Discrete Bayesian classifiers

Lecture 5

- Bayes theorem
- Maximum likelihood classification
- "Brute force" Bayesian learning
- Naïve Bayes
- Bayesian Belief Networks

Bayes theorem

$$P(c \mid x) = \frac{P(x \mid c)P(c)}{P(x)}$$

- P(c) prior probability of class c
 - Expected proportion of data from class c on test
- P(x) prior probability of instance x
 - Probability of instance with attribute vector x to occur
- P(c|x) probability of an instance being of class c given it is described by vector of attributes x
- P(x|c) probability of an instance of having attributes described by x given it comes from class c

Maximum likelihood

- From training data estimate for all x and c_i
 - P(c_i)
 - $P(x|c_i)$
- During classification:
 - Choose class c_i with maximal P(c_i|x)
- P(c_i|x) is also called likelihood

'Brute force' Bayesian learning

- Instance x described by attributes <a₁,...,a_n>
- Most probable class:

$$c(x) = \arg \max_{c_i} P(c_i \mid a_1, ..., a_n) =$$

$$= \arg \max_{c_i} \frac{P(a_1, ..., a_n \mid c_i) P(c_i)}{P(a_1, ..., a_n)} =$$

$$= \arg \max_{c_i} P(a_1, ..., a_n \mid c_i) P(c_i)$$

Example

Consider Data

- Consider Data				
Wind	Rain	Balloon		
Strong	Shower	No		
Strong	Shower	No		
Strong	None	No		
Weak	None	Yes		
Weak	Shower	No		
Weak	None	Yes		
Weak	None	No		
Weak	None	Yes		

- We estimate:
 - P(No) = 62%
 - P(Yes) = 38%
 - P(<Weak,None>|No) = 20%
 - P(<Weak,None>|Yes)=100%
 - P(<Weak,Show.>|No) = 20%
 - ...
- Classification of <Weak,None>
 - L(No) ~ 0.62 x 0.2= 0.12
 - L(Yes) ~ 0.38 x 1= 0.38
 - Answer: Yes

Problem with 'Brute force'

- It cannot generalize to unseen examples x^{new}, because it does not have estimates P(c_i|x^{new})
- It is useless
- Brute force does not have any bias
- So in order to make learning possible we have to introduce a bias

Naïve Bayes

- Brute force: $c(x) = \underset{c_i}{\operatorname{arg max}} P(a_1,...,a_n \mid c_i) P(c_i)$
- Naïve Bayes assumes that attributes are independent for instances from a given class:

$$P(a_1,...,a_n \mid c_i) = \prod_i P(a_j \mid c_i)$$

- Which gives: $c(x) = \underset{c_i}{\arg \max} P(c_i) \prod_j P(a_j | c_i)$
 - Assumption of independence is often violated by Naïve Bayes works surprisingly well anyway

Example

Recall 'advanced ballooning' set:

Sky	Temper.	Rain	Wind	Fly Balloon
Sunny	Cold	None	Strong	Yes
Cloudy	Cold	Shower	Weak	Yes
Cloudy	Cold	Shower	Strong	No
Sunny	Hot	Shower	Strong	No

- Classify: x=<Cloudy, Hot, Shower, Strong>
 - $P(Y|x) \sim P(Y) P(CI|Y) P(H|Y) P(Sh|Y) P (St|Y)$ = 0.5 x 0.5 x 0 x 0.5 x 0.5 = 0
 - $P(N|x) \sim 0.5 \times 0.5 \times 0.5 \times 1 \times 1 = 0.125$

Missing estimates

- What if none of training instances of class c_i have attribute value a_i? Then:
 - $P(a_i|c_i) = 0$, and
 - $P(a_1,...,a_n \mid c_i) = \prod P(a_i \mid c_i) = 0$
 - no matter what are the values of other attributes
- For example:
 - x = <Sunny, Hot, None, Weak>
 - P(Hot|Yes) = 0, hence
 - P(Yes|x) = 0

Solution

- Let m denote the number of possible values of attribute a_i
- For each class let us consider adding m "virtual examples" with different values of a_i
- Bayesian estimate for P(a_i|c_i) becomes:

$$P(a_j \mid c_i) = \frac{n_{ciaj} + 1}{n_{ciaj} + m}$$

- Where:
 - n_{ci} number of training examples with class c_i
 - n_{ciaj} number of training examples with class c_i and attribute a_i

