2010

COURS DE CHIMIE 2S

M. Serigne Abdou Wahab DIOP LYCEE SEYDINA LIMAMOU LAYE

Table des matières

Me	elan	ges et corps pursges	5
	l.	États physiques et changement d'état	5
	1.	États physiques de la matière	5
	2.	Tableau récapitulatif des propriétés des états de la matière	6
	3.	Changement d'états physiques	6
	4.	Transformation de la matière	7
	a.	Phénomène physique	7
	b.	Phénomène chimique	7
	II.	Mélanges	7
	1.	Définition	7
	2.	Mélange homogène	7
	3.	Mélange hétérogène	7
	4.	Méthodes de séparation d'un mélange	7
	III.	Corps purs	. 10
	1.	Définition	. 10
	2.	Critères de pureté	. 10
	IV.	Analyse et synthèse de l'eau	. 10
	1.	Analyse de l'eau	. 10
	2.	Synthèse de l'eau	. 11
Αt	ome	s- éléments- classification périodique	13
	l.	Élément chimique	. 13
	1.	Action entre le métal cuivre et l'acide nitrique	. 13
	2.	Symbole d'un élément chimique	. 13
	II.	Atomes	. 14
	1.	Historique:	. 14
	2.	Dimensions de l'atome	. 14
	3.	Les constituants de l'atome	. 14
	4.	Masse de l'atome	. 15
	5.	lons	. 16
	III.	Classification périodique des éléments	. 16
	1.	Structure électronique	. 16
	2.	Représentation de Lewis	. 18

M. Wahab Diop | Lycée Seydina Limamou Laye | http://physiquechimie.sharepoint.com

IV.	Tableau de classification	. 19
1.	Classification historique de Mendeleïev.	. 19
2.	Classification moderne.	. 19
3.	Utilisation de la classification périodique.	. 20
Liaisons	s chimiques	. 22
I.	Liaison de covalence	. 22
1.	Définition	. 22
2.	Molécule	. 22
3.	Valence d'un élément	. 22
4.	Représentation de Lewis d'une molécule	. 23
II.	Structure de quelques molécules	. 23
1.	Formule brute	. 23
2.	Structures et géométrie de quelques molécules	. 23
3.	Formule développée	. 24
4.	Formule semi-développée	. 25
5.	Liaison de covalence polarisée	. 25
III.	Liaison ionique	. 25
1.	Définition	. 25
2.	Structure du chlorure de sodium	. 26
3.	Formule statistique et formule ionique	. 26
4.	Nomenclature de quelques ions	. 26
Mole et	grandeurs molaires	. 28
1.	La mole	. 28
1.	Définition de la mole	. 28
2.	La constante d'Avogadro: Amé dao 1776-1856)	. 28
3.	Relation entre le nombre d'individus et la quantité de matière	. 28
II.	Les masses molaires	. 29
1.	Définition générale	. 29
2.	Détermination des masses molaires	. 29
3.	Masse molaire moyenne	. 30
4.	Relation entre masse et quantité de matière	. 30
III.	Volume molaire.	. 31
1.	Définition	. 31

3

M. Wahab Diop | Lycée Seydina Limamou Laye | http://physiquechimie.sharepoint.com

	2.	Notion de température	31
	3.	Notion de pression	31
	4.	Équation d'état du gaz parfait	31
	5.	Loi d'Avogadro-Ampère.	32
	6.	Volume molaire	32
	7.	Relation entre volume molaire et quantité de matière.	32
I۱	/ .	Densité d'un gaz par rapport à l'air	32
Réa	ction	chimique – équation bilan	35
I.	N	otion de réaction chimique	35
	1.	Exemples de réactions chimiques	35
	2.	Définitions	36
	3.	Types de réaction chimique	36
	4.	Interprétation microscopique d'une réaction chimique	36
Ш	. R	eprésentation d'une réaction chimique par une équation-bilan	37
	1.	Équation-bilan d'une réaction chimique	37
	2.	Conservation de la masse au cours d'une réaction chimique	37
	3.	Équilibrage d'une équation-bilan d'une réaction chimique	37
	4.	Double significations de l'équation-bilan d'une réaction chimique	38
Ш	l.	Application : Résolution de problèmes de chimie	38
	1.	Cas où les réactifs sont mélangés dans les proportions stœchiométriques	38
	2.	Cas où l'un des réactifs est en excès	39

Mélanges et corps purs

I. États physiques et changement d'état

1. États physiques de la matière

La matière (*substance, réalité constitutive des corps, douée de propriétés physiques*) se présente dans la nature sous trois états physiques différents : état <u>solide</u>, <u>liquide</u> et <u>gazeux</u>.

 les solides: ils présentent une consistance relativement ferme et ont une forme propre. Les solides sont composés de particules serrées (liées) les unes contre les autres et accrochées ensembles. L'état physique solide est ordonné et compact.

Exemples: bois, règle, glace etc. ...

Les liquides: ils coulent et prennent la forme du récipient qui les contient: ils n'ont pas de forme propre. La surface d'un liquide au repos (immobile) est plane et horizontale. Les particules sont tassées, mais elles peuvent glisser les unes des autres, car elles ne sont pas attachées. L'état est désordonné mais compact. Les particules sont faiblement liées. Exemples: eau, huile, mercure, boisson etc. ...

- **Les gaz**: l'air qui nous entoure est un gaz. Un gaz s'échappe d'un récipient ouvert et occupe tout le volume qui lui est offert. Les particules sont peu nombreuses, libres, en mouvement rapide et désordonné. L'état est désordonné et diffus. Particules non liées très éloignées.

M. Wahab Diop | Lycée Seydina Limamou Laye | http://physiquechimie.sharepoint.com

2. <u>Tableau récapitulatif des propriétés des états de la matière</u>

	Nom:		Propriétés :	Un modèle :	Structure :
ACT tassée)	LE SOLI	IDE	Possède une forme propre. Difficilement déformable. Incompressible		Beaucoup de particules accrochées ensemble.
ETAT COMPACT (matière dense et tassée)	LE LIQUIDE	ı s'échappe)	Prend la forme du fond du récipient. La surface libre est plane et horizontale au repos. Incompressible		Beaucoup de particules qui peuvent glisser les unes sur les autres.
ETAT DIFFUS (molécules écartées en mouvement désordonné)	LE GAZ OU VAPEUR	FLUIDE (coule ou s'échappe)	Diffuse et remplit la totalité du récipient. S'échappe par la moindre ouverture. Compressible, expansible et élastique.	**************************************	Peu de particules qui s'agitent en désordre.

3. Changement d'états physiques

a) <u>Définition</u>

Le passage d'un état physique donné à un autre état physique est appelé : changement d'état.

b) Diagramme de changement d'état

<u>Remarque</u>: un changement d'état physique s'effectue toujours à une température constante sous une pression donnée.

4. <u>Transformation de la matière</u>

a. Phénomène physique

Un phénomène physique est une transformation au cours de laquelle la nature de la matière n'est pas altérée (détruite, faussée, dénaturée).

Exemples: fusion de la glace, dilatation d'un mercure dans un thermomètre, la rosée ...

b. Phénomène chimique

Un phénomène chimique est une transformation au cours de laquelle la nature de la matière est altérée.

