Математика

Мы

10 сентября 2022 г.

Оглавление

1	Логика	2
2	Алгебраические выражения	4
3	Измерения	6
4	Функции	7
5	Числа	10
	5.1 Натуральные числа (N)	10
	5.2 Целые числа (Z)	12
	5.3 Рациональные числа (Q)	12
	5.4 Иррациональные числа (I)	14
	5.5 Действительные числа (R)	14
	5.6 Комплексные числа (С)	16

Логика

Из посылки А вытекает вывод В:

 $A \longrightarrow B$

А - достаточное условие для В.

В - необходимое условие для А.

Эквивалентные утверждения A и B - это утверждения, при которых из посылки A вытекает вывод B и из посылки B вытекает вывод A.

Обратное утверждение:

$$B \longrightarrow A$$

$$A \longrightarrow B$$

Противоположное утверждение:

$$\overline{A} \longrightarrow \overline{B}$$

$$A \longrightarrow B$$

Утверждение, противоположное обратному:

$$\overline{B} \longrightarrow \overline{A}$$

$$A \longrightarrow B$$

 Γ ЛABA 1. Л $O\Gamma$ ИKA 3

Утверждение А и утверждение, обратное противоположному А, эквивалентны.

Доказательство от противного:

Чтобы доказать $A \longrightarrow \overset{\text{-}}{B}$, надо доказать $A \wedge \overline{\overline{\overline{B}}}$

Метод математической индукции для натуральных чисел:

Чтобы доказать f(x)=g(x) , надо доказать $f(1)=g(1)\wedge f(n+1)=g(n+1)$, приняв f(n)=g(n) .

Алгебраические выражения

Область допустимых значений (ОДЗ) - это множество всех наборов числовых значений букв, входящих в данное алгебраическое выражение.

Тождественно равные алгебраические выражения - это алгебраические выражения, имеющие равные ОДЗ и равные числовые значения на этом ОДЗ.

Формулы сокращённого умножения:

- 1. Квадрат суммы. $(a+b)^2 = a^2 + 2ab + b^2$
- 2. Разность квадратов. $a^2 b^2 = (a b)(a + b)$
- 3. Куб суммы. $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$
- 4. Сумма кубов. $a^3 + b^3 = (a+b)(a^2 ab + b^2)$
- 5. Бином Ньютона.

$$(a+b)^n = \sum_{i=0}^n \frac{a^{n-i}b^i n!}{i!(n-i)!} = \sum_{i=0}^n \frac{a^{n-i}b^i \prod\limits_{k=0}^{i-1} n-k}{i!}$$

Неполный квадрат разности:

$$a^2 - ab + b^2$$

Одночлен - это алгебраическое выражение, состоящее из произведения чисел и переменных.

Измерения

Величина - это объект, который может быть охарактеризован числом в результате измерения.

Постоянная величина - это величина, множество значений которой состоит из одного элемента.

Переменная величина - это величина, множество значений которой состоит более чем из одного элемента.

Область изменения - это множество значений, принимаемых переменной величиной.

Функции

 Φ ункция $\mathbf{y} = \mathbf{f}(\mathbf{x})$ - это переменная у, при которой каждому значению х из области изменения х поставлено в соответствие по определённому закону значение у.

$$y = f(x)$$

у - функция (зависимая переменная).

х - аргумент (независимая переменная).

f(x) - закон соответствия между у и х.

Область определения функции, задаваемой законом соответствия f(x), D(f) - это область изменения независимой переменной функции.

Область значений функции, задаваемой законом соответствия $f(\mathbf{x})$, $\mathbf{E}(\mathbf{f})$ - это область изменения функции.

Математический анализ - это область математики, иследующая функции.

Равные (совпадающие) функции - это функции, область определения которых равны и значения которых при любых одинаковых значениях аргумента равны.

Нуль (корень) функции - это значение независимой переменной, при котором значение функции равно нулю.

Чётная функция:

$$f(-x) = f(x)$$

$$D(f) = (-a; a)$$

$$D(f) = [-a; a]$$

Нечётная функция:

$$f(-x) = -f(x)$$

$$D(f) = (-a; a)$$

$$D(f) = [-a; a]$$

Функция общего вида - это функция, которая не является чётной или нечётной.

Возрастающая функция на некотором промежутке (интервале) - это функция, для любых двух значений независимой переменной x_1 и x_2 которой на этом промежутке из неравенства $x_1 < x_2$ следует $f(x_1) < f(x_2)$ при том, что этот интервал лежит в её области определения. (невозрастающая функция на некотором промежутке (интервале)

Убывающая функция на некотором промежутке (интервале) - это функция, для любых двух значений независимой переменной x_1 и x_2 которой на этом промежутке из неравенства $x_1 < x_2$ следует $f(x_1) > f(x_2)$ при том, что этот интервал лежит в её области определения. (неубывающая функция на некотором промежутке (интервале)

Интервал монотонности - это интервал, на котором функция возрастает или убывает.

