Introduction to Computer Networks

Traffic Shaping (§5.4.2)

Topic

- Shaping traffic to constrain bursts
 - Token buckets
 - Key building block for QOS

Motivation

- Shaping traffic flows constrains the load they may place on the network
 - Limiting the total traffic enables bandwidth guarantees
 - Limiting bursts avoids unnecessary delay and loss
 - How should we shape traffic?
 - Real apps generate varying traffic unrealistic to smooth it out

Motivation (2)

- Flow A and flow B have the same average rate
- → 1 Mbps over 3.5 secs
 - But they have very different behaviors!

 Average rate alone is not a good descriptor of behavior ...

Motivation (3)

 How should we describe traffic flows to the network?

Average rate matters; relates to long-term bandwidth

Burstiness also matters; relates to short-term bandwidth

Two characteristics useful

- More expressive than average
- Still relatively simple

Token Bucket

- (R, B) token bucket constrains:
- → Average rate of R bits/sec

Token Bucket (2)

Sending removes tokens (or credits) from the bucket; no credit, no send

Token Bucket (3)

Constrains greatest traffic over time

Token Bucket (4)

Constrains greatest traffic over time

Shaping vs. Policing

- Shaping modifies traffic near the source to fit within an (R, B) profile
 - Run (R, B) token bucket at the source
 - Pass sent packets to the network when there are tokens
 - Delay (queue) packets while more tokens arrive
- Lets user condition their traffic to meet the network contract

Shaping vs. Policing (2)

- Policing verifies that traffic within the network fits an (R, B) profile
- Run (R, B) token bucket at network edge
 - Let packets into the network when there are tokens
 - Demote or discard packets when there are insufficient tokens
- Lets network check traffic to verify it meets the user's contract

Usage for QOS

- Token buckets help the user and network regulate traffic for QOS
 - Network can limit the traffic for preferential treatment
 - User can flexibly select that traffic
- Special treatment is implemented with other means such as WFQ

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey