

WIFI 5GHz Template: Release October 03rd, 2016

TEST REPORT

N°: 157205-726501-E Version : 02

Subject Radio spectrum matters

tests according to standards: 47 CFR Part 15.407 (DFS Only) №

Issued to SAGEMCOM BROADBAND SAS

250 Route de l' Empereur 92500 – RUEIL MALMAISON

FRANCE

Apparatus under test

♦ Product♦ Trade mark♦ ManufacturerSound BoxSagemcom®SAGEMCOM

Model under test Sound Box SBDV01

♦ Serial number 253770742
 ♦ FCC ID VW3SBDV01

Test date : September 14, 2018 to October 5, 2018

Test location Fontenay Aux Roses

Test Site 6230B-1 **Composition of document** 33 pages

Document issued on November 19, 2018

Written by : Armand MAHOUNGOU Tests operator

This document shall not be reproduced, except in full, without the written approval of the LCIE. This document contains results related only to the items tested. It does not imply the conformity of the whole production to the items tested. Unless otherwise specified, the decision of conformity takes into account the uncertainty of measurement. This document doesn't anticipate any certification decision.

/ N° SIRET 408 363 174 00017

PUBLICATION HISTORY

Version	Date	Author	Modification
01	October 8, 2018	Armand MAHOUNGOU	Creation of the document
02	November 19, 2018	Armand MAHOUNGOU	Customer request withdraw all picture of the EUT from test report

SUMMARY

1.	TEST PROGRAM	4
2.	EQUIPMENT UNDER TEST: CONFIGURATION (DECLARED BY PROVIDER)	5
	DFS DETECTION THRESHOLDS DETERMINATION, REFERENCE NOISE LEVEL & CHANNEL ING	
	DYNAMIC FREQUENCY SELECTION (DFS): CHANNEL CLOSING TRANSMISSION TIME & NEL MOVE TIME	. 24
5.	DYNAMIC FREQUENCY SELECTION (DFS): NON-OCCUPANCY PERIOD	. 28
6.	ANNEX 3: RADAR TEST SIGNAL TYPE 0	. 32
7	UNCERTAINTIES CHART	33

1. TEST PROGRAM

References

- > 47 CFR Part 15.407 (DFS requirements)
- KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02
- > KDB 905462 D04 Test Mode New Rules v01
- > KDB 905462 D03 Client Without DFS New Rules v01r02
- > KDB 905462 D06 802.11 Channel Plans New Rules v02
- > KDB 905462 D07 Overview UNII Rules v02

Radio requirement:

Clause (47CFR Part 15.407) Test Description	Test result - Comments			
Channel Availability Check Time & DFS Detection Threshold ₽	□ PASS	□ FAIL	☑ NA(1)(2)	□ NP(3)
U-NII Detection Bandwidth №	□ PASS	□ FAIL	☑ NA(1)	□ NP(3)
Statistical Performance Check & DFS Detection Threshold 🎘	□ PASS	□ FAIL	☑ NA(1)	□ NP(3)
Channel Closing Transmission Time & Channel Move Time P	☑ PASS	□ FAIL	□ NA	□ NP(3)
Non-occupancy period №	☑ PASS	□ FAIL	□NA	□ NP(3)
This table is a summary of test report, see conclusion of each clause of this test report for detail.				

- (1): Client without radar detection
- (2): Client with radar detection
- (3): Limited program

2. EQUIPMENT UNDER TEST: CONFIGURATION (DECLARED BY PROVIDER)

2.1. HARDWARE IDENTIFICATION (EUT AND AUXILIARIES):

Equipment under test (EUT):
Sagemcom® Sound Box SBDV01
Power supply: NBC80A200400M2

Serial Number: 253770742

Inputs/outputs - Cable:

Inputer outpute Cubic.						
Access	Туре	Length used (m)	Declared <3m	Shielded	Under test	Comments
Cable	Power supplay	-				-
Ethernet cable	-	-				-

Auxiliary equipment used during test:

Туре	Reference	Sn	Comments
Laptop computer	-	-	-

TEST REPORT

N° 157205-726501-E

Version : 02

Page 5/33

Equipment information:

Type:	WIFI						
туре.	☑ 5150MHz-5250MHz ☑ 5250MHz-				470MU- 5725MU-		
Frequency band:	<u> </u>						
	☑ 802.11	^	☑ 3723WH			☑ 802.11n HT40	
Standard:	☑ 802.11ac V	HT20	☑ 802.11ad	: VHT40			
		□ 802.11ac VHT160					
Spectrum Modulation:			☑ 0	FDM			
Channel bandwidth:	☑ 20MHz	5	☑ 40MHz	☑ 80MH	z	□ 160MHz	
Antenna Type:	✓ Integra	ıl	☐ Exte	rnal		□ Dedicated	
Antenna connector:			□ N	0		Temporary for test	
Transmit chains:	□ 1		☑ 2	□ 3		□ 4	
	□ 5		□ 6	□ 7		□ 8	
TPC:		✓ Yes		□ No			
Receiver chains	□ 1	□ 1		□ 3		□ 4	
	□ 5		□ 6	□ 7		□ 8	
Type of equipment:			☐ Pluç			□ Combined	
	Tmin:	[□ -20°C	☑ 0°C		□ X °C	
Operating temperature range:	Tnom:			20°C			
	Tmax:		□ 35°C	□ 55°C			
Type of power source:	☑ AC power s	upply	☐ DC powe		☐ Battery Battery Type		
	Vmin:		☑ 100 V/60Hz		☐ X Vdc		
Operating voltage range:	Vnom:		☑ 110V/60Hz		□ X Vdc		
	Vmax		☑ 120 V/60Hz		☐ X Vdc		
	☐ Maste	r	☐ Slave with radar				
Mode:			detect	ion		detection	
		☐ Bridge		☐ Mesh			
Fixed outdoor P to P/M application:	☐ Yes					No	
System architectures:	☑ IP based					☐ Frame based	
User access restriction:	information reg					No	
Cool Goodo redirectori.	of the detected Radar Waveforms is		□ NO				
	not available to the end user)						

