2018-11-05 Second-Order ODEs - Linear Homogeneous (4.3)

4.3 Linear Homogeneous

Pre-lecture:

Solving non-homogenous DEs: ay''(t) + by'(t) + cy(t) = g(t) for some function g(t)

The method of undetermined coefficients:

E.g. Given
$$y' - 2y = x + 2$$

y' - 2y = 0 -> y' = 2y ->
$$u = c \cdot e^{2x}$$

Let
$$y = ax + b$$
, $y' = a -> y' -2y = a - 2(ax+b) -> (-2a)x + (a-2b) = x+2 -> -2a = 1$, $a = -1/2$, $a - 2b = 2$, $b = -5/4$

$$y=ce^{2x}+\left(-rac{1}{2}x-rac{5}{4}
ight)$$

Continuation:

Q. Model the position y(t) of a keypress of one laptop key:

For key being released,

$$my'' = -ky - \gamma y'$$

$$y(0) = 0.5$$

$$y'(0) = 0$$

Idea to find solution: try $y = e^{rt}$

2. Find a formula for r.

$$mr^2 = -k - \gamma r$$

$$mr^2 + \gamma r + k = 0$$

$$r=rac{-\gamma\pm\sqrt{\gamma^2-4mk}}{2m}$$

3. What kind of number can r be?

- · 2 distinct real numbers
- 1 repeated real number
- 2 distinct complex numbers

4. What happens to the key when γ is large? Do we want this?

$$y'' = -13y - 14y'$$

$$y(0) = 0.5$$

$$y'(0) = 0$$

Solve the system: $r^2+14r+13=0$, r = -13 or r = -1, so y(t) = $c_1e^{-13t}+c_2e^{-t}$.

Plug in y(0) = 0.5 and y'(0) = 0, we get y(t) =
$$-\frac{1}{24}e^{-13t} + \frac{13}{24}e^{-t}$$
.

 γ large means dampening will be larger, which results in the key being harder to push down due to being stiff

5. What happens to the key when γ is small? Do we want this?

$$y'' = -13y - 4y'$$

$$y(0) = 0.5$$

$$y'(0) = 0$$

Solve the system: $r^2+4r+13=0$, $r=-2\pm 3i$, so $y(t)=e^{-2t}\left(a_1\cos(3t)+a_2\sin(3t)\right)$ or $y(t)=c_1e^{(-2+3i)t}+c_2e^{(-2-3i)t}$.

$$y(t) = c_1 e^{-2t} e^{3it} + c_2 e^{-2t} e^{-3it}$$

(NOTE: Euelers Formula: $e^{it} = \sin(t) + \cos(t)$)

- ullet γ small means dampening will be smaller, which results in the key being easier to push down
- as t goes to infinity, this solution oscillates

6. We want a laptop key that doesn't oscillate, but we also don't want too much damping. What is the minimum amount of damping necessary for the key not to oscillate?

$$y'' = -\beta y - \gamma y'$$

What is γ^* such that:

 $\gamma < \gamma^*$, oscillation, discriminant < 0

 $\gamma > \gamma^*$, no oscillation, discriminant > 0

discriminant = 0, $\gamma^* = \sqrt{52}$ which is between 7 and 8

Note: We want the discriminant to be 0 because we don't want over and under damping.

7. What happens to the key that is critically damped?

(NOTE: this is when we have one value of r that is repeated!)

$$y'' = -9y - 6y'$$

- Find one solution $y_1(t)$.
 - $\circ~$ From y" = -9y 6y' we get ${\it r^2}+6{\it r}+9=0$, r = -3
 - \circ Therefore, $y_1(t) = c_1 e^{-3t}$
- · How do we find a second solution?
 - \circ Look for solutions of the form $y\left(t
 ight)=y_{1}\left(t
 ight)v\left(t
 ight)=c_{1}e^{-3t}v\left(t
 ight)$
- Which ODE does v(t) satisy?
- Find v(t). Find y(t).