MA1521 Cheatsheet

AY20/21 Sem 1 | Chapter 1-6

01. FUNCTIONS & LIMITS

Rules of Limits

- 1. $\lim_{x \to a} (f \pm g)(x) = L \pm L'$
- $2. \lim_{x \to a} (fg)(x) = LL'$
- 3. $\lim_{x\to a} \frac{f}{g}(x) = \frac{L}{L'}$, provided $L'\neq 0$
- 4. $\lim_{x \to a} kf(x) = kL$ for any real number k.

Estimation

first order estimate: $y' \approx y + \Delta x \times \frac{dy}{dx} \Big|_{x=0}$ second order estimate:

 $y' \approx 1$ st estimate $+\left(\frac{(\triangle x)^2}{2} \times \frac{d^2y}{dx^2}\right|$

pop. variance: $\sigma^2 = \frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n}$ pop. covariance: $\cot(x,y) = \frac{\sum xy^2 - \frac{\sum x \sum y}{n}}{n}$ pop. correlation: $\frac{\cot(x,y)}{\sigma_x \times \sigma_y}$

02. DIFFERENTIATION

extreme values:

- f'(x) = 0
- f'(x) does not exist
- ullet end points of the domain of f

parametric differentiaton: $\frac{d^2y}{dx^2}=\frac{d}{dx}(\frac{dy}{dx})=\frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dx}}$

Differentiation Techniques

f(x)	f'(x)
$\tan x$	$\sec^2 x$
$\csc x$	$-\csc x \cot x$
$\sec x$	$\sec x \tan x$
$\cot x$	$-\csc^2 x$
$a^{f(x)}$	$\ln a \cdot f'(x) a^{f(x)}$
$\log_a f(x)$	$\log_a e \cdot \frac{f'(x)}{f(x)}$
$\sin^{-1} f(x)$	$\frac{f'(x)}{\sqrt{1-[f(x)]^2}}, f(x) < 1$
$\cos^{-1} f(x)$	$= \frac{f'(x)}{\sqrt{1 - [f(x)]^2}}, f(x) < 1$
$\tan^{-1} f(x)$	$\frac{f'(x)}{1+[f(x)]^2}$
$\cot^{-1} f(x)$	$-\frac{f'(x)}{1+[f(x)]^2}$
$\sec^{-1} f(x)$	$\frac{f'(x)}{ f(x) \sqrt{[f(x)]^2-1}}$
$\csc^{-1} f(x)$	$-\frac{f'(x)}{ f(x) \sqrt{[f(x)]^2-1}}$

L'Hopital's Rule

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

- for indeterminate forms $(\frac{0}{0} \text{ or } \frac{\infty}{\infty})$, cannot directly substitute
- for other forms: convert to $(\frac{0}{0} \text{ or } \frac{\infty}{\infty})$ then apply L'Hopital's
- for exponents: use \ln , then sub into $e^{f(x)}$

03. INTEGRATION

Integration Techniques

f(x)	$\int f(x)$
$\tan x$	$\ln(\sec x), x < \frac{\pi}{2}$
$\cot x$	$\ln(\sin x)$, $0 < x < \pi$
$\csc x$	$-\ln(\csc x + \cot x), 0 < x < \pi$
$\sec x$	$\ln(\sec x + \tan x), x < \frac{\pi}{2}$
$\frac{1}{x^2 + a^2}$	$\frac{1}{a}\tan^{-1}(\frac{x}{a})$
$\frac{1}{\sqrt{a^2-x^2}}$	$\sin^{-1}\left(\frac{x}{a}\right), x < a$
$\frac{1}{x^2 - a^2}$	$\frac{1}{2a}\ln\left(\frac{x-a}{x+a}\right), x > a$ $\frac{1}{2a}\ln\left(\frac{x+a}{x-a}\right), x < a$
$\frac{1}{a^2-x^2}$	$\frac{1}{2a}\ln(\frac{x+a}{x-a}), x < a$
a^x	$\frac{a^x}{\ln a}$

