Mix-up based on data valuation score (2)

-Summary-

• Based on [Repairing NN by Leaving the Right Past Behind, NeurIPS 2022], we can try similar method for diagnosing which mixup samples are conflicting with test samples.

- Notation for algorithms:
 - \mathcal{F} : failure set (wrong test samples after training)
 - C: failure cause (training samples which contributes model to make failure set F after training) $\subset D$
 - \mathcal{D} : training set / \mathcal{D}_{test} : test set

- Step 1 : Failure set ${\mathcal F}$ identification
 - Train the model and check which test samples get wrong ightarrow set these test set as ${\mathcal F}$

- Step 2 : Failure cause $\mathcal C$ identification (when mixup is not used, follow original paper)
 - We want to observe the impact on model's prediction on failure set \mathcal{F} by deleting a subset of training set $\mathcal{C} \subset \mathcal{D} : \rightarrow$ observe the change of $r(\mathcal{C})$

$$r(\mathcal{C}) \coloneqq \log p(\mathcal{F}|\mathcal{D} - \mathcal{C}) - \log p(\mathcal{F}|\mathcal{D})$$

where
$$p(\mathcal{F}|\mathcal{D}) = \int p(\mathcal{F}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathcal{D})d\boldsymbol{\theta}, \ p(\mathcal{F}|\mathcal{D}\setminus\mathcal{C}) = \int p(\mathcal{F}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathcal{D}\setminus\mathcal{C})d\boldsymbol{\theta}, \ p(\mathcal{F}|\boldsymbol{\theta}) = \prod_{(\boldsymbol{x},y)\in\mathcal{F}} p(y|\boldsymbol{x},\boldsymbol{\theta})$$

- Step 2 : Failure cause \mathcal{C} identification [detailed descriptions are skipped]
 - Using i.i.d modeling assumption and Bayes' rule, we get following:

$$r(\mathcal{C}) = \log \mathbb{E}_{p(\boldsymbol{\theta}|\mathcal{D},\mathcal{F})}[p(\mathcal{C}|\boldsymbol{\theta})^{-1}] - \log \mathbb{E}_{p(\boldsymbol{\theta}|\mathcal{D})}[p(\mathcal{C}|\boldsymbol{\theta})^{-1}]$$

Note :
$$r(\mathcal{C}) = F(1, p(\theta|\mathcal{D}, \mathcal{F})) - F(1, p(\theta|\mathcal{D}))$$
, where $F(\epsilon, g(\theta)) = log \int g(\theta) e^{-\epsilon log p(\mathcal{C}|\theta)} d\theta$

- By using Taylor expansion : (Apply 1st order Taylor approx. on $F(\epsilon, g(\theta))$ around $\epsilon = 0$) $\hat{r}(\mathcal{C}) \coloneqq \mathbb{E}_{p(\theta|\mathcal{D})}[\log p(\mathcal{C}|\theta)] \mathbb{E}_{p(\theta|\mathcal{D},\mathcal{F})}[\log p(\mathcal{C}|\theta)]$
- Assume that data are i.i.d sampled and define z = (x, y), then

$$\hat{r}(\mathcal{C}) = \sum_{\mathbf{z} \in \mathcal{C}} \hat{r}(\mathbf{z})$$

where
$$\hat{r}(z) = \mathbb{E}_{p(\theta|\mathcal{D})}[\log p(z|\theta)] - \mathbb{E}_{p(\theta|\mathcal{D},\mathcal{F})}[\log p(z|\theta)], \quad p(z|\theta) = p(y|x,\theta)$$

- Step 2 : Failure cause C identification [detailed descriptions are skipped]
 - Note that $\hat{r}(z) = \mathbb{E}_{p(\boldsymbol{\theta}|\mathcal{D})}[\log p(\boldsymbol{y}|\boldsymbol{\theta},\boldsymbol{x})] \mathbb{E}_{p(\boldsymbol{\theta}|\mathcal{D},\mathcal{F})}[\log p(\boldsymbol{y}|\boldsymbol{\theta},\boldsymbol{x})]$ (# z = (x,y)) whose computation is only valid when there is no mixup (mixed OH encoding vector)
 - But, the fundamental idea is to observe the difference of log-prediction at each sample z before and after the training the failure set \mathcal{F} .

