Kinematical Animation

lionel.reveret@inria.fr 2013-14

3D animation in CG

Goal: capture visual attention

Limits of purely physical simulation:

- little interactivity
- high complexity for expressive characters

animation in 3D CG

Two heritages

- Cartoons
 - How to represent motion on a 2D visualization
- Robotics
 - Mathematics foundation of 3D motion

Heritage from cartoon

- Sampled motion, film framework (24 images per second)
- Animation workflow from photographs (Muybridge, Marey)
 Kinematic Animation
 lionel.reveret@inria.fr

Early Mathematics of motion

- Etienne-Jules Marey (1830-1904)
 - physiologist
 - inventor of chronophotography (1882)
 - cinematography invented in 1895 (L. Lumière)

The "graphical method": one motion can be represented by a curve

Heritage from robotics

Chain of rigid articulations

- + Forward kinematics
- + Inverse-Kinematics algorithm
- + Motion planning

Animation skeleton:

appropriate degrees of freedom for expressivity

3D animation: interpolation+skeleton

Interpolation

- Interpolation of a 1D-scalar value
 - One function p(u) with unknown parameters,
 - Typically cubic polynomial: $p(u)=\Sigma_{n=0...3} a_n u^n$
 - known constrains on points
 - { u_i , $(d^n p/du)(u_i) = b_i$ }
 - 4 are enough for exact cubic polynomial
 - Direct solving for a_n
 - p(u) is thus known for every u

Interpolation

- Practical case: Hermit polynomial (spline)
 - C¹ continuity between sets of 2 points
 - 2 positions and tangents at these positions

Interpolation

- Interpolating 3D rotation
 - Canonic representation : SO(3) matrix
 - but $M_0, M_1 \in SO(3) \neq > (1-\alpha)M_0 + \alpha M_1 \notin SO(3)$
 - Represent SO(3) matrix with Euler angles
 - any rotation in R³ can be represented by 3 angles

•
$$M = R_{x,\psi} R_{y,\theta} R_{z,\Phi} =$$

Multiplication order matters!

$$\frac{I = R_{x,\psi} R_{y,\theta} R_{z,\Phi}}{\text{Multiplication}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \psi & -\sin \psi \\ 0 & \sin \psi & \cos \psi \end{bmatrix} \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Local transformation
 - Rzyx : yaw, pitch and roll
 - can be $R_{z,\psi} R_{y,\theta} R_{z,\phi}$

=> Animation by interpolating angles

Interpolating 3D rotation

- Limitations of Euler angles
 - Non-uniqueness of position and path

Interpolating 3D rotation

- Limitations of Euler angles
 - Gimbal lock

 $[\theta_x, \theta_y, \theta_z] = [0, 0, 0]$

 $[\theta_x, \theta_y, \theta_z] = [0, \pi/4, 0]$

 $[\theta_x, \theta_y, \theta_z] = [0, \pi/2, 0]$

1 degree of freedom is lost : change in $\theta_x \Leftrightarrow$ change in θ_z

3D rotation

- Axis-angle
 - any rotation in R³ is a planar rotation around an axis
 - strong link with quaternion

$$v' = R_{\theta,n}v = \cos\theta \ v + \sin\theta \ n \times v + (1 - \cos\theta)(v \cdot n) \ n$$

$$R_{\theta,n} = \cos\theta \ \mathbf{I} + \sin\theta \ [n]_{\times} + (1 - \cos\theta)nn^{t}$$

Rodrigues formula

$$[n]_{x} = \begin{cases} 0 - n_{z} n_{y} \\ n_{z} 0 - n_{x} \\ -n_{y} n_{x} 0 \end{cases}$$

$$R_{\theta,n}$$
= exp($[\theta n]_x$)
= $I + \Sigma_{k=1...\infty} [\theta n]_x^k/k!$

Quaternion

H: Extension of standard complex

q = [s, x, y, z] = s + ix + jy + kz = [s, n]
with
$$i^2=j^2=k^2=ijk=-1$$

q.q' = [ss' - n.n', s' n + s n' + n x n']
q* = [s, -x, -y, -z]
 $||q||^2 = q \cdot q^* = s^2 + x^2 + y^2 + z^2$
 $q^{-1} = q^*/||q||^2$
 $||q||=1 \Rightarrow q = [\cos\theta, (\sin\theta)n] \in H_1$
with $n \in R^3$ and $||n||=1$

Any rotation in R³ can be represented in H₁

$$x \in \mathbb{R}^3$$
, $x' = \mathbb{R}_{\theta,n} x \Leftrightarrow [0,x'] = q[0,x]q^{-1}$
with $q = [\cos(\theta/2), \sin(\theta/2)\mathbf{n}]$

Interpolating 3D rotation

- Quaternion
 - Linear interpolation in H does not work well
 - $q(t) = (1-t).q_0 + t.q_1$
 - Angular velocity is not constant

Spherical linear interpolation is fine (SLERP)

