第 1 章

行列式

二変数連立一次方程式の解の判別式

連立方程式を解く方法の一つとして、方程式の両辺を足したり引いたりして、文字を消去することで解を求める加減法という手法がある。

次のx,yに関する連立一次方程式を、加減法で解く過程を追いかけてみよう。

$$\begin{cases} a_1x + b_1y = p_1 \\ a_2x + b_2y = p_2 \end{cases}$$

y を消去して x を求める

y を消去するには、次のようにすればよい。

$$1$$
 つ目の式 \times b_2 $-$ 2 つ目の式 \times b_1

こうすることで、x のみに関する方程式が得られる。

$$(a_1b_2 - a_2b_1)x = p_1b_2 - p_2b_1$$

ここで、x の係数 $a_1b_2 - a_2b_1 \neq 0$ であれば、

$$x = \frac{p_1 b_2 - p_2 b_1}{a_1 b_2 - a_2 b_1}$$

として、解を求められる。

逆に、 $a_1b_2 - a_2b_1 = 0$ であれば、解を一意に求めることはできない。

この意味で、 $a_1b_2-a_2b_1$ はこの連立方程式の解の<mark>判別式</mark>のような役割を持っているといえる。この重要な量を一旦 Δ_2 とおくことにしよう。

$$\Delta_2 = a_1 b_2 - a_2 b_1$$

x を消去して y を求める

x を消去するには、次のようにすればよい。

$$1$$
 つ目の式 \times a_2 2 つ目の式 \times a_1

こうすることで、y のみに関する方程式が得られる。

$$(a_2b_1 - a_1b_2)y = p_2a_1 - p_1a_2$$

ここでも、y の係数 $a_2b_1-a_1b_2$ の値によって、解を求められるかどうかが変わってくる。 この y の係数は、先ほど導入した Δ_2 を用いると、次のように表せる。

$$a_2b_1 - a_1b_2 = -(a_1b_2 - a_2b_1) = -\Delta_2$$

x を消去して y を求める(式を入れ替えた場合)

x を消去する前に、あえて式の順番を入れ替えた場合を考えてみよう。

$$\begin{cases} a_2x + b_2y = p_2 \\ a_1x + b_1y = p_1 \end{cases}$$

すると、x を消去するには、

$$1$$
 つ目の式 $\times a_1 - 2$ つ目の式 $\times a_2$

とすればよいことになる。

これより得られる y についての方程式は、次のようになる。

$$(a_1b_2 - a_2b_1)y = p_1a_2 - p_2a_1$$

この場合、y の係数は、

$$a_1b_2-a_2b_1=\Delta_2$$

となり、今度はマイナスの符号がつかない Δ_2 そのものになっている。

どうやら、

式の順番を入れ替えたら、判別式 Δ_2 の符号が反転する

ようだ。(このことは後の議論への伏線として、頭の片隅に置いておこう。)

係数行列と二次行列式

先ほどの連立一次方程式を、行列を使って表すと次のようになる。

$$\begin{pmatrix}
a_1 & b_1 \\
a_2 & b_2
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix} = \begin{pmatrix}
p_1 \\
p_2
\end{pmatrix}$$
係数行列 Δ

すると、この連立一次方程式の解の判別式として導入した、

$$\Delta_2 = a_1b_2 - a_2b_1$$

という量は、係数行列 A の成分だけで決まるものだとわかる。

そこで、この Δ_2 を 2 次正方行列 A の行列式と呼ぶことにし、次のように表す。

$$\det(A) = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1b_2 - a_2b_1$$

ightharpoonup 二次正方行列の行列式 2次正方行列 $A=(a_{ij})$ に対して、A の行列式 $\det(A)$ を次のように定義する。

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}$$

加減法の操作と二次行列式の覚え方

そもそも Δ_2 は、次の連立一次方程式

$$\begin{cases} a_1x + b_1y = p_1 \\ a_2x + b_2y = p_2 \end{cases}$$

において、

$$1$$
 つ目の式 \times b_2 2 つ目の式 \times b_1

という操作を行うことで現れたものだった。

この加減法の操作をイメージして、2次正方行列の行列式は「係数を交差させるようにかけて引く」と覚えるとよい。

$$\begin{vmatrix} a_1 & b_1 \\ b_2 & b_1 \end{vmatrix} = a_1 b_2 - a_2 b_1$$

係数を交差させるようにかけて引く

置換と互換

たとえば、(1, 2, 3, 4) を並び替えた列(i, j, k, l) があるとして、

$$1 \longmapsto i$$

$$2 \longmapsto j$$

$$3 \longmapsto k$$

$$4 \longmapsto l$$

というように、番号を並び替える操作そのものを写像とみなし、置換と呼ぶ

置換 集合 $\{1,2,\ldots,n\}$ からそれ自身への写像 σ が全単射であるとき、 σ は n 次の置換であるという

たとえば、

$$\sigma(1) = 2$$
, $\sigma(2) = 3$, $\sigma(3) = 1$

によって 3 次の置換を定めることができる

この置換を、

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

と表記する

置換の積

写像とみる利点の1つは、積が定義できることである

もう 1 つの置換

$$\tau = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

が与えられたとき、合成写像 $\sigma \circ \tau$ は、

$$1 \xrightarrow{\tau} 1 \xrightarrow{\sigma} 2$$
$$2 \xrightarrow{\tau} 3 \xrightarrow{\sigma} 1$$
$$3 \xrightarrow{\tau} 2 \xrightarrow{\sigma} 3$$