	Antenna Characteristic				
Antenna assembly	Gain (dBi)	Frequency Band (MHz)	Impedance(Ω)		
1	2.194	5150-5350	50		
2	1.924	5150-5350	50		
Accumulated	5.07	5150-5350	50		
1	2.391	5470-5850	50		
2	3.361	5470-5850	50		
Accumulated	5.90	5470-5850	50		

Accumulated gain calculation				
Formula used for calculation	KDB	Correlated		
10 log[(10G1 /20 + 10G2 /20 + + 10GN /20)2 /NANT]dBi	KDB 662911 D01 v02r01	☑ Yes / □ No		

TEST REPORT Version : **02** Page 7/33

	CHANNEL PLAN				
	802.11a / 802.11n HT20/ 802.11ac VHT20				
Channel	Frequency (MHz)	Available Channel			
C1=36	5180				
C2=40	5200	Ø			
44	5220				
C3=48	5240				
C4=52	5260				
56	5280				
C5=60	5300				
C6=64	5320				
C7=100	5500				
104	5520				
108	5540				
112	5560				
C8=116	5580				
120	5600				
124	5620				
128	5640				
132	5660				
136	5680	\square			
C9=140	5700	\square			
C10=144	5720				
C11=149	5745				
153	5765				
C12=157	5785				
161	5805				
C13=165	5825				

	CHANNEL PLAN			
	802.11n HT40/ 802.11a	ic VHT40		
Channel	Frequency (MHz)	Available Channel		
C14=36+40	5190	\square		
C15=44+48	5230			
C16=52+56	5270			
C17=60+64	5310			
C18=100+104	5510			
C19=108+112	5550			
116+120	5590			
124+128	5630			
C20=132+136	5670			
C21=140+144	5710	Ø		
C22=149+153	5755			
C23=157+161	5795			

CHANNEL PLAN					
	802.11ac VHT80				
Channel Frequency (MHz) Available Channel					
C24=36+40+44+48	5210	\checkmark			
C25=52+56+60+64	5290				
C26=100+104+108+112	5530				
C27=116+120+124+128	5610				
C28=132+136+140+144	5690				
C29=149+153+157+161	5775	V			

No D	FS Channel	
DF	S Channel	
Weather DFS Channel		

	DATA RATE							
	802.11a							
Data Rate (Mbps)	Modulation Type	Modulation Worst Case						
6	BPSK	V						
9	BPSK							
12	QPSK							
18	QPSK							
24	16-QAM							
36	16-QAM							
48	64-QAM							
54	64-QAM							

					DATA R				
					802.11n	HT20			1
Available for EUT	MCS Index	Spatial streams		Modul	ation		(GI = 800ns)	(GI = 400ns)	Worst Case Modulation
101 201	0	1		BPS	SK		6.5	7.2	Infodulation
Ī	1	1		QPS	SK		13	14.4	
	2	1 1		QPS			19.5	21.7	
	☑ 3 4			16-Q			26 39	28.9	
	4 5	1 1		16-QAM 64-QAM			52	43.3 57.8	
	6	1		64-Q			58.5	65	
	7	1		64-Q			65	72.2	
1	8	2	-	BPS			13	14.4	<u> </u>
-	9 10	2 2	+	QPS QPS			26 39	28.9 43.3	
F21	11	2	1	16-Q			52	57.8	
☑	12	2		16-Q	AM		78	86.7	
_	13	2		64-Q			104	115.6	
}	14	2 2		64-Q 64-Q			117	130.3 144.4	
	15 16	3		BPS			130 19.5	21.7	
F	17	3		QPS			39	43.3	
Ī	18	3		QPS			58.5	65	
	19	3		16-Q			78	86.7	
_	20	3		16-Q			117	130	
ŀ	21 22	3 3		64-Q 64-Q			156 175.5	173.3 195	
ŀ	23	3		64-Q			195	216.7	
	24	4		BPS	SK		26	28.9	
Ţ	25	4		QPS			52	57.8	
Ļ	26	4		QPS			78	86.7	
	27 28	4	+	16-Q			104 156	115.6 173.3	
-	29	4		16-QAM 64-QAM		208	231.1		
Ī	30	4		64-Q			234	260	
	31	4		64-Q	AM		260	288.9	
✓	32	1	BPSK	-	-	-	-	-	
-	33 34	2	16-QAM 64-QAM	QPSK QPSK	-	-	39 52	43.3 57.8	
_	35	2	64-QAM	16-QAM	_	-	65	72.2	
✓	36	2	16-QAM	QPSK	-	-	58.5	65	
	37	2	64-QAM	QPSK	-	-	78	86.7	
	38	2	64-QAM	16-QAM	-	-	97.5	108.3	
}	39 40	3 3	16-QAM 16-QAM	QPSK 16-QAM	QPSK QPSK	-	52 65	57.8 72.2	
F	41	3	64-QAM	QPSK	QPSK	-	65	72.2	
Ī	42	3	64-QAM	16-QAM	QPSK	-	78	86.7	
_	43	3	64-QAM	16-QAM	16-QAM	-	91	101.1	
-	44 45	3 3	64-QAM 64-QAM	64-QAM 64-QAM	QPSK 16-QAM	-	91 104	101.1 115.6	
	46	3	16-QAM	QPSK	QPSK	-	78	86.7	
Ī	47	3	16-QAM	16-QAM	QPSK	-	97.5	108.3	
Ī	48	3	64-QAM	QPSK	QPSK	-	97.5	108.3	
Ţ	49	3	64-QAM	16-QAM	QPSK	-	117	130	
ŀ	50 51	3	64-QAM 64-QAM	16-QAM 64-QAM	16-QAM QPSK	-	136.5 136.5	151.7 151.7	
ŀ	52	3	64-QAM	64-QAM	16-QAM	-	156	173.3	
	53	4	16-QAM	QPSK	QPSK	QPSK	65	72.2	
[54	4	16-QAM	16-QAM	QPSK	QPSK	78	86.7	
ļ.	55	4	16-QAM	16-QAM	16-QAM	QPSK	91	101.1	
ŀ	56 57	4	64-QAM 64-QAM	QPSK 16-QAM	QPSK QPSK	QPSK QPSK	78 91	86.7 101.1	
ŀ	58	4	64-QAM	16-QAM	16-QAM	QPSK	104	115.6	
ļ	59	4	64-QAM	16-QAM	16-QAM	16-QAM	117	130	
Ţ	60	4	64-QAM	QPSK	QPSK	QPSK	104	115.6	
Ļ	61	4	64-QAM	16-QAM	16-QAM	QPSK 16 OAM	117	130	
}	62 63	4	64-QAM 64-QAM	16-QAM 64-QAM	16-QAM 64-QAM	16-QAM QPSK	130 130	144.4 144.4	
_	64	4	64-QAM	64-QAM	64-QAM	16-QAM	143	158.9	
	65	4	16-QAM	QPSK	QPSK	QPSK	97.5	108.3	
Ţ.	66	4	16-QAM	16-QAM	QPSK	QPSK	117	130	
Ļ	67 68	4	16-QAM	16-QAM	16-QAM	QPSK	136.5	151.7	
ŀ	68	4	64-QAM 64-QAM	QPSK 16-QAM	QPSK QPSK	QPSK QPSK	117 136.5	130 151.7	
ŀ	70	4	64-QAM	16-QAM	16-QAM	QPSK	156	173.3	
	71	4	64-QAM	16-QAM	16-QAM	16-QAM	175.5	195	
	72	4	64-QAM	64-QAM	QPSK	QPSK	156	173.3	
ţ									
} - -	73	4	64-QAM	64-QAM	16-QAM	QPSK 16 OAM	175.5	195	
		4 4 4	64-QAM 64-QAM 64-QAM	64-QAM 64-QAM 64-QAM	16-QAM 16-QAM 64-QAM	QPSK 16-QAM QPSK	175.5 195 195	195 216.7 216.7	

