

Minimizing Life-Cycle Costs of Gun Propellant Selection Through Model-Based Decision Making: A Case Study in Environmental Screening and Performance Testing

by Ronald D. Anderson and Betsy M. Rice

ARL-TR-2326 September 2000

20001120 166

Approved for public release; distribution is unlimited.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory

Aberdeen Proving Ground, MD 21005-5066

ARL-TR-2326

September 2000

Minimizing Life-Cycle Costs of Gun Propellant Selection Through Model-Based Decision Making: A Case Study in Environmental Screening and Performance Testing

Ronald D. Anderson and Betsy M. Rice Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.

Abstract

This work demonstrates the first phases of a newly proposed gun propellant formulation process that will minimize life-cycle costs through science-based design. This new approach proposes maximal use of modeling and simulation in the earliest phases of the developmental cycle to screen candidate formulations, resulting in elimination of probable poor performers and identification of the most promising test candidates. The screening and identification of propellant formulations are demonstrated under the assumption of a specific weapon platform and user requirements. The process of selecting a propellant for the assumed gun system application has been distilled into measurable steps, leading from a set of candidate materials, through logical and numerical filters, to a shorter list of energetic materials demonstrated as viable weapon platform choices. Environmental filtering and performance modeling are used to screen propellants through a well-defined sequence of tests designed to weed out materials not meeting safety, energy, or manufacturability standards. Because much of the testing is performed by computer modeling, the gun systems and energetic materials need not be present (or even existent) in order to be described and matched against performance requirements for future applications. The calculations demonstrate that utilizing computer models rather than physical testing in the early developmental stages of the formulation process can produce enormous savings in labor, material, and environmental costs, along with a tremendous reduction in the time required to select a "best candidate" propellant.

Acknowledgments

This work was supported by the Strategic Environmental Research and Development Program under Project CPO/8. The authors would like to thank Dr. Randall J. Cramer of the Naval Surface Warfare Center, Indian Head Division, for his guidance and valuable discussions.

INTENTIONALLY LEFT BLANK.

Table of Contents

		Page
	Acknowledgments	iii
	List of Figures	vii
	List of Tables	vii
1.	Introduction	1
2.	Performance Testing Description	3
2.1	Propellant Database	3
2.2	Ingredient Environmental Screening	3
2.3	Thermodynamic Properties	3
2.4	Estimate of Available Energy	5
2.5	Propellant Grain Geometry	5
2.6	Low-Zone Charge Applications	5
2.7	Propellant Suitability	6
3.	Example Performance Screening	6
3.1	User Requirements	6
3.2	Propellant Database	7
3.3	Ingredient Environmental Screening	7
3.4	Thermodynamic Properties	9
3.5	Estimate of Available Energy	11
3.6	Propellant Grain Geometry	12
3.7	Propellant Zoning	17
3.8	Propellant Suitability	17
3.9	Next Step	19
4.	Lessons Learned and Tools Needed	20
5.	Summary	21
6.	References	23
	Appendix A: BLAKE Calculations for Generic M1 Propellant	27
	Appendix B: IBHVG2 Constant-Pressure Calculations Using M26E1 Propellant	33

Appendix C: IBHVG2 Performance Calculations for M30A1 Propellant	43
Appendix D: Performance Calculations Varying Charge Mass of M30A1 Propellant	69
Distribution List	85
Report Documentation Page	87

List of Figures

<u>Figure</u>		Page
1.	Master Optimization Algorithm	4
2.	Propellant Grain Types	6
	List of Tables	
<u>Table</u>		Page
1.	Ingredients of Propellants	8
2.	Thermodynamic Properties of Propellants	9
3.	Ingredients and Their Relative Percentages for M1 Propellant	10
4.	M1 Thermodynamic Data Calculated by BLAKE and From Virginia Reference	10
5.	Constant-Pressure Calculations of Exit Velocity	12
6.	Computed M30A1 Simulations With Different Grain Geometries and Web Sizes	14
7.	M30A1 Charge Weight Variations for 19-Perf Granulation	15
8.	Summary of Gun System Study Performance Calculations	16
9.	Charge Zoning Applications With 19-Perf JA2 Propellant	18

18

INTENTIONALLY LEFT BLANK.

1. Introduction

The attainment of proposed future war-fighting capabilities [1] will depend on the performance of new weapons platforms and the energetic materials that are used by them. In order to efficiently and effectively meet the requirements of the future weapons systems, a mechanism must be in place for the rapid design and manufacture of advanced chemical fuels. Presently, there is no single formal procedure in place for the design and development of a new propellant; rather, the overall procedure includes any number of steps leading to deployment of a The inclusion of steps varies among individuals according to new energetic material. Also, the overall procedure relies heavily on experience, philosophy, and training. experimentation and measurement and often proceeds through lengthy cut-and-try processes. Significant waste streams in terms of time, manpower, and materials are generated from implementation of such unstructured developmental procedures, and they often exact unacceptably large time and environmental penalties. Current fiscal realities and increased environmental constraints necessitate a revision in existing strategies for energetic material design, development, and manufacture. The most obvious revision that must be made is to minimize the waste created during the process. In order to do this, a formal mechanism must be established to estimate the waste associated with each part of the procedure and, thus, assign costs to each step in the mechanism. The assignment of costs will depend upon the priorities that drive the development of the material and could include pecuniary, environmental, or performance considerations. Then refinements to the steps and overall mechanism can be made to minimize the cost and maximize the efficiency of the process.

The Strategic Environmental Research and Development Program (SERDP), in recognizing the need to counter extreme waste generation in energetic materials development, is supporting a project whose goal is to establish a new developmental procedure that will minimize waste generation throughout the entire process. The project is currently limited to gun propellant formulations; however, the same developmental procedures could be applied to other classes of energetic materials, including rocket propellants, explosives, or pyrotechnics. The developmental procedure that is being advanced under this project is model-based. In other

words, the goals of the project can ideally be achieved through replacement (where possible) of measurement and testing with computer modeling or through optimal reduction of experimentation by the exercise of predictive methodologies. This new approach to gun propellant formulation is outlined in a parallel report [2] that describes a science-based activity where the earliest possible steps utilize modeling and simulation of all stages that might occur during development of a gun propellant. Although modeling of the complete process cannot be implemented at this time since there are several areas in which models do not currently exist, the work described here is an attempt to exercise the developmental procedure using available models.

Part of the propellant assessment involves determination of whether its performance in a cannon will meet the military requirements of projectile velocity (which governs effective range of the weapon) within the limitations of pressure and acceleration peculiar to the gun system and projectile. Predictive performance models [3–5] have been available in the military for many years and are well-suited for computing expected solutions of the interior ballistic cycle for known (measurable) guns and for gun systems as yet only imagined. These computer models require a priori information describing the physical parameters of the gun chamber and tube, of the projectile, of the propellant charge, and of critical interactions during the gun firing. This report explains how to use available computer programs to model the performance testing of a proposed set of gun propellants in a large-caliber artillery weapon. Additionally, since the proposed developmental approach incorporates environmental screening procedures at each stage of the development process, we have attempted to include such in our demonstration. A prototypical simulation was performed in which minimal user requirements for maximum pressure and minimum muzzle energy were assigned for a specific weapon platform using a set of 10 existing propellant formulations. Using performance modeling and database information on environmental hazards, 6 of the 10 formulations were eliminated as candidates due to environmental constraints and failure to meet energy requirements. This demonstration shows that application of computer models based on scientific principles during gun propellant design and formulation will result in cost savings through decreases in labor, equipment, and environmental issues.

2. Performance Testing Description

- 2.1 Propellant Database. A generalized flow chart of the necessary steps in testing the performance of a new gun propellant is shown in Figure 1, representing the early screening steps of the science-based design process outlined in the study of Miller, Rice, and Cramer [2]. The Master Optimization Algorithm (MOPTA) starts with a database of new and/or known propellants to be tested and screened for suitability to a "virtual gun system." This gun system may be a computer model of a known weapon or a model of a completely theoretical gun system to be analyzed for possible manufacture and deployment. From its chemical and thermodynamic description, each propellant is to be characterized in the weapon without ever having physically been placed in the chamber, or perhaps without ever having been actually created in a laboratory. The portion of the algorithm to be described in this report is highlighted with a gray background in Figure 1—the other blocks contain steps where either models are not yet available or else the authors do not have the expertise necessary to use current programs or databases.
- 2.2 Ingredient Environmental Screening. Those propellants containing known environmental hazards may be screened out of the performance testing process here. Legacy propellants may include ingredients that have been identified, in the years since original production, as carcinogens or as substances toxic to one or more environmental systems. This could include not only the ingredients themselves but also the manufacturing processes involved in creating the material.
- 2.3 Thermodynamic Properties. Each propellant must be described by a suite of measurable physical parameters in order to be acceptable to the interior ballistic (IB) computer programs. Required values include isochoric flame temperature, density, internal chemical energy, and others depending on which computer code will be used for performance modeling. Several programs are available to estimate these parameters (except for density and burning rate) from the initial chemical description. These programs include CHEETAH [6], BLAKE [7], and TRAN72 [8] and CEA [9]. Part of the output generated by these codes can include a list of combustion products (both gaseous and condensed), which can be scanned to determine

Figure 1. Master Optimization Algorithm.

if toxic or corrosive materials are predicted. Propellant density and burning rates must be physically measured or estimated from other sources.

- 2.4 Estimate of Available Energy. Given a gun system model and the thermodynamic properties of each propellant, an estimate can be made of how much energetic material can be placed in the gun chamber. A calculation can then be made to determine if enough kinetic energy can be transferred to the projectile in order to meet the exit velocity requirements. By assuming that the highest allowable pressure is continuously maintained by propellant combustion (until the charge is exhausted), an estimate of maximum achievable projectile exit velocity can be calculated. If this velocity does not meet or exceed user requirements, then the propellant will not be a candidate for further testing. Computer codes that can estimate this maximum are IBHVG2 [10] and CONPRESS [11].
- 2.5 Propellant Grain Geometry. Actual energy transferred to a projectile will be somewhat less than that calculated in the previous step because propellant grain design cannot provide a continuous, unwavering pressure level for the life of the burning charge. Standard grain geometries (19-perf, 7-perf, and single-perf, shown in Figure 2) can be parametrically computed and tested within the gun system model. In general, a multiperforated grain design is more efficient in transferring energy to a projectile; this rule of thumb may be untrue for certain "virtual" gun systems where databases may be varied to experiment with nontraditional dynamics in chamber sizes, projectile/bore interactions, and other physical parameters. Interior ballistic calculations can determine if one or more propellant grain designs used as charges in the real (or future) gun system can meet requirements for muzzle energy and complete charge burnout within maximum pressure limitations. A first-pass IB program is IBHVG2; if predictions of pressure waves within the gun chamber are required, then XNOVAKTC [12] or NGEN [13] may be used.
- 2.6 Low-Zone Charge Applications. Artillery guns are routinely loaded with a less-than-maximum charge when targets are located at relatively short ranges. These "zoned" applications allow optimum trajectories for higher kill probabilities. Lowest-zoned charges are

Figure 2. Propellant Grain Types.

still required to burn completely before the projectile exits the gun muzzle; unburned and partially burned propellant particles and gases can be major causes of secondary muzzle blast and flash. If low-zone applications are defined, then the grain geometry meeting minimum energy requirements at maximum charge weights must still show complete burnout when used at lower loading densities. The same IB programs that previously calculated acceptable propellant grain geometries may also be used here.

2.7 Propellant Suitability. Other conditions may screen out propellants that meet muzzle energy requirements. Cost, manufacturing limitations, burning temperature (a major factor in gun tube life expectancy), grain size, or any number of user-defined stipulations may preclude propellants from final consideration. More likely, the list of remaining propellants will be ranked according to importance of these additional factors.

3. Example Performance Screening

3.1 User Requirements. As a test system, the Navy 5-inch 54-caliber gun was chosen to be the vehicle for exercising the propellant performance analysis. User-supplied guidelines included a maximum pressure limitation of 65 ksi (448 MPa) and a minimum muzzle energy of

18 MJ with a 110-lb (49.9 kg) projectile. From the kinetic energy formula ($KE = \frac{1}{2} MV^2$), it can be determined that projectile velocity needs to be at least 848 m/s to meet the requirement. A general description of the weapon specifies a chamber volume of approximately 0.0151 m³ (919 in³) and a projectile travel of 6.84 m (269 inches).

- 3.2 Propellant Database. A mixture of old and new propellant formulations, from both Army and Navy sources, provided a well-rounded sample for the analysis. All propellants are real—no theoretical materials have been added to the study, although it certainly could be done in further tests. The standard Army propellants include M1, M10, M26E1, M30A1, M31E1, and JA2; Navy propellants are NACO, EX99 (called LOVA in the reference noted in Table 1), HELP42, and BAMO/AMMO (abbreviated as BAMO in the rest of this report). No particular method was used for propellant selection other than an attempt to include the several classes (single-base, double-base, and triple-base propellants), along with some newer formulations not fitting neatly into such descriptions.
- 3.3 Ingredient Environmental Screening. Table 1 shows the proposed propellants and lists their ingredients. A quick scan reveals that NACO contains lead carbonate (Pb_2CO_4) —a known toxic substance and suspected carcinogen [14]. For this reason, NACO was dropped from further analysis. (If a cost of manufacture with suitable biohazard controls and increased demilitarization expenses would be computed, then such a material could be included in the complete performance appraisal; the extra factors would be added to a final figure for overall life cycle costs.)

Dinitrotoluene (DNT) is an ingredient of the Army M1 propellant. The International Chemical Safety Card (ICSC 0727) [15] describes this substance as able to be absorbed through human skin and ingested through inhalation of fumes when it is heated. For humans, it is an irritant to the eyes and skin and may cause effects on the central nervous system, cardiovascular system, and blood. It is also extremely toxic to aquatic organisms. The environmental costs from DNT can be very high; as an example of the type of chemical ingredient to be avoided, mixtures with DNT (specifically M1) will be removed from the list of propellants under consideration.

Table 1. Ingredients of Propellants

Propellant	Propellant Ingredients	
M1	NC1315 DNT DBP DPA H2O ALC	Freedman [16], p. 121
M10	NC1315 DPA KS H2O ALC	Freedman [16], p. 121
M26E1	NC1315 NG EC H2O ALC C	Freedman [16], p. 122
M30A1	NC1260 NG NQ EC KS ALC C	Freedman [16], p. 122
M31E1	NC1260 NG NQ DBP NDPA KS ALC C	Freedman [16], p. 122
NACO	NC1200 BS EC KS PB2CO4 H2O ALC	Freedman [16], p. 122
JA2	NC1304 NG DEGDN AKAR2 MGO H2O C	Miller [17]
BAMO	RDX BAMO AMMO	Almeyda [18]
HELP-42	HZTZ RDX NC1260 BDNPF BDNPA EC	Cramer [19]
EX-99	RDX NC1260 CAB BDNPF BDNPA EC	Cramer [19]

The ingredient definitions in Table 1 and in text are as follows:

- AKAR2 Akardite II
- ALC Ethanol (ethyl alcohol)
- AMMO Azidomethylenemethyl oxetane
- BAMO Azidomethyl oxetane
- BDNPA Bisdinitropropyl acetal
- BDNPF Bisdinitropropyl formal
- BS Barium sulfate
- C Graphite
- CAB Cellulose acetate butyrate
- DBP Butyl phthalate
- DEGDN Diethyleneglycol dinitrate
- DNT Dinotrotoluene
- DPA Diphenylamine
- EC Ethyl centralite
- H2O Water
- HZTZ Bisdihydrazinotetrazine
- KS Potassium sulfate
- MGO Magnesium oxide
- NCxx.yy Nitrocellulose with a nitration percentage of xx.yy%
- NDPA 2-nitrodiphenylamine
- NG Glyceryl trinitrate
- NQ Nitroguanidine
- PB2CO4 Basic lead oxide
- RDX Cyclo-1,3,5-trimethylene-2,4,6-trinitramine

3.4 Thermodynamic Properties. The U.S. Army Research, Development, and Engineering Center (ARDEC) Report "Interior Ballistics Firing Data Library of Closed Breech, Single Combustion Chamber Tank Guns, Artillery Guns and Howitzers Cannon," by author Frank J. Virginia, Jr. [20], is a valuable source of existing military propellant data including many measured burning rates. All data are taken from testing of individual propellant lots. A second reference is the chapter "Thermodynamic Properties of Military Gun Propellants" written by E. Freedman in the book *Gun Propulsion Technology* [16], from which many of the ingredient listings in Table 1 have been taken. The data in this reference pertain to generic compositions rather than the variations found in individual lots of propellant.

Table 2 contains thermodynamic values required to model the remaining propellants. As shown, there is a wide range of isochoric flame temperatures (from lowest at 2,555 K to highest at 3,410 K). Estimated temperature within the gun chamber will affect modeling of product gas expansion due to the (simplified) nonideal equation of state p(V-b)=RT [21], where T is a direct factor in the pressure calculation; in turn, the force of pressure on the base of the projectile will govern acceleration through F=ma. Propellant burning rates will also be a major factor; rates in this study were gained either from the aforementioned Virginia reference or from other sources as noted in Almeyda [18] and Cramer [19]. The propellant property labeled as Force in Table 2 is a measure of the energy contained in a unit weight of material.

Table 2. Thermodynamic Properties of Propellants

Propellant	Density (g/cm ³)	Gamma	Temperature (K)	Covolume (cm ³ /g)	Force (J/g)
M10	1.669	1.2342	3,000	1.0025	1013.3
M26E1	1.611	1.2384	3,132	1.0383	1085.0
M30A1	1.683	1.2375	3,036	1.0524	1073.4
M31E1	1.642	1.2580	2,574	1.1048	973.8
JA2	1.661	1.2255	3,410	0.9978	1130.2
BAMO	1.639	1.2738	2,863	1.2218	1191.3
HELP-42	1.600	1.2780	2,555	1.22	1063.0
EX-99	1.660	1.2900	3,019	1.122	1159.0

If there were no published or experimental thermodynamic values, computer programs are available to calculate estimates. CHEETAH, BLAKE, and TRAN72 have all been used for this purpose. As an example, the formulation for M1 (extracted from the Freedman chapter, and shown in Table 3) has been used for an input to the BLAKE program. The output is reproduced in Appendix A; the thermodynamic values are listed in Table 4, along with comparable data from the Virginia report. The fluctuation of values is not unexpected because any particular lot of M1 may vary slightly from the composition of the generic propellant—manufacturing methods are not so precise as to guarantee final composition in a production lot of propellant to within a fraction of a percent.

Table 3. Ingredients and Their Relative Percentages for M1 Propellant

Ingredient	BLAKE Abbreviation	Percentage
Nitrocellulose (13.15% Nitration)	NC1315	83.11
Dinitrotoluene	DNT	9.77
Butyl Phthalate	DBP	4.89
Diphenylamine	DPA	0.98
Water	H2O	0.50
Ethanol	ALC	0.75

Table 4. M1 Thermodynamic Data Calculated by BLAKE and From Virginia Reference

Source	Lot Number	Gamma	Temperature (K)	Covolume (cm ³ /g)	Force (J/g)
Blake	(Generic)	1.2675	2,447	1.105	919.2
Virginia	JAN-P-309	1.2593	2,417	1.1044	911.7

Part of the calculation of thermodynamic parameters includes estimation of final combustion gases and their relative amounts. A section of Appendix A titled "Constituent Concentrations" shows gases (and possible solid or liquid products) expected to be created by each mole of burned energetic material. If relatively large amounts of toxic or corrosive products are noted, the propellant could be dropped from further analysis or else flagged for special consideration later in the study.

The computation of burning rate parameters is not yet so straightforward as is the case with thermodynamic values, since there is no computer program to calculate rates from chemical composition. Obviously the best source is through experimental data from closed-bomb analysis of the actual propellant [22–24]. Estimates of burning rates and propellant densities could be taken from a member of the "family" of propellants if the formulation of the unknown material is similar (within a percentage point or two) to the major ingredients of a known propellant, but the user should be aware that it is only an estimate and needs to be proven through experimental means.

3.5 Estimate of Available Energy. IBHVG2 computations were used to evaluate the potential energy of each propellant in the gun system model. An assumption made for this step was that there would be a constant charge weight for the various energetic materials. Since most fielded granular charges have maximum loading densities (amount of propellant mass per unit chamber volume) in the range of 0.80 g/cm³ to 0.90 g/cm³, a suitable value for this study was chosen at 0.85 g/cm³ so that the interior ballistics program now has all the necessary parameters to proceed with a constant-pressure calculation. The purpose of this step is to quickly determine whether the charge could meet the minimum requirement of projectile exit velocity while keeping chamber pressure no higher than the user-defined maximum. The program artificially ties breech pressure to a given value (by converting the necessary amount of propellant to gas at each time step) until the charge is completely burned; then the gases are allowed to continue expanding (and accelerating the projectile) until maximum travel is accomplished. This process approximates what would be the perfect combination of propellant surface area and burning rate in order to transfer maximum energy to the projectile. CONPRESS does not require estimates for either grain geometry or burning rate; IBHVG2 requires either burning rate or grain geometry, although this is just a formality—both can be made to vary in order to complete the calculation.

Computed projectile exit velocities using IBHVG2 are listed in Table 5 for each of the remaining candidate propellants. The user-required velocity is 848 m/s; each velocity in the table is compared to that value via a percentage of minimum requirement. All considered

Table 5. Constant-Pressure Calculations of Exit Velocity

Propellant	Exit Velocity (m/s)	Comparison (%)
M10	867	102.2
M26E1	858	101.2
M30A1	886	104.5
M31E1	825	97.3
JA2	902	106.4
BAMO	914	107.8
HELP-42	879	103.7
EX-99	894	105.4

propellants except M31E1 attained over 100% of minimum and will be passed on to the next step in the study.

A sample output from the constant-pressure computation for M26E1 is included as Appendix B of this report.

3.6 Propellant Grain Geometry. A parametric feature allows IBHVG2 to vary propellant grain dimensions in order to calculate how each geometry will perform in the modeled gun system. By adjusting one grain measurement (in this case the web, or burn-through distance between grain perforations and between the outer grain surface and closest perforations) the program can compute entire ballistic cycles for a series of grain sizes and can find the maximum pressure and the expected projectile exit velocity for each situation. Appendix C is the printout from the performance calculations for M30A1; it includes a table of input and output values for each set of dimensions. A short summary of that information is shown in Table 6, where the computed maximum pressure is closest to 448 MPa at a web size of 3.06 mm for the grain with 19 perforations; for the 7-perf grain the targeted pressure is reached at a web size of 3.38 mm; the single-perf simulations show maximum pressure of 448 MPa at the web thickness of 4.72 mm. Projectile exit velocities are 861 m/s, 856 m/s, and 812 m/s, respectively, showing that the multiperforated grains transferred more energy to the projectile than did the mono-perforated grain. Both the 19-perf and 7-perf solutions exceeded minimum required projectile velocity,

while the single did not. Other grain dimension sizes (length 18.3 mm and perforation diameter 0.457 mm) were held constant during the parametric variations of web—this means the computed grain diameter of the 19-perf solution is

$$3.06 * 6 + 0.457 * 5 = 20.6 \text{ mm}$$

which would make the grain length slightly shorter than its width. By increasing the perforation diameter, the grain could be longer (perforation length is restricted by the ability of combustion gases to escape confinement, dependent on diameter and expected burning rates of the propellant)—but this is an exercise best left to expert ballisticians. For current purposes, it is enough to realize that the multiperforated M30A1 grains can satisfy system requirements.

