PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-075396

1/2 ページ

(43)Date of publication of application: 15.03.2002

(51)Int.Cl.

HO1M 8/10 HO1M 8/24

(21)Application number: 2000-254288

(71)Applicant: TOYOTA MOTOR CORP

(22)Date of filing:

24.08.2000

(72)Inventor: TAKAHASHI TAKESHI

(54) SEPARATOR FOR FUEL CELL AND ITS MANUFACTURING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a separator for a fuel cell formed with a channel with no step in the thickness of a single frame, and its manufacturing method.

SOLUTION: In this separator 18 for a fuel cell battery with the resin frame 31 incorporating a manifold 29 in the circumference of the separator, a tunnel—shaped channel 33 communicating the manifold 29 with the inside space of the internal circumferential face of the resin frame is formed in the internal circumferential side of the manifold 29 of the resin frame 31. The inside face of the separator side of the channel 33 is flush with the surface of the separator 18. This manufacturing method for the fuel cell separator comprises a first stage process of disposing a pin-shaped core in a mold for molding a frame intermediate product, providing the tunnel-shaped channel 33 in the internal circumferential side of the manifold, and forming the frame intermediate product lacking a interfering part in drawing out the core.

and a second stage process of forming the frame end product by filling the interfering part in drawing out the core.

LEGAL STATUS

[Date of request for examination]

01.04.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3785909

[Date of registration]

31.03.2006

[Number of appeal against examiner's decision

of rejection]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-75396 (P2002-75396A)

(43)公開日 平成14年3月15日(2002.3.15)

(51) Int.Cl.7		識別記号	FΙ		ž	~?]~}*(参考)
H01M	8/02		H01M	8/02	В	5H026
	8/10			8/10		
	8/24			8/24	R	

審査耐求 未請求 請求項の数3 OL (全 7 頁)

(21)出顧番号	特顧2000-254288(P2000-254288)	(71) 出願人 000003207
		トヨタ自動車株式会社
(22)出顧日	平成12年8月24日(2000, 8, 24)	愛知県豊田市トヨタ町1番地
		(72)発明者 ▲高▼橋 剛
		1 12212
		愛知県豊田市トヨタ町1番地 トヨタ自動
		車株式会社内
		(74) (h-m) 1 100000001
		(74)代理人 100083091
		弁理士 田渕 経雄
		Fターム(参考) 5H026 AA06 CC05 CC08 EE02 EE06
		1
		EE18

(54) 【発明の名称】 燃料電池用セパレータおよびその製造方法

(57)【要約】

【課題】 1つのフレームの板厚内に、段差をもたない 流路を形成した燃料電池用セパレータとその製造方法の 提供。

【解決手段】 セパレータ周囲にマニホールド29を内蔵した樹脂フレーム31を有する樹脂フレーム付きの燃料電池用セパレータ18において、樹脂フレーム31のマニホールド29と樹脂フレーム内周面の内側空間とを連通するトンネル状の流路33が形成されている燃料電池用セパレータ18。流路33のセパレータ側部分の内面はセパレータ18の表面と同一面上にある。ピン状の中子をフレーム中間品成形用型内に配してマニホールドより内周側部分にトンネル状の流路33を有し中子抜き時に干渉する部分が欠落したフレーム中間品を形成する第1段工程と、中子抜き時に干渉する部分を埋めてフレーム最終品を形成する第2段工程と、を有する燃料電池用セパレータの製造方法。

(2)

【特許請求の範囲】

【請求項1】 セパレータ周囲にマニホールドを内蔵し た樹脂フレームを有する樹脂フレーム付きの燃料電池用 セパレータにおいて、

セパレータの外縁部が前記樹脂フレームに一体成形され ており、

前記樹脂フレームの前記マニホールドより内周側部分に は、前記マニホールドと前記樹脂フレーム内周面の内側 空間とを連通するトンネル状の流路が形成されている、 ことを特徴とする燃料電池用セパレータ。

