History of the Perceptron

Dr Dayal Kumar Behera

 The first computational model of a neuron was proposed by Warren MuCulloch (neuroscientist) and Walter Pitts (logician) in 1943.

- The inputs of the McCulloch-Pitts neuron could be either 0 or 1.
- The output could be 0 or 1.
- Each input could be either excitatory or inhibitory. if a weight is 1, it is an excitatory input. If weight is -1, it is an inhibitory input.
- It has a threshold function as an activation function.

Excitatory input? Inhibitory input?

Example: Logic Gate OR

$\mathbf{X_1}$	$\mathbf{x_2}$	\mathbf{Y}_{in}	Yout
0	0	0	0
0	1	1	1
1	0	1	1
1	1	2	1

w1 = 1, w2 = 1 and Threshold (θ) = 1

Geometric Interpretation of M-P Model: OR Gate

OR function

$$x_1 + x_2 = \sum_{i=1}^{2} x_i \ge 1$$

$$w1x1 + w2x2 + w0 = 0$$
$$x2 = \frac{-w1}{w2}x1 + \frac{-w0}{w2}$$

Separating line equation

Here, w1=1, w2=1, w0=-1

Let
$$x1 = 1 \rightarrow x2 = 0$$

Geometric Interpretation of M-P Model: AND Gate

 $AND\ function$

$$x_1 + x_2 = \sum_{i=1}^{2} x_i \ge 2$$

Geometric Interpretation of M-P Model: OR Gate (3-inputs/features)

$$x_1 + x_2 + x_3 = \sum_{i=1}^{3} x_i \ge 1$$

Limitations

- The model does not work for non-binary inputs. (Only used for binary inputs)
- The threshold had to be decided beforehand and needed manual computation instead of the model deciding itself.

Rosenblatt's Perceptron

- Overcoming the limitations of the M-P neuron, Frank Rosenblatt, an American psychologist, proposed the classical perception model, the mighty artificial neuron, in 1958.
- It is more generalized computational model than the McCulloch-Pitts neuron where weights and thresholds can be learnt over time.

What is Perceptron?

- A perceptron is a simple model of a biological neuron in an artificial neural network.
- It consists of a single neuron with adjustable synaptic weights and bias.
- In machine learning, the perceptron is an algorithm for supervised learning of binary classifiers.
- It is used for the classification of patterns said to be *linearly separable* (i.e., patterns that lie on opposite sides of a hyperplane).

 Definition: Sets of points in 2D space (R²) are linearly separable, if the sets can be separated by a straight line.

• Set of points in n-dimensional space (Rⁿ) are linearly separable, if there is a hyper plane of (n-1) dimensions separating the sets.

Perceptron without Bias

$$y = 1 \quad if \sum_{i=1}^{n} w_i * x_i \ge \theta$$
$$= 0 \quad if \sum_{i=1}^{n} w_i * x_i < \theta$$

Rewriting the above,

$$y = 1 \quad if \sum_{i=1}^{n} w_i * x_i - \theta \ge 0$$
$$= 0 \quad if \sum_{i=1}^{n} w_i * x_i - \theta < 0$$

Perceptron with Bias

A more accepted convention,

$$y = 1 \quad if \sum_{i=0}^{n} w_i * x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} w_i * x_i < 0$$
$$where, \quad x_0 = 1 \quad and \quad w_0 = -\theta$$

M-P vs. Perceptron

McCulloch Pitts Neuron

(assuming no inhibitory inputs)

$$y = 1 \quad if \sum_{i=0}^{n} x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} x_i < 0$$

Perceptron

$$y = 1 \quad if \sum_{i=0}^{n} \mathbf{w_i} * x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} \mathbf{w_i} * x_i < 0$$

Perceptron

Algorithm 1 Perceptron Learning

```
w = [w0, w1, w2, ..., wn]
x = [1, x1, x2, ..., xn]
P \leftarrow input with labels 1;
N \leftarrow input with labels 0;
Initialize w randomly;
while !convergence do
   Pick random x \in P \cup N
   if x \in P and w^Tx < 0 then
       M = M + X
    if x \in \mathbb{N} and \mathbf{w}^T \mathbf{x} \geq 0 then
       M = M - X
end
```

