INRAE Occitanie-Montpellier - MISTEA

Weather generators and phenological models to study climate change impacts on grapevines and apples

Arnaud Gonin

Internship tutors: David MÉTIVIER, Bénédicte FONTEZ

Outline

- Stochastic weather generators
 - Principle
 - Model
 - Estimation
 - Simulation
- Phenological models
 - Introduction
 - Grapevine Model
 - Apple Model
 - With simulated TG (Apple)
- Conclusion

I. Stochastic weather generators

I. Stochastic weather generators | Principle

Recorded daily maximum temperature (TX) at Lille from $1^{\rm st}$ May 2003 to $1^{\rm st}$ November 2003 (source : ECA&D)

I. Stochastic weather generators | Principle

Simulations

I. Stochastic weather generators | Principle

With 5000 simulations:

I. Stochastic weather generators | Model

$$Y_t = T_t + S_t + X_t$$
 where

- T_t is the trend
- S_t is the seasonality
- \bullet X_t is the stochastic part

 T_t

 S_t

- Trend : $T_t = \mu$ (for now)
- Seasonality:

$$S_t = \sum_{k=1}^K \alpha_k \cos(\omega kt) + \beta_k \sin(\omega kt)$$

With $\omega=2\pi/365.25$, α_k and β_k coefficients to estimate and K the order (K=5 in our work).

I. Stochastic weather generators | Model

• Stochastic part $\sim \mathsf{AR}(p)$ model :

$$X_t = \sum_{i=1}^p \phi_i X_{t-i} + \sigma \varepsilon_t$$

With $\varepsilon_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$, ϕ_i and σ coefficients to estimate and p the order (we have chosen p=1).

Problem : Some features change during a year :

Model with different parameters for each month:

$$X_{t} = \sum_{i=1}^{p} \phi_{i,m(t)} X_{t-i} + \sigma_{m(t)} \varepsilon_{t}$$

With $\varepsilon_t \stackrel{\mathrm{iid}}{\sim} \mathcal{N}(0,1)$ and m(t) the month of the date t.

$$ightarrow$$
 $(p+1) imes 12$ parameters

1 Ordinary Linear Square (OLS) regression to estimate μ , α_k and β_k for k = 1, ..., K:

$$Y_t = \mu + \sum_{k=1}^{K} (\alpha_k \cos(\omega kt) + \beta_k \sin(\omega kt)) + X_t$$

With X_t the residuals.

2 Maximum likelihood estimation on these residuals to estimate $\phi_{i,j}$ and σ_j^2 , for $i=1,2,\ldots,p$ and $j=1,2,\ldots,12$:

$$X_{t} = \sum_{i=1}^{p} \phi_{i,m(t)} X_{t-i} + \sigma_{m(t)} \varepsilon_{t}$$

We have estimated $\hat{\mu}$, $\hat{\alpha}_k$ and $\hat{\beta}_k$ for $k=1,\ldots,K$ and $\hat{\phi}_{i,j}$ and $\hat{\sigma}_j^2$, for $i=1,2,\ldots,p$, $j=1,2,\ldots,12$. To simulate new temperatures series:

- **1** Initial conditions : $\hat{X}_1 = X_1, \hat{X}_2 = X_2, \dots, \hat{X}_p = X_p$
- ② For t > p:

$$\hat{X}_{t} = \sum_{i=1}^{p} \hat{\phi}_{i,m(t)} \hat{X}_{t-i} + \hat{\sigma}_{m(t)} \varepsilon_{t}$$

With $\varepsilon_t \sim \mathcal{N}(0,1)$.

$$\hat{Y}_t = \hat{\mu} + \sum_{k=1}^{K} (\hat{\alpha}_k \cos(\omega kt) + \hat{\beta}_k \sin(\omega kt)) + \hat{X}_t$$

II. Phenological models

II. Phenological models | Introduction

Apple phenology dates simulated for the 2002-2003 period in Lille, according to the parameters estimated in Legave and al. - 2013

Dormancy break date :

$$n_{db} = \min\{N, \sum_{n=CPO}^{N} C_U(n) > C_c\}$$

Budbirst date:

$$n_{bb} = \min\{N, \sum_{n=n_{db}}^{N} A_c(n) > G_{hc}\}$$

CPO: Chilling period onset

 C_c , G_{hc} : Chilling and heating quantity required

 C_U, A_c : Chilling and heating function

Chilling function:

$$C_U(n) = Q_{10c}^{-\frac{TX(n)}{10}} + Q_{10c}^{-\frac{TN(n)}{10}}$$

Heating function:

$$T^*(h,n) = \begin{cases} TN(n) + h\left(\frac{TX(n) - TN(n)}{12}\right) & \text{if } h \leq 12 \\ TX(n) - (h-12)\left(\frac{TX(n) - TN(n+1)}{12}\right) & \text{if } h > 12 \end{cases}$$

$$T(h, n) = \begin{cases} 0 & \text{if } T^*(h, n) < T_{0Bc} \\ T^*(h, n) - T_{0Bc} & \text{if } T_{0Bc} \le T^*(h, n) \le T_{MBc} \\ T_{MBc} - T_{0Bc} & \text{if } T_{MBc} < T^*(h, n) \end{cases}$$

$$A_c(n) = \sum_{h=1}^{24} T(h, n)$$

 Q_{10c} and T_{0Bc} are parameters and T_{MBc} is fixed at 25°C.

Parameters considered for our simulation:

- CPO: 1st of August
- *C_c* : 119.0 (chilling units)
- G_{hc}: 13236°C
- Q_{10c} : 2.17
- T_{0Bc} : 8.19°C

II. Phenological models | Apple

Dormancy break date :

$$n_{db} = \min\{N, \sum_{n=CPO}^{N} F_c(TG(n)) > C\}$$

Budbirst date:

$$n_{bb} = \min\{N, \sum_{n=n_{db}}^{N} F_h(TG(n)) > H\}$$

CPO: Chilling period onset

C, H: Chilling and heating quantity required

 F_c, F_h : Chilling and heating function

II. Phenological models | Apple

Parameters considered for our simulation :

- CPO: 30th of October
- *C* : 56.0 (chilling units)
- *H* : 83.58 (forcing units)
- \bullet F_c : Triangular chilling

$$F_c(T) = \begin{cases} 1 - (|T - T_c|/I_c) & \text{if } T \in (T_c - I_c, T_c + I_c) \\ 0 & \text{else} \end{cases}$$

With
$$T_c=1.1^{\circ}\text{C}$$
 and $I_c=20.^{\circ}\text{C}$

 \bullet F_h : Exponential forcing

$$F_h(T) = \exp(T/T_h)$$

With
$$T_h = 9.0^{\circ}\text{C}$$

II. Phenological models | Apple

Conclusion

- We have studied and implemented a model that is able to generate temperature series but with a too simple modeling of the trend.
- We have implemented phenological models and applied them on stations from different climates in France, and we noticed that there is an evolution across the years since ≈ 1980 .
- Finally, we have applied phenological on simulated series, and the results show that it is required to consider a better model for the trend if we want more realistic temperature series.

Thanks you!