Claims

What is claimed is:

1	1. An apparatus, including:
2	a multi-bit encoder coupled to a multi-tone generator to provide a multi-tone
3	communications signal having a substantially simultaneous multi-tone signaling
4	bandwidth of greater than about 20 percent of an associated carrier frequency.
1	2. The apparatus of claim 1, wherein the multi-bit encoder is to receive a
2	first bit stream and to provide a second bit stream having data presented
3	as one or more groups of substantially simultaneous bits.
1	3. The apparatus of claim 2, wherein the multi-bit encoder includes a shift
2	register.
1	4. The apparatus of claim 1, wherein the multi-tone generator includes:
2	a master oscillator and at least one slave oscillator.
1	5. The apparatus of claim 1, wherein the multi-tone generator is to generate
2	a plurality of tones responsive to the data.
1	6. The apparatus of claim 5, wherein the plurality of tones includes a
2	number of tones greater than a number of possible states of the data.
1	7. An apparatus, including:
2	a plurality of phasor detectors to determine a presence of a plurality of tones
3	included in a multi-tone communications signal by comparing a combined
1	amount of two measured orthogonal signal components to a threshold value.

2	includes a quadrature detector.
1	9. The apparatus of claim 7, wherein the two measured orthogonal signal
2	components include a sine component and a cosine component.
1	10. The apparatus of claim 7, further including:
2	an amplifier having an averaging automatic gain control to receive the
3	multi-tone communications signal from a distribution module and to apply a
4	substantially equal gain to the plurality of tones.
1	11. A system, including:
2	a multi-bit encoder coupled to a multi-tone generator to provide a first multi
3	tone communications signal having a substantially simultaneous multi-tone
4	signaling bandwidth of greater than about 20 percent of an associated carrier
5	frequency;
6	a plurality of phasor detectors to determine a presence of a plurality of tones
7	included in a second multi-tone communications signal by comparing a
8	combined amount of two measured orthogonal signal components to a threshold
9	value; and
10	an omnidirectional antenna to transmit the first multi-tone communications
1	signal and to receive the second multi-tone communications signal.
1	12. The system of claim 11, further including:
2	a distribution module to couple to the omnidirectional antenna and to
3	provide the second multi-tone communications signal to the plurality of phasor
4	detectors.

8. The apparatus of claim 7, wherein at least one of the phasor detectors

1

13. The system of claim 11, further including:

2	a determination module to receive multiple indications of the presence of the
3	plurality of tones from the plurality of phasor detectors and to determine a
4	received data output corresponding to the multiple indications.
1	14. The system of claim 11, wherein the plurality of tones includes a number
2	of tones at least two times greater than a number of possible states of the
3	data.
1	15. A method, including:
2	translating a first bit stream into a multi-tone communications signal having
3	a substantially simultaneous multi-tone signaling bandwidth of greater than
4	about 20 percent of an associated carrier frequency.
1	16. The method of claim 15, wherein translating the first bit stream further
2	`includes:
3	translating the first bit stream into a second bit stream having data presented
4	as one or more groups of substantially simultaneous bits.
1	17. The method of claim 16, further including:
2	translating the second bit stream into the multi-tone communications signal
3	comprising a number of substantially simultaneous tones less than or equal to a
4	maximum number of the substantially simultaneous bits.
1	18. The method of claim 16, further including:
2	shifting the first bit stream to provide the second bit stream.
1	19. A method, including:
2	receiving a multi-tone communications signal at a plurality of phasor
3	detectors to determine a presence of a number of substantially simultaneous
4	tones included in a multi-tone communications signal.

1	20. The method of claim 19, further including:
2	comparing a combined amount of two measured orthogonal signal
3	components in at least one of the number of substantially simultaneous tones to
4	a threshold value.
1	21. The method of claim 20, further including:
2	amplifying the multi-tone communications signal using an approximately
3	equal gain prior to the comparing.
1	22. An article comprising a machine-accessible medium having associated
2	information, wherein the information, when accessed, results in a
3	machine performing:
4	determining a presence of a plurality of tones included in a multi-tone
5	communications signal by comparing a combined amount of two measured
6	orthogonal signal components to a threshold value.
1	23. The article of claim 22, wherein determining the presence further
2	includes:
3	receiving the multi-tone communications signal at a plurality of phasor
4	detectors.
1	24. The article of claim 22, wherein determining the presence further
2	includes:
3	amplifying the multi-tone communications signal using an approximately
4	equal gain prior to the comparing.
1	25. The article of claim 22, further including:
2	receiving multiple indications of the presence of the plurality of tones from a
3	plurality of phasor detectors.

1	26. The article of claim 25, further including:
2	determining a received data output corresponding to the multiple indications.
1	27. An article comprising a machine-accessible medium having associated
2	information, wherein the information, when accessed, results in a
3	machine performing:
4	translating a first bit stream into a multi-tone communications signal having
5	a substantially simultaneous multi-tone signaling bandwidth of greater than
6	about 20 percent of an associated carrier frequency.
1	28. The article of claim 27, wherein translating the first bit stream further
2	includes:
3	translating the first bit stream into a second bit stream having data presented
4	as at least two groups of substantially simultaneous bits.
1	29. The article of claim 27, further including:
2	translating the second bit stream into the multi-tone communications signal
3	comprising a number of substantially simultaneous tones less than or equal to a
4	maximum number of the substantially simultaneous bits.