Note:
$$H(y^{mix}, p(x^{mix}|\theta)) = -\lambda logp(y_i|\theta, z^{mix}) - (1-\lambda)logp(y_j|\theta, z^{mix})$$

- For mixup, we change the metric $\log p(\mathbf{z}|\boldsymbol{\theta}) \to H(\mathbf{y}^{mix}, p(\mathbf{x}^{mix}|\boldsymbol{\theta}))$ [cross entropy] $\hat{r}(\mathbf{z}^{mix}) = \mathbb{E}_{p(\boldsymbol{\theta}|\mathcal{D},\mathcal{F})}[H(\mathbf{y}^{mix}, p(\mathbf{x}^{mix}|\boldsymbol{\theta})] \mathbb{E}_{p(\boldsymbol{\theta}|\mathcal{D})}[H(\mathbf{y}^{mix}, p(\mathbf{x}^{mix}|\boldsymbol{\theta})]$
 - When the additional training of failure set \mathcal{F} con flicts the prediction of x^{mix} , then $\hat{r}^{mix}(z^{mix})$ should be high.
 - If the training does not conflict much, then $\hat{r}^{mix}(\mathbf{z}^{mix})$ should be low.

Mixup data valuation – Algorithm (Whole)

Mixup data valuation – Algorithm (Train)

Mixup data valuation – Observation (real data)

• Exponential α - scheduler : ($\alpha = 1$ at the half of the epochs, where $\alpha \in (0, 10)$)

Note

- 1. Easy / Hard scheduler can be fine-tuned by observing the validation accuracy and modify the shape manually.
- 2. Early stopping is suggested to resolve intrinsic sub-optimal optimization of mix-up training.

Mixup data valuation – Observation (real data)

• Test accuracy for each dataset (using scheduler):

Epoch = 600 / 400 (Reg)	CIFAR-10	CIFAR-100	STL-10	Caltech-101	DTD	Aircraft	Tiny- Imagenet
Baseline	95.22	78.61	77.43	79.60	21.38	79.52	59.53
Mixup ($lpha=1$)	96.41	80.08	86.6	82.63	28.40	83.80	60.86
Regmixup ($lpha=20$)	96.61	80.45	85.58	83.22	24.83	83.23	62.51
Easy scheduler	95.92	80.07	86.2	85.03	30.85	83.65	61.22
Hard scheduler	96.11	78.92	84.01	82.09	24.31	79.48	59.75
Easy-Hard-Easy scheduler	95.93	80.21	85.20	84.48	30.31	83.20	60.78
ES at epoch 400	95.20	79.63	86.48	86.81	30.53	84.87	60.14
$+\hat{r}(z)$ (whole, test)	95.68 (95.87)	79.38 (79.38)	86.81 (87.10)	85.59 (85.82)	24.73 (26.06)	82.93 (83.74)	-
$-\hat{r}(z)$ (whole, test)	96.44 (96.88)	81.37 (82.56)	87.73 (88.40)	86.44 (89.01)	30.21 (31.65)	84.61 (85.87)	61.94 (64.0)
$+\hat{r}(z)$ (TR/ $lpha=1$)	95.33	77.7	78.24	83.60	20.05	77.78	-
$-\hat{r}(z)$ (TR/ $lpha=1$)	96.62	81.55	89.02	84.59	31.43	85.93	62.04
$-\hat{r}(z)$ (TR/ $lpha$ =Hard)	96.76	81.21	88.68	86.82	32.23	85.98	-
whole $\hat{r}(z)$ (TR/ $\alpha=1$)	96.12	80.43	88.13	83.56	30.71	85.68	-

Mixup data valuation – Observation (real data)

• Test accuracy for each dataset (using scheduler):