なので、

$$\sigma\tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

である

通常、合成の記号 o を書かずに $\sigma \tau$ と表記する

なお、 $\sigma \tau$ と $\tau \sigma$ は一般に異なる

写像の合成の結合法則から、置換の積でも結合法則が成り立つ

$$(\sigma\tau)\rho = \sigma(\tau\rho)$$

恒等置換

恒等写像

$$id: \{1, 2, \dots, n\} \longmapsto \{1, 2, \dots, n\}$$
$$id(i) = i \quad (1 \le i \le n)$$

は置換であるので、これを恒等置換と呼び、

$$e = id$$

と書く

任意の置換 σ に対して、明らかに

$$\sigma e = e\sigma = \sigma$$

が成り立つ

また、次の性質はのちに行列式の性質を議論する際に重要になる

・ 恒等置換の単調性による特徴づけ $i \leq \sigma(i)$ (あるいは $i \geq \sigma(i)$) を満たす置換 σ は恒等置換しか存在しない

証明

σ が恒等置換でないと仮定する

条件 $i \leq \sigma(i)$ より、「元の位置より後ろに移される」、すなわち「すべてが自分以上に移る」ことになる

たとえば、1 を 2 に、2 を 3 に、 \dots 、n-1 を n に写す置換を考える しかし、集合 $\{1,2,\dots,n\}$ の要素は n 個しかないので、n を n+1 に写すこと はできない

そこで、n を n に写すとすると、n-1 も n も n に写ることになり、これは置換が全単射であるという定義に反する

 $i \geq \sigma(i)$ の場合も、「元の位置より前に移される」、すなわち「すべてが自分以下に移る」ことになると考えると、同様の矛盾が生じる

逆置換

置換 σ は、定義より全単射であるので、逆写像 σ^{-1} が存在するこれを逆置換と呼ぶ

置換の集合

すべての n 次の置換からなる集合はHと呼ばれる構造を持っている これを n 次対称群と呼び、記号 S_n で表す

互換

置換の中で最も基本的なのは、2 文字だけを交換する置換である

国 互換 $1 \le i \ne j \le n$ のとき、 $\sigma(i) = j$, $\sigma(j) = i$ であって、k が i, j 以外のとき $\sigma(k) = k$ とすることで得られる置換を

$$\sigma = (ij)$$

と書き、このような置換を互換という

たとえば、

$$(24) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 2 & 5 \end{pmatrix}$$

互換の逆置換

互換は (ij) と書いても (ji) と書いても同じ操作を表す i と j を交換してから j と i を交換すると元に戻るが、この (ij) と (ji) は互換としては同じなので、

互換の逆置換は自分自身

である

置換の一行表示

置換を表す2行の表示は、下の行だけで情報としては十分なので、たとえば

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 2 & 5 \end{pmatrix}$$

を $\sigma=14325$ などと書いてしまうと便利である これを σ の一行表示と呼ぶ

互換と置換の積

一行表示を用いた場合、互換と置換の積はたとえば次のように書ける $\sigma=14325$ とすると、

$$(12)\sigma = 24315$$
, $\sigma(12) = 41325$

 $(12)\sigma$ は、 $\sigma = 14325$ に互換 (12) を作用させて、24315 となる

 σ (12) は、12345 に互換 (12) を作用させて 21345 とし、さらに置換 σ を作用させる ことを意味する

置換 σ は、4 と 2 を入れ替える置換なので、21345 に対して σ を作用させると、41325 となる

この例の結果を一般的に述べると、次のようになる

北 互換と置換の積 $\sigma \in S_n$ に対して、 $\tau = (ij)$ を左からかけた $\tau \sigma$ の一行表示は、 σ の数字 i と j を交換したものである

また、au を右からかけた σau の一行表示は、 σ の i 番目の数字と j 番目の数字を交換したものである

互換の積への分解

たとえば、σ = 2413 とすると、これは、

- 1. 1234 の 3 と 4 を交換して 1243
- 2. 1243 の 1 と 2 を交換して 2143
- 3. 2143 の 2 と 3 を交換して 2413

というように、互換に分解して考えることができる 数式でまとめると、

$$\sigma = (34)(12)(23)$$

♣ 互換の積への置換の分解 任意の置換 σ は、いくつかの互換の積として書ける

紅 証明

n に対する帰納法を用いる

n=1 のときは、互換の定義における i,j の条件を満たさず、i,j 以外の k について $\sigma(k)=k$ とすることで得られる置換に相当するので、1 つの互換とみなせる

(n-1) 次以下の置換が互換の積で書けることを仮定する σ を n 次の置換とし、 $\sigma(n)$ の値を c とする

c=n すなわち $\sigma(c)=c$ の場合、 σ は c をまったく動かしていないため、実質的に c-1 までの数字だけを並び替えていることになる

そのため、 σ は c-1 すなわち (n-1) 次の置換とみなせるため、帰納法の仮定より、互換の積として書ける

 $c \neq n$ の場合、 $\sigma(c)$ を d とし、d と c を交換する互換 $\tau = (cd)$ を考えるこのとき、 $\tau\sigma$ は、 σ の数字 c と d を交換したものであるので、

$$\tau\sigma = \begin{pmatrix} 1 & 2 & \cdots & c-1 & c & \cdots & n \\ 1 & 2 & \cdots & c-1 & \sigma(c) & \cdots & n \end{pmatrix}$$

