Евгений Борисов

методы ML

- метрические измеряем расстояния, определить ближайших
- *погические* построить правило (комбинацию предикатов)
- статистические восстановить плотность, определить вероятность
- линейные построить разделяющую поверхность
- композиции собрать несколько классификаторов в один

моделируем логику человеческих решений

интерпретируемость (для некоторых приложений это критично)

предикат - «простое» правило для выделения объектов

- предикат может быть описан естественным языком
- достаточно простая формула
- зависит от небольшого числа признаков

предикат - «простое» правило для выделения объектов

- предикат может быть описан естественным языком
- достаточно простая формула
- зависит от небольшого числа признаков

$$(x_1 > 10) \land (x_2 < 3) \lor \neg x_3$$

предикат - «простое» правило для выделения объектов

- предикат может быть описан естественным языком
- достаточно простая формула
- зависит от небольшого числа признаков

$$(x_1 > 10) \land (x_2 < 3) \lor \neg x_3$$

• должен быть информативен, т.е. выделяет некоторое количество объектов одного класса

предикат - «простое» правило для выделения объектов

- предикат может быть описан естественным языком
- достаточно простая формула
- зависит от небольшого числа признаков

$$(x_1 > 10) \land (x_2 < 3) \lor \neg x_3$$

• должен быть информативен, т.е. выделяет некоторое количество объектов одного класса

один предикат это маловато....

закономерность - набор правил (предикатов)

- конъюнкция $R\left(x\right) = \prod\limits_{i} \left[a_{i} \leqslant f_{i}(x) < b_{i}\right]$
- синдром $R(x) = \left[\sum_{i} \left[a_i \leqslant f_i(x) < b_i\right] > d\right]$
- полуплоскость $R(x) = \left[\sum_i w_i \cdot f_i(x) \geqslant w_0\right]$
- wap $R(x)=[\rho(x_0,x)\leqslant w_0]$

закономерность - набор правил (предикатов)

- конъюнкция $R\left(x\right) = \prod\limits_{i} \left[a_{i} \leqslant f_{i}(x) < b_{i}\right]$
- синдром $R(x) = \left[\sum_{i} \left[a_i \leqslant f_i(x) < b_i\right] > d\right]$
- полуплоскость $R(x) = \left[\sum_i w_i \cdot f_i(x) \geqslant w_0\right]$
- шар $R(x)=[\rho(x_0,x)\leqslant w_0]$

задача: нужно отбирать «хорошие» закономерности

вопрос: как оценивать закономерности?

введём понятие информативности

предикат выделил объекты

р - количество позитивных

n - количество негативных

введём понятие информативности

предикат выделил объекты

р - количество позитивных

n - количество негативных

«простые» эвристики

р	n	p-n	<i>p</i> -5 <i>n</i>	$\frac{P}{P} - \frac{n}{N}$	$\frac{p}{n+1}$
50	0	50	50	0.25	50
100	50	50	-150	0	1.96
50	9	41	5	0.16	5
5	0	5	5	0.03	5
100	0	100	100	0.5	100
140	20	120	40	0.5	6.67

информативность - энтропийный критерий

два исхода с вероятностями q и 1-q

количество информации: $I_1 = -\log_2(q)$; $I_0 = -\log_2(1-q)$

энтропия - математическое ожидание количества информации

$$h(q) = -q \cdot \log_2(q) - (1-q) \cdot \log_2(1-q)$$

информативность - энтропийный критерий

два исхода с вероятностями q и 1-q

количество информации: $I_1 = -\log_2(q)$; $I_0 = -\log_2(1-q)$

энтропия - математическое ожидание количества информации

$$h(q) = -q \cdot \log_2(q) - (1-q) \cdot \log_2(1-q)$$

энтропия выборки:

исходы q это позитивно размеченные объекты (класса y)

 $H(y) = h\left(\frac{P}{S}\right)$ Р - количество позитивных объектов

S - общее количество объектов

информативность - энтропийный критерий

энтропия выборки:

исходы q это позитивно размеченные объекты (класса y)

$$H(y)=h\left(\frac{P}{S}\right)$$

Р - количество позитивных объектов

S - общее количество объектов

предикат **R** выделил объекты

р - количество позитивных

n - количество негативных

энтропия выборки после получения информации **R**

$$H(y|R) = \frac{(p+n)}{S} \cdot h\left(\frac{p}{p+n}\right) + \frac{s-p-n}{S} \cdot h\left(\frac{P-p}{S-p-n}\right)$$

информативность - энтропийный критерий

энтропия выборки:

исходы q это позитивно размеченные объекты (класса y)

$$H(y)=h\left(\frac{P}{S}\right)$$

Р - количество позитивных объектов

S - общее количество объектов

предикат **R** выделил объекты

р - количество позитивных

n - количество негативных

энтропия выборки после получения информации **R**

$$H(y|R) = \frac{(p+n)}{S} \cdot h\left(\frac{p}{p+n}\right) + \frac{s-p-n}{S} \cdot h\left(\frac{P-p}{S-p-n}\right)$$

информационный выигрыш (Information gain)

$$iGain(y,R)=H(y)-H(y|R)$$

основные вопросы построения логического классификатора

- как извлекать признаки <u>не наука, но творчество</u>
- какого вида закономерности нужны простые, малое количество признаков
- как определить информативность iGain, ...
- как искать закономерности ограниченный перебор (rule induction)
- как объединить закономерности в алгоритм

как объединить закономерности в алгоритм:

решающее дерево

рекурсивное разделение данных на две части

строим простой предикат ищем признак **i** и порог **b** для него

максимизируем информативность

$$\max_{i,b} |iGain(y,[X_i>b])|$$

как объединить закономерности в алгоритм:

решающее дерево, алгоритм ID3

 $\max_{i,b} (iGain(y,[X_i>b]))$

разделение набора объектов решающим деревом

пример дерева для набора iris

результат работы решающего дерева

на учебном наборе - 100% точность

на тесте - переобучение

решающее дерево

достоинство: интерпретируемость результата

недостаток: переобучение, неустойчивы к шуму

pruning - обрезка решающего дерева

<u>pre-pruning</u> – критерий раннего останова. если информативность меньше порога или глубина велика то прекращаем ветвление

<u>post-pruning</u> – пост-редукция. простматриваем все внутренние вершины дерева проверяем их качество на тестовой выборке, заменяем листом, где качество после разделения ухудшается

логические методы: литература

git clone https://github.com/mechanoid5/ml_lectorium.git

- К.В. Воронцов Логические алгоритмы классификации. курс "Машинное обучение" ШАД Яндекс 2014
- Е.С.Борисов Классификатор на основе решающего дерева. http://mechanoid.su/ml-dtree.html