- 1. (Modified from #1, p.62, [Alpaydin]) Assume the COVID-19 disease is seen in one person out of every ten thousand, (i.e., $P(d=1)=10^{-4}$). If the virus test has 96% chance to be positive (i.e., P(t=1|d=1)=0.96) on an infected person and has 2% chance to be positive on a healthy person, (i.e., P(t=1|d=0)=0.02). Assume that a new patient arrives.
 - (a) If the test result of the new patient is positive, what is the probability that the patient has been infected?
 - (b) If the test result of the new patient is negative, what is the probability that the patient has been infected?
- 2. (#6, #7, p.91-92, [Alpaydin]) In a two-class one-dimensional problem, given $P(C_1)$, $P(C_2)$, $p(x|C_1) \sim N(\mu_1, \sigma_1^2)$, and $p(x|C_2) \sim N(\mu_2, \sigma_2^2)$,
 - (c) What is the likelihood ratio $\frac{p(x|C_1)}{p(x|C_2)}$?
 - (d) What is the Bayes' discriminant function $g(x) = g_1(x) g_2(x)$ and the decision boundary points?
 - (e) What will be the decision boundary if we have $\sigma_1^2 = \sigma_2^2 = \sigma^2$.
- 3. (#9, p. 92, [Alpaydin]) If we have a two-class one-dimensional problem where both classes are normally distributed with the same mean ($\mu_1 = \mu_2 = \mu$) but different variances ($\sigma_1^2 > \sigma_2^2$). What will be the discriminant function look like in this case?
- 4. (Ch2, [Theodoridis]) Given the data $X = \{x_1, ..., x_N\}$ sampled from a lognormal distribution $p(x|\theta) = \frac{1}{\sigma x \sqrt{2\pi}} \exp\left(-\frac{(\ln x \theta)^2}{2\sigma^2}\right), x > 0$. Show that the ML estimate is given by $\hat{\theta}_{ML} = \frac{1}{N} \sum_{i=1}^{N} \ln x_i$.