Decision Tree

Use cases

"A decision tree is a graphical representation of all the possible solutions to a decision based on certain conditions"

 Starts with root and branches to number of decisions based on the conditions.

• Note: Questions resembles the data set

Decision Tree

- Decision tree is a supervised learning algorithm.
- It uses a tree-like model of decisions.
- It is used for both classification and regression.
- Decision Tree algorithms are referred to as CART or Classification and Regression Trees.
- Each node represents the predictor variable (feature)
- Link between the nodes represents a decision
- Each leaf node represents an outcome (response variable)

Structure of Decision Tree

Root Node: Starting point of the tree. This is a decision node at the topmost level where the first split performed. It represents the most significant predictor variable.

Internal Node: Represents a decision point (predictor variable) that leads to the prediction of outcome.

Leaf Nodes: Lowest nodes which represents final class of the decision outcome.

Branches: Represents connection between nodes. Each branch represents a response as yes or no.

Splitting: Dividing the root/internal node into different parts on the basis of some conditions.

Problem statement:

Uses titanic data set for predicting whether a passenger will survive or not.

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton
5	0	3	male	NaN	0	0	8.4583	Q	Third	man	True	NaN	Queenstown
6	0	1	male	54.0	0	0	51.8625	S	First	man	True	E	Southampton
7	0	3	male	2.0	3	1	21.0750	S	Third	child	False	NaN	Southampton
В	1	3	female	27.0	0	2	11.1333	S	Third	woman	False	NaN	Southampton
9	1	2	female	14.0	1	0	30.0708	С	Second	child	False	NaN	Cherbourg

• Construct decision tree model uses 3 features/attributes/columns from the data set, namely sex, age and sibsp (number of spouses or children along).

Which Question to ask and When?

Day	Weather	Temperature	Humidity	Wind	Play?
1	Sunny	Hot	High	Weak	No
2	Cloudy	Hot	High	Weak	Yes
3	Sunny	Mild	Normal	Strong	Yes
4	Cloudy	Mild	High	Strong	Yes
5	Rainy	Mild	High	Strong	No
6	Rainy	Cool	Normal	Strong	No
7	Rainy	Mild	High	Weak	Yes
8	Sunny	Hot	High	Strong	No
9	Cloudy	Hot	Normal	Weak	Yes
10	Rainy	Mild	High	Strong	No

Which one among them should you pick first?

But How do we choose the best attribute?

Or

How does a tree decide where to split?

Day	Weather	Temperature	Humidity	Wind	Play?
1	Sunny	Hot	High	Weak	No
2	Cloudy	Hot	High	Weak	Yes
3	Sunny	Mild	Normal	Strong	Yes
4	Cloudy	Mild	High	Strong	Yes
5	Rainy	Mild	High	Strong	No
6	Rainy	Cool	Normal	Strong	No
7	Rainy	Mild	High	Weak	Yes
8	Sunny	Hot	High	Strong	No
9	Cloudy	Hot	Normal	Weak	Yes
10	Rainy	Mild	High	Strong	No

Step by Step procedure for building decision tree

- Step 1: Select Best Attribute (A)
 - best predictor variable that separates the data into different classes most effectively or feature that best splits the data
- Step 2: Assign A as a decision variable for the root node
- Step 3: For each value of A, build a descend of the node
- Step 4: Assign classification labels to the leaf node
- Step 5: If data is correctly classified: Stop
- Step 6: Else iterate over the tree
 - Keep changing the position of predictor variables in the tree or change the root node also, to get the correct output

Reference: https://youtu.be/JMUxmLyrhSk

How Does A Tree Decide Where To Split?

Gini Index

The measure of impurity (or purity) used in building decision tree in CART is Gini Index

Chi Square

It is an algorithm to find out the statistical significance between the differences between sub-nodes and parent node

Information Gain

The information gain is the decrease in entropy after a dataset is split on the basis of an attribute. Constructing a decision tree is all about finding attribute that returns the highest information gain

Reduction in Variance

Reduction in variance is an algorithm used for continuous target variables (regression problems). The split with lower variance is selected as the criteria to split the population

ID3 Algorithm

- There are many ways to construct the decision tree.
- One of the effective way to construct decision tree is ID3 (Iterative Dichotomizer 3) algorithm, uses the concept of **entropy and information gain**.

