Computer Vision

Motion Estimation

Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys, K. Grauman, J. Hays, among others

Image Sequences

- A video is a sequence of images (frames) captured over time
- Now our image data is a function of **space** (x, y) and **time** (t)

Motion and perceptual organization

Sometimes, motion is the only cue

Motion and perceptual organization

 Even "impoverished" motion data can evoke a strong percept

Motion field

The motion field is the projection of the 3D scene motion into the image

Motion field + camera motion

Optical flow

Vector field function of the spatio-temporal image brightness variations

Optical flow

- Definition: optical flow is the apparent motion of brightness patterns in the image
- Ideally, optical flow would be the same as the motion field
- However, the apparent motion can be caused by lighting changes without any actual motion

Estimating the Optical flow

- Let's start by considering each pixel separately
- How do we estimate pixel motion?
 - Feature matching
 - Can we use what we have seen before?
 - Not really... although it works well for matching, detection, recognition
 - Sparse

Feature tracking

- Given two subsequent frames, estimate the point translation
- Key assumptions of Lucas-Kanade Tracker
 - Brightness constancy: projection of the same point looks the same in every frame
 - Small motion: points do not move very far
 - Spatial coherence: points move like their neighbors

The brightness constancy constraint

$$(x + u, y + v)$$

$$I(x,y,t+1)$$

Brightness Constancy Equation:

$$I(x, y, t) = I(x + u, y + v, t + 1)$$

Small motion (one pixel):
Take first-order Taylor approximation
and rearrange expression

$$I_x u + I_y v + I_t = 0$$

$$\nabla \mathbf{I} \cdot [\mathbf{u} \ \mathbf{v}]^{\mathrm{T}} + \mathbf{I}_{\mathrm{t}} = 0$$

One equation, two unknowns (u,v)

Image derivatives Difference over frames

The aperture problem

The aperture problem

The barber pole illusion

The barber pole illusion

Solving the ambiguity

- How to get more equations for a pixel?
- **Spatial coherence constraint**
- Assume the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25 equations per pixel

$$A \quad d = b \\ 25 \times 2 \quad 2 \times 1 \quad 25 \times 1$$

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$
 Overconstrained linear system

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
 The summations are over all pixels in the K x K window
$$A^T A$$

$$A^T b$$

Conditions for solvability

Optimal (u, v) satisfies Lucas-Kanade equation

$$\begin{bmatrix} \sum_{x} I_{x} I_{x} & \sum_{x} I_{x} I_{y} \\ \sum_{x} I_{x} I_{y} & \sum_{x} I_{y} I_{y} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum_{x} I_{x} I_{t} \\ \sum_{x} I_{y} I_{t} \end{bmatrix}$$

$$A^{T}A$$

$$A^{T}b$$

When is this solvable? I.e., what are good points to track?

- A^TA should be invertible
- A^TA should not be too small due to noise
 - eigenvalues λ_1 and λ_2 of A^TA should not be too small
- A^TA should be well-conditioned
 - $-\lambda_1/\lambda_2$ should not be too large (λ_1 = larger eigenvalue)

Does this remind you of anything?

Criteria for Harris corner detector

The aperture problem resolved

The aperture problem resolved

Lucas-Kanade Optical Flow

- Lucas-Kanade feature tracking, but for each pixel
 - Operations can be done one frame at a time, rather than pixel by pixel
- Revisiting the small motion assumption:
 - What if the motion is large (larger than a pixel)?
 - Not-linear: Iterative refinement estimate, warp, repeat until convergence
 - Local minima: coarse-to-fine estimation

Coarse-to-fine optical flow estimation

A coarse-to-fine optical flow estimation, using a Gaussian pyramid, helps solve ambiguities when the "small motion" assumption does not hold

Coarse-to-fine optical flow estimation

CNN to estimate optical flow

CNN to estimate optical flow

Alternatively, extract features separately and combine later

CNN to estimate optical flow

Results on Sintel (open source 3D animated short film)

