페이지 1 / 1

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

02-023417

(43)Date of publication of application: 25.01.1990

(51)Int.Cl.

G06F 3/06 G06F 3/06

G11B 20/10

(21)Application number: 63-174518

(71)Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22)Date of filing:

13.07.1988

(72)Inventor: FUKUSHIMA YOSHIHISA

SATO ISAO

(54) INFORMATION RECORDING SYSTEM AND INFORMATION RECORDING MEDIUM

(57)Abstract:

PURPOSE: To attain the defective sector control by forming one secondary alternate area in an information recording medium and alternately recording collectively all defective sectors which cannot be alternately executed in a physical partition.

executed in a physical partition.

CONSTITUTION: One physical partition or above having a capacity suitable for the alternate control of a defective sector by a disk control device is formed in a logical volume to set an auto-mode. In the internal part, a data area to record user data, an alternate area to record an alternate sector and a table area to record the alternate table to hold collectively the corresponding relation of the defective sector and the alternate sector are formed. When the alternate processing cannot be executed in a physical partition to detect a constant defective sector or above from the data area and the alternate area of the physical partition to set an automode as an alternate control system, the secondary alternate area to secondarily alternate-record the overflown defective sector is formed.

⑩日本国特許庁(JP)

⑫ 公 開 特 許 公 報(A) 平2-23417

⑤Int. Cl. 5

識別記号

庁内整理番号

43公開 平成2年(1990)1月25日

G 06 F 3/06 301 J K C 306

6711-5B

20/10 G 11 B

6711-5B 7923 — 5 D

審査請求 未請求 請求項の数 4 (全14頁)

情報記録方式と情報記録媒体 国発明の名称

> 昭63-174518 20特 随

昭63(1988)7月13日 22)出 願

明 者 饱発

願

⑦出

人

福

久

大阪府門真市大字門真1006番地 松下電器産業株式会社内

大阪府門真市大字門真1006番地 松下電器産業株式会社内 動 佐 ②発 明 者

松下電器産業株式会社

大阪府門真市大字門真1006番地

弁理士 粟野 重孝 理 人 倒代

外1名

1、発明の名称

情報記録方式と情報記録媒体

- 2、特許請求の範囲
 - (1) セクタ単位で情報が記録再生されるディスク 状の情報記録媒体内に一つのボリューム管理領 域と一つ以上の論理ポリュームを形成するとと もに論理ボリュームの管理情報を一括して保持 したポリューム管理プロックをポリューム管理 領域に記録して論理ポリュームを管理する手段 と、情報記録媒体内に一つのパーティション管 理領域と各論理ポリューム内に一つ以上の物理 パーティションを形成するとともに物理パーテ ィションの管理情報を一括して保持したパーテ ィション管理プロックをパーティション管理領 域に記録して物理パーティションを管理する手 段と、物理パーティション内にユーザデータを 記録するデータ領域と欠陥セクタを代替する代 替セクタが記録される代替領域とそして欠陥セ クタと代替セクタとの対応関係を一括して保持

した代替管理テーブルを記録するテーブル領域 とを形成してデータ領域から検出された欠陥セ クタを物理パーティション内で代替管理する手 段と、情報記録媒体内に一つの二次代替領域を 形成して物理パーティション内で代替不能とな った全ての欠陥セクタを一括して代替記録する 手段とを備えたことを特徴とする情報記録方式。

- (2) 書き換え不能な特性を持つ情報記録媒体を使 用するときに、ボリューム管理ブロックとパー ティション管理プロックと代替管理テープルは、 それぞれポリューム管理領域とパーティション 管理領域とテーブル領域内において領域の一端 から未記録セクタを連続的に用いて更新記録さ れることを特徴とする諸求項1記載の情報記録 方式。
- (3) セクタ単位で情報が記録再生されるディスク 状の情報記録媒体内にユーザデータが記録され るユーザ領域と、ユーザ領域内から検出された 欠陥セクタを代替する代替セクタが記録される 代替領域と、そして欠陥セクタと代替セクタの

(4) 論理パーティションが複数の物理パーティションから構成されるとき、物理パーティションを構成する各ユーザ領域は連続した領域に配置されたことを特徴とする請求項3配数の情報記録媒体。

3、発明の詳細な説明

産業上の利用分野

本発明はセクタ単位で情報の記録再生を行う情

ラスタに対応するFATエントリに識別フラッグ を記録することによって欠陥セクタを管理してい る。このようなFATエントリは、フォーマット 動作において欠陥セクタが含まれないクラスタに 対応したFATエントリには未使用フラッグを、 また欠陥セクタが含まれるクラスタに対応した FATエントリには欠陥識別フラッグを記録する ことによって初期化が行われる。また、新しいフ ァイルの登録動作では、未使用フラッグが記録さ れたFATエントリがファイルサイズに対応した 必要個数だけFATの先頭から順に検索される。 このとき、欠陥識別フラッグが記録されたFAT エントリが読み飛ばされることによって、新たな ファイルの記録に欠陥セクタが用いられることは ない。そして未使用クラスタにファイルの実体が 記録された後、新しいクラスタ間の連結状態を裏 わすように書き換えられたFATが更新記録され

