Методы малоранговых разложений в распределенном и федеративном обучении

Ребриков Алексей rebrikov.av@phystech.edu

Зыль Александр

Безносиков Александр beznosikov.an@phystech.edu

Abstract

Подходы распределенного и федеративного обучения становятся все более популярными в обучении современных SOTA моделей машинного обучения. При этом на первый план выходит вопрос организации эффективных коммуникаций, так как процесс передачи информации занимает слишком много времени даже в случае кластерных вычислений. Из-за этого может теряться смысл в распределении/распараллеливании процесса обучения. Одной из ключевой техник борьбы с коммуникационными затратами является использование сжатий передаваемой информации. На данный момент в литературе предлагаются различные техники сжатия ([Beznosikov et al., 2023], [Alistarh et al., 2017], [Horvóth et al., 2022]), но потенциал в этом вопросе явно не исчерпан. В частности, довольно большой потенциал кроется в малоранговых разложениях [Gundersen, 2019]. В рамках проекта предлагается сконструировать операторы сжатия на основе данных разложений и встроить в методы распределенной оптимизации [Richtárik et al., 2021].

Keywords сжатие информации \cdot малоранговые разложения \cdot распределенное обучение \cdot федеративное обучение

1 Введение

Цель данного исследования заключается в разработке и анализе методов малоранговых разложений для сжатия информации в контексте распределенного и федеративного обучения. Мотивация исследования проистекает из растущей потребности в эффективных методах обучения для современных масштабных моделей машинного обучения, где коммуникационные затраты становятся критическим барьером для эффективности.

Объектом исследования являются операторы сжатия, основанные на малоранговых разложениях, и их интеграция в методы распределенной оптимизации. Проблемой, которую мы решаем, является высокая коммуникационная нагрузка при обучении моделей в распределенных системах, ограничивающая масштабируемость и эффективность процессов.

В рамках методологии проводится обзор существующей литературы и анализируются последние достижения в области сжатия информации для распределенного обучения. В частности, рассматриваются существующие техники сжатия, такие как предложенные в работах [Beznosikov et al., 2023], [Alistarh et al., 2017], и [Horvóth et al., 2022], а также исследуется потенциал малоранговых разложений.

Задачами проекта являются разработка операторов сжатия на основе малоранговых разложений, их интеграция в алгоритмы распределенной оптимизации и оценка влияния на эффективность обучения. Предлагаемое решение предполагает новизну в виде конкретной реализации сжатия, которая потенциально позволяет уменьшить коммуникационные затраты без значительной потери качества обучения.

Цель эксперимента состоит в демонстрации эффективности предлагаемых методов на реальных наборах данных и в различных условиях обучения, оценке улучшения скорости и качества обучения.

Список литературы

- Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased compression for distributed learning. Journal of Machine Learning Research, 24(276):1–50, 2023.
- Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communication-efficient sgd via gradient quantization and encoding. Advances in neural information processing systems, 30, 2017.
- Samuel Horvóth, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco Canini, and Peter Richtárik. Natural compression for distributed deep learning. In Mathematical and Scientific Machine Learning, pages 129–141. PMLR, 2022.
- Gregory Gundersen. Randomized singular value decomposition, 2019. URL https://gregorygundersen.com/blog/2019/01/17/randomized-svd/.
- Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. Ef21: A new, simpler, theoretically better, and practically faster error feedback. Advances in Neural Information Processing Systems, 34:4384–4396, 2021.