

Capítulo 6

Intervalos de Confiança

Texto baseado no livro:

Estatística Aplicada - Larson / Farber - Editora Pearson - 2010

- 6.1 Intervalos de confiança para a média (amostras grandes)
- 6.2 Intervalos de confiança para a média (amostras pequenas)
- 6.3 Intervalos de confiança para proporções populacionais
- 6.4 Intervalos de confiança para variância e desvio padrão

Seção 6.1

Intervalos de confiança para a média (amostras grandes)

Estimativa pontual

Um valor único estimado para um parâmetro populacional

A estimativa pontual menos tendenciosa de uma média populacional μ é a média amostral \bar{x}

Parâmetro de estimativa populacional	Com amostra estatística
Média: μ	$ar{x}$

Pesquisadores de mercado usam o número de frases por anúncio como medida de legibilidade de anúncios de revistas. A seguir, representamos uma amostra aleatória do número de frases encontrado em 50 anúncios. Encontre a estimativa pontual da média populacional μ. (Fonte: Journal of Advertising Research.)

```
9 20 18 16 9 9 11 13 22 16 5 18 6 6 5 12 25
17 23 7 10 9 10 10 5 11 18 18 9 9 17 13 11 7
14 6 11 12 11 6 12 14 11 9 18 12 12 17 11 20
```


A média amostral dos dados é

$$\bar{x} = \frac{\Sigma x}{n} = \frac{620}{50} = 12.4$$

Então, a estimativa pontual para a média do comprimento de todos os anúncios de revista é 12,4 frases.

Estimativa intervalar

Estimativa intervalar

Um intervalo, ou amplitude de valores, usado para estimar um parâmetro populacional

Qual é o nível de confiança que queremos ter para a estimativa intervalar conter a média populacional μ ?

Nível de confiança

escores z correspondentes.

Nível de confiança *c*

A probabilidade de que o intervalo estimado contenha

o parâmetro populacional

A área restante nas caudas é 1 – c.

Se o nível de confiança é 90%, isso significa que temos 90% de certeza que o intervalo contém a média populacional μ

Os escores z correspondentes são $\pm 1,645$.

Erro de amostragem

A diferença entre a estimativa pontual e o valor do parâmetro populacional real.

Para μ :

O erro de amostragem é a diferença $\bar{x} - \mu$ μ geralmente é desconhecido \bar{x} varia de amostra para amostra

Margem de erro

Margem de erro

Maior distância possível entre o ponto de estimativa e o valor do parâmetro que está estimando para um dado nível de confiança, *c*, *d*enotado por *E*

$$E = z_c \sigma_{\bar{x}} = z_c \frac{\sigma}{\sqrt{n}}$$
 Quando $n \ge 30$, o desvio padrão da amostra, s , pode ser usado para σ .

Às vezes chamado de erro máximo ou tolerância de erro

Exemplo: encontrando a margem de erro

Use os dados das propagandas das revistas e um nível de confiança de 95% para encontrar a margem de erro do número de frases em todos os anúncios de revistas. Assuma que o desvio padrão da amostra seja aproximadamente 5,0.

Solução: encontrando a margem de erro

Primeiro, encontre os valores críticos

95% da área sob a curva normal padrão cai dentro de 1,96 desvio padrão da média. (Você pode aproximar a distribuição das médias amostrais com uma curva normal pelo Teorema do Limite Central, já que $n \ge 30$.)

$$E = z_c \frac{\sigma}{\sqrt{n}} \approx z_c \frac{s}{\sqrt{n}}$$

$$\approx 1.96 \cdot \frac{5.0}{\sqrt{50}}$$

$$\approx 1.4$$

Você não conhece σ , mas já que $n \ge 30$, você pode usar s no lugar de σ .

Você tem 95% de confiança que a margem de erro para a média populacional é de aproximadamente 1,4 frase.

Um interval de confiança para a media populacional μ é:

$$\bar{x} - z_c \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z_c \frac{\sigma}{\sqrt{n}}$$

A probabilidade de que o interval contenha a verdadeira media μ é c (nível de confiança).

