<u>Limits</u> of Random Variables

- · What happens to the sum of random variables $X_1, X_2, ..., X_n$ as the number of random variables n increases?
- The answer depends on how we normalize the sum. For instance, if $X_1,...,X_n$ are i.i.d., then our intuition should tell us that their average $\frac{1}{n}\sum_{i=1}^{n}X_i$ should approach $\mathbb{E}[X]$ as n increases. However, $\frac{1}{2n}\sum_{i=1}^{n}X_i$ will behave more like a Gaussian random variable (with mean $\mathbb{E}[X]$).
- · We will now try to make these notions precise.
- Formully, an infinite sequence of random variables $X_1, X_2, ...$ is specified by a collection of joint CDFs (joint PMFs for the discrete case and joint PDFs for the continuous case) for every possible finite subset of random variables.
 - -) We will focus on i.i.d. sequences of random variables, meaning that every possible finite subset is i.i.d.

• Weak Law of Large Numbers: Let $M_n = \frac{1}{n} \sum_{i=1}^{n} X_i$ be the sample mean of an i.i.d. sequence of random variables X_{1}, X_{2}, \dots with mean $\mathbb{E}[X_{i}] = \mu c \infty$. For any choice of $\epsilon > 0$,

$$\lim_{n\to\infty} |P[|M_n - \mu| > \epsilon] = 0$$

- Intuition: For any tolerance $\epsilon > 0$, the sample mean M_n eventually lands in the interval $[\mu \epsilon, \mu + \epsilon]$.
- How fast does this converge? We need addition assumptions.
 - * assuming $Var[X_i] = \Theta^2 < \infty$, $P[|M_n \mu| > \epsilon] < \frac{\Theta^2}{n\epsilon^2}$.
 - * Assuming acxcb, $P[|M_n-\mu|>\epsilon]$ < $2\exp\left(-\frac{2n\epsilon^2}{(b-a)^2}\right)$
 - * Assuming $X_i \sim Gaussian(\mu, \sigma^2)$, $P[|M_n \mu| > \epsilon] < 2 exp(-\frac{n\epsilon^2}{2\sigma^2})$
- · Strong Law of Large Numbers: $P[\lim_{n\to\infty} M_n = \mu] = 1$ Same setup as weak Law.

→ Intuition: Eventually, the sample mean Mn converges exactly to the true mean m.

- <u>Central Limit Theorem</u>: For any i.i.d. sequence $X_1, X_2, ...$ with finite means $\mathbb{E}[X_i] = \mu$ and variances $\text{Var}[X_i] = \sigma^2$, let $S_n = \sum_{i=1}^n X_i$. Then, the CDF of $Y_n = \frac{S_n n\mu}{\sigma J_n}$ converges to the standard normal CDF for any value of Y_n lim $F_{Y_n}(y) = \overline{\Phi}(y)$. \leftarrow CDF for Gaussian (0,1) $n \to \infty$
- Intuition: $\frac{1}{\sqrt{n}}\sum_{i=1}^{n}X_i$ looks like a Gaussian random variable for large n. In other words, the sum of many small, independent effects looks Gaussian (eventually).

- Example: X., X2,... i.i.d. Bernoulli(1) and Yn defined as above.

- · The Central Limit Theorem is often used to justify approximating the distribution of a sum as Gaussian.
- Example: Let $X_1, X_2, ..., X_n$ be i.i.d. random variables with mean $\mathbb{E}[X_i] = \mu$ and variance $Var[X_i] = \sigma^2$. Let $M_n = \frac{1}{n} \sum_{i=1}^n X_i$ be the sample mean. Using the Central Limit Theorem, approximate the following:
 - → IP[$M_n \le c$]. We know $\mathbb{E}[M_n] = \mu$ and $Var[M_n] = \frac{\sigma^2}{n^2}$. Approximate distribution as $M_n \sim Gaussian(\mu, \frac{\sigma^2}{n^2})$.

 IP[$M_n \le c$] = $F_{M_n}(c) \approx \mathbb{E}(\frac{c-\mu}{\sqrt{\sigma^2/n}})$

intervals and significance testing.

 $\Rightarrow P[|M_n - \mu| > \epsilon] = P[|M_n < \mu - \epsilon] + P[|M_n > \mu + \epsilon]$ $\Rightarrow \Delta \left(\frac{\mu - \epsilon - \mu}{\sqrt{\sigma^2/n}}\right) + 1 - \Delta \left(\frac{\mu + \epsilon - \mu}{\sqrt{\sigma^2/n}}\right)$ $\Rightarrow \Delta \left(\frac{\mu - \epsilon - \mu}{\sqrt{\sigma^2/n}}\right) + 1 - \Delta \left(\frac{\mu + \epsilon - \mu}{\sqrt{\sigma^2/n}}\right)$ $\Rightarrow \Delta \left(\frac{\mu - \epsilon - \mu}{\sqrt{\sigma^2/n}}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right) + 1 - \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma}\right)$ $\Rightarrow \Delta \left(\frac{\epsilon \sqrt{n}}{\sigma$