3.2 如果在基于 \mathbf{SiO}_2 的结构中栅氧厚度为 2nm,那么基于 \mathbf{HfO}_2 的电介质厚度为多少时能提供相同的电容?

SiO₂ 的介电常数 $(k_{SiO_2}$ =3.9) ; HfO₂ 的介电常数 $(k_{HfO_2}$ =20)

$$C_{SiO_2} = \frac{k_{SiO_2} \varepsilon_0 WL}{t_{SiO_2}} \qquad C_{HfO_2} = \frac{k_{Hfo_2} \varepsilon_0 WL}{t_{HfO_2}}$$

HfO₂的电介质厚度
$$t_{HfO_2}$$
= $k_{Hfo_2} \frac{t_{SiO_2}}{k_{SiO_2}}$ = 20 * (2/3.9) nm ≈ 10.26 nm

3.6 采用 SUBM 规则, 计算图 3.39 所示带接触的金属 1 的最小节距并用 λ 表示。 有没有可以减少这一节距的布线策略? (98 页 3.3.3 最后一段)

金属接触尺寸 $2 \times 2\lambda$,覆盖接触 1λ ,金属的最小间距 3λ ,因此带有接触的金属线的节距为 7λ 。

【偏移策略】当两条线都为 3 λ 宽且它们的接触相互错开时,间距减少了接触超出最小金属宽度的一半距离,节距可以进一步减小至 6.5 λ。

