```
In [1]: import pandas as pd
   import matplotlib.pyplot as plt
   import numpy as np
   from sklearn.model_selection import train_test_split
   from sklearn.tree import DecisionTreeClassifier
   from sklearn import tree
   from sklearn.metrics import classification_report
   from sklearn import preprocessing
```

```
In [2]: data = pd.read_csv('Fraud_check.csv')
```

In [3]: data.head()

Out[3]:

	Undergrad	Marital.Status	Taxable.Income	City.Population	Work.Experience	Urban
0	NO	Single	68833	50047	10	YES
1	YES	Divorced	33700	134075	18	YES
2	NO	Married	36925	160205	30	YES
3	YES	Single	50190	193264	15	YES
4	NO	Married	81002	27533	28	NO

In [4]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 600 entries, 0 to 599
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Undergrad	600 non-null	object
1	Marital.Status	600 non-null	object
2	Taxable.Income	600 non-null	int64
3	City.Population	600 non-null	int64
4	Work.Experience	600 non-null	int64
5	Urban	600 non-null	object

dtypes: int64(3), object(3)

memory usage: 28.2+ KB

In [5]: data.describe()

Out[5]:

	Taxable.Income	City.Population	Work.Experience
count	600.000000	600.000000	600.000000
mean	55208.375000	108747.368333	15.558333
std	26204.827597	49850.075134	8.842147
min	10003.000000	25779.000000	0.000000
25%	32871.500000	66966.750000	8.000000
50%	55074.500000	106493.500000	15.000000
75%	78611.750000	150114.250000	24.000000
max	99619.000000	199778.000000	30.000000

In [7]: data.corr()

Out[7]:

	Taxable.Income	City.Population	Work.Experience
Taxable.Income	1.000000	-0.064387	-0.001818
City.Population	-0.064387	1.000000	0.013135
Work.Experience	-0.001818	0.013135	1.000000

Out[8]:

	under_grad	marital_status	taxable_income	city_population	work_experience	urban
0	NO	Single	68833	50047	10	YES
1	YES	Divorced	33700	134075	18	YES
2	NO	Married	36925	160205	30	YES
3	YES	Single	50190	193264	15	YES
4	NO	Married	81002	27533	28	NO

```
In [9]: # checking count of categories for categorical columns colums
import seaborn as sns

sns.countplot(data['under_grad'])
plt.show()

sns.countplot(data['marital_status'])
plt.show()
```

```
sns.countplot(data['urban'])
plt.show()
```

/opt/anaconda3/lib/python3.9/site-packages/seaborn/_decorators.py: 36: FutureWarning: Pass the following variable as a keyword arg: x . From version 0.12, the only valid positional argument will be `d ata`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

/opt/anaconda3/lib/python3.9/site-packages/seaborn/_decorators.py: 36: FutureWarning: Pass the following variable as a keyword arg: x . From version 0.12, the only valid positional argument will be `d ata`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

/opt/anaconda3/lib/python3.9/site-packages/seaborn/_decorators.py: 36: FutureWarning: Pass the following variable as a keyword arg: x . From version 0.12, the only valid positional argument will be `d ata`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(


```
In [10]: # Checking for outliers in numerical data
sns.boxplot(data['taxable_income'])
plt.show()

sns.boxplot(data['city_population'])
plt.show()

sns.boxplot(data['work_experience'])
plt.show()
```

/opt/anaconda3/lib/python3.9/site-packages/seaborn/_decorators.py: 36: FutureWarning: Pass the following variable as a keyword arg: x . From version 0.12, the only valid positional argument will be `d ata`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

/opt/anaconda3/lib/python3.9/site-packages/seaborn/_decorators.py:
36: FutureWarning: Pass the following variable as a keyword arg: x

. From version 0.12, the only valid positional argument will be `d
ata`, and passing other arguments without an explicit keyword will
result in an error or misinterpretation.
 warnings.warn(

