Géométrie affine et euclidienne

Table des matières

1.	Géométrie affine.	1
	1.1. Espaces affines · · · · · · · · · · · · · · · · · · ·	1
	1.2. Sous-espaces affines.	2
	1.3. Sous-espaces affines engendrés par une partie.	3
	1.4. Parallélisme.	4
	1.5. Barycentres. · · · · · · · · · · · · · · · · · · ·	4
2.	Applications affines.	5
	2.1. Effet sur les barycentres.	6
	2.2. Transformations affines.	7
3.	Points fixes.	8

1. Géométrie affine.

1.1. Espaces affines

Définition 1.1. Soit E un espace vectoriel. Un ensemble (non vide) E est un *espace affine* s'il existe une application $\theta: \mathcal{E}x\mathcal{E} \to E$; $(A,B) \mapsto \overrightarrow{AB}$ telle que :

- (1) Pour tout $A \in \mathcal{E}$ fixé, l'application $\theta_A : \mathcal{E} \to E$; $B \mapsto \overrightarrow{AB}$ est bijective.
- (2) Pour tout $A, B, C \in \mathcal{E}$, on a $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ (relation de Chasles).

Remarques 1.2.

- (1) Les elements de \mathcal{E} sont les points.
- (2) La dimension de \mathcal{E} est celle de E.
- (3) L'espace vectoriel E est appelé la direction de E, on dit aussi que E est dirigé par E. On notera (E, E).

Exemple 1.3. Tout espace vectoriel *E* admet une structure naturelle d'espace affine.

Soit $\theta: ExE \to E$; $(u, v) \mapsto v - u$. On vérifie les deux conditions de la définition d'un espace affine.

- 1. Soit $u \in \mathcal{E}$. L'application $\theta_u : \mathcal{E} \to \mathcal{E}$; $v \mapsto v u$ est bijective car la réciproque existe : $v \mapsto v + u$
- 2. $\overrightarrow{uv} + \overrightarrow{vw} = v u + w v = w u = \overrightarrow{uw}$.

Exercice 1. Soit $f: E \to E'$, $g: E' \to E$ telle que $f \circ g = \mathrm{id}_{E'}$, $g \circ f = \mathrm{id}_E$ alors f et g sont bijectives.

Remarque 1.4. La relation de Chasles donne

- (1) $A\hat{A} + A\hat{A} = A\hat{A}$ donc $A\hat{A} = 0$
- (2) $\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = 0$ donc $\overrightarrow{AB} = -\overrightarrow{BA}$.

Proposition 1.5 (règle du parallélogramme). Soit $A, A', B, B' \in \mathcal{E}$.

$$\overrightarrow{AB} = \overrightarrow{A'B'} \Leftrightarrow \overrightarrow{AA'} = \overrightarrow{BB'}$$

Démonstration.

$$\Rightarrow \overrightarrow{AA'} = \overrightarrow{AB} + \overrightarrow{BA'} = \overrightarrow{AB} + \overrightarrow{BB'} + \overrightarrow{BB'} + \overrightarrow{B'A'} = \overrightarrow{AB} - \overrightarrow{A'B'} + \overrightarrow{BB'} = \overrightarrow{BB'}$$

$$\Leftarrow \overrightarrow{AB} = \overrightarrow{AB'} + \overrightarrow{B'B} = \overrightarrow{AA'} + \overrightarrow{A'B'} + \overrightarrow{B'B} = \overrightarrow{AA'} + \overrightarrow{A'B'} - \overrightarrow{BB'} = \overrightarrow{A'B'}.$$

Définition 1.6. Soit $A, A', B, B' \in \mathcal{E}$. On dit que ABB'A' forme un parallélogramme s'ils vérifient la règle du parallélogramme.

Proposition 1.7. Soit $A \in \mathcal{E}$, $u \in E$. Il existe un unique $B \in \mathcal{E}$ tel que $\overrightarrow{AB} = u$.

Démonstration. θ_A est bijective.

Notation 1.8. On pourra noter B = A + u.

1.2. Sous-espaces affines.

Définition 1.9. Soit (\mathcal{E}, E) , $\mathcal{F} \subset \mathcal{E}$. On dit que \mathcal{F} est un sous-espace affine de \mathcal{E} s'il existe $A \in \mathcal{F}$ tel que $\theta_A(\mathcal{F})$ est un sous-espace vectoriel de E.

Proposition 1.10. Si $\mathcal{F} \subset \mathcal{E}$ est un sous-espace affine dirigé par F alors

$$\forall B \in \mathcal{F}, \theta_B(\mathcal{F}) = F.$$

Démonstration. Il existe $A \in \mathcal{F}$ tel que $\theta_A(\mathcal{F}) = F$. On veut montrer que $\theta_A(\mathcal{F}) = \theta_B(\mathcal{F})$.

- (1) Soit $u \in \theta_A(\mathcal{F})$. On montre que $u \in \theta_B(\mathcal{F})$. Comme θ_B est bijective, on peut trouver $N \in \mathcal{E}$ tel que $\overrightarrow{BN} = u$. Or $\overrightarrow{AN} - \overrightarrow{AB} = \overrightarrow{BN} \in \theta_A(\mathcal{F})$. Ainsi, $N \in \mathcal{F}$ et $u = \overrightarrow{BN} \in \theta_B(\mathcal{F})$
- (2) On montre $\theta_B(\mathcal{F}) \subset \theta_A(\mathcal{F})$. Soit $u \in \theta_B(\mathcal{F})$ alors $u = \overrightarrow{BM}$ avec $M \in \mathcal{F}$. Par la relation de Chasles, $u = \overrightarrow{BM} = \overrightarrow{BA} + \overrightarrow{AM} \in \theta_A(\mathcal{F})$ donc $u \in \theta_A(\mathcal{F})$.

