

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/003429

International filing date: 23 February 2005 (23.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP
Number: 2004-083750
Filing date: 23 March 2004 (23.03.2004)

Date of receipt at the International Bureau: 26 May 2005 (26.05.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2004年 3月23日

出願番号 Application Number: 特願2004-083750

パリ条約による外国への出願に用いる優先権の主張の基礎となる出願の国コードと出願番号

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

出願人 Applicant(s): シチズン時計株式会社

J P 2004-083750

特許庁長官
Commissioner,
Japan Patent Office

2005年 5月11日

小川

【書類名】 特許願
【整理番号】 P30153
【提出日】 平成16年 3月 23日
【あて先】 特許庁長官 今井 康夫 殿
【国際特許分類】 H03H 9/19
【発明者】
【住所又は居所】 東京都西東京市田無町六丁目1番12号 シチズン時計株式会社
内
【氏名】 新井 勲
【発明者】
【住所又は居所】 東京都西東京市田無町六丁目1番12号 シチズン時計株式会社
内
【氏名】 池田 智夫
【発明者】
【住所又は居所】 東京都西東京市田無町六丁目1番12号 シチズン時計株式会社
内
【氏名】 宮内 浩
【特許出願人】
【識別番号】 000001960
【氏名又は名称】 シチズン時計株式会社
【代表者】 梅原 誠
【電話番号】 0424-68-4748
【手数料の表示】
【予納台帳番号】 003517
【納付金額】 21,000円
【提出物件の目録】
【物件名】 特許請求の範囲 1
【物件名】 明細書 1
【物件名】 図面 1
【物件名】 要約書 1

【書類名】特許請求の範囲

【請求項 1】

振動部と基部とを有する圧電振動体の前記基部を支持基板に接着剤で固定した振動子デバイスにおいて、前記支持基板は前記基部を搭載するための台座部を有し、該台座部の幅は、前記基部の幅と略同じであることを特徴とする振動子デバイス。

【請求項 2】

前記支持基板は、前記台座部に接近した側壁部を有しており、該側壁部は前記基部の側面に残存するバリとの接触を防止するための凹部を有することを特徴とする請求項 1 記載の振動子デバイス。

【請求項 3】

前記圧電振動体は水晶振動子であり、前記振動部は複数の振動脚であることを特徴とする請求項 1 記載の振動子デバイス。

【請求項 4】

前記支持基板は、凹部を有するセラミックパッケージであり、前記台座部は前記凹部内に設けられていることを特徴とする請求項 1 又は 2 記載の振動子デバイス。

【請求項 5】

前記セラミックパッケージは略矩形形状であり、前記台座部は一方の短辺に隣接して設けられていることを特徴とする請求項 4 記載の振動子デバイス。

【請求項 6】

前記セラミックパッケージの凹部内には、配線パターン形成した配線用台座部を設けており、前記台座部と前記配線用台座部の間には、余剰接着剤を溜める溝部を設けたことを特徴とする請求項 1、2、4 又は 5 のいずれか一つに記載の振動子デバイス。

【請求項 7】

前記圧電振動体はジャイロセンサ用の水晶振動子であることを特徴とする請求項 1 又は 3 記載の振動子デバイス。

【書類名】明細書

【発明の名称】振動子デバイス

【技術分野】

【0001】

本発明は、航空機、車両などの移動体通信機器などの姿勢制御やナビゲーションなどに用いられるジャイロセンサ用の圧電振動体をパッケージに内蔵した振動子デバイスに関するものである。

【背景技術】

【0002】

近年、HDD、モバイルコンピュータ、ICカードなどの小型の情報機器や、携帯電話、自動車電話、ペーディングシステムなどの移動体通信機器において装置の小型薄型化がめざましく、それらに用いられる圧電デバイスも小型薄型化が要求されている。それとともに、装置の回路基板に表面実装が可能な表面実装タイプの圧電デバイスが求められている。（例えは、特許文献1参照）

