#### THE CLOUD HUNTER'S PROBLEM

# An Automated Decision Algorithm to Improve the Productivity of Scientific Data Collection in Stochastic Environments

#### Arthur Small

based on work with JASON B. STEFIK, JOHANNES VERLINDE, NATHANIEL C. JOHNSON

7 Feb 2020

Hello...

IS THERE ANYBODY in THERE?

Theme: Data-driven decision making

THEME: DATA-DRIVEN DECISION MAKING

Introduction: The problem

INTRODUCTION: THE PROBLEM

#### Introduction: The problem

The Cloud Hunter's basic problem is to decide how to allocate a limited budget of flight time over the course of a field season.

Decisions must be made 1 day ahead, based on imperfect day-ahead forecasts of whether conditions are good or bad.

#### HOW THEY MAKE THEIR DECISIONS NOW:



#### What we offer instead:



FORMAL MODEL OF THE DECISION PROBLEM

# Model Setup

D: length of the field season in days

 $F \leq D$ : number of flights in the Cloud Hunter's budget.

 $d = D, \dots, 1$ : index of dates

 $f = F, \dots, 1$ : index of flights remaining in budget

 $X_d$ : binary random state variable indicating quality of conditions for data collection:

- $X_d = 1$  if conditions on date d are good, 0 otherwise
- $x_d$ : realized value of  $X_d$

a<sub>d</sub>: binary control variable

- $a_d = 1$  iff they opt to fly on date d, 0 otherwise
- $\mathbf{X}=<\mathbf{X_D},...,\mathbf{X_1}>$ : conditions on dates  $d=D,\ldots,1$
- $\mathbf{a} = \langle \mathbf{a_D}, ..., \mathbf{a_1} \rangle$ : actions chosen on dates d = D, ..., 1

# **OBJECTIVES**

Choose a to

$$max_a E[\mathbf{a} \cdot \mathbf{X}]$$

### DECISION TAKEN ON BASIS OF DAY-AHEAD FORECAST

Before taking each decision, decision-maker receives a forecast signal  $s_d \in \mathbb{S}$ .

Based on a calibrated prediction model, can map this signal to a probability of good conditions:

$$p(s) = \Pr\{X_d = 1 | s_d = s\}$$

#### DISTRIBUTION OF FORECAST SIGNALS

#### DISTRIBUTION OF FORECAST SIGNALS

- $\pi(s)$ : unconditional probability that forecast will take value s.
- $\pi(\cdot)$  defines a probability distribution over the set  $\mathbb S$  of possible forecast signals.

INTERTEMPORAL OPTIMIZATION VIA DYNAMIC PROGRAMMING



FIGURE 1: Graphical representation of the decision algorithm.

# PROBABILISTIC FORECASTING OF FAVORABLE CONDITIONS USING SELF-ORGANIZING MAPS



 $\operatorname{Figure}\ 2\colon\ 6\ X\ 4\ SOM$  grid for relative humidity profiles

| 13.3% | 20.6% | 4.4% | 3.7%  |
|-------|-------|------|-------|
| 1.5%  | 8.1%  | 1.5% | 4.4%  |
| 0%    | 3.7%  | 4.4% | 11.8% |
| 2.9%  | 3.7%  | 7.4% | 6.6%  |
| 0%    | 0%    | 0.7% | 1.5%  |
| 0%    | 0%    | 0%   | 0%    |

 ${
m Figure}\ 3:$  Conditional probability distribution of SOM state realizations following a forecast of SOM state 1



 ${\rm Figure}\ 4\colon$  Estimated probabilities of good conditions for data collection, as a function of day-ahead SOM forecast

#### RESULTS



FIGURE 5: Computed values for the value function V(d, f)

Dark line: simulated sequence of flight decisions

• Diagonal movements = fly dates, horizontal movements = no-fly dates



FIGURE 6: Results: the algorithm's simulated performance during 2009 field season, compared with realized performance of heuristic decision procedure.

The algorithm achieves a 21% increase in the number of successful flights.

|                  | Heuristic procedure | Automated algorithm |
|------------------|---------------------|---------------------|
| Flights launched | 56                  | 66                  |
| Successes        | 28                  | 34                  |
| Type I errors    | 28                  | 32                  |
| Type II errors   | 17                  | 11                  |

 $FIGURE \ 7: \ Summary \ of \ outcomes$ 

Successes are flights launched on days with good conditions.

Type I errors are decisions to fly only to find no clouds.

Type II errors are decisions to stand down only to find that the desired conditions existed.