	$g_i(w) = 0$ and $h_j(w) < 0$? If yes, strong		Linear Regression	Smoothing Spline
Expectation	duality and compl. slackness: $\alpha_j h_j(w) = 0$	Prior Knowledge of $p(\theta)$,	Model of data: $\mathbf{Y} = \mathbf{X}^T \boldsymbol{\beta} + \boldsymbol{\varepsilon}$	Add penalty for second deriv.: $RSS(f, \lambda)$ =
$\mathbb{E}[X] = \int_{\Omega} x p(x) dx = \int_{\omega} x \mathbb{P}[X = x] dx$	Matrix PSD	Find Posterior Density: $p(\theta \mathcal{X})$.	$\mathbf{X} \in \mathbb{R}^{(d+1) \times n}, eta \in \mathbb{R}^{d+1}$	$\sum_{n=1}^{n} (y_i - f(x_i))^2 + \lambda \int (f''(x))^2 dx$
$\mathbb{E}_{Y X}[Y] = \mathbb{E}_{Y}[Y X]$	Det(2x2): $ad - bc$ Det(3x3): $aei + bfg +$	$\mathcal{X}^n = \{x_1, \cdots, x_n\}$	additive Gaussian noise $\varepsilon \sim \mathcal{N}(0, \mathbb{I}\sigma^2)$	Gaussian Process Regression
$\mathbb{E}_{X,Y}[f(X,Y)] = \mathbb{E}_X \mathbb{E}_{Y X}[f(X,Y) X]$	cdh - gec - hfa - idb Symm. matrix is psd if det of all principal minors (removing	$p(\theta \mathcal{X}^n) = \frac{p(x_n \theta)p(\theta \mathcal{X}^{n-1})}{\int p(x_n \theta)p(\theta \mathcal{X}^{n-1})d\theta}$	$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} \hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, (\mathbf{X}^T\mathbf{X})^{-1}\boldsymbol{\sigma}^2)$	joint Gaussian over all outputs
Variance & Covariance $\mathbb{V}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$	k-th row & column, including matrix itself)	Frequentist vs Bavesian	and $p(\mathbf{Y} \mathbf{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N}(\mathbf{Y} \mathbf{X}^T\boldsymbol{\beta}, \mathbb{I}\sigma^2)$	$\mathbf{y} = \mathbb{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \boldsymbol{\varepsilon} \sim \mathcal{N}(0, \sigma^2 \mathbb{I}_n)$
$\mathbb{V}[X+Y] = \mathbb{V}[X] + \mathbb{V}[Y]$ for X, Y iid	are nonnegative.	Bayes (MAP): allows priors, provides distri-	(1) Ordinary Least Squares	We can rewrite the distribution
	Parametric Density Estimation	bution when estimating parameters, requi-	Setting: Minimize RSS.	$P(\begin{bmatrix} \mathbf{y} \\ \mathbf{y}_* \end{bmatrix}) = \begin{bmatrix} \mathbf{y} \\ \mathbf{y}_* \end{bmatrix}$
2 2 2	Maximum Likelihood (MLE)	res efficient integration methods when computing posteriors, prior often induces regu-	$\mathcal{L} = KSS(p) = \sum_{i=1}^{n} (y_i - x_i, p)^{-1}$	$\mathbf{K} = \mathbf{K} + \mathbf{\sigma}^2 \mathbf{I} $ k
$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$	Likelihood: $\mathbb{P}[\mathcal{X} \theta] = \prod_{i \le n} p(x_i \theta)$	larization term. Frequentist method (MLE):	Solution differentiate Cwrt B	$k(y_*]$ k^T $k(x_*, x_*) + \sigma^2$
Conditional Probabilities & Bayes	Find: $\hat{\theta} \in \arg\max_{\theta} \mathbb{P}[\mathcal{X} \theta]$	does not allow priors, provides a single point when estimating parameters, requires only	$\hat{\boldsymbol{\beta}}^{\text{OLS}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{v}$	<i>k</i> is the kernel function. Lengthscale: how
$\mathbb{P}[X Y] = \frac{\mathbb{P}[X,Y]}{\mathbb{P}[Y]} = \frac{\mathbb{P}[Y X]\mathbb{P}[X]}{\mathbb{P}[Y]}$. Posterior:	Procedure: solve $\nabla_{\theta} \log \mathbb{P}[\mathcal{X} \theta] \equiv 0$	differentiation methods, MLE estimators	Is an orthogonal projection with lowest	far can we reliably extrapolate.
P(model data), likelihood: P(data model),	Consistent (conv. θ_0 in prob.) & asymp. eff.	are consistent, equivariant, asymptotically	variance of all unbiased estimates.	Gaussian Process Prediction
1 //	& asymp. \mathcal{N} & equivariant $(g(\hat{\theta}) \text{ MLE})$	normal, asymptotically efficient (for finite samples not necessarily efficient).		
