Syntaks og semantik

Lektion 6

26 februar 2008

Fra sidst

- Kontekstfrie grammatikker
- 2 Lukningsegenskaber
 - Regulære grammatikker

Definition 2.2: En kontekstfri grammatik (CFG) er en 4-tupel $G = (V, \Sigma, R, S)$, hvor delene er

- V: en endelig mængde af variable
- ② Σ : en endelig mængde af terminaler, med $V \cap \Sigma = \emptyset$
- **3** $R: V \to \mathcal{P}((V \cup \Sigma)^*)$: produktioner / regler
- $S \in V$: startvariablen
- produktioner skrives $A \rightarrow w$ i stedet for $w \in R(A)$
 - Hvis $u, v, w \in (V \cup \Sigma)^*$ er ord og $A \to w$ er en produktion, siges uAv at frembringe uwv: $uAv \Rightarrow uwv$.
 - Hvis $u, v \in (V \cup \Sigma)^*$ er ord, siges u at derivere $v: u \stackrel{*}{\Rightarrow} v$, hvis u = v (!) eller der findes en følge u_1, u_2, \dots, u_k af ord således at $u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \dots \Rightarrow u_k \Rightarrow v$.
 - Sproget som G genererer er $\llbracket G \rrbracket = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w \}.$
- dvs. et ord $w \in \Sigma^*$ genereres af G hvis og kun hvis der findes en derivation $S \Rightarrow w_1 \Rightarrow w_2 \Rightarrow \ldots \Rightarrow w_k \Rightarrow w$, hvor alle $w_i \in (V \cup \Sigma)^*$.

Eksempel: Opgave 2.6 d (ca.)

$$S \rightarrow A \# T \# A$$
 $T \rightarrow aTa \mid bTb \mid \# A \#$
 $A \rightarrow aA \mid bA \mid \varepsilon \mid A \# A$

Genererer sproget

$$\{x_1\#x_2\#\dots\#x_k\mid k\geq 5, \text{alle }x_i\in\{a,b\}^*, \\ \text{og }x_i=x_j^R \text{ for to indices }i\neq j\}$$

Definition: Et sprog siges at være kontekstfrit hvis der findes en CFG der genererer det.

Sætning 2.20: Et sprog er kontekstfrit hvis og kun hvis der findes en push-down-automat der genkender det.

(PDAs kommer lige om lidt.)

Sætning: Klassen af kontekstfrie sprog er lukket under \cup , \circ og *.

Bevis: (Opgave 2.8) Lad A_1 og A_2 være kontekstfrie sprog over et fælles alfabet Σ .

- ∪: Lad $G_1 = (V_1, \Sigma, R_1, S_1)$, $G_2 = (V_2, \Sigma, R_2, S_2)$ være CFGs med $\llbracket G_1 \rrbracket = A_1$ og $\llbracket G_2 \rrbracket = A_2$. Konstruér en ny CFG $G = (V, \Sigma, R, S)$ ved $V = V_1 \cup V_2 \cup \{S\}$ og $R = R_1 \cup R_2 \cup \{S \to S_1 \mid S_2\}$. Da er $\llbracket G \rrbracket = A_1 \cup A_2$.
- o : Lad $G_1 = (V_1, \Sigma, R_1, S_1)$, $G_2 = (V_2, \Sigma, R_2, S_2)$ være CFGs med $[\![G_1]\!] = A_1$ og $[\![G_2]\!] = A_2$. Konstruér en ny CFG $G = (V, \Sigma, R, S)$ ved $V = V_1 \cup V_2 \cup \{S\}$ og $R = R_1 \cup R_2 \cup \{S \to S_1 S_2\}$. Da er $[\![M]\!] = A_1 \circ A_2$.
- *: Lad $G_1 = (V_1, \Sigma, R_1, S_1)$ være en CFG med $\llbracket G_1 \rrbracket = A_1$. Konstruér en ny CFG $G = (V, \Sigma, R, S)$ ved $V = V_1 \cup \{S\}$ og $R = R_1 \cup \{S \to \varepsilon \mid SS \mid S_1\}$. Da er $\llbracket G \rrbracket = A_1^*$.

