Finite Difference Scheme for Multi-Asset Black Scholes PDE

Vishisht Priyadarshi (18012305)

Aadi Gupta (180123059)

Eklavya Jain (180123065)

Solution using Finite Difference Scheme

Operator Splitting Method

Solving System of Equations

Numerical Experiments and Analysis

Solution using Finite Difference Scheme

The n-asset Black Scholes equation is:

$$\frac{\partial u(\mathbf{s},t)}{\partial t} + \frac{1}{2} \sum_{i,j=1}^{n} \sigma_i \sigma_j \rho_{ij} s_i s_j \frac{\partial^2 u(\mathbf{s},t)}{\partial s_i \partial s_j} + r \sum_{i=1}^{n} s_i \frac{\partial u(\mathbf{s},t)}{\partial s_i} = r u(\mathbf{s},t),$$

Using the following operator, the 3-asset BS equation can be re-written as:

$$\mathcal{L}_{BS}u = \frac{1}{2}\sigma_{x}^{2}x^{2}\frac{\partial^{2}u}{\partial x^{2}} + \frac{1}{2}\sigma_{y}^{2}y^{2}\frac{\partial^{2}u}{\partial y^{2}} + \frac{1}{2}\sigma_{z}^{2}z^{2}\frac{\partial^{2}u}{\partial z^{2}} + \rho_{xy}\sigma_{x}\sigma_{y}xy\frac{\partial^{2}u}{\partial x\partial y} + \rho_{yz}\sigma_{y}\sigma_{z}yz\frac{\partial^{2}u}{\partial y\partial z} + \rho_{zx}\sigma_{z}\sigma_{x}zx\frac{\partial^{2}u}{\partial z\partial x} + rx\frac{\partial u}{\partial x} + ry\frac{\partial u}{\partial y} + rz\frac{\partial u}{\partial z} - ru.$$

$$\frac{\partial u}{\partial \tau} = \mathcal{L}_{BS}u \text{ for } (x, y, z, \tau) \in \Omega \times (0, T], \quad u(x, y, z, 0) = u_T(x, y, z)$$

Domain Discretization and Boundary Conditions

The domain is discretized with a non-uniform grid step, i.e.,

$$\rightarrow$$
 $h_i^x = x_{i+1} - x_i$

$$\rightarrow$$
 $h_j^y = y_{j+1} - y_j$

$$\rightarrow$$
 $h_k^z = z_{k+1} - z_k$

- At the left end, Dirichlet conditions are used, i.e., $u(0,y,z,\tau) = u(x,0,z,\tau) = u(x,y,0,\tau) = 0$
- At the right end, homogeneous Neumann boundary conditions are considered:

$$\frac{\partial u}{\partial x}(L, y, z, \tau) = \frac{\partial u}{\partial y}(x, M, z, \tau) = \frac{\partial u}{\partial z}(x, y, N, \tau) = 0$$
for $0 \le x \le L$, $0 \le y \le M$, $0 \le z \le N$, $0 \le \tau \le T$

This type of non-uniform discretization is something different from our usual theory content.

Derivatives under non-uniform discretization

The 1st order derivative is defined as:

$$D_x u_{ijk} = -\frac{h_i^x}{h_{i-1}^x (h_{i-1}^x + h_i^x)} u_{i-1,jk} + \frac{h_i^x - h_{i-1}^x}{h_{i-1}^x h_i^x} u_{ijk} + \frac{h_{i-1}^x}{h_i^x (h_{i-1}^x + h_i^x)} u_{i+1,jk},$$

The 2nd order derivative is defined as:

$$D_{xx}u_{ijk} = \frac{2}{h_{i-1}^x(h_{i-1}^x + h_i^x)}u_{i-1,jk} - \frac{2}{h_{i-1}^xh_i^x}u_{ijk} + \frac{2}{h_i^x(h_{i-1}^x + h_i^x)}u_{i+1,jk},$$

The mixed derivative is defined as:

$$D_{xy}u_{ijk} = \frac{u_{i+1,j+1,k} - u_{i-1,j+1,k} - u_{i+1,j-1,k} + u_{i-1,j-1,k}}{h_i^x h_j^y + h_{i-1}^x h_j^y + h_i^x h_{j-1}^y + h_{i-1}^x h_{j-1}^y},$$

Solution using Finite Difference Scheme

Operator Splitting Method

Solving System of Equations

Numerical Experiments and Analysis

Operator Splitting Method

- ❖ A numerical method to compute solutions of a differential equation.
- The method can be understood as a process of three steps:
 - > The differential equation is split into multiple parts over a time step
 - Solution to each part is computed separately
 - All solutions are combined to form original solution

