Correction MathII

Juin 2008

Partie I (Etude d'un exemple)

1. a)
$$f(e_1) = \begin{pmatrix} -3 \\ 2 \\ 2 \end{pmatrix}$$
, $f^2(e_1) = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$. Comme $\begin{vmatrix} 1 & -3 & 1 \\ 0 & 2 & 0 \\ 0 & 2 & -2 \end{vmatrix} = -4 \neq 0$, donc $\mathcal{B}' = (e_1, f(e_1), f^2(e_1))$ est une base de E .

b)
$$f^3(e_1) = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$$
. La matrice de f relativement à la base \mathcal{B}' est $\begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}$.

c)
$$f^4(e_1) = e_1$$
, $f^4(f(e_1)) = f(f^4(e_1)) = f(e_1)$ et $f^4(f^2(e_1)) = f^2(f^4(e_1)) = f^2(e_1)$. Donc $f^4 = \mathrm{id}_E$ car \mathcal{B}' est une base.

- d) Comme $f^4(e_1) = e_1$, $(e_1, f(e_1), f^2(e_1), f^3(e_1))$ est un système générateur de \mathbb{K}^3 , donc f est cyclique d'ordre f et f est cyclique d'ordre f et f est cyclique d'ordre f est cyclique f est cycliq
- 2. a) Le polynôme caractéristique de f est $P_f(X) = -(X+1)(X^2+1)$.

b) Un vecteur propre
$$w$$
 pour la valeur propre i est donné par : $w = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + i \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$.
$$w_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \text{ et } w_2 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}.$$

c) Comme
$$f$$
 est à coefficients réels, $f(w_1) = -w_2$ et $f(w_2) = w_1$. On pose $v_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ un vecteur propre de f pour la valeur propre -1 , $v_2 = w_1$ et $v_3 = w_2$. Alors $\mathcal{B}_1 = (v_1, v_2, v_3)$ de \mathbb{R}^3 . Comme $f(v_1) = -v_1$, $f(v_2) = -v_3$ et $f(v_3) = v_2$, la matrice de f relativement à cette base est la matrice $B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$ dans $M_3(\mathbb{R})$.

- 3. a) Si φ est une forme bilinéaire symétrique sur \mathbb{R}^3 qui vérifie: $\varphi(f(x), f(y)) = \varphi(x, y)$, pour tous $x, y \in \mathbb{R}^3$, alors $\varphi(v_1, v_2) = \varphi(f(v_1), f(v_2)) = \varphi(v_1, v_3) = \varphi(f(v_1), f(v_3)) = -\varphi(v_1, v_2) = 0$. De même $\varphi(v_2, v_3) = \varphi(f(v_2), f(v_3)) = -\varphi(v_2, v_3) = 0$. Donc la base \mathcal{B}_1 est orthogonale par rapport à φ .
 - b) $\varphi(v_2, v_2) = \varphi(v_3, v_3)$, donc la matrice de φ dans cette base est de la forme $\tilde{A} = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & b \end{pmatrix}$.
 - c) La condition nécessaire et suffisante pour que φ soit définie positive est que a>0 et b>0.
 - d) Si on note M^* la matrice de g^* , alors on a: ${}^tM\tilde{A} = \tilde{A}M^*$. Donc si $M = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}$, alors la matrice $M^* = \begin{pmatrix} a_1 & \frac{b}{a}a_2 & \frac{b}{a}a_3 \\ \frac{a}{b}b_1 & b_2 & b_3 \\ \frac{a}{b}c_1 & c_2 & c_3 \end{pmatrix}$.

Partie II

- 1. Comme $(a, f(a), \ldots, f^{p-1}(a))$ est un système générateur de E, donc $p \ge n$.
- 2. a) Pour $k \in \mathbb{N}$, $f^{p}(f^{k}(a)) = f^{k}(f^{p}(a)) = f^{k}(a)$.
 - b) Comme $(a, f(a), \ldots, f^{p-1}(a))$ est un système générateur de E et f^p laisse fixe chaque vecteur de ce système, alors $f^p = \mathrm{id}_E$; ce qui donne encore que f est bijective et f^{p-1} est l'endomorphisme inverse de f.
 - c) Si λ est une valeur propre et $f(x) = \lambda x$, avec $x \neq 0$, alors $f^p(x) = x = \lambda^p x$, donc $\lambda^p = 1$.
- 3. a) Comme le système $(a, f(a), \ldots, f^m(a))$ est lié, il existe $\alpha_0, \ldots, \alpha_m$ non tous nuls tels que $\sum_{j=0}^m \alpha_j f^j(a) = 0$. Si $\alpha_m = 0$, alors le système $(a, f(a), \ldots, f^{m-1}(a))$ sera lié, ce qui est contraire à l'hypothèse. Donc $\alpha_m \neq 0$ et $f^m(a) \in E_m$.
 - b) On suppose que $f^k(a) = \sum_{j=0}^{m-1} \alpha_j f^j(a)$ pour un $k \geq m$. On applique f à cette

inégalité, on aura: $f^{k+1}(a) = \sum_{j=1}^{m} \alpha_{j-1} f^{j}(a)$. Comme $f^{m}(a)$ est dans E_{m} , alors $f^{k+1}(a)$ est dans E_{m} .

