

Administración y Gestión de Redes

Lic. en Sistemas de Información

Calidad de servicio 2 IP QoS - MPLS

Fernando Lorge

florge@unlu.edu.ar

IP Qos

Type of Service (ToS)

RFC 1349: "Type of Service in the Internet Protocol Suite"

Podría afectar camino que se elije, encolado, descarte....

Integrated Services (IntServ)

 RFC 1633: "Integrated Services in the Internet Architecture: an Overview"

Control de admisión – Reservación de recursos.

- Clasificación por flujo
- Administración de colas basadas en flujos
- Control de admisión (asegurar que hay suficientes recursos)
- Protocolo RSVP (RFC2205) para señalización

Differentiated Services (DiffServ)

- RFC 2474: "Definition of the Differentiated Services Field (DS Field)"
- RFC 2475: "An Architecture for Differentiated Services"

- Traffic classification and conditioning
 - DSCP Marking
 - Per hop behaviors

Differentiated Services Domain

Differentiated Services (DiffServ)

Differentiated Services (DiffServ)

Per Hop Behaviors

- Expedited Forwarding (EF) DSCP 46
 - · low loss, low latency, low-jitter, assured bandwith
- Assured Forwarding: AF1x-AF4x:
 - 4 classes, donde x representa preferencia de descarte: 1 Low, 2 medium, 3 High.
- Default (También llamado Best-effort) DSCP 0
- Class Selector. CS1-CS7
 - (3 primeros bits, como IP precedence)

Ruteo tradicional en IP

Cuestiones

- Ruteo basado en el destino del paquete
- Tamaños de las tablas de rutas
- Actualización de las tablas

Ruteo tradicional en IP

Dificultades

- Elección de la ruta mas corta, sin importar las condiciones de carga
- Mecanismos de control de congestion (backoff)
- No hay soporte para calidad de servicio end-to-end
- Limitaciones por la ventana de recepción y rtts
- Incapacidad de aprovechar bandwidth grandes sobre enlaces largos
- Costo de ruteo

Multi-Protocol Label Switching

- Originalmente pensado para simplificar el forwarding de datagramas IP:
 - Búsquedas de "labels" pequeñas vs "longest-prefix-match"
- La motivación original: velocidad y costo.
- Layer 2.5 en OSI ;-)
- MPLS/IP fue estandarizado por la IETF en el RFC 3031 (Multiprotocol Label Switching Architecture)

Ruteo vs Conmutación

Characteristic	Routing	Switching
Network node	Router	Switch
Traffic flow	Each packet routed independently hop by hop	Each data unit follows same path through network
Node coordination	Routing protocols share information	Signaling protocols set up paths through network
Addressing	Global, unique	Label, local significance
Consistency of address	Unchanged source to destination	Label is swapped at each node
QoS	Challenging	Associated with path

Soporte multiprocolo inferior y superior

Protocolos de Red —►	lpv4	lpv6	IPX	AppleTalk	
	MPLS				
Protocolos de enlace —►	Ethernet	ATM	Frame Relay	SONET /SDH	

¿Cómo se realiza el "label switching"?

- El primer dispositivo realiza un *routing lookup* (como antes), pero:
 - En vez de encontrar el next-hop, encuentra el router final.
 - Y encuentra un camino predeterminado hacia éste.
- El router aplica una etiqueta basado en esta info.
- Los routers siguientes usan esta etiqueta para rutear (como en CV)
- El último router remueve la etiqueta
- Continua el ruteo IP tradicional.

Label switching puede ser usado para:

- Ingeniería de tráfico
- Agregado de clases de tráfico
- Garantizar la alocación de recursos
- Rutear con restricciones: carga, BW, delay, etc.
- Las etiquetas sirven además para rutear a "otros" campos que no sean una dirección destino
- Además, pueden ser usadas para soportar VPNs
- Opciones:
 - IP sobre IP

¿Dónde se utiliza?

- MPLS se usa:
 - Como una técnica de tunneling dentro de la red IP interna de un operador de comunicaciones
- MPLS no se usa:
 - En redes tradicionales de una organización
 - Entre operadores (inter-domain)

MPLS incorpora nueva terminología para nombrar los dispositivos (MPLS ~ IP)

- LSR: Label Switching Router (Transit or intermediate router)
 ~ Router
- LER:Label Edge Router (PE, Provider Edge / CE, Customer Edge) ~ Border router:
 - Ingress Router (push)
 - Egress router (pop)
- LSP: Label Switched Path ~ Tunnel
- Label distribution ~ Routing
- **LFIB**: Label Forwarding Information Base ~ FIB

