

Test of Hypothesis using SPSS

Dr. Md. Atiqul Islam

M.Sc. (SUST, BD), M.Sc. (UHasselt, BE), PhD (RuG, NL)

Professor Department of Statistics Jagannath University, Dhaka-1100

E-mail: atique@stat.jnu.ac.bd

Concept Covered

- Hypothesis testing
- Errors in Hypothesis testing
- Hypothesis testing procedure
- ▶ Hypothesis testing case studies
- > t-test
- ▶ Nonparametric Test

Introduction

Statistical Hypothesis

- ▶ **Hypothesis:** Any statement regarding the parameter of a random variable is called hypothesis.
- ▶ If the hypothesis is stated in terms of population parameters (such as mean, variance etc.), the hypothesis is called statistical hypothesis.
- Data from a sample (which may be an experiment) are used to test the validity of the hypothesis.
- ▶ A procedure that enables us to agree (or disagree) with the statistical hypothesis is called a **test of the hypothesis**.

Hypothesis Testing

▶ The main purpose of statistical hypothesis testing is to choose between two competing hypotheses.

Example

- One hypothesis might claim that wages of men and women are equal, while the **alternative** might claim that men make more than women.
- ▶ Hypothesis testing start by making a set of two statements about the parameter(s) in question.
- \triangleright **Null Hypothesis:** The hypothesis which is usually tested under rejection, is call null hypothesis. It is denoted by H_0 .
- ▶ **Alternative Hypothesis:** The alternative hypothesis is the hypothesis used in hypothesis testing that is contrary to the null hypothesis. It is denoted by H_1 or H_A .

Hypothesis Testing

Statistical inference

Null hypothesis

Alternative hypothesis

Assumptions

- ▶ Independence
- ▶ Normality
- ▶ Homogeneity (variances are equal)

Conceptions in Hypothesis Test

- One-sided and Two-sided tests
- ▶ Type-I error and Type-II error
- ▶ Level of Significance
- Conclusion with probability
- ▶ Means of P-value
- Significance

The Hypotheses

One-sided test: A statistical test in which the alternative hypothesis specifies that the population parameter lies entirely above or below the value specified in H_0 is called a one-sided (or one-tailed) test. e.g.,

$$H_0: \mu \le 100 \text{ vs. } H_1 > 100$$

or, $H_0: \mu \ge 0 \text{ vs. } H_1 < 100$

▶ **Two-sided test:** An alternative hypothesis that specifies that the parameter can lie either sides of the value specified by H_0 is called a two-sided (or two-tailed) test. e.g.,

$$H_0$$
: $\mu = 100 \text{ vs. } H_1 \neq 100$

Errors in Hypothesis Testing

Type I error:

A type I error occurs when we incorrectly reject H_0 (i.e. we reject the null hypothesis, when H_0 is true).

Type II error:

A type II error occurs when we incorrectly fail to reject H_0 (i.e. we accept H_0 when it is not true).

Observation	Decision				
	Reject H_0	Do not reject H_0			
H_0 is true	Type I error (α)	Decision is Correct			
H_0 is false or H_1 is true	Decision is Correct Power $(1 - \beta)$	Type II error (β)			

Probability of Making Errors

- Level of Significance: The probability of rejecting the null hypothesis when it is true is called level of significance. It is the probability of Type-I error. It is denoted by α .
- **Power of the Test:** The probability of rejecting the null hypothesis when it is false is called power of the test. It is denoted by (1 − β).
 - $\therefore Power = 1 (probability of Type II error) = 1 \beta$
- \triangleright *p* -value: A *p* -value (probability value) describes the exact significance level associated with a particular result.
 - ▶ For example: The p-value of 0.01 indicates that the test is statistically significant at 1% level.

p-value

 \triangleright The *p*-value of a test is the smallest value of α (level of significance) for which null hypothesis can be rejected.

What does mean by *P*-value?

- \triangleright If $P \le \alpha$, H_0 is statistically significant.
 - ► If the data are not consistent with the null hypothesis, the difference is said to be statistically significant.
- \triangleright If $P > \alpha$, No statistical significance.
 - ► No sufficient evidence.