Proposition 1.11. Soit $A \in \mathcal{E}$ et $F \subset E$ un sous-espace vectoriel. Il existe un unique sous-espace affine $\mathcal{F} \subset \mathcal{E}$ qui passe par A et dirigé par F.

 $\begin{array}{l} \textit{D\'{e}monstration.} \ \mathcal{F} = \{A + u \mid u \in F\} = \Big\{ M \in \mathcal{E} \mid \overrightarrow{AM} \in F \Big\}. \ \text{Soit} \ B \in \mathcal{F}, \\ \text{on pose} \ \theta_A : \mathcal{F} \to F \ ; \ M \mapsto \overrightarrow{BM}. \end{array}$

- (1) Puisque $B \in \mathcal{F}$, $\theta_A(B) = \overrightarrow{AB} = u \in F$.
- (2) Soit $u, v, w \in \mathcal{F}$, alors $u, v, w \in \mathcal{E}$ or puisque \mathcal{E} est un sous-espace affine, u, v, w verifient la relation de chasles. Ainsi, F est bien un sous-espace affine de direction F.
- (3) De plus, $A + 0 = A \in \mathcal{F}$ donc \mathcal{F} passe par A.

Proposition 1.12. Soit $f: E \to F$ une application linéaire entre deux espaces vectoriels. Si $v \in f(E)$ alors $f^{-1}(v)$ est un sous-espace affine de E dirigé par $\ker(f)$.

Démonstration. Soit $u \in f^{-1}(v)$. On montre que $w \in f^{-1}(v) \Leftrightarrow \theta(u,w) \in \ker f$. En effet, $w \in f^{-1}(v) \Leftrightarrow f(w) = v \Leftrightarrow f(w) = f(u)$

$$\Leftrightarrow f(w - u) = 0$$

$$\Leftrightarrow w - u \in \ker(f) \Leftrightarrow \theta(u, w) \in \ker(f)$$

Remarque 1.13.

- (1) Un sous espace affine de dimension 0 est constitué d'un seul point.
- (2) Un sous-espace affine de dimension 1 est une droite.
- (3) un sous-espace affune de dimension 2 est un plan

Exemple 1.14. Dans \mathbb{R}^n , les solutions d'une équation $\sum_{i=1}^n a_i x_i = b$ forment un sous-espace affine de \mathbb{R}^n dirigé par l'espace vectoriel $\{\sum a_i x_i = 0\}$:

Proposition 1.15. Les sous-espaces affines de E sont de la forme $G+v_0$ où $G\subset E$ est un sous-espace vectoriel et $v_0\in E$.

Démonstration. exercice. □

Proposition 1.16. Un sous-espace affine E est un sous-espace vectoriel si et seulement il contient 0.

Démonstration. En effet supposons que $\mathcal{G} \subset E$ soit un sous-espace affine contenant 0. Soit G la direction de \mathcal{G} . Alors $\mathcal{G} = G + 0 = G$ est un sev de E.

1.3. Sous-espaces affines engendrés par une partie.

Notation 1.17. Soit (\mathcal{E}, E) un espace affine, S une partie non-vide de \mathcal{E} . $\langle S \rangle$ est l'intersection de tout les sous-espaces affines de \mathcal{E} contenant S.

Proposition 1.18. Soit $(\mathcal{F}_{\alpha})_{\alpha \in I}$ une famille de sous-espaces affines de \mathcal{E} tel que $\bigcap_{\alpha \in I} \mathcal{F}_{\alpha} \neq \emptyset$. Alors $\bigcap F_{\alpha}$ est un sous-espace affine de \mathcal{E} .

 $D\'{e}monstration$. Soit $A \in \bigcap_{\alpha \in I} F_\alpha =: \mathcal{F}$. Soit $F_\alpha := \theta_A(\mathcal{F}_\alpha)$. Alors F_α est un sous-espace vectoriel de E. Montrons $F := \bigcap_{\alpha \in I} F_\alpha = \theta_A(\mathcal{F})$. Donc F est un sous-espace vectoriel de E Montrons $\theta_A(F) = \bigcap_{\alpha \in I} \theta_A(F_\alpha) \subset \mathscr{C}$ facile \mathscr{C}

 \supset Soit $v \in \bigcap_{\alpha \in I} \theta_A(F_\alpha)$ Par surjéctivité de θ_A , on peut trouver $B \in \mathcal{E}$ tel que $\overrightarrow{AB} = v$. Pour chaque $\alpha \in I$, on a $v \in \theta_A(\mathcal{F}_\alpha)$ donc

$$\upsilon = \overrightarrow{AM_{\alpha}}, M_{\alpha} \in F_{\alpha} \Rightarrow B = M_{\alpha} \in \mathcal{F}_{\alpha} \forall \alpha \Leftrightarrow B \in \bigcap_{\alpha \in I} \mathcal{F}_{\alpha}$$

Exemple 1.19. Soit $\{A_1, ..., A_k\}$ une partie de \mathcal{E} Alors $\langle A_0, ..., A_k \rangle$ est le sous-espace affine $A_0 + \langle \overrightarrow{A_0A_1}, ..., \overrightarrow{A_0A_k} \rangle$.

