Mass Transfer 2 Tutorial 2

• Mention the <u>title and axis</u> for each of the plot. Also show the name of the model used for fitting in the plot. Show the legends if you have multiple plots in a figure.

- 1. <u>Calculation of population density parameters for crystallization operation.</u> Crystal screening analysis yield the following information.
- 13.3 (Population density parameters from sieve analysis data)² One hundred fifty grams of crystals separated from one litre of suspension from an MSMPR crystallizer is subjected to screen analysis to get the following data:

Tyler mesh	12/14	14/20	20/28	28/35	35/48	below 48 mesh
Mass(g)	28.5	29.2	37.5	27	24.7	3.1

Mesh no./ screen opening(μ m) data: 12/1410 μ m; 14/1190; 20/841; 28/595; 35/420; 48/297.

The working volume of the crystallizer is 200 litres, and the rate of withdrawal of the slurry is 250 litre per hour. Given $\rho_c = 1400 \text{ kg/m}^3$ and volume shape factor $\phi_v = 0.42$, determine the crystal growth rate and the zero-size population density of the crystals. What is the rate of nucleation, B^0 ?

Plot the Population density as a function of length of crystal. Also plot the predicted population density from the model described above.

Hints:

 $MSI = [1.41 \ 1.19 \ 0.841 \ 0.595 \ 0.42 \ 0.297 \];$ %INITIAL MESH SIZE MSF = [1.19 \ 0.841 \ 0.595 \ 0.42 \ 0.297 \ 0]; %FINAL MESH SIZE

L =; %Average passing mesh size in cm L_diff = (MSI - MSF) * (10^-1) /2; %delta L in cm %plotting the L vs ln(n) for raw data %fitting L vs ln(n) for the given system in straight line. 2. **Drying**: The following values of drying parameters were obtained from the experimental data on batch drying of a granular solid taken on a tray content (in kg moisture per kg solid). Constant drying rate, Nc= 2.5 kg/m^{2.h;} first critical moisture Xc1=0.18., second critical moisture, Xc2=0.1. equilibrium moisture X*=0.

Give a graphical schematic [typical drying rate curve] showing the constant drying period, first falling drying rate period, second falling drying rate period etc, in the X-N curve in the graph paper. Using the above data and information, calculate the time required to dry the material from an initial moisture of Xi=0.35 to a final moisture of Xf=0.01under the conditions of the experiment.

Hint:

