CHEM 238 Organic Chemistry

Ch10 Alcohol, Thiol Reactions

Reaction	Reactant	Condition	Product	Overall
Dehydration of alcohol	alcohol	phosphoric acid H3PO4	alkene, water	$ ext{ROH} \xrightarrow{ ext{H}_3 ext{PO}_4} ext{alkene} + ext{H}_2 ext{O}$
Alcohol and HX	alcohol, hydrogen halide		alkyl halide, water	$ROH + HX \longrightarrow RX + H_2O$
Alcohol and sulfonate ester TsCl	alcohol, sulfonate ester TsCl, ROTs	pyridine, NaBr	alkyl bromide	$\mathrm{ROH} + \mathrm{TsCl} \xrightarrow{\mathrm{pyridine}} \mathrm{R-OTs} \xrightarrow{\mathrm{NaBr}} \mathrm{RBr}$
Alkoxide and inorganic acid	alkoxide, inorganic acid (dimethyl sulfate)		ester, conjugate base	$\mathrm{RO}^- + (\mathrm{CH_3})_2 \mathrm{SO_4} \longrightarrow \mathrm{ROCH_3} + \mathrm{CH_3SO_4}^-$
Alcohol and SOCI2	alcohol, thionyl chloride SOCI2	pyridine	alkyl chloride, sulfate dioxide, hydrogen chloride	$\mathrm{ROH} + \mathrm{SOCl}_2 \xrightarrow{\mathrm{pyridine}} \mathrm{RCl} + \mathrm{SO}_2 + \mathrm{HCl}$
Alcohol and Ph3PBr2	alcohol, triphenylphosphine dibromine Ph3PBr2	DMF	alkyl bromide, base	$ROH + Ph_3PBr_2 \xrightarrow[DMF]{} RBr + Ph_3P^+O^- + HBr$
Oxidation of secondary 2nd alcohol	secondary alcohol, Cr(VI) (PCC)		ketone, Cr(III)	$\mathrm{ROH} + \mathrm{Cr}(\mathrm{VI}) \; (\mathrm{CrO}_3, \mathrm{pyridine}) \longrightarrow \mathrm{R=O} + \mathrm{Cr}(\mathrm{III})$
Oxidation of primary 1st alcohol	primary alcohol	Cr204-	aldehyde, carboxylic acid	$\text{RCH}_2\text{OH} \xrightarrow[\text{H}_2\text{SO}_4]{\text{Cr}_2\text{O}_4}^- \text{RCH=O} \xrightarrow[\text{H}_2\text{SO}_4]{\text{Cr}_2\text{O}_4}^- \text{RC-OH=O}$
Controlled oxidation of primary 1st alcohol	primary alcohol	PCC	aldehyde	$\text{RCH}_2\text{OH} \xrightarrow{\text{PCC}} \text{RCH} = \text{O}$
Oxidation of primary alcohol	primary alcohol, potassium permaganate KMnO4		carboxylic acid's conjugate base	$\mathrm{RCH_2OH} + \mathrm{KMnO_4} + \mathrm{OH^-} \longrightarrow \mathrm{MnO_2} + \mathrm{RCOO^-} \xrightarrow{\mathrm{H_3O^+}} \mathrm{RCOOH}$
Oxidation of thiols/disulfide	thiols/disulfide, KMn04/HN03		sulfonic acid	$RSH \xrightarrow{HNO_3} RSO_3H$
Oxidation of thiols	thiol, oxygen O2/iodine I2/bromine Br2		disulfide	$2\mathrm{RSH} + \mathrm{I}_2 + 2\mathrm{NaOH} \longrightarrow \mathrm{RSSR} + 2\mathrm{NaI} + 2\mathrm{H}_2\mathrm{O}$

| Synthesis of alcohol

Reaction	Reactant Condition		Product	Overall
Hydroboration-oxidation	alkene	HBR2, H2O2/OH-	alcohol	alkene $\xrightarrow{\text{(1) HBR}_2}$ ROH
Oxymercuration-reduction	alkene	Hg(OAc)2/H2O, NaBH2/NaOH	alcohol	$\text{alkene} \xrightarrow[\text{(2) NaBH2/NaOH}]{\text{(1) Hg(OAc)}_2/\text{H2O}}} \text{ROH}$