Table 6 also contains information about pressure felt on the projectile base at the time of muzzle exit. The "Z@Exit" column is an estimate of the mass fraction burned at projectile exit. The last column is an estimated length of projectile travel when computed charge burnout occurs. In the bottom two rows of single-perf data, the charge is not expected to burn completely by the time the projectile exits the gun muzzle; this could be a clue to the possibility of unacceptable secondary muzzle blast and flash should the charge consist of this grain geometry.

For the 19-perf granular solution in Table 6, projectile travel is only slightly more than 2/3 maximum allowable—suggesting that there is yet more flexibility in charge manipulation in order to get even higher exit velocities within user limitations. For example, with a slightly larger loading density (assuming more propellant can be loaded into the chamber) and a larger grain web in order to keep down the maximum pressure for the increased charge, the results are as in Table 7. As charge mass increases from 12.50 kg to 13.50 kg, the web size is increased from 3.0168 mm to 3.3527 mm in order to keep maximum pressure at the 448-MPa limitation. (Increased grain web size results in a lower surface-to-mass ratio; thus the pressure peak can be maintained even though the greater charge mass transfers more energy to the projectile—assuming all the propellant still burns out within the gun tube.) Loading densities for the different charge weights are printed in the second column. Values in the right-most column,

Table 6. Computed M30A1 Simulations With Different Grain Geometries and Web Sizes

No. of		Maximum	Exit	Exit		
Perforations	Web	Pressure	Velocity	Pressure	Z@Exit	X@Burnout
Terrorations	(mm)	(MPa)	(m/s)	(MPa)		(m)
	3.00	470.129	868.56	84.350	1.000	3.940
	3.02	463.022	866.16	84.667	1.000	4.274
	3.04	456.125	863.60	84.946	1.000	4.218
	3.06	449.431	860.93	85.206	1.000	4.553
	3.08	442.933	858.40	85.503	1.000	4.495
19	3.10	436.620	855.71	85.764	1.000	4.832
	3.12	430.488	853.11	86.053	1.000	4.773
	3.14	424.527	850.57	86.356	1.000	5.111
	3.16	418.731	847.84	86.613	1.000	5.051
	3.18	413.094	845.20	86.902	1.000	5.390
	3.20	407.608	842.51	87.181	1.000	5.328
	3.30	458.389	860.98	85.192	1.000	4.700
	3.32	453.193	858.73	85.494	1.000	5.050
	3.34	448.116	856.24	85.729	1.000	4.999
	3.36	443.157	853.78	85.979	1.000	5.351
	3.38	438.312	851.36	86.244	1.000	5.298
7	3.40	433.576	848.90	86.498	1.000	5.651
	3.42	428.946	846.55	86.795	1.000	5.598
	3.44	424.419	844.01	87.033	1.000	5.952
	3.46	419.990	841.55	87.301	1.000	5.897
	3.48	415.657	839.03	87.555	1.000	6.252
	3.50	411.418	836.59	87.840	1.000	6.609
	4.60	464.580	824.68	89.090	1.000	5.530
	4.62	461.798	822.66	89.303	1.000	5.498
	4.64	459.051	820.62	89.473	1.000	5.860
	4.66	456.340	818.59	89.694	1.000	5.828
	4.68	453.663	816.55	89.949	1.000	6.192
1	4.70	451.018	814.50	90.133	1.000	6.158
	4.72	448.406	812.44	90.351	1.000	6.125
] [4.74	445.826	810.37	90.607	1.000	6.490
. [4.76	443.278	808.29	90.788	1.000	6.456
	4.78	440.759	806.21	90.854	0.999	6.840
	4.80	438.270	804.13	90.480	0.995	6.840

Table 7. M30A1 Charge Weight Variations for 19-Perf Granulation

Charge Weight (kg)	Loading Density (g/cm ³)	Web (mm)	Maximum Pressure (MPa)	Exit Velocity (m/s)	Z	Trav @ B.O.
12.50	0.838	3.017	448	857.1	1.0	4.410
12.75	0.855	3.097	448	862.4	1.0	4.473
13.00	0.872	3.179	448	867.3	1.0	5.144
13.25	0.888	3.264	448	871.6	1.0	5.561
13.50	0.905	3.353	448	875.2	1.0	6.070

projectile travel at the point of charge burnout, grow larger as the charge weight and web size increase—since there is no change in maximum pressure it requires a longer burning cycle to completely consume the charge. The IBHVG2 computation for this study is in Appendix D.

For direct comparison of the different propellants, the major analysis kept a constant loading density of approximately 0.85 g/cm³ for the gun simulation. The results are summarized in Table 8—each propellant is listed with the three grain types, their corresponding web sizes for 448 MPa maximum pressure, and the calculated projectile exit velocity in each situation. Propellant types with a superscript "a" after the name included at least one granulation satisfying the minimum user requirements. M30A1, JA2, and EX-99 each met the velocity goal with one or more multiperf granulations, while BAMO was the only propellant type to qualify with all the grain types. The rest of the formulations, although they all had potential for 848 m/s as shown in the constant-pressure calculations, could not reach that level when simulated as a standard charge consisting of single-, 7-, or 19-perf grains. BAMO exhibited the highest computed velocity in both constant-pressure and granular configurations; JA2 was the next-best computed velocity in both simulations.

Unlike the majority of propellants listed in Table 8, EX-99 shows higher computed velocities for the 7-perf grain type than for the 19-perf. This is because of "two-tiered" burning rate data and their effect in the gun model. Many IB programs (including IBHVG2) represent the

Table 8. Summary of Gun System Study Performance Calculations

Propellant	Grain Geometry					
	19-Perf	7-Perf	1-Perf			
M10	844 m/s	841 m/s	807 m/s			
	(2.56 mm)	(2.76 mm)	(3.82 mm)			
M26E1	836 m/s	835 m/s	806 m/s			
14120121	(3.48 mm)	(3.76 mm)	(5.20 mm)			
M30A1 ^a	861 m/s	856 m/s	812 m/s			
MIJOAI	(3.06 mm)	(3.34 mm)	(4.72 mm)			
JA2 ^a	875 m/s	867 m/s	812 m/s			
JAZ	(4.42 mm)	(4.91 mm)	(7.20 mm)			
BAMO ^a	881 m/s	877 m/s	859 m/s			
DAMO	(3.13 mm)	(3.47 mm)	(5.06 mm)			
HELP-42	807 m/s	813 m/s	836 m/s			
1115LF -42	(0.883 mm)	(0.980 mm)	(1.375 mm)			
EX-99 ^a	845 m/s	858 m/s	845 m/s			
LA-99	(2.29 mm)	(2.52 mm)	(3.57 mm)			

^a Included at least one granulation satisfying the minimum user requirements.

propellant burning rate equation in the form $R=aP^n$, where P is the instantaneous pressure, n is its exponent, and a is the coefficient used to calculate R as the rate of linear regression of the propellant surface. Usually the values of a and n do not change for the entire range of pressures encountered during the IB calculation, as is the case for the first five propellants in Table 8 (although each propellant has its own unique values for a and n). The EX-99 data were supplied with experimental burning rate values—three different pressures (P_1, P_2, P_3) and a corresponding rate (r_1, r_2, r_3) for each. IBHVG2 used these values to create an aP^n representation between the first two pressures, and again between the last two pressures. The solution values for a and a were not the same over the two pressure regions for EX-99. In effect, the IB code used values a_1 and a_2 and a_3 and a_4 for pressures between a_4 and a_4

The exponent n for HELP-42 was much higher than that of the other propellants; its effect on the model was to produce the highest projectile exit velocity for the single-perf Help-42 propellant and the lowest velocity for its corresponding 19-perf charge. This result is an interaction with the projectile/bore resistance profile and the timing of gas production by the burning granular surface.

- 3.7 Propellant Zoning. Although there was no requirement for a lower-velocity charge in this study, a calculation of lighter charge weights for the JA2 19-perf grain solution gave the information in Table 9. The "Charge Burned" column shows the fraction of main charge consumed at the time of projectile exit—none of the charge weights smaller than 11.0 kg burned out. If a low-zone artillery application had been a requirement with velocity at or below 760 m/s, then this propellant granulation (web of 4.43 mm and no changes in either length or perforation diameter) would not meet specifications unless incomplete charge burnout was acceptable to the user.
- 3.8 Propellant Suitability. The final step in the first round of propellant performance testing could be as simple as listing data such as that in Table 8 and providing it to the original requesting authority. In this study, BAMO appears to be the most suitable propellant, since it gives the highest muzzle energy and has the flexibility of using any of the three granulations. M30A1 and JA2 both provided solutions with the multiperforated grain types but fell short with the single-perf geometry. More likely, there will be additional constraints put on final selection, such as the following:
 - Propellants will be ranked according to highest calculated velocities within a particular grain geometry;
 - Environmental and economic costs due to manufacturing or demilitarization will determine rankings;
 - Additional performance details, such as computed chamber combustion temperatures,
 will be factored in with velocities to produce a ranking scheme;

Table 9. Charge Zoning Applications With 19-Perf JA2 Propellant

Charge	Maximum	Exit	Charge	
Weight	Pressure	Velocity	Burned	X@Brnout
(kg)	(MPa)	(m/s)	(Fraction)	(m)
8.000	136.723	552.40	0.951	6.840
8.200	144.193	566.44	0.957	6.840
8.400	152.005	580.44	0.962	6.840
8.600	160.176	594.40	0.967	6.840
8.800	168.724	608.33	0.972	6.840
9.000	177.670	622.23	0.976	6.840
9.200	187.032	636.11	0.980	6.840
9.400	196.837	649.97	0.984	6.840
9.600	207.107	663.78	0.988	6.840
9.800	217.869	677.62	0.991	6.840
10.00	229.151	691.42	0.993	6.840
10.20	240.985	705.19	0.995	6.840
10.40	253.402	718.98	0.997	6.840
10.60	266.441	732.71	0.998	6.840
10.80	280.142	746.48	0.999	6.840
11.00	294.547	760.18	0.999	6.840
11.20	309.701	773.96	1.000	6.820
11.40	325.660	787.63	1.000	6.840
11.60	342.479	801.36	1.000	6.545
11.80	360.222	815.23	1.000	6.187
12.00	378.957	828.91	1.000	5.973
12.20	398.759	842.70	1.000	5.664
12.40	419.717	856.61	1.000	5.422
12.60	441.926	870.48	1.000	5.167
12.80	465.492	884.45	1.000	4.982
13.00	490.528	898.46	1.000	4.702

- Further testing, such as supplemental calculations with other projectile weights or secondary propelling charges, will be indicated;
- Temperature variations should be considered if the propellant is to be used in climatic extremes of desert, tropical, or polar regions;

- If no candidate propellants survive the process, the requester may ask for variations in ingredient ratios in order to find a viable charge;
- Follow-on calculations with one-, two-, or higher-dimensional IB programs may be indicated so that pressure waves or other secondary interior ballistic effects might be discovered [12, 13].

The comment concerning the choice of IB code should be addressed before this report could be considered complete. IBHVG2 was used because of its automatic input-varying feature. Most of the currently available one- or multi-dimensional IB programs lack the ability to automatically vary any of the input parameters. In order to complete several of the process steps (finding web size versus grain geometry, computing various charge weights and noting amount burned at time of projectile exit, etc.), the number of individual IB cycles to be calculated can be very large. The labor required to modify input data, compute each situation, tabulate output values, and analyze the results could be extremely large if each calculation is done separately. Therefore, the use of a code with an automated parametric function is crucial, especially during the initial phase of propellant screening. The same type of reasoning can lead to tremendous savings in time and labor in virtually all steps of the propellant developmental process where automated models can be fitted with parameter variation [25].

3.9 Next Step. Other "tools" in the propellant production and testing flow diagram will need the information from a performance analysis, whether the results are used for reformulation of a new propellant or for additional filtering of existing choices. Before the user elects an energetic material, he will require more data about manufacturing costs, vulnerability, shelf life, environmental compatibility, and a host of other factors dealing with propellants. The initial performance comparisons are a small but important part of the overall formulation and selection process.

4. Lessons Learned and Tools Needed

The example test case is a simplistic exercise: no variations of gun hardware were considered; no propellant reformulation was envisioned; no multidimensional IB analysis was performed. Yet it is clear that some functions are necessary and others are nonexistent. To be complete, the model-based performance process still requires software tools to estimate density and burning rates of virtual propellants—semi-empirical and first-principle burning rate models are currently under development at the Army Research Laboratory [26], and models exist to predict crystal densities within a subset of crystalline space groups [27]. Automated search methods for IB solutions are absolutely necessary for minimization of the labor involved in computation and analysis. As the overall propellant creation and testing methods become formalized, there will certainly be other areas where software tools need to be developed or utilized for individual and composite steps in the sequence—estimation of processing costs, toxicity hazards, mechanical properties, disposal and demilitarization requirements, and many other activities.

Along with the computer programs is a critical need for databases to be assembled with the parameters required for software tools. With enough data, the missing tools for estimation of propellant density and burning rates might be created; vulnerability, compatibility, temperature sensitivity, and a dozen other empirical methods could follow. At the least, such gathered data would make the tasks of modelers much easier and faster.

Clear and complete performance and environmental requirements might shorten the performance modeling too. A standardized questionnaire could alert the modeler to additional factors in zoning, temperature maximums, projectile acceleration limits, and other stipulations not apparent during construction of an initial set of performance requirements. Ideally, a database of existing environmental regulations and constraints should be incorporated into the process to flag the user about possible problems with manufacture, movement, and disposal of energetic materials.

5. Summary

We have demonstrated the preliminary steps in a new formulation process for gun propellants that can minimize life-cycle costs by science-based design. The earliest steps in this process use modeling and simulation of the properties, processing, and performance of the candidate in order to screen potential candidates, eliminate probable poor performers, and identify candidates that show promise. In this exercise, user requirements of maximum pressure limitation and minimum muzzle energy for a Navy 5-inch 54-caliber gun were presented. The most promising candidate(s) to meet the user requirement from a set of 10 existing formulations representing single-, double- and triple-based propellants, as well as other novel energetic mixtures, was determined. Since not all performance and properties models exist, it was necessary to use limited empirical information to perform parts of the exercise. Down-selection of the propellants proceeded first through consideration of ingredient toxicity, then calculation of thermodynamic properties, estimation of theoretical maximum energy, determination of actual granular solutions, and listing of additional final considerations. At the end of the exercise, 4 of the 10 original formulations survived the simulation, and information is available at this point for a user to rank the suitability of the propellant according to his requirements.

The number of steps in a complete screening analysis would seemingly be endless, just as the infinite amount of propellant variations to be considered might appear when first contemplated. But the list of available propellant formulations is small when compared to current computer capabilities, and a performance testing sequence with defined steps and parametric searching methods can quickly determine which propellants can meet user requirements without extensive firing range exercises. When compared to cost of experimental tests of the same materials, the amount of resources saved by model-based filtering is enormous.

INTENTIONALLY LEFT BLANK.

6. References

- 1. Cohen, W. S. "Report of the Quadrennial Defense Review." U.S. Department of Defense, http://www.defenselink.mil/quad.html, May 1997.
- 2. Miller, M. S., B. M. Rice, and R. J. Cramer. "A New Approach to Propellant Formulation: Minimizing Life-Cycle Costs Through Science-Based Design." Memorandum report, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, to be published.
- 3. Baer, P., and J. Frankle. "The Simulation of Interior Ballistic Performance of Guns by Digital Computer Program." BRLR 1183, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, December 1962.
- 4. Voltis, P. M. "Digital Computer Simulation of the Interior Ballistic Process in Guns." TR-6615, Watervliet Arsenal, Waverliet, NY, 1966.
- 5. Baer, P. G., I. W. May, and J. M. Frankle. "A Comparison of Several Predictive Approaches in Charge Establishment for Large Caliber Artillery Systems." 11th JANNAF Combustion Meeting, Chemical Propulsion Information Agency, publ. 261, vol. 1, pp. 55–66, 1974.
- 6. Fried, L. E., W. M. Howard, and P. C. Souers. "Cheetah 2.0 User's Manual." Energetic Materials Center, Lawrence Livermore National Laboratory, Livermore, CA, August 1998.
- 7. Freedman, E. "BLAKE—A Thermodynamics Code Based on TIGER: Users' Guide to the Revised Program." ARL-CR-422, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, July 1998.
- 8. Svehla, R. A., and B. J. McBride. "FORTRAN IV Computer Program for Calculation of Thermodynamic and Transport Properties of Complex Chemical Systems." NASA TD-7056, NASA Lewis Research Center, Cleveland, OH, 1973.
- 9. McBride, B. J., and S. Gordon. "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, II: User's Manual and Program Description." NASA RP-1311, NASA Lewis Research Center, Cleveland, OH, 1996.
- 10. Anderson, R. D., and K. D. Fickie. "IBHVG2—A User's Guide." BRL-TR-2829, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, July 1987.
- Oberle, W. F. "Constant Pressure Interior Ballistics Code CONPRESS: Theory and User's Manual." ARL-TR-199, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, September 1993.

- 12. Gough, P. S. "The XNOVAKTC Code." BRL-CR-627, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, February 1990.
- 13. Nusca, M. J. (Army Research Laboratory), and P. S. Gough (Paul Gough Associates). "Numerical Model of Multiphase Flows Applied to Solid Propellant Combustion in Gun Systems." AIAA 98-3695, 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cleveland, OH, 13–15 July 1998.
- 14. Mallincktrodt Baker, Inc. "Lead Carbonate—MSDS Number L2650." Material Safety Data Sheet, http://www.jtbaker.com/msds/12650.htm, December 1996.
- 15. International Chemical Safety Cards. "2,4-Dinitrotoluene—ICSC: 0727." http://hazard.com/msds/mf/cards/file/0727.html, 1993.
- 16. Freedman, E. "Thermodynamic Properties of Gun Propellants." Chapter 5 of Gun Propulsion Technology, edited by L. Stiefel and M. Summerfield, vol. 109 of Progress in Astronautics and Aeronautics, American Institute of Aeronautics and Astronautics, Inc., pp. 103–132, 1988.
- 17. Miller, M. S. "Thermophysical Properties of Six Solid Gun Propellants." ARL-TR-1322, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, March 1997.
- 18. Almeyda, N. Personal communication. Naval Surface Warfare Center, Indian Head, MD, November 1998.
- 19. Cramer, R. J. "Advanced Gun Propellants." CPIA Publication 675, vol. II, pp. 145-148, July 1998.
- 20. Virginia, F. J., Jr. "Interior Ballistics Firing Library of Closed Breech, Single Combustion Chamber Tank Guns, Artillery Guns, and Howitzers Cannon." Report 87-027, U.S. Army Research, Development, and Engineering Center, March 1987.
- 21. Van der Waals, J. D., Sr. "Over de Continuiteit van Den Gas-en Vloestoftoestand." Ph.D. dissertation, Leiden, Netherlands, 1873.
- 22. Robbins, F. W., and F. R. Lynn. "Analytic Solutions to the Closed Bomb." BRL-TR-2892, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, March 1988.
- 23. Oberle, W. F., III, and D. E. Kooker. "BRLCB: A Closed Chamber Data Analysis Program With Provisions for Deterred and Layered Propellants." BRL-TR-3227, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, April 1991.
- Price, C., and A. Juhasz. "A Versatile User-Oriented Closed Bomb Data Reduction Program (CBRED)." BRL-TR-2018, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, September 1977.

- 25. Murphy, Michael J. "GLO—Global Local Optimizer User's Manual." UCRL-MA-133858, Lawrence Livermore National Laboratory, Livermore, CA, April 1999.
- 26. Miller, M. S., and W. R. Anderson. "Energetic-Material Combustion Modeling With Elementary Gas-Phase Reactions: A Practical Approach." *Journal of Propulsion and Power*, to be published.
- 27. Holder, J. R., Z. Du, and H. L. Ammon. "Prediction of Possible Crystal Structures for C-, H-, N-, O-, and F-Containing Organic Compounds." *Journal of Computational Chemistry*, vol. 14, no. 4, p. 422, 1993.

INTENTIONALLY LEFT BLANK.

Appendix A:

BLAKE Calculations for Generic M1 Propellant

INTENTIONALLY LEFT BLANK.

*****	BLAKE Thermodyna	mic Equilibrium & Gun Coo	de *********
* AR	Lware < Director,	WMRD/ARL, APG, MD 2100	5-5066 *
*	Attn : A.	<pre>Kotlar, AMSRL-WM-BD ></pre>	*
******	******	*******	******

*** BLAKE Version 221.50 ***

Tyger! Tyger! Burning bright/ In the forests of the night.

What immortal hand or eye/ Dare frame thy fearful symmetry?

---William Blake (1757-1827)

16:07:20 6-APR-1999

> TITLE, GENERIC M1

> COM, NC1315, 83.11, DNT, 9.77, DBP, 4.89, DPA, 0.98, H2O, 0.50, ALC, 0.75

*****	*****************	*****
<<<	The binary library being used is based on	>>>
<<<	SBLAKLYB.LIB dated 11 August 1998	>>>
<<<		>>>
<<<	This binary library was created on 24-SEP-1998	>>>

16:07:20

6-APR-1999 Page 1.

