KCET PHYSICS ANSWER KEYS (19.04.2018)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
В	D	Α	С	В	Α	С	С	С	В	Α	Α	Α	Α	С
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
B,C,D	С	D	В	С	В	В	С	Α	В	D	Α	D	С	D
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
В	С	В	С	В	В	В	В	С	В	D	В	Α	В	Α
46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Α	В	В	В	С	С	Α	Α	D	С	Α	В	В	С	D

1.
$$E = mC^2 = 1 \times 10^{-3} \times 9 \times 10^{16} = 9 \times 10^{13} J$$

2.
$$\frac{N}{N_0} = \frac{1}{2x}$$
 where $x = \frac{50}{125} = 4 \Rightarrow N = \frac{N_0}{16} = \frac{64}{16} = 4mg$

Fa CE amplifer, input is base amplifires guretion 3.

4.
$$A + \bar{B} = 1 + 1 = 1 = A$$

5.
$$d_h d_e = d_c^2 \Rightarrow 4.5 \times 10^{22} d_e = (3 \times 10^{16})^2 \Rightarrow d_e = 2 \times 10^{10}/m^3$$

6.
$$F_8$$
 CE Input = I_6 output = I_C hence $\frac{I_C}{I_b}$ = 50. only option A satisfor the given data

7. Range =
$$\sqrt{2Rh} = \sqrt{2 \times 6400 \times 10^3 \times 500} = 80 \times 10^3 m = 80 cm$$

8.
$$V_e \alpha \frac{1}{\sqrt{R+h}} \Rightarrow \frac{V_0}{V_e} = \frac{\sqrt{R}}{\sqrt{2R}} = \frac{1}{\sqrt{2}} \Rightarrow V_0 = \frac{V_e}{\sqrt{2}}$$

9. Slope is max. at R

10. Conceptual

11.
$$\frac{d\theta}{dt} = k \left(\frac{\theta_1 + \theta_2}{2} - \theta_0 \right) \Rightarrow \frac{65.5 - 32.5}{1} = k \left[\frac{65.5 + 62.5}{2} - 22.5 \right] - --- (1)$$

$$\frac{46.5 - 10.5}{t} = k \left[\frac{46.5 + 40.5}{2} - 22.5 \right] - --- (2)$$

12.
$$\phi = B.A \alpha \mu_0 \frac{I}{d} A \Rightarrow \frac{Q}{\mu} = \frac{IA}{d} = IL = [\mu^0 L^1 T^0 A^1]$$

13.
$$U_i = \frac{-GMm}{R}$$
; $U_f = \frac{-GMm}{R+R} = \frac{-GMm}{2R}$

$$\therefore W = U_f - U_i = \frac{-GMm}{2R} = \frac{-mgR}{2}$$

14. For closed pipe :
$$f = \frac{3U}{4l_1}$$
 Hence $\frac{3u}{4l_1} = \frac{2u}{2l_2}$

Open pipe:
$$f = \frac{2u}{2l_2} \Rightarrow \frac{L_1}{l_2} = \frac{3}{4}$$

15.
$$100 \times \frac{DR}{R} = \left[\frac{\Delta V}{V} + \frac{\Delta I}{I}\right]^{100} = \left[\frac{5}{100} + \frac{0.2}{10}\right] \times 100 = 5 + 2 = 7\%$$

16.
$$f \le \mu mg \cos\theta \Rightarrow 10 \le 0.8m \times 10 \times \frac{\sqrt{3}}{2}$$

$$\Rightarrow m \ge \frac{1}{0.4 \times \sqrt{3}} \ge \frac{10}{4\sqrt{3}} \ge \frac{5\sqrt{3}}{6} \ge 1.44 Kg$$

Hence mass of the block may be 2Kg 3Kg or 4Kg

17.
$$K.E = \frac{P^2}{2m} \Rightarrow p \ \alpha \sqrt{m}$$

18.
$$p = heg$$

19.
$$\frac{Q_2}{Q_1} = \frac{T_2}{T_1} \Rightarrow \frac{150}{300} = \frac{T_2}{500} \Rightarrow T_2 = 250K$$

