FACULDADE DE COMPUTAÇÃO E INFORMÁTICA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO ANÁLISE NUMÉRICA – Aula 11 – 2º SEMESTRE/2019 PROF. Jamil Kalil Naufal Júnior

TEORIA: INTERPOLAÇÃO E APROXIMAÇÃO DE FUNÇÕES (IV)

Nossos **objetivos** nesta aula são:

- Conhecer o problema de aproximação de funções
- Conhecer e praticar com o Método de Mínimos Quadrados para aproximação de funções lineares

Para esta semana, usamos como referência a **Seção 8.1** (**Aproximação de Mínimos Quadrados Discretos**) do nosso livro da referência básica:

BURDEN, R.L., FAIRES, J.D. **Análise Numérica**. 10.ed. São Paulo: Cengage Learning, 2017.

Não deixem de ler esta seção depois desta aula!

APROXIMAÇÃO DE FUNÇÕES

Considere os 10 pontos mostrados no gráfico abaixo:

Se observarmos com cuidado este gráfico, verificaremos que há uma tendência destes pontos em se aproximar de uma reta, conforme mostrado no gráfico abaixo:

 Diferentemente do problema de interpolação, na aproximação estamos interessados em obter curvas que minimizem a distância a um determinado conjunto de pontos dados.

MÉTODO DE MÍNIMOS QUADRADOS (MMQ)

O Método de Mínimos Quadrados (MMQ) consiste em encontrar os coeficientes de uma reta que minimizem a função-distância quadrática mostrada a seguir:

$$E \equiv E_2(a_0, a_1) = \sum_{i=1}^{m} [y_i - (a_1 x_i + a_0)]^2$$

■ Para o exemplo do gráfico anterior, estaríamos procurando por coeficientes a₀ e a₁ que minimizem a função-distância abaixo:

$$E_2(a_0, a_1) = \sum_{i=1}^{10} [y_i - (a_1 x_i + a_0)]^2$$

 Como se trata de uma função de duas variáveis, no processo de encontrar os pontos críticos (possivelmente, os pontos de mínimos), vamos usar derivadas de primeira ordem e igualá-las a 0:

$$\frac{\partial E}{\partial a_0} = 0$$
 and $\frac{\partial E}{\partial a_1} = 0$

Expandindo as equações acima, teremos:

$$0 = \frac{\partial}{\partial a_0} \sum_{i=1}^{m} \left[(y_i - (a_1 x_i - a_0))^2 = 2 \sum_{i=1}^{m} (y_i - a_1 x_i - a_0)(-1) \right]$$

$$0 = \frac{\partial}{\partial a_1} \sum_{i=1}^{m} \left[y_i - (a_1 x_i + a_0) \right]^2 = 2 \sum_{i=1}^{m} (y_i - a_1 x_i - a_0) (-x_i)$$

Simplificando estas duas equações, obteremos as seguintes equações:

$$a_0 \cdot m + a_1 \sum_{i=1}^m x_i = \sum_{i=1}^m y_i$$
 and $a_0 \sum_{i=1}^m x_i + a_1 \sum_{i=1}^m x_i^2 = \sum_{i=1}^m x_i y_i$.

■ Temos, então, um **sistema com duas equações e duas incógnitas**. Resolvendo este sistema, obteremos os seguintes valores para os coeficientes a₀ e a₁ :

$$a_0 = \frac{\sum_{i=1}^{m} x_i^2 \sum_{i=1}^{m} y_i - \sum_{i=1}^{m} x_i y_i \sum_{i=1}^{m} x_i}{m \left(\sum_{i=1}^{m} x_i^2\right) - \left(\sum_{i=1}^{m} x_i\right)^2}$$

$$a_{1} = \frac{m \sum_{i=1}^{m} x_{i} y_{i} - \sum_{i=1}^{m} x_{i} \sum_{i=1}^{m} y_{i}}{m \left(\sum_{i=1}^{m} x_{i}^{2}\right) - \left(\sum_{i=1}^{m} x_{i}\right)^{2}}.$$

 O método MMQ consiste em efetuar todas os somatórios indicados anteriormente, obtendo os dois coeficientes desejados da reta de aproximação. 1. Encontre a reta aproximadora de pontos pelo Método MMQ para os dados abaixo:

x_i	y_i
1	1.3
2	3.5
3	4.2
4	5.0
5	7.0
6	8.8
7	10.1
8	12.5
9	13.0
10	15.6

Solução Primeiro, estendemos a tabela para incluir x_i^2 , x_i^2 , y_i^2 e a soma das colunas. Isso é mostrado na Tabela.

