

SUNGARD

校园一卡通通讯平台 使用手册

文档标识

文档名称	校园一卡通通讯平台使用手册		
版本号	〈 1.0版 〉		
状况	○草案 ○评审过的 ○更新过的 ●定为基线的		

文档修订历史

版本	日期	描述	文档所有者
1.0版	2007-4-17	创建文档	范露玫

此版本文档的正式核准

姓名	签字	日期

分发控制

副本	接受人	机构

目 录

通讯平台概述	5
数据总线概念	5
构成	6
开发工具	6
使用的第三方技术	6
支持的平台	7
提供的接口	7
消息交换层次	7
消息交换方式	
上下文无关的请求应答方式	8
上下文相关的请求应答方式	8
客户到服务的单向消息	8
服务到客户的单向消息	9
消息传递	9
消息广播	
发布订阅	
异步消息	10
路由管理	10
通讯平台架构	
DRTP 组件的架构	
QUEUE 组件的架构	
通讯平台的安全性	
接入点控制	
平台区域控制	
加密	
集成第三方认证	
通讯平台的安装	
微软的系列操作系统下的安装	
在 UNIX 系列操作系统上的安装	
通讯平台的配置	
SELF 节的内容	
LOG 节的内容	
CENTER 节的内容	
QUEUE 节的内容	
GROUP 节的内容	
DEMOCERTIFY 节的内容	
区分节点的参数	
网络状况的参数	
性能测试报告	
直通链路方式	
存储转发方式	21

异步通讯方式	22
测试结果分析	23

通讯平台概述

通讯平台是网络应用环境下的通讯中间件,和 IBM 的 MQ 相类似,提供了多种系统间(程序间)数据交换方式,是多层 C/S 系统的重要组成部分。为多层 C/S 系统的灵活部署,负载均衡,消除单点故障,水平方向的扩容和垂直方向的延伸,提供了体系上的保障。

数据总线概念

通讯平台通过节点(通讯平台程序的一个运行实例)的互联,构造了一个可动态调整的网络应用系统数据交换环境,为网络应用系统提供了统一的数据交换方式和环境,这些交换方式,从时效看,可分为即时通讯和持久化可靠通讯两种方式,从调用的方式上,可分为同步和异步两种方式,从传输的方式上,可分为动态策略的数据交换和静态的通讯槽方式(通讯槽的建立过程,使用的是动态策略),在对通讯数据的使用上,应用系统可以在数据的提供者,使用者,分派者三种角色中使用一种或者多种。总之,通讯平台为网络应用系统提供了强有力的开发和部署的支持。下图形象的体现了通讯平台的概念。

通讯平台通过将系统间的耦合统一为消息的耦合(一种松散的耦合),降低了系统间的耦合度,建立起了动态的系统间的应用消息总线(即插即用)。

构成

通讯平台由四部分构成,一是即时通讯组件(drtp),二是持久化通讯组件 (queue),三是开发接口,四是监控程序。通讯平台的每个节点,由一个即时通讯 组件和一个持久化通讯组件构成。网络应用系统通过使用通讯平台提供的开发接口,使用通讯平台提供的各种功能。其结构如下:

作为持久化服务的组件 queue,本身也是是使用通讯平台的接口开发的,作为一个特殊的 C/S 应用被包含在通讯平台的内部,作为通讯平台的一部分提供消息交换的特殊支持(持久化,时间上的异步处理)。

开发工具

通讯平台的即时通讯组件,持久化通讯组件,C 开发接口,JAVA 开发接口使用 C++开发,在 windows 环境下,使用 vc6.0 编译,在 unix 环境下,使用 gcc编译,也可以使用 IBM 的 VAC 编译。通讯平台的监控程序,使用 DELPHI 开发。

使用的第三方技术

通讯平台使用了第三方的压缩算法,加密算法,跨平台的多线程,信号以及锁的实现,这些第三方软件,来自开源项目,分别是 boost, cryptopp, oberhumer。

支持的平台

通讯平台目前支持的平台,有WINDOWS,linux,AIX,HP-UX,SOLARIS。

提供的接口

通讯平台提供 C 的接口和 JAVA 的接口

消息交换层次

通讯平台提供了三个层次的消息交换功能,依次为直通链路,存储转发,可靠转发。直通链路是在对偶的通讯连接上转发消息,该层次的消息交换速度最高;存贮转发是通过路由控制转发消息,可靠转发是通过 queue 组件转发消息。这三个层次如下图所示:

消息交换方式

通讯平台支持多种消息交换方式, 典型的有如下所列的方式

上下文无关的请求应答方式

在上图中,客户的两个请求,分别被两个相同的服务提供程序1和2处理。

上下文相关的请求应答方式

在上图中,客户的两个请求,固定的被两个相同的服务提供程序中的1处理。

客户到服务的单向消息

服务到客户的单向消息

消息传递

消息广播

发布订阅

异步消息

路由管理

通讯平台实现消息交换的基础是路由的管理,通讯平台在路由的管理上,使用的是距离向量的方式,通讯平台的路由信息,是由相临的节点的路由信息推导而来。路由信息中包含了节点的距离和线路的带宽。通讯平台总是使用节点距离最短的路由,在节点距离相同的时候,使用带宽最高的路由。

通讯平台架构

通讯平台由即时通讯组件 DRTP, 异步可靠通讯组件 QUEUE, 开发接口, 监控程序等部分构成, 其结构如下:

接口是一个 C 或 JAVA 的协议封装,监控是利用接口开发的一个图形界面的桌面程序。 DRTP 是一个多线程的服务程序,QUEUE 是一个多线程的利用接口开发的一个内置组件。 下面重点介绍这两个组件。

DRTP 组件的架构

DRTP 组件是一个多线程的服务程序,从执行线索看,由主线程,连接管理线程,加载 queue 组件线程三个线程构成, 从模块构成看,是由一系列模块构成,这些模块包括连接管理模块,路由管理模块,日志模块,缓冲池模块,内存数据库模块,通讯模块,服务管理模块(或守护管理模块)等。下图是这些模块在 DRTP 组件中的关系。

服务管理模块负责程序的启动,配置参数的加载,连接管理现程和启动 queue 的线程的 创建,以及退出信号的处理和程序退出的处理。

启动 queue 组件的模块在独立的线程中运行,只完成 queue 组件的启动。

连接管理模块,路由控制模块是 DRTP 的核心模块。连接管理模块完成连接的建立,连接的分配,数据的接收和发送。直通链路的通讯数据,在连接管理模块中完成,其他的通讯数据,包括存储转发的消息以及维护路由的消息,在路由控制模块中完成。路由控制模块使用内存数据库保存所有的路由控制信息。

QUEUE 组件的架构

QUEUE 组件是一个多线程的程序,从执行线索看,由主线程,连接分配线程,指令处理线程,同步线程四类线程构成, 从模块构成看,是由一系列模块构成,这些模块包括连接分派模块,指令处理模块,同步模块,日志模块,内存数据库模块等。下图是这些模块在 OUEUE 组件中的关系。

启动模块负责程序的启动,配置参数的加载,内存数据库的恢复,在内存数据库的恢复 过程中,如果存在则创建对应的同步线程,创建一个连接分排线程。

连接分排模块复制接收和分派直通链路的连接句柄,并创建对应的指令处理线程,这个模块通过检查发生和通讯平台断开来控制程序的退出。

指令处理模块处理队列操作的所有接口协议,其处理的结果保存在内存数据库中,在直通连接关闭后,这个模块对应的线程响应退出。

同步模块复制将缓存的指令同步到目的地通讯平台节点上的 QUEUE 组件。

通讯平台的安全性

通讯平台的安全性,是从以下的四个方面提供的。

接入点控制

通讯平台容许接入的 IP 地址范围和禁止接入的 ip 地址范围,可以对接入程序所在的位置加以控制,可以通过容许注册的服务号和槽号的地址范围,来控制关键的服务程序所在的位置。容许注册的地址范围也控制了服务号在平台内的传递范围,从而可以构成 VLAN 的服务区域。