c が n に一致しないという仮定をふまえると、

$$\tau \sigma(n) = n$$

であることが読み取れる

よって、 $au\sigma$ は実質的に (n-1) 次の置換とみなせるので、帰納法の仮定より、互換の積として書ける

$$au\sigma= au_1 au_2\cdots au_m$$

ゆえに、

$$\sigma = \tau^{-1}\tau_1\tau_2\cdots\tau_m$$

であるが、互換の逆置換は自分自身であるので、

$$\sigma = \tau \tau_1 \tau_2 \cdots \tau_m$$

と書ける

置換の符号と偶奇

すべての置換は互換の積に分解できるが、その方法は一通りではない しかし、互換の積の個数の偶奇性は、置換が与えられれば定まる

このことを証明するために、置換と多項式の関係を考察する

置換の多項式への作用

置換 $\sigma \in S_n$ と n 変数多項式 $f = f(x_1, x_2, \ldots, x_n)$ が与えられたとき、変数 x_i に $x_{\sigma(i)}$ を代入することにより、式 σf を

$$(\sigma f)(x_1,\ldots,x_n)=f(x_{\sigma(1)},\ldots,x_{\sigma(n)})$$

と定める

 $f = f(x_1, \ldots, x_n)$ を n 変数の多項式とし、 $\sigma, \tau \in S_n$ とするとき、

$$(\sigma\tau)f = \sigma(\tau f)$$

証明

式 τf は、

$$(\tau f)(x_1,\ldots,x_n)=f(x_{\tau(1)},\ldots,x_{\tau(n)})$$

である

さらに σ を作用させると、 $x_{\tau(i)}$ は $x_{\sigma(\tau(i))} = x_{(\sigma\tau)(i)}$ に置き換わるので、

$$(\sigma(\tau f)) = f(x_{(\sigma \tau)(1)}, \dots, x_{(\sigma \tau)(n)})$$

= $((\sigma \tau)f)(x_1, \dots, x_n)$

が成り立つ

互換の差積への作用

次のような n 変数の多項式を差積と呼ぶ

$$(x_1-x_2) \quad (x_1-x_3) \quad \cdots \quad (x_1-x_n) \ (x_2-x_3) \quad \cdots \quad (x_2-x_n) \ \cdots \ (x_{n-1}-x_n)$$

$$\Delta_n = \prod_{1 \leq i < j \leq n} (x_i - x_j)$$

置換の符号を理解するために、差積を使うことができる その第一歩となるのが、次の定理である

$$\tau \Delta_n = -\Delta_n$$

証明 証明

i < j として、au = (ij) とすると、各因子 $x_s - x_t \, (1 \le s < t \le n)$ の変化は次のようになる

$x_i - x_j \bowtie x_j - x_i \bowtie x_i$

 x_i と x_i を入れ替えることで、その差が逆転して符号が反転する

$$x_j - x_i = -(x_i - x_j)$$

よって、この項は -1 倍の効果をもたらす

s < i < j のとき、 $x_s - x_i$ と $x_s - x_j$ が入れ替わる

この場合、s は i, j より前の添字である

• 互換前: $(x_s-x_i)(x_s-x_j)$

• 互換後: $(x_s-x_j)(x_s-x_i)$

2 つの項が交換されるだけなので、積の絶対値は変わらず、符号にも影響しない

i < j < s のとき、 $x_i - x_s$ と $x_j - x_s$ が入れ替わる

この場合、s は i, j より後の添字である

• 互換前: $(x_i-x_s)(x_j-x_s)$

• 互換後: $(x_j-x_s)(x_i-x_s)$

この場合も、並び順だけが入れ替わり、符号には影響しない

i < s < j のとき、 $x_i - x_s$ と $x_s - x_j$ は…

この場合、s は i と j の間にある添字である

• 互換前: $(x_i-x_s)(x_s-x_j)$

● 互換後: $(x_j - x_s)(x_s - x_i)$

互換前の積を変形してみると、

$$(x_i - x_s)(x_s - x_j) = -(x_i - x_s)(x_j - x_s)$$

= $(x_s - x_i)(x_j - x_s)$
= $(x_j - x_s)(x_s - x_i)$

という形で、互換後の積が得られる よって、この場合も積の符号は変わらない

以上をふまえると、符号が反転するのは x_i-x_j の項だけであるよって、1 回の互換 (ij) によって、差積全体は (-1) 倍される

置換の符号

 $oldsymbol{\$}$ 置換による差積の符号変化 置換 $\sigma \in S_n$ が s 個の互換の積として書けるならば、

$$\sigma \Delta_n = (-1)^s \Delta_n$$

が成り立つ

証明

置換 σ を s 個の互換の積 $\sigma = \tau_1 \cdots \tau_s$ と書いたとき、

$$\sigma \Delta_n = (\tau_1 \cdots \tau_s) \Delta_n$$

置換作用の結合法則を用いて、

$$\sigma \Delta_n = (\tau_1 \cdots \tau_{s-1})(\tau_s \Delta_n)$$

互換による差積の符号変化を繰り返し用いると、

$$\sigma \Delta_n = (\tau_1 \cdots \tau_{s-1})(-\Delta_n)$$
$$= (-1)(\tau_1 \cdots \tau_{s-1})\Delta_n$$
$$= (-1)^s \Delta_n$$

が最終的に得られる

この定理における $\sigma \Delta_n$ は、 σ をどのような互換の積として表すかとは無関係に、 σ が与えられれば決まる多項式である

そして、 $(-1)^s$ という部分から、 σ を互換の積で表したとき、その個数 s が偶数であれば符号は + に、奇数であれば符号は - になることがわかる

このようにして、次の定理が示されたことになる

貴 置換の符号の存在 置換 σ を互換の積として書くとき、用いられる互換の個数の偶奇は σ のみによって決まる

そこで、置換の符号を次のように定義する

置換の符号 置換 $\sigma \in S_n$ を互換の積 $\sigma = \tau_1 \cdots \tau_i$ として書いたとき、 σ の符号を

$$\operatorname{sgn}(\sigma) = (-1)^i$$

と定義する

そして、互換の個数の偶奇をそのまま、置換の偶奇として定める

偶置換と奇置換 置換 $\sigma \in S_n$ の符号 $\operatorname{sgn}(\sigma)$ が +1 であれば σ を偶置換と呼び、-1 であれば奇置換と呼ぶ

