4: Data Exploration

Environmental Data Analytics | Kateri Salk Spring 2020

Lesson Objectives

- 1. Set up a data analysis session in RStudio
- 2. Import and explore datasets in R
- 3. Apply data exploration skills to a real-world example dataset

Best Practices in R

In many situations in data analytics, you may be expected to work from multiple computers or share projects among multiple users. A few general best practices will avoid common pitfalls related to collaborative work.

Set your working directory

A session in RStudio will always function by mapping to a specific folder in your computer, called the *working directory*. All navigation between folders and files will happen relative to this working directory. When you open an R project, your working directory will automatically set to the folder that holds the project file. If you open an R script or RMarkdown document directly by double-clicking the file, your working directory will automatically set to the folder that holds that file. It is a good idea to note with a comment at the top of your file which working directory you intend the user to designate.

In this course, we will always open the R project file for the course, and additional navigation of the working directory will happen from that folder. To check your working directory, use the following R command:

```
# Working directory should be set to the parent folder for the Environmental Data Analytics Course, i.e getwd()
```

[1] "/Users/rmlandman/Desktop/Data Analytics/Environmental_Data_Analytics_2020"

If your working directory is not set to the folder you want, you have several options. The first is to directly code your working directory. You may do this by defining an absolute file path (below). What are the pitfalls of using an absolute file path?

```
# Absolute file path is commented out
#setwd("/Users/katerisalk/Documents/Duke/Courses/Environmental_Data_Analytics")
setwd("/Users/rmlandman/Desktop/Data Analytics/Environmental_Data_Analytics_2020")

### only works well when you're working on just one computer
### better to use Session -> set working directory
### good to set working directory to where the file is located
### for lessons the wd will be the lessons folder and for assignments it'll be the assignments folder
```

You may change your working directory without coding by going to the Session menu in RStudio and navigating to the Set Working Directory tab. From there, you may select from a series of options to reset your working directory.

Another option is to use the R package here. We will not be using this option in class, but it is growing quite popular among R users. A more detailed description and rationale can be found here: https://github.com/jennybc/here here.

Load your packages

At the top of your R scripts, you should load any packages that need to be used for that R script. A common issue that arises is that packages will be loaded in the middle of the code, making it difficult to run specific chunks of code without scrolling to make sure all necessary packages are loaded. For example, the tidyverse package is one that we will use regularly in class.

At the same time, you should also load your theme if you are doing any data visualization with ggplot. More on this later.

```
# Load package
library(tidyverse)
```

Import your datasets

Datasets can be imported into R. Good data practices dictate that raw data (from yourself or others) should not be changed and re-saved within the spreadsheet, but rather the data should be changed with reproducible techniques and saved as a new file. Note: data should be saved in nonproprietary formats, namely .csv or .txt files rather than .xls or .xlsx files.

To read in a data file, you may specify a file path with an *absolute* or a *relative* file path. As above with your working directory, it is a better practice to use a relative directory. To navigate a relative file path, use ./ followed by the tab key to navigate forward in the folder structure, and use ../ followed by the tab key to navigate back out of the folder structure. For example, this lesson is located in the "Lessons" folder, and we need to navigate into the "Data" folder. After clicking the correct folder, use / and press tab again to continue the process.

You may also import datasets from the Files tab, but this is not recommended since this is not reproducible.

```
# Absolute file path (not recommended)
#read.csv("/Users/katerisalk/Documents/Duke/Courses/Environmental Data Analytics/Data/Raw/USGS Site0208
### only works if it is one the same computer
# Relative file path (friendly for users regardless of machine)
USGS.flow.data <- read.csv("./Data/Raw/USGS_Site02085000_Flow_Raw.csv")</pre>
USGS.flow.data <- read.csv("./Data/Raw/USGS_Site02085000_Flow_Raw.csv")</pre>
### goes within current working directory
### ./Data tells it to go into the Data folder within the current working directory
### if have working directory set to the lessons folder, you put two dots, because it tells R to go out
# What happens if we don't assign a name to our imported dataset?
### does not show up in environment, R just reads it and it shows up in the consol
#read.csv("../Data/Raw/USGS Site02085000 Flow Raw.csv")
###read.csv("./Data/Raw/USGS_Site02085000_Flow_Raw.csv")
# Another option is to choose with your browser
# read.csv(file.choose())
### pulls up a browser window that allows you to find it in your file folder
### not a great option because it's not reproducable and doesn't show which folder it comes from
# To import .txt files, use read.table rather than read.csv
#read.table()
```

