

**#Proximité #Flexibilité #Implication** 





#### **Module IoT**

**Semestre 2 - 2023** 

Tour de table rapide...



### Objectif du module

Comprendre ce qu'est l'IoT par la pratique.



- Organisation
  - Présentation et théorie
  - Travail en groupe
  - Mode projet
- Mise en pratique :
  - Travail en groupe
  - Développement simple d'une solution technique
- Evaluation:
  - Présentation power point
  - Documents de conception et rapport

🦞 e-rekcah

#### Sommaire

- 1. Qu'est-ce que l'IoT
  - 1. Une idée?
  - 2. Ce que nous dit wikipédia
- 2. Les « objets connectés »
  - 1. Des exemples
  - 2. Quel intérêt?
  - 3. Comment communiquent-ils?
  - Sécurité
- 3. Solutions techniques
  - 1. Solutions existantes?
  - 2. Quelles différences?
  - 3. Quelle solution pour quel besoin?
- 4. Mise en pratique
  - 1. Choix d'un sujet
  - 2. Description du besoin
  - 3. Cahier des charges
  - 4. Définition des solutions techniques
  - 5. Développement
  - 6. Tests



Une idée ??



# Qu'est-ce que l'IoT

Wikipédia : « Interconnexion entre l'internet et des objets, lieux ou environnements physiques ».



### Les objets connectés | Exemples

- E-santé / Quantified self
  - Balances connectées
  - Bracelets / montres connectés
  - Smartphones (podomètres, GPS...)
  - Capteur de qualité de l'air
  - ...
- Domotique
  - Capteurs d'information : température, humidité, luminosité...
  - Capteurs de sécurité : présence, ouverture de porte, caméras IP...
  - Actionneurs : ampoules connectées, thermostats, réfrigérateurs, cafetières...
- Industrie 4.0
  - Maintenance prédictive
  - Gestion de stock
  - Localisation de matériel

• ...

### Les objets connectés | Quel intérêt?

- Données fiables et personnalisées
- Vision globale pour l'utilisateur
- Améliorer des services
- Automatiser des actions sans intervention humaine
  - Réactivité
  - Anticipation de situations risquées
- Possibilités d'analyses poussées
  - Big data
  - Intelligence Artificielle
- Supervision/gestion de parc, de matériel...
- Information en temps réel



- Réseaux dédiés
  - Courte portée : Z-wave, ZigBee, 433MHz, EnOcean...
  - Longue portée : Sigfox, LoRa
  - Faible bande passante
  - Faible consommation
  - Grande autonomie
- Réseaux communs
  - Courte portée : Bluetooth, Wi-Fi
  - Longe portée: GSM, GPS, 3G, 4G, 5G
  - Filaire: Ethernet (RJ45), RS485, KNX
  - Bande passante plus importante
  - Consommation importante
- Le choix du mode de communication dépend:
  - Du contexte / environnement (réseaux disponibles)
  - De la quantité de données à émettre
  - De l'autonomie désirée

**№** e-rekcah

- Vers qui/quoi on communique
  - M2M: machine to machine
  - M2H: machine to human
- Protocoles :
  - MQTT
    - Broker
    - Souscription
    - Publication
  - JSON RPC

• ...









# Les objets connectés | sécurité

- Protéger les actionneurs et le réseau local
  - Validation des données
- Protéger les données utilisateur
  - Base de données sécurisée
  - Validation des données
- Sécuriser les communications (SSL/TLS)
- Sécuriser l'accès aux données



# Solutions techniques | Architecture





- Secteur (alimentation depuis le 230V) :
  - Peu voire pas de contrainte de consommation
  - Mise en forme de l'alimentation (convertisseur AC/DC)
  - Perturbations venant du réseau (coupures, autre matériel alimenté)
- Batterie :
  - Contraintes de consommation / autonomie
  - Recharge ou pile à usage unique
  - Suivi de l'état de charge / autonomie
  - Suivi de l'état de la batterie
  - Système de recharge si besoin



# Solutions techniques | Capteur

- Grandeur physique à mesurer
- Type de communication avec le "bloc intelligence" (comment le cœur de l'objet récupère la donnée ?)
  - I2C, UART, SPI, OneWire, ADC etc.
  - Bibliothèques existantes?
- Précision souhaitée vs coût
- Consommation
  - En règle générale un capteur consomme peu de courant
  - Il doit en consommer le moins possible
- Ex:
  - Capteur de température (I2C ou analogique)
  - Capteur de CO2 (I2C)
  - Capteur d'humidité (souvent mesure analogique ADC)



