AArch64
Instructions

Index by Encoding External Registers

MDCR_EL3, Monitor Debug Configuration Register (EL3)

The MDCR EL3 characteristics are:

Purpose

Provides EL3 configuration options for self-hosted debug and the Performance Monitors Extension.

Configuration

This register is present only when EL3 is implemented. Otherwise, direct accesses to MDCR EL3 are undefined.

Attributes

MDCR EL3 is a 64-bit register.

Field descriptions

63	62	61	60	59	58	57 56	55	54	53	52	51	50	49	48	47	46	45
						RES0)						ETB	AD	EnITE	EPM	SSAD <mark>EnF</mark>
PM:	SSE	RES0	MTPME	TDCC	NSTBE	NSTB	SCCD	ETAD	EPMAC	EDAD	TTRF	STE	SPME	SDD	SPD	32	NSPI
31	30	29	28	27	26	25 24	23	22	21	20	19	18	17	16	15	14	13

Bits [63:50]

Reserved, res0.

ETBAD, bits [49:48]

When FEAT TRBE EXT is implemented:

External Trace Buffer Access Disable. Controls access to the Trace Buffer registers from an external debugger.

ETBAD Meaning	Applies when
---------------	-----------------

0b00

Non-secure accesses from an external debugger to Trace Buffer registers are prohibited. If FEAT RME implemented, Secure and Realm accesses from an external debugger to Trace Buffer registers are prohibited and Root accesses to Trace Buffer registers are allowed. If FEAT RME is not implemented, Secure accesses to Trace Buffer registers are allowed.

0b01

Secure and Non-secure accesses from an external debugger to Trace Buffer registers are prohibited. Root and Realm accesses to Trace Buffer registers are allowed.

When FEAT_RME is implemented

0b10	Realm and Non-secure accesses from an external debugger to Trace Buffer registers are prohibited. Root and Secure accesses to Trace Buffer registers are	When FEAT_RME is implemented
0b11	allowed. All accesses from an external debugger to Trace Buffer registers are allowed.	

If EL3 is not implemented, then the Effective value of this field is 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, res0.

EnITE, bit [47] When FEAT_ITE is implemented:

Enable access to Instrumentation trace registers. When disabled, accesses to Instrumentation trace registers generate a trap to EL3.

EnITE	Meaning
0b0	Accesses of the specified
	Instrumentation trace registers
	at EL2 and EL1 are trapped to
	EL3, unless the instruction
	generates a higher priority
	exception.
0b1	Accesses of the specified
	Instrumentation trace registers
	are not trapped by this
	mechanism.

In AArch64 state, the instructions affected by this control are: MRS and MSR accesses to $\overline{TRCITECR_EL1}$, $\overline{TRCITECR_EL2}$, and $\overline{TRCITECR_EL12}$.

Unless the instruction generates a higher priority exception, trapped instructions generate an exception to EL3.

Trapped instructions are reported using EC syndrome value 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EPMSSAD, bits [46:45] When FEAT PMUv3 SS is implemented:

External PMU Snapshot Access Disable. Controls access to the PMU Snapshot registers from an external debugger.

EPMSSAD Meaning	Applies when
-----------------	-----------------

0b00 No

Non-secure accesses from an external debugger to **PMU** Snapshot registers are prohibited. If FEAT RME is implemented, Secure and Realm accesses from an external debugger to **PMU** Snapshot registers are prohibited and Root accesses to **PMU** Snapshot registers are allowed. If FEAT RME is not implemented, Secure accesses to **PMU** Snapshot

registers are allowed.

0b01	Secure and Non-secure accesses from an external debugger to PMU Snapshot registers are prohibited. Root and Realm accesses to PMU Snapshot registers are	When FEAT_RME is implemented
0b10	Realm and Non-secure accesses from an external debugger to PMU Snapshot registers are prohibited. Root and Secure accesses to PMU Snapshot registers are	When FEAT_RME is implemented
0b11	allowed. All accesses from an external debugger to PMU Snapshot registers are allowed.	

If EL3 is not implemented, then the Effective value of this field is $\mbox{\tt 0b11}.$

The reset behavior of this field is:

 \bullet On a Warm reset, this field resets to 0.

Otherwise:

Reserved, res0.

EnPMSS, bit [44] When FEAT_PMUv3_SS is implemented:

Enable access to PMU Snapshot registers. When disabled, accesses to PMU Snapshot registers generate a trap to EL3.

EnPMSS	Meaning
0b0	Accesses of the specified
	PMU Snapshot registers at
	EL2 and EL1 are trapped to
	EL3, unless the instruction
	generates a higher priority
	exception.
0b1	Accesses of the specified
	PMU Snapshot registers are
	not trapped by this
	mechanism.

In AArch64 state, the instructions affected by this control are:

- MRS and MSR accesses to <u>PMCCNTSVR_EL1</u>, <u>PMEVCNTSVR<n> EL1</u>, and <u>PMSSCR EL1</u>.
- If FEAT_PMUv3_ICNTR is implemented, MRS and MSR accesses to PMICNTSVR EL1.

Unless the instruction generates a higher priority exception, trapped instructions generate an exception to EL3.

Trapped instructions are reported using EC syndrome value 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EBWE, bit [43]

When FEAT_Debugv8p9 is implemented:

Extended Breakpoint and Watchpoint Enable. Enables use of additional breakpoints or watchpoints, and enables a trap to EL3 on accesses to debug registers.

EBWE	Meaning	
0b0 The Effective value of		
	MDSCR_EL1.EBWE is 0.	
	Accesses of MDSELR EL1 at	
	EL2 and EL1 are trapped to	
	EL3, unless the instruction	
	generates a higher priority	
	exception.	
0b1	The Effective value of	
	MDSCR EL1.EBWE is not	
	affected by this field.	
	Accesses of MDSELR_EL1 are	
	not trapped by this mechanism.	

In AArch64 state, the instructions affected by this control are: MRS and MSR accesses to MDSELR EL1.

Unless the instruction generates a higher priority exception, trapped instructions generate an exception to EL3.

Trapped instructions are reported using EC syndrome value 0x18.

It is implementation defined whether this field is implemented or is res0 when 16 or fewer breakpoints are implemented, 16 or fewer watchpoints are implemented, and MDSELR_EL1 is implemented as RAZ/WI.

If EL3 is not implemented, then the Effective value of this field is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EnPMS3, bit [42] When FEAT_SPEv1p4 is implemented or FEAT_SPE_FDS is implemented:

Enable access to SPE registers. When disabled, accesses to SPE registers generate a trap to EL3.

EnPMS3	Meaning
0b0	Accesses of the specified SPE registers at EL2 and EL1 are trapped to EL3, unless the instruction generates a higher priority exception.

0b1	Accesses of the specified SPE
	registers are not trapped by
	this mechanism.

In AArch64 state, the instructions affected by this control are: MRS and MSR accesses to PMSDSFR EL1.

Unless the instruction generates a higher priority exception, trapped instructions generate an exception to EL3.

