Minimisation du problème de caractérisation multiple

J-M. Chantrein sous la direction de F.Lardeux F.Saubion

LERIA

04 Juillet 2014

Master 2 Intelligence décisionnelle

• Certaines bactéries sont responsables de pathologies sur une large gammme de culture économiquement importante.

- Certaines bactéries sont responsables de pathologies sur une large gammme de culture économiquement importante.
- Ces pathologies induisent des pertes de rendement et diminuent la valeur marchande des semences.

- Certaines bactéries sont responsables de pathologies sur une large gammme de culture économiquement importante.
- Ces pathologies induisent des pertes de rendement et diminuent la valeur marchande des semences.

• Il regroupe toutes les souches pathogènes sur le haricot.

- Certaines bactéries sont responsables de pathologies sur une large gammme de culture économiquement importante.
- Ces pathologies induisent des pertes de rendement et diminuent la valeur marchande des semences.

- Il regroupe toutes les souches pathogènes sur le haricot.
- Il n'est pas endémique en Europe.

- Certaines bactéries sont responsables de pathologies sur une large gammme de culture économiquement importante.
- Ces pathologies induisent des pertes de rendement et diminuent la valeur marchande des semences.

- Il regroupe toutes les souches pathogènes sur le haricot.
- Il n'est pas endémique en Europe.
- Mais pour limiter son introduction, il est inscrit sur la liste des agents pathogènes de quarantaine.

- Certaines bactéries sont responsables de pathologies sur une large gammme de culture économiquement importante.
- Ces pathologies induisent des pertes de rendement et diminuent la valeur marchande des semences.

- Il regroupe toutes les souches pathogènes sur le haricot.
- Il n'est pas endémique en Europe.
- Mais pour limiter son introduction, il est inscrit sur la liste des agents pathogènes de quarantaine.
- La mise en quarantaine des containers de haricots induit de forts coûts de stockage.

Identification des souches bactériennes

• Obtenir un répertoire de gènes de virulence auprès de biologistes.

Identification des souches bactériennes

- Obtenir un répertoire de gènes de virulence auprès de biologistes.
- Chercher la plus petite combinaison de gène de virulence spécifique aux souches bactériennes.

Identification des souches bactériennes

- Obtenir un répertoire de gènes de virulence auprès de biologistes.
- Chercher la plus petite combinaison de gène de virulence spécifique aux souches bactériennes.
- Utiliser cette combinaison pour la mise au point d'un test PCR ^a Multiplex (Micropuce ADN).
- a. Polymerase Chain Reaction

PCR Multiplex

PCR Multiplex

PCR Multiplex

Remarque

 Nous cherchons la plus petite combinaison de gène de virulence afin de minimiser la taille de la puce et donc son coût.

Données du PCM

 Nous disposons d'un ensemble d'entités (souches bactériennes) regroupées en groupes (pathovars).

- Nous disposons d'un ensemble d'entités (souches bactériennes) regroupées en groupes (pathovars).
- Chaque entité est définie par la présence/absence de gènes (représentation booléenne).

- Nous disposons d'un ensemble d'entités (souches bactériennes) regroupées en groupes (pathovars).
- Chaque entité est définie par la présence/absence de gènes (représentation booléenne).
- Une entité peut être vue comme étant une interprétation booléenne sur les gènes.

- Nous disposons d'un ensemble d'entités (souches bactériennes) regroupées en groupes (pathovars).
- Chaque entité est définie par la présence/absence de gènes (représentation booléenne).
- Une entité peut être vue comme étant une interprétation booléenne sur les gènes.
- Les gènes sont donc considérés comme les variables du problème.

- Nous disposons d'un ensemble d'entités (souches bactériennes) regroupées en groupes (pathovars).
- Chaque entité est définie par la présence/absence de gènes (représentation booléenne).
- Une entité peut être vue comme étant une interprétation booléenne sur les gènes.
- Les gènes sont donc considérés comme les variables du problème.
- Chaque groupe fournit une table de vérité partielle d'une fonction booléenne dont l'interprétation est vraie pour le groupe en question et fausse pour tous les autres.