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

- indefinite integral the integral of the function without any
- · antiderivative any function whose derivative will be the same as the original function

substitution: $\int_a^b f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du$ by parts: $\int uv' dx = uv - \int u'v dx$

Volume of Revolution

about x-axis:

- (with hollow area) $V = \pi \int_a^b [f(x)]^2 [g(x)]^2 dx$
- (about line y=k) $V=\pi \int_a^b [f(x)-k]^2 dx$

04. SERIES

Geometric Series

sum (**divergent**)
$$\frac{a(1-r^n)}{1-r}$$

sum (convergent)

Power Series

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots$$

power series about x = a (a is the centre of the power series)

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \dots$$

Taylor series

$$\sum_{k=0}^{\infty} \frac{f^k(a)}{k!} (x-a)^k$$
 MacLaurin series:
$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(0)}{n!} x^n$$

$$P_n(x) = \sum_{k=0}^{n} \frac{f^k(a)}{k!} (x-a)^k$$

Radius of Convergence

power series converges where $\lim_{n\to\infty} \left|\frac{u_{n+1}}{u_n}\right| < 1$

converge at	R	$\lim_{n \to \infty} \left \frac{u_{n+1}}{u_n} \right $
x = a	0	∞
(x-h,x+h)	$h, \frac{1}{N}$	$N \cdot x-a $
all x	∞	0

MacLaurin Series

For
$$-\infty < x < \infty$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
For $-1 < x < 1$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^n$$

$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

$$\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^{n-1} x^n}{n}$$

$$\tan^{-1} x = \sum_{n=0}^{\infty} \frac{(-1)^{n-1} x^n}{2n+1}$$

$$\frac{1}{(1+x)^2} = \sum_{n=1}^{\infty} (-1)^{n-1} n x^{n-1}$$

$$\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} n x^{n-1}$$

$$\frac{1}{(1-x)^3} = \frac{1}{2} \sum_{n=2}^{\infty} n (n-1) x^{n-2}$$

$$(1+x)^k = \sum_{n=0}^{\infty} {n \choose n} x^n$$

$$= 1 + kx + \frac{k(k-1)}{2n} x^2 + \dots$$

Differentiation/Integration

For
$$f(x)=\sum\limits_{n=0}^{\infty}c_n(x-a)^n$$
 and $a-h < x < a+h,$ differentiation of power series:
$$f'(x)=\sum\limits_{n=0}^{\infty}nc_n(x-a)^{n-1}$$

integration of power series:
$$\sum_{n=0}^{\infty} (x-1)^{n+1}$$

 $\int f(x)dx = \sum_{n=1}^{\infty} c_n \frac{(x-1)^{n+1}}{n+1} + c$

if $R = \infty$, f(x) can be integrated to $\int_0^1 f(x)dx$

05. VECTORS

unit vector,
$$\hat{m p}=rac{m p}{|m p|}$$

midpoint theorem $p=rac{a+b}{2}$

Dot product

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos\theta$$
$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = a_1b_1 + a_2b_2 + a_3b_3$$

 $egin{array}{c|c} m{a}\perp m{b} \Rightarrow m{a}\cdot m{b} = 0 & m{a}\cdot m{b} > 0 : m{a} ext{ is acute} \\ m{a}\parallel m{b} \Rightarrow m{a}\cdot m{b} = |m{a}||m{b}| & m{a}\cdot m{b} < 0 : m{a} ext{ is obtuse} \end{array}$

Cross product

$$\begin{aligned} \boldsymbol{a} \times \boldsymbol{b} &= |\boldsymbol{a}| |\boldsymbol{b}| \sin \theta \hat{\boldsymbol{n}} \\ \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} &= \begin{pmatrix} a_2 b_3 - 1_3 b_2 \\ -(a_1 b_3 - a_3 b_1) \\ a_1 b_2 - a_2 b_1 \end{pmatrix} \\ \boldsymbol{a} \perp \boldsymbol{b} &\Rightarrow \boldsymbol{a} \times \boldsymbol{b} = |\boldsymbol{a}| |\boldsymbol{b}| \\ \boldsymbol{a} \parallel \boldsymbol{b} &\Rightarrow \boldsymbol{a} \times \boldsymbol{b} = 0 \end{aligned} \quad \begin{vmatrix} \boldsymbol{a} \times \boldsymbol{b} &= -(\boldsymbol{b} \times \boldsymbol{a}) \\ \lambda \boldsymbol{a} \times \mu \boldsymbol{b} &= \lambda \mu (\boldsymbol{a} \times \boldsymbol{b}) \end{aligned}$$

Projection

Planes

Equation of a Plane

n is a perpendicular to the plane; A is a point on the plane.

