МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра «Систем обработки информации и управления»

ОТЧЁТ

Рубежный Контроль № <u>1</u> по дисциплине «Методы машинного обучения»

Тема: «»

ИСПОЛНИТЕЛЬ:			Доу Ли	нхань
группа ИУ5-21М		-	подпись	
	"_	_"_	подпись	_2023 г.
ПРЕПОДАВАТЕЛЬ:			ФИО	
	_		подпись	
	"_	_"_		_2023 г.

Москва - 2023

Загрузка и предобработка данных

In [17]:

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.datasets import load_diabetes
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
```

In [18]:

Out[18]:

(442, 11)

In [19]:

data. head

Out[19]:

```
<bound method NDFrame.head of</pre>
                                              age
                                                          sex
                                                                      bmi
                                                                                  bp
                                                                                              S
          s2
                      s3 \
     0.038076 \quad 0.050680 \quad 0.061696 \quad 0.021872 \quad -0.044223 \quad -0.034821 \quad -0.043401
0
    -0.001882 -0.044642 -0.051474 -0.026328 -0.008449 -0.019163 0.074412
1
    0.085299 0.050680 0.044451 -0.005670 -0.045599 -0.034194 -0.032356
2
3
   -0.089063 -0.044642 -0.011595 -0.036656 0.012191 0.024991 -0.036038
  0.005383 -0.044642 -0.036385 0.021872 0.003935 0.015596 0.008142
4
           . . .
                       . . .
                                  . . .
                                              . . .
                                                          . . .
                                                                     . . .
. .
437 \quad 0.041708 \quad 0.050680 \quad 0.019662 \quad 0.059744 \quad -0.005697 \quad -0.002566 \quad -0.028674
438 - 0.005515 0.050680 - 0.015906 - 0.067642 0.049341 0.079165 - 0.028674
439 \quad 0.\ 041708 \quad 0.\ 050680 \ -0.\ 015906 \quad 0.\ 017293 \ -0.\ 037344 \ -0.\ 013840 \ -0.\ 024993
440 \; -0. \; 045472 \; -0. \; 044642 \quad 0. \; 039062 \quad 0. \; 001215 \quad 0. \; 016318 \quad 0. \; 015283 \; -0. \; 028674
441 \, -0. \, 045472 \, -0. \, 044642 \, -0. \, 073030 \, -0. \, 081413 \quad 0. \, 083740 \quad 0. \, 027809 \quad 0. \, 173816
                                           Y
            s4
                        s5
    0
                                        151.0
    -0.039493 -0.068332 -0.092204
                                         75.0
1
2
    -0.002592 0.002861 -0.025930
                                        141.0
    0. 034309 0. 022688 -0. 009362
3
                                         206.0
   -0. 002592 -0. 031988 -0. 046641
4
                                         135.0
       . . .
                     . . .
                                          . . .
437 -0.002592 0.031193 0.007207
                                         178.0
438 0. 034309 -0. 018114 0. 044485
                                         104.0
439 -0.011080 -0.046883 0.015491
                                         132.0
440 0.026560 0.044529 -0.025930
                                        220.0
441 -0.039493 -0.004222 0.003064
                                          57.0
[442 rows x 11 columns]>
```

In [22]:

```
# DataFrame не содержащий целевой признак
X_ALL = data.drop('Y', axis=1)
```

```
In [23]:
```

```
# Нужно ли масштабирование
data. describe ()
```

Out[23]:

	age	sex	bmi	bp	s1	s2
cou	nt 4.420000e+02	4.420000e+02	4.420000e+02	4.420000e+02	4.420000e+02	4.420000e+02
mea	-2.511817e- 19	1.230790e-17	-2.245564e- 16	-4.797570e- 17	-1.381499e- 17	3.918434e-17
s	td 4.761905e-02	4.761905e-02	4.761905e-02	4.761905e-02	4.761905e - 02	4.761905e - 02
m	in -1.072256e- 01	-4.464164e- 02	-9.027530e- 02	-1.123988e- 01	-1.267807e- 01	-1.156131e- 01
25	-3.729927e- 02	-4.464164e- 02	-3.422907e- 02	-3.665608e- 02	-3.424784e- 02	-3.035840e- 02
50	% 5.383060e-03	-4.464164e- 02	-7.283766e- 03	-5.670422e- 03	-4.320866e- 03	-3.819065e- 03
75	% 3.807591e-02	5.068012e-02	3.124802e-02	3.564379e-02	2.835801e-02	2.984439e - 02
m	ax 1.107267e - 01	5.068012e-02	1.705552e - 01	1.320436e - 01	1.539137e-01	1.987880e - 01
4						>

In [24]:

```
# Функция для восстановления датафрейма
# на основе масштабированных данных

def arr_to_df(arr_scaled):
    res = pd. DataFrame(arr_scaled, columns=X_ALL. columns)
    return res
```

In [25]:

Out [25]:

```
((353, 10), (89, 10))
```

Задача 18

Для набора данных проведите масштабирование данных для одного (произвольного) числового признака на основе Z-оценки.

In [26]:

