Appunti di Logica e Algebra 2

Pietro Pizzoccheri https://github.com/PietroPizzoccheri/uni

2024

Indice

1	Teoria degli anelli commutativi e dei campi				
	1.1	Insiemi	2		
		1.1.1 Operazioni tra insiemi	2		
	1.2	Funzioni	2		
		1.2.1 Composizione di funzioni	3		
		1.2.2 Operazioni su insiemi	3		
	1.3	Monoidi e Gruppi	4		
	1.4	Morfismi	Ę		
	1.5	Relazioni	8		
		1.5.1 Insieme quoziente per gruppi abeliani	Ĝ		
	1.6	Anelli	12		
	1.7	Ideali	14		

1 Teoria degli anelli commutativi e dei campi

1.1 Insiemi

Un insieme è una collezione di oggetti, detti elementi dell'insieme.

 $\mathbb{N} := \{0, 1, 2, 3, \cdots\}$ insieme dei numeri naturali

 $\mathbb{Z} := \{\cdots, -2, -1, 0, 1, 2, \cdots\}$ insieme degli interi

 $\mathbb{Q}:=\left\{rac{a}{b}\mid a,b\in\mathbb{Z},b
eq0
ight\}$ insieme dei numeri razionali

 $\mathbb{R} := \text{insieme dei numeri reali}$

 $\mathbb{C} := \text{insieme dei numeri complessi}$

1.1.1 Operazioni tra insiemi

⊆ inclusione tra insiemi

 $X \subseteq Y$ si legge "X è sottoinsieme di Y" o "X è incluso in Y"

Se X è un insieme finito, indico con |X| il numero di elementi di X, detto anche la cardinalità di X.

 \varnothing : Insieme vuoto e $|\varnothing| = 0$

Siano X e Y due insiemi. L'insieme $X \times Y := \{(x, y) : x \in X, y \in Y\}$ lo chiamiamo **prodotto cartesiano** di X e Y.

Sia $A \in \mathcal{P}(x)$, dove $\mathcal{P}(X) := \{A : A \subseteq X\}$ è detto **Insieme delle parti di** X. L'insieme $A^c := X \setminus A$ è detto **complementare** di A

1.2 Funzioni

Siano X e Y due insiemi. **Una funzione** f **da** X **a** Y è un sottoinsieme $F \subseteq X \times Y$ tale che:

- $(x, y_1) \in F$, $(x, y_2) \in F \implies y_1 = y_2, \forall x \in X, y_1, y_2 \in Y$.
- $x \in X \implies \exists y \in Y \text{ tale che } (x,y) \in F$

Una funzione $F \subseteq X \times Y$ la indichiamo con $f: X \to Y$. E scriviamo f(x) = y se $(x, y) \in F$.

Definizione: La funzione $Id_x: X \to X$ tale che $Id_x(x) = x, \forall x \in X$ la chiamiamo funzione identità su X

Definizione: Una funzione $f: X \to Y$ è **iniettiva** se $\forall x_1, x_2 \in X, f(x_1) = f(x_2) \implies x_1 = x_2$

Definizione: Una funzione $f: X \to Y$ è suriettiva se Im(f) = Y, dove $Im(f) = \{y \in Y : \exists x \in X \text{ tale che } f(x) = y\}$ è detta immagine di f

Definizione: Una funzione $f: X \to Y$ è **biunivoca** se è sia iniettiva che suriettiva.

1.2.1 Composizione di funzioni

Siano $f: X \to Y$ e $g: Y \to Z$ due funzioni. La **composizione di** f **e** g è la funzione $g \circ f: X \to Z$ tale che $(g \circ f)(x) = g(f(x)), \forall x \in X$.

Definizione: una funzione $f:X\to Y$ è detta **invertibile** se esiste una funzione $g:Y\to X$ tale che

- $g \circ f = Id_X$
- $f \circ g = Id_Y$

la funzione g è detta **funzione inversa di** f e la indichiamo con f^{-1} .

Una funzione $f: X \to Y$ è invertibile se e solo se è biunivoca.

1.2.2 Operazioni su insiemi

Definizione: Una funzione $f: X \times X \to X$ è detta **operazione su** X. Invece di f(x,y) scriveremo $x \cdot y$.

Definizione: Un'operazione · su X è detta **associativa** se $(x \cdot y) \cdot z = x \cdot (y \cdot z)$, $\forall x, y, z \in X$.

Definizione: Un'operazione \cdot su X è detta **commutativa** se $x \cdot y = y \cdot x, \forall x, y \in X$.

Esempio:

- $\mathcal{P}(X)$ con l'operazione di unione \cup è associativa e commutativa, così come lo è con l'intersezione \cap .
- $A \setminus B := A \cup B^C$ (differenza insiemistica) è un'operazione su $\mathcal{P}(X)$. non è associativa: sia $A \neq \emptyset$. Allora $A \setminus (A \setminus A) = A \neq (A \setminus A) \setminus A = \emptyset$ non è commutativa: $A \setminus \emptyset = A \neq \emptyset \setminus A = \emptyset$, se $A \neq \emptyset$
- $A\Delta B := (A \setminus B) \cup (B \setminus A)$ (differenza simmetrica) è un'operazione su $\mathcal{P}(X)$. è commutativa e anche associativa, facilmente verificabile coi diagrammi di Venn.
- Sia $F(X) := \{f : X \to X\}$. La composizione" o" è un'operazione su F(X). è associativa, ma non è commutativa.
- $a \circ b = \frac{a+b}{2}$ è un'operazione commutativa su \mathbb{Q} , ma non associativa.