	MLE for Gaussian: 1) $\mathcal{L} \propto Nlog \Sigma + \sum_{i}^{N} (x_i - \mu)^T \Sigma^{-1}(x_i - \mu)$			$\mu_{y_*} = \mathbf{k}^T (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{y},$
	$2)\hat{\mu} = \frac{1}{N}\sigma_i^N x_i$	Gradient Descent	(2) Ridge Regression (L^2 penalty)	$\sigma_{y_*}^2 = k(x_*, x_*) + \sigma^2 - \mathbf{k}^T (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{k}$
V 2770	3)Trick: derive wrt. $\Sigma^{-1} \rightarrow \hat{\Sigma} =$		Setting : Penalize energy in β .	$\mathbf{k} = k(x_*, \mathbf{X}) \mathbf{K}_{ij} = k(x_i, x_j)$
	Similar. derive wit. $\Sigma \to \Sigma = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)(x_i - \mu)^T$	Conv. isn't guaranteed. Less zig-	$\mathcal{L} = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta}^T \boldsymbol{\beta}$	General Conditional Gaussian Prediction
$Ber(x \theta) = \theta^x (1-\theta)^{1-x} 0 \le \theta \le 1$	4) Show $\hat{\Sigma}$ is biased: $\mathbb{E}(\hat{\Sigma}) =$	zag by adding momentum: $\theta^{(l+1)} \leftarrow$	$\hat{\beta}^{\text{ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$	
	$\frac{1}{N} \sum_{i}^{N} \mathbb{E}(x_{i}x_{i}^{T}) - \frac{1}{N^{2}} \sum_{i}^{N} \sum_{j}^{N} \mathbb{E}(x_{i}x_{j}^{T}) - \frac{1}{N^{2}} \sum_{i}^{N} \sum_{j}^{N} \mathbb{E}(x_{i}x_{j}^{T})$	$\theta^{(l)} - \eta \nabla_{\theta} \mathcal{L} + \mu (\theta^l - \theta^{(l-1)}).$	Bayesian view: $Y (X,\beta) \sim \mathcal{N}(X^T\beta,\sigma^2)$	$P(\begin{bmatrix} \mathbf{a1} \\ \mathbf{a2} \end{bmatrix}) = \mathcal{N}(\begin{bmatrix} \mathbf{a1} \\ \mathbf{a2} \end{bmatrix} \mid \begin{bmatrix} \mathbf{u1} \\ \mathbf{u2} \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix})$
	$\frac{1}{N} \sum_{i} \mathbb{E}(x_{i}x_{i}) - \frac{1}{N^{2}} \sum_{i} \sum_{j} \mathbb{E}(x_{i}x_{j}) - \frac{1}{N} \sum_{j} \mathbb{E}(x_{i}x_{j}) - \frac{1}{N} \sum_{i} \mathbb{E}(x_{i}x_{j}) - \frac{1}{N} \sum_{j} \mathbb{E}(x_{j}x_{j}) - \frac{1}{N} \sum_{j} \mathbb$	D 111 34 1 0 1	Bayesian view: $I(X, p) \sim \mathcal{N}(X, p, o)$	$p(\mathbf{a2} \mathbf{a1}) = \mathcal{N}(\mathbf{a2} \mathbf{u2} + \Sigma_{21}\Sigma_{11}^{-1}(\mathbf{a1} -$
	$\frac{1}{N^2} \sum_{i}^{N} \sum_{j}^{N} \mathbb{E}(x_i x_j^T) + \frac{1}{N^2} \sum_{i}^{N} \sum_{j}^{N} \mathbb{E}(x_i x_j^T) + \frac{1}{N^2} \sum_{i}^{N} \sum_{j}^{N} \mathbb{E}(x_i x_j^T) + \frac{1}{N^2} \sum_{j}^{N} \sum_{i}^{N} \mathbb{E}(x_i x_j^T) + \frac{1}{N^2} \sum_{j}^{N} \mathbb{E}(x_j x_j^T) + \frac{1}{N^2} \sum_{j}^{N} \mathbb{E}(x_j$	Robbins-Monro alg.: Compute θ^* s.t. $\mathbb{E}_Z[f(Z;\theta)] = 0$ by updating	$(2) \operatorname{Lagg}(U^1 \operatorname{nonalty})$	$\mathbf{u1}$), $\Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$)
	$\overline{N^2} \mathcal{L}_i \mathcal{L}_j \mathbb{E}(x_i x_j) - \overline{N} \mathcal{L}_i \mathbb{E}(x_i x_i) -$	$H^{(k)} = H^{(k-1)} - \eta(k) f(z_i \cdot H^{(k-1)})$ Batch	(5) Lusse (2) Periutey,	Bias-Variance tradeoff
	$\frac{1}{N^2} \sum_{i}^{N} \sum_{j}^{N} \mathbb{E}(x_i x_j^T) = \frac{1}{N} N(\Sigma + \mu \mu^T) -$	GD: Higher gradient precision, larger gen. error. SGD: Large train sets, faster	$C = \sum_{i=1}^{n} (y_i - y_i^T \beta)^2 + \lambda \sum_{i=1}^{d} \beta_i $	$Bias(\hat{f}) = \mathbb{E}[\hat{f}] - f$
