# Contrôle S1 – Corrigé Architecture des ordinateurs

Répondre exclusivement sur le sujet

| Nom: | Prénom: | Groupe : |
|------|---------|----------|

**Durée: 1 h 30** 

### Exercice 1 (3 points)

Simplifiez les expressions suivantes. Donnez chaque résultat sous la forme d'une puissance de deux. Le résultat seul est attendu (pas de détail).

| Expression                                                                                                  | Résultat                |
|-------------------------------------------------------------------------------------------------------------|-------------------------|
| $\frac{64^5 \cdot 8^6 \cdot 16^3}{(256^{-5} \cdot 128^2)^{-4}}$                                             | 2 <sup>-44</sup>        |
| $\frac{(8^8 \cdot 512^{-7}) \cdot (11000 + 5384)^{-9}}{(16^{-5} \cdot (2^{20} - 2^{19}))^6 \cdot 256^{-7}}$ | 2-103                   |
| $\frac{((8192 \cdot 32^{7})^{4} \cdot 32768^{-4})^{6}}{(8^{-9} \cdot 1024)^{-9} \cdot 4096}$                | <b>2</b> <sup>627</sup> |

## Exercice 2 (3 points)

1. Donnez, **en puissance de deux**, le nombre de bits que contiennent les grandeurs suivantes. Le résultat seul est attendu (pas de détail).

• 16 Mib = 
$$2^{24}$$
 bits

• 512 Mio = 
$$2^{32}$$
 bits

• 64 Kio = 
$$2^{19}$$
 bits

2. Donnez, à l'aide des préfixes binaires (Ki, Mi ou Gi), le nombre d'octets que contiennent les grandeurs suivantes. <u>Vous choisirez un préfixe qui permet d'obtenir la plus petite valeur numérique entière</u>. Le résultat seul est attendu (pas de détail).

• 
$$2^{33}$$
 bits = **1 Gio**

• 
$$2^{25}$$
 octets = **32 Mio**

#### Exercice 3 (5 points)

Convertissez les nombres suivants de la forme de départ vers la forme d'arrivée. Ne pas écrire le résultat sous forme de fraction ou de puissance (p. ex. écrire 0,25 et non pas  $\frac{1}{4}$  ou  $2^{-2}$ ). Le résultat seul est attendu (pas de détail).

| Nombre à convertir | Forme de départ | Forme d'arrivée                               | Résultat      |
|--------------------|-----------------|-----------------------------------------------|---------------|
| 10111001,0101      | Binaire         | Décimale                                      | 185,3125      |
| E8,5               | Hexadécimale    | Décimale                                      | 232,3125      |
| 167,7              | Décimale        | Hexadécimale<br>(2 chiffres après la virgule) | A7,B3         |
| 92,3125            | Décimale        | Binaire                                       | 101 1100,0101 |
| 13,25              | Base 8          | Binaire                                       | 1011,010101   |
| 2705,14            | Base 8          | Hexadécimale                                  | 5C5,3         |
| 4BC,23             | Hexadécimale    | Base 8                                        | 2274,106      |
| 80,25              | Décimale        | Base 5 (2 chiffres après la virgule)          | 310,11        |
| 40                 | Base 9          | Base 3                                        | 1100          |
| 100110011,10011    | Binaire         | Hexadécimale                                  | 133,98        |

## Exercice 4 (3 points)

1. Déterminez la base *b* pour que l'égalité ci-dessous soit vraie. **Le détail des calculs devra apparaître.** 

$$22_b \times 25_b = 50A_b$$
 **b** > **10**  
 $(2b + 2)(2b + 5) = 5b^2 + 10$   
 $4b^2 + 10b + 4b + 10 = 5b^2 + 10$   
 $b^2 - 14b = 0$   
 $b(b - 14) = 0$   
 $b = 14$ 

2. Déterminez la base *b* pour que l'égalité ci-dessous soit vraie. **Le détail des calculs devra apparaître.** 



3. Exprimez la base *a* en fonction de la base *b* puis déterminez les plus petites bases possibles afin que l'égalité ci-dessous soit vraie. **Le détail des calculs devra apparaître.** 

| $208_{\rm a} = 808_{\rm b}$ <b>a</b> > <b>8</b> et <b>b</b> > <b>8</b> |
|------------------------------------------------------------------------|
|                                                                        |
| $2a^2 + 8 = 8b^2 + 8$                                                  |
| $2a^2 = 8b^2$                                                          |
| $a^2 = 4b^2$                                                           |
| a = 2b                                                                 |
|                                                                        |
| $\mathbf{b}_{\min} = 9$                                                |
| $\mathbf{a_{min}} = 18$                                                |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |

| Exercice 5 (6 points)                                                                                        |
|--------------------------------------------------------------------------------------------------------------|
| 1. En fonction de <i>n</i> , combien d'entiers non signés peut-on coder sur <i>n</i> bits ?                  |
| $2^n$                                                                                                        |
| 2. En fonction de <i>n</i> , combien d'entiers signés peut-on coder sur <i>n</i> bits ?                      |
| $2^n$                                                                                                        |
| 3. En fonction de <i>n</i> , quel est le plus grand entier non signé que l'on peut coder sur <i>n</i> bits ? |
| $2^{n}-1$                                                                                                    |
| 4. En fonction de <i>n</i> , quel est le plus grand entier signé que l'on peut coder sur <i>n</i> bits ?     |
| $2^{n-1}$ –1                                                                                                 |
| 5. En fonction de <i>n</i> , quel est le plus petit entier signé que l'on peut coder sur <i>n</i> bits ?     |
| $-2^{n-1}$                                                                                                   |
| 6. Le complément à un d'un mot s'obtient en inversant chacun de ses bits. <b>Répondre vrai ou faux.</b>      |
| Vrai                                                                                                         |

Si vous manquez de place, vous pouvez utiliser le cadre ci-dessous.