Data Mining:

Concepts and Techniques

- Chapter 1 —
- Introduction —

Jiawei Han and Micheline Kamber

Department of Computer Science

University of Illinois at Urbana-Champaign

©2006 Jiawei Han and Micheline Kamber. All rights reserved.

Course Structures at SCE

- Intro. to data mining
- Data mining: Principles and algorithms
- Project (40%)
- Final exam (50%)
- Participation in lessons (10%)

Chapter 1. Introduction

- Motivation: Why data mining?
- What is data mining?
- Data Mining: On what kind of data?
- Data mining functionality
- Top-10 most popular data mining algorithms
- Major issues in data mining

Why Data Mining?

- The Explosive Growth of Data: from terabytes to petabytes
 - Data collection and data availability
 - Automated data collection tools, database systems, Web, computerized society
 - Major sources of abundant data
 - Business: Web, e-commerce, transactions, stocks, ...
 - Science: Remote sensing, bioinformatics, scientific simulation, ...
 - Society and everyone: news, YouTube
- We are drowning in data, but starving for knowledge!
- "Necessity is the mother of invention"—Data mining—Automated analysis of massive data sets

Evolution of Database Technology

1960s:

- Data collection, database creation, IMS and network DBMS
- 1970s:
 - Relational data model, relational DBMS implementation
- 1980s:
 - RDBMS, advanced data models (extended-relational, OO, deductive, etc.)
 - Application-oriented DBMS (spatial, scientific, engineering, etc.)
- 1990s:
 - Data mining, data warehousing, multimedia databases, and Web databases
- 2000s
 - Stream data management and mining
 - Data mining and its applications
 - Web technology (XML, data integration) and global information systems
 - Big/Small Data
 - **Business Intelligence**
 - Schema Matching, etc.

What Is Data Mining?

- Data mining (knowledge discovery from data)
 - Extraction of interesting (<u>non-trivial</u>, <u>implicit</u>, <u>previously</u>
 <u>unknown</u> and <u>potentially useful</u>) patterns or knowledge from huge amount of data
 - Data mining: a misnomer?
- Alternative names
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, information harvesting, business intelligence, etc.
- Watch out: Is everything "data mining"?
 - Simple search and query processing
 - (Deductive) expert systems

Knowledge Discovery (KDD) Process

Data Mining and Business Intelligence

Data Mining: Confluence of Multiple Disciplines

Statistics

- A statistical model is a set of mathematical functions that describe the behavior
 - of the objects in a target class
 - in terms of random variables and their associated probability distributions.
- Statistical models are widely used to model data
 - mining various patterns from data
 - understanding the underlying mechanisms generating and affecting the patterns.
- Also is used to verify data mining results (statistical hypothesis test)

Machine Learning

- Machine learning investigates how computers can learn based on data.
 - Supervised learning (classification) labeled data
 - Unsupervised learning (clustering) unlabeled data
 - Semi-supervised learning both
 - Active learning interactive (with user)

Semi-supervised learning

Database systems

- DB systems research focuses on the creation, maintenance, and use of databases.
 - query languages
 - query processing
 - optimization methods
 - data storage
 - indexing and accessing methods
- Goal high scalability in processing very large, relatively structured data sets.

Challenges of DM

- Tremendous **amount** of data
 - Algorithms must be highly scalable to handle such as tera-bytes of data
- **High-dimensionality** of data
 - Micro-array may have tens of thousands of dimensions
- High **complexity** of data
 - Data streams (news, sensor data)
 - Time-series data, temporal data, sequence data
 - Structure data, graphs, social networks and multi-linked data
 - Heterogeneous databases and legacy databases
 - Multimedia, text and Web data
 - Software programs, scientific simulations
- New and sophisticated applications

Multi-Dimensional View of Data Mining

Data to be mined

 Relational, data warehouse, transactional, stream, object-oriented/relational, active, spatial, time-series, text, multi-media, heterogeneous, legacy, WWW

Knowledge to be mined

- Characterization, association, classification, clustering, trend/deviation, outlier analysis, etc.
- Multiple/integrated functions and mining at multiple levels

Techniques utilized

 Database-oriented, data warehouse (OLAP), machine learning, statistics, visualization, etc.

