CH 4 - Mathematical Induction

Luke Lu • 2025-09-24

Notations

$$\sum_{i=m}^{n} x_i = x_m^2 + x_{m+1} = x_{m+2} + \dots + x_{n-1} + x_n$$

$$\prod_{i=m}^{n} x_i = x_m \cdot x_{m+1} \cdot x_{m+2} \cdot \dots \cdot x_{n-1} \cdot x_n$$

Properties

Constant multiplication

$$\sum_{i=m}^{k} cx_i = c \cdot \sum_{i=m}^{k} x_i$$

Addition/Subtraction

$$\sum_{i=m}^k x_i \pm \sum_{i=m}^k y_i = \sum_{i=m}^k x_i \pm \sum_{i=m}^k y_i$$

Index Shift

$$\sum_{i=m}^k x_i = \sum_{m \pm n}^{k \pm n} x_{i \mp n}$$

Breaking Sum

$$\sum_{i=m}^k x_i = \sum_{i=m}^r x_i + \sum_{i=r+1}^k x_i$$

Recurrence Relation

A sequence of values by giving one or more initial terms, together with an equation expressing each subsequent term in terms of earlier ones. (i.e. $s_1=1, s_n=s_{n-1}+n$ is the same as $\sum_{i=1}^n i$)

Proof by Induction

An **axiom** of a mathematical system is a statement that is assumed to be true. No proof is given. From axioms we derive proposition and theorems.

Info – **Principle of Mathematical Induction**

Let P(n) be an open sentence that dependes on $n\in\mathbb{N}$

If statements 1 and 2 are both true:

- 1. P(1)
- 2. $\forall k \in \mathbb{N}$, if P(k), then P(k+1)

Then statement 3 is true:

3. $\forall n \in \mathbb{N}, P(n)$