NOME		Nº	
------	--	----	--

13/01/2020

Duração: 2h30

- RESPONDA A UM MÁXIMO DE 10 ALÍNEAS TENDO EM CONTA QUE SE RESPONDER PARA 16 VALORES OU MAIS, TEM DE RESPONDER OBRIGATORIAMENTE A DUAS ALÍNEAS DE CADA PERGUNTA.
- EM CADA ALÍNEA, APENAS UMA DAS OPÇÕES ESTÁ CORRECTA.
- ASSINALE NESTA FOLHA A RESPOSTA CORRECTA COM UMA CRUZ.
- Cada resposta correcta é cotada com 2,00 valores.
- CADA RESPOSTA ERRADA É COTADA COM -0,50 VALORES.
- RESPOSTAS EM BRANCO OU COM MAIS DO QUE UMA OPÇÃO ASSINALADA SÃO COTADAS COM 0 VALORES.
- Considere a aceleração da gravidade igual a $9.8~\text{m}\,\text{s}^{-2}$.

FOLHA DE RESPOSTAS

Demonstr	A16			Respost	a		V
Pergunta	Alínea	A	В	С	D	E	Versão 1 1
	a)		X				
1)	b)	X					1
	c)		X				
2)	a)		X				
	b)	X					1
	c)			X			
	a)				X		
3)	b)			X			1
	c)		X				
4)	a)				X		
	b)	X					1
	c)			X			

NOME: _____ N°: ____

[6] 1. A figura representa um paralelepípedo com arestas $\Delta x = 40 \, \mathrm{cm}$ e $\Delta y = \Delta z = 20 \, \mathrm{cm}$, sobre o qual estão aplicadas as forças \vec{F}_1 , \vec{F}_2 e \vec{F}_3 . As forças estão aplicadas nos pontos A, B e C, com coordenadas (x,y,z) iguais a $(\Delta x,0,\Delta z)$, $(\Delta x/2,\Delta y/2,\Delta z)$ e $(0,\Delta y,\Delta z)$, respectivamente, e a força \vec{F}_3 tem intensidade igual a 300 N. As forças \vec{F}_1 , \vec{F}_2 têm a direcção do eixo dos ZZ, e a força \vec{F}_3 tem a direcção do eixo dos YY. Os sentidos das forças são os representados na figura.

[2] a) Considere que as intensidades das forças \vec{F}_1 e \vec{F}_2 são iguais a 100 N. Qual o momento do binário constituído por estas forças?

A)	-5î-10 ĵ(Nm)	B)	$-20\hat{\mathrm{i}}-40\hat{\mathrm{j}}\big(\mathrm{N}\mathrm{m}\big)$
C)	$-10\hat{i} - 20\hat{j}(Nm)$	D)	$-15\hat{i} - 30\hat{j}(Nm)$
E)	Nenhuma das anteriores		

[2] **b)** Considere que as intensidades das forças \vec{F}_1 e \vec{F}_2 são iguais a 150 N. Qual dos seguintes vectores representa o vector momento resultante mínimo do sistema de forças?

A)	-30 ĵ(Nm)	B)	$-20\hat{j}(Nm)$	C)	$-40\hat{j}(Nm)$	D)	-10 ĵ(N m)
E)	Nenhuma	das a	nteriores				

[2] c) Considere que as intensidades das forças $\vec{F_1}$ e $\vec{F_2}$ são iguais a 50 N. O sistema de forças pode ser reduzido a uma única força aplicada no ponto D e um binário cujo vector momento é igual a:

A)	$-75\hat{i} - 30\hat{j} - 120\hat{k} (Nm)$	B)	$-65\hat{i} - 10\hat{j} - 120\hat{k} (Nm)$
C)	$-80\hat{i} - 40\hat{j} - 120\hat{k} (Nm)$	D)	$-70\hat{i} - 20\hat{j} - 120\hat{k} (Nm)$
E)	Nenhuma das anteriores		

NOME: N°:

[6] 2. A figura representada um dispositivo de tracção utilizado em tratamentos ortopédicos, para imobilizar, posicionar e alinhar os membros inferiores, bem como o diagrama de corpo livre da perna para uma situação específica. A perna tem um peso igual a 320 N e comprimento $\ell = 40 \text{ cm}$.

[2] a) Assumindo que $x = \ell/2$ e que P_2 é igual a 301,94 N, qual o valor do ângulo β ?