Cramer Rao lower bound	$\frac{1}{N^2}(N^2\mu\mu^T + N\Sigma) = \Sigma - \frac{1}{N}\Sigma \neq \Sigma$	improvements escapes local min	2	$\operatorname{Var}(\hat{f}) = \mathbb{E}[(\hat{f} - \mathbb{E}[\hat{f}])^2]$
	Tricks used here: $\sum_{T} \mathbb{E}[(T, T)] = \mathbb{E}[T, T]$	Newton's Method (opt. grad. descent)	$= (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta} _1$	Squared Error Decomposition
$\mathcal{L}_n(\sigma) = \mathbb{L}[\partial_{\theta^2}], \sigma_{\theta} := \sigma_{\theta}$	$ \Sigma = \mathbb{E}[(x_i - \mu)(x_i - \mu)^T] = \mathbb{E}[x_i x_i^T] - \mu \mu^T \to \mathbb{E}[x_i x_i^T] = \Sigma + \mu \mu^T \text{ and for } i \neq j $	Use 2nd order derivation. (Hessian)	Dayesian view. $I(A, p) \sim \mathcal{N}(x, p, 0, 1)$	$\mathbb{E}_D \mathbb{E}_{X,Y}[(\hat{f}(X) - Y)^2] =$
Efficiency of such $\hat{\Omega}_{1} \circ (\Omega_{1})$	$\mu\mu \longrightarrow \mathbb{E}[x_ix_i] = 2 + \mu\mu$ and for $i \neq j$ $\mathbb{E}[x_ix_i^T] = \mu\mu^T$ Also useful:	$\theta^{\text{new}} \leftarrow \theta^{\text{old}} - \nabla_{\theta} \mathcal{L} / \nabla_{\theta}^2 \mathcal{L}$ GD de-	Laplace prior: $p(p_i) = \frac{\kappa}{4\sigma^2} exp(- p \frac{\kappa}{2\sigma^2})$	$\mathbb{E}_{X,Y}[(\mathbb{E}_{Y X}[Y]-Y)^2]$ (noise var)
	$1 = N$ T_1 $1 = N$ T_2 T_3	pends $\eta(k)$, but comp. easier. NM requires	Lasso has no closed form. (4) Bayesian Linear Regression	$+\mathbb{E}_X\mathbb{E}_D[(\hat{f}_D(X)-\mathbb{E}_D[\hat{f}(X)])^2]$ (var.)
$\lim_{n\to\infty} e(\theta_n) = 1$ (asymp. efficient)		H^{-1} , but better updates and no learn rate.	Setting: Define a prior over β .	$+\mathbb{E}_X[(\mathbb{E}_D[\hat{f}_D(X)] - \mathbb{E}_{Y X}[Y])^2]$ (bias ²)
- C	Maximum A Posteriori (MAP)	Data Types	e.g. Ridge: Assume β distributed as:	With $\mathbb{E}_{Y X}[Y]$ the expected label and
	Assume prior $\mathbb{P}(\theta)$	monadic: $X: O \to \mathbb{R}^d$	$p(\beta \Lambda) = \mathcal{N}(\beta 0, \frac{\sigma^2}{\lambda}\mathbb{I}) \propto \exp(-\frac{\lambda}{2\sigma^2}\beta^T\beta)$	$\mathbb{E}_D[\hat{f}(X)]$ the expected classifier.
$\frac{\partial}{\partial \mathbf{x}}(\mathbf{x}^{\top}\mathbf{x}) = 2\mathbf{x}$	Find: $\hat{\theta} \in \arg \max_{\theta} P(\theta \mathcal{X})$	dyadic: $X: O^{(1)} \times O^{(2)} \to \mathbb{R}^d$ pairwise: $X: O^{(1)} \times O^{(1)} \to \mathbb{R}^d$		Classification
	$= \arg \max_{\theta} P(\mathcal{X} \theta) P(\theta)$	pairwise: $X: O^{(1)} \times O^{(1)} \to \mathbb{R}^{d}$ polyadic: $X: O^{(1)} \times O^{(2)} \times O^{(3)} \to \mathbb{R}^{d}$	For $\Lambda = \frac{\sigma^2}{\lambda} \mathbb{I}$. Linear for $\sigma = 1$. Then, given observed \mathbb{X} , \mathbb{Y} , use Bayes' theo-	Perceptron
$\partial (\mathbf{h} \top \mathbf{A} - \mathbf{v}) = \mathbf{A} \top \mathbf{h} = \partial (\mathbf{a} \top \mathbf{v} \mathbf{h}) = \mathbf{a} \mathbf{h} \top$	Note: $P(\mathcal{Y} \mathcal{X}, \beta) \sim \mathcal{N}(X^T \beta, \sigma^2)$	polyadic: $X : O^{(*)} \times O^{(*)} \times O^{(*)} \rightarrow \mathbb{R}^n$ nominal = qualitative (sweet, sour),	rem to find the posterior	Compute w s.t. $w^{2} x_{i} > 0$ if $y_{i} = 1$.