- **FEC**: Forwarding Equivalence Class ~ Flow (flujo)
- Static LSPs: seteados "a mano" ~ VC permanentes en FR y
 ATM
- Signaled LSPs: seteados por protocolo de señalización ~
 Switched VC FR y ATM
- Dominio MPLS: conjunto de routers dentro de un dominio de ruteo donde comienzan y terminan los LSPs
- **Push**: agrega una etiqueta (label)
- **Pop**: Quita y procesa una etiqueta
- Swap: Pop seguido de Push.
 (Reemplaza una etiquita por otra)

MPLS Shim Header:

32 bits

Label (20 bits)

COS Stack (1bit)

TTL (8 bits)

- Label: Valor para la búsqueda en la tabla del router
- CoS: Class of Service (También TC: Traffic class)
- Stack: Indica que si hay mas etiquetas apiladas
- **TTL**: Time To Live (igual que el TTL de IP)

MPLS Shim Header:

- La etiqueta es un entero que identifica a una FEC (un flujo).
- No se pueden tener etiquetas globales (únicas)
 Sería demasiado complejo de gestionar y muy largas
- Las etiquetas son únicas solo entre 2 nodos
- Números entre 0-1048575 (0-15 reservadas a la IETF)
- Cambian a medida que un paquete avanza en la red
- Se pueden setear estáticamente (hummm!)

Encapsulamiento:

Label stacking: Las etiquetas pueden ser "apiladas":

Apilado de etiquetas

La arquitectura de MPLS está diseñada en dos capas:

- Control Plane: Responsable de la asignación de etiquetas y de la redistribución de las mismas hacia otros vecinos. Dos protocolos se pueden ocupar para esto:
 - LDP Label Distribution Protocol. Es el estandar por la IETF
 - TDP Tag Distribution Protocol. Propietario de Cisco
- Forwarding Plane / Data Plane: Aquí es donde la información que se intercambia en el plano de control se almacena.

Edge Label Switch Router

Core Label Switch Router

MPLS forwarding table

Información básica:

- Lista de etiquetas asociadas con:
 - Interface de salida al next-hop router
 - Nuevo valor de etiqueta

Ejemplo (Intermediate):

Interface entrada	Label entrante	Operación	Label salida	Interface salida
If1	528	Swap	438	if3
If1	782	Swap	991	if4
If2	104	Swap	628	if1

Protocolos de señalización:

- Resource Reservation Protocol (RSVP-TE) (RFC 3209): Define el uso de RSVP incluyendo todas las extensiones necesarias para establecer LSPs.
- Label Distribution Protocol (LDP) (RFC 3212, RFC 3468 abandona el trabajo sobre LDP unificando esfuerzos en RSVP-TE)

- LDP y TDP usan un proceso similar para establecer la sesión: **Hello messages** son periodicamente enviados en todas las interfaces habilitadas para MPLS.
- Si hay otro router en esa interface, este responderá intentando establecer una sesion con el origen de los mensajes Hello.
- UDP es usado para los mensajes **Hello** y dirigidos a la dirección de multicast 224.0.0.2. Posteriormente TCP es utilizado para establecer la sesión en los puertos 646 para LDP y 711 para TDP.

Penultimate Hop Popping

Una etiqueta es removida en el router qué esta antes del último salto en un dominio MPLS

Beneficios

- Bajo costo: Una vez establecida la red de core se pueden montar diferentes servicios.
- QoS: Soporta diferenciar el tráfico para darle diferente trato dependiendo de la aplicación.
- Mejora el desempeño de la red: El ruteo basado en etiquetas incrementa la velocidad de tranferencia de info.
- Recuperación ante caidas: Permite la redundancia de aplicaciones o servicios importantes al conectarse por diferentes medios a la red MPLS.

Class of Service (CoS)

IEEE 802.1q → VLAN tagging

CFI redefinido como DEI (drop elegible indicator)

Ethernet Class of Service (CoS)

Niveles de Prioridad - IEEE 802.1p

Prioridad	Tipo de tráfico
0 (default)	Best Effort
1	Background
2	Excelent effort
3	Critical Applications
4	Video (< 100ms latency and jitter)
5	Voice (<10 ms latency and jitter)
6	Internetwork Control
7	Network Control

No especifica la forma de tratar el tráfico clasificado

Bibliografía

Bibliografía:

Deploying IP and MPLS QoS for Multiservice Networks: Theory & Practice. John Evans and Clarence Filsfils. Morgan Kaufmann, 2007.

Network Routing: Algorithms, Protocols, and Architectures. Deepankar Medhi, Karthikeyan Ramasamy. Morgan Kaufmann, 2007.

The Illustrated Network: How TCP/IP Works in a Modern Network. Walter Goralski. Morgan Kaufmann, 2008. Capítulo 17: MPLS and IP Switching

MPLS: Next Steps. Bruce S. Davie, Adrian Farrel. Morgan Kaufmann, 2008. Capítulo 2: Overview of the MPLS Data Plane

Próxima: Práctica MPLS