Session 2: Linear transformations and matrices

Optimization and Computational Linear Algebra for Data Science

Contents

- 1. Recap of the videos
- 2. Operation on matrices
- 3. Kernel and Image
- 4. Why do we care about all these things?

 Solving linear systems

Linear maps & matrices

Linear maps & matrices 1/15

Two sides of the same coin

Linear map

 $L: \mathbb{R}^m \to \mathbb{R}^n$

Matrix

 $L \in \mathbb{R}^{n \times m}$

Two sides of the same coin

Linear map

 $L: \mathbb{R}^m \to \mathbb{R}^n$

Matrix

 $L \in \mathbb{R}^{n \times m}$

Rotations in \mathbb{R}^2

Let $\theta \in \mathbb{R}$. The rotation $R_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ of angle θ about the origin is linear.

Exercise: what is the canonical matrix of R_{θ} ?

Linear maps & matrices 3/15

Operations on matrices

Operations on matrices 4/15

Addition and scalar multiplication

Sum of two matrices of the same dimensions:

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,m} \end{pmatrix} + \begin{pmatrix} b_{1,1} & \cdots & b_{1,m} \\ \vdots & \ddots & \vdots \\ b_{n,1} & \cdots & b_{n,m} \end{pmatrix} = \begin{pmatrix} a_{1,1} + b_{1,1} & \cdots & a_{1,m} + b_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} + b_{n,1} & \cdots & a_{n,m} + b_{n,m} \end{pmatrix}$$

Multiplication by a scalar λ :

$$\lambda \begin{pmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,m} \end{pmatrix} = \begin{pmatrix} \lambda a_{1,1} & \cdots & \lambda a_{1,m} \\ \vdots & \ddots & \vdots \\ \lambda a_{n,1} & \cdots & \lambda a_{n,m} \end{pmatrix}$$

Operations on matrices 5/15

Product of two matrices

Warning:

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,m} \end{pmatrix} \times \begin{pmatrix} b_{1,1} & \cdots & b_{1,m} \\ \vdots & \ddots & \vdots \\ b_{n,1} & \cdots & b_{n,m} \end{pmatrix} \neq \begin{pmatrix} a_{1,1} \times b_{1,1} & \cdots & a_{1,m} \times b_{1,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} \times b_{n,1} & \cdots & a_{n,m} \times b_{n,m} \end{pmatrix}$$

Operations on matrices 6/15

Matrix product

Let $L \in \mathbb{R}^{n \times m}$ and $M \in \mathbb{R}^{m \times k}$.

Definition (Matrix product)

The matrix product LM is the $n \times k$ matrix of the linear map $L \circ M$.

Theorem

The entries matrix product LM are given by

$$(LM)_{i,j} = \sum_{\ell=1}^m L_{i,\ell} M_{\ell,j}, \quad \text{for } 1 \leq i \leq n \text{ and } 1 \leq j \leq k.$$

Operations on matrices 7/

Rotations in \mathbb{R}^2

The R_a and R_b denote respectively the matrix of the rotation of angle a and b about the origin, in \mathbb{R}^2 .

Exercise: Compute the product R_aR_b .

Operations on matrices 8/15

Matrix product properties

Operations on matrices 9/15

Kernel and image

Kernel and image 10/15

Definitions

Let $L: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation .

Definition (Kernel)

The kernel $\mathrm{Ker}(L)$ (or nullspace) of L is defined as the set of all vectors $v \in \mathbb{R}^m$ such that L(v) = 0, i.e.

$$\operatorname{Ker}(L) \stackrel{\text{def}}{=} \{ v \in \mathbb{R}^m \, | \, L(v) = 0 \}.$$

Definition (Image)

The image $\operatorname{Im}(L)$ (or column space) of L is defined as the set of all vectors $u \in \mathbb{R}^n$ such that there exists $v \in \mathbb{R}^m$ such that L(v) = u.

Remark: ${\rm Im}(L)$ is also the Span of the columns of the matrix representation of L.

Kernel and image 11/15

Picture

Kernel and image 12/15

Example: orthogonal projection

Consider $L: \mathbb{R}^2 \to \mathbb{R}^2$ to be the orthogonal projection onto the x-axis.

Kernel and image 13/15

Why do we care about this?

Linear systems

Questions?