Sleep Staging

Maëlys Solal

Conte

Objective

Methods

and

Discussio

Conclusio

Annex

Study of a deep learning model for temporal sleep stage classification

Bachelor Thesis Defense

Maëlys Solal¹, Dr Alexandre Gramfort² and Dr Olivier Pallanca³

¹École polytechnique

²Inria Paris Saclay, Parietal team

³Laboratoire d'Informatique de l'École polytechnique (LIX), DaSciM team

January - March 2021

Annex

① Context

Sleep stages Motivations for sleep stage classification

Objectives

Study of a deep learning model for sleep scoring

Organising the datasets: BIDS standard

3 Methods

Main steps, code structure Description of the model Pre-processing, training

4 Results and Discussion

Typical results for our experiment Results of our main experiment and Discussion Limitations and Further Works

6 Conclusion

Perspectives Acknowledgements stage classificati Objective

Method

Results

Discussi

Conclusi

Annov

① Context

Sleep stages Motivations for sleep stage classification

Objectives

Study of a deep learning model for sleep scoring Data

Organising the datasets: BIDS standard

Methods

Main steps, code structure
Description of the model
Pre-processing, training

4 Results and Discussion

Typical results for our experiment Results of our main experiment and Discussion Limitations and Further Works

6 Conclusion

Perspectives Acknowledgement

Sleep stages

- Sleep cycle = mix between REM sleep and NREM sleep, lasts 90 to 120 minutes and occurs 4-6 times per night
- sleep, Non REM1 (N1) \simeq light sleep. Non REM2 (N2) \simeq deeper sleep, Non REM3/4 (N3/4) \simeq deep sleep.
- Have distinct characteristics as seen in the analysis of brain waves

Figure: A typical hypnogram showing sleep stages and cycles, by Luke Mastin

Polysomnography = sleepstudv

- Biophysical changes during sleep
- Includes EEG (brain's electrical activity), EOG (eyes), EMG (muscles), and ECG (heart)

Sleep stage classification = sleep scoring

- Visual investigation of the PSG, labelling 30s time segments with sleep stages
- According to a precise set of rules
- Usually done manually by sleep experts (scorers)

Sleep stages

Figure: Brain waves during the different sleep stages, from MacMillan Learning

Motivations for sleep stage classification

Figure: Sleep stages imbalance in MASS dataset

From a clinical point of view:

- Used as a preliminary examination for clinical diagnosis of sleeping disorders
- Manual scoring is tedious

From a statistical learning point of view:

- Multiclass classification with imbalanced classes as shown in Figure 3
- Domain adaptation (i.e. differences of raw data between datasets)
- In general, quite noisy data (especially clinical data)

Conte

Objectives

Study of deep lear model fo sleep sco

Data

Orga

.

. .

and Discussion

Conclusio

Anne

Context

Sleep stages Motivations for sleep stage classification

Objectives

Study of a deep learning model for sleep scoring Data

Organising the datasets: BIDS standard

Methods

Main steps, code structure
Description of the model
Pre-processing, training

4 Results and Discussion

Typical results for our experiment Results of our main experiment and Discussion Limitations and Further Works

6 Conclusion

Perspectives Acknowledgement Marke

Results and

Discussi

Conclusio

Annex

Study of a deep learning model for sleep scoring

- Our model of study: deep convolutional neural network, performs temporal sleep stage classification using multivariate and multimodal time series, by Chambon et al. in 2018^a
- Study the transferability of the model i.e. performance depending on the training/validation sets and testing set

Model perfomance depending on the training and testing set

Testing Training/validation	Dataset A	Dataset B
Dataset A		
Dataset B		

Figure: Schematic representation of our experiment

^aStanislas Chambon et al. "A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series". In: (2018).

Solal

Context

Study of a deep learni

Sleep sco

Organisin

BIDS standard

Populto

and Discussi

Conclusio

Anne

- Datasets
 - Montreal Archive of Sleep Studies (MASS)¹
 - SleepPhysionet²
 - Clinical dataset
- Varied number and types of EEG/EMG/EOG channels
 - Figure 5 shows the variety of EEG channels
 - For comparing the performance of the model across datasets: should have similar EEG/EMG/EOG channels

Figure: EEG electrodes positioning used in each dataset

¹Christian O'Reilly et al. "Montreal Archive of Sleep Studies: an open-access resource for instrument benchmarking and exploratory research". In: (2014).

²B. Kemp et al. "Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG". In: (2000), Ary L. Goldberger et al. "PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals". In: (2000).

