TUGAS FINAL – METODE NUMERIK DAN KOMPUTASI

01. Buatlah tabel beda hingga dari data-data dibawah ini

a.	X	f(x)	b.	t	c(t)	c.	r	F(r)
	1.0	0.0000		0.5	0.3894		3	2.1972
	1.5	0.9123		0.9	0.5739		7	1.3048
	2.0	2.7726		1.3	0.6786		11	0.9536
	2.5	5.7268		1.7	0.7266		15	0.7613
	3.0	9.8875		2.1	0.7349		19	0.6384
	3.5	15.3463		2.3	0.5898			

02. Lengkapilah tabel beda hingga di bawah ini

X	У	Δγ	Δ2γ	ΔЗу	Δ4γ	Δ5 y
0			•	•	•	•
5		0.0888	0.0013			
10		. 0.0000			0.0002	
15				0.0017		0.0002
20				0.0017		
25	0.0463					

03. Carilah nilai f(0.1875), c(0.1345) dan F(1.112) dengan metode Newton-Gregory Forward, dari data-data dibawah ini

a.	X	f(x)	b.	t	c(t)	c.	r	F(r)
	0.125	0.79618		0.1	0.003		1	0.7
	0.250	0.77334		0.3	0.067		2	0.8
	0.375	0.74371		0.5	0.148		3	1.5
	0.500	0.70413		0.7	0.248		4	3.4
	0.625	0.65632		0.9	0.370		5	7.1
	0.750	0.60228		1.1	0.518		6	13.2
				1.3	0.697		7	22.3
							8	34.7

04. Carilah nilai f(0.7324), c(1.1978) dan F(7.5412) dari data soal nomor 3 dengan metode Newton-Gregory Backward

- 05. Carilah nilai f(0.38324), c(0.74538) dan F(5.91412) dari data soal nomor 3 dengan metode Stirling
- 06. Carilah nilai f(0.1875), c(0.74538) dan F(0.75412) dari data soal nomor 3 dengan metode Lagrange
- 07. Carilah nilai f(0.7324), c(1.1978) dan F (3.4125) dari data dibawah ini dengan metode Hermite

a.	X	f(x)	b.	t	c(t)	c.	r	F(r)
	0.1	0.0300		0.5	4.1267		0.5	-0.2081
	0.8	1.7217		1.1	5.0000		1.0	-0.9800
	1.9	5.3939		1.6	4.3879		1.5	-0.9805
	3.2	-0.5604		1.9	3.4835		2.0	0.5673
	3.8	-6.9752		2.8	-1.1360		2.5	2.4004
	5.3	-13.2331		3.5	-4.0057		3.0	2.2617
	7.0	13.7967		4.1	-4.9957		3.5	-0.5093

- 08. Carilah nilai x pada f(x)=0.5798, t pada c(t)=0.4567 dan r pada F(r)=11.3465 dari data soal nomor 3 dengan metode Lagrange
- 09. Carilah nilai f'(0.75) dari data dibawah ini dengan metode Newton Gregory Forward

a.	X	f(x)	b.	t	f(t)	c.	r	f(r)
	0.7	0.5214		0.5	1.4310		0.6	0.5361
	0.8	0.5392		1.0	2.0350		0.9	0.9947
	0.9	0.5489		1.5	3.0310		1.2	1.7025
	1.0	0.5518		2.0	4.6720		1.5	2.7123
	1.1	0.5492		2.5	7.3790		1.9	4.0644
	1.2	0.5421		3.0	11.8410		2.1	5.7919
	1.3	0.5314		3.5	19.1980		2.4	7.9227

10. Carilah nilai f'(2.65) dari data dibawah ini dengan metode Newton Gregory Backward

a.	X	f(x)	b.	t	f(t)	c.	r	f(r)
	0.5	0.4549		0.6	-0.9195		0.6	0.5361
	0.9	0.5489		1.0	0.0000		0.9	0.9947
	1.3	0.5314		1.4	1.4132		1.2	1.7025
	1.7	0.4658		1.8	3.1740		1.5	2.7123
	2.1	0.3857		2.2	5.2038		1.9	4.0644
	2.5	0.3078		2.6	7.4530		2.1	5.7919
	2.9	0.2394		3.0	9.8875		2.4	7.9227

