# Deep Residual Learning for Image Recognition

IEEE 2016

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun



### Abstract

- Deep neural network는 학습 진행이 어려움
- 해당 논문에서는 residual learning framework 제안해 학습 과정을 쉽게 만듦 이전에 나왔던 논문과는 달리 훨씬 깊은 네트워크를 사용한 것이 특징
- 결과
  - ImageNet에 대해 152 layer의 아주 깊은 residual net 평가 진행 이전 연구에서 나왔던 VGG 네트워크에 비해 더 깊지만 복잡도 더 낮음 -> 성능이 훨씬 좋아져 2015 ImageNet 분류 대회 1등
  - CIFAR-10에 대해서도 실험 진행 -> 성능 많이 개선됨



특징을 표현하는 깊이는 중요한 역할을 수행함
resNet은 기본적으로 훨씬 깊은 네트워크를 학습 가능하게 함

### Introduction

### 레이어를 깊게 쌓으면 좋은 학습이 가능한 것 아닌가?

레이어가 깊어짐에 따라 degradation problem이 발생할 수 있다고 주장

- = 레이어가 깊으면 accuracy 무조건 높아지는 것이 아님
  - 어느 정도 이상 높아지면 오히려 감소
  - 이러한 문제는 단순히 overfitting 때문에 발생하는 건 아님



Plain network에서 레이어 수만 늘리는 것은 Train, test error 둘 다 증가시킴

### Introduction

문제를 해결하기 위해 Residual function(잔차 함수)라는 개념 도입

#### Residual Learning



$$\mathcal{F} = W_2 \sigma(W_1 \mathbf{x})$$

H를 학습하기보다는 별도로 학습하기 쉬운 residual mapping를 정의해서 대신 학습 = 즉, 진짜 의도하는 H(x)가 아니라 F를 대신 학습

## Introduction

### Residual Learning

#### 장점

- 출력값에 x를 더하는 것이기 때문에 별도로 추가적인 파라미터 필요하지 않음
- 복잡도 더 증가하지 않음
- 구현 간단
- Resnet을 사용했을 때 학습 난이도가 쉬움
  - 깊이가 깊어질수록 높은 정확도 보임

### 3.1 Residual Learning



### 3.2 Identity Mapping by shortcuts

Residual Block

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + \mathbf{x}.$$

Biases 값은 고려하지 않음

Shortcut connection 이용할 땐 추가적인 파라미터 사용하지 않음 매개변수 수, 깊이, 폭, 계산 비용 등을 공평하게 비교했을 때도 더 우수한 결과를 보임

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + W_s \mathbf{x}.$$

X를 차원을 매핑 시켜줄 때만 사용

Input과 output이 서로 일치하지 않는다고 하면 Ws를 곱해줌으로써 디멘션 값을 매치시키는 것 F는 여러 개의 레이어가 될 수 있지만, 한 개의 레이어인 경우 장점을 얻기 어려움

#### 3.3 Network Architectures

1) Plain network

VGG 네트워크에서 제안된 기법에서 영감 얻음

3 \* 3 작은 필터 이용

Output feature map 사이즈가 같도록 만들기 위해 같은 수의 필터 사용

절반으로 줄어들면 필터 수를 2배로 늘림

이러한 방법으로 레이어 당 시간 복잡도를 보존할 수 있는 형태로 구성



논문에서의 모델은 VGG 네트워크와 비교했을 때 더 적은 파라미터를 사용하며, 복잡도는 낮음



#### 지능형 소프트웨어 융합 &AI 연구소

# Deep Residual Learning

#### 3.3 Network Architectures

- 2) Residual network
  - Residual block만 사용하는 형태로 네트워크를 바꾼 모델
  - VGG와 비슷하게 3 \* 3 작은 필터 이용
    - Convolution 필터를 2번씩 묶어 매번 residual function 형태로 학습 진행하도록
  - 점선으로 표시된 부분 -> input과 output의 dimension이 일치하지 않아 이를 맞추는 기술이 가미된 shortcut connection
  - Convolution layer를 2개씩 묶는 것 3번, 4, 6, 3번 반복



