

Appendix B

Appendix B: Hideo *et al.* Full Translation

<Translation of JP2002-355074 A >

Pub. No.: p2002-355074 A
Publication Date: Dec. 10, 2002
5 Application No.: p2002-15959
Filing Date: Jan. 24, 2004
IPC: C12N 15/09 ZNA
A61K 31/7088
39/00
10 48/00
A61P 31/04
C07K 14/245
16/12
C12M 1/00
15 C12N 1/15
1/19
1/21
5/10
C12P 21/02
20 C12Q 1/68
G01N 33/15
33/50
33/53
33/566
25 37/00 102
Applicants: UNIVERSITY OF TSUKUBA; 1-1-1, Tennodai,
Tsukuba-shi, Ibaraki 3058577 (JP)
Inventors: HAYASHI Hideo et al. (JP)
Agent: TAKAGI Thiyozi et al.
30 Title: A nucleic-acid molecule and a polypeptide specific
to enterohemorrhagic E. coli O-157:H7 and a method
of using thereof
Priority Data: 2001-112010 Jan. 24, 2001 (JP)

35

CLAIMS

Appendix B: Hideo *et al.* Full Translation

NO:1612, SEQ ID NO:1615, SEQ ID NO:1617, SEQ ID NO:1619,
70 SEQ ID NO:1622, SEQ ID NO:1624,SEQ ID NO:1626, SEQ ID
NO:1627, SEQ ID NO:1629, SEQ ID NO:1632, SEQID NO:1635,
SEQ ID NO:1636, SEQ ID NO:1637, SEQ ID NO:1639, SEQ
IDNO:1640, SEQ ID NO:1643, SEQ ID NO:1646, SEQ ID NO:
1649, SEQ ID NO:1652, SEQ ID NO:1655, SEQ ID NO:1658,
75 SEQ ID NO:1660, SEQ ID NO:1662, SEQ ID NO:1664, SEQ ID
NO:1666, SEQ ID NO:1668, SEQ ID NO:1669, SEQ ID NO:1670,
SEQ ID NO:1672, SEQ ID NO:1673, SEQ ID NO:1675, SEQ
IDNO:1677, SEQ ID NO:1680, SEQ ID NO:1682, SEQ ID NO:
1683, SEQ ID NO:1685, SEQ ID NO:1688, SEQ ID NO:1690,
80 SEQ ID NO:1691, SEQ ID NO:1694, SEQ ID NO:1696, SEQ ID
NO:1699, SEQ ID NO:1700, SEQ ID NO:1701,SEQ ID NO:1704,
SEQ ID NO:1705, SEQ ID NO:1706, SEQ ID NO:1707, SEQID
NO:1708, SEQ ID NO:1709, SEQ ID NO:1710, SEQ ID NO:1711,
SEQ ID NO:1712, SEQ ID NO:1713, SEQ ID NO:1715, SEQ ID
85 NO:1716, SEQ ID NO:1717, SEQ ID NO:1718,, SEQ ID NO:
1719, SEQ ID NO:1720, SEQ ID NO:1721, SEQ ID NO:1722,
SEQ ID NO:1723, SEQ ID NO:1724, SEQ ID NO:1725, SEQ ID
NO:1726, SEQ ID NO:1727, SEQ ID NO:1728, SEQ ID NO:1729,
SEQ IDNO:1730, SEQ ID NO:1731, SEQ ID NO:1732, SEQ ID
90 NO:1733, SEQ ID NO:1734, SEQ ID NO:1735, SEQ ID NO:1736,
SEQ ID NO:1737, SEQ ID NO:1738, SEQ ID NO:1739, SEQ ID
NO:1740, SEQ ID NO:1741, SEQ ID NO:1742,SEQ ID NO:1743,
SEQ ID NO:1744, SEQ ID NO:1745, SEQ ID NO:1746, SEQID
NO:1747, SEQ ID NO:1748, SEQ ID NO:1749, SEQ ID NO:1750,
95 SEQ ID NO:1751, SEQ ID NO:1752, SEQ ID NO:1753, SEQ ID
NO:1754, SEQ ID NO:1755, SEQ ID NO:1756, SEQ ID NO:1757,
SEQ ID NO:1758, SEQ ID NO:1759,SEQ ID NO:1760, SEQ ID
NO:1761, SEQ ID NO:1762, SEQ ID NO:1763, SEQID NO:1764,
SEQ ID NO:1765, SEQ ID NO:1766, SEQ ID NO:1767, SEQ
100 IDNO:1768, SEQ ID NO:1769, SEQ ID NO:1770, SEQ ID NO:
1771, SEQ ID NO:1772, SEQ ID NO:1773, SEQ ID NO:1774,
SEQ ID NO:1775, SEQ ID NO:1776, SEQ ID NO:1777, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO:1778, SEQ ID NO:1779, SEQ ID NO:1780, SEQ ID NO:1781,
SEQ ID NO:1782, SEQ ID NO:1783, SEQ ID NO:1784, SEQ
105 IDNO:1785, SEQ ID NO:1786, SEQ ID NO:1787, SEQ ID NO:
1788, SEQ ID NO:1789, SEQ ID NO:1790, SEQ ID NO:1791,
SEQ ID NO:1792, SEQ ID NO:1793, SEQ ID NO:1794, SEQ ID
NO:1795, SEQ ID NO:1796, SEQ ID NO:1797, SEQ ID NO:1798,
SEQ ID NO:1799, SEQ ID NO:1800, SEQ ID NO:1801, SEQID
110 NO:1802, SEQ ID NO:1803, SEQ ID NO:1804, SEQ ID NO:1805,
SEQ ID NO:1806, SEQ ID NO:1807, SEQ ID NO:1808, SEQ ID
NO:1809, SEQ ID NO:1810, SEQ ID NO:1811, SEQ ID NO:1812,
SEQ ID NO:1813, SEQ ID NO:1814, SEQ ID NO:1815, SEQ ID
NO:1816, SEQ ID NO:1817, SEQ ID NO:1818, SEQID NO:1819,
115 SEQ ID NO:1820, SEQ ID NO:1821, SEQ ID NO:1822, SEQ
IDNO:1823, SEQ ID NO:1824, SEQ ID NO:1825, SEQ ID NO:
1826, SEQ ID NO:1827, SEQ ID NO:1828, SEQ ID NO:1829,
SEQ ID NO:1830, SEQ ID NO:1831, SEQ ID NO:1832, SEQ ID
NO:1833, SEQ ID NO:1834, SEQ ID NO:1835, SEQ ID NO:1836,
120 SEQ ID NO:1837, SEQ ID NO:1838, SEQ ID NO:1839, SEQ
IDNO:1840, SEQ ID NO:1841, SEQ ID NO:1842, SEQ ID NO:
1843, SEQ ID NO:1844, SEQ ID NO:1845, SEQ ID NO:1846,
SEQ ID NO:1847, SEQ ID NO:1848, SEQ ID NO:1849, SEQ ID
NO:1850, SEQ ID NO:1851, SEQ ID NO:1852, SEQ ID NO:1853,
125 SEQ ID NO:1854, SEQ ID NO:1855, SEQ ID NO:1856, SEQID
NO:1857, SEQ ID NO:1858, SEQ ID NO:1859, SEQ ID NO:1860,
SEQ ID NO:1861, SEQ ID NO:1862, SEQ ID NO:1863, SEQ ID
NO:1864, SEQ ID NO:1865, and SEQ ID NO:1866

(b) a moiety in the nucleotide sequences set forth in (a);
130 (c) a complementary nucleotide sequence to the
nucleotide sequences set forth in (a) or (b); or
 (d) a nucleotide sequence hybridizing to the nucleotide
sequences set forth in (a), (b) or (c) under a stringent condition.

3. The nucleic-acid molecule of claim 1, which is a
135 nucleic-acid molecule encoding a polypeptide specific to
enterohemorrhagic pathogenic-E. coli O-157:H7 and encodes

Appendix B: Hideo *et al.* Full Translation

(a) an amino acid sequence selected from a group comprising the following SEQ IDs or a moiety thereof: SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:
140 6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10,
SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14,
SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18,
SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22,
SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26,
145 SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30,
SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34,
SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38,
SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42,
SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46,
150 SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50,
SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54,
SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58,
SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62,
SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66,
155 SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70,
SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74,
SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78,
SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82,
SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86,
160 SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90,
SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94,
SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98,
SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO:
102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID
165 NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109,
SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:
113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID
NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120,
SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:
170 124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131,
SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:
136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID
NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143,
175 SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:
147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID
NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154,
SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID NO:
158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEQ ID
180 NO:162, SEQ ID NO:163, SEQ ID NO:164, SEQ ID NO:165,
SEQ ID NO:166, SEQ ID NO:167, SEQ ID NO:168, SEQ ID NO:
169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID
NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176,
SEQ ID NO:177, SEQ ID NO:178, SEQ ID NO:179, SEQ ID NO:
185 180, SEQ ID NO:181, SEQ ID NO:182, SEQ ID NO:183, SEQ ID
NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:187,
SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:
191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID
NO:195, SEQ ID NO:196, SEQ ID NO:197, SEQ ID NO:198,
190 SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:
202, SEQ ID NO:203, SEQ ID NO:204, SEQ ID NO:205, SEQ ID
NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:209,
SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID NO:
213, SEQ ID NO:214, SEQ ID NO:215, SEQ ID NO:216, SEQ ID
195 NO:217, SEQ ID NO:218, SEQ ID NO:219, SEQ ID NO:220,
SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:
224, SEQ ID NO:225, SEQ ID NO:226, SEQ ID NO:227, SEQ ID
NO:228, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:231,
SEQ ID NO:232, SEQ ID NO:233, SEQ ID NO:234, SEQ ID NO:
200 235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:238, SEQ ID
NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242,
SEQ ID NO:243, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:
247, SEQ ID NO:248, SEQ ID NO:249, SEQ ID NO:250, SEQ ID
NO:251, SEQ ID NO:252, SEQ ID NO:253, SEQ ID NO:254,

Appendix B: Hideo *et al.* Full Translation

205 SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:
258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEQ ID
NO:262, SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:265,
SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:
269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272, SEQ ID
210 NO:273, SEQ ID NO:274, SEQ ID NO:275, SEQ ID NO:276,
SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:279, SEQ ID NO:
280, SEQ ID NO:281, SEQ ID NO:282, SEQ ID NO:283, SEQ ID
NO:284, SEQ ID NO:285, SEQ ID NO:286, SEQ ID NO:287,
SEQ ID NO:288, SEQ ID NO:289, SEQ ID NO:290, SEQ ID NO:
215 291, SEQ ID NO:292, SEQ ID NO:293, SEQ ID NO:294, SEQ ID
NO:295, SEQ ID NO:296, SEQ ID NO:297, SEQ ID NO:298,
SEQ ID NO:299, SEQ ID NO:300, SEQ ID NO:301, SEQ ID NO:
302, SEQ ID NO:303, SEQ ID NO:304, SEQ ID NO:305, SEQ ID
NO:306, SEQ ID NO:307, SEQ ID NO:308, SEQ ID NO:309,
220 SEQ ID NO:310, SEQ ID NO:311, SEQ ID NO:312, SEQ ID NO:
313, SEQ ID NO:314, SEQ ID NO:315, SEQ ID NO:316, SEQ ID
NO:317, SEQ ID NO:318, SEQ ID NO:319, SEQ ID NO:320,
SEQ ID NO:321, SEQ ID NO:322, SEQ ID NO:323, SEQ ID NO:
324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327, SEQ ID
225 NO:328, SEQ ID NO:329, SEQ ID NO:330, SEQ ID NO:331,
SEQ ID NO:332, SEQ ID NO:333, SEQ ID NO:334, SEQ ID NO:
335, SEQ ID NO:336, SEQ ID NO:338, SEQ ID NO:339, SEQ ID
NO:340, SEQ ID NO:341, SEQ ID NO:342, SEQ ID NO:343,
SEQ ID NO:344, SEQ ID NO:345, SEQ ID NO:346, SEQ ID NO:
230 347, SEQ ID NO:348, SEQ ID NO:349, SEQ ID NO:350, SEQ ID
NO:351, SEQ ID NO:352, SEQ ID NO:353, SEQ ID NO:354,
SEQ ID NO:355, SEQ ID NO:356, SEQ ID NO:357, SEQ ID NO:
358, SEQ ID NO:359, SEQ ID NO:360, SEQ ID NO:361, SEQ ID
NO:362, SEQ ID NO:363, SEQ ID NO:364, SEQ ID NO:365,
235 SEQ ID NO:366, SEQ ID NO:367, SEQ ID NO:368, SEQ ID NO:
369, SEQ ID NO:370, SEQ ID NO:371, SEQ ID NO:372, SEQ ID
NO:373, SEQ ID NO:374, SEQ ID NO:375, SEQ ID NO:376,
SEQ ID NO:377, SEQ ID NO:378, SEQ ID NO:379, SEQ ID NO:

Appendix B: Hideo *et al.* Full Translation

380, SEQ ID NO:381, SEQ ID NO:382, SEQ ID NO:383, SEQ ID
240 NO:384, SEQ ID NO:385, SEQ ID NO:386, SEQ ID NO:387,
SEQ ID NO:388, SEQ ID NO:389, SEQ ID NO:390, SEQ ID NO:
391, SEQ ID NO:392, SEQ ID NO:393, SEQ ID NO:394, SEQ ID
NO:395, SEQ ID NO:396, SEQ ID NO:397, SEQ ID NO:398,
SEQ ID NO:399, SEQ ID NO:400, SEQ ID NO:401, SEQ ID NO:
245 402, SEQ ID NO:403, SEQ ID NO:404, SEQ ID NO:405, SEQ ID
NO:406, SEQ ID NO:407, SEQ ID NO:408, SEQ ID NO:409,
SEQ ID NO:411, SEQ ID NO:412, SEQ ID NO:413, SEQ ID NO:
414, SEQ ID NO:415, SEQ ID NO:416, SEQ ID NO:417, SEQ ID
NO:418, SEQ ID NO:419, SEQ ID NO:420, SEQ ID NO:421,
250 SEQ ID NO:422, SEQ ID NO:423, SEQ ID NO:424, SEQ ID NO:
425, SEQ ID NO:426, SEQ ID NO:427, SEQ ID NO:428, SEQ ID
NO:429, SEQ ID NO:430, SEQ ID NO:431, SEQ ID NO:432,
SEQ ID NO:433, SEQ ID NO:434, SEQ ID NO:435, SEQ ID NO:
436, SEQ ID NO:437, SEQ ID NO:438, SEQ ID NO:439, SEQ ID
255 NO:440, SEQ ID NO:441, SEQ ID NO:442, SEQ ID NO:443,
SEQ ID NO:444, SEQ ID NO:445, SEQ ID NO:446, SEQ ID NO:
447, SEQ ID NO:448, SEQ ID NO:449, SEQ ID NO:450, SEQ ID
NO:451, SEQ ID NO:452, SEQ ID NO:453, SEQ ID NO:454,
SEQ ID NO:455, SEQ ID NO:456, SEQ ID NO:457, SEQ ID NO:
260 458, SEQ ID NO:459, SEQ ID NO:460, SEQ ID NO:461, SEQ ID
NO:462, SEQ ID NO:463, SEQ ID NO:464, SEQ ID NO:465,
SEQ ID NO:466, SEQ ID NO:467, SEQ ID NO:468, SEQ ID NO:
469, SEQ ID NO:470, SEQ ID NO:471, SEQ ID NO:472, SEQ ID
NO:473, SEQ ID NO:474, SEQ ID NO:475, SEQ ID NO:476,
265 SEQ ID NO:477, SEQ ID NO:478, SEQ ID NO:479, SEQ ID NO:
480, SEQ ID NO:481, SEQ ID NO:482, SEQ ID NO:483, SEQ ID
NO:485, SEQ ID NO:486, SEQ ID NO:487, SEQ ID NO:488,
SEQ ID NO:489, SEQ ID NO:490, SEQ ID NO:491, SEQ ID NO:
492, SEQ ID NO:493, SEQ ID NO:494, SEQ ID NO:495, SEQ ID
270 NO:496, SEQ ID NO:497, SEQ ID NO:498, SEQ ID NO:499,
SEQ ID NO:500, SEQ ID NO:501, SEQ ID NO:502, SEQ ID NO:
503, SEQ ID NO:504, SEQ ID NO:505, SEQ ID NO:506, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO:507, SEQ ID NO:508, SEQ ID NO:509, SEQ ID NO:510,
SEQ ID NO:511, SEQ ID NO:512, SEQ ID NO:513, SEQ ID NO:
275 514, SEQ ID NO:515, SEQ ID NO:516, SEQ ID NO:517, SEQ ID
NO:518, SEQ ID NO:519, SEQ ID NO:520, SEQ ID NO:521,
SEQ ID NO:522, SEQ ID NO:523, SEQ ID NO:524, SEQ ID NO:
525, SEQ ID NO:526, SEQ ID NO:527, SEQ ID NO:528, SEQ ID
NO:529, SEQ ID NO:530, SEQ ID NO:531, SEQ ID NO:532,
280 SEQ ID NO:533, SEQ ID NO:534, SEQ ID NO:535, SEQ ID
NO:536, SEQ ID NO:537, SEQ ID NO:538, SEQ ID NO:539,
SEQ ID NO:540, SEQ ID NO:541, SEQ ID NO:542, SEQ ID NO:
543, SEQ ID NO:544, SEQ ID NO:545, SEQ ID NO:546, SEQ ID
NO:547, SEQ ID NO:548, SEQ ID NO:549, SEQ ID NO:550,
285 SEQ ID NO:551, SEQ ID NO:552, SEQ ID NO:553, SEQ ID NO:
555, SEQ ID NO:556, SEQ ID NO:557, SEQ ID NO:558, SEQ ID
NO:559, SEQ ID NO:560, SEQ ID NO:561, SEQ ID NO:562,
SEQ ID NO:563, SEQ ID NO:564, SEQ ID NO:565, SEQ ID NO:
566, SEQ ID NO:567, SEQ ID NO:568, SEQ ID NO:569, SEQ ID
290 NO:570, SEQ ID NO:571, SEQ ID NO:572, SEQ ID NO:573,
SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:
577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID
NO:581, SEQ ID NO:582, SEQ ID NO:583, SEQ ID NO:584,
SEQ ID NO:585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:
295 588, SEQ ID NO:589, SEQ ID NO:590, SEQ ID NO:591, SEQ ID
NO:592, SEQ ID NO:593, SEQ ID NO:594, SEQ ID NO:595,
SEQ ID NO:596, SEQ ID NO:597, SEQ ID NO:598, SEQ ID NO:
599, SEQ ID NO:600, SEQ ID NO:601, SEQ ID NO:602, SEQ ID
NO:603, SEQ ID NO:604, SEQ ID NO:605, SEQ ID NO:606,
300 SEQ ID NO:607, SEQ ID NO:608, SEQ ID NO:609, SEQ ID NO:
610, SEQ ID NO:611, SEQ ID NO:612, SEQ ID NO:613, SEQ ID
NO:614, SEQ ID NO:615, SEQ ID NO:616, SEQ ID NO:617,
SEQ ID NO:618, SEQ ID NO:619, SEQ ID NO:620, SEQ ID NO:
621, SEQ ID NO:622, SEQ ID NO:623, SEQ ID NO:624, SEQ ID
305 NO:625, SEQ ID NO:626, SEQ ID NO:627, SEQ ID NO:628,
SEQ ID NO:629, SEQ ID NO:631, SEQ ID NO:632, SEQ ID NO:

Appendix B: Hideo *et al.* Full Translation

633, SEQ ID NO:634, SEQ ID NO:635, SEQ ID NO:636, SEQ ID
NO:637, SEQ ID NO:638, SEQ ID NO:639, SEQ ID NO:640,
SEQ ID NO:641, SEQ ID NO:642, SEQ ID NO:643, SEQ ID NO:
310 644, SEQ ID NO:645, SEQ ID NO:646, SEQ ID NO:647, SEQ ID
NO:648, SEQ ID NO:649, SEQ ID NO:650, SEQ ID NO:651,
SEQ ID NO:652, SEQ ID NO:653, SEQ ID NO:654, SEQ ID NO:
655, SEQ ID NO:656, SEQ ID NO:657, SEQ ID NO:658, SEQ ID
NO:659, SEQ ID NO:660, SEQ ID NO:661, SEQ ID NO:662,
315 SEQ ID NO:663, SEQ ID NO:664, SEQ ID NO:665, SEQ ID NO:
666, SEQ ID NO:667, SEQ ID NO:668, SEQ ID NO:669, SEQ ID
NO:670, SEQ ID NO:671, SEQ ID NO:672, SEQ ID NO:673,
SEQ ID NO:674, SEQ ID NO:675, SEQ ID NO:676, SEQ ID NO:
677, SEQ ID NO:678, SEQ ID NO:679, SEQ ID NO:680, SEQ ID
320 NO:681, SEQ ID NO:682, SEQ ID NO:683, SEQ ID NO:684,
SEQ ID NO:685, SEQ ID NO:686, SEQ ID NO:687, SEQ ID NO:
688, SEQ ID NO:690, SEQ ID NO:691, SEQ ID NO:692, SEQ ID
NO:693, SEQ ID NO:694, SEQ ID NO:695, SEQ ID NO:696,
SEQ ID NO:697, SEQ ID NO:698, SEQ ID NO:699, SEQ ID NO:
325 700, SEQ ID NO:701, SEQ ID NO:702, SEQ ID NO:703, SEQ ID
NO:704, SEQ ID NO:705, SEQ ID NO:706, SEQ ID NO:707,
SEQ ID NO:708, SEQ ID NO:709, SEQ ID NO:710, SEQ ID NO:
711, SEQ ID NO:712, SEQ ID NO:713, SEQ ID NO:714, SEQ ID
NO:715, SEQ ID NO:716, SEQ ID NO:717, SEQ ID NO:718,
330 SEQ ID NO:719, SEQ ID NO:720, SEQ ID NO:721, SEQ ID NO:
722, SEQ ID NO:723, SEQ ID NO:724, SEQ ID NO:725, SEQ ID
NO:726, SEQ ID NO:727, SEQ ID NO:728, SEQ ID NO:729,
SEQ ID NO:730, SEQ ID NO:731, SEQ ID NO:732, SEQ ID NO:
733, SEQ ID NO:734, SEQ ID NO:735, SEQ ID NO:736, SEQ ID
335 NO:737, SEQ ID NO:738, SEQ ID NO:739, SEQ ID NO:740,
SEQ ID NO:741, SEQ ID NO:742, SEQ ID NO:743, SEQ ID NO:
744, SEQ ID NO:745, SEQ ID NO:746, SEQ ID NO:747, SEQ ID
NO:748, SEQ ID NO:749, SEQ ID NO:750, SEQ ID NO:751,
SEQ ID NO:752, SEQ ID NO:753, SEQ ID NO:754, SEQ ID NO:
340 756, SEQ ID NO:757, SEQ ID NO:758, SEQ ID NO:759, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO:760, SEQ ID NO:761, SEQ ID NO:762, SEQ ID NO:763,
SEQ ID NO:764, SEQ ID NO:765, SEQ ID NO:766, SEQ ID NO:
767, SEQ ID NO:768, SEQ ID NO:769, SEQ ID NO:770, SEQ ID
NO:771, SEQ ID NO:772, SEQ ID NO:773, SEQ ID NO:774,
345 SEQ ID NO:775, SEQ ID NO:776, SEQ ID NO:777, SEQ ID NO:
778, SEQ ID NO:779, SEQ ID NO:780, SEQ ID NO:781, SEQ ID
NO:782, SEQ ID NO:783, SEQ ID NO:784, SEQ ID NO:785,
SEQ ID NO:786, SEQ ID NO:787, SEQ ID NO:788, SEQ ID NO:
789, SEQ ID NO:790, SEQ ID NO:791, SEQ ID NO:792, SEQ ID
350 NO:793, SEQ ID NO:794, SEQ ID NO:795, SEQ ID NO:796,
SEQ ID NO:797, SEQ ID NO:798, SEQ ID NO:799, SEQ ID N
O:800, SEQ ID NO:801, SEQ ID NO:802, SEQ ID NO:803, SEQ
ID NO:804, SEQ ID NO:805, SEQ ID NO:806, SEQ ID NO:807,
SEQ ID NO:808, SEQ ID NO:809, SEQ ID NO:810, SEQ ID NO:
355 811, SEQ ID NO:812, SEQ ID NO:813, SEQ ID NO:814, SEQ ID
NO:815, SEQ ID NO:817, SEQ ID NO:818, SEQ ID NO:819,
SEQ ID NO:820, SEQ ID NO:821, SEQ ID NO:822, SEQ ID NO:
823, SEQ ID NO:824, SEQ ID NO:825, SEQ ID NO:826, SEQ ID
NO:827, SEQ ID NO:828, SEQ ID NO:829, SEQ ID NO:830,
360 SEQ ID NO:831, SEQ ID NO:832, SEQ ID NO:833, SEQ ID NO:
834, SEQ ID NO:835, SEQ ID NO:836, SEQ ID NO:837, SEQ ID
NO:838, SEQ ID NO:839, SEQ ID NO:840, SEQ ID NO:841,
SEQ ID NO:842, SEQ ID NO:843, SEQ ID NO:844, SEQ ID NO:
845, SEQ ID NO:846, SEQ ID NO:847, SEQ ID NO:848, SEQ ID
365 NO:849, SEQ ID NO:850, SEQ ID NO:851, SEQ ID NO:852,
SEQ ID NO:853, SEQ ID NO:854, SEQ ID NO:855, SEQ ID NO:
856, SEQ ID NO:857, SEQ ID NO:858, SEQ ID NO:859, SEQ ID
NO:860, SEQ ID NO:861, SEQ ID NO:862, SEQ ID NO:863,
SEQ ID NO:864, SEQ ID NO:865, SEQ ID NO:866, SEQ ID NO:
370 867, SEQ ID NO:868, SEQ ID NO:869, SEQ ID NO:870, SEQ ID
NO:871, SEQ ID NO:872, SEQ ID NO:873, SEQ ID NO:874,
SEQ ID NO:875, SEQ ID NO:877, SEQ ID NO:878, SEQ ID NO:
879, SEQ ID NO:880, SEQ ID NO:881, SEQ ID NO:882, SEQ ID
NO:883, SEQ ID NO:884, SEQ ID NO:885, SEQ ID NO:886,

Appendix B: Hideo *et al.* Full Translation

375 SEQ ID NO:887, SEQ ID NO:888, SEQ ID NO:889, SEQ ID NO:
890, SEQ ID NO:891, SEQ ID NO:892, SEQ ID NO:893, SEQ ID
NO:894, SEQ ID NO:895, SEQ ID NO:896, SEQ ID NO:897,
SEQ ID NO:898, SEQ ID NO:899, SEQ ID NO:900, SEQ ID NO:
901, SEQ ID NO:902, SEQ ID NO:903, SEQ ID NO:904, SEQ ID
NO:905, SEQ ID NO:906, SEQ ID NO:907, SEQ ID NO:908,
380 SEQ ID NO:909, SEQ ID NO:910, SEQ ID NO:911, SEQ ID NO:
912, SEQ ID NO:913, SEQ ID NO:914, SEQ ID NO:915, SEQ ID
NO:916, SEQ ID NO:917, SEQ ID NO:918, SEQ ID NO:919,
SEQ ID NO:920, SEQ ID NO:921, SEQ ID NO:922, SEQ ID NO:
385 923, SEQ ID NO:924, SEQ ID NO:925, SEQ ID NO:926, SEQ ID
NO:928, SEQ ID NO:929, SEQ ID NO:930, SEQ ID NO:931,
SEQ ID NO:932, SEQ ID NO:933, SEQ ID NO:934, SEQ ID NO:
935, SEQ ID NO:936, SEQ ID NO:937, SEQ ID NO:938, SEQ ID
NO:939, SEQ ID NO:940, SEQ ID NO:941, SEQ ID NO:942,
390 SEQ ID NO:943, SEQ ID NO:944, SEQ ID NO:945, SEQ ID NO:
946, SEQ ID NO:947, SEQ ID NO:948, SEQ ID NO:949, SEQ ID
NO:950, SEQ ID NO:951, SEQ ID NO:952, SEQ ID NO:953,
SEQ ID NO:954, SEQ ID NO:955, SEQ ID NO:956, SEQ ID NO:
957, SEQ ID NO:958, SEQ ID NO:959, SEQ ID NO:960, SEQ ID
395 NO:961, SEQ ID NO:962, SEQ ID NO:963, SEQ ID NO:964,
SEQ ID NO:965, SEQ ID NO:966, SEQ ID NO:967, SEQ ID NO:
968, SEQ ID NO:969, SEQ ID NO:970, SEQ ID NO:971, SEQ ID
NO:972, SEQ ID NO:973, SEQ ID NO:974, SEQ ID NO:975,
SEQ ID NO:976, SEQ ID NO:977, SEQ ID NO:979, SEQ ID NO:
400 980, SEQ ID NO:981, SEQ ID NO:982, SEQ ID NO:983, SEQ ID
NO:984, SEQ ID NO:985, SEQ ID NO:986, SEQ ID NO:987,
SEQ ID NO:988, SEQ ID NO:989, SEQ ID NO:990, SEQ ID NO:
991, SEQ ID NO:992, SEQ ID NO:993, SEQ ID NO:994, SEQ ID
NO:995, SEQ ID NO:996, SEQ ID NO:997, SEQ ID NO:998,
405 SEQ ID NO:999, SEQ ID NO:1000, SEQ ID NO:1001, SEQ ID
NO:1002, SEQ ID NO:1003, SEQ ID NO:1004, SEQ ID NO:1005,
SEQID NO:1006, SEQ ID NO:1007, SEQ ID NO:1008, SEQ ID
NO:1009, SEQ ID NO:1010, SEQ ID NO:1011, SEQ ID NO:1012,

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO:1014, SEQ ID NO:1015, SEQ ID NO:1016, SEQ ID
410 NO:1017, SEQ ID NO:1018, SEQ ID NO:1019, SEQ ID NO:1020,
SEQ ID NO:1021, SEQ ID NO:1022, SEQ ID NO:1023, SEQ ID
NO:1024, SEQ ID NO:1025, SEQ ID NO:1026, SEQ ID NO:1027,
SEQ ID NO:1028, SEQ ID NO:1030, SEQ ID NO:1031, SEQ ID
NO:1032, SEQ ID NO:1033, SEQ ID NO:1034, SEQ ID NO:1035,
415 SEQ ID NO:1036, SEQ ID NO:1037, SEQ ID NO:1038, SEQ ID
NO:1039, SEQ ID NO:1040, SEQ ID NO:1041, SEQ ID NO:1042,
SEQ ID NO:1043, SEQ ID NO:1044, SEQ ID NO:1045, SEQID
NO:1046, SEQ ID NO:1047, SEQ ID NO:1048, SEQ ID NO:1049,
SEQ ID NO:1050, SEQ ID NO:1051, SEQ ID NO:1052, SEQ ID
420 NO:1053, SEQ ID NO:1054, SEQ ID NO:1056, SEQ ID NO:1057,
SEQ ID NO:1058, SEQ ID NO:1059, SEQ ID NO:1061, SEQ ID
NO:1062, SEQ ID NO:1063, SEQ ID NO:1064, SEQID NO:1065,
SEQ ID NO:1066, SEQ ID NO:1067, SEQ ID NO:1068, SEQ
IDNO:1069, SEQ ID NO:1070, SEQ ID NO:1071, SEQ ID NO:
425 1072, SEQ ID NO:1073, SEQ ID NO:1074, SEQ ID NO:1075,
SEQ ID NO:1076, SEQ ID NO:1077, SEQ ID NO:1078, SEQ ID
NO:1079, SEQ ID NO:1080, SEQ ID NO:1081, SEQ ID NO:1082,
SEQ ID NO:1083, SEQ ID NO:1084, SEQ ID NO:1085, SEQ
IDNO:1086, SEQ ID NO:1087, SEQ ID NO:1088, SEQ ID NO:
430 1089, SEQ ID NO:1090, SEQ ID NO:1091, SEQ ID NO:1092,
SEQ ID NO:1094, SEQ ID NO:1095, SEQ ID NO:1096, SEQ ID
NO:1097, SEQ ID NO:1098, SEQ ID NO:1099, SEQ ID NO:1100,
SEQ ID NO:1101, SEQ ID NO:1102, SEQ ID NO:1103, SEQID
NO:1104, SEQ ID NO:1105, SEQ ID NO:1106, SEQ ID NO:1107,
435 SEQ ID NO:1108, SEQ ID NO:1109, SEQ ID NO:1110, SEQ ID
NO:1111, SEQ ID NO:1112, SEQ ID NO:1113, SEQ ID NO:1114,
SEQ ID NO:1115, SEQ ID NO:1116, SEQ ID NO:1117, SEQ ID
NO:1118, SEQ ID NO:1119, SEQ ID NO:1120, SEQID NO:1121,
SEQ ID NO:1122, SEQ ID NO:1123, SEQ ID NO:1124, SEQ
440 IDNO:1125, SEQ ID NO:1126, SEQ ID NO:1127, SEQ ID NO:
1129, SEQ ID NO:1130, SEQ ID NO:1131, SEQ ID NO:1132,
SEQ ID NO:1133, SEQ ID NO:1134, SEQ ID NO:1135, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO:1136, SEQ ID NO:1137, SEQ ID NO:1138, SEQ ID NO:1139,
SEQ ID NO:1140, SEQ ID NO:1141, SEQ ID NO:1142, SEQ
445 IDNO:1143, SEQ ID NO:1144, SEQ ID NO:1145, SEQ ID NO:
1146, SEQ ID NO:1147, SEQ ID NO:1148, SEQ ID NO:1149,
SEQ ID NO:1150, SEQ ID NO:1151, SEQ ID NO:1152, SEQ ID
NO:1153, SEQ ID NO:1154, SEQ ID NO:1155, SEQ ID NO:1156,
SEQ ID NO:1158, SEQ ID NO:1159, SEQ ID NO:1160, SEQID
450 NO:1161, SEQ ID NO:1162, SEQ ID NO:1163, SEQ ID NO:1164,
SEQ ID NO:1165, SEQ ID NO:1166, SEQ ID NO:1167, SEQ ID
NO:1168, SEQ ID NO:1169, SEQ ID NO:1170, SEQ ID NO:1171,
SEQ ID NO:1172, SEQ ID NO:1173, SEQ ID NO:1174, SEQ ID
NO:1175, SEQ ID NO:1176, SEQ ID NO:1177, SEQID NO:1178,
455 SEQ ID NO:1179, SEQ ID NO:1180, SEQ ID NO:1181, SEQ
IDNO:1182, SEQ ID NO:1183, SEQ ID NO:1184, SEQ ID NO:
1185, SEQ ID NO:1186, SEQ ID NO:1187, SEQ ID NO:1188,
SEQ ID NO:1189, SEQ ID NO:1190, SEQ ID NO:1192, SEQ ID
NO:1193, SEQ ID NO:1194, SEQ ID NO:1195, SEQ ID NO:1196,
460 SEQ ID NO:1197, SEQ ID NO:1198, SEQ ID NO:1199, SEQ
IDNO:1200, SEQ ID NO:1201, SEQ ID NO:1202, SEQ ID NO:
1203, SEQ ID NO:1204, SEQ ID NO:1205, SEQ ID NO:1206,
SEQ ID NO:1207, SEQ ID NO:1208, SEQ ID NO:1209, SEQ ID
NO:1210, SEQ ID NO:1211, SEQ ID NO:1213, SEQ ID NO:1214,
465 SEQ ID NO:1215, SEQ ID NO:1216, SEQ ID NO:1217, SEQID
NO:1218, SEQ ID NO:1219, SEQ ID NO:1220, SEQ ID NO:1221,
SEQ ID NO:1222, SEQ ID NO:1223, SEQ ID NO:1224, SEQ ID
NO:1225, SEQ ID NO:1226, SEQ ID NO:1227, SEQ ID NO:1228,
SEQ ID NO:1229, SEQ ID NO:1230, SEQ ID NO:1231, SEQ ID
470 NO:1232, SEQ ID NO:1233, SEQ ID NO:1234, SEQID NO:1235,
SEQ ID NO:1236, SEQ ID NO:1237, SEQ ID NO:1238, SEQ
IDNO:1239, SEQ ID NO:1241, SEQ ID NO:1242, SEQ ID NO:
1243, SEQ ID NO:1244, SEQ ID NO:1245, SEQ ID NO:1246,
SEQ ID NO:1247, SEQ ID NO:1248, SEQ ID NO:1249, SEQ ID
475 NO:1250, SEQ ID NO:1251, SEQ ID NO:1252, SEQ ID NO:1253,
SEQ ID NO:1254, SEQ ID NO:1255, SEQ ID NO:1256, SEQ

Appendix B: Hideo *et al.* Full Translation

IDNO:1257, SEQ ID NO:1259, SEQ ID NO:1260, SEQ ID NO:
1261, SEQ ID NO:1262, SEQ ID NO:1263, SEQ ID NO:1264,
SEQ ID NO:1265, SEQ ID NO:1266, SEQ ID NO:1267, SEQ ID
480 NO:1268, SEQ ID NO:1269, SEQ ID NO:1270, SEQ ID NO:1271,
SEQ ID NO:1272, SEQ ID NO:1273, SEQ ID NO:1275, SEQID
NO:1276, SEQ ID NO:1277, SEQ ID NO:1278, SEQ ID NO:1279,
SEQ ID NO:1280, SEQ ID NO:1281, SEQ ID NO:1282, SEQ ID
NO:1283, SEQ ID NO:1284, SEQ ID NO:1285, SEQ ID NO:1286,
485 SEQ ID NO:1287, SEQ ID NO:1289, SEQ ID NO:1290, SEQ ID
NO:1291, SEQ ID NO:1292, SEQ ID NO:1293, SEQID NO:1294,
SEQ ID NO:1295, SEQ ID NO:1296, SEQ ID NO:1297, SEQ
IDNO:1298, SEQ ID NO:1299, SEQ ID NO:1300, SEQ ID NO:
1301, SEQ ID NO:1303, SEQ ID NO:1304, SEQ ID NO:1305,
490 SEQ ID NO:1306, SEQ ID NO:1307, SEQ ID NO:1308, SEQ ID
NO:1310, SEQ ID NO:1311, SEQ ID NO:1312, SEQ ID NO:1313,
SEQ ID NO:1314, SEQ ID NO:1315, SEQ ID NO:1316, SEQ
IDNO:1317, SEQ ID NO:1318, SEQ ID NO:1319, SEQ ID NO:
1320, SEQ ID NO:1322, SEQ ID NO:1323, SEQ ID NO:1324,
495 SEQ ID NO:1325, SEQ ID NO:1326, SEQ ID NO:1327, SEQ ID
NO:1328, SEQ ID NO:1330, SEQ ID NO:1331, SEQ ID NO:1332,
SEQ ID NO:1333, SEQ ID NO:1334, SEQ ID NO:1335, SEQID
NO:1336, SEQ ID NO:1337, SEQ ID NO:1339, SEQ ID NO:1340,
SEQ ID NO:1341, SEQ ID NO:1342, SEQ ID NO:1343, SEQ ID
500 NO:1344, SEQ ID NO:1345, SEQ ID NO:1346, SEQ ID NO:1347,
SEQ ID NO:1349, SEQ ID NO:1350, SEQ ID NO:1351, SEQ ID
NO:1352, SEQ ID NO:1353, SEQ ID NO:1354, SEQID NO:1355,
SEQ ID NO:1356, SEQ ID NO:1357, SEQ ID NO:1358, SEQ
IDNO:1360, SEQ ID NO:1361, SEQ ID NO:1362, SEQ ID NO:
1363, SEQ ID NO:1364, SEQ ID NO:1365, SEQ ID NO:1367,
505 SEQ ID NO:1368, SEQ ID NO:1369, SEQ ID NO:1370, SEQ ID
NO:1371, SEQ ID NO:1375, SEQ ID NO:1376, SEQ ID NO:1377,
SEQ ID NO:1378, SEQ ID NO:1379, SEQ ID NO:1381, SEQ
IDNO:1382, SEQ ID NO:1383, SEQ ID NO:1384, SEQ ID NO:
1385, SEQ ID NO:1387, SEQ ID NO:1388, SEQ ID NO:1389,

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO:1390, SEQ ID NO:1391, SEQ ID NO:1392, SEQ ID NO:1393, SEQ ID NO:1395, SEQ ID NO:1396, SEQ ID NO:1397, SEQ ID NO:1398, SEQ ID NO:1399, SEQ ID NO:1400, SEQID NO:1402, SEQ ID NO:1403, SEQ ID NO:1404, SEQ ID NO:1405, 515 SEQ ID NO:1406, SEQ ID NO:1407, SEQ ID NO:1409, SEQ ID NO:1410, SEQ ID NO:1412, SEQ ID NO:1413, SEQ ID NO:1414, SEQ ID NO:1415, SEQ ID NO:1416, SEQ ID NO:1417, SEQ ID NO:1419, SEQ ID NO:1420, SEQ ID NO:1421, SEQID NO:1422, SEQ ID NO:1423, SEQ ID NO:1424, SEQ ID NO:1425, SEQ 520 IDNO:1427, SEQ ID NO:1428, SEQ ID NO:1429, SEQ ID NO:1430, SEQ ID NO:1431, SEQ ID NO:1432, SEQ ID NO:1433, SEQ ID NO:1434, SEQ ID NO:1435, SEQ ID NO:1437, SEQ ID NO:1438, SEQ ID NO:1439, SEQ ID NO:1440, SEQ ID NO:1441, SEQ ID NO:1442, SEQ ID NO:1444, SEQ ID NO:1445, SEQ 525 IDNO:1446, SEQ ID NO:1447, SEQ ID NO:1448, SEQ ID NO:1449, SEQ ID NO:1451, SEQ ID NO:1452, SEQ ID NO:1453, SEQ ID NO:1454, SEQ ID NO:1455, SEQ ID NO:1456, SEQ ID NO:1458, SEQ ID NO:1459, SEQ ID NO:1461, SEQ ID NO:1462, SEQ ID NO:1463, SEQ ID NO:1464, SEQ ID NO:1465, SEQID 530 NO:1466, SEQ ID NO:1468, SEQ ID NO:1469, SEQ ID NO:1470, SEQ ID NO:1472, SEQ ID NO:1474, SEQ ID NO:1475, SEQ ID NO:1476, SEQ ID NO:1477, SEQ ID NO:1479, SEQ ID NO:1480, SEQ ID NO:1481, SEQ ID NO:1482, SEQ ID NO:1483, SEQ ID NO:1484, SEQ ID NO:1485, SEQ ID NO:1486, SEQID NO:1488, 535 SEQ ID NO:1490, SEQ ID NO:1491, SEQ ID NO:1492, SEQ IDNO:1493, SEQ ID NO:1495, SEQ ID NO:1496, SEQ ID NO:1497, SEQ ID NO:1498, SEQ ID NO:1500, SEQ ID NO:1502, SEQ ID NO:1503, SEQ ID NO:1504, SEQ ID NO:1505, SEQ ID NO:1507, SEQ ID NO:1509, SEQ ID NO:1512, SEQ ID NO:1513, 540 SEQ ID NO:1514, SEQ ID NO:1515, SEQ ID NO:1517, SEQ IDNO:1518, SEQ ID NO:1519, SEQ ID NO:1521, SEQ ID NO:1522, SEQ ID NO:1523, SEQ ID NO:1524, SEQ ID NO:1525, SEQ ID NO:1527, SEQ ID NO:1528, SEQ ID NO:1529, SEQ ID NO:1530, SEQ ID NO:1531, SEQ ID NO:1533, SEQ ID NO:1534,

Appendix B: Hideo *et al.* Full Translation

545 SEQ ID NO:1535, SEQ ID NO:1536, SEQ ID NO:1538, SEQID
NO:1539, SEQ ID NO:1541, SEQ ID NO:1542, SEQ ID NO:1543,
SEQ ID NO:1544, SEQ ID NO:1546, SEQ ID NO:1548, SEQ ID
NO:1550, SEQ ID NO:1552, SEQ ID NO:1554, SEQ ID NO:1556,
SEQ ID NO:1557, SEQ ID NO:1559,SEQ ID NO:1560, SEQ ID
NO:1561, SEQ ID NO:1562, SEQ ID NO:1564, SEQID NO:1565,
SEQ ID NO:1567, SEQ ID NO:1568, SEQ ID NO:1570, SEQ
IDNO:1572, SEQ ID NO:1573, SEQ ID NO:1574, SEQ ID NO:
1575, SEQ ID NO:1577, SEQ ID NO:1578, SEQ ID NO:1579,
SEQ ID NO:1581, SEQ ID NO:1582, SEQ ID NO:1583, SEQ ID
NO:1585, SEQ ID NO:1586, SEQ ID NO:1588, SEQ ID NO:1589,
SEQ ID NO:1590, SEQ ID NO:1592, SEQ ID NO:1593, SEQ
IDNO:1595, SEQ ID NO:1597, SEQ ID NO:1598, SEQ ID NO:
1600, SEQ ID NO:1602, SEQ ID NO:1606, SEQ ID NO:1608,
SEQ ID NO:1609, SEQ ID NO:1610, SEQ ID NO:1611, SEQ ID
NO:1613, SEQ ID NO:1614, SEQ ID NO:1616,SEQ ID NO:1618,
SEQ ID NO:1620, SEQ ID NO:1621, SEQ ID NO:1623, SEQID
NO:1625, SEQ ID NO:1628, SEQ ID NO:1630, SEQ ID NO:1631,
SEQ ID NO:1633, SEQ ID NO:1634, SEQ ID NO:1638, SEQ ID
NO:1641, SEQ ID NO:1642, SEQ ID NO:1644, SEQ ID NO:1645,
565 SEQ ID NO:1647, SEQ ID NO:1648,SEQ ID NO:1650, SEQ ID
NO:1651, SEQ ID NO:1653, SEQ ID NO:1654, SEQID NO:1656,
SEQ ID NO:1657, SEQ ID NO:1659, SEQ ID NO:1661, SEQ
IDNO:1663, SEQ ID NO:1665, SEQ ID NO:1667, SEQ ID NO:
1671, SEQ ID NO:1674, SEQ ID NO:1676, SEQ ID NO:1678,
570 SEQ ID NO:1679, SEQ ID NO:1681, SEQ ID NO:1684, SEQ ID
NO:1686, SEQ ID NO:1687, SEQ ID NO:1689, SEQ ID NO:1692,
SEQ ID NO:1693, SEQ ID NO:1695, SEQ ID NO:1697, SEQ
IDNO:1698, SEQ ID NO:1702, and SEQ ID NO:1703
, or (b) a polypeptide comprising an amino acid sequences
575 in the amino acid sequences set forth in (a) in which several
amino acids are deleted, replaced or added.
4. A polypeptide specific to enterohemorrhagic pathogenic-E.
coli O-157:H7.

5. The polypeptide of claim 4 comprising

580 (a) an amino acid sequence selected from a group comprising the following SEQ IDs or a moiety thereof: SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ IDNO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24,SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48,SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96,SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:

Appendix B: Hideo *et al.* Full Translation

124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID
NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131,
615 SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:
136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID
NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143,
SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:
147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID
620 NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154,
SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID NO:
158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEQ ID
NO:162, SEQ ID NO:163, SEQ ID NO:164, SEQ ID NO:165,
SEQ ID NO:166, SEQ ID NO:167, SEQ ID NO:168, SEQ ID NO:
625 169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID
NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176,
SEQ ID NO:177, SEQ ID NO:178, SEQ ID NO:179, SEQ ID NO:
180, SEQ ID NO:181, SEQ ID NO:182, SEQ ID NO:183, SEQ ID
NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:187,
630 SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:
191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID
NO:195, SEQ ID NO:196, SEQ ID NO:197, SEQ ID NO:198,
SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:
202, SEQ ID NO:203, SEQ ID NO:204, SEQ ID NO:205, SEQ ID
635 NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:209,
SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID NO:
213, SEQ ID NO:214, SEQ ID NO:215, SEQ ID NO:216, SEQ ID
NO:217, SEQ ID NO:218, SEQ ID NO:219, SEQ ID NO:220,
SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:
640 224, SEQ ID NO:225, SEQ ID NO:226, SEQ ID NO:227, SEQ ID
NO:228, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:231,
SEQ ID NO:232, SEQ ID NO:233, SEQ ID NO:234, SEQ ID NO:
235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:238, SEQ ID
NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242,
645 SEQ ID NO:243, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:
247, SEQ ID NO:248, SEQ ID NO:249, SEQ ID NO:250, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO:251, SEQ ID NO:252, SEQ ID NO:253, SEQ ID NO:254,
SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:
258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEQ ID
650 NO:262, SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:265,
SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:
269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272, SEQ ID
NO:273, SEQ ID NO:274, SEQ ID NO:275, SEQ ID NO:276,
SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:279, SEQ ID NO:
655 280, SEQ ID NO:281, SEQ ID NO:282, SEQ ID NO:283, SEQ ID
NO:284, SEQ ID NO:285, SEQ ID NO:286, SEQ ID NO:287,
SEQ ID NO:288, SEQ ID NO:289, SEQ ID NO:290, SEQ ID NO:
291, SEQ ID NO:292, SEQ ID NO:293, SEQ ID NO:294, SEQ ID
NO:295, SEQ ID NO:296, SEQ ID NO:297, SEQ ID NO:298,
660 SEQ ID NO:299, SEQ ID NO:300, SEQ ID NO:301, SEQ ID NO:
302, SEQ ID NO:303, SEQ ID NO:304, SEQ ID NO:305, SEQ ID
NO:306, SEQ ID NO:307, SEQ ID NO:308, SEQ ID NO:309,
SEQ ID NO:310, SEQ ID NO:311, SEQ ID NO:312, SEQ ID NO:
313, SEQ ID NO:314, SEQ ID NO:315, SEQ ID NO:316, SEQ ID
665 NO:317, SEQ ID NO:318, SEQ ID NO:319, SEQ ID NO:320,
SEQ ID NO:321, SEQ ID NO:322, SEQ ID NO:323, SEQ ID NO:
324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327, SEQ ID
NO:328, SEQ ID NO:329, SEQ ID NO:330, SEQ ID NO:331,
SEQ ID NO:332, SEQ ID NO:333, SEQ ID NO:334, SEQ ID NO:
670 335, SEQ ID NO:336, SEQ ID NO:338, SEQ ID NO:339, SEQ ID
NO:340, SEQ ID NO:341, SEQ ID NO:342, SEQ ID NO:343,
SEQ ID NO:344, SEQ ID NO:345, SEQ ID NO:346, SEQ ID NO:
347, SEQ ID NO:348, SEQ ID NO:349, SEQ ID NO:350, SEQ ID
NO:351, SEQ ID NO:352, SEQ ID NO:353, SEQ ID NO:354,
675 SEQ ID NO:355, SEQ ID NO:356, SEQ ID NO:357, SEQ ID NO:
358, SEQ ID NO:359, SEQ ID NO:360, SEQ ID NO:361, SEQ ID
NO:362, SEQ ID NO:363, SEQ ID NO:364, SEQ ID NO:365,
SEQ ID NO:366, SEQ ID NO:367, SEQ ID NO:368, SEQ ID NO:
369, SEQ ID NO:370, SEQ ID NO:371, SEQ ID NO:372, SEQ ID
680 NO:373, SEQ ID NO:374, SEQ ID NO:375, SEQ ID NO:376,

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO:377, SEQ ID NO:378, SEQ ID NO:379, SEQ ID NO:
380, SEQ ID NO:381, SEQ ID NO:382, SEQ ID NO:383, SEQ ID
NO:384, SEQ ID NO:385, SEQ ID NO:386, SEQ ID NO:387,
SEQ ID NO:388, SEQ ID NO:389, SEQ ID NO:390, SEQ ID NO:
685 391, SEQ ID NO:392, SEQ ID NO:393, SEQ ID NO:394, SEQ ID
NO:395, SEQ ID NO:396, SEQ ID NO:397, SEQ ID NO:398,
SEQ ID NO:399, SEQ ID NO:400, SEQ ID NO:401, SEQ ID NO:
402, SEQ ID NO:403, SEQ ID NO:404, SEQ ID NO:405, SEQ ID
NO:406, SEQ ID NO:407, SEQ ID NO:408, SEQ ID NO:409,
690 SEQ ID NO:411, SEQ ID NO:412, SEQ ID NO:413, SEQ ID NO:
414, SEQ ID NO:415, SEQ ID NO:416, SEQ ID NO:417, SEQ ID
NO:418, SEQ ID NO:419, SEQ ID NO:420, SEQ ID NO:421,
SEQ ID NO:422, SEQ ID NO:423, SEQ ID NO:424, SEQ ID NO:
425, SEQ ID NO:426, SEQ ID NO:427, SEQ ID NO:428, SEQ ID
695 NO:429, SEQ ID NO:430, SEQ ID NO:431, SEQ ID NO:432,
SEQ ID NO:433, SEQ ID NO:434, SEQ ID NO:435, SEQ ID NO:
436, SEQ ID NO:437, SEQ ID NO:438, SEQ ID NO:439, SEQ ID
NO:440, SEQ ID NO:441, SEQ ID NO:442, SEQ ID NO:443,
SEQ ID NO:444, SEQ ID NO:445, SEQ ID NO:446, SEQ ID NO:
700 447, SEQ ID NO:448, SEQ ID NO:449, SEQ ID NO:450, SEQ ID
NO:451, SEQ ID NO:452, SEQ ID NO:453, SEQ ID NO:454,
SEQ ID NO:455, SEQ ID NO:456, SEQ ID NO:457, SEQ ID NO:
458, SEQ ID NO:459, SEQ ID NO:460, SEQ ID NO:461, SEQ ID
NO:462, SEQ ID NO:463, SEQ ID NO:464, SEQ ID NO:465,
705 SEQ ID NO:466, SEQ ID NO:467, SEQ ID NO:468, SEQ ID NO:
469, SEQ ID NO:470, SEQ ID NO:471, SEQ ID NO:472, SEQ ID
NO:473, SEQ ID NO:474, SEQ ID NO:475, SEQ ID NO:476,
SEQ ID NO:477, SEQ ID NO:478, SEQ ID NO:479, SEQ ID NO:
480, SEQ ID NO:481, SEQ ID NO:482, SEQ ID NO:483, SEQ ID
710 NO:485, SEQ ID NO:486, SEQ ID NO:487, SEQ ID NO:488,
SEQ ID NO:489, SEQ ID NO:490, SEQ ID NO:491, SEQ ID NO:
492, SEQ ID NO:493, SEQ ID NO:494, SEQ ID NO:495, SEQ ID
NO:496, SEQ ID NO:497, SEQ ID NO:498, SEQ ID NO:499,
SEQ ID NO:500, SEQ ID NO:501, SEQ ID NO:502, SEQ ID NO:

Appendix B: Hideo *et al.* Full Translation

715 503, SEQ ID NO:504, SEQ ID NO:505, SEQ ID NO:506, SEQ ID
NO:507, SEQ ID NO:508, SEQ ID NO:509, SEQ ID NO:510,
SEQ ID NO:511, SEQ ID NO:512, SEQ ID NO:513, SEQ ID NO:
514, SEQ ID NO:515, SEQ ID NO:516, SEQ ID NO:517, SEQ ID
NO:518, SEQ ID NO:519, SEQ ID NO:520, SEQ ID NO:521,
720 SEQ ID NO:522, SEQ ID NO:523, SEQ ID NO:524, SEQ ID NO:
525, SEQ ID NO:526, SEQ ID NO:527, SEQ ID NO:528, SEQ ID
NO:529, SEQ ID NO:530, SEQ ID NO:531, SEQ ID NO:532,
SEQ ID NO:533, SEQ ID NO:534, SEQ ID NO:535, SEQ ID NO:
536, SEQ ID NO:537, SEQ ID NO:538, SEQ ID NO:539, SEQ ID
725 NO:540, SEQ ID NO:541, SEQ ID NO:542, SEQ ID NO:543,
SEQ ID NO:544, SEQ ID NO:545, SEQ ID NO:546, SEQ ID NO:
547, SEQ ID NO:548, SEQ ID NO:549, SEQ ID NO:550, SEQ ID
NO:551, SEQ ID NO:552, SEQ ID NO:553, SEQ ID NO:555,
SEQ ID NO:556, SEQ ID NO:557, SEQ ID NO:558, SEQ ID NO:
730 559, SEQ ID NO:560, SEQ ID NO:561, SEQ ID NO:562, SEQ ID
NO:563, SEQ ID NO:564, SEQ ID NO:565, SEQ ID NO:566,
SEQ ID NO:567, SEQ ID NO:568, SEQ ID NO:569, SEQ ID NO:
570, SEQ ID NO:571, SEQ ID NO:572, SEQ ID NO:573, SEQ ID
NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:577,
735 SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID NO:
581, SEQ ID NO:582, SEQ ID NO:583, SEQ ID NO:584, SEQ ID
NO:585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:588,
SEQ ID NO:589, SEQ ID NO:590, SEQ ID NO:591, SEQ ID NO:
592, SEQ ID NO:593, SEQ ID NO:594, SEQ ID NO:595, SEQ ID
740 NO:596, SEQ ID NO:597, SEQ ID NO:598, SEQ ID NO:599,
SEQ ID NO:600, SEQ ID NO:601, SEQ ID NO:602, SEQ ID NO:
603, SEQ ID NO:604, SEQ ID NO:605, SEQ ID NO:606, SEQ ID
NO:607, SEQ ID NO:608, SEQ ID NO:609, SEQ ID NO:610,
SEQ ID NO:611, SEQ ID NO:612, SEQ ID NO:613, SEQ ID NO:
745 614, SEQ ID NO:615, SEQ ID NO:616, SEQ ID NO:617, SEQ ID
NO:618, SEQ ID NO:619, SEQ ID NO:620, SEQ ID NO:621,
SEQ ID NO:622, SEQ ID NO:623, SEQ ID NO:624, SEQ ID NO:
625, SEQ ID NO:626, SEQ ID NO:627, SEQ ID NO:628, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO:629, SEQ ID NO:631, SEQ ID NO:632, SEQ ID NO:633,
750 SEQ ID NO:634, SEQ ID NO:635, SEQ ID NO:636, SEQ ID NO:
637, SEQ ID NO:638, SEQ ID NO:639, SEQ ID NO:640, SEQ ID
NO:641, SEQ ID NO:642, SEQ ID NO:643, SEQ ID NO:644,
SEQ ID NO:645, SEQ ID NO:646, SEQ ID NO:647, SEQ ID NO:
648, SEQ ID NO:649, SEQ ID NO:650, SEQ ID NO:651, SEQ ID
755 NO:652, SEQ ID NO:653, SEQ ID NO:654, SEQ ID NO:655,
SEQ ID NO:656, SEQ ID NO:657, SEQ ID NO:658, SEQ ID NO:
659, SEQ ID NO:660, SEQ ID NO:661, SEQ ID NO:662, SEQ ID
NO:663, SEQ ID NO:664, SEQ ID NO:665, SEQ ID NO:666,
SEQ ID NO:667, SEQ ID NO:668, SEQ ID NO:669, SEQ ID NO:
760 670, SEQ ID NO:671, SEQ ID NO:672, SEQ ID NO:673, SEQ ID
NO:674, SEQ ID NO:675, SEQ ID NO:676, SEQ ID NO:677,
SEQ ID NO:678, SEQ ID NO:679, SEQ ID NO:680, SEQ ID NO:
681, SEQ ID NO:682, SEQ ID NO:683, SEQ ID NO:684, SEQ ID
NO:685, SEQ ID NO:686, SEQ ID NO:687, SEQ ID NO:688,
765 SEQ ID NO:690, SEQ ID NO:691, SEQ ID NO:692, SEQ ID NO:
693, SEQ ID NO:694, SEQ ID NO:695, SEQ ID NO:696, SEQ ID
NO:697, SEQ ID NO:698, SEQ ID NO:699, SEQ ID NO:700,
SEQ ID NO:701, SEQ ID NO:702, SEQ ID NO:703, SEQ ID NO:
704, SEQ ID NO:705, SEQ ID NO:706, SEQ ID NO:707, SEQ ID
770 NO:708, SEQ ID NO:709, SEQ ID NO:710, SEQ ID NO:711,
SEQ ID NO:712, SEQ ID NO:713, SEQ ID NO:714, SEQ ID NO:
715, SEQ ID NO:716, SEQ ID NO:717, SEQ ID NO:718, SEQ ID
NO:719, SEQ ID NO:720, SEQ ID NO:721, SEQ ID NO:722,
SEQ ID NO:723, SEQ ID NO:724, SEQ ID NO:725, SEQ ID NO:
775 726, SEQ ID NO:727, SEQ ID NO:728, SEQ ID NO:729, SEQ ID
NO:730, SEQ ID NO:731, SEQ ID NO:732, SEQ ID NO:733,
SEQ ID NO:734, SEQ ID NO:735, SEQ ID NO:736, SEQ ID NO:
737, SEQ ID NO:738, SEQ ID NO:739, SEQ ID NO:740, SEQ ID
NO:741, SEQ ID NO:742, SEQ ID NO:743, SEQ ID NO:744,
780 SEQ ID NO:745, SEQ ID NO:746, SEQ ID NO:747, SEQ ID NO:
748, SEQ ID NO:749, SEQ ID NO:750, SEQ ID NO:751, SEQ ID
NO:752, SEQ ID NO:753, SEQ ID NO:754, SEQ ID NO:756,

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO:757, SEQ ID NO:758, SEQ ID NO:759, SEQ ID NO:
760, SEQ ID NO:761, SEQ ID NO:762, SEQ ID NO:763, SEQ ID
785 NO:764, SEQ ID NO:765, SEQ ID NO:766, SEQ ID NO:767,
SEQ ID NO:768, SEQ ID NO:769, SEQ ID NO:770, SEQ ID NO:
771, SEQ ID NO:772, SEQ ID NO:773, SEQ ID NO:774, SEQ ID
NO:775, SEQ ID NO:776, SEQ ID NO:777, SEQ ID NO:778,
SEQ ID NO:779, SEQ ID NO:780, SEQ ID NO:781, SEQ ID NO:
790 782, SEQ ID NO:783, SEQ ID NO:784, SEQ ID NO:785, SEQ ID
NO:786, SEQ ID NO:787, SEQ ID NO:788, SEQ ID NO:789,
SEQ ID NO:790, SEQ ID NO:791, SEQ ID NO:792, SEQ ID NO:
793, SEQ ID NO:794, SEQ ID NO:795, SEQ ID NO:796, SEQ ID
NO:797, SEQ ID NO:798, SEQ ID NO:799, SEQ ID NO:800,
795 SEQ ID NO:801, SEQ ID NO:802, SEQ ID NO:803, SEQ ID NO:
804, SEQ ID NO:805, SEQ ID NO:806, SEQ ID NO:807, SEQ ID
NO:808, SEQ ID NO:809, SEQ ID NO:810, SEQ ID NO:811,
SEQ ID NO:812, SEQ ID NO:813, SEQ ID NO:814, SEQ ID NO:
815, SEQ ID NO:817, SEQ ID NO:818, SEQ ID NO:819, SEQ ID
800 NO:820, SEQ ID NO:821, SEQ ID NO:822, SEQ ID NO:823,
SEQ ID NO:824, SEQ ID NO:825, SEQ ID NO:826, SEQ ID NO:
827, SEQ ID NO:828, SEQ ID NO:829, SEQ ID NO:830, SEQ ID
NO:831, SEQ ID NO:832, SEQ ID NO:833, SEQ ID NO:834,
SEQ ID NO:835, SEQ ID NO:836, SEQ ID NO:837, SEQ ID NO:
805 838, SEQ ID NO:839, SEQ ID NO:840, SEQ ID NO:841, SEQ ID
NO:842, SEQ ID NO:843, SEQ ID NO:844, SEQ ID NO:845,
SEQ ID NO:846, SEQ ID NO:847, SEQ ID NO:848, SEQ ID NO:
849, SEQ ID NO:850, SEQ ID NO:851, SEQ ID NO:852, SEQ ID
NO:853, SEQ ID NO:854, SEQ ID NO:855, SEQ ID NO:856,
810 SEQ ID NO:857, SEQ ID NO:858, SEQ ID NO:859, SEQ ID NO:
860, SEQ ID NO:861, SEQ ID NO:862, SEQ ID NO:863, SEQ ID
NO:864, SEQ ID NO:865, SEQ ID NO:866, SEQ ID NO:867,
SEQ ID NO:868, SEQ ID NO:869, SEQ ID NO:870, SEQ ID NO:
871, SEQ ID NO:872, SEQ ID NO:873, SEQ ID NO:874, SEQ
815 ID NO:875, SEQ ID NO:877, SEQ ID NO:878, SEQ ID NO:879,
SEQ ID NO:880, SEQ ID NO:881, SEQ ID NO:882, SEQ ID NO:

Appendix B: Hideo *et al.* Full Translation

883, SEQ ID NO:884, SEQ ID NO:885, SEQ ID NO:886, SEQ ID
NO:887, SEQ ID NO:888, SEQ ID NO:889, SEQ ID NO:890,
SEQ ID NO:891, SEQ ID NO:892, SEQ ID NO:893, SEQ ID NO:
820 894, SEQ ID NO:895, SEQ ID NO:896, SEQ ID NO:897, SEQ ID
NO:898, SEQ ID NO:899, SEQ ID NO:900, SEQ ID NO:901,
SEQ ID NO:902, SEQ ID NO:903, SEQ ID NO:904, SEQ ID NO:
905, SEQ ID NO:906, SEQ ID NO:907, SEQ ID NO:908, SEQ ID
NO:909, SEQ ID NO:910, SEQ ID NO:911, SEQ ID NO:912,
825 SEQ ID NO:913, SEQ ID NO:914, SEQ ID NO:915, SEQ ID NO:
916, SEQ ID NO:917, SEQ ID NO:918, SEQ ID NO:919, SEQ ID
NO:920, SEQ ID NO:921, SEQ ID NO:922, SEQ ID NO:923,
SEQ ID NO:924, SEQ ID NO:925, SEQ ID NO:926, SEQ ID NO:
928, SEQ ID NO:929, SEQ ID NO:930, SEQ ID NO:931, SEQ ID
830 NO:932, SEQ ID NO:933, SEQ ID NO:934, SEQ ID NO:935,
SEQ ID NO:936, SEQ ID NO:937, SEQ ID NO:938, SEQ ID NO:
939, SEQ ID NO:940, SEQ ID NO:941, SEQ ID NO:942, SEQ ID
NO:943, SEQ ID NO:944, SEQ ID NO:945, SEQ ID NO:946,
SEQ ID NO:947, SEQ ID NO:948, SEQ ID NO:949, SEQ ID NO:
835 950, SEQ ID NO:951, SEQ ID NO:952, SEQ ID NO:953, SEQ ID
NO:954, SEQ ID NO:955, SEQ ID NO:956, SEQ ID NO:957,
SEQ ID NO:958, SEQ ID NO:959, SEQ ID NO:960, SEQ ID NO:
961, SEQ ID NO:962, SEQ ID NO:963, SEQ ID NO:964, SEQ ID
NO:965, SEQ ID NO:966, SEQ ID NO:967, SEQ ID NO:968,
840 SEQ ID NO:969, SEQ ID NO:970, SEQ ID NO:971, SEQ ID NO:
972, SEQ ID NO:973, SEQ ID NO:974, SEQ ID NO:975, SEQ ID
NO:976, SEQ ID NO:977, SEQ ID NO:979, SEQ ID NO:980,
SEQ ID NO:981, SEQ ID NO:982, SEQ ID NO:983, SEQ ID NO:
984, SEQ ID NO:985, SEQ ID NO:986, SEQ ID NO:987, SEQ ID
845 NO:988, SEQ ID NO:989, SEQ ID NO:990, SEQ ID NO:991,
SEQ ID NO:992, SEQ ID NO:993, SEQ ID NO:994, SEQ ID NO:
995, SEQ ID NO:996, SEQ ID NO:997, SEQ ID NO:998, SEQ ID
NO:999, SEQ ID NO:1000, SEQ ID NO:1001, SEQ ID NO:1002,
SEQ ID NO:1003, SEQ ID NO:1004, SEQ ID NO:1005, SEQ ID
850 NO:1006, SEQ ID NO:1007, SEQ ID NO:1008, SEQ ID NO:1009,

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO:1010, SEQ ID NO:1011, SEQ ID NO:1012, SEQ ID
NO:1014, SEQ ID NO:1015, SEQ ID NO:1016, SEQ ID NO:1017,
SEQ ID NO:1018,SEQ ID NO:1019, SEQ ID NO:1020, SEQ ID
NO:1021, SEQ ID NO:1022, SEQID NO:1023, SEQ ID NO:1024,
855 SEQ ID NO:1025, SEQ ID NO:1026, SEQ IDNO:1027, SEQ ID
NO:1028, SEQ ID NO:1030, SEQ ID NO:1031, SEQ ID NO:1032,
SEQ ID NO:1033, SEQ ID NO:1034, SEQ ID NO:1035, SEQ ID
NO:1036, SEQ ID NO:1037, SEQ ID NO:1038, SEQ ID NO:1039,
SEQ ID NO:1040, SEQ ID NO:1041, SEQ ID NO:1042, SEQ ID
860 NO:1043, SEQ ID NO:1044, SEQ IDNO:1045, SEQ ID NO:1046,
SEQ ID NO:1047, SEQ ID NO:1048, SEQ ID NO:1049, SEQ ID
NO:1050, SEQ ID NO:1051, SEQ ID NO:1052, SEQ ID NO:1053,
SEQ ID NO:1054, SEQ ID NO:1056, SEQ ID NO:1057, SEQ ID
NO:1058,SEQ ID NO:1059, SEQ ID NO:1061, SEQ ID NO:1062,
865 SEQ ID NO:1063, SEQID NO:1064, SEQ ID NO:1065, SEQ ID
NO:1066, SEQ ID NO:1067, SEQ ID NO:1068, SEQ ID NO:1069,
SEQ ID NO:1070, SEQ ID NO:1071, SEQ ID NO:1072, SEQ ID
NO:1073, SEQ ID NO:1074, SEQ ID NO:1075, SEQ ID NO:
1076,SEQ ID NO:1077, SEQ ID NO:1078, SEQ ID NO:1079,
870 SEQ ID NO:1080, SEQID NO:1081, SEQ ID NO:1082, SEQ ID
NO:1083, SEQ ID NO:1084, SEQ IDNO:1085, SEQ ID NO:1086,
SEQ ID NO:1087, SEQ ID NO:1088, SEQ ID NO:1089, SEQ ID
NO:1090, SEQ ID NO:1091, SEQ ID NO:1092, SEQ ID NO:1094,
SEQ ID NO:1095, SEQ ID NO:1096, SEQ ID NO:1097, SEQ ID
875 NO:1098, SEQ ID NO:1099, SEQ ID NO:1100, SEQ ID NO:1101,
SEQ ID NO:1102, SEQ IDNO:1103, SEQ ID NO:1104, SEQ ID
NO:1105, SEQ ID NO:1106, SEQ ID NO:1107, SEQ ID NO:1108,
SEQ ID NO:1109, SEQ ID NO:1110, SEQ ID NO:1111, SEQ ID
NO:1112, SEQ ID NO:1113, SEQ ID NO:1114, SEQ ID NO:
880 1115,SEQ ID NO:1116, SEQ ID NO:1117, SEQ ID NO:1118, SEQ
ID NO:1119, SEQID NO:1120, SEQ ID NO:1121, SEQ ID NO:
1122, SEQ ID NO:1123, SEQ ID NO:1124, SEQ ID NO:1125,
SEQ ID NO:1126, SEQ ID NO:1127, SEQ ID NO:1129, SEQ ID
NO:1130, SEQ ID NO:1131, SEQ ID NO:1132, SEQ ID NO:

Appendix B: Hideo *et al.* Full Translation

885 1133,SEQ ID NO:1134, SEQ ID NO:1135, SEQ ID NO:1136,
SEQ ID NO:1137, SEQID NO:1138, SEQ ID NO:1139, SEQ ID
NO:1140, SEQ ID NO:1141, SEQ IDNO:1142, SEQ ID NO:1143,
SEQ ID NO:1144, SEQ ID NO:1145, SEQ ID NO:1146, SEQ ID
NO:1147, SEQ ID NO:1148, SEQ ID NO:1149, SEQ ID NO:1150,
890 SEQ ID NO:1151, SEQ ID NO:1152, SEQ ID NO:1153, SEQ ID
NO:1154, SEQ ID NO:1155, SEQ ID NO:1156, SEQ ID NO:1158,
SEQ ID NO:1159, SEQ IDNO:1160, SEQ ID NO:1161, SEQ ID
NO:1162, SEQ ID NO:1163, SEQ ID NO:1164, SEQ ID NO:1165,
SEQ ID NO:1166, SEQ ID NO:1167, SEQ ID NO:1168, SEQ ID
895 NO:1169, SEQ ID NO:1170, SEQ ID NO:1171, SEQ ID NO:
1172,SEQ ID NO:1173, SEQ ID NO:1174, SEQ ID NO:1175,
SEQ ID NO:1176, SEQID NO:1177, SEQ ID NO:1178, SEQ ID
NO:1179, SEQ ID NO:1180, SEQ ID NO:1181, SEQ ID NO:1182,
SEQ ID NO:1183, SEQ ID NO:1184, SEQ ID NO:1185, SEQ ID
900 NO:1186, SEQ ID NO:1187, SEQ ID NO:1188, SEQ ID NO:
1189,SEQ ID NO:1190, SEQ ID NO:1192, SEQ ID NO:1193,
SEQ ID NO:1194, SEQID NO:1195, SEQ ID NO:1196, SEQ ID
NO:1197, SEQ ID NO:1198, SEQ IDNO:1199, SEQ ID NO:1200,
SEQ ID NO:1201, SEQ ID NO:1202, SEQ ID NO:1203, SEQ ID
905 NO:1204, SEQ ID NO:1205, SEQ ID NO:1206, SEQ ID NO:1207,
SEQ ID NO:1208, SEQ ID NO:1209, SEQ ID NO:1210, SEQ ID
NO:1211, SEQ ID NO:1213, SEQ ID NO:1214, SEQ ID NO:1215,
SEQ ID NO:1216, SEQ IDNO:1217, SEQ ID NO:1218, SEQ ID
NO:1219, SEQ ID NO:1220, SEQ ID NO:1221, SEQ ID NO:1222,
910 SEQ ID NO:1223, SEQ ID NO:1224, SEQ ID NO:1225, SEQ ID
NO:1226, SEQ ID NO:1227, SEQ ID NO:1228, SEQ ID NO:
1229,SEQ ID NO:1230, SEQ ID NO:1231, SEQ ID NO:1232,
SEQ ID NO:1233, SEQID NO:1234, SEQ ID NO:1235, SEQ ID
NO:1236, SEQ ID NO:1237, SEQ ID NO:1238, SEQ ID NO:1239,
915 SEQ ID NO:1241, SEQ ID NO:1242, SEQ ID NO:1243, SEQ ID
NO:1244, SEQ ID NO:1245, SEQ ID NO:1246, SEQ ID NO:
1247,SEQ ID NO:1248, SEQ ID NO:1249, SEQ ID NO:1250,
SEQ ID NO:1251, SEQID NO:1252, SEQ ID NO:1253, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO:1254, SEQ ID NO:1255, SEQ IDNO:1256, SEQ ID NO:1257,
920 SEQ ID NO:1259, SEQ ID NO:1260, SEQ ID NO:1261, SEQ ID
NO:1262, SEQ ID NO:1263, SEQ ID NO:1264, SEQ ID NO:1265,
SEQ ID NO:1266, SEQ ID NO:1267, SEQ ID NO:1268, SEQ ID
NO:1269, SEQ ID NO:1270, SEQ ID NO:1271, SEQ ID NO:1272,
SEQ ID NO:1273, SEQ IDNO:1275, SEQ ID NO:1276, SEQ ID
925 NO:1277, SEQ ID NO:1278, SEQ ID NO:1279, SEQ ID NO:1280,
SEQ ID NO:1281, SEQ ID NO:1282, SEQ ID NO:1283, SEQ ID
NO:1284, SEQ ID NO:1285, SEQ ID NO:1286, SEQ ID NO:
1287,SEQ ID NO:1289, SEQ ID NO:1290, SEQ ID NO:1291,
SEQ ID NO:1292, SEQID NO:1293, SEQ ID NO:1294, SEQ ID
930 NO:1295, SEQ ID NO:1296, SEQ ID NO:1297, SEQ ID NO:1298,
SEQ ID NO:1299, SEQ ID NO:1300, SEQ ID NO:1301, SEQ ID
NO:1303, SEQ ID NO:1304, SEQ ID NO:1305, SEQ ID NO:
1306,SEQ ID NO:1307, SEQ ID NO:1308, SEQ ID NO:1310,
SEQ ID NO:1311, SEQID NO:1312, SEQ ID NO:1313, SEQ ID
935 NO:1314, SEQ ID NO:1315, SEQ IDNO:1316, SEQ ID NO:1317,
SEQ ID NO:1318, SEQ ID NO:1319, SEQ ID NO:1320, SEQ ID
NO:1322, SEQ ID NO:1323, SEQ ID NO:1324, SEQ ID NO:1325,
SEQ ID NO:1326, SEQ ID NO:1327, SEQ ID NO:1328, SEQ ID
NO:1330, SEQ ID NO:1331, SEQ ID NO:1332, SEQ ID NO:1333,
940 SEQ ID NO:1334, SEQ IDNO:1335, SEQ ID NO:1336, SEQ ID
NO:1337, SEQ ID NO:1339, SEQ ID NO:1340, SEQ ID NO:1341,
SEQ ID NO:1342, SEQ ID NO:1343, SEQ ID NO:1344, SEQ ID
NO:1345, SEQ ID NO:1346, SEQ ID NO:1347, SEQ ID NO:
1349,SEQ ID NO:1350, SEQ ID NO:1351, SEQ ID NO:1352,
945 SEQ ID NO:1353, SEQID NO:1354, SEQ ID NO:1355, SEQ ID
NO:1356, SEQ ID NO:1357, SEQ ID NO:1358, SEQ ID NO:1360,
SEQ ID NO:1361, SEQ ID NO:1362, SEQ ID NO:1363, SEQ ID
NO:1364, SEQ ID NO:1365, SEQ ID NO:1367, SEQ ID NO:
1368,SEQ ID NO:1369, SEQ ID NO:1370, SEQ ID NO:1371,
950 SEQ ID NO:1375, SEQID NO:1376, SEQ ID NO:1377, SEQ ID
NO:1378, SEQ ID NO:1379, SEQ IDNO:1381, SEQ ID NO:1382,
SEQ ID NO:1383, SEQ ID NO:1384, SEQ ID NO:1385, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO:1387, SEQ ID NO:1388, SEQ ID NO:1389, SEQ ID NO:1390,
SEQ ID NO:1391, SEQ ID NO:1392, SEQ ID NO:1393, SEQ ID
955 NO:1395, SEQ ID NO:1396, SEQ ID NO:1397, SEQ ID NO:1398,
SEQ ID NO:1399, SEQ ID NO:1400, SEQ ID NO:1402, SEQ ID
NO:1403, SEQ ID NO:1404, SEQ ID NO:1405, SEQ ID NO:1406,
SEQ ID NO:1407, SEQ ID NO:1409, SEQ ID NO:1410, SEQ ID
NO:1412, SEQ ID NO:1413, SEQ ID NO:1414, SEQ ID NO:
960 1415, SEQ ID NO:1416, SEQ ID NO:1417, SEQ ID NO:1419,
SEQ ID NO:1420, SEQ ID NO:1421, SEQ ID NO:1422, SEQ ID
NO:1423, SEQ ID NO:1424, SEQ ID NO:1425, SEQ ID NO:1427,
SEQ ID NO:1428, SEQ ID NO:1429, SEQ ID NO:1430, SEQ ID
NO:1431, SEQ ID NO:1432, SEQ ID NO:1433, SEQ ID NO:
965 1434, SEQ ID NO:1435, SEQ ID NO:1437, SEQ ID NO:1438,
SEQ ID NO:1439, SEQ ID NO:1440, SEQ ID NO:1441, SEQ ID
NO:1442, SEQ ID NO:1444, SEQ ID NO:1445, SEQ ID NO:1446,
SEQ ID NO:1447, SEQ ID NO:1448, SEQ ID NO:1449, SEQ ID
NO:1451, SEQ ID NO:1452, SEQ ID NO:1453, SEQ ID NO:1454,
970 SEQ ID NO:1455, SEQ ID NO:1456, SEQ ID NO:1458, SEQ ID
NO:1459, SEQ ID NO:1461, SEQ ID NO:1462, SEQ ID NO:1463,
SEQ ID NO:1464, SEQ ID NO:1465, SEQ ID NO:1466, SEQ ID
NO:1468, SEQ ID NO:1469, SEQ ID NO:1470, SEQ ID NO:1472,
SEQ ID NO:1474, SEQ ID NO:1475, SEQ ID NO:1476, SEQ ID
975 NO:1477, SEQ ID NO:1479, SEQ ID NO:1480, SEQ ID NO:
1481, SEQ ID NO:1482, SEQ ID NO:1483, SEQ ID NO:1484,
SEQ ID NO:1485, SEQ ID NO:1486, SEQ ID NO:1488, SEQ ID
NO:1490, SEQ ID NO:1491, SEQ ID NO:1492, SEQ ID NO:1493,
SEQ ID NO:1495, SEQ ID NO:1496, SEQ ID NO:1497, SEQ ID
980 NO:1498, SEQ ID NO:1500, SEQ ID NO:1502, SEQ ID NO:
1503, SEQ ID NO:1504, SEQ ID NO:1505, SEQ ID NO:1507,
SEQ ID NO:1509, SEQ ID NO:1512, SEQ ID NO:1513, SEQ ID
NO:1514, SEQ ID NO:1515, SEQ ID NO:1517, SEQ ID NO:1518,
SEQ ID NO:1519, SEQ ID NO:1521, SEQ ID NO:1522, SEQ ID
985 NO:1523, SEQ ID NO:1524, SEQ ID NO:1525, SEQ ID NO:1527,
SEQ ID NO:1528, SEQ ID NO:1529, SEQ ID NO:1530, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO:1531, SEQ ID NO:1533, SEQ ID NO:1534, SEQ ID NO:1535, SEQ ID NO:1536, SEQ ID NO:1538, SEQ ID NO:1539, SEQ ID NO:1541, SEQ ID NO:1542, SEQ ID NO:1543, SEQ ID NO:1544, 990 SEQ ID NO:1546, SEQ ID NO:1548, SEQ ID NO:1550, SEQ ID NO:1552, SEQ ID NO:1554, SEQ ID NO:1556, SEQ ID NO:1557,SEQ ID NO:1559, SEQ ID NO:1560, SEQ ID NO:1561, SEQ ID NO:1562, SEQ ID NO:1564, SEQ ID NO:1565, SEQ ID NO:1567, SEQ ID NO:1568, SEQ ID NO:1570, SEQ ID NO:1572, 995 SEQ ID NO:1573, SEQ ID NO:1574, SEQ ID NO:1575, SEQ ID NO:1577, SEQ ID NO:1578, SEQ ID NO:1579, SEQ ID NO:1581,SEQ ID NO:1582, SEQ ID NO:1583, SEQ ID NO:1585, SEQ ID NO:1586, SEQ ID NO:1588, SEQ ID NO:1589, SEQ ID NO:1590, SEQ ID NO:1592, SEQ ID NO:1593, SEQ ID NO:1595, 1000 SEQ ID NO:1597, SEQ ID NO:1598, SEQ ID NO:1600, SEQ ID NO:1602, SEQ ID NO:1606, SEQ ID NO:1608, SEQ ID NO:1609, SEQ ID NO:1610, SEQ ID NO:1611, SEQ ID NO:1613, SEQ ID NO:1614, SEQ ID NO:1616, SEQ ID NO:1618, SEQ ID NO:1620, SEQ ID NO:1621, SEQ ID NO:1623, SEQ ID NO:1625, SEQ ID 1005 NO:1628, SEQ ID NO:1630, SEQ ID NO:1631, SEQ ID NO:1633, SEQ ID NO:1634, SEQ ID NO:1638, SEQ ID NO:1641, SEQ ID NO:1642, SEQ ID NO:1644, SEQ ID NO:1645, SEQ ID NO:1647,SEQ ID NO:1648, SEQ ID NO:1650, SEQ ID NO:1651, SEQ ID NO:1653, SEQ ID NO:1654, SEQ ID NO:1656, SEQ ID 1010 NO:1657, SEQ ID NO:1659, SEQ ID NO:1661, SEQ ID NO:1663, SEQ ID NO:1665, SEQ ID NO:1667, SEQ ID NO:1671, SEQ ID NO:1674, SEQ ID NO:1676, SEQ ID NO:1678, SEQ ID NO:1679,SEQ ID NO:1681, SEQ ID NO:1684, SEQ ID NO:1686, SEQ ID NO:1687, SEQ ID NO:1689, SEQ ID NO:1692, SEQ ID 1015 NO:1693, SEQ ID NO:1695, SEQ ID NO:1697, SEQ ID NO:1698, SEQ ID NO:1702, and SEQ ID NO:1703
, or (b) an amino acid sequence in the amino acid sequences set forth in (a) in which several amino acids are deleted, replaced or added.
1020 6. A vector containing the nucleic-acid molecule of claim 1

Appendix B: Hideo *et al.* Full Translation

as an inserted substance.