Reaction	Reactant	Condition	Product	Overall
Acid-cayalyzed hydration of alkene	alkene, water H2O	acid	alcohol	$ ext{alkene} + ext{H}_2 ext{O} \xrightarrow{ ext{H}_3 ext{O}^+} ext{ROH}$

Ch11 Ether, Sulfide, Epoxide, Glycol

| Synthesis, Cleavage of ether

Reaction	Reactant	Condition	Product	Overall
Williamson ether synthesis	alcohol	NaH, THF	ether	$\text{ROH} \xrightarrow[\text{THF}]{\text{NaH}} \text{RO}^- + \text{Na}^+ + \text{H}_2 \xrightarrow[]{\text{XR}'} \text{ROR}' + \text{NaX} + \text{H}_2$
Williamson sulfide synthesis	thiol	ROTs	sulfide	$RSH \xrightarrow[CH_3OH]{OH^-} RS^- + H_2O \xrightarrow[R'OTs]{R'OTs} RSR' + H_2O + OTs^-$
Alkoxymercuration-reduction	alkene	Hg(OAc)2/HOR, NaBH4	ether	$\text{alkene} \xrightarrow{\text{(1) Hg(OAc)}_2/\text{HOR}'} \longrightarrow \text{ROR}'$
Primary 1st alcohol dehydration	primary alcohol	sulfuric acid H2SO4, heat	ether, water H2O	$2\mathrm{ROH} \xrightarrow{\mathrm{H_2SO_4},\;\Delta} \mathrm{ROR} + \mathrm{H_2O}$
Tertiary 3rd alcohol dehydration	tertiary alcohol, primary alcohol	sulfuric acid H2SO4	ester, water H2O	$\mathrm{ROH} + \mathrm{R'OH} \xrightarrow{\mathrm{dilute}\mathrm{H}_2\mathrm{SO}_4} \mathrm{ROR'} + \mathrm{H}_2\mathrm{O}$
Alkene addition by tertiary alcohol	alkene, tertiary alcohol	sulfuric acid H2SO4	ether	$ ext{alkene} + ext{ROH} \xrightarrow{ ext{dilute H}_2 ext{SO}_4} (ext{CH}_3)_3 ext{COR};$
Ether cleavage	ether, hydrogen halide	heat	alcohol, alkyl halide	$ROR' + HX \xrightarrow{\Delta} ROH + R'X$

| Synthesis of epoxide

Reaction	Reactant	Condition	Product	Overall
Oxidation of alkene with RCOOOH	alkene, peroxycarboxylic acid RCOOOH (MCPBA)		epoxide, carboxylic acid	$alkene + RCOOOH (MCPBA) \longrightarrow epoxide + RCOOH$
Cyclization of halohydrin	halohydrin (alcohol + alkyl halide RX), base		epoxide, water H2O	$halohydrin \; (OH-C-C-X) + NaOH \longrightarrow epoxide + NaX + H_2O$

| Ring opening of epoxide

Reaction	Reactant	Condition	Product	Overall
Base ring opening	epoxide, alcohol	alkoxide	alcohol-ether	$epoxide + R'OH \xrightarrow{R'O^{-}} ester-alcohol$
Acid ring opening	epoxide, alcohol	acid	alcohol-ether	$epoxide, R'OH \xrightarrow{H3O^+} alcohol-ether$
Grignard organometallic ring opening	Grignard reagent MgBr, epoxide	ether, heat, acid H3O+	alcohol	$epoxide + R'MgBr \xrightarrow[H_3O^+]{(1) \text{ ether, heat}} R'CR_2CR_2OH$

