МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра физической химии

ОТЧЕТ по лабораторной работе №1 по дисциплине «Химия»

Тема: Химические свойства кислот, оснований, солей.

Студентка гр. 1208	Титова С.А.
Преподаватель	 Свинолупова А.С

Санкт-Петербург

2021

Цель работы:

Ознакомление с методами получения кислот, солей, оснований и с их химическими свойствами.

Основные теоретические положения

1.Оксиды — химические соединения, состоящие из двух элементов, один из которых кислород в степени окисления «-2». Оксидами называются соединения элементов с кислородом, в которых атомы кислорода химически не связаны друг с другом.

Оксиды делятся на солеобразующие и несолеобразующие. Последних довольно мало (оксид азота (I) - N_2O , оксид азота (II) - NO, оксид углерода (II) - CO, оксид кремния (II) - SiO), они не образуют солей ни с кислотами, ни со щелочами. Солеобразующие оксиды делятся на *основные*, кислотные и амфотерные.

<u>Основными</u> называются оксиды (Na₂O, MgO, CuO и др.), которым соответствуют гидроксиды, относящиеся к классу оснований. Основные оксиды образуют металлы, проявляющие в соединениях валентность I, II, III (не выше как правило).

Химические свойства основных оксидов:

1) Основные оксиды, образованные щелочными и щелочноземельными металлами, взаимодействуют с водой, образуя растворимое в воде основание — щёлочи.

$$CaO+H_2O \rightarrow Ca(OH)_2$$

2) Основные оксиды взаимодействуют с кислотами, образуя соль и воду.

$$CuO+H_2SO_4\rightarrow CuSO_4+H_2O$$
.

3) Основные оксиды могут взаимодействовать с оксидами, принадлежащими к другим классам, образуя соли.

$$MgO+CO_2 \rightarrow MgCO_3$$

 $\underline{\mathit{Кислотнымu}}$ называют оксиды (SO₂, CO₂ и др.), которым соответствуют гидроксиды, относящиеся к классу кислот. Реагируя с основаниями, эти оксиды образуют соль и воду. Кислотные оксиды – это, главным образом, оксиды неметаллов

с ковалентной связью. Степень окисления металлов в кислотных оксидах, как правило, больше +4 (V_2O_5 , CrO_3 , Mn_2O_7).

Химические свойства кислотных оксидов:

1) Кислотные оксиды могут взаимодействовать с водой, образуя кислоты.

$$SO_3+H_2O\rightarrow H_2SO_4$$

2) Кислотные оксиды взаимодействуют со щелочами, образуя соль и воду.

$$SO_2+2NaOH \rightarrow Na_2SO_3+H_2O$$

3) Кислотные оксиды могут реагировать с основными оксидами, образуя соли.

$$CO_2+CaO \rightarrow CaCO_3$$

<u>Амфомерными</u> называются оксиды (BeO, ZnO, PbO, SnO, а также оксиды металлов со степенью окисления III и IV, например, Al_2O_3 , Cr_2O_3 и др.), которые обладают двойственными свойствами и ведут себя в одних условиях как основные, а в других – как кислотные, т. е. образуют соли при взаимодействии как с кислотами, так и с основаниями.

Химические свойства амфотерных оксидов:

1) Амфотерные оксиды при взаимодействии с кислотой или кислотным оксидом проявляют свойства, характерные для основных оксидов. Так же, как основные оксиды, они взаимодействуют с кислотами, образуя соль и воду.

$$ZnO+2HCl\rightarrow ZnCl_2+H_2O$$

2) Амфотерные оксиды при взаимодействии со щёлочью или с оксидом щелочного или щелочноземельного металла проявляют кислотные свойства. При сплавлении их со щелочами протекает химическая реакция, в результате которой образуются соль и вода.

$$ZnO+2KOH \rightarrow K_2ZnO_2+H_2O$$

Многие элементы проявляют переменную степень окисления, образуют оксиды различного состава, что учитывается при названии оксида указанием валентности элемента: CrO – оксид хрома (II), Cr_2O_3 - оксид хрома (III), CrO_3 - оксид хрома (VI).

