ALGORITMOS PROBABILISTAS

NUMÉRICOS SHERWOOD LAS VEGAS MONTE CARLO

DEPARTAMENTO DE INFORMÁTICA Y SISTEMAS

INTRODUCCIÓN

- Algoritmo probabilista: Deja al azar la toma de algunas decisiones.
 - Cuando la decisión óptima llevaría mucho tiempo.
 - Problemas con múltiples soluciones correctas.

• Ejemplos:

- Encontrar el k-ésimo menor elemento de un vector de n elementos
- Problema de las ocho reinas.
- Encontrar un factor de un número compuesto

DEPARTAMENTO DE

ALGORITMOS PROBABILISTAS

- Supondremos un generador de números aleatorios de coste unitario
 - $-a \le \text{uniforme } (a,b) < b \text{ con } a, b \text{ de } R$
 - $-i \le \text{uniforme (i..j)} \le j \text{ con } i, j \text{ de } Z$
 - uniforme (x) de X conjunto finito no vacío
- En la práctica generadores **seudoaleatorios** a partir de una semilla.

CLASIFICACIÓN DE ALGORITMOS PROBABILISTAS

- Numéricos: Solución aproximada a problemas numéricos para los que es imposible dar una respuesta exacta. Su precisión es mayor cuanto más tiempo se le dedique al algoritmo.
- Monte Carlo: Dan una respuesta concreta pero ésta no tiene por qué ser correcta.
- Las Vegas: Su respuesta es siempre correcta pero puede no encontrarla.
- Sherwood: Dan siempre respuesta y ésta es correcta.

DEPARTAMENTO DE

ALGORTIMOS PROBABILISTAS

NUMÉRICOS

Aproximad amente....

DIS

DEPARTAMENTO DE NEORMÁSICA Y SISTEMAS

ALGORTIMOS PROBABILISTAS NUMÉRICOS

- Estimación aproximada de Π:
- Tiramos n dardos sobre cuadrado y contamos el número k de los que caen en un círculo inscrito en el cuadrado.

• ¿Cuál es la proporción media de dardos en el interior del círculo?:

$$\Pi r^2/4r^2 = \Pi/4$$

• ¿Cómo se puede estimar Π ?: $\Pi \cong 4k/n$

ALGORTIMOS PROBABILISTAS NUMÉRICOS

¿Qué valor se estimaría si se hiciera?

$$x \leftarrow uniforme(0,1)$$

 $y \leftarrow x$

Estimación de π

Función dardos(n)

$$k \leftarrow 0$$

para $i \leftarrow 1$ hasta n hacer
 $x \leftarrow uniforme(0,1)$
 $y \leftarrow uniforme(0,1)$
 $si \ x^2 + y^2 <= 1$ entonces $k \leftarrow k+1$
 $devolver \ 4k \ / n$

INTEGRACIÓN NUMÉRICA

• $f: [0,1] \rightarrow [0,1]$ es una función continua entonces el área de la superficie delimitada por la curva y = f(x), por el eje x, por eje y, y por la derecha x=1 viene dada por: $\int f(x) dx$

• **función** curva(n)

$$k \leftarrow 0$$

para $i \leftarrow 1$ hasta n hacer

$$x \leftarrow uniforme(0,1)$$

$$y \leftarrow uniforme(0,1)$$

si
$$y \le f(x)$$
 entonces $k \leftarrow k+1$

devolver k/n

• Estimar π es equivalente a evaluar

$$4\int_{0}^{1} (1-\chi^{2})^{1/2} dx$$

INTEGRACIÓN NUMÉRICA

función curva(f,n,a,b)

$$suma \leftarrow 0$$

para $i \leftarrow 1$ hasta n hacer

$$x \leftarrow uniforme(a,b)$$

$$suma \leftarrow suma + f(x)$$

devolver
$$(b-a) \times (suma/n)$$

■ función trapecio(f,n,a,b)

$$\{se\ supone\ n>=2\}$$

$$delta \leftarrow (b - a)/(n-1)$$

$$suma \leftarrow (f(a) + f(b))/2$$

para $x \leftarrow a + delta$ paso delta hasta b - delta hacer

$$suma \leftarrow suma + f(x)$$

devolver suma × delta

CONTEO PROBABILISTA

- **Algoritmos probabilistas** para estimar un valor entero. Ej: Calcular la cardinalidad de un conjunto *X* finito.
- Sea X un conjunto de n elementos en el cual muestreamos con repetición de manera uniforme e independiente. La esperanza matemática del numero de muestras antes de la primera repetición, cuando n es grande tiende a $k = \beta \sqrt{n}$ siendo $\beta = \sqrt{\pi/2} \approx 1,253$.