| Preparation, Cleavage of glycol

Reaction	Reactant	Condition	Product	Overall
Acid ring opening (hydrolysis) of epoxide	epoxide, water H2O	acid	glycol	$ ext{epoxide} + ext{H}_2 ext{O} \xrightarrow{ ext{acid}} ext{glycol}$
Oxidation of alkene by OsO4	alkene, osmium tetroxide OsO4	water H2O, NaHSO3	glycol	$R_{2}C = CR_{2} + OsO_{4} \xrightarrow[NaHSO3]{H_{2}O} glycol + OsO_{3}(OH)_{2}$
Alkene + KMnO4	alkene, potassium permanganate KMnO4	water, acetone	glycol, MnO2	$alkene + KMnO_4 \xrightarrow[acetone]{H_2O, OH^-} glycol + MnO_2$
Glycol cleavage	glycol, periodic acid H5IO6	HOAc	aldehyde, ketone, water	$\mathrm{glycol} + \mathrm{H_5IO_6} \xrightarrow{\mathrm{HOAc}} \mathrm{R'-CH} = \mathrm{O} + \mathrm{R-CR} = \mathrm{O} + 2\mathrm{H_2O} + \mathrm{HIO_3H_2O}$

| Oxonium salt

Reaction	Reactant	Condition	Product	Overall
Oxonium salt	nucleophile, oxonium salt	-	lcohol	$\mathrm{Nu^-} + \mathrm{R_3O^+} \longrightarrow \mathrm{ROH} + \mathrm{H_2O}$

Ch14 Alkyne Reactions

Reaction	Reactant	Condition	Product	Overall
Alkyne addition	alkyne, hydrogen halide		alkene halide	$C\equiv C + HX \longrightarrow XC = C$
Hydration of alkyne	alkyne, water	mercury ion, sulfuric acid H2SO4	ketone	$RC{\equiv}CH + H_2O \xrightarrow{Hg^{2+}, H_2SO_4} RC{=}OCH_3$
Hydroboration-oxidation of symmetric alkyne	symmetric alkyne	borane BH3, THF, hydrogen peroxide	ketone	$R - C \!\!\equiv\!\! C - R \xrightarrow[(2) \text{ $H_{3}/THF}]{(1) \text{ $H_{3}/THF}$}} R - CH_{2} - C \!\!=\!\! O - R$
Hydroboration-oxidation of asymmetric alkyne	asymmetric 1-alkyne	disiamylborane, THF, hydrogen peroxide	aldehyde	$R - C \equiv C - H \xrightarrow{(1) \; (branch)_2 BH/THF} R - CH_2 - C = O - H$
Catalytic hydrogenation of alkyne	alkyne	hydrogen gas H2, catalyst	cis alkene	$\text{RC=-CR} \xrightarrow{\text{H2, catalyst}} \text{RCH=-HCR}$
Catalytic hydrogenation of alkene	alkene	hydrogen gas H2, catalyst	alkane	$RCH{=}HCR \xrightarrow{H2, \ catalyst} RCH_2{=}H_2CR$
Controlled catalytic hydrogenation of alkyne	alkyne	Lindlar catalyst/(Pd/C), pyridine	cis alkene	$ RC = CR \xrightarrow{\text{Lindlar catalyst Pd/CaCO3} + Pb(OAc)_2} RCH = HCR $ or Pd/C, pyridine
Reduction of alkyne with Na and NH3	alkyne, sodium, liquid ammonia		trans alkene, sodium ion, azanide	$RC = CR + 2 Na + 2 NH_3 \longrightarrow RCH = HCR + 2 Na^+ + 2 NH_2^-$

Reaction	Reactant	Condition	Product	Overall
Grignard reaction of alkyne	1-alkyne, Grignard reagent	THF	acetylenic Grignard reagent, hydrocarbon	$RC \equiv CR + R'MgBr \xrightarrow{THF} RC \equiv CMgBr + R'$
Alkyne in SN2 rxn	alkane halide, acetylenic anion		alkyne, halide ion	$RX + C \equiv CR^- \longrightarrow RC \equiv CR + X^-$

Ch15 Diene Reactions

Reaction	Reactant	Condition	Product	Overall
Diels-Alder Rxn	diene, alkene (dienophile)		ring	$\mathrm{diene} + \mathrm{dienophile} \longrightarrow \mathrm{ring}$
Addition of HX to conjugated diene	conjugated diene, hydrogen halide		alkene halide	$\operatorname{conj} \cdot \operatorname{diene} + \operatorname{HX} \longrightarrow \operatorname{mixed} \ \operatorname{alkene} \ \operatorname{halide}$

