Univariate Statistik

Prüfung: falls mit dem TR gerechnet, immer dokumentieren!

Grundlagen und Begriffe

Grundlagen und begrine					
Skala	Eigenschaft				
Nominal	Codierung	qualitativ			
Ordinal	plus Reihenfolge				
Intervall	plus Abstände	quantitativ,			
Verhältnis	plus <u>absoluter</u> Null-	metrisch			
	punkt				

Diskret: bestimmte Werte (z.B. Alter in ganzen Jahren => nur Ganzzahlen)

Stetig: alle Werte (auch "unterjähriges" Alter möglich)

null (nichts)

- 0 mehr als "nichts", aber kleiner als die Hälfte der verwendeten Werte
 - Zahlenangabe nicht möglich
- Daten nicht erhältlich oder ohne Bedeutung oder weggelassen

Histogramm

Dichte =
$$\frac{\text{relative H\"{a}ufigkeit}}{\text{Klassenbreite}}$$

Univariate Statistik - Mittelwerte

Arithmetische Mittel (Durchschnitt)

Additiv/durchschnittlich stetige Rendite Das arithmetische Mittel ist die Summe der Messwerte xi dividiert durch die Anzahl der Messwerte.

x: ("x-quer") arithmetisches Mittel

n: Anzahl der Werte Wi: absolute Häufigkeit

Gewichteter Durchschnitt:

Arithmetische Mittel der Werte xi mit den absoluten Häufigkeiten Wi (bzw. den relativen Häufigkeiten w_i), k = Anzahl verschiedene Merkmalswerte oder Anzahl Klassen.

Klassenmitte: muss selber berechnet werden

$$\sum_{i=1}^{k} x_i \cdot w_i$$

Median

Zentralwert, Teilung der die Grössen in zwei Hälften. Links und rechts des Median liegen 50% der geordneten Werte.

Bei Klassen interpolieren! TR: LinReg mit L2 (relative Häufigkeiten kumuliert), L1 (Klassenobergrenzen), ONE, YES; dann f(0.5) oder f(50) Perzentile, Dezile, Quartile oder allgemein Quantile

Der Median ist das 0.5-Quantil, das 2. Quartil (2/4) (bei Streuung), das 5. Dezil (5/10) oder das 50. Perzentil (50/100).

Median = Untergrenze der Medianklasse + $\frac{J}{f}$ · Medianklassenbreite

j = Anzahl (Anteil) Werte in der Medianklasse bis zur Mitte

f = Anzahl (Anteil) Werte in der Medianklasse

Modus

Kommt am Häufigsten vor / Klasse mit der grössten Dichte

Modalklasse: Klasse mit der grössten Dichte

Dichte =
$$\frac{\text{relative H\"{a}ufigkeit}}{\text{Klassenbreite}}$$

Rechtsschief

Modus < Median < arithmetisches Mittel

Linksschief

Arithmetisches Mittel < Median < Modus

Symmetrisch

Arithmetisches Mittel = Median = Modus

Geometrisches Mittel

Multiplikativ/durchschnittlich effektive Rendite Bei zeitlich durchschnittlichen Wachstumsraten (zeitlich aufeinanderfolgend)

R: durchschnittliche Wachstumsrate

Stetige Rendite: r = ln(1+R)

Durchschnittliche effektive Rendite: $\dot{R} = e^{r}-1$

$$\overline{R} = n \prod_{t=1}^{n} (1 + R_t) -1$$

Sind absolute Zahlen bekannt, dann gilt:

$$\overline{R} = \sqrt[n]{\frac{\text{Endwert}}{\text{Anfangswert}}} - 1$$

Faktoren in L1 L2 = ln(L1)1-Var Stats mit L2 (und ggf. Gewichten in L3) Resultat: ex (vgl. stetige Renditen) FRQ (Frequency = Gewichtung)

Univariate Statistik – Streuungsmasse

Spannweite

Spannweite = Maximum - Minimum

Eliminierung von Ausreissern durch Quartilsabstand

Quartilsabstand = 3. Quartil - 1. Quartil

Maximum - 3. Quartil - Median - 1. Quartil - Minimum

Standardabweichung und Varianz

Abweichung vom Mittelwert der Messwerte berechnen. Dann Durchschnitt dieser Abweichungen bestimmen.

