Assignments, Stoper bicoxametr, elp

Heterogeneity, Pareto Optimality

https://powcoder.com

School of Economics, UNSW

Add WeChat powcoder

Back to our Arrow-Debreu Consumer's Problem:

- The problem:
 - Choose c_G, c_B, c_0, a_G, a_B
 - to maximize

Assignment@Project+Exam Help

• subject to

$$c_0 + q_G \cdot a_G + q_B \cdot a_B = e_0,$$

https://powcoder.com

• Form the Lagrangian Add WeChat powcoder

$$L = u(c_0) + \beta \left[\pi_G \cdot u(\overline{c_G}) + \pi_B \cdot u(c_B) \right] - \lambda_0 \left[c_0 + q_G \cdot a_G + q_B \cdot a_B - e_0 \right] - \lambda_1 \left[c_G - a_G - e_G \right] - \lambda_2 \left[c_B - a_B - e_B \right]$$

Solving the Consumer's Problem: (cont'd)

• Equate the partial derivatives of the Lagrangian to zero:

Assignment
$$P_{AE}(c_0, c_0, a_G, a_G, a_G, a_G)$$
 Exam Help $\frac{\partial L}{\partial c_G} = \beta \pi_G \cdot u'(c_G) - \lambda_1 = 0$ https://powecoder.com

$A_{out}^{\mathrm{Partial}} \overset{\mathrm{vert}}{\overset{\mathrm{the}}{\overset{\mathrm{audtipliers}}{\overset{\mathrm{v}}{\overset{\mathrm{a}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}{\overset{\mathrm{o}}{\overset{\mathrm{o}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}}{\overset{\mathrm{o}}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}{\overset{\mathrm{o}}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}}{\overset{\mathrm{o}}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}}{\overset{\mathrm{o}}}}{\overset{\mathrm{o}}}}}{\overset{\mathrm{o}}}}{\overset{o}}}{\overset{o}}}{\overset{o}}}}$

$$c_0 + q_G \cdot a_G + q_B \cdot a_B - e_0 = 0$$
$$c_G - a_G - e_G = 0$$
$$c_B - a_B - e_B = 0$$

Solving the Consumer's Problem: (cont'd)

• Expressing atomic prices as functions of consumption

Assignment Project Exam Help

• The prices of the atomic (Arrow-Debreu) securities:

Add We
$$C_{q_G}$$
 hat powcoder

$$q_B = \frac{\lambda_2}{\lambda_0} = \beta \pi_B \frac{u'(c_B)}{u'(c_0)}$$

The Prices of Atomic (Arrow-Debreu) Securities

- Combine the solution to the consumer's problem with the market clearing conditions:
- Assignment Project Exam Help $q_G = \frac{\lambda_1}{\lambda_0} = \beta \pi_G \frac{u'(c_G)}{u'(c_0)}$

https://powcoder.com

• Market clearing conditions:

Addrice $C_0 = e_0$; $c_G = e_G$; $c_B = e_B$.

$$q_G = \beta \pi_G \frac{u'(e_G)}{u'(e_0)}$$
$$q_B = \beta \pi_B \frac{u'(e_B)}{u'(e_0)}$$

Trade

Is there any trade of atomic (Arrow-Debreu) securities possible in this economy?

Assignmentai Project Exam Help

 $c_0 + q_G \cdot a_G + q_B \cdot a_B = e_0,$

https://powcoder.com

• and market clearing

Add WeChatepowcoder

- gives us $a_G = a_B = 0$ in this equilibrium
- Since all agents are the same in this economy (represented by one representative agent) no trade is possible!

Arrow-Debreu Consumer's Problem: Multiple States

- The setting:
 - two periods 0 and 1;
- $Assign{$\bullet$} \begin{picture}(0,0) \put(0,0) \put($
 - The problem:

https://powcoder.com

$$\underset{\text{subject to}}{\text{Add}} \underset{\text{to}}{\text{WeChat}} \underset{\text{powcoder}}{\overset{u(c_0) + \beta \sum}{\sum}} \pi_{s_1} \cdot u(c_{s_1})$$

$$c_0 + \sum_{s_1 \in S_1} q_{s_1} \cdot a_{s_1} = e_0,$$

$$c_{s_1} = a_{s_1} + e_{s_1}, \text{ for all } s_1 \in S_1$$

Solving the Consumer's Problem

• Form the Lagrangian

• Equate the partial derivatives of the Lagrangian to zero: $\prod_{s=1}^{s} \prod_{s=1}^{s} \prod_{s$

