

Instituto Politécnico Nacional Escuela Superior de Cómputo

Unidad de aprendizaje: Fundamentos económicos

ACTIVIDAD 9:

Utilidad total y marginal

Alumno: González Cárdenas Ángel Aquilez

Boleta: 2016630152

Grupo: 2CV2

Profesora: Villegas Navarrete Sonia

Ejercicio:

Mariana gasta todo su ingreso en un producto A. Para la resolución del ejercicio designaremos al bien A como Tortas cubanas.

- a) Obtenga la gráfica correspondiente a la utilidad total del producto A.
- b) Obtenga la gráfica correspondiente a la utilidad marginal del producto A.

De la Tabla 1 se obtienen la UM_A para las Tortas cubanas de la fórmula

$$UM = \frac{\Delta UT_x}{\Delta x} = \frac{UT_x 2 - UT_x 1}{x2 - x1}$$

Q	UT_A	UM_A
0	0	-
1	6	6
2	14	8
3	24	10
4	28	4
5	30	2
6	31	1
7	31	0
8	30	1
9	28	2

Tabla 1: Valores de utilidad total y marginal del bien A

Figura 1: Utilidad total y marginal

A continuación se anexa el ejercicio realizado en clase:

Fundamentos económicos

Nombre Genzalez Coirdenas Angel Aquilez Grupa 2012
Profesorar Villages Navarrete Sania

Instrucciones Realizar el siguiente ejercicio de Utilidad total y marginal

Ejercicio: José gasta todo su ingreso en un producto A.

- a) Obtenga la gráfica correspondiente a la utilidad total del producto A.
- b) Obtenga la gráfica correspondiente a la utilidad marginal del producto A.

Q	UTA	;	UMA
0	0	1	10
1	10		-10
2	22		- 1
3	32	:	()
4	40		7
5	47		7
6	53		5
7	58		4
8	62	,	2
9	64		

Utilidad 1 total Unidades Utiliand Tetal 56 Unique Office J Marginal 24 Hill dad , Gusaritos de gomo

$$UM = \frac{\Delta Utx}{\Delta x} = \frac{Utx_2 - Utx_1 - \dots}{x_2 - x_1}$$

$$U_{M}(0-1) = \frac{10-0}{1-0} = 10$$

$$U_{M(1\cdot 2)} = \frac{22\cdot 10}{2\cdot 1} = 12$$

$$U_{M}(2-3) = \frac{32-22}{3-2} = 10$$

$$U_{M}(4-5) = \frac{47-40}{5-4} = 7$$

$$U_{M}(5=6) = \frac{53-17}{6-5} = 6$$

$$Un(7-8) = \frac{62-58}{8-7} = 4$$