Overview of Maximum Likelihood Estimation

Andrew Zieffler

Conceptual Overview

For which parameter values are the data most likely?

- ★ Given the **data and model**, what are the most likely value of the parameters
- * Maximum likelihood (ML) provides framework for answering this question
- ★ ML provides results which have attractive properties and are favorable for inference

Optimization Criterion

- ★ Optimization criterion provides basis for computing estimates of parameters
 - ✓ Optimization criterion for OLS is SSE
 - ✓ SSE is optimal at its minimum (least) value
 - √ Fixed effects estimates chosen to minimize SSE
- ★ Optimization criterion for ML is likelihood function or deviance function
 - √ Fixed effects (and other) estimates chosen to minimize likelihood function

$$L\left(x_1,x_2,x_3,\ldots,x_n;\theta\right)$$

Advantages of ML

- ★ ML yields a **global fit index** for the model on top of the parameter estimates
 - ✓ Index is minimum of the deviance function
 - √ Can be used to compare models
- * Estimators produced under ML have desirable largesample (asymptotic) properties
 - √ Consistent, asymptotically normally distributed
 - √ With small samples this may not hold

- ★ ML estimates are **always** approximate
 - √ Samples are finite
 - √ Often have missing data
- * Approximations imply researchers **should not** get too hung up on rigid rules of practice
 - √ Use of 2(SE) vs 1.96(SE)
 - ✓ Inflexible cutoffs (0.05) are not warranted
- * Notes only consider regular problems
 - ✓ ML solutions are possible
 - ✓ Assumption of sample data coming from hypothetical, infinitely sized population (repeated sampling scenario)

Example 1: Estimate the Mean

Given the data and the model, what is the most likely value of the mean?

- ★ Obviously data is given—it exists in data frame
- ★ What is the "given" model?
 - ✓ Traditional marginal mean equation along with the enhancement of an explicit probability model

- ★ Probability model specified before the analysis
 - ✓ Gives probability for **all possible samples** for the parameters in the model
 - ✓ Inferences made according to this model after sample data selected
- ★ Inferences based on likelihood (not probability)
 - ✓ Likelihood supplies **order of preference** (plausibility) among possible parameter values **given** the data and model
 - ✓ Denoted Lik

★ ML begins with probability model for each and every observed score

$$y_i = \beta_0 + \epsilon_i$$

In the marginal mean model this is a LM with distributional assumption on the errors

where ε_i are normally distributed with $\mu_{\varepsilon} = 0$ and $\sigma^2_{\varepsilon} > 0$

$$\epsilon_i \sim \mathbb{N}(\mu_{\epsilon}, \sigma_{\epsilon}^2)$$

Express the LM in Terms of the Probability Model

$$f(\epsilon_i) = \frac{1}{\sqrt{2\pi\sigma_{\epsilon}^2}} \cdot e^{\left[-\frac{(\epsilon_i - \mu_{\epsilon})^2}{2\sigma_{\epsilon}^2}\right]}$$

where $\pi = 3.14159...$

With the usual assumption that $\mu_{\epsilon} = 0$ this simplifies to

$$f(\epsilon_i) = \frac{1}{\sqrt{2\pi\sigma_{\epsilon}^2}} \cdot e^{\left[-\frac{\epsilon_i^2}{2\sigma_{\epsilon}^2}\right]}$$

Probability model associates different probability densities with different

individual errors

Suppose $\mu_{\epsilon} = 0$, $\sigma_{\epsilon}^2 = 1$ and $\epsilon_i = -1$ then the probability density is given by $f(\epsilon_i)$

$$f(-1) = \frac{1}{\sqrt{2 \cdot \pi \cdot 1}} \cdot e^{\left[-\frac{(-1)^2}{2 \cdot 1}\right]}$$
$$= 0.2419707$$

The dnorm() function computes probability densities from a normal distribution in R.