【請求項2】 前記流路は該流路の全長にわたって直線 状に延びており、前記流路のセパレータ側部分の内面は 前記セパレータの表面と同一面上にある、請求項1記載 の燃料電池用セパレータ。

【請求項3】 セパレータ周囲にマニホールドを内蔵し た樹脂フレームを有し、前記樹脂フレームの前記マニホ ールドより内周側部分に、前記マニホールドと前記樹脂 フレーム内周面の内側空間とを連通するトンネル状の流 路が形成されている、樹脂フレーム付きの燃料電池用セ パレータの製造方法であって、

流路成形用のピン状の中子をフレーム中間品成形用型内 に配して溶融樹脂を注入し樹脂凝固後型から外し中子を 抜いて、樹脂フレームのマニホールドより内周側部分に トンネル状の流路を有しマニホールドより外周側部分の うち中子抜き時に干渉する部分が欠落したフレーム中間 品を形成する第1段工程と、

フレーム中間品をフレーム最終品成形用型内に配して溶 融樹脂を注入して前記中子抜き時に干渉する部分を埋 め、樹脂凝固後型から外してフレーム最終品を形成する 第2段工程と、からなる燃料電池用セパレータの製造方 30 法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、外周部に樹脂フレ ームを有し該フレームにトンネル状流路を有する燃料電 池用セパレータとその製造方法に関する。

[0002]

【従来の技術】固体高分子電解質型燃料電池は、イオン 交換膜からなる電解質膜とこの電解質膜の一面に配置さ れた触媒層および拡散層からなる電極(アノード、燃料 40 極)および電解質膜の他面に配置された触媒層および拡 散層からなる電極(カソード、空気極)とからなる膜ー 電極アッセンブリ(MEA: Membrane-Electrode Assem bly)と、アノード、カソードに燃料ガス(水素)およ び酸化ガス(酸素、通常は空気)を供給するための流体 通路または冷却媒体を流すための流路を形成するセパレ ータとからセルを構成し、複数のセルの積層体からモジ ュールを構成し、モジュールを積層してモジュール群と し、モジュール群のセル積層方向両端に、ターミナル、 インシュレータ、エンドプレートを配置してスタックを 50 に一体成形されており、前記樹脂フレームの前記マニホ

構成し、スタックをスタックの外側でセル積層体積層方 向に延びる締結部材(たとえば、テンションプレート) にて締め付け、固定したものからなる。固体高分子電解 質型燃料電池では、アノード側では、水素を水素イオン と電子にする反応が行われ、水素イオンは電解質膜中を カソード側に移動し、カソード側では酸素と水素イオン および電子(隣りのMEAのアノードで生成した電子が

セパレータを通してくる) から水を生成する反応が行わ

10 アノード側: Hz → 2 H + 2 e

れる。

カソード側: 2 H + 2 e + (1/2) O₂ → H₂ O カソードでの水生成反応では熱が出るので、セパレータ には、各セル毎にあるいは複数個(たとえば、2個)の セル毎に、冷却媒体(通常は冷却水)が流れる流路が形 成されており、燃料電池を冷却している。特開平8-1 62131号公報は、メタルセパレータ周囲に樹脂フレ ームを有し、樹脂フレーム内に形成されたそれぞれのマ ニホールドから燃料ガス、酸化ガスを、樹脂フレームに 形成された流路を通してメタルセパレータに形成された 燃料ガス流路、酸化ガス流路に供給、排出する燃料電池 用セパレータを開示している。樹脂フレーム間にMEA の膜が挟みこまれてシールされるので、樹脂フレームの 表面に流路が溝状に露出してシール面に凹凸をつけるこ とはシール上望ましくない。そのために、樹脂フレーム に形成された流路は2枚のフレームに溝状流路を形成し ておき溝状流路を合わせて2枚のフレームを張り合わせ ることにより、2枚のフレームの合成フレーム内に形成 されている。流路は、セパレータの片側表面の反応ガス 流路に連通するために、途中でフレーム板厚方向に屈曲 しており、屈曲部には流路に段差がある。

