# Beyond the Mean-Field Family: Variational Inference with Implicit Distributions

Francisco J. R. Ruiz Marie Skłodowska-Curie Fellow

> Linköping University May 8th, 2019





## Probabilistic Modeling Pipeline



- ▶ Posit generative process with hidden and observed variables
- ▶ Given the data, reverse the process to infer hidden variables
- Use hidden structure to make predictions, explore the dataset, etc.

## Probabilistic Modeling Pipeline



- ► Incorporate domain knowledge
- Separate assumptions from computation
- ► Facilitate collaboration with domain experts

## Applications: Consumer Preferences

Can we use mobile location data to find the most promising location for a new restaurant?





Restaurants in the Bay Area

## Applications: Gene Signature Discovery

Can we identify de novo gene expression patterns in scRNA-seq?



## Applications: Shopping Behavior

Can we use past shopping transactions to learn customer preferences and predict demand under price interventions?



#### Inference



6

#### **Notation**

- ▶ Model: Joint distribution p(x, z)
- ► Latent variables z
- Observations x

#### The Posterior Distribution

$$p(z \mid x) = \frac{p(x, z)}{\int p(x, z) dz}$$

- ▶ The posterior allows us to explore the data and make predictions
- ► Intractable in general
- Approximate the posterior: Bayesian inference

$$p(z \mid x) = \frac{p(x, z)}{\int p(x, z) dz}$$

- **Define** a simple family of distributions  $q_{\theta}(z)$  with parameters  $\theta$
- ightharpoonup Fit heta by minimizing the KL divergence to the posterior,

$$\theta^* = \operatorname*{arg\,min}\limits_{\theta} \mathrm{KL} ig( q_{ heta}(z) \mid\mid p(z\mid x) ig)$$

Variational inference solves an optimization problem

q





▶ Minimizing the KL ≡ Maximizing the ELBO

$$\mathcal{L}(\theta) = \mathbb{E}_{q_{\theta}(z)} \left[ \log p(x, z) - \log q_{\theta}(z) \right]$$

▶ Variational inference finds  $\theta$  to maximize  $\mathcal{L}(\theta)$ 

#### Mean-Field Variational Inference

Classical VI: Mean-field variational distribution:

$$q_{\theta}(z) = \prod_{n} q_{\theta_n}(z_n)$$

▶ Useful and simple, but might not be accurate



#### This Talk



#### This Talk

- **Expand** the variational family  $q_{\theta}(z)$
- ► Key idea: Use *implicit distributions* 
  - **Easy** to sample from,  $z \sim q_{\theta}(z)$
  - Intractable density,  $q_{\theta}(z)$
- **ightharpoonup** Challenge: Solve the optimization problem with intractable  $q_{ heta}(z)$

#### Related Work

- Structured variational inference
- Mixtures
- ► Hierarchical variational models
- Normalizing flows
- Other methods for implicit distributions

#### Part I:

Semi-Implicit Construction

# Our Goal: More Expressive Variational Distributions



## Variational Inference with Implicit Distributions



**Easy** to draw samples from  $q_{\theta}(z)$ :

sample 
$$\varepsilon \sim q(\varepsilon)$$
; set  $z = f_{\theta}(\varepsilon)$ 

- ightharpoonup Cannot evaluate the density  $q_{\theta}(z)$
- Flexible distribution due to the NN

## VI with Implicit Distributions is Hard



▶ The VI objective is the ELBO (equivalent to minimizing KL),

$$\mathcal{L}(\theta) = \mathbb{E}_{q_{\theta}(z)} \left[ \underbrace{\log p(x, z)}_{\text{model}} - \underbrace{\log q_{\theta}(z)}_{\text{entropy}} \right]$$

• Gradient of the objective  $\nabla_{\theta} \mathcal{L}(\theta)$  (reparameterization)

$$\nabla_{\theta} \mathcal{L}(\theta) = \mathbb{E}_{q(\varepsilon)} \Big[ \nabla_{\theta} \Big( \log p(x, f_{\theta}(\varepsilon)) - \log q_{\theta} (f_{\theta}(\varepsilon)) \Big) \Big]$$

▶ Monte Carlo estimates require  $\nabla_z \log q_\theta(z)$  (not available)

#### Unbiased Implicit Variational Inference

- ▶ UIVI obtains an unbiased Monte Carlo estimator of  $\nabla_z \log q_\theta(z)$
- ▶ It avoids density ratio estimation
- Key ideas:
  - 1. Semi-implicit construction of  $q_{\theta}(z)$
  - 2. Gradient of the entropy component as an expectation,

$$\nabla_z \log q_\theta(z) = \mathbb{E}_{\mathrm{distrib}(\cdot)} [\mathrm{function}(z, \cdot)]$$

