which implies that

$$L(u) = \frac{f(a+tu) - f(a)}{t} - \frac{|t|}{t} \epsilon(tu) ||u||,$$

and since $\lim_{t\to 0} \epsilon(tu) = 0$, we deduce that

$$L(u) = Df(a)(u) = D_u f(a).$$

Because

$$f(a+h) = f(a) + L(h) + \epsilon(h) ||h||$$

for all h such that ||h|| is small enough, L is continuous, and $\lim_{h\to 0} \epsilon(h)||h|| = 0$, we have $\lim_{h\to 0} f(a+h) = f(a)$, that is, f is continuous at a.

When E is of finite dimension, every linear map is continuous (see Proposition 9.8 or Theorem 37.58), and this assumption is then redundant.

It is important to note that the derivative Df(a) of f at a is a continuous linear map from the vector space \overrightarrow{E} to the vector space \overrightarrow{F} , and not a function from the affine space E to the affine space F.

Although this may not be immediately obvious, the reason for requiring the linear map Df_a to be continuous is to ensure that if a function f is differentiable at a, then it is continuous at a. This is certainly a desirable property of a differentiable function. In finite dimension this holds, but in infinite dimension this is not the case. The following proposition shows that if Df_a exists at a and if f is continuous at a, then Df_a must be a continuous map. So if a function is differentiable at a, then it is continuous iff the linear map Df_a is continuous. We chose to include the second condition rather that the first in the definition of a differentiable function.

Proposition 39.2. Let E and F be two normed affine spaces, let A be a nonempty open subset of E, and let $f: A \to F$ be any function. For any $a \in A$, if Df_a is defined, then f is continuous at a iff Df_a is a continuous linear map.

Proof. Proposition 39.1 shows that if Df_a is defined and continuous then f is continuous at a. Conversely, assume that Df_a exists and that f is continuous at a. Since f is continuous at a and since Df_a exists, for any $\eta > 0$ there is some ρ with $0 < \rho < 1$ such that if $||h|| \le \rho$ then

$$||f(a+h) - f(a)|| \le \frac{\eta}{2},$$

and

$$||f(a+h) - f(a) - D_a(h)|| \le \frac{\eta}{2} ||h|| \le \frac{\eta}{2},$$

so we have

$$\|D_a(h)\| = \|D_a(h) - (f(a+h) - f(a)) + f(a+h) - f(a)\|$$

$$\leq \|f(a+h) - f(a) - D_a(h)\| + \|f(a+h) - f(a)\|$$

$$\leq \frac{\eta}{2} + \frac{\eta}{2} = \eta,$$