Definizione: Sia · un'operazione su X. Un elemento $e \in X$ tale che $e \cdot x = x \cdot e = x$, $\forall x \in X$ è detto **elemento neutro** o **identità**.

L'identità è unica; se $e, e' \in X$ sono due identità, allora $e = e \cdot e' = e'$.

1.3 Monoidi e Gruppi

Definizione: Un insieme X con un'operazione associativa e un'identità è detto monoide.

Esempio:

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ con l'addizione e identità 0 sono monoidi.
- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ con la moltiplicazione e identità 1 sono monoidi.
- $\mathcal{P}(X)$ con \cup e come identità l'insieme X è un monoide.
- $\mathcal{P}(X)$ con \cap e come identità l'insieme vuoto è un monoide.
- $F(X) := \{f : X \to X\}$ con la composizione" o "e come identità la funzione identità (Id_X) è un monoide.

Definizione: Sia X un monoide. Un elemento $x \in X$ è detto **invertibile** se esiste $y \in X$ tale che $x \cdot y = y \cdot x = e$, dove e è l'identità di X. L'elemento y è detto **inverso** di x.

Se $x \in X$ è invertibile, il suo inverso è unico e lo indichiamo con x^{-1} . L'identità del monoide è invertibile e il suo inverso è l'identità stessa.

Esempio:

- L'insieme degli elementi invertibili di $(\mathbb{N}, +)$ è $\{0\}$.
- Linsieme degli elementi invertibili di $(\mathbb{Z}, +)$ è \mathbb{Z} , di $(\mathbb{Q}, +)$ è \mathbb{Q} , di $(\mathbb{R}, +)$ è \mathbb{R} , di $(\mathbb{C}, +)$ è \mathbb{C} .
- L'insieme degli elementi invertibili di (\mathbb{N},\cdot) è $\{1\}$, di (\mathbb{Z},\cdot) è $\{1,-1\}$, di (\mathbb{Q},\cdot) è $\mathbb{Q}\setminus\{0\}$, di (\mathbb{R},\cdot) è $\mathbb{R}\setminus\{0\}$, di (\mathbb{C},\cdot) è $\mathbb{C}\setminus\{0\}$.
- L'insieme degli elementi invertibili di $F(X) = \{f: X \to X\}$ è l'insieme delle funzioni invertibili.

Definizione: Un monoide X è detto **gruppo** se ogni suo elemento è invertibile. Se l'operazione è commutativa, il gruppo è detto **gruppo abeliano**.

Esempio:

- $(\mathcal{P}(x), \Delta)$ è un gruppo abeliano. L'identità è l'insieme vuoto e l'inverso di $A \in \mathcal{P}(x)$ è A stesso. $(A^2 = \emptyset, \forall A \subseteq X)$
- $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$, $(\mathbb{C},+)$ sono gruppi abeliani
- $(\mathbb{Q}\setminus\{0\}, \bullet)$, $(\mathbb{R}\setminus\{0\}, \bullet)$, $(\mathbb{C}\setminus\{0\}, \bullet)$ sono gruppi abeliani
- sia $X = \{1, 2, \dots, n\}$ l'insieme delle funzioni invertibili $f: X \to X$ è il **Gruppo** delle permutazioni di n elementi (o gruppo simmetrico). Lo indiciamo con S?n. $|S_n| = m!$. Non è abeliano se $n \ge 3$.

Esempio:

- Con l'addizione, $\{0\}$ èun sottomonoide di \mathbb{N} . $\{0\}$ è anche sottogruppo banale.
- Con la moltiplicazione abbiamo la catena di sottomonoidi $\{1\} \subseteq \mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq insieme R \subseteq \mathbb{C}$ e di sottogruppi $\{1\} \subseteq \mathbb{Q} \setminus \{0\} \subseteq \mathbb{R} \setminus \{0\}$
- con l'addizione abbiamo la caten di sottogruppi $\{0\} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$

Definizione: Sia X un monoide e $S \subseteq X$ un sottoinsieme. L'insieme $\langle S \rangle := \{x_1 \cdot x_2 \cdot \cdots x_n : n \in \mathbb{N}, x_1, x_2, \cdots, x_n \in S\}$ è detto **sottomonoide generato da** S (intersezione di utti i sottomonoidi di X che contengono S). Se X è un gruppo, $\langle S \rangle$ è detto **sottogruppo** generato da S.

Esempio:

- $S = \{1\} \subseteq (\mathbb{N}, +)$. Allora $\langle S \rangle = \{0, 1, 2, \cdots\} = \mathbb{N}$
- sia $S := \{ p \in \mathbb{N} : p \text{ è primo} \} \cup \{ 0 \} \subseteq (\mathbb{N}, \cdot)$. allora $\langle S \rangle = \mathbb{N}$
- $S = \{0, 1\} \subseteq (\mathbb{N}, \bullet)$. Allora $\langle S \rangle = \{0, 1\}$
- sia $S = \{1\} \subseteq (\mathbb{Z}, +)$. il sottogruppo generato da S è $\langle S \rangle = \mathbb{Z}$
- uno spazio ettoriale V è un gruppo abeliano se consideriamo l'operazione di addizione fra vettori. Prendiamo $V = \mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$. Sia $v = (1, 1) \in \mathbb{R}^2$. Il sottogruppo $\langle \{v\} \rangle = \{(n, n) : n \in \mathbb{Z}\}$ è un sottogruppo proprio del sottospazio generato da $\{v\}$. Sia $v_1 = (1, 0)$ ed $v_2 = (0, 1)$, allora il sottogruppo $\langle \{v_1, v_2\} \rangle$ è $\mathbb{Z} \times \mathbb{Z} \subseteq \mathbb{R} \times \mathbb{R}$

