joglwbjo9

October 26, 2024

1 Problem Statement

A bike-sharing system is a service in which bikes are made available for shared use to individuals on a short term basis for a price or free. Many bike share systems allow people to borrow a bike from a "dock" which is usually computer-controlled wherein the user enters the payment information, and the system unlocks it. This bike can then be returned to another dock belonging to the same system.

A US bike-sharing provider BoomBikes has recently suffered considerable dips in their revenues due to the ongoing Corona pandemic. The company is finding it very difficult to sustain in the current market scenario. So, it has decided to come up with a mindful business plan to be able to accelerate its revenue as soon as the ongoing lockdown comes to an end, and the economy restores to a healthy state.

In such an attempt, BoomBikes aspires to understand the demand for shared bikes among the people after this ongoing quarantine situation ends across the nation due to Covid-19. They have planned this to prepare themselves to cater to the people's needs once the situation gets better all around and stand out from other service providers and make huge profits.

They have contracted a consulting company to understand the factors on which the demand for these shared bikes depends. Specifically, they want to understand the factors affecting the demand for these shared bikes in the American market. The company wants to know:

Which variables are significant in predicting the demand for shared bikes. How well those variables describe the bike demands Based on various meteorological surveys and people's styles, the service provider firm has gathered a large dataset on daily bike demands across the American market based on some factors.

1.1 Import the Library

```
[1]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
  import statsmodels.api as sm
  from statsmodels.stats.outliers_influence import variance_inflation_factor
  from sklearn.model_selection import train_test_split
  from sklearn.preprocessing import MinMaxScaler
  from sklearn.preprocessing import StandardScaler
  from sklearn.feature_selection import RFE
```

```
from sklearn.linear_model import LinearRegression
import warnings
warnings.filterwarnings('ignore')
```

1.2 Reading & Understanding the data

```
[2]: bike_data = pd.read_csv("day.csv")
     bike_data.head()
[2]:
        instant
                                                            weekday
                                                                      workingday
                      dteday
                               season
                                        yr
                                            mnth
                                                  holiday
                  01-01-2018
               1
                                    1
                                         0
                                               1
     1
               2
                  02-01-2018
                                    1
                                         0
                                               1
                                                         0
                                                                   0
                                                                                0
     2
               3
                  03-01-2018
                                    1
                                         0
                                               1
                                                         0
                                                                   1
                                                                                1
     3
               4 04-01-2018
                                    1
                                         0
                                               1
                                                         0
                                                                   2
                                                                                1
                                               1
                                                         0
     4
                  05-01-2018
                                    1
                                         0
                                                                   3
                                                                                1
               5
        weathersit
                                                      windspeed
                                                                  casual
                                                                          registered
                           temp
                                    atemp
                                                hum
     0
                     14.110847
                                 18.18125
                                                      10.749882
                                                                     331
                                                                                  654
                                            80.5833
                  2
                     14.902598
                                                                                  670
                                 17.68695
                                            69.6087
                                                      16.652113
                                                                     131
     1
     2
                  1
                      8.050924
                                  9.47025
                                            43.7273
                                                      16.636703
                                                                     120
                                                                                 1229
     3
                      8.200000
                  1
                                 10.60610
                                            59.0435
                                                      10.739832
                                                                     108
                                                                                 1454
                      9.305237
                                 11.46350
                                            43.6957
                                                      12.522300
                                                                      82
                                                                                 1518
         cnt
     0
         985
         801
     1
     2
        1349
     3 1562
       1600
```

- [3]: bike_data.shape
- [3]: (730, 16)

1.3 Checking for the presence of null values in any column.

[4]: bike_data.info()

1 dteday 730 non-null object 2 season 730 non-null int64

3 yr 730 non-null int64

```
4
     mnth
                 730 non-null
                                  int64
                                  int64
 5
     holiday
                 730 non-null
 6
     weekday
                 730 non-null
                                  int64
 7
     workingday
                 730 non-null
                                  int64
 8
     weathersit
                 730 non-null
                                  int64
 9
     temp
                 730 non-null
                                  float64
 10
     atemp
                 730 non-null
                                  float64
 11
     hum
                 730 non-null
                                  float64
                                  float64
 12
    windspeed
                 730 non-null
 13
     casual
                 730 non-null
                                  int64
14 registered 730 non-null
                                  int64
 15 cnt
                 730 non-null
                                  int64
dtypes: float64(4), int64(11), object(1)
```

memory usage: 91.4+ KB

[5]: bike_data.describe()

[5]:		instant	season	yr	mnth	holiday	weekday	\
	count	730.000000	730.000000	730.000000	730.000000	730.000000	730.000000	
	mean	365.500000	2.498630	0.500000	6.526027	0.028767	2.997260	
	std	210.877136	1.110184	0.500343	3.450215	0.167266	2.006161	
	min	1.000000	1.000000	0.000000	1.000000	0.000000	0.000000	
	25%	183.250000	2.000000	0.000000	4.000000	0.000000	1.000000	
	50%	365.500000	3.000000	0.500000	7.000000	0.000000	3.000000	
	75%	547.750000	3.000000	1.000000	10.000000	0.000000	5.000000	
	max	730.000000	4.000000	1.000000	12.000000	1.000000	6.000000	
		workingday	weathersit	temp	atemp	hum	windspeed	\
	count	730.000000	730.000000	730.000000	730.000000	730.000000	730.000000	
	mean	0.683562	1.394521	20.319259	23.726322	62.765175	12.763620	
	std	0.465405	0.544807	7.506729	8.150308	14.237589	5.195841	
	min	0.000000	1.000000	2.424346	3.953480	0.000000	1.500244	
	25%	0.000000	1.000000	13.811885	16.889713	52.000000	9.041650	
	50%	1.000000	1.000000	20.465826	24.368225	62.625000	12.125325	
	75%	1.000000	2.000000	26.880615	30.445775	72.989575	15.625589	
	max	1.000000	3.000000	35.328347	42.044800	97.250000	34.000021	
		casual	registered	l c	nt			
	count	730.000000	730.000000	730.0000	00			
	mean	849.249315	3658.757534	4508.0068	49			
	std	686.479875	1559.758728	3 1936.0116	47			
	min	2.000000	20.000000	22.0000	00			
	25%	316.250000	2502.250000	3169.7500	00			
	50%	717.000000	3664.500000	4548.5000	00			
	75%	1096.500000	4783.250000	5966.0000	00			
	max	3410.000000	6946.000000	8714.0000	00			

```
[6]: bike_data.columns
[6]: Index(['instant', 'dteday', 'season', 'yr', 'mnth', 'holiday', 'weekday',
             'workingday', 'weathersit', 'temp', 'atemp', 'hum', 'windspeed',
            'casual', 'registered', 'cnt'],
           dtype='object')
     bike_data.nunique()
[7]: instant
                    730
     dteday
                    730
     season
                      4
                      2
                     12
     mnth
     holiday
                      2
     weekday
                      7
     workingday
                      2
     weathersit
                      3
     temp
                    498
     atemp
                    689
     hum
                    594
     windspeed
                    649
     casual
                    605
     registered
                    678
     cnt
                    695
     dtype: int64
```

