Lista de exercícios: Modelagem matemática Otimização Combinatória

Nas questões abaixo:

- i) Formule e apresente o modelo matemático.
- ii) Especificar claramente as variáveis, número de váriáveis e número de restrições (desconsiderar as restrições triviais $x \in \mathbb{R}^+$).

Questão 1:

Certa empresa fabrica 2 produtos P1 e P2. O lucro por unidade de P1 é de 100 reais e o lucro unitário de P2 é de 150 reais. A empresa necessita de 2 horas para fabricar uma unidade de P1 e 3 horas para fabricar uma unidade de P2. O tempo mensal disponível para essas atividades é de 120 horas. As demandas esperadas para os dois produtos levaram a empresa a decidir que os montantes produzidos de P1 e P2 não devem ultrapassar 40 unidades de P1 e 30 unidades de P2 por mês. Construa o modelo do sistema de produção mensal com o objetivo de maximizar o lucro da empresa. (Assumir que as quantidades podem ser fracionárias)

Questão 2:

Sabe-se que uma pessoa necessita, em sua alimentação diária, de um mínimo de 15 unidades de proteínas e 20 unidades de carboidratos. Suponhamos que, para satisfazer esta necessidade, ela disponha dos produtos A e B. Um Kg do produto A contém 3 unidades de proteínas, 10 unidades de carboidrato e custa R\$ 2,00. Um Kg do produto B contém 6 unidades de proteínas, 5 unidades de carboidrato e custa R\$ 3,00. Formule o modelo matemático das quantidade que deverão ser compradas de cada produto de modo que as exigências da alimentação sejam satisfeitas a custo mínimo?

Questão 3:

Uma empresa de aço tem um rede de distribuição conforme a Figura ??. Duas minas M1 e M2 produzem 40t e 60t de mineral de ferro, respectivamente, que são distribuídos para dois estoques intermediários S_1 e S_2 . A planta de produção P tem uma demanda de 100t de mineral de ferro. As vias de transporte têm limites de toneladas de mineral de ferro que podem ser transportadas e custos de transporte por toneladas de mineral de ferro (veja figura). A direção da empresa quer determinar a transportação que minimiza os custos.

Fig. 1: Rede de distribuição de uma empresa de aço.

Questão 4:

Um fabricante de rações quer determinar a fórmula mais econômica de uma certa ração. A composição nutritiva dos ingredientes disponíveis no mercado e os seus custos são os seguintes:

	Ingredientes			
Nutrientes	Soja	Milho	Cana	
Cálcio	0,2%	1%	3%	
Proteína	50%	9%	0%	
Carbo-Hidratos	0,8%	2%	2%	
Custo/quilo	15,00	20,00	8,00	

O fabricante deve entregar 1000 quilos de ração por dia e garantir que esta contenha:

no máximo	no mínimo	de
$1,\!2\%$	0,8%	Cálcio
-	22%	Proteína
20%	-	Carbo-Hidratos

Questão 5:

Um fazendeiro está estudando a divisão de sua propriedade nas seguintes atividades produtivas:

- a) Arrendamento Destinar certa quantidade de alqueires Para a plantação de cana de açúcar, a uma usina local, que se encarrega da atividade e paga pelo aluguel da terra R\$ 300,00 por alqueire por ano;
- b) Pecuária Usar outra parte para a criação de gado de corte. A recuperação das pastagens requer adubação (100 kg/alqueire) e irrigação(100.000 litros de água/alqueire) por ano. O lucro estimado nessa atividade é de R\$400,00 por alqueire por ano.
- c) Plantio de Soja Usar uma terceira parte para o plantio de soja. Essa cultura requer 200 kg por alqueire de adubos e 200.000 litros de água por alqueire para irrigação por ano. O lucro estimado nessa atividade é de R\$500,00 por alqueire por ano.

A disponibilidade de recursos por ano é de 12.750.000 litros de água,14.000 kg de adubo e 100 alqueires de terra. Quantos alqueires deverá destinar a cada atividade para proporcionar o melhor retorno? Construa o modelo de decisão.

