

AFWAL-TR-81-3158

01 **e**

EXPERIMENTAL AND NUMERICAL ANALYSIS OF AXIALLY COMPRESSED CIRCULAR CYLINDRICAL FIBER-REINFORCED PANELS WITH VARIOUS **BOUNDARY CONDITIONS**

NELSON R. BAULD, JR.

CLEMSON UNIVERSITY CLEMSON, SC 29631

FLIGHT DYNAMICS LABORATORY

AIR FORCE SYSTEMS COMMAND

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

OCTOBER 1981

TECHNICAL REPORT AFWAL-81-3158 Final Report for Period 1 October 1978 - 30 September 1981

Approved for public release; distribution unlimited.

MF 3 0 193**2**

83 032 30 08

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

NARENDRA S. KHOT

Project Engineer

FREDERICK A. PICCHIONI, Lt Col, USAF Chief, Analysis & Optimization Branch

FOR THE COMMANDER

RALPH L. KUSTER, JR., Col, USAF

Chief, Structures & Dynamics Div.

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/FIBR, W-PAFB, OH 45433 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/18 March 1982 - 200

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	1	3 RECIPIENT'S CATALOG NUMBER
AFWAL-TR-81-3158	AD-411272	5
4. TITLE (and Subtitle)	C OF AVIALLY	5. TYPE OF REPORT & PERIOD COVERED
EXPERIMENTAL AND NUMERICAL ANALYSI COMPRESSED CIRCULAR CYLINDRICAL FI		Final Report for Period 1 October 1978-30 Sept 1981
PANELS WITH VARIOUS BOUNDARY CONDI		6. PERFORMING ORG. REPORT NUMBER
		O. PERFORMING D. TO, REPORT HUMBER
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(s)
Nelson R. Bauld, Jr.		
		F33615-79-C-3030
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Clemson University		Proj 2307, Task 2307N5
Clemson, SC 29631		Work Unit 2307N501
	· · · · · · · · · · · · · · · · · · ·	
11. CONTROLLING OFFICE NAME AND ADDRESS University of Dayton		October 1981
Research Institute		13. NUMBER OF PAGES
Dayton, OH 45469		151
14. MONITORING AGENCY NAME & ADDRESS(If differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)
Flight Dynamics Laboratory (AFWAL/		UNCLASSIFIED
Air Force Wright Aeronautical Labor	ratories (AFSC)	
Wright-Patterson AFB, Ohio 45433		15a. DECLASSIFICATION DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		<u> </u>
Approved for public release, distr	ribution unlimite	ed.
,		
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different from	m Report)
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary an	d identify by block number)	
Buckling Load	,	
Composite Structures		
Plates and Shells Finite Difference Methods		
Experiments		
20. ABSTRACT (Continue on reverse side if necessary and	I identify by block number)	
This report presents comparisons b		
ling behaviors of fiber-reinforced		
scribed uniform end-displacements. sons were obtained from the energy		
CLAPP. Test specimens were clampe		
simply supported or unsupported al		
		1

FOREWORD

This report was prepared by Dr Nelson R. Bauld, Jr., Professor, Department of Mechanical Engineering, Clemson University, Clemson, South Carolina, in partial fulfillment of the requirements under Contract F33615-79-C-3030. The effort was initiated under Project No. 2307, "Research in Flight Vehicle Structures," Task 2307N501, "Basic Research in Structures and Dynamics." The project monitor for the effort was Dr Narendra S. Khot of the Structures and Dynamics Division (AFWAL/FIBRA).

The technical work was performed during the period October 1978 through September 1981. Review report was submitted in October 1981 and the final report in January 1982.

	Accession For
	NTIG CPARE DIECTAR
	Unar stair
) + +
(MSOL)	
	I i
	F

TABLE OF CONTENTS

Section			Page
1	INTRO	DUCTION	1
11	TESTI	NG PROCEDURE	3
	2. 3. 4. 5. 6.	Imperfection Device	3 4 5 5 9 10 12 14
111	EXPER	MENTAL DATA	17
	1. 2. 3. 4.	Initial Geometric Imperfections Strain Measurements . Program A . Program B End-Shortening Buckling Behaviors	17 18 18 18 21
1 V	EXPERI	MENTAL AND NUMERICAL RESULTS	22
	1.	Analysis of Results of Testing Program A . Specimens with simply-supported straight edges . Specimens with unsupported straight	22 22 25
	2.	edges Analysis of Results of Testing Program B . Specimens with simply-supported edges . Specimens with unsupported straight edges	35 35 40
V	LONGIT	UDINAL STIFFENERS	45
	1. 2. 3. 4. 5. 6.	Introduction Stiffener Strain Energy Stiffener Energy in Matrix Form Displacement Continuity Finite-Difference Considerations Incorporation into CLAPP Quasi-Isotropic Fiber-Reinforced Stiffene	45 46 47 49 52 59

Appendix		Page
A	Strain, End-shortening, and Imperfection Measurements for Test Panels with Simply-Supported Straight Edges and Clamped Curved Edges. Testing Program A.	68
В	Strain, End-shortening, and Imperfection Measurements for Test Panels with Unsupported Straight Edges and Clamped Curved Edges. Testing Program B.	93
С	Strain, End-shortening, and Imperfection Measurements for Test Panels for Testing Program B	118
D	User's Manual for Computer Program CLAPP	133

LIST OF ILLUSTRATIONS

Figure		Page
1	Geometry of curved panel specimen.	3
2	Head-plate and base-plate with auxilliary pressure blocks and clamping devices.	5
3	Testing fixture installed in the Tinius-Olsen hydraulic testing machine.	9
4	Imperfection measuring device attached to the base-plate of the testing fixture.	10
5	Imperfection measuring device in position to measure initial geometrical imperfections of a specimen.	11
6	Device used to establish the relative parallelism of the head-plate and the base-plate of the testing fixture.	12
7	Test specimen installed in base-plate and bookends that supply simply-supported edge conditions.	15
8	Simply-supported edge of a test specimen showing vertical pressure blocks.	16
9	Simply-supported specimen partially installed in the testing fixture and associated strain measuring equipment.	19
10	Numerical and experimental load versus end- shortening curves for a 16 in. x 16 in. panel with simply-supported straight edges.	26
11	Analytical and numerical load versus end- shortening curves for panels with simply-supported straight edges.	27
12	Experimental strains corresponding to prescribed values of end-displacement for a panel with simply-supported straight edges and constrained circumferential displacements.	28
13	Analytical nodal loads corresponding to prescribed values of end-shortening for a specimen with simply-supported straight edges with constrained circumferential displacements	29

14	Analytical and experimental load versus end- shortening curves for the perfect and imperfect panel with unsupported straight edges.	32
15	Experimental strains corresponding to prescribed values of end-shortening for test specimens with unsupported straight edges.	33
16	Analytical nodal loads corresponding to prescribed balues of end-shortening for an initial imperfection of the form $W_0=0.005$ (1+cos $\pi\xi/a$) for specimen with unsupported straight edges.	34
17	Theoretical and experimental equilibrium paths for simply supported test specimens for testing Program B.	37
18	Analytical load versus deflection curves for the perfect and imperfect panel with simply-supported straight edges and unconstrained circumferential displacements.	38
19	Theoretical and experimental equilibrium paths for specimens of Program B with unsupported straight edges.	43
20	Equilibrium paths for the axially compressed panel with unsupported straight edges.	44
21	General thin-wall open cross section.	48
22	Detail of coefficient matrix [PAS2].	53
23	Typical stiffener elements and the local numbering system for the surrounding grid points.	51
24	Interoid stiffener element and its local number scheme.	56
25	Geometric details of a fiber reinforced laminate.	6
26	Stiffener stress distribution.	6

LIST OF TABLES

Table		<u>Page</u>
1	Experimental and numerical buckling results for circular cylindrical panels, testing program A.	6
2	Experimental and numerical buckling results for circular cylindrical panels, testing program B.	8

SECTION 1

INTRODUCTION

The principal purpose of this investigation is to provide a basis for assessing the capability of the computer program CLAPP [1] to predict buckling loads for fiber-reinforced, circular cylindrical panels under prescribed uniform axial end-displacements.

Two testing programs were undertaken to accomplish this objective.

They are designated as Program A and Program B in this report.

Program A. Experimental buckling loads were determined for 20 specimens having identical fiber patterns of $[0/90]_{2s}$ and 20 specimens having identical fiber patterns of $[0/\pm45/90]_{s}$. The specimens of a particular fiber pattern were characterized geometrically by five different aspect ratios and by two different sets of boundary conditions. The aspect ratios were a/b = 1/2, 3/4, 1, 4/3, and 2, where a and b are the dimensions of the projection of a panel into its base plane as shown in Figure 1. Boundary conditions along the straight edges of a specimen corresponded to either an unsupported edge or a simply-supported edge. For the simply-supported edge a distinction between unconstrained and constrained circumferential displacements is also made. Boundary conditions along the curved edges corresponded to a clamped edge for all specimens.

<u>Program B.</u> Experimental buckling loads were determined for 6 specimens with the same fiber pattern ($[0/90]_{2s}$), the same aspect ratio (a/b = 1.247, a = 16 in. and b = 12.83 in.), and the same boundary conditions (unsupported straight edges and clamped curved edges). Similarly, experimental buckling loads were obtained for 5 specimens with the fiber pattern $[0/\pm45/90]_s$,

aspect ratio a/b = 4/3 (a = 16 in. and b = 12 in.), and boundary conditions consisting of simply-supported straight edges and clamped curved edges.

A second purpose of this investigation is to modify the computer program CLAPP so as to minimize the effort required to input necessary data. This phase of this investigation is contained as a USER'S MANUAL in Appendix D.

Finally, a third purpose is to modify CLAPP so that it can be used to predict the buckling behavior of fiber-reinforced, circular cylindrical panels and flat plates that are augmented by longitudinal stiffeners. This is accomplished for isotropic stiffeners with a variety of cross sections and for a quasi-isotropic stiffener with a hat shaped cross section.

SECTION II

TESTING PROCEDURE

(II-1). TEST SPECIMENS. Each of the circular cylindrical specimens of Program A and Program B was laminated from graphite-epoxy, and each specimen was cured in a mold for which the external radius was 12 inches. (1) The external radius of a specimen tended to be slightly less than 12 inches upon removal from the mold. The thickness of a test specimen was taken as an average of the thicknesses at 32 locations along a perimeter located uniformly 1-1/2 inches from the exterior perimeter of the specimen. The average thickness for each specimen of Program A is shown in column 2 of Table 1. The average thickness for each specimen of Program B is shown in column 2 of Table 2. Figure 1 indicates pertinent geometrical parameters of a typical specimen. The radius, R = 12.0 in., is the radius of a perfectly circular panel installed in the testing fixture, and the thickness shown is the average thickness of a 0.038 in. typical panel.

Laminate stiffness properties were calculated by lamination theory [2] using the following lamina properties:

⁽¹⁾ All specimens were fabricated and cut by the Air Force Flight Dynamics Laboratory, Air Force Wright Aeronautical Laboratories, Air Force Systems Command, Wright-Patterson Air Force Base. Ohio.

 $E_{11}=20,524$ ksi, $E_{22}=1,333$ ksi, $G_{12}=752$ ksi, $\sigma_{12}=0.335$, and $\sigma_{21}=0.022$. E_{11} and E_{22} are Young's moduli of elasticity parallel and perpendicular to the fiber direction, G_{12} is the shearing modulus associated with these two directions, and σ_{12} and σ_{21} are Poisson ratios.

Program A. The specimens of Program A were distinguished by aspect ratio (a/b), laminate fiber pattern, and boundary conditions.

Specimens having five different aspect ratios (a/b = 1/2, 3/4, 1, 4/3, and 2) were tested. It is convenient to perceive of specimens that are associated with a specific aspect ratio to form a group. Thus, five separate groups of specimens are identifiable.

Each group of specimens consisted of two sub-groups: one sub-group being associated with simply-supported straight edges, and one sub-group being associated with unsupported straight edges. Boundary conditions along the curved edges were clamped for all specimens in each group.

Two laminate fiber-patterns ($[0/90]_{2s}$ and $[0/\pm45/90]_{s}$) were considered for each sub-group. Moreover, each member of each group was duplicated to provide a means to assess repeatibility of experimental results.

From the foregoing discussion it will be observed that each group contained eight specimens: four with simply-supported straight edges and four with unsupported straight edges. Of the four specimens in a subgroup (either simply-supported or unsupported straight edges) two were characterized by a fiber-pattern of $\begin{bmatrix} 0/90 \end{bmatrix}_{2s}$ and two were characterized by a fiber-pattern of $\begin{bmatrix} 0/\pm45/90 \end{bmatrix}_s$. The complete experimental effort amounted to forty specimens. Table 1 has been organized to ref'ect the foregoing classification of specimens.

The physical dimensions of the base-planes (projected area of a specimen) of the specimens associated with the five aspect ratios were 8 x 16, 12 x 16, 16 x 16, 16 x 12, and 16 x 8 (all dimensions are in inches). These dimensions correspond to the inside dimensions of the specimens after installation in the testing fixture.

<u>Program B.</u> As was stated in the introduction, the specimens of Program B can be categorized into two groups: one group with fiber pattern $[0/90]_{2s}$, aspect ratio 16/12.83 = 1.247, and unsupported straight edges; and one group with fiber pattern $[0/\pm45/90]_{s}$ aspect ratio 16/12 = 4/3, and simply-suported straight edges. The results of buckling tests on these specimen are tabulated in Table 2.

(II-2). TEST FIXTURE. The testing fixture used in both testing programs was a modification of a test fixture used by Wilkins [3]. Modifications of the Wilkins' testing fixture were necessary to accommodate specimens of

shows the head-plate and the baseplate (with their auxilliary
pressure blocks and clamping
plates) through which an axial
compressive load was applied to
a specimen. All surfaces of the
head-plate, and of the baseplate, were carefully machined
so that they were within 0.001 in.
of being parallel.

FIGURE 2. Head-plate and base-plate with auxiliary pressure blocks and clamping plates.

TABLE 1. EAPERIMENTAL AND NUMERICAL BUCKLING RESULTS FOR CIRCULAR CYLINDRICAL PANELS FOR TESTING PROGRAM A.

DIMENSIONS (in)	AVERAGE THICKNESS (in)	ASPECT RAT 10	PANEL LABEL DESIGNATION	BOUNDARY	LAMINATE PATIERN	EXPERIMENTAL BUCKLING LOAD (1b)	THEORETICAL BIFURCATION LOAD (1b)	RATIO MODIFIED EXP LOAD TO THEO.
×	0.0357 0.0389 0.0378 0.0362	-1	BCP-9824-A2-1 BCP-9824-A2-2 BCP-9810-B4-1 BCP-9810-B4-2	*	[0/+45/90]s [0/+45/90]s [0/90]2s [0/90]2s	5825 6710 5175 5350	12,020	0.458 0.528 0.521 0.538
	0.0373 0.0396 0.0384 0.0402	2	BCP-9824-A2-1 BCP-9824-A2-2 BCP-9810-84-1 BCP-9810-84-2		[0/±45/90]s [0/±45/90]s [0/90]2s [0/90]2s	3900 3970 3850 3300	3,724	1.047 1.066 1.906 1.634
12 × 16	0.0397 0.0378 0.0376 0.0380	m	BCP-9921-A5-1 BCP-9921-A5-2 BCP-8910-B2-1 BCP-8910-B2-2		[0/+45/90]s [0/+45/90]s [0/90]2s [0/90]2s	5600 5910 4750 4950	9,954	0.532 0.562 0.516 0.538
<u> </u>	0.0374 0.0404 0.0382 0.0400	4	BCP-9921-A6-1 BCP-9921-A6-2 BCP-9817-B5-1 BCP-9817-B5-2		[0/±45/90]s [0/±45/90]s [0/90]2s [0/90]2s	2775 3050 3140 3200	1,557	1.782 1.959 2.157 2.198

The designation 5.5. signifies that the straight edges of the panel were simply-supported. 46

^{**} The designation F.E. signifies that the straight edges of the panel were unsupported.

(CONT) TABLE 1. EXPERIMENTAL AND NUMERICAL BUCKLING RESULTS FOR CIRCULAR CYLINDRICAL PANELS FOR TESTING PROGRAM A.

TICAL RATIO ATION MODIFIED EXP Ib) LOAD TO THEO. LOAD	28 0.539 0.727 0.583 0.664	61 1.531 1.478 1.813 1.1 2.052	77 0.667 0.979 0.871 0.892	800 2.875 2.6125 2.425 796 2.651	88 0.992 0.958 0.810 1.072	643 1.322 1.627 2.238 476 2.290
THEORETICAL BIFURCATION LOAD (1b)	8,228	1,861	5,277	8 1	3,088	9 4
EXPERIMENTAL BUCKLING LOAD (1b)	4750 6400 5010 5700	2850 2750 2746 3100	3500 5575 4600 4710	2300 2090 1930 2110	3440 3320 2450 3240	840 1046 1065 1090
LAM INATE PATTERN	[0/±45/90]s [0/±45/90]s [0/90]2s [0/90]2s	[0/±45/90]s [0/±45/90]s [0/90]2s [0/90]2s	[0/±45/90]s [0/±45/90]s [0/90]2s [0/90]2s	[0/±45/90]s [0/±45/90]s [0/90]s [0/90]s	[0/±45/90]s [0/±45/90]s [0/90]2s [0/90]2s	[0/±45/90]s [0/±45/90]s [0/90]2s [0/90]2s
BOUNDARY			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			7.7.7.
PANEL LABEL DESIGNATION	BCP-9824-A3-1 BCP-9824-A3-2 BCP-9810-B3-1 BCP-9810-B3-2	BCP-9824-A4-1 BCP-9824-A4-2 BCP-9817-B8-1 BCP-9817-B8-2	BCP-9921-A8-1 BCP-9921-A8-2 BCP-9810-B1-1 BCP-9810-B1-2	BCP-9824-A1-1 BCP-9824-A1-2 BCP-9817-B6-1 BCP-9817-B6-2	BCP-9921-A7-1 BCP-9921-A1-2 BCP-9817-B7-1 BCP-9817-B7-2	BCP-9921-A7-1 BCP-9921-A7-2 BCP-9817-B7-1 BCP-9817-B7-2
ASPECT RAT 10	1		710	n	2	
AVERAGE THICKNESS (in)	0.0388 0.0390 0.0386 0.0393	0.0375 0.0384 0.0391 0.0393	0.0385 0.0391 0.0399 0.0388	0.0387 0.0389 0.0383 0.0387	0.0390 0.0396 0.0380 0.0393	0.0356 0.0382 0.0387 0.0363
DIMENSIONS (in)	91 × 91		16 × 12		8 × 91	

TABLE 2. EXPERIMENTAL AND NUMERICAL BUCKLING RESULTS FOR CIRCULAR CYLINDRICAL PANELS FOR TESTING PROGRAM B.

DS-B9-1 0.0357 [0/90] _{2s} DS-B9-2 0.0378 [0/90] _{2s} DS-B10-1 0.0369 [0/90] _{2s} DS-B10-2 0.0380 [0/90] _{2s} DS-B11-1 0.0374 [0/90] _{2s} DS-B11-2 0.0382 [0/90] _{2s} DS-A9-1 0.0375 [0/±45/90] _s DS-A9-2 0.0378 [0/±45/90] _s DS-A10-1 0.0378 [0/±45/90] _s DS-A10-2 0.0371 [0/±45/90] _s	PANEL LABEL DESIGNATION	AVERAGE THICKNESS, (in)	LAM INATE PATTERN	BOUNDARY CONDITIONS	EXP. BUCKLING LOAD, (1b)	THEO. BUCKLING LOAD, (1b)
0.0378 0.0369 0.0374 0.0375 0.0375 0.0378 0.0378	DS-89-1	0.0357	[0/90] _{2s}	F.E.	2165	
0.0369 0.0380 0.0374 0.0375 0.0375 0.0378	DS-B9-2	0.0378	[0/90] _{2s}	я. Я.	2410	
0.0380 0.0374 0.0382 0.0375 0.0378 0.0378	08-810-1	0.0369	[0/90] _{2s}	7. 7.	2300	
0.0374 0.0382 0.0375 0.0382 0.0378	DS-B10-2	0.0380	[0/90] _{2s}	F. f.	2500	g: 0266 ::
0.0382 0.0375 0.0382 0.0378	DS-811-1	0.0374	[0/90] _{2s}	F. F.	2460	
0.0375 0.0382 0.0378	DS-811-2	0.0382	[0/90] _{2s}	F. E.	2715	
0.0382	DS-A9-1	0.0375	s[06/54±/0]	5.5.	0094	
0.0378	DS-A9-2	0.0382	[06/54÷/0]	5.5.	4975	6950 lb
0.0371	DS-A10-1	0.0378	[06/54-70]	5.5.	5775	
	DS-A10-2	0.0371	[06/54 - 40]	\$.5.	5510	** 5622 1b
DS-A11-1 0.0383 [0/±45/90] _s	DS-A11-1	0.0383	s[06/5ħ+/0]	5.5.	5160	

 * Theoretical buckling load for perfect panel corresponding to prescribed uniform end displacements and a 20 x 11 finite difference grid.

 ** Theoretical buckling load for an imperfect panel corresponding to prescribed uniform end displacements and a 20 x 11 finite difference grid.

(11-3). TESTING MACHINE. An axial compressive load was applied to a specimen through a 120,000 lb Tinius-Olsen hydraulic testing machine. Most experimental buckling loads were of such a magnitude that the intermediate range (12,000 lb range) of the testing machine could be used effectively. The finest division for this range is 50 lb. The low range (3000 lb range) was used to test several specimens with unsupported straight edges. The finest division for this range is 5 lb.

The surfaces of the platten and the cross-head of the testing machine were dressed so that they were nearly plane.

The head-plate and the base-plate of the testing fixture are shown installed in the Tinius-Olsen testing machine in Figure 3.

Program A it became apparent that the cross-head would tilt as the reactive force of the specimen on the cross-head tended to lift it off the threads of the vertical columns. To eliminate the tilting action two large aluminum nuts were machined and placed

on the vertical screws

Early in testing

FIGURE 3. Testing fixture installed in the Tinius-Olsen hydraulic testing machine.

beneath the cross-head. At an appropriate point during the installation of a specimen these nuts were tightened against the lower surfaces of the cross-head causing it to lock in place. These aluminum locking nuts are shown in Figure 3.

(11-4). IMPERFECTION DEVICE. Figure 4 shows the mechanical device that was used to measure deviations of a specimen from a perfect cylindrical form; that is, to measure the initial geometric imperfections of a specimen.

Components of this device were constructed so that the vertical sides of the circular groove in the platform of the device were concentric with the vertical sides of the circular groove in the base-plate of the testing

fixture. The imperfection device was secured to the base-plate of the testing fixture so that its slotted vertical platform-supports were perpendicular to the base-plate. This ensured concentricity of the platform groove with the groove in the base-plate for any platform level.

To position the imperfection device relative to the base-plate of the testing fixture, the dial indicator mechanism shown in Figure 4

FIGURE 4. Imperfection measuring device attached to the base-plate of the testing fixture.

was designed so that it could be moved smoothly and snugly in the circular groove of the platform of the imperfection measuring device. With the tip of the dial indicator extension resting against the vertical side of the circular groove in the base-plate, the mechanism was moved along the platform groove. By trial the imperfection measuring device was adjusted relative to the base-plate so that the pointer of the dial indicator was undisturbed for a complete cycle along the platform groove. Once the proper position was located the imperfection measuring device was secured to the base-plate of the testing fixture by machine bolts. Positioning pins were installed so that the correct position could be duplicated. This procedure resulted in a variation of less than 0.001 in. for a complete traverse of the platform groove.

Holes for positioning pins were drilled at one-inch intervals along the slotted vertical platform supports. This ensured that the position of the

imperfection measuring
device relative to the
base-plate of the testing
fixture could be duplicated
at appropriate levels.
Once the platform was located at a specified level
by the positioning pins,
it was locked in that
position by cap screws.

Figure 5 shows the imperfection measuring

FIGURE 5. Imperfection measuring device in position to measure initial geometric imperfections of a specimen.

device installed on the testing fixture. Deviation of a specimen from perfect circularity were measured by moving the dial indicator mechanism along the platform groove.

essential for proper alignment of the head-plate relative to the base-plate of the testing fixture. First, the circular arc associated with an edge of the circular groove in the head-plate and the corresponding circular arc of the circular groove in the base-plate must lie in parallel planes. This requirement is realized when the head-plate (when attached to the cross-head of the testing recommend and the base-plate (when attached to the platten of the testing recommendate). Secondly, these two arcs must lie in a common circular parallel. Secondly, these two cular to the base-plate (and, hence, perpendicular to the head-plate).