発明が解決しようとする課題

しかしながら、追記型光ディスクのように情報

報記録媒体と、この情報記録媒体を用いる記録再 生装置に適用する情報記録方式に関するものであ る

従来の技術

従来の磁気ディスクやフロッピディスクのよう な情報記録媒体を用いた記録再生装置では、例え ば16ピットパーソナルコンピュータの汎用OS として知られるマイクロソフト社のMS-DOS を用いて、欠陥セクタ処理を含むファイル管理が 行われている。MS-DOSでは、情報記録媒体 内にファイルの管理情報を記録するディレクトリ 領域とファイルの実体を記録するデータ領域の他 に、クラスタ単位に分割されたデータ領域の使用 状況を管理するためのファイルアロケーションテ ープル(FAT)が記録されるFAT領域が形成 される。また、FATの各エントリ (FATエン トリ)は各クラスタと1対1に対応して、クラス タの使用/未使用やファイルの記録に用いた複数 のクラスタの連結状態を管理するとともに、クラ スタ内に欠陥セクタが含まれる場合には、このク

記録媒体が書き換え不能な材料特性を持つ場合には、同一領域内においてFATの記録内容を更新することができないためにFATを用いた従来のファイル管理手法による欠陥セクタ管理は適用不可能である。

また、書き換え型光ディスクのように情報記録 媒体が書き換え可能な材料特性を持ちななに欠場合 力タの発生が急増するような動作にともなき換えの現まするような動作をとせなります。 書き換えられる下AT関は、て欠陥では発きであれる。ことかのではなってがある。 はまるながあるではないであるであるで発生が高い。ことかがあるでは存在ではないで発生が思せない。 で発生する状体ではないながらは存在ではないで発生するではないであるではないでであるではないでであるではないではないでである。 下AT関域の発生にないてはままでである。 能性が高いことがよるではままでないでするではままなではままなではままなではままなではままなではままな。 で発生するではままなではままなではままない。 など、発生するではままなではままなではままない。 など、発生するではままないはままない。 など、発生するではままないますである。 を対するのではないないますである。

本発明はかかる点に鑑み、書き換え不能な材料

特性や実用的な書き換え回数の制限を持つ情報記録媒体を用いる記録再生装置において、欠陥セクタ管理を可能とすることを特徴とした情報記録方式とこの情報記録方式が適用可能となるデータ構造を持つことを特徴とした情報記録媒体を提供することを目的とする。

課題を解決するための手段

本発明は、セクタ単位で情報が記録再生される ディスク状の情報記録媒体内に一つのボリューム 管理領域と一つ以上の論理が理情報を一括して管理がしたがリュームを管理のクをボリュームで管理がしたが見まれて記録はに記録は体内に一つのに一つり選が、コーチンを管理が、でいまいとしてで理が、でいまいを形成するとと、特別はに記録していまいという。というでは、ローチャンを管理する手段と、物理パーティンコーザデータを記録するデータ領域のスープデータを記録するでは、セクターを表述されている。

パーティションから構成される論理ボリュームと、各論理ボリュームの管理情報を一括して保持するボリューム管理ブロックが記録されるボリューム管理領域と物理パーティション内で代替不能となった全ての欠陥セクタを一括して代替記録する二次代替領域とを形成することを特徴とした情報記録媒体である。

作用

本発明は、情報記録媒体内に一つのボリューム 管理領域と一つ以上の論理ボリュームを形成し、 論理ボリュームの管理情報を一括して保持したボ リューム管理ブロックをボリューム管理領域に記 録することにより、情報記録媒体をいくつかの論 理ボリュームに分割して管理する。

また、情報記録媒体内に一つのパーティション管理領域と各論理ポリューム内に一つ以上の物理パーティションを形成し、物理パーティション管理情報を一括して保持したパーティション管理プロックをパーティション管理領域に記録することにより、論理ポリュームをいくつかの物理パー

と欠陥セクタを代替する代替セクタが記録される 代替領域とそして欠陥セクタと代替セクタとの対 応関係を一括して保持した代替管理テーブルを記 録するテーブル領域とを形成してデータ領域から 検出された欠陥セクタを物理パーティション内で 代替管理する手段と、情報記録媒体内に一つのこ 次代替領域を形成して物理パーティショ 次代替領域を形成して物理のクを一括して代替 記録する手段とを備えたことを特徴とする情報記 録方式。

