Introduction

Data Mining - a structured view

Web Mining

Web Usage Mining

- discovery from user access patterns from logs or alike
- applications:
 - user segmentation, recommendation, personalization, adaptation, usability improvement

Web Content Mining

- extracts information from Web pages
- applications
 - information extraction, summarization, topic extraction, opinion mining, sentiment analysis, information retrieval

Web Structure Mining

- discovery of useful knowledge from hyperlinks
- applications:
 - discover important pages (information retrieval)
 - discover communities

Web usage mining

Web Site Usage Analysis

Web Usage Mining: Problems

- User Segmentation
- Content Bundling
- Item Recommendation
- Menu Customization
- User Action Prediction
- ...

Web Usage Mining: Techniques

- Clustering methods
 - segmentation
 - content bundling
- Association rule discovery methods
 - recommendation and personalization
- Collaborative filtering
- Markov chains
- Classification
 - predicting if a user is leaving the site or what is doing next
- ...

Web Usage Mining: Problem

User segmentation

- we want to find user segments according to their activity
- what is a good user segment?

Examples

- Web site targeting
- Newsletter targeting
- Study the evolution of usage styles

Data

What is necessary?

Web Usage Mining: Tec: Clustering

Example task

we want to have different entry pages for different user groups

Strategy

- users who tend to visit the same pages are regarded as a group
- In DM, this is the goal of Clustering Algorithms

Web Site Usage Analysis

Gathering access data

From logs

- Web server log files are used
 - ▶ However log data is far from perfect, so an alternative is

Tagging

- A piece of programming code is added to each page or template
- access data is stored in a database (or wherever chosen)
- more events can be captured
- e.g. Google Analytics

Log Data

- Server log files
 - logs ASCII of the httpd, CSV
 - registers each hit
 - ▶ (who, what, when, how, from where ...)
 - Transfer/Access log
 - what was seen by the visitor
 - Error log
 - connection errors
 - Referer log (English mistake part of the jargon)
 - how each visitor has found the page
 - Agent log
 - which browser was used

Data (access log)

```
216.35.116.27 - - [12/May/2002:05:30:23 +0100] "GET HTTP/1.0" 404 349
66.28.250.173 - - [12/May/2002:09:05:32 +0100] "GET /~amjorge/Aulas/madsad/
  ecd1/ HTTP/1.0" 403 348
213.121.90.73 - - [13/May/2002:13:23:28 +0100] "GET /scripts/..%25%35%63../ winnt/system32/cmd.exe?/c+dir HTTP/1.0" 404 355
213.121.90.73 - - [13/May/2002:13:23:28 +0100] "GET /scripts/..%252f../winnt/
   system32/cmd.exe?/c+dir HTTP/1.0" 404 355
195.221.214.20 - - [13/May/2002:13:39:20 +0100] "GET /niaad/ECO/Rel_Pub00.html HTTP/1.0" 200 21493
193.126.80.59 - - [13/May/2002:13:42:22 +0100] "GET /cgi-bin/Count.cgi?
   trgb=ffffff&df=events.dat&ft=0&dd=E HTTP/1.0" 500 652
193.137.36.165 - - [13/May/2002:13:54:44 +0100] "GET /cgi-bin/Count.cgi? trgb=ffffff&df=events.dat&ft=0&dd=E HTTP/1.0" 500 652
192.168.1.7 - - [13/May/2002:14:14:21 +0100] "GET /proxy.pac HTTP/1.0" 200 1961
213.150.167.8 - - [13/May/2002:14:34:05 +0100] "GET /niaad/statlog/datasets/
  heart/heart.doc.html HTTP/1.1" 200 611
213.150.167.8 - - [13/May/2002:14:34:53 +0100] "GET /niaad/statlog/datasets/
  heart/heart.doc.html HTTP/1.1" 200 611
```

Data

Common log format (NCSA)