Parallelism of the headplate and the base-plate was
assessed using the device
shown in Figure 6. This
device consists of a rigid
base that was machined to
fit snugly in the circular
groove of the base-plate,
and that could be moved
smoothly along the groove.
A dial indicator was
attached to a stiff steel
rod which was affixed to

FIGURE 6. Device used to establish the relative parallelism of the head-plate and the base-plate of the testing fixture.

the moveable base. With the plunger of the dial indicator resting against the surface of the circular groove in the head-plate, the device was moved along the circular groove in the base-plate. Using the centerline of the circular groove as a reference, it was observed that the variation in the distance between the surfaces of the grooves in the head-plate and the base-plate did not exceed 0.0035 in. on either side of the centerline for the maximum arc of 18.5 in. (circumferential arc length of the widest specimen). This variation was accordingly smaller for narrower specimens. Once the head-plate and the base-plate had been assessed to be as parallel as reasonable efforts would allow, they were securely clamped to the crosshead and to the platten of the Tinius-Olsen testing machine by specially designed clamps. These clamps can be seen in Figure 5.

The imperfection device was used to bring corresponding circular arcs in the head-plate and in the base-plate into concentricity. To accomplish this alignment the platform of the imperfection measuring device was positioned at an appropriate level and the tip of the dial indicator extension shown in Figure 4 was allowed to rest against the vertical side of the circular groove in the head-plate. Since the groove in the platform of the imperfection measuring device is concentric with the vertical edge of the circular groove in the base-plate, the corresponding edge of the circular groove in the head-plate will be concentric with its counterpart in the base-plate when the pointer of the dial indicator is undisturbed as the indicator mechanism is moved smoothly along the platform groove. Thus, appropriate alignment of the head-plate and the base-plate of the testing fixture was accomplished.

(II-6). SPECIMEN INSTALLATION. The procedure used to install specimens in the testing fixture was similar for specimens with unsupported straight edges and for specimens with simply-supported straight edges. It is convenient to describe the installation procedure for the specimens with unsupported straight edges first, and, subsequently, describe the additional installation features associated with the specimens for which the straight edges were simply-supported. In either case the curved edges of all specimens were clamped.

In preparation for buckling tests of specimens with unsupported straight edges, a specimen was centered in the circular groove of the base-plate of the testing fixture and the pressure blocks were adjusted by finger tightening appropriate screws. The platten of the testing machine was then raised to allow the upper curved edge of the specimen to enter the circular groove of the head-plate to approximately three-quarters of the groove depth. Pressure blocks in the head-plate were then adjusted by finger tightening appropriate screws in the head-plate. Generators at several locations along the circumference of a specimen were aligned vertically with a precision square. The platten of the testing machine was then raised until the specimen experienced a compressive force of 25 lb. Pressure blocks in the base-plate and in the head-plate were adjusted to their final positions by applying a 40 in-lb torque to appropriate screws while the 25 lb pre-load was maintained.

Preparation for buckling tests of specimens with a simply-supported straight edges was similar to that for specimens with unsupported straight edges. A specimen was centered in the circular groove of the base-plate and its straight edges were inserted in the slots of the vertical edge supports (hence forth referred to as book-ends) as shown in Figure 7.

Pressure blocks in the base-plate and at each book-end were adjusted to the finger tight position. The platten of the testing machine was then raised to allow the upper curved edge of the specimen to enter the circular groove of the head-plate to approximately three-quarters of the groove depth. Pressure blocks in the head-plate were then adjusted to the finger

tight position. Generators at several locations along the circumference of the specimen were aligned vertically with a precision square. The platten of the testing machine was then raised until the specimen experienced a compressive force of 50 lb. Pressure blocks in the base-plate and in the headplate were adjusted to the 40 in-1b position, and the

FIGURE 7. Test specimen installed in the baseplate and book-ends that supply simply-supported edge conditions.

vertical pressure blocks in the book-ends (see Figure 8) were adjusted to the finger tight position for specimens of Program A.

For Program B the pressure exerted on the specimen by the vertical pressure blocks was adjusted to different amounts.

FIGURE 8. Simply-supported edge of a test specimen showing vertical pressure blocks.

SECTION III

EXPERIMENTAL DATA

(III-1). INITIAL GEOMETRICAL IMPERFECTIONS. Initial deviations of a specimen from a perfect cylindrical surface are referred to in this report as initial geometric imperfections. Imperfection measurements were obtained at the nodes of a rectangular grid drawn on the inner surface of a specimen. Details of the imperfection grids for specimens with different aspect ratios are listed in Appendices A and B for specimens with simply-supported straight edges and unsupported straight edges, respectively. This data corresponds to testing Program A. Details of the imperfection grids used in testing Program B are listed in Appendix C.

For testing Program A, the reference point for imperfection measurements lies on the specimen centerline two inches below the upper clamped edge. Measurements were made at equal intervals on either side of the specimen centerline, and at equal intervals along the generators of a specimen. Measurements for specimens with unsupported edges were obtained along these edges, while measurements for specimens with simply-supported edges were obtained as close to the straight edges as the imperfection measuring device would permit. These observations are reflected in the imperfection data contained in Appendices A and B. Actual spacing dimensions for the imperfection grid associated with each panel aspect ratio are shown in these appendices also.

For testing Program B a specially constructed device, with two circular members that were concentric with the groove in base-plate, was used to establish the reference point for imperfection measurements. Measurements for imperfections were made at the locations described for Program A.

Actual spacing dimensions for imperfection grids associated with panels with unsupported straight edges and simply-supported straight edges are indicated in Appendix C. The imperfection measurements for Program B are also presented in Appendix C.

(III-2). STRAIN MEASUREMENTS. It was of interest to determine if the axial compressive end-load was applied uniformly along the curved edges of a specimen.

Program A. For testing Program A, axial strains were measured along an arc lying one inch below the upper clamped edge on the specimen centerline and at two other equally spaced points on both sides of the centerline. Electrical resistance strain gages were bonded at identical locations on both sides of a specimen so that, by means of an appropriate four-arm bridge, only axial strains were sensed. Locations of the strain gages on the surface nearest the center of curvature of a specimen can be observed in Figure 7. Appendices A and B contain details for strain gage locations for Program A.

Program B. For testing Program B, axial strains were measured at the five locations described in Program A for specimens with unsupported edges. Axial strains were measured at only three locations for specimens with simply-supported edges: on the centerline and at two points symmetrically located relative to the centerline. Appendix C contains details for strain gage locations for Program B.

Strain gage readings were obtained using a Vishay/Ellis-20 digital strain indicator and a Vishay-Ellis-21 ten channel switching and balancing unit. This equipment is shown in Figure 9. Strain data associated with

testing Program A are
presented in Appendix A
for specimens with simplysupported straight edges,
and in Appendix B for
specimens with unsupported
straight edges. Strain
data associated with
testing Program B are
presented in Appendix C.

The strain data indicates that the distribution
of force on the curved edge
of a specimen is essentially
uniform in the very early
stages of the loading pro-

FIGURE 9. Simply-supported specimen partially installed in the testing fixture and associated strain measuring equipment.

cess, but quickly becomes nonuniform. These observations remain valid for all specimens in each testing program.

Consider specimens with unsupported straight edges. As was stated previously, specimens were not perfectly circular cylindrical as they emerged from the mold. Consequently, installation in the testing fixture caused regions near the ends to assume a circular cylindrical shape of radius 12 inches, while cross sections away from the ends assumed noncircular shapes with the unsupported edges "dishing" toward the center of curvature. Generally, the centerline and generators in the regions on either side of the centerline were straighter than generators near the edges. Since the axial stiffness of a small strip of specimen parallel to a generator depends on

its flexural stiffness as well as its in-plane stiffness, the strains associated with strips located at various sites on a specimen should be expected to be different. Indeed, the non-uniformity of the strain distribution should be expected to be intensified as the loading process proceeds. It is noted, from the strain data for specimens with unsupported straight edges in Appendix B, that the strains near the straight edges actually changed from compression to tension during the early stages of loading. This reversal of strain near the straight edges is associated with the bifurcation load for the specimen under an essentially uniform end-load (as opposed to uniform end-displacement). A more detailed discussion of this behavior is presented in a later section.

Now consider specimens with simply-supported straight edges. These specimens experienced the same "dishing" effects as specimens with unsupported straight edges; however, the book-ends forced the edges to become straight with the consequent configuration change on the interior of a specimen.

Accordingly, since these initial installed configurations occur in an essentially random manner, nonuniform strain distributions should be expected during the loading process.

Another possible reason for the nonuniform strain distributions exhibited by specimens with simply-supported edges is the asymmetry in the axial displacements that can be introduced at the book-ends. The strain distribution on the interior of a specimen will deviate from uniformity if the axial displacement distributions along the two simply-supported edges differ.

The further observation should be made that not only do the initial imperfections influence the buckling resistance of a specimen, but a certain unknown initial stress distribution is associated with the installed initial configuration that also influences the buckling resistance. The influence of the

initial stress distribution on the buckling resistance is rather capricious.

The initial geometric imperfections that are incorporated in CLAPP assume that the imperfect configuration is stress free.

(111-3). END-SHORTENING. The end-shortening of each specimen in testing Programs A and B was measured with a dial indicator that was positioned so as to determine the relative displacement between the platten and the cross-head of the Tinius-Olsen testing machine. The axial compressive load applied to the specimen was read directly from the testing machine. Load and corresponding end-shortening data are listed in Appendices A and B for specimens of testing Program A and in Appendix C for specimens of testing Program B.

(111-4). BUCKLING BEHAVIORS. Experimental buckling loads for the 40 specimens associated with testing Program A are listed in column 7 of Table 1 and those associated with the 10 specimens of testing Program B are listed in column 5 of Table 2. The recorded experimental buckling load for each specimen of either testing program was characterized by a distinct loss in load carrying capacity. Loss of load carrying capacity was detected readily from the load-dial of the Tinius-Olsen hydraulic testing machine, and was always accompanied by a sudden shift in the equilibrium configuration of the specimen that was clearly audible and visible.

SECTION IV

EXPERIMENTAL AND NUMERICAL RESULTS

(IV-1). ANALYSIS OF RESULTS OF TESTING PROGRAM A. The theoretical buckling loads shown in column 8 of Table 1 were calculated assuming that each panel was subjected to a force that was uniformly applied along its curved edge. The bifurcation branch of CLAPP was used to calculate these buckling loads. Consequently, the theoretical buckling loads listed in Table 1 correspond to bifurcation under a uniformly applied axial compression using both a 12 x 12 and a 20 x 12 finite difference grid. For this bifurcation analysis the 20 x 12 grid yielded a bifurcation load less than three percent smaller than the 12 x 12 grid. Nevertheless, numerical calculations for the bifurcation load for each of the remaining specimens were obtained using either a 20 x 12 or a 16 x 12 finite difference grid. The clamped boundary condition along a curved edge of a specimen requires the transverse displacements be zero along a line of nodal points coincident with the curved boundary and along a parallel line of nodal points just inside the boundary. The larger number of grid points was always taken along the generators of a specimen to minimize this internal constraint.

SPECIMENS WITH SIMPLY-SUPPORTED STRAIGHT EDGES. Table 1 shows that the bifurcation load predicted by CLAPP was greater than its corresponding set of experimental buckling loads except for one specimen. The ratio of the modified experimental load to the numerical bifurcation load is shown in the last column of Table 1 for each specimen. The modified experimental buckling load was obtained by assuming that the observed experimental buckling load was uniformly distributed along the curved edge of a specimen and only the portion

of the curved edge between the book-ends contributed to the buckling of a specimen.

The ratio of the modified experimental buckling load to the theoretical bifurcation load fell in the range $0.5 < \rho < 1.0$ for eighteen of the twenty specimens with simply-supported straight edges. The ratio was 0.458 for one specimen and 1.072 for another. We remark that theoretical bifurcation loads predicted by the energy method represent upper bounds to the classical bifurcation loads associated with the test specimens. Moreover, in the presence of initial geometric imperfections the experimental buckling loads can be expected to be less than the classical bifurcation load if the speciment is imperfection sensitive. If a specimen is not sensitive to initial imperfections its experimental buckling load can be expected to compare favorably with the theoretical bifurcation load.

Another complicating factor is the nature of the simply-supported boundary condition. Actually two different types of the simply-supported boundary conditions must be recognized. Normally, a simply-supported boundary condition implies the bending moment and transverse displacement are zero. In addition to these conditions, in-plane displacements or membrane forces must be specified. Consequently, with reference to the simply-supported test specimens, circumferential displacement can be prevented, can be allowed to occur freely, or, there can be some intermediate partial restriction of circumferential displacements. The theoretical bifurcation loads listed in Table 1 correspond to freely occurring circumferential displacements along the straight edges.

The foregoing observations are offered in explanation of the rather large difference between the experimental buckling load and the theoretical bifurcation load for some test specimens and the much better agreement

between the two loads for other specimens. The ratio 1.072 for one test specimen is believed to be a quirk arising out of the way the modified experimental buckling load is defined.

Figure 10 shows the experimental and numerical load versus endshortening curves for a 16 in. x 16 in. panel with simply-supported
straight edges. The numerical load vs end-shortening curve was obtained
using measured initial imperfections. A plot of the normalized buckling
determinant is also shown in the figure. We note that the numerical curve
is essentially linear even though initial imperfections are present.
Furthermore, the panel buckled apparently by bifurcation as indicated by
the system buckling determinant becoming negative.

CLAPP was modified to provide the capability of prescribing uniform end displacements as opposed to prescribing uniform end load.

Figure 11 shows the experimental and theoretical load versus end-shortening curves for the 16 in. \times 8 in. specimen with the $[0/90]_{2s}$ fiber pattern. The theoretical bifurcation loads for conceptual models with simply-supported edges are 2522 lb when circumferential displacements occur freely, and 4311 lb when circumferential displacements are prevented at the straight edges. The experimental buckling loads for the two test specimens are 2500 lb and 3240 lb.

There is, perhaps, better agreement between the theoretical bifurcation loads and the experimental buckling loads than is immediately obvious. Consider the experimental curve labeled 1 in Figure 11. The unusual shape of this load versus end-shortening curve appears to be the result of the panel slipping circumferentially in the book-ends at a load near 300 lb. In this test it becomes clear that the friction forces exerted by the vertical

pressure blocks on the specimen was not sufficient to prevent circumferential displacements. Consequently, at approximately 300 lb the book-ends allowed circumferential displacements to commence. However, the specimen edges apparently made contact with back surfaces of the book-ends and circumferential displacements were prevented from approximately 1500 lb onward. One expects the experimental buckling load for this specimen to fall between the two theoretical bifurcation loads.

The behavior exhibited by the experimental curve labeled 2 in Figure II can be explained in a similar manner. Initially the friction forces exerted by the vertical pressure blocks on the specimen is sufficient to prevent circumferential displacements. At a load of approximately 800 lb a gradual slippage occurs and, finally at a load of approximately 2250 lb the friction forces were not sufficient to prevent or restrict these displacements any longer. A sudden slippage occurred that resulted in the buckling of the specimen before its straight edges made contact with the back surfaces of the book-ends. Accordingly, one expects the experimental buckling load for this specimen to agree closely with the theoretical bifurcation load corresponding to the simple-support condition when circumferential displacements occur freely.

The experimental strain distribution shown in Figure 12 shows an encouraging resemblance to the calculated nodal load distribution shown in Figure 13.

SPECIMENS WITH UNSUPPORTED STRAIGHT EDGES. Table 1 shows that the bifurcation load predicted by CLAPP was less than its corresponding set of experimental loads for every specimen. This unexpected behavior can be explained as follows. Because the radius of a specimen was less than 12.0 in,

FIGURE 10. Numerical and experimental load versus end-shortening curves for a 16 in x 16 in panel with simply-supported straight

FIGURE (1. Analytical and experimental load vs. end-shortening curves for panels with simply-supported straight edges.

(2) Experimental strains our responding to prescribed values of end-displacement of a large with simply supported straight edges and constrained discontermed in solutions. F1600E

Figure 13 dealected house terrespinding to prescribed values of end-shortening for a specimen with simply supported straight edges with constrained circumferential displacements.

distortions of the straight edges of a specimen occurred upon clamping its curved edges in the testing fixture. The experiment buckling load is believed to correspond to a limit point load that is greater than the bifurcation load for a perfectly cylindrical geometry. In other words, the initial distortion of the straight edges of a specimen prevents an experimental detection of a bifurcation load corresponding to a wrinkling of these edges for a perfect cylindrical geometry under a uniformly distributed edge compression.

We remark that the bifurcation loads predicted by CLAPP correspond to cylindrical specimens without initial imperfections under forces that are uniformly distributed along the curved edges. It is important to note that axial and circumferential displacements along the curved edges are not specified. Consequently, theory predicts a specimen will collapse at the bifurcation load.

The experimental model is clamped tightly in the head-plate and in the base-plate so that circumferential displacements along the curved edges are prevented. More importantly, axial deformations are restricted by the relative movement of the cross-head and the platten of the testing machine. Consequently, when the straight edges buckle the testing fixture prevents the collapse that theory predicts for the specimen under uniform load. As a result of the clamp conditions the specimen retains significant load carrying capacity. In fact, the experimental buckling loads correspond to limit points in the post buckled region.

A close inspection of the strain data indicates the strain at the straight edges changed sign at loads that are in the appropriate neighbor-hoods of the theoretical bifurcation loads. The sign change on the edge

strains corresponds to the observed severe distortion of the straight edges of a specimen. The load levels at which the sign change occurred depended on the initial imperfection in the specimen.

CLAPP was modified so that the buckling behavior of specimens under prescribed uniform end-displacements could be studied.

Figure 14 shows the experimental equilibrium paths for the 16 in. x 8 in. specimens with the $\left[0/90\right]_{2s}$ fiber pattern. It also shows equilibrium paths predicted by CLAPP for initial imperfections of the form $W_{0}(x,y)=WI(1+\cos\pi x/2a)$ for amplitudes WI=0.0, +0.005, and -0.010. The limit point buckling loads discussed previously are clearly evident. The ratios of the experimental buckling loads to the theoretical limit load for a perfectly cylindrical specimen are 0.85 and 0.83. The ratios of the experimental buckling loads to the theoretical limit load for an initial imperfection of amplitude 0.005 are 0.93 and 0.91. Even better agreement is expected for the exact imperfection distributions.

Figure 15 shows the strain distribution at various load levels for the specimen discussed in the previous paragraph. Evidently, the force applied to the curved edges of the specimen was uniform during the early stages of the loading process; that is, during the initial increments of prescribed end-displacements. Accordingly, the bifurcation load predicted by CLAPP for a uniformly applied end-load should agree qualitatively with the load at which the sign change occurred for the edge strains. The theoretical bifurcation load from Table 1 is 476 lb and the load at which the axial edge strain ceased to increase was near 600 lb.

Figure 16 shows the nodal forces predicted by CLAPP for the same speciment distribution. During the initial increments of prescribed end-

FIGURE 14. Analytical and experimental load vs end-shortening curves for the perfect and the imperfect panel with unsupported straight edges.

FIGURE 15. Experimental strains corresponding to prescribed values of end-shortening for test specimens with unsupported straight edges.

FIGURE 16. Analytical nodal loads corresponding to prescribed values of end-shortening for an initial imperfection of the form $W_0=0.005~(1+\cos\pi\xi/a)$ for specimens with unsupported straight edges.

displacements the strain distributions and the nodal force distributions are nearly uniform. These distributions become nonuniform as the loading process continues; however, there is a visible agreement between the experimental strain distribution and the calculated nodal load distribution for all levels of prescribed end-displacements.

(IV-2). ANALYSIS OF RESULTS OF TESTING PROGRAM B. The theoretical buckling loads shown in column 6 of Table 2 were calculated assuming that each panel was subjected to prescribed end-displacements that were uniform along the curved edges. Calculations were made for 16 x 11 and 20 x 11 finite-difference grids to check the convergence of the numerical process.

SPECIMENS WITH SIMPLY-SUPPORTED EDGES. The experimental equilibrium paths for five 16 in. x 12.83 in. specimens with the $[0/\pm45/90]_s$ fiber pattern and simply-supported straight edges are shown in Figure 17. The load at which each specimen buckled is marked on the graph beside the corresponding equilibrium path. The theoretical equilibrium path is also shown in the same figure for the perfect panel and for an initial imperfection amplitude of -0.010 in. The two paths essentially coincide except that their termination points (buckling loads) are different (8064 and 6608 lb. for the perfect and imperfect panels, respectively). These buckling loads correspond to a 16 x 11 finite-difference grid. A 20 x 11 finite-difference grid was also used to calculate the buckling loads for the same perfect and imperfect panels. The equilibrium paths in this case were indistinguishable from those obtained using the 16 x 11 finite-difference grid except that their termination points (buckling loads) are somewhat less (6950 and 5622 lb. for the perfect and imperfect panels, respectively) than those associated with the 16 x 11 finite-difference grid.

Figure 18 shows theoretical equilibrium paths for the perfect panel and the imperfect panel (WI = -0.010 in.) where, instead of using end-displacement as a measure of the system displacement, the norm of the transverse displacements is used. These curves exhibit more clearly the nonlinear character of the equilibrium path. These curves correspond to the 20 x 11 finite-difference grid. Also note the mathematical form of the geometric initial imperfection shown on the same figure.

The theoretical buckling load was detected numerically as a change in the system buckling determinant from positive to negative. This indicates that the simply-supported panel experienced bifurcation buckling. A plot of the normalized buckling determinant versus total end load for an initial imperfection amplitude of -0.010 in. is shown in the upper left hand corner of Figure 18.

The initial imperfection amplitude corresponds to a radial deviation from a perfect cylinder of 0.020 inches at the geometric center of the panel, which is approximately equal to one half the panel thickness. This is a rather large initial imperfection. The magnitudes of the measured initial imperfections were frequently larger than 0.020; however, the distribution of the imperfections were different. Generally, the largest imperfections occurred near the edges of a specimen with somewhat smaller ones occurring near the centerline.

The 16 x 11 and 20 x 11 finite-difference grids gave 8064 1b and 6950 1b as the bifurcation loads for the perfect panel. That is, the 20×11 grid predicted a bifurcation load 13.8% lower than the 16×11 grid. Further improvement in the theoretical buckling load is expected with a further refinement in the finite-difference grid. CLAPP is presently dimensioned to

Theoretical and experimental equilibrium paths for simply-supported test specimens for testing Program $\ensuremath{\mathtt{B}}.$ Figure 17.

handle a maximum 20 \times 12 finite-difference grid, so that further refinements were not undertaken in this investigation.

The 16 x 11 and 20 x 11 finite-difference grids predicted bifurcation loads of 6608 and 5622 lb for the imperfect panel (WI - -0.010 in.). Thus, the 20 x 11 grid predicted a bifurcation load 14.9% lower than the 16 x 11 grid for the imperfect panel. Again, improvement in the theoretical buckling load for the imperfect panel can be expected for a more refined finite-difference grid.

Figure 18 shows that the experimental buckling loads are not grossly misrepresented by the buckling load predicted by the 20 x 11 grid for the imperfect panel. Based on the buckling load predicted by the 20 x 11 grid for the perfect panel (6950 lb) the ratios of the experimental to the theoretical buckling load for the five specimens are 0.831, 0.793, 0.741, 0.716, and 0.668. The last ratio really should not be counted because this specimen had been tested previously with very loose straight edges. Based on the buckling load predicted by 20 x 11 grid for imperfect panel (5622 lb) these ratios become 1.03, 0.980, 0.918, 0.885, and 0.818.

The theoretical curves, and thus the theoretical buckling loads, upon which the foregoing ratios are based correspond to simply-supported straight edges for which circumferential displacements are unrestrained. It is impossible to be certain of the nature of the boundary condition along the straight edges of the test specimens. As an example of the uncertainty of the type of boundary condition that existed along the straight edges of a test specimen consider the test specimen for which the experimental buckling load was found to be 5775 lb, the largest of the buckling loads of the five specimens. For this test the shoulders of the vertical pressure blocks

were filed to a rounded configuration so that the blocks contacted the specimen along a straight line. In the other tests these contacting surfaces were flat and tended to bend the panel when the pressure was applied. The former, it is expected, allowed a more freely occurring rotation at the edge for which the corresponding buckling load should be expected to be less than that for the latter case. As can be seen this was not the case. All this suggests that the edge conditions at the straight edges of the test panel are uncertain.

