Polynômes du second degré

Exemples. $x \mapsto 5x^2 - 3x + 0.2$ est une fonction polynôme de degré 2 $x \mapsto 2x^5 + x^3 - x + 1$ est une fonction polynôme de degré 5 $x \mapsto -3x + 5$ est une fonction polynôme de degré 1

Définition. Une fonction $f: \mathbb{R} \to \mathbb{R}$ est une fonction polynôme de degré 2 ssi :

Il existe trois nombres réels $a, b, c \in \mathbb{R}$ avec $a \neq 0$, tels que pour tout $x \in \mathbb{R}$, $f(x) = ax^2 + bx + c$.

Une **équation de degré 2** est une équation de la forme « $ax^2 + bx + c = 0$ » avec $a \ne 0$.

Exemple. $f: x \mapsto x^2 - 3x + 0.2$ est une fonction polynôme de degré 2 avec a = 1, b = -3, c = 0.2.

Exemple. $f: x \mapsto 5x + 2$ n'en n'est pas une car même si $f(x) = 0x^2 + 5x + 2$, on a a = 0 ce qui est interdit.

Exemple. $f: x \mapsto (x-1)^2$ est une fonction polynôme de degré 2 car en développant on s'aperçoit que :

Pour tout $x \in \mathbb{R}$, $f(x) = x^2 - 2x + 1$ (donc a = 1, b = -2, c = 1).

Définitions. L'écriture « $f(x) = ax^2 + bx + c$ » est appelée **forme développée** de f. a, b, c sont uniques. a est le **coefficient dominant** de f. c est le **coefficient constant** de f.

Théorème (**Forme canonique**). Une fonction polynôme de degré 2 peut s'écrire sous la forme suivante : $f(x) = a(x - \alpha)^2 + \beta$ avec α, β des nombres réels uniques. On a $\alpha = -\frac{b}{2a}$ et $\beta = f(\alpha)$

Définition. L'écriture « $f(x) = a(x - \alpha)^2 + \beta$ » est appelée **forme canonique** de f. **Exemple**. Mettre $f: x \mapsto 3x^2 + 12x + 9$ sous la forme canonique. On calcule $\alpha = -\frac{(12)}{2 \times (3)} = -2$,

Donc $\beta = f(-2) = 3(-2)^2 + 12(-2) + 9 = -3$. Donc pour tout $x \in \mathbb{R}$, $f(x) = 3(x+2)^2 - 3$.

Méthode sans formule. $f(x) = 3(x^2 + 4x + 3) = 3(x^2 + 2 \times \frac{4}{2}x + 3) = 3(x^2 + 2 \times 2x + 2^2 - 2^2 + 2^2 +$

 $3((x+2)^2-2^2+3)=3((x+2)^2-1)=3(x-(-2))^2-3$. Donc par unicité, $\alpha=-2$ et $\beta=-3$.

Rappel. La courbe représentative d'une fonction de degré 1, « y = ax + b » est une <u>droite</u>.

Définition. La courbe représentative d'une fonction de degré 2 « $y = ax^2 + bx + c$ » est une **parabole**.

Définition. Si le coefficient dominant a est > 0 (resp. < 0) la parabole est « vers le haut (resp. bas)

Théorème. La forme canonique permet de trouver les variations et les extremums de f suivant le signe de a

Si $a < 0$:			
x	-∞	α	+∞
f		β	\

Exemple. Etudier les variations de $f: x \mapsto 3x^2 + 12x + 9$. On a vu que $\alpha = -2$ et $\beta = -3$, donc f est décroissante sur $]-\infty;-2]$, croissante sur $[-2;+\infty[$ et atteint son minimum qui vaut -3 en x=-2.

Propriété. La parabole C_f admet pour axe de symétrie la droite d'équation « $x = \alpha$ ».

Définition et propriété. Le sommet de la parabole C_f est le point le plus bas (resp. haut) si la parabole est orientée vers le haut (resp. bas). Les coordonnées du sommet de la parabole sont toujours $(\alpha; \beta)$

Exemple. Déterminer le sommet de la parabole d'équation « $y = 4x^2 + 8x - 10$ ». On a un polynôme de degré 2. On a $\alpha = -\frac{8}{2\times 4} = -1$ et $\beta = 4(-1)^2 + 8(-1) - 10 = -14$, donc son sommet est le point (-1; -14).

Définition. Une **racine d'une fonction** f est un nombre x tel que f(x) = 0. C'est une solution de l'équation « f(x) = 0 ». Résoudre une équation, c'est déterminer l'ensemble de ses racines.

Rappel. **Résolution d'une équation de degré 1.** Si $f: x \mapsto ax + b$ est un polynôme de degré 1 :

f a exactement 1 racine sur $\mathbb R$ càd « ax+b=0 » a exactement 1 solution sur $\mathbb R$, et cette solution est :

 $x_1 = -\frac{b}{a}$ (Démonstration : $ax + b = 0 \Leftrightarrow ax = -b \Leftrightarrow x = -\frac{b}{a}$. La dernière étape est valide car $a \neq 0$)

Exemple. 3x - 6 = 0 est un équation de degré 1, qui admet une unique solution : $x = -\frac{(-6)}{(3)} = 2$.