Souches	Croupes	(Gène	S
Souches	Groupes	а	b	С
e_1	σ1	0	0	0
e_2	g ₁	0	0	1
<i>e</i> ₃	g ₂	1	1	1
e_4	σ.	1	1	0
<i>e</i> ₅	g 3	0	1	0

Groupes	Gènes		
Groupes	a	b	С
g ₁	0	0	0
	0	0	1
g ₂	1	1	1
σ-	1	1	0
5 3	0	1	0
		$ \begin{array}{c c} Groupes & a \\ g_1 & 0 \\ \hline 0 & 0 \\ g_2 & 1 \\ g_3 & 1 \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Une caractérisation de taille k = n est trivial :

•
$$g_1: (\neg a \land \neg b \land \neg c) \lor (\neg a \land \neg b \land c)$$

Groupos	Gènes			
Groupes	а	Ь	С	
g ₁	0	0	0	
	0	0	1	
g ₂	1	1	1	
σ-	1	1	0	
5 3	0	1	0	
		$ \begin{array}{c c} Groupes & a \\ g_1 & 0 \\ \hline g_2 & 1 \\ g_3 & 1 \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Une caractérisation de taille k = n est trivial :

•
$$g_1: (\neg a \land \neg b \land \neg c) \lor (\neg a \land \neg b \land c)$$

• $g_2: a \wedge b \wedge c$

Souches	Groupes	Gènes			
Souches	Groupes	а	Ь	С	
e_1	g ₁	0	0	0	
e_2		0	0	1	
<i>e</i> ₃	g ₂	1	1	1	
e_4	σ-	1	1	0	
<i>e</i> ₅	g 3	0	1	0	

Une caractérisation de taille k = n est trivial :

•
$$g_1: (\neg a \land \neg b \land \neg c) \lor (\neg a \land \neg b \land c)$$

• $g_2: a \wedge b \wedge c$

•
$$g_3$$
:
 $(a \land b \land \neg c) \lor (\neg a \land b \land \neg c)$

Souches	Croupos	(Gène	S
Souches	Groupes	а	Ь	С
e_1	σ,	0	0	0
e_2	g 1	0	0	1
<i>e</i> ₃	g ₂	1	1	1
e ₄	σ _o	1	1	0
<i>e</i> ₅	g 3	0	1	0

Résolution pour k=2

Il nous faut parcourir au maximum C_3^2 combinaisons :

Souches	Croupos	(Gène	S
Souches	Groupes	а	Ь	С
e_1	σ,	0	0	0
e_2	g 1	0	0	1
<i>e</i> ₃	g ₂	1	1	1
e ₄	σ _o	1	1	0
<i>e</i> ₅	g 3	0	1	0

Résolution pour k=2

Il nous faut parcourir au maximum C_3^2 combinaisons :

- $\bullet \ \{a,b\}$
- {b, c}

Souches G	Croupos	Gènes			
Souches	Groupes	а	Ь	С	
e_1	σ,	0	0	0	
e_2	g 1	0	0	1	
<i>e</i> ₃	g ₂	1	1	1	
e ₄	σ _o	1	1	0	
<i>e</i> ₅	g 3	0	1	0	

Résolution pour k=2

Il nous faut parcourir au maximum C_3^2 combinaisons :

- {a, b}
- {*b*, *c*}
- \bullet $\{a,c\}$

Souches	Groupes	(Gène	S
Jouches	Groupes	а	b	С
e_1	σ.	0	0	0
e_2	g 1	0	0	1
<i>e</i> ₃	g ₂	1	1	1
<i>e</i> ₄	σ-	1	1	0
<i>e</i> ₅	g 3	0	1	0

Résolution pour k=2

Combinaisons $\{a, b\}$:

 e1(a) ≠ e3(a)
 ⇒ On passe à l'entité suivante.

Souches	Groupes	(Gène	S
Jouches	Groupes	а	b	С
e_1	σ.	0	0	0
e_2	g 1	0	0	1
<i>e</i> ₃	g ₂	1	1	1
<i>e</i> ₄	σ-	1	1	0
<i>e</i> ₅	g 3	0	1	0

Résolution pour k=2

Combinaison $\{a, b\}$:

 e1(a) ≠ e4(a)
 ⇒ On passe à l'entité suivante.

Souches	Groupes	(Gène	S
Jouches	Groupes	а	b	С
e_1	σ.	0	0	0
e_2	g 1	0	0	1
<i>e</i> ₃	g ₂	1	1	1
<i>e</i> ₄	σ-	1	1	0
<i>e</i> ₅	g 3	0	1	0

Résolution pour k=2

Combinaison $\{a, b\}$:

e1(a) = e5(a)
⇒ Identique sur le gène
a, on doit observer le gène b.

