Nome e Cognome:	
(IN STAMPATELLO MAIUSCOLO)	
,	
Codice Persona o Matricola:	

RETI LOGICHE

O Prof. William Fornacian	\bigcirc	Prof.	William	Fornaciar
---------------------------	------------	-------	---------	-----------

O Prof. Gianluca Palermo

O Prof. Fabio Salice

Appello del 17 Luglio 2024

Prima di iniziare la prova si prega di leggere con attenzione i seguenti punti:

- Il tempo massimo a disposizione per svolgere la prova é di 1h:45min
- Non è permessa la consultazione di alcun materiale didattico durante lo svolgimento della prova. È severamente vietato colloquiare durante l'esame con i compagni di corso o utilizzare telefoni, PC, libri e appunti.
- In caso di necessità, il docente potrà richiedere lo svolgimento di una prova orale.
- Tutte le risposte devono essere riportate su questi fogli. Non saranno considerate valide le risposte fornite su fogli diversi da quelli contenuti in questo plico.
- Si segnali chiaramente sulla prima pagina il docente di riferimento
- Il punteggio degli esercizi è da considerarsi INDICATIVO
- LE PARTI SCRITTE IN FORMATO NON LEGGIBILE DAL DOCENTE SARANNO CONSIDERATE ERRATE IN FASE DI CORREZIONE

NOTA: Per un voto sufficiente sarà necessario avere almeno 7 punti sul totale degli Esercizi 1 e 2 e almeno 7 punti sul totale degli Esercizi 4 e 5

	Esercizio 1	Esercizio 2	Esercizio 3	Esercizio 4	Esercizio 5
PUNTI	7	7	4	7	7
Esame					
TOTALE					

ESERCIZIO 1 – Algebra di Boole

Facendo riferimento all'architettura riportata nella figura qui di seguito, si chiede di:

- a. Scrivere la forma algebrica di F(A,B,C,D) (funzione riportata nel rettangolo) senza applicare alcuna minimizzazione;
- b. Ridurre F(A,B,C,D) utilizzando esclusivamente le proprietà dell'algebra. Si nomini H(A,B,C,D) il risultato della minimizzazione algebrica;
- c. Applicare il teorema di espansione di Shannon ad F rispetto ad A. Si esplicitino in modo chiaro i cofattori F_A e $F_{A'}$ utilizzando esclusivamente le parentesi. Non si applichi alcuna minimizzazione algebrica. Si nomini G(A,B,C,D) il risultato della espansione;
- d. Ridurre F_A utilizzando esclusivamente le proprietà dell'algebra;
- e. Ridurre $F_{A'}$ utilizzando esclusivamente le proprietà dell'algebra;
- f. Utilizzare le funzioni minimizzate ai punti d. (F_A minima) ed e. ($F_{A'}$ minima) in G(A,B,C,D). Si riduca G utilizzando le proprietà dell'algebra.
- g. Si verifichi che H e G siano equivalenti.

NOTA: Per garantire la validità di ogni risposta e dell'esercizio nel suo insieme, è essenziale che ogni richiesta sia soddisfatta in modo chiaro e esaustivo. Svolgere l'esercizio per punti evidenziando la soluzione per ogni punto.

```
SOLUZIONE A. F = [(AC + BC')B + B'D]'
B = [(AC + BC' + B'D)]' = [B(A + C') + B'D]' = [B(A + C')]' (B'D)'
= (B' + (A'C)) (B + D') = A'BC + B'D' + A'CD' = H(A,B,C,D)
C.
FA' = F(A = 0) = [BC' + B'D]' FA = F(A = 1) = [C + BC')B + B'D]' G = A' F(A = 0) + A F(A = 1)
D. E.
FA = [C + BC')B + B'D]' = (B*B + B'D)' = (B + B'D)' = (B + D)' = B'D' FA' = [BC' + B'D]' = (BC')'(B'D)' = (B' + C)(B + D') = B'D' + BC + CD'
F.
G = A(B'D') + A'(B'D' + BC + CD') = A'D' + A'B'D' + A'B'C + A'CD' = H
```

ESERCIZIO 2 - Funzioni Multiple

Facendo riferimento alle mappe di Karnaugh riportate qui di seguito, che rappresentano una funzione multipla F(ABCD): $\{F1(ABCD), F2(ABCD), F3(ABCD)\}$, si chiede di:

- a. identificare gli implicanti primi di singola funzione e di funzione multipla utilizzando **esclusivamente** mappe di karnaugh e li si numeri con valori progressivi a partire da 1. Per semplicità è permesso (e si suggerisce caldamente) utilizzare le tabelle del testo. Completare le 4 tabelle mancanti utilizzando le tabelle disegnate;
- b. Completare la tabella di copertura, identificare gli implicanti primi ed essenziali (li si evidenzi con un cerchio), e applicare, **una sola volta, la sola copertura di riga**. Si ricordi che l'ordine delle variabili è ABCD e, quindi, m0 corrisponde a A'B'C'D', m1 A'B'C'D, m2 A'B'CD, ecc.

