Diszkrét matematika 1.

10. előadás

Fancsali Szabolcs (Ligeti Péter diái alapján)

nudniq@cs.elte.hu www.cs.elte.hu/~nudniq

Síkgráfok

Definíció

Egy G gráf síkgráf, ha lerajzolható úgy, hogy az élei csak a csúcsokban messék egymást. Egy síkgráf élei által határolt síkidom a gráf tartománya.

Tétel (Euler-formula)

Ha egy összefüggő $G=(V,E,\varphi)$ síkgráfnak t tartománya van, akkor |V|+t=|E|+2.

Állítás

Legyen $G=(V,E,\varphi)$ összefüggő, egyszerű, síkgráf és $|V|\geq 3$. Ekkor $|E|\leq 3|V|-6$. Ha G páros gráf is, akkor $|E|\leq 2|V|-4$ is igaz.

Következmény

A K_5 és a $K_{3,3}$ gráfok egyike sem síkgráf.

Síkgráfok 2

Definíció

G és G' gráfok topológikusan izomorfak, ha az alábbi lépéseket véges sokszor végrehajtva izomorf gráfokat kapunk: egy élen egy új csúcsot veszünk fel vagy egy 2 fokú csúcsra illeszkedő éleket összeolvasztjuk és a csúcsot elhagyjuk.

Tétel (Kuratowski tétele)

Egy G gráf síkgráf \Leftrightarrow nem tartalmaz olyan részgráfot, ami topológikusan izomorf K_5 -tel vagy $K_{3,3}-$ mal.

Tétel (Fáry-Wágner tétele)

Minden egyszerű síkgráfnak létezik olyan lerajzolása, amiben az élek egyenes szakaszok.

Fabejárások

Szélességi bejárás – BFS

Adott v_0 csúcsból indulva járjuk be a v_0 összes v_1, \ldots, v_a szomszédját, majd v_1 összes olyan v_{a+1}, \ldots, v_b szomszédját, ahol még nem jártunk, stb.

Mélységi bejárás – DFS

Adott v_0 csúcsból indulva induljunk egy v_1 szomszédjába, ezután v_1 -nek egy v_2 szomszédjába, majd tovább. Ha már ez nem lehetséges, akkor lépjünk vissza az utolsó olyan már bejárt csúcsba, ahonnan tovább lehet menni, stb.

Állítás

Adott G összefüggő gráfban mindkét eljárás egy feszítőfát konstruál (|V|+|E|)-vel arányos lépésben.

Alkalmazások

- legröv. (irányított) út/kör keresés
- max. folyam konstruálása
- erős öfüggőség eldöntése
- síkbarajzolhatóság eldöntése

Párosítások páros gráfban

Definíció

 $M \subset E$ párosítás, ha M-beli éleknek nincs közös csúcsuk (független éleknek is nevezzük).

Egy $P = (v_0, e_1, v_1, \dots, e_m, v_m)$ utat javító útnak nevezünk az M-re nézve, ha $(\forall e \in M : v_0, v_m \notin \varphi(e)) \land (\forall i \in \{1, \dots, m\} : e_i \in M \Leftrightarrow 2|i)$

Egerváry és König algoritmusa (magyar módszer)

Cél: $G = ((A, B), E, \varphi)$ páros gráfban max élszámú párosítás keresés

- $M = \emptyset$ majd ehhez vegyünk ftlen éleket amíg lehet
- keressünk P jav. utat és növeljük a párosítást amíg lehet
- jav út keresés: módosított BFS $\forall a \in A$ csúcsból, felváltva nem-párosításbeli és párosításbeli élekkel

Gráfszínezések

Definíció

Egy G hurokmentes gráf k színnel színezhető, ha minden csúcsot ki lehet színezni k szín egyikével úgy, hogy a szomszédos csúcsok színe különböző. G kromatikus száma $\chi(G) = k$, ha k színnel színezhető, de k-1-el nem.

Tétel (Ötszíntétel)

Ha G síkgráf, akkor $\chi(G) < 5$.

Tétel (Négyszíntétel)

Ha G síkgráf, akkor $\chi(G) < 4$.

Színezési érdekességek

- ha G nem sík, akkor $\chi(G)$ -t még becsülni is nehéz
- élszínezés, $\chi_e(G)$ élkromatikus szám def hasonló
 - Vizing tétele: $\chi_e(G) < \max_{v \in V} d(v) + 1$
- $\max_{v \in V} d(v) \le \chi_e(G)$ trivi, a pontos érték meghatározása nehéz

Nagy hálózatok

Nagy hálózatok jellemzése

- Internet, kapcsolati hálók, biológiai hálózatok, ...
- globális jellemzés esélytelen
- lokális tulajdonságok mérése
- modellezés

Vizsgált jellemzők

- maximális komponens mérete, maximális teljes részgráf (klikk) mérete, ...
- fokszámeloszlás: $p_k = P(deg(v) = k)$
- átlagos úthossz
- klaszterezettség: egy csúcs szomszédai milyen gyakran vannak összekötve
- centralitás mértékek: mik a fontos csúcsok

Erdős-Rényi modell

Konstrukció

- G(n,p) gráf n csúcson
- minden lehetséges élet p valószínűséggel behúzunk a többitől függetlenül

Tulajdonságok

- np < 1: nagy valószínűséggel $\frac{1}{2} \log n$ méretűnél nagyobb komponens
- np = 1: maximális komponens mérete $\sim n^{2/3}$
- np > 1: van "óriás" komponens ($\sim cn$ méretű), a többi $\log n$ -es
- fokszámeloszlás: $p_k = \binom{n-1}{k} p^k (1 p^{n-1-k})$
- átlagos úthossz: log n
- klaszterezettség: ½

Watts-Strogatz kis-világ modell

Konstrukció

- n csúcs, $V = \{v_1, \dots, v_n\}$, K átlagos fokszám, $n \gg K \gg \log n, p$ valószínűség
 - 1. $\forall v_i$ -t összekötünk k szomszédjával (fele előtte, fele utána)
 - 2. $\forall v_i, \forall (v_i, v_j)$ élt i < j esetén p valószínűséggel kicseréljük véletlen (v_i, v_l) élre

Tulajdonságok

- ullet p=0 : szabályos "gyűrű-gráf", p=1 : Erdős-Rényi gráf, 0 az érdekes
- fokszámeloszlás: $p_k = \sum_{i=0}^{f(k,K)} C_{K/2}^i (1-p)^i p^{K/2-i} \frac{(pK/2)^{k-K/2-i}}{(k-K/2-i)!} e^{pK/2}$
- átlagos úthossz: $< \log n$
- kis-világ tulajdonság: lokálisan klaszterezett, klaszterezettség: $\frac{3(k-2)}{4(k-1)}(1-p)^3$

Barabási-Albert modell

Konstrukció

- 1. kiindulunk egy összefüggő gráfból $V = \{v_1, \dots, v_n\}$ csúcsokon
- 2. hozzáadunk új csúcsokat, mindet $m \leq n$ korábbi csúcshoz kötünk, v_i -hez $\deg(v_i)$ -vel arányos valószínűséggel

Tulajdonságok

- növekedés és preferenciális kapcsolódás
- fokszámeloszlás: $p_k \sim k^{-\gamma}$ valamely $\gamma \in \mathbb{R}^+$ értékre
- átlagos úthossz: $\frac{\log n}{\log \log n}$
- ♦ klaszterezettség:

 1/20.75
- néhány γ érték: INTERNET: 2.1, hivatkozások: 3, USA elektromos hálózat: 4