Decide the best attribute (predictor variable)

- Best attribute separates data into different classes most effectively.
 - A predictor variable that best splits the data set
- How will you decide the best predictor variable?

Two measures: information gain and entropy

- Entropy: measures the impurity or uncertainty of the data (How the decision tree split the data?)
- Information gain: specifies how much information a particular predictor variable gives about the final outcome (used to choose the predictor variable that best splits the data)
- The predictor variable with high information gain is considered as best attribute (root node) that divides the data into desired output classes

Reference: https://youtu.be/JMUxmLyrhSk

• Entropy is the measure of impurity

If number of yes = number of no ie P(S) = 0.5

$$\Rightarrow$$
 Entropy(s) = 1

If it contains all yes or all no ie P(S) = 1 or 0

$$\Rightarrow$$
 Entropy(s) = 0

$$E(S) = -P(Yes) \log_2 P(Yes)$$

When
$$P(Yes) = P(No) = 0.5$$
 ie $YES + NO = Total Sample(S)$

$$E(S) = 0.5 \log_2 0.5 - 0.5 \log_2 0.5$$

$$E(S) = 0.5(\log_2 0.5 - \log_2 0.5)$$

$$E(S) = 1$$

$$E = -\sum_{i}^{C} p_{i} log_{2} p_{i}$$

$$E(S) = -P(Yes) \log_2 P(Yes)$$

When
$$P(Yes) = 1$$
 ie $YES = Total Sample(S)$

$$E(S) = 1 \log_2 1$$

$$E(S) = 0$$

$$E(S) = -P(No) \log_2 P(No)$$

When
$$P(No) = 1$$
 ie $No = Total Sample(S)$

$$E(S) = 1 \log_2 1$$

$$E(S) = 0$$

Problem statement: For a given data set create a decision tree and classify the speed of the vehicle as Slow or Fast.

Road type	Obstruction	Speed limit	Speed
Steep	Yes	Yes	Slow
Steep	No	Yes	Slow
Flat	Yes	No	Fast
Steep	No	No	Fast

Predictor variables: road type, obstruction, speed limit

Target variable: speed

Reference: https://youtu.be/JMUxmLyrhSk

Step 1: Decide the best variable that splits the data set. i.e root node of decision tree

Calculate entropy (E) and information gain (IG)

$$E = -\sum_{i}^{C} p_{i} log_{2} p_{i}$$

IG = E(parent) - weighted average of E(children)

a. Calculate entropy of parent node

It is the Parent node

Two classes: Slow and Fast

$$P(Slow) = 2/4 = 0.5$$

 $P(Fast) = 2/4 = 0.5$

Speed

Slow

Slow

Fast

Fast

$$E(Parent) = -(P(Slow)*log2(P(Slow)) + P(Fast)*log2(P(Fast)))$$

= -(0.5*log2(0.5) + 0.5*log2(0.5)) = 1

b. Information gain of child node (Road type)

b.1. Entropy of child

Entropy of right child node is

$$P(Fast) = 1/1 = 1$$

E(Road type=Flat) = - (P(Fast)*log2(P(Fast)))
= -
$$(1*log2(1)) = 0$$

Entropy of left child node is

$$P(Slow) = 2/3 = 0.667$$

$$P(Fast) = 1/3 = 0.334$$

E(Road type=Steep) = - (
$$P(Slow)*log2(P(Slow)) + P(Fast)*log2(P(Fast))$$
) = - ($0.667*log2(0.667)) + 0.334*log2(0.334)$) = 0.9

b.2. Calculate the weighted average of E(child) for Road type

weighted average of E(child) = (no. of left_child) / (no. of parent) * E(Road type=Steep) +

Parent node: 4 (no. of right_child) / (no. of parent) * E(Road type=Flat)

Right child: 1 = (3/4) * 0.9 + (1/4) * 0

Left child: 3 = 0.675

$$E = -\sum_{i}^{C} p_{i} log_{2} p_{i}$$

IG = E(parent) - weighted average of E(children)

b. Information gain of child node (Obstruction)

b.1. Entropy of child

Entropy of right child node, E(Obstruction=No) = 1

$$P(Slow) = 1/2 = 0.5$$

$$P(Fast) = 1/2 = 0.5$$

E(Obstruction=No) = - (
$$P(Slow)*log2(P(Slow)) + P(Fast)*log2(P(Fast))$$
)
= - ($0.5*log2(0.5)) + 0.5*log2(0.5)$)
= 1

