PERTURBATIVE BOOTSTRAP of the Wilson line defect CFT

September 11, 2023 Università di Torino

Daniele Artico

based on the work with J. Barrat, G. Peveri, Y. Xu

PAPERS FOR THE CLUB

Perturbative bootstrap of the Wilson-line defect CFT: multipoint correlators

Daniele Artico.1 Julien Barrat.2 Giulia Peveri.1

Perturbative bootstrap of the Wilson-line defect CFT: bulk-defect-defect correlators

Daniele Artico,1 Julien Barrat,2 Yingxuan Xu.1

¹ Institut f\u00e4r Physik und IRIS Adlershof, Humboldt-Universit\u00e4t zu Berlin, Zum Gro\u00eden Windkanal 2, 12489 Berlin, Germany

² Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany

¹Institut für Physik, Humboldt-Universität zu Berlin, Newtonßtrasse 15, 12489 Berlin, Germany

²Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany

MOTIVATIONS

WHY DEFECTS

"[...] all the available tools in Quantum Field Theory have been applied to this subject [defects]: perturbation theory, lattice, conformal bootstrap, holographic methods, supersymmetric localization, and more" from the webpage of the workshop Defects, from condensed matter to quantum gravity, Pollica 2024

$\mathcal{N}=4$ SUSY set-up

- AdS/CFT correspondence [Giombi, Roiban, Tseytlin, '17][Erikson, Semenoff, Zarembo, '00]
- Supersymmetric localization
 [Giombi, Komatsu, '18][Drukker, '20]
- Superconformal Ward identity
 [Liendo, Meneghelli, '16][Liendo, Meneghelli, Mitev,
 '18][Barrat, Liendo, Peveri, Plefka, '21][Bliard, '24]
- Superconformal bootstrap
 [Ferrero, Meneghelli, '23][Ferrero, Meneghelli, '23][Ferrero, Meneghelli, '23]
 - Bootstrability
 [Cavaglià, Gromov, Julius, Preti, '22]|Cavaglià,
 Gromov, Julius, Preti, '22]|Cavaglià, Gromov, Julius,
 Preti, '22]|Cavaglià, Gromov, Julius, Preti, '22]|Cavaglià, Gromov, Julius,

non-SUSY set-up

- Conformal bootstrap
 [Billò, Goncalves, Lauria, Meineri, '17][Poland,
 - Rychkov, Vichi'18][Iliesiu, Koloğlu, Mahajan, Perlmutter, Simmons-Duffin, '18]
- Analytic bootstrap for O(N) model

[Bianchi, Bonomi, de Sabbata, '22][Bianchi, Bonomi, de Sabbata, Gimenez-Grau, '23]

- Locality
 [Levine, Paulos, '23][Levine, Paulos, '24]
- \(\begin{align*}
 \century \text{\text{ormo}}, & \text{\text{ormo}}, & \text{\text{Val}[Barrat, Liendo, Van Vliet 23][Giombi, Helfenberger, Khanchandani, '23]}
 \)
- Applications to gravity
 [Bachas, Chen, '24]

WHY $\mathcal{N} = 4$ SYM

 $\mathcal{N}=4$ SYM: the maximally extended supersymmetric theory in four space-time dimensions with a multiplet representation of spin $\ell \leq 1.$

Although the ultimate goal may be calculating non-SUSY amplitudes, SUSY theories provide an excellent testing ground. Looking at super-Yang-Mills offers a lot of insight into how one can deal with the problems in QCD.

Some selected topics of interest

- Leading transcendental weight contribution identical in QCD and $\mathcal{N}=4$ SYM
- Presence of exact and all order results (e.g. Γ_{cusp} [Beisert, Eden, Staudacher, '07],
 4-gluon amplitude [Anastasiou, Bern, Dixon, Kosower '03])
- Duality between amplitudes and Wilson loops [Alday, Maldacena, '07]
- Position space description of event shapes [Henn, Sokatchev, Yan, Zhiboedov, '19]
- Analytic bootstrap [Bern, Dixon, Dunbar, Kosower, '94]

THE PERTURBATIVE BOOTSTRAP

The perturbative bootstrap framework puts together Feynman diagram computation for weak coupling expansion of correlators and non-perturbative information given by the symmetries of the set-up.