GENERIC M1

THE COMPOSITION IS

Name	Pct Wt	Pct Mole	Delta H (J/mol)		FORMU	LA	
NC1315	83.110	. 244	-6.8890E+08	C 6000	H 7364	0 10271	N 2636
DNT	9.770	44.210	-6.5900E+04	C 7	Н 6	0 4	N 2

DBP	4.890	14.480	-8.4260E+05	C	H	0
				16	22	4
DPA	.980	4.773	1.1190E+05	C 12	N 1	н 11
Н2О	.500	22.875	-2.8583E+05	н 2	0 1	
ALC	.750	13.418	-2.7710E+05	C 2	н 6	0 1

The Elements and their Atom Percentages

C 25.597 H 31.357 O 34.025 N 9.022

Formula Weight = 1009.775

The Heat of Formation is -2340.7 J/g = -2.364E + 06 J/mol= -559.46 cal/g = -5.649E + 05 cal/mol

> GUN, 0.05, 0.05, 0.4

CONSTITUENT CONCENTRATIONS - MOLES PER KGM OF COMPOUND NAME 1) 2) 3) 4) CO GAS 2.29775E+01 2.29841E+01 2.29721E+01 2.29376E+01 H2 GAS 9.50757E+00 9.44288E+00 9.35897E+00 9.24995E+00 H20 GAS 5.98865E+00 6.02345E+00 6.05732E+00 6.09215E+00 N2 GAS 4.46041E+00 4.45214E+00 4.44157E+00 4.42848E+00 C02 2.36138E+00 2.33947E+00 2.32619E+00 2.32276E+00 GAS Н GAS 1.69823E-02 1.12191E-02 8.56769E-03 6.96643E-03 OH GAS 2.06596E-03 1.36908E-03 1.05132E-03 8.63253E-04 NH3 GAS 8.10015E-03 1.81443E-02 3.03683E-02 4.49315E-02 HCN GAS 4.77970E-03 1.10574E-02 1.91618E-02 2.94333E-02 CH4 GAS 1.62997E-03 7.66132E-03 2.01363E-02 4.13460E-02 0 GAS 2.48982E-06 1.13317E-06 6.92114E-07 4.82439E-07 02 GAS 6.37302E-07 2.90323E-07 1.77820E-07 1.24651E-07 9.00247E-05 6.15728E-05 4.88600E-05 4.15520E-05 NO GAS CHO GAS 6.85851E-04 1.03823E-03 1.36422E-03 1.69659E-03 CH2O 1.45379E-03 3.21654E-03 5.33672E-03 7.86246E-03 GAS

HNCO	GAS	4.06787E-04	9.26268E-04	1.58314E-03	2.40638E-03
NH2	GAS	4.64501E-05	6.85664E-05	8.76048E-05	1.05662E-04
СНЗ	GAS	7.31242E-05	2.39203E-04	5.06736E-04	8.95092E-04
NH	GAS	6.03941E-07	6.11197E-07	6.19887E-07	6.33044E-07
C2H2	GAS	1.25930E-05	6.41052E-05	1.83132E-04	4.10910E-04
нио	GAS	3.97127E-07	4.00910E-07	4.06277E-07	4.15525E-07
но2	GAS	1.21678E-08	8.17384E-09	6.38757E-09	5.38038E-09
C2H4	GAS	1.04761E-06	1.10999E-05	4.93235E-05	1.52020E-04
N	GAS	1.00572E-07	6.93893E-08	5.55090E-08	4.75971E-08
CN	GAS	5.84721E-07	9.18693E-07	1.25311E-06	1.61986E-06
N 20	GAS	3.61315E-08	3.74717E-08	3.90376E-08	4.10817E-08
NCO	GAS	2.73096E-07	4.28349E-07	5.84300E-07	7.57305E-07
HNO2	GAS	0.00000E+00	0.00000E+00	0.00000E+00	0.0000E+00
CH2	GAS	2.55410E-07	5.74641E-07	9.69875E-07	1.45750E-06
С	GAS	0.00000E+00	0.00000E+00	0.00000E+00	0.0000E+00
NO2	GAS	0.00000E+00	0.00000E+00	0.00000E+00	0.0000E+00
FORMAC	GAS	5.42035E-04	1.19880E-03	1.99208E-03	2.94845E-03
C(S)	SOLID	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
TOTAL	GAS (MOLES/	KG) 45.3324	45.2984	45.2466	45.1710
TOTAL					
TOTAL	CONSTITUENT	CONCENTRATION	S - MOLES PER	KGM OF COMPO	UND
	CONSTITUENT	CONCENTRATION	S - MOLES PER	KGM OF COMPO	UND 8)
со	CONSTITUENT NAME GAS	CONCENTRATION 5) 2.28777E+01	S - MOLES PER 6) 2.27878E+01	KGM OF COMPO 7) 2.26665E+01	UND 8) 2.25136E+01
CO H2	CONSTITUENT NAME GAS GAS	CONCENTRATION 5) 2.28777E+01 9.11047E+00	S - MOLES PER 6) 2.27878E+01 8.93571E+00	KGM OF COMPO 7) 2.26665E+01 8.72471E+00	UND 8) 2.25136E+01 8.47960E+00
CO H2 H2O	CONSTITUENT NAME GAS GAS GAS	CONCENTRATION 5) 2.28777E+01 9.11047E+00 6.12997E+00	S - MOLES PER 6) 2.27878E+01 8.93571E+00 6.17114E+00	KGM OF COMPO 7) 2.26665E+01 8.72471E+00 6.21603E+00	UND 8) 2.25136E+01 8.47960E+00 6.26414E+00
CO H2 H2O N2	CONSTITUENT NAME GAS GAS GAS GAS	CONCENTRATION 5) 2.28777E+01 9.11047E+00 6.12997E+00 4.41323E+00	S - MOLES PER 6) 2.27878E+01 8.93571E+00 6.17114E+00 4.39517E+00	KGM OF COMPO 7) 2.26665E+01 8.72471E+00 6.21603E+00 4.37445E+00	UND 8) 2.25136E+01 8.47960E+00 6.26414E+00 4.35116E+00
CO H2 H2O N2 CO2	CONSTITUENT NAME GAS GAS GAS GAS GAS	CONCENTRATION 5) 2.28777E+01 9.11047E+00 6.12997E+00 4.41323E+00 2.33074E+00	S - MOLES PER 6) 2.27878E+01 8.93571E+00 6.17114E+00 4.39517E+00 2.35106E+00	KGM OF COMPO 7) 2.26665E+01 8.72471E+00 6.21603E+00 4.37445E+00 2.38457E+00	UND 8) 2.25136E+01 8.47960E+00 6.26414E+00 4.35116E+00 2.43146E+00
CO H2 H2O N2 CO2	CONSTITUENT NAME GAS GAS GAS GAS GAS GAS	CONCENTRATION 5) 2.28777E+01 9.11047E+00 6.12997E+00 4.41323E+00 2.33074E+00 5.88089E-03	S - MOLES PER 6) 2.27878E+01 8.93571E+00 6.17114E+00 4.39517E+00 2.35106E+00 5.09719E-03	KGM OF COMPO 7) 2.26665E+01 8.72471E+00 6.21603E+00 4.37445E+00 2.38457E+00 4.50813E-03	UND 8) 2.25136E+01 8.47960E+00 6.26414E+00 4.35116E+00 2.43146E+00 4.05113E-03
CO H2 H2O N2 CO2 H	CONSTITUENT NAME GAS GAS GAS GAS GAS GAS GAS	CONCENTRATION 5) 2.28777E+01 9.11047E+00 6.12997E+00 4.41323E+00 2.33074E+00 5.88089E-03 7.40195E-04	S - MOLES PER 6) 2.27878E+01 8.93571E+00 6.17114E+00 4.39517E+00 2.35106E+00 5.09719E-03 6.56138E-04	KGM OF COMPO 7) 2.26665E+01 8.72471E+00 6.21603E+00 4.37445E+00 2.38457E+00 4.50813E-03 5.97905E-04	8) 2.25136E+01 8.47960E+00 6.26414E+00 4.35116E+00 2.43146E+00 4.05113E-03 5.57619E-04
CO H2 H2O N2 CO2 H OH NH3	CONSTITUENT NAME GAS GAS GAS GAS GAS GAS GAS GAS	CONCENTRATION 5) 2.28777E+01 9.11047E+00 6.12997E+00 4.41323E+00 2.33074E+00 5.88089E-03 7.40195E-04 6.18910E-02	S - MOLES PER 6) 2.27878E+01 8.93571E+00 6.17114E+00 4.39517E+00 2.35106E+00 5.09719E-03 6.56138E-04 8.11497E-02	KGM OF COMPO 7) 2.26665E+01 8.72471E+00 6.21603E+00 4.37445E+00 2.38457E+00 4.50813E-03 5.97905E-04 1.02486E-01	8) 2.25136E+01 8.47960E+00 6.26414E+00 4.35116E+00 2.43146E+00 4.05113E-03 5.57619E-04 1.25583E-01
CO H2 H2O N2 CO2 H OH NH3 HCN	CONSTITUENT NAME GAS GAS GAS GAS GAS GAS GAS GAS GAS	CONCENTRATION 5) 2.28777E+01 9.11047E+00 6.12997E+00 4.41323E+00 2.33074E+00 5.88089E-03 7.40195E-04 6.18910E-02 4.21954E-02	S - MOLES PER 6) 2.27878E+01 8.93571E+00 6.17114E+00 4.39517E+00 2.35106E+00 5.09719E-03 6.56138E-04 8.11497E-02 5.77090E-02	KGM OF COMPO 7) 2.26665E+01 8.72471E+00 6.21603E+00 4.37445E+00 2.38457E+00 4.50813E-03 5.97905E-04 1.02486E-01 7.61666E-02	8) 2.25136E+01 8.47960E+00 6.26414E+00 4.35116E+00 2.43146E+00 4.05113E-03 5.57619E-04 1.25583E-01 9.76892E-02
CO H2 H2O N2 CO2 H OH NH3 HCN	CONSTITUENT NAME GAS	CONCENTRATION 5) 2.28777E+01 9.11047E+00 6.12997E+00 4.41323E+00 2.33074E+00 5.88089E-03 7.40195E-04 6.18910E-02 4.21954E-02 7.34602E-02	S - MOLES PER 6) 2.27878E+01 8.93571E+00 6.17114E+00 4.39517E+00 2.35106E+00 5.09719E-03 6.56138E-04 8.11497E-02 5.77090E-02 1.17984E-01	KGM OF COMPO 7) 2.26665E+01 8.72471E+00 6.21603E+00 4.37445E+00 2.38457E+00 4.50813E-03 5.97905E-04 1.02486E-01 7.61666E-02 1.75340E-01	8) 2.25136E+01 8.47960E+00 6.26414E+00 4.35116E+00 2.43146E+00 4.05113E-03 5.57619E-04 1.25583E-01 9.76892E-02 2.44728E-01
CO H2 H2O N2 CO2 H OH NH3 HCN CH4	CONSTITUENT NAME GAS	CONCENTRATION 5) 2.28777E+01 9.11047E+00 6.12997E+00 4.41323E+00 2.33074E+00 5.88089E-03 7.40195E-04 6.18910E-02 4.21954E-02 7.34602E-02 3.65674E-07	S - MOLES PER 6) 2.27878E+01 8.93571E+00 6.17114E+00 4.39517E+00 2.35106E+00 5.09719E-03 6.56138E-04 8.11497E-02 5.77090E-02 1.17984E-01 2.95264E-07	KGM OF COMPO 7) 2.26665E+01 8.72471E+00 6.21603E+00 4.37445E+00 2.38457E+00 4.50813E-03 5.97905E-04 1.02486E-01 7.61666E-02 1.75340E-01 2.51069E-07	8) 2.25136E+01 8.47960E+00 6.26414E+00 4.35116E+00 2.43146E+00 4.05113E-03 5.57619E-04 1.25583E-01 9.76892E-02 2.44728E-01 2.22888E-07
CO H2 H2O N2 CO2 H OH NH3 HCN CH4 O	CONSTITUENT NAME GAS	CONCENTRATION 5) 2.28777E+01 9.11047E+00 6.12997E+00 4.41323E+00 2.33074E+00 5.88089E-03 7.40195E-04 6.18910E-02 4.21954E-02 7.34602E-02 3.65674E-07 9.53861E-08	S - MOLES PER 6) 2.27878E+01 8.93571E+00 6.17114E+00 4.39517E+00 2.35106E+00 5.09719E-03 6.56138E-04 8.11497E-02 5.77090E-02 1.17984E-01 2.95264E-07 7.81214E-08	KGM OF COMPO 7) 2.26665E+01 8.72471E+00 6.21603E+00 4.37445E+00 2.38457E+00 4.50813E-03 5.97905E-04 1.02486E-01 7.61666E-02 1.75340E-01 2.51069E-07 6.77253E-08	8) 2.25136E+01 8.47960E+00 6.26414E+00 4.35116E+00 2.43146E+00 4.05113E-03 5.57619E-04 1.25583E-01 9.76892E-02 2.44728E-01 2.22888E-07 6.16155E-08
CO H2 H2O N2 CO2 H OH NH3 HCN CH4 O	CONSTITUENT NAME GAS	CONCENTRATION 5) 2.28777E+01 9.11047E+00 6.12997E+00 4.41323E+00 2.33074E+00 5.88089E-03 7.40195E-04 6.18910E-02 4.21954E-02 7.34602E-02 3.65674E-07 9.53861E-08 3.70115E-05	S - MOLES PER 6) 2.27878E+01 8.93571E+00 6.17114E+00 4.39517E+00 2.35106E+00 5.09719E-03 6.56138E-04 8.11497E-02 5.77090E-02 1.17984E-01 2.95264E-07 7.81214E-08 3.42002E-05	KGM OF COMPO 7) 2.26665E+01 8.72471E+00 6.21603E+00 4.37445E+00 2.38457E+00 4.50813E-03 5.97905E-04 1.02486E-01 7.61666E-02 1.75340E-01 2.51069E-07 6.77253E-08 3.26063E-05	8) 2.25136E+01 8.47960E+00 6.26414E+00 4.35116E+00 2.43146E+00 4.05113E-03 5.57619E-04 1.25583E-01 9.76892E-02 2.44728E-01 2.22888E-07 6.16155E-08 3.19280E-05
CO H2 H2O N2 CO2 H OH NH3 HCN CH4 O O2 NO	CONSTITUENT NAME GAS	CONCENTRATION 5) 2.28777E+01 9.11047E+00 6.12997E+00 4.41323E+00 2.33074E+00 5.88089E-03 7.40195E-04 6.18910E-02 4.21954E-02 7.34602E-02 3.65674E-07 9.53861E-08 3.70115E-05 2.05200E-03	S - MOLES PER 6) 2.27878E+01 8.93571E+00 6.17114E+00 4.39517E+00 2.35106E+00 5.09719E-03 6.56138E-04 8.11497E-02 5.77090E-02 1.17984E-01 2.95264E-07 7.81214E-08 3.42002E-05 2.44228E-03	KGM OF COMPO 7) 2.26665E+01 8.72471E+00 6.21603E+00 4.37445E+00 2.38457E+00 4.50813E-03 5.97905E-04 1.02486E-01 7.61666E-02 1.75340E-01 2.51069E-07 6.77253E-08 3.26063E-05 2.87740E-03	8) 2.25136E+01 8.47960E+00 6.26414E+00 4.35116E+00 2.43146E+00 4.05113E-03 5.57619E-04 1.25583E-01 9.76892E-02 2.44728E-01 2.22888E-07 6.16155E-08 3.19280E-05 3.36568E-03
CO H2 H2O N2 CO2 H OH NH3 HCN CH4 O O2 NO CHO	CONSTITUENT NAME GAS	CONCENTRATION 5) 2.28777E+01 9.11047E+00 6.12997E+00 4.41323E+00 2.33074E+00 5.88089E-03 7.40195E-04 6.18910E-02 4.21954E-02 7.34602E-02 3.65674E-07 9.53861E-08 3.70115E-05 2.05200E-03 1.08379E-02	S - MOLES PER 6) 2.27878E+01 8.93571E+00 6.17114E+00 4.39517E+00 2.35106E+00 5.09719E-03 6.56138E-04 8.11497E-02 5.77090E-02 1.17984E-01 2.95264E-07 7.81214E-08 3.42002E-05 2.44228E-03 1.42960E-02	KGM OF COMPO 7) 2.26665E+01 8.72471E+00 6.21603E+00 4.37445E+00 2.38457E+00 4.50813E-03 5.97905E-04 1.02486E-01 7.61666E-02 1.75340E-01 2.51069E-07 6.77253E-08 3.26063E-05 2.87740E-03 1.82605E-02	8) 2.25136E+01 8.47960E+00 6.26414E+00 4.35116E+00 2.43146E+00 4.05113E-03 5.57619E-04 1.25583E-01 9.76892E-02 2.44728E-01 2.22888E-07 6.16155E-08 3.19280E-05 3.36568E-03 2.27449E-02
CO H2 H2O N2 CO2 H OH NH3 HCN CH4 O O2 NO	CONSTITUENT NAME GAS	CONCENTRATION 5) 2.28777E+01 9.11047E+00 6.12997E+00 4.41323E+00 2.33074E+00 5.88089E-03 7.40195E-04 6.18910E-02 4.21954E-02 7.34602E-02 3.65674E-07 9.53861E-08 3.70115E-05 2.05200E-03	S - MOLES PER 6) 2.27878E+01 8.93571E+00 6.17114E+00 4.39517E+00 2.35106E+00 5.09719E-03 6.56138E-04 8.11497E-02 5.77090E-02 1.17984E-01 2.95264E-07 7.81214E-08 3.42002E-05 2.44228E-03	KGM OF COMPO 7) 2.26665E+01 8.72471E+00 6.21603E+00 4.37445E+00 2.38457E+00 4.50813E-03 5.97905E-04 1.02486E-01 7.61666E-02 1.75340E-01 2.51069E-07 6.77253E-08 3.26063E-05 2.87740E-03	8) 2.25136E+01 8.47960E+00 6.26414E+00 4.35116E+00 2.43146E+00 4.05113E-03 5.57619E-04 1.25583E-01 9.76892E-02 2.44728E-01 2.22888E-07 6.16155E-08 3.19280E-05 3.36568E-03

```
CH3
        GAS
                   1.42466E-03 2.11222E-03 2.96843E-03 3.99649E-03
                   6.52591E-07 6.79944E-07 7.16152E-07 7.61697E-07
    NH
        GAS
  C2H2
        GAS
                   8.02648E-04 1.42623E-03 2.35908E-03 3.68390E-03
  HNO
        GAS
                   4.30369E-07 4.52266E-07 4.82529E-07 5.22183E-07
  HO2
        GAS
                   4.78366E-09 4.45251E-09 4.31702E-09 4.33842E-09
  C2H4
        GAS
                   3.79141E-04 8.17489E-04 1.57827E-03 2.78883E-03
    N
        GAS
                   4.27529E-08 3.98361E-08 3.82821E-08 3.77544E-08
   CN
                   2.03988E-06 2.53223E-06 3.11645E-06 3.81221E-06
        GAS
  N20
        GAS
                   4.38331E-08 4.75197E-08 5.23836E-08 5.86637E-08
  NCO
        GAS
                   9.59587E-07 1.20374E-06 1.50417E-06 1.87724E-06
  HNO2
        GAS
                   0.00000E+00 0.00000E+00 1.80811E-09 2.04088E-09
  CH2
        GAS
                   2.05655E-06 2.78752E-06 3.67181E-06 4.73006E-06
    С
        GAS
                   0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
  NO2
        GAS
                   0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
FORMAC
                   4.10009E-03 5.48343E-03 7.14035E-03 9.11716E-03
        GAS
  C(S)
                   0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
        SOLID
TOTAL GAS (MOLES/KG) 45.0694
                                  44.9350
                                              44.7670
                                                          44.5666
```

* * SUMMARY OF PROPELLANT THERMO PROPERTIES * *

Truncated virial equation of state with L-J 6,12 potential is being used

Rho/L	Temp	Press	Imptus	Mol Wt	Co-Vol	Frozen	Balrgy	υ	PHI
g/cc	K	MPa	J/g	Gas	cc/g	Gamma	J/g	J/g	
1).05000	2436.	48.79	918.2	22.059	1.181	1.2630	3490.9	-2340.7	1.0627
2).10000	2439.	103.9	918.7	22.076	1.158	1.2639	3480.9	-2340.7	1.1310
3).15000	2443.	166.1	919.0	22.101	1.133	1.2654	3462.4	-2340.7	1.2047
4).20000	2447.	236.0	919.2	22.138	1.105	1.2675	3436.0	-2340.7	1.2838
5).25000	2454.	314.5	919.5	22.188	1.077	1.2702	3402.9	-2340.7	1.3683
6).30000	2462.	402.4	919.7	22.254	1.048	1.2734	3364.1	-2340.7	1.4583
7).35000	2471.	500.2	919.9	22.338	1.018	1.2770	3320.9	-2340.7	1.5536
8).40000	2483.	608.9	920.1	22.438	.989	1.2810	3274.3	-2340.7	1.6545

> QUIT

Run time = 1.15 seconds

Appendix B:

IBHVG2 Constant-Pressure Calculations Using M26E1 Propellant INTENTIONALLY LEFT BLANK.

IBHVG2.505 DATE TIME 1

```
0 CARD
       1 --> $COMM
```

GREEN GUN TEST CASE - INDIAN HEAD SYSTEM CARD 2 -->

3 --> \$GUN CARD

TRAV = 6.840 CHAM = 0.01506 \$ 919 CUBIC INCHES CARD 4 -->

5 --> GRVE = 0.12852 LAND = 0.127 TWST = 24 G/L = 1.66 \$ ESTIMATES CARD

CARD 6 --> \$ CPTS = 6

7 --> \$ DIST = 0.0, 0.04455, 0.14732, 0.8260, 0.8913, 1.0592CARD

CARD $8 \longrightarrow$ DIAM = 0.12965, 0.13655, 0.13929, 0.132588, 0.12852, 0.12852

CARD 9 --> \$PROJ

CARD 10 --> PRWT = 49.895

CARD 11 --> \$RESI

CARD 12 --> NPTS = 5

CARD 13 --> TRAV = 0.0, 0.00508, 0.04318, 0.1397, 7.62

PRES = 3.4474, 0.6894757, 0.6894757, 8.2737, 8.2737CARD 14 -->

CARD 15 --> \$INFO

CARD 16 --> POPT = 1, 1, 1, 0

CARD 17 --> RUN = 'GREEN GUN TEST CASE - M26E1'

CARD 18 --> \$ GRAD = 3

CARD 19 --> CONP = 2 PRES = 448

CARD 20 --> \$COMM PRIM

CARD 21 --> NAME = 'PRIMER' CHWT = 0.12637 FORC = 146140

CARD 22 --> GAMA = 1.2015 COV = 0.0010838 TEMP = 3377

CARD 23 --> \$PROP

CARD 24 --> NAME = 'M26E1' CHWT = 11.567 FORC = 1085031

GAMA = 1.2384 COV = 0.0010383 TEMP = 3132CARD 25 -->

CARD 26 --> FORM = '7P'

CARD 27 --> LEN = 0.018288 PD = 0.0004572 WEB = 0.003467 RHO = 1611

ALPH = 0.7468 BETA = 0.0033778 CARD 28 -->

CARD 29 --> \$COMM PARA

CARD 30 --> VARY = 'CHWT' DECK = 'PROP' NTH = 1

FROM = 11.5 BY = 0.1 TO = 15.01CARD 31 -->

CARD 32 --> \$END

1GREEN GUN TEST CASE - M26E1 IBHVG2.505 DATE TIME

_____ - GUN TUBE -

CHAMBER VOLUME (M3): 0.01506 TRAVEL TYPE:

6.84000 (M):

GROOVE DIAMETER (M): 0.12852 LAND DIAMETER (M): 0.12700

GROOVE/LAND RATIO (-): 1.660

TWIST (CALS/TURN): 24.0 BORE AREA (M2): 0.01286 HEAT-LOSS OPTION: 1 SHELL THICKNESS (M): 0.000102 SHELL CP (J/KG-K): 460.3163 SHELL DENSITY (KG/M3): 7861.0918 INITIAL SHELL TEMP (K): 293. AIR HO (W/M**2-K): 11.3482 ------ PROJECTILE ------TYPE: TOTAL WEIGHT (KG): 49.895 WEIGHT PREDICTOR OPTION: 0 ------ RESISTANCE -_____ AIR RESISTANCE OPTION: 1 WALL HEATING FRACTION: 0.000 RESISTIVE PRESSURE MULT INDEX: 3 RESISTIVE FACTOR 1.000 FRICTION TABLE LENGTH: I TRAVEL (M) PRESSURE (MPA) I TRAVEL (M) PRESSURE (MPA) I TRAVEL (M), PRESSURE (MPA) 1 0.000 7.620 8.274 3.447 3 0.043 0.689 5 2 0.005 0.689 4 0.140 8.274 ------ GENERAL -------MAX TIME STEP (S): 0.000100 PRINT STEP (S): 0.000000 MAX RELATIVE ERROR (-): 0.00200 PRINT OPTIONS: 1 1 1 0 1 1 STORE OPTION: 0 CONSTANT-PRESSURE OPTION: 2 GRADIENT MODEL: LAGRANGIAN ------- RECOIL -RECOIL OPTION: 0 TYPE: RECOILING WEIGHT (KG): 0.

