

Genetic Algorithm

Simulating Materials from first principles

Scope of This Exercise

Electronic Structure Theory is more than pressing buttons

Educational Targets:

- Identify challenges
- Assess solutions
- Present results

Structure Search as a simple-to-implement Example

Structure Search Relevance in Practise

Thermal Barrier Coatings

Image by April Gocha http://ceramics.org/ceramic-tech-today/new-ceramic-thermal-barrier-coating-is-long-strong-and-down-to-get-the-friction-on

Structure Determines Function

Mobilities in Pentacene

Catalytic Triade

Our target:

Find the OH-orientations that give the best energy

X choose random mixture of: H, F, Cl, CH3, NO2

Definitions

Potential Energy Surface (PES): result of Born-

Oppenheimer approximation. Energy is a function of

nuclear coordinates

On the PES:

- Local Minima
- Global Minimum
- Transition States

Attactor Basin: all points leading to the same minimum with a local geometry optimization

Structure Determines Function

Mobilities in Pentacene

Catalytic Triade

Why Is This a Hard Problem?

Simple Example: Polyacetylene

N	# 0	geometries
	2	4
	4	16
	6	64
	8	256
1	0	1024
1	2	4096
1	4	16384

2 options for each double bond: cis or trans

2ⁿ stable geometries

"Configurational Explosion"

Non-independent DoF

For each molecule:

Translation x: \sim 10 steps

Translation y: ∼ 10 steps

Rotation: $\sim 10 \text{ steps}$

3 mol.: $(10 \times 10 \times 10)^3 = 1$ billion

Q: Assuming we can do 1 calc / s, how long would it take?

A: >100 years

Starting points or local minima?

More Complicated Example: Lennard-Jones Cluster

Structure and Energy Disconnectivity Graph for a 38 atom Lennard-Jones Cluster. Taken from https://pele-python.github.io/pele/

Initialization:

- Random?
- All oriented the same?
- Mixture?

Representation:

Cartesian or Internal Coordinates? Reflect symmetries?

atom	atom	dist	angle	angle	torsion	torsion
name	connect	ance	connect		connect	angle
C1	0	0.00	0	0.0	0	0.0
02	1	1.20	0	0.0	0	0.0
н3	1	1.10	2	120.0	0	0.0
C4	1	1.50	2	120.0	3	180.0
Н5	4	1.10	1	110.0	2	0.0
Н6	4	1.10	1	110.0	2	120.0
Н7	4	1.10	1	110.0	2	-120.0

Coordinate Choice

Cartesian Coordinates:

- Easy to implement
- Straightforward to connect to external code
- Reasonable choice for non-covalent bonds
- Perturbations easily create bogus structure

Internal Coordinates:

- Requires (some) more thought
- Smoother potential energy surface
- Easier to modify (esp. for genetic algorithm)
- Freezing of DOFs more straigthforward

Select Level Of Theory:

- Connect to Electronic Structure Code (PySCF, FHI-aims, Gaussian, VASP)
- → Low Level Theory will be fast (Basis set? Method?)

Obtain energy

- Just single point
- Local Geometry Optimization
- Think about thresholds (energy, forces)

Convergence

- Run for fixed number of steps
- Run maximum time
- Stop if no better structure is found long enough

Genetic Algorithm

Work by A. Supady

Select sensible "genes":

Internal coordinates, including connection to different atoms

Select sensible "genes":

- Here: Only C-C-O-H torsions
- Single points: Use 6-fold discretization: 0,60,120,180,240,300°
- Geometry optimization: Darwin or Lamark

Genetic Algorithm

Select (pairs of) parents to mate and form offspring

Mating:

Mutation: Change gene in sensible range

Work by A. Supady

- Crossover:
 - Set of genes from M1
 - complimentary set of genes from M2

Selections:

- Roulette Wheel: full population, weigh probably to mate by fitness
- Inverse Roulette Wheel: full population, less fit members are more likely to mate
- Tournament: randomly select subset, fittest mate
- → Remember to keep some parents in the pool

Present Results

- Chosen Molecule
- Level of Theory
- Other choices (population size, mutation rate, ..)
- Outcome
 - Best Geometry
 - Energy spread of explored geometries
 - Success rate
 - Time to find global minimum

Target Excersice

- Write a global optimization program
 - Select a system (cluster or molecule)
 - Make methodological choices and justify them
 - Explore parameters, report impact
 - Report results from the search. What could be relevant questions?

Note: The performance will not be graded!

Questions: Contact me (o.hofmann@tugraz.at)