

Área de Aplicação: Linhas de Transmissão

Título do Documento: Isoladores de Disco - Vidro e Porcelana

Sumário

1.	Finalidade	.1
2.	Âmbito de aplicação	
3.	Normas complementares	.1
4.	Identificação do material	.2
5.	Material	.3
	5.1. Características típicas	
6.	Fabricação	
	6.1. Corpo	
	6.2. Campânula e pino	
	6.3. Cupilha contrapino	
	6.4. Cimento	
	6.5. Galvanização	.5
	6.6. Requisitos para trabalho em linha viva	
	6.7. Identificação do Isolador	
7.	Inspeção e ensaios	
	7.1. Inspeção, aceitação e rejeição	
	7.2. Relatórios	
8.	Embalagem	
-	8.1. Caixas	
	8.2. Pallets	
	8.3. Identificação	
9.	Condições gerais	
٠.	9.1. Responsabilidades do fornecedor	
10.	Registros de revisão	
	Anexo – Desenho padrão	9

1. Finalidade

Estabelecer as exigências técnicas mínimas que devem ser atendidas para a fabricação e recebimento de isoladores de disco, de vidro e de porcelana, para aplicação em linhas aéreas de transmissão de energia elétrica.

Este documento possui versão em inglês – ET 5030.

2. Âmbito de aplicação

Engenharia, Gerência de Ativos e Suprimentos do Grupo CPFL Energia.

3. Normas complementares

Na aplicação desta especificação devem ser consultadas as seguintes normas e

N.Documento:
222Categoria:
ManualVersão:
1.5Aprovado por:
Evaldo Baldin DiasData Publicação:
17/03/2017Página:
1 de 9

Área de Aplicação: Linhas de Transmissão

Título do Documento: Isoladores de Disco - Vidro e Porcelana

documentos complementares:

NBR5032: Isoladores para linhas aéreas com tensões acima de 1000 V;

NBR9333: Embalagens de madeira para isoladores de disco.

4. Identificação do material

50-000-001-303: ISOLADOR DISCO P MARROM 254MM 80kN

Descrição: Isolador tipo disco de porcelana marrom, engate concha e bola, classe mecânica 80 kN, diâmetro 254 mm, passo 146mm.

50-000-001-302: ISOLADOR DISCO VIDRO 254MM 80kN

Descrição: Isolador tipo disco de vidro temperado, engate concha e bola, classe mecânica 80 kN, diâmetro 254 mm, passo 146mm.

40-000-003-016: ISOLADOR DISCO P CINZA 254MM 80kN

Descrição: Isolador tipo disco de porcelana cinza, engate concha e bola, classe mecânica 80 kN, diâmetro 254 mm, passo 146mm.

50-000-001-301: ISOLADOR DISCO P MARROM 254MM 120kN

Descrição: Isolador tipo disco de porcelana marrom, engate concha e bola, classe mecânica 120 kN, diâmetro 254 mm, passo 146mm.

50-000-001-305: ISOLADOR DISCO VIDRO 254MM 120kN

Descrição: Isolador tipo disco de vidro temperado, engate concha e bola, classe mecânica 120 kN, diâmetro 254 mm, passo 146mm.

50-000-001-306: ISOLADOR DISCO P CINZA 254MM 120kN

Descrição: Isolador tipo disco de porcelana cinza, engate concha e bola, classe mecânica 120 kN, diâmetro 254 mm, passo 146mm.

50-000-015-721: ISOLADOR DISCO AZS P MARROM 254MM 80KN

Descrição: Isolador tipo disco de porcelana marrom, pino bola com anel de zinco de sacrifício, engate concha e bola, classe mecânica 80 kN, diâmetro 254 mm, passo 146mm.

50-000-015-724: ISOLADOR DISCO AZS VIDRO 254MM 80kN

Descrição: Isolador tipo disco de vidro temperado, pino bola com anel de zinco de sacrifício, engate concha e bola, classe mecânica 80 kN, diâmetro 254 mm, passo 146mm.

50-000-015-723: ISOLADOR DISCO AZS P MARROM 254MM 120kN

Descrição: Isolador tipo disco de porcelana marrom, pino bola com anel de zinco de sacrifício, engate concha e bola, classe mecânica 120 kN, diâmetro 254 mm, passo 146mm.

50-000-015-725: ISOLADOR DISCO AZS VIDRO 254MM 120kN

Descrição: Isolador tipo disco de vidro temperado, pino bola com anel de zinco de sacrifício, engate concha e bola, classe mecânica 120 kN, diâmetro 254 mm, passo 146mm.

