

SCUOLA DI INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE

Title

Tesi di Laurea Magistrale in Xxxxxxx Engineering - Ingegneria Xxxxxxx

Author: Name Surname

Student ID: 000000

Advisor: Prof. Name Surname

Co-advisors: Name Surname, Name Surname

Academic Year: 20XX-XX

Abstract

Here goes the Abstract in English of your thesis followed by a list of keywords. The Abstract is a concise summary of the content of the thesis (single page of text) and a guide to the most important contributions included in your thesis. The Abstract is the very last thing you write. It should be a self-contained text and should be clear to someone who hasn't (yet) read the whole manuscript. The Abstract should contain the answers to the main scientific questions that have been addressed in your thesis. It needs to summarize the adopted motivations and the adopted methodological approach as well as the findings of your work and their relevance and impact. The Abstract is the part appearing in the record of your thesis inside POLITesi, the Digital Archive of PhD and Master Theses (Laurea Magistrale) of Politecnico di Milano. The Abstract will be followed by a list of four to six keywords. Keywords are a tool to help indexers and search engines to find relevant documents. To be relevant and effective, keywords must be chosen carefully. They should represent the content of your work and be specific to your field or sub-field. Keywords may be a single word or two to four words.

Keywords: here, the keywords, of your thesis

Abstract in lingua italiana

Qui va l'Abstract in lingua italiana della tesi seguito dalla lista di parole chiave.

Parole chiave: qui, vanno, le parole chiave, della tesi

Contents

Abstract						
Abstract in lingua italiana ii						
C	Contents					
Introduction						
1	Literature review	3				
2	Problem description and mathematical formulation	5				
	2.1 3D Bin Packing Problem	5				
	2.2 Support	5				
	2.3 MILP Formulation	5				
3	Solution algorithms	9				
	3.1 State	9				
	3.1.1 AABB Tree	10				
	3.1.2 Feasibility	11				
	3.2 Beam Search	13				
	3.2.1 Scoring States	16				
	3.3 Support Planes	16				
	3.3.1 Scoring Insertions	20				
4 Computational experiments						
5 Conclusions and future developments						
ъ.	'l. l' l	25				
Вı	Bibliography					

A Appendix A	27
B Appendix B	29
List of Figures	31
List of Tables	33
List of Symbols	35
Acknowledgements	37

Introduction

Intro

Case study

Overview

$1 \mid$ Literature review

2 Problem description and mathematical formulation

- 2.1. 3D Bin Packing Problem
- 2.2. Support
- 2.3. MILP Formulation

Conceptual model

A conceptual model of the problem we are trying to solve would be:

minimize unused volume in used bins

subject to all items assigned to one and only one bin

all items within the bin dimensions

no overlaps between items in the same bin

all items with support

We can now provide the formal definition of the 3DBPP by formulating a mixed integer linear programming problem model.

Formal model

We'll now introduce a MILP model for the standard 3DBPP problem definition and then we'll expand it to address the stability constraint afterwards.

We start by defining the known sets and parameters of the problem.

Sets

$$I = \{1, \dots, n\}$$
: set of items $B = \{1, \dots, m\}$: set of bins

Parameters

$$W \times D \times H$$
 width \times depth \times height of a bin
$$V \quad \text{bin volume}$$

$$w_i \times d_i \times h_i \quad \text{width} \times \text{depth} \times \text{height of item } i \qquad \forall i \in I \qquad (2.1)$$