1.4 Remove columns that are not relevant for the analysis.

- 1) The instant column serves as an index, so we will drop it.
- 2) The dteday and yr_month columns contain similar information; therefore, we will drop dteday to avoid redundancy.
- 3) Since cnt (our target variable) is the sum of casual and registered, we will exclude casual and registered from the analysis.

```
[8]: bike_data.drop(['instant','dteday','casual','registered'], axis = 1, inplace = True)
bike_data.head()
```

```
[8]:
         season
                  yr
                       mnth
                              holiday
                                         weekday
                                                   workingday
                                                                  weathersit
                                                                                      temp
     0
               1
                   0
                                     0
                                                6
                                                              0
                                                                                14.110847
                                                              0
     1
               1
                   0
                           1
                                     0
                                                0
                                                                            2
                                                                                14.902598
     2
                   0
                                                                                 8.050924
               1
                           1
                                     0
                                                1
                                                              1
                                                                            1
     3
               1
                    0
                           1
                                     0
                                                2
                                                              1
                                                                            1
                                                                                 8.200000
               1
                   0
                           1
                                     0
                                                3
                                                              1
                                                                                 9.305237
```

```
18.18125
                                   985
0
             80.5833
                      10.749882
1
   17.68695
             69.6087
                      16.652113
                                   801
2
    9.47025
             43.7273
                      16.636703
                                  1349
   10.60610
             59.0435
3
                      10.739832
                                  1562
   11.46350
             43.6957
                      12.522300
                                  1600
bike_data.corr()
                                                 mnth
                                                         holiday
                                                                   weekday
                  season
                                     yr
                                         8.310321e-01 -0.010868 -0.003081
            1.000000e+00 -3.279074e-16
season
yr
           -3.279074e-16
                          1.000000e+00 -5.162656e-16
                                                        0.008195 -0.005466
mnth
            8.310321e-01 -5.162656e-16
                                         1.000000e+00
                                                        0.018905
                                                                  0.009523
holiday
           -1.086804e-02 8.195345e-03
                                         1.890483e-02 1.000000 -0.101962
weekday
           -3.081198e-03 -5.466369e-03
                                         9.522969e-03 -0.101962
                                                                  1.000000
            1.376178e-02 -2.945396e-03 -4.687953e-03 -0.252948
workingday
                                                                  0.035800
weathersit
            2.130636e-02 -5.032247e-02
                                         4.561335e-02 -0.034395
                                                                  0.031112
temp
            3.333607e-01 4.878919e-02
                                         2.190833e-01 -0.028764 -0.000168
            3.420139e-01
                          4.721519e-02
                                         2.264302e-01 -0.032703 -0.007539
atemp
hum
            2.082196e-01 -1.125471e-01
                                         2.249368e-01 -0.015662 -0.052290
           -2.296069e-01 -1.162435e-02 -2.080131e-01 0.006257
windspeed
            4.045838e-01 5.697285e-01 2.781909e-01 -0.068764
cnt
                                                                  0.067534
            workingday
                        weathersit
                                                                    windspeed
                                         temp
                                                  atemp
                                                               hum
              0.013762
                           0.021306
                                     0.333361
                                               0.342014
                                                          0.208220
                                                                    -0.229607
season
vr
             -0.002945
                          -0.050322
                                     0.048789
                                               0.047215 -0.112547
                                                                    -0.011624
                                                          0.224937
mnth
             -0.004688
                           0.045613
                                     0.219083
                                               0.226430
                                                                    -0.208013
holiday
             -0.252948
                          -0.034395 -0.028764 -0.032703 -0.015662
                                                                     0.006257
weekday
                           0.031112 -0.000168 -0.007539 -0.052290
              0.035800
                                                                     0.014283
workingday
              1.000000
                           0.060236
                                     0.053470
                                               0.052940
                                                          0.023202
                                                                    -0.018666
weathersit
              0.060236
                           1.000000 -0.119503 -0.120559
                                                          0.590277
                                                                     0.039769
                                     1.000000
                                               0.991696
                                                          0.128565
temp
              0.053470
                          -0.119503
                                                                    -0.158186
                                     0.991696
atemp
              0.052940
                          -0.120559
                                               1.000000
                                                          0.141512
                                                                    -0.183876
hum
              0.023202
                                     0.128565
                                                          1.000000
                                                                    -0.248506
                           0.590277
                                               0.141512
windspeed
             -0.018666
                           0.039769 -0.158186 -0.183876 -0.248506
                                                                     1.000000
cnt
              0.062542
                          -0.295929
                                     0.627044 0.630685 -0.098543
                                                                    -0.235132
                 cnt
season
            0.404584
            0.569728
yr
mnth
            0.278191
holiday
           -0.068764
weekday
            0.067534
            0.062542
workingday
weathersit -0.295929
temp
            0.627044
```

hum

0.630685

atemp

atemp

[9]:

windspeed

cnt

```
hum -0.098543
windspeed -0.235132
cnt 1.000000
```

You can observe in the dataset that some of the variables like 'weathersit' and 'season' have values as 1, 2, 3, 4 which have specific labels associated with them (as can be seen in the data dictionary). These numeric values associated with the labels may indicate that there is some order to them - which is actually not the case (Check the data dictionary and think why). So, it is advisable to convert such feature values into categorical string values before proceeding with model building. Please refer the data dictionary to get a better understanding of all the independent variables

- 1.5 Based on the data season, weathersit, weekday, holiday, mnth, workingday and yr are all categorical variables.
- 1.5.1 Map descriptive names for improved visibility: season (1: Spring, 2: Summer, 3: Fall, 4: Winter)

In the fall, there appears to be the highest demand for rented bikes, followed by summer and winter.

1.5.2 Map descriptive names for enhanced clarity: weathersit (1: 'Good', 2: 'Moderate', 3: 'Bad', 4: 'Severe')

It clearly shows that if the weather is clear, the demand is more

1.5.3 Map descriptive names for enhanced clarity: Month (1: 'jan',2: 'feb',3: 'mar',4: 'apr',5: 'may',6: 'jun', 7: 'jul',8: 'aug',9: 'sept',10: 'oct',11: 'nov',12: 'dec')

- There is a consistently high average count of rented bikes in August, June, September, and July, followed closely by May and October. The company should ensure high availability during these peak months.
- Conversely, December, January, and February show the lowest demand, likely due to the winter season.

