

Programación III Práctica Calificada 2 Pregrado

2024-1 Profesor: José A. Chávez Álvarez

Lab 2.01

Indicaciones específicas:

- Esta evaluación contiene 5 páginas (incluyendo esta página) con 3 preguntas. El total de puntos son 20.
- El tiempo límite para la evaluación es 100 minutos.
- Cada pregunta deberá ser respondida en un solo archivo con el número de la pregunta.
 - − p1.cpp
 - p2.pdf
 - − p3.cpp
- Deberás subir estos archivos directamente a www.gradescope.com, uno en cada ejercicio. También puedes crear un .zip

Calificación:

Tabla de puntos (sólo para uso del professor)

Question	Points	Score
1	6	
2	8	
3	6	
Total:	20	

1. (6 points) Contenedores y Complejidad Algorítmica

Dado un forward_list<int> no vacío, de N números enteros aleatorios. Implemente un algoritmo que permita revertir el orden de los elementos, es decir:

- El primer elemento pasará a ser último y el último el primero.
- El segundo elemento será el penúltimo y el penúltimo el segundo, y así con los demás elementos.

Implemente su algoritmo en C++, y utilizando la notación Big O indique su complejidad algorítmica. La rúbrica para esta pregunta es:

Criterio	Excelente	Adecuado	Mínimo	Insuficiente
Librería Es-	Selección del	Selección del	Selección del	No se selección
tandar	contenedor de	contenedor	contenedor	ni el contene-
	acuerdo con lo	correcto, estruc-	correcto, estruc-	dor ni se de-
	solicitado, uso	turas genéricas	turas genéricas	sarrolló algorit-
	adecuado de	basados en	basados en	mos y estruc-
	los iteradores,	contenedores.	contenedores,	turas genéricas.
	estructuras	(2pts)	errores en el	(Opts)
	genéricas basa-		funcionamiento	
	dos en contene-		pasa algunas	
	dores. (3pts)		pruebas. (1pts).	
Complejidad Al-	Buen nivel de	Buen nivel de	Programa no	Se intento pero
gorítmica	abstracción, el	abstracción,	funciona ade-	no se logró que
	problema logro	el problema	cuadamente,	funcione lo solic-
	realizar con la	logro realizar	bajo nivel de	itado. (Opts)
	complejidad al-	lo solicitado sin	abstracción,	
	gorítmica solic-	lograr alcanzar	más de 3 er-	
	itado, funciona	la complejidad	rores, nivel de	
	correctamente	algorítmica	complejidad	
	y sin errores.	solicitado,	algorítmica in-	
	(3pts)	funciona correc-	correcta. (1pts)	
		tamente y sin		
		errores. (2pts)		

2. (8 points) Invariante de Bucle

El siguiente algoritmo toma como entrar dos números enteros positivos a y b, y retorna un resultado que depende de ambos. Su objetivo es determinar el resultado y demostrarlo.

```
F00(a, b)
1. r = 1
2. while(b > 0)
3. if(b % 2 == 1)
4. res = res \times a
5. a = a \times a
6. b = b/2 // Division entera
7. return r
```

Para este algoritmo:

- (a) (2 pts.) Indique que retorna el algoritmo F00, es decir como se relaciona el resultado final con a y b. Sea directo y conciso.
- (b) (2 pts.) Para demostrar el algoritmo usted debió definir un Invariante de Bucle. Describa el Invariante de Bucle, detalle su respuesta.
- (c) (4 pts.) Demuestre la correctitud del algoritmo utilizando el Invariante de Bucle definido en (b).

Envíe su solución con el nombre de la pregunta, el formato puede ser PDF o imagen. No es necesario implementar el algoritmo en C++.

La rúbrica para esta pregunta es:

Criterio	Excelente	Adecuado	Mínimo	Insuficiente
Complejidad Al-	Buen nivel de	Buen nivel de	Programa no	Se intento pero
gorítmica	abstracción, el	abstracción,	funciona ade-	no se logró que
	problema logro	el problema	cuadamente,	funcione lo solic-
	realizar con la	logro realizar	bajo nivel de	itado. (1pts)
	complejidad al-	lo solicitado sin	abstracción,	
	gorítmica solic-	lograr alcanzar	más de 3 er-	
	itado, funciona	la complejidad	rores, nivel de	
	correctamente	algorítmica	complejidad	
	y sin errores.	solicitado,	algorítmica in-	
	(8pts)	funciona correc-	correcta. (3pts)	
		tamente y sin		
		errores. (6pts)		

3. (6 points) Expresiones Lambda y Programación Concurrente

Un Red Neuronal está compuesta de una entrada $\mathbf{x} \in \mathbb{R}^n$ y una salida $\mathbf{y} \in \mathbb{R}^m$, donde:

$$\mathbf{y} = g(\mathbf{z}) = g(W\mathbf{x} + \mathbf{b}), \quad g(\mathbf{z}) = \frac{1}{1 + e^{-\mathbf{z}}},$$

donde $W \in \mathbb{R}^{m \times n}$ y $\mathbf{b} \in \mathbb{R}^m$. Para implementar esta neuronal considere los siguiente:

- Los elementos de x, W deben ser números reales aleatorios entre 0 y 1. Por otro lado, b debe estar conformado por números reales aleatorios entre −0.1 y 0.1.
 Utilice únicamente expresiones Lambda para generar estas variables.
- ullet Utilice la librería thread para paralelizar el cálculo de ${f y}$.
- La función g se aplicar elemento-por-elemento. Es decir como $\mathbf{z} \in \mathbb{R}^m$, $g(\mathbf{z}) \in \mathbb{R}^m$.
- Implemente este mecanismo para n=10000 y m=100. El uso de vectores o matrices dinámicas es irrelevante.

La rúbrica para esta pregunta es:

Criterio	Excelente	Adecuado	Mínimo	Insuficiente
Librería Es-	Selección del	Selección del	Selección del	No se selección
tandar	contenedor de	contenedor	contenedor	ni el contene-
	acuerdo con lo	correcto, estruc-	correcto, estruc-	dor ni se de-
	solicitado, uso	turas genéricas	turas genéricas	sarrolló algorit-
	adecuado de	basados en	basados en	mos y estruc-
	los iteradores,	contenedores.	contenedores,	turas genéricas.
	estructuras	(2pts)	errores en el	(Opts)
	genéricas basa-		funcionamiento	
	dos en contene-		pasa algunas	
	dores. (3pts)		pruebas. (1pts).	
Programación	Buen nivel de	Buen nivel de	Programa no	Contiene errores
Concurrente	abstracción,	abstracción, el	funciona, bajo	que no hace que
	el problema	problema no se	nivel de ab-	funcione el pro-
	se desarrolla	utiliza la can-	stracción, más	grama. (Opts)
	utilizando la	tidad de hilos	de 3 errores	
	cantidad de	solicitados, no	visibles , no se	
	hilos solicitados,	se controla los	usa los hilos	
	se controla ade-	race condition	adecuadamente	
	cuadamente los	adecuadamente,	ni un control de	
	race condition,	funciona correc-	race condition.	
	funciona correc-	tamente y sin	(1pts)	
	tamente y sin	errores. (2pts)		
	errores. (3pts)			