$$\nabla^2 \varphi = 0$$

$$f''(x) = -k \cdot f(x)$$

 $f(x) = A con(\omega x)$

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$$

Let's stick of two dimensions, no dependence in the z-direction

Assume
$$\phi = f(x) \cdot g(y)$$

$$\frac{\int_{0}^{2} (f \cdot g)}{\int_{0}^{2} x^{2}} + \frac{\int_{0}^{2} (f \cdot g)}{\int_{0}^{2} y^{2}} = 0$$

$$3\frac{3^2f}{5x^2} + f\frac{3^2g}{3y^2} = 0$$

$$\frac{1}{f} \cdot \frac{3^2f}{3x^2} + \frac{1}{g} \frac{3^2g}{3y^2} = 0$$

$$\frac{1}{f} \cdot \frac{3^2f}{3x^2} + \frac{1}{g} \frac{3^2g}{3y^2} = 0$$

$$\frac{1}{f} \cdot \frac{\partial^2 f}{\partial x^2} = k^2$$

or Be-kx

f(x) = Aekx + Be-kx

$$\frac{1}{9} \frac{\partial^2 q}{\partial y} = -k^2$$

= D cos(ky)) linear combination g(y) = Csm(ky) + Dcos(ky)

Aekx blows up w/x->p,: A=0

$$y = 0$$
, $Q = 0$
 $y = 0$, $Q = 0$
 $y = 0$, $y = 0$, when $y = 0$, so $0 = 0$

So
$$\phi = f(x) g(y) = Be^{kx} \cdot C_{sin}(ky)$$

Tabosorb constants

 $= Be^{kx} \cdot S_{sin}(ky)$

NOW $y = a, \phi = 0$
 $0 = S_{sin}(ka)$
 $k = 0, \pi, 2\pi, 3\pi, \dots$
 $= \pi\pi$
 $N = 0, 1, 2\dots$
 $k = n\pi$

Now $\phi(x,y) = Be^{\pi x} \cdot S_{sin}(n\pi y)$

Since thus is a valid Solution for infinitely many N , we much a weighted solutions

Les linear combination

$$\varphi = \alpha, \varphi, + \alpha_z \varphi_z + \alpha_s \varphi_z + \dots$$
So that:
$$\nabla^2 \varphi = \nabla^2 (\alpha, \varphi, + \alpha_z \varphi_z + \alpha_s \varphi_z + \dots) = \alpha, \nabla^2 \varphi_z + \dots = 0$$
I'll absorb each α into $\beta \to \beta_n$

$$\varphi(x,y) = \sum_{n=1}^{\infty} \beta_n e^{\frac{n\pi}{\alpha}} \sin\left(\frac{n\pi}{\alpha}y\right)$$
So now we apply the last $\beta \in (x=0, \varphi=\varphi_0)$

$$\varphi(0,y) = \varphi_0(y) = \sum_{n=1}^{\infty} \beta_n e^{\frac{n\pi}{\alpha}} \cos\left(\frac{n\pi}{\alpha}y\right)$$

$$1$$

$$\varphi_0 = \sum_{n=1}^{\infty} \beta_n \sin\left(\frac{n\pi}{\alpha}y\right)$$
Forvier series!

Multiply both sides of the equation by $\sin\left(\frac{NT}{a}y\right)$ where N is another constant. And then integrate!

$$\int_{0}^{q} \phi_{0} \sin(n\frac{\pi}{a} y) dy = \sum_{n=1}^{\infty} B_{n} \int_{0}^{\infty} \sin(n\frac{\pi}{a} y) dy$$

$$= \frac{a_{2}}{2} \cosh y \text{ when } n = n'$$

$$\int_{0}^{q} \phi_{0} \sin(n\frac{\pi}{a} y) dy = \sum_{n=1}^{\infty} B_{n} \frac{a_{2}}{2} \delta_{nn'} = B_{n} \frac{a_{2}}{2}$$

$$B_{n} = \sum_{n=1}^{\infty} \int_{0}^{\infty} \phi_{0} \sin(n\frac{\pi}{a} y) dy$$

$$B_{n} = \sum_{n=1}^{\infty} \int_{0}^{\infty} \sin(n\frac{\pi}{a} y) dy$$

$$B_{n} = \sum_{n=1}^{\infty} \int_{0}^{\infty} \sin(n\frac{\pi}{a} y) dy$$

$$= \sum_{n=1}^{\infty} \int_{0}^{\infty} \sin(n\frac{\pi}{a} y) dy$$

So
$$B_n = \frac{2\phi_0}{\alpha} \cdot \left(\frac{a}{n\pi}\right) \cdot 2$$

for odd values of n
 $B_n = \frac{4\phi_0}{n\pi}$ where n

is odd.

