1 cf's 4A problem

2020-01-12 09:19:39.244631

divide a even ingeter into two parts, each of them is even 这说明了这个整数能被 2 整除(因为 even + even = even),且不能为 2.

2 Python 的编码问题

2020-01-12 12:17:27.624951

尝试用 print('...', file=out_put_file) 来进行文本输出,发现输出的文本不是用 UTF-8 来编码的,而是好像用的国标(国家的标准?)

在 str 中字符是用 unicode 来编码的,是没有被 encode 的二进制数据,输出到文件,输出的内容编码是由系统的配置决定的。

猜想: open 时会指定 encoding 可以解决这个问题。

open 时指定 encoding 会有带有编码信息的属性的文本对象。因为有状态的影响, 所以该对象的 write method 会用编码下的二进制实现去写文件。

而 print 可以指定 file,但是它(应该)不会读取文件内部的编码状态,(这个时候我想起来了,有时用 u8 编码的时候好像会在文件头留下一个特别的标记?)而是直接用系统指定的编码格式去输出二进制数据去写数据。

猜想: print 是把文件输出到 sys.stdout 上(应该,至少意思是这样)。 输出的环境是由系统的配置/环境决定的,为了环境能够正常显示文本数据, 就应该会用配置下的文件编码格式来编码 Unicode 的数据流,这也是为什 么它不会去读取文本文件的编码状态的原因吧?(甚至还没有参数可以调节 输出的编码状态,这样)

3 matplotlib 的字体输出

2020-01-12 12:19:30.764825

这个问题我之前也记在白皮书上了的,但是在写一点也 ok。

matplotlib 以什么字体输出是根据 cont.family,font.serif,font.sans-serif 等决定的。(text.usetex = True 是指排版用 T_EX,字体用配置指定的,还是全部由 T_FX 自己决定的?)

font.family 指定输出的字体的字系,有诸如 serif 可以选择。

一般 serif ,中文字体感觉不错的有经典的 SimSun (宋体),而 sans-serif ,用于编程的 Consolas 也不错。

关于修改配置,可以在文件中修改,或者用 plt.rcParams['xxxx.yyyy'] = data 来修改的。(当然可能有其他的修改输出格式的办法)

在 axes.texta 中,用 family 参数可以临时指定字系。应该也可能有 其他的方法可以。

4 matplotlib 的 cmap

2020-01-12 12:20:10.551049

之前网上的示例用到了'RdYlGn'的 cmap ,通过 plt.get_cmap 来获取的。之前以为 RdYlGn 的中间是白的,以为它好像是: $Red \rightarrow Orange \rightarrow White \rightarrow Lightgreen \rightarrow Green$ 的样子。结果看了才知道并不是这样子的,它中间反而是黄的,是 Y1 的样子,有一说一,确实,这也太白了一点。

也有颜色表,比如 tab20c ,一格一格的。

不是很确定,返回的 cmap 对象可能调用一个元素为 int 或者 float 的可迭代对象,然后返回对应的颜色列表。

5 使用 TikZ 创建条件图

2020-01-12 12:20:53.074716

我最近非常想要设计一个语法统一优美的作图语言,我简直被 python 宠坏了。

唉.....

先提一句: xtikzxfill[orange](1ex, 1ex)circle (1ex); 可以画个圆。(这个 TikZ 太麻烦了。

而 xtikz xdraw[->] begin -- end; 可以用来画箭头。

今天在知乎上面逛了一圈,有人说可以用 python 来搞个 UML 图,试试就试试。

p.s. 我现在用的是 graphviz 的 dot 语言。还可以吧,但是总是有点麻烦。语法格式也很不统一。

6 IATEX 中的对齐问题

2020-01-12 12:21:33.898432

LATEX 中有两种对齐方式: (1) 环境对齐, (2) 命令对齐。其中环境的话是上下都空了个间隔,用命令会好一点。但怎么说呢,命令的话会作用到一个 xpar 。

注: VsCode 中用 \$nunber 来表示捕获的分组。

7 Python 中的 setup.py

2020-01-12 12:22:21.429750

通过 setup.py 文件,可以使用命令 python setup.py install 来安装包。(注,要在 setup.py 目录下运行才会 ok,也就是说, cwd 是 setup.py 的父目录)

也可以使用 setuptools.setup(...) 的那啥来指定外部名,之后就可以在外面直接用了。

8 python 的 pyyaml 问题

2020-01-12 12:22:55.901702

直接用 pyyaml 会有点问题。现在我是在用 ruamel.yaml 的第三方包。 效果不错,但是还有要改进的地方。我想去参与开发这个项目。有一说 一,这个项目还不错的说。

9 cf's 71A problem

2020-01-12 09:50:00.711916

在 C++ 中因为对象没有特殊方法(当然,构造方法和解构方法除外,还有运算符重载,如果这也算的话)

所以说并不是所有对象都可以转化为字符串的。从另一个方面来讲,如果过于底层的话,的确不需要用到这种方法(比如 Python 的 __str__ 方法)。

(话说,我是在说服自己吗??)

