Федеральное агентство связи

Сибирский Государственный Университет Телекоммуникаций и Информатики

Кафедра физики

Расчетно-графическая работа 3

По теме: Колебания, волны, волновая оптика

Выполнил студент: Иванов И.И

Группа: **AA-71 Вариант: 8**

Преподаватель: Грищенко И.В.

Отметка о защите: «Отмично» 05.10.2017

1. Координата колеблющейся точки массой 0,1 кг изменяется по закону: $X=2\cos(4\pi t + \pi/4)$ см. Найти скорость точки и силу, действующую на нее через 0,5 с после начала колебаний. Изобразить на рисунке зависимость F(t).

Дано:

$$m = 0.1\kappa c; t = 0.5c; \quad x = 2\cos(4\pi t + \pi/4)cM.$$

Найти:

$$v-?$$
 F-?

Построить: F(t)

Решение:

По определению скорости $\stackrel{\rightarrow}{v} = \frac{d\stackrel{\rightarrow}{x}}{dt}$; следовательно $v(t) = (2\cos(4\pi t + \pi/4))_t^1 = .$

$$= -8\pi \sin(4\pi t + \pi/4);$$

$$\upsilon(0,5) = -8\pi \sin(2\pi + \pi/4) = -8\pi \sin\frac{\pi}{4} = -17,76 \cdot 10^{-2} \,\text{M/c}$$

По второму закону Ньютона

$$\vec{F} = m\vec{a} = m\frac{d\vec{v}}{dt}$$
, (т.к. ускорение, по определению $\vec{a} = \frac{d\vec{v}}{dt}$); \Rightarrow

$$F(t) = ma = (-8\pi \sin(4\pi t + \pi/4))^{1} = 0.32m\pi^{2}\cos(4\pi t + \pi/4)H.$$

$$F(0,5) = -0.32 \cdot 0.1 \text{kg} \cdot 9.86 \cdot \cos \frac{\pi}{4} = -0.2231 H$$
 $1H = \frac{\text{kg} \cdot M}{c^2}$);

Верно. Задача зачтена.

518. Максимальная энергия электрического поля колебательного контура равна 0,02 Дж. При этом разность потенциалов на обкладках конденсатора достигает 400. В. Определить индуктивность катушки колебательного контура, если период собственных колебаний его равен $6 \sqcup 10^{-5}$ с.

Дано:

$$W_{_{21,no.19}} = 0,02 Дж$$

$$U = 400B$$

$$T = 6 \cdot 10^{-5} c$$

Найти:

Решение:

Энергия электрического поля между обкладками конденсатора:

$$W = \frac{CU^2m}{2}$$
 (1)

Для того , чтобы определить индуктивность катушки колебательного контура воспользуемся формулой Томсона:

$$T = 2\Pi\sqrt{LC}$$

Из которой выведем С:

$$C = \frac{T^2}{4\Pi^2 L} \tag{2}$$

Подставив формулу (2) в (1) получим:

$$W_{\text{\tiny 'ЭЛ. NO JR}} = \frac{T^2 U m^2}{8 \Pi^2 L},$$

Откуда выведем L:

$$L = \frac{T^2 U m^2}{8\Pi^2 \cdot W}$$
_{3Л. ПОЛЯ}

Подставив в последнюю формулу наши данные, получим:

$$L = \frac{(6 \cdot 10^{-5}) \cdot 400^{2}}{8 \cdot 3.14^{2} \cdot 0.02} = 36.5 \cdot 10^{-5} \, \Gamma_{H}$$

Otbet: $L = 36.5 \cdot 10^{-5} \, \Gamma H$

Верно. Задача зачтена.

2. Точка участвует, одновременно в двух взаимно перпендикулярных

 $X = 2cos \omega t$ и $Y = \sin \frac{\omega t}{2}$ колебаниях выражаемых уравнениями: Траектории точки и построить ее на чертеже.

Дано:

$$y = \sin \frac{wt}{2} \; ; \quad x = 2\cos wt$$

Решение:

а) Пусть
$$w/2 = \varphi$$
, тогда
$$\begin{cases} x = 2\cos 2\varphi t, \\ y = \sin \varphi t; \end{cases} \Rightarrow$$

по формуле из тригонометрии $\sin \varphi = \sqrt{\frac{1-\cos 2\varphi}{2}} \Rightarrow \begin{cases} x = 2\cos 2\varphi t \\ y = \sqrt{\frac{1-\cos 2\varphi}{2}} \Rightarrow \end{cases}$

$$\begin{cases} x = 2\cos 2\varphi t, \\ y^2 = \frac{1}{2} - \frac{\cos 2\varphi t}{2}; \Rightarrow \end{cases}$$

из первого уравнения следует, что

$$\frac{\cos 2\phi t}{2} = \frac{x}{4} \Rightarrow y^2 = \frac{1}{2} - \frac{x}{4} \Rightarrow y^2 = \frac{2-4}{4} \Rightarrow 2-x = 4y^2 \Rightarrow$$

Уравнение траектории: $x = -4y^2 + 2$; отсюда следует, что траектория движения точки является парабола.

