```
In []: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as px
%matplotlib inline

In []: pd.set_option('display.max_rows', 10)
pd.options.display.max_columns = 100
pd.set_option("display.precision", 2)
```

Data Loading and cleaning

Initial Analysis of the Datasets

1. Income inequality

```
In []:
        income = pd.read_csv('../CSV/income_per_person_gdppercapita_ppp_inflation_ac
        print("number of rows: ", income.shape[0])
In [ ]:
         print("number of columns: {}".format(income.shape[1]))
         print("number of duplicates: {}".format(income.duplicated().sum()))
         print("datatypes:\n")
         print(income.dtypes)
         income.head(3)
        number of rows: 193
        number of columns: 242
        number of duplicates: 0
        datatypes:
        country
                    object
         1800
                     int64
         1801
                     int64
        1802
                     int64
        1803
                     int64
                     . . .
        2036
                     int64
        2037
                     int64
        2038
                     int64
        2039
                     int64
        2040
                     int64
        Length: 242, dtype: object
Out[]:
              country 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
         0 Afghanistan
                       603
                             603
                                   603
                                        603
                                              603
                                                    603
                                                          603
                                                               603
                                                                     603
                                                                           603
                                                                                 604
                                                                                      604
         1
               Albania
                        667
                             667
                                   667
                                         667
                                              667
                                                    668
                                                          668
                                                                668
                                                                     668
                                                                           668
                                                                                 668
                                                                                      668
               Algeria
                        715
                             716
                                   717
                                         718
                                               719
                                                    720
                                                          721
                                                                722
                                                                     723
                                                                           724
                                                                                 725
                                                                                      726
        3 rows × 242 columns
```

The results below show that there no nulls.

```
income null = income.isnull().sum()/income.shape[0]
In [ ]:
         income_null.to_frame().transpose()
            country 1800 1801 1802 1803 1804 1805 1806 1807
                                                                   1808
                                                                         1809
                                                                               1810
                                                                                     1811
Out[]:
         0
                0.0
                      0.0
                            0.0
                                  0.0
                                       0.0
                                              0.0
                                                    0.0
                                                          0.0
                                                               0.0
                                                                      0.0
                                                                            0.0
                                                                                 0.0
                                                                                       0.0
        1 rows × 242 columns
```

2. Tax Revenue as a Percent of GDP

```
tax = pd.read_csv('../CSV/tax_revenue_percent_of_gdp.csv')
         print("number of rows: ", tax.shape[0])
         print("number of columns: {}".format(tax.shape[1]))
         print("number of duplicates: {}".format(tax.duplicated().sum()))
         print("datatypes:\n")
         print(tax.dtypes)
         print("\nSample:")
         tax.head(3)
        number of rows: 161
        number of columns: 47
        number of duplicates: 0
        datatypes:
                     object
        country
                    float64
        1972
                    float64
        1973
        1974
                    float64
        1975
                    float64
                     . . .
        2013
                    float64
         2014
                    float64
        2015
                    float64
                    float64
        2016
                    float64
        2017
        Length: 47, dtype: object
        Sample:
              country 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
Out[]:
         O Afghanistan
                       NaN
                            NaN
                                  NaN
                                       NaN
                                             NaN
                                                  NaN
                                                        NaN
                                                              NaN
                                                                   NaN
                                                                         NaN
                                                                               NaN
                                                                                    NaN
         1
               Albania
                       NaN
                            NaN
                                  NaN
                                       NaN
                                             NaN
                                                   NaN
                                                        NaN
                                                              NaN
                                                                   NaN
                                                                         NaN
                                                                               NaN
                                                                                     NaN
         2
               Algeria
                       NaN
                            NaN
                                  NaN
                                       NaN
                                             NaN
                                                  NaN
                                                        NaN
                                                              NaN
                                                                   NaN
                                                                         NaN
                                                                               NaN
                                                                                    NaN
```

