Minicourse on information, complexity and organisation in multidimensional symbolic dynamics

On the limit between the computable and the uncomputable

Silvere Gangloff

April 15, 2021

sgangloff@agh.edu.pl; silvere.gangloff@gmx.com

Multidimensional SFT: a computational 'transition':

Reminder (third lecture):

Energy states:

Energy states:

Energy states:

Energy states:

Cubitt, Perez-Garcia, Wolf (2015): The spectral gap problem is undecidable.

Energy states:

Cubitt, Perez-Garcia, Wolf (2015): The spectral gap problem is undecidable.

Kreinovich(2017): Why Some Physicists Are Excited About the Undecidability of the Spectral Gap Problem and Why Should We

Square ice model [Pauling(1935)]:

Square ice model [Pauling(1935)]:

Lieb(1967): The entropy of square ice is $\frac{3}{2} \log(4/3)$ (incomplete proof).

Square ice model [Pauling(1935)]:

Lieb(1967): The entropy of square ice is $\frac{3}{2} \log(4/3)$ (incomplete proof).

!! Bidimensional SFT have uncomputable entropy in general!

Square ice model [Pauling(1935)]:

Lieb(1967): The entropy of square ice is $\frac{3}{2} \log(4/3)$ (incomplete proof).

!! Bidimensional SFT have uncomputable entropy in general!

Square ice model [Pauling(1935)]:

Lieb(1967): The entropy of square ice is $\frac{3}{2} \log(4/3)$ (incomplete proof).

!! Bidimensional SFT have uncomputable entropy in general!

Questions:

1. When does uncomputability phenomena appear in the classes of models considered ?

Questions:

- 1. When does uncomputability phenomena appear in the classes of models considered ?
- 2. How does 'organisation' emerge from simple interactions between elements of matter?

Questions:

- 1. When does uncomputability phenomena appear in the classes of models considered?
- 2. How does 'organisation' emerge from simple interactions between elements of matter?
- 3. Are the models for which uncomputability occur physically significant? Can we formulate a restriction which ensures computability?

Computability of (topological) entropy:

Milnor (2002): is the *entropy* of a dynamical system effectively computable ?

Computability of (topological) entropy:

Milnor (2002): is the *entropy* of a dynamical system effectively computable ?

Reminders:

Alphabet \mathcal{A} finite. Patterns:(d=1) elements of $\mathcal{A}^{\mathbb{U}}$, $\mathbb{U} \subset \mathbb{Z}$.

Subshifts(d=1): set of patterns \mathcal{F} .

$$X_{\mathcal{F}} = \{ x \in \mathcal{A}^{\mathbb{Z}} : \forall \mathbb{U} \subset \mathbb{Z}, x_{|\mathbb{U}} \notin \mathcal{F} \}.$$

For every subshift X on alphabet A there exists F s.t. $X = X_F$.

When \mathcal{F} finite : of finite type; when \mathcal{F} recursively enumerable (set of outputs of a computing machine): effective.

Reminders:

Language: $\mathcal{L}(X)$: set of patterns which appear in some $x \in X$.

Entropy(d=1): $N_n(X)$: number of words $w \in \mathcal{L}(X)$, |w| = n.

$$h(X) = \lim_{n \to +\infty} \frac{\log_2(N_n(X))}{n} = \inf_{\substack{T \in \mathbb{N} \\ T \in \mathbb{N}}} \frac{\log_2(N_n(X))}{n}$$

 Π_1 -computable: $x \in \mathbb{R}$: exists an algorithm $n \mapsto r_n$ with $r_n \downarrow x$.

Lemma: when X is effective, h(X) is Π_1 -computable.

Reminders:

f-block gluing:

When d=1: square patterns \rightarrow words.

Decidable:

Algorithm

$$\longrightarrow \text{Algorithm} \longrightarrow 0 \ (\notin \mathcal{L}(X))$$

Assume
$$\Sigma(f) = \sum_{Def} \frac{f(k)}{k^2}$$
 computable.

Decidable:

$$\longrightarrow \text{Algorithm} \longrightarrow 0 \ (\notin \mathcal{L}(X))$$

Assume
$$\Sigma(f) = \sum_{Def} \frac{f(k)}{k^2}$$
 computable.