Ch16 Benzene Reactions

Reaction	Reactant	Condition	Product	Overall
Halogenation of benzene	benzene, halide gas X2	iron/iron(iii) bromide FeBr3	benzene halide, hydrogen halide	$\mathrm{Ph} + \mathrm{X}_2 \xrightarrow{\mathrm{FeBr}3/\mathrm{Fe}} \mathrm{PhX} + \mathrm{HX}$
Nitration of benzene	benzene, nitric acid HNO3	sulfuric acid H2SO4	nitrobenzene, water	$\mathrm{Ph} + \mathrm{HNO_3} \xrightarrow{\mathrm{H_2SO_4}} \mathrm{PhNO_2} + \mathrm{H_2O}$
Sulfonation of benzene	benzene, sulfur trioxide	fuming sulfuric acid H2SO4	benzenesulfuric acid	$\mathrm{Ph} + \mathrm{SO}_{3} \xrightarrow{\mathrm{fuming}\mathrm{H}_{2}\mathrm{SO}_{4}} \mathrm{PhSO}_{3}\mathrm{H}$
Friedel-Crafts alkylation of benzene	benzene, alkyl chloride	aluminum chloride AICI3	alkyl benzene, hydrogen chloride	$\mathrm{Ph} + \mathrm{RCl} \xrightarrow{\mathrm{AlCl}_3} \mathrm{PhR} + \mathrm{HCl}$
Friedel-Crafts acylation of benzene	benzene, acyl chloride	aluminum chloride AlCl3, water	ketone, hydrogen chloride	$Ph + Cl - CR = O \xrightarrow{(1) AlCl_3} Ph - C = OCH_3 + HCl$
Hydrogenation of benzene	benzene, hydrogen gas H2	Ni	cyclohexane	${ m Ph} + 3{ m H}_2 \xrightarrow[175^o{ m C},\ 180{ m atm}]{ m Ni} { m cyclohexane}$
Hydrogenation of benzene derivatives	benzene derivative, hydrogen gas H2	Ni	substituted cyclohexane	$\mathrm{PhR} + 3\mathrm{H}_{2} \xrightarrow{\mathrm{Ni}} \mathrm{cyclohexane-R}$

Ch17 Allylic/Benzylic Reactions

Reaction	Reactant	Condition	Product	Overall
Radical bromonation of allylic/benzylic hydrogen	allylic/benzylic species, bromine gas Br2	light hv	allylic/benzylic bromide, hydrogen bromide	$\begin{array}{l} {\rm PhCH_3 + Br_2} \xrightarrow{{\rm light} \; {\rm hv}} {\rm PhCH_2Br + HBr} \\ {\rm CH_3 - CH_2 = CH_2} \xrightarrow{{\rm light} \; {\rm hv}} {\rm BrCH_2 - CH_2 = CH_2} \end{array}$

Reaction	Reactant	Condition	Product	Overall
Controlled radical bromonation of allylic/benzylic hydrogen	allylic/benzylic species, NBS (N- bromosuccinimide)	heat/light, peroxide	allylic/benzylic bromide, succinimide	$\begin{array}{l} PhCH_{3} + NBS \xrightarrow{heat/light, \ peroxide} PhCH_{2}Br \\ CH_{3} - CH_{2} = CH_{2} + NBS \xrightarrow{light \ hv} BrCH_{2} - CH_{2} = CH_{2} + succinimide \end{array}$
Allylic/benzylic Grignard Reagent	alkene bromide Br, magnesium Mg		alkene, MgBrOH	\longrightarrow see Ch 17 allylic Grignard reagent
Allylic/benzylic E2 elimination	allylic/benzylic bromide	EtOH, Na+, EtO-	alkene	$Ph-CH_{2}CH_{2}-Br\xrightarrow{Na^{+},\ EtO^{-}}Ph-CH_{2}CH_{2}-OEt$
Oxidation of allylic/benzylic alcohol with MnO2	allylic/benzylic alcohol, manganese dioxide MnO2	CH2Cl2	aldehyde/ketone, Mn(OH)2	$\begin{array}{l} PhCH_{2}OH + MnO_{2} \xrightarrow[CH_{2}Cl_{2}]{} PhCH = O + Mn(OH)_{2} \\ H_{2}C = CH - CH_{2}OH + MnO_{2} \xrightarrow[CH_{2}Cl_{2}]{} H_{2}C = CH - CH_{2} = O + Mn(OH)_{2} \end{array}$
Benzylic oxidation of alkylbenzene	alkylbenzene	Cr(VI): Na2Cr07/Cr03; Mn(VII): KMn04; 02 + catalyst	benzylic carboxylic acid	$PhR \xrightarrow[\text{or } KMnO_4 \text{ or } O_2 + catalyst}^{Na_2CrO_7/CrO_3} PhCOOH$
Biosynthesis of terpene	isopentenyl pyrophosphate IPP, gamma,gamma- dimethylallyl pyrophosphate DMAP	prenyl transferase	terpene, HOPP	$ ext{IPP} + ext{DMAP} \xrightarrow{ ext{prenyl transferase SN}_1} ext{terpene, HOPP}$

