ARES Workshop - Ansys FEA

Cas Kent, Ben van der Veer, Hasan al Banna

Ansys

- Industry standard engineering
 simulation software
- Complete package solution
- Global leader in simulation
- Trusted partner of ARES LEAP
 Australia provide support

FOCUSED

This is all we do.

Leading product technologies in all physics areas

Largest development team focused on simulation

TRUSTED

96

of the top 100

FORTUNE 500 Industrials ISO 9001 and NQA-1 certified

PROVEN

Recognized as one of the world's MOST INNOVATIVE AND FASTEST-GROWING COMPANIES*

INDEPENDENT

Long-term financial stability CAD agnostic

nearest competitor

Ansys

- 3D Design tools (CAD)
- Simulation of various physical phenomena, including:
 - Fluid dynamics (CFD)
 - Structural mechanics (FEA)
 - Thermal
 - Electromagnetic
- Multiphysics simulations
- Model composite materials (carbon fibre)

Why FEA?

- Numerically solve solid mechanics problems (avoid a lot of algebra!)
- Detailed info about **stress & strain distributions**, and deformation of solid bodies
- Can also find **thermal** distributions

Why CFD?

- Verify structural integrity of components under expected loading conditions
- Determine the likely failure modes and locations
- Reduces effort and cost by avoiding physical experiments
- Improve accuracy of CFD analysis by including deflections from FEA

Onshape

- Online 3D modelling (CAD)
 software
- ARES uses this for all of our 3D
 design projects

Software you need

- Ansys **SpaceClaim** CAD software
 - Don't build your model in SpaceClaim!
 - Prepare the geometry for CFD
- Ansys Mechanical FEA software
 - Build the mesh for FEA
 - Apply loading conditions
 - Solve the FEA

/ Ansys Mechanical

Design Workflow

Design Workflow

Preparing Geometry

- **FEA can't handle** complex geometry
- Need to simplify the geometry for FEA
- Build a simplified model in Onshape
- Exporting might cause more issues, so you need to double check in Ansys

Cleanup - Onshape

Small faces, manufacturing features

Fillets, chamfers, rounds

Cleanup - Onshape

Relevant features?

Will this compromise strength?

Export Onshape

Cancel

×
0
▼
▼

Export Onshape

Export	×
File name View export rules	0
Simplified Model - Simplified Bulkhead	
Format	
ACIS	•
Options	
Download	•
	OK Cancel
Simplified Model - sat A	

Export Onshape to SpaceClaim

Export Onshape to SpaceClaim

Export Onshape to SpaceClaim

Fix Origin and Orientation

Want gravity (**z**) pointing down the rocket

Want the origin at the **tip of the nose** cone to match OpenRocket

Triple click to select the entire rocket

Want gravity (**z**) pointing down the rocket

Want the origin at the **tip of the nose** cone to match OpenRocket

Triple click to select the entire rocket

Fix Origin and Orientation

Fix Origin and Orientation

+ symmetric object + symmetric loading condition?

+ symmetric object + symmetric loading condition?

Symmetric object + symmetric loading condition?

Symmetric object + symmetric loading condition?

Symmetric object + symmetric loading condition?

Element Types

	Tetrahedral (tet)		Hexahedral (hex)	
Linear		4 faces 4 nodes		6 faces 8 nodes
Quadratic		4 faces 8 nodes		6 faces 20 nodes

Linear vs Quadratic Mesh

Linear elements suffer from **shear locking** - unable to represent pure bending

Linear will have **larger error**, especially for **curved geometry** and bending

Quadratic may **converge more quickly** as mesh size reduces

Quadratic more **computationally expensive** than linear

Quadratic **may be overkill** - if the variable in question is linear, use linear elements!

Hex vs. Tet Mesh

Hex can be **structured** (uniform), tet is unstructured.

Hex is generally **more accurate** than tet for the same cell count.

For complex geometry, hex mesh is **more** difficult to achieve than tet.

Hex mesh can be **quicker** to make.

Harder to get high quality hex mesh than tet.

Can also make hybrid meshes with both hex and tet.

Figure 1: a) Hex, and b) Tet meshes for a femur.

Hex vs. Tet Mesh

Hex can be **structured** (uniform), tet is unstructured.

Hex is generally **more accurate** than tet for the same cell count.

For complex geometry, hex mesh is **more** difficult to achieve than tet.

Hex mesh can be **quicker** to make.

Can also make hybrid meshes with both hex and tet.

