Tristram Chivers,* Kaveripatnam S. Dhathathreyan, and Tom Ziegler*

Department of Chemistry, The University of Calgary, Calgary T2N 1N4, Alberta, Canada

The reaction of $Pt(C_2H_4)(PPh_3)_2$ with 1,5- $E_2N_4S_2$ (E = Ph_2P , Me_2NC) in acetonitrile produces high yields of $Pt(1,5-E_2N_4S_2)(PPh_3)_2$ in which the η^2 -S,S bonding between platinum and the heterocyclic ligand is shown by density functional calculations to be analogous to that found in η^2 -alkene–platinum complexes.

The nature of the weak cross-ring S–S interactions $[d(S-S)\sim 2.5 \text{ Å}]$ in 1,5-dithiatetrazocines $E_2N_4S_2$, (1a) $E=Me_2NC;^1$ (1b) $E=Me_2P;^2$ (1c) $E=Ph_2P,^3$ is a fundamental issue in understanding the unusual structures and bonding in sulphurnitrogen (S–N) rings and cages.⁴ In connection with studies of the stereochemistry of oxidation of (1a)⁵ and (1c)^{5.6} by polar and radical reagents, Oakley *et al.* have pointed out the isolobal correspondence between the σ and σ^* orbitals of these S–S bonds and the π and π^* orbitals of an electron-deficient alkene (Figure 1).⁵ As a test of this analogy we have investigated the reactions of (1a) and (1c) with zerovalent platinum complexes and we report here the preparation of $Pt(E_2N_4S_2)(PPh_3)_2$, (2a) $E=Me_2N$; (3) $E=Ph_2P$. These complexes exhibit a novel bonding mode between the

heterocyclic ligand and platinum involving an η^2 -S,S' interaction which, on the basis of relativistic density functional calculations, is comparable to that found in the classic metal-alkene complexes.⁷

The reactions of $Pt(C_2H_4)(PPh_3)_2$ with (1a) or (1c) proceed rapidly in toluene under nitrogen at room temperature to give

$$E = N S N E$$
(1)

Table 1. Decomposition^a of calculated D(Pt-L) bond energies (kJ mol⁻¹) in (PH₃)₂PtL.

L	$-\Delta E_{ m prep}{}^{ m b}$	$-\Delta E_{\mathrm{O}}$	$-\Delta E_{\mathrm{D}}$	$-\Delta E_{ m BD}$	$-\Delta E_{ m R}$	D(Pt-L)
$C_2(CN)_4$	-158.9	-506.4	123.9	561.6	136.4	156.6
$1,5-(H_2N)_2C_2N_4S_2$	-63.3	-493.5	156.5	376.2	128.1	104.0
C_2H_4	-110.4	-306.7	92.1	266.5	123.4	65.5

^a Decomposition^{9d} of D(Pt-L) according to equation (2). ^b Contribution from deformation of (PH₃)₂Pt is -50.2 kJ mol⁻¹.

yellow precipitates of 1:1 complexes in which ethylene has been displaced by the heterocyclic ligand [reaction (1)].

$$Pt(C_{2}H_{4})(PPh_{3})_{2} + E_{2}N_{4}S_{2} \xrightarrow{-C_{2}H_{4}} Pt(E_{2}N_{4}S_{2})(PPh_{3})_{2}$$
(1)

