NEW KIDNEY BEAN GENE

Publication number: JP7132092 (A) Publication date: 1995-05-23

HAGIWARA KIYOSHI Inventor(s):

Applicant(s):

NORINSUISANSHO NOGYO SEIBUTSU

Classification:

C12N15/09; C07K14/415; C07K14/42; C12N1/21; C12R1/19; C12N15/09; - international:

C07K14/415; C12N1/21; C07K14/415; (IPC1-7): C07K14/42; C12N15/09; C12N1/21;

C12N1/21; C12R1/19

- European:

Application number: JP19930305988 19931111 Priority number(s): JP19930305988 19931111

Abstract of JP 7132092 (A)

PURPOSE:To provide a new gene useful for producing insect-resistant crop, also valuable for varietal gene analysis or as a marker for genome analysis. CONSTITUTION: The objective gene having a base sequence coding the amino acid sequence of a lectin-like protein in Kentucky wonder, a variety of kidney bean (e.g. a gene 1211 bp in length of formula I or II). This gene can be obtained by chemical synthesis of a primer based on an appropriate sequence of the lectin-like protein and by cloning from the genomic DNA by PCR method.

* ************************************	11
Panastantantares and Panasis properties est.	£1
	!
Paleschaustanterate Jahoborgengeragnich	4.5
Ell torniberdengarengente SASterivenitententente	14
toi chottanigassatouscas Efficientaansenateu	r a 3
APA-PAAMMISASSATSSS USAAMATTIONIMITES	11
	1
Dilectorates dillertacontessas	71
talineatil to	

Data supplied from the esp@cenet database — Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-132092

(43)公開日 平成7年(1995)5月23日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ			技術表示箇所
C 1 2 N 15/09	ZNA					
1/21		7236 - 4B				
C07K 14/42		8318 – 4H				
(C 1 2 N 1/21						
		9050-4B	C 1 2 N	15/ 00	ZNA A	
		審査請求	未請求。請求項			
(21)出願番号	特願平5-305988		(71)出願人	591127076		
				農林水産省農	業生物資源研究	究所長
(22)出願日	平成5年(1993)11	月11日		茨城県つくは	市観音台2丁	1 - 2
			(72)発明者	萩原 清		
					(市観音台2丁 生物資源研究)	目1の2 農林
			(74)代理人			1名)
			1			

(54) 【発明の名称】 新規ないんげん豆遺伝子

(57)【要約】

【目的】 耐虫性作物を作出するための、あるいはいん げん豆ゲノム解析及びいんげん豆品種間の遺伝分析をするための、いんげん豆の品種名ケンタッキーワンダーの レクチン様蛋白質遺伝子の単離と、その構造を解析する ことにある。

【構成】 いんげん豆の品種名ケンタッキーワンダーのレクチン様蛋白質のアミノ酸配列をコードしている塩基配列を有することを特徴とする遺伝子。

10

1

【特許請求の範囲】

【請求項1】 いんげん豆の品種名ケンタッキーワンダ ーのレクチン様蛋白質のアミノ酸配列をコードしている 塩基配列を有することを特徴とする遺伝子。

前記塩基配列が図1、2、3に示された 【請求項2】 ものである請求項1記載の遺伝子

請求項1または2記載の遺伝子を含むこ 【請求項3】 とを特徴とするベクター。

【請求項4】 請求項1または2記載の遺伝子が組み込 まれたことを特徴とする生物。

請求項1または2記載の遺伝子のプロモ 【請求項5】 ーター領域のDNA鎖。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、いんげん豆の品種名ケ ンタッキーワンダーのレクチン様蛋白質クローン化DN A、その断片並びに、上記のクローン化DNAまたは断 片が組み込まれたプラスミド、または、植物、動物、微 生物に関する。

[0002]

