Discrete Dynamics Control Theory, Lecture 5 (continuation)

by Sergei Savin

Spring 2021

CONTENT

- Discrete Dynamics
- Stability of the Discrete Dynamics
- Discretization
 - ▶ Finite difference
 - ▶ Finite difference in an autonomous LTI
- Zero order hold
- ZOH and other types of discretization
 - Zero order hold vs First order hold
 - Exact discretization
- Read more

DISCRETE DYNAMICS

The following dynamical system is called *discrete*:

$$\mathbf{x}_{i+1} = \mathbf{A}\mathbf{x}_i + \mathbf{B}\mathbf{u}_i \tag{1}$$

Note that those:

- have no derivatives in the equation;
- are easily simulated.

The affine control for this system can be given as:

$$\mathbf{u}_i = -\mathbf{K}\mathbf{x}_i + \mathbf{u}_i^* \tag{2}$$

STABILITY OF THE DISCRETE DYNAMICS

Part 1

Let us consider stability of the discrete dynamical system $\mathbf{x}_{i+1} = \mathbf{A}\mathbf{x}_i$.

We will attack the problem in the same way as before, first assuming that $\mathbf{A} = \mathbf{V}^{-1}\mathbf{D}\mathbf{V}$, where \mathbf{D} is a diagonal matrix with eigenvalues of \mathbf{A} on its diagonal:

$$\mathbf{x}_{i+1} = \mathbf{V}^{-1} \mathbf{D} \mathbf{V} \mathbf{x}_i \tag{3}$$

Multiplying both sides of the equation by V and defining $z_i = Vx_i$, we get:

$$\mathbf{V}\mathbf{x}_{i+1} = \mathbf{V}\mathbf{V}^{-1}\mathbf{D}\mathbf{V}\mathbf{x}_{i} \tag{4}$$

$$\mathbf{z}_{i+1} = \mathbf{D}\mathbf{z}_i \tag{5}$$

STABILITY OF THE DISCRETE DYNAMICS Part 2

Now, considering $\mathbf{z}_{i+1} = \mathbf{D}\mathbf{z}_i$ we can see that the norm of the state \mathbf{z}_i would not increase iff the norm of the elements of \mathbf{D} (which as eigenvalues of \mathbf{A}) are smaller than 1.

Stability criterion

In general, discrete systems $\mathbf{x}_{i+1} = \mathbf{A}\mathbf{x}_i$ are stable as long as the eigenvalues of \mathbf{A} are smaller than 1 by absolute value: $|\lambda_i(\mathbf{A})| \leq 1$, $\forall i$. This is true for complex eigenvalues as well.

Finite difference

Consider linear time-invariant autonomous system:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} \tag{6}$$

The time derivative $\dot{\mathbf{x}}$ can be replaces with a finite difference:

$$\dot{\mathbf{x}} \approx \frac{1}{\Delta t} (\mathbf{x}(t + \Delta t) - \mathbf{x}(t)) \tag{7}$$

Note that we could have also used other definitions of a finite difference:

$$\dot{\mathbf{x}} \approx \frac{1}{\Delta t} (\mathbf{x}(t + 0.5\Delta t) - \mathbf{x}(t - 0.5\Delta t)) \tag{8}$$

or

$$\dot{\mathbf{x}} \approx \frac{1}{\Delta t} (\mathbf{x}(t) - \mathbf{x}(t - \Delta t)) \tag{9}$$

Finite difference notation

We can introduce notation:

$$\begin{cases} \mathbf{x}_0 = \mathbf{x}(0) \\ \mathbf{x}_1 = \mathbf{x}(\Delta t) \\ \mathbf{x}_2 = \mathbf{x}(2\Delta t) \\ \dots \\ \mathbf{x}_n = \mathbf{x}(n\Delta t) \end{cases}$$
(10)

We say that \mathbf{x}_i is the value of \mathbf{x} at the time step i. Then the finite difference can be written, for example, as follows:

$$\dot{\mathbf{x}} \approx \frac{1}{\Delta t} (\mathbf{x}_{i+1} - \mathbf{x}_i) \tag{11}$$

Finite difference in an autonomous LTI

We can rewrite our original autonomous LTI as follows:

$$\frac{1}{\Delta t}(\mathbf{x}_{i+1} - \mathbf{x}_i) = \mathbf{A}\mathbf{x}_i \tag{12}$$

Isolating \mathbf{x}_{i+1} on the left hand side, we get:

$$\mathbf{x}_{i+1} = (\mathbf{A}\Delta t + \mathbf{I})\mathbf{x}_i \tag{13}$$

Or alternatively:

$$\frac{1}{\Delta t}(\mathbf{x}_{i+1} - \mathbf{x}_i) = \mathbf{A}\mathbf{x}_{i+1} \tag{14}$$

Isolating \mathbf{x}_{i+1} on the left hand side, we get:

$$\mathbf{x}_{i+1} = (\mathbf{I} - \mathbf{A}\Delta t)^{-1}\mathbf{x}_i \tag{15}$$

Zero order hold

Defining discrete state space matrix $\bar{\mathbf{A}}$ and discrete control matrix $\bar{\mathbf{B}}$ as follows:

$$\bar{\mathbf{A}} = \mathbf{A}\Delta t + \mathbf{I} \tag{16}$$

$$\bar{\mathbf{B}} = \mathbf{B}\Delta t \tag{17}$$

We get discrete dynamics:

$$\mathbf{x}_{i+1} = \bar{\mathbf{A}}\mathbf{x}_i + \bar{\mathbf{B}}\mathbf{u}_i \tag{18}$$

This way of defining discrete dynamics is called zero order hold (ZOH).

ZOH AND OTHER TYPES OF DISCRETIZATION

Zero order hold vs First order hold

Graphically, we can understand what zero order hold is, by comparing it to the first order hold:

Figure 1: Different types of discretization

ZOH AND OTHER TYPES OF DISCRETIZATION

Exact discretization

Let the discrete state \mathbf{x}_i correspond to continuous state \mathbf{x} at the moment of time t_i . Then, we can say that the discretization is exact the following holds for any solution $\mathbf{x}(t)$

$$\mathbf{x}_0 = \mathbf{x}(t_0) \to \mathbf{x}_i = \mathbf{x}(t_i), \ \forall i$$
 (19)

We can compute the exact discretization as follows:

$$\bar{\mathbf{A}} = e^{\mathbf{A}\Delta t} \tag{20}$$

$$\bar{\mathbf{A}} = e^{\mathbf{A}\Delta t}$$

$$\bar{\mathbf{B}} = \mathbf{B} \int_{t_0}^{t_0 + \Delta t} e^{\mathbf{A}s} ds$$
(20)

READ MORE

■ Automatic Control 1 Discrete-time linear systems, Prof. Alberto Bemporad, University of Trento

THANK YOU!

Lecture slides are available via Moodle.

You can help improve these slides at: github.com/SergeiSa/Control-Theory-Slides-Spring-2021

Check Moodle for additional links, videos, textbook suggestions.