Definizione: Siano M_1, M_2 con identità e_1, e_2 rispettivamente. Si definisce prodotto diretto di M_1 e M_2 l'insieme $M_1 \times M_2$ con l'operazione $(m_1, m_2) \cdot (m'_1, m'_2) = (m_1 \cdot m'_1, m_2 \cdot m'_2)$ e identità (e_1, e_2) . Analogamente si definisce prodotto diretto di gruppi G_1eG_2 .

L'inverso di una coppia $(a, b) \in G_1 \times G_2$ è (a^{-1}, b^{-1}) .

1.4 Morfismi

Definizione: Siano M_1eM_2 monoidi con identità e_1ee_2 . Una funzione $f:M_1 \to M_2$ è un morfismo di monoidi se:

- $f(e_1) = e_2$
- $\bullet \ f(xy) = f(x)f(y)$

Definizione: Siano G_1eG_2 gruppi con identità e_1ee_2 . Una funzione $f:G_1 \to G_2$ è un morfismo di gruppi se:

- $f(e_1) = e_2$
- \bullet f(xy) = f(x)f(y)

Definizione: Il **nucleo** di un morfismo di monoidi $f: M_1 \to M_2$ è il sottomonoide di M_1 definito come: $Ker(f) := \{x \in M_1 : f(x) = e_2\}$

Definizione: Il nucleo di un morfismo di gruppi $f: G_1 \to G_2$ è il sottogruppo di G_1 definito come: $Ker(f) := \{x \in G_1 : f(x) = e_2\}$. Il nucleo è un sottogruppo di G_1 . e Im(f) è un sottogruppo di G_2 .

Definizione: Un isomorfismo di monoidi (e di gruppi) èun morfismo biunivoco, tale che la funzione inversa sia un morfismo.

Proposizione: Sia $f: M_1 \to M_2$ un morfismo di monoidi. Se f è biunivoco, allora è un isomorfismo. Questo vale anche per i gruppi.

Dimostrazione: Dobbiamo far vedere che la funzione inversa $f^{-1}: M_2 \to M_2$ è un morfismo di monoidi. Poiché $f(e_1) = e_2$, allora $f^{-1}(e_2) = e_2$. Siano $x_2, y_2 \in M_2$, allora esistono $x_1, y_1 \in M_1$ tali che $f(x_1) = x_2, f(y_1) = y_2$. Quindi $f^{-1}(f(x_1)f(y_1)) = f^{-1}(f(x_1y_1)) = x_1y_1 = f^{-1}(x_2)f^{-1}(y_2)$

Esempio:

- Siano $M_1 = (\mathcal{P}(X), \cup)$ e $M_2 = (\mathcal{P}(X), \cup)$, dove X è un insieme. Sia $f: M_1 \to M_2$ definita ponendo $f(A) = A^C, \forall A \subseteq X$. la funzione f è biunivoca. Inlotre, dalle formule di De Morgan segue che $f(A \cap B) = (A \cap B)^C = A^C \cup B^C = f(A) \cup f(B)$. Quindi f è un isomorfismo di monoidi, poiché $f(X) = X^C = \emptyset$, essendo X l'identità di M_1 e \emptyset l'identità di M_2 .
- Sia $\mathbb{Z}_2 := \{0, 1\}$ con l'operazione definita come: 0+0=0, 0+1=1+0=1, 1+1=0. Sia $X := \{1, 2, \dots, n\}, n \in \mathbb{N}$. La funzione $f : \mathcal{P}(X) \to \mathbb{Z}_2 \times \dots \times \mathbb{Z}_2$ (n volte) definita da: $f(A) = (a_1, a_2, \dots, a_n)$, dove $a_i = 1$ se $i \in A$ e $a_i = 0$ se $i \notin A$. è un isomorfismo del gruppo $(\mathcal{P}(X), \Delta)$ con il gruppo $\mathcal{P}(X) \to \mathbb{Z}_2 \times \dots \times \mathbb{Z}_2 = (\mathbb{Z}_2)^n$

Vediamo ora come ogni monoide finito è isomorfo a un monoide di matrici quadrate, dove l'operazione è il prodotto righe per colonne.

Sia $M = \{x_1, \dots, x_n\}$ un monoide, $|M| = n \in \mathbb{N}$, con identità $e = x_1$. Pero ogni $x \in M$ definiamo una matrice $A(x) \in Mat_{n \times n}(\mathbb{Z})$ nel seguente modo: $A(x)_{ij} = 1$ se $x_i \cdot x = x_j$ e $A(x)_{ij} = 0$ altrimenti. La funzione $F : M \to Mat_{n \times n}(\mathbb{Z})$ $(x \mapsto A(x))$ è iniettiva.

Infatti, se A(x) = a(y), allora $A(x)_{i1} = A(y)_{i1}$, $\forall i \in \{1, \dots, n\}$.

Quindi se $A(x)_{i1} = A(y)_{i1} = 1$, allora $xx_1 = xe = x = yx_1 = y$.

