

PODS - 03/04/2020

- SPEC(ifications) Tables
- Your CubeSat discoveries!

Spec Tables

- Optical Designers use them to communicate design requirements
- Tables to organize key design constraints
- Enables *CLEAR COMMUNICATION* between design collaborators

A	А	В	С	D	
2	Name		Jaren N. Ashcraft		
3	Date		March 1	1st, 2020	
4	Project Title		PODSat - A C	ubesat Concept	
5	Brief Description			for variable objectives	
0	•				
7			Value	Note	
				Entrance Pupil Diameter. This is a segmented	
			200	telescope that uses this effective EPD, but is	
	Aperture	=	300 mm	composed of two square mirror apertures of	
9				100x100mm	
10	Field	=	0.9 deg	Calculated from IFOV	
11	Wavelength	=	d,F,C	Optical Design Wavelengths in the Visible	
IZ				1	
	Focal Length /	=	1380 mm	To 2*sample the Nyquist Frequency	
13	Magnification			Datasheet:	
	Detector		Raspberry Pi UV-Vis imaging camera (\$25)	<u>Datasneet:</u> https://cdn.sparkfun.com/datasheets/Dev/Raspbe	
14	Detector		Raspberry F1 OV-VIS imaging camera (\$23)	rryPilov5647_full.pdf	
15	Detector Size	=	2.27mm half-diagonal	Detector Datasheet	
16	Pixel Pitch	=	1.4 x 1.4 um	Detector Datasheet	
17	Nyquist	=	714 lp/mm	1/Pixel Pitch	
	Other Detector		•	https://www.ncbi.nlm.nih.gov/pmg/articles/PMC50	
18	Info		Paper using detector for 310nm observations	87437/pdf/sensors-16-01649.pdf	
13					
20	Image Quality	<=	2.8 um	RMS Spot Size	
21	Distortion	<	1%		
	Min/Max Ray		N/A	Contingent on Coatings	
22	AOI on surfaces				
	Telecentricity /		25.4	Detector Datasheet	
22	Chief Ray Angle	<	25 deg	Detector Datasneet	
23	on Detector Relative				
	Illumination /		N/A		
24	Vignetting		IVA		
24	Other Performance				
25	Requirements		Primary Mirror Co-Phasing		
20					
	Semi-Aperture				
	[optical /	<	35 mm	Optical, must fit in 1U package	
27	mechanical]				
00	Length	<	250 mm	Mechanical length	
28			N/A	i l	
29	Filters / Windows		N/A		
29	Other Packaging		Contain w/in a 3U+ volume		

Key Specifications

• What 3 parameters are the *most vital* for optical designers?

• What 3 parameters are the *most vital* for optical designers?

• What 3 parameters are the *most vital* for optical designers?

• What 3 parameters are the *most vital* for optical designers?

Aperture

Wavelength

Constraining The Design Space

- Aperture & Field constrain your design variant
- Wavelength constrains your available material
- Any "Black Box" system will have at least these three parameters

Source: Field Guide to Lens Design, Bentley (2012)

Performance Requirements

- Detector (pixel size, Nyquist frequency)
- Image Quality (MTF, RMS Wavefront, Spot Size)
- Distortion
- Ray angles (AOI, AOR, Telecentricity)
- Relative Illumination
- Vignetting

Packaging Requirements

- Regrettably optics don't float perfectly in space
- Leave room to hold your optics!
- Glasses also have blanks of finite size
 - Cost contribution
- This is particularly relevant in CubeSats where space is VERY LIMITED

3U+ CubeSat Acceptance Checklist

Project: Date/Time: Engineers:

Organization: Location:

Satellite Name: Satellite S/N: Revision Date: 02/20/2014

Mass (< 4.00 kg) _____ RBF Pin (≤ 6.5 mm)

Spring Plungers Functional Y / N Rails Anodized Y / N

(Depressed) Flush with Standoff Y / N

Deployment Switches Functional Y / N Deployables Constrained Y / N

(Depressed) Flush with Standoff Y / N

Mark on the diagram the locations of the RBF pin, connectors, deployables, and any envelope violations.