TABELA MMQ

i x_i		y_i	x_i^2	$x_i y_i$	$P(x_i) = 1.538x_i - 0.360$		
1	1 1 1.3 1		1.3	1.18			
2	2	3.5	4	7.0	2.72		
2 3 4	2	4.2	9	12.6	4.25		
4	4	5.0	16	20.0	5.79		
5	5	7.0	25	35.0	7.33		
5 6 7	6	8.8	36	52.8	8.87		
7	7	10.1	49	70.7	10.41		
8	8	12.5	64	100.0	11.94		
9			117.0	13.48			
10	10	15.6	100	156.0	15.02		
Somas	55	81.0	385	572.4	$E = \sum_{i=1}^{10} (y_i - P(x_i))^2 \approx 2.3$		
endo:							
crido.	$m \swarrow$	m × / _,	n 2 m		m m m		
211 - EES	$\sum_{i=1}^{\infty} x_i^2$	$\sum_{i=1} y_i - \sum_{i=1} y_i$		x_i	$m \sum_{i=1} x_i y_i - \sum_{i=1} x_i \sum_{i=1} y_i$		
$a_0 =$	(5	m K	$\binom{m}{2}$	$a_1 =$	$=\frac{l=1}{\binom{m}{m}}\frac{l=1}{\binom{m}{m}}^2$		
	m	$\sum x_i^2$	$\left(\sum_{i} x_{i} \right)$		$m\left(\sum x_i^2\right) - \left(\sum x_i\right)$		

As equações implicam que

$$a_0 = \frac{385(81) - 55(572,4)}{10(385) - (55)^2} = -0,360$$

e

$$a_1 = \frac{10(572,4) - 55(81)}{10(385) - (55)^2} = 1,538,$$

de modo que P(x) = 1,538x - 0,360. O gráfico dessa reta e os pontos dados são mostrados na Figura . Os valores aproximados fornecidos pela técnica de mínimos quadrados nos pontos dados estão na Tabela .

GRÁFICO MMQ

2. Encontre a reta aproximadora de pontos pelo Método MMQ para os dados abaixo:

x_i	y_i			
0	1.0000			
0.25	1.2840			
0.50	1.6487			
0.75	2.1170			
1.00	2.7183			

TABELA MMQ

i [Xi	Уi	x _i ²	x _i y _i	P(x _i)	
1 0		1 0		0	0,8997	
2 0,25		1,284	0,063	0,321	1,3266	
3 0,5		1,649	0,25	0,82435	1,7536	
4 0,75		2,117	0,563	1,58775	2,1806	
5	1	2,718	1	2,7183	2,6075	
somas	2,5	8,768	1,875	5,4514		

Portanto:

a₀=0,8997 (termo independente)

 $a_1=1,7078$ (inclinação)

 $P(x) = a_1x + a_0 = 1,7078x + 0,8997$

GRÁFICO MMQ

EXERCÍCIOS EXTRA-CLASSE

1. Encontre a reta aproximadora de pontos pelo Método MMQ para os dados abaixo:

x_i	1.0	1.1	1.3	1.5	1.9	2.1
y_i	1.84	1.96	2.21	2.45	2.94	3.18

2. Encontre a reta aproximadora de pontos pelo Método MMQ para os dados abaixo:

x_i	4.0	4.2	4.5	4.7	5.1	5.5	5.9	6.3	6.8	7.1
y_i	102.56	113.18	130.11	142.05	167.53	195.14	224.87	256.73	299.50	326.72

3. Implemente o Método MMQ em Python.