					DATA R	ATE			
A					802.11n	HT40		Data (Mhna)	
Available for EUT	MCS Index	Spatial streams		Modul	ation		(GI = 800ns)	(GI = 400ns)	Worst Case Modulation
101 201	0	1		BPS	SK		13	15	<u> </u>
	1	1		QPS			27	30	
	2	1 1		QPS			40.5	45	
\checkmark	4		+	16-QAM 16-QAM		54 81	60 90		
	5	1 1		16-QAM 64-QAM			108	120	
	6	1		64-Q	AM		121.5	135	
	7	1		64-Q			135	150	
	8	2	+	BPS			27	30	
	9	2 2	+	QPS QPS			54 81	60 90	
-	11	2	+	16-Q			108	120	
\square	12	2		16-Q	AM		162	180	
	13	2		64-Q			216	240	
	14	2 2	1	64-Q 64-Q			243	270 300	
	15 16	3	1	BPS			270 40.5	45	
	17	3	1	QPS			81	90	
	18	3		QPS	SK		121.5	135	
	19	3		16-Q			162	180	
_	20	3		16-Q			243	270	
	21 22	3 3	-	64-Q 64-Q			324 364.5	360 405	
	23	3		64-Q			405	450	
	24	4		BPS			54	60	
	25	4		QPS	SK		108	120	
	26	4		QPS			162	180	
	27	4	+	16-Q 16-Q			216	240	
	28 29	4	1	64-Q			324 432	360 480	
	30	4	1	64-Q			486	540	
	31	4		64-Q	AM		540	600	
✓	32	1	BPSK	-	-	-	6.0	6.7	
	33 34	2	16-QAM	QPSK QPSK	-	-	81 108	90.0 120	
	35	2	64-QAM 64-QAM	16-QAM	-	-	135	150	
	36	2	16-QAM	QPSK	-	-	121.5	135	
	37	2	64-QAM	QPSK	-	-	162	180	
	38	2	64-QAM	16-QAM	-	-	202.5	225	
	39 40	3 3	16-QAM 16-QAM	QPSK 16-QAM	QPSK QPSK	-	108 135	120 150	
	41	3	64-QAM	QPSK	QPSK	-	135	150	
	42	3	64-QAM	16-QAM	QPSK	-	162	180	
	43	3	64-QAM	16-QAM	16-QAM	-	189	210	
	44	3	64-QAM	64-QAM	QPSK	-	189	210	
	45 46	3 3	64-QAM 16-QAM	64-QAM	16-QAM QPSK	-	216 162	240 180	
	46	3	16-QAM	QPSK 16-QAM	QPSK	-	202.5	225	
	48	3	64-QAM	QPSK	QPSK	_	202.5	225	
	49	3	64-QAM	16-QAM	QPSK	-	243	270	
	50	3	64-QAM	16-QAM	16-QAM	-	283.5	315	
	51 52	3	64-QAM 64-QAM	64-QAM	QPSK 16-QAM	-	283.5 324	315 360	
	52	3 4	16-QAM	64-QAM QPSK	QPSK	- QPSK	324 135	150	
	54	4	16-QAM	16-QAM	QPSK	QPSK	162	180	
	55	4	16-QAM	16-QAM	16-QAM	QPSK	189	210	
	56	4	64-QAM	QPSK	QPSK	QPSK	162	180	
	57	4	64-QAM	16-QAM	QPSK 16 OAM	QPSK	189	210	
	58 59	4	64-QAM 64-QAM	16-QAM 16-QAM	16-QAM 16-QAM	QPSK 16-QAM	216 243	240 270	
	60	4	64-QAM	QPSK	QPSK	QPSK	216	240	
	61	4	64-QAM	16-QAM	16-QAM	QPSK	243	270	
	62	4	64-QAM	16-QAM	16-QAM	16-QAM	270	300	
	63	4	64-QAM	64-QAM	64-QAM	QPSK 16 OAM	270	300	
	64 65	4	64-QAM 16-QAM	64-QAM QPSK	64-QAM QPSK	16-QAM QPSK	297 202.5	330 225	
	66	4	16-QAM	16-QAM	QPSK	QPSK	243	270	
	67	4	16-QAM	16-QAM	16-QAM	QPSK	283.5	315	
	68	4	64-QAM	QPSK	QPSK	QPSK	243	270	
	69	4	64-QAM	16-QAM	QPSK	QPSK	283.5	315	
	70	4	64-QAM	16-QAM	16-QAM 16-QAM	QPSK 16 OAM	324	360	
	71 72	4	64-QAM 64-QAM	16-QAM 64-QAM	16-QAM QPSK	16-QAM QPSK	364.5 324	405 360	
	73	4	64-QAM	64-QAM	16-QAM	QPSK	364.5	405	
	74	4	64-QAM	64-QAM	16-QAM	16-QAM	405	450	
	75	4	64-QAM	64-QAM	64-QAM	QPSK	405	450	
	76	4	64-QAM	64-QAM	64-QAM	16-QAM	445.5	495	