本発明は、セクタ単位で情報が記録再生されるディスク状の情報記録媒体内にユーザデータが記録されるユーザ領域と、ユーザ領域内から検出された欠陥セクタを代替する代替セクタが記録される代替領域と、そして欠陥セクタと代替セクタの対応関係を保持した代替管理テーブルが記録される雰囲パーティション管理でロックが記録されるパーティション管理領域と、一つ以上の物理

ティションに分割し、物理パーティションを基本 単位とした欠陥セクタ管理を行う。

そして、物理パーティション内にデータ領域と 代替領域とテーブル領域が形成されることにより、 データ領域内から検出された欠陥セクタは代替領 域内で未使用状態にある代替セクタを用いて代替 記録されるとともに更新された代替管理テーブル がテーブル領域内に記録されることによって、検 出された欠陥セクタの一次代替処理を物理パーティション内で実行する。

さらに、二次代替領域が形成されることにより、 物理パーティション内部で代替不能となった全て の欠陥セクタは二次代替領域内で未使用状態にあ る代替セクタを用いて代替記録されるとともに更 新された代替管理テーブルがテーブル領域内に記 録されることによって、物理パーティション内で オーバーフローした欠陥セクタの二次代替処理を 行う。

実施例

本発明の情報記録方式とその情報記録方式を適

次に、論理ボリューム内における欠陥セクタの 代替管理方式には、ディスク制御装置がその内部 に組み込まれた処理手順にしたがい欠陥セクタの 代替管理を自動的に実行するオートモードと、 OSやアプリケーションプログラムが指定した特

て20MBが指定された論理ボリュームaは物理 パーティションaのみから構成される。またデー 夕領域の容量として50MBが指定された論理ボ リューム b の内部には、容量 2 5 M B のデータ領 域をそれぞれ持つ物理パーティションbと物理パ ーティションcが形成される。そして、第1図に 図示されたように物理パーティションものデータ 領域もと物理パーティションcのデータ領域cは 連続的に配置される。また、テーブル領域と代替 領域の容量はオートモードが設定された全ての物 理パーティションについて共通であり、物理パー ティション内に割り当てられるデータ領域の最大 容量と欠陥セクタ率に対応して与えられる。一方、 第1図において代替管理方式としてホストモード が設定された論理ボリューム d では、データ領域 dのみを持った物理パーティションdが形成され、 データ領域の容量は制限されない。

また、このようにして形成された各物理パーティションの管理情報を一括して保持するパーティション管理プロックが記録されるパーティション

定の処理手順にしたがいホストコンピュータ自身 が欠陥セクタの代替管理を実行するホストモード の2種類があり、これらの代替管理方式は論理ポ リューム単位で設定される。オートモードが設定 された論理ボリューム内には、ディスク制御装置 による欠陥セクタの代替管理に適した容量を持つ 1個以上の物理パーティションが形成される。こ の物理パーティションは欠陥セクタの代替処理を 実行する基本単位であり、内部にはユーザデータ が記録されるデータ領域と、代替セクタが記録さ れる代替領域と、そして欠陥セクタと代替セクタ の対応関係を一括して保持する代替管理テーブル が記録されるテーブル領域が形成される。論理ボ リュームが複数の物理パーティションに分割され る場合には、各物理パーティションのデータ領域 は情報記録媒体内において連続した領域として割 り当てられる。例えば、代替管理テーブルのサイ ズや代替領域の容量に関連して物理パーティショ ンのデータ領域の容量が32MB以下に制限され る場合に、第1図においてデータ領域の容量とし

管理領域が形成される。

さらに、代替管理方式としてオートモードが設定された物理パーティションのデータ領域や代替領域から一定数以上の欠陥セクタが検出される物理パーティション内での代替処理が不可能になった場合に、オーバーフローした欠陥セクタを二次的に代替記録する二次代替領域が形成される。

次に、第2図はボリューム管理プロックの構成図である。ボリューム管理プロックの先頭には、

論理ボリュームの登録数や媒体の総容量をして未使用領域の管理情報に供する管理情報がへっくるでは、対応する論理がよった。また、対応する論理ボリュームエントリには、対応する論理ボリュームの管理情報としてボリューム名・デーク領域とからの代替を連続した場合、その内部に割りまた場合、その内部に割りまた。この内部に割りまた。この内部に対したである。