置換の性質

🕹 逆置換の符号

$$\operatorname{sgn}(\sigma^{-1})=\operatorname{sgn}(\sigma)$$

証明

置換 σ を互換の積として書くと、逆置換はその互換の順序を逆にしたものになる すなわち、 $\sigma=\tau_1\cdots\tau_s$ とすると、

$$\sigma^{-1} = \tau_s^{-1} \cdots \tau_1^{-1}$$

であるが、互換の逆置換は自分自身であるので、

$$sgn(\sigma^{-1}) = (-1)^s = sgn(\sigma)$$

が成り立つ

→ 置換の符号の乗法性

$$sgn(\sigma\tau) = sgn(\sigma) \, sgn(\tau)$$

証明

それぞれを互換の積 $\sigma = \tau_1 \cdots \tau_i$ 、 $\tau = \rho_1 \cdots \rho_j$ と書くと、

$$\sigma \tau = \tau_1 \cdots \tau_i \rho_1 \cdots \rho_i$$

である

このとき、
$$\operatorname{sgn}(\sigma) = (-1)^i$$
, $\operatorname{sgn}(\tau) = (-1)^j$ なので、

$$\operatorname{sgn}(\sigma\tau) = (-1)^{i+j} = (-1)^i(-1)^j = \operatorname{sgn}(\sigma)\operatorname{sgn}(\tau)$$

が成り立つ

最 置換群の左右作用に対する和の不変性 f を S_n 上の関数とするとき、任意の $\tau \in S_n$ に対して、次が成り立つ

$$\sum_{\sigma \in S_n} f(\tau \sigma) = \sum_{\sigma \in S_n} f(\sigma) = \sum_{\sigma \in S_n} f(\sigma \tau)$$

★ 証明

au を固定して、 σ をすべての置換(S_n の元)全体にわたって動かすとき、 $au\sigma$ も S_n の全体を動く

言い換えると、写像 $S_n o S_n$ を $\sigma \longmapsto au\sigma$ と定めると、これは全単射であるしたがって、

$$\sum_{\sigma \in S_n} f(\sigma) = \sum_{\sigma \in S_n} f(\tau \sigma)$$

が成り立つ

同様に、写像 $S_n o S_n$ を $\sigma \longmapsto \sigma \tau$ と定めると、これも全単射であるので、同様に、

$$\sum_{\sigma \in S_n} f(\sigma) = \sum_{\sigma \in S_n} f(\sigma \tau)$$

が成り立つことがわかる

行列式の定義

ある正方行列の行列式は、

- 1. 各列から 1 つずつ、行に重複がないように成分を選ぶ
- 2. それらをかけ合わせる
- 3. 符号をつけて足す

という手順で定まる値である

$$\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$$

で定められる値を A の行列式と呼び、|A| あるいは $\det(A)$ と表記する

三角行列の行列式

三角行列の場合、各列から 1 つずつ、0 でない成分を重複なく選び出す方法は、対角成分を すべて選ぶしかない

🕹 三角行列の行列式 三角行列の行列式は、対角成分の積である

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ & a_{22} & \dots & a_{2n} \\ & & \ddots & \vdots \\ 0 & & a_{nn} \end{vmatrix} = a_{11}a_{22}\cdots a_{nn}$$

$$\begin{vmatrix} a_{11} & & & 0 \\ a_{21} & a_{22} & & & \\ \vdots & & \ddots & & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = a_{11}a_{22} \cdots a_{nn}$$

行列式において、

$$a_{1,\sigma(1)}a_{2,\sigma(2)}\cdots a_{n,\sigma(n)}=0$$

となる項は、和をとったときに消えてしまうしたがって、

$$a_{1,\sigma(1)}a_{2,\sigma(2)}\cdots a_{n,\sigma(n)}\neq 0$$

すなわち

$$a_{1,\sigma(1)} \neq 0, \ldots, a_{n,\sigma(n)} \neq 0$$

となるような選び方を考える

上三角行列の場合

上三角行列の定義より、i>j ならば $a_{ij}=0$ である $a_{ij}\neq 0$ とするには、 $i\leq j$ でなければならないので、 $a_{i,\sigma(i)}$ においては、

$$i \leq \sigma(i)$$

である必要がある

そして、この条件を満たす置換は、恒等置換しか存在しないので、

$$\sigma(i) = i$$

より、 a_{ii} の積によって行列式の値が構成される

また、恒等置換は 0 (偶数) 回の互換で構成されるので、各項の符号は正とな

る

下三角行列の場合

下三角行列の定義より、i < j ならば $a_{ij} = 0$ である $a_{ij} \neq 0$ とするには、 $i \geq j$ でなければならないので、 $a_{i,\sigma(i)}$ においては、

$$i \geq \sigma(i)$$

である必要がある

そして、この条件を満たす置換も、恒等置換しか存在しないので、上三角行列 の場合と同様の結果が得られる

対角行列は、上三角行列でもあり下三角行列でもあるので、上の定理の特別な場合として次 が成り立つ 費 対角行列の行列式 対角行列の行列式は、対角成分の積である

特に、対角成分がすべて 1 の場合が単位行列である

🕹 単位行列の行列式 単位行列の行列式は 1 である

$$|E| = 1$$

行列式の基本性質

次の性質により、以後議論する行列式の性質が列に対して成り立つなら、行に対しても成り 立つといえるようになる

🕹 行列式の対称性

$$\det(^tA) = \det(A)$$

行列式の定義より、行列 tA の行列式は、行列 tA の行列式に現れる $a_{i,\sigma(i)}$ の添字を入れ替えたもの $a_{\sigma(i),i}$ の積和になる

$$\det({}^tA) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{\sigma(i),i}$$