<u>Exemples</u>: feuille de papier brûlée, combustion (*fait, pour un combustible, de s'unir à un comburant* (*souvent l'oxygène*) *en dégageant de la chaleur*) d'une bougie

II. Mélanges

1. <u>Définition</u>

Un mélange est un ensemble de deux ou plusieurs substances dont chacun garde ces mêmes propriétés physico-chimiques.

Exemple: jus d'orange, eau-huile; sable-sucre ...

2. Mélange homogène

Un mélange homogène est un mélange dans lequel on ne peut pas distinguer à l'œil nu ses différents constituants.

<u>Exemples</u>: eau salée (*loin des conditions de saturation*); l'air (21% d'oxygène, 78% d'azote et 1% de gaz rares)

3. Mélange hétérogène

Un mélange est hétérogène lorsque à l'œil nu on peut distinguer ses différents constituants.

Exemples : sable + sucre ; huile + eau; jus d'orange avec pulpe

4. Méthodes de séparation d'un mélange

a) La décantation

La décantation est une méthode de séparation liquide-solide basée sur la différence de densités des corps. Elle consiste à laisser le mélange au repos, les particules solides lourdes se déposent lentement au fond. En versant (transvaser) avec précaution, on peut séparer le liquide de ces particules.

Exemple: décantation d'un jus d'orange avec pulpe

<u>Remarques</u>: l'eau décantée est un mélange hétérogène non pur car elle contient des particules légères.

<u>NB</u>: On peut faire la décantation en utilisant une ampoule à décanter lorsqu'on veut séparer deux liquides non miscibles ou plusieurs liquides dans des phases différentes (voir schéma).

b) La filtration

La filtration est une méthode de séparation basée sur la différence de la grosseur des particules. Elle consiste à verser le mélange liquide (eau décantée) dans un filtre en papier placé sur un entonnoir. On recueille, après traversée du filtre, un liquide limpide: c'est le **filtrat**.

Exemple: filtration d'un jus d'orange pour enlever la pulpe

Remarque : le filtrat est un mélange homogène non pur car il contient des particules finement divisées.

c) Évaporation

L'évaporation est un processus physique de transformation d'un liquide en gaz. On peut évaporer l'eau contenue dans le jus d'orange par chauffage afin de récupérer le sirop d'orange.

d) La distillation

La distillation est une méthode de séparation basée sur la différence de températures d'ébullition (température à laquelle bout un corps) des différents constituants. Elle consiste à chauffer le mélange homogène jusqu'à l'ébullition dans un ballon. La vapeur obtenue est conduite dans un réfrigérant (refroidi par un courant d'eau) où elle se liquéfie. Le liquide recueilli à la sortie du réfrigérant est appelé **distillat**.

<u>Remarque</u>: seul le corps dont on atteint sa température d'ébullition est recueilli : ce corps est pur. La distillation n'est possible que lorsque les corps ont des différences de température d'ébullition supérieures où égale à 3°C.

e) La congélation

C'est une méthode basée sur la différence de température de cristallisation (température à laquelle un corps se congèle). Le corps dont sa température d'ébullition est plus grande est récupéré le premier sous forme de cristaux.

III. Corps purs

1. <u>Définition</u>

Un corps pur est un corps qu'on ne peut pas fractionner par une quelconque méthode de séparation; c'est-à-dire toutes les parties d'un corps pur sont identiques.

2. Critères de pureté

- un corps pur à une masse volumique constante ($\rho = \frac{m}{V}$) : $\rho_{\text{eau}} = 1 \text{ kg/L}$; $\rho_{\text{Fer}} = 7.8 \text{ kg/L}$
- un corps pur a une température de cristallisation constante : $\theta_c(eau) = 0^{\circ}C$; $\theta_c(Or) = 1068^{\circ}C$.
- un corps pur a une température d'ébullition constante : $\theta_e(eau) = 100$ °C ; $\theta_e(benzène) = 80$ °C.

Analyse et synthèse de l'eau IV.

1. Analyse de l'eau

a) **Définition**

Analyser un corps revient à chercher ses constituants par une méthode appropriée.

b) <u>Dispositif expérimental</u>

Un électrolyseur contenant une solution sodée (eau + soude) est relié aux bornes d'un générateur. Dès qu'on ferme le circuit, des bulles de gaz se dégagent aux électrodes et montent dans les éprouvettes.

- A la cathode ; l'électrode relié au pôle négatif : il se dégage qui gaz qui brûle avec une faible détonation ou explosion : c'est le dihydrogène.
- A l'anode ; l'électrode relié au pôle positif : il se dégage un gaz qui entretient la combustion.
- Le volume de dihydrogène est le double du volume de dioxygène : V_H = 2 V_O

Conclusion : l'élément hydrogène et l'élément oxygène sont deux constituants de l'eau.

Relation importante : eau → dihydrogène + dioxygène

18 g 2 g 16 g

2. Synthèse de l'eau

a) **Définition**

Faire la synthèse de l'eau c'est reconstitué l'eau à partir de ses différents constituants ; soit à partir d'autre corps.

b) <u>Dispositif expérimental</u>

M. Wahab Diop | Lycée Seydina Limamou Laye | http://physiquechimie.sharepoint.com

11

Conclusion: l'eau est reconstituée à partir de l'élément hydrogène et de l'élément oxygène.

c) <u>Conclusion générale</u>

L'analyse et la synthèse de l'eau montrent que l'élément hydrogène et l'élément oxygène sont les deux constituants de l'eau. L'eau est un corps pur composé alors que le dihydrogène et le dioxygène sont des corps purs simples.

Atomes- éléments- classification périodique

I. Élément chimique

1. Action entre le métal cuivre et l'acide nitrique

a) Expérience

b) Observations et constatations expérimentales

- on observe un dégagement de vapeurs rousses: le dioxyde d'azote (attention : gaz roux, nocif et irritant)
- disparition du métal cuivre au bout de quelques secondes
- à la fin de la transformation, ajoutons de l'eau dans le verre: la solution initiale verte devient bleue (présence de cuivre II)
- plongeons dans la solution bleue un clou en fer décapé: un dépôt jaune- rosâtre se forme, c'est le cuivre métal.

c) Conclusion

Lors de l'action de l'acide nitrique sur le cuivre métal, nous dirons que l'élément cuivre s'est conservé. Cet élément cuivre existe sous la forme métal et de cuivre II présent dans la solution. De même l'élément oxygène est commun au dioxygène, à l'ozone à l'eau et beaucoup d'autre corps.

d) <u>Définition d'un élément chimie</u>

Un élément chimique est un corps qui est commun à plusieurs substances chimiques pures.

2. Symbole d'un élément chimique

Pour faciliter l'écriture des éléments chimiques, les chimistes conviennent de les représenter par des symboles internationaux.

1^e convention: on représente l'élément chimique par la première lettre en majuscule de leur nom en français, latin ou étrangers.

Exemples: carbone (C), hydrogène (H), oxygène (O), phosphore (P), azote: nitrogène (N), potassium: kalium (K), fluor (F), Bore (B).

2ème convention: si plusieurs éléments chimiques ont leur nom qui commence par la même lettre, on adjoint à la première lettre en majuscule une seconde lettre en minuscule¹.

Exemples: calcium (Ca), brome (Br), fer (Fe), sodium: natrium (Na), cuivre (Cu), chlore (Cl).