Decidable:

$$\longrightarrow \text{Algorithm} \longrightarrow 0 \ (\notin \mathcal{L}(X))$$

Assume $\Sigma(f) = \sum_{Def} \frac{f(k)}{k^2}$ computable.

$$\frac{\log(k)}{K} \frac{k^{\beta} \log(k)^{-\alpha}}{k}$$

Decidable:

$$\longrightarrow \text{Algorithm} \longrightarrow 0 \ (\notin \mathcal{L}(X))$$

Assume $\Sigma(f) = \sum_{Def} \frac{f(k)}{k^2}$ computable.

$$\Sigma(f) < +\infty$$
 $\log(k)$ $k(\log(k))^{-\alpha}$ k

Decidable:

$$\longrightarrow \text{Algorithm} \longrightarrow 0 \ (\notin \mathcal{L}(X))$$

Assume $\Sigma(f) = \sum_{Def} \frac{f(k)}{k^2}$ computable.

$$\Sigma(f) < +\infty$$
 $\xrightarrow{\log(k)} \frac{\log(k)}{\kappa} \frac{\log(k)^{-\alpha}}{\log(k)^{\frac{1}{2}}} \sum_{k} \Sigma(f) = +\infty$

Decidable:

$$\longrightarrow \text{Algorithm} \longrightarrow 0 \ (\notin \mathcal{L}(X))$$

Assume $\Sigma(f) = \sum_{Def} \frac{f(k)}{k^2}$ computable.

$$\Sigma(f) < +\infty \xrightarrow{\log(k)} \frac{\log(k)}{K} \xrightarrow{k(\log(k))} \frac{\log(k)}{k}$$
 Set of entropies, f -block gluing decidable subshifts
$$\square \Gamma_1$$

Decidable:

$$\longrightarrow \text{Algorithm} \longrightarrow 0 \ (\notin \mathcal{L}(X))$$

Assume $\Sigma(f) = \sum_{Def} \frac{f(k)}{k^2}$ computable.

$$\Sigma(f) < +\infty \qquad \frac{\log(k)}{K} \frac{k(\log(k))^{-\alpha}}{k} \qquad \Sigma(f) = +\infty$$
 Set of entropies, f -block gluing decidable subshifts

Decidable:

$$\longrightarrow \text{Algorithm} \longrightarrow 0 \ (\notin \mathcal{L}(X))$$

Assume $\Sigma(f) = \sum_{Def} \frac{f(k)}{k^2}$ computable.

$$\Sigma(f) < +\infty \xrightarrow{\log(k)} \frac{\log(k)}{\kappa} \frac{\log(k)^{-\alpha}}{\log(k)^{\frac{1}{\alpha}}} \sum_{k} \Sigma(f) = +\infty$$
 Set of entropies, f -block gluing decidable subshifts
$$\Pi_1$$

Below the threshold : $\Sigma(f) < +\infty \Rightarrow h$ computable

f-block gluing: $N_k(X)^2 \leq N_{2k+f(k)}(X) \leq |\mathcal{A}|^{f(k)} \cdot N_{2k}(X)$

Below the threshold : $\Sigma(f) < +\infty \Rightarrow h$ computable

f-block gluing: $N_k(X)^2 \leq N_{2k+f(k)}(X) \leq |\mathcal{A}|^{f(k)} \cdot N_{2k}(X)$

$$\frac{\log(N_k(X))}{k} - |\mathcal{A}| \cdot \sum_{l=1}^{+\infty} \frac{f(2^l)}{2^l} \le h \le \frac{\log(N_k(X))}{k}$$

f-block gluing: $N_k(X)^2 \leq N_{2k+f(k)}(X) \leq |\mathcal{A}|^{f(k)} \cdot N_{2k}(X)$

$$\frac{\log(N_k(X))}{k} - |\mathcal{A}| \cdot \sum_{l=1}^{+\infty} \frac{f(2^l)}{2^l} \le h \le \frac{\log(N_k(X))}{k}$$

Since X is decidable, $k \mapsto N_k(X)$ is computable, hence h is computable.

Known: obstruction \rightarrow let us prove realization

Known: obstruction \rightarrow let us prove realization

Bounded density shifts.

Known: obstruction \rightarrow let us prove realization

Bounded density shifts. Consider $(p_k)_k \in \mathbb{N}^{\mathbb{N}}$ non-decreasing and computable.

Known: obstruction \rightarrow let us prove realization

Known: obstruction \rightarrow let us prove realization

Known: obstruction \rightarrow let us prove realization

$$k = 8$$

$$\boxed{0 | 1 | 0 | 1 | 1 | 0 | 0 | 1}$$

$$> p_8$$

Known: obstruction \rightarrow let us prove realization

$$k = 8$$
 $0 | 1 | 0 | 1 | 1 | 0 | 0 | 1$
 $> p_8 = 3$

Known: obstruction \rightarrow let us prove realization

Bounded density shifts. Consider $(p_k)_k \in \mathbb{N}^{\mathbb{N}}$ non-decreasing and computable. Define \mathcal{F} as set of:

$$\begin{array}{c}
k = 8 \\
\hline
0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
\hline
> p_8 & = 3
\end{array}$$

Since (p_k) is computable, $X_{\mathcal{F}}$ is decidable:

Known: obstruction \rightarrow let us prove realization

Bounded density shifts. Consider $(p_k)_k \in \mathbb{N}^{\mathbb{N}}$ non-decreasing and computable. Define \mathcal{F} as set of:

$$\begin{array}{c}
k = 8 \\
\hline
0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 \\
> p_8 = 3
\end{array}$$

Since (p_k) is computable, $X_{\mathcal{F}}$ is decidable:

[1|1|0|1|0|1]

Known: obstruction \rightarrow let us prove realization

Bounded density shifts. Consider $(p_k)_k \in \mathbb{N}^{\mathbb{N}}$ non-decreasing and computable. Define \mathcal{F} as set of:

$$k = 8$$

$$\boxed{0 | 1 | 0 | 1 | 1 | 0 | 0 | 1}$$

$$> p_8 = 3$$

Since (p_k) is computable, $X_{\mathcal{F}}$ is decidable:

1|1|0|1|0|1 Computed: $p_1, p_2, p_3, p_4, p_5, p_6$.

