

Advanced Logic Design Computer Arithmetic: Distributed Arithmetic

Mingoo Seok Columbia University

Readings:

Stanley A. White, "Applications of Distributed Arithmetic to Digital Signal Processing: A Tutorial Review," IEEE ASSP Magazine, July, 1989

Xilinx App Note, "The Role of Distributed Arithmetic In FPGA Based Signal Processing'

Distributed Arithmetic (DA)

- An efficient technique for calculation of sum of products or vector dot product or inner product or multiply and accumulate (MAC)
- MAC operation is very common in all Digital Signal Processing Algorithms
- Initially proposed by Peled and Liu in 1974

So Why Use DA?

- The advantages of DA are best exploited in designing data-path circuits
- Area savings from using DA can be up to 80% and seldom less than 50% in digital signal processing hardware designs
- An old technique that has been revived by the wide spread use of Field Programmable Gate Arrays (FPGAs) for Digital Signal Processing (DSP)
- DA efficiently implements the MAC using basic building blocks (Look Up Tables) in FPGAs

An Illustration of MAC Operation

The following expression represents a multiply and accumulate operation

$$y = A_1 \times x_1 + A_2 \times x_2 + [] + A_K \times x_K$$

i.e. $y = \sum_{k=1}^{K} A_k x_k$

A numerical example

$$A = [32,42,45,23] \quad x = [42,20,-22,67] \quad (K = 4)$$
$$y = 32 \times 42 + 45 \times 20 + 78 \times (-22) + 23 \times 67$$
$$y = 1344 + 900 - 1716 + 1541 = 2069$$

A Few Points about the MAC

Consider this

$$y = \sum_{k=1}^{K} A_k x_k$$

Note a few points

- \blacksquare A=[A₁, A₂,..., A_K] is a matrix of "constant" values
- \blacksquare x=[x₁, x₂,..., x_K] is a matrix of input "variables"
- Each A_k is of M-bits
- \blacksquare Each x_k is of N-bits
- y should be large enough to accommodate the result

A Possible Hardware (not DA yet)

■ Let,
$$A = [C_0, C_1, C_2, C_3]$$
 $x = [A, B, C, D]$ $(K = 4)$

How does DA work?

- The DA technique is bit-serial
- DA is basically a bit-level rearrangement of the multiply and accumulate operation
 - Try to replace a multiplier with a LUT
 - The size of address will be the size of the constant vector, (e.g., 4 in the previous example)
- DA hides the explicit multiplications by LUT
 - An efficient technique to implement on Field Programmable Gate Arrays (FPGAs)
 - Because FPGAs are a collection of LUTs

Moving Closer to Distributed Arithmetic

Consider once again $y = \sum_{k=1}^{K} A_k x_k$...(1)

Let x_k be a N-bits scaled two's complement number i.e.

$$|x_k| < 1$$

 $x_k: \{b_{k0}, b_{k1}, b_{k2}, \dots, b_{k(N-1)}\}$

where b_{k0} is the sign bit

- Substituting (2) in (1),

□ We can express
$$x_k$$
 as $x_k = -b_{k0} + \sum_{n=1}^{N-1} b_{kn} 2^{-n}$...(2) □ Substituting (2) in (1).

$$y = \sum_{k=1}^{K} A_k \left[-b_{k0} + \sum_{n=1}^{N-1} b_{kn} 2^{-n} \right]$$

$$y = -\sum_{k=1}^{K} (b_{k0} \bullet A_k) + \sum_{k=1}^{K} \sum_{n=1}^{N-1} (A_k \bullet b_{kn}) 2^{-n} \dots (3)$$

Moving More Closer to DA

$$y = -\sum_{k=1}^{K} (b_{k0} \bullet A_k) + \sum_{k=1}^{K} \left[\sum_{n=1}^{N-1} (b_{kn} \bullet A_k) 2^{-n} \right] \dots (3)$$

$$y = -\sum_{k=1}^{K} (b_{k0} \bullet A_k) + \sum_{k=1}^{K} \left[(A_k \bullet b_{k1}) 2^{-1} + (A_k \bullet b_{k2}) 2^{-2} + \prod_{k=1}^{K} + (A_k \bullet b_{k(N-1)}) 2^{-(N-1)} \right]$$

$$y = -\left[b_{10} \bullet A_1 + b_{20} \bullet A_2 + \prod_{k=1}^{K} + b_{k0} \bullet A_k \right]$$

$$+ \left[(b_{11} \bullet A_1) 2^{-1} + (b_{12} \bullet A_1) 2^{-2} + \prod_{k=1}^{K} + (b_{1(N-1)} \bullet A_1) 2^{-(N-1)} \right]$$

$$+ \left[(b_{21} \bullet A_2) 2^{-1} + (b_{22} \bullet A_2) 2^{-2} + \prod_{k=1}^{K} + (b_{2(N-1)} \bullet A_2) 2^{-(N-1)} \right]$$

$$+ \left[(b_{K1} \bullet A_K) 2^{-1} + (b_{K2} \bullet A_K) 2^{-2} + \prod_{k=1}^{K} + (b_{K(N-1)} \bullet A_k) 2^{-(N-1)} \right]$$

