1. **Set up** an integral for the volume of the solid formed by rotating the region shown about the y-axis. (For extra practice later, evaluate the integral.)

- 2. For each problem, **sketch the solid** formed by rotating the region enclosed by the curves whose equations are given
 - (i) about the y-axis;
 - (ii) about the line x = -3,

and set up an integral for the volume of the solid. (For extra practice later, evaluate the integrals, if you can.)

(a) (**)
$$y = \sin x$$
, $y = 2x$, $x = \frac{\pi}{2}$ (b) $y = \frac{1}{x}$, $y = \frac{1}{x^2}$, $x = 2$

(b)
$$y = \frac{1}{x}$$
, $y = \frac{1}{x^2}$, $x = 2$

- 3. For each problem, **sketch the solid** formed by rotating the region enclosed by the curves whose equations are given
 - (i) about the x-axis;
 - (ii) about the line y = 8,

and **set up** an integral for the volume of the solid. (For extra practice later, evaluate the integrals, if you can.)

(a)
$$(*)$$
 $x = (y-1)^2$, $x = 5y + 1$

(a) (*)
$$x = (y-1)^2$$
, $x = 5y + 1$ (b) (**) $x = 3\log_4 y$, $x = y^2 - 4y + 3$

Hint: these curves intersect at y = 1 and y = 4.