Montrons $\langle A_0,...,A_k \rangle = A_0 + \left\langle \overrightarrow{A_0A_1},...,\overrightarrow{A_0A_k} \right\rangle$. Soit (\mathcal{F},F) une sous-espace affine de \mathcal{E} qui contient $A_0,...,A_k$, alors $A_0 \in \mathcal{F}$. Donc $\overrightarrow{A_0A_1},...,\overrightarrow{A_0A_k} \in F$ et $A_0 + \left\langle \overrightarrow{A_0A_1},...,\overrightarrow{A_0A_k} \right\rangle \subset \mathcal{F}$. De plus $A_0 + \left\langle \overrightarrow{A_0A_1},...,\overrightarrow{A_0A_k} \right\rangle$ est un sous-espace affine qui contient $A_0,A_1 = A_0 + \overrightarrow{A_0A_1},...,a_k = A_0 + \overrightarrow{A_0A_k}$. Ainsi, $\langle A_0,...A_k \rangle \subset A_0 + \left\langle \overrightarrow{A_0A_1},...,\overrightarrow{A_0A_k} \right\rangle$.

Remarque 1.20. On a dim $\langle A_0, ..., A_k \rangle \leq k$.

Définition 1.21 (Affinement indépendante). Soit $\{A_1, ..., A_k\}$ une partie de \mathcal{E} . On dit que la famille est *affinement indépendante* si $\langle A_0, ... A_k \rangle$ est de dimension k.

Définition 1.22 (Repère affine). Soit $\{A_1, ..., A_k\}$ une famille affinement indépendante, et $\mathcal{E} := \langle A_0, ... A_k \rangle$. Alors on dit que $\{A_1, ..., A_k\}$ est un *repère affine* de \mathcal{E} .

Exemple 1.23. Un repère affine d'une droite est constitué de 2 points.

Notation 1.24.

- (1) $\langle A, B \rangle$, $A \neq B$ désigne la droite passant par A et B. On la note aussi AB.
- (2) [AB] désigne le segment défini par $[AB] := M \in \mathcal{E} \mid \overrightarrow{AM} = \lambda \overrightarrow{AB}, \lambda \in [0,1]$

1.4. Parallélisme.

Définition 1.25 (Parallèle). Soit \mathcal{F}, \mathcal{G} deux sous-espaces affines. On dit que \mathcal{F} et \mathcal{G} sont parallèles s'ils ont la même direction. On note $\mathcal{F} /\!\!/ \mathcal{G}$.

Remarque 1.26. Une droite n'est pas parallèle à un plan.

Proposition 1.27. Soit E, F deux espaces vectoriels, $f: E \to F$ une application linéaire. Alors $\forall v, w \in f(E)$, on a $f^{-1}(v) /\!/ f^{-1}(w)$.

Démonstration. Par la Proposition 1.12, on a que $f^{-1}(v)$ et $f^{-1}(w)$ sont dirigés par $\ker(f)$.

Proposition 1.28. Si $\mathcal{F} /\!\!/ \mathcal{G}$ et $\mathcal{F} \cap \mathcal{G} \neq \emptyset$, alors $\mathcal{F} = \mathcal{G}$.

Démonstration. Soit $A \in \mathcal{F} \cap \mathcal{G}$. Alors $\mathcal{F} = A + F$, $\mathcal{G} = A + G$ mais F = G par parallélisme de \mathcal{F} et \mathcal{G} d'où $\mathcal{F} = \mathcal{G}$.

Proposition 1.29. Soit *D* une droite. Par tout point de *A* d'un espace affine, passe une unique droite D' parallèle à D.

Démonstration. $D' = A_{point} + D_{direction}$.

Proposition 1.30. Soit (\mathcal{F}, F) , (\mathcal{G}, G) deux sous-espaces affines de (\mathcal{E}, E) . On suppose F + G =E. Alors tout sous-espace affine parallèle à \mathcal{F} rencontre \mathcal{G} .

Démonstration. Soit \mathcal{H} un sous-espace affine de \mathcal{E} parralèle à \mathcal{F} . Montrons que $H \cap G \neq \emptyset$. Soit $A \in \mathcal{F}$ $\mathcal{H}, B \in \mathcal{G}$. On peut écrire $\overrightarrow{AB} = u + v$ avec $u \in F, v \in G$. On pose $\theta_A : \mathcal{H} \to H, \theta_B : \mathcal{G} \to G$ et on a $\theta_A(\mathcal{H}) = H$ et $\theta_B(\mathcal{G}) = G$. On peut écrire $u = \overrightarrow{AC}, C \in \mathcal{H}, v = \overrightarrow{DB}, D \in \mathcal{G}$. On a $\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{DB} = \overrightarrow{AC} + \overrightarrow{CD} + \overrightarrow{DB} + \overrightarrow{DC} = \overrightarrow{AB} + \overrightarrow{DC} \Leftrightarrow \overrightarrow{DC} = 0 \Leftrightarrow D = C \in \mathcal{H} \cap \mathcal{G}$.

Corollaire 1.31. Dans un plan affine (\mathcal{E}, E) deux droites distinctes non parallèles se rencontrent en un seul point.