Available for FUT	MCC Index	Nhu of anotial atreams	DATA RATE: 802.11ac VHT20	Cadina vata	CI = 000==	CI = 400==	Moret Cose Medulation
Available for EUT		Nbr of spatial streams	Modulation (Stream 1/2/3/4)	Coding rate	GI = 800ns	GI = 400ns	Worst Case Modulation
	1	1 1	BPSK QPSK	1/2 1/2	6,5 13	7,2 14,4	
	2	1	QPSK	3/4	19,5	21,7	
	3	1	16-QAM	1/2	26	28,9	
	4	1	16-QAM	3/4	39	43,3	
Ø	5	<u>_</u>	64-QAM	2/3	52	57,8	
	6	1	64-QAM	3/4	58,5	65	
	7	1	64-QAM	5/6	65	72,2	
	8	1	256-QAM	3/4	78	86,7	
	9	1	256-QAM	5/6	N/A	N/A	
	10	2	BPSK	1/2	13	14,4	V
	11	2	QPSK	1/2	26	28,8	
	12	2	QPSK	3/4	39	43,4	
	13	2	16-QAM	1/2	52	57,8	
\checkmark	14	2	16-QAM	3/4	78	86,6	
_	15	2	64-QAM	2/3	104	115,6	
	16	2	64-QAM	3/4	117	130	
	17	2	64-QAM	5/6	130	144,4	
	18	2	256-QAM	3/4	156	173,4	
	19	2	256-QAM	5/6 1/2	N/A	N/A	
	20	3	BPSK QPSK	1/2	19,5	21,6	
	21 22	3 3	QPSK QPSK	3/4	39 58,5	43,2 65,1	
	23	3	16-QAM	1/2	58,5 78	86,7	
_	24	3	16-QAM	3/4	117	129,9	
	25	3	64-QAM	2/3	156	173,4	
	26	3	64-QAM	3/4	175,5	195	
	27	3	64-QAM	5/6	195	216,6	
	28	3	256-QAM	3/4	234	260,1	
	29	3	256-QAM	5/6	N/A	N/A	
	30	4	BPSK	1/2	26	28,8	
	31	4	QPSK	1/2	52	57,6	
	32	4	QPSK	3/4	78	86,8	
	33	4	16-QAM	1/2	104	115,6	
	34	4	16-QAM	3/4	156	173,2	
	35	4	64-QAM	2/3	208	231,2	
	36	4	64-QAM	3/4	234	260	
	37	4	64-QAM	5/6	260	288,8	
	38 39	4	256-QAM 256-QAM	3/4 5/6	312 N/A	346,8 N/A	
	40	5	BPSK	1/2	32,5	36	
	41	5	QPSK	1/2	65	72	
	42	5	QPSK	3/4	97,5	108,5	
	43	5	16-QAM	1/2	130	144,5	
_	44	5	16-QAM	3/4	195	216,5	
	45	5	64-QAM	2/3	260	289	
	46	5	64-QAM	3/4	292,5	325	
	47	5	64-QAM	5/6	325	361	
	48	5	256-QAM	3/4	390	433,5	
	49	5	256-QAM	5/6	N/A	N/A	
	50	6	BPSK	1/2	39	43,2	
	51	6	QPSK	1/2	78	86,4	
	52	6	QPSK	3/4	117	130,2	
	53	6	16-QAM	1/2	156 234	173,4	
	54 55	<u>6</u>	16-QAM 64-QAM	3/4 2/3	234 312	259,8 346,8	
	56	6	64-QAM	3/4	351	346,8	
	57	6	64-QAM	5/6	390	433,2	
	58	6	256-QAM	3/4	468	520,2	
	59	6	256-QAM	5/6	N/A	N/A	
	60	7	BPSK	1/2	45,5	50,4	
	61	7	QPSK	1/2	91	100,8	
	62	7	QPSK	3/4	136,5	151,9	
	63	7	16-QAM	1/2	182	202,3	
	64	7	16-QAM	3/4	273	303,1	
	65	7	64-QAM	2/3	364	404,6	
	66	7	64-QAM	3/4	409,5	455	
	67	7	64-QAM	5/6	455	505,4	
	68	7	256-QAM	3/4	546	606,9	
	69	7	256-QAM	5/6	N/A	N/A	
	70	8	BPSK	1/2	52	57,6	
	71	8	QPSK	1/2	104	115,2	
	72 73	<u>8</u> 8	QPSK 16-QAM	3/4 1/2	156 208	173,6	
	73	<u>8</u> 8	16-QAM 16-QAM	3/4	208 312	231,2 346,4	
	75	<u>8</u>	16-QAM 64-QAM	2/3	416	462,4	
	76	8	64-QAM	3/4	468	520	
П							
	77	8	64-QAM	5/0	520	5//.6	
	77 78	<u>8</u> 8	64-QAM 256-QAM	5/6 3/4	520 624	577,6 693,6	

