Review of Arithmetic

Iñaki Rañó

The Mærsk Mc Kinney Møller Institute

Table of Contents

- Some mathematical notation
- Numbers and their computer representation
 - Natural numbers
 - Integer numbers
 - Rational numbers
 - Real numbers
- Number arithmetic
- The Real Line
 - Inequalities
 - Intervals

Introduction Mathematical Notation & Concepts

- Considering mathematics as a language, you should be able to read an write it to some extent
- The language is pretty much standarised, but there are some different notations (standarised vs standarized)
- Maybe you are familiar with most of what we will see, but the language is more powerful than you can imagine (e.g. abstract algebra)
- Mathematical knowledge builds on top of more basic knowledge, sometimes you need to step back to move forward

Ask if there is something you don't understand!!

Set Theory

- Numbers are a type of set
- Set: A collection of elements: $S = \{\cdots\}$ (with curly brackets)
- Element in set: $a \in S$ (reads 'a' in 'S')
- Operations with sets:
 - Union/Intersection: $S \cup R/S \cap R$
 - Subtraction: $S \setminus R$ (elements of S not in R)
- ullet Size of a set (a.k.a. cardinally) is the number of elements |S|
- Subset $R \subset S$ (all elements of R are in S)

Set Theory Example

Let $R = \{a, b, c, f, h\}$ and $S = \{b, f, \dagger, z\}$ be two sets

- Elements of *R*
- R ∪ S
- R ∩ S
- R \ S
- S \ R
- |*R*|
- |*R* \ *S*|

Set Theory Example

Let $R = \{a, b, c, f, h\}$ and $S = \{b, f, \dagger, z\}$ be two sets

- Elements of R a, b, c, f, h
- $R \cup S = \{a, b, c, f, h, \dagger, z\}$
- $R \cap S = \{b, f\}$
- $R \setminus S = \{a, c, h\}$
- $S \setminus R = \{\dagger, z\}$
- |*R*|= 5
- $|R \setminus S| = 3$

Types of Sets

There are different types of sets:

- Empty set: A set without elements $S = \{\emptyset\}$
- Universal set: Set with all the elements for a given context
- Finite sets: Sets with a finite cardinallity (size)
- Infinite sets: Sets with an infinite (∞) cardinallity (size)
- Ordered sets: Sets with an relation defined for pairs of elements (e.g. 'larger than', 'smaller than')

Sometimes sets are defined by some property, e.g.

$$S = \{a \mid a \text{ is a letter of the Greek alphabet}\}$$

Read: S is the set of elements 'a' such that (|) 'a' is a letter of the Greek alphabet.

Types of Sets Example

- Empty set:
- Universal set:
- Finite sets:
- Infinite sets:
- Ordered sets:

Types of Sets Example

- Empty set: People taller than 3m, elephants lighter than 1gr
- Universal set: Letters used on a book, digits to write a number, $\{0,1\}$ in Boolean algebra
- Finite sets: Letters of the alphabet, students in this course, atoms in the universe
- Infinite sets: Natural numbers, real numbers, complex numbers
- Ordered sets: Letters of the alphabet, natural numbers, real numbers

Numbers and Their Computer Representation

There are different **sets** of numbers

- Natural numbers
- Integer numbers
- Rational numbers
- Real numbers

Note:

- They are infinite ordered sets (a < b, smaller than)
- One can define **operations** of elements in these sets addition (+) and multiplication $(\cdot \text{ or } \times)$ leading to another number (in the set)
- Abstract algebra deals with sets and operations (e.g. vectors, matrices, Boolean algebra $\{0,1\}$, functions)
- Subtraction and division are addition and product by an 'inverse' number (e.g. 4-3=4+(-3) comp. hwr)

Natural Numbers (\mathbb{N})

- Mathematically: $\mathbb{N} = \{0, 1, 2, 3, \cdots\}$
- Some can be represented in computers as: unsigned char (0-255), unsigned short (0-65,535), unsigned long (0-4,294,967,295), unsigned long long $(0-18,446,744,073,709,551,615)^{\dagger}$
- Addition (+) and product (\cdot) are well defined (not in computers)[†]
- Subtraction and division (inverse operation) sometimes not, e.g. '4 10' or '1/3' are not natural numbers[†]
- There are two special elements in \mathbb{N} : '0' and '1' (called identity elements) since 'a+0=a' (sum) and ' $a\cdot 1=a$ ' (product)

[†]Careful when programming with natural numbers

Hilbert's Hotel

Consider a hotel with an infinite number of rooms $(1, 2, 3, \cdots)$, all of which are occupied. A new guest arrives and wants to get a room in the hotel. Can we accommodate the person?

