Infinite Dimensional Topologies

Mendel Keller

November 17, 2018

1 Topologies

Before we discuss what a topology is, it is instructive to remember a topology we're already somewhat familiar with.

1.1 Intervals of the Real Line

We begin with an example from \mathbb{R} . We define open and closed intervals of \mathbb{R} as follows:

$$(a,b) := \{x : a < x < b\}$$
 we call this an open interval

$$[a,b] := \{x : a \le x \le b\}$$
 we call this a closed interval

note that the union and intersection of two overlapping open or closed intervals is again a interval of the same type. However, we can have a *infinite* intersection of intervals of one type which gives the other type of interval. Namely, consider the intersection of all open intervals containing the closed interval [0, 1]:

$$\bigcap_{a<0,\,b>1}(a,b)$$

this gives us [0, 1] itself, which is closed. We are now ready to define a topology.

1.2 Topology on a Set

A topology \mathcal{T} on a set X is a subset of its power set, $\mathcal{T} \subset P(x)$ satisfying the following three conditions:

- $\emptyset, X \in \mathfrak{T}$
- $\forall S \subset \mathfrak{T} : (\bigcup_{U \in S} U) \in \mathfrak{T}$
- $\forall U_1, \dots, U_n \in \mathfrak{T} : (\bigcap_{i=1}^{i=n} U_i) \in \mathfrak{T}$

note that even an infinite union of (intersecting) open intervals of the real line is again an open interval, which agrees with our definition of a topology.

We call a subset $U \subset X$ open if $U \in \mathcal{T}$.

1.3 Topological Basis

Definition: A subset $\mathcal{B} \subset \mathcal{T}$ is called a *basis* if every element of \mathcal{T} is the union of some subset of \mathcal{B} . Symbolically:

$$\forall U \in \mathfrak{T} \exists C_U \subset \mathfrak{B} : U = \bigcup_{B \in C_U} B$$

Given a Basis \mathcal{B} on X, a subset $U \subset X$ is open if and only if: $\forall x \in U \exists B \in \mathcal{B} : x \in B \subset U$

1.4 Standard Topology on \mathbb{R}

We now define the standard topology on \mathbb{R} as the topology with all open intervals as a basis. Notice that in the topology the interval $(a, \infty) := \{x : x > a\}$ is open, because $(x, \infty) = \bigcup_{b>a} (a, b)$, the same holds for $(\infty, a) = \{x : x < a\}$.

2 Basic Topological Notions

Having defined a topology, we are now ready to discuss some of the fundamental topics of topology.

2.1 Product Topology

Given two sets A, B with respective topologies $\mathcal{T}_A, \mathcal{T}_B$, we define the product topology as:

$$A \times B = \{(a, b) : a \in A, b \in B\}$$
 this is the underlying set

$$\mathfrak{I}_{A\times B}$$
 is the topology with basis $\mathfrak{B} = \{U\times V: U\in \mathfrak{I}_A, V\in \mathfrak{I}_B\}$

Note that $\mathfrak{T}_{A\times B}\neq \mathfrak{T}_A\times \mathfrak{T}_B$. For example two overlapping squares in \mathbb{R}^2 is an element of $\mathfrak{T}_{\mathbb{R}\times\mathbb{R}}$ but not of $T_{\mathbb{R}}\times T_{\mathbb{R}}$: We can thus define the product topology on \mathbb{R}^n for all natural numbers n. We write its basis elements as

$$\prod_{i}^{n} U_{i} = \prod_{i}^{n} (a_{i}, b_{i})$$

2.2 Comparing Topologies

Given two topologies $\mathcal{T}, \mathcal{T}'$ on the same set X, we say that \mathcal{T}' is finer than \mathcal{T} if $\mathcal{T} \subset \mathcal{T}'$. The idea being that in this case everything open in \mathcal{T} is also open in \mathcal{T}' , while there are also some more sets open in \mathcal{T}' , which gives the topology \mathcal{T}' a more detailed texture.

If a set X has topologies \mathfrak{T} and \mathfrak{T}' with respective basis \mathfrak{B} and \mathfrak{B}' such that for each $x \in X$ and every $B \in \mathfrak{B}$ with $x \in B$ we have a $B' \in \mathfrak{B}'$ satisfying $x \in B' \subset B$ then $\mathfrak{T} \subset \mathfrak{T}'$. Because let $U \in \mathfrak{T}$, then since U is open and \mathfrak{B} is a basis for \mathfrak{T} , for each $x \in U$ we can choose $B_x \in \mathfrak{B}$ such that $x \in B_x \subset U$ then for each B_x choose $B_x' \in \mathfrak{B}'$ such that $x \in B_x' \subset B_x$ so that we get $U = \bigcup_{x \in U} B_x'$ (since the union of subsets is also a subset, and $\forall x \in U : x \in B_x'$) and thus U is open in \mathfrak{T}' and $\mathfrak{T} \subset \mathfrak{T}'$ as desired.

