Équations Différentielles du 1er Ordre

Philippe Briand

https://www.lama.univ-savoie.fr/~briand/

DUT Génie Civil 1^{re} année

IUT de Chambéry, 1er semestre 2017

Généralités sur les équations différentielles

Équa. diff. linéaires du 1^{er} ordre à coeff. constants Séance n° 1 du 07/02/2017

Généralités sur les équations différentielles

Équations différentielles linéaires du $1^{\rm er}$ ordre

Équa. diff. linéaires du $1^{\rm er}$ ordre à coefficients constants

Objectifs de la séance

- 1. Comprendre ce qu'est une équation différentielle
- 2. Acquérir le vocabulaire associé
- 3. Résolution des équa. diff. linéaires du 1er ordre à coeff. constants

Généralités sur les équations différentielles

Équations Différentielles

Généralités sur les équations différentielles

Equations différentielles linéaires du 1^{er} ordre

Équa. diff. linéaires du 1er ordre à coefficients constants

Qu'est-ce qu'une équation différentielle?

- Une équation différentielle est :
 - une équation fonctionnelle : l'inconnue est une fonction notée traditionnellement *y*
 - faisant intervenir les dérivées de la fonction y
 - ullet on résout cette équation sur un intervalle de ${\mathbb R}$
- Exemples :
 - 1. Trouver les fonctions $y : \mathbb{R} \longrightarrow \mathbb{R}$ vérifiant

$$\forall x \in \mathbb{R}, \quad y'(x) - 2y(x) = 3;$$

2. Trouver les fonctions $y : \mathbb{R}_+ \longrightarrow \mathbb{R}$ vérifiant

$$\forall x \geq 0, \qquad y(x)y'(x) = e^{-x}, \qquad y(0) = 1;$$

3. Résoudre sur \mathbb{R} l'équation différentielle

$$y''(x) - 2y'(x) + 5y(x) = \cos(3x + 2).$$

Généralités sur les équations différentielles

Résoudre une équation différentielle

- C'est trouver l'ensemble des fonctions solutions de cette équation
 - Par exemple, résoudre sur $\mathbb R$ l'équation différentielle

$$y''(x) - 2y'(x) + 5y(x) = \cos(3x + 2).$$

c'est trouver toutes les fonctions $y : \mathbb{R} \longrightarrow \mathbb{R}$ deux fois dérivables t.q.

$$\forall x \in \mathbb{R}, \qquad y''(x) - 2y'(x) + 5y(x) = \cos(3x + 2).$$

- Attention, la variable de la fonction dans les exemples précédents x
 est souvent omise
 - On écrit en général : Résoudre sur ℝ l'équation différentielle

$$y'' - 2y' + 5y = \cos(3x + 2)$$

• Si l'équation différentielle décrit un phénomène physique évoluant dans le temps, la variable de la fonction y est notée t plutôt que x

Équations Différentielles

Sommaire

Généralités sur les équations différentielles

Équations différentielles linéaires du 1er ordre

Équa. diff. linéaires du 1er ordre à coefficients constants

Équa. diff. linéaires du 1er ordre : cas général

Généralités sur les équations différentielles

Équa. Diff. du 1er Ordre

Définition

Une équation différentielle du 1^{er} ordre est une équation différentielle dans laquelle interviennent seulement : la fonction y, sa dérivée y' et la variable de la fonction x

- y'(x) 2xy(x) = 3, $y(x)y'(x) = 3x^2$ sont du 1^{er} ordre
- $y''(x) 2y'(x) + 5y(x) = \cos(3x + 2)$ n'est pas du 1^{er} ordre mais du 2^{e}

Notations : on considère dans la suite

- un intervalle I de $\mathbb R$; par exemple $I=\mathbb R$, $I=[0,+\infty[$, $I=]0,+\infty[$, \ldots
- deux fonctions $a: I \longrightarrow \mathbb{R}$ et $f: I \longrightarrow \mathbb{R}$ continues sur I;
- un point x_0 appartenant à l'intervalle I.

