

CH3.2 2P

CH3.1

Chapter: CH3.2 V Problem: 1P

Step 1 of 2

Schwarz inequality: a, b are any vectors in \mathbf{R}^n , then $|a^Tb| \le ||a|| ||b||$

(a) Given that x and y are positive numbers.

$$b = \begin{pmatrix} \sqrt{x} \\ \sqrt{y} \end{pmatrix} \text{ and } a = \begin{pmatrix} \sqrt{y} \\ \sqrt{x} \end{pmatrix}$$

In view of Schwarz inequality, we consider $|a^Tb|$

$$\left| \left(\sqrt{y}, \sqrt{x} \right) \left(\frac{\sqrt{x}}{\sqrt{y}} \right) \right| = \left| \sqrt{xy} + \sqrt{xy} \right|$$

$$= 2 \left| \sqrt{xy} \right| \qquad \dots (1)$$

On the other hand, we consider
$$\|a\| \|b\| = \|(\sqrt{y}, \sqrt{x})\| \|(\sqrt{x}, \sqrt{y})\|$$

$$= \sqrt{(\sqrt{y})^2 + (\sqrt{x})^2} \sqrt{(\sqrt{x})^2 + (\sqrt{y})^2}$$

$$= \sqrt{(x+y)^2}$$

$$= x+y \qquad \dots (2)$$

Applying Schwarz inequality on (1) and (2), we get $2\left|\sqrt{xy}\right| \le x + y$

Or,
$$\sqrt{xy} \le \frac{1}{2}(x+y)$$

Therefore, geometric mean ≤arithmetic mean

Provide feedback (0)

Step 2 of 2

(b) We consider $||x+y||^2$

On the other hand, we consider $\|a\|\|b\| = \|(\sqrt{y}, \sqrt{x})\| \|(\sqrt{x}, \sqrt{y})\|$ $=\sqrt{\left(\sqrt{y}\right)^{2}+\left(\sqrt{x}\right)^{2}}\sqrt{\left(\sqrt{x}\right)^{2}+\left(\sqrt{y}\right)^{2}}$ $=\sqrt{\left(x+y\right)^2}$ $= x + y \qquad \dots (2)$

Applying Schwarz inequality on (1) and (2), we get $2\left|\sqrt{xy}\right| \le x + y$

Or,
$$\sqrt{xy} \le \frac{1}{2}(x+y)$$

Therefore, geometric mean ≤ arithmetic mean

Provide feedback (0)

Step 2 of 2

We consider $||x+y||^2$

By definition, we get

$$= (x+y)^{T} (x+y)$$

$$= (x^{T} + y^{T})(x+y)$$

$$= (x^{T}x + x^{T}y + y^{T}x + y^{T}y)$$

$$= ||x||^{2} + x^{T}y + y^{T}x + ||y||^{2}$$

$$= ||x||^{2} + 2|x^{T}y| + ||y||^{2} \text{ in } \mathbf{R}^{2}$$

Using the result in (a) here, we get $\leq ||x||^2 + 2||x||||y|| + ||y||^2$ $\leq (||x|| + ||y||)^2$

While norm is a non negative quantity, we apply the square root on both sides, we get $||x+y|| \le ||x|| + ||y||$

This is the required triangular inequality.

Step 5 of 6

We know that the projection p of b upon a is $p = \frac{a^T b}{a^T a} a$ and the projection matrix is

$$P = \frac{a^{T}a}{a^{T}a}$$

$$aa^{T} = \begin{bmatrix} 1\\1\\-\\1 \end{bmatrix} \begin{bmatrix} 1 & 1 & - & - & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & - & - & 1\\1 & 1 & - & - & 1\\-&-&-&-&-\\-&-&-&-&-\\1 & 1 & - & - & 1 \end{bmatrix}$$
Provide feedback (2)

Provide feedback (2)

Step 6 of 6

Using (1) and (2), we get $P = \frac{a^T a}{a^T a}$

of positive numbers is always less than or equal to the arithmetic mean of the same numbers.

Algebra tutors who can help right now

Step 3 of 5

5.7

So the required matrix is $\begin{bmatrix} \frac{1}{5} \begin{bmatrix} 4 & -2 \\ -2 & 1 \end{bmatrix} \end{bmatrix}$

Algebra tutors who can help right now

CH3.2 13P

Step 1 of 3

Suppose x = (x, y, t) is any point in \mathbb{R}^3

We find the orthogonal projection p of a onto the line of intersection of the planes x + y + t = 0 and x - t = 0

The orthogonal projection is nothing but the null space of the matrix A whose rows are the coefficients of the planes such that

The matrix form of above equations is Ax = 0

So,
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$$
, $x = \begin{bmatrix} x \\ y \\ t \end{bmatrix}$

Provide feedback (0)

Step 2 of 3

Applying
$$R_2 \to R_2 - R_1$$
 upon this, we get $\begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & -2 \end{bmatrix}$

$$R_2(-1) \Rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

This is the row reduced form and so, we rewrite the equations from this.

$$y + 2t = 0$$

$$x + y + t = 0$$

 1^{st} equation gives y = -2t and so, x = t

Therefore,
$$\begin{bmatrix} x \\ y \\ t \end{bmatrix} = k \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$
 where $k = t$ is the parameter.

