Linear function invertibility

How to tell if a linear function $f: \mathcal{V} \longrightarrow \mathcal{W}$ is invertible?

- ▶ One-to-one? f is one-to-one if its kernel is trivial. Equivalent: if its kernel has dimension zero.
- ▶ Onto? f is onto if its image equals its co-domain

Recall that the image of a function f with domain \mathcal{V} is $\{f(\mathbf{v}) : \mathbf{v} \in \mathcal{V}\}$.

Lemma: The image of f is a subspace of W.

How can we tell if the image of f equals W?

Dimension Lemma: If $\mathcal U$ is a subspace of $\mathcal W$ then

Property D1: $\dim \mathcal{U} \leq \dim \mathcal{W}$, and

Property D2: if $\dim \mathcal{U} = \dim \mathcal{W}$ then $\mathcal{U} = \mathcal{W}$

Proof: Let $\mathbf{u}_1, \ldots, \mathbf{u}_k$ be a basis for \mathcal{U} .

By Superset-Basis Lemma, there is a basis B for W that contains $\mathbf{u}_1, \dots, \mathbf{u}_k$.

- ▶ Thus $k \leq |B|$, and
- ▶ If k = |B| then $\{u_1, ..., u_k\} = B$

Linear function invertibility

How to tell if a linear function $f: \mathcal{V} \longrightarrow \mathcal{W}$ is invertible?

- ▶ One-to-one? f is one-to-one if its kernel is trivial. Equivalent: if its kernel has dimension zero.
- ▶ Onto? f is onto if its image equals its co-domain

Recall that the image of a function f with domain \mathcal{V} is $\{f(\mathbf{v}) : \mathbf{v} \in \mathcal{V}\}$.

Lemma: The image of f is a subspace of W.

How can we tell if the image of f equals W?

Dimension Lemma: If \mathcal{U} is a subspace of \mathcal{W} then

Property D1: $\dim \mathcal{U} \leq \dim \mathcal{W}$, and

Property D2: if $\dim \mathcal{U} = \dim \mathcal{W}$ then $\mathcal{U} = \mathcal{W}$

Use Property D2 with $\mathcal{U} = \operatorname{Im} f$.

Shows that the function f is onto iff $\dim \operatorname{Im} f = \dim \mathcal{W}$

We conclude:

f is invertible dim Ker f=0 and dim Im $f=\dim \mathcal{W}$

Linear function invertibility

f is one-to-one if dim Ker f=0 and dim Im $f=\dim \mathcal{W}$

How does this relate to dimension of the domain?

Conjecture: For f to be invertible, need dim $\mathcal{V} = \dim \mathcal{W}$.

Starting with a linear function f we will extract a largest possible subfunction that is invertible.

Make it onto by setting co-domain to be image of f.

Make it one-to-one by getting rid of extra domain elements sharing same image.

Starting with a linear function f we will extract a largest possible subfunction that is invertible.

Make it onto by setting co-domain to be image of f.

Make it one-to-one by getting rid of extra domain elements sharing same image.

Starting with a linear function f we will extract a largest possible subfunction that is invertible.

Make it onto by setting co-domain to be image of f.

Make it one-to-one by getting rid of extra domain elements sharing same image.

Start with linear function $f: \mathcal{V} \longrightarrow \mathcal{W}$

Step 1: Choose smaller co-domain \mathcal{W}^*

Step 2: Choose smaller domain \mathcal{V}^*

Step 3: Define function $f^*: \mathcal{V}^* \longrightarrow \mathcal{W}^*$ by $f^*(\mathbf{x}) = f(\mathbf{x})$

Start with linear function $f: \mathcal{V} \longrightarrow \mathcal{W}$ Step 1: Choose smaller co-domain \mathcal{W}^*

Step 2: Choose smaller domain \mathcal{V}^*

Step 3: Define function $f^*: \mathcal{V}^* \longrightarrow \mathcal{W}^*$ by $f^*(\mathbf{x}) = f(\mathbf{x})$

Start with linear function $f: \mathcal{V} \longrightarrow \mathcal{W}$

Step 1: Choose smaller co-domain \mathcal{W}^*

Step 2: Choose smaller domain \mathcal{V}^*

Step 3: Define function $f^*: \mathcal{V}^* \longrightarrow \mathcal{W}^*$ by $f^*(\mathbf{x}) = f(\mathbf{x})$