SET-UP AND WORKFLOW

LINE DEFECTS

Defects: extended operators preserving a specific subgroup of the original symmetry.

p-dimensional defects preserve a p-dimensional conformal symmetry too.

$$SO(d+1,1) \longrightarrow SO(p+1,1) \otimes SO(q)$$

A defect extends the set of conformal data to compute

BULK CFT

- $\langle \mathcal{O}_i \mathcal{O}_j \rangle \rightarrow$ anomalous dimension γ_i
- $\langle \mathcal{O}_i \mathcal{O}_j \mathcal{O}_k \rangle \to 3$ -point coefficient λ_{ijk}

DEFECT CFT

- $\langle \hat{\mathcal{O}}_i \rangle \to \text{anomalous dimension } \hat{\gamma_i},$ 1-point coefficient a_i
- $\langle \, \hat{\mathcal{O}}_i \mathcal{O}_j \, \rangle o 2$ -point coefficient b_{ij}
- $\langle \, \hat{\mathcal{O}}_i \hat{\mathcal{O}}_j \hat{\mathcal{O}}_k \, \rangle \to 3$ -point coefficient $\hat{\lambda}_{ijk}$

WILSON LINE DEFECT

Conformal line defects preserve some of the original conformal symmetry

$$SO(5,1) \rightarrow SO(2,1) \otimes SO(3)$$

Starting from ${\cal N}=4$ SYM, we can also preserve half of the supercharges by defining the Wilson line defect

$$W_{\ell} = \frac{1}{N} \operatorname{tr} \mathcal{P} \exp \int_{-\infty}^{+\infty} d\tau \left(i \dot{x}^{\mu} A_{\mu} + |\dot{x}| \theta^{i} \phi_{i}(\tau) \right)$$

where $\theta^2 = 1$ to preserve half of the supercharges. The expectation value of the Wilson line is protected.

$$\langle \mathcal{W}_{\ell} \rangle = 1$$

The resulting supersymmetry break is

$$PSU(2,2|4) \rightarrow OSP(4^*|4) \supset 1d CFT$$

SYMMETRY BREAKING [Liendo, Meneghelli '16]

$$PSU(2,2|4) \rightarrow OSP(4^*|4)$$

N = 4 SYM

- 32 supercharges
- SO(5,1) conformal symmetry
- SO(6) R-simmetry

Wilson line defect

- 16 supercharges
- SO(2,1) conformal symmetry
- SO(5) R-simmetry

$$\left\{\phi^{1},...,\phi^{6}\right\} \longrightarrow \left\{\phi^{1},...,\phi^{5}\right\} + \phi^{6}$$

SCALAR INSERTIONS [Giombi, Roiban, Tsevtlin '17]

The operators we consider are scalar insertions on the line

$$\hat{\mathcal{O}}_{\hat{\Delta}}(u,\tau) = \frac{1}{\sqrt{n_{\hat{\Delta}}}} \mathcal{W}_{\ell} \left[(u \cdot \phi(\tau))^{\hat{\Delta}} \right]$$

where $n_{\hat{\Delta}}$ is a normalization factor and u is the SO(5) vector describing the insertion of the protected scalar fields at the point τ on the line.

We can define multipoint correlation functions for defect operators using the 4d theory

$$\left\langle \hat{\mathcal{O}}_{\hat{\Delta}_{1}}...\hat{\mathcal{O}}_{\hat{\Delta}_{n}}\right\rangle _{1d}:=\frac{1}{N}\left\langle \operatorname{tr}\mathcal{P}\,\hat{\mathcal{O}}_{\hat{\Delta}_{1}}...\hat{\mathcal{O}}_{\hat{\Delta}_{n}}\exp\int_{-\infty}^{+\infty}d\tau\left(i\dot{x^{\mu}}A_{\mu}+|\dot{x}|\phi_{6}(\tau)\right)\right\rangle _{4d}$$

and bulk-defect-defect form factors in a similar fashon

$$\langle\,\mathcal{O}_{\Delta_1}\hat{\mathcal{O}}_{\hat{\Delta}_2}\hat{\mathcal{O}}_{\hat{\Delta}_3}\,\rangle = \frac{1}{N}\langle\,\mathcal{O}_{\Delta_1}\mathrm{tr}\mathcal{P}\left[\hat{\mathcal{O}}_{\hat{\Delta}_2}\hat{\mathcal{O}}_{\hat{\Delta}_3}\exp\int_{-\infty}^{+\infty}d\tau\left(i\dot{x^\mu}A_\mu + |\dot{x}|\phi_6(\tau)\right)\right]\rangle_{4d}\,.$$

PERTURBATIVE BOOTSTRAP: WORKFLOW

The computation of correlation functions consists in the following steps:

- 1 Use of super-conformal symmetry (Ward identities) to constrain the correlator
- 2 Design of a suitable ansatz (using symbols) for the solution function
- 3 Input of perturbative information (minimal set of Feynman diagrams) to constrain the ansatz
- 4 Input of lower-point results (pinching) to fix the last degrees of freedom

MULTIPOINT CORRELATORS

DEFINITION AND CONVENTIONS

2-point

$$\langle \Delta_1 \Delta_2 \rangle = \delta_{\hat{\Delta}_1 \hat{\Delta}_2} (12)^{\hat{\Delta}_1} ,$$

$$(ij) = \frac{u_i \cdot u_j}{\tau_{ij}^2} .$$

3-point

$$\langle \Delta_1 \Delta_2 \Delta_3 \rangle = \lambda_{\Delta_1 \Delta_2 \Delta_3} (12)^{2\Delta_{123}} (23)^{2\Delta_{231}} (31)^{2\Delta_{312}},$$

$$\Delta_{ijk} = \frac{1}{2} (\Delta_i + \Delta_j - \Delta_k).$$

4-point

$$\left[\begin{array}{c} \left\langle \, \Delta_1 \Delta_2 \Delta_3 \Delta_4 \, \right\rangle = \mathcal{K}_{\Delta_1 \Delta_2 \Delta_3 \Delta_4} \, \mathcal{A}_{\Delta_1 \Delta_2 \Delta_3 \Delta_4} (x; r, s) \, \right], \\ \\ x := \frac{\tau_{12} \tau_{34}}{\tau_{13} \tau_{24}} \, , \qquad r := \frac{(u_1 \cdot u_2) (u_3 \cdot u_4)}{(u_1 \cdot u_3) (u_2 \cdot u_4)} \, , \qquad s := \frac{(u_1 \cdot u_4) (u_2 \cdot u_3)}{(u_1 \cdot u_3) (u_2 \cdot u_4)} \, . \end{array}$$

5-point

$$\langle 111112 \rangle = \mathcal{K}_{11112} \mathcal{A}_{11112} (\{x; r, s, t\})$$

$$\mathcal{A}_{11112} = \sum_{i=1}^{6} R_i F_i(x_1, x_2) , \qquad \{R_i\} = \left\{1, \frac{r_1}{x_1^2}, \frac{s_1}{\bar{x}_1^2}, \frac{r_2}{x_2^2}, \frac{s_2}{\bar{x}_2^2}, \frac{t_{12}}{x_{12}^2} \right\},$$

6-point

$$\langle 1111111 \rangle = \mathcal{K}_{111111} \mathcal{A}_{111111} (\{x; r, s, t\})$$

WHAT IS KNOWN

WEAK COUPLING

- n-point recursion relation up to NLO [Barrat, Liendo, Peveri, Plefka '23]
- 4-point function at NNLO using integrability methods [Cavaglià, Gromov, Julius, Preti, '22]
- ϕ_6 scaling dimension up to 5 loop [Grabner, Gromov, Julius, '20]

STRONG COUPLING

- 4-point function up to N³LO [Ferrero, Meneghelli '22]
- 5-point function up to NLO
 [Barrat, Bliard, Ferrero, Meneghelli, Peveri, to appear]
- ullet ϕ_6 scaling dimension up to 4 loop [Ferrero, Meneghelli '22]

EXACT RESULTS

- Precise numerical results for 4-point function [Cavaglià, Gromov, Preti, '23]

PERTURBATIVE BOOTSTRAP: MULTIPOINT

The perturbative bootstrap table for multipoint correlators

NON-PERTURBATIVE CONSTRAINTS - 1

PINCHING

Higher-weight operators formed by bringing together fields from distinct points

$$\begin{split} \left\langle \hat{\mathcal{O}}_{\hat{\Delta}_1}(u_1,\tau_1)...\hat{\mathcal{O}}_{\hat{\Delta}_{n-1}+\hat{\Delta}_n}(u_{n-1},\tau_{n-1}) \right\rangle_{1d} = \\ &\lim_{n \to n-1} \left\langle \hat{\mathcal{O}}_{\hat{\Delta}_1}(u_1,\tau_1)...\hat{\mathcal{O}}_{\hat{\Delta}_{n-1}}(u_{n-1},\tau_{n-1})\hat{\mathcal{O}}_{\hat{\Delta}_n}(u_n,\tau_n) \right\rangle_{1d} \end{split}$$

CROSSING

Relations arising after identifying the line endpoints at infinity, consisting in the exchange of external points

figure adapted from [Liendo, Meneghelli, '18]

