Bài 1. Tọa độ của vectơ

A. Lý thuyết

I. Tọa độ của một điểm

Để xác định tọa độ của một điểm M tùy ý trong mặt phẳng tọa độ Oxy, ta làm như sau (Hình 3):

- + Từ M kẻ đường thẳng vuông góc với trục hoành và cắt trục hoành tại điểm H ứng với số a. Số a là hoành độ của điểm M.
- + Từ M kẻ đường thẳng vuông góc với trục tung và cắt trục tung tại điểm K ứng với số b. Số b là tung độ của điểm M.

Cặp số (a;b) là tọa độ của điểm M trong mặt phẳng tọa độ Oxy. Ta kí hiệu là M(a;b).

Ví dụ: Xác định tọa độ của điểm B trong hình vẽ sau:

Hướng dẫn giải

- + Từ B kẻ đường thẳng vuông góc với trục hoành và cắt trục hoành tại điểm ứng với số -3. Số -3 là hoành độ của điểm B.
- + Từ B kẻ đường thẳng vuông góc với trục tung và cắt trục tung tại điểm ứng với số 3. Số 3 là tung độ của điểm M.

Khi đó, cặp số (-3; 3) là tọa độ của điểm B.

Vậy điểm B có tọa độ là B(-3; 3).

II. Tọa độ của một vectơ

Tọa độ của điểm M được gọi là tọa độ của vecto \overrightarrow{OM} .

Nếu \overrightarrow{OM} có tọa độ (a; b) thì ta viết \overrightarrow{OM} = (a; b) hay \overrightarrow{OM} (a; b), trong đó a gọi là hoành độ của vecto \overrightarrow{OM} và b gọi là tung độ của vecto \overrightarrow{OM} (Hình 4).

Chú ý: Trong mặt phẳng tọa độ Oxy, ta có:

 $+ \overrightarrow{OM} = (a; b) \Leftrightarrow M(a; b).$

+ Vecto \vec{i} có điểm gốc là O và có tọa độ (1; 0) gọi là vecto đơn vị trên trục Ox.

Vector \vec{j} có điểm gốc là O và có tọa độ (0; 1) gọi là vector đơn vị trên trục Oy (Hình 4).

 $\mathbf{V}\mathbf{i}$ dụ: Tìm tọa độ của vecto \overrightarrow{OM} , \overrightarrow{ON} trong hình sau:

Hướng dẫn giải

Ta thấy điểm M có tọa độ là (-2; 4)

Suy ra $\overrightarrow{OM} = (-2; 4)$.

Điểm N có tọa độ là (2;-1)

Suy ra $\overrightarrow{ON} = (2; -1)$.

Vậy $\overrightarrow{OM} = (-2; 4)$ và $\overrightarrow{ON} = (2; -1)$.

Nhận xét:

- Với mỗi vecto \vec{u} , ta xác định được duy nhất một điểm A sao cho $\overrightarrow{OA} = \vec{u}$.
- Với mỗi vector \vec{u} trong mặt phẳng tọa độ Oxy, tọa độ của vector \vec{u} là tọa độ của điểm A, trong đó A là điểm sao cho $\overrightarrow{OA} = \vec{u}$.
- Nếu \vec{u} có tọa độ (a; b) thì ta viết $\vec{u}=(a;b)$ hay $\vec{u}(a;b)$, trong đó a gọi là hoành độ của vector \vec{u} và b gọi là tung độ của vector \vec{u} .

Ví dụ: Tìm tọa độ của vecto u trong hình vẽ sau:

Hướng dẫn giải

Ta xác định vector $\vec{u} = \overrightarrow{OA}$ như hình sau:

Ta thấy điểm A(2; 2) nên $\overrightarrow{OA} = (2; 2)$.

Suy ra $\vec{u} = (2; 2)$.

Vậy $\vec{u} = (2; 2)$.

Định lí: Trong mặt phẳng tọa độ Oxy, nếu $\vec{u} = (a; b)$ thì $\vec{u} = a\vec{i} + b\vec{j}$. Ngược lại, nếu $\vec{u} = a\vec{i} + b\vec{j}$ thì $\vec{u} = (a; b)$.

Chú ý: Với
$$\vec{a} = (x_1; y_1)$$
 và $\vec{b} = (x_2; y_2)$, ta có $\vec{a} = \vec{b} \Leftrightarrow \begin{cases} x_1 = x_2 \\ y_1 = y_2 \end{cases}$

Như vậy, mỗi vectơ hoàn toàn được xác định khi biết tọa độ của nó.

Ví dụ: Trong mặt phẳng tọa độ Oxy, cho điểm M(2; 3) và vecto $\vec{u} = (1; -3)$.

- a) Biểu diễn vector u qua hai vector i và j.
- b) Biểu diễn vecto \overrightarrow{OM} qua hai vecto \vec{i} và \vec{j} .

Hướng dẫn giải

a) Vì vector
$$\vec{u} = (1; -3)$$
 nên $\vec{u} = 1\vec{i} + (-3)\vec{j} = \vec{i} - 3\vec{j}$

Vậy
$$\vec{u} = \vec{i} - 3\vec{j}$$
.

b) Vì điểm M có tọa độ là (2;3) nên $\overrightarrow{OM} = (2;3)$.

Do đó:
$$\overrightarrow{OM} = 2\vec{i} + 3\vec{j}$$
.

Vậy
$$\overrightarrow{OM} = 2\vec{i} + 3\vec{j}$$
.

III. Liên hệ giữa tọa độ của điểm và tọa độ của vectơ

Trong mặt phẳng tọa độ Oxy, cho hai điểm $A(x_A; y_A)$ và $B(x_B; y_B)$.