All results are averaged values by 2 trials

Epoch = 600 / 400 (Reg)	CIFAR-10	CIFAR-100	STL-10	Caltech-101	DTD	Aircraft	Tiny- Imagenet
Baseline	95.22	78.61	77.43	79.60	21.38	79.52	59.53
Mixup ($lpha=1$)	96.41	80.08	86.6	82.63	28.40	83.80	60.86
Mixup ($\alpha = 1$, 1200ep)	96.34	79.54	85.78	84.32	32.18	84.58	-
Regmixup ($\alpha=20$)	96.61	80.45	85.58	83.22	24.83	83.23	62.51
Regmixup ($lpha=20$, 1200ep)	96.60	79.84	88.78	86.35	33.67	85.92	-
Easy scheduler	95.92	80.07	86.2	85.03	30.85	83.65	61.22
Hard scheduler	96.11	78.92	84.01	82.09	24.31	79.48	59.75
ES at epoch 400	95.20	79.63	86.48	86.81	30.53	84.87	60.14
$-\hat{r}(z)$ (TR/ $lpha$ =Easy)	96.34	81.07	89.85	86.43	35.21	85.68	-
$-\hat{r}(z)$ (TR/ $lpha=1$) T: Regmix (1200ep)	96.29	80.64	88.56	86.43	29.09	85.53	-
$-\hat{r}(z)$ (TR/ $lpha=20$) T: Regmix (1200ep)	96.59	80.80	90.56	85.59	31.80	85.77	-

Easy scheduler: scheduler parameter is optimized manually by observing validation accuracy with trials and errors

- Algorithm goal: reduce the (mix-up) training loss per sample lower than the teacher model.
 - When $\hat{r}(z^{mix}) \leq 0$: z^{mix} is included / When $\hat{r}(z^{mix}) > 0$: z^{mix} is excluded

Problems:

- Q1: Around at 500 epoch (out of 600 epoch), the student model starts to perform better than the teacher model ⇒ Is it reasonable for the student to be guided from teacher?
- Q2 : It is known that mix-up training leads to regularize input gradient $\|\nabla_x f_{\theta}(x)\|_2$ [Zhang, 2020], and **eventually leads to wrong optimal** θ **if the model is overtrained** with mix-up (at least in regression problem) \to The goal of our algorithm is desirable?

- Q1: Is it reasonable for the student to be guided from teacher (at the end tail of epochs)?
- 1st solution: Stop guiding around epoch 400.
 - \rightarrow Unfortunately, this method leads to performance drop (Ex : DTD : 31% -> 29%) + The sudden drop of test accuracy is observed when guiding is stopped.

Note: Unfortunately, there seems no meaningful correlation between EL2N score and $\hat{r}(z^{mix})$ values.

- 2^{nd} solution: Use easy α scheduler to effectively use the guide training from Teacher model.
 - Empirically, it turned out that $|\hat{r}(z^{mix})|$ is usually bigger as $\lambda \to 0.5$

dtd / Distribution of (Higher EL2N, Lower EL2N, λ) (Bottom, Quant) Bottom random k Bottom random k (Projected) Higher EL2N score (quantile)

Distribution of (Higher EL2N, Lower EL2N , λ) (Top, Quant) Epoch: 580

Tail 100 of each negative (Bottom) / positive (Top) samples' λ , EL2N distribution

Note: Unfortunately, there seems no meaningful correlation between EL2N score and $\hat{r}(z^{mix})$ values.

- 2^{nd} solution: Use easy α scheduler to effectively use the guide training from Teacher model.
 - Empirically, it turned out that $|\hat{r}(z^{mix})|$ is usually bigger as $\lambda \to 0.5$

Top random k (Projected)

Higher EL2N score (quantile)

0.2

Center 100 of each negative (Bottom) / positive (Top) samples' λ , EL2N distribution

- 2^{nd} solution: Use easy α scheduler to effectively use the guide training from Teacher model.
 - This implies there are more 'loss difference' (decision difference) between Student and Teacher model about r^{mix} with $\lambda \cong 0.5$.

• To amplify the effect of guidance by teacher, it is intuitive to suggest mix-up samples with $\lambda \to 0.5$ (or $\alpha = 20$), which will be filtered out based on loss difference.