Operator Splitting Method

- Consider the option has m underlying assets and the price at time level n, u(n) is known. The Black Scholes PDE is of order m in space.
- ❖ The basic idea of operator splitting is to split the finite difference equations into m such that we get m discrete equations solved implicitly one after another to approximate u(n+1).

$$egin{aligned} rac{u_{ij}^{n+1/2}-u_{ij}^n}{\Delta t/2} &= rac{\left(\delta_x^2 u_{ij}^{n+1/2} + \delta_y^2 u_{ij}^n
ight)}{\Delta x^2} \ rac{u_{ij}^{n+1}-u_{ij}^{n+1/2}}{\Delta t/2} &= rac{\left(\delta_x^2 u_{ij}^{n+1/2} + \delta_y^2 u_{ij}^{n+1}
ight)}{\Delta y^2} \end{aligned}$$

$$\frac{u_{ijk}^{n+\frac{1}{3}} - u_{ijk}^{n}}{\Delta \tau} = \left(\mathcal{L}_{BS}^{x} u\right)_{ijk}^{n+\frac{1}{3}},$$

$$\frac{u_{ijk}^{n+\frac{2}{3}} - u_{ijk}^{n+\frac{1}{3}}}{\Delta \tau} = \left(\mathcal{L}_{BS}^{y} u\right)_{ijk}^{n+\frac{2}{3}},$$

$$\frac{u_{ijk}^{n+1} - u_{ijk}^{n+\frac{2}{3}}}{\Delta \tau} = \left(\mathcal{L}_{BS}^{z} u\right)_{ijk}^{n+1},$$

Discrete Difference Operators

Using operator splitting, the discrete difference operator is defined as:

$$(\mathcal{L}_{BS}^{x}u)_{ijk}^{n+\frac{1}{3}} = \frac{(\sigma_{x}x_{i})^{2}}{2}D_{xx}u_{ijk}^{n+\frac{1}{3}} + rx_{i}D_{x}u_{ijk}^{n+\frac{1}{3}} + \frac{1}{3}\sigma_{x}\sigma_{y}\rho_{xy}x_{i}y_{j}D_{xy}u_{ijk}^{n}$$

$$+ \frac{1}{3}\sigma_{y}\sigma_{z}\rho_{yz}y_{j}z_{k}D_{yz}u_{ijk}^{n} + \frac{1}{3}\sigma_{z}\sigma_{x}\rho_{zx}z_{k}x_{i}D_{zx}u_{ijk}^{n} - \frac{1}{3}ru_{ijk}^{n+\frac{1}{3}},$$

$$(\mathcal{L}_{BS}^{y}u)_{ijk}^{n+\frac{2}{3}} = \frac{(\sigma_{y}y_{j})^{2}}{2}D_{yy}u_{ijk}^{n+\frac{2}{3}} + ry_{j}D_{y}u_{ijk}^{n+\frac{2}{3}} + \frac{1}{3}\sigma_{x}\sigma_{y}\rho_{xy}x_{i}y_{j}D_{xy}u_{ijk}^{n+\frac{1}{3}}$$

$$+ \frac{1}{3}\sigma_{y}\sigma_{z}\rho_{yz}y_{j}z_{k}D_{yz}u_{ijk}^{n+\frac{1}{3}} + \frac{1}{3}\sigma_{z}\sigma_{x}\rho_{zx}z_{k}x_{i}D_{zx}u_{ijk}^{n+\frac{1}{3}} - \frac{1}{3}ru_{ijk}^{n+\frac{2}{3}}$$

$$(\mathcal{L}_{BS}^{z}u)_{ijk}^{n+1} = \frac{(\sigma_{z}z_{k})^{2}}{2}D_{zz}u_{ijk}^{n+1} + rz_{k}D_{z}u_{ijk}^{n+1} + \frac{1}{3}\sigma_{x}\sigma_{y}\rho_{xy}x_{i}y_{j}D_{xy}u_{ijk}^{n+\frac{2}{3}}$$

$$+ \frac{1}{3}\sigma_{y}\sigma_{z}\rho_{yz}y_{j}z_{k}D_{yz}u_{ijk}^{n+\frac{2}{3}} + \frac{1}{3}\sigma_{z}\sigma_{x}\rho_{zx}z_{k}x_{i}D_{zx}u_{ijk}^{n+\frac{2}{3}} - \frac{1}{3}ru_{ijk}^{n+1},$$

