Package 'L2E'

October 12, 2022
Type Package
Title Robust Structured Regression via the L2 Criterion
Version 2.0
Description An implementation of a computational framework for performing robust structured regression with the L2 criterion from Chi and Chi (2021+). Improvements using the majorization-minimization (MM) principle from Liu, Chi, and Lange (2022+) added in Version 2.0.
Maintainer Jocelyn Chi < jocetchi@gmail.com>
Depends R ($>= 3.5.0$), osqp
Imports isotone, cobs, nevreg, Matrix, signal, robustbase
Suggests knitr, rmarkdown, ggplot2, latex2exp
VignetteBuilder knitr
License GPL ($>= 2$)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
NeedsCompilation no
Author Xiaoqian Liu [aut, ctb], Jocelyn Chi [aut, cre], Lisa Lin [ctb], Kenneth Lange [aut], Eric Chi [aut]
Repository CRAN
Date/Publication 2022-09-08 21:13:00 UTC
R topics documented:
CV_L2E_sparse_dist

2 bank

bank	Bank data														
Index															44
	update_tau_R	• •	• •	•	 	•	 •	 •	 •	 •	 •	•	•		43
	update_eta_bktk														42
	update_beta_TF_lasso													٠.	42
	update_beta_sparse_ncv														41
	update_beta_qr											•		٠.	40
	update_beta_MM_TF											•			40
	update_beta_MM_sparse											•			39
	update_beta_MM_ls														
	update_beta_MM_isotonic														37
	update_beta_MM_convex														37
	update_beta_isotonic														36
	update_beta_convex				 										36
	objective_tau				 										35
	objective				 										35
	myGetDkn				 										34
	L2E_TF_lasso				 										32
	L2E_TF_dist														31
	L2E_sparse_ncv														29
	L2E_sparse_dist														28
	12e_regression_TF_lasso														27
	12e_regression_TF_dist														26
	12e_regression_sparse_ncv														25
	12e_regression_sparse_dist														24
	12e_regression_MM														23
	12e_regression_isotonic_MM														21
	12e_regression_isotonic									•	 •	•		• •	20
	12e_regression_convex_MM									•	 •	•		• •	18
	12e_regression											•		• •	17
	L2E_multivariate														14 16
	L2E_isotonic														13
	L2E_convex								•	 ٠	 ٠	•		٠.	11
	L2E				 				 •		 •	•			11
	CV_L2E_TF_lasso				 						 •	•			9
	CV_L2E_TF_dist				 										
	CV_L2E_sparse_ncv			•	 	•	 •	 •			 ٠				5

Description

Data from an Italian bank on 1,949 customers. The response y is the amount of money made over a year. The 13 covariates are possible macroservices the customers can sign up for.

CV_L2E_sparse_dist 3

Format

A data frame with 1949 rows and 14 variables

References

Marco Riani, Andrea Cerioli, and Anthony C. Atkinson (2014). Monitoring robust regression. Electronic Journal of Statistics, Volume 8, 646-677.

CV_L2E_sparse_dist

Cross validation for L2E sparse regression with distance penalization

Description

 ${\tt CV_L2E_sparse_dist\ performs\ k-fold\ cross-validation\ for\ robust\ sparse\ regression\ under\ the\ L2\ criterion\ with\ distance\ penalty}$

Usage

```
CV_L2E_sparse_dist(
   y,
   X,
   beta0,
   tau0,
   kSeq,
   rhoSeq,
   nfolds = 5,
   seed = 1234,
   method = "median",
   max_iter = 100,
   tol = 1e-04,
   trace = TRUE
)
```

У	Response vector
Χ	Design matrix
beta0	Initial vector of regression coefficients, can be omitted
tau0	Initial precision estimate, can be omitted
kSeq	A sequence of tuning parameter k , the number of nonzero entries in the estimated coefficients
rhoSeq	A sequence of tuning parameter rho, can be omitted
nfolds	The number of cross-validation folds. Default is 5.
seed	Users can set the seed of the random number generator to obtain reproducible results.

method Median or mean to compute the objective

max_iter Maximum number of iterations

tol Relative tolerance

trace Whether to trace the progress of the cross-validation

Value

Returns a list object containing the mean and standard error of the cross-validation error (vectors) – CVE and CVSE – for each value of k, the index of the k value with the minimum CVE and the k value itself (scalars), the index of the k value with the 1SE CVE and the k value itself (scalars), the sequence of rho and k used in the regression (vectors), and a vector listing which fold each element of y was assigned to

```
## Completes in 15 seconds
set.seed(12345)
n <- 100
tau <- 1
f <- matrix(c(rep(2,5), rep(0,45)), ncol = 1)
X \leftarrow X0 \leftarrow matrix(rnorm(n*50), nrow = n)
y \leftarrow y0 \leftarrow X0 \% \% f + (1/tau) * rnorm(n)
## Clean Data
k < -c(6,5,4)
# (not run)
# cv <- CV_L2E_sparse_dist(y=y, X=X, kSeq=k, nfolds=2, seed=1234)
# (k_min <- cv$k.min) ## selected number of nonzero entries</pre>
# sol <- L2E_sparse_dist(y=y, X=X, kSeq=k_min)</pre>
# r <- y - X %*% sol$Beta
# ix <- which(abs(r) > 3/sol$Tau)
# l2e_fit <- X %*% sol$Beta
# plot(y, l2e_fit, ylab='Predicted values', pch=16, cex=0.8)
# points(y[ix], 12e_fit[ix], pch=16, col='blue', cex=0.8)
## Contaminated Data
i <- 1:5
y[i] <- 2 + y0[i]
X[i,] <- 2 + X0[i,]
# (not run)
# cv <- CV_L2E_sparse_dist(y=y, X=X, kSeq=k, nfolds=2, seed=1234)</pre>
# (k_min <- cv$k.min) ## selected number of nonzero entries</pre>
# sol <- L2E_sparse_dist(y=y, X=X, kSeq=k_min)</pre>
# r <- y - X %*% sol$Beta
# ix <- which(abs(r) > 3/sol$Tau)
# 12e_fit <- X %*% sol$Beta
```

CV_L2E_sparse_ncv 5

```
# plot(y, l2e_fit, ylab='Predicted values', pch=16, cex=0.8)
# points(y[ix], l2e_fit[ix], pch=16, col='blue', cex=0.8)
```

CV_L2E_sparse_ncv

Cross validation for L2E sparse regression with existing penalization methods

Description

CV_L2E_sparse_ncv performs k-fold cross-validation for robust sparse regression under the L2 criterion. Available penalties include lasso, MCP and SCAD.

