Topics in Analysis and Linear Algebra

Le Chen

le.chen@emory.edu

Emory University Atlanta GA

Last updated on July 22, 2021

 $\begin{array}{c} {\rm Summer~Bootcamp~for}\\ {\rm Emory~Biostatistics~and~Bioinformatics}\\ {\rm PhD~Program} \end{array}$

July 22 - 28, 2021

Chapter 1. Mathematical Logics

Chapter 2. Set Theory

Chapter 3. Real Number System and Calculus

Chapter 4. Topics in Linear Algebra

Georg Canto (1845- 1918)

– the founder of modern set theory

This part is mostly based on Chapter 1 of

J. McDonald and N. Weiss, A course in real analysis, Academic Press, 2005.

§ 2.1 Basic definitions and properties

 \S 2.2 Functions and sets

§ 2.3 Equivalence of sets and countability

§ 2.1 Basic definitions and properties

§ 2.2 Functions and sets

§ 2.3 Equivalence of sets and countability

Def. A set is a collection of elements.

If A is a set and x is an element of A, we write $x \in A$.

 $x \notin A$ means x is not an element of A.

A set contains no elements is called an empty set, denoted as \emptyset .

Def. Let A and B be sets.

If very element of A is an element of B, then A is said to be a subset of B, denoted $A \subset B$ or $B \supset A$.

Two sets A and B are equal, denoted A = B, if and only if $A \subset B$ and $A \supset B$.

If $A \subset B$ but $B \not\subset A$, then we say that A is a proper subset of B.

E.g. Let

 \mathbb{C} = collection of complex numbers

 \mathbb{R} = collection of real numbers

 $\mathbb{Q} = \text{collection of rational numbers}$

 $\mathbb{Z}=\text{collection of integers}$

 $\mathbb{N} = \text{collection of natural numbers, i.e., positive integers}$

Then we have

 $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}.$

Assume all sets under consideration are subsets of some fixed set Ω , commonly referred as the universal set.

The set of all subsets of Ω is called the power set of Ω , denoted $\mathcal{P}(\Omega)$. Hence, $A \subset \Omega$ iff $A \in \mathcal{P}(\Omega)$.

Remark $\Omega^c = \emptyset$ and $\emptyset^c = \Omega$.

Def. Let A and B be subsets of Ω .

The complement of A, denoted A^c , is the set of elements of Ω that do not belong to A, namely,

$$A^c := \{x \in \Omega : x \notin A\}.$$

The complement of A relative to B, denoted $B \setminus A$, is the set of all elements in B that do not belong to A, namely,

$$B \setminus A := \{x \in B : x \notin A\}.$$

The intersection of A and B, denoted $A \cap B$, is the set of elements of Ω that belong to both A and B, namely,

$$A\cap B:=\{x\in\Omega:x\in A\text{ and }x\in B\}.$$

The union of A and B, denoted $A \cup B$, is the set of elements of Ω that belong to either A or B, namely,

$$A \cup B := \{x \in \Omega : x \in A \text{ or } x \in B\}.$$

Commutative Laws

$$A \cup B = B \cup A$$

 $A \cap B = B \cap A$

$$A \cup A = A$$

$$A \cap A = A$$

Associative Laws

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

Domination Laws

$$\mathbf{A} \cup \Omega = \Omega$$
$$\mathbf{A} \cap \emptyset = \emptyset$$

Distributive Laws

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap B)$$
$$A \cup (B \cup C) = (A \cup B) \cap (A \cup B)$$

Absorption Laws

$$A \cup (A \cap B) = A$$
$$A \cap (A \cup B) = A$$

De Morgan's Laws

$$(A \cup B)^c = A^c \cap B^c$$
$$(A \cap B)^c = A^c \cup B^c$$

$$C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B)$$
$$C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B)$$

Various Identities

$$A \cap A^c = \emptyset$$
$$A \cup A^c = \Omega$$

$$\emptyset^c = \Omega$$
$$\Omega^c = \emptyset$$

$$(A^c)^c = A$$

Def. Let \mathcal{C} be a collection of subsets of Ω , that is, $\mathcal{C} \subset \mathcal{P}(\Omega)$.

