Exercici 6. Siguin $a, b \in \mathbb{Z}$ nombres enters tals que mcd(a, b) = 1. Calculeu mcd(a + b, a - b) en funció de a i b.

Solució 6.

Siguin $a, b \in \mathbb{Z}$ nombres enters tals que mcd(a, b) = 1.

Sigui d = mcd(a+b,a-b). Com que $d|a+b\,i\,d|a-b,\,d$ divideix qualsevol combinació lineal d'aquests.

$$\begin{cases} d \mid (a+b) + (a-b) = 2a \\ d \mid (a+b) - (a-b) = 2b \end{cases}$$

Veiem que d'aquestes dues propietats $d \mid 2a$ i $d \mid 2b$ deduim necessàriament que d = 1 o bé $d = 2 \Rightarrow d \mid 2$, ja que en cas contrari es contradiu la hipòtesi mcd(a, b) = 1. (Si $d \mid a$, i $d \mid b$, necessàriament, d = 1).

Distingim aleshores els següents casos:

$$\begin{cases} (a \equiv 0 \pmod{2} \land b \equiv 1 \pmod{2}) \text{ (o viceversa)} \Rightarrow mcd(a+b,a-b) = 1\\ (a \equiv 1 \pmod{2} \land b \equiv 1 \pmod{2}) \lor (a \equiv 0 \pmod{2} \land b \equiv 0 \pmod{2}) \Rightarrow mcd(a+b,a-b) = 2 \end{cases}$$