Sleep Staging

Maëlys Solal

Conte

Study of a deep learning model for sleep scoring

Organising the datasets: BIDS standard

Metho

and

. . .

Conclusio

Annex

Organising the datasets: BIDS standard

Figure: BIDS standard

- Neuroimaging data is often complicated to arrange
 - Comes from various experiments / medical examinations
 - Outputs multiple files for a single patient
 - Little consensus about how to organise files
- BIDS standard proposes a way to organise this type of data
 - BIDS = Brain Imaging Data Structure³
 - subject > session > type / experiment
 - · Compatible with existing software
 - Captures metadata

Contex

hiectiv

Methods

structure

Descriptio
of the mo

Preprocessing
training

Results and Discussion

Conclusio

Anney

Context

Sleep stages Motivations for sleep stage classification

Objectives

Study of a deep learning model for sleep scoring Data

Organising the datasets: BIDS standard

3 Methods

Main steps, code structure Description of the model Pre-processing, training

4 Results and Discussion

Typical results for our experiment Results of our main experiment and Discussion Limitations and Further Works

6 Conclusion

Perspectives Acknowledgements

Main steps, code structure

Main steps for running our experiment:

- 1 Loading the datasets
- Preprocessing the raw signals and extracting the 30s windows from events
- Splitting the dataset into training. validations and testing sets
- Oreating / loading our model, training and testing
- 6 Visualising the results

Code structure, inspired by the braindecode^a library

- datasets to load the datasets that were previously converted to BIDS
- datautil to take care of splitting the datasets
- models to load and save our models
- visualisation for visualising results and the 30s windows

^aRobin Tibor Schirrmeister et al. "Deep learning with convolutional neural networks for EEG decoding and visualization". In: (). URL: http://dx.doi.org/10.1002/hbm.23730.

Description of the model

- General feature extractor, denoted by $Z: \mathbb{R}^{C \times T} \to \mathbb{R}^D$, where C is the number of input channels, T is the number of time steps and D is the size of the estimated feature space
- Linear spatial filtering: to estimate virtual channels
- Convolutional layers: to capture spectral features
- Separate pipelines: to handle several modalities at the same time
- Performs temporal sleep staging, that is, takes into account the temporal context
 of the sample of interest to predict a label

Figure: Network general architecture

Sleep Staging

Maëlys Solal

Conto

Objectiv

Metho

Main ste

Description of the model

Preprocessin

Results

Discussion

Conclusio

Annes

Description of the model

Figure: Schematic representation of the sleep staging model's architecture

Figure: Schematic representation of the time distributed multivariate network

Pre-processing, training

Preprocessing steps, using mne-python^a, same steps as Chambon et al.

- Low-pass filtered at 30Hz: to mitigate the impact of higher frequency noise
- Downsampled to 100Hz: SleepPhysionet was sampled at 100Hz
- Convert signals from V to μ V: very small amplitude brain waves
- Cropped 30 minutes of wake events at the beginning and the end of the night
- Divided our signal in 30s samples (windows) corresponding to one specific sleep stage
- Standardised the windows (zero mean, unit variance): cope for the varying recording conditions

Training specification

- Implemented with PvTorch
- 60 subjects for each experiment, splitted using stratified cross-validation: roughly 60% of events in training set, 20% in validation set and 20% in testing set
- Weights initialised with a normal distribution ($\mu = 0$, $\sigma = 0.1$)
- Loss function: categorical cross entropy
- Optimizer: AdamOptimizer
- Minimisation: stochastic gradient descent, learning rate $1r = 5 \times 10^{-4}$, batch size 8, 10 training epochs

^aAlexandre Gramfort et al. "MEG and EEG data analysis with MNE-Python". In: Frontiers in Neuroscience (2013). URL: https://www.frontiersin. org/article/10.3389/fnins.2013.00267.

