Visual Scan Recognition

How Al can read images for pneumonia

The problem

Pneumonia

Pneumonia is an infection that inflames the air sacs in one or both lungs.

Causes Include:

- Viruses
- Bacteria

Tests

- Pulse Oximetry
- Chest X-Ray
- Blood Tests
- Sputum Test

Imaging to Diagnose

Computer Program:

- Imaging looks for the site of inflammation in the lungs, represented by the white areas.
- Program will look at images and distinguish between normal and infected lungs.
- The more images it looks at the more it will learn
- We will know how accurate the results are by getting a percentage after running it.
- Mayo Foundation for Medical Education and Research. All rights reserved.

Chest X-ray showing pneumonia

This chest X-ray shows an area of lung inflammation indicating the presence of pneumonia.

This allows for classification

Baseline Model

Train set:

==========

PNEUMONIA=3883

NORMAL=1342

Test set:

PNEUMONIA=390 NORMAL=234

Validation set:

==============

PNEUMONIA=8
NORMAL=8

Accuracy Evolution 7 - Loss - Val_Loss - Accuracy - Val_Accuracy 5 - 4 - 3 - 2 - 1 - 0 - 2 - 4 - 6 - 8

Data Set

The more images, the better the

results

Model: "sequential_1"			
Layer (type)	Output	Shape	Param #
dense_2 (Dense)	(None,	20)	1350020
dense_3 (Dense)	(None,	7)	147
dense_4 (Dense)	(None,	5)	40
dense_5 (Dense)	(None,	1)	6
Total params: 1,350,213 Trainable params: 1,350,213 Non-trainable params: 0			

Using various models to classify our image, the goal was to have our program read the images and classify them as 'Pneumonia' or 'Normal'.

Using Convolutional Neural Network Models

Various Optimizers Were Used to Make Our Model Recognize Images Better

All Had an Accuracy of: **0.50**

Baseline Model: Loss: 0.26 Accuracy: 0.50

RMSprop	Loss: 0.26
Adam_01	0.26
SGD	0.26
AdaDelta	0.26
AdaGrad	0.26

Conclusion

We are able to design a Neural Network that can distinguish images. This will:

- Speed up ED waiting times
- Accuracy will improve the more it is utilized.
- Lives will be saved.

Although my results were not able to create an accuracy of over 50%; it is possible to construct a model with over 90% accuracy.

Future Work

- Develop a classifier that will distinguish between the different types of pneumonia.
- Develop a translator to label the scans.
- Create a neural network that can classify other types of images, including MRIs.

Thank You!

Appreciate the help of my instructors and the FlatIron cohort

Blog:

https://arash28.medium.com/image-recognition-of-x-rays-26552a620ec2

Resource: Mayo Clinic

https://www.mayoclinic.org/diseases-conditions/pneumonia/diagnosis-treatment/drc-20354210#dialogId39054

