UVA CS 6316/4501 - Fall 2016 Machine Learning

Lecture 14: Logistic Regression / Generative vs. Discriminative

Dr. Yanjun Qi

University of Virginia

Department of Computer Science

Where are we? Five major sections of this course

- ☐ Regression (supervised)
- Classification (supervised)
- Unsupervised models
- Learning theory
- ☐ Graphical models

Where are we? Three major sections for classification

 We can divide the large variety of classification approaches into roughly three major types

- 1. Discriminative
 - directly estimate a decision rule/boundary
 - e.g., logistic regression, support vector machine, decisionTree

- 2. Generative:
 - build a generative statistical model
 - e.g., naïve bayes classifier, Bayesian networks
- 3. Instance based classifiers
 - Use observation directly (no models)
 - e.g. K nearest neighbors

A Dataset for classification

$$f:[X] \longrightarrow [c]$$

Output as Discrete
Class Label
C₁, C₂, ..., C₁

Generative
$$P(C \mid X) = \underset{C}{\operatorname{argmax}} P(X, C) = \underset{C}{\operatorname{argmax}} P(X \mid C) P(C)$$

Discriminative

$$\underset{c}{\operatorname{arg\,max}} P(C \mid \mathbf{X}) \quad C = c_{1}, \dots, c_{L}$$

- Data/points/instances/examples/samples/records: rows
- Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [columns, except the last]
- Target/outcome/response/label/dependent variable: special column to be predicted [last column]

Establishing a probabilistic model for classification (cont.)

arg max
$$P(C \mid X) = \operatorname{argmax} P(X,C)$$

$$= \operatorname{argmax} P(X \mid C) P(C)$$

$$= \operatorname{argmax} P(X \mid C) P(C)$$

$$C$$

$$P(x \mid c_1)$$

$$P(x \mid c_2)$$

$$P(x \mid c_2)$$

$$P(x \mid c_2)$$

$$P(x \mid c_1)$$

$$Generative$$

$$Probabilistic Model$$

$$for Class 1$$

$$Frobabilistic Model$$

$$for Class 2$$

$$x_1 \quad x_2 \quad x_p \quad x_1 \quad x_2 \quad x_p$$

$$x_1 \quad x_2 \quad x_p$$

$$x = (x_1, x_2, \dots, x_p)$$

Establishing a probabilistic model for classification

(2) Discriminative model

Today: Generative vs. Discriminative

- ✓ Why Bayes Classification MAP Rule?
 - Empirical Prediction Error
 - 0-1 Loss function for Bayes Classifier
- ✓ Logistic regression
- ✓ Generative vs. Discriminative

Bayes Classifiers – MAP Rule

Task: Classify a new instance X based on a tuple of attribute values $X = \left\langle X_1, X_2, \dots, X_p \right\rangle$ into one of the classes

$$c_{MAP} = \underset{c_j \in C}{\operatorname{argmax}} P(c_j \mid x_1, x_2, \dots, x_p)$$

WHY?

MAP = Maximum Aposteriori Probability

0-1 LOSS for Classification

- Procedure for categorical output variable C $\forall k=1, k(k,k)=0$
- Frequently, 0-1 loss function used: $L(k, \ell)$ if $k \neq \ell$, $L(k, \ell) = \ell$
- $L(k, \ell)$ is the price paid for misclassifying an element from class C_k as belonging to class C_{ℓ}
 - $\rightarrow L*L matrix$

Expected prediction error (EPE)

• Expected prediction error (EPE), with expectation taken w.r.t. the joint distribution Pr(C,X)

$$-\Pr(C,X) = \Pr(C \mid X) \Pr(X)$$

$$\nearrow \text{?.9.} \text{o-(l.s)}$$

$$\text{EPE}(f) = E_{X,C}(L(C,f(X)))$$

$$= E_X \sum_{k=1}^{L} L[C_k, f(X)] Pr(C_k | X)$$

Consider sample population distribution

Expected prediction error (EPE)