Risulta inoltre facile vedere che A(xy) = A(x)A(y) (prodotto righe per colonne), ossia che F è un morfismo di monoidi ($Mat_{n\times n}(\mathbb{Z})$ è un monoide con l'operazione di prodotto righe per colonne, la cui identità è la matrice I_n).

Quindi $F: M \to Im(F)$ è un isomorfismo di monoidi.

Esempio: Sia $M = (\mathbb{Z}_2, \cdot)$ il monoide definito da:

•	0	1
0	0	0
1	0	1

costruiamo un sottomonoide di $Mat_{4\times 4}(\mathbb{Z})$ isomorfo a $M\times M=\{(0,0),(0,1),(1,0),(1,1)\}.$

$$(1,1) \mapsto \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

•	(0,0)	(0,1)	(1,0)	(1,1)
(0,0)	(0,0)	(0,0)	(0,0)	(0,0)
(0,1)	(0,0)	(0,1)	(0,0)	(0,1)
(1,0)	(0,0)	(0,0)	(1,0)	(1,0)
(1,1)	(0,0)	(0,1)	(1,0)	(1,1)

Si può verificare direttamnete che le matrici hanno la stessa tabella moltiplicativa. (fine esempio)

Abbiamo quindi visto che un monoide finito di cardinalità n è isomorfo a un monoide di matrici $n \times n$ le cui colonne hanno un unico "1" e altrove sono "0".

Ognuna di queste matrici può essere vista come una funzione da $X = \{1, \dots, n\}$ in X:

$$A_{ij} = 1 \Leftrightarrow f(j) = i$$

$$A_{ij} = 0 \Leftrightarrow f(j) \neq i$$

Il prodotto righe per colonne corrisponde alla composizione di funzioni.

Quindi un monoide finito di cardinalità n è isomorfo a un sottomonide del monoide delle funzioni f da $\{1, \dots, n\}$ in $\{1, \dots, n\}$ con l'operazione di composizione.

Notiamo che un elemento $x \in M$ di un monoide finito M è invertibile se e solo se la matrice associata è invertibile (una matrice $A \in Mat_{n \times n}(\mathbb{Z})$ è invertibile se e solo se il suo determinante è invertibile su \mathbb{Z} , ossia se e solo se $det(a) \in \{-1, 1\}$).

Da ciò segue che un gruppo finito G di cardinalità |G| = n, è isomorfo a un gruppo di matrici le cui componenti sono"0" e "1" e che hanno un unico "1" in ogni riga e ogni colonna (matrici di permutazioni).

Il gruppo G è inoltre isomorfo a un sottogruppo del gruppo delle funzioni biunivoche da $\{1, \dots, n\}$ in $\{1, \dots, n\}$, che abbiamo chiamato **gruppo simmetrico** S_n .

Gli elementi di S_n in notazione a una linea sono indicati nel modo seguente: sia $\sigma \in S_n$ una funzione biunivoca da $\{1, \dots, n\}$ in $\{1, \dots, n\}$, allora σ è indicata come $\sigma(1)\sigma(2)\cdots\sigma(n)$.

Teorema (Teorema di Cayley): Ogni sottogruppo finito di cardinalità $n \in \mathbb{N} \setminus \{0\}$ è isomorfo a un sottogruppo di S_n

Esempio:

- $S_2 = \{12, 21\}$ $S_3 = \{123, 132, 213, 231, 312, 321\}$
- vediamo il gruppo $(\mathbb{Z}_2, +)$ come gruppo di matrici e come gruppo di permutazioni. $(\mathbb{Z}_2, +) \simeq \{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \} \simeq \{12, 21\} = S_2 \ (\simeq isomorfismodigruppi)$

1.5 Relazioni

Definizione: Sia X un insieme. Un sottoinsieme $R \subseteq X \times X$ è detto **relazione su** X.

Definizione: Una relazione $R \subseteq X \times X$ è detta **relazione di equivalenza** se soddisfa le seguenti proprietà:

- riflessità: $(x, x) \in R, \forall x \in X$
- simmetria: $(x,y) \in R \implies (y,x) \in R, \forall x,y \in X$
- transitività: $(x,y) \in R$ $e(y,z) \in R \implies (x,z) \in R, \forall x,y,z \in X$

Se R è una relazione di equivalenza su X e $(x,y) \in R$, scriviamo $x \sim y$, che si legge "x è equivalente a y".

Definizione: Sia X un insieme e $R \subseteq X \times X$ una relazione di equivalenza su X. L'insieme $[x]_R := \{y \in X : x \sim y\}$ è detto classe di equivalenza di x rispetto a R.

Definizione: L'insieme $X/\sim := \{[x] : x \in X\}$ è detto insieme quoziente.

Definizione: La funzione $\pi: X \to X/\sim$, $x \mapsto [x]$ è detta **proiezione canonica**.

Definizione: Siano $x,y \in X$. Allora se $x \sim y$ abbiamo che [x] = [y]. Se $x \nsim y$ abbiamo che $[x] \cap [y] = \varnothing$. Quindi $X = \underset{[x] \in X/\sim}{\uplus} [x]$, ossia X/\sim è una partizione di X.