	A	В	С	D		
2	Name		Jaren N. Ashcraft			
3	Date		March 1st, 2020			
4	Project Title			PODSat - A Cubesat Concept		
5	Brief Description		A CubeSat payload for variable objectives			
U	Bill Beschiel					
7			Value	Note		
				Entrance Pupil Diameter. This is a segmented		
				telescope that uses this effective EPD, but is		
	Aperture	=	300 mm	composed of two square mirror apertures of		
9				100x100mm		
10	Field	=	0.9 deg	Calculated from IFOV		
11	Wavelength	=	d,F,C	Optical Design Wavelengths in the Visible		
IZ						
	Focal Length /	=	1380 mm	To 2*sample the Nyquist Frequency		
13	Magnification			Datasheet:		
	Detector		Raspberry Pi UV-Vis imaging camera (\$25)	https://cdn.sparkfun.com/datasheets/Dev/Raspbe		
14	Detector		Raspoerty F1 CV-Vis imaging camera (\$25)	rryPi/ov5647_full.pdf		
15	Detector Size	=	2.27mm half-diagonal	Detector Datasheet		
16	Pixel Pitch	=	1.4 x 1.4 um	Detector Datasheet		
17	Nyquist	=	714 lp/mm	1/Pixel Pitch		
	Other Detector		•	https://www.ncbi.nlm.nih.gov/pmd/articles/PMC50		
18	Info		Paper using detector for 310nm observations	87437/pdf/sensors-16-01649.pdf		
10			2.2	73.00.0		
20	Image Quality	<=	2.8 um	RMS Spot Size		
21	Distortion	<	1%			
22	Min/Max Ray		N/A	Contingent on Coatings		
22	AOI on surfaces					
	Telecentricity /	<	25 deg	Detector Datasheet		
23	Chief Ray Angle on Detector	`	25 deg	Detector Datasneet		
23	Relative					
	Illumination /		N/A			
24	Vignetting		14/21			
27	Other Performance					
25	Requirements		Primary Mirror Co-Phasing			
20						
	Semi-Aperture					
	[optical /	<	35 mm	Optical, must fit in 1U package		
27	mechanical]					
28	Length	<	250 mm	Mechanical length		
29	Filters / Windows		N/A			
	Other Packaging		Contain w/in a 3U+ volume			
30	Requirements					
31	200401101110					

Sample Spec Table

- Missing anything?
- Is the information clear?
- Link to reference material for transparency
- Could benefit from pictures

CubeSat Spec Inspiration

NEO Identification

- Shao M. et al. (2017) <u>A constellation of SmallSats with synthetic tracking cameras to search</u> for 90% of potentially hazardous near-Earth objects
- Constellation of Solar-Orbiting 9U CubeSats using "Synthetic Tracking"
 - No Optical Design!
 - NO W A V E L E N G TH *ANGRY GRAD STUDENT NOISES* (Other reading has me thinking MWIR)
 - 3.6x3.6 deg FOV, 20cm EPD w/ 8K detector, 10cm EPD w/ 4K

Fig. B.1. A CAD design for the synthetic tracking camera for a CubeSat.

Table 1. Parameters for an advanced synthetic tracking camera.

Parameters	Value	Units
Telescope Diameter	20	cm
Image	2X	diff limit
Pixel size	1.6	arcsec
Effective background	2.8	arcsec
Magnitude limit	22.15	mag
Integration time	800	S
Number of satellites	9	
EG size	50	m
H magnitude	24.24	mag

Fig. A.1. Schematic showing the integration of frames by using synthetic tracking. Frames are displaced according to the velocity of a NEO so that it is at the same location in all the frames during the integration (adopted from Shao et al. 2014).

LWIR Thermal Imaging of Earth

- Druart G. et al. (2018) <u>Study of infrared optical payloads to be integrated in a nanosat</u>
- Environmental / Industrial Monitoring
- 2U, F/1.5, 11x1 deg pushbroom FOV
- Study that inspired this project compared refractive & reflective solution

CubeSat

Uses, Missions, Goals

JPL CubeSat Missions

- RACE: Radiometer Atmospheric CubeSat Experiment (3U)
 - Measures liquid water path and precipitable water vapor that is pertinent to the water cycle and Earth energy budget
 - Microwave radiometer primarily observing the 183 GHz water vapor line
- GRIFEX: GEO-CAPE ROIC In-Flight Performance Experiment (3U)
 - Perform engineering assessment of a JPL-developed all digital in-pixel high frame rate Read-Out Integrated Circuit (ROIC)
 - High throughput capacity enables proposed Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission concept
 - Make hourly high spatial and spectral resolution measurements of rapidly changing atmospheric chemistry and pollution transport with the Panchromatic Fourier Transform Spectrometer (PanFTS) instrument in development
- M-Cubed/COVE-2: Michigan Multipurpose Minisatellite/CubeSat On-board processing Validation Experiment (1U)
 - Image the Earth at mid-resolution, approximately 200m per pixel, carrying the JPL developed COVE technology validation experiment
 - Validate an image processing algorithm designed for the Multiangle Spectropolarimetric Imager (MSPI) utilizing the first in-space application of a new radiation-hardened-by-design Virtex5-QV FPGA by Xilinx
- IPEX: Intelligent Payload Experiment (1U)
 - VSWIR hyperspectral imaging spectrometer and a thermal infrared imager that would perform global mapping producing approximately 5TB of data per day
 - Advance technology required for future spaceborne IPM for near real-time low-latency autonomous product generation relevant to climate, ecosystems, fire, geological resource, and coastal ocean science

Mission	Value	
Launch	ELANA-8/ORB-3	
Launch Date	Oct 2014	
Orbit Altitude	~415 km	
Orbit Inclination	51.6°	
Primary Mission	~60 days	

NanoRacks ISS Deployment

Sample HAMSR brightness temperature data from Hurricane Karl (2010). Four 183 GHz channels are shown at a higher spatial resolution. RACE would measure 2 channels and basically integrate the swaths shown into pixels.