An initial analysis revealed that about half the years with > 0.50 missing values. See below:

```
In []: tax_null = tax.isnull().sum()/tax.shape[0]
   tax_null.to_frame().transpose()
```

country 1972 1973 1974 1975 1976 1977 1978 Out[]: 1979 1980 1981 1982 1983 0 0.0 0.76 0.72 0.72 0.71 0.71 0.7 0.7 0.68 0.68 0.7 0.69 0 0.7

3. Gini dataset

```
gini = pd.read_csv('../CSV/gini.csv')
         print("number of rows: ", gini.shape[0])
In []:
         print("number of columns: {}".format(gini.shape[1]))
         print("number of duplicates: {}".format(gini.duplicated().sum()))
         print("datatypes:\n")
         print(gini.dtypes)
         print("\nSample:")
         gini.head(3)
         number of rows: 195
         number of columns: 242
         number of duplicates: 0
         datatypes:
         country
                      object
                     float64
         1800
                     float64
         1801
                     float64
         1802
         1803
                     float64
                      . . .
         2036
                     float64
         2037
                     float64
                     float64
         2038
         2039
                     float64
         2040
                     float64
         Length: 242, dtype: object
         Sample:
Out[]:
               country 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
                        30.5
                             30.5
                                    30.5
                                         30.5
                                                30.5
                                                      30.5
                                                           30.5
                                                                 30.5
                                                                       30.5
                                                                              30.5
         0
            Afghanistan
                                                                                   30.5
                                                                                        30.5
         1
                Albania
                        38.9
                             38.9
                                   38.9
                                         38.9
                                                38.9
                                                      38.9
                                                           38.9
                                                                 38.9
                                                                       38.9
                                                                              38.9
                                                                                   38.9
                                                                                        38.9
         2
                Algeria
                        56.2
                             56.2
                                   56.2
                                         56.2
                                                56.2
                                                     56.2
                                                           56.2
                                                                 56.2
                                                                       56.2
                                                                              56.2
                                                                                   56.2
                                                                                       56.2
        3 rows × 242 columns
```

The results below show that there were no nulls in the dataset.

```
In [ ]: gini_null = gini.isnull().sum()/gini.shape[0]
    gini_null.to_frame().transpose()
```

Out[]:		country	1800	1801	1802	1803	1804	1805	1806	1807	1808	1809	1810	1811	18
	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	1 rov	vs × 242	2 colum	nns											

4. Investment Percent of GDP

Below are results of an initial analysis:

```
invest = pd.read csv('../CSV/investments percent of qdp.csv')
In [ ]:
In []:
         print("number of rows: ", invest.shape[0])
         print("number of columns: {}".format(invest.shape[1]))
         print("number of duplicates: {}".format(invest.duplicated().sum()))
         print("datatypes:\n")
         print(invest.dtypes)
         print("\nSample:")
         invest.head(3)
         number of rows:
                          177
         number of columns: 59
         number of duplicates: 0
         datatypes:
         country
                      object
         1960
                     float64
         1961
                     float64
         1962
                     float64
         1963
                     float64
                      . . .
                     float64
         2013
         2014
                     float64
         2015
                     float64
                     float64
         2016
         2017
                     float64
         Length: 59, dtype: object
         Sample:
                                                   1965
                                                         1966
Out[]:
               country 1960
                            1961 1962 1963
                                              1964
                                                                 1967
                                                                      1968
                                                                             1969
                                                                                   1970
                                                                                          19
            Afghanistan
                                         14.2
                        16.1
                             16.6
                                    19.1
                                               13.9
                                                      11.3
                                                           8.41
                                                                  5.18
                                                                        6.47
                                                                              6.47
                                                                                    5.46
                                                                                          5.
               Albania
                        NaN
                             NaN
                                   NaN
                                         NaN
                                               NaN
                                                     NaN
                                                           NaN
                                                                  NaN
                                                                        NaN
                                                                              NaN
                                                                                    NaN
                                                                                          Ν
         2
                        42.2
                             47.2
                                   35.4
                                         28.9
                                                21.8
                                                     22.6
                                                          17.30
                                                                23.40
                                                                      27.90
                                                                            32.40
                                                                                   36.60
                Algeria
                                                                                         35.
         invest_null = invest.isnull().sum()/invest.shape[0]
         invest_null.to_frame().transpose()
Out[]:
            country 1960 1961 1962 1963 1964
                                                 1965
                                                       1966
                                                             1967
                                                                   1968
                                                                         1969
                                                                               1970
                                                                                     1971
         0
                     0.63 0.63
                                      0.63
                                                  0.54
                                                                    0.51
                0.0
                                0.63
                                            0.62
                                                        0.53
                                                              0.51
                                                                           0.51
                                                                                0.44
                                                                                     0.44
```

