

EJERCICIOS UNIDAD 4

Para los ejercicios de la unidad IV y V se usó el software LOGISIM que es de distribución libre siempre y cuando se le de el reconocimiento de uso.

Reconocimiento que le damos en este momento, se recomienda la página web: http://www.cburch.com/logisim/index_es.html

1) De acuerdo a cada tabla de verdad, dibuja el latch o flip-flop que corresponda y especificar de qué tipo es (D, J-K, R-S).

С	D	Q	
0	Х	Х	Х
1	0	0	1
1	1	1	0

- 2) partir de un flip-flop J-K construye uno tipo toggle (T).
- 3) Utilizando flip-flops desarrollar un circuito contador del 0 al 7 el cuál sea posible detener el conteo con 1 y continuarlo con 0.
- 4) En una oficina, hay 3 puertas (P1, P2 y P3), estas son controladas por un control remoto que cuenta con dos botones (B1 y B2). Si se está fuera de la oficina bastará con presionar el botón B1 para que se abra la primera puerta (P1), permitiendo el paso a la persona, automáticamente esta puerta se cerrará y se abrirá la segunda, lo mismo pasará con la tercera. Si se presiona el botón B2, el proceso se invertirá. Si una puerta se ha abierto y se desea mantener en ese estado, será necesario generar un valor 00, mientras que para cerrar esa puerta y terminar con el proceso se necesita generar 11. Para realizar el circuito utilizar flip-flops J-K, mostrar tabla de estados y diagrama de estados.

Nota: No es necesario mostrar todos los estados, solo aquellos que serán utilizados.

- 5) Utiliza un contador asíncrono que muestre los números binarios del 000 al 111, utilizar un flip-flop JK.
- 6) Diseña un decodificador asíncrono del 0 al 7.
- 7) Dibuja el circuito correspondiente a la tabla de verdad mostrada, reduciendo términos por mapa de Karnaugh y comprobar resultado empleando el software Karnaughcalc.exe, que se puede obtener de la página: https://karnaugh-calculator.softonic.com/
- Un generador envía señales de forma discreta, cada vez que inicia o reinicia envía 3 señales al mismo tiempo indicando esto. Durante el transcurso generará un recorrido del bit más significativo al menos significativo y después lo hará en forma inversa, una vez terminado volverá a iniciar generando los 3 pulsos. Se puede detener el paso de la señal y regresarla al estado anterior mediante una entrada Diseñar un circuito que realice el proceso anterior utilizando máquina de Mealy.

- 9) Simula el comportamiento de una máquina de refrescos que solo acepte monedas de 1 peso, suponiendo que el refresco cuesta 6 pesos y posee un sensor de monedas integrado. Utilizar máquina de Moore.
- 10) Obtén las ecuaciones booleanas de la siguiente tabla de verdad y utiliza un Arreglo.

 Lógico Programable para simularla.

Α	В	С	D	X	Υ
0	0	0	0	0	Y 1 0
0	0	0	1	0	0
0	0	1	0	1	0
0	0	1 1 0	1 0 1 0	0	0
0	1	0	0	0	1
0	1	0	1	1 0 1 0	0
0	1	1	0	0	0
0	1	1	1	1	1
1	1 1 1 0 0	0 1 1 0 0 1 1	1 0 1 0 1 0	0	0
1	0	0	1	1 1 0	0
1	0	1	0	1	0
1	0	1	1	0	0
1	1	0	0	0	1
0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 1	0	0	0	1 0 0 0 0 0 0 1 1
1	1	1	0	1	0
1	1	1	1	1	1

- 11) Diseña el diagrama de estados y tabla de verdad, para simular el funcionamiento de un dado electrónico, utilizando FF tipo D.
- 12) Haz un resumen (acordeón) en una hoja, de los diferentes FF que existen y su tabla de excitación correspondiente.
- 13) Diseña un circuito que permita prender y apagar un foco led accionando el mismo botón tipo timbre.
- 14) Diseña un circuito para una lámpara que tiene 3 focos tipo led, que al accionar un botón, tipo timbre, por:
 - 1ª vez enciende un foco.
 - 2ª vez encienden dos focos.
 - 3ª vez encienden tres focos
 - 4ª vez se apagan todos los focos
- 15) Se tiene un tinaco para agua, una cisterna y un motor para bomba. Obtén las ecuaciones que definen el circuito, que permita el llenado en forma automática del tinaco cuando sea necesario, con los siguientes requisitos:
 - Utiliza los sensores de nivel que requiera.
 - La cisterna debe tener agua para poder llenar el tinaco.
 - El motor de la bomba prende cuando el tinaco está vacío y se apaga cuando se llena de agua.
 - El motor de la bomba no debe oscilar a prender-apagar.
 - En caso de falla prender alarma.
 - Para reducir las ecuaciones utilizar el software gratuito https://karnaughcalculator.waxoo.com/ar
 - Utilizar el FF tipo D.