II. **Atomes**

1. Historique:

Au 5^e siècle avant J.C le grec Démocrite avait fait l'hypothèse que la matière est divisible au-delà de ses possibilités de division. Mais il existe une limite au-delà de laquelle la matière est indivisible. C'est essentiellement Dalton qui, au début du 19^e siècle explique que la matière est formée de particules minuscules et indivisibles qu'il appela atome (du mot grec atomos).

2. Dimensions de l'atome

L'atome est représenté par une sphère infiniment petite. Le diamètre de l'atome est de l'ordre du Angstrom (symbole: A°). $1 \text{ A°} = 10^{-10} \text{ m}$

La masse de l'atome est de l'ordre de 10⁻²⁶ kg.

3. Les constituants de l'atome

L'atome est constitué d'un noyau chargé positivement et d'électrons chargés négativement en mouvement autour du noyau. L'atome est électriquement neutre.

a) Le novau atomique

Les nucléons

Les particules contenues dans le noyau atomique portent le nom de nucléons. Les nucléons sont les protons et les neutrons.

Particules	Symbole	Charge	Masse
Proton	р	+e	$m_p = m_n = 1,67.10^{-27} kg$
Neutre	n	0 (neutre)	Π _p -Π _n -1,07.10 kg

e est la charge élémentaire, sa valeur vaut 1,6.10⁻¹⁰ C. L'unité de la charge est le coulomb.

Les nombres Z et A

Le noyau d'un atome est caractérisé par un nombre de charge Z et un nombre de masse A.

14

¹⁽Sauf exceptions! Z=104, 105 ...)

M. Wahab Diop | Lycée Seydina Limamou Laye | http://physiquechimie.sharepoint.com

- le nombre de charge (ou numéro atomique) Z est le nombre de protons dans le noyau atomique.
- Le nombre de masse A est le nombre de nucléons (protons et neutrons) dans le noyau atomique.

Le nombre N de neutrons dans le noyau est N = A - Z.

Exemple: le noyau d'un atome de cuivre est caractérisé par les valeurs Z = 29 et A = 63, contient 29 protons et N = 63 - 29 = 34 neutrons.

b) Représentation d'un noyau

Le noyau d'un élément X est représenté sous la forme symbolique:

Exemple: le noyau de cuivre est représenté comme suit: $^{63}_{29}$ Cu

c) Notion d'isotopie

On appelle isotope des atomes d'un même élément qui ne différent que par le nombre de neutrons contenu dans le noyau.

Exemple: ${}_{1}^{1}H$, ${}_{1}^{2}H$ et ${}_{1}^{3}H$ sont des isotopes d'un même élément l'hydrogène.

d) Les électrons dans l'atome

Les électrons du cortège électronique sont en mouvement rapide autour du noyau et il n'est pas possible de les localiser dans l'espace ou sur une trajectoire.

• Les caractéristiques de l'électron

Nom	Symbole	Charge	Masse
Électron	e ⁻	-e	m _{e-} = 9,1.1. ⁻³¹ Kg

Conséquence

L'atome est électriquement neutre: la charge +Ze du noyau (Z protons de charge +e) est compensée par la charge –Ze (Z électrons de charge –e) du cortège électronique; celui ci comporte donc Z électrons.

<u>Remarque</u>: le nombre de charge (ou numéro atomique) Z représente aussi le nombre d'électrons de l'atome.

4. Masse de l'atome

La masse M de l'atome est donnée par la relation suivante:

$$M = m_{novau} + m_{des \, électrons} = Am_n + Zm_{e-}$$

L'électron est une particule chargée d'électricité négative; sa masse est environ; sa masse est environ 1836 fois plus petite que celle d'un nucléon. On peut dire que la masse de l'atome est pratiquement concentrée dans son noyau puisque la masse du cortège ou nuage électronique est négligeable devant celle des nucléons.

On peut réécrire la formule ci-dessus par la relation suivante:

M=Am_n

Par comparaison, si un électron se trouve sur la périphérie du stade de l'amitié le noyau correspondrait à une tête d'épingle située au centre du stade ! Et entre les deux, c'est le vide ! C'est la structure lacunaire de l'atome.

5. <u>Ions</u>

Un ion est un atome qui a perdu ou gagné un ou des électrons.

si l'atome gagne un ou plusieurs électrons, il se transforme en ion négatif appelé anion.

Exemple: l'oxygène O gagne deux électrons et se transforme en ion O²⁻

si l'atome perd un ou plusieurs électrons, il se transforme en ion positif appelé cation.

Exemple: le sodium Na perd un électron et se transforme en ion Na⁺

Application:

Indiquer le nombre protons, neutrons et d'électrons présents dans les entités suivantes:

	Nom	Symbole	Nombre de protons	Nombres de neutrons	Nombres d'électrons
¹⁴ ₇ N					
²³ ₁₁ Na ⁺					
¹⁶ ₈ O ²⁻					

Classification périodique des éléments III.

1. Structure électronique

a) Couche électronique

Les électrons d'un atome se répartissent en couches, encore appelées niveaux d'énergie. Chaque couche est caractérisée par un nombre entier positif n, appelé nombre quantique principal.

Valeur du nombre quantique	Désignation de la couche
1	К
2	L
3	М

b) Structure électronique

La répartition des électrons sur les niveaux obéit à deux règles:

• Principe de Pauli (Wolfgang):

Chaque niveau ne peut contenir qu'un nombre limité d'électrons: le nombre maximal d'électrons pouvant appartenir à un niveau caractérisé par le nombre quantique n est 2n².

Couche K (n = 1) → 2 électrons au maximum

Couche L (n = 1) → 8 électrons au maximum

Couche M (n = 1) \rightarrow 18 électrons au maximum

américain d'origine autrichienne (Vienne 1900 - Zurich 1958), prix Nobel en 1945 pour ses travaux sur les électrons des atomes. Il émit l'hypothèse, en 1931, de l'existence du neutrino.

Pauli (Wolfgang), physicien

• Principe de construction:

Les électrons occupent respectivement les niveaux en commençant par ceux ayant les nombres quantiques les plus faibles. Des électrons occupent d'abord le niveau K puis, quand celui-ci est saturé (plein), d'autres se placent sur le niveau L, etc....

<u>Remarque</u>: l'état de l'atome obtenu en appliquant le principe de construction est appelé *état fondamental* (état le plus stable car possédant un minimum d'énergie; les autres états sont dits *excités*).

c) Représentation de la structure électronique

Utilisation des cases quantiques

•	chaque niveau d'énergie comporte un certain nombre de cases: K (1 case), L (4 cases); M (4
	cases).

_						
K:	L:			M:		

On se limitera à z < 20.

- Chaque case ne peut contenir au maximum que deux électrons.

Exemple: Donnons la structure électronique sodium et du chlore.

17 M. Wahab Diop | Lycée Seydina Limamou Laye | http://physiquechimie.sharepoint.com

Utilisation de la formule électronique

- chaque niveau d'énergie est représenté par sa lettre correspondante, écrite entre parenthèse;
- le nombre d'électrons du niveau figure en exposant, en haut à droite;
- les niveaux vides ne sont mentionnés.

Exemples: H(Z=1): $(K)^{1}$; Na(Z=11): $(K)^{2}(L)^{8}(M)^{1}$; $Cl^{-}(Z=17)$: $(K)^{2}(L)^{8}(M)^{8}$; $A\ell^{3+}(z=13)$: $(K)^{2}(L)^{8}$

2. Représentation de Lewis

La représentation de Lewis a pour but de schématiser la structure électronique externe d'un atome ou d'un ion.

