东南大学学生会 Students' Union of Southeast University

03-04-2高数AB期末试卷

一、单项选择题(每小题4分,共16分)

1. 设函数 y = y(x) 由方程 $\int_{1}^{x+y} e^{-t^2} dt = x$ 确定,则 $\frac{dy}{dx}\Big|_{x=0} =$ ()

(A)e+1;

- (B)1-e; (C)e-1; (D)2e.
- 2. 曲线 $y = 2x + \frac{\ln x}{x-1} + 4$ 的渐近线的条数为()

(*A*) 1;

- (B) 2; (C) 3;
- (D) 0.
- 3. 设函数 f(x) 在定义域内可导, y = f(x) 的图形如右图所示,

则导函数 y = f'(x) 的图形为 (

(B)

(C)

4. 微分方程 $y'' + 4y = 3\cos 2x$ 的特解形式为 (

 $(A) y^* = A\cos 2x;$

(B) $y^* = Ax \cos 2x$;

(C) $y^* = Ax \cos 2x + Bx \sin 2x$;

- (D) $y^* = A \sin 2x$.
- 二、填空题 (每小题 3 分, 共 18 分)

1. $\lim_{x\to 0} (e^x - x)^{\frac{1}{x^2}} =$

- 2. 若 $y = \arctan \frac{1}{r} + e^{f^2(\cos x)}$, 其中 f 可导,则 $\frac{dy}{dr} =$ ______
- 3. 设 $f(x) = \begin{cases} x^{\alpha} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, 若导函数 f'(x) 在 x = 0处连续,则 α 的取值范围是

东南大学学生会 Students' Union of Southeast University

4. 若
$$f(x) = \int_0^{x^2} \frac{t-4}{t^3+2} dt$$
,则 $f(x)$ 的单增区间为 ______,单减区间为

- 5. 曲线 $y = xe^{-x}$ 的拐点是 _____

三、计算下列各题(每小题6分,共36分)

1. 计算积分
$$\int \frac{\arctan x}{(1+x^2)^{\frac{3}{2}}} dx$$

2. 计算积分
$$\int \frac{x \sin x}{\cos^5 x} dx$$

3. 计算积分
$$\int_0^{\sqrt{2}} x^3 e^{-x^2} dx$$

4. 计算积分
$$\int_0^\pi \frac{dx}{2 + \cos x}$$

5. 设
$$f(x)$$
 连续,在 $x = 0$ 处可导,且 $f(0) = 0$, $f'(0) = 4$,求 $\lim_{x \to 0} \frac{\int_0^x (t \int_t^0 f(u) du) dt}{x^3 \sin x}$

6. 求微分方程 $2xydy - (x^2 + 2y^2)dx = 0$ 的通解

四.
$$(8 分)$$
 求微分方程 $y'' - 3y' + 2y = -2xe^x$ 满足条件 $y\big|_{x=0} = 0$, $y'\big|_{x=0} = 0$ 的特解

五. $(8 \, \mathcal{G})$ 设平面图形 \mathbb{D} 由 $x^2 + y^2 \le 2x$ 与 $y \ge x$ 所确定,试求 \mathbb{D} 绕直线 x = 2 旋转一周所生成的旋转体的体积。

六. $(7 \, \mathcal{G})$ 设质量均匀分布的平面薄板由曲线 $C: \begin{cases} x = 5t^2 + t \\ y = t^2 - 2t \end{cases}$ 与 x 轴所围成,试求 其质量 m

七. $(7 \, \text{分})$ 设函数 f(x) 在 [-a,a] 上有连续的二阶导数,且 f(0)=0,证明:至少

存在一点
$$\xi \in [-a,a]$$
, 使得 $\int_{-a}^{a} f(x)dx = \frac{a^3}{3}f''(\xi)$