Homework 7 – Intro to Probability and Statistics

Your name here

Instructions:

Due: 05/28 at 11:59PM.

What am I expecting? An R Markdown with the answers.

Have fun!

Question 1

An urn has two white balls (W) and three red balls (R). You draw a ball from the urn. If it is white, you flip a coin. If it is red, you throw it back in the urn and draw another ball. What is the sample space of this experiment?

Question 2

Suppose you toss two dices. Consider two events:

- A: the sum of the numbers in both dices is equal to 9
- B: the number in the first die is greater than or equal 4.

Define:

- 1. The elements of A
- 2. The elements of B
- 3. The elements of $A \cap B$
- 4. The elements of $A \cup B$
- 5. The elements of A^C

Question 3

The probability that student A solves a given problem is $\frac{2}{3}$. The probability that student B solves the same problem is $\frac{3}{4}$. If both try to solve the problem independently, what is the chance that the problem will be solved?

Question 4

Consider the following probability table:

	В	B^C	Total
\overline{A}	0.04	0.06	0.10
A^C	0.08	0.82	0.90
Total	0.12	0.88	1.00

Note that P(A) = 0.10, $P(A \cap B) = 0.04$, and so on. Are the events A and B independent?

Question 5

A company produces phones in three factories. In factory I, the company produces 40% of the phones, while in factories II and III produce 30% of the phones in each. The chance of a phone is assembled broken is 0.01 (factory II), 0.04 (factory II), and 0.03 (factory III). The phones are then taken to a warehouse.

- 1. If you select a phone randomly in the warehouse, what is the chance that it is broken?
- 2. Suppose the phone you draw is broken. What is the probability that it was manufactured by factory I?

Question 6

Prove that if A and B are independent, then:

- 1. A^C and B^C are independent.
- 2. A and B^C are independent.
- 3. A^C and B are independent.

Question 7

Let
$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$
. Prove that:

1.
$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0$$

2. $\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2$

Question 8

Let $P(k; n, p) = \binom{n}{k} p^k (1-p)^{n-k}$ the probability of k successes in a binomial distribution with n trials p probability of success. Prove that:

$$P(k+1; n, p) = \frac{(n-k)p}{(k+1)(1-p)} P(k; n, p)$$