Usage

```
CV_L2E_sparse_ncv(
   y,
   X,
   beta0,
   tau0,
   lambdaSeq,
   penalty = "MCP",
   nfolds = 5,
   seed = 1234,
   method = "median",
   max_iter = 100,
   tol = 1e-04,
   trace = TRUE
)
```

У	Response vector
Χ	Design matrix
beta0	Initial vector of regression coefficients, can be omitted
tau0	Initial precision estimate, can be omitted
lambdaSeq	A decreasing sequence of tuning parameter lambda, can be omitted
penalty	Available penalties include lasso, MCP and SCAD.
nfolds	The number of cross-validation folds. Default is 5.
seed	Users can set the seed of the random number generator to obtain reproducible results.
method	Median or mean to compute the objective
max_iter	Maximum number of iterations
tol	Relative tolerance
trace	Whether to trace the progress of the cross-validation

Value

Returns a list object containing the mean and standard error of the cross-validation error - CVE and CVSE - for each value of k (vectors), the index of the lambda with the minimum CVE and the lambda value itself (scalars), the index of the lambda value with the 1SE CVE and the lambda value itself (scalars), the sequence of lambda used in the regression (vector), and a vector listing which fold each element of y was assigned to

```
## Completes in 20 seconds
set.seed(12345)
n <- 100
tau <- 1
f \leftarrow matrix(c(rep(2,5), rep(0,45)), ncol = 1)
X \leftarrow X0 \leftarrow matrix(rnorm(n*50), nrow = n)
y \leftarrow y0 \leftarrow X0 % f + (1/tau) * rnorm(n)
## Clean Data
lambda \leftarrow 10^seq(-1, -2, length.out=20)
# (not run)
# cv <- CV_L2E_sparse_ncv(y=y, X=X, lambdaSeq=lambda, penalty="SCAD", seed=1234, nfolds=2)
# (lambda_min <- cv$lambda.min)</pre>
# sol <- L2E_sparse_ncv(y=y, X=X, lambdaSeq=lambda_min, penalty="SCAD")</pre>
# r <- y - X %*% sol$Beta
# ix <- which(abs(r) > 3/sol$Tau)
# 12e_fit <- X %*% sol$Beta
# plot(y, 12e_fit, ylab='Predicted values', pch=16, cex=0.8)
# points(y[ix], 12e_fit[ix], pch=16, col='blue', cex=0.8)
## Contaminated Data
i <- 1:5
y[i] <- 2 + y0[i]
X[i,] <- 2 + X0[i,]
# (not run)
# cv <- CV_L2E_sparse_ncv(y=y, X=X, lambdaSeq=lambda, penalty="SCAD", seed=1234, nfolds=2)
# (lambda_min <- cv$lambda.min)</pre>
# sol <- L2E_sparse_ncv(y=y, X=X, lambdaSeq=lambda_min, penalty="SCAD")</pre>
# r <- y - X %*% sol$Beta
# ix <- which(abs(r) > 3/sol$Tau)
# 12e_fit <- X %*% sol$Beta
# plot(y, l2e_fit, ylab='Predicted values', pch=16, cex=0.8)
# points(y[ix], 12e_fit[ix], pch=16, col='blue', cex=0.8)
```

CV_L2E_TF_dist 7

CV_L2E_TF_dist Cross validation for L2E trend filtering regression with distance penalization	CV_L2E_TF_dist	Cross validation for L2E trend filtering regression with distance penalization
---	----------------	--

Description

 ${\tt CV_L2E_TF_dist}\ performs\ k-fold\ cross-validation\ for\ robust\ trend\ filtering\ regression\ under\ the\ L2$ criterion with distance penalty

Usage

```
CV_L2E_TF_dist(
   y,
   X,
   beta0,
   tau0,
   D,
   kSeq,
   rhoSeq,
   nfolds = 5,
   seed = 1234,
   method = "median",
   max_iter = 100,
   tol = 1e-04,
   trace = TRUE
)
```

у	Response vector
Χ	Design matrix. Default is the identity matrix.
beta0	Initial vector of regression coefficients, can be omitted
tau0	Initial precision estimate, can be omitted
D	The fusion matrix
kSeq	A sequence of tuning parameter k, the number of nonzero entries in Dbeta
rhoSeq	A sequence of tuning parameter rho, can be omitted
nfolds	The number of cross-validation folds. Default is 5.
seed	Users can set the seed of the random number generator to obtain reproducible results.
method	Median or mean to calculate the objective value
max_iter	Maximum number of iterations
tol	Relative tolerance
trace	Whether to trace the progress of the cross-validation

8 CV_L2E_TF_dist

Value

Returns a list object containing the mean and standard error of the cross-validation error – CVE and CVSE – for each value of k (vectors), the index of the k value with the minimum CVE and the k value itself (scalars), the index of the k value with the 1SE CVE and the k value itself (scalars), the sequence of rho and k used in the regression (vectors), and a vector listing which fold each element of y was assigned to

```
## Completes in 20 seconds
set.seed(12345)
n <- 100
x < -1:n
f <- matrix(rep(c(-2,5,0,-10), each=n/4), ncol=1)
y \leftarrow y0 \leftarrow f + rnorm(length(f))
## Clean Data
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
D <- myGetDkn(1, n)
k < -c(4,3,2)
rho <- 10^8
# (not run)
# cv <- CV_L2E_TF_dist(y=y0, D=D, kSeq=k, rhoSeq=rho, nfolds=2, seed=1234)
# (k_min <- cv$k.min)
# sol <- L2E_TF_dist(y=y0, D=D, kSeq=k_min, rhoSeq=rho)</pre>
# plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
# lines(x, f, lwd=3)
# lines(x, sol$Beta, col='blue', lwd=3)
## Contaminated Data
ix <- sample(1:n, 10)</pre>
y[ix] <- y0[ix] + 2
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
# (not run)
# cv <- CV_L2E_TF_dist(y=y, D=D, kSeq=k, rhoSeq=rho, nfolds=2, seed=1234)
# (k_min <- cv$k.min)
# sol <- L2E_TF_dist(y=y, D=D, kSeq=k_min, rhoSeq=rho)
# plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
# lines(x, f, lwd=3)
# lines(x, sol$Beta, col='blue', lwd=3)
```

CV_L2E_TF_lasso 9

CV_L2E_TF_lasso Cross validation for L2E trend filtering regression with Lasso penalization

Description

 $\mbox{CV_L2E_TF_lasso}$ performs k-fold cross-validation for robust trend filtering regression under the L2 criterion with the Lasso penalty

Usage

```
CV_L2E_TF_lasso(
   y,
   X,
   beta0,
   tau0,
   D,
   lambdaSeq,
   nfolds = 5,
   seed = 1234,
   method = "median",
   max_iter = 100,
   tol = 1e-04,
   trace = TRUE
)
```

