×

Handling Missing Data

7 questions

1	
point	

1.

(True/False) Skipping data points (i.e., skipping rows of the data) that have missing features only works when the learning algorithm we are using is decision tree learning.

$\boldsymbol{\frown}$	A	_		
	1	Т	ru	4
			ıu	١,

False

1 point

2.

What are potential downsides of skipping features with missing values (i.e., skipping columns of the data) to handle missing data?

So many features a	are skipped that	accuracy can	degrade

The learning algorithm will have to be modified

You will have fewer data points (i.e., rows) in the dataset

If an input at prediction time has a feature missing that was always present during training, this approach is not applicable.

1 point 3.

(True/False) It's always better to remove missing data points (i.e., rows) as opposed to removing missing features (i.e., columns).

- O True
- False

1 point

4.

Consider a dataset with N training points. After imputing missing values, the number of data points in the data set is

- **O** 2*N
- O N
- O 5*N

1 point

5.

Consider a dataset with D features. After imputing missing values, the number of features in the data set is

- O 2*D
- O D
- O 0.5 * D

1 point

6

Which of the following are always true when imputing missing data? Select all that apply.