► Implicit distribution:



► (Semi-)implicit distribution:



► (Semi-)implicit distribution



**Example:** The conditional  $q_{\theta}(z \mid \varepsilon)$  is a Gaussian,

$$q_{\theta}(z \mid \varepsilon) = \mathcal{N}\left(z \mid \mu_{\theta}(\varepsilon), \Sigma_{\theta}(\varepsilon)\right)$$

► (Semi-)implicit distribution



- ▶ The distribution  $q_{\theta}(z)$  is still **implicit**,
  - Easy to sample,

sample 
$$\varepsilon \sim q(\varepsilon)$$
,  
obtain  $\mu_{\theta}(\varepsilon)$  and  $\Sigma_{\theta}(\varepsilon)$   
sample  $z \sim \mathcal{N}(z | \mu_{\theta}(\varepsilon), \Sigma_{\theta}(\varepsilon))$ 

▶ The variational distribution  $q_{\theta}(z)$  is not tractable,

$$q_{ heta}(z) = \int q(\varepsilon)q_{ heta}(z\,|\,\varepsilon)d\varepsilon$$

► (Semi-)implicit distribution



- **Assumptions** on the conditional  $q_{\theta}(z \mid \varepsilon)$ :
  - Reparameterizable
  - ► Tractable gradient  $\nabla_z \log q_\theta(z \mid \varepsilon)$ Note: this is different from  $\nabla_z \log q_\theta(z)$  (still intractable)

► (Semi-)implicit distribution



- ► The Gaussian meets both assumptions:
  - Reparameterizable,

$$u \sim \mathcal{N}(u \mid 0, I), \qquad z = h_{\theta}(u; \varepsilon) = \mu_{\theta}(\varepsilon) + \Sigma_{\theta}(\varepsilon)^{1/2}u$$

Tractable gradient,

$$\nabla_z \log q_{\theta}(z \mid \varepsilon) = -\Sigma_{\theta}(\varepsilon)^{-1}(z - \mu_{\theta}(\varepsilon))$$

# UIVI Step 2: Gradient as Expectation



- ▶ Goal: Estimate the gradient of the entropy component,  $\nabla_z \log q_\theta(z)$
- Rewrite as an expectation,

$$\nabla_{z} \log q_{\theta}(z) = \mathbb{E}_{q_{\theta}(\varepsilon' \mid z)} \left[ \nabla_{z} \log q_{\theta}(z \mid \varepsilon') \right]$$

► Form Monte Carlo estimate,

$$\nabla_{z} \log q_{\theta}(z) \approx \nabla_{z} \log q_{\theta}(z \mid \varepsilon'), \qquad \varepsilon' \sim q_{\theta}(\varepsilon' \mid z)$$

# UIVI: Full Algorithm



The gradient of the ELBO is

$$\nabla_{\theta} \mathcal{L}(\theta) = \mathbb{E}_{q(\varepsilon)q(u)} \Big[ \nabla_{z} \left( \log p(x, z) - \log q_{\theta}(z) \right) \Big|_{z = h_{\theta}(u; \varepsilon)} \times \nabla_{\theta} h_{\theta}(u; \varepsilon) \Big]$$

- Estimate the gradient based on samples:
  - 1. Sample  $\varepsilon \sim q(\varepsilon)$ ,  $u \sim q(u)$  (standard Gaussians)
  - 2. Set  $z = h_{\theta}(\varepsilon; u) = \mu_{\theta}(\varepsilon) + \Sigma_{\theta}(\varepsilon)^{1/2}u$
  - 3. Evaluate  $\nabla_z \log p(x,z)$  and  $\nabla_\theta h_\theta(u;\varepsilon)$
  - 4. Sample  $\varepsilon' \sim q_{\theta}(\varepsilon' \mid z)$
  - 5. Approximate  $\nabla_z \log q_\theta(z) \approx \nabla_z \log q_\theta(z \mid \varepsilon')$

#### UIVI: The Reverse Conditional



- The distribution  $q_{\theta}(\varepsilon' \mid z)$  is the **reverse conditional** The conditional is  $q_{\theta}(z \mid \varepsilon)$
- ▶ Sample from  $q_{\theta}(\varepsilon' \mid z)$  using HMC, targeting

$$q(\varepsilon' | z) \propto q(\varepsilon')q_{\theta}(z | \varepsilon')$$

▶ Problem: HMC is slow... How to accelerate this?

