TCM - Lista de Exercícios 3

Transmissão de Calor: Mecanismos

Exercício 1. Como a condução de calor se difere da convecção?

Exercício 2. Através de $1,3\,m^2$ de seção transversal de um material isolante (material que apresenta baixa condutividade térmica) de $4\,cm$ de espessura com condutividade térmica $0,3\,W/(m.C)$, é conduzido um fluxo de calor de $4\,kW$. Determine a diferença de temperatura entre as faces do isolante. Resposta: $410\,^{o}C$.

Exercício 3. As duas superfícies de uma placa de 1,3 cm de espessura são mantidas a 4 ^{o}C e 44 ^{o}C , respectivamente. Se for avaliado que o calor é transferido por meio da placa a uma taxa de $450 W/m^2$, determine sua condutividade térmica. Resposta: $0.146 W/(m.^{o}C)$.

Exercício 4. Existe uma diferença de $70^{\circ}C$ através de uma manta de fibra de vidro de $4 \, cm$ de espessura. A condutividade térmica da fibra de vidro é $0,039 \, W/(m.^{\circ}C)$. Calcule a energia transferida pela fibra em 2 horas, por unidade de área. Resposta: $\dot{Q} = 68,25 \, W/m^2$; $Q = 491 \, kJ/m^2$.

Exercício 5. Considere uma pessoa em pé em uma sala. As superfícies internas das paredes, do piso e do teto da casa estavam a uma temperatura média de 8 ^{o}C no inverno e de 30 ^{o}C no verão. Determine as taxas de transferência de calor por radiação entre essa pessoa e as superfícies em seu entorno no verão e no inverno, considerando que a área de superfície exposta, a emissividade e a temperatura média da superfície exposta da pessoa são $1.7 \, m^2$, $0.9 \, e \, 32 \, ^{o}C$, respectivamente. Resposta: $19.5 \, W$ no verão e $210 \, W$ no inverno.

Exercício 6. Ar quente a $70\,^{\circ}C$ é soprado ao longo de uma superfície plana de $2\,m \times 6\,m$, a $30\,^{\circ}C$. Considerando que o coeficiente de transferência de calor por convecção é $41\,W/(m^2.K)$, determine a taxa de transferência de calor do ar para a placa, em kW. Resposta: $19.7\,kW$.

Condução

Exercício 7. O que é difusão? Dê exemplos de processos onde existe difusão.

Exercício 8. Considere um meio cuja equação de condução de calor na forma mais simples é

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t} \tag{1}$$

- (i) Qual o significado físico de α ?
- (ii) A transferência de calor é permanente ou transiente?
- (iii) A transferência de calor é uni, bi ou tridimensional?
- (iv) A condutividade térmica do meio é constante ou variável?

Exercício 9. A variação da temperatura em uma parede plana é dada por T(x) = 50x + 34, com x em m e T em $^{\circ}C$. Se a temperatura da superfície externa é $39^{\circ}C$ e o eixo x tem origem na superfície interna, qual é a espessura da parede? Resposta: $0,10 \, m$.

Exercício 10. Considere uma placa de metal de espessura $L=0.03\,m$ e área da base $1.2\,m^2$, com temperatura da superfície interna em x=0 de $T=74^{\circ}C$. A superfície externa está exposta ao ar ambiente com $T_{\infty}=23^{\circ}C$ e coeficiente de transferência de calor por convecção $h=12\,W/m^2$.°C. Sabendo que a condutividade térmica do metal é $k=32\,W/m^{\circ}C$, calcule a temperatura na superfície externa. Resposta: $73.4\,^{\circ}C$.