Known: obstruction \rightarrow let us prove realization

Bounded density shifts. Consider $(p_k)_k \in \mathbb{N}^{\mathbb{N}}$ non-decreasing and computable. Define \mathcal{F} as set of:

$$k = 8$$

$$\boxed{0 | 1 | 0 | 1 | 1 | 0 | 0 | 1}$$

$$> p_8 = 3$$

Since (p_k) is computable, $X_{\mathcal{F}}$ is decidable:

Computed: $p_1, p_2, p_3, p_4, p_5, p_6$.

Known: obstruction \rightarrow let us prove realization

Bounded density shifts. Consider $(p_k)_k \in \mathbb{N}^{\mathbb{N}}$ non-decreasing and computable. Define \mathcal{F} as set of:

$$k = 8$$

$$\boxed{0 | 1 | 0 | 1 | 1 | 0 | 0 | 1}$$

$$> p_8 = 3$$

Since (p_k) is computable, $X_{\mathcal{F}}$ is decidable:

Known: obstruction \rightarrow let us prove realization

Bounded density shifts. Consider $(p_k)_k \in \mathbb{N}^{\mathbb{N}}$ non-decreasing and computable. Define \mathcal{F} as set of:

$$k = 8$$

$$\boxed{0 | 1 | 0 | 1 | 1 | 0 | 0 | 1}$$

$$> p_8 = 3$$

Since (p_k) is computable, $X_{\mathcal{F}}$ is decidable:

Computed:
$$p_1, p_2, p_3, p_4, p_5, p_6$$
. $\notin \mathcal{L}(X_{\mathcal{F}})$

Known: obstruction \rightarrow let us prove realization

Bounded density shifts. Consider $(p_k)_k \in \mathbb{N}^{\mathbb{N}}$ non-decreasing and computable. Define \mathcal{F} as set of:

$$k = 8$$

$$\boxed{0 | 1 | 0 | 1 | 1 | 0 | 0 | 1}$$

$$> p_8 = 3$$

Since (p_k) is computable, $X_{\mathcal{F}}$ is decidable:

01110110110

Known: obstruction \rightarrow let us prove realization

Bounded density shifts. Consider $(p_k)_k \in \mathbb{N}^{\mathbb{N}}$ non-decreasing and computable. Define \mathcal{F} as set of:

$$k = 8$$

$$\boxed{0 | 1 | 0 | 1 | 1 | 0 | 0 | 1}$$

$$> p_8 = 3$$

Since (p_k) is computable, $X_{\mathcal{F}}$ is decidable:

Known: obstruction \rightarrow let us prove realization

Bounded density shifts. Consider $(p_k)_k \in \mathbb{N}^{\mathbb{N}}$ non-decreasing and computable. Define \mathcal{F} as set of:

$$k = 8$$

$$\boxed{0 | 1 | 0 | 1 | 1 | 0 | 0 | 1}$$

$$> p_8 = 3$$

Since (p_k) is computable, $X_{\mathcal{F}}$ is decidable:

0 0 0 1 1 1 0 1 1 0 1 0 0

Known: obstruction \rightarrow let us prove realization

Bounded density shifts. Consider $(p_k)_k \in \mathbb{N}^{\mathbb{N}}$ non-decreasing and computable. Define \mathcal{F} as set of:

$$\begin{array}{c}
k = 8 \\
\hline
0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
\hline
> p_8 & = 3
\end{array}$$

Since (p_k) is computable, $X_{\mathcal{F}}$ is decidable:

0 0 0 0 1 1 1 0 1 0 1 0 0 0

Known: obstruction \rightarrow let us prove realization

Bounded density shifts. Consider $(p_k)_k \in \mathbb{N}^{\mathbb{N}}$ non-decreasing and computable. Define \mathcal{F} as set of:

$$k = 8$$

$$\boxed{0 | 1 | 0 | 1 | 1 | 0 | 0 | 1}$$

$$> p_8 = 3$$

Since (p_k) is computable, $X_{\mathcal{F}}$ is decidable:

0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 0
$$\in \mathcal{L}(X_{\mathcal{F}})$$

Let
$$F(k) = 2k + f(k)$$
;

Let F(k) = 2k + f(k); (p_k) is taken as discretised of:

Let F(k) = 2k + f(k); (p_k) is taken as discretised of:

f-block gluing $\Leftrightarrow \forall n, \ p_{F(n)} \geq 2p_n + 4$

Let $\alpha \in \Pi_1$, $\alpha_k \downarrow \alpha$.

