Statistic Machine Learning

Probability Inequalities(2)

Lecture Notes 10: Probability Inequalities(2)

Professor: Zhihua Zhang Scribe:

10 Probability Inequalities(2)

10.1 Hoeffding's Inequality

If X_1, \ldots, X_n are independent random variables with a finite mean value such that for some non-empty interval I, $\mathbb{E}e^{\lambda X_i}$ is finite. Then we define

$$S = \sum_{i=1}^{n} (X_i - \mathbb{E}X_i)$$

. Assume X_i takes its values in a bounded interval $[a_i, b_i]$. Then

$$\mathbb{P}(S \ge t) \le \exp\left(-\frac{2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2}\right)$$

for all t > 0.

Lemma 10.1. (Hoeffding's Lemma) Let Y be a random variable with $\mathbb{E}Y = 0$, taking values in a bounded interval [a,b] and let $\psi_Y(\lambda) = \log \mathbb{E}e^{\lambda Y}$. Then $\psi_Y''(\lambda) \leq \frac{(b-a)^2}{4}$ and $\psi_Y(\lambda) \leq \frac{\lambda^2}{2} \frac{(b-a)^2}{4}$.

We first show that if Hoeffding's lemma is true, then Hoeffding's inequality is also true.

Proof. (Hoeffding's Lemma \rightarrow Hoeffding's Inequality)

Let
$$Y_i = X_i - \mathbb{E}X_i$$
. So $\mathbb{E}Y_i = 0$, $S = \sum_{i=1}^n Y_i$ and $Y_i \in [a_i - \mathbb{E}Y_i, b_i - \mathbb{E}Y_i]$.

$$\Pr(S \ge t) \le \frac{\mathbb{E}e^{\lambda S}}{e^{\lambda t}}$$

$$= \exp(-\lambda t + \log \mathbb{E}e^{\lambda S})$$

$$(Y_i's \text{ are independent})$$

$$= \exp(-\lambda t + \log \prod_{i=1}^n \mathbb{E}e^{\lambda Y_i})$$

$$= \exp(-\lambda t + \sum_{i=1}^n \log \mathbb{E}e^{\lambda Y_i})$$

$$\le \exp(-\lambda t + \frac{\lambda^2}{2} \sum_{i=1}^n \frac{(b_i - a_i)^2}{4})$$

$$\le \exp(-\frac{2t^2}{\sum_{i=1}^n} (b_i - a_i)^2)$$

Next, we will give two proofs for Hoeffding's Lemma.

Proof. Let $g(y) = \exp(-\psi_Y(\lambda))e^{\lambda y}f(y)$, then we have

$$\int g(y)dy = \frac{\int e^{\lambda y} f(y)dy}{\exp(\psi_Y(\lambda))} = 1$$

Because $Y \in [a,b]$, we can get $|Y - \frac{a+b}{2}| \le \frac{b-a}{a}$. So $\mathbb{E}(Y - \frac{a+b}{2})^2 = \mathbb{E}((Y - \mathbb{E}Y) + (\mathbb{E}Y - \frac{a+b}{2}))^2 = \mathbb{E}(Y - \mathbb{E}Y)^2 + (\mathbb{E}Y - \frac{a+b}{2})^2$. So $Var(Y) = \mathbb{E}(Y - \mathbb{E}Y)^2 \le \mathbb{E}(Y - \frac{a+b}{2})^2 \le \frac{(b-a)^2}{4}$. Thus

