DR.D.Y.PATIL INSTITUTE OF TECHNOLGY, PIMPRI, PUNE-18

DEPARTMENT OF MATHEMATICS

Question bank for In semester exam Semester II (2021-2022)

SUB: ENGINEERING MATHEMATICS III

Unit II

Fourier Transform and Z Transform

SR.NO	QUESTIONS	OPTION
1	Given that $\int_0^\infty \frac{sint}{t} dt = \frac{\pi}{2} then$ Fourier sine transform $F_s(\lambda)$, $f(x) = \frac{1}{x}, x > 0$, is given by $a)\pi \qquad b)\pi c)\frac{\pi}{4} \qquad d)\frac{\pi}{2}$	D
2	If $f(x) = \begin{cases} x, & 0 < x < 1 \\ 0, & x > 1 \end{cases}$ then Fourier sine transform $F_s(\lambda)$ of $f(x)$ is given by $a) \frac{\lambda \cos \lambda + \sin \lambda}{\lambda^2} \qquad b) \frac{-\lambda \cos \lambda - \sin \lambda}{\lambda^2}$ $c) \frac{-\lambda \cos \lambda + \sin \lambda}{\lambda^2} \qquad d) \frac{\cos \lambda}{\lambda^2}$	С
3	The Fourier cosine transform $F_c(\lambda)$ of $f(x)=e^{- x }-\infty < x < \infty$ is $a)\frac{\lambda}{1+\lambda^2} \qquad b) \; \frac{1}{1+\lambda^2} \qquad c)\frac{1}{1-\lambda^2} \qquad d)\frac{-1}{1+\lambda^2}$	В
4	The Fourier cosine integral representation is $\frac{4}{\pi} \int_0^\infty \frac{\sin \lambda - \lambda \cos \lambda}{\lambda} \cos \lambda x d\lambda = \begin{cases} 1 - x^2, & 0 \le x \le 1 \\ 0, & x > 1 \end{cases},$ Then the value of the integral $\int_0^\infty \frac{\sin \lambda - \lambda \cos \lambda}{\lambda} \cos \frac{\lambda}{2} d\lambda \text{ is equal to,}$ to, $a) \frac{-3\pi}{16} \qquad b) \frac{3\pi}{16} \qquad c) \frac{-3\pi}{8} \qquad d) \frac{3\pi}{4}$	В
5	a) $\frac{-3\pi}{16}$ b) $\frac{3\pi}{16}$ c) $\frac{-3\pi}{8}$ d) $\frac{3\pi}{4}$ Find the Fourier Transform $F(\lambda)$ of $f(x) = \begin{cases} 1, & x < a \\ 0, & x > a \end{cases}$ is	А

