Цель работы. Изучение частотных характеристик типовых динамических звеньев и способов их построения.

Исходные данные. В работе будут исследоваться колебательное, идеальное интегрирующее, дифференцирующее с замедлением звенья. В таблице 1 приведены их передаточные функции.

Таблица 1 – Исходные данные

Тип звена	Передаточная функция
Колебательное	$W(s) = \frac{10}{4s^2 + s + 1}$
Идеальное интегрирующее	$W(s) = \frac{10}{s}$
Дифференцирующее с замедлением	$W(s) = \frac{10s}{2s+1}$

Для анализа необходимо с помощью моделирования определить амплитуду и сдвиг фазы при различных значениях частоты. На рисунке 1 представлен пример получения данных.

Рис. 1 – Временная диаграмма

Пример обработки данных:

 $\omega = 0.15^{-1}$

Ym=1.5

 $\phi = 8$

1 Колебательное звено

В таблице 2 представлены данные полученные при исследовании колебательного звена.

Таблица 2 – Данные полученные при моделировании колебательного звена

ω	$lg\omega$	$A(\omega)$	$L(\omega) = 20 lg A(\omega)$	ϕ	$\psi(\omega)$
0,05	-1,30	10,08	20,07	0,00	0,00
0,10	-1,00	10,36	20,31	-1,00	-0,10
0,15	-0,82	11,65	21,33	-1,10	-0,17
0,20	-0,70	$12,\!64$	22,03	-1,11	-0,22
0,25	-0,60	13,02	22,29	-1,15	-0,29
0,50	-0,30	20,00	26,02	-2,85	-1,43
1,00	0,00	6,36	16,07	-2,90	-2,90
2,00	0,30	$2,\!53$	8,06	-3,10	-3,14
3,00	0,48	1,39	2,86	-3,14	-3,14
4,00	0,60	1,06	0,51	-3,14	-3,14
5,00	0,70	0,79	-2,05	-3,14	-3,14
7,00	0,85	0,55	-5,19	-3,14	-3,14
10,00	1,00	0,37	-8,64	-3,14	-3,14

Далее, на рисунках 2-7 представлены построенные по этим данным характеристики.

Рис. 2 – АЧХ

Рис. 3 – **Ф**ЧХ

Рис. 4 – ЛАЧХ

Рис. 5 – Л**Ф**ЧХ

Рис. 6 – АФЧХ

Рис. 7 — Асимптотическая $\Pi A \Psi X$

2 Идеальное интегрирующее звено

В таблице 3 представлены данные полученные при исследовании идеального интегрирующего звена.

Таблица 3 – Данные полученные при моделировании идеального интегрирующего звена

ω	$lg\omega$	$A(\omega)$	$L(\omega) = 20 lg A(\omega)$	ϕ	$\psi(\omega)$
0,05	-1,30	400,00	52,04	-62,00	-3,10
0,10	-1,00	200,00	46,02	-31,50	-3,15
0,15	-0,82	133,33	42,50	-21,00	-3,15
0,20	-0,70	100,00	40,00	-16,50	-3,30
0,25	-0,60	80,00	38,06	-12,25	-3,06
0,50	-0,30	40,00	32,04	-6,35	-3,18
1,00	0,00	20,00	26,02	-3,10	-3,10
2,00	0,30	10,00	20,00	-1,61	-3,22
3,00	0,48	6,66	16,47	-1,06	-3,18
4,00	0,60	5,00	13,98	-0,80	-3,20
5,00	0,70	4,00	12,04	-0,62	-3,12
7,00	0,85	2,85	9,10	-0,45	-3,16
10,00	1,00	2,00	6,02	-0,32	-3,16

Далее, на рисунках 8-13 представлены построенные по этим данным характеристики.

Рис. 8 – АЧХ

Рис. 9 – ФЧХ

Рис. 10 – ЛАЧХ

Рис. 11 – ЛФЧХ

Рис. 12 – АФЧХ

Рис. 13 – Асимптотическая ЛАЧХ

3 Дифференцирующее звено с замеделнием

В таблице 4 представлены данные полученные при исследовании дифференцирующего звена с замедлением.

Таблица 4 – Данные полученные при моделировании дифференцирующего звена с замедлением

ω	$lg\omega$	$A(\omega)$	$L(\omega) = 20lgA(\omega)$	φ	$\psi(\omega)$
0,05	-1,30	1,00	0,00	30,00	1,50
0,10	-1,00	0,98	-0,18	14,00	1,40
0,15	-0,82	1,43	3,11	8,00	1,20
0,20	-0,70	1,85	5,34	5,80	1,16
0,25	-0,60	2,23	6,97	4,50	1,13
0,50	-0,30	3,53	10,96	1,65	0,83
1,00	0,00	4,47	13,01	0,65	0,65
2,00	0,30	4,85	13,71	0,17	0,34
3,00	0,48	4,93	13,86	0,08	0,24
4,00	0,60	4,96	13,91	0,04	0,16
5,00	0,70	4,97	13,93	0,04	0,18
7,00	0,85	4,98	13,94	0,02	0,12
10,00	1,00	4,99	13,96	0,01	0,09

Далее, на рисунках 14-19 представлены построенные по этим данным характеристики.

Рис. 14 – АЧХ

Рис. 15 – ФЧХ

Рис. 16 – ЛАЧX

Рис. 17 – ЛФЧХ

Рис. 18 – АФЧХ

Рис. 19 – Асимптотическая ЛАЧХ

Выводы

В лабораторной работе были исследованы частотные характеристики типовых динамических звеньев: колебательного, идеального интегрирующего, дифференцирующего с замедлением. Полученные экспериментально графики, соответствуют по види, графикам соответствующих звеньев. Построенные асимптотические ЛАЧХ дифференциального и колебательного звена имеют частоту среза 1/Т и соответствующие им наклоны. Построенные АФЧХ дифференциального и колебательного звеньев удовлетворяют следствию критерия Найквиста и не охватывают [-1,0], что свидетельствует об устойчивости звеньев.