Получение:

• Оксиды образуются при взаимодействии простых веществ с кислородом.

$$2H_2+O_2\rightarrow 2H_2O$$

• Оксиды можно получить путём обжига или при сжигании некоторых бинарных соединений.

$$2ZnS+3O_2 \rightarrow 2ZnO+2SO_2$$

• Оксиды образуются при термическом разложении некоторых солей, оснований и кислот.

$$CaCO_3 \rightarrow CaO + CO_2$$

2.Основания — это гидроксиды металлов, при диссоциации которых образуются гидроксид-ионы (OH-) и основные остатки:

$$Cu(OH)_2 \leftrightarrow Cu(OH)^+ + OH^-$$
.

Кислотность оснований определяется числом гидроксид-ионов в молекуле основания. Многокислотные основания диссоциируют ступенчато:

$$Cu(OH)^+ \leftrightarrow Cu^{2+} + OH^-$$
.

Названия оснований составляют из слова «гидроксид» и названия металла (NaOH – гидроксид натрия) с указанием валентности, если металл образует несколько оснований, например: $Fe(OH)_2$ - гидроксид железа (II), $Fe(OH)_3$ - гидроксид железа (III).

По растворимости в воде различают: основания, растворимые в воде — μ елочи (гидроксиды щелочных и щелочно-земельных металлов) и основания, μ ерастворимые в воде, например $Cu(OH)_2$, $Fe(OH)_3$, $Cr(OH)_3$ и др.

Химические свойства оснований:

- 1) Водные растворы щелочей изменяют окраску индикаторов: в их присутствии лакмус синеет, бесцветный фенолфталеин становится малиновым, метиловый оранжевый желтым.
- 2) Кристаллы щелочей при растворении в воде полностью диссоциируют, то есть распадаются на положительно заряженные ионы металла и отрицательно заряженные гидроксид-ионы.

3) Основания реагируют с кислотными оксидами и кислотами с образованием соли и воды и не реагируют с основными оксидами и щелочами.

$$Ca(OH)_2+CO_2 \rightarrow CaCO_3 \downarrow +H_2O$$

4) Нерастворимые основания разлагаются при нагревании.

$$Cu(OH)_2 \rightarrow CuO + H_2O$$

5) Нерастворимые основания взаимодействуют с кислотами, образуя соль и воду.

$$Cu(OH)_2+H_2SO_4 \rightarrow CuSO4+2H_2O$$

6) Некоторые нерастворимые основания могут взаимодействовать с некоторыми кислотными оксидами, образуя соль и воду.

$$Cu(OH)_2+SO_3 \rightarrow CuSO_4+H_2O$$

7) Щёлочи могут взаимодействовать с растворимыми в воде солями.

$$2NaOH+CuSO_4\rightarrow Na_2SO_4+Cu(OH)_2\downarrow$$

8) Малорастворимые щёлочи при нагревании разлагаются на оксид металла и воду. $Ca(OH)_2 \rightarrow CaO+H_2O\uparrow$

Амфотерные гидроксиды проявляют как основные, так и кислотные свойства. К ним относятся, например, $Al(OH)_3$, $Zn(OH)_2$, $Cr(OH)_3$, $Be(OH)_2$ и др.

Получение:

• Щелочи получают, растворяя в воде оксиды щелочных и щелочноземельных металлов.

$$2Na+2H_2O\rightarrow 2NaOH+H_2\uparrow$$

• Щёлочи образуются при взаимодействии оксидов щелочных и щелочноземельных металлов с водой. При этом протекает реакция соединения.

$$\text{Li}_2\text{O}+\text{H}_2\text{O}\rightarrow 2\text{LiOH}$$

• В промышленности гидроксид натрия и калия получают путём электролиза: пропускают постоянный электрический ток через раствор хлорида натрия или калия.

$$2NaCl+2H_2O-\rightarrow 2NaOH+H_2\uparrow+Cl_2\uparrow$$

• Чтобы получить нерастворимое основание, следует к раствору соли соответствующего металла добавить раствор щёлочи.

$$CuCl_2+2KOH \rightarrow Cu(OH)_2\downarrow +2KCl$$

3.Кислоты — это электролиты, при диссоциации которых в качестве катионов образуются ионы водорода (H^+) и анионы кислотных остатков.