11. Carilah nilai f'(1.15), y'(0.975) dan k'(1.586) dari data dibawah ini dengan metode Stirling

a.	X	f(x)	b.	t	f(t)	c.	r	f(r)
	0.5	-1.0397		0.7	0.5214		0.6	0.5361
	0.8	-0.5355		0.8	0.5392		0.9	0.9947
	1.1	0.3145		0.9	0.5489		1.2	1.7025
	1.4	1.4132		1.0	0.5518		1.5	2.7123
	1.7	2.7062		1.1	0.5492		1.9	4.0644
	2.0	4.1589		1.2	0.5421		2.1	5.7919
	2.3	5.7471		1.3	0.5314		2.4	7.9227

12. Carilah nilai f'(1.15), y'(0.975) dan k'(1.586) dari data dibawah ini dengan metode Lagrange

a.	X	f(x)	b.	t	f(t)	c.	r	f(r)
	0.5	0.1650		0.6	1.6835		1.4	2.1510
	1.0	0.2710		0.8	1.7283		1.5	2.3520
	1.5	0.4470		1.0	1.1349		1.6	2.5770

13. Carilah nilai integral dari data berikut dengan batas dari x=0.1 sampai x=0.7 dengan metode trapezoida

X	f(x)
0.1	1.0300
0.2	1.7103
0.3	1.6388
0.4	1.6093
0.5	1.6179
0.6	1.6612
0.7	1.7366

14. Carilah nilai integral dari data berikut dengan batas dari x=0.1 sampai x=0.7 dengan metode simpson 1/3

X	f(x)
1	1.8287
2	5.6575
3	11.4862
4	19.3149
5	29.1437
6	40.9724
7	54.8011

15. Carilah nilai y(0.1) dari persamaan diferensial dibawah ini dengan metode Taylor

a.
$$\frac{dy}{dx} = 2yx^{-1}, y(0) = 0$$

b.
$$\frac{dy}{dx} = 3y^{2/3}, y(0) = 0$$

16. Carilah nilai y(0.01) dari persamaan diferensial berikut dengan metode Euler

a.
$$\frac{dy}{dx} = x^3 \cos y, y(0) = 0$$

b.
$$\frac{dy}{dx} = xy^{2/3}, y(0) = 0$$

- 17. Gambarkan flowchart dari metode penyelesaian akar-akar persamaan karakteristik
 - a. Metode Tabulasi

d. Metode iterasi bentuk x=g(x)

b. Metode Biseksi

e. Metode Newton Raphson

- c. Metode Regula Falsi
- 18. Gambarkan flowchart dari metode penyelesaian persamaan linear serentak
 - a. Metode Invers dan Determinan Matriks
 - b. Metode Dekomposisi L-U
 - c. Metode Iterasi Jakobi
 - d. Metode Gauss Siedel
- 19. Gambarkan flowchart dari metode penyelesaian persamaan
 - a. Eliminasi Gauss
 - b. Gauss Jordan
- 20. Gambarkan flowchart dari metode penyelesaian interpolasi
 - a. Metode Newton-Gregory Forward
 - b. Metode Newton-Gregory Backward
 - c. Metode Stirling
 - d. Metode Lagrange
- 21. Gambarkan flowchart dari metode integrasi numerik
 - a. Metode Trapezoida
 - b. Metode Simpson 1/3
- 22. Gambarkan flowchart dari metode penyelesaian persamaan diferensial
 - a. Metode Taylor
 - b. Metode Euler
- 23. Tuliskan script program mfile dari salah satu metode penyelesaian akar-akar persamaan karakteristik, berikan 1 contoh penyelesaian permasalahan
- 24. Tuliskan script program mfile dari salah satu metode penyelesaian persamaan linear serentak, berikan 1 contoh penyelesaian permasalahan
- 25. Tuliskan script program mfile dari metode eliminasi Gauss dan Gauss Jordan, berikan masing-masing 1 contoh penyelesaian permasalahan