ERRORES

- 1. Convertir los siguientes números en formato IEEE 754 a decimal.

 - b) 1 0101 0101 0111 0110 0000 0000 0001 011
- 2. Calcular el número positivo más grande que se puede representar en formato IEEE 754 con precisión doble.
- 3. Representar el número 34,343 en formato IEEE 754 de precisión simple.
- 4. Obtener la representación binaria del número decimal (-0.00015) en el formato IEEE754 para coma flotante de 32 bits.
- 5. Convertir el número -2.5675e15 al formato IEEE 754 de 32 bits.
- 6. Representar el número 0.1 en formato IEEE 754 de 32 bits. ¿Qué consecuencias sacas del resultado?
- 8. Calcular el error absoluto y el error relativo al realizar las siguientes aproximaciones
 - a. $\tilde{x} = .1, x = .09934$
 - b. $\tilde{x} = 534, x = 533.9888$
 - c. $\tilde{x} = 34.454, x = 34.455$
 - d. $\tilde{x} = 0, x = .0001$
- 9. Demostrar que el error absoluto de la suma de dos valores a y b, $\mathbf{x} = \mathbf{a} + \mathbf{b}$ verifica la desigualdad $|e_{abs}(\mathbf{x})| \le |e_{abs}(\mathbf{a})| + |e_{abs}(\mathbf{b})|$
- 10. De dos números a y b sabemos que sus aproximaciones son $\widetilde{a}=4.56$ y $\widetilde{b}=1.23$. sabiendo que $|e_{abs}(a)| \le 0.14$ y $|e_{abs}(b)| \le 0.03$.
 - a. Calcular en que rango de valores se encuentran a y b
 - b. Calcular una cota para el valor absoluto del error absoluto de a+b.
 - c. Indicar en que rango de valores de encuentra a+b
- 11. Calcular una cota para el valor absoluto del error relativo del cociente de dos números a y b.
- 12. Demostrar que para la función $f(x) = x^n$ se verifica $e_{rel}(y) \cong = n e_{rel}(x)$ para todo n > 1
- 13. Un algoritmo A se puede definir como la aplicación reiterada de una cierta función $\phi(x)$ sobre un valor inicial x_0 , es decir $A(x_0) = \phi(\phi(\omega, n \text{ veces... } \phi(x_0))))$ Suponiendo que $\left|\frac{d\phi(x)}{dx}\right| \leq C$ entonces, $e_{abs}(A(x_0)) \cong C^n e_{abs}(x_0)$
- 14. Decidir para que valores de p y q el algoritmo definido por la siguiente función está bien condicionado $f(p,q)=-p+\sqrt{p^2+q}$
- 15. Error por truncamiento. Demostrar que, si en lugar de redondeo usamos truncamiento para aproximar un número, es decir si $x = sign(x)a*10^b \; \text{con } a = 0. \, \alpha_1\alpha_2 \; \alpha_3.... \; \alpha_i$ $\alpha_{i+1} \ldots con \; 0 \leq \alpha_i \leq 9 \; \text{y} \; \alpha_1 \neq 0 \; \text{y} \; \text{aproximamos} \; \tilde{x} = sign(x)\tilde{a}*10^b \; \text{con} \; \tilde{a} = 0. \, \alpha_1\alpha_2 \; \alpha_3.... \; \alpha_t \; \text{entonces} \; |e_{rel}(x)| \leq 10^{-(t-1)}$
- 16. Precisión en base 2. Demostrar si $x \notin A$ y dicho número lo escribimos $x = sign(x)a * 2^b \text{ con } a = 0. \ \alpha_1\alpha_2\ \alpha_3....\ \alpha_i\ \alpha_{i+1}\\ 0 \le \alpha_i \le 1\ \text{y}\ \alpha_1 \ne 0\ \text{y}\ \text{aproximamos}\ \tilde{x} = sign(x)\tilde{\alpha}*2^b con$

$$\tilde{\alpha} = \begin{cases} 0. \, \alpha_1 \alpha_2 \, \alpha_3 \, \alpha_t & \text{si } \alpha_{t+1} = 0 \\ 0. \, \alpha_1 \alpha_2 \, \alpha_3 \, \alpha_t + 2^{-t} & \text{si } \alpha_{t+1} = 1 \end{cases}$$
 Entonces $|e_{rel}(\boldsymbol{x})| \leq 2^{-t}$.

- 17. Demostrar que en el caso de aproximación por redondeo existen números $x \notin A$ tales que $\tilde{x} \notin A$ (Sugerencia: Trabajad con máquinas con t=3 y base 10).
- 18. Demostrar que, en general, para un número en base B, si aproximamos por redondeo, se verifica $|e_{rel}(x)| \leq \frac{B}{2} * B^{-t}$.
- 19. Demostrar, que en números en base 10 en una máquina de t dígitos significativos, el error absoluto cometido al redondear verifica $|e_{abs}(x)| \le 5|x|10^{-t}$.