Core Equations of the Unified Applicable Time (UAT) Framework

Miguel Angel Percudani

October 2025

1 Reference Equations: Standard ACDM

The standard cosmological model defines the expansion history of the universe. We assume a flat geometry $(\Omega_{k,0} = 0)$.

1.1 Hubble Expansion Rate E(z)

The Friedmann equation defines the expansion rate H(z) relative to the Hubble constant H_0 :

$$H(z) = H_0 \cdot E(z)$$

where the evolution function $E(z)^2$ is given by:

$$\mathbf{E}(\mathbf{z})^2 = \Omega_{r,0}(1+z)^4 + \Omega_{m,0}(1+z)^3 + \Omega_{\Lambda,0}$$

(1)

1.2 Comoving Distance $D_M(z)$

The Comoving Distance is calculated by integrating the expansion rate:

$$\mathbf{D_M}(\mathbf{z}) = \frac{c}{H_0} \int_0^z \frac{dz'}{E(z')}$$

(2)

1.3 Sound Horizon and Angular Scale

The Sound Horizon (r_d) and the CMB Angular Scale (θ^*) define the physical consistency:

- Angular Scale: $\theta^* = \frac{r_d^{\text{ACDM}}}{D_M(z_{\text{ls}})}$, where z_{ls} is the redshift of the last scattering surface. $\theta^* \approx 0.010409$

2 Modified Equations: UAT Framework

The UAT framework introduces the $\mathbf{k_{early}}$ parameter to modify the effective energy density in the early universe, specifically in the matter and radiation epochs ($z \gg 300$).

2.1 UAT Expansion Rate $E_{UAT}(z)$

The UAT modification is applied directly to the energy density terms that dominate the early-time expansion:

$$\mathbf{E}_{\text{UAT}}(\mathbf{z})^2 = \mathbf{k}_{\text{early}} \cdot \left[\Omega_{r,0} (1+z)^4 + \Omega_{m,0} (1+z)^3 \right] + \Omega_{\Lambda,0}$$

(3)

Interpretation: For $z \to 0$, $E_{\text{UAT}}(z) \to E(z)$ (Cosmological Constant $\Omega_{\Lambda,0}$ dominates), ensuring the late-time universe is preserved. For $z \gg 300$, k_{early} modifies the rate of expansion, which is necessary to reduce the sound horizon.

2.2 UAT Sound Horizon \mathbf{r}_{d}^{UAT}

The sound horizon is now determined by the modified expansion rate $H_{\text{UAT}}(z)$:

$$\mathbf{r}_{\mathrm{d}}^{\mathrm{UAT}} = \int_{z_d}^{\infty} \frac{c}{H_{\mathrm{UAT}}(z) \cdot a(z)} dz$$

(4)

3 Resultant Solution: H₀ Tension Resolution

The UAT resolves the Hubble Tension by finding an optimal k_{early} that yields a reduced r_d while preserving the observed angular scale θ^* .

3.1 Preservation Condition

The fundamental requirement for CMB consistency is the preservation of the angular scale:

$$\theta_{ ext{UAT}}^* = \theta_{ extbf{ACDM}}^* \implies rac{r_{ ext{d}}^{ ext{UAT}}}{D_{ ext{M}}^{ ext{UAT}}(z_{ ext{ls}})} = rac{r_{ ext{d}}^{ ext{ACDM}}}{D_{ ext{M}}^{ ext{ACDM}}(z_{ ext{ls}})}$$

(5)

3.2 Scaling Relationship

This condition leads to the approximate necessary scaling between the parameters, as validated by the BAO χ^2 test:

$$rac{\mathbf{r}_{
m d}^{
m UAT}}{\mathbf{r}_{
m d}^{
m ACDM}} pprox rac{H_0^{
m ACDM}}{H_0^{
m UAT}}$$

(6)

3.3 Final Optimal Parameters for Manuscript

The statistical analysis with real BAO data (BOSS/eBOSS) yields the following final parameters, demonstrating the **UAT superior fit** ($\Delta \chi^2 = +38.41$):

- $\mathbf{H}_0^{\mathrm{UAT}}$ (Achieved Value): $\mathbf{73.00} \pm \mathbf{0.82} \; \mathrm{km/s/Mpc}$
- $\bullet~k_{\rm early}$ (Implied Parameter): 0.967 ± 0.012
- $\Delta \chi^2$ (vs ACDM Optimal): +38.41