

Pushdown Automata (PDA)

Reading: Chapter 6

PDA - the automata for CFLs

- What is?
 - FA to Reg Lang, PDA is to CFL
- PDA == [ε-NFA + "a stack"]
- Why a stack?

Pushdown Automata - Definition

- A PDA P := $(Q, \sum, \Gamma, \delta, q_0, Z_0, F)$:
 - Q: states of the ε-NFA
 - ∑: input alphabet
 - Γ : stack symbols
 - δ: transition function
 - q₀: start state
 - Z₀: Initial stack top symbol
 - F: Final/accepting states

old state Stack top input symb. new state(s) new Stack top(s)

δ:
$$Q \times \Gamma \times \Sigma => Q \times \Gamma$$

-

δ: The Transition Function

$$\delta(q,a,X) = \{(p,Y), ...\}$$

state transition from q to p a is the next input symbol X is the current stack *top* symbol

Y is the replacement for X; it is in Γ^* (a string of stack symbols)

Set Y =
$$\varepsilon$$
 for: Pop(X)

stack top is unchanged

If $Y=Z_1Z_2...Z_k$: X is popped and is replaced by Y

reverse order (i.e., Z_1 will be the

new stack top)

i)

ii)

iii)

Y = ?	Action
Y=ε	Pop(X)
Y=X	Pop(X) Push(X)
$Y=Z_1Z_2Z_k$	Pop(X) $Push(Z_k)$ $Push(Z_{k-1})$

 $Push(Z_2)$

 $Push(Z_1)$

4

Example

```
Let L_{wwr} = \{ww^{R} \mid w \text{ is in } (0+1)^{*}\}

• CFG for L_{wwr}: S==> 0S0 | 1S1 | \epsilon

• PDA for L_{wwr}:

• P := ( Q, \sum, \Gamma, \delta, q_0, Z_0, F )

= ( \{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, Z_0\}, \delta, q_0, Z_0, \{q_2\})
```

Initial state of the PDA:

1.
$$\delta(q_0,0, Z_0) = \{(q_0,0Z_0)\}$$

$$\delta(q_0,1, Z_0) = \{(q_0,1Z_0)\}$$

$$\delta(q_0, 0, 0) = \{(q_0, 00)\}$$

4.
$$\delta(q_0, 0, 1) = \{(q_0, 01)\}$$

5.
$$\delta(q_0, 1, 0) = \{(q_0, 10)\}$$

6.
$$\delta(q_0, 1, 1) = \{(q_0, 11)\}$$

$$\delta(q_0, \epsilon, 0) = \{(q_1, 0)\}$$

8.
$$\delta(q_0, \epsilon, 1) = \{(q_1, 1)\}$$

9.
$$\delta(q_0, \epsilon, Z_0) = \{(q_1, Z_0)\}$$

10.
$$\delta(q_1, 0, 0) = \{(q_1, \epsilon)\}$$

11.
$$\delta(q_1, 1, 1) = \{(q_1, \epsilon)\}$$

12.
$$\delta(\mathbf{q}_1, \, \epsilon, \, Z_0) = \{(\mathbf{q}_2, \, Z_0)\}$$

Grow the stack by pushing new symbols on top of old (w-part)

Switch to popping mode (boundary between w and w^R)

Shrink the stack by popping matching symbols (w^R-part)

Enter acceptance state

4

PDA as a state diagram

 $\delta(q_i, a, X) = \{(q_i, Y)\}$

PDA for L_{wwr}: Transition Diagram

Example 2: language of balanced paranthesis

Grow stack

Pop stack for matching symbols

$$\sum = \{ (,) \}$$

$$\Gamma = \{Z_0, (\}$$

$$Q = \{q_0, q_1, q_2\}$$

Go to acceptance (<u>by final state</u>) when you see the stack bottom symbol

To allow adjacent blocks of nested paranthesis

Example 2: language of balanced paranthesis (another design)

$$\sum = \{ (,) \}$$

$$\Gamma = \{Z_0, (\}$$

$$Q = \{q_0, q_1\}$$

PDA's Instantaneous Description (ID)

A PDA has a configuration at any given instance: (q,w,y)

- q current state
- w remainder of the input (i.e., unconsumed part)
- y current stack contents as a string from top to bottom of stack

If $\delta(q,a, X)=\{(p, A)\}$ is a transition, then the following are also true:

- (q, a, X) |--- (p,ε,A)
- (q, aw, XB) |--- (p,w,AB)

|--- sign is called a "turnstile notation" and represents one move

|---* sign represents a sequence of moves

How does the PDA for L_{wwr} work on input "1111"?

Principles about IDs

- Theorem 1: If for a PDA,
 (q, x, A) |---* (p, y, B), then for any string w ∈ Σ* and γ ∈ Γ*, it is also true that:
 - $(q, x w, A \gamma) \mid ---^* (p, y w, B \gamma)$
- Theorem 2: If for a PDA, (q, x w, A) |---* (p, y w, B), then it is also true that:
 - (q, x, A) |---* (p, y, B)

There are two types of PDAs that one can design: those that accept by final state or by empty stack

Acceptance by...