Road type	Obstruction	Speed limit	Speed
Steep	Yes	Yes	Slow
Steep	No	Yes	Slow
Flat	Yes	No	Fast
Steep	No	No	Fast

$$E = -\sum_{i}^{C} p_{i} log_{2} p_{i}$$

IG = E(parent) - weighted average of E(children)

Entropy of left child node, E(Obstruction=Yes) = 1

b.2. Calculate the weighted average of E(child) for Obstruction

Parent node: 4

Right child: 2

Left child: 2

weighted average of E(child) = (no. of left_child) / (no. of parent) * E(Obstruction=Yes) + (no. of right_child) / (no. of parent) * E(Obstruction=No) =
$$(2/4) * 1 + (2/4) * 1$$

b. Information gain of child node (Speed limit)

b.1. Entropy of child

Entropy of right child node, E(Speed limit=No) = 0

Entropy of left child node, E(Speed limit=Yes) = 0

Road type	Obstruction	Speed limit	Speed
Steep	Yes	Yes	Slow
Steep	No	Yes	Slow
Flat	Yes	No	Fast
Steep	No	No	Fast

$$E = -\sum_{i}^{C} p_{i} log_{2} p_{i}$$

IG = E(parent) - weighted average of E(children)

b.2. Calculate the weighted average of E(child) for Speed limit

Parent node: 4

Right child: 2

Left child: 2

weighted average of E(child) = (no. of left_child) / (no. of parent) * E(Speed limit=Yes) + (no. of right_child) / (no. of parent) * E(Speed limit=No) = (2/4) * 0 + (2/4) * 0

IG = E(parent) - weighted average of E(children)

Which input variable can be used as root node?

Answer

The predictor variable have the higher information gain can be set as root node and then the root node can be further split.

b.3. Calculate the IG(Road type)

 $IG(Road\ type) = 1 - 0.675 = 0.325$

c. Using the same methodology, calculate IG for other predictor variables

IG(Road type) =
$$1 - 0.675 = 0.325$$

IG(Obstruction) = $1 - 1 = 0$
IG(Speed limit) = $1 - 0 = 1$

Step 2: Assign best variable as a decision variable for the root node

Road type	Obstruction	Speed limit	Speed
Steep	Yes	Yes	Slow
Steep	No	Yes	Slow
Flat	Yes	No	Fast
Steep	No	No	Fast

Step 3: For each value of root node, build a descend of the node using the above procedure

Continue the procedure to build the complete decision tree until if data is correctly classified.

Problem statement: For a given data set create a decision tree and predict if John would play golf or not.

	Attributes						
Outlook	Temperature	Humidity	Windy	Play Golf			
Rainy	Hot	High	FALSE	No			
Rainy	Hot	High	TRUE	No			
Overcast	Hot	High	FALSE	Yes			
Sunny	Mild	High	FALSE	Yes			
Sunny	Cool	Normal	FALSE	Yes			
Sunny	Cool	Normal	TRUE	No			
Overcast	Cool	Normal	TRUE	Yes			
Rainy	Mild	High	FALSE	No			
Rainy	Cool	Normal	FALSE	Yes			
Sunny	Mild	Normal	FALSE	Yes			
Rainy	Mild	Normal	TRUE	Yes			
Overcast	Mild	High	TRUE	Yes			
Overcast	Hot	Normal	FALSE	Yes			
Sunny	Mild	High	TRUE	No			

Predictor variables: Outlook, Temperature, Humidity, Windy

Target variable: Play Golf

Step 1: Decide the best variable that splits the data set. i.e root node of decision tree

Calculate entropy (E) and information gain (IG)

$$E = -\sum_{i}^{C} p_{i} log_{2} p_{i}$$

$$H(S) = \sum_{x \in X} p(x) \log_{2} \frac{1}{p(x)}$$

IG = E(parent) - weighted average of E(children)

a. Calculate entropy of parent node

Target variable is Play Golf

It is the Parent node

Two classes: Yes and No

$$P(Yes) = 9/14$$

$$P(No) = 5/14$$

E(Parent) = - (P(Yes)*log2(P(Yes)) + P(No)*log2(P(No)))
= - (
$$(9/14)*log2(9/14) + (5/14)*log2(5/14))$$