Точка минимума функции, задаваемой законом соответствия $f(\mathbf{x})$,- это точка функции x_0 , определённой в самой этой точке и в некоторой окрестности точки x_0 при том, что множество значений этой окрестности равно области изменения x', для которой выполняется неравенство $f(x_0) \leq f(x')$.

Точка максимума функции, задаваемой законом соответствия $f(\mathbf{x})$,- это точка функции x_0 , определённой в самой этой точке и в некоторой окрестности точки x_0 при том, что множество значений этой окрестности равно области изменения x', для которой выполняется неравенство $f(x_0) \geq f(x')$.

Экстремум - это точка минимума или максимума функции.

Асимптота - это прямая линия, к которой график функции неограниченно приближается при удалении точки графика в бесконечность.

Исследование функций:

- 1. Область определения функции.
- 2. Область значений функции.
- 3. Нули функции.
- 4. Чётная, или нечётная, или общего вида функция.
- 5. Интервалы монотонности функции.
- 6. Экстремумы функций.
- 7. Асимптоты.

Сложная функция - это функция, аргумент которой равен другой функции.

Обратная функция y = f(x) функции u = g(x):

$$f(g(a)) = a$$

$$a \in D(g)$$

$$g(a) \in D(f)$$

Элементарные функции - это основные элементарные функции и сложные функции, образованные из основных элементарных.

Числа

Числовое кольцо - это множество чисел, результат суммы, разности, произведения любых чисел которого принадлежит ему тоже.

Числовое поле - это множество чисел, результат выполнения рациональных действий над любыми числами которого принадлежит ему тоже.

5.1 Натуральные числа (N)

Целочисленная переменная - это величина, принимающая только натуральные значения.

Свойства сложения и умножения:

1. Переместительное.

$$a+b=b+a$$

$$ab = ba$$

2. Сочетательное (ассоциативное).

$$(a+b) + c = a + (b+c)$$

$$(ab)c = a(bc)$$

3. Распределительное.

$$c(a+b) = ac + cb$$

Делитель а - это число, на которое а делится без остатка.

Кратное а - это всякое число, которое делится на а без остатка.

Простое число - это число, не имеющее никаких других делителей, кроме единицы и себя. ($\overline{\text{составное число}}$)

Простых чисел имеется бесконечное множество.

Разложение числа на простые множители взаимно однозначно.

Взаимно простые числа - это числа, не имеющие общих делителей.

Чётное число - это число, кратное 2. (нечётное число)

Число 2 - единственное чётное простое число.

Признаки делимости в 10-й системе счисления:

- 1. Признак делимости на 2: последняя цифра в записи числа выражает чётное число.
- 2. Признак делимости на 3: сумма цифр записи числа делится на 3.
- 3. Признак делимости на 4: последние две цифры в записи числа выражают число, делящееся на 4.
- 4. Признак делимости на 5: последняя цифра в записи числа является 0 или 5.
- 5. Признак делимости на 9: сумма цифр записи числа делится на 9.

Наибольший общий делитель (НОД) а и b:

(a,b)

Наименьшее общее кратное (НОК) а и b:

$$(a,b)[a,b] = ab$$

5.2 Целые числа (**Z**)

$$N \in \mathbb{Z}$$

Целое алгебраическое выражение - это алгебраическое выражение, в котором используют только сложение, вычитание, умножение.

Положительное число - это число, большее нуля.

Отрицательное число - это число, меньшее нуля.

Противоположные числа - это числа, отличающиеся знаком.

$$a - b = a + (-b)$$

$$a(-b) = -ab$$

$$\begin{cases}
|x| = x \\
x \ge 0 \\
|x| = -x \\
x < 0
\end{cases}$$

5.3 Рациональные числа (Q)

$$Z\in Q$$

Рациональное число - это число, представимое в виде $\frac{a}{b}$, где числитель $a \in Z$, а знаменатель $b \in N$.

Рациональные числа образуют поле.

Арифметические (рациональные) действия: сложение, вычитание, умножение, деление.

Рациональное алгебраическое выражение - это алгебраическое выражение, в котором используют только рациональные действия.

Дробное алгебраическое выражение - это рациональное алгебраическое выражение, в записи которого используют деление на буквенные выражения.

Алгебраическая дробь - это это алгебраическое выражение, имеющее вид частного от деления двух целых алгебраических выражений.

Дробное число - это рациональное число, числитель которого не делится на знаменатель нацело.

Целая часть числа - это наибольшее целое число, не превосходящее данного ([x]) .

Дробная часть числа - это разность между данным числом и его целой частью ((x))

$$x - [x] \ge 0$$

$$x - [x] < 1$$

Разложение рационального числа на сумму целой и дробной частей взаимно однозначно.

Десятичная дробь - это дробь, у которой знаменатель представляет собой натуральную степень числа 10.

Всякое рациональное число может быть представленно бесконечной десятичной периодической дробью взаимно однозначно.

5.4 Иррациональные числа (I)

Всякое иррациональное число может быть представленно бесконечной десятичной непериодической дробью взаимно однозначно.

Иррациональные алгебраические выражения - это алгебраическое выражение, в записи которого используются знаки радикала из буквенного выражения.