Available for EUT	MCS Index	Nbr of spatial streams	DATA RATE: 802.11ac VHT40 Modulation (Stream 1/2/3/4)	Coding rate	GI = 800ns	GI = 400ns	Worst Case Modulation
Available for Lot	0	1	BPSK	1/2	13,5	15	▼
	1	1	QPSK	1/2	27	30	
	2	1	QPSK	3/4	40,5	45	
V	3	1	16-QAM	1/2	54	60	
	4	1	16-QAM	3/4	81	90	
	5	1	64-QAM	2/3	108	120	
	6	1	64-QAM	3/4	121,5	135	
	7	1	64-QAM	5/6	135	150	
	8	1	256-QAM	3/4	162	180	
	9	1	256-QAM	5/6	180	200	
	10	2	BPSK	1/2	27	30	✓
	11	2	QPSK	1/2	54	60	
	12	2	QPSK	3/4	81	90	
	13	2	16-QAM	1/2	108	120	
\checkmark	14	2	16-QAM	3/4	162	180	
_	15	2	64-QAM	2/3	216	240	
	16	2	64-QAM	3/4	243	270	
	17	2	64-QAM	5/6	270	300	
	18	2	256-QAM	3/4	324	360	
	19	2	256-QAM	5/6	360	400	
	20	3	BPSK	1/2	40,5	45	
	21	3	QPSK	1/2	81	90	
	22	3	QPSK	3/4	121,5	135	
	23	3	16-QAM	1/2	162	180	
	24	3	16-QAM	3/4	243	270	
	25	3	64-QAM	2/3	324	360	
	26	3	64-QAM	3/4	364,5	405	
	27	3	64-QAM	5/6	405	450	
	28	3	256-QAM	3/4	486	540	
	29	3	256-QAM	5/6	540	600	
	30	4	BPSK	1/2	54	60	
	31		QPSK	1/2	108	120	
	32	4	QPSK	3/4	162	180	
	33		16-QAM	1/2	216	240	
	34	4	16-QAM	3/4	324	360	
	35 36	4	64-QAM 64-QAM	2/3 3/4	432	480 540	
	37	4	64-QAM	5/6	486 540	600	
	38	4	256-QAM	3/4	648	720	
	39	4	256-QAM	5/6	720	800	
	40	5	BPSK	1/2	67,5	75	
	41	5	QPSK	1/2	135	150	
	42	5	QPSK	3/4	202,5	225	
	43	5	16-QAM	1/2	270	300	
_	44	5	16-QAM	3/4	405	450	
	45	5	64-QAM	2/3	540	600	
	46	5	64-QAM	3/4	607,5	675	
	47	5	64-QAM	5/6	675	750	
	48	5	256-QAM	3/4	810	900	
	49	5	256-QAM	5/6	900	1000	
	50	6	BPSK	1/2	81	90	
	51	6	QPSK	1/2	162	180	
	52	6	QPSK	3/4	243	270	
	53	6	16-QAM	1/2	324	360	
	54	6	16-QAM	3/4	486	540	
	55	6	64-QAM	2/3	648	720	
	56	6	64-QAM	3/4	729	810	
	57	6	64-QAM	5/6	810	900	
	58	6	256-QAM	3/4	972	1080	
	59	6	256-QAM	5/6	1080	1200	
	60	7	BPSK	1/2	94,5	105	
	61	7	QPSK	1/2	189	210	
	62	7	QPSK	3/4	283,5	315	
	63	7	16-QAM	1/2	378	420	
	64	7	16-QAM	3/4	567	630	
_	65	7	64-QAM	2/3	756	840	
	66	7	64-QAM	3/4	850,5	945	
	67	7	64-QAM	5/6	945	1050	
	68	7	256-QAM	3/4	1134	1260	
	69	7	256-QAM	5/6	1260	1400	
	70	8	BPSK	1/2	108	120	
	71	8	QPSK	1/2	216	240	
	72	8	QPSK	3/4	324	360	
	73	8	16-QAM	1/2	432	480	
	74	8	16-QAM	3/4	648	720	
	75 76	8	64-QAM	2/3	864	960	
	76 77	8 8	64-QAM 64-QAM	3/4 5/6	972 1080	1080 1200	
	78	8	256-QAM	3/4	1296	1440	
	79	8	256-QAM	5/6	1440	1600	
					11770		. 🗆

