KEY POINTS

- The scope of this book is broad, covering three general areas: data communications, networking, and protocols; the first two are introduced in this chapter.
- Data communications deals with the transmission of signals in a reliable and efficient manner. Topics covered include signal transmission, transmission media, signal encoding, interfacing, data link control, and multiplexing.
- Networking deals with the technology and architecture of the communications networks used to interconnect communicating devices. This field is generally divided into the topics of local area networks (LANs) and wide area networks (WANs).

The 1970s and 1980s saw a merger of the fields of computer science and data communications that profoundly changed the technology, products, and companies of the now combined computer-communications industry. The computer-communications revolution has produced several remarkable facts:

- There is no fundamental difference between data processing (computers) and data communications (transmission and switching equipment).
- There are no fundamental differences among data, voice, and video communications.
- The distinction among single-processor computer, multiprocessor computer, local network, metropolitan network, and long-haul network has blurred.

One effect of these trends has been a growing overlap of the computer and communications industries, from component fabrication to system integration. Another result is the development of integrated systems that transmit and process all types of data and information. Both the technology and the technical standards organizations are driving toward integrated public systems that make virtually all data and information sources around the world easily and uniformly accessible.

This book aims to provide a unified view of the broad field of data and computer communications. The organization of the book reflects an attempt to break this massive subject into comprehensible parts and to build, piece by piece, a survey of the state of the art. This introductory chapter begins with a general model of communications. Then, a brief discussion introduces each of the Parts Two through Four of this book. Chapter 2 provides an overview to Part Five.

1.1 A COMMUNICATIONS MODEL

We begin our study with a simple model of communications, illustrated by the block diagram in Figure 1.1a.

The fundamental purpose of a communications system is the exchange of data

Figure 1.1 Simplified Communications Model

Another example is the exchange of voice signals between two telephones over the same network. The key elements of the model are as follows:

(b) Example

- Source. This device generates the data to be transmitted; examples are telephones and personal computers.
- Transmitter: Usually, the data generated by a source system are not transmitter
 ted directly in the form in which they were generated. Rather, a transmitter
 transforms and encodes the information in such a way as to produce electromagnetic signals that can be transmitted across some sort of transmission system. For example, a modern takes a digital bit stream from an attached device
 such as a personal computer and transforms that bit stream into an analog signal that can be handled by the telephone network.
- Transmission system: This can be a single transmission line or a complex network connecting source and destination.
- Receiver: The receiver accepts the signal from the transmission system and converts it into a form that can be handled by the destination device. For example, a modern will accept an analog signal coming from a network or transmission line and convert it into a digital bit stream.

Table 1.1 Communications Tasks

Transmission system utilization Addressing Routing Interfacing Recovery Signal generation Message formatting Synchronization Security Exchange management Network management Error detection and correction Flow control

allocate the total capacity of a transmission medium among a number of users. Congestion control techniques may be required to assure that the system is not overwhelmed by excessive demand for transmission services.

To communicate, a device must interface with the transmission system. All the forms of communication discussed in this book depend on the use of electromagnetic signals propagated over a transmission medium. Thus, once an interface is established, signal generation is required for communication. The properties of the signal, such as form and intensity, must be such that the signal is (1) capable of being propagated through the transmission system, and (2) interpretable as data at the receiver.

Not only must the signals be generated to conform to the requirements of the transmission system and receiver, but also there must be some form of synchronization between transmitter and receiver. The receiver must be able to determine when a signal begins to arrive and when it ends. It must also know the duration of each signal element.

Beyond the basic matter of deciding on the nature and timing of signals, there is a variety of requirements for communication between two parties that might be collected under the term exchange management. If data are to be exchanged in both directions over a period of time, the two parties must cooperate. For example, for two parties to engage in a telephone conversation, one party must dial the number of the other, causing signals to be generated that result in the ringing of the called phone. The called party completes a connection by lifting the receiver. For data processing devices, more will be needed than simply establishing a connection; certain conventions must be decided on. These conventions may include whether both devices may transmit simultaneously or must take turns, the amount of data to be sent at one time, the format of the data, and what to do if certain contingencies such as an error arise.

Recovery is a concept distinct from that of error correction. Recovery techniques are needed in situations in which an information exchange, such as a database transaction or file transfer, is interrupted due to a fault somewhere in the system. The objective is either to be able to resume activity at the point of interruption or at least to restore the state of the systems involved to the condition prior to the beginning of the exchange.