У	Response vector
Χ	Design matrix. Default is the identity matrix.
beta0	Initial vector of regression coefficients, can be omitted
tau0	Initial precision estimate, can be omitted
D	The fusion matrix
lambdaSeq	A decreasing sequence of tuning parameter lambda, can be omitted
nfolds	The number of cross-validation folds. Default is 5.
seed	Users can set the seed of the random number generator to obtain reproducible results.
method	Median or mean to calculate the objective value
max_iter	Maximum number of iterations
tol	Relative tolerance
trace	Whether to trace the progress of the cross-validation

10 CV_L2E_TF_lasso

Value

Returns a list object containing the mean and standard error of the cross-validation error – CVE and CVSE – for each value of k (vectors), the index of the lambda with the minimum CVE and the lambda value itself (scalars), the index of the lambda value with the 1SE CVE and the lambda value itself (scalars), the sequence of lambda used in the regression (vector), and a vector listing which fold each element of y was assigned to

```
## Completes in 30 seconds
set.seed(12345)
n <- 100
x <- 1:n
f <- matrix(rep(c(-2,5,0,-10), each=n/4), ncol=1)
y \leftarrow y0 \leftarrow f + rnorm(length(f))
## Clean Data
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
D <- myGetDkn(1, n)
lambda <- 10^seq(-1, -2, length.out=20)</pre>
# (not run)
# cv <- CV_L2E_TF_lasso(y=y0, D=D, lambdaSeq=lambda, nfolds=2, seed=1234)</pre>
# (lambda_min <- cv$lambda.min)</pre>
# sol <- L2E_TF_lasso(y=y0, D=D, lambdaSeq=lambda_min)</pre>
# plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
# lines(x, f, lwd=3)
# lines(x, sol$Beta, col='blue', lwd=3)
## Contaminated Data
ix <- sample(1:n, 10)</pre>
y[ix] <- y0[ix] + 2
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
# (not run)
# cv <- CV_L2E_TF_lasso(y=y, D=D, lambdaSeq=lambda, nfolds=2, seed=1234)</pre>
# (lambda_min <- cv$lambda.min)</pre>
# sol <- L2E_TF_lasso(y=y, D=D, lambdaSeq=lambda_min)</pre>
# plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
# lines(x, f, lwd=3)
# lines(x, sol$Beta, col='blue', lwd=3)
```

L2E 11

L2E L2E

Description

The L2E package is an R implementation of a user-friendly computational framework for performing a wide variety of robust structured regression methods via the L2 criterion.

Details

Please refer to the vignette for examples of how to use this package.

Description

L2E_convex performs convex regression under the L2 criterion. Available methods include proximal gradient descent (PG) and majorization-minimization (MM).

Usage

```
L2E_convex(
   y,
   beta,
   tau,
   method = "MM",
   max_iter = 100,
   tol = 1e-04,
   Show.Time = TRUE
)
```

У	Response vector
beta	Initial vector of regression coefficients
tau	Initial precision estimate
method	Available methods include PG and MM. MM by default.
max_iter	Maximum number of iterations
tol	Relative tolerance
Show.Time	Report the computing time

12 L2E_convex

Value

Returns a list object containing the estimates for beta (vector) and tau (scalar), the number of outer block descent iterations until convergence (scalar), and the number of inner iterations per outer iteration for updating beta (vector) and tau or eta (vector)

```
set.seed(12345)
n <- 200
tau <- 1
x \leftarrow seq(-2, 2, length.out=n)
f <- x^4 + x
y \leftarrow f + (1/tau) * rnorm(n)
## Clean Data
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
tau <- 1
b <- y
## Least Squares method
cvx <- fitted(cobs::conreg(y, convex=TRUE))</pre>
## MM method
sol_mm <- L2E_convex(y, b, tau)</pre>
## PG method
sol_pg <- L2E_convex(y, b, tau, method='PG')</pre>
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
lines(x, cvx, col='blue', lwd=3) ## LS
lines(x, sol_mm$beta, col='red', lwd=3) ## MM
lines(x, sol_pg$beta, col='dark green', lwd=3) ## PG
## Contaminated Data
ix <- 0:9
y[45 + ix] < -14 + rnorm(10)
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
tau <- 1
b <- y
cvx <- fitted(cobs::conreg(y, convex=TRUE))</pre>
sol_mm <- L2E_convex(y, b, tau)</pre>
sol_pg <- L2E_convex(y, b, tau, method='PG')</pre>
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
lines(x, cvx, col='blue', lwd=3) ## LS
lines(x, sol_mm$beta, col='red', lwd=3) ## MM
lines(x, sol_pg$beta, col='dark green', lwd=3) ## PG
```

L2E_isotonic 13

105	100.	•
L2E_isotonic	L2E isotonic r	pare ccion
LZL_I30 tonic	LL isolonic i	CEICSSION

Description

L2E_isotonic performs isotonic regression under the L2 criterion. Available methods include proximal gradient descent (PG) and majorization-minimization (MM).

Usage

```
L2E_isotonic(
  y,
  beta,
  tau,
  method = "MM",
  max_iter = 100,
  tol = 1e-04,
  Show.Time = TRUE
)
```

Arguments

У	Response vector
beta	Initial vector of regression coefficients
tau	Initial precision estimate
method	Available methods include PG and MM. MM by default.
max_iter	Maximum number of iterations
tol	Relative tolerance
Show.Time	Report the computing time

Value

Returns a list object containing the estimates for beta (vector) and tau (scalar), the number of outer block descent iterations until convergence (scalar), and the number of inner iterations per outer iteration for updating beta (vector) and tau or eta (vector)

```
set.seed(12345)
n <- 200
tau <- 1
x <- seq(-2.5, 2.5, length.out=n)
f <- x^3
y <- f + (1/tau) * rnorm(n)
## Clean Data</pre>
```

14 L2E_multivariate

```
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
tau <- 1
b <- y
## Least Squares method
iso <- isotone::gpava(1:n, y)$x</pre>
## MM method
sol_mm <- L2E_isotonic(y, b, tau)</pre>
## PG method
sol_pg <- L2E_isotonic(y, b, tau, method='PG')</pre>
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
lines(x, iso, col='blue', lwd=3) ## LS
lines(x, sol_mm$beta, col='red', lwd=3) ## MM
lines(x, sol_pg$beta, col='dark green', lwd=3) ## PG
## Contaminated Data
ix <- 0:9
y[45 + ix] < -14 + rnorm(10)
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
tau <- 1
b <- y
iso <- isotone::gpava(1:n, y)$x</pre>
sol_mm <- L2E_isotonic(y, b, tau)</pre>
sol_pg <- L2E_isotonic(y, b, tau, method='PG')</pre>
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
lines(x, iso, col='blue', lwd=3) ## LS
lines(x, sol_mm$beta, col='red', lwd=3) ## MM
lines(x, sol_pg$beta, col='dark green', lwd=3) ## PG
```

