### MTH1102D Calcul II

Chapitre 7, section 4: Les intégrales triples en coordonnées sphériques

Définition et formule de calcul

### Introduction

- Intégrale triple en coordonnées sphériques.
- Jacobien en coordonnées sphériques.

### On considère une région

$$E = \{ (\rho, \theta, \pi) \mid \rho_1 \le \rho \le \rho_2, \theta_1 \le \theta \le \theta_2, \phi_1 \le \phi \le \phi_2 \}$$



- On subdivise E en sous-régions de même forme.
- On choisit le point milieu de chaque sous-région comme point d'évaluation.
- Le volume d'un « coin sphérique » est donné par la formule  $\Delta V = (\rho^*)^2 \sin \phi^* \Delta \rho \Delta \theta \Delta \phi.$
- Avec ces données on forme une triple somme de Riemann puis on prend la limite.

#### Théorème

Soit E une région de l'espace décrite en coordonnées sphériques par

$$E = \{ (\rho, \theta, \phi) \mid \rho_1 \le \rho \le \rho_2, \theta_1 \le \theta \le \theta_2, \phi_1 \le \phi \le \phi_2 \}$$

et f une fonction intégrable sur E. Alors

$$\iiint_{E} f(x, y, z) dV =$$

$$\int_{\theta_{1}}^{\phi_{2}} \int_{\theta_{2}}^{\theta_{2}} \int_{\alpha_{1}}^{\rho_{2}} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d\rho d\theta d\phi$$

#### Théorème

Soit E une région de l'espace décrite en coordonnées sphériques par

$$E = \{ (\rho, \theta, \phi) \mid \rho_1 \le \rho \le \rho_2, \theta_1 \le \theta \le \theta_2, \phi_1 \le \phi \le \phi_2 \}$$

et f une fonction intégrable sur E. Alors

$$\iiint_{E} f(x, y, z) dV =$$

$$\int_{\phi_{1}}^{\phi_{2}} \int_{\theta_{1}}^{\theta_{2}} \int_{\rho_{1}}^{\rho_{2}} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d\rho d\theta d\phi$$

Le jacobien provient du calcul du volume d'un petit « coin sphérique ».

#### Théorème

Soit E une région de l'espace décrite en coordonnées sphériques par

$$E = \{(\rho, \theta, \phi) \mid u_1(\theta, \phi) \leq \rho \leq u_2(\theta, \phi), \theta_1 \leq \theta \leq \theta_2, \phi_1 \leq \phi \leq \phi_2\},\$$

et f une fonction intégrable sur E. Alors

$$\iiint_{E} f(x, y, z) dV =$$

$$\int_{\phi_{1}}^{\phi_{2}} \int_{\theta_{1}}^{\theta_{2}} \int_{u_{1}(\theta, \phi)}^{u_{2}(\theta, \phi)} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d\rho d\theta d\phi$$

### Résumé

- Intégrale triple en coordonnées sphériques sur un « coin sphérique ».
- Jacobien en coordonnées sphériques.
- Intégrale triple en coordonnées sphériques sur un domaine général.

### MTH1102D Calcul II

Chapitre 7, section 4: Les intégrales triples en coordonnées sphériques

Exemple 1: intégrale en coordonnées sphériques sur un domaine général

Calculer  $\iiint_E z^2 dV$ , où E est la région située au-dessus du cône  $z = \sqrt{3x^2 + 3y^2}$  et à l'intérieur de la sphère  $x^2 + y^2 + (z - 1)^2 = 1$ .



• Côtés du cône forment un angle de  $\alpha = \arctan(y/z) = \arctan(1/\sqrt{3}) = \pi/6$  avec l'axe des z positifs



Calculer  $\iiint_E z^2 dV$ , où E est la région située au-dessus du cône  $z = \sqrt{3x^2 + 3y^2}$  et à l'intérieur de la sphère  $x^2 + y^2 + (z - 1)^2 = 1$ .



- Équation sphérique du cône :  $\phi=\pi/6$
- Équation sphérique de la sphère :  $\rho = 2\cos\phi$

Calculer  $\iiint_E z^2 dV$ , où E est la région située au-dessus du cône  $z = \sqrt{3x^2 + 3y^2}$  et à l'intérieur de la sphère  $x^2 + y^2 + (z - 1)^2 = 1$ .