Trapped instructions are reported using EC syndrome value 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

PMEE, bits [41:40] When FEAT_EBEP is implemented:

Performance Monitors Exception Enable. Controls the generation of **PMUIRQ** signal and PMU exception at all Exception levels.

PMEE	Meaning		
0b00	PMUIRQ signal is enabled, and		
	PMU exception is disabled.		
0b01	PMUIRQ signal and PMU		
	exception are both controlled by		
	MDCR_EL2.PMEE.		
0b10	PMUIRQ signal is disabled, and		
	PMU exception is disabled.		
0b11	PMUIRQ signal is disabled, and		
	PMU exception is enabled.		

If EL3 is not implemented, then the Effective value of this field is 0b01.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EnTB2, bit [39] When FEAT TRBE MPAM is implemented:

Enable access to Trace Buffer registers. When disabled, accesses to Trace Buffer registers generate a trap to EL3.

EnTB2	Meaning
0b0	Accesses of the specified Trace
	Buffer registers at EL2 and EL1
	are trapped to EL3, unless the
	instruction generates a higher
	priority exception.
0b1	Accesses of the specified Trace
	Buffer registers are not trapped
	by this mechanism.

In AArch64 state, the instructions affected by this control are: MRS and MSR accesses to TRBMPAM EL1.

Unless the instruction generates a higher priority exception, trapped instructions generate an exception to EL3.

Trapped instructions are reported using EC syndrome value 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

E3BREC, bit [38] When FEAT_BRBEv1p1 is implemented:

Branch Record Buffer EL3 Cold Reset Enable. With MDCR EL3.E3BREW, controls branch recording at EL3.

E3BREC	Meaning
0b0	When MDCR_EL3.E3BREW
	== 0: Branch recording at
	EL3 is disabled.
	When MDCR_EL3.E3BREW
	== 1: Branch recording at
	EL3 is enabled.

01-1	When MDCR EL3.E3BREW
0b1	
	== 0: Branch recording at
	EL3 is enabled.
	When MDCR_EL3.E3BREW
	== 1: Branch recording at
	EL3 is disabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

Reserved, res0.

E3BREW, bit [37] When FEAT_BRBEv1p1 is implemented:

Branch Record Buffer EL3 Warm Reset Enable. With MDCR EL3.E3BREC, controls branch recording at EL3.

For a description of the values derived by evaluating MDCR_EL3.E3BREC and MDCR_EL3.E3BREW together, see MDCR_EL3.E3BREC.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, res0.

EnPMSN, bit [36] When FEAT SPEv1p2 is implemented:

Trap accesses to PMSNEVFR_EL1. Controls access to Statistical Profiling PMSNEVFR_EL1 System register from EL2 and EL1.

EnPMSN	Meaning	
0b0	Accesses to PMSNEVFR EL1	
	at EL2 and EL1 generate a	
	Trap exception to EL3.	
0b1	Do not trap <u>PMSNEVFR EL1</u>	
	to EL3.	

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

MPMX, bit [35] When FEAT PMUv3p7 is implemented:

Monitor Performance Monitors Extended control. With MDCR EL3.SPME, controls PMU operation at EL3.

MPMX	Meaning		
0b0	Counters are not affected by		
	this mechanism.		
0b1	Affected counters are		
	prohibited from counting at		
	EL3.		
	If PMCR_ELO.DP is 1,		
	<pre>PMCCNTR_ELO is disabled at</pre>		
	EL3. Otherwise,		
	<pre>PMCCNTR_ELO is not affected</pre>		
	by this mechanism.		

The counters affected by this field are:

- If EL2 is implemented and MDCR_EL3.SPME is 1, event counters <u>PMEVCNTR<n>_EL0</u> for values of n less than <u>MDCR_EL2.HPMN</u>.
- If EL2 is not implemented or MDCR_EL3.SPME is 0, all event counters.
- If FEAT_PMUv3_ICNTR is implemented, the instruction counter, PMICNTR_ELO.
- If <u>PMCR ELO</u>.DP is 1, the cycle counter, <u>PMCCNTR ELO</u>.

Other event counters are not affected by this field. When PMCR EL0. DP is 0, PMCCNTR EL0 is not affected by this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, res0.

MCCD, bit [34] When FEAT_PMUv3p7 is implemented:

Monitor Cycle Counter Disable. Prohibits the Cycle Counter, PMCCNTR_EL0, from counting at EL3.

MCCD	Meaning	
0b0	Cycle counting by	
	<pre>PMCCNTR_EL0 is not affected</pre>	
	by this mechanism.	
0b1	Cycle counting by	
	PMCCNTR ELO is prohibited at	
	EL3.	

This field does not affect the $\ensuremath{\mathsf{CPU}}\xspace_{\mathsf{CYCLES}}$ event or any other event that counts cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, res0.

SBRBE, bits [33:32] When FEAT_BRBE is implemented:

Secure Branch Record Buffer Enable. Controls branch recording by the BRBE, and access to BRBE registers and instructions at EL2 and EL1.

SBRBE	Meaning
0000	Direct accesses to BRBE registers and instructions, except when in EL3, generate a Trap exception to EL3. EL0, EL1, and EL2 are prohibited regions.
0b01	Direct accesses to BRBE registers and instructions in Secure state, except when in EL3, generate a Trap exception to EL3. EL0, EL1, and EL2 in Secure state are prohibited regions. This control does not cause any direct accesses to BRBE registers when not in Secure state to be trapped, and does not cause any Exception levels when not in Secure state to be a prohibited region.

0b10	Direct accesses to BRBE registers and instructions, except when in EL3, generate a Trap exception to EL3. This control does not cause any Exception levels to be
	prohibited regions.
0b11	This control does not cause any direct accesses to BRBE registers or instruction to be
	trapped, and does not cause
	- -
	any Exception levels to be a
	prohibited region.

The Branch Record Buffer registers trapped by this control are: BRBCR_EL1, BRBCR_EL1, BRBINFCR_EL1, BRBINFINJ_EL1, BRBSRCINJ_EL1, BRBTGTINJ_EL1, and BRBTS_EL1.

The Branch Record Buffer instructions trapped by this control are:

- BRB IALL.
- BRB INJ.

Note

If FEAT_BRBEv1p1 is not implemented, EL3 is a prohibited region.

If EL3 is not implemented then the Effective value of this field is 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

PMSSE, bits [31:30] When FEAT_PMUv3_SS is implemented:

Performance Monitors Snapshot Enable. Controls the generation of Capture events.

PMSSE	Meaning	
0bd0	Capture events are disabled.	

0b01	Capture events are controlled by MDCR EL2.PMSSE.
0b10	Capture events are enabled and prohibited.
0b11	Capture events are enabled and allowed.

If EL3 is not implemented, then the Effective value of this field is 0b01.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bit [29]

Reserved, res0.

MTPME, bit [28] When FEAT MTPMU is implemented:

Multi-threaded PMU Enable. Enables use of the <a href="PMEVTYPER<">PMEVTYPER< EL0.MT bits.