Below are the results of the initial analysis:

```
demo = pd.read_csv('../CSV/demox_eiu.csv')
In [ ]:
         print("number of rows: ", demo.shape[0])
In [ ]:
         print("number of columns: {}".format(demo.shape[1]))
         print("number of duplicates: {}".format(demo.duplicated().sum()))
         print("datatypes:\n")
         print(demo.dtypes)
         print("\nSample:")
         demo.head(3)
         number of rows: 164
         number of columns: 14
         number of duplicates: 0
         datatypes:
         country
                      object
         2006
                     float64
         2007
                     float64
         2008
                     float64
         2009
                     float64
                      . . .
         2014
                     float64
         2015
                     float64
         2016
                     float64
                     float64
         2017
         2018
                     float64
         Length: 14, dtype: object
         Sample:
                       2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 201
Out[]:
               country
         O Afghanistan
                        30.6
                              30.4
                                     30.2
                                           27.5
                                                 24.8
                                                       24.8
                                                             24.8
                                                                   24.8
                                                                         27.7
                                                                               27.7
                                                                                     25.5
                                                                                          25.
                Albania
                        59.1
                               59.1
                                     59.1
                                           58.9
                                                 58.6
                                                       58.1
                                                             56.7
                                                                   56.7
                                                                         56.7
                                                                               59.1
                                                                                     59.1
                                                                                          59.
         2
                Algeria
                         31.7
                              32.5
                                     33.2
                                           33.8
                                                 34.4
                                                      34.4
                                                             38.3
                                                                   38.3
                                                                        38.3
                                                                               39.5
                                                                                     35.6
                                                                                          35.
```

The results below show that there were no nulls in the dataset.

```
demo null = demo.isnull().sum()/demo.shape[0]
         demo_null.to_frame().transpose()
            country 2006 2007 2008 2009 2010 2011 2012 2013 2014
                                                                         2015
                                                                               2016 2017
Out[]:
         0
                0.0
                      0.0
                            0.0
                                  0.0
                                        0.0
                                              0.0
                                                    0.0
                                                          0.0
                                                               0.0
                                                                     0.0
                                                                           0.0
                                                                                 0.0
                                                                                       0.0
```

Because of the results below, the years with the lowest null value percentage were in the 10 year range from 2006-2016. As a result, this yearly range was selected for the rest of the datasets.

Slicing and Reorganizing the Datasets

Income Per Person (GDP per Capita)

In []:	<pre>: income_last_10 = income.iloc[:, np.r_[:1, 207:218]] income_last_10</pre>											
Out[]:		country	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
	0	Afghanistan	1120	1250	1270	1500	1670	1630	1770	1810	1800	1770
	1	Albania	7910	8450	9160	9530	9930	10200	10400	10500	10700	11000
	2	Algeria	12400	12600	12700	12700	12900	13000	13200	13300	13500	13800
	3	Andorra	42700	43400	41400	41700	39000	42000	41900	43700	44900	46600
	4	Angola	5500	6040	6470	6290	6360	6350	6650	6730	6810	6650
	•••											
	188	Venezuela	16400	17600	18200	17400	16900	17300	18000	18000	17100	15600
	189	Vietnam	3630	3850	4030	4210	4430	4660	4860	5070	5310	5610
	190	Yemen	4270	4290	4320	4360	4570	3880	3860	3940	3830	3110
	191	Zambia	2650	2800	2930	3120	3340	3420	3570	3630	3690	3680
	192	Zimbabwe	1890	1810	1480	1630	1930	2170	2490	2490	2510	2510
	193 r	ows × 12 col	umns									
In []:		ome_last_10 ome_last_10									ame='ye	ar', \
In []:	inco	ome_last_10	.head(3)								
Out[]:		country	year	income_	_perpei	rson						
	0	Afghanistan	2006			1120						
	193	Afghanistan	2007		1	250						
	386	Afghanistan	2008		,	1270						
	Inve	estment Pe	rcent (of GDP								
In []:	inve	est_last_10	= inv	est.il	oc[:, r	np.r_[1, 47:	58]]				

```
In []: invest_last_10 = invest.iloc[:, np.r_[:1, 47:58]]
   invest_last_10 = invest_last_10.melt(id_vars=['country'], var_name='year', va
```