N.Documento: Categoria: Versão: Aprovado por: Data Publicação: Página: 222 Manual 1.5 Evaldo Baldin Dias 17/03/2017 2 de 9

Área de Aplicação: Linhas de Transmissão

Título do Documento: Isoladores de Disco - Vidro e Porcelana

5. Material

Requisitos técnicos para desenho, fabricação, galvanização e teste de isoladores tipo concha e bola, de porcelana, por processo úmido, ou vidro temperado.

5.1. Características típicas

Caractaríot	O-madariation			Código	
Característica			D.80.16	D.120.16	
Diâmatra da corre		nominal	254 mm		
Diâmetro do corpo		máximo	255 mm		
Espaçamento - passo		'	146 mm		
Distância de coccamente		nominal	320 mm		
Distância de escoamento		mínima	310 mm		
Diâmetro do pino			16 mm		
Concha e bola			33,2 mm		
Ruptura mecânica		80 kN	120 kN		
Decistância de imposte		vidro		15 N.m	
Resistência ao impacto		porcelana	6 N.m		
Tração mecânica			32 kN	48 kN	
Carga mantida			56 kN	84 kN	
Tensão de perfuração em óleo			130 kV		
Table 7 - Paragraph of the WA arts to be detailed		a seco	70 kV		
Tensão disruptiva frequência indust	ırıaı	sob chuva	40 kV		
	positiva	vidro	105 kV		
Tensão disruptiva crítica impulso		porcelana	125 kV		
atmosférico 1,2 x 50 μS	negativa	vidro	110 kV		
		porcelana	130) kV	
Tensão de ensaio frequência industrial fase terra – eficaz			10 kV		
TRI máximo admissível			50	μV	

N.Documento:
222Categoria:
ManualVersão:
1.5Aprovado por:
Evaldo Baldin DiasData Publicação:
17/03/2017Página:
3 de 9

Área de Aplicação: Linhas de Transmissão

Título do Documento: Isoladores de Disco - Vidro e Porcelana

6. Fabricação

O projeto e fabricação do isolador deve garantir que os esforços devido à expansão e contração dos materiais não provoque a deterioração do isolador. Os contornos das partes de metal, porcelana ou vidro devem eliminar áreas ou pontos de alta concentração de fluxo eletrostático.

6.1. Corpo

Deve ser simétrico e sem deformação apreciável. A superfície em contato com o cimento deve ter uma camada especial para aliviar esforços mecânicos causados pela variação de temperatura e expansão ou retração do cimento.

Vidro: deve ser isento de defeitos, falhas, lascas, quebras ou bolhas de ar que excedam 5 mm de diâmetro. Toda a superfície deve ser regular, isenta de partículas ásperas e com acabamento liso e sem porosidade.

Porcelana: deve ser produzida pelo método de processo úmido, aluminosa com alta resistência dielétrica e mecânica, inerte quimicamente e com alto ponto de fusão. Toda a superfície deve ser regular, isenta de quaisquer partículas ásperas e vitrificadas com acabamento liso de cor uniforme marrom ou cinza definida no documento de compra. A vitrificação deve ser do tipo compressão, insensível a súbitas mudanças de temperatura, imune aos efeitos de ozônio, poeira ácida ou alcalina.

6.2. Campânula e pino

O projeto e fabricação das partes metálicas deve garantir a transferência do esforço mecânico para o corpo por compressão e desenvolver máxima resistência mecânica uniforme ao isolador. A transferência de carga do pino para o cimento deve ser feita nas superfícies de apoio , distribuída uniformemente entre as partes sob esforço. As partes metálicas em contato com o cimento devem ser cobertas com um composto flexível permanente para evitar reação química entre o cimento e a camada de zinco e para aliviar diferenças de expansão entre o cimento e o metal.

A campânula deve ser fabricada em aço forjado ou ferro fundido maleável com tratamento térmico. Quando a campânula for cimentada ao corpo, deve haver uma folga entre a beirada da campânula e o corpo, para evitar ruptura do corpo devido à expansão diferenciada da campânula e do corpo. Deve também ser isenta de trincas, juntas, contração, bolhas de ar, rebarbas ou quinas vivas. A abertura para o contrapino deve ser escareada e estar situada junto à face inferior do recesso da concha.

