Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики

Спецкурс: системы и средства параллельного программирования.

Отчёт № 4.

Анализ параллельной оптимизации умножения матрицы на вектор

Работу выполнил

Федоров В. В.

Постановка задачи и формат данных.

Задача: Реализовать две версии параллельного умножения матрицы на вектор – с разбиением матрицы по строкам (rowwise) и по столбцам (columnwise), выполнить замеры времени выполнения программы, а также подсчитать ускорение и эффективность.

Формат командной строки: <файл с матрицей A><файл с вектором b><файл для записи вектора c> <версия умножения (r — rowwise/c — columnwise)> <файл для вывода времени выполнения>

Формат файла-матрицы: Матрица представляется в виде бинарного файла следующего

формата:

Тип	Значение	Описание		
Число типа int	N – натуральное число	Число строк матрицы		
Число типа int	М – натуральное число	Число столбцов матрицы		
Массив чисел типа double	N imes M элементов	Массив элементов матрицы		

Элементы матрицы хранятся построчно.

Формат файла-вектора: Вектор представляется в виде бинарного файла следующего

формата:

Тип	Значение	Описание
Число типа int	N – натуральное число	Число строк матрицы
Массив чисел типа double	N элементов	Массив элементов матрицы

Элементы матрицы хранятся построчно.

Описание алгоритма.

Математическая постановка: Результатом умножения матрицы $A \in \mathbb{R}^{n \times m}$ на вектор $b \in \mathbb{R}^m$ является вектор $c \in \mathbb{R}^n$, элементы которого вычисляются по формуле:

$$c_i = \sum_{j=1}^m A_{ij} b_j; i = 1...n$$

Существует 2 версии параллельной оптимизации данного алгоритма.

Разбиение по строкам (rowwise): Пусть программа запускается на р процессах. Каждому процессу подается блок строк матрица А. Размер этого блока n_s у процесса ѕ определяется по формуле:

$$n_s = \frac{n}{p} + (s < n \pmod{p})$$

Например, при n = 13 и p = 5 первым трем процессам будет отдано 3 строки, а последним двум — 2. Кроме строк матрицы А, каждому процессу подается копия вектора b. После умножения процессом $A_s \in \mathbb{R}^{n_s \times m}$ - выделенной ему части матрицы A — на вектор $b \in \mathbb{R}^m$ он получит вектор $c_s \in \mathbb{R}^{n_s}$, для получения конечного ответа нужно последовательно соединить полученные каждым процессом векторы в один.

Разбиение по столбцам (rowwise): Каждому процессу подается блок столбцов матрица A. Размер этого блока m_s у процесса s определяется по формуле:

$$m_s = \frac{m}{p} + (s < m \pmod{p})$$

Кроме строк матрицы A, каждому процессу часть вектора b размером m_s. После

умножения процессом $A_s \in \mathbb{R}^{n \times m_s}$ - выделенной ему части матрицы A — на вектор $b_s \in \mathbb{R}^{m_s}$ он получит вектор $c_s \in \mathbb{R}^n$, для получения конечного ответа нужно просуммировать все полученные векторы в один.

Анализ данных программы: Для оценки времени работы программы использовалась функция MPI_Wtime.

Верификация: Для проверки корректности работы программы она тестировалась на 20 заранее сгенерированных тестах.

Результаты выполнения.

Результаты:

Замеры времени проводились на системе BlueGene/P. Использовались матрицы следующих размеров: 512×512 ; 1024×1024 ; 2048×2048 ; 4096×4096 ; 1024×4096 ; 4096×1024 . Замеры проводились на следующем числе процессов: 32; 64; 128; 256; 512. В случае 512 процессов замеры проводились на двух видах мэппинга (размещения процессов в топологии BlueGene/P — трехмерном торе) — стандартном и случайно сгенерированном. Каждый замер проводился как для гоwwise-версии программы, так и для columnwise.