• But, the problem is that we do not trust the guidance after 500 epoch (due to higher performance of student) \rightarrow reduce $\lambda \rightarrow 0$ to minimize the effect of guidance.

- $2^{\rm nd}$ solution: Use easy α scheduler to effectively use the guide training from Teacher model.
 - Another problem to be resolved :
 - We figured out that there are certain types of dataset which favors High λ mix-up training. (Such as CIFAR-10, Tiny-Imagenet)
 - In this case, the easy tail of α scheduler can degrade the generalization performance at the end.

Epoch = 600 / 400 (Reg)	CIFAR-10	Epoch = 600 / 400 (Reg)	CIFAR-10
Baseline	95.22	Easy scheduler	95.92
Mixup ($\alpha=1$)	96.41	Hard scheduler	96.11
Mixup ($lpha = 1$, 1200ep)	96.34	$+\hat{r}(z)$ (TR/ $lpha=1$)	95.33
Regmixup ($lpha=20$)	96.61	$-\hat{r}(z)$ (TR/ $lpha=1$)	96.62
Regmixup ($lpha=20$, 1200ep)	96.60	$-\hat{r}(z)$ (TR/ $lpha$ =Hard)	96.76
$-\hat{r}(z)$ (TR/ $lpha$ =Easy)	96.34	whole $\hat{r}(z)$ (TR/ $lpha=1$)	96.12

Mixup data valuation – Q1-SideNote

- (Appendix): How can we grasp the intensity of guidance effect from Teacher?
 - One idea is to check the cardinality of $-\hat{r}(z^{mix})$ along epochs

Intuitive way:

• When the # of $-\hat{r}(z^{mix})$ < the # of $+\hat{r}(z^{mix})$ (*): We can treat the Student model as a more generalized one.

Experimental results:

- However, the Student model outperforms even before the condition (*) satisfied.
- In this experiment, the Student outperforms Teacher around 500 epoch.

(Appendix): What happen if we change the Student into more wider one?

If we change the Student model → EfficientNet V2 (S), the test accuracy gap was 5% on DTD dataset.

Mix-up ($\alpha = 1$) 20.69 $-\hat{r}(z)$ (TR/ $\alpha = 1$) 25.32

 But, this result might not be followed from the guidance effect, rather from increased # of iterations on our algorithm.

- Q2: The goal of our algorithm is desirable? (framework from [Z. Liu, 2023])
 - Consider simple least square regression problem with data (X,Y), and let $f: \mathcal{X} \to \mathcal{Y}$ be the ground-truth labelling function.
 - Let $(\widetilde{X},\widetilde{Y})$ be a synthetic pair obtained by mixing (X,Y) and (X',Y'), and set synthesized training dataset $\widetilde{S} = \left\{ \left(\widetilde{X}_i, \widetilde{Y}_i \right) \right\}_{i=1}^m$
 - Consider a random feature model: $\theta^T \phi(X)$ where $\phi: \mathcal{X} \to \mathbb{R}^d$ and $\theta \in \mathbb{R}^d$ (Note that ϕ is fixed and only θ is learned by SGD)
 - Define MSE loss as follows:

$$\widehat{R}_{\widehat{S}}(\theta) = \frac{1}{2m} \left\| \theta^T \widetilde{\Phi} - \widetilde{Y}^T \right\|_2^2$$
 where $\widetilde{\Phi} = \left[\phi \left(\widetilde{X}_1 \right), \dots, \phi \left(\widetilde{X}_m \right) \right] \in \mathbb{R}^{d \times m}$ and $\widetilde{Y} = \left[\widetilde{Y}_1, \widetilde{Y}_2, \dots, \widetilde{Y}_m \right] \in \mathbb{R}^m$

- Q2: The goal of our algorithm is desirable? (framework from [Z. Liu, 2023])
 - Our SGD update rule is as follows:

$$\dot{\theta} = -\eta \nabla \hat{R}_{\tilde{S}}(\theta) = \frac{\eta}{m} \widetilde{\Phi} \widetilde{\Phi}^T (\widetilde{\Phi}^{\dagger} \widetilde{Y} - \theta)$$

where η is learning rate, and $\widetilde{\Phi}^{\dagger}$ is pseudo inverse of $\widetilde{\Phi}^{T}$.

