Choosing a Statistical Test

The most common tests in health care research

Most common

One-Way ANOVA

- One Sample Proportion
- Two Sample Proportions
- One Sample t (Mean)
- Two Sample t (Mean)
- Paired t
- Correlation/Regression Analysis

Many possibilities

- Estimate Population Proportion
- Estimate Population Mean
- One Sample Proportion
- Two Sample Proportions
- One Sample t (Mean)
- Two Sample t (Mean)
- Paired t
- Correlation/Regression Analysis

- One-Way ANOVA
- Two-Way ANOVA
- Chi Square Test
- One Sample Variance
- Two Sample Variances
- Wilcoxon rank-sum test
- Kruskal-Wallis test

The Common Tests Arranged

	1 sample proportion	1 sample t	
	2 sample proportions	2 sample t	
		2 sample t Paired t	Correlation/ Regression
		One-Way ANOVA	

Q1: What type of data do you have?

Categorical (often called rates)

- Mortality Rates (death/survival)
- Patient Falls Rates (fall/not fall)
- Compliance with Discharge Instructions (yes/no)

Quantitative

- Measurements
 - Temperatures
 - Blood Pressures
 - Pain Scale 1 to 10
- Counts
 - · Number of Complications
 - · Number of Hospital Visits
- Pre-established Scales

Q1: What type of data do you have?

Categorical (often called rates)

- Mortality Rates (death/survival)
- Patient Falls Rates (fall/not fall)
- Compliance with Discharge Instructions (yes/no)

Quantitative

- Measurements
 - Temperatures
 - Blood Pressures
 - Pain Scale 1 to 10
- Counts
 - Number of Complications
 - Number of Hospital Visits
- Pre-established Scales

Q2: How many samples do you have?

- One Sample
 - · Usually means I am making a comparison against a historic or global value
- Two Samples
 - · Traditional control group vs. test group in an experiment
 - · Comparing the one group to the other group
- Two Samples Special (or Two-ish Samples)
 - One sample of people, but two different measurements made
 - Two samples of people, but for each person in one sample, there is a natural pairing with one person in the other sample
- Three or More Samples
 - Comparing the three groups to each other

A bit more on the Two Samples Special

- One Sample with Two Measurements
 - · Before and after weights with a diet
 - Temperature under right armpit and under left armpit
 - BMI and Systolic Blood Pressure
 - Could be comparing the two measurements
 - · Could be looking for a relationship between the two measurements
- Two Samples with natural pairing
 - · Mothers and their babies
 - Identical Twins
 - Wives and their husbands
 - Almost always looking for a relationship between the two measurements
 - Occasionally comparing the two measurements

	Separated by Type of Data and Number of Samples			
	Categorical Data	Quantitative Data		
One Sample	1 sample proportion	1 sample t		
Two Samples	2 sample	2 sample t		
Two Samples Special	proportions	2 sample t Paired t	Correlation/ Regression	
Three or more samples		One-Way ANOVA		

Q3: What is the test supposed to do?

Compare the data

- Does my one sample match or differ from a global or historic value?
- Are my two samples the same or different from each other?
- Are my three or more samples the same or different from each other?

Seek a relationship

- Note: This is only for the two samples – special
- Does one measurement predict the other?
- Does one measurement depend on the other?
- Is there a trend between the two sets of measurements?

2-sample t vs. paired t

- We have two samples special (usually one sample from which two measurements have been made)
- · We want to compare the two sets of data
- 2-sample t just compares the two sets of data, ignoring the connection between the two samples
- Paired t asks, if I subtracted the one measurement from the other, what could I determine about the difference between them
 - Most often used for before and after data