РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № <u>2</u>

дисциплина: Архитектура компьютера

Студент: Самойлова С.Д.

Группа: НКАбд-04-24

МОСКВА

Содержание

- 1. Цель работы...
- 2. Теоретическое введение...
- 3. Задание...
- 4. Задание для самостоятельной работы...
- 5. Выводы...
- 6. Список литературы...

Цель работы

Целью работы является изучить идеологию и применение средств контроля версий, а также приобрести практические навыки по работе с системой git

Теоретическое введение

1. Системы контроля версий. Общие понятия

Системы контроля версий (VCS) используются для совместной работы над проектами. Обычно основное дерево проекта хранится в локальном или удалённом репозитории с доступом для участников. VCS фиксирует изменения, объединяет их и позволяет откатываться к предыдущим версиям.

В классических системах применяется централизованная модель с единственным репозиторием, где сервер управляет версиями. Пользователь получает нужную версию файлов, вносит изменения и загружает новую версию, при этом старые версии сохраняются. Сервер может использовать дельта-компрессию, сохраняя только изменения между версиями, что позволяет уменьшить объём хранимых данных.

Системы контроля версий предлагают гибкие функции, такие как поддержка нескольких версий одного файла с сохранением общей истории изменений и индивидуальных ветвей. Они фиксируют информацию о том, кто и когда вносил изменения, что хранится в журнале, доступ к которому можно ограничить. В распределённых системах центральный репозиторий не обязателен. Из классических VCS известны CVS и Subversion, а среди распределённых — Git, Bazaar и Mercurial. Принципы их работы схожи, различия в синтаксисе команд.

2. Система контроля версий Git

Система контроля версий Git представляет собой набор программ командной строки. Доступ к ним можно получить из терминала посредством ввода команды git с различными опциями.

Благодаря тому, что Git является распределённой системой контроля версий, резервную копию локального хранилища можно сделать простым копированием или архивацией.

3. Основные команды git

Наиболее часто используемые команды git представлены в таблице

Команда	Описание
git init	создание основного дерева репозитория
git pull	получение обновлений (изменений) текущего дерева из центрального репозитория
git push	отправка всех произведённых изменений локального дерева в центральный репозиторий
git status	просмотр списка изменённых файлов в текущей директории
git diff	просмотр текущих изменения
git add .	добавить все изменённые и/или созданные файлы и/или каталоги
git add имена_файлов	добавить конкретные изменённые и/или созданные файлы и/или каталоги
git rm имена_файлов	удалить файл и/или каталог из индекса репозитория (при этом файл и/или каталог остаётся в локальной директории)
git commit -am 'Описание коммита'	сохранить все добавленные изменения и все изменённые файлы
git checkout -b имя_ветки	создание новой ветки, базирующейся на текущей
git checkout имя_ветки	переключение на некоторую ветку (при переключении на ветку, которой ещё нет в локальном репозитории, она будет создана и связана с удалённой)
git push origin имя_ветки	отправка изменений конкретной ветки в центральный репозиторий
git merge no-ff имя_ветки	слияние ветки с текущим деревом
git branch -d имя_ветки	удаление локальной уже слитой с основным деревом ветки
git branch -D имя_ветки	принудительное удаление локальной ветки
git push origin :имя_ветки	удаление ветки с центрального репозитория

Задание

1. Базовая настройка git

Существует несколько доступных серверов репозиториев с возможностью бесплатного размещения данных. Например, http://bitbucket.org/, https://github.com/ и https://gitflic.ru. Для выполнения лабораторных работ предлагается использовать Github.