Author								
Part	Available for EUT	MCS Indox	Nhr of enatial etroame		Coding rate	GI = 800ne	GI = 400ps	Worst Case Modulation
1	Available for EUT		Nor or spatial streams					
2			1					
1								
B								
S	~							
8 1 1 04 CAMM 334 2033 292.6	Ø							
B		6	1	64-QAM				
89 1 1 285-0AM 556 380 433 3 11 10 2 8-BPK 10 2 50 64 65 97 112 2 2 0 0PSK 344 175,6 165 0 0 112 2 16-0AM 172 234 285 0 0 113 2 16-0AM 172 234 285 0 0 114 2 2 16-0AM 172 234 285 0 0 115 2 16-0AM 172 234 285 0 0 116 2 16-0AM 172 234 285 0 0 117 2 2 16-0AM 172 234 285 0 0 117 2 2 16-0AM 172 234 285 0 0 118 2 16-0AM 172 234 285 0 0 119 2 16-0AM 172 234 285 0 0 119 2 16-0AM 172 234 285 0 0 110 2 177 2 2 16-0AM 172 234 285 0 0 110 2 177 2 2 16-0AM 172 234 285 0 0 110 2 177 2 2 16-0AM 172 234 285 0 0 110 2 177 2 2 16-0AM 172 234 285 0 0 110 2 177 2 2 16-0AM 172 234 285 0 0 110 2 177 2 2 16-0AM 172 234 285 0 0 110 2 177 2 2 16-0AM 172 234 285 0 0 110 2 177 2 2 16-0AM 172 234 285 0 0 110 2 177 2 2 16-0AM 172 234 285 0 0 110 2 177 2 2 16-0AM 172 234 285 0 0 110 2 177 2 2 16-0AM 172 234 285 0 0 110 2 177 2 2 16-0AM 172 24 285 1 0 110 2 177 2 2 16-0AM 172 24 285 1 0 110 2 177 2 2 16-0AM 172 24 285 1 0 110 2 177 2 2 16-0AM 172 24 285 1 0 110 2 177 2 2 16-0AM 172 24 285 1 0 110 2 177 2 2 16-0AM 172 24 285 1 0 110 2 177 2 2 16-0AM 172 24 285 1 0 110 2 177 2 2 16-0AM 172 24 285 1 0 110 2 177 2 2 16-0AM 172 24 285 1 0 110 2 177 2 2 16-0AM 172 24 285 1 0 110 2 177 2 2 16-0AM 172 24 285 1 0 110 2 177 2 2 16-0AM 172 24 285 1 0 110 2 177 2 2 16-0AM 172 24 285 1 0 110 2 177 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		7	1	64-QAM	5/6		325	
10		8	1	256-QAM	3/4	351	390	
11		9	1	256-QAM	5/6	390	433.3	
12		10				58.6		
13								
14								
15								
16	\checkmark							
17								
18								
19								
20 3 BPSK 1/2 37.0 97.5 0 0 0 0 0 0 0 0 0								
1 3 OPPK 1/2 176.5 198								
Post			_					
16-QAM								
24 3 16 OAM 34 250.5 585 0 0 0 0 0 0 0 0 0								
28 3	_							
28 3								
27 3								
28 3 256-GAM 3/4 1053 1170 1 29 3 3 256-GAM 5/6 1170 1299 0 1 30 4 BPSK 1/2 172 130 1 31 4 GPSK 1/2 274 280 1 33 4 GPSK 1/2 274 280 1 33 4 GPSK 1/2 274 280 1 33 4 GPSK 1/2 274 280 1 34 4 GPSK 1/2 274 280 1 35 4 GPSK 1/2 274 280 1 35 4 GPSK 1/2 274 280 1 36 4 GPSK 1/2 274 280 1 37 4 GPSK 1/2 274 280 1 38 4 GPSK 1/2 274 280 1 39 5 4 GPSK 1/2 274 280 1 39 6 GPSK 1/2 274 280 1 39 6 GPSK 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2								
29 3 2 256-GAM 56 1170 1299.9								
1		29	3	256-QAM	5/6	1170	1299.9	
19	-							
16-QAM		31	4	QPSK	1/2	234	260	
19-04 19-0			·					
1								
35								
37								
38								
19								
40 5 BPSK								
1								
## 42 \$ \$ \$ \$ \$ \$ \$ \$ \$								
43 5								
Head								
45 5 64-QAM 2/3 1170 1300								
46 5								
47 5 64-QAM 5/6 1482.5 1625								
48 5 256-QAM 3/4 1755 1950								
49 5 266-QAM 5/6 1950 2166.5								
SO 6 BPSK 1/2 175.8 195								
S1					1/2			
S3				QPSK		351	390	
S4								
S5								
S5								
57 6 64-QAM 5/6 1755 1950	_							
58								
S9 6 256-QAM 5/6 2340 2599.8								
BPSK								
Composition of the composition								
62								
63								
G4								
65	_							
66 7 64-QAM 3/4 1843.1 2047.5 □ 67 7 64-QAM 5/6 2047.5 2275 □ 68 7 256-QAM 3/4 2457 2730 □ 69 7 256-QAM 5/6 2730 3033.1 □ 70 8 BPSK 1/2 234.4 260 □ 71 8 QPSK 1/2 468 520 □ 72 8 QPSK 1/2 468 520 □ 73 8 16-QAM 1/2 936 1040 □ 74 8 16-QAM 1/2 936 1040 □ 74 8 16-QAM 3/4 1404 1560 □ 75 8 64-QAM 2/3 1872 2080 □ 76 8 64-QAM 3/4 2106.4 2340 □ 77 8 64-QAM 5/6 2340 2600 □ 78 8 626-QAM 3/4 2808 3120 □								
67 7 64-QAM 5/6 2047.5 2275 □ 68 7 256-QAM 3/4 2457 2730 □ 69 7 256-QAM 5/6 2730 3033.1 □ 70 8 BPSK 11/2 234.4 260 □ 71 8 QPSK 11/2 468 520 □ 72 8 QPSK 3/4 702.4 780 □ 73 8 16-QAM 1/2 936 1040 □ 74 8 16-QAM 3/4 1404 1560 □ 75 8 64-QAM 2/3 1872 2080 □ 76 8 64-QAM 3/4 2106.4 2340 □ 76 8 64-QAM 3/4 2106.4 2340 □ 77 8 64-QAM 5/6 2340 2600 □ 78 8 6256-QAM 3/4 2808 3120 □								
68 7 256-QAM 3/4 2457 2730								
69 7 256-QAM 5/6 2730 3033.1 □ 70 8 BPSK 1/2 234.4 260 □ 71 8 QPSK 1/2 468 520 □ 72 8 QPSK 3/4 702.4 780 □ 73 8 16-QAM 1/2 936 1040 □ 74 8 16-QAM 3/4 1404 1560 □ 75 8 64-QAM 2/3 1872 2080 □ 76 8 64-QAM 3/4 2106.4 2340 □ 77 8 6 64-QAM 5/6 2340 2600 □ 78 8 626-QAM 3/4 2808 3120 □		68		256-QAM	3/4	2457	2730	
71 8 QPSK 1/2 468 520							3033.1	
72 8 QPSK 3/4 702.4 780 □								
73 8 16-QAM 1/2 936 1040 □ 74 8 16-QAM 3/4 1404 1560 □ 75 8 64-QAM 2/3 1872 2080 □ 76 8 64-QAM 3/4 2106.4 2340 □ 77 8 64-QAM 5/6 2340 2600 □ 78 8 256-QAM 3/4 2808 3120 □								
74 8 16-QAM 3/4 1404 1560								
75 8 64-QAM 2/3 1872 2080								
75 8 64-QAM 2/3 18/2 2080								
77 8 64-QAM 5/6 2340 2600 □ 78 8 256-QAM 3/4 2808 3120 □	-							
78 8 256-QAM 3/4 2808 3120 □								
17 200 200								
		78 79	8	256-QAM 256-QAM	5/6	3120	3466.4	

Test report reference: N° 157205-726501-D

Test report reference. N 13/203-/20301-D							
802.11a							
Antenna 1							
Channel	C6	C7					
EIRP TPC Max (dBm)	16.86	16.80					
Occupied Bandwidth (MHz)	16.84	16.78					

802.11a						
Antenna 2						
Channel	C6	C7				
EIRP TPC Max (dBm)	17.58	14.59				
Occupied Bandwidth (MHz)	16.88	16.78				

802.11n HT20/ac VHT20						
Channel	C6	C7				
EIRP TPC Max (dBm)	19.80	20.40				
Occupied Bandwidth (MHz)	17.95	17.81				

802.11n HT40/ac VHT40						
Channel	C17	C18				
EIRP TPC Max (dBm)	15.40	15.00				
Occupied Bandwidth (MHz)	36.65	36.76				