Hilbert's Hotel

Consider a hotel with an infinite number of rooms $(1, 2, 3, \cdots)$, all of which are occupied. A new guest arrives and wants to get a room in the hotel. Can we accommodate the person?

We can move the guest currently in room 1 to room 2, the guest currently in room 2 to room 3, and so on, moving every guest from their current room 'n' to room 'n+1'. After this, room 1 is empty and the person gets room 1.

This works for any number of new guests.

Integer Numbers (\mathbb{Z})

- Mathematically: $\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, 3, \cdots\}$
- Some can be represented in computers as: char (-127 127), short (-32,767 32,767), long (-2,147,483,647 2,147,483,647,), long long (-9,223,372,036,854,775,807 9,223,372,036,854,775,807) †
- Addition (+) and product (·) are well defined (not in computers)[†]
- Division (inverse operation) sometimes not, e.g. '10/5' is an integer but '5/10' is not †
- There are two special elements in \mathbb{Z} : '0' and '1' (called identity elements) since 'a+0=a' (sum) and ' $a\cdot 1=a$ ' (product)

[†]Careful when programming with integer numbers

How Many Integer Numbers Are There?

A weird way of measuring sizes of sets:

Two sets have the same cardinallity if one can build a one-to-one 'map' from all elements of one set to all elements of the other set.

- $S = \{a, b, c\}$ and $R = \{1, 2, 3\}$: $a \to 1$, $b \to 2$, $c \to 3$
- \bullet Natural numbers (N) and even numbers $\{2,4,6,8,\cdots\}$

How Many Integer Numbers Are There?

A weird way of measuring sizes of sets:

Two sets have the same cardinallity if one can build a one-to-one 'map' from all elements of one set to all elements of the other set.

- $S = \{a, b, c\}$ and $R = \{1, 2, 3\}$: $a \to 1$, $b \to 2$, $c \to 3$
- Natural numbers (\mathbb{N}) and even numbers $\{2,4,6,8,\cdots\}$ $1 \to 2, 2 \to 4, 3 \to 6,\ldots,n \to 2n$. Yes, there are same amount of natural numbers than even numbers!
- Natural numbers (\mathbb{N}) and integers (\mathbb{Z}) :

How Many Integer Numbers Are There?

A weird way of measuring sizes of sets:

Two sets have the same cardinallity if one can build a one-to-one 'map' from all elements of one set to all elements of the other set.

- $S = \{a, b, c\}$ and $R = \{1, 2, 3\}$: $a \to 1$, $b \to 2$, $c \to 3$
- Natural numbers (\mathbb{N}) and even numbers $\{2,4,6,8,\cdots\}$ $1 \to 2, 2 \to 4, 3 \to 6,\ldots,n \to 2n$. Yes, there are same amount of natural numbers than even numbers!
- Natural numbers (\mathbb{N}) and integers (\mathbb{Z}): $0 \to 0$, $1 \to 1$, $2 \to -1$, $3 \to 2$, $4 \to -2$, $5 \to 3$, $6 \to -3$,...

Rational Numbers (\mathbb{Q})

- Mathematically: $\mathbb{Q} = \{ \frac{a}{b} | a \in \mathbb{Z}, b \in \mathbb{Z} \setminus \{0\} \}$
- Do not have a basic data type
- Addition (+) and product (·) are well defined
- Subtraction (-) and division (/) are well defined
- There are two special elements in \mathbb{Q} : '0' and '1' (called identity elements) since 'a+0=a' (sum) and ' $a\cdot 1=a$ ' (product)

Note:

- Integers are included in the rationals, naturals are included in the integers $(\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q})$
- The more 'complex' numbers have better properties for their operations

Hilbert's Hotel: Consider a hotel with an infinite number of rooms $(1, 2, 3, \dots)$, all of which are occupied. A bus with infinite guests arrives and want to get a room in the hotel. Can we accommodate the guests?

Hilbert's Hotel: Consider a hotel with an infinite number of rooms $(1, 2, 3, \cdots)$, all of which are occupied. A bus with infinite guests arrives and want to get a room in the hotel. Can we accommodate the guests?

