Assignment Name: Homework 8

Student Name: Mo Pei

significant.

8. Market research was conducted for a national retail company to compare the relationship between sales and advertising during the warm spring and summer seasons as compared with the cool fall and winter seasons. The data were collected over a period of several years. They tested the model below, and found that it was

 $Y = \beta_0 + \beta_1 Season + \beta_2 Advertising + \epsilon$

Where Season is 0 for warm months and 1 for cool months.

They wondered if they could do a better job of predicting the average sales if they used higher order terms.

1. If they wanted to test the complete second order model what would it be?

Y= β0+ β1Season + β2Advertising + β3Advertising^2 + β4Advertising* Season 3+

No beta for season square because the value of season ranges from 0 to 1 the same that of season^2.

higher order terms, as found in the complete second order model, would help to significantly improve the model above.

Nested Model

Y= β_0 + β_1 Season + β_2 Advertising + ϵ

Model Summary

			Adjusted R	Std. Error of the
Model	R	R Square	Square	Estimate
1	.977ª	.954	.948	2.3556

a. Predictors: (Constant), ADV, SEASON

 $\textbf{ANOVA}^{\textbf{a}}$

Mode	I	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1721.817	2	860.909	155.152	.000 ^b
	Residual	83.232	15	5.549		
	Total	1805.049	17			

a. Dependent Variable: SALES

b. Predictors: (Constant), ADV, SEASON

Coefficients^a

		Unstandardize	ed Coefficients	Standardized Coefficients		
Ν	Model	В	Std. Error	Beta	t	Sig.
1	(Constant)	104.528	3.229		32.367	.000
	SEASON	-7.768	1.135	388	-6.846	.000
	ADV	2.979	.206	.820	14.477	.000

a. Dependent Variable: SALES

Y= β 0+ β 1Season + β 2Advertising + β 3Advertising^2 + β 4Advertising* Season + ϵ

Model Summary

			Adjusted R	Std. Error of the
Model	R	R Square	Square	Estimate
1	.987ª	.973	.965	1.9277

a. Predictors: (Constant), AdvAdv, AdvSeason, SEASON, ADV

$\textbf{ANOVA}^{\textbf{a}}$

Mode	I	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1756.739	4	439.185	118.183	.000 ^b
	Residual	48.310	13	3.716		
	Total	1805.049	17			

a. Dependent Variable: SALES

b. Predictors: (Constant), AdvAdv, AdvSeason, SEASON, ADV

Coefficients^a

		Unstandardize	ed Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	90.306	14.054		6.426	.000
	SEASON	7.944	5.271	.397	1.507	.156
	AdvSeason	-1.070	.353	780	-3.034	.010
	ADV	4.338	1.791	1.194	2.423	.031
	AdvAdv	027	.056	229	481	.639

a. Dependent Variable: SALES

Nested F test

H0: 3 = 4 = 0

H1: at least one coefficient square of advertisement or interaction of advertisement and season is different from zero

F= (SSModel full-SSModel nested)/#predictors tested / SSE full/ (n-k-1)

F = ((1756.739 - 1721.817)/2)/(48.310/(18-4-1)) = 4.698675

Numerator is 2 and denominator is 13, critical value is 3.8056 for P value of 0.05

F=4.698675 > 3.8056 thus p < 0.05

So we can reject null, and conclude that one of the tested betas square of advertisement, interaction between advertisement and season is\are useful in predicting average sales, after accounting for Season and ADV (advertising).

8b. A statistician who owns a pedometer was interested in predicting the number of miles (Miles) they walked in a day. To do this, they recorded several variables for 42 different days. This included, the number of steps taken at a moderate pace that day (Moderate), and whether or not there was rain that day (Rain). The dataset is called Walking. The researcher used the following model to predict the number of miles walked in a day:

Y= $β_0$ + $β_1$ Moderate + ε

The wondered if they could do a better job if they let the slope and/or the intercept vary depending on whether it rained or not. Use a nested-F to test this theory.

Y= β_0 + β_1 Moderate + ϵ

Model Summary

			Adjusted R	Std. Error of the
Model	R	R Square	Square	Estimate
1	.893ª	.797	.792	.4525

a. Predictors: (Constant), Moderate

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	32.194	1	32.194	157.244	.000 ^b
	Residual	8.190	40	.205		
	Total	40.384	41			

a. Dependent Variable: Miles

b. Predictors: (Constant), Moderate

Coefficients

			Coemicients			
		Unstandardize	ed Coefficients	Standardized Coefficients		
Mode	el	В	Std. Error	Beta	t	Sig.
1	(Constant)	1.912	.118		16.140	.000
	Moderate	.001	.000	.893	12.540	.000

a. Dependent Variable: Miles

 $Y=\beta_0+\beta_1Moderate+\beta_2Rain+\beta_3ModerateRain+\epsilon$

Model Summary

			Adjusted R	Std. Error of the
Model	R	R Square	Square	Estimate
1	.909ª	.827	.813	.4289

a. Predictors: (Constant), ModerateRain, Rain, Moderate

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	33.392	3	11.131	60.494	.000 ^b
	Residual	6.992	38	.184		
	Total	40.384	41			

a. Dependent Variable: Miles

b. Predictors: (Constant), ModerateRain, Rain, Moderate

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	1.674	.199		8.413	.000
	Moderate	.001	.000	1.424	5.471	.000
	Rain	.076	.274	.039	.279	.782
	ModerateRain	.000	.000	588	-1.776	.084

a. Dependent Variable: Miles

Nested F test

H0: $\beta 2 = \beta 3 = 0$

H1: at least one predictor of coefficient of rain or interaction between rain and moderate is different from zero