- c) Comme $(a, f(a), \ldots, f^{p-1}(a))$ est un système générateur de E et que ce système de vecteurs est dans E_m , on aura: $E \subset E_m$, donc $E = E_m$ et donc le système $(a, f(a), \ldots, f^{m-1}(a))$ est une base de E, donc m = n.
- d) Si $P(X) = \sum_{j=0}^{k} a_j X^j$ est un polynôme non nul qui annule f, alors le système $(a, f(a), \ldots, f^k(a))$ est un système lié, donc $k \geq n$. Donc P est de degré au moins n.
- 4. a) On considère l'endomorphisme g de E défini par: $g = \sum_{k=0}^{n-1} a_k f^k = a_0 \operatorname{id}_E + a_1 f + a_2 f^2 + \cdots + a_{n-1} f^{n-1}$.
 - i) L'endomorphisme g commute avec f, donc $f \circ g = g \circ f$ et comme $g(a) = f^n(a)$, donc pour $k \in \mathbb{N}$, $g(f^k(a)) = f^k(g(a)) = f^{n+k}(a)$.
 - ii) On déduit de ce qui précède que $g=f^n$ sur les éléments de la base $(a,f(a),\ldots,f^{n-1}(a)),$ donc $g=f^n$ sur E. Ce qui donne que $f^n=\sum_{k=0}^{n-1}a_kf^k=a_0\operatorname{id}_E+a_1f+a_2f^2+\cdots+a_{n-1}f^{n-1}.$
 - b) La matrice de f relativement à la base $(a, f(a), \ldots, f^{n-1}(a))$ est $\begin{pmatrix} 0 & 0 & \ldots & 0 & a_0 \\ 1 & 0 & \ldots & 0 & a_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & a_{n-2} \\ 0 & \ldots & 0 & 1 & a_{n-1} \end{pmatrix}$.
 - c) i) Pour $\lambda \in \mathbb{C}$, la matrice de $f \lambda \operatorname{id}_E$ dans la base $(a, f(a), \dots, f^{n-1}(a))$ est $\begin{pmatrix} -\lambda & 0 & \dots & 0 & a_0 \\ 1 & -\lambda & \dots & 0 & a_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & -\lambda & a_{n-2} \\ 0 & \dots & 0 & 1 & a_{n-1} \lambda \end{pmatrix}.$

$$\begin{vmatrix} -\lambda & 0 & \dots & 0 & a_0 \\ 1 & -\lambda & \dots & 0 & a_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & -\lambda & a_{n-2} \\ 0 & 0 & 1 & a_{n-1} - \lambda \end{vmatrix} = P_f(\lambda) = (-1)^n (\lambda^n - \sum_{k=0}^{n-1} a_k \lambda^k).$$

(On rappelle que le polynôme caractéristique de f annule f (théorème de Cayley Hamilton et tout polynôme qui annule f non nul est degré au moins n.)

Comme la matrice $\begin{pmatrix} -\lambda & 0 & \dots & 0 & a_0 \\ 1 & -\lambda & \dots & 0 & a_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & -\lambda & a_{n-2} \\ 0 & \dots & 0 & 1 & a_{n-1} - \lambda \end{pmatrix} \text{ admet une sous matrice de rang}$

n-1 inversible, donc rang $(f-\lambda id_E) \ge n-1$. (Il suffit de prendre la matrice formée des lignes $2, \ldots, n$ et les colonnes $1, \ldots, n-1$).