- Definition: En kontekstfri grammatik siges at være
 - højre-regulær hvis alle produktioner er på formen

$$A \rightarrow a$$
 eller $A \rightarrow aB$ eller $A \rightarrow \varepsilon$

venstre-regulær hvis alle produktioner er på formen

$$A \rightarrow a$$
 eller $A \rightarrow Ba$ eller $A \rightarrow \varepsilon$

- Sætning: Et sprog er regulært
 - ⇔ det generereres af en højre-regulær grammatik
 - ⇔ det generereres af en venstre-regulær grammatik.
- Men højre og venstre må ikke blandes: Grammatikken

$$S \rightarrow aA \mid \varepsilon \qquad A \rightarrow Sb$$

genererer
$$\{a^nb^n \mid n \in \mathbb{N}_0\}$$
!

Kontekstfrie grammatikker og push-down-automater

- Tvetydighed
- **5** Chomsky-normalformen
- Push-down-automater
- Ethvert kontekstfrit sprog genkendes af en PDA

Eksempel: Grammatikken G₅, ca.:

$$\mathsf{Expr} \to \mathsf{Expr} + \mathsf{Expr} \mid \mathsf{Expr} \times \mathsf{Expr} \mid (\mathsf{Expr}) \mid \mathsf{Heltal}$$

To forskellige parsetræer for $1 + 2 \times 3$:

Definition: En derivation $S \Rightarrow w_1 \Rightarrow w_2 \Rightarrow ... \Rightarrow w_k$ i en grammatik kaldes en venstre-derivation hvis det i ethvert skridt er den variable *længst til venstre* der erstattes.

Eksempel:

- $S \Rightarrow AB \Rightarrow aB \Rightarrow ab$ er en venstre-derivation,
- $S \Rightarrow AB \Rightarrow Ab \Rightarrow ab$ er ikke.

Bemærk: Til ethvert parsetræ svarer en entydig venstre-derivation.

Definition 2.7:

- Et ord siges at være genereret tvetydigt hvis det har to forskellige venstre-derivationer.
- En grammatik er tvetydig hvis den genererer et ord på en tvetydig måde.
- Et kontekstfrit sprog har en iboende tvetydighed hvis enhver CFG der genererer det er tvetydig.

Sætning: Der findes kontekstfrie sprog som har en iboende tvetvdighed. (Opgave 2.29)

Sætning: Der findes ikke nogen algoritme som, givet en kontekstfri grammatik, kan afgøre om denne er tvetydig eller ej. (Opgave 5.21)

⇒ i anvendelser: vigtigt at designe ikke-tvetydige CFGs

Mål: specielle former for kontekstfrie grammatikker som er nemme at håndtere

Definition 2.8: En CFG med startvariabel S er i Chomsky-normalform hvis hver produktion er af formen $A \to BC$ eller $A \to a$, hvor a er en terminal, A, B og C er variable og B, $C \neq S$. Desuden tillades produktionen $S \to \varepsilon$.

Sætning 2.9: Ethvert kontekstfrit sprog genereres af en CFG i Chomsky-normalform.

1 S må ikke forekomme på højresider. Introducér en ny startvariabel S_0 og en produktion $S_0 \rightarrow S$.

- S må ikke forekomme på højresider.
- **2** Vi vil ikke have ε -produktioner $A \to \varepsilon$, medmindre A = S.
 - Tag en produktion $A \rightarrow \varepsilon$ og fjern den.
 - For alle produktioner $R \rightarrow uAv$: introducér en ny produktion $R \rightarrow uv$.
 - Men hvis der er en produktion R → A, introduceres R → ε kun hvis den ikke allerede før er blevet fjernet.
 - Gentag indtil alle ε -produktioner er væk (undtaget måske $S \to \varepsilon$).

