SFU

Fast Learning of Relational Dependency Networks

Relational Dependency Networks

- Structure: Directed graph,
 cycles are allowed.
- Parents of Node =
 Markov Blanket of Node.
- Parameter =
 distribution of child given
 parents.
- Accommodates relational autocorrelations.

Overview

Task: learn relational dependency network structure + parameters

our new

approach

previous approaches

single generative model

fast learning Bayesian network
e.g., 1 min for 1M records.

new closed-form transformation method

Convert Bayesian network to Relational Dependency Network multiple discriminative models independently learned (one for each predicate)

From BN Structure To DN Structure

- Solid arrows = Bayesian Network
- Solid + dash arrows = Dependency Network

Heckerman, D.; Chickering, D. M.; Meek, C.; Rounthwaite, R.; Kadie, C. & Kaelbling, P. (2000), 'Dependency Networks for Inference, Collaborative Filtering, and Data Visualization', *Journal of Machine Learning Research* 1, 49—75.

From BN Parameters to DN Parameters

- Log-linear model for probability of target instance given its Markov blanket.
- Example: Predict the gender of Sam, given that
 - 40% of Sam's friends are Women, and
 - Sam is a coffee drinker.

DN Parameter

$$P(\text{target} = \text{value} \mid \text{Markov blanket}) \propto \exp \left\{ \sum_{\text{target instance} + \text{children}} \sum_{\text{parent values PV, child values CV}} \ln(P(\text{CV} \mid \text{PV})) \cdot \text{frequency}(\text{CV,PV}) \right\}$$

BN Parameter Markov Blanket

Example

- Predict the gender of Sam, given that
 - 40% of Sam's friends are Women, and
 - Sam is a coffee drinker:

Child Value	Parent State	СР	log(CP)	Rel. Freq.	log(CP) * Freq.
g(sam) = W	g(B) = W, F(sam, B) = T	0.55	-0.60	0.40	-0.24
g(sam) = W	g(B) = M, F(sam, B) = T	0.37	-0.99	0.60	-0.60
cd(sam) = T	g(sam) = W	0.80	-0.22	1.00	-0.22
cd(sam) = F	g(sam) = W	0.20	-1.61	0.00	0.00
Sum { EXP(Sur	-1.06				

$$P(g(A) = W | g(B) = W, F(A,B) = T) = 0.55$$

$$P(g(A) = M | g(B) = M, F(A,B) = T) = 0.63$$

$$P(cd(A) = T|g(A) = M) = 0.6$$

$$P(cd(A) = T|g(A) = W) = 0.8$$

Evaluation Metrics

- Running time
- Conditional Log Likelihood (CLL)
 - How confident we are with the prediction
- Area Under Precision-Recall Curve (PR)
 - For skewed distributions.
- Results are averaged over 5-fold cross-validation, over all two-class predicates in the dataset.
- Comparison Methods: <u>RDN-Boost</u>, <u>MLN-Boost</u>.

Natarajan, S.; Khot, T.; Kersting, K.; Gutmann, B. & Shavlik, J. W. (2012), 'Gradient-based boosting for statistical relational learning: The relational dependency network case', *Machine Learning* 86(1), 25-56.

Accuracy Comparison

Learning Time Comparison

Dataset	# Predicates	# tuples	RDN_Boost	MLN Boost	RDN Baves
uw	14	612	15±0.3		
Mondial	18	870	27±0.9	42±1.0	102±6.9
Hepatitis	19	11,316	251±5.3	230±2.0	286±2.9
Mutagenesis	11	24,326	118±6.3	49±1.3	1±0.0
MovieLens(0.1M)	7	83,402	44±4.5 min	31±1.87 min	1±0.0
MovieLens(1M)	7	1,010,051	>24 hours	>24 hours	10±0.1

- Standard deviations are shown.
- Units are *seconds* unless otherwise stated.

RDN-Bayes uses more relevant predicates and more first-order variables

• Our best predicate for each database:

	Target	# extra predicate	# extra first order	
Database	Predicate	S	variables	CLL-diff
Mondial	religion	11	1	0.58
IMDB	gender	6	2	0.30
UW-CSE	student	4	1	0.50
Hepatitis	sex	4	2	0.20
Mutagenesis	ind1	5	1	0.56
MovieLens	gender	1	1	0.26

Structure Comparison Example IMDB

Conclusions

- Basic Idea: convert Bayesian networks to relational dependency networks.
 - \triangleright fast BN learning \Rightarrow fast DN learning.
 - ➤ dependency networks ⇒ inference with cyclic dependencies/autocorrelations.
- New log-linear model for converting BN parameters to DN parameters.
 - I.e., define probability of a node given Markov blanket, Bayes net model.
- Empirical evaluation
 - Scales very well with number of records.
 - Competitive accuracy with functional gradient boosting.

There's More

- Empirical Comparisons
 - counts instead of frequencies
 - weight learning
 - more on MLN-Boost
- Theorems about dependency network consistency

The End

• Any questions?