NON-PERTURBATIVE CONSTRAINTS - 2

SUPERCONFORMAL WARD IDENTITIES

Set of constraints encoding the effect of superconformal symmetry on correlators [Bliard, '24][Barrat, Meneghelli, Müller, '24]

$$\sum_{i\neq j}^{n_R}\beta_i\bigg(\frac{1}{2}\partial_{x_i}+\alpha_i\partial_{r_i}-\bar{\alpha}_i\partial_{s_i}+\alpha_{ij}\partial_{t_{ij}}\bigg)\mathcal{A}_{\Delta_1...\Delta_n}\,\Big|_{r_i\to\alpha_ix_i,s_i\to\bar{\alpha}_i\bar{x}_i,t_{ij}\to\alpha_{ij}x_{ij}}=0\,,$$

The easiest form of the solution to the WI proceeds in (5+1) steps:

1 Introduce a new basis for the correlator:

$$A_n = \sum_{j=1}^{n_R} \tilde{R}_j G_j(x_1, ..., x_{n-3}).$$

- 2 Impose the topological limit to be $G_1(x_1,...,x_{n-3})$
- 3 The maximum number of derivatives of G_i do not appear after applying the WI

$$\tilde{R}_j \, \Big|_{\, r_i \rightarrow \alpha_i \, x_i \, , \, s_i \rightarrow \bar{\alpha}_i \bar{x}_i \, , \, t_{ij} \rightarrow \alpha_{ij} \, x_{ij}} \, = 0 \, . \label{eq:Rj}$$

- 4 The remaining R_i are chosen such to satisfy the WI
- 5 The functions corresponding to the elements in point 3 are directly related to the simplest channels at weak coupling
- $6\,$ The functions G_i corresponding to the elements in point $4\,$ can be chosen to satisfy simple crossing relations

ONE INTEGRAL TO RULE THEM ALL

A central part of the perturbative bootstrap is to demonstrate that higher-point correlators at NNLO can be computed by imposing symmetry constraints, provided we know **one** integral.

$$B_{123,456} = \frac{b_{123,456}(x_1, x_2, x_3)}{8192\pi^{10}\tau_{15}^2\tau_{24}^2\tau_{36}^2},$$

ONE INTEGRAL TO RULE THEM ALL [Rodrigues, '24]

$$b_{123,456} = \frac{x_{13}^2}{x_1 x_2 \bar{x}_3 x_{12}} \Big(-G(1, x_1) G(1, x_2) G(1, x_3) + G(1, x_2) G(x_3, x_1) G(1, x_3) \\ -G(1, x_1) G(x_3, x_2) G(1, x_3) + G(x_3, x_1) G(x_3, x_2) G(1, x_3) \\ -2G(1, 0, x_1) G(1, x_3) + 2G(1, x_2, x_1) G(1, x_3) + 2G(x_3, 0, x_1) G(1, x_3) \\ -2G(x_3, x_2, x_1) G(1, x_3) + G(x_3, x_1) G(0, 1, x_2) - G(1, x_1) G(0, x_3, x_2) \\ +G(x_3, x_1) G(1, 0, x_2) + G(0, x_3) (-G(1, x_2) G(x_3, x_1) + G(1, x_1) (G(1, x_2) \\ +G(x_3, x_2)) + 2G(1, 0, x_1) - 2G(1, x_2, x_1)) - G(x_3, x_2) G(1, x_2, x_1) \\ +G(x_3, x_2) G(1, x_3, x_1) + G(1, x_1) G(1, x_3, x_2) - G(x_3, x_1) G(1, x_3, x_2) \\ -G(1, x_1) G(x_3, 0, x_2) - G(1, x_2) G(x_3, 1, x_1) + G(0, x_2) (-2G(0, x_3) G(1, x_1) \\ +2G(1, x_3) G(1, x_1) - 2G(1, x_3) G(x_3, x_1) - G(1, x_3, x_1) + G(x_3, 1, x_1) \\ +G(1, 0, x_3, x_1) - G(1, x_2, x_3, x_1) + G(1, x_3, 0, x_1) - G(1, x_3, x_2, x_1) \\ +G(1, 0, x_3, x_1) - G(1, x_2, x_3, x_1) + G(1, x_3, 0, x_1) - G(1, x_3, x_2, x_1) \\ -G(x_3, 0, 1, x_1) - G(x_3, 1, 0, x_1) + G(x_3, 1, x_2, x_1) + G(x_3, x_2, 1, x_1) \Big).$$

