Decompositions of Graphs

Hengfeng Wei

hfwei@nju.edu.cn

May 20, 2017 - May 24, 2017

Decompositions of Graphs

- DFS and BFS
- 2 Cycles
- O DAG
- 4 SCC
- Biconnectivity

Turing Award

John Hopcroft

Robert Tarjan

"For fundamental achievements in the design and analysis of algorithms and data structures."

— Turing Award, 1986

Depth-first search

SIAM J. COMPUT. Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN†

Abstract. The value of depth-first search or "buckfracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an unitered traph are presented. The space and time requirements of both algorithms are bounded by $k_1V + k_2E + k_3$ for some constants $k_1, k_2, \text{and } k_3$, and k_3 , where V is the number of vertices and E is the number of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search, spanning tree, strong-connectivity.

"We have seen how the depth-first search method may be used in the construction of very efficient graph algorithms. . . .

Depth-first search is a powerful technique with many applications."

Reference

▶ "Depth-First Search And Linear Graph Algorithms" by Robert Tarjan.

The POWER of DFS

Graph decomposition vs. Graph traversal

Structures!

- 1. states of vertices
- 2. types of edges
- 3. lifetime of vertices (DFS)
 - v: d[v], f[v]
 - ▶ f[v]: DAG, SCC
 - ▶ d[v]: biconnectivity

Types of edges

Definition (Classifying edges)

Given a DFS/BFS traversal \Rightarrow DFS/BFS tree:

```
Tree edge: \rightarrow child
```

Back edge: \rightarrow ancestor

Forward edge: → nonchild descendant

Cross edge: → neither ancestor nor descendant

Remarks

- ▶ applicable to both DFS and BFS
- w.r.t. DFS/BFS trees

Types of edges (Problem 5.18)

(a) DFS on directed graph.

(c) BFS on directed graph.

(b) DFS on undirected graph.

(d) BFS on undirected graph.

Types of edges

DFS tree and BFS tree coincide (Additional Problem)

- ▶ undirected connected graph $G = (V, E), v \in V$
- ▶ DFS tree T from $v \equiv$ BFS tree T' from v
- ▶ prove: G = T

$$G_{DFS}$$
: tree + back vs. G_{BFS} : tree + cross

Question

- ▶ DFS&BFS from different v's?
- ▶ What if *G* is a digraph?

Lifttime of vertices in DFS

Lifttime of vertices in DFS

Theorem (Disjoint or contained)

$$\forall u, v :$$

$$[u]_{u} \cap [v]_{v} = \emptyset$$

$$\bigvee$$

$$([u]_{u} \subsetneq [v]_{v} \vee [v]_{v} \subsetneq [u]_{u})$$

Proof.

Ancestor/descendant relation

Preprocessing for ancestor/descendant relation (Problem 5.23)

- ▶ binary tree T = (V, E)
- $r \in V$

$$v:\mathsf{d}[v],\mathsf{f}[v]$$

Question

 $\forall v$: how many descendants?

Remark

General (rooted) tree?

Edge types and lifetime of vertices in DFS

Edge types and lifetime of vertices in DFS (Problem 5.2)

 $\forall u \rightarrow v$:

- lacktriangledown tree/forward edge: $[u\ [v\]v\]u$
- ightharpoonup back edge: $[v\ [u\]_u\]_v$
- ightharpoonup cross edge: $[v]_v[u]_u$

Remark

- f[v] < d[u]: cross edge
- f[u] < f[v]: back edge

$$u \to v \iff \mathsf{f}[v] < \mathsf{f}[u]$$

Height and diameter of tree

Height and diameter of tree (Problem 5.21)

Binary tree T = (V, E) with |V| = n:

- ▶ height (O(n))
- ▶ diameter (O(n))

throught root or not?

Question

Diameter of a tree without a designated root?

Perfect subtree

Perfect subtree (Problem 5.22)

- ▶ binary tree T = (V, E)
- ▶ root $r \in V$
- ▶ goal: find all perfect subtrees

Counting shortest paths

Counting shortest paths (Problem 5.26)

Counting # of shortest paths in (un)directed graphs using BFS.

Maybe in the next class...