Out[]:		country	year	invest_%_gdp
	0	Afghanistan	2006	23.4
	177	Afghanistan	2007	19.9
	354	Afghanistan	2008	18.9

Tax Revenue Percent of GDP

```
In []: tax_last_10 = tax.iloc[:, np.r_[:1, 35:46]]
   tax_last_10 = tax_last_10.melt(id_vars=['country'], var_name='year', value_r
   tax_last_10.sort_values(['country', 'year'], inplace=True)
   tax_last_10.head(3)
```

Out []: country year tax_%_gdp 0 Afghanistan 2006 6.88 161 Afghanistan 2007 5.23 322 Afghanistan 2008 6.04

Gini Index

```
In []: gini_last_10 = gini.iloc[:, np.r_[:1, 207:218]]
   gini_last_10 = gini_last_10.melt(id_vars=['country'], var_name='year', value
   gini_last_10.sort_values(by=['country', 'year'], inplace=True)
   gini_last_10.head(3)
```

Out[]:		country	year	gini_index
		0	Afghanistan	2006	36.8
		195	Afghanistan	2007	36.8
		390	Afghanistan	2008	36.8

EIU Democracy Index

```
In []: demo_last_10 = demo.iloc[:, :-2]
    demo_last_10 = demo_last_10.melt(id_vars=['country'], var_name='year', value
    demo_last_10.sort_values(['country', 'year'], inplace=True)
    demo_last_10.head(3)
```

```
        Out []:
        country
        year
        demox_eiu

        0
        Afghanistan
        2006
        30.6

        164
        Afghanistan
        2007
        30.4

        328
        Afghanistan
        2008
        30.2
```

Merging the Datasets

```
In []: combined = demo_last_10.merge(income_last_10, left_on=['country', 'year'], i
    combined = combined.merge(invest_last_10, left_on=['country', 'year'], right
    combined = combined.merge(tax_last_10, left_on=['country', 'year'], right_or
    combined = combined.merge(gini_last_10, left_on=['country', 'year'], right_or
    combined
```

Out[]

:		country	year	demox_eiu	income_per_person	invest_%_gdp	tax_%_gdp	gini_ir
	0	Afghanistan	2006	30.6	1120	23.4	6.88	
	1	Afghanistan	2007	30.4	1250	19.9	5.23	
	2	Afghanistan	2008	30.2	1270	18.9	6.04	
	3	Afghanistan	2009	27.5	1500	17.9	8.44	
	4	Afghanistan	2010	24.8	1670	17.9	9.12	
	•••							
	1524	Zimbabwe	2012	26.7	2490	11.8	21.40	
	1525	Zimbabwe	2013	26.7	2490	11.4	NaN	
	1526	Zimbabwe	2014	27.8	2510	11.8	NaN	
	1527	Zimbabwe	2015	30.5	2510	12.3	NaN	
	1528	Zimbabwe	2016	30.5	2490	12.2	NaN	

1529 rows × 7 columns

```
In [ ]: cont = pd.read_csv('../CSV/continent_country.csv')
    cont
```

country	continent		ut[]:
Congo, Dem. Rep.	Africa	0	
Congo, Rep.	Africa	1	
Algeria	Africa	2	
Angola	Africa	3	
Benin	Africa	4	
		•••	
Ukraine	Europe	165	
United Kingdom	Europe	166	
Australia	Oceania	167	
New Zealand	Oceania	168	
country	continent	169	

