Lecture 10

Last time: Duminil - Copin = On(p) > C nOn(p)

5 0 R(p)

Lemma: Let I find no be a seq. of inc and diff ble functions satisfying

(i) $f_{\mathbf{n}}:(a,b)\longrightarrow(o,H)$ + n

(li) I find converges pointwise in (a,b)

 $(ii) \quad f_n > \frac{1}{\sum_{k=1}^{n-1} f_k} f_n$

Then I xo E [a,b] S.t.

(a) $\forall x \in (a, x_0)$ and n large enough S.t. $f_n(z) \leq M \exp\left(-\frac{\ln(z_0-z)}{2-1}\right)$

 $x \in (x_0, b)$ A

f:= lim f satisfies

 $\frac{f(x)}{} \geqslant \frac{x-x_0}{}$

Proof of lemma: (Analytic proof)

Let: $9 := \min \left\{ \sum_{k=0}^{n-1} f_k(x) \right\} > 1$ $\log \left(\sum_{k=0}^{n-1} f_k(x) \right) > 1$ We'll show that the lemma holds for q= 20 (1) For q=a, the lemma holds (See last part same argument) 3 Suppose 97 a Take $x,y \in (\alpha,q)$ s.t. y = x+q

 $\frac{1}{2} = \frac{1}{2} = \frac{1}$

·tiz N E &

 $\frac{\int_{k=0}^{\infty} f_{k}(y)}{\log n} < \frac{1}{2} \quad \forall \quad n \ge N$

So
$$\sum_{k=0}^{n-1} f_k(y) < \sqrt{n}$$

For all
$$3 \in [x,y]$$
 $\frac{n-1}{2}$ $f_{k}(3) < \sqrt{n}$

By (iii)
$$f_n > \sqrt{n} f_n(3)$$

$$\int_{x}^{y} \frac{f_{n}}{f_{n}(2)} \geqslant \int_{x}^{y} \int_{x}^{y} \log f_{n}(y) - \log f_{n}(x)$$

$$\geqslant \int_{x}^{y} \int_{x}$$

=)
$$f_n(y)$$
 $\geq f_n(x) e^{\int n(y-x)}$

$$f_n(x) \leq f_n(y) e^{-\sqrt{n}(y-x)}$$

$$f_n(x) \leq M e^{-\sqrt{n}(y-x)}$$

$$= Me^{-\sqrt{n}(q-x)}$$

We need to show (b) holds for 20=9.

Define
$$T_n$$
 as $T_n(3) = 1$ $\frac{n}{109n} = 1$ $\frac{n}{2}$

Then
$$T_n'(z) = \frac{1}{\log n} \sum_{i=1}^n \frac{f_i'(z)}{i}$$

Now,
$$T_{n}(3) > \frac{1}{\log n} \sum_{i=1}^{n} \left[\log \sum_{k=0}^{i-1} f_{k}(3) - \log \sum_{k=0}^{i-1} f_{k}(3) \right]$$

$$\lim_{k \to \infty} \int_{\mathbb{R}^{n}} \frac{dx}{dx} - \log x - \log x$$

$$=\frac{1}{\log \log \sum_{k=0}^{n} f_{k}(3) - \log f_{0}(3)}$$

Take 9 < w < 3 < b

$$\frac{T_n(3) - T_n(\omega)}{3 - \omega} = T_n'(3) \quad \text{for some } 3 \in (\omega, 3)$$

W>g and ps are non-decreasing, so

lumsup
$$\frac{T_n(3)-T_n(\omega)}{3-\omega} > \frac{1}{2}$$
 (by choice of q)

[Tn] converges to introise to f in (a,b)

:.
$$f(3) > \frac{1}{2}(3-\omega)$$
 for all $\omega > 9$
5>3>9

OSSS Inequality

Let $\{(\Delta_i, \mathcal{F}_i, \mu_i): 1 \leq i \leq n\}$ be a finite collection of measure spaces $(\Delta_i, \mathcal{F}_i, \mu_i)$ be the product space.

Ne	Started	with a	- root	Index	ε, a	ınd	Q
Fam	Started iily of d	decision (wes 3	Do:1≤39	' 1 sn-12		
	<i>)</i>		l	′ J)		
The	index	6 					
	= 1+2	φ. (ε,,-	(0,	ω(e ;,),	., ω(e	((,,	
		3	J				
The	algorilhm	T Ste	ps at	T if	the	value	of
the	J Funct	tion is	determin	ned at	time	ر ۲۰	
i.e.	algorithm funct $e_1, e_2 \dots$	ور کی کور	, , h	Pop duter	-MMC	the f	anction. F
Def n	= The	algor 17h	m	ueals ea	dge e	ī if	
	ૌ∈રૄેિ	٠٠٠ گ _و ک					
Def ^h		Č					_
S_{e_j}	(十):=	M &T rev	eals eog	— (ev	ealment	- of	Ĵ
	Wc need we do	independent	dence (product n	reasure	e w	reb) came
Defn	: The	influence	of	an edge	_ و ا		