

Universidade de São Paulo Instituto de Física de São Carlos

Prática 5: Dinâmica Populacional

Stefan Taiguara Couperus Leal 10414866

Maio de 2019

Contents

1 Introdução																				2					
2	Met	Metodologia Aplicada															2								
	2.1	Tratan	nent	to G	lera	ıl.																			2
	2.2	Rumo	ao	Cao	s.																				3
	2.3	O Caos	s!																						3
3	Resultados Obtidos															4									
	3.1	Tratan	nent	to G	era	ıl.																			4
		3.1.1	Pa	ra r	=	1.																			5
		3.1.2		ra r																					6
				ra r																					7
				ra r																					8
		3.1.5		ra r																					9
		3.1.6	Pa	ra r	= -	4.																			10
	3.2	Rumo																							10
	3.3	O Caos!													13										
		3.3.1		ra r																					15
		3.3.2	Pa	ra r	=	3.6																			15

1 Introdução

A equação diferencial que será foi utilizada para descrever o crescimento populacional é:

$$dN(t) = \alpha N(t)dt \tag{1}$$

Sendo α uma constante de crescimento/decrescimento populacional. Observando a equação acima percebe-se que não é muito realístico, já que prevê um crescimento exponencial sem limites (há uma ausência de predadores, falta de recursos, mortalidade dos indivíduos, etc).

Para uma descrição mais exata do fenômeno é um imposto um corte quando o valor atingir um certo N_{max} .

O objetivo da pratica é estudar as condições que um dado um valor inicial para o numero N de indivíduos permaneça constante com o tempo.

O estudo do mapeamento vai revelar uma grande complexidade e dependência sensível das condições iniciais, definindo um comportamento caótico que será observado nos exercícios.

Primeiramente foi discretizada a equação 1, ou seja, foi considerado instantes de tempo t e $t+\Delta t$ (sendo Δt fixo, mas não necessariamente pequeno). A equação fica:

$$N_{i+1} = (1 + \alpha \Delta t) N_i \approx r N_i \tag{2}$$

Sendo $r = 1 + \alpha \Delta t > 1$. Depois disso foi imposto um limite de $N_m ax$.

$$N_{i+1} = rN_i(1 - \frac{N_i}{N_{max}}) (3)$$

Para uma mais simples visualização foi adotado $x_i \approx \frac{N_i}{N_{max}}$. Gerando a equação utilizada para a simulação.

$$x_{i+1} = rx_i(1 - x_i) (4)$$

A equação 4 define um mapeamento. Neste projeto será estudo a evolução do mapa G(x), o chamado mapa logístico.

2 Metodologia Aplicada

2.1 Tratamento Geral

A inteção desta prática é encontrar valores de G(x) para quais $G(x^*) = x^*$. Será observado as propriedades de G(x), que são:

- $x^* = 0$ Sempre deve ser uma solução
- r deve estar sempre entre 1 e 4.
- Dado que $0 \le r \le 4$, Há uma solução para x^* ?

Portanto será variado o valor de r (observando o valor de convergência) afim de verificar as propriedades listadas acima.

2.2 Rumo ao Caos

Não basta ser um ponto fixo do mapa G(x) para um valor de x ser estável na evolução da população. O que ocorre para pontos fixos depende da estabilidade do ponto, que depende do valor do parâmetro r. Para r>3 (e r<3.5) o ponto fixo $x^!$ torna-se instável, levando a um comportamento oscilatório entre x_1 e x_2 .

Será realiza testes da evolução do sistema, aumentando o valor de r. Será procurado ver o fenômeno de duplicação de período (que deve ser observado logo antes do caos). Portanto será observado a formação do caos e anotando os valores de r onde as duplicações ocorrem. Com isso será calculado a constante de Feigenbaum δ pela equação abaixo:

$$\delta = \frac{r_2 - r_1}{r_3 - r_2} \tag{5}$$

2.3 O Caos!

Como foi visto que o sistema evoluirá para o caos a medida que o valor de r for aumentando, vai ser implementado o calculo do expoente de Lyapunov (é uma forma de quantificar o a falta de controle que tem sobre um numero inicial x_0). Será observado a sensibilidade das condições iniciais colocando o x_0 de dois sistemas variando por um ϵ , desta forma será observado a diferença dos dois sistemas.

Afim de obter o expoente de Lyapunov será utilizado de dois métodos: Serão simulados dois sistemas: $G^i(x_0)$ e $G(x_0^i + \epsilon)$.

O primeiro é: cada interação será calculado a distância d utilizando da equação 6, com isso será observado o comportamento do gráfico e será extraído o expoente de Lyapunov (γ) .

$$d(i) = |G(x_0^i + \epsilon) - G(x_0^i)| \tag{6}$$

A simulação será realizado para valores r < 3.0, r > 3.6.

