[Question 1]

Statement	$P \Rightarrow Q$	$x > 2 \Rightarrow x^2 > 4$	If $x > 2$, then $x^2 > 4$
Converse	$Q \Rightarrow P$	$x^2 > 4 \Rightarrow x > 2$	If $x^2 > 4$, then $x > 2$
Inverse	$\neg P \Rightarrow \neg Q$	$x \le 2 \Rightarrow x^2 \le 4$	If $x \le 2$, then $x^2 \le 4$
Contrapositive	$\neg Q \Rightarrow \neg P$	$x \le 4 \Rightarrow x \le 2$	If $x \le 4$, then $x \le 2$
Negation	$\neg (P \Rightarrow Q)$	$\neg(x > 2 \Rightarrow x^2 > 4)$	It is not true that
		,	If $x > 2$, then $x^2 > 4$

1.1 Give the contrapositive of the statement.

1.2 Give the converse of the statement, and determine whether the converse is true or not

converse is true or not					
Converse	$Q \Rightarrow P$	$x^2 > 4 \Rightarrow x > 2$	If $x^2 > 4$, then $x > 2$		
Let $x = -5$					
Substitute $x = -5$					
LHS					
$\Rightarrow x^2 > 4$					
$\Rightarrow (-5)^2 > 4$					
\Rightarrow 25 > 4 which is true					

RHS

 $\Rightarrow x > 2$

 $\Rightarrow -5 > 2$ which is not true

Thus, the converse statement is not true.

1.3 What is the negation of the statement?

Negation	$\neg (P \Rightarrow Q)$	$\neg(x > 2 \Rightarrow x^2 > 4)$	It is not true that
			If $x > 2$, then $x^2 > 4$

[Question 2]

2.1 Prove by induction that $11^n - 8^n$ is a multiple of 3 for all $n \in \mathbb{N}$.

Clause

Let P(n) be the statement: 11^n-8^n is a multiple of 3 for all $n\in\mathbb{N}$

Basis Clause

Let n=1

P(1):

 $11^n - 8^n$

 $\Rightarrow 11^1 - 8^1$

 \Rightarrow 3 , which is a multiple of 3

Therefore, basis clause is true

Inductive Clause

Show that n = k

P(k) is where n = k

Assume k

 $\Rightarrow 11^k - 8^k$, which is a multiple of 3

Extremal Clause (Inductive Step)

If P(k) is true

then P(k+1) must also be true

Assume k+1

 $\Rightarrow 11^{k+1} - 8^{k+1}$ is a multiple of 3

 $\Rightarrow 11 \times 11^k - 8 \times 8^k$

 $\Rightarrow 11 \times 11^{k} - 11^{k} + 11^{k} - 8 \times 8^{k}$

 $\Rightarrow 11^k(11-1) + 8^k(11-8)$

Use **Inductive Clause** $11^k - 8^k$ is a multiple of 3

$$\Rightarrow 11^k(11-1) + 8^k(11-8)$$

$$\Rightarrow 11^k(10) + 8^k(3)$$

 \Rightarrow 3 × (3×11^k + 8^k × 3), which is a multiple of 3

2.2 Prove that the function given by

$$f(x) = \frac{x-3}{x+2}$$

is 1 - 1 on \mathbb{R}

f(x) is one-to-one (injective) if for all a, b in the domain of f(x), f(a) = f(b) then a = b.

OR

for all a, b in the domain of f(x), if $a \neq b$ then. $f(a) \neq f(b)$

Direct Proof

Let x_1 and x_2 be two arbitrary real numbers such that $x_1 \neq x_2$

Assume
$$f(x_1) = f(x_2)$$
:

$$\Rightarrow \frac{x_1 - 3}{x_1 + 2} = \frac{x_2 - 3}{x_2 + 2}$$

$$\Rightarrow (x_1 - 3)(x_2 + 2) = (x_2 - 3)(x_1 + 2)$$

LHS

$$\Rightarrow x_1 x_2 + 2x_1 - 3x_2 - 6$$

RHS

$$\Rightarrow x_1 x_2 + 2x_2 - 3x_1 - 6$$

$$\therefore LHS = RHS$$

$$\Rightarrow x_1x_2 + 2x_1 - 3x_2 - 6 = x_1x_2 + 2x_2 - 3x_1 - 6$$

$$\Rightarrow x_1 x_2 + 2x_1 - 3x_2 = x_1 x_2 + 2x_2 - 3x_1$$

$$\Rightarrow 2x_1 - 3x_2 = 2x_2 - 3x_1$$

$$\Rightarrow 2x_1 + 3x_1 = 2x_2 + 3x_2$$

$$\Rightarrow 5x_1 = 5x_2$$

$$\Rightarrow x_1 = x_2$$

However, this contradicts $x_1 \neq x_2$, proving that $f(x) = \frac{x-3}{x+2}$ is 1 - 1.