INTERLUDE: GONCHAROV POLYLOGARITHMS

Iterated integrals of the kind

$$G(a_1, ..., a_n, x) = \int_0^x \frac{dt}{t - a_1} G(a_2, ..., a_n, t),$$

with G(x) = 1. An example is

$$G(0,\ldots,0,a,x) = -\operatorname{Li}_n\left(\frac{x}{a}\right).$$

The symbol is an effective way of describing Goncharov polylogarithm and a crucial part of our ansatz building.

$$S(G(a_1,\ldots,a_n,x)) = x - a_n \otimes \ldots \otimes x - a_1$$

Symbols obey the useful properties as

$$A \otimes (x \cdot y) \otimes B = A \otimes x \otimes B + A \otimes y \otimes B.$$

$$\mathcal{S}\left(G(a_1,\ldots,a_n,x)G(b_1,\ldots,b_m,x)\right) = \mathcal{S}\left(G(a_1,\ldots,a_n,x)\right) \sqcup \mathcal{S}\left(G(b_1,\ldots,b_m,x)\right),$$

FOUR-POINT CORRELATORS

For four external operators, there are 3 R-symmetry channels in the correlator, therefore three G_i to solve for. A solution to the WI is for the correlator to have the form

$$\mathcal{A} = \frac{1}{2} \left(\frac{r}{x^2} + \frac{s}{\bar{x}^2} \right) \mathbb{F} + \partial_x (\xi f(x)),$$

where the auxiliary function ξ is defined as

$$\xi = 1 - \frac{r}{x} - \frac{s}{\bar{x}} \,.$$

The algorithm presented for solving the WI in this configuration leads to

- 1 $G_1(x) = \mathbb{F}$
- $2 \tilde{R}_2 \Big|_{r \to \alpha x. s \to \bar{\alpha} \bar{x}} = 0.$
- 3 $f'(x) = G_2(x) \sim F_1(x)$ corresponding to the simplest perturbative channel

For each (protected) configuration of four scalar operators, the knowlegde of f(x) is sufficient to determine the whole correlator.

$\langle 1111 \rangle_{NNLO}$: DIAGRAMS AND SOLUTION

$$f^{(2)}(x) = \frac{1}{64\pi^4} \left(\frac{\pi^4}{15} + 3\zeta_3 G(1, x) + \frac{\pi^2}{3} (G(1, 0, x) - G(0, 1, x) + G(1, 1, x)) \right.$$
$$+ 2(G(1, 1, 0, 1, x) - G(0, 0, 1, 0, x) + G(0, 0, 1, 1, x) - G(1, 1, 0, 0, x) + G(0, 1, 0, 0, x) - G(1, 0, 1, 1, x)) + G(1, 0, 0, 1, x) - G(0, 1, 1, 0, x) \right)$$
$$+ G(1, 0, 0, 1, x) - G(0, 1, 1, 0, x) \right).$$

$\langle 1212 \rangle_{NNLO}$: DIAGRAMS AND SOLUTION

Fully determined by a pinching of the B integral

$$= -\frac{1}{8}I_{24}K_{13,24} \,.$$

The solution to the Ward identities as

$$f^{(2)}(x) = \frac{1}{64\pi^4} \left(-\frac{7\pi^4}{180} + \frac{1}{2} (G(0,0,0,1,x) + G(0,0,1,0,x) + G(0,1,0,1,x) + G(0,1,0,1,x) - G(1,0,0,1,x) - G(1,0,1,0,x) - G(1,1,0,1,x) - G(1,1,0,1,x) - G(1,1,1,0,x) + 2G(1,0,1,1,x) - 2G(0,1,0,0,x) + 2G(1,1,0,0,x) - 2G(0,0,1,1,x) \right).$$

$\langle 1122 \rangle_{NNLO}$: DIAGRAMS AND SOLUTION

It is convenient to decompose the correlator into its connected and disconnected components

$$A_{1122} = A_{1122}^{(disc)} + A_{1122}^{(conn)}$$
.

though with necessary subtractions for overcounted terms:

$$A_{1122}^{(\text{disc})}\Big|_{(13)(24)} = \frac{n_1^2}{n_2} A_{1111}|_{(13)(24)} - (\text{overcounted}).$$
XX

XH

XY (subtractions)