$$(2a) E = Me_{2}NC$$

$$(3) E = Ph_{2}P$$

Compound (2a) was obtained in 79% yield as pale yellow, rectangular crystals (m.p. 241 °C) after recrystallization from acetonitrile and (3) was produced in 72% yield as yellow microcrystals (m.p. 197-198 °C) after recrystallization from CH₂Cl₂-C₆H₆.† The ¹H n.m.r. spectrum of (2a) in CDCl₃ exhibits a singlet at δ 2.91 [cf. δ 3.15 for (1) (E = Me₂NC)]¹ and the ³¹P{1H} n.m.r. spectrum shows a singlet at +19.9 p.p.m. (ref. external 85% H_3PO_4) with ${}^1J_{Pt-P}$ 3225 Hz. The ³¹P{¹H} n.m.r. spectrum of (3) in CDCl₃ at 25 °C exhibits singlets at +15.3 (Ph₃P) (${}^{1}J_{Pt-P}$ 2850 Hz) and +39.0 (Ph₂P) $(J_{Pt-P} 580 \text{ Hz})$. The ³¹P n.m.r. spectrum of (3) at $-60 \,^{\circ}\text{C}$ is identical to that obtained at 25 °C. The n.m.r. data for (2a) and (3) indicate that the heterocyclic ligand is symmetrically bonded to platinum, but these data do not distinguish between the structural possibilities (4)‡ {cf. $S_4N_4 \cdot CuX_2$ (X = Br, Cl) and α -[TiCl₄(S₄N₄)]₂} and (5).8

We have carried out relativistic^{9a} density functional calculations^{9b} on the complexes $(PH_3)_2PtL$, (2b) $L=1,5-(H_2N)_2C_2N_4S_2$; (6) $L=C_2(CN)_4$; and (7) $L=C_2H_4$, based on the HFS-LCAO program system, ^{9c} where (2b) should serve as a realistic model for the title compound (2a); (6) and (7) are representative d^{10} alkene complexes. Calculated D(Pt-L) bond energies for the three systems [(2b), (6)] and (7) are given in Table 1 decomposed^{9d} according to equation (2).

$$D(\text{Pt-L}) = -[\Delta E_{\text{prep}} + \Delta E_{\text{O}} + \Delta E_{\text{D}} + \Delta E_{\text{BD}} + \Delta E_{\text{R}}] \quad (2)$$

Figure 1. Schematic representation of the S–S σ and σ^* orbitals in (1) (S–N antibonding components are not shown) and the π and π^* orbitals of alkene.

In equation (2) ΔE_{prep} represents the energy required to deform $(PH_3)_2Pt$ and L into the structures of the two fragments in the combined complex, $\Delta E_{\rm O}$ is the steric interaction energy between (PH₃)₂Pt and L in (PH₃)₂PtL, $-\Delta E_{\rm D}$ is the stabilization of the Pt-L bond due to the donation from $\sigma(S-S)$ (2b) or $\pi(alkene)$ (6) and (7), $-\Delta E_{BD}$ is the corresponding stabilization due to the back-donation to $\sigma^*(S-S)$ (2b) or π^* (alkene) (6) and (7), and $-\Delta E_R$ represents contributions to D(Pt-L) from relativistic effects. The results in Table 1 confirm the notion that the bonding in (2b) is analogous to that found in platinum-alkene complexes.7 In fact the order for $-\Delta E_{\rm BD}$ is calculated as (6) > (2b) > (7). This order can be related to the energies of the acceptor orbitals, $\sigma^*(S-S)$ or $\pi^*(alkene)$, calculated (in eV) as -5.4, -3.3, and -1.7, for the free (deformed) ligands of (6), (2b), and (7), respectively. The charges back-donated are 0.92, 0.76, and 0.57 for (6), (2b), and (7), respectively. Thus the back-donation to the heterocyclic ligand in (2b) is seen to fall between that to the electron-deficient alkene $C_2(CN)_4$ in (6) and that to the more electron-rich alkene C_2H_4 in (7).

Numerous adducts of S_4N_4 (1) E=S, with transition metal halides, are known and they involve mono- or bi-dentate co-ordination to the metal via a nitrogen atom. 10,11 The only exception is the six-co-ordinate complex IrCl-(CO)(PPh₃)(S_4N_4) in which the Ir atom is inserted into an S-N bond of S_4N_4 which functions as a tridentate (N,S,S) ligand. 12 Thus compound (2a) represents a new structural type and bonding mode for complexes of S-N ligands with metals and presages an interesting co-ordination chemistry for ligands of type (1).

