装订线 答题时不要超过此线

中国科学技术大学 2015-2016 学年第二学期考试试卷(A卷)

考试科目:	电路基本理论	得分:
'5 M/IT II •	电阳坐平压化	1477・

一、填空题(每题5分,共30分)

1 电路如图 1-1 所示,图中电阻 $R = _____$, 4Ω 电阻消耗的功率为

2 直流稳态电路如图 1-2 所示,电路中电容的储能为_____,电感的

储能为_____

3 电路如图 1-3 所示,已知 $R_L = 1\Omega$,理想变压器的匝数比 $n = _____$ 时,电阻 R_L 可获得最大功率,最大功率为_____

图 1-4

4 电路如图 1-4 所示,开关 S 闭合时,端口等效电感 $L_{eq} =$ ______, 开关 S 断开时,端口等效电感 $L_{eq} =$ _____ 5 电路如图 1-5 所示,正弦电压源 u_s 有效值为 220 V,频率 $f=50\,\mathrm{Hz}$,若向 R、 L 负载提供有功功率 $P=55\,\mathrm{W}$,无功功率 $Q=55\sqrt{3}\,\mathrm{var}$,则电阻 R= ______,电感 L= ______

6 电路如图 1-6 所示,已知 $R=100\Omega$, $L=2\,\mathrm{mH}$, $C=0.04\,\mu\mathrm{F}$,则该电路的谐振角频率 $ω_0=$ ______,谐振时端口等效电阻 $R_0=$ ______

- 二、计算题(每题14分,共70分)
- 1 电路如图 2-1 所示, 求电路中两个独立电源各自发出的功率。

2 电路如图 2-2 所示, 网络 N 为线性含源电阻网络, 已知当 $R = 4\Omega$ 时, U = 4V, I = 1.5 A; 当 $R = 12\Omega$ 时, U = 6V, I = 1.75 A。(1) 求 ab 左侧电路的戴维南等效电路; (2) 求 R 为何值时 I = 1.9 A?

- ${f 3}$ 正弦稳态电路如图 2-3 所示,定义网络函数 $H({f j}\omega)=\dot{U}_2/\dot{U}_1$,令 $\omega_0=1/(RC)$ 。
 - (1) 求 $H(j\omega)$ 并定性画出幅频和相频特性曲线;(2)求该网络的截止角频率。

4 电路如图 2-4 所示,开关 S 原是接通的,t=0 时突然断开。用三要素法求换路后电容电压 u_C ,并指出 u_C 的零输入响应分量和零状态响应分量。

5 电路如图 2-5 所示,已知二端口网络 N 的导纳参数矩阵为 $Y(s) = \begin{bmatrix} 1.5 + 0.5s & 0 \\ -1.5 & 1.5 + 0.5s \end{bmatrix}$ 。(1) 若 $i_s(t) = \delta(t)$ A,求单位冲激响应 $u_2(t)$;(2)

若 $i_s(t) = \cos 3t \,\mathrm{A}$,求正弦稳态响应 $u_2(t)$ 。

$$i_{S} \xrightarrow{i_{1}} \underbrace{\begin{array}{c}i_{2}\\+\\u_{1}\\-\end{array}} 0.5 \,\mathrm{F}$$

$$\boxtimes 2-5$$

装订线 答题时不要超过此线

中国科学技术大学 2016-2017 学年第二学期考试试卷(A卷)