Start with linear function $f: \mathcal{V} \longrightarrow \mathcal{W}$

Step 1: Choose smaller co-domain \mathcal{W}^*

Step 2: Choose smaller domain \mathcal{V}^*

Step 3: Define function $f^*: \mathcal{V}^* \longrightarrow \mathcal{W}^*$ by $f^*(\mathbf{x}) = f(\mathbf{x})$

Start with linear function $f: \mathcal{V} \longrightarrow \mathcal{W}$

Step 1: Choose smaller co-domain \mathcal{W}^*

Step 2: Choose smaller domain \mathcal{V}^*

Step 3: Define function $f^*: \mathcal{V}^* \longrightarrow \mathcal{W}^*$ by $f^*(\mathbf{x}) = f(\mathbf{x})$

- Choose smaller co-domain W*
 Let W* be image of f
 Let w₁,..., wr be a basis of W*
- ► Choose smaller domain \mathcal{V}^* Let $\mathbf{v}_1, \dots, \mathbf{v}_r$ be pre-images of $\mathbf{w}_1, \dots, \mathbf{w}_r$ That is, $f(\mathbf{v}_1) = \mathbf{w}_1, \dots, f(\mathbf{v}_r) = \mathbf{w}_r$ Let $\mathcal{V}^* = \operatorname{Span} \{\mathbf{v}_1, \dots, \mathbf{v}_r\}$
- ▶ Define function $f^*: \mathcal{V}^* \longrightarrow \mathcal{W}^*$ by $f^*(\mathbf{x}) = f(\mathbf{x})$

We will show:

- ► f* is onto
- ▶ f* is one-to-one (kernel is trivial)
- ▶ Bonus: $\mathbf{v}_1, \dots, \mathbf{v}_r$ form a basis for \mathcal{V}^*

- Choose smaller co-domain W*
 Let W* be image of f
 Let w₁,..., w_r be a basis of W*
- Choose smaller domain V* Let v₁,..., vr be pre-images of w₁,..., wr That is, f(v₁) = w₁,..., f(vr) = wr Let V* = Span {v₁,..., vr}
- ▶ Define function $f^* : \mathcal{V}^* \longrightarrow \mathcal{W}^*$ by $f^*(\mathbf{x}) = f(\mathbf{x})$

We will show:

- ► f* is onto
- ▶ f* is one-to-one (kernel is trivial)
- ▶ Bonus: $\mathbf{v}_1, \dots, \mathbf{v}_r$ form a basis for \mathcal{V}^*

Onto:

QED

Let **w** be any vector in co-domain W^* . There are scalars $\alpha_1, \ldots, \alpha_r$ such that

$$\mathbf{w} = \alpha_1 \, \mathbf{w}_1 + \dots + \alpha_r \, \mathbf{w}_r$$
Because f is linear,
$$f(\alpha_1 \, \mathbf{v}_1 + \dots + \alpha_r \, \mathbf{v}_r)$$

$$= \alpha_1 \, f(\mathbf{v}_1) + \dots + \alpha_r \, f(\mathbf{v}_r)$$

$$= \alpha_1 \, \mathbf{w}_1 + \dots + \alpha_r \, \mathbf{w}_r$$

so **w** is image of α_1 **v**₁ + \cdots + α_r **v**_r $\in \mathcal{V}^*$

- ► Choose smaller co-domain W*
 Let W* be image of f
 Let w₁,..., w_r be a basis of W*
- ► Choose smaller domain \mathcal{V}^* Let $\mathbf{v}_1, \dots, \mathbf{v}_r$ be pre-images of $\mathbf{w}_1, \dots, \mathbf{w}_r$ That is, $f(\mathbf{v}_1) = \mathbf{w}_1, \dots, f(\mathbf{v}_r) = \mathbf{w}_r$ Let $\mathcal{V}^* = \text{Span } \{\mathbf{v}_1, \dots, \mathbf{v}_r\}$
- ▶ Define function $f^* : \mathcal{V}^* \longrightarrow \mathcal{W}^*$ by $f^*(\mathbf{x}) = f(\mathbf{x})$

We will show:

- ► f* is onto
- ▶ f* is one-to-one (kernel is trivial)
- ▶ Bonus: $\mathbf{v}_1, \dots, \mathbf{v}_r$ form a basis for \mathcal{V}^*

One-to-one:

By One-to-One Lemma, need only show kernel is trivial.

