## What Is Upgrade Simulation?

### Monte Carlo in ATLAS Tutorial 29 September 2015

Jochen Meyer



#### from viewpoint of "hardware"

Many ideas/solutions!



Let's ask the software folks to hit a bottom and find the right answer so we can start to build it "tomorrow"!



The detectors may reach some limitations when conditions change.

#### introduction

Typical questions in context of upgrade to be answered by simulation studies:

 Which rates and fluxes are expected in the region of the new detectors (preferably for several LHC upgrade scenarios)?



- What is the acceptance and efficiency of the new detectors?
- Which (combined) resolutions can be achieved by using the new detectors?
- How should the detector be (geometrically) designed to make the best use of it?
- What is the interplay of the new detector and the already existing one?

#### from viewpoint of "software"

Finally there is the chance to write new code and introduce new programming techniques!



There are a mildly interesting questions from the hardware folks.

Answers are expected in that time scale?!?! Seriously?!?!

#### upgrade software starting point

#### Typical environment to start from:

- even though current software chain is running for already installed technologies an upgrade can be seen as chance to improve it
  - time constraints are limiting such efforts



- requested studies put different demands (which have been solved at some point for existing detectors) on required modifications
  - to speed up usually one needs to do things in parallel
- fundamental components (like geometry) change rapidly
  - either code is written in a flexible way (usually not) or needs to be adjusted often (including filling of databases)
- there is a variety of releases to develop upgrade software in

#### What kind of project are we talking about?

Detector upgrades may be ...

- ... something completely new, not yet seen (real **upgrade**) (example: New Small Wheel)
- ... a "simple" **addition** of more detectors in currently empty spots (example: elevator chambers added to muon system)
- ... a **replacement** of existing detectors with slightly modified new ones which use the same technology though (*example*: replacement of MDT inner barrel layer)

Solutions and complications differ a lot depending on the scope!

#### simulation (upgrade)

new detectors need to be implemented in GeoModel

geometrical shape may not (yet) be used

dead regions inside detecting volumes could be complex

- association of "sensitive detectors" to simulated volumes to record hits
  - new hit classes are required to hold all information for subsequent steps or very fast studies/validation
  - first sim hit content can be too comprehensive for background studies
- supporting structures need to be adjusted
- identifiers need to be extended and reviewed
- all existing volumes in spots of new structures need to be removed
- simulation configuration could become tricky



#### simulation (addition)

- extension of existing geometries with further chambers/detectors using already established coding techniques

  - possible adjustment of simulated volume
- increase of identifier ranges used to address sensitive volumes uniquely
  - identifiers are highly packed bitmasks utilized also for conditions data and during previous real data recordings
  - backward compatibility is a major concern



Example: chambers added to MS for Run 2 (orange)



#### digitization following simulation

#### upgrade digitization

- porting and validation of stand alone code emulating detector response to Athena framework
  - usually written by detector experts and therefore improvable in terms of CPU/memory usage
- new digit classes need to be introduced (at first overloaded with information similar like sim hits) along with converters
- readout mechanisms, raw data formats, cabling, ... unknown or changing a lot since depending on detailed detector configuration (e.g. number of strips or such)
- fast/parametrized digitization to bypass this step

#### digitization of detector extension

- decoding and cabling needs to be adjusted
  - changed readout can introduce complications

#### reconstruction of upgrade simulation

- reconstruction suffers from same issues like simulation/digitization
  - unknown geometrical shapes of tracking surfaces
  - readout system and positions not fixed
  - detector output and therefore PrepRawData format may change with time (cluster, drift time, ...)
- overlay of simulated data and (scaled) real data could enter combined reconstruction
- promising approach for fast studies is to approximate one or the other step
  - smearing sim hits to skip digitization
  - start reconstruction from digits rather than PrepRawData
  - 0

#### upgrade software development is a chance to ...

- ... learn something about already existing code
- ... solve shortcomings of current implementations
- ... contribute to detector design and software decisions
- ... get in touch with a lot of code written by people on various levels in programming experience
- ... face new challenges every other day
- ... see how hardware ideas develop
- There is always a not simulated upgrade!