$\frac{\partial}{\partial \mathbf{x}}(\ \mathbf{x} - \mathbf{b}\ _2) = \frac{\mathbf{x} - \mathbf{b}}{\ \mathbf{x} - \mathbf{b}\ _2}$	$\rightarrow \arg \max_{\theta} log(P(\mathcal{Y} \mathcal{X}, \beta))$	ordinal = absolute order of items,	$p(\beta \mathbf{X}, \mathbf{y}, \Lambda, \sigma) = \mathcal{N}(\mu_{\beta}, \Sigma_{\beta})$	$L(y, c(x)) = w^T x $ if class. wrong, 0 oth.
$\frac{\partial \mathbf{x}}{\partial \mathbf{x}} (\ \mathbf{x}\ _{2}^{2}) = \frac{\partial}{\partial \mathbf{x}} (\mathbf{x}^{T} \mathbf{x}) = 2\mathbf{x}$	$= \arg\max_{\theta} \frac{1}{2\sigma^2} Y - X^T \beta ^2$	quantitative (interval: differences, ratio: zero value, absolute: values) = numbers	$\mu_{\beta} = \sigma^2 (\mathbf{X}^T \mathbf{X} + \sigma^2 \mathbf{\Lambda})^{-1} \mathbf{X}^T \mathbf{y}$	Algorithm: Pick a sample x_i , update weights
$\frac{\partial \mathbf{x}}{\partial \mathbf{x}} (\ \mathbf{x}\ _2) - \frac{\partial \mathbf{x}}{\partial \mathbf{x}} (\mathbf{x} \cdot \mathbf{x}) = 2\mathbf{x}$	20	Risks and Losses	$\Sigma_{\beta} = \sigma^2 (\mathbf{X}^T \mathbf{X} + \sigma^2 \Lambda)^{-1}$	by $-\eta(k)y_ix_i$ if misclassified (unt. thresh.).
0 A 11 11 / 0 A 11 11 A	Bayesian learning	Expected Risk:	Nonlinear Regression	Fisher's Linear Discriminant Analysis
$\partial \mathbf{X}$ (1)	$p(X = x data) = \int p(x, \theta data)d\theta =$	$R(\hat{c}) = \sum_{y \le k} P(y) \mathbb{E}_{P(x y)} [\mathbb{I}_{\hat{c}(x) \ne y} Y = y]$	Idea: Feature space transformation	Maximize distance of the means of the pro-
$\frac{\partial \overline{\mathbf{X}}}{\partial \mathbf{X}}(\mathbf{A}) = \mathbf{A} \cdot \mathbf{A} \qquad \mathbf{A} = 1/ \mathbf{A} $	$\int p(x \theta)p(\theta data)d\theta$ Estimate Gaussian: $X \sim \mathcal{N}(\mu, \sigma^2)$,	or $R(\hat{c}) = P(\hat{c}(X) \neq y)$	Model: $\mathbf{Y} = f(\mathbf{X}) = \sum_{m=1}^{M} \beta_m h_m(\mathbf{X})$	jected classes and minimize var per class.
$\partial (\mathbf{x}_{7}-1)$ $\mathbf{x}_{7}-1$ $\partial \mathbf{Y} \mathbf{x}_{7}-1$		Empirical Risk Minimizer (ERM) \hat{f} :	Transformation $h_m(\mathbf{X}): \mathbb{R}^d \to \mathbb{R}$	proj mean: $\tilde{\mu}_{\alpha} = \frac{1}{n_{\alpha}} \sum_{x \in \mathcal{X}_{\alpha}} w^{T} x = w^{T} \mu_{\alpha}$
Constrained Convex Optimization	$P(\mu) \sim \mathcal{N}(\mu_0, \sigma_0^2)$ then $\sigma_n^2 = \frac{\sigma^2 \sigma_0^2}{n \sigma_0^2 + \sigma^2}$,	$\hat{f} \in \arg\min_{f \in \mathcal{C}} \hat{R}(\hat{f}, Z^{train})$	Cubic Spline	Dist of proj means: $ w^T(\mu_1 - \mu_2) $ Classes
$\min_{w} f(w) \text{ s.t. } g_i(w) = 0, h_j(w) \leq 0.$	$\mu_n=rac{n\sigma_0^2}{n\sigma_0^2+\sigma^2}\hat{\mu}_n+rac{\sigma^2}{n\sigma_0^2+\sigma^2}\mu_0$ with	$\hat{R}(\hat{f}, Z^{train}) = \frac{1}{n} \sum_{i=1}^{n} Q(Y_i, \hat{f}(X_i))$	e.g. for $d = 1$ with knots at ξ_1 and ξ_2	proj. var: $\tilde{\Sigma}_1 + \tilde{\Sigma}_2 = w^T (\Sigma_1 + \Sigma_2) w$ Fishers Criterion (maximized):
