1 Phase 2 Project : King County Housing Sales Data Set -Linear Regression ¶

Author: Jhonathan David Herrera-Shaikh

- Student pace: Flex
- Scheduled project review date/time: October, 2022
- · Instructor name:
- Blog post URL:www.jhonathanddavid.com (http://www.jhonathanddavid.com)

2 Background

In this notebook, an analysis of King County sales data in the United States for years 2014-2015 will be conducted. The purpose of the analysis is to derive conclusions for business decision making purposes, affecting current homeowners and prospective buyers of this specific area. King county, is one of three Washington state counties that include Seattle, Bellevue and Tacoma area. It covers an area of of approximately 39 towns and cities. U.S Census Bureau stats indicate the county has a population of approximately 2.2 million people as of 2020.

3 Business Understanding & Business Problem

Understanding that my business stakeholder can be a real estate agency, who would want to advice both buyers and sellers on this market, it is important to note that in this type of business, both buyers and sellers are interested in price. Therefore, it is important to understand the database first, navigage its features, identify what other categories besides price are available to try to define and predict what exactly is the best correlation to price.

4 Database Analysis

4.1 Download data bases and libraries

```
In [1]: #importing libraries
        import pandas as pd
        # setting pandas display to avoid scientific notation in my dataframes
        pd.options.display.float_format = '{:.2f}'.format
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import sklearn
        from bs4 import BeautifulSoup
        import json
        import requests
        import folium
        import statsmodels.api as sm
        from statsmodels.formula.api import ols
        from statsmodels.stats import diagnostic as diag
        from statsmodels.stats.outliers_influence import variance_inflation_factor
        from sklearn.metrics import r2 score
        from sklearn.linear_model import LinearRegression
        from sklearn.neighbors import NearestNeighbors
        from sklearn.model selection import train test split
        from sklearn.metrics import mean squared error, r2 score, mean absolute err
        from sklearn.pipeline import Pipeline
        from sklearn.linear model import LinearRegression
        from sklearn.model selection import cross val score
        from sklearn.metrics import mean absolute error, mean squared error, r2 scor
        from sklearn.preprocessing import PolynomialFeatures, StandardScaler, OneHo
        import scipy.stats as stats
        import pylab
        %matplotlib inline
```

```
In [2]: #loading database
df= pd.read_csv('data/kc_house_data.csv')
df
```

Out[2]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	water
0	7129300520	10/13/2014	221900.00	3	1.00	1180	5650	1.00	
1	6414100192	12/9/2014	538000.00	3	2.25	2570	7242	2.00	
2	5631500400	2/25/2015	180000.00	2	1.00	770	10000	1.00	
3	2487200875	12/9/2014	604000.00	4	3.00	1960	5000	1.00	
4	1954400510	2/18/2015	510000.00	3	2.00	1680	8080	1.00	
21592	263000018	5/21/2014	360000.00	3	2.50	1530	1131	3.00	
21593	6600060120	2/23/2015	400000.00	4	2.50	2310	5813	2.00	
21594	1523300141	6/23/2014	402101.00	2	0.75	1020	1350	2.00	
21595	291310100	1/16/2015	400000.00	3	2.50	1600	2388	2.00	
21596	1523300157	10/15/2014	325000.00	2	0.75	1020	1076	2.00	

21597 rows × 21 columns

4.2 Exploring and cleaning the database

In [3]: #exploring the head and tail
df.head()

Out[3]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront
0	7129300520	10/13/2014	221900.00	3	1.00	1180	5650	1.00	NaN
1	6414100192	12/9/2014	538000.00	3	2.25	2570	7242	2.00	NO
2	5631500400	2/25/2015	180000.00	2	1.00	770	10000	1.00	NO
3	2487200875	12/9/2014	604000.00	4	3.00	1960	5000	1.00	NO
4	1954400510	2/18/2015	510000.00	3	2.00	1680	8080	1.00	NO

5 rows × 21 columns

```
In [4]: df.tail()
```

Out[4]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	water
21592	263000018	5/21/2014	360000.00	3	2.50	1530	1131	3.00	
21593	6600060120	2/23/2015	400000.00	4	2.50	2310	5813	2.00	
21594	1523300141	6/23/2014	402101.00	2	0.75	1020	1350	2.00	
21595	291310100	1/16/2015	400000.00	3	2.50	1600	2388	2.00	
21596	1523300157	10/15/2014	325000.00	2	0.75	1020	1076	2.00	