```
# Обучаем StandardScaler на всей выборке и масштабируем csl1 = StandardScaler()
data_csl1_scaled_temp = csl1.fit_transform(X_ALL)
# формируем DataFrame на основе массива
data_csl1_scaled = arr_to_df(data_csl1_scaled_temp)
data_csl1_scaled
```

Out[26]:

	age	sex	bmi	bp	s1	s2	s3	s4	
0	0.800500	1.065488	1.297088	0.459841	-0.929746	-0.732065	-0.912451	-0.054499	0.
1	-0.039567	-0.938537	- 1.082180	-0.553505	-0.177624	-0.402886	1.564414	-0.830301	-1.
2	1.793307	1.065488	0.934533	- 0.119214	- 0.958674	-0.718897	- 0.680245	- 0.054499	0.
3	-1.872441	-0.938537	-0.243771	-0.770650	0.256292	0.525397	-0.757647	0.721302	0.
4	0.113172	-0.938537	-0.764944	0.459841	0.082726	0.327890	0.171178	-0.054499	- 0.
437	0.876870	1.065488	0.413360	1.256040	-0.119769	-0.053957	-0.602843	-0.054499	0.
438	-0.115937	1.065488	-0.334410	-1.422086	1.037341	1.664355	-0.602843	0.721302	-0.
439	0.876870	1.065488	-0.334410	0.363573	-0.785107	-0.290965	-0.525441	-0.232934	-0.
440	- 0.956004	-0.938537	0.821235	0.025550	0.343075	0.321306	- 0.602843	0.558384	0.
441	-0.956004	-0.938537	-1.535374	-1.711613	1.760535	0.584649	3.654268	-0.830301	-0.

442 rows × 10 columns

In [27]:

data_cs11_scaled.describe()

Out[27]:

	age	sex	bmi	bp	s1	•
count	4.420000e+02	4.420000e+02	4.420000e+02	4.420000e+02	4.420000e+02	4.420000e+0
mean	-8.037814e-18	2.290777e-16	2.009453e-17	-1.607563e-17	8.037814e-18	4.018907e-
std	1.001133e+00	1.001133e+00	1.001133e+00	1.001133e+00	1.001133e+00	1.001133e+(
min	-2.254290e+00	-9.385367e- 01	-1.897929e+00	-2.363050e+00	-2.665411e+00	-2.430626e+(
25%	-7.841722e-01	-9.385367e- 01	-7.196249e-01	-7.706500e-01	-7.200196e-01	-6.382488e-l
50%	1.131724e-01	-9.385367e- 01	-1.531324e-01	-1.192138e-01	-9.084100e-02	-8.029125e-(
75%	8.005001e-01	1.065488e+00	6.569519e-01	7.493678e-01	5.961931e-01	6.274425e-(
max	2.327895e+00	1.065488e+00	3.585718e+00	2.776058e+00	3.235851e+00	4.179278e+(
4						>

In [28]:

```
# Построение плотности распределения
def draw_kde(col_list, df1, df2, label1, label2):
    fig, (ax1, ax2) = plt.subplots(
        ncols=2, figsize=(12, 5))
    # первый график
    ax1.set_title(label1)
    sns.kdeplot(data=df1[col_list], ax=ax1)
    # второй график
    ax2.set_title(label2)
    sns.kdeplot(data=df2[col_list], ax=ax2)
    plt.show()
```

In [29]:

In [31]:

```
# Обучаем StandardScaler на обучающей выборке

# и масштабируем обучающую и тестовую выборки

cs12 = StandardScaler()

cs12. fit(X_train)

data_cs12_scaled_train_temp = cs12. transform(X_train)

data_cs12_scaled_test_temp = cs12. transform(X_test)

# формируем DataFrame на основе массива

data_cs12_scaled_train = arr_to_df(data_cs12_scaled_train_temp)

data_cs12_scaled_test = arr_to_df(data_cs12_scaled_test_temp)
```

In [32]:

data_cs12_scaled_train.describe()

Out[32]:

		age	sex	bmi	bp	s1	:
со	unt	3.530000e+02	3.530000e+02	3.530000e+02	3.530000e+02	3.530000e+02	3.530000e+
me	ean	-1.509652e-17	1.610295e-16	2.516086e-18	-2.012869e-17	-5.032172e-18	-3.019303e-
	std	1.001419e+00	1.001419e+00	1.001419e+00	1.001419e+00	1.001419e+00	1.001419e+
ı	min	-2.262150e+00	-9.262261e- 01	-1.915758e+00	-2.376397e+00	-2.685044e+00	-2.473851e+
2	:5%	-7.275311e-01	-9.262261e- 01	-7.265375e-01	-7.147912e-01	-7.160882e-01	-6.376931e-
5	0%	1.165093e-01	-9.262261e- 01	-1.431463e-01	-1.368415e-01	-1.080284e-01	-1.254316e-
7	5%	7.303569e-01	1.079650e+00	6.646260e-01	7.300832e-01	5.579418e-01	6.196760e-
n	nax	2.341707e+00	1.079650e+00	3.514267e+00	2.752907e+00	3.192868e+00	4.205506e+
4							>

In [33]:

распределения для обучающей и тестовой выборки немн draw_kde(['age', 'sex', 'bmi'], data_cs12_scaled_train, data_cs12_scaled_test, 'обучающая

Задача 38

Для набора данных проведите процедуру отбора признаков (feature selection). Используйте класс SelectKBest для 10 лучших признаков, и метод, основанный на взаимной информации.

In [53]:

```
from sklearn feature_selection import SelectKBest, mutual_info_regression x, y = data, data['Y'] print(x. shape, y. shape)
```

(442, 11) (442,)

In [54]:

```
x_new = SelectKBest(mutual_info_regression, k=10).fit_transform(X, y)
print(x_new.shape, y. shape)
```

(442, 10) (442,)

In [61]:

```
N = 442
colors = np.random.rand(N)
area = (30 * np.random.rand(N))**2 # 0 to 15 point radii
a_scatter = data['age']
plt.scatter(a_scatter, y, c=colors, alpha=0.5)
plt.show()
```


In []:			