Семінар 8

Дискретна випадкова величина

 (Ω, U, P)

$$\xi(\omega)$$
: $\Omega \to X = \{x_1, x_2, \ldots\}$ при цьому $A_k = \{\omega : \xi(\omega) = x_k\} \in U$

$$\xi(\omega) = \sum_{k=1}^{+\infty} x_k \chi_{A_k}(\omega)$$

Закон розподілу визначається значеннями $x_1, x_2, ..., x_k, ...$, які приймає ξ , і ймовірностями $P\{\xi=x_k\}$ цих значень. Позначимо $P\{\xi=x_k\}=P(A_k)=p_k$. Тоді закон розподілу $P\{\xi\in B\}$ можна визначити за допомогою таблиці

Очевидно, що $p_k \ge 0$ і $\sum_{k=1}^{\infty} p_k = 1$.

Сума ряду

$$M\xi = \sum_{k=1}^{\infty} x_k P(\xi = x_i)$$

називається *математичним сподіванням*, якщо ряд збігається абсолютно.

Математичне сподівання $M\xi^n$ називається **моментом** n-го порядку випадкової величини ξ . **Абсолютним моментом** n-го порядку будемо називати $M | \xi |^n$. **Центральним моментом** n-го порядку і абсолютним центральним моментом n-го порядку називається відповідно $M(\xi - M\xi)^n$ і $M | \xi - M\xi |^n$.

Центральний момент другого порядку називається **дисперсією випадкової величини** і позначається $D\xi = M(\xi - M\xi)^2$.

$$D\xi = M\xi^2 - (M\xi)^2 \ge 0 \Rightarrow M\xi^2 \ge (M\xi)^2$$

Задача 1 Довести формулу $D\xi = M\xi^2 - (M\xi)^2$.

Розв'язок. За визначенням $D\xi = M(\xi - M\xi)^2 = M(\xi^2 - 2\xi M\xi + (M\xi)^2) =$

$$= M \xi^{2} - 2M \xi \cdot M \xi + (M \xi)^{2} = M \xi^{2} - (M \xi)^{2}$$

Задача 2. Нехай випадкова величина ξ має розподіл Пуассона $\xi \square P(\lambda)$,

$$\lambda > 0$$
, тобто $P(\xi = k) = \frac{\lambda^k e^{-\lambda}}{k!}$, $k = 0,1,\dots$ Знайти $M\xi$ та $D\xi$.

Розв'язок. Згідно з визначенням $M\xi = \sum_{k=0}^{+\infty} kP(\xi = k) = \sum_{k=0}^{+\infty} k \frac{\lambda^k e^{-\lambda}}{k!} =$

$$=\lambda e^{-\lambda} \sum_{k=1}^{+\infty} \frac{\lambda^{k-1}}{(k-1)!} = \left| k-1 = n \right| = \lambda e^{-\lambda} \sum_{n=0}^{+\infty} \frac{\lambda^n}{n!} = \lambda e^{-\lambda} e^{\lambda} = \lambda.$$

Для підрахунку дисперсії використаємо формулу: $D\xi = M\xi^2 - (M\xi)^2$.

$$\mathbf{M}\xi^{2} = \sum_{k=0}^{+\infty} k^{2} \frac{\lambda^{k} e^{-\lambda}}{k!} = \sum_{k=1}^{+\infty} \left\{ k \left(k - 1 \right) + k \right\} \frac{\lambda^{k} e^{-\lambda}}{k!} = \sum_{k=2}^{+\infty} k \left(k - 1 \right) \frac{\lambda^{k} e^{-\lambda}}{k!} + \sum_{k=1}^{+\infty} k \frac{\lambda^{k} e^{-\lambda}}{k!}.$$

Позаяк $\sum_{k=1}^{+\infty} k \frac{\lambda^k e^{-\lambda}}{k!} = \lambda$, знайдемо

$$\sum_{k=2}^{+\infty} k(k-1) \frac{\lambda^k e^{-\lambda}}{k!} = \lambda^2 e^{-\lambda} \sum_{k=2}^{+\infty} \frac{\lambda^{k-2}}{(k-2)!} = \lambda^2 e^{-\lambda} \sum_{n=0}^{+\infty} \frac{\lambda^n}{n!} = \lambda^2 e^{-\lambda} e^{\lambda} = \lambda^2.$$

Отже,
$$D\xi = M\xi^2 - (M\xi)^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$$

Задача 3. Нехай ξ — випадкова величина, яка набуває значень $0, \pm 1, \pm 2, ..., \pm n, ...$ з ймовірностями $\frac{1}{2n+1}$. Обчислити М ξ і D ξ .

Розв'зок.
$$M\xi = \sum_{k=-n}^{n} k \frac{1}{2n+1} = \frac{1}{2n+1} \sum_{k=-n}^{n} k = 0$$

Якщо $M\xi = 0$, тоді $D\xi = M\xi^2 - (M\xi)^2 = M\xi^2$

$$D\xi = M\xi^2 = \sum_{k=-n}^{n} k^2 \frac{1}{2n+1} = \frac{1}{2n+1} \sum_{k=-n}^{n} k^2 = \frac{1}{2n+1} 2 \sum_{k=1}^{n} k^2 = \frac{1}{2n+1} 2 \frac{n(n+1)(2n+1)}{6} = \frac{n(n+1)}{3}$$

Завдання для самостійного розгляду

Задача 1 Гральний кубик підкидають n раз. Нехай ξ – число появ одиниці. Знайти М ξ .

Задача 2 Гральний кубик підкидають до n-ої появи одиниці. Треба знайти математичне сподівання числа підкидань.

Задача 3 Випадкові величини ξ і η – незалежні і однаково розподілені за геометричним законом. Довести, що

$$P(\xi = k \mid \xi + \eta = n) = \frac{1}{n+1}, \quad k = 0,1,...,n.$$