Decompositions of Graphs

- DFS and BFS
- 2 Cycles
- O DAG
- 4 SCC
- Biconnectivity

Cycle detection

Cycle detection (Problem 5.24–1)

	Digraph	Undirected graph
DFS	back edge ←⇒ cycle	back edge \iff cycle
BFS	back edge \implies cycle cycle \implies back edge	cross edge \iff cycle

Remark

How to identify back edges?

Evasiveness of acyclicity

Evasiveness of acyclicity (Problem 5.24-2)

Evasiveness
$$\triangleq$$
 check $\binom{n}{2}$ edges (adjacency matrices)

Is acyclicity evasive?

Hint: Kruskal

Evasiveness of connectivity

Evasiveness of connectivity (Additional Problem)

Evasiveness
$$\triangleq$$
 check $\binom{n}{2}$ edges

Is connectivity evasive?

Hint: Anti-Kruskal

Edge deletion

Edge deletion (Problem 5.20)

- ightharpoonup connected, undirected graph G
- ▶ $\exists ?e \in E : G \setminus e$ is connected?
- ► O(|V|)

$$\exists \ \mathsf{cycle} \iff \exists \ \mathsf{such} \ e$$

$$O(m+n)$$

tree:
$$|E| = |V| - 1 \implies \text{check } |E| \ge |V|$$

Orientation of undirected graph

Orientation of undirected graph (Problem 5.9)

- ightharpoonup undirected (connected) graph G
- ▶ edges oriented s.t.

$$\forall v, \mathsf{in}[v] \geq 1$$

orientation
$$\iff \exists$$
 cycle C

BFS/DFS from
$$v \in C$$

Shortest cycle of undirected graph

Shortest cycle of undirected graph (Problem 5.8)

Shortest cycle of G:

- \triangleright DFS on G
- $ightharpoonup \forall v : \mathsf{level}[v]$
- ▶ back edge $u \rightarrow v$: level[u] − level[v] + 1

Question

What about digraphs?

Decompositions of Graphs

- DFS and BFS
- 2 Cycles
- O DAG
- 4 SCC
- Biconnectivity

DAG

no back edge \iff DAG \iff \exists topo. ordering

Toposort algorithm by Tarjan (probably), 1976

DFS on digraph, $u \rightarrow v$:

- ▶ back edge: f[u] < f[v]
- ▶ others: f[u] > f[v]

$$u \to v \implies \mathsf{f}[u] > \mathsf{f}[v]$$

Toposort: sort vertices in *decreasing* order of their *finish* times.

Kahn's toposort algorithm

Kahn's toposort algorithm (1962; Problem 5.11)

- queue for source vertices (in[v] = 0)
- ▶ repeat: dequeue v, delete it, output it

Lemma

Every DAG has at least one source (and at least one sink vertex).

Question

What if G is not a DAG?

Taking courses

Taking courses in few semesters (Problem 5.14)

- n courses
- $ightharpoonup c_1
 ightharpoonup c_2$
- ▶ goal: taking courses in few semesters

critical path OR longest path

Remark

For general digraph, LONGEST-PATH is NP-hard.

Line up

Line up (Problem 5.16)

- 1. i hates j: $i \prec j$
- 2. *i* hates *j*: #i < #j

BFS

Hamiltonian path in DAG

Hamiltonian path in DAG (Problem 5.10)

- \triangleright DAG G
- ▶ HP: path visiting each vertex once

Remark

For general (di)graph, HP is NP-hard.

DAG: \exists HP \iff \exists ! topo. ordering Algorithms:

Proof.

 \Longleftarrow : By construction.

- 1. toposort, check edges
- 2. the Kahn toposort algorithm

Decompositions of Graphs

- DFS and BFS
- 2 Cycles
- O DAG
- SCC
- Biconnectivity

Digraph as DAG

Digraph as DAG (Problem 5.3)

Every digraph is a dag of its SCCs.

Remark

Two tiered structure of digraphs:

- ▶ digraph ≡ a dag of SCCs
- ► SCC: equivalence class over reachability

SCC

Kosaraju SCC algorithm, 1978

"SCCs can be topo-sorted in decreasing order of their highest finish time."