802.11ac VHT80					
Channel	C25	C26			
EIRP TPC Max (dBm)	15.60	13.30			
Occupied Bandwidth (MHz)	76.21	75.99			

2.2. RUNNING MODE

The EUT is set in the following modes during tests:

- Emission-reception with a duty cycle above 17% in the data rate that produced the highest output power
- -System testings is performed with iperf test software in udp mode from the Master Device to the Client Device on the test channel. The data traffic is performed Laptop 2 to Laptop 1

2.3. EQUIPMENT LABELLING

2.4. EQ	UIPMENT MODIFICATION		
✓ None	☐ Modification:		

TEST REPORT

N° 157205-726501-E

Version : 02

Page 17/33

3. DFS DETECTION THRESHOLDS DETERMINATION, REFERENCE NOISE LEVEL & CHANNEL LOADING

3.1. TEST CONDITIONS

Test performed by : Armand MAHOUNGOU

Date of test : October 3, 2018 to October 4, 2018

Ambient temperature : 27°C Relative humidity : 44%

3.2. TEST SETUP

- The Equipment Under Test is:

☑ On a table

☐ In an anechoic chamber

- Measurement is performed with a spectrum analyzer:

☑ On the EUT conducted access

☐ On the EUT with a test fixture

Photograph for DFS Detection Thresholds Determination, Reference Noise Level, Channel Loading

3.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Multimeter	KEITHLEY	2000	A1242090	2017/05	2019/05
EMI receiver	ROHDE & SCHWARZ	ESR 7	A2642023	2016/11	2018/11
RF cable	Télédyne	920-0202-024	A5329663	2018/05	2020/05
RF cable	Télédyne	920-0202-024	A5329664	2018/05	2020/05
RF cable	Télédyne	920-0202-024	A5329665	2018/05	2020/05
RF cable	Télédyne	920-0202-024	A5329668	2018/05	2020/05
RF cable	Télédyne	920-0202-024	A5329669	2018/05	2020/05
RF cable	Télédyne	920-0202-024	A5329670	2018/05	2020/05
RF cable	Télédyne	920-0202-024	A5329672	2018/05	2020/05
RF cable	Télédyne	920-0202-024	A5329673	2018/05	2020/05
Vector signal generator	ROHDE & SCHWARZ	SMJ100A	A5444007	Verified with calibrated EMI receiver/ Spectrum analyzer before testing	
Programmable AC/DC power supply	KIKUSUI	PCR500M	A7040079 Verified with calibrate multimeter before testi		
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122229	2018/05	2020/05
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122230	2018/05	2020/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329661	2018/05	2020/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329676	2018/05	2020/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329674	2018/05	2020/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329675	2018/05	2020/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122238	2018/05	2020/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122239	2018/05	2020/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122240	2018/05	2020/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122241	2018/05	2020/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122242	2018/05	2020/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122243	2018/05	2020/05
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132040	2018/05	2020/05
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132041	2018/05	2020/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152075	2018/05	2020/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152076	2018/05	2020/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152077	2018/05	2020/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152078	2018/05	2020/05

Note: In our quality system, the test equipment calibration due is more & less 2 months

3.4. RESULTS

Channel	Channel
EIRP (See test report from FCC ID: RRK2012060056-1)	338,065mW
DFS Detection thresholds applied	-64dBm
Additional Level (dB)	1
DFS Detection thresholds applied	-63dBm

4. DYNAMIC FREQUENCY SELECTION (DFS): CHANNEL CLOSING TRANSMISSION TIME & CHANNEL MOVE TIME

4.1. TEST CONDITIONS

Test performed by : Armand MAHOUNGOU

Date of test : October 4, 2018

Ambient temperature : 26 °C Relative humidity : 47 %

4.2. TEST SETUP

- The Equipment Under Test is:

☑ On a table

 \square In an anechoic chamber

- Measurement is performed with a spectrum analyzer:

☑ On the EUT conducted access

☐ On the EUT with a test fixture

Photograph for DFS Channel Closing Transmission Time & Channel Move Time

4.3. LIMIT

Channel Closing Transmission Time shall not exceed 0.26second Channel Move Time shall not exceed 10seconds

4.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due	
Multimeter	KEITHLEY	2000	A1242090	2017/05	2019/05	
EMI receiver	ROHDE & SCHWARZ	ESR 7	A2642023	2016/11	2018/11	
RF cable	Télédyne	920-0202-024	A5329663	2018/05	2020/05	
RF cable	Télédyne	920-0202-024	A5329664	2018/05	2020/05	
RF cable	Télédyne	920-0202-024	A5329665	2018/05	2020/05	
RF cable	Télédyne	920-0202-024	A5329668	2018/05	2020/05	
RF cable	Télédyne	920-0202-024	A5329669	2018/05	2020/05	
RF cable	Télédyne	920-0202-024	A5329670	2018/05	2020/05	
RF cable	Télédyne	920-0202-024	A5329672	2018/05	2020/05	
RF cable	Télédyne	920-0202-024	A5329673	2018/05	2020/05	
Vector signal generator	ROHDE & SCHWARZ	SMJ100A	A5444007	Verified with calibrated EMI receiver/ Spectrum analyzer before testing		
Programmable AC/DC power supply	KIKUSUI	RIRIGII I DODANNA I AZNANZA I			Verified with calibrated nultimeter before testing	
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122229	2018/05	2020/05	
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122230	2018/05	2020/05	
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329661	2018/05	2020/05	
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329676	2018/05	2020/05	
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329674	2018/05	2020/05	
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329675	2018/05	2020/05	
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122238	2018/05	2020/05	
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122239	2018/05	2020/05	
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122240	2018/05	2020/05	
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122241	2018/05	2020/05	
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122242	2018/05	2020/05	
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122243	2018/05	2020/05	
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132040	2018/05	2020/05	
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132041	2018/05	2020/05	
Load 50 ohms	Fairview Microwave	ST0635F	A7152075	2018/05	2020/05	
Load 50 ohms	Fairview Microwave	ST0635F	A7152076	2018/05	2020/05	
Load 50 ohms	Fairview Microwave	ST0635F	A7152077	2018/05	2020/05	
Load 50 ohms	Fairview Microwave	ST0635F	A7152078	2018/05	2020/05	

Note: In our quality system, the test equipment calibration due is more & less 2 months

4.5.	DIVER	RGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION
- N		□ B'
☑ None	9	□ Divergence:

TEST REPORT Version : **02** Page 26/33

4.6. RESULTS

4.7. CONCLUSION

Channel Closing Transmission Time & Channel Move Time measurement performed on the sample of the product **Sagemcom® Sound Box SBDV01**, SN: **253770742**, in configuration and description presented in this test report, show levels **compliant** to the 47 CFR PART 15.407 limits.

