Linear Methods for Classification

4.4 Logistic Regression4.5 Separating Hyperplanes

19.01.08 임소현

CONTENTS

1. Regularized 2. the South African Logistic Regression heart disease data 4. Separating 3. Logistic Regression Hyperplane or LDA 6. Optimal 5. Perceptron Learning Separating Hyperplane Algorithm

Regularized Logistic Regression

$$\max_{\beta_0,\beta} \left\{ \sum_{i=1}^{N} \left[y_i (\beta_0 + \beta^T x_i) - \log(1 + e^{\beta_0 + \beta^T x_i}) \right] - \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

- L1 penalty used in the lasso can be used for variable selection and shrinkage with any linear regression model
- do not penalize the intercept term, and standardize the predictors for the penalty to be meaningful

2. the South African heart disease data

the South African heart disease data

- A total of 462 samples are included in this data set
- Adiposity is a measure of % bodyfat, whereas obesity measures weight-to-height rations (body-mass-index, bmi). Type-A behaviour pattern is characterised by an excessive competitive drive, impatience and anger/hostility.
- systolic blood pressure (**sbp**)
- cumulative tobacco (**tobacco**)
- low density lipoprotein cholesterol (**IdI**)
- Adiposity
- family history of heart disease (famhist)
- type-A behavior (**typea**)
- Obesity
- alcohol
- Age

