work clearly and in order. Please box your answers. 10 minutes.

1. Express each of the following sums in closed form (without using summation notation and without using an ellipsis \cdots).

(a)
$$\sum_{k=0}^{n} \binom{n}{k} \frac{1}{2^k} = \sum_{k=0}^{n} \binom{n}{k} \left(\frac{1}{2}\right)^k \binom{n-k}{2}$$

$$= \left(1 + \frac{1}{2}\right)^n = \left[\frac{3}{2}\right]^n$$
binomial
thum.

(b)
$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{1}{2^k} = \sum_{k=0}^{n} \binom{n}{k} \left(\frac{-1}{2}\right)^k \binom{n-k}{2} = \left[\left(\frac{1}{2}\right)^n\right]$$
binomial
thin.

2. Find the coefficient of $u^{16}v^4$ in $(u^2-v^2)^{10}$.

Using the binomial thin, we have
$$(u^2-v^2)^{10}=\sum_{k=0}^{10} (10)(u^2)^k(-v^2)^{n-k}$$

3. Prove: for all integers $n \geq 1$,

$$\left(-\frac{2}{\sqrt{3}}\right)^2 = \left(\frac{10}{8}\right) u^{16} v^{4} \qquad s$$

for this casion, if
$$k=8$$
 the

to m 13

$$\begin{pmatrix} 10 \\ 8 \end{pmatrix} U^{16} \left(-\frac{7}{2}\right)^2 = \begin{pmatrix} 10 \\ 8 \end{pmatrix} U^{16} V^4 \quad \text{So} \quad \begin{cases} 10 \\ 8 \end{pmatrix} = \frac{10!}{5!(2!)} = \frac{10!9}{2!} = \frac{$$

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0.$$

$$\sum_{k=0}^{n} (-1)^{k} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} \binom{n-k}{n-k}$$

C for this worker if k=2 then the tunis

(10) U16(-V2)2

(10) u 16 v 4