По наличию кислорода в своем составе кислоты делятся на *бескислородные* (например, HCl, HBr, H₂S) и *кислородосодержащие* (например, HNO₃, H₂SO₄, H₃PO₄).

Химические свойства:

- 1) В растворах кислот индикаторы меняют свою окраску: лакмус и метилоранж становятся красными.
- 2) Кислоты взаимодействуют с металлами, стоящими левее водорода в электрохимическом ряду напряжений (ряд активностей металлов), образуют соли и выделяют водород. Водород не выделяется при взаимодействии металлов с азотной и концентрированной серной кислотами.

$$Mg+2HCl\rightarrow MgCl_2+H_2\uparrow$$

3) Кислоты реагируют с основными и амфотерными оксидами, образуя соль и воду.

$$K_2O+2HNO_3\rightarrow 2KNO_3+H_2O$$

$$Al_2O_3+6HCl\rightarrow 2AlCl_3+3H_2O$$

4) Взаимодействуют с основаниями и с амфотерными гидроксидами.

$$KOH+HNO_3 \rightarrow KNO_3+H_2O$$

5) Кислоты реагируют с растворами солей, если в результате реакции один из продуктов выпадает в осадок.

$$H_2SO_4+BaCl_2 \rightarrow BaSO_4 \downarrow +2HCl$$

6) Разложение кислородсодержащих кислот.

$$H_2CO_3 \rightleftarrows H_2O + CO_2 \uparrow$$

7) Если кислота, которая вступает в реакцию, является сильным электролитом, то кислота, которая образуется — слабым.

$$2HCl+CaCO_3 \rightarrow CaCl_2+H_2O+CO_2 \uparrow (H_2CO_3)$$

Получение:

• Бескислородные кислоты получают при растворении в воде газообразных соединений неметаллов с водородом.

$$H_2+S \rightarrow H_2S$$

• Кислородсодержащие кислоты можно получить взаимодействием соответствующих кислотных оксидов с водой:

$$N_2O_5+H_2O\rightarrow 2HNO_3$$

• Кислоты можно получить из соответствующих солей. Реакции обмена протекают в соответствии с вытеснительным рядом кислот.

4.Соли — электролиты, при диссоциации которых образуются катионы основных остатков и анионы кислотных остатков. Соли делятся на средние (нормальные), кислые, основные, двойные и смешанные.

<u>Средние соли</u>, например, Na_2CO_3 , $Ca_3(PO_4)_2$, K_2SO_3 , можно рассматривать как продукты полного замещения катионов водорода в кислоте катионами металла или как продукты полного замещения гидроксогрупп основания кислотными остатками.

Уравнения диссоциации средних солей можно записать так:

$$Na_3PO_4\leftrightarrow_3Na^++PO_4^{3-}$$
;
 $NH_4Cl\leftrightarrow NH^{4+}+Cl^-$.

 $\underline{\mathit{Кислыe}}$ соли (гидросоли) — продукты неполного замещения катионов водорода многоосновных кислот катионами металла. Их образуют только многоосновные кислоты (например, H_2SO_4 , H_3PO_4), одноосновные кислоты (например, HCl) не образуют кислых солей. Кислыми солями являются, например, $NaHCO_3$, $Ca(H_2PO_4)_2$, $KHSO_3$.

Названия кислых солей образуются добавлением к кислотному остатку приставки гидро-, а если необходимо, то с соответствующим числительным: Na₂HPO₄ – гидрофосфат натрия, NaH₂PO₄ – дигидрофосфат натрия.

Диссоциацию кислой соли можно выразить уравнением:

<u>Основные</u> соли (гидроксосоли) по составу являются продуктами неполного замещения гидроксогрупп основания кислотными остатками. Однокислотные основания (например, NaOH, KOH) не образуют основных солей. Основные соли, образуются только многокислотными основаниями (например, Cu(OH)₂, Fe(OH)₃). Основными солями являются, например, гидроксосульфат меди (II) – (CuOH)₂SO₄, дигидроксохлорид железа (III) – Fe(OH)₂Cl, гидроксохлорид железа (III) – FeOHCl₂.

