ItemCF的原理

我喜欢看《笑傲江湖》

《笑傲江湖》与《鹿鼎记》相似

我没看过《鹿鼎记》

给我推荐《鹿鼎记》

ItemCF的原理

我喜欢看《笑傲江湖》

《笑傲江湖》与《鹿鼎记》相似

我没看过《鹿鼎记》

给我推荐《鹿鼎记》

推荐系统如何知道《笑傲江湖》与《鹿鼎记》相似?

- 看过《笑傲江湖》的用户也看过《鹿鼎记》。
- 给《笑傲江湖》好评的用户也给《鹿鼎记》好评。

ItemCF 的实现

用户交互过的物品

用户交互过的物品

用户交互过的物品

预估用户对候选物品的兴趣:

 \sum_{j} like(user, item_j) × sim(item_j, item)

预估用户对候选物品的兴趣: $2\times0.1 + 1\times0.4 + 4\times0.2 + 3\times0.6 = 3.2$

物品的相似度

物品相似度

- •两个物品的受众重合度越高,两个物品越相似。
- 例如:
 - 喜欢《射雕英雄传》和《神雕侠侣》的读者重合度很高。
 - 可以认为《射雕英雄传》和《神雕侠侣》相似。

两个物品不相似

两个物品相似

计算物品相似度

- 喜欢物品 i_1 的用户记作集合 \mathcal{W}_1 。
- 喜欢物品 i_2 的用户记作集合 \mathcal{W}_2 。
- 定义交集 $\mathcal{V} = \mathcal{W}_1 \cap \mathcal{W}_2$ 。

计算物品相似度

- 喜欢物品 i_1 的用户记作集合 \mathcal{W}_1 。
- 喜欢物品 i_2 的用户记作集合 \mathcal{W}_2 。
- 定义交集 $\mathcal{V} = \mathcal{W}_1 \cap \mathcal{W}_2$ 。
- 两个物品的相似度:

$$sim(i_1, i_2) = \frac{|\mathcal{V}|}{\sqrt{|\mathcal{W}_1| \cdot |\mathcal{W}_2|}}.$$

注:公式没有考虑喜欢的程度 like(user, item)

计算物品相似度

- 喜欢物品 i_1 的用户记作集合 \mathcal{W}_1 。
- 喜欢物品 i_2 的用户记作集合 \mathcal{W}_2 。
- 定义交集 $\mathcal{V} = \mathcal{W}_1 \cap \mathcal{W}_2$ 。
- 两个物品的相似度:

$$sim(i_1, i_2) = \frac{\sum_{v \in \mathcal{V}} like(v, i_1) \cdot like(v, i_2)}{\sqrt{\sum_{u_1 \in \mathcal{W}_1} like^2(u_1, i_1)}} \sqrt{\sum_{u_2 \in \mathcal{W}_2} like^2(u_2, i_2)}$$

余弦相似度 (cosine similarity)

小结

- ItemCF 的基本思想:
 - •如果用户喜欢物品 $item_1$,而且物品 $item_1$ 与 $item_2$ 相似,
 - ·那么用户很可能喜欢物品 item2。

小结

- ItemCF 的基本思想:
 - •如果用户喜欢物品 $item_1$,而且物品 $item_1$ 与 $item_2$ 相似,
 - 那么用户很可能喜欢物品 item2。
- 预估用户对候选物品的兴趣:

$$\sum_{j} like(user, item_{j}) \times sim(item_{j}, item)$$
.

小结

- ItemCF 的基本思想:
 - •如果用户喜欢物品 $item_1$,而且物品 $item_1$ 与 $item_2$ 相似,
 - ·那么用户很可能喜欢物品 item2。
- 预估用户对候选物品的兴趣:

$$\sum_{j} like(user, item_{j}) \times sim(item_{j}, item)$$
.

- 计算两个物品的相似度:
 - 把每个物品表示为一个稀疏向量,向量每个元素对应一个用户。
 - ·相似度 sim 就是两个向量夹角的余弦。

ItemCF 召回的完整流程

事先做离线计算

建立"用户→物品"的索引

- · 记录每个用户最近点击、交互过的物品ID。
- · 给定任意用户ID,可以找到他近期感兴趣的物品列表。

事先做离线计算

建立"用户→物品"的索引

- ·记录每个用户最近点击、交互过的物品ID。
- · 给定任意用户ID,可以找到他近期感兴趣的物品列表。

建立"物品→物品"的索引

- 计算物品之间两两相似度。
- •对于每个物品,索引它最相似的 k 个物品。
- · 给定任意物品ID,可以快速找到它最相似的 k 个物品。

"用户→物品"的索引

用户:

"用户→物品"的索引

用户: (物品ID, 兴趣分数)的列表:

"物品→物品"的索引

物品:

•

"物品→物品"的索引

物品: 最相似的 k 个物品的 (ID, 相似度):

- 1. 给定用户ID,通过"用户→物品"索引,找到用户近期感兴趣的物品列表(last-n)。
- 2. 对于last-n列表中每个物品,通过"物品→物品"的索引, 找到 top-k 相似物品。

- 1. 给定用户ID,通过"用户→物品"索引,找到用户近期感兴趣的物品列表(last-n)。
- 2. 对于last-n列表中每个物品,通过"物品→物品"的索引, 找到 top-k 相似物品。
- 3. 对于取回的相似物品 (最多有 nk 个) ,用公式预估用户对物品的兴趣分数。
- 4. 返回分数最高的100个物品,作为推荐结果。

索引的意义在于避免枚举所有的物品。

- 1. 记录用户最近感兴趣的 n = 200 个物品。
- 2. 取回每个物品最相似的 k = 10 个物品。
- 3. 给取回的 nk = 2000 个物品打分(用户对物品的兴趣)。
- 4. 返回分数最高的 100 个物品作为 Item CF 通道的输出。

用索引,离线计算量大,线上计算量小。

总结

ItemCF的原理

- •用户喜欢物品 i₁,那么用户喜欢与物品 i₁相似的物品 i₂。
- 物品相似度:
 - ·如果喜欢 i1、 i2的用户有很大的重叠,那么 i1与 i2 相似。
 - 公式: $sim(i_1, i_2) = \frac{|\mathcal{W}_1 \cap \mathcal{W}_2|}{\sqrt{|\mathcal{W}_1| \cdot |\mathcal{W}_2|}}$ 。

ItemCF召回通道

- 维护两个索引:
 - 用户→物品列表:用户最近交互过的n个物品。
 - · 物品→物品列表:相似度最高的 k 个物品。
- •线上做召回:
 - 利用两个索引,每次取回 nk 个物品。
 - 预估用户对每个物品的兴趣分数:

$$\sum_{j} like(user, item_{j}) \times sim(item_{j}, item)$$
.

• 返回分数最高的100个物品,作为召回结果。