	$\frac{2\sin \lambda a}{\lambda} \qquad \frac{e^{-i\lambda a}}{\lambda} \qquad \frac{e^{i\lambda a}}{\lambda} \qquad \frac{2\cos \lambda a}{\lambda}$	
6	$\frac{2\sin\lambda a}{\text{a)}} \qquad \frac{e^{-i\lambda a}}{\lambda} \qquad \frac{e^{i\lambda a}}{\lambda} \qquad \frac{2\cos\lambda a}{\lambda}$ The Fourier sine transform $F_s(\mathbf{x})$ of $f(x) = \begin{cases} \frac{\pi}{2}, & 0 < x < \pi \\ 0, & x > \pi \end{cases}$ is	
	$a)\frac{\pi}{2} \left(\frac{1-\sin \lambda \pi}{\lambda}\right) \qquad b)\frac{\pi}{2} \left(\frac{\cos \lambda \pi - 1}{\lambda}\right) \\ c)\frac{\pi}{2} \left(\frac{1-\cos \lambda \pi}{\lambda}\right) \qquad d)\left(\frac{\cos \lambda \pi}{\lambda}\right)$	С
7	The Fourier sine transform $F_s(\lambda)$ of $f(x)=e^{-x}+e^{-2x}$	
	a) $\frac{\lambda}{1+\lambda^2} + \frac{\lambda}{4+\lambda^2}$ b) $\frac{1}{1+\lambda^2} + \frac{1}{2+\lambda^2}$ c) $\frac{1}{1-\lambda^2} + \frac{1}{1+\lambda^2}$ d) $\frac{-1}{1+\lambda^2} + \frac{1}{4+\lambda^2}$	A
8	The Fourier cosine transform $F_c(\lambda)$ of $f(x)=e^{- x }-\infty < x < \infty$	
	is $a)\frac{\lambda}{1+\lambda^2} \qquad b) \frac{1}{1+\lambda^2} \qquad c)\frac{1}{1-\lambda^2} \qquad d)\frac{-1}{1+\lambda^2}$	В
9	The Fourier cosine transform $\int_0^\infty \frac{1-\cos u}{u^2} \cos \lambda u du = \begin{cases} \frac{\pi}{2}(1-\lambda), & 0 \le \lambda \le 1 \\ 0, & \lambda > 1 \end{cases}$ is, then the value of the integral $\int_0^\infty \frac{\sin^2 z dz}{z^2}$ is a) $1 \qquad \text{b)} \frac{\pi}{2} \qquad \text{c)} 0 \qquad d) \frac{\pi}{4}$	В
10	The Fourier Transform $F(\lambda)$ of $f(x) = \begin{cases} e^{-x}, x > 0 \\ 0, x < 0 \end{cases}$ is	
	a) $\frac{1-\lambda}{1+\lambda^2}$ b) $\frac{1-i\lambda}{1+\lambda^2}$ C) $\frac{1-i\lambda}{1-\lambda^2}$ d) $\frac{1}{1+\lambda^2}$	В
11	The Fourier sine transform of $f(x) = \begin{cases} 1, & x < a \\ 0, & x > a \end{cases}$ is	A
	a) $\frac{1-\cos\lambda a}{\lambda}$ b) $\frac{\sin\lambda a}{\lambda}$ c) $\frac{\cos\lambda a-1}{\lambda}$ d) $\frac{\sin\lambda a}{a}$	

12	If the Fourier integral representation of $f(x)$ is	
	$\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin \lambda \cos \lambda x}{\lambda} d\lambda = \begin{cases} 1, & x < 1 \\ 0, & x > 1 \end{cases}$	
	then value of the integral $\int\limits_0^\infty \frac{\sin\lambda}{\lambda}d\lambda$ is	В
	a) $\frac{\pi}{4}$ b) $\frac{\pi}{2}$ c) 0 d) 1	
13	The Fourier sine representation,	
	$e^{-x}cosx = \frac{2}{\pi}\int\limits_{0}^{\infty}\frac{\lambda^{3}}{\lambda^{4}+4}sin\lambda xd\lambda$, $F_{s}(\lambda)$ is,	В
	a) $\frac{\lambda^2}{\lambda^4+4}$ b) $\frac{\lambda^3}{\lambda^4+4}$ c) $\frac{\lambda^4+4}{\lambda^3}$ d) $\frac{1}{\lambda^4+4}$	
14	Given that $F_c(\lambda) = \int_0^\infty u^{m-1} \cos \lambda u du = \frac{\Gamma(m)}{\lambda^m} \cos \frac{\pi m}{2}$ is,	
	Then the Fourier cosine transform $F_c(\lambda)$ of $f(x) = x^3$, $x > 0$ is given by, $a) \frac{6}{\lambda^4}$ $b) \frac{3}{\lambda^3}$ $c) \frac{4}{\lambda^2} d) \frac{1}{\lambda^2}$	A
15	The solution of f(x) of the integral equation	
	The solution of f(x) of the integral equation, $\int_0^\infty f(x) \cos \lambda x dx = e^{-\lambda}, \lambda > 0 \text{ is}$ $a) \frac{2}{\pi} \left[\frac{e^{-x}}{(1+x^2)} \right] \qquad b) \frac{2}{\pi} \left[\frac{x}{(1+x^2)} \right] \qquad c) \frac{2}{\pi} \left[\frac{1}{(1-x^2)} \right] \qquad d) \frac{2}{\pi} \left[\frac{1}{(1+x^2)} \right]$	d
16	The solution of $f(x)$ of the integral equation	
	$\int_{0}^{\infty} f(x) \sin \lambda x dx = \begin{cases} 1, & 0 \le \lambda \le 1 \\ 0, & \lambda \ge 1 \end{cases} $ is, $a)\frac{2}{\pi} \left[\frac{\cos x}{x}\right] \qquad b)\frac{2}{\pi} \left[\frac{1-\cos x}{x}\right] \qquad c)\frac{2}{\pi} \left[\frac{1+\sin x}{x}\right] \qquad d)\frac{2}{\pi} \left[\frac{\sin x}{x}\right]$	b
17	The solution of f(x) of the integral equation	
L	The service of the service of an education	1

