

Penerapan Invers Matriks 3x3 untuk Menyelesaikan Sistem Persamaan Linear Tiga Variabel (SPLTV)

TEORI:

Jika A adalah matriks m x n yang dapat dibalik (invers), maka untuk setiap matriks B yang berukuran n x 1, sistem persamaan A.X = B mempunyai persis satu pemecahan, yakni X = A⁻¹.B.

Untuk dapat melakukan penyelesaian Sistem Persamaan Linear (SPL) dengan matrik ini, kita harus sudah menguasai materi tentang Invers Matriks.

CONTOH KASUS

Diketahui Sistem Persamaan Linear Tiga Variabel (SPLTV) sebagai berikut:

$$X_1$$
 + $2X_2$ + $3X_3$ = 5
 $2X_1$ + $5X_2$ + $3X_3$ = 3
 X_1 + $8X_3$ = 17

Tentukan:

Bentuk matriks yang ekuivalen dengan SPLTV tersebut!

Pemecahan SPLTV tersebut!

$$X_{1}$$
 + $2X_{2}$ + $3X_{3}$ = 5
 $2X_{1}$ + $5X_{2}$ + $3X_{3}$ = 3
 X_{1} + $8X_{3}$ = 17

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \\ 17 \end{bmatrix}$$

Jawaban bentuk matriks yang sesuai dengan SPLTV:

Penyelesaian SPLTV dari Contoh Kasus

$$A.X = B$$
 $A^{-1}.A.X = A^{-1}.B$
 $I.X = A^{-1}.B$
 $X = A^{-1}.B$

Penyelesaian SPLTV dari Contoh Kasus Untuk memperoleh matriks A-1 digunakan definisi:

$$A^{-1} = \frac{1}{Det.A} Adj.A$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$

Menentukan nilai determinan dari matriks A dalam Contoh Kasus.

Det.
$$A = (1)(5)(8) + (2)(3)(1) + (3)(2)(0) - (3)(5)(1) - (1)(3)(0) - (2)(2)(8)$$

Det. $A = (40) + (6) + (0) - (15) - (0) - (32)$
Det. $A = -1$

$$A = \begin{bmatrix} 2 & 6 & 1 \\ 4 & 2 & 0 \\ 1 & 3 & 1 \end{bmatrix}$$

Menentukan minor-minor dari matriks A.

Persiapan Mencari Minor Matriks 3x3

			2	5	3	2	5	3	2	5	3	
[1	2	3	1	0	8	1	0	8	_1	0	8_	
			1	2	3	1	2	3	$\lceil 1 \rceil$	2	3	
2	5	3	2	5	3	2	5	3	2	5	3	
1	\bigcap	8	1 2 1	0	8	1	0	8	1	0	8	
	U	0	$\lceil 1 \rceil$	2	3	1	2	3	$\lceil 1 \rceil$	2	3	
			2	5	3	2	5	3	2	5	3	
			1	0	8	1	0	8	1	2 5 0	8	

"be smart, be a professional, and be a master"

1 2 3 1 2 3 1 2 3

Minor 2
$$\begin{vmatrix} 2 & 3 \\ 1 & 8 \end{vmatrix} = (2)(8) - (3)(1)$$

$$= (16) - (3) = 13$$

Minor 3
$$\begin{vmatrix} 2 & 5 \\ 1 & 0 \end{vmatrix} = (2)(0) - (5)(1)$$

$$= (0) - (5) = -5$$

Minor 2
$$\begin{vmatrix} 2 & 3 \\ 0 & 8 \end{vmatrix} = (2)(8) - (3)(0)$$

$$= (16) - (0) = 16$$

Minor 3
$$\begin{vmatrix} 1 & 2 \\ 1 & 0 \end{vmatrix} = (1)(0) - (2)(1)$$

$$= (0) - (2) = -2$$

Minor 1
$$\begin{vmatrix} 2 & 3 \\ 5 & 3 \end{vmatrix} = (2)(3) - (3)(5)$$

$$= (6) - (15) = -9$$

Minor 0
$$\begin{vmatrix} 1 & 3 \\ 2 & 3 \end{vmatrix} = (1)(3) - (3)(2)$$

$$= (3) - (6) = -3$$

Minor 8
$$\begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} = (1)(5) - (2)(2)$$