2.3 Closed Sets

We call a set $C \subset X$ closed if C = X - U for some open set $U \in \mathcal{T}$ i.e. if its complement C^c is open. Notice that the closed interval [a,b] is in fact a closed set, because $[a,b] = \mathbb{R} - ((\infty,a) \cup (b,\infty))$.

We define the closure \overline{A} of a set $A \subset X$ as the set $\overline{A} = \{x \in X : \forall U \in \mathfrak{T} : x \in U \implies U \cap A \neq \emptyset\}$. We will show that (a) $A \subset \overline{A}$, and (b) \overline{A} is closed, so that this is the smallest closed set containing A, hence the name.

- (a) if $a \in A$ and $a \in U$ then $a \in A \cap U$ so $a \in \overline{A}$ and thus $A \subset \overline{A}$
- (b) We have $\forall y \in X \overline{A} \exists U_y \in \mathfrak{T} : y \in U_y, U_y \cap A = \emptyset$ but this also gives that $U_y \cap \overline{A} = \emptyset$, for assume by way of contradiction that $z \in U_y \cap \overline{A}$ then $z \in U_y$ and $U_y \cap A = \emptyset$, so in fact $z \notin \overline{A}$. Thus we obtain $X \overline{A} = \bigcup_{y \in \overline{A}} U_y$ which is a union of open sets and thus open.

Example: $\overline{(0,1)} = [0,1]$ because if $0 \in (a,b)$ then b > 0 assume for simplicity that b < 2 and so $\frac{b}{2} \in (0,1) \cap (a,b)$, so that this intersection is nonempty. However, if x < 0 then $(2x,\frac{x}{2}) \cap (0,1) = \emptyset$. A similar argument holds for 1.

There exists sets that are both open and closed. We call such a set clopen. For example in every topology both the empty set and the whole set are clopen. In fact a connected space is exactly a space where only these two are clopen.

3 Metric Spaces

We now consider another, more familiar type of topological space. Those which depend on a notion of distance.

3.1 Definition

We define a *metric* as a function d(x,y) into \mathbb{R} satisfying these three conditions:

- d(x,y) = 0 exactly when x = y
- for any x, y we have d(x, y) = d(y, x)
- for any x, y, z we have $d(x, z) \le d(x, y) + d(y, z)$

We can think of a metric as a function which gives the distance between two points. These three conditions state that (1) the only things with no distance between them are a thing and itself, (2) distance doesn't depend on which direction you're going, and (3) distance can't be decreased by stopping at a third point along the way.

Example 1. d(x,y) on \mathbb{R} defined by d(x,y) = |x-y|

Example 2. d(x,y) on \mathbb{R}^n defined by $d(x,y) = |x-y| = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$

3.2 ϵ -balls

An ϵ -ball $B_{\epsilon}(x)$ around a point x in a metric space X is the set of all points within ϵ of x for some real number $\epsilon > 0$. I.e. $B_{\epsilon}(x) = \{y : d(x,y) < \epsilon\}$.

Thus, a metric d(x,y) induces a topology on a set X, which is given by the basis of all ϵ -balls i.e. $\mathcal{B} = \{B_{\epsilon}(x) : x \in X, \epsilon > 0 \in \mathbb{R}\}.$

Example 3. The standard topology on \mathbb{R} is given by the standard metric d(x,y) = |x-y| on \mathbb{R} , because (a,b) is the ϵ -ball around $\frac{a+b}{2}$ with radius $\frac{b-a}{2}$.

3.3 Equivalent topologies on \mathbb{R}^n

We can use our theorem about basis to show that the two topologies on \mathbb{R}^n are equivalent. Given an ϵ -ball $B_{\epsilon}(x)$ and a point $y \in B_{\epsilon}(x)$, we can find a basis element of the product topology contained in $B_{\epsilon}(x)$. Namely we take $\delta = (\epsilon - d(x, y))/n$, and take the basis element $\prod_{i=1}^{n} (y_i - \delta, y_i + \delta)$. Conversely, gives a basis element $B = \prod_{i=1}^{n} (a_i, b_i)$ in the product topology, and an element $x \in B$, we can find an ϵ -ball contained in B. Namely, we take $\epsilon = \min\{|x_i - a_i|, |x_i - b_i|\}$ i.e. the smallest distance from a coordinate of x to the edge of an interval, and then take $B_{\epsilon}(x)$. By the way we have chosen ϵ we must have the desired containment. Since we have containment both ways, we have equality.

