Chapter 6: Asymmetric Information

Ch 37 in H. Varian 8th Ed.

Slides by Mariona Segú, CYU Cergy Paris Université
Inspired by Michael D. Robinson, Mount Holyoke College

Information in Competitive Markets

So far...

→ We have assumed that all agents are fully informed about traded commodities and other aspects of the market.

But... This might not be true in some cases:

- → Quality is hard to tell. Ex: labor market
- What about markets for medical services, or insurance, or used cars?

Asymmetric Information in Markets

Examples:

- → A doctor knows more about medical services than does the buyer.
- → An insurance buyer knows more about his riskiness than does the seller.
- → A used car's owner knows more about it than does a potential buyer.

Asymmetric Information in Markets

- → Markets with one side or the other imperfectly informed are markets with imperfect information.
- → Imperfectly informed markets with one side better informed than the other are markets with asymmetric information.
- → In what ways can asymmetric information affect the functioning of a market?
- → Two applications will be considered:
 - 1. Adverse Selection
 - 1. Solved with signaling
 - 2. Moral Hazard
 - 1. Solved with incentives contracting.

Outline

- 1. The Lemons market
- 2. Adverse selection with quality choice
- 3. Signaling
- 4. Moral Hazard
- Incentives contracting

- → Consider a used car market.
- → Two types of cars; "lemons" and "peaches".
- → Each lemon seller will accept \$1,000, a buyer will pay at most \$1,200.
- → Each peach seller will accept \$2,000, a buyer will pay at most \$2,400.

Perfect information

- → If every buyer can tell a **peach** from a **lemon**, then lemons sell for between \$1,000 and \$1,200, and peaches sell for between \$2,000 and \$2,400.
- → Gains-to-trade are generated when buyers are well informed.

Asymmetric information

- → Suppose no buyer can tell a peach from a lemon before buying.
- → What is the most a buyer will pay for any car?

- \rightarrow Let q be the fraction of peaches.
- \rightarrow 1 q is the fraction of lemons.
- → Expected value to a buyer of any car is at most

$$EV = 1200(1 - q) + 2400q$$

- → Suppose EV > \$2000.
- → Every seller can negotiate a price between \$2000 and \$EV (no matter if the car is a lemon or a peach).
- → All sellers gain from being in the market.

- → Suppose EV < \$2000.</p>
- → A peach seller cannot negotiate a price above \$2000 and will exit the market.
- → So all buyers know that remaining sellers own lemons only.
- → Buyers will pay at most \$1200 and only lemons are sold.

- → Hence "too many" lemons "crowd out" the peaches from the market.
- → Gains-to-trade are reduced since no peaches are traded.
- → The presence of the lemons inflicts an external cost on buyers and peach owners.
- → Market failure: there is an externality
 - when an individual decides to try to sell a bad car, he affects the purchasers' perceptions of the quality of the average car on the market

- → How many lemons can be in the market without crowding out the peaches?
- → Buyers will pay \$2000 for a car only if

$$EV = 1200(1 - q) + 2400q \ge 2000$$
$$\Rightarrow q = \frac{2}{3}$$

→ So if over one-third of all cars are lemons, then only lemons are traded.

The Lemons market - Equilibrium

→ Pooling equilibrium: A market equilibrium in which both types of cars are traded, and buyers cannot distinguish the type of car.

→ Separating equilibrium: A market equilibrium in which only one of the two types of cars is traded, or both are traded but can be distinguished by the buyers.

- → What if there is more than two types of cars?
- → Suppose that
 - car quality is Uniformly distributed between \$1000 and \$2000
 - any car that a seller values at x is valued by a buyer at x+300.
- → Which cars will be traded?

So sellers who value their cars at more than \$1800 exit the market.

The distribution of values of cars remaining on offer

1000 Seller values

So now sellers who value their cars between \$1700 and \$1800 exit the market.