$$> dnorm(-1, mean = 0, sd = sqrt(1))$$

Note it takes the SD rather than the variance of the distribution

[1] 0.2419707

Likelihood Function

- ★ Basis for all inference in ML estimation
- ★ Consists of probability function for each and every potential observation
- ★ For LM probability function defined for each Ei
 - Assumption of independence allows us to multiply each probability function to obtain joint density

$$Lik = [f(\epsilon_1)] \cdot [f(\epsilon_2)] \cdot [f(\epsilon_3)] \cdot \ldots \cdot [f(\epsilon_N)]$$

$$Lik = \left(\frac{1}{\sqrt{2\pi\sigma_{\epsilon}^{2}}}\right)^{N} exp\left(-\frac{\epsilon_{1}^{2}}{2\sigma_{\epsilon}^{2}}\right) \cdot \frac{1}{\sqrt{2\pi\sigma_{\epsilon}^{2}}} exp\left(-\frac{\epsilon_{2}^{2}}{2\sigma_{\epsilon}^{2}}\right) \cdot \frac{1}{\sqrt{2\pi\sigma_{\epsilon}^{2}}} exp\left(-\frac{\epsilon_{2}^{2}}{2\sigma_{\epsilon}^{2}}\right) \cdot \frac{1}{\sqrt{2\pi\sigma_{\epsilon}^{2}}} exp\left(-\frac{\epsilon_{2}^{2}}{2\sigma_{\epsilon}^{2}}\right) \cdot \dots \cdot \frac{1}{\sqrt{2\pi\sigma_{\epsilon}^{2}}} exp\left(-\frac{\epsilon_{N}^{2}}{2\sigma_{\epsilon}^{2}}\right)$$

* Substitute the function for the normal probability density in for each term in the likelihood function. Note that $exp(a) = e^a$.

$$Lik = \left(\frac{1}{\sqrt{2\pi\sigma_{\epsilon}^{2}}}\right)^{N} exp\left(-\frac{\epsilon_{1}^{2}}{2\sigma_{\epsilon}^{2}}\right) \cdot \frac{1}{\sqrt{2\pi\sigma_{\epsilon}^{2}}} exp\left(-\frac{\epsilon_{2}^{2}}{2\sigma_{\epsilon}^{2}}\right) \cdot \frac{1}{\sqrt{2\pi\sigma_{\epsilon}^{2}}} exp\left(-\frac{\epsilon_{2}^{2}}{2\sigma_{\epsilon}^{2}}\right) \cdot \dots \cdot \frac{1}{\sqrt{2\pi\sigma_{\epsilon}^{2}}} exp\left(-\frac{\epsilon_{N}^{2}}{2\sigma_{\epsilon}^{2}}\right)$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma_{\epsilon}^2}}\right)^N exp\left(-\frac{\sum\limits_{i=1}^N \epsilon_i^2}{2\sigma_{\epsilon}^2}\right) \qquad \text{Likelihood function}$$

Easier to take natural logarithm of both sides of equation

$$\ln(Lik) = \ln\left(\left(\frac{1}{\sqrt{2\pi\sigma_{\epsilon}^2}}\right)^N exp\left(-\frac{\sum_{i=1}^N \epsilon_i^2}{2\sigma_{\epsilon}^2}\right)\right)$$

Do the math to it reduces to this

Do the math to convince yourself it reduces to this
$$= -\frac{N}{2} \cdot \ln \left(2\pi \sigma_{\epsilon}^2 \right) - \frac{1}{2\sigma_{\epsilon}^2} \cdot \sum_{i=1}^{N} \epsilon_i^2$$
 | Log-Likelihood function

Can multiply both sides by -2

$$-2\ln(Lik) = N \cdot \ln(2\pi\sigma_{\epsilon}^2) + \frac{1}{\sigma_{\epsilon}^2} \cdot \sum_{i=1}^{N} \epsilon_i^2$$

-2(log-likelihood) is called the **deviance**

We can write
$$\mathbf{E}_i$$
 as $y_i - \mathbf{\beta}_0$

$$\operatorname{deviance} = N \cdot \ln \left(2\pi \sigma_{\epsilon}^2 \right) + \frac{1}{\sigma_{\epsilon}^2} \cdot \sum_{i=1}^{N} \left(y_i - \beta_0 \right)^2$$

The model is **embedded in the specified probability function**, by way of the deviance function. Now the deviance function can be minimized.

Intuitive Idea of Minimization

- **★** Goal is to minimize the value of the deviance
- * Assume that the parameters of the error variance is known, and that the **only unknown** parameter to be estimated is the intercept

$$\sigma_{\epsilon}^2 = 15$$

- ★ Given the model (with known parameter values) and the data, object is to choose "best" value for the slope
- ★ "Best" value here means that after substituting values in to the deviance function equation, the smallest deviance possible has been obtained
- * In ML theory, this is the estimate (value) of β₀ that is **maximally likely** given the data and the model—hence maximum likelihood

 \star Everything in the deviance function is known, except for β_0

i wage

I 12.00

2 8.00

3 16.26

4 13.65

5 8.50

deviance =
$$5 \cdot \ln (2 \cdot \pi \cdot 15) + \frac{1}{15} \cdot \left[(12 - \beta_0)^2 + (8 - \beta_0)^2 + (16.26 - \beta_0)^2 + (13.65 - \beta_0)^2 + (8.5 - \beta_0)^2 \right]$$

Given we want the Smallest Deviance what Value should we Choose for β_0 ?