170 rows × 2 columns

Matching Country with Continent

In this step, we match each country with its continent. This will enable analysis at the continent level for broader trend detection.

```
In [ ]: combined_final = cont.merge(combined, left_on=['country'], right_on=['country']
```

Out[]:		continent	country	year	demox_eiu	income_per_person	invest_%_gdp	tax_%_gdp
	0	Africa	Congo, Dem. Rep.	2006	27.6	605	14.6	6.83
	1	Africa	Congo, Dem. Rep.	2007	25.2	623	13.7	6.99
	2	Africa	Congo, Dem. Rep.	2008	22.8	640	10.9	8.97
	3	Africa	Congo, Dem. Rep.	2009	22.1	637	14.6	7.89
	4	Africa	Congo, Dem. Rep.	2010	21.5	660	28.8	8.35
	•••							•••
	1524	Oceania	New Zealand	2012	92.6	33300	20.9	26.80
	1525	Oceania	New Zealand	2013	92.6	33900	22.0	26.60
	1526	Oceania	New Zealand	2014	92.6	34600	22.9	26.80
	1527	Oceania	New Zealand	2015	92.6	35200	23.4	27.40
	1528	Oceania	New Zealand	2016	92.6	35700	24.4	27.20
	1529 r	ows × 8 co	lumns					

Data Cleaning

Below are the steps taken to ensure quality of the dataset:

Missing Values

Below are is a summary of missing values (nulls) in the dataset:

One option for handling the missing 'tax_%_gdp' values would be to replace them with the country's mean. However, some of the countries have all nulls and some have mostly nulls for this column.

A second option is to drop the rows with nulls. In the interest of simplicity, we will use this option.

```
combined_final.dropna(inplace=True)
In [ ]:
         combined_final.isna().sum()
                               0
        continent
Out[]:
                               0
        country
                               0
        year
         income_per_person
                               0
         tax_%_gdp
                               0
        gini_index
                               0
        dtype: int64
```

Duplicates

There are no duplicates in the dataset:

```
In []: combined_final.duplicated().sum()
Out[]: 0
```

Descriptive Statistics

Below are descriptive statistics of the dataset. A review of the values indicates that the min, max and mean values appear to be reasonable.

```
combined_final.describe()
In [ ]:
Out[]:
                 demox_eiu income_per_person invest_%_gdp tax_%_gdp
                                                                               gini_index
          count
                     1529.00
                                         1529.00
                                                         1498.00
                                                                      1244.00
                                                                                 1529.00
                       58.54
                                        18514.42
                                                           24.42
                                                                        16.79
                                                                                   38.46
          mean
            std
                       21.15
                                        19857.67
                                                            8.43
                                                                         7.65
                                                                                     8.19
            min
                       14.30
                                          605.00
                                                            0.00
                                                                         0.04
                                                                                   24.40
           25%
                       39.50
                                         4160.00
                                                           19.40
                                                                        12.40
                                                                                   32.40
           50%
                       61.50
                                        11400.00
                                                           23.20
                                                                        15.90
                                                                                    37.10
           75%
                       76.10
                                        27500.00
                                                           27.90
                                                                                   42.80
                                                                        21.32
            max
                       99.30
                                       124000.00
                                                           70.70
                                                                        62.90
                                                                                   63.90
```

Save the Cleaned Dataset

```
In [ ]: combined_final.to_csv('combined_final_last_10_years.csv', index=False)
```

Exploratory Data Analysis

Research Question 1 - Is Income Inequality Getting Worse or Better in the Last 10 Years?

Better means the Gini Index is going down.

