

10/581473

AP3 Rec'd PCT/PTO 01 JUN 2006

Docket No.: 2003P17612

C E R T I F I C A T I O N

I, the below named translator, hereby declare that: my name and post office address are as stated below; that I am knowledgeable in the English and German languages, and that I believe that the attached text is a true and complete translation of PCT/EP2004/053147, filed with the European Patent Office on November 29, 2004.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Hollywood, Florida .

Rebekka Pierre

June 1, 2006

Lerner Greenberg Stemer LLP
P.O. Box 2480
Hollywood, FL 33022-2480
Tel.: (954) 925-1100
Fax.: (954) 925-1101

1 Description

18 Rec'd PCT/PTO 01 JUN 2006

2
3 Circuit arrangement and method for controlling an inductive
4 load

5
6 The invention relates to a circuit arrangement and a method for
7 controlling an inductive load, in particular to a protective
8 circuit that will prevent an actuator from being activated in a
9 fault situation.

10
11 Electrical loads and actuators are switched on and off by means
12 of electronic control devices. In automotive engineering,
13 electrical loads such as, for example, the excitation coil of a
14 fuel injection valve or of a starting motor are usually
15 actuated by means of a switch element connected in series with
16 the load. Said switch element is often part of a control device
17 connected at the input side to the two poles of a supply
18 voltage source. Frequently only one potential of the supply
19 voltage source is ducted to the load via the control device. In
20 automotive engineering, the second potential is usually ducted
21 to the load via the bodywork, which is applied to frame
22 potential.

23
24 If the ground lead leading from the negative terminal of the
25 supply voltage source to the control device is interrupted, it
26 cannot be precluded in the case of certain loads that the load
27 will also be supplied with power when not desired.

28
29 There may be undesired load powering in the event of a ground
30 interruption especially in the case of inductive loads which,
31 after being switched off, have to discharge the energy stored
32 in them via a freewheeling circuit.

33
34 Two cases can be distinguished here: On the one hand, when the
35 switch element has been switched on the load will continue to
36 be powered by a current flowing from the positive potential of
37 the supply voltage source to the external ground terminal via

1 the switch element and load; on the other hand, when the switch
2 element has been switched off the internal ground of the
3 control device will be "pulled" in the direction of the
4 positive potential of the supply voltage source depending on
5 the state of the control electronics and of the electrical
6 load. This will result in a flow of current from the positive
7 pole of the supply voltage source via the freewheeling circuit
8 and to external ground. What is problematic therein is the risk
9 that the electrical load can be undesirably switched on owing
10 to said flow of current. Taking the starter relay as an
11 instance, there will in this case be an undesired start
12 operation which it is imperative to prevent for safety reasons.
13

14 This problem can be resolved in a known manner by providing a
15 safety-critical load of said kind with a second ground lead so
16 that the load is electrically connected directly to the ground
17 of the control device. With a plurality of loads, however, this
18 solution has proved to be complex and very expensive.

19
20 The object of the invention is to provide a circuit arrangement
21 and a method for controlling an inductive load that will also
22 prevent the inductive load from being switched on in the event
23 of a fault.

24
25 Said object is achieved by means of a circuit arrangement
26 having the features of claim 1 and a method having features of
27 claim 5.

28
29 The circuit arrangement has a first and a second input as well
30 as an output. The first input is electrically connected to a
31 first potential of a supply voltage source and the second input
32 is electrically connected to a second potential of the supply
33 voltage source. The load is connected on the one hand to the
34 output and on the other hand to the second potential of the
35 supply voltage source.

1 In the present case there is thus no direct connection between
2 the second potential ducted to the circuit arrangement and the
3 load. The circuit arrangement furthermore has a first switch,
4 which can be controlled by a signal, for switching the load
5 connected on the one hand to the first input and on the other
6 hand to the output of the circuit arrangement on and off. When
7 the switch has been closed, in standard operation a current
8 flows from the first potential of the supply voltage source to
9 the second potential of the supply voltage source via the
10 controllable switch and the load.