	$\int_{0}^{\infty} f(x) \sin \lambda x dx = \begin{cases} 1 - \lambda, & 0 \le \lambda \le 1 \\ 0, & \lambda \ge 1 \end{cases} $ is, $f(x) = \frac{2}{\pi} \int_{0}^{1} (1 - \lambda) \sin \lambda x d\lambda $ then the value of $f(x)$ is	
	$a)\frac{2}{\pi} \left[\frac{1}{x} - \frac{\sin x}{x^2} \right] \qquad b)\frac{2}{\pi} \left[\frac{1}{x} - \frac{\cos x}{x^2} \right]$ $c)\frac{2}{\pi} \left[\frac{1}{x} + \frac{\sin x}{x^2} \right] \qquad d)\frac{2}{\pi} \left[-\frac{1}{x} + \frac{\sin x}{x^2} \right]$	
18	The solution of f(x) of the integral equation,	
	$\int_0^\infty f(x) \sin \lambda x dx = e^{-\lambda}, \lambda > 0 \text{ is}$ $a)_{\pi}^2 \left[\frac{e^{-x}}{(1+x^2)} \right] \qquad b)_{\pi}^2 \left[\frac{x}{(1+x^2)} \right] \qquad c)_{\pi}^2 \left[\frac{1}{(1-x^2)} \right] \qquad d)_{\pi}^2 \left[\frac{1}{(1+x^2)} \right]$	b
19	For the Fourier sine representation $\frac{12}{\pi}\int\limits_0^\infty \frac{\lambda sin\lambda x}{(4+\lambda^2)(16+\lambda^2)}d\lambda = \mathrm{e}^{-3\mathrm{x}}\mathrm{sinhx},$ $\mathrm{x}>0, F_s(\lambda)\mathrm{is}$ a) $\frac{6\lambda}{(4+\lambda^2)(16+\lambda^2)}$ b) $\frac{\lambda}{(4+\lambda^2)(16+\lambda^2)}$ c) $\frac{6cos\lambda x}{(4+\lambda^2)(16+\lambda^2)}$ $d) \frac{1}{(4+\lambda^2)(16+\lambda^2)}$	A
20	In the Fourier integral representation of $\frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\frac{e^{-i\lambda \pi} + 1}{1 - \lambda^2} \right) e^{i\lambda x} d\lambda = \begin{cases} \sin x, 0 < x < \pi \\ 0, x < 0 \text{ and } x > \pi \end{cases}, F(\lambda) \text{ is}$ $a) \frac{1 + \lambda^2}{1 - i\lambda} \qquad b) \frac{e^{-i\lambda}}{1 - \lambda^2} \qquad c) \frac{e^{-i\lambda \pi} + 1}{1 - \lambda^2} \qquad d) \frac{\sin \lambda}{1 - \lambda^2}$ $\mathbf{Z-TRANSFORM}$	С
1	If $f(k) = \sin \frac{\pi}{2} K, k \ge 0$, then Z transform of $\{\sin \frac{\pi}{2} k\}$ is given by $a) \frac{z}{Z^2 - 1}, z < 1$ $b) \frac{z^2}{Z^2 + 1}, z > 1$ $C) \frac{z}{Z^2 + 1}, z > 1$ $D_{-} \frac{z}{Z^2 - 1}, z > 1$	С