$$= (5) - (4) = 1$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$

Minor
$$1 = 40 - 0 = 40$$

Minor
$$2 = 16 - 3 = 13$$

Minor
$$3 = 0 - 5 = -5$$

Minor
$$2 = 16 - 0 = 16$$

Minor
$$5 = 8 - 3 = 5$$

Minor
$$3 = 0 - 2 = -2$$

Minor
$$1 = 6 - 15 = -9$$

Minor
$$0 = 3 - 6 = -3$$

Minor
$$8 = 5 - 4 = 1$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$

Menentukan matriks kofaktor dari matriks A.

Matriks Kofaktor dari Matriks A

$$\begin{bmatrix} (+)(40) & (-)(13) & (+)(-5) \\ (-)(16) & (+)(5) & (-)(-2) \\ (+)(-9) & (-)(-3) & (+)(1) \end{bmatrix}$$

Matriks Kofaktor dari Matriks A

$$\begin{bmatrix} 40 & -13 & -5 \\ -16 & 5 & 2 \\ -9 & 3 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$

Menentukan matriks adjoin dari matriks A.

Menentukan Adjoin dari Matriks A

$$\begin{bmatrix} 40 & -13 & -5 \\ -16 & 5 & 2 \\ -9 & 3 & 1 \end{bmatrix} \qquad \begin{bmatrix} 40 & -16 & -9 \\ -13 & 5 & 3 \\ -5 & 2 & 1 \end{bmatrix}$$

Matriks Kofaktor dari Matriks A

Adjoin dari Matriks A

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$

Menentukan kebalikan (invers) dari matriks A.

Invers dari Matriks A Dilambangkan dengan A-1

$$A^{-1} = \frac{1}{Det.A} Adj.A$$

Invers dari Matriks A Dilambangkan dengan A-1

(Dari jawaban sebelumnya diketahui determinan dari matriks A sebesar -1)

$$A^{-1} = \frac{1}{-1} \begin{bmatrix} 40 & -16 & -9 \\ -13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix}$$

Invers dari Matriks A Dilambangkan dengan A-1

$$A^{-1} = \begin{bmatrix} 40/-1 & -16/-1 & -9/-1 \\ -13/-1 & 5/-1 & 3/-1 \\ -5/-1 & 2/-1 & 1/-1 \end{bmatrix}$$

Invers dari Matriks A Dilambangkan dengan A-1

$$A^{-1} = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix}$$

Penyelesaian SPLTV dari Contoh Kasus

$$X = A^{-1}.B$$

Penyelesaian SPLTV dari Contoh Kasus

$$\begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \\ 17 \end{bmatrix}$$

Penyelesaian SPLTV dari Contoh Kasus

$$\begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 & 3 \\ 5 & -2 & -1 & 17 \end{bmatrix}$$

$$X_1 = (-40)(5) + (16)(3) + (9)(17)$$

 $X_1 = -200 + 48 + 153 = 1$

Penyelesaian SPLTV dari Contoh Kasus

$$\begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \\ 17 \end{bmatrix}$$

$$X_2 = (13)(5) + (-5)(3) + (-3)(17)$$

 $X_2 = 65 - 15 - 51 = -1$

Penyelesaian SPLTV dari Contoh Kasus

$$\begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \\ 17 \end{bmatrix}$$

$$X_3 = (5)(5) + (-2)(3) + (-1)(17)$$

 $X_3 = 25 - 6 - 17 = 2$

Penyelesaian SPLTV dari Contoh Kasus

$$X = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$