CONTEO PROBABILISTA

```
•Función contar(X: conjunto)
k \leftarrow 0
S \leftarrow 0
a \leftarrow uniforme(X)
repetir
k \leftarrow k+1
S \leftarrow S \cup \{a\}
a \leftarrow uniforme(X)
hasta a \in S
devolver 2k^2/\pi
```

Tiempo y espacio de orden \sqrt{n}, si las operaciones sobre el conjunto son unitarias. Este espacio puede ser prohibitivo si n es grande.

ALGORITMOS PROBABILISTAS

Algoritmos de Sherwood

D'5

DEPARTAMENTO DE INFORMÁTICA Y SISTEMAS

ALGORITMOS DE SHERWOOD

- **Sherwood:** Dan siempre respuesta y es correcta. Hace uso del azar para eliminar la diferencia entre buenos y malos ejemplares que se da en algoritmos deterministas. El caso peor depende del azar, no del ejemplar del problema.
- Análisis en media de un **algoritmo determinista(A)**, si la probabilidad de cada entrada es la misma sería:

$$t_p(n) = 1/ \#X_n \sum t(x) (X_n \text{ conjunto de ejemplares de tamaño } n)$$

si no

$$t_{p}(n) = \sum p(x) t(x)$$

puede haber un ejemplar x tal que t(x) sea mucho mayor que $t_p(n)$

ALGORITMOS DE SHERWOOD

- Ejemplo Quicksort.
- Podemos crear un algoritmo probabilista de forma que:

$$t_{B}(x) \approx t_{pA}(n) + s(n)$$

para todo ejemplar x, donde $\mathbf{t}_{\mathbf{B}}(\mathbf{x})$ es la esperanza matemática del tiempo requerido por el algoritmo \mathbf{B} sobre el ejemplar \mathbf{x} y $\mathbf{s}(\mathbf{n})$ es el coste de uniformizar. Puede haber ejecuciones en las que el tiempo sea peor, pero no depende de la entrada.

•
$$t_{pB}(n) = 1/X_n \sum t_B(x) \approx t_{pA}(n) + s(n)$$


```
función seleccionar (T[1..n],k)
   si n es pequeño estonces
    ordenar T en orden creciente
    devolver T[k]
   si no p\leftarrow un elemento de T[1..n]
    u \leftarrow \#\{ i \in [1..n] \ T[i] 
    v \leftarrow \#\{i \in [1..n] \ T[i] \le p\}
    si k < =u entonces
          vector U[1..u]
          U \leftarrow los elementos de T
   menores que p
          devolver selectionar(U,k)
```

```
si no si k> v entonces

vector V[1..n-v]

V ←los elementos de T

mayores que p

devolver seleccionar (V,k-v)

si no

devolver p
```


¿Cuál es el mejor pivote?

El mejor pivote sería la mediana. Si pudiéramos obtenerla con un coste constante, tendríamos un algoritmo que ejecuta una llamada recursiva y los vectores U y V tendrían como mucho [n/2].

Suponiendo un cálculo mágico de la mediana encuentra **el k-ésimo menor elemento** en un **tiempo lineal** $t_m(n) \in O(n) + \max\{t_m(i) / i <= n/2\}.$

¿Pero, como calculamos la mediana?

- Si la mediana no la podemos obtener en un tiempo constante, podemos sacrificar la eficiencia en el peor caso a cambio de una buena eficiencia en media y **escoger simplemente p=T[1].** Si hacemos esto tenemos un tiempo medio lineal, pero un **caso peor cuadrático.**
- Puedo buscar una aproximación a la mediana, mediante pseudomediana, que divide el vector en subvectores de 5 elementos y calcula la mediana exacta de estos subvectores, haciendo luego una aproximación a la mediana del vector inicial. Garantizamos así el tiempo lineal, pero debemos gastar tiempo en la elección del pivote.

