# Spettrofotometro doppio raggio





# Relazione

#### Preparazione soluzioni standard per analisi fosfati -

#### Beltrami Daniele

#### Materiali:

| Vetreria | Matraccio                | Pipetta tarata   |
|----------|--------------------------|------------------|
| Sostanze | Sol.concentrata standard | H <sub>2</sub> O |

## Sol. Intermedia 2 ppm – sez.1 Dati:

 $M_1 = 1000 \text{ ppm}$   $M_2 = 2 \text{ ppm}$  $V_2 = 500 \text{ mL}$ 

#### Calcoli:

 $M_1*V_1=M_2*V_2 \rightarrow V_1=(2*500)/1000=1$  mL  $\rightarrow$  volume di sol.da prelevare per preparare la sol.intermedia

\_\_\_\_\_

### Sol. Standard – sez.2

 $M_{\rm i}$  = 2 ppm  $\,
ightarrow\,$  concentrazione soluzione intermedia

 $V_f = 50 \text{ mL} \rightarrow \text{volume standard}$ 

 $V_1 = 5 \text{ mL}$ 

 $V_2 = 10 \text{ mL}$ 

 $V_3 = 15 \text{ mL}$ 

 $V_4 = 20 \text{ mL}$ 

#### Calcoli:

$$M_i * V_{(1-2-3-4)} = M_{(1-2-3-4)} * V_f$$

$$M_1 = (2*5)/50 =$$
 **0,2 ppm**  $M_3 = (2*15)/50 =$  **0,6 ppm**  $M_2 = (2*10)/50 =$  **0,4 ppm**  $M_4 = (2*20)/50 =$  **0,8 ppm**

\_\_\_\_\_\_

\_\_\_\_\_\_

#### Procedimento:

1) Calcolare il volume di soluzione da prelevare per preparare la soluzione intermedia con i calcoli sopra riportati (sezione 1).

- 2) Prelevare 1 mL di soluzione 1000ppm con la pipetta tarata e inserirlo nel matraccio da 500 mL.
- 3) Portare a volume con H<sub>2</sub>O distillata.
- 4) Prelevare rispettivamente 5-10-15-20 mL di sol.intermedia e inserirli in 4 becker da 50 mL.
- 5) Portare a volume.
- 6) Calcolare le concentrazioni delle 4 soluzioni standard con i calcoli riportati nella sezione 2.
- 5) Etichettare.
- 4) FINE

#### Preparazione miscela reagenti per analisi fosfati -

#### Beltrami Daniele

#### Materiali:

| Vetreria  | Matraccio<br>trasparente   | Matraccio scuro                                                                       | Bacchetta                          | Becker         |
|-----------|----------------------------|---------------------------------------------------------------------------------------|------------------------------------|----------------|
| Strumenti | Bilancia<br>analitica      | Navicella                                                                             |                                    |                |
| Sostanze  | Antimoniltartrat<br>o di K | (NH <sub>4</sub> ) <sub>6</sub> Mo <sub>7</sub> O <sub>24</sub><br>*4H <sub>2</sub> O | H <sub>2</sub> SO <sub>4</sub> 96% | H₂O distillata |

#### Procedimento:

- 1) Pesare 0,1675 g di antimoniltartrato di potrassio con la bilancia analitica.
- 2) Sciogliere l'antimoniltartrato di potrassio in 25 mL di H<sub>2</sub>O distillata (becker1 + mescolare).
- 3) Pesare 4,05 g di (NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>\*4H<sub>2</sub>O con la bilancia analitica.
- 4) Sciogliere l'(NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>\*4H<sub>2</sub>O<sub>4</sub> in 50 mL di H<sub>2</sub>O distillata (becker2 + mescolare).
- 5) Diluire (usare matraccio) 1:2 (50 mL in 100 mL) 50 mL di  $H_2SO_496\%$  in 100 mL di  $H_2O$  distillata e raffreddare.
- 6) Miscelare le 3 soluzioni e portare a volume in un matraccio da 250 mL scuro.
- 7) Se conservata al buio e in frigorifero la miscela è stabile per 1 mese.
- 8) FINE

#### Preparazione soluzione riducente per analisi fosfati -

#### Beltrami Daniele

#### Materiali:

| Vetreria  | Matraccio scuro      | Bacchetta       | Becker         |
|-----------|----------------------|-----------------|----------------|
| Strumenti | Bilancia analitica   | Navicella       |                |
| Sostanze  | EDTA-Na <sub>2</sub> | Acido ascorbico | H₂O distillata |

#### Procedimento:

- 1) Pesare 7 g di acido ascorbico con la bilancia analitica.
- 2) Pesare 0,030 g di EDTA-Na<sub>2</sub> con la bilancia analitica.
- 3) Sciogliere l'acido ascorbico e l'EDTA-Na<sub>2</sub> pesati in 50 mL di H<sub>2</sub>O distillata (becker + mescolare).
- 4) Versare il contenuto del becker in un matraccio da 100 mL scuro.
- 5) Aggiungere 6 mL di acido formico nel matraccio.
- 6) Portare a volume.
- 7) Se conservata al buio e in frigorifero il reagente è stabile per 1 mese.
- 8) FINE

# Ricerca fosfati in H<sub>2</sub>O – Milano (via Crescenzago 110) - Beltrami Daniele

Tipo di esperienza: Ottica, analisi spettrofotometrica.