一つのデータ領域と見なして先頭アドレス (データ領域 b の先頭アドレスに同じ)をボリュームエントリに登録する。

第4図は代替管理テーブルの構成図である。代 替管理テーブルの先頭には、テーブルエントリ登録数がヘッダーとして記録される。またヘッダー

が保持される。次に、ホストインタフェース回路 4 は、ホストインタフェース11を介してホスト コンピュータ12と接続され、デバイスコマンド やセンスデータ等の制御情報を主制御回路1との 間で授受するとともに、パスライン3を介して転 送データバッファ5との間で記録/再生データを 転送する。エラー検出訂正回路では、データ記録 時にバスライン3を介して転送データバッファ5 あるいは管理データバッファ6内から記録データ を読みだしてエラー検出訂正符号を付加するとと もに、データ再生時にはこれらのバッファから読 みだされた再生データに対しては記録時に付加さ れたエラー検出訂正符号を用いて再生データのエ ラーを検出・訂正する回路である。記録再生制御 回路8はデータ記録時にはエラー検出訂正符号が 付加された記録データを転送データバッファ5あ るいは管理データバッファ6から読み出して変調 した後にドライブインタフェース9を介して光デ ィスクドライブ10に転送するとともに、データ 再生時にはドライブインタフェース9を介して光 に続く各テーブルエントリには、対応する欠陥セクタのアドレス、一次代替/二次代替を判別する 管理フラッグ、そして代替セクタアドレスが記録 される。

第5図は、本発明の情報記録方式を適用した光 ディスク制御装置の一構成例を示すプロック図で ある。第5回において、主制御回路1はその内部 に格納された制御手順にしたがい光ディスク制御 装置2全体を制御する回路であり、バランス3に よってホストインタフェース回路4、転送データ パッファ 5、管理データバッファ 6、エラー輸出 訂正回路 7 、そして記録再生制御回路 8 と接続さ れる。また主制御國路1は、ドライブインタフェ ース9を介して光ディスクドライブ10との間で ドライブコマンドやドライブセンスデータを授号 する。転送データバッファ5には、ホストコンピ ュータ12との間で転送される記録/再生データ が保持される。また管理データバッファ6には、 主制御園路1がディスクの管理情報として用いる パーティション管理ブロックや代替管理テーブル

ディスクドライブ10から転送された再生データ を復調した後にこれらのバッファに書き込む回路 である。

次に、第1図から第4図でデータ構造を説明した情報記録媒体を用いて上記のように構成された光ディスク制御装置2において、本発明の情報記録方式の一実施例を以下に説明する。なお、説明の簡単化のためにボリューム管理プロックとパーティション管理プロックそして代替管理テーブルの容量は1セクタ相当であるものとする。また、最初に書き換え可能型光ディスクを対象として制御方式を説明した後に、追記型光ディスクに対する適用方法について説明する。

まず、ディスク装着時において光ディスク制御 装置2がパーティション管理プロックを管理デー タバッファ6内に読み出す動作について第6図の フローチャートにしたがって以下に説明する。

(A) 光ディスクドライブ 1 0 は、新たなディス クが装置内に装着されたことを検出すると、ドラ イブインタフェース 9 を介してディスクの装着を 主制御国路1に通知する。主制御回路1はドライブインタフェース9を介して光ディスクドライブ10にドライブコマンドを送出してパーティション管理領域へのシークを指令する。光ディスクドライブ10はシーク動作が完了すると、ドライブインタフェース9を介してドライブコマンドの実行完了を主制御回路1に通知する。

(B) 主制御回路1 は記録再生制御回路8 に目標セクタアドレスとしてパーティション管理領域のアドレスを指定してデータ再生動作を起動する。 記録再生制御回路8 は目標セクタを検出すると、 目標セクタからのデータ再生を試みる。

(C)目標セクタが記録済である場合、記録再生制御回路8は光ディスクドライブ10から読み出された再生データを復調して管理データバッファ6に転送する。再生データの転送が完了すると、主制御回路1は続いてエラー検出訂正回路7を起動して再生データに対するエラー訂正処理を行う。(D)一方、目標セクタが未記録である場合、主制御回路1は記録再生制御回路8から送出される

1は、ホストインタフェース回路 4 内に取り込まれたデバイスコマンドを読み出して解釈すると、 光ディスクドライブ 1 0 に対してドライブコマンドを送出してポリューム管理領域へのシークを指令する。光ディスクドライブ 1 0 はシーク動作が完了すると、ドライブインタフェース 9 を介してドライブコマンドの完了を主制御回路 1 に通知する。

(F) 主制御回路 1 は記録再生制御回路 8 に対し 目標セクタアドレスとしてボリューム管理領域の アドレスを指定してデータ再生動作を起動する。 記録再生制御回路 8 は目標セクタを検出すると、 目標セクタからのデータ再生を試みる。