$$\begin{array}{c} \partial L/\partial c_0=u'\left(c_0\right)-\lambda_0=0\\ \mathbf{Add}_{L}/\partial s_1=\beta & \mathbf{1}_{a}u'\left(c_{s_1}\right)-\lambda_{s_1}=0, \text{ for all } s_1\in S_1\\ \mathbf{Add}_{L}/\partial s_1=\lambda_{s_1}\mathbf{1}_{a}u'\left(c_{s_2}\right)-\lambda_{s_1}=0, \text{ for all } s_1\in S_1\\ \mathbf{Add}_{L}/\partial s_1=\lambda_{s_1}\mathbf{1}_{a}u'\left(c_{s_2}\right)-\lambda_{s_1}=0, \text{ for all } s_1\in S_1\\ \mathbf{1}_{a}u'(s_1)-\lambda_{s_1}u'(s_2)-\lambda_{s_2}u'(s_2)-\lambda_{s_2}u'(s_2)\\ \mathbf{1}_{a}u'(s_1)-\lambda_{s_2}u'(s_2)-\lambda_{s_2}u'(s_2)-\lambda_{s_2}u'(s_2)\\ \mathbf{1}_{a}u'(s_2)-\lambda_{s_2}u'(s_2)-\lambda_{s_2}u'(s_2)-\lambda_{s_2}u'(s_2)\\ \mathbf{1}_{a}u'(s_2)-\lambda_{s_2}u'(s_2)-\lambda_{s_2}u'(s_2)-\lambda_{s_2}u'(s_2)\\ \mathbf{1}_{a}u'(s_2)-\lambda_{s_2}u'(s_2)-\lambda_{s_2}u'(s_2)-\lambda_{s_2}u'(s_2)\\ \mathbf{1}_{a}u'(s_2)-\lambda_{s_2}u'(s_2)-\lambda_{s_2}u'(s_2)-\lambda_{s_2}u'(s_2)\\ \mathbf{1}_{a}u'(s_2)-\lambda_{s_2}u'(s_2)-\lambda_{s_2}u'(s_2)\\ \mathbf{1}_{a}u'(s_2)-\lambda_{s_2}u'(s_2)\\ \mathbf{1}_{a}u'(s_2)-\lambda_{s_2}u'(s_2)\\ \mathbf{1}_{a}u'(s_2)-\lambda_{s_2}u'(s_2)-\lambda_{s_2}u'(s_2)\\ \mathbf{1}_{a}u'(s_2)-\lambda_{s_2}u'(s_2)-\lambda_{s_2}u'(s_2)\\ \mathbf{1}_{a}u'(s_2)-\lambda_{s_2}u'(s_2)-\lambda_{s_2}u'(s_2)\\ \mathbf{1}_{a}u'(s_2)-\lambda_{s_2}u'(s_2)-\lambda_{s_2}u'(s_2)\\ \mathbf{1}_{a}u'(s_2)-\lambda_{s_2}u'(s_2)-\lambda_{s_2}u'(s_2)\\ \mathbf{1}_{a}u'(s_2)-\lambda_{s_2}u'(s_2)-\lambda_{s_2}u'(s_2)\\ \mathbf{1}_{a}u'(s_2)-\lambda_{s_2}$$

• Partial w.r.t. the multipliers λ_0, λ_{s_1} are just the constrains:

$$c_0 + \sum_{s_1 \in S_1} q_{s_1} \cdot a_{s_1} - e_0 = 0$$

$$c_{s_1} - a_{s_1} - e_{s_1} = 0, \text{ for all } s_1 \in S_1.$$

The Prices of Atomic (Arrow-Debreu) Securities

 \bullet Expressing atomic prices as functions of consumption

Assignment Project Exam Help $q_{s_1} = \frac{\lambda_{s_1}}{\lambda_0} = \beta \pi_{s_1} \frac{u(c_{s_1})}{u'(c_0)}, \text{ for all } s_1 \in S_1.$

· https://poweoder:com

$$c_0 = e_0$$
; $c_{s_1} = e_{s_1}$, for all $s_1 \in S_1$.

· Add We what powerder

$$q_{s_1} = \beta \pi_{s_1} \frac{u'(e_{s_1})}{u'(e_0)}$$
, for all $s_1 \in S_1$.

Stochastic Discount Factor

• The prices of the atomic (Arrow-Debreu) securities:

$$\begin{array}{c} q_{s_1} = \beta \pi_{s_1} \frac{u'(e_{s_1})}{u'(e_0)}, \text{ for all } s_1 \in S_1. \\ \textbf{Assignment of a specific period is the sum of all plane} \\ \text{atomic security prices in this period} \end{array}$$

https: //percolater //percon //percon

• The stochastic discount factor, m_1 , is a random variable

$$\begin{array}{l} \textbf{A} & \textbf{its value is unknown at } t = 0; \\ \textbf{A} & \textbf{C} & \textbf{C} & \textbf{A} & \textbf{C} &$$

• Then the discount factor is

$$df(1) = \sum_{s_1 \in S_1} \beta \pi_{s_1} \frac{u'(e_{s_1})}{u'(e_0)} = \sum_{s_1 \in S_1} \pi_{s_1} m_{s_1} = E[m_1]$$

where $E[\cdot]$ is the expectation operator.