Yes, applying the process an infinite number of times.

Hilbert's Hotel: Consider a hotel with an infinite number of rooms $(1, 2, 3, \cdots)$, all of which are occupied. Infinite busses with infinite guests each arrive and want to get a room in the hotel. Can we accommodate the guests?

Hilbert's Hotel: Consider a hotel with an infinite number of rooms $(1, 2, 3, \cdots)$, all of which are occupied. Infinite busses with infinite guests each arrive and want to get a room in the hotel. Can we accommodate the guests?

	1 2	3	4	5	6	7	8	
1	$\frac{1}{1}$ $\frac{1}{2}$	$\rightarrow \frac{1}{3}$	$\frac{1}{4}$	<u>1</u> 5	$\frac{1}{6}$	$\frac{1}{7}$	1 8	
2	$\frac{2}{1}$ $\frac{2}{2}$	$\frac{2}{3}$	* K	$\frac{2}{5}$	2 K	$\frac{2}{7}$	2 8 3 8	
3	$\frac{3}{1}$ $\frac{3}{2}$	3 4	$\frac{3}{4}$	3 1	3 6	37	3	
4	4 2	4 3	4 K	4 5 5 5	4 6 5 6	$\frac{4}{7}$	4 8	
5	$\frac{5}{1}$ $\frac{5}{2}$	5 K	5 4	5		57	4 8 5 8	
6	6 2	2 5	$\frac{\frac{6}{4}}{\frac{7}{4}}$	6 5	6	6 7 7 7	6 8	
7	$\frac{7}{1}$ $\frac{1}{2}$	$\frac{7}{\frac{7}{3}}$		6 7 5 8 5	7 6 8 6	$\frac{7}{7}$	6 8 7 8 8	
8	$\frac{8}{1}$ $\frac{8}{2}$	8	8 4	8 5	8	8 7	8	
:	:							

Real Numbers (\mathbb{R})

- Irrational numbers: Number that cannot be written as a/b (e.g. π , $\sqrt{2}$)
- Between two different rational numbers there is always an irrational number
- Real numbers are the set of rational and irrational numbers
- There are more real numbers (uncountably infinite) than natural numbers (countably infinite)
- Main type of number for this course
- Some can be represented in computers as: float, double and long double (Floating Point IEEE 754)

Real Number Arithmetic

Refers to the operations (sum and product) that can be done with numbers in the sets and their rules.

Properties:

- Closure: If $a, b \in \mathbb{R}$ then $a + b \in \mathbb{R}$ and $a \cdot b \in \mathbb{R}$
- Commutative: If $a, b \in \mathbb{R}$ then a + b = b + a and $a \cdot b = b \cdot a$
- Associative: $\forall a, b, c \in \mathbb{R}$ a + (b + c) = (a + b) + c and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- Identity element (0/1): If $a \in \mathbb{R}$ then a + 0 = a and $a \cdot 1 = a$
- Inverse: If $a \in \mathbb{R} \setminus \{0\}$ then $b, c \in \mathbb{R}$ exist such that a+b=0 and $a \cdot c=1$
- Distributive w.r.t. addition: If $a, b, c \in \mathbb{R}$ then $a \cdot (b+c) = a \cdot b + a \cdot c$

Some Examples of Real Number Arithmetic

- Closure: $2 \in \mathbb{N}$ and $\sqrt{2} \in \mathbb{R}$ but $\sqrt{2} + 2 \in \mathbb{R}$ since $\mathbb{N} \subset \mathbb{R}$ (type casting)
- Associative: $(10^{30} + (-10^{30})) + 1 = 10^{30} + ((-10^{30}) + 1)$ (not in a computer)
- Inverse:
 - $\frac{2}{5} \in \mathbb{R}$ and taking $\frac{5}{2} \in \mathbb{R}$ then $\frac{2}{5} \cdot \frac{5}{2} = \frac{2 \cdot 5}{5 \cdot 2} = 1$
 - $\frac{\pi}{6} \in \mathbb{R}$ and taking $-\frac{\pi}{6} \in \mathbb{R}$ then $\frac{\pi^2}{6} + (-\frac{\pi}{6}) = 0$
- Distributive w.r.t. addition: $2 \cdot (3+5) = 2 \cdot 3 + 2 \cdot 5 = 16$

