# A mesterséges intelligencia alapjai

informált keresések

# Áttekintés

- mohó legjobbat-először keresés
- A\* keresés
- heurisztikák

## Fakereséső algoritmus (ismétlés)

```
function Tree-Search(problem, strategy): megoldás vagy "sikertelen"
 kereső fa inicializálása a probléma kezdőállapotával
 loop do
      if nincs kiterjeszthető csúcs
          then return "sikertelen"
      válassz a stratégia alapján egy levél csúcsot
      if a csúcs célállapotot tartalmaz
          then return kapcsolódó megoldást
      else terjeszd ki a csúcsot, és a gyerekcsúcsokat add a keresőfához
 end
```

#### Heurisztikus keresés

- alapötlet
  - használjunk egy kiértékelő függvényt, mely a csúcsokon van értelmezve
  - o a csúcs kívánatosságát becsüli meg
  - o a leginkább kívánatos csúcsot terjesszük ki
- implementáció
  - a perem egy sor, mely a kívánatosság szerint rendezett
- speciális esetek
  - mohó legjobbat-először keresés
  - A\* keresés

## Románia térképe, és a Bukaresttől mért távolságok



| зилизителис опъедис | rhar. |
|---------------------|-------|
| to Bucharest        |       |
| Arad                | 366   |
| Bucharest           | 0     |
| Craiova             | 160   |
| Dobreta             | 242   |
| Eforie              | 161   |
| Fagaras             | 178   |
| Giurgiu             | 77    |
| Hirsova             | 151   |
| Iasi                | 226   |
| Lugoj               | 244   |
| Mehadia             | 241   |
| Neamt               | 234   |
| Oradea              | 380   |
| Pi tes ti           | 98    |
| Rimnicu Vilcea      | 193   |
| Sibiu               | 253   |
| Timi soara          | 329   |
| Urziceni            | 80    |
| Vaslui              | 199   |
| Zerind              | 374   |

## Mohó legjobbat-először keresés

- kiértékelő függvény: h(n)
  - heurisztika
  - megbecsüli n távolságát a legközelebbi céltól









## A mohó legjobbat-először keresés tulajdonságai

- teljesség
  - o nem, beragadhat
    - Nagyvárad céllal: Jászvásár (lasi) → Karácsonkő (Neamt) → Jászvásár → Karácsonkő → ...
  - véges állapottér esetén, ismételt állapotok vizsgálatával teljessé tehető
- időbonyolultság
  - O(b<sup>m</sup>), de egy jó heurisztika drámaian felgyorsíthatja
- tárbonyolultság
  - O(b<sup>m</sup>), minden csúcsot a memóriában tart
- optimalitás
  - o nem

# A mohó legjobbat-először keresés és az optimalitás



#### A\* keresés

- ötlet
  - ne terjesszük ki azokat az utakat, melyek már eleve drágák
- kiértékelő függvény f(n) = g(n) + h(n)
  - g(n) útköltség n-ig
  - h(n) a célig tartó út becsült költsége n-től
  - f(n) az n-en keresztül a célba vezető út becsült teljes költsége
- A\* keresés elfogadható heurisztikát használva
  - h(n) ≤ h\*(n), ahol h\*(n) a valós költség a célig
  - h(n) ≥ 0, így h(c)=0 minden c cél esetén
  - o a légvonalban mért távolság nem becsüli felül az úton mért távolságot
- Tétel: Az A\* fakeresés optimális













# A\* optimalitása (standard bizonyítás)

Tegyük fel, hogy a peremen egy  $G_2$  szuboptimális célcsomópont jelenik meg, és az optimális megoldás útköltsége C. mivel  $G_2$ szuboptimális  $f(G_2)=g(G_2)+h(G_2) > C$ .

Legyen n egy csúcs a peremben, mely az optimális megoldás útvonalán fekszik, Ha h(n) nem becsüli túl a valós költséget, akkor f(n)=g(n)+h(n)≤g(n)+h\*(n)=C.

Így G<sub>2</sub> nem kerül kifejtésre, így A\* optimális megoldást ad.



# A\* optimalitása

Lemma: A\* a csúcsokat növekvő f értékük alapján terjeszti ki.

Fokozatosan építi az f-kontúrokat.