- Équation sphérique du cône :  $\phi=\pi/6$
- Équation sphérique de la sphère :  $\rho=2\cos\phi$

$$E = \{(\rho, \theta, \phi) \mid 0 \le \rho \le 2\cos\phi, 0 \le \theta \le 2\pi, 0 \le \phi \le \pi/6\}$$

Calculer  $\iiint_E z^2 dV$ , où E est la région située au-dessus du cône  $z = \sqrt{3x^2 + 3y^2}$  et à l'intérieur de la sphère  $x^2 + y^2 + (z - 1)^2 = 1$ .

$$\iiint_{E} z^{2} dV = \int_{0}^{2\pi} \int_{0}^{\pi/6} \int_{0}^{2\cos\phi} (\rho^{2} \cos^{2}\phi)(\rho^{2} \sin\phi) d\rho d\phi d\theta 
= \int_{0}^{2\pi} \int_{0}^{\pi/6} \left[ \frac{\rho^{5}}{5} \right]_{\rho=0}^{\rho=2\cos\phi} \cos^{2}\phi \sin\phi d\phi d\theta 
= \frac{32}{5} \int_{0}^{2\pi} \int_{0}^{\pi/6} \cos^{7}\phi \sin\phi d\phi d\theta \quad (u = \cos\phi, du = -\sin\phi d\phi) 
= \frac{35}{64} \int_{0}^{2\pi} d\theta = \frac{35}{32}\pi.$$

### Résumé

- Décrire une région de l'espace en coordonnées sphériques.
- Calculer une intégrale en coordonnées sphériques sur un domaine général.

### MTH1102D Calcul II

Chapitre 7, section 4: Les intégrales triples en coordonnées sphériques

Exemple 2: choix du meilleur système de coordonnées

Calculer  $J = \iiint_E (x^2 + y^2) dV$ , où E est la région située au-dessus du plan z = 1 et à l'intérieur de la sphère  $x^2 + y^2 + z^2 = 4$ .



#### Intersection:

$$\begin{cases} x^2 + y^2 + z^2 = 4 \\ z = 1 \end{cases}$$

$$\Rightarrow x^2 + y^2 + 1 = 4$$

$$\Rightarrow x^2 + y^2 = 3$$

Rayon du cercle est racine de 3

Calculer  $J = \iiint_E (x^2 + y^2) dV$ , où E est la région située au-dessus du plan z = 1 et à l'intérieur de la sphère  $x^2 + y^2 + z^2 = 4$ .





$$D: x^2 + y^2 \le 3$$

Calculer  $J = \iiint_E (x^2 + y^2) dV$ , où E est la région située au-dessus du plan z = 1 et à l'intérieur de la sphère  $x^2 + y^2 + z^2 = 4$ .

En coordonnées cartésiennes :

$$E = \left\{ (x, y, z) \mid -\sqrt{3} \le x \le \sqrt{3}, -\sqrt{3 - x^2} \le y \le \sqrt{3 - x^2}, \\ 1 \le z \le \sqrt{4 - x^2 - y^2} \right\}$$

et

$$J = \int_{-\sqrt{3}}^{\sqrt{3}} \int_{-\sqrt{3-x^2}}^{\sqrt{3-x^2}} \int_{1}^{\sqrt{4-x^2-y^2}} (x^2 + y^2) \, dz \, dy \, dx.$$

Calculer  $J = \iiint_E (x^2 + y^2) dV$ , où E est la région située au-dessus du plan z = 1 et à l'intérieur de la sphère  $x^2 + y^2 + z^2 = 4$ .

En coordonnées cylindriques :

• Sphère : 
$$x^2 + y^2 + z^2 = 4 \Rightarrow r^2 + z^2 = 4 \Rightarrow z = \sqrt{4 - r^2} \ (z \ge 0)$$

• Plan : z = 1

$$E = \left\{ (r, \theta, z) \mid 0 \le r \le \sqrt{3}, 0 \le \theta \le 2\pi, 1 \le z \le \sqrt{4 - r^2} \right\}$$
$$x^2 + y^2 = r^2$$

et

$$J = \int_{0}^{2\pi} \int_{0}^{\sqrt{3}} \int_{1}^{\sqrt{4-r^2}} (r^2) r \, dz dr d\theta.$$

Calculer  $J = \iiint_E (x^2 + y^2) dV$ , où E est la région située au-dessus du plan z = 1 et à l'intérieur de la sphère  $x^2 + y^2 + z^2 = 4$ .