$$\begin{split} \mathbb{E}(Y - \mathbb{E}_g Y)^2 &= \int (y^2 - 2y \mathbb{E}_g Y + \mathbb{E}_g^2(Y)) g(y) dy \\ &= \exp(-\psi_Y(\lambda)) \int y^2 e^{\lambda y} f(y) dy - 2 \exp(-2\psi_Y(\lambda)) \int y e^{\lambda y} f(y) \int y e^{\lambda y} f(y) dy dy + \mathbb{E}_g^2(Y) \\ &= \exp(-\psi_Y(\lambda)) \int y^2 e^{\lambda y} f(y) dy - 2 [\exp(-\psi_Y(\lambda))]^2 \left(\int y e^{\lambda y} f(y) dy \right)^2 + \\ &[\exp(-\psi_Y(\lambda))]^2 \left(\int y e^{\lambda y} f(y) dy \right)^2 \\ &= \exp(-\psi_Y(\lambda)) \int y^2 e^{\lambda y} f(y) dy - [\exp(-\psi_Y(\lambda))]^2 \left(\int y e^{\lambda y} f(y) dy \right)^2 \\ &= \exp(-\psi_Y(\lambda)) \mathbb{E}_f(Y^2 e^{\lambda Y}) - \exp(-2\psi_Y(\lambda)) (\mathbb{E}_f(Y e^{\lambda Y}))^2 \\ &\leq \frac{(b-a)^2}{4} \end{split}$$

By Taylor's expansion, we have

$$\psi_Y(\lambda) = \psi_Y(0) + \lambda \psi_Y'(0) + \frac{\lambda^2}{2} \psi_Y''(\theta)$$

where $\theta \in (0, \lambda)$. And $\psi_Y(0) = \psi_Y'(0) = 0$ and $\psi_Y''(\lambda) = \frac{\mathbb{E}_f(Y^2 e^{\lambda Y})}{\mathbb{E}_f e^{\lambda Y}} - \frac{[\mathbb{E}_f(Y e^{\lambda Y})]^2}{\mathbb{E}_f e^{2\lambda Y}} \le \frac{(b-a)^2}{4}$. So,

$$\psi_Y(\lambda) = \frac{\lambda^2}{2} \psi_Y''(\theta)$$

$$\leq \frac{\lambda^2}{2} \psi_Y''(\lambda)$$

$$\leq \frac{\lambda^2}{2} \frac{(b-a)^2}{4}$$

Let X be any real-valued random variable with expected value $\mathbb{E}X = 0$ and such that $a \leq X \leq b$ almost surely. Then, for all $\lambda \in \mathbb{R}$,

$$\mathbb{E}[e^{\lambda X}] \le \exp(\frac{\lambda^2 (b-a)^2}{8})$$

Proof. Since $e^{\lambda x}$ is a convex function, we have

$$e^{\lambda x} \le \frac{b-x}{b-a}e^{\lambda a} + \frac{x-a}{b-a}e^{\lambda b}, \forall a \le x \le b$$

So,

$$\mathbb{E}[e^{\lambda X}] \le \frac{b - \mathbb{E}X}{b - a} e^{\lambda a} + \frac{\mathbb{E}X - a}{b - a} e^{\lambda b}.$$

Let $\alpha = \frac{-a}{b-a} \in [0,1]$, $u = \lambda(b-a)$, and $L(u) = -\alpha u + \ln(1-\alpha+\alpha e^u)$ Then $\frac{b-\mathbb{E}X}{b-a}e^{\lambda a} + \frac{\mathbb{E}X-a}{b-a}e^{\lambda b} = e^{L(u)}$ since $\mathbb{E}X = 0$. Taking derivative of L(u),

$$L(0) = L'(0) = 0$$
 and $L''(h) \le \frac{1}{4}$

By Taylor's expansion,

$$L(u) \le \frac{1}{8}u^2 = \frac{1}{8}\lambda^2(b-a)^2$$

Hence, $\mathbb{E}[e^{\lambda X}] \leq e^{\frac{1}{8}\lambda^2(b-a)^2}$

10.2 Bennett's Inquality

Let $X_1, ..., X_n$ be independent random variables with finite variance such that $X_i \leq b$ for some b > 0 almost surely for $i \leq n$. And let $v = \sum_{i=1}^n \mathbb{E}(X_i^2)$. Assume $\psi(u) = e^u - u - 1$. For $u \in \mathbb{R}$, and $\forall \lambda > 0$.

$$\psi_S(\lambda) = \log \mathbb{E}e^{\lambda S} \le n \log(1 + \frac{v}{nb^2}\psi(b\lambda)) \le \frac{v}{b^2}\psi(b\lambda).$$

And for any t > 0,

$$\mathbb{P}(S \ge t) \le \exp(-\frac{v}{b^2}h(\frac{bt}{v}))$$

where $h(u) = (1+u)\log(1+u) - u$ for u > 0.

