Modélisation de transport de particules neutres

a.k.a

Introduction

But du TP

- ▶ Modélisation de transport de particules neutres
- Compréhension des équations de Boltzmann
- Implémentation des cas monodimentionnels

Introduction

But du TP

- Modélisation de transport de particules neutres
- Compréhension des équations de Boltzmann
- Implémentation des cas monodimentionnels

Méthodes employées

- Méthode Monte-Carlo
 - Particule par particule
 - Méthode stochastique
- Méthode Déterministe
 - ► Toutes les particules ensemble...
 - Mais rebond par rebond ou pas par pas

Études menées

Équation de Bolztmann 1D

$$\underbrace{\mu\partial_{x}\phi(\mu,x) + \Sigma_{t}\phi(\mu,x)}_{\text{Libre parcours en milieu asborbant}} = \underbrace{S(x)}_{\text{Source}} + \underbrace{\frac{\Sigma_{s}}{2}\int_{-1}^{1}\phi(\mu',x)d\mu'}_{\text{Diffusion}}$$

Études menées

Équation de Bolztmann 1D

$$\underbrace{\mu \partial_{\mathsf{x}} \phi(\mu, \mathsf{x}) + \Sigma_{t} \phi(\mu, \mathsf{x})}_{\text{Libre parcours en milieu asborbant}} = \underbrace{\mathcal{S}(\mathsf{x})}_{\text{Source}} + \underbrace{\frac{\Sigma_{\mathsf{s}}}{2} \int_{-1}^{1} \phi(\mu', \mathsf{x}) d\mu'}_{\text{Diffusion}}$$

Cas particuliers étudiés

- Type de source
 - ▶ Ponctuelle en 0
 - Constante sur le segment [0, 1]
- Type d'absorbtion
 - ► Constante sur le segment [0, 1]
 - ► Avec une marche de facteur 3 entre 0.3 et 0.7
- Type de diffusion
 - Avec
 - Sans

Introduction

Problèmes sans diffusion

Propagateur et Monte-Carlo

Schéma diamant et méthode déterministe

Résultats

Problèmes avec diffusion

Monte-Carlo diffusif

Code déterministe

Ajout de la DSA

Résultats

Conclusion

Idée générale

Approche

- ▶ On se donne un (grand) nombre de particules...
- ► Et une discrétisation dans l'espace
- On fait "voyager" les particules une par une
- On utilise des variables aléatoires

Idée générale

Approche

- ▶ On se donne un (grand) nombre de particules...
- Et une discrétisation dans l'espace
- On fait "voyager" les particules une par une
- On utilise des variables aléatoires

Algorithme sans diffusion

- Pour chaque particule
 - Générer la particule avec la source adaptée
 - Lancer la particule avec une probabilité de libre parcours
- Fin pour
- Calculer la répartition finale des particules

Nécessité

- ► Coeur du code
- ► Représente la physique du libre parcours

Sohet & Valade

Nécessité

- Coeur du code
- Représente la physique du libre parcours

Création à partir d'une loi uniforme unitaire

- 1. Trouver la loi de probabilité théorique de diffusion en fonction du milieu
- 2. Calculer sa fonction de répartition et l'inverser
- 3. On a maintenant

$$X = \mathcal{F}^{-1}ig(U_{[0,1]}ig)$$
 $0 < X < \infty$

Propagateurs utilisés

Absorption constante

Loi de probabilité du libre parcours physique

$$P(X = I) = \frac{\sum_{t} e^{-\sum_{t} I}}{\mu}$$

Variable aléatoire dérivée

$$X = -rac{\mu}{\sum_t}\log\left(U_{[0,1]}
ight)$$

Propagateurs utilisés

Absorption constante

► Loi de probabilité du libre parcours physique

$$P(X=I) = \frac{\sum_{t} e^{\frac{-\sum_{t} I}{\mu}}$$

Variable aléatoire dérivée

$$X = -\frac{\mu}{\sum_{t}}\log\left(U_{[0,1]}\right)$$

Absorption avec marche

▶ Variable aléatoire dérivée de la physique, avec $C_{1,2,3}(\lambda), \mu(\lambda)$

$$X = \begin{cases} -\mu \log(C_1 - U_{[0,1]}/\lambda) & U_{[0,1]} < 0.3\\ \frac{1}{3} (0.6 - \mu \log(3(C_2 - U_{[0,1]}/\lambda))) & 0.3 < U_{[0,1]} < 0.7\\ -0.8 - \mu \log(C_3 - U_{[0,1]}/\lambda) & 0.7 < U_{[0,1]} \end{cases}$$

Schéma diamant

Idée

- ► Toutes les particules au point *x* sont considérées
- Elles avancent toutes ensemble dans la bonne direction