Global Gini Mean By Year

```
In []: columns = ['year', 'gini_index']
  gini = combined_final[columns]
  gini
```

```
year gini_index
Out[]:
             0 2006
                           42.2
             1 2007
                           42.1
             2 2008
                           42.1
             3 2009
                           42.1
             4 2010
                           42.1
                            • • •
         1546
                2012
                           33.5
         1547 2013
                           34.0
         1548 2014
                           34.0
         1549 2015
                           34.5
         1550 2016
                           34.8
```

1259 rows × 2 columns

```
gini_annual_average = gini.groupby('year')['gini_index'].mean()
        gini_annual_average
        year
Out[]:
        2006
                 38.98
        2007
                 38.75
        2008
                 38.63
        2009
                 38.61
        2010
                 38.26
        2012
                 38.02
        2013
                 37.48
                 37.40
        2014
        2015
                 37.47
        2016
                 37.37
        Name: gini_index, Length: 11, dtype: float64
```

As the plot below shows, the mean global gini index has been going down over the last 10 years, meaning global income inequality is improving.

```
In []: plt.plot(gini_annual_average.index, gini_annual_average)
  plt.title('Mean Global Gini Index by Year')
  plt.xlabel('Year')
  plt.ylabel('Mean Global Gini Index');
```

Mean Global Gini Index by Year

Mean Global Gini Index by Continent:

```
In []: columns = ['year', 'continent', 'gini_index']
   gini = combined_final[columns]
   gini
```

Out[]:		year	continent	gini_index
	0	2006	Africa	42.2
	1	2007	Africa	42.1
	2	2008	Africa	42.1
	3	2009	Africa	42.1
	4	2010	Africa	42.1
	•••	•••		
	1546	2012	Oceania	33.5
	1547	2013	Oceania	34.0
	1548	2014	Oceania	34.0
	1549	2015	Oceania	34.5
	1550	2016	Oceania	34.8

1259 rows × 3 columns

```
In [ ]: gini_cont_average = gini.groupby(['year', 'continent'])['gini_index'].mean()
gini_cont_average
```

```
continent
        year
Out[]:
        2006
               Africa
                            43.52
               Americas
                            48.70
               Asia
                             38.13
                             31.73
               Europe
               Oceania
                            33.75
                            46.67
        2016 Africa
               Americas
                            44.81
               Asia
                             35.52
                            31.50
               Europe
                            33.55
               Oceania
        Name: gini_index, Length: 55, dtype: float64
```

The chart below reveals that, on a continent basis, all were either declining or mostly flat, except for Africa.

Mean Global Gini Index by Continent by Year


```
In []: columns = ['year', 'continent', 'country', 'gini_index']
   gini = combined_final[columns]
   gini
```

	year	continent	country	gini_index
0	2006	Africa	Congo, Dem. Rep.	42.2
1	2007	Africa	Congo, Dem. Rep.	42.1
2	2008	Africa	Congo, Dem. Rep.	42.1
3	2009	Africa	Congo, Dem. Rep.	42.1
4	2010	Africa	Congo, Dem. Rep.	42.1
•••				
1546	2012	Oceania	New Zealand	33.5
1547	2013	Oceania	New Zealand	34.0
1548	2014	Oceania	New Zealand	34.0
1549	2015	Oceania	New Zealand	34.5
1550	2016	Oceania	New Zealand	34.8

1259 rows × 4 columns

Research Question 2 - What Top 10 Countries Have the Lowest and Highest Income Inequality?

Lowest

Out[]:

Overall, most of the countries with the lowest income inequality are in Europe.

In []:	gini.groupby(['country	', 'contin	nent'])['gini_index'].mean().to_frame().sor
Out[]:			gini_index	
	country	continent		
	Slovenia	Europe	25.06	
	Ukraine	Europe	25.64	
	Czech Republic	Europe	26.25	
	Norway	Europe	26.75	
	Slovak Republic	Europe	26.79	
	Denmark	Europe	27.16	
	Kazakhstan	Asia	27.44	
	Finland	Europe	27.45	
	Belarus	Europe	27.49	
	Kyrgyz Republic	Asia	27.65	

Highest

Overall, most of the countries with the lowest income inequality are in Africa and in Americas.

```
In []: gini.groupby(['country', 'continent'])['gini_index'].mean().to_frame().sort_
```

Out[]: gini_index

country	continent	
South Africa	Africa	63.35
Botswana	Africa	61.09
Namibia	Africa	60.75
Suriname	Americas	60.51
Zambia	Africa	55.76
Central African Republic	Africa	55.70
Bolivia	Americas	54.55
Honduras	Americas	53.94
Lesotho	Africa	53.82
Colombia	Americas	53.16

Research Question 3 - Is a higher tax revenue as a % of GDP associated with less income inequality?