对于基本的数据, std::string 提供了特殊的方法, 在 std 的命名空间里, 提供了方法 std::to_string(number_type),

另外,如果输出要换行的话,也不能忘掉。

p.s. 在上一题中, 我也要时刻注意输入数据的范围。

10 cf's 118A problem

2020-01-12 15:35:41.865311

遇到了几个有意思的问题。

首先时如何把字符串转换为小写的字符串。在 python 中只需要使用 str.lower() 就可以得到一个拷贝了。(谢天谢地,我现在特别怀念 python) 但是很明显这在 C++ 中时行不通的。

第一种转换方法是使用 transfrom 函数再配上一个 lambda 函数。transfrom 是由标准库 algorithm 提供的,在关于它的介绍网站说的那样(在 https://en.cppreference.com/w/cpp/algorithm/transform 中),它的几个声明之一是:

```
template < class InputIt, class OutputIt, class
    UnaryOperation >
OutputIt transform( InputIt first1, InputIt last1,
    OutputIt d_first,
    UnaryOperation unary_op );
```

它会把 unary_op 作用到这些 [frist1, last1) 上去,而输出到 $[frist2, +\infty)$ 上去。

而 lambda 函数,最简单的形式是这两种:

```
[ captures ] ( params ) { body }
[ captures ] { body }
```

回到主题来,这个函数就是为了封装住来自 cctype 的函数 std::tolower 的函数原型是 int tolower(int ch);

以上是第一种方法。

第二种方法是使用 boost 库,不表。

之后遇到了有多个使用或和等于的逻辑判断符,换个思路,其实用 set 可能也是一个不错的思路。有一点很有意思,如果找不到,一般会返回该容器的 .end() 的值。

11 cf's 85A problem

2020-01-13 01:32:53.936011

和上次那道关于字符串的题很像。都涉及到了把字符串转换为相应的小写形式。

关于转换的函数,应该是下列的样子:

我自己在使用中的时候,lambda 函数没有加上 return 语句,下次一定。(lambda 函数是一个黑盒,必须要有输入有输出)。

12 关于 C++ 中的 using 和 typedef

2020-01-13 17:25:19.221487

总是因为泛型的原因要声明很长的变量类型,但是其实有为变量类型设置别名的方法。

第一点是使用 typedef 来重命名变量。格式如下:

```
typedef org new;
```

另外的方法是使用 using 来进行命名变量的工作。这是 C++11 起才 开始支持的,语法会更好一些,更统一化一些。另外它还支持模板操作。普 通的用法是这样:

```
using new = org;
```

或者说这样:

```
template <typename T> using my_type = whatever<T>;
```

my_type<int> my_var;

这样相较而言, typedef 就好像是宏定义的一样(当然并不是)。

13 Python 中的 ___new___ 方法

2020-01-14 09:28:06.576783

在 Python 中的 __init__ 方法一般只是用来设置属性用的。换言之, __init__ 只是在使用 __new__ 后获得对象后给对象加属性而使用的特殊方法。

所以说,真正可以获得对象的方法,还是要用到 __new__ 的特殊方法。

而一般的类设计是不需要定义 __new__ 特殊方法的,原因是对于它们来说继承属于 object 类的 __new__ 方法就 OK 了(事实上是没有 object 这个类型的声明的,但是关于这个概念,每个设计类的人都要理解,因为它是用 Python 的解释器实现的,是一切类的基石,就像内建类型一样,不过话说,object 也的确是内建类型)。

所以可以认为 __new__ 是特殊方法中的特殊方法。是调用类之后的之后第一个被调用的类方法。而它生成的对象更是其他方法的基础。

因为这个,__new__ 不同与其他方法一样,反之,它被传入的第一个参数是 cls,是类对象,而不像其他方法一样传入的是实例对象,也就是 self。在最后的最后,__new__ 会返回一个类对象所对应的实例对象。

从类到对象,一般而言只需要调用 object.__new__(cls) 方法就可以了。如果想对自己的对象加入更多的细节,都可以在自己的类下的 myclass.__new__ 定义余下的,甚至还可以实现元类。

当然如果有选择的话,在自己的对象下实现 __init__ 来定义,这永远是最优选择,就如 Python 之禅所说的一样。当然从另一个方面来看的话,我们会发现 __init__ 并没有我们想象的那么必不可缺。很多时候甚至可以找到其他的办法来实现 __init__ 方法所能办到的。但是其他的方法一般来说完全没必要,简单的 __init__ 已经简单得够招人喜欢了。

在 __new__ 中,为了使用父类所已经完成了的工作,也可以使用强有力的 super() ,它的参数还有几个可以传值呢,从而为继承提供了更好的基础。

14 Python 中的 hash

2020-01-15 02:24:11.383948

想要完成的功能:为不同的类型的对象进行一个独一无二的 hash 标记。为了完成这个功能,我看了看 Python 的标准库, hashlib 库。hashlib 库为 hash 算法提供了良好的支持,比如说要计算 my-object 的 sha-1 的哈希值,可以这样:

```
m = hashlib.sha1() # 新建sha1对象
m.update(str(my_object))
```

m.digest() # sha-1 值

m.hexdigest() #表示为16进制字符串的sha-1值

(?):update 可以直接接受字符串吗? 它不用被编码吗?