Novo Espaço – Matemática A 11.º ano

Proposta de teste de avaliação [março - 2023]

Ano / Turma: _____ N.º: ____ Data: ___ - ___ - _

- 1. Na figura está representada, em referencial o.n. Oxy, uma reta r. Sabe-se que:
 - o declive da reta $r \in -2$;
 - a reta r interseta o eixo Oy no ponto A;
 - a reta r interseta o eixo Ox no ponto B.

Qual é o valor de $\frac{OA}{OB}$?

- 2. Sejam r e s duas retas tais que:
 - a reta r é definida pela equação vetorial $(x, y) = (-\sqrt{3}, 2) + k(3, -2), k \in \mathbb{R}$;
 - a reta s tem inclinação, representada por θ e é perpendicular à reta r.

Calcula o valor exato de $\sin \theta$.

3. Na figura estão representados o círculo trigonométrico e um quadrilátero [OPBC], que é simétrico em relação ao eixo Oy.

Sabe-se que:

- o ponto P desloca-se sobre o arco AB da circunferência;
- α é a amplitude, em radianos, do ângulo AOP.

Para $\alpha \in \left[0, \frac{\pi}{2}\right]$, a área do quadrilátero [*OPBC*] é dada pela expressão:

- **(A)** $\cos \alpha$
- $1-\sin\alpha$ **(B)**
- **(C)** $\sin \alpha$
- **(D)** $2\sin\alpha\cos\alpha$

Proposta de teste de avaliação [março - 2023]

4. Na figura está representado, em referencial o.n. Oxyz, um cone reto de vértice V.

Sabe-se que:

- a base do cone está contida no plano definido pela equação 4x-y-2z+4=0;
- o ponto *A* pertence à circunferência que limita a base do cone e pertence ao eixo *Oz*;

- **4.1** Determina \overline{AV} .
- **4.2** Seja C o centro da base do cone. Determina as coordenadas do ponto C.
- 5. Seja (v_n) a sucessão definida por:

$$\begin{cases} 7n-1 & \text{se } n \le 8 \\ \frac{5}{n} & \text{se } n > 8 \end{cases}, \text{ para todo o número } n \text{ inteiro positivo}$$

Indica a firmação verdadeira

- (A) A sucessão (v_n) é monótona.
- **(B)** A sucessão (v_n) é limitada.
- (C) Todos os termos da sucessão (v_n) são maiores do que 1.
- **(D)** 62 é termo da sucessão (v_n) .
- **6.** Considera a sucessão (u_n) definida por recorrência, por

$$\begin{cases}
 u_1 = 5 \\
 u_{n+1} = 2u_n - 3
\end{cases}$$
, para todo o número *n* inteiro positivo.

Sabendo que $u_{15} = 32771$, qual é o valor de $u_{16} - u_{14}$?

- (A) 24582
- **(B)** 49 152
- **(C)** 32768
- **(D)** 49 158

7. Considera a sucessão (w_n) definida por:

$$\begin{cases} w_1 = -3 \\ w_{n+1} = w_n + \frac{1}{2} \end{cases}$$
, para todo o número *n* inteiro positivo.

Determina o número de termos da sucessão (w_n) que são maiores do que 12 e não superiores a 25.

8. O Bernardo tem disponíveis 960 peças. Com essas peças vai construir uma sequência de "torres". As quatro primeiras "torres" da sequência estão representadas a seguir, mantendo a mesma lei de formação para as restantes "torres".

Nestas condições, determina o número máximo de "torres" que o Bernardo pode construir.

9. Seja (u_n) uma sucessão de termo geral $u_n = \frac{3^{2n}}{2^n}$.

Mostra que (u_n) é uma progressão geométrica em que a razão é igual ao primeiro termo.

10. Considera as sucessões (u_n) e (v_n) tais que:

$$u_n = \frac{1 - n^2}{n + 1}$$

$$w_n = \begin{cases} 5n & \text{se } n < 100\\ \frac{3}{n + 1} & \text{se } n \ge 100 \end{cases}$$

- **10.1** Mostra que $u_n = 1 n$. O que concluis quanto $\lim (u_n)$?
- **10.2** Em relação à sucessão (v_n) , indica o maior termo e o valor de $\lim (v_n)$.

FIM

Cotações													Total
Questões	1.	2.	3.	4.1	4.2	5.	6.	7.	8.	9.	10.1	10.2	1000
Cotações	14	18	14	18	18	14	14	20	20	18	16	16	200