Mini tutoriel R pour l'analyse de données

Jean-Marc Lasgouttes — Inria Paris Jean-Marc.Lasgouttes@inria.fr

http://ana-donnees.lasgouttes.net/

Qu'est-ce que R?_____

Une copie de S S est un logiciel de statistiques développé aux Bell Labs; R est une implémentation libre distribuée sous la licence GNU GPL.

Un logiciel populaire beaucoup de fonctionnalités ont été développées par la communauté R; c'est sa grande force.

Un logiciel portable $\mbox{\ R}$ existe sous Windows, macOS et Linux.

Un logiciel libre Le code source de R et des binaires sont disponibles sur https://cran.org/

CRAN? C'est le site qui regroupe tous les *packages* R développés par la communauté

Analyse de données en R_____

Dans ce cours : ade4

- disponible sur CRAN
- développé à l'université Lyon I

Autres possibilités

- livré avec R : fonction prcomp pour l'ACP ou corresp (du package MASS) pour l'AFC Assez basique
- package FactoMineR : peut-être plus moderne

IDE RStudio Environnement de travail, installé sur vos machines

- console R pour taper les commandes
- panneaux pour visualiser les variables, les tables, les graphiques
- possibilité de faire des *notebooks* en langage markdown combinées à du code R.

Lire des données_

Commande de base

```
read.table(file, header = FALSE, sep = "",
quote = "\"'", dec = ".", numerals = c(...),
row.names, col.names,
as.is = !stringsAsFactors, na.strings = "NA",
colClasses = NA, nrows = -1, skip = 0,
check.names = TRUE, fill = !blank.lines.skip,
strip.white = FALSE, blank.lines.skip = TRUE,
comment.char = "#",
allowEscapes = FALSE, flush = FALSE,
stringsAsFactors = FALSE,
fileEncoding = "", encoding = "unknown", text, skipNul = FALSE)
```

Comment lire ça?

- les paramètres peuvent avoir une valeur par défaut (FALSE pour header)
- Seules les quelques premières sont obligatoires
- si on ne donne pas le nom, ce sera le premier, le second...
- on peut abréger le nom si ce n'est pas ambigu (head pour header, par ex.)
- en général, on ne donne que quelques paramètres

Lire des données (suite)_____

Commande de base version courte

Explications afficher l'aide avec la commande ?read.table ou help(read.table)

Et le résultat? uniquement retour de fonction (souvent un objet complexe)

On peut afficher l'objet avec la commande print(obj) (ou juste obj) ou alors summary(obj)

Exemple parfois aussi simple que

```
sympa <- read.table("sympa.txt")</pre>
```

 $\ll <- \ \ \, >??$ C'est l'opérateur d'affectation (on peut aussi utiliser =)

Autre type de fichiers

- comma separated variables (csv) : read.csv(),
 read.csv2()
- libreofice calc avec read_ods() du package readODS

Manipuler une table_____

Comme un tableau

- sympa [3,2] donne la case de troisième ligne et seconde colonne
- sympa["PAYS",] donne la ligne correspondant à PAYS
- sympa[1,], pareil (PAYS est la première ligne)
- sympa[1:3,2:4] donne le bloc composé des lignes 1
 à 3 et des colonnes 2 à 4

Comme un enregistrement en utilisant \$ pour accéder à un champ

— sympa\$GENE donne la colonne correspondant à la colonne GENE (sans les noms de ligne/colonnes)

Type de données connues de R

- réels, entiers, booléens (TRUE ou FALSE) ou facteurs (valeurs qualitatives)
- vecteur de ces variables c(3,2, 1.5, FALSE)
- matrice à deux dimensions

 $\left(\begin{array}{ccc} 1 & 2 & 3 \\ 11 & 12 & 13 \end{array}\right)$

Utiliser ade4

Installer le package à faire une seule fois

install.packages("ade4")

ou alors dans RStudio le menu « Tools > Install Package ».

Charger le package là, plus besoin de guillemets

require(ade4)

Concept central de ade4 Duality diagram (DUDI)

Faire une AFC

AFC COrrespondance Analysis

dudi.coa(df, scannf = TRUE, nf = 2)

Paramètres

- df : les données comme retournées par read.table (data frame)
- scannf : si vrai (TRUE ou T), affiche un graphique des valeurs propres et demande le nombre d'axes à conserver
- nf : quand scannf=F, contient le nombre d'axes à
 conserver

Exemple typique

coa1 <- dudi.coa(mesdonnees, scannf = F, nf = 4)</pre>

L'objet coa1 a, entre autres champs

- coa1\$eig : valeurs propres
- coa1\$co, coa1\$li : coordonnées des colonnes et des lignes
- coa1\$cw, coa1\$lw: poids des colonnes et des lignes

Mais aussi... une ACP avec dudi.pca() et une ACM avec dudi.acm()

Des graphiques!_____

Les valeurs propres

barplot(coa1\$eig)

La projection des individus on affiche les modalités de colonne du premier plan avec

s.label(coa1\$co)

et on ajoute les modalités de ligne avec

s.label(coa1\$li, add.plot=T)

Paramètres s.label(x, xax=1, yax=2, add.plot=F,
...)

- x : objet renvoyé par dudi.coa
- xax, yax : indice de l'axe pricipal en abcisse, ordonnée
- add.plot=T indique que les nouveaux points seront sur le graphe préexistant

Données liées à l'inertie_

Commande de base calcul de l'inertie totale et autres

- x : objet retourné par dudi.coa
- row.inertia : calculs détaillés par ligne
- col.intertia : calculs détaillés par colonne

Valeur retournée objet avec les champs

- tot.inertia : répartition de l'inertie entre les axes
- row.contrib : contribution des lignes aux axes
- row.rel : qualité de représentation par les axes
- row.cum : qualité de représentation cumulée par les axes
- et les mêmes avec col.xxx pour les colonnes