Lagrangian density
$-t_1\;\omega_{\kappa \alpha}^{\;\; lpha_{'}}\;\omega_{\kappa lpha}^{\;\; \kappa-rac{1}{3}}t_1\;\omega_{\kappa \lambda}^{\;\; \kappa \lambda}\;\omega_{\kappa \lambda}^{\;\; \prime}+rac{2}{3}t_2\;\omega_{\kappa \lambda}^{\;\; \kappa \lambda}\;\omega_{\kappa \lambda}^{\;\; \prime}+$
$rac{1}{3}t_1\;\omega_{\kappa\lambda}^{'}\;\;\omega^{\kappa\lambda}_{'}+rac{1}{3}t_2\;\omega_{\kappa\lambda}^{'}\;\;\omega^{\kappa\lambda}_{'}+f^{lphaeta}\;\; au_{lphaeta}+\omega^{lphaeta\chi}\;\;\sigma_{lphaeta\chi}+$
$2r_1\partial_i\omega^{\kappa\lambda}_{\kappa}\partial^i\omega_{\alpha}^{\alpha}-\tfrac{2}{3}r_1\partial^\beta\omega^{\theta\alpha}_{\kappa}\partial_\theta\omega_{\beta}^{\kappa}+\tfrac{2}{3}r_2\partial^\beta\omega^{\theta\alpha}_{\kappa}\partial_\theta\omega_{\beta}^{\kappa}-$
$\frac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{\beta}\partial_{\kappa}\omega^{\alpha\beta\theta} - \frac{1}{3}r_{2}\partial_{\theta}\omega_{\alpha\beta}^{\beta}\partial_{\kappa}\omega^{\alpha\beta\theta} + \frac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{\beta}\partial_{\kappa}\omega^{\theta\alpha\beta} -$
$\frac{2}{3} r_2 \partial_\theta \omega_{\alpha\beta}^{ \kappa} \partial_\kappa \omega^{\theta\alpha\beta} + 2 r_1 \partial_\alpha \omega_{\lambda}^{ \alpha} \partial_\kappa \omega^{\theta\kappa\lambda} - 2 r_1 \partial_\theta \omega_{\lambda}^{ \alpha} \partial_\kappa \omega^{\theta\kappa\lambda} +$
$2r_1\partial_\alpha\omega_\lambda^{\ \alpha}_{\ \ \theta}\partial_\kappa\omega^{\kappa\lambda\theta} - 4r_1\partial_\theta\omega_\lambda^{\ \alpha}_{\ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - \frac{1}{3}t_1\partial^\alpha f_{\theta\kappa}\partial^\kappa f_\alpha^{\ \theta} +$
$\frac{1}{6}t_2\partial^\alpha f_{\theta\kappa}\partial^\kappa f_{\alpha}^{\ \ \theta} - \frac{2}{3}t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_{\alpha}^{\ \ \theta} - \frac{1}{6}t_2\partial^\alpha f_{\kappa\theta}\partial^\kappa f_{\alpha}^{\ \ \theta} - \frac{1}{3}t_1\partial^\alpha f^\lambda_{\ \ \kappa}\partial^\kappa f_{\alpha\lambda} +$
$rac{1}{6}t_2\partial^{lpha}f^{\lambda}_{\kappa}\partial^{\kappa}f_{\lambda}+t_1\omega_{\kappa\alpha}^{\alpha}\partial^{\kappa}f'_{}+t_1\omega_{\kappa\lambda}^{\lambda}\partial^{\kappa}f'_{}+2t_1\partial^{lpha}f_{\kappa\alpha}\partial^{\kappa}f'_{},$
$t_1 \partial_\kappa f^\lambda_{\lambda} \partial^\kappa f^\prime_{\prime} + frac{1}{3} t_1 \omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
$\frac{2}{3}t_{2}\ \omega_{_{IK}\theta}\ \partial^{\kappa}f^{_{I}\theta}-\frac{1}{3}t_{1}\ \omega_{_{\theta_{IK}}}\ \partial^{\kappa}f^{_{I}\theta}-\frac{1}{3}t_{2}\ \omega_{_{\theta_{IK}}}\ \partial^{\kappa}f^{_{I}\theta}+\frac{2}{3}t_{1}\ \omega_{_{\theta_{KI}}}\ \partial^{\kappa}f^{_{I}\theta}+$
$rac{2}{3}t_2\omega_{ heta\kappa_I}\partial^{\kappa}f^{I heta}$ - $t_1\omega_{I\alpha}^{\alpha}\partial^{\kappa}f^{I}_{\kappa}$ - $t_1\omega_{I\lambda}^{\lambda}\partial^{\kappa}f^{I}_{\kappa}$ + $rac{1}{3}t_1\partial^{lpha}f^{\lambda}_{\kappa}\partial^{\kappa}f_{\lambdalpha}$ -
$\frac{1}{6}t_{2}\partial^{\alpha}f^{\lambda}_{\ \ \kappa}\partial^{\kappa}f_{\lambda\alpha} + \frac{1}{3}t_{1}\partial_{\kappa}f_{\theta}^{\ \ \lambda}\partial^{\kappa}f_{\lambda}^{\ \ \theta} - \frac{1}{6}t_{2}\partial_{\kappa}f_{\theta}^{\ \ \lambda}\partial^{\kappa}f_{\lambda}^{\ \ \theta} + \frac{2}{3}t_{1}\partial_{\kappa}f^{\lambda}_{\ \ \theta}\partial^{\kappa}f_{\lambda}^{\ \ \theta} + \frac{2}{3}t_{2}\partial_{\kappa}f_{\lambda}^{\ \ \theta}\partial^{\kappa}f_{\lambda}^{\ \ \theta} + \frac{2}{3}t_{3}\partial_{\kappa}f_{\lambda}^{\ \ \theta}\partial^{\kappa}f_{\lambda}^{\ \ \theta} + \frac{2}{3}t_{3}\partial_{\kappa}f_{\lambda}^{\ \ \theta}\partial^{\kappa}f_{\lambda}^{\ \ \theta} + \frac{2}{3}t_{3}\partial_{\kappa}f_{\lambda}^{\ \ \theta}\partial^{\kappa}f_{\lambda}^{\ \ \theta}\partial^{\kappa}f_{\lambda}^{\ \ \theta} + \frac{2}{3}t_{3}\partial_{\kappa}f_{\lambda}^{\ \ \theta}\partial^{\kappa}f_{\lambda}^{\ \ \theta}\partial^{\kappa}f_{\lambda}^{\ \ \theta} + \frac{2}{3}t_{3}\partial_{\kappa}f_{\lambda}^{\ \ \theta}\partial^{\kappa}f_{\lambda}^{\ $
$rac{1}{6}t_2\partial_\kappa f^\lambda_{ heta}\partial^\kappa f_{\lambda}^{} - t_1\partial^\alpha f^\lambda_{\alpha}\partial^\kappa f_{\lambda\kappa} + rac{2}{3}r_1\partial_\kappa \omega^{lphaeta heta}\partial^\kappa \omega_{lphaeta heta} +$
$rac{1}{3}r_2\partial_\kappa\omega^{\alphaeta heta}\partial^\kappa\omega_{lphaeta heta} -rac{2}{3}r_1\partial_\kappa\omega^{ hetalphaeta}\partial^\kappa\omega_{lphaeta heta} +rac{2}{3}r_2\partial_\kappa\omega^{ hetalphaeta}\partial^\kappa\omega_{lphaeta} +$
$rac{2}{3}r_1\partial^{eta}\omega_{,}{}^{lpha\lambda}\partial_{\lambda}\omega_{lphaeta}{}^{\prime}$ - $rac{2}{3}r_2\partial^{eta}\omega_{,}{}^{lpha\lambda}\partial_{\lambda}\omega_{lphaeta}{}^{\prime}$ - $rac{8}{3}r_1\partial^{eta}\omega_{,}{}^{\lambdalpha}\partial_{\lambda}\omega_{lphaeta}{}^{\prime}$ +
$rac{2}{3}r_2\partial^{eta}\omega_{\lambda}{}^{\lambdalpha}\partial_{\lambda}\omega_{lphaeta}{}^{\prime\prime}-2r_1\partial_{lpha}\omega_{\lambda}{}^{lpha}\partial^{\lambda}\omega^{eta\kappa}{}_{\kappa}+2r_1\partial_{eta}\omega_{\lambda}{}^{lpha}\partial^{\lambda}\omega^{eta\kappa}{}_{\kappa}$