The vertice with the highest finish time is in a source SCC.

Remark

- ▶ DFS on G; DFS/BFS on G^T
- ▶ DFS on G^T ; DFS/BFS on G

SCC

Kosaraju SCC algorithm, 1978 (Problem 5.4)

- ▶ 1st DFS $\stackrel{?}{\Longrightarrow}$ BFS
- ▶ 2nd DFS $\stackrel{?}{\Longrightarrow}$ BFS

One-to-all reachability

One-to-all reachability (Problem 5.12)

Digraph G = (V, E):

- given $v:v \rightsquigarrow^? \forall u$
- $ightharpoonup \exists ? v : v \leadsto \forall u$

SCC; \exists !source vertex $v \iff v \rightsquigarrow \forall u$

Proof.

- $\blacktriangleright \iff (1) \text{ source } (2) \exists !$
- ▶ ⇒ : By contradiction.

Impacts of vertices

Impacts of vertices (Problem 5.13)

Digraph G:

$$\mathsf{impact}(v) = |\{w : v \leadsto w\}|$$

- $ightharpoonup arg min_v impact(v)$
- $ightharpoonup rg \max_v \mathsf{impact}(v)$

 $\arg\min_{v} \operatorname{impact}(v) \in \mathsf{SCC}$ of smallest cardinality

Question

 $\forall v : \mathsf{computing} \ \mathsf{impact}(v).$

One-way streets

One-way streets (Problem 5.15)

Digraph G for city:

- 1. $\forall u, v : u \iff v$
- 2. $s: s \rightsquigarrow v \rightsquigarrow s$

(2)
$$\{v \mid s \leadsto v\}$$
 is an SCC

Connectivity

Connectivity (Problem 5.7)

Prove: connected undirected graph *G*:

 $\exists v : G \setminus v$ is still connected

Example: strongly connected digraph G:

 $\exists v: G \setminus v$ is not strongly connected

Example: digraph G with 2 SCCs:

(G+e) is not strongly connected

2SAT

2SAT (Problem 5.17)

$$I: (x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (\overline{x_3} \vee x_4) \wedge (\overline{x_1} \vee x_4)$$

$$\alpha \vee \beta \equiv \overline{\alpha} \to \beta \equiv \overline{\beta} \to \alpha$$

Implication graph G_I .

Theorem

 \exists $SCC \exists x : v_x \in SCC \land v_{\overline{x}} \in SCC \iff I$ is not satisfiable.

Reference

"A Linear-time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas" by Bengt Aspvall, Michael Plass, and Robert Tarjan, 1979.

2SAT

Odd cycle in digraph

Odd cycle in digraph (Additional Problem)

Find an odd cycle in a digraph G.

Lemma

A digraph G has an odd directed cycle $\iff \exists scc : scc \text{ is non-bipartite}$ (when treated undirected).

Question

To prove the lemma and design an algorithm.

Decompositions of Graphs

- DFS and BFS
- 2 Cycles
- O DAG
- 4 SCC
- Biconnectivity

Biconnectivity algorithm in one word

Back!

Biconnectivity algorithm in two questions

- (1) When and how to update back[v]?
- (2) When and how to identify a bicomponent?

Biconnectivity algorithm

Initialization of back[v] (Problem 5.6)

$$\mathsf{back}[v] = d[v] \ \textit{vs.} \ \mathsf{back}[v] = \infty, 2(n+1)$$

- ▶ if updated
- ▶ if never updated:

$$\mathsf{wBack} = \infty > d[v] \ \textit{vs.} \ \mathsf{wBack} = d[w] > d[v]$$

Root cutnode

Root cutnode (Problem 5.5)

v is a cutnode \iff OutDegree $[v] \geq 2$

K-core of a graph

Planning a party (Problem 5.27)

- ▶ undirected graph G
- ▶ subgraph G' = (V', E'):

$$\forall v' \in V : K(v') \ge 5 \land D(v') \ge 5$$

K-core of a graph:

$$\forall v' \in V' : \deg[v'] \ge k$$

Iteratively delete nodes v of $K(v) < 5 \lor D(v) < 5$

