STA 674

Regression Analysis And Design Of Experiments
Fitting Simple Linear Regression Models – Lecture 6

Fitting Simple Linear Regression Models

- Last time: we nailed down the concepts of accuracy, precision and introduced (or recalled, for some) the term standard error
- Now we'll the apply the theoretic results about sampling distributions to data to make inferences in the forms of:
 - Confidence intervals
 - Significance, or hypothesis, tests

Fitting Simple Linear Regression Models

Confidence intervals for LS Estimates

• **Definition:** A $(1 - \alpha)100\%$ confidence interval for a parameter β is an interval (L, U) such that the probability that (L, U) covers the true value of the parameter is $(1 - \alpha)$.

Most common case:

- A 95% confidence interval for the parameter is an interval (L, U) such that the probability that (L, U) covers the true value of β is 0.95.
- (Note that the 95% confidence interval corresponds to $\alpha = 0.05$.)

Fitting Simple Linear Regression Models

Review: confidence intervals (CIs) for a population mean

Suppose $X_1, X_2, ..., X_n$ are normally distributed with common mean and standard deviation μ and σ .

A $(1 - \alpha)100\%$ CI for μ is given by the endpoints:

$$L = \bar{x} - t_{\alpha/2, n-1} \frac{s_x}{\sqrt{n}}$$

$$U = \bar{x} + t_{\alpha/2, n-1} \frac{s_x}{\sqrt{n}}$$

Fitting Simple Linear Regression Models

Example: confidence interval for a population mean

A quality control inspector is concerned with the average amount of weight that can be held by a type of steel beam. A random sample of five beams is tested with the following amounts of weight added before the beams begin to show stress (in thousands of pounds):

9, 11, 10, 10, 8

Assuming that the population of weights is normally distributed, construct a 95% confidence interval estimate of the population mean weight that can be held.

x bar = 9.6; sx = 1.14; t of 0.025 = 2.7764 (used to multiply sx/sqrt(n) for standard error...used for CI) LCI = 8.18; UCI = 11.02

Fitting Simple Linear Regression Models

Example: confidence interval for a population mean

A quality control inspector is concerned with the average amount of weight that can be held by a type of steel beam. A random sample of five beams is tested with the following amounts of weight added before the beams begin to show stress (in thousands of pounds):

9, 11, 10, 10, 8

Assuming that the population of weights is normally distributed, construct a 95% confidence interval estimate of the population mean weight that can be held.

$$\bar{x} = 9.6$$
; $s_x = 1.14$; and $t_{0.025,4} = 2.7764$

Fitting Simple Linear Regression Models

Example: confidence interval for a population mean

A quality control inspector is concerned with the average amount of weight that can be held by a type of steel beam. A random sample of five beams is tested with the following amounts of weight added before the beams begin to show stress (in thousands of pounds):

Assuming that the population of weights is normally distributed, construct a 95% confidence interval estimate of the population mean weight that can be held.

$$\bar{x} = 9.6$$
; $s_x = 1.14$; and $t_{0.025,4} = 2.7764$

L =	8.18	and	U :	= 1	11.	02
-----	------	-----	-----	-----	-----	----

Basic Confidence Limits Assuming Normality						
Parameter	Estimate	95% Confidence Limits				
Mean	9.60000	8.18429	11.01571			

Fitting Simple Linear Regression Models

Interpretation of confidence intervals (for the population mean)

• A probability interpretation: if you were to repeat the experiment many, many times and compute the $(1 - \alpha)100\%$ interval for each data set then $(1 - \alpha)100\%$ of the intervals would cover the population mean.

Fitting Simple Linear Regression Models

• Problem with a probability interpretation: it started with "if you were to repeat the experiment many, many times ..."

Fitting Simple Linear Regression Models

Interpretation of confidence intervals (for the population mean)

- A *probability* interpretation: if you were to repeat the experiment many, many times and compute the $(1-\alpha)100\%$ interval for each data set then $(1-\alpha)100\%$ of the intervals would cover the population mean.
- A *heuristic* Interpretation: we cannot say whether or not the confidence interval for a single data set covers the population mean. However, since 95% of intervals like this cover the mean it seems reasonable to assume that the interval we computed covers the mean. We say that we are 95% confident that the interval covers the population mean.
- The values inside the 95% confidence interval represent a *reasonable* range of guesses for the *population* mean.