Centre Number	Candidate Number	Name

MINISTRY OF EDUCATION, BOTSWANA

in collaboration with

UNIVERSITY OF CAMBRIDGE LOCAL EXAMINATIONS SYNDICATE

Botswana General Certificate of Secondary Education

SCIENCE: DOUBLE AWARD

0569/03

Paper 3

October/November 2004

2 hours

Candidates answer on the Question Paper No additional materials are required

Read the following carefully before you start.

Write your centre number, candidate number and name in the spaces provided at the top of this page.

Answer all questions.

Write your answers in the spaces provided on the question paper.

Do not use staples, paper clips, highlighters, glue or correction fluid.

The number of marks is given in brackets [] at the end of each question or part question.

You may use a calculator.

A copy of the Periodic Table is printed on page 20.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
TOTAL	

1 (a) Fig. 1.1 shows the speed-time graph of a ball thrown vertically upwards. ($g = 10 \text{ m/s}^2$).

Fig. 1.1

(i) What is the speed of the ball at the highest point?

speed[1]

(ii) Calculate the maximum height reached.

height[2]

(iii) How long does the ball take to reach the highest point?

_____[1]

(iii) What is the energy transfer taking place as the ball falls from the maximum height back to the thrower?

from to[1]

- **(b)** A box is pushed by a force of 100 N along a surface at a constant speed of 0.5 m/s in 3 seconds.
 - (i) What is the friction force?

.....[1]

(ii) Calculate the work done in moving the box along the surface.

work done =[3]

2 Fig. 2.1 shows a glass beaker containing water at 2 °C.

Fig. 2.1

After some time droplets of water are formed on the outer wall of the glass beaker.
Explain how the water droplets are formed on the outer wall.
[3]

3 Fig. 3.1 shows a converging lens used as a magnifying lens.

Fig. 3.1

- (a) Complete the path of the ray after passing through the lens and find the principal focus. Label it f.
- (b) What is the focal length of the lens?

(c) Fig. 3.2 shows a prism as used in a projector to make the image upright. (The diagram is not to scale).

Fig. 3.2

(i) Complete the path of the rays to show how the image becomes upright on the screen.

(ii) Name the effect that the rays undergo along the side ZY.

4 Fig. 4.1 shows a practical application of echo sounding in mineral prospecting. (The average speed of sound in rocks = 4500 m/s.)

Fig. 4.1

(a) A transmitter sends out shock waves and the receiver detects an echo from the coal deposit 2 s later. How deep is the coal deposit in km?

depth =[3]

(b) The transmitter sends out a signal, but the receiver detects several signals in succession.

Suggest why the receiver picks up more than one signal.

5 Fig. 5.1 shows two houses which have lightning conductors. In house **A**, the rod is attached to the roof while in house **B** the rod is attached to a metal plate buried underground.

Fig. 5.1

(a)	Name a suitable metal which could be used to make the rod.
(b)	Explain why house A is more likely to be damaged by lightning.
	[1]
(c)	In a storm, the spikes have a positive charge as shown. Indicate on the diagram the sign and location of the charge on the cloud above the spikes. [2]

6 Fig. 6.1 shows an electric circuit.

Fig. 6.1

The reading of $A_3 = 1.5 A$.

(a) State the current through

(i) R₂,

(b) Calculate the voltage across each resistor.

(i) Voltage across R₁

......[2]

(ii) Voltage across R₂

(iii) Voltage across R₃

.....[1]

To in	npro	ve crop yields, farmers add fertilisers like ammonium nitrate to their fields.
(a)	(i)	Write the chemical formula of ammonium nitrate.
((ii)	Calculate the percentage by mass of nitrogen in ammonium nitrate. $(N = 14, O = 16, H = 1)$.
		[3]
(b)	Lim	e, calcium oxide, (CaO), is sometimes added to neutralise acidic soils.
	(i)	Write an equation for the reaction between lime and dilute hydrochloric acid, HCl.
		[2]
((ii)	Write the ionic equation for the reaction in (b)(i).
		[2]
(iii)	Explain why ammonium nitrate is regarded as a good fertiliser for plants, while lime is not.
		[1]
		e is obtained from the thermal decomposition of limestone, CaCO ₃ . equation shows the decomposition of 5 g of limestone.
		$CaCO_3(s) \longrightarrow CO_2(g) + CaO(s)$
	(i)	What is meant by thermal decomposition?
		[1]
((ii)	State one use of calcium carbonate other than the production of lime.
		[1]
(i	iii)	Calculate the number of moles of calcium carbonate decomposed.
		number of moles =[2]
(i	iv)	How many moles of calcium oxide would be produced?
		moles =[1]
	(v)	Calculate the volume of carbon dioxide produced at room temperature and pressure. (1 mole of a gas occupies 24 dm ³ at room temperature and pressure).

8 Study the flow chart shown.

(a) (i) What must be added to glucose to enable fermentation to take place?

.....[1]

(ii) State two conditions necessary for fermentation to occur.

1.

2.[2]

(b) Write the names of substances R, S and gas Q.

R

S

Q

[3]

(c) The equation shows the reaction between ethanol and ethanoic acid.

$$C_2H_5OH + CH_3COOH \longrightarrow CH_3COOCH_2CH_3 + H_2O$$

(i) Name the organic product for this reaction.

.....[1]

(ii) Draw the structural formula of the organic product of the reaction.

[1]

[2]

9 The diagram shows the position of iron, Fe, in the Periodic Table.

			Fe						
				:			-		

(a)	Name the group of metals to which iron belongs.

