On Two Minimax Theorems in Graph

Daniel Blévin - George Apaaboah November 19, 2018 First theorem

Definitions Theorem

Proof

Second theorem

Definitions

Theroem

First theorem

Branching

branching (r-arborescence): In a directed graph D = (V, A) a branching is a set of arcs not containing circuits s.t. each node of D is entered at most by one arc in A'. (So the arc in A' make up a forest).

Figure 1: A digraph D = (A, V)

Figure 2: A branching of D routed at a.

Figure 3: Two edge-disjoint branching routed respectively at *a* and *d*.

Figure 4: Two edge-disjoint *a*-routed branching.

a-cut: A a-cut of G determined by a set $S \subset V(G)$ is the set of edges going from S to V(G) – S. It will be denoted by $\Delta_G(S)$. We also set that $\delta_G(S) = |\Delta_G(S)|$.

Figure 5: A a-cut of D, $S = \{a\},\$ $\Delta_D(S) = \{ab, ad\},\$ $\delta_D(S) = 2.$

Figure 6: A minimal a-cut of D, $S = \{a, b, c, d, f\},\$ $\Delta_D(S) = \{be\},\$

 $\delta_D(S) = 1.$

Figure 7: A minimal a-cut of D. $S = \{a, b, d, e, f\},\$ $\Delta_D(S) = \{bc\},\$ $\delta_D(S) = 1.$

Theorem

THEOREM (Edmonds)

The maximum number of edge-disjoint branchings (rooted at a) equals the minimum number of edges in a-cuts.

Proof

Let k represent the number of edges. If $\Delta_G(S) \ge k \, \forall \, S \subset V(G), a \in S$ then there are k edge-disjoint branchings.

Let F be a set of edges such that F is an arborescence rooted at a. Then we want to show that $\Delta_{G-F}(S) \ge k-1 \, \forall \, S \subset V(G), \, a \in S$.

If F = E(G) then it is a branching and we are done, else G - F contains k - 1 edge-disjoint branchings and F is in the kth edge-disjoint branching. Following from this, we can see that F only covers a set of vertices $T \subset V(G)$. Therefore, there exist a vertex V that is not connected to F and we can add an edge $V \in \Delta_G(T)$. This will yield an arborescence $V \in V(G)$ and $V \in V(G)$ are $V \in V(G)$, $V \in V(G$

Definitions Theorem Proof

Figure 8

If we have a maximal set $A \subset V(G)$ such that A contains the root a, $A \cup T \neq V(G)$ and $\delta_{G-F}(S) = k-1$. If no such A exist then we have set A which is not maximal. Then we have $\delta_{G-F}(A \cup T) > \delta_{G-F}(A)$ that we can add a new edge e = (x,y) which belongs to $\Delta_{G-F}(A \cup T) - \Delta_{G-F}(A)$ such that $x \in T - A$ and $y \in V(G) - T - A$.

Definitions Theorem Proof

Now we want to show that that we can add e to F and F+e will be an arborescence and satisfy $\Delta_{G-F}(S) \geq k-1$. For sure, we can see that F is an arborescence. If $e \notin \Delta_G(S)$ then

$$\delta_{G-F-e}(S) = \delta_{G-F}(S) \ge k-1$$

Now, if we have that $e \in \Delta_G(S)$ then $x \in S$ and $y \in V(G) - S$. That is, x and y are in different set of vertices of G. Next, we will use the inequality;

$$\delta_{G-F}(S \cup A) + \delta_{G-F}(S \cap A) \le \delta_{G-F}(S) + \delta_{G-F}(A)$$
(1)

We already know from the maximality of A that $\delta_{G-F}(A) = k-1$, $\delta_{G-F}(S \cap A) \ge k-1$ and $\delta_{G-F}(S \cup A) \ge k$. Then from (1) we have $\delta_{G-F}(S) \ge k$. Therefore $\delta_{G-F-e}(S) \ge k-1$.

Second theorem

Directed cut

directed cut (dicuts): A directed cut of a weakly connect graph G is the set $D = \Delta_G(S)$, $(S \subset V(G), S \neq \varnothing)$ provided $\Delta_G(S)$, $(V(G) - S) = \varnothing$.

dijoin: A dijoin is a subset $A' \subset A$ which covers all dicuts.

Let $\Omega(D)$ denote the maximum number of arc-disjoint dicuts in D and let $\epsilon(D)$ be the minimum cardinality of a dijoin.

Theorem

THEOREM (Lucchesi and Younger)
The maximum number of disjoint directed cuts equals the minimum number of edges which cover all directed cuts.