O pino deve ser fabricado em aço forjado ou usinado e deve ser isento de superposição, dobra, contração, rebarbas ou quinas vivas. Todas as superfícies de apoio devem ser lisas e uniformes, de modo a distribuir a carga do esforço uniformemente.

6.2.1. Anel de Zinco

Anel de zinco de sacrifício destinado a aumentar a proteção do pino à corrosão. O anel deve ser fundido e integrado ao pino e não deve fazer parte da estrutura mecânica do

N.Documento: Categoria: Versão: Aprovado por: Data Publicação: Página: 222 Manual 1.5 Evaldo Baldin Dias 17/03/2017 4 de 9

Área de Aplicação: Linhas de Transmissão

Título do Documento: Isoladores de Disco - Vidro e Porcelana

isolador de forma que sua eliminação não afete as características mecânicas ou elétricas do conjunto.

Dimensões de referência do anel: espessura da parede 3mm, comprimento 25 mm.

Aplicável somente aos materiais códigos:

50-000-015-721: ISOLADOR DISCO AZS P MARROM 254MM 80KN

50-000-015-724: ISOLADOR DISCO AZS VIDRO 254MM 80kN

50-000-015-723: ISOLADOR DISCO AZS P MARROM 254MM 120kN

50-000-015-725: ISOLADOR DISCO AZS VIDRO 254MM 120kN

6.3. Cupilha contrapino

A concha da campânula deve possuir um contrapino que propicie um travamento positivo contra a separação não intencional das unidades da cadeia de isoladores durante o manuseio e uso e possibilite fácil conexão entre as unidades adjacentes.

As pernas de contrapino devem ser abertas para evitar sua retirada completa da campânula e não devem se projetar externamente à concha.

O contrapino deve ser fabricado em seção semi circular meia cana e de latão liga Tomback, composição 85% de cobre e 15% de zinco, ou de aço inoxidável tipo 304.

O diâmetro interno mínimo do olhal do contrapino não deve ser inferior a 5 mm.

6.4. Cimento

Deve ser usado cimento de alta resistência mecânica e com variação mínima de volume devido a mudança de temperatura e envelhecimento.

A espessura do cimento deve ser tão uniforme e cuidados adequados devem ser tomados ao se colocar as partes individuais durante o processo de cimentação.

6.5. Galvanização

Todas as partes em aço ou ferro fundido devem ser zincadas e apresentar uma espessura mínima de camada de zinco de 43 μ m para os pinos e 77 μ m para as demais partes.

Devem suportar no ensaio de PREECE no mínimo seis imersões para as superfícies comuns e quatro imersões para as arestas e cantos.

6.6. Requisitos para trabalho em linha viva

O isolador deve ser adequado para fácil acoplamento ou separação na cadeia com o uso de ferramentas e técnicas padrão de trabalho em linha viva.

6.7. Identificação do Isolador

O isolador deve ser identificado de modo legível e indelével com os dados indicados no desenho padrão anexo.

N.Documento: Categoria: Versão: Aprovado por: Data Publicação: Página: 222 Manual 1.5 Evaldo Baldin Dias 17/03/2017 5 de 9

Área de Aplicação: Linhas de Transmissão

Título do Documento: Isoladores de Disco - Vidro e Porcelana

7. Inspeção e ensaios

A inspeção e os ensaios devem ser feitos na fábrica e o inspetor designado pela CPFL deve ter acesso a todas as fases de produção. Caso o fornecedor não esteja capacitado para realizar qualquer ensaio indicado nesta especificação, estes poderão ser feitos em laboratório de reconhecida idoneidade, aprovado pela CPFL, e seus custos correrão por conta do fornecedor.

7.1. Inspeção, aceitação e rejeição

O fornecedor deve realizar todos os teste e ensaios adequados para comprovar que os isoladores atendem às exigências desta especificação.

Os critérios de inspeção, amostragem, aceitação e rejeição, estão definidos na NBR5032.

7.2. Relatórios

O fornecedor deve apresentar ao inspetor designado pela CPFL os relatórios de ensaio, comprovando que os isoladores foram inspecionados de acordo com as cláusulas desta especificação.

8. Embalagem

O acondicionamento deve assegurar o transporte seguro do isolador sob todas as condições e limitações que forem encontradas.

8.1. Caixas

Os isoladores devem ser acondicionados para despacho em embalagens de madeira fabricadas de acordo com a NBR9333, contendo seis unidades cada.

Os isoladores devem ser embalados com as seis unidades conectadas em uma linha contínua.