Construindo intervalos de confiança para µ

Encontrando um intervalo de confiança para a média populacional ($n \ge 30$ ou σ é conhecido como uma população normalmente distribuída).

Em palavras

- 1. Encontre a estatística amostral n e \bar{x} .
- 2. Especifique σ , se for conhecido. Caso contrário, encontre o desvio padrão amostral s e use-o como uma estimativa para σ .

Em símbolos

$$\bar{x} = \frac{\sum x}{n}$$

$$s = \sqrt{\frac{\Sigma(x - \bar{x})^2}{n - 1}}$$

Em palavras

Em símbolos

3. Encontre o valor crítico z_c que corresponda ao nível de confiança dado.

Use a tabela normal padrão

4. Encontre a margem de erro.

$$E = z_c \frac{\sigma}{\sqrt{n}}$$

5. Encontre os extremos esquerdo e direito e forme o intervalo de confiança.

Extremo esquerdo: $\bar{x} - E$

Extremo direito: $\bar{x} + E$

Intervalo: $\bar{x} - E < \mu < \bar{x} + E$

Exemplo: construindo um intervalo de confiança

Construa um intervalo de confiança de 95% para a média do número de frases em todos os anúncios de revista.

Solução: Lembre-se: $\bar{x} = 12.4$ e E = 1,4

Extremo esquerdo: Extremo direito:

$$\bar{x} - E \\
= 12.4 - 1.4 \\
= 11.0$$

$$\bar{x} + E$$
= 12.4 + 1.4
= 13.8

1
 11,0 < μ < 13,8

Solução: construindo um intervalo de confiança

$$11.0 < \mu < 13.8$$

Com 95% de confiança, você pode dizer que a média populacional do número de frases está entre 11,0 e 13,8.

Exemplo: construindo um intervalo de confiança, σ conhecido

O diretor de admissão de uma faculdade deseja estimar a idade média de todos os estudantes matriculados. Em uma amostra aleatória de 20 estudantes, a idade média encontrada é de 22,9 anos. Baseado em estudos anteriores, o desvio padrão conhecido é 1,5 ano e a população é normalmente distribuída. Construa um intervalo de confiança de 90% para a média de idade da população.

Solução: construindo um intervalo de confiança, σ conhecido

Primeiro encontre os valores críticos

Margem de erro:

$$E = z_c \frac{\sigma}{\sqrt{n}} = 1.645 \cdot \frac{1.5}{\sqrt{20}} \approx 0.6$$

Intervalo de confiança:

Extremo esquerdo: Extremo direito:

$$\bar{x} - E$$
= 22.9 - 0.6
= 22.3

$$\bar{x} + E$$
= 22.9 + 0.6
= 23.5

$$22,3 < \mu < 23,5$$

$$22,3 < \mu < 23,5$$

Com 90% de confiança, você pode dizer que a idade média de todos os estudantes está entre 22,3 e 23,5 anos.

Lembre-se de que µ é um número fixo

Incorreto: "Existe uma probabilidade de 90% de que a média real esteja no intervalo (22,3, 23,5)."

Correto: "Se um número grande de amostras é coletado e um intervalo de confiança é criado para cada uma, aproximadamente 90% desses intervalos conterão µ.

Tamanho da amostra

Dado um nível de confiança c e uma margem de erro E, o tamanho amostral mínimo n necessário para estimar a média populacional μ é

$$n = \left(\frac{z_c \sigma}{E}\right)^2$$

Se σ é desconhecido, você pode estimar seu valor usando s caso tenha uma amostra preliminar de pelo menos 30 membros.

Exemplo: tamanho de amostra

Você quer estimar o número médio de frases em anúncios de revista. Quantos anúncios de revista devem ser incluídos na amostra se você quer estar 95% confiante de que a média amostral esteja dentro de <u>uma frase</u> da média populacional? Assuma que o desvio padrão é aproximadamente 5,0.