/opt/anaconda3/lib/python3.9/site-packages/seaborn/_decorators.py: 36: FutureWarning: Pass the following variable as a keyword arg: x . From version 0.12, the only valid positional argument will be `d ata`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(


```
In [11]: # Correlation analysis for data
    corr = data.corr()
    #Plot figsize
    fig, ax = plt.subplots(figsize=(10, 6))
    #Generate Heat Map, allow annotations and place floats in map
    sns.heatmap(corr, cmap='magma', annot=True, fmt=".2f")
    #Apply xticks
    plt.xticks(range(len(corr.columns)), corr.columns);
    #Apply yticks
    plt.yticks(range(len(corr.columns)), corr.columns)
    #show plot
    plt.show()
```


Out[12]:

	under_grad	marital_status	taxable_income	city_population	work_experience	urban
0	NO	Single	68833	50047	10	YES
1	YES	Divorced	33700	134075	18	YES
2	NO	Married	36925	160205	30	YES
3	YES	Single	50190	193264	15	YES
4	NO	Married	81002	27533	28	NO
595	YES	Divorced	76340	39492	7	YES
596	YES	Divorced	69967	55369	2	YES
597	NO	Divorced	47334	154058	0	YES
598	YES	Married	98592	180083	17	NO
599	NO	Divorced	96519	158137	16	NO

600 rows × 7 columns

In [13]: sns.countplot(data['taxable_category'])

/opt/anaconda3/lib/python3.9/site-packages/seaborn/_decorators.py: 36: FutureWarning: Pass the following variable as a keyword arg: x . From version 0.12, the only valid positional argument will be `d ata`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[13]: <AxesSubplot:xlabel='taxable_category', ylabel='count'>

In [14]: data['taxable_category'].value_counts()

Out[14]: Good 476 Risky 124

Name: taxable_category, dtype: int64

In [15]: #encoding categorical data

label_encoder = preprocessing.LabelEncoder()

data['under_grad'] = label_encoder.fit_transform(data['under_grad']
data['marital_status'] = label_encoder.fit_transform(data['marital_
data['urban'] = label_encoder.fit_transform(data['urban'])
data['taxable_category'] = label_encoder.fit_transform(data['taxabl
data.sample(10)

Out[15]:

	under_grad	marital_status	taxable_income	city_population	work_experience	urban
480	0	0	85972	72252	26	1
363	1	2	21696	52584	7	1
462	0	0	16690	149327	17	0
190	0	2	73620	90459	19	0
26	1	0	55299	169128	15	0
389	1	2	64225	183187	5	1
27	1	2	87778	28542	12	1
56	0	1	34703	69832	25	1
28	1	2	10379	128766	5	1
290	1	1	48169	193003	30	1

```
In [16]: # dropping column taxable_income
data1 = data.drop('taxable_income', axis = 1)
data1
```

Out[16]:

	under_grad	marital_status	city_population	work_experience	urban	taxable_category
0	0	2	50047	10	1	0
1	1	0	134075	18	1	0
2	0	1	160205	30	1	0
3	1	2	193264	15	1	0
4	0	1	27533	28	0	0
595	1	0	39492	7	1	0
596	1	0	55369	2	1	0
597	0	0	154058	0	1	0
598	1	1	180083	17	0	0
599	0	0	158137	16	0	0

600 rows × 6 columns

```
In [17]: # Correlation analysis for data11
    corr = data1.corr()
    #Plot figsize
    fig, ax = plt.subplots(figsize=(10, 6))
    #Generate Heat Map, allow annotations and place floats in map
    sns.heatmap(corr, cmap='magma', annot=True, fmt=".2f")
    #Apply xticks
    plt.xticks(range(len(corr.columns)), corr.columns);
    #Apply yticks
    plt.yticks(range(len(corr.columns)), corr.columns)
    #show plot
    plt.show()
```



```
In [18]: # Dividing data into independent variables and dependent variable
X = data1.drop('taxable_category', axis = 1)
y = data1['taxable_category']
```

