已知 $z \in \mathbb{C}$ 且 $|z| \leq 1$, 求 $|\sin z|$ 的最大值。

设 z = x + yi, $x, y \in \mathbf{R}$, $x^2 + y^2 \le 1$ $\sin z = \sin(x + yi) = \sin x \cos yi + \cos x \sin yi$ (和角公式在复数域中也成立,证明略, 可利用复数域中三角函数的定义) 利用 $\sin x = -i \sinh ix$, $\cos x = \cosh ix$ $\sin z = \sin x \cosh y + \cos x \sinh y i$ $|\sin z|^2 = \sin^2 x \cosh^2 y + \cos^2 x \sinh^2 y$ $= \sin^2 x (1 + \sinh^2 y) + \cos^2 x \sinh^2 y$ $= \sin^2 x + \sinh^2 y$

显然,只需考虑 $x \ge 0, y \ge 0$ 的情况即可。 并注意到 $\sin^2 x$, $\sinh^2 x$ 在[0,1]上递增, 因此最大值一定在 $x^2 + y^2 = 1$ 上取到。

于是
$$y = \sqrt{1 - x^2}$$

令 $|\sin z|^2 = \sin^2 x + \sinh^2 \sqrt{1 - x^2} = f(x)$
下求 $f(x)$ 在[0,1]上最大值。

首先求导观察:

$$f'(x) = \sin 2x - \frac{x}{\sqrt{1 - x^2}} \sinh 2\sqrt{1 - x^2}$$
$$= \sin 2x - \frac{x}{2\sqrt{1 - x^2}} \left(e^{2\sqrt{1 - x^2}} - e^{-2\sqrt{1 - x^2}} \right)$$

又有 sin, 又有 e, 还有根号, 事情仿佛陷入了僵局。 接下去该怎么办呢? 我们可以对ex作泰勒展开。

$$e^{x} = 1 + x + \frac{1}{2}x^{2} + \frac{1}{6}x^{3} + \cdots$$
 $e^{-x} = 1 - x + \frac{1}{2}x^{2} - \frac{1}{6}x^{3} + \cdots$
 $e^{x} - e^{-x} = 2\left(x + \frac{1}{6}x^{3} + \cdots\right)$
当 $x > 0$ 时有 $e^{x} - e^{-x} > 2x$

故
$$\sin 2x - \frac{x}{2\sqrt{1-x^2}} \left(e^{2\sqrt{1-x^2}} - e^{-2\sqrt{1-x^2}} \right)$$
< $\sin 2x - \frac{x}{2\sqrt{1-x^2}} \cdot 2\left(2\sqrt{1-x^2}\right)$
= $\sin 2x - 2x$
< 0
因此 $f'(x) < 0, x \in [0,1]$
 $f(x)$ 有最大值 $f(0) = \sinh^2 1$

:: |sin z|在给定条件下最大值为 sinh 1