一方、 $j=\sigma(i)$ とおくと、 $i=\sigma^{-1}(j)$ となるので、添字の変数を変換して

$$\prod_{i=1}^n a_{\sigma(i),i} = \prod_{j=1}^n a_{j,\sigma^{-1}(j)}$$

よって、 $\det({}^tA)$ の各項は、

$$\operatorname{sgn}(\sigma^{-1}) \prod_{j=1}^n a_{j,\sigma^{-1}(j)}$$

となるが、これは $\det(A)$ の定義式の σ^{-1} に対応する項と同じである

ここで、 $\rho=\sigma^{-1}$ とおくと、 $\sigma=\rho^{-1}$ であり、逆置換の符号から $\mathrm{sgn}(\sigma)=\mathrm{sgn}(\rho^{-1})=\mathrm{sgn}(\rho)$ であるから、

$$\det({}^tA) = \sum_{
ho \in S_n} \operatorname{sgn}(
ho) \prod_{j=1}^n a_{j,
ho(j)} = \det(A)$$

よって、 $\det(^tA) = \det(A)$ が示された

$$\det(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_i,\ldots,\boldsymbol{a}_j,\ldots,\boldsymbol{a}_n)$$

$$= -\det(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_j,\ldots,\boldsymbol{a}_i,\ldots,\boldsymbol{a}_n)$$

$$(1 < i < j < n)$$

証明

元々の行列 A の行列式の各項が、

$$f(\sigma) = \operatorname{sgn}(\sigma) a_{\sigma(1),1} \cdots a_{\sigma(i),i} \cdots a_{\sigma(j),j} \cdots a_{\sigma(n),n}$$

であるのに対し、第i列とj列を入れ替えた行列の行列式の各項は、

$$\operatorname{sgn}(\sigma)a_{\sigma(1),1}\cdots a_{\sigma(i),j}\cdots a_{\sigma(j),i}\cdots a_{\sigma(n),n}$$

となる

ここで、i を j に、j を i に写す互換 $\sigma_0=(ij)$ を考え、 $\tau=\sigma\sigma_0$ とおくと、 $\sigma(j)=\tau(i),\,\sigma(i)=\tau(j)$ となるので、

$$f(\tau) = \operatorname{sgn}(\tau) a_{\tau(1),1} \cdots a_{\tau(i),i} \cdots a_{\tau(j),j} \cdots a_{\tau(n),n}$$

このとき、置換群の左右作用に対する和の不変性より、

$$\sum_{\sigma \in S_n} f(\sigma) = \sum_{\sigma \in S_n} f(\sigma \sigma_0) = \sum_{\tau \in S_n} f(\tau)$$

すなわち、 σ 全体の総和は τ 全体の総和に一致する

さらに、置換の符号の乗法性より、

$$sgn(\tau) = sgn(\sigma) sgn(\sigma_0) = -sgn(\sigma)$$

であるから、

$$f(\sigma) = -f(\tau)$$

よって、列の交換後、行列式全体が (-1) 倍される

・・ 行列式の列についての多重線形性 行列式を列の関数とみたとき、この関数は、どの列についても線形である。

$$\det(\boldsymbol{a}_1,\ldots,\alpha\boldsymbol{u}+\beta\boldsymbol{v},\ldots,\boldsymbol{a}_n)$$

$$=\alpha\det(\boldsymbol{a}_1,\ldots,\boldsymbol{u},\ldots,\boldsymbol{a}_n)$$

$$+\beta\det(\boldsymbol{a}_1,\ldots,\boldsymbol{v},\ldots,\boldsymbol{a}_n)$$

証明

 $\sigma \in S_n$ に対応する各項について、

$$a_{\sigma(1),1}\cdots(lpha u_{\sigma(i)}+eta v_{\sigma(i)})\cdots a_{\sigma(n),n}$$

$$C=a_{\sigma(1),1}\cdots a_{\sigma(n),n}$$
 とし、 $A=lpha u_{\sigma(i)}$, $B=eta v_{\sigma(i)}$ とおくと、

$$C(A + B) = CA + CB = \alpha Cu_{\sigma(i)} + \beta Cv_{\sigma(i)}$$

のように展開できる

よって、

$$egin{aligned} lpha(a_{\sigma(1),1}\cdots u_{\sigma(i)}\cdots a_{\sigma(n),n}) \ &+eta(a_{\sigma(1),1}\cdots v_{\sigma(i)}\cdots a_{\sigma(n),n}) \end{aligned}$$

を用いれば、行列式の定義に基づいて定理が成り立つことがわかる

行列式の対称性より、次の定理も得られる

・ 行列式の行についての多重線形性と交代性 行列式は行に関しても多重線形性と交代性をもつ

以降、列に対して成り立つ性質は行に対しても成り立つとし、列の場合のみを記載する

行列式の値が零になる条件

 $oldsymbol{\$}$ 列の重複による行列式の零化 $A=(oldsymbol{a}_1,\ldots,oldsymbol{a}_n)$ の n 個の列の中に、まったく同じものがあれば、

$$det(A) = 0$$

となる

証明

行列 A の列ベクトルに、共通のベクトル u が含まれているとする

$$A = (\ldots, \boldsymbol{u}, \ldots, \boldsymbol{u}, \ldots)$$

この2つの uの列を入れ替えると、

$$\det(\ldots, \boldsymbol{u}, \ldots, \boldsymbol{u}, \ldots) = -\det(\ldots, \boldsymbol{u}, \ldots, \boldsymbol{u}, \ldots)$$

