Uniwersytet Warszawski

Wydział Matematyki, Informatyki i Mechaniki

Grzegorz Szpak

Nr albumu: 319400

Klasyfikacja wielowymiarowych szeregów czasowych przy ewoluujących pojęciach

Praca magisterska na kierunku INFORMATYKA

> Praca wykonana pod kierunkiem **dra Andrzeja Janusza** Instytut Informatyki

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Data

Podpis kierującego pracą

Oświadczenie autora (autorów) pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją elektroniczną.

Data

Podpis autora (autorów) pracy

Streszczenie

W pracy przedstawiono sposoby wydajnej klasyfikacji szeregów czasowych dla danych pochodzących ze źródła o zmiennym rozkładzie. Opisane zostały metody ekstrakcji cech z wielowymiarowego szeregu czasowego. Autor opisuje także metody wyboru przestrzeni atrybutów odpornej na zmiany rozkładu źródła.

Słowa kluczowe

Eksploracja danych, wielowymiarowy szereg czasowy, ewoluujące pojęcia, dopasowanie dziedziny, ekstrakcja cech, selekcja cech, lasy losowe, regresja logistyczna, maszyna wektorów wspierających

Dziedzina pracy (kody wg programu Socrates-Erasmus)

11.4 Sztuczna inteligencja TODO

Klasyfikacja tematyczna

D. Software TODO

Tytuł pracy w języku angielskim

Classification of multivariate time series in the presence of concept drift

Spis treści

1.	$\mathbf{W}\mathbf{p}$	rowadzenie	5
	1.1.	Uczenie z nadzorem a concept drift	5
	1.2.	Formalizacja problemu	6
		1.2.1. Paradygmaty uczenia się	6
		1.2.2. Ewolucja pojęć a overfitting	7
2.	Opi	s przeprowadzanego eksperymentu	9
	2.1.	Przedstawienie badanego problemu	9
		2.1.1. Opis zbioru danych	9
			11
	2.2.		11
			11
			13
	2.3.	·	14
3.	Eks	trakcja cech z szeregów czasowych	15
	3.1.		15
	3.2.		15
			16
			19
			23
4.	Red	ukcja concept drift poprzez selekcję cech	25
			25
			27
Ri	hlioo	rafia	31

Rozdział 1

Wprowadzenie

1.1. Uczenie z nadzorem a concept drift

Podstawowym problemem rozważanym w teorii uczenia maszynowego jest problem uczenia z nadzorem (ang. *supervised learning*). Niech dane będą:

- zbiór X przykładów
- zbiór Y decyzji
- funkcja $f: X \to Y$
- Parę zbiorów $(X_{train} \subseteq X, Y_{train} \subseteq Y)$ instancji x_1, x_2, \ldots, x_n oraz odpowiadających im decyzji $f(x_1), f(x_2), \ldots, f(x_n)$, zwaną zbiorem treningowym

Zadanie uczenia z nadzorem polega na wyznaczeniu na podstawie zbioru treningowego oraz przy użyciu pewnego algorytmu uczącego (klasyfikatora) takiej funkcji $c: X \to Y$ (zwanej modelem) będącej dobrą aproksymacją funkcji f. Jakość modelu c określa się, porównując jego wartości dla elementów skończonego zbioru testowego X_{test} z rzeczywistymi wartościami funkcji f dla tych elementów. Istotne jest przy tym założenie, że elementy zbiorów X_{train} oraz X_{test} losowane są ze zbioru X według tego samego rozkładu prawdopodobieństwa D.

Schemat rozwiązywania problemu uczenia z nadzorem przedstawia rys. 1.1.

Na przestrzeni ostatnich dziesięcioleci opracowanych zostało wiele algorytmów uczących wykazujących się dużą skutecznością w przeróżnych dziedzinach: od rozpoznawania obrazów, przez klasyfikację tekstów, rekomendację produktów, wykrywanie spamu, po przewidywanie zmian na giełdzie czy diagnostykę medyczną.

Sytuacja zmienia się diametralnie, gdy pominiemy założenie o równości rozkładów dla zbiorów treningowych i testowych. Problem ten nazywa się ewolucją pojęć (ang. concept drift) lub dopasowaniem dziedziny (ang. domain adaptation). Jest on szczególnie widoczny w zadaniach przetwarzania języka naturalnego (ang. natural language processing, w skrócie NLP). Rozpatrzmy dla przykładu problem rozpoznawania nazw własnych (ang. named entity recognition). Załóżmy, że klasyfikator uczony jest na podstawie danych encyklopedycznych oraz testowany na danych pochodzących z komunikatora internetowego. Obydwa zbiory, jakkolwiek powiązane, różnią się w znaczący sposób - przykładowo, szukanie wielkich liter może być bardzo pomocne w pierwszej dziedzinie, a nieść znacznie mniej informacji w wiadomościach z komunikatora.

Rysunek 1.1: Schemat uczenia z nadzorem

Stąd też właśnie w dziedzinie NLP powstało najwięcej metod mających rozwiązać problem ewoluujących pojęć. Przykładami takich metod są algorytm structural correspondence learning opisywany w [1] czy metoda odpowiedniego dopasowania przestrzeni parametrów zaproponowana przez Daume w [2].

Problem domain adaptation nie jest jednak często poruszany w przypadku klasyfikacji szeregów czasowych. W poniższej pracy autor przedstawia sposoby radzenia sobie z concept drift podczas klasyfikacji szeregów czasowych oraz wykonuje studium przypadku na wybranym zbiorze danych.

1.2. Formalizacja problemu

1.2.1. Paradygmaty uczenia się

Przyjmijmy definicje jak na początku sekcji 1.1. W zależności od rozkładów D_{train} , D_{test} oraz od dostępności zbiorów Y_{train} , X_{test} , Y_{test} , można (za [3]) zdefiniować inne paradygmaty uczenia.

I tak, jeśli zbiór Y_{train} jest nieznany w momencie tworzenia modelu, mamy do czynienia z uczeniem bez nadzoru (ang. unsupervised learning).

Gdy zbiór X_{test} nie jest znany podczas uczenia, mowa o uczeniu indukcyjnym (ang. inductive learning). W przeciwnym razie takie uczenie nazywa się uczeniem transdukcyjnym (ang.

transductive learning).