平台区域控制

通讯平台可以将组成的一系列节点标记为一个特定的组,没有信任关系的组不能互通来 将不同的应用完全隔离,比如运行环境和测试环境。

加密

通讯平台使用 ssl 的加密策略,保证通讯数据的安全。

集成第三方认证

通讯平台提供了集成 CA,RADIUS,口令,双因数认证等认证体系的机制。

通讯平台的安装

通讯平台在 windows 下,以服务方式运行。在 UNIX 下,以 daemon 方式运行。

微软的系列操作系统下的安装

在 windows (winnt, win2000, winxp, win2003 等)下:

安装 drtp -install

卸载 drtp –uninstall

运行 net start DRTP_SERVICE

停止 net stop DRTP_SERVICE

作为 console 程序运行 drtp -run

在 UNIX 系列操作系统上的安装

在 UNIX 下, 无需安装和卸载

远行 drtp -b -i drtp.ini

停止 kill drtp 的进程号,在 drtp.pid 中

作为 console 程序运行 drtp –i drtp.ini

在 windows 下和在 unix 下,有一个区别,在 windows 下,配置文件是固定

的,为 drtp.ini,在 unix 下,是可以在运行时,由-i参数来指定的。

通讯平台的配置

通讯平台的配置,由 SELF, LOG, CENTER, QUEUE, GROUP,DEMOCERTIFY 六个节构成。

SELF 节的内容

B	程
PORT 5190 通讯平台的通讯端口 PIDPATH . 存放 PID 文件的目录 CRYPTO 0 0,1,2,3,4, 加密算法, 0: 不 放 密,1:BLOWFISH, 2:RC4,3:DES3,4:RC2,5 IDEA BRANCH 0 通讯平台组编号 SORT 0 0,1 是否有序传输,0:非存序,1:有序 BEATHEART 0 0,1 心跳,0:无心跳,1:有点	
CRYPTO 0 0,1,2,3,4,	
5 0: 不	
密,1:BLOWFISH, 2:RC4,3:DES3,4:RC2,5 IDEA BRANCH 0 通讯平台组编号 SORT 0 0,1 是否有序传输,0:非存序,1:有序 BEATHEART 0 0,1 心跳,0:无心跳,1:有点	
2:RC4,3:DES3,4:RC2,5 IDEA BRANCH 0 SORT 0 0 0,1 是否有序传输,0:非存序,1:有序 BEATHEART 0 0 0,1 心跳,0:无心跳,1:有点	加
BRANCH 0 IDEA BRANCH 0 通讯平台组编号 SORT 0 0,1 是否有序传输,0:非符序,1:有序 BEATHEART 0 0,1 心跳,0:无心跳,1:有机	
BRANCH 0 通讯平台组编号 SORT 0 0,1 是否有序传输,0:非符序,1:有序 BEATHEART 0 0,1 心跳,0:无心跳,1:有点	5:
SORT 0 0,1 是否有序传输,0:非符序,1:有序 BEATHEART 0 0,1 心跳,0:无心跳,1:有化	
BEATHEART 0 序,1:有序 0 0,1 心跳,0:无心跳,1:有点	
BEATHEART 0 0,1 心跳,0:无心跳,1:有小	有
	心
ZIP 0 0,1 0 不压缩, 1 压缩	
MAXCONNECTCOU 512 512~102 最大的连接数	
MAXCONNECTCOU 312	
BEATHEARTCOUN 1 1~29 心跳各数,在发出	<u>—</u>
T BEATHEARTCOUNT BEATHEARTCOUNT	
个心跳未收到响应后,	
	,
BUFFERLIMIT 0 0,>=100 连接上的缓存包数,	0
为不限制,最小的	Ü
限制是 100	
POOLLIMIT 0 0,>=1000 程序缓存包数, 0 为 ⁷	不
限制,最小的限制	•
是 1000	

MAXTTY	0	0,>=100	最大的 TTY 限制,0为 不限制,最小为100
FASTSYN	1	0,1	1: 快速同步路由, 0: 慢速
BONENODE	1	0,1	1: 主节点, 0: 叶节点
SLOTBLOCK	0	0,1	是否为直通链路提供 缓冲,1 不提供,0 提 供
onemax	0		来自单个 ip 的最大连接数,0为不控制
ipallow		容入地表为路件许的址件绝径	者指向的文件不存在,
ipforbid		禁入地表为路件 按 ip 列,对文	指向禁止接入的 ip 地址列表文件,这项为空或指向的文件不存在,表示没有禁止
limit		功或槽限地表为路件能通号的址件绝径	指向功能号或通讯槽 号受限制的 ip 地址列 表文件,这项为空或指 向的文件不存在,表示 功能号或通讯槽号没 有地址限制
checkgroup	0	是开连查不1查为查否组通0查为却不	通讯平台的众多节点,可以分属不同的组,组与组是否可连通,是可以配置的,配合功能号或通讯槽的 ip 限制,可以使部署更为容易
group		当前节点所属	

