Replikation

Allgemein

Inhalt

- Definition
- Pro & Contra
- Anwendung
- Synchrone & asynchrone Replikation
- ► Unidirektionale & bidirektionale Replikation
- Klassifikation
- Resümee

Definition

"Verfahren der Datensicherung bei dem dieselben Daten von einem primären Speichermedium auf ein oder mehrere sekundäre Speichermedien kopiert werden." – itwissen.info

► Backup + Synchronisation

Daniel May 08.11.2016

Unterschied zu Caching

meist dauerhaft

statisch ausgewählt

administrativer Aufwand

Vorteile

Skalierbarkeit

- Verfügbarkeit
- Performance

Disconnected Computing

Nachteile

Aufwand

Speicherbedarf

▶ Komplexität

Daniel May Bild von: uni-leipzig.de 08.11.2016

Anwendung

Erhaltung der Datenkonsistenz

- Kopien wechselseitig konsistent zu halten: 1-Kopien-Äquivalenz
- kleine Kopienzahl

Zielkonflikte der Replikationskontrolle

Erhöhung der Verfügbarkeit, effizienter Lesezugriff

- große Kopienzahl
- Zugriff auf beliebige und möglichst wenige Kopien

Minimierung des Änderungsaufwands

- kleine Kopienzahl
- möglichst wenige Kopien synchron aktualisieren

Daniel May Bild von: uni-leipzig.de 08.11.2016

Anwendung: Mobile Computing

- > z.B.: Außendienstmitarbeiter
- offline arbeiten
- Teilreplikation
- tägliche Synchronisierung
- ► Ziel: Verfügbarkeit

Daniel May Bild von: dreamstime.com 08.11.2016

Anwendung: Skalierbarkeit von Leselast

▶ ca. 97 % Leseanfragen

Master/Slave

► Ziel: Lastverteilung

Daniel May

Bild von: The Database Scalability Blog

08.11.2016

Anwendung: Hochverfügbarkeit

Master/Slave

wenige Kopien

▶ Ziel: Verfügbarkeit

Daniel May Bild von: kb.acronis.com 08.11.2016

Synchrone Replikation

- Pro:
 - transaktionale Konsistenz
 - keine Konflikte
- Contra:
 - ▶ Verhalten bei Teilausfällen
 - Sperren
 - Performance
- ► Einsatz: Skalierung von Leselast

Asynchrone Replikation

- Pro:
 - Schreibperformance
 - Verfügbarkeit
- Contra:
 - ► Konvergenz
 - Konflikte
- ► Einsatz: Mobile Computing & Hochverfügbarkeit

Daniel May 08.11.2016

Unidirektionale Replikation

- Master/Multi-Slave
- ▶ 1 ändernde Instanz
- konfliktfrei

08.11.2016

- keine Skalierung der Schreiblast
- ► Einsatz: Skalierung von Leselast & Hochverfügbarkeit

Daniel May Bild von: imn.htwk-leipzig.de

Bidirektionale Replikation

- Multi-Master
- gleiche Rechte
- Skalieren von Schreibzugriffen

- gestiegener Replikationsaufwand
- Einsatz: Mobile Computing

Daniel May Bild von: imn.htwk-leipzig.de

08.11.2016

Klassifikation

- Synchronisierung
 - ► Wann?
 - ► In welche Richtung?

Propagation		
vs.	Lazy	Eager
Ownership		
Group	n transactions	one transaction
	n object owners	n object owners
Master	n transactions	one transaction
	one object owner	one object owner

Daniel May 08.11.2016

Klassifikation

Resümee

absichtliche Redundanzen + Synchronisierung

Performance, Verfügbarkeit, Skalierbarkeit

Verwaltungsaufwand, Konflikte

Synchronisierungszeitpunkt & -richtung

Daniel May 08.11.2016