# Solutions techniques | Actionneur

- Quelle action sur l'environnement ?
- Type de pilotage nécessaire (comment le cœur de l'objet pilote l'actionneur ?)
- Précision souhaitée vs coût
- Consommation
  - En règle générale un actionneur consomme du courant
  - Il doit en consommer le moins possible
- Ex:
  - Electrovanne (ouvrir ou fermer une arrivée d'eau)
  - Relais (allumer ou éteindre un appareil sur secteur)
  - Moteur (servo moteur, pompe à eau)
  - Transistor (pilotage d'un ruban de LED)



# Solutions techniques | Intelligence

- Carte à base de microcontrôleur
  - Microcontrôleur
  - Faible puissance de calcul
  - Consommation de courant faible voire très faible
  - Faible mémoire RAM et ROM
  - Pas d'OS ou OS très simple
  - Temps réel facile à implémenter
  - Périphériques de communication capteur I2C, SPI, ADC,...
  - Entrées sorties de pilotage nombreuses : GPIO, PWM, DAC...
  - Pas de périphérique haut niveau type USB, caméra, etc.
  - Ex: Arduino, ESP12, ESP32, STM32, NXP...









# Solutions techniques | Intelligence

- Ordinateur à carte unique
  - Microprocesseur
  - Mémoire externe RAM, ROM
  - Puissance de calcul
  - Consommation de courant élevée
  - OS nécessaire (Linux embarqué, Windows CE/IoT, OS RT)
  - Temps réel difficile à implémenter et garantir
  - Périphériques de communication capteur I2C, SPI, ADC,...
  - Entrées sorties de pilotage nombreuses : GPIO, PWM, DAC...
  - Périphériques haut niveau USB, caméra...
  - Communication intégrée (WiFi, Bluetooh, Ethernet)
  - Ex: Raspberry Pi, Beagle Bone, Orange Pi...







20

- Disponibilité (localisation)
  - GSM/3G/4G/5G pas toujours disponible
  - Sigfox, LoRa idem (possibilité d'ajouter des gateway)
  - WiFi Bluetooth suivant l'utilisation du capteur
- Portée
- Quantité de donnée
- Consommation (dépend de la technologie)



| Type de réseau | Disponibilité<br>du réseau                                       | Portée | Consommation de courant | Quantité de<br>données | Coût                                                             |
|----------------|------------------------------------------------------------------|--------|-------------------------|------------------------|------------------------------------------------------------------|
| GSM/3G/4G/5G   | Suivant<br>localisation                                          | Longue | Importante              | Importante             | Suivant la consommation (abonnement)                             |
| Sigfox         | Suivant<br>localisation                                          | Longue | Faible                  | Faible                 | Suivant la consommation (abonnement)                             |
| LoRa           | Suivant localisation + Possibilité d'ajouter ses propres gateway | Longue | Faible                  | Faible                 | Coût matériel pas d'abonnement si utilisation d'un réseau propre |



| Type de réseau | Disponibilité<br>du réseau                                       | Portée      | Consommation de courant | Quantité de<br>données | Coût                                                             |
|----------------|------------------------------------------------------------------|-------------|-------------------------|------------------------|------------------------------------------------------------------|
| WiFi           | Suivant<br>utilisation du<br>produit                             | Courte      | Importante              | Importante             | Coût matériel uniquement                                         |
| Bluetooth      | Suivant<br>utilisation du<br>produit                             | Très courte | Moyenne (BLE faible)    | Moyenne                | Coût matériel<br>uniquement                                      |
| LoRa           | Suivant localisation + Possibilité d'ajouter ses propres gateway | Longue      | Faible                  | Faible                 | Coût matériel pas d'abonnement si utilisation d'un réseau propre |



### Mise en pratique | sujets

#### Prise connectée

- Permet de mettre à disposition une prise en comptant le courant consommé
- Autorisation à distance que les clients puissent activer la prise et voir le décompte

#### Troupeaux de moutons :

- Mesure d'une métrique à déterminer sur des animaux faisant partie d'un troupeau
- Données regroupées sur dashbord sur l'application
- Emission d'alertes

#### Irrigation de plantes :

- Assurer l'arrosage de plantes en fonction de plusieurs capteurs (humidité, température, etc. à définir)
- Application présentant l'état de chaque plante et permettant par exemple de forcer l'arrosage

#### Badges étudiants:

- Badgeuse pour les étudiants : leur heure d'arrivée et de départ des cours auxquels ils participent
- Possibilité de restreindre certains accès et d'émettre des alertes en cas d'absence...



# Mise en pratique Groupes

Création des groupes



# Mise en pratique | Réflexion

- Quelles interactions?
- Quel type d'intelligence?
- Quels capteurs?
- Quels actionneurs?
- Quel type de communication ?
- A vous de jouer!