- La diferencia entre los casos peor y medio no está en el valor de los elementos, sino **en su orden**. Podemos expresar el tiempo en función de n y de una σ permutación de los n elementos.
- $t_p(n \sigma)$ tiempo empleado por el algoritmo que emplea la pseudomediana
- $t_s(n \sigma)$, tiempo empleado por el algoritmo simplificado
- Normalmente $t_p(n \sigma)$ es mayor que $t_s(n \sigma)$, pero puede haber una permutación desastrosa.
- ¿qué podríamos hacer para que el tiempo no dependiera de la permutación?
- Solución: Algoritmo de Sherwood

Funcion selectionRB(T[1..n], k){calcula el *k*-esimo menor elemento de *T*} {se supone que 1 <= k <= n} $i \leftarrow 1; j \leftarrow n$ mientras *i*<*j* hacer $m \leftarrow T[uniforme(i..j)]$ particionar(T, i, j, m, u, v)si k < u entonces $j \leftarrow u-1$ si no si k>v entonces $i \leftarrow v+1$ si no $i,j \leftarrow k$ devolver T[i]

- La esperanza matemática del tiempo de este algoritmo es lineal independientemente del ejemplar.
- Siempre es posible que una ejecución emplee un tiempo cuadratico pero la **probabilidad** de que ocurra es **menor cuanto mayor es n.**
- Algoritmo de Sherwood eficiente cualquiera que sea el ejemplar considerado.

CONTEO PROBABILISTA (BIS)

Problema: Determinar el número de palabras diferentes en una cinta.

Solución a) Ordenar las palabras de la cinta, y después recorrer secuencialmente la cinta para contar las palabras distintas. Esto sería del orden de θ (N lgN) siendo N el número total de palabras de la cinta.

Solución b) Utilizar técnicas de direccionamiento disperso (Hashing), de esta forma recorreríamos la cinta una sola vez, tendríamos en media un orden O(n), pero en el caso peor $\Omega(Nn)$.

CONTEO PROBABILISTA (BIS)

• *M* cota superior de n.

- ALGORITMO
- U conjunto de secuencias consideradas palabras. $\{$ inicialización $\}$
- m parámetro ligeramente superior a log M
- $h: U \to \{0,1\}^m$ función Hashing capaz de transformar una cadena de U en una cadena binaria de longitud m
- $\pi(y,b)$ con $b \in \{0,1\}$ es el i menor / y[i]=b o k+1 si ningún bit de y es igual a b

- $y \leftarrow \text{cadena de } (m + 1) \text{ bits a cero}$
- {recorrido secuencial de la cinta }
- para cada palabra x de la cinta hacer

$$i \leftarrow \pi (h(x), 1)$$

$$y[i] \leftarrow 1$$

{primera estimación sobre *lg n*}

devolver $\pi(y,0)$

ALGORITMOS DE LAS VEGAS

El problema de las 8 reinas

!Los siento!
!Prueba otra
vez!

Algoritmos de Las Vegas

- A veces no dan la respuesta
- Se emplean para resolver problemas para los que no se conoce ningún algoritmo determinista eficiente.
- Se corre el riesgo de tomar decisiones que impidan llegar a la solución.
- Permiten, a veces una eficiencia mayor para todos los ejemplares. La esperanza matemática del tiempo debe ser buena para todo ejemplar y la probabilidad de un tiempo excesivo despreciable.
- Se puede repetir el algoritmo hasta obtener una solución. La probabilidad de éxito es mayor cuanto de más tiempo se dispone

Algoritmos de Las Vegas

- Algoritmo LV(x,var y,var éxito)
- éxito : cierto si solución, sino falso
- **x** : ejemplar a resolver
- y : solución al ejemplar x

función *obstinada*(*x*)

repetir

LV(x,y,exito)

hasta éxito

devolver y

Algoritmos de Las Vegas

- $\mathbf{p}(\mathbf{x})$ probabilidad de éxito para la entrada \mathbf{x} (> que 0)
- s(x) esperanza matemática del tiempo si éxito
- e(x) esperanza matemática del tiempo si fallo

Esperanza matemática del **tiempo requerido** por *obstinado*:

$$t(x) = p(x)s(x) + (1-p(x))(e(x) + t(x))$$

$$t(x) = s(x) + (1-p(x)) / p(x) e(x)$$

•Este problema resuelto por backtracking consiste en explorar sistemáticamente el árbol formado por los vectores k-prometedores. Obtenemos la primera solución después de explorar 114 de los 2057 nodos del árbol.

