

Digital Talent Scholarship 2022

Device Based model in TF Lite

Lead a sprint through the Machine Learning Track

Agenda

- Training own model
- Running TF model in Android App

Objektif Pembelajaran

- Mengerti cara kerja TensorFlow Lite
- Memahami apa itu model quantization
- Dapat menjelaskan cara kerja GPU delegates
- Mengenal Optimization techniques bagi TensorFlow Lite

Are your students ML-ready?

Recap

PART 1

Machine Learning Models in Mobile and Embedded Systems

Features

- Lightweight
- Low-latency
- Privacy
- Improved Power consumption
- Efficient model format
- Pre-trained models

Components in TensorFlow Lite

Converter (to TensorFlow Lite format)

- Mengubah Model Tensorflow menjadi bentuk yang lebih efisien dibaca oleh interpreter
- Memperkenalkan optimization untuk meningkatkan kinerja model dan/atau untuk mengurangi size model

Interpreter (Core)

- Support multiple platforms (Android, iOS, embedded Linux, microcontrollers)
- Platform APIs for accelerated inference

Architecture

Performance

Performance

Acceleration	Available
Software	NN API (also a delegate)
Hardware	Edge TPU
	GPU
	CPU Optimizations (ARM and x86)

NN API

Android Neural Networks API (NNAPI) adalah Android C API yang dirancang untuk menjalankan operasi komputasi intensif bagi machine learning di perangkat Android. NNAPI dirancang untuk menyediakan lapisan dasar fungsionalitas bagi framework machine learning dengan level lebih tinggi, seperti TensorFlow Lite dan Caffe2, yang membuat dan melatih jaringan neural. API ini tersedia di semua perangkat yang menjalankan Android 8.1 (API level 27) atau yang lebih baru.

TensorFlow Lite, Experimental GPU Delegate - YouTube

Delegasi

Delegasi memungkinkan akselerasi perangkat keras model TensorFlow Lite dengan memanfaatkan akselerator di perangkat seperti GPU dan Digital Signal Processor (DSP).

Delegates

Techniques

- Quantization, Mengurangi presisi weight dan bias
- Weight pruning, Mengurangi jumlah parameter
- Model topology transform, Mengubah bentuk model
 - Tensor Decomposition
 - Distillation

Why Quantize?

- Semua jenis CPU platform disupport
- Mengurangi latency dan inference cost
- Low Memory Footprint
- Allow execution on hardware restricted-to or optimized-for fixed-point operations
- Optimized models for special purpose HW accelerators (TPUs)

Steps dalam optimizing

PART 2

Taking a look at the saved model format

Saving, converting, and optimizing a model

Saving, converting, and optimizing a model

Parameters for conversion

SavedModel

- Standar untuk serialize sebuah TensorFlow model
- Akan ada MetaGraph, sebuah data flow graph, untuk menyimpan metadata yang membantu prediksi model.
- Ada snapshot dari trained model (dengan weights dan computation model)
- Tidak memerlukan building-code model required
- Supports model versioning

DEMO Example 1

DEMO Example 2

Post-training quantization

- Mengurangi precision dengan 3 kali lipat lower latency
- Sedikit degradation pada akurasi model
- Optimization modes
 - Default (Both size dan Latency)
 - Size
 - Latency
- Efficiently represents an arbitrary magnitude of ranges
- Quantization target specification

Post-training integer quantization

DEMO Post-training quantization

Paths in Optimization

Optimizing your models in a nutshell Post-training Have a Quantization No Representative Dataset? Optimize for size / latency / Yes both Post-training Integer Quantization Limit to INT8 Ops? Use fallback Ops? Model Model Model Quantized Ops

Quantization in deep learning | Deep Learning Tutorial 49 (Tensorflow, Keras & Python) - YouTube

<u>Inside TensorFlow: TF Model Optimization Toolkit</u> (Quantization and Pruning) - YouTube

DEMO TFLite Interpreter in Python

PART 3

First primer on running models on mobile devices

Running Models

Pretrained models

Image classification

Object detection

Smart reply

Pose estimation

Segmentation

TensorFlow Hub

Classification modules Feature vector modules Embedding modules Not what you're looking for?

Build a custom model!

Getting a basic model running

Transfer learning

Transfer learning

DEMO Converting a model to TFLite

DEMO Transfer Learning with TFLite

Q & A

Thank You