Hypothèse. Soit $f: x \mapsto ax^2 + bx + c$ une fonction polynôme de degré 2. $(a \ne 0)$

Définition. $\Delta = b^2 - 4ac$ est appelé **discriminant de** f.

Théorème. Résolution d'une équation de degré 2.

On calcule le discriminant Δ de f. On a 3 situations possibles suivant le signe de Δ .

Si $\Delta < 0$: Alors f n'a pas de racines sur $\mathbb R$ autrement dit « $ax^2 + bx + c = 0$ » n'a pas de solutions dans \mathbb{R} . Dans ce cas on ne peut pas factoriser f sur \mathbb{R} .

Si $\Delta = 0$: Alors f a exactement 1 racine sur \mathbb{R} autrement dit « $ax^2 + bx + c = 0$ » a exactement 1 solution dans \mathbb{R} , et cette solution est $x_0 = -\frac{b}{2a} = \alpha$. On peut alors factoriser f. Pour tout $x \in \mathbb{R}$, $f(x) = a(x - x_0)^2$ Si $\Delta > 0$: Alors f a exactement 2 racines sur \mathbb{R} , $\alpha x^2 + bx + c = 0$ a exactement 2 solutions dans \mathbb{R} , et

ces deux solutions sont $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$. On a alors pour tout $x \in \mathbb{R}$, $f(x) = a(x - x_1)(x - x_2)$

Définition. La forme « $f(x) = a(x - x_1)(x - x_2)$ » est appelée **forme factorisée** de f.

Factoriser un polynôme de degré 2 revient à déterminer ses racines, donc revient à résoudre « f(x) = 0 »

Remarque. Le cas $\Delta = 0$ correspond au cas limite où $x_1 = x_2$. On dit que x_0 est une **racine double**.

Exemple. Résoudre $2x^2 + x - 3 = 0$. On pose $f: x \mapsto 2x^2 + x - 3$. Le discriminant de f est

$$\Delta = (1)^2 - 4 \times (2) \times (-3) = 25 \text{ donc l'équation a 2 solutions} : x_1 = \frac{-(1) - \sqrt{(25)}}{2 \times (2)} = -\frac{3}{2} \text{ et } x_2 = \frac{-(1) + \sqrt{(25)}}{2 \times (2)} = 1$$

Exemple. Déterminer les racines de $f: x \mapsto x^2 + x + 1$. Le discriminant de f est $\Delta = (1)^2 - 4 \times (1) \times (1) = 1$ -3 < 0 donc f n'a pas de racines sur \mathbb{R} . L'équation « $x^2 + x + 1 = 0$ » n'a pas de solution réelle.

Exemple. Factoriser $f: x \mapsto 9x^2 - 30x + 25$. Le discriminant de f est $\Delta = (-30)^2 - 4 \times (9) \times (25) = 0$.

Donc f admet une seule racine $x_0 = -\frac{(-30)}{2 \times 9} = \frac{30}{18} = \frac{5}{3}$. Donc pour tout $x \in \mathbb{R}$, $f(x) = 9\left(x - \frac{5}{3}\right)^2$

Théorème. Résolution d'une inéquation de degré 2.

Le signe d'un trinôme est déterminé par les 6 cas de figures suivants :

Exemple. Résoudre (I): « $2x^2 + x - 3 < 0$ » sur \mathbb{R} . On pose $f(x) = 2x^2 + x - 3$ pour tout $x \in \mathbb{R}$. On a a = x + 12 > 0, et on a vu que $\Delta > 0$ et après résolution les racines sont $x_1 = -\frac{3}{2}$ et $x_2 = 1$.

On est donc dans le cas n° 3. On observe que pour satisfaire (I), il faut se placer strictement (car (I) est une inégalité stricte) entre (pour être négatif) les racines. L'ensemble des solutions de (I) est donc] $-\frac{3}{2}$; 1[.

Propriété. Si $\Delta \geq 0$, alors $x_1 + x_2 = -\frac{b}{a}$ et $x_1 x_2 = \frac{c}{a}$ (Utile pour trouver l'autre racine connaissant l'une)

Exemple. Trouver les racines de $f: x \mapsto 2x^2 - x - 1$. En testant des petites valeurs entières x = 11; 2; 3; -1; -2 on trouve par chance une racine « évidente » : f(1) = 0 donc $x_1 = 1$ est racine évidente.

D'après les relations coefficients racines, on a $1 \times x_2 = \frac{c}{a} = \frac{-1}{2} = -\frac{1}{2}$ donc $x_2 = -\frac{1}{2}$ est l'autre racine.

Propriété. Deux réels ont pour somme S et produit P ssi ils forment les 2 solutions de « $x^2 - Sx + P = 0$ ».