### En coordonnées sphériques :

- Sphère :  $\rho = 2$
- Plan :  $z = 1 \Rightarrow \rho \cos \phi = 1 \Rightarrow \rho = 1/\cos \phi = \sec \phi$

La plus petite distance de l'origine jusqu'à la région E pour trouver rho



 $\sec \phi \le \rho \le 2$ 

La plus grande valeur est le rayon de la sphère, donc 2

Calculer  $J = \iiint_E (x^2 + y^2) dV$ , où E est la région située au-dessus du plan z = 1 et à l'intérieur de la sphère  $x^2 + y^2 + z^2 = 4$ .

### En coordonnées sphériques :

- Sphère :  $\rho = 2$
- Plan :  $z = 1 \Rightarrow \rho \cos \phi = 1 \Rightarrow \rho = 1/\cos \phi = \sec \phi$
- Bornes sur  $\phi$  :  $\alpha = \arctan(\sqrt{3}/1) = \pi/3$  car on consière les z positifs



Calculer  $J = \iiint_E (x^2 + y^2) dV$ , où E est la région située au-dessus du plan z = 1 et à l'intérieur de la sphère  $x^2 + y^2 + z^2 = 4$ .

En coordonnées sphériques :

$$E = \{ (\rho, \theta, \phi) \mid \sec \phi \le \rho \le 2, 0 \le \theta \le 2\pi, 0 \le \phi \le \pi/3 \}.$$
$$x^2 + y^2 = \rho^2 \sin^2 \phi \cos^2 \theta + \rho^2 \sin^2 \phi \sin^2 \theta = \rho^2 \sin^2 \phi$$

et

$$J = \int_0^{2\pi} \int_0^{\pi/3} \int_{\sec \phi}^2 (\rho^2 \sin^2 \phi) \rho^2 \sin \phi \, d\rho d\phi d\theta$$

Calculer  $J = \iiint_E (x^2 + y^2) dV$ , où E est la région située au-dessus du plan z = 1 et à l'intérieur de la sphère  $x^2 + y^2 + z^2 = 4$ .

Pas bon choix en coordonnées cartésiennes

(1) 
$$J = \int_{-\sqrt{3}}^{\sqrt{3}} \int_{-\sqrt{3-x^2}}^{\sqrt{3-x^2}} \int_{1}^{\sqrt{4-x^2-y^2}} (x^2+y^2) dz dy dx.$$

Coordonnées cylindriques

(2) 
$$J = \int_0^{2\pi} \int_0^{\sqrt{3}} \int_1^{\sqrt{4-r^2}} r^3 dz dr d\theta$$
.

Coordonnées sphèriques

(3) 
$$J = \int_0^{2\pi} \int_0^{\pi/3} \int_{\sec \phi}^2 \rho^4 \sin^3 \phi \, d\rho \, d\phi \, d\theta$$

Calculer  $J = \iiint_E (x^2 + y^2) dV$ , où E est la région située au-dessus du plan z = 1 et à l'intérieur de la sphère  $x^2 + y^2 + z^2 = 4$ .

- Cartésien : difficile
- Cylindrique : après intégration p/r à z,

$$r^3 \sqrt{4 - r^2} = r^2 \cdot r \sqrt{4 - r^2}$$

et changement de variable  $u = 4 - r^2$ .

$$du = 2r$$

Calculer  $J = \iiint_E (x^2 + y^2) dV$ , où E est la région située au-dessus du plan z = 1 et à l'intérieur de la sphère  $x^2 + y^2 + z^2 = 4$ .

**3** Sphérique : après intégration p/r à  $\rho$ ,

$$\sin^3 \phi = (1 - \cos^2 \phi) \sin \phi$$

puis changement de variable  $u = \cos \phi$ 

$$\sec^5\phi\sin^3\phi = \left(\sec^5\phi - \frac{\cos^2\phi}{\cos^5\phi}\right)\sin\phi = \left(\frac{1}{\cos^5\phi} - \frac{1}{\cos^3\phi}\right)\sin\phi$$

puis changement de variable. u = cos

Finalement, 
$$J = \frac{53}{30}\pi$$
.

