Matrix multiplication

Computational Science

Paradigms in science

- 1. Theory
- 2. Experiments
- 3. Large scale computer simulations
 - Construct mathematical models
 - Implement as computer programs
 - Simulate on computers
- 4. Massive data sets

All types of computational science sooner or later boil down to numerical computations

Elementary computations

BLAS: Basic Linear Algebra Subprograms	Data	Work
Level 1: $\mathbf{y} = \alpha \mathbf{x} + \mathbf{y}$ where \mathbf{x} and \mathbf{y} are n-dimensional vectors	O(n)	O(n)
Level 2: $\mathbf{y} = \alpha \mathbf{A} \mathbf{x} + \beta \mathbf{y}$ where \mathbf{A} is an n x n matrix	O(n ²)	$O(n^2)$
Level 3: $\mathbf{C} = \alpha \mathbf{AB} + \beta \mathbf{C}$ where \mathbf{B} and \mathbf{C} are n x n matrices	$O(n^2)$	O(n ³)

Building blocks when solving various problems in numerical linear algebra:

- Systems of linear equations
- Linear least squares
- Eigenvalue problems
- Singular value decompositions

Also similar computations for sparse data sets

BLAS 3: Matrix Multiplication

Compute C = A*B where A, B, and C are n*n real valued matrices

BLAS 3: Matrix Multiplication

Compute C = A*B where A, B, and C are nxn real valued matrices


```
for i=0,...,n-1
  for j=0,...,n-1 {
    c[i][j] = 0.0
    for k=0,...,n-1
    c[i][j] += a[i][k] * b[k][j]
}
```

BLAS 3: Matrix Multiplication

Compute C = A*B where A, B, and C are n*n real valued matrices


```
for i=0,...,n-1
  for j=0,...,n-1 {
    c[i][j] = 0.0
    for k=0,...,n-1
    c[i][j] += a[i][k] * b[k][j]
}
```

Requires $3n^2$ data elements and n^2 (2n - 1) flops Running time: $\Theta(n^3)$

The evolution of matrix multiplication algorithms

- Straightforward: n³
- Strassen (1968): $n^{\lg(7)} \approx n^{2.8074}$
- Coppersmith–Winograd (1990): n^{2.375477}
- Stothers (2010): n^{2.3736897}
 - Williams (2011): n^{2.3728642}
 - Le Gall (2014): n².3728639

The evolution of matrix multiplication algorithms

- Straightforward: n³
- Strassen (1968): $n^{\lg(7)} \approx n^{2.8074}$
- Coppersmith–Winograd (1990): n^{2.375477}
- Stothers (2010): n^{2.3736897}
 - Williams (2011): n^{2.3728642}
 - Le Gall (2014): n².3728639

In practice:

- Algorithms with lower complexity than Strassen are slow
- Sub-cubic algorithms require much memory

Strassen's algorithm

C ₀₀	C ₀₁
C ₁₀	C ₁₁

```
Algorithm Strassen(A,B,n) {
     if (n==1) return A*B
     P_1 = Strassen(A_{00}+A_{11},B_{00}+B_{11},n/2)
     P_2 = Strassen(A_{10}+A_{11},B_{00},n/2)
     P_3 = Strassen(A_{00}, B_{01} - B_{11}, n/2)
     P_4 = Strassen(A_{11}, B_{10} - B_{00}, n/2)
     P_5 = Strassen(A_{00} + A_{01}, B_{11}, n/2)
     P_6 = Strassen(A_{10}-A_{00},B_{00}+B_{01},n/2)
     P_7 = Strassen(A_{01}-A_{11},B_{10}+B_{11},n/2)
     C_{00} = P_1 + P_4 - P_5 + P_7
     C_{01} = P_3 + P_5
     C_{10} = P_2 + P_4
     C_{11} = P_1 - P_2 + P_3 + P_6
     return C
```