7. The vector of claim 6, wherein the inserted substance is linked with an element of transcriptional regulation in their action.

1025 8. A host cell which is transformed with the vector of claim 7.

9. A method of producing a polypeptide specific to O-157:H7 comprising cultivation of the host cell of claim 8.

1030 10. An oligonucleotide or polynucleotide specific to enterohemorrhagic pathogenic-E. coli O-157:H7 comprising a nucleotide sequence constituted of at least 8 nucleotides in

(a) a nucleotide sequence selected from a group comprising the following SEQ IDs: SEQ ID NO:1, SEQ ID NO:

1035 132, SEQ ID NO:244,SEQ ID NO:337, SEQ ID NO:410, SEQ ID NO:484, SEQ ID NO:554, SEQ ID NO:630, SEQ ID NO:689, SEQ ID NO:755, SEQ ID NO:816, SEQ ID NO:876,SEQ ID NO: 927, SEQ ID NO:978, SEQ ID NO:1013, SEQ ID NO:1029, SEQ IDNO:1055, SEQ ID NO:1060, SEQ ID NO:1093, SEQ ID NO:

1040 1128, SEQ ID NO:1157, SEQ ID NO:1191, SEQ ID NO:1212, SEQ ID NO:1240, SEQ ID NO:1258, SEQ ID NO:1274, SEQ ID NO:1288, SEQ ID NO:1302, SEQ ID NO:1309,SEQ ID NO:1321, SEQ ID NO:1329, SEQ ID NO:1338, SEQ ID NO:1348, SEQID NO:1359, SEQ ID NO:1366, SEQ ID NO:1374, SEQ ID NO:1380,

1045 SEQ ID NO:1386, SEQ ID NO:1394, SEQ ID NO:1401, SEQ ID NO:1408, SEQ ID NO:1411, SEQ ID NO:1418, SEQ ID NO:1426, SEQ ID NO:1436, SEQ ID NO:1443,SEQ ID NO:1450, SEQ ID NO:1457, SEQ ID NO:1460, SEQ ID NO:1467, SEQID NO:1471, SEQ ID NO:1473, SEQ ID NO:1478, SEQ ID NO:1487, SEQ

1050 IDNO:1489, SEQ ID NO:1494, SEQ ID NO:1499, SEQ, ID NO: 1501, SEQ ID NO:1506, SEQ ID NO:1508, SEQ ID NO:1510, SEQ ID NO:1511, SEQ ID NO:1516, SEQ ID NO:1520, SEQ ID NO:1526, SEQ ID NO:1532, SEQ ID NO:1537,SEQ ID NO:1540, SEQ ID NO:1545, SEQ ID NO:1547, SEQ ID NO:1549, SEQID

Appendix B: Hideo *et al.* Full Translation

1055 NO:1551, SEQ ID NO:1553, SEQ ID NO:1555, SEQ ID NO:1558,
SEQ ID NO:1563, SEQ ID NO:1566, SEQ ID NO:1569, SEQ ID
NO:1571, SEQ ID NO:1576, SEQ ID NO:1580, SEQ ID NO:1584,
SEQ ID NO:1587, SEQ ID NO:1591, SEQ ID NO:1594, SEQ ID
NO:1596, SEQ ID NO:1599, SEQ ID NO:1601, SEQID NO:1603,
1060 SEQ ID NO:1604, SEQ ID NO:1605, SEQ ID NO:1607, SEQ
IDNO:1612, SEQ ID NO:1615, SEQ ID NO:1617, SEQ ID NO:
1619, SEQ ID NO:1622, SEQ ID NO:1624, SEQ ID NO:1626,
SEQ ID NO:1627, SEQ ID NO:1629, SEQ ID NO:1632, SEQ ID
NO:1635, SEQ ID NO:1636, SEQ ID NO:1637, SEQ ID NO:1639,
1065 SEQ ID NO:1640, SEQ ID NO:1643, SEQ ID NO:1646, SEQ
IDNO:1649, SEQ ID NO:1652, SEQ ID NO:1655, SEQ ID NO:
1658, SEQ ID NO:1660, SEQ ID NO:1662, SEQ ID NO:1664,
SEQ ID NO:1666, SEQ ID NO:1668, SEQ ID NO:1669, SEQ ID
NO:1670, SEQ ID NO:1672, SEQ ID NO:1673, SEQ ID NO:1675,
1070 SEQ ID NO:1677, SEQ ID NO:1680, SEQ ID NO:1682, SEQID
NO:1683, SEQ ID NO:1685, SEQ ID NO:1688, SEQ ID NO:1690,
SEQ ID NO:1691, SEQ ID NO:1694, SEQ ID NO:1696, SEQ ID
NO:1699, SEQ ID NO:1700, SEQ ID NO:1701, SEQ ID NO:1704,
SEQ ID NO:1705, SEQ ID NO:1706, SEQ ID NO:1707, SEQ ID
1075 NO:1708, SEQ ID NO:1709, SEQ ID NO:1710, SEQID NO:1711,
SEQ ID NO:1712, SEQ ID NO:1713, SEQ ID NO:1715, SEQ
IDNO:1716, SEQ ID NO:1717, SEQ ID NO:1718,, SEQ ID NO:
1719, SEQ ID NO:1720, SEQ ID NO:1721, SEQ ID NO:1722,
SEQ ID NO:1723, SEQ ID NO:1724, SEQ ID NO:1725, SEQ ID
1080 NO:1726, SEQ ID NO:1727, SEQ ID NO:1728, SEQ ID NO:1729,
SEQ ID NO:1730, SEQ ID NO:1731, SEQ ID NO:1732, SEQID
NO:1733, SEQ ID NO:1734, SEQ ID NO:1735, SEQ ID NO:1736,
SEQ ID NO:1737, SEQ ID NO:1738, SEQ ID NO:1739, SEQ ID
NO:1740, SEQ ID NO:1741, SEQ ID NO:1742, SEQ ID NO:1743,
1085 SEQ ID NO:1744, SEQ ID NO:1745, SEQ ID NO:1746, SEQ ID
NO:1747, SEQ ID NO:1748, SEQ ID NO:1749, SEQID NO:1750,
SEQ ID NO:1751, SEQ ID NO:1752, SEQ ID NO:1753, SEQ
IDNO:1754, SEQ ID NO:1755, SEQ ID NO:1756, SEQ ID NO:

Appendix B: Hideo *et al.* Full Translation

1757, SEQ ID NO:1758, SEQ ID NO:1759, SEQ ID NO:1760,
1090 SEQ ID NO:1761, SEQ ID NO:1762, SEQ ID NO:1763, SEQ ID
NO:1764, SEQ ID NO:1765, SEQ ID NO:1766, SEQ ID NO:1767,
SEQ ID NO:1768, SEQ ID NO:1769, SEQ ID NO:1770, SEQ
IDNO:1771, SEQ ID NO:1772, SEQ ID NO:1773, SEQ ID NO:
1774, SEQ ID NO:1775, SEQ ID NO:1776, SEQ ID NO:1777,
1095 SEQ ID NO:1778, SEQ ID NO:1779, SEQ ID NO:1780, SEQ ID
NO:1781, SEQ ID NO:1782, SEQ ID NO:1783,SEQ ID NO:1784,
SEQ ID NO:1785, SEQ ID NO:1786, SEQ ID NO:1787, SEQID
NO:1788, SEQ ID NO:1789, SEQ ID NO:1790, SEQ ID NO:1791,
SEQ ID NO:1792, SEQ ID NO:1793, SEQ ID NO:1794, SEQ ID
1100 NO:1795, SEQ ID NO:1796, SEQ ID NO:1797, SEQ ID NO:1798,
SEQ ID NO:1799, SEQ ID NO:1800,SEQ ID NO:1801, SEQ ID
NO:1802, SEQ ID NO:1803, SEQ ID NO:1804, SEQID NO:1805,
SEQ ID NO:1806, SEQ ID NO:1807, SEQ ID NO:1808, SEQ
IDNO:1809, SEQ ID NO:1810, SEQ ID NO:1811, SEQ ID NO:
1105 1812, SEQ ID NO:1813, SEQ ID NO:1814, SEQ ID NO:1815,
SEQ ID NO:1816, SEQ ID NO:1817, SEQ ID NO:1818, SEQ ID
NO:1819, SEQ ID NO:1820, SEQ ID NO:1821, SEQ ID NO:1822,
SEQ ID NO:1823, SEQ ID NO:1824, SEQ ID NO:1825, SEQ
IDNO:1826, SEQ ID NO:1827, SEQ ID NO:1828, SEQ ID NO:
1110 1829, SEQ ID NO:1830, SEQ ID NO:1831, SEQ ID NO:1832,
SEQ ID NO:1833, SEQ ID NO:1834, SEQ ID NO:1835, SEQ ID
NO:1836, SEQ ID NO:1837, SEQ ID NO:1838,SEQ ID NO:1839,
SEQ ID NO:1840, SEQ ID NO:1841, SEQ ID NO:1842, SEQID
NO:1843, SEQ ID NO:1844, SEQ ID NO:1845, SEQ ID NO:1846,
1115 SEQ ID NO:1847, SEQ ID NO:1848, SEQ ID NO:1849, SEQ ID
NO:1850, SEQ ID NO:1851, SEQ ID NO:1852, SEQ ID NO:1853,
SEQ ID NO:1854, SEQ ID NO:1855,SEQ ID NO:1856, SEQ ID
NO:1857, SEQ ID NO:1858, SEQ ID NO:1859, SEQID NO:1860,
SEQ ID NO:1861, SEQ ID NO:1862, SEQ ID NO:1863, SEQ
1120 IDNO:1864, SEQ ID NO:1865, and SEQ ID NO:1866
,and/or (b) a complementary nucleotide sequence to
the nucleic-acid sequence set forth in (a).

Appendix B: Hideo *et al.* Full Translation

11. Use of the oligonucleotide or polynucleotide of claim 10 as a probe for hybridization or a primer for PCR.
- 1125 12. An use of the oligonucleotide or polynucleotide of claim 11 for detection or diagnosis of O-157 infection.
13. A vaccine composition comprising the nucleic-acid molecule of claim 1 or its fragment, or the oligonucleotide or polynucleotide of claim 10 and a pharmaceutically acceptable carrier.
- 1130 14. A vaccine composition comprising the polypeptide of claim 4 or its fragment and a pharmaceutically acceptable carrier.
15. An antibody molecule specifically recognizing the polypeptide of claim 4.
- 1135 16. A DNA microarray or DNA chip including the nucleic-acid molecule of claim 1 and/or at least one of the oligonucleotide or polynucleotide of claim 10.
17. Use of the DNA microarray or DNA chip for deteciton of O-157 infection or classification of O-157.
- 1140 18. A method of screening a compound useful for prevention or therapy of O-157 infection and a symptom caused thereby, using the nucleic-acid molecule of claim 1 or fragment thereof, or the polypeptide of claim 4 or fragment thereof.

1145

DESCRIPTION

A nucleic-acid molecule and a polypeptide specific to
enterohemorrhagic
E. coli O-157:H7 and a method of using thereof

1150 [0001]

INDUSTRIAL APPLICABLE FIELDS

The present invention relates to a novel nucleic-acid molecule and a polypeptide specific to O-157:H7 as well as use thereof.

1155 [0002]

BACKGROUND ART

Although *E. coli* also inhabits large intestine of healthy human, most *E. coli* especially causes no disease. However a part of *E. coli* infects the intestine of human to cause food poisoning such as enterogastritis and diarrhea. These are referred to as pathogenic *E. coli* and classified mainly into the following 5 categories: Enterotoxigenic *Escherichia coli*: ETEC, Enteroinvasive *Escherichia coli*: EIEC, Enteropathogenic *Escherichia coli*: EPEC, Enterohemorrhagic *Escherichia coli*: EHEC, Enteroadherent *Escherichia coli* : EAEC

1160 [0003]

EHEC therein includes *E. coli* which cause, as a main symptom, severe abdominal pain, diarrhea and/or hematochezia, in especially a child and an aged person, a serious complication such as renal dysfunction and haemolytic uraemic syndrome (HUS) and, in some cases, lead a patient to death. A main pathogenic bacterium therein is O-157:H7 (hereinafter referred to as "O-157"). O-157 belongs to a serotype different from that of EPEC or enteroinvasive *E. coli* which has been reported. In addition, it has been reported as a pathogenic *E. coli* which produces no thermolabile enterotoxin (LT) and thermostable enterotoxin (ST) by Riley *et al.* (Riley LW, *et al.*, N. Engl. J. Med. 308 (1983), p.681-685). Furthermore, O-157 and EHEC

Appendix B: Hideo *et al.* Full Translation

are also referred to as Verotoxin-producing Escherichia coli
1180 (VTEC), since it has been revealed that extracellular toxin
produced by them is Verotoxin (VT).

[0004]

The verotoxin (VT) produced by EHEC (or VTEC) is identified as toxin which has potent cytotoxicity on Vero cells, African green monkey kidney cells. O'Brien et al. (J. Infect Dis. 146 (1982), p.763-769) reported that its toxicity was neutralized by an antibody to Shiga toxin produced by dysentery bacillus, and referred the toxin to as Shiga-like toxin. The verotoxin includes two major types (VT1 and VT2). Since 1190 the verotoxins are similar to Shiga toxin, they are also referred to as SLT1 (Shiga-Like Toxin 1) and SLT2 respectively. VT1 is identical to Shiga toxin, or different in 1 amino acid merely. VT2 has homology of approximately 56% at amino acid level to VT1 (Jackson M.P. et al., FEMS Microbial Lett. 44 (1987) p. 1195 109-114), whereas their antigenicity are little common. The verotoxin and the Shiga toxin has the same N-glycosidic activity as that of lysin which is a potent phytotoxin derived from a plant. Their effects and functions are for inhibiting linkage of an aminoacyl tRNA to a ribosome to inhibit protein 1200 synthesis by hydrolyzing an N-glycosidic linkage at an adenine in 28S ribosomal RNA constituting mammalian eukaryotic 60S ribosome, thereby resulting in cell death. Especially, the verotoxin cause damage to a vascular endothelial cell such as large intestine and a renal tubular cell 1205 to cause haemolytic uraemic syndrome and the like.

[0005]

As mentioned above, O-157 causes hemorrhagic colitis and sometimes complicates haemolytic uraemic syndrome or encephalopathy which expose patient's life to danger. Up to 1210 now, none of effective methods for inhibiting or preventing progression to haemolytic uraemic syndrome have been established. In addition, administration of an antibacterial

Appendix B: Hideo *et al.* Full Translation

agent such as antibiotic promote the extracellular release of VT, sometimes resulting in making the symptom worse. Therefore, 1215 definitive diagnosis of infection is important at early stage of the infection.

[0006]

Several methods are known as methods for diagnosis of the O·157 infection, i.e. the methods for distinguishing O·157 1220 from nonpathogenic or other pathogenic *E. coli*. One of them applies a feature that O·157:H7 is different from general *E. coli* and other known EPEC in the point that O·157:H7 produces no β -glucuronidase and ferments no sorbitol of saccharide, or do after some delay. This method has been used widely. However, 1225 these methods have the weak point of taking time and lacking rapidity. Further, although the presence of O·157 capable of degrading sorbitol is reported, these methods can not detect such bacterium. On the other hand, reversed passive latex aggregate reaction using an antibody to lipopolysaccharide 1230 antigen of O·157 or an antibody to the verotoxin is known. These methods can detect the bacterium producing VT rapidly and conveniently, but their detection sensitivity is not sufficient. Especially as to verotoxin, bacteria producing the toxin are not restricted to O·157, thus these methods have a 1235 task [should be solved] as methods for detecting O·157.

[0007]

Further, molecular biological methods, specifically, hybridization assay and PCR assay, are performed as the 1240 methods for detecting O·157. Especially, PCR is of extremely high detection sensitivity, high rapidity and high convenience, resulting in increasing use of it in recent years. Main target of PCT etc. is VT gene of VTEC such as O·157. However, as mentioned above, *E. coli* other than O·157 also has the VT gene, and furthermore, multiple mutants of VT gene are known, thus 1245 there is a task [should be solved] as definitive methods for diagnosis of O·157. Moreover, although pulsed-field gel

electrophoresis (PFGE) is use for detection of O-157, an apparatus required for performing this method is expensive, and the method requires long time for detection and
1250 considerably skilled technique. In addition, the number of strains which can be analysed at once is limited and comparison of data of O-157 at different institutions is not easy. Therefore, there is need for a method which is of rapid, convenient, high detection sensitivity, high confidence and ease of comparison
1255 and exchange of data between different institutions.

[0008]

On the other hand, although antibacterial agents considered to be effective to O-157, such as antibiotic, are known, the presence of drug-resistant bacteria has also been
1260 reported. In addition, as mentioned above, VT is released to extracellular space by administration of antibiotics, sometimes resulting in making the patient's symptom worse. Therefore, there is a requirement for development of a method different from the method for therapy of infectious disease caused by
1265 O-157 using these antibacterial agents, a method for therapy and/or prevention of the symptom caused by VT, and detailed genetic information of O-157 which may serve as a guidance thereto.

[0009]

PROBLEMS TO BE SOLVED BY THE INVENTION

Accordingly, the task of the present invention is providing a nucleic-acid molecule, a polypeptide, genetic information thereof and a method of using them which may be useful for detection and therapy of enterohemorrhagic pathogenic E. coli
1275 O-157:H7 infection.

[0010]

Means To Solve The Problem

We have found genetic information specific to O-157:H7 which is not present in other E. coli including nonpathogenic E.
1280 coli by analyzing whole genetic information of

enterohemorrhagic pathogenic *E. coli* O-157:H7 Sakai (RIMD 0509952). Therefore, the present invention relates to the genetic information specific to O-157:H7 and the use thereof. The genetic information includes, but not restricted to, a nucleotide sequence on genome, a gene, a polypeptide encoded thereby, an amino acid sequence thereof and the like.

[0011]

Therefore, the present invention relates to a nucleic-acid molecule specific to enterohemorrhagic pathogenic *E. coli* O-157:H7. In a preferred embodiment, the present invention relates to a nucleic-acid molecule having

(a) a nucleotide sequence selected from a group comprising the following SEQ IDs: SEQ ID NO:1, SEQ ID NO:132, SEQ ID NO:244, SEQ ID NO:337, SEQID NO:410, SEQ ID NO:484, SEQ ID NO:554, SEQ ID NO:630, SEQ ID NO:689, SEQ ID NO:755, SEQ ID NO:816, SEQ ID NO:876, SEQ ID NO:927, SEQID NO:978, SEQ ID NO:1013, SEQ ID NO:1029, SEQ ID NO:1055, SEQ ID NO:1060, SEQ ID NO:1093, SEQ ID NO:1128, SEQ ID NO:1157, SEQ ID NO:1191, SEQ ID NO:1212, SEQ ID NO:1240, SEQ ID NO:1258, SEQ ID NO:1274, SEQ ID NO:1288, SEQ ID NO:1302, SEQ ID NO:1309, SEQ ID NO:1321, SEQID NO:1329, SEQ ID NO:1338, SEQ ID NO:1348, SEQ ID NO:1359, SEQ ID NO:1366, SEQ ID NO:1374, SEQ ID NO:1380, SEQ ID NO:1386, SEQ ID NO:1394, SEQ ID NO:1401, SEQ ID NO:1408, SEQ ID NO:1411, SEQ ID NO:1418, SEQ ID NO:1426, SEQ ID NO:1436, SEQ ID NO:1443, SEQ ID NO:1450, SEQID NO:1457, SEQ ID NO:1460, SEQ ID NO:1467, SEQ ID NO:1471, SEQ ID NO:1473, SEQ ID NO:1478, SEQ ID NO:1487, SEQ ID NO:1489, SEQ ID NO:1494, SEQ ID NO:1499, SEQ ID NO:1501, SEQ ID NO:1506, SEQ ID NO:1508, SEQ ID NO:1510, SEQ ID NO:1511, SEQ ID NO:1516, SEQ ID NO:1520, SEQ ID NO:1526, SEQ ID NO:1532, SEQ ID NO:1537, SEQ ID NO:1540, SEQ ID NO:1545, SEQ ID NO:1547, SEQ ID NO:1549, SEQ ID NO:1551, SEQ ID NO:1553, SEQ ID NO:1555, SEQ ID NO:1558,

Appendix B: Hideo *et al.* Full Translation

1315 SEQ ID NO:1563, SEQ ID NO:1566, SEQ ID NO:1569, SEQ ID
NO:1571, SEQ ID NO:1576, SEQ ID NO:1580,SEQ ID NO:1584,
SEQ ID NO:1587, SEQ ID NO:1591, SEQ ID NO:1594, SEQID
NO:1596, SEQ ID NO:1599, SEQ ID NO:1601, SEQ ID NO:1603,
SEQ ID NO:1604, SEQ ID NO:1605, SEQ ID NO:1607, SEQ ID
NO:1612, SEQ ID NO:1615, SEQ ID NO:1617, SEQ ID NO:1619,
SEQ ID NO:1622, SEQ ID NO:1624,SEQ ID NO:1626, SEQ ID
NO:1627, SEQ ID NO:1629, SEQ ID NO:1632, SEQID NO:1635,
SEQ ID NO:1636, SEQ ID NO:1637, SEQ ID NO:1639, SEQ
IDNO:1640, SEQ ID NO:1643, SEQ ID NO:1646, SEQ ID NO:
1320 1649, SEQ ID NO:1652, SEQ ID NO:1655, SEQ ID NO:1658,
SEQ ID NO:1660, SEQ ID NO:1662, SEQ ID NO:1664, SEQ ID
NO:1666, SEQ ID NO:1668, SEQ ID NO:1669, SEQ ID NO:1670,
SEQ ID NO:1672, SEQ ID NO:1673, SEQ ID NO:1675, SEQ
IDNO:1677, SEQ ID NO:1680, SEQ ID NO:1682, SEQ ID NO:
1325 1683, SEQ ID NO:1685, SEQ ID NO:1688, SEQ ID NO:1690,
SEQ ID NO:1691, SEQ ID NO:1694, SEQ ID NO:1696, SEQ ID
NO:1699, SEQ ID NO:1700, SEQ ID NO:1701,SEQ ID NO:1704,
SEQ ID NO:1705, SEQ ID NO:1706, SEQ ID NO:1707, SEQID
NO:1708, SEQ ID NO:1709, SEQ ID NO:1710, SEQ ID NO:1711,
1330 1712, SEQ ID NO:1713, SEQ ID NO:1715, SEQ ID
NO:1716, SEQ ID NO:1717, SEQ ID NO:1718,, SEQ ID NO:
1719, SEQ ID NO:1720, SEQ ID NO:1721, SEQ ID NO:1722,
SEQ ID NO:1723, SEQ ID NO:1724, SEQ ID NO:1725, SEQ ID
NO:1726, SEQ ID NO:1727, SEQ ID NO:1728, SEQ ID NO:1729,
1335 1730, SEQ ID NO:1731, SEQ ID NO:1732, SEQ ID
NO:1733, SEQ ID NO:1734, SEQ ID NO:1735, SEQ ID NO:1736,
SEQ ID NO:1737, SEQ ID NO:1738, SEQ ID NO:1739, SEQ ID
NO:1740, SEQ ID NO:1741, SEQ ID NO:1742,SEQ ID NO:1743,
SEQ ID NO:1744, SEQ ID NO:1745, SEQ ID NO:1746, SEQID
NO:1747, SEQ ID NO:1748, SEQ ID NO:1749, SEQ ID NO:1750,
1340 1751, SEQ ID NO:1752, SEQ ID NO:1753, SEQ ID
NO:1754, SEQ ID NO:1755, SEQ ID NO:1756, SEQ ID NO:1757,
SEQ ID NO:1758, SEQ ID NO:1759,SEQ ID NO:1760, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO:1761, SEQ ID NO:1762, SEQ ID NO:1763, SEQID NO:1764,
1350 SEQ ID NO:1765, SEQ ID NO:1766, SEQ ID NO:1767, SEQ
IDNO:1768, SEQ ID NO:1769, SEQ ID NO:1770, SEQ ID NO:
1771, SEQ ID NO:1772, SEQ ID NO:1773, SEQ ID NO:1774,
SEQ ID NO:1775, SEQ ID NO:1776, SEQ ID NO:1777, SEQ ID
NO:1778, SEQ ID NO:1779, SEQ ID NO:1780, SEQ ID NO:1781,
1355 SEQ ID NO:1782, SEQ ID NO:1783, SEQ ID NO:1784, SEQ
IDNO:1785, SEQ ID NO:1786, SEQ ID NO:1787, SEQ ID NO:
1788, SEQ ID NO:1789, SEQ ID NO:1790, SEQ ID NO:1791,
SEQ ID NO:1792, SEQ ID NO:1793, SEQ ID NO:1794, SEQ ID
NO:1795, SEQ ID NO:1796, SEQ ID NO:1797,SEQ ID NO:1798,
1360 SEQ ID NO:1799, SEQ ID NO:1800, SEQ ID NO:1801, SEQID
NO:1802, SEQ ID NO:1803, SEQ ID NO:1804, SEQ ID NO:1805,
SEQ ID NO:1806, SEQ ID NO:1807, SEQ ID NO:1808, SEQ ID
NO:1809, SEQ ID NO:1810, SEQ ID NO:1811, SEQ ID NO:1812,
SEQ ID NO:1813, SEQ ID NO:1814,SEQ ID NO:1815, SEQ ID
1365 NO:1816, SEQ ID NO:1817, SEQ ID NO:1818, SEQID NO:1819,
SEQ ID NO:1820, SEQ ID NO:1821, SEQ ID NO:1822, SEQ
IDNO:1823, SEQ ID NO:1824, SEQ ID NO:1825, SEQ ID NO:
1826, SEQ ID NO:1827, SEQ ID NO:1828, SEQ ID NO:1829,
SEQ ID NO:1830, SEQ ID NO:1831, SEQ ID NO:1832, SEQ ID
1370 NO:1833, SEQ ID NO:1834, SEQ ID NO:1835, SEQ ID NO:1836,
SEQ ID NO:1837, SEQ ID NO:1838, SEQ ID NO:1839, SEQ
IDNO:1840, SEQ ID NO:1841, SEQ ID NO:1842, SEQ ID NO:
1843, SEQ ID NO:1844, SEQ ID NO:1845, SEQ ID NO:1846,
SEQ ID NO:1847, SEQ ID NO:1848, SEQ ID NO:1849, SEQ ID
1375 NO:1850, SEQ ID NO:1851, SEQ ID NO:1852,SEQ ID NO:1853,
SEQ ID NO:1854, SEQ ID NO:1855, SEQ ID NO:1856, SEQID
NO:1857, SEQ ID NO:1858, SEQ ID NO:1859, SEQ ID NO:1860,
SEQ ID NO:1861, SEQ ID NO:1862, SEQ ID NO:1863, SEQ ID
NO:1864, SEQ ID NO:1865, and SEQ ID NO:1866
1380 (b) a partial sequence in the nucleotide sequences set
forth in (a);
 (c) a complementary nucleotide sequence to the

Appendix B: Hideo *et al.* Full Translation

nucleotide sequence set forth in (a) or (b); or

1385 (d) a nucleotide sequence hybridizing to the nucleotide sequences set forth in (a), (b) or (c) under a stringent condition.

These nucleic-acid molecules of the present invention include a large number of O-157 specific genes, [wherein] the genes encode proteins or polypeptides specific to O-157.

[0012]

1390 Accordingly, the present invention relates to a nucleic-acid molecule which is a nucleic-acid molecule encoding a polypeptide specific to enterohemorrhagic pathogenic E. coli O-157:H7 and encodes

(a) an amino acid sequence selected from a group comprising the following SEQ IDs or a fragment thereof, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25,SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49,SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73,SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID
NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID
NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID
1420 NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ
ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105,
SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:
109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID
NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116,
1425 SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:
120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID
NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127,
SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:
131, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID
1430 NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139,
SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:
143, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID
NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150,
SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:
1435 154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID
NO:158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161,
SEQ ID NO:162, SEQ ID NO:163, SEQ ID NO:164, SEQ ID NO:
165, SEQ ID NO:166, SEQ ID NO:167, SEQ ID NO:168, SEQ ID
NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172,
1440 SEQ ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:
176, SEQ ID NO:177, SEQ ID NO:178, SEQ ID NO:179, SEQ ID
NO:180, SEQ ID NO:181, SEQ ID NO:182, SEQ ID NO:183,
SEQ ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:
187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID
1445 NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194,
SEQ ID NO:195, SEQ ID NO:196, SEQ ID NO:197, SEQ ID NO:
198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID
NO:202, SEQ ID NO:203, SEQ ID NO:204, SEQ ID NO:205,
SEQ ID NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:
1450 209, SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO:213, SEQ ID NO:214, SEQ ID NO:215, SEQ ID NO:216,
SEQ ID NO:217, SEQ ID NO:218, SEQ ID NO:219, SEQ ID NO:
220, SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID
NO:224, SEQ ID NO:225, SEQ ID NO:226, SEQ ID NO:227,
1455 SEQ ID NO:228, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:
231, SEQ ID NO:232, SEQ ID NO:233, SEQ ID NO:234, SEQ ID
NO:235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:238,
SEQ ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:
242, SEQ ID NO:243, SEQ ID NO:245, SEQ ID NO:246, SEQ ID
1460 NO:247, SEQ ID NO:248, SEQ ID NO:249, SEQ ID NO:250,
SEQ ID NO:251, SEQ ID NO:252, SEQ ID NO:253, SEQ ID NO:
254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID
NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261,
SEQ ID NO:262, SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:
1465 265, SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:268, SEQ ID
NO:269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272,
SEQ ID NO:273, SEQ ID NO:274, SEQ ID NO:275, SEQ ID NO:
276, SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:279, SEQ ID
NO:280, SEQ ID NO:281, SEQ ID NO:282, SEQ ID NO:283,
1470 SEQ ID NO:284, SEQ ID NO:285, SEQ ID NO:286, SEQ ID NO:
287, SEQ ID NO:288, SEQ ID NO:289, SEQ ID NO:290, SEQ ID
NO:291, SEQ ID NO:292, SEQ ID NO:293, SEQ ID NO:294,
SEQ ID NO:295, SEQ ID NO:296, SEQ ID NO:297, SEQ ID NO:
298, SEQ ID NO:299, SEQ ID NO:300, SEQ ID NO:301, SEQ ID
1475 NO:302, SEQ ID NO:303, SEQ ID NO:304, SEQ ID NO:305,
SEQ ID NO:306, SEQ ID NO:307, SEQ ID NO:308, SEQ ID NO:
309, SEQ ID NO:310, SEQ ID NO:311, SEQ ID NO:312, SEQ ID
NO:313, SEQ ID NO:314, SEQ ID NO:315, SEQ ID NO:316,
SEQ ID NO:317, SEQ ID NO:318, SEQ ID NO:319, SEQ ID NO:
1480 320, SEQ ID NO:321, SEQ ID NO:322, SEQ ID NO:323, SEQ ID
NO:324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327,
SEQ ID NO:328, SEQ ID NO:329, SEQ ID NO:330, SEQ ID NO:
331, SEQ ID NO:332, SEQ ID NO:333, SEQ ID NO:334, SEQ ID
NO:335, SEQ ID NO:336, SEQ ID NO:338, SEQ ID NO:339,

Appendix B: Hideo *et al.* Full Translation

1485 SEQ ID NO:340, SEQ ID NO:341, SEQ ID NO:342, SEQ ID NO:
343, SEQ ID NO:344, SEQ ID NO:345, SEQ ID NO:346, SEQ ID
NO:347, SEQ ID NO:348, SEQ ID NO:349, SEQ ID NO:350,
SEQ ID NO:351, SEQ ID NO:352, SEQ ID NO:353, SEQ ID NO:
354, SEQ ID NO:355, SEQ ID NO:356, SEQ ID NO:357, SEQ ID
1490 NO:358, SEQ ID NO:359, SEQ ID NO:360, SEQ ID NO:361,
SEQ ID NO:362, SEQ ID NO:363, SEQ ID NO:364, SEQ ID NO:
365, SEQ ID NO:366, SEQ ID NO:367, SEQ ID NO:368, SEQ ID
NO:369, SEQ ID NO:370, SEQ ID NO:371, SEQ ID NO:372,
SEQ ID NO:373, SEQ ID NO:374, SEQ ID NO:375, SEQ ID NO:
1495 376, SEQ ID NO:377, SEQ ID NO:378, SEQ ID NO:379, SEQ ID
NO:380, SEQ ID NO:381, SEQ ID NO:382, SEQ ID NO:383,
SEQ ID NO:384, SEQ ID NO:385, SEQ ID NO:386, SEQ ID NO:
387, SEQ ID NO:388, SEQ ID NO:389, SEQ ID NO:390, SEQ ID
NO:391, SEQ ID NO:392, SEQ ID NO:393, SEQ ID NO:394,
1500 SEQ ID NO:395, SEQ ID NO:396, SEQ ID NO:397, SEQ ID NO:
398, SEQ ID NO:399, SEQ ID NO:400, SEQ ID NO:401, SEQ ID
NO:402, SEQ ID NO:403, SEQ ID NO:404, SEQ ID NO:405,
SEQ ID NO:406, SEQ ID NO:407, SEQ ID NO:408, SEQ ID NO:
409, SEQ ID NO:411, SEQ ID NO:412, SEQ ID NO:413, SEQ ID
1505 NO:414, SEQ ID NO:415, SEQ ID NO:416, SEQ ID NO:417,
SEQ ID NO:418, SEQ ID NO:419, SEQ ID NO:420, SEQ ID NO:
421, SEQ ID NO:422, SEQ ID NO:423, SEQ ID NO:424, SEQ ID
NO:425, SEQ ID NO:426, SEQ ID NO:427, SEQ ID NO:428,
SEQ ID NO:429, SEQ ID NO:430, SEQ ID NO:431, SEQ ID NO:
1510 432, SEQ ID NO:433, SEQ ID NO:434, SEQ ID NO:435, SEQ
ID NO:436, SEQ ID NO:437, SEQ ID NO:438, SEQ ID NO:439,
SEQ ID NO:440, SEQ ID NO:441, SEQ ID NO:442, SEQ ID NO:
443, SEQ ID NO:444, SEQ ID NO:445, SEQ ID NO:446, SEQ ID
NO:447, SEQ ID NO:448, SEQ ID NO:449, SEQ ID NO:450,
1515 SEQ ID NO:451, SEQ ID NO:452, SEQ ID NO:453, SEQ ID NO:
454, SEQ ID NO:455, SEQ ID NO:456, SEQ ID NO:457, SEQ ID
NO:458, SEQ ID NO:459, SEQ ID NO:460, SEQ ID NO:461,
SEQ ID NO:462, SEQ ID NO:463, SEQ ID NO:464, SEQ ID NO:

Appendix B: Hideo *et al.* Full Translation

465, SEQ ID NO:466, SEQ ID NO:467, SEQ ID NO:468, SEQ ID
1520 NO:469, SEQ ID NO:470, SEQ ID NO:471, SEQ ID NO:472,
SEQ ID NO:473, SEQ ID NO:474, SEQ ID NO:475, SEQ ID NO:
476, SEQ ID NO:477, SEQ ID NO:478, SEQ ID NO:479, SEQ ID
NO:480, SEQ ID NO:481, SEQ ID NO:482, SEQ ID NO:483,
SEQ ID NO:485, SEQ ID NO:486, SEQ ID NO:487, SEQ ID NO:
1525 488, SEQ ID NO:489, SEQ ID NO:490, SEQ ID NO:491, SEQ ID
NO:492, SEQ ID NO:493, SEQ ID NO:494, SEQ ID NO:495,
SEQ ID NO:496, SEQ ID NO:497, SEQ ID NO:498, SEQ ID NO:
499, SEQ ID NO:500, SEQ ID NO:501, SEQ ID NO:502, SEQ ID
NO:503, SEQ ID NO:504, SEQ ID NO:505, SEQ ID NO:506,
1530 SEQ ID NO:507, SEQ ID NO:508, SEQ ID NO:509, SEQ ID NO:
510, SEQ ID NO:511, SEQ ID NO:512, SEQ ID NO:513, SEQ ID
NO:514, SEQ ID NO:515, SEQ ID NO:516, SEQ ID NO:517,
SEQ ID NO:518, SEQ ID NO:519, SEQ ID NO:520, SEQ ID NO:
521, SEQ ID NO:522, SEQ ID NO:523, SEQ ID NO:524, SEQ ID
1535 NO:525, SEQ ID NO:526, SEQ ID NO:527, SEQ ID NO:528,
SEQ ID NO:529, SEQ ID NO:530, SEQ ID NO:531, SEQ ID NO:
532, SEQ ID NO:533, SEQ ID NO:534, SEQ ID NO:535, SEQ ID
NO:536, SEQ ID NO:537, SEQ ID NO:538, SEQ ID NO:539,
SEQ ID NO:540, SEQ ID NO:541, SEQ ID NO:542, SEQ ID NO:
1540 543, SEQ ID NO:544, SEQ ID NO:545, SEQ ID NO:546, SEQ ID
NO:547, SEQ ID NO:548, SEQ ID NO:549, SEQ ID NO:550,
SEQ ID NO:551, SEQ ID NO:552, SEQ ID NO:553, SEQ ID NO:
555, SEQ ID NO:556, SEQ ID NO:557, SEQ ID NO:558, SEQ ID
NO:559, SEQ ID NO:560, SEQ ID NO:561, SEQ ID NO:562,
1545 SEQ ID NO:563, SEQ ID NO:564, SEQ ID NO:565, SEQ ID NO:
566, SEQ ID NO:567, SEQ ID NO:568, SEQ ID NO:569, SEQ ID
NO:570, SEQ ID NO:571, SEQ ID NO:572, SEQ ID NO:573,
SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:
577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID
1550 NO:581, SEQ ID NO:582, SEQ ID NO:583, SEQ ID NO:584,
SEQ ID NO:585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:
588, SEQ ID NO:589, SEQ ID NO:590, SEQ ID NO:591, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO:592, SEQ ID NO:593, SEQ ID NO:594, SEQ ID NO:595,
SEQ ID NO:596, SEQ ID NO:597, SEQ ID NO:598, SEQ ID NO:
1555 599, SEQ ID NO:600, SEQ ID NO:601, SEQ ID NO:602, SEQ ID
NO:603, SEQ ID NO:604, SEQ ID NO:605, SEQ ID NO:606,
SEQ ID NO:607, SEQ ID NO:608, SEQ ID NO:609, SEQ ID NO:
610, SEQ ID NO:611, SEQ ID NO:612, SEQ ID NO:613, SEQ ID
NO:614, SEQ ID NO:615, SEQ ID NO:616, SEQ ID NO:617,
1560 SEQ ID NO:618, SEQ ID NO:619, SEQ ID NO:620, SEQ ID NO:
621, SEQ ID NO:622, SEQ ID NO:623, SEQ ID NO:624, SEQ ID
NO:625, SEQ ID NO:626, SEQ ID NO:627, SEQ ID NO:628,
SEQ ID NO:629, SEQ ID NO:631, SEQ ID NO:632, SEQ ID NO:
633, SEQ ID NO:634, SEQ ID NO:635, SEQ ID NO:636, SEQ ID
1565 NO:637, SEQ ID NO:638, SEQ ID NO:639, SEQ ID NO:640,
SEQ ID NO:641, SEQ ID NO:642, SEQ ID NO:643, SEQ ID NO:
644, SEQ ID NO:645, SEQ ID NO:646, SEQ ID NO:647, SEQ ID
NO:648, SEQ ID NO:649, SEQ ID NO:650, SEQ ID NO:651,
SEQ ID NO:652, SEQ ID NO:653, SEQ ID NO:654, SEQ ID NO:
1570 655, SEQ ID NO:656, SEQ ID NO:657, SEQ ID NO:658, SEQ ID
NO:659, SEQ ID NO:660, SEQ ID NO:661, SEQ ID NO:662,
SEQ ID NO:663, SEQ ID NO:664, SEQ ID NO:665, SEQ ID NO:
666, SEQ ID NO:667, SEQ ID NO:668, SEQ ID NO:669, SEQ ID
NO:670, SEQ ID NO:671, SEQ ID NO:672, SEQ ID NO:673,
1575 SEQ ID NO:674, SEQ ID NO:675, SEQ ID NO:676, SEQ ID NO:
677, SEQ ID NO:678, SEQ ID NO:679, SEQ ID NO:680, SEQ ID
NO:681, SEQ ID NO:682, SEQ ID NO:683, SEQ ID NO:684,
SEQ ID NO:685, SEQ ID NO:686, SEQ ID NO:687, SEQ ID NO:
688, SEQ ID NO:690, SEQ ID NO:691, SEQ ID NO:692, SEQ ID
1580 NO:693, SEQ ID NO:694, SEQ ID NO:695, SEQ ID NO:696,
SEQ ID NO:697, SEQ ID NO:698, SEQ ID NO:699, SEQ ID N
O:700, SEQ ID NO:701, SEQ ID NO:702, SEQ ID NO:703, SEQ
ID NO:704, SEQ ID NO:705, SEQ ID NO:706, SEQ ID NO:707,
SEQ ID NO:708, SEQ ID NO:709, SEQ ID NO:710, SEQ ID NO:
1585 711, SEQ ID NO:712, SEQ ID NO:713, SEQ ID NO:714, SEQ ID
NO:715, SEQ ID NO:716, SEQ ID NO:717, SEQ ID NO:718,

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO:719, SEQ ID NO:720, SEQ ID NO:721, SEQ ID NO:
722, SEQ ID NO:723, SEQ ID NO:724, SEQ ID NO:725, SEQ ID
NO:726, SEQ ID NO:727, SEQ ID NO:728, SEQ ID NO:729,
1590 SEQ ID NO:730, SEQ ID NO:731, SEQ ID NO:732, SEQ ID NO:
733, SEQ ID NO:734, SEQ ID NO:735, SEQ ID NO:736, SEQ ID
NO:737, SEQ ID NO:738, SEQ ID NO:739, SEQ ID NO:740,
SEQ ID NO:741, SEQ ID NO:742, SEQ ID NO:743, SEQ ID NO:
744, SEQ ID NO:745, SEQ ID NO:746, SEQ ID NO:747, SEQ ID
1595 NO:748, SEQ ID NO:749, SEQ ID NO:750, SEQ ID NO:751,
SEQ ID NO:752, SEQ ID NO:753, SEQ ID NO:754, SEQ ID NO:
756, SEQ ID NO:757, SEQ ID NO:758, SEQ ID NO:759, SEQ ID
NO:760, SEQ ID NO:761, SEQ ID NO:762, SEQ ID NO:763,
SEQ ID NO:764, SEQ ID NO:765, SEQ ID NO:766, SEQ ID NO:
1600 767, SEQ ID NO:768, SEQ ID NO:769, SEQ ID NO:770, SEQ ID
NO:771, SEQ ID NO:772, SEQ ID NO:773, SEQ ID NO:774,
SEQ ID NO:775, SEQ ID NO:776, SEQ ID NO:777, SEQ ID NO:
778, SEQ ID NO:779, SEQ ID NO:780, SEQ ID NO:781, SEQ ID
NO:782, SEQ ID NO:783, SEQ ID NO:784, SEQ ID NO:785,
1605 SEQ ID NO:786, SEQ ID NO:787, SEQ ID NO:788, SEQ ID NO:
789, SEQ ID NO:790, SEQ ID NO:791, SEQ ID NO:792, SEQ ID
NO:793, SEQ ID NO:794, SEQ ID NO:795, SEQ ID NO:796,
SEQ ID NO:797, SEQ ID NO:798, SEQ ID NO:799, SEQ ID NO:
800, SEQ ID NO:801, SEQ ID NO:802, SEQ ID NO:803, SEQ ID
1610 NO:804, SEQ ID NO:805, SEQ ID NO:806, SEQ ID NO:807,
SEQ ID NO:808, SEQ ID NO:809, SEQ ID NO:810, SEQ ID NO:
811, SEQ ID NO:812, SEQ ID NO:813, SEQ ID NO:814, SEQ ID
NO:815, SEQ ID NO:817, SEQ ID NO:818, SEQ ID NO:819,
SEQ ID NO:820, SEQ ID NO:821, SEQ ID NO:822, SEQ ID NO:
1615 823, SEQ ID NO:824, SEQ ID NO:825, SEQ ID NO:826, SEQ ID
NO:827, SEQ ID NO:828, SEQ ID NO:829, SEQ ID NO:830,
SEQ ID NO:831, SEQ ID NO:832, SEQ ID NO:833, SEQ ID NO:
834, SEQ ID NO:835, SEQ ID NO:836, SEQ ID NO:837, SEQ ID
NO:838, SEQ ID NO:839, SEQ ID NO:840, SEQ ID NO:841,
1620 SEQ ID NO:842, SEQ ID NO:843, SEQ ID NO:844, SEQ ID NO:

Appendix B: Hideo *et al.* Full Translation

845, SEQ ID NO:846, SEQ ID NO:847, SEQ ID NO:848, SEQ ID
NO:849, SEQ ID NO:850, SEQ ID NO:851, SEQ ID NO:852,
SEQ ID NO:853, SEQ ID NO:854, SEQ ID NO:855, SEQ ID NO:
856, SEQ ID NO:857, SEQ ID NO:858, SEQ ID NO:859, SEQ ID
1625 NO:860, SEQ ID NO:861, SEQ ID NO:862, SEQ ID NO:863,
SEQ ID NO:864, SEQ ID NO:865, SEQ ID NO:866, SEQ ID NO:
867, SEQ ID NO:868, SEQ ID NO:869, SEQ ID NO:870, SEQ ID
NO:871, SEQ ID NO:872, SEQ ID NO:873, SEQ ID NO:874,
SEQ ID NO:875, SEQ ID NO:877, SEQ ID NO:878, SEQ ID NO:
1630 879, SEQ ID NO:880, SEQ ID NO:881, SEQ ID NO:882, SEQ ID
NO:883, SEQ ID NO:884, SEQ ID NO:885, SEQ ID NO:886,
SEQ ID NO:887, SEQ ID NO:888, SEQ ID NO:889, SEQ ID NO:
890, SEQ ID NO:891, SEQ ID NO:892, SEQ ID NO:893, SEQ ID
NO:894, SEQ ID NO:895, SEQ ID NO:896, SEQ ID NO:897,
1635 SEQ ID NO:898, SEQ ID NO:899, SEQ ID NO:900, SEQ ID NO:
901, SEQ ID NO:902, SEQ ID NO:903, SEQ ID NO:904, SEQ ID
NO:905, SEQ ID NO:906, SEQ ID NO:907, SEQ ID NO:908,
SEQ ID NO:909, SEQ ID NO:910, SEQ ID NO:911, SEQ ID NO:
912, SEQ ID NO:913, SEQ ID NO:914, SEQ ID NO:915, SEQ ID
1640 NO:916, SEQ ID NO:917, SEQ ID NO:918, SEQ ID NO:919,
SEQ ID NO:920, SEQ ID NO:921, SEQ ID NO:922, SEQ ID NO:
923, SEQ ID NO:924, SEQ ID NO:925, SEQ ID NO:926, SEQ ID
NO:928, SEQ ID NO:929, SEQ ID NO:930, SEQ ID NO:931,
SEQ ID NO:932, SEQ ID NO:933, SEQ ID NO:934, SEQ ID NO:
1645 935, SEQ ID NO:936, SEQ ID NO:937, SEQ ID NO:938, SEQ ID
NO:939, SEQ ID NO:940, SEQ ID NO:941, SEQ ID NO:942,
SEQ ID NO:943, SEQ ID NO:944, SEQ ID NO:945, SEQ ID NO:
946, SEQ ID NO:947, SEQ ID NO:948, SEQ ID NO:949, SEQ ID
NO:950, SEQ ID NO:951, SEQ ID NO:952, SEQ ID NO:953,
1650 SEQ ID NO:954, SEQ ID NO:955, SEQ ID NO:956, SEQ ID NO:
957, SEQ ID NO:958, SEQ ID NO:959, SEQ ID NO:960, SEQ ID
NO:961, SEQ ID NO:962, SEQ ID NO:963, SEQ ID NO:964, SE
Q ID NO:965, SEQ ID NO:966, SEQ ID NO:967, SEQ ID NO:
968, SEQ ID NO:969, SEQ ID NO:970, SEQ ID NO:971, SEQ ID

Appendix B: Hideo *et al.* Full Translation

1655 NO:972, SEQ ID NO:973, SEQ ID NO:974, SEQ ID NO:975,
SEQ ID NO:976, SEQ ID NO:977, SEQ ID NO:979, SEQ ID NO:
980, SEQ ID NO:981, SEQ ID NO:982, SEQ ID NO:983, SEQ ID
NO:984, SEQ ID NO:985, SEQ ID NO:986, SEQ ID NO:987,
SEQ ID NO:988, SEQ ID NO:989, SEQ ID NO:990, SEQ ID NO:
1660 991, SEQ ID NO:992, SEQ ID NO:993, SEQ ID NO:994, SEQ ID
NO:995, SEQ ID NO:996, SEQ ID NO:997, SEQ ID NO:998,
SEQ ID NO:999, SEQ ID NO:1000, SEQ ID NO:1001, SEQ ID
NO:1002, SEQ ID NO:1003, SEQ ID NO:1004, SEQ ID NO:1005,
SEQID NO:1006, SEQ ID NO:1007, SEQ ID NO:1008, SEQ ID
1665 NO:1009, SEQ ID NO:1010, SEQ ID NO:1011, SEQ ID NO:1012,
SEQ ID NO:1014, SEQ ID NO:1015, SEQ ID NO:1016, SEQ ID
NO:1017, SEQ ID NO:1018, SEQ ID NO:1019, SEQ ID NO:1020,
SEQ ID NO:1021, SEQ ID NO:1022, SEQ ID NO:1023, SEQ ID
NO:1024, SEQ ID NO:1025, SEQ ID NO:1026, SEQ ID NO:1027,
1670 SEQ ID NO:1028, SEQ ID NO:1030, SEQ ID NO:1031, SEQ ID
NO:1032, SEQ ID NO:1033, SEQ ID NO:1034, SEQ ID NO:1035,
SEQ ID NO:1036, SEQ ID NO:1037, SEQ ID NO:1038, SEQ ID
NO:1039, SEQ ID NO:1040, SEQ ID NO:1041, SEQ ID NO:1042,
SEQ ID NO:1043, SEQ ID NO:1044, SEQ ID NO:1045, SEQID
1675 NO:1046, SEQ ID NO:1047, SEQ ID NO:1048, SEQ ID NO:1049,
SEQ ID NO:1050, SEQ ID NO:1051, SEQ ID NO:1052, SEQ ID
NO:1053, SEQ ID NO:1054, SEQ ID NO:1056, SEQ ID NO:1057,
SEQ ID NO:1058, SEQ ID NO:1059, SEQ ID NO:1061, SEQ ID
NO:1062, SEQ ID NO:1063, SEQ ID NO:1064, SEQID NO:1065,
1680 SEQ ID NO:1066, SEQ ID NO:1067, SEQ ID NO:1068, SEQ
ID NO:1069, SEQ ID NO:1070, SEQ ID NO:1071, SEQ ID NO:
1072, SEQ ID NO:1073, SEQ ID NO:1074, SEQ ID NO:1075,
SEQ ID NO:1076, SEQ ID NO:1077, SEQ ID NO:1078, SEQ ID
NO:1079, SEQ ID NO:1080, SEQ ID NO:1081, SEQ ID NO:1082,
1685 SEQ ID NO:1083, SEQ ID NO:1084, SEQ ID NO:1085, SEQ
ID NO:1086, SEQ ID NO:1087, SEQ ID NO:1088, SEQ ID NO:
1089, SEQ ID NO:1090, SEQ ID NO:1091, SEQ ID NO:1092,
SEQ ID NO:1094, SEQ ID NO:1095, SEQ ID NO:1096, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO:1097, SEQ ID NO:1098, SEQ ID NO:1099,SEQ ID NO:1100,
1690 SEQ ID NO:1101, SEQ ID NO:1102, SEQ ID NO:1103, SEQID
NO:1104, SEQ ID NO:1105, SEQ ID NO:1106, SEQ ID NO:1107,
SEQ ID NO:1108, SEQ ID NO:1109, SEQ ID NO:1110, SEQ ID
NO:1111, SEQ ID NO:1112, SEQ ID NO:1113, SEQ ID NO:1114,
SEQ ID NO:1115, SEQ ID NO:1116,SEQ ID NO:1117, SEQ ID
1695 NO:1118, SEQ ID NO:1119, SEQ ID NO:1120, SEQID NO:1121,
SEQ ID NO:1122, SEQ ID NO:1123, SEQ ID NO:1124, SEQ
IDNO:1125, SEQ ID NO:1126, SEQ ID NO:1127, SEQ ID NO:
1129, SEQ ID NO:1130, SEQ ID NO:1131, SEQ ID NO:1132,
SEQ ID NO:1133, SEQ ID NO:1134, SEQ ID NO:1135, SEQ ID
1700 NO:1136, SEQ ID NO:1137, SEQ ID NO:1138, SEQ ID NO:1139,
SEQ ID NO:1140, SEQ ID NO:1141, SEQ ID NO:1142, SEQ
IDNO:1143, SEQ ID NO:1144, SEQ ID NO:1145, SEQ ID NO:
1146, SEQ ID NO:1147, SEQ ID NO:1148, SEQ ID NO:1149,
SEQ ID NO:1150, SEQ ID NO:1151, SEQ ID NO:1152, SEQ ID
1705 NO:1153, SEQ ID NO:1154, SEQ ID NO:1155,SEQ ID NO:1156,
SEQ ID NO:1158, SEQ ID NO:1159, SEQ ID NO:1160, SEQID
NO:1161, SEQ ID NO:1162, SEQ ID NO:1163, SEQ ID NO:1164,
SEQ ID NO:1165, SEQ ID NO:1166, SEQ ID NO:1167, SEQ ID
NO:1168, SEQ ID NO:1169, SEQ ID NO:1170, SEQ ID NO:1171,
1710 SEQ ID NO:1172, SEQ ID NO:1173,SEQ ID NO:1174, SEQ ID
NO:1175, SEQ ID NO:1176, SEQ ID NO:1177, SEQID NO:1178,
SEQ ID NO:1179, SEQ ID NO:1180, SEQ ID NO:1181, SEQ
IDNO:1182, SEQ ID NO:1183, SEQ ID NO:1184, SEQ ID NO:
1185, SEQ ID NO:1186, SEQ ID NO:1187, SEQ ID NO:1188,
1715 SEQ ID NO:1189, SEQ ID NO:1190, SEQ ID NO:1192, SEQ ID
NO:1193, SEQ ID NO:1194, SEQ ID NO:1195, SEQ ID NO:1196,
SEQ ID NO:1197, SEQ ID NO:1198, SEQ ID NO:1199, SEQ
IDNO:1200, SEQ ID NO:1201, SEQ ID NO:1202, SEQ ID NO:
1203, SEQ ID NO:1204, SEQ ID NO:1205, SEQ ID NO:1206,
1720 SEQ ID NO:1207, SEQ ID NO:1208, SEQ ID NO:1209, SEQ ID
NO:1210, SEQ ID NO:1211, SEQ ID NO:1213,SEQ ID NO:1214,
SEQ ID NO:1215, SEQ ID NO:1216, SEQ ID NO:1217, SEQID

Appendix B: Hideo *et al.* Full Translation

NO:1218, SEQ ID NO:1219, SEQ ID NO:1220, SEQ ID NO:1221,
SEQ ID NO:1222, SEQ ID NO:1223, SEQ ID NO:1224, SEQ ID
1725 NO:1225, SEQ ID NO:1226, SEQ ID NO:1227, SEQ ID NO:1228,
SEQ ID NO:1229, SEQ ID NO:1230,SEQ ID NO:1231, SEQ ID
NO:1232, SEQ ID NO:1233, SEQ ID NO:1234, SEQID NO:1235,
SEQ ID NO:1236, SEQ ID NO:1237, SEQ ID NO:1238, SEQ
IDNO:1239, SEQ ID NO:1241, SEQ ID NO:1242, SEQ ID NO:
1730 1243, SEQ ID NO:1244, SEQ ID NO:1245, SEQ ID NO:1246,
SEQ ID NO:1247, SEQ ID NO:1248, SEQ ID NO:1249, SEQ ID
NO:1250, SEQ ID NO:1251, SEQ ID NO:1252, SEQ ID NO:1253,
SEQ ID NO:1254, SEQ ID NO:1255, SEQ ID NO:1256, SEQ
IDNO:1257, SEQ ID NO:1259, SEQ ID NO:1260, SEQ ID NO:
1735 1261, SEQ ID NO:1262, SEQ ID NO:1263, SEQ ID NO:1264,
SEQ ID NO:1265, SEQ ID NO:1266, SEQ ID NO:1267, SEQ ID
NO:1268, SEQ ID NO:1269, SEQ ID NO:1270,SEQ ID NO:1271,
SEQ ID NO:1272, SEQ ID NO:1273, SEQ ID NO:1275, SEQID
NO:1276, SEQ ID NO:1277, SEQ ID NO:1278, SEQ ID NO:1279,
1740 SEQ ID NO:1280, SEQ ID NO:1281, SEQ ID NO:1282, SEQ ID
NO:1283, SEQ ID NO:1284, SEQ ID NO:1285, SEQ ID NO:1286,
SEQ ID NO:1287, SEQ ID NO:1289,SEQ ID NO:1290, SEQ ID
NO:1291, SEQ ID NO:1292, SEQ ID NO:1293, SEQID NO:1294,
SEQ ID NO:1295, SEQ ID NO:1296, SEQ ID NO:1297, SEQ
1745 IDNO:1298, SEQ ID NO:1299, SEQ ID NO:1300, SEQ ID NO:
1301, SEQ ID NO:1303, SEQ ID NO:1304, SEQ ID NO:1305,
SEQ ID NO:1306, SEQ ID NO:1307, SEQ ID NO:1308, SEQ ID
NO:1310, SEQ ID NO:1311, SEQ ID NO:1312, SEQ ID NO:1313,
SEQ ID NO:1314, SEQ ID NO:1315, SEQ ID NO:1316, SEQ
1750 IDNO:1317, SEQ ID NO:1318, SEQ ID NO:1319, SEQ ID NO:
1320, SEQ ID NO:1322, SEQ ID NO:1323, SEQ ID NO:1324,
SEQ ID NO:1325, SEQ ID NO:1326, SEQ ID NO:1327, SEQ ID
NO:1328, SEQ ID NO:1330, SEQ ID NO:1331,SEQ ID NO:1332,
SEQ ID NO:1333, SEQ ID NO:1334, SEQ ID NO:1335, SEQID
1755 NO:1336, SEQ ID NO:1337, SEQ ID NO:1339, SEQ ID NO:1340,
SEQ ID NO:1341, SEQ ID NO:1342, SEQ ID NO:1343, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO:1344, SEQ ID NO:1345, SEQ ID NO:1346, SEQ ID NO:1347,
SEQ ID NO:1349, SEQ ID NO:1350,SEQ ID NO:1351, SEQ ID
NO:1352, SEQ ID NO:1353, SEQ ID NO:1354, SEQID NO:1355,
1760 SEQ ID NO:1356, SEQ ID NO:1357, SEQ ID NO:1358, SEQ
IDNO:1360, SEQ ID NO:1361, SEQ ID NO:1362, SEQ ID NO:
1363, SEQ ID NO:1364, SEQ ID NO:1365, SEQ ID NO:1367,
SEQ ID NO:1368, SEQ ID NO:1369, SEQ ID NO:1370, SEQ ID
NO:1371, SEQ ID NO:1375, SEQ ID NO:1376, SEQ ID NO:1377,
1765 SEQ ID NO:1378, SEQ ID NO:1379, SEQ ID NO:1381, SEQ
IDNO:1382, SEQ ID NO:1383, SEQ ID NO:1384, SEQ ID NO:
1385, SEQ ID NO:1387, SEQ ID NO:1388, SEQ ID NO:1389,
SEQ ID NO:1390, SEQ ID NO:1391, SEQ ID NO:1392, SEQ ID
NO:1393, SEQ ID NO:1395, SEQ ID NO:1396,SEQ ID NO:1397,
1770 SEQ ID NO:1398, SEQ ID NO:1399, SEQ ID NO:1400, SEQID
NO:1402, SEQ ID NO:1403, SEQ ID NO:1404, SEQ ID NO:1405,
SEQ ID NO:1406, SEQ ID NO:1407, SEQ ID NO:1409, SEQ ID
NO:1410, SEQ ID NO:1412, SEQ ID NO:1413, SEQ ID NO:1414,
SEQ ID NO:1415, SEQ ID NO:1416,SEQ ID NO:1417, SEQ ID
1775 NO:1419, SEQ ID NO:1420, SEQ ID NO:1421, SEQID NO:1422,
SEQ ID NO:1423, SEQ ID NO:1424, SEQ ID NO:1425, SEQ
IDNO:1427, SEQ ID NO:1428, SEQ ID NO:1429, SEQ ID NO:
1430, SEQ ID NO:1431, SEQ ID NO:1432, SEQ ID NO:1433,
SEQ ID NO:1434, SEQ ID NO:1435, SEQ ID NO:1437, SEQ ID
1780 NO:1438, SEQ ID NO:1439, SEQ ID NO:1440, SEQ ID NO:1441,
SEQ ID NO:1442, SEQ ID NO:1444, SEQ ID NO:1445, SEQ
IDNO:1446, SEQ ID NO:1447, SEQ ID NO:1448, SEQ ID NO:
1449, SEQ ID NO:1451, SEQ ID NO:1452, SEQ ID NO:1453,
SEQ ID NO:1454, SEQ ID NO:1455, SEQ ID NO:1456, SEQ ID
1785 NO:1458, SEQ ID NO:1459, SEQ ID NO:1461,SEQ ID NO:1462,
SEQ ID NO:1463, SEQ ID NO:1464, SEQ ID NO:1465, SEQID
NO:1466, SEQ ID NO:1468, SEQ ID NO:1469, SEQ ID NO:1470,
SEQ ID NO:1472, SEQ ID NO:1474, SEQ ID NO:1475, SEQ ID
NO:1476, SEQ ID NO:1477, SEQ ID NO:1479, SEQ ID NO:1480,
1790 SEQ ID NO:1481, SEQ ID NO:1482,SEQ ID NO:1483, SEQ ID

Appendix B: Hideo *et al.* Full Translation

1795 NO:1484, SEQ ID NO:1485, SEQ ID NO:1486, SEQID NO:1488, SEQ ID NO:1490, SEQ ID NO:1491, SEQ ID NO:1492, SEQ IDNO:1493, SEQ ID NO:1495, SEQ ID NO:1496, SEQ ID NO:1497, SEQ ID NO:1498, SEQ ID NO:1500, SEQ ID NO:1502, SEQ ID NO:1503, SEQ ID NO:1504, SEQ ID NO:1505, SEQ ID NO:1507, SEQ ID NO:1509, SEQ ID NO:1512, SEQ ID NO:1513, SEQ ID NO:1514, SEQ ID NO:1515, SEQ ID NO:1517, SEQ IDNO:1518, SEQ ID NO:1519, SEQ ID NO:1521, SEQ ID NO:1522, SEQ ID NO:1523, SEQ ID NO:1524, SEQ ID NO:1525,
1800 SEQ ID NO:1527, SEQ ID NO:1528, SEQ ID NO:1529, SEQ ID NO:1530, SEQ ID NO:1531, SEQ ID NO:1533,SEQ ID NO:1534, SEQ ID NO:1535, SEQ ID NO:1536, SEQ ID NO:1538, SEQID NO:1539, SEQ ID NO:1541, SEQ ID NO:1542, SEQ ID NO:1543, SEQ ID NO:1544, SEQ ID NO:1546, SEQ ID NO:1548, SEQ ID NO:1550, SEQ ID NO:1552, SEQ ID NO:1554, SEQ ID NO:1556, SEQ ID NO:1557, SEQ ID NO:1559,SEQ ID NO:1560, SEQ ID NO:1561, SEQ ID NO:1562, SEQ ID NO:1564, SEQID NO:1565, SEQ ID NO:1567, SEQ ID NO:1568, SEQ ID NO:1570, SEQ IDNO:1572, SEQ ID NO:1573, SEQ ID NO:1574, SEQ ID NO:
1805 1575, SEQ ID NO:1577, SEQ ID NO:1578, SEQ ID NO:1579, SEQ ID NO:1581, SEQ ID NO:1582, SEQ ID NO:1583, SEQ ID NO:1585, SEQ ID NO:1586, SEQ ID NO:1588, SEQ ID NO:1589, SEQ ID NO:1590, SEQ ID NO:1592, SEQ ID NO:1593, SEQ IDNO:1595, SEQ ID NO:1597, SEQ ID NO:1598, SEQ ID NO:
1810 1600, SEQ ID NO:1602, SEQ ID NO:1606, SEQ ID NO:1608, SEQ ID NO:1609, SEQ ID NO:1610, SEQ ID NO:1611, SEQ ID NO:1613, SEQ ID NO:1614, SEQ ID NO:1616,SEQ ID NO:1618, SEQ ID NO:1620, SEQ ID NO:1621, SEQ ID NO:1623, SEQID NO:1625, SEQ ID NO:1628, SEQ ID NO:1630, SEQ ID NO:1631,
1815 SEQ ID NO:1633, SEQ ID NO:1634, SEQ ID NO:1638, SEQ ID NO:1641, SEQ ID NO:1642, SEQ ID NO:1644, SEQ ID NO:1645, SEQ ID NO:1647, SEQ ID NO:1648,SEQ ID NO:1650, SEQ ID NO:1651, SEQ ID NO:1653, SEQ ID NO:1654, SEQID NO:1656, SEQ ID NO:1657, SEQ ID NO:1659, SEQ ID NO:1661, SEQ

Appendix B: Hideo *et al.* Full Translation

- 1825 IDNO:1663, SEQ ID NO:1665, SEQ ID NO:1667, SEQ ID NO:
1671, SEQ ID NO:1674, SEQ ID NO:1676, SEQ ID NO:1678,
SEQ ID NO:1679, SEQ ID NO:1681, SEQ ID NO:1684, SEQ ID
NO:1686, SEQ ID NO:1687, SEQ ID NO:1689, SEQ ID NO:1692,
SEQ ID NO:1693, SEQ ID NO:1695, SEQ ID NO:1697, SEQ
1830 IDNO:1698, SEQ ID NO:1702, and SEQ ID NO:1703
, or (b) a polypeptide comprising an amino acid sequence
in the nucleotide sequences set forth in (a) in which several
amino acids are deleted, replaced or added.
[0013]
- 1835 In another embodiment, the present invention relates to a
polypeptide specific to enterohemorrhagic pathogenic-E. coli
O-157:H7.
In a preferred embodiment, the present invention relates to a
polypeptide specific to O-157:H7 comprising
- 1840 (a) an amino acid sequence selected from a group
comprising the following SEQ IDs or a fragment thereof: SEQ
ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID
NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:
10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID
1845 NO:14, SEQ ID NO:15, SEQ IDNO:16, SEQ ID NO:17, SEQ ID
NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQID NO:21, SEQ ID
NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25,SEQ ID
NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID
NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID
1850 NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID
NO:38, SEQ ID NO:39, SEQ IDNO:40, SEQ ID NO:41, SEQ ID
NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQID NO:45, SEQ ID
NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49,SEQ ID
NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID
1855 NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID
NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID
NO:62, SEQ ID NO:63, SEQ IDNO:64, SEQ ID NO:65, SEQ ID
NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQID NO:69, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73,SEQ ID
1860 NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID
NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID
NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID
NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID
NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID
1865 NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97,SEQ ID
NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ
ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105,
SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:
109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID
1870 NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116,
SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:
120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID
NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127,
SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:
1875 131, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID
NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139,
SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:
143, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID
NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150,
1880 SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:
154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID
NO:158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161,
SEQ ID NO:162, SEQ ID NO:163, SEQ ID NO:164, SEQ ID NO:
165, SEQ ID NO:166, SEQ ID NO:167, SEQ ID NO:168, SEQ ID
1885 NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172,
SEQ ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:
176, SEQ ID NO:177, SEQ ID NO:178, SEQ ID NO:179, SEQ ID
NO:180, SEQ ID NO:181, SEQ ID NO:182, SEQ ID NO:183,
SEQ ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:
1890 187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID
NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194,
SEQ ID NO:195, SEQ ID NO:196, SEQ ID NO:197, SEQ ID NO:

Appendix B: Hideo *et al.* Full Translation

198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID
NO:202, SEQ ID NO:203, SEQ ID NO:204, SEQ ID NO:205,
1895 SEQ ID NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:
209, SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID
NO:213, SEQ ID NO:214, SEQ ID NO:215, SEQ ID NO:216,
SEQ ID NO:217, SEQ ID NO:218, SEQ ID NO:219, SEQ ID NO:
220, SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID
1900 NO:224, SEQ ID NO:225, SEQ ID NO:226, SEQ ID NO:227,
SEQ ID NO:228, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:
231, SEQ ID NO:232, SEQ ID NO:233, SEQ ID NO:234, SEQ
ID NO:235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:238,
SEQ ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:
1905 242, SEQ ID NO:243, SEQ ID NO:245, SEQ ID NO:246, SEQ ID
NO:247, SEQ ID NO:248, SEQ ID NO:249, SEQ ID NO:250,
SEQ ID NO:251, SEQ ID NO:252, SEQ ID NO:253, SEQ ID NO:
254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID
NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261,
1910 SEQ ID NO:262, SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:
265, SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:268, SEQ ID
NO:269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272,
SEQ ID NO:273, SEQ ID NO:274, SEQ ID NO:275, SEQ ID NO:
276, SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:279, SEQ ID
1915 NO:280, SEQ ID NO:281, SEQ ID NO:282, SEQ ID NO:283,
SEQ ID NO:284, SEQ ID NO:285, SEQ ID NO:286, SEQ ID NO:
287, SEQ ID NO:288, SEQ ID NO:289, SEQ ID NO:290, SEQ ID
NO:291, SEQ ID NO:292, SEQ ID NO:293, SEQ ID NO:294,
SEQ ID NO:295, SEQ ID NO:296, SEQ ID NO:297, SEQ ID NO:
1920 298, SEQ ID NO:299, SEQ ID NO:300, SEQ ID NO:301, SEQ ID
NO:302, SEQ ID NO:303, SEQ ID NO:304, SEQ ID NO:305,
SEQ ID NO:306, SEQ ID NO:307, SEQ ID NO:308, SEQ ID NO:
309, SEQ ID NO:310, SEQ ID NO:311, SEQ ID NO:312, SEQ ID
NO:313, SEQ ID NO:314, SEQ ID NO:315, SEQ ID NO:316,
1925 SEQ ID NO:317, SEQ ID NO:318, SEQ ID NO:319, SEQ ID NO:
320, SEQ ID NO:321, SEQ ID NO:322, SEQ ID NO:323, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO:324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327,
SEQ ID NO:328, SEQ ID NO:329, SEQ ID NO:330, SEQ ID NO:
331, SEQ ID NO:332, SEQ ID NO:333, SEQ ID NO:334, SEQ ID
1930 NO:335, SEQ ID NO:336, SEQ ID NO:338, SEQ ID NO:339,
SEQ ID NO:340, SEQ ID NO:341, SEQ ID NO:342, SEQ ID NO:
343, SEQ ID NO:344, SEQ ID NO:345, SEQ ID NO:346, SEQ ID
NO:347, SEQ ID NO:348, SEQ ID NO:349, SEQ ID NO:350,
SEQ ID NO:351, SEQ ID NO:352, SEQ ID NO:353, SEQ ID NO:
1935 354, SEQ ID NO:355, SEQ ID NO:356, SEQ ID NO:357, SEQ ID
NO:358, SEQ ID NO:359, SEQ ID NO:360, SEQ ID NO:361,
SEQ ID NO:362, SEQ ID NO:363, SEQ ID NO:364, SEQ ID NO:
365, SEQ ID NO:366, SEQ ID NO:367, SEQ ID NO:368, SEQ ID
NO:369, SEQ ID NO:370, SEQ ID NO:371, SEQ ID NO:372,
1940 SEQ ID NO:373, SEQ ID NO:374, SEQ ID NO:375, SEQ ID NO:
376, SEQ ID NO:377, SEQ ID NO:378, SEQ ID NO:379, SEQ ID
NO:380, SEQ ID NO:381, SEQ ID NO:382, SEQ ID NO:383,
SEQ ID NO:384, SEQ ID NO:385, SEQ ID NO:386, SEQ ID NO:
387, SEQ ID NO:388, SEQ ID NO:389, SEQ ID NO:390, SEQ ID
1945 NO:391, SEQ ID NO:392, SEQ ID NO:393, SEQ ID NO:394,
SEQ ID NO:395, SEQ ID NO:396, SEQ ID NO:397, SEQ ID NO:
398, SEQ ID NO:399, SEQ ID NO:400, SEQ ID NO:401, SEQ ID
NO:402, SEQ ID NO:403, SEQ ID NO:404, SEQ ID NO:405,
SEQ ID NO:406, SEQ ID NO:407, SEQ ID NO:408, SEQ ID NO:
1950 409, SEQ ID NO:411, SEQ ID NO:412, SEQ ID NO:413, SEQ ID
NO:414, SEQ ID NO:415, SEQ ID NO:416, SEQ ID NO:417,
SEQ ID NO:418, SEQ ID NO:419, SEQ ID NO:420, SEQ ID NO:
421, SEQ ID NO:422, SEQ ID NO:423, SEQ ID NO:424, SEQ ID
NO:425, SEQ ID NO:426, SEQ ID NO:427, SEQ ID NO:428,
1955 SEQ ID NO:429, SEQ ID NO:430, SEQ ID NO:431, SEQ ID NO:
432, SEQ ID NO:433, SEQ ID NO:434, SEQ ID NO:435, SEQ ID
NO:436, SEQ ID NO:437, SEQ ID NO:438, SEQ ID NO:439,
SEQ ID NO:440, SEQ ID NO:441, SEQ ID NO:442, SEQ ID NO:
443, SEQ ID NO:444, SEQ ID NO:445, SEQ ID NO:446, SEQ ID
1960 NO:447, SEQ ID NO:448, SEQ ID NO:449, SEQ ID NO:450,

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO:451, SEQ ID NO:452, SEQ ID NO:453, SEQ ID NO:
454, SEQ ID NO:455, SEQ ID NO:456, SEQ ID NO:457, SEQ ID
NO:458, SEQ ID NO:459, SEQ ID NO:460, SEQ ID NO:461,
SEQ ID NO:462, SEQ ID NO:463, SEQ ID NO:464, SEQ ID NO:
1965 465, SEQ ID NO:466, SEQ ID NO:467, SEQ ID NO:468, SEQ ID
NO:469, SEQ ID NO:470, SEQ ID NO:471, SEQ ID NO:472,
SEQ ID NO:473, SEQ ID NO:474, SEQ ID NO:475, SEQ ID NO:
476, SEQ ID NO:477, SEQ ID NO:478, SEQ ID NO:479, SEQ ID
NO:480, SEQ ID NO:481, SEQ ID NO:482, SEQ ID NO:483,
1970 SEQ ID NO:485, SEQ ID NO:486, SEQ ID NO:487, SEQ ID NO:
488, SEQ ID NO:489, SEQ ID NO:490, SEQ ID NO:491, SEQ ID
NO:492, SEQ ID NO:493, SEQ ID NO:494, SEQ ID NO:495,
SEQ ID NO:496, SEQ ID NO:497, SEQ ID NO:498, SEQ ID NO:
499, SEQ ID NO:500, SEQ ID NO:501, SEQ ID NO:502, SEQ ID
1975 NO:503, SEQ ID NO:504, SEQ ID NO:505, SEQ ID NO:506,
SEQ ID NO:507, SEQ ID NO:508, SEQ ID NO:509, SEQ ID NO:
510, SEQ ID NO:511, SEQ ID NO:512, SEQ ID NO:513, SEQ ID
NO:514, SEQ ID NO:515, SEQ ID NO:516, SEQ ID NO:517,
SEQ ID NO:518, SEQ ID NO:519, SEQ ID NO:520, SEQ ID NO:
1980 521, SEQ ID NO:522, SEQ ID NO:523, SEQ ID NO:524, SEQ ID
NO:525, SEQ ID NO:526, SEQ ID NO:527, SEQ ID NO:528,
SEQ ID NO:529, SEQ ID NO:530, SEQ ID NO:531, SEQ ID NO:
532, SEQ ID NO:533, SEQ ID NO:534, SEQ ID NO:535, SEQ ID
NO:536, SEQ ID NO:537, SEQ ID NO:538, SEQ ID NO:539,
1985 SEQ ID NO:540, SEQ ID NO:541, SEQ ID NO:542, SEQ ID NO:
543, SEQ ID NO:544, SEQ ID NO:545, SEQ ID NO:546, SEQ ID
NO:547, SEQ ID NO:548, SEQ ID NO:549, SEQ ID NO:550,
SEQ ID NO:551, SEQ ID NO:552, SEQ ID NO:553, SEQ ID NO:
555, SEQ ID NO:556, SEQ ID NO:557, SEQ ID NO:558, SEQ ID
1990 NO:559, SEQ ID NO:560, SEQ ID NO:561, SEQ ID NO:562,
SEQ ID NO:563, SEQ ID NO:564, SEQ ID NO:565, SEQ ID NO:
566, SEQ ID NO:567, SEQ ID NO:568, SEQ ID NO:569, SEQ ID
NO:570, SEQ ID NO:571, SEQ ID NO:572, SEQ ID NO:573,
SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:

Appendix B: Hideo *et al.* Full Translation

1995 577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID NO:581, SEQ ID NO:582, SEQ ID NO:583, SEQ ID NO:584, SEQ ID NO:585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:588, SEQ ID NO:589, SEQ ID NO:590, SEQ ID NO:591, SEQ ID NO:592, SEQ ID NO:593, SEQ ID NO:594, SEQ ID NO:595, SEQ ID NO:596, SEQ ID NO:597, SEQ ID NO:598, SEQ ID NO:599, SEQ ID NO:600, SEQ ID NO:601, SEQ ID NO:602, SEQ ID NO:603, SEQ ID NO:604, SEQ ID NO:605, SEQ ID NO:606, SEQ ID NO:607, SEQ ID NO:608, SEQ ID NO:609, SEQ ID NO:610, SEQ ID NO:611, SEQ ID NO:612, SEQ ID NO:613, SEQ ID NO:614, SEQ ID NO:615, SEQ ID NO:616, SEQ ID NO:617, SEQ ID NO:618, SEQ ID NO:619, SEQ ID NO:620, SEQ ID NO:621, SEQ ID NO:622, SEQ ID NO:623, SEQ ID NO:624, SEQ ID NO:625, SEQ ID NO:626, SEQ ID NO:627, SEQ ID NO:628, SEQ ID NO:629, SEQ ID NO:631, SEQ ID NO:632, SEQ ID NO:633, SEQ ID NO:634, SEQ ID NO:635, SEQ ID NO:636, SEQ ID NO:637, SEQ ID NO:638, SEQ ID NO:639, SEQ ID NO:640, SEQ ID NO:641, SEQ ID NO:642, SEQ ID NO:643, SEQ ID NO:644, SEQ ID NO:645, SEQ ID NO:646, SEQ ID NO:647, SEQ ID NO:648, SEQ ID NO:649, SEQ ID NO:650, SEQ ID NO:651, SEQ ID NO:652, SEQ ID NO:653, SEQ ID NO:654, SEQ ID NO:655, SEQ ID NO:656, SEQ ID NO:657, SEQ ID NO:658, SEQ ID NO:659, SEQ ID NO:660, SEQ ID NO:661, SEQ ID NO:662, SEQ ID NO:663, SEQ ID NO:664, SEQ ID NO:665, SEQ ID NO:666, SEQ ID NO:667, SEQ ID NO:668, SEQ ID NO:669, SEQ ID NO:670, SEQ ID NO:671, SEQ ID NO:672, SEQ ID NO:673, SEQ ID NO:674, SEQ ID NO:675, SEQ ID NO:676, SEQ ID NO:677, SEQ ID NO:678, SEQ ID NO:679, SEQ ID NO:680, SEQ ID NO:681, SEQ ID NO:682, SEQ ID NO:683, SEQ ID NO:684, SEQ ID NO:685, SEQ ID NO:686, SEQ ID NO:687, SEQ ID NO:688, SEQ ID NO:690, SEQ ID NO:691, SEQ ID NO:692, SEQ ID NO:693, SEQ ID NO:694, SEQ ID NO:695, SEQ ID NO:696, SEQ ID NO:697, SEQ ID NO:698, SEQ ID NO:699, SEQ ID NO:700, SEQ ID NO:701, SEQ ID NO:702, SEQ ID NO:703, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO:704, SEQ ID NO:705, SEQ ID NO:706, SEQ ID NO:707,
2030 SEQ ID NO:708, SEQ ID NO:709, SEQ ID NO:710, SEQ ID NO:
711, SEQ ID NO:712, SEQ ID NO:713, SEQ ID NO:714, SEQ ID
NO:715, SEQ ID NO:716, SEQ ID NO:717, SEQ ID NO:718,
SEQ ID NO:719, SEQ ID NO:720, SEQ ID NO:721, SEQ ID NO:
722, SEQ ID NO:723, SEQ ID NO:724, SEQ ID NO:725, SEQ ID
2035 NO:726, SEQ ID NO:727, SEQ ID NO:728, SEQ ID NO:729,
SEQ ID NO:730, SEQ ID NO:731, SEQ ID NO:732, SEQ ID NO:
733, SEQ ID NO:734, SEQ ID NO:735, SEQ ID NO:736, SEQ ID
NO:737, SEQ ID NO:738, SEQ ID NO:739, SEQ ID NO:740,
SEQ ID NO:741, SEQ ID NO:742, SEQ ID NO:743, SEQ ID NO:
2040 744, SEQ ID NO:745, SEQ ID NO:746, SEQ ID NO:747, SEQ ID
NO:748, SEQ ID NO:749, SEQ ID NO:750, SEQ ID NO:751,
SEQ ID NO:752, SEQ ID NO:753, SEQ ID NO:754, SEQ ID NO:
756, SEQ ID NO:757, SEQ ID NO:758, SEQ ID NO:759, SEQ ID
NO:760, SEQ ID NO:761, SEQ ID NO:762, SEQ ID NO:763, SE
2045 Q ID NO:764, SEQ ID NO:765, SEQ ID NO:766, SEQ ID NO:
767, SEQ ID NO:768, SEQ ID NO:769, SEQ ID NO:770, SEQ ID
NO:771, SEQ ID NO:772, SEQ ID NO:773, SEQ ID NO:774,
SEQ ID NO:775, SEQ ID NO:776, SEQ ID NO:777, SEQ ID NO:
778, SEQ ID NO:779, SEQ ID NO:780, SEQ ID NO:781, SEQ ID
2050 NO:782, SEQ ID NO:783, SEQ ID NO:784, SEQ ID NO:785,
SEQ ID NO:786, SEQ ID NO:787, SEQ ID NO:788, SEQ ID NO:
789, SEQ ID NO:790, SEQ ID NO:791, SEQ ID NO:792, SEQ ID
NO:793, SEQ ID NO:794, SEQ ID NO:795, SEQ ID NO:796,
SEQ ID NO:797, SEQ ID NO:798, SEQ ID NO:799, SEQ ID NO:
2055 800, SEQ ID NO:801, SEQ ID NO:802, SEQ ID NO:803, SEQ ID
NO:804, SEQ ID NO:805, SEQ ID NO:806, SEQ ID NO:807,
SEQ ID NO:808, SEQ ID NO:809, SEQ ID NO:810, SEQ ID NO:
811, SEQ ID NO:812, SEQ ID NO:813, SEQ ID NO:814, SEQ ID
NO:815, SEQ ID NO:817, SEQ ID NO:818, SEQ ID NO:819,
2060 SEQ ID NO:820, SEQ ID NO:821, SEQ ID NO:822, SEQ ID NO:
823, SEQ ID NO:824, SEQ ID NO:825, SEQ ID NO:826, SEQ ID
NO:827, SEQ ID NO:828, SEQ ID NO:829, SEQ ID NO:830,