Let $\alpha \in \Pi_1$, $\alpha_k \downarrow \alpha$.

Let $\alpha \in \Pi_1$, $\alpha_k \downarrow \alpha$.

- 1. $\forall l \leq F^k(1), p_{F(l)} \geq 2p_l + 4 \text{ (f-block gluing)}$
- 2. entropy after change : $> \alpha_k + 2^{-k} \ge \alpha$.

Let $\alpha \in \Pi_1$, $\alpha_k \downarrow \alpha$.

- 1. $\forall l \leq F^k(1), p_{F(l)} \geq 2p_l + 4 (f-block gluing)$
- 2. entropy after change : $> \alpha_k + 2^{-k} \ge \alpha$.

Let $\alpha \in \Pi_1$, $\alpha_k \downarrow \alpha$.

- 1. $\forall l \leq F^k(1), p_{F(l)} \geq 2p_l + 4 (f-block gluing)$
- 2. entropy after change : $> \alpha_k + 2^{-k} \ge \alpha$.

Let $\alpha \in \Pi_1$, $\alpha_k \downarrow \alpha$.

- 1. $\forall l \leq F^k(1), p_{F(l)} \geq 2p_l + 4 (f-block gluing)$
- 2. entropy after change : $> \alpha_k + 2^{-k} \ge \alpha$.

Let $\alpha \in \Pi_1$, $\alpha_k \downarrow \alpha$.

- 1. $\forall l \leq F^k(1), p_{F(l)} \geq 2p_l + 4 (f-block gluing)$
- 2. entropy after change : $> \alpha_k + 2^{-k} \ge \alpha$.

Let $\alpha \in \Pi_1$, $\alpha_k \downarrow \alpha$.

- 1. $\forall l \leq F^k(1), p_{F(l)} \geq 2p_l + 4 (f-block gluing)$
- 2. entropy after change : $> \alpha_k + 2^{-k} \ge \alpha$.

Let $\alpha \in \Pi_1$, $\alpha_k \downarrow \alpha$.

- 1. $\forall l \leq F^k(1), p_{F(l)} \geq 2p_l + 4 (f-block gluing)$
- 2. entropy after change : $> \alpha_k + 2^{-k} \ge \alpha$.

Let $\alpha \in \Pi_1$, $\alpha_k \downarrow \alpha$.

- 1. $\forall l \leq F^k(1), p_{F(l)} \geq 2p_l + 4 (f-block gluing)$
- 2. entropy after change : $> \alpha_k + 2^{-k} \ge \alpha$.

Let $\alpha \in \Pi_1$, $\alpha_k \downarrow \alpha$.

- 1. $\forall l \leq F^k(1), p_{F(l)} \geq 2p_l + 4 (f-block gluing)$
- 2. entropy after change : $> \alpha_k + 2^{-k} \ge \alpha$.

Let $\alpha \in \Pi_1$, $\alpha_k \downarrow \alpha$.

- 1. $\forall l \leq F^k(1), p_{F(l)} \geq 2p_l + 4 (f-block gluing)$
- 2. entropy after change : $> \alpha_k + 2^{-k} \ge \alpha$.

Let $\alpha \in \Pi_1$, $\alpha_k \downarrow \alpha$.

- 1. $\forall l \leq F^k(1), p_{F(l)} \geq 2p_l + 4 (f-block gluing)$
- 2. entropy after change : $> \alpha_k + 2^{-k} \ge \alpha$.

Let $\alpha \in \Pi_1$, $\alpha_k \downarrow \alpha$.

- 1. $\forall l \leq F^k(1), p_{F(l)} \geq 2p_l + 4 (f-block gluing)$
- 2. entropy after change : $> \alpha_k + 2^{-k} \ge \alpha$.

Let $\alpha \in \Pi_1$, $\alpha_k \downarrow \alpha$.

- 1. $\forall l \leq F^k(1), p_{F(l)} \geq 2p_l + 4 (f-block gluing)$
- 2. entropy after change : $> \alpha_k + 2^{-k} \ge \alpha$.

Entropy change: $\beta = (\beta_1, \beta_2, ..)$ slopes:

$$\beta' \ 0 \geq \Delta h \geq -H(1/F^N(1))$$

$$H(\epsilon) = \epsilon \log(\epsilon) + (1 - \epsilon) \log(1 - \epsilon)$$
(by bounding preimages of a transformation)

Let us assume that $h_{\infty} > \alpha$.

Block gluing condition is minimal:

Let us assume that $h_{\infty} > \alpha$.

Block gluing condition is minimal: $\forall l \geq k, \ p_{F(l)} = 2p_l + 4$.