Applications adapted

 Telecommunication, banking, fraud/cheating analysis, bio-data mining, stock market analysis, text mining, Web mining, etc.

Data Mining: Classification Schemes

- General functionality
 - Descriptive data mining
 - Predictive data mining
- Different views lead to different classifications
 - Data view: Kinds of data to be mined
 - Knowledge view: Kinds of knowledge to be discovered
 - Method view: Kinds of techniques utilized
 - Application view: Kinds of applications adapted

Data Mining: On What Kinds of Data?

- Database-oriented data sets and applications
 - Relational database, data warehouse, transactional database
- Advanced data sets and advanced applications
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data (incl. bio-sequences)
 - Structure data, graphs, social networks and multi-linked data
 - Object-relational databases
 - Heterogeneous databases and legacy databases
 - Spatial data
 - Multimedia database
 - Text databases
 - The World-Wide Web

Common Data Mining Tasks

- Classification
 - Credit approval
 - Product recommendation
 - Medical diagnosis
- Prediction / Regression
 - Stock price forecasting
- Clustering
 - Customer segmentation
 - Organization of

- Association Rules
 - Retail analysis
- Sequencing Rules
 - Preventive maintenance
 - Analysis of patient records
- Outlier analysis
 - Anomaly detection
- Feature Selection
 - Quality Assurance

18

Lecture No. 1

What is not "Data Mining"?

- Database Management Systems (DBMS)
- Data Warehouses (DWH)
- Simple search and query processing
- Expert (Rule-based) Systems
- Statistical Hypothesis Testing (e.g., *t-test*)

Lecture No. 1

Data Mining Functionalities

- Multidimensional concept description: Characterization and discrimination
 - Generalize, summarize, and contrast data characteristics, e.g., dry vs. wet regions (charts)
- Frequent patterns, association, correlation vs. causality
 - Diaper → Beer [0.5%, 75%] (Correlation or causality?)
- Classification and prediction
 - Construct models (functions) that describe and distinguish classes or concepts for future prediction
 - E.g., classify countries based on (climate), or classify cars based on (gas mileage)
 - Predict some unknown or missing numerical values

Correlation or causality?

Assoc. rules:

$$age(X, "20..29") \land income(X, "40K..49K") \Rightarrow buys(X, "laptop")$$

 $[support = 2\%, confidence = 60\%].$

Classification:

```
age(X, \text{"youth"}) AND income(X, \text{"high"}) \longrightarrow class(X, \text{"A"})
age(X, \text{"youth"}) AND income(X, \text{"low"}) \longrightarrow class(X, \text{"B"})
age(X, \text{"middle_aged"}) \longrightarrow class(X, \text{"C"})
age(X, \text{"senior"}) \longrightarrow class(X, \text{"C"})
```


A classification model can be represented in various forms: (a) IF-THEN rules, (b) a decision tree, or (c) a neural network.

Data Mining Functionalities (2)

Cluster analysis

- Class label is unknown: Group data to form new classes, e.g., cluster houses to find distribution patterns
- Maximizing intra-class similarity & minimizing interclass similarity

Outlier analysis

- Outlier: Data object that does not comply with the general behavior of the data
- Noise or exception? Useful in fraud detection, rare events analysis
- Trend and evolution analysis
 - Trend and deviation: e.g., regression analysis
 - Sequential pattern mining: e.g., digital camera \rightarrow large SD memory
 - Periodicity analysis
 - Similarity-based analysis
- Other pattern-directed or statistical analyses

Clustering

A 2-D plot of customer data with respect to customer locations in a city, showing three data clusters.

