AME40453 - Automation and Controls C8 Pre-Lab Assignment

Please refer to the lab handout for the following questions. Express your answers as algebraic equations written on a separate sheet of paper, and show your work. Then, transcribe the equations into your lab notebook.

- 1. Consider a pendulum with zero applied torque $\tau = 0$.
 - a. Sketch the solution $\theta(t) = e^{-\lambda t} \sin(\omega_d t)$ to Eq. (1) of the handout.
 - b. Describe an experimental method to measure λ . (Hint: Think back to the baseball bat in Lab I.)
- 2. Consider a pendulum at rest at some desired angle or "set-point" θ_S . Derive an equation for the applied motor torque τ_S necessary to maintain that angle.
- 3. Write the function $mgR\sin(\theta)$ as a first order Taylor series expansion about the point $\theta = \theta_S$.
- 4. Write an approximate version Eq. (1) of the handout using the first order Taylor series you just derived.
- 5. Express the equation of motion as a linear system of first order differential equations using the new variable substitution $\dot{\theta} = \omega$ and $\ddot{\theta} = \dot{\omega}$.
- 6. Tie it all together now: Rewrite the linear system of differential equations in LQR form $\dot{x} = Ax + Bu$ where $x = \begin{bmatrix} \theta \theta_S \\ \omega \end{bmatrix}$ and $u = \tau \tau_S$. In particular, what are A and B in terms of m, g, R, and γ ?
- 7. Use the lqr() method in Matlab to calculate the gains k_p and k_d (units of Nm/rad and Nms/rad, respectively) for a pendulum with R = 0.15m, m = 0.05 kg, $\lambda = 0.7$ s⁻¹, and a set point $\theta_S = 30^\circ$.
 - -Set \mathbf{R} as the 1x1 identity matrix and \mathbf{Q} as the 2x2 identity matrix.
 - -The units of k_p and k_d should come out as Nm/radian and Nms/radian, respectively.
 - -Save the Matlab script to the C8 folder in your code library.
- 8. The matrix **R** represents the "cost" of actuation, while **Q** represents the "cost" of error in the controller $u = \tau \tau_S$. If you want to limit actuation, make it more expensive by increasing **R**. If you want to limit the error $u = \tau \tau_S$, then increase **Q**.
 - a. Repeat the previous problem with $\mathbf{R} = [10]$ and $\mathbf{Q} = \mathbf{I}$ (the identity matrix). Will this increase or decrease large spikes in motor current/torque?
 - b. Repeat the previous problem with $\mathbf{R} = [1]$ and $\mathbf{Q} = 10\mathbf{I}$ (10 times the identity matrix). Will this increase or decrease large spikes in motor current/torque?

- c. The motor we will use in lab has a limit on how much torque it can output. Look at the torque-speed curve for the motor in Appendix C. What is the maximum torque output?
- d. Note that the proportional feedback gives a motor torque $\tau \approx k_p(\theta_S \theta)$. Assume the error $(\theta_S \theta) \approx 1$ radian, use the maximum torque from the torque-speed curve, and estimate the maximum value for k_p .
- e. Trying to drive the motor above the maximum torque will cause huge problems. To avoid this, we want to increase the "cost" of actuation \mathbf{R} . Adjust the value of \mathbf{R} in your Matlab script until you get down near the maximum value of k_p that you just estimated. What value of \mathbf{R} is a good enough to sufficiently limit the torque?
- f. Repeat 8c, d, and e for the slightly larger motor in Appendix D.