CS291K - Advanced Data Mining

Instructor: Xifeng Yan
Computer Science
University of California at Santa Barbara

Neural Networks

Lecturer: Fangqiu Han Computer Science University of California at Santa Barbara

"One learning algorithm" hypothesis

Newton et al. "Rewiring Cortex: Functional Plasticity of the Auditory Cortex during Development." *Plasticity and Signal Representation in the Auditory System'05*

"One learning algorithm" hypothesis

What is neural networks?

Perceptrons

1940s – 1970s	1980s	1990s	2000-2005	2006-2010	2010s	

Perceptrons

- ➤ The first perceptron was called Binary Threshold Models, and was first introduced by McCulloch and Pitts in 1943.
- ➤ Later it was popularized by Frank Rosenblatt in the early 1957.
- ➤ A famous book entitled Perceptrons by Marvin Minsky and Seymour Papert showed that it was impossible for these classes of network to learn an XOR function.

Multi-layer Perceptrons

- > Also called feed forward networks.
- Introduced by Rumelhart, Hinton, and Williams in 1986.

Backpropagation

- > First developed by Werbos in his doctoral dissertation in 1974.
- ➤ Remained almost unknown in the scientific community until rediscovered by Parker In 1982, and Rumelhart, Hinton, and Williams in 1986.

Hopfield network

- > First famous recurrent neural network invented by John Hopfield in 1982.
- > A energy based model, inspired by Ising model in physics.
- ➤ Inspire the idea of Restricted Boltzmann Machine.

Multi-layer Perceptrons

Recurrent neural networks

Hopfield network

- > First famous recurrent neural network invented by John Hopfield in 1982.
- > A energy based model, inspired by Ising model in physics.
- Inspire the idea of Restricted Boltzmann Machine.

Autoencoder

- ➤ Learn a distributed representation (encoding) for a set of data, typically for the purpose of dimensionality reduction.
- ➤ Idea first introduced by Olshausen in the name of Sparse Coding in 1996.

Autoencoder

Convolutional Neural Network

- First successful deep Neural Network.
- > First introduced by Kunihiko Fukushima in 1980.
- ➤ The design was later improved in 1998 by Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
- Still the state-of-art neural nets in computer vision.

The architecture of LeNet5

Popularity diminished in late 1990s

- Multi layer Perceptrons are not easy to train.
- > The training of the only 'trainable' Convolutional neural nets is not efficient.
- ➤ Kernel method, e.g. SVM, are showed to be both efficient and effective.

Deep Belief Network / Deep autoencoder

- ➤ A multi layer Perceptrons / autoencoder pre-trained by Restricted Boltzmann Machine, then fine-tuning using back-propagation.
- ➤ Restricted Boltzmann Machines, special cases of Hopfield Networks, is first invented by Paul Smolensky in 1986, but only rose to prominence after Hinton etc. invented fast learning algorithms in 2006.

Train Deep Autoencoder

- ➤ Layer wised pretaining from lower level to higher level using Restricted Boltzmann machines (RBM)
- ➤ Fine tuning all the weights using back-propagation algorithm

Deep Belief Network / Deep autoencoder

- ➤ A multi layer Perceptrons / autoencoder pre-trained by Restricted Boltzmann Machine, then fine-tuning using back-propagation.
- ➤ Restricted Boltzmann Machines, special cases of Hopfield Networks, is first invented by Paul Smolensky in 1986, but only rose to prominence after Hinton etc. invented fast learning algorithms in 2006.

First strong results:

- ➤ Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition
- Imagenet classification with deep convolutional neural networks

ImageNet Classification with Deep CNN

Input layer

5 conv layers

3 full connection layers

Perceptron: the simplest neural network

x: n-dimension input

w: parameters (weights)

b: bias

$$h(x) = f(\sum_{i=1}^{n} w_i x_i + b) = f(w^T x + b)$$

Perceptron: the simplest neural network

x: n-dimension input

w: combination weights

b: bias

$$h(x) = f(\sum_{i=1}^{n} w_i x_i + b) = f(w^T x + b)$$

 $f(\cdot)$ is called Activation Function:

Step function:
$$f(z) = \begin{cases} +1 & \text{if } z > 0 \\ -1 & \text{otherwise} \end{cases}$$

Perceptron with sigmoid activation function

x: n-dimension input

w: combination weights

b: bias

$$h(x) = f(\sum_{i=1}^{n} w_i x_i + b) = f(w^T x + b)$$

Activation function $f(\cdot)$, e.g., sigmoid function $f(z) = \frac{1}{1 + e^{-z}}$

Construct cost function to learn parameters {w, b}: $E = [t - h(x)]^2$ Where t is {1, 0} to denote two classes.