#### ? questions ?



# EXERCISE

- they are slightly meta stable since work in progress -

#### exercise - visualizing the NSW in VP1

- setting up environment: setupATLAS
- setting up Athena: asetup 20.3.0.1,here
- check out necessary package ... pkgco.py MuonGeoModelTest-04-00-10 cd MuonSpectrometer/MuonGeoModelTest/cmt cmt config gmake cd \$TestArea
- start VP1 with NSW configuration: vp1 -nsw
- check box "NSW" in "Geo"-tab
- Do you spot a difference to the picture displayed here?
- Do you find inconsistencies when the MDTs are displayed to?
- What could be the implications?
- Remark: VP1 does not just build GeoModel volumes, but also tracking surfaces!

- MicroMegas (MM) modules in green
- small Thin Gap Chambers (sTGC) in blue
- support structures in gray



#### exercise - simulating the NSW

- setting up environment: setupATLAS
- setting up Athena: asetup 20.3.3.1, here
- simulation transform:

```
AtlasG4 tf.py \
--inputEVNTFile /afs/cern.ch/user/j/jomeyer/public/NSW/EVNT/MC12.107209.ParticleGenerator dimu Pt10 100.EVNT.pool.root
--preExec simFlags.SimulateNewSmallWheel=True \
--postInclude afs/cern.ch/user/j/jomeyer/public/NSW/NSW.config.simu.py,/afs/cern.ch/user/j/jomeyer/public/NSW/NSWPRDValAlg.simu.py
--conditionsTag OFLCOND-RUN12-SDR-22 \
--DataRunNumber 222250 \
--geometry/ersion ATLAS-R2-2015-02-01-00_VALIDATION \
--outputHITSFile test.hits.pool.root \
                                                     override to use NSW layout
--maxEvents 120
                                                     MuonSpectrometer.R.07.00-NSW:
```

triggers NSW geometry building:

- turns on Geant4 volumes of MM's and sTGC's
- enables sensitive detectors
- turns off current small wheel

- get the right identifier dictionary
- passive material not overlapping with NSW detectors

attaches validation ntuple dumper for simhits

- Do you get the NSWPRDValAlg.sim.ntuple.root output?
- Browse the flat ntuple! (see \*Variables.h for content)

#### exercise - digitize the generated hits

digization transform:

Reco\_tf.py \
--postInclude /afs/cern.ch/user/j/jomeyer/public/NSW/NSW.config.digi.py,/afs/cern.ch/user/j/jomeyer/public/NSW/NSWPRDValAlg.digi.py \
--inputHITSFile test.hits.pool.root \
--outputRDOFile test.rdos.pool.root

set up NSW geometry

- override to use MuonSpectrometer.R.07.00-NSW
- configure geometry algorithms/services (there is no SimulateNewSmallWheel here)

attaches validation ntuple dumper for simhits + digits

- Do you get the NSWPRDValAlg.digi.ntuple.root output?
- Produce some views in the XY plane and RZ plane of the sim hits / digits! (advanced level: "clown plot" on the right)
- important output to validate shapes, identifiers, ...
- even trigger algorithms can already be written on that output



# APPENDIX

#### some of the components implemented for the NSW

- completely new technologies are used, namely small thin gap chambers (sTGC) and MicroMegas (MM)
- generic muon sensitive detector (link)
- generic muon sim hit (link)
- fast digitization (link)
- full digitization (digits [MM, sTGC], digitizer [MM, sTGC])
- ntuple dumper for validation purposes (link)
- 13 geometry related packages: MuonAGDD, MuonAGDDBase, MuonAGDDDescription, MuonReadoutGeometry, MuonGeoModel, MuonGeoModelTest, NSW\_Sim, AGDD2GeoSvc, AGDDKernel, AGDDControl, AGDDModel, AGDDHandlers, IdDictParser