Contex

OL:---:

Metho

Results and Discussion

Typical results f our experim

Results our main experime

Limitatio and Furti Works

Conclusio

Anney

Context

Sleep stages Motivations for sleep stage classification

Objectives

Study of a deep learning model for sleep scoring Data
Organising the datasets: BIDS standard

Methods

Main steps, code structure Description of the model Pre-processing, training

4 Results and Discussion

Typical results for our experiment Results of our main experiment and Discussion Limitations and Further Works

6 Conclusion

Perspectives Acknowledgements

Sleep Staging

Maëlvs Solal

Typical results for experiment

Typical results for our experiment

Figure: Classification report for MASS dataset

Results of our main experiment and Discussion

Testing set Training set	MASS	SleepPhysionet	Testing set Training set	MASS	Clinical
MASS	0.802	0.487	MASS	0.817	0.390
SleepPhysionet	0.560	0.634	Clinical	0.530	0.635

Table: Balanced accuracy for main experiment

- Clinical-Clinical and SleepPhysionet-SleepPhysionet lower than expected
 - Pre-processing steps
 - Model initially benchmarked using MASS, model biased towards MASS?
 - Hyperparameters are not optimal
- Model transfers better from SleepPhysionet/Clinical to MASS than from MASS to SleepPhysionet/Clinical
 - Specificity in the MASS dataset?
- Domain adaptation remains one of the big challenges of sleep scoring algorithms
- Increasing number of EEG channels and adding EOG and EMG data greatly improves performance

Limitations and Further Works

- SleepPhysionet scored according to the Rechtschaffen and Kales guidelines, MASS and Clinical scored according to the AASM guidelines
 - N4 sleep stage
 - Transition rules
- Tune hyperparameters and improve the model's architecture to get better performance on Clinical and SleepPhysionet
- · Core differences in terms of data
 - · Clinical datasets are in general more difficult to work with

Anne

Context

Sleep stages Motivations for sleep stage classification

Objectives

Study of a deep learning model for sleep scoring Data

Organising the datasets: BIDS standard

Methods

Main steps, code structure Description of the model Pre-processing, training

4 Results and Discussion

Typical results for our experiment Results of our main experiment and Discussion Limitations and Further Works

6 Conclusion

Perspectives Acknowledgements

Perspectives

Perspectives

Maëlys Solal

COILCAL

, i

Method

and

Perspecti

Acknowledge-

ments

Annov

Discus

Discus

Conclusi

Annex

Annex

			MA	ASS				Slee	epPh	iysio	net	
	w-	0.87	0.04	0.02	0.00	0.08	w-	0.90	0.02	0.00	0.00	0.08
	N1 -	0.10	0.41	0.27	0.00	0.22	N1 -	0.53	0.15	0.07	0.00	0.24
	N2 -	0.00	0.02	0.89	0.07	0.02	N2 -	0.14	0.24	0.42	0.05	0.15
	N3 -	0.00	0.00	0.10	0.90	0.00	N3 / N4 -	0.10	0.10	0.31	0.46	0.03
MASS	REM -	0.01	0.02	0.04	0.00	0.94	REM -	0.32	0.12	0.05	0.00	0.50
Š		ŵ	N1	N2	N3	REM		ŵ	N1	N2	N3 / N4	REM
	,	w - 0.82	0.10	0.04	0.01	0.04	w-	0.87	0.06	0.06	0.00	0.01
	N	1 - 0.22	0.12	0.16	0.00	0.49	N1 -	0.32	0.20	0.43	0.00	0.05
SleepPhysionet	N	2 - 0.04	0.00	0.57	0.04	0.34	N2 -	0.03	0.04	0.88	0.02	0.03
hysi	N3 / N	4 - 0.22	0.00	0.14	0.52	0.12	N3 / N4 -	0.00	0.00	0.53	0.47	0.00
зерЕ	RE	м - 0.09	0.06	0.08	0.00	0.77	REM -	0.12	0.11		0.00	0.52
Sk		w	N1	N2	N3 / N4	REM		ŵ	N1	N2	N3 / N4	REM

Table: Table of confusion matrices, comparing the datasets MASS and SleepPhysionet

Sleep Staging Maëlys Solal

. .

011

. . .

