第05次實習課

學生:林培瑋

2024 Advanced Mixed-Operation System (AMOS) Lab.

Tamkang University

Department of Electrical and Computer Engineering

No.151, Yingzhuan Rd., Tamsui Dist., New Taipei City 25137, Taiwan (R.O.C.)

目錄

❖ 微處理機概論 – HW1	
❖ HW1重點整理	22
❖ UART技術手冊 p8、p30	23
❖ Keil Tool-P348 、 349(F11)	24
★ Keil Tool-P348 、 349(F10)	27
★ Keil Tool-P348 、 349(F5)	31
❖ p347 poll & busy waiting	32

微處理機概論-HW1

繳交期限: 4/9 23:59

(用word檔上傳至iclass)

請提前上傳,以免iclass塞車

作業題目

- →課本p.348-349
- → ARM7TDMI: LPC2104

程式(1/3)

1		AREA	UARTDEMO, CODE,	READONLY
2	PINSEL0	EQU	0xE002C000	; controls the function of pins
3	U0START	EQU	0xE000C000	; start of UARTO register
4	LCR0	EQU	0xC	; line control register for UARTO
5	LSR0	EQU	0x14	; line status register for UARTO
6	RAMSTART	EQU	0x40000000	; start of onboard RAM for 2104
7	,	ENTRY		
8	start			
9	•	LDR	sp, =RAMSTART	; set up stack pointer
10)	BL	UARTConfig	; initialize/configure UARTO
11		LDR	r1, =CharData	; starting address of characters
12	Loop			
13	3	LDRB	r0, [r1], #1	; load character, increment address
14	ł .	CMP	r0, #0	; null terminated?
15	5	BLNE	Transmit	; send character to UART
16	5	BNE	Loop	; contiune if not a '0'
17	done	В	done	; otherwise we're done
18	3			

程式(2/3)


```
19
20 UARTConfig
21
           STMIA sp!, {r5, r6, LR}
22
                              ; base address of register
           LDR
                r5, =PINSEL0
23
           LDR
                r6, [r5]
                              ; get contents
24
           BIC
                r6, r6, #0xF ; clear out lower nibble
25
                r6, r6, \#0x5 ; sets p0.0 to Tx0 and P0.1 to Rx0
           ORR
26
                r6, [r5]
                                   ; r/modify/w back to register
           STR
27
                 r5, =U0START
           LDR
28
           MOV
                 r6, #0x83
                            ; set 8 bits, no parity, 1 stop bit
29
           STRB
                  r6, [r5, #LCR0] ; write control byte to LCR
30
                 r6, #0x61
                                 ; 9600 baud @15 MHz VPB clock
           MOV
31
           STRB
                  r6, [r5]
                                ; store control byte
32
                 r6, #3
           MOV
                               ; set DLAB=0
33
           STRB
                r6, [r5, #LCR0] ; Tx and Rx buffers set up
34
           LDMDB
                sp!, {r5, r6, PC}
35
```


程式(3/3)


```
30
37 Transmit
38
            STMIA sp!, {r5, r6, LR}
39
                   r5, =U0START
            LDR
40 wait
41
                   r6, [r5, #LSR0] ; get staus of buffer
            LDRB
      改成TST CMP
42
                   r6, #0x20 ; buffer empty?
43
                                     ; spin until buffer's empty
            BEQ
                   wait
44
            STRB
                   r0, [r5]
45
                    sp!, {r5, r6, PC}
            LDMDB
46 CharData
                    "Watson. Come quickly!", 0
47
            DCB
48
            END
10
```


開啟UART視窗

右下角可以看到UART視窗

UART #1
4
Call Stack + Locals UART
#1

執行程式

◆執行程式使用"Run"或按"F5"

