<실험05. 키르히호프의 전류법칙 실험 결과보고서>

5조 201910906 이학민 / 201910892 박명세 / 202211021 이명희

A. 키르히호프의 전류법칙

|표 5-1| 저항 측정

	R_1	R_2	R_3	R_4	R_5	R_6	R_7
계산값, [kΩ]	0.500	2.000	5.000	2.200	2.000	100.00	0.500
측정값, [kΩ]	0.502	1.981	5.035	2.172	1.952	98.63	0.501
오차율, [%]	0.400	0.950	0.700	1.273	2.400	1.370	0.200

|표 5-2| 각 저항의 전류값

	I_1	I_2	I_3	I_4	I_5	I_6	I_7
계산값, [mA]	7.134	1.986	1.573	3.575	1.947	0.039	7.134
측정값, [mA]	7.067	1.991	1.543	3.565	1.945	0.038	7.072
오차율, [%]	0.939	0.252	1.907	0.280	0.103	2.564	0.869

|표 5-3| 각 노드에서의 유입, 유출전류

		노드 A	노드 B	노드 C
0.0121=	전류	I_1	I_2	$I_3 + I_4 + I_5 + I_6$
유입전류	측정값, [mA]	7.067	7.067 1.991	
유출전류	전류	$I_2 + I_3 + I_4$	I_5+I_6	I_7
	측정값, [mA]	7.099	1.983	7.072
유입전류-유출전류, [mA]		-0.032	0.008	0.019

B. 전류분할회로

|표 5-4| 같은 크기의 저항기를 이용한 전류분할회로

사용한 저항기,	총 전류, I_1	브랜치전류, I_2	브랜치전류, I_3	$I_2 + I_3$
[kΩ]	[mA]	[mA]	[mA]	[mA]
계산값	3.33	1.67	1.67	3.33
측정값	측정값 3.41		1.71	3.40
오차율, [%]	오차율, [%] 2.402		2.395	2.102

C. 전류분할회로의 설계

|표 5-5| 저항 측정

	R_1	R_2	R_3
정격값, [kΩ]	0.500	1.000	2.000
측정값, [kΩ]	0.501	1.035	1.984
오차율, [%]	0.200	3.500	0.800

|그림 5-6| 전류분할회로의 설계

|표 5-6| 전류분할회로의 설계 조건 확인

	I_1	I_2	I_3	비율, $rac{I_1}{I_3}$	비율, $rac{I_2}{I_3}$
계산값, [mA]	8.000	4.000	2.000	4.000	2.000
측정값, [mA]	7.791	3.943	1.997	3.901	1.974
오차 율 , [%]	2.613	1.425	0.150	2.475	1.300

<실험결과 검토>

이명희 :

실험 C) 저항기가 병렬로 구성된 회로의 전류는 $V(\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3})$ = I으로 구할 수 있다. 이때 전류의 비가 4:2:1이기 때문에 $\frac{1}{R_1}:\frac{1}{R_2}:\frac{1}{R_3}$ = 4:2:1로 나타낼 수 있다. $\frac{1}{R_1}$ =4a, $\frac{1}{R_2}$ =2a, $\frac{1}{R_3}$ = a로 가정하고 앞의 식을 계산한다면 $a=\frac{1}{2}$ m임을 알 수 있다. 이를 대입하면 R_1 =0.5k Ω , R_2 =1k Ω , R_3 =2k Ω 이다. 구한 저항값에 따라 회로를 설계하고 실험한 결과 오차율이 모두 3% 이하인 것을 보아 의도와 같이 설계되었음을 확인할 수 있었다. 실험과정에서 1k Ω 저항기를 찾지 못해 10k Ω 가변저항을 사용했다. 1k Ω 으로 맞춘 가변저항을 회로에 연결하는 과정에서 가변저항의 조절 노브를 건드리게 되어 설계한 회로를 구성하는데 어려움을 겪었다. 결국 1k Ω 저항기 저항기를 찾아 회로에 연결하여 실험을 진행하였다. 이후 고민해보니 가변저항을 회로의 다른 구성품들과 멀리 떨어진 곳에 위치시키고 도선으로 연결하였으면 더 편하게 가변저항을 사용할 수 있었을 것이라 생각한다.

박명세 :

PSpice 프로그램을 통해 가상으로 직접 회로를 구성해볼 수 있었고 그 회로에서의 유입 유출 전류를 직관적으로 파악하여 쉽게 키르히호프 전류 법칙을 증명할 수 있었다

이학민:

키르히호프의 전류 법칙에 따르면 한 노드에 유입되는 전류와 유출되는 전류의 크기는 같아야한다. 실험 A의 표5-3으로부터 노드 A, B, C의 유입/유출 전류를 계산하였고, 그 차이를 계산해본 결과 0에 가까운 값을 확인하며 키르히호프 전류법칙이 성립함을 알 수 있었다. 또한표 5-6에서 I_2 를 측정한 결과 오차율이 10%가 넘어 재측정하였다. 실험을 빠르게 진행하려고하다보니 디지털멀티미터에 안정된 전류값이 나오기 전에 측정을 종료하여 발생한 문제인 것으로 판단되었다. 재측정한 결과 오차율 약 1.4% 정상적인 값을 얻을 수 있었다.

PSpice 프로그램을 활용한 회로분석

실험A 회로도