Lemma 5.1 from [Z. Liu, 2023]

Let $\theta^* = \widetilde{\Phi}^{\dagger} \widetilde{Y}$ and $\theta^{noise} = \widetilde{\Phi}^{\dagger} Z$, where $Z = [Z_1, ... Z_m] \in \mathbb{R}^m$ (where $Z \coloneqq \widetilde{Y} - \widetilde{Y}^*$ and $\widetilde{Y}^* = f(\widetilde{X})$), the above ODE has the following closed form solution:

$$\theta_t - \theta^* = (\theta_0 - \theta^*)e^{-\frac{\eta}{m}\widetilde{\Phi}\widetilde{\Phi}^T t} + \left(I_d - e^{-\frac{\eta}{m}\widetilde{\Phi}\widetilde{\Phi}^T t}\right)\theta^{noise}$$

• Hence, as $t \to \infty$, $\theta_{\infty} = \theta^* + \theta^{noise}$, which leads to wrong solution under mix-up.

• To resolve this problem, two paper [Z. Liu, 2023], [D.Zou, 2023] suggest the early-stop of mix-up

Figure 6: Switching from Mixup training to ERM training. The number in the bracket is the epoch number where we let $\alpha=0$ (i.e. Mixup training becomes ERM training).

- Claim from papers: There exists an appropriate early stopping time of mixup to avoid generalization degradation.
 - 1. If the switch is too early \rightarrow may not boost model performance (: small regularization),
 - 2. If the switch is too late \rightarrow memorization of noisy data happen \rightarrow degrade generalization.

• Similarly, [D.Zou, 2023] proved that the early-stop of mix-up can be helpful for efficient learning of rare features in a given dataset.

Figure 2: Common feature learning and rare feature learning on synthetic data, all experiments are conducted using full-batch gradient descent. Here we consider three training methods: standard training, Mixup training, and Mixup training with early stopping (at the 10000-th iteration).

Hypothesis to be verified

- Our algorithm can benefit the model by boosting the rare feature learning (due to guidance of Teacher)
- Hard→ Easy mix-up transition by easy α scheduler can potentially act as a smoothed version of Early stopping.

Side note:

We may interpret the increase of noise term as the model's GraNd score differentiation ability

- But, why does the mix-up works well even if the model converges t
 - From [J. Zhang, 2021], it turns our that large-scale NN can generalize well without having the gradient norm vanish during training (implying no convergence to stationary points), which is a tremendous gap between theory and practice.

Figure 1. The validation accuracy and the quantities of interest (1) for the default training schedule of ImageNet + ResNet101 experiment.

where **GradNorm**: $\|\nabla_{\theta} L_S(\theta_k)\|_2 \coloneqq \|\frac{1}{N} \sum_{i=1}^N \nabla_{\theta} l(f(x^i, \theta_k), y_i)\|_2$, and

Noise:
$$\sigma(\theta_k) \coloneqq \sqrt{\frac{1}{N} \sum_{i=1}^{N} ||\nabla L_S(\theta_k) - \nabla_{\theta} l(f(x^i, \theta_k), y^i)||_2^2}$$

Mixup data valuation - Summary

- 1. The mix-up method followed by guide of Teacher mix-up model can benefit the generalization performance of Student model for several datasets.
- 2. To resolve deteriorate guide from Teacher at the end tail of epoch, Easy α scheduler is adopted, which might not be optimal strategy for Student model.
- 3. While mix-up boosts the generalization performance model, overtraining can lead to wrong optimal solution.
- 4. For the solution, Two papers claim that Early-stopping of mix-up is beneficial to reduce the above effect, and the success of mix-up can be attributed to the non-vanishing Gradient Norm, which is a tremendous gap between theory and practice.