L2E_multivariate

L2E multivariate regression

Description

Usage

```
L2E_multivariate(
y,
```

L2E_multivariate 15

```
X,
beta,
tau,
method = "MM",
max_iter = 100,
tol = 1e-04,
Show.Time = TRUE
```

Arguments

y Response vector
X Design matrix

beta Initial vector of regression coefficients

tau Initial precision estimate

method Available methods include PG and MM. MM by default.

max_iter Maximum number of iterations

tol Relative tolerance

Show. Time Report the computing time

Value

Returns a list object containing the estimates for beta (vector) and tau (scalar), the number of outer block descent iterations until convergence (scalar), and the number of inner iterations per outer iteration for updating beta (vector) and tau or eta (vector)

```
# Bank data example
y <- bank$y
X <- as.matrix(bank[,1:13])</pre>
X0 <- as.matrix(cbind(rep(1,length(y)), X))</pre>
tau <- 1/mad(y)
b <- matrix(0, 14, 1)
# MM method
sol_mm <- L2E_multivariate(y, X0, b, tau)</pre>
r_mm <- y - X0 %*% sol_mm$beta
ix_mm <- which(abs(r_mm) > 3/sol_mm$tau)
12e\_fit\_mm <- X0 %*% sol\_mm$beta
# PG method
sol_pg <- L2E_multivariate(y, X0, b, tau, method="PG")</pre>
r_pg <- y - X0 %*% sol_pg$beta
ix_pg <- which(abs(r_pg) > 3/sol_pg$tau)
l2e_fit_pg <- X0 %*% sol_pg$beta</pre>
plot(y, 12e_fit_mm, ylab='Predicted values', main='MM', pch=16, cex=0.8) # MM
```

12e_regression

```
points(y[ix_mm], l2e_fit_mm[ix_mm], pch=16, col='blue', cex=0.8) # MM
plot(y, l2e_fit_pg, ylab='Predicted values', main='PG', pch=16, cex=0.8) # PG
points(y[ix_pg], l2e_fit_pg[ix_pg], pch=16, col='blue', cex=0.8) # PG
```

12e_regression

L2E multivariate regression - PG

Description

12e_regression performs L2E multivariate regression via block coordinate descent with proximal gradient for updating both beta and tau.

Usage

```
12e_regression(y, X, b, tau, max_iter = 100, tol = 1e-04, Show.Time = TRUE)
```

Arguments

У	Response vector
Χ	Design matrix

b Initial vector of regression coefficients

tau Initial precision estimate

max_iter Maximum number of iterations

tol Relative tolerance

Show. Time Report the computing time

Value

Returns a list object containing the estimates for beta (vector) and tau (scalar), the number of outer block descent iterations until convergence (scalar), and the number of inner iterations per outer iteration for updating beta and tau (vectors)

```
# Bank data example
y <- bank$y
X <- as.matrix(bank[,1:13])
X0 <- as.matrix(cbind(rep(1,length(y)), X))
tauinit <- 1/mad(y)
binit <- matrix(0, 14, 1)

sol <- l2e_regression(y, X0, binit, tauinit)
r <- y - X0 %*% sol$beta
ix <- which(abs(r) > 3/sol$tau)
l2e_fit <- X0 %*% sol$beta</pre>
```

12e_regression_convex 17

```
plot(y, 12e_fit, ylab='Predicted values', pch=16, cex=0.8)
points(y[ix], 12e_fit[ix], pch=16, col='blue', cex=0.8)
```

 $12e_regression_convex$ L2E convex regression - PG

Description

12e_regression_convex performs L2E convex regression via block coordinate descent with proximal gradient for updating both beta and tau.

Usage

```
12e_regression_convex(y, b, tau, max_iter = 100, tol = 1e-04, Show.Time = TRUE)
```

Arguments

У	Response vector
b	Initial vector of regression coefficients
tau	Initial precision estimate
max_iter	Maximum number of iterations
tol	Relative tolerance
Show.Time	Report the computing time

Value

Returns a list object containing the estimates for beta (vector) and tau (scalar), the number of outer block descent iterations until convergence (scalar), and the number of inner iterations per outer iteration for updating beta and tau (vectors)

```
set.seed(12345)
n <- 200
tau <- 1
x <- seq(-2, 2, length.out=n)
f <- x^4 + x
y <- f + (1/tau) * rnorm(n)

## Clean data example
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)

tau <- 1
b <- y
sol <- 12e_regression_convex(y, b, tau)</pre>
```

```
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
cvx <- fitted(cobs::conreg(y, convex=TRUE))</pre>
lines(x, cvx, col='blue', lwd=3)
lines(x, sol$beta, col='dark green', lwd=3)
## Contaminated data example
ix <- 0:9
y[45 + ix] < -14 + rnorm(10)
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
tau <- 1
b <- y
sol <- 12e_regression_convex(y, b, tau)</pre>
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
cvx <- fitted(cobs::conreg(y, convex=TRUE))</pre>
lines(x, cvx, col='blue', lwd=3)
lines(x, sol$beta, col='dark green', lwd=3)
```

12e_regression_convex_MM

L2E convex regression - MM

Description

 $12e_regression_convex_MM$ performs L2E convex regression via block coordinate descent with MM for updating beta and modified Newton for updating tau.

Usage

```
12e_regression_convex_MM(
   y,
   beta,
   tau,
   max_iter = 100,
   tol = 1e-04,
   Show.Time = TRUE
)
```

Arguments

y response beta initial vector of regression coefficients tau initial precision estimate
max_iter maximum number of iterations
tol relative tolerance
Show.Time Report the computing time

Value

Returns a list object containing the estimates for beta (vector) and tau (scalar), the number of outer block descent iterations until convergence (scalar), and the number of inner iterations per outer iteration for updating beta and eta (vectors)

```
set.seed(12345)
n <- 200
tau <- 1
x \leftarrow seq(-2, 2, length.out=n)
f < - x^4 + x
y \leftarrow f + (1/tau)*rnorm(n)
## Clean
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
tau <- 1
b <- y
sol <- l2e_regression_convex_MM(y, b, tau)</pre>
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
cvx <- fitted(cobs::conreg(y, convex=TRUE))</pre>
lines(x, cvx, col='blue', lwd=3)
lines(x, sol$beta, col='red', lwd=3)
## Contaminated
ix <- 0:9
y[45 + ix] < -14 + rnorm(10)
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
tau <- 1
b <- y
sol <- 12e_regression_convex_MM(y, b, tau)</pre>
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
cvx <- fitted(cobs::conreg(y, convex=TRUE))</pre>
lines(x, cvx, col='blue', lwd=3)
lines(x, sol$beta, col='red', lwd=3)
```

```
12e_regression_isotonic
```

L2E isotonic regression - PG

Description

12e_regression_isotonic performs L2E isotonic regression via block coordinate descent with proximal gradient for updating both beta and tau.