Sohet & Valade

Schéma diamant

Idée

- ▶ Toutes les particules au point x sont considérées
- Elles avancent toutes ensemble dans la bonne direction

Équation

- Schéma basé sur des "pseudo" volumes finis
- ▶ Pour μ > 0

$$\phi_{i+1} = rac{2 extit{d} \mathsf{x}_i \mathsf{S}(\mathsf{x}_i)}{\eta^+} + rac{\eta^-}{\eta^+} \phi_i, \qquad \eta^\pm = 2 \mu \pm extit{d} \mathsf{x}_i \mathsf{\Sigma}_t(\mathsf{x}_i)$$

- lacktriangle Condition : Le rapport η^-/η^+ doit être compris entre zéro et un
- Même idée pour $\mu < 0$ mais on parcourt les x_i de un à zéro

Source ponctuelle

Figure: Résultats Monte-Carlo et théorique pour une source en $\delta(0)$ avec $\mu=0.5$ et $\Sigma_t=3$. On a $e_{L^2}\approx 10^{-6}$.

Source ponctuelle

Figure: Exemple de résultat du solveur "diamant" pour un cas sans diffusion, $\mu=-1, \sigma=5$ et un source constante sur [0,1]. On a $e_{l^2}\approx 10^{-3}$ pour $N_x=10^3$.

Source constante

Figure: Résultats Monte-Carlo et théorique pour une source constante avec $\mu=0.5$ et $\Sigma_t=3$. On a $e_{L^2}\approx 10^{-6}$.

Sohet & Valade

Source constante

Figure: Exemple de résultat du solveur "diamant" pour un cas sans diffusion, $\mu=1,\sigma=5$ et un source constante sur [0,1]. On a $e_{I^2}\approx 10^{-3}$ pour $N_x=10^3$.

Résultats pour une absorption avec une marche

Figure: Résultats Monte-Carlo et théorique pour une source en $\delta(0)$ avec $\mu=0.5$ et sigma discontinu. On a $e_{l^2}\approx 10^{-6}$.

Résultats pour une absorption avec une marche

Figure: Courbes théorique et expérimentale pour $\sigma_t(x)$ avec une marche. On prend ici $\mu = .5$. On a $e_{I^2} \approx 10^{-3}$ pour $N_x = 10^3$.

Résultats pour une absorption avec une marche

Figure: Courbes théorique et expérimentale pour $\sigma_t(x)$ avec une marche. On prend ici $\mu=.5$, mais on prend aussi un coeficient multiplicatif sur Σ_t d'un facteur 3. On a $e_{L^2}\approx 10^{-3}$ pour $N_x=10^3$.

Introduction

Problèmes sans diffusion

Propagateur et Monte-Carlo

Schéma diamant et méthode déterministe

Résultats

Problèmes avec diffusion

Monte-Carlo diffusif

Code déterministe

Ajout de la DSA

Résultats

Conclusion

Ajout de la diffusion

On travaille particule par particule

Modifications majeures

- La particule peut rebondir après chaque libre parcours ...
- Ou sortir du domaine ...
- Ou être absorbée
- ▶ Il faut donc une nouvelle variable aléatoire pour en décider
- ▶ Il faut aussi noter la position de la particule à chaque rebond

Ajout de la diffusion

Nouvel algorithme

- Pour chaque particule
 - ► Générer la particule avec la source isotrope adaptée
 - Faire
 - Noter la position
 - Calculer une variable aléatoire de probabilité de diffusion
 - Sortir si nécessaire
 - ▶ Tirer une nouvelle direction aléatoire
 - Lancer la particule avec une probabilité de libre parcours
 - Tant que non absorbée et dans le domaine
- Fin pour
- Calculer la répartition finale des particules avec tous les rebonds

Modifications du code déterministe

On travaille rebond par rebond

Modifications majeures

- ▶ Il faut une quadrature pour intégrer sur l'ensemble des directions
- ▶ A chaque boucle il faut faire circuler toutes les populations à direction donnée
 - ▶ Et dans le bon sens...
- Chaque ancienne population ayant diffusé sera ajoutée à un terme source modifié et on relance l'expérience...
- ► Jusqu'à arriver à un profil stable

Modifications du code déterministe

Algorithme modifié

- ► Calculer les points de quadratures pour la diffusion
- ▶ Initialiser la source modifiée avec la source classique
- Faire
 - Pour toute direction de la quadrature
 - Fixer la bonne condition au bon bord
 - ▶ Faire "avancer" le flux dans la bonne direction
 - ► Calculer la contribution de la direction au flux total
 - Fin pour
 - Calculer la nouvelle source modifiée
- Tant que deux sources modifiées consécutives sont trop différentes