Exercício 11. Considere que a placa da base de um ferro de passar doméstico de 700 W possui espessura $L=0,4\,cm$, área da base $A=150\,cm^2$ e condutividade térmica $k=44\,W/m^\circ C$ (ver figura). A superfície interna da placa está sujeita a um fluxo de calor uniforme gerado pela resistência do ferro. Quando se alcançam condições de operação permanentes, a temperatura da superfície externa da placa, em x=L, mede $112\,^\circ C$. Desconsiderando qualquer perda de calor através da seção superior do ferro, (a) expresse a equação diferencial e as condições de contorno para condução de calor unidimensional permanente através da placa, (b) obtenha a relação para a variação da temperatura na placa da base do ferro resolvendo a equação diferencial, e (c) avalie a temperatura da superfície interna. Resposta: $116,2\,^\circ C$.

Exercício 12. Considere novamente o exercício 10. Agora a superfície externa da placa também está trocando calor por radiação com o ambiente. Sabendo que a emissividade da placa é $\epsilon = 0.7$ e que $T_{amb} = 25^{\circ}C$, determine a nova temperatura da superfície externa. Resposta: 73,2°C.

Condução: Resistência Térmica

Exercício 13. Uma parede de 3m de altura, 2m de largura (dimensão que entra no plano do papel) e 0,2m de espessura é composta de 3 materiais, como mostra a figura (fora de escala). Determine o valor de y sabendo que a taxa de condução de calor pela parede é de 2100 W e a queda de temperatura de uma extremidade à outra é de $20^{\circ}C$. A condutividade térmica de cada material é dada por (em $W/m.^{\circ}C$): $k_A = 15$, $k_B = 2,5$ e $k_C = 0,8$. Resposta: y = 0,92 m.

Exercício 14. Uma barra de $10\,cm$ de comprimento com uma seção transversal quadrada, como mostrado na figura, é construída por uma camada de cobre $(k=220\,W/m\cdot K)$ de $1\,cm$ de espessura e de uma camada de epóxi $(k=0.35\,W/m\cdot K)$ de $1\,cm$ de espessura. Calcular a taxa de transferência de calor sob uma força motriz térmica de $40\,^{\circ}C$, quando a direção de transferência de calor unidimensional permanente é (a) da frente para trás (isto é, ao longo do seu comprimento), (b) da esquerda para a direita e (c) de cima para baixo. Resposta: (a) $17.6\,W$ (b) $2.80\,W$ (c) $441\,W$.

Exercício 15. O que é resistência térmica de contato? A resistência térmica de contato é

maior em superfícies planas lisas ou ásperas? Por quê?

Condução Radial

Exercício 16. Vapor d'água a 220 °C escoa em um tubo de aço inoxidável $(k = 32 \, W/m \cdot {}^{\circ}C)$ com diâmetros interno e externo de 5 cm e 5,3 cm, respectivamente. O tubo é isolado por uma camada de 2,5 cm de espessura de lã de vidro $(k = 0,035 \, W/m \cdot {}^{\circ}C)$. Calor é trocado com o ar ambiente em volta, que está a 8 °C, por convecção, com um coeficiente de transferência de $10 \, W/m^2 \cdot {}^{\circ}C$. Sabendo que o coeficiente de transferência de calor por convecção dentro do tubo é de $60 \, W/m^2 \cdot {}^{\circ}C$, determine (a) a taxa de transferência de calor para o ambiente por metro de comprimento de tubo, (b) a queda de temperatura na parede do tubo e (c) a queda de temperatura no isolante. Resposta: (a) $61.7 \, W$ (b) $0.018 \, {}^{\circ}C$ (c) $186 \, {}^{\circ}C$.

Exercício 17. A superfície externa de um fio elétrico cilíndrico de 5 m de comprimento e 5 mm de diâmetro está a uma temperatura de $125^{\circ}C$. O fio é recoberto por um isolante plástico de 2 mm de espessura e condutividade térmica $k = 0.2 W/m^{\circ}C$. Esse sistema troca calor por convecção com o ar que o circunda. (a) Calcule a taxa de transferência de calor radial do centro do fio para o ar. (b) Considere agora que o isolante possui 4 mm de espessura. Calcule a nova taxa de transferência de calor. (c) A transferência aumentou ou diminuiu com o aumento da espessura do isolante? Isso faz sentido? Explique observando o comportamento das resistências de convecção e de condução em função da espessura do isolante.