[0003]

【発明が解決しようとする課題】しかし、従来の燃料電 池用セパレータには、つぎの問題がある。

- ◆ ② 2枚の板の張り合わせて合成フレーム内流路を形成 するので、2枚の板の合わせ面のシールが新たに問題と なる。また、フレームの個数が倍増し、製造コスト、組 立てコスト等が大幅に増大する。
- ② マニホルドからセパレータの片側表面の反応ガス流 路までの流路にフレーム板厚方向に屈曲する段差があ
- り、反応ガスの流れの円滑性が阻害される。本発明の目 的は、1つのフレームの板厚内に、段差を持たない流路 を形成した燃料電池用セパレータとその製造方法を提供 することにある。

[0004]

【課題を解決するための手段】上記目的を達成する本発 明はつぎの通りである。

(1) セパレータ周囲にマニホールドを内蔵した樹脂 フレームを有する樹脂フレーム付きの燃料電池用セパレ ータにおいて、セパレータの外縁部が前記樹脂フレーム ールドより内周側部分には、前記マニホールドと前記樹 脂フレーム内周面の内側空間とを連通するトンネル状の 流路が形成されている、ことを特徴とする燃料電池用セ パレータ。

- (2) 前記流路は該流路の全長にわたって直線状に延 びており、前記流路のセパレータ側部分の内面は前記セ パレータの表面と同一面上にある、(1)記載の燃料電 池用セパレータ。
- (3) セパレータ周囲にマニホールドを内蔵した樹脂 フレームを有し、前記樹脂フレームの前記マニホールド 10 より内周側部分に、前記マニホールドと前記樹脂フレー ム内周面の内側空間とを連通するトンネル状の流路が形 成されている、樹脂フレーム付きの燃料電池用セパレー タの製造方法であって、流路成形用のピン状の中子をフ レーム中間品成形用型内に配して溶融樹脂を注入し樹脂 凝固後型から外し中子を抜いて、樹脂フレームのマニホ ールドより内周側部分にトンネル状の流路を有しマニホ ールドより外周側部分のうち中子抜き時に干渉する部分 が欠落したフレーム中間品を形成する第1段工程と、フ レーム中間品をフレーム最終品成形用型内に配して溶融 20 樹脂を注入して前記中子抜き時に干渉する部分を埋め、 樹脂凝固後型から外してフレーム最終品を形成する第2 段工程と、からなる燃料電池用セパレータの製造方法。 【0005】上記(1)の燃料電池用セパレータでは、 樹脂フレームにトンネル状の流路が形成されているの で、従来の溝付きフレームを2枚重ねて形成した流路の 場合のように重ね合わせたフレーム間のシールが問題と なることがなく、かつ従来2枚であったフレームが1枚 となるので、コスト低減をはかることができる。上記 (2) の燃料電池用セパレータでは、流路は該流路の全 30 長にわたって直線状に延びており、流路のセパレータ側 部分の内面はセパレータの表面と同一面上にあるので、 屈曲していた従来の流路に比べて流れ抵抗が低減する。 上記(3)の燃料電池用セパレータの製造方法では、ト ンネル状の流路をピン状中子を用いて成形する工程と、 マニホルドより外側部分を埋める工程との2段工程でフ レームを成形するので、1つのフレーム内に容易に流路 を成形することができる。

[0006]

【発明の実施の形態】以下に、本発明の燃料電池用セパ 40 レータを図1~図6を参照して、説明する。本発明の燃 料電池は固体高分子電解質型燃料電池10である。本発 明の燃料電池10は、たとえば燃料電池自動車に搭載さ れる。ただし、自動車以外に用いられてもよい。