考试科目: 电路基本理论	得分:
学生所在院系:	_姓名: 学号:
一、填空题(每题5分,共30	分)
1 电路如图 1-1 所示,电阻 $R_L = $	时可获得最大功率,最大功率为
$\begin{array}{c c} \hline 2\Omega & 2\Omega \\ \uparrow 1A & 2\Omega \\ & + \\ & -6V \\ \hline $ 图 1-1	I_{S1} U_1 V_2 V_3 V_4 V_5 V_5 V_6 V_8
2 电路如图 1-2 所示, N 为线性	不含独立源网络,当 $I_{S1}=2$ A, $I_{S2}=0$ 时, I_{S1} 输
出功率为 10W, 且 $U_2 = 6$ V; 当	$I_{S1} = 0, I_{S2} = 3A$ 时, I_{S2} 输出功率为 24W ,且
$U_1 = 10 \text{V}$ • $\stackrel{\triangle}{=} I_{S1} = 2 \text{A}, I_{S2} = 3 \text{A} \stackrel{\triangle}{=} $	同作用时电流源 I_{S1} 输出的功率为,
电流源 I _{s2} 输出的功率为	
3 电路如图 1-3 所示,已知开关 8	S 断开时,端口等效电感 $L_{eq}=8\mathrm{H}$ 。则开关 S 团
合时,端口等效电感 $L_{eq}=$,互感的耦合系数 k =
$L \Rightarrow L \Rightarrow S$	S5H

4 电路如图 1-4 所示,该电路的谐振角频率 $\omega_0 =$ ______,品质因数 Q = ______

图 1-4

图 1-3

5 电路如图 1-5 所示,双口网络的传输参数矩阵 A=_______,

混合参数矩阵 H=______

6 电路如图 1-6 所示,当频率 f = 50 Hz 时,(a)、(b)两电路等效,则图(b)中电阻 $R = _____$,电容 $C = _____$

- 二、计算题 (每题 14 分, 共 70 分)
- 1 电路如图 2-1 所示,求各受控电源发出的功率。

2 电路如图 2-2 所示,已知 $u_{s1}(t) = 24\sqrt{2}\cos 5t$ V, $u_{s2}(t) = 16\sqrt{2}\cos 5t$ V。(1) 画出电路的相量模型;(2)求电流 i_1 、 i_2 和 i_3 。

3 电路如图 2-3 所示,已知端口电压有效值相量 $\dot{U} = 220 \angle 0^{\circ} \text{ V}$,频率 f = 50 Hz,电流有效值 $I_1 = 10 \text{ A}$, $I_2 = 20 \text{ A}$,负载 Z_1 的功率因数为 $\cos \varphi_1 = 0.8$ (容性),负载 Z_2 的功率因数为 $\cos \varphi_2 = 0.5$ (感性)。(1)求并联电容前电路的功率因数;(2)并联电容将电路的功率因数提高至 0.92,求电容 C 的值。

图 2-3

4 电路如图 2-4 所示,电路原处于稳态,t=0时开关 S 闭合,求换路后电容电压 $u_C(t)$ 和电流 $i_1(t)$ 。

5 电路如图 2-5 所示,定义网络函数 $H(s) = U_c(s)/U_s(s)$ 。(1)画出电路的复频域模型,求网络函数 H(s);(2)若 $u_s(t) = [\delta(t) + 2e^{-4t}\varepsilon(t)]$ V,求零状态响应 $u_c(t)$,并指出 u_c 的强制分量和自由分量。

中国科学技术大学 2017-2018 学年第二学期考试试卷(A卷)

考试科目:_	考试科目: 电路基本理论		得分:

一、填空题(每题5分,共30分)

为_____

2 电路如图 1-2 所示,电压源 U_{s_1} 和 U_{s_2} 始终保持不变,当 $I_s=0$ 时,I=2A。

则当 $I_s = 8A$ 时, $I = _____$,8A 电流源发出的功率为_____

3 电路如图 1-3 所示,已知电流源有效值相量 $I_s = 10 \angle 0^\circ \text{A}$,则电压有效值相量

 $\dot{U}_1 =$ ______, $\dot{U}_2 =$ ______

4 电路如图 1-4 所示,已知 $u_s=10\sqrt{2}\cos(5t+15^\circ)$ V,则电压源发出的复功率为

_____, RLC 串联电路的功率因数角为_____

5 电路如图 1-5 所示,已知 $u_{\scriptscriptstyle S}=50\cos(1000t+20^\circ)\,\mathrm{V}$,且 $u_{\scriptscriptstyle S}$ 与i同相位。则电容

图 1-6

当 $u_S = \delta(t)$ V 时,单位冲激响应i =______

二、计算题 (每题 14 分, 共 70 分)