5 rows × 21 columns

```
In [5]: #understanding the shaple df.shape
```

Out[5]: (21597, 21)

In [6]: #understanding columns and data types df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype				
0	id	21597 non-null					
1	date	21597 non-null	object				
2	price	21597 non-null	float64				
3	bedrooms	21597 non-null	int64				
4	bathrooms	21597 non-null	float64				
5	sqft_living	21597 non-null	int64				
6	sqft_lot	21597 non-null	int64				
7	floors	21597 non-null	float64				
8	waterfront	19221 non-null	object				
9	view	21534 non-null	object				
10	condition	21597 non-null	object				
11	grade	21597 non-null	object				
12	sqft_above	21597 non-null	int64				
13	sqft_basement	21597 non-null	object				
14	<pre>yr_built</pre>	21597 non-null	int64				
15	<pre>yr_renovated</pre>	17755 non-null	float64				
16	zipcode	21597 non-null	int64				
17	lat	21597 non-null	float64				
18	long	21597 non-null	float64				
19	sqft_living15	21597 non-null	int64				
20	sqft_lot15	21597 non-null	int64				
dtyp	es: float64(6),	int64(9), objec	t(6)				
memo	memory usage: 3.5+ MB						

```
In [17]: #checking the null values
         df.isnull().sum()
Out[17]: id
                               0
         date
                               0
          price
                               0
          bedrooms
          bathrooms
                               0
          sqft living
                               0
          sqft_lot
                               0
          floors
                               0
         waterfront
                            2376
          view
                              63
         condition
                               0
                               0
          grade
          sqft_above
                               0
          sqft_basement
         yr_built
         yr_renovated
                            3842
          zipcode
                               0
          lat
                               0
          long
                               0
          sqft_living15
                               0
          sqft_lot15
          dtype: int64
```

```
In [7]: #a statistical view
df.describe()
```

Out[7]:

	id	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	sqft_abc
count	21597.00	21597.00	21597.00	21597.00	21597.00	21597.00	21597.00	21597
mean	4580474287.77	540296.57	3.37	2.12	2080.32	15099.41	1.49	1788
std	2876735715.75	367368.14	0.93	0.77	918.11	41412.64	0.54	827
min	1000102.00	78000.00	1.00	0.50	370.00	520.00	1.00	370
25%	2123049175.00	322000.00	3.00	1.75	1430.00	5040.00	1.00	1190
50%	3904930410.00	450000.00	3.00	2.25	1910.00	7618.00	1.50	1560
75%	7308900490.00	645000.00	4.00	2.50	2550.00	10685.00	2.00	2210
max	9900000190.00	7700000.00	33.00	8.00	13540.00	1651359.00	3.50	9410

Now that I know what the database looks like, how big is it, the number of rows and columns, the classification of columns, the kind of data in it overall including a brief os statiscal values and null values, my next step is to clean the data base.

4.2.1 Data initial cleaning of null values, dropping columns

```
In [8]: #starting with dropping rows with null values
        df= df.dropna(axis=0, how='any')
        df.isnull().sum()
Out[8]: id
                          0
        date
                          0
        price
                          0
        bedrooms
                          0
        bathrooms
                          0
        sqft_living
                          0
        sqft_lot
                          0
        floors
                          0
        waterfront
                          0
        view
                          0
        condition
                          0
        grade
                          0
        sqft_above
                          0
        sqft_basement
                          0
        yr built
                          0
        yr_renovated
                          0
        zipcode
                          0
                          0
        lat
                          0
        long
        sqft_living15
                          0
        sqft_lot15
                          0
        dtype: int64
```

```
In [10]: df
```

Out[10]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	wate
1	6414100192	12/9/2014	538000.00	3	2.25	2570	7242	2.00	
3	2487200875	12/9/2014	604000.00	4	3.00	1960	5000	1.00	
4	1954400510	2/18/2015	510000.00	3	2.00	1680	8080	1.00	
5	7237550310	5/12/2014	1230000.00	4	4.50	5420	101930	1.00	
6	1321400060	6/27/2014	257500.00	3	2.25	1715	6819	2.00	
21591	2997800021	2/19/2015	475000.00	3	2.50	1310	1294	2.00	
21592	263000018	5/21/2014	360000.00	3	2.50	1530	1131	3.00	
21593	6600060120	2/23/2015	400000.00	4	2.50	2310	5813	2.00	
21594	1523300141	6/23/2014	402101.00	2	0.75	1020	1350	2.00	
21596	1523300157	10/15/2014	325000.00	2	0.75	1020	1076	2.00	

