Exam: Distributed Systems

Means allowed: Nothing except paper, pencil, pen and English - xx dictionary.

Please

- 1. Check your name and student-id number on the first page, sign next to it (next to "Unterschrift").
- 2. Write your student-id number (but not your name) on each page the exam answer sheets. Sheets without ID number will not counted.
- 3. Place an identification document in front of you, it will be checked during the exam.

General information: All questions should be answered in English. Write clearly and use the pages in a structured way so your answers are easy to read. All answers should be motivated, explained, detailed, precise and accurate.

Important suggestion: Read all questions before answering. Plan your time so that you can (at least) write a brief answer to all questions (and sub-questions). Please notice the weight that is given to each question (and sub-question).

1. Basics about Distributed Systems (6 points)

- 1 a) (2 points) Define the term "Distributed System". Be brief and precise.
- 1 b) (4 points) The Internet is one of the largest Distributed Systems today. Its architecture follows the so-called OSI Reference Model of 7 layers. Briefly name the seven layers and note the functions of each layer in keywords.

2. Naming (4 points)

In the lecture we discussed the concept Chord. Chord is a Distributed Hash Table (DHT). Answer the following questions about Chord:

- What topology do the nodes form?
- What operations does a DHT, e.g., Chord, provide?
- How is redundancy in Chord achieved?
- In Chord, how many hops does it take on average to lookup a data item? (Assume that the number of nodes in the Chord is "n").
- How does a node join a Chord DHT?
- Neighbor Table: Which nodes are stored in a neighbor table (called finger table in Chord) of a node in the DHT?
- Dynamo introduces the concept of virtual nodes, what are they used for?

3. Leader Election and Mutual Exclusion (4 points)

Electing a leader among multiple nodes in the network.

- What properties should a leader election algorithm in distributed systems have?
- What challenges does leader election in distributed systems face?
- Please name two algorithms we described in the course that elect a leader.
- When you compare both algorithms, what key advantages and disadvantages do your see for each?

4. Time and Synchronization (4 points)

We discussed the concept of consistent and inconsistent cuts.

- Please explain this concept briefly and formally define the term consistent cut.
- Please note for each cut (C1, C2, C3) depicted below whether it is a consistent or an inconsistent cut. Explain your reasoning briefly.

5. Consistency and Replication (4 points)

We discussed the concepts of Total Ordering, Sequential Ordering, and Causal Ordering

- Briefly explain and formally define each concept.
- Below you see two figures. For each figure, please note weather it describes Total Ordering, Sequential Ordering, and Causal Ordering. Briefly describe your decisions.

6. Fault Tolerance (4 points)

We discussed the "Byzantine Generals Problem".

- In the "Byzantine Generals Problem" there are honest generals and dishonest generals (traitors). What is the goal of the honest generals? What is the goal of the traitors?
- In the lecture, we introduced an algorithm with multiple phases to enable consensus among the generals. Explain the algorithm and its different phases.
- Under what conditions can the generals achieve consensus. How many honest generals are required, assuming that there are *k* dishonest ones?

7. Applications (4 points)

We discussed TOR, which enables, for example, anonymous Internet browsing.

- Briefly explain how TOR provides anonymous Internet browsing. You can draw a figure to illustrate your argumentation.
- TOR also allows so called hidden services. Please briefly explain what a hidden service is and how TOR enables it. You can draw a figure to illustrate your argumentation.