

Álgebra Linear

Transformações Lineares

Profa. Elba O. Bravo Asenjo eoba@uenf.br

Referências Bibliográficas

Transformações Lineares

<u>Definição</u>. Se $T: V \to W$ for uma função de um espaço vetorial V num espaço vetorial W, então T é denominada *transformação linear* de V em W se as duas propriedades seguintes forem válidas com quaisquer vetores \mathbf{u} e \mathbf{v} em V e qualquer escalar k.

(i)
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$

[Aditividade]

(ii)
$$T(k \mathbf{v}) = k T(\mathbf{v})$$

[Homogeneidade]

No caso especial em que V=W, a transformação linear é denominada *operador linear* do espaço vetorial V.

As propriedades (i) e (ii) são equivalentes à seguinte propriedade:

$$T(\mathbf{u} + \mathbf{k} \ \mathbf{v}) = T(\mathbf{u}) + \mathbf{k} \ T(\mathbf{v})$$

para quaisquer \mathbf{u} e \mathbf{v} em V e qualquer escalar k.

A homogeneidade e a aditividade de uma transformação linear $T: V \to W$ podem ser usadas em combinação para mostrar que, se $\mathbf{v_1}$ e $\mathbf{v_2}$ forem vetores em V e k_1 e k_2 escalares quaisquer, então

$$T(k_1\mathbf{v}_1 + k_2\mathbf{v}_2) = k_1T(\mathbf{v}_1) + k_2T(\mathbf{v}_2)$$

Mais geralmente, se v_1 , v_2 , ..., v_r forem vetores em V e k_1 , k_2 , ..., k_r forem escalares quaisquer, então

$$T(k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + \dots + k_r\mathbf{v}_r) = k_1T(\mathbf{v}_1) + k_2T(\mathbf{v}_2) + \dots + k_rT(\mathbf{v}_r)$$

Teorema. Se $T: V \rightarrow W$ for uma transformação linear, então

- (a) T(0) = 0.
- (b) $T(\mathbf{u} \mathbf{v}) = T(\mathbf{u}) T(\mathbf{v})$, quaisquer que sejam \mathbf{u} e \mathbf{v} em \mathbf{V} .

Prova.

- (a) Seja **u** um vetor qualquer em *V*. Como 0**u** = **0**, segue da homogeneidade na Definição que $T(\mathbf{0}) = T(0\mathbf{u}) = 0$
- (b) Podemos provar a parte (b) reescrevendo $T(\mathbf{u} \mathbf{v})$ como

$$T(\mathbf{u} - \mathbf{v}) = T(\mathbf{u} + (-1)\mathbf{v})$$
$$= T(\mathbf{u}) + (-1)T(\mathbf{v})$$
$$= T(\mathbf{u}) - T(\mathbf{v})$$

Observação. $T(-\mathbf{v}) = -T(\mathbf{v})$ com qualquer \mathbf{v} em V.

Exemplos de Transformações Lineares

Exemplo 1. A transformação nula

Sejam V e W dois espaços vetoriais quaisquer. A aplicação

$$T: V \to W$$
 tal que $T(\mathbf{v}) = \mathbf{0}$,

qualquer que seja o vetor \mathbf{v} em V, é a transformação linear denominada transformação nula ou zero.

Para ver que T é linear, observe que

$$T(\mathbf{u} + \mathbf{v}) = \mathbf{0}, \quad T(\mathbf{u}) = \mathbf{0}, \quad T(\mathbf{v}) = \mathbf{0}$$
 e $T(k\mathbf{v}) = \mathbf{0}$

Portanto,

(i)
$$T(\mathbf{u} + \mathbf{v}) = 0 = 0 + 0 = T(\mathbf{u}) + T(\mathbf{v})$$
 e

(ii)
$$T(k\mathbf{v}) = 0 = k . 0 = k T(\mathbf{v})$$

Exemplos de Transformações Lineares

Exemplo 2. O operador identidade

Seja V um espaço vetorial qualquer. A aplicação

$$I: V \rightarrow V$$
 definida por $I(\mathbf{v}) = \mathbf{v}$

é denominada *operador identidade* de V.