Strassen's algorithm

C ₀₀	C ₀₁
C ₁₀	C ₁₁

```
Algorithm Strassen(A,B,n) {
     if (n==1) return A*B
     P_1 = Strassen(A_{00}+A_{11},B_{00}+B_{11},n/2)
     P_2 = Strassen(A_{10}+A_{11},B_{00},n/2)
     P_3 = Strassen(A_{00}, B_{01} - B_{11}, n/2)
     P_4 = Strassen(A_{11}, B_{10} - B_{00}, n/2)
     P_5 = Strassen(A_{00} + A_{01}, B_{11}, n/2)
     P_6 = Strassen(A_{10}-A_{00},B_{00}+B_{01},n/2)
     P_7 = Strassen(A_{01}-A_{11},B_{10}+B_{11},n/2)
     C_{00} = P_1 + P_4 - P_5 + P_7
     C_{01} = P_3 + P_5
     C_{10} = P_2 + P_4
     C_{11} = P_1 - P_2 + P_3 + P_6
     return C
```

```
Running time: f(n) =

number of additions and multiplications

Recursion: f(n) = 7f(n/2) + k*n^2

Yields: f \in \Theta(n^{1g7})
```

```
for i=0,...,n-1
  for j=0,...,n-1 {
    c[i][j] = 0.0
    for k=0,...,n-1
    c[i][j] += a[i][k] * b[k][j]
}
```

```
#pragma omp parallel for private(j,k)
for i=0,...,n-1
  for j=0,...,n-1 {
    c[i][j] = 0.0
    for k=0,...,n-1
    c[i][j] += a[i][k] * b[k][j]
}
```

```
#pragma omp parallel for private(j,k)
for i=0,...,n-1
  for j=0,...,n-1 {
    c[i][j] = 0.0
    for k=0,...,n-1
    c[i][j] += a[i][k] * b[k][j]
}
```

Speedup:

• Wrt sequential straightforward: $n^3/(n^3/p) = p$ (perfect speedup!)

```
#pragma omp parallel for private(j,k)
for i=0,...,n-1
  for j=0,...,n-1 {
    c[i][j] = 0.0
    for k=0,...,n-1
    c[i][j] += a[i][k] * b[k][j]
}
```

Speedup:

- Wrt sequential straightforward: $n^3/(n^3/p) = p$ (perfect speedup!)
- Wrt sequential Strassen: $n^{1g7}/(n^3/p) = pn^{1g7-3} \rightarrow 0$ as $n\rightarrow\infty$


```
#pragma omp parallel for private(j,k)
for i=0,...,n-1
  for j=0,...,n-1 {
    c[i][j] = 0.0
    for k=0,...,n-1
    c[i][j] += a[i][k] * b[k][j]
}
```



```
#pragma omp parallel for private(j,k)
for i=0,...,n-1
  for j=0,...,n-1 {
    c[i][j] = 0.0
    for k=0,...,n-1
    c[i][j] += a[i][k] * b[k][j]
}
```

Rows of B move in and out of cache!


```
#pragma omp parallel for private(j,k)
for i=0,...,n-1 {
   for j=0,...,n-1
     c[i][j] = 0.0
   for k=0,...,n-1
     for j=0,...,n-1
     c[i][j] += a[i][k] * b[k][j]
}
```



```
#pragma omp parallel for private(j,k)
for i=0,...,n-1 {
   for j=0,...,n-1
     c[i][j] = 0.0
   for k=0,...,n-1
     for j=0,...,n-1
     c[i][j] += a[i][k] * b[k][j]
}
```

• Straightforward version with n threads: @ (n²)

```
for i=0,...,n-1
  for j=0,...,n-1 {
    c[i][j] = 0.0
    for k=0,...,n-1
    c[i][j] += a[i][k] * b[k][j]
}
```

- Straightforward version with n threads: ⊕ (n²)
- Straightforward version with n² threads:
 - > Thread (i,j) computes c[i][j]:
 - ➤ Run through the ith row of A and the jth column of B: @ (n)

```
for i=0,...,n-1
  for j=0,...,n-1 {
    c[i][j] = 0.0
    for k=0,...,n-1
    c[i][j] += a[i][k] * b[k][j]
}
```

```
    Straightforward version with n threads: @ (n²)

    Straightforward version with n<sup>2</sup> threads:

  > Thread (i,j) computes c[i][j]:
  Run through the ith row of A and the jth column of B: @(n)

    Straightforward version with n³ threads:

  Thread (i,j,k) computes product = a[i][k] * b[k][j]
  > n^2 reductions of product in parallel: (i,j,k) \rightarrow (i,j,0)
  \rightarrow \Theta(lg(n))
    for i=0,\ldots,n-1
       for j=0,...,n-1 {
          c[i][j] = 0.0
          for k=0,\ldots,n-1
            c[i][j] += a[i][k] * b[k][j]
```

```
    Straightforward version with n threads: @ (n²)

    Straightforward version with n<sup>2</sup> threads:

  > Thread (i,j) computes c[i][j]:
  Run through the ith row of A and the jth column of B: @(n)

    Straightforward version with n³ threads:

  > Thread (i,j,k) computes product = a[i][k] * b[k][j]
  > n^2 reductions of product in parallel: (i,j,k) \rightarrow (i,j,0)
  \rightarrow \Theta(lg(n))

    Theorem (Moldovan, 1993): Cannot multiply faster than @(lg(n))

    for i=0,\ldots,n-1
       for j=0,...,n-1 {
          c[i][j] = 0.0
          for k=0,\ldots,n-1
            c[i][j] += a[i][k] * b[k][j]
```