Let us assume that $h_{\infty} > \alpha$.

Block gluing condition is minimal: $\forall l \geq k, \ p_{F(l)} = 2p_l + 4$.

Repeat + limit:

Let us assume that $h_{\infty} > \alpha$.

Block gluing condition is minimal: $\forall l \geq k, \ p_{F(l)} = 2p_l + 4$.

Repeat + limit: $\inf \frac{p_l}{l} \cdot \Sigma(f) < +\infty$.

Let us assume that $h_{\infty} > \alpha$.

Block gluing condition is minimal: $\forall l \geq k, \ p_{F(l)} = 2p_l + 4$.

Repeat + limit: $\inf \frac{p_l}{l} \cdot \Sigma(f) < +\infty$.

$$\Sigma(f) = +\infty$$

Let us assume that $h_{\infty} > \alpha$.

Block gluing condition is minimal: $\forall l \geq k, \ p_{F(l)} = 2p_l + 4$.

Repeat + limit: $\inf \frac{p_l}{l} \cdot \Sigma(f) < +\infty$.

$$\Sigma(f) = +\infty$$
: inf $\frac{p_I}{I} = h_{\infty} = 0$

Let us assume that $h_{\infty} > \alpha$.

Block gluing condition is minimal: $\forall l \geq k, \ p_{F(l)} = 2p_l + 4$.

Repeat + limit:
$$\inf \frac{p_l}{l} \cdot \Sigma(f) < +\infty$$
.

$$\Sigma(f) = +\infty$$
: inf $\frac{p_I}{I} = h_{\infty} = 0 \rightarrow \text{contradiction}$.

Questions:

1. What happens when $\Sigma(f)$ is not computable ?

Questions:

- 1. What happens when $\Sigma(f)$ is not computable ?
- 2. Computational threshold for the spectral gap?

Questions:

- 1. What happens when $\Sigma(f)$ is not computable ?
- 2. Computational threshold for the spectral gap?
- 3. For other classes of dynamical systems ? [\rightarrow better understanding of the threshold phenomenon]

Computability in general:

X.Zheng, **K.Weihrauch**: The arithmetical hierarchy of real numbers.

For all m, $\Delta_m = \Sigma_m \cap \Pi_m$.

Computability in general:

X.Zheng, **K.Weihrauch**: The arithmetical hierarchy of real numbers.

For all m, $\Delta_m = \Sigma_m \cap \Pi_m$.

Theorem: for all m, $\Sigma_m \subsetneq \Delta_{m+1}$, $\Pi_m \subsetneq \Delta_{m+1}$, $\Delta_m \subsetneq \Sigma_m$, $\Delta_m \subsetneq \Pi_m$.

General metric dynamics:

Question: Classification of classes of dynamical systems according to possible values of entropy ?

General metric dynamics:

Question: Classification of classes of dynamical systems according to possible values of entropy ?

Theorem[G.,Herrera,Rojas,Sablik(2019)]: the entropy of a topological computable dynamical system (X, f) is Σ_2 -computable.

General metric dynamics:

Question: Classification of classes of dynamical systems according to possible values of entropy ?

Theorem[G.,Herrera,Rojas,Sablik(2019)]: the entropy of a topological computable dynamical system (X, f) is Σ_2 -computable.

If in the arithmetical hierarchy, possible classes are: Δ_1 , Σ_1 , Π_1 , Δ_2 , Σ_2 .

A topological dynamical system is some (X, f), where X is 'computable' and f is 'computable'.

A topological dynamical system is some (X, f), where X is 'computable' and f is 'computable'.

Computable metric space: (X, d, S) with (X, d) metric space, $S = \{s_i : i \ge 0\}$ a countable dense subset of X (ideal points), s.t. exists an algorithm which on input (i, j, n) outputs $r \in \mathbb{Q}$ s.t.:

$$|d(s_i,s_i)-r|\leq 2^{-n}.$$

A topological dynamical system is some (X, f), where X is 'computable' and f is 'computable'.

Computable metric space: (X, d, S) with (X, d) metric space, $S = \{s_i : i \ge 0\}$ a countable dense subset of X (ideal points), s.t. exists an algorithm which on input (i, j, n) outputs $r \in \mathbb{Q}$ s.t.:

$$|d(s_i,s_j)-r|\leq 2^{-n}.$$

Examples:

A topological dynamical system is some (X, f), where X is 'computable' and f is 'computable'.

Computable metric space: (X, d, S) with (X, d) metric space, $S = \{s_i : i \ge 0\}$ a countable dense subset of X (ideal points), s.t. exists an algorithm which on input (i, j, n) outputs $r \in \mathbb{Q}$ s.t.:

$$|d(s_i,s_i)-r|\leq 2^{-n}.$$

Examples:

1.
$$X = [0, 1], S = \mathbb{Q} \cap [0, 1], d(x, y) = |x - y|;$$

A topological dynamical system is some (X, f), where X is 'computable' and f is 'computable'.