MTPME	Meaning		
0b0	FEAT MTPMU is disabled.		
	The Effective value of		
	$\underline{PMEVTYPER} < n > \underline{EL0}$.MT is		
	zero.		
0b1	PMEVTYPER <n> EL0.MT</n>		
	bits not affected by this field.		

If FEAT_MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as the PE, it is implementation defined whether the PE behaves as if this field is 0.

The reset behavior of this field is:

• On a Cold reset, this field resets to 1.

Otherwise:

Reserved, res0.

TDCC, bit [27] When FEAT FGT is implemented:

Trap DCC. Traps use of the Debug Comms Channel at EL2, EL1, and EL0 to EL3.

TDCC	Meaning
0b0	This control does not cause any register accesses to be trapped.
0b1	Accesses to the DCC registers at EL2, EL1, and EL0 generate a Trap exception to EL3, unless the access also generates a higher priority exception. Traps on the DCC data transfer registers are ignored when the PE is in Debug state.

The DCC registers trapped by this control are:

AArch64: OSDTRRX_EL1, OSDTRTX_EL1, MDCCSR_EL0, MDCCINT_EL1, and, when the PE is in Non-debug state, DBGDTR EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: <u>DBGDTRRXext</u>, <u>DBGDTRTXext</u>, <u>DBGDSCRint</u>, <u>DBGDCCINT</u>, and, when the PE is in Non-debug state, <u>DBGDTRRXint</u> and <u>DBGDTRTXint</u>.

The traps are reported with EC syndrome value:

- 0x05 for trapped AArch32 MRC and MCR accesses with coproc == 0b1110.
- 0x06 for trapped AArch32 LDC to <u>DBGDTRTXint</u> and STC from <u>DBGDTRRXint</u>.
- 0x18 for trapped AArch64 MRS and MSR accesses.

When the PE is in Debug state, MDCR_EL3.TDCC does not trap any accesses to:

AArch64: DBGDTR ELO, DBGDTRRX ELO, and DBGDTRTX ELO.

AArch32: DBGDTRRXint and DBGDTRTXint.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

NSTBE, bit [26] When FEAT TRBE is implemented and FEAT RME is implemented:

Non-secure Trace Buffer Extended. Together with MDCR_EL3.NSTB, controls the owning translation regime and accesses to Trace Buffer control registers from EL2 and EL1.

For a description of the values derived by evaluating NSTB and NSTBE together, see MDCR_EL3.NSTB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

NSTB, bits [25:24] When FEAT_TRBE is implemented and FEAT_RME is implemented:

Non-secure Trace Buffer. Together with MDCR_EL3.NSTBE, controls the owning translation regime and accesses to Trace Buffer control registers from EL2 and EL1.

NSTBE	NSTB	Meaning
000	0000	Secure state owns the Trace Buffer. When TraceBufferEnabled()==TRUE, tracing is prohibited in Realm and Non-secure states. Accesses to Trace Buffer control registers at EL2 and EL1 generate Trap exceptions to EL3. When Secure state is not implemented, this encoding is reserved.
060	0b01	Secure state owns the Trace Buffer. When TraceBufferEnabled()==TRUE, tracing is prohibited in Realm and Non-secure states. Accesses to Trace Buffer control registers at Realm and Non-secure EL2, and Realm and Non-secure EL1, generate Trap exceptions to EL3. When Secure state is not implemented, this encoding is reserved.

NSTBE	NSTB	Meaning
0b0	0b10	Non-secure state owns the Trace Buffer. When TraceBufferEnabled()==TRUE, tracing is prohibited in Secure and Realm states. Accesses to Trace Buffer control registers at EL2 and EL1 generate Trap exceptions to EL3.
0d0	0b11	Non-secure state owns the Trace Buffer. When TraceBufferEnabled()==TRUE, tracing is prohibited in Secure and Realm states. Accesses to Trace Buffer control registers at Secure and Realm EL2, and Secure and Realm EL1, generate Trap exceptions to EL3.
0b1	0b0x	Reserved
0b1	0b10	Realm state owns the Trace Buffer. When TraceBufferEnabled()==TRUE, tracing is prohibited in Secure and Non-secure states. Accesses to Trace Buffer control registers at EL2 and EL1 generate Trap exceptions to EL3.
0b1	0b11	Realm state owns the Trace Buffer. When TraceBufferEnabled()==TRUE, tracing is prohibited in Secure and Non-secure states. Accesses to Trace Buffer control registers at Secure and Non-secure EL2, and Secure and Non-secure EL1, generate Trap exceptions to EL3.

In AArch64 state, the instructions affected by this control are:

- MRS and MSR accesses to <u>TRBBASER_EL1</u>, <u>TRBLIMITR_EL1</u>, <u>TRBMAR_EL1</u>, <u>TRBPTR_EL1</u>, <u>TRBSR_EL1</u>, and <u>TRBTRG_EL1</u>.
- If FEAT_TRBE_MPAM is implemented, MRS and MSR accesses to TRBMPAM_EL1.

Unless the instruction generates a higher priority exception, trapped instructions generate an exception to EL3.

Trapped instructions are reported using EC syndrome value 0x18.

If the Trace Buffer Unit is enabled and using Self-hosted mode, and MDCR_EL3.{NSTB, NSTBE} selects a reserved value, then the behavior is constrained unpredictable, and the Trace Buffer Unit does one of:

- Behaves as if the Trace Buffer Unit is disabled.
- Selects an implemented Security state as the owning Security state.
- When trace data is received from the trace unit, it is not written to memory and the Trace Buffer Unit generates a Trace Buffer management event:
 - TRBSR EL1.IRQ is set to 1.
 - If TRBSR EL1.S is 0, then all of the following occur:
 - TRBSR EL1.S is set to 1, Collection is stopped.
 - TRBSR_EL1.EC is set to 0x00, other buffer management event.
 - TRBSR_EL1.BSC is set to 0b000000, access not allowed.
 - The other fields in <u>TRBSR_EL1</u> are unchanged.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

When FEAT_TRBE is implemented:

Non-secure Trace Buffer. Controls the owning translation regime and accesses to Trace Buffer control registers from EL2 and EL1.

NSTB	Meaning	
0b00	Trace Buffer owning Security	
	state is Secure state. If	
	TraceBufferEnabled() $==$ TRUE,	
	tracing is prohibited in Non-	
	secure state. Accesses to Trace	
	Buffer control registers at EL2	
	and EL1 generate Trap	
	exceptions to EL3.	

Trace Buffer owning Security 0b01 state is Secure state. If TraceBufferEnabled() == TRUE, tracing is prohibited in Nonsecure state. Accesses to Trace Buffer control registers at EL2 and EL1 in Non-secure state generate Trap exceptions to EL3. Trace Buffer owning Security 0b10 state is Non-secure state. If TraceBufferEnabled() == TRUE, tracing is prohibited in Secure state. Accesses to Trace Buffer control registers at EL2 and EL1 generate Trap exceptions to EL3. Trace Buffer owning Security 0b11 state is Non-secure state. If TraceBufferEnabled() == TRUE, tracing is prohibited in Secure state. Accesses to Trace Buffer control registers at EL2 and EL1 in Secure state generate Trap

exceptions to EL3.