Message formatting has to do with an agreement between two parties as to the form of the data to be exchanged or transmitted, such as the binary code for characters.

Frequently, it is important to provide some measure of security in a data communications system. The sender of data may wish to be assured that only the intended receiver actually receives the data. And the receiver of data may wish to be assured that the received data have not been altered in transit and that the data actually come from the purported sender.

Finally, a data communications facility is a complex system that cannot create or run itself. Network management capabilities are needed to configure the system, monitor its status, react to failures and overloads, and plan intelligently for future growth.

Thus, we have gone from the simple idea of data communication between source and destination to a rather formidable list of data communications tasks. In this book, we elaborate this list of tasks to describe and encompass the entire set of activities that can be classified under data and computer communications.

1.2 DATA COMMUNICATIONS

Following Part One, this book is organized into four parts. Part Two deals with the must fundamental aspects of the communications function, focusing on the transmission of signals in a reliable and efficient manner. For want of a better name, we have given Part Two the title "Data Communications," although that term arguably encompasses some or even all of the topics of Parts Three through Five.

To get some flavor for the focus of Part Two, Figure 1.2 provides a new perspective on the communications model of Figure 1.1a. We trace the details of this

Digital bit Analog Analog Signal Stream

Text

Suppose that the input device and transmitter are components of a personal computer. The user of the PC wishes to send a message m to another user. The user activates the electronic mail package on the PC and enters the message via the keyboard (input device). The character string is briefly buffered in main memory. We can view it as a sequence of bits (g) in memory. The personal computer is connected to some transmission medium, such as a local network or a telephone line, by an I/O device (transmitter), such as a local network transceiver or a modem. The input data are transferred to the transmitter as a sequence of voltage shifts [g(t)] representing bits on some communications bus or cable. The transmitter is connected directly to the medium and converts the incoming stream [g(t)] into a signal [s(t)] suitable for transmission; specific alternatives will be described in Chapter 5.

The transmitted signal s(t) presented to the medium is subject to a number of impairments, discussed in Chapter 3, before it reaches the receiver. Thus, the received signal r(t) may differ from s(t). The receiver will attempt to estimate the original s(t), based on r(t) and its knowledge of the medium, producing a sequence of bits g'(t). These bits are sent to the output personal computer, where they are briefly buffered in memory as a block of bits (g'). In many cases, the destination system will attempt to determine if an error has occurred and, if so, cooperate with the source system to eventually obtain a complete, error-free block of data. These data are then presented to the user via an output device, such as a printer or screen. The message (m') as viewed by the user will usually be an exact copy of the original message (m).

Now consider a telephone conversation. In this case the input to the telephone is a message (m) in the form of sound waves. The sound waves are converted by the telephone into electrical signals of the same frequency. These signals are transmitted without modification over the telephone line. Hence the input signal g(t) and the transmitted signal s(t) are identical. The signal s(t) will suffer some distortion over the medium, so that r(t) will not be identical to s(t). Nevertheless, the signal r(t) is converted back into a sound wave with no attempt at correction or improvement of signal quality. Thus, m' is not an exact replica of m. However, the received sound message is generally comprehensible to the listener.

The discussion so far does not touch on other key aspects of data communications, including data link control techniques for controlling the flow of data and detecting and correcting errors, and multiplexing techniques for transmission efficiency. All of these topics are explored in Part Two.

The solution to this problem is to attach each device to a communication network. There are two major categories into which communications networks are traditionally classified: wide area networks (WANs) and local area networks (LANs). The distinction between the two, both in terms of technology and application, has become somewhat blurred in recent years, but it remains a useful way of organizing the discussion.

Wide Area Networks

Wide area networks generally cover a large geographical area, require the crossing of public right-of-ways, and rely at least in part on circuits provided by a common carrier. Typically, a WAN consists of a number of interconnected switching nodes. A transmission from any one device is routed through these internal nodes to the specified destination device. These nodes (including the boundary nodes) are not concerned with the content of the data; rather, their purpose is to provide a switching facility that will move the data from node to node until they reach their destination.

Traditionally, WANs have been implemented using one of two technologies: circuit switching and packet switching. More recently, frame relay and ATM networks have assumed major roles.

