An Illustration for the multi-variate folded normal distribution

2023-10-06

Initialization

To initialize the program, the following packages are required:

Package	Comment
MASS	kde2d()
Rcpp	<pre>cppFunction()</pre>
mvtnorm	dmvnorm()

```
source("utils.R")
library(MASS)
library(mvtnorm)
```

A Simple Walk through

In this section we will illustrate the two-dimensional case of the folded normal distribution.

Simulation Data Generation

BFGS Optimization

We use Cholsky decomposition to initialize the parameters.

```
covmat <- cov(dat)</pre>
init <- c(mean(dat[, 1]), mean(dat[, 2]), chol(covmat)[c(1, 3, 4)])</pre>
inputx <- abs(dat)</pre>
\ensuremath{\mbox{\#\#}} The following is the result of the optimization.
result <- optim(init, loglik.G2cholesky, method = "BFGS")</pre>
print(result)
## $par
## [1] 4.1273896 6.1666814 0.9701374 0.4121426 1.7639570
##
## $value
## [1] 337.4436
##
## $counts
## function gradient
        35
##
## $convergence
## [1] 0
##
## $message
## NULL
## The following is the result of the optimization.
## Estimations
print(result$par)
## [1] 4.1273896 6.1666814 0.9701374 0.4121426 1.7639570
## Covariance Matrix
est_helper.G2(result$par, method = "chole")[["sigma2"]]
             [,1]
                        [,2]
## [1,] 0.9411666 0.3998349
## [2,] 0.3998349 3.2814058
```

2d FN MLE simulation

One could change the settings to the following value and try again.

- n = 20,30,40,50,60,70,80,90,100;
- mu = (2.5,2.5),(5,5),(7.5,7.5),(10,10),(12.5,12.5).

```
set.seed(123456)
simu_n <- 1000
dim p < -2
result_df <- data.frame()</pre>
n <- 20
mu \leftarrow c(2.5, 2.5)
ss \leftarrow matrix(c(25, 5, 5, 25), 2, 2)
lower_idx <- f_lower_idx(dim_p)</pre>
for (i in seq_len(simu_n)) {
    dat <- mvrnorm(n, mu, ss)</pre>
    inputx <- abs(dat)</pre>
    sss <- chol(cov(dat))</pre>
    init <- c(</pre>
        mean(dat[, 1]), mean(dat[, 2]),
        sss[lower_idx]
    fit <- optim(init, loglik.G2cholesky, method = "BFGS", hessian = TRUE)</pre>
    fisher_info <- solve(fit$hessian)</pre>
    prop_sigma <- sqrt(diag(fisher_info))</pre>
    prop_sigma <- diag(prop_sigma)</pre>
    a <- diag(prop_sigma)</pre>
    prop_sigma <- a</pre>
    upper <- fit$par + 1.96 * prop_sigma
    lower <- fit$par - 1.96 * prop_sigma</pre>
    true_para <- c(mu, chol(ss)[lower_idx])</pre>
    p <- c()
    for (k in 1:5) {
        p[k] <- (lower[k] <= true_para[k] & true_para[k] <= upper[k])</pre>
    result_df <- rbind(result_df, p)</pre>
## calculate coverage rate of parameters ##
# Be sure to handle NA's before the
# coverage rate calculation
result_df[is.na(result_df)] <- FALSE</pre>
p <- apply(result_df, 2, mean)</pre>
## FALSE.
              TRUE. TRUE..1 TRUE..2 TRUE..3
## 0.733
             0.723 0.756 0.691 0.550
round(p, 2)
## FALSE. TRUE. 1 TRUE..2 TRUE..3
##
     0.73 0.72 0.76 0.69
                                         0.55
```

Here:

- *n*: samples size
- *simu n*: simulation times

The coverage rate of parameters are:

n	simu_n	mu1	mu2	sigma11	sigma21	sigma22
20	1000	0.73	0.72	0.76	0.69	0.55
100	100	0.63	0.76	0.76	0.71	0.73

4d FN MLE simulation

We should point out that the speed of $\dim = 4$ is much slower than $\dim = 2$.

```
set.seed(123456)
simu_n <- 1000
dim p < -4
result_df <- data.frame()</pre>
n <- 20
mu \leftarrow c(2.5, 2.5, 2.5, 2.5)
ss <- matrix(5, 4, 4)
diag(ss) <- 25
lower_idx <- f_lower_idx(dim_p)</pre>
for (i in seq_len(simu_n)) {
    dat <- mvrnorm(n, mu, ss)</pre>
    inputx <- abs(dat)</pre>
    sss <- chol(cov(dat))</pre>
    init <- c(
        mean(dat[, 1]), mean(dat[, 2]), mean(dat[, 3]), mean(dat[, 4]),
        sss[lower_idx]
    fit <- optim(init, loglik.G2cholesky, method = "BFGS", hessian = TRUE)</pre>
    fisher_info <- solve(fit$hessian)</pre>
    prop_sigma <- sqrt(diag(fisher_info))</pre>
    prop_sigma <- diag(prop_sigma)</pre>
    a <- diag(prop_sigma)
    prop_sigma <- a
    upper <- fit$par + 1.96 * prop_sigma
    lower <- fit$par - 1.96 * prop_sigma</pre>
    true_para <- c(mu, chol(ss)[lower_idx])</pre>
    #c(lower[1], upper[1], lower[2], upper[2], (lower[3]),
    # upper[3], (Lower[4]), (upper[4]), (Lower[5]), (upper[5]))
    p < - rep(0., 14)
    for (k in seq_len(14)) {
        p[k] <- (lower[k] <= true_para[k] & true_para[k] <= upper[k])</pre>
    result_df <- rbind(result_df, p)</pre>
## calculate coverage rate of parameters ##
# Be sure to handle NA's before the
# coverage rate calculation
result_df[is.na(result_df)] <- FALSE
p <- apply(result_df, 2, mean)</pre>
round(p, 2)
## X1 X1.1 X1.2 X0 X1.3 X1.4 X0.1 X0.2 X1.5 X1.6 X1.7 X0.3 X1.8 X0.4
## 0.72 0.70 0.72 0.71 0.75 0.69 0.70 0.70 0.58 0.59 0.58 0.39 0.47 0.17
```

