Poznámka

Credit for giving 'small lecture'. Oral exam.

1 Meromorphic functions

Definice 1.1

We say that a function f is holomorphic in a set $F \subset \mathbb{C}$ if there is an open $G \supseteq F$ such that f is holomorphic on G.

In particular, f is holomorphic at $z_0 \in \mathbb{C}$ if f is holomorphic in some neighbour (= $U(z_0) = U(z_0, \varepsilon)$) of z_0 .

Definice 1.2

Function f has at ∞ a removable singularity, if $f\left(\frac{1}{z}\right)$ has a removable singularity at 0. Similarly pole and essential singularity.

Function f is holomorphic at ∞ if $f\left(\frac{1}{z}\right)$ is holomorphic at 0.

Let $G \subset \mathbb{S}$ be open. Then f is holomorphic on G if f is holomorphic at any z_0 . Denote $\mathcal{H}(G) := \{f : G \to \mathbb{C} | f \text{ holomorphic} \}.$

Například

From Liouville theorem $\mathbb{H}(\mathbb{S}) = \text{constant functions}$. So $\mathbb{H}(G)$ is interesting only for $G \subsetneq \mathbb{S}$, so WLOG $G \subset \mathbb{C}$.

Definice 1.3 (Meromorphic function)

Let $G \subset \mathbb{S}$ be open. Then a function f on G is called meromorphic if at any $z_0 \in G$ the function f is either holomorphic at z_0 or has a pole at z_0 .

Denote $\mathcal{M}(G)$ the set of meromorphic functions on G.

Dusledek

- $\mathcal{H}(G) \subset \mathcal{M}(G)$.
- Denote $P_f := \{z_0 \in G | f \text{ has a pole at } z_0\}$. Then P_f has no limit points in G.
- If $f = \infty$ on P_f , then $f : G \to \mathbb{S}$ is continuous. (We always assume, that $f \in \mathcal{H}(G)$ has this property.)

 $Nap \check{r} iklad$

$$\frac{\pi}{\sin(\pi z)} \in \mathcal{M}(\mathbb{C}), \qquad e^{\frac{1}{z}} \notin \mathcal{M}(\mathbb{C}), \qquad \Gamma \in \mathcal{M}(\mathbb{C}), \qquad \zeta \in \mathcal{M}(\mathbb{C}).$$

 $\mathcal{M}(\mathbb{S}) = \text{rational functions.}$ (One inclusion is clear, second: Let $f \in \mathcal{M}(\mathbb{S})$, then because \mathbb{S} is compact it holds that P_f is finite (has no limit point), $P_f \cap \mathbb{C} = \{z_1, \ldots, z_n\}$, so from theorem from last semester there exists $h \in \mathcal{H}(\mathbb{C})$ such that $f(z) = h(z) + \sum_{j=1}^n p_j \left(\frac{1}{z-z_j}\right)$ for some polynomials p_j . f has removable singularity or pole at infinity and p_j and $\frac{1}{z-z_j}$ have removable singularity there, so h(z) is polynomial, otherwise h(z) has infinity Taylor polynom and $h\left(\frac{1}{z}\right)$ has essential singularity at 0.)

So $\mathcal{M}(G)$ is interesting for $G \subsetneq \mathbb{S}$, WLOG $G \subset \mathbb{C}$.

If $G \subset \mathbb{C}$ is domain, $f, g \in \mathbb{H}(G)$ and $g \equiv 0$, then $f/g \in \mathcal{M}(G)$. The inverse is also true (we will prove it) (but not for $G = \mathbb{S}$).

Lemma 1.1

Let $\mathbb{G} \subset \mathbb{C}$ be open. Then there are compacts K_n , $n \in \mathbb{N}$, in G such that $G = \bigcup_{n=1}^{\infty} K_n$, $K_n \subset \operatorname{int}(K_{n+1})$ and for any compact K in G, $\exists n \in \mathbb{N} : K \in K_n$.

П

 $D\mathring{u}kaz$

Set
$$K_n := \{z \in G | \operatorname{dist}(z, \mathbb{C} \backslash G) \ge \frac{1}{n}\} \cap U(0, n).$$

Tvrzení 1.2

Let $G \subset \mathbb{S}$ be open and $M \subset G$ has no limit point in G. Then

- $G\backslash M$ is open:
- if K is a compact in G, then $K \cap M$ is finite. In particular for $G = \mathbb{S}$ we have M is finite;
- M is at most countable. If M is infinite, then $\emptyset \neq M' \subset \partial G$;
- if $G \subset \mathbb{C}$ is domain (connected), then $G \setminus M$ is domain.

Věta 1.3 (Uniqueness of meromorphic functions)

Let $G \subset \mathbb{C}$ be a domain, $f \in \mathcal{M}(G)$ and $f \not\equiv 0$. Then $N_f := \{z \in G | f(z) = 0\}$ has no limit points in G.

