Fall, 2018

■微算機原理與實驗講義

實驗四

自動上數計數器(四個七段LED)

一、實驗目的:

瞭解四顆七段顯示器的電路結構以及相關的控制方法。

二、實驗內容:

(1) 本實驗使用之4x7seg單板。

(2) 四顆七段顯示器的電路原理:

由上排針腳作為四顆七段顯示器的選擇以及顯示訊號輸入。右側的VCC接至電源,D1~D4為控制第幾個七段顯示的位置控制訊號,而左側A~H為控制單個

Microcomputer Systems and Lab

Fall, 2018

■微算機原理與實驗講義

三、實驗要求:

(1) 基本題

設計一個上數計數器,由9990→9991→····→9999→0000→0001→····依序 顯示於4個七段顯示器上面,間隔時間自己設定,基本上不要快到看不出 來,也不要慢到等了整堂課都沒有run完就可以。

(2) 進階題

設計一個倒數碼錶,由5→4→···→0→60→59→····依序顯示於最右邊兩個 七段顯示器,間隔時間請盡可能接近1秒。由於實驗用的IC並不是課本上 的8051,而是MPC82G516A,從Datasheet中可以看到指令的執行週期:

26.3 Data Transfer

	Mnemonic	Description	Byte	Execution Clock Cycles
DATA TRANSFER				
MOV	A,Rn	Move register to ACC	1	1
VOM	A,direct	Move direct byte o ACC	2	2
VOM	A,@Ri	Move indirect RAM to ACC	1	2
MOV	A,#data	Move immediate data to ACC	2	2
MOV	Rn,A	Move ACC to register	1	2
MOV	Rn,direct	Move direct byte to register	2	4
MOV	Rn,#data	Move immediate data to register	2	2
MOV	direct,A	Move ACC to direct byte	2	3
MOV	direct,Rn	Move register to direct byte	2	3
	addr11	Absolute subroutine call	2	6
	addr16	Long subroutine call	3	6
RET		Return from subroutine	1	4
RETI		Return from interrupt subroutine	1	4
AJMP	addr11	Absolute jump	2	3
LJMP	addr16	Long jump	3	4
SJMP	rel	Short jump	2	3
JMP	@A+DPTR	Jump indirect relative to DPTR	1	3
JZ	rel	Jump if ACC is zero	2	3
JNZ	rel	Jump if ACC not zero	2	3
JC	rel	Jump if Carry is set	2	3
JNC	rel	Jump if Carry not set	2	3
JB	bit,rel	Jump if direct bit is set	3	4
JNB	bit,rel	Jump if direct bit not set	3	4
JBC	bit,rel	Jump if direct bit is set and then clear bit	3	5
CJNE	A,direct,rel	Compare direct byte to ACC and jump if not equal	3	5
CJNE	A,#data,rel	Compare immediate data to ACC and jump if not equal	3	4
CJNE	Rn,#data,rel	Compare immediate data to register and jump if not equal	3	4
CJNE	@Ri,#data,rel	Compare immediate data to indirect RAM and jump if not	3	5
DJNZ	Rn,rel	Decrement register and jump if not equal	2	4
DJNZ	direct,rel	Decrement direct byte and jump if not equal	3	5

Microcomputer Systems and Lab

Microcomputer Systems and Lab

Fall, 2018 ■微算機原理與實驗講義

DELAY:

MOV R5,#data ; 2 clock cycles

DELAY1:

MOV R6,#data ; 2 clock cycles

DELAY2:

MOV R7,#data ; 2 clock cycles

DELAY3:

DJNZ R7,DELAY3 ; 4 clock cycles DJNZ R6,DELAY2 ; 4 clock cycles

DJNZ R5,DELAY1; 4 clock cycles

RET ; 4 clock cycles

因此有別於Lab01的公式,MPC82G516A的Delay時間算法如下:

Delay time
$$(\mu s) = \frac{2 + (2 + (2 + (4 \times R7) + 4) \times R6 + 4) \times R5 + 4}{12}$$

四、問題與討論:

若要使用一個開關來控制計數器 run 或 stop,要如何設計? (用文字說明即可,不用附程式)。