À faire le calcul!

#### Résumé

- Décrire une région de l'espace dans les trois systèmes de coordonnées.
- Choisir le système de coordonnées le plus approprié.

### MTH1102D Calcul II

Chapitre 7, section 5:

Changements de variables dans les intégrales multiples

### Introduction

- Changement de variable pour une intégrale double
- Changement de variable pour une intégrale triple

#### Définition

#### **Définition**

Un changement de variables est une transformation  $T: \mathbb{R}^n \to \mathbb{R}^n$  permettant de passer d'un système de coordonnées à un autre dans  $\mathbb{R}^n$ .

• Dans  $\mathbb{R}^2$ , on a T(u, v) = (x, y), où x = g(u, v) et y = h(u, v), et où g, h possèdent des dérivées premières continues.

#### Définition

- Dans  $\mathbb{R}^2$ , on a T(u, v) = (x, y), où x = g(u, v) et y = h(u, v), et où g, h possèdent des dérivées premières continues.
  - La transformation T permet de passer d'un domaine R en coordonnées (x,y) à un domaine  $S:=T^{-1}(R)$  en coordonnées (u,v).

#### Définition

- Dans R², on a T(u, v) = (x, y), où x = g(u, v) et y = h(u, v), et où g, h possèdent des dérivées premières continues.
   La transformation T permet de passer d'un domaine R en
  - La transformation T permet de passer d'un domaine R en coordonnées (x,y) à un domaine  $S:=T^{-1}(R)$  en coordonnées (u,v).
- Dans  $\mathbb{R}^3$ , on a T(u, v, w) = (x, y, z), où x = g(u, v, w), y = h(u, v, w) et z = k(u, v, w), et où g, h, k possèdent des dérivées premières continues.

#### **Définition**

- Dans  $\mathbb{R}^2$ , on a T(u,v)=(x,y), où x=g(u,v) et y=h(u,v), et où g,h possèdent des dérivées premières continues.
  - La transformation T permet de passer d'un domaine R en coordonnées (x,y) à un domaine  $S:=T^{-1}(R)$  en coordonnées (u,v).
- Dans  $\mathbb{R}^3$ , on a T(u, v, w) = (x, y, z), où x = g(u, v, w), y = h(u, v, w) et z = k(u, v, w), et où g, h, k possèdent des dérivées premières continues.
  - La transformation T permet de passer d'un domaine R en coordonnées (x,y,z) à un domaine  $S:=T^{-1}(R)$  en coordonnées (u,v,w).



Le changement de variables défini par T transforme un domaine D dans le plan des (x, y) en un domaine  $S = T^{-1}(R)$  dans le plan des (u, v).

• Un changement de variable approprié permet de simplifier l'évaluation d'une intégrale.

- Un changement de variable approprié permet de simplifier l'évaluation d'une intégrale.
- Le choix d'un changement de variable en plusieurs variables repose en grande partie sur la forme du domaine d'intégration.

passer d'un domaine compliqué à un domaine plus simple

- Un changement de variable approprié permet de simplifier l'évaluation d'une intégrale.
- Le choix d'un changement de variable en plusieurs variables repose en grande partie sur la forme du domaine d'intégration.
- Le passage aux coordonnées polaires, cylindriques ou sphériques sont des exemples de changements de variables pour les intégrales multiples.

# Changement de variable général (4)

#### **Notation**

En pratique, on évite d'introduire des symboles supplémentaires g, h, k en écrivant le changement de variable

$$x = x(u, v), \quad y = y(u, v)$$

ou

$$x = x(u, v, w), y = y(u, v, w), z = z(u, v, w)$$

pour indiquer que les anciennes variables x, y, z peuvent être exprimées en fonctions des nouvelles variables u, v, w.

### Le jacobien d'une transformation

• Le *jacobien* d'une transformation est la généralisation à plusieurs variables du terme du = g'(x) dx associé au changement de variable u = g(x) dans une intégrale simple.

