

CIS 522: Lecture 5R

Autoencoders 02/13/20

□ When poll is active, respond at PollEv.com/konradkordin059 □ Text KONRADKORDIN059 to 22333 once to join

Are you here?

Yes

No

Puppy

Feedback / Logistics

- Lecture Notes
- Puppy as option instead of kitten
- HW2 Due tonight at midnight!
- HW3 Computer Vision
 - Groups of 2
- Final Project Abstract Proposal (Due Tuesday 2/18)

Generative Models

Cognitive science

Imagine a kitten

Make it black

Make it play with a ball

Like this?

Discriminative Model: Given a set of classes C, and a sample X, what is the probability X belongs to class c?

Succinctly represented as this quantity: P(c|X) (called a class probability estimate)

To generate a classification: $\operatorname{argmax}_{c \in C} P(c|X)$

Examples:

- Logistic Regression
- 2. Decision Trees
- 3. Support Vector Machines

Generative Model: Given a class c from a set of classes C, and a sample X, what is the probability that X was generated from that class?

Succinctly represented as this distribution: P(X|c)

Generative Model: Given a class c from a set of classes C, and a sample X, what is the probability that X was generated from that class?

Succinctly represented as this distribution: P(X|c)

Now to generate an X, we can simply randomly sample from this distribution!

Generative Model: Given a class c from a set of classes C, and a sample X, what is the probability that X was generated from that class?

Succinctly represented as this distribution: P(X|c)

Now to generate an X, we can simply randomly sample from this distribution!

Examples

- Naive Bayes
- Variational Autoencoder (To be covered in this lecture)
- Generative Adversarial Networks (To be covered in *next* lecture!)

Low-dimensional representations

Cute puppy... but takes ~ half a million numbers to represent

Artificial vs. biological representations

X 172k =

How can we represent a puppy with less numbers?

Autoencoders

Basic architecture

Training

- "Self-supervised" training: desired output Y is just input X
- e.g. MSE loss
- Small bottleneck layer impedes training

you vs. the guy she tells you not to worry about

y-hat

What is a linear autoencoder?

- What happens if no nonlinearity?
- Linear encoder and decoder
- If L2 on encoder and decoder, exactly PCA (Kunin et al. 2019)

Convolutional Autoencoders

- Decoder has to "undo" the convolution / pooling
- Generally involves upsampling or "deconvolutions"
- Also conv layers reducing # of features

Source: https://stackabuse.com/autoencoders-for-image-reconstruction-in-python-and-keras/

Issue with Convolutional Autoencoders

- Space forms clusters
- Clusters are far apart
- What if we want to interpolate between classes?

Source: https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

Constraining the Features

- Currently no constraints on the features.
- What if we constrained the features to the standard normal distribution?

KL Divergence Loss

$$D_{KL}(p||q) = \sum_{i=1}^{N} p(x_i) log(\frac{p(x_i)}{q(x_i)})$$

Only using the KL Divergence Loss

Source: https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

Only using the KL Divergence Loss

... clearly can't only use a KL Divergence Loss

Source: https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

KL Divergence + Reconstruction Loss?

Source: https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

KL Divergence + Reconstruction Loss?

Much better!

KL Divergence + Reconstruction Loss?

$$\underset{\text{Regularization}}{\operatorname{argmin}_{q,r}} \left(KL(q(z|x) \,||\, p(z)) + \mathbb{E}_{z \sim q(z|x)} MSE(x,r(z)) \right)$$

loss

Variational autoencoders (VAEs) - motivation

- Want the low-dim representation z to have independent components
- Each component should contribute a similar amount
- z according to unit Gaussian

Example:

- Low-dim representation of faces eye color, hair length, etc.
- Each feature should be independent
- Scale so each feature has same variance

VAE Process

Source: http://kvfrans.com/variational-autoencoders-explained/

Why sample a latent vector?