Questão 6:

Uma fábrica produz dois artigos A e B, que devem passar por duas máquinas diferentes M1 e M2. M1 tem 12 horas de capacidade diária disponível e M2 tem 5 horas. Cada unidade de produto A requer 2 horas em ambas as máquinas. Cada unidade de produto B requer 3 horas em M1 e 1 hora em M2. O lucro líquido de A é de R\$ 60,00 por unidade e o de B, R\$ 70,00 por unidade. Formular o modelo matemático de modo a determinar a quantidade a ser produzida de A e B a fim de se ter um lucro máximo. (Assumir que as quantidades podem ser fracionárias)

Questão 7:

Um sitiante está planejando sua estratégia de plantio para o próximo ano. Por informações obtidas nos órgãos governamentais, sabe que as culturas de trigo, arroz e milho serão as mais rentáveis na próxima safra. Por experiência, sabe que a produtividade de sua terra para as culturas desejadas é a constante na tabela abaixo. Por falta de um local de armazenamento próprio, a produção máxima, em toneladas, está limitada a 60. A área cultivável do sítio é de $200.000~m^2$. Para atender as demandas de seu próprio sítio, é imperativo que se plante $400~m^2$ de trigo, $800~m^2$ de arroz e $10.000~m^2$ de milho.

Cultura	Produtividade em kg $/m^2$	Lucro/kg de produção
Trigo	0,2	10,8 centavos
Arroz	0,3	4,2 centavos
Milho	0,4	2,03 centavos

Formule o modelo matemático de modo a maximizar o lucro obtido na produção do próximo ano.

Questão 8:

Uma empresa mineradora possui duas jazidas que produzem minérios de três classes: superior, médio e inferior. Durante um dia de operação, a primeira jazida produz 6 toneladas de minério de classe superior, 2 de classe média e 4 de classe inferior. Enquanto a segunda jazida produz diariamente 2 toneladas de minério de classe superior, 2 de classe média e 12 de classe inferior. O custo de diário de operação das jazidas é de UM 900,00 para a primeira e UM 720,00 para a segunda. A empresa de mineração possui uma fábrica de beneficiamento com capacidade para 12 toneladas da classe superior, 8 da média e 24 da inferior por semana. Quantos dias por semana deve operar cada jazida para preencher, da maneira mais econômica, a capacidade total da fábrica de beneficiamento? (As jazidas podem operar parte de um dia).

Questão 9:

Questão de programação Inteira Mista

Uma empresa possui dois produtos P_1 e P_2 . O seu departamento de marketing estuda a forma mais econômica de aumentar em 30% a vendas de cada um dos produtos. As alternativas são:

- Investir em um programa institucional com outras empresas do mesmo ramo. Esse programa deve proporcionar um aumento de 3% nas vendas de cada produto, para cada \$ 1.000,00 investidos.
- Investir diretamente na divulgação de cada produto:
 - Cada \$ 1.000,00 investidos em P1 retornam um aumento de 4% em sua venda.
 - Cada \$ 1.000,00 investidos em P2 retornam um aumento de 10% em sua venda.

A empresa dispõe de \$ 10.000,00 para esse empreendimento. Quanto deverá destinar a cada atividade? Construa o modelo do sistema descrito.

Questão 10:

Um estudante, na véspera de seus exames finais, dispõe de 100 horas de estudo para dedicar às disciplinas A, B e C. Cada um dos 3 exames é formado por 100 questões cada uma valendo 1 ponto, e ele (aluno) espera acertar, alternativamente, uma questão em A, duas em B ou três em C, por cada hora de estudo. Suas notas nas provas anteriores foram 6, 7 e 10 respectivamente, e sua aprovação depende de atingir uma média mínima de 5 pontos em cada disciplina. O aluno deseja distribuir seu tempo de forma a acertar o maior número de questões e ser aprovado.

Questão 11:

Um fundo de investimento tem até R\$300.000,00 para aplicar nas ações de duas empresas. A empresa D tem 40% do seu capital aplicado em produção de cerveja e o restante aplicado em refrigerantes. Espera-se que a empresa D distribua bonificações de 12%. A empresa N tem todo o seu capital aplicado apenas na produção de cerveja. Espera-se que a empresa N distribua bonificações de 20%. Para o investimento considerado, a legislação impõe as seguintes restrições:

- a) O investimento na empresa D pode atingir R\$270.000,00, dada a sua diversificação de capital aplicado.
- b) O investimento na empresa N pode atingir R\$150.000,00, dada a sua condição de empresa com capital concentrado em apenas um produto.
- c) O investimento em cada produto (cerveja ou refrigerante) pode atingir R\$180.000,00. Para as condições do problema, qual deve ser o investimento que maximiza o lucro?