Esempio:

- \bullet L'uguaglianza " = " è una relazione di equivalenza su ogni insieme X.
- Sia $X = \{1, 2, \dots, n\}$. Definiamo si $\mathcal{P}(X)$ la seguente relazione: $A \sim B \Leftrightarrow |A| = |B|, \forall A, B \subseteq X$. Questa è una relazione di equivalenza e $\mathcal{P}^{(X)}/\sim \equiv \{0, 1, \dots, n\}$. Se $A \subseteq X$ è tale che $|A| = k \le n$ allora $|[A]| = \binom{n}{k} := \frac{n!}{k!(n-k)!}$
- Sia G un gruppo e $H \subseteq G$ un sottogruppo. La relazione \sim su G definita da $g_1 \sim g_2 \Leftrightarrow g_1 = g_2 h$ per qualche $h \in H$ è una relazione di equivalenza.
 - $-g \sim g: g \cdot e, \forall g \in G, e \in H$

$$-g_1 \sim g_2, g_2 \sim g_3 \rightarrow g_1 \sim g_3: g_1 = g_2h, g_2 = g_3h' \rightarrow g_1 = g_3hh' = g_3h'', \forall g_1, g_2, g_3 \in G$$

In questo caso l'insieme quoziente lo indichiamo con ^G/_H.

Definizione: Il numero $\binom{n}{k}$ è chiamato **coefficiente binomiale**, questo perché $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^n y^{n-k}, \forall x, y \in \mathbb{C}$

1.5.1 Insieme quoziente per gruppi abeliani

Se G è un gruppo abeliano, possiamo definire la seguente operazione "+" su ${}^G\!H$: $[g_1]$ + $[g_2]$:= $[g_1+g_2]$, vediamo che è ben definita: se $g_1'=g_1+h_1$ e $g_2'=g_2+h_2$, allora $[g_1']=[g_1]$, $[g_2']=[g_2]$ e $g_1'+g_2'=g_1+h_1+g_2+h_2=g_1+g_2+h$, dove $h=h_1+h_2\in H$. Quindi $[g_1'+g_2']=[g_1+g_2]$. L'operazione è ovviamente associativa e commutativa, perché lo è quella su G. Inoltre [g]+[0]=[g], $\forall [g]\in G/H$ dove con "0" abbiamo indicato l'identità di G. Quindi la classe [0] dell'identità di (G/H,+). Infine [g]+[-g]=[g-g]=[0], dove con -g abbiamo indicato l'inverso di g in G. Quindi -[g]=[-g], $\forall [g]\in G/H$, ossia (G/H,+) è un gruppo abeliano.

Esempio:

- Se $H = \{0\} \subseteq G$, allora G/H è isomorfo a G. ($\{0\}$ gruppo banale e G gruppo abeliano)
- Sia $G = (\mathbb{Z}, +)$ e $n \in \mathbb{N}$. Il sottoinsieme $n\mathbb{Z} = \{nz : z \in \mathbb{Z}\}$ è un sottogruppo di \mathbb{Z} .

$$- 0\mathbb{Z} = \{0\}$$

$$-1\mathbb{Z} = {\mathbb{Z}}$$

$$-2\mathbb{Z} = \{\cdots, -4, -2, 0, 2, 4, \cdots\}$$

$$-3\mathbb{Z} = \{\cdots, -6, -3, 0, 3, 6, \cdots\}$$

Definiamo il gruppo abeliano $\mathbb{Z}_n := \mathbb{Z}/n\mathbb{Z}$, per $\mathbb{Z}_0 = \mathbb{Z}/n\mathbb{Z} = \mathbb{Z}/n\mathbb{Z} = \mathbb{Z}/n\mathbb{Z}$. Sia n > 0 e siano $x, y \in \mathbb{Z}$.

– Allora $x \sim y \Leftrightarrow x = y + h \ (h \in n\mathbb{Z}) \Leftrightarrow x - y = kn \ (\text{per } k \in \mathbb{Z}) \Leftrightarrow$ il resto della divisione di x per n è uguale al resto della divisione di y per n.

I possibili resti della divisione per n sono $0, 1, \dots, n-1$. Quindi $\mathbb{Z}_n = \{[0], [1], \dots, [n-1]\} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}.$ $(\{[0], [1], \dots, [n-1]\}$ sono le classi di resto)

$$-\mathbb{Z}_2 = {\overline{0}, \overline{1}}, \overline{1} + \overline{1} = [1+1] = [2] = [0]$$

+	$\overline{0}$	1
$\overline{0}$	$\overline{0}$	1
1	$\overline{1}$	$\overline{0}$

$$- \mathbb{Z}_3 = \{\overline{0}, \overline{1}, \overline{2}\},\$$

Definizione: Sia G un gruppo abeliano e $H \subseteq G$ un sottogruppo. La proiezione canonica $\pi: G \to G/H$ è un morfismo suriettivo di gruppi

+	$\overline{0}$	1	$\overline{2}$
$\overline{0}$	$\overline{0}$	1	$\overline{2}$
1	$\overline{1}$	$\overline{2}$	$\overline{0}$
$\overline{2}$	$\overline{2}$	$\overline{0}$	1

Se G è un gruppo finito e $H \subseteq G$ è un sottogruppo, allora $[g] \in G/H \to |[g]| = |H|$. Infatti $[g] = \{gh : h \in H\} \text{ e } gh_1 = gh_2 \to h_1 = h_2.$

Poiché le classi di quivalenza sono una partizione di G, abbiamo $|G| = |G/H| \cdot |H|$.

In particolare la cardinalità o (ordine) di un sottogruppo di un gruppo finito divide la cardinalità del gruppo.

Teorema: Sia $f: G_1 \to G_2$ un morfismo di gruppi. Allora f è iniettivo se e solo se $Ker(f) = \{e_1\}.$

(Questo non vale per i morfismi di monoidi.)