11

12 The circuit arrangement furthermore has a freewheeling circuit
13 which is connected on the one hand to the second input and on
14 the other hand to the output of the circuit arrangement and has
15 a second switch. The energy stored in the load will discharge
16 via said freewheeling circuit if the load is switched off by
17 opening the first switch. The second switch is closed for this
18 purpose.

19

20 A monitoring unit monitors a potential in the freewheeling
21 circuit and opens or closes the second switch as a function of
22 said potential. The second switch is therein preferably
23 controlled in such a way that the freewheeling circuit is
24 activated during the load's switch-off phase and then
25 deactivated when the freewheeling circuit is not required.

26

27 Advantageous developments of the invention are described in the
28 subclaims.

29

30 The monitoring unit opens or closes the second switch when a
31 predefined voltage threshold is undershot or exceeded. What is
32 achieved thereby is that the load will not be inadvertently
33 switched on in the event of a fault, which is to say when
34 ground is lost in the circuit arrangement.

35

36 The monitoring unit additionally has a delay element that will
37 open the second switch with a predefined delay if the

1 predefined voltage threshold is undershot or exceeded. It is
2 thereby ensured that the energy stored in the inductive load
3 will be discharged during this time via the freewheeling
4 circuit. The freewheeling circuit will preferably remain
5 interrupted after this discharge operation owing to the opened
6 second switch and a flow of current via said freewheeling
7 circuit toward the load will be prevented.

8

9 Advantageous developments of the invention are described in the
10 dependent claims.

11

12 In order to preclude the load's being switched on again in a
13 fault situation through closing of the first switch, the
14 circuit arrangement preferably has a linking unit that will
15 only allow the load to be switched on if unintentional
16 switching on in a fault situation has been precluded,
17 preferably when the first switch has first received a switch-
18 off and then a switch-on signal and/or the monitoring unit has
19 closed the second switch.

20

21 The invention is explained in more detail below with reference
22 to the description and the figures relating to a preferred
23 exemplary embodiment.

24

25 Figure 1 shows an exemplary embodiment of an inventive circuit
26 arrangement,

27 Figure 2 is a flowchart showing the steps in an exemplary
28 embodiment of the inventive method, and

29 Figure 3 shows an exemplary embodiment of a delay element and
30 linking unit.

31

32 Figure 1 shows an exemplary embodiment of a circuit arrangement
33 for controlling an inductive load 5. The load 5 is here
34 described in equivalent terms in the form of an inductor L and
35 a resistor R connected in series.

36

1 The circuit arrangement has a first input 1 and a second input
2 which are each electrically connected to a potential of a
3 supply voltage source, in this case an accumulator 6. The first
4 terminal 1 is here electrically connected to the positive pole
5 + of the accumulator 6 and the second input 2 is electrically
6 connected to the negative pole - of the accumulator 6. The
7 electronic components arranged in the control device between
8 the inputs 1 and 2 are shown here as the equivalent resistance
9 7. The equivalent resistance 7 corresponds to a parallel
10 connection of all components directly or indirectly supplied by
11 the accumulator 6.

12

13 The circuit arrangement furthermore has a first switch S1 which
14 is electrically connected on the one hand to the first input 1
15 and on the other hand to an output 3. The load 5 is
16 electrically connected on the one hand to the output 3 and on
17 the other hand to ground GND₂.

18

19 In the exemplary embodiment shown here there is no direct
20 connection between the internal ground of the circuit
21 arrangement GND₁ and the ground GND₂ of the load 5. The
22 bodywork of the vehicle is usually employed as the ground
23 connection in the field of automotive engineering.