Varianz: durchschnittliche quadratische Abweichung; Quadrate der Abweichungen berechnen

Standardabweichung: Wurzel aus der Varianz

$$\frac{n}{n-1} \cdot \sigma^2$$

$$\sigma^2 \text{: (sigma Quadrat) Varianz} \frac{\frac{n}{n-1} \cdot \sigma^2}{\sigma^2}$$

$$\sigma \text{: (sigma) Standardabweichung } \sqrt{\frac{n}{n-1} \cdot \sigma^2}$$

Variantskoeffizient

$$V_{\sigma} = \frac{\sigma}{\overline{x}} \approx \frac{s}{\overline{x}}$$

s: Streuungsmass

x-Werte in L1 und optional W-Werte (Gewichte) in L2

Varianzschätzer s²: 1-Var Stats > Sx²

Standardabweichung: 1-Var Stats > Sx oder σx ablesen (falls rel. Häufigkeiten in L2: nur σ) (σ ggf. umrechnen in s)

Univariate Statistik – Indexzahlen				
Indexzahlen 1 Grösse: einfacher Index X Grössen: zusammengesetzter Index t: aktuelle Periode	$\begin{array}{ll} p_0^{(i)} & \text{Preis des Gutes i in der Basisperiode} \\ p_t^{(i)} & \text{Preis des Gutes i in der Periode t} \\ q_0^{(i)} & \text{Menge des Gutes i in der Basisperiode} \\ w_0^{(i)} = p_0^{(i)} \cdot q_0^{(i)} & \text{Wert des Gutes i in der Basisperiode} \end{array} \\ I_t = \begin{array}{ll} \sum_{i=1}^n p_t^{(i)} \cdot q_0^{(i)} \\ \sum_{i=1}^n p_0^{(i)} \cdot q_0^{(i)} \\ \end{array} \cdot 100 \ I_t = \begin{array}{ll} \sum_{i=1}^n \text{Preisindex}_i \cdot \text{Wert}_i \\ \sum_{i=1}^n \text{Wert}_i \end{array}$	·		
Umbasierung	Monat			
Auf gleichen Basiszeitpunkt umberechnen.	Aug 10 103.4 99.2 103.4/1.042=99.2			
	Nov 10 104.2 100.0 Dez 10 104.2 100.0	tor		
	Feb 11 104.2 100.0 Mrz 11 104.9 100.7 Apr 11 105.0 100.8 Mai 11 105.0 100.8 Jun 11 104.7 100.5 Jul 11 108.9 99.7			

Bivariate Statistik - Korrelation

Daten zentrieren: Kovarianz (Vorzeichen)

2 metrische Merkmale X und Y.

Positive Korrelation (Kennzahlen):

Je grösser X, desto grösser Y.

Je kleiner X, desto kleiner Y. - * - = +

Negative Korrelation (Kennzahlen):

- Je grösser X, desto kleiner Y. + * = -
- Je kleiner X, desto grösser Y. * + = -

$$s_{XY} = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - \overline{x}) \cdot (y_i - \overline{y})$$

r = 1: positiver funktionaler Zusammenhang

- r = -1: negativer funktionaler Zusammenhang
- r ≈ 0.9: starker positiver Zusammenhang
- r ≈ -0.6: mittlerer negativer Zusammenhang
- r ≈ 0: kein Zusammenhang / Unabhängigkeit
- r = 0: kein linearer Zusammenhang

Daten standardisieren: Korrelationskoeffizient (Interpretation)

$$r = \frac{\sigma_{XY}}{\sigma_X \cdot \sigma_Y} = \frac{s_{XY}}{s_X \cdot s_Y}$$

x-Werte in L1, y-Werte in L2: Korrelationskoeffizient r = LinReg ax+b "r ablesen"

In der Nähe von 1: starker Zusammenhang In der Nähe von 0: schwacher Zusammenhang

Stärke des funktionalen Zusammenhangs r (lin. Zusammenhang) kein nachweisbarer funkt. Zusammenhang (sehr schwach) Ca. +- 0.25 schwach +-0.5 mittel Ca. +- 0.75 stark

Bivariate Statistik - Regression

Methode der kleinsten Quadrate

 $\hat{y} = ax + b$ (\hat{y} befindet sich auf der Gerade) e^2_i : senkrechter Abstand im Quadrat (Nähe) zwischen dem Daten-

punkt (x_i / y_i) und dem Punkt auf der Gerade (x_i / \hat{y}_i) . $e_i = y_i - \hat{y}_i$

Gleichung 1

Gleichung 2

a = x / b = y (entspricht nicht r!)

