Generative and Predictive Models of Videos for Understanding the World

Oleh Rybkin

(some slides taken from Drew Jaegle, Karl Pertsch)

Can predictive objectives be useful for semantic understanding?

- Objects?
- Events?
- Affordances?

Learning what you can do before doing anything

Oleh Rybkin*, Karl Pertsch*, Konstantinos G. Derpanis, Kostas Daniilidis, Andrew Jaegle

ICLR 2019

Understanding actions

Understanding actions

Variational Video Prediction

Variational Video Prediction

Variational Video Prediction with Information Bottleneck

The (beta-)VAE objective for stochastic video prediction is:

$$\sum_{t} \left[\mathbb{E}_{q(z_{t}|x_{t-1:t})} \log p(x_{t}|Z_{t}, x_{t-1}) - \beta \text{KL}[q(Z_{t}|x_{t-1:t}), p(Z)] \right]$$

Which is equivalent to the VIB lower bound of the following:

$$\max I((z_t, x_{t-1}); x_t)$$
 s.t. $I(z_t; x_{t-1:t}) \leq I_c$.

Enforcing structure with composability

CLASP: Enforcing structure with composability

Reacher environment

Understanding actions

Applications of CLASP

Action-conditioned prediction

Ground Truth:

CLASP (ours):

Denton & Fergus:

1	-	1	1	1	1	1	/	1	`
/	-	1	1	1	1	1	1	1	1
/	1	-	/	/	1	1	/	/	`

	Reacher	BAIR
Method	Error [deg]	Error [px]
Random	26.6 ± 21.5	_
Baseline	22.6 ± 17.7	3.6 ± 4.0
Ours	2.9 ± 2.1	3.0 ± 2.1
Supervised	2.6 ± 1.8	2.0 ± 1.3

Applications of CLASP

Passive learning

Planning in learned latent space

Varying visual characteristics

Learning what you can do before doing anything

- The inductive biases of minimality and composability provide sufficient constraints for learning action representations just from visual observations
- The learned representation is disentangled from the static scene content and visual characteristics of the environment.
- The representation to be used for planning and action-conditioned prediction while requiring orders of magnitude less action-labeled videos.

KeyIn: Discovering Subgoal Structure with Keyframe-based Video Prediction

Karl Pertsch*, <u>Oleh Rybkin</u>*, Jingyun Yang, Konstantinos G. Derpanis, Joseph Lim, Kostas Daniilidis, Andrew Jaegle

Keyframes in natural sequences

- Dynamics in complex scenes are stochastic. But not uniformly so!
- How can we exploit this structure to improve long-term reasoning?
- Keyframes: capture interesting structure in time, but also allow reconstruction of the full dynamics.

Keyframing

- 1. Draw the start and end points of all motions: define the stochastic long-term sequence dynamics (*lead animator*).
- 2. Interpolate between the start and end points: make the local, deterministic dynamics explicit (*inbetweener*).

KeyIn - keyframe prediction

KeyIn - keyframe-based prediction

KeyIn - predicting interframe offsets

KeyIn - Continuous relaxation

Keyln -Full loss
$$\mathcal{L}_{key} = (\sum_t c^t eta_{ki} ||\hat{K}^t - \tilde{K}^t||^2)$$

Soft Keyframe targets

Soft embedding targets

Prior divergence ———

Interpolation targets

KeyIn - full method

Structured Brownian motion data

Enforcing descriptive Keyframes

Jumpy (Baseline)

Generative model of trajectories via keyframes

Ground Truth

Predicted

Legend

Pushing data

Planning

Algorithm 1 Planning in the subgoal space.

Input: Keyframe model KEYIN(.,.), cost function c

Input: Start and target images I_0 and I_{target}

Sample L sequences of latent variables:

$$z^{0:M} \sim \mathcal{N}(\mu_n, \sigma_n)$$

Produce subgoal plans: $\hat{K}^{0:M} = \text{KEYIN}(I_0, z^{0:M})$

Compute cost between produced and true target:

$$c(\hat{K}^M)$$

Choose L' best plans,

end for

Return: Best subgoal plan $K^{0:M}$

Planning on the pushing task

Метнор	FINAL POSITION ERROR	SUCCESS RATE
INTITIAL	1.32 ± 0.06	-
RANDOM	1.32 ± 0.07	-
No subgoals	0.90 ± 0.14	15.0%
TAP	0.80 ± 0.16	23.3%
JUMPY	0.62 ± 0.33	58.8%
KEYIN (OURS)	0.50 ± 0.26	$\boldsymbol{64.2\%}$

Keyln: Discovering Subgoal Structure with Keyframe-based Video Prediction

- The model learns to predict videos by first predicting a set of descriptive keyframes
- A differentiable loss allows to train the model to select the most descriptive keyframes
- The keyframes the model discovers are useful as subgoals for a planning task

Pertsch*

Me*

Yang

Joseph

Kostas **Daniilidis**

Andrew Jaegle