- parametric: $r = a + \lambda b + \mu c$
- scalar product: $r \cdot n = a \cdot n$
- standard form: $\mathbf{r} \cdot \hat{\mathbf{n}} = d$
- cartesian: ax + by + cz = p

Length of projection of \boldsymbol{a} on $\boldsymbol{n} = |\boldsymbol{a} \cdot \hat{\boldsymbol{n}}| = \perp$ from O to π

Distance from a point to a plane

Shortest distance from a point $S(x_0, y_0, z_0)$ to a plane $\Pi: ax + by + c = d$ is given by:

06. PARTIAL DIFFERENTIATION

Partial Derivatives

For f(x, y),

first-order parțial derivatives:

$$f_x = \frac{d}{dx}f(x,y)$$
 $f_y = \frac{d}{dy}f(x,y)$

second-order partial derivatives:

$$f_{xx} = (f_x)_x = \frac{d}{dx} f_x$$

$$f_{yy} = (f_y)_y = \frac{d}{dy} f_y$$

$$f_{yx} = (f_x)_y = \frac{d}{dy} f_x$$

$$f_{yx} = (f_y)_x = \frac{d}{dx} f_y$$

Chain Rule

$$\begin{aligned} & \text{For } z(t) = f(x(t), y(t)), \\ & \frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt} \\ & \text{For } z(s,t) = f\big(x(s,t), y(s,t)\big), \\ & \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t} \\ & \frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \end{aligned}$$

Directional Derivatives

The directional derivative of f at (a,b) in the direction of unit vector $\hat{\pmb{u}}=u_1\pmb{i}+u_2\pmb{j}$ is

$$D_u f(a,b) = f_x(a,b) \cdot u_1 + f_y(a,b) \cdot u_2$$

• geometric meaning: $D_u f(a,b)$ is the gradient of the tangent at (a,b) to curve C on a surface z=f(x,y)• rate of change of f(x,y) at (a,b) in the direction of u

Gradient Vector

The **gradient** at
$$f(x, y)$$
 is the vector $\nabla f = f_x \mathbf{i} + f_y \mathbf{j}$

$$D_u f(a, b) = \nabla f(a, b) \cdot \hat{\boldsymbol{u}}$$
$$= |\nabla f(a, b)| \cos \theta$$

- f increases most rapidly in the direction $\nabla f(a,b)$
- f decreases most rapidly in the direction $-\nabla f(a,b)$
- largest possible value of $D_u f(a,b) = |\nabla f(a,b)|$
 - occurs in the same direction as $f_x(a,b)\mathbf{i} + f_y(a,b)\mathbf{j}$

Physical Meaning

Suppose a point p moves a small distance Δt along a unit vector $\hat{\boldsymbol{u}}$ to a new point \boldsymbol{q} .

increment in f, $\Delta f \approx D_u f({m p})(\Delta t)$

Maximum & Minimum Values

f(x,y) has a **local maximum** at (a,b) if $f(x,y) \leq f(a,b)$ for all points (x,y) near (a,b). f(x,y) has a **local minimum** at (a,b) if $f(x,y) \geq f(a,b)$ for all points (x,y) near (a,b).

Critical Points

- $f_x(a,b)$ or $f_y(a,b)$ does not exist; OR
- $f_x(a,b) = 0$ and $f_y(a,b) = 0$

Saddle Points

- $f_x(a,b) = 0, f_y(a,b) = 0$
- neither a local minimum nor a local maximum

Second Derivative Test

D	$f_{xx}(a,b)$	local
+	+	min
+	-	max
-	any	saddle point
0	any	no conclusion