【0003】

【特許文献1】特開2003-152499号公報（第5頁、図3、図4）

【0004】

上記した特許文献1に開示されている振動子デバイスは、図6及び図7において、圧電デバイス20は、パッケージ21内に圧電振動体22を収容している。パッケージ21は、例えは、セラミックスグリーンシートを積層して焼結した酸化アルミニウム質焼結体等の基板で、浅い箱状に形成されている。積層した場合に内側に所定の内部空間Sを形成する。該内部空間Sに露出された底部には、パッケージ21の幅方向の各端部付近に、Au及びNiメッキが施された電極部23が所定の間隔を隔てて形成されている。電極部23は、外部と接続されて、駆動電圧を供給するものである。各電極部23の上に、シリコン系の導電性接着剤24が塗布されている。その導電性接着剤24の上に圧電振動体22の基部22aを載置して、軽く抑えた際に、導電性接着剤24が押されて広がる。導電性接着剤24の硬化されることにより接合される。前記導電性接着剤24を塗布して、軽く抑えた際に、流れた導電性接着剤24は、圧電振動体22の引き出し電極25を囲むように形成された溝部26に阻まれるので、互いに接触することはないので各電極部23は短絡することが有効に防止される。前記パッケージ21の開放された上端には、低融点ガラスなどのロウ材を介して蓋体27が接合されることにより、封止されている。この蓋体27は、蓋体27を透過されたレーザ光等により周波数調整を行うために、光を透過させる材料、例えは、ガラスで形成されている。

【0005】

上記した振動子デバイスを用いたジャイロセンサ装置などでは、圧電振動体の駆動電極に交流電圧を印加することにより、駆動電極振動体が駆動方向の固有振動数で駆動方向に速度vで屈曲振動をする。この状態において、音叉部が音叉部の長手方向の中心軸周りに角速度 ω で回転すると、検出電極振動体に、 $F = 2mv\omega$ のコリオリ力が発生する。このコリオリ力によって振動し、その振動に基づく出力電圧によって角速度を検出する構成になっている。そして、このようなジャイロセンサ装置では、検出すべきコリオリ力の発生方向に対して音叉型水晶振動子の脚部が所定の方向になるように構成されている。仮に、コリオリ力の発生方向に対して音叉型水晶振動子の脚部が傾いて取り付けられたとすると、脚部に発生するコリオリ力は傾きに応じた分力となるため、発生する出力電圧も不正確なものとなるため、検出結果としては精度の悪いものとなる。そのため、ジャイロセンサ装置においては、音叉型振動子の取り付け精度を向上させて検出結果の精度を向上させる必要がある。

【発明の開示】

【発明が解決しようとする課題】

【0006】

解決しようとする問題点は、上記した特許文献1に開示した振動子デバイスは、圧電振

動体22の基部22aを、セラミックパッケージ21に取付ける時に、導電性接着剤24の塗布量の多少、塗布位置のズレなどにより、2つの電極面間で導電性接着剤24の表面張力バランスがくずれ、圧電振動体22の基部22aが傾いて取付けられる恐れがある。圧電振動体22が所定の位置に位置決めされないと、性能が不安定になる。と言う問題が発生する。上述したように、圧電振動体22の取り付け精度を向上させるために、導電性接着剤24が硬化するまでの間、位置決め治具などを使用して位置決めを行わなければならない。そのため、圧電振動体22の接合工程の作業性に問題がある。

【課題を解決するための手段】

【0007】

上記課題を解決するために、本発明における振動子デバイスは、振動部と基部とを有する圧電振動体の前記基部を支持基板に接着剤で固定した振動子デバイスにおいて、前記支持基板は前記基部を搭載するための台座部を有し、該台座部の幅は、前記基部の幅と略同じであることを特徴とするものである。

【0008】

また、前記支持基板は、前記台座部に接近した側壁部を有しており、該側壁部は前記基部の側面に残存するバリとの接触を防止するための凹部を有することを特徴とするものである。

【0009】

また、前記圧電振動体は水晶振動子であり、前記振動部は複数の振動脚であることを特徴とするものである。

【0010】

また、前記支持基板は、凹部を有するセラミックパッケージであり、前記台座部は前記凹部内に設けられていることを特徴とするものである。

【0011】

また、前記セラミックパッケージは略矩形形状であり、前記台座部は一方の短辺に隣接して設けられていることを特徴とするものである。

【0012】

また、前記セラミックパッケージの凹部内には、配線パターン形成した配線用台座部を設けており、前記台座部と前記配線用台座部の間には、余剰接着剤を溜める溝部を設けたことを特徴とするものである。

【0013】

また、前記圧電振動体はジャイロセンサ用の水晶振動子であることを特徴とするものである。

【発明の効果】

【0014】

本発明の振動子デバイスは、水晶振動子の接着部である基部の幅と、パッケージの接着部である台座部の幅を、略同等に設定し、水晶振動子の基部とパッケージの台座部を接着剤で接着する構成により、接着剤のセルフアライメント機能が発揮されて、圧電振動体の傾きは、所望の範囲、例えば、±5°以内に收まり、ジャイロセンサ装置の検出精度を満足するものである。さらに、パッケージの台座部の側壁部と水晶振動子の基部端面の接触部において、台座部の側壁部の一部に切り欠き（凹部）を設け、圧電振動体の基部の側面に残存するバリは、凹部に入って側壁部との接触が防止されるため、製品バラツキの少ない安定した性能の振動子デバイスを提供することが可能である。

