Алгоритмы и модели вычислений.

Задание 7: потоки

Сергей Володин, 272 гр.

задано 2014.03.27

Определения

(сю да будут ссылки) $(G(V,E), c: V^2 \to \mathbb{N} \cup \{0\}, s, t)$ — транспортная сеть \Leftrightarrow

- 1. $c(u, v) \ge 0$
- 2. $\forall (u,v) \in V^2 \hookrightarrow ((u,v) \in E \Leftrightarrow c(u,v) > 0)$

 $f\colon V^2 o \mathbb{Z}$ — поток в этой сети \Leftrightarrow

- 1. $\forall (u, v) \in V^2 \hookrightarrow (f(u, v) \leqslant c(u, v))$
- 2. $\forall (u,v) \in V^2 \hookrightarrow (f(u,v) = -f(v,u))$
- 3. $\forall u \in V^2 \setminus \{s, t\} \hookrightarrow f(u, V) = 0$

Упражнение 0

1. Пусть $(G(V, E), c: V^2 \to \mathbb{N} \cup \{0\}, s, t)$ — транспортная сеть. Пусть $(u, v) \notin E, (v, u) \notin E$. Тогда f(u, v) = f(v, u) = 0. $(u,v) \notin E \stackrel{2}{\Rightarrow} c(u,v) = 0.$ $(v,u) \notin E \stackrel{2}{\Rightarrow} c(v,u) = 0.$ Ho $-0 = -c(v,u) \stackrel{1}{\leqslant} -f(v,u) \stackrel{2}{\leqslant} f(u,v) \stackrel{1}{\leqslant} c(u,v) = 0,$ откуда f(u,v) = f(v,u) = 0

Упражнение 1

Пусть $(G(V, E), c: V^2 \to \mathbb{N} \cup \{0\}, s, t)$ — транспортная сеть. Фиксируем $u \notin \{s, t\}$. Пусть $L = \{v \in V | (v, u) \in E\}, R = \{v \in V | (v, u) \in E\}$ $V|(u,v) \in E\}$ — вершины, из которых (в которые, соответственно) есть ребра в фиксированную. Тогда f(L,u) = f(u,R). Найдем

$$0 \stackrel{3}{=} f(u,V) \equiv \sum_{v \in V} f(u,v) = \underbrace{\sum_{\substack{v \in V \\ (u,v) \in E \\ (v,u) \in E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ (v,u) \notin E}} f(u,v) + \sum_{\substack{v \in V \\ (u,v) \notin E \\ ($$

$$(u,v) \notin E, \ (v,u) \notin E \stackrel{1}{\Rightarrow} f(u,v) = 0,$$
 поэтому $S_4 = 0.$ Рассмотрим $S_1 = \sum_{\substack{v \in V \\ (u,v) \in E \\ (v,u) \in E}} f(u,v) \stackrel{2}{=} \sum_{\substack{v \in V \\ (u,v) \in E \\ (v,u) \in E}} (-f(v,u)) = -\sum_{\substack{v \in V \\ (u,v) \in E \\ (v,u) \in E}} f(v,u) = 1.$ Переобозначим вершины, получим $f(u,v) = -S_1$, откуда $f(u,v) = -S_1$, откуда $f(u,v) = -S_1$.

Рассмотрим
$$f(L,u) = \sum_{(v,u)\in E} f(v,u) = -\sum_{(v,u)\in E} f(u,v) = -(S_1+S_3) \stackrel{S_1=0}{\equiv} -S_3$$
 Рассмотрим $f(u,R) = \sum_{(u,v)\in E} f(u,v) = S_1 + S_2 \stackrel{S_1=0}{\equiv} S_2$. Из (*) получаем $0 \stackrel{S_1=0}{=} S_2 + S_3$, откуда $S_2 = -S_3$, и $f(L,u) = f(u,R)$

Упражнение 2

Пусть $(G(V,E),\,c\colon V^2\to \mathbb{N}\cup\{0\},s,t)$ — транспортная сеть. f — поток в ней.

Рассмотрим $A \stackrel{\text{def}}{=} \sum_{\substack{u \in V \\ u \in V}} f(u,v)$. Переобозначим, получим $A = \sum_{\substack{v \in V \\ u \in V}} f(v,u) \stackrel{2}{=} - \sum_{\substack{v \in V \\ u \in V}} f(u,v) = -A$, откуда A = 0

Но
$$A = \sum_{\substack{u = s \\ v \in V}} f(u,v) + \sum_{\substack{u = t \\ v \in V}} f(u,v) + \sum_{\substack{u = t \\ v \in V}} f(u,v).$$
 Рассмотрим $S_3 = \sum_{\substack{u \in V \setminus \{s,t\} \\ v \in V}} \sum_{\substack{v \in V \\ s \neq v}} f(u,v)$. По свойству 3 каждая подчеркнутая часть равна 0, и $S_3 = 0$ Рассмотрим $S_1 = \sum_{v \in V} f(s,v) \equiv |f|$

Рассмотрим $S_2 = \sum_{v \in V} f(t,v) \stackrel{2}{=} - \sum_{v \in V} f(v,t) = -f(V,t).$ Поскольку $0 = A = S_1 + S_2$, получаем |f| = f(V,t)

Задача 1

Пусть $(G(V,E), c: V^2 \to \mathbb{N} \cup \{0\}, s,t)$ — транспортная сеть. f — поток в ней.