Создаем учётную запись на сайте https://github.com/ и заполняем основные данные (рис.1)

Сделаем предварительную конфигурацию git. Откроем терминал и введем следующие команды, указав имя и email владельца репозитория (рис.2)

```
sofiadsamoylova@fedora:~ Q = ×

sofiadsamoylova@fedora:~$

sofiadsamoylova@fedora:~$ git config --global user.name "<sdsamoylova>"

sofiadsamoylova@fedora:~$ git config --global user.email "<sofasamoylova@gmail.com>"
```

рис.2

Настроим utf-8 в выводе сообщений git (рис.3)

рис.3

Зададим имя начальной ветки (будем называть её master) (рис.4)

рис.4

Параметр autocrlf и safecrlf (рис.5)

```
sofiadsamoylova@fedora:~ Q = x

sofiadsamoylova@fedora:~$ git config --global core.autocrlf input
sofiadsamoylova@fedora:~$ git config --global core.safecrlf warn
sofiadsamoylova@fedora:~$
```

рис.5

2. Создание SSH ключа

Для последующей идентификации пользователя на сервере репозиториев необходимо

сгенерировать пару ключей (приватный и открытый) (рис.6)

```
\oplus
                                                                                Q
                                   sofiadsamoylova@fedora:~
                                                                                     ×
sofiadsamoylova@fedora:~$ ssh-keygen -C "Sofia Samoylova <sofasamoylova@gmail.com>"
Generating public/private ed25519 key pair.
Enter file in which to save the key (/home/sofiadsamoylova/.ssh/id_ed25519):
Created directory '/home/sofiadsamoylova/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/sofiadsamoylova/.ssh/id_ed25519
Your public key has been saved in /home/sofiadsamoylova/.ssh/id_ed25519.pub
The key fingerprint is:
SHA256:Ip6USjNw2JEF0tjw6xQvx9XnRntd8IfJhYYTGMnq324 Sofia Samoylova <sofasamoylova@gmail.com>
The key's randomart image is:
+--[ED25519 256]--+
         ..+.0...
0=0+.
|.=+. . + 0.0* |
      . ..0 0++
 0 = 0 .+ . . . .
  B B ..S + . .
 + 0 0 ... .
  0 0
   --[SHA256]--
sofiadsamoylova@fedora:~$
```

рис.6

Xclip – утилита, позволяющая скопировать любой текст через терминал. Оказывается, в дистрибутиве Linux Kali ее сначала надо установить. Устанавливаю хсlip с помощью команды apt-get install с ключом -у отимени суперпользователя, введя в начале команды sudo (рис. 7).

```
adsamoylova@fedora:~$ xclip
bash: xclip: команда не найдена...
Установить пакет «xclip», предоставляющий команду «xclip»? [N/y] у
* Ожидание в очереди...
 загрузка списка пакетов....
Следующие пакеты должны быть установлены:
xclip-0.13-21.git11cba61.fc40.x86_64
                                       Command line clipboard grabber
Продолжить с этими изменениями? [N/y] у
 жидание в очереди...
 Ожидание аутентификации...
 жидание в очереди...
 загрузка пакетов...
 запрос данных...
 Проверка изменений...
 Установка пакетов...
sofiadsamoylova@fedora:~$
```

рис.7

Ключи сохранятся в каталоге ~/.ssh/.

Далее необходимо загрузить сгенерённый открытый ключ. Для этого заходим на сайт http://github.org/ под своей учётной записью и переходим в меню Setting. После этого выбрать в боковом меню SSH and GPG keys и нажать кнопку New SSH key, скопировав из локальной консоли ключ в буфер обмена и вставляем ключ в появившееся на сайте поле и указываем для ключа имя (Title) (рис.8)

рис.8

3. Создание рабочего пространства и репозитория курса на основе шаблона

При выполнении лабораторных работ следует придерживаться структуры рабочего пространства. Рабочее пространство по предмету располагается в следующей иерархии:

Например, для 2023–2024 учебного года и предмета «Архитектура компьютера» (код предмета arch-pc) структура каталогов примет следующий вид:

- Каталог для лабораторных работ имеет вид labs.
- Каталоги для лабораторных работ имеют вид lab<номер>, например: lab01, lab02 и т .д.

Название проекта на хостинге git имеет вид: study_<учебный год>_<код предмета> Например, для 2023–2024 учебного года и предмета «Архитектура компьютера» (код предмета arch-pc) название проекта примет следующий вид: study 2023–2024_arch-pc

Открываем терминал и создаем каталог для предмета «Архитектура компьютера»:mkdir -p ~/work/study/2024-2025/"Архитектура компьютера"

(рис.9)

рис.9

Репозиторий на основе шаблона можно создать через web-интерфейс github.

