Projeto: Quantum Machine Learning

Jullyano Lino

O quê?

Clássica x Quântica: estudo e comparação.

Problema: classificação de imagens.

Computação Clássica:

Arquitetura de Von Neumann, Lambda Cálculo, Processamento Sequencial

$\frac{|0\rangle - |1\rangle}{\sqrt{2}} \xrightarrow{\begin{array}{c} |0\rangle + i|1\rangle \\ \hline \theta \\ \hline \end{array}} \xrightarrow{\begin{array}{c} |0\rangle + i|1\rangle \\ \hline \end{array}} \xrightarrow{\begin{array}{c} |0\rangle + i|1\rangle \\ \hline \end{array}} \xrightarrow{\begin{array}{c} |0\rangle + i|1\rangle \\ \hline \end{array}}$

Computação Quântica

Mecânica Quântica (S.E.I.), Modelos Estatísticos e Análises Probabilísticas

Redes Neurais Convolucionais (CNNs)
Convolução

Máquinas de Vetores de Suporte (SVM)

Kernel + Hiperplanos

Redes Neurais Convolucionais Quânticas (QCNNs)

convolução + pooling quânticos

Máquinas de Vetores de Suporte Quânticas (QSVMs)

Kernel Quântico (+ Hiperplanos)

Classificação de Imagens

Conclusões

ML:

Facilidade

Acessibilidade

Big Data

QML:

Tempo de execução

Capacidade (memória)

Eficiência na complexidade

Big Data (potencial maior)

Conclusões

"Benchmarking Era"

O problema e o desafio

Classificação de Imagens

(Quantum) Support Vector Machines

Problema x Desafio

Dígitos manuscritos: 10 classes

Instâncias: 1797

Atributos: 64 (8x8 de pixels inteiros no intervalo 0..16)

Problema x Desafio

0123456789

A hipótese (ou previsão) O se que achava que aconteceria?

Uma ideia

Método de teste

Métodos utilizados no experimento?

- Aplicação de (Q)SVM no reconhecimento de manuscritos.
- Normalização (0..1)
- Redução de dimensões (2)
- Visualização multidimensional
- Redução do conjunto U (83%)
- Ajustes de parâmetros (QSVM)

Data do experimento

"Confusão" e Precisão

SVM (0.98)

SVM: Matriz de Confusão

QSVM (0,09)

QSVM: Matriz de Confusão

Aha!

Descobertas

- 1. PCA para redução das dimensões
- 2. Limitação do simulador
- (Q)SVM exige bases menores e problemas binários
- ML ainda é mais eficiente em certos casos
- Lentidão quântica: simulador? dimensões?

Este é o ponto mais importante do qual todos devem se lembrar.

Conclusão

A base matemática é fundamental

programa = dados + algoritmos

"Multidimensão da loucura"

[Q](C)NN pode ser muito mais robustas e versáteis

O fazer agora?

Estudar a base teórica e a implementação dos algoritmos

Readaptar o problema

Refinar a análise de dados

Execução no backend (observar arquiteturas)

Buscar outras aplicações (finance, optimization, search)

