

Quiz navigation

Finish attempt ...

Time left 0:15:59

Q

公

lumerical Methods - Spring Semester - 2021/2022

My courses

Numerical Methods -Spring - 2021/2022

General

Quiz_Makeup_23/5/2022

ᢙ

門

estion 1

yet vered

rked out of

compute the determinants of the following matrix

$$\begin{bmatrix} 1 & 1 & -1 & 1 \\ 1 & 2 & -4 & -2 \\ 2 & 1 & 1 & 5 \\ -1 & 0 & -2 & -4 \end{bmatrix}$$

Select one:

- O 12

Question 2 Not yet answered

Marked out of

▼ Flag

Use the Bisection method to find p_3 for $f(x) = \sqrt{x} - \cos x$ on [0, 1].

Select one:

- $p_3 = 0.429$
- \bullet b. $p_3 = 0.325$
- $p_3 = 0.625$
- O d. $p_3 = 1.625$

Question 3 Not yet

answered Marked out of

▼ Flag

Use the forward-difference formulas and backward-difference

formulas to determine each missing entry in the following table

х	f(x)	f'(x)
0.5	0.4794	
0.6	0.5646	
0.7	0.6442	

- a. $f'(0.5) \approx -0.8520$, $f'(0.6) \approx 0.9520$ and $f'(0.6) \approx 0.7960$
- Ob. $f'(0.5) \approx -0.8520$, $f'(0.6) \approx 0.8520$ and $f'(0.6) \approx 0.6960$
- c. $f'(0.5) \approx 0.9520$, $f'(0.6) \approx 0.8520$ and $f'(0.6) \approx 0.2960$
- d. $f'(0.5) \approx 0.8520$, $f'(0.6) \approx 0.8520$ and $f'(0.6) \approx 0.7960$

Ouestion 4 Not yet

answered Marked out of

▼ Flag

The Arithmetic IEEE Standard 754 single precision of $(20.125)_{10}$

011000011010000110000000000000000

Select one:

- O True
- False
- Question **5**Not yet

answered

Marked out of
0.50

Flag question

 A^{-1} is unique.

Select one:

- True
- O False

Question **6**Not yet

answered

Marked out of
0.50

Flag question

Determine a function of the form $y = a_0 + a_1 x$ that best fits, in the least squares sense, using the following data:

x_i	1	2	3	4	5
y_i	2	5	3	8	7

Select one:

- y = -1.5 + 7.55x
- y = 1.1 + 1.3x
- y = 1.5 6.55x
- y = -12.5 + 7.3x

Question **7**Not yet

answered

Marked out of 0.50

Flag question

The inverse of this matrix
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -1 \\ 3 & 1 & 1 \end{bmatrix}$$

is B =
$$\begin{bmatrix} -\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{5}{8} & -\frac{1}{8} & -\frac{1}{8} \\ \frac{1}{8} & -\frac{5}{8} & \frac{3}{8} \end{bmatrix}$$

Select one:

- True
- O False

Question **8**Not yet

answered

Marked out of 0.50

Flag question

if
$$A^{-1}$$
 exists, then $(A^{-1})^t = (A^t)^{-1}$.

Select one:

- True
- O False

Question **9**Not yet answered

Marked out of 1.00

Flag question

perform the divided differences method to find the interpolating polynom of these points and approximate the polynomial at f(7)

x	5	6	9	11
Y=f(x)	12	13	14	16

Select one:

0 13.47

13.065 0 11.198 0 12.45

Question 10 Not yet answered

Marked out of 0.50

▼ Flag question Perform the following matrix-vector multiplication

$$\begin{bmatrix} 2 & 1 \\ -4 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

Select one:

$$\circ \quad \left[\begin{array}{c} 0 \\ 0 \end{array} \right]$$

$$\begin{array}{c|c}
 & 4 \\
 & -18
\end{array}$$

Question 11 Not yet

answered Marked out of 1.00

▼ Flag question The Arithmetic IEEE Standard 754 single precision of (20.125)₁₀

010000011010000100000000000000000

Select one:

- O True
- False

Question 12

Not yet answered

Marked out of 1.00

▼ Flag question The Arithmetic IEEE Standard 754 single precision of $(19.125)_{10}$

010000011001100100000000000000000

Select one:

- True
- O False

Question 13 Not yet

answered Marked out of 1.00

▼ Flag question Let $f(x) = x^2 - 6$ and $p_0 = 1$. Use Newton's method to find p_2 .

Select one:

- **2.60714**
- 0 3.60714
- 0 2.90714
- 0 2.06714

Question 14 Not yet

answered Marked out of 0.50

▼ Flag question A **diagonal** matrix $D = [d_{ij}]$ is a square matrix with $d_{ij} = 0$ whenever $i \neq j$.

Select one:

- True
- O False

Finish attempt ...

Learn Any Time, Any Where Hotline: 16541