Variables We can now introduce the following sets of integer variables

$$(x_i, y_i, z_i) \quad \text{bottom front left corner of an item} \qquad \forall i \in I \qquad (2.2)$$

$$(x_i', y_i') \quad \text{back right corner of an item} \qquad \forall i \in I \qquad (2.3)$$

$$r_i \quad \begin{cases} 1, \text{ if item } i \text{ is rotated } 90^\circ \text{ over its z-axis} \\ 0, \text{ otherwise} \end{cases} \qquad \forall i \in I \qquad (2.4)$$

$$u_{ib} \quad \begin{cases} 1, \text{ if item } i \text{ is placed in bin } b \\ 0, \text{ otherwise} \end{cases} \qquad \forall i \in I, \forall b \in B$$

$$x_{ij}^p \quad \begin{cases} 1, \text{ if } x_i \leq x_j' \\ 0, \text{ otherwise} \end{cases} \qquad \forall i, j \in I$$

$$y_{ij}^p \quad \begin{cases} 1, \text{ if } y_i \leq y_j' \\ 0, \text{ otherwise} \end{cases} \qquad \forall i, j \in I$$

$$z_{ij}^p \quad \begin{cases} 1, \text{ if } z_i \leq z_j + h_j \\ 0, \text{ otherwise} \end{cases} \qquad \forall i, j \in I$$

$$z_{ij}^p \quad \begin{cases} 1, \text{ if } z_i \leq z_j + h_j \\ 0, \text{ otherwise} \end{cases} \qquad \forall i, j \in I$$

$$z_{ij}^p \quad \begin{cases} 1, \text{ if } z_i \leq z_j + h_j \\ 0, \text{ otherwise} \end{cases} \qquad \forall i, j \in I$$

$$z_{ij}^p \quad \begin{cases} 1, \text{ if } z_i \leq z_j + h_j \\ 0, \text{ otherwise} \end{cases} \qquad \forall i, j \in I$$

$$z_{ij}^p \quad \begin{cases} 1, \text{ if } z_i \leq z_j + h_j \\ 0, \text{ otherwise} \end{cases} \qquad \forall i, j \in I$$

$$z_{ij}^p \quad \begin{cases} 1, \text{ if } z_i \leq z_j + h_j \\ 0, \text{ otherwise} \end{cases} \qquad \forall i, j \in I$$

$$z_{ij}^p \quad \begin{cases} 1, \text{ if } z_i \leq z_j + h_j \\ 0, \text{ otherwise} \end{cases} \qquad \forall i, j \in I$$

$$z_{ij}^p \quad \begin{cases} 1, \text{ if } z_i \leq z_j + h_j \\ 0, \text{ otherwise} \end{cases} \qquad \forall i, j \in I$$

$$z_{ij}^p \quad \begin{cases} 1, \text{ if } z_i \leq z_j + h_j \\ 0, \text{ otherwise} \end{cases} \qquad \forall i, j \in I$$

Given a coordinate system, each item i can be rappresented univocally in 3D space by eqs. (2.1) to (2.4) as seen in figure 2.1

Figure 2.1: Coordinate system rappresentation for a generic item i given its rotation r_i

3 Solution algorithms

In this chapter we describe a solution to the 3D bin packing problem with static stability. A solution candidate to the problem can be found by conducting a search over the tree of possible packings or states. In section 3.1 we describe what a state or packing is and its rappresentation. Since an exaustive search isn't feasible, an heuristic search is conducted by combining a beam search algorithm described in section 3.2 and constructive heuristic described in section 3.3. The proposed algorithm takes in input an initial feasible state (as defined in section 3.1.2) usually rappresented by the empty state (3.3) and outputs the best scoring state based on an ordering function defined in section 3.2.1.

3.1. State

States or packings are partial solutions to the 3DBPP. Given the formal definition of the problem (2.3) a few new definitions are introduced to facilitate the algorithm's definition.

Definition 3.1 (Unpacked item). Given an item $i \in I$ we define it as unpacked iff

$$\sum_{b \in B} u_{ib} = 0$$

It is also assumed that variables identifying an item are independent between states.

