Χ

vickyinbangalore@gmail.com ~

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Computer Vision and Image Processing -

Fundamentals and Applications (course)

Register for Certification exam

Assignment 1

	Assignment not submitted Due date: 2023-02-08, 2	23:59 IST.
	1) Of the following, has the maximum frequency.	1 point
ourse tline	○ UV Rays	
	◯ Gamma Rays	
How does an	○ Microwaves	
NPTEL online course work?	○ Radio Waves	
0	2) The difference in intensity between the highest and the lowest intensity levels in an	1 point
Week 0 :	image is	
Prerequisite	ONoise	
0	○ Saturation	
Week 1 :	○ Contrast	
Introduction	OBrightness	
to Computer		
Vision and	3) Images quantized with insufficient brightness levels will lead to the occurrence of	1 point
Basic Concepts of		
Image	○ Pixilation	
Formation ()	OBlurring	
	O False Contours	
Lec 1 : Introduction to Computer	O None of the Mentioned	

Vision (unit? unit=17&lesson=18)	4) What is the phenomenon one encounters when a lens fails to converge all the wavelength of light on a single focal plane?	1 point
Lec 2 : Introduction to Digital Image Processing (unit? unit=17&lesson=19)	Vignetting effectChromatic aberrationNon-collinear vanishing pointsDistorted image	
Lec 3 : Image Formation: Radiometry (unit? unit=17&lesson=20)	5) Gray values of an image arei. proportional to scene radiance and foreshortening factor.ii. inversely related to the distance between the object and the lens.iii. inversely proportional to the distance between the lens and the image plane.iv. proportional to total irradiance and unaffected by foreshortening factor.	1 point
Lecture notes (unit? unit=17&lesson=21)	The correct option is	
Quiz: Assignment 1 (assessment? name=123)	○ (i) and (iii)○ Only (iv)○ (ii) and (iv)○ (iii) and (iv)	
Weekly feedback form (unit? unit=17&lesson=22)	6) Find the euclidian, city block, and chessboard distances between the two extreme	1 point
Week 2: Fundamental Concepts of Image	diagonal squares for the given patch.	
Formation ()	○ 1.41,2,1 ○ 2.82.2.4	
Week 3:	○ 2.82,2,4 ○ 2.82,4,2	
Fundamental Concepts of Image	○ 1.41,1,2	
Formation ()	7) Brightness of a Lambertian surface is indicated by	1 point
	\bigcirc BRDF, which is constant, and $1/\pi$ times of reflectance coefficient.	
	O BRDF, which changes according to the outgoing radiance.	
	BRDF, which varies inversely to changes in reflectance coefficient.none of the above	
	8) Your night light has a radiant flux of 10 watts, what is the irradiance on your radiometry notes which fell 2 meters from the light when you fell asleep (assuming your notes were perpendicular to the night light)? (Wm^{-2})	1 point

○ 0.299○ 0.25○ 0.199○ 0.55
9) Given the 5-watt source coming in from $\frac{2\pi}{3}$ solid angle (in sr) of a radius 3 meter, the 1 point corresponding source of energy carried by the ray is
$ \begin{array}{c} $
10) Suppose a source with an area of $4m^{-2}$ is viewed at an angle of 30 degree and has a 1 point radiance of $0.3Wm^{-2}sr^{-1}$. Calculate the radiant intensity of the source?
$egin{array}{c} \bigcirc \ 2.78Wsr^{-1} \ \bigcirc \ 1.65Wsr^{-1} \ \bigcirc \ 1.04Wsr^{-1} \ \bigcirc \ 2.11Wsr^{-1} \ \end{array}$
You may submit any number of times before the due date. The final submission will be considered for grading.
Submit Answers