- CONSTANT-PRESSURE RUN -

MAINTAIN PRESSURE (MPA): 448. WITHIN (MPA): 0.0 BY

VARYING: PROPELLANT SURFACE AREA

1GREEN GUN TEST CASE - M26E1 IBHVG2.505 DATE TIME

- CHARGE 1 -

TYPE: M26E1 GRAINS: 1.0000 7P WEIGHT

(KG): 11.5670

EROSIVE COEFF (-): 0.000000 CHARGE IGN CODE: 0 CHARGE IGN

AT (S): 0.00000E+00

PROPERTIES AT LAYER BOUNDARIES OF LAT SURFACES

	1ST	2ND	3RD	4TH
AT DEPTH (M):				0.00000
ADJACENT LAYER WT %:				100.000
DENSITY (KG/M3):				1611.000
GAMMA (-):				1.2384
FORCE (J/KG):				1085031.
COVOLUME (M3/KG):				1.0383E-03
FLAME TEMP (K):				3132.0
BURNING RATE EXPS:				0.7468
BURNING RATE COEFFS:				3.3778E-03

1GREEN GUN TEST CASE - M26E1 IBHVG2.505 DATE TIME

	TIME	TRAV	VEL	ACC	BREECH	MEAN	BASE	MEAN	FRAC	SURFACE	BURNING
	(MS)	(M)	(M/S)	(G)	PRESS	PRESS	PRESS	TEMP	BURN	AREA	RATE
					(MPA)	(MPA)	(MPA)	(K)	1	(M**2)	(M/S)
0	0.000	0.000	0.00	10469.	448.000	432.608	401.823	3132.	0.233	0.223	0.314
	0.100	0.001	10.27	10475.	448.000	432.598	401.794	3131.	0.233	0.056	0.314
В	ARREL R	ESISTAN	CE OVERCO	ME - PRO	JECTILE M	OVING					
	0.200	0.002	20.55	10495.	448.000	432.569	401.708	3128.	0.234	0.169	0.314
	0.300	0.005	30.86	10527.	448.000	432.521	401.563	3124.	0.235	0.283	0.314
	0.400	0.008	41.19	10533.	448.000	432.513	401.538	3118.	0.237	0.402	0.314
	0.500	0.013	51.53	10533.	448.000	432.513	401.539	3110.	0.239	0.519	0.314
	0.600	0.019	61.86	10533.	448.000	432.513	401.539	3101.	0.242	0.634	0.314
	0.700	0.025	72.19	10533.	448.000	432.513	401.540	3091.	0.245	0.749	0.314
	0.800	0.033	82.52	10533.	448.000	432.514	401.540	3079.	0.249	0.864	0.314
	0.900	0.042	92.85	10533.	448.000	432.514	401.541	3066.	0.253	0.979	0.314
	1.000	0.052	103.17	10517.	448.000	432.537	401.610	3052.	0.258	1.097	0.314

	1.100	0.062	113.48	10497.	448.000	432.566	401.699	3038.	0.263	1.212	0.314
	1.200	0.074	123.77	10475.	448.000	432.599	401.796	3022.	0.269	1.326	0.314
	1.300	0.087	134.03	10451.	448.000	432.634	401.902	3006.	0.275	1.440	0.314
	1.400	0.101	144.27	10425.	448.000	432.672	402.017	2990.	0.282	1.554	0.314
	1.500	0.116	154.48	10397.	448.000	432.713	402.139	2973.	0.290	1.667	0.314
	1.600	0.132	164.66	10367.	448.000	432.757	402.270	2957.	0.297	1.779	0.314
	1.700	0.149	174.82	10353.	448.000	432.778	402.334	2940.	0.306	1.888	0.314
	1.800	0.167	184.97	10353.	448.000	432.778	402.335	2923.	0.314	1.997	0.314
	1.900	0.186	195.13	10352.	448.000	432.779	402.336	2906.	0.324	2.107	0.314
	2.000	0.206	205.28	10352.	448.000	432.779	402.337	2890.	0.333	2.218	0.314
	2.100	0.227	215.43	10352.	448.000	432.779	402.337	2874.	0.343	2.328	0.314
	2.200	0.249	225.59	10352.	448.000	432.779	402.338	2858.	0.354	2.439	0.314
	2.300	0.272	235.74	10352.	448.000	432.780	402.339	2842.	0.365	2.549	0.314
	2.400	0.296	245.89	10351.	448.000	432.780	402.340	2827.	0.377	2.659	0.314
	2.500	0.321	256.05	10351.	448.000	432.780		2812.	0.389	2.768	0.314
	2.600	0.347	266.20	10351.	448.000	432.781	402.342	2798.	0.402	2.878	0.314
	2.700	0.374	276.35	10351.	448.000	432.781	402.343	2784.	0.415	2.987	0.314
	2.800	0.403	286.50	10351.				2771.	0.428	3.096	0.314
	2.900	0.432	296.65	10350.	448.000	432.782		2758.	0.442	3.206	0.314
	3.000	0.462	306.80	10350.	448.000	432.782	402.346		0.457	3.315	0.314
	3.100	0.493	316.96	10350.	448.000	432.782		2733.	0.472	3.424	0.314
	3.200	0.525	327.11	10350.	448.000	432.783		2722.	0.487	3.533	0.314
	3.300	0.559	337.26	10349.	448.000	432.783	402.349	2711.	0.503	3.642	0.314
	3.400	0.593	347.41	10349.	448.000	432.783	402.350	2700.	0.520	3.750	0.314
	3.500	0.628	357.56	10349.	448.000	432.784	402.352	2690.	0.537	3.859	0.314
	3.600	0.664	367.71	10349.	448.000	432.784	402.353	2680.	0.554	3.968	0.314
	3.700	0.702	377.86	10348.	448.000	432.785	402.354	2671.	0.572	4.077	0.314
	3.800	0.740	388.00	10348.	448.000	432.785	402.355	2662.	0.590	4.186	0.314
	3.900	0.779	398.15	10348.	448.000	432.785	402.356	2653.	0.609	4.295	0.314
	4.000	0.820	408.30	10347.	448.000	432.786	402.358	2645.	0.628	4.404	0.314
	4.100	0.861	418.45	10347.	448.000	432.786	402.359	2637.	0.648	4.513	0.314
	4.200	0.903	428.60	10347.	448.000	432.787	402.360	2629.	0.668	4.622	0.314
	4.300	0.947	438.74	10346.	448.000	432.787	402.362	2622.	0.689	4.731	0.314
	4.400	0.991	448.89	10346.	448.000	432.788	402.363	2615.	0.710	4.841	0.314
	4.500	1.036	459.04	10346.	448.000	432.788	402.365	2608.	0.732	4.950	0.314
	4.600	1.083	469.18	10345.	448.000	432.789	402.366	2602.	0.754	5.059	0.314
	4.700	1.130	479.33	10345.	448.000	432.789	402.368	2595.	0.777	5.169	0.314
	4.800	1.179	489.48	10345.	448.000	432.790	402.369	2589.	0.800	5.278	0.314
	4.900	1.228	499.62	10344.	448.000	432.790	402.371	2584.	0.823	5.388	0.314
	5.000	1.279	509.77	10344.	448.000	432.791	402.372	2578.	0.847	5.497	0.314
				10344.	448.000	432.791	402.374	2573.	0.872	5.607	0.314
	5.200	1.383	530.06	10343.	448.000	432.792	402.376	2568.	0.897	5.717	0.314
	5.300	1.436	540.20	10343.	448.000	432.792	402.377	2563.	0.922	5.827	0.314
1GR	EEN GUN	TEST O	CASE - M2	6E1			II	BHVG2.50)5 I	DATE	TIME

MEAN

BASE MEAN FRAC

SURFACE BURNING

ACC BREECH

TIME

TRAV

(MS)	(M)	(M/S)	· (G)	PRESS	PRESS	PRESS	TEMP	BURN	AREA	RATE
(115)	()	(,,	(-7	(MPA)	(MPA)	(MPA)	(K)	1	(M**2)	(M/S)
0 5.400	1.491	550.34	10343.	448.000	432.793	402.379	2558.	0.948	5.937	0.314
5.500	1.546	560.49	10342.	448.000	432.794	402.381	2554.	0.975	6.047	0.314
5.593	1.599	569.96	10342.	448.000	432.794	402.382	2550.	1.000	0.000	0.314
		RNED OUT								
5.600	1.603	570.65	10314.	446.810	431.645	401.316	2548.	1.000	0.000	0.000
5.700	1.660	580.57	9915.	429.871	415.293	386.138	2528.	1.000	0.000	0.000
5.800	1.719	590.10	9536.	413.800	399.779	371.738	2509.	1.000	0.000	0.000
5.900	1.778	599.27	9176.	398.549	385.057	358.073	2490.	1.000	0.000	0.000
6.000	1.839	608.10	8835.	384.073	371.083	345.103	2472.	1.000	0.000	0.000
6.100	1.900	616.61	8511.	370.330	357.816	332.788	2454.	1.000	0.000	0.000
6.200	1.962	624.80	8203.	357.277	345.215	321.093	2436.	1.000	0.000	0.000
6.300	2.025	632.70	7911.	344.875	333.243	309.981	2419.	1.000	0.000	0.000
6.400	2.088	640.32	7633.	333.087	321.864	299.418	2402.	1.000	0.000	0.000
6.500	2.153	647.68	7369.	321.877	311.043	289.374	2385.	1.000	0.000	0.000
6.600	2.218	654.78	7117.	311.212	300.748	279.819	2369.	1.000	0.000	0.000
6.700	2.284	661.64	6878.	301.060	290.948	270.723	2354.	1.000	0.000	0.000
6.800	2.350	668.27	6650.	291.393	281.615	262.060	2338.	1.000	0.000	0.000
6.900	2.417	674.69	6433.	282.181	272.723	253.807	2323.	1.000	0.000	0.000
7.000	2.485	680.89	6225.	273.398	264.245	245.938	2308.	1.000	0.000	0.000
7.100	2.554	686.90	6028.	265.021	256.158	238.432	2294.	1.000	0.000	0.000
7.200	2.623	692.72	5839.	257.026	248.440	231.268	2280.	1.000	0.000	0.000
7.300	2.692	698.35	5659.	249.391	241.070	224.428	2266.	1.000	0.000	0.000
7.400	2.762	703.82	5487.	242.096	234.028	217.892	2252.	1.000	0.000	0.000
7.500	2.833	709.12	5323.	235.123	227.297	211.644	2239.	1.000	0.000	0.000
7.600	2.904	714.26	5165.	228.453	220.858	205.669	2226.	1.000	0.000	0.000
7.700	2.976	719.25	5015.	222.070	214.697	199.950	2213.	1.000	0.000	0.000
7.800	3.048	724.10	4871.	215.959	208.797	194.474	2201.	1.000	0.000	0.000
7.900	3.121	728.81	4733.	210.103	203.145	189.228	2189.	1.000	0.000	0.000
8.000	3.194	733.38	4600.	204.491	197.727	184.199	2177.	1.000	0.000	0.000
. 8.100	3.267	737.83	4473.	199.108	192.531	179.376	2165.	1.000	0.000	0.000
8.200	3.341	742.16	4351.	193.943	187.545	174.749	2153.	1.000	0.000	0.000
8.300	3.416	746.37	4234.	188.985	182.759	170.306	2142.	1.000	0.000	0.000
8.400	3.491	750.47	4122.	184.222	178.161	166.039	2131.	1.000	0.000	0.000
8.500	3.566	754.45	4014.	179.645	173.743	161.939	2120.	1.000	0.000	0.000
8.600	3.641	758.34	3910.	175.245	169.495	157.996	2109.	1.000	0.000	0.000
8.700	3.717	762.13	3810.	171.012	165.409	154.204	2099.	1.000	0.000	0.000
8.800	3.794	765.81	3714.	166.938	161.477	150.554	2089.	1.000	0.000	0.000
8.900	3.871	769.41	3622.	163.016	157.691	147.040	2078.	1.000	0.000	0.000
9.000	3.948	772.92	3533.	159.237	154.043	143.655	2069.	1.000	0.000	0.000
9.100	4.025	776.34	3447.	155.596	150.529	140.393	2059.	1.000	0.000	0.000
9.200	4.103	779.68	3364.	152.086	147.140	137.248	2049.	1.000	0.000	0.000
9.300	4.181	782.94	3284.	148.700	143.871	134.215	2040.	1.000	0.000	0.000
9.400	4.260	786.12	3207.	145.432	140.717	131.287	2030.	1.000	0.000	0.000
9.500	4.338	789.23	3132.	142.278	137.672	128.461	2021.	1.000	0.000	0.000

9.600	4.417	792.27	3060.	139.231	134.732	125.732	2012.	1.000	0.000	0.000	
9.700	4.497	795.23	2991.	136.288	131.890	123.095	2003.	1.000	0.000	0.000	
9.800	4.576	798.13	2924.	133.443	129.144	120.546	1995.	1.000	0.000	0.000	
9.900	4.656	800.97	2859.	130.692	126.489	118.082	1986.	1.000	0.000	0.000	
10.000	4.737	803.74	2796.	128.032	123.921	115.698	1978.	1.000	0.000	0.000	
10.100	4.817	806.45	2735.	125.457	121.435	113.392	1969.	1.000	0.000	0.000	
10.200	4.898	809.11	2676.	122.964	119.029	111.159	1961.	1.000	0.000	0.000	
10.300	4.979	811.70	2619.	120.551	116.699	108.996	1953.	1.000	0.000	0.000	
10.400	5.060	814.24	2564.	118.212	114.442	106.902	1945.	1.000	0.000	0.000	
10.500	5.142	816.73	2511.	115.947	112.255	104.872	1937.	1.000	0.000	0.000	
10.600	5.224	819.17	2459.	113.750	110.135	102.904	1930.	1.000	0.000	0.000	
1GREEN GU	N TEST	CASE - M2	6E1			1	BHVG2.5	05	DATE	T	IME
TIME	TRAV	VEL	ACC	BREECH	MEAN	BASE	MEAN	FRAC	SURFACE	BURNING	
(MS)	(M)	(M/S)	(G)	PRESS	PRESS	PRESS	TEMP	BURN	AREA	RATE	
				(MPA)	(MPA)	(MPA)	(K)	1	(M**2)	(M/S)	
0 10.700	5.306	821.56	2409.	111.620	108.079	100.996	1922.	1.000	0.000	0.000	
10.800	5.388	823.89	2360.	109.554	106.084	99.145	1915.	1.000	0.000	0.000	
10.900	5.470	826.18	2312.	107.549	104.149	97.349	1907.	1.000	0.000	0.000	
11.000	5.553	828.43	2267.	105.603	102.270	95.605	1900.	1.000	0.000	0.000	
11.100	5.636	830.63	2222.	103.713	100.446	93.912	1893.	1.000	0.000	0.000	
11.200	5.719	832.79	2179.	101.878	98.674	92.268	1886.	1.000	0.000	0.000	
11.300	5.803	834.90	2136.	100.094	96.953	90.670	1879.	1.000	0.000	0.000	
11.400	5.886	836.98	2096.	98.361	95.280	89.118	1872.	1.000	0.000	0.000	
11.500	5.970	839.01	2056.	96.676	93.654	87.609	1865.	1.000	0.000	0.000	
11.600	6.054	841.01	2017.	95.038	92.072	86.141	1859.	1.000	0.000	0.000	
11.700	6.138	842.97	1979.	93.445	90.534	84.713	1852.	1.000	0.000	0.000	
11.800	6.223	844.89	1943.	91.894	89.037	83.324	1846.	1.000	0.000	0.000	
11.900	6.307	846.78	1907.	90.385	87.581	81.973	1839.	1.000	0.000	0.000	
12.000	6.392	848.63	1872.	88.916	86.163	80.657	1833.	1.000	0.000	0.000	
12.100	6.477	850.45	1839.	87.486	84.782	79.375	1827.	1.000	0.000	0.000	
12.200	6.562	852.24	1806.	86.092	83.437	78.127	1820.	1.000	0.000	0.000	
12.300	6.647	854.00	1774.	84.735	82.127	76.911	1814.	1.000	0.000	0.000	
12.400	6.733	855.72	1742.	83.412	80.850	75.726	1808.	1.000	0.000	0.000	
12.500	6.819	857.41	1712.	82.123	79.606	74.572	1802.	1.000	0.000	0.000	
12.525	6.840	857.83	1704.	81.806	79.300	74.287	1801.	1.000	0.000	0.000	
PROJECTI	LE EXIT										
1GREEN GU	N TEST	CASE - M2	6E1			I	BHVG2.5	05	DATE	T:	IME

CONDITIONS AT: PMAX MUZZLE

TIME (MS): 5.593 12.525

TRAVEL (M): 1.5988 6.8400

VELOCITY (M/S) 569.96 857.83

ACCELERATION (G): 10342. 1704.
BREECH PRESS (MPA): 447.9999 81.8058
MEAN PRESS (MPA): 432.7940 79.2997
BASE PRESS (MPA): 402.3822 74.2875
MEAN TEMP (K): 2550. 1801.
Z CHARGE 1 (-): 1.000 1.000

ENERGY BALANCE SUMMARY	JOULE	8
TOTAL CHEMICAL:	52645464.	100.00
(1) INTERNAL GAS:	30269280.	57.50
(2) WORK AND LOSSES:	22376184.	42.50
(A) PROJECTILE KINETIC:	18358272.	34.87
(B) GAS KINETIC:	1418647.	2.69
(C) PROJECTILE ROTATIONAL:	157282.	0.30
(D) FRICTIONAL WORK TO TUBE:	0.	0.00
(E) OTHER FRICTIONAL WORK:	718839.	1.37
(F) WORK DONE AGAINST AIR:	69870.	0.13
(G) HEAT CONVECTED TO BORE:	1653274.	3.14
(H) RECOIL ENERGY:	0.	0.00

LOADING DENSITY (KG/M3): 768.061
CHARGE WT/PROJECTILE WT: 0.232
PIEZOMETRIC EFFICIENCY: 0.466
EXPANSION RATIO: 6.840

INTENTIONALLY LEFT BLANK.

Appendix C:

IBHVG2 Performance Calculations for M30A1 Propellant

INTENTIONALLY LEFT BLANK.