Top-10 Most Popular DM Algorithms: 18 Identified Candidates (I)

Classification

- #1. **C4.5**: Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann., 1993.
- #2. CART: L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth, 1984.
- #3. K Nearest Neighbours (kNN): Hastie, T. and Tibshirani, R. 1996. Discriminant Adaptive Nearest Neighbor Classification. TPAMI. 18(6)
- #4. **Naive Bayes** Hand, D.J., Yu, K., 2001. Idiot's Bayes: Not So Stupid After All? Internat. Statist. Rev. 69, 385-398.

Statistical Learning

- #5. SVM: Vapnik, V. N. 1995. The Nature of Statistical Learning Theory. Springer-Verlag.
- #6. EM: McLachlan, G. and Peel, D. (2000). Finite Mixture Models. J. Wiley, New York. Association Analysis
- #7. Apriori: Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining Association Rules. In VLDB '94.
- #8. **FP-Tree**: Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns without candidate generation. In SIGMOD '00.

The 18 Identified Candidates (II)

Link Mining

- #9. **PageRank**: Brin, S. and Page, L. 1998. The anatomy of a large-scale hypertextual Web search engine. In WWW-7, 1998.
- #10. **HITS**: Kleinberg, J. M. 1998. Authoritative sources in a hyperlinked environment. SODA, 1998.

Clustering

- #11. K-Means: MacQueen, J. B., Some methods for classification and analysis of multivariate observations, in Proc. 5th Berkeley Symp. Mathematical Statistics and Probability, 1967.
- #12. BIRCH: Zhang, T., Ramakrishnan, R., and Livny, M. 1996. BIRCH: an efficient data clustering method for very large databases. In SIGMOD '96.

Bagging and Boosting

#13. AdaBoost: Freund, Y. and Schapire, R. E. 1997. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 1 (Aug. 1997), 119-139.

The 18 Identified Candidates (III)

Sequential Patterns

- #14. GSP: Srikant, R. and Agrawal, R. 1996. **Mining Sequential Patterns**: Generalizations and Performance Improvements. In Proceedings of the 5th International Conference on Extending Database Technology, 1996.
- #15. PrefixSpan: J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal and M-C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. In ICDE '01.

Integrated Mining

#16. CBA: Liu, B., Hsu, W. and Ma, Y. M. Integrating classification and association rule mining. KDD-98.

Rough Sets

#17. **Finding reduct**: Zdzislaw Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Norwell, MA, 1992

Graph Mining

#18. **gSpan**: Yan, X. and Han, J. 2002. gSpan: Graph-Based Substructure Pattern Mining. In ICDM '02.

Top-10 Algorithm Finally Selected at ICDM'06

- **#1: C4.5 (61 votes)**
- **#2: K-Means (60 votes)**
- **#3: SVM (58 votes)**
- #4: Apriori (52 votes)
- **#5: EM (48 votes)**
- #6: PageRank (46 votes)
- **#7: AdaBoost (45 votes)**
- **#7: kNN (45 votes)**
- **#7: Naive Bayes (45 votes)**
- **#10: CART (34 votes)**

Major Issues in Data Mining

Mining methodology

- Mining different kinds of knowledge from diverse data types, e.g., bio, stream,
 Web
- **Performance**: efficiency, effectiveness, and scalability
- **Pattern evaluation**: the interestingness problem
- Incorporation of background knowledge
- Handling noise and incomplete data
- Parallel, distributed and incremental mining methods
- Integration of the discovered knowledge with existing one: knowledge fusion

<u>User interaction</u>

- Data mining query languages and ad-hoc mining
- Expression and visualization of data mining results
- Interactive mining of knowledge at multiple levels of abstraction
- Applications and social impacts
 - Domain-specific data mining
 - Protection of data security, integrity, and privacy