(b)	State two properties of metals in the group named in (a) above.
	1
	2

- (c) Iron is used in the manufacture of ammonia, NH_3 .
 - (i) Draw a dot and cross diagram to show the bonding in a molecule of ammonia.

	(ii)	What type of bonding is present in a molecule of ammonia?	
(d)	Amı	monia dissolves in water to form a weak alkali, aqueous ammonia.	[1]
	(i)	Why is aqueous ammonia a weak alkali?	
			[1]

(11)	Suggest the pH of aqueous ammonia.
	[1]
	Describe how aqueous ammonia is used to test for the presence of aluminium ions in a solution.
	[2]

10 To demonstrate uptake of water in plants Mpho sucked water from a glass using a straw as shown in Fig. 10.1.

Fig. 10.1

(a)	Exp	plain why water moves up the straw when Mpho sucks at the end.	
	••••		
			[1]
(b)	(i)	Name the part of the vascular bundles represented by the straw.	
			[1]
	(ii)	Name the process occurring through the structure named in(b)(i).	
			[1]

11	(a)	Define hormone.
		[2]
	(b)	Complete Table 11.1 to show hormones, their sources and their functions.

Table 11.1

hormone	source	function in the body
(i)	pancreas	(ii)
(iii)	adrenal gland	prepares body for action

[3]

© BEC 2004

12 Neo made dough using yeast. She took two equal masses of dough and placed them in two identical dishes at different temperatures as shown in Fig. 12.1A.

start of experiment

Fig. 12.1A

After one hour the dough in the two dishes is as shown in Fig. 12.1B.

Fig. 12.1B

(a)	(i)	Using the information in Fig. 12.1, describe any changes that had taken place in each batch of dough in dishes X and Y , after one hour.
		x
		Υ[2]
	(ii)	Explain the differences in the results for the two batches of dough.
		[4]
(b)	Sug	gest why it is convenient to use microorganisms in biotechnology.
		[1]

Question 13 starts on page 16

13 Table 13.1 shows the results of an experiment to investigate the effect of temperature on a protein digesting enzyme.

Table 13.1

temperature/ °C	time taken for complete digestion/s
20	250
25	210
30	150
35	105
40	140
45	170

(a) Plot the results on the grid provided.

[3]

(b) (i) State the optimum temperature for the reaction.

.....

(ii) Give a reason for your answer in (i).

.....

.....

. ,	Explain what will happen at the times taken for digestion to complete if the pH is changed to 9.
	[2]

14 Fig. 14.1 shows a diagram of a kidney machine.

Fig. 14.1

(a)	(i)	Name the process by which waste products move from blood into the dialysis fluid.
		[1]
	(ii)	State the property of the dialysis tube that makes it suitable for use in the kidney machine.
		[1]
(b)	Exp	lain how glucose is prevented from leaving the blood.
		[2]
(c)	Sug	gest how the efficiency of the kidney machine can be improved.
	••••	
		[2]

15	(a)	State two disadvantages of asexual reproduction.
		[2]
		• •
	(b)	Complete Table 15.1 by filling in two named methods of asexual reproduction and examples of plants where they can be applied.

Table 15.1

method	example
1.	
2.	

[4]

DATA SHEET
The Periodic Table of the Elements

						_	ne ren	odic i an	The Periodic Lable of the Elements	Elemen	SILS							
_	_							5	dnois			=	≥	>	>	=	0	
							Hydrogen 1										Helium	
7 Lithium	9 Be Beryllium							1				5 Born 2	12 Carbon	Nitrogen 7	16 Oxygen 8	19 Fluorine	20 Ne Neon	
23 Na Sodium	24 Mg Magnesium											27 A 1 Aluminium 13	28 Si Silicon	31 Phosphorus 15	32 S Sulphur	35.5 C1 Chlorine	40 Ar Argon	
39 K	40 Ca Calcium 20	45 Scandium 21	48 Ti Titanium 22	51 V Vanadium 23	52 Cr Chromium 24	Mn Manganese	56 Iran	59 Co Cobalt	59 Nickel	64 Copper 29	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium 32	75 AS Arsenic 33	Selenium	80 Br Bromine	84 Kr Krypton 36	
Rb Rubklium 37	Strontium	89 Y	91 Zr Zirconium 40	93 Niobium 41	96 Mo Molybdenum 42	Tc Technetium 43	Huthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	SO Th	Sb Antimony 51	128 Te Tellurium 52	127 I todine	131 Xe Xenon Xenon 54	1
133 Caesium 55	137 Ba Barium 56	139 La Lanthanum 57 **	178 Hf Hafnium	181 Ta Tanalum 73	184 W Tungsten 74	186 Re 8henium 75	190 Os Osmum 76	192 Ir Iridium 77	195 Pt Platinum 78	197 Au Gold 79	201 Hg Mercury	204 T 1 Thallium	207 Pb Lead	209 Bi Bismuth 83	Po Potenium 84	At Astatine 85	Radon 86	
Fr Francium 87	226 Ra Radium 88	227																,
*58-71 †90-100	*58-71 Lanthanoid series †90-103 Actinoid series	d series series	ı	140 S	Presendamin	4 D	Pa		152 Eu	157 Gd	es t	162 Dy	165 H	167 ਜ	₽ E ∮	Y	175 Lu	
				Central	Prasecuyinum	Neodyman	Fromeundin	Samarium	Curopium	Cattolillium	HIDIQUE	Uysprosium	HOILINIAL	Eroinm	uninu:	YTTOLOUU	rntetium	

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

b = proton (atomic) number

a = relative atomic massX = atomic symbol

Key