It is felt that the conditions along the straight edges of the test specimens is the principal source of the difference exhibited between the experimental and theoretical buckling loads. It is also felt the CLAPP is much less at fault for the difference referred to.

It should also be noted that any pressure exerted by the vertical pressure blocks on the panel tends to retard the free occurrence of axial displacements along the straight edges. This could give rise to shearing stresses in the panel which would lead to lower axial buckling loads. Finally, the clamping mechanism prevents circumferential displacements from occurring freely along the curved edges. This could cause local distortions near the curved edges that could lead to lower buckling loads. The model for which the theoretical buckling loads were computed assumed that axial displacements along the straight edges and circumferential displacements along the curved edges are unimpeded.

SPECIMENS WITH UNSUPPORTED STRAIGHT EDGES. The experimental equilibrium paths for six 16 in. x 12.83 in. specimen with the $[0/90]_{2s}$ fiber pattern and unsupported straight edges are shown in Figure 19. The load at which each specimen buckled is marked on the graph beside the corresponding

equilibrium path. The theoretical equilibrium path is also shown in the same figure for initial imperfection amplitudes of -0.0025 and -0.005. As was the case for specimens with simply-supported straight edges, the theoretical equilibrium paths for the 16 x 11 finite-difference grid essentially coincide for initial imperfection amplitudes of -0.0025, -0.0050, and -0.010 in. Moreover, the buckling loads corresponding to these initial imperfection amplitudes differed only slightly, as can be seen from Figure 20. The equilibrium path corresponding to a 20 x 11 f.inite-difference grid differs only slightly from that corresponding to a 16 x 11 grid. The buckling loads for the 16 x 11 and 20 x 11 grids for an initial imperfection amplitude of -0.01 in. are 3416 and 3320 lb, respectively. In this case the refined finite-difference grid did not influence the buckling load nearly as much as it influenced the buckling loads for the simply-supported panel.

The experimental equilibrium paths depicted in Figure 19 indicate that the stiffness of each test specimen changes noticeably in the load range 400-1000 lb. This change in stiffness coincides also with the observed reversal of the axial strains at the straight edges of the test specimens. Consequently, it is believed that this change in stiffness signifies the load-level at which the straight edges of a specimen lost their capability to resist greater axial loads.

The theoretical equilibrium paths shown in Figure 20 for various initial imperfection amplitudes reveal that a bifurcation occurs at approximately 1134 lb for a perfect panel. This agrees well with the experimental loads corresponding to the changes in stiffness of the test specimens as shown in Figure 19.

Using the limit load (3320 lb) corresponding to an initial imperfection amplitude of -0.010 and the 20 x ll finite-difference grid, the ratios of the experimental limit load to the theoretical limit load are 0.818, 0.753, 0.741, 0.693, and 0.652. The theoretical limit load used to calculate these ratios are based on an axially symmetric distribution of initial imperfections ($W_0 = WI \ (1 + \cos \pi \xi/a)$). The actual distributions of initial imperfections indicated a pronounced distortion of the straight edges of the general shape represented by the mathematical equation expressed above, that dimenished as the specimen centerline was approached. Actually the center region of the test specimens were relatively straight in comparison to the straight edges. This observation is revealed by the imperfection data listed in Appendix C.

The equilibrium path for an initial imperfection distribution given by $W_0 = WI \left(1 + \cos \pi \xi/a\right) \left(\eta/b\right)^2$ is shown in Figure 20. This distribution more closely represents the actual imperfection distributions. This equilibrium path coincided with the other paths shown in Figure 20. The limit point load for this imperfection was 3460 lb. which is essentially the same as the limit point loads for the other initial imperfections.

Figure 19. Theoretical and experimental equilibrium paths for specimens of Program B with unsupported straight edges.

Figure 20. Equilibrium paths for axially compressed panel with unsupported straight edges.

SECTION V

LONGITUDINAL STIFFENERS

(V-1). INTRODUCTION. The computer program CLAPP was modified to include the effect of longitudinal stiffeners on the buckling behavior of fiber-reinforced panels by adding the total potential energy of the stiffeners to the total potential energy of the panel. Accordingly, the total potential energy of a stiffener element is developed in this section.

The stiffeners considered in this section have thin-wall open cross sections and are assumed to coincide with the finite difference grid lines that are parallel to the generators of the panel. It is not necessary that a stiffener be associated with every finite difference grid line.

A stiffener is assumed to be made from an homogeneous isotropic material; however, the developments remain valid for quasi-isotropic, fiber-reinforced stiffeners. The special properties of quasi-isotropic, fiber-reinforced stiffeners are described later. It is further assumed that the cross section of a stiffener does not vary along its length, and that each stiffener is free of externally applied forces.

Each stiffener is assumed to be rigidly attached to the panel along a finite-difference grid line. A point of attachment is defined as the point on the reference surface of the panel that lies on the normal through the centroid of the stiffener cross section. Mathematically, the displacement components associated with the panel and the displacement components associated with the stiffener are required to be continuous along this contact line.

(V-2). STIFFENER STRAIN ENERGY. An expression for the strain energy associated with small displacements of straight beams with thin-wall, open cross sections is given by Bleich and Bleich [4]

$$U = \frac{\sqrt{2}}{2} \left\{ EI_{\eta \eta} \left(U_{S}^{11} \right)^{2} + EI_{\xi \xi} \left(V_{S}^{11} \right)^{2} + JG(S^{1})^{2} + EA(W_{C}^{1})^{2} + \Gamma(S^{11})^{2} \right\} dz \qquad (V-1)$$

The quantities appearing in Eq. (V-1) are defined as follows. The rectangular coordinates ξ and η coincide with the principal centroidal axes of inertia, and z signifies a coordinate measured along the centroidal axis of the beam. Thus, $I_{\xi\xi}$ and $I_{\eta\eta}$ are principal centroidal moments of inertia, A denotes the cross sectional area, J is the torsional constant, and Γ is the warping coefficient for the cross section. Young's modulus and the shearing modulus are denoted by E and G, respectively. Finally, U_{ξ} and V_{ξ} are components of displacement of the shear center parallel to the ξ and η axes, respectively, W_{ζ} is the axial displacement of the centroid of the cross section, and β is the unit angle of twist that the section experiences.

The first two terms in Eq. (V-1) represent strain energy due to bending about the principal axes of inertia, while the next two terms represent strain energy caused by twisting and axial deformation, respectively. The last term represents strain energy associated with warping of the cross section. The strain energy associated with warping is usually discarded in stiffener analyses; it is also discarded in the present analysis.

Since it is assumed that every stiffener is free of externally applied forces, Eq. (V-1) also represents the total potential energy of a stiffener.

Energy methods have been employed by several investigators to examine the effect of stiffeners on the buckling behavior of plates and panels. These investigators do not agree universally on the terms that need to be retained in the stiffener energy expression. Donnell [5] discards the strain energies associated with axial deformations and bending about an axis perpendicular to the reference surface of the panel. Thus Donnell assumes that the dominant actions of a stiffener are bending about an axis parallel to a circumferential tangent, and twisting. Szilard [6] adopts the same reasoning, but argues that strain energy due to twisting can be discarded for closely spaced stiffeners. Palamarchuk and Polyakov [7] retain the same bending and twisting energies, but include terms that represent the effects of externally applied forces and initial geometric imperfections.

The investigations cited consider only stiffeners with symmetrical cross sections. Stiffeners with unsymmetrical cross sections are treated in the present developments.

(V-3). STIFFENER ENERGY IN MATRIX FORM. The total potential energy for a stiffener can be expressed in matrix form as

$$V = \frac{1}{2} \int_{0}^{\ell} \left[U_{s}^{11}, V_{s}^{11}, \beta^{1}, w_{c} \right] \begin{bmatrix} EI_{\eta\eta} & 0 & 0 & 0 \\ 0 & EI_{\xi\xi} & 0 & 0 \\ 0 & 0 & JG & 0 \\ 0 & 0 & o & EA \end{bmatrix} \begin{bmatrix} U_{s}^{11} \\ S \\ \beta^{1} \\ w_{c}^{1} \end{bmatrix} dz \qquad (V-2)$$

As was stated previously, U_s and V_s are components of displacement of the shear center along the ξ and η axes, w_c is the axial displacement of the centroid, and β is the rotation of the cross section per unit length.

Connectivity of a stiffener to the panel is accomplished by expressing these displacement variables in terms of the displacements $(U_D,\ V_D)$ of the

point of contact of a stiffener with the panel. The situation is depicted in Figure 21.

It is shown in Ref. [4] that, for small displacements, the displacement components for a generic point in the rigid cross section of a stiffener are

$$U = U_s + (\eta_s - \eta)\beta$$

$$V = V_s - (\xi_s - \xi)\beta$$

FIGURE 21. General thin-wall open cross section. (V-3)

At the contact point D, $\xi = \xi_D$ and $\eta = \eta_D$, so that, with the aid of Eqs. (V-3),

$$\begin{bmatrix} u_{s} \\ v_{s} \\ \beta \end{bmatrix} = \begin{bmatrix} 1 & 0 & -(\eta_{s} - \eta_{D}) \\ 0 & 1 & (\xi_{s} - \xi_{D}) \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_{D} \\ v_{D} \\ \beta \end{bmatrix}$$
 (V-4)

Because plane sections remain plane ($\Gamma \approx 0$) the axial displacement of the contact point, w_D , is

$$w_{D} = w_{C} - \xi_{D} U_{C}^{\prime} - \eta_{D} V_{C}^{\prime}$$
 (V-5)

where u_c and v_c are centroidal displacements along the ξ and n axes as shown in Figure (21), and ()' indicates differentiation with respect to z. From Eq. (V-3),

$$U_{c} = U_{s} + \eta_{s}\beta ,$$

$$V_{c} = V_{s} - \eta_{s}\beta ,$$

$$(V-6)$$

so that Eq. (V-5) becomes

$$w_{D} = w_{C} - \xi_{D} U_{D}^{\dagger} - \eta_{D} V_{D}^{\dagger}. \tag{V-7}$$

Eqs. (V-4) and (V-5) lead to the following transformation

$$\begin{bmatrix} U_{s}^{11} \\ V_{s}^{11} \\ B^{1} \\ w_{c}^{1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -(\eta_{s} - \eta_{D}) & 0 & 0 \\ 0 & 1 & (\xi_{s} - \xi_{D}) & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \xi_{D} & \eta_{D} & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} U_{D}^{11} \\ V_{D}^{11} \\ B^{11} \\ W_{D}^{1} \end{bmatrix}$$
 (V-8)

Eq. (V-8) permits the strain energy of a stiffener to be expressed in terms of the displacements experienced by the point of contact of a stiffener with the panel.

(V-4). DISPLACEMENT CONTINUITY. To enforce the required displacement continuity along the line of contact of a stiffener with the panel, it is necessary to project the displacement vector of the contact point along the circumferential tangent and along a normal to the panel. According to Figure 21,

$$\begin{bmatrix} U_{D} \\ V_{D} \end{bmatrix} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} U_{t} \\ U_{n} \end{bmatrix}, \qquad (V-9)$$

where \mathbf{U}_{t} and \mathbf{V}_{n} are the circumferential and normal components of displacement of the contact point \mathbf{D} .

Accordingly, the contact point displacement vector appearing on the right-hand side of Eq. (V-8) is expressed as

$$\begin{bmatrix} U_D^{11} \\ V_D^{11} \\ \beta^{11} \end{bmatrix} = \begin{bmatrix} \cos\alpha & \sin\alpha & 0 & 0 & 0 \\ -\sin\alpha & \cos\alpha & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} U_D^{11} \\ t \\ U_D^{11} \\ 0 \\ \beta^{11} \\ w_D^{11} \end{bmatrix}$$

$$(V-10)$$

The assumption is made that the panel thickness is small compared to the dimensions of a stiffener normal to the panel. This permits the contact point D to lie in the reference surface of the panel.

Continuity of the displacements associated with the contact point on the stiffener and the displacements associated with the contact point on the panel requires that

$$U_t = V$$
, $\beta = W$, $V_t = V$, $\beta' = W$, $\gamma = V$, $\beta'' = W$, $\gamma = V$, $\gamma =$

Here U, V, W are the displacement components of a point on the reference surface of the panel.

Eqs. (V-2), (V-8), (V-10), and (V-11) yield the following matrix formulation for the strain energy of a stiffener:

$$V = \frac{1}{2} \int_{0}^{R} [d]^{T} [B]^{T} [S] [B] [A] [d] dz,$$
 (V-12)

where

$$[A] = \begin{bmatrix} \cos \alpha & \sin \alpha & 0 & 0 & 0 \\ -\sin \alpha & \cos \alpha & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(V-13)$$

$$[B] = \begin{bmatrix} 1 & 0 & -(\eta_{s} - \eta_{D}) & 0 & 0 \\ 0 & 1 & (\xi_{s} - \xi_{D}) & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \vdots_{D} & \eta_{D} & 0 & 0 & 1 \end{bmatrix}$$

$$(V-14)$$

$$[S] = \begin{bmatrix} EI_{nn} & 0 & 0 & 0 \\ 0 & EI_{\xi\xi} & 0 & 0 \\ 0 & 0 & JG & 0 \\ 0 & 0 & 0 & EA \end{bmatrix}$$
(V-15)

and

$$[d]^{T} = [V_{,xx}, W_{,xx}, W_{,xxy}, W_{,xy}, U_{,x}]$$
 (V-16a)

To interface with the computer program CLAPP, the elements of the stiffener displacement vector [d] are rearranged so that

$$[d]^{T} = [U_{,x}, V_{,xx}, W_{,xx}, W_{,xxy}, W_{,xy}]$$
 (V-16b)

The total potential energy of a stiffener becomes

$$V = \frac{1}{2} \int_{0}^{\chi} [d]^{\mathsf{T}} [PAS2] [d] dz \qquad (V-17)$$

The matrix [PAS2) results from carrying out the operations indicated in Eq. (V-12) taking into account the alterations of the matrices [A], [B], and [S] because of the rearrangement of the elements in the [d] matrix. The elements of [PAS2] are given in Figure 22.

A final transformation is required to express the total potential energy in terms of the finite-difference grid point displacements.

(V-5). FINITE-DIFFERENCE CONSIDERATIONS. The strain energy density of a stiffener element is assumed to be constant over the length of the element. Moreover, the strain energy density is assumed to be equal to its values at the midpoint of the element length. Consequently, the total potential energy for a stiffener-element is taken as the product of the strain energy density at the midlength of the element and the length of the element. Symbolically,

$$V_{e} = \frac{1}{2} [d]^{T} [PAS2][d] \times \ell$$
 (V-18)

where [d] is the displacement vector associated with the midpoint of the stiffener-element.

Nine different stiffener-elements are required. These stiffener-elements correspond to the nine types of area-elements used in CLAPP; one interior stiffener-element, four boundary stiffener-elements, and four corner stiffener-elements. The nine stiffener-elements are shown in Figure 23, which also shows the stiffener-element orientation and midpoint along with the local numbering system for the surrounding finite-difference grid points.

For each stiffener-element the midpoint displacement vector (Eq. (V-16b)) is transformed to the local grid point displacement vector

	(vio v - v oco z) VI	ED (F cin 2 + 2 coc 2)		
۲ ن	EA (50 COS a = 10 SIII a)	בא (בּם אווי מי יום כמא מי)	Þ	>
	$EI_n \cos^2 \alpha + EI_\xi \sin^2 \alpha$	$(I_n - I_\xi)E$ sina cosa	$- (n_s - n_D) EI_n \cos \alpha$	0
	+ EA ($\xi_{\mathbf{b}}^2 \cos^2 \alpha$	+ EA(ξ _D ² cosa sina	- $(\xi_s - \xi_0) E I_{\xi} \sin \alpha$	
	- ξ _{DηD} sin α cos α)	$-\xi_{\rm D}^{\rm n}_{\rm D} \sin^2\alpha)$		
	- EA (ξ _D η _D sinαcos α	+ EA(ξ _D η _D cos ² α		
	- $n_D^2 \sin^2 \alpha$	- η _D ² sinα cosα)		
		EI _n sin²α + ΕΙ _ξ cos²α	- (n _S -n _D)EI _n sina	0
		+ EA($\xi_{ m D}^2$ sin 2 3	+ (\xi^-\xi_0)EI\xi cosa	
		- ξ _D η _D sinα cosα)		
		+ EA(ξ _{DⁿD} sinα cosα		
		+ η ₀ ² cos ² α)		
			$(n_s - n_D)^2 E I_n$	0
SYM			+ $(\xi_s - \xi_D)^2 E I_{\xi}$	
.– -				JG
ľ		_	_	7

Figure 22. Detail of the Coefficient Matrix [PAS2].

Typical stiffener-elements and the local numbering system for the surrounding grid points. FIGURE 23.

$$[q]^{\mathsf{T}} = [w_1, v_1, w_2, v_2, v_2, \dots, w_9, v_9, v_9]$$
 (v-19)

through the relations

$$d_{i} = c_{ij} q_{j} (v-20)$$

where the matrix [C] is composed of coefficients that depend on the variable spacing of the finite-difference grid. Accordingly, the total potential energy for a stiffener-element is

$$V_{e} = {}^{1}_{2} [q]^{T} [C]^{T} [PAS2][C][q] * \ell$$
 (V-21)

The transformation matrix [C] depends on the location of the stiffenerelement in the global system. To illustrate the procedure used to establish these matrices, the transformation matrix for the interior stiffenerelement shown in Figure 24 is derived.

In the longitudinal direction, the midpoint (subsequently referred to as the stiffener-element centroid) of the stiffener-element contains the centroid of the corresponding area-element. This follows from the definitions of an area-element and of a stiffener-element. The corners of an area-element are the centroids of the areas contained between adjacent grid lines. The length of the corresponding stiffener-element is equal to the dimension of the area-element parallel to the generator of the panel.

A derivative of a centroidal displacement with respect to the longitudinal direction x, denoted by ()', can be expressed as a linear combination of displacements at the three finite-difference grid points (i-1, i, i+1) lying on the longitudinal grid line.

A general one-dimensional centroidal function, f, and its derivatives are expressed as linear combinations of the function values at the three

FIGURE 24. Interior stiffener-element with grid spacing and grid line notations.

node points on the jth grid line as

$$f_{i} = \frac{(k-h)(3h+k)}{16k(h+k)} f_{i+1} + \frac{(h+3k)(3h+k)}{16hk} f_{i} - \frac{(k-h)(3k+h)}{16h(h+k)} f_{i-1}, \qquad (V-22)$$

$$f'_{i} = \frac{1}{2k} f_{i+1} + (\frac{1}{2h} - \frac{1}{2k}) f_{i} + \frac{1}{2h} f_{i-1}, \qquad (V-23)$$

and

$$f_{i}^{"} = \frac{2}{k(h+k)} f_{i+1} - \frac{2}{hk} f_{i} + \frac{2}{h(h+k)} f_{i-1}, \qquad (V-24)$$

where h and k are longitudinal spacings between the grid lines i-1 and i, and i and i+1, respectively.

A derivative of a centroidal displacement with respect to the circumferential coordinate y, denoted by (), can also be expressed as a linear combination of displacements at suitable finite-difference grid points by means of a Taylor series. Accordingly, a Taylor series expansion about the point (i, j) yields the two linear equations

$$f_{j+1} = f_j + m f_j + \frac{1}{2} m^2 f_j$$
 (V-25)

and

$$f_{j-1} = f_j - \ell f_j + \frac{1}{2} \ell^2 f_j,$$
 (V-26)

where ℓ and m are spacings between the j-1 and j, and j and j+1 circumferential grid lines. Eqs. (V-25) and (V-26) lead to the first-order central difference formulas

$$f_{j} = \frac{\ell}{m(\ell+m)} f_{j+1} - \frac{(\ell-m)}{\ell m} f_{j} - \frac{m}{\ell(\ell+m)} f_{j-1}$$
 (V-27)

and

$$f_{j} = \frac{2}{m(\ell+m)} f_{j+1} - \frac{2}{\ell m} f_{j} + \frac{2}{\ell(m+\ell)} f_{j-1}$$
 (V-28)

The centroidal displacement vector [d] includes mixed derivatives also. The coefficients in the transformation matrix [C] that correspond to derivatives with respect to x are obtained from Eqs. (V-23) and (V-24) for an interior stiffener-element. The coefficients in the transformation matrix [C] corresponding to the mixed derivatives are determined by appropriate combinations of Eqs. (V-23), (V-24), and (V-26).

A general two-dimensional centroidal function, \hat{g} , has the mixed derivative

$$\dot{g}' = \frac{1}{2k} \dot{g}_{i+1} + (\frac{1}{2h} - \frac{1}{2k}) \dot{g}_{i} + \frac{1}{2h} \dot{g}_{i-1}. \tag{V-29}$$

Using Eq. (V-26) yields

$$\dot{\hat{g}}' = \frac{1}{2k} \frac{\ell}{m(\ell+m)} g_{i+1, j+1} - \frac{(\ell-m)}{\ell m} g_{i+1, j} - \frac{m}{\ell(\ell+m)} g_{i+1, j+1}$$
 (V-30)

+
$$\left(\frac{1}{2h} - \frac{1}{2k}\right) \frac{\ell}{m(\ell+m)} g_{i,j+1} - \frac{(\ell-m)}{\ell m} g_{i,j} - \frac{m}{\ell(\ell+m)} g_{i,j-1}$$
 (V-31)

$$+ \frac{1}{2h} \frac{\ell}{m(\ell+m)} g_{i-1, j+1} - \frac{(\ell-m)}{\ell m} g_{i-1, j} - \frac{m}{\ell(\ell+m)} g_{i-1, j-1}$$
 (V-32)

Identification of the nine surrounding grid points with the local number system determines the coefficients in the transformation

$$\hat{g}' = c_i g_i$$
 $i = 1, 2, ..., 9.$ (V-33)

The coefficients for the mixed derivative g" are obtained in a similar manner.

The total potential energy for any stiffener-element is expressed as

$$V_{g} = {}^{1}_{2} [q]^{T} [CAS2][q] \times \mathcal{E}$$
 (V-34)

where

$$[CAS2] = [C]^{T} [PAS2] [C]$$
 (V-35)

Eq. (V-34) is the formulation of the total potential energy for any stiffener-element that interfaces consistently with the area-elements used in CLAPP.

(V-6). INCORPORATION INTO CLAPP. The incorporation of longitudinal stiffeners in the computer program CLAPP is accomplished with three subroutines.

The first of these three stiffener subroutines is named SCOEF. SCOEF calculates the elements of the matrix [PAS2]. Since [PAS2] depends only on the material and geometric properties of the stiffener cross section it is calculated once for each element and stored.

SCOEF permits the user to select any of seven stiffener cross sections. It also provides for any other cross section through a user's choice ontion. For the various stiffener cross sections included in SCOEF see the user's manual in APPENDIX D.

The second stiffener subroutine is named STFDIF. It calculates the elements of the transformation matrix [C] of Eq (V-20). The subroutine FDIFF of CLAPP performs similar calculations for each area-element. Consequently, when FDIFF is called to calculate [C] for an area-element STFDIF is subsequently called from FDIFF to calculate [C] for the corres-

ponding stiffener element.

The third stiffener subroutine is named ATBAS. It performs the matrix multiplications indicated in Eq (V-35). This subroutine is called from the subroutine STFDIF. ATBAS has been constructed to take advantage of the numerous zeros that occur in the matrix [C].

The main program and the subroutine FDIFF of CLAPP are modified so that longitudinal stiffeners can be included when appropriate. Additions to the main program read in stiffener indices indicating (a) that stiffeners are to be included, (b) the choice stiffener cross section, (c) whether stiffeners are located on the inside or outside of the panel, and (d) if stiffeners occur on every finite-difference grid line. The main program calls SCOEFF to construct the matrix [PAS2]. The additions to the subroutine FDIFF determine when the stiffener energy is required in an analysis that does not include stiffeners at every grid line. When it is appropriate, STFDIF is called to calculate the stiffener-element energy which is immediately added to the correspoinding area-element energy. The procedure used by CLAPP to assemble the system stiffness matrix for area-elements proceeds in precisely the same manner when stiffeners are present.

(V-7). QUASI-ISOTROPIC FIBER-REINFORCED STIFFENERS. A strain energy expression for a quasi-isotropic, fiber-reinforced stiffener that is analogus to the strain energy expression for an isotropic stiffener is established in this section. For the purpose of the present development a quasi-isotropic material is defined as one possessing midplane symmetry and alternate zero and 90 degree fiber directions. Thus, for a stiffener, the zero fiber direction is assumed to coincide with the longitudinal axis of the stiffener, and the 90 degree fiber direction is perpendicular to

this axis.

