L14 p. 2

LECTURE 14

• Readings: Start Section 6.2

Lecture outline

- · Review of Bernoulli process
- Definition of Poisson process
- Distribution of number of arrivals
- Distribution of interarrival times
- Other properties of the Poisson process

• X_1, X_2, \ldots : independent Bernoulli RVs with success prob. p

Review: Bernoulli process

- Number of arrivals in n time slots: binomial PMF
- Interarrival times: independent with geometric PMF
- ullet Time of kth arrival: Pascal PMF of order k
- Independence and memorylessness

L14 p. 3

Limitation of the Bernoulli arrival model

- Consider cars entering Stata Center parking garage
- Mark each 10-second interval with an entry a "success"
- Good model? (captures what is happening?)
- ... entering any parking garage in the world
- Mark each 10-second interval with an entry a "success"
- Good model? (captures what is happening?)

L14 p. 4

Definition of the Poisson process

- Defining characteristics:
- Time homogeneity: Probability of k arrivals in an interval of duration τ is some function $P(k,\tau)$
- Independence: Numbers of arrivals in disjoint time intervals are independent
- Small interval probabilities: For very small δ ,

$$P(k,\delta) \approx \left\{ egin{array}{ll} 1 - \lambda \delta, & \mbox{if } k = 0; \\ \lambda \delta, & \mbox{if } k = 1; \\ 0, & \mbox{if } k > 1, \end{array}
ight.$$

where λ is called the **rate**

L14 p. 5

PMF of number of arrivals N_t

- \bullet Finely discretizing [0, t], process is approximately Bernoulli
- ullet N_t (of discrete approximation) is binomial
- Taking $\delta \to 0^+$ (or $n \to \infty$) allows approximation from L13:

$$P(k,t) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}, \qquad k = 0, 1, \dots$$

(consider this exact)

•
$$\mathbf{E}[N_t] = \lambda t$$
, $\operatorname{var}(N_t) = \lambda t$

L14 p. 6

Examples

Email arrives as Poisson process with rate $\lambda=$ 0.4 per hour. Recall general form $P(k,t) \ = \ \frac{(\lambda t)^k e^{-\lambda t}}{k!}, \quad k=0,1,\dots$

- P(0 new msgs between noon and 12:30pm) =
- P(1 new msg between noon and 12:30pm) =
- $\bullet~$ number of msgs between noon and 1pm $~\sim~$
- $\bullet~$ number of msgs between 1pm and 3pm $~\sim~$
- ullet number of msgs between noon and 3pm \sim

Time of first arrival ${\it T}$

$$F_T(t) =$$

$$f_T(t) =$$

$$P(T > t + s \mid T > t) =$$

Time of kth arrival Y_k

- All interarrival times independent with exponential distribution: $f_T(t) = \lambda e^{-\lambda t}, \quad t \geq 0$
- $Y_k = T_1 + T_2 + \dots + T_k$
- $\bullet \ \ \text{Erlang PDF of order } k \text{:} \quad \ f_{Y_k}(y) \ = \ \frac{\lambda^k y^{k-1} e^{-\lambda y}}{(k-1)!}, \qquad y \geq 0$

L14 p. 9

Bernoulli/Poisson correspondences

	Poisson	Bernoulli
times of arrival	continuous	discrete
arrival rate	λ per unit time	p per trial
number of arrivals	Poisson PMF	binomial PMF
interarrival times	exponential PDF	geometric PMF
kth arrival time	Erlang PDF of order k	Pascal PMF of order k

L14 p. 10

Adding (merging) Poisson processes

• Merging indep. Poisson processes gives a Poisson process

- What is the probability that the next arrival comes from the first process?
- Sum of independent Poisson random variables is Poisson