Mutualisation et portefeuille homogène de risque d'assurance

Introduction

On considère on ensemble d'assurer avec chaque un un portefeuille qui suis une v. a. X qui représente le montant de sinistre pour un assurer.

On remarque aussi que tout les portefeuille sont indépendant et identiquement distribuer.

On introduit aussi la $v.\,a.\,W_n$ qui est le cout de sinistre moyen porter par chaque assurer:

$$W_n = rac{S_n}{n} rac{ ext{Montant total r\'eclamer}}{ ext{Nombre de contrat}}$$

Quand la taille de n augment on peut observer plusieurs choses,

- Le cout moyen de la moyenne réclamer par chaque client est pareille au cout moyen réclamer par un client.
- Le plus que n augment, le plus que l'équart-type des réclamation se rétréssi et la moyen de réclamation observer se raproche de la moyenne réclamer.

Sur le graphique en haut, on peut observer que plus que n augmente, plus que la fonction de répartition se rapproche de la fonction de répartition d'une loi discrète ou $Pr(Z=E[W_n])=1$.

Loi faible des grands nombre

Convergence en Distribution

On dit qu'une suite Y converge en distribution vers la $v.\,a.\,Y$ si:

$$\lim_{n o\infty}F_{Y_n}(x)=F_Z(x)$$

Notation: $Y_n \to^D Z$, quand $n \to \infty$

Le graphique en haut est une exemple de la binomial qui se rapproche de la fonction de répartition de la poisson quand n devient grand.

Cela nous mêne a les trois théorème qui suivre:

Convergence en distribution et TLS

$$\lim_{n o\infty}{\mathcal L}_{Y_n}(t)={\mathcal L}_Z(t)$$

si et seulement si $Y_n o^D Z$

Convergence en distribution FGM

$$\lim_{n o\infty} {\mathcal M}_{Y_n}(t) = {\mathcal M}_Z(t)$$

si et seulement si $Y_n o^D Z$

Convergence en distribution FGP

$$\lim_{n o\infty}\mathcal{P}_{Y_n}(t)=\mathcal{P}_Z(t)$$

si et seulement si $Y_n o^D Z$

Exemple:

Soit la
$$v.\,a.\,\{Y_n,n\in\mathbb{N}\}$$
, ou $Y_n\sim Binom\left(n,rac{\lambda}{n}
ight)$ et la $v.\,a.\,Z\sim Pois(\lambda)$

$$\mathcal{P}_{Y_n}(s) = \left(1 - rac{\lambda}{n} + rac{\lambda}{n} s
ight)^n \quad ext{et} \quad \mathcal{P}_Z(s) = e^{\lambda(s-1)}$$

Preuve:

$$egin{aligned} \lim_{n o\infty}\mathcal{P}_{Y_n}(t) &= \left(1-rac{\lambda}{n}+rac{\lambda}{n}s
ight)^n \ &= \lim_{n o\infty}\left(1+rac{\lambda}{n}(s-1)
ight)^n \ &= e^{\lambda(s-1)} \end{aligned}$$

donc avec le théorème de convolution de la FGP, on a conclut que $Y_n \to^D Z$.

Convergence en Probabilité

L'idée générale de cette théorème est que ça signifie la probabilité qu'un phénomène "inhabituel" se produise devient de plus en plus petite au fur et à mesure que la suite évolue. La théorème est la suivant:

On dit que la suite Y converge en probabilité vers la v. a. Z si,

$$\lim_{N o\infty} Pr(|Y_N-Z|>\epsilon)=0$$

pour tout $\epsilon > 0$

Notation: $Y_n \to^{\mathcal{P}} Z$, quand $n \to \infty$.

Interprétation: La probabilité que la $v.\,a.\,Y_n$ s'écarte de la $v.\,a.\,Z$ tend vers 0 quand le nombre n augmente.

Quelle est la relation entre les deux théorème de convergence?

L'implication suit,

$$Y_n \to^{\mathcal{P}} Z \Rightarrow Y_n \to^{\mathcal{D}} Z$$

L'implication n'est pas toujours vraie pour l'inverse.

Loi faible des grands nombres (Variance finie, Chebychev)

$$W_n = rac{X_1 + \dots + X_n}{n}$$

Alors, $W_n
ightarrow^{\mathcal{P}} \mu$, quand $n
ightarrow \infty$, c'est à dire:

$$\lim_{n \to \infty} Pr(|W_n - \mu| > \epsilon) = 0$$

Pour faire la preuve il faut l'inégalité de Markov et celle de Chebychev.