		<i>LL I.</i> □	
		的组	
Certify	0	是否启	通讯平台只提供简单
		用认证,	的认证处理,强的认证
		0 为不启	处理,由第三方提供,
		用,1为	通讯平台只提供集成
		启,缺省	的机
		为0	
certifybranch	0	认 证 服	认证服务所在的节点,
		务 所 在	0 表示不指定节点,非
		的节点	0表示对应的节点
certifyfunction		认 真 处	认真处理的服务号
		理的服	
		务号	
certifylib		外 挂 的	外挂的认证处理库
		认 证 处	
		理库	
iptrust		信任的 ip	指向存放不需认证的 ip
		地址列	地址列表文件
		表文件,	
		为绝对	
		路径文	
		件	

Ipallow,ipforbid,limit 列表文件为文本文件,ipallow,ipforbid 文件的格式如下#文字说明

ip:mask

ip 和 mask 间用":"分开,可以有多行

limit 文件的格式如下

#文字说明

function=

ip:mask

slot=

ip:mask

ip 和 mask 间用":"分开,可以有多行

LOG 节的内容

参数名	默认值	取值范围	说明
LOGTYPE	1	1,2	1为 syslog,2 为文件日
			芯
LOGGROUP	23		SYSLOG 的日志编号
LOGPATH	log		日志目录
LOGSIZE	1048576		日志文件的最大长度,
			单位是 byte
DRTPSA	013001		通讯平台即时通讯组
			件的著作编号
QUEUESA	013002		通讯平台持久化通讯
			组件的著作编号
certifydemosa	013003		通讯平台内置的序列
			号检查组件的著作编
			号
SILENCE	0	0,1	1 为没有屏幕输出,0
			为有
DEBUG	0	0,1,2	debug 等级,0 为不记
			录调试数据,
			1 为记录系统调试数
			据,2为记录全部调试
			数据

CENTER 节的内容

参数名	默认值	取值范围	说明
COUNTS	0		连接其他节点的连接
			数
IP1			对方节点 IP 地址
PORT1			通讯端口
BANDWIDTH1	102400		连接所使用线路的的 带宽,单位是 K
00000			

QUEUE 节的内容

	参数名	默认值		说明
--	-----	-----	--	----

SUPPORT	0	0,1	是否加载持久化组
			件,0 不加载,1 加载
DATAPATH	data		持久化数据的存放
			目录
WINDOWSIZE	50		数据发送的窗口大
			小
USER	admin		初始的用户名
PWD	admin		初始用户的密码
EXPRIT	72000		默认的数据失效时
			间,单位为秒
TIMEOUT	1000		默认的超时时间,单
			位为毫秒
EXTENDSIZE	10485760		初始容器大小,单位
			为字节
MAXLOGSIZE	32		活动日志的最大长
			度,单位为 M

GROUP 节的内容

参数名	默认值	取值范围	说明
counts	0		信任的其它的组的
			个数
Group1			第一个信任组的编
_			号
00000			0 0 0 0 0 0

DEMOCERTIFY 节的内容

参数名	默认值	取值范围	说明
support	0	0, 1	是否由 drtp 组件加
			载认证服务,0为不
			加载,1为加载
certifyfile			序列号列表文件,为
			绝对路径
function	-4		认证对外的服务号
serial			本节点的序列号

通讯平台的配置参数比较多,多数的参数,使用默认值就可以,使用的时候,需要修改的,来自于两个方面的要求,一个是区分节点的参数,一个是网络的状况。和这两方面相关的参数,有下面的两个表给出。

区分节点的参数

参数名	默认值	取值范	说明
		围	
NODE	127. 0. 0. 1	节点所	这个参数是供监控程
		在机器	序识
		的ip地	别通讯平台节点用的
		址	
PORT	5190		通讯平台的通讯端口
BRANCH	0		通讯平台组编号

