Cs 512 Project Proposal

• **<u>Title</u>**: Improving Confidence of Lane Detection With LaneIoU

Team Members:

- 1. Riddhi Das A2058289
- 2. Madhur Gusain A20572395
- **Reference Paper:** CLRerNet: Improving Confidence of Lane Detection with LaneIoU. This paper was authored by Hiroto Honda & Yusuke Uchida and published by Computer Vision and Pattern Recognition (CVPR) in 2022.

• Description of the Problem:

- **Misaligned Confidence Scores**: Existing anchor-based lane detectors (like CLRNet) often predict correct lane positions. However, their confidence scores don't align well with the overlap (IoU) between predictions and ground-truth lanes.
- **Weak IoU Metrics**: Metrics like LineIoU (used in training) fail to capture geometric details—especially for tilted or curved lanes, leading to poor learning of confidence scores.
- **Suboptimal Training**: Because confidence scores are used for training sample assignments, misleading similarity measures result in inefficient or incorrect assignments between predicted and ground-truth lanes.
- **Underperformance on Complex Lanes**: These issues reduce performance, especially on challenging lane types (e.g., curves or extreme angles), limiting generalization and accuracy on benchmarks like CULane and CurveLanes.

• Approach to the Problem:

1. Design a Better Similarity Metric (LaneIoU)

Introduce LaneIoU, a novel IoU metric that adjusts for lane tilt and curvature. Unlike prior methods (e.g. LineIoU), LaneIoU computes row-wise overlaps while accounting for lane angles, making it more aligned with real segmentation-based IoU.

2. Integrate LaneloU into the Training Pipeline

Use LaneIoU in three key parts of the training process:

- As a loss function to directly supervise lane shape prediction
- As a cost function during sample assignment
- To calculate dynamic-k, i.e., how many predictions should be assigned to each ground-truth lane

This improves training accuracy and better confidence in learning.

3. Train the Model to Learn Meaningful Confidence Scores

Modify the model (CLRNet \rightarrow CLRerNet) to learn confidence scores that reflect actual IoU.

This leads to more reliable lane detection, especially when predictions are close to ground truth but tilted or curved.

4. Benchmark with Strong Protocols

Ensure evaluation fairness by using multi-seed training, 5-fold cross-validation, and a consistent method to select the optimal confidence threshold. This provides reliable, reproducible results and demonstrates the real-world effectiveness of LaneIoU and CLRerNet.

• Datasets:

- 1. CULane
- 2. CurveLanes
- 3. TuSimple

Responsibilities of the Members:

- o Riddhi Das: Model Implementation and Presentation.
- Madhur Gusain: Testing Analysis and Training.
- We will be implementing the original paper in our project to get the desired results.

• References:

Reference Papers:

- 1. Main Paper CLRerNet: Improving Confidence of Lane Detection with LaneIoU.
- 2. Supporting Paper Laneformer: Object-aware Row-Column Transformers for Lane Detection.

Software & Frameworks

- Python Main programming language.
- PyTorch (assumed based on Transformer and CNN-based architecture usage)
- Deformable DETR for transformer-based object detection.
- Faster R-CNN as a base object detector (for person/vehicle detection)
- ROIAlign from torchvision.ops for ROI feature extraction
- ResNet (18, 34, 50) as CNN backbones