date: 2024-04-12

TFE4188 - Lecture X Energy Sources

Goal

Why do we need energy sources?

Introduction to **Energy Harvesting**

Carsten Wulff 2024

2

Lithium Battery

1 year \Rightarrow 45 μ W/cm³

10 year \Rightarrow 3.5 μ W/cm³

Thermoelectric

Photovoltaic

Piezoelectric

Electromagnetic

Triboelectric

Thermoelectric

Seebeck coefficient

Radioisotope Thermoelectric generator

Thermoelectric generators

In A 3.5-mV Input Single-Inductor Self-Starting Boost Converter With Loss-Aware MPPT for Efficient Autonomous Body-Heat Energy Harvesting they use a combination of both switched capacitor and switched inductor boost.

Photovoltaic

$$I_D = I_S \left(e^{rac{V_D}{V_T}} - 1
ight)$$
 $I_D = I_{Photo} - I_{Load}$ $V_D = V_T ln igg(rac{I_{Photo} - I_{Load}}{I_S} + 1igg)$ $P_{Load} = V_D I_{Load}$

```
#!/usr/bin/env python3
import numpy as np
import matplotlib.pyplot as plt
m = 1e-3
i_load = np.linspace(1e-5, 1e-3, 200)
i s = 1e-12 # saturation current
i ph = 1e-3 # Photocurrent
V T = 1.38e-23*300/1.6e-19 #Thermal voltage
V_D = V_T*np.log((i_ph - i_load)/(i_s) + 1)
P load = V D*i load
plt.subplot(2,1,1)
plt.plot(i_load/m,V_D)
plt.ylabel("Diode voltage [mA]")
plt.grid()
plt.subplot(2,1,2)
plt.plot(i_load/m,P_load/m)
plt.xlabel("Current load [mA]")
plt.ylabel("Power Load [mW]")
plt.grid()
plt.savefig("pv.pdf")
plt.show()
```


ANYSOLAR

Carsten Wulff 2024

Preliminary

KXOB25-03X4F

Typical SolarMD Performance Data

In A Reconfigurable Capacitive Power Converter With Capacitance Redistribution for Indoor Light-Powered Batteryless Internet-of-Things Devices they include a maximum power point tracker and a reconfigurable charge pump to optimize efficiency.

Piezoelectric

An example of piezoelectric energy harvester can be found in A Fully Integrated Split-Electrode SSHC Rectifier for Piezoelectric Energy Harvesting

sten Wulff 2024 24

Electromagnetic

Carsten Wulff 2024 25

"Near field" harvesting

Near Field Communcation (NFC) operates at close physical distances

Reactive near field or inductive near field

$$\text{Inductive} < \frac{\lambda}{2\pi}$$

Standard	Frequency [MHz]	Inductive [m]	
AirFuel Resonant	6.78	7.03	
NFC	13.56	3.52	
Qi	0.205	232	
Bluetooth	2400	0.02	

Ambient RF Harvesting

Extremely inefficient idea, but may find special use-cases at short-distance.

Will get better with beam-forming and directive antennas

AirFuel RF

dBm	W
30	1
0	1 m
-30	1 u
-60	1 n
-90	1 p

Assume P_{TX} = 1 W (30 dBm) and P_{RX} = 10 uW (-20 dBm)

$$D=10^{rac{P_{TX}-P_{RX}+20log_{10}\left(rac{c}{4\pi f}
ight)}{20}}$$

Freq [dB]		D [m]
915M	-31.7	8.2
2.45G	-40.2	3.1
5.80G	-47.7	1.3

Triboelectric generator

Take a look in A Fully Energy-Autonomous Temperature-to-Time Converter Powered by a Triboelectric Energy Harvester for Biomedical Applications for more details.

Battery

Comparison

Energy Source	Power Density	Frequency	Characteristics
Solar/PV	10µW/cm²(indoor) 15mW/cm²(outdoor)	DC	Requires exposure to light
RF Energy	0.1µW/cm²(GSM) 0.01µW/cm²(WiFi)	380M ~ 5 Hz	Low efficiency for indoor and out of line-of-sight
Thermal – body heat	40μW/cm²	DC	Requires high temperature differences
Piezoelectric	4μW/cm²	> 30 Hz	Not limited by indoors or outdoors
Triboelectric (TENG)	1μW/cm²	1 Hz	Not limited by indoors or outdoors

Carsten Wulff 2024

36

References

[1] Towards a Green and Self-Powered Internet of Things Using Piezoelectric Energy Harvesting

A 3.5-mV Input Single-Inductor Self-Starting Boost Converter With Loss-Aware MPPT for Efficient Autonomous Body-Heat Energy Harvesting

A Reconfigurable Capacitive Power Converter With Capacitance Redistribution for Indoor Light-Powered Batteryless Internet- of-Things Devices

A Fully Integrated Split-Electrode SSHC Rectifier for Piezoelectric Energy Harvesting

Current progress on power management systems for triboelectric nanogenerators

A Fully Energy-Autonomous Temperature-to-Time Converter Powered by a Triboelectric Energy Harvester for Biomedical Applications

Thanks!