Dados: coeficiente de transferência de calor por convecção com o ar $h=12\,W/m^2\,^\circ C$. Temperatura do ar $T_\infty=30\,^\circ C$. Desconsidere a troca de calor por radiação. Resposta: (a) 139 W (b) 169 W .

Exercício 18. Um reservatório <u>esférico</u> é usado para armazenar um material a alta temperatura. A parede desse reservatório é uma casca esférica feita por um material com condutividade térmica k. Na parte interna da parede, em $r = r_1$, a temperatura é T_1 . Na parte externa da parede, em $r = r_2$, a temperatura é T_2 . A equação diferencial que governa o comportamento da temperatura dentro da parede (em regime permanente e com simetria em relação ao ponto central) é dada por:

$$\frac{1}{r^2}\frac{d}{dr}\left(kr^2\frac{dT}{dr}\right) = 0 \ .$$

(a) Resolvendo a equação acima e utilizando as condições de contorno adequadas, mostre que

a temperatura dentro da parede, considerando k constante, é dada por:

$$T(r) = \frac{r_1 r_2}{r(r_2 - r_1)} (T_1 - T_2) + \frac{r_2 T_2 - r_1 T_1}{r_2 - r_1} .$$

(b) Determine a taxa de condução radial de calor pela parede. (A área de uma superfície esférica de raio $r \in 4\pi r^2$).

Radiação Térmica

Exercício 19. Considere as 3 superfícies retangulares abaixo, com a superfície 1 sendo perpendicular à superfície 2. Determine F_{12} , com $X_2 = 1,2m$, $X_3 = 1m$, Y = 2,8m e Z = 2,2m. Determine também F_{13} , F_{23} , F_{22} e F_{14} , onde a superfície 4 é a superfície formada pelas superfícies 2 e 3. Respostas: $F_{12} = 0,15$, $F_{14} = 0,22$, $F_{13} = 0,07$, $F_{23} = F_{22} = 0$.

Exercício 20. Considere dois discos circulares paralelos coaxiais de raios $r_1 = 25 \, cm$ e $r_2 = 35 \, cm$ separados por uma distância $L = 15 \, cm$. O disco 1 está a $400^{\circ}C$ e possui emissividade $\epsilon_1 = 0.8$ e o disco 2 está a $50^{\circ}C$ e possui emissividade $\epsilon_2 = 0.5$. Usando o gráfico para o fator de forma específico para esse caso e a relação de reciprocidade, determine os fatores de forma F_{12} e F_{21} . Em seguida calcule a taxa líquida de transferência de calor por radiação entre os discos 1 e 2. Quando a distância entre os discos L aumenta, a taxa de troca de calor aumenta ou diminui? Resposta: $1016 \, W$.

Exercício 21. Esta questão trata da transferência de calor por radiação em regime permanente entre uma esfera $(r_1 = 30 \, cm)$ e um disco circular $(r_2 = 120 \, cm)$, que estão separados por uma distância, centro a centro, de $h = 60 \, cm$ (ver figura). Quando a normal do centro do disco passa pelo centro da esfera, o fator de forma de radiação é dado por:

$$F_{12} = 0.5 \left\{ 1 - \left[1 + \left(\frac{r_2}{h} \right)^2 \right]^{-0.5} \right\} . \tag{2}$$

As temperaturas das superfícies do disco e da esfera são $700^{\circ}C$ e $100^{\circ}C$ e as suas emissividades são 0.5 e 0.9, respectivamente. Determine os fatores de forma F_{12} e F_{21} . Calcule a taxa

líquida de transferência de calor por radiação entre a esfera e o disco. Respostas: $F_{12}=0,276,$ $F_{21}=0,069,$ $\dot{Q}=1,4\times10^4\,W$.