Solução: tamanho de amostra

Primeiro encontre os valores críticos

$$z_c = 1,96$$

$$z_c = 1.96$$
 $\sigma \approx s = 5.0$ $E = 1$

$$n = \left(\frac{z_c \sigma}{E}\right)^2 \approx \left(\frac{1.96 \cdot 5.0}{1}\right)^2 = 96.04$$

Quando necessário, arredonde para cima para obter um número inteiro.

Você deve incluir **pelo menos 97** anúncios de revistas em sua amostra.

Seção 6.2:

Intervalos de confiança para a média (amostras pequenas)

Interpretar a distribuição t e usar uma tabela de distribuição t

Construir intervalos de confiança quando n < 30, a população é normalmente distribuída e σ é desconhecido

A distribuição t

Quando o desvio padrão da população é desconhecido, o tamanho da amostra é menor que 30, e a variável x é normalmente distribuída; ela segue uma **distribuição** t (t de Student)

$$t = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}}$$

Valores críticos de t são denotados por t_c

Propriedades da distribuição t

1. A distribuição t tem formato de sino e é simétrica em relação à média.

A distribuição t é uma família de curvas, cada uma determinada por um parâmetro chamado de graus de liberdade. Os **graus de liberdade** são o número de escolhas livres deixadas depois que uma amostra estatística, como \bar{x} , é calculada. Quando usamos a distribuição t para estimar a média da população, os graus de liberdade são iguais ao tamanho da amostra menos um.

gl = n - 1 Graus de liberdade

- 2. A área total sob a curva t é 1 ou 100%.
- 3. A média, a mediana e a moda da distribuição *t* são iguais a zero.
- 4. Conforme os graus de liberdade aumentam, a distribuição *t* aproxima-se da distribuição normal. Depois de 30 g.l., a distribuição *t* está muito próxima da distribuição normal padrão z.

As caudas na distribuição *t* são "mais grossas" que aquelas da distribuição normal padrão.

Exemplo: valores críticos de t

Encontre o valor crítico de t_c para uma confiança de 95% quando o tamanho da amostra é 15.

Solução:
$$gl = n - 1 = 15 - 1 = 14$$

	Nível de					
	confiança, c	0,50	0,80	0,90	0,95	0,98
	Uma cauda, α	0,25	0,10	0,05	0,025	0,01
g.l.	Duas caudas,α	0,50	0,20	0,10	0,05	0,02
1		1,000	3,078	6,314	12,706	31,821
2		0,816	1,886	2,920	4,303	6,965
3		0,765	1,638	2,353	3,182	4,541
12		0,695	1,356	1,782	2,179	2,681
13		0,694	1,350	1,771	2,160	2,650
14		0,692	1,345	1,761	2,145	2,624
15		0,691	1,341	1,753	2,131	2,602
16		0,690	1,337	1,746	2,120	2,583
28		0,683	1,313	1,701	2,048	2,467
29		0,683	1,311	1,699	2,045	2,462
∞		0,674	1,282	1,645	1,960	2,326

Solução: valores críticos de t

95% da área sob a curva da distribuição t com 14 graus de liberdade está entre $t = \pm 2,145$.

Um intervalo de confiança para a média populacional μ

$$\bar{x} - t_c \frac{s}{\sqrt{n}} < \mu < \bar{x} + t_c \frac{s}{\sqrt{n}}$$

A probabilidade de que o intervalo de confiança contenha μ é c

Intervalos de confiança e a distribuição t

Em palavras

1. Identifique as amostras estatísticas n, \bar{x} e s.

2. Identifique os graus de liberdade, o nível de confiança c e o valor crítico t_c .

3. Encontre a margem de erro *E*.

Em símbolos

$$\bar{x} = \frac{\sum x}{n}$$
 $s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$

$$gl = n - 1$$

$$E = t_c \frac{s}{\sqrt{n}}$$

Em palavrasEm símbolos4. Encontre os extremos
esquerdo e direito e forme
um intervalo de
confiança.Extremo esquerdo: $\bar{x} - E$ Extremo direito: $\bar{x} + E$ Intervalo: $\bar{x} - E < \mu < \bar{x} + E$

Você seleciona aleatoriamente 16 cafeterias e mede a temperatura do café vendido em cada uma delas. A média de temperatura da amostra é $162,0^{\circ}F$ ($\approx 72^{\circ}C$) com desvio padrão da amostra de $10,0^{\circ}F$. Encontre um intervalo de confiança de 95% para a temperatura média. Assuma que as temperaturas são normalmente distribuídas.

