Comment déterminer une asymptote à la courbe représentative d'une fonction ?

On utilise les résultats donnés dans l'Essentiel page 234 au paragraphe 2 : Asymptotes à une courbe représentative.

Exemple 1. f est définie sur]2; + ∞ [par $f(x) = \frac{x+1}{x-2}$.

- 1. Étudier $\lim_{x \to 2} f(x)$; interpréter graphiquement le résultat obtenu.
- 2. Étudier $\lim_{x \to \infty} f(x)$; interpréter graphiquement le résultat obtenu.
- **1.** $\lim_{x \to 2} (x + 1) = 3$ et $\lim_{x \to 2} (x 2) = 0$ d'où, puisque x 2 > 0, $\lim_{x \to 2} f(x) = + \infty$.

La courbe représentative \mathscr{C} de f admet pour asymptote la droite D_1 d'équation x = 2.

$$f(x) - 1 = \frac{x+1}{x-2} - 1 = \frac{3}{x-2}$$
 donc, sur]2; + ∞ [

$$f(x) - 1 > 0$$
; % est « au-dessus » de D_2 .

Exemple 2. f est définie sur $[0; +\infty[$ par $f(x) = x + 2 - xe^{-x}.$

- 1. Montrer que $\lim_{x \to +\infty} xe^{-x} = 0$; en déduire $\lim_{x \to +\infty} f(x)$.
- **2.** Justifier que $\mathscr C$ admet pour asymptote la droite D d'équation y=x+2. Étudier la position de $\mathscr C$ par rapport à D.
- 1. $\lim_{x \to +\infty} e^{-x} = \lim_{x \to +\infty} e^{x} = 0$; on ne peut conclure directement pour $\lim_{x \to +\infty} xe^{-x}$.

On écrit
$$xe^{-x} = \frac{x}{e^x}$$
; on sait que $\lim_{x \to +\infty} \frac{x}{e^x} = 0$

(voir formulaire) donc $\lim_{x \to +\infty} xe^{-x} = 0$;

on en déduit $\lim_{x \to a} f(x) = \lim_{x \to a} (x + 2) = + \infty$.

2.
$$f(x) - (x + 2) = -xe^{-x}$$
.

 $\lim_{x \to +\infty} (-xe^{-x}) = 0$ donc \mathscr{C} admet pour **asymptote**

la droite D d'équation y = x + 2.

 $-xe^{-x} < 0$ donc & est « au-dessous » de D.