$$EPE(f) = E_{X,C}(L(C, f(X))) = E_X \sum_{k=1}^{K} L[C_k, f(X)] Pr(C_k | X)$$

Consider sample population distribution

- Pointwise minimization suffices
- \rightarrow simply $\hat{f}(X) = \operatorname{argmin}_{g \in C} \sum_{k=1}^{K} L(C_k, g) \Pr(C_k | X = x)$

$$\hat{f}(X) = C_k \text{ if}$$

$$\Pr(C_k | X = x) = \max_{g \in C} \Pr(g | X = x)$$

SUMMARY: WHEN EPE USES DIFFERENT LOSS

Today: Generative vs. Discriminative

- ✓ Why Bayes Classification MAP Rule?
 - Empirical Prediction Error
 - 0-1 Loss function for Bayes Classifier
- ✓ Logistic regression
- ✓ Generative vs. Discriminative

Multivariate linear regression to Logistic Regression

=

$$\alpha + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_i x_i$$

Dependent

Predicted

Response variable

Outcome variable

Independent variables

Predictor variables

Explanatory variables

Covariables

Logistic regression for binary classification

$$\ln \left| \frac{P(y|x)}{1 - P(y|x)} \right| = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

Sozist'i

$$y \in \{0,1\} \quad \ln \left[\frac{P(y|x)}{1 - P(y|x)} \right] = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

(1) Linear decision boundary [Seperate two classes]
$$P(Y=1|X) = P(Y=1|X)$$

$$P(Y=1|X) = 0$$

$$P(Y=0|X)$$

linear hyperplane Q+B1×1+110+Bpxp=D Boundary p(y=1|x) = p(y=0|x)

$$y \in \{0,1\} \quad \ln \left[\frac{P(y|x)}{1 - P(y|x)} \right] = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

(1) Linear decision boundary Seperate two classes)
$$\begin{cases}
P(Y=1|X) & P(Y=1|X) \\
P(Y=1|X) & P(Y=0|X)
\end{cases}$$

$$(2) p(y|x) \Rightarrow p(y=1|x) = 0$$

$$|y=1|x| = 0$$

The logistic function (1) -- is a common "S" shape func

Logistic Regression—when?

Logistic regression models are appropriate for target variable coded as 0/1.

We only observe "0" and "1" for the target variable—but we think of the target variable conceptually as a probability that "1" will occur.

Logistic Regression—when?

Logistic regression models are appropriate for target variable coded as 0/1.

This means we use Bernoulli distribution to model the target variable with its Bernoulli parameter p=p(y=1 | x) predefined.

The main interest \rightarrow predicting the probability that an event occurs (i.e., the probability that p(y=1 | x)).

Discriminative

Logistic regression models for binary target variable coded 0/1.

Discriminative

Logistic regression models for binary target variable coded 0/1.

The logistic function (2)

$$P(y|x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$$

$$\ln\left[\frac{P(y|x)}{1 - P(y|x)}\right] = \alpha + \beta x \qquad \text{for the proof of }$$

Logit of P(y|x)

The logistic function (3)

Advantages of the logit

$$z = \log\left(\frac{p}{1-p}\right)$$

- Simple transformation of P(y|x)
- Linear relationship with x
- Can be continuous (Logit between inf to + infinity)
- Directly related to the notion of log odds of target event

$$\ln\left(\frac{P}{1-P}\right) = \alpha + \beta x \qquad \frac{P}{1-P} = e^{\alpha + \beta x}$$

Logistic Regression Assumptions

 Linearity in the logit – the regression equation should have a linear relationship with the logit form of the target variable

 There is no assumption about the feature variables / target predictors being linearly related to each other.

Binary Logistic Regression

In summary that the logistic regression tells us two things at once.

Transformed, the "log odds" (logit) are linear.

