

5G – The Business Case

November 2016

Joe Madden, Principal Analyst

About Mobile Experts

- Market Research focused on wireless
 - 6 Analysts + sales and office staff
 - Based in Silicon Valley, Ottawa, NY, London, Denver
 - Analysts are 20-year experts in their respective topics
 - Deep Technology Analysis coupled to Business Analysis
- Strategic Market Analysis
 - Macro Base Stations
 - Small Cells/DAS/Wi-Fi
 - 5G
 - RF for Mobile Devices and IoT

LTE and 5G

LTE: Foundation Layer

Anchor users on LTE control channels

Pre-5G Fixed Broadband:

Carrier Aggregation on top of LTE 5G is NOT a stand-alone mobile network

5G Mobile Broadband:

Carrier Aggregation on top of LTE Bands below 6 GHz will be important Migration will happen over time

Market Potential (\$/km²)

Pre-5G ROI

3 Key Factors

- Spectrum Cost
- Link Distance
- Density of Customers

Spectrum Cost

Coverage vs. Capacity

Density Impacts the ROI

ROI for 28 GHz pre-5G Deployment

Pre-5G Fixed Broadband ROI

3 Key Factors

Spectrum Cost:

LMDS licenses are a sweet deal

Link Distance:

200m+ is key

Density of Customers:Urban areas will be targeted

5G Evolution

- Centralized RAN
- Establish fiber to sites
- Virtualize the Core

- No Mobility Features
- Highly Targeted
- Add Mobility
- Wider Coverage
- Sub 6 GHz bands necessary

What could go wrong?

Power

Item	Value
Output power from Base Station (dBm)	48
Gain for base station antenna (dBi)	30
Path loss at 200m, outdoor case only, (dB)	-140
Margin for rain and near-field effects (dB)	-6
Gain for handset antenna (dBi)	5
Noise Figure of terminal Rx (dB)	-12
Required SINR for high throughput (dB)	-20
Effective Rx power (dBm)	-95
Effective noise power at 28 GHz and 1 GHz BW	
(dBm)	-95

High power is necessary to achieve high SNR

Heat Dissipation

A 60 W RRH will produce 500W+ of heat

Conclusions

- 5G Spectrum cost must be lower than 4G
- Radios will transmit high power and will run hot
- CPEs will be outdoors/in windows
- mm-wave 5G will be highly targeted
- Sub-6 GHz 5G will work better for mobile service