<u>Двойные</u> соли — это соли, содержащие два типа катионов: KNa_2PO_4 — ортофосфат калия-натрия; $KAl(SO_4)_2$ — сульфат калия-алюминия (алюмокалиевые квасцы); $KCr(SO_4)_2$ — сульфат калия-хрома (хромокалиевые квасцы).

<u>Смешанные</u> соли — это соли, в составе которых присутствуют различные анионы: CaFCl — смешанная кальциевая соль фтороводородной и хлороводородной кислот; $AlSO_4Cl$ — смешанная алюминиевая соль соляной и серной кислот.

Химические свойства средних солей определяются их отношением к металлам (реакция замещения), щелочам, кислотам и солям (реакции обмена).

Химические свойства:

1) Соли являются электролитами.

$$NaCl \rightarrow Na^+ + Cl^-$$

2) Соли могут взаимодействовать с металлами. (В ходе реакции замещения, протекающей в водном растворе, химически более активный металл вытесняет менее активный)

3) Соли могут взаимодействовать с кислотами. (Протекает реакция обмена, в ходе которой химически более активная кислота вытесняет менее активную.)

$$BaCl_2+H_2SO_4 \rightarrow BaSO_4 \downarrow +2HCl$$

4) Растворимые в воде соли могут взаимодействовать со щелочами.

$$Ni(NO_3)_2+2NaOH\rightarrow Ni(OH)_2\downarrow+2NaNO_3$$

5) Растворимые в воде соли могут вступать в реакцию обмена с другими растворимыми в воде солями, если в результате образуется хотя бы одно практически нерастворимое вещество.

$$Na_2S+2AgNO_3\rightarrow 2NaNO_3+Ag_2S\downarrow$$

6) Некоторые соли при нагревании разлагаются. (Разложение солей может происходить: без изменения степени окисления элементов; с изменением степени окисления элементов (то есть, протекают окислительно-восстановительные реакции.))

$$CaCO_3 \rightleftarrows CaO + CO_2 \uparrow$$

 $2NaHCO_3 \rightleftarrows Na_2CO_3 + H_2O + CO_2 \uparrow$

Получение средних солей:

• Соли образуются при взаимодействии металлов с неметаллами.

$$2\text{Fe}+3\text{Cl}_2\rightarrow 2\text{Fe}\text{Cl}_3$$

• Соли образуются при взаимодействии металлов с кислотами.

$$Fe+2HCl \rightarrow FeCl_2+H_2\uparrow$$

• Из одних солей могут быть получены другие в реакциях замещения с металлами. $Fe+CuSO_4 \rightarrow FeSO_4+Cu\downarrow$.

• Из одних солей могут быть получены другие в реакциях замещения с металлами.

$$CaO+CO_2 \rightarrow CaCO_3$$

• Соли образуются при взаимодействии основных и амфотерных оксидов с кислотами.

$$CuO+H_2SO_4 \rightarrow CuSO_4+H_2O$$

• Соли образуются при взаимодействии кислотных и амфотерных оксидов с основаниями.

$$Ca(OH)_2+CO_2\rightarrow CaCO_3\downarrow +H_2O$$

• Соли образуются при взаимодействии кислот с основаниями или с амфотерными гидроксидами.

$$Cu(OH)_2+H_2SO_4\rightarrow CuSO_4+2H_2O$$

• Соли можно получить, используя химическую реакцию обмена, протекающую между кислотой и другой солью.

$$FeS+H_2SO_4 \rightarrow FeSO_4+H_2S\uparrow$$

• Соли образуются при взаимодействии щелочей с растворимыми в воде солями.

$$2NaOH+Cu(NO_3)_2\rightarrow 2NaNO_3+Cu(OH)_2\downarrow$$

• Соли образуются в реакциях обмена, протекающих между другими солями.

$$AgNO_3+KBr \rightarrow AgBr \downarrow +KNO_3$$

• Соли можно получить, разлагая некоторые другие соли.

$$2KClO_3 \rightarrow 2KCl + 3O_2$$
 (+ катализатор)

Получение кислых, основных, комплексных солей:

• Кислые соли образуются при взаимодействии средних солей с кислотами.

$$Na_2SO_4+H_2SO_4\rightarrow 2NaHSO_4$$

• Кислые соли образуются при неполной нейтрализации многоосновных кислот.

$$NaOH+H_2SO_4\rightarrow NaHSO_4+H_2O$$

• Кислые соли образуются при действии избытка кислотного оксида на основание.