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO:831, SEQ ID NO:832, SEQ ID NO:833, SEQ ID NO:
834, SEQ ID NO:835, SEQ ID NO:836, SEQ ID NO:837, SEQ ID
2065 NO:838, SEQ ID NO:839, SEQ ID NO:840, SEQ ID NO:841,
SEQ ID NO:842, SEQ ID NO:843, SEQ ID NO:844, SEQ ID NO:
845, SEQ ID NO:846, SEQ ID NO:847, SEQ ID NO:848, SEQ ID
NO:849, SEQ ID NO:850, SEQ ID NO:851, SEQ ID NO:852,
SEQ ID NO:853, SEQ ID NO:854, SEQ ID NO:855, SEQ ID NO:
2070 856, SEQ ID NO:857, SEQ ID NO:858, SEQ ID NO:859, SEQ ID
NO:860, SEQ ID NO:861, SEQ ID NO:862, SEQ ID NO:863,
SEQ ID NO:864, SEQ ID NO:865, SEQ ID NO:866, SEQ ID NO:
867, SEQ ID NO:868, SEQ ID NO:869, SEQ ID NO:870, SEQ ID
NO:871, SEQ ID NO:872, SEQ ID NO:873, SEQ ID NO:874,
2075 SEQ ID NO:875, SEQ ID NO:877, SEQ ID NO:878, SEQ ID NO:
879, SEQ ID NO:880, SEQ ID NO:881, SEQ ID NO:882, SEQ ID
NO:883, SEQ ID NO:884, SEQ ID NO:885, SEQ ID NO:886,
SEQ ID NO:887, SEQ ID NO:888, SEQ ID NO:889, SEQ ID NO:
890, SEQ ID NO:891, SEQ ID NO:892, SEQ ID NO:893, SEQ ID
2080 NO:894, SEQ ID NO:895, SEQ ID NO:896, SEQ ID NO:897,
SEQ ID NO:898, SEQ ID NO:899, SEQ ID NO:900, SEQ ID NO:
901, SEQ ID NO:902, SEQ ID NO:903, SEQ ID NO:904, SEQ ID
NO:905, SEQ ID NO:906, SEQ ID NO:907, SEQ ID NO:908,
SEQ ID NO:909, SEQ ID NO:910, SEQ ID NO:911, SEQ ID NO:
2085 912, SEQ ID NO:913, SEQ ID NO:914, SEQ ID NO:915, SEQ ID
NO:916, SEQ ID NO:917, SEQ ID NO:918, SEQ ID NO:919,
SEQ ID NO:920, SEQ ID NO:921, SEQ ID NO:922, SEQ ID NO:
923, SEQ ID NO:924, SEQ ID NO:925, SEQ ID NO:926, SEQ ID
NO:928, SEQ ID NO:929, SEQ ID NO:930, SEQ ID NO:931,
2090 SEQ ID NO:932, SEQ ID NO:933, SEQ ID NO:934, SEQ ID NO:
935, SEQ ID NO:936, SEQ ID NO:937, SEQ ID NO:938, SEQ ID
NO:939, SEQ ID NO:940, SEQ ID NO:941, SEQ ID NO:942,
SEQ ID NO:943, SEQ ID NO:944, SEQ ID NO:945, SEQ ID NO:
946, SEQ ID NO:947, SEQ ID NO:948, SEQ ID NO:949, SEQ ID
2095 NO:950, SEQ ID NO:951, SEQ ID NO:952, SEQ ID NO:953,
SEQ ID NO:954, SEQ ID NO:955, SEQ ID NO:956, SEQ ID NO:

Appendix B: Hideo *et al.* Full Translation

957, SEQ ID NO:958, SEQ ID NO:959, SEQ ID NO:960, SEQ ID
NO:961, SEQ ID NO:962, SEQ ID NO:963, SEQ ID NO:964,
SEQ ID NO:965, SEQ ID NO:966, SEQ ID NO:967, SEQ ID NO:
2100 968, SEQ ID NO:969, SEQ ID NO:970, SEQ ID NO:971, SEQ ID
NO:972, SEQ ID NO:973, SEQ ID NO:974, SEQ ID NO:975,
SEQ ID NO:976, SEQ ID NO:977, SEQ ID NO:979, SEQ ID NO:
980, SEQ ID NO:981, SEQ ID NO:982, SEQ ID NO:983, SEQ ID
NO:984, SEQ ID NO:985, SEQ ID NO:986, SEQ ID NO:987,
2105 SEQ ID NO:988, SEQ ID NO:989, SEQ ID NO:990, SEQ ID NO:
991, SEQ ID NO:992, SEQ ID NO:993, SEQ ID NO:994, SEQ ID
NO:995, SEQ ID NO:996, SEQ ID NO:997, SEQ ID NO:998,
SEQ ID NO:999, SEQ ID NO:1000, SEQ ID NO:1001, SEQ ID
NO:1002, SEQ ID NO:1003, SEQ ID NO:1004, SEQ ID NO:1005,
2110 SEQID NO:1006, SEQ ID NO:1007, SEQ ID NO:1008, SEQ ID
NO:1009, SEQ ID NO:1010, SEQ ID NO:1011, SEQ ID NO:1012,
SEQ ID NO:1014, SEQ ID NO:1015, SEQ ID NO:1016, SEQ ID
NO:1017, SEQ ID NO:1018, SEQ ID NO:1019, SEQ ID NO:1020,
SEQ ID NO:1021, SEQ ID NO:1022, SEQ ID NO:1023, SEQ ID
2115 NO:1024, SEQ ID NO:1025, SEQ ID NO:1026, SEQ ID NO:1027,
SEQ ID NO:1028, SEQ ID NO:1030, SEQ ID NO:1031, SEQ ID
NO:1032, SEQ ID NO:1033, SEQ ID NO:1034, SEQ ID NO:1035,
SEQ ID NO:1036, SEQ ID NO:1037, SEQ ID NO:1038, SEQ ID
NO:1039, SEQ ID NO:1040, SEQ ID NO:1041, SEQ ID NO:1042,
2120 SEQ ID NO:1043, SEQ ID NO:1044, SEQ ID NO:1045, SEQID
NO:1046, SEQ ID NO:1047, SEQ ID NO:1048, SEQ ID NO:1049,
SEQ ID NO:1050, SEQ ID NO:1051, SEQ ID NO:1052, SEQ ID
NO:1053, SEQ ID NO:1054, SEQ ID NO:1056, SEQ ID NO:1057,
SEQ ID NO:1058, SEQ ID NO:1059, SEQ ID NO:1061, SEQ ID
2125 NO:1062, SEQ ID NO:1063, SEQ ID NO:1064, SEQID NO:1065,
SEQ ID NO:1066, SEQ ID NO:1067, SEQ ID NO:1068, SEQ
ID NO:1069, SEQ ID NO:1070, SEQ ID NO:1071, SEQ ID NO:
1072, SEQ ID NO:1073, SEQ ID NO:1074, SEQ ID NO:1075,
SEQ ID NO:1076, SEQ ID NO:1077, SEQ ID NO:1078, SEQ ID
2130 NO:1079, SEQ ID NO:1080, SEQ ID NO:1081, SEQ ID NO:1082,

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO:1083, SEQ ID NO:1084, SEQ ID NO:1085, SEQ IDNO:1086, SEQ ID NO:1087, SEQ ID NO:1088, SEQ ID NO:1089, SEQ ID NO:1090, SEQ ID NO:1091, SEQ ID NO:1092, SEQ ID NO:1094, SEQ ID NO:1095, SEQ ID NO:1096, SEQ ID 2135 NO:1097, SEQ ID NO:1098, SEQ ID NO:1099,SEQ ID NO:1100, SEQ ID NO:1101, SEQ ID NO:1102, SEQ ID NO:1103, SEQID NO:1104, SEQ ID NO:1105, SEQ ID NO:1106, SEQ ID NO:1107, SEQ ID NO:1108, SEQ ID NO:1109, SEQ ID NO:1110, SEQ ID NO:1111, SEQ ID NO:1112, SEQ ID NO:1113, SEQ ID NO:1114, 2140 SEQ ID NO:1115, SEQ ID NO:1116,SEQ ID NO:1117, SEQ ID NO:1118, SEQ ID NO:1119, SEQ ID NO:1120, SEQID NO:1121, SEQ ID NO:1122, SEQ ID NO:1123, SEQ ID NO:1124, SEQ IDNO:1125, SEQ ID NO:1126, SEQ ID NO:1127, SEQ ID NO:1129, SEQ ID NO:1130, SEQ ID NO:1131, SEQ ID NO:1132, 2145 SEQ ID NO:1133, SEQ ID NO:1134, SEQ ID NO:1135, SEQ ID NO:1136, SEQ ID NO:1137, SEQ ID NO:1138, SEQ ID NO:1139, SEQ ID NO:1140, SEQ ID NO:1141, SEQ ID NO:1142, SEQ IDNO:1143, SEQ ID NO:1144, SEQ ID NO:1145, SEQ ID NO:1146, SEQ ID NO:1147, SEQ ID NO:1148, SEQ ID NO:1149, 2150 SEQ ID NO:1150, SEQ ID NO:1151, SEQ ID NO:1152, SEQ ID NO:1153, SEQ ID NO:1154, SEQ ID NO:1155,SEQ ID NO:1156, SEQ ID NO:1158, SEQ ID NO:1159, SEQ ID NO:1160, SEQID NO:1161, SEQ ID NO:1162, SEQ ID NO:1163, SEQ ID NO:1164, SEQ ID NO:1165, SEQ ID NO:1166, SEQ ID NO:1167, SEQ ID 2155 NO:1168, SEQ ID NO:1169, SEQ ID NO:1170, SEQ ID NO:1171, SEQ ID NO:1172, SEQ ID NO:1173,SEQ ID NO:1174, SEQ ID NO:1175, SEQ ID NO:1176, SEQ ID NO:1177, SEQID NO:1178, SEQ ID NO:1179, SEQ ID NO:1180, SEQ ID NO:1181, SEQ IDNO:1182, SEQ ID NO:1183, SEQ ID NO:1184, SEQ ID NO: 2160 1185, SEQ ID NO:1186, SEQ ID NO:1187, SEQ ID NO:1188, SEQ ID NO:1189, SEQ ID NO:1190, SEQ ID NO:1192, SEQ ID NO:1193, SEQ ID NO:1194, SEQ ID NO:1195, SEQ ID NO:1196, SEQ ID NO:1197, SEQ ID NO:1198, SEQ ID NO:1199, SEQ IDNO:1200, SEQ ID NO:1201, SEQ ID NO:1202, SEQ ID NO:

Appendix B: Hideo *et al.* Full Translation

2165 1203, SEQ ID NO:1204, SEQ ID NO:1205, SEQ ID NO:1206,
SEQ ID NO:1207, SEQ ID NO:1208, SEQ ID NO:1209, SEQ ID
NO:1210, SEQ ID NO:1211, SEQ ID NO:1213,SEQ ID NO:1214,
SEQ ID NO:1215, SEQ ID NO:1216, SEQ ID NO:1217, SEQID
NO:1218, SEQ ID NO:1219, SEQ ID NO:1220, SEQ ID NO:1221,
2170 SEQ ID NO:1222, SEQ ID NO:1223, SEQ ID NO:1224, SEQ ID
NO:1225, SEQ ID NO:1226, SEQ ID NO:1227, SEQ ID NO:1228,
SEQ ID NO:1229, SEQ ID NO:1230,SEQ ID NO:1231, SEQ ID
NO:1232, SEQ ID NO:1233, SEQ ID NO:1234, SEQID NO:1235,
SEQ ID NO:1236, SEQ ID NO:1237, SEQ ID NO:1238, SEQ
2175 IDNO:1239, SEQ ID NO:1241, SEQ ID NO:1242, SEQ ID NO:
1243, SEQ ID NO:1244, SEQ ID NO:1245, SEQ ID NO:1246,
SEQ ID NO:1247, SEQ ID NO:1248, SEQ ID NO:1249, SEQ ID
NO:1250, SEQ ID NO:1251, SEQ ID NO:1252, SEQ ID NO:1253,
SEQ ID NO:1254, SEQ ID NO:1255, SEQ ID NO:1256, SEQ
2180 IDNO:1257, SEQ ID NO:1259, SEQ ID NO:1260, SEQ ID NO:
1261, SEQ ID NO:1262, SEQ ID NO:1263, SEQ ID NO:1264,
SEQ ID NO:1265, SEQ ID NO:1266, SEQ ID NO:1267, SEQ ID
NO:1268, SEQ ID NO:1269, SEQ ID NO:1270,SEQ ID NO:1271,
SEQ ID NO:1272, SEQ ID NO:1273, SEQ ID NO:1275, SEQID
2185 NO:1276, SEQ ID NO:1277, SEQ ID NO:1278, SEQ ID NO:1279,
SEQ ID NO:1280, SEQ ID NO:1281, SEQ ID NO:1282, SEQ ID
NO:1283, SEQ ID NO:1284, SEQ ID NO:1285, SEQ ID NO:1286,
SEQ ID NO:1287, SEQ ID NO:1289,SEQ ID NO:1290, SEQ ID
NO:1291, SEQ ID NO:1292, SEQ ID NO:1293, SEQID NO:1294,
2190 SEQ ID NO:1295, SEQ ID NO:1296, SEQ ID NO:1297, SEQ
IDNO:1298, SEQ ID NO:1299, SEQ ID NO:1300, SEQ ID NO:
1301, SEQ ID NO:1303, SEQ ID NO:1304, SEQ ID NO:1305,
SEQ ID NO:1306, SEQ ID NO:1307, SEQ ID NO:1308, SEQ ID
NO:1310, SEQ ID NO:1311, SEQ ID NO:1312, SEQ ID NO:1313,
2195 SEQ ID NO:1314, SEQ ID NO:1315, SEQ ID NO:1316, SEQ
IDNO:1317, SEQ ID NO:1318, SEQ ID NO:1319, SEQ ID NO:
1320, SEQ ID NO:1322, SEQ ID NO:1323, SEQ ID NO:1324,
SEQ ID NO:1325, SEQ ID NO:1326, SEQ ID NO:1327, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO:1328, SEQ ID NO:1330, SEQ ID NO:1331,SEQ ID NO:1332,
2200 SEQ ID NO:1333, SEQ ID NO:1334, SEQ ID NO:1335, SEQID
NO:1336, SEQ ID NO:1337, SEQ ID NO:1339, SEQ ID NO:1340,
SEQ ID NO:1341, SEQ ID NO:1342, SEQ ID NO:1343, SEQ ID
NO:1344, SEQ ID NO:1345, SEQ ID NO:1346, SEQ ID NO:1347,
SEQ ID NO:1349, SEQ ID NO:1350,SEQ ID NO:1351, SEQ ID
2205 NO:1352, SEQ ID NO:1353, SEQ ID NO:1354, SEQID NO:1355,
SEQ ID NO:1356, SEQ ID NO:1357, SEQ ID NO:1358, SEQ
IDNO:1360, SEQ ID NO:1361, SEQ ID NO:1362, SEQ ID NO:
1363, SEQ ID NO:1364, SEQ ID NO:1365, SEQ ID NO:1367,
SEQ ID NO:1368, SEQ ID NO:1369, SEQ ID NO:1370, SEQ ID
2210 NO:1371, SEQ ID NO:1375, SEQ ID NO:1376, SEQ ID NO:1377,
SEQ ID NO:1378, SEQ ID NO:1379, SEQ ID NO:1381, SEQ
IDNO:1382, SEQ ID NO:1383, SEQ ID NO:1384, SEQ ID NO:
1385, SEQ ID NO:1387, SEQ ID NO:1388, SEQ ID NO:1389,
SEQ ID NO:1390, SEQ ID NO:1391, SEQ ID NO:1392, SEQ ID
2215 NO:1393, SEQ ID NO:1395, SEQ ID NO:1396,SEQ ID NO:1397,
SEQ ID NO:1398, SEQ ID NO:1399, SEQ ID NO:1400, SEQID
NO:1402, SEQ ID NO:1403, SEQ ID NO:1404, SEQ ID NO:1405,
SEQ ID NO:1406, SEQ ID NO:1407, SEQ ID NO:1409, SEQ ID
NO:1410, SEQ ID NO:1412, SEQ ID NO:1413, SEQ ID NO:1414,
2220 SEQ ID NO:1415, SEQ ID NO:1416,SEQ ID NO:1417, SEQ ID
NO:1419, SEQ ID NO:1420, SEQ ID NO:1421, SEQID NO:1422,
SEQ ID NO:1423, SEQ ID NO:1424, SEQ ID NO:1425, SEQ
IDNO:1427, SEQ ID NO:1428, SEQ ID NO:1429, SEQ ID NO:
1430, SEQ ID NO:1431, SEQ ID NO:1432, SEQ ID NO:1433,
2225 SEQ ID NO:1434, SEQ ID NO:1435, SEQ ID NO:1437, SEQ ID
NO:1438, SEQ ID NO:1439, SEQ ID NO:1440, SEQ ID NO:1441,
SEQ ID NO:1442, SEQ ID NO:1444, SEQ ID NO:1445, SEQ
IDNO:1446, SEQ ID NO:1447, SEQ ID NO:1448, SEQ ID NO:
1449, SEQ ID NO:1451, SEQ ID NO:1452, SEQ ID NO:1453,
2230 SEQ ID NO:1454, SEQ ID NO:1455, SEQ ID NO:1456, SEQ ID
NO:1458, SEQ ID NO:1459, SEQ ID NO:1461,SEQ ID NO:1462,
SEQ ID NO:1463, SEQ ID NO:1464, SEQ ID NO:1465, SEQID

Appendix B: Hideo *et al.* Full Translation

NO:1466, SEQ ID NO:1468, SEQ ID NO:1469, SEQ ID NO:1470,
SEQ ID NO:1472, SEQ ID NO:1474, SEQ ID NO:1475, SEQ ID
2235 NO:1476, SEQ ID NO:1477, SEQ ID NO:1479, SEQ ID NO:1480,
SEQ ID NO:1481, SEQ ID NO:1482, SEQ ID NO:1483, SEQ ID
NO:1484, SEQ ID NO:1485, SEQ ID NO:1486, SEQID NO:1488,
SEQ ID NO:1490, SEQ ID NO:1491, SEQ ID NO:1492, SEQ
IDNO:1493, SEQ ID NO:1495, SEQ ID NO:1496, SEQ ID NO:
2240 1497, SEQ ID NO:1498, SEQ ID NO:1500, SEQ ID NO:1502,
SEQ ID NO:1503, SEQ ID NO:1504, SEQ ID NO:1505, SEQ ID
NO:1507, SEQ ID NO:1509, SEQ ID NO:1512, SEQ ID NO:1513,
SEQ ID NO:1514, SEQ ID NO:1515, SEQ ID NO:1517, SEQ
IDNO:1518, SEQ ID NO:1519, SEQ ID NO:1521, SEQ ID NO:
2245 1522, SEQ ID NO:1523, SEQ ID NO:1524, SEQ ID NO:1525,
SEQ ID NO:1527, SEQ ID NO:1528, SEQ ID NO:1529, SEQ ID
NO:1530, SEQ ID NO:1531, SEQ ID NO:1533, SEQ ID NO:1534,
SEQ ID NO:1535, SEQ ID NO:1536, SEQ ID NO:1538, SEQID
NO:1539, SEQ ID NO:1541, SEQ ID NO:1542, SEQ ID NO:1543,
2250 SEQ ID NO:1544, SEQ ID NO:1546, SEQ ID NO:1548, SEQ ID
NO:1550, SEQ ID NO:1552, SEQ ID NO:1554, SEQ ID NO:1556,
SEQ ID NO:1557, SEQ ID NO:1559, SEQ ID NO:1560, SEQ ID
NO:1561, SEQ ID NO:1562, SEQ ID NO:1564, SEQID NO:1565,
SEQ ID NO:1567, SEQ ID NO:1568, SEQ ID NO:1570, SEQ
2255 IDNO:1572, SEQ ID NO:1573, SEQ ID NO:1574, SEQ ID NO:
1575, SEQ ID NO:1577, SEQ ID NO:1578, SEQ ID NO:1579,
SEQ ID NO:1581, SEQ ID NO:1582, SEQ ID NO:1583, SEQ ID
NO:1585, SEQ ID NO:1586, SEQ ID NO:1588, SEQ ID NO:1589,
SEQ ID NO:1590, SEQ ID NO:1592, SEQ ID NO:1593, SEQ
2260 IDNO:1595, SEQ ID NO:1597, SEQ ID NO:1598, SEQ ID NO:
1600, SEQ ID NO:1602, SEQ ID NO:1606, SEQ ID NO:1608,
SEQ ID NO:1609, SEQ ID NO:1610, SEQ ID NO:1611, SEQ ID
NO:1613, SEQ ID NO:1614, SEQ ID NO:1616, SEQ ID NO:1618,
SEQ ID NO:1620, SEQ ID NO:1621, SEQ ID NO:1623, SEQID
2265 NO:1625, SEQ ID NO:1628, SEQ ID NO:1630, SEQ ID NO:1631,
SEQ ID NO:1633, SEQ ID NO:1634, SEQ ID NO:1638, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO:1641, SEQ ID NO:1642, SEQ ID NO:1644, SEQ ID NO:1645, SEQ ID NO:1647, SEQ ID NO:1648, SEQ ID NO:1650, SEQ ID NO:1651, SEQ ID NO:1653, SEQ ID NO:1654, SEQ ID NO:1656, 2270 SEQ ID NO:1657, SEQ ID NO:1659, SEQ ID NO:1661, SEQ ID NO:1663, SEQ ID NO:1665, SEQ ID NO:1667, SEQ ID NO:1671, SEQ ID NO:1674, SEQ ID NO:1676, SEQ ID NO:1678, SEQ ID NO:1679, SEQ ID NO:1681, SEQ ID NO:1684, SEQ ID NO:1686, SEQ ID NO:1687, SEQ ID NO:1689, SEQ ID NO:1692, 2275 SEQ ID NO:1693, SEQ ID NO:1695, SEQ ID NO:1697, SEQ ID NO:1698, SEQ ID NO:1702, and SEQ ID NO:1703
, or (b) an amino acid sequence in the amino acid sequences set forth in (a) in which several amino acids are deleted, replaced or added.

2280 [0014]

The nucleic-acid molecule specific to enterohemorrhagic pathogenic *E. coli* O-157:H7 of the present invention, a gene included in the nucleic-acid molecule and a protein or a polypeptide encoded by the gene are found by determining all 2285 nucleotide sequences on the chromosome of O-157:H7 SAKAI and identifying a region and a nucleotide sequence specific to O-157:H7 which are absent from nonpathogenic *E. coli* K-12. The chromosomal nucleotide sequences of O-157:H7 determined by the present invention have been registered on June 26, 2000, 2290 as Accession No. BA000007 in GenBank DDBJ.

[0015]

Furthermore, after the registration of the whole chromosomal nucleotide sequence of O-157:H7 based on the present invention, close similar nucleotide sequences to those 2295 of the present invention was registered on October 22, 2000 (GenBank/AE00517H). However, when these sequences were registered, the sequences had two gaps and 2600 or more characters other than AGCT (undetermined base). Thus the sequences were imperfect. In addition, although the data 2300 thereof has been updated on September 25, 2001 and October 26,

Appendix B: Hideo *et al.* Full Translation

2001, merely one gap sequence was determined and 2600 or more undetermined bases were remained.

[0016]

2305 In addition, as to obtained genetic information, homology search and prediction of predictive ORF and function thereof may be performed by comparison of the amino acid sequence to all sequence found in GenBank, DDBJ, SWISS-PROT and PIR database using an algorithm known in the art, for example, BLAST algorithm and the like.

2310 [0017]

The O·157:H7 specific polypeptides of the present invention are proteins or polypeptides having a character set forth in the tables described below. From the information of amino acid sequence, the polypeptides are classified to the following groups: 1) Proteins having unknown function etc., 2) Proteins which have unknown function, but have significant homology to that of other bacteria, 3) Proteins comprising Insertion Sequence; IS, 4) Proteins derived from phage, 5) Regulatory element, 6) Proteins relating to fimbriae, 7) Proteins relating to transportation of substance, 8) Proteins relating to synthesis of lipopolysaccharide, 9) Proteins relating to metabolism, 10) Proteins processing DNA/RNA, 11) Proteins relating pathogenicity, 12) Other proteins.

[0018]

2325 List: polypeptides specific to enterohemorrhagic pathogenic E. coli O·157:H7

1) Proteins having a novel function

Sequence number: Hydrophobicity, The number of amino acids, Character such as function

2330 SEQ ID NO: 143: 0.610526, 39, novel

SEQ ID NO: 1438: -0.041667, 109, novel

SEQ ID NO: 1439: -0.505392, 817, an outer membrane usher protein precursor, similar to outer membrane usher protein precursors, for example ,YehB [Escherichia coli K-12]

Appendix B: Hideo *et al.* Full Translation

2335 gi|465572|sp|P33341|YEHB#ECOLI (58% identity in the
amino acids)
SEQ ID NO: 1440: -0.23304, 228, a putative fimbrial chaperone,
similar to fimbrial chaperone, for example, YehC [Escherichia
coli] gi|465573|sp|P33342|YEHC#ECOLI (56% identity in 221
amino acids), GTG start
SEQ ID NO: 1441: -0.121469, 178, a fimbrial major protein,
similar to YehD [Escherichia coli]
gi|465574|sp|P33343|YEHD#ECOLI (26% identity in
177 amino acids), and similar to long polar fimbrial major
2340 proteins [Salmonella typhimurium]
gi|1170815|sp|P43660|LPFA#SALTY (25% identity in 175
amino acids)
SEQ ID NO: 1442: -0.445877, 474, novel
SEQ ID NO: 1702: -0.448052, 78, similar to F plasmid CcdA
2345 protein (LetA protein) [Escherichia coli]
gi|9507755|ref|NP#061421.1 (30% identity in 70 amino acids)
SEQ ID NO: 1703: 0.210577, 105, similar to F plasmid CcdB
protein (LetB protein) [Escherichia coli]
gi|9507756|ref|NP#061422.1 (35% identity in 104 amino acids)
2350 SEQ ID NO: 1663: -0.478836, 190, similar to YABP#ECOLI
gi|2506583|sp|P39220 (38% identity in 168 amino acids)
SEQ ID NO: 1387: 0.060434, 370, a fimbrial protein, similar to
putative putative fimbrial proteins, for example, [Escherichia
coli] gi|538781|pir||B47152 (27% identity in the amino acids),
2355 and long polar fimbrial minor protein LpfE [Salmonella
typhimurium] gi|1170819|sp|P43664|LPFE#SALTY (27%
identity in 157 amino acids)
SEQ ID NO: 1388: -0.140816, 197, a putative fimbrial protein,
similar to putative fimbrial protein YadK [Escherichia coli]
2360 gi|549488|sp|P37016|YADK#ECOLI (40% identity in 190
amino acids)
SEQ ID NO: 1389: -0.034826, 202, a putative fimbrial protein,
similar to putative fimbrial protein YadL [Escherichia coli]

Appendix B: Hideo *et al.* Full Translation

gi|549489|sp|P37017|YADL#ECOLI (41% identity in 192 amino acids)
2370 SEQ ID NO: 1390: -0.011828, 187, a putative fimbrial protein, similar to putative fimbrial-like protein YadM [Escherichia coli]
gi|549490|sp|P37018|YADM#ECOLI (49% identity in 173 amino acids)

2375 SEQ ID NO: 1391: -0.387529, 867, similar to HTRE#ECOLI
gi|1786332 (60% identity in 849 amino acids) [a putative outer membrane porin protein]
SEQ ID NO: 1392: -0.250623, 242, similar to ECPD#ECOLI
gi|1786333 (60% identity in 239 amino acids) [a putative pilin chaperone]
2380 SEQ ID NO: 1393: 0.058586, 199, similar to YADN#ECOLI
gi|1786334 (39% identity in 195 amino acids) [a putative fimbrial-like protein]
SEQ ID NO: 979: -0.333674, 99, novel

2385 SEQ ID NO: 980: -0.245638, 150, novel
SEQ ID NO: 981: -0.622325, 216, novel, TTG start
SEQ ID NO: 982: -0.842466, 74, novel
SEQ ID NO: 983: -0.172956, 160, novel, similar to hypothetical 44.2kD protein YhhZ [Escherichia coli (strain K-12)]
2390 gi|1176284|sp|P46855|YHHZ#ECOLI (38% identity in 148 amino acids); and hemolysin-coregulated protein Hcp [Vibrio cholerae] gi|7467495|pir||T10891 (32% identity in 149 amino acids)
SEQ ID NO: 984: -0.448614, 470, novel

2395 SEQ ID NO: 985: -0.402126, 1036, novel, similar to IcmF protein [Legionella pneumophila] gi|7465644|pir||T18341 (20% identity in 1037 amino acids)
SEQ ID NO: 986: 0.637097, 63, novel, GTG start
SEQ ID NO: 987: -0.321591, 265, novel, GTG start

2400 SEQ ID NO: 988: -0.206311, 207, novel
SEQ ID NO: 989: 0.001619, 248, novel
SEQ ID NO: 990: -0.129036, 924, a putative ATP-dependent Clp

Appendix B: Hideo *et al.* Full Translation

protease ATP-binding chain, similar to ATP-dependent Clp protease ATP-binding chain, for example, ClpB,
2405 gi|7428220|pir||T07807, (40% identity in 753 amino acids)
SEQ ID NO: 991: -0.11502, 254, novel [a putative membrane protein; IMP]
SEQ ID NO: 992: -0.345146, 444, novel, its C-terminal part is
similar to hypothetical protein z29f [Vibrio cholerae]
2410 gi|3341578|emb|Caa13133.1|(51% identity in 104 amino acids)
SEQ ID NO: 993 : -0.308046, 175, novel [a hypothetical lipoprotein]
SEQ ID NO: 994: -0.442019, 427, novel
SEQ ID NO: 995: -0.298333, 361, novel
2415 SEQ ID NO: 996: -0.314935, 617, novel
SEQ ID NO: 997: -0.648175, 138, novel, similar to base plate proteins and acidicylosozymes [coliphage T4]
gi|137980|sp|P09425|VG25#BPT4 (34% identity in 62 amino acids) (at low level)
2420 SEQ ID NO: 998 : -0.380777, 464, novel, similar to hypothetical 54.5 kDa protein [Edwardsiella ictaluri]
gi|2708666|gb|aaB92576.1|(41% identity in 461 amino acids)
SEQ ID NO: 999: 0.109459, 75, novel
SEQ ID NO: 1000 : -0.366868, 167, novel, similar to a
2425 hypothetical protein [Escherichia coli]
gi|2920642|gb|aaC32477.1| (99% identity in 166 amino acids); and a hypothetical 19.5 kDa protein [Edwardsiella ictaluri]
gi|2708667|gb|aaB92577.1|(32% identity in 148 amino acids)
SEQ ID NO: 1001: -0.39593, 173, novel
2430 SEQ ID NO: 1002: -0.16, 46, novel
SEQ ID NO: 1003: -0.416269, 714, novel, similar to VgrG proteins, for example, [Escherichia coli strain ec11]
gi|2920640|gb|aaC32475.1| (98% identity in 713 amino acids)
SEQ ID NO: 1004: -0.707907, 1405, an Rhs protein, similar to
2435 RhsH protein, for example, [Escherichia coli strain EC45]
gi|2920634|gb|aaC32471.1| (92% identity in 1264 amino acids)

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 1005: -0.704433, 204, novel, similar to YbeQ [Escherichia coli] gi|3025010|sp|P77234| (23% identity in 172 amino acids); and YibG [Escherichia coli] 2440 gi|418454|sp|P32106|YIBG#ECOLI (30% identity in 89 amino acids)

SEQ ID NO: 1006: -0.305, 61, novel

SEQ ID NO: 1007 : 1.333333, 97, novel [a hypothetical membrane protein; IMP]

2445 SEQ ID NO: 1008 : -0.33836, 379, novel, similar to H repeat-associated proteins, for example, [Escherichia coli RhsB element] gi|140772|sp|P28912| (97% identity in 378 amino acids)

SEQ ID NO: 1009: -0.746417, 587, an Rhs protein, similar to 2450 Rhs core proteins, for example, RhsE [Escherichia coli] gi|2507113|sp|P24211|RHSE#ECOLI, TTG start

SEQ ID NO: 1010: 0.701786, 57, novel, similar to N-terminal part of hypothetical protein, for example, ORF E2 in Rhs element [Escherichia coli] gi|2851489|sp|P31991|(92% 2455 identity in 56 amino acids)

SEQ ID NO: 1011: -0.614943, 88, novel, similar to C-terminal part of hypothetical protein, for example, ORF E2 in Rhs element [Escherichia coli] gi|2851489|sp|P31991|(99% identity in 108 amino acids)

2460 SEQ ID NO: 1012 : -0.31718, 391, novel, similar to H repeat-associated proteins, for example, [Escherichia coli RhsB element] gi|7465875|pir||E64898 (58% identity in 372 amino acids), GTG start

SEQ ID NO: 1094: -0.673765, 325, a putative integrase, similar 2465 to integrases, for example, [Shigella flexneri bacteriophage V] gi|2465477|gb|aab72135.1| (88% identity in 305 amino acids)

SEQ ID NO: 1095 : -1.175308, 82, a transcription antitermination protein, partially similar to transcription antitermination protein N [Bacteriophage lambda] 2470 gi|73111|pir||VNBPL, (90% identity in 42 amino acids), may

Appendix B: Hideo *et al.* Full Translation

be disrupted

SEQ ID NO: 1096: -0.473644, 130, novel, similar to N-terminal part of hypothetical protein HP1334 [Helicobacter pylori (strain 26695)] gi|7464516|pir||F64686 (36% identity in 111 amino acids); and N-terminal part of hypothetical protein [Neisseria meningitidis] gi|6900422|emb|CAB72032.1|(31% identity in 113 amino acids)

2475 SEQ ID NO: 1097: -0.28903, 238, a prophage repressor CI, similar to prophage repressor CI, for example, [Bacteriophage HK97] gi|6901592|gb|aaF31095.1|AF069529#8 (AF069529) (99% identity in 237 amino acids)

2480 SEQ ID NO: 1098: -0.486364, 67, a Cro repressor, identical to regulatory protein Cro [phage lambda] gi|73101|pir||RCBPL; and similar to Cro protein, for example , [Bacteriophage HK97] gi|6901626|gb|aaF31129.1| (98% identity in 66amino acid)

2485 SEQ ID NO: 1099: -0.309278, 98, a regulatory protein cII, identical to regulatory protein cII [Bacteriophage lambda] gi|73106|pir||QCBP2L

2490 SEQ ID NO: 1100: -0.622772, 203, a phage replication protein, similar to N-terminal part of phage replication protein, for example, O protein [Bacteriophage lambda] gi|75891|pir||ORBPL (88% identity in 163 amino acids), interrupted by frameshift

2495 SEQ ID NO: 1101: -0.811764, 171, a phage replication protein, similar to C-terminal part of replication protein, for example, protein O [Bacteriophage lambda] gi|75891|pir||ORBPL (98% identity in 168 amino acids) , interrupted by frameshift

2500 SEQ ID NO: 1102: -0.002913, 104, a replication protein, its N-terminal part (amino acids at the position 1-21) is identical to replication protein P, for example, [Bacteriophage lambda] gi|75893|pir||PQBPL, probably disrupted

SEQ ID NO: 1103: -0.026894, 265, a putative tail fiber protein, partially similar to tail fiber proteins, for example, [Bacteriophage HK97] gi|6901608|gb|aaF31111.1| (AF069529)

Appendix B: Hideo *et al.* Full Translation

2505 (42% identity in 155 amino acids); and similar to Sc/SvQ protein (DNA inversion product) [Escherichia coli plasmid p15B], for example, gi|96420|pir||S18690 (45% identity in 159 amino acids)
SEQ ID NO: 1104: -0.33198, 198, novel, similar to hypothetical
2510 proteins, for example, YcfA protein [Escherichia coli] gi|2506641|sp|P09153|YCFA#ECOLI (65% identity in 196 amino acids); Gp29 [Bacteriophage HK97] gi|6901609|gb|aaF31112.1|(66% identity in 192 amino acids); and T protein [Escherichia coli plasmid p15B]
2515 gi|96096|pir||S18684 (55% identity in 184 amino acids)
SEQ ID NO: 1105: -0.586394, 148, novel, similar to hypothetical proteins, for example, YfdK [Escherichia coli(strain K-12)] gi|3915468|sp|P77656|YFDK#ECOLI (68% identity in 144 amino acids)
2520 SEQ ID NO: 1106: -0.114706, 137, a putative tail fiber protein, similar to hypothetical proteins, for example, YfdL [Escherichia coli (strain K-12)] gi|2495635|sp|P76508|YFDL#ECOLI (52% identity in 67 amino acids); and putative tail fiber protein YcfE [Escherichia coli cryptic prophage e14] gi|7444558|pir||B64861 (51% identity in 45 amino acids)
2525 SEQ ID NO: 1107: -0.234783, 185, a DNA-invertase, similar to DNA-invertases, for example, Pin [Escherichia coli] gi|72978|pir||JWEC (96% identity in 184 amino acids)
SEQ ID NO: 1108: -0.386771, 258, novel, similar to hypothetical
2530 protein [Deinococcus radiodurans (strain R1)] gi|7472205|pir||B75431 (32% identity in 249 amino acids)
SEQ ID NO: 1109: 0.763265, 50, novel
SEQ ID NO: 1110: 0.052227, 248, a putative transcription regulatory element, similar to transcription regulatory elements, for example, putative AraC-type regulatory protein YdeO gi|6176587|sp|P76135|YDEO#ECOLI (34% identity in 247 amino acids)
SEQ ID NO: 1111: -0.741026, 118, novel, similar to C-terminal

Appendix B: Hideo *et al.* Full Translation

part of hypothetical protein, for example, [Escherichia coli insertion sequence IS2] gi|140808|sp|P19777|YI22#ECOLI (77% identity in 113 amino acids), may be disrupted
2540 SEQ ID NO: 1112: -0.510941, 394, a putative integrase, similar to integrases, for example, [phage phi-R73] gi|93827|pir||A42465 (61% identity in 388 amino acid)

2545 SEQ ID NO: 1113: -0.468841, 139, novel, GTG start
SEQ ID NO: 1114: -0.227805, 206, novel
SEQ ID NO: 1115: -0.045395, 153, novel
SEQ ID NO: 1116: -0.460952, 211, novel
SEQ ID NO: 1117: -0.462755, 197, novel, similar to
2550 hypothetical protein PFB0765w [malaria parasite] gi|7494317|pir||E71606 (24% identity in 193 amino acids) (at low level), TTG start
SEQ ID NO: 1118: -0.432979, 189, novel
SEQ ID NO: 1119: -0.854445, 91, a putative transcription
2555 activator, similar to Ogr family, for example, LsrS [Rahnellaaquatilis] gi|93826|pir||E42465 (41% identity and 65 amino acids); and delta protein [phage phi-R73] gi|93826|pir||E42465 (36% identity in 76 amino acids)
SEQ ID NO: 1120: -0.291803, 184, a putative polarity
2560 suppression protein (amber mutation-suppression); similar to Psu-like proteins, for example, Psu [Bacteriophage P4] gi|1351414|sp|P05460|VPSU#BPP4 (30% identity in 166 amino acids)
SEQ ID NO: 1121: -0.4748, 251, a head size determination
2565 [protein], similar to head size determination proteins, for example, Sid [phage phi-R73] gi|93821|pir||F42465 (22% identity in 236 amino acids)
SEQ ID NO: 1122: -0.126744, 87, a putative DNA binding protein, similar to hypothetical proteins, for example, putative
2570 DNA binding protein ORF88 [satellite phage P4] gi|140147|sp|P12552|Y9K#BPP4 (65% identity in 82 amino acids)

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 1123: 0.40973, 186, a CI phage repressor, similar
to CI repressors, for example, [Bacteriophage P4]
2575 gi|1262833|emb|Caa35902.1| (67% identity in 115 amino
acids)

SEQ ID NO: 1124: -0.149315, 74, novel

SEQ ID NO: 1125: 0.202804, 108, a putative copy number
control protein, similar to orf106 [satellite phage P4]
2580 gi|75896|pir||QQBPP4 (71% identity in 98amino acids)

SEQ ID NO: 1126: -0.193179, 778, a putative DNA primase,
similar to DNA primases, for example, alpha gene product
[satellite phage P4] gi|130905|sp|P10277|PRIM#BPP4 (72%
identity in 770 amino acids)

2585 SEQ ID NO: 1127 : -0.333019, 319, novel, similar to
hypothetical protein 111401 [Synechocystis sp. (strain PCC
6803)] gi|7470073|pir||S74462 (21% identity in 206 amino
acids), GTG start

SEQ ID NO: 1451: 0.23625, 241, a putative oxidoreductase,
2590 similar to oxidoreductases, for example, [Streptomyces
coelicolor A3(2)] gi|6137024|emb|CAB59579.1| (55% identity
in 237 amino acids)

SEQ ID NO: 1452: 0.520652, 93, novel [hypothetical membrane
protein; IMP]

2595 SEQ ID NO: 1453: 0.246154, 53, novel

SEQ ID NO: 1454: -0.246667, 301, a putative transcription
regulatory element (LysR family), similar to transcription
regulatory elements , for example ,[Xylella fastidiosa]
gi|9106842|gb|aaF84577.1|AE003999#5 (40% identity in
2600 290amino acids)

SEQ ID NO: 1455 : -0.309788, 379, novel, similar to
hypothetical protein, for example ,[Pseudomonas aeruginosa]
gi|732227|sp|Q01609|YODE#PSEAE (54% identity in
376amino acids)

2605 SEQ ID NO: 1456 : 0.996977, 398, a putative transporter
protein, similar to transporters, for example, OpdE

Appendix B: Hideo *et al.* Full Translation

[*Pseudomonas aeruginosa*] gi|400678|sp|Q01602|OPDE#PSEAE (60% identity in 396 amino acid)

2610 SEQ ID NO: - : 0.215625, 97, novel
SEQ ID NO: 1577 : -0.388722, 134, novel, similar to hypothetical proteins, for example, L0013 [*Escherichia coli* O-157:H7 strain EDL933] gi|3414881|gb|aaC31492.1| (99% identity in 133 amino acids), GTG start

2615 SEQ ID NO: 1578: 0.010435, 116, novel, similar to hypothetical protein, for example, L0014 [*Escherichia coli* O-157:H7 strain EDL933] gi|3288157|emb|Caa11510.1| (100% identity in 115 amino acids)
SEQ ID NO: 1579 : -0.445312, 513, novel, similar to hypothetical proteins, for example, L0015 [*Escherichia coli* O-157:H7 strain EDL933] gi|3414883|gb|aaC31494.1| (100% identity in 512 amino acids)

2620 SEQ ID NO: - : -0.171316, 381, a putative NADH-dependent flavin oxidoreductase, similar to YqiG [*Bacillus subtilis*] gi|1731054|sp|P54524|YQIG#BACSU (40% identity in 380 amino acids)

2625 SEQ ID NO: 1495 : -0.089543, 307, novel, similar to hypothetical proteins, for example, [*Escherichia coli* K-12] gi|3183244|sp|P76049|YCJY#ECOLI (40% identity in 294 amino acids) [in Tpx-Fnr intergenic region]

2630 SEQ ID NO: 1496: -0.058117, 309, a putative transcription regulatory element, similar to transcription regulatory elements, for example, [*Escherichia coli*] gi|2495398|sp|P75836|YCAN#ECOLI (38% identity in 291 amino acids) [in DmsC-PflA intergenic region]

2635 SEQ ID NO: 1497: -0.218644, 119, novel
SEQ ID NO: 1498: -0.25445, 192, a putative oxidoreductase, similar to N-terminal part of oxidoreductase [aldo/keto reductase family] (amino acids at the position 5-192/286), and

2640 similar to [*Thermotoga maritima*] gi|7431104|pir| |A72308

Appendix B: Hideo *et al.* Full Translation

(59% identity in 185 amino acids)

- SEQ ID NO: - : -0.289344, 1418, a putative invasin, similar to putative membrane protein b1978 [Escherichia coli] gi|7466779|pir||D64962 (32% identity in 1352 amino acids)
- 2645 and similar to vasins, for example, [Yersinia pestis] gi|726319|gb|aaA96352.1|(36% identity in 661 amino acids), and similar to intimins, for example, [Escherichia coli strain 4221] gi|1947048|gb|aa SEQ ID NO: acid B52913.1| [sic, gi|1947048|gb|aaB52913.1|] (30% identity in 874 amino acids)
- 2650 SEQ ID NO: - : -0.170242, 290, a putative reductase, similar to reductases, for example, oxidoreductase, [Thermotoga maritima] gi|7431104|pir||A72308 (46% identity in 281 amino acids)
- SEQ ID NO: 1479: 0.107317, 83, novel, similar to hypothetical
- 2655 protein YaiU [Escherichia coli] gi|2495526|sp|P75700|YAIU#ECOLI (37% identity in 54 amino acids) [putative flagellin structural protein in HemB-sbmA intergenic region]
- SEQ ID NO: 1480 -0.156319, 365, a putative adhesin, similar to
- 2660 high molecular weight adhesin, for example, HmwA [Haemophilus influenzae] gi|5929966|gb|aaD56660.1|AF180944#1 (19% identity in 199 amino acids)
- SEQ ID NO: 1481: -0.088933, 254, novel
- 2665 SEQ ID NO: 1482: -0.235772, 124, novel, similar to a part of hypothetical protein [Escherichia coli] gi|2506596|sp|P21514|YAHA#ECOLI (48% identity in 38 amino acids) ; and similar to regulatory elements, for example, ,BvgA [Bordetella bronchiseptica] gi|115157|sp|P16574|BVGA#BORPE (44% identity in 49 amino acids), GTG start
- SEQ ID NO: 1483: 0.530909, 56, novel
- SEQ ID NO: 1484: -0.632692, 53, a putative fimbriaeregulatory protein, similar to invertase (partial), C-terminal part of type 1

Appendix B: Hideo *et al.* Full Translation

2675 fimbriae regulatory proteins, for example, FimE [Escherichia coli K-12] gi|120167|sp|P04741|FIME#ECOLI (73% identity in 49 amino acids); and FimB [Escherichia coli] gi|729489|sp|P04742|FIMB#ECOLI (63% identity in 75 amino acids)

2680 SEQ ID NO: 1485 : -0.365069, 147, a putative fimbriae regulatory protein, invertase, similar to a part of type 1 fimbriae regulatory proteins, for example, FimB [Escherichia coli K-12] gi|729489|sp|P04742|FIMB#ECOLI (49% identity in 114 amino acids); and FimE [Escherichia coli] gi|120167|sp|P04741|FIME#ECOLI (42% identity in 113 amino acids), TTG start, probably interrupted

SEQ ID NO: 1486: 1.684091, 45, novel

SEQ ID NO: - : 0.114286, 50, novel

SEQ ID NO: 1500: -0.450414, 1328, a putative adhesin, similar 2690 to AidA-I adhesin precursors, for example, [Escherichia coli plasmid F] gi|8918851|dbj|Baa97898.1| (45% identity in 1179 amino acids); similar to IgA1 protease homolog MisL [Salmonella typhimurium pathogenicity island SPI-3] gi|4324610|gb|aaD16954.1| (39% identity in 768 amino acids); 2695 and similar to VirG [Shigella flexneri] gi|96922|pir||A32247 (31% identity in 1014 amino acids)

SEQ ID NO: 1502: -0.081707, 329, a putative sugar-binding protein, similar to sugar-binding proteins, for example, b1516 [Escherichia coli] gi|7466925|pir||G64905 (27% identity in 2700 309 amino acids)

SEQ ID NO: 1503: -0.030233, 87, a putative ABC transporter ATP-binding protein, similar to N-terminal part of ABC transporter ATP-binding protein, for example, [Streptomyces coelicolor A3(2)] gi|7479110|pir||T34924 (48% identity in 82 amino acid) [also to AraG-E.coli]

SEQ ID NO: 1504: 0.144865, 371, a putative ABCtransporter ATP-binding protein, similar to C-terminal part of sugar ABC transporter ATP-binding proteins, for example, [Bacillus

Appendix B: Hideo *et al.* Full Translation

subtilis] gi|7404442|sp|P36947|RBSA#BACSU (36% identity
2710 in 380 amino acids)
SEQ ID NO: 1505: 0.929412, 324, a putative ABC transporter
(permease), similar to ABC transport system permeases, for
example, RbsC [Bacillus subtilis] gi|7446897|pir||B69690
(34% identity in 299 amino acids), and [Escherichia coli]
2715 gi|400960|sp|P04984|RBSC#ECOLI (31% identity in 298
amino acids)
SEQ ID NO: - : 1.081132, 319, a putative ABCtransport
system permease, similar to ABC transport system permeases,
for example, RbsC [Escherichia coli] gi|78833|pir||C26304
2720 (35% identity in 291 amino acids), and [Bacillus subtilis]
gi|7446897|pir||B69690 (34% identity in 290 amino acids)
SEQ ID NO: - : -0.118928, 318, a putative transcription
regulatory element, similar to araC-family transcription
regulatory elements, for example, AdpA [Streptomyces
2725 coelicolor A3(2)] gi|7544056|emb|CAB87229.1 (39% identity in
311 amino acids)
SEQ ID NO: 1606: -0.14084, 263, similar to YDDR#BACSU
gi|7474951|pir||H69776 (47% identity in 259 amino acids)
SEQ ID NO: 1360: -0.236079, 353, probably an ABC transporter
2730 ATP-binding protein (probably ferric transport system), similar
to ABC transporter ATP-binding proteins, for example, AfuC
[Escherichia coli K-12] gi|2506109|sp|P37009|AFUC#ECOLI
(94% identity in 352 amino acids)
SEQ ID NO: 1361: 0.860259, 693, a putative ferrictransport
2735 systempermease, similar to ferrictransport systempermeases,
for example, AfuB [Actinobacillus pleuropneumoniael]
gi|7387527|sp|Q44123|AFUB#ACTPL (66% identity in 671
amino acids)
SEQ ID NO: 1362 : -0.371429, 344, a putative
2740 periplasmic-iron-binding protein, similar to
periplasmic-iron-binding proteins, for example, AfuA
[Actinobacillus pleuropneumoniael] gi|1469286|gb|aaB05032.1|

Appendix B: Hideo *et al.* Full Translation

(72% identity in 343 amino acids)

SEQ ID NO: 1363 : 0.585714, 435, a putative regulatory element, similar to hexosephosphate transport systemregulatory proteins, for example, UhpC [Escherichia coli K-12] gi|136770|sp|P09836|UHPC#ECOLI (53% identity in 415 amino acids)

2745

SEQ ID NO: 1364: 0.329436, 514, a putative sensor histidine protein kinase, similar to sensor protein kinases, for example, hexosephosphatetransport systemsensor protein UhpB [Escherichia coli K-12] gi|7429062|pir||RGEUCUB (35% identity in 497 amino acids)

2750

SEQ ID NO: 1365: 0.151196, 210, a putative transcription regulatory element (probably a response regulatory element), similar to transcription regulatory elements, for example, hexose phosphate transport system regulatory protein UhpA[Salmonella typhimurium] gi|136767|sp|P27667|UHPA#SALTY (49% identity in 202

2755

2760 amino acids); and UhpA [Escherichia coli] gi|136766|sp|P10940|UHPA#ECOLI (48% identity in 202 amino acid)

SEQ ID NO: - : 0.595302, 150, novel

SEQ ID NO: 1625: -0.624948, 482, novel

2765 SEQ ID NO: 1697: -0.57125, 81, novel, similar to a part of hypothetical protein [Yersinia enterocolitica] gi|3511032|gb|aaC33681.1 (at the position 1-70 of 80 amino acids) (45% identity in 70 amino acids)

SEQ ID NO: 1698: -0.341936, 94, novel, similar to hypothetical

2770 protein (99 amino acids) [Yersinia pestis] gi|3822096|gb|aaC69816.1 (35% identity in 89 amino acids)

SEQ ID NO: 1602: -0.638432, 524, novel

SEQ ID NO: 1056: -0.363636, 452, a putative transporter (an outer membrane protein), similar to outer membrane

2775 transporter proteins, for example, CyaE protein [Bordetella pertussis] gi|117799|sp|P11092|CYAE#BORPE (25% identity

Appendix B: Hideo *et al.* Full Translation

in 385 amino acids)

SEQ ID NO: 1057 : 0.097741, 1462, novel, similar to hypothetical proteins, for example, [Synechocystis sp. strain PCC 6803] gi|7469433|pir||S76109 (33% identity in 1384 amino acids); similar to RTX protein [Aeromonas salmonicida] gi|6752871|gb|aaF27914.1|AF218037#1 (33% identity in 1384 amino acids)

2780 SEQ ID NO: 1058 : - , 5292, novel, similar to hypothetical proteins, for example, [Synechocystis sp. strain PCC 6803] gi|7469433|pir||S76109 (36% identity in 2014 amino acids), and similar to RTX protein [Aeromonas salmonicida] gi|6752871|gb|aaF27914.1|AF218037#1 (36% identity in 2051 amino acids); hemagglutinin [Streptococcus 2785 gordonii] gi|8885520|dbj|Baa97453.1| (35% identity in 2056 amino acids), GTG start

SEQ ID NO: 1059 : 0.082011, 707, a putative transporter, similar to transporteres (ATP-binding proteins), for example, LktB [Actinobacillus 2790 actinomycetemcomitans] gi|126357|sp|P23702|HLYB#ACTAC (26% identity in 690 amino acids)

SEQ ID NO: - : -0.275448, 392, a putative transporter, similar to membrane fusion proteins, for example, [Sinorhizobium meliloti] gi|4689001|emb|CAB41456.1| (28% 2800 identity in 372 amino acids)

SEQ ID NO: 1559: -0.082857, 141, novel

SEQ ID NO: 1560: 0.236364, 56, novel

SEQ ID NO: 1561: -0.525147, 339, a putative adhesin/invasin, similar to surface protein [Xylella fastidiosa] 2805 gi|9106565|gb|aaF84338.1|AE003982#11 (22% identity in 313 amino acids); and putative adhesin/invasin [Neisseria meningitidis MC58] gi|7227256|gb|aaF42321.1| (23% identity in 337 amino acid)

SEQ ID NO: 1562: -0.5825, 121, novel

2810 SEQ ID NO: - : -0.746575, 74, novel, similar to a part of

Appendix B: Hideo *et al.* Full Translation

hypothetical protein YahH [Escherichia coli] gi|2495514|sp|P75690|YAHH#ECOLI (69% identity in 23 amino acids)

SEQ ID NO: 1303: -0.35, 379, an H repeat-associated protein, similar to H repeat-associated protein in RhsB element [Escherichia coli] gi|140772|sp|P28912|YHHI#ECOLI (97% identity in 378 amino acids)

2815 SEQ ID NO: 1304: -0.745946, 445, an Rhs protein, similar to putative Rhs proteintreptomyces coelicolor A3(2) gi|7321289|emb|CAB82067.1| (34% identity in 285 amino acids); and RhsE protein - E. coli gi|2507113|sp|P24211| (36% identity in 139 amino acids), GTG start

2820 SEQ ID NO: 1305: -0.224444, 136, novel

SEQ ID NO: 1306: -0.577477, 1617, an Rhs protein, similar to putative Rhs protein [Streptomyces coelicolor A3(2)] gi|7321289|emb|CAB82067.1| (30% identity in 857 amino acids); and RhsH protein [Escherichia coli strain ec45] gi|2920634|gb|aaC32471.1| (25% identity in 919 amino acids)

2825 SEQ ID NO: 1307: -0.498693, 154, novel

SEQ ID NO: 1308: -0.509795, 634, a putative Vgr protein, similar to Vgr protein, for example, [Escherichia coli strain ec11] gi|2920640|gb|aaC32475.1| (93% identity in 529 amino acid)

2830 SEQ ID NO: 1474: -0.281303, 354, similar to YBGO#ECOLI gi|1786935 (87% identity in 353 amino acids), but [having] differeint N-terminus

SEQ ID NO: 1475: -0.419342, 244, similar to YBGP#ECOLI gi|1786936 (78% identity in 242 amino acids) [putative chaperone]

2835 SEQ ID NO: 1476: -0.430567, 724, similar to N-terminal part of YBGQ#ECOLI gi|1786937 (amino acids at the position 1-723/818) (84% identity in 723 amino acids) [putative outer membrane protein]

SEQ ID NO: 1477: -0.026943, 194, similar to YBGD#ECOLI

Appendix B: Hideo *et al.* Full Translation

2845 gi|1786938 (79% identity in 188 amino acids) [putative
fimbrial-like protein]
SEQ ID NO: 1275 : -0.0701, 302, a putative transcription
regulatory element, similar to transcription regulatory
elements, for example, glycine cleavage system transcription
activator (gcv operon activator) - Escherichia coli
gi|417043|sp|P32064|GCVA#ECOLI (31% identity in 300
amino acids)
SEQ ID NO: 1276 : -0.4, 201, a putative cob(I)alamin
adenosyltransferase, similar to cob(I)alamin
2850 adenosyltransferases (corrinoid adenosyltransferases), for
example, [Escherichia coli]
gi|115148|sp|P13040|BTUR#ECOLI (67% identity in 200
amino acids)
SEQ ID NO: 1277 : -0.259636, 551, a putative fumarate
hydratase, similar to fumarate hydratases, for example,
fumarate hydratase class I, aerobic (fumarase) - Escherichia
coli gi|120598|sp|P00923|FUMA#ECOLI (68% identity in 545
amino acids)
SEQ ID NO: 1278: 0.92183, 427, a putative transporter protein,
2865 similar to glutamate/aspartatetransporter proteins (proton
glutamate symport proteins), for example, [Bacillus
stearothermophilus] gi|121467|sp|P24943|GLTT#BACST (38%
identity in 416 amino acids), and similar to
C4-dicarboxylatetransporter proteins, for example, [Rhizobium
2870 l for example, uminosarum]
gi|231980|sp|Q01857|DCTA#RHILE (37% identity in 400
amino acids)
SEQ ID NO: 1279: -0.126667, 106, novel
SEQ ID NO: 1280 : -0.052632, 457, novel, similar to an
2875 unnamed protein product [Citrobacter amalonaticus]
gi|3184398|dbj|Baa28710.1| (93% identity in 284 amino acids)
SEQ ID NO: 1281 : -0.051816, 414, a 3-methylaspartate
ammonialyase (beta-methylaspartase), similar to

Appendix B: Hideo *et al.* Full Translation

3-methylaspartate ammonia-lyases (beta-methylaspartases), for
2880 example, [Citrobacter amalonaticus] gi|3184397|dbj|Baa28709.1| (93% identity in 413 amino acids); and [Clostridium tetanomorphum] gi|729971|sp|Q05514|MaaL#CLOTT (55% identity in 409 amino acids)

2885 SEQ ID NO: 1282 : -0.214345, 482, a probable glutamate mutase E (methylaspartate mutase E), similar to glutamate mutases, for example, [Citrobacter amalonaticus] gi|3184396|dbj|Baa28708.1| (90% identity in 481 amino acids), and [Clostridium tetanomorphum] gi|729586|sp|Q05509|GLME#CLOTT (57% identity in 481 amino acids)

2890 SEQ ID NO: 1283 : -0.058875, 463, a probable glutamate mutase L (methylaspartate mutase L), similar to glutamate mutase L (methylaspartate mutase L), for example, [Clostridium tetanomorphum] gi|444421|prf||1907157C (32% identity in 449 amino acids)

2895 SEQ ID NO: 1284: 0.061074, 150, a probable glutamate mutase S (methylaspartate mutase S), similar to glutamate mutase S (methylaspartate mutase S), for example, [Clostridium Cochlearium] gi|7245512|pdb|1CCW|A (57% identity in 156 amino acids)

2900 SEQ ID NO: 1285: -0.278182, 56, novel

SEQ ID NO: 1286: -0.114286, 141, novel

SEQ ID NO: 1287: -0.327388, 315, novel

2905 SEQ ID NO: 928: -0.906945, 73, an excisionase, identical to excisionase [BacteriophageHK022] gi|1722835|sp|P11683|VXIS#BP434; and similar to excisionase [Bacteriophagelambda] gi|139680|sp|P03699|VXIS#LAMBD (98% identity in 72 amino acids)

2910 SEQ ID NO: 929: -0.565455, 56, novel, similar to hypothetical protein ORF55 [Bacteriophage 434] gi|801889|gb|aaA67903.1|

Appendix B: Hideo *et al.* Full Translation

(98% identity in 55 amino acids)

SEQ ID NO: 930: -0.0725, 41, novel, similar to hypothetical
2915 protein ORF-91 [phage 434] gi|93720|pir||A27354 (82%
identity in 28 amino acids)

SEQ ID NO: 931: 0.247159, 177, novel [putative membrane
protein; IMP]

SEQ ID NO: 932: -0.605479, 74, novel, similar to C4-type zinc
2920 finger proteins (TraR family), for example,
gi|7649830|dbj|Baa94108.1| (98% identity in 73 amino acids)

SEQ ID NO: 933: -0.346237, 94, novel, similar to hypothetical
proteins, for example, [Bacteriophage 933W]
gi|5881602|dbj|Baa84293.1| (97% identity in 93 amino acids);

2925 and orf61 [Bacteriophage lambda] (95% identity in 46 amino
acids)

SEQ ID NO: 934: -0.079365, 64, novel, similar to hypothetical
proteins, for example, [Bacteriophage VT2-Sa]
gi|5881603|dbj|Baa84294.1| (96% identity in 61 amino acids),

2930 and orf63 [Bacteriophage lambda] gi|508994|gb|aaA96567.1|
(92% identity in 63 amino acids)

SEQ ID NO: 935: -0.246667, 61, novel, similar to hypothetical
protein, for example, [Bacteriophage 933W]
gi|4585389|gb|aaD25417.1|AF125520#12 (95% identity in 60
2935 amino acids) and orf60a [Bacteriophage lambda]
gi|508995|gb|aaA96568.1| (93% identity in 60 amino acids)

SEQ ID NO: 936: -0.359735, 227, an exonuclease, similar to
exonucleases, for example, [Bacteriophage lambda]
gi|119702|sp|P03697|EXO#LAMBD (98% identity in 226 amino
2940 acids)

SEQ ID NO: 937: -1.293333, 61, novel, similar to NinE proteins,
for example, [Bacteriophage 21] gi|4539480|emb|CAB39989.1|
(95% identity in 60 amino acids)

SEQ ID NO: 938: -0.675, 57, novel, similar to NinF proteins,
2945 for example, [Bacteriophage 21] gi|4539481|emb|CAB39990.1|
(92% identity in 56 amino acids), GTG start

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 939 : -1.100483, 208, novel, similar to NinG proteins, for example, [Bacteriophage 21] gi|4539482|emb|CAB39991.1| (95% identity in 204 amino acids)
2950

SEQ ID NO: 940 : -0.243891, 222, a serine/threonin proteinphosphatase, similar to serine/threonin proteinphosphatase, for example, [Bacteriophage lambda] gi|130792|sp|P03772|PP#LAMBD (95% identity in 221 amino acids)
2955

SEQ ID NO: 941 : -0.257367, 320, novel, [a putative outer membrane protein; OMPl], similar to putative outer membrane protein [Helicobacter pylori (strain J99)] gi|7465285|pir||H71907 (19% identity in 297 amino acids)
2960 (at low level)

SEQ ID NO: 942: -0.396506, 230, antitermination, similar to antiterminators, for example, protein Q [Bacteriophage 82] gi|132277|sp|P13870|RegQ#BP82

SEQ ID NO: 943: 0.576577, 223, novel, [hypothetical membrane protein; IMPl], similar to orf14 [Actinobacillus actinomycetemcomitans] gi|7592819|dbj|Baa94406.1| (29% identity in 228 amino acids); and TfpB protein [Moraxella bovis] gi|141258|sp|P20666|TFPB#MORBO (26% identity in 190 amino acids)
2965

2970 SEQ ID NO: 944: -0.288636, 133, novel

SEQ ID NO: 945: 0.109859, 72, an holin protein, holin proteins, for example, [Bacteriophage 933W] gi|4499808|emb|CAB39307.1| (92% identity in 71 amino acids)

SEQ ID NO: 946: -0.186061, 166, an endolysin (lysozyme), similar to endolysins (lysozyme), for example, R protein [Bacteriophage 21] gi|67436|pir||LZBP21 (93% identity in 165 amino acids)
2975

SEQ ID NO: 947: -0.409678, 156, novel, GTG start

SEQ ID NO: 948: -0.060294, 69, a ribosome protein L31-like protein, similar to hypothetical proteins, for example, ribosome
2980

Appendix B: Hideo *et al.* Full Translation

protein L31 homolog ykgM in intF-eaeH intergenicregion [Escherichia coli K-12] gi|3025204|sp|P71302|YKGM#ECOLI (93% identity in 86amino acids), GTG start
SEQ ID NO: 949: 0.736, 51, novel, GTG start
2985 SEQ ID NO: 950: 0.613043, 93, putative colicin immunity protein, similar to colicinimmunity proteins, for example, colicin E1 immunity protein gi|124395|sp|P02985|IMM1#ECOLI (25% identity in 107 amino acid)
2990 SEQ ID NO: 951: -0.444172, 164, novel, [a putative membrane protein; IMP], similar to hypothetical protein MAL4P2.26 [Plasmodium falciparum] gi|6562728|emb|CAB62867.1| (29% identity in 106 amino acids) (at low level)
SEQ ID NO: 952: -0.572571, 701, novel
2995 SEQ ID NO: 953: -0.84, 71, novel
SEQ ID NO: 954: -0.437433, 375, novel, similar to C-terminal part of hypothetical protein, for example, [Pseudomonas putida] gi|2995633|gb|aaC98738.1| (40% identity in 200 amino acids); and L0015 [Escherichia coli] gi|3414883|gb|aaC31494.1|
3000 (39% identity in 200 amino acids), GTG start
SEQ ID NO: 955: -1.301176, 86, novel, similar to hypothetical protein, for example, orf29 [Escherichia coli] gi|6009405|dbj|Baa84864.1| (37% identity in 136 amino acids); and L0013 [Escherichia coli]
3005 gi|3414881|gb|aaC31492.1| (38% identity in 124 amino acids)
SEQ ID NO: 956: -0.21966, 708, novel, similar to hypothetical proteins, for example, orf50 [Escherichia coli] gi|6009426|dbj|Baa84885.1| (71% identity in 106 amino acids); and L0014 [Escherichia coli]
3010 gi|3288157|emb|Caa11510.1| (64% identity in 116 amino acids)
SEQ ID NO: 957: 0.07541, 123, novel, similar to hypothetical proteins, for example, L0015 [Escherichia coli] gi|3414883|gb|aaC31494.1| (61% identity in 503 amino acids)

Appendix B: Hideo *et al.* Full Translation

3015 SEQ ID NO: 958: -0.213187, 92, novel, similar to hypothetical proteins, for example, 57.8 kD protein [Pseudomonas putida] gi|2496740|sp|P55630|Y4QI#RHISN (37% identity in 232 amino acids)

SEQ ID NO: 959: -0.348958, 193, novel, similar to hypothetical protein, for example, 20.3K protein [Agrobacterium tumefaciens IS1131] gi|95090|pir||JC1151 (41% identity in 101 amino acids)

SEQ ID NO: 960: -0.065414, 134, novel

SEQ ID NO: 961: -0.125911, 248, immunity to R478 phage/colicin/tellurite resistance cluster, similar to TerW [plasmid R478] gi|1354147|gb|aaC44736.1| (99% identity in 155 amino acids)

SEQ ID NO: 962: -0.134375, 129, novel

SEQ ID NO: 963: -0.372477, 110, novel, similar to hypothetical proteins, for example, [Deinococcus radiodurans] gi|7472167|pir||B75302 (42% identity in 305 amino acids)

SEQ ID NO: 964: -0.581686, 1022, novel, similar to hypothetical proteins, for example, [Streptomyces coelicolor A3(2)] gi|7472048|pir||A75302 (34% identity in 260 amino acids)

SEQ ID NO: 965: -0.305505, 110, novel, similar to hypothetical proteins, for example, [Streptomyces coelicolor A3(2)] gi|8246803|emb|CAB92838.1| (45% identity in 97 amino acid)

SEQ ID NO: 966: -0.476724, 233, novel, similar to hypothetical proteins, for example, [Serratia marcescens] gi|1695868|gb|aaB37122.1| (100% identity in 167 amino acids)

SEQ ID NO: 967: -0.431156, 200, novel, hypothetical proteins, for example, [Serratia marcescens] gi|1695869|gb|aaB37123.1| (99% identity in 197 amino acids);

3045 and [Deinococcus radiodurans (strain R1)] gi|7471591|pir||F75301 (38% identity in 364 amino acids)

SEQ ID NO: 968: 0.120465, 216, novel, similar to hypothetical proteins, for example, [Serratia marcescens]

Appendix B: Hideo *et al.* Full Translation

gi|1695870|gb|aaB37124.1| (99% identity in 173 amino acid);
3050 [Serratia marcescens] gi|1695871|gb|aaB37125.1| (98%
identity in 53 amino acids); and [Deinococcus radiodurans]
gi|7471522|pir||E75301 (28% identity in 286 amino acids)
SEQ ID NO: 969 : -0.357696, 1138, possible tellurium
resistance, similar to TerZ protein, for example, [Serratia
3055 marcescens] gi|6094454|sp|Q52353| (98% identity in 193
amino acids)
SEQ ID NO: 970: -0.31005, 200, a tellurium resistance, similar
to TerA protein, for example, [Serratia marcescens]
gi|5702379|gb|aaD47285.1|AF168355#3 (67% identity in 385
3060 amino acids)
SEQ ID NO: 971: -0.739041, 439, tellurite resistance, similar
to TerB protein, for example, [Serratia marcescens]
gi|950680|gb|aaA86848.1| (100% identity in 151 amino acids)
SEQ ID NO: 972: -0.284314, 103, tellurium resistance, similar
3065 to TerC protein, for example, [Serratia marcescens]
gi|6226214|sp|Q52356|TERC#SERMA (100% identity in 346
amino acids)
SEQ ID NO: 973: -0.460736, 327, tellurium resistance, similar
to terD protein, for example, [Serratia marcescens]
3070 gi|6094448|sp|Q52357|TERD#SERMA (100% identity in 192
amino acids)
SEQ ID NO: 974: -0.541515, 331, possible tellurium resistance,
identical to gi|7108482|gb|aaF36434.1|AF126104#3
TLRB#ECOLI (100% identity in 191 amino acids); and similar to
3075 TerE protein, for example, [Serratia marcescens]
gi|6094449|sp|Q52358|TERE#SERMA (98% identity in 191
amino acids)
SEQ ID NO: 975: -0.394881, 294, novel
SEQ ID NO: 976: 0.154545, 45, tellurium resistance, identical
3080 to gi|7108481|gb|aaF36433.1|AF126104#2 TRLA#ECOLI
(100% identity in 102 amino acids); and similar to TerF protein,
for example, [Serratia marcescens]

Appendix B: Hideo *et al.* Full Translation

gi|7387491|gb|aaA86852.2| TERF#SERMA (94% identity in 102 amino acid) SEQ ID NO: 977: -0.360345, 233, novel, GTG
3085 start
SEQ ID NO: 1550: -0.338059, 671, an adhesin, similar to Ihaadhesin [Escherichia coli O-157:H7 strain 86-24] gi|7108480|gb|aaF36432.1|AF126104#1 IHA#ECOLI (99% identity in 696 amino acids); and exogenous ferric siderophore
3090 receptor R4 [Escherichia coli strain CFT073] gi|3661500|gb|aaC61730.1| gi|3661500|gb|aaC61730.1| (99% identity in 669 amino acids)
SEQ ID NO: 1665: 0.638415, 165, novel, similar to a part of hypothetical protein [Shigella flexneri]
3095 gi|5880472|gb|aaD54665.1|AF097520#3 (44 % identity in 40 amino acids)
SEQ ID NO: 1517: 0.82528, 448, novel, similar to C-terminal part of ShiA [Shigella flexneri] gi|5532447|gb|aaD44731.1|AF141323#2 (49% identity in 73
3100 amino acids); TTG start
SEQ ID NO: 1518: 0.075472, 107, novel
SEQ ID NO: 1519: -0.587221, 494, novel
SEQ ID NO: 1567: -0.283051, 414, novel, TTG start
SEQ ID NO: 1568: 0.021192, 152, novel, GTG start
3105 SEQ ID NO: - : 0.033871, 63, novel, TTG start
SEQ ID NO: 411: -0.575221, 340, novel
SEQ ID NO: 412: 0.496, 51, novel
SEQ ID NO: 413 : -0.713974, 824, a possible
3110 glucosyl-transferase, similar to glucosyl-transferases, for example, [Salmonella typhi] gi|7467230|pir||T30292 (72% identity in 366 amino acids)
SEQ ID NO: 414: 0.095238, 64, a putative ferric enterochelin esterase (partial), similar to C-terminal part of ferric enterochelin esterases, for example, [Salmonella enterica] gi|
3115 2738250|gb|aaC46181.1| (66% identity in 68amino acids), TTG start

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 415: -0.280645, 63, a transposase, similar to transposases, for example, [Shigella boydii] gi|2197010|gb|aaB61273.1| (100% identity in 167 amino acids)
3120 SEQ ID NO: 416: -0.108911, 102, a possible repressor, similar to InsA protein, for example, [insertion sequence IS1F] gi|124915|sp|P19767|ISA2#ECOLI (98% identity in 91 amino acids), GTG start
SEQ ID NO: 417: -0.490164, 62, novel [putative membrane protein; IMP] SEQ ID NO: 418: -0.37, 51, novel
SEQ ID NO: 419: -0.735659, 130, novel, GTG start
SEQ ID NO: 420: -0.62381, 43, novel, similar to sensor regulatory element protein HutT [Rhodobacter capsulatus] gi|1075537|pir||A49938 (33% identity in 97 amino acids) (at low level)
3130 SEQ ID NO: 421: -0.882353, 52, novel
SEQ ID NO: 422: -0.729167, 73, novel
SEQ ID NO: 423: -0.036842, 96, transposase (OrfB), similar to transposases, for example, [insertion sequence IS629] gi|7443863|pir||T00315 (98% identity in 295 amino acids)
3135 SEQ ID NO: 424: -0.433333, 64, transposase (OrfA), similar to hypothetical proteins, for example, [Escherichia coli plasmid p O-157 insertion sequence IS629] gi|7444868|pir||T00241 (96% identity in 108 amino acids)
3140 SEQ ID NO: 425: -0.6728, 126, an HecB-like protein, its N-terminal-half part is similar to N-terminal part of hemolysinactivation protein HecB [Neisseria meningitidis MC58] gi|7227016|gb|aaF42103.1| (34% identity in 181 amino acids)
3145 SEQ ID NO: 426: -0.534445, 91, novel
SEQ ID NO: 427: -0.372341, 142, novel, similar to a part of tRNA-splicing endonuclease positive effector [fission yeast] gi|7493527|pir||T40065 (22% identity in 531 amino acids) (at low level); and similar to hypothetical protein, for example,
3150 [Aquifexaeolicus] gi|7514764|pir||D70476 (24% identity in

Appendix B: Hideo *et al.* Full Translation

271 amino acids) (at low level)

SEQ ID NO: 428: -0.229139, 152, novel, TTG start

SEQ ID NO: 429: -0.721212, 364, novel, similar to hypothetical proteins, for example, YbdN [Escherichia coli] gi|3024984|sp|P77216|YBDN#ECOLI (58% identity in 396 amino acids)

SEQ ID NO: 430: -0.4, 249, novel, similar to hypothetical protein YbdM [Escherichia coli] gi|3024983|sp|P77174|YBDM#ECOLI (56% identity in 212 amino acids)

SEQ ID NO: 431: -0.385547, 257, a transcription regulatory element, similar to PerC (BfpW) [Escherichia coli] gi|1172431|sp|P43475|PERC#ECOLI (25% identity in 83 amino acids)

3165 SEQ ID NO: 432 : -0.49854, 138, novel, similar to exopolyphosphatase [Pseudomonas aeruginosa] gi|4200042|dbj|Baa74460.1| (32% identity in 56 amino acids) (at low level)

SEQ ID NO: 433: -0.133074, 258, novel

3170 SEQ ID NO: 434: 1.383019, 54, novel, its N-terminal part is similar to BfpM [Escherichia coli] gi|847983|gb|aaC44052.1| BFPM#ECOLI (52% identity in 113 amino acids) ; its N-terminal part is similar to putative transposase [Vibrio cholerae] gi|7467523|pir||T09435 (55% identity in 68 amino acids) ; and its C-terminal part is similar to a part of hypothetical protein [Escherichia coli O-157:H7] gi|7649865|dbj|Baa94143.1| (98% identity in 62 amino acids)

3175 SEQ ID NO: 435: 0.16, 46, novel, similar to hypothetical protein [Pseudomonassyringae] gi|1196744|gb|aaA88435.1| (34% identity in 50 amino acids) (at low level)

SEQ ID NO: 436: 0.065714, 71, novel, similar to hypothetical protein, for example, orf29 [Escherichia coli] gi|6009405|dbj|Baa84864.1| (40% identity in 131 amino acids); and L0013 [Escherichia coli]

Appendix B: Hideo *et al.* Full Translation

3185 gi|3414881|gb|aaC31492.1| (38% identity in 130 amino acids)
SEQ ID NO: 437: -0.96087, 93, novel
SEQ ID NO: 438: -0.462461, 326, novel, similar to hypothetical
protein, for example, yfjP protein [Escherichia coli]
gi|7449539|pir||B65042 (49% identity in 289 amino acids);
3190 and yeeP protein [Escherichia coli]
gi|2495624|sp|P76359|YEEP#ECOLI (95% identity in 183
amino acids)
SEQ ID NO: 439: -0.405691, 124, a putative adhesin, similar to
outer membrane fluffing protein [Escherichia coli]
3195 gi|7466262|pir||G64964 (68% identity in 927 amino acids);
and similar to glyco protein [Escherichia coli strain H10407]
gi|5305639|gb|aaD41751.1| (34% identity in 608 amino acids)
(at low level); and similar to Adhesin AIDA-I precursor
[Escherichia coli plasmid pIB6]
3200 gi|543788|sp|Q03155|AIDA#ECOLI (23% identity in 678
amino acids)
SEQ ID NO: 440: -0.14065, 124, novel, similar to hypothetical
protein YjDA [Escherichia coli]
gi|731985|sp|P16694|YJDA#ECOLI (32% identity in 793
3205 amino acids)
SEQ ID NO: 441: 0.970589, 273, novel, similar to hypothetical
protein YjcZ [Escherichia coli]
gi|731984|sp|P39267|YJCZ#ECOLI (30% identity in 278 amino
acids), GTG start
3210 SEQ ID NO: 442: 0.125316, 80, novel
SEQ ID NO: 443: 0.024615, 196, novel
SEQ ID NO: 444: -0.242045, 617, novel, similar to hypothetical
proteins, for example, YfjQ [Escherichia coli]
gi|1723629|sp|P52132|YFJQ#ECOLI (73% identity in 271
3215 amino acids); and YafZ [Escherichia coli]
gi|2495487|sp|P77206|YAFZ#ECOLI (73% identity in 271
amino acids)
SEQ ID NO: 445: -0.965741, 109, novel, similar to hypothetical

Appendix B: Hideo *et al.* Full Translation

proteins, for example, YafK [Escherichia coli] 3220 gi|2495486|sp|P75676|YAFX#ECOLI (71% identity in 144 amino acids); and YfjX [Escherichia coli] gi|1723636|sp|P52139|YFJX#ECOLI (75% identity in 137 amino acids)

SEQ ID NO: 446: -0.635945, 218, a putative DNA repair 3225 protein (RadC family), similar to putative RadC family proteins, for example, YkfG [Escherichia coli] gi|3025218|sp|Q47685|YKFG#ECOLI (81% identity in 158 amino acids); and YeeS [Escherichia coli] gi|3025155|sp|P76362|YEES#ECOLI (98% identity in 148 3230 amino acids)

SEQ ID NO: 447: -0.957693, 105, novel, similar to hypothetical protein YeeT [Escherichia coli] gi|3025156|sp|P76363|YEET#ECOLI (97% identity in 73 amino acids)

3235 SEQ ID NO: 448: 0.214754, 62, novel, similar to hypothetical proteins, for example, YeeU [Escherichia coli] gi|3025157|sp|P76364|YEEU#ECOLI (89% identity in 118 amino acids); and YfjZ [Escherichia coli] gi|1723638|sp|P52141|YFJZ#ECOLI (66% identity in 98 amino 3240 acids), GTG start