→結果圖成功印出字串

UART#1	d 🔯
Watson. Come quickly!	^
	+
←	
Call Stack + Locals UART #1 Memory 1	

第一部分作業內容

- ★(1) 執行課本p.348-349程式 印出字串"TKU-ECE+學號+英文名字" Ex: TKU-ECE 407443210 Michael
 - (2) 改寫上述程式使能印出其反向字串 Ex: leahciM 012344704 ECE-UKT
 - (3) Calculate Keil Tool System Clock
 Frequency and rewrite the initialization to show about 9600 baud on the divisor latch window

第一部分作業內容

- → 截圖清楚,要截到UART#1及如下頁所示之UARTO視窗圖。
- →請交完整結報word檔。(包括按F5、按F11及按F10執行效果的心得)

→UARTO視窗

Universal Asynchronous I	Receive Transmit 0 (UART0)
Line Control	Line Status
UOLCR: 0x00	UOLSR: 0x60
Word Length: 5 bits ▼ Stop Bits: 1 ▼ Parity: Odd Parity ▼ DLAB	Receiver Data Ready (RDR) Overrun Error (OE) Parity Error (PE) Framing Error (FE) Break Interrupt (BI) Tx Holding Register Empty (THRE)
☐ Break Control ☐ Parity Enable	✓ Transmitter Empty (TEMT) ☐ Error in Rx FIFO (RXFE)
Interrupt Enable U0IER: 0x00	Interrupt ID & FIFO Control U0IIR/FCR: 0x01 FIFO Enable
☐ RBR IE ☐ THRE IE ☐ Rx Line Status IE	Interrupt: None Rx Trigger: Level 0 (1) Rx FIFO Reset Tx FIFO Reset
Divisor Latch	Receiver & Transmitter Registers
U0DLL: 0x01	U0RBR/THR: 0x00
U0DLM: 0x00 Baudrate: 187500	Scratch Pad Register U0SCR: 0x00

第二部分

→加入上課所講的Receive (主程式)

```
13 Loop
14
          LDRB rO, [r1], #1 ; load character, increment address
15
          CMP r0,#0 ; null terminated?
16
          BLNE Transmit : send character to UART
17
          BNE Loop ; continue if not a ??
18
          MOV r9,#20
19
20 Loop1
21
          BL Receive
22
          STRB r0, [r1],#1
23
          SUBS r9, r9, #1
          BNE Loop1
24
          B done
25 done
```


→加入上課所講的Receive (副程式)

```
44 Transmit
45
           STMIA sp!, {r5,r6,lr}
46
          LDR r5, = UOSTART
47 wait
48
           LDRB r6, [r5, #LSRO] ; get status of buffer
49
           TST r6,#0x20 ; buffer empty?
           BEQ wait ; spin until buffer
50
                                            empty
           STRB r0, [r5]
51
52
          LDMDB sp!, {r5,r6, pc}
53
54 Receive
55
           STMIA sp!, {r5,r6,lr}
56
           LDR r5, = UOSTART
57 wait1
58
           LDRB r6, [r5, #LSRO] ; get status of buffer
           TST r6,#1 ;data ready
59
           BEO wait1 ;until data ready
60
61
           LDRB r0, [r5]
62
           LDMDB sp!, {r5,r6, pc}
63
```


