

Computer Architecture

A Quantitative Approach, Sixth Edition

Chapter 7

Domain-Specific Architectures-TPU ONLY

Introduction

- Moore's Law enabled:
 - Deep memory hierarchy
 - Wide SIMD units
 - Deep pipelines
 - Branch prediction
 - Out-of-order execution
 - Speculative prefetching
 - Multithreading
 - Multiprocessing
- Objective:
 - Extract performance from software that is oblivious to architecture

Introduction

- Need factor of 100 improvements in number of operations per instruction
 - Requires domain specific architectures
 - For ASICs, NRE cannot be amoratized over large volumes
 - FPGAs are less efficient than ASICs

Guidelines for DSAs

- Use dedicated memories to minimize data movement
- Invest resources into more arithmetic units or bigger memories
- Use the easiest form of parallelism that matches the domain
- Reduce data size and type to the simplest needed for the domain
- Use a domain-specific programming language

Guidelines for DSAs

Guideline	TPU	Catapult	Crest	Pixel Visual Core
Design target	Data center ASIC	Data center FPGA	Data center ASIC	PMD ASIC/SOC IP
Dedicated memories	24 MiB Unified Buffer, 4 MiB Accumulators	Varies	N.A.	Per core: 128 KiB line buffer, 64 KiB P.E. memory
2. Larger arithmetic unit	65,536 Multiply- accumulators	Varies	N.A.	Per core: 256 Multiply- accumulators (512 ALUs)
Easy parallelism	Single-threaded, SIMD, in-order	SIMD, MISD	N.A.	MPMD, SIMD, VLIW
Smaller data size	8-Bit, 16-bit integer	8-Bit, 16-bit integer 32-bit Fl. Pt.	21-bit Fl. Pt.	8-bit, 16-bit, 32-bit integer
5. Domain- specific lang.	TensorFlow	Verilog	TensorFlow	Halide/TensorFlow

Example: Deep Neural Networks

- Inpired by neuron of the brain
- Computes non-linear "activiation" function of the weighted sum of input values
- Neurons arranged in layers

Name	DNN layers	Weights	Operations/Weight 200	
MLP0	5	20M		
MLP1	4	5M	168	
LSTM0	58	52M	64	
LSTM1	56	34M	96	
CNN0	16	8M	2888	
CNN1	89	100M	1750	

Example: Deep Neural Networks

- Most practioners will choose an existing design
 - Topology
 - Data type
- Training (learning):
 - Calculate weights using backpropagation algorithm
 - Supervised learning: stocastic graduate descent

Type of data	Problem area	Size of benchmark's training set	DNN architecture	Hardware	Training time	
text [1]	Word prediction (word2vec)	100 billion words (Wikipedia)	2-layer skip gram	1 NVIDIA Titan X GPU	6.2 hours	
audio [2]	Speech recognition	2000 hours (Fisher Corpus)	11-layer RNN	1 NVIDIA K1200 GPU	3.5 days	
images [3]	Image classification	1 million images (ImageNet)	22-layer CNN	1 NVIDIA K20 GPU	3 weeks	
video [4]	activity recognition	1 million videos (Sports-1M)	8-layer CNN	10 NVIDIA GPUs	1 month	

Inferrence: use neural network for classification

Multi-Layer Perceptrons

- Parameters:
 - Dim[i]: number of neurons
 - Dim[i-1]: dimension of input vector
 - Number of weights: Dim[i-1] x Dim[i]
 - Operations: 2 x Dim[i-1] x Dim[i]
 - Operations/weight: 2

Convolutional Neural Network

- Computer vision
- Each layer raises the level of abstraction
 - First layer recognizes horizontal and vertical lines
 - Second layer recognizes corners
 - Third layer recognizes shapes
 - Fourth layer recognizes features, such as ears of a dog
 - Higher layers recognizes different breeds of dogs

Convolutional Neural Network

Parameters:

- DimFM[i-1]: Dimension of the (square) input Feature Map
- DimFM[i]: Dimension of the (square) output Feature Map
- DimSten[i]: Dimension of the (square) stencil
- NumFM[i-1]: Number of input Feature Maps
- NumFM[i]: Number of output Feature Maps
- Number of neurons: NumFM[i] x DimFM[i]²
- Number of weights per output Feature Map: NumFM[i-1] x DimSten[i]²
- Total number of weights per layer: NumFM[i] x
 Number of weights per output Feature Map
- Number of operations per output Feature Map: 2 x DimFM[i]² x Number of weights per output Feature Map
- Total number of operations per layer: NumFM[i] x Number of operations per output Feature Map = 2 x DimFM[i]² x NumFM[i] x Number of weights per output Feature Map = 2 x DimFM[i]² x Total number of weights per layer
- Operations/Weight: 2 x DimFM[i]²

Recurrent Neural Network

- Speech recognition and language translation
- Long short-term memory (LSTM) network

Recurrent Neural Network

Parameters:

- Number of weights per cell:
 3 x (3 x Dim x Dim)+(2 x Dim x Dim) + (1 x Dim x Dim) = 12 x Dim²
- Number of operations for the 5 vector-matrix multiplies per cell: 2 x Number of weights per cell = 24 x Dim²
- Number of operations for the 3 element-wise multiplies and 1 addition (vectors are all the size of the output): 4 x Dim
- Total number of operations per cell (5 vector-matrix multiplies and the 4 element-wise operations): 24 x Dim² + 4 x Dim
- Operations/Weight: ~2

Convolutional Neural Network

Batches:

- Reuse weights once fetched from memory across multiple inputs
- Increases operational intensity

Quantization

Use 8- or 16-bit fixed point

Summary:

- Need the following kernels:
 - Matrix-vector multiply
 - Matrix-matrix multiply
 - Stencil
 - ReLU
 - Sigmoid
 - Hyperbolic tangeant

Tensor Processing Unit

- Google's DNN ASIC
- 256 x 256 8-bit matrix multiply unit
- Large software-managed scratchpad
- Coprocessor on the PCIe bus

Tensor Processing Unit

- Read_Host_Memory
 - Reads memory from the CPU memory into the unified buffer
- Read_Weights
 - Reads weights from the Weight Memory into the Weight FIFO as input to the Matrix Unit
- MatrixMatrixMultiply/Convolve
 - Perform a matrix-matrix multiply, a vector-matrix multiply, an elementwise matrix multiply, an element-wise vector multiply, or a convolution from the Unified Buffer into the accumulators
 - takes a variable-sized B*256 input, multiplies it by a 256x256 constant input, and produces a B*256 output, taking B pipelined cycles to complete
- Activate
 - Computes activation function
- Write_Host_Memory
 - Writes data from unified buffer into host memory

Local Unified Buffer for Matrix multiply unit activations (256x256x8b = 64K MAC)(96Kx256x8b = 24 MiB)24% 29% of chip D D Host Accumulators R R (4Kx256x32b = 4 MiB) 6% Interf. 2% Α Α M M Control 2% Activation pipeline 6% port port ddr3 ddr3 PCIe 3% 3% Misc. I/O 1% Interface 3%

- Read_Host_Memory
 - Reads memory from the CPU memory into the unified buffer
- Read_Weights
 - Reads weights from the Weight Memory into the Weight FIFO as input to the Matrix Unit
- MatrixMatrixMultiply/Convolve
 - Perform a matrix-matrix multiply, a vector-matrix multiply, an elementwise matrix multiply, an element-wise vector multiply, or a convolution from the Unified Buffer into the accumulators
 - takes a variable-sized B*256 input, multiplies it by a 256x256 constant input, and produces a B*256 output, taking B pipelined cycles to complete
- Activate
 - Computes activation function
- Write_Host_Memory
 - Writes data from unified buffer into host memory

Improving the TPU

The TPU and the Guidelines

- Use dedicated memories
 - 24 MiB dedicated buffer, 4 MiB accumulator buffers
- Invest resources in arithmetic units and dedicated memories
 - 60% of the memory and 250X the arithmetic units of a server-class CPU
- Use the easiest form of parallelism that matches the domain
 - Exploits 2D SIMD parallelism
- Reduce the data size and type needed for the domain
 - Primarily uses 8-bit integers
- Use a domain-specific programming language
 - Uses TensorFlow

Fallacies and Pitfalls

- It costs \$100 million to design a custom chip
- Performance counters added as an afterthought
- Architects are tackling the right DNN tasks
- For DNN hardware, inferences per second (IPS) is a fair summary performance metric
- Being ignorant of architecture history when designing an DSA