In AArch64 state, the instructions affected by this control are:

- MRS and MSR accesses to <u>TRBBASER_EL1</u>, <u>TRBLIMITR_EL1</u>, <u>TRBMAR_EL1</u>, <u>TRBPTR_EL1</u>, <u>TRBSR_EL1</u>, and TRBTRG_EL1.
- If FEAT_TRBE_MPAM is implemented, MRS and MSR accesses to TRBMPAM EL1.

Unless the instruction generates a higher priority exception, trapped instructions generate an exception to EL3.

Trapped instructions are reported using EC syndrome value 0x18.

If EL3 is not implemented and the Effective value of <u>SCR_EL3</u>.NS is 1, then the Effective value of this field is 0b11.

If EL3 is not implemented and the Effective value of <u>SCR_EL3</u>.NS is 0, then the Effective value of this field is 0b01.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

SCCD, bit [23] When FEAT PMUv3p5 is implemented:

Secure Cycle Counter Disable. Prohibits PMCCNTR_EL0 from counting in Secure state.

SCCD	Meaning
0b0	Cycle counting by
	PMCCNTR_ELO is not affected
	by this mechanism.
0b1	Cycle counting by
	PMCCNTR ELO is prohibited in
	Secure state.

This field does not affect the CPU_CYCLES event or any other event that counts cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, res0.

ETAD, bit [22]

When FEAT_RME is implemented, FEAT_TRC_EXT is implemented and FEAT_TRBE is implemented:

External Trace Access Disable. Together with MDCR_EL3.ETADE, controls access to trace unit registers by an external debugger.

ETADE	ETAD	Meaning
0d0	0b0	Access to trace unit registers by an external debugger is permitted.

ETADE	ETAD	Meaning
0b0	0b1	Root and Secure access to trace unit registers by an external debugger is permitted. Realm and
		Non-secure access to trace unit registers by an external debugger is not
		permitted.
0b1	0d0	Root and Realm
		access to trace unit
		registers by an
		external debugger is
		permitted. Secure and Non-secure
		access to trace unit
		registers by an
		external debugger is
		not permitted.
0b1	0b1	Root access to trace
		unit registers by an
		external debugger is
		permitted. Secure,
		Non-secure, and
		Realm access to
		trace unit registers
		by an external
		debugger is not
		permitted.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_TRC_EXT is implemented and FEAT_TRBE is implemented:

External Trace Access Disable. Controls Non-secure access to trace unit registers by an external debugger.

ETAD	Meaning	
0d0	Non-secure accesses from an	
	external debugger to trace unit	
	are allowed.	
0b1	Non-secure accesses from an	
	external debugger to some trace	
	unit registers are prohibited. See	
	individual registers for the effect	
	of this field.	

If EL3 is not implemented and the Effective value of <u>SCR_EL3</u>.NS is 0, then the Effective value of this field is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, res0.

EPMAD, bit [21]

When FEAT_RME is implemented and FEAT_PMUv3_EXT is implemented:

External Performance Monitors Access Disable. Together with MDCR_EL3.EPMADE, controls access to Performance Monitor registers by an external debugger.

EPMADE	EPMAD	Meaning
0b0	0b0	Access to
		Performance
		Monitor
		registers by an
		external
		debugger is
		permitted.
0b0	0b1	Root and Secure
		access to
		Performance
		Monitor
		registers by an
		external
		debugger is
		permitted.
		Realm and Non-
		secure access to
		Performance
		Monitor
		registers by an
		external
		debugger is not
		permitted.

EPMADE	EPMAD	Meaning
0b1	0b0	Root and Realm
		access to
		Performance
		Monitor
		registers by an
		external
		debugger is
		permitted.
		Secure and Non-
		secure access to
		Performance
		Monitor
		registers by an
		external
		debugger is not
		permitted.
0b1	0b1	Root access to
		Performance
		Monitor
		registers by an
		external
		debugger is
		permitted. Secure, Non-
		secure, non-
		Realm access to
		Performance
		Monitor
		registers by an
		external
		debugger is not
		permitted.
		Pormittou.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_Debugv8p4 is implemented and FEAT_PMUv3_EXT is implemented:

External Performance Monitors Non-secure Access Disable. Controls Non-secure access to Performance Monitor registers by an external debugger.

EPMAD	Meaning
060	Non-secure access to Performance Monitor registers from external debugger is permitted.

0b1	Non-secure access to
	Performance Monitor registers
	from external debugger is not
	permitted.

If EL3 is not implemented and the Effective value of <u>SCR_EL3</u>.NS is 0b0, then the Effective value of this bit is 0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT PMUv3 EXT is implemented:

External Performance Monitors Access Disable. Controls access to Performance Monitor registers by an external debugger.

EPMAD	Meaning	
0b0	Access to Performance	
	Monitor registers from	
	external debugger is	
	permitted.	
0b1	Access to Performance	
	Monitor registers from	
	external debugger is not	
	permitted, unless overridden	
	by the implementation defined	
	authentication interface.	

If EL3 is not implemented and the Effective value of <u>SCR_EL3</u>.NS is 0b0, then the Effective value of this bit is 0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, res0.

EDAD, bit [20] When FEAT_RME is implemented:

External Debug Access Disable. Together with MDCR_EL3.EDADE, controls access to breakpoint registers, watchpoint registers, and OSLAR_EL1 by an external debugger.

EDADE	EDAD	Meaning
0b0	0b0	Access to Debug
		registers by an
		external debugger is
		permitted.
0b0	0b1	Root and Secure
		access to Debug
		registers by an
		external debugger is
		permitted. Realm
		and Non-secure
		access to Debug
		registers by an
		external debugger is
01.4	01.0	not permitted.
0b1	0b0	Root and Realm
		access to Debug registers by an
		external debugger is
		permitted. Secure
		and Non-secure
		access to Debug
		registers by an
		external debugger is
		not permitted.
0b1	0b1	Root access to
		Debug registers by
		an external
		debugger is
		permitted. Secure,
		Non-secure, and
		Realm access to
		Debug registers by
		an external
		debugger is not
		permitted.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_Debugv8p4 is implemented:

External Debug Non-secure Access Disable. Controls Non-secure access to breakpoint, watchpoint, and <u>OSLAR_EL1</u> registers by an external debugger.

EDAD	Meaning	

0d0	Non-secure access to debug registers from external
	debugger is permitted.
0b1	Non-secure access to breakpoint
	and watchpoint registers, and
	OSLAR_EL1 from external
	debugger is not permitted.

If EL3 is not implemented and the Effective value of <u>SCR_EL3</u>.NS is 0b0, then the Effective value of this field is 0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_Debugv8p2 is implemented:

External Debug Access Disable. Controls access to breakpoint, watchpoint, and <u>OSLAR EL1</u> registers by an external debugger.

EDAD	Meaning
0b0	Access to debug registers, and
	to OSLAR_EL1 from external
	debugger is permitted.
0b1	Access to breakpoint and
	watchpoint registers, and to
	OSLAR EL1 from external
	debugger is not permitted,
	unless overridden by the
	implementation defined
	authentication interface.

