Assignment 05, Question 1

Jeff Nguyen

24/04/2021

University of Southern California Marshall School of Business FBE 543 Forecasting and Risk Analysis

#Question 1

```
library(quantmod)

# Set start date and end date of data
start_date <- "2014-01-01"
end_date <- "2021-03-23"

# Get data
getSymbols("JPM", src = "yahoo", , from = start_date, to = end_date)

## [1] "JPM"

adjJPM_mo <- to.monthly(JPM)$JPM.Adjusted # Monthly Adjusted Closing Price
rJPM_mo <- diff(log(adjJPM_mo))[-1] # Monthly Returns</pre>
```

Data Observation:

Observing monthly adjusted closing prices:

```
library(forecast)
ggtsdisplay(adjJPM_mo, main="JP Morgan Monthly Adj. Close Price", plot.type="scatter")
```


Observing monthly returns:

ggtsdisplay(rJPM_mo, main="JP Morgan Monthly Returns", plot.type="scatter")

Remarks

We can see JPM's monthly adjusted closing price' lag plots exhibit a linear pattern, implying that the data is strongly non-random and thus, a first-order autoregressive model might be appropriate.

$$y_t = \beta_0 + \beta_1 y_{t-1} + \epsilon_t \tag{1}$$

On the other hand, JPM's monthly returns's lag plot does not exhibit any obvious patterns, implying that the data is strongly random.

1. Test for the stationarity of the adjusted closing prices for JPM.

We run Augmented Dickey Fuller Test for JPM. Recall that the null hypothesis for Dickey-Fuller Test is that a unit root is present in our autoregressive model, meaning the variable is a non-stationary variable.

```
library(aTSA)
adf.test(adjJPM_mo)

## Augmented Dickey-Fuller Test
## alternative: stationary
##
```

Type 1: no drift no trend

lag ADF p.value

##

##

```
## [3,]
          2 2.11
                    0.990
## [4,]
          3 1.89
                    0.984
## Type 2: with drift no trend
##
             ADF p.value
        lag
## [1,]
          0 2.21
                     0.99
## [2,]
          1 2.05
                     0.99
## [3,]
          2 2.12
                     0.99
                     0.99
## [4,]
          3 1.80
## Type 3: with drift and trend
##
        lag ADF p.value
## [1,]
          0 3.29
                     0.99
## [2,]
          1 3.17
                     0.99
          2 3.29
## [3,]
                     0.99
## [4,]
          3 3.05
                     0.99
## ----
## Note: in fact, p.value = 0.01 means p.value <= 0.01
```

We can observe p - value = .99 > .05. Thus, we fail to reject the null hypothesis. In other words, JPM monthly adjusted closing price has a unit root and therefore, is a non-stationary variable.

2. Test for the stationarity of the returns for JPM.

Similarly, we run (A)DF test for JPM's monthly returns:

```
adf.test(rJPM_mo)
```

```
## Augmented Dickey-Fuller Test
## alternative: stationary
##
## Type 1: no drift no trend
##
        lag
              ADF p.value
## [1,]
            8.79
                      0.99
          0
  [2,]
          1 12.44
                      0.99
##
## [3,]
          2 14.48
                      0.99
                      0.99
## [4,]
          3 16.64
## Type 2: with drift no trend
        lag ADF p.value
##
          0 9.1
## [1,]
                     0.99
## [2,]
                     0.99
          1 13.1
          2 15.3
                     0.99
## [3,]
## [4,]
          3 17.9
                     0.99
## Type 3: with drift and trend
        lag
              ADF p.value
## [1,]
          0 9.05
                      0.99
## [2,]
          1 12.98
                      0.99
## [3,]
          2 15.25
                      0.99
## [4,]
          3 17.78
                      0.99
## ----
## Note: in fact, p.value = 0.01 means p.value <= 0.01
```

We can observe p - value = .99 > .05. Thus, we fail to reject the null hypothesis. In other words, JPM monthly returns has a unit root and therefore, is a non-stationary variable.

3. Run the best ARIMA model for JPM returns.

ACF1

Training set 0.001628326

We run auto ARIMA:

##

```
model1ARIMA <- auto.arima(rJPM_mo)</pre>
summary(model1ARIMA)
## Series: rJPM_mo
## ARIMA(0,0,0) with non-zero mean
##
## Coefficients:
##
           mean
##
         0.0139
## s.e. 0.0072
## sigma^2 estimated as 0.004527: log likelihood=110.57
## AIC=-217.15
                 AICc=-217
                              BIC=-212.24
##
## Training set error measures:
                                                          MPE
##
                           ME
                                    RMSE
                                                MAE
                                                                  MAPE
                                                                             MASE
## Training set 6.867467e-19 0.06689178 0.04978467 117.7615 122.9537 0.6406739
```

We can observe that ARIM(0,0,0) model with non-zero mean represents a White Noise model with independent and identically distributed data.

4. Test for the existence of heteroskedasticity on the residuals of the JPM's ARIMA model.

```
residuals_model1ARIMA <- model1ARIMA$residuals
plot(residuals_model1ARIMA, main="Plot of Residuals")
```

Plot of Residuals


```
residualsSq_model1ARIMA <- residuals_model1ARIMA^2</pre>
```

Testing for hetereoscedacity on the residuals of the ARIMA model above using Breusch-Pagan Test:

```
library(lmtest)

reg_residualsSq_model1ARIMA <- lm(residualsSq_model1ARIMA ~ rJPM_mo)
bp_residualsSq_model1ARIMA <- bptest(reg_residualsSq_model1ARIMA)

bp_residualsSq_model1ARIMA</pre>
```

```
##
## studentized Breusch-Pagan test
##
## data: reg_residualsSq_model1ARIMA
## BP = 6.1131, df = 1, p-value = 0.01342
```

We can observe p-value=.01343<.05, thus we reject the null-hypothesis and assume hetereoscedacity of the residuals of the ARIMA model for monthly JPM stock returns.