 $D\mathring{u}kaz$

We know this holds for holomorphic functions. Set $G_0 := G \backslash P_f$. Then $G_0 \subset \mathbb{C}$ is also domain and $f \in \mathcal{H}(G)$ and $f \not\equiv 0$ on G_0 . Then $N_f \subset G_0$ has no limit points in G_0 , nor in P_f .

Věta 1.4 (Residue theorem)

Let $G \subset \mathbb{C}$ be open, φ be a closed curve (or cycle) in G and int $\varphi := \{z_0 \in \mathbb{C} \setminus \langle \varphi \rangle \mid \operatorname{ind}_{\varphi} z_0 \neq 0\} \subset G$. Let $M \subset G \setminus \langle \varphi \rangle$ be finite and $f \in \mathcal{H}(G \setminus M)$. Then $\int_{\varphi} f = 2\pi i \cdot \sum_{s \in M} \operatorname{ind}_{\varphi} s \cdot \operatorname{res}_s f$.

Poznámka

This holds true even if instead of finiteness of M, we assume only that $M \subset G \setminus \langle \varphi \rangle$ has no limit points in G. Indeed, we have $M_0 = M \cap \operatorname{int} \varphi$ is finite, because $\langle \varphi \rangle \cup \operatorname{int} \varphi$ is compact and $G_0 := G \setminus (M \setminus M_0)$ is open and f is holomorphic on $G_0 \setminus M_0$ and by R. theorem for G_0 and M_0 we get $\int_{\varphi} f = 2\pi i \sum_{s \in M_0} \operatorname{res}_s f \cdot \operatorname{ind}_{\varphi} s$.

1.1 Logarithmic integrals

Definice 1.4 (Logarithmic integral)

Let $\varphi : [a, b] \to \mathbb{C}$ be a (regular) curve and let f be a non-zero holomorphic function on $\langle \varphi \rangle$. Then we define logarithmic integrals integral as

$$I := \frac{1}{2\pi i} \int_{\varphi} \frac{f'}{f} = \frac{1}{2\pi i} \int_{a}^{b} \frac{f'(\varphi(t))\varphi'(t)}{f(\varphi(t))} dt = \frac{1}{2\pi i} \int_{a}^{b} \frac{(f(\varphi(t)))'}{f(\varphi(t))} dt = \frac{1}{2\pi i} \int_{f \circ \varphi} \frac{dz}{z} = \frac{1}{2\pi i} (\Phi(b) - \Phi(a)),$$

where Φ is a branch (jednoznačná větev) of logarithm of $f \circ \varphi$. If φ is, in addition, closed, then $I = \operatorname{ind}_{f \circ \varphi} 0 = \frac{1}{2\pi} (\Theta(b) - \Theta(a)) \in \mathbb{Z}$, where Θ is a branch of argument of $f \circ \varphi$.

 $(\frac{f'}{f})$ is called logarithmic derivative of f, because $(\log f)' = \frac{f'}{f}$.

Věta 1.5 (Argument principle)

Let $G \subseteq \mathbb{C}$ be a domain, φ be a closed curve in G and $f \in \mathcal{M}(G)$. Let $\operatorname{int} \varphi \subset G$ and $\langle \varphi \rangle \cap N_f = \emptyset$, $\langle \varphi \rangle \cap P_f = \emptyset$. Then

$$\frac{1}{2\pi i} \int_{\varphi} \frac{f'}{f} = \sum_{s \in \operatorname{int} \varphi, f(s) = 0} n_f(s) \cdot \operatorname{ind}_{\varphi} s - \sum_{s \in \operatorname{int} \varphi, f(s) = \infty} p_f(s) \cdot \operatorname{ind}_{\varphi} s,$$

where $n_f(s)$ is multiplicity of the zero point s of f and $p_f(s)$ is multiplicity of the pole s of f.

3

Důkaz

By Residua theorem, we have

$$\frac{1}{2\pi i} \int_{\varphi} \frac{f'}{f} = \sum_{s \in \operatorname{int} \varphi, s \in N_f \cup P_f} \operatorname{res}_s \left(\frac{f'}{f} \right) \cdot \operatorname{ind}_{\varphi} s.$$

If $s \in N_f$ then on P(s):

$$\frac{f'(z)}{f(z)} = \frac{p \cdot c_p(z-s)^{p-1} + \dots}{c_p(z-s)^p + \dots} = \frac{p}{z-s} \cdot \frac{1+\dots}{1+\dots} \implies \operatorname{res}_s\left(\frac{f'}{f}\right) = p = n_f(s).$$

If $s \in P_f$ then on P(s)

$$\frac{f'(z)}{f(z)} = \frac{p \cdot c_p(z-s)^{p-1} + \dots}{c_p(z-s)^p + \dots} = \frac{p}{z-s} \cdot \frac{1+\dots}{1+\dots} \implies \operatorname{res}_s\left(\frac{f'}{f}\right) = p = -p_f(s).$$