W powyższym przykładach istotne jest założenie, iż zbiory X_{train} , X_{test} pochodzą z tego samego rozkładu D. Odwrotna sytuacja rozpatrywana jest w paradygmacie uczenia z przenie-sieniem wiedzy (ang. transfer learning). Przyjmuje się w nim, że dane są dwa różne rozkłady D^{source} i D^{target} . Model wyuczony na danych treningowych X_{train}^{source} , Y_{train}^{source} wykorzystywany jest zatem do klasyfikacji zbioru testowego X_{test}^{target} , Y_{test}^{target} pochodzących z rozkładu D^{target} . W poniższej pracy autor skupia się na problemie dopasowania dziedziny, który zakłada, że zbiór dostępnych klas Y jest ten sam dla D^{source} i D^{target} . Przeciwieństwem dopasowania dziedziny jest zadanie uczenia wielozadaniowego (ang. multi-task learning, więcej między innymi w [4]), gdzie zbiory X_{train} , X_{test} pochodzą z tego samego rozkładu, natomiast zbiory Y_{train} , Y_{test} są różne.

Powyższe rozważania podsumowuje tabela 1.1.

Tabela 1.1: Paradygmaty uczenia w teorii uczenia maszynowego. We wszystkich przypadkach zakładamy, że zbiór X_{train} jest dostępny podczas uczenia, podczas gdy zbiór Y_{test} nie jest znany.

Paradygmat	Y_{train} dostępny?	X_{test} dostępny?	Rozkład danych testowych	
Indukcyjne uczenie	Nie	Nie	D^{source}	
bez nadzoru				
Transdukcyjne uczenie	Nie	Tak	D^{source}	
bez nadzoru				
Indukcyjne uczenie	Tak	Nie	Dsource	
z nadzorem	Tak	1110	u	
Transdukcyjne uczenie	Tak	Tak	D^{source}	
z nadzorem	lak	lak	Details	
Indukcyjne uczenie				
bez nadzoru	Nie	Nie	D^{target}	
z przeniesieniem wiedzy				
Transdukcyjne uczenie				
bez nadzoru	Nie	Tak	D^{target}	
z przeniesieniem wiedzy				
Indukcyjne uczenie				
z nadzorem	Tak	Nie	D^{target}	
z przeniesieniem wiedzy				
Transdukcyjne uczenie				
z nadzorem	Tak	Tak	D^{target}	
z przeniesieniem wiedzy				

W poniższej pracy autor skupi się na problemie transdukcyjnego uczenia z nadzorem z przeniesieniem wiedzy. Przedstawione zostaną algorytmy, które wykorzystują dostępny zbiór X_{test} do znalezienia reprezentacji odpornej na zmiany rozkładu, co skutkować będzie zwiększoną jakością klasyfikacji w stosunku do standardowego podejścia opisanego w 1.1.

1.2.2. Ewolucja pojęć a overfitting

Mówiąc o problemie ewoluujących pojęć, należy wspomnieć o zagadnieniu przeuczenia (ang. overfitting). Polega on na zbudowaniu nadmiernie skomplikowanego modelu, co skutkuje sła-

bą jego jakością.

Obydwa pojęcia mogą być mylone przy niewłaściwym sposobie walidacji modelu. Jeśli jakość klasyfikacji sprawdzana jest wyłącznie na zbiorach treningowym i testowym, zarówno concept drift, jak i overfitting dają podobne objawy - wysoki wynik na zbiorze treningowym oraz niski na zbiorze testowym. W przypadku przeuczenia jest to spowodowane nadmiernym dopasowaniem modelu do danych treningowych i jego niską zdolnością do uogólniania. Jeśli mamy do czynienia z ewoluującymi pojęciami, słaba jakość modelu jest spowodowana innym rozkładem dla zbioru testowego.

W rozróżnienu obydwu sytuacji pomagać może zastosowanie $walidacji\ krzyżowej$ (ang. crossvalidation) na zbiorze treningowym. Walidacja krzyżowa polega na podziale zbioru treningowego na n równolicznych części. Następnie budowane jest n modeli, przy czym n-1 części tworzy zbiór treningowy, natomiast pozostała część - zbiór testowy. Ostateczny wynik jest średnim wynikiem powstałych n modeli.

Nietrudno zauważyć, że w przypadku concept drift nie powinno się zauważyć znacznego spadku jakości modelu przy wykonaniu walidacji krzyżowej - w tym przypadku zbiór testowym pochodzi z tej samej dziedziny co treningowy. Inaczej będzie w przypadku przeuczenia - tu wynik walidacji krzyżowej będzie wyraźnie niższy niż wynik na zbiorze treningowym (tabela 1.2).

Tabela 1.2: Concept drift a overfitting - obniżony wynik modelu 1. przy walidacji krzyżowej świadczy o przeuczeniu, a nie występowaniu ewoluujących pojęć. W drugim przypadku model mimo dobrej umiejętności klasyfikacji elementów pochodzących z rozkładu D^{source} , cierpi na spadek jakości przy ewaluacji na zbiorze pochodzącym z rozkładu D^{target} .

	Wynik na X_{train}	Wynik CV	Wynik na X_{test}
Model 1	0.98	0.73	0.68
Model 2	0.97	0.92	0.76

Rozdział 2

Opis przeprowadzanego eksperymentu

2.1. Przedstawienie badanego problemu

2.1.1. Opis zbioru danych

Dane, na których sprawdzana była jakość analizowanych algorytmów, pochodzą z konkursu AAIA'15 Data Mining Competition: Tagging Firefighter Activities at a Fire Scene¹ organizowanego przez Uniwersytet Warszawski oraz Szkołę Główną Służby Pożarniczej w Warszawie. Na potrzeby konkursu zebrano odczyty pochodzące z "inteligentnego kombinezonu", który monitoruje ruchy oraz funkcje życiowe strażaka. W skład kombinezonu wchodziło po siedem akcelerometrów i żyroskopów umieszczonych na: tułowiu, ramionach, dłoniach i nogach (rys. 2.1).

Rysunek 2.1: Rozmieszczenie czujników na ciele strażaka

Każda instancja w zbiorze danych składała się z zebranych w krótkich odcinkach czasu (około 1.8 s) odczytów z zamontowanych sensorów. Dla każdego akcelerometru oraz żyroskopu zebrano po 400 odczytów wzdłuż osi $x,\ y,\ z,$ wraz ze względnym czasem wykonania odczytu. Dla każdego wiersza daje to 42 - wymiarowy szereg czasowy o długości 400. Jak łatwo wywnioskować, średni odstęp między kolejnymi odczytami wynosił około 4.5 ms. Zestaw

¹https://knowledgepit.fedcsis.org/contest/view.php?id=106

atrybutów uzupełniały dodatkowo 42 agregaty ze wskazań urządzeń monitorujących funkcje życiowe strażaka (takie jak EKG, częstotliwość oddechu, temperatura skóry). Nieprzetworzone dane zawierały więc 400*43+42=17242 atrybuty. Zarówno zbiór treningowy, jak i testowy składały się z 20000 przykładów. Bardzo istotny dla dla analizy tego zbioru danych okazał się fakt, że dane treningowe i testowe pochodziły od różnych czteroosobowych grup strażaków.