a) The intersection of \mathcal{C} , denoted $\cap_{A \in \mathcal{C}} A$, is the set of elements of Ω that belong to each set in the collection of \mathcal{C} , namely,

$$\bigcap_{A\in\mathcal{C}}A:=\big\{x\in\Omega:x\in A\ \text{for all}\ A\in\mathcal{C}\big\}.$$

b) The union of \mathcal{C} , denoted $\cup_{A \in \mathcal{C}} A$, is the set of elements of Ω that belong to at least one of the sets in the collection of \mathcal{C} , namely,

$$\bigcup_{A\in\mathcal{C}}A:=\{x\in\Omega:x\in A\text{ for some }A\in\mathcal{C}\}.$$

Set operations still work in this case, e.g.,

De Morgan's Laws

$$\left(\bigcup_{A \in \mathcal{C}} A\right)^{c} = \bigcap_{A \in \mathcal{C}} A^{c}$$

$$\left(\bigcap_{A \in \mathcal{C}} A\right)^{c} = \bigcup_{A \in \mathcal{C}} A^{c}$$

$$C \setminus \left(\bigcup_{A \in \mathcal{C}} A\right) = \bigcap_{A \in \mathcal{C}} (C \setminus A)$$

$$C \setminus \left(\bigcap_{A \in \mathcal{C}} A\right) = \bigcup_{A \in \mathcal{C}} (C \setminus A)$$

Distributive Laws

$$B \cap \left(\bigcup_{A \in \mathcal{C}} A\right) = \bigcup_{A \in \mathcal{C}} \left(B \cap A\right)$$

$$B \cup \left(\bigcap_{A \in \mathcal{C}} A\right) = \bigcap_{A \in \mathcal{C}} \left(B \cup A\right)$$

E.g. Let
$$\Omega = \mathbb{R}$$
 and $\mathcal{C} = \{[0, 1/n] : n \in \mathbb{N}\}$. Show that

$$\bigcap_{\mathsf{A}\in\mathcal{C}}\mathsf{A}=\{0\}\quad\text{and}\quad\bigcup_{\mathsf{A}\in\mathcal{C}}\mathsf{A}=[0,1].$$

Remark Equivalently, one can write $A_n = [0, 1/n]$ for $n \in \mathbb{N}$ and then

$$\bigcap_{n=1}^{\infty} A_n = \{0\} \quad \text{and} \quad \bigcup_{n=1}^{\infty} A_n = [0,1].$$

13

In general, we have:

E.g.' Show that

An	$\bigcap_{i=1}^n A_n$	$\bigcup_{i=1}^n A_n$
(0, 1/n)	Ø	(0, 1)
(0, 1/n]	Ø	(0, 1]
[0, 1/n)	{0}	[0, 1)
[0, 1/n]	{0}	[0, 1]

Def. Two subsets, A and B, of Ω are said to be disjoint if $A \cap B = \emptyset$.

Ex. 1.8, 1.13.

§ 2.1 Basic definitions and properties

 \S 2.2 Functions and sets

§ 2.3 Equivalence of sets and countability

Def. Suppose that Ω and Λ are sets. A function (or mapping, transformation) from Ω to Λ is a rule that assigns each element $x \in \Omega$ a unique element $f(x) \in \Lambda$.

We call f(x) the value of f at x, or the image of x under f.

A function f from Ω to Λ is often denoted $f:\Omega\to\Lambda$.

The set Ω is called the domain of f.

The set $\{f(x): x \in \Omega\}$ is called the range of f.

Def. Let f be a function from ω to λ .

a) f is said to be one-to-one or injective if distinct elements of ω have distinct images; that is,

$$\forall x_1, x_2 \in \omega, \quad f(x_1) = f(x_2) \quad \rightarrow \quad x_1 = x_2.$$

Def. Let f be a function from ω to λ .

b) f is said to be onto or surjective if each element of λ is the image of some element of ω ; that is,

$$\forall y \in \lambda, \ \exists x \in \omega, \ \text{s.t.} \quad y = f(x).$$

or f is onto iff the range of f equals λ .

Def. Let f be a function from ω to λ .

c) f is said to be 1-1 correspondence or bijective if f is both surjective (onto) and injective (one-to-one).

Def. Suppose that $f: \Omega \to \Lambda$ is both one-to-one and onto. For any $y \in \Lambda$, let $f^{-1}(y)$ be the unique $x \in \Omega$ such that y = f(x).

The function $f^{-1}: \Lambda \to \Omega$ defined in this way is called the inverse of the function f.

E.g. Let $f: [0,2] \to [-1,1]$ be defined as $f(x) = \frac{1}{2}x^2 - 1$.

