电路学NO.5小麦NO.11.

- 1. (40%) Consider the network shown in Figure 1(a).
 - (a) (10%) Please write the transfer function H(s) from v_{in} to v_{out} . How many zeros and poles does H(s) have?
 - (b) (5%) Draw the s-plane diagram of the transfer function. Mark all poles and zeros at their locations on the s-plane.
 - (c) (10%) Evaluate the network's amplitude ratio $a(\omega) = |H(j\omega)|$ and phase shift $\theta(\omega) = \angle H(j\omega)$ at $\omega = 0^+, 5, 10, 20$ and $\omega = \infty$. Sketch the frequency response curves using these results.
 - (d) (5%) What type of filter is this network? (Lowpass, highpass, bandpass, or bandstop) What is the cutoff frequency?
 - (e) (10%) Draw the asymptotic Bode plot of the gain and phase for H(s).

2. (60%) Consider the network shown in Figure 1(b).

- (a) (10%) Please write the transfer function H(s) from v_{in} to v_{out} . How many zeros and poles does H(s) have?
- (b) (10%) Draw the s-plane diagram of the transfer function. Mark all poles and zeros at their locations on the s-plane.
- (c) (20%) Use the s-plane diagram to evaluate the network's amplitude ratio $a(\omega) = |H(j\omega)|$ and phase shift $\theta(\omega) = \angle H(j\omega)$ at $\omega = 0^+, 5, 10, 20$ and $\omega = \infty$. Sketch the frequency response curves using these results.
- (d) (10%) What type of filter is this network? (Lowpass, highpass, bandpass, or bandstop)
- (e) (10%) Evaluate the quality factor Q. What are the cutoff frequencies?