The solution to the Ward identities is

$$f^{(2)}(x) = \frac{1}{64\pi^4} \left(\frac{17\pi^4}{180} + \frac{3}{2} \zeta_3 G(1, x) + \frac{\pi^2}{6} (4G(1, 0, x) - 2G(0, 1, x) + G(1, 1, x)) \right)$$

$$-2(G(1, 0, 1, 1, x) + G(1, 1, 0, 0, x) + G(0, 0, 1, 0, x) - G(0, 0, 1, 1, x)$$

$$-G(0, 1, 0, 0, x)) - G(0, 1, 0, 1, x) - G(0, 1, 1, 0, x) + G(1, 0, 0, 1, x)$$

$$+G(1, 0, 1, 0, x) + \frac{3}{2} G(1, 1, 0, 1, x) + \frac{1}{2} G(1, 1, 1, 0, x) \right).$$

FIVE-POINT CORRELATORS

After applying the Ward identities and eliminating $G_{1,...,4}$, the five-point function solution takes the form

$$\mathcal{A}_{11112} = \frac{t_{12}}{x_{12}^2} \mathbb{F}_{11112} + \rho f_1 + \partial_{x_1}(\xi_1 f_1) + \partial_{x_2}(\xi_2 f_1) + \partial_{x_2}(\eta f_2),$$

The auxiliary functions are given by

$$\begin{split} \xi_1 &= \frac{\bar{x}_1}{\bar{x}_2} \left(1 - \frac{r_1}{x_1} - \frac{s_1}{\bar{x}_1} \right), \\ \xi_2 &= 1 - \frac{r_1}{x_1} - \frac{s_2}{\bar{x}_2} + \frac{t_{12}}{x_{12}}, \\ \eta &= \frac{x_2}{x_1} \left(\frac{r_1}{x_1} - \frac{r_2}{x_2} - \frac{t_{12}}{x_{12}} \right), \\ \rho &= -\frac{1}{\bar{x}_2} \left(1 - \frac{r_1}{x_1^2} \right). \end{split}$$

$\langle 11112 \rangle_{NNLO}$: **SOLUTION WORKFLOW**

The knowledge of lower-point functions, non-perturbative information and the train track integral fully determines \langle 11112 \rangle at NNLO.

$\langle 11112 \rangle_{NNLO}$: **SOME DETAILS**

ANSATZ

To construct the appropriate Goncharov polylogarithms, we write the Ansatz in symbols

$$f^{(2)}(x_1,x_2) = c_0 + \sum_{i,j} c_{ij} \xi_i \otimes \xi_j + \sum_{i,j,k,l} c_{ijkl} \xi_i \otimes \xi_j \otimes \xi_k \otimes \xi_j , \quad \xi_l = \{x_1,\bar{x}_1,x_2,\bar{x}_2,x_{12}\}.$$

The ansatz is not quite yet in a usable form, as it is not finite for every choice of coefficients. Requiring finiteness fixes 6 out of the 21 free coefficients.

TRAIN TRACK INTEGRAL

On the input side, it is crucial to note that the channel F_1 is now determined by a single diagram:

$$= -\frac{1}{8}B_{125,345} \,,$$

$\langle 1111111 \rangle_{NNLO}$: WORK IN PROGRESS

The integrability conditions of the ansatz reduce the number of coefficients to 1380.

BULK-DEFECT-DEFECT CORRELATORS

DEFINITION AND CONVENTIONS

$$\left| \left\langle \mathcal{O}_{\Delta_1}(u_1, x_1) \hat{\mathcal{O}}_{\hat{\Delta}_2}(\hat{u}_2, \tau_2) \hat{\mathcal{O}}_{\hat{\Delta}_3}(\hat{u}_3, \tau_3) \right\rangle = \mathcal{K}_{\Delta_1 \hat{\Delta}_2 \hat{\Delta}_3} \mathcal{A}_{\Delta_1 \hat{\Delta}_2 \hat{\Delta}_3}(\zeta; \chi),$$

The prefactor $\mathcal{K}_{\Delta_1\hat{\Delta}_2\hat{\Delta}_3}$ is defined as

$$\mathcal{K}_{\Delta_1 \hat{\Delta}_2 \hat{\Delta}_3} := \frac{(u_1 \cdot \hat{u}_2)^{\hat{\Delta}_2} (u_1 \cdot \hat{u}_3)^{\hat{\Delta}_3} (u_1 \cdot \theta)^{\Delta_{123}}}{x_{12}^{2\hat{\Delta}_2} x_{13}^{2\hat{\Delta}_3} \vec{x}_1^{2\Delta_{123}}} \,,$$

with

$$x_{1j}^2 := \vec{x}_1^2 + \tau_{1j}^2 \,, \qquad \Delta_{123} := \Delta_1 - \hat{\Delta}_2 - \hat{\Delta}_3 \,.$$

