Name: James Russel E. Adia Course: CPE 031

Section: CPE21S4

EXERCISE NO. 9 - MATPLOTLIB

Instructions:

Python Matplotlib Exercise (100 points)

This Matplotlib exercise project helps Python developers learn and practice data visualization using Matplotlib by solving multiple questions and problems.

In this exercise, we are using Pandas and Matplotlib to visualize Technological Products Data.

- 1. Use the following csv file for this exercise.
- 2. Read this file using Pandas or NumPy or using in-built matplotlib function.
- 3. Analyze the data and generate the appropriate plot including its properties:
- a. Read each Product's date of release and sales. Show it using a line plot.
- b. Get the total sales and show line plot with the following style properties.
 - · Line Style dotted and Line-color should be red
 - Show legend at the lower right location.
 - X label name = Year
 - Y label name = Sales
 - · Add a circle marker.
 - · Line marker color as read
 - · Line width should be 3
- c. Read all Product sales data and show it using a multiline plot. Label them.
- d. Read each brand sales data and show it using the bar chart. Label them.
- e. Read each Product and show it using the histogram to see the most common Country of Origin. Label them.
- f. Create a pie chart that shows each brand Country of Origin. Label them.
 - 4. Save your file into Matplotlib-«StudentName>.pdf
 - Installing the libraries

!pip install matplotlib
!pip install pandas

```
Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (3.8.0)

Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (1.3.0)

Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (0.12.1)

Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (4.54.1)

Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (1.26.4)

Requirement already satisfied: numpy<2,>=1.21 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (1.26.4)

Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (24.1)

Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (10.4.0)

Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (3.2.0)

Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib) (1.16.0)

Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib) (1.16.0)

Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib) (2.8.2)

Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas) (2.8.2)

Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas) (2024.2)

Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from pandas) (2024.2)

Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from pandas) (2024.2)
```

Mounting the Google Drive to Import .csv file

```
# Mounting google drive and read .csv file
# importing pandas and matplot library
import matplotlib.pyplot as plt
import pandas as pd
from google.colab import drive
df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/CPE 031 -
Visualization and Data Analysis/Matplotlib -
Adia/Technological-Products-Sample-Data - Tech Products.csv')
df
```

₹		Brand	Device	Model	Country of Origin	Date of Release	Sales (USD)	
	0	Apple	iPhone	13 Pro Max	United States	9/24/2021	1099	11.
	1	Samsung	Galaxy	S21 Ultra	South Korea	1/29/2021	1199	10
	2	Google	Pixel	6 Pro	United States	10/19/2021	899	
	3	Sony	PlayStation	5	Japan	11/12/2020	499	
	4	Microsoft	Surface	Laptop 4	United States	4/15/2021	999	
	5	Dell	XPS	13	United States	1/28/2021	999	
	6	HP	Spectre	x360	United States	4/16/2021	1349	
	7	Lenovo	ThinkPad	X1 Carbon	China	2/15/2021	1429	
	8	Asus	ROG	Zephyrus G14	Taiwan	3/15/2021	1499	
	9	Acer	Predator	Helios 300	Taiwan	2/17/2021	1299	
	10	Apple	MacBook	Pro 14-inch	United States	10/26/2021	1999	
	11	Samsung	Odyssey	G9	South Korea	7/22/2020	1699	
	12	Google	Pixelbook	Go	United States	6/17/2021	649	
	13	Sony	Xperia	1 111	Japan	8/19/2021	1299	
	14	Microsoft	Xbox	Series X	United States	11/10/2020	499	
	15	Dell	Alienware	m15 R5	United States	4/20/2021	1999	
	16	HP	Pavilion	x360	United States	5/14/2021	749	
	17	Lenovo	IdeaPad	5 Pro	China	3/10/2021	999	
	18	Asus	ZenBook	14	Taiwan	1/15/2021	799	
	19	Acer	Swift	3	Taiwan	2/10/2021	699	
	20	Apple	iPad	Pro 12.9-inch	United States	5/21/2021	1099	
	21	Samsung	Galaxy	Tab S7+	South Korea	8/21/2020	849	
	22	Google	Nest	Hub Max	United States	3/30/2021	229	
	23	Sony	WH	1000XM4	Malaysia	8/6/2020	349	
24	Mi	crosoft	Surface	Pro 8	United State	s 10/5/20	021	899
25		Dell L	JitraSharp	U2720Q	Chin	a 12/25/20	020	499
26		HP	Elite	Dragonfly	United State	s 6/28/20	021	1799
27	L	enovo	Legion	7i	Chin	a 4/5/20	021	1499
28		Asus	TUF	Gaming A15	Taiwa	n 3/20/2	021	1199
29		Acer	Aspire	5	Taiwa			599

