Lo stato gassoso è caratterizzato dall'assenza di un volume proprio della sostanza, il gas ha il volume del recipiente che lo contiene.

Le particelle sono libere di muoversi in tutte le direzioni e quindi le interazioni tra di esse sono molto deboli (al limite trascurabili).

Le sostanze gassose sono libere di diffondere in ogni direzione e occupano tutto lo spazio a loro disposizione.

Parametri chimico-fisici che definiscono lo stato di una sostanza pura:

Pressione (P)

Volume (V)

Temperatura (T)

G. Sotgiu

LO STATO GASSOSO

Pressione: è definita come il rapporto tra una forza e l'unità di superficie

$$P = \frac{forza}{area}$$

Il gas esercita una pressione su ogni superficie con cui viene a contatto. Le particelle di gas sono costantemente in movimento e collidono con la superficie interna del contenitore esercitandovi una forza.

Unità di misura della pressione:

1 Pa = 1 N/m^2

1 atmosfera (atm) = 101325 Pa

1 atm = 760 mmHg = 760 torr

1 torr = 1 mmHg

1 bar = 10^5 Pa

G. Sotgiu

2

<u>Volume:</u> il volume di un gas è il volume del recipiente che lo contiene diverse unità di misura

 m^3

Spesso in chimica si usa il litro /

$$1 l = 1 dm^3 = 10^{-3} m^3$$

$$1m\ell = 1 \text{ cm}^3$$

G. Sotgiu

3

LO STATO GASSOSO

La **Temperatura** (*T*) è la variabile chimico-fisica che evidenzia la direzione del flusso di energia tra i due sistemi

Esistono diverse scale per misurare la temperatura

La <u>scala dei gradi celsius</u> (°C) è definita con riferimento a due punti fissi relativi all'acqua pura

 $0^{\circ}C$ — Temperatura di fusione del ghiaccio alla pressione di 1 atm

100°C — Temperatura di ebollizione dell'acqua alla pressione di 1 atm

Il grado celsius rappresenta 1/100 di questo intervallo di temperature.

G. Sotgiu

4

La scala Kelvin (o scala assoluta delle temperature) attribuisce:

il valore di 273.15 alla temperatura del ghiaccio fondente alla pressione di 1 atm

il valore di 373.15 alla temperatura di ebollizione dell'acqua alla pressione di 1 atm

e suddivide l'intervallo tra questi due punti fissi in 100 parti uguali

 $T = t(^{\circ}C) + 273.15$

Lo zero della scala Kelvin, detto zero assoluto è – 273.15 °C

La scala Kelvin non è una scala convenzionale ma trova le sue basi teoriche nella termodinamica.

G. Sotgiu

5

LO STATO GASSOSO

Le leggi per interpretare il comportamento dei sistemi gassosi sono in genere abbastanza complesse a meno di non fare alcune assunzioni per semplificare il sistema in esame e quindi in pratica trattare di un gas a comportamento ideale.

Modello di un gas perfetto:

- ✓ particelle gassose <u>puntiformi</u> (sono dotate di massa ma non di volume)
- ✓ particelle in costante e continuo movimento (casuale)
- ✓ urti elastici tra particelle e pareti
- √ nessuna forza attrattiva o repulsiva tra le particelle

G. Sotgiu

6

Legge del gas perfetto

Per una generica quantità molare n di gas ideale si ha:

PV=nRT

se P [atm], T [K] e V [/]

R = 0,082057 atm·//mol·K COSTANTE UNIVERSALE DEI GAS

R = 8,315 J/mol·K oppure R = 1,9859 kcal/mol·K

Questa equazione fornisce la relazione fra le quattro variabili sperimentali (P, V, T, n) per una qualsiasi massa gassosa che si comporti idealmente.

G. Sotgiu

LO STATO GASSOSO

Volume molare volume occupato da una mole di gas

$$V_m = RT/P$$

se p = 1 atm e T=298,15 K (25 °C)

$$V_{\rm m} = 24,47 \, \ell$$

Condizioni standard: t = 25°C (T = 298,15 K) e p = 1 atm

G. Sotgiu

Densità assoluta

Modificando la scrittura dell'equazione dei gas ideali si può calcolare la densità di un gas ideale *puro*:

$$d = \frac{massa}{volume} = \frac{q}{V} = \frac{n \cdot PM}{n \cdot V_m} = \frac{PM}{V_m}$$

dove:
$$V_m = RT/P$$

Densità relativa

dal confronto delle densità di due gas nelle stesse condizioni (p e T), si ottiene:

$$d(relativa) = \frac{d_x}{d_{rif}} = \frac{PF_x}{PF_{rif}}$$

G. Sotgiu

9

LO STATO GASSOSO

Miscele gassose

Una miscela gassosa è costituita da gas diversi mescolati in qualsiasi proporzione

<u>L'equazione di stato del gas ideale è valida quale che sia la natura chimica delle particelle gassose.</u>

Ad una data T e per un dato V la pressione di un gas è quindi determinata soltanto dal numero delle particelle e non dal tipo di gas

Es.

Nelle stesse condizioni di T e V, 10 moli di $\rm N_2$ avranno la stessa pressione di una miscela di 6 moli di $\rm H_2$ e 4 moli di $\rm N_2$.

G. Sotgiu

Miscele gassose

LEGGE DI DALTON (1807)

in una miscela di gas ogni componente esercita una pressione pari a quella che eserciterebbe se occupasse da solo il volume totale del recipiente. Questa pressione del singolo componente della miscela è detta

PRESSIONE PARZIALE

Dette A, B, C, D,.... le sostanze gassose che compongono la miscela (a comportamento ideale), allora si avranno le pressioni parziali così definite:

$$\begin{aligned} P_{A} &= n_{A} \cdot R \cdot T/V & P_{B} &= n_{B} \cdot R \cdot T/V \\ P_{C} &= n_{C} \cdot R \cdot T/V & P_{D} &= n_{D} \cdot R \cdot T/V \end{aligned}$$

G. Sotgiu

LO STATO GASSOSO

Miscele gassose

LEGGE DI DALTON (1807)

$$P_A = n_A \cdot R \cdot T/V$$
 $P_B = n_B \cdot R \cdot T/V$
 $P_C = n_C \cdot R \cdot T/V$ $P_D = n_D \cdot R \cdot T/V$

Allora
$$P_{TOT} = P_A + P_B + P_C + P_D + \dots = \sum_i P_i$$

$$P_{\text{TOT}} = (n_{\text{A}} + n_{\text{B}} + n_{\text{C}} + n_{\text{D}} + ...) RT/V = n_{\text{TOT}} \cdot R \cdot T/V$$

$$\frac{P_i}{P_{TOT}} = \frac{n_i}{n_{TOT}} = x_i \quad \text{FRAZIONE MOLARE} \qquad \Sigma_i x_i = 1$$

Peso formula (o molecolare) medio $PV=nRT=RT(q_{mix}/PF_{medio})$ $\overline{PF}=PF_{A^{\bullet}XA}+PF_{B^{\bullet}XB}+...=\Sigma PF_{i^{\bullet}Xi}$

G. Sotgiu