If EL3 is not implemented and the Effective value of <u>SCR_EL3</u>.NS is 0b0, then the Effective value of this field is 0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

External Debug Access disable. Controls access to breakpoint, watchpoint, and optionally <u>OSLAR_EL1</u> registers by an external debugger.

EDAD	Meaning
0b0	Access to debug registers from
	external debugger is permitted.

0b1	Access to breakpoint and
	watchpoint registers from an
	external debugger is not
	permitted, unless overridden by
	the implementation defined
	authentication interface.
	It is implementation defined
	whether access to the
	OSLAR EL1 register from an
	external debugger is permitted
	or not permitted.

If EL3 is not implemented and the Effective value of <u>SCR_EL3</u>.NS is 0b0, then the Effective value of this field is 0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

TTRF, bit [19] When FEAT TRF is implemented:

Trap Trace Filter controls. Traps use of the Trace Filter control registers at EL2 and EL1 to EL3.

The Trace Filter registers trapped by this control are:

- <u>TRFCR_EL2</u>, TRFCR_EL12, <u>TRFCR_EL1</u>, reported using EC syndrome value 0x18.
- <u>HTRFCR</u> and <u>TRFCR</u>, reported using EC syndrome value 0x03.

TTRF	Meaning
0b0	Accesses to Trace Filter registers at EL2 and EL1 are not affected
	by this bit.
0b1	Accesses to Trace Filter registers at EL2 and EL1 generate a Trap
	exception to EL3, unless the
	access generates a higher
	priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

STE, bit [18] When FEAT TRF is implemented and Secure state is implemented:

Secure Trace enable. Enables tracing in Secure state.

STE	Meaning
0b0	Trace prohibited in Secure state
	unless overridden by the
	implementation defined
	authentication interface.
0b1	Trace in Secure state is not
	affected by this bit.

This bit also controls the level of authentication required by an external debugger to enable external tracing. See 'Register controls to enable self-hosted trace'.

If EL3 is not implemented and the Effective value of <u>SCR_EL3</u>.NS is 0b0, the Effective value of this bit is 0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, res0.

SPME, bit [17] When FEAT_PMUv3 is implemented and FEAT_PMUv3p7 is implemented:

Secure Performance Monitors Enable. Controls PMU operation in Secure state and at EL3 when MDCR_EL3.MPMX is 0.

SPME	Meaning
0b0	When $MDCR_EL3.MPMX == 0$:
	Affected counters are prohibited
	from counting in Secure state
	and at EL3. If PMCR_EL0 .DP is
	1, PMCCNTR_EL0 is disabled in
	Secure state and at EL3.
	Otherwise, <u>PMCCNTR_EL0</u> is
	not affected by this mechanism.
0b1	When MDCR EL3.MPMX $== 0$:
	Counters are not affected by
	this mechanism.

When MDCR_EL3.MPMX is 0, the counters affected by this field are:

All event counters.

- If FEAT_PMUv3_ICNTR is implemented, the instruction counter, PMICNTR_ELO.
- If <u>PMCR_EL0</u>.DP is 1, the cycle counter, <u>PMCCNTR_EL0</u>.

When <u>PMCR_EL0</u>.DP is 0, <u>PMCCNTR_EL0</u> is not affected by this field.

When MDCR_EL3.MPMX is 1, this field controls which event counters are affected by MDCR_EL3.MPMX at EL3. See MDCR_EL3.MPMX for more information.

If EL3 is not implemented and the Effective value of <u>SCR_EL3</u>.NS is 0, then the Effective value of this field is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT PMUv3 is implemented and FEAT Debugv8p2 is implemented:

Secure Performance Monitors Enable. Controls PMU operation in Secure state.

SPME	Meaning
0b0	Event counting is prohibited in
	Secure state.
	If PMCR ELO.DP is 1,
	PMCCNTR ELO is disabled in
	Secure state. Otherwise,
	PMCCNTR ELO is not affected
	by this mechanism.
0b1	Event counting and
	PMCCNTR ELO are not affected
	by this mechanism.

The counters affected by this field are:

- All event counters.
- If PMCR EL0.DP is 1, the cycle counter, PMCCNTR EL0.

When <u>PMCR_EL0</u>.DP is 0, <u>PMCCNTR_EL0</u> is not affected by this field.

If EL3 is not implemented and the Effective value of <u>SCR_EL3</u>.NS is 0, then the Effective value of this field is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_PMUv3 is implemented:

Secure Performance Monitors Enable. Controls PMU operation in Secure state.

SPME	Meaning
0b0	If
	<pre>ExternalSecureNoninvasiveDebugEnabled()</pre>
	is FALSE, then all the following apply:
	 Event counting is prohibited in Secure state.
	• If <u>PMCR_EL0</u> .DP is 1, <u>PMCCNTR_EL0</u>
	is disabled in Secure state. Otherwise,
	<u>PMCCNTR_EL0</u> is not affected by this
	mechanism.
0b1	Event counting and PMCCNTR_EL0 are not affected by this mechanism.

If ExternalSecureNoninvasiveDebugEnabled() is TRUE then the event counters and <u>PMCCNTR ELO</u> are not affected by this field.

Otherwise, the counters affected by this field are:

- All event counters.
- If PMCR EL0.DP is 1, the cycle counter, PMCCNTR EL0.

When <u>PMCR_EL0</u>.DP is 0, <u>PMCCNTR_EL0</u> is not affected by this field.

If EL3 is not implemented and the Effective value of <u>SCR_EL3</u>.NS is 0, then the Effective value of this field is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, res0.

SDD, bit [16]

When Secure state is implemented:

AArch64 Secure Self-hosted invasive debug disable. Disables Software debug exceptions in Secure state, other than Breakpoint Instruction exceptions.

SDD	Meaning

0b0	Debug exceptions in Secure state are not affected by this bit.
	are not ancesed by sine bis.
0b1	Debug exceptions, other than
	Breakpoint Instruction exceptions,
	are disabled from all Exception
	levels in Secure state.

The SDD bit is ignored unless both of the following are true:

- The PE is in Secure state.
- The Effective value of SCR EL3.RW is 0b1.

If Secure EL2 is implemented and enabled, and Secure EL1 is using AArch32, then:

- If debug exceptions from Secure EL1 are enabled, debug exceptions from Secure EL0 are also enabled.
- Otherwise, debug exceptions from Secure EL0 are enabled only if the value of SDER32 EL3.SUIDEN is 0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

SPD32, bits [15:14] When EL1 is capable of using AArch32:

AArch32 Secure self-hosted privileged debug. Enables or disables debug exceptions from Secure EL1 using AArch32, other than Breakpoint Instruction exceptions.

SPD32	Meaning		
0b00	Legacy mode. Debug		
	exceptions from Secure EL1		
	are enabled by the		
	implementation defined		
	authentication interface.		
0b10	Secure privileged debug		
	disabled. Debug exceptions		
	from Secure EL1 are disabled.		
0b11	Secure privileged debug		
	enabled. Debug exceptions		
	from Secure EL1 are enabled.		