The stress-strain relations [2] for a general fiber-reinforced laminate are

$$\begin{bmatrix} N_{x} \\ N_{y} \\ N_{xy} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{16} \\ A_{12} & A_{22} & A_{26} \\ A_{16} & A_{26} & A_{66} \end{bmatrix} \begin{bmatrix} e_{x} \\ e_{y} \\ 2e_{xy} \end{bmatrix} + \begin{bmatrix} B_{11} & B_{12} & B_{16} \\ B_{12} & B_{22} & B_{26} \\ B_{16} & B_{26} & B_{66} \end{bmatrix} \begin{bmatrix} K_{x} \\ K_{y} \\ 2K_{xy} \end{bmatrix}$$
 (V-36)

$$\begin{bmatrix} M_{x} \\ M_{y} \\ M_{xy} \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} & B_{16} \\ B_{12} & B_{22} & B_{26} \\ B_{16} & B_{26} & B_{66} \end{bmatrix} \begin{bmatrix} e_{x} \\ e_{y} \\ 2e_{xy} \end{bmatrix} + \begin{bmatrix} D_{11} & D_{12} & D_{16} \\ D_{12} & D_{22} & D_{26} \\ D_{16} & D_{26} & D_{66} \end{bmatrix} \begin{bmatrix} K_{x} \\ K_{y} \\ 2K_{xy} \end{bmatrix}$$
 (V-37)

Formulas connecting the elements of the laminate stiffness matrices [A], [B], and [D] with the material properties and the geometric locations of the individual layers are

$$A_{ij} = \sum_{k=1}^{N} \overline{Q}_{ij}^{k} (h_{k} - h_{k-1}), \qquad (v-38)$$

$$B_{ij} = \frac{1}{2} \sum_{k=1}^{N} \overline{Q}_{ij}^{k} (h_{k}^{2} - h_{k-1}^{2}), \qquad (v-39)$$

$$D_{ij} = \sum_{k=1}^{N} \overline{Q}_{ij}^{k} (h_k^3 - h_{k-1}^3), (i,j = 1, 2, 6).$$
 (V-40)

Pertinent geometric quantities appearing in these relations are defined in Figure 25.

The laminate is assumed to possess midplane symmetry so that the B_{ij} are identically zero in Eqs. (V-36) and (V-37). It is also assumed that

the stiffener experiences a membrane state of stress like the one shown in Figure 26. Consequently, the dominant bending action results from the moment caused by the membrane force N_{ν} .

If the cross section of a stiffener is assumed to be rigid, then $e_y=0$ so that

$$N_{x} = A_{11} e_{x} + A_{16} (2e_{xy})$$
 (V-41)

and

$$N_{xy} = A_{16} e_x + A_{66} (2e_{xy})$$
 (V-42)

Now $A_{16} \equiv 0$ because of the laminate fiber directions are either parallel or perpendicular to the longitudinal axis of the stiffener. Consequently, the stress-strain relations appropriate to an analysis of fiber-reinforced stiffeners under the foregoing restrictions are

$$N_{x} = A_{11} e_{x} \tag{V-43}$$

and

$$N_{xy} = A_{66} (2e_{xy}).$$
 (V-44)

These relations are analogous to the isotropic stress-strain relations used by Bleich and Bleich [4] to arrive at their expression for the strain energy of stiffeners made from isotropic materials. All that is required to make the isotropic strain energy expression valid for quasi-isotropic stiffeners is to appropriately identify E and G of the isotropic case with A_{11} and A_{66} for the quasi-isotropic case.

To do this, consider that

FIGURE 25. Cross section of laminate

FIGURE 26. Membrane state of stress for a stiffener.

$$A_{11} = \sum_{k=1}^{N} \overline{Q}_{11}^{k} \left(h_{k} - h_{k-1}^{k}\right) = t \sum_{k=1}^{N} \overline{Q}_{11}^{k}$$

$$(V-45)$$

and

$$A_{66} = \Sigma \quad \overline{Q}_{66}^{k} \quad (h_{k} - h_{k-1}) = t \quad \Sigma \quad \overline{Q}_{66}^{k}$$
 $k=1 \quad k=1$

(V-46)

if the thickness of each layer is the same.

The subscript k signifies that the k-th layer is under consideration. The $\overline{\mathbb{Q}}_{ij}$ are symmetrical and are the material coefficients referred to a generic set of axis. They are expressed in terms of the material coefficients, \mathbb{Q}_{ij} , associated with the material axes of a layer through the transformation:

$$\overline{Q}_{11} = Q_{11}\cos^{4}\theta + 2 (Q_{12} + 2 Q_{66}) \sin^{2}\theta \cos^{2}\theta + Q_{22}\sin^{4}\theta,$$

$$\overline{Q}_{12} = (Q_{11} + Q_{22} - 4 Q_{66}) \sin^{2}\theta \cos^{2}\theta + Q_{12} (\sin^{4}\theta + \cos^{4}\theta),$$

$$\overline{Q}_{22} = Q_{11}\sin^{4}\theta + 2(Q_{12} + 2 Q_{66}) \sin^{2}\theta \cos^{2}\theta + Q_{22}\cos^{4}\theta,$$

$$\overline{Q}_{16} = (Q_{11} - Q_{12} - 2 Q_{66}) \sin\theta \cos^{3}\theta + (Q_{12} - Q_{22} + 2 Q_{66}) \sin^{3}\theta \cos\theta,$$

$$\overline{Q}_{26} = (Q_{11} - Q_{12} - 2 Q_{66}) \sin^{3}\theta \cos\theta + (Q_{12} - Q_{22} + 2 Q_{66}) \sin\theta \cos^{3},$$

$$\overline{Q}_{66} = (Q_{11} + Q_{22} - 2 Q_{12} - 2 Q_{66}) \sin^{2}\theta \cos^{2}\theta + Q_{66} (\sin^{4}\theta + \cos^{4}\theta).$$

The quantities Q_{ij} are related to the engineering material constants through the relations:

$$Q_{11} = \frac{E_{11}}{1 - v_{12}v_{21}},$$

$$Q_{12} = Q_{21} = \frac{v_{12} E_{11}}{1 - v_{12}v_{21}} = \frac{v_{21}E_{22}}{1 - v_{12}v_{21}},$$

$$Q_{22} = \frac{E_{22}}{1 - v_{12}v_{21}},$$

$$Q_{66} = G_{12}.$$

$$(v-48)$$

 E_{11} , E_{22} are Young's modulii of elasticity parallel and perpendicular to the fiber direction, respectively; G_{12} is the shearing modulus of elasticity associated with the directions parallel and perpendicular to the fiber direction; and v_{12} , v_{21} are Poisson ratios. v_{12} is associated with a strain in the 1-direction due to a stress in the 2-direction and v_{21} is associated with a strain in the 2-direction due to a stress in the 1-direction. It is convenient to let the 1-direction coincide with the fiber direction.

From Eqs. (V-47) and (V-48)

$$\overline{Q}_{11}^{k} = \begin{cases} Q_{11}^{k} = \frac{E_{11}}{1 - v_{12}v_{21}} & \text{for fibers parallel to the stiffener axis} \\ Q_{22}^{k} = \frac{E_{22}}{1 - v_{12}v_{21}} & \text{for fibers perpendicular to the stiffener axis} \end{cases}$$

and

$$\overline{Q}_{66}^{k} = Q_{66} = G_{12}$$
, (v-50)

for either fiber direction.

If N is the number of layers in the laminate, then from Eqs. (V-44) and (V-49)

$$A_{11} \approx \frac{Nt}{1 - v_{12}v_{21}} \left[\frac{E_{11} + E_{22}}{2} + \lambda \frac{E_{11} - E_{22}}{2N} \right]$$
 (V-51)

where

$$\lambda = \begin{cases} 0 & \text{if N is even} \\ 1 & \text{if N is odd.} \end{cases}$$
 (V-52)

Note that when N is odd, the middle or odd layer is assumed to be parallel to the stiffener axis. If the middle or odd layer is perpendicular to the stiffener axis E_{11} and E_{22} interchange positions in Eq (V-51).

Finally,

$$A_{66} = Nt G_{12}$$
 (V-53)

for N even or odd. Notice that Nt is the total thickness of the laminate from which the stiffener is constructed.

Now if E and G in the isotropic strain energy expression for thin-wall open sections is replaced with

$$E \Rightarrow \frac{A_{11}}{Nt} = \frac{E_{11} + E_{22}}{2} + \lambda \left(\frac{E_{11} - E_{22}}{2N} \right) \tag{V-54}$$

and

$$G \Longrightarrow \frac{A_{66}}{Nt} = G_{12},$$
 (Y-55)

one arrives at a strain energy expression for the quasi-isotropic material considered in this section.

REFERENCES

- 1. Bauld, Nelson R., and Satymurthy, Kailassam, Collapse L. d Analysis for Plates and Panels, AFFDL-TR-79-3038, Air Force Flig Dynamics Laboratory, Air Force Wright Aeronautical Laboratories, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, May, 1979.
- Jones, Robert M., <u>Mechanics of Composite Materials</u>, <u>McGraw-Hill</u>, 1975.
- 3. Wilkins, D. J., "Compression Buckling Tests of Laminated Graphite-Epoxy Curved Panels," <u>AIAA Journal</u>, Vol. 13, No. 4, April, 1975.
- 4. Bleich, F., Buckling Strength of Metal Structures, H. H. Bleich, Ed., New York: McGraw-Hill, 107-116, 1952.
- 5. Donnell, L. H., Beams, Plates, and Shells, McGraw-Hill, 204-209, 216-218, 1976.
- 6. Szilard, R., Theory and Analysis of Plates: Classical and Numerical Methods, Prentice-Hall, Inc., 540-547, 1974.
- 7. Palamarchuk, V. G., and Polyakov, P. S., "Rational Stringer Reinforcement of a Shell with Initial Deflections," Soviet Applied Mechanics, Vol. 12, No. 3, 229-234, 1976.

APPENDIX A

STRAIN, END-SHORTENING, AND IMPERFECTION MEASUREMENTS FOR TEST PANELS WITH SIMPLY-SUPPORTED STRAIGHT EDGES CLAMPED CURVED EDGES

TESTING PROGRAM A

A-1 EXPERIMENTAL DATA FOR 8 imes 16 PANELS WITH SIMPLY-SUPPORTED STRAIGHT EDGES lpha

BCP 9824-A-2-1 CS**

BCP 9824-A-2-1 CS**

	5	0	109	257	423	487	589	689	729	743	784	300	845	873	416	977	866	9101	9401	1050	9501
Number	4	0	88	156	228	251	285	329	373	401	448	475	511	534	572	619	662	489	723	736	745
at Gage	3	0	9	128	200	226	262	309	353	382	423	944	7480	502	543	605	199	710	768	784	797
Strain a	2	ı	 	<u> </u>	 		'	,	,	,	,	'		,	,	,	<u> </u> -	,			
Axial St	_	0	68	215	339	388	154	531	919	653	775	852	919	972	1035	1102	1176	1243	1316	1337	1356
End Shor ten-	1 h_01 × 6ui	0	5.0	24.0	46.0	52.0	57.0	65.0	74.5	86.0	0.96	0.501	114.0	122.0	136.0	145.5	154.0	162.0	0.691	174.0	176.5
Axial	Load(1b)	20	200	1000	1500	1750	2000	2250	2500	2750	3000	3250	3500	3750	4000	4250	4500	4750	5000	5100	5200

			.	·			.	• –	•		•					•					
er	2	r	,	ı	,	,	,	,	,	,	,	,	,				.		-	! 	
Gage Number	4	0	17	12.5	179	218	254	289	348	402	473	145	602	999	737	661	895	066	1072	1601	1114
at	3	0	99	134	152	173	201	233	258	787	315	359	411	0/4	531	599	989	762	355	891	919
Strain	2	0	19	051	156	178	210	253	279	308	335	355	386	00,	424	644	473	200	530	209	633
Axial	_	0	11	152	156	177	203	233	281	335	383	417	453	479	504	530	557	586	605	099	675
End Shorten-	ing x 10-4	0	3.0	8.0	20.0	32.0	47.0	0.09	73.0	86.0	101.0	115.0	126.0	136.0	144.0	154.0	168.0	178.0	0.061	197.0	201.0
		50	200	750	1000	1250	1500	1725	2000	2250	2500	2750	3000	3250	3500	3750	0004	4250	4500	0094	4700
			-													_					

The last letter in a specimen designator (BCP-9810-B-3-1) indicates the fiber pattern. Thus the letter A denotes the pattern [0/445/90]s and the letter B denotes the pattern [0/90]2s.

BCP 9824-A-2-1 CS (cont'd)

BCP 9824-A-2-1 CS (cont'd)

Shorten-4 178.5 178.5 184.0 186.0 186.0 194.0 195.0 197.0 200.00 203.5 205.0 207.0 209.5 216.5 216.5		Fnd				4			
10 10 1 2 3 4 1 1 1 1 1 1 1 1 1	Axial	Shorten-	Axial St	rain	at bage	Numbe		~	
178.5 1381 - 816 760 1 184.0 1410 - 839 784 1 186.0 1428 - 842 798 1 186.0 1428 - 842 798 1 186.0 1428 - 842 798 1 194.0 1481 - 905 830 891 195.0 1588 - 905 891 981 200.00 1533 - 929 934 203.5 1571 - 947 985 205.0 1592 - 965 1019 207.0 1609 - 976 1045 214.5 1644 - 1000 1115 216.5 1656 - 1020 1146 219.0 1688 - 1043 1186	Load(1b)	100×10^{-4}		2	3	4	5	1	
184.0 1410 - 839 784 1 186.0 1428 - 842 798 1 188.5 1452 - 860 830 1 188.5 1452 - 860 830 1 195.0 1481 - 905 891 1 195.0 1508 - 905 903 1 200.00 1533 - 929 934 203.5 1571 - 947 985 205.0 1592 - 965 1019 207.0 1609 - 976 1045 214.5 1644 - 1020 1146 216.5 1656 - 1020 1146 219.0 1688 - 1043 1186	5300	178.5	1381	1	816	09/	1069		4800
186.0 1428 - 842 798 1 188.5 1452 - 860 830 188.5 1452 - 860 830 194.0 1481 - 905 891 195.0 1508 - 905 891 200.00 1533 - 929 934 203.5 1571 - 947 985 205.0 1592 - 947 985 207.0 1609 - 976 1019 214.5 1644 - 1000 1115 216.5 1656 - 1045 1146 219.0 1688 - 1043 1186	5400	184.0	1410	1	839	784	1093		4900
188.5 1452 - 860 830 194.0 1481 - 905 891 195.0 1508 - 905 891 195.0 1508 - 905 903 200.00 1533 - 929 934 203.5 1571 - 947 985 205.0 1592 - 965 1019 207.0 1609 - 976 1045 216.5 1644 - 1000 1115 216.5 1656 - 1020 1146 219.0 1688 - 1043 1186	5500	186.0	1428	,	842	798	1093	1	5000
194.0 1481 - 905 891 195.0 1508 - 905 903 197.0 1533 - 929 934 200.00 1552 - 936 960 203.5 1571 - 947 985 205.0 1592 - 947 985 207.0 1609 - 976 1019 214.5 1644 - 1000 1115 216.5 1658 - 1043 1146 219.0 1688 - 1043 1186	2600	188.5	1452		098	830	1105	Γ-,	5100
195.0 1508 - 905 903 197.0 1533 - 929 934 200.00 1552 - 936 960 203.5 1571 - 947 985 205.0 1592 - 965 1019 207.0 1609 - 976 1045 209.5 1632 - 991 1084 216.5 1656 - 1146 216.5 1688 - 1043 1146 216.5 1644 - 1020 1146 216.5 1688 - 1043 1186	5700	194.0	1481	,	905	168	1142	1	5200
197.0 1533 - 929 934 200.00 1552 - 936 960 203.5 1571 - 947 985 205.0 1592 - 947 985 207.0 1609 - 976 1019 209.5 1632 - 991 1084 214.5 1644 - 1000 1115 216.5 1656 - 1043 1186 219.0 1688 - 1043 1186	5800	195.0	1508		905	903	1136	1	5300
200.00 1552 - 936 960 203.5 1571 - 947 985 205.0 1592 - 965 1019 207.0 1609 - 976 1045 209.5 1632 - 991 1084 216.5 1656 - 116 216.5 1688 - 1020 1146 219.0 1688 - 1043 1186	5900	197.0	1533	•	929	934	1160		5400
203.5 1571 - 947 985 205.0 1592 - 965 1019 207.0 1609 - 976 1045 209.5 1632 - 991 1084 214.5 1644 - 1000 1115 216.5 1686 - 1043 1186 219.0 1688 - 1043 1186	0009	200.00	1552	'	936	096	1165		5500
205.0 1592 - 965 1019 207.0 1609 - 976 1045 209.5 1632 - 991 1084 214.5 1644 - 1000 1115 216.5 1656 - 1020 1146 219.0 1688 - 1043 1186	9100	203.5	1571	,	246	985	1175	L	5600
207.0 1609 - 976 1045 209.5 1632 - 991 1084 214.5 1644 - 1000 1115 216.5 1656 - 1020 1146 219.0 1688 - 1043 1186	6200	205.0	1592	'	965	1019	1196	l	5700
209.5 1632 - 991 1084 214.5 1644 - 1000 1115 216.5 1656 - 1020 1146 219.0 1688 - 1043 1186	6300	207.0	1609	,	976	1045	1205		5800
214.5 1644 - 1000 1115 216.5 1656 - 1020 1146 219.0 1688 - 1043 1186	9700	209.5	1632	,	166	1084	1220	J	5825
216.5 1656 - 1020 1146 219.0 1688 - 1043 1186	9059	214.5	191		1000	1115	1223	·	
219.0 1688 - 1043 1186 Buckled	0099	216.5	1656		1020	1146	1235		
	6700	219.0	1688		1043	1186	1254	J	
	6710	Buckled						L	

Axial Strain at Gage Number 903 1108 09/ End Shorten-ing x 10-4 Buck led 236.0 239.0 207.0 247.0 270.0 280.0 286.0 294.0 212.0 227.0 218.5

ł													
	End	Axial	Strain	at Gage	a Number	L.		End Shorten-	Axial	Strain	at	Gage Number	e L
	1 x 10-4	-	2	3	4	5		100 x bui	-	2	~	7	2
	0	0	0	0	0	0	50	0	١	0	0	0	0
 -	1.0	62	80	52	49	49	250	1.0	ı	17	30	25	56
	10.0	138	091	96	107	071	200	2.2	1	43	29	09	59
∤	22.0	205	546	164	191	217	750	4.8		72	115	101	011
	34.0	263	337	249	228	303	1000	5.0	1	100	153	123	153
	38.5	283	371	276	249	334	1250	13.5	1	140	214	150	207
	44.0	310	914	313	281	376	1500	15.0	ı	178	566	691	256
	50.0	339	463	352	328	424	1750	22.2	1	215	310	193	300
	53.0	360	500	378	373	1460	2000	25.0	1	249	346	209	341
	60.5	389	550	914	434	508	2250	33.0	 	284	380	227	379
	0.49	414	265	944	487	246	2500	34.0		327	425	260	428
	72.0	437	633	472	538	532	2750	35.0	1	372	467	295	477
L	80.5	468	969	509	611	989	3000	43.0	ı	117	864	334	503
	86.5	499	751	522	9/9	699	3250	44.0	ı	453	545	393	533
	93.5	532	797	540	730	700	3500	53.0	1	464	573	445	539
	119.0	809	826	552	749	728	3750	55.0	1	534	605	664	552
	123.5	625	345	569	277	752	4000	58.0	ι	578	639	559	576
- 1	124.5	635	998	581	790	772	4250	65.0	ı.	615	655	610	580
· - 	128.0	645	894	597	810	796	4500	0.79	1	657	889	657	603
	Buckled						4750	75.0	1	± 693	731	679	616
							2000	75.0	-	727	780	710	645
							5250	84.0	•	755	840	720	663
							1						

3500 3750

3250

2500 2750 3000

1000 1500 2000 2250

200

Load(1b) Axial

52

4000 4250 4500 5100

IMPERFECTION MEASUREMENTS

 $(x 10^{-3} in)$

BCP 9824-A-2-1 CS

-6	-6	-5	0	-6	-2	-6	-4
-6	- 5	-3	2	- 5	2	-5	-2
-6	-6	-5	1	-8	0	-6	- 3
-7	-6	-5	1	-9	~ 1	-7	-5
-5	-5	-6	0	-7	-2	-7	-5

BCP 9824-A-2-2 CS

	-7	-4	-4	0	- 3	-3	-13	-14
	-7	-6	- 3	0	- 5	-1	-15	-15
1	-7	-9	-4	-2	-6	-2	-17	-13
	-8	-9	-5	-4	-8	-6	-18	-15
ı	-11	-9	-7	-5	-8	-8	-16	-15

BCP 9810-B-4-1 CS

	-5	-3	-2	0	-1	1	-3	0
	-4	-4	-3	1	-3	-]	-1	-1
	-4	- 4	-3	1	-2	1	2	2
	- 5	- 5	-6	0	-4	-1	1	0
	-8	-6	-5	-1	-5	-2	-2	0
-							1	

BCP 9810-B-4-2 CS

-12	-15	-7	0	-2	0	-2	2	
-13	-15	-7	- 1	-2	-2	-5	0	
-15	-14	-8	-2	-3	-3	-7	-1	
-12	-13	-9	-7	-8	- 5	-12	-5	
-11	-11	-11	-8	-11	-9	-13	-9	
				1		·		

A-2 EXPERIMENTAL DATA FOR 12 x 16 PANELS WITH SIMPLY-SUPPORTED STRAIGHT EDGES

S
ш
:7
Þ
ī
_
\sim
9
_
٥
38
œ

ES
-2
-A-5
992
ВСР

at Gage Number

122

161 159.