24

25 A freewheeling circuit FLK has been arranged between the second
26 input 2 and the output 3 in order to discharge the energy E
27 stored in the inductor L when the load has been switched off
28 (achieved here by opening the switch S1), and hence to
29 deactivate the load 5. Said freewheeling circuit FLK here has a
30 second switch S2 and a diode D_F connected in series. If the
31 second switch S2 is closed, a current I will flow from the load
32 5 via the diode D_F and the switch S2 for a limited period
33 t_{entlade} after the first switch S₁ has been opened.

34

35 The discharge time t_{entlade} depends on the energy E stored in the
36 inductor L of the load 5:

37 $E = \frac{1}{2} L \cdot I^2$

1
2 When the inductor L is charging, the current intensity I
3 initially increases linearly and approaches the constant
4 terminal value I_0 :

5 $I_0 = \frac{U_A}{R}$.

6
7 The discharge time $t_{entlade}$ of the coil L can be obtained from
8 the equation

9 $I = I_0 \cdot e^{-\frac{R}{L}t'}$.

10
11 The first switch S1 embodied here as what is termed a "high-
12 side" switch can also be embodied as a "low-side" switch. Only
13 the connection of the terminals 1 and 2 to the poles of the
14 accumulator 6 and the direction of flow of the freewheeling
15 diode D_F change as a result. The load 5 would then be
16 electrically connected with its terminal facing away from the
17 output 3 to the positive potential + of the accumulator 6.

18
19 The first switch S1 and the second switch S2 are embodied as
20 controllable electrical switches, for example as power MOS
21 Field Effect Transistors (MOSFETs) or Insulated Gate Bipolar
22 Transistors (IGBTs). The control terminals of said switches S1,
23 S2 are controlled by a control circuit 8, with the first switch
24 S1 being electrically connected via a first control line UST1
25 and the second switch S2 via a second control line UST2 to the
26 control circuit 8.

27
28 The control circuit 8 has a linking unit 9, a microcontroller
29 10, a supply voltage monitor 11, and a delay element 12. The
30 supply voltage monitor 11 has two inputs, namely a first input
31 UE that is electrically connected to the first input 1 of the
32 circuit arrangement and a second input UA that is electrically
33 connected to the output 3 of the circuit arrangement.

34
35 The supply voltage monitor 11 furthermore has two outputs. One
36 of said outputs, U_E, Reset , is electrically connected to the

1 linking unit 9 and the other output, U_A , signal, is electrically
2 connected to the delay element 12. The microcontroller 10 has
3 at least one output ENA that is connected to the linking unit
4 9. The linking unit 9 is furthermore connected to the control
5 line UST1 of the control circuit 8. The delay element 12 is
6 connected to the second control line UST2 of the control
7 circuit 8.

8

9 Provided there is no fault situation and the first switch S1 is
10 closed, a voltage U_A corresponding approximately to the input
11 voltage U_E will drop via the load 5.

12

13 Figure 2 is a flowchart with the aid of which the method steps
14 required to operate the load 5 are explained in more detail.

15

16 The start of flow is identified by the term "START". An inquiry
17 is first made here to determine whether the first switch S1 has
18 been closed (step 101). On the basis of this distinction it is
19 possible to distinguish between two possible fault instances,
20 namely the loss of ground when the load 5 has been switched on
21 and the loss of ground in the circuit arrangement when the load
22 5 has been switched off.

23

24 In the first instance, with the first switch S1 closed, a check
25 is made in step 102 to determine whether there is a switch-off
26 signal from the microprocessor 10. In that case the switch-on
27 signal ENA would have been set from the status "0" to the
28 status "1" and, consequently, the first switch S1 will then be
29 opened (ENA="1" here corresponds to a Low level). If demanded
30 by the safety requirements placed on the load 5, the second
31 switch S2 will also be opened after a predefined period Δt
32 during which the energy stored in the inductor L will discharge
33 via the freewheeling circuit FLK. Inadvertent switching on of
34 the load 5 in the event of an interruption to the connecting
35 lead between the negative terminal - of the accumulator 6 and
36 the input 2 would thus be precluded even with the load 5 then

1 being switched off (step 104'). A branch is made to the end of
2 the flowchart after step 104'.

