Theory of Computation

G-4

Noe Lomidze

Kutaisi International University
2025-07-18

Idea

Prove that the language $L = \{a^nb^n : n \in \mathbb{N}\}$ is not regular.

Pumping lemma $\Rightarrow |w| = n > N$ can be decomposed as w = xyz such that:

$$|y| > 1$$
,

 $|xy| \leq N$ and you can pump on y.

$$\forall i \in \mathbb{N}_0$$
. $xy^iz \in L$

₹≡ Task 1

obtain the

Regularity

Consider the string $w=a^Nb^N$, for which |w|>N is clear...

Next step is to find where the pumping block y is. Consider the substring a^N and then $w=xy^iz, i\in\mathbb{N}_0$ So we have $w=a^{N-k}a^kb^N$ where $x=a^{N-k}, y=a^k$ and $z=b^N$ We attempt to pump out the pumping block y once, and

string $a^{N-k}b^N$ where k>0 this string is supposed to belong to the language L according to the pumping lemma but as you can see we found a contradiction.

₹≡ Task 2 ⇔ Lemma 4 & Pumping lemma for CFLs

Lemma 4 ←→ Theorem 1.49, chapter 1, page 62.

Theorem 2.34 ⇔ Again the same book, page 125...

₹ Task 4 ⇔ Regularity

 $L=\{1^n\mid n\text{ is prime}\}\text{ is not regular.}$ For pumping length N, since there exists arbitrary large prime numbers, there is p>N, $1^p=uvx$ and $uv^ix\in L$ for all i. Say |v|=k, we take i=p-k, then $|uv^{p-k}x|=k(p-k)+(p-k)==(p-k)(k+1)$, so $uv^{p-k}x=1^{(p-k)(k+1)}\in L$. (Contradiction) (p-k)(k+1) is definitely not a prime.

Noe Lomidze Theory of Computation 2025-07-18 4 / 2

Homework Task 5

$$G = (\{S, A, B\}, \{a, b\}, P, S) \tag{2}$$

Construct NFA With productions P:

$$S \rightarrow aS$$
 $S \rightarrow aA$
 $A \rightarrow bS$
 $A \rightarrow aB$
 $B \rightarrow bS$
 $S \rightarrow a$

$$(3)$$

Theory of Computation Noe Lomidze

Homework Task 5

Blank

Exercise 1

Consider regular expression: $(1 \cup 0)^*01^*$ Construct 1) NFA; 2) Regular Grammar

Exercise 1

 $(1 \cup 0)^*01^*$

Exercise 1

$$S \to 0S \mid 1S \mid 0T$$

$$T \to 1T \mid \varepsilon \tag{4}$$

Noe Lomidze Theory of Computation 2025-07-18 10 / 2

$$\{a^nb^m \mid n \ge m \lor n \le m\}$$

$$\{a^nb^m \mid n \ge m \lor n \le m\}$$

is the same as $a^{st}b^{st}$ so its regular..

$$\{a^n b^m \mid n > m \land n < m\}$$

$$\{a^n b^m \mid n > m \lor n < m\}$$

is empty \Longrightarrow regular

$$\{a^nb^m \mid n \ge m \land n \le m\}$$

$$\{a^nb^m \mid n \ge m \land n \le m\}$$

is the same as $a^n b^n \Rightarrow$ not regular (already seen why)

$$\{a^n b^m \mid n > m \lor n < m\}$$

$$\{a^n b^m \mid n > m \lor n < m\}$$

It is the same language as $\{a^nb^m\mid n\neq m\}$ which is complement to $\{a^nb^m\mid n=m\}$.

Since regularity is closed under complementation, the considered language can not be regular.

(cuz it would imply that $\{a^nb^m\mid n=m\}$ is regular)

Chomsky normal form

- $A \rightarrow BC$ with $A, B, C \in N$
- $A \to b$ with $A \in N$ and $b \in T$
- $S \to \varepsilon$

every context free grammar can be transformed into Chomsky normal form

Chomsky normal form

- 1. Start symbol does not appear on right (add $S' \to S$)
- 2. Eliminate right hand sides with more than 2 symbols $P:n\to a_1...a_s$ where $s\ge 2$, introduce a new non terminal x $n\to a_1...a_{s-2}x, \quad x\to a_{s-1}a_s$, repeat until len(rhs) <=2
- 3. Eliminate ε rules, for all non terminals 1..m (besides S) for i = 1 to m: if $n_i \to \varepsilon$:
 i) drop this rule
 ii) for each rule with n_i on the right side add a rule where each occurence of n_i is dropped

$$n \to x n_i \text{ or } n \to n_i x : \text{add } n \to x$$

$$n_k \to n_i n_i \land k > i : \quad \text{add } n \to \varepsilon$$
(5)

Chomsky normal form

4. for all chain rules between nonterminals $A \to B$ with $A,B \in N$ drop $A \to B$ and for all productions

$$B \to u : \text{add } A \to u$$
 (6)

repeat until no chain rules between nonterminals are left

5. What about $A \to bC$? add a nonterminal X and do the following:

$$X \to b, A \to XC$$
 (7)

thats it..

Convert Grammar into Chomsky normal form

$$S \to AB \mid aB$$
 $A \to aab \mid \varepsilon$
 $B \to bbA$
(8)

Noe Lomidze Theory of Computation 2025-07-18 22 / 27

Eliminate epsilon rules

$$S \rightarrow AB \mid aB$$
 $S \rightarrow AB \mid B \mid aB$ $A \rightarrow aab \mid \varepsilon$ (9) $A \rightarrow aab$ $B \rightarrow bbA \mid bb$

Removal of the unit-production

$$S \rightarrow AB \mid B \mid aB$$
 $S \rightarrow AB \mid bbA \mid aB \mid bb$ $A \rightarrow aab$ (11) $A \rightarrow aab$ $B \rightarrow bbA \mid bb$ $B \rightarrow bbA \mid bb$

Make RHS <=2

$$S \to AB \mid bbA \mid aB \mid bb \qquad S \to AB \mid V_b V_b A \mid V_a B \mid V_b V_b$$

$$A \to aab \qquad (13) \qquad A \to V_a V_a V_b \qquad (14)$$

$$B \to bbA \mid bb \qquad B \to V_b V_b A \mid V_b V_b$$

Final result

$$S \to AB \mid V_c A \mid V_a B \mid V_b V_b$$

$$A \to V_d V_b$$

$$S \to AB \mid V_b V_b A \mid V_a B \mid V_b V_b$$

$$A \to V_a V_a V_b$$

$$A \to V_b V_b A \mid V_b V_b$$

$$V_c \to V_b V_b$$

$$V_d \to V_a V_a$$

$$V_a \to a$$

$$V_b \to b$$

$$(16)$$

thats it..(hope u undertand how it works)

Noe Lomidze Theory of Computation 2025-07-18 26 / 2

