QF Group Theory CC2022 By Zaiku Group

Lecture 09

Delivered by Bambordé Baldé

Friday, 24/6/2022

Session Agenda

- 1. Learning Journey Timeline
- 2. Course Approach Overview

Pre-session Comments

- 1. Discrete Logs over Cyclic Groups
- 2. Discrete Log Problem
- 3. Diffie-Hellman Problem
- 4. Symmetric Cipher
- 5. Diffie-Hellman Key Exchange

Main Session

Learning Journey Timeline

quantumformalism.com

Discrete Logarithms over Cyclic Groups

Definition 1.0 (Theorem)

Let $G = \langle g \rangle$ be a cyclic group of order n. Then for each $x \in G$ there exists a unique integer $0 \le k \le n-1$ such that $g^k = x$.

- The integer k is called the discrete logarithm of x in respect to the generator (or base) g.
- We write $log_g^x = k$ to denote the fact that k is the discrete logarithm of x in respect to base g.

Concrete toy examples:

- Onsider the cyclic group $\mathbb{F}_5^* = \{1, 2, 3, 4\}$ under mod 5 multiplication. We have seen before that 2 is a generator for \mathbb{F}_5^* i.e. $\mathbb{F}_5^* = \langle 2 \rangle$. Then $log_2^1 = 4$ because $2^4 = 1$. Also, $log_2^2 = 1$ because $2^1 = 2$ right?
- 2 Consider again the cyclic group $\mathbb{F}_5^* = \{1, 2, 3, 4\}$ under mod 5 multiplication. We have seen before that 3 is also a generator for \mathbb{F}_5^* i.e. $\mathbb{F}_5^* = \langle 3 \rangle$ right? Then $log_3^2 = 3$ because $3^3 = 2$ right?

The Discrete Logarithm Problem (DLP)

Definition 1.1

Given a cyclic group $G = \langle g \rangle$ of order n and $x \in G$, compute log_g^x i.e. find the integer $0 \le k \le n-1$ such that $g^k = x$.

- For the additive cyclic group \mathbb{Z}_n , computing \log_g^x is equivalent to solving $kg \equiv x \mod n$.
- For the multiplicative group \mathbb{F}_p^* , computing \log_g^x is equivalent to solving $g^k \equiv x \mod p$.

Simple toy challenge:

- Consider $\mathbb{F}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Incidentally 2 is also a generator for \mathbb{F}_{11}^* i.e. $\mathbb{F}_{11}^* = \langle 2 \rangle$. What is \log_2^9 in \mathbb{F}_{11}^* ?
 - **1** 3 because $2^3 = 9$ i.e. 3 is the solution to the equation $2^k \equiv 9 \mod 11$?
 - 2 4 because $2^4 = 9$ i.e. 4 is the solution to the equation $2^k \equiv 9 \mod 11$?
 - **3** 6 because $2^6 = 9$ i.e. 6 is the solution to the equation $2^k \equiv 9 \mod 11$?
 - **4** 8 because $2^8 = 9$ i.e. 8 is the solution to the equation $2^k \equiv 9 \mod 11$?

Some Comments on DLP

- There is no known efficient classical algorithm that solves DLP for cyclic groups of large orders n. This makes DLP a good security assurance to build upon classical cryptographic systems. This gave birth to the so-called discrete log cryptography i.e. cryptography systems based on DLP. This includes the following well cryptographic systems:
 - Diffie-Hellman Key Exchange
 - ElGamal Encryption
 - Digital Signature Algorithm (DSA)
 - Elliptic Curves Cryptography (ECC)
 - Hyper Elliptic Curves Cryptography (HCC)
- There is a quantum algorithm (Shor) that solves DLP efficiently!
 - Hence, quantum computers are a threat to all the cryptographic systems above that depend on DLP!
 - On a side note, the quantum algorithm for DLP is related to another problem known as 'Hidden Subgroup Problem (HSP)'.

Diffie-Hellman Problem (DHP)

Definition 1.2

Let $G = \langle g \rangle$ be a cyclic group of order n. Given g^{k_1} and g^{k_2} for two integers (secret) $0 \le k_1, k_2 \le n-1$, determine $g^{k_1k_2}$.

• Note that $g^{k_1k_2} = (g^{k_1})^{k_2}$ (recall the group exponentiation).

Natural Questions:

- Does solving DLP means solving DHP? What about the other way round i.e. does solving DHP imply solving DLP?
- Is DLP the only way to crack DHP?

DHKE Practical Implementation

- For most practical applications of DHKE, the following multiplicative cyclic groups are used:
 - ① \mathbb{F}_p^* where p is a very large prime number similar to the size of RSA primes and p is a safe prime number.
 - ② $GF(2^m)^*$ i.e. the multiplicative group of the Galois field extension $GF(2^m)$.
- DHKE is ubiquitous and used in many important and popular cryptographic protocols including:
 - The Secure Shell Protocol (SSH)
 - Transport Layer Security (TLS)
 - Internet Protocol Security (IPSec)

Symmetric Ciphers 101

GitHub: github.com/quantumformalism

YouTube: youtube.com/ZaikuGroup

Discord: discord.gg/SPcmcsXMD2

Twitter: twitter.com/ZaikuGroup

LinkedIn: linkedin.com/company/zaikugroup