Uncovering the saliency of local topological features for Alzheimer's disease characterisation

Philip Hartout

November 27, 2020

Alzheimer's disease

Alzheimer's disease:

- -
- Nearly 40 million people live with AD
- Cost in US alone \$ 2 trillion by 2030
- Among leading causes of death in EU

Images adapted from Ittner et al and Wikipedia

- Concerned with "properties of a geometric object that are preserved under continuous deformations, such as [...] crumpling."
- Recently, persistent homology has emerged to quantify (differences in) the shape of data.
- How can we apply persistent homology to quantify changes in shape due to Alzheimer's disease?

Topology in AD - Research Avenues 3

- 1. Classification
- 2. Subtype identification
- 3. Progression & forecasting

Analysis setting

Images adapted from Wikimedia, slicer.org, and Sachin Modgekar

Analysis setting

Figure 2: AUPRC on each patch, achieved using a model described in earlier work. Chosen patch for analyses is boxed in red (patch with highest accuracy).

I - Persistent homology

I - Classification - Persistence Images

I - Classification - Network architecture

I - Classification - Network architecture

Methodological considerations

- 4 fold CV, 3 inits. Stratified for age, diagnoses and no patients are spread over folds.
- Same experimental settings as from Brüningk, Sarah C et al https://arxiv.org/abs/2011.06531

I - Classification - Performance

Local Global	PI	3D Conv	PI
Validation accuracy	0.79 ± 0.02	0.85 ± 0.06	0.76 ± 0.02
Precision	0.81 ± 0.04	0.87 ± 0.04	0.74 ± 0.02
Recall	0.81 ± 0.02	0.87 ± 0.08	0.88 ± 0.08
AUC	0.85 ± 0.03	0.89 ± 0.05	0.78 ± 0.02

Table 1: Performance metrics of the different models trained on the same data. Metrics from Brüningk. Sarah C *et al* https://arxiv.org/abs/2011.06531.

- ightarrow Local PI training time is 2 minutes on a **laptop CPU**. Very efficient compression of features!
- ightarrow Local 3D Conv training takes 15 minutes on a **server GPU**.

Persistent homology produces **highly salient compressed** features for AD characterization.

Limitations & Outlook

Limitations:

- Using raw images is better, but more expensive.
- Does not take atrophy from other regions into account

directions:

- Can persistent homology be used to diagnose prodromal forms of AD?
- Use a similar approach for **subtype identification**.

Thanks!

GitHub repository of the project (currently available upon request)

github.com/pjhartout/TDA_ADNI_MLCB

With thanks to Bastian Rieck for the supervision and Sarah Brueningk, Felix Hensel, Catherine Jutzeler, Merel Kuijs and Louis Lukas for insightful discussions, code, and data.

Questions?

Images adapted from Wikimedia, $\,$ slicer.org, and $\,$ Sachin Modgekar $\,$