The hypothesis is that countries with higher tax revenue as % of GDP are associated with lower income inequality. The assumption for this is that higher tax revenues are distributed back to lower economic strata in the form of social benefits. Let's see what the data shows.

```
In []: columns = ['continent', 'country', 'year', 'tax_%_gdp', 'gini_index']
   tax = combined_final[columns]
   tax
```

Out[]:		continent	country	year	tax_%_gdp	gini_index
	0	Africa	Congo, Dem. Rep.	2006	6.83	42.2
	1	Africa	Congo, Dem. Rep.	2007	6.99	42.1
	2	Africa	Congo, Dem. Rep.	2008	8.97	42.1
	3	Africa	Congo, Dem. Rep.	2009	7.89	42.1
	4	Africa	Congo, Dem. Rep.	2010	8.35	42.1
	•••			•••		
	1546	Oceania	New Zealand	2012	26.80	33.5
	1547	Oceania	New Zealand	2013	26.60	34.0
	1548	Oceania	New Zealand	2014	26.80	34.0
	1549	Oceania	New Zealand	2015	27.40	34.5
	1550	Oceania	New Zealand	2016	27.20	34.8

1259 rows × 5 columns

It is difficult to see a trend in the scatter plot below:

```
In [ ]: tax.plot(x='tax_%_gdp', y='gini_index', kind='scatter', title='Mean Global (
```

Mean Global Gini Index by Tax % of GDP

Looking at the log of both values reveals that the correlation between the two variables is essentially flat - there is no compelling evidence that higher tax percent of GDP leads to less income inequality.

log Mean Global Gini Index by log Tax % of GDP

The Pearson correlation is slightly negative at -0.08:

Research Question 4 - Is Higher Income Per Person - GDP Per Capita associated with less income inequality?

The hypothesis is that a higher income per person indicates that more of the country's GDP is being distributed equality among its population.

```
In []: columns = ['continent', 'country', 'year', 'income_per_person', 'gini_index
   income = combined_final[columns]
   income
```

Out[]:		continent	country	year	income_per_person	gini_index
	0	Africa	Congo, Dem. Rep.	2006	605	42.2
	1	Africa	Congo, Dem. Rep.	2007	623	42.1
	2	Africa	Congo, Dem. Rep.	2008	640	42.1
	3	Africa	Congo, Dem. Rep.	2009	637	42.1
	4	Africa	Congo, Dem. Rep.	2010	660	42.1
	•••			•••		
	1546	Oceania	New Zealand	2012	33300	33.5
	1547	Oceania	New Zealand	2013	33900	34.0
	1548	Oceania	New Zealand	2014	34600	34.0
	1549	Oceania	New Zealand	2015	35200	34.5
	1550	Oceania	New Zealand	2016	35700	34.8

1259 rows × 5 columns

In []: income.plot(x='income_per_person', y='gini_index', kind='scatter', title='Me

log Mean Gini Index by Income Per Person

In this case, the Person correlation coefficient is -0.34 indicating that there is weak correlation between log(income_per_person) and the log(gini_index):

1.00

Research Question 5 - Is Higher Investment as % GDP associated with less income inequality?