¿Cómo puedo aplicar un algoritmo de Vegas?

- •Algoritmo voraz de las Vegas que coloca de forma aleatoria las reinas de forma que no se ataquen mutuamente.
- •Si se consiguen colocar con éxito todas las reinas el algoritmo termina con **éxito**, si no con **error**.
- •La probabilidad de éxito *p* calculada con un ordenador es **12.94**, el número medio de nodos que se explora en caso de éxito *s* es **9** contando la raíz. El numero medio de nodos que se explora en caso de error es **e**= **6,927**. Por tanto **la esperanza matemática del número de nodos explorados es s+(1-p)e/p=52,927**.

- Podemos jugar con la fórmula: Colocar aleatoriamente una cuantas reinas y después proceder por el algoritmo de vuelta atrás, sin reconsiderar la posición de las reinas colocadas de forma aleatoria.
- Si pongo más reinas al azar:

Menos tiempo, para encontrar solución o fallar

La probabilidad de fallo es mayor

Stop Ves	gas p	S	e	<u>t</u>
0	100,00	114,00		114,001
1	100,00	39,63		39,002
2	87,00	22,53	39,67	28,203
3	49,31	13,48	15,10	29,01
4	26,18	10,31	8,79	35,10
5	16,24	9,33	7,29	46,92
6	13,57	9,05	6.98	53,50
7	12,93	9,00	6,97	55,93
8	12,9	9,00	6,97	55,93

ALGORITMOS DE MONTE CARLO

Vector mayoritario

Comprobación de primalidad

Probablemente Si

UIS
DEPARTAMENTO DE

INFORMÁTICA Y SISTEMAS

- Se emplean cuando No existe un algoritmo eficiente determinista o de Las Vegas.
- Un algoritmo de Monte Carlo puede equivocarse de vez en cuando pero encuentra una solución correcta con buena probabilidad.
- En caso de error no avisa.

• !!! NUNCA PUEDE EQUIVOCARSE SISTEMATICAMENTE SOBRE UN EJEMPLAR !!!!


```
funcion primo(n)

si mcd(n,30030)=1 {alg. euclides}

entonces devolver cierto

si no devolver falso
```

- ¿Es un algoritmo de Monte Carlo?
- ¿Qué ocurre con la entrada n=589?

- ¿Cuándo es útil un algoritmo de Monte Carlo?
- Un algoritmo de Monte Carlo es *p-correcto* si devuelve una solución correcta con probabilidad no inferior a *p*, con 1/2 <*p*<1.
- Se define "La utilidad" como p-1/2
- La probabilidad de acierto no depende del ejemplar
- Un algoritmo de Monte Carlo es **consistente** si no devuelve nunca dos soluciones correctas distintas del mismo ejemplar.

- Un algoritmo de Monte Carlo es y₀-sesgado si existe un subconjunto X de los ejemplares y una solución conocida y₀ /
- 1) cuando $x \in X$ la respuesta es siempre correcta
- 2) la respuesta correcta si $\mathbf{x} \notin \mathbf{X}$, es \mathbf{y}_0 , pero el algoritmo se puede equivocar
- Si MC es consistente y_0 -sesgado y p-correcto (y , la respuesta del algoritmo)
 - Si $y=y_0$
 - si $x \in X$ por 1) la respuesta es correcta
 - si $x \notin X$ por 2) la respuesta es correcta
 - Si $y \neq y_0$
 - $si x \in X$ y es correcta
 - si x ∉ X el algoritmo se equivoca pues la respuesta correcta es y₀

- Si repetimos k veces MC(x) con respuestas $y_1, y_2, ... y_k$.
 - si algún y_i=y₀ la solución es correcta
 - si i≠ j y_i ≠ y_j como es consistente, x ∉ X y, y_0 es la solución correcta
 - si y_i =y ≠ y_0 para todos los i es posible que la solución sea y_0 y que el algoritmo se equivoque k veces sobre x ∉ X pero la probabilidad es (**i-p**)^k
- ¿Cómo se puede utilizar esta característica de los algoritmos de Monte Carlo?

