

Lab 8

Carrier Frequency and Phase Synchronization in Communication Links

Outline

Why Frequency Synchronization?

Costas Loop

Viterbi-Viterbi Algorithm

Differential Coding

Why Synchronization?

- Modern digital communication techniques use phase modulation (BPSK, QPSK,8-PSK etc.)
- Demodulation often relies on coherent techniques
- Requires the receiver to know or derive the carrier wave's phase and frequency precisely

Why Synchronization?

- Receiver uses a local oscillator (LO) generated from a separate reference.
- This LO naturally has a non-zero frequency and phase offset compared to the incoming carrier.
- When RF signal is down-converted using this offset frequency, the resultant baseband signal still contains the undesired carrier frequency (and phase) offset

Carrier Offset Observation

Expected Constellation

Observed constellation with frequency offset (rotating points)

Motivation

- We need techniques to remove these offsets from the signal (settles the constellation to the desired pattern)
- This lab explores two main techniques:
 - Costas Loop
 - Viterbi-Viterbi Algorithm

Costas Loop

- Costas Loop is fundamentally a Phase Locked Loop (PLL).
- Uses a specialized **phase detector** capable of generating the carrier phase error
- Assumption: Phase error lies within $\pm \pi/4$.

QPSK Phase Detector

How the Detector Generates Error

How the Detector Generates Error

Demapping

- If the phase error exceeds $\pm \pi/4$, an ambiguity of $\pm n\pi/2$ is added to ϕm
- Does this ambiguity change the constellation diagram?

No

- This $\pm n\pi/2$ ambiguity is removed later using **demapping**
- Mapping between transmitted and received symbol constellations via known bit sequences

Results

Constellation with frequency offset (before Costas Loop)

Constellation with frequency offset (after Costas Loop)

Viterbi-Viterbi Algorithm

 Viterbi-Viterbi algorithm is a non-data aided mechanism designed for estimating the carrier phase of M-PSK signals (M=1,2,4 etc.)

Mechanism for M-PSK Signals

- **Mth Power**: The M-PSK signal $\left(e^{j\left(\frac{2\pi n}{M}+\phi_{err}\right)}\right)$ is taken to its Mth power
 - This step removes the M-ary modulation.
 - Crucially, this results in an M-fold multiplication of the phase error. (For 8-PSK, M=8)
- Phase Detector: The argument of the resulting signal is taken (i.e., arctan Real/Img),
 which yields the estimated phase error

$$\hat{\phi}_{err} = \frac{1}{M} \arctan(e^{j(\frac{2\pi n}{M} + \phi_{err})M})$$

Mechanism for M-PSK Signals

The Costas loop is a feedback-based phase tracking system, while the Viterbi-Viterbi algorithm is a feedforward phase estimation method.

Differential Demodulation

- The maximum allowable phase error is $\pm \pi/M$.
- If the phase error exceeds this limit, the constellation point drifts to a neighboring decision region, causing errors during symbol demodulation
- To resolve the issue of drift, the differential of the phase may be demodulated
- (Recall from FM demodulation) Multiply the received signal with its delayed and phase-conjugated copy. The argument of this output gives the differential of the phase.
- This technique is used to estimate the frequency offset in 8-PSK signals using: arg(s[n]*s[n-1]).
- This frequency offset value is then used to control a Complex VCO to generate the appropriate error signal

Differential Coding

- Differential coding is a separate technique used to ensure **unambiguous** signal reception for certain modulation schemes.
- It is necessary because various factors can unintentionally cause **inversion of bits** in the binary waveform.
- **Mechanism:** When differential encoding is used, the data that is transmitted depends on:
 - 1. The **current** signal state/symbol.
 - 2. The **previous** signal state/symbol

Differential Coding: Example

Let's say the raw data bits are: 1 0 1 1

Assume the initial transmitted symbol is 0,

Now encode each bit:

Data Bit	Previous Symbol	Encoded Symbol
1	0	1
0	1	1
1	1	0
1	0	1

So the transmitted sequence becomes: 1101

Suppose during transmission, the signal undergoes a **180° phase shift** This flips the symbols:

Received: 0 0 1 0

Current	Previous	Decoded Bit
0	(initial) 0	— (ignored)
0	0	0
1	0	1
0	1	1

Decoded bits: 0 1 1

First bit is lost (needs a reference).