Row-wise decomposition (assume p=n):

- Process i holds row i of matrices A and B
- Process i computes the ith row of C
 - Needs access to row i of A
 - Needs access to all of B
- Alternative 1: Broadcast B to all processes

Row-wise decomposition (assume p=n):

- Process i holds row i of matrices A and B
- Process i computes the ith row of C
 - Needs access to row i of A
 - Needs access to all of B
- Alternative 1: Broadcast B to all processes
- Alternative 2: Rotate the rows of **B** on the processes
 - Reduces memory usage in each process

When p<n:

- Process i holds m=n/p rows of A
- Process i computes m rows of c

When p<n:

- Process i holds m=n/p rows of A
- Process i computes m rows of C

Running time analysis:

- Computation:
 - each process computes a submatrix with m rows and n columns
 - ▶ n²/p elements in total
 - each element takes @ (n) time to compute
 - $T_{comp} \in \Theta(n^3/p)$

When p<n:

- Process i holds m=n/p rows of A
- Process i computes m rows of C

Running time analysis:

- Computation:
 - > each process computes submatrix with m rows and n columns
 - n²/p elements in total
 - > each element takes @ (n) time to compute
 - $T_{comp} \in \Theta(n^3/p)$
- Communication:
 - > p point-to-point communications of length n^2/p : $pt_0+pt_1n^2/p = pt_0+t_1n^2$
 - $T_{comm} \in \Theta(p+n^2)$

When p<n:

- Process i holds m=n/p rows of A
- Process i computes m rows of C

Running time analysis:

- Computation:
 - each process computes submatrix with m rows and n columns
 - n²/p elements in total
 - each element takes @ (n) time to compute
 - $T_{comp} \in \Theta(n^3/p)$
- Communication:
 - > p point-to-point communications of length n^2/p : $pt_0+pt_1n^2/p = pt_0+t_1n^2$
 - $T_{comm} \in \Theta(p+n^2)$
- $T_{comp}/T_{comm} \in \Theta(n/p)$

When p<n:

- Process i holds m=n/p rows of A
- Process i computes m rows of C

Running time analysis:

- Computation:
 - each process computes submatrix with m rows and n columns
 - > n²/p elements in total
 - ▶ each element takes ⊕ (n) time to compute
 - $T_{comp} \in \Theta(n^3/p)$
- Communication:
 - > p point-to-point communications of length n^2/p : $pt_0+pt_1n^2/p = pt_0+t_1n^2$
 - $T_{comm} \in \Theta(p+n^2)$
- (BSP: $l=t_0$ $q=t_1$) • $T_{comp}/T_{comm} \in \Theta(n/p)$

Observation:

- Process i needs
 - > n²/p elements from A
 - > all n² elements from B
 - to compute only n^2/p elements in C
- Can we compute n²/p elements in c with access to fewer elements from B?
 - Is reduced communication

$$C_{00} = (A_{00} * B_{00}) + (A_{01} * B_{10}) + (A_{02} * B_{20})$$

$$C_{00} = (A_{00} * B_{00}) + (A_{01} * B_{10}) + (A_{02} * B_{20})$$

s = number of row and column blocks

```
for i = 0, ..., s-1

for j = 0, ..., s-1

C_{ij} = 0.0

for k = 0, ..., s-1

C_{ij} += A_{ik} * B_{kj} // Matrix multiplication
```


$$C_{00} = (A_{00} * B_{00}) + (A_{01} * B_{10}) + (A_{02} * B_{20})$$

s = number of row and column blocks

for
$$i = 0, ..., s-1$$

for $j = 0, ..., s-1$
 $C_{ij} = 0.0$
for $k = 0, ..., s-1$
 $C_{ij} += A_{ik} * B_{kj}$ // Matrix multiplication

- assume p=s² is a square number
- process (i,j) to compute c_{ij}
- m = n/s = rows and columns in a block
- each block multiplication requires ~2m³ flops.