A Brief History of Data Mining Society

- 1989 IJCAI Workshop on Knowledge Discovery in Databases
 - Knowledge Discovery in Databases (G. Piatetsky-Shapiro and W. Frawley, 1991)
- 1991-1994 Workshops on Knowledge Discovery in Databases
 - Advances in Knowledge Discovery and Data Mining (U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, 1996)
- 1995-1998 International Conferences on Knowledge Discovery in Databases and **Data Mining** (KDD'95-98)
 - Journal of Data Mining and Knowledge Discovery (1997)
- ACM SIGKDD conferences since 1998 and SIGKDD Explorations
- More conferences on data mining
 - PAKDD (1997), PKDD (1997), SIAM-Data Mining (2001), (IEEE) ICDM (2001), etc.
- ACM Transactions on KDD starting in 2007

Conferences and Journals on Data Mining

KDD Conferences

- ACM SIGKDD Int. Conf. on Knowledge Discovery in Databases and Data Mining (KDD)
- SIAM Data Mining Conf. (SDM)
- (IEEE) Int. Conf. on Data Mining (ICDM)
- Conf. on Principles and practices of Knowledge Discovery and Data Mining (PKDD)
- Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD)

- Other related conferences
 - ACM SIGMOD
 - VLDB
 - (IEEE) ICDE
 - WWW, SIGIR
 - ICML, CVPR, NIPS

Journals

- Data Mining and Knowledge Discovery (DAMI or DMKD)
- IEEE Trans. On Knowledge and Data Eng. (TKDE)
- KDD Explorations
- ACM Trans. on KDD

Recommended Reference Books

- S. Chakrabarti. Mining the Web: Statistical Analysis of Hypertex and Semi-Structured Data. Morgan Kaufmann, 2002
- R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2ed., Wiley-Interscience, 2000
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley & Sons, 2003
- U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996
- U. Fayyad, G. Grinstein, and A. Wierse, Information Visualization in Data Mining and Knowledge Discovery,
 Morgan Kaufmann, 2001
- J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2nd ed.,
 2006
- D. J. Hand, H. Mannila, and P. Smyth, Principles of Data Mining, MIT Press, 2001
- T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer-Verlag, 2001
- B. Liu, Web Data Mining, Springer 2006.
- T. M. Mitchell, Machine Learning, McGraw Hill, 1997
- G. Piatetsky-Shapiro and W. J. Frawley. Knowledge Discovery in Databases. AAAI/MIT Press, 1991
- P.-N. Tan, M. Steinbach and V. Kumar, Introduction to Data Mining, Wiley, 2005
- S. M. Weiss and N. Indurkhya, Predictive Data Mining, Morgan Kaufmann, 1998
- I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann, 2nd ed. 2005

Summary

- Data mining: Discovering interesting patterns from large amounts of data
- A natural evolution of database technology, in great demand, with wide applications
- A KDD process includes data cleaning, data integration, data selection, transformation, data mining, pattern evaluation, and knowledge presentation
- Mining can be performed in a variety of information repositories
- Data mining functionalities: characterization, discrimination, association, classification, clustering, outlier and trend analysis, etc.

Why Data Mining?—Potential Applications

- Data analysis and decision support
 - Market analysis and management
 - Target marketing, customer relationship management (CRM), market basket analysis, cross selling, market segmentation
 - Risk analysis and management
 - Forecasting, customer retention, improved underwriting, quality control, competitive analysis
 - Fraud detection and detection of unusual patterns (outliers)
- Other Applications
 - Text mining (news group, email, documents) and Web mining
 - Stream data mining
 - Bioinformatics and bio-data analysis

Ex. 1: Market Analysis and Management

- Where does the data come from?—Credit card transactions, loyalty cards, discount coupons, customer complaint calls, plus (public) lifestyle studies
- Target marketing
 - Find clusters of "model" customers who share the same characteristics: interest, income level, spending habits, etc.
 - Determine customer purchasing patterns over time
- Cross-market analysis—Find associations/co-relations between product sales,
 & predict based on such association
- Customer profiling—What types of customers buy what products (clustering or classification)
- Customer requirement analysis
 - Identify the best products for different groups of customers
 - Predict what factors will attract new customers
- Provision of summary information
 - Multidimensional summary reports
 - Statistical summary information (data central tendency and variation)

KDD Process: Several Key Steps

- Learning the application domain
 - relevant prior knowledge and goals of application
- Creating a target data set: data selection
- Data cleaning and preprocessing: (may take 60% of effort!)
- Data reduction and transformation
 - Find useful features, dimensionality/variable reduction, invariant representation
- Choosing functions of data mining
 - summarization, classification, regression, association, clustering
- Choosing the mining algorithm(s)
- Data mining: search for patterns of interest
- Pattern evaluation and knowledge presentation
 - visualization, transformation, removing redundant patterns, etc.
- Use of discovered knowledge

Are All the "Discovered" Patterns Interesting?

