(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-159244

(43)公開日 平成8年(1996)6月21日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ	技術表示箇所			
F16H	55/48							
C08K	3/26							
	3/34							
	7/14							
C 0 8 L	61/10	LMS						
				審査請求	未請求 請求項の数1 OL (全 3 頁)			
(21)出願番号		特願平6-304045		(71)出願人	000002141			
					住友ベークライト株式会社			
(22)出願日		平成6年(1994)12	月7日		東京都品川区東品川2丁目5番8号			
				(72)発明者	野口 誠			
					東京都千代田区内幸町1丁目2番2号 住			
					友ペークライト株式会社内			

(54)【発明の名称】 樹脂プーリー

(57)【要約】

【構成】 ノボラック型フェノール樹脂 100重量部に対し、無機基材としてガラス繊維(a) 130 ~ 300 重量部、平均粒径 100 μ m以下のマイカ粉(b) 30 ~ 100 重量部、及び平均粒径 100 μ m以下の炭酸カルシウム、クレー及びウォラストナイトから選ばれた 100 程以上(100 100

【効果】 耐摩耗性が極めて良好であり、かつ、寸法精度及び強度が両立して向上しているため、その工業的価値は極めて大きいものである。

【特許請求の範囲】

Ň.

【請求項1】 フェノール樹脂プーリーにおいて、ノボ ラック型フェノール樹脂100重量部に対し、無機基材 としてガラス繊維(a)130~300重量部、平均粒 径100μm以下のマイカ粉(b)30~100重量 部、及び平均粒径100μm以下の炭酸カルシウム、ク レー及びウォラストナイトから選ばれた1種又は2種以 上(c)30~100重量部を含有することを特徴とす るフェノール樹脂プーリー。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、自動車等のエンジン部 品として適している樹脂プーリー(歯付プーリーを含 む) に関するものである。

[0002]

【従来の技術】自動車等の機構部品の低コスト化、軽量 化の一つとして、各種プーリーの金属からの樹脂化への 代替が行われている。これらのブーリーは、耐熱性、強 度、寸法安定性、ベルトに対する耐摩耗性が要求される に熱を受けた際の寸法精度、寸法安定性が他のブーリー に比べ特に要求される。従来の樹脂製プーリー用の材料 は、フェノール樹脂に主たる充填材として、(1)綿布 の切片、木粉等の有機基材を含有したもの、(2)ガラ ス繊維と無機質(例えば、ガラスビーズ、シリカ、タル ク等)の組みあせたものを含有したものが検討されてい る。しかし、(1)においては有機基材を用いているた めベルトに対する摩耗については良好であるが、寸法安 定性、耐熱性が劣るという問題がある。(2)において 度(特に後収縮の際の異方性による成形品寸法の部分的 変化)と強度が求められるため、ガラス繊維による強度 向上とガラスビーズ、シリカ、タルク等の無機基材によ る寸法精度向上を従来の自動車機構部品に用いられてい るフェノール樹脂材料より更に高次元でバランスさせる 必要がある。

[0003]

【発明が解決しようとする課題】本発明は、前記の寸法 精度と強度のバランスがとれたフェノール樹脂プーリー を提供することにある。

[0004]

【課題を解決するための手段】本発明は、ノボラック型 フェノール樹脂100重量部に対し、ガラス繊維(a) 130~300重量部、平均粒径100μm以下のマイ カ粉(b)30~100重量部、及び平均粒径100 μ m以下の炭酸カルシウム、クレー及びウォラストナイト から選ばれた1種又は2種以上(c)30~100重量 部を含有することを特徴とする摩耗特性が良好で寸法精 度と強度がバランスよく優れたフェノール樹脂プーリー に関するものである。

【0005】本発明で使用されるノボラック型フェノー ル樹脂(以下、ノボラック樹脂という)の数平均分子量 は500~1000が好ましい。500以下ではノボラ ック樹脂の粘度が低すぎるために、成形において溶融樹 脂が金型内に残存する空気や樹脂から発生するガスを巻 き込み、特に金型で袋小路となっている部分で充填不良 を起こしやすくなり、1000以上ではノボラック樹脂 の粘度が高すぎるために流動性が悪くなり、本発明のよ うな樹脂量の少ない材料の場合では充填不足となりやす

10 Li.

【0006】用いられる充填材としては、ガラス繊維 (a)、マイカ粉(b)、炭酸カルシウム、クレー又は ウォラストナイト(c)という無機基材を使用している が、これは、他の無機基材に比較して熱膨張係数が低い ために温度変化に対する寸法安定性が良好であることに よる。ガラス繊維(a)は、通常繊維径8~15 μm、 繊維長1~5mmのチョップドストランドタイプのもの であり、配合量はフェノール樹脂100重量部に対して 130~300重量部の範囲である。130重量部以下 が、歯付プーリーは耐熱性、耐摩耗性とともに、使用時 20 ではフェノール樹脂の欠点である脆さが現れて強度低下 が問題となることがあり、300重量部以上ではガラス 繊維の配向により異方性を生じ、ブーリーとして使用さ れる際に受ける熱により後収縮や部分的寸法変化が大き くなる。