Computable metric space: (X, d, \mathcal{S}) with (X, d) metric space, $\mathcal{S} = \{s_i : i \geq 0\}$ a countable dense subset of X (ideal points), s.t. exists an algorithm which on input (i, j, n) outputs $r \in \mathbb{Q}$ s.t.:

$$|d(s_i,s_j)-r|\leq 2^{-n}.$$

Examples:

- 1. $X = [0, 1], S = \mathbb{Q} \cap [0, 1], d(x, y) = |x y|;$
- 2. $\mathcal{A}^{\mathbb{N}}$, $\# \in \mathcal{A}$, $\mathcal{S} = \{ w \cdot \#^{\infty} : |w| < +\infty \}$,

$$d(x,y) = 2^{-\min(\{n \in \mathbb{N} : x_n \neq y_n\})}.$$

Definition of computable functions

Set $(B_n)_n$ is an enumeration of ideal balls B(s,r), $s \in \mathcal{S}, r \in \mathbb{Q}$.

Definition of computable functions

Set $(B_n)_n$ is an enumeration of ideal balls B(s,r), $s \in \mathcal{S}, r \in \mathbb{Q}$.

Definition: A function $f: X \to X$ is **computable** when there exists an algorithm which on input m enumerates $I_m \subset \mathbb{N}$ such that

$$f^{-1}(B_m) = \bigcup_i B_n,$$

Lemma: a function $\mathcal{A}^{\mathbb{N}} \to \mathcal{A}^{\mathbb{N}}$ is computable when there exists a non-decreasing computable function $\varphi : \mathbb{N} \to \mathbb{N}$ and an algorithm which provided as input the $\varphi(n)$ first elements of some $x \in \mathcal{A}^{\mathbb{N}}$ outputs the n first elements of f(x).

Lemma: a function $\mathcal{A}^{\mathbb{N}} \to \mathcal{A}^{\mathbb{N}}$ is computable when there exists a non-decreasing computable function $\varphi : \mathbb{N} \to \mathbb{N}$ and an algorithm which provided as input the $\varphi(n)$ first elements of some $x \in \mathcal{A}^{\mathbb{N}}$ outputs the n first elements of f(x).

Lemma: a function $\mathcal{A}^{\mathbb{N}} \to \mathcal{A}^{\mathbb{N}}$ is computable when there exists a non-decreasing computable function $\varphi : \mathbb{N} \to \mathbb{N}$ and an algorithm which provided as input the $\varphi(n)$ first elements of some $x \in \mathcal{A}^{\mathbb{N}}$ outputs the n first elements of f(x).

Lemma: a function $\mathcal{A}^{\mathbb{N}} \to \mathcal{A}^{\mathbb{N}}$ is computable when there exists a non-decreasing computable function $\varphi : \mathbb{N} \to \mathbb{N}$ and an algorithm which provided as input the $\varphi(n)$ first elements of some $x \in \mathcal{A}^{\mathbb{N}}$ outputs the n first elements of f(x).

Lemma: a function $\mathcal{A}^{\mathbb{N}} \to \mathcal{A}^{\mathbb{N}}$ is computable when there exists a non-decreasing computable function $\varphi : \mathbb{N} \to \mathbb{N}$ and an algorithm which provided as input the $\varphi(n)$ first elements of some $x \in \mathcal{A}^{\mathbb{N}}$ outputs the n first elements of f(x).

Lemma: a function $\mathcal{A}^{\mathbb{N}} \to \mathcal{A}^{\mathbb{N}}$ is computable when there exists a non-decreasing computable function $\varphi : \mathbb{N} \to \mathbb{N}$ and an algorithm which provided as input the $\varphi(n)$ first elements of some $x \in \mathcal{A}^{\mathbb{N}}$ outputs the n first elements of f(x).

Lemma: a function $\mathcal{A}^{\mathbb{N}} \to \mathcal{A}^{\mathbb{N}}$ is computable when there exists a non-decreasing computable function $\varphi : \mathbb{N} \to \mathbb{N}$ and an algorithm which provided as input the $\varphi(n)$ first elements of some $x \in \mathcal{A}^{\mathbb{N}}$ outputs the n first elements of f(x).

Lemma: a function $\mathcal{A}^{\mathbb{N}} \to \mathcal{A}^{\mathbb{N}}$ is computable when there exists a non-decreasing computable function $\varphi : \mathbb{N} \to \mathbb{N}$ and an algorithm which provided as input the $\varphi(n)$ first elements of some $x \in \mathcal{A}^{\mathbb{N}}$ outputs the n first elements of f(x).

Lemma: a function $\mathcal{A}^{\mathbb{N}} \to \mathcal{A}^{\mathbb{N}}$ is computable when there exists a non-decreasing computable function $\varphi : \mathbb{N} \to \mathbb{N}$ and an algorithm which provided as input the $\varphi(n)$ first elements of some $x \in \mathcal{A}^{\mathbb{N}}$ outputs the n first elements of f(x).