1. Пусть $X\subseteq V$. Рассмотрим $A\stackrel{\text{\tiny def}}{=} f(X,X)\equiv \sum\limits_{u\in \underline{X}} f(u,v)$. Переобозначим, получим

$$A = \sum_{\substack{v \in X \\ u \in X}} f(v, u) \stackrel{2}{=} - \sum_{\substack{v \in X \\ u \in X}} f(u, v) = -A,$$

откуда A=0

2. Пусть $X, Y \subseteq V$. Рассмотрим $f(X,Y) \equiv \sum_{\substack{x \in X \\ y \in V}} f(x,y) \stackrel{2}{=} - \sum_{\substack{x \in X \\ y \in V}} f(y,x) \equiv -f(Y,X)$

3. Пусть
$$X, Y, Z \subseteq V, X \cap Y = \emptyset$$
. Рассмотрим $f(X \cup Y, Z) \stackrel{(*)}{\equiv} \sum_{\substack{u \in X \cup Y \\ v \in Z}} f(u, v) = \sum_{\substack{u \in X \\ u \in Y \\ v \in Z}} f(u, v) + \sum_{\substack{u \in X \\ u \notin Y \\ v \in Z}} f(u, v) + \sum_{\substack{u \notin X \\ u \notin Y \\ v \in Z}} f(u, v) + \sum_{\substack{u \notin X \\ u \notin Y \\ v \in Z}} f(u, v) = \sum_{\substack{u \in X \\ u \notin Y \\ v \in Z}} f(u, v) + \sum_{\substack{u \notin X \\ u \notin Y \\ v \in Z}} f(u, v) + \sum_{\substack{u \notin X \\ u \in X \\ v \in Z}} f(u, v) + \sum_{\substack{u \notin X \\ u \in X \\ v \in Z}} f(u, v) + \sum_{\substack{u \notin X \\ u \in X \\ v \in Z}} f(u, v) + \sum_{\substack{u \notin X \\ u \in X \\ v \in Z}} f(u, v) + \sum_{\substack{u \notin X \\ u \in X \\ v \in X}} f(u, v) + \sum_{\substack{u \notin X \\ u \in X \\ v \in X}} f(u, v) + \sum_{\substack{u \notin X \\ u \in X \\ v \in X}} f(u, v) + \sum_{\substack{u \notin X \\ u \in X \\ v \in X}} f(u, v) + \sum_{\substack{u \notin X \\ u \in X \\ v \in X}} f(u, v) + \sum_{\substack{u \notin X \\ u \in X \\ v \in X}} f(u, v) + \sum_{\substack{u \notin X \\ u \in X \\ v \in X}} f(u, v) + \sum_{\substack{u \notin X \\ u \in X \\ u \in X}} f(u, v) + \sum_{\substack{u \notin X \\ u \in X \\ u \in X}} f(u, v) + \sum_{\substack{u \notin X \\ u \in X \\ u \in X}} f(u, v) + \sum_{\substack{u \notin X \\ u \in X \\ u \in X}} f(u, v) + \sum_{\substack{u \notin X \\ u \in X \\ u \in X}} f(u, v) + \sum_{\substack{u \notin X \\ u \in X \\ u \in X}} f(u, v) + \sum_{\substack{u \notin X \\ u \in X \\ u \in X}} f(u, v) + \sum_{\substack{u \notin X \\ u \in X \\ u \in X}} f(u, v) + \sum_{\substack{u \notin X \\ u \in X \\ u \in X}} f(u, v) + \sum_{\substack{u \notin X \\ u \in X \\ u \in X}} f(u, v) + \sum_{\substack{u \notin X \\ u \in X \\ u \in X}}$

 $S_1=0,$ так как $u\in X\,\wedge\,u\in Y\Leftrightarrow u\in X\cap Y\Leftrightarrow u\in\varnothing$

По определению, $f(X,Z) = \sum_{\substack{u \in X \\ u \in Y \\ v \in Z}} f(u,v) + \sum_{\substack{u \in X \\ u \notin Y \\ v \in Z}} f(u,v) \equiv S_1 + S_2 \stackrel{S_1=0}{=} S_2$ По определению, $f(Y,Z) = \sum_{\substack{u \in X \\ u \in X \\ v \in Z}} f(u,v) + \sum_{\substack{u \in Y \\ u \notin X \\ v \in Z}} f(u,v) \equiv S_1 + S_3 \stackrel{S_1=0}{=} S_3$

Тогда из (*) получаем $f(X \cup Y, Z) = S_2 + S_3 = f(X, Z) + f(Y, Z)$.

4. Пусть $X,Y,Z\subseteq V,\,X\cap Y=\varnothing$. Тогда $f(Z,X\cup Y)\stackrel{2}{=}-f(X\cup Y,Z)\stackrel{3}{=}-(f(X,Z)+f(Y,Z)\equiv -f(X,Z)-f(Y,Z)\stackrel{2}{=}-f(X,Z)$ f(Z,X) + f(Z,Y)

Задача 2

Нет, не обязательно. Пример. Рассмотрим $(G(V, E), c: V^2 \to \mathbb{N} \cup \{0\}, s, t)$ — транспортная сеть. f — поток в ней:

Определим $V \supseteq X \stackrel{\text{def}}{=} \{s\}, \ Y \stackrel{\text{def}}{=} X$. Тогда $A = f(X,Y) \stackrel{X=Y}{=} f(X,X) \stackrel{1}{=} 0$. Рассмотрим $B = -f(V-X,Y) \equiv f(\{t\},\{s\}) = -\sum\limits_{\substack{u \in \{t\}\\ v \in \{s\}}} f(u,v) \equiv -f(t,s) \stackrel{2}{=} f(s,t) = 1$

Получаем $A=0 \neq 1=B$