Корень находится в простейшей форме, если:

- 1. Он не содержит иррациональности в знаменателе.
- 2. Нельзя сократить его показатель с показателем подкоренного выражения.
- 3. Все возможные множители вынесены из-под корня.

Подобные корни - это корни, отличающиеся только коэффициентами.

5.5 Действительные числа (R)

 $Q \in R$

 $I \in R$

Действительные числа образуют поле.

Множество действительных чисел упорядочено.

Множество действительных чисел непрерывно.

Всякое деятичное число определяет действительное число взаимно однозначно.

n-ая степень числа a - это произведение n сомножителей, равных a. (a^n) a - основание степени.

n - показатель степени.

Возведение отрицательного числа в иррациональную степень не определено.

Возведение нуля в не положительную степень не определено.

$$a^x = a^y \longrightarrow x = y$$

Корень n-ой степени из числа a - это число, n-ая степень которого равна a. ($\sqrt[n]{a}$)

Извлечение корня степени из а - это отыскание корня из а.

Арифметический корень (арифметическое значение корня) - это положительный корень чётной степени из положительного числа.

Корень чётной степени по умолчанию арифметический.

$$\begin{cases} \sqrt[n]{a^n} = a \\ n \text{ - нечётное.} \end{cases}$$

$$\begin{cases} \sqrt[n]{a^n} = |a| \\ n \text{ - чётное.} \end{cases}$$

Квадратный корень:

$$\sqrt[2]{x} = \sqrt{x}$$

Кубический корень:

$$\sqrt[3]{x}$$

$$\sqrt[b]{x^a} = x^{\frac{a}{b}}$$

Логарифм числа N по основанию а - это показатель степени, в которую нужно возвести a, чтобы получить N.

$$\begin{cases} a^{\log_a N} = N \\ N > 0 \\ a > 0 \\ a \neq 1 \end{cases}$$

Если число и основание логарифма лежат по одну сторону от единицы, то этот логарифм положителен, и наоборот.

Потенцирование - это возведение числа, от которого взят логарифм, в этот логарифм.

Если основание больше единицы, то большее число имеет больший логарифм.

Если основание меньше единицы, то большее число имеет меньший логарифм.

Десятичный логарифм - это логарифм по основанию 10.

$$\log_{10} N = \lg N$$

Характеристика - это целая часть десятичного логарифма.

Мантиса - это дробная часть десятичного логарифма.

Открытый интервал (a; b) - это множество действительных чисел x, удовлетворяющих неравествам $a < x \le b$.

Окрестность точки \mathbf{x_0}~(\mathbf{x_0}-\mathbf{h};\mathbf{x_0}+\mathbf{h}) - это интервал длины 2h серединой x_0 .

Замкнутый интервал [a; b] - это множество действительных чисел x, удовлетворяющих неравенствам $a \le x \le b$.

Полуоткрытый интервал [a; b) или (a; b] - это множество действительных чисел x, удовлетворяющих неравенствам a < x < b или a < x < b соответственно.

Бесконечный интервал $(\mathbf{a};\infty)$, или $[\mathbf{a};\infty)$, или $(\infty;\mathbf{b})$, или $(\infty;\mathbf{b})$, или $(\infty;\mathbf{b})$, или $(\infty;\infty)$ - это множество действительных чисел x, удовлетворяющих a < x , или $a \le x$, или x < b , или x < x , или x < x

5.6 Комплексные числа (С)

 $R \in C$

Комплексные числа образуют поле.

Комплексное число:

$$z = a + bi$$

а - действительная часть

b - мнимая часть или коэффициент при мнимой единице.

$$i^2 = -1$$

$$z_1 = z_1$$
, если $a_1 = a_2$ и $b_1 = b_2$.

$$a_1 = a_2$$
 и $b_1 = b_2$, если $z_1 = z_2$.

Чисто мнимое число - это комплексное число, у которого действительная часть равна нулю.

Комплексно сопряжённые числа z и \overline{z} - это два комплексных числа, действительные части которых равны, а мнимые противоположны.

$$z = \overline{\overline{z}}$$

$$z\overline{z} = a^2 + b^2$$

Абсолютная величина (модуль) z:

$$|z| = \sqrt{z\overline{z}}$$

$$\overline{z_1} + \overline{z_2} = \overline{(z_1 + z_2)}$$

$$\overline{z_1 z_2} = \overline{(z_1 z_2)}$$

Алгебраическая форма комплексного числа:

$$z = a + bi$$

18

Тригонометрическая форма комплексного числа:

$$z = r(\cos\phi + i\sin\phi)$$

 $\begin{array}{l} {\bf r} \text{ - модуль.} \\ \phi \text{ - аргумент.} \end{array}$

Главное значение аргумента:

argz

$$\begin{cases} argz \ge 0 \\ argz < 2\pi \end{cases}$$

$$z_1 z_2 = r_1 r_2 (\cos(\phi_1 + \phi_2) + i \sin(\phi_1 + \phi_2))$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\phi_1 - \phi_2) + i\sin(\phi_1 - \phi_2))$$

Формула Муавра:

$$z^n = r^n(\cos n\phi + i\sin n\phi)$$