1.5.4 Map descriptive names for enhanced clarity: Weekday (0: 'sun',1: 'mon',2: 'tue',3: 'wed',4: 'thu',5: 'fri',6: 'sat')

```
bike_data['weekday'] = bike_data['weekday'].replace({0: 'sun',1: 'mon',2:_u \ 'tue',3: 'wed',4: 'thu',5: 'fri',6: 'sat'})

plt.figure(figsize=[10, 4])

sns.barplot(x='weekday', y='cnt', data=bike_data)

plt.title('Weekday Average Count', fontsize=20)

plt.show()
```


- It appears that the demand for rented bikes is generally consistent across all days. However, demand is notably higher on Sunday, Monday, Saturday, and Friday compared to other days.
- Conversely, people tend to prefer renting bikes less on Thursday, Wednesday, and Tuesday.

1.5.5 Map descriptive names for enhanced clarity: Year (0: 2018, 1: 2019)

```
[14]: bike_data['yr'].replace({0: '2018', 1: '2019'})
    plt.figure(figsize=[10, 4])
    sns.barplot(x='yr', y='cnt', data=bike_data)
    plt.title('Year Average Count', fontsize=20)
    plt.show()
```


• We can observe a significant trend: the average number of rented bikes nearly doubled in 2019 compared to 2018.

1.6 Prepare the data for Model

```
[15]: bike_data['season'] = bike_data.season.replace({1: "spring", 2: "summer", 3:___

¬"fall", 4: "winter"})
     bike_data['weathersit']=bike_data.weathersit.replace({1:'good',2:'moderate',3:
      bike_data['mnth'] = bike_data.mnth.replace({1: 'jan',2: 'feb',3: 'mar',4:__

¬'dec'})
     bike_data['weekday'] = bike_data.weekday.replace({0: 'sun',1: 'mon',2: 'tue',3:__
      ⇔'wed',4: 'thu',5: 'fri',6: 'sat'})
     bike_data.head()
[15]:
        season yr mnth holiday weekday workingday weathersit
                                                                temp \
     0 spring
                0
                   jan
                             0
                                               0
                                                  moderate 14.110847
                                  sat
                                               0
                                                  moderate 14.902598
     1 spring
                0
                  jan
                             0
                                  sun
                  jan
     2 spring
                0
                             0
                                  mon
                                               1
                                                      good
                                                            8.050924
     3 spring
                  jan
                             0
                                  tue
                                               1
                                                            8.200000
                0
                                                      good
     4 spring
                             0
                                                            9.305237
                0 jan
                                               1
                                                      good
                                  wed
                    hum windspeed
          atemp
                                    cnt
     0 18.18125 80.5833 10.749882
                                    985
     1 17.68695
                69.6087 16.652113
                                    801
     2
       9.47025 43.7273 16.636703 1349
     3 10.60610
                 59.0435 10.739832
                                   1562
     4 11.46350 43.6957
                        12.522300
                                   1600
[16]: sns.pairplot(bike_data, vars=['temp', 'atemp', 'hum', 'windspeed', "cnt"])
     plt.show()
```


1.7 Based on the data, temp, atemp, humidity, windspeed, and count are numeric variables.

1.7.1 Correlation Graph for Numnerical variable

1.8 Regression of data

```
[18]: plt.figure(figsize=(6,5),dpi=110)
   plt.title('Count vs Temperature',fontsize = 16)
   sns.regplot(data = bike_data,y = 'cnt', x='temp')
   plt.xlabel('Tempearture')
   plt.show()
```



```
[19]: plt.figure(figsize = (6,5),dpi = 110)
  plt.title('Count vs Humidity',fontsize = 16)
  sns.regplot(data = bike_data, y = 'cnt', x = 'hum')
  plt.xlabel('Humidity')
  plt.show()
```



```
[20]: plt.figure(figsize =(6,5),dpi = 110)
   plt.title('Count vs Windspeed',fontsize = 16)
   sns.regplot(data = bike_data, y ='cnt', x = 'windspeed')
   plt.show()
```


1.8.1 Creating Dummy Variable For Categorical Data

```
[21]: # List of categorical columns to create dummies
    cat = ['season', 'mnth', 'weekday', 'weathersit']

# Create dummy variables
    dummy = pd.get_dummies(bike_data[cat], drop_first=True).astype(int)
    bike_data = pd.concat([bike_data, dummy], axis=1)
    bike_data.drop(columns=cat, inplace=True)
```

```
[21]:
            holiday
                    workingday
                                                             windspeed
                                                                        cnt \
                                              atemp
                                                        hum
        yr
                                     temp
         0
                  0
                                           18.18125 80.5833
                                                             10.749882
                                                                        985
                             0 14.110847
     0
     1
                  0
                             0 14.902598 17.68695
                                                    69.6087
                                                             16.652113
                                                                        801
     2
                  0
                             1 8.050924
                                            9.47025 43.7273
                                                             16.636703
                                                                       1349
                                 8.200000 10.60610 59.0435
                                                             10.739832 1562
```

4	0 0	1	9.30	5237	11.463	50 43.69	57 12.522300	1600
	season_spri	ng season_sum	mer	mn	th_oct	mnth_sep	t weekday_mo	on \
0		1	0		0		0	0
1		1	0		0		0	0
2		1	0	•••	0		0	1
3		1	0	•••	0		0	0
4		1	0	•••	0		0	0
	weekday_sat	weekday_sun	week	day_t	hu wee	kday_tue	weekday_wed	\
0	1	0			0	0	0	
1	0	1			0	0	0	
2	0	0			0	0	0	
3	0	0			0	1	0	
4	0	0			0	0	1	
	weathersit_{	good weathers	it_mo	derat	е			
0		0			1			
1		0			1			
2		1			0			
3		1			0			
4		1			0			

[5 rows x 30 columns]

1.8.2 Verifying the info of the dataset after generating dummy variables.

[22]: bike_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 730 entries, 0 to 729
Data columns (total 30 columns):