The inverse function is $f^{-1}: [-1,1] \rightarrow [0,2]$ with $f^{-1}(x) = \sqrt{2x+2}$.

Def. Let $f: \Omega \to \Lambda$ and $g: \Lambda \to \Gamma$. Then the composition of g with f, denoted $g \circ f$, is the function $g \circ f: \Omega \to \Gamma$ defined by

$$(g\circ f)(x)=g\left(f(x)\right).$$

Def. Let $f: \Omega \to \Lambda$ and $A \subset \Omega$. The restriction of f to A, denoted $f_{|A}$, is defined to be a function $A \to \Lambda$ such that

$$f_{|A}(x) = f(x),$$
 for all $x \in A$.

Infinite and finite sequences

Infinite sequences such as

- \blacktriangleright {1, 2, 4, 8, 16, \cdots }
- \blacktriangleright {1, 1/2, 1/3, 1/4, 1/5, \cdots }
- \blacktriangleright {1, -1, 1, -1, 1, -1, ...}
- ▶ $\{1, 1, 2, 3, 5, 8, 13, \dots\}$ are nothing but functions defined on \mathbb{N} .

We use $\{s_n : n \in \mathbb{N}\}\$ or $\{s_n\}_{n=1}^{\infty}$ to denote an infinite sequence.

Finite sequence of length n such as

▶
$$\{a_1, a_2, \dots, a_n\}$$
 is nothing but a function defined on $\{1, \dots, n\}$.

Images and inverse images

Def. Let $f: \Omega \to \Lambda$.

If $A \subset \Omega$, then define

$$f(A) := \{f(x) : x \in A\},\,$$

which is called the image of A under f.

If $B \in \Lambda$, then define

$$f^{-1}(B) := \{ x \in \Omega : f(x) \in B \},\,$$

called the inverse image of B under f.

Thm Let $f: \Omega \to \Lambda$, $A \subset \Omega$, and $\{A_i\}_{i \in I}$ an indexed collection of subsets of Ω . Then

a)
$$f\left(\bigcup_{i\in I}A_{i}\right)=\bigcup_{i\in I}f\left(A_{i}\right)$$

b)
$$f\left(\bigcap_{i\in I}A_i\right)\subset\bigcap_{i\in I}f\left(A_i\right)$$
 and

$$f\left(\bigcap_{i\in I}A_{i}\right)=\bigcap_{i\in I}f\left(A_{i}\right)\text{ provided }f$$
 is one-to-one.

c) $f(A^c) \subset (f(A))^c$ and $f(A^c) = (f(A))^c$ provided that f is one-to-one.

Thm Let $f: \Omega \to \Lambda$, $B \subset \Omega$, and $\{B_i\}_{i \in I}$ an indexed collection of subsets of Ω . Then

a)
$$f^{-1}\left(\bigcup_{i\in I}A_i\right)=\bigcup_{i\in I}f^{-1}\left(A_i\right)$$

b)
$$f^{-1}\left(\bigcap_{i\in I}A_i\right)=\bigcap_{i\in I}f^{-1}\left(A_i\right)$$

c)
$$f^{-1}(A^c) = (f^{-1}(A))^c$$

Proof. ...

Cartesian Products

Def. Let A and B be two sets. Then the Cartesian product of A and B (in that order), denoted $A \times B$, is the set of all ordered pairs (a, b) such that $a \in A$ and $b \in B$, namely,

$$A\times B:=\{(a,b):a\in A,\ b\in B\}.$$

Similarly, if A_1, A_2, \dots, A_n are sets, then the Cartesian product of those n sets, denoted $A_1 \times A_2 \times \dots \times A_n$ or $\underset{k=1}{\overset{n}{\times}} A_k$, is the set of all ordered n-tuples (a_1, \dots, a_n) such that $a_k \in A_k$ for $k = 1, \dots, n$, namely,

$$\underset{k=1}{\overset{n}{\times}} A_k := \left\{ (a_1, \cdots, a_n) : a_k \in A_k, 1 \leq k \leq n \right\}.$$

E.g. 1. The standard 52-card deck is $A \times B$ with

$$\begin{aligned} & \mathcal{A} = \{ \text{Ace}, 2, 3, 4, 5, 6, 7, 8, 9, 10, \text{Jack}, \text{Queen}, \text{King} \} \\ & \mathcal{B} = \{ \text{Club}, \frac{\text{Diamond}}{\text{Diamond}}, \frac{\text{Heart}}{\text{Heart}}, \text{Spade} \} \\ & \Omega = \mathcal{A} \cup \mathcal{B} \end{aligned}$$

2.
$$\mathbb{R}^n = \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{n \text{ times}}$$
: the Euclidean *n*-space.