- le noyau et les électrons des couches internes sont représentés par le symbole de l'élément.
- Les électrons de la couche externe, figurés par un point s'ils sont célibataires et par un tiret s'ils forment un doublet, entourent le symbole de l'élément.
- La charge est éventuellement entourée.

	1	ll l	III	IV	V	VI	VII	VIII
	Hydrogène : ¹ H							Hélium : ⁴ He
1	Ĥ							He
	Lithium : ⁷ Lİ	Béryllium : 4Be	Bore: ¹¹ ₅ B	Carbone : ${}^{12}_6$ C	Azote : $^{14}_{7}N$	Oxygène : ¹⁶ ₈ O	Fluor: 19 F	Néon : 20 Ne
2	Ľi	5 .	•B	ċ.	• <u>N</u> •	١Ō٠	ι <u>Ē</u> •	INeI
		Be	·	•	•	,		_
	Sodium : ²³ ₁₁ Na	Magnésium : ²⁴ / ₁₂ Mg	·	Silicium : ²⁸ Si	Phosphore: 31 P	Soufre : 32 S	Chlore : 35 Cl	Argon : 40 Ar

IV. <u>Tableau de classification</u>

1. Classification historique de Mendeleïev.

Mendeleïev (1834-1907) eut l'idée de classer les éléments, connus à son époque, en colonnes et en lignes par ordre de numéros atomiques croissants, de telle manière que les éléments figurant dans une même colonne présentent des propriétés chimiques semblables.

2. Classification moderne.

- a) Remarques générales.
- Cette classification comporte 7 lignes (ou périodes) et 18 colonnes.
- Les éléments sont rangés dans chaque ligne par ordre croissant du numéro atomique Z.
- On trouve cette classification complète dans tous les livres de chimie mais nous ne présentons ici que l'étude des 18 premiers éléments comme la stipule le programme de la classe de seconde.

b) Présentation d'une case du tableau.

Cette présentation est classique mais elle offre à ce stade du cours trop d'informations. En ce qui concerne l'étude du tableau, les informations importantes sont: le symbole de l'élément et la formule électronique et plus particulièrement la dernière couche.

c) Présentation du tableau périodique (réduit aux 18 premiers éléments).

M. Wahab Diop | Lycée Seydina Limamou Laye | http://physiquechimie.sharepoint.com

d) <u>Caractéristiques de cette présentation.</u>

En examinant la présentation du tableau périodique proposée ci-dessus on peut s'apercevoir que:

- Dans une même ligne (ou période), les atomes des éléments ont le même nombre de couches électroniques occupées. Première ligne: couche K, deuxième ligne: couche L, troisième ligne: couche M.
- Le parcours d'une ligne correspond au remplissage d'une couche électronique, les couches inférieures étant saturées.
- Dans une même colonne, les atomes des éléments ont le même nombre d'électrons dans la couche externe. Les atomes des éléments de la colonne (1) ont 1 électron sur la couche externe, ceux de la colonne (2) en ont 2 sur la couche externe etc...
 - 3. <u>Utilisation de la classification périodique.</u>
 - a) Familles chimiques.

Les propriétés chimiques des atomes des différents éléments (transformation en ions monoatomiques ou capacité à établir une ou plusieurs liaisons covalentes) dépendent essentiellement du nombre d'électrons présents dans leur couche externe.

Or les atomes des éléments appartenant à une même colonne du tableau périodique possèdent justement le même nombre d'électrons dans leur couche externe.

On peut donc légitimement supposer et nous le vérifions dans la réalité que les atomes des éléments d'une même colonne ont des propriétés très semblables, même si elles ne sont pas rigoureusement identiques. On dit que les éléments d'une même colonne constituent une famille chimique.

Les éléments de la première colonne, notée (1),(à l'exception de l'hydrogène) constituent la famille des métaux alcalins.

Les éléments de la deuxième colonne, notée (2), constituent la famille des métaux alcalino-terreux. Les éléments de la dix-septième colonne, notée (7) dans la présentation réduite, constitue la famille des halogènes.

Les éléments de la dix-huitième colonne, notée (8) dans la présentation réduite, constitue la famille des gaz rares (ou gaz inertes).

b) Prévision de la charge d'un ion monoatomique: règle de l'octet

Règle de l'octet: Au cours des transformations chimiques, les atomes réagissent pour obtenir une structure électronique plus stable que la leur: ils ont tendance d'acquérir la structure électronique particulièrement stable des gaz rares. (L'hydrogène est une exception qui suit la règle du duet)

La règle de l'octet permet de prévoir que les atomes des éléments de:

la colonne (1) possèdent un électron sur leur couche externe. Ils ont tendance à le perdre pour donner un ion portant une charge positive (cation). Exemples: Li⁺, Na⁺ etc....

M. Wahab Diop | Lycée Seydina Limamou Laye | http://physiquechimie.sharepoint.com

20

- la colonne (2) possèdent deux électrons sur leur couche externe. Ils ont tendance à les perdre pour donner un ionportant deux charges positives. Exemples: Be²⁺, Mg²⁺ etc....
- la colonne 13, notée (3) dans la présentation réduite, possèdent trois électrons sur leur couche externe. Ils ont tendance à les perdre pour donner un ion portant trois charges positives. Exemples: B³⁺, Al³⁺ etc.
- la colonne 17, notée (7) dans la présentation réduite, possèdent sept électrons sur leur couche externe. Ils ont tendance à gagner un électron pour donner un ion portant une charge négative (anion). Exemples: F⁻, Cl⁻ etc.

Liaisons chimiques

Les éléments chimiques n'existent pratiquement pas à l'état libre (sauf les gaz rares), mais entrent en combinaison pour former des édifices moléculaires.

Liaison de covalence I.

1. Définition

Une liaison de covalence s'établit entre deux atomes par mise en commun de deux de leurs électrons célibataires de manière à former un doublet de liaison.

Exemples:
$$H - \overline{C}l$$
 $N \equiv N$

2. Molécule

Une molécule est un édifice chimique électriquement neutre constitué d'atomes liés par des liaisons de covalence.

Exemple: la molécule d'éthanol.

Remarque:

- la règle de l'octet ou du duet est vérifiée pour chacun des atomes qui constituent une molécule.
- Le nombre d'atomes d'une molécule est son atomicité. L'atomicité de l'éthanol est 8

3. Valence d'un élément

La valence d'un élément est le nombre de liaisons de covalence qu'il peut former. Elle est égale au nombre d'électrons célibataires de sa couche externe.

Atomes	Formule de Lewis	Valence
Hydrogène	Ĥ	1
Carbone	٠ċ٠	4
Azote	• <u>N</u> •	3
Oxygène	١Ō٠	2
Chlore	ı <u>c</u> ı.	1

4. Représentation de Lewis d'une molécule

La représentation de Lewis d'une molécule est une représentation des atomes et de tous les doublets d'électrons périphériques liants ou non liants de cette molécule.

Exemples

II. <u>Structure de quelques molécules</u>

1. Formule brute

La formule brute d'une molécule est une écriture simplifiée qui renseigne sur la nature et le nombre des éléments qui la composent.