#### **UIVI:** The Reverse Conditional



- Recall the UIVI algorithm,
  - 1. Sample  $\varepsilon \sim q(\varepsilon)$ ,  $u \sim q(u)$  (standard Gaussians)
  - 2. Set  $z = h_{\theta}(\varepsilon; u) = \mu_{\theta}(\varepsilon) + \Sigma_{\theta}(\varepsilon)^{1/2}u$
  - 3. Evaluate  $\nabla_z \log p(x,z)$  and  $\nabla_\theta h_\theta(u\,;\,\varepsilon)$
  - 4. Sample  $\varepsilon' \sim q_{\theta}(\varepsilon' \mid z)$
  - 5. Approximate  $\nabla_z \log q_\theta(z) \approx \nabla_z \log q_\theta(z \mid \varepsilon')$
- ▶ We have that  $(\varepsilon, z) \sim q_{\theta}(\varepsilon, z) = q(\varepsilon)q_{\theta}(z \mid \varepsilon) = q_{\theta}(z)q_{\theta}(\varepsilon \mid z)$
- ▶ Thus,  $\varepsilon$  is a sample from  $q_{\theta}(\varepsilon \mid z)$
- ▶ To accelerate sampling  $\varepsilon' \sim q(\varepsilon' \,|\, z)$ , initialize HMC at  $\varepsilon$

#### UIVI: The Reverse Conditional



▶ Sample from  $q_{\theta}(\varepsilon' | z)$  using HMC targeting

$$q(\varepsilon' | z) \propto q(\varepsilon')q_{\theta}(z | \varepsilon')$$

- ▶ Initialize HMC at stationarity (using  $\varepsilon$ )
- ▶ A few HMC iterations to reduce correlation between  $\varepsilon$  and  $\varepsilon'$

# Toy Experiments



#### **Experiments: Multinomial Logistic Regression**



UIVI provides better ELBO and predictive performance than SIVI

## Experiments: VAE

- ▶ Model is  $p_{\phi}(x,z) = \prod_{n} p(z_n) p_{\phi}(x_n \mid z_n)$
- ▶ Amortized variational distrib.  $q_{\theta}(z_n | x_n) = \int q(\varepsilon_n) q_{\theta}(z_n | \varepsilon_n, x_n) d\varepsilon_n$
- lacktriangle Goal: Find model parameters  $\phi$  and variational parameters heta

|                         | average test log-likelihood |               |
|-------------------------|-----------------------------|---------------|
| method                  | MNIST                       | Fashion-MNIST |
| Explicit (standard VAE) | -98.29                      | -126.73       |
| SIVI                    | -97.77                      | -121.53       |
| UIVI (this talk)        | -94.09                      | -110.72       |

UIVI provides better predictive performance

#### Part II:

MCMC-Improved Approximation

### Our Goal: More Expressive Variational Distributions



#### Main Idea: Use MCMC

- Start from an *explicit* variational distribution,  $q_{\theta}^{(0)}(z)$
- ▶ Improve the distribution with *t* MCMC steps,

$$z_0 \sim q_{\theta}^{(0)}(z), \qquad z \sim Q^{(t)}(z \,|\, z_0)$$

(the MCMC sampler targets the posterior, p(z | x))

Implicit variational distribution,

$$q_{\theta}(z) = \int q_{\theta}^{(0)}(z_0) Q^{(t)}(z \mid z_0) dz_0$$

# Challenges of Using MCMC in VI

$$\mathcal{L}_{\text{improved}}(\theta) = \mathbb{E}_{q_{\theta}(z)} \left[ \log p(x, z) - \log q_{\theta}(z) \right]$$

- ► Challenge #1: The variational objective becomes intractable
- lacktriangle Challenge #2: The variational objective may depend weakly on heta

$$q_{\theta}(z) \xrightarrow{t \to \infty} p(z \mid x)$$

## Alternative Divergence: VCD

- ▶ We would like an objective that avoids these challenges
- lacktriangle We call the objective Variational Contrastive Divergence,  $\mathcal{L}_{\mathrm{VCD}}(\theta)$
- Desired properties:
  - ightharpoonup Non-negative for any heta
  - ightharpoonup Zero only if  $q_{\theta}^{(0)}(z) = p(z \mid x)$

## Variational Contrastive Divergence

▶ Key idea: The improved distribution  $q_{\theta}(z)$  decreases the KL

$$\mathrm{KL}(q_{\theta}(z)\mid\mid p(z\mid x)) \leq \mathrm{KL}(q_{\theta}^{(0)}(z)\mid\mid p(z\mid x))$$
 (equality only if  $q_{\theta}^{(0)}(z) = p(z\mid x)$ )

