Assignment #1 Static Device Characteristics

1) I_{DS}-V_{DS} & coefficient of channel length modulation

a) IDS-VDS Curve

45nm case: Shown as Figure 1.

Figure 1 I_{DS}-V_{DS} Curve of 45nm NMOS

7nm case: Shown as Figure 2.

Figure 2 I_{DS}-V_{DS} Curve of 7nm NMOS

b) coefficient of channel length modulation

Then I will describe how to calculate λ for NMOS. As we all know, the calculation formula of the modified saturation current is: (Equation 1.1)

$$I_{DS} = \frac{\mu_n C_{OX}}{2} \cdot \frac{W}{L} \cdot (V_{GS} - V_T)^2 \cdot (1 + \lambda V_{DS})$$
 (1.1)

Given the fixed V_{GS} , we can measure the I_{DS} values of two points with different V_{DS} values (but on the curve with the same color), substitute then into equation 1.1 and then divide.

I use a cursor in Custom WaveView to measure the values, and get the following result.

45nm case: When V_{GS} =0.9V, V_{DS} =1.0V, I_{DS} =84.2 μ A, when V_{GS} =0.9V, V_{DS} =1.1V, I_{DS} =86 μ A.

$$\frac{86}{84.2} = \frac{1+1.1\lambda}{1+1.0\lambda}$$

By solving the above equation, get λ =0.272.

7nm case: When V_{GS} =0.5V, V_{DS} =0.6V, I_{DS} =38.9 μ A, when V_{GS} =0.5V, V_{DS} =0.7V, I_{DS} =40.5 μ A.

$$\frac{40.5}{38.9} = \frac{1 + 0.7\lambda}{1 + 0.6\lambda}$$

By solving the above equation, get $\lambda = 0.546$.

However, when I try to use another fixed V_{GS} to calculate λ , I find them different greatly. Since λ may be the function of V_{GS} and it is not a constant for a certain MOSFET, I draw a table for different λ - V_{GS} pairs for 45nm & 7nm NMOS as shown as Table 1 & Table 2.

Table 1 The Relationship between $\lambda \&V_{GS}$ for 45nm NMOS

V _{GS} (V)	$I_{DS}(\mu A)$ $V_{DS}{=}1.0V$	$I_{DS}(\mu A)$ $V_{DS}{=}1.1V$	λ
0.1	0	0	N/A
0.3	3.45	3.91	-4.000
0.5	25.8	27	0.870
0.7	55.3	56.8	0.372
0.9	84.2	86	0.272

Table 2 The Relationship between $\lambda \&V_{GS}$ for 7nm NMOS

V _{GS} (V)	$I_{DS}(\mu A)$ $V_{DS}{=}1.0V$	$I_{DS}(\mu A)$ $V_{DS}=1.1V$	λ
0.3	7.95	8.84	3.410
0.35	14	15.2	1.765
0.4	21.4	22.7	0.956
0.45	29.8	31.2	0.654
0.5	38.9	40.5	0.546

2) IDS-VGS & subthreshold slope & VTH & body coefficient & DIBL

a) I_{DS}-V_{GS} Curve (V_{DS}=Vdd, V_{BS}=0V)

Note: for the convenience of slope calculation in the next step, the ordinate (I_{DS}) is the logarithmic coordinate!

45nm case: Shown as Figure 3.

Figure 3 I_{DS}-V_{GS} Curve of 45nm NMOS(with Logarithmic Coordinate)

7nm case: Shown as Figure 4.

Figure 4 I_{DS}-V_{GS} Curve of 7nm NMOS(with Logarithmic Coordinate)

b) subthreshold slope

I use two H-cursors in Custom WaveView to measure the V_{GS} when I_{DS}=10nA or 100nA.

45nm case: V_{GS} =31.6mV when I_{DS} =10nA, V_{GS} =123mV when I_{DS} =100nA.

$$S = 123-31.6 = 91.4 \text{mV/decade}$$

7nm case: V_{GS} =30.6mV when I_{DS} =10nA, V_{GS} =107mV when I_{DS} =100nA.

$$S = 107-30.6 = 76.4 \text{mV/decade}$$

c) V_{TH}

Since the given $V_{DS}=V_{dd}$, so the NMOS works in either 'cut-off' mode or 'saturate' mode. Thus, I read the paper in slide 68 and use **Extrapolation method in the region**, which is mentioned in its 3.1 section.

The method contains the following steps:

a)Plot the
$$I_D^{0.5} - V_g$$
 curve.

b)Find its maximum slope point.

c) Find its V_g axis intercept($I_D^{0.5} = 0$).