Usage

```
l2e_regression_isotonic(
  y,
  b,
  tau,
  max_iter = 100,
  tol = 1e-04,
  Show.Time = TRUE
)
```

Arguments

У	Response vector
b	Initial vector of regression coefficients
tau	Initial precision estimate
max_iter	Maximum number of iterations
tol	Relative tolerance
Show.Time	Report the computing time

Value

Returns a list object containing the estimates for beta (vector) and tau (scalar), the number of outer block descent iterations until convergence (scalar), and the number of inner iterations per outer iteration for updating beta and tau (vectors)

```
set.seed(12345)
n <- 200
tau <- 1
x <- seq(-2.5, 2.5, length.out=n)
f <- x^3
y <- f + (1/tau)*rnorm(n)
# Clean Data
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')</pre>
```

```
lines(x, f, lwd=3)
tau <- 1
b <- y
sol <- 12e_regression_isotonic(y, b, tau)</pre>
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
iso <- isotone::gpava(1:n, y)$x</pre>
lines(x, iso, col='blue', lwd=3)
lines(x, sol$beta, col='dark green', lwd=3)
# Contaminated Data
ix <- 0:9
y[45 + ix] < -14 + rnorm(10)
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
tau <- 1
b <- y
sol <- 12e_regression_isotonic(y, b, tau)</pre>
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
iso <- isotone::gpava(1:n, y)$x</pre>
lines(x, iso, col='blue', lwd=3)
lines(x, sol$beta, col='dark green', lwd=3)
```

12e_regression_isotonic_MM

L2E isotonic regression - MM

Description

12e_regression_isotonic_MM performs L2E isotonic regression via block coordinate descent with MM for updating beta and modified Newton for updating tau.

Usage

```
12e_regression_isotonic_MM(
   y,
   beta,
   tau,
   max_iter = 100,
   tol = 1e-04,
   Show.Time = TRUE
)
```

Arguments

У	Response vector
beta	Initial vector of regression coefficients
tau	Initial precision estimate
max_iter	Maximum number of iterations
tol	Relative tolerance
Show.Time	Report the computing time

Value

Returns a list object containing the estimates for beta (vector) and tau (scalar), the number of outer block descent iterations until convergence (scalar), and the number of inner iterations per outer iteration for updating beta and eta (vectors)

```
set.seed(12345)
n <- 200
tau <- 1
x \leftarrow seq(-2.5, 2.5, length.out=n)
f < - x^3
y \leftarrow f + (1/tau)*rnorm(n)
## Clean
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
tau <- 1
b <- y
sol <- l2e_regression_isotonic_MM(y, b, tau)</pre>
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
iso <- isotone::gpava(1:n, y)$x</pre>
lines(x, iso, col='blue', lwd=3)
lines(x,sol$beta,col='red',lwd=3)
## Contaminated
ix <- 0:9
y[45 + ix] < -14 + rnorm(10)
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
tau <- 1
b <- y
sol <- 12e_regression_isotonic_MM(y,b,tau)</pre>
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
```

12e_regression_MM 23

```
iso <- isotone::gpava(1:n, y)$x
lines(x, iso, col='blue', lwd=3)
lines(x,sol$beta,col='red',lwd=3)</pre>
```

12e_regression_MM

L2E multivariate regression - MM

Description

12e_regression_MM performs L2E multivariate regression via block coordinate descent with MM for updating beta and modified Newton for updating tau.

Usage

```
l2e_regression_MM(
   y,
   X,
   beta,
   tau,
   max_iter = 100,
   tol = 1e-04,
   Show.Time = TRUE
)
```

Arguments

y response
X Design matrix

beta initial vector of regression coefficients

tau initial precision estimate

max_iter maximum number of iterations

tol relative tolerance

Show. Time Report the computing time

Value

Returns a list object containing the estimates for beta (vector) and tau (scalar), the number of outer block descent iterations until convergence (scalar), and the number of inner iterations per outer iteration for updating beta and eta (vectors)

Examples

```
# Bank data example
y <- bank$y
X <- as.matrix(bank[,1:13])
X0 <- as.matrix(cbind(rep(1,length(y)), X))
tau <- 1/mad(y)
b <- matrix(0, 14, 1)

sol <- l2e_regression_MM(y, X0, b, tau)
r <- y - X0 %*% sol$beta
ix <- which(abs(r) > 3/sol$tau)
l2e_fit <- X0 %*% sol$beta

plot(y, l2e_fit, ylab='Predicted values', pch=16, cex=0.8)
points(y[ix], l2e_fit[ix], pch=16, col='blue', cex=0.8)</pre>
```

12e_regression_sparse_dist

L2E sparse regression with distance penalization

Description

12e_regression_sparse_dist performs robust sparse regression under the L2 criterion with the distance penalty

Usage

```
l2e_regression_sparse_dist(
   y,
   X,
   beta,
   tau,
   k,
   rho = 1,
   stepsize = 0.9,
   sigma = 0.5,
   max_iter = 100,
   tol = 1e-04,
   Show.Time = TRUE
)
```

Arguments

y Response vector
X Design matrix

beta Initial vector of regression coefficients

tau	Initial	precision	estimate
tau	muna	precision	Cottillate

k The number of nonzero entries in the estimated coefficients

rho The parameter in the proximal distance algorithm stepsize The stepsize parameter for the MM algorithm (0, 1)

sigma The halving parameter sigma (0, 1)
max_iter Maximum number of iterations

tol Relative tolerance

Show. Time Report the computing time

```
12e_regression_sparse_ncv
```

L2E sparse regression with existing penalization methods

Description

12e_regression_sparse_ncv performs robust sparse regression under the L2 criterion. Available penalties include lasso, MCP and SCAD.