Lineares Modell y = ax + b(TR: LinReg ax+b)

 $y = \sum_{i=0}^{n} a_i x^i$ Polynom-Modell (Excel) $y = ax^2 + bx + c$ (TR: QuadraticReg) $y = ax^3 + bx^2 + cx + d$ (TR: CubicReg)

 $y = a + b \cdot ln(x)$ (TR: LnReg a+blnx) $y = a \cdot x^b$ Potenz-Modell (TR: PwrReg ax^b)

 $y = a \cdot b^x$ Exponentielles Modell (TR: ExpReg ab^x) $y = a \cdot e^{c \cdot x} = a \cdot (e^c)^x$ (Excel)

Das Bestimmheitsmass R²

totale Varianz = erklärebare Varianz + nicht erklärbare Varianz erklärbare Varianz = R^2

nicht erklärbare Varianz = $1 - R^2$

Interpretation:

61.5% der Varianz der Investitionstätigkeit ist durch die Zinsentwicklung erklärbar, 38.5% sind nicht erklärbar. Es gibt noch andere Gründe für die Schwankung der Investitionen.

Je grösser R^2 desto besser passt sich die Regressionskurve der Punktewolke an. $R^2=1$ => der vermutete funktionale Zusammenhang trifft absolut zu

= 0 => der vermutete funktionale Zusammenhang trifft absolut nicht zu

Lineare Mehrfachregression (nur Interpretation)

Die Einflussfaktoren dürfen nicht korreliert sein (in der Praxis nur schwach korreliert).

Input: Werbung und Preis Output: Umsatz

 $X_{st} = \frac{\overline{X - \overline{x}}}{X - \overline{x}}$ s=Standardabweichung von X

In unserem Beispiel beträgt die Korrelationskoeffizient zwischen Werbeeinsatz und Preis 0.21, d.h. die beiden Faktoren sind nur geringfügig korreliert (Inputfaktoren).

x-Werte in L1, y-Werte in L2: y=ax+b LinReg ax+b => a & b ablesen Bestimmheitsmass r² oder R² ablesen

Zeitreihenanalyse (Mischung aus Univariate und Bivariate Statistik)

Deskriptive Zerlegung einer Zeitreihe

Yt: Zeitreihen

Ft: Trend / Konjunkturkomponente zusammengefasst = Trendkomponente / glatte Komponente

St: Saisonkomponente

Et: Restkomponente (einmalig/zufällig)

Ermittlung der Saisonkomponente S₁

St: durchschnittliche Abweichung

Ermittlung der Trendkomponente F

Methode der kleinsten Quadrate (Regression)

Für Trendfunktion wird Regression benötigt $F_t = a^*x + b$ x: Nummer des Zeitpunktes

Nummeriert wird selber

Additiv: $Y_t = F_t + S_t + E_t$

Multiplikativ: $Y_t = F_t * S_t * E_t$ additiv

L2: Anzahl (Y_t)

St: durchschnittliche Abweichung

 $Y_t = F_t + S_t$

Methode des gleitenden Durchschnitts

Benachbarte Werte werden geglättet

- ungerade Ordnung: symmetrisch um Zahl - gerade Ordnung: unsymmetrisch um Zahl, deshalb 0.5!

 $F = (1.Z + \frac{2.Z}{2.Z} + 3.Z)/3$

 $F = (1.Z^*.05 + 2.Z + 3.Z + 4.Z + 5.Z^*0.5)/4$ Um Trendänderungen sichtbar zu machen!

multiplikativ Prognosewerte: f(Nr.)

L2: Umsatz

L3: Trendwer

"L1=L2/L3": Quartalsquotient / durchschn. Quartalsquotient (geom.

Saisonbereinigung

additiv (aktueller Wert / vorgegangener Wert) L1 (L2-L3): Anzahl Saisonbereinigt I 2. Anzahl

L3: durchschn. Abweichung (Saisonkomponente)

 $Yber_{,t} = Y_t - \dot{S}_t$ L1 = L2 - L3

multiplikativ

L1: Nr. (1. Zahl löschen) L2: Umsatz (letzte Zahl löschen) L3: durchschn. Abweichung

 $Yber_{,t} = Y_t / \dot{S}_t$ L1 = L2 / L3L3 = (L1 / L2)

 $Y_t = F_t * S_t$

Für Trendrechnungen

schreibt man t anstatt x.