45nm case: The ${I_{\scriptscriptstyle D}}^{0.5} - V_{\scriptscriptstyle g}$ curve and its derivate curve is shown as Figure 5.

Figure 5 The $I_D^{0.5}$ - V_g Curve & The 1st Order Derivate Curve of $I_D^{0.5}$ - V_g in 45nm NMOS

We can see the derivative reaches maximum 17.2m at V_{GS} =0.361V. And then we assume the tangent equation as y = 17.2mx + b. Then we use the point (0.361, 2.99m) in the green curve and get the final tangent equation as y = 17.2mx - 3.2192m. Therefore we get the intercept x = 3.2192/17.2 = 0.187V.

Thus, I determine V_{TH}=0.186V for 45nm NMOS.

Figure 1 can verify my conclusion. The bottom curves are plotted with V_{GS} =0.1V(green color) & V_{GS} =0.3V(yellow color). The green curve is in 'cut-off' mode while the yellow curve is not. It indicates that the V_{TH} should be higher than 0.1V and lower than 0.3V, which is consistent with my result.

7nm case: The $I_{\scriptscriptstyle D}^{0.5} - V_{\scriptscriptstyle g}$ curve and its derivate curve is shown as Figure 6.

Figure 6 The $I_D^{0.5}$ - V_g Curve & The 1st Order Derivate Curve of $I_D^{0.5}$ - V_g in 7nm NMOS We can see the derivative reaches maximum 19.1m at V_{GS} =0.275V. And then we assume the tangent equation as y = 19.1mx + b. Then we use the point (0.275, 2.49m) in the green curve and get the final tangent equation as y = 19.1mx - 2.7625m. Therefore we get the intercept x = 19.1mx - 10.1mx

2.7625/19.1 = 0.145V.

Thus, I determine V_{TH}=0.145V for 7nm NMOS.

Figure 1 can verify my conclusion. The curves are plotted with $V_{GS}>0.3V$. And they all work fine. It indicates that the V_{TH} should be lower than 0.3V, which is consistent with my result.

d) body coefficient

45nm case: Find V_{TH} with the same steps as c).

Since V_{BS} varies from -1.1V to 0V, I use 0.1V as gap and plot 12 points for V_{TH} as shown in Table 3 & the relationship curve in shown as Figure 7..

Figure 7 The Relationship Curve between V_{TH} & V_{BS} for 45nm NMOS

Table 3 The Relationship between V_{TH} & V_{BS} for 45nm NMOS

V_{BS}	MAX derivate	V_{GS}	$I_{\rm DS}{}^{0.5}$	V_{TH}
(V)	(mV)	(V)	$(mA^{0.5})$	(V)
-1.1	15.7	0.553	2.76	0.377
-1.0	15.8	0.537	2.76	0.362
-0.9	15.9	0.522	2.79	0.347
-0.8	16.1	0.506	2.81	0.331
-0.7	16.2	0.49	2.83	0.315
-0.6	16.3	0.473	2.86	0.298
-0.5	16.5	0.455	2.86	0.282
-0.4	16.6	0.438	2.89	0.264
-0.3	16.7	0.419	2.91	0.245
-0.2	16.9	0.401	2.94	0.227
-0.1	17	0.378	2.91	0.207
0	17.2	0.361	2.99	0.187

The threshold voltage equation with body-bias effect is shown as Equation 1.2.

$$V_T = V_{T0} + \gamma (\sqrt{\varphi_s + V_{SB}} - \sqrt{\varphi_s})$$
 (1.2)

Given $\varphi_s = 0.93V$ and the data above in the table, the coefficient of body-effect γ can be

worked out.
$$0.377 = V_{T0} + \gamma(\sqrt{0.93 + 1.1} - \sqrt{0.93})$$
 , $0.207 = V_{T0} + \gamma(\sqrt{0.93 + 0.1} - \sqrt{0.93})$

 $\gamma = 0.415$ for 45nm NMOS.

7nm case:

Since V_{BS} varies from -1.1V to 0V, I use 0.1V as gap and plot 12 points for V_{TH} as shown in Table 4 & the relationship curve in shown as Figure 8.

