Theorem 0.1. $\pi_1(S^1) = \mathbb{Z}$

Corollary 0.2 (The Fundamental Theorem of Algebra). Let $p(z) = z^n + a_{n-1}z^{n-1} + \ldots + a_0$ be a complex polynomial. If n > 0, then p has a complex root. Thus, by the division algorithm, for some $a_i \in \mathbb{C}$,

$$p(z) = \prod (z - a_i)^{n_i}$$

Proof. Suppose $p(z) \neq 0$. Then we can define

$$g(z) = \frac{p(z)}{\|p(z)\|}$$

This is a function of $g: \mathbb{C} \to S^1$. We can also view it as a family of loops based at $x_0 = \frac{p(0)}{\|p(0)\|}$:

$$g(z) = g(re^{i\theta}) = \gamma_r(\theta)$$

This is a loop in S^1 for each r, that varies continuously with r. Therefore,

$$\gamma_r \simeq \gamma_{r'}$$

for any two $r, r' \geq 0$. Note γ_0 is a constant loop, so $\gamma_0 = 0 \in \pi_1(S^1)$. Furthermore, for $r \gg 0$, namely, $r > \max\{1, ||a_{n-1}|| + \ldots + ||a_0||\}$,

$$||z||^n > ||a_{n-1}|| \cdot ||z^{n-1}|| + \ldots + ||a_0|| \ge ||a_{n-1}z^{n-1} + \ldots + a_0||.$$

Therefore, we can form the homotopy $P(z,t) = z^n + t(a_{n-1}z^{n-1} + \ldots + a_0) + x_0$. This demonstrates $\gamma_r(\theta) \simeq [r^n e^{i\theta n}] = n \in \pi_1(S^1)$. Therefore, n = 0, and p was constant to begin with.

Next class, whenever that may be, we will show the next two excellent corollaries of the Theorem listed above:

Corollary 0.3. If $f: S^2 \to \mathbb{R}^2$ is a continuous function, then there exist antipodal points x, -x such that f(x) = f(-x).

Corollary 0.4. If $A, B, C \subseteq S^2$ are 3 closed sets covering S^2 , then at least one of them contains a pair of antipodal points.