Circuit Switching

In a circuit-switching network, a dedicated communications path is established between two stations through the nodes of the network. That path is a connected sequence of physical links between nodes. On each link, a logical channel is dedicated to the connection. Data generated by the source station are transmitted along the dedicated path as rapidly as possible. At each node, incoming data are routed or switched to the appropriate outgoing channel without delay. The most common example of circuit switching is the telephone network.

Packet Switching

A quite different approach is used in a packet-switching network. In this case, it is not necessary to dedicate transmission capacity along a path through the network. Rather, data are sent out in a sequence of small chunks, called packets. Each packet is passed through the network from node to node along some path leading from source to destination. At each node, the entire packet is received, stored briefly, and then transmitted to the next node. Packet-switching networks are commonly used for terminal-to-computer and computer-to-computer communications.

Frame Relay

Packet switching was developed at a time when digital long-distance transmission facilities exhibited a relatively high error rate compared to today's facilities. As counterproductive because the overhead involved soaks up a significant fraction of the high capacity provided by the network.

Frame relay was developed to take advantage of these high data rates and low error rates. Whereas the original packet-switching networks were designed with a data rate to the end user of about 64 kbps, frame relay networks are designed to operate efficiently at user data rates of up to 2 Mbps. The key to achieving these high data rates is to strip out most of the overhead involved with error control.

ATM

Asynchronous transfer mode (ATM), sometimes referred to as cell relay, is a culmination of developments in circuit switching and packet switching. ATM can be viewed as an evolution from frame relay. The most obvious difference between frame relay and ATM is that frame relay uses variable-length packets, called frames, and ATM uses fixed-length packets, called cells. As with frame relay, ATM provides little overhead for error control, depending on the inherent reliability of the transmission system and on higher layers of logic in the end systems to catch and correct errors. By using a fixed packet length, the processing overhead is reduced even further for ATM compared to frame relay. The result is that ATM is designed to work in the range of 10s and 100s of Mbps, and in the Gbps range.

ATM can also be viewed as an evolution from circuit switching. With circuit switching, only fixed-data-rate circuits are available to the end system. ATM allows the definition of multiple virtual channels with data rates that are dynamically defined at the time the virtual channel is created. By using small, fixed-size cells, ATM is so efficient that it can offer a constant-data-rate channel even though it is using a packet-switching technique. Thus, ATM extends circuit switching to allow multiple channels with the data rate on each channel dynamically set on demand.

Local Area Networks

As with WANs, a LAN is a communications network that interconnects a variety of devices and provides a means for information exchange among those devices. There are several key distinctions between LANs and WANs:

1. The scope of the LAN is small, typically a single building or a cluster of buildings. This difference in geographic scope leads to different technical solutions, devices, or a number of interconnected switches. Two other prominent examples are ATM LANs, which simply use an ATM network in a local area, and Fibre Channel. Wireless LANs use a variety of wireless transmission technologies and organizations. LANs are examined in depth in Part Four.

Wireless Networks

As was just mentioned, wireless LANs are common, being widely used in business environments. Wireless technology is also common for both wide area voice and data networks. Wireless networks provide advantages in the areas of mobility and case of installation and configuration. Chapters 14 and 17 deal with wireless WANs and LANs, respectively.

Metropolitan Area Networks

As the name suggests, a MAN occupies a middle ground between LANs and WANs. Interest in MANs has come about as a result of a recognition that the traditional point-to-point and switched network techniques used in WANs may be inadequate for the growing needs of organizations. While frame relay and ATM promise to meet a wide range of high-speed needs, there is a requirement now for both private and public networks that provide high capacity at low costs over a large area. A number of approaches have been implemented, including wireless networks and metropolitan extensions to Ethernet.

The primary market for MANs is the customer that has high-capacity needs in ii metropolitan area. A MAN is intended to provide the required capacity at lower cost and greater efficiency than obtaining an equivalent service from the local tele-

phone company.

1.4 AN EXAMPLE CONFIGURATION

To give some feel for the scope of concerns of Parts Two through Four, Figure 1.3 illustrates some of the typical communications and network elements in use today. In the upper left-hand portion of the figure, we see an individual residential user connected to an Internet service provider (ISP) through some sort of subscriber connection. Common examples of such a connection are the public telephone network, for which the user requires a dial-up modem (e.g., a 56-kbps modem); a digital subscriber line (DSL), which provides a high-speed link over telephone lines and requires a special DSL modem; and a cable TV facility, which requires a cable