I é uma transformação linear. De fato:

(i)
$$I(u + v) = u + v = I(u) + I(v)$$

(ii)
$$I(\alpha u) = \alpha u = \alpha I(u)$$

Exemplos de Transformações Lineares

Exemplo 3. Seja $T: \mathbb{R}^2 \to \mathbb{R}^3$, definida por T(x, y) = (3x, -2y, x - y). Té uma transformação linear. De fato:

I) Sejam $u = (x_1, y_1)$ e $v = (x_2, y_2)$ vetores genéricos de \mathbb{R}^2 . Então:

$$T(u+v) = T(x_1+x_2, y_1+y_2)$$

$$= (3(x_1+x_2), -2(y_1+y_2), (x_1+x_2)-(y_1+y_2))$$

$$= (3x_1+3x_2, -2y_1-2y_2, x_1+x_2-y_1-y_2)$$

$$= (3x_1, -2y_1, x_1-y_1) + (3x_2, -2y_2, x_2-y_2) = T(x_1, y_1) + T(x_2, y_2) =$$

$$= T(u) + T(v)$$

II) Para todo $\alpha \in \mathbb{R}$ e para qualquer $u = (x_1, y_1) \in \mathbb{R}^2$, tem-se que:

$$T (\alpha u) = T (\alpha x_1, \alpha y_1)$$
= $(3 \alpha x_1, -2 \alpha y_1, \alpha x_1 - \alpha y_1)$
= $\alpha (3 x_1, -2 y_1, x_1 - y_1) = \alpha T(x_1, y_1) =$
= $\alpha T(u)$

Exemplo 4. Seja $T: \mathbb{R}^3 \to \mathbb{R}^2$, definida por T(x, y, z) = (3x + 2, -2y - z).

T não é uma transformação linear, pois $T(0, 0, 0) = (2, 0) \neq (0, 0)$

Observação. Se $T: V \rightarrow W$ é uma transformação linear, então T(0) = 0. No entanto, a recíproca dessa propriedade não é verdadeira, pois existe transformação com T(0) = 0 e T não é linear. É o caso da transformação

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, definida por $T(x, y) = (x^2, 3y)$

De fato:

Se
$$u = (x_1, y_1)$$
 e $v = (x_2, y_2)$ são vetores quaisquer de \mathbb{R}^2 , tem-se $T(u + v) = T(x_1 + x_2, y_1 + y_2) = ((x_1 + x_2)^2, 3(y_1 + y_2))$ $= (x_1^2 + 2x_1x_2 + x_2^2, 3y_1 + 3y_2)$

enquanto:

$$T(u) + T(v) = (x_1^2, 3y_1) + (x_2^2, 3y_2)$$

Isto é:

$$T(u + v) \neq T(u) + T(v)$$

Exemplo 5. Uma transformação linear de P_n em P_{n+1} Seja $\mathbf{p} = p(x) = c_0 + c_1 x + \cdots + c_n x^n$ um polinômio em P_n e defina a transformação

$$T: P_n \to P_{n+1} \text{ por } T(\mathbf{p}) = T(p(x)) = xp(x) = c_0 x + c_1 x^2 + \dots + c_n x^{n+1}$$

Essa transformação é linear, pois, dado qualquer escalar k e quaisquer polinômios p_1 e p_2 , temos

$$T(k\mathbf{p}) = T(kp(x)) = x(kp(x)) = k(xp(x)) = kT(\mathbf{p})$$

e

$$T(\mathbf{p}_1 + \mathbf{p}_2) = T(p_1(x) + p_2(x)) = x(p_1(x) + p_2(x))$$

= $xp_1(x) + xp_2(x) = T(\mathbf{p}_1) + T(\mathbf{p}_2)$

Teorema. Se T: $V \to W$ for uma transformação linear, V um espaço vetorial de dimensão finita e $S = \{v_1, v_2, \ldots, v_n\}$ uma base de V, então a imagem de qualquer vetor v em V pode ser escrita como

$$T(\mathbf{v}) = c_1 T(\mathbf{v_1}) + c_2 T(\mathbf{v_2}) + \cdots + c_n T(\mathbf{v_n})$$

em que c_1, c_2, \ldots, c_n são os coeficientes que expressam v como uma combinação linear dos vetores em S.

