WE CLAIM:

1	1.	A method of fabricating an ion optic device comprising the steps of: shaping	
2	ceramic material into at least a portion of the ion optic device; and		
3	cover	ing at least a portion of the shaped ceramic material with at least one material	
4	selected from a group consisting of a conductive material and a resistive material.		
1	2.	The method of claim 1 further comprising the step of removing a portion of	
2	the covering material.		
1	3.	The method of claim 1 wherein the ceramic material is a material selected	
2	from the group consisting of a ceramic, a glass, and a glass-ceramic.		
1	4.	The method of claim 1 wherein the conductive material is metal.	
1	5.	The method of claim 2 wherein the step of shaping a ceramic material	
2	comprises providing a substantially cylindrical bore in the ceramic material; and		
3		wherein the step of removing a portion of the covering material comprises	
4	removing at least two portions of the covering material on opposing surfaces of the interior of		
5	the bore to create at least two separate, opposing areas of covering material.		

5

1	o. The method of claim 2 wherein the step of snaping a ceramic material		
2	comprises providing a cavity in the ceramic material; and		
3	wherein the step of removing a portion of the covering material comprises		
4	removing at least one portion of the covering material circumscribing the interior perimeter		
5	of the cavity to create at least two substantially parallel bands of conductivity on an inner		
6	surface of the cavity.		
1	7. The method of claim 6 wherein the cavity extends through the ceramic		
2	material; and		
3	further comprising the step of attaching a conductive grid over one end of the cavity.		
1	8. The method of claim 6 further comprising the step of separating the ceramic		
2	material into a first portion and a second portion; and		
3	joining the first portion and the second portion back together with a		
4	conductive grid therebetween.		
1	9. The method of claim 2 wherein the step of shaping a ceramic material		
2	comprises providing a cavity having a blind end in the ceramic material;		
3	wherein the step of covering at least a portion of the shaped ceramic material		
4	with at least one covering material comprises covering at least a portion of the blind end in		
5	the interior of the cavity with a conductive material.		

1	10.	An ion optic device for manipulating ions in a vacuum, comprising:	
2		a ceramic substrate having a cavity therein; and	
3		a conductive coating on at least a portion of an interior surface of the cavity,	
4	the conductiv	ve coating provided for receiving an applied voltage to act upon the ions.	
1	11.	The device of claim 10 wherein the cavity is a substantially cylindrical bore;	
2	and		
3	where	ein the conductive coating is provided in at least two separate areas on opposing	
4	surfaces of the bore.		
-1	12.	The device of claim 11 wherein the at least two separate areas of conductive	
2	coating are separated by secondary bore having an axis parallel to the central bore.		
1	13.	The device of claim 10 wherein the cavity has a blind end and wherein the	
2	blind end is o	coated with the conductive coating.	
1	14.	The device of claim 10 wherein the conductive coating is provided in at least	
2	two separate bands circumscribing the cavity.		
	15	The device of claim 10 wherein the equity has an open and and the device	
ı	15.	The device of claim 10 wherein the cavity has an open end and the device	
2	further comp	rises a conductive grid attached to the ceramic substrate over the open end.	
l	16.	The device of claim 10 wherein the ceramic substrate is provided in at least	
2	two portions and a conductive grid is provided between the two portions.		

The device of claim 10 wherein the ceramic is a glass-ceramic.

17.

- 1 18. The device of claim 10 wherein the cavity has an open end and the device
- 2 further comprises an electrode member attached to the ceramic substrate over the open end.