Logistic regression

Activation functions

□ Step function:

$$f(z) = \begin{cases} +1, z > 0 \\ 0, z \le 0 \end{cases}$$

□ Rectifier function:

$$f(z) = \max \{0, z\}$$

□ Sigmoid function

$$f(z) = \frac{1}{1 + e^{-z}}$$

□ Hyperbolic tan function

$$f(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Stochastic binary neural

$$P(f(z) = 1) = \frac{1}{1 + e^{-z}}$$

Perceptron Training

□ Task:

Find w, b minimize $E = [t - h(x)]^2$

- ☐ Algorithm:
 - 1. Initialize: w, b
 - 2. For data x and label t

Predict the label of x: $y = f(w^Tx + b)$

Update the parameters by gradient descent:

$$w \leftarrow w - \eta \left(\nabla_w E\right) \text{ and } b \leftarrow b - \eta \left(\nabla_b E\right)$$

where
$$E = [t - h(x)]^2$$

3. Repeat until convergence

Perceptron: the simplest neural network

x: n-dimension input

w: combination weights

b: bias

$$h(x) = f(\sum_{i=1}^{n} w_i x_i + b) = f(w^T x + b)$$

 $f(\cdot)$ is called Activation Function:

Step function:
$$f(z) = \begin{cases} +1 & \text{if } z > 0 \\ -1 & \text{otherwise} \end{cases}$$

Motivating example: Non-linear classification

- \square x₁ and x₂ are binary (0 or 1)
- \square Learn y= x_1 xor x_2
- □ Perceptron does not work as the problem is not linear separable.
- □ One solution: Multi-layer Perceptron.

- ☐ Second generation (1980s)
 - ■Feed-forward neural networks

Stack of "perceptrons"

☐ Second generation (1980s)

Input and output of 2nd layer:

$$z^{(2)} = w^{(1)}x + b^{(1)}$$

$$a^{(2)} = f(z^{(2)})$$

Input and output of 3rd layer:

$$z^{(3)} = w^{(2)}a^{(2)} + b^{(2)}$$

$$a^{(3)} = f(z^{(3)})$$

Output layer:

$$h(x) = f(w^{(3)}a^{(3)} + b^{(3)})$$

□ Second generation (1980s)

Input and output of 2nd layer:

$$z^{(2)} = w^{(1)}x + b^{(1)}$$
$$a^{(2)} = f(z^{(2)})$$

Input and output of 3rd layer:

$$z^{(3)} = w^{(2)}a^{(2)} + b^{(2)}$$
$$a^{(3)} = f(z^{(3)})$$

Output layer:

$$h(x) = f(w^{(3)}a^{(3)} + b^{(3)})$$

Activation function f: nonlinear function:

$$f(z) = \frac{1}{1 + e^{-z}}$$
 (sigmoid), or, $f(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$ (tanh)

☐ Second generation (1980s)

Input and output of 2nd layer:

$$z^{(2)} = w^{(1)}x + b^{(1)}$$
$$a^{(2)} = f(z^{(2)})$$

Input and output of 3rd layer:

$$z^{(3)} = w^{(2)}a^{(2)} + b^{(2)}$$
$$a^{(3)} = f(z^{(3)})$$

Output layer:

$$h(x) = f(w^{(3)}a^{(3)} + b^{(3)})$$

Parameters { $w^{(1)}$, $w^{(2)}$, $w^{(3)}$, $b^{(1)}$, $b^{(2)}$, $b^{(3)}$ } to be learnt.

Motivating example: a solution

$$b_2 = 1$$

Universal Approximation Theorem

A feed-forward network with a single hidden layer containing a finite number of neurons can approximate continuous functions on compact subsets of R^n, under mild assumptions on the activation function.

- ➤ Here 'mild' means any non-constant, bounded, and monotonically-increasing continuous function.
- Example activation functions
 - Sigmoid function
 - Hyperbolic Tan function
 - Rectifier function

Activation functions

□ Step function:

$$f(z) = \begin{cases} +1, z > 0 \\ 0, z \le 0 \end{cases}$$

□ Rectifier function:

$$f(z) = \max \{0, z\}$$

□ Sigmoid function

$$f(z) = \frac{1}{1 + e^{-z}}$$

□ Hyperbolic tan function

$$f(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Stochastic binary neural

$$P(f(z) = 1) = \frac{1}{1 + e^{-z}}$$

Universal Approximation Theorem

A feed-forward network with a single hidden layer containing a finite number of neurons can approximate continuous functions on compact subsets of R^n, under mild assumptions on the activation function.

- ➤ Here 'mild' means any non-constant, bounded, and monotonically-increasing continuous function.
- Example activation functions
 - Sigmoid function
 - Hyperbolic tan function
 - Rectifier function

Multi-layer Perceptrons

□ Second generation (1980s)

Input and output of 2nd layer:

$$z^{(2)} = w^{(1)}x + b^{(1)}$$
$$a^{(2)} = f(z^{(2)})$$

Input and output of 3rd layer:

$$z^{(3)} = w^{(2)}a^{(2)} + b^{(2)}$$
$$a^{(3)} = f(z^{(3)})$$

Output layer:

$$h(x) = f(w^{(3)}a^{(3)} + b^{(3)})$$

Parameters { $w^{(1)}$, $w^{(2)}$, $w^{(3)}$, $b^{(1)}$, $b^{(2)}$, $b^{(3)}$ } to be learnt.