Exemplo 6.

Considere a base $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ de R^3 com

$$\mathbf{v}_1 = (1, 1, 1), \quad \mathbf{v}_2 = (1, 1, 0), \quad \mathbf{v}_3 = (1, 0, 0)$$

Seja $T: \mathbb{R}^3 \to \mathbb{R}^2$ a transformação linear tal que

$$T(\mathbf{v}_1) = (1, 0), \quad T(\mathbf{v}_2) = (2, -1), \quad T(\mathbf{v}_3) = (4, 3)$$

Encontre uma fórmula para $T(x_1, x_2, x_3)$ e use essa fórmula para calcular T(2, -3, 5).

<u>Solução</u>

Inicialmente precisamos escrever o vetor $\mathbf{v}=(x_1,x_2,x_3)$ de \mathbb{R}^3 como uma combinação linear de $\mathbf{v_1}$, $\mathbf{v_2}$ e $\mathbf{v_3}$. Escrevendo

$$(x_1, x_2, x_3) = c_1(1, 1, 1) + c_2(1, 1, 0) + c_3(1, 0, 0)$$

e equacionando componentes correspondentes, obtemos

$$c_1 + c_2 + c_3 = x_1$$

 $c_1 + c_2 = x_2$
 $c_1 = x_3$

que dá
$$c_1 = x_3$$
, $c_2 = x_2 - x_3$, $c_3 = x_1 - x_2$, portanto,

$$(x_1, x_2, x_3) = x_3(1, 1, 1) + (x_2 - x_3)(1, 1, 0) + (x_1 - x_2)(1, 0, 0)$$

$$= x_3 \mathbf{v}_1 + (x_2 - x_3) \mathbf{v}_2 + (x_1 - x_2) \mathbf{v}_3$$

Assim,

$$T(x_1, x_2, x_3) = x_3 T(\mathbf{v}_1) + (x_2 - x_3) T(\mathbf{v}_2) + (x_1 - x_2) T(\mathbf{v}_3)$$

$$= x_3 (1, 0) + (x_2 - x_3)(2, -1) + (x_1 - x_2)(4, 3)$$

$$= (4x_1 - 2x_2 - x_3, 3x_1 - 4x_2 + x_3)$$

A partir dessa fórmula, obtemos

$$T(2, -3, 5) = (9, 23)$$

Núcleo e Imagem

<u>Definição</u>. Seja $T: V \to W$ uma transformação linear. O conjunto dos vetores em que T transforma em 0 é denominado *núcleo* de T e é denotado por Nuc(T), ou seja,

$$Nuc(T) = \{ v \in V; T(v) = 0 \}$$

O conjunto de todos os vetores em W que são imagem por T de pelo menos um vetor em V é denominado imagem de T e é denotado por Im(T), ou seja,

$$Im(T) = T(V)$$

Teorema. Seja $T: V \rightarrow W$ uma transformação linear.

- (a) O núcleo de T é um subespaço de V.
- (b) A imagem de T é um subespaço de W.

Prova de (a).

Note que Nuc(T) é um subconjunto não-vazio de V, já que T(0) = 0. Sejam $\mathbf{v_1}$ e $\mathbf{v_2}$ vetores em Nuc(T) e k um escalar quaisquer. Então

$$T(\mathbf{v_1} + \mathbf{v_2}) = T(\mathbf{v_1}) + T(\mathbf{v_2}) = \mathbf{0} + \mathbf{0} = \mathbf{0}$$

de modo que $\mathbf{v_1} + \mathbf{v_2}$ está em Nuc(T). Também

$$T(k \mathbf{v_1}) = k T(\mathbf{v_1}) = k\mathbf{0} = \mathbf{0}$$

de modo que $k \mathbf{v_1}$ está em Nuc(T).