Suppose \mathbf{v}^* is in \mathcal{V}^* and $f(\mathbf{v}^*) = \mathbf{0}$

Because $V^* = \text{Span } \{\mathbf{v}_1, \dots, \mathbf{v}_r\}$, there are scalars $\alpha_1, \dots, \alpha_r$ such that

$$\mathbf{v}^* = \alpha_1 \, \mathbf{v}_1 + \dots + \alpha_r \, \mathbf{v}_r$$

Applying f to both sides,

$$\mathbf{0} = f(\alpha_1 \mathbf{v}_1 + \dots + \alpha_r \mathbf{v}_r)$$

= $\alpha_1 \mathbf{w}_1 + \dots + \alpha_r \mathbf{w}_r$

Because $\mathbf{w}_1, \dots, \mathbf{w}_r$ are linearly independent, $\alpha_1 = \dots = \alpha_r = 0$

so
$$\mathbf{v}^* = \mathbf{0}$$

- ► Choose smaller co-domain W^* Let W^* be image of f
- Let $\mathbf{w}_1, \dots, \mathbf{w}_r$ be a basis of \mathcal{W}^*
- Let $\mathbf{v}_1, \dots, \mathbf{v}_r$ be pre-images of $\mathbf{w}_1, \dots, \mathbf{w}_r$ That is, $f(\mathbf{v}_1) = \mathbf{w}_1, \dots, f(\mathbf{v}_r) = \mathbf{w}_r$ Let $\mathcal{V}^* = \text{Span } \{\mathbf{v}_1, \dots, \mathbf{v}_r\}$
- ▶ Define function $f^* : \mathcal{V}^* \longrightarrow \mathcal{W}^*$ by $f^*(\mathbf{x}) = f(\mathbf{x})$

We will show:

- ▶ f* is onto
- ▶ f* is one-to-one (kernel is trivial)
- ▶ Bonus: $\mathbf{v}_1, \dots, \mathbf{v}_r$ form a basis for \mathcal{V}^*

Bonus: $\mathbf{v}_1, \dots, \mathbf{v}_r$ form a basis for \mathcal{V}^* Need only show linear independence Suppose $\mathbf{0} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_r \mathbf{v}_r$

Applying f to both sides,

$$\mathbf{0} = f(\alpha_1 \mathbf{v}_1 + \dots + \alpha_r \mathbf{v}_r)$$

= $\alpha_1 \mathbf{w}_1 + \dots + \alpha_r \mathbf{w}_r$

QED

- ► Choose smaller co-domain \mathcal{W}^* Let \mathcal{W}^* be image of fLet $\mathbf{w}_1, \dots, \mathbf{w}_r$ be a basis of \mathcal{W}^*
- Choose smaller domain \mathcal{V}^* Let $\mathbf{v}_1, \dots, \mathbf{v}_r$ be pre-images of $\mathbf{w}_1, \dots, \mathbf{w}_r$ That is, $f(\mathbf{v}_1) = \mathbf{w}_1, \dots, f(\mathbf{v}_r) = \mathbf{w}_r$ Let $\mathcal{V}^* = \operatorname{Span} \{\mathbf{v}_1, \dots, \mathbf{v}_r\}$
- ▶ Define function $f^*: \mathcal{V}^* \longrightarrow \mathcal{W}^*$ by $f^*(\mathbf{x}) = f(\mathbf{x})$

We will show:

- ► f* is onto
- ▶ f* is one-to-one (kernel is trivial)
- ▶ Bonus: $\mathbf{v}_1, \dots, \mathbf{v}_r$ form a basis for \mathcal{V}^*

► Choose smaller co-domain W^* Let W^* be image of f

Let $\mathbf{w}_1, \dots, \mathbf{w}_r$ be a basis of \mathcal{W}^*

• Choose smaller domain \mathcal{V}^* Let $\mathbf{v}_1, \dots, \mathbf{v}_r$ be pre-images of $\mathbf{w}_1, \dots, \mathbf{w}_r$ That is, $f(\mathbf{v}_1) = \mathbf{w}_1, \dots, f(\mathbf{v}_r) = \mathbf{w}_r$

Let $\mathcal{V}^* = \mathsf{Span}\ \{oldsymbol{v}_1, \dots, oldsymbol{v}_r\}$

by $f^*(\mathbf{x}) = f(\mathbf{x})$

▶ Define function $f^*: \mathcal{V}^* \longrightarrow \mathcal{W}^*$

We will show:

- ▶ f* is onto
 - ▶ f* is one-to-one (kernel is trivial)
 - lacksquare Bonus: $oldsymbol{v}_1,\ldots,oldsymbol{v}_r$ form a basis for \mathcal{V}^*

Example:

Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$, and define

 $\mathbf{f}: \mathbb{R}^3 \longrightarrow \mathbb{R}^3 \text{ by } f(\mathbf{x}) = A\mathbf{x}.$

Define $W^* = \text{Im } f = \text{Col } A = \text{Span } \{[1, 2, 1], [2, 1, 2], [1, 1, 1]\}.$

One basis for \mathcal{W}^* is $\mathbf{w}_1 = [0, 1, 0], \ \mathbf{w}_2 = [1, 0, 1]$

Pre-images for \mathbf{w}_1 and \mathbf{w}_2 : $\mathbf{v}_1 = [\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}]$ and $\mathbf{v}_2 = [-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}]$, for then $A\mathbf{v}_1 = \mathbf{w}_1$ and $A\mathbf{v}_2 = \mathbf{w}_2$.