【発明を実施するための最良の形態】

【0015】

以下に実施例を用いて、本発明を実施するための最良の形態を説明する。

【実施例】

【0016】

図1～図5は、本発明の実施例に係わり、図1は、振動子デバイスの展開斜視図、図2は、振動子デバイスの断面図、図3は、圧電振動体を取り付けた支持基板を基板に組込む前

の状態の斜視図、図4、図5は、共に圧電振動体を取付けた支持基板の正面図と断面図である。図1～図3において、1は、センサユニットで、該センサユニットの構成は、セラミック等の多層基板よりなる支持基板2の一方の面に、複数（例えは、3本）の振動部3cを有する水晶振動子よりなる圧電振動体3を接着固定して搭載し、圧電振動体3に形成されている電極と支持基板2に形成されている後述する配線用台座部2cとをワイヤで電気的に接続されている。前記支持基板2の他方の面は、圧電振動体3の駆動回路および検出回路の機能を有するICチップ4およびチップ部品5などよりなる電子部品を表面実装している基板6に半田固定されている。前記圧電振動体3は金属製の封止カバー7で覆われ真空封止されている。

【0017】

8は、ブチル系ゴムなどよりなる一对の振動吸収部材である。該振動吸収材8は、対向する面上に前記センサユニット1の上下側を挿嵌する支持凹部8aと、後述する蓋体9側の振動吸収材8の側面には配線部材10の配線方向に沿って配線部材10を収納する凹部8bが形成されている。前記配線部材10は、可撓性を有するFPCよりなり、配線はFPCの片面に配設されている。前記振動吸収材8に形成されている支持凹部8aで前記センサユニット1の上下両端を含む6面を確実に支持するものである。

【0018】

11は、金属製のケースで、該ケース11には前記センサユニット1と振動吸収材8と前記配線部材10を収納する。9は、前述した蓋体で、樹脂製で前記配線部材10と接続する複数の外部接続端子12が配設されている。該外部接続端子12は折り曲げるようにして外方に突出されている。

【0019】

図4(a)は支持基板の台座部に圧電振動体を接合した状態を示す平面図、図4(b)はその断面図である。図4において、前述した支持基板2は、セラミックを積層した凹部2aを有するセラミックパッケージで、平面が略矩形形状をしており、矩形形状をした一方の短辺には台座部2bが形成されている。前記凹部2a内には、配線パターンを形成した配線用台座部2cが設けられており、前記台座部2bと前記配線用台座部2cの間には、余剰の接着剤13を溜める溝部2dが設けられている。また、前記支持基板2に形成された前記台座部2bに近接した側壁部2eには、前記圧電振動体3を多数個取り生産の際に、基部3aの側面に残存するバリ3bとの接触を防止するための凹部（切り欠き）2fを設ける。また、前記支持基板2に形成された前記台座部2bの幅(Wd)は、前記圧電振動体3の基部3aの幅(W)と略等しく設定されている。

【0020】

ここで、前記支持基板2に形成された前記台座部2bに、前記圧電振動体3の基部3aを接着・固定するのに、平坦な台座部2bに接着剤13を塗布し、その接着剤13の上に、圧電振動体3の平坦な基部3aを載置して、接着剤13が硬化されることにより接合される。接着剤13のセルフアライメント機能が発揮されて、圧電振動体3の傾き(α)は、所望の範囲、例えは、 $\pm 5^\circ$ 以内に收まり、ジャイロセンサ装置の検出精度を満足するものである。この接着剤13は、本実施例の場合は、例えは、シリコン系の接着剤（粘度、12Pa·s）または、エポキシ系の接着剤（粘度、3～4Pa·s）を用いている。

【0021】

上記した接着剤13のセルフアライメント機能が発揮されて、圧電振動体3の傾き(α)は、所望の範囲、例えは、 $\pm 5^\circ$ 以内に收めるために、前記台座部2bの幅(Wd)と、前記圧電振動体3の基部3aの幅(W)との間には、本出願人が試行するところによると、 $0.86W < Wd < 1.16W$ の関係があった。

【0022】

図5(a)は支持基板の台座部に圧電振動体を接合した状態を示す平面図、図5(b)はその断面図である。図に示したように、この支持基板2は圧電振動体3の基部3aとほぼ同じ幅の台座部2bを有している。図5(a)のように圧電振動体3の基部2aが支持基板2の側壁部2eに接触した場合は、基部3aのバリ3bが側壁部2eの凹部2fに入