Zadaniem uczestników konkursu było przypisanie każdej instancji w zbiorze postury strażaka w danym momencie oraz wykonywanej przez niego czynności. Zastosowane algorytmy miały pomóc w stworzeniu systemu monitorującego bezpieczeństwo strażaka podczas akcji.

Jako że problem klasyfikacji wieloetykietowej nie jest tematem niniejszej pracy, autor postanowił skupić się na problemie przewidywania czynności wykonywanej przez strażaka. Zbiór klas liczył więc 16 elementów. Postawiony problem utrudniał dodatkowo fakt, że klasy były wysoce niezbalansowane - najczęstsza klasa (manipulating) wystąpiła w zbiorze treningowym 6349 razy, podczas gdy najrzadsza (signal_hose_pullback) - jedynie 98 razy. Rozkład klas przedstawia rys. 2.2.

Rysunek 2.2: Rozkład klas w zbiorze treningowym

2.1.2. Ewaluacja jakości klasyfikatora

Standardową miarą jakości jest prezycja (ang. accuracy):

$$ACC(c) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}[c(\mathbf{x}_i) = y_i]$$

W opisywanym konkursie zastosowano modyfikację tej miary zwaną balanced accuracy, zdefiniowaną następująco:

$$ACC_{i}(c) = \frac{|j: c(\mathbf{x}_{j}) = y_{j} = i|}{|j: y_{j} = i|}$$
(2.1)

$$BAC(c) = \frac{\sum_{i=1}^{l} ACC_i(c)}{l}$$
(2.2)

Nietrudno zauważyć, że miara BAC jest bardziej wrażliwa na błędną klasyfikację rzadkich klas niż standardowa miara ACC.

2.2. Opis użytych klasyfikatorów

W kolejnych rozdziałach przedstawione zostaną metody mające na celu zwiększenie jakości modelu budowanego na danych, w których obecny jest problem ewoluujących pojęć. Użyteczność tych metod sprawdzana będzie dla trzech różnych algorytmów uczenia: klasyfikatorze opartym na regresji logistycznej, maszynie wektorów nośnych (ang. *support vector machine*, SVM) oraz drzewach decyzyjnych.

2.2.1. Klasyfikator liniowy

Regresja logistyczna i maszyna wektorów wspierających należą do grupy klasyfikatorów liniowych. Przyjmijmy oznaczenia jak w sekcji 1.1. Załóżmy, że zbiór klas Y jest dwuelementowy - dla uproszczenia niech $Y = \{+1, -1\}$. Niech dalej $y \in Y$ będzie decyzją dla elementu $\mathbf{x} = (x_1, x_2, \dots, x_m) \in X \subseteq \mathbb{R}^m$. Klasyfikatorem liniowym nazywamy m-1 - wymiarową hieprłaszczyznę rozdzielającą punkty z X. Niech $\mathbf{w} = (w_1, w_2, \dots, w_m) \in \mathbb{R}^m$ będzie wektorem współczynników tej hiperpłaszczyzny. Uczenie klasyfikatora liniowego zwykle polega na minimalizacji wartości pewnej funkcji błędu $l(\mathbf{w})$ na zbiorze treningowym.

Klasyfikacja oparta na regresji logistycznej (logit)

Niech

$$g(z) = \frac{1}{1 + e^{-z}}$$

zwana będzie funkcją logistyczną. Jej wykres przedstawia rysunek 2.3.

Funkcja g jest oczywiście ciągła. Jednocześnie $\lim_{z\to-\inf}g(z)=0$ oraz $\lim_{z\to\inf}g(z)=1$. Dzięki tym właściwościom nadaje się ona do modelowania prawdopodobieństwa jakiegoś zjawiska. Klasyfikator bazujący na regresji logistycznej modeluje prawdopodobieństwo należenia do klasy pozytywnej przez funkcję:

$$p_w(\mathbf{x}) = g(\mathbf{w}^{\mathsf{T}}\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^{\mathsf{T}}\mathbf{x}}},$$

przy czym klasyfikacja dokonywana jest przez:

Rysunek 2.3: Wykres funkcji sigmoidalnej

$$c_w(\mathbf{x}) = 1 \iff p_w(\mathbf{x}) \geqslant \frac{1}{2}.$$

Uczenie klasyfikatora opartego na regresji logistycznej polega więc na znalezieniu hiperpłaszczyzny **w**, która minimalizuje następującą funkcję straty:

$$l_{log_loss}(\mathbf{w}) = \sum_{i=i}^{n} log(1 + e^{-y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i}).$$

Maszyna wektorów nośnych

Innym typem klasyfikatora liniowego jest (ang. support vector machine, SVM). Uczenie SVM polega na znalezieniu hiperpłaszczyzny o największej odległości od punktów obydwu klas (rys. 2.4) - z tego powodu SVM nazywany jest klasyfikatorem maksymalnego marginesu (ang. max margin classifier).

Rysunek 2.4: Płaszczyzna H_1 nie rozdziela klas. Płaszczyzna H_2 rozdziela je, ale z niewielkim marginesem. Płaszczyzna H_3 rozdziela je z maksymalnym marginesem.

Założenie o liniowej separowalności klas jest jednak rzadko spełnione. Uczenie klasyfikatora SVM polega więc na znalezieniu hiperpłaszczyzny w, która minimalizuje funkcję straty

daną jako

$$l_{hinge_loss}(\mathbf{w}) = \sum_{i=i}^{n} max(0, 1 - y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i).$$

Klasyfikator "jeden przeciwko wszystkim"

Jak wspomniano wcześniej, zarówno regresja logistyczna, jak i SVM są klasyfikatorami binarnymi - zakładają, że zbiór klas Y jest dwuelementowy. Aby użyć ich do klasyfikacji danego zbioru, potrzebna była metoda klasyfikacji wieloklasowej. Zastosowano podejście zwane "jeden przeciw wszystkim" (ang. one-vs.-all, OvA, bądź one-vs.-rest, OvR).

Niech $Y = \{1, 2, ..., k\}$. Klasyfikacja OvA polega na nauczeniu k binarnych klasyfikatorów $c_1, c_2, ..., c_k$. Klasa dla j - tego klasyfikatora zdefiniowana jest następująco:

$$y_i^j = 1 \iff y_i = j$$

Ostatecznie elementowi x przypisywana jest klasa, której klasyfikator daje najmniejszą wartość funkcji błędu:

$$c(\mathbf{x}) = arg \min_{j \in 1...k} l_j(\mathbf{x})$$

2.2.2. Lasy losowe

Innym typem klasyfikatora jest las losowy. Jest to klasyfikator wykorzystujący prostszy klasyfikator - drzewo decyzyjne. Drzewo decyzyjne to etykietowane drzewo, którego każdy węzeł odpowiada przeprowadzeniu pewnego testu na wartościach atrybutów. Z węzła wewnętrznego wychodzi tyle gałęzi, ile jest możliwych wyników testu odpowiadającego temu węzłowi. Każdy liść zawiera decyzję o klasyfikacji obiektu. Przykładowe drzewo decyzyjne przedstawia rys. 2.5.