Proof. Without losing generality, we can assume b = 1. If $b \neq 1$, let $X_i \leftarrow \frac{X_i}{b}$.

$$\psi_{S}(\lambda) = \sum_{i=1}^{n} \left(\log \mathbb{E}e^{\lambda X_{i}} - \lambda \mathbb{E}X_{i} \right)$$

$$\leq \sum_{i=1}^{n} \left[\log \left(1 + \lambda \mathbb{E}X_{i} + \psi(\lambda) \mathbb{E}X_{i}^{2} \right) - \lambda \mathbb{E}X_{i} \right]$$

$$= n \sum_{i=1}^{n} \frac{1}{n} \left[\log \left(1 + \lambda \mathbb{E}X_{i} + \psi(\lambda) \mathbb{E}X_{i}^{2} \right) - \lambda \mathbb{E}X_{i} \right]$$

$$(\log(1+x) \text{ is concave})$$

$$\leq n \log \left(1 + \sum_{i=1}^{n} \frac{\lambda \mathbb{E}X_{i}}{n} + \sum_{i=1}^{n} \frac{\psi(\lambda)}{n} \mathbb{E}X_{i}^{2} \right) - \sum_{i=1}^{n} \lambda \mathbb{E}X_{i}$$

$$(ByTaylor's expansion)$$

$$\leq n \log(1 + \frac{v}{n}\psi(\lambda))$$

$$\leq v\psi(\lambda)$$

For $\mathbb{P}(S \geq t)$, we have

$$\mathbb{P}(S \ge t) \le \frac{\mathbb{E}e^{\lambda S}}{e^{\lambda t}}$$

$$= \exp(\log \mathbb{E}e^{\lambda S} - \lambda t)$$

$$\le \exp(v\psi(\lambda) - \lambda t) \quad \forall \lambda > 0$$

$$= \exp(v(e^{\lambda} - \lambda - 1) - \lambda t)$$

$$((v(e^{\lambda} - \lambda - 1) - \lambda t)' = 0 \implies \lambda = \log(1 + \frac{t}{v}))$$

$$\le \exp(t - (v + t)\log(1 + \frac{t}{v}))$$

$$= \exp(-vh(\frac{t}{v}))$$

Theorem 10.1. (Bernstein's Inequality) Let $h(x) = (1+x)\log(1+x) - x$ for $x \ge 0$. And $h(x) \ge \frac{x^2}{2(1+\frac{x}{3})} = g(x)$. So,

$$\mathbb{P}(S \ge t) \le \exp\left(-\frac{t^2}{2(v + \frac{bt}{3})}\right)$$

Proof.
$$h'(x) = \log(1+x)$$
 and $h''(x) = \frac{1}{x+1}$
 $g'(x) = \frac{x}{1+\frac{x}{3}} - \frac{x^2}{6(1+\frac{x}{3})^2}$ and $g''(x) = \frac{27}{(x+3)^3}$
It's easy to see that $h^{(n)}(0) \ge g^{(n)}(0)$.

And by Taylor's expansion, we have

$$h(x) > q(x)$$
 for $x > 0$

So from Bennett's inequality, it's easy to get

$$\begin{split} \mathbb{P}(S \geq t) &\leq \exp(-\frac{v}{b^2}h(bt/v)) \\ &\leq \exp(-\frac{v}{b^2}g(bt/v)) \\ &= \exp(-\frac{t^2}{2(v + \frac{bt}{3})}) \end{split}$$

Lemma 10.2. (Johnson-Lindenstrauss Lemma) Given $0 < \epsilon < 1$, a set X of m points in \mathbb{R}^N , and a number $n > 8 \ln(m)/\epsilon^2$, there is a linear map $f : \mathbb{R}^N \to \mathbb{R}^n$ such that

$$(1 - \epsilon)||u - v||^2 \le ||f(u) - f(v)||^2 \le (1 + \epsilon) \le (1 + \epsilon)||u - v||^2$$

for all $u, v \in X$.