a. Read each Product's date of release and sales. Show it using a line plot.

```
# Create line plot
x = df['Date of Release']
y = df['Sales (USD)']
plt.plot(x, y)

# Set labels and title
plt.xlabel('Date of Release')
plt.ylabel('Number of Sales')
plt.title('Product Sales Based on Release Date')

# Rotate x-axis labels for better visibility
plt.xticks(rotation=45, ha='right')
plt.tight_layout()

# Show the plot
plt.show()
```

Product Sales Based on Release Date

b. Get the total sales and show line plot with the following style properties.

- Line Style dotted and Line-color should be red
- Show legend at the lower right location.
- X label name = Year
- Y label name = Sales
- · Add a circle marker.
- · Line marker color as read
- Line width should be 3

```
# Extract date of release from the .csv file
df['Date of Release']

# Extract the year from 'Date of Release'
df['Year'] = pd.to_datetime(df['Date of Release']).dt.year

# Group by year and sum sales
total_sales_by_year = df.groupby('Year')['Sales
(USD)'].sum().reset_index()
```


c. Read all Product sales data and show it using a multiline plot. Label them.

```
# Group data and sum sales, unstack for plotting
sales_by_year = df.groupby(['Brand', 'Release Year'])['Sales
(USD)'].sum().unstack(level=0)

# Create the multiline plot from the grouped data
sales_by_year.plot(kind='line', figsize=(8, 6), marker='o')

# Customize the plot
plt.xlabel('Release Year')
plt.ylabel('Sales (USD)')
plt.title('Sales by Product Over Time')
plt.legend(title='Brand', bbox_to_anchor=(1, 1))
plt.xticks(rotation=45, ha='right')
plt.tight_layout()

# Show the plot
plt.show()
```


d. Read each brand sales data and show it using the bar chart. Label them.

```
# Group data by brand and sum sales
brand_sales = df.groupby('Brand')['Sales (USD)'].sum().reset_index()

# Create the bar chart
plt.bar(brand_sales['Brand'], brand_sales['Sales (USD)'], edgecolor =
'black')

# Showing the labels
plt.xlabel('Brand')
plt.ylabel('Total Sales (USD)')
plt.title('Total Sales by Brand')
plt.xticks(rotation=45, ha='right') # Rotate x-axis labels for better
visibility
plt.tight_layout()
```


e. Read each Product and show it using the histogram to see the most common Country of Origin. Label them.

```
# Group data by product and country of origin, counting occurrences
product_country_counts = df.groupby(['Brand', 'Country of
Origin'])['Brand'].count().reset_index(name='Count')

# Create a histogram
plt.hist(df['Country of Origin'], bins = 11, edgecolor = 'black')

# Set labels and title
plt.xlabel('Country of Origin')
plt.ylabel('Frequency')
plt.title('Distribution of Country of Origin for Products')
```

```
# Rotate x-axis labels for better visibility
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
# Show the histogram
plt.show()
```


Country of Origin

f. Create a pie chart that shows each brand Country of Origin. Label them.

```
# Iterate through each brand and its data group and count occurences of
each country
for brand, group in df.groupby('Brand'):
    country_counts = group['Country of Origin'].value_counts()

# Create a pie chart for the current brand
    plt.pie(country_counts,
```

```
labels = country_counts.index,
    autopct = '%1.2f%%')

plt.title(f'Country of Origin for {brand}')

plt.show()
```

Country of Origin for Acer

Country of Origin for Apple

Country of Origin for Asus

Country of Origin for Dell

Country of Origin for Google

Country of Origin for HP

Country of Origin for Lenovo

Country of Origin for Microsoft

Country of Origin for Samsung

Country of Origin for Sony