3

4 The predefined period Δt has here been selected such that the
5 inductor L will have very largely discharged on expiration of
6 said period Δt .

7

8 The period Δt can be selected within the following range:

9

10 $5 \tau \leq \Delta t \leq 10 \tau$, where $\tau = L/R$.

11

12 If the period Δt is selected as being too long, switching on
13 could in a fault situation take place again during said period.
14 The period Δt must therefore be dimensioned as required for
15 discharging the energy in the load 5.

16

17 If a switch-on signal ENA of the microcontroller 10 remains
18 present in step 102, a branch will be made to step 103 where a
19 check will be carried out on the output voltage U_A . In standard
20 operation the output voltage U_A corresponds approximately to
21 the input voltage U_E .

22

23 With the first switch S1 open and/or if there is loss of
24 ground, which is to say, in this case, an interrupted lead
25 between the negative pole - of the accumulator 6 and the second
26 input 2, the output voltage U_A will correspond approximately to
27 the conducting state voltage of the freewheeling diode D_F . Said
28 conducting state voltage depends on the type of freewheeling
29 diode D_F and in the exemplary embodiment described here is
30 approximately - 0.7 volt. Depending on said conducting state
31 voltage of the diode D, a voltage threshold $U_{A, MIN}$ is defined
32 below which a current will flow in the freewheeling circuit
33 FLK.

34

35 If the output voltage U_A is above said predefined threshold
36 $U_{A, MIN}$ then a fault situation can be precluded and a branch will
37 be made to the end of the flowchart.

1
2 If, however, the output voltage U_A is below the predefined
3 threshold $U_{A, \text{MIN}}$, then if the first switch S1 is closed a
4 "detached" ground connection in the circuit arrangement must be
5 inferred and a branch will be made to step 104. There, the
6 first switch S1 will first be opened, then, after the
7 predefined period Δt , which, as already described, depends on
8 the discharge time $t_{entlade}$ of the inductor L, the second switch
9 S2 will be opened and a flow of current from the accumulator 6
10 via the input 1, the equivalent resistance 7, the second switch
11 S2, the diode D, and the load 5 hence interrupted.

12 Unintentional switching on of the load 5 will thus be precluded
13 when the second switch S2 has been opened and a branch will be
14 made to the end of the flowchart.

15

16 Alternatively an error flag can additionally be set here via
17 which the interruption in the ground lead is reported to a
18 control device.

19

20 If the first switch S1 is not closed in step 101 a branch will
21 be made to step 202, in which a check is carried out to
22 determine whether the second switch S2 is closed. If switch S2
23 is closed, another check is carried out in step 203 to
24 determine whether the output voltage U_A is below the predefined
25 threshold $U_{A, \text{MIN}}$. If it is, a branch will be made to step 204
26 and the switch S2 opened, following which a branch will be made
27 to the end of the flowchart. If it is not, or if the output
28 voltage U_A is zero, a branch will be made directly to the end
29 of the flowchart. It is alternatively also possible not to open
30 the second switch S2 until after the predefined period Δt .

31

32 If the switch S2 is open in step 202 ($S2=0$) a branch will be
33 made to step 203', where a switch-on-again signal of the
34 microcontroller 10 will be awaited. Said switch-on-again signal
35 can be, for example, a status change of the switch-on signal
36 ENA from status 0 to status 1. This will prevent the load from
37 being switched on again inadvertently after a loss of ground.

1
2 The execution of the method described here can be launched, for
3 example, as a function of an operating status of the load 5 or
4 of the microcontroller 10, or by means of an external control
5 signal.

6
7 Figure 3 shows an exemplary embodiment of the delay element 12
8 and of the linking unit 9.