Équa. Diff. Linéaire du 1er ordre

Définition

Une équation différentielle linéaire du 1^{er} ordre est une équation différentielle du type

$$\forall x \in I, \quad y'(x) - a(x) y(x) = f(x) \tag{L}$$

Exemple(s)

- 1. L'équation différentielle y'(x)-3y(x)=0 correspond à $a\equiv 3$ et $f\equiv 0$; on prend $I=\mathbb{R}$
- 2. Dans l'exemple $y'(x) x^2 y(x) = \ln(x)$, $a(x) = x^2$ et $f(x) = \ln(x)$; on prend $I =]0, +\infty[$.

Généralités sur les équations différentielles

Équa. Diff. Linéaire du 1er ordre

Exemple(s)

Dans l'exemple xy'(x) - y(x) = 2, il faut réécrire l'équation :

$$y'(x) - \frac{y(x)}{x} = \frac{2}{x},$$
 $a(x) = \frac{1}{x},$ $f(x) = \frac{2}{x}$

On résout sur $I_- =]-\infty,0[$ puis sur $I_+ =]0,+\infty[$ car \mathbb{R}^* n'est pas un intervalle!

Définition

Une solution de (L) est une fonction $y:I\longrightarrow \mathbb{R}$, dérivable sur I telle que

$$\forall x \in I, \qquad y'(x) - a(x) y(x) = f(x).$$

Résoudre ou intégrer l'équation (L) c'est trouver l'ensemble des fonctions qui sont solutions de (L).

Équations Différentielles

Sommaire

Généralités sur les équations différentielles

Équations différentielles linéaires du 1er ordre

Équa. diff. linéaires du 1er ordre à coefficients constants

Équa. diff. linéaires du 1er ordre : cas général

Généralités sur les équations différentielles

Définition

Définition

Il s'agit d'une équa. diff. du type

$$\forall x \in I, \quad y'(x) - ay(x) = f(x)$$
 (LC)

- La fonction a(x) est constante égale à a
- La fonction f n'est pas constante.

Remarque(s)

On résout une telle équa. diff. sur un intervalle I sur lequel f est continue

- $f(x) = \cos(x)$, $I = \mathbb{R}$
- $f(x) = \ln(x), I =]0, +\infty[$

Définition

L'équation homogène — ou sans second membre — associée à (LC) est

$$y'(x) - ay(x) = 0.$$

Résolution de y' - ay = 0

Théorème

Les solutions de l'équation homogène y'(x) - ay(x) = 0 sont les fonctions

$$y(x) = C e^{ax}, \quad C \in \mathbb{R}$$

- Pour toute valeur de la constante C, on obtient une solution
 - Il y a donc une infinité de solutions
- La solution générale de l'équation homogène désigne l'ensemble des solutions de cette équation; on note $y_h(x) = C e^{ax}$, $C \in \mathbb{R}$.

Exemple(s)

- 1. y'(x) 2y(x) = 0: $y_h(x) = Ce^{2x}$, $C \in \mathbb{R}$
- 2. $y'(x) = 0 : y_h(x) = C, C \in \mathbb{R}$
- 3. y'(x) + 3y(x) = 0: $y_h(x) = C e^{-3x}$, $C \in \mathbb{R}$
- 4. 2y'x y(x) = 0: $y_h(x) = C e^{x/2}$, $C \in \mathbb{R}$

Généralités sur les équations différentielles

Solution générale de l'équation complète

Théorème

La solution générale de y'(x) - ay(x) = f(x) est :

$$y(x) = y_h(x) + y_p(x) = C e^{ax} + y_p(x), \quad C \in \mathbb{R},$$

avec

- y_h solution générale de l'équation homogène
- y_p une solution particulière de l'équation complète c'est à dire une fonction vérifiant

$$\forall x \in I, \quad y_p'(x) - a y_p(x) = f(x)$$

 Pour résoudre l'équation complète, il faut savoir comment trouver une solution particulière

