FONCTIONS ET MESURES

Soit (X, \mathcal{B}, μ) un espace mesuré et $f: X \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ une fonction mesurable. On suppose que $\mu(\{x \in X, f(x) > 0\}) > 0$. Prouver qu'il existe $\epsilon > 0$ tel que

$$\mu(\{x \in X, f(x) > \epsilon\}) > 0$$

On pose $E = \{x \in X, f(x) > 0\}$ et pour tout entier $n \ge 1$, on pose $E_n = \{x \in X, f(x) > \frac{1}{n}\}$. Alors $(E_n)_{n \ge 1}$ est une suite de parties mesurables de X et de plus on a $\bigcup_{n \ge 1} E_n = E$, il s'en suit que

$$\lim_{n \to \infty} \mu(E_n) = \mu(E) > 0$$

Donc, il existe un entier $n_0 \ge 1$ tel que $\mu(E_{n_0}) > 0$. On pose $\epsilon = 1/n_0$, il s'en suit qu'il existe $\epsilon > 0$ tel que

$$\mu(\{x \in X, f(x) > \epsilon\}) > 0$$