EXPLORE YOUR DATASET

\$ gage.height.max

Take a moment to read through the README file associated with the USGS dataset on discharge at the Eno River. Where can you find this file? How does the placement and information found in this file relate to the best practices for reproducible data analysis? > ANSWER: This file is found within the metadata folder. It is important to have a meta data folder because it provides information that the data set does not provide. It tells us where this data is from because the data set just says the USGS site no, which doesn't mean anything. It says where the data can be found, a direct link. It shares more information about what some of the letters and numbers in the data set mean. It says when the data set was accessed so you can know to check for updates. USGS reports data before they have gone through all the quality assurance checks and labels them as P (provisional), so it is important to know that some numbers might change. File naming convention can be helpful when working on a project with multiple people. This helps it be systematic.

```
#View(USGS.flow.data)
# Alternate option: click on data frame in Environment tab
class(USGS.flow.data)
## [1] "data.frame"
colnames (USGS.flow.data)
    [1] "agency_cd"
                                 "site_no"
                                 "X165986_00060_00001"
##
    [3] "datetime"
   [5] "X165986_00060_00001_cd" "X165987_00060_00002"
##
   [7] "X165987_00060_00002_cd"
##
                                 "X84936_00060_00003"
   [9] "X84936_00060_00003_cd"
                                 "X84937_00065_00001"
##
## [11] "X84937_00065_00001_cd"
                                 "X84938_00065_00002"
  [13] "X84938 00065 00002 cd"
                                 "X84939 00065 00003"
## [15] "X84939_00065_00003_cd"
# Rename columns
colnames(USGS.flow.data) <- c("agency_cd", "site_no", "datetime",</pre>
                              "discharge.max", "discharge.max.approval",
                              "discharge.min", "discharge.min.approval",
                              "discharge.mean", "discharge.mean.approval",
                              "gage.height.max", "gage.height.max.approval",
                              "gage.height.min", "gage.height.min.approval",
                              "gage.height.mean", "gage.height.mean.approval")
### if want to just rename just a couple columns, add bracket after code with numbers of the columns yo
###colnames(USGS.flow.data) [1,5,6] <- c("name1", "name5", "name6")
str(USGS.flow.data)
  'data.frame':
                    33690 obs. of 15 variables:
##
                               : Factor w/ 1 level "USGS": 1 1 1 1 1 1 1 1 1 1 ...
   $ agency_cd
                                      2085000 2085000 2085000 2085000 2085000 2085000 2085000 2085000 2
##
   $ site_no
                               : Factor w/ 33690 levels "1/1/00", "1/1/01", ...: 2873 3896 4919 5198 5291
##
   $ datetime
   $ discharge.max
                               : num NA NA NA NA NA NA NA NA NA ...
##
##
  $ discharge.max.approval
                               : Factor w/ 3 levels "", "A", "P": 1 1 1 1 1 1 1 1 1 1 ...
                               : num NA NA NA NA NA NA NA NA NA ...
##
  $ discharge.min
                               : Factor w/ 3 levels "","A","P": 1 1 1 1 1 1 1 1 1 1 ...
   $ discharge.min.approval
  $ discharge.mean
                               : num 39 39 39 39 39 39 39 39 ...
##
  $ discharge.mean.approval : Factor w/ 4 levels "","A","A:e","P": 2 2 2 2 2 2 2 2 2 ...
```