A outra forma de estimar a constante de Lyapunov é supor um comportamento exponencial para d, com o tempo relacionado com a derivada do mapa $G^{(i)}(x)$ (nota-se que o valor de ϵ é minimo). Como essas considerações obtêm-se:

$$\lambda = \frac{1}{n-1} \sum_{j=0}^{n-1} \ln |G'(x_j)| \tag{7}$$

Resolvendo o $G'(x_i)$ temos:

$$\lambda = \frac{1}{n-1} \sum_{j=0}^{n-1} \ln|r(1-2x)| \tag{8}$$

3 Resultados Obtidos

3.1 Tratamento Geral

program crescimento

O programa usado para chegar nos resultado esta abaixo, ja para graficar foi utlizado do gnuplot.

```
real(8) :: G, r, x1, x0
integer :: i, N

N = 1000

print *, "Valor_de_x_o:_"
read *, x0
print *, "Valor_de_r:_"
read *, r

open(1, file="exponential.dat")
x = x0
do i = 0, N, 1
x1 = r * x0 * (1.0 d0 - x0)
xo = x

write(1 , *) i, x0, x1
```

enddo close (1)

end program crescimento

3.1.1 Para r = 1

Usando do programa citado acima foi calculado para $r=1,\ {\rm com}$ isso tem-se que:

Figure 1: Crescimento Populacional para r=1

Na figura 1 pe notado que não há valor de convergência, onde o único valor no qual $G(x^*) = x^*$ é para G(0).

3.1.2 Para r = 2

Figure 2: Crescimento Populacional para r=2

É notado que há uma convergência para um único ponto, sendo o valor dele igual a:

$$x^* = 0.500000000000000008$$

Percebe-se também que o primeiro item das propriedades citadas em 2.1 é válido, já que G(0)=0.

3.1.3 Para r = 2.5

Figure 3: Crescimento Populacional para r=2.5

O valor de convergência onde $G(x^*)=x^*$ é:

3.1.4 Para r = 3

Figure 4: Crescimento Populacional para r=3

O valor de convergência é de:

 $x^* = 0.66430218085545800$

3.1.5 Para r = 3.545

Figure 5: Crescimento Populacional para r = 3.545 r = 3.545 x0 = 0.02

Ja na figura 5 é notado que há dois valores onde o
a função oscila. Sendo estes valores igual a:

 $x_1 = 0.53030632825343749$

 $x_2 = 0.88299401132833288$

3.1.6 Para r = 4

Figure 6: Crescimento Populacional para r=4.0

Percebe que o crescimento populacional atingiu um padrão caótico, onde não se é possível determinar valor de convergência.

3.2 Rumo ao Caos

O programa usado para observar o comportamento da variação de r afim de descobrir a constante de Feigenbaum se encontra abaixo:

```
program rvariation
implicit none
```

```
real(8) :: r, dr, x0, x1

real(8) :: r_min, r_max
```

integer :: contador, verificador

 $integer :: i, n_test, n_steps, r_steps$

 $r_{min} = 1.0 d0$ $r_{max} = 4.0 d0$

 $n_test = 100$ $n_steps = 1000$

```
r_steps = 1000
contador = 1
verificador = 0
open(1, file='rVariation.dat')
dr = (r_max - r_min) / r_steps ! Incremento em r
r = r_min
do while (r < r_max)
        x0\ =\ 0.5\,d0
        do i = 1, n_test, 1
                x1 = r * x0 * (1.d0 - x0)
                x0 = x1
        enddo
        do i = 1, n_steps, 1
                x1 = r * x0 * (1.d0 - x0)
                write(1, *) r, x1
                x0 = x1
        enddo
        r = r + dr
enddo
close(1)
end program rvariation
```

1 0.9 8.0 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1.5 2 2.5 3 3.5

Figure 7: Diagrama de bifurcação em função de \boldsymbol{r}

Para fins de analise foi pego só os valores depois de r=2.8 (já que antes desse intervalo não há bifurcação).

Figure 8: Diagrama de bifurcação em função de r

Com isso os valores de r são:

 $r_1 = 3.4485$

 $r_2 = 3.5438$

 $r_3 = 3.5644$

Utilizando da equação 5:

 $\delta = 4.6262$.

Comparando o valor obtido pelo da literatura [2].

$$\frac{4.6262}{4.6692}\approx 0.99$$

3.3 O Caos!

O programa usado para calcular o valor do expoente de Lyapunov é:

```
program exer1
implicit none
```

```
! Declaracao de variaveis
integer :: i , N

real(8) :: r , epsilon
real(8) :: x0 , x1 , x0t , x1t

real(8) :: lambda , x0d , x1d

read * , r
read * , x0
read * , epsilon

N = 1000
x0t = x0 + epsilon
x0d = x0

open(1, file="dist_out.dat")
write(1, *) 0, x1 , x1t , abs(x1 - x1t)
do i = 1, N, 1
```

```
! Parte A
x1 = r * x0 * (1.d0 - x0)
x1t = r * x0t * (1.d0 - x0t)

write(1, *) i, x1, x1t, abs(x1 - x1t)
! Parte B
x1d = r * x0d * (1.d0 - x0d)

lambda = lambda + dlog(abs(r * (1.d0 - 2.d0 * x1d)))

x0 = x1
x0t = x1t
x0d = x1d
enddo
close(1)
! Calculo de lambda
lambda = 1.d0 / (N - 1.d0) * lambda
print *, "O_valor_de_lambda_eh_::", lambda
```

end program exer1

Os valores que serão colocados como padrão, onde estes valores serão constantes durante a realização deste projeto.

$$x_0 = 0.1$$

$$\epsilon = 10^{-5}$$

3.3.1 Para r = 3

Com as variáveis definidas acima foi obtido um λ igual a:

$$\lambda = -6.705100524852471710^{-3}$$

$$3.3.2$$
 Para $r = 3.6$

Dado que há um limite de crescimento(onde este limite é 1.0), quando a diferença se aproxima de do limite há a perda do comportamento exponencial.

 $\lambda = 0.18498747192623105$

References

- [1] Nicholas J Giordano Computational Physics Prentice Hall
- [2] https://en.wikipedia.org/wiki/Feigenbaum_constants