Mixup data valuation (Ablations)

- Questions to be resolved:
 - 1. Does the accuracy gain come from 'filtering' strategy?
 - 2. If yes, what is the role of filtering in mix-up?
 - 3. How the roles can contribute to the accuracy gain?

- Question 1 : Does the accuracy gain come from 'filtering' strategy?
 - Method 1 (Ideal method): when the Teacher is trained by (train set + test set)
 - Method 2 (Our method): when the Teacher is only trained by (train set)
 - → First, check whether the filtering effect exists or not in Method 1.

• Experiment environment :

3-layer NN (786 - 300 - 100 - 10) w/ Cosine annealing lr scheduler | FashionMNIST (20%)

Results (Method 1):

- Teacher (100 ep): 93.29% (acc) | 0.245 (NLL loss)
- Student w/ low filter outperforms student w/ high filter by 1% (acc), 0.04(NLL loss)
- Clearly, Student w/ high filter degrades even compared to the (original training) baseline (86.88 (acc), 0.51(NLL loss))
- This indicates when Method 1 (ideal Teacher) is adopted, the filter can guide mix-up strategy.

• Method 2: when the Teacher is only trained by (train set)

Results (Method 2):

- Teacher (100 ep): 87.27% (acc) | 0.397 (NLL loss)
- The low filtering begins to being not effective.
- But, clearly, Student w/ high filter degrades even compared to the (original training) baseline (86.88 (acc), 0.51(NLL loss))
- This indicates the Teacher model trained by train set only may not guide the mix-up strategy well.

Question 2: what is the role of filtering in mix-up?

• The main effect of mix-up is to regularize $\nabla_x f_{\theta}(x)$ and $\nabla_x^2 f_{\theta}$

Method 1	Mix-up (Teacher)	Guided (All)	Guided (Low)
Weight norm	18.7557	20.2712	19.9560
$\mathbb{E}_{x}[\ \nabla_{x}l(x,\theta)\]$	0.7590	0.3177	0.3635

Method 2	Mix-up (Teacher)	Guided (All)	Guided (Low)
Weight norm	19.0546	20.2883	19.9803
$\mathbb{E}_{x}[\ \nabla_{x}l(x,\theta)\]$	0.7472	0.3144	0.3542

- Does the mix-up indeed regularize input gradient in practice?
 - Maybe no; [MixupE, 2022] points out the regularization effect of mix-up can be wrong (+ suggest direct method to regularize 1st order regularization term, but the performance is worse than RegMixUp)

According to MixupE:

$$L_n^{mix}(\theta, S) = L_n^{std}(\theta, S) + \frac{\mathbb{E}_{\lambda}[a(\lambda)]}{n} \sum_{i=1}^n \left(g(f_{\theta}(x_i)) - y_i \right)^T \nabla f_{\theta}(x_i) (\bar{x} - x_i) + 2^{nd} \text{ term}$$

• Problem:

Note
$$q(x_i)$$
: = $\left(g\left(f_{\theta}(x_i)\right) - y_i\right)^T \nabla f_{\theta}(x_i)(\bar{x} - x_i)$

$$= \sum_{k=1}^d \alpha_{k,i} \|\nabla f_k(x_i)\|_2 \|\bar{x} - x_i\|_2$$
But, $\alpha_{k,i}$ can be negative in practice, which leads to maximize $\|\nabla f_k(x_i)\|_2$.

Figure 2: Minimum value of α over the coordinate k and sample i for different iterations during the training.

• Then, how [Zhang, 2021] explains the generalization performance of Mixup?