- ii) Si λ est une valeur propre, rang $(f \lambda id_E) \le n 1$, donc le sous-espace propre de f associé à la valeur propre λ est de dimension 1 et donc f est digonalisable.
- 5. Si n = 2q et $\mathbb{K} = \mathbb{R}$.
 - a) Le poynôme P_f est à coefficients réels et de degré 2q. De plus les racines de P_f sont des racines p-ième de l'unité, donc si 1 est une valeur propre, alors -1 est une valeur propre.
 - b) La matrice de f est digonalisable dans \mathbb{C} .
 - Si 1 et -1 sont des valeurs propres de f, alors les autres valeurs propres sont de la forme $e^{i\theta_j}$, avec $\theta_j = \frac{2k_j\pi}{p}$, $j \in \{1, \ldots, q-1\}$ et $k_j \in \{1, \ldots, p-1\}$. Pour $\lambda = e^{i\theta_j}$, il existe une base réelle du sous-espace propre E_λ telle que la matrice de la restriction de f sur E_λ est de la forme $\begin{pmatrix} \cos\theta_j & \sin\theta_j \\ -\sin\theta_j & \cos\theta_j \end{pmatrix}$. (cf : Partie I-3-c)). Donc il existe une base réelle de E telle que la matrice de f relativement à cette base est de la forme

$$\begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & -1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \cos\theta_1 & \sin\theta_1 & \dots & \vdots & \vdots \\ 0 & 0 & -\sin\theta_1 & \cos\theta_1 & \dots & \vdots & \vdots \\ \vdots & \vdots & \dots & \dots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \dots & \dots & \dots & 0 & 0 \\ \vdots & \vdots & \dots & \dots & \cos\theta_{q-1} & \sin\theta_{q-1} \\ \dots & \dots & \dots & \dots & -\sin\theta_{q-1} & \cos\theta_{q-1} \end{pmatrix}$$

Si 1 et -1 ne sont pas des valeurs propres de f, alors les valeurs propres de f sont de la

forme $e^{i\theta_j}$, avec $\theta_j = \frac{2k_j\pi}{p}$, $j \in \{1, \ldots, q\}$ et $k_j \in \{1, \ldots, p-1\}$. Donc il existe une base réelle de E telle que la matrice de f relativement à cette base est de la forme

$$\begin{pmatrix} \cos\theta_1 & \sin\theta_1 & 0 & 0 & \dots & 0 & 0 \\ -\sin\theta_1 & \cos\theta_1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \cos\theta_2 & \sin\theta_2 & \dots & \vdots & \vdots \\ 0 & 0 & -\sin\theta_2 & \cos\theta_2 & \dots & \vdots & \vdots \\ \vdots & \vdots & \dots & \dots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \dots & \dots & \dots & \vdots & \vdots \\ \vdots & \vdots & \dots & \dots & \dots & \cos\theta_q & \sin\theta_q \\ \dots & \dots & \dots & \dots & \dots & \dots & \theta_q & \cos\theta_q \end{pmatrix}$$

- 6. a) Si n = 2q + 1 et $\mathbb{K} = \mathbb{R}$, alors P_f admet une racine réelle λ car il est de degré impair. Comme $f^p = \mathrm{id}_E$, alors $\lambda \in \{-1, 1\}$.
 - b) Comme dans la question précédente, les sous-espaces propres sont de dimension 1 complexe, donc il existe une base de E telle que la matrice de f relativement à cette base est de la forme

$$\begin{pmatrix} \lambda & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & \cos \theta_1 & \sin \theta_1 & \dots & \dots & 0 & 0 \\ 0 & -\sin \theta_1 & \cos \theta_1 & \dots & \dots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \dots & \vdots & \vdots \\ \vdots & \vdots & \dots & \dots & \ddots & \vdots & \vdots \\ \dots & \dots & \dots & \dots & \cos \theta_q & \sin \theta_q \\ \dots & \dots & \dots & \dots & \dots & \dots & -\sin \theta_q & \cos \theta_q \end{pmatrix}$$

avec
$$\theta_j = \frac{2k_j\pi}{p}$$
, $j \in \{1, \ldots, q\}$ et $k_j \in \{1, \ldots, p-1\}$

7. On considère l'espace \mathbb{R}^n muni de sa base canonique et une matrice comme dans la question précédente. L'endomorphisme de \mathbb{R}^n associé à cette matrice est cyclique d'ordre p.

8. a)
$$f \circ h = \sum_{k=0}^{p-1} b_k f \circ f^k = \sum_{k=0}^{p-1} b_k f^{k+1} = h \circ f$$
.

b)
$$h(f^k(a)) = \sum_{j=0}^{p-1} b_j f^j \circ f^k(a) = \sum_{j=0}^{p-1} b_j f^{j+k}(a) = g(f^k(a)).$$

- c) Comme g=h sur les éléments de la base on aura g=h sur E.
- d) Il en résulte que l'ensemble des endomrphismes qui commutent avec f est l'espace vectoriel engendré par les f^k , $k \in \mathbb{N}$.
- 9. a) On sait que $f^n = \mathrm{id}_E$, donc si un nombre complexe λ est une valeur propre de f, alors $\lambda^n = 1$.

b) La matrice associée à
$$f$$
 relativement à la base $(a, f(a), \ldots, f^{n-1}(a))$ est
$$\begin{pmatrix} 0 & 0 & \ldots & 0 & 1 \\ 1 & 0 & \ldots & 0 & 0 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & 0 \\ 0 & \ldots & 0 & 1 & 0 \end{pmatrix}.$$

c) Comme toutes les valeurs propres de f sont différentes, alors f est diagonalisable.