Rysunek 2.5: Przykładowe drzewo decyzyjne

Uczenie lasu losowego polega na uczeniu określonej liczby drzew decyzyjnych - każdego na losowej podprzestrzeni atrybutów. Finalna klasa jest modą klas wyznaczonych przez poszczególne drzewa. Lasy losowe, podpbnie jak drzewa decyzyjne, wspierają klasyfikację wieloklasowa.

2.3. Przykład Ewolucji pojęć w analizowanym zbiorze

Okazuje się, że głównym wyzwaniem w konkursie opisywanym w sekcji 2.1.1 są różnice w wykonywaniu poszczególnych czynności między strażakami. Aby się o tym przekonać, nauczono las losowy na 42 atrybutach opisujących funkcje życiowe, następnie zmierzono jego jakość (używając miary BAC) na zbiorach treningowym i testowym. Do pomiaru jakości na zbiorze treningowym zastosowano trójwarstwową walidację krzyżową. Problem $concept\ drift$ spowodował drastyczne obniżenie jakości klasyfikatora, która spadła z 0.993 na 0.079.

Rozdział 3

Ekstrakcja cech z szeregów czasowych

3.1. Metody klasyfikacji szeregów czasowych

Szeregi czasowe obecne są w wielu różnych dziedzinach życia - od medycyny, przez finanse, i wyszukiwanie informacji po przetwarzanie sygnałów oraz prognozę pogody. W ostatnich latach opisanych zostało wiele metod do wykrywania wzorców czasowych w takich zadaniach jak: określanie stanu zdrowia pacjenta na podstawie odczytów elektrokardiografu, przewidywanie wahań na giełdzie, analiza mowy czy prognozowanie temperatur.

Wśród metod zaproponowanych do klasyfikacji szeregów czasowych znaleźć można większość najbardziej znanych algorytmów uczenia się: metodę k-najbliższych sąsiadów (ang. k-nearest neighbours), w skrócie k-NN - więcej w [6]), sieci neuronowe ([7]) czy ukryty model Markowa ([8]). Wciąż jednak najszerzej używane (i uznawane za najbardziej skuteczne) są warianty algorytmu k-NN z użyciem różnych metryk, takich jak odległość euklidesowa czy Dynamic Time Warping (w skrócie DTW) - więcej o DTW przeczytać można między innymi w [9]. W poniższej pracy zastosowano nieco odmienne podejście. Autor koncentruje się na ekstrakcji cech opartych na statystycznych własnościach szeregów. Cechy te wylliczane są z różnych reprezentacji danego szeregu. Następnie na tak przekształconych danych uczone były klasyfikatory opisane w sekcji 2.2. Jak pokazują niektóre badania (przykładowo - [8], [9]), takie podejście daje często lepsze wyniki niż algorytmy bazujące na podobieństwie szeregów.

3.2. Proces ekstrakcji cech

Zacznijmy od formalnego zdefiniowania szeregu czasowego.

Definicja 3.2.1 Jednowymiarowym szeregiem czasowym T_n nazwiemy skończony ciąg par

$$(t_1, x_1), (t_2, x_2), \ldots, (t_n, x_n)$$

o długości n, gdzie x_k jest wartością szeregu w czasie t_k .

Proces ekstrakcji cech dla szeregu czasowego przebiegał następujaco:

- 1. wyznaczenie pochodnych reprezentacji szeregu czasowego (więcej w sekcji 3.2.1)
- 2. Wyliczenie statystyk z wyznaczonych reprezentacji

3. Dodanie pozostałych cech (bazujących między innymi na korelacji między szeregami) W kolejnych sekcjach zostanie omówiony każdy z powyższych kroków.

3.2.1. Reprezentacje pochodne szeregu czasowego

Wiele przekształceń i reprezentacji szeregów czasowych zostało opisanych w literaturze - ich szerszy przegląd można znaleźć między innymi w TODO. Celem takich przekształceń jest wykrycie wzorców charakterystycznych dla klas wynikowych, które nie są wykrywalne przy użyciu podstawowej reprezentacji T_n .

Gay i in. w TODO podają przykład, kiedy to badanie drugiej pochodnej szeregu po czasie znacznie zwiększa jakość klasyfikacji (rys. 3.1). Działając na oryginalnych danych, trudno jest rozróżnic dwie klasy. Policzenie drugiej pochodnej sprawia, że klasyfikacja staje się niemalże trywialna.

Rysunek 3.1: Po lewej widać oryginalny zbiór danych, natomiast po prawej - drugą pochodną po czasie

Autor, poza reprezentacją oryginalną T_n , zdecydował się wykorzystać w procesie ekstrakcji cech cztery inn reprezentacje:

- pochodną szeregu po czasie der_{T_n}
- całkę szeregu po czasie int_{T_n}
- dyskretną transformatę Fouriera $fourier_{T_n}$
- dyskretną transformatę falkową Haara $wavelet_{T_n}$

Pochodna szeregu po czasie

Dyskretna pochodna szeregu $T_n = (t_1, x_1), (t_2, x_2), \dots, (t_n, x_n)$ po czasie wyliczana była w sposób następujący:

$$der_{T_n}(i) = \frac{x_i - x_{i-1}}{t_i - t_{i-1}} \tag{3.1}$$

Takie przekształcenie pozwala na badanie lokalnej zmienności (monotoniczności i jej tempa) danego szeregu. Jako że badane dane (opisywane szerzej w sekcji 2.1.1) składały się z

odczytów z sensorów (akcelerometrów i żyroskopów), pochodna po czasie może być również interpretowana w sensie fizycznym. Przykładowo, miara zmienności przyspieszenia w czasie zwana jest zrywem¹.

Całka szeregu po czasie

Analogicznie do pochodnej zdefiniować można dyskretną całkę z szeregu $T_n = (t_1, x_1), (t_2, x_2), \dots, (t_n, x_n)$, wyliczaną metodą trapezów:

$$int_{T_n}(i) = \sum_{j=1}^{i} \frac{(x_j + x_{j-1})(t_i - t_{i-1})}{2}$$
(3.2)

Tak wyliczonej całce także można przypisać interpretację fizyczną - dla przykładu, wartość $int_{T_n}(i)$ dla odczytu T_n z akcelerometru umieszczonego na lewej ręce strażaka oznacza prędkość, z jaką poruszała się ta ręka w czasie t_i .