(G)目標セクタが記録済である場合、記録再生制御国路8は光ディスクドライブ10から読み出された再生データを復調して転送データバッファ5に転送する。次に主制御国路1はエラー検出訂正回路7を起動して再生データに対するエラー訂正処理を行う。そして、主制御国路1はホストインタフェース国路4を起動して転送データバッフ

未記録フラッグを検出するとパーティション管理 ブロック自体も未記録状態にあると判断し、ヘッ ダーのみをもつパーティション管理ブロックを生 成し管理データバッファ 6 内に記録する。このヘッダー内には物理パーティションの登録数として 0 が登録されるとともに、二次代替領域全体が未 使用状態にあるとして二次代替領域の管理情報が 登録される。

以上の動作から、光ディスクドライブ10に装着されたディスクのパーティション管理プロックは、光ディスク制御装置2の管理データバッファ 6内に取り込まれる。

次に、ホストコンピュータが論理ボリュームの 登録動作やファイルの記録/再生動作に先だって ボリューム管理プロックを読み出す動作について、 第7図のフローチャートにしたがって以下に説明 する。

(E) ホストコンピューク12はデーク再生領域 としてポリューム管理領域を指定したデバイスコマンド (READ Command) を送出する。主制御回路

ァ 5 から再生データを転送する。転送された再生 データは、ボリューム管理プロックとしてホスト コンピュータ12内部に保持される。

(H) 一方、目標セクタが未記録である場合、主制御回路1は記録再生制御回路8から送出される未記録フラッグを検出すると目標セクタが未記録状態であることを意味するセンスデータを生成し、ホストインタフェース回路4を介してホストロンとに通知の質理体が未使用状態にあると判断して、ペッグーのみをもつボリュームの登録数が0であるとして未使用領域であるとして未使用領域であるとして未使用領域であるとして未使用領域であるとして未使用領域の管理権報が登録される。

以上の動作から、ホストコンピュータはアクセスしようとするとディスクのポリューム管理プロックを内部に保持する。

次に、ホストコンピュータが新たな論理ポリュ

ームを登録する動作について第8図のフローチャートにしたがって以下に説明する。

(1) ホストコンピュータ12は、内部に保持し たボリューム管理プロックのヘッダーから読み出 された未使用領域の先頭アドレスと登録すべき論 理ボリュームの容量とそして欠陥セクタの代替管 理方式を保持したデバイスコマンド(ASSIGN VOLUME Command)を生成・送出する。次に、主制 御回路1は、ホストインタフェース回路4に取り 込まれたデバイスコマンドを読み出して解釈する と、デバイスコマンドが指定した代替管理方式と 論理ポリュームの容量からいくつかの物理パーテ ィションを未使用領域の先頭から割り当てる。そ して、主制御回路1は新たに割り当てられた物理 パーティションの管理情報を保持したパーティシ ョンエントリを生成して、管理データバッファ 6 内に保持されたパーティション管理プロックを更 新する。

(J)次に、主制循回路1はエラー検出訂正回路 7を起動し管理データバッファ6内の記録データ

イスコマンド (WRITE Command) を送出する。主 制御回路1は、ホストインタフェース回路4内か らデバイスコマンドを読み出して解釈すると、光 ディスクドライプ10に対してドライブコマンド を送出してポリューム管理領域へのシークを指令 する。主制御回路1は光ディスクドライブ10か らシーク動作の完了を通知されると、ホストイン タフェース回路4を起動し記録されるポリューム 管理プロックのデータをホストコンピュータ12 から転送データバッファ5内に転送する。次に主 制御回路 1 はエラー検出訂正回路 7 を起動して記 録データ(転送データバッファ5内のポリューム 管理プロック)にエラー検出訂正符号を付加する。 さらに主制御回路!は紀録再生制御回路8に対し て目標セクタアドレスとしてボリューム管理領域 のアドレスを指定してデータ記録動作を起動し、 記録データをボリューム管理領域内に記録する。

以上で述べた論理ボリュームの登録動作から、 新たな物理バーティションが未使用領域内に割り 当てられるとともにボリューム管理プロックとバ (パーティション管理プロック)にエラー検出訂正符号を付加する。さらに主制御回路1は記録再生制御回路8に対して目標セクタアドレスとしてパーティション管理領域のアドレスを指定してデータ記録動作を起動し、記録データをパーティション管理領域内に記録する。

(K) 主制御回路1は、新たに形成されたデータ 領域の先頭アドレスや論理ボリューム登録後にお ける未使用領域の先頭アドレスを保持したなストインタフェース回路4を データを生成し、ホストインタフェース回路4を 介してホストコンピュータ12に通知フスを イコンピュータ12は転送されたセンスが ら、論理ボリュームの登録数や未使用領域の一番理 情報に関してヘッダーの書き換えを行うされたボ リュームエントリの追加登録として内部に保持し たボリューム管理プロックを更新する。