TIME

DATE

IBHVG2.505

GRVE = 0.12852 LAND = 0.127 TWST = 25 G/L = 1.49 \$ ESTIMATES WEB = 0.003467 RHO = 1683RUN = 'GREEN GUN TEST CASE - M30A1 19P PERFORMANCE' IBHVG2.505 PRES = 3.4474, 0.6894757, 0.6894757, 8.2737, 8.2737 CHAM = 0.01506 \$ 919 CUBIC INCHES 0.1397, 7.62 FORC = 1073374COV = 0.00105239 TEMP = 3036 CHWT = 0.12637 FORC = 146140 COV = 0.0010838 TEMP = 3377FROM = 0.0030 BY = 0.00002 TO = 0.00501GREEN GUN TEST CASE - INDIAN HEAD SYSTEM DECK = 'PROP' NTH = 1 0.04318, BETA = 0.00196836 PD = 0.0004572CHWT = 12.65POPT = 1,1,1,0 DELP=0.00051GREEN GUN TEST CASE - M30A1 19P PERFORMANCE 0.00508, NAME = 'PRIMER' NAME = 'M30A1' LEN = 0.018288TRAV = 6.840GAMA = 1.2375GAMA = 1.2015ALPH = 0.8063PRWT = 49.895VARY = 'WEB' FORM = '19P' TRAV = 0.0,NPTS = 515 --> \$PRIM 6 --> \$PROJ 8 --> \$RESI 12 --> \$INFO 18 --> \$PROP 24 --> \$PARA 1 --> \$COMM 3 --> \$GUN CARD 27 --> \$END CARD 14 --> CARD 26 --> <-- L ^--25 --> 13 --> 10 --> 11 --> 16 --> 17 --> 19 --> 20 --> 21 --> ^-23 --> CARD 0 CARD CARD CARD

TIME

DATE

٠	- 1
1	
1	딸
i	В
1	D
1	E
1	
1	Z
1	5
1	9
1	
	- 1

Œ	TYPE:			CHAM	CHAMBER VOLUME (M3):	::	0.01506	TRAV	TRAVEL (M):		6.84000
ij	GROOVE DIAMETER (M):		0.12852	LAND	LAND DIAMETER (M):		0.12700	GROO	GROOVE/LAND RATIO (-):	: (-)	1.490
T	TWIST (CALS/TURN):		25.0	BORE	BORE AREA (M2):		0.01285	HEAT	HEAT-LOSS OPTION:		1
Si	SHELL THICKNESS (M):		0.000102	SHEL	SHELL CP (J/KG-K):		460.3163	SHEL	SHELL DENSITY (KG/M3):	13):	7861.0918
ī	INITIAL SHELL TEMP (K):	(K):	293.	AIR 1	AIR H0 (W/M**2-K):		11.3482				
1 1											
- PF	PROJECTILE -										
TY	TYPE:			TOTAI	TOTAL WEIGHT (KG):		49.895	WEIG	WEIGHT PREDICTOR OPTION:	TION:	0
1											
α '	- RESISTANCE -										
AI	AIR RESISTANCE OPTION:	ION:	H	WALL	WALL HEATING FRACTION:	ION:	0.000				
RE	RESISTIVE PRESSURE MULT INDEX:	MULT INDEX:	3	RESI	RESISTIVE FACTOR		1.000	FRICT	FRICTION TABLE LENGTH:	TH:	ις
н	TRAVEL (M)	PRESSURE	(MPA)	н	TRAVEL (M)	PRESSUI	PRESSURE (MPA)	н	TRAVEL (M),	PRESS	PRESSURE (MPA)
7	0.000	3.44	1.7	٣	0.043	0	0.689	Ŋ	7.620		8.274
2	0.005	0.689	6	4	0.140	80	8.274				

GENERAL -

PRINT OPTIONS: 1110111 STORE OPTION: 0 CONSTANT-PRESSURE OPTION: 0 CONSTANT-PRESSURE OPTION: 0 O	MAX TIME STEP (S):	0.000100	PRINT STEP (S):	0.000500	MAX RELATIVE ERROR (-):	0.00200
O TYPE: RECOILING WEIGHT (KG): 1.2015 FORCE (J/KG): 14	T OPTIONS:	1 0 1	STORE OPTION:	0	CONSTANT-PRESSURE OPTION:	
O TYPE: RECOILING WEIGHT (KG): 14	JIENT MODEL: LAGRA	ANGIAN				
O TYPE: RECOLLING WEIGHT (KG): 14						
0 TYPE: RECOILING WEIGHT (KG): GAMMA (-): 1.2015 FORCE (J/KG): 0.11 P PERFORMANCE IBHVG2.505 DATE TIME GRAINS: 1284.0 19P WEIGHT (KG): 0.0000 CHARGE IGN CODE: 0 CHRRE IGN AT (S): 0.0000 C18288 GRAIN DIAMETER (M): 0.020286 PERF DIAMETER (M): 0.00000 C1828 GRAIN DIAMETER (M): 0.020286 PERF DIAMETER (M): 0.00000 C1828 GRAIN DIAMETER (M): 0.020286 PERF DIAMETER (M): 0.00000 C1828 GRAIN DIAMETER (M): 0.000000 CUTER WEB (M): 0.00000 C1828 GRAIN DIAMETER (M): 0.000000 CUTER WEB (M): 0.000000 C1828 GRAIN DIAMETER (M): 0.000000 CUTER WEB (M): 0.000000 C1828 GRAIN DIAMETER (M): 0.000000 CUTER WEB (M): 0.000000 C1828 GRAIN DIAMETER (M): 0.000000 CUTER WEB (M): 0.000000 C1828 GRAIN DIAMETER (M): 0.000000 CUTER WEB (M): 0.000000 C1828 GRAIN DIAMETER (M): 0.000000 CUTER WEB (M): 0.000000 C1828 GRAIN DIAMETER (M): 0.000000 CUTER WEB (M): 0.000000 C1828 GRAIN DIAMETER (M): 0.000000 CUTER WEB (M): 0.000000 C1828 GRAIN DIAMETER (M): 0.000000 CUTER WEB (M): 0.0000000 C1828 GRAIN DIAMETER (M): 0.000000 CUTER WEB (M): 0.00000000000000000000000000000000000	OIL -					
CAMMA (-):	1 1 1 1					
GAMMA (-):	OIL OPTION:	0	TYPE:		RECOLLING WEIGHT (KG):	0.
GAMMA (-): 1.2015 FORCE (J/KG): 14	1 1					
GAMMA (-):						
SAMMA (-): 1.2015 FORCE (J/KG): 14	!					
138E-03 FLAME TEMP (K): 3377.0 WEIGHT (KG): 0.11	E: PRIMER		GAMMA (-):	1.2015	FORCE (J/KG):	146140.
PERFORMANCE IBHVG2.505 DATE TIME TIME	OLUME (M3/KG):	1.0838E-03	FLAME TEMP (K):	3377.0	WEIGHT (KG):	0.126370
DA1 COEFF (-): 0.000000 CHARGE IGN CODE: 0.002086 PERF DIAMETER (M): 0.003000 MIDDLE WEB (M): 0.003000 OUTER WEB (M): 0.003000 AIDDLE WEB (M): 0.003000 AIDDLE WEB (M): 0.003000 OUTER WEB (M): 0.003000 AIDDLE WEB (M): 0.003000 AIDDLE WEB (M): 0.003000 OUTER WEB (M): 0.003000 AIDDLE WEB (M): 0.00300	4 GUN TEST CASE -	M30A1 19P PERFORM			TIME	
OA1 COEFF (-): 0.000000 CHARGE IGN CODE: 0 CHARGE IGN AT (S): 0.0000 NGTH (M): 0.018288 GRAIN DIAMETER (M): 0.020286 PERF DIAMETER (M): 0.003000 OUTER WEB (M): 0.003000 B (M): 0.003000 MIDDLE WEB (M): 0.003000 OUTER WEB (M): 0.003000 PROPERTIES AT LAYER BOUNDARIES OF PERF SURFACES PROPERTIES AT LAYER BOUNDARIES OF END S 1.ST 2ND 3RD 4TH 1.ST 2ND 3RD (M): 0.00000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
GRAINS: 1284.0 19P WEIGHT (KG): 1284.0 19P WEIGHT (KG): 1284.0 19P WEIGHT (KG): 1284.0 19P WEIGHT (KG): 1284.0 1284.0 1284.0 1284.0 1284.0 1284.0 1288 1284.0	RGE 1 -					
STAINS: 1284.0 19P WEIGHT (KG): 1284.0 19P WEIGHT (KG): 1284.0 19P WEIGHT (KG): 1284.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
0.000000 CHARGE IGN CODE: 0 CHARGE IGN AT (S): 0.0000 0.018288 GRAIN DIAMETER (M): 0.020286 PERF DIAMETER (M): 0.0 0.003000 MIDDLE WEB (M): 0.003000 OUTER WEB (M): 0.0 PROPERTIES AT LAYER BOUNDARIES OF PERF SURFACES PROPERTIES AT LAYER BOUNDARIES OF BND SID SID 3RD 1ST 2ND 3RD 4TH 1ST 2ND 3RD	E: M30A1		GRAINS:		WEIGHT (KG):	12.6500
0.018288 GRAIN DIAMETER (M): 0.020286 PERF DIAMETER (M): 0.0 0.003000 MIDDLE WEB (M): 0.003000 OUTER WEB (M): 0.0 PROPERTIES AT LAYER BOUNDARIES OF PERF SURFACES PROPERTIES AT LAYER BOUNDARIES OF END S 1ST 2ND 3RD 4TH 1ST 2ND 3RD	SIVE COEFF (-):	0.00000	CHARGE IGN CODE:	0		.00000E+00
0.003000 MIDDLE WEB (M): 0.003000 OUTER WEB (M): 0.00 PROPERTIES AT LAYER BOUNDARIES OF PERF SURFACES PROPERTIES AT LAYER BOUNDARIES OF END S 1ST	IN LENGTH (M):	0.018288	GRAIN DIAMETER (M):			0.000457
PROPERTIES AT LAYER BOUNDARIES OF PERF SURFACES PROPERTIES AT LAYER BOUNDARIES OF END S 1ST 2ND 3RD 4TH 1ST 2ND 3RD 0.00000	ER WEB (M):	0.003000	MIDDLE WEB (M):	0.003000	OUTER WEB (M):	0.003000
1ST 2ND 3RD 4TH 1ST 2ND 3RD		PROPERTIES AT LA	YER BOUNDARIES OF PERF		RTIES AT LAYER BOUNDARIES OF	END SURFACES
0.00000		1ST		4TH	2ND	4TH
	DEPTH (М) :			0.00000	1	0.00000

AI	ADJACENT LAYER WT 8:	WT 8:	1	# 1 # E E E E E E E E E E E E E E E E E	1 1 1 1	1 1 1 6 6		100.000				1 1 1 1 1 1 1	
DI	DENSITY (KG/M3):	: (1	!	!	: : :		1683.000		\$ \$ 1 1	ì	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
ď5	GAMMA (-):		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:	1		1.2375		:	1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
F(FORCE (J/KG):		1	:	1 1 1	f 1 1		1073374.		!	:	!	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ŏ	COVOLUME (M3/KG):	3):	-	:		1 1 1 1	1.0524E-03	4E-03		!		1	
FI	FLAME TEMP (K):		;	:]]]]			3036.0		1 1 1	1 1 1 1 1	1	
BL	BURNING RATE EXPS:	KPS:	1	:	1 .	1		0.8063		1	1	1	
BL	BURNING RATE COEFFS:	DEFFS:	-	:	t t 1		1.9684E-03	4E-03		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: : : : : : : : : : : : : : : : : : : :	1	1 1 1
		<u>a</u>	ROPERTI	ES AT LAY	PROPERTIES AT LAYER BOUNDARIES OF		LAT SURFACES	FACES					
			1ST	E	ZND	3RD		4 TH					
AI	AT DEPTH (M):		1 1	t t	1 1 1	1 1 1	0	0.0000.0					
AL	ADJACENT LAYER WT %:	WT 8:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	10	100.000					
DE	DENSITY (KG/M3):			:	1	1 1 1	168	1683.000					
GA	GAMMA (-):			:	1 2 1		1	1.2375					
Ē	FORCE (J/KG):		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	1 1 1 1		1073374.					
ŭ	COVOLUME (M3/KG):	(5):	-		1			1.0524E-03					
FL	FLAME TEMP (K):		1	;		1 1 1 1	3.	3036.0					
BU	BURNING RATE EXPS:	(PS:		:	;		0	0.8063					
BO	BURNING RATE COEFFS:	EFFS:	1	!	! ! !	1	1.9684E-03	1E-03					
GREE	1GREEN GUN TEST CASE - M30A1 19P PERFORMANCE	SE - M30.	A1 19P	PERFORMAN	CE	Ħ	IBHVG2.505		DATE		TIME		
H	TIME TRAV	VEL	ACC	BREECH	MEAN	BASE	MEAN	FRAC					
~	(MS) (M)	(M/S)	(6)	PRESS	PRESS	PRESS	TEMP	BURN					
				(MPA)	(MPA)	(MPA)	(K)	1					
0.	0 0.000 0.000	00.00	0.	2.493	2.493	2.493	3377.	000.0					
0	0.277 0.000	00.00	0.	3.447	3.447	3.447	3287.	0.001					
SHOT	SHOT-START PRESSURE ACHIEVED	RE ACHIE	VED										
0.	0.500 0.000	0.02	23.	4.448	4.410	4.334	3234.	0.001					
1.	1.000 0.000	0.30	.96	7.515	7.360	7.049	3156.	0.003					
ι.	1.500 0.000	1.02	206.	12.078	11.743	11.075	3112.	0.005					

2.000	0.001	2.41	369.	18.664	18.064	16.863	3084.	0.008
	0.003	4.77	607.	27.925	26.939	24.965	3066.	0.013
	0.006	8.51	929.	40.612	39.102	36.082	3052.	0.020
	0.012	13.99	1323.	57.536	55,386	51.085	3040.	0.029
4.000	0.021	21.69	1838.	79.654	76.667	70.692	3027.	0.041
	0.034	32.25	2493.	107.798	103.747	95.643	3011.	0.057
000.	0.053	46.37	3282.	142.481	137.147	126.481	2992.	0.077
200	0.081	64.63	4189.	183.637	176.828	163.212	2967.	0.103
000.	0.119	87.64	5208.	230,353	221.890	204.965	2937.	0.136
6.500	0.169	115.87	6340.	280.646	270.343	249.738	2901.	0.177
7.000	0.236	149.87	7519.	331.295	319.077	294.641	2859.	0.226
7.500	0.320	189.46	8611.	378.243	364.249	336.263	2813.	0.285
000.	0.426	234.02	9527.	417.611	402.130	371.167	2764.	0.352
200	0.555	282.49	10200.	446.570	429.994	396.844	2714.	0.426
000.	0.709	333.60	10602.	463.912	446.682	412.223	2664.	0.508
9.500	0.889	386.04	10744.	470.072	452.612	417.691	2617.	0.594
9.555	0.910	391,85	10746.	470.129	452.667	417.743	2612.	0.604
PR	LOCAL PRESSURE	MAX DETECTED	CTED					
10.000	1.095	438.61	10664.	466.677	449.348	414.689	2572.	0.683
10.500	1.327	490.34	10412.	455.930	439.010	405.170	2529.	0.774
11.000	1.585	540.51	10011.	438.775	422.506	389.970	2488.	0.863
11.500	1.867	587.38	9047.	397.438	382.737	353.334	2431.	0.917
12.000	2.172	629.02	7937.	349.841	336.943	311.148	2367.	0.948
12.500	2.495	665.36	6914.	305.970	294.734	272.264	2304.	0.967
13.000	2.836	697.07	6048.	268.841	259.013	239.357	2246.	0.983
13.500	3.192	724.86	5299.	236.727	228.116	210.894	2191.	0.992
14.000	3.560	749.21	4651.	208.957	201.399	186.282	2137.	0.997
14.500	3.940	770.63	4100.	185.341	178.678	165.351	2086.	0.999
14.911	4.260	786.34	3710.	168.618	162.589	150,530	2047.	1.000
PROPELLANT	7	BURNED OUT						
15.000	4.331	789.55	3632.	165.275	159.372	147.567	2038.	1.000

15.500 4.730 806.37 3237. 148.339 143.079 132.559 1994. 1.000

							TIME												
1.000	1.000	1.000	1.000	1.000	1.000		05 DATE												
1953.	1915.	1879.	1846.	1815.	1814.		IBHVG2.505												0
119.857	109.012	99.677	91.581	84.510	84.350		II											*	100.00
129,291	117.517	107.383	98.593	90.917	90.742		E .											JOULE	57251044.
134.007	121.770	111.236	102.099	94.120	93,939		1GREEN GUN TEST CASE - M30A1 19P PERFORMANCE	MUZZLE	18.012	6.8400	868.56	1967.	93.9389	90.7424	84.3496	1814.	1.000	.,	573
2902.	2617.	2371.	2158.	1971.	1967.		A1 19P	PMAX N	9.555	0.9102	391.85	10746.				2612.	0.604	.	
821.40	834.91	847.13	858.22	868.33	868.56		ASE - M30	Δi	9.	6.0			BREECH PRESS (MPA): 470.1292	. 452.6669	: 417.7426	26	0	ENERGY BALANCE SUMMARY	
5.137	5.551	5.971	6.398	6.829		E EXIT	TEST CA	S AT:		::	(M/S)	(G) NOT	ESS (MP	S (MPA)	S (MPA)	(X):	1 (-):	Y BALANC	MICAE:
16.000	16.500	17.000	17.500	18.000	18.012 6.840	PROJECTILE EXIT	GREEN GUN	CONDITIONS AT:	TIME (MS):	TRAVEL (M):	VELOCITY (M/S)	ACCELERATION (G):	BREECH PF	MEAN PRESS (MPA):	BASE PRESS (MPA):	MEAN TEMP (K):	Z CHARGE 1 (-):	ENERG	TOTAL CHEMICAL:
							H	_	-	-		50)	-	_				•

59.75

34206272. 23044770. 32.87

18820410.

(A) PROJECTILE KINETIC:

(1) INTERNAL GAS: (2) WORK AND LOSSES:

2.81	0.26	00.00	1.25	0.12	2.94	0.00
1606417.	148600.	0.	718397.	68561.	1682386.	0.
(B) GAS KINETIC:	(C) PROJECTILE ROTATIONAL:	(D) FRICTIONAL WORK TO TUBE:	(E) OTHER FRICTIONAL WORK:	(F) WORK DONE AGAINST AIR:	(G) HEAT CONVECTED TO BORE:	(H) RECOIL ENERGY:
(B)	Ω	(a)	(E)	(F)	(9)	(H)

LOADING DENSITY (KG/M3): 848.365
CHARGE WT/PROJECTILE WT: 0.256
PIEZOMETRIC EFFICIENCY: 0.455
EXPANSION RATIO: 6.836

G 1GREEN GUN TEST CASE - M30A1 19P PERFORMANCE

TIME

DATE

IBHVG2.505

PARAMETRIC VARIABLES: / 1/ PROP 1 WEB

/1/	PMAX	VMUZ	PMUZ	Z(1)	X@Z=1
3000E-02	0.3000E-02 470.129	868.56	84.350	1.000	3.940
0.3020E-02	463.022	866.16	84.667	1.000	4.274
3040E-02	0.3040E-02 456.125	863.60	84.946 1.000	1.000	4.218
3060E-02	0.3060E-02 449.431	860.93	85.206 1.000	1.000	4.553
.3080E-02	0.3080E-02 442.933	858.40	85.503 1.000	1.000	4.495
.3100E-02	0.3100E-02 436.620	855.71	85.764 1.000	1.000	4.832
.3120E-02	0.3120E-02 430.488	853.11	86.053	1.000	4.773
.3140E-02	0.3140E-02 424.527	850.57	86.356	1.000	5.111
.3160E-02	0.3160E-02 418.731	847.84	86.613	1.000	5:051
.3180E-02	0.3180E-02 413.094	845.20	86.902 1.000	1.000	5.390
.3200E-02	0.3200E-02 407.608	842.51	87.181 1.000	1.000	5.328

с и	2 .	2	2	4	80	0	0	0	0	0	0	0	0	0	0	0	0		0	0	_	_	_	_	_	_	_	_	_	
5,66	6.	5.88	6.22	6.56	6.49	6.84	6.840	6.84	6.84	6.84	6.840	6.840	6.840	6.840	6.840	6.84	6.84	6.840	6.84	6.84	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840
87.488 1.000	8,035 1.0	88.358 1.000	88.616 1.000	88.903 1.000	89.217 1.000	89.485 1.000	89.753 1.000	90.027 1.000	90.269 0.999	90.526 0.999	90.743 0.999	90.976 0.998	91.163 0.997	91.365 0.997	91.524 0.996	91.694 0.995	91.825 0.994	91.966 0.993	92.073 0.992	92.179 0.990	92.270 0.989	92.310 0.987	92.333 0.985	92.344 0.983	92.325 0.981	92.323 0.979	92.308 0.977	92.302 0.975	92.271 0.973	92.244 0.971
839.91 837.15	34.4	831.82	828.99	826.23	823.55	820.72	817.91	815.13	812.29	809.52	806.65	803.85	800.94	798.11	795.19	792.32	789.39	786.50	783.57	780.67	777.77	774.81	771.89	768.98	766.03	763.11	760.18	757.26	754.31	751.38
3220E-02 402.270 3240E-02 397.071	260E-02 392.00	3280E-02 387.078	3300E-02 382.273	3320E-02 377.590	3340E-02 373.022	3360E-02 368.567	3380E-02 364.221	3400E-02 359.980	3420E-02 355.841	3440E-02 351.801	3460E-02 347.853	3480E-02 343.997	3500E-02 340.230	3520E-02 336.548	.3540E-02 332,952	.3560E-02 329.434	3580E-02 325.993	3600E-02 322.628	3620E-02 319.337	3640E-02 316.115	3660E-02 312.963	3680E-02 309.876	3700E-02 306.854	3720E-02 303.894	3740E-02 300.995	3760E-02 298.155	3780E-02 295.373	3800E-02 292.646	3820E-02 289.972	3840E-02 287.351
0 0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0	0.	0.	0	52	0	0.	0	0.	0	0	0	0	0	0	0	0	0	0	0

.

田	PERFORMANCE	19P PER	- M30A1	ST CASE	1GREEN GUN TEST CASE - M30A1 19P	
6.840	91.613 0.945	91.613	719.17	261.607	0.4060E-02 261.607	
6.840	91.730 0.948	91.730	722.10	263.736	0.4040E-02 263.736	
6.840	91.829 0.951	91.829	725.03	265.904	0.4020E-02 265.904	
6.840	91.910 0.953	91.910	727.95	268.112	0.4000E-02 268.112	
6.840	91.971 0.955	91.971	730.88	270.361	0.3980E-02 270.361	
6.840	0.958	92.024	733.81	272.653	0.3960E-02	
6.840	0.960	92.070	736.74	274.987	0.3940E-02	
6.840	92.112 0.962	92.112	739.67	277.367	0.3920E-02	
6.840	92.150 0.964	92.150	742.59	279.791	0.3900E-02	
6.840	92.186 0.967	92.186	745.53	282.262	0.3880E-02 282.262	
6.840	92.221 0.969	92.221	748.46	284.782	0.3860E-02 284.782	

PARAMETRIC VARIABLES: / 1/ PROP 1 WEB

TIME

DATE

IBHVG2.505

	/1/	PMAX	VMUZ	PMUZ	Z(1)	X@Z=1
5	J 0 0.4080E-02	259,515	716.26	91.482	0.943	6.840
3	0.4100E-02 257.460	257.460	713.34	91.329 0.940	0.940	6.840
	0.4120E-02	255.442	710.43	91.158	0.937	6.840
	0.4140E-02	253.458	707.54	90.983	0.934	6.840
	0.4160E-02	251.509	704.64	90.767	0.930	6.840
	0.4180E-02	249.595	701.75	90.542	0.927	6.840
	0.4200E-02	247.712	698.87	90.290	0.923	6.840
	0.4220E-02	245.860	696.00	90.032	0.920	6.840
	0.4240E-02	244.041	693.14	89.740	0.916	6.840
	0.4260E-02	242.251	690.30	89.431	0.912	6.840
	0.4280E-02	240.491	687.47	89.104	906.0	6.840
	0.4300E-02	238.760	684.65	88.749	0.903	6.840
	0.4320E-02	237.057	681.84	88.377	0.899	6.840
	0.4340E-02	235.381	679.05	87.970	0.895	6.840
	0.4360E-02	233,733	676.28	87.542	0.890	6.840
	0.4380E-02	232.111	673.53	87.077	0.885	6.840

																															IBHVG2,505
6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	
86.580 0.880	86.041 0.874	85.413 0.868	84.725 0.862	84.047 0.855	83.379 0.849	82.722 0.843	82.075 0.837	81.438 0.831	80.811 0.825	80.194 0.819	79.586 0.814	78.987 0.808	78.397 0.802	77.816 0.797	77.244 0.792	76.680 0.786	76.124 0.781	75.577 0.776	75.038 0.771	74.506 0.766	73.982 0.761	73.465 0.756	72.956 0.751	72.454 0.746	71.959 0.742	71.471 0.737	70.990 0.732	70.516 0.728	70.048 0.723	69.586 0.719	19P PERFORMANCE
670.80	668.10	665.42	662.77	660.15	657.56	655.00	652.47	649.97	647.50	645.06	642.64	640.26	637.89	635.56	633.25	630.97	628.71	626.48	624.27	622.08	619.92	617.78	615.67	613.57	611.50	609.45	607.43	605.42	603.43	601.47	- M30A1 1
0.4400E-02 230.514	0.4420E-02 228.943	0.4440E-02 227.396	0.4460E-02 225.874	0.4480E-02 224.375	0.4500E-02 222.898	0.4520E-02 221.444	0.4540E-02 220.012	0.4560E-02 218.601	0.4580E-02 217.212	0.4600E-02 215.844	0.4620E-02 214.497	0.4640E-02 213.168	0.4660E-02 211.858	0.4680E-02 210.568	0.4700E-02 209.296	N 0.4720E-02 208.042	0.4740E-02 206.806	0.4760E-02 205.587	0.4780E-02 204.386	0.4800E-02 203.201	0.4820E-02 202.033	0.4840E-02 200.880	0.4860E-02 199.744	0.4880E-02 198.622	0.4900E-02 197.516	0.4920E-02 196.426	0.4940E-02 195.349	0.4960E-02 194.287	0.4980E-02 193.238	0.5000E-02 192.204	1GREEN GUN TEST CASE -
																54	1														-