→打開圖中的Peripherals

D.\Keil Tool\789.uvproj - µVision □ □ □ □ □ □ □				
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help				
□ □ 😅 🖫	∌ ¾ ♣ &	2 → ○ ← → 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
RST 🗐 🔕	OF 10 10 15			
Registers	t 🗵	1 🔝 Disassembly	1 🔀	
Register	Value A	OX.000.0000 E59FDOBC LDR R13,[PC,#0x00BC]	A	
- Current		11: BL UARTConfig ; initialize/configure UARTO		
R0	0x00000000	0x00000004 EB00000A BL 0x00000034		
R1	0x00000000	12: LDR r1, = CharData ; starting address of characters	_	
R2	0x00000000 0x00000000	13: Loop		
R3 R4	0x00000000			
R5	0x00000000	147.5	▼ X	
R6	0x00000000	5 LCRO EQU OXC		
R7	0x00000000	6 LSR0 EQU 0x14	_	
R8	0x00000000	7 RAMSTART EQU 0x4000000		
R9 	0x00000000 0x00000000	8 ENTRY	≡	
R11	0x00000000	9 start	=	
R12	0x00000000	10 LDR SP,=RAMSTART		
R13 (SP)		11 BL UARTConfig ; initialize/configure UARTO		
	0x00000000	12 LDR r1, = CharData; starting address of characters		
		13 Loop		
⊕ CPSR ⊕ SPSR	0x000000D3 0x000000000	14 LDRB rO, [r1],#1 ; load character, increment address		
± Usen/System	000000000	15 CMP r0,#0; null terminated?		
Fast Interrupt		16 BLNE Transmit ; send character to UART		
± Interrupt		17 BNE Loop ; continue if not a ??		
± Supervisor		18		
⊕ Abort		19 MOV r9,#20		
⊞ Undefined ⊡ Internal		20 Loop1		
	0.00000000	21 BL Receive	▼	
E Project │ I Re	egisters	J <	+	
Command		₽ ■ UART#1	1 🗷	
		with 32768 Byte Code Size Limit	A	
*** Currentl	ly used: 212 B	2 Bytes (0%)		
BS \\789\147	7.s\10, 1			
4		F		
>			>	
•	rDischla Brook	eakEnable BreakKill BreakList BreakSet BreakAccess COVERAGE		
AJSIGN Break	rricanie break	V-	sun unu seni ous sun	
		Real-Time Agent: Target Reset Simulation t1: 0.00000000 sec L:10 C:1	CAP NUM SCRL OVR R/W	

→找到UART點選UART0

🔣 D:\Keil Tool\789.uvproj - μVision				
File Edit View Project Flash Debu	ug Peripherals Tools SVCS Window Help			
#				
Registers 📮 🔟 Disa		T		
Register Value 🔺 🚭		Δ.		
□ Current	GPIO ; initialize/configure UARTO			
R0 0x00000000 R1 0x00000000	UART			
R2 0x00000000	I2C Interface UARTI	▼		
R3 0x00000000 4 R4 0x00000000	SDI interface	→		
R5 0x00000000	Timer	▼ X		
R6 0x00000000 R7 0x00000000	Pulse Width Modulator	_		
R8 0x00000000	Real Time Clock			
R9 0x00000000 R10 0x00000000	Watchdog Timer			
R11 0x00000000	9 SCHILC	=		
R12 0x00000000				
R13 (SP) 0x000000000 R14 (LR) 0x00000000	11 BL UARTConfig ; initialize/configure UARTO			
R15 (PC) 0x00000000	12 LDR r1, = CharData ; starting address of characters 13 Loop			
⊕ CPSR 0x000000D3 ⊕ SPSR 0x00000000	14 LDRB rO, [r1],#1; load character, increment address			
± User/System	15 CMP r0,#0; null terminated?			
	16 BLNE Transmit; send character to UART 17 BNE Loop; continue if not a ??			
± Supervisor	18			
	19 MOV r9,#20			
⊟ Internal	20 Loop1			
□ DC & 0.00000000 ▼	21 BL Receive			
E Project ■ Registers ←		-		
Command	■ UART#1	T		
*** Restricted Version with 3		A		
*** Currently used: 212 Bytes				
BS \\789\147.s\10, 1				
· ·				
ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet BreakAccess COVERAGE ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet BreakAccess COVERAGE ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet BreakAccess COVERAGE				
		IUM SCRL OVR R/W		
		》 下午 05:29 2017/8/10		

→接著點選圖中的指令或是F10 and F11一直到結束

- →再點選的過程中頭鱼有UULUK以及UULSK的愛化,並思考其中代表的意義。
- →加入三種錯誤的偵測,沒有錯誤的時候才可receive

第二部分作業內容

- →印出字串"TKU-ECE+學號+英文名字"
- →截圖清楚,要截到UARTO視窗圖以及UART#1視窗圖。
- ◆請繳交包含第一部分與第二部分的完整結報word檔。

