0 1 2

ANALIZA MATEMATYCZNA I (Lista 7, 14.11.2022)

Twierdzenia: Rolla, Lagrange'a. Badanie przebiegu funkcji.

Zad 1. Zakładając, że funkcje f, g są dwukrotnie różniczkowalne w przedziale (a, b) wyprowadzić wzór na drugą pochodną:

a)
$$f + g$$
, b) $f - g$, c) $f \cdot g$, d) $\frac{f}{g}$. e) $f \circ g$

Zad 2. Obliczyć f', f'', f''' następujących funkcji:

a)
$$f(x) = x \ln x$$
, b) $f(x) = (x^2 + x + 1) \cos x$, c) $f(x) = e^{x^2}$.

Zad 3. Wyznaczyć przedziały monotoniczności funkcji:

(a)
$$f(x) = x^3 - 6x^2 + 21x + 2$$
, (b) $f(x) = x^3(8 - x)$, (c) $f(x) = 3x - x^3$, (h) $f(x) = 4x + \frac{9}{x}$
(d) $f(x) = 2x - \sin x$, (e) $f(x) = \frac{\sqrt{x^2 + 1}}{x^2 + 2}$, f) $f(x) = \frac{1}{(x - 3)^2}$, (g) $f(x) = \frac{x^2 + 4x - 12}{(x - 1)^2}$. (i) $f(x) = x\sqrt{18 - x^2}$

Zad 4. Wyznaczyć przedziały wypukłości i wklęsłości oraz punkty przegięcia funkcji:

(a)
$$f(x) = x^4 - 54x^2 + x - 5$$
, (b) $f(x) = 2x^6 - 5x^4 + 7x - 2$, (c) $f(x) = \sin x$, (d) $f(x) = \sin^2 x$, (e) $f(x) = \frac{1}{1+x^2}$ (e) $f(x) = \frac{1+x}{1+x^2}$, (f) $f(x) = x \ln \frac{1}{x}$ (g) $f(x) = \frac{x^2}{(x-1)^3}$. (i) $f(x) = \ln \left(\frac{1}{x} - \frac{1}{6}\right)$

Zad 5. Z kawałka drutu o długości 12 cm zbudowano prostokąt o największym polu. Ile wynosi pole tego prostokąta ?

Zad 6. Znaleźć wszystkie ekstrema funkcji:

(a)
$$f(x) = 2x^3 - 15x^2 + 36x$$
, (b) $f(x) = \frac{x}{x^2 + 4}$, (c) $f(x) = x^2 \ln x$, (d) $f(x) = x - \sqrt[3]{x}$.

Zad 7. Sprawdzić, które z funkcji spełniają twierdzenie Roll'a na przedziale [-1,1]. Jeżeli spełniają, to wyznaczyć punkty w których pochodna się zeruje.

a)
$$f(x) = x(x^2 - 1)$$
, b) $f(x) = 1 - \sqrt[3]{x^2}$, c) $f(x) = (|x| - 1)^2$, d) $f(x) = \frac{1 - x^2}{x + 2}$.

Zad 8. Stosując twierdzenie Lagrange'a wyznaczyć odpowiednie punkty z podanych przedziałów:

(a)
$$f(x) = \arcsin x$$
, $[-1,1]$, (b) $\ln x$, $[-1,e]$.

Zad 9. Zbadać funkcje (dziedzina, granice, ciągłość, monotoniczność, wypukłość/wklęsłość, asymptoty, punkty przegięcia, ekstrema, wykres):

(a)
$$f(x) = x^3 - 3x^2 + 2$$
, (b) $f(x) = \frac{x^2}{x - 2}$, (c) $f(x) = \frac{x^3}{x^2 - 1}$, (d) $f(x) = \frac{3x}{(x^2 - 1)^2}$, (e) $f(x) = \frac{\ln x}{x}$, (f) $f(x) = xe^x$, (g) $f(x) = xe^{-x}$, (h) $f(x) = x^2e^{x-1}$. (i) $f(x) = \frac{x}{\ln x}$

Zadania pochodzą, między innymi, z podręczników:

^{1.} Gewert M., Skoczylas Z., Analiza matematyczna 1, przykłady i zadania.

^{2.} Krysicki L., Włodarski L., Analiza matematyczna w zadaniach, cz. 1.