TIME

DATE

	6.84000 1.490 1 7861.0918	0 in
TIME	TRAVEL (M): GROOVE/LAND RATIO (-): HEAT-LOSS OPTION: SHELL DENSITY (KG/M3):	WEIGHT PREDICTOR OPTION:
INT	0.01506 0.12700 0.01285 460.3163 11.3482	49.895
0 \$ PRINT INPUT ECHO, MINIMIZE TRAJ PRINT GUN TEST CASE - M30A1 7P PERFORMANCE' PERFORMANCE IBHVG2.505	CHAMBER VOLUME (M3): LAND DIAMETER (M): BORE AREA (M2): SHELL CP (J/KG-K): AIR HO (W/M**2-K):	TOTAL WEIGHT (KG): WALL HEATING FRACTION: RESISTIVE FACTOR
GUN	0.12852 25.0 0.000102 293.	1 NDEX: 3
0 CARD 28> \$\$AVE CARD 29> \$INFO CARD 30> POPT = 1,0,0,0 CARD 31> RUN = 'GREEN GI CARD 32> \$PROP CARD 33> FORM = 'TP' CARD 34> \$END IGREEN GUN TEST CASE - M30A1 7P I	TYPE: GROOVE DIAMETER (M): TWIST (CALS/TURN): SHELL THICKNESS (M): INITIAL SHELL TEMP (K):	TYPE: - RESISTANCE AIR RESISTANCE OPTION: RESISTIVE PRESSURE MULT INDEX:
	55	

I	TRAVEL (M)	PRESSURE (MPA)	I TRAVEL (M)) PRESSURE (MPA)	(MPA)	I TRAVE	TRAVEL (M), PRESS	PRESSURE (MPA)
1 2	0.000	3.447	3 0.043 4 0.140	0.689		5 7.	7.620	8.274
- GENERAL								
MAX PRII GRAI	MAX TIME STEP (S): PRINT OPTIONS: GRADIENT MODEL: LAGRANGIAN	0.000100 1 0 0 0 1 1 ANGIAN	PRINT STEP (S): STORE OPTION:		0.000500	MAX RELATI CONSTANT-P	MAX RELATIVE ERROR (-): CONSTANT-PRESSURE OPTION:	0.00200
PECOIL PECOIL	RECOIL -	0	TYPE:			RECOILING	RECOILING WEIGHT (KG):	ò
- PRIMER -	MER -							
TYPI COVC 1GREEN	TYPE: PRIMER COVOLUME (M3/KG): 1.0 1GREEN GUN TEST CASE - M30A1 7P	1.0838E-03 M30A1 7P PERFORMANCE	GAMMA (-): FLAME TEMP (K): I	BHVG2.505	1.2015 3377.0 DATE	FORCE (J/KG): WEIGHT (KG): TIME	 	146140. 0.126370

	TYPE: M30A1		GRAINS:		2950.9	7.P	WEIGH	WEIGHT (KG):		12.6500
	EROSIVE COEFF (-):	0.00000	CHARGE	CHARGE IGN CODE:		0	CHARG	CHARGE IGN AT (S	(3): 0.	0.00000E+00
	GRAIN LENGTH (M):	0.018288	GRAIN	GRAIN DIAMETER (M):		0.013372	PERF	PERF DIAMETER (M):	: (1	0.000457
	INNER WEB (M):	0.003000	OUTER	OUTER WEB (M):	0	0.003000				
		PROPERTIES AT LAYER BOUNDARIES OF PERF SURFACES	LAYER BOUNDA	RIES OF PERF	SURFACES	PROPE	RTIES AT I	PROPERTIES AT LAYER BOUNDARIES OF		END SURFACES
		1ST	2ND	3RD	4TH		1ST	2ND	ЗКО	4TH
	AT DEPTH (M):	1 1 1 1		!	0.00000		; ; ;	1 1		0.00000
	ADJACENT LAYER WT 8:	1 1 1	1 1 1 1	!	100,000		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		100.000
	DENSITY (KG/M3):	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	!	1683.000			:	1	1683.000
	GAMMA (-):	!	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	!	1.2375			1 1 1 1 1		1.2375
	FORCE (J/KG):	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		1073374.			1 1 1 1		1073374.
	COVOLUME (M3/KG):		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1	1.0524E-03			1 1 1 1 1 1	!	1.0524E-03
	FLAME TEMP (K):	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	f	3036.0		: :		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3036.0
	BURNING RATE EXPS:	!	!	!	0.8063			1 1 1 1		0.8063
57	BURNING RATE COEFFS:	1 1 1 1	1 6 8 1 3	1 1 1	1.9684E-03	•	1 1 1 1	1 1 1	1 1 1 1 1 1	1.9684E-03
		PROPERTIES AT LAYER BOUNDARIES OF	LAYER BOUNDA		LAT SURFACES					
		LST	2ND	3RD	4 TH					
	AT DEPTH (M):				0.00000					
	ADJACENT LAYER WT 8:	1 1 2 4 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	100.000					
	DENSITY (KG/M3):	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	1683.000					
	GAMMA (-):	8 8 5 3 9	1 1 1 1 1		1.2375					
	FORCE (J/KG):	0 0 0 0 1 1	† 1 1 1 8	; ; ; ;	1073374.					
	COVOLUME (M3/KG):	1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1	1.0524E-03					
	FLAME TEMP (K):	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1	3036.0					
	BURNING RATE EXPS:	1 1 1	1 1 1 1	1 1 1	0.8063					
	BURNING RATE COEFFS:	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T	1.9684E-03					
16	1GREEN GUN TEST CASE - M30A1 7P	0A1 7P PERFORMANCE	IANCE	IBHV	IBHVG2.505	DATE		TIME		

/1/ PMAX VMUZ PMUZ Z (1) 3000E-02 554.37B 895.63 81.329 1.000 3020E-02 546.707 893.39 81.584 1.000 3020E-02 546.707 893.39 81.584 1.000 3040E-02 539.250 891.14 81.839 1.000 3060E-02 532.000 888.88 82.094 1.000 3100E-02 524.946 886.62 82.351 1.000 3120E-02 518.081 882.10 82.611 1.000 3140E-02 518.081 884.36 82.611 1.000 3120E-02 518.081 882.10 82.81 1.000 3200E-02 480.477 870.48 84.161 1.000 3220E-02 486.349 875.24 84.684 1.000 3260E-02 474.750 868.13 84.684 1.000 3260E-02 469.163 865.78 84.684 1.000 3320E-02 469.163 865.78	X@Z=1	3.058	3.396	3.351	3.694	3.648	3.603	3.947	3.900	3.854	4.199	4.151	4.499	4.450	4.800	4.750	4.700	5.050	4.999	5.351	5,298	5.651	5,598	5.952	5.897	6.252	609.9	6.552	6.840
/1/ PMAX VMOZ PMOZ 3000E-02 554.37B 895.63 81.329 3020E-02 546.707 893.39 81.584 3020E-02 546.707 893.39 81.584 3040E-02 539.250 891.14 81.839 3060E-02 532.000 888.88 82.094 3080E-02 524.946 886.62 82.351 3120E-02 518.081 84.36 82.351 3140E-02 504.889 875.24 87.651 3140E-02 504.889 875.24 87.65 3120E-02 480.477 870.48 84.160 3220E-02 474.750 868.12 84.418 3260E-02 474.750 868.12 84.63 3340E-02 469.16 865.78 85.494 3340E-02 448.116 856.24 85.729 3340E-02 433.576 848.90 86.498 3400E-02 433.576 848.90 86.498 3460E-02 424.419	(1	•											1.000	1.000	1.000	1.000		1.000	1.000	1.000		000.	000.	000.	000.	000.	000.	000.	000.
71/ PMAX VMUZ 3000E-02 554.378 895. 3020E-02 546.707 893. 3020E-02 532.000 888.3060E-02 532.000 888.3080E-02 511.396 882.3100E-02 511.396 882.3100E-02 511.396 882.3100E-02 511.396 882.3100E-02 492.369 875.3200E-02 492.369 875.3200E-02 486.349 872.83200E-02 486.349 872.83200E-02 486.349 872.83200E-02 486.349 872.83200E-02 486.349 872.83200E-02 486.349 865.33200E-02 448.116 856.33340E-02 443.157 853.73340E-02 443.157 853.73340E-02 443.157 853.73340E-02 443.157 853.73340E-02 443.157 853.73400E-02 438.312 851.33400E-02 438.312 844.06.9400E-02 411.418 836.553600E-02 411.418 836.553600E-02 411.418 836.553600E-02 411.418 836.55360E-02 407.270 834.0	PMUZ	1.32	1.58	. 83	. 09		82.611	2.8	ω.		9	6.	84.160	4	. 68	.	5.1	5.4	5.7	5.97	6.2	6.4	6.79	7.03	7.301	7.55	7.840	8.091	8.349
P1/ 93000E-02 554 3020E-02 546 3040E-02 539 3060E-02 532 3080E-02 524 3120E-02 511 3140E-02 511 3140E-02 492 3200E-02 486 3220E-02 486 3220E-02 486 3220E-02 486 3320E-02 486 3320E-02 486 3320E-02 487 3360E-02 443 3340E-02 443 3400E-02 443	VMUZ	5.6	æ.	91.	88.	98	84.	82.	9.	7 .	75.	872.86		68.	65.	63	60.	58.	56.2	53.	51,	48.	46.5	844.01	41.5	39.0	36.	34.	31.
/1/ 3000E-02 3020E-02 3020E-02 3040E-02 3060E-02 3100E-02 3120E-02 3140E-02 3160E-02 3260E-02 3260E-02 3260E-02 3260E-02 3360E-02 3360E-02 340E-02 3460E-02 3460E-02 3560E-02 360E-02 360E-02 360E-02 360E-02 360E-02 360E-02	PMAX	54.37	46.7	39.	32.	24.	18.	11.39	04.	98.54	92.36			4.7		63	58.38	53.19	48.	43.	38.	e,	28.9	-	19.9	5.6	11.4	7	03.2
	/1/	-0	020E-02	-02	060E-02	080E-02	100E-02	120E-02	140E-02	160E-02	180E-02	200E-02	220E-02	240E-02	260E	1	300E-02	320E-02	340E-02	360E-02	380E-02	400E-	420E-02	440E-	460E-02	480E-	500E-02	520E-0	540E-02

6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840		
88.850 1.000	89.079 0.999	89.315 0.999	89.524 0.999	89.750 0.999	89.922 0.998	90.108 0.997	90.283 0.997	90.448 0.996	90,607 0,995	90.756 0.994	90.895 0.993	91.042 0.993	91.144 0.991	91.258 0.990	91.351 0.989	91.449 0.988	91.535 0.987	91.597 0.985	91.667 0.984	91.719 0.982	91.775 0.981	91.794 0.979	91.823 0.978	91.836 0.976	7P PERFORMANCE	
826.44	823.87	821.34	818.75	816.22	813.57	810.97	808.36	805.74	803.11	800.48	797.85	795.23	792.55	789.90	787.23	784.57	781.90	779.22	776.54	773.86	771.19	768.48	765.80	763.11	- M30A1	
0.3580E-02 395,338	0.3600E-02 391.522	0.3620E-02 387.785	0.3640E-02 384.123	0.3660E-02 380.534	0.3680E-02 377.016	0.3700E-02 373.566	0.3720E-02 370.183	0.3740E-02 366.865	0.3760E-02 363.610	0.3780E-02 360.416	0.3800E-02 357.282	0.3820E-02 354.207	0.3840E-02 351.188	0.3860E-02 348.225	0.3880E-02 345.315	0.3900E-02 342.457	0.3920E-02 339.651	0.3940E-02 336.894	0.3960E-02 334.185	0.3980E-02 331.522	0.4000E-02 328.905	0.4020E-02 326.335	0.4040E-02 323.807	0.4060E-02 321.322	1GREEN GUN TEST CASE	
																59	9									

PARAMETRIC VARIABLES: / 1/ PROP 1 WEB

TIME

DATE

IBHVG2.505

/1/ PMAX VMUZ PMUZ Z(1) X@Z=1 0 0.4080E-02 318.879 760.41 91.835 0.974 6.840 0.4100E-02 316.477 757.73 91.820 0.972 6.840

6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840	6.840
91.788 0.970	91.739 0.968	91.658 0.965	91.570 0.963	91.465 0.961	91.345 0.958	91.214 0.955	91.052 0.952	90.872 0.949	90.674 0.946	90.462 0.943	90.223 0.940	89.971 0.936	89.696 0.932	89.397 0.929	89.070 0.925	88.725 0.921	88.346 0.916	87.939 0.912	87.484 0.907	86.977 0.902	86.379 0.896	85.786 0.890	85.202 0.885	84.626 0.879	84.058 0.874	83.498 0.868	82.945 0.863	82.401 0.858	81.863 0.852	81.333 0.847	80.810 0.842
755.04	752.35	749.65	746.96	744.28	741.60	738.93	736.26	733.60	730.94	728.30	725.66	723.03	720.41	717.81	715.22	712.64	710.08	707.54	705.01	702.51	700.03	697.58	695.15	692.75	690.38	688.03	685.70	683.40	681.13	678.88	676.65
0.4120E-02 314.113	0.4140E-02 311.787	0.4160E-02 309.500	0.4180E-02 307.249	0.4200E-02 305.035	0.4220E-02 302.857	0.4240E-02 300.713	0.4260E-02 298.602	0.4280E-02 296.523	0.4300E-02 294.477	0.4320E-02 292.462	0.4340E-02 290.478	0.4360E-02 288.523	0.4380E-02 286.599	0.4400E-02 284.703	0.4420E-02 282.833	0.4440E-02 280.993	0.4460E-02 279.179	0.4480E-02 277.392	0.4500E-02 275.630	0.4520E-02 273.893	0.4540E-02 272.182	0.4560E-02 270.494	0.4580E-02 268.829	0.4600E-02 267.188	0.4620E-02 265.571	0.4640E-02 263.975	0.4660E-02 262.401	0.4680E-02 260.849	0.4700E-02 259.319	0.4720E-02 257.808	0.4740E-02 256.317
																60)														

,

```
6.84000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          7861.0918
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           SHELL DENSITY (KG/M3):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GROOVE/LAND RATIO (-):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       HEAT-LOSS OPTION:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    TRAVEL (M):
                                                                                                                                                                                                                                               TIME
                                                                                                                                                                                                                                                                                                                                                                                                   TIME
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.01506
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0.12700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.01285
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          460.3163
                                                                                                                                                                                                                                                                                                                                                                                                   DATE
                                                                                                                                                                                                                                                DATE
                                                                                                                                                                                                                                                                                                                                                                                                   IBHVG2.505
                                                                                                                                                                                                                                               IBHVG2.505
                                                                                                                                                                                                                                                                                                                          37 --> RUN = 'GREEN GUN TEST CASE - M30A1 1P PERFORMANCE'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CHAMBER VOLUME (M3):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          SHELL CP (J/KG-K):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       LAND DIAMETER (M):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         BORE AREA (M2):
                                                                                                                                                 6.840
                                                                                                                                                                    6.840
                                                                                                                                                                                        6.840
                                                       6.840
                                                                                           6.840
                                                                                                             6.840
                                                                                                                               6.840
                  6.840
                                    6.840
                                                                         6.840
                                                                                                                                                                                                           6.840
                                                                                                                                                                                                                              6.840
                                                                                                                                                                                                                                                                                                                                                                                                   1GREEN GUN TEST CASE - M30A1 1P PERFORMANCE
                                                                                                                                                                                                                                             1GREEN GUN TEST CASE - M30A1 7P PERFORMANCE
                                                                                                                                                                                                          75.047 0.786
                                                                                                                                                                    75.946 0.795
                                                                                                                                                                                         75.494 0.791
                                                                                                                                                                                                                              74.606 0.782
                                                                                           77.815 0.813
                                                                                                                                                 76.405 0.800
                 79.785 0.832
                                                      78.787 0.823
                                                                                                            77.339 0.809
                                                                                                                               76.869 0.804
                                                                         78.298 0.818
80.294 0.837
                                    79.283 0.828
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          25.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0.12852
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0.000102
                                                                                                                                                                                         653.56
                                                                                                                                                                                                            651.58
                                                                                                                                                                                                                             649.62
                                                                                                                                                                                                                                                                                                                                                              FORM = '1P'
                                                                                           663.74
                                                                                                                                                 657.57
                                                                                                                                                                    655.55
674.44
                  672.26
                                    670.10
                                                                         665.84
                                                                                                            99.199
                                                                                                                                659.61
                                                       667.95
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           SHELL THICKNESS (M):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GROOVE DIAMETER (M):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         TWIST (CALS/TURN):
                                                                                                                                                                                                                                                                                                       CARD 36 --> $INFO
0.4760E-02 254.846
                                                                                                                                                                                                          0.4980E-02 239.870
                                                                                                                                                                                                                             0.5000E-02 238.610
                 0.4780E-02 253.394
                                                      0.4820E-02 250.548
                                                                        0.4840E-02 249.153
                                                                                                                                                  0.4920E-02 243.748
                                                                                                                                                                    0.4940E-02 242.439
                                                                                                                                                                                         0.4960E-02 241.147
                                                                                                                                                                                                                                                                                    0 CARD 35 --> $SAVE
                                                                                                                                                                                                                                                                                                                                            38 --> $PROP
                                    0.4800E-02 251.962
                                                                                            0.4860E-02 247.776
                                                                                                             0.4880E-02 246.416
                                                                                                                                0.4900E-02 245.074
                                                                                                                                                                                                                                                                                                                                                                                 40 --> $END
                                                                                                                                                                                                                                                                                                                                                               39 -->
                                                                                                                                                                                                                                                                                                                                                                                                                                                             -----
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              - GUN TUBE
                                                                                                                                                                                                                                                                                                                           CARD
                                                                                                                                                                                                                                                                                                                                                                                CARD
                                                                                                                                                                                                                                                                                                                                            CARD
                                                                                                                                                                                                                                                                                                                                                              CARD
                                                                                                                                                                                                                                                                                                           61
```

1.490

		WEIGHT PREDICTOR OPTION:		FRICTION TABLE LENGTH:	I TRAVEL (M), PRESSURE (MPA)	5 7.620 8.274		MAX RELATIVE ERROR (-): 0.00200 CONSTANT-PRESSURE OPTION: 0
11.3482		49.895		0.000	PRESSURE (MPA)	0.689		0.000500
AIR HO (W/M**2-K):		TOTAL WEIGHT (KG):		WALL HEATING FRACTION: RESISTIVE FACTOR	I TRAVEL (M) PRESS	3 0.043 4 0.140		PRINT STEP (S): STORE OPTION:
(): 293.				i: 1 INDEX: 3	PRESSURE (MPA)	3.447		0.000100 1 0 0 0 1 1 NGIAN
INITIAL SHELL TEMP (K):	PROJECTILE -	TYPE:	RESISTANCE -	AIR RESISTANCE OPTION: RESISTIVE PRESSURE MULT INDEX	I TRAVEL (M)	1 0.000 2 0.005	General -	MAX TIME STEP (S): PRINT OPTIONS: GRADIENT MODEL: LAGRANGIAN

- RECOIL -

G): 1.0838E-03 ASE - M30A1 1P PERFORMANCE (A): 0.000000 0.018288 0.003000 1.018288 0.003000 0.003000 0.018288 0.003000 0.003000 0.018288 0.003000 0.018288 0.003000 0.018288 0.003000 0.018288 0.003000 0.018288 0.003000 0.003000 0.003000 0.003000 0.0030000 0.0030000 0.0030000 0.0030000 0.00300000 0.00300000000						
G): 1.0838E-03 ASE - M30A1 1P PERFORMANCE (M): 0.018288 0.003000 1.01828 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.0	GAMMA (-):		1.2015	FORCE (J/KG):		146140.
(A): 0.000000 (M): 0.018288 0.003000 1.01828 0.003000 1.01828	FLAME TEMP (K):		3377.0	WEIGHT (KG):		0.126370
 		IBHVG2.505	DATE	TIME		
 op						
op	GRAINS:	12614.	11	WEIGHT (KG):	••	12.6500
 ø	CHARGE IGN CODE:		0	CHARGE IGN AT	AT (S):	0.00000E+00
 ep	GRAIN DIAMETER (M):	. (M	0.006457	PERF DIAMETER	ER (M):	0.000457
 Ф	WEB RATIO:		1.0000			
TST	PROPERTIES AT LAYER BOUNDARIES OF PERF SURFACES	R SURFACES	PROPERI	PROPERTIES AT LAYER BOUNDARIES OF	OUNDARIES OF	END SURFACES
	2ND 3RD	4TH		1ST 2ND	3RD	4 TH
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.0000	i			0.00000
		100.000	i			100.000
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1683.000	i			- 1683.000
		1.2375	i			- 1.2375
	1 1 1 1 1 1 1	1073374.	i			- 1073374.
		1.0524E-03	i		1	- 1.0524E-03
		3036.0	i		1 1 1 1	- 3036.0
BURNING RATE EXPS:		0.8063	•			- 0.8063
BURNING RATE COEFFS:		1.9684E-03	i			- 1.9684E-03

PROPERTIES AT LAYER BOUNDARIES OF LAT SURFACES

4TH

3RD

2ND

1ST

00	00	00	75	. 4	03	0.	63	03	DATE
0.00000	100.000	1683.000	1.2375	1073374	1.0524E-03	3036.0	0.8063	1.9684E-03	IBHVG2.505
1	1 1 1 1	1 1 1 1	1 1 1 1				1 1 2		11
1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t t t	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	MANCE
1 1 1	1	1	1 1 1 1	1	1 1 1				30A1 1P PERFOR
AT DEPTH (M):	ADJACENT LAYER WT %:	DENSITY (KG/M3):	GAMMA (-):	FORCE (J/KG):	COVOLUME (M3/KG):	FLAME TEMP (K):	BURNING RATE EXPS:	BURNING RATE COEFFS:	LGREEN GUN TEST CASE - M30A1 1P PERFORMANCE