Souches	Groupes	(Gène	S
Jouches	Groupes	а	b	С
e_1	σ.	0	0	0
e_2	g 1	0	0	1
<i>e</i> ₃	g ₂	1	1	1
<i>e</i> ₄	~	1	1	0
<i>e</i> ₅	g 3	0	1	0

Résolution pour k=2

Combinaison $\{a, b\}$:

e1(b) ≠ e5(b)
 ⇒ Nous devons
 maintenant observer e2.

Souches	ouches Groupes	Gènes			
Jouches	Groupes	а	b	С	
e_1	σ.	0	0	0	
e_2	g 1	0	0	1	
<i>e</i> ₃	g ₂	1	1	1	
<i>e</i> ₄	σ-	1	1	0	
<i>e</i> ₅	g 3	0	1	0	

Résolution pour k=2

Combinaison $\{a, b\}$:

 e2(a) ≠ e3(a)
 ⇒ On passe à l'entité suivante.

Souches	Groupes	Gènes		S
		а	b	С
e_1	g ₁	0	0	0
e_2		0	0	1
<i>e</i> ₃	g ₂	1	1	1
<i>e</i> ₄	g 3	1	1	0
<i>e</i> ₅		0	1	0

Résolution pour k=2

Combinaison $\{a, b\}$:

 e2(a) ≠ e4(a)
 ⇒ On passe à l'entité suivante.

Souches	Groupes	Gènes		S
		а	b	С
e_1	g ₁	0	0	0
e_2		0	0	1
<i>e</i> ₃	g ₂	1	1	1
e ₄	g 3	1	1	0
<i>e</i> ₅		0	1	0

Résolution pour k=2

Combinaison $\{a, b\}$:

e2(a) = e5(a)
⇒ Identique sur le gène
a, on doit observer le gène b.

Groupes	Gènes		S
	а	b	С
g ₁	0	0	0
	0	0	1
g ₂	1	1	1
g 3	1	1	0
	0	1	0
	g ₁	Groupes $\begin{array}{c c} g_1 & 0 \\ \hline g_2 & 1 \\ \hline g_3 & 1 \\ \hline \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Résolution pour k=2

Combinaison $\{a, b\}$:

e2(b) ≠ e5(b)
 ⇒ La combinaison {a, b}
 permet de caractériser g1
 des autres groupes.

Souches	Groupes	Gènes		
		а	b	С
e_1	g ₁	0	0	0
e_2		0	0	1
<i>e</i> ₃	g ₂	1	1	1
<i>e</i> ₄	g 3	1	1	0
<i>e</i> ₅		0	1	0

Résolution pour k=2

Combinaison $\{a, b\}$:

- e2(b) ≠ e5(b)
 ⇒ La combinaison {a, b}
 permet de caractériser g1
 des autres groupes.
- Nous devons maintenant observer g2 vis à vis des autres groupes.

Souches	Groupes	Gènes		
		а	b	С
e_1	g ₁	0	0	0
e_2		0	0	1
<i>e</i> ₃	g ₂	1	1	1
<i>e</i> ₄	g 3	1	1	0
<i>e</i> ₅		0	1	0

Résolution pour k=2

Combinaison $\{a, b\}$:

e3(a) = e4(a)
⇒ Identique sur le gène
a, on doit observer le gène b.

Souches	Groupes	Gènes		
	Groupes	a b	С	
e_1	g ₁	0	0	0
e_2		0	0	1
<i>e</i> ₃	g ₂	1	1	1
<i>e</i> ₄	g 3	1	1	0
<i>e</i> ₅		0	1	0

Résolution pour k=2

Combinaison $\{a, b\}$:

• e3(b) = e4(b) \Rightarrow Identique sur le gène b

Souches	Groupos	Gènes		
	Groupes	а	b	С
e_1	g ₁	0	0	0
e_2		0	0	1
e ₃	g ₂	1	1	1
e ₄		1	1	0
<i>e</i> ₅	g 3	0	1	0

Résolution pour k=2

Combinaison $\{a, b\}$:

- e3(b) = e4(b) \Rightarrow Identique sur le gène b
- Échec de la caractérisation avec la combinaison {a, b}.

Souches	Groupes	Gènes		
Jouches	Groupes	а	b	С
e_1	g ₁	0	0	0
e_2		0	0	1
<i>e</i> ₃	g ₂	1	1	1
e_4	~	1	1	0
<i>e</i> ₅	g 3	0	1	0

Résolution pour k=2

Combinaison $\{b, c\}$:

e1(b) ≠ e3(b)
 ⇒ On passe à l'entité suivante.

