

National University

Of Computer & Emerging Sciences Karachi

Course Outlines of BS (CS) Degree Program

Course Instructor		Muhammad Jamil Usmani/Ms Fareeha / Ms Amber	Semester	Spring
Batch/Section(s)		2018 / Sec A, B,C,D,E,F,G,H	Year	2019
Course Title		MT202 Differential Equations	Credit Hours	3
Prerequisite(s)		MT119- Calculus and Analytical Geometry Cour		
Text 1	Book(s)			
1.Title of book	Differe	ntial Equations with Modelling Application, 9 th edition		
Author(s)	Dennis	G.Zill Publisher John Wiley & Sons.		
Refer	ence Boo	$\mathbf{k}(\mathbf{s})$		
Advanced Eng	gineering	Mathematics 10 th edition		
Erwin Kreyszi	ig	Publisher McGraw-Hill		
Differential Eq	uations an	d Boundary Value Problems 3 rd edition		
Edwards Penney		Publisher Pearson		
Introduction to	o Engine	ering Mathematics		
H.K.DASS		Publisher S.Chand and C	er S.Chand and Company ltd	
This cousolution	of first a	d primarily on differential equations. The focus of this cound higher order differential equations and applications of to problems from the physical, biological, and social science	ordinary diffe	

Course Objective:

This is an introductory course of the Differential equations which includes an in-depth coverage of methods of solving differential equations and mathematical modeling with differential equations.

Tentative Lecture Schedule: Differential Equations with Modelling Application, 9thEdition.Zill

Week	Contents/Topics	Exercises	Questions
1	Introduction to Differential Equations: Differential Equations and their Classification Solutions or Integrals of Differential Equations Formation of differential equation.	1.1	1-8,11-18 21-24,27-32 37,38 ,44,47
	<u>Initial Value Problems:</u> First and Second Order IVPS	1.2	1-14,31-33
	Solution of First Order Differential Equations:		
2	Variable Separable form.	2.2 2.3	1-30 1-24,25-30,31-34
	Linear Differential Equations	2.4	1-16,21-25,37-30
3	Exact and Non Exact form (Integrating Factor)	2.4	1-10,21-25,37-30
_	Solution by substitution (Homogeneous)	2.5	1-14,23-30
4	Bernoulli Differential Equations	2.5	15-22 Quiz-1
	Applications of First Order Differential Equations		Example: 1,2,4,6
5	(Linear Models) Growth & Decay ,Newton Law of cooling, Series circuits	3.1	2-4,13-15,31-33
6	Midterm 1		,
	Higher Order Differential Equations:		
	Initial and Boundary value problem.	4.1	1-4,7,8,13,19,
7	Homogeneous DEs', Linear Dependence and Independence, Wronskian		23-30,31-34
	Non-homogeneous Linear Differential Equation. Reduction of order	4.2	1-14
8	Homogeneous Linear Equations with Constant Coefficients (complementary solution)	4.3	1-14,15-25,29-40
9	Undetermined coefficients Method (Superposition approach) Particular Solution	4.4	1-25,27-30 37-40 Quiz-II
10	Variation of parameters.	4.6	1-18,19-22,25
10	Cauchy Euler equation.	4.7	1-15,19-24,25-30
11	Power Series solution of Differential equation: Review of Power series. Radius of convergence Solution about ordinary Points at x=0	6.1	1-6,17-28,29-32
12	Midterm 2		
	The Laplace Transform:		
13	Laplace transform	7.1	1-36
13	Inverse Laplace transforms 7.2		1-30,31-40 Quiz-III
	Transforms of Derivatives		Zuiz-III
14	Translation on the s-axis and t-axis	7.2	1-18,21-30,37-48
	Derivatives of Transform, Transforms of Integrals, Convolution Theorem	7.3 7.4	1-18,21-30,57-48
15	Application of Laplace transforms The Dirac Delta Function	7.5	1-10
16	Numerical solutions of ODE(if time permits)		
10		l .	

Grading Criteria:

Marks Distribution:

Particulars	% Marks
1. Class participation/Attendance	05
2. Quizzes	10
3. Assignments	05
4. First Mid Exam	15
5. Second Mid Exam	15
6. Final Exam	50
Total:-	100

Important Instructions to be followed for this Course

- Be in classroom on time. Any student who arrives more than 5 min late in the class would be marked LATE. Anybody coming to class more than 15 minutes late will be marked ABSENT.
- Turn off your cell phones or any other electronic devices before entering the class.
- Maintain the decorum of the class room all the time.
- Avoid a conversation with your classmates while lecture is in progress.
- Use parliamentary language in the class room as well as in assignments. Refrain from using
 impolite, vulgar or abusive language in the class room as well as in class presentations and
 assignments.
- Submit your assignments on time, no assignment will be accepted after the deadline.
- There would be no re- take of any quiz.

Instructions / Suggestions for satisfactory progress in this course:

- On average, most students find at least three hours outside of class for each class hour necessary for satisfactory learning.
- Chapters should be read and homework should be attempted before class.
- Do not get behind. You are encouraged to work with other students. Plus, I am always available during office hours to help you.
- The homework assigned is a minimum. You may always work extra hours on your own.
- Use the few minutes you usually have before the start of each class to review the prior meetings' notes and homework. This will save us valuable in-class time to work on new material.
- Develop a learning habit rather than memorizing.
- Work in groups, whenever appropriate.
- Apply the learned principles and gained knowledge.
- Be creative in thinking, but stick to the topic assigned for discussions, assignments and presentations.
- Always bring your text Books with you in the class.

Note: Students are welcome all the time to get help from the Teacher.

	jamilusmani	
Signature: _		Date:15-01-2019