

OptiMOS® - T Power-Transistor

Features

- N-channel Logic Level Enhancement mode
- Automotive AEC Q101 qualified
- MSL1 up to 260°C peak reflow
- 175°C operating temperature
- Green package (lead free)
- Ultra low Rds(on)
- 100% Avalanche tested

Product Summary

V_{DS}	40	V
$R_{\mathrm{DS(on),max}}$	2.7	mΩ
I _D	160	Α

PG-TO263-7-3

Туре	Package	Ordering Code	Marking	
IPB160N04S2L-03	PG-TO263-7-3	SP0002-18153	P2N04L03	

Maximum ratings, at T_j =25 °C, unless otherwise specified

Parameter	Symbol	Conditions	Value	Unit
Continuous drain current	I _D	T _C =25 °C	160	Α
		T _C =100 °C ²⁾	160	
Pulsed drain current ²⁾	I _{D,pulse}	T _C =25 °C	640	
Avalanche energy, single pulse	E _{AS}	$I_{\rm D}$ =80 A, $R_{\rm GS}$ =25 Ω	810	mJ
	V_{GS}		±20	V
Power dissipation	P _{tot}	T _C =25 °C	300	W
Operating and storage temperature	$T_{\rm j},T_{\rm stg}$		-55 175	°C
IEC climatic category; DIN IEC 68-1			55/175/56	

Parameter	Symbol	Conditions	Values		Unit	
			min.	typ.	max.	
Thermal characteristics ²⁾						
Thermal resistance, junction - case	R_{thJC}		-	-	0.5	K/W
SMD version, device on PCB	R_{thJA}	minimal footprint	-	-	62	
		6 cm ² cooling area ³⁾	-	-	40	

Electrical characteristics, at T_j =25 °C, unless otherwise specified

Static characteristics

Drain-source breakdown voltage	V _{(BR)DSS}	V _{GS} =0 V, I _D =1 mA	40	1	-	V
Gate threshold voltage	$V_{\rm GS(th)}$	V _{DS} =V _{GS} , I _D =250 μA	1.2	1.6	2	
Zero gate voltage drain current	I _{DSS}	V _{DS} =40 V, V _{GS} =0 V, T _j =25 °C	-	0.1	1	μA
		$V_{\rm DS}$ =40 V, $V_{\rm GS}$ =0 V, $T_{\rm j}$ =125 °C ²⁾	-	10	100	
Gate-source leakage current	I _{GSS}	V _{GS} =20 V, V _{DS} =0 V	-	1	100	nA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =4.5 V, I _D =80 A, SMD version	ı	2.8	3.7	mΩ
Drain-source on-state resistance	R _{DS(on)}	$V_{\rm GS}$ =10 V, $I_{\rm D}$ =80 A, SMD version	-	2.0	2.7	

Parameter	Symbol Conditions	Values			Unit	
			min.	typ.	max.	
Dynamic characteristics ²⁾						
Input capacitance	Ciss		-	6000	-	pF
Output capacitance	C oss	V _{GS} =0 V, V _{DS} =15 V, f=1 MHz	-	2200	-	
Reverse transfer capacitance	C _{rss}		1	700	-	
Turn-on delay time	$t_{d(on)}$		1	20	-	ns
Rise time	t _r	$V_{\rm DD}$ =20 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =160 A, $R_{\rm G}$ =1.1 Ω	1	51	-	
Turn-off delay time	$t_{d(off)}$		1	75	-	
Fall time	t _f		-	30	-	
Gate Charge Characteristics ²⁾						
Gate to source charge	Q _{gs}	V _{DD} =32 V, I _D =160 A, V _{GS} =0 to 5 V	-	20	28	nC
Gate to drain charge	Q_{gd}		1	46	90	
Gate charge total	Q _g		1	163	230	
Gate plateau voltage	V _{plateau}		1	3.4	-	V
Reverse Diode						
Diode continuous forward current	Is	- 7 _С =25 °С	-	-	160	А
Diode pulse current	I _{S,pulse}		-	-	640	
Diode forward voltage	V _{SD}	V _{GS} =0 V, I _F =80 A, T _j =25 °C	-	0.84	1.3	V

 $^{^{1)}}$ Current is limited by bondwire; with an $R_{\rm thJC}$ = 0.5K/W the chip is able to carry 243A at 25°C. For detailed information see Application Note ANPS071E at www.infineon.com/optimos

²⁾ Defined by design. Not subject to production test.

 $^{^{3)}}$ Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm 2 (one layer, 70 μ m thick) copper area for drain connection. PCB is vertical in still air.

1 Power dissipation

P_{tot} =f(T_{C})

300 250 200 200 100 50 0 50 100 150 200 T_c [°C]

2 Drain current

3 Safe operating area

 I_D =f(V_{DS}); T_C =25 °C; D=0

parameter: t_p

4 Max. transient thermal impedance

 Z_{thJC} =f(t_p)

parameter: $D = t_p/T$

5 Typ. output characteristics

 $I_D = f(V_{DS}); T_j = 25 °C$

parameter: $V_{\rm GS}$

6 Typ. drain-source on resistance

 $R_{DS(on)}=f(I_D); T_j=25 °C$

parameter: V_{GS}

7 Typ. transfer characteristics

 $I_D = f(V_{GS}); |V_{DS}| > 2|I_D|R_{DS(on)max}$

parameter: T_i

8 Typ. forward transconductance

$$g_{fs}$$
=f(I_D); T_j =25 °C

9 Drain-source on-state resistance

 $R_{DS(on)}$ =f(T_i); I_D =60 A; V_{GS} =10 V

Total (100)

10 Typ. gate threshold voltage

 $V_{GS(th)}$ =f(T_j); V_{GS} = V_{DS}

parameter: I_D

11 Typ. capacitances

 $C = f(V_{DS}); V_{GS} = 0 V; f = 1 MHz$

12 Typ. Forward characteristics of reverse diode

 $I_F = f(V_{SD})$

parameter: T_i

13 Typ. avalanche energy

E_{AS} =f(T_J)

parameter: I_D =80A, V_{DD} =25V

14 Typ. gate charge

 V_{GS} =f(Q_{gate}); I_D =160A pulsed

parameter: V_{DD}

15 Drain-source breakdown voltage

 $V_{BR(DSS)}$ =f(T_j); I_D =1 mA

16 Gate charge waveforms

Published by
Infineon Technologies AG
Bereich Kommunikation
St.-Martin-Straße 53
D-81541 München
© Infineon Technologies AG 2004
All Rights Reserved.

· Pb-free lead plating; RoHS compliant

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices, please contact your nearest Infineon Technologies office in Germany or our Infineon Technologies representatives worldwide (see address list).

Warnings

Infineon Technologies' components may only be used in life-support devices or systems with the expressed written approval of Infineon Technologies if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.