Results

and Discus

Conclusion

Annex

	MAS	SS	SleepPhysionet	
	W (1417)	0.95 0.87 0.91	W (4659) 0.61 0.90 0.7	73
	N1 (477)	0.58 0.41 0.48	N1 (2347) 0.17 0.15 0.1	16
	N2 (3589)	0.91 0.89 0.9	N2 (5329) 0.82 0.42 0.5	56
	N3 (1083)	0.79 0.9 0.84	N3 / N4 (673) 0.54 0.46 0.5	50
	REM (1471)	0.83 0.94 0.88	R (1993) 0.36 0.50 0.4	42
	accuracy (8037)	0.87	accuracy (15001) 0.5	54
	macro_avg (8037)	0.81 0.8 0.8	macro_avg (15001) 0.50 0.49 0.4	47
	weighted_avg (8037)	0.87 0.87 0.86	weighted_avg (15001) 0.58 0.54 0.5	53
MASS		Precision Recall F1-score	Precision Recall	1076-1
	W (4659)	0.64 0.82 0.72	W (4659) 0.78 0.87 0.8	82
	N1 (2347)	0.21 0.12 0.15	N1 (2347) 0.4 0.2 0.2	27
	N2 (5329)	0.84 0.57 0.68	N2 (5329) 0.69 0.88 0.7	77
	N3 / N4 (673)	0.76 0.52 0.61	N3 / N4 (673) 0.76 0.47 0.5	58
	R (1993)	0.41 0.77 0.54	REM (1993) 0.76 0.52 0.6	62
je j	accuracy (15001)	0.62	accuracy (15001) 0.	.7
si.	macro_avg (15001)	0.57 0.56 0.54	macro_avg (15001) 0.68 0.59 0.6	61
ا گر	weighted_avg (15001)	0.68 0.62 0.62	weighted_avg (15001) 0.68 0.7 0.6	68
SleepPhysionet		Precision Recall F1-score	Precision Recall	1-200

Table: Table of classification reports, comparing the datasets MASS and SleepPhysionet

Sleep Staging

Maëlys Solal

Conte

.

D 1:

and

. .

Annex

			M	ASS					Cli	nica		
	w-	0.93	0.04	0.01	0.00	0.02	w-	0.86	0.01	0.04	0.00	0.08
	N1 -	0.06	0.48		0.00	0.20	N1 -	0.80	0.14	0.02	0.00	0.04
	N2 -	0.00	0.02	0.89	0.07	0.02	N2 -	0.52	0.11	0.32	0.01	0.04
	N3 -	0.00	0.00	0.10	0.90	0.00	N3 -	0.26	0.02	0.38		0.09
MASS	REM -	0.01	0.04	0.05	0.00	0.90	REM -	0.38	0.19	0.05	0.00	0.38
È		ŵ	ΝΊ	N2	N3	REM		w	ΝΊ	N2	N3	REM
	w	0.80	0.00	0.08	0.00	0.12	w-	0.94	0.00	0.02	0.00	0.03
	N1 ·	0.07	0.00	0.39	0.00	0.55	N1 -	0.49	0.01	0.22	0.01	0.28
	N2 -	0.01	0.00	0.87	0.01	0.12	N2 -	0.08	0.00	0.76	0.12	0.04
_	N3 ·	0.01	0.00	0.87	0.11	0.00	N3 -	0.03	0.00	0.11	0.86	0.00
Clinical	REM -	0.02	0.00	0.11	0.00	0.87	REM -	0.20	0.00	0.19	0.00	0.61
ij		ŵ	N1	N2	N3	REM		ŵ	N1	N2	N3	REM

Table: Table of confusion matrices, comparing the datasets MASS and Clinical

Sleep Staging Maëlys Solal

. .

.

and

. . .

Annex

	MAS	SS	Clinic	cal
	W (1417) N1 (477) N2 (3589) N3 (1083) REM (1471)	0.97 0.93 0.95 0.53 0.48 0.5 0.91 0.89 0.9 0.8 0.9 0.85 0.86 0.9 0.88	W (3560) N1 (389) N2 (4094) N3 (1702)	0.46 0.86 0.6 0.06 0.14 0.08 0.59 0.32 0.41 0.9 0.25 0.4
MASS	accuracy (8037) macro_avg (8037) weighted_avg (8037)	Beccision 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.8	REM (1879) accuracy (11624) macro_avg (11624) weighted_avg (11624)	0.53 0.38 0.44 0.48 0.51 0.39 0.39 0.57 0.48 0.46 USA 0.46
Clinical	W (1417) N1 (477) N2 (3589) N3 (1083) REM (1471) accuracy (8037) macro_avg (8037) weighted_avg (8037)	0.93 0.8 0.86 1 0 0 0.69 0.87 0.77 0.86 0.11 0.2 0.59 0.87 0.71 0.81 0.53 0.51 0.76 0.7 0.65	W (3560) N1 (389) N2 (4094) N3 (1702) REM (1879) accuracy (11624) macro_avg (11624) weighted_avg (11624)	0.78 0.94 0.86 0.18 0.01 0.01 0.82 0.76 0.79 0.73 0.86 0.79 0.74 0.61 0.67 0.78 0.65 0.64 0.62 0.76 0.78 0.76 0.78 0.76

Table: Table of classification reports, comparing the datasets MASS and Clinical