(L) ホストコンピュータ 1 2 は更新されたポリューム管理ブロックを記録するために、データ記録領域としてポリューム管理領域を指定したデバ

ーティション管理ブロックが書き換えられる。

次に、代替管理方式としてオートモードが設定された論理ポリューム内において欠陥セクタの検出動作とその代替記録動作をともなうようなファイルの記録動作について、第9図のフローチャートにしたがって説明する。

(M) ホストコンピュータ12は、ファイルの記録領域が指定されたデバイスコマンド(WRITE Command)を送出する。主制御回路1はホストコンタフェース回路4内に取り管理データバッファ 6 内に取り管理データバッファ 6 内に保持されたパーティション管理である。 では、カーティンを割り出し、その管理情報を保持した別では、その管理情報を保持、主制のエントリを読み出す。 次にには対して、アインを記して、アイブ10に対して、アイブ10はシーク動作が完了すると、アイブ10はシーク動作が完了すると、アイブインタフェース9を介してドライブコマンクフェース9を介してドライブコマンクフェース9を介してドライブコマンクフェース9を介して、アイブロックを介してドライブコマンドライブコマンクフェース9を介してドライブコマンドの

完了を主制御回路1に通知する。

(N) 主制御回路1は記録再生制御回路8に目標セクタアドレスとしてテーブル領域のアドレスを指定してデータ再生動作を起動する。記録再生制御回路8は、目標セクタを検出すると、目標セクタからのデータ再生を試みる。

ストコンピュータ12から記録されるデータを転送データバッファ5に転送する。次に主制御回路1はエラー検出訂正回路7を起動して記録データにエラー検出訂正符号を付加する。さらに、主制御回路1は記録再生制御回路8に対して目標セクタアドレスを指定してデータ記録動作を起動し、目標セクタ内にデータを記録する。以上のようなデータ記録動作は、ファイルの記録領域として割り当てられた全セクタについて実行される。

(R) 主制御回路1は、再び光ディスクドライブ10に対してドライブコマンドを送出してファイルの記録領域として割り当てられたセクタを目標としてシークを指令する。このとき割り当てられたセクタが(O)の処理手順において欠陥セクタであると判別された場合、主制御回路1は欠陥セクタに代わって代替セクタを目標セクタにといって大き生成・送出して代替領スのシークを指令する。主制御回路1は光ディスのシークを指令する。主制御回路1は光ディスのシークを指令する。主制御回路1は光ディスによいに表示を表示を通知で表示で表示を表示を表示を表示を表示して表示であると、記録再生制御回路3に対して目標セクア

に保持する。

(P) 一方、目標セクタが未記録である場合、主 側御回路1は記録再生制御回路8から送出される 未記録フラッグを検出すると代替管理テーブルが 未記録状態にあると判断してテーブルエントリの 登録数を0とするとともに、代替セクタ管理情報 として代替領域の先頭セクタのアドレスを保持し たヘッダーのみをもつ代替管理テーブルを生成し 管理データバッファ6内に記録する。

ドレスを指定しデータ再生動作を起動する。次に、 記録再生制御回路8が光ディスクドライブ10か ら転送された再生データを復調して転送データバ ッファ5に送出すると、主制御回路1はエラー検 出訂正回路?を起動して再生データに含まれるエ ラーの検出を試みる。このとき、エラー検出訂正 回路 7 が検出したエラーが所定の基準値(エラー 検出訂正回路?が余裕を持って訂正可能となるエ **ラー)よりも小さい場合やエラーを全く検出しな** い場合、主制御回路1は目標セクタに対するベリ ファイ動作が正常に終了したものと判断する。一 方、基準値を越えるエラーが目標セクタから検出 された場合、主制御回路1はこの目標セクタが欠 陥セクタであると判断して欠陥セクタのアドレス を内部に保持する。以上のようなベリファイ動作 は、(Q)の処理手順の中でデータが記録された 全セクタについて実行される。

(S) (R) の処理手順において欠陥セクタが検出された場合に、主制御回路 1 は管理データバッファ 6 内に保持された代替管理テーブルのヘッダ

ーを参照し、検出された全ての欠陥セクタに対して代替領域の一端から順に未使用の代替セクタを割り当てる。次に、主制御回路 I は管理データバッファ 6 内の代替管理テーブルに対し新たなテーブルエントリの登録とヘッダーの更新を行う。