Pozostałe dwa przekształcenia (transformata Fouriera oraz transformata falkowa) wyrażają szereg czasowy w bazie pewnej przestrzeni funkcyjnych.

Transformacja Fouriera

Transformacja Fouriera jest jednym z najważniejszych przekształceń używanych do analizy sygnałów. Bazuje ona na odkryciu, że każdy szereg czasowy może być rozbity na sumę prostych, okresowych sygnałów - sinusów i cosinusów o zmieniających się amplitudzie i fazie (rys. 3.2).

Rysunek 3.2: Cosinusowe fale s_1, s_2, s_3 dają razem bardziej złożony sygnał

 $^{^{1}}$ https://pl.wikipedia.org/wiki/Zryw

Formalnie współczynniki dyskretnej transformaty Fouriera zdefiniowane są następująco:

$$fourier_{T_n}(k) = \sum_{i=0}^{n-1} x_i \cdot (\cos(\frac{-2\pi ki}{n}) + i\sin(\frac{-2\pi ki}{n}))$$
 (3.3)

Współczynniki $fourier_{T_n}(k)$ są liczbami zespolonymi i reprezentują amplitudy oraz fazy sinusoidalnych składowych sygnału. Dla szeregów o wartościach rzeczywistych, $fourier_{T_n}(i)$ jest zespolonym sprzężeniem $fourier_{T_n}(n-i+1)$ (dla $i=2,3,\ldots,\frac{n}{2}$).

Istnieje algorytm (zwany szybką transformacją Fouriera, ang. fast Fourier Transform), obliczający współczynniki transformaty Fouriera w czasie $\mathcal{O}(n \log n)$.

Transformacja falkowa

Przekształceniem podobnym do transformaty Fouriera jest transformacja falkowa. Jej główną przewagą nad transformacją opracowaną przez francuskiego matematyka jest zachowywanie informacji zarówno o częstotliwości, jak i o czasie. Podczas gdy przekształcenie Fouriera rzutuje sygnał z dziedziny czasu na dziedzinę częstotliwości, transformata falkowa mierzy częstotliwość w różnych momentach czasu - sygnał jest więc rzutowany na płaszczyznę czasu i częstotliwości.

Dyskretna transformacja falkowa również polega na przedstawieniu sygnału jako sumy sygnałów podstawowych. Podczas gdy transformata Fouriera używała funkcji sinusoidalnych, tutaj funkcję podstawową nazywa się falką. Funkcje falkowe są postaci:

$$\Psi_{j,k}(t) = 2^{\frac{j}{2}} \Psi(2^{j}t - k),$$

gdzie Ψ jest macierzystą funkcją falkową. Wtedy każda funkcja $f \in L^2(\mathbb{R})$ może być przedstawiona w tej bazie jako

$$f(t) = \sum_{j,k} c_{j,k} \Psi_{j,k}(t),$$

a $c_{j,k} = \langle \Psi_{j,k}(t), f(t) \rangle$ są współczynnikami dyskretnej transformaty falkowej. Najbardziej znaną macierzystą funkcją falkową jest falka Haara, zdefiniowana następująco:

$$\Psi_{Haar}(t) = \begin{cases} 0 & t < 0 \\ 1 & 0 \le t < 0, 5 \\ -1 & 0, 5 \le t < 1 \\ 0 & t \ge 1 \end{cases}$$

Wykres falki Haara przedstawia rys. 3.3. Funkcja węgierskiego matematyka została użyta przez autora w procesie ekstrakcji cech.

Podobnie jak w przypadku dyskretnej transformaty Fouriera, tak i tu istnieje szybki algorytm obliczający współczynniki dyskretnej transformaty falkowej (działający w czasie $\mathcal{O}(n)$ - TODO bibliografia). Czyni to obydwa przekształcenia niezwykle użyteczne w praktyce.

Rysunek 3.3: Wykres falki Haara

3.2.2. Statystyki wyliczane z reprezentacji szeregu

Kolejnym krokiem w ekstrakcji cech było opisanie reprezentacji (przedstawionych w poprzedniej sekcji) za pomocą zbioru statystyk, mających jak najlepiej oddać charakter danego szeregu. Poniżej znajduje się lista statystyk (wraz z formalnym opisem) wykorzystanych przez autora.

• Minimum

Minimalna wartość przyjmowana w szeregu czasowym:

$$min(T_n) = \min_{1 \le i \le n} x_i \tag{3.4}$$

• Maksimum

Maksymalna wartość przyjmowana w szeregu czasowym:

$$max(T_n) = \max_{1 \leqslant i \leqslant n} x_i \tag{3.5}$$

• Średnia arytmetyczna

Średnia arytmetyczna wartości przyjmowanych w szeregu czasowym:

$$mean(T_n) = \frac{\sum_{i=1}^{n} x_i}{n}$$
(3.6)

• Suma

Suma wartości przyjmowanych w szeregu czasowym:

$$sum(T_n) = \sum_{i=1}^{n} x_i \tag{3.7}$$

• Odchylenie standardowe

Odchylenie wartości przyjmowanych w szeregu czasowym:

$$std(T_n) = \sqrt{\frac{\sum_{i=1}^{n} (x_i - mean(T_n))^2}{n}}$$
(3.8)

• Kwantyle

Kwantylem $q_p(T_n)$ rzędu p nazwiemy taki element x_k , że dokładnie p elementów szeregu jest od niego mniejszych. W procesie ekstrakcji cech użyto siedmiu kwantyli, rzędów kolejno: 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875.

Kwantyl rzędu 0.5 oznaczany będzie dalej przez $median(T_n)$.

• Wariancja

Wariancja wartości w szeregu czasowym:

$$var(T_n) = std^2(T_n) \tag{3.9}$$

• Błąd standardowy

Błąd standardowy określa odchylenie standardowe dla rozkładu średniej z próby. Zdefiniowany jest jako:

$$sem(T_n) = \frac{std(T_n)}{\sqrt{n}} \tag{3.10}$$

• Indeks pierwszego maksimum

Indeks pierwszego maksimum szeregu (normalizowany przez długość szeregu):

$$first_argmax(T_n) = \frac{\min(\{i : x_i = max(T_n)\})}{n}$$
(3.11)

• Indeks pierwszego minimum

Indeks pierwszego minimum szeregu (normalizowany przez długość szeregu):

$$first_argmin(T_n) = \frac{\min(\{i : x_i = min(T_n)\})}{n}$$
(3.12)

Współczynnik skośności

Współczynnik skośności rozkładu to miara asymetrii rozkładu. Przyjmuje on wartość zero dla rozkładu dla rozkładu symetrycznego, wartości ujemne dla rozkładów o lewostronnej asymetrii (wydłużone lewe ramię rozkładu) i wartości dodatnie dla rozkładów o prawostronnej asymetrii (wydłużone prawe ramię rozkładu) (rys. 3.4).