In [19]: X

Out[19]:

	under_grad	marital_status	city_population	work_experience	urban
0	0	2	50047	10	1
1	1	0	134075	18	1
2	0	1	160205	30	1
3	1	2	193264	15	1
4	0	1	27533	28	0
•••					
595	1	0	39492	7	1
596	1	0	55369	2	1
597	0	0	154058	0	1
598	1	1	180083	17	0
599	0	0	158137	16	0

 $600 \text{ rows} \times 5 \text{ columns}$

In [21]: x_train, x_test, y_train, y_test = train_test_split(X, y, test_size

DT fraud check - Jupyter Notebook 04/01/23, 5:45 PM

In [22]: x_train

Out[22]:

	under_grad	marital_status	city_population	work_experience	urban
509	0	1	65531	27	1
149	0	2	49505	25	0
124	1	0	139324	13	0
428	1	1	128266	24	1
465	0	0	116282	21	0
71	0	2	105680	22	0
106	1	2	58535	20	1
270	0	1	130680	5	0
435	0	0	111774	4	1
102	1	0	91488	23	0

 $402 \text{ rows} \times 5 \text{ columns}$

In [23]:

x_test

Out[23]:

	under_grad	marital_status	city_population	work_experience	urban
110	0	2	32450	19	1
419	0	1	138074	20	0
565	0	0	31064	28	0
77	1	1	118344	26	0
181	0	0	36116	20	0
•••					
231	1	2	153147	2	0
403	0	0	130912	27	1
278	0	1	114823	11	0
472	0	1	151963	11	1
350	0	1	89949	25	0

198 rows × 5 columns

```
In [24]: y_train
Out[24]: 509
                 1
         149
                 0
         124
                 0
         428
                 1
         465
                 1
         71
                 0
         106
                 1
         270
                 0
         435
                 0
         102
         Name: taxable_category, Length: 402, dtype: int64
In [25]: y_test
Out[25]: 110
                 1
         419
                 0
         565
                 0
         77
                 0
         181
                 1
         231
                 0
         403
         278
                 1
         472
                 0
         350
         Name: taxable_category, Length: 198, dtype: int64
In [26]: model_c5 = DecisionTreeClassifier(criterion = 'entropy', max_depth=
         model_c5.fit(x_train, y_train)
Out [26]:
                            DecisionTreeClassifier
          DecisionTreeClassifier(criterion='entropy', max_depth=3)
```

```
In [27]: # Plotting Decision tree
    tree.plot_tree(model_c5);
```



```
In [30]: # Predicting Data
preds = model_c5.predict(x_test)
pd.Series(preds).value_counts()
```

 In [31]: preds

```
0, 0,
         0, 0,
         0, 0,
         0, 0,
         0, 0,
         0, 0,
         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
     0, 0,
         0, 0,
         0, 0])
In [32]: # Creating cross tables for checking model
     pd.crosstab(y_test, preds)
Out [32]:
          col 0
             0 1
     taxable category
            156 1
             41 0
In [33]: # Checking accuracy of model
     model_c5.score(x_test, y_test)
Out[33]: 0.7878787878787878
In [34]: model_CART = DecisionTreeClassifier(criterion = 'gini', max_depth=
     model_CART.fit(x_train, y_train)
Out [34]:
         DecisionTreeClassifier
     DecisionTreeClassifier(max_depth=3)
```

In [35]: # Plotting Decision tree tree.plot_tree(model_CART);


```
In [37]: # Predicting Data
preds = model_CART.predict(x_test)
pd.Series(preds).value_counts()
```

 In [38]: preds

```
0, 0,
      0, 0,
      0, 0,
      0, 0,
      0, 0,
      0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
   0, 0,
      0, 0,
      0, 0])
In [39]: # Creating cross tables for checking model
   pd.crosstab(y_test, preds)
Out [39]:
       col 0
          0 1
    taxable category
        o 156 1
          41 0
In [40]: # Checking accuracy of model
   model_CART.score(x_test, y_test)
Out [40]: 0.78787878787878
In [ ]:
```