The spacetime and R-symmetry cross-ratios are defined as

$$\chi := \frac{\vec{x}_1^2 \tau_{23}^2}{(\vec{x}_1^2 + \tau_{12}^2)(\vec{x}_1^2 + \tau_{13}^2)} \,, \qquad \zeta := \frac{(u_1 \cdot \theta)^2 (\hat{u}_2 \cdot \hat{u}_3)}{(u_1 \cdot \hat{u}_2)(u_1 \cdot \hat{u}_3)} \,.$$

The form of the function A is

$$\mathcal{A}_{\Delta_1 \hat{\Delta}_2 \hat{\Delta}_3}(\zeta; \chi) = \sum_{j=0}^n \left(\frac{\zeta}{\chi}\right)^j F_j(\chi).$$

NON-PERTURBATIVE CONSTRAINTS - 3

SUPERCONFORMAL SYMMETRY

Given the particularly reduced number of superconformal invariants, the correlator obey a superconformal Ward identity

$$\left((\partial_{\chi} + \partial_{\xi}) \mathcal{A}_{\Delta_1 \hat{\Delta}_2 \hat{\Delta}_3} \right) |_{\xi \to \chi^2} = 0 \longrightarrow \sum_{j=0}^n F_j(\chi) = \mathbb{F}_{\Delta_1 \hat{\Delta}_2 \hat{\Delta}_3}.$$

LOCALITY

The superconformal block expansion

$$\mathcal{A}_{\Delta_1 \hat{\Delta}_2 \hat{\Delta}_3}(\zeta;\chi) = \sum_{\hat{\Delta},\ell,k} b_{\Delta_1 \hat{\Delta}} \lambda_{\hat{\Delta}_2 \hat{\Delta}_3 \hat{\Delta}} \mathcal{G}_{\hat{\Delta},\ell,k}(\chi,\zeta)$$

is made of blocks $\mathcal{G}_{\hat{\Delta},\ell,k}(\chi,\zeta)$ with non-physical singularities and branch cuts. Such singularities must cancel in correlation functions, resulting in a second expansion manifestly local. [Kabat, Lifschytz, '16][Levine, Paulos, '23]

PERTURBATIVE INFORMATION

NUMBER OF R-SYMMETRY CHANNELS

The number of R-symmetry channels that are non-zero reduces to 2 at NLO at weak coupling, meaning that the correlation function becomes

$$\mathcal{A}_{\Delta_1 \hat{\Delta}_2 \hat{\Delta}_3}(\zeta; \chi) = F_0(\chi) + \left(\frac{\zeta}{\chi}\right) F_1(\chi).$$

MASTER INTEGRALS

The diagrams appearing in $F_1(\chi)$ at NLO are of the kind

The integrals to solve are all of the kind

$$\int_{-\infty}^{a} d\tau_1 I_{1\tau_1} = \frac{\pi + 2 \arctan\left(\frac{a}{|x_{\perp}|}\right)}{2|x_{\perp}|} \qquad \int_{a}^{+\infty} d\tau_1 I_{1\tau_1} = \frac{\pi - 2 \arctan\left(\frac{a}{|x_{\perp}|}\right)}{2|x_{\perp}|}$$

RESULTS AND TRANSCENDENTALITY

The solution to the WI combined with the knowledge of the master integrals gives the NLO result of bulk-defect-defect correlation functions for operators of arbitrary dimensions. For $\langle \, \mathcal{O}_2 \hat{\mathcal{O}}_1 \hat{\mathcal{O}}_1 \, \rangle$

$$F_1^{(1)}(\chi) = \frac{\lambda^3}{512\pi^6 \, N} \frac{1}{\sqrt{n_2} \hat{n}_1} \bigg(\pi^2 + 4 \arccos^2{(\sqrt{\chi})} \bigg) \,,$$

The NLO expression of the $\langle \mathcal{O}_2 \hat{\mathcal{O}}_1 \hat{\mathcal{O}}_1 \rangle$ does not present any power of $\log(\chi)$ in the series expansion for $\chi \to 0$, nor does any other form-factor.

How can we explain this absence?

