位相空間まとめノート

Toshi2019

2024年1月21日*

位相空間論で調べたことをまとめるノート.

記号など

• X を集合とする. $\mathbb{C}_X A$ で X の部分集合 A の補集合を表す. X が明らかなときは $\mathbb{C} A$ ともかく. X-A とか X-A とか $X\setminus A$ ともかく.

1 局所コンパクト

定義 1.1. X をハウスドルフ空間とする.

- 1. X の部分集合 $A \subset X$ について,閉包 \bar{A} がコンパクトであるとき,A は相対コンパクトであるという.
- 2. 任意の点 $x \in X$ に対して、x の相対コンパクトな開近傍が存在するとき、X は局所コンパクト空間であるという.

定義 1.2. X を局所コンパクト空間とする。X が無限遠点で可算 (countable at infinity) であるとは、X が可算個のコンパクト集合の合併であることをいう。

例 1.3. 位相多様体 X は局所コンパクトである.

証明. $x \in X$ の近傍 U_x でユークリッド空間の開集合 U_x' と同相なものが存在する. U_x と U_x' の間の同相写像を $\varphi \colon U_x \to U_x'$ とする. $\varphi(x)$ を中心とする開球 B_x で U_x' に含まれるものが存在する. この B_x に対し, $\overline{B_x}$ はコンパクトである. したがって, $\varphi^{-1}\left(\overline{B_x}\right) = \overline{\varphi^{-1}(B_x)}$ はコンパクトである. すなわち $\varphi^{-1}(B_x)$ は x の相対コンパクトな開近傍である.

^{* 2023/09/21} 作成開始

2 パラコンパクト性

定義 2.1 (パラコンパクト). ハウスドルフ空間 X がパラコンパクトであるとは、任意の開被覆が 局所有限な細分をもつことをいう.

定義 2.2 (第 2 可算). 位相空間 X が第 2 可算であるとは、開集合の基底で可算集合であるものが存在することをいう.

定義 2.3 $(\sigma$ コンパクト). 位相空間 X が σ コンパクトであるとは、コンパクト集合の列 $(U_n)_{n \in \mathbb{N}}$ で X の被覆であるものが存在することをいう.

命題 **2.4.** 位相多様体に対して次の条件 (1)-(3) は同値である.

- (1) 第2可算である.
- (2) リンデレーフである.
- (3) σ コンパクトである.

参考文献

[KS90] Masaki Kashiwara, Pierre Schapira, *Sheaves on Manifolds*, Grundlehren der Mathematischen Wissenschaften, 292, Springer, 1990.

[KS06] Masaki Kashiwara, Pierre Schapira, Categories and Sheaves, Grundlehren der Mathematischen Wissenschaften, 332, Springer, 2006.

[Mat65] 松島与三,多様体入門,裳華房,1965.

[Sai09] 斎藤毅, 集合と位相, 東京大学出版会, 2009.

第2可算, σ コンパクトの定義と、無限遠点で可算との同値性について、

[Sh16] 志甫淳, 層とホモロジー代数, 共立出版, 2016.