Démonstration.

unicité : Si D, D' se coupent en deux points $A \neq B$ alors $D = \langle A, B \rangle, D' = \langle A, B \rangle$ donc D = D'. $D \cap D' \neq \emptyset$. D est dirigée par $\langle u \rangle$, D' est dirigée par $\langle v \rangle$. $\langle u \rangle \neq \langle v \rangle \Rightarrow \{u, v\}$ est linéairement indépendante. DOnc $\langle u \rangle + \langle v \rangle$ est de dimension 2. Or E est aussi de dimension 2 Par conséquent, $\langle u \rangle + \langle v \rangle =$ E par la proposition on a $D \cap D' \neq \emptyset$. П

1.5. Barycentres.

Définition 1.32 (Points pondérés). Soit (\mathcal{E}, E) un espace affine, $A_1, ..., A_r$ des points de \mathcal{E} , et $\alpha_1, ..., \alpha_r \in \mathbb{R}$. On appelle système de points pondérés un ensemble $\{(A_1, \alpha_1), ..., (A_r, \alpha_r)\}$.

Définition 1.33 (Barycentre). Soit $F := (A_1, \alpha_1), ..., (A_r, \alpha_r)$ tel que $\sum \alpha_i = 1$. On appelle barycentre de *F* l'unique point *M* tel que $\sum \alpha_i M A_i = 0$.

Remarque 1.34. On pourrait parler d'existence d'un milieu.

Exemple 1.35.

- 1. Soit $(A_1), ..., (A_2), \alpha_1 = \alpha_2 = \frac{1}{2}$. Alors A est le milieu de A_1A_2 $\frac{1}{2}\overrightarrow{AA_1} + \frac{1}{2}\overrightarrow{AA_2} = 0$. 2. $A_1, A_2, A_3, \alpha_1 = \alpha_2 = \alpha_3 = \frac{1}{3}$. On obtient le centre de gravité d'un triangle.

Définition 1.36 (Coordonnée barycentrique). $(\alpha_0, ..., \alpha_n)$ est appelé coordonnée barycentrique de M dans le repère $A_0, ..., A_n$.

Exemple 1.37. $\mathcal{E} = \text{droite}, \ \mathcal{E} = \langle A, B \rangle, \ M$ le milieu de AB. Les coordonnées barycentriques de Msont $\left(\frac{1}{2}, \frac{1}{2}\right)$

Notation 1.38. $M = \sum \alpha_j A_j$. Il **faut** que $\sum \alpha_j = 1$. On peut écrire $M = \frac{A}{2} + \frac{B}{2}$ mais pas M = A + B.

Proposition 1.39. Soit $(A_0,...,A_n)$ un repère affine de \mathcal{E} . Alors pour tout $M\in\mathcal{E}$, il existe une unique famille $(\alpha_0, ..., \alpha_n)$ telle que

$$\begin{cases} \sum_{j=0}^{n} \alpha_j = 1\\ \sum_{j=0}^{n} \alpha_j \overrightarrow{MA_j} = 0 \end{cases}$$

Démonstration. On note $\underbrace{\left(\star := \sum_{j=0}^{n} \alpha_{j} \overrightarrow{MA_{j}} = 0\right)}_{\text{Existence}}$. Les vecteurs $\overrightarrow{MA_{j}}$ sont linéairement indépendants car il y en a n+1 et dim E=n. On peut trouver $\alpha_0, ..., \alpha_n \in \mathbb{R}$ non tous nuls tels que $\sum \alpha_j \overrightarrow{MA_j} = 0$. On montre par l'absurde que $\sum_{j=0}^{n} \alpha_j \neq 0$. Supposons $\sum \alpha_j = 0$ Par \star et la relation de Chasles,

$$\sum_{j=0}^{n} \alpha_{j} \left(\overrightarrow{MA_{0}} + \overrightarrow{A_{0}A_{j}} \right) = 0 \Leftrightarrow \sum_{j=0}^{n} \alpha_{j} \overrightarrow{MA_{0}} + \sum_{j=1}^{n} \alpha_{j} \overrightarrow{A_{0}A_{j}} = 0.$$

Or, $\sum_{j=0}^{n} \alpha_{j} = 0$. D'où $\sum_{j=1}^{n} \alpha_{j} \overrightarrow{A_{0} A_{j}} = 0$. Comme $\left\{ \overrightarrow{A_{0} A_{1}}, ..., \overrightarrow{A_{0} A_{n}} \right\}$ est une base de E, on déduit que $\alpha_{1} = \alpha_{2} = ... = \alpha_{n} = 0$. On obtient aussi que $\alpha_{0} = 0$ par $\sum_{j=0}^{n} \alpha_{j} = 0$. On a donc une contradiction.

Ainsi, on peut défnir

$$\beta_j = \frac{\alpha_j}{\sum_{i=0}^n \alpha_i}.$$

et on a, $\sum_{j=0}^{n} \beta_j = 1$ et $\sum_{j=0}^{n} \beta_j \overrightarrow{MA_j} = 0$. Unicité: Par (★), on a

$$\sum_{j=0}^{n} \alpha_{j} \left(\overrightarrow{MA_{0}} + \overrightarrow{A_{0}A_{j}} \right) = 0 \Leftrightarrow \sum_{j=0}^{n} \alpha_{j} \overrightarrow{MA_{0}} + \sum_{j=1}^{n} \overrightarrow{A_{0}A_{j}} \Leftrightarrow \overrightarrow{A_{0}M} = \sum_{j=1}^{n} \alpha_{j} \overrightarrow{A_{0}A_{j}}$$

