AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1-3. (Cancelled)

- 4. (Previously Presented) A ferromagnetic perovskite oxide having the formula $(Ba_{0.95}Fe_{0.05})TiO_3$, wherein the oxide has a saturation magnetization of about 0.10 μ_B/mol Fe at 300K, and a coercive field of about 16 Oe at 300K.
- 5. (Previously Presented) A ferromagnetic perovskite oxide having the formula $(Ca_{0.95}Fe_{0.05})TiO_3$, wherein the oxide has a saturation magnetization of about 0.11 μ_B/mol Fe at 300K, and a coercive field of about 12 Oe at 300K.
- 6. (Previously Presented) A ferromagnetic perovskite oxide having the formula $(Ba_{0.95}Fe_{0.05})ZrO_3$, wherein the oxide has a saturation magnetization of about 0.11 μ_B/mol Fe at 300K, and a coercive field of about 25 Oe at 300K.
- 7. (Previously Presented) A ferromagnetic perovskite oxide having the formula $(Ca_{0.95}Fe_{0.05})ZrO_3$, wherein the oxide has a saturation magnetization of about 0.12 μ_B/mol Fe at 300K, and a coercive field of about 4.5 Oe at 300K.
- 8. (Previously Presented) A ferromagnetic perovskite oxide having the formula ($Ba_{0.95}Fe_{0.05}$)HfO₃, wherein the oxide has a saturation magnetization of about 0.125 μ_B /mol Fe at 300K, and a coercive field of about 20 Oe at 300K.

9. (Currently Amended) The material composition of claim 2 having specific formula (Ca0.95Fe0.05)HfO3, wherein said saturation magnetization about 0.12:B/mol Fe at 300K, and the coercive fields about 7Oe at 300K. A ferromagnetic perovskite oxide having the formula (Ca $_{0.95}$ Fe $_{0.05}$)HfO $_{3}$, wherein the oxide has a saturation magnetization of about 0.12 μ_{B} /mol Fe at 300K, and a coercive field of about 7 Oe at 300K.

10. (Cancelled)

11.-14. (Cancelled)

15. (Previously Presented) A ferromagnetic perovoskite oxide having the formula La(Mo_{0.25}Fe_{0.75})O₃, wherein the magnetic Curie temperature of the oxide is as high as 940 K, and wherein the oxide has a coercive field of about 238 Oe at 300K.

16.-18. (Cancelled Herein)

- 19. (Previously Presented) A ferromagnetic perovskite oxide having the formula ($Ba_{1-x}Fe_x$)TiO₃, where x ranges from 0 to 0.15, and wherein the oxide has a saturation magnetization of about 0.10 μ_B /mol Fe at 300K, and a coercive field of about 16 Oe at 300K.
- 20. (Previously Presented) A ferromagnetic perovskite oxide having the formula ($Ca_{1-x}Fe_x$)TiO₃, where x ranges from 0 to 0.15, and wherein the oxide has a saturation magnetization of about 0.11 μ_B /mol Fe at 300K, and a coercive field of about 12 Oe at 300K.
- 21. (Previously Presented) A ferromagnetic perovskite oxide having the formula ($Ba_{1-x}Fe_x$)ZrO₃, where x ranges from 0 to 0.15, and wherein the oxide has a saturation magnetization of about 0.11 μ_B /mol Fe at 300K, and a coercive field of about 25 Oe at 300K.

- 22. (Previously Presented) A ferromagnetic perovskite oxide having the formula ($Ca_{1-x}Fe_x$)ZrO₃, where x ranges from 0 to 0.15, and wherein the oxide has a saturation magnetization of about 0.12 μ_B /mol Fe at 300K, and a coercive field of about 4.5 Oe at 300K.
- 23. (Previously Presented) A ferromagnetic perovskite oxide having the formula ($Ba_{1-x}Fe_x$)HfO₃, where x ranges from 0 to 0.15, and wherein the oxide has a saturation magnetization of about 0.125 μ_B /mol Fe at 300K, and a coercive field of about 20 Oe at 300K.
- 24. (Previously Presented) A ferromagnetic perovskite oxide having the formula ($Ca_{1-x}Fe_x$)HfO₃, where x ranges from 0 to 0.15, and wherein the oxide has a saturation magnetization of about 0.12 μ_B /mol Fe at 300K, and a coercive field of about 7 Oe at 300K.