Souches	Groupes	Gènes		
Jouches	Groupes	a b	b	С
e_1	g ₁	0	0	0
e_2		0	0	1
<i>e</i> ₃	g ₂	1	1	1
e_4	g 3	1	1	0
<i>e</i> ₅		0	1	0

Résolution pour k=2

Combinaison $\{b, c\}$:

 e1(b) ≠ e4(b)
 ⇒ On passe à l'entité suivante.

Souches	Groupes	(S	
Jouches	Groupes	a	b	С
e_1	σ,	0	0	0
e_2	g ₁	0	0	1
<i>e</i> ₃	g ₂	1	1	1
<i>e</i> ₄	g 3	1	1	0
<i>e</i> ₅		0	1	0

Résolution pour k=2

Combinaison $\{b, c\}$:

e1(b) ≠ e5(b)
 ⇒ Nous devons
 maintenant observer e2.

Souches	Groupes	Gènes		
Jouches	Groupes	a b	b	С
e_1	g ₁	0	0	0
e_2		0	0	1
<i>e</i> ₃	g ₂	1	1	1
e_4		1	1	0
<i>e</i> ₅	g 3	0	1	0

Résolution pour k=2

Combinaison $\{b, c\}$:

e2(b) ≠ e3(b)
 ⇒ On passe à l'entité suivante.

Souches	Groupes	Gènes		
Jouches	Groupes	a b	b	С
e_1	σ.	0	0	0
e_2	g 1	0	0	1
<i>e</i> ₃	g ₂	1	1	1
e_4	g 3	1	1	0
<i>e</i> ₅		0	1	0

Résolution pour k=2

Combinaison $\{b, c\}$:

e2(b) ≠ e4(b)
 ⇒ On passe à l'entité suivante.

Souches	Groupes	Gènes		s
	Groupes	a	a b	
e_1	g ₁	0	0	0
e_2		0	0	1
<i>e</i> ₃	g ₂	1	1	1
e ₄	σ-	1	1	0
<i>e</i> ₅	g 3	0	1	0

Résolution pour k=2

Combinaison $\{b, c\}$:

e2(b) ≠ e5(b)
 ⇒ La combinaison {b, c}
 permet de caractériser g1
 des autres groupes.

Souches	Groupes	(:S	
Jouches	Groupes	а	b	С
e_1	σ.	0	0	0
e_2	g ₁	0	0	1
<i>e</i> ₃	g ₂	1	1	1
<i>e</i> ₄	σ-	1	1	0
<i>e</i> ₅	g 3	0	1	0

Résolution pour k=2

Combinaison $\{b, c\}$:

- e2(b) ≠ e5(b)
 ⇒ La combinaison {b, c}
 permet de caractériser g1
 des autres groupes.
- Nous devons maintenant observer g2 vis à vis des autres groupes.

Souches	Groupes	Gènes		
	Groupes	a	b	С
e_1	g ₁	0	0	0
e_2		0	0	1
<i>e</i> ₃	g ₂	1	1	1
e_4		1	1	0
<i>e</i> ₅	g 3	0	1	0

Résolution pour k=2

Combinaison $\{b, c\}$:

e3(b) = e4(b)
⇒ Identique sur le gène
b, on doit observer le gène c.

Souches	Groupes	(S	
Jouches	Groupes	а	b	С
e_1	g ₁	0	0	0
e_2		0	0	1
<i>e</i> ₃	g ₂	1	1	1
e_4	g 3	1	1	0
<i>e</i> ₅		0	1	0

Résolution pour k=2

Combinaison $\{b, c\}$:

 e3(c) ≠ e4(c)
 ⇒ On passe à l'entité suivante.

Souches	Groupes	Gènes		
	Groupes	а	b	С
e_1	g ₁	0	0	0
e_2		0	0	1
<i>e</i> ₃	g ₂	1	1	1
e_4		1	1	0
<i>e</i> ₅	g 3	0	1	0

Résolution pour k=2

Combinaison $\{b, c\}$:

e3(b) = e5(b)
⇒ Identique sur le gène
b, on doit observer le gène c.