- → Where does this unraveling of the market end?
- \rightarrow Let v_H be the highest seller value of any car remaining in the market.
- → The expected seller value of a car is

$$\frac{1}{2}\times 1000 + \frac{1}{2}v_H$$

→ So a buyer will pay at most:

$$\frac{1}{2} \times 1000 + \frac{1}{2}v_H + 300$$

→ This must be the price which the seller of the highest value car remaining in the market will just accept; i.e.

$$\frac{1}{2} \times 1000 + \frac{1}{2}v_H + 300 = v_H$$

$$\Rightarrow v_H = 1600$$

→ This drives out all cars valued by sellers at more than \$1600.

- → This is an example of ADVERSE SELECTION
 - There is an adverse selection of one type of cars (low-quality ones)
- → Adverse selection refers to situations where one side of the market can't observe the "type" or quality of the goods on other side of the market.
- → Adverse selection is the hidden type problem
- → The term adverse selection was first used in the insurance industry to describe the fact that only more risky clients would contract an insurance
 - Solution: compulsory insurance

→ Now assume that each seller can choose the quality, or value, of her product.

EXAMPLE

- → Two umbrellas: high-quality and low-quality.
- → Which will be manufactured and sold?

- → Buyers value a high-quality umbrella at \$14 and a low-quality umbrella at \$8.
- → Before buying, no buyer can tell quality.
- → Marginal production cost of a high-quality umbrella is \$11.
- → Marginal production cost of a low-quality umbrella is \$10.

- → Suppose every seller makes only high-quality umbrellas.
- → Every buyer pays \$14 and sellers' profit per umbrella is \$14 \$11 = \$3.
- → But then a seller can make low-quality umbrellas for which buyers still pay \$14, so increasing profit to \$14 - \$10 = \$4.

- → There is no market equilibrium in which only high-quality umbrellas are traded.
- → Is there a market equilibrium in which only low-quality umbrellas are traded?

- → All sellers make only low-quality umbrellas.
- → Buyers pay at most \$8 for an umbrella, while marginal production cost is \$10.
- → There is no market equilibrium in which only low-quality umbrellas are traded.

- → Now we know there is no market equilibrium in which only one type of umbrella is manufactured.
- → Is there an equilibrium in which both types of umbrella are manufactured?

- \rightarrow A fraction q of sellers make high-quality umbrellas; 0 < q < 1.
- \rightarrow Buyers' expected value of an umbrella is EV = 14q + 8(1 q) = 8 + 6q.
- \rightarrow High-quality manufacturers must recover the manufacturing cost, EV = 8 + 6 $q \ge 11 \implies q \ge \frac{1}{2}$

- → So at least half of the sellers must make high-quality umbrellas for there to be a pooling market equilibrium.
- → But then a high-quality seller can switch to making low-quality and increase profit by \$1 on each umbrella sold.

- → Since all sellers reason this way, the fraction of high-quality sellers will shrink towards zero
- → But then buyers will pay only \$8.
- → So, there is no equilibrium in which both umbrella types are traded.

To sum up

- → The market has no equilibrium
 - with just one umbrella type traded (separating eq.)
 - with both umbrella types traded (pooling eq.)
- → So the market has no equilibrium at all!
- → Adverse selection has destroyed the entire market!
 - Low-quality items crowded out the high-quality items because of the high cost of acquiring information

3. Signaling

- → Adverse selection is an outcome of an informational deficiency.
- → What if information can be improved by high-quality sellers **signaling** credibly that they are high-quality?
- → E.g. warranties, professional credentials, references from previous clients etc.

- → A labor market has two types of workers: high-ability and low-ability.
- \rightarrow A high-ability worker's marginal product is $a_{\rm H}$.
- \rightarrow A low-ability worker's marginal product is $a_{\rm L}$.
- $\rightarrow a_{L} < a_{H}$.

- → A fraction h of all workers are high-ability.
- \rightarrow 1 h is the fraction of low-ability workers.
- → Each worker is paid his expected marginal product.
- → If firms knew each worker's type they would
 - pay each high-ability worker $w_H = a_H$
 - pay each low-ability worker $w_L = a_L$.