$$\phi(x,y) = \frac{8}{n\pi} B_n e^{\frac{n\pi}{a}x} \cdot \sin\left(\frac{n\pi}{a}y\right)$$

$$\phi(x,y) = \frac{4\phi_0}{\pi} \underbrace{\sum_{n=1}^{n} \frac{1}{n} e^{x} \cdot \sin\left(\frac{n\pi}{a}y\right)}_{n=1,3,5}$$

$$\phi(x,y) = \frac{4\phi_0}{\pi} \underbrace{\sum_{n=1,3,5}^{n} \frac{1}{n} e^{x} \cdot \sin\left(\frac{n\pi}{a}y\right)}_{n=1,3,5}$$

```
-\left[\cos\left(\frac{n\pi}{4}\alpha\right)-\cos\left(\delta\right)\right]
- \left[ \cos(n\pi) - 1 \right]
- Cos(NT) + 1
    - I for odd n
     + for even n
     +2 for odd n
       O for even n
```


Now for another example:

$$\frac{\partial^2 f}{\partial x^2} = k^2 f$$

$$\frac{\partial^2 g}{\partial y^2} = -k^2 g$$

$$f = A e^{kx} + B e^{kx}$$

$$f = A e^{kx} + B e^{kx}$$

$$\chi = -\frac{k}{2} \rightarrow 0 = A e^{kx} + B e^{kx}$$

$$\chi = +\frac{k}{2} \rightarrow 0 = A e^{kx} + B e^{kx}$$

$$\chi = +\frac{k}{2} \rightarrow 0 = A e^{kx}$$

$$\chi = -\frac{k}{2} \rightarrow 0 = A$$

So...
$$\phi(x,y) = \sum_{n=1}^{\infty} A_n(e^{kx} + e^{-kx}) \operatorname{Sim}(ky)$$

$$\frac{\partial^2 g}{\partial y^2} = -k^2 g$$

$$g = C \sin(ky) + D \cos(ky)$$

$$D = D$$

$$\sin \alpha \phi = D$$

$$at y = D$$

$$d = C \sin ky$$

$$\phi = D, y = \alpha$$

$$So D = C \sin(k\alpha)$$

$$O = \sin(k\alpha)$$

$$V = \sin(k\alpha)$$

$$\begin{array}{lll}
2 \cdot \cosh(kx) & \stackrel{\text{lost}}{=} (kx) \\
 & \stackrel{\text{lost$$

$$\frac{\partial_{s} \cdot 2\alpha}{n \cdot T} = A_{n} \cdot \cosh\left(\frac{n' \cdot T}{\alpha} \cdot b\right) \cdot \frac{\alpha}{2}$$

$$\frac{\partial_{s} \cdot 2\alpha}{n' \cdot T} = A_{n} \cdot \cosh\left(\frac{n' \cdot T}{\alpha} \cdot b\right) \cdot \frac{\alpha}{2}$$

$$A_{n} = \frac{4 \cdot \phi_{s}}{n \cdot T} \cdot \cosh\left(\frac{n \cdot T}{\alpha} \cdot b\right)$$

$$A_{n} = \frac{4 \cdot \phi_{s}}{n \cdot T} \cdot \cosh\left(\frac{n \cdot T}{\alpha} \cdot b\right)$$

$$\phi(x,y) = \sum_{n=1}^{\infty} A_n \cosh(kx) \sin(ky)$$

$$\Phi(\chi, \gamma) = \frac{4\phi_0}{\pi} \sum_{n=1,3,5,...}^{\infty} \frac{1}{\cosh(\frac{n\pi}{a}x)} \cdot 5m \left(\frac{n\pi}{a}\gamma\right)$$