This is trivial, but some of these properties can be true or not for other mathematical entities with huge implications (e.g. for matrices A and B the product $A \cdot B \neq B \cdot A$)

Rational Number Arithmetic

All properties of real numbers also apply to rational numbers, but:

- For $\frac{a}{b},\frac{c}{d}\in\mathbb{Q}$ the sum is $\frac{a}{b}+\frac{c}{d}=\frac{a\cdot d+c\cdot b}{b\cdot d}\in\mathbb{Q}$
 - Note: for $\frac{a}{b} \in \mathbb{Q}$ and $c \in \mathbb{N}$ we have $\frac{a}{b} + c = \frac{a}{b} + \frac{c}{1} = \frac{a + c \cdot b}{b}$
- For $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$ the product is $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d} \in \mathbb{Q}$
- For $\frac{a}{b}$ the inverse is $\frac{1}{a/b} = \frac{b}{a}$

$$• $\frac{4}{5} + 1 = \frac{4+5}{5} = \frac{9}{5}$$$

Exponential

• If we add 'n' times $a \in \mathbb{R}$ we get:

$$a + a + \cdots + a = \sum_{i=0}^{n} a = n \cdot a$$
 (sum of 'a' from $i = 0$ to 'n')

• If we multiply 'n' times $a \in \mathbb{R}$ we get:

$$a \cdot a \cdot a \cdot \cdots a = \prod_{i=0}^{n} a = a^{n}$$
 (product of 'a' from $i = 0$ to 'n')

Given a number $a \in \mathbb{R}$ and two natural numbers $n, m \in \mathbb{N}$:

- Any number to the power of 0 is 1: $a^0 = 1$
- Sum of exponents: $a^{n+m} = a^n \cdot a^m$
- Negative exponent: $a^{-n} = \frac{1}{a^n}$
- Product of exponents: $(a^n)^m = a^{n \cdot m}$
- Root: $a^{\frac{1}{m}} = \sqrt[m]{a}$ (*m*-th root means $c^m = a$)
- For $b \in \mathbb{R}$: $a^n \cdot b^n = (a \cdot b)^n$

Examples of Exponential

- 2⁻³
- $3^2 \cdot 27$
- $(3^2)^3$
- $\bullet \ 4^3 \cdot 16^2$
- $\frac{32}{4}$
- $(\frac{12}{2^3})^2$
- $(12)^5$

Examples of Exponential

$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

$$3^2 \cdot 27 = 3^2 \cdot 3^3 = 3^{2+3} = 3^5$$

$$(3^2)^3 = 3^{2 \cdot 3} = 3^6$$

•
$$4^3 \cdot 16^2 = (2^2)^3 \cdot (2^4)^2 = 2^{2 \cdot 3} \cdot 2^{4 \cdot 2} = 2^6 \cdot 2^8 = 2^{6+8} = 2^{14}$$

$$• \frac{32}{4} = \frac{2^5}{2^2} = 2^5 \cdot 2^{-2} = 2^{5-2} = 2^3$$

•
$$\left(\frac{12}{2^3}\right)^2 = \left(\frac{3 \cdot 2^2}{2^3}\right)^2 = \left(3 \cdot 2^2 \cdot 2^{-3}\right)^2 = \left(3 \cdot 2^{2-3}\right)^2 = \left(3 \cdot 2^{-1}\right)^2$$

= $3^2 \cdot 2^{-1 \cdot 2} = 3^2 \cdot 2^{-2} = \frac{3}{2^2}$

•
$$(12)^5 = (3 \cdot 2^2)^5 = 3^5 \cdot (2^2)^5 = 3^5 \cdot 2^{2 \cdot 5} = 3^5 \cdot 2^{10}$$

The Real Line & Inequalities

Since the real numbers $\mathbb R$ is an ordered ordered, we can represent the elements of $\mathbb R$ as a line: **the real line**

Order is defined by the binary relation < (or >, \le , \ge) used to define inequalities.

Rules for Inequalities: Given the numbers $a, b, c \in \mathbb{R}$

- Adding a number: If a < b then $a \pm c < b \pm c$
- Positive multiplication: If a < b and c > 0 then $a \cdot c < b \cdot c$
- Negative multiplication: If a < b and c < 0 then $a \cdot c > b \cdot c$
- Inverse: If a > 0 then 1/a > 0
- Order of the inverse: If 0 < a < b then 1/b < 1/a

Intervals on $\mathbb R$

Intervals are subsets of $\mathbb R$ defined by (groups of) inequalities.

