Lab 04/27/2021

Agenda

Stacking problem:

- Classical Planning (one demo, one problem)
- Probabilistic Planning (one demo)

Q-learning (RL)

One problem

Robotics:

- Mapping
- Localization

What we discussed previously

We used Answer Set Programming (ASP) to solve these problems.

Stacking problem

Stacking problem (classical planning)

Switch problem: Classical planning

Before, solving the stacking problem, let's look at a demonstration example

Switch problem: Classical planning

The main components of a planning problem are:

- A set of things that make up the world (the objects)
- The properties that are used to describe the state of those things (the predicates)
- A description of how the world behaves and the capabilities of the agent (the actions)
- A description of the initial situation (the initial state)
- A description of the desired situation (the goal)

Switch problem: Classical planning

Click on the link below:

http://editor.planning.domains/#read_session=jfespcjFc3

Recap: Representing states

World states are represented as sets of facts. We will also refer to facts as propositions.

holding(A) clear(B) on(B,C) onTable(C) State 1

Stacking problem (1): Classical planning

Stacking problem (2): Classical planning

Stacking problem (3): Classical planning

Stacking problem: Classical planning

Solver link: http://editor.planning.domains/

Incomplete code link:

https://github.com/FRI-IASA/teaching/tree/master/week12/classical_planning

Stacking problem

(Probabilistic planning)

Stacking problem: Probabilistic planning

Demo code link:

https://github.com/FRI-IASA/teaching/tree/master/week12/value_iteration

Reinforcement Learning (q-learning)

Recap: Reinforcement Learning

A computational approach to learning from interaction

Maximize long-term reward

Multi-armed bandit

Consider the following learning problem. You are faced repeatedly with a choice among \mathbf{k} different options, or actions.

After each choice you receive a numerical reward.

Objective is to maximize the expected total reward over some time period:

Demo: http://iosband.github.io/2015/07/28/Beat-the-bandit.html

[Mnih et

[Zeng e

[Akkaya et a

Recap: Important concepts

Value V(s): Total amount of reward an agent can expect to accumulate over the future, starting from state **s**.

Q-Value Q(s,a): Total amount of reward an agent can expect to accumulate over the future, starting from state \mathbf{s} and taking action \mathbf{a} .

Policy (π): a policy is a mapping from perceived states of the environment to actions to be taken

Policy could be optimal, or suboptimal

Demo video

q-learning

```
Q-learning (off-policy TD control) for estimating \pi \approx \pi_*
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0
Initialize Q(s, a), for all s \in S^+, a \in A(s), arbitrarily except that Q(terminal, \cdot) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
       Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
       Take action A, observe R, S'
      Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]
      S \leftarrow S'
   until S is terminal
```

Exploration vs. exploitation

Q-learning

Cliff Environment

48 states

Q-learning Problem

https://colab.research.google.com/drive/1u2zNNDi8-45QhlMVHRPFDKcTBVgC8 EWP?usp=sharing

Mapping demo

Localization Demo