In[p/(1-p)]

Odds = p/(1-p)

Logistic Distribution

P(Y=1|x)

X

This means we use Bernoulli distribution to model the target variable with its Bernoulli parameter p=p(y=1 | x) predefined.

p 1-p

Binary -> Multinomial Logistic Regression Model

Directly models the posterior probabilities as the output of regression

$$\Pr(G = k \mid X = x) = \frac{\exp(\beta_{k0} + \beta_k^T x)}{1 + \sum_{l=1}^{K-1} \exp(\beta_{l0} + \beta_l^T x)}, \ k = 1, ..., K-1$$

$$\Pr(G = K \mid X = x) = \frac{1}{1 + \sum_{l=1}^{K-1} \exp(\beta_{l0} + \beta_l^T x)}$$

x is p-dimensional input vector

Total number of parameters is (K-1)(p+1) β_{k0} , β_{k} , β_{k}

Note that the class boundaries are linear

Binary -> Multinomial Logistic Regression Model

Directly models the posterior probabilities as the output of regression

$$\Pr(G = k \mid X = x) = \frac{\exp(\beta_{k0} + \beta_k^T x)}{1 + \sum_{l=1}^{K-1} \exp(\beta_{l0} + \beta_l^T x)}, \ k = 1, ..., K-1$$

$$\Pr(G = K \mid X = x) = \frac{1}{1 + \sum_{l=1}^{K-1} \exp(\beta_{l0} + \beta_l^T x)} \left(\frac{\uparrow \left(\frac{1}{f} + e^{\frac{1}{f}} \right) - \left(\frac{f}{f} + e^{\frac{1}{f}}$$

x is p-dimensional input vector

\beta_k is a p-dimensional vector for each k

Total number of parameters is (K-1)(p+1)

Note that the class boundaries are linear

Today: Generative vs. Discriminative

- ✓ Why Bayes Classification MAP Rule?
 - Empirical Prediction Error
 - 0-1 Loss function for Bayes Classifier
- ✓ Logistic regression
 - Parameter Estimation for LR

 $p(y|x) = \frac{e^{t}}{1 + e^{gx}}$ on for LR

✓ Generative vs. Discriminative

Parameter Estimation for LR → MLE from the data

RECAP: Linear regression → Least squares

Logistic regression: Maximum likelihood estimation

MLE for Logistic Regression Training

Let's fit the logistic regression model for K=2, i.e., number of classes is 2

Training set: (x_i, y_i) , i=1,...,N

For Bernoulli distribution

$$p(y \mid x)^{y} (1-p)^{1-y}$$

(conditional) Log-likelihood: How?

$$l(\beta) = \sum_{i=1}^{N} \{ logPr(Y = y_i | X = x_i) \}$$

$$= \sum_{i=1}^{N} y_{i} \log(\Pr(Y=1|X=x_{i})) + (1-y_{i}) \log(\Pr(Y=0|X=x_{i}))$$

$$= \sum_{i=1}^{N} (y_{i} \log \frac{\exp(\beta^{T}x_{i})}{1 + \exp(\beta^{T}x_{i})}) + (1-y_{i}) \log \frac{1}{1 + \exp(\beta^{T}x_{i})})$$

$$= \sum_{i=1}^{N} (y_{i}\beta^{T}x_{i} - \log(1 + \exp(\beta^{T}x_{i})))$$

 x_i are (p+1)-dimensional input vector with leading entry 1 \\dotseta is a (p+1)-dimensional vector

 $l(\beta) = \sum \{ \log \Pr(Y = y_i | X = x_i) \}$ y: loy p(yi=1/x) + (1-yi) log (1-p(x=1/x))

Newton-Raphson for LR (optional)

$$\frac{\partial l(\beta)}{\partial \beta} = \sum_{i=1}^{N} (y_i - \frac{\exp(\beta^T x)}{1 + \exp(\beta^T x)}) x_i = 0$$

(p+1) Non-linear equations to solve fo (p+1) unknowns

Solve by Newton-Raphson method:

$$\beta^{new} \leftarrow \beta^{old} - \left[\left(\frac{\partial^2 l(\beta)}{\partial \beta \partial \beta^T} \right) \right]^{-1} \frac{\partial l(\beta)}{\partial \beta},$$

where,
$$\left(\frac{\partial^2 l(\beta)}{\partial \beta \partial \beta^T}\right) = -\sum_{i=1}^N x_i x_i^T \left(\frac{\exp(\beta^T x_i)}{1 + \exp(\beta^T x_i)}\right) \left(\frac{1}{1 + \exp(\beta^T x_i)}\right)$$

minimizes a quadratic approximation to the function we are really interested in.