- Pick several candidate values for β_0 and substitute them into the equation. Solve for deviance. Choose the one with the smallest deviance value.
- For example, consider candidate values for β_0 between 11 and 12

βο	deviance
11.00	26.12564
11.01	26.12113
11.02	26.11668
11.03	26.11230
•	•


```
## Create the function
> dev <- function(b0) {
    5 * log(2 * pi * 15) + 1/15 * ( (12 - b0)^2 +
        (8 - b0)^2 + (16.26 - b0)^2 +
        (13.65 - b0)^2 + (8.5 - b0)^2 )
    }

## Try function
> dev(0)

[1] 71.46031
```

```
## Generate values for b0
> new <- data.frame(
    b0 = seq(from = 11, to = 12, by = 0.01)
    )

## Generate the deviance values and store the results
> library(plyr)
> new <- mdply(new, dev)

## Change the name of the second column
> names(new)[2] <- "deviance"</pre>
```

```
## Plot deviance vs. b0
> ggplot(data = new, aes(x = b0, y = deviance)) +
        geom_line() +
        theme_bw() +
        xlab(expression(beta[0])) +
        ylab("Deviance")

## Arrange from smallest to largest deviance
> head(arrange(new, deviance))
```

Use Calculus

- \star The derivative of the deviance function can be analytically computed and set equal to zero. Solving for β_0 will give the value that minimizes the deviance
- ★ Avoids exhaustive search
- ★ In more complex models (e.g., LMER) estimation is not so straightforward.
 - ✓ Exhaustive search methods are required (numerical analysis)
- ★ Once the deviance function becomes more complex, the multidimensional form of the tangent line most be discovered

$$\frac{\partial}{\partial \beta_0}$$
 $-2n \ln \left(\frac{1}{\sqrt{2\pi}}\right) + (x_1 - \beta_0)^2 + (x_2 - \beta_0)^2 + \dots + (x_n - \beta_0)^2$

Do you remember the chain rule?

$$0-2(x_1-\beta_0)-2(x_2-\beta_0)-\ldots-2(x_n-\beta_0)$$

Find the root of the derivative.

Set = 0
$$0 = -2\left[(x_1-\beta_0)-(x_2-\beta_0)-\ldots-(x_n-\beta_0)\right]$$
 Divide by -2
$$0 = (x_1-\beta_0)-(x_2-\beta_0)-\ldots-(x_n-\beta_0)$$
 Combine 'like' terms
$$0 = (x_1+x_2+\ldots+x_n)-n\beta_0$$
 Sample mean is the estimate that minimizes the deviance.

Example 2: Estimate the Mean and Std. Dev.

Given the data and the model, what is the most likely value of the mean and standard deviation?

 \star Model and data are still the same, but now we don't assume a specific value for σ

deviance =
$$N \cdot \ln (2\pi\sigma_{\epsilon}^2) + \frac{1}{\sigma_{\epsilon}^2} \cdot \sum (y_i - \beta_0)^2$$

```
## Create the function
> dev <- function(b0, s) {
    5 * log(2 * pi * s^2) + 1/s^2 * ( (12 - b0)^2 +
        (8 - b0)^2 + (16.26 - b0)^2 +
        (13.65 - b0)^2 + (8.5 - b0)^2 )
    }

## Try function
> dev(b0 = 0, s = 1)

[1] 740.1495
```

```
## Generate independent search grids for b0 and b1
> b0 = seq(from = 11, to = 12, by = 0.01)
> s = seq(from = 12, to = 13, by = 0.01)
## Create combined search grid
> new <- expand.grid(b0 = b0, s = s)
## Generate the deviance values and store the results
> new <- mdply(new, dev)</pre>
## Change the name of the second column
> names(new)[3] <- "deviance"</pre>
## Arrange from smallest to largest deviance
> head(arrange(new, deviance))
```

Example 3: Regression (Estimate Intercept Only)

Given the data and the model, what is the most likely value of the unknown slope parameter