Usage

```
12e_regression_sparse_ncv(
   y,
   X,
   beta,
   tau,
   lambda,
   penalty,
   max_iter = 100,
   tol = 1e-04,
   Show.Time = TRUE
)
```

Arguments

y Response vector X Design matrix

beta Initial vector of regression coefficients

tau Initial precision estimate

lambda Tuning parameter

penalty Available penalties include lasso, MCP and SCAD.

max_iter Maximum number of iterations

tol Relative tolerance

Show. Time Report the computing time

```
12e\_regression\_TF\_dist
```

L2E trend filtering regression with distance penalization

Description

 $12e_regression_TF_dist$ performs robust trend filtering regression under the L2 criterion with distance penalty

Usage

```
12e_regression_TF_dist(
   y,
   X,
   beta,
   tau,
   D,
   k,
   rho = 1,
   max_iter = 100,
   tol = 1e-04,
   Show.Time = TRUE
)
```

У	Response vector
X	Design matrix
beta	Initial vector of regression coefficients
tau	Initial precision estimate
D	The fusion matrix
k	The number of nonzero entries in D*beta
rho	The parameter in the proximal distance algorithm
max_iter	Maximum number of iterations
tol	Relative tolerance
Show.Time	Report the computing time
Show.Time	Report the computing time

```
12e_regression_TF_lasso
```

L2E trend filtering regression with Lasso penalization

Description

 $12e_regression_TF_lasso$ performs robust trend filtering regression under the L2 criterion with Lasso penalty

Usage

```
l2e_regression_TF_lasso(
   y,
   X,
   beta,
   tau,
   D,
   lambda = 1,
   max_iter = 100,
   tol = 1e-04,
   Show.Time = TRUE
)
```

У	Response vector
X	Design matrix
beta	Initial vector of regression coefficients
tau	Initial precision estimate
D	The fusion matrix
lambda	The tuning parameter
max_iter	Maximum number of iterations
tol	Relative tolerance
Show.Time	Report the computing time

28 L2E_sparse_dist

L2E_sparse_dist

Solution path of L2E sparse regression with distance penalization

Description

L2E_sparse_dist computes the solution path of the robust sparse regression under the L2 criterion with distance penalty

Usage

```
L2E_sparse_dist(
   y,
   X,
   beta0,
   tau0,
   kSeq,
   rhoSeq,
   stepsize = 0.9,
   sigma = 0.5,
   max_iter = 100,
   tol = 1e-04,
   Show.Time = TRUE
)
```

Arguments

У	Response vector
X	Design matrix
beta0	Initial vector of regression coefficients, can be omitted
tau0	Initial precision estimate, can be omitted
kSeq	A sequence of tuning parameter k, the number of nonzero entries in the estimated coefficients
rhoSeq	An increasing sequence of tuning parameter rho, can be omitted
stepsize	The stepsize parameter for the MM algorithm (0, 1)
sigma	The halving parameter sigma (0, 1)
max_iter	Maximum number of iterations
tol	Relative tolerance
Show.Time	Report the computing time

Value

Returns a list object containing the estimates for beta (matrix) and tau (vector) for each value of the tuning parameter k, the path of estimates for beta (list of matrices) and tau (matrix) for each value of rho, the run time (vector) for each k, and the sequence of rho and k used in the regression (vectors)

L2E_sparse_ncv 29

Examples

```
set.seed(12345)
n <- 100
tau <- 1
f \leftarrow matrix(c(rep(2,5), rep(0,45)), ncol = 1)
X \leftarrow X0 \leftarrow matrix(rnorm(n*50), nrow = n)
y \leftarrow y0 \leftarrow X0 \%\% f + (1/tau)*rnorm(n)
## Clean Data
k <- 5
sol <- L2E_sparse_dist(y=y, X=X, kSeq=k)</pre>
r <- y - X %*% sol$Beta
ix <- which(abs(r) > 3/sol$Tau)
l2e_fit <- X %*% sol$Beta
plot(y, 12e_fit, ylab='Predicted values', pch=16, cex=0.8)
points(y[ix], 12e_fit[ix], pch=16, col='blue', cex=0.8)
## Contaminated Data
i <- 1:5
y[i] <- 2 + y0[i]
X[i,] <- 2 + X0[i,]
sol <- L2E_sparse_dist(y=y, X=X, kSeq=k)</pre>
r <- y - X %*% sol$Beta
ix <- which(abs(r) > 3/sol$Tau)
l2e_fit <- X %*% sol$Beta
plot(y, 12e_fit, ylab='Predicted values', pch=16, cex=0.8)
points(y[ix], 12e_fit[ix], pch=16, col='blue', cex=0.8)
```

L2E_sparse_ncv

Solution path of L2E sparse regression with existing penalization methods

Description

L2E_sparse_ncv computes the solution path of robust sparse regression under the L2 criterion. Available penalties include lasso, MCP and SCAD.

Usage

```
L2E_sparse_ncv(
   y,
   X,
   b,
   tau,
   lambdaSeq,
```

30 L2E_sparse_ncv

```
penalty = "MCP",
  max_iter = 100,
  tol = 1e-04,
  Show.Time = TRUE
)
```

Arguments

У Response vector Χ Design matrix Initial vector of regression coefficients, can be omitted b Initial precision estimate, can be omitted tau A decreasing sequence of values for the tuning parameter lambda, can be omit-1ambdaSeq Available penalties include lasso, MCP and SCAD. penalty max_iter Maximum number of iterations tol Relative tolerance

Value

Show.Time

Returns a list object containing the estimates for beta (matrix) and tau (vector) for each value of the tuning parameter lambda, the run time (vector) for each lambda, and the sequence of lambda used in the regression (vector)

Examples

```
set.seed(12345)
n <- 100
tau <- 1
f <- matrix(c(rep(2,5), rep(0,45)), ncol = 1)
X \leftarrow X0 \leftarrow matrix(rnorm(n*50), nrow = n)
y \leftarrow y0 \leftarrow X0 \% \% f + (1/tau)*rnorm(n)
## Clean Data
lambda <- 10^{(-1)}
sol <- L2E_sparse_ncv(y=y, X=X, lambdaSeq=lambda, penalty="SCAD")</pre>
r <- y - X %*% sol$Beta
ix \leftarrow which(abs(r) > 3/sol$Tau)
l2e_fit <- X %*% sol$Beta
plot(y, 12e_fit, ylab='Predicted values', pch=16, cex=0.8)
points(y[ix], 12e_fit[ix], pch=16, col='blue', cex=0.8)
## Contaminated Data
i <- 1:5
y[i] <- 2 + y0[i]
X[i,] <- 2 + X0[i,]
```

Report the computing time

L2E_TF_dist 31

```
sol <- L2E_sparse_ncv(y=y, X=X, lambdaSeq=lambda, penalty="SCAD")
r <- y - X %*% sol$Beta
ix <- which(abs(r) > 3/sol$Tau)
l2e_fit <- X %*% sol$Beta

plot(y, l2e_fit, ylab='Predicted values', pch=16, cex=0.8)
points(y[ix], l2e_fit[ix], pch=16, col='blue', cex=0.8)</pre>
```

L2E_TF_dist

Solution path of the L2E trend filtering regression with distance penalization

Description

 $L2E_TF_dist$ computes the solution path of the robust trend filtering regression under the L2 criterion with distance penalty

Usage

```
L2E_TF_dist(
   y,
   X,
   beta0,
   tau0,
   D,
   kSeq,
   rhoSeq,
   max_iter = 100,
   tol = 1e-04,
   Show.Time = TRUE
)
```

