密码学与信息安全第五次作业

郭嘉 17345019 数学与应用数学 2020 年 5 月 23 日

1. (第四章第5题)

为了得到 C 的校验矩阵,我们用 p(x) 的根来刻画循环码 C=(p(x))

设 p(x) 在 \mathbb{F}_{2^r} 的一个根为 β

那么其它的 r-1 个根为 $\beta^2, \beta^{2^2}...\beta^{2^{r-1}}$

则容易验证 $C = \left\{ c(x) = \sum_{i=0}^{2^r-2} c_i x^i \in \Pi_2^{(2^r-1)} | c(\beta) = c(\beta^2) = c(\beta^2) = \dots = c(\beta^{2^{r-1}}) = 0 \right\}$ 也容易说明 C 的校验矩阵为

$$H_C = \begin{bmatrix} 1 & \beta & \dots & \beta^{n-1} \\ 1 & \beta^2 & \dots & \beta^{2(n-1)} \\ \dots & \dots & \dots \\ 1 & \beta^{2^{r-2}} & \dots & \beta^{2^{r-2}(n-1)} \\ 1 & \beta^{2^{r-1}} & \dots & \beta^{2^{r-1}(n-1)} \end{bmatrix}$$

而 $\operatorname{Ham}(\mathbf{r},2)$ 的校验矩阵 H_{Ham} 以 Π_2^r 中除了零向量以外的向量为列向量

可以说明对于 $\forall c \in \Pi_2^{(2^T-1)} H_{Ham} c^T = 0$ 当且仅当 $H_C c^T = 0$ (我在这里的说明遇到了困难,不过这个论断应该是正确的,而且应该可以通过某些技巧验证)

因此这两个码等价

2. (第五章第3题)

容易直接写出

$$B_2(15,9,\beta) = \left\{ c(x) = \sum_{i=0}^{14} c_i x^i \in \Pi_2^{(15)} | c(\beta) = c(\beta^3) = c(\beta^5) = c(\beta^7) = 0 \right\}$$
 其中 β 为 $x^4 + x + 1$ 的一个根

为求生成多项式,只需要求 β , β^2 , β^3 , β^4 , β^5 , β^6 , β^7 , β^8 在 Π_2 上的极小多项式。

由于书中例题已经求出其中一些,我们只需要求 β^7 在 Π_2 上的极小多项式,容易得到 $m_7(x) = (x - \beta^7)(x - \beta^{14})(x - \beta^{28})(x - \beta^{56}) = x^4 + x^3 + 1$ 故生成多项式 $g(x) = m_1(x)m_3(x)m_5(x)m_7(x) = (x^4 + x + 1)(x^4 + x^3 + x^2 + x + 1)(x^2 + x + 1)(x^4 + x^3 + 1) = x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$

- 3. (第五章第5题)
- (1) 计算校验子

$$v(\beta) = \epsilon(\beta) = \beta^{11}$$

$$v(\beta^2) = \epsilon(\beta^2) = \beta^7$$

$$v(\beta^3) = \epsilon(\beta^3) = \beta^{13}$$

$$v(\beta^4) = \epsilon(\beta^4) = \beta^{14}$$

$$v(\beta^5) = \epsilon(\beta^5) = 1$$

$$v(\beta^6) = \epsilon(\beta^6) = \beta^{11}$$

(2) 解非齐次线性方程组

$$\epsilon(\beta^3)\sigma_1 + \epsilon(\beta^2)\sigma_2 + \epsilon(\beta)\sigma_3 = \epsilon(\beta^4)$$

$$\epsilon(\beta^4)\sigma_1 + \epsilon(\beta^3)\sigma_2 + \epsilon(\beta^2)\sigma_3 = \epsilon(\beta^5)$$

$$\epsilon(\beta^5)\sigma_1 + \epsilon(\beta^4)\sigma_2 + \epsilon(\beta^3)\sigma_3 = \epsilon(\beta^6)$$

把(1)中所得结果带入上述方程组,并求解

得到
$$\sigma_1 = \beta^1 1 \ \sigma_2 = \beta^2 \ \sigma_3 = \beta^3$$

故差错位置多项式为 $\sigma(z) = 1 + \sigma_1 z + \sigma_2 z^2 + \sigma_3 z^3$

得到其三个根分别为 β^{-3} , β^{-6} , β^{-9}

故差错位置为3,6,9

差错多项式为 $\epsilon(x) = x^3 + x^6 + x^9$

原码字多项式 $c(x) = v(x) - \epsilon(x) = 1 + x^2 + x^3 + x^6 + x^8 + x^{13} + x^{14}$

4. (第五章第6题)

容易直接写出

$$S(7, 3, \beta) =$$

生成矩阵为

$$G = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \beta & \beta^2 & \beta^3 & \beta^4 & \beta^5 & \beta^6 \\ 1 & \beta^2 & \beta^4 & \beta^6 & \beta^1 & \beta^3 & \beta^5 \\ 1 & \beta^3 & \beta^6 & \beta^2 & \beta^5 & \beta^1 & \beta^4 \\ 1 & \beta^4 & \beta^1 & \beta^5 & \beta^2 & \beta^6 & \beta^3 \end{bmatrix}$$