Equation of line

$$\mathbf{w} \cdot \mathbf{x} = \mathbf{w}^{\mathbf{T}} \mathbf{x} = \sum_{i=0}^{n} w_i * x_i$$

 We can rewrite the perceptron rule as

$$y = 1 \quad if \quad \mathbf{w}^{\mathbf{T}} \mathbf{x} \ge 0$$
$$= 0 \quad if \quad \mathbf{w}^{\mathbf{T}} \mathbf{x} < 0$$

We are interested in finding the line $\mathbf{w}^{\mathbf{T}}\mathbf{x} = 0$ which divides the input space into two halves

Every point (\mathbf{x}) on this line satisfies the equation $\mathbf{w}^{\mathbf{T}}\mathbf{x} = 0$

2D Decision Boundary

Negative-Half (N Class)
$$w^T x < 0$$

$$\rightarrow \alpha > 90^{\circ}$$

Positive-Half (P Class)

$$w^T x \geq 0$$

→
$$\alpha$$
 < 90⁰

Changing

$$w(new) = w(old) + x$$

$$\rightarrow \alpha(new) < \alpha(old)$$

Changing

$$w(new) = w(old) - x$$

$$\rightarrow \alpha(new) > \alpha(old)$$

Algorithm: Perceptron Learning Algorithm

end

//the algorithm converges when all the inputs are classified correctly

$$cos\alpha = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||||\mathbf{x}||}$$

- For $\mathbf{x} \in P$ if $\mathbf{w}.\mathbf{x} < 0$ then it means that the angle (α) between this \mathbf{x} and the current \mathbf{w} is greater than 90° (but we want α to be less than 90°)
- What happens to the new angle (α_{new}) when $\mathbf{w_{new}} = \mathbf{w} + \mathbf{x}$

$$cos(\alpha_{new}) \propto \mathbf{w_{new}}^T \mathbf{x}$$
$$\propto (\mathbf{w} + \mathbf{x})^T \mathbf{x}$$
$$\propto \mathbf{w}^T \mathbf{x} + \mathbf{x}^T \mathbf{x}$$
$$\propto cos\alpha + \mathbf{x}^T \mathbf{x}$$
$$cos(\alpha_{new}) > cos\alpha$$

• Thus α_{new} will be less than α and this is exactly what we want

Algorithm: Perceptron Learning Algorithm

end

//the algorithm converges when all the inputs are classified correctly

$$cos\alpha = \frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||||\mathbf{x}||}$$

- For $\mathbf{x} \in N$ if $\mathbf{w}.\mathbf{x} \geq 0$ then it means that the angle (α) between this \mathbf{x} and the current \mathbf{w} is less than 90° (but we want α to be greater than 90°)
- What happens to the new angle (α_{new}) when $\mathbf{w_{new}} = \mathbf{w} \mathbf{x}$

$$cos(\alpha_{new}) \propto \mathbf{w_{new}}^T \mathbf{x}$$

$$\propto (\mathbf{w} - \mathbf{x})^T \mathbf{x}$$

$$\propto \mathbf{w}^T \mathbf{x} - \mathbf{x}^T \mathbf{x}$$

$$\propto cos\alpha - \mathbf{x}^T \mathbf{x}$$

$$cos(\alpha_{new}) < cos\alpha$$

• Thus α_{new} will be greater than α and this is exactly what we want

OR Gate

$\overline{x_1}$	x_2	OR	
0	0	0	$w_0 + \sum_{i=1}^2 w_i x_i < 0$
1	0	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$
0	1	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$ $w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$
_ 1	1	1	$w_0 + \sum_{i=1}^2 w_i x_i \ge 0$

$$w_0 + w_1 \cdot 0 + w_2 \cdot 0 < 0 \implies w_0 < 0$$

 $w_0 + w_1 \cdot 0 + w_2 \cdot 1 \ge 0 \implies w_2 \ge -w_0$
 $w_0 + w_1 \cdot 1 + w_2 \cdot 0 \ge 0 \implies w_1 \ge -w_0$
 $w_0 + w_1 \cdot 1 + w_2 \cdot 1 \ge 0 \implies w_1 + w_2 \ge -w_0$

