Advanced Algorithm HW1

Seungho Jang

August 2020

1 Q1

$$O(1) < O(\lg(n)) = O(k\lg(n)) < O(n) = O(2n) = O(kn) = O(100000*n) < O(n*\lg n) < O(n^2) < O(n^2) < O(n^100000) < O(n!)$$

Explanation:

- If limit test were done for $\lg(n)$ and $k\lg(n)$, the result will be constant as k, that means that the ranking is almost same.
- If limit test were done for n, 2n, kn, and 100000n, the result will be constant, that means that the ranking is almost same.
- However, if the limit test were done to n^{100000} and n^2 , the result will be n^{9999} . That means that n^{100000} is fast growing.

2 Q2

"The running time of Algorithm A is at least $O(n^2)$ is meaningless". The reason why this statement is meaningless is because of the following:

If we were to set up this, $T(n) \ge O(n^2)$, which refers $T(n) \ge f(n)$ meaning that T(n) or cg(n) is upper-bound of f(n). Because of f(n) can be any functions that is smaller than n^2 such as n or constant, this lead to conclusion of the running time of Algorithm A could be at least non-negative and constant. Therefore, this statement does not deliver or tell us anything about the running time of algorithm A.

3 Q3

- 1. To prove that $2^{n+1} = O(2^n)$, we have to find constant(c) and $n_0 > 0$ such that $0 \le 2^{n+1} \le c * 2^n$, for all $n \ge n_0$. Since $2^{n+1} = 2 * 2^n$, we can conclude this statement is satisfied when c = 2 and $n_0 = 1$
- 2. To prove that $2^{2n} = O(2^n)$, we have to find constant(c) and $n_0 > 0$ such that $0 \le 2^{2n} \le c * 2^n$, for all $n \ge n_0$. Since $2^{2n} = 4^n$, which is greater than 2^n , so this statement is invalid.

$\mathbf{Q4}$ 4

Problem: Rank the following functions by order of growth; $2^{2^{n+1}},\,2^{2^n},\,(n+1)!,\,n!,\,e^n,\,n*2^n,\,2^n,\,n^{lglgn}=lgn^{lgn},\,(lgn)!,\,n^2=4^{lgn},n^2,\,\lg(n!)$ and n*lgn, n, $\sqrt{2}^{lgn}=\sqrt{n},\,lgn^2,\,\ln n,\,\sqrt{lgn},\,2=n^{1/lgn}$ and 1 Time Complexity To calculate the time of the execution, this was codded in

the link: Algorithm Homework1.ipynb

Graph To plot those functions, the plot code is in the link above.

Figure 1: Plot for Time Complexity vs Input data(n)