Welcome to the CoGrammar Data Cleaning

The session will start shortly...

Questions? Drop them in the chat. We'll have dedicated moderators answering questions.

Data Science Session Housekeeping

- The use of disrespectful language is prohibited in the questions, this is a supportive, learning environment for all - please engage accordingly.
 (Fundamental British Values: Mutual Respect and Tolerance)
- No question is daft or silly ask them!
- There are Q&A sessions midway and at the end of the session, should you
 wish to ask any follow-up questions. Moderators are going to be
 answering questions as the session progresses as well.
- If you have any questions outside of this lecture, or that are not answered during this lecture, please do submit these for upcoming Academic Sessions. You can submit these questions here: <u>Questions</u>

Data Science Session Housekeeping cont.

- For all non-academic questions, please submit a query:
 www.hyperiondev.com/support
- Report a safeguarding incident:
 www.hyperiondev.com/safeguardreporting
- We would love your feedback on lectures: Feedback on Lectures

Learning objectives

- Describe techniques for **handling missing data** and when each is appropriate to use.
- Demonstrate how to identify and remove duplicate records in a dataset using Pandas.
- Explain the importance of consistent data formatting and apply methods to standardise data.
- Define **outliers** and discuss strategies for detecting and handling them appropriately based on the data context.

Handling Missing Data

- Missing data refers to the absence of values in one or more variables in a dataset.
- Identifying missing values:
 - Look for null, NaN, or empty cells in the dataset.
 - Use functions like isnull() or isna() in Pandas to detect missing values.

```
data.isnull().sum()

Name 0
Age 1
Salary 0
City 0
dtype: int64
```


Handling Missing Data

- Techniques for dealing with missing data:
 - > **Deletion:** Remove records with missing values (only suitable if missing data is minimal and random).

Handling Missing Data

- Techniques for dealing with missing data:
 - Imputation: Fill in missing values with estimated or calculated values.
 - Simple imputation methods: Mean, median, or mode imputation.

```
data_imputed_mean = data_fillna(data["Age"].mean())
```

Advanced imputation methods: K-Nearest Neighbors (KNN), Multiple Imputation by Chained Equations (MICE).

```
data_imputed_knn = imputer.fit_transform(data[['Age']])
```


Imputation Considerations

The choice of imputation method depends on the nature of the missing data and the analysis requirements.

Missing Completely at Random (MCAR)

- The probability of a value being missing is the same for all cases and does not depend on any other variables in the dataset.
- Example: In a survey, a participant accidentally skips a question. The missingness is unrelated to the participant's characteristics or other responses.

Missing at Random (MAR)

- The probability of a value being missing depends on other observed variables in the dataset but not on the missing values themselves.
- Example: In a medical study, younger participants are more likely to miss a follow-up appointment. The missingness is related to the observed variable "age" but not to the unobserved health outcomes.

Missing Not at Random (MNAR)

- The probability of a value being missing depends on the missing values themselves, even after accounting for other observed variables.
- Example: In an income survey, high-income individuals are more likely to refuse to report their income. The missingness is related to the unobserved income level itself.

Importance of Missing Data Mechanisms

- Understanding the type of missingness is crucial for selecting appropriate handling techniques.
- MCAR: Simple methods like deletion or mean imputation may be suitable.
- * MAR: More advanced methods like multiple imputation can be used.
- MNAR: Requires careful consideration and modeling of the missingness mechanism.

Determining the Missing Data Mechanism

- Assess the relationship between missingness and other variables in the dataset.
- Consider domain knowledge and the data collection process.
- Conduct statistical tests to examine patterns of missingness.
- Be cautious and transparent about assumptions made regarding the missing data mechanism.

Dealing with Duplicates

Duplicate records are multiple instances of the same data point in a dataset.

4	David	40.0	80000	London
5	David	40.0	80000	London

- Identifying duplicates:
 - Use functions like duplicated() in Pandas to identify duplicate records.
 - Specify the subset of columns to consider when identifying duplicates.