: num NA NA NA NA NA NA NA NA NA ...

```
## $ gage.height.max.approval : Factor w/ 3 levels "","A","P": 1 1 1 1 1 1 1 1 1 1 ...
## $ gage.height.min
                             : num NA ...
## $ gage.height.min.approval : Factor w/ 3 levels "","A","P": 1 1 1 1 1 1 1 1 1 1 ...
## $ gage.height.mean
                          : num NA ...
## $ gage.height.mean.approval: Factor w/ 3 levels "","A","P": 1 1 1 1 1 1 1 1 1 1 ...
dim(USGS.flow.data)
## [1] 33690
length(USGS.flow.data) ### number of columns
## [1] 15
nrow(USGS.flow.data) ###number of rows
## [1] 33690
head(USGS.flow.data) ### beginning of data frame
##
     agency_cd site_no datetime discharge.max discharge.max.approval
## 1
          USGS 2085000 10/1/27
## 2
          USGS 2085000 10/2/27
                                           NΑ
## 3
          USGS 2085000 10/3/27
## 4
         USGS 2085000 10/4/27
                                           NΑ
## 5
          USGS 2085000 10/5/27
                                           NA
          USGS 2085000 10/6/27
## 6
                                           NA
    discharge.min discharge.min.approval discharge.mean
## 1
                NA
## 2
                NΑ
                                                       39
## 3
                NA
                                                       39
## 4
                NA
                                                       39
## 5
                NA
                                                       39
## 6
                                                       39
                NA
     discharge.mean.approval gage.height.max gage.height.max.approval
## 1
                                          NA
                           A
## 2
                                          NA
                           Α
## 3
                                          NA
                           Α
## 4
                           Α
                                          NA
## 5
                                          NA
                           Α
## 6
                           Α
                                          NA
##
     gage.height.min gage.height.min.approval gage.height.mean
## 1
                  NA
                                                             NA
## 2
                                                             NA
                  NA
## 3
                  NA
                                                             NA
## 4
                  NA
                                                             NA
## 5
                  NΑ
                                                             NΑ
## 6
                  NA
                                                             NA
    gage.height.mean.approval
## 1
## 2
## 3
## 4
## 5
## 6
```

```
##
      agency_cd site_no datetime discharge.max discharge.max.approval
## 1
           USGS 2085000 10/1/27
                                              NA
## 2
           USGS 2085000 10/2/27
                                              NA
           USGS 2085000 10/3/27
## 3
                                              NA
## 4
           USGS 2085000 10/4/27
                                              NA
## 5
           USGS 2085000 10/5/27
                                              NA
## 6
           USGS 2085000 10/6/27
                                              NA
## 7
           USGS 2085000 10/7/27
                                              NA
           USGS 2085000 10/8/27
## 8
                                              NΑ
## 9
           USGS 2085000 10/9/27
                                              NA
## 10
           USGS 2085000 10/10/27
                                              NA
##
      discharge.min discharge.min.approval discharge.mean
## 1
                                                          39
                  NA
## 2
                                                          39
                  NA
## 3
                  NA
                                                          39
## 4
                  NA
                                                          39
## 5
                                                          39
                  NA
## 6
                  NA
                                                          39
## 7
                                                          39
                  NA
## 8
                  NA
                                                          39
## 9
                  NA
                                                          39
## 10
                  NA
##
      discharge.mean.approval gage.height.max gage.height.max.approval
## 1
                             Α
                                             NA
## 2
                             Α
                                             NA
## 3
                             Α
                                             NΑ
## 4
                             Α
                                             NA
## 5
                                             NA
## 6
                                             NA
## 7
                                             NA
                             Α
## 8
                                             NA
## 9
                             Α
                                             NA
## 10
                                             NA
##
      gage.height.min gage.height.min.approval gage.height.mean
## 1
                    NA
                                                                NA
## 2
                    NA
                                                                NA
## 3
                    NA
                                                                NA
## 4
                    NA
                                                                NA
## 5
                    NA
                                                                NA
## 6
                    NA
                                                                NA
## 7
                    NA
                                                                NA
## 8
                    NA
                                                                NA
## 9
                    NA
                                                                NA
## 10
                    NA
                                                                NA
##
      gage.height.mean.approval
## 1
## 2
## 3
## 4
## 5
## 6
## 7
```

```
## 8
## 9
## 10
tail(USGS.flow.data, 5) ### end of data frame
         agency_cd site_no datetime discharge.max discharge.max.approval
## 33686
              USGS 2085000 12/22/19
## 33687
              USGS 2085000 12/23/19
                                                NA
## 33688
              USGS 2085000 12/24/19
                                                NA
              USGS 2085000 12/25/19
## 33689
                                                 NA
## 33690
              USGS 2085000 12/26/19
                                                NΔ
         discharge.min discharge.min.approval discharge.mean
## 33686
                    NA
## 33687
                    NA
                                                          18.6
## 33688
                    NA
                                                          18.8
## 33689
                    NA
                                                          16.6
## 33690
                    NA
                                                          15.1
         discharge.mean.approval gage.height.max gage.height.max.approval
## 33686
                                Р
                                               NA
## 33687
                                Ρ
                                               NA
                                Р
## 33688
                                               NA
## 33689
                                Ρ
                                               NA
## 33690
                                               NA
         gage.height.min gage.height.min.approval gage.height.mean
## 33686
## 33687
                      NA
                                                                1.94
## 33688
                      NA
                                                                1.95
## 33689
                      NΑ
                                                                1.91
## 33690
                      NA
                                                                1.88
##
         gage.height.mean.approval
## 33686
## 33687
                                  Ρ
## 33688
                                  Ρ
                                  Р
## 33689
## 33690
                                  P
USGS.flow.data[30000:30005, c(3, 8, 14)]
         datetime discharge.mean gage.height.mean
## 30000 11/18/09
                            27.5
## 30001 11/19/09
                             31.6
                                              1.80
## 30002 11/20/09
                            37.1
                                              1.88
## 30003 11/21/09
                            32.1
                                               1.80
## 30004 11/22/09
                             23.7
                                               1.66
## 30005 11/23/09
                            337.0
                                              3.87
class(USGS.flow.data$datetime) ### tells us it is a factor, which is problem because we want date to be
## [1] "factor"
class(USGS.flow.data$discharge.mean)
## [1] "numeric"
class(USGS.flow.data$gage.height.mean)
```