$\sim (n, n, n, n)$	0	$\hat{R}(\hat{f}, Z^{test}) = \frac{1}{m} \sum_{i=1}^{n+m} Q(Y_i, \hat{f}(X_i))$	$h_1(X) = 1$ $h_3(X) = X^2$ $h_5(X) = (X - \xi_1)_3^3$	Fishers Criterion (maximized): $ w^T(\mu_1 - \mu_2) ^2 \qquad w^T(\mu_1 - \mu_2)(\mu_1 - \mu_2)^T w$
$\sum_{j} \alpha_{j} h_{j}(w), \alpha_{j} \geq 0.$ Slater: Is w s.t.	$\mu_n = \frac{1}{n} \sum_{i=1}^n x_i$	m = i = n+1	$h_2(X) = X$ $h_4(X) = X^3$ $h_6(X) = (X - \xi_2)_+^3$	$\frac{ w^{T}(\mu_{1}-\mu_{2}) ^{2}}{\tilde{\Sigma}_{1}+\tilde{\Sigma}_{2}} = \frac{w^{T}(\mu_{1}-\mu_{2})(\mu_{1}-\mu_{2})^{T}w}{w^{T}(\Sigma_{1}+\Sigma_{2})w}$

LDA/QDA	Scoring function: $f_{\mathbf{w}}(z, \mathbf{y}) = \mathbf{w}^T \psi(\mathbf{z}, \mathbf{y})$	$\mathbb{V}[\hat{f}(x)] \approx \frac{\sigma^2}{R}$ if the estimators are uncor-	$0 < \delta < 1/2$ s.t. if \mathcal{A} receives sample of	Backpropagation
Assume $p(x y) = \mathcal{N}(x \mu_y, \Sigma_y)$. When	Classify: $\hat{z} = h(\mathbf{y}) = \arg\max_{\mathbf{z} \in \mathbb{K}} f_{\mathbf{w}(\mathbf{z}, \mathbf{y})}$	related.	size $> poly(1/\varepsilon, 1/\delta, size(c))$, it outputs	With layer l weight matrix $w^{[l]}$ outputs
$\Sigma_0 = \Sigma_1$, $p(y x) = \sigma(w^T x + w_0)$ (LDA),	SVM objective (loss \triangle): $min_{w,\xi \ge 0} \frac{1}{2} w^T w +$	Combining Classifiers	\hat{c} s.t. $\mathbb{P}_{\mathcal{Z}\sim\mathcal{D}^n}(\mathcal{R}(\hat{c})\leq\varepsilon)\geq 1-\delta$ ($\hat{\mathcal{R}}:=$	$z^{[l]} = w^{[l]}a^{[l-1]} + b^{[l]}$, activations $a^{[l]} =$
in general $\sigma(x^T W x + x^T w + w_0)$ (QDA).	$C / \nabla^n \nabla^n = \{ 1, \dots, T \} $	Input: classifiers $c_1(x), \dots, c_B(x)$		
	$C/n\sum_{i=1}^{n} \xi_{i}$ s.t. $w^{T}\psi(z_{i}, \mathbf{y_{i}}) - \Delta(z, z_{i}) - \sum_{i=1}^{T} \xi_{i}$	Infer $\hat{c}_B(x) = \operatorname{sgn}(\sum_{b=1}^B \alpha_b c_b(x))$	not be in C): $\mathbb{P}[\mathcal{R}(\hat{c}) - \inf_{c \in C} \mathcal{R}(c) \leq$	$g^{[l]}\left(z^{[l]}\right), \cos t C: \frac{\partial C}{\partial w_r^{[l]}} = \frac{\partial C}{\partial z^{[l]}} \frac{\partial z^{[l]}}{\partial w_r^{[l]}}, \frac{\partial C}{\partial b^{[l]}} =$
Generalize Perceptron with margin and	$\mathbf{w}^T \mathbf{\psi}(z, \mathbf{y_i}) \ge -\xi_i \forall z \ne z_i \forall i$	with weights $\{\alpha_b\}_{b=1}^B$	$ \varepsilon \geq 1 - \delta$.	$\partial C \ \partial z^{[l]} \ \partial C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
kernel. Find plane that max. margin m s.t.:	re not met by largest amount to constraints	Requires diversity ind of the classifiers	for any class $C: \mathcal{R}(\hat{c}) - \inf_{c \in \mathcal{C}} \mathcal{R}(c) \leq$	$\frac{\partial C}{\partial z^{[l]}} \frac{\partial z^{[l]}}{\partial b^{[l]}}, \frac{\partial C}{\partial z^{[l]}} = \frac{\partial C}{\partial z^{[l+1]}} \frac{\partial z^{[l+1]}}{\partial a^{[l]}} \frac{\partial a^{[l]}}{\partial z^{[l]}}$
, T	until tolerance threshold reached.	Bagging	$2 \sup_{c \in \mathcal{C}} \hat{\mathcal{R}}_n(c) - \mathcal{R}(c) $, where \hat{c} is	Regularization
	Advantages/Disadvantages SVM	Train on bootstrapped subsets.	the empirical risk minimizer. For finite	Avoid overfitting on complex nets.