Forward atomic prices and risk neutral probabilities

• The (spot) prices of the atomic (Arrow-Debreu) securities:

Assignment $\Pr^{q_{s_1} = \beta \pi_{s_1} \frac{u'(e_{s_1})}{e'}}_{\text{The forward prices of the atomic (Arrow-Debreu) securities:}}$, for all $s_1 \in S_1$.

$$\mathbf{f}_{s_1} = \mathbf{f}_{s_1} = \mathbf{f$$

• The forward prices are often called risk neutral probabilities

Add WeChat*powcoder

If agents are risk neutral, their utility is linear u' = const and f_{s_1} simplifies to

$$\widetilde{\pi}_{s_1} = \pi_{s_1} / \sum_{s_1 \in S_1} \pi_{s_1} = \pi_{s_1}, \, \forall s_1 \in S_1.$$

Pricing state-contingent claims

• Using the atomic state prices, often called, *pricing kernel*:

$$p = q \cdot c,$$

Assignment of state contingent payments Help

• Using risk-neutral measure:

measure using risk-neutral probabilities $\widetilde{\pi}$ • Van Gerhard Count attr: powcoder

$$p = E(m_1c),$$

c - random variable, realised value depends on a state, m_1 - stochastic discount factor,

 $E(\cdot)$ - expectation taken with respect to physical probability measure using actual probabilities π

Heterogeneity

Stringerin reputable projected ximined Help

- Heterogeneity either in endowments or in preferences • Consider R agents, each indexed by k; COM
- with utilities u^k
- each atent knowses optimal t_0^k and t_0^k wooder

Consumers' Problem

• Each agent k maximises expected utility, U^k , given by

• subject to period-0 constraint

https://powcoder.com

• and a series of period-1 constraints for every possible state:

Add Wechattopowcoder

• Market clearing (now makes more sense)

$$\sum_{k=1}^{K} c_0^k = \sum_{k=1}^{K} e_0^k; \qquad \sum_{k=1}^{K} c_{s_1}^k = \sum_{k=1}^{K} e_{s_1}^k, \, \forall s_1$$

Market clearing conditions

Homogeneous consumers (representative agent):

$$c_0(s_0) = e_0(s_0); c_1(s_1) = e_1(s_1), \forall s_1 \in S_1.$$

nment Project Exam Help trade, so consume all you can.

Heterogeneous consumers: $\frac{\text{https://powcoder.com}}{\sum_{c_0^k} c_0^k(s_0)} = \sum_{k=1}^k e_0^k(s_0); \qquad \sum_{k=1}^k c_{s_1}^k = \sum_{k=1}^k e_{s_1}^k, \ \forall s_1$

$$\sum_{k=1}^{\infty} c_0^k (s_0) = \sum_{k=1}^{\infty} e_0^k (s_0); \qquad \sum_{k=1}^{\infty} c_{s_1}^k = \sum_{k=1}^{\infty} e_{s_1}^k, \, \forall s_1$$

. AddosWeChat powcoder

- The total number of goods from all endowments in each time-state must equal the total number of goods consumed.
- Agents may use atomic (Arrow-Debreu) securities to shift consumption between time-states, but all endowment must be consumed jointly in the respective time-state.

Characterisation of the Equilibrium

• From the first order conditions the prices of the atomic (Arrow-Debreu) securities

Assignment Project Exam Help

$$\mathbf{https:} / \not= p^k \underbrace{\mathbf{p}^k \mathbf{o} \mathbf{w}^{u^{k'}} (e^k_1 + a^k_{s_1})}_{u^{k'}} \underbrace{\mathbf{e}^k_0 - \sum\limits_{s_1 \in S_1} q_{s_1} \cdot a^k_{s_1}}_{\mathbf{s}_1 \cdot \mathbf{o}} \mathbf{m}$$

fAatkdndWeChat powcoder

• also impose market clearing which implies that

$$\sum_{k=1}^{K} a_{s_1}^k = 0, \, \forall s_1 \in S.$$

Example: Heterogeneous Consumers

- Consider a world in which there are two periods: 0 and 1.
- A SSI galdrs with and Follow there are two possible states of nature: a good S is $S_1 \in S_1 = \{G, B\}$. They are equally probable, i.e., $\pi_G = \pi_B = 1/2$
 - · https://pow.coder.com
 - Their preferences over apples are exactly the same and are given by the following expected utility function:

Add We Chat powcoder

where subscript k = 1, 2 denotes consumers.