$$oldsymbol{ heta}_{k+1} = oldsymbol{ heta}_k - \mathbf{H}_K^{-1} \mathbf{g}_k$$

 $p(x_i; \beta)$

1 - $p(x_i; β)$

Newton-Raphson for LR...

$$\frac{\partial l(\beta)}{\partial \beta} = \sum_{i=1}^{N} (y_i - \frac{\exp(\beta^T x)}{1 + \exp(\beta^T x)}) x_i = X^T (y - p)$$

$$(\frac{\partial^2 l(\beta)}{\partial \beta \partial \beta^T}) = -X^T W X$$

So, NR rule becomes:
$$\beta^{new} \leftarrow \beta^{old} + (X^T W X)^{-1} X^T (y-p),$$

$$X = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_N^T \end{bmatrix}_{N-by-(p+1)}, y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}_{N-by-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_1)) \\ \exp(\beta^T x_2)/(1 + \exp(\beta^T x_2)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp(\beta^T x_N)) \end{bmatrix}_{N-by-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_1)) \\ \exp(\beta^T x_2)/(1 + \exp(\beta^T x_2)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp(\beta^T x_N)) \end{bmatrix}_{N-by-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_1)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp(\beta^T x_N)) \end{bmatrix}_{N-by-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_1)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp(\beta^T x_N)) \end{bmatrix}_{N-by-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_1)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp(\beta^T x_N)) \end{bmatrix}_{N-by-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_1)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp(\beta^T x_N)) \end{bmatrix}_{N-by-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_1)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp(\beta^T x_N)) \end{bmatrix}_{N-by-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_1)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp(\beta^T x_N)) \end{bmatrix}_{N-by-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_1)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp(\beta^T x_N)) \end{bmatrix}_{N-by-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_1)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp(\beta^T x_N)) \end{bmatrix}_{N-by-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_1)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp(\beta^T x_N)) \end{bmatrix}_{N-by-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_N)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp(\beta^T x_N)) \end{bmatrix}_{N-by-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_N)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp(\beta^T x_N)) \end{bmatrix}_{N-by-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_N)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp(\beta^T x_N)) \end{bmatrix}_{N-by-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_N)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp(\beta^T x_N)) \end{bmatrix}_{N-by-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_N)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp(\beta^T x_N)) \end{bmatrix}_{N-by-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_N)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp(\beta^T x_N)) \end{bmatrix}_{N-by-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_N)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp(\beta^T x_N)) \end{bmatrix}_{N-by-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_N)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp(\beta^T x_N)) \end{bmatrix}_{N-by-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_N)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp(\beta^T x_N)) \end{bmatrix}_{N-by-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_N)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp(\beta^T x_N)) \end{bmatrix}_{N-by-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_N)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp(\beta^T x_N)) \end{bmatrix}_{N-by-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_N)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp(\beta^T x_N)) \end{bmatrix}_{N-by-1}, p = \begin{bmatrix} \exp(\beta^T x_1)/(1 + \exp(\beta^T x_N)) \\ \vdots \\ \exp(\beta^T x_N)/(1 + \exp($$

 $X: N \times (p+1)$ matrix of x_i

 $y: N \times 1$ matrix of y_i

 $p: N \times 1$ matrix of $p(x_i; \beta^{old})$

 $W: N \times N$ diagonal matrix of $p(x_i; \beta^{old})(1 - p(x_i; \beta^{old}))$

$$\left(\frac{\exp(\boldsymbol{\beta}^T x_i)}{(1 + \exp(\boldsymbol{\beta}^T x_i))}\right) \left(1 - \frac{1}{(1 + \exp(\boldsymbol{\beta}^T x_i))}\right)$$

Newton-Raphson for LR...

