanced dataset>
- < High ROC-AUC (Area under receiver operating characteristic curve) effective separation of classes>

<4541 fraud transactions missed>

False Positive Rate



#### 06. Supervised Learning; { 6.3 Gradient Boosting **ROC Curve - Gradient Boosting** Top 10 Features - Gradient Boosting Importance 1.0 0.5 0.4 8.0 Rate Importance S Positive P Frue Pro-0.2 0.2 0.1 — Gradient Boosting (AUC = 0.9998) Feature False Positive Rate Confusion Matrix: [[56521 342] 256 5660711

- < Excellent performance
  on SMOTE balanced
  dataset>
- < More false positives
  and false negatives >
- < ROC curve indicates
  that the model excels at
  distinguishing between
  fraudulent and nonfraudulent transactions>

#### 06. Supervised Learning; { 6.4 Gradient Boosting and PCA ROC Curve - Gradient Boosting with PCA 1.0 -Full Features 1.0000 0.4 Lue PCA (17 Features) 0.9800 0.2 Gradient Boosting (PCA\_AUC = 0.9988) --- Random Guess

0.6

False Positive Rate

1.0



- < PCA improve computation time and reduce overfitting
  risk, but misclassifies more >
- < PCA demonstrates dimensionality reduction by
  achieving comparable results with fewer features>

[[56357 506] [ 1492 55371]]

Original Feature Count: 30

Reduced Feature Count: 17

Confusion Matrix (PCA):













# 09. Results and Conclusions; { 9.2 Balancing Techniques



- < **SMOTE**Precision (97%) and
  recall (92%)
  demonstrate excellent
  fraud detection
  capabilities >
- < SMOTE provides the
  best balance for fraud
  detection, while undersampling struggles due
  to information loss
  from reducing the
  majority class>

## 09. Results and Conclusions; {

9.3 Unsupervised Models vs. Supervised Models



- < Supervised models
  outperform anomaly
  detection methods >
- < Random Forest and
  Gradient Boosting show
  superior results,
  careful evaluation to
  avoid overfitting>

< SMOTE for balancing and Gradient Boosting for modeling may
provide the best trade-off between performance and reliability>

```
10. Future work; {
        1. Adding cost sensitive learning and testing with larger and
           more diverse datasets.
             1. Reduces false negatives by penalizing false
                misclassification.
             2. Complex and Time Consuming.
```

Thanks; Intelligent Data Analysis

BME.py

CreditCardFraud.html