#	Column	Non-Null Count	Dtype
0	yr	730 non-null	int64
1	holiday	730 non-null	int64
2	workingday	730 non-null	int64
3	temp	730 non-null	float64
4	atemp	730 non-null	float64
5	hum	730 non-null	float64
6	windspeed	730 non-null	float64
7	cnt	730 non-null	int64
8	season_spring	730 non-null	int32
9	season_summer	730 non-null	int32
10	season_winter	730 non-null	int32
11	mnth_aug	730 non-null	int32
12	mnth_dec	730 non-null	int32

```
13 mnth_feb
                          730 non-null
                                          int32
                          730 non-null
                                          int32
 14 mnth_jan
    mnth_jul
                          730 non-null
                                          int32
 15
 16 mnth_jun
                          730 non-null
                                          int32
    mnth mar
                          730 non-null
 17
                                          int32
    mnth may
                          730 non-null
                                          int32
 19
    mnth nov
                          730 non-null
                                          int32
    mnth oct
 20
                          730 non-null
                                          int32
 21 mnth sept
                          730 non-null
                                          int32
                          730 non-null
 22 weekday_mon
                                          int32
 23 weekday_sat
                          730 non-null
                                          int32
 24 weekday_sun
                          730 non-null
                                          int32
 25 weekday_thu
                          730 non-null
                                          int32
    weekday_tue
                          730 non-null
 26
                                          int32
 27 weekday_wed
                          730 non-null
                                          int32
28 weathersit_good
                          730 non-null
                                          int32
29 weathersit_moderate 730 non-null
                                          int32
dtypes: float64(4), int32(22), int64(4)
memory usage: 108.5 KB
```

1.8.3 Verifying the shapes of the dataset after generating dummy variables.

```
[23]: bike_data.shape
[23]: (730, 30)
```

1.8.4 Verifying the columns of the dataset after generating dummy variables.

1.8.5 Splitting the dataset into training and testing sets.

```
[25]: from sklearn.model_selection import train_test_split

# Assuming bike_data is your DataFrame and 'cnt' is the target variable
X = bike_data.drop('cnt', axis=1)
y = bike_data['cnt']
```

Training data shape: (511, 29) Testing data shape: (219, 29)

1.9 Rescaling

```
[26]: # Instant the object
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
```

```
[27]: # create the list of Numeric value
num_vars = ['temp', 'atemp', 'hum', 'windspeed']

#Fit on the data
X_train[num_vars] = scaler.fit_transform(X_train[num_vars])
X_train.head()
```

[27]:		yr	holiday	workingday	temp	atemp	hum	windspeed	\
	653	1	0	1	0.509887	0.501133	0.575354	0.300794	
	576	1	0	1	0.815169	0.766351	0.725633	0.264686	
	426	1	0	0	0.442393	0.438975	0.640189	0.255342	
	728	1	0	0	0.245101	0.200348	0.498067	0.663106	
	482	1	0	0	0.395666	0.391735	0.504508	0.188475	
		sea	son spring	season su	mmer seas	on winter	mnth o	ct mnth_se	pt \

	peabon_ppring	bcabon_bammer	BCGBOII_WINGCI	•••	miron_oco	miron_bcpo	`
653	0	0	1	•••	1	0	
576	0	0	0	•••	0	0	
426	1	0	0		0	0	
728	1	0	0		0	0	
482	0	1	0	•••	0	0	

	weekday_mon	weekday_sat	weekday_sun	weekday_thu	weekday_tue	\
653	0	0	0	0	1	
576	0	0	0	0	1	
426	0	1	0	0	0	
728	0	0	1	0	0	
482	0	1	0	0	0	

	weekday_wed	weathersit_good	weathersit_moderate
653	0	1	0
576	0	1	0

426	0	0	1
728	0	1	0
482	0	0	1

[5 rows x 29 columns]

1.10 Training the Model

```
[28]: plt.figure(figsize =(25,22))
matrix = np.triu(X_train.corr())
sns.heatmap(X_train.corr(), annot=True, cmap="YlGnBu", mask=matrix)
```

[28]: <Axes: >

- The heatmap effectively highlights the multicollinearity among the variables, pinpointing those that exhibit high collinearity with the target variable.
- We will refer to this map during the development of our linear model to evaluate various correlated values, alongside the Variance Inflation Factor (VIF) and p-values. This will assist in selecting or eliminating appropriate variables from the model.

1.11 RFE for variable Selection

```
[29]: from sklearn.linear_model import LinearRegression
      from sklearn.feature_selection import RFE
      # Create and fit the linear regression model
      model = LinearRegression()
      model.fit(X_train, y_train)
      # Initialize RFE with the linear model and specify the number of features to
       \hookrightarrowselect
      rfe = RFE(estimator=model, n_features_to_select=15)
      # Fit RFE to the training data
      rfe.fit(X_train, y_train)
      # Get the selected features
      selected_features = X_train.columns[rfe.support_]
      # Display the selected features
      print("Selected Features:", selected_features)
     Selected Features: Index(['yr', 'holiday', 'workingday', 'temp', 'hum',
     'windspeed',
             'season_spring', 'season_summer', 'season_winter', 'mnth_jan',
             'mnth_jul', 'mnth_sept', 'weekday_sat', 'weathersit_good',
            'weathersit moderate'],
           dtype='object')
[30]: list(zip(X_train.columns,rfe.support_,rfe.ranking_))
[30]: [('yr', True, 1),
       ('holiday', True, 1),
       ('workingday', True, 1),
       ('temp', True, 1),
       ('atemp', False, 5),
       ('hum', True, 1),
       ('windspeed', True, 1),
       ('season_spring', True, 1),
       ('season_summer', True, 1),
       ('season_winter', True, 1),
```

```
('mnth_aug', False, 7),
('mnth_dec', False, 3),
('mnth_feb', False, 4),
('mnth_jan', True, 1),
('mnth_jul', True, 1),
('mnth_jun', False, 14),
('mnth_mar', False, 15),
('mnth_may', False, 6),
('mnth_nov', False, 2),
('mnth_oct', False, 11),
('mnth_sept', True, 1),
('weekday_mon', False, 9),
('weekday_sat', True, 1),
('weekday_sun', False, 8),
('weekday_thu', False, 12),
('weekday_tue', False, 10),
('weekday_wed', False, 13),
('weathersit_good', True, 1),
('weathersit_moderate', True, 1)]
```

[32]: X_train_rfe.columns

1.11.1 Creating a new training DataFrame using features selected by RFE.

```
[31]: X_train_rfe = X_train[selected_features]
      X_train_rfe.head()
[31]:
               holiday
                         workingday
                                                            windspeed season spring \
                                                      hum
                                           temp
                                                             0.300794
                      0
      653
            1
                                      0.509887
                                                 0.575354
                                                                                     0
      576
                      0
            1
                                      0.815169
                                                 0.725633
                                                             0.264686
      426
                      0
                                      0.442393
                                                 0.640189
                                                             0.255342
                                                                                     1
            1
      728
                      0
                                      0.245101
                                                                                     1
            1
                                   0
                                                 0.498067
                                                             0.663106
      482
                                                                                     0
            1
                      0
                                      0.395666
                                                 0.504508
                                                             0.188475
                           season_winter
                                           mnth_jan
                                                      mnth_jul
                                                                mnth_sept
                                                                             weekday_sat
           season_summer
      653
                        0
                                         1
                                                   0
                                                                          0
                                                                                        0
      576
                        0
                                         0
                                                   0
                                                              1
                                                                          0
                                                                                        0
      426
                        0
                                         0
                                                   0
                                                              0
                                                                          0
                                                                                        1
      728
                        0
                                         0
                                                   0
                                                              0
                                                                          0
                                                                                        0
      482
                        1
                                         0
                                                              0
                                                                          0
           weathersit_good
                             weathersit_moderate
      653
                                                 0
                          1
      576
                          1
                                                 0
      426
                          0
                                                 1
      728
                          1
                                                 0
      482
                          0
                                                 1
```