F= (SSModel full-SSModel nested)/#predictors tested / SSE full/ (n-k-1)

F = ((33.392 - 32.194)/2)/(6.992/(42-3-1)) = 3.255435

Numerator is 2 and denominator is 38, critical value is 3.24481 for P value of 0.05

F=3.255435> 3.24481 thus p < 0.05

So we can reject null, and conclude that one of the tested betas rain or not rain and interaction between rain indicator and moderate is\are useful in predicting average miles, after accounting for moderate.

3.36 Caterpillar metabolic rates. In Exercise 1.31 on page 66, we learned that the transformed body sizes (LogBodySize) are a good predictor of transformed metabolic rates (LogMrate) for a sample of caterpillars with data in MetabolicRate. We also notice that this linear trend appeared to hold for all five stages of the caterpillar's life. Create five different indicator variables, one for each level of Instar, and fit a multiple regression model to estimate five different regression lines. Only four of your five indicator variables are needed to fit the multiple regression model. Can you explain why? You should also create interaction variables to allow for the possibility of different slopes for each regression line. Does the multiple regression model with five lines provide a better fit than the simple linear regression model?

1)

Since it has five levels and so it omits instar level 5. Thereby, only four indictors variables are useful.

Original model:

$$LogMrate = \beta0 + \beta1 LogBodySize + \epsilon$$

Model Summary

			Adjusted R	Std. Error of the		
Model	R	R Square	Square	Estimate		
1	.974ª	.948	.948	.175218534808		

a. Predictors: (Constant), LogBodySize

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	169.020	1	169.020	5505.255	.000b
	Residual	9.303	303	.031		
	Total	178.322	304			

a. Dependent Variable: LogMrate

b. Predictors: (Constant), LogBodySize

Coefficients^a

				Standardized		
		Unstandardize	ed Coefficients	Coefficients		
Model	I	В	Std. Error	Beta	t	Sig.
1	(Constant)	1.307	.014		96.331	.000
	LogBodySize	.916	.012	.974	74.197	.000

a. Dependent Variable: LogMrate

New model:

 $LogMrate = \beta0 + \beta1 \ LogBodySize + + \beta2Instar1 + \beta3Instar2 + \beta4Instar3 + \beta5Instar4 + \beta6 \ LogBodySize \ Instar1 + \beta7 \ LogBodySize \ Instar2 + \beta8 \ LogBodySize \ Instar3 + \beta9$ $LogBodySize \ Instar4 + error$

Model Summary

			Adjusted R	Std. Error of the
Model	R	R Square	Square	Estimate
1	.975ª	.950	.948	.173854578449

 $a.\ Predictors:\ (Constant),\ instar_4_LogBodySize,\ LogBodySize,$

instar_3, instar_2, instar_4, instar_3_LogBodySize, instar_1,

instar_2_LogBodySize, instar_1_LogBodySize

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	169.406	9	18.823	622.750	.000 ^b
	Residual	8.916	295	.030		
	Total	178.322	304			

a. Dependent Variable: LogMrate

b. Predictors: (Constant), instar_4_LogBodySize, LogBodySize, instar_3, instar_2, instar_4, instar_3_LogBodySize, instar_1, instar_2_LogBodySize, instar_1_LogBodySize

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	1.319	.047		27.823	.000
	LogBodySize	.980	.114	1.041	8.632	.000
	instar_1	066	.209	028	314	.753
	instar_2	.016	.120	.008	.134	.894
	instar_3	026	.061	015	420	.675
	instar_4	061	.053	035	-1.142	.254
	instar_1_LogBodySize	101	.151	087	668	.505
	instar_2_LogBodySize	029	.137	022	214	.831
	instar_3_LogBodySize	068	.120	040	564	.573
	instar_4_LogBodySize	227	.127	062	-1.792	.074

a. Dependent Variable: LogMrate

Nested F test

H0:
$$82 = 83 = 84 = 85 = 86 = 87 = 88 = 89 = 0$$

H1: at least one of the coefficients of the indicators or interactions with LosBodySize is different from zero

F= (SSModel_full-SSModel_nested)/#predictors tested / SSE_full/ (n-k-1)

$$F = ((169.406 - 169.020)/8)/(8.916/(305-9-1)) = 1.596428$$

Numerator is 8 and denominator is 295, critical value is 3.24481 for P value of 0.05

F=1.596428< 1.96985032 thus p > 0.05

So we fail to reject null, and conclude that the tested betas (the predictors we added to form full model) indicator of instar and interaction between different level of instar and logbodysize are not useful in predicting average miles, after accounting for moderate.