Questão 12:

Um investidor pode investir dinheiro em duas atividades A e B disponíveis no início dos próximos 5 anos. Cada \$1 investido em A no começo de um ano retorna \$1,40 (um lucro de \$0,40) dois anos mais tarde (a tempo de imediato reinvestimento). Cada \$1 investido em B no início de um ano retorna \$1,70, três anos mais tarde. Existem ainda 2 atividades C e D que estarão disponíveis no futuro. Cada \$1 investido em C no início do segundo ano retorna \$2,00, quatro anos mais tarde. Cada \$1 investido em D no começo do quinto ano, retorna \$1,30 um ano mais tarde. O investidor tem \$10.000. Ele deseja conhecer como investir de maneira a maximizar a quantidade de dinheiro acumulado no início do sexto ano. Formule um modelo de P.Linear para este problema. Considere que não há inflação.

Questão 13:

Uma empresa siderúrgica possui 3 usinas e cada uma delas requer uma quantidade mensal mínima de minério para operar. A empresa compra minério de 2 minas diferentes. Cada uma das minas tem uma capacidade máxima de produção mensal estabelecida. O custo do minério para a empresa é variável de acordo com a distância entre as minas e usinas (cada par mina/usina tem um custo diferente). Os dados referentes à capacidade máxima de produção das minas, requisições mínimas de minério para as usinas e custos de transporte entre minas e usinas são mostrados na tabela 1. Por questões técnicas, a usina 1 deve comprar no mínimo 20% de minério da mina 1, a usina 2 deve comprar no mínimo 30% da mina 2 e a usina 3 deve comprar no mínimo 35% da mina 1. Posto isso, construir um modelo de otimização para determinar a quantidade de minério a ser comprada de cada mina e levada a cada usina de forma a minimizar o custo total de compra de minério.

Mina/Usina	Usina 1	Usina 2	Usina 3	Cap. da mina (t/mês)
Mina1	8	9	15	30000
Mina2	7	16	23	25000
Req. das usinas (t/mês)	15000	17000	19000	

Questão 14:

Uma certa fábrica de camisetas deseja aproveitar as finais de um campeonato de futebol para vender camisetas dos times envolvidos. Os jogos vão durar quatro semanas. O custo de produção de cada camiseta é de R\$ 2,00 nas duas primeiras semanas e R\$ 2,50 nas duas últimas, quando a concorrência demandar por material no mercado. A demanda semanal de camisetas será de 5.000, 10.000, 30.000 e 60.000. A capacidade máxima de produção da empresa é de 25.000 camisetas semanalmente. Na primeira e na segunda semanas, a empresa poderá contratar horas extras de serviço e fabricar mais 10.000 camisetas em cada semana. Nesse caso, o custo de produção sobe para R\$ 2,80. O excesso de produção pode ser estocado a um custo de R\$ 0,20 por unidade por semana. Formular um modelo que minimize os custos.

Questão 15:

A Varig precisa decidir a quantidade de querosene para combustível de seus jatos que adquire de 3 companhias vendedoras. Seus jatos são regularmente abastecidos nos aeroportos de Congonhas, Viracopos, Galeão e Pampulha. As companhias vendedoras poderão fornecer no próximo mês as seguintes quantidades de combustível:

Companhia	Galões
1	250.000
2	500.000
3	600.000

As necessidades da Varig nos diferentes aeroportos são:

Aeroporto	Quantidade
Congonhas	100.000
Viracopos	200.000
Galeão	300.000
Pampulha	400.000

O custo por galão, incluindo o preço do transporte, de cada vendedor para cada aeroporto é:

	Cia1	Cia2	Cia3
Congonhas	12	9	10
Viracopos	10	11	14
Galeão	8	11	13
Pampulha	11	13	9

Formule este problema como um modelo de programação linear.