[promised last time:] (Axler, §5C)

Thm if F = C and V is fin. dim.
then any linear op T : V to V has
an upper-triangular matrix

 \underline{Q} can we remove the hypothesis F = C?

no: upper-triangular matrix implies existence of eigenvector

we saw that rotations in R^2 have no eigenvector

Q can we remove the hypothesis V f.d.?

no: same issue of eigenvectors (recall F[x])

<u>Pf</u> if n = 0 or 1, then done induct on n, using two key ideas:

1) since F = C and V fin. dim., T has an eigenline let λ be the eigenvalue then the λ -eigenspace $\ker(T-\lambda)=\{v\mid Tv=\lambda v\}$ is nonzero so dim $\operatorname{im}(T-\lambda)<\operatorname{dim} V$ want to apply inductive hypothesis to $\operatorname{im}(T-\lambda)$

set W = im(T - λ) [similar tactic as last time:] W is T-stable! if w in W then w = (T - λ)v for some v so Tw = T((T - λ)v) = (T - λ)(Tv) in W so T restricts to an op T|_W pick ordered basis for W making T|_W triangular: say, (w_1, ..., w_m)

2) extend ordered basis from W to V:
 say (w_1, ..., w_m, v_1, ..., v_\ell)
claim that T is triangular wrt this extended basis[!]
suffices to check Tv_i's

$$Tv_i = (T - \lambda)v_i + \lambda v_i$$
 for all i

<u>Cor</u> any square matrix is conjugate to an upper-triangular matrix

Cor let f: Mat_2(F) to F be a function def by a polynomial in matrix coords

i.e.
$$f = p(x11, x12, x21, x22)$$
 $x11 x12$ $x21 x22$

if f is conj-invariant then f is a polynomial in tr and det

then p(a, b, c, d) = p(X, Y, 0, Z)so p must be independent of its third argument so p(x11, x12, x21, x22) = q(x11, x12, x22)for some q in three variables

2)
$$q(x11, x12, x22) = q(x22, x12, x11)$$

$$=$$
 X $eY - eX$ Z

so q(X, Y, Z) = q(X, eY - eX, Z) for all e, X, Y, Z so q invariant under these infin. many substit.'s

claim: this forces q to be indep. of its second arg.

[left as exercise]

2) observe that

so
$$q(X, Y, Z) = q(Z, Y, X)$$

Viète's Thm

any poly in x, y invariant under swapping x and y is a poly in x + y and xy

[left as exercise]

[look up "elementary symmetric functions"]

[another corollary of triangularity thm:]

cor if F = C and V is fin. dim.
then T = A + N, where
A has a diagonal matrix
N is upper-triangular with 0's
on the diagonal
in particular, N is nilpotent

want to go further: want the nilpotent part as simple as possible [i.e., as many zero entries as possible] recall: if V = sum_i W_i for T-stable W_i, then T has a block-diagonal matrix where blocks correspond to W_i's

e.g. * * 0
$$F^3 = W_1 + W_2$$
,
* * 0 $W_1 = \{(x, y, 0)\}$,
0 0 * $W_2 = \{(0, 0, z)\}$

if each W_i is a line, then they are eigenlines then V is the sum of the eigenspaces $\ker(T - \lambda)$ as we run over eigenvals λ

[in general not so lucky:]
to proceed, weaken the notion of eigenspace

(Axler §8A) fix a linear op T : V to V

observe that $ker(T - \lambda)$ sub $ker((T - \lambda)^2)$ sub ...

 $\underline{\mathsf{Df}}$ the generalized λ -eigenspace for T is

{v in $V \mid (T - \lambda)^n v = \mathbf{0}$ for some n}

equivalently, bigcup_ $\{n > 0\}$ ker($(T - \lambda)^n$)

its elts are called generalized λ-eigenvectors for T

Lem the generalized λ-eigenspace for T is the largest T-stable lin. sub. W sub V s.t.

 $(T - \lambda)|_W$ is nilpotent

Pf $ext{ker}((T - \lambda)^n)$ is T-stable for all n [same tactic as we used before] so bigcup_n > 0 ker $((T - \lambda)^n)$ is stable and nilpotence condition holds for it

conversely: easy to show that if W is T-stable and $(T - \lambda)|_W$ is nilpotent, then W sub $\ker((T - \lambda)^n)$

Lem if $\lambda \neq \lambda'$, then their gen'lized eigenspaces have intersection $\{0\}$

Pf let W, W' be the gen'lized eigenspaces

since W, W' are T-stable, so is W cap W'

since $(T - \lambda)|_W$, $(T - \lambda')|_{W'}$ are nilpotent, so are $(T - \lambda)|_{W'}$, $(T - \lambda')|_{W'}$

but sums/differences of nilpotent ops are nilpotent so $(\lambda - \lambda')|_{W}$ cap W'} is nilpotent so W cap W' = $\{0\}$

next time, we prove:

Thm suppose
$$F = C$$
 and V is fin. dim. then there exist a finite list of λ_i s.t. $V = \text{sum } i \ W$

where W_i is the generalized λ_i -eigenspace for T