Piyush jha Total MLAssist - Personalised DPP

Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Vector:

48.	Given $\vec{a}=x\hat{i}+y\hat{j}+2\hat{k}$, $\vec{b}=\hat{i}-\hat{j}+\hat{k}$, $\vec{c}=\hat{i}+2\hat{j}$; $(\vec{a}^{\top}\vec{b})=\pi/2$, $\vec{a}\cdot\vec{c}=4$ then			
	(A) $[\vec{a}\vec{b}\vec{c}]^2 = \vec{a} $	(B) $[\vec{a}\vec{b}\vec{c}] = \vec{a} $	(C) $[\vec{a}\vec{b}\vec{c}] = 0$	(D) $[\vec{a}\vec{b}\vec{c}] = \vec{a} ^2$
	. ^	^ - ^ ^	^ ^ ^	
49.	If the volume of a parallopiped, whose coterminos edges are given by the vectors $\vec{a} = \hat{i}$ $\vec{b} = 2\hat{i} + 4\hat{j} - n\hat{k}$ and $\vec{c} = \hat{i} + n\hat{j} + 3\hat{k}$ ($n \ge 0$), is 158 cu. units, Then: [JEE (Mair			
				n: [JEE (Main)-2020]
	$(1) \vec{a} \cdot \vec{c} = 17$	$(2) \vec{b} \cdot \vec{c} = 10$	(3) n = 9	(4) n = 7
	-		1-1	-
29.	Let S be the reflection of a point Q with respect to the plane given by $\vec{r} = -(t+p)\hat{i} + t\hat{j} + (1+p)\hat{k}$ where t, p are real parameters and \hat{i} , \hat{j} , \hat{k} are the unit vectors along the three positive coordinate axes. If the position vectors of Q and S are $10\hat{i} + 15\hat{j} + 20\hat{k}$ and $\alpha\hat{i} + \beta\hat{j} + \gamma\hat{k}$ respectively, then which of the following is/are TRUE? [JEE (Advanced)-2022] (A) $3(\alpha + \beta) = -101$ (B) $3(\beta + \gamma) = -71$ (C) $3(\gamma + \alpha) = -86$ (D) $3(\alpha + \beta + \gamma) = -121$			
62.	\vec{a} , \vec{b} and \vec{c} be three vectors having magnitudes 1, 1 and 2 respectively. If $\vec{a} \times (\vec{a} \times \vec{c}) + \vec{b}$ then the acute angle between \vec{a} & \vec{c} is:			
	(A) π/6	(B) π /4	(C) π/3	(D) 5 π/12
				-
10.	If the three points with position vectors $(1, a, b)$; $(a, 2, b)$ and $(a, b, 3)$ are collinear in space then the value of $a + b$ is			
	(A) 3	(B) 4	(C) 5	(D) none