PARAMETRIC VARIABLES: / 1/ PROP 1 WEB

X@Z=1	0.968	0.952	0.936	0.921	906.0	1.185	1.166	1.149	1.131	1.114	1.098	1.082	1.370	1.352
Z(1)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
PMUZ	73.056 1.000	73.348 1.000	73.647	73.605 1.000	74.021 1.000	74.163	74.140 1.000	74.411 1.000	74.678 1.000	74.940 1.000	74.924 1.000	75.182	75.435 1.000	75.684 1.000
VMUZ	963.31	962.34	961.39	958.71	958.31	956.54	954.00	952.85	951.66	950.43	947.96	946.70	945.40	944.07
PMAX	913.691	902.632	891.834	881.294	871.006	860.959	851.144	841.554	832.178	823.008	814.042	805.271	796.690	788.293
/1/	0 0.3000E-02 913.691	0.3020E-02	0.3040E-02	0.3060E-02	0.3080E-02 871.006	0.3100E-02	0.3120E-02 851.144	0.3140E-02	0.3160E-02	0.3180E-02	0.3200E-02 814.042	0.3220E-02	0.3240E-02	0.3260E-02 788.293
4	0													

2.002 1.980 1.918 2.193 1.748 1.708 1.689 2.238 2.216 2.172 2.476 2.429 2.7391.482 1.789 1.728 1.959 1.938 2.1502.452 1.333 1.315 1.279 1.579 1,559 1,539 1.520 2.714 1.297 1.501 1.7692.407 78.839 1.000 79.044 1.000 79.647 1.000 80.425 1.000 81.330 1.000 77.324 1.000 77.626 1.000 77.766 1.000 78.011 1.000 78.204 1.000 78.397 1.000 78.421 1.000 78.631 1.000 79.247 1.000 79.449 1.000 79.845 1.000 80.040 1.000 80.233 1.000 80.615 1.000 80.804 1.000 80.991 1.000 81.509 1.000 81.727 1.000 81.869 1.000 75.676 1.000 76.402 1.000 76.637 1.000 76.637 1.000 1.000 77.098 1.000 75.922 1.000 76.164 1.000 76.869 914.40 907.71 900.83 926.25 924.77 921.46 919.28 916.04 912.75 909.40 904.29 899.08 897.33 892.41 890.52 941.68 940.32 936.08 933.76 932.30 930.82 929.32 928.06 923.12 917.67 911.08 906.00 902.56 895.91 894.12 938.94 937.52 0.3600E-02 668.782 0.3620E-02 662.887 0.3280E-02 780.073 0.3360E-02 748.858 0.3380E-02 741.445 0.3440E-02 720.082 0.3520E-02 693.466 0.3540E-02 687.122 0.3560E-02 680.896 0.3580E-02 674.784 0.3660E-02 651.413 0.3680E-02 645.825 0.3700E-02 640.335 0.3720E-02 634.941 0.3740E-02 629.640 0.3760E-02 624.426 0.3780E-02 619.299 0.3800E-02 614.259 0.3820E-02 609.305 0.3840E-02 604.431 0.3860E-02 599.637 0.3880E-02 594.920 0.3900E-02 590.279 0.3300E-02 772.026 0.3400E-02 734.181 0.3420E-02 727.061 0.3460E-02 713.234 0.3500E-02 699.929 0.3640E-02 657.099 0.3320E-02 764.144 0.3340E-02 756.422 0.3480E-02 706.517 65

	1GREEN GUN TEST CASE - M30A1 1P PERFORMANCE	- M30A1	TEST CASE	1GREEN GUN
3.244	83.524 1.000	876.31	2 555.668	0.4060E-02 555.668
2.905	83.223 1.000	877.96	2 559.763	0.4040E-02 559.763
2.929	83.052 1.000	879.81	2 563,921	0.4020E-02 563,921
2.954	82.880 1.000	881.66	2 568.144	0.4000E-02 568.144
2.978	82.722 1.000	883,53	0.3980E-02 572.433	0.3980E-0
2.644	82.401 1.000	885.08	0.3960E-02 576.789	0.3960E-0
2.667	82.224 1.000	886.90	0.3940E-02 581.214	0.3940E~0
2.690	82.124 1.000	888.87	0.3920E-02 585.709	0.3920E-0

PARAMETRIC VARIABLES: / 1/ PROP 1 WEB

TIME

DATE

IBHVG2.505

	874.42	83.683 1.000	3.218
	872.67		3.193
0.4120E-02 543,742	870.66	84.017 1.000	3.168
0.4140E-02 539.883	868,99	84.331 1.000	3.511
0.4160E-02 536.081	867.14	84.534 1.000	3.484
0.4180E-02 532,335	865.29	84.737 1.000	3.458
0.4200E-02 528.642	863.37	84.893 1.000	3.805
0.4220E-02 525.004	861.45	85.055 1.000	3.778
0.4240E-02 521.417	859.65	85.318 1.000	3.750
0.4260E-02 517.880	857.81	85.552 1.000	3.724
0.4280E-02 514.392	855.89	85.735 1.000	4.073
0.4300E-02 510.953	853.95	85.894 1.000	4.045
0.4320E-02 507.562	852.10	86.146 1.000	4.017
0.4340E-02 504.217	850.14	86.302 1.000	4.369
0.4360E-02 500.917	848.29	86.579 1.000	4.340
0.4380E-02 497.663	846.29	86.705 1.000	4.312
0.4400E-02 494.453	844.39	86.949 1.000	4.667
0.4420E-02 491.285	842.49	87.199 1.000	4.637
0.4440E-02 488.159	840.54	87.407 1.000	4.608

	0.4460E-02	485.075	838.59	87.615 1.000	4.965
	0.4480E-02	482.032	836.62	87.813 1.000	4.934
	0.4500E-02	479.028	834.65	88.033 1.000	
	0.4520E-02	476.063	832.67	88.244 1.000	5,263
	0.4540E-02	473.136	830.69	88.454 1.000	5.232
	0.4560E-02	470.248	828.69	88.665 1.000	5.201
	0.4580E-02	467.396	826.66	88.803 1.000	5.562
	0.4600E-02	464.580	824.68	89.090 1.000	5.530
	0.4620E-02	461.798	822.66	89.303 1.000	5.498
	0.4640E-02	459.051	820.62	89.473 1.000	5.860
	0.4660E-02	456.340	818.59	89.694 1.000	5.828
	0.4680E-02	453,663	816.55	89.949 1.000	6.192
	0.4700E-02	451.018	814.50	90.133 1.000	6.158
	0.4720E-02	448.406	812.44	90.351 1.000	6.125
	0.4740E-02	445.826	810.37	90.607 1.000	6.490
	0.4760E-02	443.278	808.29	90.788 1.000	6.456
6'	0.4780E-02	440.759	806.21	90.854 0.999	9 6.840
7	0.4800E-02	438.270	804.13	90.480 0.995	5 6.840
	0.4820E-02	435.810	802.07	90.110 0.990	6.840
	0.4840E-02	433.380	800.03	89.743 0.986	6.840
	0.4860E-02	430.978	798.00	89.380 0.982	6.840
	0.4880E-02	428.605	795.99	89.020 0.978	6.840
	0.4900E-02	426.258	794.00	88.662 0.975	6.840
	0.4920E-02	423.940	792.02	88.308 0.971	6.840
	0.4940E-02	421.649	790.05	87.957 0.967	6.840
	0.4960E-02	419.384	788.11	87.608 0.963	6.840
	0.4980E-02	417.144	786.17	87.263 0.959	6.840
	0.5000E-02	414.930	784.25	86.921 0.955	6.840

Appendix D:

Performance Calculations Varying Charge Mass of M30A1 Propellant

--- \$COMM

0 CARD

GREEN GUN TEST CASE - INDIAN HEAD SYSTEM 2 --> CARD

3 --> \$GUN CARD \$ 919 CUBIC INCHES CHAM = 0.01506TRAV = 6.840<u>^</u> CARD GRVE = 0.12852 LAND = 0.127 TWST = 25 G/L = 1.49 \$ ESTIMATES 2 --> CARD

\$ CPTS = 6 <-- 9 CARD 0.04455, 0.14732, 0.8260, 0.8913, 1.0592 \$ DIST = 0.0, ^-CARD --> \$ DIAM = 0.12965, 0.13655, 0.13929, 0.132588, 0.12852, 0.12852 CARD

9 --> \$PROJ CARD

PRWT = 49.89510 --> CARD

11 --> \$RESI CARD

NPTS = 512 --> CARD TRAV = 0.0, 0.00508, 0.04318, 0.1397, 7.62 13 --> CARD

PRES = 3.4474, 0.6894757, 0.6894757, 8.2737, 8.2737 14 --> CARD 71

15 --> \$INFO CARD POPT = 1,1,1,0,216 --> CARD RUN = 'GREEN GUN TEST CASE - M30A1 19P PERFORMANCE' 17 -->

\$ GRAD = 3 18 --> CARD

CARD

PRES = 448 TOL = 0.1 \$ conP = 219 --> CARD

20 --> \$PDIS CARD

SHOW = 'CHWT' DECK = 'PROP' NTH = 1 REMK = 'CHWT (KG)'

^-21 CARD 22 --> \$PDIS

CARD

SHOW = 'LDEN' DECK = 'OUT' REMK = 'L/D (G/CC)' MULT = 0.001 ^-23 CARD

SIGH\$ <--CARD NTH = 1 REMK = 'WEB(MM)' MULT = 1000. DECK = 'PROP' SHOW = 'WEB' 25 --> CARD

26 --> \$PDIS CARD REMK = 'PMAX (MPA)' SHOW = 'PMAX' DECK = 'OUT' <u>^</u> CARD

28 --> \$PDIS CARD SHOW = 'VMUZ' DECK = 'OUT' REMK = 'VMUZ (M/S)' ^ CARD

```
6.84000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          7861.0918
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        SHELL DENSITY (KG/M3):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              GROOVE/LAND RATIO (-):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  HEAT-LOSS OPTION:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         TRAVEL (M):
                                                                                                                                                                                                                                                                                                                                                                                                   TIME
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.01506
                                                                                                                                                                                                                                                                                      VARY = 'WEB' NTH = 1 TRY1 = 0.003 TRY2 = 0.0031 PMAX = 448
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.12700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0.01285
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      160.3163
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            11.3482
                                                                                                                                                                                                                                                                                                                                                                                                   DATE
                                                                                                                                                                                                   RHO = 1683
                                                                                                                                                                                                                                                                                                                                                                                                   IBHVG2.505
SHOW = 'ZMUZ(1)' DECK = 'OUT' REMK = 'Z @ EXIT'
                                           REMK = 'X @ B.O.
                                                                                                                                                                                              PD = 0.0004572 WEB = 0.003467
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CHAMBER VOLUME (M3):
                                                                                    NAME = 'PRIMER' CHWT = 0.12637 FORC = 146140
                                                                                                                                                    CHWT = 12.65 FORC = 1073374
                                                                                                                                                                          COV = 0.00105239 TEMP = 3036
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            LAND DIAMETER (M):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     SHELL CP (J/KG-K):
                                                                                                           TEMP = 3377
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            AIR HO (W/M**2-K):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  BORE AREA (M2):
                                                                                                                                                                                                                                                                                                                                VARY = 'CHWT' DECK = 'PROP' NTH = 1
                                                                                                                                                                                                                                                                                                                                                      FROM = 12.5 BY = 0.25 TO = 13.6
                                                                                                                                                                                                                      ALPH = 0.8063 BETA = 0.00196836
                                                                                                          COV = 0.0010838
                                          SHOW = 'X@BO(1)' DECK = 'OUT'
                                                                                                                                                                                                                                                                                                                                                                                                1GREEN GUN TEST CASE - M30A1 19P PERFORMANCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   25.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0.000102
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.12852
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            293.
                                                                                                                                                                                              LEN = 0.018288
                                                                                                                                                   NAME = 'M30A1'
                                                                                                          GAMA = 1.2015
                                                                                                                                                                         GAMA = 1.2375
                                                                                                                                                                                                                                          FORM = '19P'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           INITIAL SHELL TEMP (K):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    SHELL THICKNESS (M):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             GROOVE DIAMETER (M):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                TWIST (CALS/TURN):
                                                                34 --> $PRIM
                     32 --> $PDIS
                                                                                                                              37 --> $PROP
                                                                                                                                                                                                                                                                                                         CARD 45 --> $PARA
                                                                                                                                                                                                                                                                 43 --> $PMAX
                                                                                                                                                                                                                                                                                                                                                                            CARD 48 --> $END
                                                                                                                                                                                                                                                                                                                                                      CARD 47 -->
                                                                                                                                                                                                                                                                                                                                  CARD 46 -->
 31 -->
                                          33 -->
                                                                                     35 -->
                                                                                                         36 -->
                                                                                                                                                     38 -->
                                                                                                                                                                                                                                                                                      44 -->
                                                                                                                                                                                                                                             42 -->
                                                                                                                                                                                                  40 -->
                                                                                                                                                                                                                     CARD 41 -->
                                                                                                                                                                          39 -->
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     - GUN TUBE -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      TYPE:
                    CARD
                                                                                   CARD
                                                                                                                                                                         CARD
                                          CARD
                                                              CARD
                                                                                                         CARD
                                                                                                                             CARD
                                                                                                                                                    CARD
                                                                                                                                                                                              CARD
CARD
                                                                                                                                                                                                                                             CARD
                                                                                                                                                                                                                                                                CARD
                                                                                                                                                                                                                                                                                     CARD
```

1.490

CARD 30 --> \$PDIS

TYPE: - RESISTANCE - - RESISTANCE - - RESISTANCE OPTION: 1 WALL RESISTIVE PRESSURE (MPA) I I 0.000 3.447 3 2 0.005 0.689 4 - GENERAL - - GEN		TOTAL WEIGHT (KG): 49.895 WEIGHT PREDICTOR OPTION: 0		WALL HEATING FRACTION: 0.000 RESISTIVE FACTOR 1.000 FRICTION TABLE LENGTH: 5	TRAVEL (M) PRESSURE (MPA) I TRAVEL (M), PRESSURE (MPA)	0.043 0.689 5 7.620 8.274 0.140 8.274		PRINT STEP (S): 0.000000 MAX RELATIVE ERROR (-): 0.00200 STORE OPTION: 0 CONSTANT-PRESSURE OPTION: 0	
CE OPTION: ESSURE MULT IND (M) PRESSU (0 3 05 () 11 15: LAGRANGIAN		TOTAL		WALL F		ю 4		PRINT	
TYPE: RESISTANCE				T INDEX:	PRESSURE (MPA)	3.447			
	PROJECTILE -	TYPE:	ESISTANCE	AIR RESISTANCE OPTI RESISTIVE PRESSURE		~	GENERAL -	MAX TIME STEP (S): PRINT OPTIONS: GRADIENT MODEL: LAG	RECOIL

- PRIMER -

FORCE (J/KG): 146140.	WEIGHT (KG): 0.126370	TIME
FORC	WEIG	
1.2015	3377.0	DATE
GAMMA (-):	FLAME TEMP (K):	IBHVG2.505
	1.0838E-03	M30A1 19P PERFORMANCE
TYPE: PRIMER	COVOLUME (M3/KG):	1GREEN GUN TEST CASE - M30A1

- CHARGE 1 -

TYPE: M30A1		GRAINS:		1256.2	19P	WEIGHT (KG):	(KG):		12.5000
EROSIVE COEFF (-):	0.000000	CHARGE	CHARGE IGN CODE:		0	CHARGE	CHARGE IGN AT (S):		0.00000E+00
GRAIN LENGTH (M):	0.018288	GRAIN	GRAIN DIAMETER (M):		0.020387	PERF D	PERF DIAMETER (M):	4):	0.000457
INNER WEB (M):	0.003017	MIDDLE	MIDDLE WEB (M):	Ü	0.003017	OUTER	OUTER WEB (M):		0.003017
	PROPERTIES AT LAYER BOUNDARIES OF PERF SURFACES	AYER BOUNDA	RIES OF PERF	SURFACES	PROPERTI	ES AT LA	PROPERTIES AT LAYER BOUNDARIES OF		END SURFACES
	1ST	2ND	3RD	4 TH	1ST	H	2ND	3RD	4TH
AT DEPTH (M):	!	1 2 1 1	1 1 1	0.00000		1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.00000
ADJACENT LAYER WT 8:	1 1 1	1 1	1 1 1 1	100.000	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		100.000
DENSITY (KG/M3):	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1	1683.000	1 1 1	:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1683.000
GAMMA (-):		1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.2375	1	-	:	1	1.2375
FORCE (J/KG):	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1 1 1	1 1 1	1073374.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	!	!	1073374.
COVOLUME (M3/KG):	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.	1.0524E-03	1 1 1	:	1	1 1 1	1.0524E-03
FLAME TEMP (K):	1	1	1 1 1 1 1	3036.0	1 1 1	;	!		3036.0
BURNING RATE EXPS:		1 1 1 1	 	0.8063	3 3 8 6 8	:	1	1 1 1	0.8063
BURNING RATE COEFFS:	1 2 8 8 8 7	!	1.	1.9684E-03	1 1	:	1 1 5 1	1 1 2 4 2 1	1.9684E-03

PROPERTIES AT LAYER BOUNDARIES OF LAT SURFACES

4 TH	0.0000	100.000	1683.000	1.2375	1073374.	1.0524E-03	3036.0	0.8063	4E-03	05 DATE	FRAC	BURN	н	0.000	0.000	0.000	0.001		0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.003	0.003	0.003	0.004
	0.	10	168	1	107	1.052	3	0	1.9684E-03	IBHVG2.505	MEAN	TEMP	(K)	3377.	3342.	3311.	3284.		3283.	3259.	3237.	3218.	3201.	3185.	3172.	3159.	3148.	3139.	3130.
3RD	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	!	!	1 1 1	1		1 1 1		Ħ	BASE	PRESS	(MPA)	2.464	2.768	3.102	3.448		3.464	3.831	4.231	4.665	5.137	5.649	6.204	6.804	7.452	8.151	8.904
2ND		!	:		!	!		!		E	MEAN	PRESS	(MPA)	2.464	2.768	3.102	3.448		3.466	3.863	4.297	4.768	5.280	5.836	6.438	7.090	7.794	8.554	9.373
	1	:	:	:	;	:	;	:		ERFORMANC	BREECH	PRESS	(MPA)	2.464	2.768	3.102	3.448		3.467	3.880	4.330	4.820	5.352	5,929	6.555	7.233	7.965	8.755	9.608
1ST	1				1 1	1				1 19P P	ACC	(9)		0.	0.	0.	0.	EVED	0.	10.	21.	32.	45.	58.	73.	. 68	107.	125.	146.
		WT 8:	::			: (g)		:XPS:	COBFES:	ASE - M3	VEL	(M/S)		00.00	00.00	00.00	00.0	SHOT-START PRESSURE ACHIEVED	00.0	0.01	0.02	0.05	0.08	0.13	0.20	0.28	0.37	0.49	0.62
	H (M):	ADJACENT LAYER WT	DENSITY (KG/M3):		J/KG):	COVOLUME (M3/KG):	FLAME TEMP (K):	BURNING RATE EXPS:	RATE (TEST (TRAV	(M)		0.000	0.000	0.000	0.000	T PRES	0.00.0	000.0	000.0	0.000	000.0	0.000	000.0	0.000	000.0	000.0	0.000
	AT DEPTH (M):	ADJACEN	DENSITY	GAMMA (-):	FORCE (J/KG):	COVOLUM	FLAME T	BURNING	BURNING RATE COEFFS:	1GREEN GUN TEST CASE - M30A1 19P PERFORMANCE	TIME	(WS)		000.0	0.100	0.200	0.295	SHOT-STAR	0.300	0.400	0.500	0.600	0.700	0.800	0.900	1.000	1.100	1.200	1.300

1.400 (0.000	0.77	168.	10.526	10.256	9.715	3122.	0.004
0.	0.00.0	0.95	192.	11.514	11.205	10.587	3114.	0.005
000.0	000	1.15	219.	12.575	12.224	11.523	3108.	0.005
0.0	0.001	1.38	247.	13.715	13,319	12.527	3102.	900.0
~	0.001	1.64	277.	14.937	14.492	13.602	3096.	0.007
	0.001	1.92	310.	16.247	15.749	14.754	3091.	0.007
	0.001	2.24	345.	17.648	17.094	15.985	3086.	0.008
	0.001	2.60	383.	19.147	18.531	17.301	3082.	0.009
<u>.</u>	0.002	3.00	424.	20.747	20.066	18.705	3078.	0.010
~	0.002	3.43	468.	22.456	21.704	20.202	3075.	0.011
	0.002	3.92	515.	24.277	23.450	21.796	3071.	0.012
	0.003	4.45	565.	26.218	25.310	23.493	3068.	0.013
<i>-</i> :	0.003	5.03	620.	28.283	27.288	25.298	3065.	0.014
<u>.</u>	0.004	5.66	678.	30.479	29.391	27.214	3062.	0.015
	0.004	98.9	740.	32.812	31.624	29.249	3059.	0.016
	0.005	7.11	806.	35.288	33.994	31.406	3057.	0.018
0	900.0	7.93	867.	37.899	36.506	33.720	3054.	0.019
0	0.007	8.82	932.	40.663	39.167	36.174	3051.	0.020
_:	0.008	9.76	1000.	43.589	41.983	38.771	3049.	0.022
_:	600.0	10.78	1072.	46.681	44.959	41.516	3047.	0.024
Ξ.	0.010	11.87	1148.	49.948	48.104	44.416	3044.	0.025
	0.011	13.03	1229.	53.395	51.422	47.476	3042.	0.027
	0.012	14.28	1313.	57.029	54.920	50.702	3039.	0.029
	0.014	15.61	1403.	60.857	58.605	54.100	3037.	0.031
	0.015	17.03	1496.	64.885	62.482	57.676	3034.	0.034
	0.017	18.55	1595.	69.120	66.558	61.435	3032.	0.036
	0.019	20.16	1699.	73.566	70.838	65.382	3029.	0.039
	0.021	21.88	1807.	78.230	75.327	69.522	3026.	0.041
	0.024	23.71	1921.	83.117	80.032	73.860	3023.	0.044
	0.026	25.65	2041.	88.233	84.955	78.401	3020.	0.047
•	0.029	27.71	2165.	93.580	90.103	83.148	3017.	0.050
0	.032	29.90	2295.	99.164	95.478	88.105	3014.	0.053

