Dispositivos de red Hubs

1. Conexión de dos dispositivos

Primer escenario:

Primero corremos el comando ipconfig /all en la PC1.

Lo que podemos ver es que la IP es 0.0.0.0 y la MAC es 000C.CF40.25C8 esto es simplemente agregando las dos computadoras y sin configurar nada.

Ahora configuraremos la IP usando el comando completo de *ipconfig 192.168.0.1 255.255.255.0.* El mismo cambia la IP de la PC1 y además le agregamos la máscara, haciendo de la dirección de IP: 192.168.0.1/24.

Caso similar va a suceder en la PC2, iniciara con una IP 0.0.0.0 y con un numero de MAC que en este caso es 000D.BDE7.BA3B y luego le pasaremos el comando *ipconfig 192.168.0.2 255.255.255.0* y ahora su IP sera 192.168.0.2/24.

Y después de configurado.

Ahora que están las dos configuradas, hacemos un ping desde la PC1 a la PC2 con el comando *ping* 192.168.0.2.

```
C:\>ping 192.168.0.2
Pinging 192.168.0.2 with 32 bytes of data:

Reply from 192.168.0.2: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.0.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms</pre>
```

y por último hacemos lo mismo desde la PC2 a la PC1, hacemos un ping con el comando *ping* 192.168.0.1.

```
C:\>ping 192.168.0.1
Pinging 192.168.0.1 with 32 bytes of data:

Reply from 192.168.0.1: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.0.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms</pre>
```

Al estar todo bien configurado, las PC se comunican, recibiendo los 4 paquetes y no habiendo perdida. Ahora ejecutamos el comando *arp -a* en la PC1 y nos muestra la siguiente tabla.

```
C:\>arp -a
Internet Address Physical Address Type
192.168.0.2 000d.bde7.ba3b dynamic
```

que nos muestra que sabe la IP y MAC de la PC2 de la misma manera ejecutamos el comando *arp -a* en la PC2 .

```
C:\>arp -a
Internet Address Physical Address Type
192.168.0.1 000c.cf40.25c8 dynamic
```

Y esto es lo que muestra, que conoce la IP y MAC de la PC1. Ahora pasamos al escenario 2 de una PC y un server:

Primero consultamos los datos de la PC1 antes de configurar algo.

La misma ya tiene IP y MAC, esto es distinto que antes, el servidor le dio un IP a nuestra PC1. ahora corremos el mismo comando en el servidor.

Este también tiene una IP y una MAC, el servidor ya tiene configurado de antes una IP ahora nos dirigimos a la PC1 y entramos en el navegador, ingresamos la direccion <u>www.cisco.pkt</u> y nos devuelve una página web.

Por último consultamos la tabla de la PC1.

La misma nos da la MAC y la IP del server.

Y ahora hacemos lo mismo desde el server.

Que nos muestra la MAC y la IP de la PC1.

2. Extendiendo la red

Podemos realizar ping entre las a las PCs y al server sin ningún problema, además podemos navegar. Para hacer la tabla solo basta con ir a una de las PC y poner el comando *ipconfig all* donde te dará su MAC e IP y luego el comando *arp -a* que te dará las MAC e IP restantes de la red.

```
C:\>ipconfig /all
FastEthernet0 Connection:(default port)
 Connection-specific DNS Suffix..:
 IPv6 Address....:
 Default Gateway....:
 0.0.0.0
DHCP Servers....: 192.168.0.100
 DHCPv6 IAID.....:
DHCPv6 Client DUID.....: 00-01-00-01-54-3A-4E-29-00-02-4A-39-AA-5E
 DNS Servers....:
                       0.0.0.0
Bluetooth Connection:
 IPv4 Address..... 0.0.0.0
  Subnet Mask..... 0.0.0.0
                       ::
0.0.0.0
 Default Gateway....:
 DHCP Servers..... 0.0.0.0
 DNS Servers....:
                       0.0.0.0
C:\>arp -a
Internet Address
               Physical Address
                             Type
 192.168.0.2
               0030.f234.6149
                             dynamic
 192.168.0.3
               0001.c784.693e
                             dynamic
 192.168.0.100
               0090.0cb7.8ecb
                             dynamic
```

Lo único que queda es identificar que PC tiene determinada IP y MAC pero los datos están.

	IP	MAC
SERVER	192.168.0.100	0090.0CB7.8ECB
PC1	192.168.0.1	0002.4A39.AA5E
PC2	192.168.0.2	0030.F234.6149
PC3	192.168.0.3	0001.C784.693E

3. Dominio de colisión

	IP	Mascara	MAC	Conexión
PC11	192.168.1.11	255.255.255.0	0060.7017.148D	Hub 1 Fa1
PC12	192.168.1.12	255.255.255.0	0001.437D.422C	Hub 1 Fa2
PC13	192.168.1.13	255.255.255.0	00E0.A32E.8D0A	Hub 1 Fa3
PC21	192.168.1.21	255.255.255.0	00D0.d3E8.5047	Hub 2 Fa1
Printer1	192.168.1.14	255.255.255.0	0090.0C57.D09C	Hub 1 Fa4
Printer2	192.168.1.24	255.255.255.0	000D.BD35.7A47	Hub 2 Fa4
Server1	192.168.1.22	255.255.255.0	0001.9672.3D5E	Hub 2 Fa2
Server2	192.168.1.23	255.255.255.0	000B.BE07.02B3	Hub 2 Fa3

El dominio de colisión es solo uno, ya que todos los Hubs son como conexiones directas. Simularemos enviar de la PC11 al server1 y de la PC21 a la PC13, sucediendo lo siguiente.

al solo existir un dominio de colisión, siempre que se encuentren en un hub los mensajes, van a colisionar.