Задача 1-1 (5 баллов). Пусть $t_r(I)$ обозначает время рандомизированного алгоритма на входе I при значениях случайных бит r. Для заданного множества входов $\mathcal I$ рассмотрим две "меры сложности":

$$A = \max_{I \in \mathcal{I}} E_r [t_r(I)], \qquad B = E_r \left[\max_{I \in \mathcal{I}} t_r(I) \right].$$

Можно ли утверждать, что одно из чисел A и B всегда не меньше другого?

Решение. Используя неравенство Йенсена, можно показать, что $B \geqslant A$, что следует из вогнутости функции $\max_{I \in \mathcal{I}} t_r(I)$ по случайным битам r. Вогнутость функции тах в данном контексте следует из свойств функций максимума в пространстве случайных величин.

Поэтому ожидание максимума всегда не меньше максимума ожиданий.