Solution using Finite Difference Scheme

Operator Splitting Method

Solving System of Equations

Numerical Experiments and Analysis

System of Equations

- $\text{Consider this equation:} \quad \frac{u_{ijk}^{n+\frac{1}{3}} u_{ijk}^n}{\Delta \tau} = (\mathcal{L}_{BS}^x u)_{ijk}^{n+\frac{1}{3}}$
- Re-writing it as: $\alpha_i u_{i-1,jk}^{n+\frac{1}{3}} + \beta_i u_{ijk}^{n+\frac{1}{3}} + \gamma_i u_{i+1,jk}^{n+\frac{1}{3}} = f_{ijk}$, where

$$\begin{split} \alpha_i &= -\frac{(\sigma_x x_i)^2}{h_{i-1}^x (h_{i-1}^x + h_i^x)} + r x_i \frac{h_i^x}{h_{i-1}^x (h_{i-1}^x + h_i^x)}, \\ \beta_i &= \frac{1}{\Delta \tau} + \frac{(\sigma_x x_i)^2}{h_{i-1}^x h_i^x} - r x_i \frac{h_i^x - h_{i-1}^x}{h_{i-1}^x h_i^x} + \frac{r}{3}, \quad \gamma_i = -\frac{(\sigma_x x_i)^2}{h_i^x (h_{i-1}^x + h_i^x)} - r x_i \frac{h_{i-1}^x}{h_i^x (h_{i-1}^x + h_i^x)}, \\ f_{ijk}^n &= \frac{1}{3} \sigma_x \sigma_y \rho_{xy} x_i y_j D_{xy} u_{ijk}^n + \frac{1}{3} \sigma_y \sigma_z \rho_{yz} y_j z_k D_{yz} u_{ijk}^n + \frac{1}{3} \sigma_x \sigma_z \rho_{zx} x_i z_k D_{zx} u_{ijk}^n - \frac{1}{\Delta \tau} u_{ijk}^n. \end{split}$$

The solution to this equation can be found by solving the following tridiagonal system:

$$A_x u_{1:N_x,jk}^{n+\frac{1}{3}} = f_{1:N_x,jk}^n,$$

System of Equations (Contd.)

Here, the tridiagonal matrix is defined as:

$$A_{x} = \begin{pmatrix} \beta_{1} & \gamma_{1} & 0 & \cdots & 0 & 0 \\ \alpha_{2} & \beta_{2} & \gamma_{2} & \cdots & 0 & 0 \\ 0 & \alpha_{3} & \beta_{3} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \beta_{N_{x}-1} & \gamma_{N_{x}-1} \\ 0 & 0 & 0 & \cdots & \alpha_{N_{x}} & \beta_{N_{x}} + \gamma_{N_{x}} \end{pmatrix}.$$

Similarly forming the system of equations for the next 2 time steps and solving the tridiagonal system in the same way, we can obtain the final solution.

Solution using Finite Difference Scheme

Operator Splitting Method

Solving System of Equations

Numerical Experiments and Analysis

Cash or Nothing Options

- A cash-or-nothing call option is one which has a binary outcome.
- It pays out either a fixed amount, if the underlying stock exceeds a predetermined threshold or strike price, or pays out nothing.
- The payoff is given by the following expressions based on the number of underlying assets:

$$u_T(x) = \begin{cases} c, & \text{if } x \ge K, \\ 0, & \text{otherwise.} \end{cases}$$

$$u_T(x,y,z) = \begin{cases} c, & \text{if } x \ge K_1, \ y \ge K_2, \ z \ge K_3, \\ 0, & \text{otherwise.} \end{cases}$$

$$u_T(x,y) = \begin{cases} c, & \text{if } x \ge K_1, \ y \ge K_2, \\ 0, & \text{otherwise.} \end{cases}$$

Numerical Results and Analysis

The experiments are done on following 3 types of non-uniform grids:

1.
$$\Omega_1 = [0, 1.5, 5.5, 9.5, \dots, 77.5, 80.5, 83.5, \dots, 122.5, 126.5, 130.5, \dots, 298.5, 300]$$

- 2. $\Omega_2 = [0, 1, 4, 7, \dots, 79, 81, 83, \dots, 121, 124, 127, \dots, 298, 300]$
- 3. $\Omega_3 = [0, 0.5, 2.5, 4.5, \dots, 80.5, 81.5, 82.5, \dots, 120.5, 122.5, 124.5, \dots, 298.5, 300]$
- Also, the error analysis of the numerical solutions is carried out using the respective closed-form solutions and corresponding plots are drawn.
- The Relative Error is defined as:

$$e_{L^{2}} = \sqrt{\frac{1}{\aleph} \sum_{i} \sum_{j} \sum_{k} \left(\frac{u_{ijk}^{N_{\tau}} - u\left(x_{i}, y_{j}, z_{k}, T\right)}{u\left(x_{i}, y_{j}, z_{k}, T\right)} \right)^{2}}$$

Derivation of Closed Form Solution

The Payoff is given by:

$$u_T(x) = \begin{cases} c, & \text{if } x \ge K \\ 0, & \text{otherwise} \end{cases}$$

Here 'x' follows a Geometric Brownian Motion i.e

$$x(T) = x(t)e^{\sigma(W(T)-W(t))} + (r-\frac{\sigma^2}{2})(\tau)$$

where $W(t)(0 \le t \le T)$ is a Brownian Motion and W(t) follows N(0,t) Normal Distribution. Also x(t) is value of the asset at time T=t.