Lemma 3.1. Consider the loss function $l(\theta,(x,y)) = h(f_{\theta}(x)) - yf_{\theta}(x)$, where $h(\cdot)$ and $f_{\theta}(\cdot)$ for all $\theta \in \Theta$ are twice differentiable. We further denote $\tilde{\mathcal{D}}_{\lambda}$ as a uniform mixture of two Beta distributions, i.e., $\frac{\alpha}{\alpha+\beta}Beta(\alpha+1,\beta) + \frac{\beta}{\alpha+\beta}Beta(\beta+1,\alpha)$, and \mathcal{D}_X as the empirical distribution of the training dataset $S = (x_1, \cdots, x_n)$, the corresponding Mixup loss $L_n^{mix}(\theta, S)$, as defined in Eq. (1) with $\lambda \sim D_{\lambda} = Beta(\alpha,\beta)$, can be rewritten as

$$L_n^{\textit{mix}}(\theta,S) = L_n^{\textit{std}}(\theta,S) + \sum_{i=1}^3 \mathcal{R}_i(\theta,S) + \mathbb{E}_{\lambda \sim \tilde{\mathcal{D}}_{\lambda}}[(1-\lambda)^2 \varphi(1-\lambda)],$$

where $\lim_{a\to 0} \varphi(a) = 0$ and

$$\mathcal{R}_1(\theta, S) = \frac{\mathbb{E}_{\lambda \sim \tilde{\mathcal{D}}_{\lambda}}[1 - \lambda]}{n} \sum_{i=1}^{n} (h'(f_{\theta}(x_i)) - y_i) \nabla f_{\theta}(x_i)^{\top} \mathbb{E}_{r_x \sim \mathcal{D}_X}[r_x - x_i],$$

$$\mathcal{R}_2(\theta, S) = \frac{\mathbb{E}_{\lambda \sim \tilde{\mathcal{D}}_{\lambda}}[(1 - \lambda)^2]}{2n} \sum_{i=1}^n h''(f_{\theta}(x_i)) \nabla f_{\theta}(x_i)^{\top} \mathbb{E}_{r_x \sim \mathcal{D}_X}[(r_x - x_i)(r_x - x_i)^{\top}] \nabla f_{\theta}(x_i),$$

$$\mathcal{R}_3(\theta, S) = \frac{\mathbb{E}_{\lambda \sim \tilde{\mathcal{D}}_{\lambda}}[(1 - \lambda)^2]}{2n} \sum_{i=1}^n (h'(f_{\theta}(x_i)) - y_i) \mathbb{E}_{r_x \sim \mathcal{D}_X}[(r_x - x_i)\nabla^2 f_{\theta}(x_i)(r_x - x_i)^\top].$$

Lemma 3.3. Consider the centralized dataset S, that is, $1/n\sum_{i=1}^n x_i = 0$. and denote $\hat{\Sigma}_X = \frac{1}{n}x_ix_i^{\top}$. For a GLM, if $A(\cdot)$ is twice differentiable, then the regularization term obtained by the second-order approximation of $\tilde{L}_n^{mix}(\theta, S)$ is given by

$$\frac{1}{2n} \left[\sum_{i=1}^{n} A''(\theta^{\top} x_i) \right] \cdot \mathbb{E}_{\lambda \sim \tilde{\mathcal{D}}_{\lambda}} \left[\frac{(1-\lambda)^2}{\lambda^2} \right] \theta^{\top} \hat{\Sigma}_X \theta, \tag{7}$$

where $\tilde{\mathcal{D}}_{\lambda} = \frac{\alpha}{\alpha + \beta} Beta(\alpha + 1, \beta) + \frac{\alpha}{\alpha + \beta} Beta(\beta + 1, \alpha)$.

Note:

- $A(\theta^T x) = \log(1 + e^{\theta^T x})$ for logistic loss, which has $A''(\theta^T x) > 0$ always.
- By lemma, we can consider the following function class:

$$\mathcal{W}_{\gamma} \coloneqq \left\{ x \to \theta^T x : \mathbb{E}_{x} \left[A'' \left(\theta^T x \right) \cdot \theta^T \Sigma_{X} \theta \right] \leq \gamma \right\}$$

• Then, how [Zhang, 2021] explains the generalization performance of Mixup?