A state s can then be defined as follows

- U: the set of unpacked items
- B: the set of bins
- (s_1, s_2, \ldots, s_b) : the set of supporting structures for each bin $b \in B$
- p: the insertion pending on this state (described by def. 3.4)

Observation 3.1. Given two states s and s' we can have that $|s.B| \neq |s'.B|$ since the number of bins is also a variable in the proposed heuristic

We can also trivially define a function which determines if a state is a final state

Definition 3.2. A state s is final if there are no more items to pack

$$IsFinal(s) = \begin{cases} 1, & s.U = \emptyset \\ 0, & otherwhise \end{cases}$$
(3.1)

Each bin b has additional data that is contained in a structure s_b used to facilitate the execution of the algorithm.

Let us introduce the concept of packed items inside a bin:

Definition 3.3 (Packed item). Given a state s and a bin $b \in s.B$, we say that item

$$i \in I \text{ is packed in } b \text{ iff} \quad \begin{cases} u_{ib} = 1, \\ \sum_{j \in s.B, j \neq b} u_{ij} = 0 \end{cases}$$

Given a bin $b \in s.B$ we can then define structure s_b as follows

- J: the set of items that are packed inside b
- Z: the set of planes inside b (section 3.3)
- T: the AABB Tree (section 3.1.1) rappresenting the items inside b

Notice that two separate sets containing the items packed in b are present inside s_b but adding and accessing items in $s_b.J$ has time complexity of O(1) given an underlying implementation as hashset while mantaining $s_b.T$ usually has a time complexity of $O(\log(|s_b.J|))$.

The reason to include an AABB Tree inside this structure is further explained in sections 3.1.2 and 3.3.1

3.1.1. AABB Tree

In order to determine the feasibility of a given state, a way of checking for overlaps with items already placed is needed. Since our formulation of the problem only allows for 90 deg rotations over the z-axis. Every item in a solution, by the problem formulation (2.1), is contained inside a bounding box and this box is axis-aligned. An adequate structure to compute overlaps is then an Axis-Aligned Bounding Box Tree (AABB Tree) [1].

AABB Trees are a bounding volume hierarchies tipically used for fast collision detection and they usually offer a few operations:

- AABBInsert(i): which allows to insert an axis-aligned box i in the tree
- AABBOverlaps(i): which allows to determine if an axis-aligned box i overlaps an element in the tree

If the tree is properly balanced each operation on avarage has a time complexity of $O(\log(n))$ where n is the number of elements in the tree.

Mantaining an AABB Tree in the state allows us to do checks for feasibility during the construction of a solution (as detailed in 3.3.1) and feasibility checks on the final states to allow for error detection.

3.1.2. Feasibility

A state s is said to be feasible if the currently packed items for every bin $b \in s.B$ respects the constraints defined in the problem formulation (2.3)

Since the proposed heuristic is constructive it is more convenient to define the concept of feasibility relative to a change in the state.

Insertions Given a state s and $b \in s.B$, an insertion of items is a set of items that are placed in b and have their z_i within tollerance of a certain z.

Definition 3.4 (Insertion). Given a state s and a tollerance β_s we define an insertion or placement p a tuple (b, I) where b is a bin and I is a set of items that are going to be packed in b such that, $I \subseteq s.U \land \exists z(z \in \mathbb{Z} \land \forall i(i \in I \land |z_i - z| \leq \beta_s))$

Observation 3.2. Given s and $p = (b, \emptyset)$ where $b \notin s.B$, p is an insertion which will open bin b in s.

Definition 3.5 (Next). Let p be an insertion over a state s we can then define s' = Next(s, p) as the "copy" of state s with s'.p = p. And p is then pending on s'.

In this way we can evaluate the changes to the score of a state based on its pending insertion without having to update all the structures for every evaluated state. This

property will become apparent in section 3.2.