1.12 Adding constant and intercept

1.12.1 Creating the Function for lm summary and VIF

```
[34]: def model(column):
    X_train_sm = sm.add_constant(X_train[column])
    lm = sm.OLS(y_train, X_train_sm).fit()
    print(lm.summary())
    return lm
```

1.13 Model 1

OLS Regression Results

Dep. Variable: R-squared: 0.848 cntModel: OLS Adj. R-squared: 0.844 Least Squares F-statistic: Method: 184.5 Sun, 27 Oct 2024 Prob (F-statistic): Date: 1.50e-191 Time: 00:47:57 Log-Likelihood: -4114.8

No. Observations: Df Residuals: Df Model: Covariance Type:	nor				8262. 8329.
0.975]	coef	std err	t	P> t	[0.025
 const 878.722	52.1618	420.691	0.124	0.901	-774.398
yr 2144.445	2007.6643	69.617	28.839	0.000	1870.884
holiday -47.132	-506.7813	233.946	-2.166	0.031	-966.431
workingday 577.594	380.7061	100.209	3.799	0.000	183.819
temp 5025.145	4437.9745	298.850	14.850	0.000	3850.804
hum -728.633	-1366.6057	324.706	-4.209	0.000	-2004.578
windspeed -1183.482	-1619.1366	221.733	-7.302	0.000	-2054.791
season_spring	-439.3779	179.750	-2.444	0.015	-792.545
season_summer 695.859	442.3136	129.046	3.428	0.001	188.768
season_winter 1118.142	823.3397	150.044	5.487	0.000	528.538
mnth_jan -1.865	-298.4753	150.964	-1.977	0.049	-595.085
mnth_jul -153.096	-461.8136	157.127	-2.939	0.003	-770.531
mnth_sept 987.336	705.8967	143.243	4.928	0.000	424.457
weekday_sat 713.914	466.0363	126.162	3.694	0.000	218.158
weathersit_good 2599.620	2154.6073	226.496	9.513	0.000	1709.594
weathersit_moderate 2083.891		214.493	7.751	0.000	1241.033
Omnibus: Prob(Omnibus): Skew: Kurtosis:		66.238 Dur 0.000 Jar -0.677 Pro	======================================		2.071 159.707 2.09e-35 28.6

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
Features
                           VIF
4
                    hum 25.64
3
                   temp 22.87
        weathersit_good 14.84
13
   weathersit_moderate
                         9.07
          season_spring
                          5.69
6
2
             workingday
                          5.43
5
              windspeed
                          4.69
8
          season_winter
                          4.14
7
                          3.21
          season_summer
0
                          2.10
                     yr
                          2.00
12
            weekday_sat
               mnth_jan
                          1.70
10
               mnth_jul
                         1.59
11
              mnth_sept
                          1.40
1
                holiday
                          1.19
```

1.14 Model 2

1.14.1 Removing Feature: Dropping the variable mnth jan due to its negative coefficient and insignificance indicated by a high p-value.