Using the above equation the payoff can be rewritten as:

$$u_T(x') = \begin{cases} c, & \text{if } x' \ge ln(K) \\ 0, & \text{otherwise} \end{cases}$$

Here x' = ln(x)

Using 'Risk-Neutral Pricing' the price of the option at time T = t can be written as

$$u_t(x') = E[u_T(x')|F_t]$$

Using Independence Lemma we can say that $u_T(x')|F_t$ has

where F_t is a filtration w.r.t time.

 $N(\ln(x(t)) + (r - \frac{\sigma^2}{2})t, \sigma^2 t)$ distribution.

Now, taking $\frac{x'-ln(x(t))+(r-\frac{\sigma^2}{2})\tau}{\sigma\sqrt{\tau}}$ as y and using the above results and PDF of

$$N(0,1)$$
 Random Variable:
$$u_t(x') = e^{-r\tau} \times \int_{-\infty}^d \frac{1}{\sqrt{2\pi}} e^{\frac{-y^2}{2}} dy$$

Here
$$d = \frac{\ln(\frac{x}{K}) + (r - \frac{\sigma^2}{2})\tau}{\sigma\sqrt{\tau}}$$

The same technique can be followed to derive closed form solutions for 2 and

3 asset Cash or Nothing Options.

One-Asset Cash or Nothing Option

Error Analysis:

Grid	Numerical Solution	Relative error
Ω_1	4.65790271213551e+01	9.63564812455430e-04
Ω_2	4.65853668211100e+01	4.94269516344677e-04
Ω_3	4.65924828441432e+01	2.48440779469612e-04

 \bullet In above table, the closed form solution at x = 100, that is,

$$u(100, T) = 4.658732417041146e+01$$

Also, Computed Solution and Actual Solution at t=0 are shown in the following plots:

Two-Asset Cash or Nothing Option

Error Analysis:

Grid	Numerical Solution	Relative error
$\Omega_1 \times \Omega_1$	$3.04002616369293e{+01}$	1.36875627892725e-03
$\Omega_2 \times \Omega_2$	3.04241973376953e+01	6.61434543764743e-04
$\Omega_3 \times \Omega_3$	3.04458994181566e + 01	3.41553564224867e-04

 \bullet In above table, the closed form solution at x = y = 100, that is,

$$u(100, 100, T) = 3.043550958150124e+01$$

Also Computed Solution and Actual Solution at t=0 are shown in the following plots:

Three-Asset Cash or Nothing Option

Error Analysis:

Grid	Numerical Solution	Relative error
$\Omega_1 \times \Omega_1 \times \Omega_1$	$2.24844278935264e{+01}$	1.70747645283649e-03
$\Omega_2 \times \Omega_2 \times \Omega_2$	$2.25150423746274\mathrm{e}{+01}$	$7.41934726348261e\hbox{-}04$
$\Omega_3 \times \Omega_3 \times \Omega_3$	2.25343435572539e+01	3.11894347568493e-04

In above table, the closed form solution at x = y = z = 100, that is,

Also Computed Solution and Actual Solution at t = 0 (taking two assets at a time) are shown in the following plots:

- The above graphs are plotted for a fixed value of asset Z.
- Similarly, other plots (keeping 'X' fixed and 'Y' fixed) show a similar pattern.

Solution using Finite Difference Scheme

Operator Splitting Method

Solving System of Equations

Numerical Experiments and Analysis

Conclusion

The paper mainly focused on solving multi-dimensional Black-Scholes Equation using operator splitting method. The BS Equations were discretized non-uniformly in space and implicitly in time (i.e backward).

In Numerical Analysis, we performed experiment on characteristic examples like 'Cash-or-Nothing Options'. The computational results were in good agreement with the closed form solutions of the Black-Scholes equation.

References

- 1. On the use of nonuniform grids in finite-difference equations
- 2. <u>Central-difference schemes on non-uniform grids and their applications in large-eddy simulations of turbulent jets and jet flames</u>
- 3. Operator Splitting Springer
- 4. <u>Operator Splitting ResearchGate</u>
- 5. <u>Alternating-direct Implicit Method Wikipedia</u>
- 6. <u>Cash-or-nothing Call Option Investopedia</u>