Núcleo de uma Transformação Linear

Observemos que $Nuc(T) \subset V$ e

 $Nuc(T) \neq \emptyset$ pois $0 \in Nuc(T)$,

tendo em vista que T(0) = 0

Nuc(T) = {
$$v \in V$$
; $T(v) = 0$ }

Imagem de T

Observemos que $Im(T) \subset W$ e $Im(T) \neq \emptyset$ pois $0 = T(0) \in Im(T)$.

Se Im(T) = W, T diz-se sobrejetiva, isto é, para todo $w \in W$ existe pelo menos um $v \in V$ tal que T(v) = w.

Im $T = \{ w \in W ; T(v) = w \text{ para algum } v \in V \}$

Núcleo e Imagem - Exemplos

Exemplo 7. Seja $T: \mathbb{R}^4 \to \mathbb{R}^3$ a transformação linear definida por

$$T(x, y, s, t) = (x - y + s + t, x + 2s - t, x + y + 3s - 3t)$$

Para determinar Nuc(T), devemos resolver em (x, y, s, t) a equação

$$T(x, y, s, t) = (x - y + s + t, x + 2s - t, x + y + 3s - 3t) = (0, 0, 0)$$

Equivalentemente, Nuc(T) é o conjunto solução do seguinte sistema linear homogêneo:

$$x - y + s + t = 0$$

 $x + 2s - t = 0$
 $x + y + 3s - 3t = 0$

Resolvendo o sistema acima, obtemos

 $Nuc(T) = \{ (-2s + t, -s + 2t, s, t); s, t \in \mathbb{R} \}$

Note que Nuc(T) é um subespaço vetorial de \mathbb{R}^4 de dimensão 2.

Teorema. Seja $T: V \to W$ uma transformação linear. Temos que Té injetiva se, e somente se $\text{Nuc}(T) = \{ \ 0 \ \}.$

Por exemplo, a transformação linear do Exemplo 7 não é injetiva, pois $Nuc(T) \neq \{(0,0,0,0)\}.$

Já a transformação linear dada por T(x, y) = (x - y, x + y), $(x, y) \in \mathbb{R}^2$, é injetiva, pois $Nuc(T) = \{(0, 0)\}$. Verificar!!!

Teorema 1. Seja T: V \rightarrow W uma transformação linear. Se $\{v_1, v_2, \ldots, v_n\}$ é um conjunto de geradores de V, então $\{T(v_1), T(v_2), \ldots, T(v_n)\}$ é um conjunto de geradores de ImT. Em particular, dim ImT \leq dim V.

Teorema 2. As linhas não nulas de uma matriz R, na forma escalonada e equivalente a uma matriz A, formam uma base para o espaço linha de A.

Imagem de T

Exemplo 8. Seja $T: \mathbb{R}^4 \to \mathbb{R}^3$ a transformação linear definida por T(x, y, s, t) = (x - y + s + t, x + 2s - t, x + y + 3s - 3t)

Calcular a imagem da transformação linear.

<u>Solução</u>

Pelo Teorema 1, devemos determinar o espaço gerado pela imagem de um conjunto de geradores de \mathbb{R}^4 . Vamos calcular, então, o espaço gerado por,

$$T(1, 0, 0, 0) = (1, 1, 1),$$
 $T(0, 1, 0, 0) = (-1, 0, 1)$
 $T(0, 0, 1, 0) = (1, 2, 3),$ $T(0, 0, 0, 1) = (1, -1, -3)$

Pelo Teorema 2, basta reduzir a seguinte matriz

$$\begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 2 & 3 \\ 1 & -1 & -3 \end{bmatrix}$$

à forma escalonada.

