EE 240B - Fall 2019

Advanced Analog Integrated Circuits Lecture 8: Operational Transconductance Amplifiers (I)

Ali M. Niknejad Dept. of EECS

OpAmps and OTAs

OpAmp

- High voltage gain, high input impedance
- Voltage source output (low impedance)

OTA

- High "voltage" gain, high input impedance
- Current source output (high impedance)

Opamp & OTA in CMOS

Opamp vs. OTA Noise

OpAmp

$$v_{o,n}^{2} = \frac{4k_{B}T}{g_{m}} \frac{1}{4R_{s}C_{L}} = \frac{k_{B}T}{C_{L}} \frac{R_{n}}{R_{s}}$$

OTA

$$v_{o,n}^2 = \frac{k_B T}{C_L}$$

Simplest Single-Ended OTA

Differential Input?

- Why use a differential input?
 - Diff. version has extra device(s) more power, noise, etc.
- Real reason is systematic offset
 - All voltages are relative
- If used a differential input, often might as well use differential output too...

Simple Diff. Input OTA

Simple Diff. Input OTA: Noise (1)

Simple Diff. Input OTA: Noise (2)

Simple Diff. Input OTA: Noise (2)

More Careful Look at Noise...

More Careful Look at Noise...

Real R vs. Current Source (1)

Real R vs. Current Source (2)

Limitations of Simple OTA

Telescopic Cascoded OTA

Why Cascoding Helps

Cascode Sizing for r_o

Cascode Noise?

Cascode Noise?

More Complete Analysis

More Complete Analysis

Cascode Sizing