### Le jacobien d'une transformation

- Le jacobien d'une transformation est la généralisation à plusieurs variables du terme du = g'(x) dx associé au changement de variable u = g(x) dans une intégrale simple.
- Dans une intégrale multiple, le jacobien tient compte des différentes dérivées partielles des fonctions qui définissent le changement de variable.

### Le jacobien d'une transformation

- Le jacobien d'une transformation est la généralisation à plusieurs variables du terme du = g'(x) dx associé au changement de variable u = g(x) dans une intégrale simple.
- Dans une intégrale multiple, le jacobien tient compte des différentes dérivées partielles des fonctions qui définissent le changement de variable.
- Pour les détails sur l'origine du jacobien, voir la section 7.5 du livre.

## Changement de variables dans une intégrale double

#### **Définition**

Le jacobien de la transformation x = x(u, v) et y = y(u, v) en deux dimensions est le déterminant

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}.$$

# Changement de variables dans une intégrale double

#### **Définition**

Le jacobien de la transformation x = x(u, v) et y = y(u, v) en deux dimensions est le déterminant

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}.$$

#### Théorème

Soit  $T: \mathbb{R}^2 \to \mathbb{R}^2$  un changement de variables donné par x = x(u, v) et y = y(u, v). Alors

$$\iint\limits_R f(x,y) dA = \iint\limits_S f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv$$

où R = T(S).

### Changement de variables dans une intégrale triple

#### Définition

Le jacobien de la transformation x = x(u, v, w), y = y(u, v, w), z = z(u, v, w) en trois dimensions est le déterminant

$$\frac{\partial(x,y,z)}{\partial(u,v,w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}.$$

## Changement de variables dans une intégrale triple

#### Définition

Le jacobien de la transformation x = x(u, v, w), y = y(u, v, w), z = z(u, v, w) en trois dimensions est le déterminant

$$\frac{\partial(x,y,z)}{\partial(u,v,w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}.$$

#### Théorème

Soit  $T: \mathbb{R}^3 \to \mathbb{R}^3$  un changement de variables donné par x = x(u, v, w), y = y(u, v, w), z = z(u, v, w). Alors

$$\iiint\limits_R f(x,y,z)\,dV = \iiint\limits_S f(x(u,v,w),y(u,v,w),z(u,v,w)) \left|\frac{\partial(x,y,z)}{\partial(u,v,w)}\right|\,du\,dv\,dw$$

où 
$$R = T(S)$$
.

• Changement de variables en deux et trois dimensions.

- Changement de variables en deux et trois dimensions.
- Jacobien d'une transformation.

- Changement de variables en deux et trois dimensions.
- Jacobien d'une transformation.
- Formules de changement de variables pour les intégrales multiples.

### MTH1102D Calcul II

Chapitre 7, section 5:

Changement de variables : exemple 1

### Introduction

• Calcul du jacobien en coordonnées cylindriques

### Jacobien en coordonnées cylindriques

Pour les coordonnées cylindriques, on a

$$x = x(r, \theta, z) = r \cos \theta$$
,  $y = y(r, \theta, z) = r \sin \theta$ ,  $z = z(r, \theta, z) = z$ 

ou encore

$$(x, y, z) = T(r, \theta, z) = (r \cos \theta, r \sin \theta, z).$$

$$\frac{\partial(x,y,z)}{\partial(r,\theta,z)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial z} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z} \end{vmatrix}$$

$$\frac{\partial(x,y,z)}{\partial(r,\theta,z)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial z} \end{vmatrix} = \begin{vmatrix} \frac{\partial r \cos \theta}{\partial r} & \frac{\partial r \cos \theta}{\partial \theta} & \frac{\partial r \cos \theta}{\partial z} \\ \frac{\partial z \sin \theta}{\partial r} & \frac{\partial r \sin \theta}{\partial \theta} & \frac{\partial r \sin \theta}{\partial z} \end{vmatrix}$$

