$\begin{array}{c} {\rm Homework} \ 5 \\ {\rm Justify} \ {\rm all} \ {\rm your} \ {\rm answers} \\ {\rm due} \ {\rm on} \ {\rm Fr} \ 11/01/24 \ {\rm at} \ 11:30 AM \ {\rm in} \ {\rm A236WH} \end{array}$

Exercise 1. Find a Minimum Distance decision rule for the binary code

 $C \coloneqq \{0000, 1100, 0011, 1111\}$

Exercise 2. Let $D := \{00000, 11100, 10011\}$. Find all $a \in \mathbb{B}^5 \setminus D$ such that $D \cup \{a\}$ is a 1-error-correcting binary code.

Exercise 3. Let C be a 3-error-correcting code with $C \subseteq \mathbb{B}^{12}$ and |C| = 8. Determine $|N_3(C)|$.

Exercise 4. Let n and r be positive integers, let $D \subseteq \mathbb{B}^n$ be an r-error-correcting code and let $a \in \mathbb{B}^n \setminus D$. Show that $D \cup \{a\}$ is an r-error-correcting code if and only if $a \notin N_{2r}(D)$.

Exercise 5. Let $n \in \mathbb{N}$ and suppose $C \subseteq \mathbb{B}^n$ is a perfect, 1-error-correcting binary code. Show that there exists $l \in \mathbb{N}$ such that $n = 2^l - 1$ and $|C| = 2^{2^l - l - 1}$.

Exercise 6. Let $n \in \mathbb{N}$.

- (a) Let $a, b, c \in \mathbb{B}^n$. Show that $d(a, b) + d(b, c) + d(a, c) \le 2n$.
- (b) Let $C \subseteq \mathbb{B}^n$ be a binary code with minimum distance δ . Suppose that $|C| \ge 3$. Show that $d(a,b) \le 2(n-\delta)$ for all $a,b \in C$.

Exercise 7. Which of the following subsets of \mathbb{F}_2^5 are linear codes:

- (a) $C_1 := \{00000, 11000, 10011, 11111\}.$
- (b) $C_2 := \{00000, 11000, 00111, 11111, 01010, 10010, 01101, 10100\}.$
- (c) $C_3 := \{x \in \mathbb{F}_2^5 \mid x_1 + x_2 + x_5 = 0\}.$