	Table 4 The	Relationship	between	$V_{TH} &$	V_{RS}	for 7nm NMOS
--	-------------	--------------	---------	------------	----------	--------------

V_{BS}	MAX derivate	V_{GS}	$I_{DS}^{0.5}$	V_{TH}
(V)	(mV)	(V)	$(mA^{0.5})$	(V)
-1.1	19.1	0.275	2.49	0.145
-1	19.1	0.275	2.49	0.145
-0.9	19.1	0.275	2.49	0.145
-0.8	19.1	0.275	2.49	0.145
-0.7	19.1	0.275	2.49	0.145
-0.6	19.1	0.275	2.49	0.145
-0.5	19.1	0.275	2.49	0.145
-0.4	19.1	0.275	2.49	0.145
-0.3	19.1	0.275	2.49	0.145
-0.2	19.1	0.275	2.49	0.145
-0.1	19.1	0.275	2.49	0.145
0	19.1	0.275	2.49	0.145

The V_{TH} is not affected by V_{BS} at all in 7nm case!!!

Figure 8 The Relationship Curve between V_{TH} & V_{BS} for 7nm NMOS

e) DIBL

45nm case: Find V_{TH} with the same steps as c).

The derivative reaches maximum 14.1m at V_{GS} =0.398V. And then we assume the tangent equation as y = 14.1mx + b. Then we use the point (0.398, 2.17m) in the green curve and get

the final tangent equation as y = 14.1mx - 3.4418m. Therefore we get the intercept x = 3.4418/14.1 = 0.244V. Thus, I determine $V_{TH} = 0.244V$ for 45nm NMOS.

Now let's take DIBL into account. When $V_{DS} = 0.1V$, $V_{TH} = 0.244V$; when $V_{DS} = 1.1V$, $V_{TH} = 0.187V$. The DIBL equation is as the following. (Equation 1.3)

$$V_t = V_t - \eta V_{ds} \tag{1.3}$$

Thus,
$$\eta = \frac{0.244 - 0.187}{1.1 - 0.1} = 0.057$$
 for 45nm NMOS.

7nm case: Find V_{TH} with the same steps as c).

The derivative reaches maximum 18.2m at V_{GS} =0.325V. And then we assume the tangent equation as y = 18.2mx + b. Then we use the point (0.325, 2.44m) in the green curve and get the final tangent equation as y = 18.2mx - 3.475m. Therefore we get the intercept x = 3.475/18.2 = 0.191V. Thus, I determine V_{TH} =0.191V for 7nm NMOS.

Now let's take DIBL into account. When $V_{DS} = 0.1V$, $V_{TH} = 0.191V$; when $V_{DS} = 0.7V$, $V_{TH} = 0.145V$. The DIBL equation is as the following. (Equation 1.2)

$$V_t = V_t - \eta V_{ds} \tag{1.2}$$

Thus,
$$\eta = \frac{0.191 - 0.145}{0.7 - 0.1} = 0.077$$
 for 7nm NMOS.

3) Temperature

45nm case:

When V_{GS}=0.1V, the NMOS is OFF, I_{DS} increases with temperature. (Shown as Figure 9)

Figure 9 I_{DS}-Temperature Curve of 45nm NMOS(OFF)

When V_{GS}=0.5V, the NMOS is ON, I_{DS} decreases with temperature. (Shown as Figure 10)

Figure 10 I_{DS}-Temperature Curve of 45nm NMOS(ON)

7nm case:

When V_{GS} =0.1V, the NMOS is OFF, I_{DS} increases with temperature. (Shown as Figure 11)

Figure 8 I_{DS}-Temperature Curve of 7nm NMOS(OFF)

When V_{GS}=0.5V, the NMOS is ON, I_{DS} also increases with temperature. (Shown as Figure 12)

Figure 12 I_{DS} -Temperature Curve of 7nm NMOS(ON)

Assignment #2 R/C-V Characteristics

1) Resistance of a transistor

According to Topic-01 P84,when $V_{GS}=V_{DD}$ and V_{DS} ranges from $V_{DD}/2$ to V_{DD} , I_{DS} can be seen as linear. So R_{on} can be approximated by Equation 2.1.

$$Req = \frac{1}{2} \left(\frac{V_{DD}}{I_{DSAT} (1 + \lambda V_{DD})} + \frac{V_{DD} / 2}{I_{DSAT} (1 + \lambda V_{DD} / 2)} \right) = \frac{1}{2} (R_0 + R_{mid})$$
 (2.1)

Thus, I calculate the ratio between V_{DS} and I_{DS} to get R when V_{DS} is $V_{DD}/2$ or V_{DD} . Then I take the average value as the resistance of a transistor.

45nm case:

The solution of Req of 45nm NMOS & PMOS in shown as Table 5 and the Req- V_{DD} curve for 45nm NMOS & PMOS is shown as Figure 13.