Here the coverage rate of parameters are $(n = 20, simu \ n = 1000) \ vs \ (n = 100, simu \ n = 100)$.

n	simu_n	mu1	mu2	mu3	mu4	sigma11	sigma21	sigma22	sigma31	sigma32	sigma33	sigma41	sigma42	sigma43	sigma44
20	1000	0.72	0.70	0.72	0.71	0.75	0.69	0.70	0.70	0.58	0.59	0.58	0.39	0.47	0.17
100	100	0.65	0.65	0.65	0.61	0.73	0.7	0.68	0.77	0.71	0.6	0.62	0.69	0.64	0.57

NOTE: It is noticable the number of parameters is 14, which is much larger than the number of parameters in the 2d case. Therefore, the number of observations n should be larger than dim=2's to get a reasonable coverage rate.

Real data example

We use the bmi.nz data in the VGAM package as an example. It is the body mass indexes and ages from an approximate random sample of 700 New Zealand adults.

```
source("utils.R")
 library(MASS)
  library(ggplot2)
 library("shape")
 wate <- vounn::DM1.NZ
## For users' convinience, we provide the tab separated data file as well
## data <- read.csv("bmi.csv", header = TRUE, sep = " ")[, c(2, 3)]
colnames(data) <- c("age", "bmi")
# kernel density estimate ##</pre>
 data <- VGAM::bmi.nz
  kde_estimation <- kde2d(data[, 1], data[, 2])</pre>
 length(kde_estimation$x)
  dim(kde_estimation$z)
 ## [1] 25 25
## estimate mle ##
 dat <- data.frame(data$age, data$bmi)
dat <- as.matrix(data)</pre>
  inputx <- dat
  sss <- chol(cov(dat))
 init <- c(
       mean(dat[, 1]), mean(dat[, 2]),
       sss[c(1, 3, 4)]
 fit <- optim(init, loglik.G2cholesky, hessian = T)
 muest <- fit$par[c(1, 2)]
sigma <- matrix(c(fit$par[3], 0, fit$par[4], fit$par[5]), 2, 2)</pre>
  fisher_info <- solve(fit$hessian)
 prop_sigma <- sqrt(diag(fisher_info))
prop_sigma <- diag(prop_sigma)
a <- diag(prop_sigma)
 prop_sigma <- a
sigmaest <- t(sigma) %*% sigma</pre>
 x <- seq(min(data$age), max(data$age), length.out = 25)</pre>
 y <- seq(min(data$bmi), max(data$bmi), length.out = 25)
 mu1 <- muest[1]
 mu2 <- muest[2]
  summary(data)
 ## age
## Min. :18.31 Min.
  ## 1st Qu.:32.94 1st Qu.:23.51
 ## Median :41.57
                              Median :26.10
                 :43.73
 ## 3rd Qu.:53.08
                               3rd Ou.:29.25
 ## Max.
                :85.06
                              Max.
 sgm1 <- sqrt(sigmaest[1, 1])
sgm2 <- sqrt(sigmaest[2, 2])</pre>
  rou <- sigmaest[1, 2] / (sgm1 * sgm2)
 f <- function(x, y) {
    (1.0 / (2.0 * pi * sgm1 * sgm2 * sqrt(1 - rou^2))
    ) * exp((-1.0 / (2.0 * (1 - rou^2))) * ((((x - mu1)^2) / (sgm1^2)) - (2 * rou * (x - mu1) * (y - mu2) / (sgm1 * sgm2)) + (((y - mu2)^2) / sgm2^2)))
z <- outer(x, y, f1)
 # generate the figure(s)
png("figure/combined_plot.png", width = 18, height = 8, units = "in", res = 300)
 png( righte/combined_piot.png , which = 18, height = 8, units = in , res = 300)
layout(matrix(c(1, 2), nrow = 1))
par(mgp = c(3, 2, 5))
persp(x, y, z, theta = 60, phi = 10, expand = 0.6, r = 180, ltheta = 0, shade = 0.5,
    ticktype = "detailed", xlab = "Age", ylab = "Body Mass Index", zlab = "Density",
    col = "lightblue", main = "", cex.axis = 1.25, cex.lab = 1.75)
par(mgp = c(3, 2, 5))
  persp(kde_estimation$x, kde_estimation$y, kde_estimation$z, theta = 60, phi = 10,
       expand = 0.6, r = 180, Itheta = 0, shade = 0.5,
ticktype = "detailed", xlab = "Age", ylab = "Body Mass Index",
zlab = "Density", col = "lightgray", main = "", cex.axis = 1.25, cex.lab = 1.75)
 dev.off()
```

Check the figures as follows:

- The left figure is the estimated density surface of the proposed MLE.
- The right figure is the estimated density surface of the kernel density estimation.

FIGURE 1 DENSITY GRAPHS OF 2D FOLDED NORMAL. LEFT: MLE, RIGHT: KDE

Notice

NOTE: In utils.R, the loglik.G2() and loglik.G2cholesky() functions use the global varibale INPUTX, which stores the data in a matrix format. Therefore, the user should be careful when using these two functions. Especially, the user should make sure that: - the INPUTX is updated before calling these two functions; - parrallel computing does not work properly with these two functions, i.e. be sure to run the demo code in a sequential way.