Sous-espaces affines d'un espace vectoriel

Dans ce chapitre $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$ et E est un \mathbb{K} -espace vectoriel.

Définition. Une partie \mathcal{F} de E est appelée un sea de E s'il existe $a \in E$ et F un sev de E tel que $\mathcal{F} = \{a + f, f \in F\}$. On note $\mathcal{F} = a + F$.

Définition. On appelle translation de vecteur a l'application $\tau_a: E \mapsto E, x \mapsto a + x$

Remarque : Ainsi, une partie \mathcal{F} de E est appelée un sea de E s'il existe $a \in E$ et F un sev de E tel que $\mathcal{F} = \tau_a(F)$.

Proposition. $\forall (a,b) \in E^2, \ \tau_a \circ \tau_b = \tau_{a+b}.$

En particulier, pour tout $a \in E$, τ_a est bijective et $(\tau_a)^{-1} = \tau_{-a}$.

Proposition. Soient $(a,b) \in E^2$ et F_1 , F_2 deux sev de E.

Si $a + F_1 = b + F_2$, alors $F_1 = F_2$ et $b - a \in F_1 = F_2$.

Ainsi, si $\mathcal F$ est un sea de E alors il existe un unique sev F dont il soit le translaté.

Ce sev est appelé la direction de \mathcal{F} .

Proposition. Soit \mathcal{F} un sea affine de direction F, alors, pour tout $a \in \mathcal{F}$, $\mathcal{F} = a + F$.

Il n'y a donc pas unicité du vecteur de translation. a est une solution particulière.

Exemple. Les droites de \mathbb{R}^2 et de \mathbb{R}^3 sont des sea. Il s'agit de sev si, et seulement si, elles passent par l'origine.

Soit $(a,b,c) \in \mathbb{R}^3$ avec $(a,b) \neq (0,0)$, l'ensemble $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : ax + by = c\}$ est une droite affine de direction $D = \{(x,y) \in \mathbb{R}^2 : ax + by = 0\}$.

Exemple. Les plans de \mathbb{R}^3 sont des sea. Il s'agit de sev si, et seulement si, ils passent par l'origine.

Soit $(a, b, c, d) \in \mathbb{R}^4$ avec $(a, b, c) \neq (0, 0, 0)$, l'ensemble $\mathcal{P} = \{(x, y, z) \in \mathbb{R}^3 : ax + by + cz = d\}$ est un plan affine de direction $P = \{(x, y, z) \in \mathbb{R}^3 : ax + by + cz = 0\}$.

Exemple. L'ensemble des solutions d'une équation différentielle linéaire est un sea dont la direction est l'ensemble des solutions de l'équation différentielle linéaire homogène associée.

Soit a, b et c des fonctions continues d'un intervalle I de \mathbb{R} à valeurs dans \mathbb{K} .

L'ensemble $S = \{ f \in \mathcal{D}(I, \mathbb{K}) : af' + bf = c \}$ est un plan affine de direction $S_0 = \{ f \in \mathcal{D}(I, \mathbb{K}) : af' + bf = 0 \}.$

Exemple. Soit $(a, b, c) \in \mathbb{R}^3$, $S = \{u \in \mathbb{R}^{\mathbb{N}} : \forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n + c\}$ est un plan affine de direction $S_0 = \{u \in \mathbb{R}^{\mathbb{N}} : \forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n\}$.

Proposition. L'intersection de deux sea de directions respectives F_1 et F_2 est soit vide, soit un sea de direction $F_1 \cap F_2$.

Proposition. L'image directe d'un sea de direction F par une application linéaire u est un sea de direction u(F).

L'image réciproque d'un sea de direction F par une application linéaire u est soit vide, soit un sea de direction $u^{-1}(F)$.

Corollaire. Si $u \in \mathcal{L}(E, F)$ et $y \in F$, alors $u^{-1}(\{y\})$ est vide si $y \notin Im u$ et un sea de direction Keru sinon.