MATH 592 1/12/2024 Last Atme! Theorem: Every undd mous map J: 5' -> 5h, n >) vis harmotopoe to a contant mep. Foday: There exists a continuous map. i. 5 7 5/X5

Proof:
$$(S' = d \neq e [| | \neq | = | \})$$

 $f:S' \to S' \times S'$ e.g. $f(x) = (x, |)$.
 $S' \xrightarrow{(x, |)} S' \times S'$
 $f(x) = (x, |)$

Id suffices to prove that Id: 5 ->5 no not homotopoe to a constant map. e:= $exp(2\pi i t)$: $R \xrightarrow{e} S$ | $e^{-1}(2xp(2\pi i t))$ = $t \neq \mathbb{Z}$ For any exp(S): $e^{-1}(S \cdot \{s\}) = |R \cdot e^{i}(e)| = \prod_{k \in \mathcal{U}} (t_0 k k_1 t_0 k_k k_1)$ $t \neq exp(2\pi i t)$

entrett to a homeomorphone or early of those totals. Lemma: For every confirmers mark $b:[0,1]\times(0,1)\to S$, to $\in e^{-1}(0,0)$, there exist a unique lift $b:[0,1]\times(0,1)\to \mathbb{R}$ with h(0,0)=to. An analogous Alevent also hold with [0,1] x [0,1] x [0,1] (0,1] x [0,1]

Lift: [0,1] × (0,1) ---> 1 e e= h = h, Proof: h is uniformly continuous, INSIN X,y = [\(\frac{k}{N}, \frac{kM}{N}) \times \(\frac{kN}{N}, \frac{kM}{N}\) \(\frac{kN}{N} \) \(\frac{k

Lk, e

h (Ikl) \leq 5' \{2k,e}.

If h is defined on sometide subject West discussow: V2 1/12 1-2 PM An interval is TEIne then of uniquely to Ik, l.

A confirmary runage of a corrected space or connected ID,5, To,1,-.. Io,N-1, II,0,-..,IN-1.

$$k: 5' \times [0,1] \rightarrow 5'$$
 $k(z,0) = 2$
 $k(3,1) = \text{constant}$
 $s' \equiv [0,1]/0\sim 1$
 $s' \equiv [0,$

$$\widetilde{h}: [0,1] \times [0,1] \rightarrow \mathbb{R}$$
 $\widetilde{h}(1,0) = \widetilde{h}(0,0) + 1$
 $\widehat{h}(1,1) = \widetilde{h}(0,1)$
 $\widetilde{h}(1,t) \in \widetilde{h}(0,t) + \mathbb{Z}$
 $\inf \{t\} \widetilde{h}(1,t) = \widetilde{h}(0,t)\}$

× continuity 1

A moed opene is a sporee X with a Chasen potnt XEX. A based may Da continuous may (X,*) -> (Y,*) fix + y mile that f(x) = x f(*x) = *Y.

TI, (X, x) is the set of exwedence classes of combinions based maps $\omega:(S',I) \to (X,x)$ with uspect to the equivalence relative of build homotopy: $h_{\xi}(x) = x$

$$\omega_1 + \omega_2$$

Thoose $s \in (0,1)$ Runear in nearry $\cong t_1:[0,s] \rightarrow [0,1]$ $t_2:[s,1] \rightarrow [0,1]$

 $W_1 \star W_2(x) = U_1(\ell_1(x)) \quad 0 \in x \in S$ $U_2(\ell_2(x)) \quad S \in X \in I$

Ascowativity a obvious

$$\omega_1 + \omega_2 + \omega_3$$
 $\omega_1 + \omega_2 + \omega_3$
 $\omega_1 + \omega_2 + \omega_3$
 $\omega_1 + \omega_2 + \omega_3$
 $\omega_2 + \omega_3$
 $\omega_3 + \omega_4 + \omega_5$
 $\omega_1 + \omega_2 + \omega_3$
 $\omega_2 + \omega_3$
 $\omega_3 + \omega_4 + \omega_5$
 $\omega_4 + \omega_5$
 $\omega_5 + \omega_5$
 $\omega_5 + \omega_5$
 $\omega_6 + \omega_5$
 $\omega_7 + \omega_7$
 $\omega_7 + \omega_7$

(a) Prove that a padent of two commended graces is commended line: 1/17 10 AM