We can then define an algorithm that applies insertions to a given state s with pending insertions with the help of a function OpenBin(b) which initializes a new structure s_b with every element at its empty value. The proposed algorithm is shown in 1.

```
Algorithm 1: Commit
```

```
input: s
output: s
(b, I) \leftarrow s.p
if b \in s.B then
\begin{vmatrix} s.s_b.J \leftarrow s.s_b.J \cup I \\ s.U \leftarrow s.U \setminus I \end{vmatrix}
end
else Open a new bin
\begin{vmatrix} s.B \leftarrow s.B \cup b \\ s.s_b \leftarrow OpenBin(b) \end{vmatrix}
```

end

 $s.p \leftarrow \emptyset$

return s

Insertion feasibility Describe insertion feasibility givine the sets defined

Algorithm 2: Is Insertion Feasible

 $\overline{\mathbf{input} : b, I, z, I_{support}, I_{upper}}$

output: isFeasible

return true

State feasibility Describe how to compute the sets efficiently to use the insertion feasibility logic

Algorithm 3: Is State Feasible

input : s

output: isFeasible

return true

Proposition 3.1. A state s' derived by committing a feasible insertion p to a feasible state s is feasible.

Observation 3.3. We can always define the empty state s_e where

$$\begin{cases} s_e.U = I \\ s_e.B = \emptyset \end{cases}$$

and it is always feasible

3.2. Beam Search

Beam Search (BS) is an heuristic tree search algorithm designed for systems with limited memory where expanding every possible node is unfeasible. The idea behind BS is to conduct an iterative truncated breadth-first search where, at each iteration, only a limited number k of nodes is expanded. After the expansion every new node needs to be evaluated and sorted in order to prune the number of nodes down to the k best ones. The algorithm keeps exploring until no further node can be expanded.

To perform BS one must define the node structure, an expansion function to generate new nodes from existing ones, a ranking between nodes and a function to determine if a node is final.

By using as a node the state in section 3.1 and eq. (3.1) to define if a node is final we know that a new state s' derived by s by applying a feasible insertion p can be computed as in definition 3.5. This node expansion procedure, with the exception of empty insertions, will generate new nodes in our tree which we can score and will add a strictly positive number of bins or packed items to the solution so eventually it will generate a final state.

Furthermore, if the starting state for the search is feasible every new state generated will be feasible and if a final state is found it will be feasible (proposition 3.1).

We also note that starting from node s the time complexity to compute feasible insertions can be lower than the complexity required to update the structures that will be used for further expansions (AABB Tree insertion and balancing, memory cloning, etc.) so we modified the standard BS algorithm to separate the expansion phase from the commit phase.

Given S^0 the set of initial states to start from and k the number of best nodes to expand at each iteration, the described procedure is rappresented by algorithm 4.

As observed in observation 3.3 it's possible to start the search from $S^0 = \{s_e\}$.

Algorithm 4: Beam search

```
input : S^0, k
output: s_{best}
S^t \leftarrow S^0
S_{final} \leftarrow \emptyset
repeat
     S^{t+1} \leftarrow Expand(S^t) (algo. 6)
     S_{final} \leftarrow S_{final} \cup \{s \in S^{t+1} : IsFinal(s)\} \text{ (def. 3.2)}
S^{t+1} \leftarrow S^{t+1} \setminus S_{final}
     S^{t+1} \leftarrow Sort(S^{t+1}) (sec. 3.2.1)
     S^t \leftarrow \emptyset
     i \leftarrow 0
     forall s \in S^{t+1} do
           S^t \leftarrow S^t \cup Commit(s) (algo. 1)
           if i > k then
                 break
           end
     end
until S^t \neq \emptyset
S_{final} \leftarrow Sort(S_{final})
return s_0 \in S_{final}
```

Node Expansion An expansion of a state s can be seen as a new set of nodes S_{new} that is computed by a set of feasible insertions. In order to determine these insertion an underlying heuristic is used (described in section 3.3).

The main idea in this phase of the algorithm is to find feasible insertions in all the bins for items that still need to be packed and that are of the same height. With this approach the solutions given by the algorithm will start by trying to fill layers with items of the same height if possible.

The underlying heuristic introduced will also use a scoring mechanism to select the best instertions for a given class of heights in order to avoid having too many states.