ところが、入れ替えの前後で行列そのものは変化していない(まったく同じ列を入れ替えても行列は同じ)ので、行列式の値も変わらないはずである すなわち、

$$\det A = - \det A$$

が成り立つ

ここで、両辺に det(A) を足すと、

$$2 \det A = 0$$

より、 $\det A = 0$ が成り立つ

 $A = (\boldsymbol{a}_1, \dots, \boldsymbol{a}_n)$ の n 個の列ベクトルが線形従属であるとすれば、

$$det(A) = 0$$

となる

証明

列ベクトルのうち 1 つ \boldsymbol{a}_i が、残りのいくつかの線型結合で表されるとすると、

$$\det(\ldots, \boldsymbol{a}_i, \ldots) = \det\left(\ldots, \sum_{j=1}^k c_j \boldsymbol{a}_j, \ldots\right)$$

行列式の多重線形性より、

$$\det\left(\ldots,\sum_{j=1}^k c_j \boldsymbol{a}_j,\ldots\right) = \sum_{j=1}^k c_j \det(\ldots,\boldsymbol{a}_j,\ldots)$$

ここで、 $oldsymbol{a}_i$ 以外のいずれかの列ベクトルであるため、右辺の行列式では列ベクトルの重複が生じている

よって、行列式の値は 0 になる ■

この定理の対偶をとることにより、次の定理が得られる

非零行列式による列ベクトルの線形独立性 $A=(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n)$ の行列式の値が 0 でないならば、A の n 個の列ベクトル $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n$ は線形独立である

基本変形と行列式

行列式の性質から、行列の列や行に関する基本変形と行列式の関係が見えてくる

- 🕹 基本変形と行列式の関係
 - i. 列(行)を交換すると行列式の符号が交換される
 - ii. 列(行)を定数倍すると、行列式の値も定数倍される
 - iii. 列(行)に他の列(行)の定数倍を加えても行列式の値は変化しない
- (i) は行列式の交代性、(ii) は多重線形性であり、(iii) は次の定理によって示される
 - rightarrow 1 列の掃き出しに関する不変性 rightarrow 1
 eq j のとき、

$$\det(\ldots, \boldsymbol{a}_i + c\boldsymbol{a}_j, \ldots, \boldsymbol{a}_j \ldots)$$
 = $\det(\ldots, \boldsymbol{a}_i, \ldots, \boldsymbol{a}_j \ldots)$

証明

行列式の多重線形性より、

$$\det(\ldots, \boldsymbol{a}_i + c\boldsymbol{a}_j, \ldots, \boldsymbol{a}_j \ldots)$$

$$= \det(\ldots, \boldsymbol{a}_i, \ldots, \boldsymbol{a}_j \ldots) + c \det(\ldots, \boldsymbol{a}_j, \ldots, \boldsymbol{a}_j \ldots)$$

ここで、同じ列ベクトル \mathbf{a}_{j} が 2 つ含まれている行列式の値は 0 になるので、

$$\det(\ldots, \boldsymbol{a}_i + c\boldsymbol{a}_j, \ldots, \boldsymbol{a}_j \ldots) = \det(\ldots, \boldsymbol{a}_i, \ldots, \boldsymbol{a}_j \ldots)$$

だけが残る

行列式の特徴づけ

n 個の与えられた n 次実ベクトル $oldsymbol{a}_1,\ldots,oldsymbol{a}_n$ に対して、ある実数が定まるとき、これを $F(oldsymbol{a}_1,\ldots,oldsymbol{a}_n)$ と表すことにする

* * 多重線形性と交代性による行列式の特徴づけ 写像 $F: \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathbb{R}$ が多重線形性と交代性を満たすならば、

$$F(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n)=F(\boldsymbol{e}_1,\ldots,\boldsymbol{e}_n)\det(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n)$$

証明

多重線形性により、

$$egin{aligned} egin{aligned} egin{aligned} F(oldsymbol{a}_1,\ldots,oldsymbol{a}_n) &= F\left(\sum_{i=1}^n a_{i_11}oldsymbol{e}_{i_1},\ldots,\sum_{i=1}^n a_{i_nn}oldsymbol{e}_{i_n}
ight) \ &= \sum_{i_1,\ldots,i_n} a_{i_11}\cdots a_{i_nn}F(oldsymbol{e}_{i_1},\ldots,oldsymbol{e}_{i_n}) \end{aligned}$$

和において、各 i_k (1 $\leq k \leq n$) は行番号なのでそれぞれ 1 から n まで動く

ここで、交代性から導かれる定理より、 (i_1,\ldots,i_n) に同じ添字が 2 つ以上ある場合には $F(oldsymbol{e}_{i_1},\ldots,oldsymbol{e}_{i_n})=0$ である

したがって、この和は (i_1,\ldots,i_n) がすべて異なる場合、すなわち (i_1,\ldots,i_n) が $(1,\ldots,n)$ の置換である場合にのみ寄与する

よって、 (i_1,\ldots,i_n) にわたる和は、実際には n 次の置換

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ i_1 & i_2 & \cdots & i_n \end{pmatrix} \in S_n$$

にわたる和であるとみなせる

この対応により、 (i_1,\ldots,i_n) と $\sigma \in S_n$ を同一視すると、

$$F(\boldsymbol{e}_{i_1},\ldots,\boldsymbol{e}_{i_n})=F(\boldsymbol{e}_{\sigma(1)},\ldots,\boldsymbol{e}_{\sigma(n)})$$

