Einzelprüfung "Theoretische Informatik / Algorithmen (vertieft)"

Einzelprüfungsnummer 66115 / 2012 / Herbst

## Thema 1 / Aufgabe 1

(NEA und Minimalisierung)

Stichwörter: Potenzmengenalgorithmus, Minimierungsalgorithmus

Wir fixieren das Alphabet  $\Sigma = \{a, b\}$  und definieren  $L \subseteq \Sigma^*$  durch

 $L = \{ w \mid \text{in } w \text{ kommt das Teilwort bab vor } \}$ 

z. B. ist babaabb  $\in L$ , aber baabaabb  $\notin L$ . Der folgende nichtdeterministische Automat A erkennt L:



Der Automat auf flaci.com (FLACI: Formale Sprachen, abstrakte Automaten, Compiler und Interpreter) Ein Projekt der Hochschule Zittau/Görlitz und der Pädagogischen Hochschule Schwyz: flaci.com/Af75jwj3r

(a) Wenden Sie die Potenzmengenkonstruktion auf den Automaten an und geben Sie den resultierenden deterministischen Automaten an. Nicht erreichbare Zustände sollen nicht dargestellt werden.

Lösungsvorschlag

| Zustandsmenge               | Eingabe a               | Eingabe b               |
|-----------------------------|-------------------------|-------------------------|
| $Z_0 \{z_0\}$               | $Z_0 \{z_0\}$           | $Z_1 \{z_0, z_1\}$      |
| $Z_1$ $\{z_0, z_1\}$        | $Z_2 \{z_0, z_2\}$      | $Z_1$ { $z_0$ , $z_1$ } |
| $Z_2\left\{z_0,z_2\right\}$ | $Z_0 \{z_0\}$           | $Z_3 \{z_0, z_1, z_3\}$ |
| $Z_3 \{z_0, z_1, z_3\}$     | $Z_4 \{z_0, z_2, z_3\}$ | $Z_3 \{z_0, z_1, z_3\}$ |
| $Z_4 \{z_0, z_2, z_3\}$     | $Z_5 \{z_0, z_3\}$      | $Z_3 \{z_0, z_1, z_3\}$ |
| $Z_5 \{z_0, z_3\}$          | $Z_5 \{z_0, z_3\}$      | $Z_3 \{z_0, z_1, z_3\}$ |



Der Automat auf flaci.com (FLACI: Formale Sprachen, abstrakte Automaten, Compiler und Interpreter) Ein Projekt der Hochschule Zittau/Görlitz und der Pädagogischen Hochschule Schwyz: flaci.com/Aro483e89

(b) Konstruieren Sie aus dem so erhaltenen deterministischen Automaten den Minimalautomaten für *L*. Beschreiben Sie dabei die Arbeitsschritte des verwendeten Algorithmus in nachvollziehbarer Weise.

Lösungsvorschlag

| $z_0$ | Ø     | Ø     | Ø     | Ø     | Ø     | Ø     |
|-------|-------|-------|-------|-------|-------|-------|
| $z_1$ | $x_3$ | Ø     | Ø     | Ø     | Ø     | Ø     |
| $z_2$ | $x_2$ | $x_2$ | Ø     | Ø     | Ø     | Ø     |
| $z_3$ | $x_1$ | $x_1$ | $x_1$ | Ø     | Ø     | Ø     |
| $z_4$ | $x_1$ | $x_1$ | $x_1$ |       | Ø     | Ø     |
| $z_5$ | $x_1$ | $x_1$ | $x_1$ |       |       | Ø     |
|       | $z_0$ | $z_1$ | $z_2$ | $z_3$ | $z_4$ | $z_5$ |

- $x_1$  Paar aus End-/ Nicht-Endzustand kann nicht äquivalent sein.
- $x_2$  Test, ob man mit der Eingabe zu einem bereits markiertem Paar kommt.
- $x_3$  In weiteren Iterationen markierte Zustände.
- *x*<sub>4</sub> ...

## Übergangstabelle

| Zustandspaar | a               | b               |
|--------------|-----------------|-----------------|
| $(z_0, z_1)$ | $(z_0,z_2) x_3$ | $(z_1,z_1)$     |
| $(z_0, z_2)$ | $(z_0,z_0)$     | $(z_1,z_3) x_2$ |
| $(z_1, z_2)$ | $(z_2,z_0) x_3$ | $(z_1,z_3) x_2$ |
| $(z_3, z_4)$ | $(z_4,z_5)$     | $(z_3,z_3)$     |
| $(z_3,z_5)$  | $(z_4,z_5)$     | $(z_3,z_3)$     |
| $(z_4, z_5)$ | $(z_5,z_5)$     | $(z_3,z_3)$     |



Der Automat auf flaci.com (FLACI: Formale Sprachen, abstrakte Automaten, Compiler und Interpreter) Ein Projekt der Hochschule Zittau/Görlitz und der Pädagogischen Hochschule Schwyz: flaci.com/Ar3joif5z



## Die Bschlangaul-Sammlung

Hermine Bschlangaul and Friends

Eine freie Aufgabensammlung mit Lösungen von Studierenden für Studierende zur Vorbereitung auf die 1. Staatsexamensprüfungen des Lehramts Informatik in Bayern.



Diese Materialsammlung unterliegt den Bestimmungen der Creative Commons Namensnennung-Nicht kommerziell-Share Alike  $4.0\,\mathrm{International\text{-}Lizenz}.$ 

Hilf mit! Die Hermine schafft das nicht allein! Das ist ein Community-Projekt! Verbesserungsvorschläge, Fehlerkorrekturen, weitere Lösungen sind herzlich willkommen - egal wie - per Pull-Request oder per E-Mail an hermine.bschlangaul@gmx.net.Der TEX-Quelltext dieses Dokuments kann unter folgender URL aufgerufen werden: https://github.com/bschlangaul-sammlung/examens-aufgaben/blob/main/Staatsexamen/66115/2012/09/Thema-1/Aufgabe-1.tex