- \star Data now include x and y values
- ★ Model is now a traditional regression model (conditional mean model)

$$y_i = \beta_0 + \beta_1(age_i) + \epsilon_i \qquad \epsilon_i \sim \mathbb{N}(\mu_{\epsilon}, \sigma_{\epsilon}^2)$$

Embed the LM in the Probability Model

We can write
$$\varepsilon_i$$
 as $y_i - \beta_0 - \beta_1(x_i)$

$$\operatorname{deviance} = N \cdot \ln \left(2\pi \sigma_{\epsilon}^2 \right) + \frac{1}{\sigma_{\epsilon}^2} \cdot \sum_{i=1}^{N} \left(y_i - \beta_0 - \beta_1 \cdot x_i \right)^2$$

The model is **embedded in the specified probability function**, by way of the deviance function. Again, the deviance function can be minimized.

* Assume that the parameters of the error variance and the intercept are known, and that the **only unknown** parameter to be estimated is the slope

$$\beta_0 = -4$$
 $\sigma_{\epsilon}^2 = 15$

 \star Everything in the deviance function is known, except for β_1

i	wage	age
ı	12.00	32
2	8.00	33
3	16.26	32
4	13.65	33
5	8.50	26

★ Substituting in the values

deviance =
$$5 \cdot \ln (2 \cdot \pi \cdot 15) + \frac{1}{15} \cdot \left[(12 + 4 - \beta_1 \cdot 32)^2 + (8 + 4 - \beta_1 \cdot 33)^2 + (16.26 + 4 - \beta_1 \cdot 32)^2 + (13.65 + 4 - \beta_1 \cdot 33)^2 + (8.5 + 4 - \beta_1 \cdot 26)^2 \right]$$

Given we want the Smallest Deviance what Value should we Choose for β_1 ?

- Pick several candidate values for and substitute them into the equation. Solve for deviance. Choose the one with the smallest deviance value.
- For example, consider candidate values for β_1 between 0 and 1

βι	deviance
0.0	107.94564
0.1	104.69330
0.2	101.50631
0.3	98.38468
•	•


```
## Create the function
> dev <- function(b1) {
    5 * log(2 * pi * 15) + 1/15 * ( (12 + 4 - b1 * 32)^2 +
        (8 + 4 - b1 * 33)^2 + (16.26 + 4 - b1 * 32)^2 +
        (13.65 + 4 - b1 * 33)^2 + (8.5 + 4 - b1 * 26)^2)
    }

## Try function
> dev(0)

[1] 107.9456
```

```
## Generate values for b1
> new <- data.frame(
    b1 = seq(from = 0, to = 1, by = 0.01)
    )

## Generate the deviance values and store the results
> library(plyr)
> new <- mdply(new, dev)

## Change the name of the second column
> names(new)[2] <- "deviance"</pre>
```

Example 4: Regression (Estimate Intercept & Slope)

Given the data and the model, what is the most likely value of the unknown slope parameter and unknown intercept parameter?

★ Data:

★ Model:

Your turn!

* Assume that the parameters of the error variance is known, and that both the intercept and the slope are unknown parameters to be estimated

$$\sigma_{\epsilon}^2 = 49$$

★ Substituting into the deviance

deviance =
$$5 \cdot \ln (2 \cdot \pi \cdot 15) \frac{1}{15} \cdot \left[(12 - \beta_0 - \beta_1 \cdot 32)^2 + (8 - \beta_0 - \beta_1 \cdot 33)^2 + (16.26 - \beta_0 - \beta_1 \cdot 32)^2 + (13.65 - \beta_0 - \beta_1 \cdot 33)^2 + (8.5 - \beta_0 - \beta_1 \cdot 26)^2 \right]$$

- * With two unknowns, the deviance function is a plane in three-dimensional space ($x = \beta_0$, $y = \beta_1$, z = deviance)
- \star Candidate values for β_0 and β_1 are considered simultaneously
- ***** Search grid includes (-4, -3) for β_0 and (0, 1) for β_1 in increments of 0.01

βo	βι	deviance
-4 .00	0	107.9456
-3.99	0	107.8411
-3.98	0	107.7367
-3.97	0	107.6323
•	•	•
-3.92	0.50	25.39207
•	•	•

Minimum deviance occurs at floor of the plot (horizontal plane on which the graph rests)