さらに、 $(e_{\sigma(1)},\ldots,e_{\sigma(n)})$ を (e_1,\ldots,e_n) に並び替えることを考える すなわち、 σ の逆置換 σ^{-1} を考えることになる

交代性によって、1 回の互換につき (-1) 倍されるが、全体の符号は互換の回数によって定まるので、 $\operatorname{sgn}(\sigma^{-1})=\operatorname{sgn}(\sigma)$ となる

$$F(\boldsymbol{e}_{\sigma(1)},\ldots,\boldsymbol{e}_{\sigma(n)})=\operatorname{sgn}(\sigma)F(\boldsymbol{e}_1,\ldots,\boldsymbol{e}_n)$$

以上より、

$$F(\boldsymbol{a}_{1},\ldots,\boldsymbol{a}_{n})$$

$$= \sum_{\sigma \in S_{n}} a_{\sigma(1)1} \cdots a_{\sigma(n)n} F(\boldsymbol{e}_{\sigma(1)},\ldots,\boldsymbol{e}_{\sigma(n)})$$

$$= \sum_{\sigma \in S_{n}} a_{\sigma(1)1} \cdots a_{\sigma(n)n} \operatorname{sgn}(\sigma) F(\boldsymbol{e}_{1},\ldots,\boldsymbol{e}_{n})$$

$$= \left(\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{\sigma(1)1} \cdots a_{\sigma(n)n}\right) F(\boldsymbol{e}_{1},\ldots,\boldsymbol{e}_{n})$$

$$= \det(\boldsymbol{a}_{1},\ldots,\boldsymbol{a}_{n}) F(\boldsymbol{e}_{1},\ldots,\boldsymbol{e}_{n})$$

となり、目的の等式が示された

CCC, $F(\boldsymbol{e}_1, \ldots, \boldsymbol{e}_n) = 1$ CET

$$F(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n)=\det(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n)$$

と表せることになる

この $F(e_1, \ldots, e_n) = 1$ を正規化の条件といい、行列式は

- i. 双線形性
- ii. 交代性
- iii. 正規化の条件

によって特徴づけられる

すなわち、行列式は、この3つの条件を満たすような

n 個の列ベクトル $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n$ で定まる関数

として定義することもできる

行列式の幾何学的意味

[Todo 1:]

行列式の特徴づけから導ける性質として、次が重要である

♣ 行列式の乗法性 A, B を同じ型の行列とするとき、

$$\det(AB) = \det(A)\det(B)$$

証明

B の列ベクトルを $\boldsymbol{b}_1, \ldots, \boldsymbol{b}_n$ とし、次の関数

$$F(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n)=\det(A\boldsymbol{b}_1,\ldots,A\boldsymbol{b}_n)$$

を考える

ここで、 \det は列ベクトルに対して交代性をもつため、この関数 F も交代性をもつまた、 \det の多重線形性に加え、A による作用は線形写像であるから、F も多重線形性を満たす

よって、多重線形性と交代性による行列式の特徴づけより、

$$F(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n)=F(\boldsymbol{e}_1,\ldots,\boldsymbol{e}_n)\det(B)$$

一方、F の引数を単位ベクトル e_1, \ldots, e_n にしたもの

$$F(\boldsymbol{e}_1,\ldots,\boldsymbol{e}_n)=\det(A\boldsymbol{e}_1,\ldots,A\boldsymbol{e}_n)$$

を考えると、

$$F(\boldsymbol{e}_1,\ldots,\boldsymbol{e}_n)=\det(A\boldsymbol{e}_1,\ldots,A\boldsymbol{e}_n)$$

$$=\det(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n)$$

$$=\det(A)$$

よって、

$$F(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n)=\det(A)\det(B)$$

ここで、 $F(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n)$ の定義を思い出すと、

$$\det(A\boldsymbol{b}_1,\ldots,A\boldsymbol{b}_n)=\det(A)\det(B)$$

左辺の行列 (Ab_1, \ldots, Ab_n) は、行列 B の各列ベクトルに対して A を左から作用 させたものであり、行列 AB を意味している

したがって、

$$\det(AB) = \det(A)\det(B)$$

が成り立つ ■

行列式の乗法性を繰り返し適用することで、次の定理が得られる

$$\det(A^n) = \det(A)^n$$

行列式は、正則性の判定にも利用できる

🕹 正則性と行列式の非零性

A が正則行列 \iff $\det(A) \neq 0$

証明

 \Longrightarrow

A が正則であることから、

$$AA^{-1} = E$$

両辺の行列式をとって、

$$\det(AA^{-1}) = \det(E)$$

左辺には行列式の乗法性を適用し、右辺は単位行列の行列式の値が 1 であることから、

$$\det(A)\det(A^{-1})=1$$

もし $\det(A) = 0$ だと仮定すると、0 = 1 という矛盾した式になる よって、 $\det(A) \neq 0$ でなければならない

 \leftarrow

 $\det(A) \neq 0$ であることから、行列 A の列ベクトルは線型独立である そして、A の列ベクトルが線型独立であることと、A が正則であることは同値 である

この定理の派生として、行列式を次の形で使うことが多い

・ 消去法の原理 A を正方行列とするとき、

 $A\mathbf{x} = \mathbf{0}$ に非自明解が存在する \iff $\det(A) = \mathbf{0}$

余因子展開

3次正方行列において、第1列を次のようにとらえる

$$\begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} = a_{11} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + a_{21} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + a_{31} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

