Revisão de Álgebra Linear Cid C. de Souza – IC-UNICAMP Agosto de 2005

Revisão de Álgebra Linear – Cid de Souza

2

Notação e definições

 \triangleright Vetor nulo: $[0\ 0\ \dots\ 0]^t$.

 \triangleright Vetores unitários: $e_i = [0 \ 0 \ \dots \ 0 \ 1 \ 0 \ \dots \ 0]^t$.

 $\,\rhd\,$ Adição de vetores:

$$a^{1} + a^{2} = \begin{bmatrix} a_{11} \\ a_{12} \end{bmatrix} + \begin{bmatrix} a_{21} \\ a_{22} \end{bmatrix} = \begin{bmatrix} a_{11} + a_{21} \\ a_{12} + a_{22} \end{bmatrix}$$

 \triangleright Vetor soma: $e = [1 \ 1 \ \dots \ 1]^t$.

Cid C. de Souza

ightharpoonup Multiplicação por escalar: $k \in \mathbb{R}$ e $a \in \mathbb{R}^n$,

$$ka = \begin{bmatrix} ka_1 \\ ka_2 \\ \vdots \\ ka_n \end{bmatrix}$$

 \triangleright Produto interno (escalar): $a \in b \in \mathbb{R}^n$,

$$a.b = \begin{bmatrix} a_1 \ a_2 \ \dots \ a_n \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \sum_{i=1}^n a_i.b_i$$

Cid C. de Souza

Revisão de Álgebra Linear – Cid de Souza

4

Notações e definições (cont.)

- \triangleright Combinações Linear, Afim e Convexa: $a^1, a^2, \dots, a^n \in \mathbb{R}^n$,
 - Linear: $\sum_{i=1}^{n} a^{i} . \lambda_{i}, \ \lambda_{i} \in \mathbb{R}.$
 - Afim: $\sum_{i=1}^{n} a^{i} \cdot \lambda_{i}$, $\sum_{i=1}^{n} \lambda_{i} = 1$ e $\lambda_{i} \in \mathbb{R}$.
 - Convexa: $\sum_{i=1}^{n} a^{i} . \lambda_{i}, \sum_{i=1}^{n} \lambda_{i} = 1 \in \lambda_{i} \in \mathbb{R}^{+}.$
- ightharpoonup Subespaços Lineares e Afins: S é um subespaço linear (afim) se, dados dois vetores quaisquer a^1 e a^2 em S e dois escalares λ_1 e λ_2 quaisquer em \mathbb{R} (satisfazendo $\lambda_1 + \lambda_2 = 1$), o vetor $\lambda_1 a^1 + \lambda_2 a^2$ também está em S.

o conjunto de vetores $a^1, a^2, \ldots, a^n \in \mathbb{R}^n$ é linearmente independente (LI) se $\sum_{i=1}^n \lambda_i . a^i = 0 \Longrightarrow \lambda_i = 0 \ \forall i \in \{1, \ldots, n\}.$

▷ Independência Afim:

o conjunto de vetores $a^1, a^2, \dots, a^i \in \mathbb{R}^n$ é afim independente (AI) se

$$\begin{cases} \sum_{i=1}^{n} \lambda_i . a^i = 0 \\ \sum_{i=1}^{n} \lambda_i = 0 \end{cases} \implies \lambda_i = 0 \ \forall i \in \{1, \dots, n\}.$$

▷ Observação: LI ⇒ AI mas a inversa não é verdadeira!

Cid C. de Souza

Revisão de Álgebra Linear – Cid de Souza

- 6
- \triangleright O subespaço linear (afim) gerado por um conjunto S de vetores é o conjunto de todas os vetores que são combinações lineares (afim) de S.
- ightharpoonup Base: os vetores a^1, a^2, \dots, a^k formam uma base do \mathbb{R}^n se o subespaço linear gerado por eles é o \mathbb{R}^n e se eles forem LI.

Observação: nesse caso, para todo b em \mathbb{R}^n existe um único conjunto de escalares $\{\lambda_1, \ldots, \lambda_n\}$ tal que $\sum_{i=1}^n \lambda_i . a^i = b$.

> Mudança de Base:

Se $\{a^1, a^2, \ldots, a^n\}$ é uma base de \mathbb{R}^n e $a \in \mathbb{R}^n$ é tal que $\sum_{i=1}^n \lambda_i . a^i = a$ e $\lambda_j \neq 0$ para algum $j \in \{1, \ldots, n\}$, então $\{a^1, \ldots, a^{j-1}, a, a^{j+1}, \ldots, a^n\}$ também é uma base de \mathbb{R}^n .

Matrizes

- $\triangleright a_{.j} \doteq j$ -ésima coluna de A, $a_{i.} \doteq i$ -ésima linha de A.
- ▶ Adição e Multiplicação por escalar: feita termo a termo.
- ightharpoonup Multiplicação de matrizes: $A: m \times n \ e \ B: p \times q, \ C = AB$ existe se n=p. Neste caso, C tem dimensão $m \times q \ e \ c_{ij} = a_{i.}.b_{.j}$. Observação: mesmo que C=AB e C'=BA existam, é possível que $C \neq C'$.
- - Matriz nula: todos elementos são nulos.
 - Matriz identidade (I): matriz quadrada onde todos elementos da diagonal principal valem 1. Se $A: m \times n$, $AI_n = I_m A = A$.
 - Matriz triangular inferior (superior): matriz quadrada onde todos elementos acima (abaixo) da diagonal principal são 0.

Cid C. de Souza

Revisão de Álgebra Linear – Cid de Souza

Q

Matrizes (cont.)

