SSC0902 Organização e Arquitetura de Computadores

3ª Aula – Visão Geral e Conceitos Básicos

Profa. Sarita Mazzini Bruschi sarita@icmc.usp.br

Copyright William Stallings & Adrian J Pullin

Tradução, revisão e adaptação por Paulo S. L. de Souza

Arquitetura de von Neumann

- A arquitetura proposta por von Neumann é composta por:
 - Conjunto de componentes lógicos básicos + programação
- Visão hierárquica do hardware e das camadas de software

- Três pontos importantes:
 - Dados e instruções são representados na memória;
 - A memória é endereçada pela posição e não pelo conteúdo;
 - A execução das instruções é considerada sequencial

Hardware de propósito geral

- Programa determina uma sequência de passos
 - cada passo faz uma operação aritmética ou lógica
 - cada operação requer sinais de controle diferentes

(b) Programming in software

Função da Unidade de Controle

- Para cada operação, um código único é fornecido:
 - Exemplo: ADD, MOVE, etc
- Função da Unidade de Controle:
 - interpretar o código e gerar os sinais de controle que executarão a instrução requerida

Com isso tem-se um computador!!

Componentes

- CPU (Unidade de Controle + Unidade Lógica e Aritmética)
 - Patterson & Hennessy => UC + Caminho de Dados (barramento interno + unidades funcionais)
- E/S comunicação com o mundo exterior
 - permite inserir dados e instruções no computador
 - permite enviar resultados para fora do computador
- Memória principal responsável por:
 - fornecer instruções e operandos para execução
 - armazenar resultados fora da CPU

Componentes do computador: visão glogal

Figura 3.2 Componentes do computador: visão de alto nível

Ciclo de Instrução

- Dois passos:
 - Ciclo de Busca (Fetch)
 - Ciclo de Execução (Execute)

Ciclo de busca

- No contador de programas (PC) estará o endereço da próxima instrução a ser executada
 - Não conta programa algum, aponta para a próxima instrução
- O processador faz a busca da instrução na posição de memória que está armazenada no PC
 - MAR = PC
 - MBR = memória(MAR)
- O PC é incrementado
 - PC = PC + 1
 - incrementa 1 se palavra; incrementa N se N Bytes formam a palavra E o endereçamento é a Byte
 - A não ser que a próxima instrução não esteja armazenada na posição seguinte (instruções de desvio)
- A instrução é armazenada no registrador de instrução (IR)
 - IR = MBR

Ciclo de execução

- UC decodifica a instrução e determina quais ações são necessárias, ou seja, a UC configura os sinais de controle de acordo com a instrução
- A execução da instrução se resume a uma das seguintes possibilidades:
 - Processador-Memória: transferência de dados do processador para a memória ou da memória para o processador
 - Processador-E/S: transferência de dados entre o processador e um dispositivo de E/S
 - Processamento de dados: execução de operações aritméticas ou lógicas sobre os dados
 - Controle: especifica que a sequência de execução de instruções seja alterada
 - Combinação dessas 4 possibilidades

Visão de uma Máquina Hipotética

Características de uma máquina hipotética

Registradores:

- Contador de programa (PC) = endereço da próxima instrução
- Registrador de instrução (IR) = instrução que está sendo executada
- Acumulador (AC) = armazenamento temporário de dados

• Códigos de operações:

- 0001 = carregar AC a partir do endereço de memória especificado
 - (AC) ←(mem)
- 0010 = armazenar o valor contido em AC no endereço de memória especificado
 - (mem) ← (AC)
- 0101 = acrescentar ao valor contido em AC o valor contido no endereço de memória especificado
 - (AC) ← (AC) +(mem)

Características de uma máquina hipotética

Formato de instruções

Formato de números inteiros

0	1 15
S	Magnitude

Exemplo da execução parcial de um programa

Figura 3.5 Exemplo de execução de programa (conteúdo da memória e dos registradores em hexadecimal)

Soma de dois números representados com sinal-magnitude

3 ciclos de busca e execução

> 0001 - (AC) ←(mem) 0010 - (mem) ← (AC) 0101 - (AC) ← (AC) +(mem)

Ciclo de Instrução Diagrama de estados

- Estados e transições
 - parte superior: transferência de valores
 - parte inferior: atividade feita na CPU

Figura 3.6 Diagrama de estado do ciclo de instrução