Exemple : y'(x) - 2y(x) = 3

La solution générale de l'équation homogène est

$$y_h(x) = C e^{2x}, \quad C \in \mathbb{R}$$

- On remarque que $y_p(x) = -3/2$ est solution de l'eq. complète
- La solution générale de l'équation complète est

$$y_g(x) = C e^{2x} - 3/2, \quad C \in \mathbb{R}$$

Généralités sur les équations différentielles

Solution particulière : cas particuliers

- f(x) = k
 - $a \neq 0$, $y_p(x) = -k/a$;
 - a = 0, $y_p(x) = kx$;
- f(x) = P(x) où P polynôme de degré n
 - Si $a \neq 0$, on cherche une sol. part. du type $y_p(x) = Q(x)$ avec Q polynôme de degré $n = \deg P$;
 - a=0, on cherche une sol. part. du type $y_p(x)=x\ Q(x)$ avec Q polynôme de degré $n=\deg P$;
 - y'(x) y(x) = 2x + 3: y_p du type $y_p(x) = a_1x + a_0$;
 - y'(x) = 2x + 3: y_p du type $y_p(x) = x(a_1x + a_0) = a_1x^2 + a_0x$.
- $f(x) = \alpha \cos(\omega x + \varphi) + \beta \sin(\omega x + \varphi)$: y_p du type $y_p(x) = A \cos(\omega x + \varphi) + B \sin(\omega x + \varphi)$
 - $y'(x) y(x) = 2\sin(x+3) 4\cos(x+3)$; $\omega = 1$, $\varphi = 3$: y_p du type $y_p(x) = A\sin(x+3) + B\cos(x+3)$;
 - Si $f(x) = \alpha \cos(\omega x + \varphi)$, $y_p(x) = A \cos(\omega x + \varphi) + B \sin(\omega x + \varphi)$;
 - $y'(x) y(x) = 2\sin(x+3)$: y_p du type $y_p(x) = A\sin(x+3) + B\cos(x+3)$.

Solution particulière : cas particuliers

- $f(x) = e^{sx} P(x)$ où P est un polynôme de degré n
 - $a \neq s$, $y_p(x) = e^{sx} Q(x)$ avec Q polynôme de degré $n = \deg P$;
 - a = s, $y_p(x) = e^{sx} \times Q(x)$ avec Q polynôme de degré $n = \deg P$.
 - $y'(x) y(x) = e^{-x}(2x + 3) : y_p \text{ du type}$

$$y_p(x) = e^{-x} (a_1 x + a_0).$$

• $y'(x) + y(x) = e^{-x}(2x + 3) : y_p \text{ du type}$

$$y_p(x) = x (a_1x + a_0) e^{-x} = (a_1x^2 + a_0x) e^{-x}.$$

• Si $f = f_1 + f_2$, $y_p = y_{p_1} + y_{p_2}$

Généralités sur les équations différentielles

Exemples

1. Résoudre l'équation différentielle

$$y'(x) + 2y(x) = 2x + 1$$

_____ To be continued _____

2. Résoudre

$$y'(t) - 4y(t) = \cos(3t)$$

3. Résoudre

$$2y'(t) + 4y(t) = (t^2 + t + 1)e^{-t}$$

4. Résoudre

$$y'(x) + y(x) = (x+1)e^{-x}$$

5. Résoudre

$$y'(x) + y(x) = e^{-x}$$

Équa. diff. linéaires du 1er ordre

Séance n° 2 du 10/02/2017

Généralités sur les équations différentielles

Équations différentielles linéaires du 1er ordre

Équa. diff. linéaires du 1er ordre à coefficients constants

Équa. diff. linéaires du 1er ordre : cas général

Généralités sur les équations différentielles

Objectifs de la séance

1. Pratique des EDL1D à coeff. constants

Rappels

• La solution générale de l'équation y'(x)—ay(x) = 0 est

$$y_h(x) = C e^{ax}, \quad C \in \mathbb{R}$$

• La solution générale de l'équation y'(x) - ay(x) = f(x) est

$$y_g(x) = C e^{ax} + y_p(x), \quad C \in \mathbb{R}$$

où y_p est une solution particulière de l'équation.