Ch18 Vinylic/Aryl Halide Reactions

Reaction	Reactant	Condition	Product	Overall
Vinylic/aryl halide under SN1, SN2 conditions	Vinylic/aryl halide	SN1, SN2	no reaction	$\begin{array}{l} \mathrm{CH_2}{=}\mathrm{CHX} + \mathrm{Nu} \xrightarrow{\mathrm{SN_1, SN_2}} \mathrm{no reaction} \\ \mathrm{PhX} + \mathrm{Nu} \xrightarrow{\mathrm{SN_1, SN_2}} \mathrm{no reaction} \end{array}$
Elimination of vinylic halide	vinylic halide, nucleophile (hydroxide)	harsh conditions, high temp	vinylic alkyne, bromide, water	$Ph-CH=CH-Br+KOH \xrightarrow[200^{\circ}C]{} Ph-C\equiv C-H+KBr+H_2O$
Nucleophilic aromatic substitution of aryl halide	nitro aryl halide, nucleophile		nitro aryl nucleophile: halide ion	${ m O_2N-Ph-X+Nu^-}\longrightarrow { m O_2N-Ph-Nu+X^-}$
Heck reaction (aryl)	aryl bromide/iodide, alkene	Pd(0) catalyst (Pd(OAc)2, Pd(PPh3)4)	aryl alkene, hydrogen bromide	$PhBr + alkene \xrightarrow{Pd(0)} Ph-alkene + HBr$
Heck reaction (general)	alkyl halide + alkene	Pd(0) catalyst (Pd(0Ac)2, Pd(PPh3)4)	alkene, hydrogen bromide	$R_1X + alkene - R_2 \xrightarrow{PdL4} R_1 - alkene - R_2 + HX$
Suzuki coupling	aryl boronic acid, aryl halide, sodium hydroxide	Pd(OAc)2, PPh3, Na2CO3	biaryl compound, NaBr, B(OH)2	$RB(OH)_2 + R'X + NaOH \xrightarrow{Pd(OAc)_2, PPh_3, Na_2CO_3} RR' + NaBr + B(OH)_2$

Reaction	Reactant	Condition	Product	Overall
Oxidation of phenol	phenol -> semiquinone	Na2Cr2O7, H2SO4	quinone	$Ph(OH)_2 \xrightarrow{Na_2Cr_2O_7, H_2SO_4} quinone$
Bromination of phenol	phenol, bromine gas	CCI4, Hbr, water H2O	phenol bromide	$\operatorname{PhOH} + n\operatorname{Br}_2 \xrightarrow{\operatorname{various\ conditions}} \operatorname{PhOH-Br}_n + n\operatorname{HBr}$
Nitration of phenol	phenol	nitric acid HNO3	nitric phenol	$\text{PhOH} \xrightarrow{\text{HNO3}} \text{PhOH-NO}_2 + \text{H}_2\text{O}$
Friedel-Crafts alkylation	phenol, alcohol	sulfuric acid H2SO4	alkyl phenol, water H2O	$PhOH + ROH \xrightarrow{H2SO4} RPhOH + H_2O$
Friedel-Crafts acylation	phenol, AlCl3, acyl chloride	PhNO2	acyl phenol	$PhOH + AlCl_3 + RC = O - Cl \xrightarrow{PhNO2} PhOH - CR = O$