

HPC-lab

Final Project CUDA-Aware MPI with UVA

Phuong Nguyen, Zirong Cai

Please adjust group name in tumuser.sty. Department of Electrical and Computer Engineering Technical University of Munich

November 8th, 2021

- Introduction
- Implementation
- Results and Discussion
- 4 Optimization
- 5 Future Work & Conclusion

SWE with CUDA - Current Implementation

Figure 1 Caption

- Allocate data on both Host and Device memory.
- Need to copy data between Host Device explicitly.
- Additional data structures are required for exchanging ghost layer with top & bottom neighbors (topLayer, bottomLayer).

SWE CUDA with MPI

CUDA Aware MPI

Figure 2 CUDA MPI

Figure 3 CUDA-Aware MPI

Unified Memory

- Unified Memory is a single memory address space accessible from any processor in a system.
- CUDA system software and/or the hardware takes care of migrating memory

System Memory GPU1 Memory

Ox0000
OxFFFF
OxFFFF
GPU0
GPU1
GPU1
GPU1
GPU1
PCI-e

UVA: Single Address Space

Figure 4 No Unified Memory Vs. Unified Memory

GPUDiect

NVIDIA GPUDirect technologies provide high-bandwidth, low-latency communications with NVIDIA GPUs.

- GPUDirect P2P
- GPUDirect RDMA

Figure 5

- 1 Introduction
- 2 Implementation
- Results and Discussion
- 4 Optimization
- 5 Future Work & Conclusion

SWE with CUDA-Aware MPI

Implementing Unified Virtual Address (UVA):

- h, hv, hu are allocated on UVA.
- Other helper variables for kernel functions: still on device memory.
- No explicit Copy data between Host Device.

MPI implementation:

- Taking UVA pointers.
- Pack data directly from the grid data (which is on UVA).
- For top/bottom layer exchange: strided data access is possible, using MPI_Type_vector(I_nXLocal + 2, 1, I_nYLocal + 2, MPI_FLOAT, &I_mpiRow);

Error Test

Error test implementation:

- -DENABLE_TEST: prints h to an output file.
- test/error_check.py: calculates the absolute difference between 2 input data files.
- test/run_test.sh: executable script (compilation, runs, error check.

```
// 2D subarray Datatype for MPI File set view
MPI_Type_create_subarray(ndims, gsizes.\
        lsizes. starts, MPI_ORDER_C,\
        MPI_FLOAT, &subarr_type);
// Datatype for printing data
MPI_Type_vector(l_nXLocal, l_nYLocal, \
        1 nYLocal + 2. MPI_FLOAT, &print_type);
MPI File open(MPI COMM WORLD, filename.c str().
MPI_MODE_WRONLY + MPI_MODE CREATE.\
MPI INFO NULL. &file):
MPI_File_set_view(file, 0, MPI_FLOAT, subarr_type.\
        "native". MPI_INFO_NULL):
MPI_File_write_all(file, &h_test[1][1], 1,\
        print_type. &status):
MPI_File_close(&file):
```

Listing 1 Parallel IO for printing h

SWE-CUDA Issue (1)

Figure 6 Visualisation of WaterHeight

	1 cuda	4 mpi	4 cuda
1 mpi	0.0275	0.0373	29929
1 cuda	0.0000	0.0648	29929

Table 1 Abs difference of h

SWE-CUDA Correction (2)

- USE MPI was not defined.
 - \rightarrow No calls synchCopyLayerBeforeRead.
 - \rightarrow No memcpy D->H
- No calls synchGhostLayerAfterWrite
 - ightarrow No memcpy H->D

	1 cuda	4 mpi	4 cuda
1 mpi	0.02754	1.28397	0.02754
1 cuda	0.00000	1.31151	0.00000

Table 2 Abs difference of *h* after fixing bugs

- Introduction
- 2 Implementation
- Results and Discussion
 - Validation
 - Initial Performance
- 4 Optimization
- 5 Future Work & Conclusion

Validation

Runs job on multiple GPUs with the run_gpu.sh script

```
$ mpirun -np 4 ../gpu_bind.sh ./swe-cuda
   -x ${NX} -y ${NY} -c ${STEPS} -o .
```

