

10 Cuestiones de TEORIA (6 puntos). Puntuación: BIEN:+0.6 puntos., MAL: -0.15 puntos, N.C: 0

Dado el circuito recortador de la figura, y teniendo en cuenta una Vγ de 0.7V para los diodos. Calcule el valor de Vs cuando Ve = 6V

En el circuito de la figura hay dos subcircuitos digitales hechos con diodos, transistores y resistencias: el 1), con entradas A y B, y salida C; y el 2), con entrada D, y salida F.

Suponiendo que se conecta C y D, señale la afirmación CORRECTA:

DATOS: $V\gamma = 0.7V$ (para todos los diodos); $V_{BEON} = 0.7V$ (para el transistor)

[A] El primer subcircuito actúa como una puerta OR de dos entradas y el segundo subcircuito como un inversor.

(B) Cuando las entradas son A = 1 y B =1, entonces D3 conduce y la salida en F es 0.

(C) Cuando D1 y/o D2 conduce, entonces también lo hace el diodo D3.

(D) Cuando D = 0 el transistor conduce y la salida en F es 0.

En un transistor bipolar NPN que está funcionando en un circuito y cuya ganancia de corriente β es de 100, se miden las siguientes corrientes y tensiones continuas: IB>0 -> conduce (no corte)

 $V_{BE} = 0.7V$ $I_{B} = 0.1 \text{mA}$ $I_{E} = 3.5 \text{mA}$

Suponsamos ActivA: A la vista de los datos anteriores, podemos afirmar que el transistor:

[A] Está en corte.

[B] Está funcionando en zona activa.

Ic= & IB = 100x 0.1 = 10 mA

[C]

No podemos indicar la zona de funcionamiento, ya que nos falta el valor de V_{CE} . Pozo Ic = Iz - Iz Está saturado. $Ic = 3.5 - 0.1 = 3.4 \text{ mA} \rightarrow Ic + \beta Iz$ [D])

El circuito de la figura es un inversor lógico. ¿Cuál es el valor mínimo de la tensión de entrada para que se alcance la saturación del transistor? (Ve_{MIN(SAT)})

- Acerca del transistor MOSFET, señale la respuesta FALSA.
- [A] En la zona de saturación, el canal del transistor se estrangula y no permite que aumente la corriente a pesar de aumentar VDS.
- [B] El transistor Mosfet tiene una gran versatilidad, pudiendo funcionar como interruptor, resistencia variable e incluso condensador.
- [C] Para evitar la ruptura de la capa thinox del transistor, se suele utilizar un recortador a dos niveles en el terminal G.
- En los circuitos digitales pseudo-NMOS, las cargas activas se diseñan con transistores NMOS con el terminal de puerta conectado a masa.

 Las curgas activas seu fros, pros con 6 20 no conduce ,

7. El circuito de la figura está compuesto de puertas NAND con salida en colector abierto. A partir de las especificaciones de la tabla (tensiones y corrientes) y para las entradas (A=4V, B=0.2V, C=4.5V, D=0.6V), CALCULE el voltaje en F.

V _{IHr}	nin	V _{ILmax}	V_{OHmin}	V_{OLmax}
2.5 V 0.8 V		0.8 V	3.0 V	0.5 V
I _{IHmax}		I _{ILmax}	I _{OHmax}	I _{OLmax}
600 uA -0.36		-0.36 mA	200 uA	7 mA

A=4U>VSHMin => A=1'

B=0.2V < VILMEN > B=0'

C=4JV>VIHMIN > C=1'

D=0.6V < VILMEN > D=0'

- 8. Cuál de las siguientes afirmaciones relacionadas con una misma familia lógica es FALSA:
- [A] Siempre se cumple $V_{OHmin} > = V_{IHmin}$.
- [B] El margen de ruido se define como NM=min(NM_L,NM_H)
- Las corrientes en las entradas son siempre positivas, en cambio, las corrientes en las salidas son siempre negativas.
- Si no se cumplen los tiempos de t_{su} (setup) y de t_h (hold) durante la escritura de un biestable, éste puede entrar en modo metaestable y no efectuar correctamente el almacenamiento del dato de entrada.