【0007】固体高分子電解質型燃料電池10は、図1 ~図6に示すように、イオン交換膜からなる電解質膜 I 1とこの電解質膜11の一面に配置された触媒層12お よび拡散層13からなる電極14(アノード、燃料極) および電解質膜11の他面に配置された触媒層15およ からなる膜-電極アッセンブリ(MEA: Membrane-Ele ctrode Assembly)と、電極14、17に燃料ガス(水 素)および酸化ガス(酸素、通常は空気)を供給するた めの流体通路27および燃料電池冷却用の冷却水が流れ る冷却水流路26を形成するセパレータ18とを重ねて セルを形成し、該セルを複数積層してモジュール19を 構成し(たとえば、2セルから1モジュールを構成 し)、モジュール19を積層してモジュール群とし、モ ジュール群のセル積層方向(燃料電池積層方向)両端 に、ターミナル20、インシュレータ21、エンドプレ ート22を配置してスタック23を構成し、スタック2 3を積層方向に締め付けスタック23の外側で燃料電池 積層体積層方向に延びる締結部材24(たとえば、テン ションプレート、スルーボルトなど)とボルト25また はナットで固定したものからなる。

【0008】触媒層12、15は白金(Pt)を含むカ ーボン (C) からなる。拡散層 13、16はCからな る。セパレータ18は、不透過性で、通常は、カーボン (黒鉛である場合を含む) または金属または導電性樹脂 の何れかからなる。以下ではセパレータ18が、複数の 金属板からなる場合を示すが、これに限るものではな い。

【0009】セパレータ18は、燃料ガスと酸化ガス、 燃料ガスと冷却水、酸化ガスと冷却水、の何れかを区画 するとともに、隣り合うセルのアノードからカソードに 電子が流れる電気の通路を形成している。冷却水流路2 6はセル毎に、または複数のセル毎に、設けられる。た とえば、図3に示すように2セルで1モジュールを構成 するものでは、モジュール毎(2セル毎)に1つの冷却 水流路26が設けられる。

【0010】セパレータ18は、燃料電池を冷却する冷 却水流路を形成するとともに反応ガスの流路を形成する 冷却用セパレータ18Aと、反応ガスの流路を形成する 反応ガス用セパレータ18Bとの2種類のセパレータが ある。セパレータ18が金属板からなる場合、冷却用セ パレータ18Aも反応ガス用セパレータ18Bも、複数 の金属板を重ね合わせた金属セパレータからなる。金属 板は、たとえば、SUS(ステンレス)板にニッケルメ ッキを施したものからなる。

【0011】セパレータ18が金属板からなる場合、冷 却用セパレータ18Aは、凹凸が形成され外面にガス流 路27を形成する2枚の金属板18a、18bと、該2 枚の金属板18a、18bの間に挟まれ、凹凸が形成さ れ、表裏に冷却水流路26を形成する中間金属板18c との、合計3枚の金属板を有する。中間金属板18c、 凹凸が形成されていてもよく(ただし、形成されていな くてもよい)、以下では凹凸が形成されている場合を示 す。金属板18a、18bの凹凸は、たとえばディンプ ル(断面が円錐台形で、各凹凸が非連続の凹凸)であり び拡散層16からなる電極17(カソード、空気極)と 50 (ただし、連続した溝状の凹凸でもよい)、中間金属板

18 c の凹凸は連続した溝状の凹凸である。中間金属板 18 cは、金属板18 a、18 bの凹凸の凹部の底壁の 内面と接触して、金属板18a、18bを支持してい る。