• The consumer's time discount factor $\beta = 0.9$.

Example: Heterogeneous Endowment

The consumers are identical in every way (e.g. utility function Sasi Continue of the index of the consumers at in the table below:

https://poweedexicom Consumer 1 4 $\frac{G B}{4 2}$

Add Wethat powcoder

There is some *inequality*: consumer 1 has better endowments in both states.

Questions

Assignment Project Exam Help

- What is the equilibrium condition?
- · https://poweoder.com
- Welfare gain from free trade?

Add WeChat powcoder

Solving for Equilibrium

Equilibrium prices (same and taken for both consumers)

Assignment Project Exam Help

$$\begin{array}{c} \mathbf{https://powcoder.com} \\ \mathbf{https://powcoder.com} \\ q_B = \beta \pi_B \frac{1/c_G^1}{1/2}, \ q_B = \beta \pi_B \frac{1/c_G^2}{1/2} \Rightarrow c_B^1 = c_B^2 \end{array}$$

Clearing and tion Cechat post Coder

Equilibrium consumption: $c_G^1 = c_G^2 = 3$; $c_B^1 = c_B^2 = 1.5$

Equilibrium trades: $a_G^1 = -a_G^2 = -1$; $a_B^1 = -a_B^2 = -0.5$

Gains from trade

Assignment Project Exam Help

https://powcoder.com

Consumers mutually benefit from trade. Why?

Constant Con

How does discount factor, β^k , affect the allocation in this case?

Example: two symmetric agents

 $\bullet\,$ two agents (1,2); two periods, two states (A,B) in period 1

Assign references (Project Exam Help

- same endowments in period 0 $e_0^1 = e_0^2 = e_0$
- different (but /symmetrical") end wments in period 1: 11 LDS (e100 M/2 COGEL 2 COM

٨ ٨٨	Consumers				oda)r
Auu	WeCha	uρ	\bigcup_{A} V	V _B	Uut	J I
	Consumer 1	z	\overline{e}	\overline{E}		
	Consumer 2	z	E	e		

Example: two symmetric agents

• two agents (1,2); two periods, two states (A,B) in period 1 $\pi_A = \pi_B = 1/2$

- \bullet different (but "symmetrical") endowments in period 1:
- $. \text{ http:}_{ab}^{b} e_{ab}^{e_{ab}^{2}} e_{ab}^{e_{ab}^{2}} e_{ab}^{e_{ab}^{2}} \bar{e}_{ab}^{e_{ab}^{2}} \bar{e}_{ab$
- in symmetric equilibrium, $a_A^1 = -a_B^1 = -a_A^2 = a_B^2 = a$
- The prices of the Arrow Debreu securities: $q_A = q_B$ $q_A = \frac{1}{2}\beta \frac{u'\left(e_A^1 + a\right)}{u'\left(e_0\right)} = \frac{1}{2}\beta \frac{u'\left(e_A^2 a\right)}{u'\left(e_0\right)},$

where a is such that

$$u'\left(e_A^1+a\right)=u'\left(e_A^2-a\right)\Rightarrow a=\tfrac{1}{2}\left(e_A^2-e_A^1\right)=\tfrac{1}{2}\left(E-e\right).$$

Gains from trade

Assignment Project Exam Help

- Compare utilities U^1 and U^2 when a=0 (autarky) vs. utilities with optimal a found from optimisation.
- Mttpsishgpowerodercom do we know?
- Consumer are reducing the risk of consuming smaller amounts of the round "bld" state realises by giving any some of the consumption in the good "state.
- In other words, consumers are *Risk Sharing*.

Difference in risk aversion

Assignment Project Exam Help • More risk-averse consumers would hedge their consumption

- More risk-averse consumers would hedge their consumption against the B state.
- Hoterisks consumers would self Arrow Debreu securities and boost their consumption today or in G in hope that B is not going to realise.
- This is also a form of risk sharing.

 Add We Chat powcoder

Summary of Gains of Trade

Assignment Project Exam Help

- Consumption smoothing
- list thang due poitwe ochevments m Risk sharing due to difference in risk aversions

Add WeChat powcoder

Pareto optimality

Assignment Projectu Eurasmwhele p is impossible to make any one consumer better off without making at least one consumer worse off.

- Under the first welfare theorem (we do not prove it here)

 competitive equilibrium (prees and taken is given) is
 equivalent to Pareto optimality.
- Some conditions: completeness existence of atomic (Arm Debrut secretics for all substitutions) results for all substitutions are independent).