تمرین شماره 4 درس دیتابیس

یارسا عیسی زاده ۹۷۴۱۲۳۶۴

سوال ۱) الف)

(2

قابل استنتاج نیست زیر ا هیچ FD ای بر روی D موجود نیست ، در نتیجه در صورت تغییر D هیچ attr دیگری تغییر نمی کند .

(3

داریم:

 $A \rightarrow E$, $E \rightarrow GH$ ($E \rightarrow G$, $E \rightarrow H$), $GH \rightarrow C$

در نتیجه طبق transitive dependency در

 $A \rightarrow H$

 $A \rightarrow C$

پس طبق قانون combine عبارت سوال قابل استنتاج است .

4) قابل استنتاج است .

 $E \rightarrow G$, $GH \rightarrow C \rightarrow Psuedo transitive \rightarrow EH \rightarrow C$

ب)

یک فرمول برای تشخیص 3NF بودن این است که به ازای هر FD یا سمت چپ بخشی از super باشد یا سمت راست یکی از attrهای موجود در super key باشد .

1) داریم AB ightarrow CD در نتیجه AB کل سطر را توصیف می کند و

 $B \leftarrow D$ هم به B اشاره میکند که بخشی از ابرکلید است ولی در $A \rightarrow C$ هیچکدام از شرط ها برقرار نیست در نتیجه $A \rightarrow C$ نیست .

 $C \rightarrow$ اینجا نیز همانند 1 AB ابرکلید است پس FD اول شرط ما را دارد ولی در AB دوم داریم $C \rightarrow$ D از آنجایی که D عضو prime ها نیست و C هم ابر کلید نیست در نتیجه $D \rightarrow$ D عضو $D \rightarrow$ D منبود .

3) در 3 نیز تنها A ابر کلید است ولی FD هایی داریم که سمت چپشان A هایی جز A هستند . در نتیجه A نتیجه A نیست .

4) در AB کلید اصلی است و در بقیه FD ها نیز سمت راست prime key هستند در نتیجه SNF است . اما از آنجایی که FD هایی داریم که سمت چپشان Super key نیست .

سوال 2)

در ابتدا همه FD هایی که سمت راستشان COMPOSITE KEY است را باز میکنیم:

 $AD \rightarrow B$

 $AD \rightarrow E$

سپس می رویم سراغ FD هایی که سمت چپشان composite key است.

- BE \rightarrow D, AD \rightarrow B: ABE \rightarrow B, ADE \rightarrow D

Pseudotransitive:

- D \rightarrow H, BDH \rightarrow E: BD \rightarrow E.

میتوان E \rightarrow BD را حذف کرد و به جایش E \rightarrow AD را جایگزین کرد ، فقط باید مطمئن باشیم که در صورت تغییر B و عدم تغییر D هم چنان E تغییر میکند .

داریم : BG \rightarrow F \rightarrow A \rightarrow E پس در صورت تغییر BG \rightarrow F \rightarrow A \rightarrow E داریم :

چون داریم B
ightharpoonup B ، تغییر E
ightharpoonup B می شود می توانیم E
ightharpoonup B را حذف کنیم .

بقیه و ابستگی ها کمکی به نرمال شدن نمی کنند . تا اینجا به عنوان minimal cover داریم : - $A \rightarrow E$ - $F \rightarrow A$ - $E \rightarrow B$ - D → H - AD → E - BG \rightarrow F - CD \rightarrow A - AC \rightarrow E حال ، طبق سه وابستگی زیر: - CD → A - AD → E طبق pseudo transitive داریم E حایگزین دو وابستگی بالا می شود . - $A \rightarrow E$ - $F \rightarrow A$ - $E \rightarrow B$ - D → H - BG \rightarrow F - AC → E - CD → E از آنجایی که جداگانه $A \to C$ را داریم میتوانیم $A \to C \to C$ را بشکانیم به $C \to C \to C$ و به همین منوال . در نهایت CD \rightarrow E را بشکانیم به CD \rightarrow E در نهایت - $A \rightarrow E$ - $F \rightarrow A$ - $E \rightarrow B$ - D → H - BG \rightarrow F - C → E

- D → E

ب) ابتدا باید Super key ها و Primary key ها را پیدا کنیم .

داریم:

$$BG \rightarrow F \rightarrow A \rightarrow E \rightarrow B$$

 $D \rightarrow H$

 $ACD \rightarrow E$

کلید هایی که تمایز شان تضمین میشود: A, B, E, F, H

کلید هایی که تمایز TUPLE ها را تضمین میکنند : ACD, BG, D

که این کلید ها candidate key هستند

Primary – attributes: A, B, C, D, G

Non primary attributes: E, F

همانطور که دیده می شود E به شکل تعدی به BG وابستگی دارد ؛ در نتیجه از 3NF پیروی نمی کند . یس باید جدایش کنیم :

R1 (A, E, B)

R2(A,B,C,D,F,G,H)

در جدول اول همچنان داریم $B \to E \to B$ که از $A \to E \to B$ پیروی نمی کند . در نتیجه باز باید تجزیه اش کنیم .

R1 (A,E)

R2 (E,B)

R2(A,B,C,D,F,G,H)

در جدول آخر داریم:

 $BG \rightarrow F \rightarrow A$

 $D \rightarrow H$

 $ACD \rightarrow E$

تنها وابستگی تعدی دار $A \to F \to A$ است که چون A نیز یک Primary attribute ست . شرط A مرا نقض نمی کند . جدول به حالت نرمال در آمد .

از آنجایی که سمت چپ همه ی FD ها ابرکلید ها هستند در نتیجه دیتابیس نرمال BCNF است .

سوال 3)

ابتدا وابستگی ها را استخراج میکنیم:

طبق جدول به ازای هر کد درس دقیقا یک درس داریم و به ازای هر درس دقیقا یک استاد و به ازای هر استاد دقیقا یک شماره تلفن داریم.

- Code → master , course
- Master → phone
- Sn → student
- Sn , Code → grade

حال مي رويم سراغ نرمال سازي:

(1NF

از آنجایی که هیچ multivalued attribute ای نداریم نرمال است .

(2NF

Code ها Primary key و Student Number) Sn و Code ها باید به این ها total dependency ها داشته باشند . پس جدول تغییر اتی میکند .

الان فقط نمره (grade) است که total dependencyدارد به pk ها . پس در یک جدول فقط Sn الان فقط نمره (grade) و grade را باقی می گذاریم .

در جدولی دیگر master ، code و course را میگذاریم که همه به pk که کد است total در جدولی دیگر dependency

همچنین برای باقی وابستگی ها . پس تا اینجا داریم :

Code	Master	Course
Code	SN	Grade
master	Phone	
		_
Sn	Student	

(3NF

در جدول سوم و چهارم از آنجایی که کلا 2 attr وجود نداریم امکان transitive dependency وجود ندارد .

در جدول اول master و course با هم به Code که pk است وابستگی دارند . (یعنی وابستگی تعدی داری با pk ندارند)

در جدول دوم نیز دوتا از attr ها pk هستند و تنها یکی باقی میماند که به هر دو وابستگی دارد در نتیجه transitive dependency نداریم و ارتباطات 3NF هستند .

BCNF) در جدول هایی که تنها یک candidate key داریم که همان نیز super key است ؛ و همه FD ها روی آن هستند در نتیجه bcnf اند .

در جدول دوم که دو candidate key داریم ، یک ابر کلید دیگر هم داریم: Code , SN

که در کل تنها یک FD موجود است که آن هم روی همین ابرکلید سومیست . پس تمامی جدول ها BCNF هستند .

سوال 4)

الف) از آنجایی که هیچکدام از این جداول دو پارامتر C-NAME و B-NAME اشان یکی نیست در نتیجه سطر مشترکی ندارند و inner join خالی است .

right outer join (中

C-name	b-name	l-no	Amount	A-no	Balance
Ali	Bahar	-	-	96	6200
Ahmad	Kaj	-	-	82	4400

left outer join (ह

C-name	b-name	l-no	Amount	A-no	Balance
Ali	Kaj	46	1500	ı	-
Reza	Bahar	61	7500	-	-
Hamed	Kaj	53	3000	1	-

full outer join (>

C-name	b-name	l-no	Amount	A-no	Balance
Ali	Bahar	1	1	96	6200
Ahmad	Kaj	-	-	82	4400
Ali	Kaj	46	1500	-	-
Reza	Bahar	61	7500	-	-
Hamed	Kaj	53	3000	-	-

سوال 5)

a)

 $\pi_{\text{Bname}} \, \text{(Branch)}$

e) Res
Loaned True = Thame (5 pri + null (Loaned))
Rese Loared Tape - Branch
f) Thame (For I + mull AUD BName = "Pasargad" AUD Bnlance > 100'000 (Loaned))
9) Thame (Amount > 100'000 AND BName = "Pasargod" (Loaned True M L# = L# Loan))
in) R, ← (Branch U R, Branch← Branch U R,
h) 7 cname, balance (Names) Names 2 - Names
- 71 chame, balance (5 Names, balance (Name ! balance D
(Names X Names 2))