Ta có
$$\overrightarrow{AB} = (x_B - x_A; y_B - y_A).$$

Ví dụ: Cho hai điểm A(2; -4) và B(1; 5). Hãy tìm tọa độ của vector \overrightarrow{AB} .

Hướng dẫn giải

Ta có
$$\overrightarrow{AB} = (1-2; 5-(-4)) = (-1; 9).$$

$$\overrightarrow{AB} = (-1; 9).$$

B. Bài tập tự luyện

B.1 Bài tập tự luận

Bài 1. Tìm tọa độ của các vecto sau:

a)
$$\vec{a} = 3\vec{i} + \vec{j}$$
;

b)
$$\vec{b} = -2\vec{i}$$
;

c)
$$\vec{c} = \vec{i} - \sqrt{3} \vec{j}$$
.

Hướng dẫn giải

a) Ta có
$$\vec{a} = 3\vec{i} + \vec{j} = 3\vec{i} + 1\vec{j}$$

Suy ra
$$\vec{a} = (3; 1)$$
.

Vậy
$$\vec{a} = (3; 1)$$
.

b) Ta có
$$\vec{b} = -2\vec{j} = 0\vec{i} + (-2)\vec{j}$$

Suy ra
$$\vec{b} = (0; -2)$$
.

Vậy
$$\vec{b} = (0; -2)$$
.

c) Ta có
$$\vec{c} = \vec{i} - \sqrt{3} \vec{j} = \vec{i} + (-\sqrt{3}) \vec{j}$$
.

Suy ra
$$\vec{c} = (1; -\sqrt{3})$$
.

Vậy
$$\vec{c} = (1; -\sqrt{3}).$$

Bài 2. Cho 3 điểm A(0; 2), B(-1; 3), C(2; 5). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

Hướng dẫn giải

Giả sử điểm D có tọa độ là $(x_D; y_D)$

Ta có
$$\overrightarrow{AB} = (-1 - 0; 3 - 2) = (-1; 1)$$

$$\overrightarrow{DC} = (2 - x_D; 5 - y_D).$$

 \overrightarrow{D} ể ABCD là hình bình hành thì $\overrightarrow{AB} = \overrightarrow{DC}$.

$$\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \begin{cases} -1 = 2 - x_D \\ 1 = 5 - y_D \end{cases} \Leftrightarrow \begin{cases} x_D = 3 \\ y_D = 4 \end{cases}$$

Suy ra điểm D có tọa độ là (3; 4).

Vậy để ABCD là hình bình hành thì D(3; 4).

Bài 3. Tìm số thực m và n sao cho hai vector $\vec{a} = (m; -4)$ và $\vec{b} = (-1; 3m + n)$ bằng nhau.

Hướng dẫn giải

$$Ta\ c\acute{o}\ \vec{a} = \vec{b}\ \Leftrightarrow \begin{cases} m = -1 \\ -4 = 3m + n \end{cases} \Leftrightarrow \begin{cases} m = -1 \\ -4 = 3.(-1) + n \end{cases} \Leftrightarrow \begin{cases} m = -1 \\ n = -1 \end{cases}$$

Vậy để $\vec{a} = \vec{b}$ thì m = -1 và n = -1.

B.2 Bài tập trắc nghiệm

Câu 1. Trong hệ tọa độ Oxy cho A(5; 2), B(10; 8). Tìm tọa độ của vecto \overrightarrow{AB} .

- A. $\overrightarrow{AB} = (15; 10);$
- B. $\overrightarrow{AB} = (2; 4);$
- C. $\overrightarrow{AB} = (5; 6);$
- D. $\overrightarrow{AB} = (50; 16)$.

Hướng dẫn giải

Đáp án đúng là: C

Ta có: $\overrightarrow{AB} = (10-5; 8-2) = (5; 6)$.

Câu 2. Trong hệ tọa độ Oxy cho bốn điểm A(1; 1), B(2; -1), C(4; 3), D(3; 5). Khẳng định nào sau đây đúng?

- A. Tứ giác ABCD là hình bình hành;
- B. A, B, C, D trùng nhau;
- C. $\overrightarrow{AB} = \overrightarrow{CD}$;
- D. \overrightarrow{AC} , \overrightarrow{AD} cùng phương.

Hướng dẫn giải

Đáp án đúng là: A

Ta có :
$$\begin{cases} \overrightarrow{AB} = (1; -2) \\ \overrightarrow{DC} = (1; -2) \end{cases} \Rightarrow \overrightarrow{AB} = \overrightarrow{DC}, \text{ do dó ABCD là hình bình hành.}$$

Câu 3. Cho hai vector $\vec{u} = (2a - 1; -3)$ và $\vec{v} = (3; 4b + 1)$. Tìm các số thực a và b sao cho cặp vector đã cho bằng nhau:

A.
$$a = 2$$
, $b = -1$;

B.
$$a = -1$$
, $b = 2$;

C.
$$a = -1$$
, $b = -2$;

D.
$$a = 2$$
, $b = 1$.

Hướng dẫn giải

Đáp án đúng là: A

$$\vec{\text{D\'e}} \ \vec{u} = \vec{v} \Leftrightarrow \begin{cases} 2a-1=3 \\ -3=4b+1 \end{cases} \Leftrightarrow \begin{cases} 2a=4 \\ 4b=-4 \end{cases} \Leftrightarrow \begin{cases} a=2 \\ b=-1 \end{cases}.$$

Vậy
$$a = 2$$
 và $b = -1$.