Given a set of items I and a tollerance β_s we can introduce an algorithm to group them by height and produce a set G of tuples (h, I') where h is the height of the group and I' is the set of items grouped as line 5.

Algorithm 5: Group By Height

```
\overline{\text{input}}: I, \beta_s
output: G
G \leftarrow \emptyset
forall i \in I do
     generate \leftarrow true
     forall (h, I') \in G do
          if |h_i - h| \leq \beta_s then
               generate \leftarrow \text{false}
               I' \leftarrow I' \cup i
          end
     end
     if \ generate = true \ then
      G \leftarrow G \cup (h_i, \{i\})
     \mathbf{end}
end
return G
```

The described procedure is detailed in algorithm 6

Algorithm 6: Expand

```
input : S
output: S_{new}
forall s \in S do
    S_{new} \leftarrow \emptyset
    I_h \leftarrow GroupByHeight(s.unpacked)
    placed \leftarrow false
    forall (h, I) \in I_h do
        forall b \in bins do
             placement \leftarrow SPBestInsertion(s_b, I) (Algorithm 7)
             if placement \neq \emptyset then
                 placed \leftarrow true
                 S_{new} \leftarrow S_{new} \cup Next(s, placement)
             end
        end
    end
    if placed = false then
        S_{new} \leftarrow S_{new} \cup OpenNewBin(s)
    end
end
return S_{new}
```

3.2.1. Scoring States

In order to sort states, a scoring function needs to be defined over them. By observing the differences between states we note that we can To allow the BS to explore better solutions the scoring function can't be as flat as the objective function defined in the mathematical formulation of the problem.

3.3. Support Planes

We introduce Support Planes (SP) which is an heuristic introduced in this thesis based on an underlying 2DBPP heuristic which is used to evaluate feasible expansions of a given node in the BS. The proposed heuristic ensures that the constraint of support isn't violated. The idea at the base of SP is to build a solution to the 3DSPP by filling 2D planes called support planes.

Each support plane can be characterized by the triple $S_z = (z, I_{support}, I_{upper})$ where

- -z: the height of the plane
- $-I_{support}$: the set of the items that can offer support to items placed on the plane
- I_{upper} : the set of items that will be obstacles to potential new items placed on the plane

Let s_b be a data structure containing

- planes: the set of triples S_z of support planes to evaluate, ordered in ascending z order
- aabb: the AABB Tree of the items placed in the evaluated bin
- (W_b, D_b, H_b) : the dimensions of the bin

Let *coords* be the set of possible coordinate changes which allow for the problem to evaluate placements starting from different corners of the bin.

Given a function $IsFeasible(i, bin, I_{support}, I_{upper}, aabb)$ which evaluates if a packing of item i in bin bin is feasible, and the function ComparePacking(p, p') which defines a ranking over placements in the same plane, the SP algorithm can be written as algorithm 7.

Algorithm 7: SP Best Insertion

```
input : s_b, I
{\bf output:}\ placement
placement \leftarrow \emptyset
forall S_z \in planes do
    I_p \leftarrow I \setminus \{i \in I : z + i.h > H_b\}
    forall change \in coords do
         I'_{upper} \leftarrow CoordinateChange(change, I_{upper})
         I_p' \leftarrow CoordinateChange(change, I_p)
        P' \leftarrow SPPackPlane(W_b, D_b, I'_{upper}, I'_p) (Algorithm 8)
        P \leftarrow CoordinateChange(change, P')
        P \leftarrow \{i \in P : IsFeasible(i, bin, I_{support}, I_{upper}, aabb)\}
         if ComparePacking(placement, P) then
             placement \leftarrow P
         end
    \quad \mathbf{end} \quad
    if placement \neq \emptyset then
       return placement
    end
end
```

return placement

To evaluate a packing on a plane an heuristic to solve the 2DBPP is used with the introduction of fixed placements which rappresent items on other planes that will be obstacles in the current one.