Use Tet Mesh? Amount of decomposition required Hex Meshable: Hex-Meshable: Med but requires work/trade-offs Clean (no slivers, gaps, steps, fillets, etc.) Complexity: Dirty (slivers, gaps, steps, fillets, etc.) Topology cleanliness

Meshing Advice

Mesh should match the physics of the problem

Check the **internal mesh** quality (sections)

Convert long parts into **1D beam elements** and thin-walled parts into **surface elements**

Huge mesh with lots of elements isn't necessarily good

Look for symmetrical and **sweepable** surfaces

Remember **symmetry**, and consider **2D solution** for problems which allow it

Can use the **default settings** (without any local fine-tuning to match the part geometry)

This mesh is generally quite **non-uniform** or poorly well-aligned with the part and loading

Doesn't utilise sweeping

Doesn't align mesh with **loading direction**

Doesn't utilise sweeping

Doesn't align mesh with loading direction

Doesn't **split geometry** into sweepable parts

Doesn't utilise sweeping

Doesn't align mesh with loading direction

0.040 (m) 0.030

Doesn't **split geometry** into sweepable parts

Doesn't utilise hex mesh

Curvature sizing limits the angle between adjacent elements

Best used for curved surfaces

Growth rate determines transition to larger mesh away from curvature

Curvature sizing limits the angle between adjacent elements

Best used for curved surfaces

Growth rate determines transition to larger mesh away from curvature

Proximity sizing ensures a minimum number of elements across thin faces/narrow gaps

Note this does not apply to the curved surface

Sizing			
Use Adaptive Sizing	No		
Growth Rate	Default (1.85)		
Max Size	Default (16.0 mm)		
Mesh Defeaturing	No		
Capture Curvature	Yes	-	
Curvature Min Size	Default (8.e-002 mm)		
Curvature Normal Angle	Default (70.395°)		
Capture Proximity	Yes		
Proximity Min Size	4.0 mm		
Num Cells Across Gap	Default (3)		
Proximity Size Function Sources	Faces and Edges		

Defeaturing

Defeaturing ignores features below a certain size

Default feature size is half the minimum **local** element size

In areas of fine local mesh, features are kept

In areas of coarse local mesh, features are omitted

Defeaturing

Defeaturing ignores features below a certain size

Default feature size is half the minimum **local** element size

In areas of fine local mesh, features are kept

In areas of coarse local mesh, features are omitted

Midsurfacing (Shell Meshes)

3D meshing needs uniform elements across each feature (ideally **3-4 elements across**)

Geometry with very thin shells → huge number of tiny elements required for 3D mesh

Modelling thin shells as 3D mesh actually leads to **large errors** in stress, deformation etc.

Much cheaper, **faster** (and more accurate) to model thin shells as **2D elements**

SpaceClaim calls this "midsurfacing"

Then use the **extend tool** to meet the faces

Image source: Ozen Engineering: Automation with the Flexibility to Customize ozeninc.com/automation-wth-the-flexibility/

Midsurfacing (Shell Meshes)

3D meshing needs uniform elements across each feature (ideally **3-4 elements across**)

Geometry with very thin shells → huge number of tiny elements required for 3D mesh

Modelling thin shells as 3D mesh actually leads to **large errors** in stress, deformation etc.

Much cheaper, **faster** (and more **accurate**) to model thin shells as **2D elements**

SpaceClaim calls this "midsurfacing"

Then use the **extend tool** to meet the faces

Image source: Ozen Engineering: Automation with the Flexibility to Customize ozeninc.com/automation-wth-the-flexibility/

Midsurfacing (Shell Meshes)

3D meshing needs uniform elements across each feature (ideally **3-4 elements across**)

Geometry with very thin shells → huge number of tiny elements required for 3D mesh

Modelling thin shells as 3D mesh actually leads to **large errors** in stress, deformation etc.

Much cheaper, **faster** (and more accurate) to model thin shells as **2D elements**

SpaceClaim calls this "midsurfacing"

Then use the **extend tool** to meet the faces

Image source: Ansys SpaceClaim Online Help http://help.spaceclaim.com/2015.0.0/en/Content/Extend.htm

Beam Extraction

Beams FEA Guide (courtesy Leap Australia)

Trying to model long, thin beams as a solid 3D mesh is undesirable:

- Requires a tiny mesh with many elements. This means huge solving time
- Solid mesh gives massive FEA error for very long and thin beams

Much more efficient to model beams as **1D objects** which include profile and thickness as internal **parameters**

- More accurate
- Faster solving, meshing and post-processing

Image source: LEAP Australia: Analysing Large Fabricated Structures finiteelementanalysis.com.au/featured/ analysing-large-fabricated-structures/

Beam Extraction

Ansys provides **Beam Extraction** tools

Sharing Topology

For designs with multiple parts, it's best to **share** any contacting surfaces

When two parts don't share the contacting faces, the mesh will be **discontinuous**

Sharing Topology

For designs with multiple parts, it's best to **share** any contacting surfaces

When two parts don't share the contacting faces, the **mesh will be discontinuous**

When the parts share surfaces, the **mesh** will be continuous and the shared surface will be an **internal** surface

This is called "conformally meshed"

Next week - topic

See you next week!:)