- Data mining may generate thousands of patterns: Not all of them are interesting
 - Suggested approach: Human-centered, query-based, focused mining

Interestingness measures

 A pattern is interesting if it is <u>easily understood</u> by humans, <u>valid</u> on new or test data with some degree of <u>certainty</u>, <u>potentially useful</u>, <u>novel</u>, <u>or</u> <u>validates some hypothesis</u> that a user seeks to confirm

Objective vs. subjective interestingness measures

- Objective: based on statistics and structures of patterns, e.g., support, confidence, etc.
- <u>Subjective:</u> based on <u>user's belief</u> in the data, e.g., unexpectedness, novelty, actionability, etc.

Find All and Only Interesting Patterns?

- Find all the interesting patterns: Completeness
 - Can a data mining system find <u>all</u> the interesting patterns? Do we need to find <u>all</u> of the interesting patterns?
 - Heuristic vs. exhaustive search
 - Association vs. classification vs. clustering
- Search for only interesting patterns: An optimization problem
 - Can a data mining system find only the interesting patterns?
 - Approaches
 - First general all the patterns and then filter out the uninteresting ones
 - Generate only the interesting patterns—mining query optimization

Why Data Mining Query Language?

- Automated vs. query-driven?
 - Finding all the patterns autonomously in a database?—unrealistic because the patterns could be too many but uninteresting
- Data mining should be an interactive process
 - User directs what to be mined
- Users must be provided with a set of primitives to be used to communicate with the data mining system
- Incorporating these primitives in a data mining query language
 - More flexible user interaction
 - Foundation for design of graphical user interface
 - Standardization of data mining industry and practice

Primitives that Define a Data Mining Task

Task-relevant data

- Database or data warehouse name
- Database tables or data warehouse cubes
- Condition for data selection
- Relevant attributes or dimensions
- Data grouping criteria
- Type of knowledge to be mined
 - Characterization, discrimination, association, classification, prediction, clustering, outlier analysis, other data mining tasks
- Background knowledge
- Pattern interestingness measurements
- Visualization/presentation of discovered patterns

Primitive 3: Background Knowledge

- A typical kind of background knowledge: Concept hierarchies
- Schema hierarchy
 - E.g., street < city < province_or_state < country</p>
- Set-grouping hierarchy
 - E.g., {20-39} = young, {40-59} = middle_aged
- Operation-derived hierarchy
 - email address: hagonzal@cs.uiuc.edu
 login-name < department < university < country

Primitive 4: Pattern Interestingness Measure

- Simplicity
 - e.g., (association) rule length, (decision) tree size
- Certainty

e.g., confidence, P(A|B) = #(A and B)/#(B), classification reliability or accuracy, certainty factor, rule strength, rule quality, discriminating weight, etc.

Utility

potential usefulness, e.g., support (association), noise threshold (description)

Novelty

not previously known, surprising (used to remove redundant rules, e.g., Illinois vs. Champaign rule implication support ratio)

Primitive 5: Presentation of Discovered Patterns

- Different backgrounds/usages may require different forms of representation
 - E.g., rules, tables, crosstabs, pie/bar chart, etc.
- Concept hierarchy is also important
 - Discovered knowledge might be more understandable when represented at high level of abstraction
 - Interactive drill up/down, pivoting, slicing and dicing provide different perspectives to data
- Different kinds of knowledge require different representation: association, classification, clustering, etc.

Architecture: Typical Data Mining System

