Exercice 1 - Mesurables! - L3 - $\star\star$

- 1. Soit A un borélien de \mathbb{R} et f l'indicatrice de \mathbb{Q} . Alors, $f^{-1}(A)$ est égal à :
 - $-\varnothing \operatorname{si} A=\varnothing$;
 - $\{1\} \text{ si } A \subset \mathbb{Q};$
 - $\{0\} \text{ si } A \subset \mathbb{R} \setminus \mathbb{Q};$
 - $-\{0,1\}$ si A contient à la fois des rationnels et des irrationnels.

Dans tous les cas, $f^{-1}(A)$ est un borélien, et donc la fonction est mesurable.

- 2. Puisque les intervalles ouverts engendrent la tribu borélienne, il suffit de prouver que l'image réciproque de tout intervalle ouvert est un borélien. Soit I un tel intervalle. On pose $g:]-\infty,0]\to\mathbb{R}, \ x\mapsto -x$ et $h:]0,+\infty[\to\mathbb{R}, \ x\mapsto x+1$. Alors g et h sont continues. Ainsi, $g^{-1}(I)$ est un ouvert de $]-\infty,0]$, a fortiori un borélien de \mathbb{R} . De même, $h^{-1}(I)$ est un ouvert de $]0,+\infty[$, a fortiori un borélien de \mathbb{R} . Comme $f^{-1}(I)=g^{-1}(I)\cup h^{-1}(I)$, on en déduit que $f^{-1}(I)$ est un borélien, et donc f est mesurable.
- 3. On sait que toute fonction continue est mesurable, et que la limite simple de fonctions mesurables est mesurable. Ici, on peut écrire f' comme la limite simple de la suite (f_n) , où f_n est définie par

$$f_n(x) = \frac{f(x+1/n) - f(x)}{1/n}.$$

Chaque f_n étant continue, elle est mesurable. Donc f' est mesurable.

Exercice 2 - Fonctions monotones - L3 - **

Dans la suite, on supposera f croissante, le cas f décroissante étant symétrique.

- 1. Soient x < y deux éléments de $f^{-1}(]-\infty,c[)$ et considérons $z \in]x,y[$. Puisque f est croissante, on a $f(z) \le f(y) < c$, et donc $z \in f^{-1}(]-\infty,c[)$.
- 2. Rappelons que les ensembles $f^{-1}(]-\infty,c[),c\in\mathbb{R}$, engendrent la tribu des boréliens. Pour prouver que f est mesurable, il suffit donc de prouver que pour chaque $c\in\mathbb{R}$, $f^{-1}(]-\infty,c[)$ est un borélien. Mais c'est un convexe de \mathbb{R} , donc un intervalle, donc un borélien!

Exercice 3 - Fonction et son module - L3 - **

L'idée est la suivante. On va considérer un espace mesurable (E, \mathcal{T}) tel qu'il existe une partie A de E qui n'est pas mesurable. On définit ensuite une fonction f de module constant et telle que $f^{-1}(\{1\}) = A$. Ainsi, |f| est mesurable puisque constante, tandis que f n'est pas mesurable, car l'image réciproque du borélien $\{1\}$ n'est pas mesurable.

Pour le choix de (E, \mathcal{T}) et A, il suffit de savoir qu'un tel exemple existe. Si on veut expliciter un exemple, on peut prendre $E = \{0, 1\}$ et $\mathcal{T} = \{\emptyset, E\}$ qui est une tribu (la plus petite tribu sur E). On pose ensuite $A = \{0\}$.

Il est ensuite facile de définir f. On peut poser f(x) = 1 si $x \in A$ et f(x) = -1 si $x \notin A$. Elle vérifie les conditions voulues.

Si vous trouvez une erreur, une faute de frappe, etc... dans ces exercices, merci de la signaler à geolabo@bibmath.net Venez poursuivre le dialogue sur notre forum :

http://www.bibmath.net/forums