Dimostrazione: Sia f iniettivo. Sia $x \in Ker(f)$. Allora $f(x) = e_2$ e quindi, poiché anche $f(e_1) = e_2$, si ha che $x = e_1$ per l'ipotesi di iniettività.

Sia
$$Ker(f) = \{e_1\}$$
. Siano $x, y \in G_1$ tali che $f(x) = f(y)$.
Allora $f(x)f(y^{-1}) = e_2 \to f(xy^{-1}) = e_2 \to xy^{-1} \in Ker(f) \to xy^{-1} = e_1 \to x = y$,

Esempio:

•
$$G = \mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\},\$$

- $-\langle \overline{0}\rangle = \overline{0}$ sottogruppo banale $\simeq \mathbb{Z}_1$
- $-\langle \overline{1}\rangle = \mathbb{Z}_4$
- $-\langle \overline{2}\rangle = \{\overline{0}, \overline{2}\} \simeq \mathbb{Z}_2 \ (2+2=0)$
- $-\langle \overline{3} \rangle = \mathbb{Z}_4 (3, 3+3=6=2, 3+2=5=1, 3+1=4=0)$

I sottogruppi di \mathbb{Z}_4 possono averer cardinalità 1, 2, 4. L'insieme dei sottogruppo di $\mathbb{Z}_4 \ \text{\'e} \ \{\{\overline{0}\}, \{\overline{0}, \overline{2}\}, \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\} = \mathbb{Z}_4\}$

•
$$G = \mathbb{Z}_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\},$$

- $-\langle \overline{0}\rangle = \overline{0}$ sottogruppo banale $\simeq \mathbb{Z}_1$
- $-\langle \overline{1}\rangle = \mathbb{Z}_6$
- $-\langle \overline{2}\rangle = \{\overline{0}, \overline{2}, \overline{4}\} \simeq \mathbb{Z}_3$
- $-\langle \overline{3}\rangle = \{\overline{0},\overline{3}\} \simeq \mathbb{Z}_2$
- $-\langle \overline{4}\rangle = \{\overline{0},\overline{2},\overline{4}\} \simeq \mathbb{Z}_3$
- $-\langle \overline{5}\rangle = \mathbb{Z}_6$

I sottogruppi di \mathbb{Z}_6 possono averer cardinalità 1, 2, 3, 6. L'insieme dei sottogruppo di \mathbb{Z}_6 è $\{\{\overline{0}\}, \{\overline{0}, \overline{2}, \overline{4}\}, \{\overline{0}, \overline{3}\}, \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\} = \mathbb{Z}_6\}$

Caso generale: consideriamo il gruppo $\mathbb{Z}_n = (\{\overline{0}, \overline{1}, \cdots, \overline{n-1}\}, +)$ sia $m \in \mathbb{N}, m < \infty$

n. Se $m=0, \langle \overline{0} \rangle = \{ \overline{0} \}.$

Sia m > 0 e $z := \frac{mcm\{m,n\}}{m}$. (mcm = minimo comune multiplo)

 $\overline{m} + \overline{m} + \dots = \overline{m} = \overline{zm} = \overline{mcm\{m,n\}} = \overline{0}$

Se $i \le i \le z$: $im < zm = mcm\{m, n\} \to n$ non divide im.

 $\overline{m} + \overline{m} + \cdots = \overline{m} = \overline{im} \neq \overline{0}$ perché im è multiplo di m e $im < mcm\{m,n\}$, quindi im non è multiplo di n. Dunque $|\langle \overline{m} \rangle| = z = \frac{mcmc\{m,n\}}{m}$.

In particolare, $\langle \overline{m} \rangle = \mathbb{Z}_n \Leftrightarrow z = n \Leftrightarrow MCD^m\{m,n\} = 1$. Ossia l'insieme $\{\overline{m}\}$ genera il gruppo \mathbb{Z}_n sse m e n sono coprimi.

Definizione: La funzione definita da $\varphi : \mathbb{N} \setminus \{0\} \to \mathbb{N} \setminus \{0\}$,

 $\varphi(n) := |\{m \in \mathbb{N} \setminus \{0\} : m < n \text{ } e \text{ } MCD\{m,n\} = 1\}| \text{ } è \text{ } detta \text{ } funzione \text{ } di \text{ } Eulero.$ Quindi ci sono $\varphi(n)$ elementi \overline{m} tali che $\langle \overline{m} \rangle = \mathbb{Z}_n$.

Proposizione: L'insieme dei sottogruppi di $(\mathbb{Z}, +)$ è $\{n\mathbb{Z} : n \in \mathbb{N}\}.$

Dimostrazione: Sia $H \subseteq \mathbb{Z}$ un sottogruppo non banale.

Sia $k := min(H_{>0})$ dove $H_{>0} := \{h \in H : h > 0\}.$

Sia $h \in H_{>0}, h \neq k$.

Allora h > k e h = nk + r, $n \in \mathbb{N}, 0 \le r < k$.

Dunque $r = h - nk \in H \rightarrow r = 0$ per la minimalità di k.