Table 5 R_{eq} Variation with respect to V_{DD} Value for 45nm NMOS & PMOS

	1					
		NMOS			PMOS	
$V_{DD}(V)$	$R_{\text{mid}}(k\Omega)$	$R_0(k\Omega)$	$R_{eq}(k\Omega)$	$R_{\text{mid}}(k\Omega)$	$R_0(k\Omega)$	$R_{eq}(k\Omega)$
0.4	34.1	54.8	44.45	32.3	49.1	40.70
0.6	9.98	17.3	13.64	9.78	16.2	12.99
0.8	6.81	12	9.41	6.52	11.1	8.81
1	5.74	10.2	7.97	5.33	9.18	7.26
1.2	5.22	9.27	7.25	4.73	8.17	6.45
1.4	4.93	8.75	6.84	4.36	7.53	5.95
1.6	4.75	8.43	6.59	4.13	7.05	5.59
1.8	4.64	8.2	6.42	3.98	6.61	5.30

Figure 13 The R_{eq} - V_{DD} Curve for 45nm NMOS & PMOS

7nm case:

The solution of Req of 7nm NMOS & PMOS in shown as Table 6 and the Req- V_{DD} curve for 45nm NMOS & PMOS is shown as Figure 14. Since the resistance in 7nm differs a lot, the Req-axis is in **logarithmic coordinate** in Figure 14..

Table 6 R _{eq} Variation with respect to V _I	n Value for	7nm NMOS	& PMOS
---	-------------	----------	--------

		NMOS			PMOS	
$V_{DD}(V)$	$R_{\text{mid}}(k\Omega)$	$R_0(k\Omega)$	$R_{eq}(k\Omega)$	$R_{\text{mid}}(k\Omega)$	$R_0(k\Omega)$	$R_{eq}(k\Omega)$
0.2	292	445	368.50	419	605	512.00
0.4	12.7	21.4	17.05	15.4	25.1	20.25
0.6	5.86	10.2	8.03	6.84	11.7	9.27
0.8	4.32	7.51	5.92	4.98	8.5	6.74
1	3.7	6.34	5.02	4.25	7.14	5.70
1.2	3.39	5.7	4.55	3.91	6.4	5.16
1.4	3.24	5.29	4.27	3.76	5.93	4.85

Figure 14 The $R_{\text{eq}}\text{-}V_{\text{DD}}$ Curve for 7nm NMOS & PMOS

2) Gate capacitance versus gate voltage

I mainly utilize the *lx18* function in Hspice to get the gate voltage. Since gate voltage is a variable, the drain voltage is set to be zero. The diagram is from Topic01 P99 as Figure 15.

 $\label{eq:Figure 15} \textbf{Figure 15} \mbox{ The Diagram for Measuring the Gate Capacitance}$ When using lx18, it is easy to get C_g with just sweeping V_{GS} from -2V to 2V.

45nm case: Shown as Figure 16.

Figure 16 The C_G - V_{GS} Curve for 45nm NMOS

7nm case: Shown as Figure 17.

Note: Another method is to use a small AC voltage source to connect the gate of NMOS, and the drain & source of the NMOS is still connected to GND. Then use AC analysis at the fixed frequent(e.g. $f = \frac{1}{2\pi}$) . When VGS varies from -2V to 2V, measure the I_{GS} at that frequent. The current equals to the gate capacitance value.

This method mainly depends on the formula of the definition of capacitance, but I don't work it out in hspice! 🕃

Assignment #3 45nm Planer MOSFET vs. 7nm FinFET

Differences between two process nodes.

- 1) Of course, 7nm FinFET demands lower V_{DD} than 45nm MOSFET.
- 2) The channel length modulation λ of 7nm FinFET seems to be larger than 45nm MOSFET, which means **stronger channel modulation effect**, and the I_{DS} - V_{DS} curve tends to a straight line with a slope.
- 3) The **subthreshold slope** of 7nm FinFET is smaller than 45nm MOSFET.
- 4) The **threshold voltage** of 7nm FinFET is smaller than 45nm MOSFET.
- 5) The 45nm MOSFET suffers from body-effect, while the 7nm FinFET seems to be **not affected by the body-effect**, its threshold voltage is independent of body voltage bias.
- 6) The 7nm FinFET suffers from **stronger DIBL effect**, its threshold voltage drops faster when V_{DS} increases compared to the 45 nm MOSFET.
- 7) Commonly, like 45nm MOSFET, I_{ON} decreases with temperature and I_{OFF} increases with temperature. But in 7nm FinFET case, I_{ON} & I_{OFF} both increases with temperature.
- 8) The resistance of 7nm FinFET is much larger than 45nm MOSFET when V_{DD} is low.
- 9) The C-V curve of 45nm NMOS is about to be symmetric, while the C-V curve of 7nm FinFET is **flat** on the left half axis(negative V_{GS}).