21. N = m(g -a) =
$$60(9.8-1.8) = 60 \times 8 = 480N$$

22.
$$I_{33} = I_{xx} + I_{yy} = 20 + 25 = 45kg m^2$$

23. shress =
$$\frac{F}{A}$$
 If A is doubled stress will be halved

24.
$$E = \frac{1}{4\pi60} \frac{q}{d^2} \Rightarrow 2 = \frac{9 \times 10^9 \times q}{(30 \times 10^{-2})^2} \Rightarrow q = 2 \times 10^{-11} C$$

25.
$$qV = \frac{1}{2}mV^2 \Rightarrow u = \sqrt{\frac{2qV}{m}} = \sqrt{\frac{2\times 2\times 1}{1}} = 2m/s$$

26. If we replace the space occupied by the dietechic with his

$$d_a = \sqrt{x} d_m \Rightarrow d_a = \sqrt{4} \frac{d}{2} \Rightarrow d_a = d$$

Hence the effective distance between the changes is $\frac{d}{2} + d = \frac{3d}{2}$

Hence
$$\frac{F^1}{F} = \frac{d^2}{d^{12}} = \frac{d^2 \cdot 4}{9d^2} = \frac{4}{9}$$

27. The arrangement can be reduced as

Which is a wheastone Bridge

- Workdone 1n ervipotential surface is zero as $w=q(\mathit{V}_{\!A}-\mathit{V}_{\!B})~\&~\mathit{V}_{\!A}=\mathit{V}_{\!B}$ 28.
- Initial charge $q=\left(\frac{3\times 6}{3+6}\right)900=1800~\mu C$ Cammon potential $V=\frac{Total~charge}{Total~capacity}=\frac{1800}{9}=200V$ 29.
- 30. Ohm's law is applicable for conductors only
- conceptual 31.
- The crircuit can be reduced as now hence $R^1 = 4 + 3 + 5 = 12\Omega$ 32.

- All resistance are in paralal. Hence $I=\frac{300}{R/5}=\frac{300\times 5}{R}==\frac{500}{R}=1A$ 33. Hence current through (A) will be $\frac{3}{5}$ A
- $E^1 = 2E$; 34. $R^1 = r_1 + r_2 + R; I = \frac{2E}{r_1 + r_2 + R}$ $V = E - Ir_1 = 0$ $\Rightarrow E = \frac{{}^{2E}r_1}{{}^{r_1}+{}^{r_2}+R} \Rightarrow 2r_1 = r_1 + r_2 + R \Rightarrow R = r_1 - r_2$
- Shape = $\frac{I}{V} = \frac{1}{R}$. slope of p is lon. Hence its resistance is more 35.
- 36. conceptual
- $r = \frac{mu}{Bq} \Rightarrow r_1 B_1 = r_2 B_2 \Rightarrow r \cdot B = r^1 \times \frac{B}{2} \Rightarrow r^1 = 2r$ 37.

38.
$$\frac{1}{2} mv^2 = qV \Rightarrow v = \sqrt{\frac{2qVm}{m}}$$
. And $r = \frac{mv}{Bq} = \frac{m}{Bq} \sqrt{\frac{2qV}{m}}$

 $\Rightarrow r\alpha\sqrt{V} \ or \ V\alpha r^2$. Since ris doubed; V becomes 4 himes

39. Frequency of cyclofrom = frequency of froton = $10 \times 10^6 Hg = 10^7 Hg$

$$\therefore V = rw = 0.6 \times 2\pi \times 10^2 \text{ m/s}$$

$$xE = \frac{1}{2}mv^2 \text{ Also } r = \frac{mv}{Bq} \Rightarrow m = \frac{Bqr}{v}$$
Hence $KF = \frac{1}{2}\left(\frac{Bqr}{V}\right)v^2 = \frac{1}{2}Rqr$ $v = \frac{1}{2} \times 0.66 \times 0.6 \times 10^7 \times 2\pi \times 0.66 \times$

