1. Fonction de densité de probabilité (p.47)

Théorème 1 La fonction de densité de probabilité de la variable x, notée $f_X(x)$, est définie par :

$$f_X(x) = \frac{\mathrm{d}}{\mathrm{d}x} [F_X(x)]$$

2. Espérance mathématique (p.66)

Théorème 2 Soit une variable aléatoire X. Si Y = H(X) est une fonction de X et donc une variable aléatoire, alors l'espérance mathématique de H(X) se définit comme suit :

$$E(H(X)) = \begin{cases} \sum_{i} H(x_i) p_X(x_i) & \text{si X est une variable discrète.} \\ \int_{-\infty}^{\infty} H(x) \cdot f_X(x) dx & \text{si X est une variable continue.} \end{cases}$$

2. Loi uniforme (p.132)

Théorème 3 Une variable aléatoire continue X est dite de loi uniforme dans l'intervalle $[\alpha, \beta]$ si sa fonction de densité est :

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \text{si } a \le x \le \beta \\ 0 & \text{sinon} \end{cases}$$

où α et β sont des constantes réelles telles que $\alpha < \beta$. En abrégé, on écrit $X \sim \mathrm{U}(\alpha,\beta)$.

Théorème 4 Dans le cas général décrit précédemment, la moyenne et la variance de la loi uniforme sont :

$$E(X) = \frac{\beta + \alpha}{2}$$
 et $V(X) = \frac{(\beta - \alpha)^2}{12}$

3. Loi géométrique (p.115)

Théorème 5 La variable aléatoire X, représentant le nombre d'épreuves nécessaires pour obtenir un premier succès dans une suite d'épreuves de Bernoulli indépendantes dont la probabilité du succès est p > 0 est dite de loi géométrique de paramètre p, et sa fonction de masse est donnée par :

$$p(x) = \begin{cases} (1-p)^{x-1}p & \text{si } x = 1, 2, \dots \\ 0 & \text{sinon} \end{cases}$$

En abrégé, on écrit $X \sim \text{Géométrique}(p)$.

Théorème 6 Soit X une variable aléatoire distribuée selon une loi géométrique de paramètre p > 0. Alors :

$$E(X) = \frac{1}{p}$$
 et $V(X) = \frac{1-p}{p^2}$

4. Densité jointe à plusieurs variables

Théorème 7 Lorsque la densité jointe de n variables aléatoires $X_1, X_2, ..., X_n$ est donnée et que l'on souhaite trouver la densité jointe de $Y_1, Y_2, ..., Y_n$ où :

$$Y_1 = g_1(X_1, X_2, ..., X_n), \quad Y_2 = g_2(X_1, X_2, ..., X_n), ..., \quad Y_n = g_n(X_1, X_2, ..., X_n)$$

On assumera que les fonctions g_i ont des dérivés partielles continues et que le déterminant du Jacobien $J(x_1,...,x_n) \neq 0$ sur tous les points $(x_1,...,x_n)$ où :

$$J(x_1, ..., x_n) = \begin{vmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} & \cdots & \frac{\partial g_1}{\partial x_n} \\ \frac{\partial g_2}{\partial x_1} & \frac{\partial g_2}{\partial x_2} & \cdots & \frac{\partial g_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_3}{\partial x_1} & \frac{\partial g_3}{\partial x_2} & \cdots & \frac{\partial g_3}{\partial x_n} \end{vmatrix}.$$

De plus, on supposera que les équations $y_1 = g_1(x_1, x_2, ..., x_n), y_2 = g_2(x_1, x_2, ..., x_n), ..., y_n = g_n(x_1, x_2, ..., x_n)$ ont une solution unique, disons $x_1 = h_1(y_1, ..., y_n), ..., x_n = h_n(y_1, ..., y_n)$. Sous ces hypothèses, la distribution jointe des variables aléatoires Y_i est donné par :

$$f_{Y_1,Y_2,...,Y_n}(y_1,...,y_n) = f_{X_1,X_2,...,X_n}(x_1,...,x_n)|J(x_1,...,x_n)|^{-1}$$

où $x_i = h_i(y_1, ..., y_n)$ pour i = 1, 2, ..., n.