Vandex

Gradient Boosted Decision Trees (GBDT)

Iterative process of negative gradient steps

$$g_i^k = \frac{\partial L(y_i, \hat{y}_i)}{\partial \hat{y}_i} \bigg|_{\hat{y}_i = F_{k-1}(x_i)}$$

$$f_k(x_i) \approx g_i^k$$
, $F_N(x_i) = -\sum_{k=1}^N \alpha f_k(x_i)$

 f_k - decision tree function

Stochastic Gradient Boosting (SGB)

Speed-up & Regularization Idea: use a subsample at each iteration

Classic approach: uniform sampling (SGB⁰)

Advanced approach: non-uniform sampling (e.g. GOSS¹)

: it works

: understudied, choice is heuristic

⁰J.H.Friedman "Stochastic Gradient Boosting"

¹Guolin Ke, et.al. "LightGBM: A Highly Efficient Gradient Boosting Decision Tree"

Minimal Variance Sampling in Stochastic Gradient Boosting

Bulat Ibragimov, Gleb Gusev Yandex Sberbank

Problem formulation

Unknown split score:

$$S = \sum_{l \in L} \frac{\sum_{i \in l} g_i^2}{|l|}$$
, where $L - set$ of leaves

Perform random sampling:

$$\xi_1, ..., \xi_n$$
 — independent s.t. $\xi_i \sim Bern(p_i)$ i_{th} object is sampled if $f \xi_i = 1$

Construct an estimator: $\hat{S} = \sum_{l \in L} \frac{\sum_{i \in l} \frac{1}{p_i} \xi_i g_i^2}{\sum_{i \in l} \frac{1}{p_i} \xi_i}$

Such that: $E\Delta^2 = E(\hat{S} - S)^2 \rightarrow \min_{p_1,...,p_n}$

Main result

$$E\Delta^{2} \approx \sum_{l \in L} c_{l}^{2} \left(4Var(x_{l}) - 4c_{l}Cov(x_{l}, y_{l}) + c_{l}^{2}Var(y_{l}) \right)$$

$$E\Delta^2 \lesssim 2 \sum_{l \in L} c_l^2 \left(4Var(x_l) + c_l^2 Var(y_l) \right),$$

where
$$x_l = \sum_{i \in l} \frac{1}{p_i} \xi_i g_i$$
, $y_l = \sum_{i \in l} \frac{1}{p_i} \xi_i$, and $c_l = \frac{Ex_l}{Ey_l}$

Upper bound minimization problem:

$$\sum_{i=1}^{n} \frac{1}{p_i} g_i^2 + \lambda \sum_{i=1}^{n} \frac{1}{p_i} \rightarrow \min \ w.r.t. \sum p_i = ns,$$

$$s - sampling \ ratio, \lambda - hyperparameter$$

Minimal Variance Sampling (MVS)

$$p_{i} = min\left(\frac{1}{\mu}\sqrt{g_{i}^{2} + \lambda}, 1\right),$$

$$\mu \text{ is set such that } \sum p_{i} = ns$$

Algorithm:

2.Calculate threshold μ

3. Sample object x_i with probability p_i

4. Assign weight $w_i = \frac{1}{p}$

*It is possible to generalize to second-order methods

Experiments

Relative error change, average over datasets:

Sample rate	0.02	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.5
SGB	+19.92%	+11.35%	+6.83%	+4.99%	+3.84%	+3.03%	+2.17%	+1.57%	+1.10%	+0.42%
GOSS	+22.37%	+12.75%	+8.00%	+5.32%	+3.39%	+2.25%	+1.41%	+0.75%	+0.23%	-0.16%
MVS	+13.93%	+7.76%	+3.69%	+1.91%	+0.74%	+0.14%	-0.21%	-0.43%	-0.41%	-0.45%
MVS Adaptive	+13.72%	+7.47%	+3.71%	+1.70%	+0.55%	-0.03%	-0.07%	-0.28%	-0.32%	-0.51%

Relative learning time gain:

	SGB	GOSS	MVS
time difference	-20.7%	-20.4%	-27.7%

*used datasets: KDD Internet, Adult, Amazon, KDD Upselling, Kick, KDD Churn,Click, Higgs, Recsys