Отчёт по практической работе

Первая неделя

Саргсян Арам Грачьяевич

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	ç
5	Выводы	15
6	Список литературы	16

Список иллюстраций

4.1	Рабочая папка															9
4.2	Топология сети															10
4.3	Результаты															13
4.4	вывол															14

Список таблиц

3 1	Описание некото	рых программ л	ля моделирования	г сетей	9
J. I	Offication fickord	рыл программ д			

1 Цель работы

Изучить средство моделирования NS2, установить все необходимые утилиты для работы с ней, запустить первую тестовую программу.

2 Задание

- Установить к себе на устройство виртуальную машину Ubuntu 22.04
- Установить на ней утилиты NS2, GNUPLOT, git, mc, make, emacs
- Изучить теоритическую информацию об NS2 и основны синтаксиса otcl
- Смоделировать тестовую модель по заданной топологии
- Синхронизировать всё с репозиторием в github

3 Теоретическое введение

NS-2 (Network Simulator 2) - это средство моделирования сетевых протоколов, которое широко используется для исследований и анализа производительности различных сетевых архитектур и протоколов, является программным обеспечением с открытым исходным кодом. NS-2 позволяет моделировать различные типы сетевых топологий и протоколов передачи данных, включая проводные и беспроводные сети, маршрутизацию, управление трафиком и т.д. Кроме того, NS-2 имеет расширяемую архитектуру, позволяющую создавать пользовательские модули для расширения функциональности средства.

NS-2 является мощным инструментом для исследований и анализа производительности сетевых протоколов и алгоритмов. Он позволяет смоделировать различные сценарии использования сетей и проанализировать их производительность в различных условиях. NS-2 также позволяет проводить эксперименты с реальными устройствами и сетями, которые могут быть трудными для организации в реальной жизни. NS-2 имеет свой язык описания сценариев TCL (Tool Command Language), который используется для создания сценариев моделирования. TCL-скрипты определяют топологию сети, настройки устройств, протоколы и другие параметры, которые затем используются для моделирования сценариев.

В табл. 3.1 приведено сравнение NS-2 с аналогичными программами.

Таблица 3.1: Описание некоторых программ для моделирования сетей

Название	Ли-	Язык	Совме-	
програм-	цен-	программи-	СТИ-	
МЫ	вив	рования	мость	Примечание
NS-2	Open	C++/otcl	Linux,	Базовая визуализация и большую
	source		Windows,	базу пользователей и библиотек для
			Mac	моделирования различных
				протоколов и алгоритмов
NS-3	Open	C++	Linux,	Более современная архитектура и
	source		Windows,	расширенные возможности для
			Mac	моделирования беспроводных
				сетей и IPv6, чем NS2
OPNET	Eclipse	e C++/Java	Windows,	Расширенные возможности для
	Public		Linux	моделирования беспроводных
	Licens	e		сетей, в том числе сенсорных сетей
				и промышленных беспроводных
				сетей
OMNET++	Open	C++/NED	Linux,	Расширенные возможности
	source		Windows,	моделирования беспроводных сетей
			Mac	и более современные инструменты
				визуализации, чем NS2

4 Выполнение лабораторной работы

1. Подготовил рабочее пространство, установив виртуаульную машину со всеми утилитами(NS-2, GNUPLOT, Pandoc, git, make, mc, emacs, Python), настроил общую папку между основной и гостевой ОС (рис. 4.1).

Рис. 4.1: Рабочая папка

- 2. Синхронизировал её с репозиторием в github https://github.com/agsargsyan/study_2022-2023_practice
- 3. Изучил заданную топологию сети (рис. 4.2).

Рис. 4.2: Топология сети

4. Написал первую тестовую программу для моделирования заданной топологии

```
#Создать новый экземпляр объекта Symulator set ns [new Simulator]
```

#Задаем разные цвета для потоков \$ns color 1 black \$ns color 2 red

#Открыть трейс-файл для nam set nf [open ns2-01.nam w] \$ns namtrace-all \$nf

```
#Finish procedure
proc finish {} {
    global ns nf
    $ns flush-trace
    #Закрыть трейс-файл пам
    close $nf
    exit 0
}
#Create 4 nodes
set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]
#Create links into nodes
$ns duplex-link $n0 $n2 2Mb 10ms DropTail
$ns duplex-link $n1 $n2 2Mb 10ms DropTail
$ns duplex-link $n2 $n3 1.7Mb 20ms DropTail
#Установим размер очереди на линке (n2-n3) в 10 пакетов
$ns queue-limit $n2 $n3 10
#Задаём расположение(для nam)
$ns duplex-link-op $n0 $n2 orient right-down
$ns duplex-link-op $n1 $n2 orient right-up
$ns duplex-link-op $n2 $n3 orient right
```

#Задать монитор очереди(n2-n3) for nam \$ns duplex-link-op \$n2 \$n3 queuePos 0.5

#Установка TCP-соединение
set tcp [new Agent/TCP]
\$tcp set class_ 2
\$ns attach-agent \$n0 \$tcp
set sink [new Agent/TCPSink]
\$ns attach-agent \$n3 \$sink
\$ns connect \$tcp \$sink
\$tcp set fid_ 1

#Установим соединение FTP поверх TCP set ftp [new Application/FTP] \$ftp attach-agent \$tcp \$ftp set type_ FTP

#Установим UDP-соединение set udp [new Agent/UDP] \$ns attach-agent \$n1 \$udp set null [new Agent/Null] \$ns attach-agent \$n3 \$null \$ns connect \$udp \$null \$udp set fid_ 2

#Установим соединение CBR поверх UDP set cbr [new Application/Traffic/CBR] \$cbr attach-agent \$udp \$cbr set type_ CBR

```
$cbr set packet_size_ 1000
$cbr set rate_ 1mb
$cbr set random_ false
#Задаём планировщик
$ns at 0.1 "$cbr start"
$ns at 1.0 "$ftp start"
$ns at 4.0 "$ftp stop"
$ns at 4.5 "$cbr stop"
#Отсоединить tcp и sink агенты
$ns at 4.5 "$ns detach-agent $n0 $tcp ; $ns detach-agent $n3 $sink"
#Вызвать finish на 5 секунде
$ns at 5.0 "finish"
#Напечатать размер пакета CBR и интервал
puts "CBR packet size = [$cbr set packet_size_]"
puts "CBR interval = [$cbr set interval_]"
#Запуск программы
$ns run
```

5. Вывел размер пакета CBR и интервал (рис. 4.3).

Рис. 4.3: Результаты

6. Посмотрел симуляцию данной программы в nam (рис. 4.4).

Рис. 4.4: вывод

5 Выводы

Я изучил основы работы с программой NS-2 для моделирования сетей, подготовил рабочее пространство и запустил первую модель для работы.

6 Список литературы

1. The ns Manual Kevin Fall, Kannan Varadhan, 2011 год