- f(x) = k
 - $a \neq 0$, $y_p(x) = -k/a$;
 - a = 0, $y_p(x) = kx$;
- f(x) = P(x) où P polynôme de degré n
 - Si $a \neq 0$, on cherche une sol. part. du type $y_p(x) = Q(x)$ avec Q polynôme de degré $n = \deg P$;
 - a = 0, on cherche une sol. part. du type $y_p(x) = x Q(x)$ avec Q polynôme de degré $n = \deg P$;

Généralités sur les équations différentielles

Solution particulière : cas particuliers

- $f(x) = \alpha \cos(\omega x + \varphi) + \beta \sin(\omega x + \varphi)$: y_p du type $y_p(x) = A \cos(\omega x + \varphi) + B \sin(\omega x + \varphi)$
 - Attention si $f(x) = \alpha \cos(\omega x + \varphi)$, $y_p(x) = A \cos(\omega x + \varphi) + B \sin(\omega x + \varphi)$
- $f(x) = e^{sx} P(x)$ où P est un polynôme de degré n
 - $a \neq s$, $y_p(x) = e^{sx} Q(x)$ avec Q polynôme de degré $n = \deg P$;
 - a = s, $y_p(x) = e^{sx} xQ(x)$ avec Q polynôme de degré $n = \deg P$.
 - $y'(x) y(x) = e^{-x}(2x+3) : y_p \text{ du type}$

$$y_p(x)=e^{-x}(a_1x+a_0).$$

• $y'(x) + y(x) = e^{-x}(2x + 3) : y_p \text{ du type}$

$$y_p(x) = x(a_1x + a_0)e^{-x} = (a_1x^2 + a_0x)e^{-x}.$$

• Si
$$f = f_1 + f_2$$
, $y_p = y_{p_1} + y_{p_2}$

Exemples

1. Résoudre l'équation différentielle

$$y'(x) + 2y(x) = 2x + 1$$

To be continued _____

2. Résoudre

$$y'(t) - 4y(t) = \cos(3t)$$

3. Résoudre Non traité en 2017

$$2y'(t) + 4y(t) = (t^2 + t + 1)e^{-t}$$

4. Résoudre

$$y'(x) + y(x) = (x+1)e^{-x}$$

5. Résoudre

$$y'(x) + y(x) = e^{-x}$$

Généralités sur les équations différentielles

Équa. diff. linéaires du 1er ordre

Séance n° 3 du 14/02/2017

Généralités sur les équations différentielles

Équations différentielles linéaires du 1er ordre

Équa. diff. linéaires du 1er ordre à coefficients constants

Exercice 1 — Fiche 1

1. Résoudre sur \mathbb{R}

$$y'(x) + 3y(x) = x + 1$$

2. Intégrer l'équation différentielle

$$y'-4y=(2x+3)e^x$$

3. Intégrer l'équation différentielle

$$y'-4y=e^x$$

4. Résoudre sur \mathbb{R}

$$y' - 5y = \cos(4t)$$

5. Idem pour Non traité en 2017

$$y' - 5y = \cos(4t) + \sin(2t)$$

6. Résoudre

$$\frac{du}{dx} - u = e^x(x^2 + 1)$$

Généralités sur les équations différentielles

Équa. diff. linéaires du 1er ordre

Séance nº 4 du 14/02/2017

Généralités sur les équations différentielles

Équations différentielles linéaires du 1er ordre

Équa. diff. linéaires du 1er ordre à coefficients constants

Objectifs de la séance

- 1. Équa. diff. linéaires du 1er ordre homogènes
- 2. Méthode de la variation de la constante

Généralités sur les équations différentielles

Équations Différentielles

Généralités sur les équations différentielles

Équations différentielles linéaires du $1^{\rm er}$ ordre

Équa. diff. linéaires du 1er ordre à coefficients constants

Équation homogène

- $a: I \longrightarrow \mathbb{R}, f: I \longrightarrow \mathbb{R}$ deux fonctions continues
- On cherche les solutions de l'équa. diff. (L)

$$\forall x \in I, \quad y'(x) - a(x)y(x) = f(x).$$

• On commence par l'équation sans second membre

Théorème

La solution générale de l'équation

$$\forall x \in I, \quad y'(x) - a(x)y(x) = 0$$

est:

$$y_h(x) = C e^{A(x)}, \quad C \in \mathbb{R},$$

où A est une primitive de a sur I.