• Idea (Canon's algorithm): Rotate A- and B-blocks between the processes

$$C_{00} = (A_{00} * B_{00}) + (A_{01} * B_{10}) + (A_{02} * B_{20})$$

- Idea (Canon's algorithm): Rotate A- and B-blocks between the processes
- To what A- and B-blocks does process (i,j) need access?
 - \rightarrow A-blocks with row index i: A_{i0} , A_{i1} , ..., $A_{i,s-1}$
 - > B-blocks with column index j: B_{0j} , B_{1j} , ..., $B_{s-1,j}$
 - > Synchronization: Get $\mathbf{A_{ik}}$ and $\mathbf{B_{kj}}$ simultaneously

$$C_{00} = (A_{00} * B_{00}) + (A_{01} * B_{10}) + (A_{02} * B_{20})$$

- Idea (Canon's algorithm): Rotate A- and B-blocks between the processes
- To what A- and B-blocks does process (i,j) need access?
 - \rightarrow A-blocks with row index i: A_{i0} , A_{i1} , ..., $A_{i,s-1}$
 - > B-blocks with column index j: B_{0j} , B_{1j} , ..., $B_{s-1,j}$
 - Synchronization: Get A_{ik} and B_{ki} simultaneously
- What processes need access to A_{ii}?
 - C_{i*}: All processes with row id i: (i,0), (i,1),...,(i,s-1)
- What processes need access to B_{ij}?
 - > C_{*j} : All processes with column id j: (0,j), (1,j),...,(s-1,j)

- Idea (Canon's algorithm): Rotate A- and B-blocks on the processes
- Order is irrelevant for summation $C_{ij} = \Sigma_k (A_{ik} * B_{kj})$

$$C_{00} = (A_{00} * B_{00}) + (A_{01} * B_{10}) + (A_{02} * B_{20})$$

- Idea (Canon's algorithm): Rotate A- and B-blocks on the processes
- Order is irrelevant for summation $C_{ij} = \Sigma_k (A_{ik} * B_{kj})$
- Start at k=0: $C_{ij} = A_{i0}*B_{0j} + A_{i1}*B_{1j}+...+A_{i,s-1}*B_{s-1,j}$
 - ightharpoonup Bad! All procs (i,0), (i,1), (i,2),..., (i,s-1) need A_{i0} early!

$$C_{00} = (A_{00} * B_{00}) + (A_{01} * B_{10}) + (A_{02} * B_{20})$$

- Idea (Canon's algorithm): Rotate A- and B-blocks on the processes
- Order is irrelevant for summation $C_{ij} = \Sigma_k (A_{ik} * B_{kj})$
- Start at k=0: $C_{ij} = A_{i0}*B_{0j} + A_{i1}*B_{1j}+...+A_{i,s-1}*B_{s-1,j}$
 - Bad! All procs (i,0), (i,1), (i,2),..., (i,s-1) need A_{i0} early!
- Start at $\mathbf{k}=\mathbf{i}$: $C_{ij} = A_{ii}*B_{ij} + A_{i,i+1}*B_{i+1,j}+...+A_{i,s-1}*B_{s-1,j} + A_{i0}*B_{0j} + A_{i1}*B_{1j}+...+A_{i,i-1}*B_{i-1,j}$
 - Bad! All procs (i,0), (i,1), (i,2),..., (i,s-1) need A_{ii} early!

