STANISLAS Exercices

Intégration sur un intervalle quelconque

PSI

2021-2022

Chapitre V

I. Intégration sur un segment

Exercice 1. (🗷) Étudier la fonction $f: x \mapsto \int_0^x \lfloor t \rfloor dt$ sur \mathbb{R}_+ .

 $\int_0^{\infty} x^p (1-x)^q \, \mathrm{d}x.$

1. Déterminer une relation entre $I_{p,q}$ et $I_{p+1,q-1}$.

2. Exprimer la valeur de $I_{p,q}$ à l'aide de factorielles.

Exercice 3. (\triangle) Montrer qu'il n'existe pas de fonction q continue sur [0,1]telle que pour tout $x \in [0,1]$, $\int_0^1 \max\{x,t\} g(t) dt = 1$.

Exercice 4. (\mathscr{P}) [TPE] Pour tout $x \in \mathbb{R}_+^*$, on pose $f(x) = \int_{-t}^{3x} \frac{\cos t}{t} dt$. Calculer $\lim_{x\to 0} f(x)$.

Exercice 5. Soit f une fonction deux fois dérivable définie sur [0,1] telle que $f'' \leq 0$. En commençant par étudier le cas où $f'\left(\frac{1}{2}\right) = 0$, montrer que $\int_0^1 f(t) dt \leqslant f\left(\frac{1}{2}\right)$.

Exercice 6. Déterminer les limites des suites suivantes.

1.
$$u_n = \sin \frac{\pi}{n} \sum_{k=0}^n \tan \frac{k\pi}{4n}$$
.

1.
$$u_n = \sin \frac{\pi}{n} \sum_{k=0}^{n} \tan \frac{k\pi}{4n}$$

2. $u_n = \sum_{k=1}^{n-1} \frac{1}{\sqrt{(n+k)(n+k+1)}}$

2.
$$u_n = \sum_{k=1}^{n-1} \frac{k=0}{\sqrt{(n+k)(n+k+1)}}$$

II. Convergence d'intégrales - Intégrabilité

Exercice 7. Étudier l'intégrabilité, en fonction des paramètres éventuels, des fonctions sur les domaines indiqués. On suppose a > -1.

1.
$$x \mapsto \frac{\ln(1+ax^2)}{x^2}$$
 sur $]0,1]$

3.
$$x \mapsto \frac{\ln(x)}{1+x^2} \text{ sur }]0, +\infty[$$

1.
$$x \mapsto \frac{\ln(1+ax^2)}{x^2} \text{ sur }]0,1]$$

2. $x \mapsto \frac{\ln(|1-x|)}{\sqrt{|x|}(1+x^2)},]-\infty,0]$
3. $x \mapsto \frac{\ln(x)}{1+x^2} \text{ sur }]0,+\infty[$
4. $x \mapsto \frac{\sin(x)}{x^2 \ln^2(x)} \text{ sur } [2,+\infty[$

4.
$$x \mapsto \frac{\sin(x)}{x^2 \ln^2(x)} \text{ sur } [2, +\infty[$$

Exercice 8. [ENSAM] Soit $f: x \mapsto \frac{1}{x\sqrt{x^2-1}}$ définie sur $]1, +\infty[$.

1. Étudier et tracer la fonction f.

Pour tout entier naturel n, on pose $S_n = \sum_{k=n+1}^{+\infty} \frac{1}{k\sqrt{k^2-n^2}}$. **2.** Étudier la convergence et la limite de la suite (S_n) .

3. Même question avec la suite (nS_n) .

Exercice 9. (Intégrales de Fresnel) Déterminer la nature de

$$\int_0^{+\infty} \cos(t^2) dt et \int_0^{+\infty} \sin(t^2) dt$$

Exercice 10. [CCP] Donner la nature des intégrales

$$\mathbf{1.}\ I = \int_0^{+\infty} \frac{\mathrm{e}^{\sin(t)}}{t} \,\mathrm{d}t$$

2.
$$J = \int_0^{+\infty} \sin(t) \sin\left(\frac{1}{t}\right) dt$$

Exercice 11. Soit f: $\mathbb{R}_+ \to \mathbb{R}$ une fonction continue telle que $\int_{0}^{+\infty} f(t) dt$ converge. Montrer que, pour tout réel x positif, $\int_{0}^{+\infty} e^{-xt} f(t) dt \text{ converge.}$

Exercice 12. [ENSAM] Soit f une fonction de classe \mathscr{C}^2 sur \mathbb{R}_+ et à valeurs réelles. On suppose que f et f'' sont de carrés intégrables. Montrer que f' est de carré intégrable et que

$$\left(\int_0^{+\infty} (f')^2\right)^2 \leqslant \left(\int_0^{+\infty} f^2\right) \left(\int_0^{+\infty} (f'')^2\right)$$

Exercice 13. [Mines] Soit $f(x) = \int_{-t}^{+\infty} \frac{e^{-t}}{t} dt$.