Exemples: eau (H₂O); dihydrogène (H₂); dioxygène (O₂); éthanol (C₂H₆O)

2. <u>Structures et géométrie de quelques molécules</u>

Nom et formule brute	Représentation des atomes de la molécule Formation des liaisons	Représentation de Lewis de la molécule	Géométrie
Dihydrogène		нн	Linéaire
H ₂			
Dichlore		a a	Linéaire
Cl ₂		<u> </u>	Lillealle
Dioxygène		(0===0)	Linéaire
O ₂		<u> </u>	Lillealle
Chlorure			
d'hydrogène		н <u>с</u> і	Linéaire
HCI			
Eau		0	Triangulaire
H₂O		Н	Triangulaire

23 M. Wahab Diop | Lycée Seydina Limamou Laye | http://physiquechimie.sharepoint.com

3. Formule développée

La représentation en formule développée d'une molécule est une représentation de Lewis où les doublets liants n'en sont pas représentés.

Formule brute	Représentation de Lewis	Formule développée	
C ₂ H ₆ O	H H H H H H H H H H H H H H H H H H H	H H H H C C C O H H H H	

4. Formule semi-développée

La formule semi-développée est obtenue à partir de la formule développée dans laquelle les liaisons de types X-H (O-H; N-H; C-H; ...) ne seront pas représentées.

Exemple: la formule semi développée de l'éthanol est: CH₃-CH₂-OH

5. <u>Liaison de covalence polarisée</u>

L'électronégativité est l'affinité qu'à un atome d'attirer les électrons de valence (voir tableau).

Une liaison de covalence est polarisée si les atomes qui forment la liaison ont des électronégativités différentes

- Si les électronégativités sont différentes, la liaison est dite covalente polarisée.
- Si les électronégativités sont très voisines, la liaison est dite covalente non polarisée.

Remarque: le doublet d'électrons est plus proche de l'atome le plus électronégatif

Électronégativité selon l'échelle de Pauli

H 2,2						
Li 0,91	Be 1,57	B 2,04	C 2,55	N 3,04	0 3,44	F 3,98
Na 0,93	Mg 1,31	Al 1,61	Si 1,9	P 2,19	<mark>\$</mark> 2,58	Cl 3,16

Le fluor (F) est l'élément le plus électronégatif tandis que le lithium (Li) est très électropositif.

III. Liaison ionique

1. Définition

Une liaison ionique s'établit entre un ion positif et un ion négatif. Sa cohésion est assurée par la force d'attraction électrique qui lie les deux ions.

25 M. Wahab Diop | Lycée Seydina Limamou Laye | http://physiquechimie.sharepoint.com

(C) Wahab Diop

2. Structure du chlorure de sodium

- Structure du sodium: $\frac{13}{11}$ Na

Na a tendance à libérer l'électron de sa couche externe pour avoir la structure du Néon. Na⁺

- Structure du chlore: $\frac{35}{17}$ Cl

Le chlore va capter un électron pour donner l'ion Cl⁻

Le cristal de chlorure de sodium résulte de l'attraction entre l'ion Cl et l'ion Na

3. Formule statistique et formule ionique

 $Na^+ + Cl^- \rightarrow (Na^+, Cl^-)$ cristal de chlorure de sodium

Les composés ioniques sont électriquement neutres

(Na⁺, Cl⁻) est la formule ionique du chlorure de sodium

NaCl est la formule statistique du chlorure de sodium

Exemples:

• chlorure de magnésium

- Formule ionique (Mg²⁺, 2Cl⁻)

Formule statistique: MgCl₂

• Chlorure d'aluminium

Formule ionique (Al³⁺, 3Cl⁻)

- Formule statistique: AlCl₃

Oxyde de calcium

Formule ionique (Ca²⁺, O²⁻)

- Formule statistique: CaO

4. Nomenclature de quelques ions

CATIONS	FORMULES	ANIONS	FORMULES
ion oxonium	H₃O ⁺	ion hydroxyde	OH.
ion cuivrique ou cuivre II	Cu ²⁺	ion nitrate	NO ₃
ion sodium	Na ⁺	ion iodure	r
ion calcium	Ca ²⁺	ion bromure	Br -

ion ferreux ou fer II	Fe ²⁺		ion chlorure	CI.
ion ferrique ou fer III	Fe ³⁺		ion sulfate	SO ₄ ²⁻
ion argent	Ag ⁺		ion hydrogénosulfate	HSO ₄
ion magnésium	Mg ²⁺		ion carbonate	CO ₃ ²⁻
ion potassium	K ⁺		ion hydrogénocarbonate	HCO ₃
ion plomb	Pb ²⁺		ion phosphate	PO ₄ 3-
ion ammonium	NH ₄ ⁺		ion hydrogénophosphate	HPO ₄ ²⁻
ion zinc	Zn ²⁺	i	ion dihydrogénophosphate	H ₂ PO ₄
ion aluminium	AI 3+		ion permanganate	MnO ₄
ion chrome	Cr ³⁺		ion carboxylate	R - COO
ion cobalt II	Co ²⁺		ion dichromate	Cr ₂ O ₇ ²⁻
ion cobalt III	Co ³⁺		ion sulfure	S 2-
			ion thiosulfate	S ₂ O ₃ ²⁻
			ion peroxodisulfate	S ₂ O ₈ ²⁻
			ion tetrathionate	S ₄ O ₆ ²⁻

Exercice d'application

Donner les formules statistique et ionique des composés suivants:

- Nitrate de potassium
- Phosphate d'ammonium
- Sulfate de calcium

Mole et grandeurs molaires

Les atomes, les molécules, les ions ont des masses beaucoup trop faibles (de l'ordre de 10⁻²⁶g) pour être mesurées à l'aide d'une balance. Il a fallu définir un nombre de ces entités très grand afin d'obtenir des masses de l'ordre de quelques grammes. Ce nombre est la *mole* (symbole : mol) et c'est l'unité de la quantité de matière.

I. La mole

1. <u>Définition de la mole</u>

La mole est la quantité de matière d'un système contenant autant d'entités élémentaires qu'il y a d'atomes dans 12 g de carbone 12.

Lorsqu'on emploie la mole, les entités élémentaires doivent être spécifiées. Ils peuvent être des atomes, des ions, des molécules, etc....

2. La constante d'Avogadro: Amé dao 1776-1856)

La constante ou nombre d'Avogadro noté ${\mathcal N}$ est le nombre d'entités chimiques (atomes) contenu dans12 g de carbone 12. On montre expérimentalement que $\mathcal{N}=6,02.10^{23}\,\mathrm{mol}^{-1}$.

<u>Remarque</u>: on peut calculer la valeur approchée de \mathcal{N} : la masse de l'atome de carbone 12 est voisine à la masse de 12 nucléons, soit $1,67.10^{-27}$ kg; d'où la valeur approchée de \mathcal{N}

$$\mathcal{N} = \frac{\text{0,012}}{\text{12\times1,67\times10^{-27}}} \approx 6.10^{23} \text{ mol}^{\text{-}1}$$

<u>Remarque</u>: $N_A = 6,02.10^{23} \text{ mol}^{-1}$ correspond à 602 mille milliard de milliard d'entités par mole.