Traktując wartości szeregu jako wartości pewnej próbki statystycznej, można wyznaczyć jego współczynnik skośności, zdefiniowany jako:

$$skew(T_n) = \frac{3(mean(T_n) - median(T_n))}{std(T_n)}$$
(3.13)

• Kurtoza

Kurtoza to miara koncentracji wyników wokół wartości centralnej. Jest to druga, obok skośności, miara kształtu rozkładu.

Kurtoza rozkładu normalnego wynosi 0. Jeśli wartość tej statystyki jest dodatnia, mamy do czyniena z rozkładem leptokurtycznym (wysmukłym). Jeśli zaś jest ujemna, rozkład jest rozkładem platykurtycznym (spłaszczonym) (rys. 3.5)

Formalnie kurtozę definiuje się następująco:

$$kurt(T_n) = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - mean(T_n))^4}{std^4(T_n)} - 3$$
(3.14)

Rysunek 3.4: Rozkłady o ujemnym (pierwszy wykres) i dodatnim (drugi wykres) współczynniku skośności

Rysunek 3.5: Kształt rozkładu w zależności od wartości kurtozy

• Średnia ważona liniowo

Średnia ważona wartości w szeregu, przy czym wagi rosną liniowo wraz z indeksem. W ten sposób nadaje się największą wagę obserwacjom wykonanym najpóźniej (użycie tej statystyki dla szeregów czasowych opisują Wiens i in. w [11]):

$$linear_weighted_mean(T_n) = \frac{2}{n(n+1)} \sum_{i=1}^{n} ix_i$$
 (3.15)

• Średnia ważona kwadratowo

Jak wyżej - z tą różnicą, że wagi rosną kwadratowo wraz z indeksem:

$$quadratic_weighted_mean(T_n) = \frac{6}{n(n+1)(2n+1)} \sum_{i=1}^{n} i^2 x_i$$
 (3.16)

• Średnie odchylenie bezwzględne od średniej

Średnie odchylenie bezwzględne to kolejna, obok odchylenia standardowego i wariancji, miara rozrzutu próbki. Definuje się je następująco:

$$mean_absolute_deviation(T_n) = \frac{\sum_{i=1}^{n} |x_i - mean(T_n)|}{n}$$
 (3.17)

• Mediana bezwzględnego odchylenia

Jeszcze inną miarą rozrzutu jest mediana bezwzględnego odchylenia (ang. median absolute deviation, MAD). Jest to mediana ciągu bezwzględnych odchyleń od mediany:

$$median_absolute_deviation(T_n) = median_{1 \leq i \leq n}(|x_i - median(T_n)|)$$
 (3.18)

• Całkowita energia

Całkowitą energię szeregu definiuje się jako sumę kwadratów jego wartości:

$$E(T_n) = \sum_{i=1}^{n} x_i^2 \tag{3.19}$$

• Liczba elementów mniejszych od średniej

Zdefiniowana w oczywisty sposób:

$$count_below_mean(T_n) = |\{i : x_i < mean(T_n)\}|$$
(3.20)

• Liczba elementów większych od średniej

Analogicznie do powyższego:

$$count_above_mean(T_n) = |\{i : x_i > mean(T_n)\}|$$
(3.21)

• Długość najdłuższego podciągu o wartościach poniżej średniej

Zdefiniowana formalnie:

$$strike_below_mean(T_n) = \max(\{j - i \mid 1 \leqslant i \leqslant j \leqslant n, \forall_{i \leqslant k \leqslant j} x_k < mean(T_n)\})$$
 (3.22)

• Długość najdłuższego podciągu o wartościach powyżej średniej

Analogicznie do powyższego:

$$strike_above_mean(T_n) = \max(\{j-i \mid 1 \leqslant i \leqslant j \leqslant n, \forall_{i \leqslant k \leqslant j} x_k > mean(T_n)\})$$
 (3.23)

• Średnia autokorelacja

Definicja 3.2.2 Współczynnik korelacji Pearsona wektorów prób losowych $x, y \in \mathbb{R}^n$ zdefiniowany jest jako

$$pearson_corr(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}},$$

gdzie
$$\bar{x}$$
, \bar{y} oznaczają wartości średnie z tych prób, tj. $\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$, $\bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}$.

Współczynnik Pearsona określa poziom zależności liniowej między zmiennymi losowymi i przyjmuje on wartości z przedziału [-1,1]. Wartości bliskie 1 oznaczają silną zależność liniową między próbkami, wartości bliskie zera - brak liniowej zależności, natomiast wartości bliskie -1 - ujemną liniową zależność (rys. 3.6).

Korelacja Pearsona wykorzystywana jest przy wyliczaniu autokorelacji. Autokorelacja jest funkcją, która argumentowi naturalnemu k przypisuje wartość współczynnika korelacji pomiędzy szeregiem czasowym a tym samym szeregiem cofniętym o k jednostek czasu:

$$autocorr_k(T_n) = \frac{1}{(n-k)std^2(T_n)} \sum_{i=1}^{n-k} (x_i - mean(T_n))(x_{i+k} - mean(T_n))$$

Jako cecha używana była średnia wartość autokorelacji obliczanych dla wszystkich przesunięć k (od 1 do n):

$$mean_autocorr(T_n) = \frac{\sum_{k=1}^{n} autocorr_k(T_n)}{n}$$
(3.24)

Rysunek 3.6: Przykładowe wykresy danych (x,y) i odpowiadające im wartości współczynnika korelacji liniowej Pearsona

• Asymetryczność odwracalna w czasie

Ta statystyka (ang. time-reversal asymmetry statistic) została zaproponowana przez Fulchera i Jonesa w TODO. Zdefiniowana jest w zależności od parametru k przez:

$$TRAS_k(T_n) = \frac{1}{n-2k} \sum_{i=0}^{n-2k} x_{i+2k}^2 \cdot x_{i+k} - x_{i+k} \cdot x_i^2$$
 (3.25)

Jako cechy wykorzystane zostały wartości TRAS dla k = 25, 50, 100, 200.

• Infromacje o skokach

(TODO Jak sensownie przetłumaczyć "peak"??????)

Definicja 3.2.3 Skokiem o wsparciu n nazwiemy podciąg szeregu T_n , w którym istnieje wartość x będąca większa niż n wartości występujących bezpośrednio przed nią oraz n wartości występujących bezpośrednio po niej.

Przykładowo w ciągu (3,0,0,4,0,0,13) wartość 4 jest skokiem o wsparciu 1 i 2, ale nie jest skokiem o wsparciu 3.

