Meeting Discussions

1 Learner

Fig. 1: Overview

The *DistEstimate* and *Validifier* modules will return the pairs $(\mathcal{D}_1, \epsilon_1)$ and $(\mathcal{D}_2, \epsilon_2)$ respectively (see fig. 1).

Assuming dataset \mathcal{D}_1 contains n_1 data points $\{(s_i, w_i, l_i)\}_{i=1}^{n_1}$, where s_i denotes a program state, w_i denotes its weight and $l_i \in \{0, 1\}$ is a label; l_i is 0 if the state $s_i \not\models \mathcal{T}$ and l_i is 1 if $s_i \models \mathcal{T}$. We also use l_i^{ex} to denote the expected labels of the states, for $s_i \in \mathcal{D}_1$, l_i^{ex} is 1.

Error Probability ϵ_1

Any random sampled state from S, must reach \mathcal{T} with probability $(1 - \epsilon_1)$ in K-steps

Similarly, assume dataset \mathcal{D}_2 contains n_2 data points $\{(s_i, l_i)\}_{i=1}^{n_2}$, where s_i denotes a program state and $l_i \in \{0, 1\}$. In this case, $l_i = 0$ if s_i is not reachable from S otherwise $l_i = 1$. We also use l_i^{ex} to denote the expected labels of the states, for $s_i \in \mathcal{D}_2$, $l_i^{ex} = l_i$.

Error Probability ϵ_2

Any random sampled state from \mathcal{T} , must be reachable from S in K-steps with probability $(1 - \epsilon_2)$.

Cases to consider while mutating:

- 1. $\forall s_i \in \mathcal{D}_1$ with $l_i = 1$, we want to preserve the label of such states in \mathcal{T}' .
- 2. $\forall s_i \in \mathcal{D}_1$ with $l_i = 0$, we want to include these states in \mathcal{T}' i.e. flip the labels of such states
- 3. $\forall s_i \in \mathcal{D}_2$ with $l_i = 1$, we want to preserve the label of such states in \mathcal{T}' .
- 4. $\forall s_i \in \mathcal{D}_2$ with $l_i = 0$, we want to exclude such states from \mathcal{T}' .

Mutations. If \mathcal{T} has x leaves then maximum possible mutations are $2 \cdot x$. For each leaf following two mutations are possible:

- 1. Splitting a leaf node.
- 2. Pruning a leaf node.

Cost of Mutations. Pruning a leaf node is preferred over splitting therefore cost of pruning should be less than the cost of splitting the node. For both types of mutations, mutating a leaf at higher depth is preferred than a leaf at lower depth therefore cost of applying any mutation on a leaf at higher depth is lesser than applying mutation on a leaf at lower depth.

2 Problem Statement

Given \mathcal{T} and the pairs $(\mathcal{D}_1, \epsilon_1)$ and $(\mathcal{D}_2, \epsilon_2)$, make minimal mutations to \mathcal{T} to obtain a \mathcal{T}' such that following two inequalities hold:

$$\sum_{s_i \in \mathcal{D}_1} (w_i \cdot (|l_i^{\mathcal{T}'} - l_i^{ex}|)) \le u_1 \tag{1}$$

$$\frac{\sum_{s_i \in \mathcal{D}_2} (1 \cdot (|l_i^{T'} - l_i^{ex}|))}{n_2} \le u_2 \tag{2}$$

3 Algorithm

Given a candidate \mathcal{T} , pairs $(\mathcal{D}_1, \epsilon_1)$ and $(\mathcal{D}_2, \epsilon_2)$ and user supplied error bounds u_1 and u_2 , algorithm 3 mutates \mathcal{T} and outputs \mathcal{T}' such that eq. (1) and eq. (2) are satisfied.

extractLeaves. Returns a mapping of states in \mathcal{D}_1 and \mathcal{D}_2 to leaves indices of the tree \mathcal{T} as a dictionary.

Algorithm 1 getGain($\mathcal{T}, l, m, \epsilon_1, \epsilon_2$)

```
1: \mathcal{T}' \leftarrow Mutate(\mathcal{T})

2: \epsilon'_1, \epsilon'_2 \leftarrow getEstimates(\mathcal{T}') //Using eq. (1) and eq. (2)

3: gain \leftarrow (\epsilon_1 - \epsilon'_1) + (\epsilon_2 - \epsilon'_2)

4: return \ gain, \epsilon'_1, \epsilon'_2
```

Algorithm 2 getCost(dep, m)

1: return 1

Algorithm 3 MuteTree($\mathcal{T}, \mathcal{D}_1, \mathcal{D}_2, \epsilon_1, \epsilon_2, u_1, u_2$)

```
1: \epsilon_1', \epsilon_2' \leftarrow 0, 0
 2: while \epsilon_1' \leq u_1 \wedge \epsilon_2' \leq u_2 do
 3:
           moves, leaves \leftarrow [], \{\}
            leaves \leftarrow extractLeaves(\mathcal{T}, \mathcal{D}_2, \mathcal{D}_1)
 4:
 5:
            for l \in leaves do
 6:
                  \textbf{for}\ m \in mutations\ \textbf{do}
                        gain, \mathcal{T}', \epsilon_1', \epsilon_2' \leftarrow getGain(\mathcal{T}, l, m, \epsilon_1, \epsilon_2)
 7:
                        cost \leftarrow getCost(depth(l), m)
 8:
                       ratio \leftarrow \frac{gain}{cost}
 9:
                        moves.append((ratio, \mathcal{T}', \epsilon_1', \epsilon_2'))
10:
11:
            moves \leftarrow sort(moves, key = ratio)[: k]
12:
            moves \leftarrow normalize(moves, key = ratio)
13:
            \mathcal{T}', \epsilon_1', \epsilon_2' \leftarrow SampleUniform(moves)
14: return \mathcal{T}'
```