4 Infinite Dimensional Topologies

We now come to the main definitions which we will be using: the topologies on infinite dimensional real space \mathbb{R}^{ω} , consisting of all lists of countably many elements of \mathbb{R} e.g. $(\pi, 4.87^3, -e, 101.10010, \ldots)$ and any other such objects.

4.1 The Box and Product Topologies

We could define the topology on \mathbb{R}^{ω} naively as the topology with basis of all products of open sets in \mathbb{R} . Namely $\mathcal{B} = \{\prod_{i \in \mathbb{N}} U_i : U_i \in \mathcal{T}_{\mathbb{R}}\}$. This is similar to the product topology in the finite case. We call this the *box topology*. As we will soon see, unlike the finite case, this is not necessarily the most natural topology to put on \mathbb{R}^{ω} .

Alternatively, we could put a restriction on the above basis, and only include things with finitely many proper subsets of \mathbb{R} . So that $U \in \mathcal{B}$ is equal to \mathbb{R} for all but finitely many U_i . or symbolically

$$\mathcal{B} = \left\{ \prod_{i=1}^{i=n} U_i \times \prod_{i \in \mathbb{N}} \mathbb{R} : U_i \in \mathcal{T}_{\mathbb{R}} \right\} \text{ here the product is not necessarily ordered as written.}$$

we call this the product topology on \mathbb{R}^{ω} .

4.2 The Uniform Topology

We now define the metric topology on \mathbb{R}^{ω} . The first issue to deal with is the possibility that the distance between two points in \mathbb{R}^{ω} might be too large. For example if we consider the distance between $0 = (0, 0, 0, 0, \ldots)$ and $\mathbb{N} = (0, 1, 2, 3, \ldots)$, if we were to use some simple metric this distance would probably be infinite. And so we introduce the notion of a *bounded metric*.

To begin, we define the standard bounded metric on \mathbb{R} as $\overline{d}(x,y) = \min\{d(x,y),1\}$. This is similar to the standard metric, except that it only takes on values in the interval $[0,1] \subset \mathbb{R}$. This is a metric, since the first two properties follow from the fact that they hold for the standard metric, and we need only be concerned that we might not have $\overline{d}(x,z) \leq \overline{d}(x,y) + \overline{d}(y,z)$ in the case that 2 > d(x,z) > 1. But even here, the third property of a metric holds rather trivially. Additionally, \overline{d} defines the same metric topology as d, as you can check.

Now that we have bounded our metric on \mathbb{R} , we are ready to extend it to \mathbb{R}^{ω} . We define, for a subset $S \subset \mathbb{R}$ the supremum of S, denoted $\sup(S)$ as the least $x \in \mathbb{R} : \forall y \in S, y \leq x$. So, for two points $x, y \in \mathbb{R}^{\omega}$ we define the set S of component-wise distances $S = \{\overline{d}(x_i, y_i) : i \in \mathbb{N}\}$. Finally, using this, we can define the uniform metric on \mathbb{R}^{ω} as $\rho(x, y) = \sup(S) = \sup\{\overline{d}(x_i, y_i) : i \in \mathbb{N}\}$. This gives us a third topology on \mathbb{R}^{ω} , which we call the uniform topology.

4.3 Comparing Infinite Topologies

These three topologies relate to each other in precisely the following way:

$$Box \supseteq Uniform \supseteq Product$$

Proof: (Uniform \subseteq Box): let $U = \prod_{i \in \mathbb{N}} (\frac{-1}{n}, \frac{1}{n})$ then since $(\frac{-1}{n}, \frac{1}{n})$ is open in \mathbb{R} for any n, this product is open in the Box topology. However, for any $\epsilon > 0$ there is some $n \in \mathbb{N}$ so that $\frac{1}{n} < \epsilon$ and thus U fails to contain any ϵ -ball. And thus U, while open in the box topology, fails to be open in the uniform topology. Thus we have Uniform $\not\supset$ Box. However, given a basis element $B_{\epsilon}(x)$ in the uniform topology, we can simply choose $U = \prod_{i \in \mathbb{N}} (x_i - \epsilon/2, x_i + \epsilon/2)$ (dividing by 2 is required for the odd edge case where the x_i approach the distance ϵ , so that the supremum ends up bigger than any individual distance, but this point is not particularly central), so that U is contained in $B_{\epsilon}(x)$. Giving Uniform \subseteq Box, as desired.

