

DISCRETE ENTROPY

Definition

The *entropy* of a distribution is the expectation of the negative logarithm of the distribution under the distribution. It is sometimes called the *discrete entropy* to distinguish it with another related topic.¹

Notation

Let A be a finite set. Let $p:A\to \mathbf{R}$ be a distribution. The entropy of p is

$$-\sum_{a \in A} p(a) \log(p(a)).$$

We denote the entropy of p by H(p).

Properties

Let $x:\Omega\to V$ be a discrete random variable.

- 1. $H(x) \ge 0$
- 2. H(f(x)) < H(x)
- 3. For invertible $g, H(g(x)) \leq H(x)$

¹Future editions may not forward reference differential entropy.