Obiettivo: Misurare la quantità di fosfati (PO<sub>4</sub><sup>3-</sup>) presenti nell'acqua di Via Crescenzago 110.

Cenni teorici: Questo tipo di analisi è utilizzato per trovare la concentrazione di un analita attraverso la creazione di una retta di taratura, grazie a delle soluzioni composte dall'analita a concentrazione nota, delle quali si misura poi l'assorbanza e una volta ricavata l'equazione della retta si è ingrado di calcolare la concentrazione dell'analita. Per quest'analisi si deve lavorare nello spettro infrarosso (710nm).

L' equazione della retta di taratura non è altro che la legge di Lambert-Beer ( $A = \epsilon bM$ ) dove A è l'assorbanza, b è il cammino ottico della cuvetta (1cm), M è la concentrazione dell'analita e  $\epsilon$  è il coefficiente di assorbimento molare.ù

I fosfati non dovrebbero essere presenti nell'acqua potabile, però possono essere rinvenuti nelle acque di fiumi, laghi o nell'acqua di mare a causa dell'inquinamento da detersivi, concimi, antiparassitari o scarichi urbani o industriali.

L'eccessiva presenza del Fosforo può portare alla crescita di alghe.

#### Materiali:

| Vetreria       | Cuvette di<br>plastica | Pipette<br>Graduate                        | Matraccio                        | Buretta                       |
|----------------|------------------------|--------------------------------------------|----------------------------------|-------------------------------|
| Strumentazione | Spettrofotometro       |                                            |                                  |                               |
| Sostanze       | H₂O distillata         | Sol.standard<br>di fosfato<br>(scheda 5.2) | Miscela reagenti<br>(scheda 5.3) | Sol.riducente<br>(scheda 5.4) |

#### Procedimento:

- 1) Preparare le soluzioni standard di fosfato (vedi scheda 5.2).
- 2) Preparare la miscela reagenti (vedi scheda 5.3).
- 3) Preparare la soluzione riducente (vedi scheda 5.4).
- 4) Versare in un matraccio da 50 mL un po'di H<sub>2</sub>O distillata.
- 5) Prelevare 5-10-15-20 mL si sol.standard e inserirli nei 4 matracci.
- 6) Aggiungere in ognuno dei matracci contenenti la soluzione standard 1.5 mL di

miscela reagenti (utilizzare la buretta) in tutti i matracci (4 standard + 1 bianco).

7) Agitare e aspettare 2 minuti per ogni matraccio (la soluzione dovrebbe colorarsi leggermente di blu).



- 8) Aggiungere in ognuno dei matracci 1,5 mL di sol.riducente, agitare e portare a volume.
- 9) Impostare la lunghezza d'onda dello spettrofotometro a 710 nm.
- 10) Azzerare lo spettrofotometro con il bianco.
- 11) Misurare l'assorbanza del bianco reagenti.
- 12) Misurare le assorbanze delle 4 soluzioni standard.
- 13) Sottrarre l'assorbanza del bianco reagenti a quella delle 4 soluzioni.
- 14) Creare la retta di taratura.
- 15) Misurare l'assorbanza del campione.
- 16) Sottrarre l'assorbanza del bianco reagenti a quella del campione (sui risultati nella tabella è già stata fatta quest'operazione).
- 17) Calcolare la concentrazione di fosfati presente nel campione con i calcoli sotto riportati.
- 18) FINE

#### Risultati misurazioni:

|                               | ppm | A     |
|-------------------------------|-----|-------|
| Sol.1                         | 0.2 | 0.039 |
| Sol.2                         | 0.4 | 0.078 |
| Sol.3                         | 0.6 | 0.118 |
| Sol.4                         | 0.8 | 0.157 |
| Bianco                        |     | 0.003 |
| H <sub>2</sub> O di rubinetto | X   | 0.007 |

#### Retta di taratura:



[PO<sub>4</sub><sup>3-</sup>]: [PO<sub>4</sub><sup>3-</sup>] = 0.007/0.194 = 0.036ppm

#### Osservazioni e conclusione:

Dalla nostra misurazione è emerso che la concentrazione di fosfati presenti nell'acqua è di  $0.036\ mg/L$ .