Similarly, we attempt a Goldfield-Quant test:

```
gq_residualsSq_model1ARIMA <- gqtest(reg_residualsSq_model1ARIMA)
gq_residualsSq_model1ARIMA</pre>
```

```
##
## Goldfeld-Quandt test
##
```

```
## data: reg_residualsSq_model1ARIMA
## GQ = 5.5116, df1 = 41, df2 = 41, p-value = 1.313e-07
## alternative hypothesis: variance increases from segment 1 to 2
```

We can observe similar result with the Breusch-Pagan test as p - value = 1.308e - 07 < .05, i.e. we reject the null hypothesis and assume hetereoscedacity for the residuals of the ARIMA model for monthly returns.

5. Find the historical measure of the volatility of the JPM's returns.

Recall the historical volatility measure:

##

$$\sigma_{hist}^2 = \frac{\sum (r - \overline{r})^2}{n - 1}$$
 where $r =$ monthly stock returns
$$n =$$
 number of observations (2)

11. Run an ARCH and/or GARCH model on JPM's returns data.

```
library(rugarch)

# Write Specification of Your GARCH Model using "sGrach" or standard GARCH Mode.
garch1 <- ugarchspec(variance.model=list(model="sGARCH", garchOrder=c(1, 1)), mean.model=list(armaOrder=the Model to Data
garch1_rJPM_mo <- ugarchfit(spec=garch1, data=rJPM_mo)
garch1_rJPM_mo</pre>
```

```
## *----*
           GARCH Model Fit
## *----*
##
## Conditional Variance Dynamics
## -----
## GARCH Model : sGARCH(1,1)
## Mean Model : ARFIMA(1,0,1)
## Distribution : std
##
## Optimal Parameters
  _____
##
         Estimate Std. Error t value Pr(>|t|)
## mu
         0.013436
                 0.002007
                           6.693492 0.000000
         0.870117 0.050415 17.258924 0.000000
## ar1
        -1.000000 0.060591 -16.504035 0.000000
## ma1
## omega 0.000094 0.000279 0.337728 0.735568
## alpha1 0.000000 0.020798 0.000001 0.999999
## beta1 0.999000 0.065574 15.234635 0.000000
## shape
         2.649275 0.598007 4.430173 0.000009
##
```

```
## Robust Standard Errors:
   Estimate Std. Error t value Pr(>|t|)
##
## mu
       ## ar1
       ## ma1 -1.000000 0.091327 -10.94965 0.000000
## omega 0.000094 0.000557 0.16945 0.865441
## alpha1 0.000000 0.108415 0.00000 1.000000
## beta1 0.999000 0.072439 13.79094 0.000000
## shape 2.649275 0.817581 3.24038 0.001194
##
## LogLikelihood : 118.7638
##
## Information Criteria
## -----
## Akaike -2.5992
## Bayes -2.3994
## Shibata -2.6111
## Hannan-Quinn -2.5188
## Weighted Ljung-Box Test on Standardized Residuals
## -----
         statistic p-value
##
                     0.02446 0.8757
## Lag[1]
## Lag[2*(p+q)+(p+q)-1][5] 0.36478 1.0000
## Lag[4*(p+q)+(p+q)-1][9] 1.03487 0.9997
## d.o.f=2
## HO : No serial correlation
##
## Weighted Ljung-Box Test on Standardized Squared Residuals
## -----
##
                    statistic p-value
## Lag[1]
                     0.8334 0.3613
## Lag[2*(p+q)+(p+q)-1][5] 3.0258 0.4024
## Lag[4*(p+q)+(p+q)-1][9] 3.7037 0.6394
## d.o.f=2
##
## Weighted ARCH LM Tests
## -----
##
           Statistic Shape Scale P-Value
## ARCH Lag[3] 0.4186 0.500 2.000 0.5176
## ARCH Lag[5] 0.9749 1.440 1.667 0.7404
## ARCH Lag[7] 1.2622 2.315 1.543 0.8676
##
## Nyblom stability test
## -----
## Joint Statistic: 1.5486
## Individual Statistics:
## mu
      0.04538
## ar1
       0.14555
## ma1
      0.16915
## omega 0.06780
## alpha1 0.06816
## beta1 0.05730
```

```
## shape 0.06792
##
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic: 1.69 1.9 2.35
## Individual Statistic: 0.35 0.47 0.75
##
## Sign Bias Test
## -----
             t-value prob sig
0.683 0.49656
##
## Sign Bias
## Negative Sign Bias 1.727 0.08794
## Positive Sign Bias 0.770 0.44352
## Joint Effect
                   4.264 0.23429
##
##
## Adjusted Pearson Goodness-of-Fit Test:
   group statistic p-value(g-1)
## 1 20 14.47
                     0.7559
## 2 30 14.39
## 3 40 36.50
                        0.9892
                        0.5844
## 4 50 29.16
                        0.9891
##
## Elapsed time : 0.174145
```

12. Do a three-period ahead forecast of the conditional variance.

```
# Forecast Model
predict_rJPM_mo <- ugarchboot(garch1_rJPM_mo,n.ahead=3, method=c("Partial", "Full")[1])
plot(predict_rJPM_mo, which=2)</pre>
```

Series Forecast with Bootstrap Error Bands (q: 5%, 25%, 75%, 95%)