$\min_{w \in V_0} 1/2 w ^2$ s.t. $z_i(\mathbf{w}^T \mathbf{v} + w_0) > 1$	+: Allows ∞-dim. representations, adapted	Sample: $\mathcal{Z} = \{(x_1, y_1), \cdots (x_n, y_n)\}$	\mathcal{C} : $\mathbb{P}\left(\sup_{c\in\mathcal{C}}\left \hat{\mathcal{R}}_n(c)-\mathcal{R}(c)\right >\varepsilon\right)\leq$	Early Stopping separate data into train/error/validation sets.
Functional Margin Problem	to structured classific., formulated as QP	\mathbb{Z}^* : chose i.i.d from \mathbb{Z} w. replacement.	$2 \mathcal{C} \exp\left(-2n\varepsilon^2\right)$	Drop Out Combine thinned nets with
	(efficient): Requires careful selection of kernel and feature engineering, use of ker-	Covariance small, variance similar, bias	, , – ()	removed nodes.
$= \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^n \alpha_i [z_i (\mathbf{w}^T \mathbf{y}_i + w_0) - 1]$	nels make susceptible to curse of dim.	weakiy affected.	Rectangle learning	Bayesian priors on w's
	Kernels	Random Forest (Bagging strategy)	Pick tight rectangle. Diff. between picked	Convolutional Neural Network
	Similarity based reasoning	Ensemble of trees is trained via bagging.	Pastangles or officiently DAC learnables	Modelling invariance. Convolutional
$\mathbf{w}^* = \sum_{i=1}^n \alpha_i z_i \mathbf{y_i} 0 = \sum_{i=1}^n \alpha_i z_i$	Gram Matrix $K = K(\mathbf{x}_i, \mathbf{x}_j), 1 \le i, j \le n$	sen at random and splitting is only done with	runs in polynom. $1/\varepsilon$ (error param.) and	Layers (filters on a region) & Pooling Layers (aggregate nodes together)
		one of those. Reduces corr. between trees.	$1/\delta$ (confidence val.).	Autoencoder: explicit density
FF	$K(\mathbf{x}, \mathbf{x}')$ pos.semi-def. $(x^t Kx \ge 0)$	Boosting		Data compression purposes, Output should
$L(\alpha) - L_{i=1} \alpha_i 2 L_{i,j=1} \alpha_i \alpha_j \lambda_i \lambda_j y_1 y_1$	Contin.: $\int_{\Omega} k(x, x') f(x) f(x') dx dx' \ge 0$	Combine uncorr. weak learners in sequence.	Nonparametric Bayesian methods	reproduce input.⇒ PCA. Denoising auto-
	If $K_1 \& K_2$ are kernels K is too:	(Weak to avoid overfitting).	Beta $(x a,b) = B(a,b)^{-1}x^{a-1}(1-x)^{b-1}$:	encoders reproduce data from partial obser-
	$K(\mathbf{x}, \mathbf{x}') = K_1(\mathbf{x}, \mathbf{x}')K_2(\mathbf{x}, \mathbf{x}')$	Coeff. of \hat{c}_{b+1} depend on \hat{c}_b 's results AdaBoost (minimizes exp. loss)	prob. of Bernoulli proc. after observing	vations (blanking out parts of input), more
$\mathbf{x}\mathbf{v}^* - \nabla^n \alpha^*$	$K(\mathbf{x}, \mathbf{x}') = \alpha K_1(\mathbf{x}, \mathbf{x}') + \beta K_2(\mathbf{x}, \mathbf{x}')$	` '	a-1 success and $b-1$ failures. Expended to multivariate case with Dirichlet distribution	robust. GAN: implicit density
$\mathbf{w} = \sum_{i=1}^{n} \alpha_i z_i \mathbf{y}_i$ $\mathbf{w}_0^* = -\frac{1}{2} (\min_{z_i=1} \mathbf{w}^{*T} \mathbf{y}_i + \max_{z_i=-1} \mathbf{w}^{*T} \mathbf{y}_i)$	$K(\mathbf{x}, \mathbf{x}') = K_1(h(\mathbf{x}), h(\mathbf{x}'))$ $h: \mathcal{X} \to \mathcal{X}$	Init: $\mathcal{X} = \{(x_1, y_1), \cdots, (x_n, y_n)\}, w_i^{(1)} = \frac{1}{n}$	That will give multivar probe based on	Sample from noise \rightarrow training data. 2-
where ⊘ maximize the dual problem ()nly	$n(\mathbf{x},\mathbf{x}) = n(n_1(\mathbf{x},\mathbf{x}))$ n. polynomiai	Fit $\hat{c}_b(x)$ to \mathcal{X} weighted by $w^{(b)}$	finite counts! But we don't know exactly	player game: generator network fools dis-
Support Vectors $(\alpha_i \neq 0)$ contribute to the	with positive coefficients / exp function	$\varepsilon_b = \sum_{i=1}^n w_i^{(b)} \mathbb{I}_{\{\hat{c}_b(x_i) \neq y_i\}} / \sum_{i=1}^n w_i^{(b)}$	which multivar. distribution works. With	criminator by creating fake images, discri-
evaluation, dual is quad. optim. in simplex	$K(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})K_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$ or	$\alpha_b = \log \frac{1 - \varepsilon_b}{\varepsilon_b} > 0$	tion. Is a conjugate prior.	 minator distinguishes between real and fa- ke images. Gen: upsampling network with
	$K_3(\phi(\mathbf{x}), \phi(\mathbf{x}')) \text{ with } \phi: \mathcal{X} \to \mathbb{R}^m$		Stick-breaking Dirichl. proc.	fractionally strided convs, Disc: convolu-
	Kernel Function Examples:	$w_i^{(b+1)} = w_i^{(b)} \exp(\alpha_b \mathbb{I}_{\{\hat{c}_b(x_i) \neq y_i\}})$	Repeatedly draw β_i from Beta $(x 1,\alpha)$	tional network.
