Probabilistic Models

John N. Tsitsiklis

August 24, 2017

Sets

Definition 1 (De Morgan's laws).

$$\left(\bigcup_{n} S_{n}\right)^{c} = \bigcap_{n} S_{n}^{c} \tag{1}$$

$$\left(\bigcap_{n} S_{n}\right)^{c} = \bigcup_{n} S_{n}^{c} \tag{2}$$

Theorem 1.

$$A \cup (\cap_{n=1}^{\infty} B_n) = \cap_{n=1}^{\infty} (A \cup B_n)$$
(3)

$$A \cap \left(\cup_{n=1}^{\infty} B_n \right) = \cup_{n=1}^{\infty} \left(A \cap B_n \right) \tag{4}$$

Probability Laws

Definition 2 (Probability Axioms).

- 1. **Nonnegativity** $P(A) \ge 0$, for every event A.
- 2. **Additivity** If *A* and *B* are two disjoint events then

$$\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B)$$

3. **Normalization** $P(\Omega) = 1$, where Ω is the *sample space*.

Definition 3 (Discrete Probability Law). If the sample space consists of a finite number of possible outcomes, then the probability law is specified by the probabilities of the events that consists of a single element. In particular, the probability of any event $\{s_1, s_2, \dots s_n\}$ is the sum of the probabilities of its elements:

$$\mathbf{P}\left(\left\{s_{1}, s_{2}, \dots s_{n}\right\}\right) = \mathbf{P}\left(s_{1}\right) + \mathbf{P}\left(s_{2}\right) + \dots + \mathbf{P}\left(s_{n}\right)$$

Definition 4 (Discrete Uniform Probability Law). If the sample space consists of n possible outcomes which are equally likely, then the probability of any event A is given by

$$\mathbf{P}(A) = \frac{\text{number of elements of } A}{n}$$

Properties of Probability Laws

Consider a probability law and let *A*, *B* and *C* be events:

- (a) If $A \subset B$, then $\mathbf{P}(A) \leq \mathbf{P}(B)$
- (b) $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- (c) $\mathbf{P}(A \cup B) \leq \mathbf{P}(A) + \mathbf{P}(B)$
- (d) $\mathbf{P}(A \cup B \cup C) = \mathbf{P}(A) + \mathbf{P}(A^c \cap B) + \mathbf{P}(A^c \cap B^c \cap C)$

Definition 5. A *partition* of the sample space Ω is a collection of disjoint events $S_1, S_2, \dots S_n$ such that $\Omega = \bigcup_{i=1}^n S_i$. Then

$$\mathbf{P}(A) = \sum_{i=1}^{n} \mathbf{P}(A \cap S_i)$$

Definition 6 (Bonferroni's inequality). We have

(a) for any two events A and B

$$\mathbf{P}(A \cap B) \ge \mathbf{P}(A) + \mathbf{P}(B) - 1$$

(b) for n events A_1, A_2, \ldots, A_n

$$\mathbf{P}(A_1 \cap A_2 \cap \cdots \cap A_n) \ge \mathbf{P}(A_1) + \mathbf{P}(A_2) + \cdots + \mathbf{P}(A_n) - (n-1)$$

Definition 7 (The inclusion-exclusion formula). We have

(a) for any two events A and B

$$\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B) - \mathbf{P}(A \cup B)$$

(b) for *n* events $A_1, A_2, ..., A_n$. Let $S_1 = \{i | 1 \le i \le n\}, S_2 =$ $\{(i_1,i_2)|1 \leq i_1 < i_2 \leq n\}$, and more generally, let S_m be the set of all *m*-tuples $(i_1, i_2, ..., i_m)$ of indices that satisfy $1 \le i_1 < i_2 < i_1 < i_2 < i$ $\cdots < i_m \le n$. Then,

$$\mathbf{P}\left(\bigcup_{k=1}^{n} A_{k}\right) = \sum_{i \in S_{1}} \mathbf{P}\left(A_{i}\right)$$

$$- \sum_{(i_{1}, i_{2}) \in S_{2}} \mathbf{P}\left(A_{i_{1}} \cap A_{i_{2}}\right)$$

$$+ \sum_{(i_{1}, i_{2}, i_{3}) \in S_{3}} \mathbf{P}\left(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}\right) - \cdots$$

$$+ (-1)^{n-1} \mathbf{P}\left(\bigcap_{k=1}^{n} A_{k}\right)$$

Continuity property of probabilities

Theorem 2. Let A_1, A_2, \ldots be an infinite sequence of events, which is *monotonically increasing,* meaning $A_n \subset A_{n+1}$ for every n. Then

$$\mathbf{P}\left(\lim_{n\to\infty}\cup_{k=1}^{n}A_{k}\right)=\lim_{n\to\infty}\mathbf{P}\left(A_{n}\right)$$

Proof. Let $B_1 = A_1$ and $B_n = A_n \cap A_{n-1}^c$ for $n \geq 2$. The events B_n are disjoint, and we have $An = \bigcup_{k=1}^n B_k$. Let $A = \bigcup_{n=1}^\infty A_n$. Then $A = \bigcup_{k=1}^{\infty} B_k$. Now by the *additivity axiom* we have

$$\mathbf{P}(A) = \sum_{k=1}^{\infty} \mathbf{P}(B_k)$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \mathbf{P}(B_k)$$

$$= \lim_{n \to \infty} \mathbf{P}(\bigcup_{k=1}^{n} B_k)$$

$$= \lim_{n \to \infty} \mathbf{P}(A_n)$$

Theorem 3. Let A_1, A_2, \ldots be an infinite sequence of events, which is *monotonically decreasing,* meaning $A_{n+1} \subset A_n$ for every n. Then

$$\mathbf{P}\left(\lim_{n\to\infty}\cap_{k=1}^{n}A_{k}\right)=\lim_{n\to\infty}\mathbf{P}\left(A_{n}\right)$$