Comme $\{\overrightarrow{A_0A_1},...,\overrightarrow{A_0A_n}\}$ est une base de E, les coefficients $\alpha_1,...,\alpha_n$ sont uniquement déterminés par $\overrightarrow{A_0M}$. Comme $\sum_{j=1}^n \alpha_j = 1$, α_0 est également uniquement determiné Si $\sum \alpha_j \overrightarrow{MA_j} = 0$, $\sum \gamma_i \overrightarrow{MA_i} = 0$. Alors

$$\sum (\alpha_j - \gamma_j) \overrightarrow{MA_j} = 0 \Leftrightarrow \sum (\alpha_j - \gamma_j) \left(\overrightarrow{MA_0} + \overrightarrow{A_0 A_j} \right) = 0 \Leftrightarrow \sum_{j=1}^n (\alpha_j - \gamma_j) \overrightarrow{A_0 A_j} = 0 \Rightarrow \alpha_j = \gamma_j \forall j.$$

2. Applications affines.

Définition 2.1 (Applications affines). Soit (\mathcal{E}, E) , (\mathcal{F}, F) deux espaces affines. $\varphi : \mathcal{E} \to \mathcal{F}$ est une application affine s'il existe $O \in \mathcal{E}$ et $f: E \to F$ une application linéaire tels que pour tout $M \in \mathcal{E}$, $\overrightarrow{\varphi(O)\varphi(M)} = f(\overrightarrow{OM}).$

Remarques 2.2.

(1) f ne dépend pas de O. En effet, si O' est un autre point de \mathcal{E} ,

$$f\Big(\overrightarrow{O'M}\Big) = f\Big(\overrightarrow{OO'} + \overrightarrow{OM}\Big) = f\Big(\overrightarrow{O'O}\Big) + f\Big(\overrightarrow{OM}\Big) = \overrightarrow{\varphi(O')\varphi(O)} + \overrightarrow{\varphi(O)\varphi(M)} = \overrightarrow{\varphi(O')\varphi(M)}.$$

(2) On a toujours $f(\overrightarrow{AB}) = \overrightarrow{\varphi(A)\varphi(B)}$. On va noter $\overrightarrow{\varphi} = f$ et donc $\overrightarrow{\varphi}(\overrightarrow{AB}) = \overrightarrow{\varphi(A)\varphi(B)}$. $\overrightarrow{\varphi}$ est l'application linéaire associée à φ .

Exemples 2.3.

- 1. $\varphi(M) = O \ \forall M \in \mathcal{E}. \ \vec{\varphi}(\overrightarrow{MM'}) = \overrightarrow{\varphi(M)\varphi(M')} = 0 \ \text{Donc} \ \vec{\varphi} = 0 \ \text{et} \ \varphi \ \text{est une application affine.}$
- 2. Soit E, F deux espaces vectoriels avec leur structure affine naturelle $(\overrightarrow{uv} = v u)$. Soit $\varphi : E \to F$ affine. On a $\varphi(u) \varphi(0) = \overrightarrow{\varphi(0)}\varphi(\overrightarrow{u}) = \overrightarrow{\varphi}(\overrightarrow{ou}) = \overrightarrow{\varphi}(u) \Leftrightarrow \varphi(u) = \varphi(0) + \overrightarrow{\varphi}(u)$. Toutes applications affines $\varphi : E \to F$ s'écrivent donc $\varphi(u) = v_0 + f(u)$ où $v_0 \in F$ est fixé et $f : E \to F$ linéaire.
- 3. Les applications affines $\varphi : \mathbb{R} \to \mathbb{R}$ sont les $x \mapsto ax + b$.

Définition 2.4 (Translations). Soit $\varphi : \mathcal{E} \to \mathcal{E}$. $\varphi(M) = M_{\in \mathcal{E}} + u_{\in E}$. φ est la translation de vecteur u. On a $\varphi(A)\varphi(B) = \overrightarrow{AB}$. L'application linéaire associée est id_E . On a $A\varphi(A) = A(A+u) = u$, $B\varphi(B) = B(B+u) = u$.

Proposition 2.5. L'image d'un sous-espace affine par une application affine est un sous-espace affine

Démonstration. Soit $\varphi: \mathcal{E} \to \mathcal{E}'$ une application affine, $\mathcal{F} \subset \mathcal{E}$ un sous-espace affine. On prend $A \in \mathcal{F}$ et on note $F' = \vec{\varphi}(F)$. (F' est un sous-espace vectoriel de E'). On veut montrer que $\varphi(F)$ est un sous-espace affine passant par $\varphi(A)$ et dirigé par F'. On a

$$\begin{split} M' &\in \varphi(\mathcal{F}) \Leftrightarrow M' = \varphi(M), M \in \mathcal{F} \\ \text{et } \overrightarrow{A'M'} &= \overrightarrow{\varphi(A)\varphi(M)} = \overrightarrow{\varphi}\Big(\overrightarrow{AM}\Big) \in \overrightarrow{\varphi}(F). \end{split}$$

On vient de voir que

$$M'i\varphi(\mathcal{F}) \Leftrightarrow \overrightarrow{A'M'} \in F'$$

donc $\varphi(F)$ est un sous-espace affine de \mathcal{E}' dirigé par F'.

Corollaire 2.6. Une application affine envoie trois points alignés sur 3 points alignés.

Proposition 2.7. L'image inverse d'un sous-espace affine par une application affine est un sous-espace affine ou un ensemble vide.