02. the South African heart disease data

the South African heart disease data

1) Logistic Regression

2) Logistic Regression -> stepwise

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.1507209 1.3082600 -4.701 2.58e-06 ***
            0.0065040
                      0.0057304
                                1.135 0.256374
sbp
tobacco
            0.0793764 0.0266028
                                2.984 0.002847 **
1d1
           0.1739239 0.0596617
                                2.915 0.003555 **
adiposity 0.0185866 0.0292894
                                0.635 0.525700
famhist
            0.9253704 0.2278940
                                4.061 4.90e-05 ***
          0.0395950 0.0123202
                                 3.214 0.001310 **
typea
obesity
           -0.0629099
                      0.0442477
                                 -1.422 0.155095
alcohol
            0.0001217
                      0.0044832
                                 0.027 0.978350
            0.0452253 0.0121298
                                  3.728 0.000193 ***
age
```

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-6.44644	0.92087	-7.000	2.55e-12	***
tobacco	0.08038	0.02588	3.106	0.00190	**
1d1	0.16199	0.05497	2.947	0.00321	**
famhist	0.90818	0.22576	4.023	5.75e-05	***
typea	0.03712	0.01217	3.051	0.00228	**
age	0.05046	0.01021	4.944	7.65e-07	***

73.37%

74.24%

the South African heart disease data

the South African heart disease data

3. Logistic Regression or LDA

Logistic Regression or LDA?

the log-posterior odds between class k and K are linear functions of x

$$\log \frac{\Pr(G = k | X = x)}{\Pr(G = K | X = x)} = \log \frac{\pi_k}{\pi_K} - \frac{1}{2} (\mu_k + \mu_K)^T \mathbf{\Sigma}^{-1} (\mu_k - \mu_K) + x^T \mathbf{\Sigma}^{-1} (\mu_k - \mu_K)$$
$$= \alpha_{k0} + \alpha_k^T x.$$

• the linear logistic model by construction has linear logits

$$\log \frac{\Pr(G = k|X = x)}{\Pr(G = K|X = x)} = \beta_{k0} + \beta_k^T x$$

- seems that the models are the same
 - > the difference lies in the way the linear coefficients are estimated.
- The logistic regression model is more general, in that it makes less assumptions.

Logistic Regression or LDA?

• We can write the joint density of X and G as, (Pr(X) : the marginal density of the inputs X)

$$\Pr(X, G = k) = \Pr(X)\Pr(G = k|X)$$

- The logistic regression model leaves the marginal density of X as an arbitrary density function Pr(X), and fits the parameters of Pr(G|X) by maximizing the conditional likelihood
- with LDA we fit the parameters by maximizing the full log-likelihood, based on the joint density, where ϕ is the Gaussian density function.

$$\Pr(X, G = k) = \phi(X; \mu_k, \Sigma)\pi_k$$

$$\Pr(X) = \sum_{k=1}^{K} \pi_k \phi(X; \mu_k, \Sigma),$$

unlike in the conditional case, the marginal density Pr(X) does play a role here

- 4. Separating Hyperplane
- 5. Perceptron Learning Algorithm
- 6. Optimal Separating Hyperplane

04. Separating Hyperplane

hyperplane or affine set L defined by the equation $f(x) = \beta 0 + \beta T x = 0$ since we are in IR2 this is a line.

- 1. For any two points x_1 and x_2 lying in L, $\beta^T(x_1 x_2) = 0$, and hence $\beta^* = \beta/||\beta||$ is the vector normal to the surface of L.
- 2. For any point x_0 in L, $\beta^T x_0 = -\beta_0$.
- 3. The signed distance of any point x to L is given by

$$\beta^{*T}(x - x_0) = \frac{1}{\|\beta\|} (\beta^T x + \beta_0)$$

$$= \frac{1}{\|f'(x)\|} f(x). \tag{4.40}$$

FIGURE 4.15. The linear algebra of a hyperplane (affine set).

f(x) is proportional to the signed distance from x to the hyperplane defined by f(x) = 0.

Rosenblatt's Perceptron Learning Algorithm

- compute a linear combination of the input features and return the sign
- obtained by regressing the -1/1 response Y on X
- to find a separating hyperplane by minimizing the distance of misclassified points to the decision boundary. M indexes the set of misclassified points

$$D(\beta, \beta_0) = -\sum_{i \in \mathcal{M}} y_i (x_i^T \beta + \beta_0)$$

• If x in K=1, $x_i^T \beta + \beta_0 > 0$ / If x in K=2, $x_i^T \beta + \beta_0 < 0$

Rosenblatt's Perceptron Learning Algorithm

The gradient is given by

$$\partial \frac{D(\beta, \beta_0)}{\partial \beta} = -\sum_{i \in \mathcal{M}} y_i x_i,$$

$$\partial \frac{D(\beta, \beta_0)}{\partial \beta_0} = -\sum_{i \in \mathcal{M}} y_i.$$

$$\partial \frac{D(\beta, \beta_0)}{\partial \beta_0} = -\sum_{i \in \mathcal{M}} y_i.$$

- The algorithm in fact uses *stochastic gradient descent* to minimize this piecewise linear criterion.
- the misclassified observations are visited in some sequence, and the β are updated via

$$\begin{pmatrix} \beta \\ \beta_0 \end{pmatrix} \leftarrow \begin{pmatrix} \beta \\ \beta_0 \end{pmatrix} + \rho \begin{pmatrix} y_i x_i \\ y_i \end{pmatrix}$$

, ρ is the learning rate, which in this case can be taken to be 1 without loss in generality

Rosenblatt's Perceptron Learning Algorithm

Problems with this algorithm

- When the data are separable, there are many solutions, and which one is found depends on the starting values.
- The "finite" number of steps can be very large. The smaller the gap, the longer the time to find it.
- When the data are not separable, the algorithm will not converge, and cycles develop. The cycles can be long and therefore hard to detect.

06. Optimal Separating Hyperplane

the optimization problem

$$\max_{\beta,\beta_0,||\beta||=1} M$$
subject to $y_i(x_i^T \beta + \beta_0) \ge M, \ i = 1,\dots, N.$

• get rid of the $||\beta|| = 1$ constraint by replacing the conditions with

$$\frac{1}{||\beta||} y_i(x_i^T \beta + \beta_0) \ge M, \qquad y_i(x_i^T \beta + \beta_0) \ge M||\beta||.$$

• we can arbitrarily set $||\beta|| = 1/M$

$$\min_{\beta,\beta_0} \frac{1}{2} ||\beta||^2$$
subject to $y_i(x_i^T \beta + \beta_0) \ge 1, \ i = 1, \dots, N.$

06. Optimal Separating Hyperplane

the Lagrange (primal) function, to be minimized w.r.t. β and β0

$$L_P = \frac{1}{2}||\beta||^2 - \sum_{i=1}^N \alpha_i [y_i(x_i^T \beta + \beta_0) - 1]$$
 (4.49)

setting the derivatives to zero,

$$\beta = \sum_{i=1}^{N} \alpha_i y_i x_i, \qquad 0 = \sum_{i=1}^{N} \alpha_i y_i,$$

• substituting these in (4.49) obtain the so-called Wolfe dual, the solution is obtained by maximizing $L_{\it D}$

$$L_D = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \alpha_i \alpha_k y_i y_k x_i^T x_k$$
subject to $\alpha_i \ge 0$.

Thank you ponybuhagom.tistory.com