	Время выполнения, с - rowwise									
		Число процессов								
n	m	32	64	128	256	512	512 map			
512	512	0,003532	0,003114	0,003088	0,003532	0,005823	0,006187			
1024	1024	0,013080	0,011385	0,010741	0,010796	0,013387	0,012123			
2048	2048	0,051510	0,044269	0,041116	0,039934	0,042013	0,038717			
4096	4096	0,205932	0,175934	0,162584	0,156307	0,154479	0,146064			
4096	1024	0,051341	0,044185	0,041067	0,041067	0,041655	0,038770			
1024	4096	0,051718	0,044340	0,041247	0,039955	0,041605	0,038875			

Ускорение - rowwise								
n			Число процессов					
n	m	32	64	128	256	512	512 map	
512	512	1,000000	1,134232	1,143782	1,000000	0,606560	0,570874	
1024	1024	1,000000	1,148880	1,217764	1,211560	0,977067	1,078941	
2048	2048	1,000000	1,163568	1,252797	1,289878	1,226049	1,330423	
4096	4096	1,000000	1,170507	1,266619	1,317484	1,333074	1,409875	
4096	1024	1,000000	1,161955	1,250177	1,250177	1,232529	1,324246	
1024	4096	1,000000	1,166396	1,253861	1,294406	1,243072	1,330367	

Эффективность - rowwise								
		Число процессов						
n	m	32	64	128	256	512	512 map	
512	512	1,000000	0,567116	0,285946	0,125000	0,037910	0,035680	
1024	1024	1,000000	0,574440	0,304441	0,151445	0,061067	0,067434	
2048	2048	1,000000	0,581784	0,313199	0,161235	0,076628	0,083151	
4096	4096	1,000000	0,585254	0,316655	0,164686	0,083317	0,088117	
4096	1024	1,000000	0,580978	0,312544	0,156272	0,077033	0,082765	
1024	4096	1,000000	0,583198	0,313465	0,161801	0,077692	0,083148	

Время выполнения, с - columnwise								
		Число процессов						
n	m	32	64	128	256	512	512 map	
512	512	0,003446	0,003022	0,002855	0,002899	0,003143	0,002525	
1024	1024	0,013049	0,011302	0,010609	0,010307	0,010319	0,007937	
2048	2048	0,051036	0,043936	0,040916	0,039433	0,038645	0,029467	
4096	4096	0,202974	0,174597	0,161883	0,155634	0,151517	0,114273	
4096	1024	0,051286	0,044041	0,041063	0,039523	0,038736	0,029647	
1024	4096	0,051047	0,043908	0,040794	0,039203	0,038515	0,029174	

Ускорение, с - columnwise								
_		Число процессов						
n	m	32	64	128	256	512	512 map	
512	512	1,000000	1,140304	1,207005	1,188686	1,096405	1,364752	
1024	1024	1,000000	1,154574	1,229993	1,266033	1,264561	1,644072	
2048	2048	1,000000	1,161599	1,247336	1,294246	1,320637	1,731971	
4096	4096	1,000000	1,162529	1,253831	1,304175	1,339612	1,776220	
4096	1024	1,000000	1,164506	1,248959	1,297624	1,323988	1,729888	
1024	4096	1,000000	1,162590	1,251336	1,302120	1,325380	1,749743	

Эффективность, с - columnwise								
		Число процессов						
n	m	32	64	128	256	512	512 map	
512	512	1,000000	0,570152	0,301751	0,148586	0,068525	0,085297	
1024	1024	1,000000	0,577287	0,307498	0,158254	0,079035	0,102755	
2048	2048	1,000000	0,580799	0,311834	0,161781	0,082540	0,108248	
4096	4096	1,000000	0,581264	0,313458	0,163022	0,083726	0,111014	
4096	1024	1,000000	0,582253	0,312240	0,162203	0,082749	0,108118	
1024	4096	1,000000	0,581295	0,312834	0,162765	0,082836	0,109359	

Время выполнения, с - rowwise

Время выполнения, с — columnwise

Эффективность — columnwise

Увеличение числа процессов не дало желанного ускорения, поэтому эффективность оказалась очень низкой. Связано это с накладными расходами на обмен данными между процессами. Columnwise-версия в большинстве случаев оказалась чуть быстрее rowwise-версии. Случайный мэппинг для 512 процессов оказался даже лучше стандартного.