Phase 3 Project

Author: Tommy Phung

Overview

Client: Providence and Medical Centers

Source: CDC

Target Variable: Seasonal Vaccines

Goal: **Minimize** vaccine wastage when ordering vaccines.

Business Problem

Vaccines are wasted due to:

- **→** Expire date
- → Supply Chain Issue

Real Life Example:

> **1.1 billion** Covid Vaccines were estimated to be **wasted** due to expired vaccines and supply chain issues.

Data Understanding

Number of observation: **26,000** participants

- → 36 different survey question
- → Roughly **50%** taken seasonal vaccine

Target Variable: <u>Seasonal</u>

Flu Vaccine

Method

Preprocessing Steps

- > Split Dataset to **Training** and **Testing** Sets
- > Prepare Datasets
 - (Missing values, Scalar, Dummy Variables)
- Fit Model with Training Dataset
- > Make Predictions

Models

- > Simple Baseline Model
 - Decision Tree
- Complex Model
 - Random Forest
- > Tuned Model
 - Random Forest with Tuned Hyperparameters

Simple Decision Tree

Decision Tree Classification:

> Split dataset based on features in order to reduce entropy.

Parameters: Default, criterion = entropy

Decision Tree - Analysis

Perfect Training
Accuracy
100%

Low Testing Accuracy 68.21%

Overfitting with Training
Dataset
(Greedy Algorithm)

Overfitting - A model trained to perfectly predict the training dataset

Decision Tree → Random Forest

Decision Tree	Random Forest		
+ Interpretable	+ Resilient to overfitting		
- Prone to overfitting	+ Resistance to noise		
	- Long Computational Time		

Random Forests

Random Forest Classification:

Create multiple Decision Trees with different set of features.

Parameters:

Max Depth = 10, Max Features = None, criterion = entropy

Training Accuracy: 83.45%

Testing Accuracy: 77.89%

Random Forest with Tuned Hyperparameters

Tuning with Grid Search

- Compares models with different parameters
- Over 7,000 combinations

Training Accuracy: 92.59%

Testing Accuracy: 78.36%

Model Comparison

Model	Training Accuracy	Testing Accuracy	Recall Score
Decision Tree	100%	68.21%	65.33%
Random Forest	83.45%	77.89%	75.55%
Random Forest with hypertuning	92.59%	<u>78.36%</u>	<u>75.55%</u>

Real Life Application (Example)

Data Taken from Testing Dataset

Number of Patients	Predicted Taken	Patients Actually Taken	Number of Vaccines + 5% *	Vaccines Wasted
5342	2416	2466	2416 + 121 = 2537	71

^{*} Supply should be <u>slightly more</u> in case of faulty or new patients Subject to change based on location. (Major Cities, Small Towns)

Recommendation

Most Important Features:

Opinion_Seasonal_Risk, Opinion_Seasonal Vaccine_Effective, Doctor_Recommendation_Seasonal

Question Concerning Vaccines → **More Likely** to take vaccine

Recommendation:

- Only include question regarding current vaccine focus
- Occupation have little to no influence in prediction

Conclusion

- > Random Forest Performs **Better** Than Decision Trees
- > 92.59% Training Accuracy
- > 78.36% Testing Accuracy

- Use Model to obtain rough estimate number of vaccines
- > 71 wasted vaccines vs 2,876 *

* Assuming everyone needs a vaccines

Next Steps

- 1. More Tuning
- 2. Different Classification Models
 - a. KNN
 - b. XGBoost

3. Better Survey Questions

- a. Demographic
- b. Religion

Thank You...Questions?

Email: phungtommy109@gmail.com

GitHub: https://github.com/Tommyphung1/phase_3_project