Applied Machine Learning: Tutorial Number 2

School of Informatics, University of Edinburgh Instructors: Oisin Mac Aodha and Siddharth N.

September 2022

1. Consider using logistic regression for a two-class classification problem in two dimensions:

$$p(y = 1 | \mathbf{x}) = \sigma(w_0 + w_1 x_1 + w_2 x_2)$$

Here σ denotes the logistic (or sigmoid) function $\sigma(z) = 1/(1 + \exp(-z))$, y is the target which takes on values of 0 or 1, $\boldsymbol{x} = (x_1, x_2)$ is a vector in the two-dimensional input space, and $\boldsymbol{w} = (w_0, w_1, w_2)$ are the parameters of the logistic regressor.

- (a) Consider a weight vector $\mathbf{w}_A = (-1, 1, 0)$. Sketch the decision boundary in \mathbf{x} space corresponding to this weight vector, and mark which regions are classified with labels 0 and 1.
- (b) Consider a second weight vector $\mathbf{w}_B = (5, -5, 0)$. Again sketch the decision boundary in \mathbf{x} space corresponding to this weight vector, and mark which regions are classified with labels 0 and 1.
- (c) Plot $p(y=1|\mathbf{x})$ as a function of x_1 for both \mathbf{w}_A and \mathbf{w}_B , and comment on any differences between the two.
- 2. Consider the logistic regression setup in the previous questions, but with a new weight vector $\mathbf{w} = (0, -1, 1)$. Consider the following data set:

Instance	x_1	x_2	Class
1	0.5	-0.35	_
2	-0.1	0.1	_
3	-1.2	1.0	+

- (a) Compute the gradient of the negative log likelihood of the logistic regression model for this data set.
- (b) Suppose that we take a single step of gradient descent with step size $\eta = 3.0$. What are the updated values for the model weights?
- (c) Do the new weights do a better job of classifying the three training instances above?

It will help you to remember the following facts:

• The negative log-likelihood in logistic regression is

$$\begin{aligned} \text{NLL}(\boldsymbol{w}) &= -\frac{1}{N} \sum_{i=1}^{N} \log p(y = y_i | \boldsymbol{x}_i; \boldsymbol{w}) \\ &= -\frac{1}{N} \sum_{i=1}^{N} \left[y_i \log p(y = 1 | \boldsymbol{x}_i; \boldsymbol{w}) + (1 - y_i) \log p(y = 0 | \boldsymbol{x}_i; \boldsymbol{w}) \right] \end{aligned}$$

• The partial derivative of the negative log-likelihood with respect to a parameter w_d is

$$\frac{\partial \text{NLL}}{\partial w_d} = \frac{1}{N} \sum_{i=1}^{N} (\sigma(\boldsymbol{w}^{\top} \boldsymbol{x}_i) - y_i) x_{id}$$

• To minimize a function NLL(w), we use the gradient descent rule, which is

$$\boldsymbol{w}' \leftarrow \boldsymbol{w} - \eta \nabla \text{NLL}$$

- 3. You have a collection of 1000 nature photographs which were taken under many different conditions. All of the images are of size 300×300 pixels. You wish to develop a binary classifier that labels a photograph as to whether or not it depicts a sunny day on a beach. The images have been pre-processed in the following manner:
 - Each image $i \in \{1...1000\}$ is partitioned nine regions $R_{i,1}...R_{i,9}$. Each region is 100×100 pixels. The regions are arranged in a 3×3 grid, so that the region R_{i1} is the top-left corner of image i, the region R_{i2} is the top middle portion of the image, and so on.
 - For each region $R_{i,j}$, we compute the average hue^1 of pixels within the region $R_{i,j}$. The hue value is quantised into 7 discrete bins: "red", "orange", "yellow", "green", "blue", "indigo" and "violet".
 - (a) What features would you use to describe the data given the description above?
 - (b) How many features are there? Are they categorical, ordinal or numeric?
 - (c) What values can they take on?

 $^{^{1}}$ The *hue* is a scalar representation of color. It ranges from 0° to 360° . For example, colors with hues around 0° look red, hues around 120° look blue, and hues around 240° look green.