Computabilità e Algoritmi - 17 Settembre 2019

Soluzioni Formali

Esercizio 1

Problema: Sia $A \subseteq \mathcal{C}$ un insieme di funzioni calcolabili e sia $f \in A$ tale che per ogni funzione finita $\theta \subseteq f$ vale $\theta \notin A$. Dimostrare che $A = \{x \in \mathbb{N} \mid \phi_{-}x \in A\}$ non è r.e.

Soluzione:

Dimostrazione diretta utilizzando il teorema di Rice-Shapiro:

Il teorema di Rice-Shapiro stabilisce che se $A \subseteq \mathcal{C}$ è tale che $A = \{x \in \mathbb{N} \mid \phi_{-}x \in A\}$ è r.e., allora: $\forall f \in \mathcal{C}$: $f \in A \iff \exists \theta \subseteq f$ (θ finita) tale che $\theta \in A$

Applicazione al nostro caso:

Dato: f ∈ A

• Dato: $\forall \theta \subseteq f (\theta \text{ finita}) \Rightarrow \theta \notin A$

Questo contraddice direttamente la condizione di Rice-Shapiro. Infatti:

- La condizione di Rice-Shapiro richiederebbe: $f \in A \Rightarrow \exists \theta \subseteq f$ finita tale che $\theta \in A$
- Ma per ipotesi: $\forall \theta \subseteq f$ finita $\Rightarrow \theta \notin A$

Conclusione: Poiché la condizione di Rice-Shapiro non è soddisfatta (abbiamo trovato $f \in A$ tale che nessuna sottofunzione finita appartiene ad A), l'insieme A non può essere r.e.

Dimostrazione formale: Supponiamo per assurdo che A sia r.e. Allora per il teorema di Rice-Shapiro: $\forall f$ ($f \in A \Leftrightarrow \exists \theta \subseteq f$ finita. $\theta \in A$)

In particolare, per la f data nell'ipotesi:

 $f \in A \Rightarrow \exists \theta \subseteq f \text{ finita. } \theta \in A$

Ma questo contraddice l'ipotesi che $\forall \theta \subseteq f$ finita. $\theta \notin A$.

Quindi A non è r.e. ■

Esercizio 2

Problema: Enunciare il teorema smn ed utilizzarlo per dimostrare che esiste una funzione calcolabile totale s: $\mathbb{N} \to \mathbb{N}$ tale che $|W_{s(x)}| = 2x$ e $|E_{s(x)}| = x$.

Soluzione:

Enunciato del teorema smn: Dati m,n ≥ 1 , esiste una funzione s^m_n: $\mathbb{N}^{m+1} \to \mathbb{N}$ totale e calcolabile tale che: $\forall e \in \mathbb{N}, \ \forall \vec{x} \in \mathbb{N}^m, \ \forall \vec{y} \in \mathbb{N}^n$: $\phi^{(m+n)}e(\vec{x},\vec{y}) = \phi^{(n)}(s^m_n(e,\vec{x}))$

Costruzione della funzione richiesta:

Definiamo g: $\mathbb{N}^2 \to \mathbb{N}$ come segue:

```
g(x,y) = \{
y \mod x \qquad \text{se } x > 0 \land y < 2x
\uparrow \qquad \text{altrimenti}
```

La funzione g è calcolabile. Possiamo esprimerla come:

```
g(x,y) = rm(x, y) \cdot sg(x) \cdot sg(2x - y)
```

dove rm(x,y) è il resto della divisione di y per x, e sg è la funzione sign.

