Übungen zu Funktionentheorie 1

Sommersemester 2020

Prof. Dr. R. Weissauer Dr. Mirko Rösner Blatt 3 Abgabe auf Moodle bis zum 15. Mai

Bearbeiten Sie bitte nur vier der fünf Aufgaben. Jede Aufgabe ist vier Punkte wert.

- **10. Aufgabe:** (a) Sei $(w_n)_{n\in\mathbb{N}}$ eine Folge komplexer Zahlen und $w\in\mathbb{C}$. Zeigen Sie: $(w_n)_n$ konvergiert gegen w genau dann wenn $(\overline{w_n})_n$ gegen \overline{w} konvergiert.
 - (b) Folgern Sie $\overline{\sin(z)} = \sin(\overline{z})$ und $\overline{\cos(z)} = \cos(\overline{z})$.
- 11. Aufgabe: Zeigen Sie, dass die folgenden Potenzreihen konvergieren:
 - (a) $P(z) = \sum_{n=0}^{\infty} \frac{z^n}{\sqrt{n!}}$ für alle $z \in \mathbb{C}$,
- (b) $P(z) = \sum_{n=0}^{\infty} nz^n$ für alle $z \in \mathbb{C}$ mit |z| < 1.
- 12. Aufgabe: In der Vorlesung wurde gezeigt, dass $\exp(iz) = \cos(z) + i\sin(z)$ für alle komplexen Zahlen $z \in \mathbb{C}$. Folgern Sie:
 - (a) $\cos(z) = \frac{1}{2}(\exp(iz) + \exp(-iz))$ und $\sin(z) = \frac{1}{2i}(\exp(iz) \exp(-iz)),$
 - (b) $\cos(z+w) = \cos(z)\cos(w) \sin(z)\sin(w)$ für komplexe z und w.

Hinweis: Sie können benutzen, dass $\cos(z) = \cos(-z)$ und $\sin(z) = -\sin(-z)$.

- 13. Aufgabe: Zeigen Sie:
 - (a) $a^{b_1}a^{b_2}=a^{b_1+b_2}$ für alle komplexen Zahlen a,b_1,b_2 mit $a\neq 0$,
 - (b) Es gibt komplexe Zahlen a_1, a_2, b mit $a_1, a_2 \neq 0$ sodass $a_1^b a_2^b \neq (a_1 a_2)^b$.
- **14. Aufgabe:** Wir identifizieren \mathbb{C} als Vektorraum mit \mathbb{R}^2 durch $z \mapsto (\operatorname{Re}(z), \operatorname{Im}(z))$. Die komplexe Exponentialfunktion definiert dann eine stetig partiell differenzierbare Funktion

$$\exp:\mathbb{R}^2\to\mathbb{R}^2\ .$$

Berechnen Sie ihre Jacobi-Matrix in einem festen Punkt $z_0 \in \mathbb{R}^2$.