- ◆繳交內容:按照結報格式編寫完整,把結報word檔上傳 iclass對應作業位置。
- →繳交期限: 4/9 23:59
- →Word檔名:

微處理機概論_學號_姓名_HW1

▶程式需在Keil Tool程式視窗內展示且展示程式與執行結果 的每一截圖需看的到學號姓名否则不計分。

HW1重點整理

*第一部分:

- (3) Calculate Keil Tool System Clock Frequency and rewrite the initialization to show about 9600 baud on the divisor latch window
- 先算出System Clock Frequency,再改寫"設定速率"的程式碼,使其在divisor latch window上顯示9600 baud
- 須以註解或手算方式來呈現System Clock Frequency

*第二部分:

- Receive 主程式→SUBS r9, r9, #1
- · 代表運算後的結果會影響狀態暫存器 CPSR
 - 也可以寫成
 - SUB r9, r9, #1
 - CMP r9, #0

在ARM架構中,CPSR寄存器的NZCV標誌位佔有4個bit,分別代表以下意義:

- •N(Negative,負數):第31位,如果計算結果是負數,則該位被設置為1,否則為0。
- 'Z(Zero,零):第30位,如果計算結果為零,則該位被設置為1,否則為0。
- C(Carry, 進位):第29位,用於無符號算術操作,如果發生進位,則該位被設置為1,否則為 O。
- V(Overflow,溢出):第28位,用於有符號算術操作,如果發生溢出,則該位被設置為1,否則為0。

UART技術手冊 p8、p30

6	TEMT		Transmitter empty (TEMT) indicator.
			In non-FIFO mode:
		0	Either the transmitter holding register (THR) or the transmitter shift register (TSR) contains a data character.
		1	Both the transmitter holding register (THR) and the transmitter shift register (TSR) are empty.
			In FIFO mode:
		0	Either the transmitter FIFO or the transmitter shift register (TSR) contains a data character.
		1	Both the transmitter FIFO and the transmitter shift register (TSR) are empty.
5	THRE		Transmitter holding register empty (THRE) indicator. If the THRE bit is set and the corresponding interrupt enable bit is set (ETBEI = 1 in IER), an interrupt request is generated.
			In non-FIFO mode:
		0	Transmitter holding register (THR) is not empty. THR has been loaded by the CPU.
		1	Transmitter holding register (THR) is empty (ready to accept a new character). The content of THR has been transferred to the transmitter shift register (TSR).
			In FIFO mode:
		0	Transmitter FIFO is not empty. At least one character has been written to the transmitter FIFO. You can write to the transmitter FIFO if it is not full.
		1	Transmitter FIFO is empty. The last character in the FIFO has been transferred to the transmitter shift register (TSR).

*第一次迴圈

→如果TSR是空的,則資料會自動從THR傳到TSR。

* 第二次迴圈

- ❖ 第三次迴圈-無窮迴圈(wait)。
- *UART#1視窗無法顯示,因為使用F11沒有模擬的輸出端,使傳出去的值卡在Transmit holding register裡面,當在判斷THRE的狀態時,就會因為有值在裡面不斷的迴圈(紅色框框)。

```
56 Transmit
               STMIA
                       sp!, {r5, r6, lr}
58
                       r5, = UOSTART
              LDR
59 wait
              LDRB
                       r6, [r5, #LSR0] ; get status of buffer
                       r6, #0x20
60
               TST
                                       ; buffer empty?
               BEQ
                                       ; spin until buffer's empty
                       wait
               STRB
                       r0, [r5]
              LDMDB
                       sp!, {r5, r6, pc}
64 CharData
65
              DCB
                       "Watson. Come quickly!",0
66
               END
```


*第一次迴圈

*第二次迴圈

*第三次迴圈

p347 poll & busy waiting

ing this data? In the simulation tools, there is a serial window that can accept data from a UART, driving the necessary handshake lines that are normally attached to the receiver. The assembly code for our transmitter routine looks like the

p347 poll & busy waiting

Q&A

Thanks for your attention !!