XOR

Perceptron Learning Rule

Algorithm 1 Perceptron Learning

```
w = [w0, w1, w2, ..., wn]
x = [1, x1, x2, ..., xn]
P \leftarrow input with labels 1;
N \leftarrow input with labels 0;
Initialize w randomly;
while !convergence do
   Pick random x \in P \cup N
   if x \in P and w^Tx < 0 then
       M = M + X
   if x \in \mathbb{N} and w^Tx \ge 0 then
      M = M - X
end
```

Target (t)

x1	x2	OR	
0	0	0	N
0	1	1	Р
1	0	1	Р
1	1	1	Р

If t=1 and computed output y = 0, then w(new) = w(old) + x

If t=0 and computed output y = 1, then w(new) = w(old) - x

If t == y, then w(new) = w(old)

Perceptron Learning Rule

Target (t)

The three rules above can be rewritten as a single expression.

Let the perceptron error:

$$e = t - y$$

x1	x2	OR	
0	0	0	N
0	1	1	Р
1	0	1	Р
1	1	1	Р

If
$$e=1$$
, then $w(new) = w(old) + x$

If
$$e=-1$$
, then $w(new) = w(old) - x$

If
$$e=0$$
, then $w(new) = w(old)$

If
$$t=1$$
 and computed output $y = 0$,
then $w(new) = w(old) + x$

If
$$t=0$$
 and computed output $y = 1$,
then $w(new) = w(old) - x$

If
$$t == y$$
, then $w(new) = w(old)$

Perceptron Learning Rule

$$y = f(y_{in}) = \begin{cases} 1 & \text{if } y_{in} > \theta \\ 0 & \text{if } -\theta \le y_{in} \le \theta \\ -1 & \text{if } y_{in} < -\theta \end{cases}$$

if
$$y \neq t$$
,

$$w(new) = w(old) + \eta t x$$

$$w(new) = w(old)$$

 η : Learning rate or step size

t: target

We can also use d to represent target or desired variable.

Perceptron Convergence Theorem

- For any finite set of linearly separable labelled examples, the Perceptron Learning Algorithm will halt after a finite number of iterations.
- In other words, after a finite number of iterations, the algorithm yields a vector w that classifies perfectly all the examples.

Perceptron Convergence Algorithm

TABLE 1.1 Summary of the Perceptron Convergence Algorithm

Variables and Parameters:

```
\mathbf{x}(n) = (m+1)-by-1 input vector

= [+1, x_1(n), x_2(n), ..., x_m(n)]^T

\mathbf{w}(n) = (m+1)-by-1 weight vector

= [b, w_1(n), w_2(n), ..., w_m(n)]^T

b = \text{bias}

y(n) = \text{actual response (quantized)}

d(n) = \text{desired response}

\eta = \text{learning-rate parameter, a positive constant less than unity}
```

- 1. Initialization. Set $\mathbf{w}(0) = \mathbf{0}$. Then perform the following computations for time-step $n = 1, 2, \dots$
- 2. Activation. At time-step n, activate the perceptron by applying continuous-valued input vector $\mathbf{x}(n)$ and desired response d(n).
- 3. Computation of Actual Response. Compute the actual response of the perceptron as

$$y(n) = \operatorname{sgn}[\mathbf{w}^{T}(n)\mathbf{x}(n)]$$

where $sgn(\cdot)$ is the signum function.

4. Adaptation of Weight Vector. Update the weight vector of the perceptron to obtain

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \eta [d(n) - y(n)] \mathbf{x}(n)$$

where

$$d(n) = \begin{cases} +1 & \text{if } \mathbf{x}(n) \text{ belongs to class } \mathcal{C}_1 \\ -1 & \text{if } \mathbf{x}(n) \text{ belongs to class } \mathcal{C}_2 \end{cases}$$

5. Continuation. Increment time step n by one and go back to step 2.