Moving Still More Closer to DA

Almost there!

$$y = -\sum_{k=1}^{K} (b_{k0}) \bullet A_k + \sum_{n=1}^{N-1} [b_{1n} \bullet A_k + b_{2n} \bullet A_2 + [] + b_{Kn} \bullet A_K] 2^{-n}$$

$$y = -\sum_{k=1}^{K} A_k \bullet (b_{k0}) + \sum_{n=1}^{N-1} \left[\sum_{k=1}^{K} A_k \bullet b_{kn} \right] 2^{-n} \qquad ...(4)$$

The Final Reformulation

Lets See the change of hardware

So where does the ROM come in?

The ROM Construction

$$y = -\sum_{k=1}^{K} A_k \bullet (b_{k0}) + \sum_{n=1}^{N-1} \left[\sum_{k=1}^{K} A_k \bullet b_{kn} \right] 2^{-n} \dots (4)$$

$$\left[\sum_{k=1}^{K} A_k b_{kn}\right] = f_n(b_{1n} b_{2n} \square b_{Kn}) \qquad \dots (5)$$

- (5) can be **pre-calculated** for all possible values of $b_{1n} b_{2n...} b_{Kn}$
- We can store these in a look-up table of 2^K words addressed by K-bits i.e. b_{1n} b_{2n}...b_{Kn}

Lets See An Example

- Let number of taps *K*=4
- The fixed coefficients are A_1 =0.72, A_2 = -0.3, A_3 = 0.95, A_4 = 0.11

$$y = \sum_{n=1}^{N-1} \left[\sum_{k=1}^{K} A_k b_{kn} \right] 2^{-n} + \sum_{k=1}^{K} A_k (-b_{k0}) \dots (4)$$

■ We need $2^K = 2^4 = 16$ -words ROM

ROM: Address and Contents

$$\left[\sum_{k=1}^{4} A_k b_{kn}\right] = A_1 b_{1n} + A_2 b_{2n} + A_3 b_{3n} + A_4 b_{4n}$$

b _{1n}	b _{2n}	b _{3n}	b _{4n}	Contents
0	0	0	0	0
0	0	0	1	A ₄ =0.11
0	0	1	0	A ₃ =0.95
0	0	1	1	A ₃ + A ₄ =1.06
0	1	0	0	A ₂ =-0.30
> 0	1	0	1	A ₂ + A ₄ = -0.19
0	1	1	0	A ₂ + A ₃ =0.65
0	1	1	1	$A_2 + A_3 + A_4 = 0.75$
1	0	0	0	A ₁ =0.72
1	0	0	1	A ₁ + A ₄ =0.83
1	0	1	0	A ₁ + A ₃ =1.67
1	0	1	1	$A_1 + A_3 + A_4 = 1.78$
1	1	0	0	A ₁ + A ₂ =0.42
1	1	0	1	A ₁ + A ₂ + A ₄ =0.53
1	1	1	0	A ₁ + A ₂ + A ₃ =1.37
1	1	1	1	A ₁ + A ₂ + A ₃ + A ₄ =1.48

Key Issue: ROM Size

- The size of ROM is very important for high speed implementation as well as area efficiency
- ROM size grows exponentially with each added input address line
- The number of address lines are equal to the number of elements in the vector of constants i.e. K
- Elements up to 16 and more are common => 2¹⁶=64K-words of ROM (!)
- We have to reduce the size of ROM

Decomposing the ROM

Speed Concerns

- We considered One Bit At A Time (1 BAAT)
- No. of Clock Cycles Required = N
- If K=N, then essentially we are taking 1 cycle per dot product. Not bad!
- Opportunity for parallelism exists but at a cost of more hardware
- We could have 2 BAAT or up to N BAAT in the extreme case
- N BAAT. One complete result/cycle

Illustration of 2 BAAT

Illustration of N BAAT (N=4)