- PDAs that accept by final state:
 - For a PDA P, the language accepted by P, denoted by L(P) by *final state*, is: Checklist:
 - $\{w \mid (q_0, w, Z_0) \mid ---^* (q, \varepsilon, A) \}, s.t., q \in F$

- input exhausted?
- in a final state?

- PDAs that accept by empty stack:
 - For a PDA P, the language accepted by P, denoted by N(P) by *empty stack*, is:
 - $\{w \mid (q_0, w, Z_0) \mid ---^* (q, \varepsilon, \varepsilon) \}$, for any $q \in Q$.
- Q) Does a PDA that accepts by empty stack need any final state specified in the design?

Checklist:

- input exhausted?
- is the stack empty?

Example: L of balanced parenthesis

PDA that accepts by final state

An equivalent PDA that accepts by empty stack

$$P_{N}: \qquad (,Z_{0}/(Z_{0}))$$

$$(,(/(($$

$$),(/\epsilon)$$

$$\epsilon,Z_{0}/\epsilon$$

- Theorem: The PDA for L_{wwr} accepts a string x by final state if and only if x is of the form ww^R.
- Proof:
 - (if-part) If the string is of the form ww^R then there exists a sequence of IDs that leads to a final state: (q_0,ww^R,Z_0) |---* (q_0,w^R,wZ_0) |---* (q_1,ε,Z_0) |---* (q_2,ε,Z_0)
 - (only-if part)
 - Proof by induction on |x|

PDAs accepting by final state and empty stack are <u>equivalent</u>

- P_F <= PDA accepting by final state
 - $P_F = (Q_F, \sum, \Gamma, \delta_F, q_0, Z_0, F)$
- P_N <= PDA accepting by empty stack</p>
 - $P_N = (Q_N, \sum, \Gamma, \delta_N, q_0, Z_0)$
- Theorem:
 - $(P_N = P_F)$ For every P_N , there exists a P_F s.t. $L(P_F) = L(P_N)$
 - $(P_F => P_N)$ For every P_F , there exists a P_N s.t. $L(P_F) = L(P_N)$

How to convert an empty stack PDA into a final state PDA?

- Whenever P_N's stack becomes empty, make P_F go to a final state without consuming any addition symbol
- To detect empty stack in P_N : P_F pushes a new stack symbol X_0 (not in Γ of P_N) initially before simultating P_N

Example: Matching parenthesis "(" ")"

$$P_N$$
: $(\{q_0\}, \{(,)\}, \{Z_0, Z_1\}, \delta_N, q_0, Z_0)$

$$\delta_{N}$$
: $\delta_{N}(q_{0},(,Z_{0}) = \{ (q_{0},Z_{1}Z_{0}) \}$
 $\delta_{N}(q_{0},(,Z_{1}) = \{ (q_{0},Z_{1}Z_{1}) \}$

$$\delta_{N}(q_{0},),Z_{1}) = \{ (q_{0}, \varepsilon) \}$$

$$\delta_{N}(q_{0}, \mathcal{E}, Z_{0}) = \{ (q_{0}, \mathcal{E}) \}$$

 P_f : $(\{p_0,q_0,p_f\},\{(,)\},\{X_0,Z_0,Z_1\},\delta_f,p_0,X_0,p_f)$

$$\begin{split} \delta_f \colon & \delta_f(p_0, \, \epsilon, X_0) = \{ \, (q_0, Z_0) \, \} \\ \delta_f(q_0, (, Z_0) = \{ \, (q_0, Z_1 \, Z_0) \, \} \\ \delta_f(q_0, (, Z_1) = \{ \, (q_0, \, Z_1 Z_1) \, \} \\ \delta_f(q_0,), Z_1) = \{ \, (q_0, \, \epsilon) \, \} \\ \delta_f(q_0, \, \epsilon, Z_0) = \{ \, (q_0, \, \epsilon) \, \} \\ \delta_f(p_0, \, \epsilon, X_0) = \{ \, (p_f, \, X_0) \, \} \end{split}$$

 (Z_0/Z_1Z_0)

Accept by empty stack

Accept by final state

How to convert an final state PDA into an empty stack PDA?

Main idea:

- Whenever P_F reaches a final state, just make an ε-transition into a new end state, clear out the stack and accept
- Danger: What if P_F design is such that it clears the stack midway without entering a final state?
 - \rightarrow to address this, add a new start symbol X_0 (not in Γ of P_F)

$$P_{N} = (Q \cup \{p_{0}, p_{e}\}, \sum, \Gamma \cup \{X_{0}\}, \delta_{N}, p_{0}, X_{0})$$

Equivalence of PDAs and CFGs

CFGs == PDAs ==> CFLs

This is same as: "implementing a CFG using a PDA"

Converting CFG to PDA

Main idea: The PDA simulates the leftmost derivation on a given w, and upon consuming it fully it either arrives at acceptance (by empty stack) or non-acceptance.