Putting
$$k = 1$$
, we get $\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$ is the required orthogonal projection p

CH3.2 15P

$$y + 2t = 0$$

$$x + y + t = 0$$

 1^{st} equation gives y = -2t and so, x = t

Therefore,
$$\begin{bmatrix} x \\ y \\ t \end{bmatrix} = k \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$
 where $k = t$ is the parameter.

Putting
$$k = 1$$
, we get $\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$ is the required orthogonal projection p

Provide feedback (0)

Step 3 of 3

The required projection matrix is
$$P = \frac{pp^{T}}{p^{T}p}$$

$$= \frac{\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} (1,-2,1)}{\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}}$$

$$= \frac{1}{6} \begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$

5.7

Step 16 of 20

(c) We have to verify that why the inner product of Px with Py is same the inner product of x with y, and we have to find that what is the angle between those two.

Provide feedback (0)

Step 17 of 20

Inner product of Px with Py is

$$= (Px)^T Py$$

$$= \left(x^T P^T \right) P y$$

$$= x^T P P y$$

$$= x^T P^2 y = x^T (Py)$$

..... (4)

Therefore from (1) and (4), $(Px)^T Py = (Px)^T y = x^T (Py)$

Hence the inner product of Px with Py is same the inner product of x with Py and the inner product of Px with y

Provide feedback (0)

Step 18 of 20

Let θ be the angle between Px with Py

Then
$$\cos \theta = \frac{(Px)^T Py}{\|Px\| \|Py\|}$$

Here

$$Px = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \text{ and }$$

$$Py = \frac{1}{2}\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Step 2 of 4

So,
$$\hat{x} = \frac{5}{3}$$

So,
$$\hat{x} = \frac{5}{3}$$

Therefore $P = \hat{x} a = \frac{5}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5/3 \\ 5/3 \\ 5/3 \end{bmatrix}$

$$e = b - P = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} - \begin{bmatrix} 5/3 \\ 5/3 \\ 5/3 \end{bmatrix}$$
$$= \begin{bmatrix} -2/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

We verify e is perpendicular to a or not.

$$e^{T} = \begin{pmatrix} -2/3 & 1/3 & 1/3 \end{pmatrix}$$

$$e^{T}a = \begin{pmatrix} -2/3 & 1/3 & 1/3 \end{pmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

= $\frac{-2}{3} + \frac{1}{3} + \frac{1}{3}$

Therefore, e is perpendicular to a.

Provide feedback (0)

Step 3 of 4

(b) Given vectors are
$$b = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$$
 and $\alpha = \begin{bmatrix} -1 \\ -3 \\ -1 \end{bmatrix}$

The projection of
$$b$$
 onto $a = \hat{x} = \frac{a^T b}{a^T a}$

$$a^T b = \begin{bmatrix} -1 & -3 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$$

$$=-11$$

$$a^{T}a = \begin{bmatrix} -1 & -3 & -1 \end{bmatrix} \begin{bmatrix} -1 \\ -3 \\ -1 \end{bmatrix}$$

$$=1+9+1$$

Provide feedback (0)

Step 4 of 4

$$\hat{x} = \frac{-11}{11}$$

Therefore
$$P = \hat{x} a = -1 \begin{bmatrix} -1 \\ -3 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} = b$$

$$e = b - P = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

We easily see that the zero vector is perpendicular to every vector.

So, $e^T a = 0$ verifies the projection of b upon a.

Provide feedback (0)

Step 2 of 4

Chapter: CH3.2 V Problem: 18P

Using (2) in (1), we get $P = \hat{x} a = \cos \theta \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Therefore, the required projection matrix is $P = \begin{bmatrix} \cos \theta \\ 0 \end{bmatrix}$

Provide feedback (0)

Step 3 of 4

(b) Given vectors are $b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $a = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

The projection of b on to $a = \hat{x} a = \frac{a^T b}{a^T a} a$

$$a^T b = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 - 1 = 0$$

And
$$a^T a = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 1 + 1 = 2$$

Step 3 of 4

(b) Given vectors are $b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $a = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

The projection of b on to $a = \hat{x} a = \frac{a^T b}{a^T a} a$

$$a^T b = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 - 1 = 0$$

And
$$a^T a = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 1 + 1 = 2$$

So
$$\hat{x} = \frac{0}{2} = 0$$

Therefore
$$P = \hat{x} a = 0 \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Hence
$$P = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Provide feedback (0)

Step 4 of 4

Observe that the vectors (1, 1) and (1, -1) are perpendicular which meet at the origin O and so, the projection of b upon a is the footsteps of b nothing but the origin (0, 0).