9
10 If the switch S1 is closed, a voltage U_A corresponding
11 approximately to the input voltage U_E will be applied to the
12 load 5. The delay element 12 has a power supply input 1' which
13 is independent of the switch element S1 and serves to supply
14 the circuit arrangement with power. Arranged between the output
15 3 and said input 1' is a series circuit consisting of a first
16 resistor R1, a diode D1 switched in the non-conducting
17 direction, a second resistor R2, and a third resistor R3. The
18 switch S2 is here implemented as an n-channel MOSFET, with its
19 drain terminal being connected to the second input 2 and its
20 source terminal being connected via the freewheeling diode D_F
21 switched in the direction of flow to the output 3. The gate
22 terminal is connected to the center tap of a series circuit
23 consisting of a fourth resistor R4 and a first capacitor C1,
24 with the second terminal of the fourth resistor R4 being
25 connected to the center tap between the second resistor R2 and
26 the third resistor R3. The second terminal of the capacitor C1
27 is connected to the source terminal of the switch S2.

28
29 The center tap between a second diode D2 and a fifth resistor
30 R5 is likewise connected to the gate terminal of the switch S2,
31 with the second diode D2 being arranged with its direction of
32 flow in the direction of the gate terminal of the switch S2
33 parallel to the fourth resistor R4 and the fifth resistor R5
34 being arranged parallel to the first capacitor C1.

35
36 The base-emitter path of a transistor T1 is arranged parallel
37 to the second resistor R2. In the exemplary embodiment shown

1 here the transistor T1 is a pnp transistor. The base terminal
2 of the transistor T1 is connected to the tap between the second
3 resistor R2 and the diode D1. The emitter terminal is connected
4 to the tap between second and third resistor R2 and R3. The
5 collector terminal of the transistor T1 is connected to the
6 output 3 facing away from the terminal of the freewheeling
7 diode D_F.

8

9 When the switch S1 is closed the transistor T1 is non-
10 conducting and the capacitor C1 is charged via the third
11 resistor R3 and the second diode D2 up to the supply voltage
12 VCC being applied at the input 1'. The switch S2 is closed as a
13 result and the freewheeling circuit FLK thereby activated. The
14 circuit arrangement is dimensioned in such a way that the
15 switch S2 will be closed before a larger amount of energy has
16 been stored in the inductor L of the load 5.

17

18 If the switch S1 is then opened, a current will flow through
19 the freewheeling circuit FLK formed from the switch S2 and the
20 freewheeling diode D_F owing to the energy stored in the
21 inductor L of the load 5. An output voltage U_A of approximately
22 0.7 volt will then drop via the load 5. This corresponds to the
23 conducting state voltage of the freewheeling diode D_F. The
24 transistor T1 will be closed owing to said voltage and the
25 capacitor C1 will discharge via the resistor R4. The transistor
26 T2 will be turned off when the capacitor C1 has discharged. The
27 time Δt between opening of the switch S1 and opening of the
28 switch S2 is selected such that the energy stored in the
29 inductor L will have very largely discharged by the time the
30 switch S2 is opened.

31

32 With switch S1 open and switch S2 open, the connection between
33 the negative pole - of the accumulator and the second input 2
34 will then be interrupted so that no current can flow to the
35 load 5 via the freewheeling circuit FLK.

36

1 The linking unit 9 is embodied for the following input
2 variables: A switch-on signal of the microcontroller 10 ($ENA =$
3 0) corresponds to a Low level at the input ENA; a switch-off
4 signal ($ENA = 1$) corresponds to a High level at the input ENA.
5 The supply voltage monitor 11 supplies a High-level signal at
6 the input $U_{E, \text{Reset}}$ as long as the supply voltage VCC is of
7 sufficient strength. A Low level at the input $U_{E, \text{Reset}}$ stands
8 for a supply voltage VCC that is below a predefined voltage
9 threshold.