【0012】セパレータ18が金属板からなる場合、冷 却用セパレータ18Aでは、2枚の金属板18a、18 b間のスペースは冷却水流路26である。冷却水流路2 6は、中間金属板18cにより、中間金属板18cの表 側の冷却水流路26aと中間金属板18cの裏側の冷却 水流路26bとに区画される。中間金属板18cの凹凸 10 の凹の幅と凸の幅とは等しく、表側の冷却水流路26a と裏側の冷却水流路26bの流れ抵抗は、等しいか、ま たはほぼ等しい。そして、冷却水は、中間金属板18 c の外側のフレーム31内に形成された冷却水マニホール ド28から金属板18cの表裏の冷却水流路26に入 り、冷却水流路26a、26bを通過した後、冷却水マ ニホールド28へ出ていく。中間金属板18cには、表 側の冷却水流路26aと裏側の冷却水流路26bを連通 する穴30が形成されており、容易にガス抜きされるよ 属板18a、18bと中間金属板18cとは同じ材質と してある。

【0013】冷却用セパレータ18Aでは、金属板18 a、18bの外周部位は、それぞれ、樹脂製の平板状の フレーム31内に延び、フレーム31内に形成されたガ スマニホルド29の手前で止まり、フレーム31に一体 成形される(たとえば、埋め込まれてインサート成形さ れる)。中間金属板18cの外周部はフレーム31の内 周面かその手前で止まり、フレーム31内には延びな い。中間金属板18cは金属板18a、18bと接触し 30 ているが、溶接等による接合はされていない。金属板1 8 a の外周部が埋めこまれたフレームと、金属板 1 8 b の外周部が埋めこまれたフレームとが分離された時に は、中間金属板18cは外されて交換可能である。金属 板18aの外周部が埋めこまれたフレームと、金属板1 8 b の外周部が埋めこまれたフレームとの間にはガスケ ット32が配置されており、冷却水流路26を外部から シールしている。また、フレーム31にはトンネル状の 流路33が形成されており、ガスマニホルド29からの それぞれの反応ガス(燃料ガス、酸化ガス)をそれぞれ 40 のガス流路27(燃料ガス流路27a、酸化ガス流路2 7b)に供給、排出する。

【0014】反応ガス用セパレータ18Bは、凹凸が形 成され外面にガス流路27(燃料ガス流路27a、酸化 ガス流路27b)を形成する2枚の金属板18a、18 bのみを有し、中間金属板 1 8 c は有しない。 反応ガス 用セパレータ18Bでは、2枚の金属板18a、18b 間には冷却水は流れない。金属板18a、18bの凹凸 は、たとえばディンプル(断面が円錐台形で、各凹凸が 非連続の凹凸)である(ただし、連続した溝状の凹凸で 50 い。

もよい)。反応ガス用セパレータ18Bでは、2枚の金 属板18a、18bの外周部は、合わされて、1つのフ レーム31に埋め込まれている。合わされた金属板18 a、18bの外周部は、フレーム31内でガスマニホル ド29の手前で止まっている。また、フレーム31には トンネル状の流路33が形成されており、ガスマニホル ド29からのそれぞれの反応ガス(燃料ガス、酸化ガ ス)をそれぞれのガス流路27(燃料ガス流路27a、 酸化ガス流路27b)に供給、排出する。

【0015】膜―電極アッセンブリ(MEA)は、冷却 用セパレータ18Aでは、金属板18a(18b)の凹 凸の凸部と、反応ガス用セパレータ18Bの金属板18 a、(18b)の凹凸の凸部とによって挟まれており、 電極部は凸部の裏側で、直接、冷却水により冷却されて いる。膜-電極アッセンブリ(MEA)の外周部は隣接 するフレーム31間に挟まれており、膜11は電極1 4、17よりさらに外周に延びて、隣接するフレーム3 1間に挟まれている。

