Pleiotropy testing identifies genetic variants with pleiotropic evidence in Alzheimer's disease

Noah Lorincz-Comi, Xiaofeng Zhu, Ph.D

INTRO

 We tested for genome-wide SNP effects on Alzheimer's disease (AD) using a novel pleiotropy test. This test makes use of the estimated causal effects of brain region volumes on AD.

METHODS

- 1. Data
- EUR GWAS summary statistics from UKBB, ABCD, HCP, PNC, ADNI, PING study cohorts (acronyms, bottom right)
- 2. Phenotypes
- Alzheimer's disease (outcome)
- 7 brain region volumes (exposures)

3. Tests

- Mendelian Randomization (MR) for causal effects using selected instruments
- Pleiotropy T-test (genome-wide)

MR Causal Estimates for AD risk

n_a	OR (P)
3	0.98 (0.346)
3	1.01 (0.685)
4	0.37 (0.006)
1	1.00 (0.932)
5	0.99 (0.373)
5	0.51 (0.024)
3	1.00 (0.826)
6	0.99 (0.643)
	3 3 4 1 5 5

a: *n* instruments from univariable MR with IVW

DISCUSSION

MR pleiotropy testing can identify novel SNP associations with disease undetected by standard GWAS. These SNPs potentially have pleiotropic effects on both the MR exposure and outcome.

CHR 4 locus undetected in Alzheimer's GWAS but found in pleiotropy testing.

Novel SNPs

rsID	Pleiotropy P _a	AD GWAS P	ROI GWAS P _b	
rs13133131	4.34E-08	5.10E-08	0.297	
rs13133301	4.23E-08	5.01E-08	0.270	
rs13134197	4.56E-08	5.37E-08	0.289	
a,b: Min. of all pleiotropy test (a) and ROI GWAS (b) P-values				

Nearest protein-coding gene, *HS3ST1*, associated with CAD, BMI, cholesterol, sleep, albumins, and lateral sclerosis. Expressed mostly in ovary, bladder tissues.

Selected brain regions

- 7 brain regions (ROIs) selected as having the largest genetic correlations with AD (estimated using LD score regression), and at least one genome-wide significant SNP.

Mendelian Randomization

- Performed with IVW using instruments from ROI GWAS with P<5e-8 uncorrelated with other genetic variants.

Pleiotropy t-test

- Let:
 - $\cdot \beta_i$ be the effect of ROI j on AD
 - Γ_i , γ_i respectively be instrument i's effect on the outcome and exposure, i=1, ..., n in MR analysis.

- H_0 : $\gamma_i - \Gamma_i \beta_j = 0$ for each i, j

- Performed genome-wide after MR using instruments estimated a causal effect

Acronyms

MR: Mendelian Randomization

UKBB: UK Biobank

ABCD: Adolescent Brain Cognitive

Development

HCP: Human Connectome Project

PNC: Philadelphia Neurodevelopmental

Cohort

ADNI: Alzheimer's Disease Neuroimaing

Initiative

PING: Pediatric Imaging, Neurocognition, and Genetics

Funding

NLC was supported by T32HL007567 from the NHLBI.