

Data Management in SPSS

Dr. Md. Atiqul Islam

M.Sc. (SUST, BD), M.Sc. (UHasselt, BE), PhD (RuG, NL)

Professor Department of Statistics Jagannath University, Dhaka-1100

E-mail: atique@stat.jnu.ac.bd

Outline

- ▶ Compute New Variables
- ▶ Recode Variables
- ▶ Merge Data Sets
- Compute Aggregate Statistics
- ▶ Some Descriptive Analysis

Datasets

- ▶ LIFESPAN.sav: Lifespan data of 195 Rates
- ▶ faminc.sav: Three (3) dads' ID and three years income
- kids.sav: Information of kids belong to the three dads
- ▶ LIFESPAN+DIET.sav: Lifespan and diet data of 195 Rates

Data Management in SPSS

- DATA and TRANSFORM are the data management Menu Bar.
 - ▶ DATA: It is used in manipulation of the format of the data spreadsheet to be used for analysis.
 - ▶ Transform: It is used for generating new variables such as computing a new variable, recoding an existing variable.

TRANSFORM Menu Bar

- ▶ Data Transformation
- ▶ Most data transformations can be done with the **Compute** command.
- ▶ We want to use the data file "LIFESPAN+DIET.sav".

COMPUTE Function

Suppose we want to calculate standardized value of LIFESPAN (X). The formula is,

$$Z = \frac{X - mean(X)}{standard\ deviation(X)}$$

Suppose mean and standard deviation of LIFESPAN are 835 and 275.

▶ Manually

▶ Transform Compute Variable > Define target variable (STD_LIFESPAN) > ((LIFESPAN-835)/275)" > OK

> Syntax

COMPUTE STD_LIFESPAN=(LIFESPAN-835)/275. EXECUTE.

Compute

Compute

Class of LIFESPAN	Frequency	Percentage
<300	7	3.6
300-600	19	9.7
600-900	93	47.7
900-1200	55	28.2
≥1200	21	10.8

- The Target is to see the distribution of LIFESPAN
- "Recode into different variable" is used to create a new variable (CAT_LIFESPAN) from a source variable (LIFESPAN)

▷ Syntax:

RECODE LIFESPAN (Lowest thru 299=1) (300 thru 599=2) (600 thru 899=3) (900 thru 1199=4) (1200 thru Highest=5) INTO **CAT_LIFESPAN**.

VARIABLE LABELS CAT_LIFESPAN 'Distribution of Lifespan'.

VALUE LABELS CAT_LIFESPAN 1 "<300" 2 "300-600" 3 "600-900" 4 "900-1200" 5 "≥1200".

EXECUTE.

LIFESPAN <300

Recode into Different Variables: Old and New Values	×
Old Value Value: System-missing	New Value Value: System-missing Copy old value(s)
 System- or user-missing Range: through 	Old> New: Lowest thru 299> 1 Add Change
 Range, LOWEST through value: Range, value through HIGHEST: All other values 	Remove Output variables are strings Width: 8 Convert numeric strings to numbers ('5'->5)
Continue	Cancel Help

LIFESPAN 300-600

Before Recode

After Recode

Recode into same variable

Category of LIFESPAN	Frequency	Percentage
<300	7	3.6 We wish to
300-600	19	9.7 merge 1 st two
600-900	93	47.7 groups
900-1200	55	28.2
≥1200	21	10.8

Recode into same variable

- ▶ Will overwrite the source variable
- ▶ Use when want to change the source variable permanently

▷ Syntax:

RECODE CAT_LIFESPAN (1=1) (2=1) (3=2) (4=3) (5=4).

VALUE LABELS CAT_LIFESPAN 1 '<600' 2 "600-900" 3 "900-1200" 4 "≥1200".

EXECUTE.

Recode into same variable

Recode into same variable

Old Value Value: System-missing System-or user-missing Range: Add Through Range, LOWEST through value: Range, value through HIGHEST:	Recode into Same Variables: Old and New Values	×
○ All other values Continue Cancel Help	 System-missing System- or user-missing Range: through Range, LOWEST through value: Range, value through HIGHEST: All other values 	© Value: © System-missing Old> New: 1> 1 2> 1 3> 2 4> 3 5> 4 Finally continue

Category of LIFESPAN	Frequency	Percentage
<600	26	13.3
600-900	93	47.7
900-1200	55	28.2
≥1200	21	10.8

"DATA" Menu Bar

- ▶ The **Data** drop-down menu provides procedures for reorganizing the structure of a data file.
- ▶ Procedures shown in the figure allow to change the format of a data file.
- ▶ We will discuss
 - Sort Cases
 - Merge Files

Sort Cases

➤ **Sort Cases** opens a dialogue box that allows sorting of cases (rows) in the spreadsheet according to the values of one or more variables.