Exemples:

- une mole d'eau contient 6,02.10²³ molécules d'eau
- une mole de Na_2SO_4 contient 6,02.10²³ espèces Na_2SO_4 , soit 2×6,02.10²³ ions Na^+

3. Relation entre le nombre d'individus et la quantité de matière

Considérons un échantillon de matière contenant N individus (entités élémentaires). A chaque fois que l'on a 6,02.10²³ individus, on dit que l'on a une mole. Il y a donc proportionnalité entre le nombre N d'individus et la quantité de matière n.

$$N = N_A \times n$$
 nombre d'individus (sans unité) constante d'Avogadro (mol $^{-1}$) quantité de matière (mol)

Application 1

- 1) Quel est le nombre de moles de molécules d'eau contenu dans 12,7.10²⁴ molécules d'eau?
- 2) Quel est le nombre d'ions chlorure C& contenu dans 1,5 mol de chlorure de fer III?
- M. Wahab Diop | Lycée Seydina Limamou Laye | http://physiquechimie.sharepoint.com 28

-
$$n = \frac{N}{N} = \frac{12,7.10^{24}}{6,02.10^{23}} = 21,1 \text{mol}$$

le chlorure de fer III: $FeC\ell_3$ et ($Fe^{3+} + 3C\ell^-$)

nombre d'ions $C\ell^-: 3\times n \times \mathcal{N} = 3\times 1,5\times 6,02.10^{23} = 2,709.10^{24}$ ions $C\ell^-$

II. Les masses molaires

1. <u>Définition générale</u>

La masse molaire d'une espèce est la masse d'une mole d'entités de cette espèce. Elle s'exprime en g.mol⁻¹.

2. Détermination des masses molaires

a. <u>Masse molaire atomique</u>

La masse molaire atomique est la masse d'une mole d'atomes de l'espèce considérée.

Masse molaire approchée de quelques éléments chimiques				
Élément chimique X	M_X (g.mol ⁻¹)			
Hydrogène H	1			
Carbone C	12			
Azote N	14			
Oxygène O	16			
Sodium Na	23			
Aluminium A&	27			

b. Masse molaire moléculaire

La masse molaire moléculaire est la masse d'une mole de molécules de l'espèce considérée. La masse molaire moléculaire s'obtient en faisant la somme des masses molaires atomiques des atomes qui constituent la molécule (en tenant compte des coefficients dans la formule moléculaire).

Exemple:
$$M(H_2O) = 2M_H + M_O = 2 \times 1 + 16 = 18 \ g \, mol^{-1}$$

 $M(NH_3) = M_N + 3M_H = 14 + 3 \times 1 = 17 \ g \, mol^{-1}$

c. Masse molaire ionique

La masse molaire ionique est la masse d'une mole d'ions de l'espèce considérée. On peut négliger la masse des électrons par rapport à la masse des noyaux.

$$M (Na^{+}) \approx M_{Na} = 23 \ gmol^{-1}$$

$$M (PO_{4}^{3-}) \approx M_{P} + 4M_{O} = 31 + 4 \times 16 = 95 \ gmol^{-1}$$

3. Masse molaire movenne

Les corps naturels sont, en général, pour un élément donné, constitués de mélanges d'isotopes. Seul, l'or $\frac{197}{79}$ Au et le phosphore $\frac{31}{15}$ P sont formés à partir d'atomes absolument identiques. Le pourcentage d'un isotope dans l'échantillon est appelé abondance relative ou isotopique.

Élément	Nombre de masse A	Abondance relative
Chlore $^{A}_{17}Cl$	35	75,4
Chiore ₁₇ C <i>t</i>	37	24,6
	32	95,018
Soufre $^A_{16}S$	33	0,750
Sourre ₁₆ 8	34	4,215
	36	0,017
	234	0,006
Uranium $^{A}_{92}$ U	235	0,71
	238	99,284

Ainsi pour déterminer la masse molaire moyenne notée \overline{M} d'un élément X constitué d'isotopes X_1 , X_2 , X_n ayant respectivement les pourcentages isotopiques $%(X_1)$, $%(X_2)$,, $%(X_n)$, on applique l'expression suivante:

$$M(X) = (X_1)M(X_1)+(X_2)M(X_2)+....+(X_n)M(X_n)$$

Exemple:
$$\overline{M}(CI) = \frac{75.4}{100}35 + \frac{24.6}{100}37 = 35.5 \text{ g.mol}^{-1}$$

4. Relation entre masse et quantité de matière

Une mole de matière a une masse égale à M (masse molaire). Donc n moles ont pour masse $m = n \times M$. D'où la relation:

$$n = \frac{m(g)}{M(g.mol^{-1})}$$

Application 2:

- Calculer la quantité de matière (nombre de moles) contenue dans 28 g de fer. $(M_{Ee}=55.8 \text{ g.mol}^{-1}).$
- Calculer la masse de 0,5 mol de sulfate d'aluminium.

III. Volume molaire.

1. Définition

Le volume molaire d'un gaz est le volume occupé par une mole de gaz. Il est noté V_m et s'exprime en L.mol⁻¹.

2. Notion de température

Dans un gaz, les molécules sont éloignées les unes des autres. Elles sont indépendantes et se déplacent à grande vitesse en ligne droite dans toutes les directions.

La température absolue mesure l'agitation thermique des molécules d'une substance donnée. Son unité est le Kelvin (symbole: K) et sa relation avec la température à l'échelle Celsius est:

$$T(K) = t(^{\circ}C) + 273$$

Remarque: le OK (zéro kelvin) représente l'absence totale d'agitation des molécules soit -273°C.

3. Notion de pression

La pression correspond au nombre de chocs entre les molécules et les parois du récipient qui les renferment par unité de temps par unité de surface. Son unité dans le SI est le Pascal (symbole: Pa) et elle est notée *P*.

$$P = \frac{F}{S}$$
 P en pascal (Pa)
F en newton (N)
S en mètre carré (m²)

 $1atm (atmosphere) = 1,013.10^5 Pa = 760 mmHg (millimeter de mercure)$ $1bar = 10^5 Pa.$

4. Équation d'état du gaz parfait

Un gaz est parfait lorsqu'il suit l'équation d'état suivante: PV = nRT

- P (Pa): pression du gaz
- V (L): volume du gaz
- N (mol): nombre de moles du gaz
- R=8,314 Pa.m³.mol⁻¹K⁻¹: constante des gaz parfait.
- T (K): température absolue.

Remarque: si le volume s'exprime en L et la pression en atmosphère on aura R = 0.82 atm.L.mol⁻¹K⁻¹

5. Loi d'Avogadro-Ampère.

Dans les mêmes conditions de température et de pression, le volume occupé par une mole de molécules d'un gaz est identique quel que soit la nature chimique du gaz.

Autrement dit: deux volumes égaux de gaz différents, pris dans les mêmes conditions de température et de pression, contiennent le même nombre de moles.

6. Volume molaire

PV = nRT et donc pour une mole de gaz $V = V_m = \frac{RT}{V}$: le volume molaire dépend de la température et de la pression.