【0007】ガラス繊維とともに使用されるマイカ粉 (b) はリン片状の粉末であり、等方性であることか ら、不均一な寸法変化を小さくし、またガラス繊維によ るベルト摩耗を抑える作用がある。炭酸カルシウム、ク レー及びウォラストナイト(c)は球状粉末であり、平 は、樹脂プーリーは自動車機構部品の中でも特に寸法精 30 均粒径が100μm以下のものが使用される。これらの 無機基材はマイカ粉とともに寸法変化を小さくし、シリ カ粉、ガラス粉やタルクなどに比較して摩耗特性を向上 させる効果が大きく、特にマイカ粉と併用するとその効 果がより大きいことがわかった。シリカ粉、ガラス粉や タルクなどは強度や寸法安定性は同等程度であるが、摩 耗特性が低下するようになる。粒径がこれより大きい と、成形品の平滑さを損なう原因となったり、ピンポイ ントゲート等を使用している場合、ゲート詰まりを引き 起こす恐れがある。

> 【〇〇〇8】使用されるマイカ粉(b)はフェノール樹 脂100重量部に対して30~100重量部の範囲であ り、且つ、炭酸カルシウム、クレー又はウォラストナイ ト(c)はフェノール樹脂100重置部に対して30~ 100重量部である。マイカ粉が30重量部未満である か、あるいは炭酸カルシウム、クレー又はウォラストナ イトが30重量部未満では、前記のマイカ粉あるいは炭 酸カルシウム、クレー又はウォラストナイトによる等方 性の効果が十分でないため後収縮などの寸法変化の改善 効果が小さくなり、摩耗特性も不十分となる。マイカ粉 50 が100重量部を越えるか、あるいは炭酸カルシウム、

クレー又はウォラストナイトが100重量部を越える と、基材中のガラス繊維の割合が小さくなり、フェノー ル樹脂の欠点である脆さが現れ、強度低下が問題とな る。なお、ガラス繊維とともに併用される上記無機基材 において、成形品寸法の部分的変化の低減化に対する効 果としては、マイカ粉は等方性であるだけでなくそのリ ン片状という特性からその改善効果が最も大きい。

3

【0009】本発明では、前記ノボラック樹脂、硬化剤 としてヘキサミンを使用し、前記無機基材、必要に応じ ール等を用いて混合、混練後粉砕して得た材料を、圧縮 成形、トランスファー成形、あるいは射出成形して、樹 脂プーリーを得る。このプーリーは通常、金属製インサ ートを中央に有する。

[0010]

【作用】本発明のフェノール樹脂プーリーは、ガラス繊 維(a)を含有することにより機械的強度を良好にし、 更にガラス繊維がベルトを摩耗させるという欠点を改良 し寸法安定性を良好にするためにマイカ粉(b)、及び* * 炭酸カルシウム、クレー又はウォラストナイトが配合さ れている。従って、プーリー自体及び相手材を摩耗させ ることが殆どなく、寸法精度及び機械的強度も良好であ る。

[0011]

【実施例】以下に、実施例及び比較例について説明す る。表1に示す組成の配合物をミキシングロールで混合 後粉砕して成形材料を得た。この成形材料を圧縮成形し てブーリー及び曲げ強さ測定のためのテストピースを得 着色材、離型剤、硬化促進剤等を配合し、ミキシングロ 10 た。成形条件は金型温度180℃である。プーリーの特 性及びテストピースの特性を表1に併せて示した。プー リーの摩耗性、ベルトの摩耗性は、プーリーを通常のゴ ムを主体としたベルトで100℃空気中、5000rp m、600時間のモーターリングテスト後、プーリー、 ベルトの摩耗状態を目視で評価した。また、プーリーの 寸法安定性は、前記モーターリングテストによるプーリ ーの劣化状態で評価した。

[0012]

【表1】

	Coste (124/1) (D) (MO ii 12(1)											
		実施 捌				比較例						
		1	2	3	4	1	2	3	4			
	ノボラック型(1)											
縕	フェノール樹脂	21	21	2 1	21	21	21	21	21			
咸	ヘキサメチレン											
	テトラミン	4	4	4	4	4	4	4	4			
並	ガラス繊維	52	40	5 2	52	5 2	52	72	0			
量	マイカ粉 (2)	10	16	10	10	10	10		7 2			
%	炭酸がクウム (3)			10								
	クレー (4)	10	16									
	9x5x1141 (5)				10							
	シリカ粉 (6)					10						
	タルク (7)						10					
	その他	3	3	3	3	3	3	3	3			
曲は	が強さ(IPa) (8)	140	130	140	140	140	120	170	8 0			
ブ-	- リーの寸法											
5	比學(%)	0.12	0.11	0.12	0.12	0.12	0.13	0.15	0.09			
雕	【特性 ブーリー	۵	0	0	0	0	0	0	Δ			
(9) ベルト	0	0	0	Ø	0	0	×	0			

- 注(1) ノボラック型フェノール樹脂の数平均分子量800
 - (2) マイカ粉の平均粒径80 μm
- (3) 炭酸カルシウムの平均粒径80 μm
- (4) クレーの平均粒径80 μm
- (5) ウォラストナイトの平均粒径80μm
- (6) シリカ粉の平均粒径80 μm
- (7) タルクの平均粒径80 μm
- (7) JIS K 7203による (成形:トランスファ成形)
- (8) ◎: 摩耗殆どなし ○: 摩耗小 △: 摩耗中 ×: 摩耗大

[0013]

【発明の効果】本発明のフェノール樹脂プーリーは、主 たる基材としてガラス繊維(a)、マイカ粉(b)、及 び炭酸カルシウム、クレー又はウォラストナイト(c)

を含有していることにより、耐摩耗性が極めて良好であ り、かつ、寸法精度及び強度が両立して向上しているた め、その工業的価値は極めて大きいものである。