图 1-5

1 电路如图 2-1 所示,(1)求ab端口左侧电路的戴维南等效电路;(2)求电压 U 和电流 I 。

图 2-1

装订线 答题时不要超过此线

3 电路如图 2-3 所示,(1)画出电路的相量模型;(2)求网络函数 $H(j\omega) = \dot{U}_2/\dot{U}_1$; (3) 若 $u_1(t) = 10\sqrt{2}\cos 2t\mathrm{V}$,求正弦稳态响应 $u_2(t)$ 。

4 电路如图 2-4 所示,电路原处于稳态,t=0时开关 S 断开,用三要素法求换路后电感电流 i_L 。

5 电路如图 2-5 所示,电路原处于稳态,t=0时开关 S 闭合。(1)画出电路的 复频域模型;(2)求换路后电容电压 u_C 。

中国科学技术大学 2018-2019 学年第一学期考试试卷(A卷)

	考试科目: 电路基本理论	<u>.</u>	得分	·:
	学生所在院系:	_姓名:_	学号: ₋	
	一、填空题(每题5分,共30	分)		
)	1 电路如图 1-1 所示,图中电压。	$u_1 = _{___}$, $u_2 =$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$)2A	$ \begin{array}{c cccc} + & + & + \\ 2 & & & \downarrow \\ 3 & & & \downarrow \\ 3 & & & & \downarrow \\ 3 & & & & & \downarrow \\ 3 & & & & & \downarrow \\ \end{array} $	R_L
• !	图 1-1		图 1-2	
•	2 电路如图 1-2 所示,当负载电阻	姐 $R_L = $		获得最大功率,
•	最大功率为			
)	3 电路如图 1-3 所示,该电路的记	皆振角频率	$\delta \omega_0 =$,品质因数
	Q =			
	$ \begin{array}{c c} 1\Omega & 2:1 \\ 2 \text{ mH} \\ 10 \mu\text{F} \end{array} $	mH }	$Z_{eq} \Rightarrow j3\Omega$	$\int_{j2\Omega} \int_{*}^{S} 1\Omega$
	图 1-3		图 1-4	
	4 电路如图 1-4 所示,当开关 S 断	开时,端口	等效阻抗 Z _{eq} =	;
)	当开关 S 闭合时,端口等效阻抗	$Z_{eq} = \underline{\hspace{1cm}}$		

5 电路如图 1-5 所示,已知 $u_s(t) = 40\cos(2t + 12.5^\circ)$ V。则 *RC* 串联电路的功率

因数 $\lambda =$ ______,电压源 u_s 发出的复功率 $\widetilde{S} =$ ______

6 电路如图 1-6 所示,已知网络 N 的网络函数 $H(j\omega) = \frac{\dot{U}_2}{\dot{U}_1} = \frac{1}{3+j\omega}$ 。则当

二、计算题 (每题 14分,共70分)

1 电路如图 2-1 所示,网络 N 为线性含源电阻网络,已知当 $I_{S1}=1$ A, $I_{S2}=4$ A 时, $U_1=4$ V;当 $I_{S1}=1$ A, $I_{S2}=0$ 时, $U_1=2$ V;当 $I_{S1}=0$, $I_{S2}=4$ A 时, $U_1=1$ V。求当 $I_{S1}=2$ A, $I_{S2}=8$ A 时电压 U_2 的值。

图 2-1

2 正弦稳态电路如图 2-2 所示,已知 $u_S(t) = 8\sqrt{2}\cos 5t$ V, $i_S(t) = 4\sqrt{2}\cos 5t$ A。
(1) 画出电路的相量模型;(2)求电流 i_1 、 i_2 和i。

 ${f 3}$ 电路如图 2-3 所示,电路原处于稳态,t=0 时开关 S 闭合,求换路后电压 ${f u}_{C}$ 。

4 电路如图 2-4 所示,电路原处于稳态,t=0时开关 S 闭合。(1) 画出电路的 复频域模型; (2) 求换路后电感电流 i_t 。

5 电路如图 2-5 所示, 网络 N 为仅含线性电阻的二端口网络, 已知当 $R\to\infty$ 时, $U_2=7.5$ V; 当 R=0 时, $I_1=3$ A, $I_2=-1$ A。(1)求二端口网络的传输参数矩阵;(2)若电阻 $R=3\Omega$,求电流 I_1 。