```
[37]: column = ['yr', 'holiday', 'workingday', 'temp', 'hum', 'windspeed',
             'season_spring', 'season_summer', 'season_winter',
             'mnth_jul', 'mnth_sept', 'weekday_sat', 'weathersit_good',
             'weathersit moderate']
      model(column)
      get_vif(column)
```

OLS Regression Results

=======================================			
Dep. Variable:	cnt	R-squared:	0.847
Model:	OLS	Adj. R-squared:	0.843
Method:	Least Squares	F-statistic:	196.2
Date:	Sun, 27 Oct 2024	<pre>Prob (F-statistic):</pre>	7.31e-192
Time:	00:47:57	Log-Likelihood:	-4116.8
No. Observations:	511	AIC:	8264.
Df Residuals:	496	BIC:	8327.
Df Model:	14		
Covariance Type:	nonrobust		
=======================================	=======================================		
======			
	coef std	err t P> t	[0.025

std err t P>|t| [0.025

\cap		9	7	5	٦
v	٠	J	1	U	

const	-27.9807	419.960	-0.067	0.947	-853.100	
797.139						
yr	2001.0234	69.739	28.693	0.000	1864.003	
2138.044 holiday	-514.6458	234.597	-2.194	0.029	-975.572	
-53.720	314.0430	254.591	2.134	0.023	910.012	
workingday	378.0578	100.493	3.762	0.000	180.612	
575.503						
temp	4594.3484	289.038	15.895	0.000	4026.459	
5162.238						
hum -769.421	-1407.9319	324.982	-4.332	0.000	-2046.442	
windspeed	-1572.5713	221.125	-7.112	0.000	-2007.028	
-1138.115	10/2:0/10	221.120	1.112	0.000	2001.020	
season_spring	-479.6179	179.117	-2.678	0.008	-831.539	
-127.697						
season_summer	467.9987	128.767	3.634	0.000	215.004	
720.994	074 2677	140 041	E 000	0 000	EOO 111	
season_winter 1165.625	874.3677	148.241	5.898	0.000	583.111	
mnth_jul	-476.4896	157.411	-3.027	0.003	-785.764	
-167.216						
mnth_sept	710.9998	143.639	4.950	0.000	428.784	
993.216						
weekday_sat 710.092	461.5301	126.510	3.648	0.000	212.968	
weathersit_good	2133.3401	226.903	9.402	0.000	1687.530	
2579.150	2100.0101	220.000	0.102	0.000	1001.000	
weathersit_moderate	1640.9978	214.845	7.638	0.000	1218.879	
2063.117						
	========		========= urbin-Watson:		2.06	
Prob(Omnibus):			arque-Bera (J	B):	156.55	
Skew:			rob(JB):	•	1.01e-3	
Kurtosis:		5.367 C	ond. No.		28.0	6
						_

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	Features	VIF
4	hum	25.04
3	temp	21.47
12	${\tt weathersit_good}$	14.49
13	weathersit_moderate	8.92

6	season_spring	5.53
2	workingday	5.43
5	windspeed	4.67
8	season_winter	4.05
7	season_summer	3.19
0	yr	2.10
11	weekday_sat	2.00
9	${\tt mnth_jul}$	1.59
10	${\tt mnth_sept}$	1.40
1	holiday	1.18

1.15 Model 3

Removing Feature: Dropping the variable mnth_jan due to its negative coefficient and insignificance indicated by a VIF.

OLS Regression Results

=======================================		======		=======		
Dep. Variable:		cnt	R-squ	ared:		0.841
Model:		OLS	Adj.	R-squared:		0.837
Method:	Least Sq	uares	F-sta	tistic:		202.7
Date:	Sun, 27 Oct	2024	Prob	(F-statisti	Lc):	4.84e-189
Time:	00:	47:57	Log-L	ikelihood:		-4126.3
No. Observations:		511	AIC:			8281.
Df Residuals:		497	BIC:			8340.
Df Model:		13				
Covariance Type:	nonr	obust				
=======================================		======		=======		
======						
	coef	std e	err	t	P> t	[0.025
0.975]						
const	-1139.6258	338.3	346	-3.368	0.001	-1804.392
-474.860						
yr	2035.8715	70.5	501	28.877	0.000	1897.355
2174.389						
holiday	-494.2045	238.7	706	-2.070	0.039	-963.201
-25.208						
workingday	405.2426	102.0)75	3.970	0.000	204.692
605.794			· · ·	3.2.2		

temp 4837.684	4278.4302	284.6	15.031	0.000	3719.176
windspeed -871.380	-1294.4957	215.3	353 -6.011	0.000	-1717.611
season_spring	-566.5254	181.1	-3.127	0.002	-922.428
season_summer 671.416	415.0994	130.4	158 3.182	0.002	158.783
season_winter	747.0853	147.8	375 5.052	0.000	456.549
1037.622 mnth_jul	-433.0036	159.8	374 -2.708	0.007	-747.116
-118.892 mnth_sept	658.0388	145.6	354 4.518	0.000	371.865
944.212 weekday_sat	503.9253	128.3	3.926	0.000	251.718
756.133 weathersit_good	2522.6079	212.0)47 11.896	0.000	2105.989
2939.227 weathersit_moderate 2227.347	1804.4234	215.2	256 8.383	0.000	1381.500
Omnibus:		 66.789	 Durbin-Watso	n:	2.060
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Bera	(JB):	161.981
Skew:		-0.681	Prob(JB):		6.70e-36
Kurtosis:		5.399	Cond. No.		22.8
============					

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

. I		
	Features	VIF
11	${\tt weathersit_good}$	14.46
3	temp	13.44
12	weathersit_moderate	8.21
2	workingday	5.34
4	windspeed	4.64
5	season_spring	4.16
6	season_summer	2.78
7	season_winter	2.74
0	yr	2.08
10	weekday_sat	1.99
8	mnth_jul	1.59
9	${\tt mnth_sept}$	1.35
1	holiday	1.18

1.16 Model 4

Removing Feature: Dropping the variable holiday due to its negative coefficient .

OLS Regression Results

===========	=========	======	=========	.=======	=========
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	nonr	2024 47:57 511 498 12 obust	R-squared: Adj. R-square F-statistic: Prob (F-stati Log-Likelihoo AIC: BIC:	stic): od:	0.840 0.836 217.7 2.69e-189 -4128.5 8283. 8338.
0.975]	coef			P> t	[0.025
 const -537.371	-1201.6995	338.1	26 -3.554	0.000	-1866.028
yr 2176.367	2037.4017	70.7		0.000	1898.437
workingday 667.251	478.5255	96.0		0.000	289.800 3721.255
temp 4843.416 windspeed	4282.3355 -1302.0654	285.5 216.0		0.000	-1726.511
-877.619 season_spring	-574.5921	181.6	99 -3.162	0.002	-931.582
-217.602 season_summer 675.592	418.4522	130.8	77 3.197	0.001	161.312
season_winter 1031.778	740.3566	148.3	26 4.991	0.000	448.935
mnth_jul -108.851	-423.8764	160.3		0.008	-738.902
mnth_sept 927.932	641.2617	145.9		0.000	354.592
weekday_sat 821.036	578.0360	123.6	80 4.674	0.000	335.036

weathersit_good 2930.080	2512.2081	212.6	86	11.812	0.000	2094.336
weathersit_moderate 2222.719	1798.4428	215.9	45	8.328	0.000	1374.167
Omnibus:		====== 72.425	Durbi	======= in-Watson:	=======	2.043
Prob(Omnibus):	,	0.000		ie-Bera (J	B):	183.528
Skew:	-	-0.720	Prob	(JB):		1.40e-40
Kurtosis:		5.558	Cond	. No.		22.8
===========	========					========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	Features	VIF
10	${\tt weathersit_good}$	14.32
2	temp	13.38
11	weathersit_moderate	8.15
1	workingday	4.73
3	windspeed	4.63
4	season_spring	4.12
5	season_summer	2.78
6	season_winter	2.72
0	yr	2.08
9	weekday_sat	1.84
7	mnth_jul	1.59
8	${\tt mnth_sept}$	1.34

1.17 Model 5

Removing Feature: Dropping the variable Weathersit_good due to high VIF

OLS Regression Results

===========	===========		=========
Dep. Variable:	cnt	R-squared:	0.795
Model:	OLS	Adj. R-squared:	0.791
Method:	Least Squares	F-statistic:	176.0
Date:	Sun, 27 Oct 2024	Prob (F-statistic):	7.70e-164
Time:	00:47:57	Log-Likelihood:	-4191.6
No. Observations:	511	AIC:	8407.
Df Residuals:	499	BIC:	8458.

Covariance Type:		obust			
======	coef	std err	t	P> t	[0.025
0.975]					
const 1854.545	1263.8103	300.670	4.203	0.000	673.076
yr 2242.659	2085.8515	79.811	26.135	0.000	1929.043
workingday 620.653	407.7514	108.362	3.763	0.000	194.850
temp 5024.681	4390.8184	322.621	13.610	0.000	3756.956
windspeed -1081.385	-1558.7046	242.944	-6.416	0.000	-2036.024
season_spring	-511.5958	205.287	-2.492	0.013	-914.928
season_summer 733.214	442.6042	147.914	2.992	0.003	151.994
season_winter 980.507	651.5355	167.438	3.891	0.000	322.565
mnth_jul -95.700	-451.7347	181.213	-2.493	0.013	-807.770
mnth_sept 884.114	560.4472	164.739	3.402	0.001	236.780
weekday_sat 779.964	505.6387	139.625	3.621	0.000	231.313
weathersit_moderate -429.222		84.379	-7.052	0.000	-760.787
Omnibus:	14	4.025 Dur	rbin-Watson:		2.020
<pre>Prob(Omnibus):</pre>			rque-Bera (JB)):	529.734
Skew: Kurtosis:		7.312 Cor	ob(JB): nd. No.		9.33e-116 19.5

11

Notes:

Df Model:

	Features	ATF.
2	temp	6.73
1	workingday	4.64
3	windspeed	4.59
4	season_spring	2.38
5	season_summer	2.32

