Week 10: Evaluation

- This assignment is due on 6th January, 2015 (13:30)
- You can discuss the problems with other groups of this course or browse the Internet to get help. However, copy and paste is cheating.
- There are 13 weekly exercises in total. In each one of them, all assignments sum up to 20 points. You need to achieve at least 80% of all assignments during the course in order to participate in the final exam. Hence, you need to achieve at least 208 points in total (13*20*0.8=208).
- Submission at

https://www.dcl.hpi.uni-potsdam.de/submit

- only zip files
- one zip file per group per week (week10.zip)
- put your names on each sheet in your pdf file

Assignment 1: Test Collections

a) Find three test collections used for information retrieval evaluation in the literature not presented in the lecture and describe them (number of documents, number of queries, how relevance was assessed)
4 P

Assignment 2: Measures

For a given query and a collection of 100 Web pages (which contains 40 relevant pages), a search engine produces the following ranking:

- 1 relevant
- 2 unrelevant
- 3 relevant
- 4 relevant
- 5 unrelevant
- 6 unrelevant
- 7 relevant
- 8 unrelevant
- 9 relevant
- 10 relevant

Compute the following evaluation measures:

a)	Precision and recall	3 1
b)	Precision at 7 and recall at 7	3 I
c)	MAP	3 I
d)	NDCG (assume binary gain value (relevant/non-relevant))	3 I

Assignment 3: (Programming) Evaluation

This week we will implement an evaluation algorithm based on the ranking of the Google Patent Search Engine (google.com/patents).

- Download the latest version of the Java template code from the lecture's resources page. There is a new file called *WebFile* to get the Google ranking results for a given query. The method to get the Google ranking is called <code>getGoldRanking(String query)</code>. You will use this ranking to compute the NDCG metric.
- Assume the best result in the gold ranking has a gain value of 10, the second and third best 9, ..., the 50th best a gain value of 1. We assume an exponential decay of the gain value: $gain(rank) = 1 + floor(10 * 0.5^{0.1*rank})$.
- Override abstract Double computeNdcg (ArrayList<String> goldRanking , ArrayList<String> ranking, int p) to compute NDCG for a given goldRanking from Google and your ranking at a position p in the rank.
- a) Execute the below queries using as *topK* the value of 5. Print the titles, snippets and the NDCG values for the patents that match the queries. (Note: if the query doesn't contain the symbol #, then your pseudo-relevance feedback method should be disabled)

• "add-on module"	1 I
• "digital signature"	1 I
• "data processing"	1 I
• ""a scanning""	1 I