

Transformers I

CS 4391 Introduction Computer Vision
Professor Yu Xiang
The University of Texas at Dallas

Machine Translation

- Translate a phrase from one language to anther
 - E.g., English phrase to French phrase

RNN Encoder-Decoder

Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. Cho et al., EMNLP'14

Transformer: Encoder-Decoder with Attention

4/16/2024 Yu Xiang

Two types of attentions

• Self-attention

• Cross-attention

Yu Xiang

- Input
 - (key, value) pairs (think about python dictionary)
 - A query
- Output
 - Compare the query to all the keys to compute weights
 - Weighted sum of the values

- Scaled Dot-Product Attention
 - Keys $K:m imes d_k$
 - Values $V:m imes d_v$
 - n queries $Q:n imes d_k$

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

$$n \times d_v$$

Attention is all you need. Vaswani et al., NeurIPS'17

Softmax function

weights

- Multi-Head Attention
 - ullet Suppose the latent vector is with dimension $\,d_{
 m model}$

$$m \times d_{\text{model}} \quad d_{\text{model}} \times d_k$$

$$\text{head}_{\text{i}} = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \text{ Projection}$$

$$\times d$$

$$n imes d_v$$
 $n imes d_{ ext{model}} d_{ ext{model}} imes d_k$ $m imes d_{ ext{model}} d_{ ext{model}} imes d_v$

MultiHead
$$(Q, K, V)$$
 = Concat(head₁, ..., head_h) W^O
 $n \times d_{\text{model}}$ $n \times hd_v$ $hd_v \times d_{\text{model}}$

Transformer: Encoder

- Self-attention (repeat N times)
 - Keys, values and queries are all the same
 - n input tokens $n imes d_{\mathrm{model}}$

Residual connection

$$LayerNorm(x + Sublayer(x))$$

Layer normalization

$$\mu^l = rac{1}{H} \sum_{i=1}^{H} a_i^l \qquad \sigma^l = \sqrt{rac{1}{H} \sum_{i=1}^{H} \left(a_i^l - \mu^l
ight)^2} \qquad rac{a^l - \mu^l}{\sigma^l}$$
 Attention is all you need. Vaswani et al., NeurIPS'17

Encoder output Add & Norm Feed Forward $N \times$ Add & Norm N = 6Multi-Head Attention Positional Encoding Input Embedding Inputs

Transformer: Encoder

Feed Forward Network

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

- Positional encoding
 - Make use the order of the sequence
 - ullet With dimension $d_{f model}$ for each input

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

Add & Norm Feed **Forward** $N \times$ Add & Norm Multi-Head Attention Positional **Encoding** Input Embedding Inputs

Transformer: Decoder

Output embedding

[START]

Shifted right by one position and insert the start token

Mask out current and future outputs during training (setting to $-\infty$)

Probabilities Softmax Linear Add & Norm Feed Forward Add & Norm Multi-Head Attention Add & Norm Masked Multi-Head Attention Positional Encoding Output Embedding Outputs (shifted right)

Encoder

output

Output

Attention is all you need. Vaswani et al., NeurIPS'17

 $N \times$

Transformer: Decoder

- Encoder-decoder attention
 - (Key, value): encoder output
 - Queries: decoder output
 - Every position in the decoder attends to all positions in the input sequence
- Softmax
 - Predicts next-token probabilities

Transformer

Transformer: Attention Visualization

Summary

- Transformers
 - Can capture long-distance dependencies (global attention)
 - Computationally efficient, more parallelizable

Further Reading

• Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation https://arxiv.org/abs/1406.1078

 Neural Machine Translation by Jointly Learning to Align and Translate https://arxiv.org/abs/1409.0473

 Transformer: Attention is all you need https://arxiv.org/abs/1706.03762