183 176

217

288 248

Load (1b)	5	5		5				Shorten-		· ·		uage
			2	3	7	5		ing × 10-4		2	3	
50	0		0	C	C	0	50	0	0	0	0	{
250	0.4	•	35	34	34	55	250	4.0	. [4]	24	26	1
500	10.0	1	75	11	39	114	. 500	9.5	140	96	ê	1
750	17.0	•	121	122	96	184	750	17.0	202	134	122	1
1073	26.0	,	175	182	124	272	1000	24.5	277	175	191	!
1250	33.5		239	256	171	362	1250	33.0	331	201	183	ł
1500	42.5		290	314	201	435	1500	41.0	400	253	237	ł
1750	51.5	,	336	363	219	492	1750	50.0	457	296	288	1
2000	61.5	,	390	425	346	571	2000	59.0	364	289	293	}
2250	70.0	1	433	473	263	630	2250	67.0	522	287	307	}
2500	79.5	1	476	523	273	769	2500	76.5	603	335	383	- 1
2750	87.5	1	525	580	298	754	2750	87.0	989	379	450	1
3000	97.0	1	588	159	332	822	3000	95.0	854	533	618	}
3250	106.5	1	719	713	357	873	3250	104.0	926	588	677	1
3500	115.5	,	705	783	39:	914	3500	113.0	1002	643	728	}
3750	123.5	1	756	842	412	926	3600	117.0	1029	652	725	}
4000	132.5	1	83.1	922	457	296	3700	120.0	1051	674	745	}
4250	143.0	,	937	1010	549	1013	3800	124.0	1091	989	752	ł
4500	152.5	,	1010	10.46	623	1037	3900	128.0	1123	710	767	ŧ
4750	161.0	1	1972	1084	681	1070	4000	132.0	1074	649	692	1

383 264

450 299

219 | 813

683

999

725 632

509 590

BCP 9121-A-5-1 ES (cont'd)

80%

Gage Number

Strain at

BCP 9921-A-5-2 ES (cont'd)

Axial ing x 10-4 End Shorten-Buckled 140.5 149.5 161.0 136.5 146.0 153.5 157.0 0.991 170.0 176.0 181.5 187.0 192.0 197.0 203.0 208.0 212.0 216.0 220.0 1,500 4 700 Gage Number 9// Strain at Axial ı ı 4-01 x gni Shorten-Buckled 177.0 181.0 170.5 187 0 192.0 Load (1b) Axial

BCP 8910-8-21- ES

	٠	-						-						}				}		} -	
End	shorten-4	0	3.0	8.0	15.5	22.0	29.0	35.5	43.0	49.5	58.0	65.0	73.5	82.5	5.16	98.1	0.101	103.5	0.901	108.5	112.0
		50	250	500	750	0001	1250	1500	1750	2000	2250	2500	2750	3000	3250	3500	3600	3700	3800	0068	1,000
																				·	
er	5	0	28	52	76	107	204	231	216	276	348	403	411	409	904	442	443	451	490	475	485
e Numb	4	0	2	18	3,8	65	160	181	141	168	197	235	251	263	274	316	336	358	408	395	403
at Gage Number	3	0	30	59	85	117	215	238	204	238	271	313	338	356	379	436	493	552	614	608	629
Strain	2	0	27	57	16	128	232	286	786	345	442	488	534	576	6k4	699	718	764	820	309	826
Axial	_	0	40	100	156	240	306	416	904	460	530	582	624	652	989	735	777	815	820	853	869
End	ing x 10-4	0	3.5	9.5	16.0	25.0	34.0	44.0	52.0	59.0	67.0	73.5	81.0	88.5	0.96	101.5	0.601	116.0	0.611	121.5	124.0
Axia	Load(1b)	50	250	200	750	1000	1250	1500	1750	2000	2250	2500	2750	3000	3250	3500	3750	4000	4100	4200	4 300

3 2

6,1

0 75

Axial Strain at Gage Number

BCP 8910-B-2-2 ES

236 246

7 1 7

2 l₁9

BCP 8910-B-2-1 ES (cont'd)

BCP 8910-B-2-2 ES (cont'd)

		Ь		l	L	L	L	L	L		L	٠	L	i	١١
ber	5	884	164	490	436					1					
ge Num	†	411	422	429	433										
Axial Strain at Gage Number	3	654	679	101	722										
l Strai	2	843	863	380	890										
Axia	-	385	903	918	927										
End	Load(1b) ing $\times 10^{-4}$	126.5	130.0	132.5	135.0	Buckled									
	Load(1b)	0044	4500	4600	4 700	4750									-

Axial Strain at Gage Number 94/ End Shorten-ing x 10-4 Buck led 115.0 113.0 121.5 124.0 127.0 130.0 133.0 136.0 139.0 Load(1b) Axial

IMPERFECTION MEASUREMENTS

 $(x 10^{-3} in)$

BCP 9121-A-5-1 ES

BCP 9921-A-5-2 ES

F1	0	-1	2	0	5	3	-2	-2
-1	3	5	6	2	8	6	-8	0
F1	8	3	10	1	8	7	-13	-2
-1	6	0	8	2	5	8	-11	0
-1	0	3	7	2	5	6	-6	3

-9	0	0	0	4	-4	-9	-8
-12	3	2	2	6	-2	-14	-9
-16	2	2	0	L	- j	-17	-9
 - 20	ì	1	-1	2	- 5	-18	-7
-15	-3	-3	-4	-4	-6	-15	- 7

BCP 8910-B-2-1 ES

BCP 8910-B-2-2 ES

-16	-7	-2	0	-2	1	- 3	-6
-21	-6	1	1	-3	C	-5	- 5
-22	-9	2	0	-3	-1	-4	3
-22	-8	2	-2	-4	-3	-4	3
-17	-8	-3	- 5	-3	-6	-8	-1

-6	1	0	0	-1	-3	-8	-12
5	5	2	1	0	-6	-13	-10
-5	5	2	2	0	-7	-12	-7
-8	-1	-2	-3	-2	-9	-11	-4
-8	-3	-5	-5	-5	-7	-8	-1

A-3 EXPERIMENTAL DATA FOR 16 x 16 PANELS WITH SIMPLY-SUPPORTED STRAIGHT EDGES

BCP 9810-8-3-1

BCP 9810-B-3-2

	End	Axia	Strain		at Gage Number	er		
	Shorten- ing x 10-4	-	2	1.	4	5	- Ax	Axial Load(
50	0.0	0	0	0	0	0		20
250	2.2	26	91	13	13	23		250
500	9.0	63	45	57	43	58		500
750	14.5	115	83	38	70	89	L	750
1000	23.0	183	108	•	95	120	_	1000
1250	32.0	234	136	,	119	162		1250
1500	42.0	283	191		138	213		1500
1750	52.0	330	188	ı	191	279		1750
2000	61.2	377	244	ı	189	342	2	2000
2250	72.0	417	252	,	902	396	2	2250
2500	81.0	450	282	1	223	435	2	2500
2750	92.2	492	321	1	238	964	2	2600
3000	102.0	527	361	•	258	545	2	2700
3250	111.2	556	403	1	566	576	2	2800
3500	120.0	592	455	•	299	629	2	2900
3750	131.0	643	519		318	673	3	3000
6.040	143.0	689	590	•	340	693	8	3100
4250	152.0	723	989	•	358	747	~	3200
4500	161.5	760	680	•	373	783	3	3300
05/4	170.5	802	731	,	101	839	~	3400

	<	End	Axial	Strain	at	Gage Num	Number
	Load(1b)	ing x 10 ⁻¹	-	2	3	7	5
	50	0.0	0	0	0	0	0
	250	1.0	22	<i>L</i> 1	13	12	22
	200	5.5	62	٤4	36	36	55
	750	11.0	117	80	57	50	105
	1000	17.0	174	124	73	99	159
	1250	24.5	237	171	76	35	218
	1500	30.0	290	196	114	106	265
	1750	37.0	337	214	127	120	298
	2000	46.5	388	237	144	140	337
	2250	55.5	436	268	163	162	368
	2500	65.0	479	300	184	185	400
	2600	68.0	464	312	193	195	411
	2700	71.0	509	324	200	204	425
	2800	76.0	52.7	343	213	217	444
	2900	79.0	541	459	223	229	459
- -	3000	84.0	551	372	230	236	472
	3100	87.5	557	387	237	245	485
	3200	91.0	267	401	246	254	497
	3300	96.0	590	427	265	275	525
	3400	0.001	593	440	268	279	535

BCP 9810-8-3-1 (cont'd)

BCP 9810-8-3.2 (cont'd)

4/9 Strain at Gage Number ı as this load was reached ۶/۶ 7 36 Axial 60/ just ing x 10-4 End Shorten-Buck led 108.0 144.0 105.0 112.5 117.0 123.0 129.0 135.0 138.5 148.5 154.0 159.0 165.0 170.0 176.0 181.0 185.0 193.0 196.5 202.0 208.0 214.0 Load (1b) Axial 4 700

End Shorten- Axial Strain at Gage Number ing x 10-4 1 2 3 4 5 5000 181.0 782 329 - 437 915 5010 Buckled

Axia		0	51	79	145	183	526	260	300	355	914	994	511	552	590	622	643	169	673	683	707
End	109 x 10-4	0.0	3.0	9.0	16.0	24.0	35.0	46.0	57.0	67.0	79.0	90.06	0.901	118.0	131.0	145.0	159.0	170.0	176.0	180.0	184.0
		50	250	200	750	1000	1250	1500	1750	2000	2250	2500	2750	3000	3250	3500	3750	4000	4100	4200	4300
		L	L	l 🕳 · · ·	.	L =:	1 (⊢ 3	L	L	Il		L	اجيد يا	ا ي ا			,	. <u>.</u> i	. 1	
ber	5	0	64	113	179	198	252	305	353	904	094	519	109	663	737	816	206	1008	1037	1063	1100
Gage Number	4	0	19	47	99	79	103	131	173	224	263	599	331	358	380	604	428	480	485	485	485
at	3	,	,	1	١	1	•	,	,	•		ı	•	,	-	-	1	-	-	-	1
Strain	2	0	24	29	139	195	255	303	345	399	453	202	577	623	189	742	805	884	406	918	937
Axial		0	42	112	179	230	299	366	435	503	858	919	681	726	774	826	880	933	972	984	1003
Shorton	ing x 10-4	0.0	4.5	8.2	18.0	28.0	41.0	54.0	68.0	81.0	93.0	105.0	120.0	131.0	142.0	152.0	166.0	177.0	181.0	186.0	191.5
	(d;)peo-	50	250	200	750	1000	1250	1500	1750	2000	7250	2500	2750	3000	3250	3500	3750	4000	4100	4200	4 300

ber			End	Axial		Strain at Gage Number	age Nu	mber
5			ing x 10-4	-	2	3	4	5
0	L	50	0.0	0	0	0	0	0
64	l	250	3.0	51	34	27	%	947
=3	l 	200	9.0	79	93	9/	78	911
179	L	750	16.0	145	971	104	98	182
861	L	1000	24.0	183	184	134	119	253
252	L	1250	35.0	226	225	991	150	335
305	L	1500	0.94	760	254	134	162	390
353	L	1750	57.0	300	290	117	184	755
406	ll	2000	67.0	355	339	152	216	528
760	l	2250	79.0	914	398	296	253	613
519		2500	0.06	994	456	332	282	689
109	L	2750	106.0	115	527	370	312	947
663		3000	118.0	552	965	404	341	798
737		3250	131.0	290	699	453	387	834
816		3500	145.0	622	246	200	747	862
206		3750	159.0	٤49	248	572	537	945
1008		4000	170.0	169	905	605	584	1008
1037	1	4100	176.0	673	016	765	583	1017
1063	}	4200	180.0	683	046	612	019	1042
1100		4300	184.0	707	975	638	642	1087

BCP 9824-A-3-1 AS (cont'd)

4-01 x gui Shorten-188.0 192.0 220.0 200.0 206.0 209.0 214.0 226.0 231.0 237.0 241.0 247.0 252.0 259.0 271.0 302.0 311.0 265.0 277.0 283.0 299.0 End 9 1 00 Gage Number Strain at • ı Axial 4-01 x gui Shorten-**Buckled** 0.961 199.0 205.0 210.0 End Load (1b)

BCP 9824-A-3-2 AS (cont'd)

Strain at Gage Number

Axial

96/

769 1229

90/

Buck Jed

];

998 1520

IMPERFECTION MEASUREMENTS

(x 10⁻³ in)

BCP 9824-A-3-1 AS

BCP 9824-A-3-2 AS

4	0	3	0	-8	-4	-5	-3
4	-4	0	-4	-10	-6	-1	0
6	-2	4	-2	-9	-3	3	4
12	3	7	5	-4	2	11	11
13	4	8	6	-1	5	11	14
12	8	7	7	2	8	12	14
10	10	8	12	6	11	11	12

I ₁	1	5	0	-	0	-5	-5
0	4	2	3	0	2	-2	-2
10	0	7	5	1	l _}	-1	0
16	4	10	9	5	8	5	6
20	8	13	13	10	10	10	12
18	8	11	14	11	13	12	12
16	12	12	15	13	14	15	16

BCP 9810-B-3-1 AS

BCP 9810-B-3-2 AS

2	-1	0	0	-3	-2	-3	1
0	-4	-2	-2	-6	-2	-2	2
4	-2	-2	-1	-5	1	6	8
10	1	1	3	-3	5	12	12
11	4	4	7	-1	7	14	15
12	3	5	5	0	9	16	15
10	6	7	7	2	8	10	13

-3	- 1	-2	0	-1	0	-1	-1
-7	-4	1	0	-3	-2	0	-2
-10	-3	3	3	-3	0	1	1
-12	-1	7	5	1	4	5	5
-13	0	7	6	3	5	7	7
-10	2	8	6	3	7	6	8
 - 2	8	9	13	11	15	15	17

A-4 EXPERIMENTAL DATA FOR 16 x 12 PANELS WITH SIMPLY-SUPPORTED STRAIGHT EDGES

BCP 9921-A8-1 DS

BCP 9921-A8-2 DS

١		L	پ ــــا	لـــــا	L				لـــــــا				L	L	L	L	L		L		L
!	·	•			 •	· — ~•								-	.	·	.	ار د ا	.		
Number	5	0	9	134	218	313	392	454	519	592	673	738	19/	887	118	1 48	873	905	626	362	932
Gage N	4	0	38	7.1	97	131	168	210	257	309	368	428	453	184	505	535	995	599	623	658	682
at	3	0	37	69	66	133	171	204	240	279	329	375	392	414	431	454	8/4	505	521	548	995
) Strain	2	0	44	75	105	137	174	220	298	394	491	571	605	04/9	667	869	733	89/	86/	833	860
Axial	1	ı	J	,	1		,	•	ı	,	•	•	•	-	-	•	-	•	•	١	-
End	ing x 10-4	0	5.0	0.11	21.5	31.0	41.0	53.5	68.5	80.0	92.0	103.0	110.0	117.5	120.0	126.5	131.0	137.5	141.0	147.0	151.0
Axis	Load(1b)	50	250	500	750	1000	1250	1 500	1750	2000	2250	2500	2600	2700	2800	2900	3000	3100	3200	3300	3400

	End	Axial	l Strain	at	Gage Number	ber
	ing x 10-4	_	2	3	4	5
50	0	0	0	0	0	0
250	5.5	49	39	35	39	65
500	19.0	161	87	76	78	171
750	33.0	257	123	110	128	262
1000	48.0	359	179	151	187	375
1250	64.0	447	222	181	228	732
1500	81.0	546	280	215	267	819
1750	94.5	630	345	249	293	892
2000	113.5	718	417	284	337	971
2250	129.0	800	496	315	377	1049
2500	146.0	1065	590	369	434	1103
2750	163.0	1153	674	422	864	1138
3000	181.0	1040	775	482	570	1126
3100	187.5	1282	824	516	599	1145
3200	195.5	•	859	544	620	1163
3300	206.0	1	917	587	627	1156
3400	215.5	_	962	618	929	1144
3500	Buckled					
						-

BCP 9921-A8-2 DS (cont'd)

	End	Axial	1 Strain	at	Gage Number	ber
Load(1b)	ing x 10 ⁻⁴	~-	2	~	7	5
3500	158.0	1	168	589	709	1007
3600	161.5	ı	927	919	744	1040
3700	0.691	1	959	049	777	1075
3800	173.0	1	166	999	808	1103
3900	179.5	1	1017	989	835	1123
4000	184.5	ı	1051	714	873	1159
0014	191.5	ı	1091	749	907	1199
4200	193.5	'	1115	69/	932	1227
4300	201.0	1	1153	799	965	1254
4400	206.0	•	1181	824	966	1287
4500	211.0	1	1212	850	1025	1313
4600	218.0	•	1248	1881	1058	1341
4700	221.5	1	1271	900	1075	1357
7800	223.0	1	1304	931	1114	1395
4900	231.5	١	1332	959	1143	1420
5000	238.5	1	1359	985	1172	1450
5100	241.0		1384	1009	1196	1471
5200	248.5	'	1409	1034	1225	1500
5300	253.5	,	1438	1064	1253	1531
2400	259.5	•	1456	1082	1273	1550
5500	265.5	,	1473		1298	1572
5575	Buckled					

BCP 9810-8-1-1 DS

Strain at Gage Number $\overline{\sim}$ 2 1 Axial 90) End Shorten-ing x 10⁻⁴ 0.4 68.0 9.0 38.0 93.0 124.0 144.0 18.0 27.0 48.0 58.0 79.0 123.0 107.0 118.0 133.0 137.0 147.5 152.0 Axial Load(1b)

BCP 9810-8-1-2 DS

ber	5	,	-	1	,	ı		ì	1	•	,	•		,	,	1	ŧ	-	•	i	•
Gage Number	4	٥	25	51	82	112	144	177	213	244	272	313	378	436	530	578	645	889	669	711	732
at	~	0	20	47	65	88	113	141	171	188	207	232	273	307	344	362	392	420	424	432	460
1 Strain	, ,	0	2.)	29	114	156	203	256	319	372	427	486	550	610	989	729	788	840	860	876	912
Axial	_	0	34	105	171	228	292	351	414	994	518	569	630	683	740	777	829	875	890	904	046
End	Shorten- ing x 10-4	0	3.0	11.0	20.0	30.0	41.0	52.0	64.0	75.0	88.0	0.001	113.0	125.0	143.0	154.0	166.0	175.0	181.5	184.0	192.0
		50	250	500	750	1000	1250	1500	1750	2000	2250	2500	2750	3000	3250	3500	3750	4000	4100	4200	4300
			·						4					~~~-	-	· ·		, <u></u> .	ل م	.	الى سىد مىر.

BCP 9810-8-1-1 DS (cont'd)

BCP 9810-8-1-2 DS (cont'd)

e Numb	-7	763	783	799															
Strain at Gage Numb	3	508	526	543															
Strain	2	959	977	989									-			-	} 	-	
Axial	-	983	1002	1017															
End	1 ng x 10	203.0	206.5	211.0	Buckled														
		4500	4600	4700	4710														
		•										•	•	.	÷ —	- ·		· <u>···</u> ·	 -
mber	5	969	706	713	725	730	749	762	763										
Strain at Gage Number	17	449	675	969	726	742	769	802	820										
in at 0	~	441	468	473	493	505	522	544	554				<u> </u>]					
	2	1		ı	-	'	,	١	١	pa									
Axial	-	1078	1103	1121	1144	1158	1178	1198	1206	Buckled									
Axial End	ing x 10-4		162.0	166.0	170.5	175.0	179.0	186.0	189.0	0.961									
Axial	Load(1b)	3800	3900	4000	4100	4200	4300	4400	4500	4600									

IMPERFECTION MEASUREMENTS

 $(x 10^{-3} in)$

BCP 9921-A-8-1 DS

BCP 9921-A-8-2 DS

9	8	4	0	4	6	5	1
10	5	0	-1	2	7	7	5
10	7	2	-1	7	12	12	11
15	8	2	2	9	13	14	14
15	11	8	8	10	15	19	18
16	13	11	13	16	17	20	22
 19	14	15	18	20	18	20	22

-5	-5	-4	0	6	9	3	- 3
-2		-7					
1	0	- I <u>,</u>	- 3	6	8	-2	- 5
9	11	3	1	13	15	3	
12	12	4	5	16	18	5	3
16	14	7	9	16	20	9	5_
15	14	9	11	15	15	14	10

BCP 9810-B-1-1 DS

BCP 9810-B-1-2

1	0	1	0	2		-1	- 1
3	2	1	-2	0	- 1	-2	-2
11	9	4	- 1	4	3	1	3
23	19	12	5	9	10	10	9
34	28	12	4	8	12	13	15
39	29	12	6	12	14	19	19
36	29	15	10	16	16	19	21

 3	3	_ 2	0	-1	- 10	-16	-20
5_	_ 5	0	1	0	-15	-23	-24
12	9	3	3	14		-23	
19	18	10	9.	8		-13	
21	18	11	10	9	· .	-12	,
 21	20	13	12	13	0	- 3	2
20	18	17	16	17	10	3	12

A-5 EXPERIMENTAL DATA FOR 16 \times 8 PANELS WITH SIMPLY-SUPPORTED STRAIGHT EDGES

BCP 9817-8-7-1 BS

BCP 9817-B-7-2 BS

mber	5	0	7.1	137	173	219	292	373	944	518	573	875	954	974	1036	1119	1272	1330	1373	1417	1436
Gage Number	4	0	54	133	212	262	304	349	399	452	505	861	920	937	975	995	1798	731	649	568	505
at	~	,	•	•			١.	•	•	1		,	ı	,	١,	-	1	١	1	,	1
l Strain	2	0	95	141	240	328	398	473	248	613	695	-63	-82	-83	-83	-92	-75	-67	-54	-45	-37
Axial	-	0	99	125	208	288	359	436	510	594	675	1066	1120	1139	1169	1233	1344	1439	1506	1572	1636
End	ing x 10-4	0	4.0	15.0	29.0	44.0	60.0	82.0	102.0	127.0	147.0	225.0	238.0	248.0	259.0	275.0	303.0	328.0	345.0	361.0	375.0
ادزمها	Load(1b)	50	250	200	750	1000	1250	1500	1750	2000	2250	2500*	2600	2700	2800	2900	3000	3100	3200	3300	3400

* At 2450 lb some discontinuity in end-shortening vs. load occurred that could not be readily distinguished as bifurcation buckling.

	End	Axial	Strain	at Gage	e Number	er
	ing x 10-4	-	2	~	-7	5
50	0	0	0	0	0	0
250	9.0	64	89	53	52	62
500	30.0	187	121	80	73	70
750	51.0	282	185	133	148	110
1000	72.0	385	277	202	231	991
1100	80.0	426	313	226	261	190
1200	88.0	466	353	257	300	224
1300	94.0	489	372	268	318	239
1400	101.0	528	407	297	355	269
1500	108.0	551	430	310	374	273
1600	114.0	588	994	341	414	309
1700	120.0	613	491	362	944	321
1800	126.0	665	541	408	493	362
1900	132.0	169	\$66	429	518	380
2000	138.0	719	592	451	543	399
2100	142.0	719	592	447	545	394
2200	150.0	770	639	492	589	436
2300	155.0	796	663	513	611	456
2400	162.0	839	707	553	658	501
2500	168.0	871	736	580	688	530

BCP 9817-8-7-1 BS (cont'd)

BCP 9817-8-7-2 BS (cont'd)

Axial Strain at Gage Number No visible bifurcation -13 -34 -24 4-01 x gui End Shor ten-389.0 408.0 428.0 459.0 Axial Load(1b)

715 555 722 560 738 , 576 832 669 844 681 857 692 4 - 5 Axial Strain at Gage Number 19/ 96/ Buck 1ed 100 x gui End Shorten-184.5 172.5 177.0 179.5 182.0 189.0 191.5 194.5 198.0 201.0 203.0 208.0 210.5 212.5

 -	-		ļ —	ļ —	I		1	ļ —	,	 	 -	ı —	 -	 	 	†	 	1	 	 	Γ-
mber	5	0	15	24	23	27	30	393	475	563	099	710	762	793	823	998	904	196	266	9701	
Gage Number	ħ	0	91	56	33	17	84	535	579	049	700	729	757	780	804	335	1 98	905	946	1000	
at	3	0	15	77	32	17	£	584	999	757	4 58	168	936	896	1001	0401	1078	1133	1/11	1212	
l Strain	2	0	81	28	36	84	63	781	882	086	6/01	1111	1162	1194	1226	1265	1304	1361	1402	8441	
Axial	٦	0	24	37	75	72	8	1001	1100	1197	1300	1340	1385	1418	0541	1841	1523	1550	1592	1621	
End			32.0	56.0	92.0	130.0	165.0	201.0	236.0	260.0	286.0	293.0	304.0	313.0	322.0	331.0	340.0	349.0	356 0	34	Þ.
1.5.7	Load(1b)	50	200	750	1000	1250	1500	1750	2000	2250	2500	2600	2700	2300	2900	3000	3100	3200	3300	3400	3440

	End	Axial	Strain	at Gage	ge Number	ber
	100 x 10-4	ı	2	3	. 4	5
50		0	-	0	0	0
250	0.9	75	-	54	65	77
200	23.0	204	1	152	127	93
750	37.0	347	-	206	181	143
1000	57.0	543	1	260	237	198
1100	0.09	595	-	287	797	224
1200	0.99	662	-	303	277	251
1300	72.0	737	ı	321	767	284
1400	78.0	815	-	339	309	316
1500	84.0	106	1	898	333	355
1600	0.06	974	•	378	347	386
1700	0.96	1044	-	392	360	418
1800	0.001	9601	-	904	374	445
1900	0.011	1180	•	423	393	464
2000	0.911	1275	•	244	420	248
2100	126.0	1351	-	19 †	144	592
2200	135.0	9141	-	6/4	457	989
2300	0.441	1500	ı	503	487	869
2400	153.0	1571	-	513	505	740
2500	0.191	1640	1	539	540	789

BCP 9921-A-7-2 BS (cont'd)

	End	Axia	Axial Strain at Gage Number	n at G	age Nu	mber
	$1 \text{ ing x } 10^{-4}$	1	2	3	4	5
2600	170.0	1,701	•	556	567	829
2750	182.0	1773	•	595	620	893
2800	187.0	1812	•	618	644	921
2900	191.0	1845	•	940	664	940
3000	200.0	1889	•	699	669	975
3100	209.0	1956	•	716	248	1023
3250	219.0	2006	,	725	764	1036
3300	224.0	2058	•	780	826	1093
3320	Buckled					

IMPERFECTION MEASUREMENTS

 $(x 10^{-3} in)$

BCP 9817-B-7-1 BS

BCP 9817-8-7-2 BS

9	6	0	- 3	-7	-5	
13	10	l	- 5	-8	-5	
18	12	3	-3	-11	-1	
23	17	7	2	0	3	
23	17	10	5	4	7	
21	15	8	7	5	7	
15	12	9	9	8	9	

1	-2	0	1	0	2	
1	-3	-4	-3	4,	-1	
6	1	-1	-2	-1	3	
13	10	5	4	4	7	
16	9	7	5	6	01	
20	12	10	10	8	12	
21	13	15	15	13	15	

BCP 9921-A-7-1 BS

BCP 9921-A-7-2 BS

	4	0	0	5	13	15	
	12	1	-2	3	15	19	
	15	3	-1	3	12	19	
	21	9	4	5	13	21	
	22	12	5	4	10	18	
}	21	13	7	7	12	17	
	18	13	11	11	12	17	

 -1	-5	0	9	3	3	
 6	-2	5	25	31	17	
12	4	15_	35	45	31	
 18	11	22	38	41	32	1 .
 23	17	26	36	37	32	: ! !
 27	20	25	32	36	38	
 31	27	30	32	33	39	·

APPENDIX B

STRAIN, END-SHORTENING, AND IMPERFECTION MEASUREMENTS FOR TEST PANELS WITH UNSUPPORTED STRAIGHT EDGES

AND CLAMPED CURVED EDGES

TESTING PROGRAM B

8-1 EXPERIMENTAL DATA FOR 8 imes 16 PANELS WITH UNSUPPORTED STRAIGHT EDGES st

BCP 9824-A-2-1 CF

BCP 9824-A-2-2 CF

32 88

0.5

12 8

1.2

6.4

3.0

ω ω

37 3

0 =

Axial Strain at Gage Number

End Shortening x 10⁻⁴

		···						 -	r				 		·,		.	†	ļ	1	
Number	5	0	47	110	152	217	282	341	396	457	512	195	573	965	419	979	849	199	680	269	705
Gage Nu	4	0	39	89	125	161	268	331	383	430	9/4	511	521	542	559	220	165	909	549	779	655
at	3	0	40	91	126	165	215	197	297	334	408	487	217	553	580	909	149	672	710	741	89/
al Strain	2	0	39	85	114	153	961	245	290	347	814	481	505	533	555	574	603	627	959	682	704
Axial		0	1	-	-	-	•	•	-	1	•	-	-	1	-	-	-	ı	-	-	•
End	4 10 4	0	0	6.0	1.2	2.0	3.1	4.0	5.1	6.1	7.1	8.6	9.0	9.8	10.0	10.8	10.9	11.3	12.0	12.4	13.0
	Load (1b)	50	250	200	750	1000	1250	1500	1750	2000	2250	2500	2600	2 700	2800	2900	3000	3100	3200	3300	3400

							_				·
499	574	099	869	723	292	803	833	1/8	606	846	976
437	7/1	523	845	295	009	829	655	169	722	758	785
309	345	384	403	4k5	438	81/4	194	114	067	207	519
397	144	064	514	532	559	573	590	612	630	654	672
202	585	899	703	731	0//	800	828	798	268	933	196
6.0	7.1	8.3	8.8	9.1	9.4	9.9	10.1	10.4	11.0	11.5	12.0
2000	2250	2500	2600	2700	2800	2900	3000	3100	3200	3300	3400
457	512	195	573	965	719	979	849	199	089	269	502

Thus the letter A * The last letter in a specimen designator (BCP-9824-A-2-1) indicates the fiber pattern. signifies the pattern $[0/\pm45/90]$ s and the letter B signifies the pattern [0/90]2s.

