

WebSphere Education

Profile and dynamic analysis

Unit 19

Unit objectives

After completing this unit, you should be able to:

- Conduct profile analysis:
 - Profile specification
 - Cases summary
- Conduct dynamic analysis:
 - Aggregated
 - Process instance
 - Process cases
 - Process comparison

Analyzing simulation data in Modeler

Analyzing process simulation profiles

- Profile analysis is performed on process simulation profiles before simulations are run.
 - A simulation profile must be created before conducting the analysis.
 - Profile specification.

• Shows the simulation settings for each of the activities in a simulation

profile

- Static process cases summary:
 - Shows summary information describing each of the process cases (paths) through the process recorded by the simulation profile

Profile specification

- Specification provides a way of reviewing, documenting, and validating values that are used during a simulation run.
- This analysis reports seven different types of activities:
 - Decisions, loops, tasks, global tasks, services, subprocesses, and global processes
- Analysis attributes can be customized by activity type.

Static process cases summary

- A static case summary shows each of the process cases (paths).
- The model cannot contain the following elements, which keep Modeler from determining a finite set of process cases:
 - Repositories, notification broadcasters, notification receivers, observers, and timers
 - The presence of these elements causes an error during analysis.
- Provides a comprehensive description of the possible paths
 - Including the costs and revenue generated by each possible path
 - Includes the expected relative frequencies of each path
- Results for this analysis use several assumptions and limitations

Static Process Cases Summary Process Friday, February 2, 2007 1:22:17 PM EST 2:26 PM										
Case Name	Activity Name	Cost	Revenue	Run Cost	Resource Cost	Profit	Elapsed Duration	Working Duration	Resource Duration	Distribution
☐ Case 1		U	USD0.00	USD16	USD0.00	(U	20 minutes	20 minutes	0 seconds	50.00%
	Decision	U	USD0.00	USD0.00	USD0.00	US	0 seconds	0 seconds	0 seconds	
	Task	U	USD0.00	USD5.00	USD0.00	(U	6 minutes	6 minutes	0 seconds	
	Task:2	U	USD0.00	USD11	USD0.00	(U	14 minutes	14 minutes	0 seconds	
☐ Case 2		U	USD0.00	USD5.00	USD0.00	(U	6 minutes 1 se	6 minutes 1 se	0 seconds	50.00%
	Decision	U	USD0.00	USD0.00	USD0.00	US	0 seconds	0 seconds	0 seconds	
	Task	U	USD0.00	USD5.00	USD0.00	(U	6 minutes	6 minutes	0 seconds	
	Task:3	U	USD0.00	USD0.00	USD0.00	US	1 second	1 second	0 seconds	
All Cases		U	USD0.00	USD10	USD0.00	(U	13 minutes 0	13 minutes 0.5	0 seconds	

Dynamic analysis

- Dynamic analysis shows the results of a process simulation from different perspectives:
 - Time, money, and statistics
- Analysis can be performed at three levels of granularity:
 - Aggregated analysis
 - Uses all the data from the entire simulation
 - Process cases analysis
 - Uses data from specific cases
 - Process instance analysis
 - Uses data from a specific instance of a process case
- Comparative analysis
 - Compares two simulation runs

Analyzing simulation data

- A simulation provides a wealth of data, but without detailed analysis, that data is limited in its usefulness.
 - To get the most out of simulation data, dynamic analysis needs to be performed on the results.
 - Extract information regarding scheduling, costs, output, and other statistics pertaining to your processes.

Aggregated analysis (1)

- Used to gain an understanding of the behavior of the process as a whole
 - Most broadly scoped of the dynamic analyses
 - Uses all the data from the entire simulation run
- Determines information about activities and resources used in all process instances generated during a simulation

Aggregated analysis (2)

- Analyzing activity durations
 - Shows the average time it takes for each activity to complete
 - Indicates time taken waiting for resources to be available
- Analyzing activity costs
 - Understand the costs incurred by the activities
- Analyzing activity cost per time unit
 - Compute the average rate of cost of each activity
- Analyzing activity statistics
 - Information on the successful completion of the process activities
- Analyzing activity resource allocations
 - Summary of the resources allocated to each activity
 - Resources allocated and the average allocation time, cost, and shortages for each resource

Aggregated analysis (3)

- Analyzing resource usage
 - Activities that each resource was allocated to
 - Information about time, cost, and shortage durations
 - Detailed information about every allocation of the resource
- Analyzing classifier cost and duration
 - Information regarding the average cost and duration of an entire classification of activities within the process.
- Analyzing net present value and internal rate of return
 - Current net present value of a process
 - · Need to provide an initial cost, a discount rate, and a payback period
 - Internal rate of return necessary to produce a net present value of zero by the end of the payback period

Aggregated analysis (4)

- Analyzing the break-even point
 - Number of times a process must run to generate enough profit to recover a specified fixed cost
 - Value is based on the average costs and revenue for the process as a whole.
- Analyzing process resource allocations
 - How each activity uses its resources to help identify resource shortages
 - How the resources required by an activity contribute to the cost
- Analyzing process resources
 - List of the resources used by the process
 - Average allocations of the resources

Process cases analysis (1)

- Used to gain an understanding of a specific case (process flow) within the process
- Shows weighted average values, where the average value is weighted for each process case to account for the distribution of process instances to that case relative to other cases
- Organizes and averages the simulation results generated for each process case, which enables you to investigate variations in performance between different patterns of process flow

Process cases analysis (2)

