PUREMATHEMATICS

PAPER 1

JUNE 2023

3 HOURS

UGANDA ADVANCED CERTIFICATE OF EDUCATION

RESOURCEFUL EXAMINATION 2023

PURE MATHEMATICS

3 hours

INSTRUCTIONS TO CANDIDATES:

- Attempt **ALL** the **EIGHT** questions in section **A** and any **FIVE** from section **B**.
- All working must be clearly shown.
- Mathematical tables with list of formulae provided.
- Silent, non-programmable calculators should be used.
- Clearly indicate the questions you have attempted in a grid on your answer scripts.

SECTION A

1. Solve the inequality: $\frac{6}{1-x} \ge x + 4$

(5 marks)

2. Evaluate: $\int_{1}^{2} \frac{1}{x^2 + 6x + 5} dx$

(5 marks)

- 3. Solve the equation; $tan4\beta + tan2\beta = 0$ for $0^0 \le \beta \le 360^0$ (5 marks)
- **4.** Using small changes Approximation $sec^244.6^0$ (5 *marks*)
- 5. Show that the equation $4y^2 + 4y + 16x 15 = 0$ represents a parabola. Hence determine the latus rectum, directrix and focus. (5 marks)
- **6.** M is a point which divides line AB externally in the ratio of 4:3. A is (1,4,1) and B is (-1,-2,3). Find the Cartesian equation of the line through M and N(2,1,0).

(5 marks)

7. Evaluate $\int_0^{\pi/2} x^2 \cos 2x dx$

(5 marks)

8. How many ways can the word *SUCCEEDED* be arranged when the vowels are not together. (5 *marks*)

SECTION B

9. (a) Show that $arg\left(\frac{Z+1}{Z-1}\right) = \frac{\pi}{4}$ represents a circle. Hence state the coordinates of the Centre and radius.

(6 *marks*)

(b) Given the equation |Z + 2 + 3i| = 3. Find the minimum and maximum of |Z - 1 - i|

(6 marks)

10. (a) Show that the parametric equations $x = 9\cos\theta$ and $y = 16\sin\theta$ represents an ellipse. Hence determine foci and diretrices.

(5 marks)

(b) If the line y = mx + c touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Express c in terms of a, b and m. Hence show that $\left(\frac{-a^2m}{c}, \frac{b^2}{c}\right)$ is point of contact.

(7 marks)

- 11. (a) Solve the equation 5tanx + secx + 5 = 0 for $0^0 \le x \le 360^0$ (6 marks)
 - (b) A and B are acute angles such that $cosA = \frac{2}{3}$ and cosecB = 5. Find the value of tan(A B). Leave your answer in surd form.

 (6 marks)
- 12. The plane L_1 has equation 3x 4y + 2z = 5 and plane L_2 has equation $r = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$.
 - (a) Find the Cartesian equation of plane L_2 (4 marks)
 - (b) Obtain the cute and between the planes. (4 marks)
 - (c) Find the vector equation of the line of intersection of the two planes. (4 marks)
- 13. Express $\frac{6x+4}{(x^2-4)(x+2)}$ into partial fractions. Hence evaluate

(i)
$$\int_0^1 \frac{6x+4}{(x^2-4)(x+2)} dx$$

(ii)
$$\frac{d}{dx} \left(\frac{6x+4}{(x^2-4)(x+2)} \right)$$
 (12 marks)

- 14. (a) Find the values of m and n if $f(x) = x^3 + 4mx^2 + nx + 3m$ is divisible by $(x-1)^2$ (4 marks)
 - (b) Timothy deposits shs.100, 000 per month in a bank that offers a compound interest of 5% per month. Find the interest he will earn after saving for one year. (4 marks)
 - (c) Find the square root of $21 6\sqrt{6}$. Leave your answer in surd form. (4 marks)
- 15. Given the curve $y = \frac{8}{(x+3)(x-1)}$
 - (a) Find the range of values of y for real x. hence determines the turning point and the nature.
 - (b) State all the asymptotes and intercepts.
 - (c) Sketch the curve.

(12 marks)

- 16. (a) Solve the differential equation $\frac{dy}{dx} + ytanx = 1$, given that y = 2 and x = 0 (6 marks)
 - (b) Find the area bounded by the curve $y = 11 x^2$, lines y = 2 and y = 7 (6 marks)

END