								L	لــــــا	
ber	5	917	446	742	0//					
ge Num	4	029	669	202	734					
n at Ga	3	799	841	865	904					
Axial Strain at Gage Number	2	729	19/	782	809	pa				
Axia	1		-	•		Buckled				
Shorton	Load (1b) ing $\times 10^{-4}$	13.1	13.8	14.2	14.8	15.0				
Δ<	Load(1b)	3500	3600	3700	3800	3900				

	End	Axia	Axial Strain at Gage Number	at Ga	ge Nur	ber
Axia	Shorten-				-	
Load(Ib)	ing x 10 +	-	2	~	7	_
3500	12.3	989	687	528	811	1001
3600	12.7	1017	707	545	838	1027
3700	13.0	1050	730	260	875	1062
3800	13.3	5801	248	573	913	1093
3900	13.8	1120	770	589	952	1133
3975	Buckled					

Strai	2	0	57	93	126	167	207	244	296	341	387	345	315	305	280	263	246	201	177	149	123
Axial	-	0	43	71	87	109	134	149	171	186	201	201	201	204	204	200	200	198	158	141	137
End	Shorten- ing x 10 ⁻⁴		0.2	1.1	2.1	3.1	4.1	5.1	6.0	7.0	8.0	9.8	10.2	10.2	10.9	11.1	11.2	12.0	12.7	13.0	13.2
	Axia(Load(1b)	50	500	750	1000	1250	1500	1750	2000	2250	2500	2600	2700	2750	2800	2850	2900	2950	3000	3050	3100
•		•	· •																		,
Number	5	0	28	59	89	116	149	167	181	201	219	236	248	259	270	237	301	304	313	321	324
Gage Nu	4	0	<u>8</u> 2	43	89	9.	113	126	134	149	159	170	179	189	202	213	223	228	236	242	244
	3	0	20	84	78	109	148	167	184	204	215	220	229	240	253	566	280	286	294	301	303
Axial Strain at	2	0	25	54	98	120	161	28	201	223	251	278	309	333	357	382	410	419	427	435	044
Axi	-	•	,	,	ı		,	ι	•	ı	'	'	,	ı	'	,	'	1	•	,	
End	shorten- ing x 10-4	0	0.5	1.0	1.4	2.0	2.5	3.0	3.0	3.5	4.0	4.2	4.9	5.1	5.5	6.0	6.5	6.9	7.0	7.2	7.4
	Load(1b)	25	200	400	009	800	1000	0011	1200	1300	1400	1500	1600	1 700	1800	1900	2000	2050	2,00	2150	2200

in at Gage Number

-4

382.

BCP 9810-B-4-1 CF (cont'd)

BCP 9810-8-4-2 CF (cont'd)

Avial	End	Axia	al Strain	at	Gage Number	nber	Avial	End	Axia	1 Str	Axial Strain at	Gage Number	mber
Load(1b)			2	3	7	5	Load(1b)		_	2	3	, 7	5
2250	7.7		44,7	311	251	332	3150	13.8	134	96	515	536	699
2300	7.9	,	453	315	255	337	3250	14.8	138	35	555	546	683
2350	8.0		458	321	258	342	3300	16.0	Buckled	pa			
2400	8.2	,	463	326	262	348							
2450	4.8	,	467	332	267	354							
2500	8.8	,	470	340	275	363							
2550	9.0	,	473	345	279	370			-				
2600	9.1		474	353	286	379					ļ		
2650	9.3	,	473	357	290	384			-				
2 700	9.7	1	471	364	295	390							
2750	10.0		994	369	299	396							
2800	10.1		194	376	306	405							}
2850	10.3	,	453	386	316	416							
2900	10.8	-	442	391	319	422							
2950	11.0		430	396	324	428							
3000	11.0	-	405	412	339	447							
3100	11.6	,	381	429	354	465							
3200	11.2	1	334	439	363	478							
3300	12.8	1	302	944	368	485					- · -		
3400	13.3	1	259	465	388	507							

BCP 9810-B-4-1 CF (cont'd)

ber	5	521	536	909	641				
Axial Strain at Gage Number	4	404	412	590	693				
in at G	3	477	438	197	108				
) Stra	2	208	174	69-	-119				
Axia	-	1	•	•	•				
End	ing x 10 ⁻⁴	0.41	14.5	17.3	18.5	Buckled			
1	Load(1b)	3500	3600	3700	3800	3850			

IMPERFECTION MEASUREMENTS * (x 10-3 in)

BCP 9824-A-2-1 CF

BCP 9824-A-2-2 CF

-4	-6	+1	+7	0	-14	-11	-8	-2
-4	-8	-1	0	- 3	-15	-12	- 7	+2
-5	-10	-6	-7	-9	-19	-14	-9	+1
-9	-11	-12	-9	-11	-19	-13	-8	+3
-10	-13	-13	-12	-13	-15	-13	-1	+9
						L		
{								

+3	-11	-12	-6	0	- 3	+6	+18	+13
+3	-8	-12	3-	0	- 5	+5	+16	+18
+4	-8	-10	-7	- 3	-4	+5	+14	+21
+4	-6	-10	-7	-5	-7	С	+9	+16
+3	-4	-9	-8	- 3	-4	+4	+12	+20
		,					; 	

BCP 9810-B-4-1 CF

BCP 9810-B-4-2 CF

+20	+12	+4	0	0	-1	+2	+3	+8
+22	+14	+5	+}	+2	+2	+6	+9	+16
+21	+12	+4	+}	+1	0	+7	+9	+19
+33	+25	+16	+9	+8	+6	+9	+11	+18
+33	+26	+17	+12	+10	+8	+11	+14	+20
						i i		;
								<u> </u>

+1	+1	+8	+5	0	-10	-21	-28	-15
+1	0	+6	+4	-3	-14	-18	-23	-
0	-2	0	0	-6	-13	-18	-19	-24
0	-4	-1	-5	-10	-14	-14	-16	-6
-4	-9	-7	-10	-10	-11	-6	-6	+6
	,							

^{*} This imperfection data is questionable. Imperfection measuring device was not mounted accurately enough.

B-2 EXPERIMENTAL DATA FOR 12 imes 16 PANELS WITH UNSUPPORTED STRAIGHT EDGES

BCP 9817-8-5-2 EF

BCP 9817-8-5-1 EF

Gage Number	. 5	0	30	65	901	140	178	218	261	304	348	382	395	403	406	396	356	322	295		,
age N	4	0	25	56	84	107	133	164	186	219	255	288	308	325	350	365	398	420	484		
at	3	0	29	65	92	125	157	192	220	258	296	328	346	361	380	390	415	432	442		
al Strain	2	0	27	59	84	110	139	170	194	226	261	288	303	316	333	341	361	372	376		
Axial	-	0	29	71	132	228	320	407	501	590	678	756	790	820	852	830	914	933	940		
End Shorten-		0	0.5	1.0	2.0	3.0	4.0	5.0	6.2	7.7	9.0	10.3	11.0	11.3	12.3	13.0	13.8	14.3	14.9	Buckled	
Axial	Load (1b)	50	250	500	750	1000	1250	1500	1750	2000	2250	2500	2600	2700	2800	2900	3000	3050	3100	3140	

\\ \rac{\lambda}{\alpha}	End	Axial	Strain	at	Gage Number	er
Load(1b)	4-01 x pai	~	2	3	7	2
25	0	0	0	0	0	0
100	0	[]	=	13	6	=
200	0.5	3.	25	30	24	27
300	0.8	64	38	45	04	1-1
1,00	1.0	69	57	19	57	56
500	1.2	90	19	75	70	73
909	1.6	113	72	39	82	92
700	2.0	140	83	103	9	110
800	2.2	165	96	120	105	128
900	2.6	188	108	134	116	143
1000	3.0	217	122	151	130	164
1100	3.3	246	133	165	141	181
1200	3.8	276	147	181	156	199
1300	4.1	302	157	193	391	213
1400	4.8	334	171	212	185	236
1500	5.1	362	185	230	203	257
1600	5.7	388	198	247	220	276
1700	6.1	420	208	262	233	296
1800	6.8	448	220	278	250	314
1900	7.2	479	231	294	269	335

BCP 9817-B-5-2 EF (cont'd)

Avial	End	Axial	al Str	Strain at	at Gage Number	umber
Load (1b)	109×10^{-4}		2	۳.	7	5
2000	7.8	501	242	309	287	351
2100	8.2	529	250	326	314	377
2200	8.9	553	262	340	342	395
2300	9.2	576	274	357	370	413
2400	9.8	599	284	372	399	430
2500	10.1	621	293	387	432	744
2600	10.8	449	304	401	466	460
2700	11.3	999	314	419	508	797
2800	12.0	889	326	438	550	450
2850	12.3	700	333	644	579	430
2900	12.8	709	340	7460	603	412
2950	13.0	717	346	470	630	390
3000	13.5	722	351	480	655	367
						_

9 2

al Strain at Gage Number

Avial	Shorten	Axial	Strain	a	Gage Number	ber	- X	Shorten	Axia
Load(1b)		_	2	3	-5	7	Load(1	(1b) ing x 10 ⁻⁴	-
20	0	0	0	0	1	0	50	0	٥
250	9.0	45	41	94	-	52	250	0.8	~
200	1.9	901	93	83	,	124	200	2.0	76
750	3.0	991	155	124	-	206	750	3.0	150
1000	4.0	216	202	1 91	•	278	1000	4.2	212
1250	5.0	282	171	207	•	377	1250	5.8	283
1500	4.9	348	337	259		480	1500	7.1	356
1750	7.8	004	383	300	-	995	1750	8.5	433
2000	9.1	094	433	365	•	049	2000	10.0	524
2100	9.8	184	644	383	-	670	2100	10.6	559
2200	10.2	905	991	413	-	704	2200		593
2220	Buckled	(Left S	Side)				2300	12.0	629
2300	14.8	8/9	-63	774	•	896	2400	12.4	653
2400	15.3	701	-97	1 1 18	-	1012	2500	13.0	989
2500	16.1	731	-139	892	ı	9901	2600	13.8	712
2600	17.0	768	-190	996	1	1126	2700	14.2	743
2 700	17.9	801	-234	1029	-	1175	2800	15.0	774
2775	Buckled	(Right	Side)				2900	15.5	807
							3000	16.1	843
							3050	Buckled	

IMPERFECTION MEASUREMENTS \pm (x 10⁻³ in)

BCP 9921-A-6-1 EF

3CP 9921-A-6-2 EF

+28	+35	+36	+23	0	-5	+28	+50	+52
+24	+35	+38	+30	+8	+8	+35	+52	+56
+26	+33	+42	+33	+16	+18	+42	+55	+61
+32	+36	+44	+38	+26	+26	+50	+56	+61
+39	+36	+45	+40	+37	+40	+59	+64	+72
			; l					
			!					

+10 1+13	+26	+14	Ò	+2	+24	+44	+69
+73 +48	+33	+12	+10	+24	+32	+35	+59
+52 +42	+40	+30	+22	+26	+42	+62	+72
+30 +42	+43	+38	+32	+34	+52	+62	+80
+48 +46	+48	+43	+2,2	+45	+61	+69	+85

BCP 9817-8-5-1 EF

BCP 9817-B-5-2 EF

+68	+55	+31	+10	0	+10	+40	+59	+66
				+12				
+65	+57	+48	+36	+28	+30	+51	. 12	+58
+60	+61	+56	+41	+40	+44	+53	+57	+60
+55	+58	+55	+48	+50	+55	+57	+58	+56
			:			<u> </u>		
	1	,				}	1	

+25	+24	+34	+21	0	+1	+2	120	+15
+33	+35	+36	+25	+10	+8	+ ₂ 8	+29	+29
+32	+33	+34	+28	+15	+13	+30	+29	+21
+23	+35	+31	+19	+20	+28	+32	+29	+25
+26	+29	+32	+30	+25	+25	+25	+ 32	+33

^{*} This imperfection data is questionable. Imperfection measuring device was not mounted accurately enough.

B-3 EXPERIMENTAL DATA FOR 16 x 16 PANELS WITH UNSUPPORTED STRAIGHT EDGES

BCP 9824-A-4-2 AF

BCP 9824-A-4-1 AF

Strain at Gage Number 99/ Buckled Axial J ı End Shorten-ing x 10-4 3.8 6.0 1.7 2.5 6.4 6.0 7.5 10.0 9.01 11.4 12.4 13.5 14.4 16.0 9.1 15.1 Axial Load(1b) 2)00

Avial	End	Axia	1 Strain	at	Gage Number	ber
Load (1b)	ing x 10 ⁻⁴	~	2	~	4	5
		0	0	0	0	_
	0.7	64	32	43	40	-
	1.9	118	85	95	100	-
	3.0	178	137	155	155	ι
	4.1	235	192	212	212	-
· 7	5.3	281	242	797	264	l
	6.7	337	300	330	329	
1750	7.9	385	347	378	381	-
2000	9.0	430	387	402	424	-
2100	9.6	457	416	984	457	_
2200	10.2	475	431	844	465	_
2300	0.11	501	461	184	464	1
2400	11.8	523	484	505	517	-
2500	12.5	552	499	523	534	-
2600	13.1	571	525	552	195	-
2700	14.0	584	543	175	579	-
2750	Buck led					

œ

7-

0:1 4.3 5.5

at Gage Number

Strain

Axial

End Shorten-_4 ing x 10⁻⁴

Axial Load(1b)

-64 -65 -60 -65

> <u>~</u> ~.

9.9 6.5

9.1

-21

 -50 -25

6.1 5.2 4.0

3.0 2.5 2.0

-51

-20 -23

mber	5	0	-2	-53	-70	-75	-69	-47	-20	+10	43	70	66	110	115	102	95	98	77	125	
Gage Number	4	0	20	3	3	5	11	38	77	104	128	158	961	223	275	904	044	094	475	41	
at	3	0	-	-	-		-	•	-	ı	-	-	-	1	-	-	1	•	-	1	
l Strain	2	0	-	ı	•	-		J	,	•	,	1	•	-	-	,	-	,	•	,	
Axial	-	0	35	185	219	240	249	244	230	214	197	172	160	138	117	185	196	506	277	293	
End	100 x 10-4	0	0.1	3.1	4.5	5.0	5.3	5.1	4.8	4.0	2.7	1.4	0.0	-1.1	-3.0	-6.5	-7.5	-8.0	-8.9	-13.0	
Avial	Load (1b)	100	250	200	900	700	800	1000	1200	1400	1600	1 800	2000	2200	2400	2500	2600	2650	2700	2750	

-2.5 -3.0

The second of th

= 7.0 -0.4 -1.0 -2.0

7/4

BCP 9817-8-8-2 AF (cont'd)

Axial	End	Axia	Axial Strain at Gage Number	n at 6	age Nu	mber
Load (1b)		1	2	3	7	5
2600	-3.8	279	643	429	246	206
2700	-4.2	278	699	452	764	212
2800	-5.0	275	697	1 477	278	220
2900	-5.9	273	725	502	282	226
3000	-6.3	271	750	524	295	233
3100	*	184	6	209	256	310
						:

IMPERFECTION MEASUREMENTS * (x 10⁻³ in)

BCP 9824-A-4-1 AF

BCP 9824-A-4-2 AF

+31	+22	+15	+5	0	-2	+5	+10	+]]
+32	+25	+16	+ 4	- 2	+1	+8	+13	+20
+34	+26	+19	+6	+4	+4	+11	+17	+22
+39	+31	+22	÷10	+3	+10	+19	+25	+29
+45	+35	+27	+16	+14	+17	+26	+30	+37
+45	+37	+29	+21	+22	+24	+33	+40	+46
+43	+37	+34	+28	+31	+33	+43	+50	+62

		+10						
		+12						
+26	+21	+16	+ i.	-2	0	+11	+13	+6
+30	+30	† 27	+16	+11	+15	+31	+23	+16
+34	+31	+32	† 22	+ 17	+23	+39	+34	+13
+32	+33	+34	+23	⁺ 19	+25	+41	+ 36	+16
+34	+36	+35	† 28	† 29	+32	+47	+1+2	+38

BCP 9817-8-8-1 AF

BCP 9817-B-8-2 AF

+30	+14	+6	0	0	-1	+5	+15	+30
+29	+16	+9	+3	+5	+2	+7	+22	+38
+38	+25	+16	+10	+10	+10	+15	+28	+40
+47	+33	+25	+19	+18	+19	+24	+34	+41
+60	+43	+36	+29	+28	+30	+34	+39	+46
+69	+50	+44	+38	+36	+38	+41	+45	+48
+71	+58	+51	+44	+42	+45	+50	+50	+57

+151	+139	1 92	+1+3	0	-38	⁻ 66	- 96	-133
+179	+1 32	+ 88	+115	+3	⁻ 25	- 50	⁻ 72	-100
+167	+127	83+	† 53	† 21	- 9	⁻ 30	-42	- 55
+ 158	+124	† 90	1 59	+33	†11	- 5	711	-11
+145	+117	1 90	1 65	+46	† 28	+16	+16	+21
+ 1 30	+111	† 90	† 72	1 62	+46	+38	+43	+52
+) 14	+103	1 90	+ 75	1 67	† 61	1 60	1 67	⁺ 75

* This imperfection data is questionable. Imperfection measuring device was not mounted accurately enough.

B-4 EXPERIMENTAL DATA FOR 16 imes 12 PANELS WITH UNSUPPORTED STRAIGHT EDGES

BCP 9824-A-1-1 DF

BCP 9824-A-1-2 0F

	End	Axial	Strain	at	Gage Number	ber
Load(1b)	ing x 10-4	-	2	3	4	5
100	0	0	0	0	0	0
300	-1.1	96	11	95	23	-5
200	-3.0	216	961	96	17	-31
009	-3.6	282	253	115	18	-36
700	0.4-	340	305	138	32	-3,
800	0.4-	399	350	163	95	-16
900	-3.3	452	394	187	79	+6
1000	-2.4	064	429	208	98	43
1100	-1.1	524	694	787	123	87
1200	-0.2	248	208	760	137	125
1300	6.0+	569	550	290	159	163
1400	1.8	588	593	322	177	200
1500	3.0	612	999	353	210	311
1600	0.4	630	512	381	247	348
1700	5.1	650	29/	409	288	388
1800	4.9	668	815	438	335	423
1900	7.8	687	867	994	385	455
2000	9.0	705	916	492	431	487
2100	10.3	723	996	915	482	514
2200	12.0	744	1018	539	545	543

							_								_			_	-1	_	
lumber	5	0	æ-	-39	-27	-3	+26	64	93	121	136	157	166	176	184	188	190	161	187		
at Gage Number	7	0	50	109	135	154	167	185	198	214	234	260	285	309	341	368	395	426	7460		
in at	~	0	,	,	•	,	•	,	,	-	•	,	•	1	•	_	•	•	,		
al Strain	2	0	65	125	157	188	213	252	287	323	358	396	184	471	516	563	019	662	722	P	
Axial	_	0	110	295	394	194	505	543	125	765	419	289	657	4/9	769	502	720	734	739	Buck led	
End	snorten- ing x 10 ⁻⁴	0	-1.0	-4.0	-4.1	١٠ - ل	0.4-	-3.1	-2.3	-1.5	-0.5	+0.5	1.8	3.0	4.0	5.2	6.8	8.1	9.7	11.8	
	Load(1b)	100	300	500	009	700	800	900	1000	1100	1200	1300	0041	00			1800	1900	2000	2090	
		0	-5	31	36	3,	91	9	43	87	25	63	00	=	64	88	23	55	87	14	43

* These data were taken before the large aluminum lock-nuts were installed on the Tinius-Olsen testing machine.

BCP 9825-A-1-1 DF (cont'd)

		×ia	1 Stra	in at G	Axial Strain at Gage Number	ber
Load(1b) ing x 10-4		~	2	3	7	5
13.0		99/	1063	555	596	565
	1 .					
	l					

	5	1-	24	53	85	85	104	129	154	190	237	270	302	329	355	380	383	396	409	431	443
Gage Number	4	13	44	30	126	131	151	174	186	161	221	245	273	300	327	358	366	384	404	434	4,72
ain at	3	8	43	98	139	152	182	220	254	286	316	310	327	362	381	405	1,09	423	436	459	399
al Strain	2	4	32	7.1	118	128	151	179	204	222	260	309	361	413	994	537	559	598	639	701	625
Axial	1	9	36	70	104	107	115	130	148	185	250	284	314	338	359	383	381	385	383	365	297
Shorten	ing x 10-4	0	1.0	1.7	2.6	3.0	3.7	4.1	4.9	5.6	6.3	7.2	8.1	9.1	10.1	1.1	11.6	12.1	12.9	13.4	16.0
Axial	Load (1b)	25	200	700	009	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1750	1800	1850	1900	1930

	End	Axial	Strain	at	Gage Number	mber
Load (1b)		1	2	3	4	5
100		0	0	U	0	0
300	-2.0	70	1	39	8	-32
200	0.4-	142	•	99	2	-55
009	-4.5	157	•	72	2	-54
700	-5.0	187	•	94	12	-52
800	-5.0	506	•	111	28	04-
006	£.11-	213	'	125	39	-23
1000	0.4-	220	-	142	55	-3
1100	-3.0	226	•	091	82	61+
1200	-2.1	226	1	178	102	38
1300	-1.6	224	•	198	129	54
1400	-0.9	224	ı	221	156	89
1500	0.0	224	ı	243	177	76
1600	1.0	223	•	268	294	8
1700	1.9	221	•	296	231	48
1300	2.9	219	ı	322	252	84
1900	3.8	216	•	354	238	83
2000	4.8	212		388	321	79
2100	5.9	202	-	427	358	73
2110	7.0		Buckled			

" These data were taken before the large aluminum lock-nuts were installed on the Tinius-Olsen testing machine.

