



## Algebra (Computer Science)

## Bonus Exercises: Week 4

**Exercise 1.** Consider V to be the open interval  $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$  and for every  $k \in \mathbb{R}$  and  $x, y \in V$  we define:

$$x \in y := \arctan(\tan(x) + \tan(y))$$
  
 $k \ \ x := \arctan(k \cdot \tan(x)),$ 

Show that  $(V, \rightleftharpoons)$  is an  $\mathbb{R}$ -vector space with external operation \$.

**Exercise 2.** Which of the following sets are  $\mathbb{R}$ -subspaces of  $\mathbb{R}^4$ ? Justify your answer.

(i) 
$$A = \{(x, y, z, t) \in \mathbb{R}^4 | x = 0 \text{ and } z = 0\};$$

(ii) 
$$B = \{(x, y, z, t) \in \mathbb{R}^4 | x^2 - y = 5\};$$

(iii) 
$$C = \{(x, y, z, t) \in \mathbb{R}^4 | x - y + 2z = 0\};$$

(iv) 
$$D = \{(x, y, z, t) \in \mathbb{R}^4 | x + y + 1 = z\};$$

(v) 
$$E = \{(x, y, z, t) \in \mathbb{R}^4 | e^{x+y} = e^z \cdot e^y\};$$

(vi) 
$$F = \{(x, y, z, t) \in \mathbb{R}^4 | x^2 + y^2 + z^2 + t^2 = 0\}$$

Note: To receive points for this exercise, you must discuss all of the sets A, B, C, D, E, F.

**Exercise 3.** Consider two fields K, L and a field homomorphism

$$\phi:K\to L$$

between them. Show that  $\phi$  must be injective.

Denote by + and  $\cdot$  the operations in L. We define for every  $k \in K$  and  $x \in L$ :

$$k \odot x := \phi(k) \cdot x$$

Show that (L, +) is a K-vector space, with external operation  $\odot$ .

**Exercise 4.** A **real inner product space**  $(V, \langle \cdot, \cdot \rangle)$  consists of an  $\mathbb{R}$ -vector space V, endowed with a function

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$$

that satisfies the properties:

- 1.  $\forall u, v, w \in V, \ \forall a, b \in \mathbb{R} : \ \langle au + bv, w \rangle = a \langle u, w \rangle + b \langle v, w \rangle$
- 2.  $\forall u, v \in V : \langle u, v \rangle = \langle v, u \rangle$
- 3.  $\langle u, u \rangle \ge 0$  and  $\langle u, u \rangle = 0 \iff u = 0$

The **dot product** (otherwise called the **scalar product**) on  $\mathbb{R}^3$  is defined for any  $v_1, v_2 \in \mathbb{R}^3$ ,  $v_1 = (x_1, y_1, z_1)$  and  $v_2 = (x_2, y_2, z_2)$  by:

$$\langle v_1, v_2 \rangle := x_1 x_2 + y_1 y_2 + z_1 z_2$$

Show that  $(\mathbb{R}^3, \langle \cdot, \cdot \rangle)$  is a real inner product space.

**Exercise 5.** For every  $a \in \mathbb{R}^3$  we define the **translation by** a:

$$t_a: \mathbb{R}^3 \to \mathbb{R}^3$$
$$v \mapsto v + a$$

Consider the set:

$$\pi = \{(x, y, z) \in \mathbb{R}^3 | x + 2y + 3z = 4\}$$

Show that  $\pi$  is not an  $\mathbb{R}$ -subspace of  $\mathbb{R}^3$ , but there exists a vector  $a \in \mathbb{R}^3$ , so that

$$t_a(\pi) = a + \pi := \{a + v | v \in \pi\}$$

is an  $\mathbb{R}$ -subspace of  $\mathbb{R}^3$ . If you wish, you can also give a geometrical interpretation.

**Exercise 6.** Let  $a, b \in \mathbb{R}$  with  $a \neq b$  and consider:

 $C([a, b], \mathbb{R}) := \{ f : [a, b] \to \mathbb{R} | f \text{ is continuous} \}$ 

 $C^1([a,b],\mathbb{R}) := \{f : [a,b] \to \mathbb{R} | f \text{ is differentiable with continuous derivative}\}$ 

Let  $P, Q \in C([a, b], \mathbb{R})$ . We consider a 1st order ordinary linear differential equation:

$$E: y' + P(x) \cdot y = Q(x)$$

We denote the **set of solutions of** E by:

$$S_E := \{ y \in C^1([a, b], \mathbb{R}) | y' + P(x) \cdot y = Q(x) \}$$

Show that these solutions form an  $\mathbb{R}$ -subspace of  $C^1([a,b],\mathbb{R})$ , that is:

$$S_E \leq_{\mathbb{R}} C^1([a,b],\mathbb{R})$$

Exercise 7. We are in the same context as in Exercise 6. Consider the homogeneous equation associated to E:

$$E_{hom}: y' + P(x) \cdot y = 0$$

Show that if  $S_E \neq \emptyset$  (that is, the equation E has solutions), then:

$$S_E = S_{E_{hom}} + y_p = \{y_o + y_p | y_o \in S_{E_{hom}}\},\$$

where  $y_p \in S_E$ .

<u>Note:</u> What this means is that if such a differential equation has solutions, then any one of its solutions can be written as the sum between a solution of the homogeneous equation  $E_{hom}$  and a particular solution of E.

Remember that the unknown in these equations is the function y and it is a function whose argument is x, so instead of y', it would have, perhaps, been more rigorous to write  $\frac{dy}{dx}$ .

<u>Trivia:</u> While now is a bit early for you to encounter differential equations, after all, they will be properly studied in the 2nd Semester, in the course **Dynamical Systems**, the Exercises 6 and 7 do not involve anything more than simple Linear Algebra and the fact that differentiation is linear. By this we mean that for any functions f, g and  $\alpha \in \mathbb{R}$  we have:

$$(f+g)' = f' + g'$$
$$(\alpha f)' = \alpha f',$$

which can be combined for  $\alpha, \beta \in \mathbb{R}$  into:

$$(\alpha f + \beta g)' = \alpha f' + \beta g'$$