A)	34°	B)	32°	C)	36°	D)	38°	
E)	Nenhuma	das an	teriores					

[2] b) Se os ângulos α e β forem iguais a 30° e 37,85°, respectivamente, qual o valor do peso P_1 ?

A)	273 N	B)	264 N	C)	277 N	D)	268 N	
E)	Nenhuma	das a	nteriores					

[2] **c)** Se os ângulos α e β forem iguais a 25° e 50,88°, respectivamente, qual o valor da distância x?

A)	25 cm	B)	22 cm	C)	29 cm	D)	24 cm
E)	Nenhuma das anteriores						

[6] 3. Um material isotrópico e linearmente elástico, com módulo de elasticidade $E=180~\mathrm{GPa}$ e razão de Poisson v=0,3, está submetido ao estado de tensão bidimensional representado na figura, com $|\sigma_x|=100~\mathrm{MPa}$, $|\sigma_y|=50~\mathrm{MPa}$ e $|\tau_{xy}|=|\tau_{yx}|=100~\mathrm{MPa}$.

[2] a) Para o estado de tensão representado, qual das seguintes opções representa o tensor de deformações?

A)	$\begin{bmatrix} 639 & 722 & 0 \\ 722 & -444 & 0 \\ 0 & 0 & -83 \end{bmatrix} \times 10^{-6}$	В)	$ \begin{bmatrix} -639 & -722 & 0 \\ -722 & 444 & 0 \\ 0 & 0 & 83 \end{bmatrix} \times 10^{-6} $
C)	$\begin{bmatrix} -472 & -722 & 0 \\ -722 & -111 & 0 \\ 0 & 0 & 250 \end{bmatrix} \times 10^{-6}$	D)	$\begin{bmatrix} 472 & 722 & 0 \\ 722 & 111 & 0 \\ 0 & 0 & -250 \end{bmatrix} \times 10^{-6}$
E)	Nenhuma das anteriores		

[2] b) Tendo por referência o estado de tensão fornecido, qual das seguintes opções representa o tensor de tensões, para um elemento de área rodado de 20° em torno do eixo dos *ZZ*, no sentido contrário ao dos ponteiros do relógio?

A)	$\begin{bmatrix} -147 & -28 & 0 \\ -28 & 97 & 0 \\ 0 & 0 & 0 \end{bmatrix} MPa$	B) $\begin{bmatrix} -158 & -61 & 0 \\ -61 & 8 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	MPa
C)	$\begin{bmatrix} 158 & 61 & 0 \\ 61 & -8 & 0 \\ 0 & 0 & 0 \end{bmatrix} MPa$	$ \begin{bmatrix} 147 & 28 & 0 \\ 28 & -97 & 0 \\ 0 & 0 & 0 \end{bmatrix} $	MPa
E)	Nenhuma das anteriores		

[2] c) Qual a tensão axial máxima de compressão a que está sujeito o material?

A)	178 MPa	B)	28 MPa	C)	100 MPa	D)	150 MPa
E)	Nenhuma	das a	nteriores				

13/01/2020

Duração: 2h30

[6] 4. Considere uma barra horizontal de massa desprezável, com comprimento $L=1,2\,\mathrm{m}$. A barra encontra-se suportada por dois apoios simples, em A e em B. Sobre a barra encontram-se aplicadas as cargas distribuídas representadas na figura, com $p_1(x)=150\left[\mathrm{N\,m^{-1}}\right]$ e $p_2(x)=-375\,x+450\left[\mathrm{N\,m^{-1}}\right]$. Para ambas as distribuições de carga, a variável x é a distância ao ponto A.

13/01/2020

Duração: 2h30

[2] a) Qual a intensidade da reacção \vec{B}_{v} ?

A)	64,00 N	B)	56,89 N	C)	60,44 N	D)	53,33 N
E)	Nenhuma	das ant	eriores				

[2] b) Qual a intensidade da força de corte a uma distância de 0,7 m do apoio A?

<u>A</u>)	36,46 N	B)	41,32 N	C)	43,75 N	D)	38,89 N	
E)	Nenhuma das anteriores							

[2] c) Qual a intensidade do momento flector no centro da barra, sabendo que a força de corte no centro da barra é igual a $15.83\hat{j}(N)$?

A)	30,40 Nm	B)	34,20 Nm	C)	28,50 Nm	D)	32,30 Nm
E)	Nenhuma das anteriores						