IMPERFECTION MEASUREMENTS $^{\circ}$ (x 10^{-3} in)

BCP 9817-B-6-1 DF

BCP 9824-A-1-2 DF

+19	+12	+6	+3	0	0	0	0	-10
+12	+6	-2	-7	-9	-6	-6	- 3	-9
+10	+4	-5	-10	-12	-9_	-6	+2	+3
+12	+6	- 1	-6	-11	-6	-2	+12	+21
+11	+7	0	-3	-7	-5	+3	+18	+31
+5	+2	-3	-4	-9	-5	+3	+19	+31
+14	+9	+6	+4	0	+2	+7	+16	+23

-10	-12	-16	-11	0	-11	-3	-3	0
- 15	-16	-20	-13	-9	-12	-12	-1	+7
-14	-15	-16	-12	-11	-9	-8	0	+13
-9	-10	-11	-8	-7	-6	-4	+7	+17
+1	+1	-3	-2	0	+3	+4	+ [li	+29
+11	+5	-1	+2	+4	+3	+6	+17	+30
+17	+12	+6	+11	+12	+15	+20	+28	+38

BCP 9824-A-1-1 DF

BCP 9817-8-6-2 DF

+7	0	+2	+5	0	-1	-2	+6	+18
+6	+3	+1	+3	+3	+3	-4	+5	+18
+8	+5	+6	+7	+6	+2	+1	+8	+20
+13	+11	+10	+12	+9	+6	+8	+15	+23
+19	+18	+14	+16	+16	+15	+14	+22	+29
+24	+20	+18	+20	+20	+19	+21	+28	+36
+30	+27	F-25	+25	+29	+28	+32	+40	+50

+19	+13	+10	+8	0	+2	+4	+10	+15
+16	+12	+8	+5	-4	-5	-1	+11	+22
+15	+10	+6	+3	-7	-9	<u>-5</u>	+9	+24
+18	+14	+9	+4	-5	-7	-2	+12	+26
+17	+14	+9	+5	-4	-6	- 1	+13	+22
+14	+11	+7	+2	-4	-8	+1	+10	+17
+8	+8	+7	+5	+2	+7	+10	+18	+25

* This imperfection data is questionable. Imperfection measuring device was not mounted accurately enough.

B-5 EXPERIMENTAL DATA FOR 16 imes 8 PANELS WITH UNSUPPORTED STRAIGHT EDGES

BCP 9921-A-7-1 BF

BCP 9921-A-7-2 BF

Gage Num	4	0	33	90	128	165	207	252	293	344	387	437	485	536	583	549	269	727	762	173	826
at	3	0	22	49	93	119	147	172	200	229	256	291	321	359	0017	144	482	507	538	247	596
Strain	2	0	18	52	74	93	114	127	142	157	1691	187	200	217	236	250	263	270	283	282	295
Axial	-	0	19	75	73	87	901	118	132	145	153	164	170	179	185	185	185	185	184	183	180
End	100 x 10-4	0	0.9	8.1	2.2	2.8	3.2	4.0	4.5	5.1	0.9	6.5	7.2	8.0	8.8	9.7	10.4	0.11	4.11	12.0	12.5
(4:50	Load (1b)	25	100	200	250	300	350	004	450	200	550	009	059	700	750	800	850	875	900	925	950
					-				<u> </u>												· -
ber	5	0	35	9/	129	163	190	241	266	289	312	332	364	391	413	438					
je Number	4	0	36	78	125	154	174	222	248	271	294	315	349	386	442	541					
n at Gage	3	0	35	81	122	149	168	217	245	569	767	314	349	378	423	512					
Strain	2	0	26	63	107	137	153	661	22.1	235	257	997	162	308	326	331					
Axial	1	0	19	35	94	55	59	29	66	102	103	66	105	109	101	95					
End Shorten-	4-01 x gui	0	9.0	1.4	2.6	3.0	3.9	4.5	5.2	6.0	6.8	7.4	8.2	9.2	10.6	12.8	Buckled				
Axial	Load(1b)	25	100	200	300	350	004	450	500	550	009	920	799	750	800	850					

90 108

25

Number

128

163

203

191

247 255 250

255

238 243

BCP 9921-A-7-2 BF (cont'd)

ber	5	256	256					
Axial Strain at Gage Number	4	891	938					
n at G	3	306 653	694					
Strai	2	306	157 308 694	pa				
Axial	-	169	157	Buck led	- den			
End	ing x 10 ⁻⁴	13.7	14.0	15.5				
1010	(q	1000	1025	1046				

Gage Number

Axial Strain at

~

End Axial Strain at Gage Number Shorten- ing x 10-4 I 2 3 4 5 Load(1b) ing x 10-4 Load(1b) ing x 10-4	925	975 1000 1025
Axial Strain at Gage Number 1 2 3 4 5 Load(!b Load(!b)		
Strain at Gage Number 2 3 4 5 Load(1b Load(1b		
Axial Load (1b		
Axial Load (1b		
Axia) Load (1b		
Axial Shorten- Load(ib) ing x I(
End Shorten ad(1b) ing x 1[
Shorten ing x I(

Axia	-	0	20	52	70	101	124	134	139	144	138	147	141	138	133	128	127	129	120	122	113
End	ing x 10-4	0	0.7	1.3	2.1	3.1	4.3	5.0	5.6	6.1	7.0	7.6	8.0	8.3	8.8	9.1	9.6	10.0	10.3	10.9	11.3
	Load(1b)	5	001	200	300	004	500	550	009	650	700	750	775	800	825	850	875	900	925	950	975
·																			-		(
Gage Number	5	0	26	53	81	117	191	183	187	191	161	188	137	186	186	183	183	180	180	180	178
	4	0	25	55	83	121	182	259	302	340	384	427	447	468	492	515	536	558	584	612	637
Sirain at	3	0	26	58	85	121	991	216	246	276	311	348	365	384	904	429	448	694	492	517	541
1 1	2	'	•	,	,	'	,	,	'	,	,	,	,	,	,	,	,	•	,	,	,
Axial	-	0	20	43	65	86	106	116	116	118	114	109	106	104	101	97	95	39	85	79	72
End Shorten-	ing x 10 ⁻⁴	0	0.7	1.2	1.9	2.8	3.6	4.8	5.2	6.0	6.8	7.5	8.0	8.5	9.0	9.6	10.0	10.5	11.0	12.0	12.6
Axial	Load(1b)	5	100	200	300	400	500	900	650	700	750	800	825	850	875	900	925	950	975	1000	1025

 \circ

7.7

Axial Strain at Gage Number

1,00

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Load (1t	1000	1025	1050	1075	1090			
			·				 -	 -	
mber	5	173							
Axial Strain at Gage Number	†	671							
in at	3	573							
1 Stra	2	,	}eq						
Axia	1	09	Buckled						
Avial Chorten-	Load (1b) ing x 10-4	13.5	15.0						
Avis	Load (1b)	1050	1065						

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	End	Axia	Strai	n at G	Axial Strain at Gage Number	ber
Load (1b)	Load(1b) ing x 10-4		2	~	4	5
1000	11.8	01-	566	964	535	146
1025	12.3	109	278	529	569	144
1050	13.0	60	291	563	599	144
1075	13.9	97	290	109	979	141
1090	15.0	Buckled	led			

IMPERFECTION MEASUREMENTS

 $(x 10^{-3} in)$

BCP 9921-A-7-1 BF

BCP 9921-A-7-2 BF

+9 +10 | +9 | +5

+30	+27	+22	+14	0	-7	-8	-3	-6
+61	+45	+28	+15	-1	-12	-12	-14	- 14
+81	+60	+36	+15	-1	-11	-13	-12	-12
+83	+60	+35	+14	-1	-8	-11	-10	-10
+63	+51	+31	+13	+2	- 5	-5	-8	-8
+44	+36	+24	+12	+3	-2	-]	-2	- 2
+24	+21	+16	+10	+4	+3	+4	0	+2

+21	+20	+15	+10	0	-10	-20	-29	- 36
+34	+25	+17	+11	-4	-16	-26	-40	-57
+39	+30	+21	+11	-2	-14	-26	-48	- 71
+36	+33	+24	+12	-3	-16	-26	-43	-64
+33	+30	+22	+12	-2	-12	-17	-25	- 38
+21	+19	+13	+7	-3	-3	-8	-11	-15

-3

-6 j -8 -10

BCP 9817-B-7-1 BF

BCP 9817-B-7-2 BF

+6	+5	+3	+2	0	-2	- 3	-8	-12
+12	+8	+3	+2	-1	-5	-8	-10	-16
+13	+8	+3	0	-4	-8	-9	-12	-16
+18	+12	+5	+1	-2	-6	-6	-7	-9
+13	+11	+5	+}	-2	-5	-5	-5	-6
+16	+5	+2	0	-2	- lş	- 3	- 3	-4
+4	+4	+3	+3	+2	0	+}	0	0

+16	+12	+8	+5	0	+1	+2	+4	- 1
+16	+12	+5	-2	-6	-5	0	+5	+2
+20	+13	+8	0	- 3	- l ₁	0	+4	+1
+23	+16	+6	+1	-3	- 4	-]	+2	-5
+20	+15	+7	+2	- 3	- 3	-3	-2	-9
+19	+14	+10	+5	0	-1	-2	-2	-13
+14	+12	+10	+8	+4	+3	+2	0	-9

APPENDIX C

STRAIN, END-SHORTENING, AND IMPERFECTION MEASUREMENTS FOR TEST PANELS FOR TESTING PROGRAM B

FIGURE

Locations for strain and imperfection measurements for 16×12 panels with $[0/90]_{2s}$ fiber pattern and unsupported straight edges. For 16×12 panels with $[0/\pm45/90]_{s}$ fiber pattern and simply-supported straight edges only the axial strains at the three interior locations were recorded, and the imperfect data were recorded for the seven interior imperfection grid lines. (Circumferential dimensions shown correspond to the panels with unsupported straight edges. Subtract one inch for simply-supported panels.)

Imperfection measurements $(x10^{-3}in)$ for 16x12 panels with fiber pattern $[0/\pm45/90]_S$ and simply-supported straight edges (curved edges clamped). Collapse load in parentheses.

DS-A9-1 (4600 lb) freely

3	8	8	6	8	6	2	
-1	7	7_	3	4	7	0	
-2	7	7	3	4	5	-	
-2	4	4	3	1	3	-3	
-4	2	2	-1	-2	1	-2	
0	2	1	-1	-2	1	-2	
1	1	0	-1	-2	-1	0	

rounded edges DS-A9-2 (4975 1b) 30 in-1b on side bars

6	3	3	2	8	6	3	
5	4	4	3	5	8	7	
8	4	3	3	4	9	6	
8	2	3	2	3	7	6	
4	-2	-2	-1	-1	6	3	
5	-1	2	2	1	7	3	
1	1	3	4	3	6	3	

DS-A10-1 (5775 1b) 10 in-1b

0	4	5	4	7	7	6	
-4	2	4	4	6	6	9	
-7	0	7	7	6	7	9	
-10	-2	3	4	4	4	7	
-12	- 5	2	0	0	3	3	
-12	-4	1	1	1	1	0	
-6	-2	0	-1	2	0	-1	

DS-A10-2 (5510 lb) 30 in-1b on side bars

19	13	6	5	8	12	9	
33	22	5	2	7	12	10	
33	28	2	-2	4	15	18	
30	31	1	-4	2	18	22	
30	24	0	-10	-3	16	17	
0	21	-1	-7	-4	10	13	
19	11	-2	-4	-1	6	8	

DA-All-1 (5160 lb) nearly freely

-6	-7	-3	0	0	-6	-2	
-10	-6	0	5	-1	-8	-8	
-7	-4	7	10	4	-6	-7	
-6	-7	6	10	3	-8	-12	
-10	-10	-1	5	1	-9	-13	
-6	-7	2	4	0	-7	-8	
-6	-4	-2	0	0	-4	-7	

Imperfection measurements $(x10^{-3}in)$ for 16-12 panels with fiber pattern $[0/90]_S$ and unsupported straight edges (curved edges clamped). Collapse load in parentheses.

DS-B11-1 (2460 1b)

8	8	3	8	9	11	10	11	16
9	7	4	8	10	12	9	9	9
9	6	6	6	8	8	6	6	5
5	2	0	1	2	4	1	3	4
0	2	1	2	3	4	1	6	10
-7	-2	-1	-2	-2	-1	-3	1	6
-7	- 3	-3	-3	- 3	- 3	- 3	1	7

DS-B11-2 (2715 1b)

		<u> </u>						
9	6	5	8	6	7	7	8	13
4	3	6	8	9	7	6	10	13
- 2	2	7	7	9	8	6	10	12
-8	-2	4	7	7	6	5	8	11
-12	-7	3	6	5	3	2	5	9
- 14	-9	0	2	1	1	- 1	5	9
-10	-7	0	3	1	1	-2	3	6

DS-B10-1 (2300 lb)

8	3	0	4	8	13	12	13	16
11	5	1	3	9	14	12	9	11
13	6	4	6	10	18	14	9	8
5	-	-	0	5	11	8	2	0
4	0	-1	0	4	10	7	0	-2
4	0	-2	-]	3	7	6	0	-4
4	2	-1	1)	6	4	1	-1

DS-B10-2 (2495 1b)

12	7	5	7	7	9	13	21	33
23	14	10	12	11	13	17	38	33
16	9	5	6	6	Я	13	21	31
11	7	5	6	4	8	-	16	23
8	1	3	2	1	4	5	7	10
3	2)	2	2	4	4	3	5
2	2	1	2	2	3	2	1	4

DS-B9-1 (2165 1b)

-2	3	5	5	10	13	14	23
3	6	8	7	13	15	11	11
3	3	8	10	14	16	10	8
2	1	6	5	9	12	6	2
2	-1	3	2	6	6	0	-1
4	1	5	6	6	7	4	3
3	1	3	3	3	6	3	3
	3 2 2	3 6 3 3 2 1 2 -1	3 6 8 3 3 8 2 1 6 2 -1 3	3 6 8 7 3 3 8 10 2 1 6 5 2 -1 3 2	3 6 8 7 13 3 3 8 10 14 2 1 6 5 9 2 -1 3 2 6	3 6 8 7 13 15 3 3 8 10 14 16 2 1 6 5 9 12 2 -1 3 2 6 6 4 1 5 6 6 7	3 6 8 7 13 15 11 3 3 8 10 14 16 10 2 1 6 5 9 12 6 2 -1 3 2 6 6 0 4 1 5 6 6 7 4

DS-B9-2 (2410 1b)

-4	-2	-2	2	4	8	10	16	23
-1	-	2	4	7	10	10	16	29
-1	0	2	3	7	12	11	14	23
-1	-2	2	2	5	9	8	12	18
2	1	1	2	3	8	8	10	14
4	3	3	3	3	7	7	9	12
3	}	1	1	1	1_	3	4	4

DS-B11-2 $\left[0/90\right]_{2s}$ Straight Edges Unsupported

DS-B11-1 [0/90]_{2s}

 -				ļ	Ļ -	ļ	l	ļ., .	l	1	l	l	1	L	۱.	l	1	l	<u> </u>	<u> </u>	<u> </u>
			·	, .		•		·			.	T			<u> </u>	•	•		4	•	
Number	5	0	61	4-1	79	82	97	=======================================	131	152	178	198	194	123	717	ر ا	-80	-142	-193	-238	-270
Gage Nu	4	0	91	34	53	63	72	39	104	122	147	172	202	231	262	283	289	307	324	336	362
at	3	Ö	61	34	20	53	69	87	102	121	9†1	167	188	211	147	268	311	346	370	398	429
Strain	2	0	12	27	42	58	69	85	101	113	134	151	174	197	225	247	291	343	382	417	9417
Axial	_	Ú	12		,	,	,	,	'		'			,	ı		,	,			
End Short- ening x	10-4 in	0	0.4	8.0	12.2	17.0	21.0	26.0	29.3	33.9	38.0	43.0	48.0	54.0	60.09	0.99	73.5	82.0	89.0	95.5	102.5
Axial	16	01	100	200	300	004	200	009	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900

-95 -168 -213 -276 -325 954--35 -363 -411 Axial Strain at Gage Number -40 -420 -5 -103 -183 942--305 -373 -475 -531 -678 -572 -622 End Short-8.0 0.87 47.5 81.0 4.0 13.0 18.0 23.0 33.5 40.5 56.5 0.179 72.0 88.5 0.96 104.5 111.0 119.0 128.0 Axial Load 1b

Continued

DS-Bil-2 $\left[0/90\right]_{2s}$ Straight Edges Unsupported

DS-B11-1 [0/90]_{2s}

Axial	16	2000	2100	2200	2250	2300	2350	2400	2450	2460											
	4									• — –	.	+ -	4	٠.
mber	5	-300	-340	-380	-415	-452	-489	-507	-530	-537	-552	-561	-569								
Gage Number	-17	391	£14	484	194	764	520	533	553	556	572	579	585								
ı	3	094	48 7	210	532	265	584	595	209	603	419	219	219								
Strain at	2	495	531	268	109	649	189	701	725	729	739	755	99/								
Axial	-	•	,	,	,	•	ı	,	,		1	-	ı								
End Short-	10-4 in	109.0	115.2	122.0	128.0	136.0	142.5	146.5	151.0	152.0	154.5	157.0	159.5	buckled							
Axial	2	2000	2100	2200	2300	2400	2500	2550	2600	2625	2650	2675	2700	2715							

-588 -610 -490 -545 -657 -672 -713 -631 Axial Strain at Gage Number 356 374 392 401 407 420 421 433 807 383 428 478 500 441 451 194 589 683 708 736 754 176 532 629 -719 -828 -772 -924 -851 -877 -904 -956 End Short-ening x 10-4 in 134.5 142.0 152.0 156.0 0.191 165.5 170.0 175.5 buckled

DS-B10-1 $[0/90]_{2s}$ Straight Edges Unsupported

DS-B10-2 [0/90]_{2s}

mber	5	С	17	8	04	717	07	28	9	-25	-76	-127	-176	-221	-260	-291	-327	-356	-382	-409	-435
Gage Number	-3	0	14	31	84	65	85	104	127	151	184	213	245	275	306	337	367	395	424	454	483
at	3	С	15	29	94	62	79	97	117	137	158	178	200	221	240	261	282	301	323	345	365
Strain	2	С	14	30	48	49	82	104	128	152	188	219	252	283	. 315	347	378	409	443	476	505
Axial	1	C	=	24	35	45	53	57	34	-34	-124	-165	-205	-241	-282	-322	-361	-398	-438	-476	1510
End Short- ening x	13 ⁻⁴ in	0	4.2	7.5	13.0	18.0	24.0	31.0	37.0	43.5	51.0	58.0	65.6	73.0	80.0	86.5	93.0	99.0	105.0	112.0	118.0
Axial	<u>ا</u> ه	0	100	200	300	400	500	909	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900
mber	5	0	71	34	51	73	94	112	128	: 147	163	187	202	213	215	190	-50	-84	-128	-168	-206
Gage Number	4	0	14	31	148	67	71	85	99	. 112	126	147	164	180	197	207	232	263	293	326	357
at	~	0	œ	24	39	57	83	107	127	145	173	195	221	246	276	295	320	345	368	391	415
Strain	2	0	12	27	141	09	78	102	118	138	160	197	226	252	286	313	348	604	544	485	522
Axial	-	0	12	77	38	45	99	75	74	63	9	2	-24	-65	-113	-152	-193	-293	-341	-390	-441
End Short-	10 ⁻⁴ in	0	4.0	8.0	13.0	17.0	22.0	27.5	32.0	37.5	43.0	41.0	47.5	0.49	71.0	78.0	85.0	97.5	106.0	114.0	122.0
Axial	91	0_	001	200	300	400	500	009	700	800	900	1000	1100	1200	1 300	1400	1500	1600	1700	1800	1900

Continued

DS-B10-1 [0.90]_{2s} Straight Edges Unsupported

DS-B10-2 [0/90]_{2s}

Axial	<u>م</u>	2000	2050	2100	2150	2200	2250	2300	2350	2400	2450	2495								
.		-										·	 .	•	•	·		4	•	•
mber	2	-226	-244	-261	-282	-299	-317	-336												
age Nu	7	375	390	404	422	438	455	472												
n at G	3	426	439	644	460	024	480	489												
Axial Strain at Gage Number	2	544	561	577	596	615	631	949	pa											
Axial	-	-467	-492	-514	-538	-562	-585	-608	back led											
End Short- ening x	10 ⁻⁴ in	126.0	130.0	134.0	138.0	141.5	144.5	149.0	155.0											
Axial	16	1950	2000	2050	2100	2150	2200	2250	2300											

-518 -464 9/4--491 -505 -531 -547 -559 -581 -593 Axial Strain at Gage Number 528 946 575 590 608 623 643 629 512 448 386 409 418 428 438 457 474 397 467 : 615 600 633 645 499 679 553 572 585 537 -568 -618 -715 -636 -547 -585 -602 -671 -694 -657 End Short-ening x 10-4 in buck led 124.0 128.0 130.0 133.0 136.0 139.0 142.5 146.0 149.0 153.0

DS-B9-1 $\left[0/90\right]_{2s}$ Straight Edges Unsupported

 $\text{DS-B9-2} \left\{ 0/90 \right\}_{2s}$ Straight Edges Unsupported

лтрег	5	0	-18	37	54	17	85	95	96	64	-42	-85	-123	-176	-221	-257	-295	-334	-382	-430	-475
Gage Number	-	0	91	32	52	69	87	107	128	149	192	229	261	299	333	365	397	431	994	502	535
at	~	0	15	30	47	61	79	98	118	138	157	180	202	228	252	276	300	323	348	370	389
Strain	2	0	14	29	94	62	78	97	117	137	169	199	227	197	292	323	355	384	416	449	481
Axial	-	0	15	33	52	71	92	115	138	159	171	132	62	-30	-94	-151	-206	-251	-299	-345	-389
End Short- ening x	10-4 in	0	3.2	7.5	12.5	17.0	21.0	26.0	31.0	37.0	44.0	52.5	60.0	67.5	75.0	82.5	91.0	98.5	107.0	115.5	123.5
Axial	1 _b	0	100	200	300	400	500	009	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900
	5										$\neg \neg$										1
la qu		0	23	717	7.1	96	123	149	182	207	234	253	270	286	302	318	333	351	367	382	398
age Number	4	0	14 23	27 44	42 - 71	55 96	68 123	79 149	92 182	106 207	124 234	140 253	152 270	168 286	184 302	198 318	213 333	225 351	240 367	253 382	265 398
n at Gage Number																	308 213				
Strain at	7	0	14	27	42	55	68	79	92	901	124	140	152	168	184	198	213	225	240	253	265
at	3 4	0 0	14 14	29 27	48 42	64 55	84 68 1	107 79	131 92	151 106	177 124	200 140	220 152	244 168	268 184	288 198	308 213	321 225	342 240	361 253	378 265
ort- Axial Strain at	2 3 4	0 0 0	13 14 14	30 29 27	46 48 42	61 64 55	84 68 1	98 107 79	121 131 92	141 151 106	169 177 124	196 200 140	226 220 152	257 244 168	290 268 184	323 288 198	357 308 213	397 321 225	434 342 240	473 361 253	514 378 265

Continued

DS-B9-1 $\left[0/90\right]_{2s}$ Straight Edges Unsupported

 $0S-B9-2 \left[0/90\right]_{2s}$ Straight Edges Unsupported

1		-												 ·		 -	-	 - -	+
mber	5	-572	-529	-536	-539	-546	-561	-576	-587	-598	-619	-639							
age Nu	4	563	578	588	603	618	634	647	959	658	657	959							
Strain at Gage Number	3	409	421	435	451	464	475	485	491	490	479	477							
Strai	2	514	531	551	567	584	596	608	919	621	620	624							
Axial	1	-434	-457	-479	-497	-513	-525	-536	-545	-552	-564	-576							
End Short- eniņg x	10-4 in	131.5	135.5	141.0	145.0	148.5	152.0	155.0	156.5	158.0	160.0	162.2	buckled						
Axial	1b	2000	2050	2100	2150	2200	2250	2300	2325	2350	2375	2400	2410						
nber	5	413	419	424	428														
Strain at Gage Number	47	279	285	294	302														
n at G	3	398	407	419	432														
Strai	2	555	576	594	611														
Axial	-	-	•	-	-														
End Short- ening x	10-4 in	127.0	131.5	135.5	139.5	buckled													
Axial	<u>ф</u>	2000	2050	2100	2150	2165													