Solução:

Use a distribuição t (n < 30, σ é desconhecido, temperaturas são normalmente distribuídas.)

Aqui: n = 16 ; $\bar{x} = 162$; s = 10 ; gl = 15

	Nível de					
	confiança, c	0,50	0,80	0,90	0,95	0,98
	Uma cauda, α	0,25	0,10	0,05	0,025	0,01
g.l.	Duas caudas,α	0,50	0,20	0,10	0,05	0,02
1		1,000	3,078	6,314	12,706	31,821
2		0,816	1,886	2,920	4,303	6,965
3		0,765	1,638	2,353	3,182	4,541
12		0,695	1,356	1,782	2,179	2,681
13		0,694	1,350	1,771	2,160	2,650
14		0,692	1,345	1,761	2,145	2,624
15		0,691	1,341	1,753	2,131	2,602
16		0,690	1,337	1,746	2,120	2,583
28		0,683	1,313	1,701	2,048	2,467
29		0,683	1,311	1,699	2,045	2,462
∞		0,674	1,282	1,645	1,960	2,326
		,	,	,	,	,

 $t_c = 2.131$

Margem de erro:

$$E = t_c \frac{s}{\sqrt{n}} = 2.131 \cdot \frac{10}{\sqrt{16}} \approx 5.3$$

Intervalo de confiança:

Extremo esquerdo:

$$\bar{x} - E$$
= 162 - 5.3
= 156.7

Extremo direito:

$$\bar{x} + E$$
= 162 + 5.3
= 167.3

$156,7 < \mu < 167,3$

Com 95% de confiança, você pode dizer que a temperatura média do café vendido está entre 156.7°F e 167.3°F (entre: $\approx 69^{\circ}\text{C}$ $e \approx 75^{\circ}\text{C}$).

Normal ou distribuição *t*?

Use a distribuição normal com

$$E = z_c \frac{\sigma}{\sqrt{n}}$$

Se σ for desconhecido, use s.

A população é distribuída normalmente, ou aproximadamente normal?

Não pode usar a distribuição normal ou a distribuição *t*.

Sim

 σ é conhecido?

Use a distribuição normal com

$$E = z_c \frac{\sigma}{\sqrt{n}}$$

Use a distribuição t com

Não

$$E = t_c \frac{s}{\sqrt{n}}$$

e gl = n - 1 grau de liberdade

Exemplo: normal ou distribuição t?

Você seleciona aleatoriamente 25 casas construídas recentemente. A média amostral do custo da construção é R\$ 181.000 e o desvio padrão da população é de R\$ 28.000. Assumindo que os custos com a construção são normalmente distribuídos, você deve usar a distribuição normal, a distribuição t ou nenhuma delas para construir um intervalo de confiança de 95% para a média populacional dos custos de construção? Explique seu raciocínio.

Solução:

Use a distribuição normal (a população é normalmente distribuída e o desvio padrão da população é conhecido).

Seção 6.3

Intervalos de confiança para proporções populacionais

Objetivos da Seção 6.3

Encontrar uma estimativa pontual para a proporção populacional

Construir um intervalo de confiança para uma proporção populacional

Determinar o tamanho mínimo da amostra quando estimamos uma proporção populacional

Estimativa pontual para população p

Proporção populacional

A probabilidade de **sucesso** em uma única tentativa de um experimento binomial

Denotado por **p**

Estimativa pontual para p

A proporção de sucessos em uma amostra Denotado por

$$\hat{p} = \frac{x}{n}$$

x – número de sucessos em um exemplo

n – número de exemplos

Leia como "p chapéu"

Parâmetro populacional	Parâmetro amostral calculado			
estimado				
Proporção: p	\hat{p}			