【0016】図5、図6は、セパレータ18周囲にマニ うになっている。また、耐電食性をもたせるために、金 20 ホールド29を内蔵した樹脂フレーム31を有する樹脂 フレーム付きの燃料電池用セパレータ18における、樹 脂フレーム31と、セパレータ18と、トンネル状の流 路33の構造を拡大して示している。セパレータ18の 金属板18a、18b(セパレータ18が黒鉛からなる 場合は黒鉛板)の外縁部は、ほぼ中央部が抜かれたほぼ 四角形状の平板状の枠体からなる樹脂製のフレーム31 の、ガスマニホールド29より内周側部分に、フレーム 31成形時に、一体成形(たとえば、埋め込まれてイン サート成形成形) されている。 金属板 18a、18b は、冷却用セパレータ18Aにおけるように、1枚の金 属板が1枚のフレーム31にインサート成形されていて もよいし、反応ガス用セパレータ18Bにおけるよう に、2枚の金属板18a、18bが合わされて1枚のフ レーム31にインサート成形されていてもよい。

> 【0017】樹脂フレーム31のガスマニホールド29 より内周側部分には、マニホールド29と樹脂フレーム 内周面の内側の反応ガス(燃料ガスまたは酸化ガス)が 流れる空間とを連通するトンネル状の流路33が形成さ れている。流路33は、樹脂フレーム31の成形時に中 子(ピン状の中子)により形成されるもので、1枚のフ レーム31の厚さの範囲内に形成されている。したがっ て、従来のように2枚の板を張り合わせたフレームの溝 からなる流路ではない。流路33は該流路の全長にわた って直線状に延びており、従来の流路のようにフレーム の板厚方向に屈曲していない。流路33が直線状に延び ているので、成形時にピン状の中子を中子軸方向に抜く ことができる。流路33のセパレータ18側部分の内面 はセパレータ18の表面と同一面上にある。したがっ て、成形時にセパレータ18と中子が干渉することはな

【0018】上記の、セパレータ18周囲にマニホール ド29を内蔵した樹脂フレーム31を有し、樹脂フレー ム31のマニホールド29より内周側部分に、マニホー ルド29と樹脂フレーム内周面の内側空間とを連通する トンネル状の流路33が形成されている、樹脂フレーム 付きの燃料電池用セパレータは、つぎの第1段工程、つ いで実行される第2段工程にしたがって、製造される。 第1段工程では、トンネル状流路成形用のピン状の中子 をフレーム中間品成形用型内に配して溶融樹脂を注入し 樹脂凝固後型から外し中子を抜いて、樹脂フレーム31 のマニホールド29より内周側部分にトンネル状の流路 33を有しマニホールド29より外周側部分のうち中子 抜き時に中子が干渉する部分(図5の2点鎖線Bで囲ん だ部分)が欠落したフレーム中間品を形成する。第2段 工程では、第1段工程で製造したフレーム中間品をフレ ーム最終品成形用型内に配して溶融樹脂を注入して中子 抜き時に干渉するために欠落させた部分(図5の2点鎖 線Bで囲んだ部分)を埋め、樹脂凝固後、型から外して フレーム最終品を形成する。このように、フレーム部は 2段成形される。

【0019】上記では、セパレータ18が金属セパレー タの場合を主に説明したが、セパレータ18は金属セパ レータに限るものではなく、ガスや液が不透過でかつ導 電性を有するものであればよく、たとえば、黒鉛セパレ ータ、導電性樹脂セパレータであってもよい。また、流 路33は、ガスマニホルド29と反応ガス流路とを連通 する流路である場合を説明したが、それに限るものでは なく、冷却水マニホルド28とセパレータ内冷却水流路 26とを連通する流路であってもよい。