(Imagem ilustrativa)

N.Documento: Categoria: Manual

Versão: 1.5 Aprovado por: Evaldo Baldin Dias Data Publicação: 17/03/2017

Página: 6 de 9

Área de Aplicação: Linhas de Transmissão

Título do Documento: Isoladores de Disco - Vidro e Porcelana

8.2. Pallets

Os isoladores embalados devem ser acondicionados em "pallets" de madeira, descartáveis e adequados para manuseio com empilhadeiras padrão.

Os "pallets" devem ser adequados para suportar a carga e as embalagens devem ser adequadamente presas ao "pallet" para evitar deslocamentos durante o manuseio.

O material utilizado nos "pallets" não deve ser adesivo ao isolador e nem produzir corrosão no isolador durante armazenagem em ambiente externo.

8.3. Identificação

Cada "pallet" deve ser identificado de forma indelével com as seguintes informações:

Nome e endereço do fornecedor;

Número do lote:

Código CPFL e número do documento de compra;

Quantidade de isoladores;

Massa bruto em kg.

9. Condições gerais

A aceitação do pedido de compra pelo fornecedor implica na aceitação incondicional de todos os requisitos desta especificação.

9.1. Responsabilidades do fornecedor

A dispensa por parte da CPFL de qualquer ensaio e aceitação de lote, não exime do fornecedor a responsabilidade de fornecer os cabos de conformidade com esta especificação, nem invalidam as reclamações que a CPFL possa fazer a respeito da qualidade do material empregado e do processo de fabricação. Neste caso, mesmo após sua retirada da fábrica, o lote poderá ser novamente inspecionado e ensaiado, com o conhecimento prévio e na presença do fornecedor. Se constatada qualquer divergência com o estipulado nesta especificação, o lote será recusado, e as despesas de reposição correrão por conta do Fornecedor.

10. Registros de revisão

Empresa	Colaborador	
CPFL Paulista	Carlos Alberto de Carvalho	
CPFL Paulista	Marcelo de Moraes	
CPFL Piratininga	Antonio Carlos de Almeida Cannabrava	
CPFL Piratininga	Celso Rogério Tomachuk dos Santos	
CPFL Piratininga	Rogério Macedo Moreira	
CPFL Santa Cruz	José Carlos Brizola Junior	
CPFL Jaguari, Mococa, Leste e Sul Paulista	Marco Antonio Brito	
RGE	Albino Marcelo Redmann	

N.Documento: Categoria: Versão: Aprovado por: Data Publicação: Página: 222 Manual 1.5 Evaldo Baldin Dias 17/03/2017 7 de 9

Tipo de Documento:	Especificação Técnica	
Área de Aplicação:	Linhas de Transmissão	

Título do Documento: Isoladores de Disco - Vidro e Porcelana

Alterações efetuadas:

Versão anterior	Data da versão anterior	Alterações em relação à versão anterior
-	07/03/2005	- Incluídos os isoladores de vidro e porcelana, 80 e 120 kN, com anel de zinco de sacrifício.
1.4	18/12/2013	- O item 8.1 foi modificado para explicitar a nova maneira de embalar os isoladores: os isoladores devem ser embalados com as seis unidades conectadas em uma linha contínua.

Área de Aplicação: Linhas de Transmissão

Título do Documento: Isoladores de

Isoladores de Disco - Vidro e Porcelana

11. Anexo – Desenho padrão

¹ Anel de Zinco apenas para os códigos:

50-000-015-721: ISOLADOR DISCO AZS P MARROM 254MM 80KN 50-000-015-724: ISOLADOR DISCO AZS VIDRO 254MM 80KN 50-000-015-723: ISOLADOR DISCO AZS P MARROM 254MM 120KN 50-000-015-725: ISOLADOR DISCO AZS VIDRO 254MM 120KN

Cornet	erística	Código		
Caract	eristica	D.80.16	D.120.16	
	Corpo Diolátrico	Porcelana aluminosa		
	Corpo Dielétrico	Vidro temperado		
Material	Pino Bola	Aço forjado zincado		
Material	Anel de Zinco ¹	Zinco		
	Campânula	Ferro maleável ou nodular zincado		
	Cupilha	Latão tomback ou aço inox		
Ruptura mínima		80 kN	120 kN	

Demais especificações conforme NBR5032.

Identificação: nome ou marca do fornecedor / ruptura mínima / ano de fabricação.

N.Documento:
222Categoria:
ManualVersão:
1.5Aprovado por:
Evaldo Baldin DiasData Publicação:
17/03/2017Página:
9 de 9