Estimativa pontual para q, a proporção das falhas

Denotado por: $\hat{q} = 1 - \hat{p}$

Leia como "q chapéu"

Exemplo: estimative pontual para p

Em uma pesquisa com 1.219 adultos nos EUA, 354 disseram que seu esporte favorito para assistir era o futebol americano. Encontre uma estimativa pontual para a proporção populacional de adultos que dizem que seu esporte favorito é o futebol. (*Adaptado de The Harris Poll.*)

Solução:
$$n = 1219$$
 e $x = 354$

$$\hat{p} = \frac{x}{n} = \frac{354}{1219} \approx 0.290402 \approx 29.0\%$$

Um intervalo de confiança para a proporção populacional p

$$\hat{p} - z_c \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

A probabilidade de que o intervalo de confiança contenha p é c

Construindo intervalos de confiança para p

Em palavras

Em símbolos

- 1. Identifique as estatísticas amostrais $n \in x$.
- 2. Encontre a estimativa pontual \hat{p}
- 3. Verifique se a distribuição amostral de \hat{p} pode ser aproximada por distribuição normal.
- 4. Encontre o valor crítico z_c que corresponda ao dado nível de confiança c.

$$\hat{p} = \frac{x}{n}$$

$$n\hat{p} \ge 5$$
, $n\hat{q} \ge 5$

Use a tabela normal padrão

Em palavras

Em símbolos

5. Encontre a margem de erro *E*.

$$E = z_c \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

6. Encontre os extremos esquerdo Extremo esquerdo: $\hat{p} - E$ e direito e forme o intervalo de confiança.

Extremo direito: $\hat{p} + E$

Intervalo:

$$\hat{p} - E$$

Exemplo: intervalo de confiança para *p*

Em uma pesquisa com 1.219 adultos, 354 disseram que seu esporte favorito para assistir era o futebol americano. Construa um intervalo de confiança de 95% para a proporção de adultos nos Estados Unidos que dizem que seu esporte favorito é o futebol americano.

Solução: Lembre-se: $\hat{p} \approx 0.290402$

$$\hat{q} = 1 - \hat{p} = 1 - 0.290402 = 0.709598$$

Verifique se a distribuição amostral de \hat{p} pode ser aproximada pela distribuição normal

$$n\hat{p} \approx 1219 \cdot 0.290402 \approx 354 > 5$$

$$n\hat{q} \approx 1219 \cdot 0.709598 \approx 865 > 5$$

Margem de erro:

$$E = z_c \sqrt{\frac{\hat{p}\hat{q}}{n}} \approx 1.96 \sqrt{\frac{(0.290402) \cdot (0.709598)}{1219}} \approx 0.025$$

Intervalo de confiança:

Extremo esquerdo: Extremo direito:

$$\hat{p} - E$$
 $\hat{p} + E$
= 0.29 - 0.025 = 0.29
= 0.265 + 0.025
= 0.315

$$0,265$$

Com 95% de confiança, você pode dizer que a proporção de adultos que dizem que o futebol americano é seu esporte favorito está entre 26,5% e 31,5%.

Tamanho da amostra

Dado um nível de confiança c e uma margem de erro E, o tamanho mínimo da amostra n necessário para estimar p é

 $n = \hat{p}\hat{q} \left(\frac{z_c}{E}\right)^2$

Essa fórmula assume que você tem uma estimativa para \hat{p} e \hat{q}

Se não tiver a estimativa, use: $\hat{p} = 0.5$ e $\hat{q} = 0.5$

Exemplo: tamanho da amostra

Você está analisando uma campanha política e quer estimar, com 95% de confiança, a proporção dos eleitores registrados que irão votar no seu candidato. Sua estimativa deve ter uma margem de erro de 3% da população real. Encontre o número da amostragem mínimo necessário se:

1. Não há estimativas preliminares disponíveis.

Solução:

Porque você não tem uma estimativa preliminar para \hat{p} use $\hat{p}=0.5$ e $\hat{q}=0.5$

$$c = 0.95$$
 $z_c = 1.96$ $E = 0.03$
$$n = \hat{p}\hat{q} \left(\frac{z_c}{E}\right)^2 = (0.5)(0.5) \left(\frac{1.96}{0.03}\right)^2 \approx 1067.11$$

Arredonde para cima para o próximo número inteiro.