Other values are reserved, and have the constrained unpredictable behavior that they must have the same behavior as 0b00. Software must not rely on this property as the behavior of reserved values might change in a future revision of the architecture.

This field has no effect on Breakpoint Instruction exceptions. These are always enabled.

This field is ignored unless both of the following are true:

- The PE is in Secure state.
- The Effective value of SCR EL3.RW is 0b0.

If Secure EL1 is using AArch32, then:

- If debug exceptions from Secure EL1 are enabled, then debug exceptions from Secure EL0 are also enabled.
- Otherwise, debug exceptions from Secure EL0 are enabled only if the value of <u>SDER32 EL3</u>.SUIDEN is 0b1.

If EL3 is not implemented and the Effective value of <u>SCR_EL3</u>.NS is 0b0, then the Effective value of this field is 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

NSPB, bits [13:12]

When FEAT SPE is implemented and FEAT RME is implemented:

Non-secure Profiling Buffer. Together with MDCR_EL3.NSPBE, controls the owning translation regime and accesses to Statistical Profiling and Profiling Buffer control registers from EL2 and EL1.

NCDDE	NCDD	Mooning
NSPBE	NSPB	Meaning D. C.
0b0	0b00	The Profiling Buffer
		uses Secure virtual
		addresses. Statistical
		Profiling is disabled
		in Realm and Non-
		secure states.
		Accesses to
		Statistical Profiling
		and Profiling Buffer
		control registers at
		EL2 and EL1
		generate Trap
		exceptions to EL3. When Secure state is
		not implemented,
		this encoding is reserved.
0.1		
0b0	0b01	The Profiling Buffer
		uses Secure virtual
		addresses. Statistical
		Profiling is disabled
		in Realm and Non-
		secure states.
		Accesses to
		Statistical Profiling
		and Profiling Buffer
		control registers at Realm and Non-
		secure EL2, and
		Realm and Non-
		secure EL1,
		generate Trap
		exceptions to EL3.
		When Secure state is
		not implemented,
		this encoding is
		reserved.
0h0	0b10	The Profiling Buffer
0b0	ULGU	uses Non-secure
		virtual addresses.
		Statistical Profiling
		is disabled in Secure
		and Realm states.
		Accesses to
		Statistical Profiling
		and Profiling Buffer
		control registers at
		EL2 and EL1
		generate Trap
		exceptions to EL3.
		checkness to fine.

NSPBE	NSPB	Meaning
0d0	0b11	The Profiling Buffer uses Non-secure virtual addresses. Statistical Profiling is disabled in Secure and Realm states. Accesses to Statistical Profiling and Profiling Buffer control registers at Secure and Realm EL2, and Secure and Realm EL1, generate Trap exceptions to EL3.
0b1	0b0x	Reserved
0b1	0b10	The Profiling Buffer uses Realm virtual addresses. Statistical Profiling is disabled in Secure and Nonsecure states. Accesses to Statistical Profiling and Profiling Buffer control registers at EL2 and EL1 generate Trap exceptions to EL3.
0b1	0b11	The Profiling Buffer uses Realm virtual addresses. Statistical Profiling is disabled in Secure and Nonsecure states. Accesses to Statistical Profiling and Profiling Buffer control registers at Secure and Nonsecure EL2, and Secure EL1, generate Trap exceptions to EL3.

In AArch64 state, the instructions affected by this control are:

• MRS and MSR accesses to PMBPTR_EL1, PMBSR_EL1, PMSCR_EL1, PMSCR_EL1", PMSCR_EL1", PMSCR_EL1", PMSCR_EL1", <a href="PMSCR_E

<u>PMSEVFR_EL1</u>, <u>PMSFCR_EL1</u>, <u>PMSICR_EL1</u>, <u>PMSIRR_EL1</u>, and <u>PMSLATFR_EL1</u>.

- MRS accesses to **PMSIDR EL1**.
- If FEAT_SPEv1p2 is implemented, MRS and MSR accesses to PMSNEVFR EL1.
- If FEAT_SPE_FDS is implemented, MRS and MSR accesses to PMSDSFR EL1.

Unless the instruction generates a higher priority exception, trapped instructions generate an exception to EL3.

Trapped instructions are reported using EC syndrome value 0x18.

If profiling is enabled and MDCR_EL3.{NSPB, NSPBE} selects a reserved value, then the behavior is constrained unpredictable, and the Statistical Profiling Unit does one of:

- Behaves as if profiling is disabled.
- Selects an implemented Security state as the owning Security state.
- When profiling data is generated, it is not written to memory and the Statistical Profiling Unit generates a Profiling Buffer management event:
 - If <u>PMBSR EL1</u>.S is 0, then all of the following occur:
 - PMBSR EL1.S is set to 1.
 - PMBSR EL1.DL is set to 1.
 - PMBSR_EL1.EC is set to 0b000000, other buffer management event.
 - PMBSR_EL1.BSC is set to 0b000000, access not allowed.
 - The other fields in PMBSR EL1 are unchanged.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

When FEAT SPE is implemented:

Non-secure Profiling Buffer. Controls the owning translation regime and accesses to Statistical Profiling and Profiling Buffer control registers.

NSPB	Meaning	

Profiling Buffer uses Secure 0b00 Virtual Addresses. Statistical Profiling enabled in Secure state and disabled in Non-secure state. Accesses to Statistical Profiling and Profiling Buffer control registers at EL2 and EL1 in Non-secure and Secure states generate Trap exceptions to FI.3. 0b01 Profiling Buffer uses Secure Virtual Addresses. Statistical Profiling enabled in Secure state and disabled in Non-secure state. Accesses to Statistical Profiling and Profiling Buffer control registers at EL2 and EL1 in Non-secure state generate Trap exceptions to EL3. 0b10 Profiling Buffer uses Non-secure Virtual Addresses. Statistical Profiling enabled in Non-secure state and disabled in Secure state. Accesses to Statistical Profiling and Profiling Buffer control registers at EL2 and EL1 in Non-secure and Secure states generate Trap exceptions to EL3. Profiling Buffer uses Non-secure 0b11 Virtual Addresses. Statistical Profiling enabled in Non-secure state and disabled in Secure state. Accesses to Statistical Profiling and Profiling Buffer control registers at EL2 and EL1 in Secure state generate Trap exceptions to EL3.

In AArch64 state, the instructions affected by this control are:

- MRS and MSR accesses to <u>PMBLIMITR_EL1</u>, <u>PMBPTR_EL1</u>,
 <u>PMBSR_EL1</u>, <u>PMSCR_EL1</u>, <u>PMSCR_EL2</u>, <u>PMSCR_EL12</u>,
 <u>PMSEVFR_EL1</u>, <u>PMSFCR_EL1</u>, <u>PMSICR_EL1</u>, <u>PMSIRR_EL1</u>, and <u>PMSLATFR_EL1</u>.
- MRS accesses to PMSIDR EL1.
- If FEAT_SPEv1p2 is implemented, MRS and MSR accesses to PMSNEVFR EL1.
- If FEAT_SPE_FDS is implemented, MRS and MSR accesses to PMSDSFR_EL1.

