NATURAL DEDUCTION

FRANK TSAI

Contents

1. Natural Deduction	1
1.1. Rules	1
2. Examples	3

1. Natural Deduction

Logical symbols are explained by (1) how to prove it (introduction) and (2) how to use it (elimination). We use the capital Greek letter Γ to denote a list of hypotheses. A hypothesis is just a formula. The order and the number of occurrence of a given formula does not matter. For example,

$$\varphi, \psi, \chi$$
 ψ, φ, χ $\varphi, \varphi, \psi, \chi$

are considered to be the set of hypotheses.

We write

$$\Gamma \vdash \varphi$$

to mean "the hypotheses in Γ entail φ ".

1.1. **Rules.** The simplest rule is the *identity rule*. It says that we can conclude φ if it is already part of the set of hypotheses.

$$\frac{\Gamma}{\Gamma, \varphi \vdash \varphi}$$

1.1.1. Top. We can always derive \top , but because we can't use \top in any meaningful way, it has no elimination rules.

$$\top$$
-Intro $\Gamma \vdash \top$

1.1.2. Conjunction. Conjunctions behave like pairs. To construct a pair, we need two elements (the first element and the second element). It has two elimination rules, one extracts the first element and the other extracts the second element.

Date: September 26, 2023.

Proof Script.

- (i) To prove $\varphi \wedge \psi$: we need to prove both φ and ψ .
- (ii) To use $\varphi \wedge \psi$: since $\varphi \wedge \psi$, we may assume both φ and ψ .
- 1.1.3. Implication. Implications behave like functions. If I can write a program ψ with input φ , then I can abstract the input to get a function. The elimination rule is also known as modus ponens. It is function application.

Proof Script.

- (i) To prove $\varphi \Rightarrow \psi$: suppose that φ ... therefore ψ .
- (ii) To use $\varphi \Rightarrow \psi$: since $\varphi \Rightarrow \psi$, to prove ψ it suffices to prove φ .
- 1.1.4. Universal Quantification.

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \forall x. \varphi}(x \notin \Gamma) \qquad \qquad \frac{\forall \text{-Elim}}{\Gamma \vdash \forall x. \varphi} \qquad \qquad \frac{\Gamma \vdash \forall x. \varphi}{\Gamma \vdash \varphi[t/x]}$$

Note that the side condition is crucial. Say, one of the hypotheses is "x is even" from which we can prove x is divisible by 2. It's incorrect to infer that for all x, x is divisible by 2 because the hypotheses constrain x to even numbers. Proof Script.

- (i) To prove $\forall x.\varphi$: let x be given, ... therefore φ .
- (ii) To use $\forall x.\varphi$: since $\forall x.\varphi$, $\varphi[t/x]$.
- 1.1.5. *Bottom*. Bottom does not have an introduction rule but it has a powerful elimination rule. The elimination rule is also known as *ex falso quodlibet*.

$$\frac{\bot\text{-ELIM}}{\Gamma\vdash\bot} \frac{\Gamma\vdash\bot}{\Gamma\vdash\varphi}$$

1.1.6. *Disjunction*. Disjunctions behave like tagged unions. Its elimination rule is the if ... then ... else ... construct in programming languages.

Proof Script.

- (i) To prove $\varphi \vee \psi$: prove either φ or ψ .
- (ii) To use $\varphi \vee \psi$: case analysis.
- 1.1.7. Existential Quantification.

$$\begin{array}{l} \exists \text{-Intro} \\ \frac{\Gamma \vdash \varphi[t/x]}{\Gamma \vdash \exists x. \varphi} \end{array} \qquad \begin{array}{l} \exists \text{-Elim} \\ \frac{\Gamma \vdash \exists x. \varphi}{\Gamma \vdash \varphi[y/x]} (y \notin \Gamma) \end{array}$$

The side condition in the elimination rule is crucial because $\exists x.\varphi$ contains a witness that we know nothing about so the set of hypotheses Γ cannot assume anything about it.

Proof Script.

- (i) To prove $\exists x.\varphi$: find a witness t for which $\varphi[t/x]$ holds.
- (ii) To use $\exists x.\varphi$: we get a hypothetical witness y that we don't know anything about and $\varphi[y/x]$ holds.

2. Examples

Example 2.1.

$$\varphi \wedge \psi \Rightarrow \varphi$$

Proof 1. Suppose that $\varphi \wedge \psi$, then φ and ψ . We need to prove φ but it is already a hypothesis.

Proof 2.

Example 2.2.

$$\neg(\varphi \lor \psi) \Rightarrow \neg\varphi \land \neg\psi$$

Proof 1. Suppose that $\neg(\varphi \lor \psi)$. We need to prove $\neg \varphi \land \neg \psi$. It suffices to prove $\neg \varphi$ and $\neg \psi$ separately.

- (i) Proof of $\neg \varphi$: Assume φ , we need to prove \bot . Since we know that $\neg(\varphi \lor \psi)$, it suffices to prove $\varphi \lor \psi$, which follows immediately from φ .
- (ii) Proof of $\neg \psi$: Assume ψ , we need to prove \bot . Since we know that $\neg(\varphi \lor \psi)$, it suffices to prove $\varphi \lor \psi$, which follows immediately from ψ .

Proof 2.

where $\Delta =$

$$\bigvee \text{ID} \frac{\neg (\varphi \lor \psi), \varphi \vdash \varphi}{\neg (\varphi \lor \psi), \varphi \vdash \varphi \lor \psi}$$

and $\Xi =$

$$\text{Id} \ \frac{\neg (\varphi \lor \psi), \psi \vdash \neg (\varphi \lor \psi)}{\neg (\varphi \lor \psi), \psi \vdash \neg (\varphi \lor \psi)} \ \frac{\neg (\varphi \lor \psi), \psi \vdash \psi}{\neg (\varphi \lor \psi), \psi \vdash \varphi \lor \psi} \lor \text{-Intro-R}$$

4 FRANK TSAI

 $Example\ 2.3.$

$$\forall x.\varphi \Rightarrow \exists x.\varphi$$

Proof 1. Suppose that $\forall x.\varphi$. We need to prove $\exists x.\varphi$. It suffices to find a witness t so that $\varphi[t/x]$. Since we know $\forall x.\varphi$, any witness works.

Proof 2.