	$K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}' K(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + 1)^p$	return $\hat{c}_B(x) = \operatorname{sgn}(\sum_{b=1}^B \alpha_b \hat{c}_b(x))$	with fixed α and calculate: $\rho_k = \beta_k (1 - 1)^{-1}$	Variational Autoencoders
	$K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T A \mathbf{x}' \text{(symmpsd)}, RBF(Gauss):$	Best approx. at log-odds ratio.	$\sum_{i=1}^{k-1} \rho_i$). Then $G(\theta) = \sum_{i=1}^{k} \rho_i \delta_{\theta_k}(\theta)$	$\log p(x_i) \ge \operatorname{elbo}(x_i) = (Z \sim q_{\phi}(z x_i))$
Introduce slack to relax constraints	$K(\mathbf{x}, \mathbf{x}') = \exp(- \mathbf{x} - \mathbf{x}' _2^2/h^2)$	Like stagewise-additive modeling with exp. $1/\sqrt{\Sigma}$	$(\theta_k \sim H)$ is sample from $DP(\alpha, H)$. The	$\mathbb{E}_{Z}[\log p_{\theta}(x_{i} z)] + \mathbb{E}_{Z}[\log p_{\theta'}(z)/q_{\phi}(z x_{i})]$
minimize $\frac{1}{2}w^Tw + C\sum_{i=1}^n \xi_i$ such that:		loss: $\min_{\alpha_M, b^{(M)}, \dots, \alpha_1, b^{(1)}} 1/n \sum_{i \leq n}$	prior (analog. CRP):	Max. mutuai iiio, iiiii. KL uiveigence
• (• • • • • • • • • • • • • • • • • •	not p.s-de.g: $\mathbf{x} = [1, -1], \mathbf{x}' = [-1, 2]$	$L(y_i, \alpha_1 b^{(1)}(x_i) + \ldots + \alpha_M b^{(M)}(x_i))$	$\binom{N_{k,-i}}{N_{k,-i}}$ existing k	between prior $p_{\theta'}(z)$ and post. $q_{\phi}(z x_i)$.
Lagrangian: $L(\mathbf{w}, w_0, \xi, \alpha, \beta) = \frac{1}{2} \mathbf{w}^T \mathbf{w} +$	Size of feature space for kernel $(c + x * y)^d$,		$\mathbb{P}[z_i = k z_{-i}, \alpha] = \begin{cases} \frac{\overline{\alpha} + N - 1}{\alpha} & \text{existing } k \\ \frac{\overline{\alpha} + N - 1}{\alpha} & \text{otherwise} \end{cases}$	Likelihood $P_{\theta}(x z)$ and post. params (e.g.
$C\sum_{i=1}^{n} \xi_{i} - \sum_{i=1}^{n} \alpha_{i}[z_{i}(\mathbf{w}^{T}\mathbf{y}_{i} + w_{0}) - 1 + \xi_{i}]$	$x, y \in \mathbb{R}^N$: (n+d choose d)	Trains a max-margin classifier, i.e.	Final Gibbs campler:	mean, var) often encoded by NN. Training: Define prior, post., likelihood, max. elbo.
$-\sum_{i=1}^n eta_i \xi_i$	Bayes Decision Theory	$y_i \sum_{t \leq M} \alpha_t b^{(t)}(x_i) \xrightarrow{M \to \infty} 1$. Trains self-	$\mathbb{P}[z:=k z:\alpha,\mu] =$	Mixture Models
C controls margin maximization vs.	Define $L(v, c(x))$, min $_{a}$ $ cv _{b}$ $ c(x) _{b}$	ava eniky (local changes) interpolators		Gaussian Mixture
constraint violation. Dual Problem	$\approx \min_{c} 1/m \sum_{i \leq m} L(y_i, c(x_i))$, opt. classi-	Difference	$\begin{cases} \frac{N_{k,-i}}{\alpha+N-1} p(x_i x_{-i,k},\mu) & \text{existing } k \\ \alpha & \alpha & \alpha \end{cases}$	EM-Algorithm
same as usual SVM but with supplementary constraint: $C \ge \alpha_i \ge 0$,	fier: $c^*(x) = \arg\min_a \sum_{y} p(y x)L(y, a)$	(1) Boosting keeps identical training data,	$\begin{cases} \frac{\alpha + \alpha}{\alpha + N - 1} p(x_i, \mu) & \text{otherwise} \end{cases}$	Latent Variable: unknown data \rightarrow What
$\xi_i^* = \max(0, 1 - z_i(w^{*T}y_i + w_0^*))$ Kuhn-	Metrics	bagging can vary training data for each clas-		EM does ML for unknown parameters.