【従来の技術】いんげん豆には、アズキゾウムシなどに 対して耐虫性をもたらす因子であるα-アミラーゼイン ヒビターが含まれている。このα-アミラーゼインヒビ ターのうちの一つは、近年いんげん豆の品種テンダーグ リーンよりクローニングされ、遺伝子レベルでもその構 造が明らかとなった。その結果、遺伝子としてはレクチ ン様蛋白質遺伝子の一部としてコードされていることが わかっている(L. Mホフマン(L. M. Hoffm ann) 分子及び応用遺伝学(J. Mol. App から453ページ〕。従って、耐虫性α-アミラーゼイ ンヒビターは遺伝子としては、レクチン様蛋白質である と言える。このレクチン様蛋白質遺伝子、α-アミラー ゼインヒビター、および耐虫性との関連は古くより詳細 に検討されてきた。しかしながら、α-アミラーゼイン ヒビターとして総称される蛋白質は、いんげん豆で多く の種類が検出される。そのうちのいくつかのものは、も ともと1種類のものが修飾を受けた結果多くの種類のα ーアミラーゼが検出されるであることがわかっているが (JoaquinMereno and Maarte n J. Chrispeels)、プロシーディング ス オブ ザ ナショナル アカデミー オブ サイエ ンシーズオブ ザ USA (Proc. Natl. Acad. Sci. USA) 1989年 86巻 第7885ペーシから7889ページ〕、まだ未発見の レクチン様蛋白質遺伝子及びα-アミラーゼインヒビタ 一遺伝子も多数存在すると推定される。また、いんげん 豆では遺伝子が分子レベルで解析されているものは少な

い。従って、品種の遺伝子分析やゲノム解析のマーカー として利用可能な遺伝子はほとんどない現状である。そ して、すでにクローニングされているいんげん豆の品種

名テンダーグリーンのレクチン様蛋白質の他には、耐虫 性α-アミラーゼの遺伝子をコードするDNAはクロー ニングされておらず、またいんげん豆の場合は、品種特 異的遺伝子マーカーもない。従って、新規のレクチン様 蛋白質遺伝子をクローニングできれば、耐虫性作物の作 出に有用のみならず、品種の遺伝子分析やゲノム解析の

[0003]

マーカーとしても有用である。

【発明が解決しようとする課題】本発明の目的は、耐虫 性作物の作出に必要な耐虫性遺伝子を豊富化するととも に、この遺伝子を組み込んだ新しい生物を提供する点に ある。本発明の他の目的は、この新規遺伝子を品種の遺 伝子分析やいんげん豆ゲノム解析用マーカーとして利用 する道を提供する点にある。

[0004]

【課題を解決するための手段】本発明者は、前記課題解 20 決のために鋭意研究を重ねた結果、いんげん豆の品種名 ケンタッキーワンダーのレクチン様蛋白質遺伝子のクロ ーニング及び塩基配列の解析に成功し、このいんげん豆 の品種名ケンタッキーワンダーのレクチン様蛋白質のア ミノ酸配列をコードしている塩基配列が、いんげん豆の 品種テンダーグーリーンのそれと較べて、かなり異った 配列を持つものであり、そのホモロジーは約71%であ ることを発見し(図5参照)、本発明に至ったものであ る。ちなみに、いんげん豆の品種名大正金時のレクチン 様蛋白質のアミノ酸配列をコードしている塩基配列は、 Genet.) 1984年 2巻 447ページ 30 いんげん豆の品種テンダーグリーンのそれと較べてその ホモロジーは約99.8%であり(図4参照)、ほぼ同 一の遺伝子であった。

> 【0005】すなわち、本発明の第1は、いんげん豆の 品種名ケンタッキーワンダーのレクチン様蛋白質のアミ ノ酸配列をコードしている塩基配列を有することを特徴 とする遺伝子に関する。

> 【0006】本発明の第2は、前記遺伝子を含むベクタ 一に関する。

【0007】本発明の第3は、前記遺伝子が組み込まれ 〔ジャクイン・モレノとマーチン・J・クリスピールス 40 た生物に関する。前記生物は植物、動物または微生物を 意味する。

【0008】本発明の遺伝子は、つぎのようにして得る ことができる。すなわち、前記遺伝子はレクチン様蛋白 質の適当な配列をもとにしたプライマーを化学合成し、 これを用いてゲノミックDNAよりポリメリゼーション チェイン・リアクション法によりクローニングでき る。また、既知の遺伝子か新規遺伝子であるかの区別 は、得られた遺伝子の電気泳動法による分子量測定によ り推定できる。さらに、蛍光色素を用いた、ポリメリゼ く、品種間差のある遺伝子はほとんど見いだされてな 50 ーションチェインターミネーション法等により、DNA の全塩基配列決定を行うことができ、これにより新規遺 伝子であることを確認した。得られた遺伝子を構造解析 した結果、テンダーグリーンのレクチン様蛋白質の遺伝 子とホモロジーを有しており、このことが、得られた遺 伝子がいんげん豆の品種名ケンタッキーワンダーのレク チン様蛋白質の遺伝子であることの確証となった。この 塩基配列は電子出願上1つの図ではおさまらないので図 1~3に分けて記載した。