Theorem 3.4. Assume that the distribution of x_i is ρ -retentive, and let $\Sigma_X = \mathbb{E}[xx^{\top}]$. Then the empirical Rademacher complexity of W_{γ} satisfies

$$Rad(\mathcal{W}_{\gamma}, S) \leq \max\{(\frac{\gamma}{\rho})^{1/4}, (\frac{\gamma}{\rho})^{1/2}\} \cdot \sqrt{\frac{rank(\Sigma_X)}{n}}.$$

Note:

- ρ -retentive : for any non-zero vector v, $\left[\mathbb{E}_x \left[A''(x^T v)\right]^2 \ge \rho \cdot \min\left\{1, \mathbb{E}_x \left(v^T x\right)^2\right\}$ (achievable if weight is bounded)
- Compare to the baseline function class : $\mathcal{W}_{\gamma}^{ridge} \coloneqq \{x \to \theta^T x : \|\theta\|^2 \le \gamma\}$ (achieved by I2 regularization):

$$Rad\left(\mathcal{W}_{r}^{ridge}, S\right) \leq \max\left\{\left(\frac{\gamma}{\rho}\right)^{\frac{1}{4}}, \left(\frac{\gamma}{\rho}\right)^{\frac{1}{2}}\right\} \cdot \sqrt{\frac{p}{n}}$$

- If $rank(\Sigma_X) \le p$ is much smaller than p, then the mix-up strategy can generalized better than 12 regularization.
- One explainable method via this theorem is to use contrastive learning and apply mix-up at linear evaluation.

- Then, what is the good explanation for improved generalization performance in mix-up?
 - ⇒ [D.Zou, 2023] proved that the early-stop of mix-up can be helpful for efficient learning of rare features in a given dataset.

Figure 2: Common feature learning and rare feature learning on synthetic data, all experiments are conducted using full-batch gradient descent. Here we consider three training methods: standard training, Mixup training, and Mixup training with early stopping (at the 10000-th iteration).

Model : 2-layer CNN w/ logit: $F_k(W;x) = \sum_{p=1}^P \sum_{r=1}^m \left(< w_{k,r}, x^{(p)} > \right)^2$ where $x = \left(x^{(1)}, \dots, x^{(P)} \right) \in \mathbb{R}^{d \times P}$, and m = network width Feature learning metric: $\sum_{r=1}^m \left(< w_{1,r}, v > \right)^2 \text{ (Common)}$ $\sum_{r=1}^m \left(< w_{1,r}, v' > \right)^2 \text{ (Rare)}$

(Side-Note) How to generate data?

Definition 3.1. Let \mathcal{D} denote the data distribution, from which a data point $(\mathbf{x}, y) \in \mathbb{R}^{dP} \times \{1, 2\}$ is randomly generated as follows:

- 1. Generate $y \in \{1, 2\}$ uniformly.
- 2. Generate \mathbf{x} as a vector with P patches $\mathbf{x} = (\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(2)}) \in (\mathbb{R}^d)^P$, where
 - Feature Patch. One patch, among all P patches, will be randomly selected as the feature patch: with probability 1ρ for some $\rho \in (0, 1)$, this patch will contain a common feature (\mathbf{v} for positive data, \mathbf{u} for negative data); otherwise, this patch will contain a rare feature (\mathbf{v}' for positive data, \mathbf{u}' for negative data).
 - Feature Noise. For all data, a feature vector from $\alpha \cdot \{\mathbf{u}, \mathbf{v}\}$ is randomly sampled and assigned to up to b patches.
 - Noise patch. The remaining patches (those haven't been assigned with a feature or feature noise) are random Gaussian noise $\sim N(\mathbf{0}, \sigma_p^2 \cdot \mathbf{H})$, where $\mathbf{H} = \mathbf{I} \frac{\mathbf{u}\mathbf{u}^\top}{\|\mathbf{u}\|_2^2} \frac{\mathbf{v}\mathbf{v}^\top}{\|\mathbf{v}\|_2^2} \frac{\mathbf{u}'\mathbf{u}'^\top}{\|\mathbf{v}'\|_2^2} \frac{\mathbf{u}'\mathbf{u}'^\top}{\|\mathbf{u}'\|_2^2}$.

How about our current algorithms' feature learning performance?

Crucial to find a method to improve both common feature / rare feature learning.
 (+ guided method fails in terms of feature learning)