Given the dimensions of the 2D bin (W_b, D_b) , the set of obstacles I_o and the set of items to pack I_p a new placement can be computed following algorithm 8

Algorithm 8: SP Pack Plane

```
\begin{array}{l} \textbf{input}: \ W_b, D_b, I_o, I_p \\ \textbf{output}: P \\ P \leftarrow \emptyset \\ 2dPacking \leftarrow \emptyset \\ \textbf{for each} \ i \in I_o \ \textbf{do} \\ & \ | \ // \textbf{Initialize} \ \textbf{the} \ 2\textbf{D} \ \textbf{bin} \ \textbf{packing} \ \textbf{instance} \ \textbf{with} \ \textbf{each} \ \textbf{obstable} \ \textbf{already} \\ & \ | \ placed \\ & \ | \ 2DPlaceRect(2dPacking, i) \\ \textbf{end} \\ \textbf{repeat} \\ & \ | \ // \textbf{Pack} \ \textbf{untill} \ \textbf{full} \\ & \ | \ p \leftarrow 2DPackRect(2dPacking, W_b, D_b, i) \\ & \ | \ P \leftarrow P \cup \{p\} \\ \textbf{until} \ p \neq \emptyset \\ \textbf{return} \ P \\ \end{array}
```

Once the k best nodes are selected the placements evaluated for each node are applied and the Commit function updates every datastructure in S, including the ones used by SP. Given the instance that generated one of the placements selected and p the current set of support planes, z_{min} the minimum z coordinate for which a placement was made in the related bin starting from the current state, I the set of items placed, U the set of items unpacked. Since placements are evaluated in order starting from the lower z possible, if no placement was made in an open support plane with z lower than z_{min} , the plane can be pruned to avoid further evaluations. The algorithm which updates the structures for a given SP instance is rappresent by algorithm 9.

```
Algorithm 9: SP Apply and Filter
\overline{\text{input}}: s_b, I, z, z_{min}, t
output: s'_b
//Filter bad planes
P' \leftarrow planes \setminus \{S_z \in planes : z \leq z_{min}\}
//Apply insertion
B \leftarrow placed \cup I
U \leftarrow unpacked \setminus I
T \leftarrow aabb
for all i \in I do
    T \leftarrow InsertAABB(i,T) \text{ //If balanced } O(log(n))
    generate \leftarrow true
    forall S'_z \in P' do
         //Based on the distance from the top of the item
         dz \leftarrow S'_z.z - i.z_{max}
         if 0 \le dz \le t then
             generate \leftarrow false
             S'_z.I_{support} \leftarrow S'_z.I_{support} \cup i
         end
         else if dz < 0 then
             S'_z.I_{upper} \leftarrow S'_z.I_{upper} \cup i
         end
    end
    if generate then
         P' \leftarrow P' \cup (i.z_{max}, \{i\}, \emptyset)
    end
end
return Update(s_b, P', B, U, T)
```

3.3.1. Scoring Insertions

| Computational experiments

5 | Conclusions and future developments

A final chapter containing the main conclusions of your research/study and possible future developments of your work have to be inserted in this chapter.

Bibliography

[1] G. v. d. Bergen. Efficient collision detection of complex deformable models using aabb trees. *Journal of graphics tools*, 2(4):1–13, 1997.

A | Appendix A

If you need to include an appendix to support the research in your thesis, you can place it at the end of the manuscript. An appendix contains supplementary material (figures, tables, data, codes, mathematical proofs, surveys, ...) which supplement the main results contained in the previous chapters.

$\mathbf{B} \mid$ Appendix B

It may be necessary to include another appendix to better organize the presentation of supplementary material.

List of Figures

2.1 Coordinate system rappresentation for a generic item i given its rotation r_i

List of Tables

List of Symbols

Variable	Description	SI unit
u	solid displacement	m
\boldsymbol{u}_f	fluid displacement	m

Acknowledgements

Here you might want to acknowledge someone.