On définit conventionnellement des conditions de référence appelées conditions normales de température et de pression (CNTP en abréviation)

$${\it Dans les CNTP} \begin{cases} -\textit{ pression normale: 1atm} \\ -\textit{ temp\'erature normale: 0°} C \end{cases}$$

V pour une mole:
$$V = \frac{nRT}{P} = \frac{1mol \times 8,314 \times 273}{1,013.10^5} = 22,4L$$

Dans les CNTP le volume molaire vaut: $V_m = 22,4L.mol^{-1}$

7. Relation entre volume molaire et quantité de matière.

Pour une température et une pression données, une mole de gaz occupe un volume V_m (volume molaire). Dans les mêmes conditions, n moles de gaz occupent le volume $V = n \times V_m$.

$$n = \frac{V}{V_m}$$

n (mol): nombre de moles; V (L): volume du gaz; V_m(mol.L⁻¹): volume molaire

Application 3:

On considère un flacon de dichlore de 1L. Il est rempli de dichlore dans les conditions où le volume molaire vaut 24 L.mol⁻¹

- calculer le nombre de mole de dichlore
- en déduire la masse de dichlore contenu dans le flacon. On donne: M_{CI}=35,5 g.mol⁻¹

Densité d'un gaz par rapport à l'air

Elle est définie par le rapport $=\frac{\mu_{gaz}}{\mu_{gar}}$ avec $\mu_{air}=1,293\,g.L^{-1}$ à 0°C et 1 atm.

$$d = \frac{\mu_{gaz} \times V_m}{\mu_{air} \times V_m} = \frac{masse \ d'une \ mole \ de \ gaz \ dans \ les \ CNTP}{22,4 \times 1,293} = \frac{M}{29} \text{ avec M=masse molaire}$$

$$d=\frac{M}{29}$$

M. Wahab Diop | Lycée Seydina Limamou Laye | http://physiquechimie.sharepoint.com 32

On peut noter la relation suivante:

$$PV = nRT \Rightarrow P = \frac{nRT}{V} = \frac{mRT}{MV} = \frac{\rho VRT}{MV} = \frac{\rho RT}{M} \Rightarrow \rho = \frac{P}{RT} \times M \Rightarrow V_m = \frac{M}{\rho}$$

Exercice: Le mercure a une densité d = 13, 6. Quelle est la quantité de matière de mercure contenue dans 100mL de mercure ?

Autour des grandeurs : masse molaire moléculaire, M et volume molaire, V_m (à T et p)

<u>Objectif</u>: Se familiariser, pour les différentes espèces chimiques proposées, avec les grandeurs : masse molaire moléculaire, M; volume molaire, V_m (à T et p); quantité de matière n; masse volumique ρ et densité d. Les élèves doivent disposer des masses molaires atomiques.

Compléter les tableaux ci-dessous :

1- Solides

Espèce chimique	Nom	Glace	Vitamine C (acide ascorbique)	Acide stéarique (constituant des bougies)
	Formule brute	H ₂ O	C ₆ H ₈ O ₆	$C_{18}H_{36}O_2$
Masse molaire molé	éculaire (g.mol ⁻¹)			
Masse volumique (g.mL ⁻¹)		0,917		0,941
Densité			1,65	
Masse			500 mg	
Quantité de matière (mol)		1,35		
Volume (mL)				120

2- <u>Liquides (conditions normales de température et de pression)</u>

Espèce chimique	Nom	Éthanol ou alcool éthylique	Octane (constituant de l'essence)	Styrène(conduit au polystyrène qui est une matière plastique)
	Formule brute	C₂H ₆ O	C ₈ H ₁₈	C ₈ H ₈
Masse molaire moléculaire (g.mol ⁻¹)				
Masse volumique à (g.cm ⁻³)		0,789		0,906

Densité		0,703	
Masse			28 g
Quantité de matière (mol)		3,2	
Volume (mL)	43,2		

3- <u>Gaz</u>

Espèce chimique	Nom	Méthane (gaz de ville)	Dioxyde de carbone	Butane
	Formule brute	CH₄	CO ₂	C ₄ H ₁₀
Masse molaire mo	oléculaire (g.mol ⁻¹)			
Volume molaire	(L.mol ⁻¹) à <i>T</i> et <i>p</i>	22,42 0°C; 1,013 bar	2,447 25°C ; 10,13 bar	24,47 25°C ; 1,013 bar
Masse		73 g		
Volume (mL)			3420	
Quantité de matière (mol)				2,75.10 ⁻³

Réaction chimique - équation bilan

I. Notion de réaction chimique

1. Exemples de réactions chimiques

a. Combustion du carbone dans le dioxygène

Plongeons le charbon (carbone) de bois incandescent dans un flacon rempli de dioxygène. Il brûle vivement en projetant des étincelles : le flacon devient très chaud.

À l'aide d'une seringue, prélevons un peu du contenu gazeux du flacon ; envoyons ce gaz dans l'eau de chaux. Nous observons la formation d'un précipité blanc. Ce gaz est donc du dioxyde de carbone.

Le carbone brûle dans le dioxygène en dégageant de la chaleur. Le carbone et le dioxygène disparaissent et il se forme du dioxyde de carbone.

b. Réaction entre le fer et soufre

Plaçons un mélange intime de limaille de fer et de fleur de soufre (56 g de fer pour 32 g de soufre) sur une brique réfractaire; il ne se produit aucune réaction. Chauffons une petite portion du mélange. Dès qu'elle devient incandescente, cessons de chauffer. Nous remarquons néanmoins que l'incandescence se propage à travers tout le mélange réactionnel, laissant derrière elle un solide gris, poreux et friable : c'est du sulfure de fer II de formule FeS.

2. <u>Définitions</u>

Une réaction chimique est la transformation au cours de laquelle des corps purs appelés réactifs se transforment en d'autres corps purs appelés produits.

3. Types de réaction chimique

- Une réaction chimique au cours de laquelle il y a dégagement de chaleur est dite exothermique Exemple: combustion du charbon de bois
- Une réaction qui absorbe de la chaleur est dite endothermique Exemple: dissolution du chlorure d'ammonium
- Une réaction qui n'absorbe ni ne dégage de chaleur est dite athermique. Exemple: dissolution du chlorure de sodium

4. Interprétation microscopique d'une réaction chimique

Exemple de la synthèse de l'eau: $2H_2 + O_2 \longrightarrow 2H_2O$

Réactifs	Rupture des liaisons	Formation de nouvelles liaisons (produits)
Les molécules de dihydrogène et celle du dioxygène se rapprochent et s'entrent-choc.	Les liaisons se brisent mais les atomes se conservent	Les atomes libérés se réarrangent pour former de nouvelles liaisons en donnant deux molécules d'eau

II. Représentation d'une réaction chimique par une équation-bilan

1. Équation-bilan d'une réaction chimique

Une réaction chimique se représente par une équation-bilan obtenue en plaçant, dans le premier membre les formules brutes des réactifs et dans le second membre formules brutes des produits; les deux membres étant séparés par une flèche.

Réactifs → Produits

Les équations-bilan des réactions précédemment étudiées sont donc:

Réaction entre le fer et le soufre: Fe + S -----> FeS

Combustion du charbon de bois: $C + O_2 \longrightarrow CO_2$

2. Conservation de la masse au cours d'une réaction chimique

a. Loi de Lavoisier

Énoncé la loi de Lavoisier : Dans une réaction chimique, la masse des produits est égale à la masse des réactifs entrés en réaction.

b. Vérification de la loi de Lavoisier

La masse des réactifs utilisés dans l'exemple étudié (réaction entre le fer et le soufre) vaut 98 g. Pesons la masse de sulfure de fer FeS obtenu ; on trouve 98 g.