SEQ ID NO: 449: -0.298065, 156, novel, similar to hypothetical proteins, for example, L0007 [Escherichia coli] gi|3414875|gb|aaC31486.1| (93% identity in 124 amino acids); YeeV [Escherichia coli] gi|3025158|sp|P76365|YEEV#ECOLI 3245 (87% identity in 124 amino acids); and YkfI [Escherichia coli] gi|3025213|sp|P77692|YKFI#ECOLI (58% identity in 112 amino acids)

SEQ ID NO: 450: 0.945946, 38, novel, similar to hypothetical proteins, for example, L0008 [Escherichia coli] 3250 gi|3414876|gb|aaC31487.1| (94% identity in 163 amino acids); and YeeW [Escherichia coli] gi|3025160|sp|P76366|YE EW#ECOLI (65% identity in 55

Appendix B: Hideo *et al.* Full Translation

amino acids)

SEQ ID NO: 451: -0.110909, 56, novel, similar to hypothetical
3255 proteins, for example, L0009 [Escherichia coli]
gi|3414877|gb|aaC31488.1| (87% identity in 65 amino acids)

SEQ ID NO: 452: -0.405085, 178, novel, similar to hypothetical
proteins, for example, L0010 [Escherichia coli]
gi|3414878|gb|aaC31489.1| (81% identity in 111 amino acids);

3260 ydiA [plasmid ColIB-P9] gi|4512489|dbj|Baa75138.1| (37%
identity in 265 amino acids); and L0012 [Escherichia coli]
gi|3414880|gb|aaC31491.1| (80% identity in 61 amino acids)

SEQ ID NO: 453: -0.335897, 79, novel

SEQ ID NO: 454: 0.984375, 65, a putative integrase, similar to
3265 integrases, for example, [Escherichia coli prophage e14]
gi|3024035|sp|P75969|INTE#ECOLI (46% identity in 372
amino acids)

SEQ ID NO: 455: 0.088596, 115, a putative excisionase, similar
to excisionase [bacteriophage P21]

3270 gi|139674|sp|P27079|VXIS#BPP21 (31% identity in 73 amino
acids)

SEQ ID NO: 456: 0.123529, 69, novel, GTG start

SEQ ID NO: 457: -0.905494, 92, novel, TTG start

SEQ ID NO: 458: -0.403175, 127, novel, similar to hypothetical
3275 proteins, for example, YdfA [Escherichia coli]
gi|140584|sp|P29008|YDFA#ECOLI (91% identity in 49 amino
acids)

SEQ ID NO: 459: 0.010435, 116, a putative phage repressor,
similar to repressor [Escherichia col Rac prophagel

3280 gi|3025101|sp|P76062|RACR#ECOLI (91% identity in 158
amino acids)

SEQ ID NO: 460: -0.445312, 513, novel, similar to YdaS
[Escherichia coli] gi|3025102|sp|P76063|YDAS#ECOLI (84%
identity in 94 amino acids)

3285 SEQ ID NO: 461: -0.04875, 81, novel, similar to YdaT
[Escherichia coli] gi|3183265|sp|P76165|YDFX#ECOLI (31%

Appendix B: Hideo *et al.* Full Translation

identity in 83 amino acids)

SEQ ID NO: 462: -0.425233, 643, novel, similar to C-terminal part of replication termination protein DnaT (prepriming protein I) [Escherichiacolil gi|1361001|pir||S56589 (50% identity in 85 amino acids)

3290 SEQ ID NO: 463: -0.448868, 531, a putative replication protein, similar to replication proteins, for example , protein14 [Bacteriophage phi·80| gi|137937|sp|P14814|VG14#BPPH8 (47% identity in 129 amino acids), GTG start

3295 SEQ ID NO: 464 : 0.055688, 502, novel, similar to YdaW [Escherichia colil gi|3025105|sp|P76066|YDAW#ECOLI (56% identity in 143 amino acids)

SEQ ID NO: 465: -0.024348, 116, novel, GTG start

3300 SEQ ID NO: 466 : -0.331818, 89, novel, similar to Gp57 [Bacteriophage N15| gi|7459176|pir||T13144 (69% identity in 78 amino acids), GTG start

SEQ ID NO: 467: -0.239801, 202, novel, similar to hypothetical protein, for example, [Bacteriophage VT2-Sa] 3305 gi|5881670|dbj|Baa84361.1| (91% identity in 92 amino acids),GTG start

SEQ ID NO: 468: -0.297006, 168, novel

SEQ ID NO: 469: -0.163566, 130, novel, similar to hypothetical proteins, for example, Ea22 [Bacteriophage lambda] 3310 gi|137663|sp|P03756|VE22#LAMBD (39% identity in 108 amino acids), GTG start

SEQ ID NO: 470: -0.442375, 860, novel

SEQ ID NO: 471: -0.447707, 110, novel, its N-terminal part is similar to hypothetical proteins, for example, b2363 3315 [Escherichia colil gi|7451977|pir||H65009 (51% identity in 95 amino acids), and its C-terminal part similar to hypothetical proteins, for example, [Bacteriophage 933W] gi|4585382|gb|aaD25410.1|AF125520#5 (43% identity in 75 amino acids)

3320 SEQ ID NO: 472: -0.339655, 233, novel

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 473: -0.377251, 212, a prophage maintenance protein, similar to Hok/Geffamily, for example, MokW [Bacteriophage 933W] 933W]
gi|4585453|gb|aaD25481.1|AF125520#76 (90% identity in 70
3325 amino acids)

SEQ ID NO: 474: 0.057965, 227, novel, similar to QD1 [Bacteriophage N15] gi|2564084|gb|aaB81659.1| (31% identity in 64 amino acids)

SEQ ID NO: 475: -0.939706, 69, novel, similar to b1560 [Escherichia coli] gi|1742555|dbj|Baa15259.1| (82% identity in 348 amino acids); and hypothetical protein A [phage P1] gi|732234|sp|Q06262|YORA#BPP1 (26% identity in 314 amino acids) (also to Orf19 (phi83)), GTG start

SEQ ID NO: 476: -0.161714, 176, a putative crossover junction endodeoxyribonuclease, similar to Gp67 [Bacteriophage HK97] gi|6901639|gb|aaF31142.1| (59% identity in 110 amino acids); crossover junction endodeoxyribonucleases Rus [Escherichia coli cryptic lambdoid prophage DLP12] (41% identity in 107 amino acids); and gi|2507117|sp|P40116|RUS#ECOLI in (59% 3340 identity in 110 amino acids)

SEQ ID NO: 477: -0.277615, 1158, a putative antitermination protein, similar to antitermination proteins, for example , proteinQ [Escherichia colil gi|1742554|dbj|Baa15258.1| (39% identityin 273 amino acids)

3345 SEQ ID NO: 478: -0.279397, 200, novel, GTG start

SEQ ID NO: 479: -0.658542, 440, novel, GTG start

SEQ ID NO: 480: -0.259551, 90, novel, similar to hypothetical protein, for example, [Bacteriophage VT2-Sa] gi|5881634|dbj|Baa84325.1| (73% identity in 644 amino acids)

3350 SEQ ID NO: 481, ECs1125:1209796-1209978, -0.078333, 61, novel, similar to hypothetical protein [Bacteriophage 933W] gi|4499806|emb|CAB39305.1| (67% identity in 59 amino acids)

SEQ ID NO: 482 -0.877248, 190, novel, similar to hypothetical proteins, for example, [Bacteriophage VT2-Sa]

Appendix B: Hideo *et al.* Full Translation

- 3355 gi|5881635|dbj|Baa84326.1| (78% identity in 89 amino acids)
SEQ ID NO: 483: -0.436667, 61, a putative holin protein,
similar to holin proteins, for example, S protein [Bacteriophage
VT2-Sal] gi|5881636|dbj|Baa84327.1| (94% identity in 71
amino acids)
- 3360 SEQ ID NO: 245: -0.375688, 437, novel, similar to YdfR
[Escherichia coli] gi|3183262|sp|P76160|YDFR#ECOLI (47%
identity in 74 amino acids)
SEQ ID NO: 246: -0.447872, 95, a putative endolysin, similar
to endolysins, for example, R protein [Bacteriophage 933W]
- 3365 gi|4585422|gb|aaD25450.1|AF125520#45 (97% identity in 177
amino acid)
SEQ ID NO: 247: -0.294175, 104, a putative antirepressor
protein, identical to putative antirepressor protein
[Bacteriophage 933W]
- 3370 gi|4585423|gb|aaD25451.1|AF125520#46 ; and similar to
antirepressor protein Ant [Bacteriophage P22]
gi|131843|sp|P03037|RANT#BPP22 (49% identity in 189
amino acids)
SEQ ID NO: 248: -0.781579, 115, an endopeptidase (host cell
- 3375 lysis), similar to endopeptidase, for example, Rz[Bacteriophage
VT2-Sal] gi|5881639|dbj|Baa84330.1|(80% identity in 155
amino acids)
SEQ ID NO: 249: -0.371015, 208, a lipoprotein Rz1precursor,
similar to lipoprotein Rz1 precursors, for example,
- 3380 [Bacteriophage 933W]gi|540738|pir||JN0750 (52% identity in
59 amino acids); [phage lambda]
gi|4585425|gb|aaD25453.1|AF125520#48 (76% identity in 59
amino acids)
SEQ ID NO: 250: -0.407368, 96, novel
- 3385 SEQ ID NO: 251: 0.416667, 73, novel, similar to hypothetical
protein [Bacteriophage VT2-Sal] gi|5881640|dbj|Baa84331.1 |
(73% identity in 45 amino acids)
SEQ ID NO: 252: -0.590526, 96, novel

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 253: -0.644516, 156, novel, similar to hypothetical
3390 protein [Escherichia coli] gi|1778472|gb|aaB40755.1| (84%
identity in 53 amino acids)

SEQ ID NO: 254: -0.557587, 258, a putative DNase, similar to
putative DNase [Bacteriophage phi-31]
gi|1107475|emb|Caa62587.1| 28% identity in 85 amino acids)

3395 SEQ ID NO: 255: -0.615069, 74, a putative terminase small
subunit, similar to terminases small subunit [Bacillus subtilis
PBSX phage] gi|1722886|sp|P39785|XTMA#BACSU (42%
identity in 57 amino acids), GTG start

SEQ ID NO: 256: -0.595775, 72, a putative large terminase
3400 subunit, similar to hypothetical proteins, for example, phage
D3 terminase-like protein [Haemophilus influenzae]
gi|6739656|gb|aaF27357.1|AF198256#11 (22% identity in 472
amino acids); and similar to putative large terminase subunit
[Bacteriophage A2] gi|3947452|emb|Caa07103.1| (25%
3405 identity in 456 amino acids)

SEQ ID NO: 257: -0.24127, 64, a putative major head
protein/prohead protease, its N-terminal-half part is similar to
putative prohead proteases, for example, Gp4
[BacteriophageHK97] gi|1722780|sp|P49860|VP4#BPHK7
3410 (28% identity in 136 amino acids); and its C-terminal-half part
is similar to major head protein, for example, [Bacteriophage
L5] gi|465114|sp|Q05223|VG17#BPMIL5 (23% identity in 280
amino acids), GTG start

SEQ ID NO: 258: -0.248333, 61, a putative portal protein,
3415 similar to portal protein, for example, [Bacteriophage HK022]
gi|6863114|gb|aaF30355.1|AF069308#3 (26% identity in 351
amino acids)

SEQ ID NO: 259: -0.338496, 227, novel, similar to a novel
protein [Haemophilus influenzae]
3420 gi|6739659|gb|aaF27360.1|AF198256#14 (71% identity in 21
amino acids), GTG start

SEQ ID NO: 260: -0.500383, 262, a putative head-tail adaptotor,

Appendix B: Hideo *et al.* Full Translation

similar to putative head-tail adaptors, for example, [Bacteriophage HK97] gi|6901597|gb|aaF31100.1| (45% identity in 111 amino acids)

SEQ ID NO: 261: -0.665942, 139, novel, similar to hypothetical phage protein, for example, Gp10 [Bacteriophage HK97] gi|6901598|gb|aaF31101.1| (75% identity in 148 amino acids)

SEQ ID NO: 262 : 0.008989, 90, novel, similar to Gp11 [Bacteriophage HK97] gi|6901599|gb|aaF31102.1| (49% identity in 113 amino acids)

SEQ ID NO: 263: -0.544444, 55, a putative major tail subunit, similar to major tail subunit [Bacteriophage HK97] gi|6901588|gb|aaF31091.1|AF069529#4 (66% identity in 234 amino acids)

SEQ ID NO: 264: -0.273771, 123, a putative tail assembly chaperone, similar to tail assembly chaperon, for example, p14 [Bacteriophage HK97] gi|6901600|gb|aaF31103.1| (62% identity in 124 amino acids)

SEQ ID NO: 265: -0.027711, 84, a putative tail protein [phage tail protein], similar to C-terminal part of Gp14 [Bacteriophage HK97] gi|6901601|gb|aaF31104.1| (60% identity in 90 amino acids), probably produced by translational frameshift

SEQ ID NO: 266: -0.755556, 91, a putative tail length tape measure protein (interrupted), similar to N-terminal part of tail length tape measure proteins, for example, [Bacteriophage HK97] gi|6901589|gb|aaF31092.1|AF069529#5 (81% identity in 137 amino acids)

SEQ ID NO: 267: -0.881667, 61, a putative tail length tape measure protein, similar to C-terminal part of tail length tape measure protein, for example, [Bacteriophage HK97] gi|6901589|gb|aaF31092.1|AF069529#5 (48% identity in 939 amino acids), probably disrupted by frameshift

SEQ ID NO: 268: 0.743396, 54, a putative minor tail protein, similar to minor tail protein, for example, GpM [Bacteriophage lambda] gi|138845|sp|P03737|VMTM#LAMBD (43% identity in

Appendix B: Hideo *et al.* Full Translation

- 110 amino acids), GTG start
- SEQ ID NO: 269: -0.476879, 174, a putative minor tail protein,
similar to minor tail protein, for example, GpL [Bacteriophage
lambda] gi|138844|sp|P03738|VMTL#LAMBD (76% identity in
3460 232 amino acids)
- SEQ ID NO: 270: -0.315668, 218, a putative regulatory protein,
similar to regulatory protein Mnt [Bacteriophage P22]
gi|133138|sp|P03049|RMNT#BPP22 (34% identity in 73 amino
3465 acids)
- SEQ ID NO: 271: -0.295775, 72, a putative antirepressor protein,
its C-terminal part is similar to antirepressor proteins, for
example, Ant[Bacteriophage P22]
gi|131843|sp|P03037|RANT#BPP22 (84% identity in 71 amino
3470 acids), and its N-terminal part is similar to hypothetical phage
proteins, for example, Gp30 [Bacteriophage N15]
gi|7521545|pir||T13116 (35% identity in 175 amino acids)
- SEQ ID NO: 272: -0.322449, 99, a putative tail assembly
protein, similar to tail assembly proteins, for example, GpK
3475 [Bacteriophage lambda] gi|139638|sp|P03729|VTAK#LAMBD
(86% identity in 196 amino acids)
- SEQ ID NO: 273: -1.166667, 49, a putative tail assembly
protein, similar to tail assembly protein, for example, GpI
[Bacteriophage lambda] gi|139637|sp|P03730|VTAI#LAMBD
3480 (64% identity in 64 amino acids)
- SEQ ID NO: 274: -0.734113, 300, a putative secreted effector
protein, similar to secreted effector proteinopA [Salmonella
dublin] gi|5669806|gb|aaD46479.1|AF121227#1 (31% identity
in 587 amino acids)
- 3485 SEQ ID NO: 275: -0.469565, 484, novel, its C-terminal part is
similar to cytotoxic necrotizing factor type 2 [Escherichia coli]
gi|1073353|pir||A55260 (31% identity in 244 amino acids) (its
N-terminus is similar to a novel protein [P. falciparum] (at low
level))
- 3490 SEQ ID NO: 276: -0.447191, 90, novel

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 277: -0.883696, 93, novel [hypothetical membrane protein; IMP], similar to hypothetical protein, for example, b0362 [Escherichia coli gi|7466098|pir||B64764(50% identity in 79 amino acids), [partially similar to hemin receptor precursor]

3495 SEQ ID NO: 278: -0.825352, 72, a transposase (OrfB) protein [insertion sequence IS2], similar to hypothetical protein, for example, [insertion sequence IS2] gi|140808|sp|P19777|YI22#ECOLI (98% identity in 301 amino acids), GTG start

3500 SEQ ID NO: 279: -, 79, novel, [putative transposase (OrfA)], similar to hypothetical protein [insertion sequence IS2] gi|140806|sp|P19776|YI21#ECOLI (100% identity in 53 amino acids)

3505 SEQ ID NO: 280: -0.735135, 149, novel, similar to hypothetical protein [Salmonella typhimurium LT2] gi|6960367|gb|aaF33527.1| (72% identity in 37 amino acids)

SEQ ID NO: 281: -0.217714, 176, novel

3510 SEQ ID NO: 282: -1.381667, 61, novel, similar to Yop effector YopM [Yersinia enterocolitica] gi|4324334|gb|aaD16811.1| (25% identity in 171 amino acids), (also weakly to IpaH)

SEQ ID NO: 283: -0.215789, 58, novel, TTG start

3515 SEQ ID NO: 284: -0.530738, 245, a putative integrase, similar to integrase, for example, [Shigella dysenteriae] gi|6759954|gb|aaF28112.1||AF153317#4 (31% identity in 389 amino acids)

SEQ ID NO: 285: -0.205833, 241, a putative DNA binding protein; similar to putative DNA binding protein (ORF88) [Bacteriophage P4] gi|140147|sp|P12552|Y9K#BPP4 (45% identity in 53 amino acids), GTG start

3520 SEQ ID NO: 286: -1.10199, 202, novel

SEQ ID NO: 287: -0.534375, 65, a putative cell division repressor, similar to cell division repressor Icd [enterobacteria phage P1] gi|4261623|gb|aaD13923.1||S61175#1 (42% identity

Appendix B: Hideo *et al.* Full Translation

- 3525 in 45 amino acids)
SEQ ID NO: 288: -0.325, 145, novel
SEQ ID NO: 289: -0.088, 51, novel
SEQ ID NO: 290: -0.079937, 320, novel
SEQ ID NO: 291: -0.191011, 90, novel
3530 SEQ ID NO: 292: -0.281545, 635, novels
SEQ ID NO: 293: -0.397973, 297, novel
SEQ ID NO: 294: -0.965741, 109, novel
SEQ ID NO: 295: 0.008475, 60, novel
SEQ ID NO: 296: -0.431081, 149, novel
3535 SEQ ID NO: 297: 0.039437, 72, a putative single stranded DNA-binding protein, similar to single stranded DNA-binding proteins, for example, [Thermotoga maritima] gi|7439946|pir||H72354 (35% identity in 96 amino acids)
SEQ ID NO: 298: -0.449153, 178, a putative transcription
3540 activator, similar to transcription activator of eaeA/bfpA, PerC (BfpW) [Escherichia coli] gi|1172431|sp|P43475|PERC#ECOLI (39% identity in 89 amino acids)
SEQ ID NO: 299: -0.283069, 190, novel
SEQ ID NO: 300: -0.520779, 155, a putative major head protein,
3545 similar to major head protein, for example, phage phi-C31 gp36-like protein [Haemophilus influenzae] gi|6739663|gb|aaF27364.1|AF198256#18 (AF198256) (56% identity in 584 amino acids)
SEQ ID NO: 301: 0.198361, 62, a putative prohead protease,
3550 similar to prohead proteases, for example, phage phi-C31 gp35-like protein [Haemophilus influenzae] gi|6739662|gb|aaF27363.1|AF198256#17 (60% identity in 161 amino acids)
SEQ ID NO: 302: 0.183505, 98, a putative head portal protein,
3555 similar to head portal proteins, for example, phage phi-105 ORF25-like protein [Haemophilus influenzae] gi|6739661|gb|aaF27362.1|AF198256#16 (63% identity in 403 amino acids)

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 303: -0.097403, 78, a putative head-tail adaptor,
3560 similar to head-tail adaptors, for example, [Bacteriophage HK97] gi|6901597|gb|aaF31100.1| (47% identity in 112 amino acids)

SEQ ID NO: 304: -0.730597, 269, novel, similar to hypothetical protein [Haemophilus influenzae]
3565 gi|6739659|gb|aaF27360.1|AF198256#14 (45% identity in 98 amino acids); and hypothetical protein 30 [Bacillus phage phi·105] gi|7459182|pir||T13519 (26% identity in 90 amino acids)

SEQ ID NO: 305: -0.554049, 569, novel, similar to hypothetical protein, for example, [Haemophilus influenzae]
3570 gi|6739658|gb|aaF27359.1|AF198256#13 (54% identity in 115 amino acids)

SEQ ID NO: 306: -0.527872, 715, novel

SEQ ID NO: 307: -0.766567, 336, a putative terminase small subunit, similar to hypothetical protein, genetic island 1 [Haemophilus influenzae]
3575 gi|6739657|gb|aaF27358.1|AF198256#12 (64% identity in 112 amino acids); and similar to putative terminase small subunit [Streptococcus thermophilus bacteriophage Sfi21]

3580 gi|5230826|gb|aaD41028.1|AF112470#3 (29% identity in 98 amino acids).

SEQ ID NO: 308: -0.398762, 405, a putative terminase large subunit, similar to terminase large subunits, for example, [Haemophilus influenzae]
3585 gi|6739656|gb|aaF27357.1|AF198256#11 (69% identity in 550 amino acids), TTG start

SEQ ID NO: 309: 0.25969, 130, novel

SEQ ID NO: 310: -0.52549, 154, novel, GTG start

SEQ ID NO: 311: -0.157219, 188, an integrase, similar to integrases, for example, [Bacteriophage P21]
3590 gi|1385558|sp|P27077|VINT#BPP21 (98% identity in 380 amino acids), (similar to lambda integrase)

Appendix B: Hideo *et al.* Full Translation

- SEQ ID NO: 312: 0.063889, 217, an excisionase, similar to excisionases, for example, [Bacteriophage P21] 3595 gi|139674|sp|P27079|VXIS#BPP21 (98% identity in 78 amino acids)
- SEQ ID NO: 313: -0.793334, 646, a putative replication protein, similar to replication protein, for example, GpO [Bacteriophage lambda] gi|215150|gb|aaA96584.1| (69% identity in 261 amino acids) 3600
- SEQ ID NO: 314: -0.266292, 90, a replication protein, similar to replication proteins, for example, GpP [Bacteriophage lambda] gi|4499785|emb|CAB39284.1| (98% identity in 233 amino acids)
- 3605 SEQ ID NO: 315: -0.19875, 81, a putative Ren protein (protection from Rex-dependent exclusion), similar to Ren protein, for example, [Bacteriophage lambda] gi|139473|sp|P03761|VREN#LAMBD (90% identity in 92 amino acids)
- 3610 SEQ ID NO: 316: 0.06375, 81, integral membrane drug resistance protein EmrE, similar to ethidium efflux protein EmrE (methyl viologen resistance protein C) [E. coli] gi|127565|sp|P23895|EMRE#ECOLI (98% identity in 110 amino acids), and belongs to the small multidrug resistance 3615 (Smr) protein family
- SEQ ID NO: 317: -0.018342, 568, novel, similar to hypothetical protein YbcK [Escherichia coli] gi|2495549|sp|P77698|YBCK#ECOLI (99% identity in 508 amino acids); and putative integrase [Bacteriophage A118] 3620 gi|1196324|gb|aaB51416.1| (31% identity in 109 amino acids)
- SEQ ID NO: 318: -0.248578, 423, novel, similar to hypothetical protein YbcN [Escherichia coli cryptic lambdoid prophage DLP12] gi|2495551|sp|Q47269|YBCN#ECOLI (92% identity in 151 amino acids), GTG start
- 3625 SEQ ID NO: 319: -0.218478, 93, novel, identical to NinE [Bacteriophage 82] gi|3024190|sp|Q37871|NINE#BP82

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 320 : -0.159512, 206, novel, similar to YbcO [Escherichia coli cryptic prophage DLP12] gi|2495553|sp|Q47271|YBCO#ECOLI (97% identity in 96 amino acids); and Gp66 [Bacteriophage HK97] gi|6901638|gb|aaF31141.1| (68% identity in 95 amino acids)

3630 SEQ ID NO: 321 : -0.289344, 245, a crossover junction endodeoxyribonuclease, similar to crossover junction endodeoxyribonucleases Rus, for example, [Escherichia coli bacteriophage 82] gi|2498868|sp|Q37873|RUS#BP82 (95% identity in 120 amino acids), GTG start

SEQ ID NO: 322: -0.103759, 134, a putative antitermination protein, similar to antitermination protein, for example, Q[Bacteriophage 82] gi|132277|sp|P13870|RegQ#BP82 (98% identity in 229 amino acids)

3640 SEQ ID NO: 323: -0.622936, 219, a putative holin, similar to putative holin protein [Bacteriophage PS3] gi|3676074|emb|Caa09700.1| (72% identity in 103 amino acids), TTG start

3645 SEQ ID NO: 324 : -0.662162, 149, a putative endolysin (lyzozyme), similar to endolysins, for example, [Bacteriophage HK97] gi|6901642|gb|aaF31145.1| (95% identity in 158 amino acids)
[0019]

3650 2) Proteins which have novel function, but have significant homology
Sequence number: Hydrophobicity, The number of amino acids,
Character such as function

SEQ ID NO: 325: -0.109639, 84, a putative endopeptidase (host cell lysis), similar to hypothetical protein gp15 [Bacteriophage PS119] gi|3676087|emb|Caa09711.1| (83% identity in 155 amino acids); endopeptidases for example , [Bacteriophage lambda] gi|67522|pir||APBPML (59% identity in 153 amino acids)

3655 3660 SEQ ID NO: 326: -0.749881, 422, a putative lipoprotein Rz1

Appendix B: Hideo *et al.* Full Translation

precursor, lipoprotein Rz1 precursors, for example, [Bacteriophage lambda] (53% identity in amino acids)
SEQ ID NO: 327: -0.631149, 2794, novel
SEQ ID NO: 328 : -0.122951, 62, novel [hypothetical
3665 membrane protein; IMP]
SEQ ID NO: 329: -0.232456, 115, novel
SEQ ID NO: 330: 0.222857, 71, a putative terminase large
subunit, similar to terminase large subunits, for example,
[Bacteriophage WO] gi|6723224|dbj|Baa89621.1| (26%
3670 identity in 641 amino acids); for example, [Bacteriophage N15]
gi|7444579|pir||T13088 (25% identity in 630 amino acids)
SEQ ID NO: 331: -0.754198, 132, novel
SEQ ID NO: 332: -0.709589, 220, a putative portal protein,
similar to putative portal protein [Wolbachia sp.
3675 wKuelgi|6723246|dbj|Baa89642.1| (23% identity in 294 amino
acids), GTG start
SEQ ID NO: 333: -0.319445, 73, novel
SEQ ID NO: 334: -0.243617, 95, a putative protease /scaffold
protein, partially similar to ClpP proteases, for example,
3680 [Bacteriophage D3] gi|5059251|gb|aaD38956.1| (35% identity
in 218 amino acids); similar to putative scaffolding protein
[Streptococcus thermophilus bacteriophage DT1]
gi|4530143|gb|aaD21883.1| (30% identity in 201 amino acids)
SEQ ID NO: 335: -0.664384, 74, novel, TTG start
3685 SEQ ID NO: 336: -0.528708, 210, novel
SEQ ID NO: 1570: -0.651901, 448, similar to minor tail proteins,
for example, proteinZ [Bacteriophage N15]
gi|7521219|pir||T13097 (52% identity in 192 amino acids);
GpZ [Bacteriophage lambda]
3690 gi|138849|sp|P03731|VMTZ#LAMBD (49% identity in 192
amino acids)
SEQ ID NO: 1030: 0.101176, 511, a putative minor tail
component, similar to minor tail proteins, for example, protein
U [Bacteriophage N15] gi|7444588|pir||T13098 (49% identity

Appendix B: Hideo *et al.* Full Translation

3695 in 129 amino acids); GpU [Bacteriophage lambda] gi|138847|sp|P03732|VMTU#LAMBD (49% identity in 129 amino acids)
SEQ ID NO: 1031: -0.163804, 164, a major tail component, similar to major tail proteins, for example, protein V
3700 [Bacteriophage N15] gi|7444589|pir||T13099 (62% identity in 244 amino acids); GpV [Bacteriophage lambda] gi|138848|sp|P03733|VMTV#LAMBD (55% identity in 246 amino acids)
SEQ ID NO: 1032: -0.270741, 271, a minor tail component, similar to minor tail proteins, for example, GpG [Bacteriophage lambda] gi|138842|sp|P03734|VMTG#LAMBD (33% identity in 109 amino acids)
SEQ ID NO: 1033: 0.038403, 264, a putative minor tail component, similar to minor tail proteins, for example ,GpT
3710 [Bacteriophage lambda] gi|138846|sp|P03735|VMTT#LAMBD (39% identity in 104 amino acids), probably produced by translational frameshift
SEQ ID NO: 1034: -0.454546, 210, a putative tail length tape measure protein precursor, similar to tail length tape measure
3715 protein precursors for example ,GpH [Bacteriophage lambda] gi|138843|sp|P03736|VMTH#LAMBD (25% identity in 822 amino acids)
SEQ ID NO: 1035: -0.041442, 445, a putative minor tail protein, similar to minor tail proteins for example ,GpM
3720 [Bacteriophage lambda] gi|138845|sp|P03737|VMTM#LAMBD (55% identity in 108 amino acids)
SEQ ID NO: 1036: -0.442976, 841, a putative minor tail protein, similar to minor tail proteins for example ,GpL [Bacteriophage lambda] gi|138844|sp|P03738|VMTL#LAMBD
3725 (93% identity in 232 amino acids)
SEQ ID NO: 1037: -0.153648, 234, a putative tail assembly protein, similar to tail assembly proteins for example ,GpK [Bacteriophage lambda] gi|139638|sp|P03729|VTAK#LAMBD

Appendix B: Hideo *et al.* Full Translation

(97% identity in 199 amino acids)

3730 SEQ ID NO: 1038: 0.21129, 187, a putative tail assembly protein, similar to tail assembly proteins for example ,GpI [Bacteriophage lambda] gi|139637|sp|P03730|VTAI#LAMBD (80% identity in 215 amino acids)

SEQ ID NO: 1039: -0.061353, 208, a putative host specificity protein, similar to host specificity proteins for example ,GpJ [Bacteriophage lambda] gi|138412|sp|P03749|VHSJ#LAMBD (88% identity in 1136 amino acids)

3735 SEQ ID NO: 1040: -0.166719, 1269, a putative outer membrane protein precursor, similar to outer membrane protein Lom precursors for example , [prophage P-EibA] gi|7532789|gb|aaF63231.1|AF151091#2 (72% identity in 199 amino acids)

3740 SEQ ID NO: 1041: -0.41948, 540, a putative tail fiber protein, similar to tail fiber proteins for example , [Bacteriophage 933W] gi|4585436|gb|aaD25464.1|AF125520#59 (67% identity in 277 amino acids)

3745 SEQ ID NO: 1042: 0.009016, 123, novel, similar to hypothetical proteins for example , [Bacteriophage 933W] gi|4585437|gb|aaD25465.1|AF125520#60 (98% identity in 102 amino acids)

3750 SEQ ID NO: 1043: 0.422222, 190, novel, similar to hypothetical protein [Salmonella typhimurium LT2] gi|6960367|gb|aaF33527.1| (55% identity in 314 amino acids)

3755 SEQ ID NO: 1044: -0.17033, 183, novel

SEQ ID NO: 1045: -0.29785, 94, novel

SEQ ID NO: 1046: -0.139896, 387, novel

SEQ ID NO: 1047: -0.09284, 853, novel

3760 SEQ ID NO: 1048: -0.12362, 327, novel, similar to secreted effector proteinopA,[Salmonella dublin] gi|5669806|gb|aaD46479.1|AF121227#1 (24% identity in 296 amino acids), similar to hypothetical proteins for

Appendix B: Hideo *et al.* Full Translation

example ,YjBI [Escherichia coli]
gi|418540|sp|P32690|YJBI#ECOLI (26% identity 183 amino
3765 acids), weakly
SEQ ID NO: 1049 : -0.341696, 284, novel [hypothetical
membrane protein; IMP]
SEQ ID NO: 1050: 0.074894, 236, a putative PTS transporter
protein, similar to putative transporter proteins for
3770 example ,SgaT [Escherichia coli]
gi|2851673|sp|P39301|SGAT#ECOLI (38% identity in 440
amino acids)
SEQ ID NO:1051 : -0.083945, 219, a putative PTS system
enzyme II, similar to phosphotransferase system enzymes IIBs
3775 for example , [Escherichia coli]
gi|732028|sp|P39302|PTXB#ECOLI (28% identity in 99 amino
acids)
SEQ ID NO: 1052: 0.436468, 437, novel
SEQ ID NO: 1053: -0.546947, 263, novel, GTG start
3780 SEQ ID NO: 1054: -0.377489, 463, novel
SEQ ID NO: 133: -0.3865, 401, unkown
SEQ ID NO: 134 : -0.199834, 606, a putative integrase,
similar to integrases for example ,[Bacteriophage HK022]
gi|138560|sp|P16407|VINT#BPHK0 (27% identity in 321
3785 amino acids)
SEQ ID NO: 135: -0.420689, 146, novel
SEQ ID NO: 136: -0.487755, 99, novel
SEQ ID NO: 137 : -0.331236, 462, novel, similar to
hypothetical proteins for example ,Ydfd [Escherichia coli]
3790 gi|140587|sp|P29010|YDFD#ECOLI (63% identity in 63 amino
acids)
SEQ ID NO: 138 : -0.780214, 188, a putative cell division
inhibition, similar to dicB [Escherichia coli]
gi|2507009|sp|P09557|DICB#ECOLI (54% identity in 62
3795 amino acids)
SEQ ID NO: 139: -0.17888, 787, novel, TTG start

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 140: 0.226, 51, novel
SEQ ID NO: 141: -0.445312, 513, novel
SEQ ID NO: 142: 0.010435, 116, novel
3800 SEQ ID NO: 143: -0.395489, 134, novel, similar to YdfB [Escherichia coli] gi|140585|sp|P29009|YDFB#ECOLI (100% identity in 41 amino acids)
SEQ ID NO: 144: -0.538835, 104, novel, identical to YdfA [Escherichia coli] gi|140584|sp|P29008|YDFA#ECOLI (100% identity in 51 amino acids)
3805 SEQ ID NO: 145: -0.684191, 273, novel, TTG start
SEQ ID NO: 146: -0.275807, 249, novel, similar to hypothetical proteins for example ,yacB [plasmid ColIb-P9] gi|4512441|dbj|Baa75090.1| (35% identity in 92 amino acids)
3810 SEQ ID NO: 147: -0.519277, 84, novel
SEQ ID NO: 148: -0.448958, 97, a putative regulatory protein, similar to putative regulatory protein [Salmonella typhimurium] gi|7467281|pir||T03008 (30% identity in 108 amino acids); DicA [Escherichia coli]
3815 gi|118631|sp|P06966|DICA#ECOLI (27% identity in 108 amino acids)
SEQ ID NO: 149: -0.025758, 67, novel
SEQ ID NO: 150: 0.918487, 120, novel, similar to YdaT [Escherichia coli] gi|3025103|sp|P76064|YDAT#ECOLI (31% identity in 141 amino acids)
3820 SEQ ID NO: 151: -0.246963, 429, novel
SEQ ID NO: 152: 0.574468, 48, novel
SEQ ID NO: 153: 0.214286, 92, a putative DNAreplication protein, similar to DnaC homolog [Escherichia coli] gi|7429001|pir||C64886 (79% identity in 248 amino acids); DnaC[Escherichia coli] gi|118715|sp|P07905|DNAC#ECOLI (48% identity in 242 amino acids)
3825 SEQ ID NO: 154: -0.016418, 68, novel, similar to gi|3025105|sp|P76066|YDAW#ECOLI (54% identity in 155 amino acids)

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 155: -0.025506, 248, novel
SEQ ID NO: 156: 0.022, 101, novel, similar to hypothetical proteins for example ,IroE[Salmonella enterica] gi|2738251|gb|aaC46182.1| (29% identity in 249 amino acids)
3835 SEQ ID N O-157: -0.369811, 107, novel
SEQ ID NO: 158: -0.00581, 569, novel
SEQ ID NO: 159: -0.291558, 155, a putative prophage maintenance protein, similar to Hok/Gef family for example ,MokW [Bacteriophage 933W]
3840 gi|4585453|gb|aaD25481.1|AF125520#76 (92% identity in 65 amino acids)
SEQ ID NO: 160: -0.194196, 225, novel, similar to QD1 [Bacteriophage N15] gi|2564084|gb|aaB81659.1| (31% identity in 64 amino acids)
3845 SEQ ID NO: 161: -0.083415, 206, novel
SEQ ID NO: 162: -0.462832, 114, a putative crossover junction endodeoxyribonuclease, similar to Gp67 [Bacteriophage HK97] gi|6901639|gb|aaF31142.1| (60% identity in 113 amino acids); crossover junction endodeoxyribonuclease Rus
3850 [Escherichia coli cryptic prophage DLP12] gi|2507117|sp|P40116|RUS#ECOLI (40% identity in 115 amino acids)
SEQ ID NO: 163: 0.998039, 52, a putative antitermination protein, similar to bacteriophage antitermination proteins for example ,YbcQ [Escherichia coli cryptic prophage DLP12
3855 gi|4585416|gb|aaD25444.1|AF125520#39 (77% identity in 124 amino acids)
SEQ ID NO: 164: -0.436782, 88, novel, similar to [hypothetical membrane protein] YpbD [Bacillus subtilis]
3860 gi|1730886|sp|P50730|YPBD#BACSU (30% identity in 128 amino acids)
SEQ ID NO: 165: -0.286022, 94, novel, similar to hypothetical protein [Bacteriophage P27] gi|8346569|emb|CAB93762.1| (97% identity in 49 amino acids)

Appendix B: Hideo *et al.* Full Translation

3865 SEQ ID NO: 166: 0.757522, 114, a putative transcription regulatory element, similar to transcription regulatory elements for example ,YhiW [Escherichia coli] gi|586679|sp|P37638|YHIW#ECOLI (37% identity in 187 amino acids)

3870 SEQ ID NO: 167 : 0.175785, 224, novel, similar to hypothetical proteins for example ,[Bacteriophage 933W] gi|4585419|gb|aaD25447.1|AF125520#42 (53% identity in 613 amino acids)

SEQ ID NO: 168: -0.464706, 52, a transposase, identical to

3875 hypothetical protein [Escherichia coli plasmid p O-157 insertion sequence IS629] gi|7444868|pir||T00241 (100% identity in 116 amino acids)

SEQ ID NO: 169: -0.152174, 254, a putative transposase, similar to transposases for example ,[Escherichia coli

3880 plasmid p O-157 insertion sequence IS629] gi|7443862|pir||T00240 (98% identity in 220 amino acids)

SEQ ID NO: 170: -0.400502, 200, a putative transcription regulatory element, similar to PerC (BfpW) [Escherichia coli] gi|1172431|sp|P43475|PERC#ECOLI (47% identity in 87 amino acids)

3885 SEQ ID NO: 171: -0.431915, 142, a lipoprotein Rz1 protein precursor, similar to Rz1 precursors for example ,[Bacteriophage 933W] gi|4585425|gb|aaD25453.1|AF125520#48(98% identity in 61 amino acids); [Bacteriophage lambda] gi|540738|pir||JN0750(70% identity in 61 amino acids)

SEQ ID NO: 172: -0.121552, 117, a endopeptidase (host cell lysis), similar to endopeptidases for example ,[Bacteriophage VT2-Sal] gi|5881639|dbj|Baa84330.1| (88% identity in 154 amino acids)

3895 SEQ ID NO: 173: -0.561452, 538, novel

SEQ ID NO: 174: -0.275207, 243, novel

SEQ ID NO: 175: -0.345833, 121, a host cell lysis, similar to

Appendix B: Hideo *et al.* Full Translation

endolysins for example , [Bacteriophage H-19B]
3900 gi|4335686|gb|aaD17382.1| (94% identity in 177 amino acids)
SEQ ID NO: 176: -0.521101, 110, novel
SEQ ID NO: 177: -0.46, 156, novel
SEQ ID NO: 178: -0.444527, 403, novel
SEQ ID NO: 179: -0.033648, 319, a holin protein (host cell
3905 lysis), similar to holin proteins for example , [Bacteriophage
VT2-Sal] gi|5881636|dbj|Baa84327.1| (91% identity in 69
amino acids)
SEQ ID NO: 180: 0.066393, 245, novel, GTG start
SEQ ID NO: 181 : -0.292064, 127, novel, similar to
3910 hypothetical proteins for example ,L0013 [Escherichia coli
O-157:H7 strain EDL933] gi|3414881|gb|aaC31492.1|(99%
identity in 133 amino acids)
SEQ ID NO: 182 : -0.271985, 258, novel, identical to
hypothetical proteins for example ,L0014 [Escherichia coli
3915 O-157:H7 strain EDL933] gi|3414882|gb|aaC31493.1|(100%
identity in 115 amino acids)
SEQ ID NO: 183 : -0.112369, 381, novel, similar to
hypothetical proteins for example ,L0015 [Escherichia coli
O-157:H7 strain EDL933] gi|3414883|gb|aaC31494.1|(100%
3920 identity in 512 amino acids)
SEQ ID NO: 184: -0.165341, 353, a putative terminase small
subunit, similar to C-terminal part of terminase small subunits
for example , [Bacteriophage N15]
gi|2507082|sp|P31061|NOHA#ECOLI(46% identity in 75
3925 amino acids), GTG start, probably disrupted by IS insertion
SEQ ID NO: 185: -0.206736, 194, a terminase large subunit,
similar to terminase large subunits for
example , [Bacteriophage 21]
gi|2851579|sp|P36693|TERL#BPP21 (91% identity in 637
3930 amino acids)
SEQ ID NO: 186: -0.392375, 342, a portal protein, similar to
portal proteins for example ,GP4 [Bacteriophage P21]

Appendix B: Hideo *et al.* Full Translation

gi|549295|sp|P36272|VG04#BPP21 (98% identity in 530 amino acids)

3935 SEQ ID NO: 187: -0.188742, 152, a head-tail preconnector protein, similar to head-tail preconnector proteins for example ,Gp5 [Bacteriophage P21] gi|549296|sp|P36273|VG05#BPP21 (97% identity in 501 amino acids), GTG start

3940 SEQ ID NO: 188: 0.734105, 347, a head decoration protein, similar to head decoration proteins for example ,Gpshp [Bacteriophage P21] gi|549437|sp|P36275|VSHP#BPP21 (95% identity in 115 amino acids)

SEQ ID NO: 189: -0.317188, 193, a possible major head protein, 3945 similar to N-terminal part of major head proteins for example ,Gp7 [Bacteriophage P21] gi|547612|sp|P36270|HEAD#BPP21(95% identity in 88 amino acids)

SEQ ID NO: 190: -0.249738, 192, novel

3950 SEQ ID NO: 191: 0.297015, 68, a putative tail component, similar to minor tail proteins for example ,GpG [Bacteriophage lambda] gi|138842|sp|P03734|VMTG#LAMBD (68% identity in 143 amino acids)

SEQ ID NO: 192: -0.083333, 103, a putative minor tail 3955 component, similar to minor tail protein GpG-T [Bacteriophage lambda] gi|7429179|pir|TLBPTL (72% identity in 124 amino acids), probably produced by translational frameshiftSEQ ID NO: 193: 0, 75, a tail length determinator, similar to tail length tape measure proteins for example ,GpH

3960 [Bacteriophage lambda] gi|138843|sp|P03736|VMTH#LAMBD (77% identity in 859 amino acids)

SEQ ID NO: 194: -0.427011, 697, a minor tail component, similar to minor tail proteins for example ,GpM [Bacteriophage lambda] gi|138845|sp|P03737|VMTM#LAMBD 3965 (82% identity in 109 amino acids)

SEQ ID NO: 195: 0.565, 41, a minor tail component, similar to

Appendix B: Hideo *et al.* Full Translation

minor tail proteins for example ,GpL [Bacteriophage lambda] gi|138844|sp|P03738|VMTL#LAMBD (76% identity in 232 amino acids)

3970 SEQ ID NO: 196: -0.101111, 91, a tail assembly protein, similar to tail assembly proteins for example ,GpK [Bacteriophage lambda] gi|139638|sp|P03729|VTAK#LAMBD (84% identity in 196 amino acids)

SEQ ID NO: 197: -0.5, 51, a tail assembly protein, similar to tail assembly proteins for example ,GpI [Bacteriophage lambda] gi|139637|sp|P03730|VTAI#LAMBD (68% identity in 224 amino acids)

3975 SEQ ID NO: 198: -1.1875, 65, novel

SEQ ID NO: 199: -0.140541, 75, a copper/zinc superoxide dismutase, similar to copper/zinc-superoxide dismutases for example ,[Salmonella typhimurium] gi|2462699|emb|Caa73588.1| (58% identity in 175 amino acids)

3980 SEQ ID NO: 200: -0.113333, 91, a putative host specificity protein, similar to host specificity proteins for example ,GpJ [Bacteriophage lambda] gi|138412|sp|P03749|VHSJ#LAMBD (65% identity in 1156 amino acids)

SEQ ID NO: 201: -0.59375, 65, a putative outer membrane protein, similar to Lom outer membrane proteins for example ,[prophage P-EibA] gi|7532789|gb|aaF63231.1|AF151091#2 (68% identity in 199 amino acids)

3990 SEQ ID NO: 202: 0.147917, 49, a putative tail fiber protein, similar to putative tail fiber proteins for example ,[Bacteriophage 933W] gi|4585436|gb|aaD25464.1|AF125520#59 (38% identity in 370 amino acids)

SEQ ID NO: 203 : -0.707843, 103, novel, similar to hypothetical protein [Bacteriophage 933W]

4000 gi|4585437|gb|aaD25465.1|AF125520#60 (93% identity in 129

Appendix B: Hideo *et al.* Full Translation

amino acids); similar to C-terminal part of putative tail protein [933W] gi|4585436|gb|aaD25464.1|AF125520#59(93% identity in 89 amino acids)

SEQ ID NO: 204: 0.03369, 375, novel, GTG start

4005 SEQ ID NO: 205: -0.295604, 92, a putative secreted effector protein, similar to EspF proteins for example ,[Escherichia coli strain E2348/69] gi|2865308|gb|aaC38400.1| (37% identity in 87 amino acids); L0016 · Escherichia coli gi|3414884|gb|aaC31495.1| (38% identity in 126 amino acids)

4010 SEQ ID NO: 206: -0.495808, 168, novel, partially similar to avirulence protein A [Pseudomonas syringae] gi|114726|sp|P11437|AVRA#PSESG (46% identity in 56 amino acids)

SEQ ID NO: 207: -0.350549, 92, a putative integrase, identical to integrase [Bacteriophage 933W] gi|4585378|gb|aaD25406.1|AF125520#1, but [having] different start; similar to integrases for example , [Escherichia coli rac prophage] gi|6166234|sp|P76056|INTR#ECOLI (42% identity in 408 amino acids)

4020 SEQ ID NO: 208: 0.199342, 153, a putative excisionase, identical to putative excisionase [Bacteriophage 933W] gi|4585379|gb|aaD25407.1|AF125520#2

SEQ ID NO: 209: 0.463492, 64, novel, identical to hypothetical protein [Bacteriophage 933W] gi|4585380|gb|aaD25408.1|AF125520#3

4025 SEQ ID NO: 210: -0.033136, 170, novel, identical to hypothetical protein [Bacteriophage 933W] gi|4585381|gb|aaD25409.1|AF125520#4, but [having] different start

SEQ ID NO: 211: -0.402415, 208, novel, identical to hypothetical protein [Bacteriophage 933W] gi|4585382|gb|aaD25410.1|AF125520#5; similar to hypothetical protein [Bacteriophage 933W]

Appendix B: Hideo *et al.* Full Translation

4035 SEQ ID NO: 212 : -0.577922, 78, novel, identical to
hypothetical protein [Bacteriophage 933W]
gi|4585455|gb|aaD25483.1|AF125520#78 (50% identity in 80
amino acids)

4040 SEQ ID NO: 213 : 0.356338, 72, novel, identical to
hypothetical protein [Bacteriophage 933W]
gi|4585383|gb|aaD25411.1|AF125520#6 (100% identity in 95
amino acids)

4045 SEQ ID NO: 214 : -0.410847, 296, novel, identical to
hypothetical protein [Bacteriophage 933W]
gi|4585384|gb|aaD25412.1|AF125520#7 (100% identity in 72
amino acids), GTG start

4050 SEQ ID NO: 215 : -0.942593, 109, novel, identical to
hypothetical protein [Bacteriophage VT2-Sal]
gi|5881600|dbj|Baa84291.1| (100% identity in 155 amino
acids)

4055 SEQ ID NO: 216 : -0.260656, 245, novel, identical to
hypothetical protein [Bacteriophage 933W]
gi|4585386|gb|aaD25414.1|AF125520#9 (100% identity in 257
amino acids); similar to hypothetical proteins for
example , [Bacteriophage 933W]
gi|4585455|gb|aaD25483.1|AF125520#78 (95% identity in 157
amino acids), GTG start

4060 SEQ ID NO: 217: -0.421638, 172, novel, similar to C4-type
zinc finger proteins (TraR family) for
example ,gi|4585456|gb|aaD25484.1|AF125520#79 (79%
identity in 73 amino acids)

4065 SEQ ID NO: 218 : -0.312093, 646, novel, identical to
hypothetical protein [Bacteriophage 933W], but [having]
different start; similar to orf61 [Bacteriophage lambda]
gi|508993|gb|aaA96566.1| (93% identity in 46 amino acids)

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 219 : -0.186957, 47, novel, identical to
4070 hypothetical protein [Bacteriophage VT2-Sal]
gi|5881603|dbj|Baa84294.1| (100% identity in 63 amino acids); similar to orf63 [Bacteriophage lambda] gi|508994|gb|aaA96567.1| (90% identity in 61 amino acids)
SEQ ID NO: 220 : -0.418537, 411, novel, identical to
4075 hypothetical protein [Bacteriophage VT2-Sal]
gi|5881604|dbj|Baa84295.1|, but [having] defferent start; similar to orf60a [Bacteriophage lambda] gi|508995|gb|aaA96568.1| (96% identity in 60 amino acids)
SEQ ID NO: 221 : -0.531132, 213, a exonuclease, similar to
4080 exonuclease [Bacteriophagelambda] gi|2981722|pdb|1AVQ|A (98% identity in 226 amino acids)
SEQ ID NO: 222 : -0.137079, 90, a recombination protein Bet, identical to Bet [Bacteriophage VT2-Sal]
gi|5881606|dbj|Baa84297.1| (100% identity in 261 amino acids); similar to Bet [Bacteriophage lambda] gi|137511|sp|P03698|VBET#LAMBD (99% identity in 261 amino acids)
SEQ ID NO: 223 : -0.533645, 215, a host-nuclease inhibitor protein Gam, similar to Gam proteins for
4090 example , [Bacteriophage lambda] gi|138128|sp|P03702|VGAM#LAMBD (97% identity in 138 amino acids)
SEQ ID NO: 224 : -0.435294, 52, a Kil protein, identical to kil [Bacteriophage VT2-Sal] gi|5881608|dbj|Baa84299.1|; similar
4095 to kill proteins for example , [Bacteriophage lambda] gi|138622|sp|P03758|VKIL#LAMBD (98% identity in 89 amino acids)
SEQ ID NO: 225 : -0.714458, 167, a regulatory protein cIII (antitermination), identical to cIII [Bacteriophage lambda]
4100 gi|133366|sp|P03044|RPC3#LAMBD (100% identity in 54 amino acids)
SEQ ID NO: 226 : 0.126027, 74, a single strandbinding protein

Appendix B: Hideo *et al.* Full Translation

Ea10, identical to Ea10 [Bacteriophage VT2-Sa] gi|5881610|dbj|Baa84301.1| (100% identity in 122 amino acids); similar to Ea10 [Bacteriophage lambda] gi|137630|sp|P03757|VE10#LAMBD (99% identity in 122 amino acids)

SEQ ID NO: 227 : -0.575177, 142, novel, identical to hypothetical protein [Bacteriophage VT2-Sa] gi|5881612|dbj|Baa84303.1| (100% identity in 83 amino acids)

SEQ ID NO: 228: -1.413333, 61, a putative anti-termination N protein, identical to N protein [Bacteriophage VT2-Sa] gi|5881613|dbj|Baa84304.1|, but [having] different start; similar to N proteins for example ,[Bacteriophage 933W] gi|4585397|gb|aaD25425.1|AF125520#20 (42% identity in 90 amino acids)

SEQ ID NO: 229: -0.125172, 291, novel

SEQ ID NO: 230: -0.297787, 950, novel

SEQ ID NO: 231 : -0.469647, 795, novel, identical to hypothetical protein [Bacteriophage VT2-Sa] gi|5881614|dbj|Baa84305.1| (100% identity in 173 amino acids)

SEQ ID NO: 232: -0.370764, 302, a putative cI repressor protein, similar to cI [Bacteriophage lambda] gi|133353|sp|P03034|RPC1#LAMBD (70% identity in 208 amino acids)

SEQ ID NO: 233: 0.007584, 357, a putative regulatory protein, identical to hypothetical protein [Bacteriophage VT2-Sa] gi|5881616|dbj|Baa84307.1|; similar to c2 [Bacteriophage Ll] gi|1469215|emb|Caa63999.1| (42% identity in 49 amino acids)

SEQ ID NO: 234: 0.418519, 55, a regulatory protein CII, identical to CII protein [Bacteriophage VT2-Sa] gi|5881617|dbj|Baa84308.1| (100% identity in 98 amino acids); similar to CII proteins for example ,[Enterobacteria phage HK022] gi|631957|pir||S42398 (96% identity in 98 amino acids)

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 235 : -0.554044, 273, novel, identical to hypothetical protein [Enterobacteria phage HK022] gi|632160|pir||S42399 (100% identity in 48 amino acids);
4140 similar to orf48 [Bacteriophage P22] gi|871503|emb|Caa55155.1| (85% identity in 48 amino acids)
SEQ ID NO: 236: -0.290062, 162, a endopeptidase (host cell lysis), similar to endopeptidases for example ,[Bacteriophage lambdal] gi|119368|sp|P00726|ENPP#LAMBD (97% identity in 4145 153 amino acids)
SEQ ID NO: 237: -0.084177, 159, a lipoprotein Rz1 precursor, similar to Rz1 precursors for example ,[Bacteriophage lambdal] gi|540738|pir||JN0750 (96% identity in 60 amino acids)
SEQ ID NO: 238: -0.384931, 74, novel, similar to Bor protein
4150 precursors for example ,[Bacteriophage lambdal] gi|137520|sp|P26814|VBOR#LAMBD (98% identity in 97 amino acids)
SEQ ID NO: 239 : -0.322581, 125, novel, similar to hypothetical proteins for example ,YbcV [Escherichia coli]
4155 gi|2495556|sp|P77598|YBCV#ECOLI (98% identity in 150 amino acids)
SEQ ID NO: 240: -0.276613, 125, novel, identical to YbcW [Escherichia coli] gi|2495557|sp|P75720|YBCW#ECOLI
SEQ ID NO: 241 : 0.049693, 164, novel, similar to
4160 hypothetical proteins for example ,[Escherichia coli] gi|1778472|gb|aaB40755.1| (98% identity in 64 amino acids)
SEQ ID NO: 242: -0.307692, 66, a terminase small subunit, similar to terminase smallsubunits for example ,Nu1 [Bacteriophage lambdal] gi|139026|sp|P03707|TERS#LAMBD
4165 (97% identity in 181 amino acids)
SEQ ID NO: 243: -0.415, 281, a putative terminase large subunit, similar to terminase large subunits for example , protein A [Bacteriophage lambdal] gi|137616|sp|P03708|TERL#LAMBD (99% identity in 641 4170 amino acids), GTG start

Appendix B: Hideo *et al.* Full Translation

- SEQ ID NO: - : 0.61519, 80, a head-to-tail joining protein, similar to head-to-tail joining proteins for example ,GpW [Bacteriophage lambda] gi|138415|sp|P03727|VHTJ#LAMBD (98% identity in 68 amino acids)
- 4175 SEQ ID NO: 485: -0.691397, 373, a putative portal protein, similar to portal proteins for example ,GpB [Bacteriophage lambda] gi|138762|sp|P03710|VMCB#LAMBD (98% identity in 533 amino acids)
- 4180 SEQ ID NO: 486: -0.496629, 90, a minor capsid protein, similar to minor capsid proteins for example , protein C [Bacteriophage lambda] gi|137565|sp|P03711|VCAC#LAMBD (97% identity in 439 amino acids), GTG start, containing Nu3-homolog
- 4185 SEQ ID NO: 487: -0.65931, 146, a major capsid protein, similar to major capsid proteins for example ,GpD [Bacteriophage lambda] gi|137566|sp|P03712|VCAD#LAMBD(99% identity in 110 amino acids)
- 4190 SEQ ID NO: 488: 0.03027, 186, a putative major capsid protein, similar to major capsid proteins for example ,GpE [Bacteriophage lambda] gi|116752|sp|P03713|HEAD#LAMBD (98% identity in 341 amino acids)
- 4195 SEQ ID NO: 489: -0.356579, 77, a DNA packaging protein, similar to DNA packaging proteins for example ,GpFI [Bacteriophage lambda] gi|139324|sp|P03709|VPF1#LAMBD (98% identity in 132 amino acids)
- 4200 SEQ ID NO: 490: -0.53038, 159, a minor capsid protein, similar to minor capsid proteins for example ,GpFII [Bacteriophage lambda] gi|137575|sp|P03714|VCF2#LAMBD(94% identity in 117 amino acids), GTG start
- SEQ ID NO: 491: -0.797196, 108, a minor tail protein, similar to minor tail proteins for example ,GpZ [Bacteriophage lambda] gi|138849|sp|P03731|VMTZ#LAMBD (98% identity in 192 amino acids)

Appendix B: Hideo *et al.* Full Translation

- 4205 SEQ ID NO: 492: -0.397163, 142, a minor tail protein, similar
to minor tail proteins for example ,GpU [Bacteriophage
lambda| gi|138847|sp|P03732|VMTU#LAMBD (100% identity
in 131 amino acids)
- SEQ ID NO: 493: -0.69942, 346, a major tail protein V,
4210 similar to major tail proteins for example ,GpV
[Bacteriophage lambda| gi|138848|sp|P03733|VMTV#LAMBD
(95% identity in 246 amino acids)
- SEQ ID NO: 494: -0.687309, 198, a minor tail protein, similar
to minor tail proteins for example ,GpG [Bacteriophage
4215 lambda| gi|138842|sp|P03734|VMTG#LAMBD (96% identity in
140 amino acids)
- SEQ ID NO: 495: -0.404622, 239, a putative minor tail
protein, similar to minor tail proteins for example ,GpT
[Bacteriophage lambda| gi|138846|sp|P03735|VMTT#LAMBD
4220 (99% identity in 144 amino acids), probably produced by
translational frameshift
- SEQ ID NO: 496: -0.494286, 106, a tail length tape measure
protein precursor, similar to tail length tape measure protein
precursors for example ,GpH [Bacteriophage lambda]
4225 gi|138843|sp|P03736|VMTH#LAMBD (96% identity in 849
amino acids)
- SEQ ID NO: 497: -0.175, 101, a minor tail protein, similar to
minor tail proteins for example ,GpM [Bacteriophage
lambda| gi|138845|sp|P03737|VMTM#LAMBD (94% identity in
4230 109 amino acids)
- SEQ ID NO: 498: -0.355238, 106, a minor tail protein, similar
to minor tail proteins for example ,GpL [Bacteriophage
lambda| gi|138844|sp|P03738|VMTL#LAMBD (98% identity in
232 amino acids)
- 4235 SEQ ID NO: 499: -0.282857, 106, a tail assembly protein,
similar to tail assembly proteins for example ,GpK
[Bacteriophage lambda| gi|139638|sp|P03729|VTAK#LAMBD
(97% identity in 199 amino acids)

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 500: -0.675172, 146, a tail assembly protein,
4240 similar to tail assembly proteins for example ,GpI
[Bacteriophage lambda] gi|139637|sp|P03730|VTAI#LAMBD
(98% identity in 223 amino acids)

SEQ ID NO: 501: 0.114286, 64, a host specificity protein,
similar to host specificity proteins for example ,GpJ
4245 [Bacteriophage lambda] gi|138412|sp|P03749|VHSJ#LAMBD
(89% identity in 1131 amino acids)

SEQ ID NO: 502: -0.550256, 196, a putative membrane
protein precursor, similar to membrane protein Lom precursors
for example ,prophage P-EibA
4250 gi|7532789|gb|aaF63231.1|AF151091#2 (69% identity in 199
amino acids); [Bacteriophage lambda]
gi|138693|sp|P03701|VLOM#LAMBD (44% identity in 199
amino acids)

SEQ ID NO: 503: 0.15098, 52, a putative tail fiber protein,
4255 similar to putative tail fiber proteins for example ,Gp37
[Escherichia coli] gi|7466858|pir||G64887 (95% identity in
496 amino acids)

SEQ ID NO: 504: 0.198571, 71, a tail fiber assembly protein,
similar to tail fiber assembly proteins for example ,Orf194
4260 [Bacteriophage lambda] gi|139990|sp|P03740|Y194#LAMBD
(92% identity in 191 amino acids)

SEQ ID NO: 505: -0.96087, 93, novel, similar to hypothetical
proteins for example ,putative catalase [Salmonella
4265 typhimurium] gi|7162108|emb|CAB76676.1| (84% identity in
289 amino acids)

SEQ ID NO: 506 : -0.407736, 350, novel, similar to
hypothetical proteins for example ,YciE [Escherichia coli]
gi|775201|gb|aaA65179.1| (88% identity in 168 amino acids)

SEQ ID NO: 507 : -0.273387, 125, novel, similar to
4270 hypothetical proteins for example ,YciF [Escherichia coli]
gi|140432|sp|P21362|YCIF#ECOLI (80% identity in 166 amino
acids)

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 508 : -0.473626, 274, novel, similar to hypothetical proteins for example ,YciG-homolog [Salmonella typhimurium] gi|6851081|emb|CAB71036.1| (88% identity in 60 amino acids), (also similar to YciG, E. coli [in TONB-TRPA INTERGENIC REGION])
4275
SEQ ID NO: 509: 0.544262, 62, novel, similar to hypothetical proteins for example ,ybcY [Escherichia coli]
4280 gi|2495559|sp|P77460|YBCY#ECOLI (99% identity in 143 amino acids)
SEQ ID NO: 510 : -0.353615, 167, novel, similar to hypothetical proteins for example ,YlcE [Escherichia coli
gi|3025212|sp|P77087|YLCE#ECOLI (98% identity in 61
4285 amino acids), (similar to orf194, lambda, phage tail assembly protein)
SEQ ID NO: 511 : -0.336744, 646, novel, similar to hypothetical proteins for example ,L0013 [Escherichia coli O-157:H7 EDL933] gi|3414881|gb|aaC31492.1| (99% identity in 133 amino acids)
4290
SEQ ID NO: 512: 0.348333, 61, novel, similar to hypothetical proteins for example ,L0014 [Escherichia coli O-157:H7 EDL933] gi|3414882|gbaaC31493.1| (100% identity in 115 amino acids)
4295 SEQ ID NO: 513 : -0.398876, 90, novel, similar to hypothetical proteins for example ,L0015 [Escherichia coli O-157:H7 EDL933] gi|3414883|gb|aaC31494.1| (100% identity in 512 amino acids)
SEQ ID NO: 514: 0.087324, 72, a putative fimbrial protein
4300 (partial), similar to truncated BfpA [Escherichia coli] gi|4808944|gb|aaD30026.1|AF119170#1 (75% identity in 40 amino acids)
SEQ ID NO: 515 : -0.027193, 115, novel, similar to hypothetical proteins for example ,[plasmid F]
4305 gi|8918853|dbj|Baa97900.1| (76% identity in 492 amino acids)
SEQ ID NO: 516: -0.440678, 178, an outer membrane protease

Appendix B: Hideo *et al.* Full Translation

precursor, similar to outer membrane protease precursors for example ,protease VII precursor [Escherichia coli] gi|129161|sp|P09169|OMPT#ECOLI (98% identity in 317
4310 amino acids)

SEQ ID NO: 517 : -0.283069, 190, novel, similar to hypothetical proteins for example ,putative DNAbinding protein [Streptomyces coelicolor A3(2)] gi|6855358|emb|CAB71249.1| (34% identity in 171 amino
4315 acids)

SEQ ID NO: 518: -0.234839, 156, a transposase, identical to hypothetical protein[Escherichia coli plasmid p O-157 insertion sequence IS629] gi|7444868|pir||T00241

SEQ ID NO: 519: 0.076471, 69, a transposase, identical to
4320 transposase [Escherichia coli plasmid p O-157 insertion sequence IS629] gi|7443862|pir||T00240

SEQ ID NO: 520: 0.045946, 75, similar to a part of hypothetical proteins, for example, YPJA#ECOLI gi|2507221|sp|P52143 (amino acids at the position 1336-1569/1569) (96% identity in
4325 234 amino acids), GTG start

SEQ ID NO: 521: -0.288889, 73, novel

SEQ ID NO: 522 : 1.11087, 47, a transposase (insertion sequence IS629), similar to gi|7443862|pir||T00240 (96% identity in 296 amino acids)

4330 SEQ ID NO: 523 : -0.714754, 62, a transposase (insertion sequence IS629), similar to hypothetical proteins for example ,[Shigella flexneri SHI-2 pathogenicityisland] gi|5532454|gb|aaD44738.1|AF141323#9 (98% identity in 108 amino acids)

4335 SEQ ID NO: 524: -0.468595, 122, a putative TonB dependent outer membrane receptor, similar to TonBdependent outer membrane receptor PrrA [Escherichia coli CFT073] gi|3661477|gb|aaC61709.1| (97% identity in 656 amino acids)

SEQ ID NO:525: -0.648128, 188, a molybdenum transporter
4340 protein, similar to molybdenum transporter proteins for

Appendix B: Hideo *et al.* Full Translation

example ,gi|3661478|gb|aaC61710.1| (91% identity in 284 amino acids)
SEQ ID NO: 526: -0.117179, 554, novel
SEQ ID NO: 527 : -0.148992, 646, novel, similar to hypothetical proteins for example ,Orf2 [Escherichia coli CFT073] gi|3661479|gb|aaC61711.1| (98% identity in 214 amino acids)
SEQ ID NO: 528 : -0.435414, 834, a putative ferric enterobactintransporter, similar to ferric enterobactintransporter ATP-binding protein [Escherichia coli CFT073] gi|3661480|gb|aaC61712.1| (79% identity in 148 amino acids)
SEQ ID NO: 529: -0.008333, 109, a putative ABC protein (permease), similar to ABCtransporter permeases for example ,[Haemophilus influenzae] gi|2501391|sp|Q57130|YE71#HAEIN (40% identity in 323 amino acids)
SEQ ID NO: 530: -0.180172, 117, a putative ABC transporter, similar to iron (iii) ABC transporter, ATP-binding protein [Pyrococcus abyssi (strain Orsay)] gi|7519847|pir||A75077 (24% identity in 246 amino acids); hypothetical proteins for example ,[Methanosarcina barker] gi|2129363|pir||S62196 (26% identity in 259 amino acids)
SEQ ID NO: 531: -0.46554, 149, novel
4365 SEQ ID NO: 532: 0.172807, 115, a putative integrase, similar to phage integrase family, for example ,[Bacteriophage 21] gi|138558|sp|P27077|VINT#BPP21 (50% identity in 370 amino acids)
SEQ ID NO: 533: -0.333614, 239, a putative excisionase, similar to excisionases for example ,[Bacteriophage 21] gi|139674|sp|P27079|VXIS#BPP21 (45% identity in 77 amino acids)
SEQ ID NO: 534: -0.296774, 125, a putative exonuclease, its N-terminal part (amino acids at the position 1-256) is similar to

Appendix B: Hideo *et al.* Full Translation

4375 hypothetical proteins for example ,ydfE [Escherichia coli
crypticprophage/truncated insertion sequence IS2 fusion]
gi|78597|pir||S03698 (92% identity in 256 amino acids); its
Central part (amino acids at the position 209-622) is similar to
Exodeoxyribonuclease VIII (EC 3.1.11.-) (Exo VIII).
4380 [Escherichia coli] gi|1742216|dbj|Baa14950.1| (39% identity
in 361 amino acids); its C-terminal part (amino acids at the
position 644-776) is similar to exonuclease [phage T4]
gi|119690|sp|P04536|EXOD#BPT4 (27% identity in 133 amino
acids)
4385 SEQ ID NO: 535: -0.091398, 94, novel, similar to hypothetical
protein YdfD [Escherichia coli]
gi|140587|sp|P29010|YDFD#ECOLI (96% identity in 63 amino
acids)
SEQ ID NO: 536: -0.238298, 142, a putative cell division
4390 inhibition protein, similar to cell division inhibitor dicB
[Escherichia coli] gi|2507009|sp|P09557|DICB#ECOLI (93%
identity in 62 amino acids)
SEQ ID NO: 537: -0.317647, 953, novel
SEQ ID NO: 538: -0.665487, 114, novel
4395 SEQ ID NO: 539 : -0.364655, 233, novel, similar to
hypothetical 8.3 KD protein YdfC [Escherichia coli]
gi|140586|sp|P21418|YDFC#ECOLI, (94% identity in 72 amino
acids)
SEQ ID NO: 540: -0.672619, 85, a putative repressor protein
4400 of division inhibition gene dicB, similar to DicA repressor
protein of division inhibition gene dicB [Escherichia coli]
gi|118631|sp|P06966|DICA#ECOLI (63% identity in 131 amino
acids); its N-terminal part (amino acids at the position 1-68
amino acids) is similar to N-terminal part of protein
4405 [Bacteriophage P22] gi|133359|sp|P03035|RPC2#BPP22(61%
identity in 68 amino acids)
SEQ ID NO: 541: -0.47226, 293, a putative repressor protein
of division inhibition gene dicB, similar to DicC repressor

Appendix B: Hideo *et al.* Full Translation

protein of division inhibition gene *dicB* [Escherichia coli] 4410 gi|118633|sp|P06965|DICC#ECOLI (82% identity in 74 amino acids); its N-terminal part (amino acids at the position 1-57 amino acids) is similar to (at low level) *Cro* [Bacteriophage P22] gi|132195|sp|P09964|RCRO#BPP22 (36% identity in 57 amino acids)

4415 SEQ ID NO: 542 : -0.389388, 246, novel, similar to hypothetical 11.0 kDa protein *YdfX* [Escherichia coli] gi|3183265|sp|P76165|YDFX#ECOLI (87% identity in 93 amino acids)

SEQ ID NO: 543: -0.211702, 95, novel, similar to replication 4420 termination factor (prepriming protein I) *DnaT* [Escherichia coli] gi|1361001|pir||S56589 (51% identity in 83 amino acids)

SEQ ID NO: 544: -0.145524, 783, a putative phagereplication protein, similar to phagereplication proteins for example , protein 14 [phage phi·80] gi|137937|sp|P14814|VG14#BPPH8 4425 (48% identity in 129 amino acids)

SEQ ID NO: 545: -0.473433, 1134, a putative fimbrial minor pilin protein precursor, similar to N-terminal part of fimbrial minor pilin protein precursors for example ,*Pap*-related pilus H [Escherichia coli] gi|837337|gb|aaA67692.1|(75% identity in 4430 56 amino acids), GTG start, probably interrupted by frameshift

SEQ ID NO: 546: 0.168627, 52, a fimbrial minor pilin protein precursor (partial), similar to C-terminal part of fimbrial minor pilin protein precursors, for example ,*PrsH* [Escherichia coli] gi|1172646|sp|P42185|PRSH#ECOLI (62% identity in 50 4435 amino acids)

SEQ ID NO: 547: 0.350336, 150, a putative colonization factor, identical to *Anm* (attachment and effacement of negative mutant) protein [Escherichia coli] gi|6715555|gb|aaB48445.2| (100% identity in 252 amino acids); similar to accessory colonization factor *AcfC* [Vibrio 4440 cholerae] gi|558481|gb|aaA50604.1| (50% identity in 239 amino acids)

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 548: -0.544186, 302, a putative toxic protein (prophage maintenance; modulation host cell killing), similar to
4445 Hok/Gef family for example ,Gef [Escherichia coli] gi|2120017|pir||S40540 (79% identity in 69 amino acids)
SEQ ID NO: 549: -0.409434, 54, novel, similar to Rem protein [Escherichia coli] gi|132324|sp|P07010|REM#ECOLI (71% identity in 84 amino acids)
4450 SEQ ID NO: 550: -0.517544, 58, novel, similar to (at low level) orf QD1 [Bacteriophage N15] gi|2564084|gb|aaB81659.1| (33% identity in 64 amino acids)
SEQ ID NO: 551: -0.641758, 92, novel, similar to hypothetical protein b1560 [Escherichia coli] gi|7466196|pir||C64911 (86%
4455 identity in 347 amino acids); similar to hypothetical protein A [phage P1] gi|732234|sp|Q06262|YORA#BPP1 (85% identity in 347 amino acids), GTG start
SEQ ID NO: 552 : -0.407064, 454, a putative crossover junction endodeoxyribonuclease, similar to Gp67 [Bacteriophage
4460 HK97] gi|6901639|gb|aaF31142.1| (60% identity in 113 amino acids); crossover junction endodeoxyribonucleases for example ,Rus [Escherichia coli cryptic lambdoid prophage DLP12] gi|2507117|sp|P40116|RUS#ECOLI (39% identity in 115 amino acids)
4465 SEQ ID NO: 553: -0.475714, 71, novel
SEQ ID NO: 1213 : -0.410758, 410, novel [hypothetical lipoprotein], its C-terminal part is similar to orf2 [Bacteriophage P27] gi|8346569|emb|CAB93762.1| (98% identity in 63 amino acids), GTG start
4470 SEQ ID NO: 1214: -0.622581, 63, a putative DNA methylase, similar to orf3 [BacteriophageP27] gi|8346570|emb|CAB93763.1| (85% identity in 312 amino acids); similar to adenine specific modification methylases for example ,Gp52 [phage N15] gi|7433503|pir||T13139 (55%
4475 identity in 270 amino acids)
SEQ ID NO: 1215 : -0.359514, 248, novel, similar to

Appendix B: Hideo *et al.* Full Translation

hypothetical proteins for example ,[Bacteriophage 933W] gi|4585419|gb|aaD25447.1|AF125520#42 (52% identity in 613 amino acids)

4480 SEQ ID NO: 1216: 0.293846, 66, a putative holin protein, similar to holin proteins for example ,[Bacteriophage 933W] gi|4499808|emb|CAB39307.1| (95% identity in 71 amino acids) SEQ ID NO: 1217 : 0.377049, 62, novel, similar to hypothetical protein YdfR [Escherichia coli] gi|3183262|sp|P76160|YDFR#ECOLI (45% identity in 74 amino acids)

4485 SEQ ID NO: 1218 : -0.180952, 64, a putative endolysin, similar to endolysins for example ,[Bacteriophage 933W] gi|4585422|gb|aaD25450.1|AF125520#45 (96% identity in 177 amino acids)

4490 SEQ ID NO: 1219: -0.23625, 81, a putative antirepressor protein, identical to putative antirepressor protein Ant [Bacteriophage 933W] gi|4585423|gb|aaD25451.1|AF125520; similar to antirepressor protein Ant [Bacteriophage P22]gi|131843|sp|P03037|RANT#BPP22 (49% identity in 126 amino acids)

4495 SEQ ID NO: 1220 -0.936364, 100, endopeptidase (host lysis), identical to Rz [Bacteriophage VT2-Sa] gi|5881639|dbj|Baa84330.1|; similar to Rz endopeptidases for example , [Bacteriophage lambda] gi|119368|sp|P00726|ENPP#LAMBD (69% identity in 153 amino acids)

4500 SEQ ID NO: 1221: -0.548598, 322, a lipoprotein Rz1 precursor, similar to Rz1 protein precursors for example , [Bacteriophage 933W] gi|4585425|gb|aaD25453.1|AF125520#48(98% identity in 61 amino acids); [Bacteriophage lambda] gi|540738|pir||JN0750(70% identity in 61 amino acids)

4505 SEQ ID NO: 1222 : -0.179452, 74, novel, similar to hypothetical proteins for example ,[Escherichia coli]

Appendix B: Hideo *et al.* Full Translation

gi|1778472|gb|aaB40755.1| (70% identity in 67 amino acids)
SEQ ID NO: 1223: -0.636194, 269, a putative DNase, similar to (at low level) putative DNase [Bacteriophagephi-C31]
gi|1107475|emb|Caa62587.1| (28% identity in 85 amino acids)

4515 SEQ ID NO: 1224: 0.322807, 115, novel
SEQ ID NO: 1225: -0.454217, 84, a putative terminase small subunit, similar to (at low level) putative terminase small subunit [Bacillus subtilis PBSX phage]
gi|1722886|sp|P39785|XTMA#BACSU (42% identity in 57 amino acids), GTG start

4520 SEQ ID NO: 1226: -0.484559, 137, a putative terminase large subunit, similar to phage D3terminase-like protein [Haemophilus influenzae]
gi|6739656|gb|aaF27357.1|AF198256#11 (22% identity in 472 amino acids)

4525 SEQ ID NO: 1227: -0.942222, 91, a putative head protein/prohead protease, its N-terminal part is similar to putative prohead proteases for example , [Bacteriophage HK97] gi|1722780|sp|P49860|VP4#BPHK7 (28% identity in 136 amino acids); its C-terminal part is similar to major head protein [mycobacterium phage L5]
gi|465114|sp|Q05223|VG17#BPML5 (23% identity in 280 amino acids), GTG start

4530 SEQ ID NO: 1228: -0.382433, 75, novel

4535 SEQ ID NO: 1229: -0.597662, 386, a putative portal protein, its N-terminal-half part is similar to head portal proteins, for example , [Bacteriophage HK022]
gi|6863114|gb|aaF30355.1|AF069308#3 (26% identity in 351 amino acids); its C-terminal-half part is similar to C-terminal-half part of putative transducer protein [H. salinarum] gi|3913878|sp|Q48317|HTR4#HALSA(21% identity in 347 amino acids)

4540 SEQ ID NO: 1230: -0.524865, 186, novel

SEQ ID NO: 1231: -0.486352, 404, a putative head-tail

Appendix B: Hideo *et al.* Full Translation

4545 adaptor, similar to putative head-tail adaptors for example , [Bacteriophage HK97] gi|6901597|gb|aaF31100.1| (45% identity in 111 amino acids)
SEQ ID NO: 1232: -0.194643, 113, novel, similar to phage hypothetical proteins for example , Gp10 [Bacteriophage HK97]
4550 gi|6901598|gb|aaF31101.1| (75% identity in 148 amino acids)
SEQ ID NO: 1233: 0.009184, 99, novel, similar to Gp11 [Bacteriophage HK97] gi|6901599|gb|aaF31102.1| (49% identity in 113 amino acids)
SEQ ID NO: 1234: -1.106849, 147, a putative major tail
4555 subunit, similar to major tail subunit [Bacteriophage HK97] gi|6901588|gb|aaF31091.1|AF069529#4 (65% identity in 234 amino acids), GTG start
SEQ ID NO: 1235: -1.563158, 58, a putative tail assembly chaperone, similar to putative tailassembly chaperons for
4560 example , p14 [Bacteriophage HK97] gi|6901600|gb|aaF31103.1| (62% identity in 124 amino acids)
SEQ ID NO: 1236: -0.692373, 119, novel, similar to C-terminal part of Gp14 [Bacteriophage HK97] gi|6901601|gb|aaF31104.1| (60% identity in 94 amino acids),
4565 probably produced by translational frameshift
SEQ ID NO: 1237: -0.32604, 554, a putative tail length tape measure protein, similar to tail length tape measure proteins for example , [Bacteriophage HK97] gi|6901589|gb|aaF31092.1|AF069529#5 (52% identity in 1022 amino acids)
4570 SEQ ID NO: 1238: -0.727957, 94, a putative minor tail protein, similar to minor tail proteins for example , GpM [Bacteriophage lambda] gi|138845|sp|P03737|VMTM#LAMBD (44% identity in 110 amino acids), GTG start
4575 SEQ ID NO: 1239: -0.284615, 92, a putative minor tail protein, similar to minor tail proteins for example , GpL [Bacteriophage lambda] gi|138844|sp|P03738|VMTL#LAMBD (72% identity in 137 amino acids)

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 631: -0.709473, 381, a putative host specificity
4580 protein, similar to host specificity proteins for example ,GpJ
[Bacteriophage lambda] gi|138412|sp|P03749|VHSJ#LAMBD
(69% identity in 1157 amino acids)

SEQ ID NO: 632: -0.351282, 79, a putative outer membrane
protein precursor, similar to outer membrane protein Lom
4585 precursors for example , [prophage P-EibA]
gi|7532789|gb|aaF63231.1|AF151091#2(77% identity in 199
amino acids); [Bacteriophage lambda]
gi|138693|sp|P03701|VLOM#LAMBD (40% identity in 199
amino acids)

4590 SEQ ID NO: 633 : -0.545985, 275, a putative tail fiber
protein, similar to tail fiber proteins for
example , [Bacteriophage 933W]
gi|4585436|gb|aaD25464.1|AF125520#59 (38% identity in 370
amino acids)

4595 SEQ ID NO: 634 : -0.471244, 234, novel, similar to
hypothetical protein [Bacteriophage 933W]
gi|4585437|gb|aaD25465.1|AF125520#60 (92% identity in 89
amino acids)

SEQ ID NO: 635: -0.194, 101, novel

4600 SEQ ID NO: 636: 1.042727, 111, novel, similar to hypothetical
proteins for example ,Orf2 [Escherichia coli strain B171-8]
gi|4126792|dbj|Baa36750.1| (37% identity in 111 amino acids)

SEQ ID NO: 637: -0.138976, 509, novel

4605 SEQ ID NO: 638: -0.319205, 152, an integrase, similar to
integrases, for example, [Bacteriophage HK022]
gi|138560|sp|P16407|VINT#BPHK0 (89% identity in 229
amino acids), maybe comprising the deletion of 100 amino acids
at N-terminus

SEQ ID NO: 639: -0.625, 57, novel

4610 SEQ ID NO: 640: -0.083333, 97, novel

SEQ ID NO: 641 : -0.538333, 121, disrupted transposase,
similar to C-terminal of putative transposases for

