# Text Classification Using Naive Bayes

Data Science, Pandas, sci-kit learn

# Objective

To **classify** a review as *positive* or *negative* using sample data and the **Naive Bayes classifier**.

This lesson is an introduction into the field of Machine Learning called **Natural** Language Processing (NLP).

## Review

- Classification: Placing each row of data into a target with discrete outcomes
  - o Examples: True/False, Yes/No, Hot Dog/Not Hot Dog

# Review

### Supervised Learning:

| Features     |                |       | Target<br>↓ |
|--------------|----------------|-------|-------------|
| Weight (lbs) | Number of legs | Meows | Is Cat      |
| 20           | 4              | 0     | 0           |
| 17           | 4              | 1     | 1           |
| 150          | 2              | 1     | 0           |

Dataset

| Weight | Legs | Meows | Is Cat |
|--------|------|-------|--------|
| 19     | 4    | 1     | ?      |

Prediction

## Review

Things we've learned in the past:

Python

**Pandas** 

Some familiarity with sci-kit learn

## **Text Data**

#### Common Text Data:

- Comments
- Reviews
- Forum Posts
- Reddit
- Tweets

# **Naive Bayes**

- An algorithm based off of Bayes Theorem, that states that the probability of an event happening is of the form:
  - Posterior = (prior \* likelihood) / evidence
- Great for text classification
- Naive Assumption: Every feature is independent.
- Sci-kit learn: MultinomialNB

# **Bag of Words**

- 1 The fox jumps.
- 2 Fox jumps over.
- 3 The fox jumps the fox.



| Row | the | fox | jumps | over |
|-----|-----|-----|-------|------|
| 1   | 1   | 1   | 1     | 0    |
| 2   | 0   | 1   | 1     | 1    |
| 3   | 2   | 2   | 1     | 0    |

Bag of Words

Vectorizer (CountVectorizer)

# Terminology

| Data Science/Python | Natural Language Processing |
|---------------------|-----------------------------|
| Dataset             | Corpus                      |
| Row of dataset      | Document                    |
| Feature Set         | Vocabulary                  |

## Demo

## **Conclusions and Questions**

- Made very simple assumptions to create a very rough model
- Model tweaks (parameters, assumptions)
- Data collection and labelling