Lab12 Solution

YAO ZHAO

Lab12.A Cyclops

- As a superhero, you possess a remarkable eye with a range of optional functions labeled from 1 to n. Each function i incurs a cost of a_i yuan when integrated into your eye. Alongside your abilities, there exist m supervillains that you must confront. Each supervillain, denoted as the j-th villain, requires a specific subset S_j of eye functions to be installed in order to be defeated. The defeat of each supervillain yields a reward of b_j yuan.
- ► Your objective is not to defeat all the supervillains but rather to strategize in a way that maximizes your profits.

Sample Input

Key point

▶ The key point is how to construct a graph, convert to a familiar question to you.

Sample Input

- Create the source point s and the sink point t.
- Create m vertices to represent m supervillains, add m edges from source s to each vertex with weight b_i ;
- Create n vertices to represent n functions, add n edges from each vertex to the sink point t with weight a_i ;
- ▶ Add edges with weight ∞ from the supervillain vertices to the function vertices according the map between b_i to S_i

Analysis

The problem converts to the minimum cut problem of the following network G'. Assumes that the minimum cut vertices set is (A', B'), A'- {s} is the optimal project set. Assume the minimum cut is c, while $C = \sum b_i$, the maximum profit is C - c.

C is the sum of all supervillains' rewards.

C = 10 + 25 = 35

c is the minimum cut in G'

c = 18(Max flow in G' = 18)

Maximum profit = C - c = 35 - 18 = 17

c represent the cost of all defeated supervillains + the rewards of the abandoned supervillains.

Lab12.B Cube

- LYC has an amazing $h \times a \times b$ cube and plans to cut it into two amazing parts. The cut surface could be considered as an integer-valued function (x, y) whose domain is $([1, a] \times [1, b]) \cup (\mathbb{Z} \times \mathbb{Z})$ and should satisfy conditions below:
 - ▶ $1 \le f(x, y) \le h$
 - ▶ $\forall (x,y), (x',y')$ such that |x-x'|+|y-y'|=1, $|f(x,y)-(x',y')|\leq D$, where D is a non-negative integer given.
- There is another function v(x,y,z) $(1 \le x \le a, 1 \le y \le b, 1 \le z \le h)$ given. Your objective is to help LYC determine $\min \sum_{i,j} v(i,j,f(i,j))$.

No cut. The cut surface: 2+2+6+6=16

Sample Output

6

Suppose $|f(x,y)-(x',y')| \leq D$ is not considered

get the minimum value in each vertical axis stack cube

no constraint: $|f(x,y) - (x',y')| \leq D$

D>1

The cut which contains an outgoing edge with infinite weight cannot be the minimum cut.

