Техническое задание

Интеллектуальный ассистент слепой диагностики узловых образований щитовидной железы

Введение

В данном техническом задании описываются требования к разработке виртуального ассистента слепой диагностики узловых образований щитовидной железы с web-интерфейсом и с интегрированием нейросетевых технологий.

Наименование системы — "Виртуальный ассистент слепой диагностики узловых образований щитовидной железы".

Назначение для разработки

Цель разработки: автоматизация процесса проведения слепой диагностики узловых образований щитовидной железы.

Данная система предназначена для автоматизации процесса проведения слепой диагностики узловых образований на снимках УЗИ щитовидной железы. Основная задача системы — ассистирование в определении положения и класса узлового образования по европейской системе TI-RADS. Рассматриваемая система будет использована как вспомогательный инструмент для врачей УЗИ, онкологов, эндокринологов и хирургов.

Требования к программе

Требования к функциональным характеристикам

• Проведение слепой диагностики

Система должна предоставлять возможность сегментирования снимка УЗИ (разделение на общую область и область узловых образований) и классификации обнаруженного узла по европейской системе классификации узловых образований TI-RADS.

• Работа с полученными результатами

Система должна содержать функции обработки рассматриваемого снимка, сохранения полученных изображений, изменения характеристик диагностики.

• Ведение карт пациентов

Система должна содержать функционал ведения история болезни пациента: добавление личных данных, все проведенные диагностики, предварительные выводы по проведенной слепой диагностике.

• Пополнение обучающего датасета

Система должна предоставлять возможность добавления снимка в обучающую выборку для моделей классификации и сегментации: загрузка изображения с прикреплением нарисованной в системе маской и проставленным классом TI-RADS.

• Консультация в спорных ситуациях

Система должна содержать функции отправки эксперту (третьему лицу) и получения экспертом результатов диагностики для решения спорных ситуаций по определению типа образования.

Требования к надежности

Для обеспечения устойчивой работы заказчик должен предоставить бесперебойное сестевое подключение между локальным сервером и рабочими станциями пользователей, а также бесперебойную работу локального сервера организации и использования лицензионного ПО.

Время восстановления после отказа, вызванного сбоем электропитания технических средств (иными внешними факторами), не фатальным сбоем (не крахом) операционной системы, не должно превышать 30-ти минут при условии соблюдения условий эксплуатации технических и программных средств. Время восстановления после отказа, вызванного неисправностью технических средств, фатальным сбоем (крахом) операционной системы, не должно превышать времени, требуемого на устранение неисправностей технических средств и переустановки программных средств.

В связи с тем, что система хранит в себе персональные данные пользователей, работа в системе может осуществляться только списком разрешенных лиц. Изменения в саму систему сожет вносить только пользователь, имеющий роль с расширенными правами взаимодействия с ситстемой.

Требования к временным характеристикам

• Среднее время отклика: 100 мс.

• Среднее время обработки снимка: 7,45 снимка/с

RPS: 300.

Требования к составу и параметрам технических средств

- Локальный сервер медицинской организации, с котороым имеют связь все рабочие станции медицинского учреждения.
- Рабочая станция в кабинете врача, имеющая доступ в локальную сеть медицинской организации.

Специальные требования

Система должна обеспечивать простое взаимодействие с потенциальным пользователем за счет разработки Web-интерфейса, разработанного с учетом требований организации-заказчика.

Клиентская часть web-приложения запускается на персональном компьютере врача через обращение по URL-адресу. Серверная часть, включая базу данных системы располагается на локальном сервере медицинского учреждения, эксплуатирующего даннную систему.

Точность предсказаний системой: какая-то циферка как-то обоснованная.

Требования к информационной и программной совместимости

Клиентская часть приложения должна быть реализована на языке JavaScript с применением фреймворка React.

Серверная часть приложения должна быть реализована на языке Python с применением фреймворка Django и использованием СУБД Postgre SQL.

Нейросетевые модели, используемые для осуществления сегментации и классификации узловых образований должны быть созданы на языке Python с применением модулей TensorFlow и PyTorch, заранее обучены до какой-то там точности и подготовлены для обработки .tiff, .png, .jpg файлов.

Расчет памяти сервера

Процесс	ОЗУ (МБ)	ВЗУ (ГБ)
Django	2024	0,5
Celery	2024	0,5
Redis	256	0,5
Postgresql	128	480
nginx	128	0,5
OC (Linux)	1024	32
\sum	5584	514

Для данной конфигурации сервера хорошим вариантом будет процессор на 4-х ядрах с частотой от 3 ГГц. Процессора с данными параметрами хватит для решения большинства задач по обработке пользовательских запросов. Однако стоить отметить, что часть запросов предусматривают СРU-зависящих операций, а именно матричных умножений.

Поэтому в дополнение к CPU на сервере должен находится GPU процеесор для увеличения производительности сервера. Видеокарта должна поддерживать CUDA.

Технико-экономические показатели

- Отсутствие ананлогов на отечественных и зарубежных платформах (если не рассматривать продукты, применяемые локально без публикаций)
- Сокращение кадрового состава технических специалистов организациизаказчика. За счет разработки функции пополнения обучающей выборки врачом-диагностом, пропадает необходимость в содержании специалистов по разметке данных. За счет этой же функции уменьшается время на передачу информации. В настоящий момент результаты проведения УЗИ передаются разработчикам ПО по сегментированию и классификации более недели. С применением системы этот показатель можно сократить до 5 минут.
- За счет создания внутренней локальной системы обмена результатами диагностики сокращаются временные затраты участников диагностики на процесс реального документооборота. В среднем такой процесс занимает от 15 минут до суток.
- Осуществление следованию распоряжения Правительства РФ о хранении персональных данных (в том числе и результатов приемов в медицинских учреждениях) в цифровом виде. Данный переход необходимо осуществить до 1 января 2024 года. Система предоставляет возможность сделать это наиболее удобным спососбом.
- Возможность осуществления интеграции с государственными информационными системами (что может стать необходимым в настоящее время) ЕМИАС и Platform-V. Данный показатель так же сокращает время на заполнение нескольких информационных систем с целью фиксации результатов диагностики.