Переходим на станицу репозитория с шаблоном курса (рис.10)

https://github.com/yamadharma/course-directory-student-template

рис.10

Далее выбираем Use this template.

В открывшемся окне задаем имя репозитория (Repository name) study_2024—2025_arch-pc и создаем репозиторий (кнопка Create repository from template).

Create a new repository

A repository contains all project files, including the revision history. Already have a project repository elsewhere? <u>Import a repository.</u>

Required fields are marked with an asterisk (*).

Repository template

yamadharma/course-directory-student-template
Start your repository with a template repository's contents.

Include all branches

Copy all branches from yamadharma/course-directory-student-template and not just the default branch.

Owner *

Repository name *

study_2024-2025_arch-pc

Your new repository will be created as study_2024-2025_arch-pc.
The repository name can only contain ASCII letters, digits, and the characters ., -, and _.

Great repository names are short and memorable. Need inspiration? How about friendly-spoon?

Description (optional)

рис.11

(рис.12)

```
\oplus
                sofiadsamoylova@fedora:~/work/study/2024-2025/Архитектура компьютера
                                                                                       Q
sofiadsamoylova@fedora:~/work/study/2024-2025/Архитектура компьютера$ git clone --recursive git@git
hub.com:sdsamoylova/study_2024-2025_arch-pc.git arch-pc
Клонирование в «arch-pc»...
remote: Enumerating objects: 33, done.
remote: Counting objects: 100% (33/33), done.
remote: Compressing objects: 100% (32/32), done.
Получение объектов: 100% (33/33), 18.81 КиБ | 3.76 МиБ/с, готово.
Определение изменений: 100% (1/1), готово.
remote: Total 33 (delta 1), reused 18 (delta 0), pack-reused 0 (from 0)
Подмодуль «template/presentation» (https://github.com/yamadharma/academic-presentation-markdown-tem
plate.git) зарегистрирован по пути «template/presentation»
Подмодуль «template/report» (https://github.com/yamadharma/academic-laboratory-report-template.git)
зарегистрирован по пути «template/report»
Клонирование в «/home/sofiadsamoylova/work/study/2024-2025/Архитектура компьютера/arch-pc/template/
presentation»...
remote: Enumerating objects: 111, done.
remote: Counting objects: 100% (111/111), done.
remote: Compressing objects: 100% (77/77), done.
remote: Total 111 (delta 42), reused 100 (delta 31), pack-reused 0 (from 0)
Получение объектов: 100% (111/111), 102.17 КиБ | 571.00 КиБ/с, готово.
Определение изменений: 100% (42/42), готово.
Клонирование в «/home/sofiadsamoylova/work/study/2024-2025/Архитектура компьютера/arch-pc/template/
report»...
remote: Enumerating objects: 142, done.
remote: Counting objects: 100% (142/142), done.
remote: Compressing objects: 100% (97/97), done.
```

рис.12

4. Настройка каталога курса

Переходим в каталог курса и удаляем лишние файлы (рис.15)

```
sofiadsamoylova@fedora:~/work/study/2024-2025/Архитектура компьютера$
sofiadsamoylova@fedora:~/work/study/2024-2025/Архитектура компьютера$ cd ~/work/study/2024-2025/"Ар
хитектура компьютера"/arch-pc
sofiadsamoylova@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc$ rm package.json
```

рис.13

Создаем необходимые каталоги (рис.14)

```
sofiadsamoylova@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc$ echo arch-pc > COURSE

рис.14
```