→ If firms cannot tell workers' types then every worker is paid the (pooling) wage rate; i.e. the expected marginal product $w_P = (1 - h)a_I + ha_H$.

$$\rightarrow w_{P} = (1 - h)a_{L} + ha_{H} < a_{H}$$

- → The pooling wage is lower than the wage paid to high-ability workers if the firm can know the type
- → So high-ability workers have an incentive to find a credible signal.

- → Workers can acquire "education".
- \rightarrow Education costs a high-ability worker c_{H} per unit
- \rightarrow and costs a low-ability worker c_L per unit.
- $\rightarrow c_{\rm L} > c_{\rm H}$.

- → Suppose that education has no effect on workers' productivities; i.e., the cost of education is a deadweight loss.
- \rightarrow High-ability workers will acquire $e_{\rm H}$ education units if
 - 1. $w_H w_I = a_H a_I > c_H e_H$, and
 - 2. $W_H W_L = a_H a_L < c_L e_H$.
- 1. Acquiring e_H units of education benefits high-ability workers since increase in salary is higher than cost
- 2. Acquiring e_H education units hurts low-ability workers since for them it is more costly to acquire the same education.
 - Hence high-ability workers can separate themselves from low-ability

 $\rightarrow a_H - a_L > c_H e_H$ and $a_H - a_L < c_L e_H$ require that

$$\frac{a_H - a_L}{c_L} < e_H^* < \frac{a_H - a_L}{c_H}$$

→ Acquiring such an education level credibly signals high-ability, allowing high-ability workers to separate themselves from low-ability workers.

Is this an equilibrium?

→ For firms: YES. They are paying each worker his or her marginal product, so the firms have no incentive to deviate

But...

- \rightarrow Q: Given that high-ability workers acquire e_H units of education, how much education should low-ability workers acquire?
- \rightarrow A: Zero. Low-ability workers will be paid $w_L = a_L$ so long as they do not have e_H units of education and they are still worse off if they do.

→ So, YES. This is an equilibrium → a separating equilibrium

- → Signaling can improve information in the market.
- → But total output did not change, and education was costly so signaling worsened the market's efficiency.
 - Since we assumed that education does not increase productivity, which is a strong assumption
- → So improved information need not improve gains-to-trade.

This is not always true!

→ For the used cars market, acquiring a signal (a warranty) can increase efficiency by allowing a separating equilibrium

4. Moral Hazard

With adverse selection, moral hazard is another problem in the insurance industry.

- → If you have full car insurance, are you more likely to leave your car unlocked?
- → Moral hazard is the lack of incentives to take care of something or of yourself.
- → Trade-off:
 - Too little insurance means that people bear a lot of risk,
 - Too much insurance means that people will take inadequate care.
- → Moral hazard is a consequence of asymmetric information.
 - The issue is that *care* is not observable.

Moral Hazard

- → If an insurer knows the exact risk from ensuring an individual, then a contract specific to that person can be written.
- → If all people look alike to the insurer, then one contract will be offered to all insurees. High-risk and low-risk types are then pooled, causing low-risks to subsidize high-risks.

Moral Hazard

- → Examples of efforts to avoid moral hazard by using signals are:
 - Higher life and medical insurance premiums for smokers or heavy drinkers of alcohol
 - Lower car insurance premiums for drivers with histories of safe driving.
- → Moral hazard is the hidden action problem (instead of a hidden type, as before).

How can I get someone to do something for me?

→ With the appropriate incentive system

→ This question will involve asymmetric information...

EXAMPLE

- → A worker is hired by a principal to do a task.
- → Only the worker knows the effort she exerts (asymmetric information).
- → The effort exerted affects the principal's payoff.

→ The principal's problem: design an incentives contract that induces the worker to exert the amount of effort that maximizes the principal's payoff.