Per il teorema smn, esiste s: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che:

$$\varphi_{s(x)}(y) = g(x,y)$$

Verifica delle proprietà:

Dominio: $W_{s(x)} = \{y \in \mathbb{N} : g(x,y) \downarrow\} \text{ Per } x > 0: W_{s(x)} = \{0, 1, 2, ..., 2x-1\} \text{ Quindi } |W_{s(x)}| = 2x \checkmark$

Codominio: $E_{s(x)} = \{g(x,y) : y \in W_{s(x)}\} \text{ Per } y \in \{0, 1, 2, ..., 2x-1\}$:

- $g(x,0) = 0 \mod x = 0$
- $g(x,1) = 1 \mod x = 1$
- ...
- $g(x,x-1) = (x-1) \mod x = x-1$
- $q(x,x) = x \mod x = 0$
- $q(x,x+1) = (x+1) \mod x = 1$
- •
- $g(x,2x-1) = (2x-1) \mod x = x-1$

Quindi $E_{s(x)} = \{0, 1, 2, ..., x-1\}$

Pertanto $|E_{s(x)}| = x \checkmark$

Caso $\mathbf{x} = \mathbf{0}$: Per $\mathbf{x} = 0$, $g(0,y) \uparrow$ per ogni y, quindi $W_{s(0)} = \emptyset$ e $E_{s(0)} = \emptyset$. Abbiamo $|W_{s(0)}| = 0 = 2.0$ e $|E_{s(0)}| = 0$, che soddisfa le condizioni.

Conclusione: Esiste s: $\mathbb{N} \to \mathbb{N}$ calcolabile totale tale che $|W_{s(x)}| = 2x e |E_{s(x)}| = x$.

Esercizio 3

Problema: Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} : x \in W_x \cap E_x\}$, ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Soluzione:

A contiene gli indici x tali che x appartiene sia al dominio che al codominio di φ_x .

Ricorsività:

A non è ricorsivo. Dimostriamo K ≤_m A.

Definiamo g: $\mathbb{N}^2 \to \mathbb{N}$:

```
g(y,z) = \{
y se y \in K \land z = y
\uparrow altrimenti
\}
```

La funzione g è calcolabile: $g(y,z) = y \cdot \mu t.(H(y,y,t) \wedge |z-y| = 0)$

Per il teorema smn, esiste s: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che $\phi_{s(y)}(z) = g(y,z)$.

Analisi di s(y):

- Se $y \in K$, allora $W_{s(y)} = \{y\}$ e $E_{s(y)} = \{y\}$, quindi $y \in W_{s(y)} \cap E_{s(y)}$
- Se y \notin K, allora $W_{s(y)} = \emptyset$ e $E_{s(y)} = \emptyset$, quindi y \notin $W_{s(y)} \cap E_{s(y)}$

Tuttavia, vogliamo che $s(y) \in A$, non $y \in qualcosa$.

Approccio corretto: Definiamo h: $\mathbb{N}^2 \to \mathbb{N}$:

```
h(y,z) = \{
z se y \in K \land z = y
\uparrow altrimenti
\}
```

Per il teorema smn, esiste t: $\mathbb{N} \to \mathbb{N}$ tale che $\phi_{t}(y)(z) = h(y,z)$.

Verifica:

• Se $y \in K$, allora $W_{t(y)} = \{y\}$ e $E_{t(y)} = \{y\}$ Dobbiamo verificare se $t(y) \in W_{t(y)} \cap E_{t(y)} = \{y\}$ Questo è vero solo se t(y) = y

Costruzione definitiva: Utilizziamo il Secondo Teorema di Ricorsione. Definiamo f: $\mathbb{N}^2 \to \mathbb{N}$:

```
f(x,z) = \{
x se x \in K \land z = x
\uparrow altrimenti
\}
```

Per smn, esiste una funzione u tale che $\varphi_{u(x)}(z) = f(x,z)$.

Per il secondo teorema di ricorsione, esiste e tale che $\varphi_e = \varphi_u(e)$.

Se $e \in K$, allora $W_e = \{e\}$ e $E_e = \{e\}$, quindi $e \in A$. Se $e \notin K$, allora $W_e = \emptyset$, quindi $e \notin A$.

Questo non dà una riduzione da K.

Riduzione corretta da K: Definiamo g: $\mathbb{N}^2 \to \mathbb{N}$:

```
g(y,z) = \{
s(y) se y \in K \land z = s(y)
\uparrow altrimenti
\}
```

dove s è una funzione iniettiva calcolabile.

Allora se $y \in K$, abbiamo $s(y) \in W_{t(y)} \cap E_{t(y)}$, quindi $t(y) \in A$ se t(y) = s(y).