```
0 yr 2.07
6 season_winter 1.90
9 weekday_sat 1.82
7 mnth_jul 1.58
10 weathersit_moderate 1.54
8 mnth_sept 1.33
```

1.18 Model 6

Removing Feature: Dropping the variable temp due to high VIF

OLS Regression Results

Dep. Variable:		cnt I	======================================	=======	 0.7	== 10
Model:			Adj. R-squared:		0.7	
Method:	Least Sq		F-statistic:	•	127	
Date:	-	-	Prob (F-statist	tic):	6.80e-1	
Time:			Log-Likelihood:		-4272	
No. Observations:			AIC:		856	
Df Residuals:		500 I	BIC:		861	3.
Df Model:		10				
Covariance Type:	nonr	obust				
		======				===
======	_	_			F	
1	coef	std er	r t	P> t	[0.025	
0.975]						
const	4693.2460	191.889	9 24.458	0.000	4316.238	
5070.254						
yr	2209.6198	92.756	3 23.822	0.000	2027.380	
2391.860						
workingday	419.6751	126.758	3.311	0.001	170.630	
668.720						
windspeed	-1768.1382	283.628	3 -6.234	0.000	-2325.387	
-1210.889						
season_spring -2282.778	-2596.8055	159.833	3 -16.247	0.000	-2910.833	
season_summer -63.788	-374.4823	158.13	7 -2.368	0.018	-685.177	
season_winter	-791.4039	151.602	2 -5.220	0.000	-1089.260	

```
-493.548
                -98.8406
                          209.804
                                  -0.471
                                           0.638
                                                   -511.046
mnth_jul
313.365
mnth_sept
                519.1745 192.680 2.694
                                           0.007
                                                    140.612
897.738
                                  2.933
weekday_sat
                479.0061
                          163.319
                                            0.004
                                                    158.131
799.881
weathersit_moderate -673.8006
                          98.475 -6.842
                                            0.000
                                                   -867.277
-480.324
Omnibus:
                       78.414 Durbin-Watson:
                                                        1.992
Prob(Omnibus):
                        0.000 Jarque-Bera (JB):
                                                      202.666
Skew:
                              Prob(JB):
                                                     9.81e-45
                       -0.771
                        5.673
                              Cond. No.
Kurtosis:
                                                        10.6
______
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	Features	VIF
2	windspeed	4.12
1	workingday	3.54
4	season_summer	2.26
3	season_spring	2.25
0	yr	1.90
5	season_winter	1.90
8	weekday_sat	1.61
9	${\tt weathersit_moderate}$	1.53
6	mnth_jul	1.29
7	${\tt mnth_sept}$	1.22

1.19 Model 7

Removing Feature: Dropping the variable mnth_july due to high VIF

OLS Regression Results

Dep. Variable:	cnt	R-squared:	0.719
Model:	OLS	Adj. R-squared:	0.714
Method:	Least Squares	F-statistic:	142.4
Date:	Sun, 27 Oct 2024	<pre>Prob (F-statistic):</pre>	6.18e-132

coef std err t P> t [0.025 0.975] const 4655.1084 173.842 26.778 0.000 4313.559 4996.658 yr 2209.9873 92.681 23.845 0.000 2027.896 2392.078	Time: No. Observations: Df Residuals: Df Model: Covariance Type:		0:47:57 511 501 9	Log- AIC: BIC:			-4272.4 8565. 8607.
	======						[0.025
4996.658 yr 2209.9873 92.681 23.845 0.000 2027.896	0.975]						
· ·		4655.1084	173.8	842	26.778	0.000	4313.559
2392.078	•	2209.9873	92.6	681	23.845	0.000	2027.896
workingday 421.5165 126.600 3.330 0.001 172.785 670.248	workingday	421.5165	126.6	600	3.330	0.001	172.785
windspeed -1767.2561 283.401 -6.236 0.000 -2324.057 -1210.455	-	-1767.2561	283.4	401	-6.236	0.000	-2324.057
season_spring -2561.6116 141.191 -18.143 0.000 -2839.011 -2284.212	season_spring	-2561.6116	141.	191	-18.143	0.000	-2839.011
season_summer -339.4774 139.485 -2.434 0.015 -613.524 -65.430	season_summer	-339.4774	139.4	485	-2.434	0.015	-613.524
season_winter -758.0979 134.005 -5.657 0.000 -1021.378 -494.818	season_winter	-758.0979	134.0	005	-5.657	0.000	-1021.378
mnth_sept 546.8668 183.353 2.983 0.003 186.632 907.102	mnth_sept	546.8668	183.3	353	2.983	0.003	186.632
weekday_sat 479.7546 163.184 2.940 0.003 159.145 800.364	weekday_sat	479.7546	163.	184	2.940	0.003	159.145
weathersit_moderate -670.6347 98.169 -6.831 0.000 -863.509 -477.760	weathersit_moderate -477.760						
Omnibus: 78.457 Durbin-Watson: 1.998							
Prob(Omnibus): 0.000 Jarque-Bera (JB): 201.627					•		
Skew: -0.773 Prob(JB): 1.65e-44							
Kurtosis: 5.661 Cond. No. 9.73 ====================================						.======	

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	Features	VIF
2	windspeed	3.96
1	workingday	3.29
3	season_spring	2.00
4	season_summer	2.00
0	yr	1.88
5	season_winter	1.72

```
7 weekday_sat 1.55
8 weathersit_moderate 1.53
6 mnth_sept 1.18
```

VIF < 5: Low multicollinearity. Generally acceptable; the feature does not show high linear correlation with others.

1.19.1 Final Model Interpretation

- Hypothesis Testing:
 - Null Hypothesis (H0): All regression coefficients are zero, i.e., H0:B1=B2=...=Bn=0
 - Alternative Hypothesis (H1): At least one coefficient—is not zero, indicating that the model has significant predictive power

1.19.2 Final Model Interpretation with Coefficient Values

- 1. Windspeed (Coefficient: 3.96): A one-unit increase in windspeed is associated with an increase of 3.96 units in the target variable, indicating a strong positive relationship.
- 2. Working Day (Coefficient: 3.29): Being a working day is associated with an increase of 3.29 units in the target variable, suggesting that more activity or demand occurs on working days.
- 3. **Season Spring (Coefficient: 2.00)**: The transition to spring increases the target variable by 2.00 units, indicating a seasonal effect on the target variable.
- 4. **Season Summer (Coefficient: 2.00)**: Similar to spring, summer also increases the target variable by 2.00 units, reinforcing the impact of the season.
- 5. Year (yr) (Coefficient: 1.88): An increase in one year is associated with an increase of 1.88 units in the target variable, indicating a positive trend over the years.
- 6. **Season Winter (Coefficient: 1.72)**: Winter contributes an increase of 1.72 units to the target variable, but it is lower than spring and summer.
- 7. Weekday Saturday (Coefficient: 1.55): Saturdays are associated with an increase of 1.55 units, indicating higher activity on weekends.
- 8. Weather Situation Moderate (Coefficient: 1.53): Moderate weather conditions lead to an increase of 1.53 units, suggesting that such conditions positively influence the target variable.
- 9. Month September (Coefficient: 1.18): Being in September is associated with an increase of 1.18 units, indicating a slight seasonal effect.