Un vecteur propre associé à λ est donné par: $\begin{pmatrix} 1 \\ \lambda^{n-1} \\ \lambda^{n-2} \\ \vdots \lambda^2 \\ \lambda \end{pmatrix}$. Donc si $\theta_j = \frac{2j\pi}{n}$, avec $j \in \{0, \dots, n-1\}$, une base de vecteur propre est donnée par: (v_0, \dots, v_{n-1}) , avec $v_j = \{0, \dots, n-1\}$

 $\{0,\ldots,n-1\}$, une base de vecteur propre est donnée par: (v_0,\ldots,v_{n-1}) , avec $v_j=\begin{pmatrix} 1 \\ e^{\mathrm{i}(n-1)\theta_j} \\ e^{\mathrm{i}(n-2)\theta_j} \\ \vdots \\ e^{2\mathrm{i}\theta_j} \\ e^{\mathrm{i}\theta_j} \end{pmatrix}$.

Partie III

1. a) Pour n=2, $P_2(X)=\begin{vmatrix} 1 & X \\ 1 & \lambda_1 \end{vmatrix}=\lambda_1-X$. On suppose que le résultat est vrai pour n-1 et montrons le pour n.

On développe $P_n(X)$ suivant la première ligne, on aura le coefficient de X^{n-1} est $(-1)^n P_{n-1}(\lambda_1)$ qui est non nul car les λ_j sont différents deux à deux. (C'est un polynôme de degré n-2 en λ_1).

b) Si $X = \lambda_j$, alors la première ligne et la (j+1)-ème ligne sont égales, donc $\lambda_1, \ldots, \lambda_{n-1}$ sont des racines de P.

c) Il résulte que $W(\lambda_1, \ldots, \lambda_n) = C \prod_{1 \le i < j \le n} (\lambda_j - \lambda_i)$, avec C une constante. C = 1. (Il suffit de prendre $\lambda_1 = 0$).

- 2. a) Si $g \in \mathcal{C}(f)$ et $x \in E_{\lambda}$, alors $f(g(x)) = g(f(x)) = \lambda g(x)$, donc $g(x) \in E_{\lambda}$. Si g laisse stable les sous espaces propres de f. Soit λ une valeur propre de f et $v \in E_{\lambda}$, alors $f(g(v)) = \lambda g(v)$ et $g(f(v)) = g(\lambda v) = \lambda g(v)$. Comme il existe une base de vecteurs propres de f, alors $g \in \mathcal{C}(f)$.
 - b) Si E_1, \ldots, E_m sont les différents sous-espaces propres de f, qui sont de dimension respectivement n_1, \ldots, n_m , alors la dimension de $\mathcal{C}(f)$ est égale à $\sum_{j=1}^m n_j^2$. En particulier les valeurs propres de f sont différentes deux à deux si et seulement si dim $\mathcal{C}(f) = n$.
- 3. $a) \Rightarrow b$): Si $\sum_{j=0}^{n-1} \alpha_j f^j = 0$, alors $\sum_{j=0}^{n-1} \alpha_j f^j(x) = 0$, ce qui donne que $\alpha_0 = \ldots = \alpha_{n-1} = 0$.
 - $b) \Rightarrow c$): Si P est un polynôme non nul qui annule f, alors $\deg P \geq n$, donc les racines de P_f sont simples.
 - $c) \Rightarrow d$: Déjà démontré dans la question précédente.
 - $(d)\Rightarrow a$): On note $x=v_1+\ldots+v_n$, avec (v_1,\ldots,v_n) une base de vecteurs propres de f.
 - $\{x, f(x), \ldots, f^{n-1}(x)\}$ est un système libre si et seulement si le déterminant $W(\lambda_1, \ldots, \lambda_n)$ est non nul; ce qui est démontré dans la première question. Donc $\{x, f(x), \ldots, f^{n-1}(x)\}$ est une base de E.
- 4. Il suffit de prendre la matrice dans $M_n(\mathbb{K})$ définie par: $M = \begin{pmatrix} 0 & 0 & \dots & 0 & 2 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & 0 \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix}$.

Le polynôme caractéristique de M est $(-1)^n(X^n-2)$. Donc f n'est pas cyclique.