Carry Out a Grid Search in R

```
## Create the function
> dev <- function(b0, b1) {
    5 * log(2 * pi * 15) + 1/15 * ( (12 - b0 - b1 * 32)^2 +
        (8 - b0 - b1 * 33)^2 + (16.26 - b0 - b1 * 32)^2 +
        (13.65 - b0 - b1 * 33)^2 + (8.5 - b0 - b1 * 26)^2 )
    }

## Try function
> dev(b0 = 0, b1 = 0)
[1] 71.46031
```

Carry Out a Grid Search in R

```
## Generate values for b1
> new2 <- expand.grid(</pre>
    b0 = seq(from = -4, to = -3, by = 0.01),
    b1 = seq(from = 0, to = 1, by = 0.01)
## Generate the deviance values and store the results
> new2 <- mdply(new2, dev)</pre>
## Change the name of the third column
> names(new)[2] <- "deviance"</pre>
## Order the data frame by deviance
> arrange(new2, dev)
```

★ If the error variance is also unknown, all three parameters are simultaneously estimated and the deviance is again minimized.

```
## Fit linear model
> lm.1 <- lm(wage ~ age, data = wg)

## Compute log-likelihood
> logLik(lm.1)

'log Lik.' -12.28932 (df=3)

## Compute deviance
> -2 * logLik(lm.1)[1]

24.57864
```

Exhaustive Search vs. Numerical Methods

- ★ The exhaustive searches carried out in the examples were convenient
 - ✓ Ranges were used where the ML estimates were known to reside
 - ✓ In practice, these are not known
 - ✓ Increments are usually finer than 0.01 in practice
- * Computing time and memory becomes a valuable resource
- ★ Numerical methods, based on calculus are usually employed
 - ✓ Newton-Raphson method is most common algorithm
 - ✓ Deviance function assumed to be smooth and continuous with only one minimum (regularity assumption)
- * Functions such as lmer() generally combine both methods
 - ✓ Numerical methods are used to get in the neighborhood of the minimum deviance
 - ✓ Once more limited search space has been defined an iterative method can hone in on the minimum deviance until it is "good enough"

Newton-Raphson Method

Choose some value x

Compute f(x)

Solve f'(x) = 0

This will become the next value for x

Restricted Maximum Likelihood

★ It can be shown that the ML estimator for the error variance is

$$\hat{\sigma}_{\epsilon,ML}^2 = \frac{\sum_{i=1}^{N} \hat{\epsilon}_i^2}{N}$$

- ★ This is a **biased estimator** of the population variance
 - ✓ Underestimates the population value in repeated sampling
- ★ Square root of error variance is **residual standard error**
 - ✓ Printed in summary() output of lm()

- ★ To correct the bias, a different denominator is used
 - ✓ Called **restricted maximum likelihood (REML)** estimator

$$\hat{\sigma}_{\epsilon,REML}^2 = \frac{\sum_{i=1}^{N} \hat{\epsilon}_i^2}{N - p - 1}$$

- **\star** Estimation without correction for bias is called *full ML* or just Mwhere p is the number of predictors
- * When sample size is large, ML and REML results are similar
- ✓ As sample size increases without bound results converge
- ✓ Most ML results used for inference based on large-sample theory
- ★ REML is correction for variances
- √ Nature of correction depends on fixed effects structure of model
- ✓ Nested models can therefore differ not only in fixed effects, but also in correction terms
- √ REML should not be used for comparing models

- ★ Estimation without correction for bias is called full ML or just ML
- * When sample size is large, ML and REML results are similar
 - ✓ As sample size increases without bound results converge
 - ✓ Most ML results used for inference based on large-sample theory
- ★ REML is correction for variances
 - ✓ Nature of correction depends on fixed effects structure of model
 - ✓ Nested models can therefore differ not only in fixed effects, but also in correction terms
 - √ REML should not be used for comparing models

Comparing Models

- ★ Deviance is solid foundation for comparing models
 - √ Basis for AIC and LRT

$$y_i = \beta_0 + \epsilon_i$$

$$y_i = \beta_0 + \beta_1(\text{age}) + \epsilon_i$$

- * Residuals are larger for the intercept-only model
- ★ Slope model fits better

