Analysis of Variance

Vahid Partovi Nia

Chapitre 16

Links	2
History	3
Reference Book	5
Preparation	7
What is the question?	8
T-Test	13
T-Test Output	14
T-Test and ANOVA	15
What is SS? Variation!	16
What is df? Chi-square!	20
What is MS? A Division	23
What is Fisher's F? Another Division	25

Links

- $\ \square \ \ \texttt{http://probstat.ca/slide.pdf}$
- ☐ http://probstat.ca/note.pdf

2 / 28

History 3 / 28

Fisher

Ronald Fisher: British biologist and statistician.

He also invented Fisher's distribution, maximum likelihood, linear discriminant, and many other data analysis techniques. He is the father of modern statistics (along with Karl Pearson, Egon Pearson, and Jersey Neyman).

Reference Book

Table 16.3

N	Northeast	Midwest	South	West
	15	17	11	10
	10	12	7	12
	13	18	9	8
	14	13	13	7
	13	15		9
		12		
_	13.0	14.5	10.0	9.2

Table 16.4

Source	df	SS	MS = SS/df	F-statistic
Treatment	k - 1	SSTR	$MSTR = \frac{SSTR}{k - 1}$	$F = \frac{MSTR}{MSE}$
Error	n-k	SSE	$MSE = \frac{SSE}{n - k}$	
Total	n - 1	SST	•	

Table 16.5

Source	df	SS	MS = SS/df	F-statistic	
Treatment Error	3 16	97.5 82.3	32.500 5.144	6.32	
Total	19	179.8			

5 / 28

Roadmap

- □ Preparation
- □ What is SS (SSE, SSTR, SST)?
- □ What is df?
- \Box What is MS ?
- □ What is Fisher's F?
- □ When ANOVA does work?
- ☐ When ANOVA does not work?
- □ Wrong interpretations of ANOVA
- □ Related topics

Preparation 7 / 28

What	is the qu	estion?		
	k = 1	k = 2	k = 3	k = 4
	Northwest	Midwest	South	West
	15	17	11	10
	10	12	7	12
	13	18	9	8
	14	13	13	7
	13	15		9
		12		
$\overline{x}_k =$	13.0	14.5	10.0	9.2

8 / 28

Data Visualization

10 / 28

Testing Hypothesis

Question

$$\mu_{\text{Northwest}} = \mu_{\text{Midwest}} = \mu_{\text{South}} = \mu_{\text{West}}?$$

 H_0 : $\mu_k = \mu_{k'}$

 H_1 : $\exists k \neq k'$, such that $\mu_k \neq \mu_{k'}$

When do you reject H_0 ?

Simplify

Remember the independent T-Test.

-	Northwest	Midwest
	15	17
	10	12
	13	18
	14	13
	13	15
		12

12 / 28

T-Test

Remember the independent T-Test with equal variances.

T-Test

T-Test Output

```
Two Sample t-test

data: x by treat
t = 1.0783, df = 9, p-value = 0.309
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.646908 4.646908
sample estimates:
mean in group Midwest mean in group Northeast
14.5 13.0
```

14 / 28

T-Test and ANOVA

summary(aov(x~treat))

 Df
 Sum
 Sq
 Mean
 Sq
 F
 value
 Pr(>F)

 treat
 1
 6.14
 6.136
 1.163
 0.309

 Residuals
 9
 47.50
 5.278
 0.309

Simple Math

Variation of data around \overline{x}_1 : $\sum_i (x_{i1} - \overline{x}_1)^2$ Compute $\sum_{i=1}^4 x_{i1}^2 - \frac{(\sum_{i=1}^4 x_i)^2}{4} = 14.0$

Exercise: Variation of data around \overline{x}_2 : $\sum_i (x_{i2} - \overline{x}_2)^2$

Variation of data around \overline{x}_j : $\sum_i (x_{ij} - \overline{x}_j)^2$

1) SSE: Sum of Error $\sum_{j}\sum_{i}(x_{ij}-\overline{x}_{j})^{2}$ Compute

2) SST: Sum of total variation around \overline{x} : $\sum_{j}\sum_{i}(x_{ij}-\overline{x})^{2}$

Fisher's Decomposition:

$$SST = SSE + ?$$

Proof

$$\sum_{j} \sum_{i} (x_{ij} - \overline{x})^2 =$$

19 / 28

What is df? Chi-square!

20 / 28

Remember if

$$\begin{array}{ccc} x_1 & \sim & \chi^2_{\rm df_1} \\ x_2 & \sim & \chi^2_{\rm df_2} \end{array}$$

independently, then

$$x_1 + x_2 \sim \chi^2_{\mathrm{df}_1 + \mathrm{df}_2}$$

More details

Suppose $x_{ij} \sim N(\mu_j, \sigma^2)$

$$\frac{1}{\sigma^2} \sum_{i=1}^{n_1} (x_{i1} - \overline{x}_1)^2 \sim ?$$

$$\sum_{j=1}^{k} \frac{1}{\sigma^2} \sum_{i=1}^{n_1} (x_{i1} - \overline{x}_1)^2 \sim ?$$

Suppose $x_{ij} \sim N(\mu, \sigma^2)$

$$\frac{1}{\sigma^2} \sum_{j=1}^k \sum_{i=1}^{n_j} (x_{ij} - \overline{x})^2 \sim ?$$

22 / 28

What is MS? A Division

23 / 28

MS is simple

$$MS = SS/df$$

in ANOVA

$$F = \frac{MSTR}{MSE}$$

26 / 28

Fisher's Distribution

If X_1 is Chi-square with df_1 degrees of freedom, X_2 is another Chi-square with df_2 degrees of freedom independently. Then

$$F = \frac{X_1/\mathrm{df}_1}{X_2/\mathrm{df}_2}$$

is Fisher with numerator df_1 and denominator df_2 degrees of freedom, written as $F(df_1,df_2)$.

Exercise Page 723 Exercise 16.24 Exercise 16.25 Challenge If T is student-t with n degrees of freedom, what is the distribution of T^2 ? $F(1,\infty)$ resembles which distribution?