Statistical Learning

Homework 2

Part 1: Conceptual Questions

Problem 1. In an econometric model, we say that a parameter is identified if we can recover its value perfectly given the joint distribution of the observable variables. Suppose that (Y, X) is the observable variables and U is the unobservable variable.

- 1. Suppose that $Y = \beta_0 + \beta_1 X + U$ and E[U] = E[XU] = 0. Show that β_1 is identified. I.e., if you know the joint distribution of (Y, X), how do you determine the value of the parameter β_1 ?
- 2. Suppose that Y is binary and $Y = 1 (\beta_0 + \beta_1 X \ge U)$ and U is a standard normal (N(0,1)) random variable that is independent of X. If you know the joint distribution of (Y,X), how do you determine the value of the parameter β_1 ? Hint: $E[Y \mid X] = E[1(\beta_0 + \beta_1 X \ge U) \mid X] = \Phi(\beta_0 + \beta_1 X)$, where Φ is the standard normal CDF.

Problem 2. In this question, we show that in linear regression R^2 is a non-decreasing function of the number of the regressors. Consider the sample $(Y_i, X_{1,i}, X_{2,i})$, i = 1, 2, ..., n, with two predictors $X_{1,i}, X_{2,i}$. Let $\tilde{\beta}_0, \tilde{\beta}_1$ denote the OLS coefficients of the linear regression of Y_i against $X_{1,i}$. Let $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2$ denote the OLS coefficients of the linear regression of Y_i against $X_{1,i}$, $X_{2,i}$. Let \tilde{U}_i and \hat{U}_i denote the OLS residuals respectively. I.e.,

$$Y_{i} = \tilde{\beta}_{0} + \tilde{\beta}_{1} X_{1,i} + \tilde{U}_{i},$$

$$Y_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} X_{1,i} + \hat{\beta}_{2} X_{2,i} + \hat{U}_{i}.$$

- 1. Show that $\sum_{i=1}^{n} \tilde{U}_i = \sum_{i=1}^{n} \tilde{U}_i X_{1,i} = 0$ and $\sum_{i=1}^{n} \hat{U}_i = \sum_{i=1}^{n} \hat{U}_i X_{1,i} = \sum_{i=1}^{n} \hat{U}_i X_{2,i} = 0$.
- 2. Show that $\sum_{i=1}^{n} \tilde{U}_{i} \hat{U}_{i} = \sum_{i=1}^{n} \hat{U}_{i}^{2}$.
- 3. Show that $\sum_{i=1}^{n} \tilde{U}_{i}^{2} \ge \sum_{i=1}^{n} \hat{U}_{i}^{2}$.
- 4. Show that the R^2 from the second (long) regression is larger than that of the first (short) regression.

Problem 3. Question 4 on Page 189 (ISL second edition).

Problem 4. Define a density function

$$f(x \mid \theta) = \begin{cases} \left(1 + \frac{1 - 2\theta}{\theta - 1}\right) x^{\frac{1 - 2\theta}{\theta - 1}} & x \in (0, 1) \\ 0 & x \notin (0, 1), \end{cases}$$

where $0 < \theta < 1$ is a parameter. $X_1, ..., X_n$ is an independent and identically distributed sample with true density $f(\cdot \mid \theta_*)$ for some θ_* .

- 1. Show that $f(\cdot \mid \theta)$ is a probability density function, for all $0 < \theta < 1$.
- 2. Show that $\theta_* = \int_0^1 x f(x \mid \theta_*) dx$. I.e., in this parametrization, θ_* is also the population mean. Derive the method of moment estimator of θ_* .
- 3. Write the log-maximum likelihood function and derive the maximum likelihood estimator. Is it equal to the method of moment estimator?

Problem 5. Given training data $\operatorname{Tr} = \{(X_1, Y_1), ..., (X_n, Y_n)\}$, suppose that $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$ where ϵ_i is the error term. Denote $X_1^n = (X_1, ..., X_n)$ for notational simplicity. Assume that $\operatorname{E} [\epsilon_i \mid X_1^n] = 0$, $\operatorname{E} [\epsilon_i^2 \mid X_1^n] = \sigma^2$ (for some $\sigma^2 > 0$) and $\operatorname{E} [\epsilon_i \epsilon_j \mid X_1^n] = 0$, $\forall i$ and $\forall j \neq i$. Assume that the conditional distribution of ϵ_i given X_1^n is $\operatorname{N}(0, \sigma^2)$. Let $\hat{\beta}_0, \hat{\beta}_1$ denote the OLS estimator. Let x_0 be a fixed value and $y_0 = \beta_0 + \beta_1 x_0$. Let $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$ be the estimator of y_0 . Let $Y_0 = y_0 + \epsilon_0$, where ϵ_0 denotes an error that is independent of the training data $\operatorname{Tr} (\epsilon_0 \mid \operatorname{Tr} \sim \operatorname{N}(0, \sigma^2))$. In this question, assume that σ^2 is known.

- 1. Show that $E[\hat{y}_0 \mid X_1^n] = y_0$ find the expression of $Var[\hat{y}_0 \mid X_1^n]$.
- 2. What is conditional distribution of \hat{y}_0 given X_1^n ?
- 3. What is conditional variance of $\hat{y}_0 Y_0$ given X_1^n ? Hint: $E[\epsilon_0 \mid \mathsf{Tr}] = E[\epsilon_0] = 0$ and by law of iterated expectations,

$$\mathrm{E}\left[\epsilon_0 \hat{y}_0 \mid X_1^n\right] = \mathrm{E}\left[\mathrm{E}\left[\epsilon_0 \hat{y}_0 \mid \mathsf{Tr}\right]\right] = \mathrm{E}\left[\hat{y}_0 \mathrm{E}\left[\epsilon_0 \mid \mathsf{Tr}\right]\right] = 0.$$

What is conditional distribution of $\hat{y}_0 - Y_0$ given X_1^n ?

4. Propose a prediction interval [LB, UB] that covers Y_0 with probability 95%. Find LB and UB.

Part 2: Applied Questions

Problem 6. Question 8 on Page 123 (ISL second edition).

Problem 7. Question 9 on Page 123 (ISL second edition).

Problem 8. Question 13 on Page 193 (ISL second edition).

Problem 9. Question 14 on Page 194 (ISL second edition).