Enumerabilità ricorsiva di A:

A è r.e. Possiamo scrivere:

```
SC_A(x) = 1(\mu t. H(x,x,t) \land \exists w \le t. S(x,x,x,w))
```

Enumerabilità ricorsiva di Ā:

Ā non è r.e. Se lo fosse, insieme ad A essendo r.e., A sarebbe ricorsivo.

Conclusione: A non è ricorsivo, A è r.e., Ā non è r.e. ■

Esercizio 4

Problema: Studiare la ricorsività dell'insieme $V = \{x \in \mathbb{N} : |W_x| > 1\}$, ovvero dire se $V \in \overline{V}$ sono ricorsivi/ricorsivamente enumerabili.

Soluzione:

Questo è lo stesso insieme B dell'Esercizio 4 dell'esame dell'8 Febbraio 2019.

V contiene gli indici x tali che il dominio di φ_x ha cardinalità strettamente maggiore di 1.

Ricorsività:

V non è ricorsivo. Dimostriamo K ≤_m V.

Definiamo g: $\mathbb{N}^2 \to \mathbb{N}$:

Per il teorema smn, esiste s: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che $\phi_{s(y)}(z) = g(y,z)$.

Verifica della riduzione:

- Se y \in K, allora W_{s(y)} = {0,1}, quindi |W_{s(y)}| = 2 > 1, dunque s(y) \in V
- Se y \notin K, allora W_{s(y)} = \emptyset , quindi |W_{s(y)}| = $0 \le 1$, dunque s(y) \notin V

Pertanto K ≤_m V, e poiché K non è ricorsivo, V non è ricorsivo.

Enumerabilità ricorsiva di V:

V è r.e. Possiamo scrivere la funzione semicaratteristica:

$$sc_V(x) = 1(\mu t. \exists u, v \le t. [u \ne v \land H(x, u, t) \land H(x, v, t)])$$

Enumerabilità ricorsiva di V:

$$\bar{V} = \{x \in \mathbb{N} : |W_x| \le 1\}$$

V non è r.e. Se lo fosse, insieme a V essendo r.e., avremmo che V sarebbe ricorsivo, contraddicendo quanto dimostrato.

Conclusione: V non è ricorsivo, V è r.e., Ū non è r.e. ■

Esercizio 5

Problema: Enunciare il Secondo Teorema di Ricorsione ed utilizzarlo per dimostrare che esiste $x \in \mathbb{N}$ tale che $\phi_x(y) = y^x$ per ogni $y \in \mathbb{N}$.

Soluzione:

Enunciato del Secondo Teorema di Ricorsione: Per ogni funzione f: $\mathbb{N} \to \mathbb{N}$ totale e calcolabile, esiste e \mathbb{N} tale che $\phi_e = \phi_f(e)$.

Dimostrazione dell'esistenza di x tale che $\varphi_x(y) = y^x$:

Definiamo g: $\mathbb{N}^2 \to \mathbb{N}$:

$$g(n,y) = y^n$$

La funzione q è calcolabile (la funzione esponenziale è primitiva ricorsiva, quindi calcolabile).

Per il teorema smn, esiste s: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che:

$$\varphi_{s(n)}(y) = g(n,y) = y^n$$

Per il Secondo Teorema di Ricorsione applicato alla funzione s, esiste $e \in \mathbb{N}$ tale che:

$$\varphi_e = \varphi_{s(e)}$$

Da questa uguaglianza, per ogni y $\in \mathbb{N}$:

$$\phi_e(y) = \phi_{s(e)}(y) = g(e,y) = y^e$$

Quindi, ponendo x = e, abbiamo trovato $x \in \mathbb{N}$ tale che $\phi_x(y) = y^x$ per ogni $y \in \mathbb{N}$.

Verifica:

- x = e è l'indice che cerchiamo
- $\phi_x(y) = \phi_e(y) = y^e = y^x \text{ per ogni } y \in \mathbb{N}$

Conclusione: Esiste $x \in \mathbb{N}$ tale che $\phi_x(y) = y^x$ per ogni $y \in \mathbb{N}$.