Step 4 of 5

Chapter: CH3.2 V Problem: 20P

The matrix suitable to this projection is $P_1 = \frac{aa^T}{a^Ta}$ $= \frac{\begin{bmatrix} 1 \\ -1 \end{bmatrix}[1-1]}{[1-1]}\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ $= \frac{\begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}}{2}$ $= \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$(4)

Provide feedback (0)

Step 5 of 5

Using (3) and (4), we get $P_1 + P_2 = \frac{1}{2} \begin{bmatrix} 3 & -1 \\ -1 & 1 \end{bmatrix}$

$$P_1 P_2 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$

$$(P_1 + P_2)^2 = \frac{1}{2} \begin{bmatrix} 5 & -2 \\ -2 & 1 \end{bmatrix}$$

$$P_1^2 + P_2^2 = \frac{1}{2} \begin{bmatrix} 5 & -1 \\ -1 & 1 \end{bmatrix}$$

From the above observations, we follow that $\left(P_1+P_2\right)^2\neq P_1+P_2$ while $P_1P_2\neq 0$

Provide feedback (0)

Step 2 of 3

Chapter: CH3.2 V Problem: 21P

 P_2 = The projection matrix onto the line through $a_2 = \frac{a_2 a_2^T}{a_2^T a_2}$

$$a_{2}a_{2}^{T} = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix} (2, 2, -1)$$

$$= \begin{bmatrix} 4 & 4 & -2 \\ 4 & 4 & -2 \\ -2 & -2 & 1 \end{bmatrix}$$

$$a_{2}^{T}a_{2} = \begin{bmatrix} 2 & 2 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$a_2^{\mathbf{r}} a_2 = \begin{bmatrix} 2 & 2 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$$

$$=4+4+1$$

$$P_2 = \frac{1}{9} \begin{bmatrix} 4 & 4 & -2 \\ 4 & 4 & -2 \\ -2 & -2 & 1 \end{bmatrix}$$

Provide feedback (0)

Step 3 of 3

$$P_1P_2 = \frac{1}{9} \begin{bmatrix} 1 & -2 & -2 \\ -2 & 4 & 4 \\ -2 & 4 & 4 \end{bmatrix} \frac{1}{9} \begin{bmatrix} 4 & 4 & -2 \\ 4 & 4 & -2 \\ -2 & -2 & 1 \end{bmatrix}$$

$$= \frac{1}{81} \begin{bmatrix} 4-8+4 & 4-8+4 & -2+4-2 \\ -8+16-8 & -8+16-8 & 4-8+4 \\ -8+16-8 & -8+16-8 & 4-8+4 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

Algebra tutors who can help right now

Let P_2 = the projection matrix onto the line through $a_2 = \frac{a_2 a_2^T}{a_2^T a_2}$ $a_2 a_2^T = \begin{bmatrix} 2 \\ 2 \\ 2 \\ -1 \end{bmatrix} (2, 2, -1)$ $= \begin{bmatrix} 4 & 4 & -2 \\ 4 & 4 & -2 \\ -2 & -2 & 1 \end{bmatrix}$ $a_2^T a_2 = \begin{bmatrix} 2 & 2 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$ = 4 + 4 + 1 = 9 $\begin{bmatrix} 4 & 4 & -2 \end{bmatrix}$

$$= 9$$

$$P_2 = \frac{1}{9} \begin{bmatrix} 4 & 4 & -2 \\ 4 & 4 & -2 \\ -2 & -2 & 1 \end{bmatrix}$$

Provide feedback (0)

Let P_3 = the projection matrix onto the line through $a_3 = \frac{a_3 a_3^T}{a_3^T a_3}$

$$a_3 a_3^T = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix} (2, -1, 2)$$
$$= \begin{bmatrix} 4 & -2 & 4 \\ -2 & 1 & -2 \\ 4 & -2 & 4 \end{bmatrix}$$

Step 2 of 3

Let P_2 = the projection matrix onto $a_2 = \frac{a_2 a_2^T}{a_2^T a_2}$

$$a_2 a_2^T = \begin{pmatrix} 1 \\ 2 \end{pmatrix} (1 \quad 2) = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
$$a_2^T a_2 = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 1 + 4 = 5$$

$$a_2^T a_2 = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 1 + 4 = 5$$

$$P_2 = \frac{1}{5} \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

Provide feedback (0)

Step 3 of 3

$$P = P_1 P_2$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \frac{1}{5} \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

$$= \frac{1}{5} \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$$

$$P^2 = \frac{1}{25} \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$$

$$=\frac{1}{25}\begin{bmatrix}1 & 2\\0 & 0\end{bmatrix}$$

 $\neq P$

Therefore, PP is not a projection matrix.

Provide feedback (0)