Problem 6.1

a) From Table 29:

the minimal polynomial of
$$\beta = \alpha^7$$
 is $x^4 + x^3 + 1$,

$$\beta = \alpha^{14} - \alpha^{14} - \alpha^{13} - \alpha^{14} + \alpha^{$$

$$g_{o}(x) : LCM \left\{ x^{4} + x^{3} + 1, x^{4} + x^{3} + x^{7} + x + 1 \right\}$$

$$= \left(x^{4} + x^{3} + 1 \right) \left(x^{4} + x^{3} + x^{7} + x + 1 \right)$$

$$= x^{8} + x^{4} + x^{2} + x + 1$$

b)
$$f(x) = \frac{x^{15}}{g(x)} = \frac{(x_{+1})(x^{4}_{+}x_{+1})(x^{4}_{+}x^{3}_{+}x_{+1})(x^{5}_{+}x_{+1})(x^{4}_{+}x^{3}_{+}x_{+1})}{(x^{4}_{+}x^{3}_{+}x_{+1})(x^{4}_{+}x^{3}_{+}x^{3}_{+}x^{3}_{+}x_{+1})}$$

$$= (x_{+1})(x^{4}_{+}x_{+1})(x^{2}_{+}x_{+1}) = x^{7}_{+}x^{3}_{+}x_{+1}$$

$$h(x) = x^{7}_{+}f(x^{-1}) = x^{7}_{+}x^{6}_{+}x^{4}_{+}$$

From (4.6) in Lecture notes 4 (which has a typo: Gshould be H)

We can also obtain a parity check matrix as in Example 6.2 in textbook by replacing elements in the matrix

$$\begin{bmatrix} 1 & \beta & \beta^{2} & \beta^{3} & \beta^{4} & \beta^{5} & \beta^{6} & \beta^{7} & \beta^{8} & \beta^{9} & \beta^{10} & \beta^{12} & \beta^{13} & \beta^{44} \\ 1 & \beta^{3} & \beta^{6} & \beta^{9} & \beta^{12} & \beta^{15} & \beta^{18} & \beta^{21} & \beta^{24} & \beta^{27} & \beta^{30} & \beta^{33} & \beta^{36} & \beta^{39} & \beta^{42} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \lambda^{7} & \lambda^{14} & \lambda^{6} & \lambda^{13} & \lambda^{7} & \lambda^{$$

by its binary vector representation as a column vector of length 4. This gives the pairity check matrix

(Actually, by elementary run operations, one can obtain the first parity-check matrix from this matrix)

c)
$$8(x) = x^8 8(x^{-1})$$

Problem 6.2

For each = 1,00,30, we determine the degree of \$ (x), the minimal polynomial of &. This degree is the number of Conjugates of a

conjugates

d, d, d, d, d, d, d, Q3, Q6, Q12, Q24, Q17 ds do d20 d9, d18 d d'4, d'8, d 25 d'9 d', d2, d13, d26, d21 d d, d, d, d, d, d23

degree of minimal polynomial

5
5
5
5
5
5

Ł	g(x) = LCM (\$\phi(x), \phi_3(x), \ldots, \phi(x)	degree of g(x)
1	φ,(%)	5
2	LCM pixi, pg(xi)	10
3	LCM (\$(x), \$(x), \$p_5(x))	15
4	TCW (\$(x), \$1x1, \$1x1, \$1x1)	20
5	remonio (x) . 42(x) . 4(x) . 4(x) . 4(x)	20
6	LCM (\$, (X), \$, (X), 000, \$, (X)]	25
7	L(M(\$18), \$18), m, \$P3(1)	25
8	LEM (& (N), O (N), O, O, O (XI)	30
9	LCM ((X), 43(X),, 0, 7(X)	30
		9
th .	•	ia l
0	9	
15	LCH (ф(x), 43(x),, ф (x))	30

Since
$$\phi_{13}(x) = \phi_{1}(x)$$

Since $\phi_{13}(x) = \phi_{11}(x)$
Since $\phi_{17}(x) = \phi_{3}(x)$

Since
$$\phi_{17}(\chi) = \phi_3(\chi)$$

$\frac{\text{Problem } 6.3}{r_1(x) = x^7 + x^{30}}$

Syndrome Computations:

$$S_{1} = r_{1}(x) = d^{7} + d^{30} = d^{19}$$

$$S_{2} = S_{1}^{2} = d^{7}$$

$$S_{3} = r_{1}(d^{3}) = d^{21} + d^{30} = d^{12}$$

$$S_{4} = S_{2}^{2} = d^{4}$$

Berlekamp-Masky Algorithm:

<u></u>	O (N)	du	9 ju	let
-1	1	Ť	0	
0	1	2 19	O	*
1	1+ d 19 X	0	1	(p=-1)
2	1 + a 19 X	d 25	1	
3	1+ 219x + 26x2	0	2	(P=0)
4	1+ × 19 X + × 6 X2	-	-	,

Error locator polynomial of(x) = x6x2 + x6x2 + 1.

By substituting x = x1, 1 = 0,1,..., 30, the voots of 6(x) are found to be x and x24

Error location numbers: $d^{-1} = d^{30}$ and $d^{-24} = d^{7}$ $e(x) = x^{7} + x^{30}$ V(x) = r(x) + e(x) = 0

$$r_2(X) = 1 + X^{17} + X^{28}$$

Syndrome Computations:

$$S_{1} = r_{2}(\alpha) = 1 + \alpha^{17} + \alpha^{28} = \alpha^{2}$$

$$S_{2} = S_{1}^{2} = \alpha^{4}$$

$$S_{3} = r_{2}(\alpha^{3}) = 1 + \alpha^{51} + \alpha^{4} = \alpha^{21}$$

$$S_{4} = S_{2}^{2} = \alpha^{8}$$

Berlekamp-Massey Algorithm:

<i>y</i> ~	o(r)(x)	dy	l p	
- 1	L	1	0	
0	I	d	O	
1	$1 + \alpha^2 X$	O	ı	(9=-1)
2	1 + 2 X	× 30	ī	
3	1+ 2 X + 2 28 X2	O	2	(8=0)
3		9		,
4	1 + x2 X + x28 X2		_	

Error locator polynomial: $\sigma(X) = \alpha^{28} X^2 + \alpha^2 X + 1$.

By substituting $X = \alpha^2$, i = 0, 1, ..., 30, no roots for $\sigma(X)$ are found. Hence, the decoder fails. The reason is that there are more than 2 errors while the decoder can correct only 2 errors.

Problem 6.4

Let n = l(2t+1). We will show that $V(X) = \frac{X^n+1}{X^l+1} = 1+ X^l + X^{2l} + \dots + X^{2l}$ is a code polynomial. Since α is a primitive element in $GF(z^m)$, where $n = z^m-1$, if follows that $\alpha = 1 = 0$ and $\alpha = 1 = 1, 2, \dots, 2l$. Iterace $V(\alpha^l) = 0$ for $l = 1, 2, \dots, 2l$. This proves that V(X) is a code polynomial. It represents a codeword of weight 2l+1. Hence, $d_{min} \leq 2l+1$. Since $d_{min} \geq 2l+1$ for any t-error correcting B(H) code, we have $d_{min} \geq 2l+1$.