Natural Language Processing using Deep Learning

What Have You Learned?

Working with text data

What Have You Learned?

- Working with text data
- Deep learning concepts and model architectures

What Have You Learned?

- Working with text data
- Deep learning concepts and model architectures
- Building deep learning models using PyTorch

 In traditional NLP, text can be represented as a single vector

 In traditional NLP, text can be represented as a single vector

ector

• Frequency based techniques: Bag-of-Words and

TF-IDF

that place is incredible

- In traditional NLP, text can be represented as a single vector
 - Frequency based techniques: Bag-of-Words and TF-IDF
 Contextual Embeddings: word2vec

that place is incredible

- In traditional NLP, text can be represented as a single vector
 - Frequency based techniques: Bag-of-Words and TF-IDF
 - O Contextual Embeddings: word2vec
- Traditional methods do not efficiently capture the sequential information

- In traditional NLP, text can be represented as a single vector
 - Frequency based techniques: Bag-of-Words and TF-IDF
 - Contextual Embeddings: word2vec
- Traditional methods do not efficiently capture the sequential information
- In deep learning, we can leverage transfer learning for NLP
 - Pre-trained transformer models

