

DONORS

FIGURE 1

BRIDGES

1. Polyene Examples

2. Fused Thiophene Examples

3. Monothiophene Examples

ACCEPTORS

1). Polyene Donor + Polyene Bridge + Polyene Acceptor

2). Polyene Donor + dithiophene + Polyene Acceptor

3). Polyene Donor + tri-thiophene bridge + Polyene Acceptor

4). polyene Donor + thiophene + Polyene Acceptor

FIGURE 2

Tet. Lett. 1987, 28, 1857
 J. Am. Chem. Soc. 1986, 108, 800
 J. Org. Chem. 1987, 52, 2378
 Chem. Hetero. Cmpds. (NY) 2000 35(10) 1150
 Synthesis 1977, 12, 869
 Mendel. Comm. 2001, 1, 17
 Tet. Lett. 1988, 29(13), 1489

FIGURE 3

J. Chem. Soc. Perk. Trans. 1 1997, 22, 3465
 Heterocycles 1994, 38(1), 143
 J. Organomet. Chem. 1973, 50, C12
 Pure Appl. Chem. 1980, 52, 669
 Tet. Lett. 1981, 22, 4449

FIGURE 4

Title: HYPERPOLARIZABLE ORGANIC CHROMOPHORES

Inventors: L.R. Dalton et al.

Docket No.: UOFW117403

J. Org. Chem. 1971, 36(12), 1645
J. Chem. Soc. Perk. Trans. 2 1992, 5, 765
J. Mater. Chem. 1999, 9(9), 2227

FIGURE 5

Synth. Comm. 1996, 26(11), 2205
Tet. Lett. 2001, 42, 1507.

FIGURE 6

Title: HYPERPOLARIZABLE ORGANIC CHROMOPHORES
Inventors: L.R. Dalton et al.
Docket No.: UOFW117403

J. Am. Chem. Soc. 2001, 123(19), 4643
Chem. Mater. 1996, 8(11), 2659
J. Chem. Soc. Perkins Trans. I 1997, 1957

FIGURE 7

FIGURE 11

FIGURE 8

Title: HYPERPOLARIZABLE ORGANIC CHROMOPHORES
Inventors: L.R. Dalton et al.
Docket No.: UOFW117403

FIGURE 9

Title: HYPERPOLARIZABLE ORGANIC CHROMOPHORES
Inventors: L.R. Dalton et al.
Docket No.: UOFW117403

FIGURE 13

FIGURE 10

Title: HYPERPOLARIZABLE ORGANIC CHROMOPHORES

Inventors: L.R. Dalton et al.

Docket No.: UO FW117403

FIGURE 12

FIGURE 14

FIGURE 15

FIGURE 17

EO coef. vs. chromophore loading

FIGURE 18

Title: HYPERPOLARIZABLE ORGANIC CHROMOPHORES
Inventors: L.R. Dalton et al.
Docket No.: UOFW117403

FIGURE 16

FIGURE 19

FIGURE 20

Title: HYPERPOLARIZABLE ORGANIC CHROMOPHORES

Inventors: L.R. Dalton et al.

Docket No.: UOFW117403

FIGURE 21

FIGURE 22

FIGURE 24

SCANNED, # 14

FIGURE 23

FIGURE 25

Electro-Optic Activity vs. Loading Density

Title: HYPERPOLARIZABLE ORGANIC CHROMOPHORES
Inventors: L.R. Dalton et al.
Docket No.: UOFW117403

FIGURE 26

FIGURE 27

FIGURE 28

FIGURE 29

Title: HYPERPOLARIZABLE ORGANIC CHROMOPHORES

Inventors: L.R. Dalton et al.

Docket No.: UOFW117403

FIGURE 30

Title: HYPERPOLARIZABLE ORGANIC CHROMOPHORES
Inventors: L.R. Dalton et al.
Docket No.: UO FWI 17403

FIGURE 31

FIGURE 32

FIGURE 33

FIGURE 34

FIGURE 35

FIGURE 36

FIGURE 37

(i) NBS, DMF, RT; (ii) acetic anhydride, 60°C; (iii) (CH₂O)_n, 45% HBr/HOAc, HOAc, 50°C;

(iv) P(OEt)₃, DMF, 120°C.

FIGURE 38

(i) 11, KOtBu, THF, 0°C; (ii) K₂CO₃, CH₃OH, H₂O, RT; (iii) (CH₃)₃CSi(CH₃)₂Cl, imidazole, DMF, 50°C; (iv) a. nBu-Li, THF, -78°C; b. DMF, RT; (v) a. 4, KOtBu, THF, 0°C; b. K₂CO₃, CH₃OH, H₂O, RT; c. (CH₃)₃CSi(CH₃)₂Cl, imidazole, DMF, 50°C.

FIGURE 39

FIGURE 40

Large Angle Laser Beam Scanner

EO waveguide prism introduces a small deflection angle to initialize the beam scanning. The half-circle 2-D photonic crystal region is imbedded into the waveguide, so that the deflection angle is “amplified” as the light pass through the crystal region. 3D scanning can also be provided if a 3-D structure is built

FIGURE 41

Mach Zehnder Modulator

Birefringent Modulator

Directional Coupler

FIGURE 42

$$I_{AC} (\text{out}) = I_1 + I_2 + 2(I_1 I_2)^{1/2} \sin(\rho V_o \sin(\omega t))$$

$$\rho = 2\pi r_{33} n^3 L V_o / T \lambda$$

Comparison of key features of simple devices

Mach Zehnder Interferometer	Birefringent Modulator	Directional Coupler
--------------------------------	---------------------------	------------------------

r_{eff}	r_{33}	$r_{33}-r_{13}$	r_{33}
V_π	$V_{\pi MZ}$	$1.5 V_{\pi MZ}$	$1.73 V_{\pi MZ}$
Mod. Power	P_{MZ}	$2.75 P_{MZ}$	$3 P_{MZ}$

FIGURE 43

FIGURE 44

FIGURE 45

FIGURE 46

Title: HYPERPOLARIZABLE ORGANIC CHROMOPHORES

Inventors: L.R. Dalton et al.

Docket No.: UOFW117403

FIGURE 47

FIGURE 48