Hence $KE = \frac{1}{2} \left(\frac{Bqr}{v} \right) v^2 = \frac{1}{2} Bqr. v = \frac{1}{2} \times 0.66 \times 0.6 \times 10^7 \times 2\pi \times 0.6e$ $= (0.66)(0.6)^2\pi(10^6e) = 7meV$

- 40. conceptual
- 41. conceptual

42.
$$e = B_v/v \text{ But } \frac{B_v}{B_H} = lan \ 30^0 = \frac{1}{\sqrt{3}} \Rightarrow B_v = \frac{4 \times 10^{-4}}{\sqrt{3}} T$$

$$\therefore e = \frac{4 \times 10^{-4}}{\sqrt{3}} \times 25 \times \left(3600 \times \frac{5}{18}\right) = 5.77V$$

 $X_2 = wL \Rightarrow X_L \alpha f$ 43.

44.
$$\varepsilon = \frac{d\theta}{dt} = 6t + 4 = 6(2) + 4 = 16V$$

45.
$$P = VI \Rightarrow I = \frac{100}{220} = \frac{5}{11}A$$

- The question should be in a resonate LCR circuits 'L' α 'C' do not dissipate poler 46.
- 47. 220V is the was value

48.
$$\frac{I_p}{I_s} = \frac{N_s}{N_p} \Rightarrow \frac{I_p}{2} = \frac{25}{1} \Rightarrow I_p = 50A$$

- 49. F = n
- 50. Conceptual

51.
$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f} \Rightarrow \frac{1}{v} + \frac{1}{-20} = \frac{-1}{10} \Rightarrow \frac{1}{v} = -\frac{1}{10} + \frac{1}{20} = \frac{-2+1}{20} = \frac{-1}{20}$$
$$v = -20cm$$

The object is placed at center of ocrvature & hence will him image at 'c'

52.
$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f} \Rightarrow \frac{1}{75} - \frac{1}{-25} = \frac{1}{f} \Rightarrow \frac{1}{f} = \frac{1}{25} + \frac{3}{75} = \frac{4}{75}$$

$$f = 18.75 \ cm \ \& \ his \ the$$
Hence the lens should be convex

53.
$$d \sin \theta = \lambda \Rightarrow \sin \theta = \frac{\lambda}{d} = \frac{\lambda}{a}$$

55.
$$\frac{\gamma d}{D} = n\lambda \Rightarrow n_1 \lambda_1 = (n+1)\lambda_2$$
$$\Rightarrow n \times 780 = (n+1)520$$
$$\Rightarrow \frac{n+1}{n} = \frac{78}{52} \Rightarrow \frac{1}{n} = \frac{26}{52}$$
$$\Rightarrow n = \frac{52}{26} = 2$$

56.
$$\frac{\gamma d}{D} = n\lambda$$

$$\Rightarrow y_1 - y_2 = \frac{4D}{d} (\lambda_1 - \lambda_2) = \frac{4 \times 1.2}{2 \times 10^{-3}} [6500 - 5200] \times 10^{-10}$$

$$= 0.312 \text{ nm}$$

58.
$$\lambda = \frac{h}{\sqrt{2mqV}} \Rightarrow \lambda \sqrt{mq} = com$$
$$\Rightarrow \frac{\lambda_p}{\lambda_\alpha} = \sqrt{\frac{2\times 4}{1\times 1}} = 2\sqrt{2}$$

59.
$$E_n = \frac{-13.6Z^2}{n^2} Z = 1; n = 2; E_n = -3.4eV$$

60.
$$T^2 \alpha R^3 \ \alpha \ n^6 \Rightarrow T \alpha n^3$$
 Hence $\frac{T^1}{T} = 2^3 = 8$