5 Steps of Hypothesis test

- Specify H_0 and H_1 , the null and alternate hypothesis, and an acceptable level of α (significance level).
 - Determine an appropriate sample-based test statistics and the rejection region for the specified H_0 .
 - 3 Collect the sample data and calculate the test statistics.
 - **4**) Make a decision to either reject or fail to reject H_0 .
- Interpret the result in common language suitable for practitioners.

T-test: One sample

- Example: An outbreak of Salmonella-related illness was attributed to ice cream produced at a certain factory. Scientists measured the level of Salmonella in 9 randomly sampled batches of ice cream. The levels (in MPN/g) were: 0.593, 0.142, 0.329, 0.691, 0.231, 0.793, 0.519, 0.392, 0.418
- **Solution:** The null and alternative hypotheses are

$$H_0: \mu \leq 0.3 \ vs. H_1: \mu > 0.3$$

Let's input the above data in SPSS

T-test: One sample

T-test: One sample

 $H_0: \mu \leq 0.3 \text{ vs. } H_1: \mu > 0.3$

One-Sample Statistics

	Ν	Mean	Std. Deviation	Std. Error Mean
Salmonella Level	g	.45644	.212844	.070948

One-Sample Test

	Test Value = .3						
				Mean	95% Confidence Interval of the Difference		
	t	df	Sig. (2-tailed)	Difference	Lower Upper		
Salmonella Level	2.205	8	.059	.156444	00716	.32005	

$$P = 0.059/2$$

= 0.0295 < 0.05

Conclusion: Since the p − value (0.0295) < α (0.05), we may reject the H_0 . Therefore, we may conclude that the mean level of Salmonella in the ice cream is greater than 0.3 MPN/g.

T-test: Two independent samples

▶ Body Temperature data description (.sav): The data represent the 100 people with heart rate and body temperature.

Let's import the data first!

- Question 1: Is there any significant changes in the heart rate of male and female?
- Recode the Gender variable into numerical coding (0 = Male, 1 = Female)
- Check the distribution of heart rate variable!
- Solution: The null and alternative hypotheses are H_0 : $\mu_1 = \mu_2$ (mean HR of male and female are same) H_1 : $\mu_1 \neq \mu_2$ (mean HR of male and female are different)

Checking the distribution of heart rate variable

Checking the distribution of heart rate variable

➤ **Summary**: The distribution of HR for male seems normal but the distribution of HR for female looks a bit skewed to the right. For both gender, the HR is approximately normally distributed.

T-test: Two independent samples

T-test: Two independent samples

Checking the distribution of heart rate variable

➤ **Summary**: The distribution of HR for male seems normal but the distribution of HR for female looks skewed to the right (positively skewed). Overall, the HR is not normally distributed.

Non-parametric: Mann-Whitney U test

Mann-Whitney U test

Ranks

	Sex	Ν	Mean Rank	Sum of Ranks
HeartRate	Male	49	52.76	2585.00
	Female	51	48.33	2465.00
	Total	100		

Test Statistics^a

	HeartRate
Mann-Whitney U	1139.000
Wilcoxon W	2465.000
Z	763
Asymp. Sig. (2-tailed)	.445

a. Grouping Variable: Sex

P > 0.05

- ▶ Weight of the mice before treatment
- > 200.1, 190.9, 192.7, 213, 241.4, 196.9, 172.2, 185.5, 205.2, 193.7
- ▶ Weight of the mice after treatment
- > 392.9, 393.2, 345.1, 393, 434, 427.9, 422, 383.9, 392.3, 352.2
- ▶ Question: Is there any significant changes in the weights of mice before and after treatment?

Let's Import the data in SPSS

▶ The null hypothesis (two-sided) is:

$$H_0: d_{difference} = 0$$

(The population average weight loss is zero)

$$H_1: d_{difference} \neq 0$$

(The population average weight loss is not zero)

Paired Samples Statistics

Mear		Mean	Z	Std. Deviation	Std. Error Mean
Pair 1	Before	199.1600	10	18.47354	5.84185
	After	393.7500	10	29.39460	9.29539

Paired Samples Correlations

		Z	Correlation	Sig.	
Pair 1	Before & After	10	.313	.379	

Paired Samples Test

		Paired Differences							
				Std. Error	95% Confidence Interval of the Difference				
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	Before - After	-194.59000	29.42491	9.30497	-215.63931	-173.54069	-20.912	9	.000

Thank You!