= 0.41+0.53 = 0.94

Play Golf
No
No
Yes
Yes
Yes
No
Yes
No
Yes
No

b. Information gain of child node (Outlook)

$$E(Outlook = Sunny) = -2/5 \log_2 2/5 - 3/5 \log_2 3/5 = 0.971$$

$$E(Outlook = Overcast) = -1 \log_2 1 - 0 \log_2 0 = 0$$

$$E(Outlook = Sunny) = -3/5 \log_2 3/5 - 2/5 \log_2 2/5 = 0.971$$

Information from outlook,

$$I(Outlook) = 5/14 \times 0.971 + 4/14 \times 0 + 5/14 \times 0.971 = 0.693$$

Information gained from outlook,

$$Gain(Outlook) = E(S) - I(Outlook)$$

$$0.94 - 0.693 = 0.247$$

b. Information gain of child node (Windy)

$$E(Windy=True) = -(3/6)log(3/6) - (3/6)log(3/6) = 1$$

$$E(Windy=False) = -(6/8)log(6/8) - (2/8)log(2/8) = 0.811$$

Information from windy,

$$I(Windy) = 8/14 \times 0.811 + 6/14 \times 1 = 0.892$$

Information gained from outlook,

$$Gain(Windy) = E(S) - I(Windy)$$

$$0.94 - 0.892 = 0.048$$

b. Information gain of child node (Humidity)

E(Humidity=High) = $-(3/7)\log(3/7) - (4/7)\log(4/7) = 0.985$ E(Humidity=Normal) = $-(6/7)\log(6/7) - (1/7)\log(1/7) = 0.592$ Information from Humidity,

Information gained from Humidity,

Gain(Humidity) = **0.94-0.788 = 0.152**

b. Information gain of child node (Temperature)

$$E(Temperature=Hot) = -(2/4)log(2/4) - (2/4)log(2/4) = 1$$

$$E(Temperature=Cold) = -(3/4)log(3/4) - (1/4)log(1/4) = 0.811$$

$$E(Temperature=Mild) = -(4/6)log(4/6) - (2/6)log(2/6) = 0.918$$

Information from Temperature,

Information gained from Temperature

Gain(Temperature) = **0.94-0.911 = 0.029**

Outlook:

Info 0.693 Gain: 0.940-0.693 0.247 Temperature:

Info 0.911 Gain: 0.940-0.911 0.029

Humidity: Windy:

Info 0.788 Info 0.892 Gain: 0.940-0.788 0.152 Gain: 0.940-0.982 0.048

outlook	temp.	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

outlook	temp.	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

Step 3: Choosing the splitting attribute that has the highest Information Gain

Day	Outlook	Humidity	Wind	Play
3	Cloudy	High	Weak	Yes
7	Cloudy	Normal	Strong	Yes
12	Cloudy	High	Strong	Yes
13	Cloudy	Normal	Weak	Yes

Repeat from step 2-3 for the branch "Sunny" Calculate entropy for the branch

$$E(sunny) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

$$E(sunny) = -\frac{2}{5} \log_2 \frac{2}{5} - \frac{3}{5} \log_2 \frac{3}{5}$$

$$E(sunny) = 0.9709$$

Day	Outlook	Humidity	Wind	Play
1	Sunny	High	Weak	No
2	Sunny	High	Strong	No
8	Sunny	High	Weak	No
9	Sunny	Normal	Weak	Yes
11	Sunny	Normal	Strong	Yes

Class	p_i
Yes	2/5
No	3/5

Calculate entropy and Information Gain for every possible Attribute: Humidity, Wind

$$E(D,X) = \sum_{c \in X} P(c)E(c)$$

$$E(sunny, Humidity) = \frac{3}{5} \left(-\frac{3}{3} \log_2 \frac{3}{3}\right) + \frac{2}{5} \left(-\frac{2}{2} \log_2 \frac{2}{2}\right)$$

$$E(sunny, Humidity) = 0$$
 $E(sunny) = 0.9709$

$$Gain(sunny, Humidity) = E(sunny) - E(sunny, Humidity)$$

$$Gain(sunny, Humidity) = 0.9709 - 0$$

$$Gain(sunny, Humidity) = 0.9709$$

Day	Humidity	Wind	Play
1	High	Weak	No
2	High	Strong	No
8	High	Weak	No
9	Normal	Weak	Yes
11	Normal	Strong	Yes