Unless the instruction generates a higher priority exception, trapped instructions generate an exception to EL3.

Trapped instructions are reported using EC syndrome value 0x18.

If EL3 is not implemented and the Effective value of <u>SCR_EL3</u>.NS is 1, then the Effective value of this field is <code>0b11</code>.

If EL3 is not implemented and the Effective value of <u>SCR_EL3</u>.NS is 0, then the Effective value of this field is 0b01.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

NSPBE, bit [11]

When FEAT SPE is implemented and FEAT RME is implemented:

Non-secure Profiling Buffer Extended. Together with MDCR_EL3.NSPB, controls the owning translation regime and accesses to Statistical Profiling and Profiling Buffer control registers from EL2 and EL1.

For a description of the values derived by evaluating NSPB and NSPBE together, see MDCR EL3.NSPB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TDOSA, bit [10]

When FEAT_DoubleLock is implemented:

Trap debug OS-related register access. Traps EL2 and EL1 System register accesses to the powerdown debug registers to EL3.

Accesses to the registers are trapped as follows:

 Accesses from AArch64 state, <u>OSLAR_EL1</u>, <u>OSLSR_EL1</u>, <u>OSDLR_EL1</u>, <u>DBGPRCR_EL1</u>, and any implementation defined register with similar functionality that the implementation

- specifies as trapped by this bit, are trapped to EL3 and reported using EC syndrome value 0x18.
- Accesses using MCR or MRC to <u>DBGOSLAR</u>, <u>DBGOSLSR</u>, <u>DBGOSDLR</u>, and <u>DBGPRCR</u>, are trapped to EL3 and reported using EC syndrome value 0x05.
- Accesses to any implementation defined register with similar functionality that the implementation specifies as trapped by this bit.

TDOSA	Meaning
0d0	This control does not cause any
	instructions to be trapped.
0b1	EL2 and EL1 System register
	accesses to the powerdown
	debug registers are trapped to
	EL3, unless it is trapped by
	HDCR.TDOSA or
	MDCR_EL2.TDOSA.

Note

The powerdown debug registers are not accessible at ELO.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Trap debug OS-related register access. Traps EL2 and EL1 System register accesses to the powerdown debug registers to EL3.

The following registers are affected by this trap:

- AArch64: OSLAR EL1, OSLSR EL1, and DBGPRCR EL1.
- AArch32: DBGOSLAR, DBGOSLSR, and DBGPRCR.
- AArch64 and AArch32: Any implementation defined register with similar functionality that the implementation specifies as trapped by this bit.
- It is implementation defined whether accesses to <u>OSDLR_EL1</u> and <u>DBGOSDLR</u> are trapped.

TDOSA	Meaning
0b0	This control does not cause any
	instructions to be trapped.

EL2 and EL1 System register
accesses to the powerdown
debug registers are trapped to
EL3, unless it is trapped by
HDCR.TDOSA or
MDCR_EL2.TDOSA.

Note

The powerdown debug registers are not accessible at ELO.

The reset behavior of this field is:

 On a Warm reset, this field resets to an architecturally unknown value.

TDA, bit [9]

Trap accesses of debug System registers. Enables a trap to EL3 on accesses of debug System registers.

TDA	Meaning			
0b0	Accesses of the specified debug			
	System registers are not trapped			
	by this mechanism.			
0b1	Accesses of the specified debug			
	System registers at EL2, EL1, and			
	EL0 are trapped to EL3, unless			
	the instruction generates a higher			
	priority exception.			

In AArch64 state, the instructions affected by this control are:

- MRS and MSR accesses to <u>DBGAUTHSTATUS_EL1</u>, <u>DBGBCR<n>_EL1</u>, <u>DBGBVR<n>_EL1</u>, <u>DBGCLAIMCLR_EL1</u>, <u>DBGCLAIMSET_EL1</u>, <u>DBGVCR32_EL2</u>, <u>DBGWCR<n>_EL1</u>, <u>DBGWVR<n>_EL1</u>, <u>MDCCINT_EL1</u>, <u>MDCCSR_EL0</u>, <u>MDCR_EL2</u>, <u>MDRAR_EL1</u>, <u>MDSCR_EL1</u>, <u>OSDTRRX_EL1</u>, <u>OSDTRTX_EL1</u>, and OSECCR_EL1.
- If FEAT_Debugv8p9 is implemented, MRS and MSR accesses to MDSELR EL1.
- In Non-debug state, MRS accesses to <u>DBGDTRRX_EL0</u> and <u>DBGDTR_EL0</u> and MSR accesses to <u>DBGDTRTX_EL0</u> and <u>DBGDTR_EL0</u>.

In AArch32 state, the instructions affected by this control are:

 MRC and MCR accesses to <u>DBGAUTHSTATUS</u>, <u>DBGBCR<n></u>, <u>DBGBVR<n></u>, <u>DBGBXVR<n></u>, <u>DBGCLAIMCLR</u>, DBGCLAIMSET, DBGDCCINT, DBGDEVID1, DBGDEVID1, DBGDEVID2, DBGDIDR, DBGDRAR, DBGDSAR, DBGDSCRext, DBGDSCRint, DBGDTRRXext, DBGDTRTXext, DBGOSECCR, DBGVCR, DBGWCR<n>, DBGWFAR, DBGWVR<n>, HDCR, and SDER.

- MRRC accesses to DBGDRAR and DBGDSAR.
- STC accesses to <u>DBGDTRRXint</u> and LDC accesses to <u>DBGDTRTXint</u>.
- In Non-debug state, MRC accesses to <u>DBGDTRRXint</u> and MCR accesses to <u>DBGDTRTXint</u>.

Unless the instruction generates a higher priority exception, trapped instructions generate an exception to EL3.

Trapped AArch64 instructions are reported using EC syndrome value 0x18.

Trapped AArch32 instructions are reported using EC syndrome value 0×03 for MRC and MCR accesses with coproc == 0b1111, 0×05 for MCR and MCR accesses with coproc == 0b1110, 0×06 for LDC and STC accesses, and $0\times0C$ for MRRC accesses.

The following instructions are not trapped in Debug state:

- AArch64 MRS accesses to <u>DBGDTRRX_EL0</u> and <u>DBGDTR_EL0</u> and MSR accesses to <u>DBGDTRTX_EL0</u> and <u>DBGDTR_EL0</u>.
- AArch32 MRC accesses to <u>DBGDTRRXint</u> and MCR accesses to <u>DBGDTRTXint</u>.

If 16 or fewer breakpoints and 16 or fewer watchpoints are implemented, and MDSELR_EL1 is implemented as RAZ/WI, then it is implementation defined whether AArch64 accesses to MDSELR_EL1 are trapped to EL3 when MDCR EL3.TDA is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bit [8]

Reserved, res0.