5. DYNAMIC FREQUENCY SELECTION (DFS): NON-OCCUPANCY PERIOD

5.1. TEST CONDITIONS

Test performed by : Armand MAHOUNGOU

Date of test : October 4, 2018

Ambient temperature : 26 °C Relative humidity : 47 %

5.2. TEST SETUP

- The Equipment Under Test is:

☑ On a table

☐ In an anechoic chamber

- Measurement is performed with a spectrum analyzer:

☑ On the EUT conducted access

☐ On the EUT with a test fixture

Photograph for DFS Non-Occupancy Period

5.3. LIMIT

Non-Occupancy Period shall exceed 1800 seconds

5.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Multimeter	KEITHLEY	2000	A1242090	2017/05	2019/05
EMI receiver	ROHDE & SCHWARZ	ESR 7	A2642023	2016/11	2018/11
RF cable	Télédyne	920-0202-024	A5329663	2018/05	2020/05
RF cable	Télédyne	920-0202-024	A5329664	2018/05	2020/05
RF cable	Télédyne	920-0202-024	A5329665	2018/05	2020/05
RF cable	Télédyne	920-0202-024	A5329668	2018/05	2020/05
RF cable	Télédyne	920-0202-024	A5329669	2018/05	2020/05
RF cable	Télédyne	920-0202-024	A5329670	2018/05	2020/05
RF cable	Télédyne	920-0202-024	A5329672	2018/05	2020/05
RF cable	Télédyne	920-0202-024	A5329673	2018/05	2020/05
Vector signal generator	ROHDE & SCHWARZ	SMJ100A	A5444007	Verified with calibrated EMI receiver/ Spectrum analyzer before testing	
Programmable AC/DC power supply	KIKUSUI	PCR500M	A7040079	7040079 Verified with calibrated multimeter before testing	
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122229	2018/05	2020/05
Attenuator 10dB	MINI CIRCUITS	BW-S10W2+	A7122230	2018/05	2020/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329661	2018/05	2020/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329676	2018/05	2020/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329674	2018/05	2020/05
RF cable & Attenuator 20dB	Télédyne & MINI CIRCUITS	920-0202-024 & FW-20+	A5329675	2018/05	2020/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122238	2018/05	2020/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122239	2018/05	2020/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122240	2018/05	2020/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122241	2018/05	2020/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122242	2018/05	2020/05
Attenuator 3dB	MINI CIRCUITS	BW-S3W2+	A7122243	2018/05	2020/05
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132040	2018/05	2020/05
Power splitter	Mini-Circuits	ZN6PD-63W-S+	A7132041	2018/05	2020/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152075	2018/05	2020/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152076	2018/05	2020/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152077	2018/05	2020/05
Load 50 ohms	Fairview Microwave	ST0635F	A7152078	2018/05	2020/05

Note: In our quality system, the test equipment calibration due is more & less 2 months

5.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION ☑ None □ Divergence:

TEST REPORT

N° 157205-726501-E

Version : 02

Page 30/33

5.6. RESULTS

5.7. CONCLUSION

Non-Occupancy period measurement performed on the sample of the product **Sagemcom® Sound Box SBDV01**, SN: **253770742**, in configuration and description presented in this test report, show levels **compliant** to the 47 CFR PART 15.407 limits.

6. ANNEX 3: RADAR TEST SIGNAL TYPE 0

TYPE 0			
Pulses per Burst	Pulse Width (µsec)	PRI (μs)	
18	1	1428	

7. UNCERTAINTIES CHART

47 CFR Part 15.209 & 15.207 Kind of test	Wide uncertainty laboratory (k=2) ±x(dB) / (Hz)/ ms	Uncertainty limit
Measurement of conducted disturbances in voltage on the AC power port (9 kHz – 150 kHz)	2,67	3.8
Measurement of conducted disturbances in voltage on the AC power port (150 kHz - 30 MHz)	2,67	3.4
Measurement of conducted disturbances in voltage on the telecommunication port. (AAN)	3,67	5.0
Measurement of conducted disturbances in current (current clamp)	2,73	2.9
Measurement of disturbance power	2,67	4.5
Measurement of radiated magnetic field from 10kHz to 30MHz in SAC V01	4,48	1
Measurement of radiated magnetic field from 10kHz to 30MHz in SAC C01	4,48	1
Measurement of radiated electric field from 30 to 1000MHz in horizontal position on the OATS (Ecuelles)	4,88	6.3
Measurement of radiated electric field from 1 to 18GHz on the Ecuelles site	5.16	1
Measurement of radiated electric field from 30 to 1000MHz in vertical position on the OATS (Ecuelles)	4,99	6.3
Measurement of radiated electric field from 30 to 1000MHz in horizontal position in SAC C01	5,08	6.3
Measurement of radiated electric field from 30 to 1000MHz in vertical position in SAC C01	5,16	6.3
Measurement of radiated electric field from 30 to 1000MHz in horizontal position in SAC V01	5,08	6.3
Measurement of radiated electric field from 30 to 1000MHz in vertical position in SAC V01	5,15	6.3
Measurement of radiated electric field from 1 to 6 GHz C01	5,1	5.2
Measurement of radiated electric field from 1 to 6 GHz V01	4,85	5.2
Measurement of radiated magnetic field from 10kHz to 30MHz on the OATS (Ecuelles)	4,48	1

The uncertainty values calculated by the laboratory are lower than limit uncertainty values defined by the CISPR. The conformity of the sample is directly established by the applicable limits values. This table includes all uncertainties maximum feasible for testing in the laboratory, whether or not made in this report