

Universidad Autónoma de Nuevo León Facultad de Ciencias Físico Matemáticas

Semestre: 7

Materia:

Minería de datos

Mayra Cristina Berrones Reyes

Alumnos:

Andrea López Solís	#1822031
Daniela Govea Serna	#1722714
Francisco García Sánchez Armáss	#1816358
Jesús Eduardo Valencia González	#1630606
Karyme Mayela Gauna Rodríguez	#1819032

Grupo: 003 Aula: AVI2

Ejercicio de practica #2

Se procede a identificar los *itemsets* frecuentes y, a partir de ellos, crear reglas de asociación.

Transacción
{A, B, C, D}
{A, B, D}
{A, B}
{B, C, D}
{B, C}
{C, D}
{B, D}

Para este problema se considera que un *item* o *itemset* es frecuente si aparece en un mínimo de 3 transacciones, es decir, su soporte debe de ser igual o superior a 4/7 = 0.57. Se inicia el algoritmo identificando todos los *items* individuales (*itemsets* de un único *item*) y calculando su soporte.

Itemset (k=1)	Ocurrencias	Soporte	
{A}	3	0.43	
✓ {B}	6	0.86	
✓ {C}	4	0.57	
✓ {D}	5	0.71	

A continuación, se generan todos los posibles *itemsets* de tamaño k=2 que se pueden crear con los *itemsets* que han superado el paso anterior y se calcula su soporte.

Item k=2

Los *itemsets* {B, D} superan el límite (>=0.57) de soporte, por lo que son frecuentes. Los *itemsets* {A, C}, {A, D} {A, B},{B, C} {C, D} no superan el soporte mínimo (<=0.57) por lo que se descartan.

Itemset (k=2)	Ocurrencias	Soporte
{A, B}	3	0.43
{A, C}	1	0.14
{A, D}	2	0.29
{B, C}	3	0.43
✓ {B, D}	4	0.57
{C, D}	3	0.43

Item k=2

Se repite el proceso, esta vez creando *itemsets* de tamaño k = 3.

Itemset (k=2)	Ocurrencias	Soporte
{B, D}	4	0.57

Item k=3

Los *itemsets* {A, B, C}, {A, B, D} y {C, D, A} contienen subconjuntos infrecuentes, por lo que son descartados. Para los restantes se calcula su soporte.

Itemset (k=3)	Ocurrencias	Soporte
{A, B, C}	0	0
{A, B, D}	1	0.14
{B, C, D}	2	0.29
{C, D, A}	0	0

El *items* {B, C, D} no supera el soporte mínimo por lo que se considera infrecuente. Al no haber ningún nuevo *itemset* frecuente, se detiene el algoritmo.

Itemset frecuentes
{B, D}

Como resultado de la búsqueda se han identificado los siguientes *itemsets* frecuentes:

Supóngase que se desean únicamente reglas con una confianza igual o superior a 0.5, es decir, que la regla se cumpla un 50% de las veces.

De todas las posibles reglas, únicamente:

• {B} => {D}

 Reglas
 Confianza
 Confianza

 {B} => {D}
 soporte{B, D} / soporte {B}
 0.43 / 0.86 = 0.5

 {D} => {B}
 soporte{B, D} / soporte {D}
 0.43 / 0.71 = 0.6

superan el límite de confianza.