→ e is the agent's effort

 \rightarrow Principal reward is y = f(e)

 \rightarrow An incentive contract is a function s(y) specifying the worker's payment when the principal reward is y. The principal's profit is thus

$$\Pi_P = y - s(y) = f(e) - s(f(e))$$

- \rightarrow Let \tilde{u} be the worker's (reservation) utility of not working.
- ightarrow To get the worker's participation, the contract must offer the worker a utility of at least \tilde{u}
- \rightarrow The worker's utility cost of an effort level e is c(e)

→ So the principal's problem is to choose e to

$$\max_{e} \Pi_{P} = f(e) - s(f(e))$$

Subject to $s(f(e)) - c(e) \ge \tilde{u}$ (participation constraint)

- → To maximize his profit the principal agent designs the contract to provide the worker with his reservation utility level
- → That is...

→ The principal's problem becomes

$$\max_{e} \Pi_{P} = f(e) - s(f(e))$$

subject to $s(f(e)) - c(e) = \tilde{u}$ (participation constraint)

Participation constraint is now an equality!

To solve it, substitute s(f(e)) in the maximization

$$\max_{e} \Pi_{P} = f(e) - c(e) - \tilde{u}$$

The principal's profit is maximized when

$$f'(e) = c'(e) \Longrightarrow e = e^*$$

The contract that maximizes the principal's profit insists upon the worker effort level e* that equalizes the worker's marginal effort cost to the principal's marginal payoff from worker effort.

→ How can the principal induce the worker to choose e = e*?

- \rightarrow e = e* must be most preferred by the worker.
- → So, the contract s(y) must satisfy the incentive-compatibility constraint:

$$s(f(e^*)) - c(e^*) \ge s(f(e)) - c(e)$$
 for all $e \ge 0$

Meaning: the worker's payoff of putting effort e* must be higher than the payoff from putting any other level of effort

Rental Contracting

- → Examples of incentives contracts:
- (i) Rental contracts: The principal keeps a lump-sum R for himself and the worker gets all profit above R; i.e.

$$s(f(e)) = f(e) - R$$

→ Why does this contract maximize the principal's profit?

Rental Contracting

→ Given the contract

$$s(f(e)) = f(e) - R$$

the worker's payoff is

$$s(f(e)) - c(e) = f(e) - R - c(e)$$

and to maximize this the worker should choose the effort level for which

$$f'(e) = c'(e)$$
 that is $e = e^*$

Rental Contracting

- → How large should be the principal's rental fee R?
- → The principal should extract as much rent as possible without causing the worker not to participate, so R should satisfy

$$s(f(e^*)) - c(e^*) - R = \tilde{u}$$

This is:

$$R = s(f(e^*)) - c(e^*) - \tilde{u}$$

Other Incentives Contracts

(ii) Wages contracts: In a wages contract the payment to the worker is

$$s(e) = we + K$$

w is the wage per unit of effort, equal to marginal product

$$w = MP(e^*)$$

K is a lump-sum payment, chosen to satisfy the participation constraint

K makes the worker just indifferent between participating and not participating.

Other Incentives Contracts

(ii) Wages contracts: worker's problem

$$\Pi_A = s(f(e)) - c(e)$$

Here s(e) does not depend on f(e). The problem becomes:

$$\Pi_A = we + K - c(e)$$

The worker chooses e such that w = MC(e)

Since the wage is $MP(e^*)$, the optimal choice of the worker will be e^* such that $MP(e^*) = MC(e^*)$

which is just what the firm wants.

Other Incentives Contracts

- (iii) Take-it-or-leave-it: Choose $e = e^*$ and be paid a lump-sum L, or choose $e \neq e^*$ and be paid zero.
- \rightarrow L is chosen to make the worker indifferent between participating and not participating.

$$L^* - c(e^*) = \tilde{u}$$
 so $L^* = \tilde{u} + c(e^*)$

 \rightarrow If the worker chooses $e \neq e^*$ he gets a utility equal to -c(e), so the worker will choose $e = e^*$ and get a utility equal to \tilde{u}

Incentives Contracts in General

- → The common feature of all efficient incentive contracts is that they make the worker the full residual claimant on profits.
- → I.e. the last part of profit earned must accrue entirely to the worker.

- → At this point all these schemes are equivalent, no reason to choose between them
 - They all give the worker a utility equal to \tilde{u}
 - All give workers the incentive to set an effort equal e^{st}