★ Using the ML estimator

deviance =
$$N \cdot \ln \left(2 \cdot \pi \cdot \hat{\sigma}_{\epsilon,ML}^2 \right) + \underbrace{\frac{1}{\hat{\sigma}_{\epsilon,ML}^2}} \cdot \sum \epsilon_i^2$$

$$\hat{\sigma}_{\epsilon,ML}^2 = \underbrace{\frac{\sum \hat{\epsilon}_i^2}{N}}$$

$$= N \cdot \ln\left(2 \cdot \pi \cdot \hat{\sigma}_{\epsilon, ML}^2\right) + \underbrace{\sum_{\epsilon_i}^{N} \cdot \sum_{\epsilon_i}^{N} \epsilon_i^2}_{N}$$

$$= N \cdot \ln\left(2 \cdot \pi \cdot \hat{\sigma}_{\epsilon,ML}^2\right) + N$$

deviance =
$$N \left[\ln \left(2 \cdot \pi \cdot \hat{\sigma}_{\epsilon, ML}^2 \right) + 1 \right]$$

$$= N \left[\ln \left(2 \cdot \pi \cdot N^{-1} \sum_{i=1}^{\infty} \hat{\epsilon}_{i}^{2} \right) + 1 \right]$$

Sum of squared residuals (SSR)

- **★** SSR is only term in deviance that is not a constant ←
- ★ For a fixed sample size (N), the **SSR** is the only influence on the size of the deviance
- ★ Minimizing the deviance is equivalent to minimizing the SSR
 - ✓ OLS is a special case of ML (but only for LM)

```
> lm.0 <- lm(wage ~ 1, data = wg)  ## Fit intercept-only model
> -2 * logLik(lm.0)[1]  ## Compute deviance
[1] 25.5618

> lm.1 <- lm(wage ~ age, data = wg)  ## Fit slope model
> -2 * logLik(lm.1)[1]  ## Compute deviance
[1] 24.57864
```

- ★ Deviance is **smaller for slope model**, model fits better to data
- * Any model with more parameters will fit the data better
- ★ SSR and deviance will always decrease as more predictors added to the model
- ★ Worthless predictors will still decrease the SSR and deviance

Information Criteria

- ★ To guard against adding potentially worthless predictors, the deviance is "penalized"
- ★ Penalized indexes are known generally as information criteria (IC)

- ★ Smaller IC values indicate better fit
 - ✓ Penalty term is always non-negative
 - ✓ Increases as parameters are added to the model

- ★ Two popular IC are AIC and BIC
 - ✓ Akaike information criteria (Akaike, 1973, 1974, 1981)
 - ✓ Schwartz's Bayesian information criteria (Schwartz, 1978)

$$AIC = deviance + 2 \cdot K$$

$$BIC = deviance + K \ln(N)$$

K is the number of estimated parameters in the model

- ★ Debate about which IC should be used in practice
 - ✓ Each has advantages, depending on goals of analysis
 - √ Within this course the use of AIC is emphasized

Likelihood Ratio Test

- ★ Statistical test based on the deviance for comparing two nested models
 - ✓ Models are nested when parameters in more complex model, referred to as full model, can be set equal to 0 to obtain reduced model
 - ✓ Intercept-only model (reduced model) is nested in the slope model (full model)
- ★ Test statistic: difference in deviances between full and reduced models
 - ✓ Distributed as chi-squared, with *df* equal to the difference in the number of parameters

$$\chi^2 = \text{deviance}_R - \text{deviance}_F$$

- \star Larger values of χ^2 indicate better fit
 - √ Parallels to AIC (discussed in future notes)

ML Standard Errors

- ★ Emphasis has been on computing ML point estimates via minimum deviance
- ★ Sampling fluctuation suggests uncertainty about every part of any analysis
 - ✓ Uncertainty in point estimates indexed by the standard error (SE)
 - ✓ Precision refers to extent of uncertainty indexed by SE
- ★ Precision is numerically indexed in many ways
 - ✓ Compute **ratio of estimate to its estimated SE** (i.e., t-ratio)

$$t = \frac{\hat{\beta}_k}{\hat{SE}_{\hat{\beta}_k}}$$

- ***** Absolute values of $t \approx 0$ indicate relatively low precision
 - √ High precision is desirable
- ★ t-ratio is a type of standardized effect
 - ✓ Use of t as a relative measure (without cutoffs or statistical tests) is emphasized
- ★ Precision is can also be numerically indexed using a CI
 - ✓ CI for fixed effect

$$\hat{\beta}_k \pm 2 \cdot \hat{SE}_{\hat{\beta}_k}$$

★ Interval offers applied researchers plausible estimates of the parameter values

- ★ Size of an SE is determined by curvature of the deviance function
 - ✓ Relatively **flat** deviance functions indicate **low precision** (i.e., greater uncertainty)
 - ✓ Relatively high curvature indicates high precision