This is same as: "implementing a CFG using a PDA"

Converting a CFG into a PDA

Main idea: The PDA simulates the leftmost derivation on a given w, and upon consuming it fully it either arrives at acceptance (by empty stack) or non-acceptance.

Steps:

- Push the right hand side of the production onto the stack, with leftmost symbol at the stack top
- If stack top is the leftmost variable, then replace it by all its productions (each possible substitution will represent a <u>distinct</u> path taken by the non-deterministic PDA)
- 3. If stack top has a terminal symbol, and if it matches with the next symbol in the input string, then pop it

State is inconsequential (only one state is needed)

Formal construction of PDA

Note: Initial stack symbol (S) same as the start variable in the grammar

- Given: G= (V,T,P,S)
- Output: $P_N = (\{q\}, T, V \cup T, \delta, q, S)$
- **δ**:

Before: → A :

For all A ∈ V , add the following transition(s) in the PDA:

•
$$\delta(q, \epsilon, A) = \{ (q, \alpha) \mid \text{``} A ==>\alpha \text{''} \in P \}$$

- For all a ∈ T, add the following transition(s) in the PDA:
 - $\delta(q,a,a) = \{ (q, \epsilon) \}$

Example: CFG to PDA

- $G = (\{S,A\}, \{0,1\}, P, S)$
- P:
 - S ==> AS | ε
 - A ==> 0A1 | A1 | 01
- PDA = $(\{q\}, \{0,1\}, \{0,1,A,S\}, \delta, q, S)$
- **δ**:
 - $\delta(q, \epsilon, S) = \{ (q, AS), (q, \epsilon) \}$
 - $\delta(q, \epsilon, A) = \{ (q,0A1), (q,A1), (q,01) \}$
 - $\delta(q, 0, 0) = \{ (q, \epsilon) \}$
 - $\delta(q, 1, 1) = \{ (q, \epsilon) \}$

How will this new PDA work?

Lets simulate string 0011

Simulating string 0011 on the

new PDA

```
PDA (\delta):
               \overline{\delta}(q, \epsilon, S) = \{ (q, AS), (q, \epsilon) \}

\delta(q, \epsilon, A) = \{ (q, 0A1), (q, A1), (q, 01) \}

\delta(q, 0, 0) = \{ (q, \epsilon) \}
                \delta(q, 1, 1) = \{ (q, \epsilon) \}
```

Stack moves (shows only the successful path):

Leftmost deriv.:

Accept by empty stack

Proof of correctness for CFG ==> PDA construction

- Claim: A string is accepted by G iff it is accepted (by empty stack) by the PDA
- Proof:
 - (only-if part)
 - Prove by induction on the number of derivation steps
 - (if part)
 - If $(q, wx, S) \mid --^* (q, x, B)$ then $S =>^*_{lm} wB$

Converting a PDA into a CFG

Main idea: Reverse engineer the productions from transitions

If
$$\delta(q,a,Z) => (p, Y_1Y_2Y_3...Y_k)$$
:

- State is changed from q to p;
- Terminal a is consumed;
- Stack top symbol Z is popped and replaced with a sequence of k variables.
- Action: Create a grammar variable called "[qZp]" which includes the following production:
- Proof discussion (in the book)

Example: Bracket matching

To avoid confusion, we will use b="(" and e=")"

Two ways to build a CFG

Deterministic PDAs

This PDA for L_{wwr} is non-deterministic

Grow stack Why does it have $0, Z_0/0Z_0$ to be non-Pop stack for $1, Z_0/1Z_0$ deterministic? 0, 0/00 matching symbols 0, 1/01 1, 0/10 3 \0,0 1, 1/11 q_0 ε , Z_0/Z_0 ε , Z_0/Z_0 ε, 0/0 ε, 1/1 Accepts by final state

Switch to popping mode

To remove guessing, impose the user to insert c in the middle

Example shows that: Nondeterministic PDAs ≠ D-PDAs

D-PDA for $L_{wcwr} = \{wcw^R \mid c \text{ is some special symbol not in } w\}$

Deterministic PDA: Definition

- A PDA is deterministic if and only if:
 - δ(q,a,X) has at most one member for any a ∈ ∑ U {ε}
- If $\delta(q,a,X)$ is non-empty for some $a \in \Sigma$, then $\delta(q, \epsilon, X)$ must be empty.

PDA vs DPDA vs Regular languages

Summary

- PDAs for CFLs and CFGs
 - Non-deterministic
 - Deterministic
- PDA acceptance types
 - By final state
 - 2. By empty stack
- PDA
 - IDs, Transition diagram
- Equivalence of CFG and PDA
 - CFG => PDA construction
 - PDA => CFG construction