Genetic Markers and Pathways in Mice with Kidney Disease

Wenbo Wang, Anil Anderson, Kevin Zhang

Background

- Kidney failure caused by mutations affecting the CoQ enzyme, in turn causes loss of podocyte cells.
- Podocyte cells: Differentiated cells of the kidney glomerulus.
 - Essential cells in kidney filtration
 - Epithelial cells: form covering of all body surfaces, protection, secretion, filtration, excretion.
- Study of kd/kd (kidney disease) mice, similar mutation pathways as humans.
- Modulating the Braf/Mapk pathway with the GDC-0879 compound rescued podocyte injury and kidney filter function.
- GDC-0879 compound
 - Treatment restores an enzyme that protects cells from lipid peroxidation.

Dataset

- From "Targeting a Braf/Mapk pathway rescues podocyte lipid peroxidation in CoQ-deficiency kidney disease" by Sidhom et. al.
- Consists of a set of 6 scRNA-seq data sets corresponding to six 5-month old mice with 3 controls and 3 mice with kidney disease.
- Question of interest: Which gene variants or biological processes are highly expressed in mice genes with kd/kd mutations compared to healthy mice, and if there are implications in human studies for kidney disease?

Imputation

MAGIC (Markov affinity-based graph imputation of cells)

- Method: Multiply UMI count data matrix with exponentiated Markov affinity matrix.
 - Create nearest neighbor graphs (KNN number = 5) with euclidean distance metric.
 - Convert distances to affinities, and a Markov transition matrix M.
 - Exponentiate matrix M by t to represent random walk of length t.
 - Goal: calculate imputed values as M^t times UMI matrix.

SAVER (single-cell analysis via expression recovery)

- Method: UMI count data follow poisson-gamma mixture, or negative binomial model.
 - o Poisson: noise
 - Gamma: uncertainty
- α_{gc} , β_{gc} are reparameterized as:

$$\circ \qquad \alpha_{\rm gc} = \mu^2/\nu, \ \beta_{\rm gc} = \mu/\nu \ {\rm from \ data}$$

Goal: calculate λ_{gc} (normalized true expression) or posterior probability mean as new UMI count matrix.

$$Y_{gc} \sim Poisson\left(s_c\lambda_{gc}\right) \ \lambda_{gc} \sim Gamma\left(\alpha_{gc}, \beta_{gc}\right)$$
 $\hat{\lambda}_{gc} = \frac{Y_{gc} + \hat{\alpha}_{gc}}{s_c + \hat{\beta}_{gc}}$

For both methods, 6 datasets are imputed individually. The new UMI count matrices are then processed in Seurat.

Quality Control

- Took random sample of 3000 cells for each of the 6 mice, but kept all podocyte cells
- Further subsetted using percent mitochondrial genes
- Tried to preserve as much information as possible while also making analysis more computationally feasible

Batch Correction

- Seurat CCA to integrate datasets
- Used integrated assay for dimensionality reduction plots and original RNA assay for differential expression analysis and gene set enrichment analysis

Dimensionality Reduction

T-SNE Plots

Separation between clusters relative to UMAP

Using cell-types

Clustering

Podocyte-Specific Differential Expression

Gene	Regulation		
Thsd7a	↓		
Synpo	↓		
Tenm4	<u>†</u>		
Nupr1	†		
P3h2	 		
Арр	†		

Gene Set Enrichment Analysis

Pathway: REACTOME_FORMATION_OF_A_POOL_OF_FREE_40S_SUBUNITS

Leading edge subset: Rps19, Ubb, Rpl38, Rpl32, Rps24, Rps28, Rpl28, Rps8, Rps10, Rpl4, Rpl22, Rplp0, Rpl13a, Rps11, Rps6, Rps29, Rpl23, Rps15, Rpl6, Rpl35a, Rps16, Rps17, Eif2b4, Rpl36a, Rpl31, Rpl18, Rps23, Rpl10, Rpl5, Rpl19, Rps15a, Eif3g, Eif2s3x, Rps14, Rpl8, Eif2s2, Gm2000, Rpsa, Rps9, Rplp1, Eif4g1, Eif3c, Rpl26, Rplp2, Eif3i, Rps3a1, Rps4x, Rpl39, Rpl37, Rpl34, Rpl22l1, Eif5, Rps13, Rpl29

Top Pathways

Pathway	G	Gene ranks	NES	pval	padj
REACTOME_FORMATION_OF_A_POOL_OF_FREE_40S_SUBUNITS		* • • • • • • • • • • • • • • • • • • •	-2.04	4.6·10 ⁻⁹	1.9·10 ⁻⁶
WP_CYTOPLASMIC_RIBOSOMAL_PROTEINS		**************************************	-1.99	9.4·10 ⁻⁸	1.3·10 ⁻⁵
:CAY_NMD_INDEPENDENT_OF_THE_EXON_JUNCTION_COMPLEX_EJC	111111111111111111111111111111111111111	4 × 11 11 111 111 111 111 111 111 111 11	-1.97	6.7·10 ⁻⁸	1.1·10 ⁻⁵
HWAY_OF_RRNA_PROCESSING_IN_THE_NUCLEOLUS_AND_CYTOSOL		4. M. I. M. I. I. I. M. I.	-1.90	1.4·10 ⁻⁸	3.3·10 ⁻⁶
WP_MRNA_PROCESSING	11111 Marian and	**************************************	-1.60	4.7·10 ⁻⁷	5.7·10 ⁻⁵
TOME_PROCESSING_OF_CAPPED_INTRON_CONTAINING_PRE_MRNA	1 1111 1111 111111111111111111111111		-1.57	2.2·10 ⁻⁵	2.4·10 ⁻³
	0 5000	10000 15000			

Discussion

- Our goal was to identify differentially expressed genes in mice with kidney disease vs control mice
- We identified the top marker genes and biological pathways associated with kidney disease
- Top pathway (small ribosomal subunit (40S)) included mostly ribosomal protein genes
 - Is this a true biological effect or simply a result of higher expression of these genes?

Future Work

- Refine imputation and conduct downstream analyses using imputed count matrix.
- Study cell type-specific pathways in non-podocyte cells
- Generalize results to human samples