$$\begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 2 & 3 \\ 1 & -1 & -3 \end{bmatrix} \begin{array}{c} L_2 \leftarrow L_2 + L_1 \\ L_3 \leftarrow L_3 - L_1 \\ L_4 \leftarrow L_4 - L_1 \end{array} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & -2 & -4 \end{bmatrix} \begin{array}{c} L_3 \leftarrow L_3 - L_2 \\ L_4 \leftarrow L_4 + 2L_2 \end{array} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} L_1 \leftarrow L_1 - L_2 \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Assim, $\{(1, 1, 1), (0, 1, 2)\}$ é uma base de Im T, ou seja,

Im T = {
$$x(1, 1, 1) + y(0, 1, 2)$$
; $x, y \in \mathbb{R}$ } = { $(x, x + y, x + 2y)$; $x, y \in \mathbb{R}$ }.

Por outro lado, o conjunto { (1,0,-1), (0,1,2) } também é uma base de Im T e portanto o conjunto imagem de T pode também ser dado por

Im
$$T = \{ x (1, 0, -1) + y (0, 1, 2); x, y \in \mathbb{R} \} = \{ (x, y, -x + 2y); x, y \in \mathbb{R} \}$$

Imagem de T usando a definição

Seja $T: V \to W$ uma transformação linear.

Im
$$T = \{ w \in W ; T(v) = w \text{ para algum } v \in V, \}$$

Vamos resolver o Exemplo 8 utilizando a definição de conjunto imagem.

Exemplo 9. Seja $T: \mathbb{R}^4 \to \mathbb{R}^3$ a transformação linear definida por T(x, y, s, t) = (x - y + s + t, x + 2s - t, x + y + 3s - 3t)

Calcular a imagem da transformação linear.

Solução

$$T(v) = w$$
; $v = (x, y, s, t)$, $w = (a, b, c)$
 $(x - y + s + t, x + 2s - t, x + y + 3s - 3t) = (a, b, c)$

Igualando componentes correspondentes temos o seguinte sistema linear de equações:

$$x - y + s + t = a$$

 $x + 2s - t = b$
 $x + y + 3s - 3t = c$

Reduzindo a matriz aumentada à forma escalonada:

$$\begin{bmatrix} 1 & -1 & 1 & 1 & a \\ 1 & 0 & 2 & -1 & b \\ 1 & 1 & 3 & -3 & c \end{bmatrix} \begin{array}{c} L_2 \leftarrow L_2 - L_1 \\ L_3 \leftarrow L_3 - L_1 \\ 0 & 2 & 2 & -4 & c - a \end{bmatrix} \begin{array}{c} L_1 \leftarrow L_1 + L_2 \\ L_3 \leftarrow L_3 - 2L_2 \\ 0 & 0 & 0 & 0 & a - 2b + c \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 & -1 & b \\ 0 & 1 & 1 & -2 & b - a \\ 0 & 0 & 0 & a - 2b + c \end{bmatrix}$$

O sistema é consistente se, e somente se, a - 2b + c = 0. Logo

Im T = { w =
$$(a, b, c) \in \mathbb{R}^3$$
; $a - 2b + c = 0$ }

Vamos determinar uma base para o conjunto Im T,

Isolamos uma das variáveis da equação a-2b+c=0Seja c=-a+2b então,

$$(a,b,c) = (a,b,-a+2b) = (a,0,-a) + (0,b,2b) = a(1,0,-1) + b(0,1,2)$$

Assim, uma base para Im T é dada por

$$\beta = \{ (1,0,-1), (0,1,2) \}$$

Portanto

Im T = {
$$x(1,0,-1) + y(0,1,2); x,y \in \mathbb{R}$$
 } = { $(x,y,-x+2y); x,y \in \mathbb{R}$ }

Teorema 3. Teorema do Núcleo e da Imagem

Seja T: V → W uma transformação linear, onde V tem dimensão finita. Então

 $\dim Nuc(T) + \dim Im T = \dim V$

<u>Teorema 4</u>. Seja T: $V \rightarrow W$ uma transformação linear entre espaços vetoriais de dimensão finita. Se dim $V = \dim W$, então as seguintes afirmações são equivalentes:

- (i) T é injetiva;
- (ii) T é sobrejetiva.