[1] "numeric"

summary(USGS.flow.data) ###summary of all data

```
discharge.max
##
    agency_cd
                     site_no
                                        datetime
    USGS:33690
##
                  Min.
                         :2085000
                                     1/1/00 :
                                                  1
                                                      Min.
                                                                  0.26
##
                  1st Qu.:2085000
                                     1/1/01:
                                                  1
                                                      1st Qu.:
                                                                  7.23
##
                 Median :2085000
                                     1/1/02:
                                                  1
                                                      Median:
                                                                21.15
##
                 Mean
                         :2085000
                                     1/1/03:
                                                  1
                                                      Mean
                                                                88.15
                                                             :
                                     1/1/04:
                                                                59.80
##
                  3rd Qu.:2085000
                                                  1
                                                      3rd Qu.:
##
                 Max.
                         :2085000
                                     1/1/05:
                                                             :4730.00
                                                  1
                                                      Max.
##
                                     (Other):33684
                                                      NA's
                                                             :28342
##
    discharge.max.approval discharge.min
                                               discharge.min.approval
##
     :28342
                                        0.09
                                                 :28342
                            Min.
    A: 5347
                                        4.38
##
                            1st Qu.:
                                               A: 5347
##
    P:
          1
                            Median:
                                       12.60
                                               P:
##
                                       30.46
                            Mean
##
                            3rd Qu.:
                                       34.80
##
                            Max.
                                    :1460.00
##
                            NA's
                                    :28342
##
                       discharge.mean.approval gage.height.max
    discharge.mean
##
    Min.
           :
               0.02
                          : 5108
                                                Min.
                                                        : 0.890
                       A :28265
                                                1st Qu.: 1.490
##
    1st Qu.:
               9.30
##
    Median :
              24.00
                       A:e:
                             294
                                                Median : 1.830
##
    Mean
                              23
                                                Mean
                                                        : 2.124
           :
              59.48
##
    3rd Qu.:
              54.00
                                                3rd Qu.: 2.310
           :4600.00
                                                        :17.020
##
    Max.
                                                Max.
           :5108
##
    NA's
                                                NA's
                                                        :28229
##
    gage.height.max.approval gage.height.min gage.height.min.approval
##
     :28229
                                                :28229
                              Min.
                                      :0.840
##
    A: 5460
                              1st Qu.:1.380
                                               A: 5460
                              Median :1.650
##
   P:
          1
                                               P:
                                                      1
##
                              Mean
                                      :1.736
##
                              3rd Qu.:2.030
##
                              Max.
                                      :9.190
##
                              NA's
                                      :28229
    gage.height.mean gage.height.mean.approval
##
                       :24870
##
    Min.
          : 0.870
   1st Qu.: 1.450
                      A: 8797
##
##
  Median : 1.770
                           23
                      P:
  Mean
           : 1.952
  3rd Qu.: 2.200
##
## Max.
           :15.040
  NA's
           :24870
summary (USGS.flow.data$discharge.mean) ### summary of discharge mean column
##
                                                         NA's
      Min. 1st Qu.
                     Median
                               Mean 3rd Qu.
                                                Max.
##
              9.30
                      24.00
                              59.48
                                       54.00 4600.00
                                                         5108
```

What happened to blank cells in the spreadsheet when they were imported into R? > Answer: They were listed at NA if they were a numeric value. If it's a character/factor that will be retained as blank.

Adjusting Datasets

Removing NAs

Notice in our dataset that our discharge and gage height observations have many NAs, meaning no measurement was recorded for a specific day. In some cases, it might be in our best interest to remove NAs from a dataset. Removing NAs or not will depend on your research question.

```
summary(USGS.flow.data$discharge.mean) ### tells you how many NA's are in df
##
      Min. 1st Qu.
                     Median
                               Mean 3rd Qu.
                                                 Max.
                                                         NA's
##
      0.02
              9.30
                      24.00
                               59.48
                                       54.00 4600.00
                                                         5108
summary(USGS.flow.data$gage.height.mean)
##
      Min. 1st Qu.
                     Median
                               Mean 3rd Qu.
                                                         NA's
                                                 Max.
                                                        24870
##
     0.870
             1.450
                      1.770
                               1.952
                                       2.200
                                              15.040
```

Question: What types of research questions might make it favorable to remove NAs from a dataset, and what types of research questions might make it favorable to retain NAs in the dataset?

