- 1. Find all elements of groups \mathbb{Z}_7 , \mathbb{Z}_7^* , \mathbb{Z}_8 , \mathbb{Z}_8^* .
- 2. Using Euclidean Algorithm find the inverse of 7 in \mathbb{Z}_{31}^* and \mathbb{Z}_{137}^* .
- 3. Find the smallest generator of the group \mathbb{Z}_{31}^* .
- 4. Find all subgroups of \mathbb{Z}_6 .
- 5. Find all subgroups of \mathbb{Z}_8^* .
- 6. Is \mathbb{Z}_2 a subgroup of \mathbb{Z}_4 ?
- 7. Is 3 a generator of \mathbb{Z}_{53}^* ?
- 8. Is the group (\mathbb{Z}, \circ) cyclic, if $a \circ b = a + b 5$. If yes, find the generators.
- 9. Which group is cyclic: \mathbb{Z}_5^* , \mathbb{Z}_8^* , \mathbb{Z}_{15}^* ?
- 10. For all $a \in \mathbb{Z}_9^*$ find $\langle a \rangle$ and |a|. Is \mathbb{Z}_9^* cyclic?
- 11. For all $a \in \mathbb{Z}_{14}^*$ find $\langle a \rangle$ and |a|. Is \mathbb{Z}_{14}^* cyclic?
- 12. Prove, that 5n + 3 and 7n + 4 are relatively prime for any positive n.
- 13. Find primes p, q if $n = p \cdot q = 414847$ and $\phi(n) = 413280$.
- 14. Find an integer a such that $a \equiv 4 \pmod{6}$ and $a \equiv 5 \pmod{35}$.
- 15. Find an integer a such that $a \equiv 4 \pmod{7}$ and $a \equiv 1 \pmod{19}$.
- 16. Find an integer a such that $a \equiv 38 \pmod{103}$ and $a \equiv 81 \pmod{83}$.
- 17. Find an integer a such that $a \equiv 4 \pmod{6}$ and $a \equiv 5 \pmod{35}$.
- 18. Find an integer a such that $a \equiv 4 \pmod{7}$ and $a \equiv 1 \pmod{19}$.
- 19. Find an integer a such that $a \equiv 38 \pmod{9}1$, $a \equiv 81 \pmod{83}$ and $a \equiv 3 \pmod{95}$.

20.

21. Knowing n = 5133 and

0	1	2	3	4	5	6	7	8	9
RY	SYS	TEM	О	TY	MA	GA	EK	WA	TE

encrypt the message SYSTEM, TEORY using Rabin method.

22. Using Rabin method decrypte the messege $E(M) = 17 \pmod{1121}$, if you know that $1121 = 19 \cdot 59$.

0	1	2	3	4	5	6	7	8	9
A	Μ	L	D	F	Т	Y	О	Z	K

- 23. Knowing that $n = 589 = 19 \cdot 31$, e = 53 and encrypting function for RSA cryptosystem is $E(M) = M^e \pmod{n}$ find decrypting function (for RSA method).
- 24. Knowing that $n = 589 = 19 \cdot 31$, d = 23 and decrypting function for RSA cryptosystem is $D(N) = N^d \pmod{n}$ find encrypting function (for RSA method).
- 25. Let day-23, nice-7, good-1, have-4, luck-3, the-59, always-54, reason-47. Using RSA method for $p=11,\,q=13,\,e=11$ decrypt the message "113,1".