WHAT IS CLAIMED IS:

1		1.	A waveguide device which acts as a waveguide in at least one						
2	direction there	of, the	device comprising:						
3	-	a core	having a pump input surface for receiving pumping radiation						
4	at a pumping	wavelei	igth and at least one output surface for emitting a laser beam						
5	at an output w	aveleng	gth; and						
6	•	means	for providing pump-light confinement and means for providing						
7	output mode c	put mode control in different sections of the device along the direction of beam							
8	propagation.								
1		2.	The device as claimed in claim 1 wherein the core is a single						
2	member.								
1		3.	The device as claimed in claim 1 wherein the core includes						
2	an active core	membe	er and a passive core member.						
1		4.	The device as claimed in claim 1 wherein the means for						
2	providing pum	p-light	confinement includes a pump-light containment component in						
3	contact with a	surface	e of the core in a pumping section of the device.						
1		5.	The device as claimed in claim 4 wherein the pump-light						
2	containment c	ompone	ent is a pump cladding.						
1		6.	The device as claimed in claim 1 wherein the means for						
2	providing out	out moc	le control includes a coating in contact with the core.						
1		7.	The device as claimed in claim 5 wherein the means for						
2	providing outp	out mod	e control includes a mode control cladding in contact with the						
3	core.								
1		8.	The device as claimed in claim 1 wherein the means for						
2	providing out	put mod	de control includes a grating in contact with the core.						

1		9.	The device as claimed in claim 1 wherein the core is a planar					
2	core.							
1	-	10.	The device as claimed in claim 1 wherein the core is a					
2	cylindrical co	ore.						
1		11.	The device as claimed in claim 1 further comprising a					
2	substrate for supporting the core.							
1		12.	The device as claimed in claim 1 wherein the device is a laser.					
1		13.	The device as claimed in claim 12 wherein the laser is a					
2	planar waveguide laser.							
1		14.	The device as claimed in claim 1 wherein the core has laser					
2	input surface	for rec	eiving a source laser beam to be amplified and wherein the					
3	device is a or	otical an	nplifier.					
1		15.	The device as claimed in claim 14 wherein the core is planar					
2	and wherein	the opti	cal amplifier is a planar waveguide amplifier.					
1		16.	The device as claimed in claim 14 wherein the laser input					
2	surface is diff	ferent fr	om either the pumping input surface or the at least one output					
3	surface.							
1		17.	The device as claimed in claim 14 wherein the laser input					
2	surface is the	same a	s the at least one output surface.					
1		18.	The device as claimed in claim 1 wherein an output mode					
2	control section		device has a lower NA than a pumping section of the device.					
			, · · ·					

1		19.	The	device	as	claimed	in	claim	18	wherein	the	pumping
2	section has a	NA gre	eater tl	han 0.0	5.							

- 1 20. The device as claimed in claim 18 wherein the output mode 2 control section has a NA less than 0.22.
- 1 21. The device as claimed in claim 9 wherein the planar core includes doped YAG.
- 1 22. The device as claimed in claim 5 wherein the pump cladding 2 has a lower refractive index than the refractive index of the core.
- 1 23. The device as claimed in claim 22 wherein the pump cladding 2 is sapphire or undoped YAG.
- The device as claimed in claim 7 wherein the mode control cladding includes a material having a refractive index between that of the core and that of the pump cladding.
- 1 25. The device as claimed in claim 24 wherein the mode control cladding includes doped or undoped YAG.
- The device as claimed in claim 9 wherein the planar core includes a first core member which absorbs the pumping radiation and a separate second core member which either does not absorb the pumping radiation or has an absorption lower than the absorption of the first core member at the pumping wavelength.
- The device as claimed in claim 9 wherein the device acts as a pair of separate waveguides which are butt-coupled or coupled together by an imaging system.

4

5

beam.

1	28. The device as claimed in claim 18 wherein the device is an
2	optical fiber.
1	29. The device as claimed in claim 28 wherein the means for
2	providing output mode control includes a mode control cladding different from the
3	pump cladding.
1	30. The device as claimed in claim 29 wherein the device
2	comprises sections of different types of fiber which are either spliced, butt-coupled
3	or coupled together by imaging an output from one section into the other section.
1	31. A method for generating a laser beam having a desired output
2	mode, the method comprising:
3	providing a core having a pump input surface and at least one output
4	surface, the core serving as a waveguide in at least one direction;
5	pumping the core at the pump input surface with pumping radiation
6	at a pumping wavelength so that an output laser beam is emitted at the at least one
7	output surface at an output wavelength; and
8	separating the functions of pump-light confinement and output mode
9	control to different sections along the length of the waveguide.
1	32. The method as claimed in claim 31 wherein the core has
2	laser input surface and wherein the method further comprises transmitting a source
3	laser beam into the core at the laser input surface wherein the source laser beam i

amplified within the core and wherein the output beam is an amplified source laser