Definizione: Un gruppo G è detto **ciclico** se esiste $g \in G$ tale che $\langle g \rangle = G$. Un gruppo ciclico è anche abeliano

Esempio:

- $\mathbb{Z} = \langle 1 \rangle$ è ciclico
- $\mathbb{Z}_n = \langle \overline{1} \rangle$ è ciclico
- $\mathbb{Z} \times \mathbb{Z} = \langle (1,0), (0,1) \rangle$ non è ciclico, infatti in $\mathbb{Z} \times \mathbb{Z}$, se $(a,b) \in \mathbb{Z} \times \mathbb{Z}$, $\langle (a,b) \rangle = \{(ka,kb) : k \in \mathbb{Z}\} = \{(x,y) : a \text{ divide } x,b \text{ divide } y\} \subsetneq \mathbb{Z} \times \mathbb{Z}$.
- $\mathbb{Z}_2 \times \mathbb{Z}_2$ non è ciclico. Infatti, in $\mathbb{Z}_2 \times \mathbb{Z}_2$ si ha:
 - $\langle (\overline{0}, \overline{0}) \rangle = \{ (\overline{0}, \overline{0}) \}$
 - $\langle (\overline{0}, \overline{1}) \rangle = \{\overline{0}\} \times \mathbb{Z}_2$
 - $\langle (\overline{1}, \overline{0}) \rangle = \mathbb{Z}_2 \times \{\overline{0}\}$
 - $-\ \langle (\overline{1},\overline{1})\rangle = \{(\overline{0},\overline{0}),(\overline{1},\overline{1})\}$

Quindi nessun elemento di $\mathbb{Z}_2 \times \mathbb{Z}_2$ genera $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Teorema (di isomorfismo per gruppi abeliani): Sia $f: G_1 \to G_2$ un morfismo di gruppi abeliani. Allora esiste un morfismo iniettivo $\varphi: {}^{G_1}/\kappa_{er\varphi} \to G_2$ tale che il seguente diagramma è commutativo:

$$G_1 \xrightarrow{f} G_2$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

In particolare, $G_1/Ker(f) \simeq \Im(f)$.

Dimostrazione: L'assegnazione $[g] \mapsto f(g), \forall g \in G$, definisce una funzione φ : $G_1/Ker(f) \to G_2$.

Infatti, se $g' \sim g$, ossia [g] = [g'], allora $g = g' + h, h \in Ker(f)$.

Dunque f(g) = f(g' + h) = f(g') + f(h) = f(g'). Poiché f è morfismo di gruppi, anche φ lo è.

Inoltre $Ker(f) = \{[g] \in G/Ker(f) : \varphi([g]) = O_2\} = \{[g] \in G/Ker(f) : f(g) = O_2\} = [O_1].$ Quindi φ è iniettiva.

Infine, $\varphi: G_1/Ker(f) \to Im(f)$ è un morfismo di gruppi, iniettivo e suriettivo, quindi un isomorfismo.

Teorema: Sia G un gruppo ciclico. Allora ogni sottogruppo di G è ciclico.

Dimostrazione: Sia $g \in G$ tale che $g = \langle g \rangle$. La funzione $\varphi : (\mathbb{Z}, +) \to G$ definita da $\varphi(g) = g^n, \forall n \in \mathbb{Z}, \ \grave{e}$ un morfismo suriettivo di gruppi.

- G è infinito: allora $Ker(f) = \{0\}$ e quindi φ è iniettivo. Dunque φ è un isomorfismo di gruppi. Tutti i sottogruppi di \mathbb{Z} sono ciclici.
- G è finito: sia $H \subseteq G$ un sottogruppo. Allora $\varphi^{-1}(H) := \{n \in \mathbb{Z} : \varphi(n) \in H\} \subseteq \mathbb{Z}$ è un sottogruppo di \mathbb{Z} , quindi esiste $\varphi^{-1}(H) = \langle k \rangle$ con $k \in \mathbb{N}$.

 La restrizione φ : $k\mathbb{Z} \to H$ è un morfismo suriettivo di gruppi e $\varphi(hk) = \varphi(\underbrace{k+k+\cdots+k}) = \varphi(k)\varphi(k)\cdots\varphi(k) = [\varphi(k)]^h, \forall h \in \mathbb{Z}$. Quindi $H = \langle \varphi(k) \rangle$.

Corollario: L'insieme dei sottogruppi di $\mathbb{Z}_n, n \in \mathbb{N}$ è $\{\langle \overline{m} \rangle : \overline{m} \in \mathbb{Z}_n \}$.

Proposizione: Sia $n \in \mathbb{N}$ e sia d/n (d divide n). Allora esiste al più un unico sottogruppo di \mathbb{Z}_n di cardinalità d.

Dimostrazione: Sia $H \subseteq \mathbb{Z}_n$ sottogruppo tale che |H| = d. Si considerino le proiezioni canoniche $\mathbb{Z} \to^{\pi_1} \mathbb{Z}_n \to^{\pi_2} \mathbb{Z}_n / H$.

Poiché $\pi_1^{-1}(H) = \{m \in \mathbb{Z} : \pi_1(m) \in H\}$ è un sottogruppo di \mathbb{Z} , allora esiste $k \in \mathbb{N}$ tale che $\pi_1^{-1}(H) = k\mathbb{Z}$. Inoltre $Ker(\pi_1 \cdot \pi_2) = \pi_1^{-1}(H)$ e quindi, essendo $\pi_1 \cdot \pi_2$ un morfismo suriettivo di gruppi, $\mathbb{Z}_n/H \simeq \mathbb{Z}/\pi^{-1}(H) = \mathbb{Z}/k\mathbb{Z} = \mathbb{Z}_k$.

Quindi $|\mathbb{Z}_k| = k = |\mathbb{Z}_n/H| = |\mathbb{Z}_n|/|H| = \frac{n}{d}$, ossia k è univocamente determinato, e allora $H = \pi_1(k\mathbb{Z})$ è univocamente determinato.

