Certamen 2

Capítulo 3: Naming y Seguridad Capítulo 4: Coordinación

P1 P2 P3 P4		P1	g h i	j k
	Fig. 1	r	Fig. 2	
Nomb	re:	Rol:	Par:	_
I.	(5pts c/u) Marque con V si cree que la caso de marcar como falso debe justification de la compuesto por identificador de un proceso.	car su respuesta.	·	
	2) Podemos llegar a consenso los nodos que estén fallando o "mintien			re y cuando
	3) Los certificados digitales verificar la autenticidad de un servidor o			
	4) Cualquier algoritmo de E Consenso, no así al revés.	xclusión Mutua es	un ejemplo de un al	lgoritmo de
	5) Las Tablas de Hash Distribu búsqueda no es escalable pero la comp			ig, donde la

6) _____ Tanto en un algoritmo de exclusión mutual distribuido como por token en un anillo

lógico tienen N puntos de falla.

- II. **(6pts c/u)** Encierre en un círculo la alternativa que considere correcta. Solo debe seleccionar una alternativa por pregunta.
 - 1) ¿Cuál de las siguientes alternativas **NO** corresponde a un método de ataque a un sistema distribuido?
 - a) Suplantación
 - b) Alteración de mensajes
 - c) Fraccionamiento
 - d) Denegación de servicios
 - 2) Respecto al algoritmo de elección Bully, ¿Cuál de las siguientes alternativas es falsa?
 - a) Cada nodo tiene un ID único que representa algo válido para el sistema.
 - b) Cualquier nodo puede notificar al resto que el coordinador está caído
 - c) Se puede asegurar la cantidad total de mensajes que se necesitarán sabiendo el ID del nodo que notificó y la cantidad de nodos totales.
 - d) En cada paso, si al nodo actual le responde un nodo con ID mayor, el nodo actual sabe que él no será el nuevo coordinador.
 - 3) ¿Cuál de las siguientes alternativas **NO** es una característica de un sistema de nombres de tipo plano (flat naming)?
 - a) En los enfoques jerárquicos las entidades se pueden repetir dentro del árbol por tener varias direcciones.
 - b) Una desventaja de los punteros de reenvío es la cadena que se puede generar al cambiar una entidad de dirección.
 - c) Los sistemas de Flat Naming son los más convenientes para los casos de búsquedas realizadas por humanos
 - d) El sistema debe tener métodos de localización a los puntos de acceso que son independientes del nombre.
 - 4) Respecto a un algoritmo de consenso, ¿Cuál de las siguientes alternativas es falsa?
 - a) Se debe asegurar que todos los nodos estén activos y funcionando correctamente durante la ejecución del algoritmo de consenso
 - b) Todos los nodos deben respetar el resultado obtenido del algoritmo de consenso.
 - c) Todos los nodos del sistema deben tener el mismo resultado
 - d) Cualquier algoritmo de consenso debe asegurar que terminará y retornará una decisión.
 - 5) Respecto a los relojes lógicos, ¿Cuál de las siguientes afirmaciones es falsa?
 - a) Se crean ya que puede que no sea necesario siempre acordar una hora actual.
 - b) El algoritmo de Berkeley se basa en el uso de relojes lógicos
 - c) Si dos procesos no interactúan, no es necesario que sus relojes estén sincronizados.
 - d) A veces puede ser suficiente para ponerse de acuerdo sobre el orden en que ocurren los eventos.
- III. **(11pts c/u)** Responda las siguientes preguntas relacionadas con los temas vistos en clases. (El puntaje va en la calidad de su respuesta)
 - a) Dada la **Fig. 2**, asuma que todos los relojes de vectores comienzan con el valor (1,0,2,3) y que suman 1 por defecto cuando hay un evento nuevo a la posición que corresponde. ¿Cuál es el reloj de vector de **O**?

- b) Dada la **Fig. 1**, donde los procesos P1, P2, P3 y P4 intercambian mensajes en el tiempo (flechas). Si P1 tiene como valores/relojes de sus eventos 0, 3, 6, 9, 12, de izquierda a derecha, y P3 valores/relojes de sus eventos 3, 6, 9, ¿Cuáles podrían ser los valores/relojes de los eventos de P2 y P4 para que sean los relojes lógicos de Lamport válidos ?
- c) Explique cómo funcionan los algoritmos de encriptación simétricos y asimétricos. Además, haga una pequeña tabla de comparación entre ellos.
- IV. (7pts) Usando la siguiente función de Hash H(X), genere 3 bloques blockchain teniendo la siguientes condiciones:

х	0	1	2	3	4	5	6	7	8	9
H(x)	7	0	6	4	5	6	0	9	2	1

- A. El ld inicial es 2016.
- B. El valor a almacenar en cada bloque es 2021, 2022 y 2023, respectivamente.
- C. A cada bloque debe sumarle un valor tal que el resultado del Hash, tenga dos 00 al comienzo, vale decir, el resultado hash de cada bloque debería ser de la forma **00ab**.
- D. En caso de desbordamiento, se suma al primer número de la derecha