$$\frac{\partial(x,y,z)}{\partial(r,\theta,z)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial z} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z} \end{vmatrix} = \begin{vmatrix} \frac{\partial r \cos \theta}{\partial r} & \frac{\partial r \cos \theta}{\partial \theta} & \frac{\partial r \cos \theta}{\partial z} \\ \frac{\partial r \sin \theta}{\partial r} & \frac{\partial r \sin \theta}{\partial \theta} & \frac{\partial r \sin \theta}{\partial z} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z} \end{vmatrix}$$
$$= \begin{vmatrix} \cos(\theta) & -r \sin \theta & 0 \\ \sin(\theta) & r \cos \theta & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$\frac{\partial(x,y,z)}{\partial(r,\theta,z)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial z} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z} \end{vmatrix} = \begin{vmatrix} \frac{\partial r \cos \theta}{\partial r} & \frac{\partial r \cos \theta}{\partial \theta} & \frac{\partial r \cos \theta}{\partial z} \\ \frac{\partial r \sin \theta}{\partial r} & \frac{\partial r \sin \theta}{\partial \theta} & \frac{\partial r \sin \theta}{\partial z} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z} \end{vmatrix} = \begin{vmatrix} \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z} \end{vmatrix} = \begin{vmatrix} \cos(\theta) & -r \sin \theta & 0 \\ \sin(\theta) & r \cos \theta & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= 1 \cdot \left( r \cos^2 \theta + r \sin^2 \theta \right) = r.$$

• Calcul du jacobien en coordonnées cylindriques.

### MTH1102D Calcul II

Chapitre 7, section 5:

Changement de variables : exemple 2

### Introduction

• Exemple de changement de variables en deux dimensions

### Énoncé

Évaluer l'intégrale

$$\iint_R (x+y)^2 dA,$$

où R est le domaine illustré ci-dessous.



### Remarque

Le calcul peut être simplifié par un changement de variables. Le changement de variables est basé sur des transformations géométriques. Il est résumé dans les figures ci-dessous :



### Remarque

Le calcul peut être simplifié par un changement de variables. Le changement de variables est basé sur des transformations géométriques. Il est résumé dans les figures ci-dessous :



• Contraction le long de l'axe des x

### Remarque

Le calcul peut être simplifié par un changement de variables. Le changement de variables est basé sur des transformations géométriques. Il est résumé dans les figures ci-dessous :



- Contraction le long de l'axe des x prendre le grand axe et le
- Rotation d'angle pi/4

ramener à la longueur du + petit

obtenir un carré dont les côtés sont // aux axes de coordonnées

Contraction: Prendre l'axe // à l'axe des x et le diminuer de moitié



$$T_1(x,y) = (x',y')$$
, où  $x' = x/2$  et  $y' = y$   
x' est  
l'ancienne  
variable x  
divisé par 2

Polytechnique Montréal - MTH1102D

#### Contraction:



$$T_1(x, y) = (x', y')$$
, où  $x' = x/2$  et  $y' = y$  donc  $x = 2x'$  et  $y = y'$ .

#### **Rotation:**



#### **Rotation:**



Soit 
$$T_2 = \begin{bmatrix} \cos(\pi/4) & -\sin(\pi/4) \\ \sin(\pi/4) & \cos(\pi/4) \end{bmatrix} = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
 la matrice de rotation.

#### **Rotation:**



Soit 
$$T_2 = \begin{bmatrix} \cos(\pi/4) & -\sin(\pi/4) \\ \sin(\pi/4) & \cos(\pi/4) \end{bmatrix} = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
 la matrice de rotation.

Alors

$$T_2 \left[ \begin{array}{c} x' \\ y' \end{array} \right] = \left[ \begin{array}{c} u \\ v \end{array} \right]$$

#### **Rotation:**



Soit 
$$T_2 = \begin{bmatrix} \cos(\pi/4) & -\sin(\pi/4) \\ \sin(\pi/4) & \cos(\pi/4) \end{bmatrix} = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
 la matrice de rotation.

Alors

$$T_2 \left[ \begin{array}{c} x' \\ y' \end{array} \right] = \left[ \begin{array}{c} u \\ v \end{array} \right] \Rightarrow \frac{\sqrt{2}}{2} \left[ \begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right] \left[ \begin{array}{c} x' \\ y' \end{array} \right] = \left[ \begin{array}{c} u \\ v \end{array} \right]$$

#### **Rotation:**



Soit 
$$T_2 = \begin{bmatrix} \cos(\pi/4) & -\sin(\pi/4) \\ \sin(\pi/4) & \cos(\pi/4) \end{bmatrix} = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
 la matrice de rotation.