【0009】第3番目の本発明である前記DNA鎖を含 む生物はつぎのようにして製造することができる。すな 10 わち、本発明の遺伝子を適当な植物用発現ベクター、例 えばPBI 121 (クローンテック社製)、BIN1 9 (Nucleic, Acid, Research. 1 2,8711-8721,1982年)、などに接続す ることにより、植物等でいんげん豆・ケンタッキーワン ダーのレクチン様蛋白質を生産させる発現ベクターを構 築することができる。このようにして、いんげん豆・ケ ンタッキーワンダーのレクチン様蛋白質遺伝子を連結し て構築した発現ベクター、例えばアグロバクテリウムに よる植物の形質転換法などによって、例えばタバコ、ジ 20 豆のレクチン様蛋白質をコードすると推定されるDNA ャガイモ、アラビドプシス、アスパラガス、トマト、あ ずき等に導入し、遺伝子組換え植物を作製できる。また 例えばエレクトロポレーション法、例えばパーティクル ガン法によって、例えばダイズ、イネ、トウロモコシ等 の植物、動物または微生物に、直接遺伝子を導入し、形 質転換植物を作製することができる。またさらに、植物 等に導入したい遺伝子を、いんげん豆・ケンタッキーワ ンダーのレクチン様蛋白質遺伝子のプロモーター部分に 連結し、前記と同様の植物等への遺伝子導入の手法を用 いて導入すれば、組織特異的発現のプロモーターとして 30 および大正金時由来のDNA断片について、PUC19 使用できる。

[0010]

【実施例】

(a) いんげん豆DNAの調製

いんげん豆の品種名ケンタッキーワンダー、大正金時を 含む4種類のいんげん豆の品種についてDNAの抽出を 行った。豆より、セチル・トリメチル・アンモニウム・ ブロミド法 (CTAB法) を用いてDNA調製を行っ た。以下にその操作を示す。いんげん豆10gを乳鉢で 荒く摩砕後コーヒーミルで粉末になるまでで摩砕した。 豆粉末に50m1の緩衝液(2%セチル・トリメチル・ アンモニウム・ブロミド; 0. 1 Mトリス-HC1、p H8. 0; 1. 4M NaCl; 1%ポリビニルピロリ ドン)を加えて撹拌し、さらに50m1のクロロホルム ・イソアミルアルコール混合液(クロロホルム24に対 してイソアミルアルコール1の比率)を加えさらに撹拌 する。その後遠心分離機で遠心分離し、上清部に再び5 0mlのクロロホルム・イソアミルアルコール混合液 (クロロホルム24に対してイソアミルアルコール1の 比率) を加えさらに撹拌する。その後再び遠心分離機で 50 を行った。DNAとしては、いんげん豆の品種名ケンタ

遠心分離し上清部に4m1の10%セチル・トリメチル ・アンモニウム・ブロミドを加え、さらに等容積の沈殿 用緩衝液(1%セチル・トリメチル・アンモニウム・ブ ロミド; 5 mMトリス-HC1、pH8. 0; 10 mM

EDTA)を加え撹拌後、遠心分離機で遠心分離す る。遠心沈殿部に緩衝液(10mMトリス-HC1;1 mM EDTA; pH8. 0) 5mlを加え、溶解後工 タノール沈殿を行い、DNA標品とした。この操作の結 果4種類のいんげん豆より4種類のDNAを得た。

【0011】(b) いんげん豆のDNAよりレクチン 様蛋白質のDNAのクローニング。

実施例(a)によって得られたいんげん豆DNAを材料 としてポリメリゼーション・チェイン・リアクション反 応を行った。反応条件は、DNA変性ステップ:95 **℃、1分、DNAアニール:55℃、2分、ポリメリゼ** ーション反応:72℃、3分、これを25サイクル行っ た。反応スケールは50μ1で、1サンプルに付き3つ 反応を行った(3×50μ1)。反応物を分析した結 果、おのおのの品種のいんげん豆のDNAよりいんげん 断片が得られた。この得られたDNA断片を0.8%ア ガロースを用いる電気泳動法により、分子量の推定を試 みた結果、いんげん豆のうち、品種名ケンタッキーワン ダーのレクチン様蛋白質遺伝子が、分子量に特に大きな 変異があることが判明した。