Démonstration. Exercice. □

2.1. Effet sur les barycentres.

Proposition 2.8. Soit $\varphi: \mathcal{E} \to \mathcal{E}'$ affine. L'image du barycentre d'un système de points pondérés par φ est le barycentre $(\varphi(A_1), \alpha_1), ..., (\varphi(A_r), \alpha_r)$.

 $\begin{array}{l} \textit{D\'{e}monstration}. \ \ \text{Soit} \ A \ \ \text{le barycentre de} \ (\varphi(A_1),\alpha_1),...,(\varphi(A_r),\alpha_r). \ \ \text{Alors} \ \sum_{j=1}^r \alpha_j \overrightarrow{AA_j} = 0 \ \ \text{donc} \\ \overrightarrow{\varphi}\left(\sum_{j=1}^r \alpha_j \overrightarrow{AA_j}\right) = 0. \ \ \text{Comme} \ \overrightarrow{\varphi} \ \ \text{est lin\'eaire, on a} \ \ \sum_{j=1}^r \alpha_j \overrightarrow{\varphi}\left(\overrightarrow{AA_j}\right) = 0 \ \ \text{donc} \ \ \sum_{j=1}^r \alpha_j \overrightarrow{\varphi}(A)\varphi(A_j) = 0. \\ \ \ \text{Cela veut dire que} \ \varphi(A) \ \ \text{est le barycentre de} \ (\varphi(A_1),\alpha_1),...,(\varphi(A_r),\alpha_r). \end{array}$

Proposition 2.9. Soit $\varphi: \mathcal{E} \to \mathcal{E}'$ une application qui vérifie

$$\forall \alpha \in \mathbb{R}, \forall A, B \in \mathcal{E}, \varphi(\alpha A + (1 - \alpha)B) = \alpha \varphi(A) + (1 - \alpha)\varphi(B).$$

Alors φ est affine.

Démonstration. On fixe $O \in \mathcal{E}$, $O' = \varphi(O)$ et on défnit $f: E \to E'$; $u = \overrightarrow{OM} \mapsto \overrightarrow{O'M'}$ où $M' = \varphi(M)$. Il reste à montrer que f est linéaire. On a $\forall \alpha \in \mathbb{R}, M = \alpha A + (1 - \alpha)B$ on a

$$M' = \varphi(M) = \alpha \varphi(A) + (1 - \alpha)\varphi(B) = \alpha A' + (1 - \alpha)B'$$

Par défnition de f, on a

$$f(\alpha \overrightarrow{OA} + (1 - \alpha) \overrightarrow{OB}) = f(\overrightarrow{OM}) = \overrightarrow{O'M'} = \alpha \overrightarrow{O'A'} + (1 - \alpha) \overrightarrow{O'B'}.$$

- (1) On prend A = M, B = O et $f(\alpha \overrightarrow{OM}) = \alpha \overrightarrow{O'M'} = \alpha f(\overrightarrow{OM})$. (2) On prend $u = \overrightarrow{OA}, v = \overrightarrow{OB}, f(u+v) = f(2\frac{u+v}{2}) = f(2\overrightarrow{OM}) = 2f(\overrightarrow{OM})$ Mais $f(\overrightarrow{OM}) = \frac{1}{2}\overrightarrow{O'A'} + \frac{1}{2}\overrightarrow{O'B'}$ donc

$$f(u+v) = \overrightarrow{O'A'} + \overrightarrow{O'B'} = f(\overrightarrow{OA}) + f(\overrightarrow{OB}) = f(u) + f(v)$$

On a montré que f est linéaire

2.2. Transformations affines.

Définition 2.10 (Transformation affine). Une transformation affine de \mathcal{E} est une application affine de \mathcal{E} dans lui même qui est bijective.

Proposition 2.11. Soit $\varphi : \mathcal{E} \to \mathcal{F}$ une application affine. φ est bijective si et suelement si $\vec{\varphi}$ l'est.

Démonstration. On suppose φ bijective. Si $u \in \ker(\vec{\varphi})$, $u = \overrightarrow{AB}$ alors $\varphi(A)\varphi(B) = \varphi(\overrightarrow{AB}) = 0$ donc $\varphi(A) = \varphi(B) \Rightarrow_{\varphi \text{ inj}} A = B \Rightarrow u = 0 \text{ donc } \vec{\varphi} \text{ est injective. IL MANQUE UN BOUT on a } v = \varphi(A)\varphi(M) = \vec{\varphi}(\overrightarrow{AM} \in \text{Im } (\vec{\varphi})). \text{ Donc } \vec{\varphi} \text{ est surjective.}$

On suppose $\vec{\varphi}$ bijective. Si $\varphi(A) = \varphi(B)$ alors $\vec{\varphi}(\vec{AB}) = \vec{\varphi(A)} \cdot \vec{\varphi(B)} = 0$ donc $\vec{AB} = 0 \Rightarrow A = B$ donc φ est injective.