Alors

$$T_2 \left[ \begin{array}{c} x' \\ y' \end{array} \right] = \left[ \begin{array}{c} u \\ v \end{array} \right] \Rightarrow \frac{\sqrt{2}}{2} \left[ \begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right] \left[ \begin{array}{c} x' \\ y' \end{array} \right] = \left[ \begin{array}{c} u \\ v \end{array} \right]$$

donc

$$\frac{\sqrt{2}}{2} \left[ \begin{array}{c} x' - y' \\ x' + y' \end{array} \right] = \left[ \begin{array}{c} u \\ v \end{array} \right].$$

Puisque

$$\begin{cases} \frac{\sqrt{2}}{2}(x'-y') = u \\ \frac{\sqrt{2}}{2}(x'+y') = v, \end{cases}$$

Puisque

$$\begin{cases} \frac{\sqrt{2}}{2}(x'-y') = u \\ \frac{\sqrt{2}}{2}(x'+y') = v, \end{cases}$$

on a

$$\begin{cases} x' = \frac{\sqrt{2}}{2}(u+v) \\ y' = \frac{\sqrt{2}}{2}(v-u). \end{cases}$$

En combinant les deux transformations, on obtient le changement de variables

$$\begin{cases} x = 2x' = \sqrt{2}(u+v) \\ y = y' = \frac{\sqrt{2}}{2}(v-u) \end{cases}.$$

On a

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

On a

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \sqrt{2} & \sqrt{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{vmatrix} = 1 - (-1) = 2.$$

On a

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \sqrt{2} & \sqrt{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{vmatrix} = 1 - (-1) = 2.$$

De plus,

On a

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \sqrt{2} & \sqrt{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{vmatrix} = 1 - (-1) = 2.$$

De plus,

$$f(x,y) = f\left(\sqrt{2}(u+v), \frac{\sqrt{2}}{2}(v-u)\right)$$

On a

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \sqrt{2} & \sqrt{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{vmatrix} = 1 - (-1) = 2.$$

De plus,

$$f(x,y) = f\left(\sqrt{2}(u+v), \frac{\sqrt{2}}{2}(v-u)\right) = \frac{(u+3v)^2}{2}$$

après simplification.

On a

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \sqrt{2} & \sqrt{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{vmatrix} = 1 - (-1) = 2.$$

De plus,

$$f(x,y) = f\left(\sqrt{2}(u+v), \frac{\sqrt{2}}{2}(v-u)\right) = \frac{(u+3v)^2}{2}$$

après simplification.

Le nouveau domaine est le carré

$$S = \left\{ (u, v) \mid -\frac{\sqrt{2}}{2} \le u \le \frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \le v \le \frac{\sqrt{2}}{2} \right\}.$$

## Calcul de l'intégrale

Ainsi,

$$\iint_{R} (x+y)^{2} dA = \iint_{S} f\left(\sqrt{2}(u+v), \frac{\sqrt{2}}{2}(u-v)\right) \left|\frac{\partial(x,y)}{\partial(u,v)}\right| dA$$

## Calcul de l'intégrale

Ainsi,

$$\iint_{R} (x+y)^{2} dA = \iint_{S} f\left(\sqrt{2}(u+v), \frac{\sqrt{2}}{2}(u-v)\right) \left|\frac{\partial(x,y)}{\partial(u,v)}\right| dA$$
$$= \int_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \int_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \frac{(u+3v)^{2}}{2} \cdot 2 du dv$$

# Calcul de l'intégrale

Ainsi,

$$\iint_{R} (x+y)^{2} dA = \iint_{S} f\left(\sqrt{2}(u+v), \frac{\sqrt{2}}{2}(u-v)\right) \left|\frac{\partial(x,y)}{\partial(u,v)}\right| dA$$

$$= \int_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \int_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \frac{(u+3v)^{2}}{2} \cdot 2 du dv$$

$$= \frac{10}{3}.$$

• Description d'un changement de variables en deux dimensions.

- Description d'un changement de variables en deux dimensions.
- Calcul du jacobien du changement de variables.

- Description d'un changement de variables en deux dimensions.
- Calcul du jacobien du changement de variables.
- Calcul d'une intégrale double à l'aide d'un changement de variables.