Weekly Update

Hanchen Wang

Ph.D Candidate in Engineering, University of Cambridge

September 30, 2019

Overview

- project I Points Cloud Sampler
 - progress. 1: snippets on the points cloud dataset and tasks
 - progress. 2: PointNet retrospectives: set functions
 - progress. 3: shape retrieval with deep metric learning
- project II Latent Graph Neural Nets
 - progress: add latent GNN module onto the backbone
 - next step: combine with SkipNet, figure out details in design

Performance of Trained Model with Different Set Functions

Set Function	# of points	Training Accuracy	Test Accuracy	Comment	
maxpool	512	94.8%	87.8%		
maxpool	1024	96.1%	85.7%	default setting	
maxpool	2048	96.9%	88.4%		
avgpool	512	95.9%	16.8%		
avgpool	1024	96.4%	26.9%		
avgpool	2048	95.2%	9.6%		
DeepSet ¹	100	N/A	82%		
DeepSet	5000	N/A	90.3%		

Table: benchmark on ModelNet40 Classification Task

- for object classification, output should be unchanged with permutation
- other tasks such as scene recognition/segmentation, such order matters

¹Deep Sets, Zaheer et al., NIPS2017

shape retrieval with deep metric learning

Figure 1: Triplet network structure

• change the Net with PointNet structure, then for experiment²

Points Cloud Sampler - Future Work

- refine preprocess procedure shape retrieval with metric learning
- deep sets -
- continue contributing to the open source module, pyntcloud

LatentGNN: with RL and 3D

- Graph Neural Nets overview
 - fully connected $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, N nodes $v_i \in \mathcal{V}$, and edges $(v_i, v_j) \in \mathcal{E}$,
 - x_i is the input for node v_i a vector of (input channels, 1)
 - update via an iterative message passing process

$$\tilde{\mathbf{x}}_i = h\left(\frac{1}{Z_i(\mathbf{X})}\sum_{j=1}^N g\left(\mathbf{x}_i, \mathbf{x}_j\right)\mathbf{W}^{\top}\mathbf{x}_j\right)$$
 (1)

• $\tilde{\mathbf{x}_i} \to \text{updated feature}, \ h(\cdot) \to \text{activation function(ReLU)}, \ g(\cdot, \cdot) \to \text{kernel function}, \ \mathbf{W} \to \text{weight matrix}, \ \mathbf{Z}_i(\mathbf{x}) \to \text{normalization factor}$

¹LatentGNN: Learning Efficient Non-local Relations for Visual Recognition, ICML(Oral) 2019

²basically the input tensor for the actual training is 4D: (batch, weight, height, channels), the input channels can be RGB, Depth, XYZ, Normal, Local Point Density, Local Curvature or Learned Features, or any combination, just concatenate them together

LatentGNN: Our Module

- divide such iteration into three steps:
 - step 1 visible-to-latent propagation: $\mathbf{z}_k = \sum_{j=1}^N \psi\left(\mathbf{x}_j, \theta_k\right) \mathbf{W}^{\top} \mathbf{x}_j$ step 2 latent-to-latent propagation: $\mathbf{z}_k = \sum_{j=1}^N \psi\left(\mathbf{x}_j, \theta_k\right) \mathbf{W}^{\top} \mathbf{x}_j$

 - step 3 latent-to-visible propagation: $\tilde{\mathbf{x}}_i = h\left(\sum_{k=1}^d \psi\left(\mathbf{x}_i, \theta_k\right) \tilde{\mathbf{z}}_k\right)$
- after iterations, then augment the feature X with a weighted summation as in the ResNet:

$$\mathbf{X}_{aug} = \lambda \tilde{\mathbf{X}} + \mathbf{X} \tag{2}$$

²Deep Residual Learning for Image Recognition, CVPR(Oral) 2016 🗇 🤊

¹LatentGNN: Learning Efficient Non-local Relations for Visual Recognition, ICML(Oral) 2019

LatentGNN: Our Module

- outperform the backbones, both 2D(MaskRCNN on MSCOCO) and 3D(PointNet++ on ScanNet)
- more complex, increase in the FLOPS and #Params

Model	Kernels	Scale	Pixel Accuracy	Voxel Accuracy	Class Pixel Accuracy	Class Voxel Accuracy	FLOPS	#Params
3DCNN(Dai et al., 2017a)	-	-	-	73.0	-	-	-	-
PointNet(Qi et al., 2017a)	-	-	-	73.9	-	-	-	-
PointCNN(Li et al., 2018)	-	-	85.1				-	
PointNet++(Qi et al., 2017b)	-	Single Scale	81.5	83.2	51.7	53.1	-	-
PointNet++(Qi et al., 2017b)	-	Multi Scale	-	84.5		-	-	-
+NL Block	1	Single Scale	82.3	84.0	53.1	54.5	+31M	+0.70M
+LatentGNN	1	Single Scale	82.6	84.2	53.2	54.6	+15M	+0.31M
+LatentGNN	3	Single Scale	83.7	85.2	56.0	57.6	+30M	+0.54M

Table 3. Performance of LatentGNN on ScanNet based on PointNet++.

¹LatentGNN: Learning Efficient Non-local Relations for Visual Recognition, ICML(Oral) 2019

²PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space, NeurIPS

LatentGNN: Recurrent and Skip

- main contribution and novelty of our project
 - recurrent on the latent iterative module(my part)
 - similar as the ResNet
 - has shown improvements with empirical trials
 - skip diagram to save the calculations, aka FLOPS(yutong's part)
 - similar as the SkipNet, in the general frame of AutoML

LatentGNN: future work

- merge the pipelines together
- theoretical proof and empirical results

The End