- Sort the data set by age, sex, religion
- Manual: Data> Sort Cases> Select one or more Variables>Ok
- **>** Syntax:

SORT CASES BY AGE(A)

- ➤ A indicates Ascending
- **D** indicates Descending

Sort Cases

Before sorting

After sorting by Age

Merge Two Datasets

▶ Merge files allows

- ▶ Add cases: When two data sets have same variables and combined them into one file.
- ▶ Add variables: One-to-one Merge when both data sets have unique cases.
- ▶ Add variables: One-to-many Merge when in one data set has duplicate cases.

Merge files: Add Cases

- > Add Cases (new values of the existing variables)
 - Data1 "data1.sav": 100 cases with two variables ID & DIET
 - ▶ Data2 "data2.sav": 95 cases with two variables ID & DIET
- ▶ What do we want?
 - ▶ Task 1: Merge **Data1** and **Data2** by ID "data3.sav"

Merge files: Add Cases

- ➤ We want to add cases of "data2.sav" into "data1.sav" and save it as "data3.sav".
- ▶ It is noted that variable names should be same in both data sets.

> Syntax:

```
Get FILE='G:\Data File\data1.sav'.

ADD FILES /FILE=*

/FILE='G:\Data File\data2.sav'.

SAVE OUTFILE 'G:\Data File\data3.sav'.

EXECUTE.
```

Lets Go to SPSS Window

Merge files: Add Cases (Manually)

Merge files: Add Cases

data1.sav

Step 6

data2.sav

Saving the new File

data3.sav

- ▷ Suppose we have two data sets "dads.sav" and "faminc.sav"
- ▶ We want add variables of "faminc.sav" into "dads.sav" file

famid name inc 2.00 Art 22000.00 1.00 Bill 30000.00 3.00 Paul 25000.00

famid	faminc96	faminc97	faminc98
3.00	75000.00	76000.00	77000.00
1.00	40000.00	40500.00	41000.00
2.00	45000.00	45400.00	45800.00

- ▶ This is a one to one merge because there is a one to one correspondence between the dads and faminc records.
- ▶ Syntax:

```
GET FILE="D:\spss\dads.sav".

SORT CASES BY famid.

SAVE OUTFILE="D:\spss\dads2.sav".
```

```
GET FILE="D:\spss\faminc.sav".

SORT CASES BY famid.

SAVE OUTFILE="D:\spss\faminc2.sav".
```

```
MATCH FILES FILE="D:\spss\dads2.sav"
  /FILE="D:\spss\faminc2.sav"
  /BY famid.
SAVE OUTFILE="D:\spss\OnetoOneMerge.sav".
```


Step-1: Both files need to have a common indexing key, so make sure both files are sorted in ascending order before trying to merge.

Step-2: Open the first file that you wish to merge. Next

Data>Merge Files>Add Variables

Step-3: Select the file you wish to merge

Step-4:

Step-5: If both keys have the same name one will show up in the 'Excluded Variables' list. Select the key variable from the 'Excluded Variables' list. Check the 'Match cases on key variables in sorted files' checkbox. Select the 'Both files provide cases' radio button. Now press the right arrow button that is next to the 'Key Variables:' list box.

Add Variables from D:\spss\faminc.sav		×	Add Variables from D:\spss\faminc.sav	×
Excluded Variables: famid(+) Rename Match cases on key variables Cases are sorted in order of key variables in both datasets Non-active dataset is keyed table Active dataset is keyed table Eactive dataset is keyed table	fam nar inc(fam fam	v Active Dataset: nid(*) me<(*) (*) ninc96(+) ninc97(+) ninc98(+) v Variables:	Excluded Variables: famid(+)	
Indicate case source as variable: source01 (*)=Active dataset (+)=D:\spss\faminc.sav OK Paste Reset Cancel	Help		Indicate case source as variable: source01 (*)=Active dataset (+)=D:\spss\faminc.sav OK Paste Reset Cancel Help	

Step-6: SPSS will give you a warning regarding sorted key variables. Make sure both files were sorted in ascending order before trying to do a file merge.

