7.3.1) (a)
$$\sum_{k=0}^{\infty} = \frac{kx^k}{(2k+1)^2}.$$

We use the Ratio Test to find the ROC. The k^{th} term is $|a_k| = \frac{k}{(2k+1)^2}$.

$$\lim_{k \to \infty} \frac{|a_k|}{|a_{k+1}|} = \lim_{k \to \infty} \left| \frac{k}{k+1} \cdot \frac{(2k+3)^2}{(2k+1)^2} \right|$$
= 1

We now test the endpoints. For x = 1,

$$\sum_{k=0}^{\infty} \frac{k}{(2k+1)^2}$$

diverges by the Comparison Test with $\frac{1}{k}$. For x = -1,

$$\sum_{k=0}^{\infty} (-1)^k \frac{k}{(2k+1)^2}$$

converges by the Alternating Series Test. Therefore the IOC is (-1, 1].

(b)
$$\sum_{k=0}^{\infty} (2 + (-1)^k)^k x^{2k}$$

Rewrite the series to

$$\sum_{k=0}^{\infty} \left(\sqrt{2 + (-1)^k} \right)^{2k} x^{2k}$$

Then use the Root Test to find the ROC,

$$\lim_{2k \to \infty} \sup_{|a_{2k}|^{1/2k}} = \lim_{2k \to \infty} \sup_{k \to \infty} \begin{cases} 0 & k = 0 \\ 1 & k - odd = \sqrt{3} \\ \sqrt{3} & k - even \end{cases}$$

The ROC is $\frac{1}{\sqrt{3}}$. For the endpoints $x = \pm \frac{1}{\sqrt{3}}$,

$$\sum_{k=0}^{\infty} \left(2 + (-1)^k\right)^k \left(\frac{1}{3}\right)^k = \begin{cases} \left(\frac{1}{3}\right)^k & k - odd\\ 1 & k - even \end{cases}$$

diverges. Therefore, the interval of convergence is $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$

(c)
$$\sum_{k=0}^{\infty} 3^{k^2} x^{k^2}$$

This series sums up every $j = k^2$ term of the series $\sum_{j} 3^j x^j$. By the Root Test

$$\limsup_{k \to \infty} |a_{k^2}|^{1/k^2} = 3$$

Thus, ROC is $\frac{1}{3}$. The series does not converge at endpoints $x = -\frac{1}{3}, \frac{1}{3}$. We can see that the series for each are $\sum (-1)^k$ and $\sum 1^k$, respectively. Therefore the IOC is $(-\frac{1}{3}, \frac{1}{3})$.

(d)
$$\sum_{k=0}^{\infty} k^{k^2} x^{k^3}$$

We can rewrite the above as

$$\sum_{k=0}^{\infty} \left(k^{1/k}\right)^{k^3} x^{k^3}$$

and see this as the sum of every $j = k^3$ term of $\sum a_j x^j$ (where $a_j = j^{1/j}$). By the Root Test,

$$\limsup_{k \to \infty} \left| k^{k^2} \right|^{1/k^3} = \limsup_{k \to \infty} \left| k^{1/k} \right| = 1$$

and therefore the ROC is 1. The series diverges at both endpoints, $x = \pm 1$. Therefore the IOC is (-1, 1).

7.3.2) Find the interval of convergence of each power series

(a)
$$\sum_{k=0}^{\infty} \frac{x^k}{2^k}$$

The k-th coefficient is $a_k = \frac{1}{2^k}$. We use the Ratio Test,

$$\lim_{k \to \infty} \frac{|a_k|}{|a_{k+1}|} = \lim_{k \to \infty} 2 = 2$$

to determine that the ROC is 2. For the endpoints $x = \pm 1$, the series diverges. Therfore the IOC is (-1, 1).

(b)
$$\sum_{k=0}^{\infty} ((-1)^k + 3)^k (x-1)^k$$

Applying the Root Test k-th term, we have that

$$\lim_{k \to \infty} \left[((-1)^k + 3)^k \right]^{1/k} = \lim_{k \to \infty} ((-1)^k + 3)$$
$$= \begin{cases} 4 & k - even \\ 2 & k - odd \end{cases}$$

Therefore, the ROC is $min\left\{\frac{1}{2},\frac{1}{4}\right\} = \frac{1}{4}$. So far, the IOC is $\left(\frac{3}{4},\frac{5}{4}\right)$. Now we test the endpoints. Note that the k-th coefficient of the series is

$$a_k = \begin{cases} 4^k & k - even \\ 2^k & k - odd \end{cases}$$

Let $x = \frac{3}{4} \Rightarrow x - 1 = -\frac{1}{4}$. The **even** terms of this series are

$$4^k \left(-\frac{1}{4} \right) = 1,$$

the series diverges. For the other endpoint $x = \frac{5}{4}$, $x - 1 = \frac{1}{4}$, the even terms are 1 and therefore make the series diverge. Thus, the IOC is

$$\left(-\frac{3}{4}, \frac{5}{4}\right)$$

(c)
$$\sum_{k=1}^{\infty} \log\left(\frac{k+1}{k}\right) x^k$$

We find the ROC by the ratio test

$$\lim_{k\to\infty}\left|\frac{k+1}{k}\cdot\frac{k+2}{k+1}\right|=1$$

imply R = 1 and so far the IOC is (-1, 1). Now test the endpoints, let x = -1. Note that

$$\lim_{k \to \infty} \log \left(\frac{k+1}{k} \right) = 0$$

so that the series

$$\sum_{k=1}^{\infty} \log \left(\frac{k+1}{k} \right) (-1)^k$$

converges by the Alternating Series Test. For the other endpoint x=1, the series becomes a telescoping series where

$$\sum_{k=1}^{\infty} \log\left(\frac{k+1}{k}\right) = \sum_{k=1}^{\infty} \log\left(k+1\right) - \log k$$
$$= \lim_{n \to \infty} \log\left(n+1\right)$$
$$= \infty$$

diverges. Therefore IOC is [-1, 1).

