Sentence Compression

By: Jonah, Gavin, Beck

Introduction

Sentence/Text Compression - What is it?

 Shortening the length of a sentence while retaining its key meaning and essential information

Applications:

- Text Summarization
- Information Retrieval
- Machine Translation
- Subtitle Generation

Approaches

Grammar Based Compression

- Split sentence into ordered subsets
- Check if subset is grammatical
- Calculate probability with a PCFG

Gated Recurrent Unit (GRU) Based Compression

- Type of RNN designed for sequential data
- Made with the Pytorch NN library
- Encoder-Decoder Framework

Transformer-Based Compression

- Pretrained Transformer
- BART from Meta Al
- Finetune with MSR dataset

Dataset: Google Sentence Compression

Data gathered from various news articles from across the Internet

- Specifically ones where the first sentence and headlines were similar
- Headlines were used as the "compressed sentence"

Problems:

- Excessive compression of sentences
- High compression ratio (Very long target sentence vs. very short compressed sentence)
- Lost much of the essential information and meaning
- Not very suitable for our desired application

Example data:

"The USHL completed an expansion draft on Monday as 10 players who were on the rosters of USHL teams during the 2009-10 season were selected by the League's two newest entries, the Muskegon Lumberjacks and Dubuque Fighting Saints."

Becomes

"USHL completes expansion draft."

Dataset 2: Microsoft Text Compression

Data gathered from various sources from the Open American National Corpus (OANC1).

- More variety than just news articles
- Includes business letters, journals, technical documents, etc.
- Each source text has up to 5 crowd-sourced rewrites,
 which are constrained to a compression ratio
- Human reviewed
- Multi sentence compression, primarily two-sentence

Example data:

"Except for this small vocal minority, we have just not gotten a lot of groundswell against this from members," says APA president Philip G. Zimbardo of Stanford University.'

Becomes

"APA president of Stanford has stated that except for a vocal minority they have not gotten a lot of pushback from members."

Data Preprocessing

01 Pandas Dataframe

Convert data to pandas dataframe for ease of use

02 | Filter out unneeded data

Did not need extra compressions nor human review scores, also rows with missing data

O3 | Compressed Sentence Selection

Select the shortest compression for best results in training

04 | Word Tokenization

Split text strings to tokens for training

05 | Special Token Insertion

Adds tokens like <s>, </s> and <pad> to manage sentence boundaries

Grammar Based Compression

PCFG Implementation

- Shifted from rule-based to probability-based compression using PCFGs.
- Built PCFG from NLTK Treebank parse trees, replacing words with POS tags.
- Handled special cases like punctuation for grammar parser compatibility.

$S \rightarrow NP VP$	1.0
$PP \rightarrow P NP$	1.0
$VP \rightarrow V NP$	0.7
$VP \rightarrow VP PP$	0.3
$P \rightarrow with$	1.0
V → saw	1.0

Grammar Based Compression

Grammar Checking Implementation

- language_tool_python library
- BERT-based grammar checker

Method

- Split sentence into ordered subsets
- Tag each word with POS
- Iterate through each subset, rank best new sentences


```
["Bob",
"is",
"is fast",
"Bob is fast",
"Bob is fast"]
```

Gated Recurrent Unit (GRU)

- A fancy RNN
- Designed to handle sequential data
- A better alternative to LSTMs: simpler architecture so less gates & less expensive
- Update gate: controls how much info passed to the future
- Reset gate: controls what to forget
- As comparison, LSTM has 3 gates (input, forget, output)

What is Gated recurrent units?

@Alonlinecourse

GRU Based Encoder-Decoder

- Sequence 2 sequence architecture
- Input -> Embedding layer -> Encoder GRU ->
 Decoder GRU -> Fully connected layer -> Output
- Slow training time 20min-1hour for 10 epochs
- Issues with Overfitting
- Limited vocabulary
- Struggles with Long Range Dependencies
- There's already better suited models (like a transformer) for this problem

Epoch 6

Train Loss: 6.9103, Eval Loss: 7.8292,

Time: 1018.08 seconds

Transformer Based Compression

- Model: BART (facebook/bart-base) Transformer-based bidirectional encoder-decoder
- Combines bidirectional attention mechanism of BERT with decoder structure of GPT
- Less extreme deletion allows us to have multiple levels of compression
- Relatively small trained model sizes of around 600MB
- Relatively low computational costs during inference

Example input:

"In recent years, the importance of mental health awareness has grown significantly, as people around the world begin to understand that mental well-being is just as crucial as physical health."

Level 2 Compression:

"In recent years, people realize that mental well-being is just as crucial as physical health."

Level 4 Compression:

"People realize that mental well-being is important."

DEMO

Results and Analysis

- Consistently able to shorten sentences while maintaining relatively high similarity scores
- Evaluation Loss was able to decrease to around 0.19
- The Transformer showed the greatest reliability, and interpretability of output

Conclusion

Best Implementation

- Microsoft Dataset
- BART Model
- 0.19 Evaluation Loss

Future Work and Improvements

- Reinforcement Learning
- Paragraph and document summarization