Appendix B: Hideo *et al.* Full Translation

example ,[Yersinia pestis plasmid pMT1]
gi|2996347|gb|aaC13227.1|(74% identity in 89 amino acids),
4615 TTG start
SEQ ID NO: 642: -0.450655, 230, a disrupted transposase,
similar to C-terminal part of putative transposases, for example,
[Yersinia pestis plasmid pMT1] gi|7447905|pir||T14710 (70%
identity in 90 amino acids), comprising the deletion of
4620 N-terminal part (-180 amino acids)
SEQ ID NO: 643: 0.76381, 106, novel, identical to L0015
[Escherichia coli O-157:H7 strain EDL933]
gi|3414883|gb|aaC31494.1|
SEQ ID NO: 644: -0.675317, 159, novel, identical to L0014
4625 [Escherichia coli O-157:H7 strain EDL933]
gi|3288157|emb|Caa11510.1|
SEQ ID NO: 645: -0.396079, 154, novel, identical to L0013
[Escherichia coli O-157:H7 strain EDL933]
gi|3414881|gb|aaC31492.1|
4630 SEQ ID NO: 646: 0.016667, 61, novel
SEQ ID NO: 647: 0.228866, 98, novel, similar to (at low level)
hypothetical protein [insertion sequence IS630]
gi|140943|sp|P16943|YIS5#SHISO (47% identity in 25 amino
acids), TTG start
4635 SEQ ID NO: 648: -0.455333, 151, novel
SEQ ID NO: 649: -0.113235, 69, novel, similar to hypothetical
proteins for example ,orf2 [Escherichia coli strain B171-8]
gi|4126790|dbj|Baa36748.1|, (63% identity in 206 amino
acids)
4640 SEQ ID NO: 650: -1.015625, 65, bfpT-regulated chaperone-like
protein, similar to TrcA (bfpT-r for example ,ulated
chaperone-like protein)-like proteins for
example ,TrcA[Escherichia coli strain B171-8]
gi|4126789|dbj|Baa36747.1|, (72% identity in 195 amino
acids)
4645 SEQ ID NO: 651: -0.513812, 182, novel, partially similar to

Appendix B: Hideo *et al.* Full Translation

hypothetical protein [insertion sequence IS630]
gi|140943|sp|P16943|YIS5#SHISO (81% identity in 60 amino acids), GTG start, probably disrupted
4650 SEQ ID NO: 652: -0.585648, 642, novel, similar to N-terminal part of hypothetical 39 kDa protein [insertion element IS630]
gi|1143207|gb|aaA84873.1| (82% identity in 54 amino acids)
SEQ ID NO: 653: -0.526471, 69, novel, similar to hypothetical protein ORF2 [Escherichia coli strain B171-8]
4655 gi|4126790|dbj|Baa36748.1| (38% identity in 167 amino acids); ORF4 [Escherichia coli strain B171-8]
gi|4126792|dbj|Baa36750.1| (40% identity in 127 amino acids)
SEQ ID NO: 654: -0.431519, 534, a putative transcription regulatory protein, similar to transcription regulatory proteins
4660 for example ,UidR [Escherichia coli]
gi|2495429|sp|Q59431|UIDR#ECOLI (30% identity in 123 amino acids)
SEQ ID NO: 655 : -0.048747, 440, a putative multidrug-effluxtransporter proteinprecursor, similar to
4665 multidrug-efflux transporter protein precursors for example ,AcrA [Escherichia coli K-12]
gi|399000|sp|P31223|ACRA#ECOLI (51% identity in 358 amino acids)
SEQ ID NO: 656 : -0.159091, 111, a putative
4670 multidrug-effluxtransporter protein, similar to multidrug-effluxtransporter proteins for example ,AcrB [Escherichia coli K-12] gi|399001|sp|P31224|ACRB#ECOLI (56% identity in 974 amino acids)
SEQ ID NO: 657: -0.38651, 342, a putative outer membrane
4675 channel protein, similar to outer membrane channel proteins for example ,OprM [Pseudomonas aeruginosa]
gi|3184190|dbj|Baa28694.1| (43% identity in 448 amino acids)
SEQ ID NO: 658 : -0.231818, 133, a putative membrane transporter protein, similar to membrane transporter protein
4680 for example ,[Streptomyces coelicolor A3(2)]

Appendix B: Hideo *et al.* Full Translation

gi|6469269|emb|CAB61730.1| (38% identity in 380 amino acids)
SEQ ID NO: 659 : -0.434188, 118, novel, similar to hypothetical protein [Xylella fastidiosa]
4685 gi|9106817|gb|aaF84556.1|AE003997#12 (38% identity in 209 amino acids)
SEQ ID NO: 660: -0.471354, 193, similar to C-terminal part of B1327#ECOLI gi|1787587(amino acids at the position 224-310/310) (33% identity in 87 amino acids)
4690 SEQ ID NO: 661: -0.156489, 132, similar to N-terminal part of B1327#ECOLI gi|1787587(amino acids at the position 22-123/310) (62% identity in 113amino acid)
SEQ ID NO: 662 : -0.247561, 247, a transposase (insertion sequence IS629), identical to gi | 7443862|pir||T00240
4695 SEQ ID NO: 663 : -0.355, 141, a transposase (insertion sequence IS629), identical to gi|7444868|pir||T00241
SEQ ID NO: 664: -0.182639, 145, a putative regulatory element, similar to(at low level) regulatory proteins for example ,regulatory protein CI (235 amino acids)
4700 [Bacteriophage HK022] gi|1350835|sp|P18680 (42% identity in 66 amino acids)
SEQ ID NO: 665: -0.463487, 850, a putative regulatory element, similar to Cro [Bacteriophage HK022] gi|1350553|sp|P18679 (61% identity in 73 amino acids)
4705 SEQ ID NO: 666: -0.314679, 110, its C-terminal part (amino acids at the position 139-262 / 262) is similar to C-terminal part of YDAU#ECOLI gi|1787622 (amino acids at the position 162-285 / 285) (79% identity in 124 amino acids)
SEQ ID NO: 667: -0.4625, 233, novel
4710 SEQ ID NO: 668: -0.390688, 248, novel
SEQ ID NO: 669: 0.20583, 224, novel
SEQ ID NO: 670: -0.342491, 1133, novel
SEQ ID NO: 671: -0.326633, 200, novel, similar to N-terminal part of Eamino acid protein [Bacteriophage P22]

Appendix B: Hideo *et al.* Full Translation

4715 gi|418207|sp|Q03544|VEaa#BPP22(88% identity in 42 amino acids)
SEQ ID NO: 672: -0.27899, 972, novel, partially similar to hypothetical protein [Bacteriophage H19J] gi|4490348|emb|CAB38711.1| (70% identity in 54 amino acids); partially similar to part of Gp45 [Bacteriophage N15] gi|7521552|pir||T13131 (57% identity in 47 amino acids)
SEQ ID NO: 673: -0.308808, 194, possible methyltransferase, similar to methyltransferases for example ,cytosine-specific methyltransferase XorII [Xanthomonas oryzae pv.]
4720 gi|1709171|sp|P52311|MTX2#XANOR (40% identity in 365 amino acids)
SEQ ID NO: 674: -0.40473, 297, novel, similar to (at low level) hypothetical protein HI0983[Haemophilus influenzae] gi|1074592|pir||D64163 (26% identity in 138 amino acids)
4725 SEQ ID NO: 675: -0.432143, 169, novel
SEQ ID NO: 676: -0.448193, 167, novel, similar to Orf79 [Bacteriophage D3] gi|8895177|gb|aaF80835.1| (36% identity in 199 amino acids)
SEQ ID NO: 677: -1.706667, 61, novel, similar to hypothetical proteins for example ,YbcO [Escherichia coli cryptic prophage DLP12] gi|7467043|pir||C64787 (57% identity in 96 amino acids); Gp66 [Bacteriophage HK97] gi|6901638|gb|aaF31141.1| (56% identity in 94 amino acids)
4730 SEQ ID NO: 678: -0.237063, 144, a putative anterminator, similar to (at low level) antiterminator proteinQ [Bacteriophage 21] gi|4539484|emb|CAB39993.1| (22% identity in 168 amino acids)
SEQ ID NO: 679: -0.446341, 83, novel, similar to putative TerB proteins for example ,[Deinococcus radiodurans]
4735 gi|7473690|pir||C75302 (26% identity in 129 amino acids)
SEQ ID NO: 680: -0.403175, 127, novel, GTG start
SEQ ID NO: 681 : 0.010435, 116, novel, similar to hypothetical proteins for example ,[Bacteriophage 933W]

Appendix B: Hideo *et al.* Full Translation

4750 gi|4585419|gb|aaD25447.1|AF125520#42 (53% identity in 613
amino acids)
SEQ ID NO: 682: -0.445312, 513, a putative holin protein
(host cell lysis), similar to holin proteins for
example ,[Bacteriophage 933W] gi|4499808|emb|CAB39307.1|
(91% identity in 71 amino acids)
4755 SEQ ID NO: 683: -0.57037, 55, novel, similar to hypothetical
protein [Escherichia coli] gi|3183262|sp|P76160|YDFR#ECOLI
(43% identity in 74 amino acids)
SEQ ID NO: 684: -0.313158, 495, a endolysin (host cell lysis),
similar to endolysins for example ,[Bacteriophage 933W]
4760 gi|4335686|gb|aaD17382.1| (96% identity in 177 amino acids)
SEQ ID NO: 685: -0.652681, 318, a putative antirepressor,
identical to putative antirepressor [Bacteriophage 933W]
gi|4585423|gb|aaD25451.1|AF125520#46 (100% identity in
189 amino acids); its N-terminal part (amino acids at the
4765 position 1-126) is similar to antirepressor protein Ant
[Bacteriophage P22] gi|131843|sp|P03037|RANT#BPP22 (49%
identity in 126 amino acids)
SEQ ID NO: 686: -0.24433, 195, an endopeptidase (host cell
lysis), similar to endopeptidases for example ,[Bacteriophage
4770 VT2-Sal] gi|5881639|dbj|Baa84330.1| (100% identity in 155
amino acids)
SEQ ID NO: 687 : -0.965741, 109, novel, similar to
hypothetical protein [Escherichia coli]
gi|1778472|gb|aaB40755.1| (70% identity in 67 amino acids);
4775 hypothetical protein [Salmonella dublin]
gi|3511132|gb|aaC33722.1| (70% identity in 49 amino acids)
SEQ ID NO: 688: -0.397973, 297, a putative DNase, similar to
(at low level) gp30 (DNase) [Bacteriophage phi-C31]
gi|1107475|emb|Caa62587.1| (28% identity in 85 amino acids);
4780 similar to (at low level) TerF-related protein [Deinococcus
radiodurans] gi|7473956|pir||C75599 (33% identity in 72
amino acids)

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: - : -0.413248, 235, novel
SEQ ID NO: - : 0.280303, 67, a putative terminase small
4785 subunit, similar to phage terminase small subunits for
example , [Bacillus subtilis PBSX]
gi|1722886|sp|P39785|XTMA#BACSU (34% identity in 52
amino acids)
SEQ ID NO: 1641: -0.383784, 297, a putative terminase large
4790 subunit, similar to phage hypothetical proteins, for
example , phage D3 terminase-like protein [Haemophilus
influenzae] gi|6739656|gb|aaF27357.1|AF198256#11 (22%
identity in 57 amino acids)
SEQ ID NO: 1642 : -0.942593, 109, a phage major head
4795 protein/prohead protease, its C-terminal part is similar to
major head proteins for example , [Mycobacterium phageL5]
gi|465114|sp|Q05223|VG17#BPML5 (22% identity in 306
amino acids); its N-terminal part is similar to putative
prohead proteases for example , [Rhodobacter capsulatus]
4800 gi|6467535|gb|aaF13181.1|AF181080#3 (30% identity in 133
amino acids); similar to putative prohead protease
[Rhodobacter capsulatus]
gi|6467535|gb|aaF13181.1|AF181080#3 (30% identity in 133
amino acids), GTG start
4805 SEQ ID NO: - : -0.615396, 657, novel
SEQ ID NO: 1419: 0.067253, 285, a putative portal protein,
similar to phage portal proteins for example , [Bacteriophage
D3] gi|5059250|gb|aaD38955.1| (24% identity in 366 amino
acids)
4810 SEQ ID NO: 1420: -0.121505, 94, novel
SEQ ID NO: 1421: -0.211215, 215, novel
SEQ ID NO: 1422: 0.150397, 253, a putative phage head-tail
adaptor, similar to head-tail adaptors for
example , [Bacteriophage HK97] gi|6901597|gb|aaF31100.1|
4815 (44% identity in 111 amino acids)
SEQ ID NO: 1423: 0.99049, 327, novel, similar to phage

Appendix B: Hideo *et al.* Full Translation

hypothetical proteins for example ,Gp10 [Bacteriophage HK97]
gi|6901598|gb|aaF31101.1| (75% identity in 148 amino acids)
SEQ ID NO: 1424: -0.024118, 341, novel, similar to Gp11
4820 [Bacteriophage HK97] gi|6901599|gb|aaF31102.1| (49%
identity in 113 amino acids)
SEQ ID NO: 1425: 0.580303, 67, a major tail subunit, similar
to major tail subunit [Bacteriophage HK97]
gi|6901588|gb|aaF31091.1|AF069529#4 (67% identity in 234
4825 amino acids)
SEQ ID NO: 338: -0.622872, 377, a putative tail assembly
chaperon, similar to tail assembly chaperon Gp14
[Bacteriophage HKJ97] gi|6901600|gb|aaF31103.1| (62%
identity in 124 amino acids)
4830 SEQ ID NO: 339: -0.239024, 83, novel, similar to C-terminal
part of Gp14 [Bacteriophage HK97]
gi|6901601|gb|aaF31104.1|(60% identity in 94 amino
acids),probably produced by translational frameshift
SEQ ID NO: 340: -0.7548, 824, a putative tail length tape
4835 measure protein, similar to tail length tape measure
proteins for example ,[Bacteriophage HK97]
gi|6901589|gb|aaF31092.1|AF069529#5 (52% identity in 1022
amino acids)
SEQ ID NO: 341: 0.230159, 64, a putative tail component,
4840 similar to minor tail proteins for example ,GpM
[Bacteriophage lambdal gi|138845|sp|P03737|VMTM#LAMBD
(45% identity in 110 amino acids), GTG start
SEQ ID NO: 342: -0.180645, 63, a putative tail component,
similar to minor tail proteins for example ,GpL
4845 [Bacteriophage lambdal gi|138844|sp|P03738|VMTL#LAMBD
(75% identity in 232 amino acids)
SEQ ID NO: 343: -0.133766, 78, a putative tail assembly,
similar to tail assembly proteins for example ,GpK
[Bacteriophage lambdal gi|6901605|gb|aaF31108.1| (35%
4850 identity in 226 amino acids)

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 344: -0.166667, 136, a putative tail assembly, similar to tail assembly proteins for example ,GpI [Bacteriophage lambda] gi|139637|sp|P03730|VTAI#LAMBD (69% identity in 224 amino acids)

4855 SEQ ID NO: 345: -0.626389, 73, novel
SEQ ID NO: 346: -0.679259, 136, a putative superoxide dismutase, similar to copper/zinc-superoxide dismutases for example , [Salmonella typhimurium] gi|2462699|emb|Caa73588.1| (58% identity in 175 amino acids)

4860 SEQ ID NO: 347: -0.498667, 76, a putative phage host specificity protein, similar to host specificity proteins for example ,GpJ [Bacteriophage lambda] gi|138412|sp|P03749|VHSJ#LAMBD (70% identity in 1164 amino acids)

4865 SEQ ID NO: 348: -0.345355, 184, similar to outer membrane proteins for example ,Lom protein [Bacteriophage P-EibA] dad|AF151091-2|aaF63231.1| (68% identity in 199 amino acids)

4870 SEQ ID NO: 349: -0.672832, 347, a putative tail fiber protein, similar to putative tail fiber proteins for example , [Bacteriophage 933W] gi|4585436|gb|aaD25464.1|AF125520#59 (AF125520) (34% identity in 233 amino acids), GTG start

4875 SEQ ID NO: 350: -0.670588, 222, novel, similar to hypothetical protein [Bacteriophage 933W] gi|4585437|gb|aaD25465.1|AF125520#60 (94% identity in 129 amino acids), GTG start
SEQ ID NO: 351: -0.268932, 104, novel, similar to ORF4 [Escherichia coli strain B171-8] gi|4126792|dbj|Baa36750.1| (35% identity in 116 amino acids); ORF2 [Escherichia coli strain B171-8] gi|4126790|dbj|Baa36748.1| (28% identity in 171 amino acids)

4880 SEQ ID NO: 352: -0.120755, 54, novel, similar to ORF4

Appendix B: Hideo *et al.* Full Translation

4885 [Escherichia coli strain B171-8] gi|4126792|dbj|Baa36750.1 |
(91% identity in 135 amino acids); ORF2 [Escherichia coli
strain B171-8] gi|4126790|dbj|Bamino acid36748.1| (43%
identity in 205 amino acids)
SEQ ID NO: 353: -0.368651, 253, novel, similar to ORF4
4890 [Escherichia coli B171-8] gi|4126792|dbj|Baa36750.1| (41%
identity in 135 amino acids); ORF2 [Escherichia coli strain
B171-8] gi|4126790|dbj|Baa 36748.1| (36% identity in 126
amino acids)
SEQ ID NO: 354: 0.292857, 71, similar to YDBL#ECOLI
4895 gi|1787648 (71% identity in 109 amino acids), but comprising
different N-terminal part and C-terminal part
SEQ ID NO: 355: 0.012941, 86, a putative ABC-type
transporter protein, similar to N-terminal part of ABC-type
transporter protein YdbA.2 [Escherichia coli]
4900 gi|7465766|pir||C48399 (amino acids at the position 1-1128 /
2020) (49% identity in 1011 amino acids)
SEQ ID NO: 356: -1.156522, 93, a putative ABC-type
transporter protein, similar to C-terminal part of ABC-type
transporter protein YdbA.2 [Escherichia coli]
4905 gi|7465766|pir||C48399(amino acids at the position
1220-2020/2020) (77% identity in 806 amino acids)
SEQ ID NO: 357: -0.396839, 349, novel
SEQ ID NO: 358: -0.287395, 120, novel
SEQ ID NO: 359: -0.428409, 177, novel
4910 SEQ ID NO: 360: 0.049057, 107, novel
SEQ ID NO: 361: -0.469602, 353, novel, similar to Vgr
proteins for example ,VgrE protein [Escherichia coli]
gi|2920625|gb|aaC32465.1| (98% identity in 702 amino acids)
SEQ ID NO: 362: -0.206969, 618, a Rhs protein, similar to
4915 Rhs core proteins for example ,RhsD [Escherichia coli]
gi|1786706 (92% identity in 1281 amino acids) (Conserved in
E.coli K-12)
SEQ ID NO: 363: 0.095775, 72, novel, similar to (at low level)

Appendix B: Hideo *et al.* Full Translation

IpaH protein IPA7#SHIFL gi|124813|sp|P18014 (35% identity
4920 in 120 amino acids); YDDK#ECOLI gi|3183258|sp|P76123 (32%
identity in 100 amino acids)
SEQ ID NO: 364: -0.074561, 115, similar to outer membrane
porin precursors for example ,NMPC#ECOLI gi|1786765 (67%
identity in 343 amino acids), but comprising different
4925 N-terminal part
SEQ ID NO: 365: -0.466667, 178, novel, GTG start
SEQ ID NO: 366 : -0.283069, 190, a putative fimbrial
chaperone protein precursor, similar to fimbrial chaperone
protein precursors for example ,FocC [Escherichia coli]
4930 gi|1169720|sp|P46008|FOCC#ECOLI (67% identity 206 amino
acids)
SEQ ID NO: 367: -0.472903, 156, a putative type 1 fimbrial
protein precursor, similar to type 1 fimbrial protein precursors
for example , [Escherichia coli]
4935 gi|729528|sp|P04128|FM1A#ECOLI (64% identity 186 amino
acids)
SEQ ID NO: 368: 0.214754, 62, novel, GTG start
SEQ ID NO: 369: -0.717334, 76, a putative regulatory element,
similar to araC-family transcription regulatory elementAdpA
4940 [Streptomyces coelicolor A3(2)] gi|7544056|emb|CAB87229.1
(41% identity in 316 amino acids)
SEQ ID NO: 370: -0.468595, 122, a damage-inducible protein,
similar to damage-inducible proteins for example ,DinI
[Escherichia coli] gi|2498305|sp|Q47143|DINI#ECOLI (36%
4945 identity in 72 amino acids)
SEQ ID NO: 371: -1.029787, 48, novel, similar to hypothetical
proteins for example ,ORF4 [Escherichia coli]
gi|4126792|dbj|Baa36750.1| (43% identity in 131 amino
acids); ORF2 [Escherichia coli] gi|4126790|dbj|Baa36748.1|
4950 (35% identity in 126 amino acids)
SEQ ID NO: 372 : -0.648128, 188, novel, similar to
hypothetical proteins for example ,ORF4 [Escherichia coli]

Appendix B: Hideo *et al.* Full Translation

4955 gi|4126790|dbj|Baa36748.1| (43% identity in 206 amino acids); ORF2 [Escherichia coli] gi|4126792|dbj|Baa36750.1| (91% identity in 135 amino acids)

4960 SEQ ID NO: 373 : -0.117179, 554, novel, similar to hypothetical proteins for example ,ORF4 [Escherichia coli] gi|4126792|dbj|Baa36750.1| (34% identity in 116 amino acids); ORF2 [Escherichia coli] gi|4126790|dbj|Baa36748.1| (28% identity in 171 amino acids)]

4965 SEQ ID NO: 374 : -0.148992, 646, novel, similar to hypothetical protein[Bacteriophage 933W] gi|4585437|gb|aaD25465.1|AF125520#60 (93% identity in 89 amino acids)

4970 SEQ ID NO: 375: -0.831147, 62, a putative tail fiber protein, similar to C-terminal part of putative tail fiber protein [Bacteriophage 933W] gi|4585436|gb|aaD25464.1|AF125520#59 (100% identity in 92 amino acids), GTG start, probably disrupted

4975 SEQ ID NO: 376: -0.483469, 860, a putative tail fiber protein, similar to N-terminal part of tail fiber proteins for example ,Gp37 [Escherichia coli] gi|7466858|pir||G64887(57% identity in 271 amino acids); orf-401 [Bacteriophage lambda] gi|140053|sp|P03764|Y401#LAMBD (56% identity in 269 amino acids), probably interrupted

4980 SEQ ID NO: 377: -0.061111, 109, a putative outer host membrane protein precursor, similar to Lom-like proteins for example ,[prophage P-EibA] gi|7532789|gb|aaF63231.1|AF151091#2 (68% identity in 199 amino acids); Lom [Bacteriophage lambda] gi|138693|sp|P03701|VLOM#LAMBD (44% identity in 199 amino acids)

4985 SEQ ID NO: 378: -0.192241, 117, a phage tail protein (host specificity protein), similar to host specificity proteins for example ,GpJ [Bacteriophage

Appendix B: Hideo *et al.* Full Translation

lambda|gi|138412|sp|P03749|VHSJ#LAMBD (65% identity in 1158 amino acids)

4990 SEQ ID NO: 379: -0.512838, 149, a tail assembly protein, similar to tail assembly proteins for example ,GpI [Bacteriophage lambda|gi|139637|sp|P03730|VTAI#LAMBD (69% identity in 224 amino acids)

4995 SEQ ID NO: 380: 0.172807, 115, a tail assembly protein, similar to tail assembly proteins for example ,GpK [Bacteriophage lambda|gi|139638|sp|P03729|VTAK#LAMBD (85% identity in 174 amino acids)

5000 SEQ ID NO: 381: -0.337367, 282, a minor tail component, similar to minor tail proteins for example ,GpL [Bacteriophage lambda|gi|138844|sp|P03738|VMTL#LAMBD (76% identity in 232 amino acids)

5005 SEQ ID NO: 382: -0.296774, 125, a minor tail component, similar to minor tail proteins for example ,GpM [Bacteriophage lambda|gi|138845|sp|P03737|VMTM#LAMBD (79% identity in 109 amino acids)

5010 SEQ ID NO: 383: -0.091398, 94, a tail length determination, similar to tail length tape measure protein precursors for example ,GpH [Bacteriophage lambda|gi|138843|sp|P03736|VMTH#LAMBD (51% identity in 870 amino acids)

5015 SEQ ID NO: 384: -0.319298, 1027, a minor tail component, similar to minor tail proteins for example ,GpG-T [Bacteriophage lambda|gi|7429179|pir||TLBPTL (67% identity in 134 amino acids), produced by translational frameshift

5020 SEQ ID NO: 385: -0.624779, 114, a minor tail component, similar to minor tail proteins for example ,GpG [Bacteriophage lambda|gi|138842|sp|P03734|VMTG#LAMBD (43% identity in 140 amino acids)

SEQ ID NO: 386: -0.477931, 146, novel, probably corresponding to protein V [Bacteriophage lambda]

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 387: -0.276079, 1159, a minor tail component, similar to minor tail protein GpU [Bacteriophage lambda] gi|138847|sp|P03732|VMTU#LAMBD (80% identity in 131 amino acids)

5025 SEQ ID NO: 388: -0.29799, 200, a minor tail component, similar to minor tail proteins for example ,GpZ [Bacteriophage lambda] gi|138849|sp|P03731|VMTZ#LAMBD (69% identity in 177 amino acids)

SEQ ID NO: 389: -0.661327, 438, a tail attachment (minor capsid protein), similar to minor capsid proteins for example ,GpFII [Bacteriophage lambda] gi|137575|sp|P03714|VCF2#LAMBD (91% identity in 117 amino acids)

5030 SEQ ID NO: 390: -0.392135, 90, DNA-packaging, similar to DNA-packaging proteins for example ,GpFI [Bacteriophage lambda] gi|139324|sp|P03709|VPF1#LAMBD (98% identity in 132 amino acids)

SEQ ID NO: 391: 0.522727, 89, a major capsid protein, similar to major capsid proteins for example ,GpE [Bacteriophage lambda] gi|116701|sp|P05481|HEAD#BPPH8 (87% identity in 341 amino acids)

5035 SEQ ID NO: 392: -0.269369, 112, a head decoration protein (major capsid protein), similar to major capsid proteins for example ,GpD [Bacteriophage lambda] gi|137566|sp|P03712|VCAD#LAMBD (99% identity in 110 amino acids)

SEQ ID NO: 393: -0.239229, 442, a minor capsid protein precursor, similar to minor capsid protein precursors for example ,GpC [Bacteriophage lambda] gi|137565|sp|P03711|VCAC#LAMBD (97% identity in 439 amino acids), capsid assembly protein containing Nu3-homolog

5040 SEQ ID NO: 394: -0.247826, 231, a portal protein (minor capsid protein), similar to portal proteins for example ,GpB [Bacteriophage lambda] gi|138762|sp|P03710|VMCB#LAMBD

Appendix B: Hideo *et al.* Full Translation

- 5055 (98% identity in 533 amino acids)
SEQ ID NO: 395: -0.441584, 304, a head-to-tail joining, similar
to head-to-tail joining proteins for example ,GpW
[Bacteriophage lambda] gi|138415|sp|P03727|VHTJ#LAMBD
(98% identity in 68 amino acids)
- 5060 SEQ ID NO: 396: -0.434392, 190, a terminase large subunit
(DNA-packaging protein), similar to terminase large subunits
for example ,GpA [Bacteriophage lambda]
gi|137616|sp|P03708|TERL#LAMBD (97% identity in 641
amino acids), GTG start
- 5065 SEQ ID NO: 397: -0.085882, 86, a putative terminase small
subunit, similar to terminases small subunits for example ,Nu1
[Bacteriophage lambda] (82% identity in 180 amino acids)
SEQ ID NO: 398: -0.327551, 99, novel, similar to hypothetical
proteins for example ,,[Escherichia coli]
5070 gi|1778472|gb|aaB40755.1| (90% identity in 53 amino acids)
SEQ ID NO: 399: -0.445312, 513, a putative transcription
regulatory element, similar to PerC (BfpW) transcription
activator eaeA/bfpA [Escherichia coli]
gi|1172431|sp|P43475|PERC#ECOLI (47% identity in 87
5075 amino acids)
- SEQ ID NO: 400: 0.010435, 116, a putative lipoproteinRz1
precursor, similar to lipoproteinRz1 precursors for
example ,[phage lambda] gi|540738|pir| JN0750 (70% identity
in 61 amino acids)
- 5080 SEQ ID NO: 401: -0.403175, 127, a putative host cell lysis,
similar to endopeptidases for example ,[Bacteriophage H-19B]
gi|4335687|gb|aaD17383.1| (77% identity in 150 amino acids)
SEQ ID NO: 402: -0.542391, 93, novel, partially similar to
hypothetical protein YchG [Escherichia coli]
5085 gi|267475|sp|P30192|YCHG#ECOLI (80% identity in 30 amino
acids)
- SEQ ID NO: 403: -0.42, 51, novel, partially similar to a
hypothetical proteins for example ,YchG[Escherichia coli]

Appendix B: Hideo *et al.* Full Translation

gi|267475|sp|P30192|YCHG#ECOLI (95% identity in 60 amino acids), GTG start
5090 SEQ ID NO: 404: -0.364583, 49, novel, partially similar to a hypothetical protein b1240 [Escherichia coli]
gi|7466155|pir||C64871 (54% identity in 51 amino acids)
[0020]

5095 3) Proteins comprising Insertion Sequence; IS
Sequence number: hydrophobicity, The number of amino acids, Character such as function
SEQ ID NO: 405 : -0.221861, 216, novel, identical to hypothetical protein [Bacteriophage VT2-Sal]
5100 gi|5881622|dbj|Baa84313.1|, but [having] different start; similar to hypothetical protein [Bacteriophage 933W]
gi|4499790|emb|CAB39289.1| (85% identity in 78 amino acids)
SEQ ID NO: 406 : -0.313776, 197, novel, identical to hypothetical protein [Bacteriophage VT2-Sal]
5105 gi|5881623|dbj|Baa84314.1|, but [having] different start; similar to hypothetical proteins for example ,NinB protein [Bacteriophage 21](43% identity in 147 amino acids)
SEQ ID NO: 407: -0.486667, 61, a putative DNA methylase, identical to hypothetical protein [Bacteriophage VT2-Sal]
5110 gi|5881624|dbj|Baa84315.1| (100% identity in 175 amino acids); similar to hypothetical protein Gp62 [Bacteriophage HK97] gi|6901634|gb|aaF31137.1| (98% identity in 175 amino acids); similar to (at low level) DNA N-6-adenine-methyltransferase (M.T1) [Enterobacteria phage T1] gi|166164|gb|aaA87390.1| (31% identity in 143 amino acids)
5115 SEQ ID NO: 408 : -0.175926, 55, novel, identical to hypothetical protein [Bacteriophage VT2-Sal]
gi|5881625|dbj|Baa84316.1| (100% identity in 60 amino acids); similar to hypothetical proteins for example ,NinE protein [Bacteriophage 21]gi|4539480|emb|CAB39989.1| (98% identity in 60 amino acids)

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 409 : -0.017752, 170, novel, identical to hypothetical protein [Bacteriophage VT2-Sa]
5125 gi|5881626|dbj|Baa84317.1| (100% identity in 57 amino acids), GTG start
SEQ ID NO: 1375: -0.38883, 189, a putative antirepressor protein, identical to hypothetical protein [Bacteriophage VT2-Sal gi|5881627|dbj|Baa84318.1| (100% identity in 244
5130 amino acids); its C-terminal part similar to C-terminal part antirepressor protein Ant [Bacteriophage P22] gi|131843|sp|P03037|RANT#BPP22 (82% identity in 104 amino acids), its N-terminal part similar to N-terminal part of hypothetical protein [Bacteriophage TP901-1]
5135 gi|2924237|emb|Caa74615.1| (42% identity in 119 amino acids)
SEQ ID NO: 1376: -0.209115, 374, a DNA-binding protein, identical to Roi [Bacteriophage VT2-Sa]
gi|5881628|dbj|Baa84319.1|, but [having] different start;
5140 similar to Roi proteins for example ,[Enterobacteria phage HK022] gi|1197729|gb|aa C48863.1| (82% identity in 242 amino acids)
SEQ ID NO: 1377 : 0.177508, 1028, novel, identical to hypothetical protein orf15[Bacteriophage 933W]
5145 gi|4499798|emb|CAB39297.1| (100% identity in 201 amino acids), similar to hypothetical proteins for example ,NinG protein [Bacteriophage 21] gi|4539482|emb|CAB39991.1| (94% identity in 201 amino acids)
SEQ ID NO: 1378 : -0.144201, 458, novel, identical to hypothetical protein orf16[Bacteriophage 933W]
5150 gi|4499799|emb|CAB39298.1|(100% identity in 64 amino acids); similar to hypothetical proteins for example ,Nin68 [Bacteriophage lambda]gi|9626304|ref|NP#040640.1|(80% identity in 60 amino acids)
5155 SEQ ID NO: 1379: 0.890181, 388, antitermination protein Q, identical to antitermination Q protein [Bacteriophage 933W]

Appendix B: Hideo *et al.* Full Translation

gi|4585416|gb|aaD25444.1|AF125520#39, but [having] different start; similar to antitermination Q proteins for example , [Bacteriophage H-19B] gi|2668768|gb|aaD04655.1 | (96% identity in 144 amino acids)

5160 SEQ ID NO: - : -0.090909, 221, novel, partially similar to hypothetical protein [Bacteriophage P27] gi|8346570|emb|CAB93763.1| (89% identity in 37 amino acids) , TTG start

5165 SEQ ID NO: 1676: 0.087912, 92, a Shiga toxin 2 subunit A, identical to gi|1351074|sp|P09385|SLTA#BP933; identical to ECs1908: Comp.(1899924-1900292), -0.25, 123, Shiga toxin 2 subunit B gi|134538|sp|P09386|SLTB#BP933

SEQ ID NO: 1644 : -0.397973, 297, novel, identical to

5170 N-terminal part of hypothetical protein [Bacteriophage 933W] gi|4585419|gb|aaD25447.1|AF125520#42 (100% identity in 557 amino acids) ; similar to N-terminal part of hypothetical proteins for example ,YjhS [Shigella dysenteriae] gi|6759965|gb|aaF28123.1|AF153317#19 (78% identity in 554 amino acids)

5175 SEQ ID NO: 1645 : -0.965741, 109, a transposase (OrfB) (insertion sequenceIS629), identical to gi|7443862|pir||T00240

SEQ ID NO: 1681 : -0.893204, 104, a transposase (OrfA)

5180 (insertion sequenceIS629), identical to gi|7444868|pir||T00241 (100% identity in 108 amino acids)

SEQ ID NO: - : -0.342857, 85, novel, identical to hypothetical protein [Bacteriophage 933W] gi|4499806|emb|CAB39305.1| (100% identity in 59 amino acids)

5185 SEQ ID NO: - : -0.577099, 263, novel, identical to hypothetical protein [Bacteriophage 933W] gi|4585420|gb|aaD25448.1|AF125520#43 (100% identity in 148 amino acids)

SEQ ID NO: 877: -0.830769, 79, a putative holin protein,

5190 identical to protein [Bacteriophage VT2-Sa]

Appendix B: Hideo *et al.* Full Translation

gi|5881636|dbj|Baa84327.1|; similar to putative holin proteins for example ,[Shigella dysenteriae]
gi|6759967|gb|aaF28125.1|AF153317#21 (95% identity in 71 amino acids)

5195 SEQ ID NO: 878: -0.5, 141, a endolysin, identical to putative endolysin [Bacteriophage 933W]
gi|4585422|gb|aaD25450.1|AF125520#45 (100% identity in 177 amino acids); similar to putative endolysins for example , [Bacteriophage H-19B]

5200 gi|4335686|gb|aaD17382.1|(93% identity in 177 amino acids)
SEQ ID NO: 879: -1.08, 71, a putative antirepressor protein, similar to identical to putative antirepressor protein [Bacteriophage 933W]
gi|4585423|gb|aaD25451.1|AF125520#46; antirepressor

5205 proteinAnt [Bacteriophage P22]
gi|131843|sp|P03037|RANT#BPP22 (49% identity in 121 amino acids)
SEQ ID NO: 880: -0.375862, 88, a putative endopeptidase, identical to endopeptidase[Bacteriophage 933W]

5210 gi|4585424|gb|aaD25452.1|AF125520#47 (100% identity in 154 amino acids); similar to endopeptidases for example ,Rz [Bacteriophage lambda] gi|119368|sp|P00726|ENPP#LAMBD (72% identity in 154 amino acids)

SEQ ID NO: 881: -0.477359, 54, a putative lipoproteinRz1

5215 precursor, identical to putative Rz1 protein precursor [Bacteriophage 933W]
gi|4585425|gb|aaD25453.1|AF125520#48(100% identity in 61 amino acids); similar to lipoproteinRz1 precursor [Bacteriophage lambda] gi|1017781|gb|aaC48862.1| (72% identity in 61 amino acids)

5220 SEQ ID NO: 882: -0.293827, 82, a Bor protein precursor, identical to [Bacteriophage 933W]
gi|4585426|gb|aaD25454.1|AF125520#49 (100% identity in 97 amino acids); similar to Bor protein precursor [Bacteriophage

Appendix B: Hideo *et al.* Full Translation

5225 lambda] gi|137520|sp|P26814|VBOR#LAMBD (96% identity in
97 amino acids)
SEQ ID NO: 883 : -0.305483, 384, novel, similar to
hypothetical protein [Bacteriophage VT2-Sal]
gi|5881640|gb|aaBaa84331.1| (85% identity in 75 amino acids)

5230 SEQ ID NO: 884: -0.434955, 330, a putative small subunit
terminase, identical to putative small subunit terminase
[Bacteriophage 933W]
gi|4585427|gb|aaD25455.1|AF125520#50 (100% identity in
268 amino acids)

5235 SEQ ID NO: 885: -0.576025, 464, a putative terminase large
subunit, identical to putative terminase large subunit
[Bacteriophage 933W]
gi|4585428|gb|aaD25456.1|AF125520#51 (100% identity in
568 amino acids)

5240 SEQ ID NO: 886: -0.238694, 200, a putative portal protein,
identical to putative portal protein [Bacteriophage 933W]
gi|4585429|gb|aaD25457.1|AF125520#52 (100% identity in
714 amino acids)

SEQ ID NO: 887 : -0.438542, 97, novel, identical to
5245 hypothetical protein [Bacteriophage 933W]
gi|4585430|gb|aaD25458.1|AF125520#53 (100% identity in
335 amino acids)

SEQ ID NO: 888 : -0.264131, 185, novel, identical to
hypothetical protein [Bacteriophage 933W]

5250 gi|4585431|gb|aaD25459.1|AF125520#54 (100% identity in
404 amino acids)

SEQ ID NO: 889 : -0.237063, 144, novel, identical to
hypothetical protein [Bacteriophage 933W]
gi|4585432|gb|aaD25460.1|AF125520#55 (100% identity in
5255 129 amino acids)

SEQ ID NO: 890 : 1.472727, 56, novel, identical to
hypothetical protein [Bacteriophage 933W]
gi|4585433|gb|aaD25461.1|AF125520#56, but [having]

Appendix B: Hideo *et al.* Full Translation

different start

5260 SEQ ID NO: 891 : -0.255915, 618, novel, identical to hypothetical protein [Bacteriophage 933W] gi|4585434|gb|aaD25462.1|AF125520#57, but [having] different start

SEQ ID NO: 892 : 0.052113, 72, novel, identical to hypothetical protein [Bacteriophage 933W] gi|4585435|gb|aaD25463.1|AF125520#58 (100% identity in 216 amino acids)

SEQ ID NO: 893: -0.046491, 115, a putative tail fiber protein, identical to putative tail fiber protein [Bacteriophage 933W] 5270 gi|4585436|gb|aaD25464.1|AF125520#59(100% identity in 645 amino acids)

SEQ ID NO: 894 : -0.466667, 178, novel, identical to hypothetical protein [Bacteriophage 933W] gi|4585437|gb|aaD25465.1|AF125520#60, but [having] different start

SEQ ID NO: 895 : -0.283069, 190, novel, identical to hypothetical protein [Bacteriophage 933W] gi|4585438|gb|aaD25466.1|AF125520#61, but [having] different start

5280 SEQ ID NO: 896: -0.472903, 156, novel [putative outer membrane protein; OMP], TTG start

SEQ ID NO: 897: -0.717334, 76, novel [periplasmic], identical to hypothetical protein [Bacteriophage 933W] gi|4585439|gb|aaD25467.1|AF125520#62 (100% identity in 5285 567 amino acids) ; its N-terminal part similar to hypothetical protein [Bacteriophage P-EibD] gi|7523538|gb|aaF63043.1|AF151675#5 (98% identity in 147 amino acids), GTG start

SEQ ID NO: 898: -0.468595, 122, a putative tail tip fiber 5290 protein, identical to hypothetical protein [Bacteriophage 933W] gi|4585440|gb|aaD25468.1|AF125520#63 (100% identity in 422 amino acids); similar to(at low level) tail tip

Appendix B: Hideo *et al.* Full Translation

fiber protein gp21 [phage N15] gi|7444604|pir||T13107 (24% identity in 381 amino acids)

5295 SEQ ID NO: 899: -0.1029787, 48, novel [putative outer membrane protein; OMP], identical to hypothetical protein [Bacteriophage 933W] gi|4585441|gb|aaD25469.1|AF125520#64, but [having] different start, TTG start

5300 SEQ ID NO: 900: -0.648128, 188, novel [putative outer membrane protein; OMP], identical to hypothetical protein [Bacteriophage 933W] gi|4585442|gb|aaD25470.1|AF125520#65 (100% identity in 205 amino acids)

5305 SEQ ID NO: 901: -0.117179, 554, a putative outer membrane precursor, identical to putative Lom precursor [Bacteriophage 933W] gi|4585443|gb|aaD25471.1|AF125520#66 (100% identity in 244 amino acids); similar to outer membrane proteinrck [Salmonella typhimurium] gi|282013|pir||A43309 (35% identity in 172 amino acids); outer membrane protein Lom precursor gi|138693|sp|P03701|VLOM#LAMBD (35% identity in 167 amino acids); ail gene products for example , [Yersinia pseudotuberculosis] gi|5902750|sp|Q56957|AIL#YERPS (32% identity in 241 amino acids); virulence proteinpagC precursor [Salmonella typhimurium]gi|129558|sp|P23988|PAGC#SALTY (29% identity in 180 amino acids)

5310 SEQ ID NO: 902 : -0.148992, 646, novel, identical to hypothetical protein [Bacteriophage 933W] gi|4585444|gb|aaD25472.1|AF125520#67 (100% identity in 133 amino acids)

5315 SEQ ID NO: 903: -0.831147, 62, novel, similar to hypothetical protein [Bacteriophage 933W] gi|4585445|gb|aaD25473.1|AF125520#68 (100% identity in 218 amino acids)

5320 SEQ ID NO: 904 : -0.482819, 455, novel, identical to

Appendix B: Hideo *et al.* Full Translation

hypothetical protein [Bacteriophage 933W]
gi|4585446|gb|aaD25474.1|AF125520#69 (100% identity in 148 amino acids)

5330 SEQ ID NO: 905 : -0.420639, 408, novel, identical to hypothetical protein [Bacteriophage 933W]
gi|4585447|gb|aaD25475.1|AF125520#70 (100% identity in 83 amino acids)

SEQ ID NO: 906 : -0.063889, 109, novel, identical to hypothetical protein [Bacteriophage 933W]

5335 gi|4585448|gb|aaD25476.1|AF125520#71 (100% identity in 421 amino acids)

SEQ ID NO: 907 : -0.171552, 117, novel, similar to hypothetical protein [Bacteriophage 933W]

5340 gi|4585449|gb|aaD25477.1|AF125520#72 (99% identity in 2793 amino acids)

SEQ ID NO: 908 : -0.512838, 149, novel, identical to hypothetical protein [Bacteriophage 933W]
gi|4585450|gb|aaD25478.1|AF125520#73, but [having]

5345 different start

SEQ ID NO: 909 : 0.189474, 115, novel, identical to hypothetical protein [Bacteriophage 933W]
gi|9632540|ref|NP#049534.1| (100% identity in 114 amino acids); similar to hypothetical proteins for example ,ygiW

5350 protein precursor [Escherichia coli]
gi|1723887|sp|P52083|YGIW#ECOLI (53% identity in 93 amino acids)

SEQ ID NO: 910: -0.313446, 239, a MokW protein (prophage maintenance;modulation of host cell killing), identical to MokW

5355 [Bacteriophage 933W]
gi|4585453|gb|aaD25481.1|AF125520#76 (100% identity in 70 amino acids); similar to Gelf [Escherichia coli]
gi|1786200|gb|aaC73129.1| (73% identity in 69 amino acids)

SEQ ID NO: 911 : -0.276613, 125, novel, identical to

5360 hypothetical protein [Bacteriophage 933W]

Appendix B: Hideo *et al.* Full Translation

gi|4585454|gb|aaD25482.1|AF125520#77, but [having] different start
SEQ ID NO: 912 : -0.091398, 94, novel, identical to hypothetical protein [Bacteriophage VT2-Sal]
5365 gi|5881668|dbj|Baa84359.1| (100% identity in 219 amino acids); identical to C-terminal part of hypothetical protein [Bacteriophage 933W]
gi|4585455|gb|aaD25483.1|AF125520#78(100% identity in 219 amino acids)
5370 SEQ ID NO: 913 : -0.343275, 1027, novel, identical to hypothetical protein [Bacteriophage VT2-Sal]
gi|5881669|dbj|Baa84360.1|, but [having] different start; similar to hypothetical protein [Bacteriophage 933W]
gi|7649907|dbj|Baa94185.1| (92% identity in 72 amino acids);
5375 hypothetical proteins for example ,[Bacteriophage VT2-Sal]
gi|4585386|gb|aaD25414.1|AF125520#9 (92% identity in 68 amino acids)
SEQ ID NO: 914 : -0.624779, 114, novel, identical to hypothetical protein [Bacteriophage VT2-Sal]
5380 gi|5881670|dbj|Baa84361.1| (100% identity in 94 amino acids), GTG start
SEQ ID NO: 915 : -0.332759, 233, novel, identical to hypothetical protein [Bacteriophage VT2-Sal]
gi|5881671|dbj|Baa84362.1| (100% identity in 73 amino acids); similar to C4-type zinc finger proteins (TraR family) for example ,orf39 [Pseudomonas aeruginosa phage phi CTX]
5385 gi|4063813|dbj|Baa36267.1| (42% identity in 59 amino acids)
SEQ ID NO: 916: -0.407287, 248, a putative anti-repressor protein, identical to hypothetical protein [Bacteriophage
5390 VT2-Sal gi|5881672|dbj|Baa84363.1|(100% identity in 209 amino acids); similar to hypothetical protein HI1422 [Haemophilus influenzae Rd]
gi|1175795|sp|P44193|YE22#HAEIN (40% identity in 158 amino acids); putative phage anti-repressor proteins for

Appendix B: Hideo *et al.* Full Translation

5395 example , [Neisseria meningitidis]
gi|7379969|emb|CAB84545.1| (49% identity in 112 amino acids)
SEQ ID NO: 917: 0.069027, 227, novel
SEQ ID NO: 918: -1.014706, 69, probably resistance to phage
5400 N4, lambda, Rtn membrane associated protein [Escherichia coli]
gi|2498867|sp|P76446|RTN#ECOLI (31% identity in 498 amino acids)
SEQ ID NO: 919: -0.130857, 176, novel, similar to FidL
-Salmonella typhimurium gi|4324611|gb|aaD16955.1| (29%
5405 identity in 149 amino acids)
SEQ ID NO: 920 : -0.304721, 1166, a putative transcriptionactivator, similar to transcriptionactivators for example ,MarT [Salmonella typhimurium]
gi|4324612|gb|aaD16956.1| (28% identity in 268 amino acids)
5410 SEQ ID NO: 921: -0.308543, 200, a putative oxidoreductase, similar to oxidoreductases for example ,[Escherichia coli]
gi|2492762|sp|P76633|YGCW#ECOLI (55% identity in 257 amino acids)
SEQ ID NO: 922 : -0.814127, 362, a putative chaperone,
5415 similar to hypothetical proteins for example ,ORF60 [Yersinia pestis] gi|7467334|pir||T17432 (48% identity in 204 amino acids); chaperone proteins for example ,EcpD [Escherichia coli] gi|2506408|sp|P33128|ECPD#ECOLI (35% identity in 185 amino acids)
5420 SEQ ID NO: 923 : -0.431859, 114, novel, similar to hypothetical proteins for example ,ORF59 [Yersinia pestis]
gi|4106627|emb|Caa21382.1| (34% identity in 438 amino acids)
SEQ ID NO: 924: -0.114136, 192, a putative outer membrane
5425 usher protein, similar to hypothetical protein ORF 58 [Yersinia pestis] gi|4106626|emb|Caa21381.1| (44% identity in 824 amino acids); outer membrane usher proteins for example ,FimD [Salmonella typhimurium]

Appendix B: Hideo *et al.* Full Translation

gi|585135|sp|P37924|FIMD#SALTY (32% identity in 832
5430 amino acids)
SEQ ID NO: 925 : -0.282297, 210, a putative chaperone,
similar to hypothetical protein ORF57 [Yersinia pestis]
gi|4106625|emb|Caa21380.1| (39% identity in 233 amino
acids); chaperone proteins for example ,EcpD [Escherichia
5435 coli] gi|2506408|sp|P33128|ECPD#ECOLI (36% identity in 217
amino acids)
SEQ ID NO: 926: -0.123005, 214, a putative pilin protein,
similar to hypothetical protein ORF56 [Yersinia pestis]
gi|4106624|emb|Caa21379.1| (36% identity in 185 amino
5440 acids); major pilin proteins for example ,Sf amino acids
[Escherichia coli] gi|4105989|gb|aaD02646.1| (32% identity in
181 amino acids)
SEQ ID NO: - : -0.309259, 109, novel
SEQ ID NO: 1488: -0.323145, 1012, a putative filamentous
5445 hemagglutinin-like protein, similar to
hemagglutinin/hemolysin-related proteins [Neisseria
meningitidis] for example ,gi|7225719|gb|aaF40927.1| (25%
identity in 1001 amino acids); filamentous hemagglutinin B
precursor [Bordetella pertussis] gi|78213|pir||S21010(20%
5450 identity in 824 amino acids)
SEQ ID NO: - : -0.353779, 808, a putative hemolysin
activatorrelated protein, similar to hemolysin activatorrelated
proteins for example ,[Pectobacterium chrysanthemi]
gi|1772622|gb|aaC31980.1| (27% identity in 484 amino
5455 acids);hemolysin activation protein precursor [Serratia
marcescens] gi|123205|sp|P15321|HLYB#SERMA (24%
identity in 475 amino acids)
SEQ ID NO: 1608 : -0.270213, 142, a putative
holo-[acyl-carrier protein] synthase, similar to
5460 holo-[acyl-carrier protein] synthases for
example ,[Campylobacter jejuni] gi|6968838|emb|CAB73833.1|
(39% identity in 121 amino acids)

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 1609: -0.224107, 113, a putative 3-oxoacyl-(acyl carrier protein) reductase, similar to 3-oxoacyl-(acyl carrier protein) reductases for example ,*[Moritella marinalis* gi|7227179|gb|aaF42251.1] (41% identity in 188 amino acids)

5465 SEQ ID NO: 1610 : -0.570629, 144, a putative (3R)-hydroxymyristol-(acyl carrier protein) dehydratase, similar to (3R)-hydroxymyristol-(acyl carrier protein) dehydratases for example ,gi|7190847|gb|aaF39621.1 (30% identity in 158 amino acids)

5470 SEQ ID NO: 1611: -0.0544, 126, a putative acyl carrier protein, similar to acyl carrier proteins for example ,AcpC [*Streptococcus agalactiae*]

5475 gi|4886773|gb|aaD32036.1|AF093787#4 (38% identity in 86 amino acids)

SEQ ID NO: 1409: -0.480057, 703, a putative aminomethyl transferase, similar to aminopometyl transferases for example ,gi|7450600|pir||C75088 (26% identity in 333 amino acids)

5480 SEQ ID NO: 1410 : -0.678001, 1401, a putative 3-oxoacyl-[acyl-carrier- protein] synthase, its N-terminal-half part is similar to 3-oxoacyl-[acyl-carrier- protein] synthase (EC 2.3.1.41) [*Bacillus subtilis*] gi|7433750|pir||G69842 (37% identity in 393 amino acids); its C-terminal-half part is similar to gi|7433750|pir||G69842 (22% identity in 439 amino acids); similar to N- and C -terminal-half part nodulation proteins (nodE) for example ,[*Rhizobium meliloti* plasmid] gi|128459|sp|P06230|NODE#RHIME, product comprises two 5490 3-oxoacyl-[acyl-carrier- protein]

SEQ ID NO: 1628: -0.368862, 168, novel, similar to(at low level) a part of polyketide synthases for example ,[*Streptomyces* sp. strain MA6548] gi|7481905|pir||T17428 (23% identity in 201 amino acids)

5495 SEQ ID NO: - : -0.500273, 367, novel

SEQ ID NO: - : -0.253226, 63, a putative ABC transporter ,

Appendix B: Hideo *et al.* Full Translation

similar to putative ABC transporters (ATP-binding protein) for example ,[Thermotoga maritima] gi|7445988|pir||H72342 (50% identity in 222 amino acids)

5500 SEQ ID NO: 1538: -0.112712, 237, novel
SEQ ID NO: 1539: 0.259358, 188, novel [hypothetical membrane protein], similar to hypothetical proteins for example ,BBJ27 [Lyme disease spirochete plasmid J/lp38] gi|7463605|pir||D70248 (25% identity in 399 amino acids)

5505 SEQ ID NO: 1633: -1.014893, 95, novel [periplasmic]
SEQ ID NO: 1634: -0.166975, 325, novel
SEQ ID NO: - : -0.77625, 81, a phage integration, similar to integrases for example ,[Vibrio cholerae] gi|498253|gb|aaC44230.1| (32% identity in 390 amino acids)
5510 (P4 like integrase)
SEQ ID NO: 2: -0.123944, 214, novel, similar to(at low level) hemagglutinin main component [Clostridium botulinum phage (type C)] gi|1346254|sp|P46084|HA33#CLOBO (23% identity in 190 amino acids)

5515 SEQ ID NO: 3: -0.274163, 210, a transposase, similar to sB proteins for example ,[Shigelladysenteriae Iso-IS1] gi|6759959|gb|aa F28117.1|AF153317#13 (72% identity in 129 amino acids), GTG start
SEQ ID NO: 4: -0.112565, 192, a putative regulatory protein,

5520 similar to prophage cp4-57regulatory proteinAlpA [Escherichia coli (strain K-12)] gi|461502|sp|P33997|ALPA#ECOLI (52% identity in 61 amino acids)

SEQ ID NO: 5: -0.320225, 90, novel, similar to hypothetical protein b2625 (YfjI) [Escherichia coli K-12]

5525 gi|1723621|sp|P52124|YFJI#ECOLI (40% identity in 444 amino acids)

SEQ ID NO: 6: -0.628261, 93, novel, similar to(at low level) hypothetical protein Cj1244 [Campylobacter jejuni] gi|6968677|emb|CAB73498.1| (25% identity in 78 amino acids)

5530 SEQ ID NO: 7: -0.642435, 272, novel, similar to hypothetical

Appendix B: Hideo *et al.* Full Translation

protein A153R [Chlorella virus PBCV-1]
gi|7461298|pir||T17644 (32% identity in 365 amino acids);
DNA repair protein rad25 PAB0128 [Pyrococcus abyssi (strain
Orsay)]gi|7514780|pir||A75209 (28% identity in 392 amino
5535 acids);putative helicase(D10 protein) [Bacteriophage T5]
gi|137606|sp|P11107|VD10#BPT5 (27% identity in 393 amino
acids)

SEQ ID NO: 8: -0.313568, 200, novel, TTG start

SEQ ID NO: 9: -0.309146, 1160, novel, identical to L0015
5540 [Escherichia coli] gi|3414883|gb|aaC31494.1| (100% identity
in 512 amino acids); similar to hypothetical proteins for
example ,[Escherichia coli] gi|3288156|emb|aa11509.1| (99%
identity in 411 amino acids)

SEQ ID NO: 10: 0.086667, 226, novel, identical to L0014
5545 [Escherichia coli] gi|3288157|emb|Caa11510.1| (100% identity
in 115 amino acids); similar to hypothetical proteins for
example ,orf50 [Escherichia coli] gi|6009426|dbj|Baa84885.1|
(76% identity in 107 amino acids)

SEQ ID NO: 11: -0.430396, 228, novel, similar to hypothetical
5550 proteins for example ,L0013 [Escherichia coli]
gi|3414881|gb|aaC31492.1| (98% identity in 133 amino acids),
GTG start

SEQ ID NO: 12 : -0.358621, 233, a IS30 transposase
(interrupted), similar to N-terminal part of IS30 transposas
5555 for example ,i|2851554|sp|P37246|TRA8#ECOLI (99% identity
in 101 amino acids)

SEQ ID NO: 13 : -0.43945, 110, a putative transposase,
similar to transposases for example ,Hp1[Escherichia coli]
gi|3661482|gb|aaC61713.1| (98% identity in 272 amino acids),
5560 InsB [Shigella dysenteriae]
gi|5532467|gb|aaD44751.1|AF141323#22(98% identity in 272
amino acids)

SEQ ID NO: 14 : -0.352643, 871, a putative complement
resistance protein precursor, similar to lipoproteintraT

Appendix B: Hideo *et al.* Full Translation

5565 precursors for example ,gi|418135|sp|P32885|TRT1#ECOLI
(83% identity in 227 amino acids), TTG start
SEQ ID NO: 15: -0.186861, 138, novel
SEQ ID NO: 16: -0.535714, 141, novel
SEQ ID NO: 17: -0.34, 251, novel
5570 SEQ ID NO: 18: -0.155725, 132, a putative diacylglycerol kinase, similar to diacylglycerol kinases for example ,gi|125321|sp|P00556|KDGL#ECOLI (76% identity in 119 amino acids)
SEQ ID NO: 19: -0.514689, 178, novel[putative outer
5575 membrane protein; OMP], similar to hypothetical proteins for example ,yjdB in basS-adiY intergenic region [Escherichia coli] gi|731986|sp|P30845|YJDB#ECOLI (45% identity in 428 amino acids)
SEQ ID NO: 20: -0.476923, 118, novel, TTG start
5580 SEQ ID NO: 21: -0.231818, 133, novel
SEQ ID NO: 22: -0.38651, 342, novel, GTG start
SEQ ID NO: 23: -0.159091, 111, an urease accessory protein UreD, similar to UreD urease-associated proteins for example , [Klebsiella aerogenes]
5585 gi|731078|sp|Q09063|URED#KLEAE (71% identity in 242 amino acids), TTG start
SEQ ID NO: 24: -0.048747, 440, an urease gamma subunit, similar to urease gamma subunits for example ,[Klebsiella pneumoniae] gi|137084|sp|P18316|URE3#KLEAE(96% identity in 100 amino acids)
5590 SEQ ID NO: 25: -0.431519, 534, an urease beta subunit, similar to urease beta subunits for example ,[Klebsiella pneumoniae] gi|137077|sp|P18315|URE2#KLEAE (82% identity in 106 amino acids)
5595 SEQ ID NO: 26: -0.526471, 69, an urease alpha subunit, similar to urease alpha subunits for example ,[Klebsiella pneumoniae] gi|137070|sp|P18314|URE1#KLEAE (90% identity in 567 amino acids)

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 27: -0.582995, 642, an urease accessory protein,
5600 similar to UreE ureaseaccessory proteins for example ,
example , [Klebsiella aerogenes]
gi|137095|sp|P18317|UREE#KLEAE (80% identity in 154
amino acids)

SEQ ID NO: 28: -0.439779, 182, an urease accessory protein,
5605 similar to UreF ureaseaccessory proteinUreFs for example ,
example , [Klebsiella aerogenes]
gi|137097|sp|P18318|UREF#KLEAE (79% identity in 224
amino acids)

SEQ ID NO: 29: -0.995946, 75, an urease accessory protein,
5610 similar to UREG urease accessory proteins for example ,
example , [Klebsiella aerogenes] gi|137099|sp|P18319|UR
EG#KLEAE (90% identity in 205 amino acids)

SEQ ID NO: 30 -0.961539, 105, novel, similar to hypothetical
proteins for example ,TnpJ [Shigella flexneri]
5615 gi|5532468|gb|aaD44752.1|AF141323#23 (100% identity in 87
amino acids)
[0021]

4) Proteins derived from phage

Sequence number: hydrophobicity, The number of amino acids,
5620 Character such as function

SEQ ID NO: 31: 0.178689, 62, a putative antirepressor,
similar to antirepressors for example , [Bacteriophage 933W]
gi|4585423|gb|aaD25451.1|AF125520#46 (99% identity in 189
amino acids)

5625 SEQ ID NO: 32: -0.403947, 153, a putative host cell lysis,
similar to endolysins for example , [Bacteriophage 933W]
gi|4585422|gb|aaD25450.1|AF125520#45 (97% identity in 177
amino acids)

SEQ ID NO: 33: -0.280953, 190, novel, similar to hypothetical
5630 protein gi|3183262|sp|P76160|YDFR#ECOLI (45% identity in
74 amino acids)

SEQ ID NO: 34: -0.440678, 178, a putative holin protein,

Appendix B: Hideo *et al.* Full Translation

similar to holins for example ,[Bacteriophage VT2-Sal] gi|5881636|dbj|Baa84327.1| (97% identity in 68 amino acids)

5635 SEQ ID NO: 35: -0.074561, 115, novel, similar to hypothetical protein [Bacteriophage VT2-Sal] gi|5881634|dbj|Baa84325.1| (53% identity in 602 amino acids)

SEQ ID NO: 36: 0.142647, 69, novel, similar to tellurium resistance protein TerB proteins for example ,[Deinococcus radiodurans] gi|7473690|pir||C75302 (26% identity in 129 amino acids)

5640 SEQ ID NO: 37: -0.225415, 603, a putative transcription regulatory element, similar to transcription regulatory elements for example ,[Escherichia coli] gi|586679|sp|P37638|YHIW#ECOLI (34% identity in 197 amino acids)

SEQ ID NO: 38: -0.247553, 144, similar to hypothetical protein [Bacteriophage P27] gi|8346569|emb|CAB93762.1| (96% identity in 63 amino acids)

5650 SEQ ID NO: 39: 0.054872, 196, a putative anti-terminator protein, similar to Q protein [Bacteriophage 21] gi|7440086|pir||D71566 (31% identity in 45 amino acids)

SEQ ID NO: 40: -0.147692, 66, a putative crossover junction endodeoxyribonuclease, similar to crossover junction 5655 endodeoxyribonuclease [Escherichia coli] gi|2507117|sp|P40116|RUS#ECOLI (42% identity in 94 amino acids); Gp67 [BacteriophageHK97] gi|6901639|gb|aaF31142.1| (61% identity in 98 amino acids)

SEQ ID NO: 41: -0.278804, 185, similar to B1560#ECOLI 5660 gi|1787843 (85% identity in 354 amino acids)

SEQ ID NO: 42: -0.439604, 102, novel

SEQ ID NO: 43: -0.380555, 361, novel, similar to hypothetical proteins for example ,[Bacteriophage 933W] gi|4585451|gb|aaD25479.1|AF125520#74 (99% identity in 114 5665 amino acids); Ygi [Escherichia coli] gi|1723887|sp|P52083|YGIW#ECOLI (53% identity in 93

Appendix B: Hideo *et al.* Full Translation

amino acids)

SEQ ID NO: 44: -0.741111, 91, a prophage maintenance protein; modulation of host cell killing, identical to MokW
5670 [Bacteriophage 933W]
gi|4585453|gb|aaD25481.1|AF125520#76 (100% identity in 70 amino acids); similar to Hok/Gef family for example ,Gef [Escherichia coli] gi|2120017|pir||S40540 (73% identity in 69 amino acids)

5675 SEQ ID NO: 45: -0.235088, 115, novel, similar to hypothetical proteins for example , [Bacteriophage 933W]
gi|4585382|gb|aaD25410.1|AF125520#5 (67% identity in 77 amino acids)

SEQ ID NO: 46: 0.222857, 71, novel, similar to hypothetical
5680 protein [Bacteriophage 933W]
gi|4585384|gb|aaD25412.1|AF125520#7 (70% identity in 72 amino acids)

SEQ ID NO: 47: -0.37027, 186, novel, GTG start

SEQ ID NO: 48: 0.130555, 73, novel, GTG start

5685 SEQ ID NO: 49: -0.680583, 104, novel, similar to Gp9 [Bacteriophage Mul gi|6010430|gb|aaF01133.1|AF083977#54 (28% identity in 94 amino acids)

SEQ ID NO: 50: 0.116, 76, novel, similar to hypothetical
protein Ydaw [Escherichia coli]
5690 gi|3025105|sp|P76066|YDAW#ECOLI, (56% identity in 143 amino acids), TTG start

SEQ ID NO: 51: -0.382796, 94, a putative replication protein, similar to C-terminal-half part of replication protein 14 [Bacteriophage phi·80] gi|137937|sp|P14814|VG14#BPPH8
5695 (45% identity in 129 amino acids)

SEQ ID NO: 52: -0.438934, 245, novel, similar to C-terminal-half part of DnaT [Escherichia coli]
gi|1361001|pir||S56589 (49% identity in 95 amino acids)

SEQ ID NO: 53: -0.760454, 221, novel, similar to hypothetical
5700 protein [Escherichia coli] gi|3025103|sp|P76064|YDAT#ECOLI

Appendix B: Hideo *et al.* Full Translation

- (30% identity in 141 amino acids)
- SEQ ID NO: 54: -0.684726, 348, a putative regulatory protein, similar to Cro [BacteriophageP22] gi|132195|sp|P09964|RCRO#BPP22 (39% identity in 53 amino acids)
- 5705 SEQ ID NO: 55: -0.385816, 142, a putative repressor protein, similar to repressor proteins for example ,C2 [Bacteriophage P22] gi|133359|sp|P03035|RPC2#BPP22(27% identity in 166 amino acids)
- 5710 SEQ ID NO: 56: -0.0975, 81, novel, similar to hypothetical proteins for example ,YdfK[Escherichia coli] gi|140584|sp|P29008|YDFA#ECOLI (87% identity in 49 amino acids); YdaF gi|3915965|sp|P38395|YDAF#ECOLIF (83% identity in 49 amino acids)
- 5715 SEQ ID NO: 57: 0.15977, 175, novel, similar to (at low level) ATP-dependent protease La homolog gi|1708857|sp|P42425|LON2#BACSU (27% identity in 95 amino acids)
- SEQ ID NO: 58: -0.425974, 78, novel
- 5720 SEQ ID NO: 59: -0.477358, 213, novel, TTG start
- SEQ ID NO: 60: -0.526087, 70, a putative cell division inhibitor, similar to DicB [Escherichia coli] gi|226094|prf||1410309A (67% identity in 55 amino acids)
- SEQ ID NO: 61: -0.439535, 87, novel, similar to hypothetical
- 5725 protein Ydfd [Escherichia coli] gi|140587|sp|P29010|YDFD#ECOLI (45% identity in 62 amino acids)
- SEQ ID NO: 62: -0.11129, 63, a putative exonuclease, similar to exonucleases for example ,exodeoxyribonuclease VIII [Escherichia coli] gi|2507105|sp|P15032|RECE#ECOLI(57% identity in 350 amino acids)
- 5730 SEQ ID NO: 63: 0.082258, 63, a putative integrase, similar to N-terminal part of putative integrases for example ,[Escherichia coli] cryptic prophage|

Appendix B: Hideo *et al.* Full Translation

5735 gi|7449509|pir||E64913 (93% identity in 183 amino acids),
TTG start, probably disrupted
SEQ ID NO: 64: -0.580917, 415, novel
SEQ ID NO: 65: -0.50929, 184, a transposase (OrfB), identical
to transposase [Escherichia coli plasmid p O-157 IS629]
5740 gi|7443862|pir||T00240
SEQ ID NO: 66: -0.175, 85, a transposase (OrfA), identical to
hypothetical protein [Escherichia coli plasmid p O-157
intron sequence IS629] gi|7444868|pir||T00241
SEQ ID NO: 67: -0.397973, 297, a putative transposase,
5745 similar to putative transposases for example ,[Yersinia
pestis plasmid pMT1] gi|7447905|pir||T14710 (78%
identity in 257 amino acids), TTG start, probably disrupted
SEQ ID NO: 68: -0.965741, 109, novel, identical to L0013
[Escherichia coli O-157:H7 strain EDL933]
5750 gi|3414881|gb|aaC31492.1| (100% identity in 126 amino
acids); similar to hypothetical proteins for example ,Hp3
[Escherichia coli strain CFT073]gi|3661484|gb|aaC61715.1|
(100% identity in 74 amino acids)
SEQ ID NO: 69: -0.092042, 290, novel, identical to L0014
5755 [Escherichia coli O-157:H7 strain EDL933]
gi|3288157|emb|Caa11510.1| (100% identity in 115 amino
acids); similar to hypothetical proteins for example ,Orf50
[Escherichia coli strain B171] gi|6009426|dbj|Baa 84885.1|
(76% identity in 107 amino acids)
5760 SEQ ID NO: 70: -0.403175, 127, novel, identical to L0015
[Escherichia coli O-157:H7 strain EDL933]
gi|3414883|gb|aaC31494.1| (100% identity in 512 amino
acids); similar to hypothetical proteins for
example ,[Escherichia coli plasmid pColV-K30]
5765 gi|3288156|emb|Caa11509.1| (99% identity in 411 amino
acids)
SEQ ID NO: 71: 0.010435, 116, a putative transposase
(interrupted), similar to N-terminal part of transposases, for

Appendix B: Hideo *et al.* Full Translation

example ,[Escherichia coli strain B171]
5770 gi|1004096|gb|aaB36833.1| (89% identity in 132 amino acids)
SEQ ID NO: 72: -0.445312, 513, novel, similar to hypothetical
proteins for example ,ORF2 in trcA region [Escherichia coli
strain B171-8] gi|4126790|dbj|Baa36748.1| (41% identity in
209 amino acids); ORF4 in trcA region [Escherichia coli strain
5775 B171-8] gi|4126792|dbj|Baa36750.1| (36% identity in 133
amino acids)
SEQ ID NO: 73: -0.736428, 141, novel, similar to hypothetical
protein [Lactococcus bacteriophage c2]
gi|1146281|gb|aaA92162.1| (31% identity in 59 amino acids),
5780 GTG start
SEQ ID NO: 74: -0.321951, 124, novel
SEQ ID NO: 75: -0.187826, 116, novel, similar to hypothetical
proteins for example ,ORF4 in trcAregion [Escherichia coli
strain B171-8] gi|4126792|dbj|Baa36750.1| (39% identity in
5785 124 amino acids); ORF2 in trcA region [Escherichia coli strain
B171-8] gi|4126790|dbj|Baa36748.1| (27% identity in 171
amino acids)
SEQ ID NO: 76: 0.102083, 49, novel, similar to hypothetical
protein [Bacteriophage 933W] gi|7649887|dbj|Baa94165.1|
5790 (93% identity in 89 amino acids)
SEQ ID NO: 77: -0.173373, 170, a putative tail fiber protein,
similar to tail fiber proteins for example ,[Bacteriophage
933W] gi|4585436|gb|aaD25464.1|AF125520#59(34% identity
in 339 amino acids)
5795 SEQ ID NO: 78: -0.320225, 90, a putative outer membrane
protein, similar to Lom outer membrane proteins for
example , [Bacteriophage P-EibA]
gi|7532789|gb|aaF63231.1|AF151091#2 (68% identity in 199
amino acids)
5800 SEQ ID NO: 79: -0.644471, 408, a probably host specificity
protein (partial), similar to C-terminal-half part of protein
J [Bacteriophage lambda]

Appendix B: Hideo *et al.* Full Translation

gi|138412|sp|P03749|VHSJ#LAMBD(38% identity in 77 amino acids), GTG start, probably disrupted by frameshift
5805 SEQ ID NO: 80: -0.313568, 200, a host specificity protein (partial), partially similar to protein J [Bacteriophage lambda] gi|138412|sp|P03749|VHSJ#LAMBD (65% identity in 639 amino acids), probably disrupted by frameshift
SEQ ID NO: 81: 0.256338, 72, a host specificity protein 5810 (interrupted), similar to N-terminal part of protein J [Bacteriophage lambda] gi|138412|sp|P03749|VHSJ#LAMBD(80% identity in 369 amino acids), truncated by frameshift
SEQ ID NO: 82: -0.181623, 654, similar to tail assembly,tail 5815 assembly proteins for example ,GpI [Bacteriophage lambda] gi|139637|sp|P03730|VTAI#LAMBD (68% identity in 224 amino acids)
SEQ ID NO: 83: -0.403069, 392, tail assembly, similar to tail assembly proteins for example ,GpK [Bacteriophage lambda] 5820 gi|139638|sp|P03729|VTAK#LAMBD (85% identity in 196 amino acids), GTG start
SEQ ID NO: 84: 0.103097, 227, a minor tail component, similar to minor tail proteins for example ,GpL [Bacteriophage lambda] gi|138844|sp|P03738|VMTL#LAMBD (76% identity in 5825 232 amino acids)
SEQ ID NO: 85: -0.412946, 225, a putative minor tail component, similar to minor tail proteins for example ,GpM [Bacteriophage lambda] gi|138845|sp|P03737|VMTM#LAMBD(44% identity in 5830 110 amino acids), GTG start
SEQ ID NO: 86: -0.340086, 233, a putative tail length tape measure protein, similar to tail length tape measure proteins for example , [Bacteriophage HK97] gi|6901589|gb|aaF31092.1|AF069529#5 (52% identity in 5835 1076 amino acids)
SEQ ID NO: 87: -0.624779, 114, novel, similar to C-terminal

Appendix B: Hideo *et al.* Full Translation

part of Gp14 [Bacteriophage HK97]
gi|6901601|gb|aaF31104.1| (60% identity in 96 amino acids),
probably produced by translational frameshift
5840 SEQ ID NO: 88: -0.311204, 1081, a putative tail assembly
chaperone, similar to tail assembly chaperone [Bacteriophage
HK97] gi|6901600|gb|aaF31103.1| (62% identity in 124 amino
acids)
SEQ ID NO: 89: -0.146237, 94, a putative major tail
5845 component, similar to major tail subunit [Bacteriophage HK97]
gi|6901588|gb|aaF31091.1|AF069529#4 (68% identity in 234
amino acids)
SEQ ID NO: 90: -0.309678, 125, novel, similar to Gp11
[Bacteriophage HK97] gi|6901599|gb|aaF31102.1| (49%
5850 identity in 113 amino acids)
SEQ ID NO: 91: -0.186135, 239, novel, similar to phage
hypothetical protein Gp10 [Bacteriophage HK97]
gi|6901598|gb|aaF31101.1| (75% identity in 148 amino acids)
SEQ ID NO: 92: 0.172807, 115, a putative head-tail adaptor,
5855 similar to putative head-tail adaptors for
example , [Bacteriophage HK97] gi|6901597|gb|aaF31100.1|
(45% identity in 111 amino acids)
SEQ ID NO: 93: -0.512838, 149, novel
SEQ ID NO: 94: -0.192241, 117, a putative portal protein,
5860 similar to portal proteins for example , [Bacteriophage D3]
gi|5059250|gb|aaD38955.1| (24% identity in 366 amino acids)
SEQ ID NO: 95: -0.061111, 109, novel
SEQ ID NO: 96: -0.483469, 860, a putative major head
protein/prohead protease, its N-terminal part similar to
5865 putative prohead protease for example , [Rhodobacter
capsulatus] gi|6467535|gb|aaF13181.1|AF181080#3 (30%
identity in 137 amino acids); its C-terminal part similar to
major head proteins for example , [Mycobacterium phage L5]
gi|465114|sp|Q05223|VG17#BPML5 (23% identity in 280
5870 amino acids)

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 97: -0.831147, 62, a putative terminase large subunit, similar to hypothetical proteins for example ,phage D3 terminase-like protein [Haemophilus influenzae] gi|6739656|gb|aaF27357.1|AF198256#11 (22% identity in 472 amino acids)
5875

SEQ ID NO: 98: -0.148992, 646, a putative terminase small subunit, similar to terminases small subunit - PBSX phage Bacillus subtilis gi|1722886|sp|P39785|XTMA#BACSU (42% identity in 57 amino acids), GTG start

5880 SEQ ID NO: 99: -0.117179, 554, novel
SEQ ID NO: 100: -0.648128, 188, a putative DNase, similar to(at low level) DNase [Bacteriophage phi-C31] gi|1107475|emb|Caa62587.1| (28% identity in 85 amino acids)

5885 SEQ ID NO: 101: -1.029787, 48, novel, similar to hypothetical proteins for example ,,[Escherichia coli] gi|1778472|gb|aaB40755.1| (70% identity in 67 amino acids)

SEQ ID NO: 102: -0.468595, 122, a lipoproteinRz1 precursor, similar to lipoproteinRz1 precursors for example ,,[Bacteriophage933W]
5890 gi|4585425|gb|aaD25453.1|AF125520#48 (98% identity in 61 amino acids)

SEQ ID NO: 103: -0.717334, 76, an endopeptidase (cell lysis), identical to Rz [Bacteriophage VT2-Sa] gi|5881639|dbj|Baa84330.1|; similar to Rz endopeptidases for example ,,[Bacteriophage lambda] gi|119368|sp|P00726|ENPP#LAMBD (69% identity in 153 amino acids)

5895 SEQ ID NO: 104: 0.214754, 62, a putative anti-repressor, identical to Ant [Bacteriophage 933W]

5900 SEQ ID NO: 104: 0.214754, 62, a putative anti-repressor, identical to Ant [Bacteriophage 933W] gi|4585423|gb|aaD25451.1|AF125520#46; its N-terminal part (amino acids at the position 1-126) similar to anti-repressor Ant [Bacteriophage P22] gi|131843|sp|P03037|RANT#BPP22 (49% identity in 126 amino acids)

SEQ ID NO: 105: -0.472903, 156, a putative endolysin,

Appendix B: Hideo *et al.* Full Translation

5905 similar to endolysins for example ,[Bacteriophage 933W]
gi|4585422|gb|aaD25450.1|AF125520#45 (96% identity in 177
amino acids)
SEQ ID NO: 106 : -0.283069, 190, novel, similar to
hypothetical protein YdfR (103 amino acids) [Escherichia coli]
5910 gi|3183262|sp|P76160|YDFR#ECOLI (45% identity in 74
amino acids)
SEQ ID NO: 107: -0.466667, 178, a putative holin protein,
similar to holin proteins for example ,[Bacteriophage H-19B]
gi|2668771|gb|aaD04658.1| (97% identity in 68 amino acids)
5915 SEQ ID NO: 108 : -0.074561, 115, novel, similar to
hypothetical proteins for example ,[Bacteriophage 933W]
(52% identity in 613 amino acids)
SEQ ID NO: 109: 0.142647, 69, novel
SEQ ID NO: 110: -0.212987, 617, novel
5920 SEQ ID NO: 111: 0.459524, 43, novel, similar to tellurium
resistance proteins (TerB) for example ,[Deinococcus
radiodurans] gi|7473690|pir||C75302 (26% identity in 120
amino acids), TTG start
SEQ ID NO: 112: -0.452273, 89, novel, TTG start
5925 SEQ ID NO: 113: -0.153521, 143, a putative antitermination
protein, similar to antitermination Q proteins for
example ,[Bacteriophage 82] gi|132277|sp|P13870|RegQ#BP82
(75% identity in 229 amino acids)
SEQ ID NO: 114: -0.142593, 55, a putative crossover junction
5930 endodeoxyribonuclease, similar to Gp67 [Bacteriophage HK97]
gi|6901639|gb|aaF31142.1| (64% identity in 114 amino acids);
crossover junction endodeoxyribonucleases Rus
(Hollidayjunction nuclease) (Holliday junction resolvase)
[Escherichia coli cryptic lambdoid prophage DLP12] (40%
5935 identity in 110 amino acids)
SEQ ID NO: 115: -0.425764, 230, similar to B1560#ECOLI
gi|1787843 (83% identity in 348 amino acids), GTG start
SEQ ID NO: 116: -0.304202, 120, novel

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 117: -0.39169, 350, novel
5940 SEQ ID NO: 118: 0.15098, 52, novel
SEQ ID NO: 119: 1.332353, 35, novel, similar to hypothetical protein [Salmonella typhimurium] gi|7467246|pir||T03012 (28% identity in 69 amino acids); Ren proteins for example ,[Bacteriophage H-19] gi|2668762|gb|aaD04649.1|
5945 (26% identity in 109 amino acids)
SEQ ID NO: 120: -0.410309, 195, novel, GTG start
SEQ ID NO: 121: -0.470229, 132, a putative DNA replication protein, similar to DNAResultion protein DnaC homologs for example ,[Escherichia coli] gi|7429001|pir||C64886 (79%
5950 identity in 246 amino acids)
SEQ ID NO: 122: -0.365766, 223, a putative replication protein, its C-terminal-half part similar to replication proteins for example ,[Bacteriophage phi-80] gi|137940|sp|P14815|VG15#BPPH8 (34% identity in 148 amino acids); its N-terminal part similar to hypothetical protein [Escherichia coli] gi|3025235|sp|P75978|YMFN#ECOLI (68% identity in 62 amino acids)
SEQ ID NO: 123: -0.47439, 247, novel, similar to hypothetical protein YdaY [Escherichia coli K-12] gi|3025103|sp|P76064|YDAT#ECOLI (30% identity in 141 amino acids)
SEQ ID NO: 124 : -0.667987, 304, novel, similar to hypothetical protein YdaS [Escherichia coli] gi|3025102|sp|P76063|YDAS#ECOLI (39% identity in 57 amino acids)
SEQ ID NO: 125: -0.42695, 142, novel, similar to hypothetical protein b1145 [Escherichia coli cryptic prophage e14] gi|7444154|pir||F64859 (28% identity in 68 amino acids), TTG start
5970 SEQ ID NO: 126: -0.183, 101, novel
SEQ ID NO: 127 : -0.718055, 145, novel, similar to

Appendix B: Hideo *et al.* Full Translation

hypothetical proteins for example ,[Rhizobium sp. NGR234]
gi|2496690|sp|P55534|Y4KP#RHISN (38% identity in 89
5975 amino acids)

SEQ ID NO: 128: -1.053333, 76, novel

SEQ ID NO: 129: -0.040217, 93, novel, GTG start

SEQ ID NO: 130: -0.648148, 55, novel, similar to excisionases
for example , [BacteriophageVT2-Sa]

5980 dad|AP000363-2|Baa84285.1| (43% identity in 69 amino acids)

SEQ ID NO: 131: -0.001695, 119, novel [hypothetical
lipoprotein], similar to hypothetical proteins for
example ,CJ0034c [Campylobacter jejunal
gi|6967539|emb|CAB72527.1 (35% identity in 229 amino acids),
5985 GTG start

SEQ ID NO: 1595: -0.731325, 84, a transposase (insertion
sequence IS629), similar to hypothetical proteins for
example ,TnpE [Shigella flexneri]
gi|5532454|gb|aaD44738.1|AF141323#9 (99% identity in 108
5990 amino acids)

SEQ ID NO: 1684: -0.126695, 237, a transposase (OrfB)
(insertion sequenceIS629), similar to transposase IS629
gi|7443863|pir||T00315 (98% identity in 295 amino acids)

SEQ ID NO: 1647: -0.938889, 109, a putative integrase,
5995 similar to integrases for example , [Bacteriophage S2]
gi|1679807|emb|Caa96221.1| (57% identity in 331 amino
acids)