るので、バリ3 b が側壁部2 e に接触して圧電振動体3 が傾くのを防止できる。

【0023】

以上、述べた構成による振動子デバイスの作用・効果について説明する。前記支持基板2 に形成された前記台座部2 b の幅(Wd)は、前記圧電振動体3 の基部3 a の幅(W)と略等しく設定され、且つ、支持基板2 に形成された前記台座部2 b に近接した側壁部2 e に凹部(切り欠き)2 f を設け、平坦な台座部2 b 上に接着剤1 3 を塗布し、図4 に示すように圧電振動体3 の基部3 a を載置することにより、セルフアライメント機能が発揮されて、圧電振動体3 は接着剤1 3 に引っ張られて、幅方向のみでなく、縦方向にも移動して、前記圧電振動体3 の基部3 a の側面に残存するバリ3 b は、前記支持基板2 の側壁部2 e に形成された凹部(切り欠き)2 f 内に収まり、基部3 a の側面は、支持基板2 の側壁部2 e に当接することにより、前記圧電振動体3 の傾き(α)は、所望の範囲、例えは、 $\pm 5^\circ$ 以内で接合される。前記台座部2 b と前記配線用台座部2 c の間に設けられた溝部2 d には、余剰の接着剤1 3 を溜めることができる。従って、ジャイロセンサ装置の検出精度を満足するものである。製品バラツキの少ない安定した性能の振動子デバイスを提供することができる。

【0024】

上記した実施例は、ジャイロセンサ装置の検出精度を満足するための、振動子デバイスの位置決め構造について説明したが、これに限定するものではなく、水晶振動子全般の位置決め構造に適用できるものである。

【図面の簡単な説明】

【0025】

【図1】本発明の実施例に係わる振動子デバイスの構造を説明する展開斜視図である。

【図2】図1の振動子デバイスの断面図である。

【図3】図1の圧電振動体を取り付けた支持基板を基板に組込む前の状態の斜視図である。

【図4】図4(a)は、図1の支持基板の台座部に圧電振動体を載置した状態を示す平面図、図4(b)は、その断面図である。

【図5】図5(a)は、図1の支持基板の台座部に圧電振動体を接合した状態を示す平面図、図5(b)は、その断面図である。

【図6】従来の振動子デバイスの断面図である。

【図7】図6の振動子デバイスの接合部の部分拡大平面図である。

【符号の説明】

【0026】

- 1 センサユニット
- 2 支持基板
- 2 a 凹部
- 2 b 台座部
- 2 c 配線用台座部
- 2 d 溝部
- 2 e 側壁部
- 2 f 凹部(切り欠き)
- 3 圧電振動体(水晶振動子)
- 3 a 基部
- 3 b バリ
- 3 c 振動部
- 4 I Cチップ
- 5 チップ部品
- 6 基板
- 7 封止カバー

8 振動吸収部材

9 蓋体

1 0 配線部材

1 1 ケース

1 2 外部接続端子

1 3 接着剤

α 圧電振動体の傾き角度

W 圧電振動体の基部の幅

W d 支持基板の台座部の幅

【書類名】 図面
【図 1】

【図2】

【図 3】

【図 4】

【図 5】

【図 6】

【図 7】

【書類名】要約書

【要約】

【課題】 圧電振動体が傾いて取付けられ、性能が不安定になる。

【解決手段】 支持基板2は、凹部2aを有する矩形形状をしたセラミックパッケージで、一方の短辺に隣接して設けた台座部2bに、水晶振動子よりなる圧電振動体3の基部3aを接着剤13で固定する。台座部2bの幅(Wd)は、基部3aの幅(W)と略等しく設定する。台座部2bに接近した側壁部2eに、圧電振動体3の基部3aの側面に残存するバリ3bとの接触防止用の凹部2fを設ける。支持基板2の凹部2a内には、配線用台座部2cを設け、台座部2bと配線用台座部2cの間には、余剰接着剤13を溜める溝部2dを設ける。台座部2bに接着剤13を塗布し、その上に圧電振動体3の基部3aを載置する。接着剤13のセルフアライメント機能が発揮されて、圧電振動体3の傾き(α)は、所望の範囲、例えば、 $\pm 5^\circ$ 以内に收められ、製品の性能を安定させることができる。

【選択図】 図5

出願人履歴

0 0 0 0 0 1 9 6 0

20010301

住所変更

5 0 2 3 4 2 2 4 4

東京都西東京市田無町六丁目1番12号

シチズン時計株式会社