• Основные соли образуются при взаимодействии щелочей с растворимыми в воде солями.

$$Ca(OH)_2+CaCl_2\rightarrow 2CaOHCl$$

• Основные соли образуются при взаимодействии избытка основания с кислотой.

$$Ca(OH)_2+HCl\rightarrow CaOHCl+H_2O$$

• Гидроксокарбонат меди (II), свинца (II), цинка и некоторых других металлов образуется при взаимодействии растворов солей этих металлов с растворами карбонатов.

$$2\text{CuSO}_4+2\text{Na}_2\text{CO}_3+\text{H}_2\text{O}\rightarrow(\text{CuOH})_2\text{CO}_3\downarrow+\text{CO}_2\uparrow+2\text{Na}_2\text{SO}_4$$

• Комплексные соли образуются при действии растворов щелочей на амфотерные гидроксиды.

$$2KOH+Zn(OH)_2 \rightarrow K2[Zn(OH)_4]$$

• Комплексные соли образуются при действии растворов щелочей на амфотерные оксиды.

$$2NaOH+ZnO+H_2O\rightarrow Na_2[Zn(OH)_4]$$

Протокол наблюдений

Лабораторная работа № 1 «Химические свойства кислот, оснований, солей»

Выполнил: студент группы 1208
Титова Соявя

№ опыта	Реакция	Наблюдение
	CuSO ₄ -¶NaOH→Cu(OH) ₂ ↓+.No ₂ 50 ₄	Выпарает Синий осорок
1.12	MgSO ₄ -®NaOH→Mg(OH) ₂ ↓+ No. 50 H	Выпарение Белого скавна
	FeCl3-BNaOH→Fe(OH)3+3NaCl	Выпарение коричневого осадка
	$Cu(OH)_2 \downarrow 2HC1 \rightarrow CuCl_2 + 2H_2O$	РОСТВОРЕНИЕ СИНВГО ОСОДКА → — Е/у *идкость
2.5	$Mg(OH)_2\downarrow + 2HCl \rightarrow MgCl_2 + 2H_2O$	pact Bopenue Benois occupia ->
	Fe(OH) ₃ ↓+3HCl→FeCl ₃ +3.Ḥ ₂ O	растворение осадка кор заета ->
1.14	NaOH+HCl→. NoCl + H2O	15 NOOH + p/p -> EUGKOCTE MUNUMOBOTO YEETA + HCl -> 5/4 *UGKOCTE
16	NiSO ₄ NaOH→Ni(OH) ₂ ↓+.№ ₂ 50 ₄	Выпарение осадка зеленого увега
1.16	$Ni(OH)_2 \downarrow \uparrow \uparrow \uparrow HCI \rightarrow NiCl_2 + 2 \uparrow \uparrow \downarrow \uparrow \downarrow 0$	растворение зел осадка - Б/у жидкость
	$ZnSO_4$? $NaOH \rightarrow Zn(OH)_2 \downarrow + .Na_2 SO_4$	Выпадение Бельго огадка
.18	$Zn(OH)_2 \downarrow - \mathcal{H}Cl \rightarrow ZnCl_2 + 2\mathcal{H}_2O$	Растворение Бел. осадка -> Б/у жидкость
4	$Zn(OH)_2 \downarrow - NaOH \rightarrow Na_2[Zn(OH)_4]$	растворение Бел. осадка -> Б/4 *идкость
	$Cr_2(SO_4)_3+NaOH-2Cr(OH)_3+2Na_2SO_4$	Выпадение осадка сего-синего цвета
	Cr(OH)₃↓\$HCl→CrCl₃+\$Ḥ₂O	Растью рение охадка -> прозрачном жидкость
10	$Cr(OH)_3 \downarrow \frac{1}{2}NaOH \rightarrow Na_3[Cr(OH)_6]$	pacis econg> mpozpannow *ug. uzympyghoro
.19	$Al_2(SO_4)_3+NaOH-2Al(OH)_3\downarrow+3Na_2SO_4$	Выпарение Белого всадка
	AI(OH)3↓HCI→AICI3+3H2O	borresberne gerolo ecadro - 2/7 undrocte
K	$Al(OH)_3\downarrow +NaOH \rightarrow Na[Al(OH)_4]$	paars, Ben. Ocagka -> Bly *ugkocto