- S må ikke forekomme på højresider.
- **2** Vi vil ikke have ε -produktioner $A \to \varepsilon$, medmindre A = S.
- **3** Vi vil ikke have *unit rules*: produktioner af formen $A \rightarrow B$.
 - Tag en produktion $A \rightarrow B$ og fjern den.
 - For alle produktioner $B \rightarrow u$: introducér en ny produktion $A \rightarrow u$.
 - Men hvis der er en produktion B → C, introduceres A → C kun hvis den ikke allerede før er blevet fjernet.
 - Gentag indtil alle unit rules er væk.

- S må ikke forekomme på højresider.
- **2** Vi vil ikke have ε -produktioner $A \to \varepsilon$, medmindre A = S.
- **③** Vi vil ikke have *unit rules*: produktioner af formen $A \rightarrow B$.
- Vi vil ikke have produktioner af formen $A \rightarrow u_1 u_2 \dots u_k$ for $k \geq 3$.
 - Lad $A \rightarrow u_1 u_2 \dots u_k$ være en sådan produktion. (Her er u_i erne variable eller terminaler.)
 - Erstat den med produktioner $A \rightarrow u_1 A_1$, $A_1 \rightarrow u_2 A_2$,..., $A_{k-2} \rightarrow u_{k-1} u_k$, hvor A_i erne er nye variable.
 - Gentag.

- S må ikke forekomme på højresider.
- **2** Vi vil ikke have ε -produktioner $A \to \varepsilon$, medmindre A = S.
- **3** Vi vil ikke have *unit rules*: produktioner af formen $A \rightarrow B$.
- **③** Vi vil ikke have produktioner af formen $A \rightarrow u_1 u_2 \dots u_k$ for $k \geq 3$.
- **1** Vi vil ikke have produktioner af formen $A \rightarrow bC$, $A \rightarrow Bc$ eller $A \rightarrow bc$.
 - Erstat A → bC med A → BC og B → b, og gør lignende for de andre to. (Igen introduceres nye variable.)
- Færdig!

CFG ⇒ PDA

- Pushdown-automat: endelig automat plus stack
- Stack:

- kan pushe symboler på stacken og læse og poppe det øverste stacksymbol
- Eksempel:

• genkender sproget $\{0^n1^n \mid n \in \mathbb{N}_0\}$

Definition 2.13: En pushdown-automat (PDA) er en 6-tupel $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$, hvor delene er

- Q: en endelig mængde af tilstande
- Σ : input-alfabetet
- Γ : stack-alfabetet
- $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$: transitionsfunktionen
- $F \subseteq Q$: mængden af accepttilstande

M siges at acceptere et ord $w \in \Sigma^*$ hvis der findes $m \in \mathbb{N}$ og $w_1, w_2, \ldots, w_m \in \Sigma_{\varepsilon}, r_0, r_1, \ldots, r_m \in Q$ og $s_0, s_1, \ldots, s_m \in \Gamma^*$ således at $w = w_1 w_2 \ldots w_m$ og

- opfylder $s_i = 0, 1, ..., m-1$ findes $a, b \in \Gamma_{\varepsilon}$ og $t \in \Gamma^*$ som opfylder $s_i = at$, $s_{i+1} = bt$ og $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$, og
- \circ $r_m \in F$.

