Hacettepe University

MAT 124 MATHEMATICS II Final Examination	
	Name :
Acad.Year: 2019-2020	Surname :
Semester $: Spring$	Number :
Date : 24.06.2020	
Time : 10:00	
Duration : 120 min.	Total 100 points
1. (20) 2. (20) 3. (20) 4. (20) 5.	(20)

- 1. Let $F(x, y, z, u, v) = x^2 + xy + yz^2 + u^3 + v 7 = 0$ and $G(x, y, z, u, v) = xyz + x + y + u^2 v^2 5 = 0$. Show that z and u can be solved as functions of x, y and v near the point $P_0 = (1, 1, 2, 1, 0)$. Compute $\frac{\partial z}{\partial x}|_{P_0}$.
- 2. Sketch the domain of the integral

$$\int_0^{\frac{\pi}{2}} dy \int_y^{\frac{\pi}{2}} \frac{\sin x}{x} dx$$

and evaluate it.

3. Convert

$$\int_{-1}^{1} \int_{0}^{\sqrt{1-y^2}} \int_{x^2+y^2}^{\sqrt{x^2+y^2}} xyzdzdxdy$$

into an integral in cylindrical coordinates and evaluate it.

4. Let \mathcal{C} be the path from (0,0) to (0,1) along the parabola $y=x^2$ from (0,0) to (1,1) and the line segment from (1,1) to (0,1). Then evaluate the integral

$$\int_{\mathcal{C}} F.dr$$

where $F(x, y, z) = 2xe^{y}i + 2x^{2}e^{y^{2}}j$.

- **5.** Let F(x, y, z) = yzi + xzj + (xy + 2z)k.
- (a) Show that the vector field F is conservative by finding a function f such that $F = \nabla f$.
- (b) Use part (a) to evaluate

$$\int_{\mathcal{C}} F.dr$$

where C is any path from (1,0,-2) to (4,6,3).