Limite du code déterministe

Problèmes

- La boucle continue tant qu'il y a beaucoup de particules en mouvement
- ▶ Cela peut prendre très longtemps (voire ne pas converger) dans les cas suivant
 - Absorption faible
 - Diffusion forte
 - Source forte
- Les termes de hautes fréquences spaciales sont anéantis...
- Mais les termes de diffusion basse fréquence ne le sont pas

Modification de la méthode classique

- ▶ Résoudre de manière Jusqu'à calculer Q_{i+1} , la nouvelle source modifiée.
- ▶ Résoudre le problème de diffusion pure liée

$$-\frac{1}{3\Sigma_t}\partial_x^2 f + \Sigma_t f = \Sigma_s[Q_{i+1} - Q_i]$$

Ajouter la solution obtenue

$$Q_{i+1} \leftarrow Q_{i+1} + f$$

Méthode de DSA

Modification de la méthode classique

- ightharpoonup Résoudre de manière Jusqu'à calculer Q_{i+1} , la nouvelle source modifiée.
- ► Résoudre le problème de diffusion pure liée

$$-\frac{1}{3\Sigma_t}\partial_x^2 f + \Sigma_t f = \Sigma_s[Q_{i+1} - Q_i]$$

Ajouter la solution obtenue

$$Q_{i+1} \leftarrow Q_{i+1} + f$$

Résolution de l'équation

- ▶ Formalisation pour des élements finis en une dimension
- ▶ Inversion de la matrice avec l'algorithme fourni par Eigen
 - Méthode de Cholesky directe dite LLTD

Source ponctuelle

Figure: Courbes expérimentales pour une source constante sur [0,1]. Lancer de $2 \cdot 10^6$ particules avec $\Sigma_a = 1, \Sigma_s = 5$.

Sohet & Valade

Source continue

Figure: Courbes expérimentales pour une source ponctuelle en 0. Lancer de $2 \cdot 10^6$ particules avec $\Sigma_a = 1, \Sigma_s = 5$.

Nombre sauts en Monte-Carlo

Figure: Distribution du nombre de particules en fonction du nombre de sauts pour un lancer de $2 \cdot 10^6$ particules, avec $\Sigma_a = 1, \Sigma_s = 5$, et un source constante sur [0,1].

Sohet & Valade

Vitesse en convergence en déterministe

arepsilon	.1	0.01	0.001
Boucles sans DSA	761	$> 10^5$	$> 10^5$
Boucles <i>avec</i> DSA	32	46	313
Tps calcul sans DSA	2.9	40	40
Tps calcul <i>avec</i> DSA	0.15	0.22	1.5

Table: Vitesses de convergence pour les schémas avec ou sans DSA.

Erreur en fonction du nombre de particules

Figure: Erreur entre solution exacte et solution approximée en fonction du nombre de particules.

Erreur en fonction du nombre de segments

Figure: Courbe de la distance relative de l'approximation à la solution exacte en fonction du nombre de pas de la discrétisation spatiale. Le cas présenté ici est celui d'une source ponctuelle en 0.

Erreur en fonction du nombre de segments

Figure: Courbe de la distance relative de l'approximation à la solution exacte en fonction du nombre de pas de la discrétisation spatiale. Le cas présenté ici est celui d'une source constante unitaire sur le segment [0, 1].

Convergence en fonction de la quadrature

Figure: Courbes pour différents niveaux de discrétisation de N_{μ} dans le cas d'une experience à source en $\delta(0)$.

Convergence en fonction de la quadrature

Figure: Courbes pour différents niveaux de discrétisation de N_{μ} dans le cas d'une experience à source constante unitaire sur [0,1].

ϵ —Experience

Figure: Courbes théorique pour le cas limite $\epsilon=0$ et expérimentale pour $\sigma_a=0$ et $\epsilon=0.001$.

Conclusion

Points à améliorer

- ▶ Études comparatives plus poussées entre déterministe et Monte-Carlo
 - Vitesse de convergence
 - Précision
 - Adaptabilité
- Utilisation du schéma upwind

Conclusion

Points à améliorer

- Études comparatives plus poussées entre déterministe et Monte-Carlo
 - ► Vitesse de convergence
 - Précision
 - Adaptabilité
- Utilisation du schéma upwind

Idées d'aprofondissement

- Utiliser des coefficients non constants plus complexes
- Passer en plusieurs dimensions...

Conclusion

Points à améliorer

- Études comparatives plus poussées entre déterministe et Monte-Carlo
 - ► Vitesse de convergence
 - Précision
 - Adaptabilité
- Utilisation du schéma upwind

Idées d'aprofondissement

- Utiliser des coefficients non constants plus complexes
- Passer en plusieurs dimensions...

