Teória grafov - základné pojmy

Algebra a diskrétna matematika

Prednáška č. 4

doc. RNDr. Jana Šiagiová, PhD.

Teória grafov ???

Dopravná sieť

.

Sociálna sieť

Rodinný strom

Neurónová sieť

Model molekuly

Caffeine

Rozhodovací strom

Teória grafov - úvod

Veľa situácií v matematike je možné vystihnúť pomocou schémy pozostávajúcej z

- množiny bodov
- spojníc medzi niektorými bodmi

Príklady aplikácií

- sociálne siete; body reprezentujú ľudí a spojnice určité vzťahy medzi nimi (príbuzenstvo, priateľstvo)
- dopravné siete; križovatky a cesty
- komunikačné siete; počítače a ich prepojenia
- elektronické obvody; súčiastky a ich spojenia
- v chémii; zlúčeniny a reakcie medzi nimi
- v AI; rozhodovacie stromy

Príklady grafov

Obyčajné grafy

Grafy s násobnými hranami a slučkami

Reprezentácia grafu

Ako reprezentujeme grafy - napr. ako vstupy rôznych algoritmov?

Ilustrácia na grafe
$$H=(V,E)$$
, $V=\{a,b,c,d,e\}$, $E=\{ab,ac,bc,cd,ce\}$

- 1. Zoznam susedov S = S(H):
- $a:b,c;\ b:a,c;\ c:a,b,d,e;\ d:c;\ e:c$

2. Matica susednosti A = A(H)

- prvok
$$a_{ij} = \begin{cases} 1 & \text{ak } \{v_i v_j\} \in E(H) \\ 0 & \text{inak} \end{cases}$$

$$A_{5x5} = \begin{pmatrix} a & b & c & de \\ a & 0 & 1 & 1 & 00 \\ 1 & 0 & 1 & 00 \\ 1 & 1 & 0 & 11 \\ 0 & 0 & 1 & 00 \\ e & 0 & 1 & 00 \end{pmatrix}$$

Dôležité triedy grafov

Pr

$$P_n$$
 – **cesta** s n vrcholmi; jej $d\hat{l}zka$ je $n-1$ (počet jej hrán)

$$P_n$$
 – **cesta** s n vrcholmi; jej $dizka$ je $n-1$ (pocet jej hran) $V(P_n)=\{v_1,v_2,v_3,\ldots,v_n\}$ a $E(P_n)=\{v_1v_2,v_2v_3,v_3v_4\ldots,v_{n-1}v_n\}$

$$C_n$$
 – **kružnica** rádu n , $(n \ge 3)$

$$C_n$$
 — kružnica rádu n , $(n \ge 3)$
$$V(C_n) = \{v_1, v_2, \ldots, v_n\}; \ E(C_n) = \{v_1v_2, v_2v_3, v_3v_4 \ldots, v_{n-1}v_n, v_nv_1\}$$
 Matica susednosti $A(C_n)$

Matica susednosti $A(P_n)$

Úplný graf

 K_n – **úplný graf** rádu n (alebo: s n vrcholmi)

Každá dvojica vrcholov je spojená práve jednou hranou.

Matica susednosti $A(K_n)$

Uplný bipartitný graf

 $K_{m,n}$ – **úplný** bipartitný graf rádu m+n (alebo: s m+n vrcholmi)

Množina vrcholov je rozdelená do dvoch disjunktných partií, s m a n vrcholmi. (Každá) dvojica vrcholov z rôznych partií je spojená hranou.

$$V(K_{m,n}) = V_m \cup W_n$$

$$E(K_{m,n}) = \{v_i w_j; v_i \in V_m, i \in \{1, 2, \dots m\}, w_j \in W_n, j \in \{1, 2, \dots, n\}\}$$

Kokteilový graf

Kokteilový graf rádu n je graf pozostávajúci z n párov vrcholov, pričom každá dvojica vrcholov je spojená hranou okrem vrcholov tvoriacich páry.

Stupeň vrchola

Stupeň vrchola $v \in V(G)$ je počet hrán **incidentných** s vrcholom v.

Označuje sa deg(v)

$$deg(a) = 2$$

 $deg(c) = 4$
 $deg(d) = 1$

 ${f Pravideln\acute{y}}$ graf stupňa d je graf, ktorý má všetky stupne rovnaké.

Stupeň vrchola - základné fakty

Fakt 1: V každom konečnom grafe je súčet stupňov všetkých vrcholov rovný dvojnásobku počtu hrán. Skrátene:

$$\sum_{v \in V}^{f t} \deg(v) = 2|E|$$
 $ightarrow$ kazda' hrana je v tom svote započi tono' $2x$

Fakt 2: Každý konečný obyčajný graf má párny počet vrcholov nepárneho stupňa.

Izomorfné grafy

Dva grafy G=(V,E) a H=(V',E') sú **izomorfné**, ak existuje vzájomne jednoznačné zobrazenie (bijekcia) $f:V\to V'$ také, že pre každú dvojicu vrcholov $u,v\in V$ platí: $\{u,v\}\in E$ práve vtedy, keď $\{f(u),f(v)\}\in E'$.

120HORFIZMUS 9: 6 -> 2 c -> 3 1 - 5

Petersenov graf

Komplement grafu

Ak G=(V,E), tak jeho **komplement** je graf $\overline{G}=(V,\overline{E})$, kde \overline{E} je doplnok E v množine $V^{(2)}$ **všetkých** 2-prvkových podmnožín V.

izom. P

Graf sa nazýva **samokomplementárny** ak je izomorfný svojmu komplementu.

Samo komplementorny

Súvislý graf

Graf G je **súvislý**, ak každé dva jeho vrcholy sú spojené cestou v G.

Príklad: Čo sú súvislé komponenty grafu $\overline{K_{m,n}}$?

Podgraf grafu

G'=(V',E') je **podgraf** grafu G=(V,E), ak $V'\subseteq V$ a $E'\subset E$. Tento podgraf je **indukovaný**, ak $E'=E\cap V'^{(2)}$.

6:

G'

indukorany padgraf

Rád, vzdialenosť, priemer, obvod

Rád grafu je počet vrcholov grafu |V(G)|.

Vzdialenosť d(u,v) vrcholov $u,v\in V(G)$ v súvislom G je dĺžka *najkratšej* cesty spájajúcej u a v.

Priemer $\operatorname{diam}(G)$ súvislého grafu G je *najväčšia* vzdialenosť "nameraná" v G: $\operatorname{diam}(G) = \max\{d(u,v);\ u,v \in V(G)\}.$

Obvod g(G) grafu G je dĺžka najmenšej kružnice v grafe G.

Príklad

Určte priemery cesty, kružnice, úplného grafu, úplného bipartitného grafu a kokteilového grafu.

diam
$$(C_n) = \frac{n}{\frac{2}{n}}$$

oli auc (kn) = 1

Problém motivovaný navrhovaním sietí

Navrhnite sieť tak, aby jeden uzol bol pevnou linkou spojený s najviac 3 inými, ale aby ľubovoľná dvojica nespojených uzlov bola pevnými spojmi dosiahnuteľná len cez jeden uzol.

Aký najväčší počet uzlov môže taká sieť mať?

Grafová formulácia: Aký **najväčší rád** má graf priemeru 2 s maximálnym stupňom vrchola $d \le 3$?

Problém navrhovania sietí pre $d \ge 4$

Aký **najväčší rád** n má graf priemeru 2 s maximálnym stupňom vrchola $d \geq 4$?