LOWER TRANSCENDENTALITY

SUPERBLOCK EXPANSION

$$\mathcal{A}_{\Delta_1 \hat{\Delta}_2 \hat{\Delta}_3}(\zeta;\chi) = \sum_{\hat{\Delta},\ell,k} b_{\Delta_1 \hat{\Delta}} \lambda_{\hat{\Delta}_2 \hat{\Delta}_3 \hat{\Delta}} \mathcal{G}_{\hat{\Delta},\ell,k}(\chi,\zeta)$$

for $\langle \mathcal{O}_2 \hat{\mathcal{O}}_1 \hat{\mathcal{O}}_1 \rangle$ we predict a total coefficient of $\log(\chi)$ that is the sum of $b_{2\hat{\mathcal{O}}}^{(0)} \lambda_{11\hat{\mathcal{O}}}^{(0)} \gamma_{\hat{\mathcal{O}}}$. This contribution to the $\log(\chi)$ term of the expansion vanishes. We need an explanation that is valid beyond the single example.

LOCALITY

The $\log(\chi)$ -proportional parts of the discontinuity of the conformal blocks

$$\mathcal{G}_{\hat{\Delta},\Delta_{12}}(\chi) = \chi^{\hat{\Delta}/2} \,_2F_1\left(\frac{1}{2}\left(\hat{\Delta} - \Delta_{12}\right), \frac{1}{2}\left(\hat{\Delta} + \Delta_{12}\right); \hat{\Delta} + \frac{1}{2}; \chi\right)$$

for $\chi \to 1$ generate a linearly independent set of functions. The locality condition imposes the vanishing of such terms, and therefore of the $\log(\chi)$ piece of the small χ expansion. We checked this statement for a correlator in the non-SUSY O(N) model.

CONCLUSIONS AND OUTLOOK

MULTIPOINT - SUMMARY

- We use superconformal symmetry and pinching limits to reduce the amount of perturbative information needed
- We develop a systematic algorithm to find a suitable solution to the WI for this application
- We benchmark our method by computing $\langle\,1111\,\rangle$ at NNLO and $\langle\,111111\,\rangle$ at NLO
- We compute new 4-point correlators at NNLO: $\langle 1212 \rangle$, $\langle 1122 \rangle$
- Using non-perturbative information and one single integral, we determine $\langle 11112 \rangle$ at NNLO
- The NNLO result for $\langle 1111111 \rangle$ is under way.

MULTIPOINT - PERSPECTIVES

BEYOND WEAK COUPLING

- Numerical analysis of the correlator (111111), building upon numerical bootstrap [Antunes, Harris, Kaviraj, Schomerus, '23].
- Connection with the bootstrability techniques applied so far to four-point functions [Cavaglià, Gromov, Julius, Preti, '22][Cavaglià, Gromov, Julius, Preti, '22][Cavaglià, Gromov, Julius, Preti, '22][Cavaglià, Gromov, Julius, Preti, '22]
- A preliminary study of the superconformal blocks is necessary and under way [Barrat, Bliard, Ferrero, Meneghelli, Peveri, to appear

THE ROLE OF THE TRAIN-TRACK

- Study of the role of train-track integrals at further perturbative orders
- The collapse of elliptic complexity for 6-point train-track may hold for higher points
- Train-track integrals would be the ones appearing in a line-defect of the fishnet theory
- Fascinating integrable non-supersymmetric framework to study exact correlators

BULK-DEFECT-DEFECT - SUMMARY

- We use superconformal symmetry and pinching limits to reduce the amount of perturbative information needed
- We compute the master integrals necessary to describe all bulk-defect-defect correlators at NLO
- We use locality constraints to explain the loss of transcendentality of the results
- We observe the same loss of transcendentality in a non-SUSY set-up, the $\mathcal{O}(N)$ model

BULK-DEFECT-DEFECT - PERSPECTIVES

FURTHER CONSTRAINTS FOR LOCALITY

- We can write an expansion of the correlators in local blocks, serving as a second block-expansion [Levine, Paulos, '23][Levine, Paulos, '24]
- This expansion can be used to determine relations among conformal data and can further constrain the correlator

THE SPACE OF FUNCTIONS

- The NLO analysis did not give access to the space of transcendental functions describing bulk-defect-defect correlators
- Locality constraints predict a loss of transcendentality for NNLO as well: this could be used to bootstrap NNLO correlators
- There are NNLO correlators with 3 channels, with one of them simpler than the others. Further constraints are needed to apply the perturbative bootstrap set-up

THANK YOU!

A particular thanks goes to the organizers of the Pollica 2024 summer workshop, for creating an environment that facilitated crucial discussions for the development of this paper.

$$W_{\ell} = \frac{1}{N} \operatorname{tr} \mathcal{P} \exp \int_{-\infty}^{+\infty} d\tau |\dot{x}| \left(aX(\tau) + b\bar{X}(\tau) \right)$$