Se desea conectar entre sí dos familias lógicas A y B (A →B) cuyas especificaciones se indican en las tablas adjuntas. Seleccione la opción CORRECTA de entre las siguientes:

Familia A (+5V) $ ightarrow$ 400 $\mathcal S$				Familia B (+5V) 💛 TTL			
V _{IHmin}	V _{ILmax}	V _{OHmin}	V_{OLmax}	V_{lHmin}	V_{ILmax}	V_{OHmin}	V _{OLmax}
3.5 V	1.5 V	4.9 V	0.1 V	2 V	0.8 V	2.4 V	0.4 V
I _{IHmax}	I _{ILmax}	I _{OHmax}	I _{OLmax}	I _{IHmax}	I _{ILmax}	I _{OHmax}	I _{OLmax}
10 pA	-10 pA	-0.5 mA	0.5 mA	40 μΑ	-1.6 mA	-400 μΑ	16 mA

Se puede realizar la conexión directamente. [A]

MH = 4.9-2= 2.9V J

Los niveles lógicos son compatibles y el margen de ruido global es de 2.9 V [B]

No hay compatibilidad en tensiones, por lo que hay que añadir un buffer en colector abierto, entre A y B con [C] una resistencia de pull-up a su salida conectada a +5V.

Las corrientes son incompatibles, por lo que hay que intercalar un buffer de la familia A con la alimentación [D] conectada a +5V.

FOLMER A < | Islandx | B -> 0.5 < 1.6

Dado el siguiente circuito secuencial, implementado con biestables D, señale la afirmación CORRECTA:

Parámetros temporales: Biestables: (Set up: t_{su} = 10 ns, Hold: t_h = 5 ns, Retardo: $t_{pd(max)}$ = 20 ns), Puertas NOT: (Retardo: $t_{pd(m\acute{a}x)} = 20 \text{ ns}$).

[A] La frecuencia de funcionamiento no debe superar los 20MHz.

[B] La frecuencia de funcionamiento ha de ser mayor de 15 MHz. > T dela cer > 50 ms [C] El período de reloj no debe superar los 50ns. -

Twin =
$$20+20+10 = 50$$
 us

Finax = $\frac{1}{5000}$

Finax = $\frac{1}{50}$ = $\frac{10^9}{50}$ Hz

(PAGINA INTENCIONADAMENTE EN BLANCO)

Apellidos:

Nombre:

PROBLEMA (4 PUNTOS)

El circuito digital de la figura, diseñado con transistores MOSFET, tiene entradas A y B, y salida F.

Nota: En zona óhmica utilice la expresión aproximada $R_{ON} \approx 1/(2K(V_{GS} - V_T))$

Parámetros transistores:

$$V_T = 0.5 \text{ V}$$

 $K = 0.1 \text{ mA/V}^2$

[A] (0.5 Puntos) Rellene la siguiente tabla de verdad e indique la expresión lógica de F en función de las entradas A y B.

А	В	Х	F
0	0	1	0
0	1	0	1
1	0	1	0
1	1	0	0

[B] (1.5 Puntos) Suponga que A = 0V ("0" lógico) y B = 5V ("1" lógico).

Nota: como el circuito es digital, los transistores funcionan en conmutación, entre corte y zona lineal (Ron).

Dibuje el circuito eléctrico equivalente (substituya cada transistor por Ron o un interruptor abierto) y
efectúe los cálculos para rellenar la tabla siguiente.

• Rellene la siguiente tabla de funcionamiento del circuito.

Ron (kΩ)	Zona T1	Zona T2	Zona T3	$V_X(Volt)$	V _F (Volt)	Consumo estático (mA)	Consumo estático (mW)
1.11	CORTE	CORTE	LINEAL	0,055	5V	0-049	0.245

[C] (1.5 Puntos) Suponga que A = 5V ("1" lógico) y B = 0V ("0" lógico).

Dibuje el circuito eléctrico equivalente (substituya cada transistor por Ron o un interruptor abierto) y efectúe los cálculos para rellenar la tabla siguiente.

Ron (kΩ)	Zona T1	Zona T2	Zona T3	$V_X(Volt)$	V _F (Volt)	Consumo estático (mA)	Consumo estático (mW)
1.11	lineal	lineal	coste	5	0.028	0.05	0.25

[D] (1)Puntos) Para controlar el funcionamiento de un motor por parte del circuito lógico anterior, se diseña el siguiente esquema. El motor funciona con 18V y 60mA.

Rellene la siguiente tabla (justifique los cálculos):

F	Motor (marcha/paro)	Potencia disipada motor (mW)	Potencia disipada transistor (mW)
"0"	Paro	0	0
"1"	marcha	1.08 ×103	120

Indique el valor de Ron del

$$Ron = \frac{20 - 18}{60} = 0.033 k \Omega = 33.2$$