#### 3.3 Network Architectures

#### 2) Residual network

| layer name | output size | 18-layer                                                                           | 34-layer                                                                           | 50-layer                                                                                         | 101-layer                                                                                         | 152-layer                                                                                                  |
|------------|-------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| conv1      | 112×112     | 7×7, 64, stride 2                                                                  |                                                                                    |                                                                                                  |                                                                                                   |                                                                                                            |
|            |             | 3×3 max pool, stride 2                                                             |                                                                                    |                                                                                                  |                                                                                                   |                                                                                                            |
| conv2_x    | 56×56       | $\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$          | $\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$       | $\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$     | $\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$      | $\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$               |
| conv3_x    | 28×28       | $\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$ | $\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$ | $ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4 $ | $\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$    | $\left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 8$ |
| conv4_x    | 14×14       | $\left[\begin{array}{c} 3\times3, 256\\ 3\times3, 256 \end{array}\right]\times2$   | $\left[\begin{array}{c} 3\times3, 256\\ 3\times3, 256 \end{array}\right]\times6$   | $\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$  | $\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$  | $\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$           |
| conv5_x    | 7×7         | $\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$     | $\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$        | $\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$  | $ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $ | $\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$            |
|            | 1×1         | average pool, 1000-d fc, softmax                                                   |                                                                                    |                                                                                                  |                                                                                                   |                                                                                                            |
| FL         | OPs         | $1.8 \times 10^{9}$                                                                | $3.6 \times 10^{9}$                                                                | $3.8 \times 10^{9}$                                                                              | $7.6 \times 10^{9}$                                                                               | $11.3 \times 10^9$                                                                                         |

#### 지능형 소프트웨어 융합 &AI 연구소



### **ImageNet Classification**

1) Plain network

ImageNet 2012년도 데이터 세트 이용해 평가 진행



|           | plain | ResNet |
|-----------|-------|--------|
| 18 layers | 27.94 | 27.88  |
| 34 layers | 28.54 | 25.03  |

Plain 네트워크는 레이어 깊어질수록 정확도 감소 ResNet은 레이어 깊어질수록 정확도 증가

### **ImageNet Classification**

#### 2) Residual network



|           | plain | ResNet |
|-----------|-------|--------|
| 18 layers | 27.94 | 27.88  |
| 34 layers | 28.54 | 25.03  |

- · 더 깊은 레이어가 얕은 레이어에 비해 잘 동작함
- Training error 감소
- 일반화 성능 높아짐
- 수렴 속도 더 빠름

34-layer가 18-layer보다 2.8% 가량 우수한 성능 보임

### Deeper Bottleneck Architectures



18, 34 레이어에서 사용



50, 101, 152 레이어에서 사용

- 1\*1, 3\*3, 1\*1 순서로 구성
  - 1\*1 필터 256의 dimension을 64개의 dimension으로 차원을 축소
  - 3\*3 필터공간적인 특징을 추출
  - 1\*! 필터256개의 dimension으로 확장

### Comparisons with State-of-the-art Methods

Table 4

| method                     | top-1 err. | top-5 err         |
|----------------------------|------------|-------------------|
| VGG [40] (ILSVRC'14)       | -          | 8.43 <sup>†</sup> |
| GoogLeNet [43] (ILSVRC'14) | -          | 7.89              |
| VGG [40] (v5)              | 24.4       | 7.1               |
| PReLU-net [12]             | 21.59      | 5.71              |
| BN-inception [16]          | 21.99      | 5.81              |
| ResNet-34 B                | 21.84      | 5.71              |
| ResNet-34 C                | 21.53      | 5.60              |
| ResNet-50                  | 20.74      | 5.25              |
| ResNet-101                 | 19.87      | 4.60              |
| ResNet-152                 | 19.38      | 4.49              |

Table 5

| method                     | top-5 err. (test) |
|----------------------------|-------------------|
| VGG [40] (ILSVRC'14)       | 7.32              |
| GoogLeNet [43] (ILSVRC'14) | 6.66              |
| VGG [40] (v5)              | 6.8               |
| PReLU-net [12]             | 4.94              |
| BN-inception [16]          | 4.82              |
| ResNet (ILSVRC'15)         | 3.57              |

### CIFAR-10 and Analysis



| output map size | 32×32 | 16×16 | 8×8 |
|-----------------|-------|-------|-----|
| # layers        | 1+2n  | 2n    | 2n  |
| # filters       | 16    | 32    | 64  |

| me               | error (%) |          |                         |
|------------------|-----------|----------|-------------------------|
| Max              | 9.38      |          |                         |
| NII              | 8.81      |          |                         |
| DS               | 8.22      |          |                         |
|                  | # layers  | # params |                         |
| FitNet [34]      | 19        | 2.5M     | 8.39                    |
| Highway [41, 42] | 19        | 2.3M     | $7.54 (7.72 \pm 0.16)$  |
| Highway [41, 42] | 32        | 1.25M    | 8.80                    |
| ResNet           | 20        | 0.27M    | 8.75                    |
| ResNet           | 32        | 0.46M    | 7.51                    |
| ResNet           | 44        | 0.66M    | 7.17                    |
| ResNet           | 56        | 0.85M    | 6.97                    |
| ResNet           | 110       | 1.7M     | <b>6.43</b> (6.61±0.16) |
| ResNet           | 1202      | 19.4M    | 7.93                    |

### Analysis of Layer Responses



| training data | 07+12       | 07++12      |
|---------------|-------------|-------------|
| test data     | VOC 07 test | VOC 12 test |
| VGG-16        | 73.2        | 70.4        |
| ResNet-101    | 76.4        | 73.8        |