and find a formula for the inverse of f

$$f(x) = \frac{x-3}{x+2}$$

Let
$$y = \frac{x-3}{x+2}$$

Inverse

$$\Rightarrow x = \frac{y-3}{y+2}$$

$$\Rightarrow x(y+2) = y-3$$

$$\Rightarrow xy + 2x = y - 3$$

$$\Rightarrow xy - y = -2x - 3$$

$$\Rightarrow y(x-1) = -2x - 3$$

$$\Rightarrow y = \frac{-2x-3}{(x-1)}$$

$$\Rightarrow y = \frac{-2x-3}{(x-1)}$$

Thus,
$$f^{-1}(x) = \frac{-2x-3}{(x-1)}$$

2.3 Consider the functions f(x) = 2x + 1 and g(x) = x + 1. Indicate the domain of definition of each of the following functions: f; g; $f \circ g$; $g \circ f$.

f	f(x) = 2x + 1
	Domain $x \in \mathbb{R}$
g	g(x) = x + 1
	Domain $x \in \mathbb{R}$
$f \circ g$	f(x) = 2x + 1
	$\Rightarrow f(g(x)) = 2(x+1) + 1$
	$\Rightarrow f \circ g = 2x + 3$
	Domain $x \in \mathbb{R}$
$g \circ f$	g(x) = x + 1
	$\Rightarrow g(f(x)) = (2x + 1) + 1$
	$\Rightarrow g \circ f = 2x + 2$
	Domain $x \in \mathbb{R}$

[Question 3]

2.1 Let
$$S = \left\{ \frac{n}{n+1} : n = 1,2,3 \dots \right\}$$

Find the infimum and supremum of S.

$$S = \left\{ \frac{n}{n+1} : n = 1,2,3 \dots \right\}$$

Hence, $n \in \mathbb{Z}^+$,

And in the sequence, for any $\frac{n}{n+1}$ is always a positive fraction between 0 and 1.

supremum of S (Least Upper Bound):

$$\Rightarrow S = \left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots\right\}$$

for any $\frac{n}{n+1}$, approaches but never reaches 1 claim is that the supremum of S is 1

infimum of S (Greatest Lower Bound):

$$\frac{n}{n+1} > 0$$
 for all n

for any $\frac{n}{n+1}$, approaches but never reaches 1 Hence $infimum\ of\ S$ cannot be greater than 0 claim that the supremum of S is 0

[Question 4]

(4.1) Show that the sequence $a_n = \frac{n}{n+1}$ converges to 1.

Definition: Convergent Sequences

 $\forall \epsilon > 0$, $\exists \ N \in \mathbb{N}$, such that n > N implies $|a_n - a| < \epsilon$

	· · · · · · · · · · · · · · · · · · ·
$\forall \epsilon > 0$	"for all positive numbers"
7 N - N	"there exists some N in the set of
$\exists N \in \mathbb{N}$	natural numbers,"
such that $n>N$ implies $ a_n-a <\epsilon$	if n is greater than N , then the absolute difference between a_n and the limit $a(\text{denoted as } a_n-a)$ is
	less than ϵ

Given the sequence $a_n = \frac{n}{n+1}$,

The limit of a_n as n approaches infinity is:

$$\lim_{n \to \infty} \frac{n}{n+1}$$

$$\Rightarrow \lim_{n \to \infty} \frac{n}{n}$$

$$\Rightarrow 1$$

For every $\epsilon>0$

There exists is a positive integer N such that n>N implies $|a_n-1|<\epsilon$

For
$$n > N$$
:
 $|a_n - 1|$

$$\Rightarrow \left| \frac{n}{n+1} - 1 \right|$$

$$\Rightarrow \left| \frac{n}{n+1} - \frac{n+1}{n+1} \right|$$

$$\Rightarrow \frac{1}{n+1}$$

And if
$$|a_n-1|<\epsilon$$
,
$$|a_n-1|<\epsilon$$

$$\Rightarrow \frac{1}{n+1}<\epsilon$$

$$\Rightarrow n+1>\frac{1}{\epsilon}$$

$$\Rightarrow n>\frac{1}{\epsilon}-1$$

To verify $|a_n-1|<\epsilon$ for n>N We round up $\frac{1}{\epsilon}$ to the nearest integer and add 1 to ensure that N is at least as large as $\frac{1}{\epsilon}$ Thus satisfying n>N

Let
$$N=2$$
:
verify for $n>N$
 $\Rightarrow n>2$
 $\Rightarrow n+1>3$
Since $n>2$, we have $n+1>3$,
which means $\frac{1}{n+1}<\frac{1}{3}$
So, $|a_n-1|<\frac{1}{3}$ for $n>2$

infinity.

Thus the sequence $a_n = \frac{n}{n+1}$, converges to 1 as n approaches

Which holds true for every $\epsilon > 0$ including $\epsilon = \frac{1}{3}$

(4.2) Suppose that x_n is a sequence of real numbers that converges to 1 as $n \to \infty$. Prove that the \lim_{1+x_n} converges to 2 as $n \to \infty$.