2	If $f(k)=2^k \sin \frac{\pi}{2} K, k \ge 0$, then Z transform of $\{2^k \sin \frac{\pi}{2} k\}$ is	
	given by	
	a) $\frac{2z}{z^2-4}$, $ z > 2$ b) $\frac{2z}{z^2-4}$, $ z < 2$	С
	c) $\frac{2z}{z^2+4}$, $ z > 2$ d) $\frac{2z}{z^2+4}$, $ z < 2$	
3	If $f(k)=k, k \ge 0$, then Z transform of $\{k\}$ is given by	
	a) $\frac{z}{(z-1)^2}$, $ z > 1$ b) $\frac{(z-1)^2}{z^2}$, $ z > 1$	A
	c) $\frac{(z+1)^2}{z^2}$, $ z > 1$ d) $\frac{z^2}{(Z+1)^2}$, $ z > 1$	
4	If $ z > 2$,, $Z^{-1} \left[\frac{z}{(z-1)(z-2)} \right]$ is given by	
	a) $2^k - 1, k \ge 0$ b) $2^{k+1} - 1, k > 1$	A
	c) $\frac{1^k}{2} - 1, k \ge 0$ d) $k - 1, k \ge 0$	
5	For the difference equation $f(k+1) + \frac{1}{2} f(k) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^k k > 0$ $f(0) = 0$	
	For the difference equation $f(k+1) + \frac{1}{3}f(k) = \left(\frac{1}{3}\right)^k, k \ge 0. f(0) = 0$ F(z) is given by	
	_	
	a) $\frac{1}{\left(z-\frac{1}{3}\right)\left(z+\frac{1}{3}\right)}$ b) $\frac{z}{\left(z-\frac{1}{3}\right)\left(z+\frac{1}{3}\right)}$	В
	c) $\frac{z}{\left(z+\frac{1}{3}\right)\left(z+\frac{1}{2}\right)}$ d) $\frac{z}{\left(z-\frac{1}{3}\right)^2}$	
6	If $f(k) = \frac{2^k}{k}, k \ge 1$, then Z transform of $\{\frac{2^k}{k}\}, k \ge 1$, is given by	
	a) $-\log(1-2z^{-1})$ b) $\log(1-2z^{-1})$	A
	a) $-\log(1-2z^{-1})$ b) $\log(1-2z^{-1})$ c) $-\log(1+2z^{-1})$ d) $\log(1+2z^{-1})$	

7		
	If $f(k)=k5^k, k \ge 0$, then Z transform of $\{k5^k\}$ is given by	
	a) $\frac{(z-5)^2}{5z}$, $ z > 5$ b) $\frac{(z-5)^2}{z}$, $ z > 5$	С
	C) $\frac{5z}{(z-5)^2}$, $ z > 5$ d) $\frac{5z}{(Z+5)^2}$, $ z > 5$	
8	Z-transform of $\{3^k e^{-2k}, k \ge 0\}$ is given by	b
	a) $\frac{z}{z - 3e^2}$ b) $\frac{z}{z - 3e^{-2}}$ c) $\frac{z}{z - 2e^3}$ d) $\frac{z}{z + 3e^2}$	
9	For finding inverse Z-transform by inversion integral method of	
	F(z)= $\frac{z}{(z-2)(z-3)}$ the residue of $z^{k-1}F(z)$ at the pole $z=2$ is	A
	a) $-(2)^k$ b) $(2)^k$ c) $-(3)^k$ d) $(3)^k$	
10	For finding inverse Z-transform by inversion integral method of	
	F(z)= $\frac{10z}{(z-1)(z-2)}$ the residue of $z^{k-1}F(z)$ at the pole $z=1$ is	A
	a)-10 b)10 $^{k-1}$ c)10 d) 10	
11	If $\{X(k)\}=\{2^k\}*\{3^k\}$ k\ge 0 then $Z\{X(k)\}$ is given by	
	a) $\left(\frac{z}{z-2}\right)\left(\frac{z}{z-3}\right), z > 3$ b) $\left(\frac{z}{z-2}\right)\left(\frac{z}{z-3}\right), z < 3$	A
	c) $\left(\frac{z}{z-2}\right)\left(\frac{z}{z-3}\right), z < 2$ d) $\left(\frac{z}{z-2}\right)\left(\frac{z}{z-3}\right), z > 2$	
12	If $ z < 1$,, $Z^{-1} \left[\frac{z}{(z-1)(z-2)} \right]$ is given by	6
	a) $2^k - 1, k \ge 0$ b) $2^{k+1} - 1, k > 1$	С
12	c) $1-2^k, k < 0$ d) $2-3^k, k < 0$	
13	For the difference equation $y_k - 3y_{k-2} = 1, k \ge 0, Y(z)$ is given by	D