SEQ ID NO: 1648: -0.432542, 296, novel, similar to(at low
level) hypothetical protein b1839[Escherichia coli]
6000 gi|7451973|pir||G64945 (33% identity in 109 amino acids)

SEQ ID NO: 1158: -0.498198, 334, novel, similar to(at low
level) cell division protein Div [Escherichia coli]
gi|2507010|sp|P15286 (27% identity in 121 amino acids)

SEQ ID NO: 1159: -0.102609, 116, a putative transcription
6005 regulatory element, similar to putative transcription
regulatory elements for example , [Neisseria meningitidis]

Appendix B: Hideo *et al.* Full Translation

gi|7226247|gb|aaF41408.1| (32% identity in 102 amino acids)
SEQ ID NO: 1160: -0.209722, 217, novel
SEQ ID NO: 1161: -0.639552, 135, a putative DNA-binding
6010 protein, similar to putative DNA-binding protein Cox [Vibrio cholerae Bacteriophage K139] gi|4530499|gb|aaD22064.1| (46% identity in 56 amino acids); phage hypothetical proteins for example , [Bacteriophage S2] gi|1679810|emb|Caa 96224.1| (42% identity in 61 amino acids); [Escherichia coli retrон EC67]
6015 gi|141342|sp|P21315|YR7A#ECOLI (42% identity in 61 amino acids)
SEQ ID NO: 1162: -0.051111, 46, novel
SEQ ID NO: 1163: 0.01194, 68, novel
SEQ ID NO: 1164: -0.692241, 117, novel
6020 SEQ ID NO: 1165: -0.229348, 93, novel
SEQ ID NO: 1166: -0.27625, 81, novel
SEQ ID NO: 1167: -0.094928, 139, novel
SEQ ID NO: 1168: -0.673134, 68, novel
SEQ ID NO: 1169: -0.281818, 89, novel, similar to
6025 hypothetical proteins for example , [Shigella flexneri] gi|421263|pir||S34345 (41% identity in 84 amino acids)
SEQ ID NO: 1170: -0.030303, 100, a putative derepression protein, similar to(at low level) derepression protein epsilon [Bacteriophage P4] gi|137833|sp|P05463|VEPS#BPP4 (32%
6030 identity in 50 amino acids)
SEQ ID NO: 1171: -0.201464, 206, novel
SEQ ID NO: 1172: -0.709211, 77, a putative replication protein, similar to replication proteins for example ,GpA [Bacteriophage 186] gi|1351406|sp|P41064|VPA#BP186 (34%
6035 identity in 567 amino acids)
SEQ ID NO: 1173: -0.276033, 122, putative regulation of plasmid partition, similar to plasmid partition proteins for example ,par [Escherichia coli plasmid R1] gi|134954|sp|P11904|STBA#ECOLI (46% identity in 314
6040 amino acids)

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 1174 : -0.74575, 895, regulation of plasmid partition, similar to plasmid partition proteins for example ,TSB [Escherichia coli plasmid NR1] gi|134956|sp|P11906|STBB#ECOLI (40% identity in 62 amino acids)

6045 SEQ ID NO: 1175: -0.094984, 320, a putative transposase, its N-terminal part (amino acids at the position 1-103/217) is identical to N-terminal part of transposase [Escherichia coli plasmid p O-157 insertion sequence IS629] gi|7443862|pir||T00240(1-103/296 amino acids), its C-terminal part (amino acids at the position 104-217/217) is identical to C-terminal part of transposase [Escherichia coli plasmid p O-157 insertion sequence IS629] gi|7443862|pir||T00240(183-296/296 amino acids)

6050 SEQ ID NO: 1176: -0.466346, 105, a transposase, similar to hypothetical proteins in insertion sequences for example ,[Escherichia coli plasmid p O-157 insertion sequence IS629] gi|7444868|pir||T00241 (96% identity in 108 amino acids)

6055 SEQ ID NO: 1177 : -0.368996, 230, novel, similar to hypothetical proteins for example ,orf20 [Escherichia coli plasmid pB171] gi|6009396|dbj|Baa84855.1| (54% identity in 158 amino acids) (transferase)

6060 SEQ ID NO: 1178: -0.912037, 109, a putative tail protein, similar to tail proteins for example ,F protein [Bacteriophage 186] gi|3337273|gb|aaC34171.1| (43% identity in 151 amino acids)

6065 SEQ ID NO: 1179 : -0.174684, 159, novel, similar to C-terminal part of tail proteins for example ,GpT [Bacteriophage P2] gi|3139112|gb|aaD03293.1| (39% identity in 66 amino acids), GTG start, probably disrupted by frameshift

6070 SEQ ID NO: 1180: -0.337037, 163, a putative tail protein, similar to N-terminal part of tail proteins for example ,GpT [Bacteriophage P2] gi|3337272|gb|aaC34170.1| (32% identity

Appendix B: Hideo *et al.* Full Translation

6075 in 648 amino acids), interrupted by frameshift
SEQ ID NO: 1181: -0.326978, 279, a putative phage tail protein, similar to gi|3139111|gb|aaD03292.1| (47% identity in 42 amino acids)
SEQ ID NO: 1182: -0.055746, 697, a putative tail protein, similar to tail proteins for example ,GpE [Bacteriophage P2] gi|3139110|gb|aaD03291.1| (31% identity in 85 amino acids)
SEQ ID NO: 1183 : -0.129487, 79, a putative tail tube protein, similar to tail tube proteins for example ,tail protein FII [Bacteriophage 186]
6080 6085 gi|139325|sp|P22502|VPF2#BPP2 (44% identity in 157 amino acids)
SEQ ID NO: 1184: -0.284298, 122, a putative tail sheath protein, similar to tail sheath proteins for example ,FI [Pseudomonas aeruginosa bacteriophage phiCTX] gi|4063795|dbj|Baa36249.1| (47% identity in 377 amino acids)
6090 SEQ ID NO: 1185: -0.266471, 171, a tail protein, similar to N-terminal part of tail proteins for example ,GpD [Bacteriophage P2] gi|6136287|sp|P10312|VPD#BPP2 (59% identity in 70 amino acids)
6095 SEQ ID NO: 1186: -0.193147, 395, a transposase, similar to transposases for example ,[Escherichia coli insertion sequence IS30] gi|2851554|sp|P37246|TRA8#ECOLI (99% identity in 342 amino acids)
SEQ ID NO: 1187: -0.173832, 108, novel, GTG start
6100 6100 SEQ ID NO: 1188: -0.841108, 344, novel
SEQ ID NO: 1189 : -0.626563, 65, similar to FLIC#ECOLI gi|1788232 (55% identity in 585 amino acids)
SEQ ID NO: 1190: -0.435484, 94, its N-terminal part (amino acids at the position 1-104/379) similar to YEDM#ECOLI gi|1788245 (77% identity in 104 amino acids), its central part (amino acids at the position 162-266/379) is similar to YEDN#ECOLI gi|1788244 (60% identity in 105 amino acids), its C-terminal part (amino acids at the position 272-331/379) is

Appendix B: Hideo *et al.* Full Translation

similar to B1933#ECOLI gi|1788243 (46% identity in 59 amino acids) ; similar to(at low level) YOPM#YERPE SP|P17778 (27% identity in 181 amino acids)

SEQ ID NO: - : -0.2996752, 586, similar to C-terminal part of YEDL#ECOLI gi|1788242 (61-159/159 amino acids) (93% identity in 99 amino acids)

6115 SEQ ID NO: - : -0.242216, 380, its N-terminal part (amino acids at the position 1-104/379) is similar toYEDM#ECOLI gi|1788245 (76% identity in 104 amino acids), its central part (amino acids at the position 162-266/379) is similar to YEDN#ECOLI gi|1788244 (61% identity in 105 amino acids), its 6120 C-terminal part (amino acids at the position 272-331/379) is similar to B1933#ECOLI gi|1788243 (53% identity in 59 amino acids); similar to(at low level) IPAH#SHIFL dad|M32063·1 (30% identity in 146 amino acids)

SEQ ID NO: 1554 -0.263636, 100, novel, TTG start

6125 SEQ ID NO: - : -0.244327, 380, novel

SEQ ID NO: - : -0.468966, 117, a putative secreted effector protein, similar to hypothetical proteins for example ,EspF [Escherichia coli strain B10] gi|6090818|gb|aaF03351.1|AF116900#2 ESPF#ECOLI (39% 6130 identity in 126 amino acids)

SEQ ID NO: 756 : -0.497235, 218, novel, similar to hypothetical protein [Bacteriophage 933W] gi|4585437|gb|aaD25465.1|AF125520#60 (93% identity in 89 amino acids)

6135 SEQ ID NO: 757: -0.686944, 338, a putative bacteriophage tail fiber protein, similar to tail fiber proteins for example , [Bacteriophage 933W] gi|4585436|gb|aaD25464.1|AF125520#59 (38% identity in 370 amino acids)

6140 SEQ ID NO: 758: -0.324719, 90, a putative outer membrane protein, similar to Lom outer membrane protein precursors for example , [prophage P-EibA]

Appendix B: Hideo *et al.* Full Translation

gi|7532789|gb|aaF63231.1|AF151091#2 (68% identity in 199 amino acids)

6145 SEQ ID NO: 759 : -0.67254, 438, a bacteriophage host specificity protein(partial), similar to C-terminal part of host specificity proteins for example ,GpJ [Bacteriophage lambda]gi|138412|sp|P03749|VHSJ#LAMBD (58% identity in 788 amino acids), probably disrupted by frameshift

6150 SEQ ID NO: 760 : -0.313568, 200, a bacteriophage host specificity protein (interrupted), similar to N-terminal part of host specificity proteins for example , protein J [Bacteriophage lambda] gi|138412|sp|P03749|(80% identity in 369 amino acids), GTG start, interrupted by frameshift

6155 SEQ ID NO: 761: -0.245668, 809, a putative tail assembly protein, similar to tail assembly proteins for example ,GpI [Bacteriophage lambda] gi|139637|sp|P03730|VTAI#LAMBD (69% identity in 224 amino acids)

SEQ ID NO: 762: -0.365217, 392, bacteriophage tail assembly, similar to tail assembly proteins for example ,GpK [Bacteriophage lambda] gi|139638|sp|P03729|VTAK#LAMBD (87% identity in 186 amino acids)

6160 SEQ ID NO: 763: 0.086667, 226, a possible bacteriophage tail component, similar to minor tail proteins for example ,GpL [Bacteriophage lambda] gi|138844|sp|P03738|VMTL#LAMBD (76% identity in 232 amino acids)

6165 SEQ ID NO: 764 : -0.344973, 190, a bacteriophage tail component, similar to minor tail proteins for example ,GpM [Bacteriophage lambda] gi|138845|sp|P03737|VMTM#LAMBD (79% identity in 109 amino acids)

6170 SEQ ID NO: 765: -0.3125, 233, tail length determination, similar to C-terminal part of tail length tape measure protein precursors for example ,GpH [Bacteriophage lambda] gi|138843|sp|P03736|VMTH#LAMBD (80% identity in 253 amino acids), probably disrupted by frameshift

6175 SEQ ID NO: 766: -0.43945, 110, bacteriophage tail length

Appendix B: Hideo *et al.* Full Translation

determination, similar to N-terminal part tail length tape measure proteins for example ,GpH [Bacteriophage lambda] gi|138843|sp|P03736|VMTH#LAMBD (76% identity in 587
6180 amino acids), interrupted by frameshift

SEQ ID NO: 767 : -0.258268, 255, a bacteriophage tail component, similar to minor tail proteins for example ,GpT [Bacteriophage lambda] gi|138846|sp|P03735|VMTT#LAMBD (78% identity in 96 amino acids), probably produced by
6185 translationalframeshift

SEQ ID NO: 768: -0.505, 621, a bacteriophage tail component, similar to minor tail proteins for example ,GpG [Bacteriophage lambda] gi|138842|sp|P03734|VMTG#LAMBD(68% identity in
6190 167 amino acids)

SEQ ID NO: 769: 0.034653, 102, novel

SEQ ID NO: 770 : -0.22028, 144, a bacteriophage head component, similar to N-terminal part of major head proteins for example ,Gp7 [Bacteriophage 21]
6195 gi|547612|sp|P36270|HEAD#BPP21percent
gi|547612|sp|P36270| (95% identity in 88 amino acids), probably interrupted

SEQ ID NO: 771 : -0.239801, 202, a bacteriophage head component, similar to head decoration proteins for
6200 example ,Gpshp [Bacteriophage 21]
gi|549437|sp|P36275|VSHP#BPP21 (95% identity in 115 amino acids)

SEQ ID NO: 772 : -0.331818, 89, a bacteriophage head-tail preconnector, similar to minor head proteins for
6205 example ,head-tail preconnector Gp5 [Bacteriophage 21]
gi|549296|sp|P36273|VG05#BPP21 (97% identity in 501 amino acids), scaffold protein(302-501 amino acids) containing homolog of Gp6 [Bacteriophage 21]

SEQ ID NO: 773 : -0.024348, 116, a bactreiphage portal
6210 protein, similar to portal proteins for example ,Gp5

Appendix B: Hideo *et al.* Full Translation

[Bacteriophage 21] gi|549295|sp|P36272|VG04#BPP21 (98% identity in 530 amino acids)

SEQ ID NO: 774: 0.055688, 502, a putative head completion protein, similar to phage proteins for example ,head completion protein Gp3 [Bacteriophage 21] gi|549294|sp|P36271|VG03#BPP21 (98% identity in 68 amino acids)

6215 SEQ ID NO: 775: -0.448868, 531, a bacteriophage terminase large subunit, similar to terminase large subunits for example ,Gp2 [Bacteriophage 21] gi|2851579|sp|P36693|TERL#BPP21 (91% identity in 637 amino acids)

6220 SEQ ID NO: 776: -0.394118, 69, a possible bacteriophage terminase small subunit, similar to terminase small subunits for example ,Gp1 [Bacteriophage N15] gi|7444578|pir|T13087 (42% identity in 106 amino acids), GTG start

6225 SEQ ID NO: 777: -0.425233, 643, a transcription regulatory element, similar to PerC (BfpW) [Escherichia coli] gi|1172431|sp|P43475|PERC#ECOLI (47% identity in 87 amino acids)

6230 SEQ ID NO: 778: -0.508875, 170, a lipoprotein precursor, similar to lipoproteinRz1 precursors for example , [Bacteriophage 933W] gi|4585425|gb|aaD25453.1|AF125520#48 (85% identity in 61 amino acids)

6235 SEQ ID NO: 779: -0.983654, 105, an endopeptidase (host cell lysis), similar to Rzendopeptidases for example , [Bacteriophage VT2-Sal] gi|5881639|dbj|Baa84330.1| (83% identity in 154 amino acids)

6240 SEQ ID NO: 780: 0.178689, 62, novel

SEQ ID NO: 781: -0.26, 156, similar to possible endolysins, for example ,R protein [Bacteriophage H-19B] gi|4335686|gb|aaD17382.1| (98% identity in 177 amino acids)

SEQ ID NO: 782: 0.62, 61, novel, similar to YdfR [Escherichia

Appendix B: Hideo *et al.* Full Translation

6245 coli] gi|3183262|sp|P76160|YDFR#ECOLI (44% identity in 74
amino acids)
SEQ ID NO: 783: -0.393785, 178, a possible holin protein (host
cell lysis), similar to holin proteins for example , protein
[Bacteriophage VT2-Sal] gi|5881636|dbj|Baa84327.1| (94%
6250 identity in 68 amino acids)
SEQ ID NO: 784: -0.114912, 115, a transposase, identical to
hypothetical protein[Escherichia coli plasmid p O-157
insertion sequence IS629] gi|7444868|pir||T00241
SEQ ID NO: 785: 0.133823, 69, a transposase, identical to
6255 transposase [Escherichia coli plasmid p O-157 insertion
sequence IS629] gi|7443862|pir||T00240
SEQ ID NO: 786 : -0.965741, 109, novel, similar to
hypothetical proteins for example ,[Bacteriophage 933W]
gi|4585419|gb|aaD25447.1|AF125520#42 (53% identity in 613
6260 amino acids)
SEQ ID NO: 787: -0.397973, 297, novel, GTG start
SEQ ID NO: 788: -0.243181, 617, novel, GTG start
SEQ ID NO: 789: 0.475926, 55, novel, similar to putative
TerB proteins for example ,[Deinococcus radiodurans]
6265 gi|7473690|pir||C75302 (26% identity in 120 amino acids)
SEQ ID NO: 790: 1.385455, 56, an antitermination, similar to
antiterminators for example , protein Q [Bacteriophage 82]
gi|132277|sp|P13870|R for example ,Q#BP82 (75% identity in
229 amino acids)
6270 SEQ ID NO: 791 : -0.143662, 143, a crossover junction
endodeoxyribonuclease, similar to Rus proteins for
example ,[Bacteriophage 82] gi|6901639|gb|aaF31142.1|
GP67#BPHK97 (63% identity in 112 amino acids); similar to
Gp67 [Bacteriophage HK97] gi|6901639|gb|aaF31142.1| (63%
6275 identity in 112 amino acids)
SEQ ID NO: 792 : -0.393886, 230, novel, similar to
hypothetical proteins for example ,b1560 [Escherichia coli]
gi|7466196|pir||C64911 (85% identity in 348 amino acids),

Appendix B: Hideo *et al.* Full Translation

GTG start

6280 SEQ ID NO: 793: -0.221009, 120, novel, similar to orf QD1 [Bacteriophage N15] gi|2564084|gb|aaB81659.1 (31% identity in 64 amino acids)

SEQ ID NO: 794: -0.35702, 350, a prophage maintenance (modulation of hostcell killing), similar to Hok/Gef family for example ,MokW [Bacteriophage 933W] gi|4585453|gb|aaD25481.1|AF125520#76 (87% identity 70 amino acids)

SEQ ID NO: 795: -1.208696, 93, novel

SEQ ID NO: 796: 0.081429, 71, novel, its N-terminal part (amino acids at the position 1-46 amino acids) is similar to GP45 [Bacteriophage N15] gi|7521552|pir||T13131 (56% identity in 46 amino acids); its N-terminal part (amino acids at the position 37-97) is similar to b2363 [Escherichia coli] gi|7451977|pir||H65009 (73% identity in 61 amino acids)

6290 6295 SEQ ID NO: 797: 1.402941, 35, novel

SEQ ID NO: 798: -0.425134, 188, novel, GTG start

SEQ ID NO: 799: -0.893204, 104, novel

SEQ ID NO: 800: -1.069355, 63, novel

SEQ ID NO: 801: -0.171186, 119, novel, similar to YdaW [Escherichia coli] gi|3025105|sp|P76066|YDAW#ECOLI (61% identity in 135 amino acids)

6300 6305 SEQ ID NO: 802: -0.148649, 75, a putative phage replication protein, similar to replication proteins for example ,Gp14 [Bacteriophage phi-80] gi|137937|sp|P14814|VG14#BPPH8 (47% identity in 129 amino acids)

SEQ ID NO: 803: -0.504741, 233, novel, similar to replication termination factor dnaT (primosomal protein I) [Escherichia coli] gi|1361001|pir||S56589 (30% identity in 85 amino acids)

SEQ ID NO: 804: -0.721364, 221, novel, similar to YdaT [Escherichia coli] gi|3025103|sp|P76064|YDAT#ECOLI (31% identity in 83 amino acids); similar to(at low level) regulatory protein CII [Bacteriophage phi-80]

Appendix B: Hideo *et al.* Full Translation

- gi|133360|sp|P14820|RPC2#BPPH8 (40% identity in 40 amino acids)
- 6315 SEQ ID NO: 805: -0.660869, 346, a putative cell division control protein (repressor), similar to DicC (repressor protein of division inhibition genedicB) [Escherichia coli] gi|118633|sp|P06965|DICC#ECOLI (31% identity in 72 amino acids)
- 6320 SEQ ID NO: 806: -0.360284, 142, a possible repressor protein, similar to repressor proteins for example ,C2 repressor [Bacteriophage P22] gi|133359|sp|P03035|RPC2#BPP22 (30% identity in 203 amino acids)
- SEQ ID NO: 807: -0.694667, 76, novel
- 6325 SEQ ID NO: 808: -0.046047, 216, a possible cell division inhibitor, similar to DicB protein [Escherichia coli] gi|2507009|sp|P09557|DICB#ECOLI (65% identity in 55 amino acids)
- SEQ ID NO: 809: -0.494, 51, novel, similar to hypothetical
- 6330 proteins for example ,YdfD[Escherichia coli] gi|140587|sp|P29010|YDFD#ECOLI (46% identity in 62 amino acids)
- SEQ ID NO: 810: -0.01129, 63, novel
- SEQ ID NO: 811: 0.119355, 63, novel
- 6335 SEQ ID NO: 812: -0.751913, 733, novel
- SEQ ID NO: 813 : -0.487736, 107, an integrase, similar to integrases for example ,[Bacteriophage HK022] gi|138560|sp|P16407|VINT#BPHK0 (24% identity in 316 amino acids)
- 6340 SEQ ID NO: 814: -0.347761, 68, novel, similar to hypothetical proteins for example ,L0013 [Escherichia coli O-157:H7 strain EDL933] gi|3414881|gb|aaC31492.1|(100% identity in 133 amino acids), GTG start
- SEQ ID NO: 815 : -0.722352, 341, novel, similar to
- 6345 hypothetical proteins for example ,L0014 [Escherichia coli O-157:H7 strain EDL933] gi|3288157|emb|Caa11510.1| (100%

Appendix B: Hideo *et al.* Full Translation

identity in 115 amino acids)

SEQ ID NO: 1581 : -0.388722, 134, novel, similar to hypothetical proteins for example ,L0015 [Escherichia coli O-157:H7 strain EDL933] gi|3414883|gb|aaC31494.1| (100% identity in 512 amino acids)

6350 SEQ ID NO: 1582: 0.010435, 116, novel

SEQ ID NO: 1583: -0.445312, 513, a transposase (insertion sequence IS629), similar to IS629 hypothetical proteins for example ,[Escherichia coli plasmid p O-157] gi|7444868|pir||T00241 (96% identity in 108 amino acids)

6355 SEQ ID NO: 1349: -0.262963, 55, a transposase (insertion sequence IS629), similar to IS629 transposase [Escherichia coli plasmid p O-157) gi|7443862|pir||T00240 (96% identity in 296 amino acids)

6360 SEQ ID NO: 1350: -0.942593, 109, novel, partially similar to hypothetical proteins for example ,YjdA [Escherichia coli] gi|731985|sp|P16694|YJDA#ECOLI (17% identity in 236 amino acids) (at low level)

6365 SEQ ID NO: 1351 : -0.402027, 297, novel, similar to hypothetical protein YjcZ[Escherichia coli] gi|731984|sp|P39267|YJCZ#ECOLI (29% identity in 278 amino acids), GTG start

SEQ ID NO: 1352: -0.652559, 294, novel, similar to(at low level) hypothetical proteins for example ,[Xanthomonas campestris] gi|6689533|emb|CAB65709.1| (44% identity in 74 amino acids)

6370 SEQ ID NO: 1353: -0.372093, 302, novel

SEQ ID NO: 1354: 0.036798, 357, novel

6375 SEQ ID NO: 1355 : -0.067841, 228, novel, similar to hypothetical proteins for example ,YafZ [Escherichia coli] gi|2495487|sp|P77206|YAFZ#ECOLI (75% identity in 272 amino acids)

SEQ ID NO: 1356: -0.074265, 137, a putative antirestriction

6380 protein, similar to hypothetical proteins for example ,YfjX

Appendix B: Hideo *et al.* Full Translation

[Escherichia coli] gi|1723636|sp|P52139|YFJX#ECOLI (68% identity in 152 amino acids); similar to antirestriction proteins for example ,KlcA protein [plasmid RK2] gi|1730051|sp|P52603|KLA2#ECOLI (38% identity in 139 amino acids)

6385 SEQ ID NO: 1357 : -0.550183, 274, an acetyltransferase, identical to WbdR [Escherichia coli O-157:H7 C664-1992] gi|3435182|gb|aaC32350.1 |

SEQ ID NO: 1358 : -0.385535, 160, novel, similar to 6390 C-terminal part of H repeat-associated proteins for example ,[Escherichia coli] gi|140772|sp|P28912|YHII#ECOLI (66% identity in 36 amino acids), TTG start

SEQ ID NO: 1259 : 0.180543, 222, novel, similar to H 6395 repeat-associated proteins for example ,[Escherichia coli] gi|140772|sp|P28912|YHII#ECOLI (75% identity in 49 amino acids)

SEQ ID NO: 1260 : 0.204, 51, novel, similar to H repeat-associated proteins for example ,[Escherichia coli] 6400 gi|140772|sp|P28912|YHII#ECOLI (83% identity in 36 amino acids), GTG start

SEQ ID NO: 1261 : -0.351852, 55, a phosphomannomutase, identical to ManB [Escherichia coli O-157:H7 C664-1992] gi|3435181|gb|aaC32349.1 |

6405 SEQ ID NO: 1262 : -0.141667, 37, a mannose-1-P guanosyltransferase, identical to ManC [Escherichia coli O-157:H7 C664-1992] gi|3435180|gb|aaC32348.1 |

SEQ ID NO: 1263: -0.222368, 457, a probable GDP-L-fucose pathway enzyme, identical to WbdQ [Escherichia coli 6410 O-157:H7 C664-1992] gi|3435179|gb|aaC32347.1 |

SEQ ID NO: 1264 : -0.221577, 483, a fucose synthetase, identical to Fcl [Escherichia coli O-157:H7 C664-1992] gi|4867922|dbj|Baa77731.1 |

SEQ ID NO: 1265 : -0.168047, 170, a GDP-D-mannose

Appendix B: Hideo *et al.* Full Translation

6415 dehydratase, identical to Gmd [Escherichia coli O-157:H7 C664-1992]gi|3435177|gb|aaC32345.1|
SEQ ID NO: 1266: -0.264486, 322, a (e) glycosyl transferase,
similar to WbdP [Escherichia coli O-157:H7 C664-1992]
gi|3435176|gb|aaC32344.1|

6420 SEQ ID NO: 1267: -0.261021, 373, a perosamine synthetase,
identical to Per [Escherichia coli O-157:H7 C664-1992]
gi|3435175|gb|aaC32343.1|
SEQ ID NO: 1268: -0.176485, 405, an O antigen flippase,
identical to Wzx [Escherichia coli O-157:H7 C664-1992]
gi|3435174|gb|aaC32342.1|

6425 SEQ ID NO: 1269 : -0.321585, 367, a probable glycosyl
transferase, identical to WbdO[Escherichia coli O-157:H7
C664-1992] gi|3435173|gb|aaC32341.1|
SEQ ID NO: 1270: 0.75141, 462, an O antigen polymerase,
6430 identical to Wzy [Escherichia coli O-157:H7 C664-1992]
gi|3435172|gb|aaC32340.1|, GTG start
SEQ ID NO: 1271: -0.16371, 249, a (e) glycosyl transferase,
identical to WbdN [Escherichia coli O-157:H7 C664-1992]
gi|4867915|dbj|Baa77724.1|

6435 SEQ ID NO: 1272: 0.558884, 395, a putative UDP-galactose
4-epimerase, similar to putative UDP-galactose 4-epimerase
[Vibrio cholerae] gi|3724321|dbj|Baa33610.1 (27% identity in
329 amino acids)
SEQ ID NO: 1273 : -0.404615, 261, novel, similar to
6440 hypothetical proteins for example ,gi|9106618|gb|aaF84382.1|AE003986#12 [Xylella
fastidiosa] (60% identity in 105 amino acids)
SEQ ID NO: 1638 : -0.29577, 332, novel, similar to
hypothetical protein [Xylella fastidiosa]
6445 gb|aaF84486.1|AE003993#5 (52% identity in 86 amino acids)
SEQ ID NO: 1692: -0.842857, 113, novel
SEQ ID NO: 1693: -0.109375, 97, novel
SEQ ID NO: 1588: -0.478481, 80, novel [putative outer

Appendix B: Hideo *et al.* Full Translation

membrane protein; OMP]

6450 SEQ ID NO: 1589: -0.057391, 116, similar to YEHA#ECOLI
gi|1788426 (44% identity in 207 amino acids) [putative type-1
fimbrial protein]
SEQ ID NO: 1590: 0.006731, 105, similar to YEHB#ECOLI
gi|1788427 (92% identity in 826 amino acids); similar to usher
6455 protein MrkC [Klebsiella pneumoniae]
dad|M55912-4|aaA25095.1 (32% identity in 810 amino acids)
SEQ ID NO: - : -0.098256, 345, similar to YEHC#ECOLI
gi|1788428 (87% identity in 224 amino acids); similar to
chaperone MrkB [Klebsiella pneumoniae]
6460 dad|M55912-3|aaA25094.1 (39% identity in 211 amino acids)
SEQ ID NO: - : -0.513075, 827, similar to YEHD#ECOLI
gi|1788429 (85% identity in 180 amino acids); AC/I pili
protein [Escherichia coli] dad|X76121-1|Caa53727.1 (28%
identity in 177 amino acids)
6465 SEQ ID NO: - : -0.266071, 225, similar to YEHE#ECOLI
gi|1788430 (69% identity in 93 amino acids)
SEQ ID NO: - : 0.199444, 181, a putative molybdate
metabolism regulator, similar to N-terminal part of molybdate
metabolism regulator MolR [Escherichia coli]
6470 gi|7466653|pir||B64979(amino acids at the position
1-244/1264) (37% identity in 249 amino acids), GTG start
SEQ ID NO: - : -0.272043, 94, a putative molybdate
metabolism regulator, similar to C-terminal part of molybdate
metabolism regulator molR [Escherichia coli]
6475 gi|465576|sp|P33345|MOLR#ECOLI (45% identity in 1000
amino acids), GTG start
SEQ ID NO: - : -0.647107, 243, identical to transposase (OrfB)
(insertion sequence IS629), gi|7443862|pir||T00240
SEQ ID NO: 1509: -0.306124, 948, similar to transposase
6480 (OrfA) (insertion sequenceIS629), gi|7444868|pir||T00241
(99% identity in 108 amino acids)
SEQ ID NO: 1650: -0.397973, 297, novel

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 1651 : -0.958333, 109, novel, similar to hypothetical proteins for example , [Bacteriophage 933W] gi|4585437|gb|aaD25465.1|AF125520#60 (97% identity in 102 amino acids), TTG start

6485 SEQ ID NO: 555: -0.584146, 83, a putative tail fiber protein, similar to tail fiber proteins for example , [Bacteriophage 933W] gi|4585436|gb|aaD25464.1|AF125520#59 (36% identity in 361 amino acids)

6490 SEQ ID NO: 556: -0.411765, 103, a putative outer membrane protein Lom precursor, similar to Lom precursors for example , [Bacteriophage P-EibA] gi|7532789|gb|aaF63231.1|AF151091#2 (76% identity in 199 amino acids)

6495 SEQ ID NO: 557: -0.679634, 438, a putative host specificity protein (partial), similar to C-terminal part of host specific proteins for example , GpJ [Bacteriophage lambda] gi|138412|sp|P03749|VHSJ#LAMBD(62% identity in 775 amino acids), GTG start

6500 SEQ ID NO: 558: -0.288442, 200, a putative host specific protein (interrupted), similar to N-terminus of host specificity proteins for example , GpJ [Bacteriophage lambda] gi|138412|sp|P03749|VHSJ#LAMBD(80% identity in 369 amino acids), GTG start, probably truncated by frameshift

6505 SEQ ID NO: 559: -0.197032, 776, a putative tail assembly protein, similar to tail assembly proteins for example , GpI [Bacteriophage lambda] gi|139637|sp|P03730|VTAI#LAMBD (69% identity in 224 amino acids)

6510 SEQ ID NO: 560: -0.365217, 392, a putative tail assembly protein, similar to tail assembly proteins for example , GpK [Bacteriophage lambda] gi|139638|sp|P03729|VTAK#LAMBD (86% identity in 196 amino acids)

6515 SEQ ID NO: 561: 0.086667, 226, a putative minor tail protein, similar to minor tail proteins for example , GpI [Bacteriophage lambda]

Appendix B: Hideo *et al.* Full Translation

gi|138844|sp|P03738|VMTL#LAMBD (76% identity in 232 amino acids)
SEQ ID NO: 562: -0.32996, 248, a putative minor tail protein,
6520 similar to minor tail proteins for example ,GpM [Bacteriophage lambda]
gi|138845|sp|P03737|VMTM#LAMBD(79% identity in 109 amino acids)
SEQ ID NO: 563: -0.3125, 233, a putative tail length tape
6525 measure protein precursor, similar to tail length tape measure protein precursors for example ,GpH [Bacteriophage lambda]
gi|138843|sp|P03736|VMTH#LAMBD (49% identity in 876 amino acids)
SEQ ID NO: 564: -0.43945, 110, a putative minor tail protein, similar to minor tail proteins for example ,GpT [Bacteriophage lambda]
6530 gi|138846|sp|P03735|VMTT#LAMBD(70% identity in 102 amino acids), probably produced by translational frameshift
SEQ ID NO: 565: -0.353916, 882, a putative minor tail protein, similar to minor tail proteins for example ,GpG [Bacteriophage lambda] gi|138842|sp|P03734|VMTG#LAMBD (43% identity in 140 amino acids)
SEQ ID NO: 566: -0.358824, 103, novel
SEQ ID NO: 567: -0.545714, 141, a putative minor tail protein U, similar to minor tail proteins for example ,GpU [Bacteriophage lambda] gi|138847|sp|P03732|VMTU#LAMBD (55% identity in 132 amino acids)
SEQ ID NO: 568: -0.34, 251, a putative minor tail protein, similar to minor tail proteins for example ,GpZ [Bacteriophage lambda] gi|138849|sp|P03731|VMTZ#LAMBD (52% identity in 206 amino acids)
SEQ ID NO: 569: -0.141667, 133, novel
SEQ ID NO: 570 : -0.45942, 208, novel (hypothetical membrane protein)
6550 SEQ ID NO: 571: -0.103226, 94, novel

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 572 : 0.549074, 109, a transposase (OrfA) (insertion sequence IS629), identical to hypothetical protein [Escherichia coli plasmid p O-157 insertion sequence IS629] gi|7444868|pir||T00241

6555 SEQ ID NO: 573 : -0.202367, 339, a transposase (OrfB) (insertion sequence IS629), identical to transposase [Escherichia coli plasmid p O-157 insertion sequence IS629] gi|7443862|pir||T00240

SEQ ID NO: 574 : -0.958333, 109, a putative 6560 protease/scaffold protein, similar to ClpP proteases for example ,[Bacteriophage D3] gi|5059251|gb|aaD38956.1| (39% identity in 195 amino acids); putative scaffolding protein [Streptococcus thermophilus bacteriophage DT1] gi|4530143|gb|aaD21883.1| (31% identity in 193 amino acids),

6565 GTG start

SEQ ID NO: 575: -0.397973, 297, a putative portal protein, similar to portal protein-like protein [Wolbachia sp. wKuel gi|6723246|dbj|Baa89642.1| (24% identity in 438 amino acids); similar to(at low level) portal proteins for 6570 example ,gp4 [phage 21] gi|549295|sp|P36272|VG04#BPP21 (20% identity in 368 amino acids)

SEQ ID NO: 576: -0.101359, 369, novel

SEQ ID NO: 577: -0.4932, 501, a putative terminase large 6575 subunit, similar to terminase large subunit-like protein [Wolbachia sp. wKuel gi|6723244|dbj|Baa89640.1| (25% identity in 629 amino acids); terminase large subunits for example ,GpA [Bacteriophage lambda] gi|137616|sp|P03708|TERL#LAMBD (23% identity in 615 amino acids), GTG start

6580 SEQ ID NO: 578: -0.598718, 79, novel

SEQ ID NO: 579: -0.665488, 708, a lipoprotein Rz1 precursor, similar to lipoproteinRz1 precursors for example ,[Bacteriophage 933W] gi|4585425|gb|aaD25453.1|AF125520#48 (98% identity in 61

Appendix B: Hideo *et al.* Full Translation

6585 amino acids)
SEQ ID NO: 580: -0.458861, 159, an endopeptidase (host cell lysis), identical to Rz[Bacteriophage VT2-Sal] gi|5881639|dbj|Baa84330.1|; similar to endopeptidases for example ,Rz [Bacteriophage lambda]
6590 gi|119368|sp|P00726|ENPP#LAMBD (69% identity in 153 amino acids)
SEQ ID NO: 581: 0.214754, 62, a putative antirepressor protein, identical to putative antirepressor protein [Bacteriophage 933W]
6595 gi|4585423|gb|aaD25451.1|AF125520#46; its N-terminal part (amino acids at the position 1-126) is similar to antirepressor proteinAnt [Bacteriophage P22] (49% identity in 126 amino acids)
SEQ ID NO: 582: -0.472903, 156, a putative endolysin, identical to endolysin [Bacteriophage 933W]
6600 gi|4585422|gb|aaD25450.1|AF125520#45 ; similar to endolysins for example ,R protein [Bacteriophage H-19B] gi|4335686|gb|aaD17382.1| (93% identity in 177 amino acids)
SEQ ID NO: 583: -0.283069, 190, a putative holin protein, identical to putative holin [Bacteriophage 933W]
6605 gi|4499808|emb|CAB39307.1|; similar to holin proteins for example , protein [Bacteriophage 21] gi|138706|sp|P27360|VLYS#BPP21 (77% identity in 71 amino acids)
6610 SEQ ID NO: 584 : -0.449153, 178, novel, similar to hypothetical proteins for example ,[Shigella dysenteriae] gi|6759966|gb|aaF28124.1|AF153317#20 (91% identity in 81 amino acids)
SEQ ID NO: 585 : 0.039437, 72, novel, identical to
6615 hypothetical protein [Bacteriophage 933W] gi|4499806|emb|CAB39305.1|
SEQ ID NO: 586: -0.312346, 82, novel, similar to hypothetical proteins for example ,[Bacteriophage VT2-Sal]

Appendix B: Hideo *et al.* Full Translation

gi|5881634|dbj|Baa84325.1| (92% identity in 649 amino acids)
6620 SEQ ID NO: 587: -0.008475, 60, a Shiga toxin I subunit B precursor, identical to Shiga toxin I subunit B precursor
gi|134539|sp|P08027|SLTB#BPH30
SEQ ID NO: 588: -0.218518, 649, a Shiga toxin I subunit A precursor, identical to Shiga toxin I subunit A precursor
6625 [Shigella dysenteriae] gi|134537|sp|P10149|SLTA#BPH30
SEQ ID NO: 589: 0.031461, 90, an antitermination protein, similar to antitermination proteins for example , protein Q [Bacteriophage H-19B] (95% identity in 144 amino acids)
SEQ ID NO: 590 : 0.083492, 316, novel, similar to hypothetical proteins for example ,Nin 68 [Bacteriophage lambda] gi|1351593|sp|P03771|Y68#LAMBD (80% identity in 60 amino acids)
6630 SEQ ID NO: 591 : -0.268056, 145, novel, similar to hypothetical proteins for example ,NinG protein [Bacteriophage 21] gi|4539482|emb|CAB39991.1| (90% identity in 201 amino acids)
SEQ ID NO: 592: -0.534375, 65, novel, similar to hypothetical proteins for example ,NinF [Bacteriophage P22] gi|512350|emb|Caa55162.1| (96% identity in 58 amino acids)
6640 SEQ ID NO: 593: -1.045273, 202, novel
SEQ ID NO: 594 : -0.286957, 70, novel, identical to hypothetical protein [Bacteriophage VT2-Sal] gi|5881625|dbj|Baa84316.1|; similar to Nin E proteins for example ,[Bacteriophage 21] (100% identity in 57 amino acids)
6645 SEQ ID NO: 595 : -0.939098, 134, novel, similar to hypothetical proteins for example ,[Bacteriophage VT2-Sal] gi|5881624|dbj|Baa84315.1| (98% identity in 175 amino acids); DNA N-6-adenine-methyltransferase [Bacteriophage T1] (31% identity in 143 amino acids)
6650 SEQ ID NO: 596: -1.339655, 59, novel, similar to hypothetical proteins for example ,[Bacteriophage 933W] gi|4585410|gb|aaD25438.1|AF125520#33 (98% identity in

Appendix B: Hideo *et al.* Full Translation

148 amino acids); Nin B [Bacteriophage 21]
gi|4539479|emb|CAB39988.1| (43% identity in 147 amino
6655 acids)

SEQ ID NO: 597 : -0.174286, 176, novel, similar to hypothetical proteins for example , [Bacteriophage SEQ ID NO: 933W] gi|4585409|gb|aaD25437.1|AF125520#32 (99% identity in 109 amino acids), GTG start

6660 SEQ ID NO: 598 : -0.739189, 149, novel, similar to hypothetical proteins for example , [Bacteriophage 933W] gi|4499788|emb|CAB39287.1| (97% identity in 92 amino acids)

SEQ ID NO: 599: 0.00851, 142, a Ren protein, similar to Ren proteins for example , [Bacteriophage lambda]
6665 gi|139473|sp|P03761|VREN#LAMBD (97% identity in 96 amino acids)

SEQ ID NO: 600: -0.872826, 93, a phage replication protein P, similar to phage replication protein Ps for example , [Bacteriophage lambda]

6670 gi|139488|sp|P03689|VRPP#LAMBD(97% identity in 233 amino acids)

SEQ ID NO: 601: -0.0375, 97, a phage replication protein O, similar to phage replication protein Os for example , [Bacteriophage 933W]

6675 gi|4585405|gb|aaD25433.1|AF125520#28(99% identity in 312 amino acids)

SEQ ID NO: 602: -0.448927, 234, a regulatory protein CII, similar to regulatory protein CIIs for example , [Bacteriophage 933W]

6680 gi|4585404|gb|aaD25432.1|AF125520#27 (94% identity in 98 amino acids)

SEQ ID NO: 603 : -0.815064, 313, a putative regulatory protein, similar to putative regulatory proteins for example , [Bacteriophage VT2-Sal] gi|5881616|dbj|Baa84307.1| (42% identity in 71 amino acids)

SEQ ID NO: 604 : -0.220408, 99, a putative prophage

Appendix B: Hideo *et al.* Full Translation

repressor CI, similar to prophagerepressor CIs for example ,[Bacteriophage lambda] gi|133353|sp|P03034|RPC1#LAMBD (48% identity in 205
6690 amino acids)

SEQ ID NO: 605: -0.223611, 73, novel

SEQ ID NO: 606 : -0.193868, 213, novel (hypothetical membrane protein)

SEQ ID NO: 607 : -0.194624, 94, a putative regulatory
6695 protein (transcription anti-termination), similar to putative transcriptionantitermination proteins for example , protein N [Bacteriophage phi-21] gi|132274|sp|P07243|R for example ,N#BPPH3 (99% identity in 64 amino acids)

SEQ ID NO: 608: -0.036066, 184, novel

6700 SEQ ID NO: 609: -0.355556, 91, a putative superinfection exclusion protein, similar to superinfection exclusion protein B [Bacteriophage P22] gi|585991|sp|P38396|SIEB#BPP22 (84% identity in 191 amino acids)

SEQ ID NO: 610: 0.358824, 52, a putative single-stranded
6705 DNAbinding protein, identical to putative single-stranded DNAbinding protein [Bacteriophage 933W] ; similar to Ea10(single-stranded DNAbinding protein) [Bacteriophage lambda] gi|137630|sp|P03757|VE10#LAMBD (99% identity in 122 amino acids)

6710 SEQ ID NO: 611: -0.012435, 194, a regulatory protein cIII (antitermination), identical to regulatory protein cIII [Bacteriophage lambda] gi|133366|sp|P03044|RPC3#LAMBD

SEQ ID NO: 612: -0.263935, 123, a Kil protein (host killing), similar to Kil proteins for example ,[Bacteriophage lambda] gi|138622|sp|P03758|VKIL#LAMBD (97% identity in 89 amino acids)

6715 SEQ ID NO: 613: -0.544444, 55, a host-nuclease inhibitor protein Gam (interrupted), similar to N-terminal part of gam [Bacteriophage lambda](99% identity in 37 amino acids)

6720 SEQ ID NO: 614 : -0.120225, 90, putative host-nuclease

Appendix B: Hideo *et al.* Full Translation

inhibitor proteinGam, similar to C-terminal part of Gam [Bacteriophage lambda] gi|138128|sp|P03702|VGAM#LAMBD (99% identity in 98 amino acids), probably disrupted by frameshift

6725 SEQ ID NO: 615: -0.28, 51, a recombination protein Bet, identical to Bet protein[Bacteriophage 933W] gi|4585391|gb|aaD25419.1|AF125520#14 ; similar to Bet protein [Bacteriophage lambda] gi|137511|sp|P03698|VBET#LAMBD (99% identity in 261 amino acids)

6730 SEQ ID NO: 616: -0.707143, 99, an exonuclease, identical to exonucleases [Bacteriophage933W] gi|4585390|gb|aaD25418.1|AF125520#13 ; similar to exonucleases for example , [Bacteriophage lambda] gi|119702|sp|P03697|EXO#LAMBD (97% identity in 225 amino acids)

6735 SEQ ID NO: 617 : -0.509195, 262, novel, identical to hypothetical protein [Bacteriophage 933W] gi|4585389|gb|aaD25417.1|AF125520#12; similar to hypothetical protein orf60a [Bacteriophage lambda] gi|508995|gb|aaA96568.1| (95% identity in 62 amino acids)

6740 SEQ ID NO: 618 : -0.358667, 226, novel, identical to hypothetical protein [Bacteriophage 933W] gi|4585388|gb|aaD25416.1|AF125520#11; similar to orf63 [Bacteriophage lambda] gi|508994|gb|aaA96567.1| (88% identity in 61 amino acids)

6745 SEQ ID NO: 619 : -0.13871, 63, novel, identical to hypothetical proteins for example , [Bacteriophage 933W] gi|4585387|gb|aaD25415.1|AF125520#10 ; similar to hypothetical protein orf61 [Bacteriophage lambda] (93% identity in 46 amino acids)

6750 SEQ ID NO: 620 : -0.192064, 64, a putative C4-type zinc finger protein (TraRfamily), similar to putative C4-type zinc finger protein (TraR family) for

Appendix B: Hideo *et al.* Full Translation

6755 example ,gi|7649830|dbj|Baa94108.1| (93% identity in 73
amino acids)
SEQ ID NO: 621: -0.410753, 94, novel, its N-terminal part is
similar to hypothetical proteins for example ,[Bacteriophage
933W] gi|4585455|gb|aaD25483.1|AF125520#78 (68% identity
6760 in 168 amino acids); its C-terminal part is similar to
hypothetical protein [Bacteriophage HK022]
gi|6863138|gb|aaF30379.1|AF069308#27 (96% identity in 196
amino acids), GTG start
SEQ ID NO: 622: -0.6117808, 74, novel
6765 SEQ ID NO: 623: -0.622222, 316, novel, its N-terminal part
(amino acids at the position 1-44) is similar to hypothetical
proteins for example ,[Bacteriophage 933W]
gi|4585382|gb|aaD25410.1|AF125520#5 (84% identity in 44
amino acids)
6770 SEQ ID NO: 624: -0.068966, 59, novel, partially similar to
hypothetical proteins for example ,[Bacteriophage 933W]
gi|4585455|gb|aaD25483.1|AF125520#78 (41% identity in 90
amino acids)
SEQ ID NO: 625: -0.482204, 119, novel
6775 SEQ ID NO: 626: -0.8125, 121, a putative excisionase, similar
to putative excisionases for example ,[Bacteriophage 933W]
gi|4585379|gb|aaD25407.1|AF125520#2 (47% identity in 74
amino acids)
SEQ ID NO: 627: -0.72, 81, a putative integrase, similar to
6780 integrases for example ,[Bacteriophage 933W]
gi|4585378|gb|aaD25406.1|AF125520#1 (65% identity in 423
amino acids)
SEQ ID NO: 628 : -0.803572, 85, a putative salicylate
hydroxylase, similar to salicylatehydroxylases for
6785 example ,[Streptomyces coelicolor] gi|7481300|pir||T36193
(31% identity in 348 amino acids)
SEQ ID NO: 629 : -0.471028, 429, similar to probable
glutathione-S-transferase,glutathione-S-transferases for

Appendix B: Hideo *et al.* Full Translation

example ,*[Pseudomonas* sp. U2] gi|3406829|gb|aaC29501.1 |
6790 (43% identity in 210 amino acids)
SEQ ID NO: 1444 : -0.21864, 398, a putative isomerase,
similar to isomerases for example ,isomerase-decarboxylase
homolog [Pseudomonas sp. U2]
gi|3406828|gb|aaC29500.1|(46% identity in 188 amino acids);
6795 similar to hypothetical protein Orf2 [*Sphingomonas* sp. RW5]
gi|3550668|emb|Caa12268.1| (54% identity in 228 amino
acids)
SEQ ID NO: 1445 : 0.236279, 216, probable gentisate
1,2-dioxygenase, similar to gentisate 1,2-dioxygenases for
6800 example ,*[Pseudomonas* alcaligenes]
gi|5733104|gb|aaD49427.1|AF173167#1 (53% identity in 333
amino acids); [Sphingomonas sp. RW5]
gi|3550667|emb|Caa12267.1| (45% identity in 339 amino
acids)
6805 SEQ ID NO: 1446: -0.183691, 234, a putative transporter
protein, similar to transporter proteins for
example ,4-hydroxybenzoate transporter [*Pseudomonas* putida]
gi|6093655|sp|Q51955|PCAK#PSEPU (42% identity in 420
amino acids)
6810 SEQ ID NO: 1447: -0.411988, 343, a putative regulatory
protein, similar to regulatory proteins for example ,galactose
binding protein regulatory element [*Azospirillum brasiliense*]
gi|1730232|sp|P52661|GBPR#AZOBR (32% identity in 281
amino acids)
6815 SEQ ID NO: 1448 : 0.803097, 453, a putative antibiotic
resistance protein, similar to antibiotic resistance protein
homolog YwoG [*Bacillus subtilis*] gi|7474437|pir||B70065
(38% identity in 381 amino acids)
SEQ ID NO: 1449: -0.049371, 319, a putative transcription
6820 regulatory element, similar to putative transcription
regulatory elements for example ,YvbU [*Bacillus subtilis*]
gi|6648030|sp|O32255 (32% identity in 266 amino acids)

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: - : 0.973737, 397, novel
SEQ ID NO: - : 0.093836, 293, a transposase (OrfA) (insertion
6825 sequence IS629), hypothetical protein
gi|7444868|pir||T00241
SEQ ID NO: 1623, ECs3123:3078013-3079083; -0.672472, 357,
identical to transposase (OrfB) (insertion sequence IS629)
gi|7443862|pir||T00240,
6830 SEQ ID NO: 1653: -0.965741, 109, similar to B2332#ECOLI
gi|7466328|pir||B65006 (41% identity in 289 amino acids)
SEQ ID NO: 1654: -0.397973, 297, similar to B2333#ECOLI
gi|1788674 (56% identity in 174 amino acids); minor fimbrial
subunit StfG protein [Salmonella typhimurium]
6835 dad|AF093503-7|aaC64157.1 (48% identity in 139 amino acids)
SEQ ID N O-1572: -0.075, 281, similar to B2334#ECOLI
gi|1788675 (53% identity in 141 amino acids); similar to minor
fimbrial subunits for example ,Stff [Salmonella typhimurium]
gi|3747033 (53% identityin 158 amino acids)
6840 SEQ ID N O-1573: 0.123626, 183, similar to B2335#ECOLI
gi|1788676 (47% identity in 166 amino acids); similar to minor
fimbrial subunit StfE protein [Salmonella typhimurium]
dad|AF093503-5|aaC64155.1 (48% identity in 154 amino acids)
SEQ ID N O-1574: -0.085256, 157, similar to YFCS#ECOLI
6845 gi|1788677 (85% identity in 250 amino acids); periplasmic
fimbrial chaperone StfD protein [Salmonella typhimurium]
dad|AF093503-4|aaC64154.1 (59% identity in 233 amino acids)
SEQ ID N O-1575: 0.534337, 167, its N-terminal part (amino
acids at the position 1-581/883) is similar to YFCU#ECOLI
6850 gi|1788679 (90% identity in 577 amino acids), its C-terminal
part (amino acids at the position 587-883/883) is similar to
B2337#ECOLI gi|1788678 (88% identity in 297 amino acids)
SEQ ID NO: - : -0.305159, 253, similar to B2339#ECOLI
gi|1788680 (88% identity in 187 amino acids); major fimbrial
6855 subunit StfA protein [Salmonella typhimurium]
dad|AF093503-2|aaC64152.1 (39% identity in 187 amino acids)

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: - : -0.461661, 880, a putative DNA injection protein, its N-terminal part is similar to N-terminal part of DNA injection protein gp20 [phage P22]
6860 gi|1174950|sp|Q01076|VG20#BPP22(47% identity in 217 amino acids); its C-terminal part is similar to(at low level) C-terminal part of hypothetical proteins for example ,[Caenorhabditis el for example ,ansl
gi|5805382|gb|aaD51972.1|AF173372#1 (34% identity in 76
6865 amino acids)

SEQ ID NO: - : -0.20107, 188, a putative DNA transfer protein precursor, similar to DNA transfer protein Gp7 [Bacteriophage P22] gi|418222|sp|Q01074|VG07#BPP22(66% identity in 207 amino acids)

6870 SEQ ID NO: 1289 : -0.056085, 379, novel, similar to hypothetical protein P31 [Bacteriophage APSE-1] gi|6118026|gb|aaF03974.1|AF157835#31 (35% identity in 152 amino acids); gp14 [Bacteriophage P22]
gi|418225|sp|Q01075|VG14#BPP22(22% identity in 143 amino
6875 acids)

SEQ ID NO: 1290: -0.180088, 227, novel

SEQ ID NO: 1291: -0.107742, 156, a putative replication protein, partially similar to replication proteins for example ,[Haemophilus actinomycetemcomitans plasmid pVT736-1] gi|398106|gb|aaC37125.1| (26% identity in 145 amino acids)

SEQ ID NO: 1292: 0.176842, 96, novel

SEQ ID NO: 1293: -0.803463, 232, novel

SEQ ID NO: 1294: -1.430769, 53, novel

6885 SEQ ID NO: 1295: -0.364681, 471, a putative resolvase, similar to resolvases for example ,[plasmid pM3] gi|5668998|gb|aaD46124.1|AF078924#3 (46% identity in 204 amino acids); [Yersinia pestis plasmid pMT1] gi|7467461|pir|T14990 (43% identity in 193 amino acids)

6890 SEQ ID NO: 1296: -0.218966, 59, a sucrose transporter protein,

Appendix B: Hideo *et al.* Full Translation

similar to sucrose transporter protein (permease) [Escherichia coli strain EC3132] gi|231914|sp|P30000|CSCB#ECOLI (99% identity in 415 amino acids)

6895 SEQ ID NO: 1297: -0.367308, 209, a putative fructokinase, similar to fructokinase (EC 2.7.1.4) for example , [Escherichia coli strain EC3132] gi|730731|sp|P40713|SCRK#ECOLI (98% identity in 291 amino acids)

6900 SEQ ID NO: 1298: 0.823615, 416, a sucrose hydrolase, similar to sucrose hydrolase [Escherichia coli strain EC3132] gi|3462879|gb|aaC33123.1| (98% identity in 477 amino acids)

SEQ ID NO: 1299: 0.010855, 305, a sucrose operon repressor, sucrose operon repressor [Escherichia coli]

6905 SEQ ID NO: similar to gi|729214|sp|P40715|CSCR#ECOLI (99% identity in 331 amino acids)

SEQ ID NO: 1300: -0.532914, 478, similar to EryA homologue [Bacteriophage If1] dad|U02303-9|aaC62159.1 (76% identity in 333 amino acids)

6910 SEQ ID NO: 1301: -0.041088, 332, a putative transposase, similar to transposase homologA [Helicobacter pylori] gi|2114470|gb|aaD11513.1 (58% identity in 137 amino acids)

SEQ ID NO: 1618: -0.604712, 383, similar to FLXA#ECOLI gi|2498386|sp|P77609 (43% identity in 74 amino acids)

6915 SEQ ID NO: - : -0.437222, 181, a putative polyferredoxin, similar to ferredoxin [Methanosaerina thermophilic] gi|282643|pir||A42960 (48% identity in 43 amino acids); similar to polyferredoxin [Methanococcus voltae] gi|99156|pir||S24802 (22% identity in 207 amino acids)

SEQ ID NO: - : -0.478761, 114, a putative anaerobic dimethyl sulfoxide reductase chain C, similar to anaerobic dimethyl sulfoxide reductase chain C for example , [Escherichia coli] gi|118699|sp|P18777|DMSC#ECOLI (27% identity in 271 amino acids)

6920 SEQ ID NO: 1490: -0.1, 285, a putative anaerobic dimethyl sulfoxide reductase chain B, similar to anaerobic dimethyl

Appendix B: Hideo *et al.* Full Translation

6925 sulfoxide reductases chain Bs for example ,[Escherichia coli]
gi|2506394|sp|P18776|DMSB#ECOLI (59% identity in 185
amino acids)
SEQ ID NO: 1491 : 1.152381, 274, a putative anaerobic
dimethyl sulfoxide reductase chain A precursor, similar to
6930 anaerobic dimethyl sulfoxide reductase chain A precursors for
example , [Escherichia coli]
gi|118697|sp|P18775|DMSA#ECOLI (43% identity in 768
amino acids)
SEQ ID NO: 1492 : -0.325837, 210, novel, similar to DNA
6935 damage-inducible proteins for example ,DinI [Escherichia coli]
gi|2498305|sp|Q47143|DINI#ECOLI (43% identity in 81 amino
acids)
SEQ ID NO: 1493: -0.412988, 794, novel, similar to(at low
level) putative Cys3His zinc finger protein ATCTH
6940 [Arabidopsis thaliana] gi|1800279|gb|aaB68046.1| (37%
identity in 35 amino acids)
SEQ ID NO: 1061: -0.60122, 83, a chaperone-like protein,
similar to TrcA-like proteins for example ,bfpT-r for
example ,ulated chaperone-like protein TrcA [Escherichiacoli
6945 strain B171-8] gi|4126789|dbj|Baa36747.1| (85% identity in
195 amino acids)
SEQ ID NO: 1062 : -0.528302, 54, novel, similar to
hypothetical proteins for example ,ORF2 [Escherichia coli
strain B171-8] gi|4126790|dbj|Baa36748.1| (99% identity in
6950 216 amino acids)
SEQ ID NO: 1063 : -0.526531, 197, novel, similar to
hypothetical protein ORF3[Escherichia coli strain B171-8]
gi|4126791|dbj|Baa36749.1| (98% identity in 352 amino acids)
SEQ ID NO: 1064 : -0.181019, 217, novel, similar to
6955 hypothetical proteins for example ,ORF4 [Escherichia coli
strain B171-8] gi|4126792|dbj|Baa36750.1| (99% identity in
140 amino acids)
SEQ ID NO: 1065 : -0.571307, 353, novel, similar to

Appendix B: Hideo *et al.* Full Translation

hypothetical protein [Bacteriophage 933W]
6960 gi|4585437|gb|aaD25465.1|AF125520#60 (93% identity in 129
amino acids)
SEQ ID NO: 1066: -0.416429, 141, identical to transposase,
hypothetical protein [Escherichia coli plasmid p O-157
insertion sequence IS629] gi|7444868|pir||T00241; similar to
6965 hypothetical protein, IS elements for example ,Tnpe[Shigella
flexneri] gi|5532454|gb|aaD44738.1|AF141323#9 (97%
identity in 108 amino acids)
SEQ ID NO: 1067: -0.251938, 130, a transposase, identical to
transposase [Escherichiacoli plasmid p O-157 insertion
6970 sequence IS629] gi|7443862|pir||T00240
SEQ ID NO: 1068: -0.965741, 109, novel, its N-terminal part
(amino acids at the position 1-87) is partially similar to
hypothetical proteins for example ,L0015 (amino acids at the
position 50-136/512) [Escherichia coli O-157:H7 strain EDL933]
6975 gi|3414883|gb|aaC31494.1|
SEQ ID NO: 1069 : -0.397973, 297, novel, identical to
hypothetical protein L0014[Escherichia coli O-157:H7 strain
EDL933] gi|3288157|emb|Caa11510.1|; similar to hypothetical
proteins for example ,ORF50 [Escherichia coli]
6980 gi|6009426|dbj|Baa84885.1| (76% identity in 107 amino acids)
SEQ ID NO: 1070 : -0.501818, 166, novel, similar to
hypothetical proteins for example ,L0013 [Escherichia coli
O-157:H7 strain EDL933] gi|3414881|gb|aaC31492.1| (100%
identity in 126 amino acids)
6985 SEQ ID NO: 1071: 0.010435, 116, a putative endolysin (host
cell lysis), similar to N-terminal-half part of endolysins for
example , [Bacteriophage 933W]
gi|4585422|gb|aaD25450.1|AF125520#45 (93% identity in 73
amino acids), probably interrupted
6990 SEQ ID NO: 1072 : -0.403175, 127, novel, similar to
hypothetical protein YdfR[Escherichia coli]
gi|3183262|sp|P76160|YDFR#ECOLI (47% identity in 74

Appendix B: Hideo *et al.* Full Translation

amino acids)

SEQ ID NO: 1073: -0.144737, 77, a holin (host cell lysis),
6995 similar to holin proteins for example ,[Bacteriophage VT2-Sal
gi|5881636|dbj|Baa84327.1| (90% identity in 91 amino acids)

SEQ ID NO: 1074 : -0.027193, 115, novel, similar to
hypothetical proteins for example ,[Bacteriophage 933W]
gi|4585419|gb|aaD25447.1|AF125520#42 (52% identity in 613
7000 amino acids)

SEQ ID NO: 1075: 0.095775, 72, novel

SEQ ID NO: 1076 : -0.210048, 618, novel, similar to
hypothetical proteins for example ,[Actinobacillus
actinomycetemcomitans] gi|7592819|dbj|Baa94406.1 (29%
7005 identity in 228 amino acids)

SEQ ID NO: 1077: 0.446789, 110, anittermination, similar to
antitermination proteins for example , protein Q
[Bacteriophage lambda] gi|132278|sp|P03047|R for
example ,Q#LAMBD (97% identity in 207 amino acids)

7010 SEQ ID NO: 1078: 0.628745, 248, a serine/threonine protein
phosphatase, similar to serine/threonine proteinphosphatases
for example , [Bacteriophage lambda]
gi|130792|sp|P03772|PP#LAMBD (95% identity in 221 amino
acids)

7015 SEQ ID NO: 1079 : -0.263768, 208, novel, similar to
hypothetical proteins for example ,NinG [Bacteriophage 21]
gi|4539482|emb|CAB39991.1| (89% identity in 199 amino
acids)

SEQ ID NO: 1080: -0.243891, 222, novel, similar to phage
7020 hypothetical proteins for example ,[Bacteriophage
phi-YeO3-12] gi|6598993|emb|CAB63597.1| (32% identity in
110 amino acids)

SEQ ID NO: 1081: -1.078325, 204, a putative transposase,
similar to N-terminal part of transposases for
7025 example ,[Escherichia coli insertion sequence IS30]
gi|2851554|sp|P37246|TRA8#ECOLI (100% identity in 247

Appendix B: Hideo *et al.* Full Translation

amino acids)

SEQ ID NO: 1082: -0.772872, 189, novel, TTG start

SEQ ID NO: 1083: -0.849402, 252, novel

7030 SEQ ID NO: 1084: -0.28168, 132, novel

SEQ ID NO: 1085: -1.133413, 423, novel

SEQ ID NO: 1086: -0.535766, 138, novel, its C-terminal part is similar to ctp synthase [Rickettsia prowasekii gi|7438005|pir||C71695 (24% identity in 138 amino acids); its

7035 N-terminal part is similar to hypothetical protein [Plasmodium falciparum gi|4493974|emb|CAB39033.1| (24% identity in 129 amino acids)]

SEQ ID NO: 1087: -0.442424, 133, novel

SEQ ID NO: 1088: -0.501657, 544, a putative integrase,

7040 similar to site specific recombinases for example ,integraserecombinase protein [Methanobacterium thermoautotrophicum] gi|7428936|pir||D69219 (27% identity in 174 amino acids)

SEQ ID NO: 1089 : -0.314416, 438, novel (DNAbinding

7045 protein), similar to putative DNA-binding protein [Bacteriophage P4] gi|140147|sp|P12552|Y9K#BPP4 (42% identity in 50 amino acids); similar to hypothetical proteins for example ,[Yersinia pestis] gi|7467337|pir||T17447 (46% identity in 40 amino acids)

7050 SEQ ID NO: 1090: -0.426185, 402, novel

SEQ ID NO: 1091: -0.441176, 69, a putative regulatory element, similar to regulatory proteins for example ,MocR [Sinorhizobium meliloti] gi|1346565|sp|P49309 (34% identity in 466 amino acids)

7055 SEQ ID NO: 1092: -0.333569, 284, novel, similar to conserved hypothetical protein [Streptomyces coelicolor A3(2)] gi|7649565|emb|CAB89054.1 (38% identity in 141 amino acids)

SEQ ID NO: 1597 : -0.168469, 445, novel, similar to N-terminal part of hypothetical proteins for example ,VdcD

7060 [Streptomyces sp. D7] gi|4741970|gb|aaD28783.1|AF134589#3

Appendix B: Hideo *et al.* Full Translation

(57% identity in 71 amino acids); YclD [Bacillus subtilis] gi|7452267|pir||A69762 (48% identity in 68 amino acids)

SEQ ID NO: 1598 : -0.074126, 144, a putative
4-hydroxybenzoate decarboxylase, identical to YclC
7065 [Escherichia coli O-157:H7 strain?] gi|4887556|emb|CAB43499.1| (100% identity in 475 amino acids); similar to VdcC [Streptomyces sp. D7] gi|6686069|sp|Q9X697|VDCC#STRD7 (72% identity in 474 amino acids); 4-hydroxybenzoate decarboxylase [Clostridium hydroxybenzoicum]
7070 gi|5739200|gb|aaD50377.1|AF128880#1(53% identity in 469 amino acids)

SEQ ID NO: 1541: -0.65, 79, a putative phenylacrylic acid decarboxylase, identical to Pad1[Escherichia coli O-157:H7 strain ?] gi|4887557|emb|CAB43500.1|; similar to phenylacrylic acid decarboxylases for example ,VdcB [Streptomyces sp. D7] (73% identity in 190 amino acids)

SEQ ID NO: 1542: -0.214105, 476, a transcription regulatory element, identical to SlyA [Escherichia coli O-157:H7 strain ?]
7075 to gi|4887558|emb|CAB43501.1|; similar to transcription regulatory elements for example ,[Streptomyces coelicolor] gi|7481485|pir||T35022 (32% identity in 124 amino acids)

SEQ ID NO: 1543 : 0.027919, 198, novel, similar to hypothetical proteins for example ,[Escherichia coli]
7080 gi|7404494|sp|P45956|YGBF#ECOLI (86% identity in 94 amino acids)

SEQ ID NO: 1544 : -0.374074, 136, novel, similar to hypothetical protein b2755[Escherichia coli strain K-12] gi|7460139|pir||G65056 (84% identity in 303 amino acids),
7090 GTG start

SEQ ID NO: 1330 : 0.025773, 98, novel, similar to(at low level) hypothetical protein b2756 [Escherichia coli strain K-12] gi|6136707|sp|Q46897|YGCH#ECOLI (28% identity in 200 amino acids)

Appendix B: Hideo *et al.* Full Translation

7095 SEQ ID NO: 1331 : -0.038111, 308, novel, similar to hypothetical protein b2757[Escherichia coli strain K-12] gi|7459357|pir||A65057 (35% identity in 160 amino acids)
SEQ ID NO: 1332 : -0.411111, 217, novel, similar to hypothetical protein b2758[Escherichia coli strain K-12] gi|7476186|pir||C70849 (32% identity in 93 amino acids)
7100 [0022]
5) Regulatory element
Sequence number: hydrophobicity, The number of amino acids, Character such as function
7105 SEQ ID NO: 1333: -0.537097, 249, novel
SEQ ID NO: 1334 : -0.248718, 352, novel, similar to hypothetical protein b2760[Escherichia coli strain K-12] gi|7451979|pir||D65057 (24% identity in 303 amino acids)
SEQ ID NO: 1335 : -0.612921, 179, novel, similar to hypothetical protein YgcB[Escherichia coli strain K-12] gi|2506493|sp|P38036|YGCB#ECOLI (28% identity in 778 amino acids), GTG start
SEQ ID NO: 1336: -0.429615, 521, similar to YBDY#ECOLI gi|3025009|sp|P77091 (78% identity in 50 amino acids);
7115 similar to SrnB [plasmid F] dad|AP001918-5|Baa97875.1 (42% identity in 49 amino acids)
SEQ ID NO: 1337 : -0.257627, 886, novel, similar to hypothetical proteins for example ,Tp70 [Treponema pallidum] gi|7521576|pir||A71309 (35% identity in 124 amino acids)
7120 SEQ ID NO: - : 0.81, 51, novel, similar to N-terminal part of hypothetical proteins for example ,YgcG [Escherichia coli] gi|1723817|sp|P55140|YGCG#ECOLI(43% identity in 186 amino acids)
7125 SEQ ID NO: 1512: -0.608397, 132, novel
SEQ ID NO: 1513: 0.301786, 225, novel, its N-terminal part is similar to N-terminal part of hypothetical proteins for example ,YgcG [Escherichia coli]

Appendix B: Hideo *et al.* Full Translation

gi|1723817|sp|P55140|YGCG#ECOLI(31% identity in 147
7130 amino acids)
SEQ ID NO: 1514 : 0.238, 51, similar to YGCG#ECOLI
gi|1789140 (40% identity in 275 amino acids); similar to
hypothetical protein [Pseudomonas aeruginosa]
dad|AE004490-5|aaG03925.1 (43% identity in 273 amino acids),
7135 GTG start
SEQ ID NO: 1515: 0.225393, 383, a lipoprotein precursor (type
III secretion system), similar to type III secretion system
lipoprotein precursors for example ,PrgK protein [Salmonella
typhimurium] gi|1172615|sp|P41786|PRGK#SALTY (53%
7140 identity in 231 amino acids)
SEQ ID NO: - : 0.151648, 274, a type III secretion protein,
similar to MxiI [Shigella flexneri]
gi|547954|sp|Q06080|MXII#SHIFL (32% identity in 93 amino
acids);PrgJ protein [Salmonella typhimurium]
7145 gi|1172614|sp|P41785|PRGJ#SALT Y (31% identity in 87
amino acids)
SEQ ID NO: 1192: 0.037705, 245, a type III secretion protein,
similar to putative typeIII secretion proteins for
example ,PrgI protein [Salmonella
7150 typhimurium]gi|1172613|sp|P41784|PRGI#SALTY (64%
identity in 76 amino acids)
SEQ ID NO: 1193: -0.282727, 111, a putative adherence factor,
similar to a part of adherence factors for example ,Efa1
[Escherichia coli O111:H- strain E45035]
7155 gi|6013469|gb|aaD49229.2|AF159462#1(amino acids at the
position 433-711/3223) (100% identity in 279 amino acids),
probably disrupted by frameshift
SEQ ID NO: 1194: -0.588608, 80, a transposase, identical to
transposase [Escherichia coli plasmid p O-157 IS629]
7160 gi|7443862|pir||T00240
SEQ ID NO: 1195: -0.379918, 245, a transposase, identical to
hypothetical protein [Escherichia coli plasmid p O-157

Appendix B: Hideo *et al.* Full Translation

IS629] gi|7444868|pir| |T00241; similar to hypothetical protein, insertion sequences for example ,[Shigella flexneri] 7165 gi|5532454|gb|aaD44738.1|AF141323#9 (96% identity in 108 amino acids)
SEQ ID NO: 1196: -0.045181, 167, novel, GTG start
SEQ ID NO: 1197 : -0.081233, 374, novel, similar to hypothetical proteins for example ,L0014 [Escherichia coli 7170 O-157:H7 strain EDL933] gi|3414882|gb|aaC31493.1| (99% identity in 115 amino acids)
SEQ ID NO: 1198 : 1.038462, 79, novel, similar to hypothetical proteins for example ,L0015 [Escherichia coli O-157:H7 strain EDL933] gi|3414883|gb|aaC31494.1| (100% 7175 identity in 411 amino acids)
SEQ ID NO: 1199: 0.805162, 151, novel, similar to a part of hypothetical proteins for example ,L0013 [Escherichia coli O-157:H7 strain EDL933] gi|3414881|gb|aaC31492.1| (55% identity in 28 amino acids), GTG start, probably disrupted
7180 SEQ ID NO: 1200 : 0.976744, 87, novel, similar to hypothetical proteins for example ,ORF50 [Escherichia coli plasmid pB171] gi|6009426|dbj|Baa84885.1| (70% identity in 106 amino acids)
SEQ ID NO: 1201 : 0.748416, 222, novel, similar to 7185 hypothetical proteins for example ,L0015 [Escherichia coli O-157:H7 strain EDL933] gi|3414883|gb|aaC31494.1| (63% identity in 464 amino acids)
SEQ ID NO: 1202: -0.236585, 329, novel, similar to a part of transposases for example ,TnpA [Shigella flexneri] 7190 gi|5532449|gb|aaD44733.1|AF141323#4 (93% identity in 49 amino acids)
SEQ ID NO: 1203 : -1.506341, 206, novel, similar to hypothetical proteins for example ,L0004 [Escherichia coli O-157:H7 strain EDL933] gi|3414872|gb|aaC31483.1| (98% 7195 identity in 91 amino acids); putative transposase [Vibrio cholerae] gi|7960026|gb|aaF71186.1|AF179596#6 (59%

Appendix B: Hideo *et al.* Full Translation

identity in 91 amino acids); hypothetical protein [Escherichia coli plasmid p O-157 insertion sequence IS911] gi|7465897|pir||T00224 (52% identity in 91 amino acids)

7200 SEQ ID NO: 1204: -0.892208, 78, a putative transcription regulatory element, similar to regulatory elements (RpiR family) for example , [Bacillus subtilis] gi|8248807|emb|CAB93068.1| (25% identity in 236 amino acids)

7205 SEQ ID NO: 1205 : -1.002703, 112, a putative ferrichrome-binding protein, similar to ferrichrome-binding proteins for example , [Bacillus subtilis] gi|585132|sp|P37580|FHUD#BACSU (27% identity in 220 amino acids)

7210 SEQ ID NO: 1206: -0.212558, 440, a putative ferrichrome ABC transporter (permease), similar to ferrichrome ABC transporters (permease) for example , [Bacillus subtilis] gi|1706797|sp|P49937|FHUG#BACSU (33% identity in 319 amino acids)

7215 SEQ ID NO: 1207: 0.465452, 687, a putative ferrichrome ABC transporter (permease), similar to ferrichrome ABC transporters (permease) for example , [Synechocystis sp.] gi|7442493|pir||S74438 (43% identity in 315 amino acids); [Bacillus subtilis] gi|1706795|sp|P49936|FHUB#BACSU (39% identity in 319 amino acids)

7220 SEQ ID NO: 1208 : -0.209449, 382, a putative ABC-type iron-siderophore transport system ATP-binding protein, similar to ABC-type iron-siderophore transport system ATP-binding proteins for example , [Synechocystis sp.] gi|7442509|pir||S74440 (52% identity in 248 amino acids)

7225 SEQ ID NO: 1209: -0.149383, 568, a putative ferrichrome-iron receptor precursor, similar to ferrichrome-ironreceptor precursors for example , gi|7448497|pir||S74457 (30% identity in 688 amino acids)

7230 SEQ ID NO: 1210: 0.036546, 250, novel, TTG start

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 1211 : 1.166101, 60, a PTSdependent N-acetyl-galactosamine-IIID component (AgaE), similar to PTSdependent N-acetyl-galactosamine-IIID component, AgaE [Escherichia coli strain C]
7235 gi|8895749|gb|aaF81085.1|AF228498#5 (96% identity in 292 amino acids)

SEQ ID NO: - : -0.257895, 77, a PTS dependent N-acetyl-galactosamine-and galactosamine IIA component (AfaF), similar to ts dependent N-acetyl-galactosamine-and galactosamine IIA component, AgaF [Escherichia coli strain C]
7240 gi|8895750|gb|aaF81086.1|AF228498#6 (99% identity in 144 amino acids)

SEQ ID NO: 1527: 0.06993, 144, a transposase (insertion sequence IS629), identical to hypothetical protein
7245 gi|7444868|pir||T00241

SEQ ID NO: 1528: 1.167709, 193, identical to transposase (insertion sequence IS629),gi|7443862|pir||T00240

SEQ ID NO: 1529: 0.38766, 236, novel

SEQ ID NO: 1530: -0.008, 226, a leader peptidase, similar to
7250 leader peptidases for example ,HopD (strain ECOR30) [Escherichia coli] gi|7674073|sp|O68932 (92% identity in 155 amino acids); (LT2) [Salmonella typhimurium] gi|7674072|sp|O68927 (68% identity in 148 amino acids)

SEQ ID NO: 1531: -0.168, 226, novel, similar to hypothetical
7255 protein [Xylellafastidiosa] gi|9112262|gb|aaF85593.1|AE003851#24 (50% identity in 86 amino acids)

SEQ ID NO: - : -0.265401, 238, a putative invasin, similar to putative membrane protein b1978 [Escherichia coli K-12]
7260 gi|1736642|dbj|Baa15799.1| (45% identity in 1391 amino acids); vasin [Yersinia pseudotuberculosis] gi|79202|pir||A29646 (35% identity in 1211 amino acids)
[0023]

6) Proteins relating to fimbriae

Appendix B: Hideo *et al.* Full Translation

7265 Sequence number: hydrophobicity, The number of amino acids,
Character such as function
SEQ ID NO: 1674 : -0.352675, 244, similar to replication protein O, for example , protein O [Enterobacteria phage HK022] gi|407289|gb|aaB60272.1| (98% identity in 299 amino acids)

7270 SEQ ID NO: 1129 : -0.391449, 422, a replication protein P (putative replication DNA helicase), similar to P proteins for example , [Enterobacteria phage HK022] gi|6863143|gb|aaF30384.1|AF069308#32 (99% identity in 478 amino acids); replication DNA helicases for example ,DnaB [Escherichia coli] gi|118713|sp|P03005|DNAB#ECOLI (39% identity in 436 amino acids)

7275 SEQ ID NO: 1130 : -0.275728, 207, novel, identical to hypothetical protein [Bacteriophage VT2-Sal] gi|5881620|dbj|Baa84311.1| (100% identity in 89 amino acids)

7280 SEQ ID NO: 1131 : -0.090099, 102, novel, identical to hypothetical protein [Bacteriophage 933W] gi|4499788|emb|CAB39287.1| (100% identity in 92 amino acids)

7285 SEQ ID NO: 1132: -0.513839, 225, a type III secretion protein, similar to PrgH protein [Salmonella typhimurium] gi|1172612|sp|P41783|PRGH#SALTY (28% identity in 266 amino acids); MxiG [Shigella flexneri] gi|2498603|sp|Q57332|MXIG#SHIFL (23% identity in 243 amino acids)

7290 SEQ ID NO: 1133 : -0.08, 116, a putative transcription regulatory element, similar to transcription activator NtrC[Herbaspirillum seropedicae] gi|57313501|gb|aaC32391.21 (25% identity in 107 amino acids)

7295 SEQ ID NO: 1134: -0.503734, 483, a type III secretion protein, similar to type III secretion proteins for example ,SpaS protein [Salmonella typhimurium] gi|730801|sp|P40702|SPAS#SALTY (54% identity in 348 amino acids)

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 1135: -0.293631, 315, novel,
7300 SEQ ID NO: 1136: -0.452748, 183, ABC transporter (binding protein), similar to binding proteins for example ,phosphate-binding protein PstS homolog [Methanobacterium thermoautotrophicum (strain Delta H)] gi|7442891|pir||A69098 (32% identity in 187 amino acids)

7305 SEQ ID NO: 1137: 0.39434, 54, its N-terminal part (amino acids at the position 1-77/505) is similar to YZGL#ECOLIgi|1789834 (83% identity in 77 amino acids); its C-terminal part (amino acids at the position 325-519/525) is similar to binding proteins for example ,phosphate-binding protein PstS homolog [Methanobacterium thermoautotrophicum strain Delta H] gi|7442891|pir||A69098 (31% identity in 175 amino acids)

7310 SEQ ID NO: 1138: 0.390909, 67, a putative DNA processing chain A, similar to many DNA processing chain As (Smf protein), for example ,[Neisseria meningitidis] gi|7378929|emb|CAB83472.1| (30% identity in 265 amino acids)

7315 SEQ ID NO: 1139: -0.774999, 297, a putative ATP-dependent DNA helicase (partial), similar to C-terminal part of ATP-dependent DNA helicase [Streptomyces coelicolor] gi|7480492|pir||T35189(64% identity in 37 amino acids), GTG start

7320 SEQ ID NO: 1140: -0.122667, 76, a putative ATP-dependent DNA helicase (partial), similar to a part of ATP-dependent DNA helicase [Streptomyces coelicolor] gi|7480492|pir||T35189 (31% identity in 269 amino acids), GTG start

7325 SEQ ID NO: 1141: -0.286338, 550, a putative ATP-dependent DNA helicase (partial), similar to a part of putative ATP-dependent DNA helicase [Streptomyces coelicolor] gi|7480492|pir||T35189 (48% identity in 175 amino acids)

7330 SEQ ID NO: 1142: -0.02069, 59, a putative ATP-dependent

Appendix B: Hideo *et al.* Full Translation

DNA helicase (interrupted), similar to N-terminal part of putative ATP-dependent DNA helicases for example ,[*Streptomyces coelicolor*] gi|7428315|pir||T35189 (60% identity in 176 amino acids); [*Bacillus subtilis*] gi|7436435|pir||F69901 (42% identity in 169 amino acids)
SEQ ID NO: 1143: -0.395745, 330, novel
SEQ ID NO: 1144 : -0.477678, 225, novel (hypothetical membrane protein)
SEQ ID NO: 1145 : -0.43168, 263, novel (hypothetical membrane protein)
SEQ ID NO: 1146 : -0.74642, 434, novel, similar to hypothetical protein ORF79[*Escherichia coli* plasmid pB171] gi|6009455|dbj|Baa84914.1 (62% identity in 175 amino acids)
SEQ ID NO: 1147 : -0.610909, 276, novel, similar to hypothetical protein ORF80[*Escherichia coli* plasmid pB171] (70% identity in 86 amino acids)
7350 SEQ ID NO: 1148 : -0.397973, 297, novel (hypothetical lipoprotein)
SEQ ID NO: 1149 : -0.965741, 109, a putative O-methyltransferase, similar to a part of O-methyltransferases for example ,acetylserotonin N-methyltransferase (EC 2.1.1.4) - chicken gi|2498445|sp|Q92056|HIOM#CHICK (28% identity in 157 amino acids)
SEQ ID NO: 1150: -0.836842, 39, novel
SEQ ID NO: 1151: 0.029565, 116, a putative acyltransferase, similar to acyltransferases for example ,[*Neisseria meningitidis* MC58] gi|7226953|gb|aaF42046.1| (33% identity in 246 amino acids)
SEQ ID NO: 1152: -0.409503, 464, a putative acyl carrier protein, similar to acyl carrier proteins for example , [*Neisseria meningitidis* MC58] gi|7226952|gb|aaF42045.1| (51% identity in 85 amino acids)
7360 SEQ ID NO: 1153 : -0.178846, 53, a putative acyl carrier

