Technical Cybersecurity

Bulb Protect!

We protect by stopping attackers at as many steps as possible.

RECON

- What versions of software?
- Known flaws?
- Can I access the vector?
- Default credentials?
- Easy credentials?
- What kind of traffic?
- Is the vector vulnerable?
- Is the vector exploitable?

Attack Surface

Vector 0: Bluetooth

Vector 1: HTTP Server

Vector 2: SSH Server

Vector 3: Misc Ports

Vector 4: DNS

Vector 5: HTTP Traffic

Vector 6: TCP/IP Traffic

Vector 7: Power Interface

PROTECT FROM RECON

- Hide version information!
- Don't use stuff with known exploits!
- Make vectors inaccessible!
- No default credentials!
- Strong credentials only!
- Encrypt traffic!

Attack Surface

Vector 0: Bluetooth

Vector 1: HTTP Server

Vector 2: SSH Server

Vector 3: Misc Ports

Vector 4: DNS

Vector 5: HTTP Traffic

Vector 6: TCP/IP Traffic

Vector 7: Power Interface

WHAT CAN WE DO?

- We've checked out the system and we know what's there
- We have researched existing vulnerabilities and know if they're exploitable
- We have an idea how to exploit those
- Develop that idea into methods we can use to exploit

Attack Surface

Vector 0: Bluetooth

Vector 1: HTTP Server

Vector 2: SSH Server

Vector 3: Misc Ports

Vector 4: DNS

Vector 5: HTTP Traffic

Vector 6: TCP/IP Traffic

Vector 7: Power Interface

STOP ATTACKERS FROM DOING THINGS!

- Make the system opaque!
- If you have no known vulnerabilities, you have no known exploits!
- Much more expensive to develop exploits from scratch

Increase cost to exploit as much as possible!

Attack Surface

Vector 0: Bluetooth

Vector 1: HTTP Server

Vector 2: SSH Server

Vector 3: Misc Ports

Vector 4: DNS

Vector 5: HTTP Traffic

Vector 6: TCP/IP Traffic

Vector 7: Power Interface

TRIGGER!

- Use the method to attack the actual device
- We want to get onto the device and then establish persistence (although not always needed)
- Trigger the exploit and install our code (or use the code that already exists)

Attack Surface

Vector 0: Bluetooth

Vector 1: HTTP Server

Vector 2: SSH Server

Vector 3: Misc Ports

Vector 4: DNS

Vector 5: HTTP Traffic

Vector 6: TCP/IP Traffic

Vector 7: Power Interface

Attack Surface

Make comms hard

- You've done your best, they may have found an exploit.
- Monitor for persistence
- Remove everything from your system that isn't absolutely needed

Vector 0: Bluetooth

Vector 1: HTTP Server

Vector 2: SSH Server

Vector 3: Misc Ports

Vector 4: DNS

Vector 5: HTTP Traffic

Vector 6: TCP/IP Traffic

Vector 7: Power Interface

DO OUR THING

- So we now have some control over the device, we want to establish communication for Command & Control (C2)
- Escalate if needed

Repeat to further penetrate

Attack Surface

Vector 0: Bluetooth

Vector 1: HTTP Server

Vector 2: SSH Server

Vector 3: Misc Ports

Vector 4: DNS

Vector 5: HTTP Traffic

Vector 6: TCP/IP Traffic

Vector 7: Power Interface

Attack Surface

MONITOR FOR C2

- Keep an eye on network traffic and look for anything out of place - IRC? odd information in HTTP headers? Large data flows?
- Harden the system internally to protect v. escalation - aim for no known vulnerabilities or exploits!

Vector 0: Bluetooth

Vector 1: HTTP Server

Vector 2: SSH Server

Vector 3: Misc Ports

Vector 4: DNS

Vector 5: HTTP Traffic

Vector 6: TCP/IP Traffic

Vector 7: Power Interface

Next: The Cyber Killchain