Closing the Gap: Minimum Space Optimal Time Distance Labeling Scheme for Interval Graphs

Meng He and Kaiyu Wu
Dalhousie University

Labeling Scheme

- Labeling scheme for graphs
 - Encode: compute a label for each vertex
 - Decode: answer a query using labels of only query vertices
 - Applications in communication network, distributed computing...
- Labeling schemes for Trees
 - Distance: (1/4)lg²n+o(lg²n) bits (Freedman et al. 2017)
 - Level Ancestor: (1/2)lg²n+O(lgn) bits (Alstrup et al. 2016)
 - And more...
- Distance labeling for graphs
 - Planar: O((nlgn)^{1/2}) bits, O(lg³n) time (Gawrychowski and Uznanski 2023)
 - General: ((lg3)/2)n+o(n) bits, O(1) time (Alstrup et al. 2016)

Interval Graphs

- Interval graph
 - Vertex v: an interval $I_v = [\ell_v, r_v]$ on the real line
 - Edge (u, v) exists if I_u and I_v intersect
- Distance labeling for connected interval graphs (Gavoille and Paul 2008)
 - Upper bound: 5 [lg n] + 3 bits, O(1) time
 - Lower bound: 3 lgn-o(lgn) bits
- How to close the gap between lower and upper bounds?

Distance Trees and Forests

Distance Tree

- \blacksquare x < y (x is to the left of y): $\ell_x < \ell_y$
- parent(x): $argmin\{\ell_y \mid r_y \ge \ell_x \text{ and } y < x\}$
- Children of a node are sorted by left endpoint

Shortest path from v to u (u < v)</p>

- v_k: ancestor of v at level k
- Shortest path: v_{depth(v)}, ..., v_i, u
- i: depth(u) or depth(u)±1

(1/2)lg²n-lgnlglgn bits lower bound for level ancestor labeling (Freedman et al. 2017)

Traversals of Distance Trees

Level order

- rank_{LEVEL}(u) < rank_{LEVEL}(v)
- $\blacksquare \Leftrightarrow \ell_{\mathsf{U}} \leq \ell_{\mathsf{V}}$

Postorder

- depth(u) = depth(v) and $rank_{POST}(u) < rank_{POST}(v)$
- $\blacksquare \Leftrightarrow \ell_{\mathsf{U}} \leq \ell_{\mathsf{V}}$

Reducing candidates of v_i from 3 to 2

- Representative of v with respect to u (u < v)</p>
 - w: highest ancestor of v with $\ell_w > \ell_u$
 - If rank_{POST}(u) < rank_{POST}(v), w = lev_anc(v, depth(u))
 - If $rank_{POST}(u) > rank_{POST}(v)$, $w = lev_anc(v, depth(u) + 1)$
- v_i = w (if u and w are adjacent) or parent(w)

Distance Computation via Representatives

□ Pseudocode (u < v)

```
If rank<sub>POST</sub>(u) < rank<sub>POST</sub>(v)
    w ← lev_anc(v, depth(u))
else
    w ← lev_anc(v, depth(u)+1)
distance ← depth(v)-depth(w)
if adjacent(u, w)
    return distance+1
else
    return distance+2
```

- Turning into distance labeling
 - Test whether u < v
 - Compute rank_{POST}(u/v)
 - Compute depth(u/v)
 - 4. Approximate lev_anc
 - 5. Compute adjacent using the approximation of lev anc

Distance Labels

- Turning into distance labeling
- √ 1. Test whether u < v
 </p>
- ✓ 2. Compute rank_{POST}(u/v)
- 3. Compute depth(u/v)
 - 4. Approximate lev_anc
 - 5. Compute adjacent using the approximation of lev anc

- Labeling vertex v
 - depth(v)
 - rank_{POST}(v)
 - rank_{POST}(last(v))
- □ last(v)
 - The rightmost neighbor of v if v is not the rightmost vertex
 - Null otherwise
- Space: 3 [Ign] bits

Properties of last(u)

Every vertex in (u, last(u)) is adjacent to u

- Level of last(u)
 - Same as the level of u: rank_{POST}(u) ≤ rank_{POST}(last(u))
 - The level below: rank_{POST}(last(u)) < rank_{POST}(u)

Case 1: u before v in Postorder


```
if rank_{POST}(v) \le rank_{POST}(last(u)) or rank_{POST}(last(u)) \le rank_{POST}(u)
return depth(v)-depth(u)+1
else
return depth(v)-depth(u)+2
```

Case 2: u after v in Postorder

Pseudocode for case 2

```
if rank<sub>POST</sub>(v) < rank<sub>POST</sub>(last(u)) < rank<sub>POST</sub>(u)
  return depth(v)-depth(u)
else
  return depth(v)-depth(u)+1
```

- Connected interval graphs
 - Space: 3 [Ign] bits
 - Time: O(1)

More Results

- Interval graphs that may be disconnected
 - 3lgn+lglgn+O(1) bits, O(1) time
- Circular arc graphs
 - 6lgn+2lglgn+O(1) bits, O(1) time
 - Previous result: 10 Ign + O(1) bits, O(1) time for connected graphs (Gavoille and Paul 2008)
- Chordal graphs
 - $= n/2 + O(\lg^2 n)$ bits, O(1) time
 - Lower bound: n/4-θ(lgn) bits (Wormald 1985, Munro and Wu 2019)

Conclusions

- Optimal distance labeling for interval graphs
- Improved distance labeling for circular arc graphs
- The first distance labeling for chordal graphs
- Open problem: lower bound for distance labeling for circular arc graphs

Thank you!