

North South University Department of Electrical and Computer Engineering Fall-2020, CSE 231L Final CSE 231 Digital Logic Design, Section-8 Faculty-Shahriar Hussain (HSM)

Faculty-Shahriar Hussain (HSM)
Instructor-Md. Anisur Rahman Asif

Total Marks: 50 Time: 1 Hour 15 minutes

Instructions:

- **1.** Answer all the questions.
- 2. Clearly label all the diagrams and truth tables.
- 3. Write **Page number** and your **Name and ID** on each page.

Questions:

1. Assume I_0 , I_1 , I_2 and I_3 in the following truth table are the Data Inputs of a 4:1 MUX. Take A and C as the select bits, and find out the values of Data Inputs for the function $F(A, B, C) = \Sigma(0, 2, 6, 7)$. Show all the steps and fill-up the following table. [5]

A	В	C	F	Data Inputs
0	0	0		$I_0 =$
0	0	1		
0	1	0		$I_1 =$
0	1	1		
1	0	0		$I_2 =$
1	0	1		
1	1	0		$I_3 =$
1	1	1		

Table: 4:1 Multiplexer

2. Explain why there is a don't care term in K column of JK excitation table. Explain using JK characteristic table.[5]

Q	Q(Next)	J	K
0	0	0	X

Table: JK Flip-flop Excitation table

3. Subtract 1010 from 1100 using 2's compliment rule. Explain with XOR Truth table, how Data input B is subtracted from A for the value M=1. [5+5]

Figure: 4 bit binary adder for Addition and Subtraction

- 4. How would you add two 8 bit numbers using 4 bit binary adder IC? [5]
- 5. The given State Diagram represents a circuit that has two Flip-Flops (A and B), one input (X) and one output (Y).

Figure: State Diagram

- Complete the Next State and Output columns of the State Table [5]
- Using the Excitation Table of the JK Flip-Flop, determine the inputs for the two Flip-Flops (J_A, K_A and J_B, K_B) for each state transition [10]
- Use Karnaugh Maps to minimize the functions of the combinational circuit for each Flip-Flop input $(J_A, K_A \text{ and } J_B, K_B)$ as well as the combinational circuit for the output (Y) [5]
- Draw the diagram for Synchronous Sequential Circuit using JK Flip-Flops and the minimized equations [5]

Present state		Input	Next state		Output	Flip-flop input functions			
A	В	X	A	В	Y	J_A	K_A	J_{B}	K_{B}
0	0	0							
0	0	1							
0	1	0							
0	1	1							
1	0	0							
1	0	1							
1	1	0							
1	1	1							

 $\underline{ Table: State \ Table \ for \ JK \ Flip-flops}$