• Primitive : pour $x \in I$, A'(x) = a(x)

Généralités sur les équations différentielles

Exemples

1. Trouver les solutions sur $]-1,+\infty[$ de

$$y'(x) - \frac{y(x)}{x+1} = 0.$$

2. Trouver les solutions sur] $-1,+\infty[$ de

$$y'(x) + 2\frac{y(x)}{x+1} = 0.$$

3. Trouver les solutions sur $]0, +\infty[$ de

$$xy'(x) + (x+1)y(x) = 0.$$

Équation complète

Théorème

La solution générale de l'équation

$$\forall x \in I, \quad y'(x) - a(x)y(x) = f(x)$$

est
$$y_g(x) = y_h(x) + y_p(x)$$
 où

- 1. y_h est la solution générale de l'équation homogène associée
- 2. y_p est une solution particulière de l'équation

$$y_g(x) = C e^{A(x)} + y_p(x), \quad C \in \mathbb{R}, \quad A \text{ primitive de } a$$

• Il faut donc savoir trouver des solutions particulières

Généralités sur les équations différentielles

Variation de la constante

On cherche une solution particulière sous la forme

$$y_p(x) = u(x) e^{A(x)}$$

ullet y_p est solution particulière si et seulement si

$$u'(x)e^{A(x)} = f(x)$$
 c'est à dire $u'(x) = f(x)e^{-A(x)}$

• Il suffit de trouver une primitive u(x) de $f(x)e^{-A(x)}$ pour obtenir une solution particulière

Théorème

Soient A une primitive de a sur I et u une primitive de $f(x)e^{-A(x)}$ sur I. La solution générale de y'(x) - a(x)y(x) = f(x), pour $x \in I$, est

$$y_{\sigma}(x) = (C + u(x)) e^{A(x)}, \quad C \in \mathbb{R}.$$

Exemples

 $1. \ \,$ Trouver les solutions sur $]-1,+\infty[$ de

$$y'(x) - \frac{y(x)}{x+1} = x+2.$$

2. Trouver les solutions sur] $-1,+\infty[$ de

$$y'(x) + 2\frac{y(x)}{x+1} = \frac{e^{2x}}{x+1}.$$

3. Trouver les solutions sur $]0,+\infty[$ de

$$x y'(x) + (x + 1)y(x) = \cos(x)e^{-x}$$
.

Généralités sur les équations différentielles

Problème de Cauchy

• Soient x_0 un point de I, $y_0 \in \mathbb{R}$.

Théorème

L'équation différentielle

$$\forall x \in I, \quad y'(x) - a(x)y(x) = f(x)$$

possède une unique solution vérifiant : $y(x_0) = y_0$.

• La condition $y(x_0) = y_0$ fixe la valeur de la constante C de la solution générale de l'équation

Exemples

1. Trouver la solution sur] $-1,+\infty[$ de

$$y'(x) - \frac{y(x)}{x+1} = x+2$$

vérifiant y(0) = 3.

2. Trouver la solution sur $]-1,+\infty[$ de

$$y'(x) + 2\frac{y(x)}{x+1} = \frac{e^{2x}}{x+1}$$

vérifiant y(0) = 0.

3. Trouver les solutions sur $]0, +\infty[$ de Non traité en 2017

$$xy'(x) + (x+1)y(x) = \cos(x)e^{-x}$$

vérifiant $\lim_{x\to 0} y(x) = 1$. Idem pour $\lim_{x\to 0} y(x) = 2$.

Généralités sur les équations différentielles

Équa. diff. linéaires du 1er ordre

Séance nº 5 du 27/02/2017

Généralités sur les équations différentielles

Équations différentielles linéaires du 1er ordre

Équa. diff. linéaires du 1er ordre à coefficients constants

Séance de TD

- 1. Fiche 1 Exercice 3
- 2. Fiche 1 Exercice 4 Questions 1 et 3

Généralités sur les équations différentielles

Équa. diff. linéaires du 1er ordre

Séance nº 6 du 28/02/2017

Généralités sur les équations différentielles

Équations différentielles linéaires du $1^{\rm er}$ ordre

Équa. diff. linéaires du 1er ordre à coefficients constants

Séance de TD

ullet Fiche 1 : Exercice 4 — Question 4 + Exercice 5