216.35.116.27	Visitors IP	nslookup: j3407.inktomi.com
_	Identification	Never used
_	Authenticated ID	If there is login
[12/May/ 2002:05:30:23 +0100]	Date / hour of transaction	With the difference to GMT (+0100)
"GET /niaad/ Software/c50/ purchase.html HTTP/1.0"	Method (GET / POST) and accessed file	GET – normal access POST – submit HEAD – used by crawlers HTTP /1.0 (protocol)
404	Error code	200 – sucess, 300 - redirect 400 – failure(404 – not found) 500 – server errors
349	Size of transaction (bytes)	Data Mining 2

Alípio Jorge

Data Mining 2

Web Usage Mining: Clustering

USER	PAGE
1	Α
1	В
1	A B C A C B G F I B C G F I
2	Α
2	С
3	В
3	G
3	F
3	1
4	В
4	С
5	G
5	F
1 1 2 2 3 3 3 4 4 4 5 5 5 5 6 6	I
5	J
6	A C
6	С

- Activity
 - look for groups of users (e.g. two groups)
- Two users are similar if they tend to view the same pages
 - similarity of two users X and Y can be:
 - #pages seen by both / # pages seen by any of them
 - We can also use Euclidean distance
 - > each user is described as a point in the space

then we calculate the distance between the two points

$$\sqrt{(A1-A2)^2+(B1-B2)^2+...+(J1-J2)^2}$$

Web Usage Mining: Clustering

USER	PAGE
1	A B C A C B G F I B C G F I
1	В
1	С
2	Α
2	С
3	В
3	G
3	F
3	l
4	В
4	С
5	G
5	F
1 1 2 2 3 3 3 4 4 5 5 5 5 6 6	
5	J
6	Α
6	A C

- Agglomerative (bottom up) Hierarchical Clustering
 - we can obtain a predefined number of clusters
- Kmeans clustering
 - another popular clustering method

Web Usage Mining: Clustering

USER	PAGE
1	A B C A C B G F
1	С
2	Α
2	С
3	В
3	G
3	F
3	I
4	В
4	С
5	G
5	F
5	B C G F
5	J
1 1 2 2 3 3 3 4 4 5 5 5 5 6 6	Α
6	A C

Applications

- entry page customization
 - with known users
 - with unknown users
- Newsletter customization
- Segmented usability study
- Dynamics

Other variables to consider

- Aggregate
 - number of page views
 - > size of average session
 - number of sessions
 - pageview duration

Activity(R)

```
USER PAGE
  1
         В
  1
  3
         В
  3
         G
  3
  3
         B
  4
         \mathbf{C}
  4
  5
         F
  5
  5
  5
  6
         Α
  6
         C
```

```
## read data (copy and...)
d <-read.table(file("clipboard"),header=TRUE)</pre>
## Mac OS X: read.table(pipe("pbpaste"),...)
## or paste into a file and use read.csv
d <-read.csv("toy-session-data.csv")</pre>
## transform data into a matrix
dat <-table(d$USER,d$PAGE)</pre>
## obtain distance matrix (Euclidean)
dm <-dist(dat)</pre>
## cluster and view dendrogram
plot(hclust(dm))
## check parameters of dist and hclust for
## alternatives
```

Case summary

- We want to differentiate users
- We use access data
- Then clustering
- A known user can be assigned to an appropriate group
 - And be shown a specific version of the site
- We could also
 - Cluster pages

Web content mining

a small example

Web content mining: tag bundles

Problem

- Social sites have tagged items
- Users provide tags (social tagging)
- We can bundle tags for helping users to provide tags
- ► How?

Evaluation:

How can it be done?

Web content mining: tag bundles

- Process [Kammergruber et al. 2010]
 - Get tags provided by users
 - A transaction is the set of tags given by a single user
 - Use Association Rule discovery to find tags that are associated to each other

Resources

Book

Web Data Mining, Bing Liu

Papers

Walter Kammergruber, M.Viermetz, K. Ehms "Using association rules for discovering tag bundles in social tagging data", CISIM 2010.