Отправляем файл на сервер (рис.15)

```
sofiadsamoylova@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc$ make prepare
sofiadsamoylova@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc$ git add .
sofiadsamoylova@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc$ git commit -am 'feat(
main): make course structure'
[master 7fdc265] feat(main): make course structure
221 files changed, 53680 insertions(+)
create mode 100644 labs/README.md
create mode 100644 labs/README.ru.md
rename labs/{lab02/report/Л02_Самойлова_отчет => lab01/presentation/.projectile} (100%)
create mode 100644 labs/lab01/presentation/.texlabroot
create mode 100644 labs/lab01/presentation/Makefile
create mode 100644 labs/lab01/presentation/image/kulyabov.jpg
create mode 100644 labs/lab01/presentation/presentation.md
create mode 100644 labs/lab01/report/Makefile
create mode 100644 labs/lab01/report/bib/cite.bib
create mode 100644 labs/lab01/report/image/placeimg_800_600_tech.jpg
create mode 100644 labs/lab01/report/pandoc/csl/gost-r-7-0-5-2008-numeric.csl
create mode 100755 labs/lab01/report/pandoc/filters/pandoc_eqnos.py
create mode 100755 labs/lab01/report/pandoc/filters/pandoc_fignos.py
create mode 100755 labs/lab01/report/pandoc/filters/pandoc_secnos.py
create mode 100755 labs/lab01/report/pandoc/filters/pandoc_tablenos.py
create mode 100644 labs/lab01/report/pandoc/filters/pandocxnos/__init__.py
create mode 100644 labs/lab01/report/pandoc/filters/pandocxnos/core.py
create mode 100644 labs/lab01/report/pandoc/filters/pandocxnos/main.py
 create mode 100644 labs/lab01/report/pandoc/filters/pandocxnos/pandocattributes.py
```

рис. 15
Проверяем правильность создания иерархии рабочего пространства в локальном репозитории и на странице github.

рис.16

Задание для самостоятельной работы

Перехожу в директорию labs/lab03/report с помощью утилиты cd. Создаю в каталоге файл для отчета по третьей лабораторной работе с помощью утилиты touch. Я добавила отчет по предыдущей лабораторной работе в соответствующий каталог (рис.17)

рис.17

Выводы

При выполнении данной лабораторной работы я изучила идеологию и применение средств контроля версий, а также приобрела практические навыки по работе с системой git.

Список литературы

- 1. GDB: The GNU Project Debugger. URL: https://www.gnu.org/software/gdb/.
- 2. GNU Bash Manual. 2016. URL: https://www.gnu.org/software/bash/manual/.
- 3. Midnight Commander Development Center. 2021. URL: https://midnight-commander.org/.
- 4. NASM Assembly Language Tutorials. 2021. URL: https://asmtutor.com/.
- 5. Newham C. Learning the bash Shell: Unix Shell Programming. O'Reilly Media, 2005.
- —354 c. (In a Nutshell). ISBN 0596009658. URL:

http://www.amazon.com/Learningbash-Shell-Programming-Nutshell/dp/0596009658.

- 6. Robbins A. Bash Pocket Reference. O'Reilly Media, 2016. 156 c. ISBN 978-1491941591.
- 7. The NASM documentation. 2021. URL: https://www.nasm.us/docs.php.
- 8. Zarrelli G. Mastering Bash. Packt Publishing, 2017. 502 c. ISBN 9781784396879.
- 9. Колдаев В. Д., Лупин С. А. Архитектура ЭВМ. М.: Форум, 2018.
- 10. Куляс О. Л., Никитин К. А. Курс программирования на ASSEMBLER. М. : Солон-Пресс, 2017.
- 11. Новожилов О. П. Архитектура ЭВМ и систем. М.: Юрайт, 2016.
- 12. Расширенный ассемблер: NASM. 2021. URL:

https://www.opennet.ru/docs/RUS/nasm/.

- 13. Робачевский А., Немнюгин С., Стесик О. Операционная система UNIX. 2-е изд. БХВПетербург, 2010. 656 с. ISBN 978-5-94157-538-1.
- 14. Столяров А. Программирование на языке ассемблера NASM для ОС Unix. 2-е изд. М.: MAKC Пресс, 2011. URL: http://www.stolyarov.info/books/asm_unix.
- 15. Таненбаум Э. Архитектура компьютера. 6-е изд. СПб. : Питер, 2013. 874 с. (Классика Computer Science).
- 16. Таненбаум Э., Бос Х. Современные операционные системы. 4-е изд. СПб. : Питер, 2015. 1120 с. (Классика Computer Science).