SMART KNEE REHABILITATION ASSISTING DEVICE POST SURGERY CONDITIONS

P.S. Abeyweera (E/18/009)

Supervised By : Dr. P.B. Boyagoda

Department of Mechanical Engineering
Faculty of Engineering
University of Peradeniya

TABLE OF CONTENTS

01 Introduction.

02 Methodology.

O3 Results and Final Outcomes.

O4 Future Improvements.

Discussions & Conclusions.

O1 INTRODUCTION.

Objective

Enhance postsurgery knee rehabilitation through smart technology.

Background

Addresses the gap in current rehab methods by providing real-time feedback and personalized guidance.

Innovation

A device equipped with sensors to monitor range of motion and exercises, paired with a mobile app.

Target Users

Patients recovering from knee surgeries such as:
Anterior Crucial Ligament (ACL)
Total knee replacement (TKR)
Meniscus Repair

02 METHODOLOGY

Hardware Prototype

Sensors

- Angle tracking Inertial Measurement Units (IMU) Sensors (MPU6050)
- Microcontroller ESP32
- Sensor Calibration
- Signal Filtering Complementary Filter

Attachment to the patient

• Used existing Motion control Knee guard for the sensor attachment.

Data Transmission

• Sensor data is transmitted to the mobile app through Wi-Fi.

02 METHODOLOGY

Software Development

Back End

 PHP – Powers the backend of the application, handling the data processing, logic and integration with sensors.

Data Base

 MySQL – Used for managing and storing user data, exercise records and progress tracking.

03

RESULTS AND FINAL OUTCOME

Hardware Prototype

Successfully developed a working prototype, capable of measuring the knee's angle in real-time.

Figure 01: Hardware Prototype of the device

App Development

The mobile app's current version supports one week of exercises for ACL surgery, focusing on the early stage of

rehabilitation.

1. Active-assisted Extension

2. Passive Flexion

3. Straight Leg Raise

4. Heel Slides

Figure 02: User interface for first week

App Development

The app offers clear, step-by-step instructions for each exercise, accompanied by video tutorials which demonstrate the correct techniques, helping users to understand and perform exercises accurately.

The device provides users with real-time feedback on the knee angle during exercises and tracks the number of exercise repetitions, sets completed and time duration.

Figure 04: User interface for current exercise dashboard

Figure 03: User interface for instruction of active assisted extension

App Development

Disers and therapists can view daily and weekly reports that include key metrics like the average maximum knee angle achieved and completion percentage of prescribed exercises.

Figure 05: User interface for daily analysis

Figure 06: User interface for weekly analysis

FUTURE IMPROVEMENTS

Expand App Functionality

- **1.Additional Weeks for ACL Surgery:** Extend the app's capabilities to include exercises for subsequent weeks.
- **2.Support for Other Surgeries:** Expand to cater to other knee surgeries such as Total Knee Replacement (TKR) and Meniscus Repair.
- **3.User Authentication:** Add Sign-in and Sign-up functionality to the app. This will allow users to create personal accounts, track their progress.

Modify Hardware Prototype

- **1.Flexible and Ergonomic Design:** Develop a more ergonomic design that conforms better to the knee's natural movement.
- 2.Wireless Connectivity Improvements: Upgrade to more reliable wireless communication technologies like Bluetooth Low Energy (BLE) 5.0. to enhance data transmission speed.

DISCUSSION & CONCLUSION

Discussion

Strengths:

- Provides real-time feedback on knee angle and exercise performance, enhancing adherence and technique.
- Includes clear instructions and video tutorials for effective rehabilitation guidance.
- Tracks exercise repetitions and sets, offering valuable progress data for users.

Challenges:

- Currently limited to the first week of ACL rehabilitation with no support for other surgeries or later stages.
- Needs further development to expand capabilities for other knee surgeries like TKR and Meniscus Repair.

Conclusion

- The device effectively addresses gaps in knee rehabilitation by combining real-time feedback with personalized guidance, improving patient engagement and outcomes.
- Future enhancements will make the device a more comprehensive tool, extending its benefits to a wider range of surgeries and recovery stages.

REFERENCES

- 1. https://link.springer.com/article/10.1007/s10845-008-0225-y
- 3. https://www.sciencedirect.com/science/article/pii/S11100168210 00715?via%3Dihub
- 4. https://www.mdpi.com/2079-9292/12/7/1520
- 5. https://link.springer.com/article/10.1007/s13534-018-0078-z
- 6. https://academic.oup.com/ptj/article/88/9/1061/2742359