-0.34

The hypothesis is that a higher investment as a percent of GDP indicates that more of the country's GDP is being invested in capital improvements which distributes income benefits across a wide segment of the populcation leading to more equality among its population.

```
In []: columns = ['continent', 'country', 'year', 'invest_%_gdp', 'gini_index']
   invest = combined_final[columns]
   invest
```

log_gini_index

Out[]:		continent	country	year	invest_%_gdp	gini_index
	0	Africa	Congo, Dem. Rep.	2006	14.6	42.2
	1	Africa	Congo, Dem. Rep.	2007	13.7	42.1
	2	Africa	Congo, Dem. Rep.	2008	10.9	42.1
	3	Africa	Congo, Dem. Rep.	2009	14.6	42.1
	4	Africa	Congo, Dem. Rep.	2010	28.8	42.1
	•••					
	1524	Oceania	New Zealand	2012	20.9	33.5
	1525	Oceania	New Zealand	2013	22.0	34.0
	1526	Oceania	New Zealand	2014	22.9	34.0
	1527	Oceania	New Zealand	2015	23.4	34.5
	1528	Oceania	New Zealand	2016	24.4	34.8

1529 rows × 5 columns

```
In []: invest = invest[invest['invest_%_gdp'] > 0]
   invest.plot(x='invest_%_gdp', y='gini_index', kind='scatter', title='Mean G:
```


log Mean Global Gini Index by log Invest % of GDP

The Pearson corr coefficient of -0.03 indicates no correlation between these two variables.

Research Question 6 - Is Higher EIU Democracy Index associated with less income inequality?

The hypothesis is that countries with higher EIU Democracy Index address the needs of a broader segment of the population leading to less income inequality.

```
In []: columns = ['continent', 'country', 'year', 'demox_eiu', 'gini_index']
    demo = combined_final[columns]
    demo
```

Out[]:		continent	country	year	demox_eiu	gini_index
	0	Africa	Congo, Dem. Rep.	2006	27.6	42.2
	1	Africa	Congo, Dem. Rep.	2007	25.2	42.1
	2	Africa	Congo, Dem. Rep.	2008	22.8	42.1
	3	Africa	Congo, Dem. Rep.	2009	22.1	42.1
	4	Africa	Congo, Dem. Rep.	2010	21.5	42.1
	•••			•••		
	1524	Oceania	New Zealand	2012	92.6	33.5
	1525	Oceania	New Zealand	2013	92.6	34.0
	1526	Oceania	New Zealand	2014	92.6	34.0
	1527	Oceania	New Zealand	2015	92.6	34.5
	1528	Oceania	New Zealand	2016	92.6	34.8

1529 rows \times 5 columns

In []: demo.plot(x='demox_eiu', y='gini_index', kind='scatter', title='Mean Gini In

In this case, the Person correlation coefficient is -0.2 indicating that there is weak correlation between log(demox_eiu) and the log(gini_index):

```
In []: demo_log = np.log(demo['demox_eiu']).to_frame()
   demo_log['log_gini_index'] = np.log(tax['gini_index'])
   demo_log.corr()
```

-		- 7	
01	11	- 1	=
\cup \cup	иu	- 1	

	demox_eiu	log_gini_index
demox_eiu	1.00	-0.19
log_gini_index	-0.19	1.00

Conclusions

The following are the conclusions from this analysis:

Research Question 1 - Is Income Inequality Getting Worse or Better in the Last 10 Years?

Answer:

Yes, it is getting better, improving from 38.7 to 37.3

On a continent basis, all were either declining or mostly flat, except for Africa.

Research Question 2 - What Top 10 Countries Have the Lowest and Highest Income Inequality?

Answer:

Lowest: Slovenia, Ukraine, Czech Republic, Norway, Slovak Republic, Denmark, Kazakhstan, Finland, Belarus, Kyrgyz Republic

Highest: Colombia, Lesotho, Honduras, Bolivia, Central African Republic, Zambia, Suriname, Namibia, Botswana, South Africa

Research Question 3 Is a higher tax revenue as a % of GDP associated with less income inequality?

Answer: No

Research Question 4 - Is Higher Income Per Person - GDP Per Capita associated with less income inequality?

Answer: No, but weak negative correlation.

Research Question 5 - Is Higher Investment as % GDP associated with less income inequality?

Answer: No

Research Question 6 - Is Higher EIU Democracy Index associated with less income inequality?

Answer: No, but weak negative correlation.

The above results suggest that there are other drivers for the overall reduction in income inequality. Futher analysis of additional factors should be undertaken.