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}}{(t_1 + 2k^2t_1)^2}$	0	$\frac{2k^2(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{2k^2r_1+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$\frac{i\sqrt{2} k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{ik(t_1+4t_2)}{3(1+k^2)^2t_1t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2(t_1+t_2)}{3t_1t_2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2)t_1t_2}$	$t_{1}^{\#1} + \alpha \beta - \frac{i \sqrt{2} k(t_{1} - 2t_{2})}{3(1 + k^{2})t_{1}t_{2}}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{#2} + \alpha \beta$	ı	$\sigma_{1}^{\#1} + ^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_1^{\#1} + ^{\alpha}$	$\tau_{1}^{#2} + ^{\alpha}$

	$\omega_{2}^{\#1}{}_{lphaeta}$	$f_{2}^{\#1}{}_{lphaeta}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2}^{#1}\dagger^{lphaeta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\sharp 1} \dagger^{\alpha \beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

Source constraints				
SO(3) irreps	#			
$\tau_{0^{+}}^{\#2} == 0$	1			
$\tau_{0^{+}}^{\#1} - 2 \bar{\imath} k \sigma_{0^{+}}^{\#1} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1\alpha\beta} - 2\bar{i}k\sigma_{2+}^{\#1\alpha\beta} == 0$	5			
Total #:	16			

Unitarity conditions $r_1 < 0 \&\& r_2 < 0 \&\& t_1 > 0 \&\& t_2 > 0$

(No massless particles)