15762 rows × 21 columns

```
In [12]: #confirming
df.duplicated().sum()
Out[12]: 0
```

4.2.2 Replacing strings with integers

```
In [ ]: df['view1']= df['view'].replace({'NONE': 0, 'FAIR': 1, 'Average':2, 'Good':
In [37]: df['waterfront1'] = df['waterfront'].replace({'YES':0, 'NO':1})
In [39]: df['condition1'] = df ['condition'].replace({'Poor':0, 'FAIR':1, 'Average':
```

4.2.3 Modifying to columnumerical

```
In [ ]: #splitting and going numerical for 'grade' column will allow better stat an
    df["Grade1"]= df ["grade"].str.split().apply(lambda x:x[0])
    df["Grade1"]= pd.to_numeric(df["Grade1"])
```

4.2.4 Dropping unnecessary columns

```
In [14]: df = df.drop(columns=['view', 'waterfront', 'grade'])
```

4.2.5 Statiscal findings

```
In [15]: #square footage understanding overall
         df['sqft_living'].describe()
Out[15]: count
                    835.00
         mean
                   2917.57
         std
                   1608.54
         min
                    370.00
         25%
                   1785.00
         50%
                   2570.00
         75%
                   3756.50
         max
                  13540.00
         Name: sqft_living, dtype: float64
         On average, houses are 2,084 square feet (SF). But there is a house as
         small as 370 SF and as big as 13,540 SF
In [16]: #looking at the zipcodes in King County
         df['zipcode'].value counts()
Out[16]: 98001
                   43
         98092
                   41
         98030
                   37
         98006
                   33
         98053
                   29
                   . .
                    2
         98007
         98108
                    2
                    2
         98155
         98148
                    1
         98188
                    1
         Name: zipcode, Length: 70, dtype: int64
```

```
In [17]: #statistical correlations to price
         df.corr()['price'].sort_values(ascending=False)
Out[17]: price
                          1.00
         sqft_living
                          0.79
                          0.72
         sqft above
         Grade1
                          0.68
         bathrooms
                          0.67
         sqft_living15
                         0.55
         bedrooms
                          0.41
         lat
                          0.33
                          0.21
         floors
         yr_renovated
                        0.18
         sqft_lot
                         0.13
         sqft_lot15
                         0.11
         long
                         0.06
         id
                        -0.02
         zipcode
                        -0.05
         yr built
                        -0.05
         Name: price, dtype: float64
```

The highest correlation to price can be found in square feet, grade and bathrooms.