Appendix B: Hideo *et al.* Full Translation

protein, similar to acyl carrier proteins for example ,*[Neisseria meningitidis* MC58] gi|7226951|gb|aaF42044.1| (51% identity in 79 amino acids)

7370 SEQ ID NO: 1154 : -0.063793, 117, novel (hypothetical membrane protein), similar to putative integral membrane protein *[Neisseria meningitidis]* gi|7380586|emb|CAB85174.1| (51% identity in 126 amino acids)

SEQ ID NO: 1155: -0.55546, 468, novel, similar to peptide synthetase [sic, synthase] *[Xylella fastidiosa]* gi|9105980|gb|aaF83848.1|AE003941#2 (26% identity in 420 amino acids); p-coumaryl-CoA ligase *[Rhodobacter sphaeroides]* gi|2764724|emb|Caa05380.1| a part of (27% identity in 268 amino acids); a part of surfactin synthetase component I 7380 *[Bacillus subtilis]* gi|2127235|pir||I40485 (20% identity in 410 amino acids)

SEQ ID NO: 1156 : -0.569643, 57, a putative (3R)-hydroxymyristoyl-acyl carrier protein dehydratase, similar to(at low level) a part of (3R)-hydroxymyristoyl-acyl 7385 carrier protein dehydratases for example ,*[Salmonella typhimurium]* gi|140182|sp|P21773|FABZ#SALTY (29% identity in 67 amino acids)

SEQ ID NO: - : -0.908772, 115, novel, its N-terminal part is similar to dolichyl-phosphate mannose synthase related 7390 proteins for example ,*[Pyrococcus abyssi* (strain Orsay)] gi|7445533|pir||A75176 (30% identity in 206 amino acids); its N-terminal part is similar to HmsR *[Yersinia pestis]* gi|1185391|gb|aaB66590.1| (34% identity in 128 amino acids); its C-terminal part is similar to hypothetical protein *[Xylella fastidiosa]* gi|9105669|gb|aaF83585.1|AE003918#7 (30% 7395 identity in 310 amino acids)

SEQ ID NO: 1402 : 0.001017, 296, novel, similar to hypothetical proteins for example ,*[Deinococcus radiodurans]* gi|7471367|pir||B75463 (31% identity in 111 7400 amino acids), GTG start

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 1403: -0.013016, 316, novel
SEQ ID NO: 1404: 1.044986, 350, novel, similar to membrane protein [Xylella fastidiosalgi|9105671|gb|aaF83587.1|AE003918#9 (24%
7405 identity in 502 amino acids)
SEQ ID NO: 1405: 1.132416, 328, novel
SEQ ID NO: 1406: -0.004833, 270, putative 3-oxoacyl-(acyl-carrier- protein) synthase II, similar to 3-oxoacyl-(acyl-carrier- protein) synthase IIs for example , [Streptomyces coelicolor A3(2)] gi|7479090|pir||T34912 (31% identity in 381 amino acids)
SEQ ID NO: 1407: -0.402244, 714, a putative beta-hydroxydecanoyl-ACP dehydrase, similar to hypothetical protein [Neisseria meningitidis MC58]
7415 gi|7226956|gb|aaF42049.1| (32% identity in 116 amino acids); beta-hydroxydecanoyl-ACP dehydrase [Pseudomonas aeruginosa gi|2384563|gb|aaC45619.1| (29% identity in 123 amino acids)
SEQ ID NO: - : -0.405385, 131, a putative 7420 3-oxoacyl-(acyl-carrier- protein) reductase, similar to 3-oxoacyl-(acyl-carrier- protein) reductases for example , [Neisseria meningitidis MC58] gi|7226957|gb|aaF42050.1| (57% identity in 242 amino acids)
SEQ ID NO: 1585: 0.50548, 293, similar to putative 7425 3-oxoacyl-(acyl-carrier- protein) synthase IIs for example , gi|7226958|gb|aaF42051.1| (48% identity in 404 amino acids)
SEQ ID NO: 1586: 0.152083, 145, a putative transcription regulatory element, similar to transcription regulatory elements for example , [Escherichia coli] gi|129347|sp|P13669|FARR#ECOLI (28% identity in 235 amino acids)
SEQ ID NO: 1656: -0.965741, 109, a putative PTS (phosphotransferase system) system enzyme IIA, similar to PTS

Appendix B: Hideo *et al.* Full Translation

7435 system enzyme IIA components for example ,[Escherichia coli K-12] gi|2507274|sp|P37187|PTKA#ECOLI (23% identity in 122 amino acids); PTS system fructose-specific enzyme IIBC component [Bacillus halodurans] gi|4512375|dbj|Baa75339.1| (33% identity in 151 amino acids)

7440 SEQ ID NO: 1657: -0.397973, 297, a putative PTS system enzyme IIB, similar to PTS system, galactitol-specific IIB component [Escherichia coli K-12] gi|2507273|sp|P37188|PTKB#ECOLI (35% identity in 92 amino acids)

7445 SEQ ID NO: - : 0.072131, 62, a putative PTS system enzyme IIC, similar to PTS system galactitol-specific enzyme IICs for example ,[Bacillus halodurans] gi|4512376|dbj|Baa75340.1| (45% identity in 411 amino acids)

SEQ ID NO: 1695: 0.74129, 156, a putative sugar kinase, 7450 similar to sugar kinases for example ,xylulokinase (EC 2.7.1.17) [Lactobacillus pentosus] gi|139850|sp|P21939|XYLB#LACPE (23% identity in 496 amino acids)

SEQ ID NO: 1678: -0.385107, 95, a putative PTS system HPr 7455 enzyme, similar to phosphotransferase system HPr enzymes for example ,[Xylella fastidiosa] gi|9106413|gb|aaF84212.1|AE003971#11 (39% identity in 87 amino acids)

SEQ ID NO: 1679: 0.150932, 162, a putative aldolase, similar 7460 to aldolases for example ,[Vibrio furnissii] gi|1732204|gb|aaC44684.1| (38% identity in 272 amino acids)

SEQ ID NO: - : 0.763317, 200, novel, similar to HicB-related protein [Xylella fastidiosa] gi|9106728|gb|aaF84477.1|AE003992#13 (35% identity in 110 7465 amino acids); HicB [Haemophilus influenzae] gi|3603326|gb|aaC35810.1| (26% identity in 93 amino acids)

SEQ ID NO: 1548: -0.459394, 331, novel, similar to HicA [Haemophilus influenzae] gi|3603325|gb|aaC35809.1| (30%

Appendix B: Hideo *et al.* Full Translation

identity in 60 amino acids)

7470 [0024]

7) Proteins relating to transportation of substance

Sequence number: hydrophobicity, The number of amino acids, Character such as function

SEQ ID NO: - : 0.123763, 506, a type III secretion protein,
7475 similar to C-terminal part of type III secretion proteins for example ,SpaR protein [Salmonella typhimurium] gi|730799|sp|P40701|SPAR#SALTY(56% identity in 65 amino acids), may be partial (disrupted by frameshift)

SEQ ID NO: 1521 : -0.08725, 401, novel, similar to
7480 hypothetical protein [Xylella fastidiosa] gi|9112263|gb|aaF85594.1|AE003851#25 (48% identity in 158 amino acids)

SEQ ID NO: 1522: 0.754902, 52, novel

SEQ ID NO: 1523: -0.310185, 325, heme utilization/transporter
7485 protein, identical to ChuA [Escherichia coli O-157:H7 EDL933] gi|1763009|gb|aaC44857.1|

SEQ ID NO: 1524: 0.080682, 177, novel, TTG start

SEQ ID NO: 1525: -0.081683, 203, a putative hemin-binding
7490 protein, similar to hypothetical protein huT [Shigella dysenteriae haem transport locus] gi|2967538|gb|aaC27815.1| (97% identity in 304 amino acids); hemin-binding proteins for example , [Yersinia pestis] gi|6226635|sp|Q56991|HMUT#YERPE (34% identity in 253 amino acids)

7495 SEQ ID NO: 1613 : -0.262046, 304, a putative coproporphyrinogen oxidase, similar to coproporphyrinogen oxidases for example ,PhuW [Vibrio parahaemolyticus gi|5106980|gb|aaD39908.1|AF119047#1 (35% identity in 371 amino acids)

7500 SEQ ID NO: 1614 : 0.671015, 139, novel, similar to hypothetical proteinhuX [Shigella dysenteriae haem transport locus] gi|2967537|gb|aaC27814.1| (98% identity in 164 amino

Appendix B: Hideo *et al.* Full Translation

acids); hypothetical protein X [Yersinia pestis] gi|7467368|pir||T12066 (60% identity in 153 amino acids)

7505 SEQ ID NO: 1659 : -0.222178, 249, novel, similar to hypothetical proteinhuY [Shigella dysenteriae haem transport locus] gi|2967536|gb|aaC27813.1| (97% identity in 207 amino acids); hypothetical protein Y [Yersinia pestis] gi|7467369|pir||T12067 (55% identity in 204 amino acids)

7510 SEQ ID NO: - : -0.069143, 176, a putative hemin permease, similar to hypothetical proteinhuU[Shigella dysenteriae haem transport locus] gi|2967535|gb|aaC27812.1| (99% identity in 318 amino acids); hemin permeases for example ,HmuU [Yersinia pestis] gi|6226636|sp|Q56992|HMUU#YERPE (66% identity in 318 amino acids)

7515 SEQ ID NO: 1671: -0.626137, 89, a putative hemin transport system ATP-binding protein, similar to hypothetical proteinhuV [Shigella dysenteriae haem transport locus] gi|2967534|gb|aaC27811.1| (98% identity in 256 amino acids);

7520 hemin transport systemATP-binding proteins for example ,HmuV [Yersinia pestis] gi|2492539|sp|Q56993|HMUV#YERPE(58% identity in 264 amino acids)

7525 SEQ ID NO: 1241: -0.4456, 126, a putative fimbrial protein precursor, similar to fimbrial proteins for example ,long polar fimbrial minor protein precursor [Salmonellatyphimurium] gi|1170819|sp|P43664|LPFE#SALTY (50% identity in 165 amino acids)

7530 SEQ ID NO: 1242 : 0.022946, 354, a putative fimbrial protein precursor, similar to fimbrial proteins for example ,long polar fimbrial protein LpfD [Salmonella typhimurium] gi|1170818|sp|P43663|LPFD#SALTY (39% identity in 350 amino acids)

7535 SEQ ID NO: 1243 : -0.201546, 195, a putative outer membrane usher proteinLpfC precursor (partial), similar to C-terminal-half part of outer membrane usher proteins for

Appendix B: Hideo *et al.* Full Translation

example ,LpfC precursor [Salmonella typhimurium] gi|1170817|sp|P43662|LPFC#SALTY(67% identity in 485 amino acids), GTG start

7540 SEQ ID NO: 1244: 0.154275, 270, a putative outer membrane usher protein, similar to N-terminal-half part of outer membrane usher proteins for example ,LpfC [Salmonella typhimurium] gi|1170817|sp|P43662|LPFC#SALTY (69% identity in 357 amino acids), interrupted TAG stop codon

7545 SEQ ID NO: 1245 : 0.251765, 86, a putative fimbrial chaperone protein, similar to chaperones for example ,LpfB [Salmonella typhimurium] gi|1170816|sp|P43661|LPFB#SALTY (67% identity in 229 amino acids)

7550 SEQ ID NO: 1246: -0.375904, 84, a putative fimbrial major protein precursor, similar to long polar fimbria proteinA precursor, LpfA, of S. typhimurium, gi|1170815|sp|P43660|LPFA#SALTY (73% identity in 178 amino acids)

7555 SEQ ID NO: 1247: 0.721244, 194, a putative transcription regulatory element, similar to(at low level)hypothetical transcription regulator yisR [Bacillus subtilis] gi|3123306|sp|P40331 (24% identity in 276 amino acids)

SEQ ID NO: 1248 : -0.13819, 454, a putative permease, similar to hypothetical protein [Salmonella typhimurium] gi|7442781|pir||C65167 (37% identity in 444 amino acids); transporter proteins (putative symporters) for example ,YicJ [Escherichia coli (K-12)] gi|2851421|sp|P31435|YICJ#ECOLI (32% identity in 340 amino acids)

7560 SEQ ID NO: 1249 : -0.388034, 118, novel, similar to hypothetical protein [Thermotoga maritima] gi|7452109|pir||F72395 (37% identity in 635 amino acids)

SEQ ID NO: 1250 : -0.070968, 559, novel, similar to hypothetical protein [Neisseria meningitidis MC58] gi|7227012|gb|aaF42100.1 (39% identity in 398 amino acids)

7570

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 1251: -0.387143, 141, novel, TTG start
SEQ ID NO: 1252: -0.435323, 202, novel, TTG start
SEQ ID NO: 1253: 0.383311, 750, novel, similar to surface proteins, for example , [Xylella fastidiosa] gi|9106565|gb|aaF84338.1|AE003982#11 (24% identity in 1514 amino acids)
7575 SEQ ID NO: 1254 : -0.125258, 195, identical to lipid A-core:surface polymer ligase (WaaL), WaaL [Escherichia coli strain F653] gi|3821825|gb|aaC69661.1| (100% identity in 402 amino acids)
7580 SEQ ID NO: 1255: -0.00874, 390, similar to lipopolysaccharide 1,2-N acetylglicosaminetransferase (WaaD), WaaD [Escherichia coli strain F653] gi|3821826|gb|aaC69662.1| (99% identity in 380 amino acids)
7585 SEQ ID NO: 1256 : 0.065584, 155, a putative UDP-glucose:(galactosyl) LPS alpha1, similar to 2-glucosyltransferase (WaaJ), UDP-glucose:(galactosyl) LPS alpha1,2-glucosyltransferase WaaJ [Escherichia coli strain F653] gi|3821827|gb|aaC69663.1| (98% identity in 184 amino acids), TTG start
7590 SEQ ID NO: 1257: 0.147325, 244, a lipopolysaccharide core biosynthesis, identical to WaaY [Escherichia coli strain F653] gi|3821828|gb|aaC69664.1| (100% identity in 235 amino acids)
SEQ ID NO: - : -0.156479, 410,
7595 UDP-D-galactose:(glucosyl)lipopolysaccharide-alpha-1,3-D-galactosyltransferase, similar to Waal (strain F653 R3 core type)[Escherichia coli] gi|3821829|gb|aaC69665.1 (99% identity in 335 amino acids)
SEQ ID NO: 1427: -0.248606, 252, novel
7600 SEQ ID NO: 1428: 0.024841, 158, a putative integrase, identical to CP4-like integrase [Escherichia coli EDL933] gi|3414871|gb|aaC31482.1|; similar to integrases for example , [Shigella flexneri] gi|5532446|gb|aaD44730.1|AF141323#1 (95% identity in 390

Appendix B: Hideo *et al.* Full Translation

7605 amino acids)
SEQ ID NO: 1429: 0.37957, 94, novel, identical to L0004
[Escherichia coli strain EDL933] gi|3414872|gb|aaC31483.1|;
similar to hypothetical proteins for example ,[Escherichia
coli plasmid p O-157 insertion sequence IS911
7610 gi|7465897|pir||T00224 (56% identity in 116 amino acids),
GTG start
SEQ ID NO: 1430: 0.897123, 453, novel, identical to L0005
[Escherichia coli strain EDL933] gi|3414873|gb|aaC31484.1|,
GTG start
7615 SEQ ID NO: 1431: -0.065339, 503, novel, identical to L0006
[Escherichia coli strain EDL933] gi|3414874|gb|aaC31485.1|;
similar to hypothetical proteins for example ,[Vibrio
cholerae] gi|7960027|gb|aaF71187.1|AF179596#7 (60%
identity in 300 amino acids)
7620 SEQ ID NO: 1432: -0.496629, 90, novel, similar to C-terminal
part of hypothetical proteins for example ,b2004 (YeeU)
[Escherichia coli] gi|3025157|sp|P76364|YEEU#ECOLI(84%
identity in 53 amino acids)
SEQ ID NO: 1433: -0.054196, 287, novel, identical to L0007
7625 [Escherichia coli EDL933]gi|3414875|gb|aaC31486.1|; similar
to hypothetical proteins for example ,b2005(yeeV)
[Escherichia coli] gi|3025158|sp|P76365|YEEV#ECOLI (88%
identity in 124 amino acids)
SEQ ID NO: 1434: -0.327731, 120, novel, identical to L0008
7630 [Escherichia coli EDL933]gi|3414876|gb|aaC31487.1|; similar
to hypothetical protein [Escherichiacoli D1114, O25:K10:H16]
gi|4887094|gb|aaD32187.1| (90% identity in 114 amino acids);
similar to b2006 (YeeW) [Escherichia coli]
gi|3025160|sp|P76366|YEEW#ECOLI (70% identity in 55
7635 amino acids)
SEQ ID NO: 1435: -0.472528, 92, novel, identical to L0009
[Escherichia coli strain EDL933] gi|3414877|gb|aaC31488.1|;
similar to hypothetical protein [Escherichia coli D1114,

Appendix B: Hideo *et al.* Full Translation

O25:K10:H16] gi|4887094|gb|aaD32187.1| (84% identity in 59
7640 amino acids); hypothetical protein [Salmonella typhi]
gi|7800330|gb|aaF69926.1|AF250878#87 (46% identity in 49
amino acids)
SEQ ID NO: 1339: -0.276608, 343, novel, identical to L0010
[Escherichia coli strain EDL933] gi|3414878|gb|aaC31489.1|;
7645 similar to PH01 [Escherichia coli D1114, O25:K10:H16]
gi|4887092|gb|aaD32185.1|AF127177#3 (62% identity in 78
amino acids)
SEQ ID NO: 1340: -0.474091, 661, novel, similar to(at low
level) a part of hypothetical protein ydiA[plasmid ColIb-P9]
7650 gi|4512489|dbj|Baa75138.1| (42% identity in 35 amino acids)
SEQ ID NO: 1341: -0.667647, 69, novel, identical to L0012
[Escherichia coli EDL933] gi|3414880|gb|aaC31491.1|; similar
to a part of putative ATP-binding proteinugR
[Salmonellatyphimurium] gi|4324607|gb|aaD16951.1| (45%
7655 identity in 66 amino acids)
SEQ ID NO: 1342: 0.113158, 305, novel, identical to L0013
[Escherichia coli EDL933] gi|3414881|gb|aaC31492.1|; similar
to hypothetical proteins for example ,Hp3 [Escherichia coli
CFT073] gi|3661484|gb|aaC61715.1| (100% identity in 74
7660 amino acids)
SEQ ID NO: 1343: -0.308539, 446, novel, identical to L0014
[Escherichia coli] gi|3414882|gb|aaC31493.1|; similar to
hypothetical proteins for example ,orf50 [Escherichia coli
plasmid pB171] gi|6009426|dbj|Baa84885.1| (76% identity in
7665 107 amino acids)
SEQ ID NO: 1344: -0.137195, 165, novel, similar to L0015
[Escherichia coli EDL933]gi|3414883|gb|aaC31494.1| (99%
identity in 512 amino acids); hypothetical proteins for
example ,[Escherichia coli plasmid pEAFl]
7670 gi|4808945|gb|aaD30027.1|AF119170#2 (91% identity in 447
amino acids)
SEQ ID NO: 1345: 0.057488, 208, novel, similar to a part of

Appendix B: Hideo *et al.* Full Translation

IS630 insertion element hypothetical protein
gi|1143207|gb|aaA84873.1| (72% identity in 25 amino acids)

7675 SEQ ID NO: 1346: 0.933648, 319, novel, similar to a part of hypothetical proteins for example ,[insertion sequence IS91] gi|7466597|pir|T00311 (75% identity in 49 amino acids)

SEQ ID NO: 1347: -0.269531, 257, a secreted effector protein, identical to L0016 [Escherichia coli EDL933]
7680 gi|3414884|gb|aaC31495.1|; similar to EspF [Escherichia coli E2348/69] gi|2865308|gb|aaC38400.1| (87% identity in 205 amino acids)

SEQ ID NO: 1461: -0.092614, 177, novel, identical to L0017 [Escherichia coli EDL933]gi|3414885|gb|aaC31496.1|; similar
7685 to hypothetical proteins for example ,[Escherichia coli] gi|2809428|gb|aaC28566.1| (97% identity in 92 amino acids)

SEQ ID NO: 1462: -0.045584, 352, novel, identical to EscF [Escherichia coli] gi|2865306|gb|aaC38398.1|; L0018 [Escherichia coli EDL933] gi|3414886|gb|aaC31497.1|

7690 SEQ ID NO: 1463: -0.460825, 486, novel, identical to L0019 [Escherichia coli EDL933]gi|3414887|gb|aaC31498.1|; similar to hypothetical proteins for example ,Orf27[Escherichia coli E2348/69] gi|2865305|gb|aaC38397.1| (99% identity in 135 amino acids)

7695 SEQ ID NO: 1464: -0.264578, 368, an EspB protein (secreted protein), similar to EspB proteins for example ,EspB(L0020) [Escherichia coli EDL933] gi|1657263|emb|Caa65654.1| (99% identity in 312 amino acids)

SEQ ID NO: 1465: -0.234061, 230, an EspD secreted protein,
7700 identical to L0021 [Escherichia coli EDL933] gi|3414889|gb|aaC31500.1|; similar to EspD proteins for example ,gi|3688279|emb|Caa76909.1| (85% identity in 374 amino acids)

SEQ ID NO: 1466: 0.12809, 179, an EspA secreted protein,
7705 identical to EspA protein (L0022) [Escherichia coli] gi|3115184|emb|Caa73506.1|; similar to EspA proteins for

Appendix B: Hideo *et al.* Full Translation

example .gi|2388623|gb|aaB71083.1| (85% identity in 192 amino acids)
SEQ ID NO: - : -0.31476, 272, a type III secretion system SepL
7710 protein, identical to SepL (L0023) [Escherichia coli EDL933] gi|3115183|emb|Caa73505.1|; similar to SepL proteins for example .gi|2865301|gb|aaC38393.1| (94% identity in 351 amino acids)
SEQ ID NO: 1507: 0.694205, 467, a type III secretion system
7715 EscD protein, identical to Pas (L0024) [Escherichia coli EDL933] gi|3115182|emb|Caa73504.1|; similar to EscD proteins for example .gi|3341420|emb|Caa74170.1| (97% identity in 6 amino acids)
SEQ ID NO: - : -0.414177, 657, a Gamma intimin, identical to
7720 Gamma intimin (L0025) [Escherichia coli strain EDL933] gi|3414893|gb|aaC31504.1|
SEQ ID NO: - : -0.310441, 432, a chaperon of Tir, identical to CesT [Escherichia coli O-157:H7 strain HA1] gi|975876|gb|aaB00110.1|; similar to CesT protein
7725 [Escherichia coli] gi|140611|sp|P21244|YEAE#ECOLI (96% identity in 156 amino acids)
SEQ ID NO: - : -0.190991, 112, a translocated intimin receptor Tir, identical to translocated intimin receptor Tir (L0027) [Escherichia coli O-157:H7 strain EDL933]
7730 gi|3414895|gb|aaC31506.1|
[0025]
8) Proteins relating to synthesis of lipopolysaccharide
Sequence number: hydrophobicity, The number of amino acids, Character such as function
7735 SEQ ID NO: 1333: -0.537097, 249, novel
SEQ ID NO: 1334 : -0.248718, 352, novel, similar to hypothetical protein b2760[Escherichia coli strain K-12] gi|7451979|pir||D65057 (24% identity in 303 amino acids)
SEQ ID NO: 1335 : -0.612921, 179, novel, similar to
7740 hypothetical protein YgcB[Escherichia coli strain K-12]

Appendix B: Hideo *et al.* Full Translation

gi|2506493|sp|P38036|YGCB#ECOLI (28% identity in 778 amino acids), GTG start
SEQ ID NO: 1336: -0.429615, 521, similar to YBDY#ECOLI
gi|3025009|sp|P77091 (78% identity in 50 amino acids);
7745 similar to SrnB [plasmid F] dad|AP001918-5|Baa97875.1
(42% identity in 49 amino acids)
SEQ ID NO: 1337 : -0.257627, 886, novel, similar to hypothetical proteins for example ,Tp70 [Treponema pallidum] gi|7521576|pir||A71309 (35% identity in 124 amino acids)
7750 SEQ ID NO: - : 0.81, 51, novel, similar to N-terminal part of hypothetical proteins for example ,YgcG [Escherichia coli] gi|1723817|sp|P55140|YGCG#ECOLI(43% identity in 186 amino acids)
7755 SEQ ID NO: 1512: -0.608397, 132, novel
SEQ ID NO: 1513: 0.301786, 225, novel, its N-terminal part is similar to N-terminal part of hypothetical proteins for example ,YgcG [Escherichia coli] gi|1723817|sp|P55140|YGCG#ECOLI(31% identity in 147 amino acids)
7760 SEQ ID NO: 1514 : 0.238, 51, similar to YGCG#ECOLI gi|1789140 (40% identity in 275 amino acids); similar to hypothetical protein [Pseudomonas aeruginosa] dad|AE004490-5|aaG03925.1 (43% identity in 273 amino acids),
7765 GTG start
SEQ ID NO: 1515: 0.225393, 383, a lipoprotein precursor (type III secretion system), similar to type III secretion system lipoprotein precursors for example ,PrgK protein [Salmonella typhimurium] gi|1172615|sp|P41786|PRGK#SALTY (53% identity in 231 amino acids)
7770 SEQ ID NO: - : 0.151648, 274, a type III secretion protein, similar to MxiI [Shigella flexneri] gi|547954|sp|Q06080|MXII#SHIFL (32% identity in 93 amino acids);PrgJ protein [Salmonella typhimurium]

Appendix B: Hideo *et al.* Full Translation

7775 gi|1172614|sp|P41785|PRGJ#SALT Y (31% identity in 87
amino acids)
SEQ ID NO: 1192: 0.037705, 245, a type III secretion protein,
similar to putative typeIII secretion proteins for
example ,PrgI protein [Salmonella
7780 typhimurium]gi|1172613|sp|P41784|PRGI#SALTY (64%
identity in 76 amino acids)
SEQ ID NO: 1193: -0.282727, 111, a putative adherence factor,
similar to a part of adherence factors for example ,Efa1
[Escherichia coli O111:H- strain E45035]
7785 gi|6013469|gb|aaD49229.2|AF159462#1(amino acids at the
position 433-711/3223) (100% identity in 279 amino acids),
probably disrupted by frameshift
SEQ ID NO: 1194: -0.588608, 80, a transposase, identical to
transposase [Escherichia coli plasmid p O-157 IS629]
7790 gi|7443862|pir||T00240
SEQ ID NO: 1195: -0.379918, 245, a transposase, identical to
hypothetical protein [Escherichia coli plasmid p O-157
IS629] gi|7444868|pir||T00241; similar to hypothetical
protein, insertion sequences for example ,[Shigella flexneri]
7795 gi|5532454|gb|aaD44738.1|AF141323#9 (96% identity in 108
amino acids)
SEQ ID NO: 1196: -0.045181, 167, novel, GTG start
SEQ ID NO: 1197: -0.081233, 374, novel, similar to
hypothetical proteins for example ,L0014 [Escherichia coli
7800 O-157:H7 strain EDL933] gi|3414882|gb|aaC31493.1| (99%
identity in 115 amino acids)
SEQ ID NO: 1198: 1.038462, 79, novel, similar to
hypothetical proteins for example ,L0015 [Escherichia coli
O-157:H7 strain EDL933] gi|3414883|gb|aaC31494.1| (100%
7805 identity in 411 amino acids)
SEQ ID NO: 1199: 0.805162, 151, novel, similar to a part of
hypothetical proteins for example ,L0013 [Escherichia coli
O-157:H7 strain EDL933] gi|3414881|gb|aaC31492.1| (55%

Appendix B: Hideo *et al.* Full Translation

identity in 28 amino acids), GTG start, probably disrupted
7810 SEQ ID NO: 1200 : 0.976744, 87, novel, similar to hypothetical proteins for example ,ORF50 [Escherichia coli plasmid pB171] gi|6009426|dbj|Baa84885.1| (70% identity in 106 amino acids)
SEQ ID NO: 1201 : 0.748416, 222, novel, similar to hypothetical proteins for example ,L0015 [Escherichia coli O-157:H7 strain EDL933] gi|3414883|gb|aaC31494.1| (63% identity in 464 amino acids)
SEQ ID NO: 1202: -0.236585, 329, novel, similar to a part of transposases for example ,TnpA [Shigella flexneri] gi|5532449|gb|aaD44733.1|AF141323#4 (93% identity in 49 amino acids)
SEQ ID NO: 1203 : -1.506341, 206, novel, similar to hypothetical proteins for example ,L0004 [Escherichia coli O-157:H7 strain EDL933] gi|3414872|gb|aaC31483.1| (98% identity in 91 amino acids); putative transposase [Vibrio cholerae] gi|7960026|gb|aaF71186.1|AF179596#6 (59% identity in 91 amino acids); hypothetical protein [Escherichia coli plasmid p O-157 insertion sequence IS911] gi|7465897|pir||T00224 (52% identity in 91 amino acids)
7825 SEQ ID NO: 1204: -0.892208, 78, a putative transcription regulatory element, similar to regulatory elements (RpiR family) for example ,[Bacillus subtilis] gi|8248807|emb|CAB93068.1| (25% identity in 236 amino acids)
7830 SEQ ID NO: 1205 : -1.002703, 112, a putative ferrichrome-binding protein, similar to ferrichrome-binding proteins for example ,[Bacillus subtilis] gi|585132|sp|P37580|FHUD#BACSU (27% identity in 220 amino acids)
7835 SEQ ID NO: 1206 : -0.212558, 440, a putative ferrichrome ABC transporter (permease), similar to ferrichrome ABC transporters (permease) for example ,[Bacillus subtilis]

Appendix B: Hideo *et al.* Full Translation

gi|1706797|sp|P49937|FHUG#BACSU (33% identity in 319 amino acids)

7845 SEQ ID NO: 1207: 0.465452, 687, a putative ferrichrome ABC transporter (permease), similar to ferrichrome ABC transporters (permease) for example ,[Synechocystis sp.] gi|7442493|pir||S74438 (43% identity in 315 amino acids); [Bacillus subtilis] gi|1706795|sp|P49936|FHUB#BACSU (39% identity in 319 amino acids)

7850 SEQ ID NO: 1208 : -0.209449, 382, a putative ABC-type iron-siderophore transport system ATP-binding protein, similar to ABC-type iron-siderophore transport system ATP-binding proteins for example ,[Synechocystis sp.] gi|7442509|pir||S74440 (52% identity in 248 amino acids)

7855 SEQ ID NO: 1209: -0.149383, 568, a putative ferrichrome-iron receptor precursor, similar to ferrichrome-ironreceptor precursors for example ,gi|7448497|pir||S74457 (30% identity in 688 amino acids)

7860 SEQ ID NO: 1210: 0.036546, 250, novel, TTG start

SEQ ID NO: 1211 : 1.166101, 60, a PTSdependent N-acetyl-galactosamine-IIID component (AgaE), similar to PTSdependent N-acetyl-galactosamine-IIID component, AgaE [Escherichia coli strain C]

7865 gi|8895749|gb|aaF81085.1|AF228498#5 (96% identity in 292 amino acids)

7870 SEQ ID NO: - : -0.257895, 77, a PTS dependent N-acetyl-galactosamine-and galactosamine IIA component (AfaF), similar to ts dependent N-acetyl-galactosamine-and galactosamine IIA component, AgaF [Escherichia coli strain C] gi|8895750|gb|aaF81086.1|AF228498#6 (99% identity in 144 amino acids)

7875 SEQ ID NO: 1527: 0.06993, 144, a transposase (insertion sequence IS629), identical to hypothetical protein gi|7444868|pir||T00241

SEQ ID NO: 1528: 1.167709, 193, identical to transposase

Appendix B: Hideo *et al.* Full Translation

(insertion sequence IS629),gi|7443862|pir||T00240
SEQ ID NO: 1529: 0.38766, 236, novel
SEQ ID NO: 1530: -0.008, 226, a leader peptidase, similar to
7880 leader peptidases for example ,HopD (strain ECOR30)
[Escherichia coli] gi|7674073|sp|O68932 (92% identity in 155
amino acids); (LT2) [Salmonella typhimurium]
gi|7674072|sp|O68927 (68% identity in 148 amino acids)
SEQ ID NO: 1531: -0.168, 226, novel, similar to hypothetical
7885 protein [Xylellafastidiosa]
gi|9112262|gb|aaF85593.1|AE003851#24 (50% identity in 86
amino acids)
SEQ ID NO: - : -0.265401, 238, a putative invasin, similar to
putative membrane protein b1978 [Escherichia coli K-12]
7890 gi|1736642|dbj|Baa15799.1| (45% identity in 1391 amino
acids); vasin [Yersinia pseudotuberculosis]
gi|79202|pir||A29646 (35% identity in 1211 amino acids)
[0026]
9) Proteins relating to metabolism
7895 Sequence number: hydrophobicity, The number of amino
acids, Character such as function
SEQ ID NO: 826: -0.36383, 48, novel, similar to hypothetical
protein[Bacteriophage 933W] gi|4499789|emb|CAB39288.1|
(97% identity in 71 amino acids)
7900 SEQ ID NO: 827: -0.877049, 62, a putative fimbrial chaperone,
similar to fimbrial chaperones for example ,[Salmonella
typhimurium] gi|1170816|sp|P43661|LPFB#SALTY (40%
identity in 104 amino acids)
SEQ ID NO: 828: -0.388722, 134, a putative type 1 fimbrial
7905 protein, similar to type 1fimbrial proteins for
example ,[Salmonella enteritidis] gi|913907|gb|aaB33536.1|
(31% identity in 198 amino acids)
SEQ ID NO: 829: 0.010435, 116, novel, similar to conserved
hypothetical proteins for example ,HP0709 [Helicobacter
7910 pylori 26695] gi|7463979|pir||E64608 (88% identity in 300

Appendix B: Hideo *et al.* Full Translation

amino acids)

SEQ ID NO: 830 : -0.455859, 513, novel, similar to hypothetical protein [Xylella fastidiosal gi|9104946|gb|aaF82968.1|AE003869#5 (33% identity in 270 amino acids)

7915 SEQ ID NO: 831 : -0.335065, 78, novel (hypothetical membrane protein)

SEQ ID NO: 832: -1.205882, 52, novel, similar to (at low level) membrane protein [Staphylococcus aureus] gi|3676428|gb|aaC61946.1 (26% identity in 236 amino acids)

SEQ ID NO: 833: -0.434677, 249, novel

SEQ ID NO: 834: 0.071739, 93, novel, GTG start

SEQ ID NO: 835: -0.190411, 74, novel, GTG start

SEQ ID NO: 836 : -0.322222, 136, a raffinose metabolism 7925 (putativ for example ,lyco protein), similar to RafY [Escherichia coli plasmid pRSD2] gi|1773072|gb|aaB71432.1 (78% identity in 464 amino acids)

SEQ ID NO: 837: -0.195833, 313, novel

SEQ ID NO: 838 : -0.038235, 375, novel (hypothetical 7930 membrane protein)

SEQ ID NO: 839: -0.158854, 193, a Rhs protein, similar to Rhs proteins for example ,RhsF[Escherichia colil gi|2920637|gb|aaC32473.1| (97% identity in 1394 amino acids), [RhsH core protein with extension]

7935 SEQ ID NO: 840: -0.174074, 352, novel

SEQ ID NO: 841 : -0.092611, 407, a putative amino acid amidohydrolase, similar to amino acid amidohydrolases for example ,benzoylglycine amidohydrolase (Hippuricase) [Campylobacter jejuni] gi|1170277|spP45493|HIPO#CAMJE 7940 (46% identity in 383 amino acids)

SEQ ID NO: 842 : -0.384796, 935, a putative membranetransporter protein, similar to membranetransporter proteins for example ,citrate-proton symporter [Klebsiella pneumoniae]

Appendix B: Hideo *et al.* Full Translation

7945 gi|116482|sp|P16482|CIT1#KLEPN (30% identity in 429
amino acids)
SEQ ID NO: 843 : -0.174359, 157, novel, similar to
hypothetical protein b3122[Escherichia coli (strain K-12)]
gi|7466507|pir||G65101 (62% identity in 35 amino acids)

7950 SEQ ID NO: 844 : -0.563799, 559, a putative L-sorbose
1-phosphate dehydrogenase, similar to L-sorbose 1-phosphate
dehydrogenases, for example ,[Klebsiella pneumoniae]
gi|586014|sp|P37084|SORE#KLEPN (85% identity in 407
amino acids)

7955 SEQ ID NO: 845: -0.552709, 204, a putative sorbose-permease
IID component (PTS system), similar to many sorbose-permease
IID components for
example ,gi|548634|sp|P37083|PTRD#KLEPN (95% identity in
215 amino acids), probably disrupted (N-terminal part (amino
7960 acids at the position 1-60) is deleted)

SEQ ID NO: 846 : -0.058268, 128, a putative regulatory
element (repressor), its N-terminal-half part is similar
to hypothetical protein HI1476 [Haemophilus
influenzae]gi|1175815|sp|P44207|YE76#HAEIN (35% identity
7965 in 70 amino acids); its C-terminal-half part is similar to
putative repressor protein [Bacteriophage D108]
gi|133345|sp|P07040|RPC1#BPD10(26% identity in 79 amino
acids)

SEQ ID NO: 847: -0.457738, 169, a putative DNA-binding
7970 protein, similar to Ner-likeDNA-binding proteins for
example ,gi|6900348|emb|CAB71960.1| (44% identity in 70
amino acids)

SEQ ID NO: 848 : -0.023279, 306, a putative phage
transposase, similar to transposases for example ,[Neisseria
meningitidis] gi|7379960|emb|CAB84536.1| (40% identity in
7975 639 amino acids)

SEQ ID NO: 849: -0.484058, 139, a transposition protein,
similar to DNA transposition proteinB [Bacteriophage Mu]

Appendix B: Hideo *et al.* Full Translation

7980 gi|139318|sp|P03763|VPB#BPMU (48% identity in 298 amino acids)
SEQ ID NO: 850: -0.9296, 126, novel, similar to(at low level) phosphoserine phosphatase [Neisseria meningitidis MC58]
gi|7226221|gb|aaF41385.1| (38% identity in 49 amino acids)
SEQ ID NO: 851: 0.013677, 447, novel
7985 SEQ ID NO: 852: 0.371556, 676, novel, GTG start
SEQ ID NO: 853: 0.247863, 118, novel, GTG start
SEQ ID NO: 854: 0.445454, 100, novel
SEQ ID NO: 855: -0.008451, 143, putative host-nuclease inhibitor, similar to host-nuclease inhibitor protein (Gam) for
7990 example , [Bacteriophage Mu]
gi|138127|sp|P06023|VGAM#BPMU (56% identity in 174 amino acids)
SEQ ID NO: 856: -0.096842, 191, novel
SEQ ID NO: 857: -0.295364, 152, novel, similar to Gp11
7995 [Bacteriophage Mu] gi|6010385|gb|aaF01088.1|AF083977#7 (67% identity in 177 amino acids)
SEQ ID NO: 858: -0.149414, 513, novel, similar to gp12
[Bacteriophage Mu] gi|215568|gb|aaA32400.1| (52% identity in 168 amino acids)
8000 SEQ ID NO: 859: -0.454967, 152, novel, similar to gp9
[Bacteriophage Mu] gi|6010430|gb|aaF01133.1|AF083977#54 (30% identity in 82 amino acids)
SEQ ID NO: 860: -0.538686, 138, novel
SEQ ID NO: 861: -0.001626, 124, novel, similar to (at low
8005 level) zinc finger proteins for example , [Rattus norvegicus]
gi|141712|sp|P18745|ZO22#XENLA (33% identity in 48 amino acids)
SEQ ID NO: 862: -0.207895, 153, novel
SEQ ID NO: 863: 0.275652, 346, novel, similar to
8010 hypothetical proteins for example ,gp16 [Bacteriophage Mu]
gi|6010390|gb|aaF01093.1|AF083977#12 (43% identity in 162 amino acids)

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 864: 1.013566, 259, putative positive regulator
of late transcription, similar to transcription regulatory
elements for example , positive regulator of late transcription
8015 (protein C) [Bacteriophage Mu]
gi|139320|sp|P06022|VPC#BPMU (39% identity in 126 amino
acids)

SEQ ID NO: 865: 1.206742, 90, an endolysin (host cell lysis),
similar to endolysins for example ,Lys [Bacteriophage Mu]
8020 |126600|sp|P27359|LYCV#BPP21 (37% identity in 156 amino
acids)

SEQ ID NO: 866 : 0.813365, 218, novel, similar to P14
[Bacteriophage APSE-1]
8025 gi|6118009|gb|aaF03957.1|AF157835#14 (27% identity in 82
amino acids), GTG start

SEQ ID NO: 867 : -0.361905, 232, novel, similar to P16
[Bacteriophage APSE-1]
gi|6118011|gb|aaF03959.1|AF157835#16 (46% identity in 81
8030 amino acids)

SEQ ID NO: 868: -0.288945, 200, novel, similar to traR family,
for example ,Orf82 [Bacteriophage P2]
gi|732223|sp|Q06424|YO82#BPP2 (52% identity in 34 amino
acids)

SEQ ID NO: 869 : -0.829907, 108, novel, similar to gp25
[Bacteriophage Mu] gi|6010400|gb|aaF01103.1|AF083977#22
(35% identity in 91 amino acids)

SEQ ID NO: 870: -0.475, 73, novel, similar to hypothetical
proteins for example ,gp26[Bacteriophage Mu]
8040 gi|6010401|gb|aaF01104.1|AF083977#23 (62% identity in 95
amino acids)

SEQ ID NO: 871 : -0.715504, 130, novel, similar to
hypothetical proteins for example ,gp27 [Bacteriophage Mu]
gi|6010402|gb|aaF01105.1|AF083977#24 (56% identity in 193
8045 amino acids)

SEQ ID NO: 872: 0.351219, 42, a putative portal protein,

Appendix B: Hideo *et al.* Full Translation

similar to hypothetical proteins for example ,gp28 (possible portal protein H) [Bacteriophage Mu]
8050 gi|6010403|gb|aaF01106.1|AF083977#25 (73% identity in 537 amino acids)

SEQ ID NO: 873 : -0.262814, 399, novel, similar to hypothetical proteins for example ,gp29 [Bacteriophage Mu]
gi|6010404|gb|aaF01107.1|AF083977#26 (57% identity in 529 amino acids)

8055 SEQ ID NO: 874 : -0.127574, 273, novel, similar to hypothetical proteins for example ,gp30 [Bacteriophage Mu]
gi|6010405|gb|aaF01108.1|AF083977#27 (60% identity in 437 amino acids)

SEQ ID NO: 875 : -0.857143, 78, a virion morphogenesis,
8060 similar to G protein [Bacteriophage Mu]
gi|267389|sp|Q01261|VPG#BPMU (53% identity in 151 amino acids)

SEQ ID NO: - : -0.821875, 65, a potential protease protein,
similar to gpI [Bacteriophage Mu] gi|7226336|gb|aaF41489.1|
8065 (31% identity in 369 amino acids),

SEQ ID NO: 1686 : -0.40171, 118, a putative major head subunit,
similar to proteinT [Bacteriophage Mu]
gi|6010409|gb|aaF01112.1|AF083977#31 (66% identity in 311 amino acids); hypothetical proteins for example ,*(Neisseria meningitidis)* gi|6900377|emb|CAB71989.1|(50% identity in 311 amino acids)

SEQ ID NO: 1687 : -0.015888, 108, novel, similar to gp35
[Bacteriophage Mu] gi|6010410|gb|aaF01113.1|AF083977#32
(40% identity in 62 amino acids)

8075 SEQ ID NO: 1533 : -0.455151, 331, novel, similar to hypothetical proteins for example ,gp36 [Bacteriophage Mu]
gi|6010411|gb|aaF01114.1|AF083977#33 (46% identity in 139 amino acids)

SEQ ID NO: 1534 : -0.761539, 105, novel, similar to
8080 hypothetical proteins for example ,gp37 [Bacteriophage Mu]

Appendix B: Hideo *et al.* Full Translation

gi|1175870|sp|P44231|YF09#HAEIN (33% identity in 187 amino acids)
SEQ ID NO: 1535 : -0.293125, 161, novel, similar to hypothetical proteins for example ,gp38 [Bacteriophage Mu]
8085 gi|6010413|gb|aaF01116.1|AF083977#35 (54% identity in 52 amino acids)
SEQ ID NO: 1536: -0.370046, 218, a major tail subunit (sheath protein), similar to sheath protein GpL [Bacteriophage Mu]
gi|1834291|dbj|Baa19195.1| (51% identity in 499 amino acids); hypothetical proteins for example ,[Haemophilus influenzae Rd] gi|1175872|sp|P44233|YF11#HAEIN (40% identity in 499 amino acids)
SEQ ID NO: 1564 : -0.396053, 77, novel, similar to hypothetical proteins for example ,GpM [Bacteriophage Mu]
8095 gi|1834292|dbj|Baa19196.1| (49% identity in 120 amino acids)
SEQ ID NO: 1565 : -0.199849, 663, novel, similar to hypothetical proteins for example ,ORF3 [Bacteriophage Mu]
gi|1834293|dbj|Baa19197.1| (49% identity in 122 amino acids)
8100 [0027]
10) Proteins processing DNA/RNA
Sequence number: hydrophobicity, The number of amino acids, Character such as function
SEQ ID NO: 1395: -0.645885, 803, a type III secretion protein
8105 (surface presentation of antigens), similar to N-terminal part of putative type III secretion proteins for example ,SpaR protein (surface presentation of antigens) [Salmonella typhimurium] gi|730799|sp|P40701|SPAR#SALTY(44% identity in 144 amino acids), probably interrupted
8110 SEQ ID NO: 1396: -0.414798, 224, a type III secretion protein, similar to type III secretion proteins for example ,SpaQ [Salmonella enterica] gi|975756|gb|aaC43847.1| (68% identity in 86 amino acids)
SEQ ID NO: 1397: -0.230128, 157, type III secretion protein,

Appendix B: Hideo *et al.* Full Translation

8115 similar to type IIIsecretion proteins for example ,SpaP
[Salmonella enterical gi|975755|gb|aaC43846.1| (69% identity
in 218 amino acids)
SEQ ID NO: 1398: 0.60339, 60, type III secretion protein,
similar to type III secretion proteins for example ,SpaO
8120 [Salmonella enterical gi|973277|gb|aaC43944.1| (32% identity
in 292 amino acids)
SEQ ID NO: 1399: -0.623677, 795, type III secretion protein,
similar to C-terminal part of type IIIsecretion proteins for
example ,SpaN [Salmonella enterical
8125 gi|1155289|gb|aaC44993.1| (38% identity in 82 amino acids),
TTG start
SEQ ID NO: 1400: -0.241304, 47, novel
SEQ ID NO: - : -0.288136, 60, a type III secretion protein,
similar to type III secretion proteins for example ,SpaM
8130 [Salmonella enterical gi|1155297|gb|aaC44998.1| (29%
identity in 146 amino acids)
SEQ ID NO: 1412: -0.074167, 361, a putative tape measure
protein, similar to hypothetical proteins for example ,Gp42
(putative tape measure protein) [Bacteriophage Mu]
8135 gi|6010417|gb|aaF01120.1|AF083977#39 (36% identity in 686
amino acids)
SEQ ID NO: 1413: -0.064607, 357, a putative DNA circulation
protein, similar to DNA circulation proteins for example ,
protein N [Bacteriophage Mu]
8140 gi|6010418|gb|aaF01121.1|AF083977#40 (33% identity in 441
amino acids)
SEQ ID NO: 1414: -0.374289, 845, a putative tail protein,
similar to tail protein for example ,P protein
[Bacteriophage Mu gi|139353|sp|P08558|VPP#BPMU (47%
8145 identity in 360 amino acids), GTG start
SEQ ID NO: 1415: 0.2, 54, novel, similar to hypothetical
proteins for example ,gp45 [Bacteriophage Mu]
gi|6010420|gb|aaF01123.1|AF083977#42 (51% identity in 195

Appendix B: Hideo *et al.* Full Translation

amino acids), may be involved in base plate assembly

8150 SEQ ID NO: 1416 : -0.05748, 128, novel, similar to hypothetical proteins for example ,Gp46 [Bacteriophage Mu] gi|6010421|gb|aaF01124.1|AF083977#43 (53% identity in 144 amino acids)

SEQ ID NO: 1417: -0.1945, 201, novel, similar to hypothetical proteins for example ,Gp47 [Bacteriophage Mu] gi|6010422|gb|aaF01125.1|AF083977#44 (53% identity in 360 amino acids)

SEQ ID NO: 1661: -0.169, 301, novel, similar to hypothetical proteins for example ,Gp48 [Bacteriophage Mu] gi|6010423|gb|aaF01126.1|AF083977#45 (48% identity in 183 amino acids)

SEQ ID NO: 1556: -0.241844, 283, a putative tail fiber, similar to S protein [Bacteriophage Mu] gi|6010424|gb|aaF01127.1|AF083977#46 (46% identity in 198 amino acids); hypothetical proteins for example ,Bcv [Shigella boydii] gi|96900|pir||A42463 (56% identity in 78 amino acids)

SEQ ID NO: 1557: 0.691919, 100, a putative tail fiber assembly protein, similar to unnamed protein product [Bacteriophage 186] gi|3522882|gb|aaC34165.1| (39% identity in 173 amino acids); tail fiber assembly proteins for example ,U protein[Bacteriophage Mu] gi|6010425|gb|aaF01128.1|AF083977#47 (28% identity in 176 amino acids)

8175 SEQ ID NO: 1667: 1.052233, 292, similar to a C-terminal part of tail fiber protein (partial), C-terminal part of tail fiber proteins for example ,S [Bacteriophage Mu] gi|6010424|gb|aaF01127.1|AF083977#46 (38% identity in 65 amino acids)

8180 SEQ ID NO: - : -0.43064, 298, a putative invertase, similar to site-specific recombinases for example ,DNA-invertas for example ,in [Bacteriophage Mu]

Appendix B: Hideo *et al.* Full Translation

gi|6010426|gb|aaF01129.1|AF083977#50 (75% identity in 181 amino acids)

8185 SEQ ID NO: 1600 -0.069079, 305, novel, similar to hypothetical proteins for example ,L0105 [Bacteriophage 933W] gi|4585419|gb|aaD25447.1|AF125520#42 (73% identity in 614 amino acids)

SEQ ID NO: - : -0.338889, 73, novel, similar to orf25 [Bacteriophage 933W] gi|4499806|emb|CAB39305.1| (52% identity in 57 amino acids)

8190 SEQ ID NO: 1616 : -0.524138, 465, novel, similar to hypothetical proteins for example ,L0106 [Bacteriophage 933W] gi|4585420|gb|aaD25448.1|AF125520#43 (41% identity in 79 amino acids)

SEQ ID NO: 1630: -0.041597, 239, novel [0028]

11) Proteins relating pathogenicity

Sequence number: hydrophobicity, The number of amino acids.

8200 Character such as function

SEQ ID NO: 1631: 0.342857, 225, a type III secretion protein (ATP synthetase), similar to putative type III secretion proteins (ATP synthetase) for example ,invC [Salmonella typhimurium] gi|730791|sp|P39444|SPAL#SALTY (63% identity in 387 amino acids)

SEQ ID NO: 1472: -0.763847, 1395, a type III secretion protein, similar to type III secretion proteins for example ,InvA [Salmonella typhimurium] gi|476819|pir||A42888 (64% identity in 686 amino acids)

8210 SEQ ID NO: - : -0.352577, 98, a type III secretion protein, similar to type III secretion proteins for example ,invasion protein [Salmonella enterica] gi|1236845|gb|aacC45041.1| (37% identity in 355 amino acids)

SEQ ID NO: 1552: -0.029639, 389, a type III secretion protein, similar to type III secretion proteins for example , InvG [Salmonella typhimurium]

Appendix B: Hideo *et al.* Full Translation

gi|1170574|sp|P35672|INVG#SALTY (53% identity in 558 amino acids)
SEQ ID NO: - , 0.760046, 439, a transcriptional regulator of
8220 type III secretion system, similar to transcriptional regulators
for example ,invF [Salmonella typhimurium]
gi|729852|sp|P39437|INVF#SALTY (40% identity in 200
amino acids)
SEQ ID NO: 690: -0.029412, 52, novel, GTG start
8225 SEQ ID NO: 691: -0.113448, 410, novel, GTG start
SEQ ID NO: 692 : 0.817973, 218, novel, similar to
hypothetical proteins for example ,[Methanobacterium
thermoautotrophicum] gi|7482365|pir||D69031 (32% identity
in 100 amino acids)
8230 SEQ ID NO: 693 : -0.541477, 177, a putative transporter,
similar to hypothetical protein [plasmid pNZ4000]
gi|5123516|gb|aaD40355.1| (31% identity in 185 amino acids);
similar to (at low level) putative low-affinity inorganic
phosphate transporter [Mycobacterium tuberculosis]
8235 gi|7387993|sp|O06411|PIT#MYCTU (26% identity in 212
amino acids)
SEQ ID NO: 694: -0.540244, 83, a hypothetical lipoprotein,
similar to hypothetical proteins for example ,[plasmid
pNZ4000] gi|5123517|gb|aaD40356.1|(25% identity in 209
8240 amino acids)
SEQ ID NO: 695: -0.645115, 697, a putative ABC transporter
ATP-bindingsubunit, similar to ABC transporter ATP-binding
subunits for example ,cation ABC transporter (ATP-binding
protein) homolog yk0D [Bacillus subtilis]
8245 gi|7445788|pir||H69858 (32% identity in 201 amino acids)
SEQ ID NO: 696: -0.096774, 311, a putative ABC-transporter
ATP-bindingsubunit, similar to ABC-transporter ATP-binding
subunits for example ,PotA homolog [Agrobacterium
rhizogenes plasmid pRi1724] gi|8918682|dbj|Baa97747.1|
8250 (35% identity in 223 amino acids); [plasmid pNZ4000]

Appendix B: Hideo *et al.* Full Translation

gi|5123519|gb|aaD40358.1| (30% identity in 211 amino acids)
SEQ ID NO: 697 : 0.076712, 74, novel, similar to
YGGC#ECOLI gi|1789296 (83% identity in 233 amino acids),
but comprising different C-terminal part.
8255 ; similar to kinaselike protein FrcK [Sinorhizobium meliloti]
dad|AF196574-5|aaG28501.1 (38% identity in 190 amino acids),
GTG start
SEQ ID NO: 698 : -0.44881, 85, novel (hypothetical
lipoprotein)
8260 SEQ ID NO: 699 : -0.246237, 94, a integrase, similar to
integrases for example , [prophage P4]
gi|6179516|emb|CAB59974.1| (55% identity in 414 amino
acids)
SEQ ID NO: 700: -0.042222, 91, novel, similar to C-terminal
8265 part of hypothetical proteins for example ,L0015
[Escherichia coli O-157:H7 strain EDL933]|
gi|4808945|gb|aaD30027.1|AF119170#2(88% identity in 206
amino acids), GTG start, probably disrupted
SEQ ID NO: 701: -0.378351, 98, novel, similar to a part of
8270 hypothetical proteins for example ,L0013 [Escherichia coli
O-157:H7 strain EDL933] gi|3414881|gb|aaC31492.1| (100%
identity in 44 amino acids), GTG start, probably disrupted
SEQ ID NO: 702 : -0.572727, 177, novel, similar to
hypothetical proteins for example ,ORF29 [Escherichia coli
8275 plasmid pB171] gi|6009405|dbj|Baa84864.1| (39% identity in
204 amino acids)
SEQ ID NO: 703 : -0.159444, 181, novel, similar to
hypothetical proteins for example ,ORF30 [Escherichia coli
plasmid pB171] gi|6009406|dbj|Baa84865.1| (80% identity in
8280 115 amino acids)
SEQ ID NO: 704 : 0.131638, 178, novel, similar to
hypothetical proteins for example ,ORF31 [Escherichia coli
plasmid pB171] gi|6009427|dbj|Baa84886.1| (63% identity in
468 amino acids)

Appendix B: Hideo *et al.* Full Translation

8285 SEQ ID NO: 705 : -0.321053, 172, novel, similar to hypothetical protein [Salmonella choleraesuis] gi|7467227|pir||T28668 (43% identity in 261 amino acids)
SEQ ID NO: 706 : -0.725, 97, a putative virulence-related membrane protein, similar to virulence-related membrane proteins for example ,pagC [Salmonella typhimurium] gi|129558|sp|P23988|PAGC#SALTY (45% identity in 171 amino acids)
SEQ ID NO: 707: -0.170161, 125, novel
SEQ ID NO: 708: -1.030769, 66, novel, similar to(at low level) hypothetical proteins for example ,FhaB [Neisseria meningitidis] gi|6900333|emb|CAB71945.1| (37% identity in 48 amino acids), GTG start
SEQ ID NO: 709 : 0.1, 99, novel, identical to L0028 [Escherichia coli O-157:H7 strain EDL933] gi|3414896|gb|aaC31507.1|; similar to hypothetical proteins for example ,[Escherichia coli] gi|3249026|gb|aaC69313.1| (99% identity in 203 amino acids)
SEQ ID NO: 710: -0.514201, 170, novel, identical to L0029 [Escherichia coli O-157:H7 strain EDL933] gi|3414897|gb|aaC31508.1|; similar to rOrf10 [Escherichia coli]gi|2865295|gb|aac38388.1| (78% identity in 119 amino acids)
SEQ ID NO: 711: -0.516312, 142, novel, identical to L0030 [Escherichia coli O-157:H7 strain EDL933] gi|3414898|gb|aaC31509.1|; similar to Orf18 [Escherichia coli]gi|2865294|gb|aac38387.1| (74% identity in 159 amino acids)
SEQ ID NO: 712: -0.221687, 167, a type III secretion system SepQ protein, identical to L0031 [Escherichia coli O-157:H7 strain EDL933]; gi|3414899|gb|aaC31510.1|; similar to SepQ [Escherichia coli strain E2348/69] gi|2865293|gb|aac38386.1| (93% identity in 305 amino acids)
SEQ ID NO: 713: -0.647059, 86, novel, similar to Orf16

Appendix B: Hideo *et al.* Full Translation

[Escherichia coli strain E2348/69] gi|2865292|gb|aaC38385.1 |
8320 (97% identity in 138 amino acids); L0032 [Escherichia coli
O-157:H7 strain EDL933] gi|3414900|gb|aaC31511.1| (100%
identity in 91 amino acids)
SEQ ID NO: 714: -0.245946, 149, novel, identical to L0033
[Escherichia coli O-157:H7 strain EDL933]
8325 gi|3414901|gb|aaC31512.1|
SEQ ID NO: 715: -0.574667, 76, a type III secretion system
protein EscN, identical to EscN (L00349 [Escherichia coli
O-157:H7 strain EDL933] gi|3414902|gb|aaC31513.1|
SEQ ID NO: 716: -0.092157, 103, a type III secretion system
8330 EscV protein, identical to EscV (L0035) [Escherichia coli
O-157:H7 strain EDL933] gi|3414903|gb|aaC31514.1|
SEQ ID NO: 717: -0.296875, 97, novel, identical to Orf12
[Escherichia coli strain E2348/69] gi|2865288|gb|aaC38381.1|;
L0036 [Escherichia coli O-157:H7 strain EDL933]
8335 gi|3414904|gb|aaC31515.1|
SEQ ID NO: 718: -0.570466, 194, identical to type III secretion
system SepZ protein, SepZ proteins for
example , [Escherichia coli O-157:H7 strain
EDL933]gi|3414905|gb|aaC31516.1|
8340 SEQ ID NO: 719: -0.367148, 555, novel, identical to L0038
[Escherichia coli O-157:H7 strain EDL933]
gi|3414906|gb|aaC31517.1|; similar to rOrf8 [Escherichia coli
E2348/69] gi|2865287|gb|aaC38380.1| (92% identity in 142
amino acids)
8345 SEQ ID NO: 720: -0.356102, 509, a type III secretion system
EscJ protein, identical to EscJ [Escherichia coli strain
E2348/69] gi|2865286|gb|aaC38379.1|; L0039 (EscJ)
[Escherichia coli O-157:H7 strain EDL933]
gi|3414907|gb|aaC31518.1|
8350 SEQ ID NO: 721: -0.399319, 442, a type III secretion system
proteinepD, identical to SepD (L0040) [Escherichia coli
O-157:H7 strain EDL933] gi|3414908|gb|aaC31519.1|; similar

Appendix B: Hideo *et al.* Full Translation

to SepD proteins for example , [Escherichia coli strain E2348/69] gi|886476|emb|Caa90273.1| (98% identity in 151
8355 amino acids)

SEQ ID NO: 722: -0.538854, 158, a type III secretion system
EscC protein, identical to EscC (L0041) [Escherichia coli
O-157:H7 strain EDL933] gi|3414909|gb|aaC31520.1|

SEQ ID NO: 723: -0.272994, 375, a type III secretion system
8360 CesD protein, identical to CesD (L0042) [Escherichia coli
O-157:H7 strain EDL933] gi|3414910|gb|aaC31521.1|

SEQ ID NO: 724: -0.223492, 316, novel, identical to L0043
[Escherichia coli O-157:H7 strain EDL933]
gi|3414911|gb|aaC31522.1|; similar to Orf11 [Escherichia coli
8365 strain E2348/69] gi|2865282|gb|aaC38375.1| (98% identity in
137 amino acids)

SEQ ID NO: 725: -0.455469, 129, novel, identical to L0044
[Escherichia coli O-157:H7 strain EDL933]
gi|3414912|gb|aaC31523.1|; similar to Orf10 [Escherichia coli
8370 strain E2348/69] gi|2865281|gb|aaC38374.1| (98% identity in
123 amino acids)

SEQ ID NO: 726: -0.330216, 140, novel, identical to L0045
[Escherichia coli O-157:H7 strain EDL933]
gi|3414913|gb|aaC31524.1| ; similar to rOrf3 [Escherichia coli
8375 strain E2348/69] gi|2865280|gb|aaC38373.1|(98% identity in
152 amino acids)

SEQ ID NO: 727: -0.154301, 187, a type III secretion system
EscU protein, identical to EscU (L0046) [Escherichia coli
O-157:H7 strain EDL933] gi|3414914|gb|aaC31525.1|

8380 SEQ ID NO: 728: -0.764198, 82, a type III secretion system
EscT protein, identical to EscT (L0047) [Escherichia coli
O-157:H7 strain EDL933] gi|3414915|gb|aaC31526.1|

SEQ ID NO: 729: -0.1374, 501, a type III secretion system EscS
protein, identical to EscS (L0048) [Escherichia coli O-157:H7
8385 strain EDL933] gi|3414916|gb|aaC31527.1|

SEQ ID NO: 730: -0.500827, 122, a type III secretion system

Appendix B: Hideo *et al.* Full Translation

EscR protein, identical to EscR (L0049) [Escherichia coli O-157:H7 strain EDL933] gi|3414917|gb|aaC31528.1|
SEQ ID NO: 731: -0.213291, 159, novel, identical to L0050
8390 |Escherichia coli O-157:H7 strain EDL933| gi|3414918|gb|aaC31529.1|; similar to Orf5 [Escherichia coli strain E2348/69] gi|2865275|gb|aaC38368.1| (98% identity in 231 amino acids)
SEQ ID NO: 732: -0.205065, 692, novel, identical to L0051
8395 |Escherichia coli O-157:H7 strain EDL933| gi|3414919|gb|aaC31530.1|; similar to Orf4 [Escherichia coli strain E2348/69] gi|2865274|gb|aaC38367.1| (99% identity in 199 amino acids)
SEQ ID NO: 733: -0.131141, 457, novel, identical to Orf3
8400 |Escherichia coli E2348/69|gi|2865273|gb|aaC38366.1|; L0052
|Escherichia coli O-157:H7 strain EDL933| gi|3414920|gb|aaC31531.1|
SEQ ID NO: 734: -0.277807, 375, novel, similar to Orf2 [Escherichia coli strain E2348/69] gi|2865272|gb|aaC38365.1|
8405 (98% identity in 72 amino acids); L0053 |Escherichia coli O-157:H7 strain EDL933| gi|3414921|gb|aaC31532.1| (98% identity in 72 amino acids)
SEQ ID NO: 735: -0.335784, 205, a transcription regulatory element, identical to L0054 [Escherichia coli O-157:H7 strain EDL933] gi|3414922|gb|aaC31533.1| ; similar to Orf1 Ler [Escherichia coli strain E2348/69] gi|2865271|gb|aaC38364.1| (99% identity in 129 amino acids)
SEQ ID NO: 736: -0.142069, 146, novel
SEQ ID NO: 737: -0.199169, 362, a secreted effector protein,
8415 identical to L0055 [Escherichia coli O-157:H7 strain EDL933] gi|3414923|gb|aaC31534.1|; similar to rOrf2 EspG [Escherichia coli strain E2348/69] gi|2865270|gb|aaC38363.1| (97% identity in 398 amino acids)
SEQ ID NO: 738: -0.374731, 187, novel, identical to L0056
8420 |Escherichia coli O-157:H7 strain EDL933|

Appendix B: Hideo *et al.* Full Translation

gi|3414924|gb|aaC31535.1| ; similar to rOrf1 [Escherichia
coli strain E2348/69] gi|2865269|gb|aaC38362.1| (99% identity
in 272 amino acids)

SEQ ID NO: 739: -0.368977, 304, novel, TTG start

8425 SEQ ID NO: 740: -0.53815, 174, novel

SEQ ID NO: 741: -0.097015, 68, novel, similar to hypothetical
proteins for example ,NMA0565 [Neisseria meningitidis]
gi|7379302|emb|CAB83857.1 (35% identity in 118 amino acids)

SEQ ID NO: 742: -0.458602, 187, novel

8430 SEQ ID NO: 743: -0.278645, 680, a putative transcriptional[sic,
translational]regulator , similar to transcriptional[sic,
translational] regulators for example ,Com protein
(transcriptional[sic, translational] regulator of Mom)
[Bacteriophage Mu] gi|7388376|sp|Q53979|VCOM#SHIDY(46%
8435 identity in 57 amino acids)

SEQ ID NO: 744: 0.096667, 61, a putative DNA modification
protein, similar to DNA modification proteins for
example ,Mom protein [Bacteriophage Mu]
gi|138782|sp|P06018|VMOM#BPMU (76% identity in 245
8440 amino acids), GTG start

SEQ ID NO: 745: -0.679012, 82, a sorbose-permease IID
component(PTS system), similar to sorbose-permease IID
components for example ,[Klebsiella pneumoniae]
gi|548634|sp|P37083|PTRD#KLEPN (92% identity in 64 amino
8445 acids), interrupted byphage-insertion

SEQ ID NO: 746: -0.529126, 104, a sorbose-permease IIC
component (PTS system), similar to sorbose-permease IIC
components for example ,[Klebsiella pneumoniae]
gi|548633|sp|P37082|PTRC#KLEPN (92% identity in 265
8450 amino acids)

SEQ ID NO: 747: -0.937879, 67, a sorbose-permease IIB
component (PTS system), similar to sorbose-permease IIB
components for example ,[Klebsiella pneumoniae]
gi|1142714|gb|aaB04152.1| (46% identity in 162 amino acids)

Appendix B: Hideo *et al.* Full Translation

- 8455 SEQ ID NO: 748: -0.563673, 246, a putative sorbose-permease IIA component (PTS system), similar to sorbose-permease IIA components, for example ,[Klebsiella pneumoniae] gi|548631|sp|P37080|PTRA#KLEPN (71% identity in 135 amino acids)
- 8460 SEQ ID NO: 749 : -0.055385, 66, a sorbitol-6-phosphate 2-dehydrogenase, similar to sorbitol-6-phosphate 2-dehydrogenases for example ,[Klebsiella pneumoniae] gi|548951|sp|P37079|SORD#KLEPN (86% identity in 268 amino acids)
- 8465 SEQ ID NO: 750: 0.997359, 266, a putative sorbitol operon regulatory element (activator), similar to sorbitol operon regulatory element (SorC family) for example ,[Klebsiella pneumoniae] gi|548950|sp|P37078|SORC#KLEPN (86% identity in 315 amino acids)
- 8470 SEQ ID NO: 751: -0.115244, 165, a putative regulatory protein, similar to regulatory proteins for example ,aerobic respiration control protein [Zymomonas mobilis] gi|4511977|gb|aaD21537.1| (39% identity in 230 amino acids)
- SEQ ID NO: 752 : 0.19037, 136, a putative sugar kinase, similar to sugar kinases for example ,fructo kinase homolog ydjE [Bacillus subtilis] gi|3915420|sp|O34768|YDJE#BACSU (24% identity in 326 amino acids)
- 8475 SEQ ID NO: 753: -0.159702, 269, a putative aldolase, similar to aldolases for example ,fructose-bisphosphate aldolase (EC 4.1.2.13) Fbaa [Bacillus subtilis] gi|543796|sp|P13243|ALF1#BACSU (41% identity in 286 amino acids)
- SEQ ID NO: 754: -0.218413, 316, novel, similar to (at low level) a part of hypothetical protein ydaE [Bacillus subtilis] gi|7474928|pir| |E69768 (35% identity in 51 amino acids)
- 8485 SEQ ID NO: 1322 : 0.197872, 236, a putative carbohydratebinding protein, similar to C-terminal part of carbohydratebinding proteins for example , bifunctional

Appendix B: Hideo *et al.* Full Translation

- carbohydrate binding and transporter protein [Streptomyces
8490 coelicolor A3(2)] gi|6714794|emb|CAB66286.1| (35% identity
in 304 amino acids); ribose ABC transporter (ribose-binding
protein) rbsB [Bacillus subtilis]
gi|6174949|sp|P36949|RBSB#BACSU(36% identity in 261
amino acids)
- 8495 SEQ ID NO: 1323: -0.163964, 334, a putative carbohydrate
ABC transporter (permease), similar to carbohydrate ABC
transporters (permease) for example ,ribose ABC transporter
(permease) rbsC [Bacillus subtilis] gi|7446897|pir| |B69690
(43% identity in 317 amino acids)
- 8500 SEQ ID NO: 1324: 0.066434, 287, a putative sugar ABC
transporter, ATP-binding protein, similar to sugar ABC
transporter, ATP-binding proteins for example ,riboseABC
transporter (ATP-binding protein) rbsA [Bacillus subtilis]
gi|7404442|sp|P36947|RBSA#BACSU (45% identity in 489
8505 amino acids)
- SEQ ID NO: 1325 : -0.440969, 228, a putative histidine
protein kinase, similar to histidine proteinkinase for
example ,histidine protein kinase-response regulator hybrid
protein CvgSY [Pseudomonas syringae pv. syringae]
8510 gi|5019771|gb|aaD37857.1|AF133263#2 (43% identity in 364
amino acids)
- SEQ ID NO: 1326: -0.003195, 314, a putative transposase,
similar to transposase homologA [Helicobacter pylori]
gi|2114470|gb|aaD11513.1 (60% identity in 137 amino acids)
- 8515 SEQ ID NO: 1327: 1.026235, 325, a putative transposase,
similar to B1432#ECOLI gi|1787702 (96% identity in 402 amino
acids); transposases for example ,ORFB [Xylella fastidiosa]
gi|9105393|gb|aaF83346.1|AE003901#9 (38% identity in 321
amino acids)
- 8520 SEQ ID NO: 1328 : -0.04664, 507, a putative integrase,
similar to(at low level) integrases for example ,integrase
[Bacteriophage TPW22]

Appendix B: Hideo *et al.* Full Translation

gi|6465906|gb|aaF12706.1|AF066865#4 (23% identity in 342 amino acids)

8525 SEQ ID NO: - : -0.010053, 757, identical to transposase (insertion sequence IS629),gi|7444868|pir||T00241

SEQ ID NO: 1620: -0.25035, 144, identical to transposase (insertion sequence IS629),[Escherichia coli plasmid p O-157] gi|7443862|pir||T00240

8530 SEQ ID NO: 1621: -0.587696, 383, novel

SEQ ID NO: 1310: -0.455932, 650, novel, TTG start

SEQ ID NO: 1311: -0.965741, 109, novel, TTG start

SEQ ID NO: 1312: -0.397973, 297, novel, similar to(at low level) hypothetical proteins [Staphylococcus aureus] for example ,gi|7594765|dbj|Baa94663.1| (30% identity in 143 amino acids); hypothetical protein [Neisseria meningitidis] gi|5051461|emb|CAB44981.1| (28% identity in 140 amino acids)

8535 SEQ ID NO: 1313: -0.511702, 95, a putative resolvase, similar to resolvases for example ,resolvase [Escherichia coli transposon Tn2501] gi|135944|sp|P05823|TNPO#ECOLI(45% identity in 179 amino acids)

[0029]

12) Other proteins

8545 Sequence number: hydrophobicity, The number of amino acids, Character such as function

SEQ ID NO: 1314:0.037273, 111, putative transposase, similar to C-terminal part of transposases, for example, [Escherichia coli Tn5] gi|622948|gb|aaB60064.1|, may be disrupted

8550 SEQ ID NO: 1315: -0.213793, 59, novel, similar to a part of KfaE protein [Escherichia coli] gi|628752|pir||S45104 (55% identity in 52 amino acids)

SEQ ID NO: 1316: -0.256129, 156, a putative enterotoxin, similar to ShET2 enterotoxin [Shigella flexneri] gi|1109754|emb|Caa90938.1| (38% identity in 539 amino acids) ; similar to a part of hypothetical protein, for example,

Appendix B: Hideo *et al.* Full Translation

ankyri-like regulatory protein [Escherichia coli]
gi|418526|sp|P23325|ARP#ECOLI (28% identity in 172 amino acids) (at low level)

8560 SEQ ID NO: 1317: -0.050262, 192, novel, similar to sB protein, for example, [insertion element iso-IS1N]
gi|124919|sp|P03832|ISBN#SHIDY (69% identity in 49 amino acids), TTG start
SEQ ID NO: 1318 : -0.438356, 439, novel, similar to a hypothetical protein [Salmonella typhimurium]
gi|6960367|gb|aaF33527.1| (63% identity in 306 amino acids)
SEQ ID NO: 1319: -0.524125, 258, novel
SEQ ID NO: 1320 : -0.435714, 155, novel, similar to a hypothetical protein in insertion elements, for example, [IS630]
8570 gi|140943|sp|P16943|YIS5#SHISO (88% identity in 282 amino acids)
SEQ ID NO: 1014: -0.510181, 276, a putative adherence factor, similar to N-terminal part of adherence factors (amino acids at the position 1-433/3223), for example, Efa1 [Escherichia coli O111:H- strain E45035]
gi|6013469|gb|aaD49229.2|AF159462#1 (99% identity in 433 amino acids), probably interrupted by frameshift
SEQ ID NO: 1015: -0.496819, 284, a putative DNA-binding protein, similar to putative DNA-binding protein [Neisseria meningitidis] gi|7379301|emb|CAB83856.1 (47% identity in 101 amino acids)
SEQ ID NO: 1016: -0.412037, 109, novel
SEQ ID NO: 1017: -0.505722, 368, a putative transcription regulatory element, its N-terminal part is similar to transcription regulatory elements, for example ,BamH I control element [Bacillus amyloliquefaciens]
gi|116073|sp|P23939|CEBA#BACAM (47% identity in 68 amino acids)
SEQ ID NO: 1018: -0.409362, 236, an integrase, similar to integrase, for example, [prophage P4]

Appendix B: Hideo *et al.* Full Translation

gi|732036|sp|P39347|INTB#ECOLI (74% identity in 236 amino acids)
SEQ ID NO: 1019: -0.205818, 551, novel
SEQ ID NO: 1020: -0.198657, 1118, novel, similar to a part of hypothetical proteins, for example, YjH [Escherichia coli]
8595 gi|7404491|sp|P39371|YJHT#ECOLI (95% identity in 82 amino acids), TTG start
SEQ ID NO: 1021: -0.398339, 2105, novel
SEQ ID NO: 1022: -0.508378, 944, novel, similar to putative periplasmic protein [Campylobacter jejuni]
8600 gi|6968066|emb|CAB75235.1| (26% identity in 173 amino acids) (at low level)
SEQ ID NO: 1023: -0.482301, 1645, novel (putative membrane protein), similar to a part of myosin heavychains, for example, [Cyprinus carpio] gi|2351223|dbj|Baa22069.1| (19% identity in 292 amino acids) (at low level)
SEQ ID NO: 1024: -0.359727, 2114, novel, similar to a part of YjiT [Escherichia coli] gi|732099|sp|P39391|YJIT#ECOLI (27% identity in 239 amino acids) (at low level), GTG start
8610 SEQ ID NO: 1025: -0.345738, 705, novel, its N-terminal part is similar to N-terminal part of putative RNA helicase [Deinococcus radiodurans (strain R1)] gi|7473663|pir||B75633 (29% identity in 291 amino acids); and its central part is similar to hypothetical YjiV protein [Escherichia coli]
8615 gi|2851665|sp|P39393|YJIV#ECOLI (28% identity in 491 amino acids); a part of McrD protein [Escherichia coli] gi|2851619|sp|P27301|MCRD#ECOLI (39% identity in 131 amino acids)
SEQ ID NO: 1026: 0.04, 61, a putative ATP-dependent helicase,
8620 similar to putative ATP-dependent helicases, for example, [Halobacterium sp. (strain NRC-1) plasmid pNRC100] gi|7484100|pir||T08316 (26% identity in 597 amino acids)
SEQ ID NO: 1027: -0.514474, 77, novel, similar to hypothetical proteins, for example, H1130 [Halobacterium sp. (strain NRC-1)

Appendix B: Hideo *et al.* Full Translation

8625 plasmid pNRC100| gi|7484076|pir||T08313 (25% identity in
508 amino acids); and possible restriction /modification enzyme
[Campylobacter jejuni] gi|6968147|emb|CAB72964.1| (24%
identity in 414 amino acids)
SEQ ID NO: 1028: -0.40375, 81, a putative RNA helicase,
8630 similar to putative RNA helicases, for example, [Deinococcus
radiodurans (strain R1)] gi|7473663|pir||B75633 (amino acids
at the position 78-396) (31% identity in 318 amino acids); and
(amino acids at the position 994-1708) (23% identity in 714
amino acids)
8635 SEQ ID NO: 1468: -0.351742, 1580, a putative DNA helicase,
similar to DNA helicases, for example, putative DNA helicase
H91#ORF529 [Mycoplasma pneumoniae]
gi|2495150|sp|P75438|YH91#MYCPN (24% identity in 455
amino acids); and helicase IV [Escherichia coli]
8640 gi|146328|gb|aaA23952.1| (23% identity in 513 amino acids)
SEQ ID NO: 1469: 0.14127, 64, novel, TTG start
SEQ ID NO: 1470: -0.245455, 67, novel, similar to N-terminal
part of putative membrane protein b1978 [Escherichia coli
K-12] gi|1736642|dbj|Baa15799.1| (58% identity in 46 amino
8645 acids)
SEQ ID NO: 1546: -0.622994, 736, novel
SEQ ID NO: - : -0.059091, 89, novel
SEQ ID NO: 1592: -0.298976, 294, novel, similar to N-terminal
part of hypothetical proteins, for example, jhp0462
8650 [Helicobacter pylori (strain J99)] gi|7464730|pir||C71929
(48% identity in 269 amino acids); and jhp0572 [Helicobacter
pylori (strainJ99)] gi|7464757|pir||H71914 (31% identity in
282 amino acids)
SEQ ID NO: 1593: -0.494832, 388, novel, similar to C-terminal
8655 part of hypothetical proteins, for example, jhp0462
[Helicobacter pylori (strain J99)] gi|7464730|pir||C71929
(42% identity in 423 amino acids); and HP051 3 [Helicobacter
pylori (strain26695)] gi|7464291|pir||A64584 (44% identity in

Appendix B: Hideo *et al.* Full Translation

423 amino acids)

8660 SEQ ID NO: 1381 : -0.367123, 585, a type I restriction modification enzymes subunit, similar to type I restriction-modification enzyme S subunits, for example, [Citrobacter freundii] pir|S06097| (54% identity in 584 amino acids)

8665 SEQ ID NO: 1382 : -0.413184, 494, a type I restriction modification enzymeM subunit, similar to type I restriction modification enzyme M subunits, for example, [EcoA system] gi|421016|pir||A47200 (98% identity in 489 amino acids)

SEQ ID NO: 1383 : -0.505062, 811, a type I

8670 restriction-modification enzymeR subunit, similar to type I restriction-modification enzyme R subunits, for example, [EcoA] gi|2121113|pir||I41291 (99% identity in 810 amino acids)

SEQ ID NO: 1384: -0.614894, 95, novel, similar to N-terminal part of hypothetical proteins, for example, [Helicobacter pylori] gi|7464531|pir||E64694 (36% identity in 87 amino acids)

8675 SEQ ID NO: 1385 : -0.442477, 453, novel, similar to hypothetical proteins, for example, [Streptomyces coelicolor A3(2)] gi|7479715|pir||T35601 (22% identity in 379 amino acids) (at low level), TTG start

8680 SEQ ID NO: 1689: -0.487222, 181, novel
[0030]

1) Proteins having unknown function

These proteins or polypeptides are selected from a group comprising the following sequence list: SEQ ID NO: 163, SEQ ID NO: 164, SEQ ID NO: 165, SEQ ID NO: 166, SEQ ID NO: 167, SEQ ID NO: 168, SEQ ID NO: 169, SEQ ID NO: 170, SEQ ID NO: 171, SEQ ID NO: 172, SEQ ID NO: 173, SEQ ID NO: 174, SEQ ID NO: 175, SEQ ID NO: 176, SEQ ID NO: 177, SEQ ID NO: 178, SEQ ID NO: 179, SEQ ID NO: 180, SEQ ID NO: 181, SEQ ID NO: 182, SEQ ID NO: 183, SEQ ID NO: 184, SEQ ID NO: 185, SEQ ID NO: 186, SEQ ID NO: 187, SEQ ID NO: 188, SEQ ID NO: 189, SEQ ID NO: 190, SEQ ID NO: 191, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO: 192, SEQ ID NO: 193, SEQ ID NO: 194, SEQ ID NO: 195,
SEQ ID NO: 196, SEQ ID NO: 197, SEQ ID NO: 198, SEQ ID
8695 NO: 199, SEQ ID NO: 200, SEQ ID NO: 201, SEQ ID NO: 202,
SEQ ID NO: 203, SEQ ID NO: 204, SEQ ID NO: 205, SEQ ID
NO: 206, SEQ ID NO: 207, SEQ ID NO: 208, SEQ ID NO: 209,
SEQ ID NO: 210, SEQ ID NO: 211, SEQ ID NO: 212, SEQ ID
NO: 213, SEQ ID NO: 214, SEQ ID NO: 215, SEQ ID NO: 216,
8700 SEQ ID NO: 217, SEQ ID NO: 218, SEQ ID NO: 219, SEQ ID
NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223,
SEQ ID NO: 224, SEQ ID NO: 225, SEQ ID NO: 226, SEQ ID
NO: 227, SEQ ID NO: 228, SEQ ID NO: 229, SEQ ID NO: 230,
SEQ ID NO: 231, SEQ ID NO: 232, SEQ ID NO: 233, SEQ ID
8705 NO: 234, SEQ ID NO: 235, SEQ ID NO: 236, SEQ ID NO: 237,
SEQ ID NO: 238, SEQ ID NO: 239, SEQ ID NO: 240, SEQ ID
NO: 241, SEQ ID NO: 242, SEQ ID NO: 243, SEQ ID NO: 485,
SEQ ID NO: 486, SEQ ID NO: 487, SEQ ID NO: 488, SEQ ID
NO: 489, SEQ ID NO: 490, SEQ ID NO: 491, SEQ ID NO: 492,
8710 SEQ ID NO: 493, SEQ ID NO: 494, SEQ ID NO: 495, SEQ ID
NO: 496, SEQ ID NO: 497, SEQ ID NO: 498, SEQ ID NO: 499,
SEQ ID NO: 500, SEQ ID NO: 501, SEQ ID NO: 502, SEQ ID
NO: 503, SEQ ID NO: 504, SEQ ID NO: 505, SEQ ID NO: 506,
SEQ ID NO: 507, SEQ ID NO: 508, SEQ ID NO: 509, SEQ ID
8715 NO: 510, SEQ ID NO: 511, SEQ ID NO: 512, SEQ ID NO: 513,
SEQ ID NO: 514, SEQ ID NO: 515, SEQ ID NO: 516, SEQ ID
NO: 517, SEQ ID NO: 518, SEQ ID NO: 519, SEQ ID NO: 520,
SEQ ID NO: 521, SEQ ID NO: 522, SEQ ID NO: 523, SEQ ID
NO: 524, SEQ ID NO: 525, SEQ ID NO: 526, SEQ ID NO: 527,
8720 SEQ ID NO: 528, SEQ ID NO: 529, SEQ ID NO: 530, SEQ ID
NO: 531, SEQ ID NO: 532, SEQ ID NO: 533, SEQ ID NO: 534,
SEQ ID NO: 535, SEQ ID NO: 536, SEQ ID NO: 537, SEQ ID
NO: 538, SEQ ID NO: 539, SEQ ID NO: 540, SEQ ID NO: 541,
SEQ ID NO: 542, SEQ ID NO: 543, SEQ ID NO: 544, SEQ ID
8725 NO: 545, SEQ ID NO: 546, SEQ ID NO: 547, SEQ ID NO: 548,
SEQ ID NO: 549, SEQ ID NO: 550, SEQ ID NO: 551, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO: 552, SEQ ID NO: 553, SEQ ID NO: 631, SEQ ID NO: 632,
SEQ ID NO: 633, SEQ ID NO: 634, SEQ ID NO: 635, SEQ ID
NO: 636, SEQ ID NO: 637, SEQ ID NO: 638, SEQ ID NO: 639,
8730 SEQ ID NO: 640, SEQ ID NO: 641, SEQ ID NO: 642, SEQ ID
NO: 643, SEQ ID NO: 644, SEQ ID NO: 928, SEQ ID NO: 929,
SEQ ID NO: 930, SEQ ID NO: 931, SEQ ID NO: 932, SEQ ID
NO: 933, SEQ ID NO: 934, SEQ ID NO: 935, SEQ ID NO: 936,
SEQ ID NO: 937, SEQ ID NO: 938, SEQ ID NO: 939, SEQ ID
8735 NO: 940, SEQ ID NO: 941, SEQ ID NO: 942, SEQ ID NO: 943,
SEQ ID NO: 944, SEQ ID NO: 945, SEQ ID NO: 946, SEQ ID
NO: 979, SEQ ID NO: 980, SEQ ID NO: 981, SEQ ID NO: 982,
SEQ ID NO: 983, SEQ ID NO: 984, SEQ ID NO: 985, SEQ ID
NO: 986, SEQ ID NO: 987, SEQ ID NO: 988, SEQ ID NO: 989,
8740 SEQ ID NO: 990, SEQ ID NO: 991, SEQ ID NO: 992, SEQ ID
NO: 993, SEQ ID NO: 994, SEQ ID NO: 995, SEQ ID NO: 996,
SEQ ID NO: 997, SEQ ID NO: 998, SEQ ID NO: 999, SEQ ID
NO: 1000, SEQ ID NO: 1001, SEQ ID NO: 1002, SEQ ID NO:
1003, SEQ ID NO: 1004, SEQ ID NO: 1005, SEQ ID NO: 1006,
8745 SEQ ID NO: 1008, SEQ ID NO: 1009, SEQ ID NO: 1010, SEQ ID
NO: 1011, SEQ ID NO: 1012, SEQ ID NO: 1056, SEQ ID NO:
1057, SEQ ID NO: 1058, SEQ ID NO: 1059, SEQ ID NO: 1094,
SEQ ID NO: 1095, SEQ ID NO: 1096, SEQ ID NO: 1097, SEQ ID
NO: 1098, SEQ ID NO: 1099, SEQ ID NO: 1100, SEQ ID NO:
8750 1101, SEQ ID NO: 1102, SEQ ID NO: 1103, SEQ ID NO: 1104,
SEQ ID NO: 1105, SEQID NO: 1106, SEQ ID NO: 1107, SEQ ID
NO: 1108, SEQ ID NO: 1109, SEQ ID NO: 1110, SEQ ID NO:
1111, SEQ ID NO: 1112, SEQ ID NO: 1113, SEQ ID NO: 1114,
SEQ ID NO: 1115, SEQ ID NO: 1116, SEQ ID NO: 1117, SEQ ID
8755 NO: 1118, SEQ ID NO: 1119, SEQ ID NO: 1120, SEQ ID NO:
1121, SEQ ID NO: 1122, SEQ ID NO: 1123, SEQ ID NO: 1124,
SEQ ID NO: 1125, SEQ ID NO: 1126, SEQ ID NO: 1127, SEQ ID
NO: 1213, SEQ ID NO: 1214, SEQ ID NO: 1215, SEQ ID NO:
1216, SEQ ID NO: 1217, SEQ ID NO: 1218, SEQ ID NO: 1219,
8760 SEQ ID NO: 1220,SEQ ID NO: 1221, SEQ ID NO: 1222, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO: 1223, SEQ ID NO: 1224, SEQID NO: 1225, SEQ ID NO:
1226, SEQ ID NO: 1227, SEQ ID NO: 1228, SEQ IDNO: 1229,
SEQ ID NO: 1230, SEQ ID NO: 1231, SEQ ID NO: 1232, SEQ ID
NO: 1233, SEQ ID NO: 1234, SEQ ID NO: 1235, SEQ ID NO:
8765 1236, SEQ ID NO: 1237, SEQ ID NO: 1238, SEQ ID NO: 1239,
SEQ ID NO: 1275, SEQ ID NO: 1276, SEQ ID NO: 1277, SEQ ID
NO: 1278, SEQ ID NO: 1279, SEQ ID NO: 1280, SEQ IDNO:
1281, SEQ ID NO: 1282, SEQ ID NO: 1284, SEQ ID NO: 1285,
SEQ ID NO: 1286, SEQ ID NO: 1287, SEQ ID NO: 1303, SEQ ID
8770 NO: 1304, SEQ ID NO: 1305, SEQ ID NO: 1306, SEQ ID NO:
1307, SEQ ID NO: 1308, SEQ ID NO: 1360, SEQ ID NO: 1361,
SEQ ID NO: 1362, SEQ ID NO: 1363, SEQ ID NO: 1364, SEQ ID
NO: 1365, SEQ ID NO: 1387, SEQ ID NO: 1388, SEQ ID NO:
1389, SEQ ID NO: 1390, SEQ ID NO: 1391, SEQ ID NO: 1392,
8775 SEQ ID NO: 1393, SEQ ID NO: 1437, SEQ ID NO: 1438, SEQ ID
NO: 1439, SEQ ID NO: 1440, SEQ ID NO: 1441, SEQ ID NO:
1442, SEQ ID NO: 1451, SEQ ID NO: 1452, SEQ ID NO: 1453,
SEQ ID NO: 1454, SEQ ID NO: 1455, SEQ ID NO: 1456, SEQ ID
NO: 1474, SEQ ID NO: 1475, SEQ ID NO: 1476, SEQ ID NO:
8780 1479, SEQ ID NO: 1480, SEQ ID NO: 1481, SEQ ID NO: 1482,
SEQ ID NO: 1483, SEQ ID NO: 1484, SEQ ID NO: 1485, SEQ ID
NO: 1486, SEQ ID NO: 1495, SEQ ID NO: 1496, SEQ ID NO:
1497, SEQID NO: 1498, SEQ ID NO: 1500, SEQ ID NO: 1502,
SEQ ID NO: 1503, SEQ IDNO: 1504, SEQ ID NO: 1505, SEQ ID
8785 NO: 1559, SEQ ID NO: 1560, SEQ ID NO: 1561, SEQ ID NO:
1562, SEQ ID NO: 1577, SEQ ID NO: 1578, SEQ ID NO: 1579,
SEQ ID NO: 1602, SEQ ID NO: 1606, SEQ ID NO: 1625, SEQ ID
NO: 1663, SEQ ID NO: 1697, SEQ ID NO: 1698, SEQ ID NO:
1702 and SEQ ID NO: 1703. These proteins or polypeptides
8790 are psecific to O-157:H7. Whereas no significant homology to
all data registered in gene data bank is found from information
of determined amino acid sequence, and their functions and the
like are not known. However, as shown in table 1, a protein
predicted to be a cell surface protein (membrane protein,

Appendix B: Hideo *et al.* Full Translation

8795 especially, outer membrane protein (OMP), lipoprotein) in them
or its gene (or nucleic-acid molecule) may be useful for
production of an antibody, vaccine composition, diagnosis of
O-157 infection and the like. Furthermore, there is a
possibility that they include a protein which has an important
8800 function in O-157, for example, transportation and metabolism
of a substance, processing of nucleic acids, and relates to a
regulatory element and pathogenicity. They are to be useful
for diagnosis and therapy of O-157 infection.

