CE9010 DATA SCIENCE PROJECT

CREDIT CARD FRAUD DETECTION MODEL

TEAM MEMBERS

- → Bhagwat Abhishek, U1722796C
- → Yun Hong Jun,U17XXXXXX
- → Chee Yeng Sung, U1820382K

AGENDA

- 1. Context
- 2. EDA
- 3. Choice of Metrics
- 4. Pre-processing
- 5. Model Consideration
- 6. XGBoost
- 7. Random Forest
- 8. Logistic Linear
- 9. Conclusion

Context & Data

CONTEXT & DATA

284,807 transaction data over 2 days

30 Features (Time, Amount 28 PCA-transformed features)

Label: Fraud / Non-fraud (our prediction)

CONTEXT EDA METRICS PREPROCESSING XGBOOST RANDOM FOREST LOGISTIC LINEAR CONCLUSION FURTHER RESEARCH

Exploratory Data Analysis

EDA

Class Distribution

Very skewed dataset Non-Fraud: 99.84% Fraud: 0.16%

<u>Time</u>

Amount

Pareto Principle

Amount

Most of the transactions are low valued.

Pareto Principle (20:80 rule)
applies:

- 80% of data makes up 20% of total value.
- It's the other 20% of data makes up 80% of total value

<u>Time</u>

High number of transaction from 8AM to 10PM. Low during bed time.

No specific pattern in fraud. (Low importance expected)

RANDOM FOREST

LOGISTIC LINEAR

AR CONCLUSION

LUSION FURTHER RESEARCH

EDA - PCA FEATURES PLOTTING

CONTEXT METRICS PREPROCESSING XGBOOST RANDOM FOREST LOGISTIC LINEAR CONCLUSION FURTHER RESEARCH

There is a clearer distinction between the fraud and non-fraud in V14 compared to other features such as V19. V14 could be an important feature in determining whether a transaction is Fraud or Non-Fraud.

CONTEXT EDA METRICS PREPROCESSING XGBOOST RANDOM FOREST LOGISTIC LINEAR CONCLUSION FURTHER RESEARCH

EDA - CORRELATION

No correlation found between the PCA transformed features.

PCA removed the correlation between the features.

Choice of Metric

CHOICE OF METRICS

Accuracy

Measures the % of correctness of prediction. Misleading when data is very imbalanced.

Precision

Focuses on Correctness of the Positive Predictions. Good when focus on minimising false positives.

F1 Score

Harmonic Average between recall and precision.

Recall

Focuses on identifying as much frauds as possible. Good when focus is on minimising the false negatives.

Pre-Processing

PREPROCESSING

- 1. The first step would be to separate the features from the labels and understand the problem. In our dataset, we have chosen the 'Class' column to be the label, as it is that which we will be predicting in this Classifier Model. The remaining columns are taken as features.
- 2. We have made use of Stratified k fold cross validation technique for splitting the data set into test data and train data. It is generally a better approach when dealing with both bias and variance. A randomly selected fold might not adequately represent the minor class, particularly in cases where there is a huge class imbalance.

PREPROCESSING

SMOTE + TOMEK LINKS

As the dataset we are using is a very imbalanced one, we chose to oversample the minority class. The most efficient way for our model would be to use SMOTE to oversample the class. We have used TOMEK links used as an under-sampling method or as a data cleaning method. Tomek links to the over-sampled training set as a data cleaning method. Thus, instead of removing only the majority class examples that form Tomek links, examples from both classes are removed

XGBoost

XGBOOST

Results

What it's about

True Label XGBoost is an optimized distributed gradient boosting library designed to be highly efficient. It provides a parallel tree boosting that solve many data science problems in a fast and accurate way.

Hyperparameter tuning

Grid Search:

N estimators: 50

Predicted Label

Scoring

Recall: 0.921

Precision: 0.990

F1 Score: 0.954

Feature importance

CONTEXT

FDA

MFTRTCS

PREPROCESSING

XGBOOST

RANDOM FORFST

LOGISTIC LINEAR

CONCLUSTON

FURTHER RESEARCH

Random Forest

RANDOM FOREST

What it's about

Learning method for both classification and regression.
Construct decision trees.
Output the class that's mode of class of each trees

Hyperparameter tuning

<u>Grid Search</u>

Max_depth: 3

N_estimators: 3

Results

Label

Feature importance

Scoring

Recall: 0.864

Precision: 0.994

F1 Score: 0.924

CONTEXT EDA METRICS PREPROCESSING XGBOOST RANDOM FOREST LOGISTIC LINEAR CONCLUSION FURTHER RESEARCH

Logistic Linear

LOGISTIC LINEAR REGRESSION

What it's about

Supervised learning technique for classification in which its logistic regression (probability) function is used to determine the decision boundary, to compute the loss by and to apply gradient descent technique.

Results

Confusion Matrix

Scoring

Recall: 0.8374

Precision: 0.9290

F1 Score: 0.8808

Hyperparameter tuning

Cross-validation:

$$1/\lambda = 0.1$$

$$\lambda = 10$$

Conclusion & Further Research

CONCLUSION

As mentioned above, we have used 3 metrics to evaluate our model -

- 1. Precision
- 2. Recall
- 3. F1 score

Model	Precision	Recall	F1 Score
Logistic Regression	0.929	0.837	0.880
Random Forest	0.994	0.864	0.924
XGBoost	0.990	0.921	0.954

From the table above, you can notice that the main parameters required for the evaluation, Recall and F1 Score, are the best for XGBoost.

Hence we can conclude that it is the best model which can predict credit card fraud activity most accurately.

CONTEXT	EDA	METRICS	PREPROCESSING	XGBOOST	RANDOM FOREST	LOGISTIC LINEAR	Conclusion	FURTHER RESEARCH
---------	-----	---------	---------------	---------	---------------	-----------------	------------	------------------

FURTHER RESEARCH

Anonymised Features

- Limited insights could be extracted as we could not identify what each features meant. More meaningful insights could be drawn if we had access to the context of the features
- For example, behavioural analytics may be used and separate models can be built for each cardholder to learn the spending pattern of each cardholder, therefore having a stronger model to predict.

2. Non-representative data

- The data is collected for only about 2 days and hence it may not be the best sample that represent the population. Also, the number of frauds was very limited. Therefore, more data would help the model to have better prediction.

3. Different types of frauds

- There are different types of credit card frauds such as friendly fraud, account takeover and unauthorised transactions. Based on our assumption, the features may differently depending on the types of the frauds. In the given dataset, the class was binary (only whether it's a fraud or non-fraud). This could be split into multi-class that have different types of frauds, hence the model can be more accurate in classifying different types of frauds.

CONTENT LAN INTENTED INTENTED VANDODI VANDODI LOGIDITE TIATUR CONTENTED INTENTED INTENTED	CONTEXT	EDA	METRICS	PREPROCESSING	XGBOOST	RANDOM FOREST	LOGISTIC LINEAR	CONCLUSION	FURTHER RESEARC
---	---------	-----	---------	---------------	---------	---------------	-----------------	------------	-----------------