Parameter Estimation

- \Box A training set of *m* data points, $\{(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})\}$
- □ Objective function

min
$$H = \frac{1}{2m} \sum_{i=1}^{m} ||h(x^{(i)}) - y^{(i)}||^2 + \frac{\lambda}{2} \sum_{l=1}^{L} ||w^{(l)}||_F^2$$

where,

$$\frac{1}{2m} \sum_{i=1}^{m} \left\| h(x^{(i)}) - y^{(i)} \right\|^{2}$$
: average sum-of-squares error term;
$$\frac{\lambda}{2} \sum_{l=1}^{L} \left\| w^{(l)} \right\|_{F}^{2}$$
: regularization term; L : the number of layers.

Optimization algorithm

□ Gradient descent

$$w_{ij}^{(l)} := w_{ij}^{(l)} - \alpha \frac{\partial H}{\partial w_{ij}^{(l)}}$$

$$b_i^{(l)} := b_i^{(l)} - \alpha \frac{\partial H}{\partial b_i^{(l)}}$$

□ Backpropagation algorithm: a systematic way

to compute
$$\frac{\partial H}{\partial w_{ij}^{(l)}}$$
 and $\frac{\partial H}{\partial b_i^{(l)}}$

Example: bianry classification

Example: bianry classification

min
$$H = \frac{1}{2m} \sum_{i=1}^{m} ||h(x^{(i)}) - y^{(i)}||^2 + \frac{\lambda}{2} \sum_{l=1}^{L} ||w^{(l)}||_F^2$$

Demo

Problems with back-propagation

- □ The learning time does not scale well
 - ➤ It is very slow in networks with multiple hidden layers.
- □ It can get stuck in poor local optima.

Input

hidden

output

Deep Supervised Learning is Non-Convex

Why not multi-layer model with back-propagation

- □ The learning time does not scale well
 - ➤ It is very slow in networks with multiple hidden layers.
- It can get stuck in poor local optima.
- Overfitting

Input

hidden

output

Overfitting: an example

Overfitting: If we have too many parameters, the learned hypothesis may fit the training set very well, but fail to generalize to new examples (testing data).

Why not multi-layer model with back-propagation

- □ The learning time does not scale well
 - ➤ It is very slow in networks with multiple hidden layers.
- It can get stuck in poor local optima.
- Overfitting

Input

hidden

output

Solutions

- Solutions for local optima:
 - ➤ Use better initialization (Restricted Boltzmann Machine)
 - > Find other method for optimization
 - > Find better structures

- Solutions for overfitting:
 - More data
 - Weight decay (sparse autoencoder)
 - Reduce the number of parameters
 - ➤ Invariances (Convolutional NN)

Neural network timeline

Unsupervised neural network: Autoencoder

- Learn a distributed representation (encoding) for a set of data.
- ➤ One of the simplest unsupervised learning neural network.
- ➤ Why unsupervised learning?

Why unsupervised learning?

➤ It is likely to be much more common in the brain than supervised learning. Most data are unlabeled.

Most data are unlabeled. We need unsupervised learning to help on supervised tasks.

Autoencoder

- ➤ An autoencoder is composed with an input layer, an output layer and one hidden layers connecting them.
- The difference with the MLP is that an autoencoder is trained to *reconstruct* its own inputs *x*, most time with fewer neurons in the hidden layer.
- ➤ The weights between hidden and output layer W₂ is the transpose of the weights W₁ between the input layer and the hidden layer.

Autoencoder

Activation function:

$$f(x) = \frac{1}{1 + e^{-x}}$$

Forward pass:

$$\hat{x} = f(W^T f(W x))$$

decoder encoder

Objective function:

Deep Autoencoder

➤ Autoencoders can be stacked to form a deep network by feeding the latent representation (hidden layer) of one autoencoder as the input layer of another autoencoder

Visualization of the 2-D codes produced by 2-D PCA

Visualization of the 2-D codes produced by a 784-1000-500-250-2 AutoEncoder

Questions?

Applications

- □ Handwritten digit recognition
 - http://www.cs.toronto.edu/~hinton/adi/index.htm
- □ Face detection
 - ■https://www.youtube.com/watch?t=19&v=bKPf 6J0Qpk
- □ Off-Road robot navigation
 - https://www.youtube.com/watch?v=GLgX8ku5TOQ
- ☐ Modular Prosthethic Limb
 - http://www.jhuapl.edu/prosthetics/program/multimedia.asp