Let $\mathcal{V}^* = \mathsf{Span} \; \{ \mathbf{v}_1, \mathbf{v}_2 \}$

Then $f^*: \mathcal{V}^* \longrightarrow \operatorname{Im} f$ is onto and one-to-one

► Choose smaller co-domain W* Let W* be image of f

Let $\mathbf{w}_1, \dots, \mathbf{w}_r$ be a basis of \mathcal{W}^*

- ► Choose smaller domain \mathcal{V}^* Let $\mathbf{v}_1, \dots, \mathbf{v}_r$ be pre-images of $\mathbf{w}_1, \dots, \mathbf{w}_r$ That is, $f(\mathbf{v}_1) = \mathbf{w}_1, \dots, f(\mathbf{v}_r) = \mathbf{w}_r$ Let $\mathcal{V}^* = \text{Span } \{\mathbf{v}_1, \dots, \mathbf{v}_r\}$
- ▶ Define function $f^*: \mathcal{V}^* \longrightarrow \mathcal{W}^*$ by $f^*(\mathbf{x}) = f(\mathbf{x})$

We will show:

- ► f* is onto
- ▶ f* is one-to-one (kernel is trivial)
- ▶ Bonus: $\mathbf{v}_1, \dots, \mathbf{v}_r$ form a basis for \mathcal{V}^*

To show about original function f: original domain $\mathcal{V} = \operatorname{Ker} f \oplus \mathcal{V}^*$ Must prove two things:

- 1. Ker f and \mathcal{V}^* share only zero vector
- 2. every vector in $\mathcal V$ is the sum of a vector in Ker f and a vector in $\mathcal V^*$

We already showed kernel of f^* is trivial. This shows only vector of Ker f in \mathcal{V}^* is zero vector. —thing 1 is proved

Let \mathbf{v} be any vector in \mathcal{V} , and let $\mathbf{w} = f(\mathbf{v})$. Since f^* is onto, its domain \mathcal{V}^* contains a vector \mathbf{v}^* such that $f(\mathbf{v}^*) = \mathbf{w}$ Therefore $f(\mathbf{v}) = f(\mathbf{v}^*)$ so $f(\mathbf{v}) - f(\mathbf{v}^*) = \mathbf{0}$ so $f(\mathbf{v} - \mathbf{v}^*) = \mathbf{0}$ Thus $\mathbf{u} = \mathbf{v} - \mathbf{v}^*$ is in Ker f and $\mathbf{v} = \mathbf{u} + \mathbf{v}^*$

► Choose smaller co-domain W*
 Let W* be image of f

Let $\mathbf{w}_1, \dots, \mathbf{w}_r$ be a basis of \mathcal{W}^*

- ► Choose smaller domain \mathcal{V}^* Let $\mathbf{v}_1, \dots, \mathbf{v}_r$ be pre-images of $\mathbf{w}_1, \dots, \mathbf{w}_r$ That is, $f(\mathbf{v}_1) = \mathbf{w}_1, \dots, f(\mathbf{v}_r) = \mathbf{w}_r$ Let $\mathcal{V}^* = \text{Span } \{\mathbf{v}_1, \dots, \mathbf{v}_r\}$
- Define function $f^*: \mathcal{V}^* \longrightarrow \mathcal{W}^*$ by $f^*(\mathbf{x}) = f(\mathbf{x})$

We will show:

- ► f* is onto
- ▶ f* is one-to-one (kernel is trivial)
- ▶ Bonus: $\mathbf{v}_1, \dots, \mathbf{v}_r$ form a basis for \mathcal{V}^*

To show about original function f: original domain $\mathcal{V} = \operatorname{Ker} f \oplus \mathcal{V}^*$ Must prove two things:

- 1. Ker f and \mathcal{V}^* share only zero vector
- 2. every vector in $\mathcal V$ is the sum of a vector in Ker f and a vector in $\mathcal V^*$

