5.228 lex_different

	DESCRIPTION	LINKS	GRAPH	AUTOMATON
Origin	Used for defining lex_alldifferent.			
Constraint	<pre>lex_different(VECTOR1, VECTOR2)</pre>			
Synonyms	different, diff.			
Arguments	VECTOR1 : collecti VECTOR2 : collecti	'		
Restrictions	$\begin{array}{l} \textbf{required}(\texttt{VECTOR1}, \texttt{var}\\ \textbf{required}(\texttt{VECTOR2}, \texttt{var}\\ \texttt{VECTOR1} > 0\\ \texttt{VECTOR1} = \texttt{VECTOR2} \end{array}$			
Purpose	Vectors VECTOR1 and VEC	TOR2 differ in at least o	one component.	
Example				
Typical	<pre> VECTOR1 > 1 range(VECTOR1.var) > range(VECTOR2.var) ></pre>			
Symmetries		•	ion (VECTOR1, VECTOR2)	
Arg. properties	Extensible wrt. VECTOR1 a	nd VECTOR2 (add item	es at same position).	
Reformulation	The lex_different($\langle \text{var} - U_1, \text{var} - U_2, \dots, \text{var} - U_{ \text{Vector1} } \rangle$, $\langle \text{var} - V_1, \text{var} - V_2, \dots, \text{var} - V_{ \text{Vector2} } \rangle$) constraint can be expressed in term of the following disjunction of disequality constraints $U_1 \neq V_1 \vee U_2 \neq V_2 \vee \dots \vee U_{ \text{Vector1} } \neq V_{ \text{Vector2} }$.			
Used in	lex_alldifferent, sort.	permutation.		
See also	common keyword: lex_gr	•		
	<pre>implied by: disjoint, inc negation: lex_equal.</pre>	comparable,lex_gre	eater, lex_less.	
	negation, tex_equal.			

system of constraints: lex_alldifferent.

20030820 1555

Keywords

characteristic of a constraint: vector, disequality, automaton, automaton without counters, reified automaton constraint.
constraint network structure: Berge-acyclic constraint network.
filtering: arc-consistency.

 Arc input(s)
 VECTOR1 VECTOR2

 Arc generator
 $PRODUCT(=) \mapsto collection(vector1, vector2)$

 Arc arity
 2

 Arc constraint(s)
 $vector1.var \neq vector2.var$

 Graph property(ies)
 $NARC \geq 1$

Graph model

Parts (A) and (B) of Figure 5.501 respectively show the initial and final graph associated with the **Example** slot. Since we use the **NARC** graph property, the unique arc of the final graph is stressed in bold. It corresponds to a component where the two vectors differ.

Figure 5.501: Initial and final graph of the lex_different constraint

20030820 1557

Automaton

Figure 5.502 depicts the automaton associated with the lex_different constraint. Let VAR1 $_i$ and VAR2 $_i$ respectively be the var attributes of the i^{th} items of the VECTOR1 and the VECTOR2 collections. To each pair (VAR1 $_i$, VAR2 $_i$) corresponds a 0-1 signature variable S_i as well as the following signature constraint: VAR1 $_i$ = VAR2 $_i$ $\Leftrightarrow S_i$.

Figure 5.502: Automaton of the lex_different constraint

Figure 5.503: Hypergraph of the reformulation corresponding to the automaton of the lex_different constraint