Finally, we note that the reaction of S_4N_4 with zerovalent platinum complexes produces the unstable adduct $Pt(S_4N_4)(PPh_3)_2^{13}$ prior to decomposition to give mono- and di-nuclear complexes containing PtS_2N_2 rings. ^{14—16} It seems reasonable to propose that η^2 -S,S' bonding is also involved in this adduct and that co-ordination of another Pt atom to the

[†] Satisfactory C, H, and N analyses were obtained for (2a) and (3).

[‡] Preliminary X-ray structural data for (2a) have established that this complex adopts the η^2 -S,S' structure (5), with approximately square planar co-ordination at Pt: \angle PPtP = 101.3(3), \angle SPtS = 79.2(5)°, d(Pt-S) = 2.36(1), d(Pt-P) = 2.32(1), d(S-S) = 3.01(2) Å [cf. d(S-S) = 2.43 Å in (1) E = Me₂NC].¹ Problems have been encountered with the refinement and further structural details will be given in the full paper (J. Fait, personal communication).

second S–S bond in S_4N_4 leads to cleavage of the S–N heterocycle to give the observed cyclometallathiazenes.

We thank the N.S.E.R.C. (Canada) for financial support.

Received, 8th August 1988; Com. 8/03241F

References

- I. Ernest, W. Holick, G. Rihs, D. Schomburg, G. Shoham, D. Wenkert, and R. B. Woodward, J. Am. Chem. Soc., 1981, 103, 1540.
- 2 N. Burford, T. Chivers, P. W. Codding, and R. T. Oakley, *Inorg. Chem.*, 1982, 21, 982.
- N. Burford, T. Chivers, and J. F. Richardson, *Inorg. Chem.*, 1983, 22, 1482.
- 4 T. Chivers, Chem. Rev., 1985, 85, 341.
- 5 R. T. Boeré, A. W. Cordes, S. L. Craig, T. T. Oakley, and R. W. Reed, J. Am. Chem. Soc., 1987, 109, 868.
- 6 N. Burford, T. Chivers, M. N. S. Rao, and J. F. Richardson, Inorg. Chem., 1984, 23, 1946.

- M. J. S. Dewar, *Bull. Soc. Chim. Fr.*, 1953, 18, C79; J. Chatt and L. A. Duncanson, *J. Chem. Soc.*, 1953, 2939.
- 8 U. Thewalt, Angew. Chem., Int. Ed. Engl., 1976, 15, 765; U. Thewalt and B. Muller, Z. Naturforsch., Teil B, 1988, 37, 828; U. Thewalt and K. Holl, ibid., 1988, 43, 467.
- 9 (a) J. G. Snijders, E. J. Baerends, and P. Ros, *Mol. Phys.*, 1979,
 33, 1909; (b) A. Becke, *J. Chem. Phys.*, 1986, 84, 4524; (c) E. J. Baerends, D. E. Ellis, and P. Ros, *Chem. Phys.*, 1973, 2, 71; (d) T. Ziegler and A. Rauk, *Inorg. Chem.*, 1979, 18, 1588.
- 10 T. Chivers and F. Edelmann, Polyhedron, 1986, 5, 1661.
- 11 P. F. Kelly and J. D. Woollins, *Polyhedron*, 1986, **5**, 607.
- 12 F. Edelmann, H. W. Roesky, C. Spang, M. Noltemeyer, and G. M. Sheldrick, *Angew. Chem.*, *Int. Ed. Engl.*, 1986, 25, 931.
- 13 A. A. Bhattacharyya, J. A. McLean, Jr., and A. G. Turner, *Inorg. Chim. Acta*, 1979, **34**, L199.
- 14 C. A. Ghilardi, S. Midollini, S. Moneti, and A. Orlandini, J. Organomet. Chem., 1985, 286, 419.
- 15 R. Jones, P. F. Kelly, D. J. Williams, and J. D. Woollins, J. Chem. Soc., Chem. Commun., 1985, 1325.
- 16 T. Chivers, F. Edelmann, U. Behrens, and R. Drews, *Inorg. Chim. Acta*, 1986, **116**, 145.