Statistical Mechanics Physics 406 at University of Michigan

EVAN CARPENTER

Winter Semester 2022

Jan 05	Lecture 1: States, Probability and Binomial Distributionp.	2
Jan 10	Lecture 2: Ensemblesp.	2
Jan 12	Lecture 3: Finding total microstatep	2
Jan 19	Lecture 4: More on Microcanonical Ensemblep.	2
Jan 24	Lecture 5:p.	3

Lecture 1. (Jan 05) States, Probability and Binomial Distribution

Figure 1: Phase space of 1-D particle

Lecture 2. (Jan 10) Ensembles

Lagrange multipliers

$$S = -k \sum_{r} p_r \ln(p_r) \tag{0.1}$$

Microcanonical ensemble: All accessible microstate are equally probable

Lecture 3. (Jan 12) Finding total microstate

N particles in volume V with energy between $E, E + \delta E$. Counting number of microstate by using phase space

simplifying example : a 1-D particle has only x and p. Plot in phase space Example in harmonic oscillator with ellipse and shading in phi(E) and Omega(E) Include text in caption explaining equations below it. Moving to 3-D talk about degrees of freedom and volume of h_0 .

Integrating to get Phi(E) with multiintegrals and then taylor approx to get Omega

Quantum Description—; specify microstate with quantum numbers example with simp harmon oscill

Lecture 4. (Jan 19) More on Microcanonical Ensemble

 $\Omega(E) = \#$ of states with energy between $E + \delta E$

Describing energy levels of each particle, think N-cube

Now particle can interact!! Mechanical interactions and thermal interactions (both macro descriptions).

1 isolated system at equilibrium \rightarrow same system but with partition, now 2 systems. A^0 is comprised of A, A'. Macro parameters of A^0 are for both states (N, V, E, T, ...).

Thermal Interaction External parameters of A, A' are fixed but mean energy transferred from one system to the other as a result of purely thermal interactions called heat. Probabilities of energy states can change when systems interact P(r)

Mechanical Interaction External Parameters of A, A' change, one does work on the other! This causes the mean energies of A, A' to change.

$$\overline{E} = \sum_{r} p_r E_r$$

Pure thermal and purely mech example in inf sqwell

Lecture 5. (Jan 24)

Pure thermal interaction changes p_r Pure mechanical interaction changes E_r