- ightharpoonup Matriz transposta: se $A: m \times n$ a matriz transposta de A é a matriz $A^t: n \times m$ onde $a_{i.} = a^t_{.i}$ para todo $i \in \{1, ..., m\}$.
- ightharpoonup Se $A=A^t$ então A é sim'etrica. Se $A=-A^t$ então A é antisim'etrica.
- $\triangleright (A^t)^t = A.$
- $(A+B)^t = A^t + B^t.$
- $(AB)^t = B^t A^t$.

Operações elementares sobre matrizes

- \triangleright trocar posições das linhas $i \in j$.
- \triangleright multiplicar a linha *i* por um escalar.
- \triangleright substituir a linha i pela soma da linha i com a linha k multiplicada por um escalar.
- ▶ Matrizes de Permutação: obtidas da matriz identidade pela aplicação de uma das operações elementares descritas acima.
- \triangleright **Observação 1**: se $A: m \times n$, toda operação elementar pode ser efetuada sobre A pré-multiplicando-a pela matriz de permutação correspondente às mesmas operações efetuadas sobre I_m .
- \triangleright **Observação 2**: operações elementares também podem ser feitas sobre colunas. A observação 1 ainda é válida mas a matriz de permutação é obtida a partir de I_n e deve pós-multiplicar A.

Cid C. de Souza

Revisão de Álgebra Linear – Cid de Souza

10

Resolução de Sistemas Lineares

- ightharpoonup A: m imes n, b: m imes 1 e x: n imes 1.
- ightharpoonup Teorema: Ax = b tem solução sss A'x = b' onde (A', b') é obtido de (A, b) através de operações elementares.
- ▷ Métodos de solução para o caso de matrizes quadradas:
 - Gauss: A' é triangular superior com 1's na diagonal. Usa "back substitution".
 - Gauss-Jordan: $A' = I_m$.
- \triangleright Inversão de matrizes (quadradas $n \times n$):
 - B inversa de A então $AB = BA = I_n$. Notação: $B = A^{-1}$.
 - $\bullet\,$ Se B existir, então B é única.
 - \bullet Se A tem inversa, A é dita $n\tilde{a}o\text{-}singular.$

Resolução de Sistemas Lineares (cont.)

- \triangleright A tem inversa sss suas linhas (colunas) são LI.
- \triangleright Cálculo da inversa: realizar operações elementares sobre a matriz (A, I_n) até que se chegue a uma matriz da forma (I_n, B) . Se isso for possível, $B = A^{-1}$.
- ightharpoonup Se A é não-singular, A^t é não-singular e $(A^t)^{-1}=(A^{-1})^t$.
- ightharpoonup Se A e B são não singulares, AB é não singular e $(AB)^{-1}=B^{-1}A^{-1}$.
- \triangleright Se A é triangular e sem zeros na diagonal então A tem inversa.

Cid C. de Souza

Revisão de Álgebra Linear – Cid de Souza

12

Resolução de Sistemas Lineares (cont.)

 $ightharpoonup A: (n_1 + n_2) \times (n_1 + n_2),$

$$A = \begin{bmatrix} I & C \\ 0 & D \end{bmatrix} \Longrightarrow A^{-1} = \begin{bmatrix} I & -CD^{-1} \\ 0 & D^{-1} \end{bmatrix}$$

- Determinante de uma matriz $A: n \times n$: se n=1 então $\det(A) = a_{11}$, se não $\det(A) = \sum_{i=1}^{n} a_{ij} A^{ij}$, onde A^{ij} é o <u>cofator</u> do elemento a_{ij} o qual é obtido pela multiplicação de $(-1)^{i+j}$ pelo determinante da submatriz obtida de A pela remoção da linha i e da coluna j.
- $ightharpoonup \det(A) = \det(A^t).$
- ightharpoonup Se B é obtida de A pela troca de duas linhas, $\det(B) = -\det(A)$.

Resolução de Sistemas Lineares (cont.)

- ightharpoonup Se B é obtida de A pela soma de uma linha com outra linha multiplicada por escalar, então $\det(B) = \det(A)$.
- $ightharpoonup \det(AB) = \det(A).\det(B).$
- ightharpoonup det $(A) \neq 0$ sss as linhas (colunas) de A são LI, ou seja, A é não singular e portanto tem inversa!
- Dutra forma de calcular a inversa (quando existe):

$$A^{-1} = \frac{B}{\det(A)},$$

onde B é a transposta da matriz dos cofatores, i.e., a matriz adjunta de A.

Cid C. de Souza

Revisão de Álgebra Linear – Cid de Souza

14

Resolução de Sistemas Lineares (cont.)

 \triangleright Para B e C quadradas,

$$A = \begin{bmatrix} B & 0 \\ D & C \end{bmatrix} \Longrightarrow \det(A) = \det(B).\det(C).$$

$$x_j = \frac{\det(B_j)}{\det(A)},$$

onde B_j é a matriz obtida de A substituindo a coluna $A_{.j}$ pelo vetor b.

Resolução de Sistemas Lineares (cont.)

- ightharpoonup Posto (linear) de uma matriz: $\rho(A)$ é o número máximo de linhas (colunas) LI de A.
- ightharpoonup Se ho(A,b)>
 ho(A) então Ax=b não tem solução.
- $\,\rhd\,$ Se $\rho(A,b)=\rho(A)=n$ então Ax=btem uma **única** solução.
- $\,\rhd\,$ Se $\rho(A,b)=\rho(A)=k< n$ então Ax=btem um número infinito de soluções

Cid C. de Souza