- 7.3.3) Suppose that $\sum_{k=0}^{\infty} a_k x^k$ has a radius of convergence $R \in (0, \infty)$.
 - (a) Find the ROC of $\sum_{k=0}^{\infty} a_k x^{2k}$

For clarity, rewrite this series as $\sum_{j=0}^{\infty} b_j x^j$ where $\begin{cases} a_k & \text{if } j=2k \\ 0 & \text{if } j \neq 2k \end{cases}$ The ROC of this series is

$$\begin{split} \limsup_{j \to \infty} |b_j|^{1/j} &= \begin{cases} \limsup_{k \to \infty} |a_k|^{\frac{1}{2k}} & if \ k - odd \\ 0 & if \ k - even \end{cases} \\ &= \begin{cases} \left(\limsup_{k \to \infty} |a_k|^{\frac{1}{k}}\right)^{1/2} & if \ k - odd \\ 0 & if \ k - even \end{cases} \\ &= \begin{cases} \sqrt{\frac{1}{R}} & if \ k - odd \\ 0 & if \ k - even \end{cases} \end{split}$$

so that the ROC is $min\{\sqrt{R}, \infty\} = \sqrt{R}$.

(b) Find the ROC of $\sum_{k=0}^{\infty} a_k^2 x^k$ The ROC is

$$\lim_{k \to \infty} \frac{|a_k|^2}{|a_{k+1}|^2} = \lim_{k \to \infty} \left(\frac{|a_k|}{|a_{k+1}|}\right)^2$$
$$= \left(\lim_{k \to \infty} \frac{|a_k|^2}{|a_{k+1}|}\right)^2$$
$$= R^2$$

7.3.4) Suppose $|a_k| \leq |b_k|$ for large k and $\sum_{k=0}^{\infty} b_k x^k$ converges on $I := I_b$. We show that $\sum_{k=0}^{\infty} a_k x^k$ converges on I_b .

$$\frac{1}{R_a} = \limsup_{k \to \infty} |a_k|^{1/k} = \limsup_{k \to \infty} |b_k|^{1/k} = \frac{1}{R_b}.$$

Therefore, $R_a \leq R_b$ and $I := I_b \subset I_a$ so that $\lim_{k \to \infty} |a_k|^{1/k}$ converges on I. If I is not open then the result would not hold. Show by counterexample, let $a_k = \frac{(-1)^k}{k}$ and $b_k = \frac{1}{k}$. Then, $\sum b_k x^k$ converges at x = -1 and therefore [-1, 1). But $\sum a_k x^k$ does not.

7.3.5) Suppose that $\{a_k\}_{k=0}^{\infty}$ is a bounded sequence of \mathbb{R} numbers. Prove that

$$f(x) := \sum_{k=0}^{\infty} a_k x^k$$

has a positive radius of convergence.

The sequence being bounded tells us that for some M > 0, $0 \le |a_k| \le M$. Therefore,

$$0 \le \limsup_{k \to \infty} \left| a_k \right|^{1/k} \le \limsup_{k \to \infty} M^{1/k} = \lim_{k \to \infty} M^{1/k} = 1$$

So that $0 \le \frac{1}{R} \le 1$. Therefore,

$$R > 1$$
.

7.3.6) A series $\sum_{k=0}^{\infty} a_k$ Abel summable iff

$$\lim_{r \to 1^{-}} \sum_{k=0}^{\infty} a_k r^k = L$$

(a) Prove that if $\sum_{k=0}^{\infty} a_k \longrightarrow L$ then $\sum_{k=0}^{\infty} a_k$ Abel summable.

The hypotheses $\sum a_k = L$ implies $\{a_k\}$ is bounded and by problem 7.3.5, the function

$$f(x) := \sum_{k=0}^{\infty} a_k x^k$$

has a ROC ≥ 1 and converges at the point x=1. By Abels Theorem, f is continous on [0,1] so that

$$\lim_{x \to 1^{-}} f(x) = f(1) = L.$$

Thus f(x) is Abel summable.

(b) Find the Abel sum of $\sum_{k=0}^{\infty} (-1)^k$.

The terms $a_k = (-1)^k$. We will find the limit

$$L = \lim_{r \to 1^{-}} \sum_{k=0}^{\infty} (-1)^{k} r^{k}$$

Since r < 1, the sum is a Geometric Series

$$\sum_{k=0}^{\infty} (-1)^k r^k = \frac{1}{1+k}$$

Then

$$L = \lim_{r \to 1^{-}} \frac{1}{1+k} = \frac{1}{2}.$$