Esempio: I sottogruppi di \mathbb{Z}_{899} sono quattro, perché $899 = 31 \cdot 29$, quindi c'è un sottogruppo di cardinalità 1 (il sottogruppo banale), uno di cardinalità 31, uno di cardinalità $29 \in \mathbb{Z}_{899}$.

Sono: $\{\{0\}, \langle \overline{29} \rangle, \langle \overline{31} \rangle, \mathbb{Z}_{899}\}.$

1.6 Anelli

Definizione: Sia X un insieme su cui sono definite due operazioni $+ e \cdot X$ è un **anello** con unità 1_X se:

- (X, +) è un gruppo abeliano
- (X,\cdot) è un monoide con unità 1_X

• vale la proprietà distributiva:

$$-a \cdot (b+c) = a \cdot b + a \cdot c$$

$$-(a+b) \cdot c = a \cdot c + b \cdot c, \forall a, b, c \in X$$

Definizione: Diaciamo che un anello X è **commutativo** se il monoide (X, \cdot) è commutativo.

Indichiamo con "0" l'identità del gruppo (X, +).

Esempio:

- Gli insiemi $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ con le operazioni di addizione e moltiplicazione sono anelli commutativi con unità, che è il numero "1".
- L'insieme delle matrici $n \times n$, n > 1 a valori su \mathbb{Z} , su \mathbb{Q} , su \mathbb{R} o su \mathbb{C} , con l'operazione di somma e il prodotto righe per colonne, è un anello **non commutativo**, con unità la matrice identità.

In generale, se A è un anello commutativo con unità, l'insieme $Mat_{n\times n}(A)$ delle matrici a valori in \mathbb{R} con le operazioni di somma e prodotto righe per colonne, è un anello non commutativo con unità.

• $\{X\}$ è un anello, detto **anello nullo**. Le due operazioni sono la stessa e $0 = 1_{\{X\}} = x$.

Considereremo sempre $0 \neq 1_A$ e studieremo solo anelli commutativi con unità. Quindi quando diremo "anello" intendiamo "anello con unità".

Definizione: Sia A un anello commutativo. Un elemento $x \in A$ è detto **zero divisore** se esiste $y \in A \setminus \{0\}$ tale che xy = 0.

Definizione: Diciamo che un elemento $x \in A$ è **invertibile** se è un elemento invertibile del monoide (A, \cdot) .

Proposizione: Sia A un anello commutativo. Allora l'insieme degli elementi invertibili di A è disgiunto dall'insieme degli zero divisori di A.

Dimostrazione: Siano $x, y \in A$ tali che xy = 0. Se X è invertibile, allora $x^{-1}xy = y = 0$, quindi x non è uno zero-divisore.

Proposizione (legge di cancellazione): Sia A un anello commutativo e sia $x \in A$ un elemento che non è uno zero-divisore. Allora $xy = xz \rightarrow y = z, \forall y, z \in A$.

Dimostrazione: Se xy = xz allora x(y - z) = 0. Poiché x non è uno zero-divisore, allora y - z = 0, ossia y = z.

Definizione: Un anello commutativo privo di zero-divisori non nulli è detto **dominio** di integrità.

Definizione: Un anello commutativo i cui elementi non nulli sono tutti invertibili è detto campo.

Esempio: L'anello \mathbb{Z} è un dominio di integrità, ma non è un campo. Gli anelli $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ sono campi.

1.7 Ideali

Definizione: Sia A un anello commutativo. Un sottoinsieme $I \subseteq A$ è detto **ideale** di A se:

- $I \ \dot{e} \ un \ sottogruppo \ di \ (A, +)$
- $ax \in I, \forall a \in A, x \in I$

Esempio: Abbiamo già visto che ogni sottogruppo di $(\mathbb{Z}, +)$ è del tipo $n\mathbb{Z} = \{kn : k \in \mathbb{Z}\}$, dove $n \in \mathbb{N}$. Inoltre, se $a \in \mathbb{Z}$ e $x \in n\mathbb{Z}$, ossia x = kn per qualche $k \in \mathbb{Z}$, si ha che $ax = akn \in n\mathbb{Z}$. Quindi $n\mathbb{Z}$ è un ideale di $\mathbb{Z}, \forall n \in \mathbb{N}$, e tutti gli ideali di \mathbb{Z} sono di questo tipo.

Osservazioni: Siano $I,J\subseteq A$ ideali di un anello commutativo A. Allora :

- $I \cap J$ è un ideale di A
- $I + J := \{x + y : x \in I, y \in J\}$ è un ideale di A
- $IJ := \langle \{xy : x \in I, y \in J\} \rangle$ è un ideale di A

Definizione: Sia $S \subseteq A$ un sottoinsieme di un anello commutativo. **L'ideale generato** da S è l'intersezione di tutti gli ideali di A che contengono S e lo indichiamo con $\langle S \rangle$. Se $S = \{x\}$, diciamo che $\langle S \rangle$ è l'ideale principale generato da $x \in A$.

Esempio: Abbiamo visto che gli ideali di \mathbb{Z} sono tutti e soli i sottoinsiemi $n\mathbb{Z} = \langle n \rangle, n \in \mathbb{N}$. Quindi gli ideali di \mathbb{Z} sono tutti principali.

Definizione: un anello i cui ideali sono tutti principali si dice anello ad ideali principali.