Deep Computer Vision

Who am I?

- PhD student astronomy, instrumentation.
- MOOC junkie.
- Deep into deep learning.
- Offering training, workshops on DL.

Vikram Mark Radhakrishnan radhakrishnan@strw.leidenuniv.nl

https://github.com/VikramRadhakrishnan/DeepCV

https://www.kaggle.com/c/digit-recognizer/kernels

Make computers see what we see

"Get" the picture

TO COMPLETE YOUR REGISTRATION, PLEASE TELL US WHETHER OR NOT THIS IMAGE CONTAINS A STOP SIGN:

ANSWER QUICKLY—OUR SELF-DRIVING CAR IS ALMOST AT THE INTERSECTION.

50 MUCH OF "AI" IS JUST FIGURING OUT WAYS TO OFFLOAD WORK ONTO RANDOM STRANGERS.

A.I. can be our visual cortex

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

The dawn of deep learning

Based on biology

Neural networks -Home grown and in the wild

towardsdatascience.com

Fully connected neurons

Activation functions

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Linear → Non-linear

Convolution

How our brains process images

Pooling

1x1	1x0	1x1	0	0
0x0	1x1	1x0	1	0
0x1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

4	

Putting them together

Learning – keep doing a better job

k0085653 www.fotosearch.com

Gradient descent

Backprop!

Feature extraction with CNN

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Transfer learning

© CanStockPhoto.com - csp50817923

What can you do with this?

Convolutional neural networks

Transfer learning

Advanced gradient descent algorithms

User friendly coding libraries (Keras, Fastai, Caffe2)

Access to powerful GPU hardware

Detect cancer better than a doctor

Accuracy of deep learning model > accuracy of 21 board-certified dermatologists

Esteva et al(2017) - Dermatologist-level classification of skin cancer with deep neural networks

https://www.nature.com/articles/nature21056

Create ridiculously expensive art

\$432,000

Arthur Ouaknine - https://medium.com/comet-app/

Bounding boxes

Credits to Andrew Ng

Bounding box examples

Detection $\begin{bmatrix} b_x \\ b_y \\ b_h \\ b_w \\ 0 \\ 1 \\ 0 \end{bmatrix}$

 $Z = \begin{bmatrix} b_x \\ b_y \\ b_h \\ b_w \\ c_1 \\ c_2 \\ c_n \end{bmatrix}$

No detection

Calculating box coordinates

$$x = (220-149) / 149 = 0.48$$

$$y = (190-149) / 149 = 0.28$$

$$w = 224 / 448 = 0.50$$

$$h = 143 / 448 = 0.32$$

(447, 447)

Example of how to calculate box coordinates in a 448x448 image with S=3. Note how the (x,y) coordinates are calculated relative to the center grid cell

IOU

 $IoU = \frac{size \ of \ the \ intersection \ area}{size \ of \ the \ union \ area}$

Non max suppression

Anchor boxes

$$Y = \begin{bmatrix} b_{c} \\ b_{y} \\ b_{y} \\ b_{h} \\ b_{w} \\ c_{1} \\ c_{2} \\ c_{3} \\ p'_{c} \\ b'_{x} \\ b'_{y} \\ b'_{h} \\ b'_{w} \\ c'_{1} \\ c'_{2} \\ c'_{3} \end{bmatrix}$$