L'inégalité de Markov est la suivant; Soit une $v.\ a$ continue positive Z avec $E[Z]>\infty$ Alors, on a

$$Pr(Z \geq a) \leq rac{E[Z]}{a}$$

Preuve:

$$egin{aligned} E[Z] &= \int_0^\infty x f_Z(x) \, dx \ &= \int_0^a x f_Z(x) \, dx + \int_a^\infty x f_Z(x) \, dx \ &\geq \int_a^\infty x f_Z(x) \, dx \ &\geq \int_a^\infty a f_Z(x) \, dx \ &= a Pr(Z>a) \end{aligned}$$

L'inégalité de chebychev est la suivante:

Soit la v. aZ avec $E[Z] < \infty$ et $Var(Z) < \infty$.

Pour tout k > 0, on a

$$Pr\left(|Z-E[Z]|>k\sqrt{Var(Z)}
ight)\leq rac{1}{k^2}$$

Preuve:

On introduit la $v.\,a$ positive $Y=rac{(Z-E[Z])^2}{Var(Z)}$ avec E[Z]=1

On applique directement l'inégalité de markov:

$$egin{split} Pr(Y \geq k^2) \leq rac{E[Y]}{k^2} \ &
ightarrow Pr\left(rac{(Z-E[Z])^2}{Var(Z)} \geq k^2
ight) \leq rac{1}{k^2} \ &
ightarrow Pr\left(\left|rac{(Z-E[Z])}{\sqrt{Var(Z)}}
ight| \geq k
ight) \leq rac{1}{k^2} \ &
ightarrow Pr\left(|(Z-E[Z])| \geq k\sqrt{Var(Z)}
ight) \leq rac{1}{k^2} \end{split}$$

Maintenant on peut utiliser c'est deux résultat pour prouvez la Loi faible des grands nombres (Variance finie, Chebychev)

Rappel de la loi:

$$\lim_{n\to\infty} Pr(|W_n-\mu|>\epsilon)=0$$

Preuve:

$$egin{align} Pr\left(|(W_n-E[W_n])| \geq k\sqrt{Var(W_n)}
ight) \leq rac{1}{k^2} \ &= Pr\left(|(W_n-E[X])| \geq k\sqrt{rac{Var(X)}{n}}
ight) \leq rac{1}{k^2} \ &= Pr\left(|(W_n-\mu)| \geq rac{k\sigma}{\sqrt{n}}
ight) \leq rac{1}{k^2} \ \end{split}$$

Ensuite on pose $\epsilon = \frac{k\sigma}{\sqrt{n}}$ se qui nous donne:

$$egin{aligned} &= Pr\left(|(W_n - \mu)| \geq \epsilon
ight) \leq \left(rac{\sigma}{\epsilon \sqrt{n}}
ight)^2 \ &= Pr\left(|(W_n - \mu)| \geq \epsilon
ight) \leq rac{1}{n} \left(rac{\sigma}{\epsilon}
ight)^2 \end{aligned}$$

On prend la limite et on observe:

$$I = \lim_{n o \infty} Pr\left(|(W_n - \mu)| \geq \epsilon
ight) \leq \lim_{n o \infty} rac{1}{n} \Big(rac{\sigma}{\epsilon}\Big)^2 o 0.$$

Conclusion de la loi Chebychev

Interprétation courante avec la loi faible des grand nombre:

- Le cout moyen par contrat tend vers l'espérance d'un contrat quand n est très grand.
- L'espérance d'un contrat est aussi appelée la prime pure.

Loi faible des grands nombre, (Sans variance, Khintchine)

$$W_n = rac{X_1 + \dots + X_n}{n}$$

Alors, $W_n
ightarrow^{\mathcal{D}} \mu$, quand $n
ightarrow \infty$, c'est à dire:

$$\lim_{n o\infty}F_{W_n}(x)=F_Z(x),\; Pr(Z=\mu)=1$$

Note, comme dit plutôt,

$$Y_n
ightarrow^{\mathcal{P}} Z \Rightarrow Y_n
ightarrow^{\mathcal{D}} Z$$

Mais il a un **Exception**. Si la $v.\,a.\,Z$ et t.q $Pr(Z=c)=1,c\in R$, alors $Y_n\to^\mathcal{D} Z\Rightarrow Y_n\to^\mathcal{P} Z$

Pour prouvez la loi, on a besoin d'une identité de la TLS,

$$E[e^{-tX}] = 1 - tE[X] + o(t)$$

Preuve:

La TLS du cout moyen est donnée par

$$e[e^{-tW_n}] = E[e^{-rac{t}{n}S_n}] = \left(E[e^{-rac{t}{n}X}]
ight)^n$$

on prend ensuite la limite,

$$egin{aligned} &= \lim_{n o \infty} \left(E\left[e^{-rac{t}{n}X}
ight]
ight)^n \ &= \lim_{n o \infty} \left(1 - rac{t}{n}E[X] + o\left(rac{t}{n}
ight)
ight)^n \ &= E[e^{-tE[X]}] \end{aligned}$$

Donc, $E[e^{-tE[X]}]$ est la TLS de la $v.\,aZ$, tq $Pr(Z=\mu)=1$.