Tucker Conditions: $\alpha_i^*(z_i(w^Ty_i + w_0))$	precision: $\frac{\text{tp}}{\text{tp}+\text{fp}}$, recall: $\frac{\text{tp}}{\text{tp}+\text{fp}}$, F1: $\frac{2}{-1+-1}$	sif. (2) Boosting weighs the prediction of each classifier accord. to its accuracy, bag-	Init: assign all data to a cluster, with prior	
	Types $p^{-1}+p^{-1}$	ging gives same importance to each.	π_i , with $\sum_{k=1}^K \pi_i < 1$ (s.t. new clusters possible). For with stick breaking	- Latent var. $M_{XC} = \begin{cases} 1 & \text{c generated } X \\ 0 & \text{else} \end{cases}$
Non-Linear SVM	Discriminative trains $c: \mathcal{X} \to \mathcal{Y}$, prob. dis-	Notes	Sible). E.g. with suck-breaking.	
Use kernel in discriminant function:	cr. also computes $P(Y X)$ (degrees of be-	Adaboostgives large weight to samples that	Then remove x from k and compute new θ_k , then compute Gibbs sampler prob. (CRP),	$P(\mathcal{A}, M \theta) = \prod_{x \in \mathcal{X}} \prod_{c=1}^{n} (\pi_c P(\mathbf{X} \theta_c))^{m_{\mathbf{X}c}}$ $P(\mathbf{X} \theta_c)^{m_{\mathbf{X}c}}$
$g(\mathbf{x}) = \sum_{i, i=1}^{n} \alpha_i z_i K(\mathbf{x_i}, \mathbf{x})$		are hard to classify: those could be outliers. For bagging, there is a chance that imba-	and sample the new cluster assignment	
	standing, new samples, outlier detection)	lanced data-sets lead to bootstrap samples	$z_i \sim p(z_i x_{-i}, \theta_k)$. If cluster is empty.	$ \gamma_{\mathbf{x}c} = \mathbb{E}[M_{\mathbf{x}c} \mathcal{X}, \boldsymbol{\theta}^{(j)}] = \frac{P(\mathbf{x} c, \boldsymbol{\theta}^{(j)})P(c \boldsymbol{\theta}^{(j)})}{P(\mathbf{x} \boldsymbol{\theta}^{(j)})} $
2	Ensemble Methods	missing a class alltogether. Fix by making	remove it and decrease K.	M-Step
	Combining Regressors	the bootstrap size large enough s.t. at least	Neural Networks	$\mu_c^{(j+1)} = \frac{\sum_{\mathbf{x} \in \mathcal{X}} \gamma_{\mathbf{x}c} \mathbf{x}}{\sum_{\mathbf{x} \in \mathcal{X}} \gamma_{\mathbf{x}c}}$
Each sample y is assigned to a structured	Set of estimators: $\hat{f}_1(x), \dots, \hat{f}_B(x)$	one point is included.	Output units	$\sum_{x \in \mathcal{X}} \gamma_{xc}$
output label z	simple average: $\hat{f}(x) = \frac{1}{B} \sum_{i=1}^{B} \hat{f}_i(x)$	PAC learning Learning algorithm \mathcal{A} can learn concept c if for any distribution and $0 < \varepsilon < 1/2$,	Binary (sigmoid): $\sigma(z) = 1/(1 + e^{-z})$	$(\sigma_c^2)^{(j+1)} = \frac{\sum_{x \in \mathcal{X}} \gamma_{xc} (\mathbf{x} - \mu_c)^2}{\sum_{x \in \mathcal{X}} \gamma_{xc}}$
	Bias $[\hat{f}(x)] = \frac{1}{R} \sum_{i=1}^{R} \operatorname{Bias}[f_i(x)]$	c if for any distribution and $0 < c < 1/2$	Multiclass (softmax): $v_i = a^{\beta z_i} / \nabla \cdots a^{\beta z_i}$	$\pi^{(j+1)} - \frac{1}{2} \nabla$
$\psi(z,y)$	$B[Ias[J(x)]] - B L_{i=1} D[as[J_i(x)]]$	ϵ in for any distribution and $0 < \epsilon < 1/2$,	indicional (solulian). $y_i = e^{-it} / \sum_{j \leq l} e^{-it}$	$- \mathcal{X} \leq x \in \mathcal{X} /xc$