Quantum Communication Complexity

James Hawley

Institute for Quantum Computing University of Waterloo

August 15, 2014

Contents

Background

Quantum Computing Stabilizers and the Discrete Wigner Function

Main Work Raz's Problem Solutions

Acknowledgments and References

Qubit/Qudit Model

• Qubit:
$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

• Qubit:
$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

• Qudit:
$$|\psi\rangle = \sum_{k=0}^{d-1} \alpha_k |k\rangle$$

• Qubit:
$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

• Qudit:
$$|\psi\rangle = \sum\limits_{k=0}^{d-1} \alpha_k \, |k\rangle$$

Logic gates → unitary operators

Stabilizers

• Weyl-Heisenberg Operators

• Weyl-Heisenberg Operators

Clifford Unitary Operators

$$C_{d,n} = \{ U \in \mathcal{U}(d^n) | U \langle D_d^{\otimes n} \rangle U^{\dagger} = \langle D_d^{\otimes n} \rangle \}$$

Stabilizers

• Weyl-Heisenberg Operators

Clifford Unitary Operators

$$C_{d,n} = \{ U \in \mathcal{U}(d^n) | U \langle D_d^{\otimes n} \rangle U^{\dagger} = \langle D_d^{\otimes n} \rangle \}$$

Gottesman-Knill Theorem

• Representation in discrete phase space

- Representation in discrete phase space
- $W_{\rho}(\alpha) = \frac{1}{d} \operatorname{Tr}(\rho A_{\alpha})$
- Stabilizers $\implies W_{\rho}(\alpha) \geq 0 \forall \alpha \in \mathbb{Z}_d^2$

- Representation in discrete phase space
- $W_{\rho}(\alpha) = \frac{1}{d} \operatorname{Tr}(\rho A_{\alpha})$
- Stabilizers $\implies W_{\rho}(\alpha) \geq 0 \forall \alpha \in \mathbb{Z}_d^2$
- $W_U(\beta|\alpha) = \frac{1}{d} \text{Tr}(A_\beta U A_\alpha U^\dagger)$
- Clifford $\implies W_U(\beta|\alpha) \ge 0 \forall \alpha, \beta \in \mathbb{Z}_d^2$

- Representation in discrete phase space
- $W_{\rho}(\alpha) = \frac{1}{d} \operatorname{Tr}(\rho A_{\alpha})$
- Stabilizers $\implies W_{\rho}(\alpha) \geq 0 \forall \alpha \in \mathbb{Z}_d^2$
- $W_U(\beta|\alpha) = \frac{1}{d} \text{Tr}(A_\beta U A_\alpha U^\dagger)$
- Clifford $\implies W_U(\beta|\alpha) \ge 0 \forall \alpha, \beta \in \mathbb{Z}_d^2$
- $\mathcal{M}_{\rho} = \sum_{\alpha \in \mathbb{Z}_d^2} |W_{\rho}(\alpha)|$
- $\mathcal{M}_U = \max_{lpha \in \mathbb{Z}_d^2} \sum_{eta \in \mathbb{Z}_d^2} |W_U(eta|lpha)|$

• Measure information exchanged

- Measure information exchanged
- Early proof of exponential separation

- Measure information exchanged
- Early proof of exponential separation
- Two main variants

- Measure information exchanged
- Early proof of exponential separation
- Two main variants
- $O(\log d)$ communication complexity for quantum algorithm

Raz's Problem: Variant 1

• Return 0 if $d(x, M_0) < \vartheta$, 1 otherwise

Raz's Problem: Variant 2

• Return 0 if $d(Ux, M_0) < \vartheta$, 1 otherwise

Convergence and Complexity

Convergence and Complexity

• Stabilizers $\implies O(\log d)$ complexity

- Stabilizers $\implies O(\log d)$ complexity
- At most $O(d^3 \log d)$ complexity

Convergence and Complexity

- Stabilizers $\implies O(\log d)$ complexity
- At most $O(d^3 \log d)$ complexity
- $\Pr(|\hat{R} \mathbb{E}(R)|) \ge \epsilon) \le 2e^{\frac{-T\epsilon^2}{2\mathcal{M}^2}}$

Acknowlegments

- Joseph Emerson
- Joel Wallman
- Mark Howard

Refrences

- 1. Hakop Pashayan, Joel J Wallman, and Stephen D Bartlett. Simulating quantum circuits with quasiprobabilities. 2014.
- Ran Raz. Exponential separation of quantum and classical communication complexity. Pro- ceedings of the 31st Annual ACM Symposium on Theory of Computing (1999), pp. 358367. doi: 10.1145/301250.301343.
- 3. Michael M Wolf. Quantum Channels & Operations Guided Tour. Copenhagen, 2012.
- 4. William K. Wootters. A Wigner-Function Formulation of Quantum Mechanics. Annals of Physics 176 (1987), pp. 121. doi: 10.1016/0003-4916(87)90176-X.