Soit
$$M' \in \mathcal{F}, A \in \mathcal{E}, u \in E$$
. $\overrightarrow{\varphi(u)} = \overrightarrow{\varphi(A)M'} \in F$. On écrit $u = \overrightarrow{AM}, M \in \mathcal{E}$ Alors $\overrightarrow{\varphi(A)\varphi(B)} = \overrightarrow{\varphi(A)M'} =$

Proposition 2.12. Soit $\varphi : \mathcal{E} \to \mathcal{F}$, $\psi : \mathcal{F} \to \mathcal{G}$ des applications affines. Alors $\psi \circ \varphi : \mathcal{E} \to \mathcal{G}$ est affine et l'application linéaire associée est $\psi \circ \varphi = \psi \circ \vec{\varphi}$.

$$\textit{D\'{e}monstration.} \ \forall A,B \in \mathcal{E}, \overrightarrow{\psi \circ \varphi(A)\psi \circ \varphi(B)} = \overrightarrow{\psi}\Big(\overrightarrow{\varphi(A)\varphi(B)}\Big) = \overrightarrow{\psi}\Big(\overrightarrow{\varphi}\Big(\overrightarrow{AB}\Big)\Big) = \overrightarrow{\psi} \circ \overrightarrow{\varphi}\Big(\overrightarrow{AB}\Big)$$

3. Points fixes.

Notation 3.1. Soit $\varphi : \mathcal{E} \to \mathcal{E}$ on note $Fix(\varphi)$ l'ensemble des points fixés par φ

$$Fix(\varphi) = \{M \in \mathcal{E} \mid \varphi(M) = M\}$$

Proposition 3.2. Soit \mathcal{E} de dimension finie, φ une transformation affine de \mathcal{E} . φ admet un unique point fixe si et seulement si $\ker(\vec{\varphi} - \mathrm{id}_E) = 0$.

Démonstration. Soit $u \in \ker(\vec{\varphi} - \mathrm{id}_E)$, $u = \overrightarrow{OM}$, $M \in \mathcal{E}$. Alors

$$\overrightarrow{\varphi(\overrightarrow{OM})} - \overrightarrow{OM} = 0 \Rightarrow \overrightarrow{\varphi}(\overrightarrow{OM}) = \overrightarrow{\varphi(O)}\overrightarrow{\varphi(M)} = \overrightarrow{OM}$$

$$\Rightarrow \overrightarrow{O\varphi(M)} = \overrightarrow{OM} \Rightarrow \varphi(M) = M \Rightarrow M \in \text{Fix}(\varphi) = \{O\} \Rightarrow M = O \Rightarrow u = 0$$

Proposition 3.3. Soit $\varphi : \mathcal{E} \to \mathcal{E}$ une transformation affine de \mathcal{E} . Si $\vec{\varphi}$ – id $_E$ est surjective alors $Card(Fix(\varphi)) = 1$

Démonstration.

unicité:
$$\varphi(A) = A, \varphi(B) = B \Rightarrow \vec{\varphi}(\vec{AB}) = \vec{\varphi(A)} \varphi(\vec{B}) = \vec{AB} \Rightarrow \vec{AB} \in \ker(\vec{\varphi} - \mathrm{id}_E) \Rightarrow \vec{AB} = 0 \Rightarrow A = B$$

existence : On cherche M tel que $\varphi(M) = M$ on fixe $0 \in \mathcal{E}$, $O' = \varphi(O)$ Alors

$$\varphi(M) = M \Leftrightarrow \overrightarrow{\varphi(O)M} = \overrightarrow{\varphi}\Big(\overrightarrow{OM}\Big) \Leftrightarrow \overrightarrow{\varphi(O)O} + \overrightarrow{OM} = \overrightarrow{\varphi}\Big(\overrightarrow{OM}\Big) \Leftrightarrow \Big(\overrightarrow{\varphi} - \mathrm{id}_E\Big)\Big(\overrightarrow{OM}\Big) = \overrightarrow{\varphi(O)O} \in E$$

Il est possible de trouver un tel M car $\vec{\varphi}$ – id $_E$ est surjective.

Corollaire 3.4. Si dim $\mathcal{E} < +\infty$ alors les assertions suivantes sont équivalentes :

- (1) $Card(Fix(\varphi)) = 1$.
- (2) $\ker(\vec{\varphi} \mathrm{id}_E) = O$.

Démonstration. $f: E \to E$ dim non infinie: f inj $\Leftrightarrow f$ surj $\Leftrightarrow f$ bij.

Définition 3.5 (Homothétie). Une homothétie de centre O et de rapport $\lambda \in \mathbb{R}$ est une application affine $\mathcal{E} \to \mathcal{E}$ qui vérifie $0 \mapsto 0$ et $\overrightarrow{OM'} = \lambda \overrightarrow{OM}$. Elle est notée $h(0,\lambda)$.

Remarque 3.6. L'application linéaire associée à $h(0,\lambda)$ est donnée par $u \in E \mapsto \lambda u$.

Proposition 3.7. Soit (\mathcal{E}, E) un espace affine, $A, B \in \mathcal{E}$ tels que $A \neq B, \lambda, \mu \in \mathbb{R}$, On pose $\varphi = h(B, \mu) + h(A, \lambda)$.

- (1) Si $\lambda \mu \neq 1$ alors $\varphi(M, \lambda \mu), M \in (AB)$,
- (2) Si $\lambda \mu = 1$ alors φ est une translation de vecteur $u \in \text{Vect}(\overrightarrow{AB})$.