Az i. kontúr tartalmazza az összes csúcsot melyre  $f = f_i$ , ahol  $f_i < f_{i+1}$ 



# A\* fakeresés tulajdonságai

- teljesség
  - igen, ha nincs végtelen sok csúcs, melyre f ≤ f(G)
- időbonyolultság
  - exponenciális (h relatív hibája x megoldás hossza)
- tárbonyolultság
  - minden csúcsot a memóriában tart
- optimalitás
  - o igen, nem bontja ki f<sub>i+1</sub>-et, amíg f<sub>i</sub>-vel nem végez
  - A\* kibont minden csúcsot, melyre f(n) < C</li>
  - A\* kibont néhány csúcsot, melyre f(n) = C
  - A\* nem bont ki csúcsot, melyre f(n) > C

#### Konzisztens heurisztika

Egy heurisztika konzisztens (monoton), ha

$$h(n) \le c(n,a,n') + h(n')$$

Ha h konzisztens, akkor

$$f(n') = g(n')+h(n') = g(n)+c(n,a,n')+h(n') \ge g(n)+h(n) = f(n)$$

Így f(n) monoton nemcsökkenő minden út mentén

Konzisztens heurisztika esetén a A\* gráfkeresés optimális



# Elfogadható heurisztikák – nyolcas játék

- h₁(n) rossz helyen álló lapok száma
- h<sub>2</sub>(n) teljes Manhattan távolság (vízszintes és függőleges távolságok összege)
- $h_1(S) = 6$
- $h_2(S) = 4+0+3+3+1+0+2+1 = 14$



Start State

Goal State

A megoldás 26 lépésből áll

#### Heurisztikák összehasonlítása

ha  $h_2(n) \ge h_1(n)$  minden n csúcsra (és mindkettő elfogadható heurisztika), akkor  $h_2$  **dominálja**  $h_1$ -et, és sokkal hasznosabb keresésre

| d=14 | iteratívan mélyülő | 3 473 941        |
|------|--------------------|------------------|
|      | $A^* - h_1$        | 539              |
|      | $A^* - h_2$        | 113              |
| d=24 | iteratívan mélyülő | ≃ 54 000 000 000 |
|      | $A^* - h_1$        | 39 135           |
|      | $A^* - h_2$        | 1 641            |

#### Dominancia felhasználása

Ha adott két elfogadható heurisztika h<sub>a</sub> és h<sub>b</sub>, akkor

$$h(n) = \max(h_a(n), h_b(n))$$

szintén elfogadható heurisztika, és dominálja h<sub>a</sub>-t és h<sub>b</sub>-t is.

## Relaxált problémák

- azt a problémát, melyben az operátorokra kevesebb megkötést teszünk mint az eredeti problémában, relaxált problémának nevezzük
- elfogadható heurisztika konstruálható a relaxált probléma pontos megoldási költsége alapján
- ha a nyolcas játékban egy lapot bárhova rakhatunk, h<sub>1</sub>(n) adja meg a legrövidebb megoldást
- ha a nyolcas játékban egy lapot bármely szomszédos mezőre áttolhatunk, akkor h<sub>2</sub>(n) adja meg a legrövidebb megoldást.
- fontos: a relaxált probléma optimális megoldásának költsége nem nagyobb,
  mint az eredeti probléma optimális megoldásának költsége

## Relaxált problémák

Az **utazó ügynök probléma** (TSP) egy közismert feladat: adjuk meg a legrövidebb utat, mellyel minden várost pontosan egyszer látogatunk meg (minimális Hamilton-kör)

A minimális feszítőfa O(n²) idő alatt határozható meg, s ez egy alsó korlátot ad meg a problémára (Held, Karp 1970)



# Összefoglalás

- a heurisztika függvények a legrövidebb utak hosszát becsülik
- egy jó heurisztika jelentősen lerövidíti a keresést
- a mohó legjobbat-először keresés a legkisebb heurisztikájú csúcsot terjeszti ki
  - o nem teljes és nem feltétlenül optimális
- A\* keresés a legkisebb g+h-t terjeszti ki
  - teljes és optimális
  - optimálisan hatékony
    - egyetlen más algoritmus sem fejt ki garantáltan kevesebb csomópontot
- elérhető heurisztikák nyerhetők a relaxált feladatok pontos megoldásaiból