(Product \subseteq Uniform): for a basis element B in the product topology, there are only finitely many (a_i, b_i) in the product not equal to the whole of \mathbb{R} . So we can simply choose $\epsilon = \min\{\frac{b_i - a_i}{2}\}$, giving us the smallest radius of any term in the product giving B, then we have $B_{\epsilon}(x) \subseteq B$ where $x_i = \frac{a_i + b_i}{2}$ for $U_i \neq \mathbb{R}$ and $x_i = 0$ otherwise. So this gives us Product \subseteq Uniform. Conversely, consider $B_1(0)$, which is a basis element in the uniform topology. There is clearly no basis element in the product topology contained in it, this gives us Product \supset Uniform.

5 Closure of Sequences that are Eventually Zero

We now look at a special subset of \mathbb{R}^{ω} , and consider its closure in the above topologies. We define $\mathbb{R}^{\infty} \subset \mathbb{R}^{\omega}$ as the set of elements in \mathbb{R}^{ω} with only finitely many nonzero entries. We consider $\overline{\mathbb{R}^{\infty}}$ in the box, product and uniform topologies.

5.1 The Box Topology

As per usual, we trivially have that $\mathbb{R}^{\infty} \subset \overline{\mathbb{R}^{\infty}}$. We show that this is in fact all of $\overline{\mathbb{R}^{\infty}}$, or rather that \mathbb{R}^{∞} is already closed in the box topology. Choose any $y \in \mathbb{R}^{\omega}$ such that $y \notin \mathbb{R}^{\infty}$, then we can choose $U = \prod (y_i - |\frac{y_i}{2}|, y_i + |\frac{y_i}{2}|)$ so that $0 \notin U_i$ and thus $U \cap \mathbb{R}^{\infty} = \emptyset$ so that $y \notin \overline{\mathbb{R}^{\infty}}$ and $\mathbb{R}^{\infty} = \overline{\mathbb{R}^{\infty}}$.

5.2 The Product Topology

Let $y \in \mathbb{R}^{\omega}$ be anything, then $y \in \overline{\mathbb{R}^{\infty}}$. For, consider any open set U containing y, then $U_i = \mathbb{R}$ for all but finitely many i, so that $0 \notin U_i$ for at most finitely many i. Let $x \in \mathbb{R}^{\infty}$ be defined as $x_i = y_i$ when $U_i \neq \mathbb{R}$ and $x_i = 0$ whenever $U_i = \mathbb{R}$. We thus have $x \in U \cap \mathbb{R}^{\infty}$ so that $y \in \overline{\mathbb{R}^{\infty}}$ for all $y \in \mathbb{R}^{\omega}$, and $\overline{\mathbb{R}^{\infty}} = \mathbb{R}^{\omega}$, as desired.

5.3 The Uniform Topology

In the uniform topology, the closure of sequences which are eventually zero is exactly sequences that converge to zero. Let $y \in \mathbb{R}^{\omega}$ be such that as $i \to \infty$ we get $y_i \to 0$ (for example $y_n = 1/n$), and let U be an open set in the uniform topology containing y. By definition of basis, there is some $B \in \mathcal{B} : y \in B \subset U$. But these basis elements are of the form $B_{\epsilon}(y)$. Then by the definition on convergence we have $\forall \epsilon > 0 \exists n \in \mathbb{N} : i > n \Longrightarrow |y_i| < \epsilon$. In particular, for some $n \in \mathbb{N}$ for every i > n we get $\overline{d}_i(y_i, 0) < \epsilon$. So define x as $x_i = y_i$ for $i \le n$ and $x_i = 0$ for i > n then $x \in B_{\epsilon}(y) \cap \mathbb{R}^{\infty}$ but since $B \subset U$ we also have $x \in U \cap \mathbb{R}^{\infty}$ so that $y \in \overline{\mathbb{R}^{\infty}}$. Conversely, suppose that $y \in \mathbb{R}^{\infty}$ does not converge to 0. This means, by the contrapositive of the above, that $\exists \epsilon > 0 \forall n \in \mathbb{N} : \exists i > n : y_i > \epsilon$. Taking such epsilon, we choose the neighborhood around y given by $B = B_{\frac{\pi}{n}}(y)$ so that there are infinitely many B_i with $0 \not\in B_i$ and thus $B \cap \mathbb{R}^{\infty} = \emptyset$ and $y \not\in \overline{\mathbb{R}^{\infty}}$.

5.4 Conclusion

Although it is essentially possible to imagine that \mathbb{R}^{∞} is already closed, or that its closure is everything in \mathbb{R}^{ω} . Since the three topologies on \mathbb{R}^{ω} all agree on \mathbb{R}^{n} , we are in some sense free to choose which topology we'd like to put on \mathbb{R}^{ω} . And it can be seen as most sensible that the closure of \mathbb{R}^{∞} , i.e. the things that are very close to it, should be exactly the things that approach \mathbb{R}^{∞} indefinitely.