[0031]

8805 2) Proteins which have unknown function, but have significant
homology to that of other bacteria:

These proteins or polypeptides are selected from a group
comprising the following sequence list: SEQ ID NO: 02, SEQ ID
NO: 03, SEQ ID NO: 04, SEQ ID NO: 05, SEQ ID NO: 06, SEQ ID
8810 NO: 07, SEQ ID NO: 08, SEQ ID NO: 09, SEQ ID NO: 10, SEQ
ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14,
SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18,
SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22,
SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26,
8815 SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30,
SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 245, SEQ ID NO:
246, SEQ ID NO: 247, SEQ ID NO: 248, SEQ ID NO: 249, SEQ
ID NO: 250, SEQ ID NO: 251, SEQ ID NO: 252, SEQ ID NO: 253,
SEQ ID NO: 254, SEQ ID NO: 255, SEQ ID NO: 256, SEQ ID
8820 NO: 257, SEQ ID NO: 258, SEQ ID NO: 259, SEQ ID NO: 260,
SEQ ID NO: 261, SEQ ID NO: 262, SEQ ID NO: 263, SEQ ID
NO: 264, SEQ ID NO: 265, SEQ ID NO: 266, SEQ ID NO: 267,
SEQ ID NO: 268, SEQ ID NO: 270, SEQ ID NO: 271, SEQ ID NO:
272, SEQ ID NO: 273, SEQ ID NO: 338, SEQ ID NO: 339, SEQ
8825 ID NO: 340, SEQ ID NO: 341, SEQ ID NO: 342, SEQ ID NO:
343, SEQ ID NO: 344, SEQ ID NO: 345, SEQ ID NO: 346, SEQ
ID NO: 347, SEQ ID NO: 348, SEQ ID NO: 349, SEQ ID NO: 350,
SEQ ID NO: 351, SEQ ID NO: 352, SEQ ID NO: 353, SEQ ID NO:

Appendix B: Hideo *et al.* Full Translation

354, SEQ ID NO: 355, SEQ ID NO: 356, SEQ IDNO: 357, SEQ
8830 ID NO: 358, SEQ ID NO: 359, SEQ ID NO: 360, SEQ ID NO:
361,SEQ ID NO: 362, SEQ ID NO: 363, SEQ ID NO: 364, SEQ
ID NO: 365, SEQ ID NO: 366, SEQ ID NO: 367, SEQ ID NO: 368,
SEQ ID NO: 369, SEQ ID NO: 370,SEQ ID NO: 371, SEQ ID NO:
372, SEQ ID NO: 373, SEQ ID NO: 374, SEQ ID NO: 375, SEQ
8835 ID NO: 376, SEQ ID NO: 377, SEQ ID NO: 378, SEQ ID NO:
379,SEQ ID NO: 380, SEQ ID NO: 381, SEQ ID NO: 382, SEQ
ID NO: 383, SEQ ID NO: 384, SEQ ID NO: 385, SEQ ID NO: 386,
SEQ ID NO: 387, SEQ ID NO: 388,SEQ ID NO: 389, SEQ ID NO:
390, SEQ ID NO: 391, SEQ ID NO: 392, SEQ IDNO: 393, SEQ
8840 ID NO: 394, SEQ ID NO: 395, SEQ ID NO: 396, SEQ ID NO: 397,
SEQ ID NO: 398, SEQ ID NO: 399, SEQ ID NO: 400, SEQ ID
NO: 401, SEQ IDNO: 402, SEQ ID NO: 403, SEQ ID NO: 404,
SEQ ID NO: 405, SEQ ID NO: 406, SEQ ID NO: 407, SEQ ID
NO: 408, SEQ ID NO: 409, SEQ ID NO: 411, SEQ ID NO: 412,
8845 SEQ ID NO: 413, SEQ ID NO: 414, SEQ ID NO: 416, SEQ ID
NO: 417, SEQ ID NO: 418, SEQ ID NO: 419, SEQ ID NO: 420,
SEQ ID NO: 421, SEQ ID NO: 422, SEQ ID NO: 423, SEQ ID
NO: 424, SEQ ID NO: 425, SEQ ID NO: 426, SEQ ID NO: 427,
SEQ ID NO: 428, SEQ ID NO: 429, SEQ ID NO: 430, SEQ ID
8850 NO: 431, SEQ ID NO: 432, SEQ ID NO: 433, SEQ ID NO: 434,
SEQ ID NO: 435, SEQ ID NO: 436, SEQ ID NO: 437, SEQ ID
NO: 438, SEQ ID NO: 439, SEQ ID NO: 440, SEQ ID NO: 441,
SEQ ID NO: 442, SEQ ID NO: 443, SEQ ID NO: 444, SEQ ID
NO: 445, SEQ ID NO: 446, SEQ ID NO: 447, SEQ ID NO: 448,
8855 SEQ ID NO: 449, SEQ ID NO: 450, SEQ ID NO: 451, SEQ ID
NO: 452, SEQ ID NO: 453, SEQ ID NO: 454, SEQ ID NO: 455,
SEQ ID NO: 456, SEQ ID NO: 457, SEQ ID NO: 458, SEQ ID
NO: 459, SEQ ID NO: 460, SEQ ID NO: 461, SEQ ID NO: 462,
SEQ ID NO: 463, SEQ ID NO: 464, SEQ ID NO: 465, SEQ ID
8860 NO: 466, SEQ ID NO: 467, SEQ ID NO: 468, SEQ ID NO: 469,
SEQ ID NO: 470, SEQ ID NO: 471, SEQ ID NO: 472, SEQ ID
NO: 473, SEQ ID NO: 474, SEQ ID NO: 475, SEQ ID NO: 476,

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 477, SEQ ID NO: 478, SEQ ID NO: 479, SEQ ID NO: 480, SEQ ID NO: 481, SEQ ID NO: 482, SEQ ID NO: 483, SEQ ID NO: 645, SEQ ID NO: 646, SEQ ID NO: 647, SEQ ID NO: 648, SEQ ID NO: 649, SEQ ID NO: 650, SEQ ID NO: 651, SEQ ID NO: 652, SEQ ID NO: 653, SEQ ID NO: 654, SEQ ID NO: 655, SEQ ID NO: 656, SEQ ID NO: 657, SEQ ID NO: 658, SEQ ID NO: 659, SEQ ID NO: 660, SEQ ID NO: 661, SEQ ID NO: 662, SEQ ID NO: 663, SEQ ID NO: 664, SEQ ID NO: 665, SEQ ID NO: 666, SEQ ID NO: 667, SEQ ID NO: 668, SEQ ID NO: 669, SEQ ID NO: 670, SEQ ID NO: 671, SEQ ID NO: 672, SEQ ID NO: 673, SEQ ID NO: 674, SEQ ID NO: 675, SEQ ID NO: 676, SEQ ID NO: 677, SEQ ID NO: 678, SEQ ID NO: 679, SEQ ID NO: 680, SEQ ID NO: 681, SEQ ID NO: 682, SEQ ID NO: 683, SEQ ID NO: 684, SEQ ID NO: 685, SEQ ID NO: 686, SEQ ID NO: 687, SEQ ID NO: 688, SEQ ID NO: 877, SEQ ID NO: 878, SEQ ID NO: 879, SEQ ID NO: 880, SEQ ID NO: 881, SEQ ID NO: 882, SEQ ID NO: 883, SEQ ID NO: 884, SEQ ID NO: 885, SEQ ID NO: 886, SEQ ID NO: 887, SEQ ID NO: 888, SEQ ID NO: 889, SEQ ID NO: 890, SEQ ID NO: 891, SEQ ID NO: 892, SEQ ID NO: 893, SEQ ID NO: 894, SEQ ID NO: 895, SEQ ID NO: 896, SEQ ID NO: 897, SEQ ID NO: 898, SEQ ID NO: 899, SEQ ID NO: 900, SEQ ID NO: 901, SEQ ID NO: 902, SEQ ID NO: 903, SEQ ID NO: 904, SEQ ID NO: 905, SEQ ID NO: 906, SEQ ID NO: 907, SEQ ID NO: 908, SEQ ID NO: 909, SEQ ID NO: 910, SEQ ID NO: 911, SEQ ID NO: 912, SEQ ID NO: 913, SEQ ID NO: 914, SEQ ID NO: 915, SEQ ID NO: 916, SEQ ID NO: 917, SEQ ID NO: 918, SEQ ID NO: 919, SEQ ID NO: 920, SEQ ID NO: 921, SEQ ID NO: 922, SEQ ID NO: 923, SEQ ID NO: 924, SEQ ID NO: 925, SEQ ID NO: 926, SEQ ID NO: 947, SEQ ID NO: 947, SEQ ID NO: 949, SEQ ID NO: 950, SEQ ID NO: 951, SEQ ID NO: 952, SEQ ID NO: 953, SEQ ID NO: 954, SEQ ID NO: 955, SEQ ID NO: 956, SEQ ID NO: 957, SEQ ID NO: 958, SEQ ID NO: 959, SEQ ID NO: 960, SEQ ID NO: 961, SEQ ID NO: 962, SEQ ID NO: 963, SEQ ID NO: 964,

SEQ ID NO: 965, SEQ ID NO: 966, SEQ ID NO: 967, SEQ ID NO: 968, SEQ ID NO: 968, SEQ ID NO: 969, SEQ ID NO: 970, SEQ ID NO: 971, SEQ ID NO: 972, SEQ ID NO: 973, SEQ ID NO: 1026, SEQ ID NO: 1027, SEQ ID NO: 1028, SEQ ID NO: 1375, SEQ ID NO: 1376, SEQ ID NO: 1377, SEQ ID NO: 1378, SEQ ID NO: 1379, SEQ ID NO: 1410, SEQ ID NO: 1419, SEQ ID NO: 1420, SEQ ID NO: 1421, SEQ ID NO: 1422, SEQ ID NO: 1423, SEQ ID NO: 1424, SEQ ID NO: 1425, SEQ ID NO: 1488, SEQ ID NO: 1517, SEQ ID NO: 1516, SEQ ID NO: 1517, SEQ ID NO: 1538, SEQ ID NO: 1539, SEQ ID NO: 1550, SEQ ID NO: 1567, SEQ ID NO: 1568, SEQ ID NO: 1608, SEQ ID NO: 1609, SEQ ID NO: 1610, SEQ ID NO: 1611, SEQ ID NO: 1628, SEQ ID NO: 1633, SEQ ID NO: 1634, SEQ ID NO: 1641, SEQ ID NO: 1642, SEQ ID NO: 1644, SEQ ID NO: 1645, SEQ ID NO: 1665, SEQ ID NO: 1676, and SEQ ID NO: 1681. These proteins or polypeptides are specific to O-157:H7, and significant homology to all data registered in gene data bank is found from determined information of amino acid sequence. Whereas, their functions and the like are not known. However, as shown in table 1, a protein predicted to be a cell surface protein (membrane protein, especially, OMP, lipoprotein) in them or its gene (or nucleic-acid molecule) may be useful for production of an antibody, vaccine composition, diagnosis of O-157 infection and the like. Furthermore, there is a possibility that they include a protein which has an important function in O-157, for example, transportation and metabolism of a substance, processing of nucleic acids, and relates to a regulatory element and pathogenicity. They are to be useful for diagnosis and therapy of O-157 infection.

[0032]

3) Proteins comprising Insertion Sequence (IS)

These proteins or polypeptides are selected from a group comprising the following sequence list: SEQ ID NO: 133, SEQ ID NO: 134, SEQ ID NO: 135, SEQ ID NO: 136, SEQ ID NO: 137,

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO: 138, SEQ ID NO: 139, SEQ ID NO: 140, SEQ ID NO: 141, SEQ ID NO: 142, SEQ ID NO: 143, SEQ ID NO: 144, SEQ ID NO: 145, SEQ ID NO: 146, SEQ ID NO: 147, SEQ ID NO: 148, SEQ ID NO: 149, SEQ ID NO: 150, SEQ ID NO: 151, 8935 SEQ ID NO: 152, SEQ ID NO: 153, SEQ ID NO: 154, SEQ ID NO: 155, SEQ ID NO: 156, SEQ ID NO: 157, SEQ ID NO: 158, SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 161, SEQ ID NO: 162, SEQ ID NO: 279, SEQ ID NO: 280, SEQ ID NO: 281, SEQ ID NO: 282, SEQ ID NO: 283, SEQ ID NO: 284, SEQ ID 8940 NO: 285, SEQ ID NO: 286, SEQ ID NO: 287, SEQ ID NO: 288, SEQ ID NO: 289, SEQ ID NO: 290, SEQ ID NO: 291, SEQ ID NO: 292, SEQ ID NO: 293, SEQ ID NO: 294, SEQ ID NO: 295, SEQ ID NO: 296, SEQ ID NO: 297, SEQ ID NO: 298, SEQ ID NO: 299, SEQ ID NO: 300, SEQ ID NO: 301, SEQ ID NO: 302, 8945 SEQ ID NO: 303, SEQ ID NO: 304, SEQ ID NO: 305, SEQ ID NO: 306, SEQ ID NO: 307, SEQ ID NO: 308, SEQ ID NO: 309, SEQ ID NO: 310, SEQ ID NO: 311, SEQ ID NO: 312, SEQ ID NO: 313, SEQ ID NO: 314, SEQ ID NO: 315, SEQ ID NO: 316, SEQ ID NO: 317, SEQ ID NO: 318, SEQ ID NO: 319, SEQ ID 8950 NO: 320, SEQ ID NO: 321, SEQ ID NO: 322, SEQ ID NO: 323, SEQ ID NO: 324, SEQ ID NO: 325, SEQ ID NO: 326, SEQ ID NO: 327, SEQ ID NO: 328, SEQ ID NO: 329, SEQ ID NO: 330, SEQ ID NO: 331, SEQ ID NO: 332, SEQ ID NO: 333, SEQ ID NO: 334, SEQ ID NO: 335, SEQ ID NO: 336, SEQ ID NO: 1030, 8955 SEQ ID NO: 1031, SEQ ID NO: 1032, SEQ ID NO: 1033, SEQ ID NO: 1034, SEQ ID NO: 1035, SEQ ID NO: 1036, SEQ ID NO: 1037, SEQ ID NO: 1038, SEQ ID NO: 1039, SEQ ID NO: 1040, SEQ ID NO: 1041, SEQ ID NO: 1042, SEQ ID NO: 1043, SEQ ID NO: 1044, SEQ ID NO: 1045, SEQ ID NO: 1046, SEQ ID NO: 8960 1047, SEQ ID NO: 1048, SEQ ID NO: 1049, SEQ ID NO: 1050, SEQ ID NO: 1051, SEQ ID NO: 1052, SEQ ID NO: 1053, SEQ ID NO: 1054, and SEQ ID NO: 1570. These proteins and their genes (or nucleic-acid molecules) are useful for detection and diagnosis of O-157 infection.

8965 [0033]

4) Proteins derived from phage:

These proteins or polypeptides are selected from a group comprising the following sequence list: SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 45, SEQ ID NO: 46, SEQ ID NO: 47, SEQ ID NO: 48, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51, SEQID NO: 52, SEQ ID NO: 53, SEQ ID NO: 54, SEQ ID NO: 55, SEQ ID NO: 56,SEQ ID NO: 57, SEQ ID NO: 58, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62, SEQ ID NO: 63, SEQ ID NO: 64, SEQ ID NO: 65, SEQ ID NO: 66, SEQ ID NO: 67, SEQ ID NO: 68, SEQ ID NO: 69, SEQ ID NO: 70, SEQ IDNO: 71, SEQ ID NO: 72, SEQ ID NO: 73, SEQ ID NO: 74, SEQ ID NO: 75, SEQ ID NO: 76, SEQ ID NO: 77, SEQ ID NO: 78, SEQ ID NO: 79, SEQ ID NO: 80, SEQ ID NO: 81, SEQ ID NO: 82, SEQ ID NO: 83, SEQ ID NO: 84, SEQ ID NO: 85, SEQ ID NO: 86, SEQ ID NO: 87, SEQ ID NO: 88, SEQ ID NO: 89, SEQ ID NO: 90, SEQ ID NO: 91, SEQ ID NO: 92, SEQ ID NO: 93, SEQ ID NO: 94, SEQ ID NO: 95, SEQ ID NO: 96, SEQ ID NO: 97, SEQ ID NO: 98, SEQ ID NO: 99, SEQ ID NO: 100, SEQ ID NO: 101, SEQ ID NO: 102, SEQ ID NO: 103, SEQ ID NO: 104, SEQ ID NO: 105, SEQ ID NO: 106, SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111, SEQ ID NO: 112, SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118, SEQ ID NO: 119, SEQ ID NO: 120, SEQ ID NO: 121, SEQ ID NO: 122, SEQ ID NO: 123, SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127, SEQ ID NO: 128, SEQ ID NO: 129, SEQ ID NO: 130, SEQ ID NO: 131, SEQ ID NO: 555, SEQ ID NO: 556, SEQ ID NO: 557, SEQ ID NO: 558, SEQ ID NO: 559, SEQ ID NO: 560, SEQ ID NO: 561, SEQ ID NO: 562, SEQ ID NO: 563, SEQ ID NO: 564, SEQ ID NO: 565, SEQ ID NO: 566, SEQ ID NO: 567, SEQ ID NO: 568, SEQ ID NO: 569, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO: 570, SEQ ID NO: 571, SEQ ID NO: 572, SEQ ID NO: 573,
9000 SEQ ID NO: 574, SEQ ID NO: 575, SEQ ID NO: 576, SEQ ID
NO: 577, SEQ ID NO: 578, SEQ ID NO: 579, SEQ ID NO: 580,
SEQ ID NO: 581, SEQ ID NO: 582, SEQ ID NO: 583, SEQ ID
NO: 584, SEQ ID NO: 585, SEQ ID NO: 586, SEQ ID NO: 587,
SEQ ID NO: 588, SEQ ID NO: 589, SEQ ID NO: 590, SEQ ID
9005 NO: 591, SEQ ID NO: 592, SEQ ID NO: 593, SEQ ID NO: 594,
SEQ ID NO: 595, SEQ ID NO: 596, SEQ ID NO: 597, SEQ ID
NO: 598, SEQ ID NO: 599, SEQ ID NO: 600, SEQ ID NO: 601,
SEQ ID NO: 602, SEQ ID NO: 603, SEQ ID NO: 604, SEQ ID
NO: 605, SEQ ID NO: 606, SEQ ID NO: 607, SEQ ID NO: 608,
9010 SEQ ID NO: 609, SEQ ID NO: 610, SEQ ID NO: 611, SEQ ID
NO: 612, SEQ ID NO: 613, SEQ ID NO: 614, SEQ ID NO: 615,
SEQ ID NO: 616, SEQ ID NO: 617, SEQ ID NO: 618, SEQ ID
NO: 619, SEQ ID NO: 620, SEQ ID NO: 621, SEQ ID NO: 622,
SEQ ID NO: 623, SEQ ID NO: 624, SEQ ID NO: 625, SEQ ID
9015 NO: 626, SEQ ID NO: 627, SEQ ID NO: 628, SEQ ID NO: 629,
SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID
NO: 759, SEQ ID NO: 760, SEQ ID NO: 761, SEQ ID NO: 762,
SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID
NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, SEQ ID NO: 769,
9020 SEQ ID NO: 770, SEQ ID NO: 771, SEQ ID NO: 772, SEQ ID
NO: 773, SEQ ID NO: 774, SEQ ID NO: 775, SEQ ID NO: 776,
SEQ ID NO: 777, SEQ ID NO: 778, SEQ ID NO: 779, SEQ ID
NO: 780, SEQ ID NO: 781, SEQ ID NO: 782, SEQ ID NO: 783,
SEQ ID NO: 784, SEQ ID NO: 785, SEQ ID NO: 786, SEQ ID
9025 NO: 787, SEQ ID NO: 788, SEQ ID NO: 789, SEQ ID NO: 790,
SEQ ID NO: 791, SEQ ID NO: 792, SEQ ID NO: 793, SEQ ID
NO: 794, SEQ ID NO: 795, SEQ ID NO: 796, SEQ ID NO: 797,
SEQ ID NO: 798, SEQ ID NO: 799, SEQ ID NO: 800, SEQ ID
NO: 801, SEQ ID NO: 802, SEQ ID NO: 803, SEQ ID NO: 804,
9030 SEQ ID NO: 805, SEQ ID NO: 806, SEQ ID NO: 807, SEQ ID
NO: 808, SEQ ID NO: 809, SEQ ID NO: 810, SEQ ID NO: 811,
SEQ ID NO: 812, SEQ ID NO: 813, SEQ ID NO: 814, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO:815, SEQ ID NO: 1061, SEQ ID NO: 1062, SEQ ID NO: 1063,
SEQ ID NO: 1064, SEQ ID NO: 1065, SEQ ID NO: 1066, SEQ ID
9035 NO: 1067, SEQ ID NO: 1068, SEQ ID NO: 1069, SEQ ID NO:
1070, SEQ ID NO: 1071, SEQ ID NO: 1072, SEQ ID NO: 1073,
SEQ ID NO: 1074, SEQ ID NO: 1075, SEQ ID NO: 1076, SEQ ID
NO:1077, SEQ ID NO: 1078, SEQ ID NO: 1079, SEQ ID NO:
1080, SEQ ID NO: 1081, SEQ ID NO: 1082, SEQ ID NO: 1083,
9040 SEQ ID NO: 1084, SEQ ID NO: 1085, SEQ ID NO: 1086, SEQ ID
NO: 1087, SEQ ID NO: 1088, SEQ ID NO: 1089, SEQ ID NO:
1090, SEQ ID NO: 1091, SEQ ID NO: 1092, SEQ ID NO: 1158,
SEQ ID NO:1159, SEQ ID NO: 1160, SEQ ID NO: 1161, SEQ ID
NO: 1162, SEQ ID NO: 1163, SEQ ID NO: 1164, SEQ ID NO:
9045 1165, SEQ ID NO: 1166, SEQ ID NO: 1167, SEQ ID NO: 1168,
SEQ ID NO: 1169, SEQ ID NO: 1170, SEQ ID NO: 1171, SEQ
ID NO: 1172, SEQ ID NO: 1173, SEQ ID NO: 1174, SEQ ID
NO: 1175, SEQ ID NO: 1176, SEQ ID NO: 1177, SEQ ID NO:
1178, SEQ ID NO: 1179, SEQ ID NO: 1180, SEQ ID NO: 1181,
9050 SEQ ID NO: 1182, SEQ ID NO: 1183, SEQ ID NO: 1184, SEQ
ID NO: 1185, SEQ ID NO: 1186, SEQ ID NO: 1187, SEQ ID
NO: 1188, SEQID NO: 1189, SEQ ID NO: 1190, SEQ ID NO:
1259, SEQ ID NO: 1260, SEQ ID NO: 1261, SEQ ID NO: 1262,
SEQ ID NO: 1263, SEQ ID NO: 1264, SEQ ID NO: 1265, SEQ ID
9055 NO: 1266, SEQ ID NO: 1267, SEQ ID NO: 1268, SEQ ID NO:
1269, SEQ ID NO: 1270, SEQ ID NO: 1271, SEQ ID NO: 1272,
SEQ ID NO: 1273, SEQ ID NO: 1289, SEQ ID NO: 1290, SEQ ID
NO: 1291, SEQ ID NO: 1292, SEQ ID NO: 1293, SEQ ID NO:
1294, SEQ ID NO: 1295, SEQ ID NO: 1296, SEQ ID NO:1297,
9060 SEQ ID NO: 1298, SEQ ID NO: 1299, SEQ ID NO: 1300, SEQ ID
NO: 1301, SEQ ID NO: 1330, SEQ ID NO: 1331, SEQ ID NO:
1332, SEQ ID NO: 1333, SEQ ID NO: 1334, SEQ ID NO: 1349,
SEQ ID NO: 1350, SEQ ID NO: 1351, SEQ ID NO: 1352, SEQ ID
NO: 1353, SEQ ID NO: 1354, SEQ ID NO: 1355, SEQ ID NO:
9065 1356, SEQ ID NO: 1357, SEQ ID NO: 1358, SEQ ID NO: 1445,
SEQ ID NO: 1446, SEQ ID NO: 1446, SEQ ID NO: 1447, 1448,

SEQ ID NO: 1449, SEQ ID NO: 1490, SEQ ID NO: 1491, SEQ ID NO: 1492, SEQ ID NO: 1493, SEQ ID NO: 1509, SEQ ID NO: 1541, SEQ ID NO: 1542, SEQ ID NO: 1543, SEQ ID NO: 1544,
9070 SEQ ID NO: 1554, SEQ ID NO: 1572, SEQ ID NO: 1573, SEQ ID NO: 1574, SEQ ID NO: 1575, SEQ ID NO: 1581, SEQ ID NO: 1582, SEQ ID NO: 1583, SEQ ID NO: 1588, SEQ ID NO: 1589, SEQ ID NO: 1590, SEQ ID NO: 1597, SEQ ID NO: 1598, SEQ ID NO: 1623, SEQ ID NO: 1647, SEQ ID NO: 1648, SEQ ID NO:
9075 1650, SEQ ID NO: 1651, SEQ ID NO: 1653, 1654, SEQ ID NO: 1692, and SEQ ID NO: 1693. These proteins and polypeptides are specific to O-157:H7 derived from phage. These proteins and their genes (or nucleic-acid molecule) are useful for detection and diagnosis of O-157 infection.

9080 [0034]

5) regulatory element:

These proteins or polypeptides are selected from the group comprising the following sequence list: SEQ ID NO: 1147, SEQ ID NO: 1148, SEQ ID NO: 1149, SEQ ID NO: 1150, SEQID
9085 NO: 1151, SEQ ID NO: 1152, SEQ ID NO: 1153, SEQ ID NO: 1154, SEQ ID NO: 1155, SEQ ID NO: 1156, SEQ ID NO: 1192,, SEQ ID NO: 1193, SEQ ID NO: 1194, SEQ ID NO: 1335, SEQ ID NO: 1336, SEQ ID NO: 1337, SEQ ID NO: 1402, SEQ ID NO:
9090 1403, SEQ ID NO: 1404, SEQ ID NO: 1405, SEQ ID NO: 1406, SEQ ID NO: 1407, SEQ ID NO: 1468, SEQ ID NO: 1512, SEQ ID NO: 1513, SEQ IDNO: 1514, SEQ ID NO: 1515, SEQ ID NO: 1585, SEQ ID NO: 1586, SEQ ID NO: 1656, SEQ ID NO: 1657, SEQ ID NO: 1678, and SEQ ID NO: 1695. These proteins or polypeptides are O-157:H7 specific regulatory element and
9095 usable for development of a substance inhibiting expression of their genes. Such substance is useful for prevention and therapy of O-157 infection, and as a food additive. Furthermore, the protein and its gene (or nucleic-acid molecule) per se are useful for diagnosis and therapy of O-157 infection.

9100 [0035]

6) Proteins relating to fimbriae:

These proteins or polypeptides are selected from the group comprising the following sequence list: SEQ ID NO: 274, SEQ ID NO: 275, SEQ ID NO: 276, SEQ ID NO: 277, SEQ ID NO: 1195, SEQ ID NO: 1196, SEQ ID NO: 1197, SEQ ID NO: 1241, SEQ ID NO: 1242, SEQ ID NO: 1243, SEQ ID NO: 1244, SEQ ID NO: 1245, SEQ ID NO: 1246, SEQ ID NO: 1247, SEQ ID NO: 1248, SEQ ID NO: 1249, SEQ ID NO: 1250, SEQ ID NO: 1251, SEQ ID NO: 1252, SEQ ID NO: 1253, SEQ ID NO: 1254, SEQ ID NO: 1255, SEQ ID NO: 1256, SEQ ID NO: 1257, SEQ ID NO: 1427, SEQ ID NO: 1428, SEQ ID NO: 1429, SEQ ID NO: 1430, SEQ ID NO: 1431, SEQ ID NO: 1432, SEQ ID NO: 1433, SEQ ID NO: 1434, SEQ ID NO: 1435, SEQ ID NO: 1521, SEQ ID NO: 1522, SEQ ID NO: 1523, SEQ ID NO: 1524, SEQ ID NO: 1525, SEQ ID NO: 1548, SEQ ID NO: 1613, SEQ ID NO: 1614, SEQ ID NO: 1659, and SEQ ID NO: 1671. These proteins and their genes (or nucleic-acid molecules) are useful for production of antibody, vaccine composition, diagnosis of O-157 infection and the like. These proteins or polypeptides are available for development of a substance inhibiting expression of O-157:H7 specific gene. Such substance is useful for prevention and therapy of O-157 infection, and as a food additive. Furthermore, the protein and its gene (or nucleic-acid molecule) per se are useful for diagnosis and therapy of O-157 infection.

9125 [0036]

7) Proteins relating to transportation of substance:

These proteins or polypeptides are selected from the group comprising the following sequence list: SEQ ID NO: 817, SEQ ID NO: 818, SEQ ID NO: 819, SEQ ID NO: 820, SEQ ID NO: 821, SEQ ID NO: 822, SEQ ID NO: 823, SEQ ID NO: 824, SEQ ID NO: 825, SEQ ID NO: 826, SEQ ID NO: 827, SEQ ID NO: 828, SEQ ID NO: 829, SEQ ID NO: 830, SEQ ID NO: 831, SEQ ID NO: 832, SEQ ID NO: 833, SEQ ID NO: 834, SEQ ID NO: 835, SEQ ID NO: 836, SEQ ID NO: 837, SEQ ID NO: 838,

9135 SEQ ID NO: 839, SEQ ID NO: 840, SEQ ID NO: 841, SEQ ID
NO: 842, SEQ ID NO: 843, SEQ ID NO: 844, SEQ ID NO: 1198,
SEQ ID NO: 1339, SEQ ID NO: 1340, SEQ ID NO: 1341, SEQ ID
NO: 1342, SEQ ID NO: 1343, SEQ ID NO: 1344, SEQ ID NO:
1345, SEQ ID NO: 1346, SEQ ID NO: 1347, SEQ ID NO: 1368,
9140 SEQ ID NO: 1369, SEQ ID NO: 1370, SEQ ID NO: 1371, SEQ ID
NO: 1458, SEQ ID NO: 1459, SEQ ID NO: 1461, SEQ ID NO: 14
62, SEQ ID NO: 1463, SEQ ID NO: 1464, SEQ ID NO: 1465, SEQ
ID NO: 1466, SEQ ID NO: 1507, and SEQ ID NO: 1679. These
9145 proteins or polypeptides are regulatory elements specific to
O-157:H7. These [proteins or polypeptides] are useful for
development of selection medium specific to O-157, or
development of a pharmaceutical agent selective to O-157, and
a strain comprising disruption in their genes may be useful as a
live attenuated vaccine. Furthermore, the protein and its gene
9150 (or nucleic-acid molecule) per se are useful for diagnosis and
therapy of O-157 infection.

[0037]

8) Proteins relating to synthesis of lipopolysaccharide:

9155 These proteins or polypeptides are selected from the
group comprising the following sequence list: EQ ID NO: 1533,
SEQ ID NO: 1534, SEQ ID NO: 1535, SEQ ID NO: 1536, SEQ ID
NO: 1395, SEQ ID NO: 1396, SEQ ID NO: 1397, SEQ ID NO:
1398, SEQ ID NO: 1399, SEQ ID NO: 1400, SEQ ID NO: 1412,
SEQ ID NO: 1413, SEQ ID NO: 1414, SEQ ID NO: 1415, SEQ ID
9160 NO: 1564, and SEQ ID NO: 1565. These proteins and their
gene (or nucleic-acid molecule) are especially useful for
production of antibody, vaccine composition, diagnosis of O-157
infection and the like. Furthermore, the protein and its gene
(or nucleic-acid molecule) per se are useful for diagnosis and
9165 therapy of O-157 infection.

[0038]

9) Proteins relating to metabolism:

These proteins or polypeptides are selected from the

Appendix B: Hideo *et al.* Full Translation

group comprising the following sequence list: SEQ ID NO: 278, 9170 SEQ ID NO: 690, SEQ ID NO: 691, SEQ ID NO: 692, SEQ ID NO: 693, SEQ ID NO: 694, SEQ ID NO: 695, SEQ ID NO: 696, SEQ ID NO: 697, SEQ ID NO: 698, SEQ ID NO: 699, SEQ ID NO: 700, SEQ ID NO: 701, SEQ ID NO: 702, SEQ ID NO: 703, SEQ ID NO: 704, SEQ ID NO: 705, SEQ ID NO: 706, SEQ ID 9175 NO: 707, SEQ ID NO: 708, SEQ ID NO: 709, SEQ ID NO: 710, SEQ ID NO: 711, SEQ ID NO: 712, SEQ ID NO: 713, SEQ ID NO: 714, SEQ ID NO: 715, SEQ ID NO: 716, SEQ ID NO: 717, SEQ ID NO: 718, SEQ ID NO: 719, SEQ ID NO: 720, SEQ ID NO: 721, SEQ ID NO: 722, SEQ ID NO: 723, SEQ ID NO: 724, 9180 SEQ ID NO: 725, SEQ ID NO: 726, SEQ ID NO: 727, SEQ ID NO: 728, SEQ ID NO: 729, SEQ ID NO: 730, SEQ ID NO: 731, SEQ ID NO: 1416, SEQ ID NO: 1417, SEQ ID NO: 1472, SEQ ID NO: 1552, SEQ ID NO: 1556, SEQ ID NO: 1557, SEQ ID NO: 1616, SEQ ID NO: 1630, SEQ ID NO: 1631, SEQ ID NO: 1660, 9185 SEQ ID NO: 1661, and SEQ ID NO: 1667. These proteins or polypeptides relate to O-157:H7 specific metabolism. Therefore, these [proteins or polypeptides] are useful for development of selection medium specific to O-157, or development of a pharmaceutical agent selective to O-157, and 9190 a strain comprising disruption in their genes may be useful as a live attenuated vaccine. Moreover the protein or its gene (or nucleic acid molecule) per se are useful for diagnosis and therapy of O-157 infection.

[0039]

9195 10) Proteins relating DNA/RNA processing:

These proteins or polypeptides are selected from a group comprising the following sequence list: SEQ ID NO: 732, SEQ ID NO: 733, SEQ ID NO: 734, SEQ ID NO: 735, SEQ ID NO: 736, SEQ ID NO: 737, SEQ ID NO: 738, SEQ ID NO: 739, SEQ ID 9200 NO: 740, SEQ ID NO: 741, SEQ ID NO: 742, SEQ ID NO: 743, SEQ ID NO: 744, SEQ ID NO: 745, SEQ ID NO: 1199, SEQ ID NO: 1200, SEQ ID NO: 1201, SEQ ID NO: 1202, SEQ ID NO:

Appendix B: Hideo *et al.* Full Translation

1203, SEQ ID NO: 1204, SEQ ID NO: 1205, and SEQ ID
NO:1318. These [proteins or polypeptides] are useful for
9205 development of a pharmaceutical agent selective to O-157.
Furthermore, the protein and its gene (or nucleic-acid molecule)
per se are useful for diagnosis and therapy of O-157 infection.
[0040]

11) Proteins relating pathogenicity:

9210 These proteins or polypeptides are selected from a group
comprising the following sequence list: SEQ ID NO: 746, SEQ
ID NO: 747, SEQ ID NO: 748, SEQ ID NO: 749, SEQ ID NO: 750,
SEQ ID NO: 751, SEQ ID NO: 752, SEQ ID NO: 753, SEQ ID
NO: 754, SEQ ID NO: 845, SEQ ID NO: 846, SEQ ID NO: 847,
9215 SEQ ID NO: 848, SEQ ID NO: 849, SEQ ID NO: 850, SEQ ID
NO: 851, SEQ ID NO: 852, SEQ ID NO: 853, SEQ ID NO: 854,
SEQ ID NO: 855, SEQ ID NO: 856, SEQ ID NO: 857, SEQ ID
NO: 858, SEQ ID NO: 859, SEQ ID NO: 860, SEQ ID NO: 861,
SEQ ID NO: 862, SEQ ID NO: 863, SEQ ID NO: 864, SEQ ID
9220 NO: 865, SEQ ID NO: 866, SEQ ID NO: 867, SEQ ID NO: 868,
SEQ ID NO: 869, SEQ ID NO: 870, SEQ ID NO: 871, SEQ ID
NO: 872, SEQ ID NO: 873, SEQ ID NO: 874, SEQ ID NO: 875,
SEQ ID NO: 1129, SEQ ID NO: 1130, SEQ ID NO: 1131, SEQ ID
NO: 1132, SEQ ID NO: 1133, SEQ ID NO: 1134, SEQ ID NO:
9225 1135, SEQ ID NO: 1136, SEQ ID NO: 1137, SEQ ID NO: 1138,
SEQ ID NO: 1206, SEQ ID NO: 1207, SEQ ID NO: 1208, SEQ ID
NO: 1209, SEQ ID NO: 1210, SEQ ID NO: 1211, SEQ ID NO:
1310, SEQ ID NO: 1311, SEQ ID NO: 1312, SEQ ID NO: 1313,
SEQ ID NO: 1314, SEQ ID NO:1315, SEQ ID NO: 1316, SEQ ID
9230 NO: 1317, SEQ ID NO: 1321, SEQ ID NO: 1322, SEQ ID NO:
1323, SEQ ID NO: 1324, SEQ ID NO: 1325, SEQ ID NO: 1326,
SEQ ID NO: 1327, SEQ ID NO: 1328, SEQ ID NO: 1527, SEQ ID
NO: 1528, SEQ ID NO: 1529, SEQ ID NO: 1530, SEQ ID NO:
1531, SEQ ID NO: 1620, SEQ ID NO:1621, SEQ ID NO: 1674,
9235 and SEQ ID NO: 1686. These proteins or polypeptides are
relating to pathogenicity of O-157. Therefore, these [proteins

or polypeptides] are useful for development of a pharmaceutical agent selective to O-157 and the like. Furthermore, a strain comprising disruption in their genes may be useful as a live
9240 attenuated vaccine. Moreover, the protein or its gene (or nucleic-acid molecule) per se are useful for diagnosis and therapy of O-157 infection.

[0041]

12) Other proteins:

9245 These proteins or polypeptides are selected from a group comprising the following sequence list: SEQ ID NO: 1014, SEQ ID NO: 1015, SEQ ID NO: 1016, SEQ ID NO: 1017, SEQ ID NO: 1018, SEQ ID NO: 1019, SEQ ID NO: 1020, SEQ ID NO: 1021, SEQ ID NO: 1022, SEQ ID NO: 1023, SEQ ID NO: 1024, SEQ ID NO: 1025, SEQ ID NO: 1139, SEQ ID NO: 1140, SEQ ID NO: 1141, SEQ ID NO: 1142, SEQ ID NO: 1143, SEQ ID NO: 1144, SEQ ID NO: 1145, SEQ ID NO: 1146, SEQ ID NO: 1319, SEQ ID NO: 1320, SEQ ID NO: 1381, SEQ ID NO: 1382, SEQ ID NO: 1383, SEQ ID NO: 1384, SEQ ID NO: 1385, SEQ ID NO: 1469,
9250 SEQ ID NO: 1470, SEQ ID NO: 1546, SEQ ID NO: 1592, SEQ ID NO: 1593, SEQ ID NO: 1687, and SEQ ID NO: 1689. These proteins and their genes (or nucleic-acid molecules) are useful for detection and diagnosis of O-157 infection.

[0042]

9260 According to a standard technique in the art, the polypeptide of the present invention or a fragment thereof may be produced by inserting the nucleic-acid molecule of the present invention which encodes [the polypeptide or fragment] into a suitable expression vector, introducing the obtained recombinant vector to suitable host cells, culturing the host cells, and subsequently, extracting a desired polypeptide or a fragment thereof from the cultured host cells. Therefore, the present invention also relates to a method of producing O-157:H7 specific polypeptide comprising a recombinant
9265 expression vector containing the nucleic-acid molecule of the
9270

present invention as an inserted substance, host cells transformed with the vector, and cultivation of the host cells.
[0043]

In order to produce O-157 specific polypeptide of the
9275 present invention or a fragment thereof by using a technique for recombination, any expression system, for example, eukaryotic cells such as mammalian cells comprising human insect cells, fungal cells, yeast cells and the like, as well as, prokaryotic cells, for example, such as E. coli cells and the like
9280 may be used. The procaryotic cells are any known bacterial cells in the art. The cells include, for example, species of E. coli, salmonella, Norcardia, Corynebacterium, Campylobacter, Streptomyces (for example ,Sambrook, Fritsch & Maniatis, Molecular Cloning; Laboratory Manual 2nd Ed., 1989).
9285 Examples of mammalian cells include COS7 cells or CHO cells. In case of [using] these cells, useful conventional promoters may be used for expression in mammalian cells. It is preferable that, for example, immediate early promoter of Human cytomegalovirus (HCMV) is used. In addition, as a
9290 promoter for gene expression in mammalian cells which can be used in the present invention, virus promoters such as Retrovirus, polyomavirus, adenovirus, simian virus 40(SV40) and the like, or promoters derived from mammalian cells such as Human peptide chain elongation factor 1 α (HEF-1 α) and the
9295 like may be used. As a replication origin (ori), an ori derived from SV40, polyomavirus, adenovirus, Bovine papillomavirus may be used. In addition, the expression vector may include a gene of phosphotransferase APH(3') II or I (neo) and the like as a selection marker.

9300 [0044]

It is preferable that the recombinant expression vectors of the present invention includes DNA sequences encoding various antibiotic resistance genes or other marker genes as selection marker genes. Example of the marker genes include

9305 anti-spectinomycin gene, ampicillin resistance gene, streptomycin resistance gene (streptomycin phosphotransferase (SPT) gene), neomycin phosphotransferase (NPTII) gene of resistance to kanamycin or geneticin, hygromycin phosphotransferase (HTP) gene of hygromycin resistance,
9310 thymidine kinase (TK) gene, *E. coli* xanthine guanine phosphoribosyltransferase (Ecogpt) gene, dihydrofolate reductase (DHFR) gene, β -glucuronidase gene, luciferase gene, β -galactosidase gene, peroxidase gene and the like.
[0045]

9315 In order to detect O-157, Oligonucleotide primers for PCR can be constructed by using O-157 specific sequence in the nucleic-acid molecule or the gene of the present invention to perform rapid diagnosis of O-157. Basically, all of the O-157 specific sequences may be useful for a method for the rapid
9320 diagnosis by PCR. Therefore, the present invention relates to a method for detection or diagnosis of O-157 infection using the above mentioned oligonucleotide primer. Furthermore, the oligonucleotide may be used as a hybridization probe. The length of oligonucleotide of the present invention is at least 8
9325 nucleotides, preferably, 15 or more nucleotides, but may be determined, as necessary, by reference of a standard technique in genetic engineering.
[0046]

9330 In addition to a nucleic-acid molecule having O-157 specific nucleic acid sequence, the present invention also relates to a nucleic acid sequence comprising O-157 specific mutation which is also present in other *E. coli* (for example, strain of K-12) and a method of using it. Such nucleic acid sequences include, for example, a nucleic acid sequence
9335 comprising a mutation in genes relating to decrease of availability of sorbitol and lack of β -glucuronidase activity.
[0047]

O-157 specific nucleic-acid molecule of the present

Appendix B: Hideo *et al.* Full Translation

invention, a gene included in it, peptide and nucleic-acid
9340 sequence encoded by the gene are useful for diagnosis and/or
therapy of O-157 infection and prevention of symptom occurred
by the infection. They can also be used for detection of the
presence of O-157 in a sample and classification of its strain.
Furthermore, they can also be used for screening of useful
9345 compounds for prevention and/or therapy of O-157 infection and
symptom occurred by the infection.

[0048]

The present invention also relates to an oligonucleotide
useful as a primer or a probe for detecting O-157 infection.
9350 Furthermore, the scope of the present invention includes a
vaccine composition including genes and/or polynucleotides of
the present invention, and a method for prevention and/or
therapy of O-157 infection and symptom occurred by the
infection.

9355 [0049]

Accordingly, the present invention relates to an
oligonucleotide or polynucleotide comprising a nucleotide
sequence constituted of at least 8 nucleotides in O-157 specific
nucleotide sequence set forth in the sequence lists, [a
9360 nucleotide sequence] comprising O-157 specific mutation, or a
complementary nucleic-acid sequence to the nucleic-acid
sequences. The present invention also relates to use of the
oligonucleotide or polynucleotide of the present invention used
as a hybridization probe or a PCR primer. The oligonucleotide
9365 used as a primer is comprised of at least 8 nucleotides,
preferably 15 nucleotides, more preferably at least 20 or more
nucleotides. The probe is comprised of at least 20 to 30
nucleotides. Nucleic acids used as a probe may be labeled by
using standard technique in the art.

9370 [0050]

Using the oligonucleotide or polynucleotide of the present
invention as a PCR primer, rapid diagnostic of O-157 may be

performed. Basically, all O-157 specific sequences may be useful for a method for rapid diagnosis by PCR. Therefore, the
9375 present invention relates to a method for detection or diagnosis of O-157 infection using the oligonucleotide primer.
[0051]

The present invention relates to a peptide vaccine formulation for prevention or therapy of O-157 infection comprising effective amount of, at least one kind of, O-157 specific polypeptides having amino acid sequence set forth in the sequence lists or fragments thereof. The vaccine formulation preferably includes a pharmaceutically acceptable carrier, for example, a known adjuvant in the art.
9380

9385 [0052]

The present invention also relates to a DNA vaccine formulation for prevention or therapy of O-157 infection comprising at least one of above mentioned O-157 specific polypeptides or polynucleotides encoding fragments thereof.
9390 The vaccine formulation preferably contains a pharmaceutically acceptable carrier, for example, an adjuvant and/or a transfection reagent and the like which are known in the art. The transfection reagent contains a liposome, a gold particle, and a cationic polymer suitable for transfecting a living cell with DNA vaccine. Use of the DNA vaccine against pathogenic bacteria is disclosed in, for example, an example of research of DNA vaccine, Han T. K. et al., DNA Cell Biol. 20(9), pp. 595-601, 2001; Miyaji E. N. et al., Vaccine 20(5-6), pp. 805-12, 2001, which is incorporated herein in its entirety by reference
9395
9400 thereto.

[0053]

The present invention relates to a method of reducing the risk of O-157 infection in patients or a method for therapy [of the infection]. This method comprises administration of the
9405 vaccine formulation of the present invention to a patient so as to reduce the risk of O-157 infection or provide therapy of

infection.

[0054]

9410 In other embodiment, the present invention relates to a method of producing the vaccine formulation of the present invention. The method of producing the peptide vaccine formulation includes combining at least one kind of O-157 specific polypeptide having the amino acid sequences set forth in the sequence list and the fragments thereof with a 9415 pharmaceutically acceptable carrier.

[0055]

9420 The method of producing the DNA vaccine formulation includes inserting polynucleotide encoding at least one kind of the polypeptides or the fragments thereof into the expression vector which can be expressed in a patient, and combining an effective amount of the expression vector with a pharmaceutically acceptable carrier. There is a possibility 9425 that frequency of use of a codon is different between mammal including human and *E. coli*. In this case, it is possible to improve the efficiency of translation of mRNA into a desired polypeptide in a patient who should be treated or prevented from O-157 infection by replacing codons of high frequency in O-157 with codons of high frequency in mammal using a standard technique in genetic engineering. A sequence such as 9430 intron A derived from cytomegalovirus may be included in the expression vector to enhance the expression of desired polypeptide. In the case where the DNA vaccine composition of the present invention is administered to a human, the recombinant expression vector is preferably [a vector] having a 9435 replication origin other than that of SV40. A sequence derived from SV40 is not preferable, since there is a possibility that it has carcinogenicity. The replication origins usable for this purpose include, but not restricted to, replication origins derived from, for example, other virus, prokaryotic cells, 9440 eukaryotic cells such as yeast cells or animal cells.

[0056]

The present invention also relates to an antibody selectively reacting with O-157 specific polypeptide or the fragment thereof. Anti-protein/anti-peptide, anti-serum or 9445 monoclonal antibody can be prepared according to a standard protocol (see, for example, Antibodies: A Laboratory Manual, Harlow & Lane edd., Cold Spring Harbor Press, 1988). In the present invention, the means of the term "antibody molecule" includes whole antibody, antibody fragments obtained by 9450 fragmentation using conventional technique, for example, Fab' and F(ab')2 fragment, and single-chain Fv(scFv) obtained by a technique in genetic engineering. The antibody molecule of the present invention also includes an antibody fragment, a bispecific antibody comprising single-chain Fv or a chimera 9455 antibody. In this case, [the antibody molecule of the present invention] comprises two different antibodies against the same O-157 specific polypeptide, two antibodies recognizing different O-157 polypeptides, or one antibody against the polypeptide and one antibody recognizing an epitope which does not relate 9460 to O-157.

[0057]

A gene relating to O-157 specific metabolic function in O-157 specific genes is usable for development of novel medium for selection of O-157. Although, selection medium used at 9465 present is medium using comparatively specific property of O-157 such as decrease of availability of sorbitol, lack of β -glucuronidase activity, an ability of resistance to tellurite, there is a possibility that further specific [property] to O-157 is present in the genes of metabolic system found in the present 9470 invention. Such property is preferable for selection of O-157, preferably, is combined with decrease of availability of sorbitol, lack of β -glucuronidase activity and/or an ability of resistance to tellurite

[0058]

9475 A polypeptide relating to pathogenicity of O-157, a
bacterial surface protein, a regulatory protein, a protein
relating to metabolic system and a nucleic-acid molecule
encoding this [protein] is useful for development of a
pharmaceutical agent which selectively inhibits expression of
9480 pathogenicity of O-157. Therefore, the present invention
includes a method of searching or screening of a pharmaceutical
agent useful for prevention and/or therapy of symptom relating
to O-157. According to the method of the present invention,
novel preventive agent and/or therapeutic agent for symptom
9485 relating to O-157 may be provided.

[0059]

In addition, it may be performed to produce a recombinant protein from a gene relating to pathogenicity shown by the present invention, especially novel toxin, to 9490 analyse a function of the toxin, and to search inhibitor of the toxin. Therefore, the present invention relates to a method of searching or screening of inhibitor against the novel toxin. Furthermore, it is possible to determine conformation on the basis of a purified protein and information of amino acid 9495 sequence thereof and to design and synthesise the inhibitory substances using computer. These inhibitory substances will be not only an therapeutic agent of completely different type from conventional antibiotics, but also be a food additive selectively inhibiting growth of O-157.

9500 [0060]

In addition, the O-157 specific pathogenic gene, the gene of bacterial cell surface protein and the regulatory gene of the present invention may [be used for] developing a live attenuated vaccine by preparing a disruptant thereof. 9505 Furthermore, a live attenuated vaccine may also be produced by cloning dysfunctional gene corresponding to them into other vaccine strain.

[0061]

On the other hand, a gene encoding an essential
9510 metabolic function for proliferation of O-157 in vivo or in vitro
or a regulatory gene may be [used for] preparing a mutant
which can proliferate under a specific condition in laboratory,
but cannot proliferate in mammalian living body including
9515 human by preparing a strain comprising gene disruption in
their genes. Such strain is useful as a live attenuated vaccine.
[0062]

In an embodiment of the present invention, a DNA
microarray or DNA chip includes a part or all of the nucleic
acid sequence or gene of the present invention. Preferably,
9520 there is provided a DNA chip or a method for producing the
DNA chip, wherein the DNA chip comprises

(a) a nucleotide sequence which is selected from a group
comprising the following SEQ IDs or a partial sequence thereof:
SEQ ID NO:1, SEQ ID NO:132, SEQ ID NO:244, SEQ ID NO:
9525 337, SEQ ID NO:410, SEQ ID NO:484, SEQ ID NO:554, SEQ ID
NO:630, SEQ ID NO:689, SEQ ID NO:755, SEQ ID NO:816,
SEQ ID NO:876, SEQ ID NO:927, SEQ ID NO:978, SEQ ID NO:
1013, SEQ ID NO:1029, SEQ ID NO:1055, SEQ ID NO:1060,
SEQ ID NO:1093, SEQ ID NO:1128, SEQ ID NO:1157, SEQ ID
9530 NO:1191, SEQ ID NO:1212, SEQ ID NO:1240, SEQ ID NO:1258,
SEQ ID NO:1274, SEQ ID NO:1288, SEQ ID NO:1302, SEQ ID
NO:1309, SEQ ID NO:1321, SEQ ID NO:1329, SEQ ID NO:1338,
SEQ ID NO:1348, SEQ ID NO:1359, SEQ ID NO:1366, SEQ ID
9535 NO:1374, SEQ ID NO:1380, SEQ ID NO:1386, SEQ ID NO:1394,
SEQ ID NO:1401, SEQ ID NO:1408, SEQ ID NO:1411, SEQ ID
NO:1418, SEQ ID NO:1426, SEQ ID NO:1436, SEQ ID NO:1443,
SEQ ID NO:1450, SEQ ID NO:1457, SEQ ID NO:1460, SEQ ID
NO:1467, SEQ ID NO:1471, SEQ ID NO:1473, SEQ ID NO:1478,
SEQ ID NO:1487, SEQ ID NO:1489, SEQ ID NO:1494, SEQ
9540 ID NO:1499, SEQ ID NO:1501, SEQ ID NO:1506, SEQ ID NO:
1508, SEQ ID NO:1510, SEQ ID NO:1511, SEQ ID NO:1516,
SEQ ID NO:1520, SEQ ID NO:1526, SEQ ID NO:1532, SEQ ID

Appendix B: Hideo *et al.* Full Translation

NO:1537, SEQ ID NO:1540, SEQ ID NO:1545,SEQ ID NO:1547,
SEQ ID NO:1549, SEQ ID NO:1551, SEQ ID NO:1553, SEQID
9545 NO:1555, SEQ ID NO:1558, SEQ ID NO:1563, SEQ ID NO:1566,
SEQ ID NO:1569, SEQ ID NO:1571, SEQ ID NO:1576, SEQ ID
NO:1580, SEQ ID NO:1584, SEQ ID NO:1587, SEQ ID NO:1591,
SEQ ID NO:1594, SEQ ID NO:1596,SEQ ID NO:1599, SEQ ID
NO:1601, SEQ ID NO:1603, SEQ ID NO:1604, SEQID NO:1605,
9550 SEQ ID NO:1607, SEQ ID NO:1612, SEQ ID NO:1615, SEQ
IDNO:1617, SEQ ID NO:1619, SEQ ID NO:1622, SEQ ID NO:
1624, SEQ ID NO:1626, SEQ ID NO:1627, SEQ ID NO:1629,
SEQ ID NO:1632, SEQ ID NO:1635, SEQ ID NO:1636, SEQ ID
NO:1637, SEQ ID NO:1639, SEQ ID NO:1640, SEQ ID NO:1643,
9555 SEQ ID NO:1646, SEQ ID NO:1649, SEQ ID NO:1652, SEQ
IDNO:1655, SEQ ID NO:1658, SEQ ID NO:1660, SEQ ID NO:
1662, SEQ ID NO:1664, SEQ ID NO:1666, SEQ ID NO:1668,
SEQ ID NO:1669, SEQ ID NO:1670, SEQ ID NO:1672, SEQ ID
NO:1673, SEQ ID NO:1675, SEQ ID NO:1677,SEQ ID NO:1680,
9560 SEQ ID NO:1682, SEQ ID NO:1683, SEQ ID NO:1685, SEQID
NO:1688, SEQ ID NO:1690, SEQ ID NO:1691, SEQ ID NO:1694,
SEQ ID NO:1696, SEQ ID NO:1699, SEQ ID NO:1700, SEQ ID
NO:1701, SEQ ID NO:1704, SEQ ID NO:1705, SEQ ID NO:1706,
SEQ ID NO:1707, SEQ ID NO:1708,SEQ ID NO:1709, SEQ ID
9565 NO:1710, SEQ ID NO:1711, SEQ ID NO:1712, SEQID NO:1713,
SEQ ID NO:1715, SEQ ID NO:1716, SEQ ID NO:1717, SEQ
IDNO:1718,, SEQ ID NO:1719, SEQ ID NO:1720, SEQ ID NO:
1721, SEQ ID NO:1722, SEQ ID NO:1723, SEQ ID NO:1724,
SEQ ID NO:1725, SEQ ID NO:1726, SEQ ID NO:1727, SEQ ID
9570 NO:1728, SEQ ID NO:1729, SEQ ID NO:1730,SEQ ID NO:1731,
SEQ ID NO:1732, SEQ ID NO:1733, SEQ ID NO:1734, SEQID
NO:1735, SEQ ID NO:1736, SEQ ID NO:1737, SEQ ID NO:1738,
SEQ ID NO:1739, SEQ ID NO:1740, SEQ ID NO:1741, SEQ ID
NO:1742, SEQ ID NO:1743, SEQ ID NO:1744, SEQ ID NO:1745,
9575 SEQ ID NO:1746, SEQ ID NO:1747,SEQ ID NO:1748, SEQ ID
NO:1749, SEQ ID NO:1750, SEQ ID NO:1751, SEQID NO:1752,

Appendix B: Hideo *et al.* Full Translation

SEQ ID NO:1753, SEQ ID NO:1754, SEQ ID NO:1755, SEQ IDNO:1756, SEQ ID NO:1757, SEQ ID NO:1758, SEQ ID NO:1759, SEQ ID NO:1760, SEQ ID NO:1761, SEQ ID NO:1762,
9580 SEQ ID NO:1763, SEQ ID NO:1764, SEQ ID NO:1765, SEQ ID NO:1766, SEQ ID NO:1767, SEQ ID NO:1768, SEQ ID NO:1769, SEQ ID NO:1770, SEQ ID NO:1771, SEQ ID NO:1772, SEQ IDNO:1773, SEQ ID NO:1774, SEQ ID NO:1775, SEQ ID NO:1776, SEQ ID NO:1777, SEQ ID NO:1778, SEQ ID NO:1779,
9585 SEQ ID NO:1780, SEQ ID NO:1781, SEQ ID NO:1782, SEQ ID NO:1783, SEQ ID NO:1784, SEQ ID NO:1785,SEQ ID NO:1786, SEQ ID NO:1787, SEQ ID NO:1788, SEQ ID NO:1789, SEQID NO:1790, SEQ ID NO:1791, SEQ ID NO:1792, SEQ ID NO:1793, SEQ ID NO:1794, SEQ ID NO:1795, SEQ ID NO:1796, SEQ ID
9590 NO:1797, SEQ ID NO:1798, SEQ ID NO:1799, SEQ ID NO:1800, SEQ ID NO:1801, SEQ ID NO:1802,SEQ ID NO:1803, SEQ ID NO:1804, SEQ ID NO:1805, SEQ ID NO:1806, SEQID NO:1807, SEQ ID NO:1808, SEQ ID NO:1809, SEQ ID NO:1810, SEQ IDNO:1811, SEQ ID NO:1812, SEQ ID NO:1813, SEQ ID NO:
9595 1814, SEQ ID NO:1815, SEQ ID NO:1816, SEQ ID NO:1817, SEQ ID NO:1818, SEQ ID NO:1819, SEQ ID NO:1820, SEQ ID NO:1821, SEQ ID NO:1822, SEQ ID NO:1823, SEQ ID NO:1824, SEQ ID NO:1825, SEQ ID NO:1826, SEQ ID NO:1827, SEQ IDNO:1828, SEQ ID NO:1829, SEQ ID NO:1830, SEQ ID NO:
9600 1831, SEQ ID NO:1832, SEQ ID NO:1833, SEQ ID NO:1834, SEQ ID NO:1835, SEQ ID NO:1836, SEQ ID NO:1837, SEQ ID NO:1838, SEQ ID NO:1839, SEQ ID NO:1840,SEQ ID NO:1841, SEQ ID NO:1842, SEQ ID NO:1843, SEQ ID NO:1844, SEQID NO:1845, SEQ ID NO:1846, SEQ ID NO:1847, SEQ ID NO:1848,
9605 SEQ ID NO:1849, SEQ ID NO:1850, SEQ ID NO:1851, SEQ ID NO:1852, SEQ ID NO:1853, SEQ ID NO:1854, SEQ ID NO:1855, SEQ ID NO:1856, SEQ ID NO:1857,SEQ ID NO:1858, SEQ ID NO:1859, SEQ ID NO:1860, SEQ ID NO:1861, SEQID NO:1862, SEQ ID NO:1863, SEQ ID NO:1864, SEQ ID NO:1865, および
9610 SEQ ID NO:1866,

, and/or (b) an oligonucleotide or polynucleotide comprising complementary sequence to the sequences set forth in (a). Such DNA microarray or DNA chip may be produced using the nucleic acid sequence or gene of the present invention
9615 by a standard technique in the art (see, for example, "DNA Microarrays: A Practical Approach", Mark Schena, ed. Oxford: Oxford University Press, 1999, ISBN 0-19-963777-8; "Microarray Biochip Technology", MarkSchena, ed. Natick, MA: Eaton Publishing, 2000, ISBN 1-881299-37-6; "DNA Arrays:
9620 Methods and Protocols", Jang B. Rampal, ed. Totowa, NJ: HumanaPress, 2001, ISBN 0-89603-822-X). The DNA microarray or DNA chip is usable for analysis of a function of O-157 specific gene, classification of strain of O-157, search of the presence or absence of a gene which is similar to that of other strain of O-157 or other type of strain of large intestine.
9625 The classification of strain using DNA array is disclosed in, for example, Salama N. et al., Proc. Natl. Acad. Sci. U A. 97(26), pp. 14668-73, 2000. A technique for detecting a pathogenic bacterium by using the DNA array is disclosed in, for example,
9630 Call D. R. et al., IntJ Food Microbiol, 67(1-2), pp.71-80, 2001. A technique for analysing expression of a gene using DNA array is disclosed in, for example, Harrington C. A. et.al., Curr. Opin. Microbiol. 3(3), pp.285-91, 2000. The entity of these documents is incorporated herein by reference.
9635 [0063]

Definition

In the present invention, the terms "O-157 specific" and "specific to O-157:H7" means that [a substance is] absent from nonpathogenic E. coli K-12, but is present in O-157 (or
9640 O-157:H7). Therefore, there is a possibility that, sometimes, the same substance or the similar substance is present in other type of E. coli or other strain of bacteria.
[0064]

In the present invention, the term "hybridize" means that

Appendix B: Hideo *et al.* Full Translation

9645 hybridization is performed under a stringent condition, for example, in 0.5xSSC solution, at 65°C or equivalent condition.
[0065]

9650 The term "(cell) surface protein" used herein means all proteins capable of approaching to the surface, such as inner membrane and outer membrane proteins, proteins which bind to cell wall, and secretory proteins.
[0066]

9655 The term "open reading frame (ORF)" means a region in nucleic acids encoding a polypeptide or a part thereof. The ORF can be determined by [a region] from initiation codon to termination codon or from termination codon to termination codon.
[0067]

9660 The term "coding sequence" used herein means nucleic acids which is transcribed into mRNAs and/or translated into polypeptides in case where the coding sequence is placed under regulation of a suitable regulatory sequence. The coding sequence includes, but not restricted to, mRNA, synthetic DNA, and recombinant nucleic acid sequence.
[0068]

9670 In the present application, the terms "a part" or "fragment" of polypeptide means an oligopeptide or polypeptide comprising at least 10 amino acid residues, preferably at least 20 amino acid residues, more preferably at least 40 amino acid residues. Furthermore, the terms "a part" or "fragment" of nucleotide sequence also mean a nucleotide sequence comprising at least 20 or more nucleotides, preferably 50 or more nucleotides.
[0069]

9675 In the present application, the term "expression regulatory element" or "expression regulatory sequence" means a sequence capable of inducing and/or regulating expression of a coding sequence or ORF linked thereto. The term "linked in

Appendix B: Hideo *et al.* Full Translation

their action" means that above mentioned expression regulatory element or [expression regulatory] sequence is linked to a coding sequence or ORF in the manner where the coding sequence or ORF can be transcribed.

[0070]

In the present invention, metabolism of a substance means any aspects including, expression, function, action or regulation of a substance. The metabolism of a substance includes modification of a substance, for example, modifying the substance with a covalent bond or a noncovalent bond. The metabolism of a substance includes modification in other substances induced by the substance, for example, modifying the other substances with a covalent bond or a noncovalent bond. The metabolism of substance also includes alteration in distribution of the substance. The metabolism of a substance includes alteration in distribution of other substance induced by the substance.

[0071]

In the present invention, transportation of a substance means transportation of a substance from extracellular space to intracellular space, transportation of a substance within a cell, and secretion and release of a substance to extracellular space.

[0072]

On carrying out the present invention, common techniques in the art may be applied unless particularly otherwise indication. Such techniques are disclosed in Sambrook, Fritsch &Maniatis, Molecular Cloning; Laboratory Manual 2nd Ed. (1989); DNA Cloning, Volume (D.N. Glover Ed. 1985); Oligonucleotide Synthesis (M.J. Gait Ed. 1984); Nucleic Acid Hybridization (B.D. Hames & S.J. Higgins Ed. 1984); Methods in Enzymology (Academic Press, Inc.), Vol. 154 & Vol. 155 (Wu& Grossman ed.) and PCR-A Practical Approach (McPherson, Quirke & Taylor, ed. 1991).

[0073]

The nucleic-acid molecule of the present invention may be directly obtained from the DNA of above mentioned O157:H7
9715 Sakai by using Polymerase Chain Reaction (PCR). Reliability of amplified product may be checked by a conventional method for determining sequence. A clone having a desired sequence set forth in the present invention may also be obtained by library screening using PCR or, by library screening using a
9720 synthetic oligonucleotide probe to library colonies or plaques lifted onto a filter, as known in the art (for example, Sambrook et al., Molecular Cloning, A Laboratory Manual 2nd edition, 1989, Cold Spring Harbor Press, NY). Nucleic acids encoding the polypeptides specific to O-157:H7 can also be obtained.

9725 [0074]

The nucleic acids of the present invention may also be chemically synthesized by using standard technique. Various methods for chemical synthesis of poly-deoxynucleotide are known (see, for example, Itakura et al., U.S. Patent No.4,598,049; Caruthers et al., U.S. Patent No.4,458,066; and
9730 Itakura et al., U.S. Patent No.4,401,796 and No.4,373,071, incorporated by reference herein).

[0075]

The present invention is explained by, but not restricted
9735 to, the following examples.

[0076]

[Examples]

Example 1 : Determination of genomic nucleotide sequence of enterohemorrhagic pathogenic-E. coli O-157:H7

9740 Whole nucleotide sequences on the chromosome of enterohemorrhagic E.coli O157:H7 were determined to identify regions and nucleic-acid sequences which were specific to O157:H7, but absent from nonpathogenic E. coli K-12. The following strain was used in the Example: O157:H7 (RIMD
9745 0509952) which was isolated from a patient suffered from typical hemorrhagic enteritis during outbreak of O157:H7

Appendix B: Hideo *et al.* Full Translation

infection which was occurred in mainly Sakai, Osaka, 1996. The strain has been stored in Research Center for Emerging Infectious Diseases, Research Institute for Microbial Diseases, 9750 Osaka University, and procedure for registration to ATCC (American Type Culture Collection) is now proceeding. The strain was cultured to prepare genomic DNA according to a conventional method. Random shotgun library comprising insertion of DNA fragment of 1-2 kbp in size was prepared to 9755 determining sequences of 50105 clones. With respect to 19969 clones among them, sequences at both end of the inserted fragment were determined (whole genome random shotgun sequencing). In addition, a library of lambda phage comprising inserted DNA fragments of about 20kbp was 9760 prepared to determine whole sequences of each of 86 clones individually. Assembly of the data of whole sequence which was obtained by using Phred/Phrap/conseq was performed to obtain 111 contigs of 1 kbp or more. Finally, gap region between each of the contigs was amplified by using PCR and 9765 sequences of each PCR products were determined to determine the whole nucleotide sequences on chromosome of O157:H7. Then, the nucleotide sequence was analyzed by using a program such as Genome Gambler version 1.41, GLIMMER 2.01, BLAST and etc. to determine protein coding region. Furthermore, 9770 chromosomal sequence of O157:H7 was compared to chromosomal sequence of nonpathogenic *E.coli* K-12 (MG1655) using MUMmer Program to identify all regions of 20bp or more which is absent from K-12, but specifically present in O-157:H7. Determined chromosomal nucleotide sequences of O157:H7 has 9775 been registered in gene data bank DDBJ on 26 June, 2000 as Accession number: BA000007.
[0077]

Example 2: Detection of O-157 by PCR

On the basis of a nucleotide sequence of the Urease gene 9780 specifically present in O-157 Sakai, oligonucleotide primers

capable of amplifying Urease gene were synthesized. Detection of O-157 specific Urease gene by PCR was performed according to a conventional method using O-157 Sakai or various strains of *E. coli* as samples and the synthesized primers. As a result,
9785 the Urease gene was merely detected in enterohemorrhagic *E. coli* including O-157, whereas, not in other types of *E.coli*. In addition, it was found that the Urease gene was present in O-157 and closely related strains thereof, and it was shown
9790 that the primers were usable for rapid identification and diagnosis of O-157.

[0078]

Example 3: Molecular epidemiology of O-157 by PCR

On the basis of the nucleotide sequence information of O-157 Sakai, oligonucleotide primers specific to O-157 were
9795 synthesized. Examining a number of other strains of O-157 by PCR using the primers, it was found that a specific band was detected in some strains, whereas not in others. This result indicates the presence or absence of a specific sequence depending on the strains and makes it possible to identify
9800 regions containing a lot of differences between the strains. It was made possible to classify the strains of O-157 by using the primers amplifying the regions.

[0079]

Example 4: Applying the nucleotide sequence to Diagnosis

9805 The genetic information obtained in the Example 1 was analysed, resulting in suggestion of the presence of salicylic acid degradation gene specifically present in O-157. Accordingly, medium comprising salicylic acid as a carbon source was prepared by using a function of the salicylic acid
9810 degradation gene to perform a culture experiment. As a result, it is shown that O-157 could proliferate in the medium and there was a possibility that O-157 could be selectively isolated using the medium.

[0080]

9815 Example 5: Applying a nucleotide sequence to diagnosis

The genetic information obtained in the Example 1 was analyzed, resulting in finding the presence of mutations in coding sequence of β -glucuronidase gene (SEQ ID NO:1865) and coding sequence of gene of specific PTS enzyme IIB and IIC (SEQ ID NO:1866). The mutations included frame-shift mutation. Accordingly, an oligonucleotide primer against these mutations was synthesized to detect O-157 and other strain by PCR using the primer. As a result, absence of β -glucuronidase and decrease of availability of sorbitol could be confirmed without cultivation of the bacteria. A primer for detecting tellurite resistance gene was synthesized to perform PCR in the same way. As a result, a mutation in the tellurite resistance gene could be detected. Furthermore, by PCR using a combination of the three types of primers, higher accuracy results of diagnosis was obtained. According to Example 5, it was shown that these primers may be applied to rapid diagnosis of O-157

[0081]

Example 6: Expression of a polypeptide

9835 A gene of a bacterial surface protein which was specifically present in O-157 was cloned to construct a system for mass production of a recombinant protein. The recombinant protein was purified using this system to construct a system for determining an antibody in patient's serum. It was shown that, this system was usable for serodiagnosis of O-157.

[0082]

Example 7: Application of a nucleotide sequence for diagnosis

9845 Based on the information of nucleotide sequence determined in Example 1, a toxin gene found newly was cloned to construct a system for mass production of a recombinant protein. The recombinant protein may be purified using this system, analyzed for a function of the toxin and searched for an

Appendix B: Hideo *et al.* Full Translation

inhibitor thereof. Based on the information of the purified
9850 protein and an amino acid sequence thereof, it is possible to determine [their] conformation to design an inhibitory substance and to synthesize [the inhibitory substance]. The inhibitory substance will be a therapy agent of different type from conventional antibiotics

9855 [0083]

Example 8: DNA Vaccine

A gene of a bacterial surface protein which was specifically present in O-157 was cloned into a vaccine strain of salmonella to confirm that the O-157 specific bacterial surface
9860 protein is expressed at surface of the vaccine strain of salmonella. The vaccine strain is usable as a vaccine against O-157.

[0084]

Example 9: Live attenuated vaccine

9865 A nucleic-acid molecule encoding a bacterial surface protein which was specifically present in O-157 was inserted to an expression vector suitable for salmonella to clone [the expression vector] into a vaccine strain of attenuated salmonella. Then, it was confirmed that the O-157 specific
9870 surface protein was expressed at surface of the vaccine strain of salmonella. The vaccine strain is usable as a live vaccine against O-157.

[0085]

Example 10: DNA microarray

9875 O-157 specific gene was amplified by PCR to prepare a DNA chip according to a conventional method. mRNAs were prepared from bacterial cells of O-157 which was cultured under various culture conditions to analyse using the DNA chip. As a result, it will be possible to perform various studies, such
9880 as [a study] of regulatory mechanism of expression of O-157 gene and [a study] of [confirming] whether a gene is expressed, or not, under a certain condition.

Appendix B: Hideo *et al.* Full Translation

[0086]

[Industrial applicability]

9885 The present invention provides a nucleotide sequence and
a polypeptide encoded thereby which are specific to
enterohemorrhagic E.coli O157:H7. These may be useful for
detection and/or therapy of infection. In addition, the present
invention provides a vaccine composition for preventing or
9890 treating O-157 infection. Furthermore, the present invention
has a possibility of providing a method of screening a novel
pharmaceutical agent and a food additive, and a method of
preventing and/or treating a pathosis relating to O-157.

9895

ABSTRACT

[Problems to be solved]

Providing a nucleic-acid molecule, a polypeptide, genetic information thereof and a method of using them which may be useful for detection and therapy of enterohemorrhagic pathogenic-E. coli O-157:H7 infection.

[Means to solve the problem]

Revealing genetic information of novel nucleic acid molecules specific to O-157, novel genes included the nucleic acid molecules, and novel polypeptides encoded by the genes.

9905