10

11 The signal ENA arriving from the microcontroller 10 is inverted
12 in a first inverter 13 and routed to an AND gate 14. The second
13 input of the AND gate 14 is connected to the output $U_{E, \text{Reset}}$ of
14 the supply voltage monitor 11. The output of the AND gate 14
15 will continue to have a High level as long as both input
16 signals, which is to say the inverted input signal ENA and the
17 signal of the supply voltage monitor $U_{E, \text{Reset}}$, have a High
18 level.

19

20 The voltage levels at the outputs are assigned to the "Low" and
21 "High" levels as follows:

22

23 Low level corresponds to: $0 \text{ V} < U < 0.4 \text{ V}$

24 High level corresponds to: $3.7 \text{ V} < U < 4.5 \text{ V}$

25 (HCMOS chip 74HC with a supply voltage of $VCC = 4.5 \text{ V}$)

26

27 The output signal of the AND gate 14 is routed to the set input
28 S of a D flip-flop 15. The output signal of the first inverter
29 13 is routed to the clock input CLK of the D flip-flop 15 via a
30 low-pass filter consisting of a resistor R6 and a capacitor C2
31 and two further inverters 16 and 17. The inverted output \bar{Q} is
32 fed back to the D input D of the D flip-flop 15. The output Q
33 of the D flip-flop 15 is here connected to the control line
34 U_{St1} . If, owing to an undervoltage, a Low level is now being
35 applied at the input $U_{E, \text{Reset}}$ and if a switch-on request of the
36 microcontroller 10 has simultaneously been set (Low level at
37 the input ENA), then there will be a Low level at the set input

1 S of the D flip-flop 15. There will as a result be a High level
2 at the output Q of the D flip-flop 15 and the first switch S1
3 will hence be opened.

4
5 If the microcontroller 10 issues a switch-off instruction (High
6 level at the input ENA), then the switch S1 will likewise be
7 opened via the set input S. A High level at the input ENA will
8 result in a Low level at the input of the AND gate 14. This
9 means to say there will be a Low level at the output of the AND
10 gate independently of the signal U_E , Reset. This will result in a
11 High level at the output Q of the D flip-flop 15, as a
12 consequence of which the switch S1 will remain open.

13
14 The first switch S1 will be closed when there is a negative
15 edge at the input ENA, which is to say when there is a change
16 from a High to a Low level or when there is a positive edge at
17 the clock input CLK of the D flip-flop. Using the low-pass
18 filter R6, C2 achieves a signal delay that has been set in such
19 a way through appropriate choice of the sixth resistor R6 and
20 of the capacitor C2 that the High level will in any event be
21 applied at the set input S of the D flip-flop 15 before the
22 positive edge of the signal arrives at the clock input CLK of
23 the D flip-flop 15.

24
25 Arranged in the circuit between the resistor R6 and the clock
26 input CLK of the D flip-flop 15 are two inverters 16, 17 in the
27 form of a Schmitt trigger inverter by which the edge steepness
28 at the clock input CLK is improved. A non-inverting Schmitt
29 trigger gate can alternatively also be arranged in the circuit
30 instead of the two inverters.

31
32 In a fault situation when the ground terminal at the control
33 device has been interrupted and a switch-on signal ENA (Low
34 level) is simultaneously being applied at the output of the
35 microcontroller 10, the first switch S1 will be opened, as
36 already described, via the set input S of the D flip-flop 15.
37 When the load 5 has been switched off the supply voltage VCC

1 will, however, rise again, as has also already been described.
2 In order then to prevent the load 5 from being switched on
3 again after the supply voltage monitor 11 again indicates by
4 way of a High level that there is sufficient supply voltage
5 VCC, it is ensured that switching on again of said load 5 by
6 the microcontroller 10 will only be possible if said
7 microcontroller 10 provides a switch-off signal (High level) at
8 the output ENA then a switch-on signal (Low level).

9

10