图 2-5

中国科学技术大学 2019-2020 学年第一学期考试试卷

考试科目:	电路基本理论	得分:
-------	--------	-----

- 一、填空题(每题5分,共30分)
- 1 电路如图 1-1 所示,当开关 S 断开时,端口等效电阻 $R_{ab} =$ ______,当开关 S 闭合时,端口等效电阻 $R_{ab} =$ _____

2 电路如图 1-2 所示,列出耦合电感时域形式的端口电压电流方程:

3 正弦电流电路如图 1-3 所示,已知 $u_{S}(t)=200\cos100\pi\,\mathrm{V}$,两电流表读数相等。

则电容*C* = ______,电压*u_o* = _____

图 1-3

图 1-4

6 电路如图 1-6 所示,二端口网络的导纳参数矩阵 Y=_____

混合参数矩阵 *H*=______

- 二、计算题(每题14分,共70分)
- 1 电路如图 2-1 所示,求各独立电压源发出的功率。

2 电路如图 2-2 所示,已知电压源有效值相量 $\dot{U}_s = 6\angle 0^\circ \text{V}$,(1)求ab 左侧电路的戴维南等效电路;(2)阻抗 Z_L 为何值时可获得最大功率,求出此最大功率。

图 2-2

3 正弦稳态电路如图 2-3 所示,(1)画出电路的相量模型;(2)求网络函数 $H(j\omega)=\dot{U}_2/\dot{U}_1$;(3)若 $u_1(t)=2\sqrt{2}\cos 2t$ V,求正弦稳态响应 $u_2(t)$ 。

- 4 电路如图 2-4 所示,电路原处于稳态,t=0 时开关 S 从位置 a 合至位置 b。
 - (1) 求换路后电容电压 u_c 和电流i; (2) 求出t为何值时电容的储能为零。

5 电路如图 2-5 所示,电路原处于稳态,t=0 时开关 S 闭合。(1) 画出电路的复 频域模型; (2) 求换路后电流 $i_1(t)$ 。

中国科学技术大学 2020-2021 学年第一学期考试试卷

考试科目: 电路基	本理论	得分:	
学生所在院系:		学号:	

注意事项

- 1 答案请写在试题后空白处,若写不下,可写在试卷背面,写在草稿纸上无效。
- 2 计算题需给出必要的计算步骤,只有结果不得分。
- 一、填空题(每空3分,共24分)
- 1 电路如图 1-1 所示,图中电压 $U = _____$,电流 $I = ______$

- 2 电路如图 1-2 所示,已知耦合电感的耦合系数 k = 0.75 ,则耦合电感的储能为
- 3 电路如图 1-3 所示,已知电路的谐振角频率 $\omega_0 = 10^4 \text{ rad/s}$,品质因数 Q = 10 ,

则电阻 R = ______,电感 L = _____

图 1-3

4 电路如图 1-4 所示,当电压源 $u_{\scriptscriptstyle S}=\delta(t)$ ${
m V}$ 时,冲激响应 u=

5 电路如图 1-5 所示,在工频条件下测得端口电压、电流和功率分别为100 V、

5A和400W,则电阻R=____, 电容C=____

图 1-5

二、计算题(共76分)

1(12分) 电路如图 2-1 所示,求各独立电源发出的功率。

and the way were

2(12 分)电路如图 2-2 所示,电路原处于稳态,t=0 时开关 S 闭合,求换路后电容电压 u_C 的变化规律。

3(12 分)正弦稳态电路如图 2-3 所示,已知电压源 $u_{\rm S}(t)=25\sqrt{2}\cos 5t\,{\rm V}$ 。(1) 画出电路的相量模型;(2)求电流 $i_{\rm L}(t)$ 。