区分节点的配置参数就只有 3 个, NODE 是用来和监控程序相联系的, 一般就是通讯平台所运行的机器的 IP 地址。PORT 是通讯端口,BRANCH 是通讯平台的组编号,这个在前面介绍 DrtpPostMessage 的消息交换机制时,已经介绍了。

网络状况的参数

参数名	默认值	取值范	说明	
		围		
BEATHEART	0	0,1	心跳,0:无心跳,1:有心	
			跳	
BEATHEARTCOUN	1	1~29	心跳各数,在发出	
Т			BEATHEARTCOUNT	
			个心跳未收到响应后,	
			将主动关闭连接	
BONENODE	1	0,1	1: 主节点, 0: 叶节点	

以及整个 CENTER 节的内容。CENTER 节的内容,是具体的互联的参数,带宽需要填写实际的带宽。而上表中的三个参数,和通讯平台的运行的网络环境,有很密切的关系的。BEATHEART 参数表示是否启用心跳,BEATHEARTCOUNT表示心跳的间隔,间隔的时间为 BEATHEARTCOUNT*5 秒。这两个参数用来检测节点间的网络是否发生了断线。一般的,在局域网上,这两个参数设置为:

BEATHEART=1

BEATHEARTCOUNT=1

在广域网间,这两个参数设置为:

BEATHEART=1

BEATHEARTCOUNT=10

BONENODE 是表示节点是主干节点还是叶子节点。所谓主干节点,就是该节点上含有所有互联的节点的所有路由信息,而叶子节点,只含有其下的路由信息。下图可以帮助我们理解这个参数的意义。

在上图中,主干节点 1, 2, 3 具有整个网络的路由信息,叶子节点 1 具有叶子节点 3 的路由信息,叶子节点 2, 3 支由自身的路由信息。当一个客户通过主干节点 1 调用主干节点 3 上的服务 1 时,这个路由的判断是在主干节点 1 上就完成的,而如果是从叶子节点上发起,就需要到其最近的主干节点才做判断。

将通讯平台的节点区分为主干节点还是叶子节点,主要是减少路由信息的通讯量。

性能测试报告

通讯平台提供了多种层次的消息交换方式,具有多种地数据加密方法,不同层次的消息 交换方式和不同的加密算法,具有不同的性能。总体的说,直通链路的处理能力最高,存储 转发的处理能力在其次,异步交换的处理能力最低。

本节给出的测试报告,在 Inter 奔 4CPU, 3.0E 主频的 pc 兼容机上完成。测试网络的带 宽为 100M。

测试报告从通讯消息的大小,对 CPU 的影响,网络带宽的占用,每秒收发的消息数几个方面来衡量。

直通链路方式

测试采用如下的节点程序关系:

直通链路				
通讯包长度	带宽占用	每秒收发消息数	CPU 占用	
31	1	184608	47	
62	1	128502	46	
125	1	79438	46	
250	1	45197	45	
500	1	24273	45	
1000	1	12603	45	
2000	1	6425	45	
4000	1	3244	45	
8000	1	1630	48	

存储转发方式

测试采用如下的节点程序关系:

存储转发				
通讯包长度	带宽占用	每秒收发消息数	CPU 占用	
31	1	97090	51	
62	1	78959	51	
125	1	57237	51	
250	1	37026	51	
500	1	21701	51	
1000	1	11872	51	
2000	1	6230	51	
4000	1	3194	51	
8000	1	1617	51	

异步通讯方式

测试采用如下的节点程序关系:

异步消息				
通讯包长度	带宽占用	每秒收发消息数	CPU 占用	
31	0. 55	42158	85	
62	0. 57	36986	85	
125	0. 68	33634	85	
250	0.87	29239	85	
500	1	20480	83	
1000	1	11498	80	
2000	1	6125	73	
4000	1	3166	70	
8000	1	1610	68	

测试结果分析

从测试数据看,消息交换的效率,直通链路效率最高,存储转发次之,异步消息最后。 另一方面,消息交换的效率,是被带宽所限制,在千兆网上,通讯平台将会有更好的性能。