Linear regression / Ridge regression

$$\underset{W \in \mathbb{R}^d}{\text{min}} = \underset{i=1}{\overset{n}{\sum}} \left(\overrightarrow{W} x_i - y_i \right)^2 + \underset{i=1}{\overset{n}{\sum$$

min
$$\sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2 + 2 ||w||^2$$
 $\sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2 + 2 ||w||^2$
 $\sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2 + \sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2$
 $\sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2 + \sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2$
 $\sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2 + \sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2$
 $\sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2 + \sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2$
 $\sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2 + \sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2$
 $\sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2 + \sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2$
 $\sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2 + \sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2$
 $\sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2 + \sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2$
 $\sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2 + \sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2$
 $\sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2 + \sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2$
 $\sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2 + \sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2$
 $\sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2 + \sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2$
 $\sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2 + \sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2$
 $\sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2 + \sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2$
 $\sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2 + \sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2$
 $\sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2 + \sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2$
 $\sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2 + \sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2$
 $\sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2 + \sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2$
 $\sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2 + \sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2$
 $\sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2 + \sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2$
 $\sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2 + \sum_{i=1}^{n} (\sqrt{1}x_i - y_i)^2$

For every choice of $\lambda>0$, $J\theta$ s.t. the optimal solutions of problems A and B coincide.

$$||M||_{3} \leq \theta$$

. What is the loss / erms / objective function value of linear regression of
$$\hat{W}_{ML}$$

$$\sum_{i=1}^{n} \left(\hat{\lambda}_{ML}^{T} x_{i} - y_{i} \right)^{2} = f\left(\hat{\lambda}_{ML} \right)$$

$$f(\omega) = f(\omega_{ML}) + C$$

 \subseteq

$$S_c = \left\{ w : f(\omega) = f(\omega_{ML}) + c \right\}$$

$$\left\| \begin{array}{ccc} \vec{\chi} \omega - y \right\|^2 &=& \left\| \begin{array}{ccc} \vec{\chi} \vec{\omega}_{mL} - y \end{array} \right\|^2 + C$$

$$f(\vec{\omega}_{mL})$$

one ges

Some constant that depends on C, (xx^T) , \mathcal{J}_{ML} and not on

$$||\omega||^2 \leq \theta$$

Regularization

min
$$\sum_{i=1}^{n} (\sqrt{x_i} - y_i)^2 + \lambda \|\omega\|_1$$
 $= \sum_{i=1}^{n} (\sqrt{x_i} - y_i)^2$

we $= \sum_{i=1}^{n} (\sqrt{x_i} - y_i)^2$

St $= \|\omega\|_1 \le \theta$

An alternate way to regularize would then be using ||.|| norm instead of ||.||2 norm $\|\omega\|_1 = \sum_{i=1}^{d} |\omega_i|$

SHRINKAGE and LI REG : LASSO - LEAST ABSOLUTE OPERATOR. SELECTION

Points

- form solution closed does not have Q. LASSO
- are usually used to solve Sub-gradient methods LASSO.

A vector $g \in \mathbb{R}^d$ is a sub-gradient of $f: \mathbb{R}^d \to \mathbb{R}$ of a point $x \in \mathbb{R}^d$ if

Why Subgradients?

 $f(z) \geq f(z) + g^{\dagger}(z-z)$

- If function f to minimize is a <u>convex</u> function, then sub-gradient descent Converges!
 - There are other special purpose memods

 for LASSO -> (%) IRLS [Iterative Reversibled

 [I pack Squares].