Interpolating 3D rotation

```
Log and exp in H₁
     q = [\cos\theta, (\sin\theta)\mathbf{n}] = \exp([0,\theta\mathbf{n}])
     log(q) = [0, \theta n]
     q^t = \exp(t.\log(q))
     dq^t/dt = logq q^t
     || dq^{t}/dt || = || logq|| = || [0, \theta n] || = |\theta|
Application to SLERP (q; : unit quaternion, p; : geometrical point on sphere)
     SLERP(q0,q1,t) = (q_1q_0^{-1})^tq_0
     SLERP(p0,p1,t) = (\sin[(1-t)\Omega]p_0 + \sin[\Omega t]p_1)/\sin\Omega
          with \cos\Omega = p_0 \cdot p_1
                                    Kinematic Animation
                                    lionel.reveret@inria.fr
```

Kinematic Animation

- Two fundamental cases
 - Unconstrained motion
 - waving arms, nodding head, etc
 - => Forward Kinematics (FK)
 - Constrained motion
 - grasping an object, walking on the ground, etc
 - => Inverse Kinematics (IK)

Forward Kinematics

Direct application of 3D framework

lionel.reveret@inria.fr

Inverse Kinematics

- Articulated object
 - Translational and rotational links
 - Goal to reach

Inverse Kinematics

- input : goal to reach (M)
- model parameter :

```
\Theta = (\theta_1, \theta_2, ..., t_1, t_2, ...), model parameters f(\Theta) position of kinematic chain end
```

- \Rightarrow Find $\Theta^*/M=f(\Theta^*)$
- 2 or 3 rotations: direct computation in R² or R³
- N articulations:?

Difficulties

• Two solutions:

Range of solutions :

• No solutions:

f: direct kinematics

Concatenation of matrix transforms

- $f(\Theta) = \mathbf{R}_1(\theta_1)\mathbf{T}_1(\mathbf{t}_1)\mathbf{R}_2(\theta_2)\mathbf{T}_2(\mathbf{t}_2)...M_0$ - M_0 : position in rest pose (no rotations)
- Non linearity because of rotations

Zero of non-linear function

• Find $\Theta / f(\Theta) - M = 0$

Linearization :

- given a current Θ and error $E = f(\Theta)$ -M
- find h / E = $f(\Theta+h) f(\Theta) = f'(\Theta)h$

$$=> h = f'(Θ)^{-1} Ε$$

$$\Rightarrow \Theta := \Theta + h$$

iterate

Linearization

Taylor series :

$$f(\Theta + h) = f(\Theta) + f'(\Theta)h + f''(\Theta)h^2 + \dots$$

Multivariate case :

$$f(\Theta + h) = f(\Theta) + J(\Theta)h + hH(\Theta)h + ...$$

- J Jacobian of f, linear form in h
- **H** Hessian of *f*, quadratic form in h

Jacobian

 Matrix of derivatives of several functions with severable variables :

$$J_{ij} = \frac{\partial f_i}{\partial x_j}$$

J:3xN matrix => not squared Use Pseudo-inverse for inversion :

$$J^{+} = J^{t}(JJ^{t})^{-1}$$
 if N>3
or $J^{+} = (J^{t}J)^{-1}J^{t}$ if N<3

Algorithm

```
inverseKinematics()
    start with current \Theta;
    E := target - computeEndPoint();
    for(k=0; k<k<sub>max</sub> && |E| > eps; k++){
      J := computeJacobian();
      solve J h = E;
      \Theta := \Theta + \mathbf{h};
       E := target - computeEndPoint();
```

Joint limits

- Joint may have limits of variation
 - For example realistic elbow is limited
- To enforce limits:
 - test for limitation violation
 - cancel parameter if violation
 - in practice, remove column in J
 - compute new J and J+
 - compute new h

Adding constrains

 if KerJ≠0, degrees of freedom left to enforce a new constrains Ω

$$\mathbf{J}\Omega = 0$$

- 2. if Θ solves $\mathbf{J}\Theta = \mathbf{E}$, thus $\Theta + \Omega$ is also solution $\mathbf{J}(\Theta + \Omega) = \mathbf{J}\Theta + \mathbf{J}\Omega = \mathbf{E} + 0 = \mathbf{E}$
- 3. if general constrain C, need to project on KerJ:

$$C_p = (J^+J - I) C$$

check: $J C_p = J (J^+J - I) C = (J - J) C = 0$

Example: preferred angle

- Value : Θ_{pref}
- Constraint C:

$$-C_i = \Theta_i - \Theta_{\text{pref}}$$

- Modified algorithm :
 - $use \mathbf{h} = \mathbf{J}^{+}E + (\mathbf{J}^{+}\mathbf{J} \mathbf{I})C$
 - => preserve convergence

Inverse Kinematics

- Other methods
 - use J^t instead of J⁺
 - theory of infinitesimal works
 - $h = J^{t} E$
 - use several 1D optimization
 - Cyclic Coordinate Descent
- => faster but less accurate

Inverse Kinematics

A good source:

http://billbaxter.com/courses/290/html/

Fast Numerical Methods for
Inverse Kinematics

Comp 290-72 Presentation
Bill Baxter
2000-02-21