これをふまえて、3次行列式を、第1列に関する線形性を用いて、次のような和に分解して みる

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} 0 & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} 0 & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} 0 & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} 1 & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} + a_{21} \begin{vmatrix} 0 & a_{12} & a_{13} \\ 1 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} 0 & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 1 & a_{32} & a_{33} \end{vmatrix}$$

ここで、たとえば、

$$\begin{vmatrix} 1 & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix}$$

をどのように表せるかを考える

まず、(1,1)成分を要にして第1行の掃き出しを行えば、

$$\begin{vmatrix} 1 & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix}$$

が得られる

そこで、

$$oldsymbol{u}_1=egin{pmatrix} a_{22}\ a_{32} \end{pmatrix}$$
 , $oldsymbol{u}_2=egin{pmatrix} a_{23}\ a_{33} \end{pmatrix}$

とおき、

$$F(\boldsymbol{u}_1, \boldsymbol{u}_2) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} = F(\boldsymbol{e}_1, \boldsymbol{e}_2) \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$

とみなす

ここで、

$$F(\boldsymbol{e}_1, \boldsymbol{e}_2) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1$$

であるから、結局、

$$\begin{vmatrix} 1 & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$

が得られる

2 項めの行列式も同様に、掃き出し法によって、

$$\begin{vmatrix} 0 & a_{12} & a_{13} \\ 1 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} 0 & a_{12} & a_{13} \\ 1 & 0 & 0 \\ 0 & a_{32} & a_{33} \end{vmatrix}$$

これを、

$$oldsymbol{u}_1 = egin{pmatrix} a_{12} \ a_{32} \end{pmatrix}$$
 , $oldsymbol{u}_2 = egin{pmatrix} a_{13} \ a_{33} \end{pmatrix}$

の関数 $F(\boldsymbol{u}_1, \boldsymbol{u}_2)$ とみなす

交代性より、

$$F(\mathbf{e}_1, \mathbf{e}_2) = \begin{vmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix} = \det(\mathbf{e}_2, \mathbf{e}_1, \mathbf{e}_3)$$
$$= -\det(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) = -1$$

なので、

$$\begin{vmatrix} 0 & a_{12} & a_{13} \\ 1 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} = - \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix}$$

最後の項の行列式も同様にして、

$$\begin{vmatrix} 0 & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 1 & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} 0 & a_{12} & a_{13} \\ 0 & 0 & 0 \\ 1 & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix}$$

と表せる

以上より、3次行列式は、次のような2次行列式の和に分解できる

$$egin{array}{ccccc} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \ \end{array}$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix}$$

このような行列式の展開を一般化したものが、余因子展開である

全 余因子 n 次正方行列 $A=(a_{ij})$ から、第 i 行と第 j 列を取り除いて (n-1) 次の正方行列 Δ_{ij} を作り、その行列式に符号 $(-1)^{i+j}$ をかけたものを、A の (i,j) 余因子と呼び、 \tilde{a}_{ij} と書く

$$\tilde{a}_{ij} = (-1)^{i+j} \det(\Delta_{ij})$$

♣ 余因子展開 det(A) は次のように余因子展開できる

第 j 列に関する展開

$$\det(A) = \tilde{a}_{1j}a_{1j} + \tilde{a}_{2j}a_{2j} + \cdots + \tilde{a}_{nj}a_{nj}$$

第 i 行に関する展開

$$\det(A) = \tilde{a}_{i1}a_{i1} + \tilde{a}_{i2}a_{i2} + \cdots + \tilde{a}_{in}a_{in}$$

≥ 証明

列に関する展開だけを示せば、行の方は行列式の対称性よりしたがう

行列 A を $A = (\boldsymbol{a}_1, \ldots, \boldsymbol{a}_n)$ のように列ベクトル表示するすると、

$$\mathbf{a}_j = a_{1j}\mathbf{e}_1 + \cdots + a_{nj}\mathbf{e}_n$$

なので、行列式の多重線形性を用いて、

$$\det(A) = |oldsymbol{a}_1, \dots, oldsymbol{a}_j, \dots, oldsymbol{a}_n|$$

$$= \sum_{i=1}^n |oldsymbol{a}_1, \dots, oldsymbol{a}_{ij} oldsymbol{e}_i, \dots, oldsymbol{a}_n|$$

$$= \sum_{i=1}^n a_{ij} |oldsymbol{a}_1, \dots, oldsymbol{e}_i, \dots, oldsymbol{a}_n|$$

 $|\boldsymbol{a}_1,\ldots,\boldsymbol{e}_i,\ldots,\boldsymbol{a}_n|$ に対して、(i,j) 成分を要にして第i 行を掃き出す操作を行うと、

さらに、i 行目を 1 つ上の行と順に交換して 1 行目まで移動し、次に j 列目を 1 つ左の列と順に交換して 1 列目まで移動する

行や列の交換から生じる符号の変化は、(i-1)+(j-1) の交換を行っているので、 $(-1)^{i+j-2}=(-1)^2(-1)^{i+j}=(-1)^{i+j}$ となる

よって、次のような形が得られる

ここで現れる行列式は、第 1 行・第 1 列に移動させた第 i 行・第 j 列を取り除いた (n-1) 次正方行列の行列式である

よって、符号の部分も合わせて、余因子の定義より、次のように書ける

$$|\boldsymbol{a}_1,\ldots,\boldsymbol{e}_i,\ldots,\boldsymbol{a}_n|=\tilde{a}_{ij}$$

したがって、行列 A の行列式は、

$$\det(A) = \sum_{i=1}^n a_{ij} \tilde{a}_{ij}$$

と書けることが示された

余因子行列と逆行列の公式

[Todo 2:]

クラメルの公式

[Todo 3:]

Zebra Notes

Туре	Number
todo	3