【0020】つぎに、本発明の燃料電池用セパレータの 30 作用を説明する。樹脂フレーム31にトンネル状の流路 33が形成されているので、従来の溝付きフレームを2 枚重ねて形成した流路の場合のように重ね合わせたフレ ーム間のシールが問題となることがない。また、従来2 枚のフレームの張り合わせからなる合成フレームであっ たものが、本発明では1枚の一体フレーム31となるの で、製造の単純化、部品点数削減などによって、コスト 低減をはかることができる。また、流路33は該流路の 全長にわたって直線状に延びており、流路33のセパレ ータ18側部分の内面はセパレータ18の表面と同一面 40 上にあるので、屈曲していた従来の流路に比べて、流れ 抵抗が低減する。また、流路33をフレーム31の厚さ の範囲内に形成し、流路33がフレーム31の積層面3 4に露出しない構造としたので、MEAの電解質膜 1 1 のシール面が平面となり、隣り合うフレーム31の平面 シール面間に膜11を挟み込んでシールすることができ る。もしもこのシール面に流路の凹凸が溝状に露出する と膜が溝に落ち込んでシール不全が生じるが、そのよう な事態が生じない。なお、図5において、フレーム31 の積層面34の内周部に段差35があるが、これはME 50 18B 反応ガス用セパレータ

Aの拡散層と膜11との段差を吸収するための段差であ り、この段差35より外側に電解質膜11が延び、隣り 合うフレーム31の平面シール面間でシールされる。

【0021】本発明の燃料電池用セパレータ18の製造 方法では、流路33をピン状中子を用いて成形する工程 と、マニホルド29より外側部分を埋める工程との2段 工程でフレーム31を成形するので、1つのフレーム3 1内に容易に流路33を成形することができる。

[0022]

(5)

10

【発明の効果】請求項1の燃料電池用セパレータによれ ば、樹脂フレームにトンネル状の流路が形成されている ので、従来の溝付きフレームを2枚重ねて形成した流路 の場合のように重ね合わせたフレーム間のシールが問題 となることがなく、かつ従来2枚であったフレームが1 枚となるので、コスト低減をはかることができる。請求 項2の燃料電池用セパレータによれば、トンネル状の流 路は該流路の全長にわたって直線状に延びており、流路 のセパレータ側部分の内面はセパレータの表面と同一面 上にあるので、屈曲していた従来の流路に比べて流れ抵 抗が低減する。請求項3の燃料電池用セパレータの製造 方法によれば、トンネル状の流路をピン状中子を用いて 成形する工程と、マニホルドより外側部分を埋める工程 との2段工程でフレームを成形するので、1つのフレー ム内に容易に流路を成形することができる。

【図面の簡単な説明】

【図1】本発明実施例のセパレータを備えた燃料電池の 全体概略図である。

【図2】本発明実施例の燃料電池のモジュールの端部と その近傍の断面図である。

【図3】本発明実施例の燃料電池の電解質膜一電極アッ センブリの一部の拡大断面図である。

【図4】本発明実施例の冷却用セパレータの中間金属板 の正面図である。

【図5】本発明実施例のセパレータと樹脂フレームとト ンネル状の流路の近傍部分の断面図(図6のA-A断面 図) である。

【図6】本発明実施例のセパレータと樹脂フレームとト ンネル状の流路の近傍部分の正面図である。

【符号の説明】

- 1.0 (固体高分子電解質型)燃料電池
 - 11 電解質膜
 - 12 触媒層
 - 13 拡散層
 - 14 電極 (アノード、燃料極)
 - 15 触媒層
 - 16 拡散層
 - 17 電極(カソード、空気極)
 - 18 セパレータ
- 18A 冷却用セパレータ

(6)

特開2002-75396

9

18a、18b 金属板

18c 中間金属板

19 モジュール

20 ターミナル

21 インシュレータ

22 エンドプレート

23 スタック

24 締結部材(テンションプレート)

25 ボルトまたはナット

26 冷却水流路

26a 中間金属板の表側冷却水流路

26b 中間金属板の裏側冷却水流路

* 27 ガス流路

27a 燃料ガス流路

276 酸化ガス流路

28 冷却水マニホルド

29 ガスマニホルド

30 穴

31 フレーム

32 ガスケット

33 (トンネル状の)流路

10 34 積層面

35 段差

*

【図1】

【図2】

【図4】

【図5】

From: 03 3588 8558

Page: 13/36

Date: 3/22/2007 2:23:08 AM

(7)

特開2002-75396

[図6]

