Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 1, zadanie nr 1

Stanislau Stankevich, Rafał Bednarz, Ostrysz Jakub

Spis treści

1.	Spra	wdzenie poprawności podanych wartości
2.	Odp	owiedzi skokowe
	2.1.	Opowiedzi skokowe
	2.2.	Charakterystyka statyczna
	2.3.	Wzmocnienie statyczne
3.	Prze	kształcenie odpowiedzi skokowej na potrzeby algorytmu DMC
	3.1.	Przekształcenie odpowiedzi
	3.2.	Wykres odpowiedzi skokowej

1. Sprawdzenie poprawności podanych wartości

Żeby sprawdzić poprawność podanych wartości podajemy na wejscie wartość $U_{\rm PP}$ i patrzymy na jakiej wartości się ustali $Y_{\rm PP}$.

Rys. 1.1. Przebieg wyjścia obiektu przy stałym wejściu równym U_{PP}

Jak możemy obersować wyjście się ustala na poprawnej wartości, czyli na 0,9.

2. Odpowiedzi skokowe

2.1. Opowiedzi skokowe

Rozważamy 5 różnych wartości skoku: 0,1, 0,15, 0,2, 0,25, 0,3.

Rys. 2.1. Wykresy odpowiedzi skokowych

Jak widać wartość skoku na wyjściu jest proporcjonalna wartości skoku wejścia.

2.2. Charakterystyka statyczna

Jako dane do wykresu bierzemy 6 punktów. Pierwszy punkt to $U_{\rm PP}$ i $Y_{\rm PP}$. Kolejne punkty to wejścia razem ze skokiem i odpowiedne wartości wyjścia.

Rys. 2.2. Charakterystyka statyczna y(u)

2.3. Wzmocnienie statyczne

Jak widać z powyższego wykresu, charakterstyka jest prawie idealnie liniowa. Wyliczone wzmocnienie statyczne:

$$K_{\text{stat}} = 1,6085$$
 (2.1)

3. Przekształcenie odpowiedzi skokowej na potrzeby algorytmu DMC

3.1. Przekształcenie odpowiedzi

Odpowiedź skokowa wykorzystywana w algorytmach DMC tworzona jest przy skoku jednostkowym od chwili k=0 (od $k \ge 0$ sygnał sterujący ma wartość 1 ,a dla k < 0 wartość 0). Żadna z odpowiedzi skokowych z podpunktu 2 nie posiada tej własności, dlatego też należy skorzystać z poniższego wzoru:

$$S_i = \frac{Y(i) - Y_{pp}}{\delta U}$$
, dla $i = 1, 2 \dots D$ (3.1)

Przy jego pomocy można wyznaczyć kolejne zestawy liczb $s_1, s_2 \dots$, które są kolejnymi wartościami wyznaczanej odpowiedzi skokowej. We wzorze Y_{pp} oznacza wyjście w punkcie pracy, δU wartość skoku sygnału sterującego. Natomiast Y(i) to wartości przekształcanej odpowiedzi skokowej, dla kolejnych chwil od momentu wystąpienia skoku sygnału sterującego. Do przekształcenia odpowiedzi skokowej według powyższego wzoru wybrano odpowiedź procesu dla zmiany sygnału sterującego o $\delta U=0,3$ (skok z $U_{pp}=3$ do U=3,3). Skok sygnału sterującego zadany był w chwili k=12.

3.2. Wykres odpowiedzi skokowej

Po wyliczeniu kolejnych współczynników s i naniesieniu ich na wykres odpowiedź skokowa wygląda następująco:

Rys. 3.1. Charakterystyka statyczna $\boldsymbol{y}(\boldsymbol{u})$