Dealing with Duplicates

- Strategies for handling duplicates:
 - > Removing duplicates: Drop duplicate records from the dataset using drop_duplicates().
 - > Merging duplicates: Combine duplicate records into a single record by aggregating or selecting relevant information.

data_deduplicated = data_drop_duplicates()

Data Formatting and Standardisation

- Consistent data formatting is essential for accurate analysis and compatibility with different tools and algorithms.
- Common formatting issues:
 - > **Date and time formats:** Ensure consistent representation (e.g., YYYY-MM-DD, HH:MM:SS).
 - > Text case inconsistencies: Convert text to a consistent case (lowercase or uppercase).
 - Inconsistent value representations: Standardise values (e.g., "Yes"/"No" vs. "Y"/"N").

Outliers are data points that significantly deviate from the rest of the data distribution.

- Identifying outliers:
 - > **Visual inspection:** Use plots like box plots, scatter plots, or histograms to identify extreme values.

Using a box plot to identify outliers.

- Strategies for handling outliers:
 - > Removal: Remove outliers from the dataset if they are erroneous or irrelevant to the analysis.
 - > Transformation: Apply mathematical transformations (e.g., logarithmic, square root) to reduce the impact of outliers.
 - Winsorisation: Replace extreme values with the nearest non-outlier values.

```
data_winsorized['Salary'] = stats.mstats.winsorize(data_winsorized['Salary'], limits=0.2)
```

 Consider the context and domain knowledge when deciding how to handle outliers.

Which of the following is NOT a common data quality issue?

- A. Missing values
- B. Duplicates
- C. Inconsistent formatting
- D. Small sample size

Which of the following is NOT a common data quality issue?

- A. Missing values
- B. Duplicates
- C. Inconsistent formatting
- D. Small sample size

Which technique is suitable for handling missing data only if the amount is minimal and missing at random?

- A. Mean imputation
- B. Deletion
- C. K-Nearest Neighbours imputation
- D. Multiple Imputation by Chained Equations

Which technique is suitable for handling missing data only if the amount is minimal and missing at random?

- A. Mean imputation
- B. Deletion
- C. K-Nearest Neighbours imputation
- D. Multiple Imputation by Chained Equations

In Pandas, which function can be used to identify duplicate records in a dataset?

- A. find_duplicates()
- B. duplicated()
- C. is_duplicate()
- D. has_duplicates()

In Pandas, which function can be used to identify duplicate records in a dataset?

- A. find_duplicates()
- B. duplicated()
- C. is_duplicate()
- D. has_duplicates()

Which of the following is a technique for standardising inconsistent text case?

- A. astype()
- B. to_datetime()
- C. upper() or lower()
- D. strip()

Which of the following is a technique for standardising inconsistent text case?

- A. astype()
- B. to_datetime()
- C. upper() or lower()
- D. strip()

Which strategy replaces outlier values with the nearest non-outlier values?

- A. Removal
- B. Transformation
- C. Winsorisation
- D. Standardisation

Which strategy replaces outlier values with the nearest non-outlier values?

- A. Removal
- B. Transformation
- C. Winsorisation
- D. Standardisation

Conclusions

Conclusions

- Recap of key points:
 - > Data cleaning is an essential step in the data science pipeline.
 - > It involves handling missing data, duplicates, formatting issues, outliers, and data validation.
 - > Various techniques and tools are available for effective data cleaning.

Conclusions

- Importance of iterative data cleaning:
 - Data cleaning is an iterative process that may require multiple rounds.
 - Continuously assess and refine the cleaned data based on analysis results and feedback.

Further Learning

KDNuggets - Learn Data Cleaning and Preprocessing for Data Science with This Free eBook

Kaggle - Short Data Cleaning Course

Questions and Answers

Thank you for attending