Lemma: a function $\mathcal{A}^{\mathbb{N}} \to \mathcal{A}^{\mathbb{N}}$ is computable when there exists a non-decreasing computable function $\varphi : \mathbb{N} \to \mathbb{N}$ and an algorithm which provided as input the $\varphi(n)$ first elements of some $x \in \mathcal{A}^{\mathbb{N}}$ outputs the n first elements of f(x).

Lemma: a function $\mathcal{A}^{\mathbb{N}} \to \mathcal{A}^{\mathbb{N}}$ is computable when there exists a non-decreasing computable function $\varphi : \mathbb{N} \to \mathbb{N}$ and an algorithm which provided as input the $\varphi(n)$ first elements of some $x \in \mathcal{A}^{\mathbb{N}}$ outputs the n first elements of f(x).

Theorem[G.,Herrera,Rojas,Sablik(2019)]: the possible values for entropy for effective surjective dynamical systems on $\{0,1\}^{\mathbb{N}}$ are the non-negative Σ_2 -computable real numbers.

Theorem[G.,Herrera,Rojas,Sablik(2019)]: the possible values for entropy for effective surjective dynamical systems on $\{0,1\}^{\mathbb{N}}$ are the non-negative Σ_2 -computable real numbers.

Theorem[G.,Herrera,Rojas,Sablik(2019)]: the possible values for entropy for effective surjective dynamical systems on $\{0,1\}^{\mathbb{N}}$ are the non-negative Σ_2 -computable real numbers.

Proof(Schema):

1. $h \in \Sigma_2$: $h = \sup_n h_n$, $h_n \in \Pi_1$.

Theorem[G.,Herrera,Rojas,Sablik(2019)]: the possible values for entropy for effective surjective dynamical systems on $\{0,1\}^{\mathbb{N}}$ are the non-negative Σ_2 -computable real numbers.

- 1. $h \in \Sigma_2$: $h = \sup_n h_n$, $h_n \in \Pi_1$.
- 2. X_n some id-block gluing decidable subshift, $h(X_n) = h_n$

Theorem[G.,Herrera,Rojas,Sablik(2019)]: the possible values for entropy for effective surjective dynamical systems on $\{0,1\}^{\mathbb{N}}$ are the non-negative Σ_2 -computable real numbers.

- 1. $h \in \Sigma_2$: $h = \sup_n h_n$, $h_n \in \Pi_1$.
- 2. X_n some id-block gluing decidable subshift, $h(X_n) = h_n$: $\sigma_{|X_n|}$ surjective.

Theorem[G.,Herrera,Rojas,Sablik(2019)]: the possible values for entropy for effective surjective dynamical systems on $\{0,1\}^{\mathbb{N}}$ are the non-negative Σ_2 -computable real numbers.

- 1. $h \in \Sigma_2$: $h = \sup_n h_n$, $h_n \in \Pi_1$.
- 2. X_n some id-block gluing decidable subshift, $h(X_n) = h_n$: $\sigma_{|X_n|}$ surjective.
- 3. $X_n \sim \{0,1\}^{\mathbb{N}} \to$

Theorem[G.,Herrera,Rojas,Sablik(2019)]: the possible values for entropy for effective surjective dynamical systems on $\{0,1\}^{\mathbb{N}}$ are the non-negative Σ_2 -computable real numbers.

- 1. $h \in \Sigma_2$: $h = \sup_n h_n$, $h_n \in \Pi_1$.
- 2. X_n some id-block gluing decidable subshift, $h(X_n) = h_n$: $\sigma_{|X_n|}$ surjective.
- 3. $X_n \sim \{0,1\}^{\mathbb{N}} \rightarrow : \sigma_{|X_n} \sim f_n \text{ on } \{0,1\}^{\mathbb{N}}.$

Theorem[G.,Herrera,Rojas,Sablik(2019)]: the possible values for entropy for effective surjective dynamical systems on $\{0,1\}^{\mathbb{N}}$ are the non-negative Σ_2 -computable real numbers.

- 1. $h \in \Sigma_2$: $h = \sup_n h_n$, $h_n \in \Pi_1$.
- 2. X_n some id-block gluing decidable subshift, $h(X_n) = h_n$: $\sigma_{|X_n|}$ surjective.
- 3. $X_n \sim \{0,1\}^{\mathbb{N}} \rightarrow: \sigma_{|X_n} \sim f_n \text{ on } \{0,1\}^{\mathbb{N}}.$
- 4. Definition of f on $\{0,1\}^{\mathbb{N}}$:

$$f_1$$
 f_2 f_3 \cdots

Theorem[G.,Herrera,Rojas,Sablik(2019)]: the possible values for entropy for effective surjective dynamical systems on $\{0,1\}^{\mathbb{N}}$ are the non-negative Σ_2 -computable real numbers.

