MICCAI 2018 **U-Net**: Convolutional Networks for Biomedical Image Segmentation

2022.09.09

논문 리뷰

배성훈

Research Background:

- Classification은 AlexNet 같은 기존의 Network로 이미지 내 객체 분류를 목적
- 하지만, 이미지 내 여러 세포가 있는 <u>Biomedical image</u>는 <u>Localization이 포함된 픽셀별로 class의 분류가 필요</u>
- 이를 해결하기 위해, Fully Convolutional Network 기반 encoder-decoder 구조의 <u>U-Net을 제안</u>

- Research Background:
 - 픽셀별 class 분류를 기존에는 Patch 기반 Sliding Window 방식으로 해결하고자 함 -> Richer Dataset 장점
 - 하지만, Patch의 <u>크기가 크면</u> localization accuracy가 떨어지고, <u>크기가 작으면</u> little context만 포착하는 단점

- **Method**: U-Net
 - 속도 개선: Non Overlapping 방식 사용
 - Use of Context와 Localization 간의 trade-off 해결 -> U-Net 구조 장점
 - *context: 서로 이웃한 픽셀간의 관계, 일부로 전반적인 이미지 context 파악

- **Method**: U-Net
 - 대칭, Encoder-Decoder 구조

• **Method**: U-Net

• **Method**: U-Net

- **Method**: U-Net
 - FCN 의 Up-sampling과 Skip Architecture 사용

- **Method**: Data Augmentation => <u>적은 데이터셋으로도 학습 가능</u>
 - Random color/brightness change
 - Random horizontal flip
 - Random crop/scaling
 - etc...

- **Method**: Mirror Extrapolate
 - 일반적으로, 경계 부분 예측 시 Padding을 활용
 - 저자는 경계에 위치한 이미지를 복사해 좌우 반전을 한 후 이미지 주변에 붙여 Input으로 사용
 - 보통 Biomedical Image의 세포들은 대칭 구도인 경우가 많음

- Method: Weight Loss
 - 각 픽셀이 경계와 얼마나 가까운지에 따른 Weight Map
 - 경계에 가까운 픽셀의 Loss를 weight map에 비례하게 증가 -> 경계 잘 학습

• Experiment:

- ISBI cell tracking challenge에서 기존의 연구보다 상당히 좋은 성과를 보임
- Dataset: PhC-U373, DIC-HeLa
- 측정 지표: loU

Segmentation results (IOU) on the ISBI cell tracking challenge 2015

Experiment:

- U-Net이 EM segmentation challenge에서 10개의 모델 중 좋은 성능을 달성
- 측정 기준: Warping error, Rand error, Pixel error

Ranking on the EM segmentation challenge

Rank	Group name	Warping Error	Rand Error	Pixel Error
	** human values **	0.000005	0.0021	0.0010
1.	u-net	0.000353	0.0382	0.0611
2.	DIVE-SCI	0.000355	0.0305	0.0584
3.	IDSIA [1]	0.000420	0.0504	0.0613
4.	DIVE	0.000430	0.0545	0.0582
:				
10.	IDSIA-SCI	0.000653	0.0189	0.1027

한줄평:

- ✓ U-Net은 다양한 Biomedical image segmentation에서 좋은 성능을 보여줬고, Context와 Localization의 Trade-off를 해결한 의미 있는 연구라고 생각한다.
- ✓ U-Net의 구조 자체가 가지는 장점들이 워낙 굵직하기 때문에 다른 task에 활용하면 충분히 좋은 연구가 될 것 같다.