Sem estimativas preliminares, o tamanho amostral mínimo seria de **pelo menos 1.068 votantes**.

Exemplo: tamanho da amostra

Você está analisando uma campanha política e quer estimar, com 95% de confiança, a proporção dos eleitores registrados que irão votar no seu candidato. Sua estimativa deve ter uma margem de erro de 3% da população real. Encontre o número da amostragem mínimo necessário se:

2. Uma estimativa preliminar dá: $\hat{p} = 0.31$

Solução: Use a estimativa preliminar

$$\hat{q} = 1 - \hat{p} = 1 - 0.31 = 0.69$$

Solução: tamanho da amostra

$$c = 0.95$$
 $z_c = 1.96$ $E = 0.03$

$$n = \hat{p}\hat{q}\left(\frac{z_c}{E}\right)^2 = (0.31)(0.69)\left(\frac{1.96}{0.03}\right)^2 \approx 913.02$$

Arredonde para cima para o próximo número inteiro. Com uma estimativa preliminar de $\hat{p} = 0,31$, o tamanho amostral mínimo deveria ser de **pelo menos 914 votantes**.

Precisa de uma amostra maior se não houver estimativas preliminares disponíveis.

Seção 6.4: Intervalos de confiança para variância e desvio padrão

Objetivos:

Interpretar a distribuição qui-quadrado e usar a tabela de distribuição qui-quadrado

Usar a distribuição qui-quadrado para construir um intervalo de confiança para a variância e o desvio padrão

A estimativa pontual para σ^2 é s^2 A estimativa pontual para σ é s s^2 é a estimativa menos tendenciosa para σ^2

Parâmetro populacional estimado	Estatística amostral
Variância: σ ²	s^2
Desvio padrão: σ	S

Vamos usar uma *distribuição qui-quadrado* para construir um intervalo de confiança para a variância e o desvio padrão

Definição: Seja X_1 , X_2 , ..., X_n uma amostra aleatória de uma distribuição <u>normal</u> com parâmetros μ e σ^2 . Então a variavel aleatória:

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$$

Posssui distribuição de probabilidade qui-quadrado com n-1 graus de Liberdade (n>1)

Propriedades da distribuição qui-quadrado

- 1. Todos valores qui-quadrado χ^2 são maiores ou iguais a zero.
- 2. A distribuição qui-quadrado é uma família de curvas, cada uma determinada pelos graus de liberdade. Para formar um intervalo de confiança para σ^2 , use a distribuição χ^2 com graus de liberdade iguais a um a menos do que o tamanho da amostra, ou seja:

$$gl = n - 1$$
 Graus de liberdade

3. A área abaixo da curva da distribuição qui-quadrado é igual a um.

4. As distribuições qui-quadrado são assimétricas positivas.

Valores críticos de χ^2

Há dois valores críticos para cada nível de confiança.

O valor χ^2_R representa o valor crítico da cauda direita

O valor χ^2_L representa o valor crítico da cauda esquerda.

A área entre os valores críticos esquerdo e direito é c.

Exemplo: encontrando valores críticos para χ^2

Encontre os valores críticos χ_R^2 e χ_L^2 para um intervalo de confiança de 90% quando o tamanho da amostra for 20.

Solução:

$$g1 = n - 1 = 20 - 1 = 19$$

Cada área na tabela representa a região sob a curva qui-quadrado à direita do valor crítico.

