Reconhecimento facial

Jones Granatyr

Visão computacional simula a capacidade do olho humano

Detecção x Reconhecimento

Aplicações

- Detecção
 - Contar quantas pessoas estão no ambiente
 - Alarmes
 - Controle de tráfego em rodovias
 - Obter o tamanho de um objeto
 - Detecção de sorrisos em câmeras/ajuste de foco
- Reconhecimento
 - Desbloqueio do celular
 - Sistemas de segurança
 - Validação em cursos on-line
 - Identificar bandidos

Laranja camisa Azul calção Azul sapato Marrom boca Azul calca Cinza sapato

8.97,3.45,2.35,0.0,00.00,0.00,Bart 6.75,0.94,0.52,0.00,0.00,0.00,0.00,Bart 9.69,4.10,1.56,0.00,0.00,0.00,0.00,Bart 0.00,0.00,0.00,4.68,0.66,0.01,Homer 0.00,0.00,0.00,0.12,2.50,0.03,Homer 0.00,0.00,0.00,5.80,0.50,1.28,Homer

Algoritmos

- Eigenfaces
- Fisherfaces
- ▶ LBPH (Local Binary Patterns Histograms)

Etapas para o reconhecimento

Captura das fotos de treinamento

- Capturar as imagens da pessoa pela webcam e atribuir um identificador (id)
- Formato
 - pessoa.{id}.{numerofoto}.jpg
 - pessoa.1.1.jpg
 - pessoa.1.2.jpg
 - pessoa.2.1.jpg
 - pessoa.2.2.jpg
- Tamanho padrão das imagens (220 x 220)

Recomendações captura das fotos

- As imagens para o treinamento são fundamentais para um reconhecimento eficiente
- Fazer um ensaio antes de tirar as fotos
- Ambiente bem iluminado
- Variações na expressão (feliz, triste, com e sem óculos)
- Ângulo (olhando levemente para cima, baixo, esquerda, direita)
- Luz incidindo no rosto

Eigenfaces

Eigenfaces

Eigenvector - "vetor próprio"

$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -3 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ -3 \end{bmatrix}$$
Eigen vector
$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -3 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
Eigen value

Cada face é uma coluna

PCA (Principal Component Analysis)

Quanto as pessoas variam da média Maior variação no cabelo Mostra os desvios (variações)

Remover informação inútil Reduzir dimensionalidade

Eigenfaces – treinamento

- Imagem 256x256 = 65.536 pixels que é um espaço muito grande
- Um conjunto de imagens pode mapear um grupo de pontos neste grande espaço
- As faces são decompostas numa série de componentes principais
- Como as faces são parecidas (olhos, boca, nariz), os pontos principais não serão distribuídos aleatoriamente (focar em áreas de mudanças)
- Cada face pode ser representada como a combinação linear de diversas eigenfaces
- A variação ajuda a diferenciar uma face da outra
- Considera a iluminação como uma característica importante
- Encontrar vetores que melhor representam a distribuição das faces
- Eigenvector projeta as imagens de faces no espaço de faces

Eigenfaces - classificação

- Projeta a imagem de teste no espaço de faces
- Extrai componentes eigenfaces da imagem
- Calcula a distância entre a nova face e as faces de treinamento (knn)
- Busca nas imagens de treinamento pela mais semelhante

Parâmetros Eigenfaces – num_components

- Número de componentes principais (eigenfaces)
- Não há uma regra de quantos componentes devem ser usados (a documentação indica que 50 é quase sempre suficiente)
- Exemplo
 - 100 faces geraram 50 componentes
 - A face é recodificada como 50 valores de componentes (assinatura do rosto)

Parâmetros Eigenfaces - Threshold

 Limite de confiança/distância (vizinho mais próximo - knn)

- ▶ Faces detectadas com valor de threshold maior que o especificado são consideradas desconhecidas (retorna -1)
- Margem de erro que indica se uma face pertence a alguma classe da base de treinamento
- Como definir o valor?

Fisherfaces

Fisherfaces

- Eigenfaces olha para todas as imagens de todas as pessoas de uma vez e tenta encontrar componentes de todas elas combinadas
- Não foca nas características que distinguem um indivíduo do outro (faces da pessoa como um todo)
- PCA foca na variação
- A iluminação é um componente importante e pode descartar outras características

Fisherfaces

- Utiliza LDA (Linear Discriminant Analysis), que também reduz as dimensões
- LDA não está interessado na maior variação, mas em maximizar a separação entre as classes
- Extração das características separadamente (a iluminação de uma face não afetará as outras faces)
- Fisherfaces podem ser calculados usando PCA ou regularização
- Parâmetros OpenCV
 - num_components
 - threshold

LBPH (Local Binary Patterns Histograms)

LBPH

12	15	18
5	8	3
8	1	2

42	55	48
35	38	33
38	30	32

Se >= 8 então 1 Se < 8 então 0

1	1	1
0	8	0
1	0	0

Binário = 11100010 Decimal = 226

LBPH - Treinamento e classificação

- O número decimal é usado para treinar o sistema, gerando um histograma dos valores (um histograma para cada face)
- Encontrar a estrutura local da imagem por meio dos vizinhos
- Gera o histograma para a nova imagem e compara com os histogramas da base de dados

Parâmetros - radius

- Raio maior aumenta a abrangência mas pode perder bordas finas (pontos mais distantes)
- Quanto maior o raio mais padrões podem ser codificados, mas aumenta o esforço computacional

Fonte: https://en.wikipedia.org/wiki/Local_binary_patterns

Parâmetros – neighbors

- Número de pontos da amostra para construir um padrão local
- Quanto maior o número de vizinhos maior é o esforço computacional

12	15	18
5	8	3
8	1	2

Outros parâmetros

- grid_x
 - Número de células na horizontal
 - Quanto mais células maior é a dimensionalidade do vetor de características (histogramas)
- grid_y
 - Número de células na vertical
 - Se a grade aumentar serão usados menos pixels em cada histograma (mais esparços)
- threshold
 - Limite de confiança

Conclusão