WHAT IS CLAIMED IS:

1	 A method for measuring a physiological parameter, comprising:
2	measuring a plurality of signals, wherein each of said signals comprises a
3	source component corresponding to said physiological parameter and an interference
4	component;
5	processing said plurality of signals to obtain a plurality of principal
6	components;
7	processing said plurality of principal components to obtain a plurality of
8	independent components, wherein a matrix of said plurality of signals corresponds to a matrix
9	product of a matrix of said plurality of independent components and a matrix of mixing
10	coefficients; and
11	extracting a first measure of said physiological parameter corresponding to
12	said source component from one of said plurality of independent components.
	- 1 C. 1 : 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
1	2. The method of claim 1 wherein said physiological parameter is a
2	function of an oxygen saturation.
1	3. The method of claim 1 wherein said physiological parameter is a
2	function of a pulse rate.
1	4. The method of claim 1 wherein said plurality of signals corresponds to
2	sensed optical energies from a plurality of wavelengths.
	5. The method of claim 1 wherein said plurality of signals corresponds to
1	sensed optical energies from a plurality of wavelengths from different times.
2	
1	6. The method of claim 1 wherein said processing said plurality of signals
2	further comprises
	Cut a seried entired energies from a plurality of
3	obtaining a time derivative of the sensed optical energies from a plurality of
4	wavelengths.
1	7. The method of claim 1 wherein said interference component comprises
2	signal components caused by motion, respiratory artifact, ambient light, optical scattering and
3	other interference between a tissue location being sensed and a sensor.

The method of claim 1 wherein said processing said plurality of signals 8. 1 further comprises decorrelating said plurality of signals by minimizing a cross-correlation of 2 said plurality of signals, to obtain a plurality of decorrelated signals; and 3 normalizing said plurality of decorrelated signals to obtain a plurality of 4 principal components. 5 The method of claim 1 wherein said processing said plurality of signals 9. 1 comprises decorrelating said plurality of signals by singular-value decomposition of said 2 plurality of signals, to obtain a plurality of principal components. 3 The method of claim 1 wherein said processing said plurality of signals 10. 1 comprises decorrelating said plurality of signals by multiplying said plurality of signals by 2 the inverse square root of the covariance matrix of said plurality of signals to obtain a 3 plurality of principal components. 4 The method of claim 1 wherein said processing of said plurality of 11. 1 principal components comprises higher-order decorrelation of said plurality of principal 2 3 components. The method of claim 1 wherein said processing said plurality of 12. 1 principal components comprises maximizing a function of the higher-order cumulants of a 2 mixture of said plurality of signals, thus separating said source component from said 3 interference component. 4 The method of claim 12 wherein said higher-order cumulant is 13. 1 cumulant having order greater than two. 2 The method of claim 12 wherein said higher-order cumulant is a third-14. 1 order cumulant of said plurality of signals. 2 The method of claim 12 wherein said higher-order cumulant is a 15. 1 fourth-order cumulant of said plurality of signals. 2 The method of claim 1 further comprising obtaining a ratio of mixing 16. 1 coefficients from said matrix of mixing coefficients, wherein said ratio corresponds to a ratio 2 of modulation ratios of red to infrared signals, wherein said plurality of signals comprise 3 modulated optical signal in the red and infrared ranges.