(T) 主制御回路1は光ディスクドライブ10にドライブコマンドを送出して割り当てられた代替セクタへのシークを指令する。主制御回路アを指令する。主制御回路アを指令する。一ク動作の完了を加いて、(Q) の処理手順に送ぎの中で欠陥正されている記録データで欠陥正では、このとのででは、記録でする。では、(R) フタに記録がすると、には、(R) フタに記録がすると、に対して、(R) フタに記録が作を起動作をもいる。ご路1は、(R) ファイ動作を実行する。このとき、代替セクタから路地である。このとき、代替セクタがベリファイエラーが検出されると、主制御回路

中で代替セクタの割り当てについて記述した(S) の処理手順では、説明の簡単化のために検出され た全ての欠陥セクタが物理パーティション内で一 次代替されるものとして説明した。しかし、制限 された代替領域の容量を越える欠陥セクタが検出 された場合、物理パーティション内で一次代替は 不可能となり、以下に述べるような二次代替領域 を用いた代替記録動作が実行される。まず、代替 管理テーブルのヘッダー内に記録された内容から 代替領域のオーバーフローを検出すると、管理デ ータバッファ 6 内に保持したパーティション管理 プロックのヘッダー内から二次代替領域内で未使 用状態にある二次代替セクタの先頭アドレスを読 み出して、二次代替領域内に代替セクタを割り当 てる。次に(T)の処理手順と同様にして割り当 てられた代替セクタに対するデータ記録動作とべ リファイ動作を実行する。そして、二次代替領域 を用いた代替記録が完了すると、物理パーティシ ョンと代替管理テーブルは管理データバッファ6 内で更新された後、(J)あるいは(U)の処理

以上で述べた処理手順にしたがって、オートモードが設定された論理ボリューム内におけるファイルの記録動作が実行される。上記の動作説明の

動作を起動して、記録データ(代替管理テーブル)

をテーブル領域内に記録する.

手順にしたがってそれぞれパーティション管理領域とテーブル領域に記録される。

一方、代替管理方式としてホストモードが設定 された論理ポリューム内におけるファイルの記録 動作は、以下のように実行される。まず、主制御 回路 1 はホストコンピュータ 1 2 から送出された デバイスコマンド (WRITE Command)をホストイン タフェース回路 4 内から読み出すと、光ディスク ドライプ10にドライブコマンドを送出してデー タが記録される目標セクタへのシークを指令する。 主制御回路1は光ディスクドライブ10からシー ク動作が完了を通知されると、ホストインタフェ 一ス回路 4 を起動してホストコンピュータ 1 2 か ら記録されるデータを転送データバッファ5に転 送する。次に主制御回路1はエラー検出訂正回路 7を起動して記録データにエラーの検出訂正符号 を付加し、さらに記録再生制御回路8を起動して ファイル配録領域に割り当てられた目標セクタに 対してデータ記録動作を実行する。そして、ファ イルの記録領域として割り当てられた全セクタに

対してこのようなデータ記録動作が完了すると、 次に主制御回路1はデータ記録が行われた全セク 夕に対するベリファイ動作を実行する。つまり、 主制御回路!は記録再生制御回路8を起動して光 ディスクドライブ10から転送された再生データ を復調して転送データバッフェ5に送出した後、 エラー検出訂正回路?を起動して再生データに含 まれるエラー検出を試みる。このときエラー検出 訂正回路でが目標セクタから基準値を越えるエラ - を検出すると、主制御回路1はこの目標セクタ が欠陥セクタであることを意味するセンスデータ を生成し、ホストインタフェース回路4を介して ホストコンピュータ 12に通知してデバイスコマ ンドの実行を終了する。このときホストコンピュ ータ12は、OSやアプリケーションプログラム などが指定した処理手順にしたがって欠陥セクタ の代替処理を実行する。

次に、代替管理方式としてオートモードが設定 された論理ボリューム内において代替セクタから の代替再生動作をともなうファイルの再生動作に

御回路8は、目標セクタを検出すると目標セクタ からのデータ再生を試みる。そして、目標セクタ が未記録である場合に記録再生制御回路8から未 記録フラッグが送出されると、主制御回路1は代 椿管理テーブルが未記録状態にあることを検出し ファイルの再生領域が含まれる物理パーティショ ン内に欠陥セクタが存在しないものと判断する。 (X)一方、目標セクタが記録済である場合に、 記録再生制御回路8は光ディスクドライブ10か ら続み出された再生データを復調して管理データ パッファ6に転送する。主制御回路1は、続いて エラー検出訂正回路7を起動して再生データに対 するエラー訂正処理を行う。なお上記の動作によ って読み出される代替管理テーブルは、管理デー タバッファ6内において先に読み出されたパーテ ィション管理ブロックとは異なる領域に保持され てる。そして、主制御回路1は管理データバッフ **ょ 6 内に読み出された代替管理テーブルの中から** ファイルの再生領域に含まれる欠陥セクタを検索