Answer: Sometimes know an NA exists is informative so you know you need more data. If you only want to analyze presence data then you'd want to remove NA's. Need to remove NA's if you want to make a correlation matrix.

```
want to make a correlation matrix.

USGS.flow.data.complete <- na.omit(USGS.flow.data) ###call it a new name so that you can make changes t
### one you make changes to a df using code, you can't go back
dim(USGS.flow.data) ### 33690 rows

## [1] 33690 15
dim(USGS.flow.data.complete) ### 5342 rows

## [1] 5342 15

### a lot fewer rows in the second dataframe because na.omit removes all the rows with an NA in at leas
### there are ways to remove NA's just from specific columns

mean(USGS.flow.data.complete$discharge.mean)

## [1] 51.08613

sd(USGS.flow.data.complete$discharge.mean)

## [1] 137.2094

summary(USGS.flow.data.complete$discharge.mean)
```

Max.

Formatting dates

Min.

0.220

1st Qu.

5.683

Median

16.600

##

##

R will often import dates as factors or characters rather than dates. To fix, this we need to tell R that it is looking at dates. We also need to specify the format the dates are in. By default, if you don't provide a format, R will attempt to use %Y-%m-%d or %Y/%m/%d as a default. Note: if you are working collaboratively in an international setting, using a year-month-day format in spreadsheets is the least ambiguous of date formats. Make sure to check whether month-day-year or day-month-year is used in an ambiguously formatted spreadsheet.

3rd Qu.

44.800 3270.000

Mean

51.086

Formatting of dates in R:

%d day as number (0-31) %m month (00-12, can be e.g., 01 or 1) %y 2-digit year %Y 4-digit year %a abbreviated weekday %A unabbreviated weekday %b abbreviated month %B unabbreviated month

In some cases when dates are provided as integers, you may need to provide an origin for your dates. Beware: the "origin" date for Excel (Windows), Excel (Mac), R, and MATLAB all have different origin dates. Google this if it comes up. Origin of date for R is Jan 1 1970.

```
# Adjust date formatting for today
# Write code for three different date formats.
# An example is provided to get you started.
# (code must be uncommented)
today <- Sys.Date()
format(today, format = "%B")

## [1] "January"
format(today, format = "%y")

## [1] "20"
format(today, format = "%b")

## [1] "Jan"
format(today, format = "%A")

## [1] "Thursday"
### r stores date as year-month-day

USGS.flow.data$datetime <- as.Date(USGS.flow.data$datetime, format = "%m/%d/%y") ### tell R what the format format = "%m/%d/%y") ### tell R what the format = "%m/%d/%y") ##
```

Note that for every date prior to 1969, R has assigned the date in the 2000s rather than the 1900s. This can be fixed with an **ifelse** statement inside a function. Run through the code below and write what is happening in the comment above each line.

```
#
USGS.flow.data$datetime <- format(USGS.flow.data$datetime, "%y%m%d")

#
create.early.dates <- (function(d) {
    paste0(ifelse(d > 181231,"19","20"),d)
    })

#
USGS.flow.data$datetime <- create.early.dates(USGS.flow.data$datetime)

#
USGS.flow.data$datetime <- as.Date(USGS.flow.data$datetime, format = "%Y%m%d")</pre>
```

Saving datasets

help(as.Date)

We just edited our raw dataset into a processed form. We may want to return to this processed dataset later, which will be easier to do if we save it as a spreadsheet.

```
write.csv(USGS.flow.data, file = "./Data/Processed/USGS Site02085000 Flow Processed.csv", row.names=FAL
```

Tips and Tricks

Knitting

• In the Knit menu in the Editor, you will need to specify whether your knit directory should be the document directory or the project directory. If your document is not knitting correctly, try switching between the document directory and project directory as a first troubleshooting option.

Spreadsheets

- *Files should be saved as .csv or .txt for easy import into R. Note that complex formatting, including formulas in Excel, are not saved when spreadsheets are converted to comma separated or text formats (i.e., values alone are saved).
- *The first row is reserved for column headers.
- *A secondary row for column headers (e.g., units) should not be used if data are being imported into R. Incorporate units into the first row column headers if necessary.
- *Short names are preferred for column headers, to the extent they are informative. Additional information can be stored in comments within R scripts and/or in README files.
- *Spaces in column names will be replaced with a . when imported into R. When designing spreadsheets, avoid spaces in column headers.
- *Avoid symbols in column headers. This can cause issues when importing into R.