

PROJECT

Object Classification

A part of the Deep Learning Nanodegree Foundation Program

	CODE REVIEW
	NOTES
HARE YO	UR ACCOMPLISHMENT! ❤️ <mark>;</mark>
	Specifications
our project	on this project. You have met all the requirements of the project, and your network produces very good results. t is accepted as complete, but please read the comments to see how you might be able to improve. with the nanodegree!
Required	l Files and Tests
The proje	ct submission contains the project notebook, called "dInd_image_classification.ipynb".
All the un	it tests in project have passed.
reproce	essing
The norm	alize function normalizes image data in the range of 0 to 1, inclusive.
In your im	plementation, the resulting values will be in range [0.1, 0.9], not [0, 1] as required. You could have written it as: return np.array(x)/255.
This was t	he only issue in the project, so I will let it slide.
The one_	hot_encode function encodes labels to one-hot encodings.
Good wor	k on implementing one_hot_encode . You could have also used LabelBinarizer or OneHotEncoder from scikit-learn.

The convolutional layer should use a nonlinear activation.

The neural net inputs functions have all returned the correct TF Placeholder.

The conv2d_maxpool function applies convolution and max pooling to a layer.

You have correctly implemented all neural network input functions!

This function shouldn't use any of the tensorflow functions in the tf.contrib or tf.layers namespace. Your implementation of conv2d_maxpool is great! The flatten function flattens a tensor without affecting the batch size. Good The fully_conn function creates a fully connected layer with a nonlinear activation. Very good. Impressive that you decided not to use Layers and Layers (contrib) packages. The output function creates an output layer with a linear activation. Neural Network Architecture The conv_net function creates a convolutional model and returns the logits. Dropout should be applied to alt least one layer. Great! Your implementation of $\fbox{\mbox{conv_net}}$ meets all the requirements. $You can read more on convolutional network architectures here: \\ http://cs231n.github.io/convolutional-networks/\#architectures and for the convolutional network for the convolutional n$ http://stats.stackexchange.com/questions/148139/rules-for-selecting-convolutional-neural-network-parameters **Neural Network Training** The train_neural_network function optimizes the neural network. You have correctly used session.run to perform NN training. The print_stats function prints loss and validation accuracy. Yes, you have correctly used valid_features and valid_labels and set keep_prob = 1! The hyperparameters have been set to reasonable numbers. Batch size of 128 is adequate. Keep probability is in a good range. The number of epochs also seems to work fine. The neural network validation and test accuracy are similar. Their accuracies are greater than 50%. Impressive results! Your test and validation accuracy are similar. It means that NN does not overfit to validation dataset and does not lose generalization on test dataset.

■ DOWNLOAD PROJECT

Rate this review

Student FAQ