Definition: Limits

 $\forall \epsilon > 0$, $\exists \ N \in \mathbb{N}$, such that n > N implies $|x_n - a| < \epsilon$

Let x_n be a sequence of real numbers that converges to 1 as $n \to \infty$.

Let L be $\lim_{n\to\infty} (x_n)$

Thus

$$\Rightarrow L = \lim_{n \to \infty} x_n$$

$$\Rightarrow L = 1$$

Let M be $\lim_{n \to \infty} (1)$, which is the limit of the constant sequence 1. Thus

$$\lim_{n\to\infty} (1) = 1$$

Since $\lim_{n\to\infty} (x_n) = 1$ and $\lim_{n\to\infty} (1) = 1$, we have:

$$\Rightarrow \lim_{n\to\infty} x_n + \lim_{n\to\infty} (1)$$

$$\Rightarrow L + M$$

$$\Rightarrow$$
 1 + 1 = 2

Therefore \lim_{1+x_n} converges to 2 as $n \to \infty$.

(4.3) Find two convergent subsequences of the sequence $(-1)^n$ that have different limits.

Definition: Convergent Sequences $\forall \epsilon>0$, $\exists~N\in\mathbb{N}$, such that n>N implies $|a_n-a|<\epsilon$

- [1] Let a_{2n} be the sequence of even integers, where: $\{n \in Z \mid n = 2k \text{ for some } k \in Z\}$ Thus $\Rightarrow a_{2n} = 1$ Which is the sequence that converges to 1
- [2] Given the sequence $a_{2n}=1$, The limit of a_{2n} as n approaches infinity is: $\lim_{n\to\infty}(1)=1$
- [3] For every $\epsilon>0$ There exists is a positive integer N such that n>N implies $|a_{2n}-1|<\epsilon$ For n>N, $\Rightarrow |1-1|=0$ Thus, $\mathbf{0}<\epsilon$ The sequence a_{2n} converges to 1 as n approaches infinity,
- [1] Let a_{2n+1} be the sequence of odd integers, where: $\{n \in Z \mid n = 2k+1 \ for \ some \ k \in Z\}$ Thus $\Rightarrow a_{2n+1} = -1$ Which is the sequence that converges to -1

where $\lim_{n\to\infty} (a_{2n}) = 1$

where $\lim_{n\to\infty} (a_{2n+1}) = -1$

- [2] Given the sequence $a_{2n+1}=-1$, The limit of a_{2n+1} as n approaches infinity is: $\lim_{n\to\infty}(-1)=-1$
- [3] For every $\epsilon>0$ There exists is a positive integer N such that n>N implies $|a_{2n+1}-(-1)|<\epsilon$ For n>N, $\Rightarrow |-1--1|=0$ Thus, $0<\epsilon$ The sequence a_{2n+1} converges to -1 as n approaches infinity,

(4.4) Use the Monotone Convergence Theorem to prove that $x_n = \frac{1}{\sqrt{n}}$ converges to 0.

Definition: Monotone Convergence Theorem (MCT): If (x_n) is non-decreasing and bounded above, then there exists a real number L such that: $\lim_{n\to\infty} x_n = L$ or If (x_n) is non-increasing and bounded below, then there exists a real number L such that: $\lim_{n\to\infty} x_n = L$

Bounded Below:

A sequence (x_n) or a set of real numbers is said to be bounded below

if there exists a real number L such that $x_n \ge L$ for all n in the sequence or $x \ge L$ for all x in the set.

There is a lower bound L such that all elements of the sequence or set are greater than or equal to L

Bounded Above:

A sequence (x_n) or a set of real numbers is said to be bounded above

if there exists a real number U such that $x_n \leq U$ for all n in the sequence or $x \leq U$ for all x in the set.

There is a lower bound ${\it U}$ such that all elements of the sequence or set are less than or equal to ${\it U}$

[1] For all n, we need to prove that $x_{n+1} \le x_n$

Let x_n be a sequence of real numbers that converges to 0 as $n \to \infty$.

Given,
$$x_n = \frac{1}{\sqrt{n}}$$

Then, $x_{n+1} = \frac{1}{\sqrt{n+1}}$
Thus $\Rightarrow x_{n+1} \leq x_n$
 $\Rightarrow \frac{1}{\sqrt{n+1}} \leq \frac{1}{\sqrt{n}}$

Therefore, x_n is decreasing sequence

[2] We need to prove that:

For all n, there exists a real number L such that $x_n \ge L$ or

For all x, there exists a real number L such that $x \ge L$

We have that $\sqrt{n} \in \mathbb{Z}^+$,

And that $\frac{1}{\sqrt{n}} < 1$

Thus x_n is bounded below by 0.

Because:

- [1] x_n is decreasing sequence
- [2] x_n is bounded below by 0

By the definition of the Monotone Convergence Theorem (MCT), \boldsymbol{x}_n converges

Thus, $\lim_{n\to\infty} (x_n) = 0$