4.2.6 Observing correlations on a heat map

```
In [18]:
              # generate heatmap to display correlations
               corr = df.corr()
               f, ax = plt.subplots(figsize=(12, 8))
               sns.heatmap(corr, annot=True);
                                                                                                                                -1.0
                                  -0.018 -0.015 -0.083 -0.055 -0.17 | 0.029 -0.054 0.00030.0027 -0.008-0.0053-0.028 -0.023 -0.16 -0.068
                       price --0.018
                                         0.41
                                                    0.79
                                                         - 0.8
                   bedrooms -0.015
                                                                          0.19 -0.012 -0.18 0.0053 0.22
                                                        0.027 0.34
                                                                                                           0.029
                  bathrooms --0.083
                                                    0.83
                                                         0.19 0.44
                                                                          0.33 0.059 -0.17 0.14 0.24
                  saft living -0.055
                                   0.79
                                              0.83
                                                    1
                                                         0.24 0.31
                                                                    0.94
                                                                          0.17 0.075 -0.18 0.18 0.28 0.76
                                                                                                                                - 0.6
                                  0.13 0.027 0.19 0.24
                                                          1
                                                             0.0071 0.24 0.064 -0.02 -0.073 0.057 0.25 0.13 0.87 0.21
                                                   0.31 0.0071
                                                                1
                                                                          0.46 -0.093 -0.045 0.11 0.13 0.31 0.0097 0.42
                      floors
                                                                                                                                - 0.4
                                                         0.24 0.41
                                                                          0.27 0.016 -0.22 0.14 0.34 0.79
                                              0.81 0.94
                     yr built -0.0003-0.051 0.19 0.33 0.17 0.064 0.46 0.27
                                                                               -0.28 -0.36 -0.22
                                                                                                                                - 0.2
                yr renovated -0.0027 0.18 -0.012 0.059 0.075 -0.02 -0.093 0.016 -0.28
                                                                                     0.12 0.0088 -0.14 -0.046 -0.0140.0049
                     zipcode -0.008-0.048 -0.18 -0.17 -0.18 -0.073 -0.045 -0.22 -0.36 0.12
                                                                                           0.28
                                                                                                 -0.39 -0.25 -0.092 -0.17
                         lat -0.0053 0.33 0.0053 0.14 0.18 0.057 0.11 0.14 -0.22 0.0088 0.28
                                                                                                                                - 0.0
                       long -0.028 0.064 0.22 0.24 0.28 0.25 0.13 0.34 0.34 -0.14 -0.39
                                                                                                      0.42
                sqft_living15 -0.023 0.55 0.51 0.64 0.76
                                                         0.13 0.31 0.79
                                                                          0.27 -0.046 -0.25
                                                                                           0.14
                                                                                                            0.13 0.78
                                                                                                                                - -0.2
                                   0.11 0.029 0.17
                                                    0.22
                                                         0.87 0.0097 0.22 0.072 -0.014 -0.092 0.064
                   sqft lot15 -
                                                                                                                 0.18
                                                         0.21 0.42
                                                    0.84
                                                                          0.31 0.0049 -0.17
                     Grade1 --0.068
                              р
                                                                                                            sqft_lot15
                                               bathrooms
                                                                                                 ong
                                                                                                       sqft_living15
                                                                                            <u>at</u>
                                                                                                                  Grade1
```

5 Regression analysis and visualizations

```
In [19]: fig, ax = plt.subplots(1, 2,figsize=(7,6))

sns.histplot(df['price'], ax=ax[0])
ax[0].set_title('Original')
sns.histplot(np.log(df['price']), ax=ax[1])
ax[1].set_title('Adjusting log')
plt.show()
```


In [23]: # visualize the relationship between the predictors and the target (price)
fig, axs= plt.subplots (1,3, sharey= True, figsize=(18,6))
for idx, channel in enumerate (['sqft_living', 'Gradel', 'bathrooms']):
 df.plot(kind= 'scatter', x=channel, y='price', ax=axs[idx], label=chann
plt.legend()
plt.show()

In [36]: # look for the outlier on the far right of sf living
df.loc[df['sqft_living']== 13540].T

Out[36]:

	12764
id	1225069038
date	5/5/2014
price	2280000.00
bedrooms	7
bathrooms	8.00
sqft_living	13540
sqft_lot	307752
floors	3.00
condition	Average
sqft_above	9410
sqft_basement	4130.0
yr_built	1999
yr_renovated	0.00
zipcode	98053
lat	47.67
long	-121.99
sqft_living15	4850
sqft_lot15	217800
Grade1	12

In [37]: # drop this record by using the record the index df.drop(12764, inplace=True)

```
In [48]: #exploring other correlations
    df_pairplot = df[['price','sqft_living','sqft_above','Gradel','bathrooms']]
    sns.pairplot(df_pairplot)
    plt.show()
```


It can be concluded that the highest correlation to price are sqft_living, sqft_above,grade 1 and bathrooms.

Visualizing these relationships we can see the linearity. We can take these relationships and run the model, the first one I would like to pick is sqft_living since it is the most linear to me.

