Div og Mod

Div og mod eru aðgerðir þar sem deilt er með afgangi, t.d. að deila 7 upp í 30 sem er 4 með 2 í afgang.

Skilgreining Ef $a \in \mathbb{Z}, d \in \mathbb{Z}$ og d > 0, þá eru til ótvírætt ákvarðaðar tölur $q \in \mathbb{N}, r \in \mathbb{N}$, svo $a = q \cdot d + r$.

q er kllaður kvóti (quotient), og r er kallaður afgangur (remainder).

Ritháttur $q = a \mod d$, (Java: a/d). $r = a \operatorname{rem} d$ (Java: a%d).

Leyfareikningur (modular arithmetic)

Deiling með m upp í tölur a,b sem gefur sama afgang er táknuð

$$a \equiv b \pmod{m}$$

Lesið a er samleyfa b mátað við m. (a is congruent to b modulo m)

Dæmi:

4 og 76 eru samleyfa mátað við 24, svo: $4 \equiv 76 \pmod{24}$.

Reglur

Ef:

 $a \equiv b \pmod{m}$

 $c \equiv d \pmod{\mathrm{m}}$

Þá:

 $a + c \equiv b + d \pmod{m}$

 $a - b \equiv b - d \pmod{m}$

 $ac \equiv bd \pmod{m}$

 $a^n \equiv b^n \pmod{m}$ fyrir öll n

Hagnýtingar

- 1. Að reikna hakkaföll, t.d. $h(k) = k \mod m$, þar sem m er fjöldi plássa.
- 2. Að reikna sl
mebitölur. t.d $x_n=(a\cdot x_{n-1}+b)$ mod m, þar sem a er stór tala og
 $m=2^{64}$. Gæfi 64 bita PSEUDO-random tölu
- 3. Að reikna vartölur ($checksum\ digit$), t.d. mod 10 í luhn-algorithmanum, md5-checksum

Dæmi Kennitöluvartala

Tökum kennitöluna 170858 - 4259

og margföldum með 32765432

	1	7	0	8	5	8	4	2	5	9
x									vartala	
=	3	14	0	48	25	34	12	4	=	138

Reiknum $11 - (138 \mod 11) = 11 - 6 = 5$, sem er vartalan okkar.

Gcd (greatest common divisor)

Stærsti samþáttur a og b er stærsta talan sem gengur upp í bæði a og b, táknað: $\gcd(ab)$.

Lcm (least common multiple)

Minnsti samnefnari a og b er minnsta tala sem a og b ganga upp í, táknað $\operatorname{lcm}(a,b).$

Reiknirit Evklíðs (Euclid's algorithm)

Notað til að finna stærsta samþátt tveggja jávæðra heiltalna a < b. Deilum a upp í b og finnum afganginn. Ef afgangurinn: $r_0 = 0$ þá er a stærsti samþátturinn, annars er næst deilt r_0 upp í a og svo með r_1 í r, og svo framvegis þar til $r_n = 0$.

Regla: $a \cdot b = \mathbf{lcm}(a, b) \cdot \mathbf{gcd}(a, b)$

Dæmi

Finnum gcd(18,30). 18 < 30 svo við byrjum:

$$\frac{30}{18} = 1, r_0 = 12$$

$$\frac{18}{12} = 1, r_1 = 6$$

$$\frac{12}{6} = 2, r_2 = 0$$
, svo: $gcd(18, 30) = 6$.

Samleifa andhverfur

Setning Bezout:

Fyrir öll a og b eru til tölur s og t þannig að $sa + tb = \gcd(a, b)$

Ef $\gcd(a,b)=1$ (a og b eru ósamþátta (coprime)), þá er hægt ap finna samleifa andhverfu a mod b. Í öðrum orðum, það er til tala s svo:

$$s \cdot a \equiv 1 \pmod{b}$$
.

Til er reiknirit til að finna s og t, en það er tímafrekt og í staðin ef a og b eru lágar tölur er hægt að prófa sig áfram:

Dæmi:

$$a = 3, b = 4$$

Skrifum margföldunartöflur:

$$3 \cdot s : 3, 6, \mathbf{9}, 12, 15, \dots$$

$$-4 \cdot t : -4, -8, -12, -16, -20, \dots$$

9-8=1 svo andhverfa $3 \pmod{4}$ er 9

Prímtölur (prime numbers)

Skilgreining

Tala sem er bara deilanleg með sjálfri sér og 1. Í öðrum orðum: p er prímtala þá og því aðeins að ef n|p, þá er n=1, n=p.

Ritháttur:

a gengur upp í b, er táknað a|b.

Meginsetning algebrunnar

Ef $n \in \mathbb{N}$, þá má rita $n = p_1^{k_1} \cdot p_2^{k_2} \cdot p_3^{k_3} \cdot \dots \cdot p_n^{k_n}$, þar sem p_i eru prímtölur og $k_j \in \mathbb{N}^+$, á nákvæmlega einn veg. Kallað **prím þáttun**.

Dæmi um prím þáttun:

$$14 = 2 \cdot 7$$

$$18 = 2 \cdot 3^2$$

$$780 = 10 \cdot 78 = 2^2 \cdot 3 \cdot 5 \cdot 13$$