Área à direita de
$$\chi^2_R = \frac{1-c}{2} = \frac{1-0.90}{2} = 0.05$$

Área à esquerda de
$$\chi^2_L = \frac{1+c}{2} = \frac{1+0.90}{2} = 0.95$$

Solução: encontrando valores críticos para χ^2

Graus de				(α		
liberdade	0,995	0,99	0,975	0,95	0,90	0,10	0,05
1	_	_	0,001	0,004	0,016	2,706	3,841
2	0,010	0,020	0,051	0,103	0,211	4,605	5,991
3	0,072	0,115	0,216	0,352	0,584	6,251	7,815
15	4,601	5,229	6,262	7,261	8,547	22,307	24,996
16	5,142	5,812	6,908	7,962	9,312	23,542	26,296
17	5,697	6,408	7,564	8,672	10,085	24,769	27,587
18	6,265	7,015	8,231	9,390	10,865	25,989	28,869
19	6,844	7,633	8,907 (10,117	11,651	27,204 (30,144
20	7,434	8,260	9,591	10,851	12,443	28,412	31,410
				χ_L^2			χ_R^2

Por meio da tabela, você pode ver que $\chi^2_R = 30,144$ e $\chi^2_L = 10,117$.

90% da área abaixo da curva está entre 10,117 e 30,144.

Intervalos de confiança para σ^2 e σ

Intervalo de confiança para σ^2 :

$$\frac{(n-1)s^2}{\chi_R^2} < \sigma^2 < \frac{(n-1)s^2}{\chi_L^2}$$

Intervalo de confiança para σ:

$$\sqrt{\frac{(n-1)s^2}{\chi_R^2}} < \sigma < \sqrt{\frac{(n-1)s^2}{\chi_L^2}}$$

A probabilidade de que o intervalo de confiança contenha σ^2 ou σ é c.

Em palavras

Em símbolos

- 1. Verifique se a população tem uma distribuição normal.
- 2. Identifique a amostra estatística e os graus de liberdade.
- 3. Encontre a estimativa pontual s^2 .
- 4. Encontre o valor crítico χ^2_R e χ^2_L que corresponda ao dado nível de confiança c.

$$gl = n - 1$$

$$s^2 = \frac{\sum (x - \bar{x})^2}{n - 1}$$

Em palavras

- 5. Encontre os extremo esquerdo e direito e forme o intervalo de confiança para a variância populacional.
- 6. Encontre o intervalo de confiança para o desvio padrão da população tomando a raiz quadrada de cada extremo.

Em símbolos

$$\frac{(n-1)s^2}{\chi_R^2} < \sigma^2 < \frac{(n-1)s^2}{\chi_L^2}$$

$$\sqrt{\frac{(n-1)s^2}{\chi_R^2}} < \sigma < \sqrt{\frac{(n-1)s^2}{\chi_L^2}}$$

Você seleciona aleatoriamente 30 amostras de um antialérgico e as pesa. O desvio padrão da amostra é 1,20 miligrama. Supondo que os pesos são normalmente distribuídos, construa intervalos de confiança de 99% para a variância e o desvio padrão da população.

Solução:

$$gl = n - 1 = 30 - 1 = 29$$
.

Solução: construindo um intervalo de confiança

Área à direita de
$$\chi^2_R = \frac{1-c}{2} = \frac{1-0.99}{2} = 0.005$$

Área à esquerda de
$$\chi^2_L = \frac{1+c}{2} = \frac{1+0.99}{2} = 0.995$$

Os valores críticos são

$$\chi^2_{\rm R} = 52.336$$
 e $\chi^2_{\rm L} = 13.121$

Intervalo de confiança para σ^2 :

Extremo esquerdo:
$$\frac{(n-1)s^2}{\chi_R^2} = \frac{(30-1)(1.20)^2}{52.336} \approx 0.80$$

Extremo direito:
$$\frac{(n-1)s^2}{\chi_L^2} = \frac{(30-1)(1.20)^2}{13.121} \approx 3.18$$

$$0.80 < \sigma^2 < 3.18$$

Com 99% de confiança você pode dizer que a variância da população está entre 0,80 e 3,18 miligramas.

Intervalo de confiança para σ:

$$\sqrt{\frac{(30-1)(1.20)^2}{52.336}} < \sigma < \sqrt{\frac{(30-1)(1.20)^2}{13.121}}$$

$$0.89 < \sigma < 1.78$$

Com 99% de confiança você pode dizer que o desvio padrão da população está entre 0,89 e 1,78 miligrama.