4(15分) 电路如图 2-4 所示,已知二端口网络 N 的阻抗参数矩阵 $Z = \begin{bmatrix} 6 & 4 \\ 5 & 8 \end{bmatrix} \Omega$,

 $U_S=18\,\mathrm{V}$, $R_S=4\Omega$ 。(1)求负载电阻 R_L 为何值时可获得最大功率,求出此最大功率;(2)若 $R_L=12\Omega$,求此时电压源 U_S 发出的功率。

5(15 分)电路如图 2-5 所示,定义网络函数 $H(s) = U(s)/U_s(s)$ 。(1)画出电路的复频域模型,求网络函数 H(s);(2)若电压源 $u_s(t) = 50\sqrt{2}\cos 2t$ V,求正弦稳态响应 u(t)。

- 6(10 分) 电路如图 2-6 所示,网络 N 内仅含线性电阻元件,已知 I_{s1} = 2 A, I_{s2} = 3 A。当 I_{s1} 单独作用时,网络 N 吸收的功率为 28W,且此时 U_2 = 8 V;当 I_{s2} 单独作用时,网络 N 吸收的功率为 54W。求:
- (1) 两个电源同时作用时,每个电源各自发出的功率是多少?
- (2) 如果把 I_{s_1} 换成 8Ω 电阻,保留 I_{s_2} ,则 8Ω 电阻中电流是多少?

图 2-6

中国科学技术大学 2020-2021 学年第二学期考试试卷(A卷)

考试科目:_	电路基本理	建论	得分:	
学生所在院	注系:	姓名:	学号:	

注意事项

- 1 答案请写在试题后空白处,若写不下,可写在试卷背面,写在草稿纸上无效。
- 2 计算题需给出必要的解题步骤,只有结果不得分。
- 一、填空题 (每空4分,共32分)
- 1 电路如图 1-1 所示,已知电流 I = 2A ,则电阻 $R = _____$

图 1-2

- 2 电路如图 1-2 所示,已知电流源有效值相量 $I_s = 2\angle 10^\circ A$ 。当阻抗
- 3 电路如图 1-3 所示,已知 $L_1 = 0.3$ H, $L_2 = 0.8$ H, M = 0.2 H 。则当开关 S 断开时,
- 端口等效电感 $L_{eq}=$ _______; 当 S 闭合时,端口等效电感 $L_{eq}=$ ______

4 电路如图 1-4 所示,已知电压源 $u_s(t)=18\sqrt{2}\cos 100t$ V , 1Ω 电阻消耗的功率

为_____

5 电路如图 1-5 所示, 电路原处于稳态, t=0 时闭合开关 S, 则在 0+时刻,

$$\frac{\mathrm{d}u_C}{\mathrm{d}t}\Big|_{0+} =$$

 $\mathbf{6}$ 电路如图 $\mathbf{1-6}$ 所示,电路中影响电压U 值的独立电源是_____

二、计算题(共68分)

1(10分) 电路如图 2-1 所示,求各独立电源发出的功率。

2(12 分)正弦稳态电路如图 2-2 所示,已知 $i_s(t) = 10\sqrt{2}\cos 10^4 t$ A 。(1)画出电路的相量模型;(2)求电流i和电流源发出的平均功率。

3(16 分) 电路如图 2-3 所示,电路原处于稳态,t=0 时开关 S 断开,求换路后电压u 和电流 i_1 的变化规律。

4(**16** 分)电路如图 **2-4** 所示,定义网络函数 $H(s) = U_R(s)/U_S(s)$ 。(**1**)画出电路的复频域模型,求网络函数 H(s);(**2**)若电压源 $u_S(t) = [\delta(t) + 4e^{-t}\varepsilon(t)]V$,求零状态响应 $u_R(t)$,并指出 $u_R(t)$ 的强制分量和自由分量。

5(14 分)电路如图 2-5 所示,(1)求二端口网络 N 的导纳参数方程;(2)求二端口网络 N 的 T 形等效电路参数;(3)若已知 $U_S=9$ V, $R_S=2\Omega$,求输出端口左侧电路的戴维南等效电路。