【0012】(c) クローン化ケンタッキーワンダー レクチン様蛋白質のDNA塩基配列の決定。

実施例(b)によって得られたレクチン様蛋白質をコー ドするDNA断片のうち、品種名ケンタッキーワンダー プラスミドに組み込んだ。このレクチン様蛋白質をコー ドするDNA断片をPUC19プラスミドに組み込んだ プラスミドを大腸菌JM103ストレインに導入し、こ の大腸菌を増殖し、これよりアルカリーSDS法を用い てプラスミドDNAを抽出精製した。その結果このプラ スミドを大量に増幅することに成功し、以降の実験に用 ひた。

【0013】DNA塩基配列の決定は、前記のプラスミ ド約1μgを材料として、プライマーとしては、東洋紡 績株式会社製のM13フォワード、リバースプライマー および3種類のカスタムプライマーを用いた。塩基配列 決定反応は、ABI社製のダイターミネターDNA塩基 配列決定用試薬キットを用いて、ABI社指定のマニュ アルに従い反応を行った。さらに反応物は緩衝液(トリ ス-HCl・1mMEDTA・pH8. 0) にて平衡化 したバイオラッド社製バイオゲルΡ30(400μ1) により、ゲルろ過精製を行い、未反応物等を除去し、エ タノール沈殿を行った。このサンプルをABI社製DN Aシーケンサーを用いて電気泳動と遺伝子塩基配列決定 5

ッキーワンダーおよび大正金時の2種類についてDNA 全塩基配列の決定を行った。

【0014】(d) 遺伝子の解析。

実施例(c)によって決定された、いんげん豆のレクチ ン様蛋白質をコードするDNA断片の塩基配列の解析を 行った結果、いんげん豆の品種名大正金時の遺伝子は、 既知のいんげん豆の品種名テンダーグリーンのレクチン 様蛋白質をコードするDNAとほぼ完全に一致した (9 9. 8%の一致)。このデータは図4に相同性プロット として示す。しかしながら、いんげん豆の品種名ケンタ 10 ッキーワンダーのレクチン様蛋白質は71%の相同性を 示し、大正金時やテンダーグリーンのレクチン様蛋白質 とは異なる遺伝子である。この結果は、図5に相同性プ ロットとして示す。しかも十分な相同性を示すことから レクチン様蛋白質であることは、明らかで、新規なレク チン様蛋白質遺伝子であることが確証された。

[0015]

【発明の効果】本発明は、いんげん豆のうちの1つの変 種であるケンタッキーワンダーに、従来のテンダーグリ ーンのものとは遺伝子配列の異なる新たなレクチン様蛋 20 るところが同一であることを意味している。 白質遺伝子を見出し、クローニングに成功し、さらに全 塩基配列を決定した。この遺伝子は、新規耐虫性遺伝子 としての利用が期待される。またその上流部分の塩基配 列は、従来のレクチン様蛋白質のプロモーターと著しく

異なるので新規プロモーター配列として産業上有用な利 用が期待される。さらにこれらの結果、レクチン様蛋白 質遺伝子は、いんげん豆の品種間において構造に違いが あることがわかった。この違いより、このレクチン様蛋 白質遺伝子は、いんげん豆のゲノム解析あるいはいんげ ん豆の品種の遺伝解析のDNAマーカーとしても有用で ある。

6

【図面の簡単な説明】

【図1】本発明のいんげん豆の品種名ケンタッキーワン ダーのレクチン様蛋白質のアミノ酸配列をコードしてい る塩基配列の一部を示す。

【図2】本発明のいんげん豆の品種名ケンタッキーワン ダーのレクチン様蛋白質のアミノ酸配列をコードしてい る塩基配列の一部(図1のつづき)を示す。

【図3】本発明のいんげん豆の品種名ケンタッキーワン ダーのレクチン様蛋白質のアミノ酸配列をコードしてい る塩基配列の一部(図2のつづき)を示す。

【図4】いんげん豆の品種名大正金時とテンダーグリー ンのLLP遺伝子の相同性プロットを示す。重なってい

【図5】いんげん豆の品種名ケンタッキーワンダーとテ ンダーグリーンのLLP遺伝子の相同性プロットを示 す。重なっているところが同一であることを意味してい

【図1】

(4)

