Homework 8: Estimation Review

Zach Neveu

April 4, 2019

1 Least Squares

$$\hat{\theta}_{LS} = \frac{1}{\mathbf{g'g}} \mathbf{g'y}$$

2 MVUB

$$\hat{\theta}_{MVUB} = \frac{1}{g'C_z^{-1}g}g'C_z^{-1}y = \frac{1}{g'C_z^{-1}g}g'C_z^{-1}[g\theta + z] = \theta + \frac{1}{g'C_z^{-1}g}g'C_z^{-1}z$$
(1)

$$Var(\theta) = E\{|\theta - \hat{\theta}|^2\} = E\{|c'z|^2\} = E\{(c'z)(c'z)^*\} = c'C_zc = \frac{1}{g'C_z^{-1}g}$$
(2)

3 Linear MMSE

$$\hat{\theta}_{lin.MMSE} = \frac{R_{\theta}}{1 + R_{\theta} \mathbf{g'} \mathbf{C}_z^{-1} \mathbf{g}} \mathbf{g'} \mathbf{C}_z^{-1} \mathbf{y}$$

$$MMSE = \mathbf{R}_{\theta} - \mathbf{r'} \mathbf{R}^{-1} \mathbf{r} = \frac{R_{\theta}}{1 + R_{\theta} \mathbf{g'} \mathbf{C}_z^{-1} \mathbf{g}}$$

$$r = E\{\mathbf{y}\theta\} = E\{[\mathbf{g}\theta + \mathbf{z}]\theta^*\} = \mathbf{g}E\{\theta^2\} + 0$$

4 ML Estimate

If $\mathbf{Z} \sim \mathcal{N}(0, \mathbf{C}_z)$, then $\hat{\theta}_{ML} = \hat{\theta}_{MVUB}$

$$\hat{\theta}_{ML} = \hat{\theta}_{MVUB} = \frac{1}{\mathbf{g'} \mathbf{C}_z^{-1} \mathbf{g}} \mathbf{g'} \mathbf{C}_z^{-1} \mathbf{y}$$

5 ML Detection of θ

This problem can be thought of in two steps. The first step is to determine the ML estimate of theta as in section $\ref{eq:mather}$. The second step is to classify our estimate of θ as either θ_0 or θ_1 . From section $\ref{eq:mather}$?

we know that our estimator for θ is unbiased. This reduces the detection problem to simply setting a threshold at $\gamma = \frac{\theta_0 + \theta_1}{2}$. Assuming $\theta_0 > \theta_1$, the detection problem can be stated as

$$\hat{\theta}_{ML} = \hat{\theta}_{MVUB} = \frac{1}{\boldsymbol{g'}\boldsymbol{C}_z^{-1}\boldsymbol{g}}\boldsymbol{g'}\boldsymbol{C}_z^{-1}\boldsymbol{y} \overset{\theta_0}{\geq} \frac{\theta_1 + \theta_0}{2}$$

6 Gaussian Noise and Complex Gaussian heta

The mean of $\theta | y$ here is simply the linear MMSE estimate of θ . This makes sense. With both Z and θ having gaussian distributions, $\theta | y$ will also be gaussian, and the mean of $\theta | y$ will be our best prediction of θ . It also makes sense that $\theta | y$ has a complex normal distribution, as θ is complex valued. Intuitively, it also makes sense that the covariance of $\theta | y$ is proportional to C_z , and is equal to σ_{θ}^2 in the noiseless case.

6.1 MMSE

$$\hat{\theta}_{MMSE} = E\{\theta | \mathbf{y}\}$$

Since $\theta | y$ is gaussian, it's expected value is just the mean, which is

$$\hat{\theta}_{MMSE} = \frac{\sigma_{\theta}^2}{1 + \sigma_{\theta}^2 \mathbf{g'} \mathbf{C}_z^{-1} \mathbf{g}} \mathbf{g'} \mathbf{C}_z^{-1} \mathbf{y}$$

6.2 ABS

$$\hat{\theta}_{ABS} = median(\theta|\mathbf{y})$$

Since $\theta | y$ is gaussian, the median is the same as the mean, so once again

$$\hat{\theta}_{ABS} = \frac{\sigma_{\theta}^2}{1 + \sigma_{\theta}^2 \mathbf{g'} C_z^{-1} \mathbf{g}} \mathbf{g'} C_z^{-1} \mathbf{y}$$

6.3 MAP

$$\hat{\theta}_{MAP} = argmax_{\theta} f(\theta | \mathbf{y})$$

Yet again, the gaussian shape of $\theta | y$ makes our job easier. The peak of the distribution is also the mean, so

$$\hat{\theta}_{MAP} = \frac{\sigma_{\theta}^2}{1 + \sigma_{\theta}^2 \mathbf{g'} \mathbf{C}_z^{-1} \mathbf{g}} \mathbf{g'} \mathbf{C}_z^{-1} \mathbf{y}$$