№ опыта	Реакция	Наблюдение
	Na ₂ SO ₄ +BaCl ₂ →BaSO ₄ ↓+ZNaCl	Bunagenue Genoto ocages
2.8	Na ₂ CO ₃ +CaCl ₂ →CaCO ₃ ↓+2Nact	BPILLA SENATO OCCUBRO
2.12	CoCl2+NaOH→CoOHCl↓+. Macl	Выпадение синего осадка
	CoOHCI↓+NaOH→Co(OH)2↓+,NaCl	темно-розовино осадка
2.13	CoOHCl↓+HCl→CoCl ₂ +. H ₂ O	Растяюрение Тен-роз. «садка -> Розовая прозрачная жидкость

Опыт		Ренол Фтиленн	METUNOPAH*	MH ANKATOP. BYMATA
	H_2O	прозрачный	оранхевый	*ENTOIL
1.13	NaOH	POSOBBIL	KENTULL	синий
2.3	HCl	5/4	КРАСНЫЙ	КРАСНЫЙ

Работа выполнена «22 » сентя БРЯ 2021 г.

OFPAEOTKA PEZYALTATOB

DIDDIT N 1.12

3) Fe Cl + 3 NOOH - Fe (OH) + 3 NO Cl xooping sereso(111) moping Harper 5 Fe (OH) + 3 No + 3 Cl - Fe (OH) + 3 No + 3 Cl -

Onbit N 2.5

Dnb1 ~ 1.14.

Opbit N 1.16

AP(OH) 1 + 3H + 3CP - AP3+ 3CP+3H2D

AP(OH)3 + 3H+ -> AP3+3H,0

On417 N 2.12.

Onbit N 2.13.

Onbit N 1.13, 2.3

	PEHON PTAJENH	METUNOPAHT	HHDUKATOP CYMATA
NCXDDHDIŃ YBET NADMKATOPA (NEWIPANDHAS CPEDA)	ПРозрачный	OPAH*EBLIN	жёлтый
CDEDY KNCV V 3	8/4	KPACHLIN	КРАСНЫЙ
LY FAOYHA 9 CPEDA	POZOBEIN	жёлтый	синий

Вывод

Выполнив данную лабораторную работу, мы на опытах доказали некоторые свойства оснований, солей и кислот, а также провели опыты с получением данных соединений.

Один из способов получения основания: необходимо к раствору соли соответствующего металла добавить раствор соли. К их свойствам можно отнести: взаимодействие с кислотами, с получением соли и воды; взаимодействие с растворимыми в воде солями, с получением нерастворимого основания (наблюдали выпадения осадка); взаимодействие щелочи с амфотерным гидроксидом, с получением комплексной соли (осадок растворялся). Щелочь (растворимое основание) можно определить с помощью фенолфталеина – смена цвета жидкости на малиновый, метилоранжа — в щелочах он желтый; индикаторную бумагу щелочи окрашивают в синий.

К свойствам кислот на опытах мы отнесли их взаимодействие с основаниями и амфотерными гидроксидами, с получением соли и воды (в ходе проведения опыта мы наблюдали растворение осадка). При взаимодействии с фенолфталеином цвет жидкости не меняется, с метилоранжем цвет жидкости сменяется на красный, индикаторная бумага окрашивается также в красный.

Соли образуются при взаимодействии щелочи с растворимыми в воде солями. К свойствам солей можно отнести: взаимодействие растворимой соли с другой, при этом в результате должно получатся хотя бы одно практически нерастворимое вещество; взаимодействие с щелочами растворимых в воде солей.

Auct nenparaenin

Oneit N2.12.

Coll, + NOOH - FLOOMEL + NOCE

TAPPED THEFTHE THEFTHE TO PROBANTO (11)

60 + 200 + Na + OH - 60HCl + Na + Cl

lo2++ON+Cl-→COONCl