б) Построим график траектории движения (фигура Лиссажу)

1)
$$t = 0, y = 0, x = 2;$$

2)
$$t = \frac{\pi}{4\varphi}$$
; $y = \sin\left(\varphi \cdot \frac{\pi}{4\varphi}\right) = \frac{\sqrt{2}}{2}$; $x = 2\cos\left(2\varphi \cdot \frac{\pi}{4\varphi}\right) = 0$;

3)
$$t = \frac{\pi}{2\varphi} = \frac{2\pi}{4\varphi}$$
; $y = \sin\left(\varphi \cdot \frac{\pi}{2\varphi}\right) = 1$; $x = 2\cos\left(2\varphi \cdot \frac{\pi}{2\varphi}\right) = -2$

4)
$$t = \frac{3\pi}{4\varphi} = \frac{\pi}{\varphi}$$
; $y = \sin\left(\varphi \cdot \frac{3\pi}{4\varphi}\right) = \frac{\sqrt{2}}{2}$; $x = 2\cos\left(2\varphi \cdot \frac{3\pi}{4\varphi}\right) = 0$;

5)
$$t = \frac{4\pi}{4\varphi} = \frac{\pi}{\varphi}$$
; $y = \sin\left(\varphi \cdot \frac{\pi}{\varphi}\right) = 0$; $x = 2\cos\left(2\varphi \cdot \frac{\pi}{\varphi}\right) = 2$;

6)
$$t = \frac{5\pi}{4\varphi}$$
; $y = \sin\left(\varphi \cdot \frac{5\pi}{4\varphi}\right) = -\frac{\sqrt{2}}{2}$; $x = 2\cos\left(2\varphi \cdot \frac{5\pi}{4\varphi}\right) = 0$

7)
$$t = \frac{6\pi}{4\varphi} = \frac{3\pi}{2\varphi}$$
; $y = \sin\left(\varphi \cdot \frac{3\pi}{2\varphi}\right) = -1$; $x = 2\cos\left(2\varphi \cdot \frac{3\pi}{2\varphi}\right) = -2$

Фигура Лиссажу

X	у	t
2	0	0
0	$\frac{\sqrt{2}}{2}$	$\frac{\pi}{4\varphi} = \frac{\pi}{2\omega}$

-2	1	$\frac{2\pi}{4\varphi} = \frac{\pi}{\omega}$
0	$\frac{\sqrt{2}}{2}$	$\frac{3\pi}{4\varphi} = \frac{3\pi}{2\omega}$
2	0	$\frac{4\pi}{4\varphi} = \frac{2\pi}{\omega}$
0	$-\frac{\sqrt{2}}{2}$	$\frac{5\pi}{\varphi} = \frac{5\pi}{2\omega}$
-2	-1	$\frac{6\pi}{4\varphi} = \frac{3\pi}{\omega}$

Верно. Задача зачтена.

3. Плосковыпуклая стеклянная линза с f=1 м лежит выпуклой стороной на стеклянной пластинке. Радиус пятого темного кольца Ньютона в отраженном свете $r_5=1,1$ мм. Определить длину световой волны λ .

Дано:

$$n_{cmeкna} = 1,6$$
 $r_5 = 1,1 \cdot 10^{-3} M;$
 $f = 1 M$

Найти:

 $\lambda - ?$

Решение:

Для тёмных колец Ньютона

$$r_k = \sqrt{kR\lambda}; \Rightarrow \lambda = \frac{r_k^2}{kR};$$
 по формуле тонкой линзы $D = \frac{1}{f} = (n-1)\cdot\left(\frac{1}{R_1} + \frac{1}{R_2}\right),$

Для плосковыпуклой линзы $(R_1\rangle 0, R_2=\infty)$ получим $\frac{1}{f}=(n-1)\frac{1}{R_1} \Rightarrow R=f=(n-1)\Rightarrow$

$$\lambda = \frac{r_5^2}{5 \cdot f(n-1)} = \frac{\left(1, 1 \cdot 10^{-3} \,\mathrm{M}\right)^2}{5 \cdot 1 \,\mathrm{M} \cdot 0.6} = 4,033 \cdot 10_{\mathrm{M}}^{-7}$$

Otbet: $\lambda = 4{,}033 \cdot 10_{_{M}}^{-7}$

Верно. Задача зачтена.

4. Пучок света, идущий в стеклянном сосуде с глицерином, отражается от дна сосуда. При каком угле є падения отраженный пучок света максимально поляризован?

Решение:

По закону Брюстера отражённый свет полностью поляризован в плоскости падения если

$$tg \varepsilon = n_{21}, \varepsilon \partial e \varepsilon + r = \pi/2, \varepsilon$$
 – угол падения,

r – угол преломления, т.е. отражённый и преломлённый лучи взаимно перпендикулярны.

$$n_{21} = \frac{n_2}{n_1}, n_1 = 1,4744$$
 (для $\lambda = 589$ нм) пок. преломления глицерина

 $n_2 = 1,5534$ (для $\lambda = 589$ нм) пок. преломления стекла;

T.K.
$$tg \varepsilon = \frac{n}{n_1}$$
, to $\varepsilon = arctg\left(\frac{n_2}{n_1}\right) = arctg\left(\frac{1,5534}{1,4744}\right) = arctg\left(1,05358\right) = 46,49^{\circ}$

Otbet: $\varepsilon = 46,49^{\circ}$

Верно. Задача зачтена.