Skoki wykorzystano przy ekstrakcji pięciu kolejnych cech, które oznaczały (kolejno) liczbe skoków o wsparciu: 5, 10, 25, 50, 100.

Funkcje min, max, mean, std, quantiles nazywane będą statystykami podstawowymi. Z reprezentacji pochodnych (pochodnej, całki, transformaty Fouriera, transformaty falkowej) wyliczane były tylko statystyki podstawowe. Wartości wszystkich opisanych wyżej statystyk obliczono tylko dla bazowej reprezentacji szeregu.

W ten sposób z 42 szeregów obecnych w zbiorze danych otrzymano około 4500 cech.

3.2.3. Pozostałe cechy

Moerchen udowadnia w (TODO biblio), że użyteczne przy klasyfikacji szeregów czasowych jest k największych współczynników transformaty Fouriera oraz transformaty falkowej. Autor zdecydował się więc dodać po 10 największych współczynników dla obydwu transformat wyliczonych dla każdego z szeregów.

Kolejne cechy oparte były na korelacji między dwoma szeregami czasowymi. Analogicznie do

autokorelacji, korelację między szeregami $T_n = (t_1, x_1), \ldots, (t_n, x_n)$ i $T'_n = (t_1, x'_1), \ldots, (t_n, x'_n)$ definuje się jako korelację Pearsona (def 3.2.2) między wektorami (x_1, \ldots, x_n) oraz (x'_1, \ldots, x'_n) .

Ostatecznie otrzymano około 6000 cech (przypomnijmy - początkowa reprezentacja zbioru danych zawierała 17242 atrybuty).

Warto zwróćić uwagę, jak elastyczna jest powyższa metoda ekstrakcji cech - można zastosować ją do praktycznie dowolnego szeregu. Inną zaletą tej metody jest jej niedługi czas działania. Przykładowo, przekształcenie zbioru treningowego (składającego się z 20000 instancji) zajęło około dwóch godzin na komputerze wyposażonym w dwurdzeniowy procesor Intel Core i5 o taktowaniu 2,7 GHz.

Rozdział 4

Redukcja *concept drift* poprzez selekcję cech

4.1. Sprowadzenie problemu adaptacji dziedziny do problemu klasyfikacji

Zacznijmy od sprawdzenia jakości klasyfikatorów przedstawionych w rozdziale 2 na reprezentacji opisanej w poprzednim rozdziale przy użyciu metryki BAC. Wynik na zbiorze treningowym wyliczany był za pomocą trójwarstwowej walidacji krzyżowej. Rezultaty przedstawia tabela 4.1.

Tabela 4.1: Jakość klasyfikacji na wyekstrahowanych cechach

	Wynik na X_{train}	Wynik na X_{test}
Regresja logistyczna	0.95	0.53
SVM	0.96	0.53
Lasy losowe	0.99	0.71

Ponownie widoczny jest problem ewoluujących pojęć. Mimo rewelacyjnych wyników na zborze treningowym (klasyfikator bazujący na lasach losowych był niemalże bezbłędny), jakość predyktorów testowanych na innej grupie strażaków okazała się dużo niższa - wynik pogorszył się o ok. 0.3 w przypadku lasów losowych oraz o prawie 0.5 dla klasyfikatorów liniowych.

Celem tego rozdziału będzie przedstawienie metody wyboru takiej poprzestrzeni cech, która będzie spełniać dwa wymogi:

- będzie umożliwiać zbudowanie wydajnego klasyfikatora,
- będzie możliwie odpodrna na zmiany dziedziny

Opisywane podejście stanowi rozszerzenie pomysłu zaproponowanego przez M. Boulle w (TODO bib) oraz (TODO bib). Intuicja jest następująca: załóżmy, że jesteśmy w stanie sprowadzić problem wykrywania concept drift do problemu klasyfikacji (zostanie to opisane szerzej w kolejnych podrozdziałach). Załóżmy też, że mamy daną funkcję f, która dla danego atrybutu określa jego jakość w odniesieniu do ustalonego problemu klasyfikacji (przykładem takich funkcji jest test χ^2 .).

Celem jest wybranie tych cech, które jednocześnie:

- dają najwyższy wynik dla oryginalnego problemu klasyfikacji,
- dają najniższy wynik dla problemu wykrywania ewoluujących pojęć.

Przy takim wyborze w oczywisty sposób zostaną spełnione postawione wcześniej wymagania. Rysunek 4.1 przedstawia przykładowy rozkład jakości cech.

Rysunek 4.1: Przykładowy rozkład jakości cech dla problemu klasyfikacji oraz wykrywania ewoluujących pojęć

Oś x przedstawia jakość cech dla bazowego problemu klasyfikacji, natomiast oś y - jakość dla problemu detekcji concept drift. Przykładowym wyborem jest selekcja cech poniżej czerwonej linii (atrybuty słabo rozróżniające różne dziedziny) oraz na prawo od linii zielonej (cechy o wysokim wyniku dla postawionego problemu klasyfikacji). Oczywiście nie zawsze taki wybór będzie możliwy, co pokażą kolejne podrozdziały.

Głównym wyzwaniem w opisywanym podejściu jest sprowadzenie problemu wykrywania zmiennej dziedziny do problemu klasyfikacji. Zanim jednak poruszona zostanie ta kwestia, autor zaprezentuje używane najczęściej miary jakości cech.

4.2. Miary jakości cech

Podstawowe miary jakości atrybutów pochodzą ze statystki oraz teorii informacji. Do najbardziej znanych należą:

- współczynnik korelacji Pearsona
- test χ^2
- informacja wzajemna
- jednoczynnikowa analiza wariancji (ang. ANOVA F-value)
- zysk Giniego

W bieżącej sekcji zostanie przedstawiony opis każdej z tych miar.

Współczynnik korelacji Pearsona

Zdefiniowany w 3.2.2 współczynnik korelacji liniowej Pearsona może być też używany do mierzenia jakości atrybutu. Niech przewidywana zmienna y będzie ciągła. Dla danego ciągłego atrybutu x wartość $pearson_corr(x,y)$ określa poziom liniowej zależności między tym atrybutem a y. Badanie korelacji jest często wykorzystywane przy analizie mikromacierzowej DNA (TODO bib).

Test χ^2

W statystyce testu χ^2 używa się do badania niezależności dwóch zdarzeń A i B, gdzie dwa zdarzenia są uznawane za niezależne, jeśli $P(A\cap B)=P(A)P(B)$, bądź równoważnie: P(A|B)=P(A) i analogicznie P(B|A)=P(B). W uczeniu maszynowym test χ^2 stosowany jest do badania niezależności pomiędzy atrybutami a klasą wynikową. Za wartościowe uważane są te cechy, które nie są niezależnie od przewidywanej zmiennej.