Démonstration. On a vu que φ est une application affine dont l'application linéaire associée est donnée par $\vec{\varphi} = \overrightarrow{h(B,\mu)} \circ \overrightarrow{h(A,\lambda)}$.

$$\vec{\varphi}(u) = \overrightarrow{h(B,\mu)}(\lambda u) = \lambda \mu u.$$

(1) $\lambda\mu \neq 1$: On a $\vec{\varphi}$ – $\mathrm{id}_E = (\lambda\mu - 1)_{\neq 0}$ id_E est bijective. D'après la Proposition 3.3, φ admet un unique point fixe que l'on note O. $O \overset{h(A,\lambda)}{\longmapsto} O' \overset{h(B,\mu)}{\longmapsto} O$. On a $\overrightarrow{AO'} = \lambda \overrightarrow{AO}$, et $\overrightarrow{BO} = \mu \overrightarrow{BO'}$. Par Chasles,

$$\overrightarrow{BO} = \mu \left(\overrightarrow{BA} + \overrightarrow{AO'} \right) = \mu \left(\overrightarrow{BA} \right) + \lambda \mu \overrightarrow{AO} \Leftrightarrow \overrightarrow{BA} + \overrightarrow{AO} = \mu \overrightarrow{BA} + \lambda \mu \overrightarrow{AO}$$
$$\Leftrightarrow (1 - \lambda \mu) \overrightarrow{AO} = (\mu - 1) \overrightarrow{BA} \Leftrightarrow \overrightarrow{AO} = \frac{\mu - 1}{1 - \mu \lambda} \overrightarrow{BA}.$$

Ceci détermine l'unique $O \in AB$. Ainsi, $\varphi = h(O, \lambda \mu)$.

(2) $\lambda \mu = 1$. Voir dessin tel. φ est une translation de vecteur $u = \overrightarrow{A\varphi(A)}$. Il reste à voir que $u \in \operatorname{Vect}(\overrightarrow{AB})$. On a $A \overset{h(A,\lambda)}{\longmapsto} A \overset{h(B,\mu)}{\longmapsto} \varphi(A)$. On a $B\varphi(A) = \mu \overrightarrow{BA}$. $BA = A\varphi(A) = \mu \overrightarrow{BA} \Leftrightarrow A\varphi(A) = (\mu - 1)BA$. $A\varphi(A) \in \operatorname{Vect}(\overrightarrow{AB})$.

Proposition 3.8. Soit $A, B, C \in \mathcal{E}$ des points alignés, $\lambda, \mu, \nu \in \mathbb{R}$. On pose $\varphi = h(c, \nu) \circ h(B, \mu) \circ h(A, \lambda)$

- (1) Si $\lambda \mu \nu \neq 1$ alors $\varphi = h(O, \nu \mu \lambda), O \in (AB)$
- (2) Si $\lambda \mu \nu = 1$ alors φ est une translation t_u avec $u \in \text{Vect}(\overrightarrow{AB})$

Démonstration. On a $\vec{\varphi}(u) = (\lambda \mu \nu)u$

(1) On a $\vec{\varphi}$ – $\mathrm{id}_E = (\lambda \mu \nu - 1) \mathrm{id}_E$ bijective donc φ admet un unique point fixe que l'on note O. $O \overset{h(A,\lambda)}{\longmapsto} O' \overset{h(B,\mu)}{\longmapsto} O'' \overset{h(C,\nu)}{\longmapsto} O$. On a $\overrightarrow{AO'} = \lambda \overrightarrow{AO}, \overrightarrow{BO''} = \mu \overrightarrow{BO'}, \overrightarrow{CO} = \nu \overrightarrow{CO''}$. Par la relation de chasles:

$$\overrightarrow{CO} = \nu \left(\overrightarrow{CB} + \overrightarrow{BO''} \right) = \nu \overrightarrow{CB} + \mu \nu \overrightarrow{BO'} = \nu \overrightarrow{CB} + \mu \nu \left(\overrightarrow{BA} + \overrightarrow{AO'} \right)$$
On a aussi $\overrightarrow{CA} + \overrightarrow{AO} = \nu \overrightarrow{CB} + \mu \nu \overrightarrow{BA} + \lambda \mu \nu \overrightarrow{AO}$

$$\Leftrightarrow \mu \overrightarrow{CB} + \overrightarrow{CB} + \mu \nu \overrightarrow{BA} + \overrightarrow{AC} \Rightarrow \overrightarrow{AO} \in \text{Vect}(\overrightarrow{AB}) \Rightarrow O \in AB.$$

(2) $\lambda \mu \nu = 1$. $\vec{\varphi} = \mathrm{id}_E \operatorname{donc} \varphi = t_u \operatorname{il} \operatorname{reste} \grave{\mathrm{a}} \operatorname{voir} \operatorname{que} u \in \operatorname{Vect}(\overrightarrow{AB}) \operatorname{(exercice)}$.

Définition 3.9. Soit trois points A, B, C alignés. Le nombre $\lambda = \frac{\overline{AB}}{\overline{AC}}$ est défini par $\overrightarrow{AB} = \lambda \overrightarrow{AX}$.

Théorème 3.10 (Théorème de Thalès). Soit \mathcal{E} un plan affine, $d \not \mid d' \not \mid d''$ trois droites parallèles et $\mathcal{D}_1, \mathcal{D}_2$ deux droites non parallèles à d. Soit $A_i = \mathcal{D}_i \cap d, A_i' = \mathcal{D}_i \cap d'$, et $A_i'' = \mathcal{D}_i \cap d''$. Alors

$$\frac{A_1 A_1'}{A_1 A_1''} = \frac{A_2 A_2'}{A_2 A_2''}.$$

Réciproquement, si $\mathcal{B} \in \mathcal{D}_1$ vérifie $\frac{\overline{A_1 A_{1'}}}{\overline{A_1 B}} = \frac{\overline{A_2 A_{2'}}}{\overline{A_2 A_{2''}}}$ alors $B = A_1$.

Démonstration.

fin du programme cc1.