Straight Edges DS-A9-l [0/±45/90]_s Simply-Supported

Straight Edges DS-A9-2 [0/±45/90]_s Simply-Supported

1b 10 4 in 1 2 3 50 0 0 0 0 0 250 7.5 49 47 <th>3 4 0 0 47 49</th> <th></th> <th>Load</th> <th>ening x</th> <th></th> <th></th> <th></th> <th></th> <th>Gage Number</th>	3 4 0 0 47 49		Load	ening x					Gage Number
0 0 0 7.5 49 21.0 119 33.5 197 47.0 280 60.0 345 77.0 420 89.0 475 101.0 546 123.0 616 138.0 690 152.0 761 164.0 820 176.5 886		5	16	10-4 in	-	2	~	-17	5
7.5 49 21.0 119 33.5 197 47.0 280 60.0 345 77.0 420 89.0 475 101.0 546 123.0 616 138.0 690 152.0 761 164.0 820 176.5 886 189.0 961	_		50	С		0	0	0	1
21.0 119 33.5 197 47.0 280 60.0 345 77.0 420 89.0 475 101.0 546 123.0 616 138.0 690 152.0 761 164.0 820 176.5 886 189.0 961 203.0 1031	_		250	5.0		43	34	017	ł
33.5 197 47.0 280 60.0 345 77.0 420 89.0 475 101.0 546 123.0 690 138.0 690 164.0 820 176.5 886 189.0 961 203.0 1031	114 116		500	13.0		- 10	78	99	
47.0 280 60.0 345 77.0 420 89.0 475 101.0 546 123.0 616 138.0 690 152.0 761 164.0 820 176.5 886 189.0 961 203.0 1031	186 181		750	22.0		184	101	128	1
60.0 345 77.0 420 89.0 475 101.0 546 123.0 616 138.0 690 152.0 761 164.0 820 176.5 886 189.0 961 203.0 1031	275 236		1000	35.0		289	140	166	
89.0 420 89.0 475 101.0 546 123.0 616 138.0 690 152.0 761 164.0 820 176.5 886 189.0 961 203.0 1031	347 285		1250	48.0		393	169	204	}
89.0 475 101.0 546 123.0 616 138.0 690 152.0 761 164.0 820 176.5 886 189.0 961 203.0 1031	442 354		1500	0.49		502	206	253	
101.0 546 123.0 616 138.0 690 152.0 761 164.0 820 176.5 886 189.0 961 203.0 1031	509 401		1750	77.0	}	009	235	292	1
123.0 616 138.0 690 152.0 761 164.0 820 176.5 886 189.0 961 203.0 1031	989 456		2000	92.0		703	308	336	1
138.0 690 152.0 761 164.0 820 176.5 886 189.0 961 203.0 1031	659 508		2250	105.0		171	383	368	1
152.0 761 164.0 820 176.5 886 189.0 961 203.0 1031	735 572		2500	120.0		858	181	412	
164.0 820 176.5 886 189.0 961 203.0 1031	803 630		2750	137.0		938	567	451	
176.5 886 189.0 961 203.0 1031 1	855 672		3000	153.0	-	1018	649	490	
189.0 961 203.0	918 732		3250	170.0		1107	739	530	
203.0 1031	987 800		3500	188.0		1181	811	563	
	1050 866		3750	205.0		1263	168	608	- 1
3900 212.0 1080 1100	1100 920		4000	223.0		1336	796	655	
4000 217.0 1101 1108	1108 931		4250	240.0		1416 1047	047	723	
4100 223.0 1138 1139	1139 970		4500	257.0		1487	1115	794	
4250 230.0 1180 1165	1165 1000		4600	263.0		1513	1140	822	

Continued

Straight Edges DS-A9-1 [0/±45/90]_s Simply-Supported

End S ening	10-4	270.	275.	282	buck								
Axial	1 p	4700	4800	006†	4975								
				· ·				 	 	 			
nber	2												
age Nur	4	1033	1085										
at Gé	3	1195	1239										
Axial Strain at Gage Number	2	1218	1269										
Axial	_												
End Short-	10-4 in	248.0	245.5	buckled									
Axial	16	4400	4500	0094									

Axial Strain at Gage Number 888 928 860 -4 Straight Edges DS-A9-2 [0/±45/90]_s Simply-Supported 1170 1193 1222 \sim 1545 1569 1599 7 Shortkled x g * 0. 0 0.

Straight Edges DS-AlO-l [0/±45/90]_s Simply-Supported

Straight Edges DS-A10-2 [0/±45/90]_s Simply-Supported

Number	5																				
Gage Nur	4	0	4.1	75	118	168	226	277	334	398	435	467	492	536	567	919	658	704	728	766	783
at	۴.	0	34	63		158	212	259	310	367	419	477	547	605	673	738	798	857	873	905	913
Strain	2	С	94	97	158	221	288	334	363	422	483	54R	620	680	740	81.1	885	974	1018	1079	1123
Axial	-													-	-						
End Short- ening x	10-4 in	С	6.0	14.0	23.5	32.5	43.0	52.0	62.0	74.5	87.0	98.5	113.0	125.0	138.0	150.0	161.0	173.0	179.0	187.0	194.0
Axial Load	91	50	250	500	750	1000	1250	1500	1750	2000	2250	2500	2750	3000	3250	3500	3750	4000	4100	4250	4400
ēr	2																				
Gage Number	17	0	41	91	134	196	253	320	376	1158	558	619	665	716	780	836	892	930	959	970	1005
at	3	С	34	78	120	178	231	292	341	401	442	492	534	586	639	189	727	761	785	804	832
Strain	2	0	43	103	159	230	596	368	428	505	532	584	633	969	753	814	922	1016	1055	1113	1171
Axial	-																				
End Short- ening x	10-4 in	0	5.0	13.0	22.0	32.0	43.0	55.0	67.5	82.0	100.0	0.811	140.0	160.0	182.0	202.0	218.0	231.0	236.0	245.0	254.0
Axial		50	250	500	750	1000	1250	1500	750	2000	2250	2500	2750	3000	3250	3500	3750	4000	4100	4250	0044

Straight Edges $0S-A10-1 \left[0/\frac{1}{2}45/90\right]_{S}$ Simply-Supported Continued

Continued DS-A10-1	Continued DS-A10-1 [0/+45/90]		raight noly-Si	Straight Edges Simply-Supported	Q.		1-SQ	410-2	DS-A10-2 [0/+45/90]		Straight Edges Simply-Support	Straight Edges Simply-Supported	Q	
		S												
Axial Load	End Short- ening x	Axial	Strain	at	Gage Number	mber	Axial		End Short- ening x	Axial	Strain	at	Gage Nu	Number
q!	10-4	-	2	3	4	5	1p		10-4 in	~	2	3	77	5
4500	261.0		1211	835	1006		4500	0	200.0		1174	938	822	
4600	267.0		1248	648	1026		4600	0	205.5		1209	246	832	
00/4	272.0		1277	798	1040		4750	C	213.0		1271	978	876	
4800	276.0		1302	875	1058		4900	C	221.5		1340	989	909	
4900	282.0		1348	606	1093		2000	0	228.0		1389	997	936	
5000	289.0		1375	926	1113		5100	0	233.0		1420	1008	952	
5100	294.0		1414	953	1148		5250		240.0		1471	1036	992	
5200	300.0		1444	973	1177		2400		248.0		1526	1063	1033	
5300	305.5		1472	166	1202		5500	0	253.0		1561	1069		
5300	311.0		1502	1011	1230		5510		buckled				~	
5500	316.0		1526	1029	1254					-				
2600	321.0		1560	1056	1287				- -	-				
5700	326.0		1589	1080	1319						-			
5775	buckled									-				
								-						
							} }	-						

Straight Edges DS-All-2 [0/±45/90]_s Simply-Supported

Straight Edges $0.2-411-2 \left[0/\frac{1}{2}45/90\right]_{S}$ Simply-Supported

Continued

nber	5																				
Gage Number	7	1104	1136	1154	1167	1191	1208														
at	~	1314	1364	1395	1419	1450	1474							-							
Strain	2	929	978	1012	1038	1068	1094														
Axial	-																				
End Short- eniņg x	10 ⁻⁴ in	264.0	276.0	284.0	291.0	297.0	302.0	buckled													
Axial Load	16	4,500	4700	4800	0064	5000	5100	5160													
	•											_	-								
Jer	5													-							
Gage Number	†	С	77	3	-7	323	399	458	536	12		-		-			3				
Ga				153	245	3	~	4	7	602	673	734	797	859	908	930	953	983	1002	1028	1048
at	3	0	100	180 15	238 24	313 32	409 39	484	582 5	199	740 67	810 734	885 797	960 859	1026 908	1056 930	1090 95	1134 983	1163 1002	1198 1028	1234 1048
Strain at	2 3	0 0		_											_				-		├
at			100	180	238	313	409	484	582	199	740	810	885	096	1026	1056	1090	1134	1163	1198	1234
Strain at	1 2		100	180	238	313	409	484	582	199	740	810	885	096	1026	1056	1090	1134	1163	1198	1234

APPENDIX D USER'S MANUAL FOR COMPUTER PROGRAM CLAPP

CLAPP USERS MANUAL

1.	TITLE	CARD	(18A4)

Columns 1-72

Problem description

2. CONTROL CARD (815)

Columns 1-5

IRUN - Takes integer values 1, 2, 3, ...,
according as the completion of an
analysis requires 1, 2, 3, ...,
submissions of the program.
IRUN = 1 for the first submission,
IRUN = 2 for the second submission,
and so forth. Valid for nonlinear
analysis only (IBIF = 0). IRUN
#1for any analysis that is a continuation of a previous application
of CLAPP.

6-10 $IEX = \begin{cases} 0 \text{ perfect panel or plate} \\ 1 \text{ imperfect panel or plate} \end{cases}$

16-20 $NFLAT = \begin{cases} 0 & \text{flat plate analysis} \\ 1 & \text{curved panel analysis} \end{cases}$

I Automatic generation of x and y coordinates with uniform, but possibly different, spacings for the x and y directions.

0 Initial imperfections are represented by a mathematical expression.

I initial imperfections are represented by a two-dimensional Lagrange interpolating function.

26-30

O When the load-deflection curve is generated in segments the tape NTAPE contains the information required by the program to continue the calculations beginning with the last load-level for which a converged solution was obtained. To continue calculations set INDEX = 2, 3, ... and NUSTRT = 0.

31-35 NUSTRT =

1 It may happen that it is desirable to adjust the loading
sequence to begin calculations
for a second segment of the loaddeflection curve. To do this set
INDEX = 2, 3, ..., NUSTRT = 1 and
reset the input data for PZSTRT,
PXSTRT, PYSTRT, AND ZINCR, XINCR,
YINCR.

36-40 NCURVE = 0

3. CONVERGENCE CRITERION CARD (F10.0, 215)

Columns 1-10 EPSI - Convergence criterion that determines acceptable displacements at a given load-level (order of 10⁻⁴).

11-15

ITMAX - Program terminates if convergence at any load-level has not occurred within ITMAX iterations.

16-20 LEMAX - Program terminates after processing LEMAX load-levels as collapse or bifurcation has not occurred.

Resubmit program with IRUN = 2.

4. GRID PARAMETERS CARD (815)

Columns 1-5

NSCHM =

numbered consecutively along a cross-sectional circle

0 Finite-difference grid points

numbered consecutively along a generator

1 Finite-difference grid points

6-10	ICTOUT \Rightarrow $\begin{cases} 0 \text{ Panel has no cutout} \\ 1 \text{ Panel has a cutout} \end{cases}$
11-15	NCOLS - Number of columns of grid points.
16-20	NROWS - Number of rows of grid points.
21-25	IROWI - Number of the row in which the side of the cutout nearest the first row of grid points lies.
26-30	IROW2 - Number of the row in which the side of the cutout furtherest from the first row of grid points lies.
31-35	ICOLI - Number of the column in which the side of the cutout nearest the first column of grid points lies.
36-40	ICOL2 - Number of the column in which the side of the cutout furtherest from the first column of grid points lies.

NOTE: Node numbering must originate at the upper left-hand corner of the finite-difference grid.

5. PANEL DIMENSIONS CARD (3F10.0)

Columns 1-10	XDIM - Length of a panel parallel to a generator.
11-20	YDIM - Length of a panel along a cross sectional circle (not the projection).
21-30	R - Panel radius of curvature. (Any number will suffice for a plate.

6. BOUNDARY CONDITION IDENTIFIER CARD (815)

BOUNDARY CONDITION	IDENTIFIER C	74KD (015)	
Columns 1-5	NCASE1	1) ""
6-10	NCASE2	2	21111
11-15	NCASE3		7777
16-20	NCASE4	= { 3	466
21-25	NCASE5		
26-30	NCASE6	4	888
31-35	NCASE7		l
36-40	NCASE8	5	

NCASE_identifies a boundary of the panel as indicated in the accompanying figure. An integer from 1 to 5 is assigned to each NCASE_according as the desired support condition along the edge identified by NCASE_ is one of those shown above.

7. RIGID BODY CONDITION CARD (415)

8. INITIAL-LOAD CARD (4F15.0,15)

Columns 1-15	PZSTRT - Initial-load normal to the panel surface. (Positive away from the center of curvature.)
16-30	PXSTRT - Initial-load parallel to a genera- tor of the panel. (Positive in the direction of increasing grid point numbers.)
31-45	PYSTRT - Initial-load tangent to a cross- sectional circle. (Positive in the direction of increasing grid point numbers.

46-60

XDISPO - Prescribed initial axial enddisplacement. Negative for compression.

61-65

O Prescribed loads 1 Prescribed end-displacements

POSITIVE DIRECTIONS FOR PXSTRT AND PYSTRT FOR NSCHM=0

POSITIVE DIRECTIONS FOR PXSTRT AND PYSTRT FOR NSCHM≈1.

LOAD IDENTIFICATION CARD (415)

Columns 1-5

LCASE =

1 Concentrated load at grid point number LNODE.

2 Line-load along row number LROW of the finite-difference grid.

3 Line-load along column number LCOL of the finite-difference grid.

4 Uniform distributed load over the entire surface.

6-10

LNODE - Number of the finite-difference grid-point at which a concentrated load is applied.

11-15

LROW - Number of the row of finitedifference grid points along which

a line-load is applied.

16-20

LCOL - Number of the column of finitedifference grid points along which a line-load is applied.

10. LOAD INCREMENT CARD (3F10.0)

Columns 1-10	ZINCR - Load increment normal to the panel surface.
11-20	XINCR - Load increment parallel to a generator of the panel.
21-30	YINCR - Load increment tangent to a cross-

Positive directions for load-increments are the same as those for the initial

If IEX \neq 1 cards 11, 12, and 13 are not required.

ļ

η.	INITIAL IMPERFECTION CARD	(5F10.0,15) Required only if LGRNG = 0 and IEX = 1
	Columns 1-10	WO - Amplitude of initial geometric imperfection.
	11-20	<pre>CONS1 - Wave number of the imperfection associated with the direction of a generator of a panel (π/half length of panel)</pre>
	21-30	CONS2 = O Clamped curved edges and unsup-
	27 30	CONS2 = O Clamped curved edges and unsupported straight edges. b Clamped curved edges and simply-supported straight edges. b is one half of the circumferential length of a panel
	31-40	X0 - x-coordinate of geometric center of panel measured from lower left hand corner
	41-50	Y0 - y-coordinator of geometric center of the panel measured from the lower left hand corner
	51-60	Initial imperfection has the form $W0(x,y) - W1 \div (1 + \cos \pi \xi/a) (1 - (\eta/b)^2)$ (Clamped at curved edges - simply-supported along the straight edges) IMPFORM = Initial imperfection has the form $W0(x) = W1 \div (1 + \cos \pi \xi/a)$
		Initial imperfection has the form $WO(x) = WI*(1+\cos \pi\xi/a)$ (Clamped along the curved edges free at the straight edges)

12. IMPERFECTION-GRID PARAMETER CARD (215) Required only if LGRNG = 1 and IEX = 1

Columns 1-5

MX = Number of grid points along a generator for which discrete values of initial imperfection are known. Spacing of these points is required to be uniform.

6-10

MY = Number of grid points along a cross sectional circle for which discrete values of initial imperfection are known. Spacing of these points is required to be uniform.

MX or MY can not exceed 10 for the present dimensions of the program.

13. IMPERFECTION DATA CARD (10F8.0) Required only if LGRNG = 1 and IEX = 1

A single card contains the known discrete value of initial imperfection for every grid point in a row of the imperfection-grid. Thus, MY cards are required: one for each row of the imperfection-grid. A row is considered to be parallel to a generator of the panel. Imperfection values are positive away from the center of curvature of the panel.

Imperfection-grid size cannot exceed 10 grid points in either direction unless internal dimensions are modified.

Imperfection-grid is parallel to finite-difference grid with origin as shown in the figure.

14. NODAL COORDINATE CARD (2F10.0) Required only if NAUT = 0

Columns 1-10

x-coordinate of a finite-difference grid point

11-20

y-coordinate of a finite-difference grid point

These cards are required only when NAUTO = 0; i.e., whenever a variable finite-difference grid is required.

15. STIFFENER CARD (415)

Columns 1-5	$NSTFR = \begin{cases} 0 & \text{no stiffeners} \\ 1 & \text{stiffeners included} \end{cases}$
6-10	$NSTYP = \begin{cases} 1 & \text{through } 8 - \text{cross section type} \\ \text{(see below)} \end{cases}$
11-15	$NSLOC = \begin{cases} 0 & located on outside of panel (+) \\ l & located on inside of panel \end{cases}$
16-20	ISSPC = $\begin{cases} 0 & \text{spaced on all grid lines} \\ 1 & \text{variable spacing} \end{cases}$

16. STIFFENER CROSS SECTION INPUT CARDS only if NSTFR = 1

The number and required input of these cards depend on the choice of stiffener cross section type (NSTYP) above.

NSTYP = 1	(2F10.0)	(2F10.0)	<u>rectangular plate</u>
-----------	----------	----------	--------------------------

(1)	Columns 1-10	HGHT = h
	11-20	WDTH = b

(2) Columns 1-10 SEMOD = elastic modulus
$$11-20$$
 SGMOD = shear modulus

$\frac{\text{NSTYP} = 2}{\text{NSTYP}} = \frac{2}{\text{MSTYP}} = \frac{2}{\text{MST$

NSTYP = 3 (5F10.0) (2F10.0) non-symmetric | beam

(1)	Columns 1-10	HGHT =	$h (total - t_f)$
	11-20	TWDTH =	
	21-30	BWDTH =	b ₂
	31-40	FLTHK =	tf
	41-50	WTHK =	tw

NSTYP = 4 (4F10.0) (2F10.0) inverted T

(1)	Columns 1-10	HGHT	=	h	(total	-	$t_c/2)$
	11-20	WDTH					1
	21-30	FLTHK	-	t,	F		
	31-40	WTHK	=	t,	v		

NSTYP = 5 (4F10.0) (2F10.0) T beam

NSTYP = 6 (4F10.0) (2F10.0) C beam

(2) Columns 1-10 SEMOD = elastic modulus
$$11-20$$
 SGMOD = shear modulus

NSTYP = 7 (4F10.0) (2F10.0) L beam

(1)	Columns 1-10	HGHT	=	h	(total	-	t _e /2)
	11-20	WDTH					'
	21-30	FLTHK	=	t f	:		
	31-40	WTHK	=	t,	,		

NSTYP = 8 (4F10.0) (5F10.0) (2F10.0) <u>user's choice</u>

(1) Columns 1-10	SAREA = cross section area
11-20	CE! = 1st principal moment of inertia, $I_{\mathfrak{F}\mathfrak{F}}$
21-30	ETA1 = 2nd principal moment of inertia, $I_{\eta\eta}$
31-40	ALPHA = angle from horizontal to ξ -direction,
	in radians

(2) Columns 1-10

CED = distance to contact point, 5-direction

ETAD = distance to contact point,
$$\eta$$
-direction

21-30

CES = distance to shear center, η -direction

ETAS = distance to shear center, η -direction

41-50

CONSTJ = twisting constant, J

(3) Columns 1-10 SEMOD - elastic modulus 11-20 SGMOD - shear modulus

Refer to figure on the next page for an example of these quantities for the user's choice stiffener, type 8.

NSTYP = 9 (4F10.0,15)(5F10.0) QUASI-ISOTROPIC HAT SECTION

(1) Columns 1 - 10 HGHT = h

(2) Columns

11 - 20 WDTH = b

FLNGW = b 21 - 30

31 - 40 STHK = t

41 - 45 NLAYER = No. of layers. 1 - 10 Ell = elastic

modulus parallel to the fibers of a lamina.

11 - 20 E22 = elastic modulus perpendicular to the fibers of a lamina.

21 - 30 G12 = lamina shear modulus

31 - 40 PNU12 = Poisson ratio associated with stress along fiber direction.

41 - 50 PNU21 = Poisson ratio associated with stress perpendicular to fiber direction.

This stiffener cross section type accomodates fiber-reinforced stiffeners where the fiber directions are alternately zero and 90 degrees. Midplane symmetry is assumed.

Note that the stiffeners when located on the inside of the panel are inverted as depicted below.

17. NUMBER OF STIFFENERS (15)

needed only if ISSPC = 1, NSTFR = 1

Columns 1-5

NST = number of stiffeners if they are not on each grid line

18. VARIABLE SPACING STIFFENER CARDS (15) only if ISSPC = 1, NSTFR = 1

Columns 1-5

NSROW = row number that locates stiffener
 (if NSCHM = 0)
 column number that locates stiffener
 (if NSCHM = 1)

One card is required for each stiffener, so there will be the same number of cards as NST above. The row (or column) numbers must be in increasing order, i.e., 1,4,7,10, etc. not 1,7,4,10.

19. NUMBER OF LAYERS CARD (15)

Columns 1-5

KN - Number of layers in the laminate.

20. LAYER LOCATION CARDS (F10.0)

Columns 1-10

Distance (inches) between a layer surface nearest the center of curvature and the laminate reference surface. First layer is considered to be the one nearest the center of curvature. Distances measured toward the center of curvature are negative.

A card for the most remote surface of the last layer is required. Thus, there is required KN+1 LAYER LOCATION CARDS.

21. MATERIAL PROPERTIES CARDS (6F10.0) One card is required for each layer.

Columns 1-10	Modulus of elasticity parallel to the fibers of a given layer (lb/in ²)
11-20	Modulus of elasticity perpendicular to the fibers of a given layer (lb/in?)
21-30	Poisson ratio associated with strain parallel to the fiber axis due to a stress perpendicular to the fiber axis
31-40	Poisson ratio associated with strain perpendicular to the fiber axis due to a stress parallel to the fiber axis.
41-50	Shearing modulus of elasticity ($1b/in^2$)
51-60	Angle between the fiber direction and a generator of the panel. This angle is positive whenever the fiber direction is situated in a clockwise orientation relative to the positive x-direction.

EXAMPLE THAT DEFINES INPUT QUANTITIES FOR USERS CHOICE STIFFENER

C - CENTROID

S - SHEAR CENTER

D - CONTACT POINT

BETWEEN PANEL

AND STIFFENER

AREA =
$$(h - \frac{t}{2})t_{xx} + bt_{t}$$

$$I_{\xi\xi} = \frac{I_{\kappa\kappa} + I_{yy}}{2} + \sqrt{\frac{I_{\kappa\kappa} - I_{yy}}{2}^{2} + I_{\kappa y}^{2}}$$

$$I_{\eta\eta} = \frac{I_{\kappa\kappa} + I_{\eta\eta}}{2} - \sqrt{\frac{I_{\kappa\kappa} - I_{\eta\eta}}{2}^{2} + I_{\kappa y}^{2}}$$

$$\kappa = \frac{1}{2} ARC TAN \left(\frac{2I_{\kappa\eta}}{I_{\kappa\kappa} - I_{\eta\eta}}\right)$$

CED = ξ_{D} HERE $-(\tilde{\eta} + \frac{1}{2}t_{t}) Am \kappa$

ETAD = η_{D} $-(\tilde{\eta} + \frac{1}{2}t_{t}) Am \kappa$

CES = ξ_{S} $-(\tilde{\eta} am \kappa + \tilde{\kappa} cos \kappa)$

ETAS = η_{S} $-(\tilde{\eta} cos \kappa - \tilde{\kappa} am \kappa)$

CONSTJ = $J = \sum_{i=1}^{N} \frac{1}{2} h_i t_i^3 + \frac{1}{2} \frac{h_i t_i^3}{3} + \frac{1}{2} \frac{h_i t_i^3}{3}$