$$E(sunny, Wind) = \frac{3}{5} \left(-\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3}\right) + \frac{2}{5} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2}\right)$$

$$E(sunny, Wind) = 0.5508 + 0.4$$

$$E(sunny, Wind) = 0.9508$$
 $E(sunny) = 0.9709$

$$Gain(sunny, Wind) = E(sunny) - E(sunny, Wind)$$

$$Gain(sunny, Wind) = 0.9709 - 0.9508$$

$$Gain(sunny, Wind) = 0.02$$

Choosing the splitting attribute that has the highest Information Gain

Repeat from step 2-3 for the branch "Rain"

Day	Outlook	Humidity	Wind	Play
3	Cloudy	High	Weak	Yes
7	Cloudy	Normal	Strong	Yes
12	Cloudy	High	Strong	Yes
13	Cloudy	Normal	Weak	Yes

Decision tree

Advantages of the Decision Tree

- It is simple to understand as it follows the same process which a human follow while making any decision in real-life.
- This can be used for both classification and regression problems.
- Decision Trees can handle both continuous and categorical variables.
- No feature scaling required. (Information based & Probability based algorithms)
- Handles nonlinear parameters efficiently.
- Decision tree can automatically handle missing values and outliers.
- Less Training Period.

Disadvantages of the Decision Tree

- The decision tree contains lots of layers, which makes it complex.
- It may have an overfitting issue, which can be resolved using the Random Forest algorithm.
- High variance, leads to many errors in the final predictions and shows high inaccuracy in the results.
- For more class labels, the computational complexity of the decision tree may increase.
- Not suitable for large datasets and unstable.

How to avoid/counter Overfitting in Decision

Trees?

Here are two ways to remove overfitting:

- Pruning Decision Trees
- Random Forest

Pruning Decision Trees

Random Forest Classifier

Original Tree Pruned Tree

Problem statement:

Uses titanic data set for predicting whether a passenger will survive or not.

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton
5	0	3	male	NaN	0	0	8.4583	Q	Third	man	True	NaN	Queenstown
6	0	1	male	54.0	0	0	51.8625	S	First	man	True	Е	Southampton
7	0	3	male	2.0	3	1	21.0750	S	Third	child	False	NaN	Southampton
8	1	3	female	27.0	0	2	11.1333	S	Third	woman	False	NaN	Southampton
9	1	2	female	14.0	1	0	30.0708	С	Second	child	False	NaN	Cherbourg

• Construct decision tree model uses 3 features/attributes/columns from the data set, namely sex, age and sibsp (number of spouses or children along).

Python Implementation

```
# importing libraries
from sklearn.neighbors import DecisionTreeClassifier
# load data
# split data into training and testing
# fit decision tree classifier model to training dataset
dt=DecisionTreeClassifier(random state=0,criterion="entropy")
dt.fit(X_train,y_train)
# predicting result with testing dataset
y pred=dt.predict(x test)
```

rec	Age	Income	Student	Credit _rating	Buys_computer
r1 _{lur}	<=30	Hight	No	Fair ed ed	No al edurekal edur
r2	<=30	Hight edurek	l No durekal	Excellent	Nodureka! edureka!
r3	3140	Hight rekal ed	uNokal edu	Fair eduvekal ed	. Yesal edurekal edur
r4	>40	Medium	No durekal	Fair	Yes
r5	>40	Low	Yes	Fair	Yes
r6	>40	Low _{lurekal} ed	Yes	Excellent	Noa! edureka! edur
rer7a!	3140 al ec	Lowal edurek	Yesturekal	Excellent	Yeslurekal edurekal
r8	<=30	Medium	uNo tal edu	Fair edurekal ed	Noa! edureka! edur
r9	,=30	Low	Yes	Fair	Yes
r10	>30	Medium	Yes	Fair	Yes
r11ur	<=30	Medium	Yes	Excellent	Yes edurekal edur
r12	3140	Medium	l No durekal	Excellent	Yes urekal edurekal
r13	3140	High	Yes	Fair edurekal ed	Yes
r14	>40	Medium	No No edu	Excellent	No Ledurekal edur

https://www.edureka.co/blog/decision-trees

Age? 130° 31...40 Student Yes **Credit Rating?** Yali. No Yes No Yes No Yes