► A first objective:

$$\mathcal{L}(\theta) = \mathrm{KL}(q_{\theta}^{(0)}(z) \mid\mid p(z\mid x)) - \mathrm{KL}(q_{\theta}(z) \mid\mid p(z\mid x))$$
 (it is a proper divergence)

## Variational Contrastive Divergence

$$\mathcal{L}(\theta) = \mathrm{KL}(q_{\theta}^{(0)}(z) \mid\mid p(z \mid x)) - \mathrm{KL}(q_{\theta}(z) \mid\mid p(z \mid x))$$

- ► Still intractable:  $\log q_{\theta}(z)$  in the second term
- Add regularizer,

$$\mathcal{L}_{\text{VCD}}(\theta) = \underbrace{\text{KL}(q_{\theta}^{(0)}(z) \mid\mid p(z \mid x)) - \text{KL}(q_{\theta}(z) \mid\mid p(z \mid x))}_{\geq 0} + \underbrace{\text{KL}(q_{\theta}(z) \mid\mid q_{\theta}^{(0)}(z))}_{\geq 0}$$

(still a proper divergence)

## Variational Contrastive Divergence

$$\mathcal{L}_{\text{VCD}}(\theta) = \text{KL}(q_{\theta}^{(0)}(z) \mid\mid p(z \mid x)) - \text{KL}(q_{\theta}(z) \mid\mid p(z \mid x)) + \text{KL}(q_{\theta}(z) \mid\mid q_{\theta}^{(0)}(z))$$

- Addresses Challenge #1 (intractability):
  - ► The intractable term  $\log q_{\theta}(z)$  cancels out
- Addresses Challenge #2 (weak dependence):

## Taking Gradients of the VCD

$$\mathcal{L}_{\text{VCD}}(\theta) = -\mathbb{E}_{q_{\theta}^{(0)}(z)} \left[ \log p(x, z) - \log q_{\theta}^{(0)}(z) \right] + \mathbb{E}_{q_{\theta}(z)} \left[ \log p(x, z) - \log q_{\theta}^{(0)}(z) \right]$$

- ▶ The first component is the (negative) standard ELBO
  - ▶ Use reparameterization or score-function gradients
- The second component is the new part,

$$\nabla_{\theta} \mathbb{E}_{q_{\theta}(z)}[g_{\theta}(z)] = -\mathbb{E}_{q_{\theta}(z)}\left[\nabla_{\theta} \log q_{\theta}^{(0)}(z)\right] + \mathbb{E}_{q_{\theta}^{(0)}(z_{0})}\left[\mathbb{E}_{Q^{(t)}(z \mid z_{0})}[g_{\theta}(z)] \nabla_{\theta} \log q_{\theta}^{(0)}(z_{0})\right]$$
(can be approximated via Monte Carlo)

## Algorithm to Optimize the VCD

$$\mathcal{L}_{\text{VCD}}(\theta) = -\mathbb{E}_{q_{\theta}^{(0)}(z)} \left[ \log p(x, z) - \log q_{\theta}^{(0)}(z) \right] + \mathbb{E}_{q_{\theta}(z)} \left[ \log p(x, z) - \log q_{\theta}^{(0)}(z) \right]$$

- 1. Sample  $z_0 \sim q_{\theta}^{(0)}(z)$  (reparameterization)
- 2. Sample  $z \sim Q^{(t)}(z \,|\, z_0)$  (run t MCMC steps)
- 3. Estimate the gradient  $\nabla_{\theta} \mathcal{L}_{\mathrm{VCD}}(\theta)$
- 4. Take gradient step w.r.t.  $\theta$

# Toy Experiments



Optimizing the VCD leads to a distribution  $q_{\theta}^{(0)}(z)$  with higher variance

$$\mathcal{L}_{\mathrm{VCD}}(\theta) \xrightarrow{t \to \infty} \mathrm{KL}_{\mathrm{sym}}(q_{\theta}^{(0)}(z) \mid\mid p(z \mid x))$$

## **Experiments: Latent Variable Models**

- ▶ Model is  $p_{\phi}(x,z) = \prod_{n} p(z_n) p_{\phi}(x_n | z_n)$
- ► Amortized distribution  $q_{\theta}(z_n | x_n) = \int Q^{(t)}(z_n | z_0) q_{\theta}^{(0)}(z_0 | x_n) dz_0$
- ▶ Goal: Find model parameters  $\phi$  and variational parameters  $\theta$

| method                                                            | average test log-likelihood<br>MNIST Fashion-MNIST |                                       |
|-------------------------------------------------------------------|----------------------------------------------------|---------------------------------------|
| Explicit + KL<br>Implicit + KL (Hoffman, 2017)<br>VCD (this talk) | -111.20 $-103.61$ $-101.26$                        | -127.43<br>-121.86<br>- <b>121.11</b> |