Newton-Raphson

$$-\beta^{new} = \beta^{old} + (X^T W X)^{-1} X^T (y - p)
= (X^T W X)^{-1} X^T W (X \beta^{old} + W^{-1} (y - p))
= (X^T W X)^{-1} X^T W z$$

Re expressing Newton step as weighted least square step

Adjusted response

$$z = X\beta^{old} + W^{-1}(y-p)$$

- Iteratively reweighted least squares (IRLS)

$$\beta^{new} \leftarrow \arg\min_{\beta} (z - X\beta^{T})^{T} W (z - X\beta^{T})$$

$$\leftarrow \arg\min_{\beta} (y - p)^{T} W^{-1} (y - p)$$

Logistic Regression

$$P(c=1|x) = \frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}}$$

37

Today: Generative vs. Discriminative

- ✓ Why Bayes Classification MAP Rule?
 - Empirical Prediction Error
 - 0-1 Loss function for Bayes Classifier
- ✓ Logistic regression

Discriminative vs. Generative

Generative approach

- Model the joint distribution p(X, C) using

$$p(X \mid C = c_k)$$
 and $p(C = c_k)$

Class prior

Discriminative approach

Model the conditional distribution p(c | X) directly

$$\uparrow ((=1)X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 * X)}}$$

LDA vs. Logistic Regression Mean Tono Conv

LDA (Generative model)

- Assumes Gaussian class-conditional densities and a common covariance
- Model parameters are estimated by maximizing the full log likelihood, parameters for each class are estimated independently of other classes, $Kp + \frac{p(p+1)}{2} + (K-1)$ parameters
- Makes use of marginal density information Pr(x)
- Easier to train, low variance, more efficient if model is correct
- Higher asymptotic error, but converges faster

Logistic Regression (Discriminative model) ⇒ (k-1)(↑+1) - Assumes class-conditional decirity

- Assumes class-conditional densities are members of the (same) exponential family distribution
- Model parameters are estimated by maximizing the conditional log likelihood, simultaneous consideration of all other classes, (K-1)(p+1) parameters
- Ignores marginal density information Pr(x)
- Harder to train, robust to uncertainty about the data generation process _{11/2/16} ower asymptotic error, but converges more slowly 40

Discriminative vs. Generative

Definitions

- h_{gen} and h_{dis}: generative and discriminative classifiers
- h_{gen, inf} and h_{dis, inf}: same classifiers but trained on the entire population (asymptotic classifiers)
- \circ n \rightarrow infinity, $h_{gen} \rightarrow h_{gen, inf}$ and $h_{dis} \rightarrow h_{dis, inf}$

Ng, Jordan,. "On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes." *Advances in neural information processing systems* 14 (2002): 841.

Discriminative vs. Generative

Proposition 1: h_{true} $\epsilon \left(h_{dis, \text{inf}} \right) \leq \epsilon \left(h_{gen, \text{inf}} \right)$

Proposition 1 states that aymptotically, the error of the discriminative logistic regression is smaller than that of the generative naive Bayes. This is easily shown

- p : number of dimensions
- n : number of observations
- $-\epsilon$: generalization error

Logistic Regression vs. NBC

Discriminative classifier (Logistic Regression)

- Smaller asymptotic error
- Slow convergence ~ O(p)

Generative classifier (Naive Bayes)

- Larger asymptotic error
- Can handle missing data (EM)
- Fast convergence ~ O(lg(p))

In numerical analysis, the speed at which a convergent sequence approaches its limit is called the rate of convergence.

Ng, Jordan,. "On discriminative vs. generative classifiers? A 16-450104 / f16 comparison of logistic regression and naive bayes." *Advances in neural information processing systems* 14 (2002): 841.

Xue, Jing-Hao, and D. Michael Titterington. "Comment on "On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes". "Neural processing letters 28.3 (2008): 169-187.

Discriminative vs. Generative

- Empirically, generative classifiers approach their asymptotic error faster than discriminative ones
 - Good for small training set
 - Handle missing data well (EM)
- Empirically, discriminative classifiers have lower asymptotic error than generative ones
 - Good for larger training set

References

- Prof. Tan, Steinbach, Kumar's "Introduction to Data Mining" slide
 - ☐ Prof. Andrew Moore's slides
 - ☐ Prof. Eric Xing's slides
 - ☐ Prof. Ke Chen NB slides
 - ☐ Hastie, Trevor, et al. *The elements of statistical learning*. Vol. 2. No. 1. New York: Springer, 2009.