Лабораторная работа №**1**

Дисциплина: Имитационное моделирование

Пронякова Ольга Максимовна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	17
Список литературы		18

Список иллюстраций

3.1	Заполнение файла shablon.tcl	7
3.2	Заполнение файла tcl	8
3.3	Результат работы программы	9
3.4	Заполнение файла tcl	11
3.5	Результат работы программы	12
3.6	Заполнение файла tcl	13
3.7	Результат работы программы	14
3.8	Заполнение файла tcl	15
3.9	Результат работы программы	16

Список таблиц

1 Цель работы

Приобретение навыков моделирования сетей передачи данных с помощью средства имитационного моделирования NS-2, а также анализ полученных результатов моделирования.

2 Задание

- 1. Шаблон сценария для NS-2
- 2. Простой пример описания топологии сети, состоящей из двух узлов и одного соединения
- 3. Пример с усложнённой топологией сети
- 4. Пример с кольцевой топологией сети
- 5. Упражнение

3 Выполнение лабораторной работы

В своём рабочем каталоге создаю директорию mip, в которой будут выполняться лабораторные работы. Внутри mip создаю директорию lab-ns, а в ней файл shablon.tcl. Откываюна редактирование файла shablon.tcl и заполняю его по инструкции(рис.3.1).

```
*/home/openmodelica/mip/lab-ns/shablon.tcl-Mousepad — + ×
Файл Правка Поиск Вид Документ Справка

set ins [new Simulator]
set inf [open out.nam w]
sns namtrace-all $nf
set f [open out.tr w]
sns trace--all $ff
proc finish {} {
    global ns f nf
    sns flush-trace
    close $f
    close $nf
    exec nam out.nam &
    exit 0

$ns at 5.0 "finish"

$ns run
```

Рис. 3.1: Заполнение файла shablon.tcl

Нужноо смоделировать сеть передачи данных, состоящую из двух узлов, соединённых дуплексной линией связи с полосой пропускания 2 Мб/с и задержкой 10 мс, очередью с обслуживанием типа DropTail. От одного узла к другому по протоколу UDP осуществляется передача пакетов, размером 500 байт, с постоянной скоростью 200 пакетов в секунду. Копирую содержимое предыдущего файла в новый и заполняю по образцу(рис.3.2), (рис.3.3).

```
онд перелод справа
               */home/openmodelica/mip/lab-ns/example1.tcl - Mousepa
Файл
       Правка
                      Вид
                           Документ
                                     Справка
$ns trace-all $f
proc finish {} {
        global ns f nf
        $ns flush-trace
        close $f
        close $nf
        exec nam out.nam &
        exit 0
set N2
for {set i 0} {$i < $N} {incr i} {
        set n($i) [$ns node]
$ns duplex-link $n(0) $n(1) 2Mb 10ms DropTail
set udp0 [new Agent/UDP]
$ns attach-agent $n(0) $udp0
set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize 500
$cbr0 set interval 0.005
$cbr0 attach-agent $udp0
set null0 [new Agent/Null]
$ns attach-agent $n(1) $null0
$ns connect $udp0 $null0
$ns at 0.5 "$cbr0 start"
$ns at 4.5 "$cbr0 stop"
$ns at 5.0 "finish"
```

Рис. 3.2: Заполнение файла tcl

Рис. 3.3: Результат работы программы

- сеть состоит из 4 узлов
- между узлами n0 и n2, n1 и n2 установлено дуплексное соединение с пропускной способностью 2 Мбит/с и задержкой 10 мс;
- между узлами n2 и n3 установлено дуплексное соединение с пропускной способ- ностью 1,7 Мбит/с и задержкой 20 мс;
- каждый узел использует очередь с дисциплиной DropTail для накопления

пакетов, максимальный размер которой составляет 10;

- TCP-источник на узле n0 подключается к TCP-приёмнику на узле n3 (по-умолчанию, максимальный размер пакета, который TCP-агент может генери- ровать, равняется 1КВуte)
- TCP-приёмник генерирует и отправляет АСК пакеты отправителю и откидывает полученные пакеты;
- UDP-агент, который подсоединён к узлу n1, подключён к null-агенту на узле n3 (null-агент просто откидывает пакеты);
- генераторы трафика ftp и cbr прикреплены к TCP и UDP агентам соответственно;
- генератор cbr генерирует пакеты размером 1 Кбайт со скоростью 1 Мбит/с;
- работа cbr начинается в 0,1 секунду и прекращается в 4,5 секунды, а ftp начинает работать в 1,0 секунду и прекращает в 4,0 секунды

Копирую содержимое предыдущего файла в новый и заполняю по образцу(рис.3.4), (рис.3.5).

```
Правка Вид Переход Справка
               */home/openmodelica/mip/lab-ns/example2.tcl - Mo
       Правка
               Поиск
                      Вид
                           Документ Справка
 Файл
$ns attach-agent $n(0) $udp0
set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize 500
$cbr0 set interval 0.005
$cbr0 attach-agent $udp0
set tcpl [new Agent/TCP]
$ns attach-agent $n(1) $tcp1
set ftp [new Application/FTP]
$ftp attach-agent $tcp1
set null0 [new Agent/Null]
$ns attach-agent $n(3) $null0
set sink1 [new Agent/TCPSink]
$ns attach-agent $n(3) $sink1
$ns connect $udp0 $null0
$ns connect $tcp1 $sink1
$ns color 1 Blue
$ns color 2 Red
Sudp0 set class 1
$tcp1 set class 2
$ns duplex-link-op $n(2) $n(3) queuePos 0.5
sns queue-limit sn(2) sn(3) 20
$ns at 0.5 "$cbr0 start"
$ns at 1.0 "$ftp start"
$ns at 4.0 "$ftp stop"
$ns at 4.5 "$cbr0\stop"
 ns at 5.0 "finish"
```

Рис. 3.4: Заполнение файла tcl

Рис. 3.5: Результат работы программы

Требуется построить модель передачи данных по сети с коль- цевой топологией

и динамической маршрутизацией пакетов: - сеть состоит из 7 узлов, соединённых в кольцо; - данные передаются от узла n(0) к узлу n(3) по кратчайшему пути; - с 1 по 2 секунду модельного времени происходит разрыв соединения между узлами n(1) и n(2); - при разрыве соединения маршрут передачи данных должен измениться на резервный

Копирую содержимое предыдущего файла в новый и заполняю по образцу(рис.3.6), (рис.3.7).

Рис. 3.6: Заполнение файла tcl

Рис. 3.7: Результат работы программы

Внесите следующие изменения в реализацию примера с кольцевой топологией сети:

- передача данных должна осуществляться от узла n(0) до узла n(5) по кратчай- шему пути в течение 5 секунд модельного времени;
- передача данных должна идти по протоколу TCP (тип Newreno), на

принимаю- щей стороне используется TCPSink-объект типа DelAck; поверх TCP работает протокол FTP с 0,5 до 4,5 секунд модельного времени;

- с 1 по 2 секунду модельного времени происходит разрыв соединения между узлами n(0) и n(1);
- при разрыве соединения маршрут передачи данных должен измениться на ре- зервный, после восстановления соединения пакеты снова должны пойти по кратчайшему пути.

Копирую содержимое предыдущего файла в новый и добавляю корректиров-ки(рис.3.8), (рис.3.9).

```
Файл Правка Поиск Вид Документ
                                    Справка
        close $nt
        exec nam out.nam &
        exit 0
set N 5
for {set i 0} {$i < $N} {incr i} {
        set n($i) [$ns node]
for {set i 0} {$i < $N} {incr i} {
                $ns duplex-link $n($i) $n([expr ($i+1)%$N]) 1Mb 10ms DropTail
set n5 [$ns node]
$ns duplex-link $n5 $n(1) 1Mb 10ms DropTail
set tcp1 [new Agent/TCP/Newreno]
$ns attach-agent $n(0) $tcp1
set ftp [new Application/FTP]
$ftp attach-agent $tcp1
set sink1 [new Agent/TCPSink/DelAck]
$ns attach-agent $n5 $sink1
$ns connect $tcpl $sink1
$ns at 0.5 "$ftp start"
$ns rtmodel-at 1.0 down $n(0) $n(1)
$ns rtmodel-at 2.0 up $n(0) $n(1)
$ns at 4.5 "$ftp stop" I
$ns at 5.0 "finish"
$ns at 5.0 "finish"
Sns run
```

Рис. 3.8: Заполнение файла tcl

Рис. 3.9: Результат работы программы

4 Выводы

Приобрела навыки моделирования сетей передачи данных с помощью средства имитационного моделирования NS-2, а также проанализировала полученные результаты моделирования.

Список литературы