Proof(Schema):

- 1. $h \in \Sigma_2$: $h = \sup_n h_n$, $h_n \in \Pi_1$.
- 2. X_n some id-block gluing decidable subshift, $h(X_n) = h_n$: $\sigma_{|X_n|}$ surjective.
- 3. $X_n \sim \{0,1\}^{\mathbb{N}} \rightarrow : \sigma_{|X_n} \sim f_n \text{ on } \{0,1\}^{\mathbb{N}}.$
- 4. Definition of f on $\{0,1\}^{\mathbb{N}}$:

5. f surjective with entropy $\sup_n h_n$.

Theorem[G.,Herrera,Rojas,Sablik(2019)]: the possible values for entropy for effective interval maps are the non-negative Σ_1 -computable real numbers.

Theorem[G.,Herrera,Rojas,Sablik(2019)]: the possible values for entropy for effective interval maps are the non-negative Σ_1 -computable real numbers.

Definition:((p, n)-Horseshoe): for $f : [0, 1] \rightarrow [0, 1]$, a sequence $I_1, ..., I_p$ of disjoint intervals such that

$$\cup I_I \subset \cap f^n(I_I)$$
.

Theorem[G.,Herrera,Rojas,Sablik(2019)]: the possible values for entropy for effective interval maps are the non-negative Σ_1 -computable real numbers.

Definition:((p, n)-Horseshoe): for $f : [0, 1] \rightarrow [0, 1]$, a sequence $l_1, ..., l_p$ of disjoint intervals such that

$$\cup I_I \subset \cap f^n(I_I)$$
.

Theorem[M.Misiurewicz,J.Llibre]: For all $f:[0,1] \to [0,1]$, the entropy of ([0,1],f) is equal to $\sup_{(p,n)\in\Delta}\frac{\log_2(p)}{n}$, where Δ is the set of (p,n) for which f has a (p,n) horseshoe.

Theorem[G.,Herrera,Rojas,Sablik(2019)]: the possible values for entropy for effective interval maps are the non-negative Σ_1 -computable real numbers.

Definition:((p, n)-Horseshoe): for $f : [0, 1] \rightarrow [0, 1]$, a sequence $I_1, ..., I_p$ of disjoint intervals such that

$$\cup I_I \subset \cap f^n(I_I)$$
.

Theorem[M.Misiurewicz,J.Llibre]: For all $f:[0,1] \to [0,1]$, the entropy of ([0,1],f) is equal to $\sup_{(p,n)\in\Delta}\frac{\log_2(p)}{n}$, where Δ is the set of (p,n) for which f has a (p,n) horseshoe.

With a bit of work (detecting horseshoes algorithmically):

Theorem[G.,Herrera,Rojas,Sablik(2019)]: the possible values for entropy for effective interval maps are the non-negative Σ_1 -computable real numbers.

Definition:((p, n)-Horseshoe): for $f : [0, 1] \rightarrow [0, 1]$, a sequence $I_1, ..., I_p$ of disjoint intervals such that

$$\cup I_I \subset \cap f^n(I_I)$$
.

Theorem[M.Misiurewicz,J.Llibre]: For all $f:[0,1] \to [0,1]$, the entropy of ([0,1],f) is equal to $\sup_{(p,n)\in\Delta}\frac{\log_2(p)}{n}$, where Δ is the set of (p,n) for which f has a (p,n) horseshoe.

With a bit of work(detecting horseshoes algorithmically): the entropy of an effective map is Σ_1 .

Interval maps: realization

 f_s , $s\in\mathbb{Q}$:

Interval maps: realization

 f_s , $s\in\mathbb{Q}$:

Theorem[A.Katok]: if $f:[0,1]\to [0,1]$ is piecewise linear with slopes $\pm \lambda$, $\lambda>0$, then entropy of ([0,1],f) is λ .

Interval maps: realization

 f_s , $s\in\mathbb{Q}$:

Theorem[A.Katok]: if $f:[0,1]\to [0,1]$ is piecewise linear with slopes $\pm\lambda$, $\lambda>0$, then entropy of ([0,1],f) is λ .

Thus for all $s \in \mathbb{Q}$, the entropy of $([0,1], f_s)$ is s.

For $s \in \Sigma_1$: $s = \sup_n s_n$:

Computable map, entropy s.

Further questions:

Questions:

1. 'explain' jumps in computability?

Further questions:

Questions:

- 1. 'explain' jumps in computability?
- 2. possible values of entropy for Cantor maps which 'can be seen' as interval maps without loss of entropy ? $\Sigma_1 \cap \Pi_1 = \Delta_1$?

Further questions:

Questions:

- 1. 'explain' jumps in computability?
- 2. possible values of entropy for Cantor maps which 'can be seen' as interval maps without loss of entropy ? $\Sigma_1 \cap \Pi_1 = \Delta_1$?
- 3. Do you have other ideas of classes of systems and dynamical constraints ?