	a) $\frac{z}{(z-1)(z^2-3)}$ b) $\frac{1}{(1-3z^2)}$	
	(2 3)(2 2)	
	c) $\frac{z}{(z-1)(1-3z^2)}$ d) $\frac{z^3}{(z-1)(z^2-3)}$	
14	For finding inverse Z-transform by inversion integral method of	
	F(z)= $\frac{z}{\left(z-\frac{1}{2}\right)\left(z-\frac{1}{5}\right)}$ the residue of $z^{k-1}F(z)$ at the pole $z=\frac{1}{2}$ is	A
	a) $\frac{10}{3} \left(\frac{1}{2}\right)^k$ b) $10 \left(\frac{1}{2}\right)^k$ c) $-10 \left(\frac{1}{2}\right)^k$ d) $\frac{1}{10} \left(\frac{1}{2}\right)^k$	
15	If $f(k) = \frac{\sin ak}{k}$, $k \ge 0$, then Z transform of $\{\frac{\sin ak}{k}, k \ge 0$, is given	
	by a) $\cot^{-1}(z + \cos a)$ b) $\cot^{-1}\left(\frac{z + \cos a}{\sin a}\right)$	D
	c) $\cot^{-1}(z-\cos a)$ d) $\cot^{-1}\left(\frac{z-\cos a}{\sin a}\right)$	
16	If $2 < z < 4$,, $Z^{-1} \left[\frac{1}{(z-4)(z-2)} \right]$ is given by	
	a) $-2^{k-1} - 4^{k-1}, k \le 0, k \ge 1$ b) $2^{k-1} + 4^{k-1}, k \le 0, k \ge 2$	D
	c) $-2^{k-1} + 4^{k-1}, k \le 0, k \le 0$ d) $\frac{1}{2} \left[-(4)^{k-1} - (2)^{k-1} \right] k \le 0, k \ge 1$	
17	. For finding inverse Z-transform by inversion integral method	
	of F(z)= $\frac{z}{\left(z-\frac{1}{4}\right)\left(z-\frac{1}{3}\right)}$ the residue of $z^{k-1}F(z)$ at the pole $z=\frac{1}{4}$	В
	is a) $-\frac{1}{4} \left(\frac{1}{4}\right)^k$ b) $-12 \left(\frac{1}{4}\right)^k$ c) $-3 \left(\frac{1}{4}\right)^k$ d) $20 \left(\frac{1}{4}\right)^k$	
18	If $ z > 2, k \ge 0$, inverse Z-transform of $\frac{z^2}{(z-2)^2}$ is given by	В
	a) $-(k+1)2^k$ b) $(k+1)2^k$ c) $(k+1)2^{-k}$ d) $(k-1)2^k$	

19	$(\pi)^k$ π	
	If $f(k) = \left(\frac{\pi}{2}\right)^k \cos \frac{\pi}{2} K, k \ge 0$, then Z transform of $\left\{\left(\frac{\pi}{2}\right)^k \cos \frac{\pi}{2} k\right\}$ is	
	given by z^2	
	a) $\frac{z^2}{Z^2 + \frac{\pi^2}{4}}$, $ z > \frac{\pi}{2}$ b) $\frac{z^2}{Z^2 - \frac{\pi^2}{4}}$, $ z < \frac{\pi}{2}$	A
	c) $\frac{z}{Z^2 + \frac{\pi^2}{4}}$, $ z > \frac{\pi}{2}$ d) $\frac{z}{Z^2 - \frac{\pi^2}{4}}$, $ z > \frac{\pi}{2}$	
20	. If $1 < z < 3$, $Z^{-1} \left[\frac{z}{(z-1)(z-3)} \right]$ is given by	
	a) $1+3^k, k>0$ b) $1+3^k, k<0$	D
	c) $3^k - 1, k < 0$ d) $\frac{1}{2} (-3^k - 1), k < 0, k \ge 0$	