

Estimating discrete choice models with Biogeme

Onur Akman

Complex Social Systems (2025)

19/03/2025

onur.akman@uj.edu.pl

Introduction

- We will explore discrete choice modeling: Modeling how people make decisions among discrete alternatives.
 - How do people choose where to eat?
 - How do people choose what to watch?
 - How do people choose where to sit in this lab?
- We will use **Biogeme**, a Python package for estimating choice models.

Why Model Discrete Choices?

- Many real-world problems involve choices:
 - Product selection (brand A vs. B)
 - Online decisions (click vs. no click)
- We are interested in
 - understanding how people make choices,
 - what are the factors in their thought processes and
 - replicating them in the future with maximum accuracy.
- Understanding choices helps with policy-making, marketing, and system design.
- Unlike simple statistics, DCM helps analyze the causal effects of factors on choices.

Natural question: Why Not Just Use Machine Learning?

ML excels at prediction but **often** lacks interpretability.

With DCM, we can:

Interpret coefficients meaningfully.

Make counterfactual analyses (e.g., "What if we reduce bus fares by 10%?").

Ensure choices follow rational behavior (e.g., consistency with economic theory).

DCM: Toy example

- Step 1: Define the problem
 - How do people choose which one to buy among the three shampoo products?
- Step 2: Obtain data
 - We need a dataset containing:
 - decisions of consumers
 - useful information about the consumers and the products (eg., age of the consumer, income of the consumer, price of the shampoo)

DCM: Toy example (2)

- Step 3: Define utilities
 - We say that each consumer **maximizes** a "**utility function**" while making a decision.
 - We design **utility functions associated with each option**. For example, say that the following is the utility function of Shampoo A:
 - $U_A = \beta_1 \cdot Price + \beta_2 \cdot Availability + \beta_3 \cdot Organic$
 - Where β_1 , β_2 , β_3 are parameters we estimate from data.
- Step 4: Estimation
 - Based on our observations in our dataset, estimate parameters in our model (betas)
 which maximizes the likelihood of our observations.
- Step 5: Interpret
 - If $\beta_1 < 0$, people prefer cheaper shampoos.
 - If $\beta_3 > 0$, people prefer organic shampoos.

Biogeme

- Biogeme provides a unified framework for:
 - Defining parameters and utility functions
 - Abstraction in estimation
 - A catalog of discrete choice models
- It is developed and maintained by Prof.
 Michel Bierlaire, Ecole Polytechnique
 Fédérale de Lausanne, Switzerland.
- Website: https://biogeme.epfl.ch/

Tutorial

Colab link:

https://colab.research.google.com/drive/1a5wheL60vVIXnq_PxmmTL5Ky8ShyH3Ks?usp=sharing

Colab link (shortened):

https://tinyurl.com/486akz5a

Download the notebook from:

ComplexSocialSystemsCourse > labs > lab2