(a) Logistic matrix factorization

| method                                                            | average t<br>MNIST                 | test log-likelihood<br>Fashion-MNIST  |  |
|-------------------------------------------------------------------|------------------------------------|---------------------------------------|--|
| Explicit + KL<br>Implicit + KL (Hoffman, 2017)<br>VCD (this talk) | -98.46<br>-96.23<br>- <b>95.86</b> | -124.63<br>-117.74<br>- <b>117.65</b> |  |
| 0.220=                                                            |                                    |                                       |  |

(b) VAE

# Experiments: Impact of Number of MCMC Steps



## Summary

- ▶ Use *implicit distributions* to form expressive variational posteriors
- ► UIVI: Hierarchy of tractable distributions
- ▶ VCD: Refine the variational approximation with MCMC
  - Optimize a novel divergence (VCD)
  - Leverage the advantages of both VI and MCMC
- Stable training
- ► Good empirical results on (deep) probabilistic models



### Proof of the Key Equation in UIVI

► Goal: Prove that

$$\nabla_{\mathbf{z}} \log q_{\theta}(\mathbf{z}) = \mathbb{E}_{q_{\theta}(\varepsilon \mid \mathbf{z})} \left[ \nabla_{\mathbf{z}} \log q_{\theta}(\mathbf{z} \mid \varepsilon) \right]$$

Start with log-derivative identity,

$$abla_z \log q_{ heta}(z) = rac{1}{q_{ heta}(z)} 
abla_z q_{ heta}(z)$$

• Apply the definition of  $q_{\theta}(z)$  through a mixture,

$$abla_z \log q_{ heta}(z) = rac{1}{q_{ heta}(z)} \int 
abla_z q_{ heta}(z \,|\, arepsilon) q(arepsilon) darepsilon$$

▶ Apply the log-derivative identity on  $q_{\theta}(z \mid \varepsilon)$ ,

$$\nabla_{z} \log q_{\theta}(z) = \frac{1}{q_{\theta}(z)} \int q_{\theta}(z \mid \varepsilon) q(\varepsilon) \nabla_{z} \log q_{\theta}(z \mid \varepsilon) d\varepsilon.$$

Apply Bayes' theorem

1

#### SIVI

▶ SIVI optimizes a lower bound of the ELBO,

$$\mathcal{L}_{\mathrm{SIVI}}^{(L)}(\theta) = \mathbb{E}_{\varepsilon \sim q(\varepsilon)} \left[ \mathbb{E}_{z \sim q_{\theta}(z \mid \varepsilon)} \left[ \mathbb{E}_{\varepsilon^{(1)}, \dots, \varepsilon^{(L)} \sim q(\varepsilon)} \left[ \log p(x, z) - \log \left( \frac{1}{L+1} \left( q_{\theta}(z \mid \varepsilon) + \sum_{\ell=1}^{L} q_{\theta}(z \mid \varepsilon^{(\ell)}) \right) \right) \right] \right] \right]$$

2

## UIVI Experiments: Multinomial Logistic Regression

$$p(x,z) = p(z) \prod_{n=1}^{N} \frac{\exp\{x_n^{\top} z_{y_n} + z_{0y_n}\}}{\sum_{k} \exp\{x_n^{\top} z_k + z_{0k}\}}$$



Number of HMC iterations does not significantly impact results

#### Generalized VCD

▶ VCD

$$\mathcal{L}_{\text{VCD}}(\theta) = \text{KL}(q_{\theta}^{(0)}(z) \mid\mid p(z \mid x)) + \text{KL}(q_{\theta}(z) \mid\mid q_{\theta}^{(0)}(z)) - \text{KL}(q_{\theta}(z) \mid\mid p(z \mid x))$$

 $ightharpoonup \alpha$ -generalized VCD

$$\mathcal{L}_{\mathrm{VCD}}^{(\alpha)}(\theta) = \mathrm{KL}(q_{\theta}^{(0)}(z) \mid\mid p(z \mid x)) + \alpha \left[ \mathrm{KL}(q_{\theta}(z) \mid\mid q_{\theta}^{(0)}(z)) - \mathrm{KL}(q_{\theta}(z) \mid\mid p(z \mid x)) \right]$$