- Pre stupeň d=4: **DÚ** $(12 \le n \le 20)$
- Pre stupeň d=5: n=24 ťažké!
- Pre stupeň d=6: Odpoveď nepoznáme!!! Najlepšia známa hodnota je 32 vrcholov.
- Pre stupeň d=7: n=50 veľmi slávny Hoffman-Singletonov graf.
- Pre stupne d>7: Slávny otvorený problém maximum nepoznáme pre žiadnu hodnotu d>7.

Malá výskumná úloha: Odvoďte horný odhad pre najväčší počet vrcholov grafu

- (a) priemeru 2 a maximálneho stupňa d,
- (b) priemeru k a maximálneho stupňa d.

Hoffman-Singletonov graf

Rovinný graf

Graf je **rovinný**, ak ho je možné znázorniť v rovine tak, aby žiadne 2 krivky reprezentujúce jeho hrany nemali spoločný bod, ktorý by bol vnútorným bodom jednej z nich.

Oblasti grafu sú vymedzené rovinným grafom (t.j. jeho znázornením v rovine).

Odbočka - Dôkaz matematickou indukciou

Matematickou indukciou dokazujeme tvrdenia, ktoré platia pre všetky *prirodzené čísla* alebo pre určitú *nekonečnú postupnosť*.

Tvrdenie: Pre každé prirodzené číslo $n \ge k_0$ platí T(n).

Dôkaz sa skladá z dvoch krokov:

1. Báza:

Ukážeme, že tvrdenie platí pre najmenšie číslo z postupnosti, tj. dokazujeme platnosť $T(k_0)$.

2. Indukčný krok:

Ukážeme, že pre ľubovolné $k \geq k_0$ z platnosti T(k) vyplýva platnosť T(k+1).

Predpoklad platnosti T(k) sa nazýva indukčný predpoklad.

Eulerov vzorec

V súvislom rovinnom grafe s n vrcholmi, h hranami a o oblasťami platí n-h+o=2

 ${f D\^{o}kaz}$: Indukciou podľa počtu hrán h grafu G

Ak h = 0, potom n = 1, o = 1 a vzorec platí.

Eulerov vzorec

V súvislom rovinnom grafe s n vrcholmi, h hranami a o oblasťami platí n-h+o=2

Dôkaz: Indukciou podľa počtu hrán h grafu GAk h = 0, potom n = 1, o = 1 a vzorec platí.

1. Veta platí pre súvislé grafy bez kružníc.

Eulerov vzorec

V súvislom rovinnom grafe s n vrcholmi, h hranami a o oblasťami platí n-h+o=2

Dôkaz: Indukciou podľa počtu hrán h grafu G

Ak h = 0, potom n = 1, o = 1 a vzorec platí.

- 1. Veta platí pre súvislé grafy bez kružníc.
- 2. Uvažujme súvislý rovinný graf G, ktorý obsahuje kružnicu, napr. C.

Nech e je hrana v C; potom G-e vzniknutý z G odstránením e ostane súvislý, ale odstránením e sa spoja dve oblasti do jednej.

Teda pre rovinný G-e s n vrcholmi, h-1 hranami a o-1 oblasťami podľa indukčného predpokladu platí n-(h-1)+(o-1)=2.

Ale potom triviálne n - h + o = 2.

Použitie Eulerovho vzorca

Úloha: Overte rovinnosť úplného grafu K_5 .

Kuratowského veta

Cvičenie: Ukážte, že podgraf rovinného grafu je rovinný.

Graf H je **homeomorfný** grafu G, ak H vznikne z G nahradením ľubovoľnej podmnožiny hrán cestami (ľubovoľnej dĺžky).

Hie nomeomorfny's G

Kuratowského veta (1930) Graf je rovinný práve vtedy, keď neobsahuje podgraf homeomorfný grafu K_5 alebo $K_{3,3}$.

Kuratowského veta - príklad

V Petersenovom grafe nájdite podgraf homeomorfný grafu $K_{3,3}$.

Kazimierz Kuratowski (1896 - 1980)

Poľský matematik. Venoval sa topológii a teórii metrických priestorov.