We already showed kernel of f^* is trivial. This shows only vector of Ker f in \mathcal{V}^* is zero vector. —thing 1 is proved

Let \mathbf{v} be any vector in \mathcal{V} , and let $\mathbf{w} = f(\mathbf{v})$. Since f^* is onto, its domain \mathcal{V}^* contains a vector \mathbf{v}^* such that $f(\mathbf{v}^*) = \mathbf{w}$ Therefore $f(\mathbf{v}) = f(\mathbf{v}^*)$ so $f(\mathbf{v}) - f(\mathbf{v}^*) = \mathbf{0}$ so $f(\mathbf{v} - \mathbf{v}^*) = \mathbf{0}$ Thus $\mathbf{u} = \mathbf{v} - \mathbf{v}^*$ is in Ker f and $\mathbf{v} = \mathbf{u} + \mathbf{v}^*$ —thing 2 is proved

► Choose smaller co-domain W^* Let W^* be image of f

Let $\mathbf{w}_1, \dots, \mathbf{w}_r$ be a basis of \mathcal{W}^*

- Let $\mathbf{v}_1, \dots, \mathbf{v}_r$ be pre-images of $\mathbf{w}_1, \dots, \mathbf{w}_r$ That is, $f(\mathbf{v}_1) = \mathbf{w}_1, \dots, f(\mathbf{v}_r) = \mathbf{w}_r$ Let $\mathcal{V}^* = \text{Span } \{\mathbf{v}_1, \dots, \mathbf{v}_r\}$
- Define function $f^*: \mathcal{V}^* \longrightarrow \mathcal{W}^*$ by $f^*(\mathbf{x}) = f(\mathbf{x})$

We will show:

- ▶ f* is onto
 - ► f* is one-to-one (kernel is trivial)
 - ▶ Bonus: $\mathbf{v}_1, \dots, \mathbf{v}_r$ form a basis for \mathcal{V}^*

original domain $\mathcal{V} = \operatorname{Ker} f \oplus \mathcal{V}^*$

Example: Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$, and

define $\mathbf{f}: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ by $f(\mathbf{x}) = A\mathbf{x}$.

$$\begin{split} \mathbf{v}_1 &= [\tfrac{1}{2}, -\tfrac{1}{2}, \tfrac{1}{2}] \text{ and } \mathbf{v}_2 = [-\tfrac{1}{2}, \tfrac{1}{2}, \tfrac{1}{2}] \\ \mathcal{V}^* &= \mathsf{Span} \; \{\mathbf{v}_1, \mathbf{v}_2\} \end{split}$$

Ker $f = \text{Span } \{[1, 1, -3]\}$

Therefore

$$\mathcal{V} = (\mathsf{Span}\ \{[1,1,-3]\}) \oplus (\mathsf{Span}\ \{oldsymbol{v}_1,oldsymbol{v}_2\})$$

Choose smaller co-domain W*
 Let W* be image of f
 Let w₁,..., w_r be a basis of W*

- ► Choose smaller domain \mathcal{V}^* Let $\mathbf{v}_1, \dots, \mathbf{v}_r$ be pre-images of $\mathbf{w}_1, \dots, \mathbf{w}_r$ That is, $f(\mathbf{v}_1) = \mathbf{w}_1, \dots, f(\mathbf{v}_r) = \mathbf{w}_r$ Let $\mathcal{V}^* = \text{Span } \{\mathbf{v}_1, \dots, \mathbf{v}_r\}$
- ▶ Define function $f^* : \mathcal{V}^* \longrightarrow \mathcal{W}^*$ by $f^*(\mathbf{x}) = f(\mathbf{x})$

We will show:

- $ightharpoonup f^*$ is onto
- ▶ f* is one-to-one (kernel is trivial)
- ▶ Bonus: $\mathbf{v}_1, \dots, \mathbf{v}_r$ form a basis for \mathcal{V}^*

original domain $\mathcal{V} = \operatorname{Ker} f \oplus \mathcal{V}^*$ By Direct-Sum Dimension Corollary, $\dim \mathcal{V} = \dim \operatorname{Ker} f + \dim \mathcal{V}^*$

Since $\mathbf{v}_1, \dots, \mathbf{v}_r$ form a basis for \mathcal{V}^* , $\dim \mathcal{V}^* = r = \dim \operatorname{Im} f$

We have proved...

Kernel-Image Theorem:

For any linear function $f: \mathcal{V} \to W$, dim Ker $f + \dim \operatorname{Im} f = \dim \mathcal{V}$