Übungen 1 zur Modellierung und Simulation III (WS 2012/13)

http://www.uni-ulm.de/mawi/mawi-numerik/lehre/wintersemester-20122013/vorlesung-modellierung-und-simulation-3.html

Aufgabe 1.1 (Autokatalyse)

Betrachten Sie die chemische Modellgleichung

$$A + X \rightleftharpoons 2X$$
.

Wir nehmen an, dass A in großer Konzentration $a=c_{\rm A}$ vorliegt, so dass diese als konstant angesehen werden kann. Nach dem Massenwirkungsgesetz ergibt sich für die Änderung der Konzentration $x=c_{\rm X}$ von X die Gleichung

$$\dot{x} = k_1 a x - k_{-1} x^2 \tag{1}$$

mit den positiven Ratenkoeffizienten k_1 und k_{-1} .

Finden Sie alle Fixpunkte von Gleichung (1) und klassifizieren Sie deren Stabilität.

Aufgabe 1.2 (Fallschirmsprung)

Felix Baumgartner springt aus 39 km Höhe zur Erde. Nehmen wir an, dass seine Fallgeschwindigkeit v(t) durch die Gleichung

$$m\dot{v} = mg - kv^2 \tag{2}$$

beschrieben wird, wobei m die Masse von Herrn Baumgartner, g die Erdbeschleunigung und k>0 eine Konstante für den Luftwiderstand ist.

- 1. Bestimmen Sie eine analytische Lösung von (2) mit der Anfangsbedingung v(0) = 0.
- 2. Bestimmen Sie die Grenzgeschwindigkeit v(t) für $t \to \infty$.
- 3. Analysieren Sie (2) graphisch und bestimmen Sie die Stabilität der Gleichgewichtslösung(en).