0.057	0.060	0.064	0.068	0.072	0.077	0.081	5 DATE	FRAC	BURN	ᆏ	0.086	0.091	0.096	0.102	0.108	0.114	0.120	0.127	0.133	0.141	0.148	0.156	0.164	0.172	0.181	0.190	0.199	0.209	0.219	0.229
3011. (3007.	3004.	3000.	2996.	2992.	2987.	IBHVG2.505	MEAN	TEMP	(K)	2983.	2978.	2973.	2968.	2962.	2957.	2951.	2945.	2938.	2932.	2925.	2918.	2911.	2903.	2896.	2888.	2880.	2871.	2863.	2854.
93.274	98.658	104.257	110.086	116.143	122,416	128.903	Ħ	BASE	PRESS	(MPA)	135.600	142.503	149.606	156.901	164.380	172.032	179.846	187.808	195.905	204.120	212.435	220.792	229.186	237.616	246.059	254.489	262.882	271.212	279.453	287.579
101.083	106.920	112.992	119.298	125.838	132.610	139.613	M	MEAN	PRESS	(MPA)	146.841	154.290	161.954	169.823	177.889	186.140	194.564	203.147	211.871	220.720	229.674	238.714	247.817	256.958	266.112	275.253	284.353	293.386	302.322	311.133
104.987	111.052	117.359	123.904	130.685	137.707	144.968	CASE - M30A1 19P PERFORMANCE	BREECH	PRESS	(MPA)	152.462	160.184	168.128	176.284	184.644	193.195	201.924	210.816	219.854	229.020	238.294	247.675	257.132	266.628	276.138	285.634	295.089	304.473	313.756	322.910
2431.	2572.	2719.	2868.	3018.	3174.	3334.	0A1 19P F	ACC	(g)		3500.	3670.	3844.	4023.	4206.	4393.	4582.	4775.	4971.	5168.	5367.	5580.	5800.	6022.	6243.	6465.	6685.	6904.	7120.	7333.
32.21	34.67	37.26	40.00	42.89	45.92	49.11	CASE - M3	VEL	(W/S)		52.47	55.98	59.66	63.52	67.56	71.77	76.17	80.76	85.54	90.51	95.68	101.04	106.62	112.42	118.43	124.66	131.11	137.78	144.65	151.74
0.035	0.038	0.042	0.045	0.050	0.054	0.059		TRAV	(M)		0.064	0.069	0.075	0.081	0.088	0.095	0.102	0.110	0.118	0.127	0.136	0.146	0.157	0.168	0.179	0.191	0.204	0.217	0.232	0.246
4.600	4.700	4.800	4.900	5.000	5.100	5.200	1GREEN GUN TEST	TIME	(MS)		5.300	5.400	5.500	5.600	5.700	5.800	5.900	6.000	6.100	6.200	6.300	6.400	6.500	009.9	6.700	6.800	6.900	7.000	7.100	7.200
							16				0				7	7														

0.240	0.251	0.262	0.274	0.286	0.298	0.311	0.324	0.337	0.351	0.364	0.379	0.393	0.408	0.422	0.438	0.453	0.468	0.484	0.500	0.516	0.533	0.549	0.566	0.582	0.591		0.599	0.616
2846.	2837.	2828.	2818.	2809.	2800.	2790.	2781.	2771.	2761.	2752.	2742.	2732.	2722.	2713.	2703.	2693.	2684.	2674.	2665.	2655.	2646.	2637.	2628.	2619.	2614.		2610.	2601.
295,564	303,381	311.007	318.415	325.584	332.491	339,115	345.439	351.445	357.119	362.446	367.418	372.025	376.261	380.123	383.607	386.714	389.447	391.809	393,805	395.443	396.732	397.681	398.301	398.603	398.640		398.602	398.309
319.790	328.267	336,535	344.568	352.341	359,830	367.013	373.869	380.381	386,533	392.309	397.700	402.695	407.287	411.474	415.251	418.620	421.582	424.142	426.306	428.082	429.478	430.506	431.177	431.505	431.544		431.502	431.184
331.904	340.710	349.299	357.644	365.719	373.499	380.962	388.085	394.850	401.240	407.241	412.840	418.029	422.801	427.149	431.073	434,573	437.650	440.309	442.557	444.401	445.851	446.919	447.616	447.955	447.996		447.952	447.621
7543.	7748.	7948.	8142.	8330.	8512.	8686.	8851.	9009.	9158.	9297.	9428.	9549.	9660.	9761.	9852.	9933.	10005.	10067.	10119.	10162.	10195.	10220.	10236.	10243.	10244.	CTED	10243.	10235.
159.03	166.53	174.23	182.12	190.20	198.45	206.89	215.49	224.25	233.15	242.20	251.39	260.69	270.11	279.63	289.25	298.95	308.73	318.57	328.47	338.42	348.40	358.41	368.44	378.48	383.41	MAX DETECTED	388.53	398.57
0.262	0.278	0.295	0.313	0.332	0.351	0.371	0.393	0.414	0.437	0.461	0.486	0.511	0.538	0.565	0.594	0.623	0.654	0.685	0.717	0.751	0.785	0.820	0.857	0.894	0.913		0.932	0.972
7.300	7.400	7.500	7.600	7.700	7.800	7.900	8.000	8.100	8.200	8.300	8.400	8.500	8.600	8.700	8.800	8.900	9.000	9.100	9.200	9.300	9.400	9.500	9.600	9.700	9.749	LOCAL PRESSURE	9.800	9.900
																78	3									П		

0.633 0.650 0.667

446.977 430.565 397.739 2592. 446.037 429.660 396.906 2583. 444.817 428.486 395.825

10198. 10220.

418.61

408.60

10.000 1.012

10169.

428.60

10.200 1.096

2575.

		_	DATE	.	~	_				•		_			1	3		-4	63	•	_		•		.	m	10	0	-	7
0.685	0.702	0.719	505	FRAC	BURN	-	0.737	0.754	0.771	0.789	0.806	0.823	0.841	0.858	0.871	0.883	0.894	0.904	0.912	0.920	0.927	0.933	0.939	0.944	0.948	0.953	0.956	0.960	0.964	0.967
2566.	2558.	2550.	IBHVG2.505	MEAN	TEMP	(K)	2541.	2533.	2525.	2517.	2510.	2502.	2495.	2487.	2477.	2467.	2456.	2445.	2433.	2422.	2410.	2397.	2385.	2373.	2361.	2348.	2336.	2324.	2313.	2301.
394.508	392.972	391,231	Н	BASE	PRESS	(MPA)	389.298	387.187	384.913	382.488	379.925	377.237	374.435	371.325	366.317	360,296	353.651	346.586	339.234	331.697	324.051	316.359	308.668	301.020	293.445	285.978	278.719	271.682	264.864	258.261
427.058	425.391	423.501	30	MEAN	PRESS	(MPA)	421.404	419.115	416.647	414.017	411.237	408.320	405.281	401.907	396.476	389,945	382.739	375.076	367.103	358.929	350.637	342.294	333.954	325.659	317.445	309,346	301.474	293.843	286.449	279.288
443,333	441.600	439.637	PERFORMANCE	BREECH	PRESS	(MPA)	437.458	435.078	432.514	429.781	426.892	423.862	420.704	417.198	411.555	404.769	397.282	389.321	381.038	372.545	363.930	355.262	346.597	337.979	329.445	321.030	312.852	304.923	297.241	289.801
10134.	10093.	10047.	- M30A1 19P	ACC	(6)		.9666	9940.	9880.	9816.	9748.	9677.	9603.	9521.	9389.	9231.	9056.	8870.	8677.	8478.	8277.	8075.	7872.	7671.	7472.	7275.	7085.	6899	6720.	6546.
438.56	448.47	458.35	CASE - M	VEL	(W/S)		468.18	477.95	487.67	497.33	506.92	516.45	525.90	535.28	544.56	553.69	562.66	571.45	580.05	588.47	596.68	604.70	612.52	620.14	627.57	634.80	641.84	648.69	655.37	661.88
1.139	1.184	1.229		TRAV	(M)		1.275	1.323	1.371	1.420	1.470	1.521	1.574	1.627	1.681	1.736	1.791	1.848	1.906	1.964	2.023	2.083	2.144	2.206	2.268	2.331	2,395	2.460	2,525	2.591
10.300	10.400	10.500	1GREEN GUN TEST	TIME	(MS)		0 10.600	10.700	10.800	10.900	11.000	11.100	11.200	11.300	11,400	11.500	11.600	11.700	11.800	11.900	12.000	12.100	12.200	12.300	12.400	12.500	12.600	12.700	12.800	12.900
															79	9														

	2.657	668.21 674.39	6378.	282.597	272.354	251.869 245.681	2290.	0.970	
	9	680.40	6058.	268.878	259.150	239.693	2267.	9.60	
2.861 686	9	16.27	5905.	262.350	252.867	233.900	2256.	0.979	
2.930 69	69	691.99	5758.	256.035	246.788	228.294	2245.	0.982	
2.999 69	69	697.56	5615.	249.925	240.907	222.872	2235.	0.984	
3.069 70	70	703.00	5476.	243.961	235.167	217.579	2224.	0.986	
3.140 70	70	708.30	5339.	238.091	229.517	212.370	2214.	0.988	
3.211 7	7.1	713.47	5205.	232.362	224.003	207.285	2203.	0.990	
3.282 73	7	718.51	5075.	226.785	218.635	202.336	2192.	0.991	
3.354 7;	7:	723.43	4948.	221.365	213.419	197.526	2182.	0.993	
3.427 7:	7	728.22	4825.	216.102	208.353	192,855	2172.	0.994	
3.500 73	7	732.89	4706.	210.995	203.437	188.323	2161.	0.995	
3.574 7	7	737.45	4590.	206.040	198.669	183,926	2151.	0.996	
3.647 7	7	741.90	4478.	201.236	194.045	179.662	2141.	0.997	
3.722 7	7	746.23	4369.	196.578	189.562	175.529	2131.	0.997	
3.797 7		750.47	4264.	192.063	185.216	171.522	2121.	0.998	
3.872 7	7	754.60	4161.	187.687	181.004	167.638	2111.	0.998	
3.948 75	75	758.63	4062.	183.445	176.921	163.873	2102.	0.999	
4.024 76	76	762.57	3966.	179.333	172.963	160.224	2092.	0.999	
4.100 76	7	766.41	3873.	175.347	169.127	156.687	2083.	0.999	
.177 7	7	770.16	3783.	171.483	165.408	153.258	2073.	1.000	
4.254 7	7	773.83	3695.	167.738	161.803	149.934	2064.	1.000	
4.332 7	7	777.41	3610.	164.106	158.308	146.711	2055.	1.000	
4.410 7	7	780.91	3528.	160.584	154.918	143.586	2046.	1.000	
4.462 78	7	783.20	3475.	158.300	152.720	141.559	2040.	1.000	
PROPELLANT 1 BURNED	RN	3D OUT							
4.488 7	7	784.33	3448.	157.169	151.631	140.555	2037.	1.000	
4.567 7	7	787.68	3371.	153.865	148.451	137.623	2028.	1.000	
4.645 79	7	790.95	3296.	150.669	145.375	134.787	2019.	1.000	
4.725 7	7	794.14	3224.	147.578	142.400	132.044	2011.	1.000	
1GREEN GUN TEST CASE	C.A.		- M30A1 19P	PERFORMANCE	E)	Ħ	IBHVG2.5	.505	DATE

FRAC	BURN	Н	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
MEAN	TEMP	(K)	2002.	1994.	1986.	1978.	1970.	1962.	1954.	1947.	1939.	1932.	1925.	1917.	1910.	1903.	1897.	1890.	1883.	1876.	1870.	1863.	1857.	1851.	1845.	1838.	1832.	1829.	
BASE	PRESS	(MPA)	129.389	126.818	124.328	121.916	119.578	117.312	115.114	112.982	110.913	108.905	106.954	105.060	103.220	101.432	99.693	98.003	96.359	94.759	93.203	91.687	90.212	88.775	87.376	86.012	84.682	83.980	
MEAN	PRESS	(MPA)	139.520	136.732	134.032	131.415	128.880	126.422	124.038	121.725	119.481	117.303	115.188	113.134	111.138	109.198	107.313	105.479	103.696	101.961	100.272	98.629	97.029	95.470	93.952	92.473	91.031	90.269	
BREECH	PRESS	(MPA)	144.586	141.689	138.883	136.165	133.531	130.977	128.500	126.097	123.766	121.502	119.305	117.170	115.097	113.081	111.122	109.217	107.364	105.562	103.807	102.100	100.437	98.818	97.240	95.703	94.205	93.413	
ACC	(9)		3154.	3087.	3021.	2957.	2896.	2836.	2778.	2722.	2668.	2615.	2563.	2514.	2465.	2418.	2372.	2328.	2284.	2242.	2201.	2161.	2122.	2084.	2048.	2012.	1977.	1958.	
VEL	(M/S)		797.27	800.33	803.32	806.26	809.13	811.94	814.69	817.39	820.03	822.62	825.16	827.65	830.08	832.48	834.83	837.13	839.40	841.62	843.79	845.93	848.03	850.10	852.12	854.11	856.07	857.11	
TRAV	(M)		4.804	4.884	4.964	5.045	5.126	5.207	5.288	5.370	5.451	5.534	5.616	5.699	5.782	5.865	5.948	6.032	6.115	6.199	6.284	6.368	6.453	6.538	6.623	6.708	6.794	6.840	LE EXIT
TIME	(MS)		0 15.900	16.000	16.100	16.200	16.300	16.400	16.500	16.600	16.700	16.800	16.900	17.000	17.100	002.17.200	17.300	17.400	17.500	17.600	17.700	17.800	17.900	18.000	18.100	18.200	18.300	18.354	PROJECTILE EXIT

DATE

IBHVG2.505

1GREEN GUN TEST CASE - M30A1 19P PERFORMANCE

TIME (MS): 9.749 18.354 TAME (MS): 0.9128 6.8400 VELOCITY (M/S) 383.41 857.11 ACCELERATION (G): 10244. 1958. BREECH PRESS (MPA): 431.5436 90.2688 BASE PRESS (MPA): 398.6397 83.9798 MEAN PRESS (MPA): 38.6397 83.9798 MEAN TEMP (K): 2614. 1829. Z CHARGE I (-): 0.591 1.000 TOTAL CHEMICAL: 5.54 1.000 (1) INTERNAL GAS: 5658656. (2) WORK AND LOSSES: 2250076. (3) PROJECTILE KINETIC: 144706. (b) FRICTIONAL WORK TO TUBE: 0.6574. (c) PROJECTILE KINETIC: 144706. (d) PRICTIONAL WORK TO TUBE: 0.6574. (e) OTHER FRICTIONAL WORK: 71837. (f) WORK DONE AGAINST AIR: 66574. (g) HEAT CONVECTED TO BORE: 1697185.		dФ	100.00	60.24	39.76	32.39	2.73	0.26	00.00	1.27	0.12	3.00	00.00
TIME (MS): 9.749 TRAVEL (M): 0.9128 VELOCITY (M/S) 383.41 ACCELERATION (G): 10244. BREECH PRESS (MPA): 431.5436 9 AGAN TEMP (K): 2614. Z CHARGE 1 (-): C CHARGE 1 (-		JOULE	56586656.	34086580.	22500076.	18327256.	1545958.	144706.	0.	718397.	66574.	1697185.	.0
TIME (MS TRAVEL (VELOCITY ACCELERA BREECH F MEAN PRE BASE PRE C1) INT (1) INT (2) WORK (2) WORK (B) (C) (B) (C) (C) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	MUZZLE 18.354 6.8400 857.11 1958. 93.4133 90.2688 83.9798 1829.								3E:			 61	
TIME (MS TRAVEL (VELOCITY ACCELERA BREECH F MEAN PRE BASE PRE C1) INT (1) INT (2) WORK (2) WORK (B) (C) (B) (C) (C) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	9 0. 38 10 447. 431. 398.	SUMMARY				KINETIC:		ROTATIONAL	WORK TO TUE	IONAL WORK:	GAINST AIR:	TED TO BORE	GY:
V ')	TIME (MS): TRAVEL (M): VELOCITY (M/S) ACCELERATION (G): BREECH PRESS (MPA): MEAN PRESS (MPA): MEAN TEMP (K): Z CHARGE 1 (-):	ENERGY BALANCE	TOTAL CHEMICAL:	28 (1) INTERNAL GAS:		(A) PROJECTILE							

838.404 LOADING DENSITY (KG/M3): CHARGE WT/PROJECTILE WT:

0.465 PIEZOMETRIC EFFICIENCY: EXPANSION RATIO:

6.836

4.7334 4.4097 5.1440 5.5614 6.0699 111 DATE 1.0000 1.0000 1.0000 IBHVG2.505 1.0000 1.0000 /9/ PMAX (MPA) VMUZ (M/S) (C/CC) CHWT (KG) Z @ EXIT X @ B.O. WEB (MM) 862.41 857.11 867.33 871.55 875.17 15/ ZMUZ(1) 1 X@BO(1) VMUZ PMAX CHWT LDEN 448.00 448.00 WEB 448.00 448.00 448.00 14/ 1GREEN GUN TEST CASE - M30A1 19P PERFORMANCE PARAMETRIC VARIABLES: / 1/ PROP 1 OUT 1 OUT 1 PROP 1 OUT TUO / 7/ OUT 3.0168 3.0966 3.1791 3.2643 3.3527 18/ 12/ /4/ 3/ / 2/ /9/ 0.87160 0.83840 0.85500 0.88821 0.90481 121 **8** 0 12.500 12.750 13.000 13.500 /1/ 13.250

NO. OF		NO. OF	
COPIES	<u>ORGANIZATION</u>	COPIES	<u>ORGANIZATION</u>
2	DEFENSE TECHNICAL	1	DIRECTOR
_	INFORMATION CENTER		US ARMY RESEARCH LAB
	DTIC DDA		AMSRL D
	8725 JOHN J KINGMAN RD		D R SMITH
			2800 POWDER MILL RD
	STE 0944		ADELPHI MD 20783-1197
	FT BELVOIR VA 22060-6218		ADELI III NID 20/03-117/
1	HQDA	1	DIRECTOR
1	DAMO FDT	•	US ARMY RESEARCH LAB
			AMSRL DD
	400 ARMY PENTAGON		2800 POWDER MILL RD
	WASHINGTON DC 20310-0460		
_			ADELPHI MD 20783-1197
1	OSD		PERCEOD
	OUSD(A&T)/ODDDR&E(R)	1	DIRECTOR
	R J TREW		US ARMY RESEARCH LAB
	THE PENTAGON		AMSRL CI AI R (RECORDS MGMT)
	WASHINGTON DC 20301-7100		2800 POWDER MILL RD
			ADELPHI MD 20783-1145
. 1	DPTY CG FOR RDA		
	US ARMY MATERIEL CMD	3	DIRECTOR
	AMCRDA		US ARMY RESEARCH LAB
	5001 EISENHOWER AVE		AMSRL CI LL
	ALEXANDRIA VA 22333-0001		2800 POWDER MILL RD
			ADELPHI MD 20783-1145
1	INST FOR ADVNCD TCHNLGY		
•	THE UNIV OF TEXAS AT AUSTIN	1	DIRECTOR
	PO BOX 202797	_	US ARMY RESEARCH LAB
	AUSTIN TX 78720-2797		AMSRL CI AP
	AUSTIN 1A 76720-2797		2800 POWDER MILL RD
1	DADDA		ADELPHI MD 20783-1197
1	DARPA		TABLET IN MED 20100 1131
	B KASPAR		
	3701 N FAIRFAX DR		ABERDEEN PROVING GROUND
	ARLINGTON VA 22203-1714		ABERDEEN FROVING GROUND
1	NAVAL SURFACE WARFARE CTR	4	DIR USARL
1		•	AMSRL CI LP (BLDG 305)
	CODE B07 J PENNELLA		ANSKE CI EI (BEDG 303)
	17320 DAHLGREN RD		•
	BLDG 1470 RM 1101		
	DAHLGREN VA 22448-5100		
1	US MILITARY ACADEMY		
1			
	MATH SCI CTR OF EXCELLENCE		
	MADN MATH		
	MAJ HUBER		
	THAYER HALL		
	WEST POINT NY 10996-1786		

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Payls Highway, Suite 1204, Artington, VA 22202-43202, and to the Office of Management and Budget, Paperwork Reduction Project/0704-0183. Washington, De 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED Final, Aug 98-Apr 99 September 2000 5. FUNDING NUMBERS 4. TITLE AND SUBTITLE Minimizing Life-Cycle Costs of Gun Propellant Selection Through Model-Based Decision Making: A Case Study in Environmental Screening and Performance 622618.AH80 Testing 6. AUTHOR(S) Ronald D. Anderson and Betsy M. Rice 8. PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) REPORT NUMBER U.S. Army Research Laboratory ARL-TR-2326 ATTN: AMSRL-WM-BE Aberdeen Proving Ground, MD 21005-5066 10.SPONSORING/MONITORING 9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) AGENCY REPORT NUMBER Strategic Environmental Research and Development Program 901 North Stuart Street, Suite 303 Arlington, VA 22203 11. SUPPLEMENTARY NOTES 12b. DISTRIBUTION CODE 12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. ABSTRACT (Maximum 200 words) This work demonstrates the first phases of a newly proposed gun propellant formulation process that will minimize life-cycle costs through science-based design. This new approach proposes maximal use of modeling and simulation in the earliest phases of the developmental cycle to screen candidate formulations, resulting in elimination of probable poor performers and identification of the most promising test candidates. The screening and identification of propellant formulations are demonstrated under the assumption of a specific weapon platform and user requirements. The process of selecting a propellant for the assumed gun system application has been distilled into measurable steps, leading from a set of candidate materials, through logical and numerical filters, to a shorter list of energetic materials demonstrated as viable weapon platform choices. Environmental filtering and performance modeling are used to screen propellants through a well-defined sequence of tests designed to weed out materials not meeting safety, energy, or manufacturability standards. Because much of the testing is performed by computer modeling, the gun systems and energetic materials need not be present (or even existent) in order to be described and matched against performance requirements for future applications. The calculations demonstrate that utilizing computer models rather than physical testing in the early developmental stages of the formulation process can produce enormous savings in labor, material, and environmental costs, along with a tremendous reduction in the time required to select a "best candidate" propellant. 15. NUMBER OF PAGES 14. SUBJECT TERMS propellant, cost minimization, gun, performance 78 16. PRICE CODE 20. LIMITATION OF ABSTRACT

OF REPORT

17. SECURITY CLASSIFICATION

UNCLASSIFIED

19. SECURITY CLASSIFICATION OF ABSTRACT

UNCLASSIFIED

18. SECURITY CLASSIFICATION

UNCLASSIFIED

OF THIS PAGE

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. ARL Report Num	ber/Author_	ARL-TR-2326 (Anderson)	Date of Report	September 2000
2. Date Report Rece	ived			
		(Comment on purpose, related project		or which the report will be
4. Specifically, how	is the report b	peing used? (Information source, design	gn data, procedure, source	of ideas, etc.)
		ort led to any quantitative savings as tc? If so, please elaborate.		
		ou think should be changed to improve		
	Org	ganization		
CURRENT	Na	me	E-mail Name	
ADDRESS	Str	eet or P.O. Box No.		
	Cit	y, State, Zip Code		•
7. If indicating a Cha or Incorrect address b		ss or Address Correction, please provide	de the Current or Correct a	ddress above and the Old
	Org	ganization		
OLD	Na	me		
ADDRESS	Str	eet or P.O. Box No.		
	Cit	y, State, Zip Code		ţ
	æ	emove this sheet fold as indicated tan	e closed and mail)	

(DO NOT STAPLE)