RACE Mission Operations Concept

Earth Limb

RACE	Value	
Nadir Footprint	~20 km	
Instrument	Radiometer	
Frequency	183 GHz	
Channels	2	
ΝΕΔΤ	<1 K	
Science	Water Vapor T ₈ s	

CubeSat	Value
Payload Power	< 1.5 W
Data	~100 MB
Energy Storage	39 W-hr
OAP Body	~4.5 W
Pointing Accuracy	<10°
Pointing Knowledge	<1°

20km Nadir

Ground Station : University of Texas at Austin Backup : JPL

> *Not to scale 09/16/2014

What are cubesats used for?

"The idea for the CubeSat came in part from the miniature toy craze of the day, Beanie Babies, according to Spaceflight Now.
 Inspired by the individualized stuffed animals, Twiggs' idea was to allow students to build their own miniature satellites."
 https://www.space.com/34324-cubesats.html

Space walkie talkies

- "One of the MarCO spacecraft will serve as a relay satellite to send data back to Earth during InSight's entry, descent
 and landing operations at the Red Planet in September 2016. The other spacecraft will serve as a backup."
 https://www.space.com/29489-marco-cubesats-mars-landing-2016.html
 - IceCube measurements of ice clouds in space to assist with weather and climate models.

Weather walkie talkies

RainCube – monitor severe storms on earth

Space sensors

CubeSat Compact Radiation Belt Explorer – High energy particle Measurement in earth's radiation belt

Low Risk Proofs Of Various Concepts

- CubeSail deployment and control of solar sail blade
- Shields 1 demonstrate radiation shielding

Planet Probers

- CUVE Collect data about Venus' atmosphere.
- Lunar Flashlight lasers to search for water ice on the south pole of the moon.

https://solarsystem.nasa.gov/news/834/10-things-cubesats-going-farther/

Existing CubeSat Optical Design

Refractive (Example: AtmoCube A1, 6U)

Limitation: Shorter focal length, limiting sample distance

Reflective

Limitation: Difficult to fit mirror mounts into the cube

 Ritchey-Chretien (Example: EOSESS LLC design, 3U, Visible through MWIR)

Limitation: Aperture size, reduced MTF in mid-frequency

• Off-axis Ritchey-Chretien (Example: KAIST design, 3U, Visible)

Limitation: Aperture size

• TMA (Example: PRISM, 6U, 350-1700 nm)

Limitation: Large size

Problems:

Small satellite payload limits optical aperture size, which limits spatial resolution.

References

- CubeSat Image Resolution Capabilities with Deployable Optics and Current Imaging Technologies, J. Champagne, Space Dynamics Lab
- <u>Friedhelm Olschewski</u>, <u>Martin Kaufmann</u>, <u>Klaus Mantel</u>, <u>Oliver Wroblowski</u>, <u>Martin Riese</u>, and <u>Ralf Koppmann</u> "Advances in the optical design of a spatial heterodyne interferometer deployed on a 6U-CubeSat for atmospheric research", Proc. SPIE 11131, CubeSats and SmallSats for Remote Sensing III, 111310B (30 August 2019); https://doiorg.ezproxy1.library.arizona.edu/10.1117/12.2529968
- Pantazis Mouroulis, Byron Van Gorp, Robert O. Green, and Daniel W. Wilson "Optical design of a CubeSat-compatible imaging spectrometer", Proc. SPIE 9222, Imaging Spectrometry XIX, 92220D (15 September 2014); https://doi.org/10.1117/12.2062680
- Timothy L. Howard, "A Flexible Cubesat-based Optical Design for Earth Imaging Missions", AIAA SPACE Forum 2014.
- Ching-Wei Chen and Chia-Ray Chen "Optical design and tolerance analysis of a reflecting telescope for CubeSat", Proc. SPIE 9602, UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts VII, 96020P (22 September 2015); https://doi.org/10.1117/12.2188734
- Ho Jin, Juhee Lin, Youngju Kim, and Sanghyuk Kim, "Optical Design of a Reflecting Telescope for CubeSat", Journal of Optical Society of Korea, Vol. 17, No. 6, December 2013, pp. 533-537.

A couple ideas...

- Biggest limitations: Aperture diameter and packaging
 - Deployable Mirrors

Figure 4: Stowed Primary Mirror with

- Figure 3: Deployed Primary Mirror
- How to align?
 Small telescopes on each CubeSat with LED beacon for rough alignment?
 - Current Pointing Accuracy 0.05 deg. Can we do better? (based on 2017 Article)
- Still a big hyperspectral imaging fan...
 - Optical->SWIR(~2um)
 - Multipurpose: identifying/mapping oil spills, crop health, etc

FYI: NASA CubeSat Launch Initiative