Souches Gr	Groupes	Gènes		
	Groupes	a	b	С
e_1	g ₁	0	0	0
e_2		0	0	1
<i>e</i> ₃	g ₂	1	1	1
<i>e</i> ₄		1	1	0
<i>e</i> ₅	g 3	0	1	0

Résolution pour k=2

Combinaison $\{b, c\}$:

• $e3(c) \neq e5(c)$ \Rightarrow La combinaison $\{b, c\}$ permet de caractériser g2des autres groupes.

Souches	Groupes		Gène	S
Jouches	Groupes	a	b	С
e_1	σ.	0	0	0
e_2	g ₁	0	0	1
<i>e</i> ₃	g ₂	1	1	1
<i>e</i> ₄	g _o	1	1	0
<i>e</i> ₅	g 3	0	1	0

Résolution pour k=2

Combinaison $\{b, c\}$:

- e3(c) ≠ e5(c)
 ⇒ La combinaison {b, c}
 permet de caractériser g2
 des autres groupes.
- ⇒ La combinaison {b, c}
 permet de caractériser
 cette instance.

Souches	Groupes	(Gène	:S
Souches	Groupes	а	Ь	С
e_1	σ,	0	0	0
e_2	g ₁	0	0	1
<i>e</i> ₃	g ₂	1	1	1
e ₄	σ _o	1	1	0
<i>e</i> ₅	g 3	0	1	0

Formules de caractérisation de l'instance :

•
$$g_1: (\neg b \wedge \neg c) \vee (\neg b \wedge c)$$

Souches	Groupes	(Gène	:S
Souches	Groupes	а	Ь	С
e_1	σ,	0	0	0
e_2	g ₁	0	0	1
<i>e</i> ₃	g ₂	1	1	1
e ₄	σ _o	1	1	0
<i>e</i> ₅	g 3	0	1	0

Formules de caractérisation de l'instance :

•
$$g_1: (\neg b \wedge \neg c) \vee (\neg b \wedge c)$$

Souches	Croupes		Gène	S
Souches	Groupes	а	Ь	С
e_1	σ,	0	0	0
e_2	g ₁	0	0	1
<i>e</i> ₃	g ₂	1	1	1
e_4	σ-	1	1	0
<i>e</i> ₅	g 3	0	1	0

Formules de caractérisation de l'instance :

•
$$g_1: (\neg b \wedge \neg c) \vee (\neg b \wedge c)$$

•
$$g_2: b \wedge c$$

•
$$g_3:b\wedge \neg c$$

Minimisation du problème de caractérisation multiple(MIN-PCM)

• Consiste à chercher la caractérisation de taille *k* contenant le moins de variables.

Minimisation du problème de caractérisation multiple(MIN-PCM)

- Consiste à chercher la caractérisation de taille *k* contenant le moins de variables.
- Permet de minimiser la taille du PCR-Multiplex et donc son coût.

Minimisation du problème de caractérisation multiple(MIN-PCM)

- Consiste à chercher la caractérisation de taille *k* contenant le moins de variables.
- Permet de minimiser la taille du PCR-Multiplex et donc son coût.
- Lors de la recherche, nous essayons de caractériser à partir de k=n-1 jusqu'à ce qu' il n 'y ai plus de caractérisation possible.

Complexité

• Le PCM appartient à la classe de complexité W[2]-complet.

Complexité

- Le PCM appartient à la classe de complexité W[2]-complet.
- MIN-PCM appartient à la classe de complexité W[2]-difficile.

Complexité

- Le PCM appartient à la classe de complexité W[2]-complet.
- MIN-PCM appartient à la classe de complexité W[2]-difficile.
- La seule possibilité d'améliorer significativement la résolution complète est d'utiliser des heuristiques sur les choix de variables(i.e. : Quels sont les gènes à examiner en priorités?)

Plan,

- Définition d'une instance difficile
- Heuristiques pour une recherche exacte
- Recherche approchée
- Conclusions et perspective

Définition d'une instance difficile Heuristiques pour une recherche exact Recherche approchée Conclusions et perspective

Instances	Entités	Gènes	Borne min connu
s3836-0	1000	1000	16
rch10	173	98	10

Instances	Entités	Gènes	Borne min connu
s3836-0	1000	1000	16
rch10	173	98	10

Instances	Entités	Gènes	Borne min connu
s3836-0	1000	1000	16
rch10	173	98	10

Masque et ratio d'un groupe

Soit le groupe suivant :

Gènes Entités	g0	g1	g2	g3
e1	1	0	1	1
e2	1	0	1	0
e3	1	0	0	0
e4	1	0	1	0
e5	1	0	1	1
Masque	1	0	0.8	0.4

