EXERCÍCIOS PARA ANÁLISE MATEMÁTICA I

2017/2018

DOCENTES: Ana Isabel Santos, Jorge Salazar, José Ribeiro, Rui Albuberque e Vladimir Goncharov.

Esta ficha de exercícios é composta por um conjunto de exercícios que os alunos da unidade curricular de Análise Matemática I, leccionada pelo Departamento de Matemática da Escola de Ciências e Tecnologia da Universidade de Évora aos cursos de Ciências da Terra e da Atmosfera, Engenharia das Energias Renováveis, Engenharia Geologica, Engenharia Informática, Engenharia Mecatrónica, Matemática Aplicada e Matemática Aplicada à Economia e Gestão, deverão resolver ao longo do semestre.

Esta ficha, que foi elaborada tendo por base a bibliografia recomendada e o programa da unidade curricular, é composta por nove secções, as quais serão acrescentadas de modo sequencial ao longo do semestre. Refira-se ainda que as respectivas soluções encontram—se no final de cada uma das secções.

1 NOÇÕES TOPOLÓGICAS EM $\mathbb R$ e INDUÇÃO MATEMÁTICA

- 1.1. Demonstre as seguintes propriedades do módulo (exercício opcional):
 - a) $|x| = \max\{-x, x\};$
 - b) $-|x| \le x \le |x|;$
 - c) $|x| \le a \iff -a \le x \le a$;
 - $|x-b| \le a \iff b-a \le x \le b+a;$
 - e) $|x + y| \le |x| + |y|$;
 - f) |xy| = |x||y|;
 - $|y| |x| |y| \le ||x| |y|| \le |x y|;$
- 1.2 Determine os pontos interiores, exteriores, fronteiros, de acumulação e isolados dos seguintes subconjuntos de \mathbb{R} .
 - a) A = (1, 5]
 - b) $B = [-3, -1) \cup (1, 2] \cup \{0, 4\};$
 - c) $C = \{x \in \mathbb{R} : 0 < |x 2| \le 7\};$
 - d) $D = \{x \in \mathbb{R} : x^2 > 4\};$
 - $e) \ E=\big\{1+\tfrac{1}{n^2}:n\in\mathbb{N}\big\}.$
- 1.3. Determine o interior, o exterior, a fronteira, o derivado, o fecho e o conjunto dos pontos isolados dos seguintes subconjuntos de \mathbb{R} , indicando quais são abertos ou fechados:
 - a) $A = \left\{ x \in \mathbb{N} : x^2 \leqslant 25 \right\};$

- b) $B = (-\infty, 4];$
- c) $C = (-3, +\infty)$;
- d) $D = \{x \in \mathbb{R} : |2x+1| > 1\};$
- e) $E = \{x \in \mathbb{Z} : |3 x| < 1 \land x \le \sqrt{3}\};$
- $f) F = \{x \in \mathbb{R} : |x^2 2| < 1\};$
- $g) G = \mathbb{N};$ $h) H = \mathbb{Q};$
- $i) I = \mathbb{R}.$

1.4. Considere $D_f \subset \mathbb{R}$ o domínio da função definida por

$$f(x) = \frac{2x}{\sqrt{x^2 - 9}}.$$

- a) Determine D_f ;
- b) Determine o interior, o exterior, a fronteira, o fecho e o derivado de D_f ;
- c) Diga, justificando, se D_f é aberto, fechado e/ou limitado.

1.5. Seja $D_g \subset \mathbb{R}$ o domínio da função definida por

$$g(x) = \ln\left(\frac{x}{x+2}\right).$$

- a) Determine D_g ;
- b) Determine o interior, o exterior, a aderência e o derivado de D_g ;
- $c)\,$ Diga, justificando, se D_g é aberto, fechado e/ou limitado.
- **1.6.** Considere $D_h \subset \mathbb{R}$ o domínio da função definida por

$$h(x) = \frac{e^{3x}}{x^2 - 1}.$$

- a) Determine D_h ;
- b) Determine o interior, o exterior, a fronteira, o fecho e o conjunto dos pontos isolados de D_h ;
- c) Diga, justificando, se D_h é aberto, fechado e/ou limitado.
- 1.7. Diga, justificando, quais dos seguintes conjuntos são majorados, minorados ou limitados e indique, caso existam, o supremo, o infímo, o máximo e o mínimo de cada um:
 - a) $A = (5, +\infty);$
 - b) $B = (-\infty, -2];$
 - c) $C = \{x \in \mathbb{R} : x^2 \le 9\};$
 - d) $D = \{x \in \mathbb{R} : |x+1| \ge 1\};$
 - e) $E = \{x \in \mathbb{Z} : |5 x| < 5 \land x \ge \sqrt{5}\};$
 - f) $F = \left\{ m^{(-1)^n} : m, n \in \mathbb{N} \right\}.$
- 1.8. Diga, justificando, se as seguintes afirmações são verdadeiras ou falsas:
 - a) Seja A um subconjunto de \mathbb{R} . Se $A \subset int(A)$, então é um conjunto aberto;
 - b) Seja $A=\left\{ x\in\mathbb{R}:x^{2}\leqslant1\right\} ,$ então $\left\{ -1,0,1\right\} \subset fr\left(A\right) ;$
 - c) Se $a \in A$, então $a \in \overline{A}$;
 - d) Se $a \in ext(A)$, então $a \in fr(\mathbb{R}\backslash A)$;
 - e) Seja B = (-5, 2], então $\inf(B) = \min(B) = -5$ e $\sup(B) = \max(B) = 2$.
- 1.9. Prove que, apesar de verdadeiras para os primeiros naturais, as proposições seguintes são falsas:

a)
$$n^2 - 2n = n - 2, \forall n \in \mathbb{N};$$

b)
$$2^{2^n} + 1$$
 é primo, $\forall n \in \mathbb{N}$.

1.10. Usando o método de indução matemática verifique que:

a)
$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$
;

b)
$$1+3+5+\cdots+(2n-1)=n^2$$
;

c)
$$1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + 3 + \dots + n)^2$$
;

d)
$$\sum_{j=1}^{n} j^2 = \frac{1}{6} n (n+1) (2n+1)$$
.

1.11. Seja $(a_n)_n$ o termo geral de uma progressão de razão r e $S_n = a_1 + a_2 + \cdots + a_n$ a soma dos n primeiros termos dessa progressão. Mostre que:

a) se a progressão é aritmética, então
$$S_n = \frac{a_1 + a_n}{2} n, \forall n \in \mathbb{N};$$

b) se a progressão é geométrica, então
$$S_n = a_1 \frac{1-r^n}{1-r}, \forall n \in \mathbb{N}.$$