Definition 10.1. (Sub-Gaussian Random Variables) A real-valued random variable X is said to be subgaussian if it has the property that there is some b > 0 such that for every $\lambda \in \mathbb{R}$ one has

$$\mathbb{E}e^{\lambda X} < e^{\lambda^2 t^2/2}$$

We denote that $X \in G(t^2)$.

Proposition 10.1. If $X \in G(t^2)$, then

- 1. $\mathbb{E}X = 0$
- 2. $Var(X) \leq t^2$

Proof. Using Taylor's expansion for the exponential function

$$\mathbb{E}\sum_{n=0}^{\infty} \frac{\lambda^n x^n}{n!} = \mathbb{E}e^{\lambda X}$$

and Lebesgue's Dominated Convergence Theorem, for any $\lambda \in \mathbb{R}$,

$$\sum_{n=0}^{\infty} \frac{\lambda^n}{n!} \mathbb{E}(X^n) = \mathbb{E}e^{\lambda X} \le e^{\lambda^2 t^2/2} = \sum_{n=0}^{\infty} \frac{\lambda^{2n} t^{2n}}{2^n n!}$$

Thus

$$\lambda \mathbb{E}X + \frac{\lambda^2}{2} \mathbb{E}X^2 \le \frac{\lambda^2 t^2}{2} + o(\lambda^2)$$
 as $\lambda \to 0$

Dividing through by $\lambda > 0$ and letting $\lambda \to 0$ we get $\mathbb{E}(X) \le 0$. Dividing through by $\lambda < 0$ and letting $\lambda \to 0$ we get $\mathbb{E}(X) \ge 0$. Thus $\mathbb{E}(X) = 0$. Now that this is established, we divided through by λ^2 and let $\lambda \to 0$, thus getting $Var(X) \le t^2$.

Example 10.1. Let X be a random variable with the Rademacher distribution, meaning that the law of X if $\mathbb{P}X = \frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1$ [here δ_t is the point mass at x]. Then for any $t \in \mathbb{R}$,

$$BEe^{tX} = \frac{1}{2}e^{-t} + \frac{1}{2}e^{t} = cosht \le e^{t^{2}/2}$$

. So $X \in G(1)$.

Example 10.2. If $X \in G(v)$, then $\mathbb{P}(\{X > t\}) \vee \mathbb{P}(\{-X > t\}) \leq e^{-\frac{t^2}{2v}}$, where $a \vee b = \max\{a, b\}$.

Theorem 10.2. Let X be a random variable with $\mathbb{E}X = 0$. If for some v > 0,

$$\mathbb{P}(\{X > t\}) \vee \mathbb{P}(\{-X > t\}) \le e^{-\frac{t^2}{2v}}.$$

Then for every p > 0,

$$\mathbb{E}|X|^p \le p2^{\frac{p}{2}}v^{\frac{p}{2}}\Gamma(\frac{p}{2})$$

Proof.

$$\begin{split} \mathbb{E}|X|^p &= \int_0^\infty \mathbb{P}(|X|^p > t)dt \\ &= \int_0^\infty \mathbb{P}(|X| > t^{\frac{1}{p}})dt \\ &= \int_0^\infty pt^{p-1}\mathbb{P}(|X| > t)dt \\ &\leq \int_0^\infty pt^{p-1}2\exp(-\frac{t^2}{2v})dt \\ &(\text{let } u = \frac{t^2}{2v}) \\ &= p(2v)^{\frac{p}{2}} \int_0^\infty u^{\frac{p}{2}-1}\exp(-u)du \\ &= p(2v)^{\frac{p}{2}}\Gamma(\frac{p}{2}) \end{split}$$