Eksempel 2.14:

At finde ud af om stacken er tom: Introducér et specielt end-of-stack-symbol \$

Eksempel 2.14:

$$Q = \{q_1, q_2, q_3, q_4\}$$
 $\Sigma = \{0, 1\}$ $\Gamma = \{0, \$\}$ $F = \{q_1, q_4\}$

δ :	Input:	0			1			arepsilon		
	Stack:	0	\$	ε	0	\$	ε	0	\$	ε
	<i>q</i> ₁	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	$\{(q_2,\$)\}$
	q_2	Ø	Ø	$\{(q_2,0)\}$	$\{(q_3, \varepsilon)\}$	Ø	\emptyset	\emptyset	Ø	Ø
	q_{3}	Ø	Ø	Ø	$\{(q_3, \varepsilon)\}$	Ø	\emptyset	\emptyset	$\{(q_4, \varepsilon)\}$	Ø
	q_4	Ø	Ø	Ø	Ø	Ø	Ø	\emptyset	\emptyset	\emptyset

Opsummering: PDA:

- endelig automat med stack
- stacken kan gemme på vilkårligt mange symboler, men kun det øverste kan læses (og poppes)
- (first-in, last-out)
- nondeterministiske
- der findes deterministiske PDAs, ja. Men
 - vi skal ikke se på dem her, og
 - de genkender færre sprog end de nondeterministiske PDAs!

Eksempel 2.16: En PDA der genkender sproget

$$\{a^i b^j c^k \mid i, j, k \in \mathbb{N}_0 \text{ og } i = j \text{ eller } i = k\}$$

 det kan vises at man skal bruge en nondeterministisk PDA for at genkende det sprog Lemma 2.21: Lad Σ være et alfabet og $A \subseteq \Sigma^*$ et kontekstfrit sprog. Da findes en PDA P med $\llbracket P \rrbracket = A$.

Bevis: Lad $G = (V, \Sigma, R, S)$ være en CFG med [G] = A. Idéen er at PDAen, givet en inputstreng s, nondeterministisk forsøger at finde en derivation for s i G:

- Push S på stacken
- Physical Hvis topsymbolet på stacken er en variabel A: Pop A og push højresiden w af en produktion $A \rightarrow w$ i R. (Dø hvis der ikke er nogen produktion $A \rightarrow w$ i R.)
- Wrist topsymbolet på stacken er en terminal a: Sammenlign med næste inputsymbol. Hvis de er ens, pop a. Hvis de ikke er ens, dø.
- Gentag step 2 og 3 indtil stacken er tom.

Lemma 2.21: Lad Σ være et alfabet og $A \subseteq \Sigma^*$ et kontekstfrit sprog. Da findes en PDA $P \mod \llbracket P \rrbracket = A$.

Bevis: Lad $G = (V, \Sigma, R, S)$ være en CFG med $\llbracket G \rrbracket = A$. Vi konstruerer først en "generaliseret PDA" $P = (Q, \Sigma, \Gamma, \delta, q_s, F)$, der kan pushe strenge i stedet for bare symboler. Lad $Q = \{q_s, q_\ell, q_f\}, F = \{q_a\} \text{ og } \Gamma = V \cup \Sigma \cup \{\$\}. \text{ Lad}$

$$\delta(q_{s},\varepsilon,\varepsilon)=\{(q_{\ell},S\$)\}$$

$$\delta(q_{\ell},\varepsilon,A)=\{(q_{\ell},w)\mid w\in R(A)\} \text{ for alle } A\in V$$

$$\delta(q_{\ell},a,a)=\{(q_{\ell},\varepsilon)\} \text{ for alle } a\in \Sigma$$

$$\delta(q_{\ell},\varepsilon,\$)=\{(q_{a},\varepsilon)\}$$

$$\delta(q,a,b)=\emptyset \text{ for alle andre}$$

Lav til sidst P om til en "almindelig" PDA ved at erstatte enhver transition $q \xrightarrow{a,b \to s_1 s_2 \dots s_n} r$ med (nye tilstande og) en følge $q \xrightarrow{a,b \to s_n} q_1 \xrightarrow{\varepsilon,\varepsilon \to s_{n-1}} q_2 \longrightarrow \ldots \longrightarrow q_{n-1} \xrightarrow{\varepsilon,\varepsilon \to s_1} r.$