Learning to classify text

- For example: is an e-mail a spam?
- Represent each document by a set of words
 - Independence assumptions:
 - Order of words does not matter
 - Co-occurrences of words do not matter
- Learning: estimate from training documents:
 - For every class c_i estimate P(c_i)
 - For every word w and class c_i estimate P(w|c_i)
- Classification: maximum likelihood

Learning in detail

- Vocabulary = all distinct words in training text
- For each class c_i
 - $P(c_i) = \frac{Number\ of\ documents\ of\ class\ c_i}{Total\ number\ of\ documents}$
 - Text_{ci} = concatenated documents of class c_i
 - n_{ci} = total # words in Text_{ci} (count duplicates multiple times)
 - For each word w_i in Vocabulary
 - n_{ciwj} = number of times word w_j occurred in text $Text_{ci}$

$$P(w_j \mid c_i) = \frac{n_{ciwj} + 1}{n_{ci} + |Vocabulary|}$$

Classification in detail

- Index all words in document to classify by j
 - \blacksquare i.e. denote j^{th} word in the document by \boldsymbol{w}_j
- Classify: $c(document) = \arg \max_{c} P(c_i) \prod_{i} P(w_i | c_i)$
- In practice P(w_j|c_i) are small so their product is very close to 0; it is better to use:

$$c(document) = \arg\max_{c_i} \log \left[P(c_i) \prod_j P(w_j \mid c_i) \right] =$$

$$= \arg\max_{c_i} \left[\log P(c_i) + \sum_j \log P(w_j \mid c_i) \right]$$

Pre-processing

- Allows adding background knowledge
- May dramatically increase accuracy
- Sample techniques:
 - Lemmatisation converts words to basic form
 - Stop-list removes 100 most frequent words

Understanding Naïve Bayes

- Although Naïve Bayes is considered to be subsymbolic, the estimated probabilities may give insight on the classification process
- For example in spam filtering
 - Words with maximum P(w_j|spam) are the words whose presence most predicts en e-mail to be a spam e-mail

Bayesian Belief Networks

- Naïve Bayes assumption of conditional independence of attributes is too restrictive for some problems
- But some assumptions need to be made to allow generalization
- Bayesian Belief Networks assume conditional independence among subset of attributes
- Allows combining prior knowledge about (in)dependencies among attributes

Conditional independence

- X is conditionally independent of Y given Z if
 - $\forall x,y,z$: $P(X=x \mid Y=y, Z=z) = P(X=x \mid Z=z)$
 - Usually written: P(X|Y,Z) = P(X|Z)
 - Example:
 - P(Thunder|Rain,Ligthining)=P(Thunder|Lightning)
- Used by Naïve Bayes:
 - $\begin{array}{c|c} \bullet & P(A_1,A_2|C) = P(A_1|A_2,C) \ P(A_2|C) = P(A_1|C)P(A_2|C) \\ & & \downarrow \\ & Always \ true & Only \ true \ if \ A_1 \ and \ A_2 \\ & & conditionally \ independent \end{array}$

Bayesian Belief Network

- Connections describe dependence & causality
 - Each node is conditionally independent of its nondescendants, given its immediate predecessors
 - Examples:
 - feVer and Headache are independent given flu
 - feVer and weakness are not independent given flu

Learning Bayesian Network

 Probabilities of attribute values given parents can be estimated from the training set

0.1

Inference

- During Bayesian classification we compute: $c(x) = \arg\max_{c_i} P(a_1,...,a_n \mid c_i) P(c_i) = \arg\max_{c_i} P(a_1,...,a_n,c_i)$
- In general in Bayesian network with nodes Y_i : $P(y_1,...,y_n) = \prod_{i=1}^{n} P(y_i \mid Parents(Y_i))$
 - Thus $P(a_1,...,a_n,c) = \prod_{i=1}^n P(a_i \mid Parents(A_i))P(c)$
- Example: Classify patient: W,V,¬H
 - $P(W,V,\neg H,F) = P(W|VF) P(V|F) P(\neg H|F) P(F)$

Naïve Bayes network

In case of this network:

$$P(a_1,...,a_n,c) = \prod_{i=1}^n P(a_i \mid Parents(A_i))P(c)$$
$$= \prod_{i=1}^n P(a_i \mid c)P(c)$$

Extensions to Bayesian nets

Network with hidden states, e.g.

Learning structure of the network from data

Summary

- Inductive bias of Naïve Bayes:
 - Attributes are independent.
- Although this assumption is often violated, it provides a very efficient tool often used
 - E.g. For spam filtering.
- Applicable to data:
 - with many attributes (possibly missing),
 - which take discrete values (e.g. words).
- Bayesian belief networks
 - Allow prior knowledge about dependencies