Test ten może być zastosowany tylko w przypadku gdy zarówno atrybut, jak i klasa wynikowa są zmiennymi kategorycznymi. W przypadku zmiennych ciągłych stosuje się dyskretyzację.

Informacja wzajemna

Z punktu widzenia teorii informacji klasyfikator może być traktowany jako narzędzie redukujące poziom niepewności odnośnie przewidywanej zmiennej. Klasyfikator, "konsumując" informację niesioną przez kolejne instancje zbioru treningowego, stopniowo zmniejsza początkową niepewność zmiennej wynikowej. W przypadku klasyfikatora idealnego (to jest takiego, który zawsze dobrze przewiduje klasę wynikową) końcowa niepewność będzie wynosiła 0. W teorii informacji początkową niepewność definiuje się formalnie przez pojęcie entropii.

Definicja 4.2.1 Jeśli przewidywana zmienna C jest zmienną dyskretną przyjmującą m wartości c_1, c_2, \ldots, c_m , entropia - inaczej mówiąc, początkowa niepewność - definiowana jest jako

$$H(C) = -\sum_{i=1}^{m} P_C(c_i) \log P_C(c_i)$$

Niech teraz atrybut F będzie atrybutem dyskretnym przyjmującym k wartości f_1, f_2, \ldots, f_k . Wtedy niepewność po poznaniu wartości cechy F nazywa się entropiq warunkowq:

$$H(C|F) = \sum_{i=1}^{k} P_C(f_i)H(C|F = f_i) =$$

$$= -\sum_{i=1}^{k} P_F(f_i) \left(\sum_{i=1}^{m} P_{C|F}(c_j|f_i) \log P_{C|F}(c_j|f_i) \right)$$

Zachodzi wtedy:

$$H(C|F) \leqslant H(C),$$

czyli entropia warunkowa jest nie większa niż entropia początkowa. Równość zachodzi wtedy i tylko wtedy, gdy zmienne C i F są niezależne.

 $Informację\ wzajemna\ I(C;F)$ definiuje się wtedy jako wartość, o jaką początkowa niepewność odnośnie klasy wynikowej została pomniejszona po poznaniu wartości cechy F, czyliformalnie:

$$I(C; F) = H(C) - H(C|F)$$
 (4.1)

Po nietrudnych przekształceniach można otrzymać zwarty wzór na informację wzajemną:

$$I(C; F) = \sum_{i=1}^{k} \sum_{j=1}^{m} P_{CF}(c_j, f_i) \log(\frac{P_{CF}(c_j, f_i)}{P_{C}(c_j)P_{F}(f_i)})$$
(4.2)

Jednoczynnikowa analiza wariancji

Jednoczynnikowa analiza wariancji używa testu statystycznego F do mierzenia jakości cechy. Test F określa, czy wartości oczekiwane danej cechy X wewnątrz m określonych grup (odpowiadających m wartościom klasy wynikowej) różnią się między sobą. Wartość F-testu zdefiniowana jest jako:

$$F = \frac{MS_M}{MS_W}$$

 MS_M określa wariancję między grupami i jest zdefiniowana jako:

$$MS_M = \frac{\sum_{i=1}^m n_i (\bar{x}_i - \bar{x})^2}{m-1},$$

gdzie n_i oznacza liczbę obserwacji w *i*-tej grupie, \bar{x}_i oznacza średnią w *i* - tej grupie, a \bar{x} - średnią z całej próbki. MS_W określa z kolei wariancję wewnątrz grup, zdefiniowaną jako:

$$MS_W = \frac{\sum_{ij} (x_{ij} - \bar{x}_i)^2}{n - m},$$

gdzie x_{ij} oznaczaj-tą obserwację i-tej grupy.

Zysk Giniego

Niech ponownie zmienna przewidywana C będzie zmienną dyskretną przyjmującą m wartości c_1, c_2, \ldots, c_m .

Definicja 4.2.2 Indeksem Giniego zmiennej C nazywa się wartość

$$Gini(C) = 1 - \sum_{i=1}^{m} P_C^2(c_i)$$

Podobnie jak entropia, indeks Giniego jest miarą niejednorodności zbioru. Przykładowo, dla jednej klasy indeks Giniego - niejednorodność zbioru wynosi $1-1^2=0$. Jeśli rozkład klas jest jednorodny (czyli $P_C(c_i)=\frac{1}{m}$, indeks Giniego osiąga maksimum. Ze względu na podobieństwo między indeksem Giniego a entropią, zysk Giniego definiuje się

Ze względu na podobieństwo między indeksem Giniego a entropią, zysk Giniego definiuje się analogicznie do informacji wzajemnej. Dla atrybutu dyskretnego F przyjmującego wartości f_1, f_2, \ldots, f_k zysk Giniego wyraża, o ile zmalała niejednorodność zbioru (jego indeks Giniego) po pozaniu wartości cechy F:

$$GiniGain(C; F) = Gini(C) - Gini(C|F) = Gini(C) - \sum_{i=1}^{k} P_F(f_i)Gini(C|F = f_i)$$
 (4.3)

W dalszych eksperymentach autor wykorzystał trzy miary jakości cech: informację wzajemną, jednoczynnikową analizę wariancji oraz zysk Giniego.

4.3. Wykrywanie ewolucji pojęć między zbiorem treningowym a testowym

Bibliografia

- [1] John Blitzer, Ryan McDonald, Fernando Pereira, Domain adaptation with structural correspondence learning
- [2] Hall Daume, Frustratingly easy domain adaptation
- [3] Andrew Arnold, Ramesh Nallapati, William W. Cohen, A comparative study of methods for transductive transfer learning
- [4] R. K. Ando, T. Zhang, A framework for learning predictive structures from multiple tasks and unlabeled data
- [5] L. Breiman, Random forests, Machine Learning, 45(1), 5-32, 2001.
- [6] Wanpracha Art Chaovalitwongse, Ya-Ju Fan, Rajesh C. Sachdeo, On the time series k-nearest neighbor classification of abnormal brain activity
- [7] Alex Nanopoulos, Rob Alcock, Yannis Manolopoulos, Feature-based classification of time-series data
- [8] Seyoung Kim, Padhraic Smyth, Segmental hidden markov models with random effects for waveform modeling
- [9] Chotirat Ann Ratanamahatana, Eamonn Keogh, Everything you know about Dynamic Time Warping is wrong
- [10] Dominique Gay, Romain Guigoures, Marc Boulle, Fabrice Clerot Feature Extraction over Multiple Representations for Time Series Classification
- [11] Jenna Wiens, John V. Guttag, Eric Horvitz, Patient Risk Stratification for Hospital-Associated C. diff as a Time-Series Classification Task