$k(x, x') = f(x)k_1(x, x')f(x')$ where f(x) is any function on $x \in \Re^d$

$$\exists \phi \colon \Re^d \to H$$

 $k_1(x, x')$ is positvie semi-definite $\rightarrow k_1(x, x') = \phi_1(x)^T \phi_1(x')$

$$= f(x)k_1(x, x')f(x')$$

$$= f(x)\phi_1(x)^T\phi_1(x')f(x')$$

Let
$$\phi(x)^T = f(x)\phi_1(x)^T$$
, $\phi(x') = \phi_1(x')f(x')$

$$k(x, x') = \phi(x)^T \phi(x')$$

Thus, $k(x, x') = f(x)k_1(x, x')f(x')$ is a valid kernel.