

X4-Class Power MOSFET™

IXTN400N15X4

N-Channel Enhancement Mode Avalanche Rated

V _{DSS}	=	150V
I _{D25}	=	400A
R _{DS(on)}	≤	2.35 m Ω

miniBLOC, SOT-227 E153432

Symbol T	Test Conditions		Maximum Ratings		
V _{DSS} V _{DGR}	$T_J = 25^{\circ}\text{C to } 175^{\circ}$ $T_J = 25^{\circ}\text{C to } 175^{\circ}$		150 150	V V	
V _{GSS} V _{GSM}	Continuous Transient		± 20 ± 30	V V	
I _{D25} I _{L(RMS)}	$T_c = 25$ °C (Chip C External Lead Curr $T_c = 25$ °C, Pulse		400 200 900	A A A	
I _A E _{AS}	T _c = 25°C T _c = 25°C		200 3	A J	
P_{D}	T _C = 25°C		830	W	
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DS}$	_{SS} , T _J ≤ 150°C	50	V/ns	
T _J T _{JM} T _{stg}			-55 +175 175 -55 +175	°C °C °C	
V _{ISOL}	50/60 Hz, RMS I _{ISOL} ≤ 1mA	t = 1 minute t = 1 second	2500 3000	V~ V~	
M _d	Mounting Torque Terminal Connecti	on Torque	1.5/13 1.3/11.5	Nm/lb.in Nm/lb.in	
Weight			30	g	

	S		
G			
		10)
	9		
			S
		D	

G = Gate	D = Drain
S - Source	

Features

- International Standard Package
- miniBLOC, with Aluminium Nitride Isolation
- Isolation Voltage 2500 V~
- High Current Handling Capability
- Low Q_G
- Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode Power Supplies
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

SymbolTest ConditionsCharacter(T ₁ = 25°C Unless Otherwise Specified)Min.		cteristic Values Typ. Max.				
BV _{DSS}	$V_{GS} = 0V, I_D = 1mA$		150			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 1mA$		2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$				± 200	nA
l _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$	T _J = 150°C			25 2	μA mA
R _{DS(on)}	$V_{GS} = 10V$, $I_D = 100A$, Note	1			2.35	mΩ

Symbol	Symbol Test Conditions Ch		racteristic Values		
$(T_{J} = 25^{\circ}C, l)$	Unless Otherwise Specified)	Min.	Тур.	Max	
g _{fs}	$V_{DS} = 10V, I_{D} = 60A, Note 1$	100	170	S	
R_{Gi}	Gate Input Resistance		1.2	Ω	
C _{iss}			14.5	nF	
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		3.1	nF	
C _{rss}			8.0	pF	
	Effective Output Capacitance				
$C_{o(er)}$	Energy related $\int V_{es} = 0V$		2500	pF	
$\mathbf{C}_{o(tr)}$	Energy related $\begin{cases} V_{GS} = 0V \\ V_{DS} = 0.8 \bullet V_{DSS} \end{cases}$		9400	pF	
t _{d(on)}			40	ns	
t,	Resistive Switching Times		22	ns	
t _{d(off)}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		180	ns	
t _f	$R_{\rm G} = 1\Omega$ (External)		8	ns	
$Q_{g(on)}$			430	nC	
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		100	nC	
Q _{gd}			100	nC	
R _{thJC}				0.18 °C/W	
R _{thCS}			0.05	°C/W	

Source-Drain Diode

Symbo	Symbol Test Conditions Characteristic Value		c Values	
$(T_{J} = 2)$	5°C, Unless Otherwise Specified) Mi	n. Typ.	Max.	
Is	$V_{GS} = 0V$		400	Α
I _{SM}	Repetitive, Pulse Width Limited by T_{\scriptscriptstyleJM}		1600	Α
V _{SD}	$I_F = 100A$, $V_{GS} = 0V$, Note 1		1.4	V
t _{rr}	$I_{\rm E} = 150A$, -di/dt = 100A/ μ s	175		ns
$\mathbf{Q}_{_{\mathrm{RM}}}$	} '	1.1		μC
I _{RM}	$V_{R} = 100V, V_{GS} = 0V$	12.3		Α

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

I_D - Amperes

©2019 IXYS CORPORATION, All Rights Reserved

IXTN400N15X4

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Output Capacitance Stored Energy

Fig. 14. Forward-Bias Safe Operating Area

Fig. 15. Maximum Transient Thermal Impedance

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.