There are different types:

- Open: $(a, b) = \{x \in \mathbb{R} \mid a < x < b \text{ (all numbers between } a \text{ and } b)$
- Closed: $[a, b] = \{x \in \mathbb{R} \mid a \le x \le b \text{ (all numbers between } a \text{ and } b, \text{ included)}$
- Half-open:
 - $(a, b] = \{x \in \mathbb{R} \mid a < x \le b \text{ (all numbers between } a \text{ and } b, b \text{ included})$
 - $[a,b) = \{x \in \mathbb{R} \mid a \le x < b \text{ (all numbers between } a \text{ and } b, a \text{ included})$
 - $[a, \infty) = \{x \in \mathbb{R} \mid a \le x \text{ (all numbers larger than } a)$

They can be combined using set union $(a, b) \bigcup [c, \infty)$ (for a < b < c)

Examples of Intervals

Assuming $x \in \mathbb{R}$:

- $x 4 \ge 0$:
- -3x < 9:
- $x^2 < 4$:
- $x^2 \ge 9$:

Examples of Intervals

Assuming $x \in \mathbb{R}$:

- $x-4 \ge 0$: $x \ge 4$ as an interval $[4,\infty)$
- -3x < 9: x > 3 as an interval $(3, \infty)$
- $x^2 < 4$: -2 < x < 2 as an interval (-2,2)
- $x^2 \ge 9$: $x \ge 3$ and $x \le -3$ as an interval $(-\infty, 3] \cup [3, \infty)$

•
$$\frac{1}{2x} > 5$$

 $\frac{1}{2x} > 5$ \Rightarrow $2\frac{1}{2x} > 2 \cdot 5$
 \Rightarrow $\frac{1}{x} > 10$
 \Rightarrow If $x > 0$ then $x \cdot \frac{1}{x} > 10x$
 \Rightarrow If $x > 0$ then $1 > 10x$
 \Rightarrow If $x > 0$ then $\frac{1}{10} > \frac{1}{10} \cdot 10x$
 \Rightarrow If $x > 0$ then $\frac{1}{10} > x$ $\left(-\infty, \frac{1}{10}\right)$
 \Rightarrow $x > 0$ and $x < \frac{1}{10}$ $\left(0, \frac{1}{10}\right)$

•
$$\frac{1}{2x} > 5$$

$$\frac{1}{2x} > 5 \implies 2\frac{1}{2x} > 2 \cdot 5$$

$$\Rightarrow \frac{1}{x} > 10$$

$$\Rightarrow \text{If } x < 0 \text{ then } x\frac{1}{x} < 10x$$

$$\Rightarrow \text{If } x < 0 \text{ then } 1 < 10x$$

$$\Rightarrow \text{If } x < 0 \text{ then } \frac{1}{10} < \frac{1}{10} \cdot 10x$$

$$\Rightarrow \text{If } x < 0 \text{ then } \frac{1}{10} < x \qquad \left(\frac{1}{10}, \infty\right)$$

$$\Rightarrow x < 0 \text{ and } x > \frac{1}{10} \qquad \{\emptyset\}$$

•
$$\frac{1}{2x} > 5$$

$$\frac{1}{2x} > 5 \quad \Rightarrow \quad 2\frac{1}{2x} > 2 \cdot 5$$

$$\Rightarrow \quad \frac{1}{x} > 10$$

$$\Rightarrow \quad x > 0 \text{ and } x < \frac{1}{10} \qquad \left(0, \frac{1}{10}\right)$$

Equalities

The solution to equalitites (if any) are points in the real line.

If $x \in \mathbb{R}$, e.g.

- ax + b = 0: sol. $x = \frac{-b}{a}$
- $ax^2 + bx + c = 0$: sol. $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$ (for $b^2 4ac > 0$)
- $\frac{ax+b}{cx+d} = 1$: sol. $x = \frac{d-b}{a-c}$ (for $a \neq c$)

Notes:

- Some equalities might not have solution $(x^2 + 1 = 0)$
- Some equalities might not have a formula (numerical methods)

Summary

- Basic sets & operations
- Different types of numbers & their computer representation
- Representation of numbers is limited on a computer
- Arithmetic rules & powers
- The real line
- Inequalities & intervals