Exemplo 10. Verificar que a transformação linear T: M(2,2) $\to \mathbb{R}^4$, dada por

$$T(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = (a+b, b+c, c, a+b+d)$$

é uma função bijetiva.

<u>Solução</u>

Como dim M(2,2) = dim \mathbb{R}^4 , segue, do Teorema 4, que basta verificarmos que T é uma função injetiva. Como a igualdade

$$T(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = (0,0,0,0); \text{ isto \'e}, (a+b, b+c, c, a+b+d) = (0,0,0,0)$$

Só ocorre quando a = b = c = d = 0, temos que $Nuc(T) = \{0\}$, Logo T é injetiva.

Isomorfismo

Uma transformação linear bijetiva é chamada *isomorfismo*. Dois espaços vetoriais que possuem um isomorfismo entre eles serão ditos *isomorfos*, o que, em grego, significa que possuem mesma forma.

Teorema 5. Se V e W são espaços vetoriais de dimensão *n*, então V e W são isomorfos.

Observação. Dois espaços vetoriais V e W isomorfos são essencialmente o "mesmo espaço vetorial", exceto que seus elementos e suas operações de adição e de multiplicação por escalar são escritas diferentemente. Assim qualquer propriedade de V que dependa apenas de sua estrutura de espaço vetorial permanece válida em W, e vice-versa. Por exemplo, se T: V \rightarrow W é um isomorfismo de V em W, então $\{T(v_1), T(v_2), \ldots, T(v_n)\}$ é uma base de W se, e somente se, $\{v_1, v_2, \ldots, v_n\}$ é uma base de V.

Isomorfismo - Exemplo

Exemplo 11. Seja W o subespaço de M(2,2) gerado por

$$M_1 = \begin{bmatrix} 1 & -5 \\ -4 & 2 \end{bmatrix}, \qquad M_2 = \begin{bmatrix} 1 & 1 \\ -1 & 5 \end{bmatrix}, \qquad M_3 = \begin{bmatrix} 2 & -4 \\ -5 & 7 \end{bmatrix}, \qquad M_4 = \begin{bmatrix} 1 & -7 \\ -5 & 1 \end{bmatrix}$$

Encontrar uma base e a dimensão de W.

<u>Solução</u>

Como
$$T(x,y,t,z)=\begin{bmatrix} x & y \\ t & z \end{bmatrix}$$
 é um isomorfismo de \mathbb{R}^4 em $M(2,2)$, temos que W é

isomorfo ao espaço $G(v_1, v_2, v_3, v_4)$, onde $v_1 = (1, -5, -4, 2)$, $v_2 = (1, 1, -1, 5)$,

$$v_3 = (2, -4, -5, 7)$$
 e $v_4 = (1, -7, -5, 1)$. Temos que a matriz

$$\begin{bmatrix} 1 & -5 & -4 & 2 \\ 1 & 1 & -1 & 5 \\ 2 & -4 & -5 & 7 \\ 1 & -7 & -5 & 1 \end{bmatrix}$$

se reduz, pelas transformações elementares, à matriz

$$\begin{bmatrix} 1 & 3 & 0 & 6 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Assim, $\alpha = \{(1,3,0,6), (0,2,1,1)\}$ é uma base de $G(v_1,v_2,v_3,v_4)$ e, consequentemente $\alpha' = \{\begin{bmatrix} 1 & 3 \\ 0 & 6 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}\}$ é uma base de W, mostrando que dim W = 2.

Observação. Note que, como consequência do Teorema 5, temos que *todo espaço vetorial* não nulo de dimensão finita n é isomorfo ao \mathbb{R}^n . Dessa forma, o estudo de espaços vetoriais de dimensão finita pode se reduzir ao estudo dos espaços \mathbb{R}^n , incluindo a escolha de algum isomorfismo.