Step-7: All variables from both files will be merged in a new datafile. Cases were matched by the key variable (famid in this example)

Merge files: One to Many Merge

- We have a file named **dads.sav** & a file with **kids.sav** where a dad could have more than one kid.
- This is called a one to many merge since we are matching one dad observation to one or more (many) kids observations.

dads.sav									
famid	name	inc							
2.00	Art	22000.00							
1.00	Bill	30000.00							
3.00	Paul	25000.00							

famid	kidname	birth	age	wt	sex
1.00	Beth	1.00	9.00	60.00	f
1.00	Bob	2.00	6.00	40.00	m
1.00	Barb	3.00	3.00	20.00	f
2.00	Andy	1.00	8.00	80.00	m
2.00	Al	2.00	6.00	50.00	m
2.00	Ann	3.00	2.00	20.00	f
3.00	Pete	1.00	6.00	60.00	m
3.00	Pam	2.00	4.00	40.00	f
3.00	Phil	3.00	2.00	20.00	m

Kids.sav

Merge files: One to Many Merge

Syntax

```
GET FILE="D:\spss\dads.sav".

SORT CASES BY famid.

SAVE OUTFILE="D:\spss\dads2.sav".

GET FILE="D:\spss\kids.sav".

SORT CASES BY famid.

SAVE OUTFILE="D:\spss\kids2.sav".

MATCH FILES FILE="D:\spss\kids2.sav"

/Table="D:\spss\dads2.sav"

/BY famid.
```

SAVE OUTFILE="D:\spss\OnetoManyMerge.sav".

- Manually: Just like the one to one merge.
- One change is required

Merge files: One to Many Merge

Kids.sav

famid	kidname	birth	age	wt	sex
1.00	Beth	1.00	9.00	60.00	f
1.00	Bob	2.00	6.00	40.00	m
1.00	Barb	3.00	3.00	20.00	f
2.00	Andy	1.00	8.00	80.00	m
2.00	Al	2.00	6.00	50.00	m
2.00	Ann	3.00	2.00	20.00	f
3.00	Pete	1.00	6.00	60.00	m
3.00	Pam	2.00	4.00	40.00	f
3.00	Phil	3.00	2.00	20.00	m

dads.sav

famid	name	inc
2.00	Art	22000.00
1.00	Bill	30000.00
3.00	Paul	25000.00

	famid	kidname	birth	age	wt	sex	name	inc
	1.00	Beth	1.00	9.00	60.00	f	Bill	30000.00
	1.00	Bob	2.00	6.00	40.00	m	Bill	30000.00
	1.00	Barb	3.00	3.00	20.00	f	Bill	30000.00
	2.00	Andy	1.00	8.00	80.00	m	Art	22000.00
	2.00	Al	2.00	6.00	50.00	m	Art	22000.00
	2.00	Ann	3.00	2.00	20.00	f	Art	22000.00
	3.00	Pete	1.00	6.00	60.00	m	Paul	25000.00
	3.00	Pam	2.00	4.00	40.00	f	Paul	25000.00
	3.00	Phil	3.00	2.00	20.00	m	Paul	25000.00
1								

Find mean age and weight of children for each family.

```
Syntax:

AGGREGATE

/OUTFILE=* MODE=ADDVARIABLES

/BREAK=famid

/age_mean_1=MEAN(age)

/wt_mean_1=MEAN(wt).
```


Mean age and weight (Manually)

Mean age and weight (Manually)

Store Aggregate Statistics

Mean age and weight (Manually)

Sort file before aggregating

Reset Cancel

Help

Find the number of children for each family.

```
Syntax:
AGGREGATE
/OUTFILE=* MODE=ADDVARIABLES
/BREAK=famid
/kidname_nu=NU(kidname).
```

Aggregate Statistics (Count)

Find the number of children for each family.

Aggregate Statistics (Count)

Find the number of children for each family.

Exercise

Suppose we have two data set. How can we solve the problems in SPSS given next page?

dat1

dat2

HH ID	MAI	MAE
1	5000	4500
2	3500	4000
3	6000	5000

Child	ID	1	5	2	4	3	6	7	10	9	8
НН	ID	1	2	1	3	1	2	2	1	3	2
Sex of	child	m	m	f	f	m	F	m	f	m	m
Ag	2	10	15	8	5	5	10	4	1	2	1

- Combine information of dat2 with those of dat1 using household ID?
- Calculate mean (Mean_Age) and standard deviation (SD_Age) of children age by household ID.
- Can you calculate number of children (Children_number) per household? If yes, how?
- Add Mean_Age, SDS_Age, and Children_number in the dat1 file.

Thank You!