- **1.** Montrer que f est bien définie et dérivable sur $]0, +\infty[$; donner une expression de f'.
- **2.** Trouver un équivalent de f(x) quand x tend vers 0, et quand x tend vers $+\infty$.
- 3. Montrer que f est intégrable et donner une expression de f(x) dx.

III. Calculs d'intégrales

Exercice 14. [ENSAM] Existence et calcul de $I = \int_0^1 \frac{x-1}{\ln(x)} dx$.

Exercice 15. [Mines] Montrer l'existence puis calculer la valeur de $\int_{0}^{+\infty} \frac{\tanh(3x) - \tanh(x)}{x} dx.$

Exercice 16. [CCP] Soient $(a,b) \in \mathbb{R}^2$ tels que a < b et $f \in \mathscr{C}^0([a,b],\mathbb{R})$ telle que pour tout $x \in [a, b]$, f(a + b - x) = f(x).

- 1. Montrer que $\int_a^b t f(t) dt = \frac{a+b}{2} \int_a^b f(t) dt.$ 2. Calculer $\int_0^\pi \frac{1}{1+\cos^2(t)} dt.$

Exercice 17. [CCP] Soient $I = \int_0^{\pi/2} \ln(\sin(t)) dt$ et J = $\int^{\pi/2} \ln(\cos(t)) \, \mathrm{d}t.$

- $\mathbf{1}$. Montrer que I et J sont convergentes et que I=J.
- **2.** Calculer I+J et en déduire I et J.

Exercice 18. (Polynômes d'HERMITE) [TPE] Soit $f: x \mapsto e^{-x^2}$. On rappelle que $\int_{-\infty}^{+\infty} f(x) dx = \sqrt{\pi}$.

1. Montrer qu'il existe un polynôme P_n tel que $f^{(n)}(x) = f(x)P_n(x)$. Préciser le degré, la parité et le coefficient dominant de P_n .

2. Montrer l'existence puis calculer $\int_{-\infty}^{+\infty} f(x) P_n(x) P_m(x) dx$.

Exercice 19. Montrer la convergence et déterminer la valeur des intégrales

1.
$$\int_0^{+\infty} \frac{\mathrm{d}x}{1+x^4}$$
 2. $\int_0^{+\infty} \frac{x \ln(x)}{(1+x^2)^2} \mathrm{d}x$ 3. $\int_0^{+\infty} \frac{x^3 \ln(x)}{(1+x^4)^3} \mathrm{d}x$

$$2. \int_0^{+\infty} \frac{x \ln(x)}{(1+x^2)^2} \mathrm{d}x$$

3.
$$\int_0^{+\infty} \frac{x^3 \ln(x)}{(1+x^4)^3} dx$$

Exercice 20. (Intégrale de GAUSS, ♡)

1. Montrer que

$$\int_0^{\sqrt{n}} \left(1 - \frac{t^2}{n}\right)^n dt \leqslant \int_0^{\sqrt{n}} e^{-t^2} dt \leqslant \int_0^{+\infty} \frac{dt}{\left(1 + \frac{t^2}{n}\right)^n}.$$

2. En déduire que $\int_0^{\sqrt{n}} e^{-t^2} dt \sim \sqrt{n} \int_0^{\pi/2} \cos^{2n+1}(\theta) d\theta$.

En utilisant les intégrales de WALLIS, on montre que $\int_{0}^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

Exercice 21. [Mines] Calculer $\int_{0}^{+\infty} \frac{\sqrt{x \ln(x)}}{(1+x)^2} dx$.

IV. Avec Python

Exercice 22. [Centrale] Pour $n \ge 1$, on pose $I_n = \int_0^{\pi/2} \frac{\sin^2(nx)}{n\sin^2(x)} dx$ et

$$J_n = \int_0^{\pi/2} \frac{\sin^2(nx)}{nx^2} \, \mathrm{d}x.$$

- **1. a)** Justifier l'existence de I_n .
- b) Écrire une fonction Python qui calcule I_n . Conjecturer, à l'aide de l'ordinateur, la valeur de I_n (on ne demande pas de preuve).
- **2. a)** Justifier l'existence de J_n .
- **b)** À l'aide de l'ordinateur, conjecturer la convergence de la suite (J_n) puis la prouver en utilisant I_n .
- c) Justifier l'existence de $\int_{0}^{+\infty} \frac{\sin^2 x}{x^2} dx$ et calculer sa valeur.

Exercices V PSI

Mathématiciens

Wallis John (23 nov. 1616 à Ashford-28 oct. 1703 à Oxford).

GAUSS Johann Carl Friedrich (30 avr. 1777 à Brunswick-23 fév. 1855 à Göttingen).

Fresnel Augustin (10 mai 1788 à Broglie-14 juil. 1827 à Ville d'Avray).

HERMITE Charles (24 déc. 1822 à Dieuze-14 jan. 1901 à Paris).