$$C_{00} = (A_{00} * B_{00}) + (A_{01} * B_{10}) + (A_{02} * B_{20})$$

- Idea (Canon's algorithm): Rotate A- and B-blocks on the processes
- Order is irrelevant for summation $C_{ij} = \Sigma_k (A_{ik} * B_{kj})$
- Start at k=0: $C_{ij} = A_{i0}*B_{0j} + A_{i1}*B_{1j}+...+A_{i,s-1}*B_{s-1,j}$
 - Bad! All procs (i,0), (i,1), (i,2),..., (i,s-1) need A_{i0} early!
- Start at $\mathbf{k}=\mathbf{i}$: $C_{ij} = A_{ii}*B_{ij} + A_{i,i+1}*B_{i+1,j}+...+A_{i,s-1}*B_{s-1,j} + A_{i0}*B_{0j} + A_{i1}*B_{1j}+...+A_{i,i-1}*B_{i-1,j}$
 - Bad! All procs (i,0), (i,1), (i,2),..., (i,s-1) need A_{ii} early!
- Summation order must depend on both i and j

$$C_{00} = (A_{00} * B_{00}) + (A_{01} * B_{10}) + (A_{02} * B_{20})$$

- Idea (Canon's algorithm): Rotate A- and B-blocks on the processes
- Order is irrelevant for summation $C_{ij} = \Sigma_k (A_{ik} * B_{kj})$

First summation index value

k =0	k=1	k=2
k=1	k=2	k=0
k=2	k=0	k=1

$$C_{00} = (A_{00} * B_{00}) + (A_{01} * B_{10}) + (A_{02} * B_{20})$$

- Idea (Canon's algorithm): Rotate A- and B-blocks on the processes
- Order is irrelevant for summation $C_{ij} = \Sigma_k (A_{ik} * B_{kj})$

First summation index value

43

$$C_{00} = (A_{00} * B_{00}) + (A_{01} * B_{10}) + (A_{02} * B_{20})$$

- Idea (Canon's algorithm): Rotate A- and B-blocks on the processes
- Order is irrelevant for summation $C_{ij} = \Sigma_k (A_{ik} * B_{kj})$

First summation index value

k =0	k=1	k=2
k=1	k=2	k =0
k=2	k=0	k=1

Second summation index value

k=1	k=2	k =0
k=2	k=0	k=1
k =0	k=1	k=2

$$k = (k+1) %s$$

Cannon's algorithm: Step 0

Cannon's algorithm: Step 1

Assumption: Process (i,j) holds A_{ij} and B_{ij}

```
Assumption: Process (i,j) holds A_{ij} and B_{ij}
```

Initialize: Rotate A_{ij} i positions left

Rotate \mathbf{B}_{ij} j positions up

```
Assumption: Process (i,j) holds A_{ij} and B_{ij}
```

Initialize: Rotate A_{ij} i positions left

Rotate B_{ij} j positions up

Compute: Local matrix multiplication: C = A*B

Repeat √p-1 times:

Send A to the left

Send B up

Local matrix multiplication: C += A*B

Assumption: Process (i,j) holds A_{ij} and B_{ij}

Initialize: Rotate A_{ij} i positions left

Rotate B_{ij} j positions up

Compute: Local matrix multiplication: C = A*B

Repeat $\sqrt{p-1}$ times:

Send A to the left

Send B up

Local matrix multiplication: C += A*B

Running time analysis:

- Computation: $T_{comp} \in \Theta((n/\sqrt{p})^3 \sqrt{p}) = \Theta(n^3/p)$
- Communication: $T_{comm} = 2\sqrt{p}(t_0 + (n^2/p)t_1) \in \Theta(n^2/\sqrt{p})$
- $T_{comp}/T_{comm} \in \Theta(n/\sqrt{p})$

Assumption: Process (i,j) holds A_{ij} and B_{ij}

Initialize: Rotate A_{ij} i positions left

Rotate B_{ij} j positions up

Compute: Local matrix multiplication: C = A*B

Repeat $\sqrt{p-1}$ times:

Send **A** to the left

Send B up

Local matrix multiplication: C += A*B

Running time analysis:

- Computation: $T_{comp} \in \Theta((n/p)^3p) = \Theta(n^3/p)$
- Communication: $T_{comm} = 2\sqrt{p(t_0 + (n^2/p)t_1)} \in \Theta(n^2/\sqrt{p})$
- $T_{comp}/T_{comm} \in \Theta(n/\sqrt{p})$

Compared to row-wise decomposition:

• Communication reduced by a factor $\sqrt{\mathbf{p}}$

Technical:

- Process (i,j) has id i*s+j
- Process q computes block (q/s,q%s)
- Process q's upstairs neighbor has id (q-s) %p
- Process q's downstairs neighbor has id (q+s) %p
- Process q's right neighbor has id q+1 or q-s+1
- Process q's left neighbor has id q-1 or q+s-1