

Data Management at the FIBEr Lab

ManGO User Day 2024 Heleen Fehervary & Ronny Moreas

WHY do we need biomechanical experiments?

Understanding mechanics-related pathologies

WHAT are biomechanical experiments?

Material characterization

Aorta

Medical device testing

Fracture plate

Non-exhaustive list of the mechanical properties we can measure:

- compliance or stiffness (e.g. Young's modulus),
- strength (tensile, compressive, flexural, peel, tear) and elongation,
- energy to failure and fracture toughness,
- Poisson's ratio,
- crack growth velocity,
- fatique & fatique life,
- visco-elastic properties (creep, stress relaxation)

WHEN are biomechanical experiments useful?

at multiple stages of product development

R&D stage

Regulatory

INTERNATIONAL STANDARD

ISO 7198

Cardiovascular implants and extracorporeal systems — Vascular prostheses — Tubular vascular grafts and vascular patches

can data from biomechanical experiments be used?

Direct comparison

- Strength
- Stiffness/Elasticity
- Visco-elasticity
- Permeability
- Fracture behavior

Input for in silico models

Grogan et al. 2015, Kleiven et al. 2006

What is important for good data management at FIBEr?

- Different types of clients
 - Lab users (internal, external)
 - FIBEr team running service projects
- Samples (storage, traceability, linked data, ...)
- Large portfolio of testing equipment
 - Almost all measurements are digitalized
 - Some data is combined in post processing
 - Different data sizes (few KB to a few hundreds of GB)
- Sharing raw/processed data within/outside KU Leuven
- QMS: back-up, confidentiality, data integrity

Overview Data Management at FIBEr

- 1. Sample, project and experiment (meta)data
- 2. Test data acquisition
- 3. Data ingestion into ManGO
- 4. Move completed data ingests to project collection
- 5. Data processing
- 6. Archival of completed projects

Sample, project and experiment (meta)data

FIBEr Sample Manager:
 Webapp for management of samples, projects and experiments

Test Data Acquisition

- FIBEr DAQ Manager App
 - Installed on instrument computers
 - Collect data and metadata to be added to dataset for upload
- After a test run the operator:
 - Selects files to be added to dataset
 - Adds metadata (from FIBEr Dashboard)
 - Instrument
 - Sample
 - Project
 - Experiment
 - Test Operator
- Dataset moved to drop location for upload to ManGO

1105210056-2410041417

Test Data Acquisition

- Metadata file (json) added to dataset for upload
- Dataset with metadata moved to drop location for upload to ManGO

1105210056-2410041417

```
"acquisition_datetime": "2024-10-04T14:17:47",
"device": {
    "model": "Biaxial Testing Machine, Messphysik - Zwick/Roell",
    "name": "BIAX-01"
"experiment": {
    "id": "5f7c7fdda75a8711261e4ea7",
    "name": "Demo ManGO User Day 2024"
},
"operator": {
    "name": "Ronny",
    "surname": "Moreas",
    "uid": "u0012772"
"project": {
    "id": "b85cf558-f560-4d15-a72d-36e1fbce1ed5",
    "name": "FIBEr oefenstaal"
},
"sample": {
    "id": "1105210056",
    "name": "Human brain 8/23 Exp3.1"
```

Data Ingestion into ManGO

ManGO Ingestor

- Linux-based device designed to facilitate the **ingestion of instrument data** and metadata from multiple devices into the ManGO active data platform.
- Purpose
 - Streamline the process of ingesting and managing scientific data across different platforms and environments with central control.
 - Avoid installation of software on instrument computers by pulling data directly from SMB/CIFS (or NFS) share(s) defined on the instrument computers.
 - Extendable with custom handlers for metadata extraction

ManGO Ingestor

- Foundation
 - Built upon the <u>iRODS Capability Automated Ingest (iCAI)</u> to provide a library of common ingestion handlers with enhanced configuration features.
 - Includes base **handler classes** for different types of data ingestion, such as RunFolderIngestHandler, BCLIngestHandler, and FASTQIngestHandler.
 - Inspired by <u>bihealth/rodeos-ingest: Code for ingesting omics data into omics storage</u> based on iRODS capabilities (github.com)
 - Cloud-based deployment of software components

- K3s lightweight Kubernetes distro great for edge deployments in labs
- ManGO Ingest Docker image
- ManGO Ingest Helm chart to facilitate configuration, deployment and updating of all software components

Data Ingestion into ManGO (ingress collections)

 The ManGO Ingestor syncs datasets from the DAQ device drop locations to an ingress collection per source device

Data Ingestion into ManGO (ingest metadata)

- ManGO Ingestor adds metadata to datasets about the sync status
- Ingestor uses
 customizable hook
 method to detect
 completion of a
 test/measurement
 sequence

Data Ingestion into ManGO (other metadata)

- Acquisition metadata is added to the dataset collection
- ManGO Ingestor can be extended with custom handlers to extract and add metadata for specific instruments

Move Datasets to Project Collections

 ManGO Flow moves completed data ingests from ingress collection to raw collection of the associated project

Move Datasets to Project Collections (project metadata)

 Target project collection is determined by project metadata set on project collections and the acquisition metadata set on the ingested dataset

Data Processing

- Workflow depends on project and data types
- Generic workflow using Globus for data transfers
 - Transfer raw data to workstation or HPC for processing
 - Upload of results
 - Still early-stage ideas to be worked out

Archival of completed projects (in the future)

- Move data of completed projects to cold storage
 - Long-term storage
 - Qualified and well described immutable datasets
 - May be re-used or re-examined in the future
 - Enough metadata provided, to allow the datasets to be re-used
 - Searchable in the long-term

References

- https://fiber.biomech.be
- https://gitlab.kuleuven.be/setit/rdm/mango-ingest
- https://gitlab.kuleuven.be/setit/rdm/mango-ingest-helm-chart
- https://github.com/irods/irods_capability_automated_ingest
- https://github.com/kuleuven/mango-mdschema
- https://rdm-docs.icts.kuleuven.be/mango/
- https://rdm-docs.icts.kuleuven.be/globus/