У	Response vector
X	Design matrix. Default is the identity matrix.
beta0	Initial vector of regression coefficients, can be omitted
tau0	Initial precision estimate, can be omitted
D	The fusion matrix
kSeq	A sequence of tuning parameter k , the number of nonzero entries in D^*beta
rhoSeq	An increasing sequence of tuning parameter rho, can be omitted
max_iter	Maximum number of iterations
tol	Relative tolerance
Show.Time	Report the computing time

32 L2E_TF_lasso

Value

Returns a list object containing the estimates for beta (matrix) and tau (vector) for each value of the tuning parameter k, the path of estimates for beta (list of matrices) and tau (matrix) for each value of rho, the run time (vector) for each k, and the sequence of rho and k used in the regression (vectors)

```
## Completes in 15 seconds
set.seed(12345)
n <- 100
x <- 1:n
f <- matrix(rep(c(-2,5,0,-10), each=n/4), ncol=1)
y \leftarrow y0 \leftarrow f + rnorm(length(f))
## Clean Data
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
D <- myGetDkn(1, n)
k < -c(4,3,2)
rho <- 10^8
# (not run)
# sol <- L2E_TF_dist(y=y, D=D, kSeq=k, rhoSeq=rho)</pre>
# plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
# lines(x, f, lwd=3)
# lines(x, sol$Beta[,3], col='blue', lwd=3) ## k=2
# lines(x, sol$Beta[,2], col='red', lwd=3) ## k=3
# lines(x, sol$Beta[,1], col='dark green', lwd=3) ## k=4
## Contaminated Data
ix <- sample(1:n, 10)</pre>
y[ix] <- y0[ix] + 2
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
# (not run)
# sol <- L2E_TF_dist(y=y, D=D, kSeq=k, rhoSeq=rho)</pre>
# plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
# lines(x, f, lwd=3)
# lines(x, sol$Beta[,3], col='blue', lwd=3) ## k=2
# lines(x, sol$Beta[,2], col='red', lwd=3) ## k=3
# lines(x, sol$Beta[,1], col='dark green', lwd=3) ## k=4
```

L2E_TF_lasso 33

Description

L2E_TF_lasso computes the solution path of the robust trend filtering regression under the L2 criterion with Lasso penalty

Usage

```
L2E_TF_lasso(
   y,
   X,
   beta0,
   tau0,
   D,
   lambdaSeq,
   max_iter = 100,
   tol = 1e-04,
   Show.Time = TRUE
)
```

Arguments

У	Response vector
Χ	Design matrix. Default is the identity matrix.
beta0	Initial vector of regression coefficients, can be omitted
tau0	Initial precision estimate, can be omitted
D	The fusion matrix
lambdaSeq	A decreasing sequence of values for the tuning parameter lambda, can be omitted
max_iter	Maximum number of iterations
tol	Relative tolerance
Show.Time	Report the computing time

Value

Returns a list object containing the estimates for beta (matrix) and tau (vector) for each value of the tuning parameter lambda, the run time (vector) for each lambda, and the sequence of lambda used in the regression (vector)

```
## Completes in 10 seconds

set.seed(12345)
n <- 100
x <- 1:n
f <- matrix(rep(c(-2,5,0,-10), each=n/4), ncol=1)
y <- y0 <- f + rnorm(length(f))</pre>
```

34 myGetDkn

```
## Clean Data
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
D <- myGetDkn(1, n)
lambda \leftarrow 10^seq(-1, -2, length.out=20)
sol <- L2E_TF_lasso(y=y, D=D, lambdaSeq=lambda)</pre>
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
lines(x, sol$Beta[,1], col='blue', lwd=3) ## 1st lambda
## Contaminated Data
ix <- sample(1:n, 10)</pre>
y[ix] <- y0[ix] + 2
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
sol <- L2E_TF_lasso(y=y, D=D, lambdaSeq=lambda)</pre>
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
lines(x, sol$Beta[,1], col='blue', lwd=3) ## 1st lambda
```

myGetDkn

Compute kth order differencing matrix

Description

myGetDkn computes the kth order differencing matrix for use in trend filtering regression

Usage

```
myGetDkn(k, n)
```

Arguments

k Order of the differencing matrix

n Number of time points

Value

Returns a Matrix object as the kth order differencing matrix

objective 35

objective

Objective function of the L2E regression - eta

Description

objective computes the objective of the L2E regression in terms of eta

Usage

```
objective(eta, r, method = "mean")
```

Arguments

eta The current estimate of eta

r Vector of residuals method Mean or median

Value

Returns the output of the objective function (scalar)

objective_tau

Objective function of the L2E regression - tau

Description

objective_tau computes the objective of the L2E regression in terms of tau

Usage

```
objective_tau(tau, r, method = "mean")
```

Arguments

tau The current estimate of tau

r Vector of residuals method Mean or median

Value

Returns the output of the objective function (scalar)

36 update_beta_isotonic

update_beta_convex

Beta update in L2E convex regression - PG

Description

update_beta_convex updates beta for L2E convex regression using PG

Usage

```
update_beta_convex(y, b, tau, max_iter = 100, tol = 1e-04)
```

Arguments

Response vector У

b Current estimate for beta Current estimate for tau tau

Maximum number of iterations max_iter

tol Relative tolerance

Value

Returns a list object containing the new estimate for beta (vector) and the number of iterations (scalar) the update step utilized

update_beta_isotonic Beta update in L2E isotonic regression - PG

Description

update_beta_isotonic updates beta for L2E isotonic regression using PG

Usage

```
update_beta_isotonic(y, b, tau, max_iter = 100, tol = 1e-04)
```

Arguments

Response vector У

Current estimate for beta b tau Current estimate for tau

Maximum number of iterations max_iter

tol Relative tolerance

Value

Returns a list object containing the new estimate for beta (vector) and the number of iterations (scalar) the update step utilized

update_beta_MM_convex Beta update in L2E convex regression - MM

Description

update_beta_MM_convex updates beta for L2E convex regression using MM

Usage

```
update_beta_MM_convex(y, beta, tau, max_iter = 100, tol = 1e-04)
```

Arguments

y Response

beta Initial vector of regression coefficients

tau Precision estimate

max_iter Maximum number of iterations

tol Relative tolerance

Value

Returns a list object containing the new estimate for beta (vector) and the number of iterations (scalar) the update step utilized

```
update_beta_MM_isotonic
```