5.0.1 Running a simple regression in Stats model with SF as a predictor

```
In [30]: # import libraries
   import statsmodels.api as sm
   import statsmodels.formula.api as smf
# build the formula
   f = 'price~sqft_living'

# create a fitted model in one line
   model=smf.ols(formula=f, data=df).fit()
```

5.0.2 Regression Diagnostics Summary

```
In [31]: model.summary()
```

Out[31]:

OLS Regression Results

Dep. Va	ariable:		pric	e	R-squ	ared:	0.	.631
	Model:		OL	S Adj	Adj. R-squared:			.630
N	Method: Least Squares		s	F-statistic:			423.	
	Date:	Sat,	29 Oct 202	9 Oct 2022 Prob (F-statistic):		2.21e-	182	
	Time:		16:08:3	7 Log	-Likelih	ood:	-12 ⁻	127.
No. Observ	ations:		83	5		AIC:	2.426e	+04
Df Res	siduals:		83	3		BIC:	2.427e	+04
Df	Model:			1				
Covariance Type:			nonrobus	st				
	c	oef	std err	1	P> t	l	[0.025	0.975]
Intercept	-3.755e	+05	3.53e+04	-10.648	0.000	-4.4	45e+05	-3.06e+05
sqft_living	399.3	236	10.587	37.719	0.000) 3	78.544	420.103

Omnibus: 395.468 Durbin-Watson: 1.918

Prob(Omnibus): 0.000 Jarque-Bera (JB): 4905.344

Skew: 1.820 **Prob(JB):** 0.00

Kurtosis: 14.302 **Cond. No.** 6.90e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.9e+03. This might indicate that there are strong multicollinearity or other numerical problems.

5.0.3 Drawing a prediction line X(square feet living) and Y(price)

```
sqft_living
0 370
1 13540
0 -227744.63
1 5031347.07
dtype: float64
```


5.0.4 Visualize error term for variance and heteroscedasticy

```
In [34]: fig = plt.figure(figsize=(15,8))
    fig = sm.graphics.plot_regress_exog(model, "sqft_living", fig=fig)
    plt.show()
```


5.0.5 Checking for normality assumptions by creating QQ plots

```
In [35]: # Code for QQ-plot here
import scipy.stats as stats
residuals =model.resid
sm.graphics.qqplot (residuals, dist=stats.norm, line='45', fit=True)
plt.show()
```


5.0.6 Repeating the above also for Grade as a predictor

```
In [46]: # code for model, prediction line plot, heteroscedasticity check and QQ nor
         #step 1 through 3 is looking at database as a whole.
         #Step 4 run Simple regression on radio only, just we did on TV only
         f='price~Grade1'
         model= smf.ols(formula=f, data=df).fit()
         print ('R-Squared', model.rsquared)
         print (model.params)
         #get regression diagnostics
         model.summary()
         #Step 6 Draw a prediction line on scatter plot
         X new= pd.DataFrame({'Grade1':[df.Grade1.min(),df.Grade1.max()]});
         preds= model.predict(X new)
         df.plot(kind='scatter', x='Grade1', y='price');
         plt.plot(X new,preds, c='red', linewidth=2);
         plt.show()
         #Visualize error term for variance Heteroscedasticity
         fig= plt.figure(figsize=(15,8))
         fig = sm.graphics.plot regress exog(model, "Grade1", fig=fig)
         plt.show()
         #Normality check with QQ Plot
         import scipy.stats as stats
         residuals= model.resid
         fig=sm.graphics.qqplot(residuals, dist=stats.norm, line='45', fit=True)
```

R-Squared 0.4652008564849478 Intercept -1981572.05 Gradel 325851.16 dtype: float64

student - Jupyter Notebook Regression Plots for Grade1 Y and Fitted vs. X Residuals versus Grade1 price resid 8 Grade1 Partial regression plot CCPR Plot 1.0 e(price | X) 0 e(Grade1 | X) 12 8 Sample Quantiles 2 0

8

6

5.0.7 Exploring more Correlations & Regression

4 Theoretical Quantiles

ż

ò

```
In [56]: sns.scatterplot(data =df,x = 'bathrooms',y= 'price',hue ='Grade1');
```


number of bathrooms is positively correlated to price and it also helps us to conclude that the better the grade of a house, the more expensive it is

5.0.8 Creating X in a train and test models

```
In [58]: X = df[['sqft_living','sqft_above','bathrooms','bedrooms','Grade1']]
y = df['price']

In [59]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, ra)

In [60]: sqft = LinearRegression()
sqft.fit(X_train[['sqft_living']], y_train)
sqft.score(X_train[['sqft_living']], y_train)
y_hat_train = sqft.predict(X_train[['sqft_living']])
y_hat_test = sqft.predict(X_test[['sqft_living']])
```

```
In [61]: plt.figure(figsize=(10,6))
    plt.subplot(1,2,1)
    plt.scatter(X_train[['sqft_living']], y_train, color = "blue")
    plt.plot(X_train[['sqft_living']], y_hat_train)
    plt.xlabel('sqft_living')
    plt.ylabel('price')
    plt.title('train')

plt.subplot(1,2,2)
    plt.scatter(X_test[['sqft_living']], y_test, color = "green")
    plt.plot(X_test[['sqft_living']], y_hat_test)
    plt.xlabel('sqft_living')
    plt.ylabel('price')
    plt.title('test');
```