	F1							F1 F2									F3								8		
	0	4	5	7	8	12	13	14	15	1	2	3	6	9	10	11	15	1	П	3	5	7	9	11	13	15	COSTO Letterali
1																		0	+							-	Jan Cottorum
2																			+	T							
3																			Ť	\neg							
4																			T							Н	
5																			+	_					_	\vdash	
6																		9	+	\dashv						\vdash	
7																			†	\top							
8																			\top	7	\neg				-	\vdash	
9																		0	\dagger	7	7					H	
10																-			\top	\top	\exists						
11																		Ž.	\top	1						\vdash	
12																			+	\top	\dashv	\neg			-		***
13																			+	\top							
14																			†	+							
15																			+	+	\dashv	\dashv				-	
16																\neg		8	+	+	\dashv	\neg					
17									1										+	+	\dashv	-		-		-	

ESERCIZIO 3 – Multi livello e PLD

Si consideri la funzione booleana Out(A,B,C,D), definita come segue:

```
Out=V2;

V0= A C B D;

V1= A V0 + C D V0;

V2= A C' V1' + B C' V1' + C' V1;
```

Si richiede di:

- a. senza effettuare alcuna semplificazione, disegnare la funzione Out direttamente nella immagine riportata qui di seguito;
- b. fattorizzare l'espressione algebrica booleana di V2 (V1, A, B, C) usando l'algoritmo iterativo noto;
- c. quanti livelli di logica ha l'espressione V2 dopo la fattorizzazione? Si disegni anche il circuito in termini di porte logiche corrispondenti all'espressione V2 fattorizzata.

NOTA: non devono essere applicare ottimizzazioni ma solo le trasformazioni richieste. Inoltre, per garantire la validità di ogni risposta e dell'esercizio nel suo insieme, è essenziale che ogni richiesta sia soddisfatta in modo chiaro e esaustivo. Svolgere l'esercizio per punti evidenziando la soluzione per ogni punto.

ESERCIZIO 4 – Progetto FSM

Si vuole realizzare un FF speciale (pertanto con una uscita binaria) descritto dalla seguente specifica.

LHE	Q_{t+1}	Significato
0 0 0	Q_t	Nessuna azione
100	0	Forza a 0
010	1	Forza a 1
1 1 0	Q_t'	Inversione dello stato
0 0 1		Inibisce evattiva il FF. Il primo 001 inibisce il funzionamento; il secondo lo riattiva. Questo significa che, al primo 001, i comandi quattro comandi 000, 100, 010, 110 (-0) non hanno alcun effetto sulla uscita (l'uscita non cambia più valore); al secondo 001 i comandi 000, 100, 010, 110 tornano ad avere effetto sulla uscita.

Gli ingressi LHE non specificati, precisamente le configurazioni {011, 101, 111}, non si presentano mai. Trattare queste configurazioni in modo opportuno al punto b. Si svolgano i seguenti passi:

- a. progettare e disegnare il diagramma degli stati utilizzando il modello di MOORE;
- b. riportare la tabella degli stati e la tabella delle transizioni corrispondenti al diagramma degli stati identificato;
- c. sintetizzare la funzione d'uscita.

ESERCIZIO 5 - FSM

Facendo riferimento all'architettura riportata nella figura qui di seguito, nella quale sono presenti due FFD, si chiede di: si chiede di:

- a. che tipo di macchina è (MEALY o MOORE)?
- a. si scriva tabella delle eccitazioni/transizioni (nota: il reset è collegato ai pin di clear dei FF);
- b. si scriva la tabella delle implicazioni e si analizzi la minimalità della macchina;
- c. si scriva la tabella degli stati della macchina minima;
- d. si sintetizzi la macchina con FF tipo T;
- e. TEORIA: Per macchine completamente specificate, l'utilizzo delle classi di massima equivalenza porta ad ottenere sempre una unica macchina minima? Si giustifichi, in modo preciso e sintetico, la risposta.

