Vorlesung 4

Alexander Mattick Kennung: qi69dube

Kapitel 1

10. Mai 2020

1 Hausaufgabe 12

a)
$$\Omega = \{(x, y) | x, y \in \mathbb{R}, \sqrt{x^2 + y^2} \le r\}$$

b)

$$A = \{\omega = (x, y) | \sqrt{x^2 + y^2} < 1\}$$

$$B=\{\omega=(x,y)|x\geq 0, y\geq 0\}$$

$$C = \{\omega = (x, y) | \sqrt{x^2 + y^2} > 0.5 \}$$

2 Hausaufgabe 13

$$A \cap B = \{(0,1), (1,0), (1,1)\} \cap \{(0,0), (0,1)\} = \{(0,1)\} \notin \mathcal{E}$$

Also ist ${\mathcal E}$ keine $\sigma\text{-Algebra}.$

Eine option wäre natürlich $\mathcal{A} = \mathcal{P}(\Omega)$ (dies ist trivialerweise immer eine σ -Algebra).

Es geht allerdings auch kleiner:

Wir fügen successive fehlende Elemente hinzu: zuerst also $\{(0,1)\}$

$$\mathcal{E}' = \{\emptyset, \Omega, A, B, \{(0,1)\}\}$$

Jetzt benötigen wir noch die Negation von $C_{\Omega}\{(0,1)\}=\{(0,0),(1,0),(1,1)\}$:

$$\mathcal{E}'' = \{\emptyset, \Omega, A, B, \{(0,1)\}, \{(0,0), (1,0), (1,1)\}\}\$$

Die Vereinigung von $B \cup \{0, 1\} = B, B \cup \{(0, 0), (1, 0), (1, 1)\} = \Omega$.

Die Vereinigung von $A \cup \{0,1\} = \Omega$, $A \cup \{(0,0),(1,0),(1,1)\} = \Omega$.

Die Vereinigungen mit \emptyset und Ω sind trivialerweise die Menge selbst, bzw $\Omega.$

Die Schnitte sind $A \cap \{0,1\} = \{(0,1)\} \in \mathcal{E}', A \cap \{(0,0),(1,0),(1,1)\} = \{(1,0),(1,1)\}.$

und von $B \cap \{0,1\} = \{0,1\} \in \mathcal{E}'$ $B \cap \{(0,0),(1,0),(1,1)\} = \{0,0\}$

Aufnahme von $\{(1,0),(1,1)\}$ und $\{(0,0)\}$:

$$\mathcal{E}''' = \{\emptyset, \Omega, A, B, \{(0,1)\}, \{(0,0), (1,0), (1,1)\}, \{(1,0), (1,1)\}, \{(0,0)\}\}$$

$$A \cap \{(1,0),(1,1)\} = \{(1,0),(1,1)\} \ B \cap \{(1,0),(1,1)\} = \emptyset$$

$$A \cap \{(0,0)\} = \emptyset \ B \cap \{(0,0)\} = \{(0,0)\} \in \mathcal{E}'''$$

Vereinigungen $A \cup \{(1,0),(1,1)\} = A$ und $B \cup \{(1,0),(1,1)\} = \emptyset$

Vereinigungen $A \cup \{(0,0)\} = \Omega$ und $B \cup \{(0,0)\} = B$

Komplemente $\overline{\{(0,0)\}} = A \in \mathcal{E}$ und $\overline{\{(1,0),(1,1)\}} = B$

Also ist \mathcal{E}''' eine (minimale) abgeschlossene σ -Mengenalgebra. (im vergleich zu $\mathcal{P}(\Omega)$ fehlt z.B. $\{(1,1)\}$)