 $\textbf{Source:} \ \underline{\textbf{https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf}$

VAE Process

$$\operatorname{argmin}_{q,r}\left(KL(q(z|x)\,||\,p(z)) + \mathbb{E}_{z\sim q(z|x)}MSE(x,r(z))\right)$$

Regularization

Reconstruction loss

Source: http://kvfrans.com/variational-autoencoders-explained/

VAE Computational Graph - Forward Pass

VAE Computational Graph - Backward Pass

Reparameterization Trick

Where did this loss function come from?

$$\underset{\text{loss}}{\operatorname{argmin}_{q,r}} \left(KL(q(z|x) \,||\, p(z)) + \mathbb{E}_{z \sim q(z|x)} MSE(x,r(z)) \right)$$

VAE Objective Function: $\operatorname{argmax}_{\theta} p_{\theta}(X)$

VAE Objective Function: $\operatorname{argmax}_{\theta} p_{\theta}(X)$

Latent Representation:
$$p_{\theta}(X) = \int p_{\theta}(z)p_{\theta}(X|z)dz$$
 (Think HMM's)

VAE Objective Function: $\operatorname{argmax}_{\theta} p_{\theta}(X)$

Latent Representation:
$$p_{\theta}(X) = \int p_{\theta}(z)p_{\theta}(X|z)dz$$
 (Think HMM's)

Can compute individual terms of integral, but not the integral itself!

Encoder Network: $q_{\phi}(z|x)$ Decoder Network: $p_{\theta}(x|z)$

Source: http://kvfrans.com/variational-autoencoders-explained/

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \qquad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$
$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \qquad (\text{Bayes' Rule})$$

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \qquad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \qquad (\text{Bayes' Rule})$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \qquad (\text{Multiply by constant})$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \qquad (\text{Logarithms})$$

$$\begin{split} \log p_{\theta}(x^{(i)}) &= \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z) \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \quad \text{(Bayes' Rule)} \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \quad \text{(Multiply by constant)} \\ &= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \quad \text{(Logarithms)} \\ &= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z)) + D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z \mid x^{(i)})) \end{split}$$

Equations from Stanford lecture linked here: https://www.youtube.com/watch?v=5WoltGTWV54

$$\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z)) + D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z \mid x^{(i)}))$$

$$\mathbf{E}_z \left[\log p_{\theta}(x^{(i)} \mid z) \right]$$

Log likelihood from our decoder network!

$$-D_{KL}(q_{\phi}(z\mid x^{(i)})\mid\mid p_{\theta}(z))$$

KL Divergence constraining z to STD Gaussian

$$D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z \mid x^{(i)}))$$

Intractable term

Equations from Stanford lecture linked here: https://www.youtube.com/watch?v=5WoltGTWV54

$$\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z)) + D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z \mid x^{(i)}))$$

$$\mathbf{E}_z \left[\log p_{\theta}(x^{(i)} \mid z) \right]$$
 Log likelihood from our encoder network!

$$-D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))$$

KL Divergence constraining z to STD Gaussian

$$\geq \mathbf{E}_z \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))$$
 (Since KL Div always non-negative)

Equations from Stanford lecture linked here: https://www.youtube.com/watch?v=5WoltGTWV54

$$\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))$$

$$\operatorname{argmin}_{q,r} \left(KL(q(z \mid x) \mid\mid p(z)) + \mathbb{E}_{z \sim q(z \mid x)} MSE(x, r(z)) \right)$$

Transposed Convolution ("Deconvolution")

Source: https://github.com/vdumoulin/conv_arithmetic

☐ When poll is active, respond at PollEv.com/konradkordin059 ☐ Text KONRADKORDIN059 to 22333 once to join

What works best to increase resolution?

Upsampling an image

Upsampling + Convolution

Unpooling

Transposed Convolution

None of the above

Issues with VAEs

Current fix is to use a VAE + GAN (you'll learn about GANs in the next lecture)

Transposed Convolution ("Deconvolution")

Source: https://github.com/vdumoulin/conv_arithmetic

Checkerboarding Artifact

Source: https://distill.pub/2016/deconv-checkerboard/

Resize Convolutions

Deconvolution in last two layers.

Artifacts prior to any training.

Deconvolution only in last layer.

Artifacts prior to any training.

All layers use resize-convolution.

No artifacts before or after training.

Source: https://distill.pub/2016/deconv-checkerboard/

Better Weight Initialization

- Train unsupervised with unlabeled inputs
- Throw away decoder network
- Start training with labeled data!

"Explainable" AI

What do these weights mean? What if we do a mis-prediction?

"Explainable" AI

Vary each of the features in the code vector and see what the output looks like!

VAE Vector Arithmetic

Style Disentanglement

Zartist

 $\boldsymbol{Z}_{\text{time}}$

 $\mathbf{Z}_{\text{style}}$

Mona lisa painted by Dali in 2019?

Cubist "Starry Night" in 1500?

Style Disentanglement

Figure 1. VAE architecture.

Interpolation of Latent Vectors - Music VAE

How could lecture 9 have been better?