Beta update in L2E isotonic regression - MM

Description

update_beta_MM_isotonic updates beta for L2E isotonic regression using MM

Usage

```
update_beta_MM_isotonic(y, beta, tau, max_iter = 100, tol = 1e-04)
```

update_beta_MM_ls

Arguments

y response

beta initial vector of regression coefficients

tau precision estimate

max_iter maximum number of iterations

tol relative tolerance

Value

Returns a list object containing the new estimate for beta (vector) and the number of iterations (scalar) the update step utilized

update_beta_MM_ls

Beta update in L2E multivariate regression - MM

Description

update_beta_MM_1s updates beta for L2E multivariate regression using MM

Usage

```
update_beta_MM_ls(y, X, beta, tau, max_iter = 100, tol = 1e-04)
```

Arguments

y Response
X Design matrix

beta Initial vector of regression coefficients

tau Precision estimate

max_iter Maximum number of iterations

tol Relative tolerance

Value

Returns a list object containing the new estimate for beta (vector) and the number of iterations (scalar) the update step utilized

update_beta_MM_sparse Beta update in L2E sparse regression - MM

Description

update_beta_MM_sparse updates beta for L2E sparse regression using the distance penalty

Usage

```
update_beta_MM_sparse(
   y,
   X,
   beta,
   tau,
   k,
   rho,
   stepsize = 0.9,
   sigma = 0.5,
   max_iter = 100,
   tol = 1e-04
)
```

Arguments

У	Response vector
Χ	Design matrix
beta	Initial vector of regression coefficients
tau	Initial precision estimate
k	The number of nonzero entries in the estimated coefficients
rho	The parameter in the proximal distance algorithm
stepsize	The stepsize parameter for the MM algorithm (0, 1)
sigma	The halving parameter sigma (0, 1)
max_iter	Maximum number of iterations
tol	Relative tolerance

Value

Returns a list object containing the new estimate for beta (vector) and the number of iterations (scalar) the update step utilized

40 update_beta_qr

update_	beta	MM	TF

Beta update in L2E trend filtering regression - MM

Description

update_beta_MM_TF updates beta in L2E trend filtering regression using the distance penalty

Usage

```
update_beta_MM_TF(y, X, beta, tau, D, k, rho, max_iter = 100, tol = 1e-04)
```

Arguments

У	Response vector	
Χ	Design matrix	

beta Initial vector of regression coefficients

tau Initial precision estimate

D The fusion matrix

k The number of nonzero entries in D*beta

rho The parameter in the proximal distance algorithm

max_iter Maximum number of iterations

tol Relative tolerance

Value

Returns a list object containing the new estimate for beta (vector) and the number of iterations (scalar) the update step utilized

update_beta_qr

Beta update in L2E multivariate regression - PG

Description

update_beta_qr updates beta for L2E multivariate regression via a QR solve

Usage

```
update_beta_qr(y, X, QRF, tau, b, max_iter = 100, tol = 1e-04)
```

Arguments

У	Response vector
Χ	Design matrix
QRF	QR factorization object for X (obtained via 'QRF= $qr(X)$ ')
tau	Current estimate for tau
b	Current estimate for beta
max_iter	Maximum number of iterations
tol	Relative tolerance

Value

Returns a list object containing the new estimate for beta (vector) and the number of iterations (scalar) the update step utilized

```
update_beta_sparse_ncv
```

Beta update in L2E sparse regression - NCV

Description

 $\verb"update_beta_sparse_ncv" updates beta for L2E sparse regression using existing penalization methods$

Usage

```
update_beta_sparse_ncv(
   y,
   X,
   beta,
   tau,
   lambda,
   penalty,
   max_iter = 100,
   tol = 1e-04
)
```

У	Response vector
Χ	Design matrix
beta	Initial vector of regression coefficients
tau	Initial precision estimate
lambda	Tuning parameter
penalty	Available penalties include lasso, MCP and SCAD.
max_iter	Maximum number of iterations
tol	Relative tolerance

42 update_eta_bktk

Value

Returns a list object containing the new estimate for beta (vector) and the number of iterations (scalar) the update step utilized

update_beta_TF_lasso Beta update in L2E trend filtering regression using Lasso

Description

update_beta_TF_lasso updates beta in L2E trend filtering regression using the Lasso penalty

Usage

```
update_beta_TF_lasso(y, X, beta, tau, D, lambda, max_iter = 100, tol = 1e-04)
```

Arguments

y Response vector
X Design matrix

beta Initial vector of regression coefficients

tau Initial precision estimate

D The fusion matrix

lambda The tuning parameter

max_iter Maximum number of iterations

tol Relative tolerance

Value

Returns a list object containing the new estimate for beta (vector) and the number of iterations (scalar) the update step utilized

Description

update_eta_bktk updates the precision parameter tau = e^eta for L2E regression using Newton's method

Usage

```
update_eta_bktk(r, eta, max_iter = 100, tol = 1e-10)
```

update_tau_R 43

Arguments

r	Vector of residual
eta	Initial estimate of eta

max_iter Maximum number of iterations

tol Relative tolerance

Value

Returns a list object containing the new estimate for eta (scalar), the number of iterations (scalar) the update step utilized, the eta and objective function solution paths (vectors), and the first and second derivatives calculated via Newton's method (vectors)

update_tau_R	Tau update func
ubuate tau n	Iaa abaac tanc

Description

update_tau_R updates the precision parameter tau

Usage

```
update_tau_R(r, tau, sd_y, max_iter = 100, tol = 1e-10)
```

Arguments

r	Residual vector
tau	Current estimate for tau
sd_y	Standard deviation of y
max_iter	Maximum number of iterations
tol	Relative tolerance

Value

Returns a list object containing the new estimate for tau (scalar) and the number of iterations (scalar) the update step utilized

Index

```
* datasets
    bank, 2
bank, 2
CV_L2E_sparse_dist, 3
CV_L2E_sparse_ncv, 5
CV_L2E_TF_dist, 7
CV_L2E_TF_lasso, 9
L2E, 11
L2E_convex, 11
L2E_isotonic, 13
L2E_multivariate, 14
12e_regression, 16
12e_regression_convex, 17
12e_regression_convex_MM, 18
12e_regression_isotonic, 20
12e_regression_isotonic_MM, 21
12e_regression_MM, 23
12e\_regression\_sparse\_dist, 24
12e_regression_sparse_ncv, 25
12e_regression_TF_dist, 26
12e_regression_TF_lasso, 27
L2E_sparse_dist, 28
L2E_sparse_ncv, 29
L2E_TF_dist, 31
L2E_TF_lasso, 32
myGetDkn, 34
objective, 35
objective_tau, 35
update_beta_convex, 36
update_beta_isotonic, 36
update_beta_MM_convex, 37
update_beta_MM_isotonic, 37
update_beta_MM_ls, 38
update_beta_MM_sparse, 39
update_beta_MM_TF, 40
```

update_beta_qr, 40
update_beta_sparse_ncv, 41
update_beta_TF_lasso, 42
update_eta_bktk, 42
update_tau_R, 43