1 20 4 D GCTCTTCACATGTGTCTTC CTCTCACTGCTACG 41
TGCAACCCGCTTCTCTCCA TAAATATCTCTTCAACTTTAA 81 ACTAATTATTTCATATTTT TTCAATGTTTCTGATGACGTG 121 140 160 GATGGATTGCCATCGTTGC TTAATTCTTATTTTATATTC 161 180 200 TTATTCTCCCTCAAATAA TATTACAAAAGAAAAAAGTT 2 0 1 2 2 0 2 4 0 AATCATT CGAAAACACGTG TTTAATAACAAAACGAAAGAA 241 260 280 AAAAGTTCGAAAGTTTTTG CAGTTGTTGTTATAAATAG 281 300 320 AGAAGAGAGAGATGATTAA TOCATGAATGCATACATGGGT 321 340 CCTCCAACTTACTCTCCC TAGGCCTCTTCCTTGGGCTTC 361 380 400 TCACCCTCGGAAACTCAGC CACCGAAACCTCCTTCAATAT

【図2】

																		с																					
4 G	4 C	1 C	A	T	c	G	T	С	т	c	A	T	c	G	A	A	С	G	4 G	6 C	0 A	A	С	т	т	A	C	A	A	С	т	A	c	C	c	T	4 A	8 T	O A
4 A	B	1 T	c	A	=	A	¢	G	A	c	т	¢	T	A	т	Œ	A	G	5 C	O A	O G	A	đ	c	C	т	T	c	T	A	С	Т	¢	C	G	c	5 C	2 C	o C
5 C	2 A	1 T	c	C	A	A	A	т	С	A	G	Œ	Œ	A	c	A	G	С	5 A	4 C	0 C	A	c	C	G	G	c	A	A	c	G	T	C	G	T	С	5 A	6 G	Ö
5 T	6 T	ı	a	A.	c	A	c	¢	A	A	c	T	T	c	A	c	A	A	5 T	8 G	0 A	A	т	A	T	c	c	G	c	A	C	T	c	A	С	c	6 G	o C	o C
																		đ																					
																		A																					
6 T	B	1 C	G	A	c	A	c	С	т	Ŧ	c	c	T	T	A	α	c	c	7 G	o T	o A	T	т	A	G	c	A	T	C	Ģ	A	c	G	C	G	A	7 A	a	O A
7 A	2 C	1 A	A	c	a	A	Т	A	T	c	A	A	A	A	G	C	G	T	7 G	4 C	0	т	т	G	đ	a	A	T	Œ	T	A	c	A	c	G	A	7 C	5 T	0 A
																		Œ																					
8	0	1 C	A	C	a	A	A	Q.	Q.	т	c	T	т	Ţ	G	c	G	a	8 T	2 T	o T	c	т	c	т	G	T	T	A	Á	A	c	С	С	т	T	8	4 T	0 A

【図3】

8	4 G	1 G	G	A	A	A	G	A	G	c	A	A	c	G	Á	¢	G	т	8 C	6 T	0	T	Á	c	C	A	C	A	G	T	Ģ	Œ	A	đ	С	T	8 G	8 G	0 A
g	B A	1 A	A	G	A	A	Œ	T	T	T	A	c	G	A	c	T	Œ	G	9	O T	G G	A	G	G	G	т	T	G	Ġ	G	T	T	¢	T	¢	T	9 G	2 C	0
9 A	2 C	1 C	T	С	A	G	G	a	G	c	T	T	A	T	С	A	A	T	9 G	4 G	0 A	Ģ	С	T	A	T	Œ	A	A	A	C	G	c	A	c	G	9 A	6 C	O G
9	6 T	1 C	T	С	T	С	Œ	т	G	G	T	C	T	T	T	T	T	c	9 T	8 T	0	¢	A	A	G	T	ť	ď	À	T	c	A	A	T	c	1 T	O T	O A	0 A
																		T																					
1	O T	4 C	Ċ	T	c	T	A	G	A	¢	T	C	¢	A	A	A	A	A	ı C	0	6 A	0	C	T	c	c	A	c	T	G	T	G	A	C	A	1 G	O T	8 C	O T
1	Ó	8	1 T	С	T	т	С	Ţ	т	T	T	T	С	c	T	Œ	c	T	1 A	1 A	0 T	O A	A	T	c	T	T	¢	A	T	С	T	G	T	C	1 A	c	2 A	0
																		A																					
1	1 T	6 A	i Ç	A	С	A	A	T	c	т	A	C	A	С	т	G	c	т	1 T	1 A	8 T	0 T	A	T	T	c	A	С	c	A	T	G	c	G	T	1 ¢	2 T	0 T	O A
1	2 T	0	1	T	G	¢	1 A	2 T	1 A	I A				3 '																									

フロントページの続き

 (51) Int. Cl. 6
 識別記号
 庁内整理番号
 F I
 技術表示箇所

 C 1 2 R 1:19)