する。欠陥セクタが検出された場合に、主制御回

ついて、第10図のフローチャートにしたがって 説明する。

(W) 主制御国路1 は記録再生制御回路8 に目標セクタアドレスとしてテーブル領域のアドレスを指定してデータ再生動作を起動する。記録再生制

路1はその欠陥セクタを管理するテーブルエント リを読み出して内部に保持する。

(Y) 主制御回路1は、まず光ディスクドライブ 10に対してドライブコマンドを送出してファイ ルの再生領域として割り当てられたセクタを目標 セクタとしてシークを指令する。このとき割り当 てられたセクタが(X)の処理手順において欠陥 セクタであると判別された場合、主制御回路1は 欠陥セクタに代わって代替セクタを目標セクタと したドライブコマンドを生成・送出して代替領域 へのシークを指令する。主制御回路しは光ディス クドライブ10からシーク動作が完了を通知され ると、記録再生制御回路8に対して目標セクタア ドレスを指定し、データ再生動作を起動する。次 に、記録再生制御回路8が光ディスクドライブ 10から転送された再生データを復調して転送デ ータバッファ5に送出すると、主制御回路1はエ ラー検出訂正回路7を起動して再生データに対す るエラー訂正処理を行う。そして、主制御回路1 はホストインタフェース回路4を起動して転送デ

ータバッファ 5 から再生データを転送する。

以上のような処理手順にしたがって、代替管理方式としてオートモードが指定された論理ボリューム内からファイルの読み出し動作が実行される。一方、代替管理方式としてホスモードが指定された論理ボリュームでは、代替領域に対するアクセスの可能性がない。したがってファイルの再生領域として割り当てられたセクタについて(Y)の処理手順と同様なデータ再生動作だけが実行される。

これまでに述べた動作説明の中で、パーティシッとで理ブロックやボリューム管理ブロックを対象とし、その内部に割り当てに型光ディスクを対象とし、その内部に割り当でで、対したパーティション管理領域やボリュームを管理域やで更新されるものとのは、追記型光ディスのは、追記型光ディスのは、追記型光ディスのは、これのはないに、は、これのでデータの更新が出来ないことから、これら管理情報のデータ機造や記録再生手順が異なる。第

発明の効果

以上で説明したように、本発明では情報記録媒体内に任意の容量を持つ論理ボリュームが形成されるにもかかわらず、論理ボリュームを欠陥セセクタの代替管理に適した容量の物理パーティション単位で一次代替の域を用いて、二次代替領域を用いて、2000年ではなった欠けするとともに、二次代替領域を用いて、2000年ではなった欠代替処理を実行する。したがって代替で理テーブルの容器を制限し、代替管理テーブルの容器を制限し、代替管理テーブルの容器を制限し、代替管理テーブルの容器を制限し、代替管理テーブルの容器を制限し、代替管理テーブル

11図は、追記型光ディスクの内部に形成される パーティション管理領域とボリューム管理領域そ してテーブル領域の構成図である。まずパーティ ション管理領域を例に、そのデータ構造や記録再 生手順を以下に説明する。パーティション管理領 域には、第11図(a)に示すように多数のパーティ ション管理プロックを記録可能とする領域が割り 当てられる。そして、新たな物理パーティション の登録動作や二次代替領域を用いた欠陥セクタの 代替記録動作において、パーティション管理プロ ックはパーティション管理領域の一端から未使用 セクタを連続的に用いて更新記録される。したが って、パーティション管理領域内に記録された多 数のパーティション管理プロックの中で未使用領 域の直前に記録されたものが最新である。そして、 光ディスク装着時におけるパーティション管理ブ ロックの読み出し動作では、パーティション管理 領域の一端に位置するセクタから連続的にデータ 再生動作を実行し、未使用セクタの直前に位置し て最後に再生されたものが最新のパーティション

自体の書き換え回数を小さくするとともに容量オーバーヘッド少ない欠陥セクタの代替管理が実用 的な書き換え回数が制限されたり書き換え不能な 特性を持つ情報記録媒体において実現されること により、その実用的効果は大きい。

4、図面の簡単な説明

 1 ……主制御回路、 2 ……光ディスク制御回路、 3 ……バスライン、 4 ……ホストインタフェース回路、 5 ……転送データバッファ、 6 ……管理データバッファ、 7 ……エラー検出訂正回路、 8 ……記録再生制御回路、 9 ……ドライブインタフェース、 1 0 ……光ディスクドライブ、 1 1 … …ホストインタフェース、 1 2 ……ホストコンピュータ。

代理人の氏名 弁理士 粟野重孝 ほか1名

第 1 図

函 27

α 3÷ 33

က

鈱

特開平2-23417 (13)

第 11 图