NVID	IA-SMI	470.63	3.01	Driver	Version:	470.63.01	CUDA Ve	rsion:	11.4
GPU Fan	Name Temp	Perf	Persist Pwr:Usa		Bus-Id	Disp. Memory-Usag	A Volat je GPU-U		
30%	NVIDIA 35C		246W ,			0:01:00.0 Of iB / 10018Mi		9%	N/A Default N/A
1 30%	NVIDIA 33C	GeFo P2	234W ,			0:41:00.0 Of iB / 10018Mi		В%	N/A Default N/A
2 30%			rce 230W ,			0:81:00.0 Of iB / 10018Mi		В%	N/A Default N/A
3 30%	NVIDIA 36C	GeFo P2	233W ,			0:C1:00.0 Of iB / 10018Mi		В%	N/A Default N/A

i	Proce	sses:					i
İ	GPU	GI	CI	PID	Type	Process name	GPU Memory
Ĺ		ID	ID				Usage
Ė							
Ĺ	0	N/A	N/A	307874	C	./build/ns	313MiB
Ĺ	0	N/A	N/A	2268977	C	./build/swe-mpi	467MiB
Ĺ	1	N/A	N/A	2268982	C	./build/swe-mpi	467MiB
İ	2	N/A	N/A	2268978	C	./build/swe-mpi	467MiB
İ	3	N/A	N/A	2268981	C	./build/swe-mpi	467MiB
		N/A N/A N/A N/A	N/A N/A N/A N/A	2268977 2268982 2268978	C C C C	./build/swe-mpi ./build/swe-mpi ./build/swe-mpi	313M: 467M: 467M: 467M:

Figure 7 GPU Monitoring

Validation

Figure 8 Pure-MPI vs CUDA-Aware-MPI

CUDA-Aware MPI implementation produced correct results.

	1 cuda-aware	4 cuda-aware
1 mpi	0.0275	0.0275
1 cuda	0.0000	0.0000
4 cuda	0.0000	0.0000

Table 3 Error table

Initial Performance

Figure 9 Runtime comparison of the two implementations

Hardware specs

NVIDIA GeForce RTX™ 3080 ?

- $\to \text{No NVLINK}$
- \rightarrow No GPUDirect support

Profiling Output

Time(%)	Time (ms) Name
76.4 13.9 4.8 1.7	292 cudaMallocManaged 53 cudaDeviceSynchronize 18 cudaLaunchKernel 6 cudaMemcpyAsync
Time(%)	Time (ms) Operation
47.1 39.4 13.5	2 [CUDA Unified Memory memcpy HtoD] 2 [CUDA Unified Memory memcpy DtoH] 1 [CUDA memcpy DtoH]
Time(%)	Time (ms) Range
44.8 28.8 15.4 11.0	171 MPI:MPI_Init 110 MPI:MPI_Finalize 58 MPI:MPI_Sendrecv 42 MPI:MPI_Allreduce

139 499 57 ne (ns)	cuMemcpyAsync cuStreamSynchronize cudaMallocManaged cudaDeviceSynchronize Operation	
139 499 57 ne (ns)	cuStreamSynchronize cudaMallocManaged cudaDeviceSynchronize Operation	
499 57 me (ns)	cudaMallocManaged cudaDeviceSynchronize Operation	
57 me (ns)	cudaDeviceSynchronize Operation	
527 [CUI	IDA memcny HtoDl	
467 [CU]	IDA memcpy DtoHl	
		ItoD1
me (ns)	Range	
7147	MDT - MDT - C d	
	3 [CU ne (ns) 7147 288 187	ne (ns) Range 7147 MPI:MPI_Sendrecv

Listing 2 2 MPI

Listing 3 4 MPI

- 1 Introduction
- 2 Implementation
- Results and Discussion
- Optimization
- 5 Future Work & Conclusion

Data Packing


```
l_waveBlock->setGhostLayer();
while (iteration) // time integration loop
{
exchangeGhostLayers();

synchGhostLayerAfterWrite(); //data unpacking;
l_waveBlock->computeNumericalFluxes();

MPI_Allreduce(&maxTimeStep, &maxTimeGlobal,...);

l_waveBlock->updateUnknowns(l_maxTimeGlobal);
synchCopyLayerBeforeRead() // data packing

iteration++;
}
```


Figure 11 Performance improvement with Packing

Data Migration

- cudaMemAdvise
 - cudaMemAdviseSetPreferredLocation
 - cudaMemAdviseSetAccessedBy
- cudaMemPrefetchAsync

Figure 12 Performance improvement with MemAdvise

Non Blocking Communication

- MPI_Isend and MPI_Irecv
- Only communication overlap, no overlap with computations

Figure 13 Performance improvement with Non Blocking

- 1 Introduction
- 2 Implementation
- Results and Discussion
- 4 Optimization
- 5 Future Work & Conclusion

Future Work

- Testing the implementation with different Runtime optimization:
 GPU Direct RMDA, GPU Direct P2P, MPS, etc
- Overlapping Computations with Communications.

Conclusion

- Successfully implemented CUDA-Aware MPI for SWE
- Fixed some bugs of the original code
- Achieved almost the same performance as the normal cuda version using CUDA-Aware-MPI without GPUDiect support

Figure 14 CUDA-Aware MPI - Final performance