• Sea T[1..n], se dice que es un vector mayoritario si tiene un elemento mayoritario. Un $x / \{i / T[i] = x\} > n/2$.

4	4	1	4	2	1	4	6	4	4	4	5	4	8	
---	---	---	---	---	---	---	---	---	---	---	---	---	---	--

```
función mayoritario(T[1..n])
i \leftarrow uniforme(1..n)
x \leftarrow T[i]
k \leftarrow 0
para j \leftarrow 1 \text{ hasta n hacer}
si T[j] = x \text{ entonces } k \leftarrow k+1
devolver (k>n/2)
```

¿Si el vector es minoritario, existe alguna posibilidad de que el algoritmo responda lo contrario?

¿Cuál es el conjunto X?

|--|

```
función mayoritario(T[1..n])
i \leftarrow uniforme(1..n)
x \leftarrow T[i]
k \leftarrow 0
para j \leftarrow 1 \text{ hasta n hacer}
si T[j] = x \text{ entonces } k \leftarrow k+1
```

devolver (k>n/2)

¿Cuál es la Probabilidad de que siendo mayoritario, el algoritmo responda lo contrario?

• Este algoritmo es cierto-sesgado y 1/2-correcto

función mayoritario2(T)
si mayoritario(T) entonces devolver cierto
si no devolver mayoritario(T)

- La probabilidad de que mayoritario2(T) devuelva cierto si el vector T es mayoritario es $p+(1-p)p=1-(1-p)^2 > 3/4$
- Mayoritario2 es cierto-sesgado y 3/4-correcto.

• Si queremos resolver el problema con una probabilidad de error inferior a ε

```
función mayoritarioMC(T, \varepsilon)
k \leftarrow \lg(1/\varepsilon)
para i \leftarrow 1 hasta k hacer
si mayoritario(T) entonces devolver
cierto
devolver falso
```


- Tanto la generación, como la comprobación de la primalidad de números grandes, es importante en muchos problemas, por ejemplo la criptografía.
- El algoritmo determinista que se conoce es exponencial con respecto al número de dígitos
- En un problema NP, pero no se sabe donde esta ¿En NP-completo? O ¿En P?

• Teorema menor de Fermat: Sea n un numero primo. Entonces a^{n-1} mod n = 1 para cualquier entero $a / 2 \le a \le n-1$.

• Desafortunadamente hay números compuestos que cumplen esta propiedad, por ejemplo el número compuesto **15, con a=4.**

4 es un falso testigo de primalidad para 15

Función Fermat(n)

A := uniforme(1..n-1)

SI expomod (a,n-1,n) =1 **entonces** verdadero **SINO** devolver falso

- •¿Qué podemos decir si Fermat(n) devuelve falso?
- •¿Y si devuelve verdadero?
- •Los falsos testigos son escasos, pero existen números para los que la probabilidad de cometer un error es muy alta. Fermat(651693055693681) falla el 99,9965 de las veces!!!!

- Una modificación al teorema de Fermat disminuye drásticamente esta probabilidad
- Sea n un entero impar > 4 y s y t dos enteros positivos / $n-1=2^st$ siendo t impar. Sea a un entero 2 <= a <= n-2, n es fuertemente pseudoprimo en la base a si :
 - $a^t \mod n = 1$
 - O, existe un entero i tal que $0 \le i \le s$, $a^{2^{i}t} \mod n = n-1$.
- Si *n* es compuesto no puede ser fuertemente pseudoprimo en más de (n-9)/4 bases distintas.

• Se puede hacer un algoritmo eficiente para comprobar si n es fuertemente pseudoprimo en la base a. (Pag 385 Brassard Bratley)

función *primo*(*n*)

 $a \leftarrow \text{uniforme}(2..n-2)$

si n es fuertemente pseudoprimo en la base a entonces devolver cierto

si no devolver falso

• Es un algoritmo de Monte Carlo falso-sesgado y 3/4 correcto