- Analyzing process cases summaries
 - Display summary information for each of the process cases produced during a simulation
- Analyzing process durations
 - Examine the average durations of all process cases
- Analyzing process activities total times
 - Determine the average total time values for all process instances
- Analyzing process costs
 - Examine the average costs, revenues, and profits for all process instances
- Analyzing classifier costs and durations
 - Show the costs and durations of activities associated with each classifier value used in a process

Process instance analysis (1)

- Process instance analysis is used to gain an understanding of the behavior of a specific token's run through the process.
 - Get a detailed understanding of each individual pass through a process during simulation
- Process instance analyses are the most granular of the dynamic analyses.
 - Use data from a single instance of a process case

Process instance analysis (2)

- Analyzing process instance times
 - Display the durations of each of the activities involved in a process instance
- Analyzing process instance costs
 - Display detailed information about the cost and revenue for each activity within a process instance
- Analyzing process instance resource allocation
 - Obtain detailed information about the resources allocated to activities in a process instance
- Analyzing process instance activities free float
 - Display information about the available free float (slack time) periods associated with activities in a process instance
- Analyzing process instance critical paths
 - Display the path of longest duration within the process instance
- Analyzing process instance shortest paths
 - Display the path in a process instance that has the shortest duration of all parallel paths

Processes comparison analysis (1)

- Used to highlight differences and similarities in simulation results between two different simulation runs
 - Different versions of a modeled process
 - Different simulation sizes
 - Different decision probabilities
- Compares the weighted average analysis results for two simulated processes that use the same input parameters
 - For example, compare the average length of time it takes to complete your current process versus your proposed future process.

Processes comparison analysis (2)

- Processes duration comparison analysis
 - Compares the average duration and throughput of two processes
- Processes activities total time comparison analysis
 - Compares the average duration of two processes
- Processes cost comparison analysis
 - Compares the average cost and revenue results
- Processes NPV and IRR comparison analysis
 - Compares process net present value (NPV) and internal rate of return (IRR) analysis results that use the same input parameters
- Processes break-even comparison analysis
 - Compares the break-even analysis results

Processes comparison analysis (3)

- Processes resources time comparison analysis
 - Compares the average resource allocation durations based on the same simulation snapshot
 - Can be results from different profiles, or two sets of results from the same profile
- Processes resources cost comparison analysis
 - Compares the average resource allocation costs based on the same simulation snapshot
 - Can be results from different profiles, or two sets of results from the same profile
- Processes classifier duration comparison analysis
 - Compares the average classifier elapsed duration results that use the same input parameters
- Processes classifier cost comparison analysis
 - Compares the average classifier cost results that use the same input parameters

Dynamic analysis: Preferences

Use of statistical distributions in simulation

- Simulation provides an opportunity to understand how a process will behave once implemented.
- Statistical distributions allow a model to reflect more accurately the real world behavior of the business process.
- Distributions help build randomness into a model, something averages cannot do.
- Measured data may be limited, and making decisions with small sample sizes increases the risk of incorrect forecasts or decisions.

Where are distributions used?

- In Modeler, probability distributions can be assigned to:
 - Token creation
 - Task completion times
 - Task costs
 - Task revenue
- Applying distribution settings to a model in the appropriate places enables greater accuracy in the representation of the process.

Distributions in WebSphere Business Modeler (1 of 2)

- Beta: Degree to which results can be believed to be valid
- Continuous: Values generated are evenly distributed
- Erlang: Useful for representing waiting times in queuing systems
- Exponential: Fits time-series data, like arrival times a constant rate
- Gamma: Useful for continuous random variables constrained ≥ 0

© Copyright IBM Corporation 2008

Distributions in WebSphere Business Modeler (2 of 2)

- Johnson: Best fit distribution
- Lognormal: For random variables > 0
- Normal: Useful for a large variety and type of data
- Poisson: Used when probability is small and opportunities are large
- Random list: All equal probability
- Triangular: Defines most likely value
- Uniform: Distributes values evenly
- Weibull: Useful in modeling reliability
- Weighted list: Weighted probability for each value

Distribution parameters

 The settings that you can specify depend on the type of distribution you select, as shown in the following table:

Distribution type	Settings		
Exponential	Mean		
Gamma	Mean, Standard Deviation		
Lognormal	Mean, Standard Deviation		
Normal	Mean, Standard Deviation		
Poisson	Mean		
Uniform	Minimum, Maximum		
Weighted list	Probabilities, Values		
Random list	Values		

Checkpoint: Profile and dynamic analysis

Your instructor will review these questions with you as a group. If time permits, the instructor may provide you time to answer the questions on your own before the group discussion.

- 1. What is profile specification?
- 2. What is the function of Process Cases Summary?
- 3. What is dynamic analysis?
- 4. Which analysis shows the differences and similarities in simulation results between two different simulation runs?
- 5. What is the advantage of using statistical distributions in simulation?

Checkpoint solutions: Profile and dynamic analysis

- Profile specification provides a way of reviewing, documenting, and validating the values that are used during the run of a simulation.
- 2. Process Cases Summary shows each of the process cases (paths) through the process.
- 3. Analysis of the results of a process simulation from different perspectives: Time, money, and statistics
- 4. Processes Comparison Analysis
- 5. Build randomness into a model

Unit summary

Having completed this unit, you should be able to:

- Conduct profile analysis:
 - Profile specification
 - Cases summary
- Conduct dynamic analysis:
 - Aggregated
 - Process instance
 - Process cases
 - Process comparison

Exercise overview

In this exercise you will:

- Use profile analysis
- Use dynamic analysis and aggregated analysis
- Use dynamic analysis process analysis
- Generate and export reports
- Set up a simulation
- Run a simulation and generate analysis