Remark If at least one of A and B are empty, then so is $A \times B$.

Def. Let $\{A_i\}_{i\in I}$ be an indexed collection of sets. The Cartesian product of the collection, denoted X A_i , is the set of all functions X on I such that $X(i) \in A_i$ for each $i \in I$, namely,

$$\underset{i\in I}{\times} A_i := \left\{ x: I \to \bigcup_{i\in I} A_i : x(i) \in A_i, \forall i \in I \right\}.$$

Remark 1.

- 2. If $A_i = \emptyset$ for some $i \in I$, then $\times_{i \in I} A_i = \emptyset$.
- **3.** On the other hand, if $A_i \neq \emptyset$ for all $i \in I$, then $\times_{i \in I} A_i \neq \emptyset$ ¹.

¹Thanks to the Axiom of Choice.

Notation and examples

When	$\underset{i \in I}{ imes} A_i$	
$I = \{1, \cdots, n\}$	$ imes_{i=1}^n A_i$	
$A_i = A, \forall i \in I$	A'	
$I = \{1, \dots, n\} \text{ and } A_i = A, \forall i \in I$	write A^n instead of $A^{\{1,\dots,n\}}$ or $\underset{i=1}{\overset{n}{\times}}A$	
$I=\mathbb{N}$	write A^{∞} instead of $A^{\{1,2,\cdots\}}$ or $A^{\mathbb{N}}$	
$I = [0, 1] \text{ and } A_i = \mathbb{R}, \forall i \in I$	$A^{[0,1]}$ is the set of all functions on $[0,1]$.	

Remark Infinite sequence $\{a_1, a_2, \dots\}$ can be viewed as either

- 1. a function on \mathbb{N} or
- 2. Cartesian product with $I = \mathbb{N}$, namely, A^{∞} .

HW Ex. 1.14, 1.21, 1.23.

§ 2.1 Basic definitions and properties

§ 2.2 Functions and sets

 \S 2.3 Equivalence of sets and countability

Recall if f is both one-to-one (injective) and onto (surjective), then f is one-to-one correspondence (bijective).

Def. For two sets X and Y, if there exists a bijective function between X and Y, then we say that X and Y are equivalent, denoted $X \sim Y$.

Equivalent sets satisfy the following properties:

Reflexive	$A \sim A$
Symmetric	$A \sim B \Rightarrow B \sim A$
Transitive	$A \sim B \wedge B \sim C \Rightarrow A \sim C$

Remark Any relation that satisfies reflexive, symmetric, transitive properties is an equivalence relation.

- E.g. 1. Let $X = \{1, 2, 3, 4\}$ and $Y = \{A, B, C, D\}$. Then $X \sim Y$ because one can find a bijective function between X and Y.
 - 2. Let $X = \{1, 2, 3, 4, 5\}$ and $Y = \{A, B, C, D\}$. Does $X \sim Y$? Why?

Remark For sets of finite element, in order to be equivalent, they have to have the same number of elements.

$$\mathsf{E.g.\ 3.\ Let\ } X=\mathbb{N}=\{1,2,3,\cdots\} \ \mathrm{and} \ \ Y=\{2,4,6,8,\cdots\} \ \mathrm{(even\ integers)}.$$

Does $X \sim Y$?

Do they have the same number of elements?

Sol. Here is one apparent solution²: $f: X \to Y$ defined as f(x) = 2x:

This is a bijective function (why?). Hence, $X \sim Y$. They have the same number of elements (infinite many, which is called countably infinite).

²There are other constructions. Can you give another bijection between X and Y?

Size of sets

Def. Let A be a set. We say that

a) A is *finite* if it is either empty or equivalent to the first N positive integers for some $N \in \mathbb{N}$.

In the former case, \boldsymbol{A} is said to consist of 0 elements and, in the latter case, \boldsymbol{N} elements.

- b) A is *infinite* if A is not finite.
- c) A is countably infinite if it is equivalent to \mathbb{N} .
- d) A is countable if it either finite or countably infinite.
- e) A is uncountable if it is not countable.

uncountable countable

E.g.1. Show that the set of $\mathbb Z$ is countably infinite.