Masque et ratio d'un groupe

Soit le groupe suivant :

Gènes Entités	g0	g1	g2	g3
e1	1	0	1	1
e2	1	0	1	0
e3	1	0	0	0
e4	1	0	1	0
e5	1	0	1	1
Masque	1	0	0.8	0.4

Le ratio r de ce groupe est r = 2/4 soit r = 0.5

Masque et ratio d'un groupe

Soit le groupe suivant :

Gènes Entités	g0	g1	g2	g3
e1	1	0	1	1
e2	1	0	1	0
e3	1	0	0	0
e4	1	0	1	0
e5	1	0	1	1
Masque	1	0	0.8	0.4

Le ratio r de ce groupe est r = 2/4 soit r = 0.5

• Les instances réelles(resp. aléatoire) sont constituées de groupes ayant un fort(resp. faible) ratio.

Image d'une instance et taux de similarité ${\mathcal T}$ des gènes

Soit l'image suivante :

Gènes Groupes	g0	g1	g2	g3
Masque de g1	0.9	0.1	0.5	0.6
Masque de g2	0.9	0.1	0.5	0.6
Masque de g3	0.9	0.1	0.5	0.6
\mathcal{T}	0.8	0.8	0	0.2

Image d'une instance et taux de similarité ${\mathcal T}$ des gènes

Soit l'image suivante :

Gènes Groupes	g0	g1	g2	g3
Masque de g1	0.9	0.1	0.5	0.6
Masque de g2	0.9	0.1	0.5	0.6
Masque de g3	0.9	0.1	0.5	0.6
\mathcal{T}	0.8	0.8	0	0.2

• Plus la moyenne des taux \mathcal{T} est élevée, plus l'instance sera difficile à résoudre.

Image d'une instance et taux de similarité ${\mathcal T}$ des gènes

Soit l'image suivante :

Gènes Groupes	g0	g1	g2	g3
Masque de g1	0.9	0.1	0.5	0.6
Masque de g2	0.9	0.1	0.5	0.6
Masque de g3	0.9	0.1	0.5	0.6
\mathcal{T}	0.8	0.8	0	0.2

- Plus la moyenne des taux \mathcal{T} est élevée, plus l'instance sera difficile à résoudre.
- Les instances réelles présentent une moyenne de taux \mathcal{T} beaucoup plus élevée que les instances aléatoires(i.e : les groupes sont fortement similaires).

Heuristiques mises en œuvre sur une instance réelle

Heuristiques mises en œuvre sur une instance réelle

• Observons maintenant les temps d'éxécutions.

Heuristiques mises en œuvre sur une instance réelle

Recherche approchée

ullet Roulette proportionelle (non adaptative) favorisant la sélection des gènes présentant de faible taux de similarité ${\cal T}$

Recherche approchée

• Roulette proportionelle (non adaptative) favorisant la sélection des gènes présentant de faible taux de similarité ${\cal T}$

Résultats sur instance réels

Instances	Entités	Gènes	B. Min	Roulette proportionelle	
				k	temps
rch8	56	27	9	9	0.031
raphv	108	68	6	6	0.657
raphy	112	70	6	6	0.873
rarep	112	72	12	14	36.627
rch10	112	86	10	12	65.615

Conclusions

• Définitions de critères permettant de déterminer la difficulté d'une instance.

Conclusions

- Définitions de critères permettant de déterminer la difficulté d'une instance.
- Mise en place d'heuristiques permettant des résolutions beaucoup plus efficaces sur des instances réelles.

Conclusions

- Définitions de critères permettant de déterminer la difficulté d'une instance.
- Mise en place d'heuristiques permettant des résolutions beaucoup plus efficaces sur des instances réelles.
- Mise en place d'une recherche approchée fournissant d'excellents résultats.

Définition d'une instance difficile Heuristiques pour une recherche exact Recherche approchée Conclusions et perspective

Perspectives

• Améliorer la recherche approchée.

Perspectives

- Améliorer la recherche approchée.
- Développer un générateur d'instance simulant des instances réelles.

Perspectives

- Améliorer la recherche approchée.
- Développer un générateur d'instance simulant des instances réelles.
- Travailler sur des instances réelles issues d'autres disciplines que celle de la biologie végétale (médecine, ...).

Introduction Contributions Définition d'une instance difficile Heuristiques pour une recherche exact Recherche approchée Conclusions et perspective

Merci pour votre attention.