4

1	17. The method of claim 1 further comprising extracting a second measure
2	of said physiological parameter from said ratio, wherein said second measure of said
3	physiological parameter corresponds to an oxygen saturation.
5	
1	18. The method of claim 1 wherein said first measure of a physiological
2	parameter corresponds to a pulse rate.
	19. The method of claim 1 further comprising extracting said interference
1	19. The method of claim 1 further comprising extracting said interference component from another one of said plurality of independent components.
2	component from another one of said planately of maspensors
1	20. A pulse oximeter, comprising:
2	a sensor configured for measuring a plurality of signals, wherein each of said
3	signals comprises a source component corresponding to said physiological parameter and an
4	interference component;
5	a computer useable medium having computer readable code embodied therein
6	for measuring a physiological parameter, said computer readable code configured to execute
7	functions comprising:
8	processing said plurality of signals to obtain a plurality of
9	principal components;
10	processing said plurality of principle components to obtain a
11	plurality of independent components, wherein a matrix of said plurality of signals
12	corresponds to a matrix product of a matrix of said plurality of independent
13	components and a matrix of mixing coefficients; and
14	extracting a first measure of said physiological parameter
15	corresponding to said source component from one of said plurality of
16	independent components.
	-
1	21. The pulse oximeter of claim 20 wherein said physiological parameter
2	is an oxygen saturation.
1	22. The pulse oximeter of claim 20 wherein said physiological parameter
1 2	
2	•
1	23. The pulse oximeter of claim 20 wherein said plurality of signals
2	corresponds to sensed optical energies from a plurality of wavelengths.

The pulse oximeter of claim 20 wherein said plurality of signals 24. 1 corresponds to sensed optical energies from a plurality of wavelengths from different times. 2 The pulse oximeter of claim 20 wherein said plurality of signals 25. 1 corresponds to the time derivative of the sensed optical energies from a plurality of 2 wavelengths. 3 The pulse oximeter of claim 20 wherein said interference component 26. 1 comprises signal components caused by motion, respiratory artifact, ambient light, optical 2 scattering and other interference between a tissue location being sensed and a sensor. 3 The pulse oximeter of claim 20 wherein said processing said plurality 27. 1 of signals comprises decorrelating said plurality of signals by minimizing a cross-correlation 2 of said plurality of signals, to obtain a plurality of decorrelated signals; and 3 normalizing said plurality of decorrelated signals to obtain a plurality of 4 principal components. 5 The pulse oximeter of claim 20 wherein said processing said plurality 28. 1 of signals comprises decorrelating said plurality of signals by singular-value decomposition 2 of said plurality of signals, to obtain a plurality of principal components. 3 The pulse oximeter of claim 20 wherein said processing said plurality 29. 1 of signals comprises decorrelating said plurality of signals by multiplying said plurality of 2 signals by the inverse square root of the covariance matrix of said plurality of signals to 3 obtain a plurality of principal components. 4 The pulse oximeter of claim 20 wherein said processing of said 30. 1 plurality of principal components comprises higher-order decorrelation of said plurality of 2 principal components. 3 The pulse oximeter of claim 20 wherein said processing said plurality 31: 1 of principal components comprises maximizing a function of the higher-order cumulants of a 2 mixture of said plurality of signals, thus separating said source component from said 3 interference component. 4 The pulse oximeter of claim 31 wherein said higher-order cumulant is 32. 1 cumulant having order greater than two. 2

The pulse oximeter of claim 31 wherein said higher-order cumulant is 33. 1 a third-order cumulant of said plurality of signals. 2 The pulse oximeter of claim 31 wherein said higher-order cumulant is 34. 1 a fourth-order cumulant of said plurality of signals. 2 The pulse oximeter of claim 20 wherein said processing said plurality 35. 1 of principal components comprises successive transformations to simultaneously minimize 2 second- and higher-order correlations among the outputs. 3 The pulse oximeter of claim 20 wherein said processing said plurality 36. 1 of principal components comprises successive rotations to minimize estimated mutual 2 information among the outputs. 3 The pulse oximeter of claim 20 further comprising obtaining a ratio of 37. 1 mixing coefficients from said matrix of mixing coefficients, wherein said ratio corresponds to 2 a ratio of modulation ratios of red to infrared signals. 3 The pulse oximeter of claim 20 further comprising extracting a second 38. 1 measure of said physiological parameter from said ratio, wherein said second measure of said 2 physiological parameter corresponds to an oxygen saturation. 3 The pulse oximeter of claim 20 wherein said first measure of a 39. 1 physiological parameter corresponds a pulse rate. 2

interference component from another one of said plurality of independent components.

40.

1

2

The pulse oximeter of claim 20 further comprising extracting said