Sol. Construct the bijection $f: \mathbb{N} \to \mathbb{Z}$:

$$\begin{array}{ccc} 1 \rightarrow & 0 \\ 2 \rightarrow & 1 \\ 3 \rightarrow -1 \\ 4 \rightarrow & 2 \\ 5 \rightarrow -2 \\ 6 \rightarrow & 3 \\ 7 \rightarrow -3 \\ \vdots \end{array}$$

It is not hard to see that

$$f(n) = \begin{cases} n/2 & n \text{ is even} \\ -(n-1)/2 & n \text{ is odd} \end{cases}$$

Sol'. Construct the bijection $f: \mathbb{N} \to \mathbb{Z}$:

$$\begin{array}{cccc} 1 \rightarrow & 0 \\ 2 \rightarrow -1 \\ 3 \rightarrow & 1 \\ 4 \rightarrow -2 \\ 5 \rightarrow & 2 \\ 6 \rightarrow -3 \\ 7 \rightarrow & 3 \\ \vdots \end{array}$$

With enough patience, one can determine the formula:

$$f(n) = \frac{n(-1)^{n-1}}{2} - \frac{1 - (-1)^n}{4}$$

E.g. 2. Show that \mathbb{N}^2 is countably infinite.

Sol. Construct a bijection $f: \mathbb{N}^2 \to \mathbb{N}$:

Can you find a formula for this bijection?

Sol'. We claim that $f: \mathbb{N}^2 \to \mathbb{N}$ defined below is a bijection:

$$f(m,n) := 2^{m-1}(2n-1).$$

a) f is one-to-one (injective): It suffices to show that

$$f(m_1, n_1) = f(m_2, n_2) \implies m_1 = m_2 \text{ and } n_1 = n_2.$$

Without loss of generality, suppose $m_1 \geq m_2$. Notice that

$$2^{m_1 - m_2} = \frac{2n_1 - 1}{2n_2 - 1}.\tag{*}$$

The LHS is an even integer unless $m_1 = m_2$. The RHS is a fraction unless $n_1 = n_2$. Hence, in order to make (\star) valid, one has to have both sides equal to 1. Hence, $m_1 = m_2$ and $n_1 = n_2$.

b) f is onto (surjective). For any integer $k \in \mathbb{N}$, one has to find m and n such that f(m,n)=k. One can keep dividing k by 2 until it becomes an odd function. In this way, one easily find out m and n.

- **Thm 1.** A nonempty set is countable if and only if it is the range of an infinite sequence.
 - 2. A subset of a countable set is countable.
 - 3. The image of a countable set is countable.
 - 4. A countable union of countable sets is countable.
 - 5. The Cartesian product of two countable sets is countable.

 $\mathsf{E.g.}$ 3. Show that the set of rationals $\mathbb Q$ is countably infinite.

Recall that rationals are numbers that can be written as a ratio of two integers, i.e.,

$$q \in \mathbb{Q} \quad \Rightarrow \quad \exists m, n \in \mathbb{Z} \quad \text{such that } q = \frac{m}{n}.$$

Sol. Let's construct the bijection from \mathbb{N} to \mathbb{Q} :

Can you find out the explicit formula for the bijection $f: \mathbb{N} \to \mathbb{Q}$?

Sol'. Alternatively, one can define:

$$f(z,n)=rac{z}{n},\quad z\in\mathbb{Z},\ n\in\mathbb{N}.$$

- 1. $f: \mathbb{Z} \times \mathbb{N} \to \mathbb{Q}$ is onto (surjective) but not one-to-one (injective). Hence, $f(\mathbb{Z} \times \mathbb{N}) \supset \mathbb{Q}$. (Figure above)
- 2. \mathbb{Z} is countable.

(E.g. 1) __(Thm. 5)

- 3. $\mathbb{Z} \times \mathbb{N}$ is countable.
- $A = f(\mathbb{Z} \times \mathbb{N})$ as the image of $\mathbb{Z} \times \mathbb{N}$ under f is countable (Thm. 2)
- 4. $f(\mathbb{Z} \times \mathbb{N})$, as the image of $\mathbb{Z} \times \mathbb{N}$ under f, is countable. (Thm. 3)
- 5. Therefore, \mathbb{Q} , as a subset of the countable set $f(\mathbb{Z} \times \mathbb{N})$, has to be countable.

(Thm. 2)

HW Prove Thm's 1-5, which are Propositions 1.7 - 1.11 of the book.