1.19.3 Model Significance Testing

• F-statistic (142.4): A high F-statistic value like this indicates that the variance explained by the model is significantly greater than the variance within the residuals. This suggests that the model as a whole explains a considerable amount of the variability in the target variable.

• Prob (F-statistic) (6.18e-132): The extremely low p-value associated with the F-statistic indicates that the likelihood of observing such a high F-statistic under the null hypothesis (that all coefficients are zero) is practically nonexistent.

1.19.4 Conclusion

Together, these values confirm that your model has strong explanatory power. You can confidently reject the null hypothesis, concluding that the predictors in the model significantly explain the variation in the target variable.

1.19.5 Equation for best fit

Target Variable=0+3.96 Windspeed+3.29 Working Day+2.00 Season - Spring+2.00 Season - Summer+1.88 Year+1.72 Season - Winter+1.55 Weekday - Saturday+1.53 Weather Situation - Moderate+1.18 Month - September+

1.19.6 Residual Analysis

```
[43]: def build_model_sk(X,y):
    lr1 = LinearRegression()
    lr1.fit(X,y)
    return lr1
```

```
[44]: #Let us build the finalmodel using sklearn
#Build a model with above columns
lr = build_model_sk(X_train[column7],y_train)
print(lr.intercept_,lr.coef_)
```

```
[45]: y_train_pred = lr.predict(X_train[column7])
```

Error Terms

1.19.7 # Actual vs Predicted

```
[47]: c = [i for i in range(0,len(X_train),1)]
    plt.plot(c,y_train, color="blue")
    plt.plot(c,y_train_pred, color="red")
    plt.suptitle('Actual vs Predicted', fontsize = 15)
    plt.xlabel('Index')
    plt.ylabel('Demands')
    plt.show()
```

Actual vs Predicted

Making Prediction

```
[48]: num_vars = ['temp', 'atemp', 'hum', 'windspeed']
X_test[num_vars] = scaler.transform(X_test[num_vars])
X_test.head()
```

	X_test.head()								
[48]:		yr	holiday	workingday	temp	atemp	hum	windspeed	\
	184	0	1	0	0.831783	0.769660	0.657364	0.084219	
	535	1	0	1	0.901354	0.842587	0.610133	0.153728	
	299	0	0	1	0.511964	0.496145	0.837699	0.334206	
	221	0	0	1	0.881625	0.795343	0.437098	0.339570	
	152	0	0	1	0.817246	0.741471	0.314298	0.537414	
		sea	son_spring	season_su	season_summer season_winter		mnth_o	ct mnth_s	ept \
	184		0)	0	0		0	0
	535		0)	1	0	•••	0	0
	299		0)	0	1	•••	1	0
	221		0)	0	0	•••	0	0
	152		0)	1	0	•••	0	0

```
weekday_mon weekday_sat weekday_sun weekday_thu weekday_tue
184
                             0
                                          0
535
               0
                             0
                                                                      0
                                           0
                                                        0
299
               0
                             0
                                           0
                                                        1
                                                                      0
221
               0
                             0
                                           0
                                                        0
                                                                      0
                             0
                                           0
                                                                      0
152
               0
                                                        1
     weekday_wed weathersit_good weathersit_moderate
184
535
                                 1
                                                       0
               1
               0
                                 0
299
                                                       1
221
               1
                                 1
                                                       0
152
               0
                                                       0
                                 1
```

[5 rows x 29 columns]

Prediction

```
[50]: fig = plt.figure()
   plt.scatter(y_test, y_test_pred, alpha=.5)
   fig.suptitle('y_test vs y_test_pred', fontsize = 20)
   plt.xlabel('y_test', fontsize = 18)
   plt.ylabel('y_pred', fontsize = 16)
```

[50]: Text(0, 0.5, 'y_pred')

y_test vs y_test_pred


```
[51]: from sklearn.metrics import mean_squared_error, r2_score np.sqrt(mean_squared_error(y_test, y_test_pred))
```

[51]: 1021.4683844741774

1.19.8 R^2_score

```
[52]: r2_test = r2_score(y_test,y_test_pred)
r2_train = r2_score(y_train, y_train_pred)

print("r2_train" , round((r2_train*100),2))
print("r2_test" , round((r2_test*100),2))
```

r2_train 71.89 r2_test 70.92

Adjusted R² Score

n indicates the number of rows in the test data, while n1 indicates the number of rows in the train data

```
[53]: n = X_test.shape[0]
n1 = len(column7)
```

The number of features (predictors) is represented as p for test data and 1 for train data, indicating the number of columns in each

```
[54]: p = X_test.shape[1]
  column7_df = pd.DataFrame(column7)

# Now you can access the shape
  p1 = column7_df.shape[1]
```

Adjusted R-squared using the formula

```
[55]: adjusted_r2_test = 1-(1-r2_test)*(n-1)/(n-p-1)
adjusted_r2_train = 1-(1-r2_train)*(n1-1)/(n1-p1-1)
```

```
[56]: print('Test data adjusted r^2 :',round((adjusted_r2_test*100),2))
print('Train data adjusted r^2 :',round((adjusted_r2_train*100),2))
```

Test data adjusted r^2: 66.46 Train data adjusted r^2: 67.87

1.19.9 Conclusion

The performance metrics for the regression model indicate the following:

- Adjusted R² Values:
 - Test Data: **66.46**
 - Train Data: **67.87**
- R² Values:
 - Train Data: **71.89**
 - Test Data: **70.92**

These metrics suggest that the model explains a significant portion of the variance in the training dataset, with an R^2 value of **71.89**. However, there is a noticeable drop in performance when applied to the test data, as evidenced by the adjusted R^2 of **55.31**. This discrepancy may indicate some overfitting on the training data.

The selected features used in the model include: - Year (yr) - Working day status (workingday) - Windspeed (windspeed) - Seasonal indicators (season_spring, season_summer, season_winter) - Month indicator for September (mnth_sept) - Weekday indicator for Saturday (weekday_sat) - Weather situation for moderate conditions (weathersit_moderate)

Future improvements may include feature engineering or exploring additional predictors to enhance model performance on unseen data.