EnPM2, bit [7]

When FEAT_PMUv3p9 is implemented, or FEAT_SPMU is implemented, or FEAT_EBEP is implemented or FEAT_PMUv3_SS is implemented:

Enable access to PMU registers. When disabled, accesses to PMU registers generate a trap to EL3.

EnPM2	Meaning
0b0	Accesses of the specified PMU registers at EL2, EL1, and EL0 are the instruction generates a higher priority exception. If FEAT_PMUv3_ICNTR is implemented, then:
	• PMCNTENCLR_EL0.F, PMCNTENSET_EL0.F, PMOVSCL PMOVSSET_EL0.F, and PMZR_EL0.F read-as-zero and ig and EL0.
	• <u>PMINTENCLR_EL1</u> .F and <u>PMINTENSET_EL1</u> .F read-as- EL2 and EL1.
0b1	Accesses of the specified PMU registers are not trapped by this n

In AArch64 state, the instructions affected by this control are:

- If FEAT EBEP is implemented or FEAT PMUv3 SS is implemented, MRS and MSR accesses to PMECR EL1.
- If FEAT PMUv3 ICNTR is implemented, MRS and MSR accesses to PMICFILTR EL0 and PMICNTR EL0.
- If FEAT PMUv3p9 is implemented, MRS and MSR accesses to PMUACR EL1.
- If FEAT SEBEP is implemented, MRS and MSR accesses to PMIAR EL1.
- If FEAT SPMU is implemented, MRS and MSR accesses to SPMACCESSR EL1, SPMACCESSR EL2, SPMACCESSR EL12, SPMCFGR EL1, SPMCGCR<n> EL1, SPMCNTENCLR EL0, SPMCNTENSET ELO, SPMCR ELO, SPMDEVAFF EL1, SPMDEVARCH EL1, SPMEVCNTR<n> EL0, SPMEVFILT2R<n> EL0, SPMEVFILTR<n> EL0, SPMEVTYPER<n> EL0, SPMIIDR EL1, SPMINTENCLR EL1, SPMINTENSET EL1, SPMOVSCLR EL0, SPMOVSSET EL0, SPMSCR EL1, and SPMSELR EL0.

Unless the instruction generates a higher priority exception, trapped instructions generate an exception to EL3.

Trapped instructions are reported using EC syndrome value 0x18.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TPM, bit [6] When FEAT PMUv3 is implemented:

Trap accesses of PMU registers. Enables a trap to EL3 on accesses of PMU registers.

TPM	Meaning
0b0	Accesses of the specified PMU
	registers are not trapped by this
	mechanism.
0b1	Accesses of the specified PMU
	registers at EL2, EL1, and EL0
	are trapped to EL3, unless the
	instruction generates a higher
	priority exception.

In AArch64 state, the instructions affected by this control are:

- MRS and MSR accesses to PMCCFILTR_EL0, PMCCNTR_EL0,
 PMCNTENCLR_EL0, PMCNTENSET_EL0, PMCR_EL0,
 PMEVCNTR<n>_EL0, PMEVTYPER<n>_EL0,
 PMINTENCLR_EL1, PMINTENSET_EL1, PMOVSCLR_EL0,
 PMOVSSET_EL0, PMSELR_EL0, PMSWINC_EL0,
 PMUSERENR EL0, PMXEVCNTR EL0, and PMXEVTYPER EL0.
- MRS accesses to PMCEIDO ELO and PMCEID1 ELO.
- If FEAT PMUv3p4 is implemented, MRS accesses to PMMIR EL1.
- If FEAT PMUv3p9 is implemented, MSR accesses to PMZR ELO.
- If FEAT_PMUv3_ICNTR is implemented, MRS and MSR accesses to PMICFILTR ELO and PMICNTR ELO.
- If FEAT_EBEP is implemented or FEAT_PMUv3_SS is implemented, MRS and MSR accesses to PMECR_EL1.
- If FEAT_SEBEP is implemented, MRS and MSR accesses to PMIAR EL1.

In AArch32 state, the instructions affected by this control are:

- MRC and MCR accesses to <u>PMCCFILTR</u>, <u>PMCCNTR</u>, <u>PMCEID0</u>, <u>PMCEID1</u>, <u>PMCNTENCLR</u>, <u>PMCNTENSET</u>, <u>PMCR</u>, <u>PMEVCNTR<n></u>, <u>PMEVTYPER<n></u>, <u>PMINTENCLR</u>, <u>PMINTENSET</u>, <u>PMOVSR</u>, <u>PMOVSSET</u>, <u>PMSELR</u>, <u>PMSWINC</u>, <u>PMUSERENR</u>, <u>PMXEVCNTR</u>, and <u>PMXEVTYPER</u>.
- MRRC and MCRR accesses to PMCCNTR.
- If FEAT_PMUv3p1 is implemented, MRC accesses to <u>PMCEID2</u> and <u>PMCEID3</u>.
- If FEAT PMUv3p4 is implemented, MRC accesses to PMMIR.

Unless the instruction generates a higher priority exception, trapped instructions generate an exception to EL3.

Trapped AArch64 instructions are reported using EC syndrome value 0x18.

Trapped AArch32 instructions are reported using EC syndrome value 0×03 for MRC and MCR accesses, and 0×04 for MRRC and MCRR accesses.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bit [5]

Reserved, res0.

EDADE, bit [4] When FEAT_RME is implemented:

External Debug Access Disable Extended. Together with MDCR_EL3.EDAD, controls access to breakpoint registers, watchpoint registers, and OSLAR EL1 by an external debugger.

For a description of the values derived by evaluating EDAD and EDADE together, see MDCR_EL3.EDAD.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, res0.

ETADE, bit [3]

When FEAT_RME is implemented, FEAT_TRC_EXT is implemented and FEAT_TRBE is implemented:

External Trace Access Disable Extended. Together with MDCR_EL3.ETAD, controls access to trace unit registers by an external debugger.

For a description of the values derived by evaluating ETAD and ETADE together, see MDCR_EL3.ETAD.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, res0.

EPMADE, bit [2]

When FEAT_RME is implemented and FEAT_PMUv3_EXT is implemented:

External Performance Monitors Access Disable Extended. Together with MDCR_EL3.EPMAD, controls access to Performance Monitor registers by an external debugger.

For a description of the values derived by evaluating EPMAD and EPMADE together, see MDCR EL3.EPMAD.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, res0.

Bit [1]

Reserved, res0.

RLTE, bit [0]

When FEAT_RME is implemented and FEAT_TRF is implemented:

Realm Trace enable. Enables tracing in Realm state.

RLTE	Meaning
0b0	Trace prohibited in Realm state,
	unless overridden by the
	implementation defined
	authentication interface.
0b1	Trace in Realm state is not
	affected by this bit.

This bit also controls the level of authentication that is required by an external debugger to enable external tracing.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, res0.

Accessing MDCR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MDCR_EL3

op0	op1	CRn	CRm	op2
0b11	0b110	0b0001	0b0011	0b001

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    X[t, 64] = MDCR_EL3;
```

MSR MDCR EL3, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b110	0b0001	0b0011	0b001

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    MDCR_EL3 = X[t, 64];
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright \hat{A} © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.