Both train and set with linear correlation

```
In [75]: reg = sm.add_constant(X, has_constant='add')
  model = sm.OLS(y, X)
  result1 = model.fit()
  result1.summary()
```

Out[75]:

OLS Regression Results

0.829	R-squared (uncentered):	price	Dep. Variable:
0.828	Adj. R-squared (uncentered):	OLS	Model:
803.4	F-statistic:	Least Squares	Method:
6.86e-315	Prob (F-statistic):	Sat, 29 Oct 2022	Date:
-12070.	Log-Likelihood:	17:54:14	Time:
2.415e+04	AIC:	834	No. Observations:
2.417e+04	BIC:	829	Df Residuals:

Df Model: 5

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
sqft_living	563.3322	32.620	17.270	0.000	499.305	627.359
sqft_above	-151.8250	36.106	-4.205	0.000	-222.695	-80.955
bathrooms	7.487e+04	3.03e+04	2.470	0.014	1.54e+04	1.34e+05
bedrooms	-1.476e+05	1.96e+04	-7.521	0.000	-1.86e+05	-1.09e+05
Grade1	-1.164e+04	1.01e+04	-1.147	0.252	-3.16e+04	8280.837

Omnibus: 368.835 Durbin-Watson: 1.910

Prob(Omnibus): 0.000 Jarque-Bera (JB): 3688.194

Skew: 1.736 **Prob(JB):** 0.00

Kurtosis: 12.699 **Cond. No.** 8.51e+03

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The condition number is large, 8.51e+03. This might indicate that there are strong multicollinearity or other numerical problems.

R-Squared indicates almost 83% can be explained by the model. The p-value less than 5% so we can reject null hypothesis and say that this model is statistically significant.

5.0.9 Checking the Normality Residual pattern

In [76]: qqplot = sm.qqplot(result1.resid,line ='s',dist=stats.norm)

5.0.10 Distributing the Data Normally

```
In [79]: | h = np.log(df['price'])
         reg = sm.add_constant(X, has_constant='add')
         model = sm.OLS(h, X)
         result2 = model.fit()
         result2.summary()
```

Out[79]:

OLS Regression Results

0.987	R-squared (uncentered):	price	Dep. Variable:
0.987	Adj. R-squared (uncentered):	OLS	Model:
1.295e+04	F-statistic:	Least Squares	Method:
0.00	Prob (F-statistic):	Sat, 29 Oct 2022	Date:
-1518.7	Log-Likelihood:	18:01:20	Time:
3047.	AIC:	834	No. Observations:
3071.	BIC:	829	Df Residuals:
		5	Df Model:

nonrobust Covariance Type:

	coef	std err	t	P> t	[0.025	0.975]
sqft_living	-0.0004	0.000	-3.871	0.000	-0.001	-0.000
sqft_above	-0.0010	0.000	-8.527	0.000	-0.001	-0.001
bathrooms	0.0531	0.097	0.547	0.585	-0.138	0.244
bedrooms	0.7180	0.063	11.415	0.000	0.595	0.841
Grade1	1.6621	0.033	51.100	0.000	1.598	1.726

Omnibus: 55.755 **Durbin-Watson:** 1.920 75.390 Prob(Omnibus): 0.000 Jarque-Bera (JB): Skew: 0.562 **Prob(JB):** 4.26e-17 3.953 Cond. No. 8.51e+03 Kurtosis:

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The condition number is large, 8.51e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In [80]: qqplot = sm.qqplot(result2.resid,line ='s',dist=stats.norm)

The R-Squared at 98% when the data is normally distributed

6 Conclusion

The model that I've constructed provides understanding of the relationships of features to price. It explains more than 83% of the sales prices. It is clear that that for people wanting to buy or wanting to sell in King's County, the main factor in affecting house value is the square footage.