On vérifie bien que la masse des réactifs est sensiblement égale à la masse des produits.

$$\begin{array}{l} m(Fe) + m(S) = 56 + 32 = 98 \ g \\ m(FeS) \approx 98 \ g \end{array} \} \mbox{ la masse des produits est égale à la masse des réactifs.}$$

3. Équilibrage d'une équation-bilan d'une réaction chimique

On équilibre une équation-bilan en multipliant les formules brutes par des coefficients appelés coefficients stœchiométriques afin assurer la conservation des éléments des masses et des charges électriques.

Exemple: On fait réagir de l'oxyde de cuivre en poudre (CuO) sur du carbone en poudre. Cette réaction fournit du cuivre et dioxyde de carbone.

- Les réactifs sont : l'oxyde de cuivre (CuO) et le carbone (C)
- Les produits de la réaction sont : le cuivre : (Cu) et le dioxyde de carbone : (CO_2)
- D'où l'équation équilibrée 2CuO + C → 2Cu + CO₂

Application:

Équilibrez les équations bilan suivantes:

$$H_2SO_4 + H_2O$$
 \rightarrow $H_3O^+ + SO_4^{2-}$

(C) Wahab Diop

37

Fe + H₃O⁺
$$\rightarrow$$
 Fe²⁺ + H₂ +H₂O

Cu²⁺ + OH⁻ \rightarrow Cu(OH)₂

Ag⁺ + PO₄³⁻ \rightarrow Ag₃PO₄

4. Double significations de l'équation-bilan d'une réaction chimique

Prenons l'exemple de la synthèse de l'eau: $2H_2 + O_2 \longrightarrow 2H_2O$

Signification microscopique

Deux molécules de dihydrogène réagissent avec une molécule de dioxygène pour donner deux molécules d'eau.

Signification macroscopique

Deux moles de dihydrogène réagissent avec une mole de dioxygène pour donner deux moles d'eau.

III. <u>Application : Résolution de problèmes de chimie</u>

1. Cas où les réactifs sont mélangés dans les proportions stœchiométriques (Après la réaction, tous les réactifs sont consommés)

Exemple: Réaction entre l'aluminium et l'oxyde de fer.

On mélange 24 g d'oxyde de fer Fe₂O₃ et 8,1 g d'aluminium puis on chauffe fortement. Après la réaction, on obtient du fer métal Fe et de l'oxyde d'aluminium Al₂O₃.

- 1) Écrire l'équation-bilan de la réaction.
- 2) Déterminer les masses de fer et d'oxyde d'aluminium formées.

Solution

1) Équation-bilan de la réaction

$$Fe_2O_3 + 2 AI \rightarrow 2 Fe + AI_2O_3$$
.

2) Masses de fer et d'oxyde d'aluminium formées

Dressons le tableau du bilan réactionnel.

38

(en mol)
$$\frac{n(Fe_2O_3)_0}{1}=0,15 \qquad \frac{n(Al)_0}{2}=0,15 \qquad x \qquad x$$
 Conclusion
$$\frac{n(Fe_2O_3)_0}{1}=\frac{n(Al)_0}{2}$$

⇒ Les réactifs sont dans les proportions stœchiométriques.

Donc
$$\frac{n(Fe_2O_3)_0}{1} = \frac{n(AI)_0}{2} = \frac{n(Fe)}{2} = \frac{n(AI_2O_3)}{1} = 0.15 \text{ mol} (1)$$

- Nombre de mole initial de Fe_2O_3 : $n(Fe_2O_3)_0 = \frac{m(Fe_2O_3)}{M(Fe_2O_3)} = \frac{24}{160} = 0.15$ mol.
- Nombre de mole initial d'aluminium Al : $n(Al)_0 = \frac{m(Al)}{M(Al)} = \frac{8,1}{27} = 0,30 \text{ mol}.$

De l'équation (1) , on déduit : $\frac{n(Fe)}{2}$ = 0,15 mol soit n(Fe) = 0,30 mol et $\frac{n(Al_2O_3)}{1}$ = 0,15 mol soit $n(Al_2O_3)$ = 0,15 mol. (On complète le tableau en remplaçant les x par leurs valeurs correspondantes)

- Masse de fer formé : m(Fe) = n(Fe).M(Fe) = 0,30x56 = 16,8 g.
- Masse d'alumine formé : $m(Al_2O_3) = n(Al_2O_3).M(Al_2O_3) = 0.15x102 = 15.3 g.$
 - Cas où l'un des réactifs est en excès
 (Après la réaction, l'un au moins des réactifs n'est pas totalement consommé)

Exemple: Combustion du fer dans le dioxygène

On réalise la combustion de 5,04 g de fer dans un volume de 480 mL de dioxygène mesuré dans les conditions où le volume molaire est 24 $L.mol^{-1}$. On obtient de l'oxyde magnétique Fe_3O_4 .

- 1) Écrire l'équation-bilan de la réaction.
- 2) Montrer que l'un des réactifs est en excès. Calculer la masse de cet excès.
- 3) Déterminer la masse d'oxyde magnétique Fe₃O₄ formée.

Solution

1) Équation-bilan de la réaction

3 Fe+ 2
$$O_2 \rightarrow Fe_3O_4$$
.

2) Montrons que l'un des réactifs est en excès

Réactifs → Produits

39 M. Wahab Diop | Lycée Seydina Limamou Laye | http://physiquechimie.sharepoint.com

⇒ Le fer est en excès. Le réactif limitant est donc le dioxygène.

Donc
$$\frac{n(Fe)_{r\acute{e}agi}}{3} = \frac{n(O_2)_0}{2} = \frac{n(Fe_3O_4)_{form\acute{e}}}{2} = 0.01 \text{mol} (1) (*)$$

(*) On raisonne par rapport au réactif limitant.

- Nombre de mole initial de Fe : $n(Fe)_0 = \frac{m(Fe)}{M(Fe)} = \frac{5,04}{56} = 0,09 \text{ mol.}$
- Nombre de mole initial de dioxygène : $n(O_2)_0 = \frac{m(O_2)}{M(O_2)} = \frac{480.10^{-3}}{24} = 0,02 \text{ mol.}$

De l'équation (1), on déduit : $\frac{n(Fe)_{réagi}}{3}$ = 0,01 mol soit $n(Fe)_{réagi}$ = 0,30 mol et

 $\frac{n(\text{Fe}_3\text{O}_4)_{\text{form\'e}}}{1} = 0,01 \text{mol. soit } n(\text{Fe}_3\text{O}_4)_{\text{form\'e}} = 0,01 \text{ mol. (On complète le tableau en remplaçant les x par leurs valeurs correspondantes)}$

• Masse de fer en excès : $m(Fe)_{excès} = m(Fe)_0 - m(Fe)_{réagi}$ avec $m(Fe)_{réagi} = 0.30x56 = 1.68 g$

$$m(Fe)_{excès} = 5.04 - 1.68 = 3.36 g.$$
 $m(Fe)_{excès} = 3.36 g.$

3) Masse d'oxyde magnétique Fe₃O₄ formée

La Masse d'oxyde magnétique formée est telle que $m(Fe_3O_4)_{formé} = n(Fe_3O_4)_{formé}.M(Fe_3O_4)$ avec $M(Fe_3O_4) = 232 \text{ g.mol}^{-1}$.

On trouve : $m(Fe_3O_4)_{formé} = 2,32 g$