MI-SPOL-2

Tělesa a okruhy: Základní definice a vlastnosti. Konečná tělesa. Okruhy polynomů, ireducibilní polynom.

M neprázdná množina, + a \cdot binární operace na této množině. Trojice $R=(M,+,\cdot)$ je **okruh**, pokud platí:

- ullet (M,+) je abelovská grupa
- ullet (M,\cdot) je monoid
- platí (levý a pravý) distributivní zákon:

$$(orall a,b,c\in M)(a(b+c)=ab+ac\wedge (b+c)a=ba+ca)$$

Buď $R=(M,+,\cdot)$ okruh.

- ullet pokud \cdot komutativní, je R komutativní okruh
- ullet (M,+) je **aditivní grupa** okruhu R
- ullet (M,\cdot) je **multiplikativní monoid** okruhu R
- neutrální prvek aditivní grupy je nulový prvek (0), neutrální prvek multiplikativního monoidu je jednička

Triviální okruh:
$$(\{0\},+,\cdot)$$
 (pokud $0\cdot 0=0$) $(\mathbb{Z},+,\cdot)$ je okruh, ale $(\mathbb{Z})N,+,\cdot)$ není

Nenulové prvky $a,b\in M$ z okruhu $(M,+,\cdot)$ jsou **dělitelé nuly**, právě když $a\cdot b=b\cdot a=0$. **Obor integrity** je komutativní okruh, ve kterém neexistují dělitelé nuly.

Navíc (MI-MKY):

- ullet $J\subset R$ ideál, pokud:
 - $\circ~J$ podokruh R
 - $\circ \ \forall a \in J, \forall b \in R: a \cdot b \in J, b \cdot a \in J$
- ullet Faktorokruh okruhu R vůči ideálu J: $R/J=(\{[a]|a\in R\},+,\cdot)$
 - $\circ \ [a]$: třída ekvivalence prvku a podle relace $\equiv \pmod{J}$
 - $ullet [a] = a + J = \{a + r | r \in J\}$
 - $\circ \ a \equiv b \pmod{J}$, pokud $a-b \in J$

1 z 3 13.05.2020 11:16

Okruh $T=(M,+,\cdot)$ je **těleso**, pokud $(M\setminus\{0\},\cdot)$ je **abelovská grupa**.

Okruh $(\mathbb{Z},+,\cdot)$ není těleso, protože chybí inverze k násobení. $(\mathbb{Q},+,\cdot)$ je nejmenší číselné těleso

Nejmenší těleso je tzv. triviální těleso $(\{0,1\},+,\cdot)$, kde + je XOR a \cdot je AND (sčítání a násobení modulo 2)

Pokud pro $a,b\in T$ platí ab=0, pak a=0 nebo b=0

- ullet důkaz: multiplikativní grupa $(T\setminus\{0\},\cdot)$ je uzavřená na násobení, takže ab nikdy není 0.
- Každé těleso je obor integrity

Zobrazení h z okruhu (tělesa) R_1 do okruhu (tělesa) R_2 je **homomorfismus**, pokud h je homomorfismem příslušných aditivních a multiplikativních grupoidů.

Pokud je h bijekce (prosté a na), jde o **izomorfismus**

Mějme okruh R a $a_i \in R, i=0,1,...,n$. Formální výraz tvaru $P(x)=\sum_{i=0}^n a_i x^i$ je **polynom nad okruhem** R.

- a_i jsou koeficienty polynomu
- x je formální proměnná
- ullet pokud existuje k t.ž. $a_k
 eq 0$, je k stupeň polynomu
- ullet P(x)=0 je nulový polynom s nedefinovaným stupněm

Množina všech polynomů nad okruhem R spolu s operacemi sčítání polynomů a násobení polynomů tvoří **okruh polynomů nad okruhem** R a značí se R[x]

Lemma o dělení polynomů: Buď T těleso a $f(x),g(x)\in T[x]$ nenulové polynomy. Pak existují jednoznačně určené polynomy $q(x),r(x)\in T[x]$ t.ž. f(x)=q(x)g(x)+r(x), kde r(x) je buď nulový nebo má ostře menší stupeň než g(x).

Polynom $h(x) \in T[x]$ je **největší společný dělitel polynomů** f(x) a g(x), jestliže:

- h(x) dělí f(x) a g(x)
- ullet každý polynom dělící f(x) a g(x) dělí taky h(x)

Bézoutova rovnost pro polynomy: Buďte f(x) a g(x) nenulové polynomy nad tělesem T. Pak existují polynomy $u(x),v(x)\in T[x]$ takové, že gcd(f(x),g(x))=u(x)f(x)+v(x)g(x)

$$deg(f(x) \cdot g(x)) = deg(f(x)) + deg(g(x))$$

2 z 3 13.05.2020 11:16

Polynom $P(x)\in K[x]$ stupně alespoň 1 je **ireducibilní nad okruhem** K, jestliže pro každé dva polynomy $A(x), B(x)\in K[x]$ platí:

$$A(x)\cdot B(x)=P(x)\Rightarrow deg(A(x))=0 \lor deg(B(x))=0$$

Těleso s konečným počtem prvků je **konečné**. Počet jeho prvků je **řád**.

Základní příklad konečného tělesa: $\mathbb{Z}_p = \{0,1,...,p-1\}$

- Aditivní grupa \mathbb{Z}_p^+ :
 - \circ řád p
 - generátor je každý nenulový prvek
- Multiplikativní grupa \mathbb{Z}_n^{\times} :
 - \circ řád p-1 (neobsahuje 0)
 - o cyklická (existuje generátor)
 - \circ počet generátorů je arphi(p-1)
 - o grupa pouze pro p prvočíslo (jinak obsahuje dělitele 0)
 - \circ pokud k < p dělí p-1, pak v ní existuje podgrupa řádu k obsahující ty prvky, pro které $a^k = 1$

Řádem konečného tělesa musí být **mocnina prvočísla**, tedy číslo zapsatelné jako p^n , kde p je prvočíslo a n kladné celé číslo.

Všechna tělesa řádu p^n jsou navzájem izomorfní.

Těleso s p^n prvky je **Galoisovo těleso** $GF(p^n)$. Prvočíslo p je **charakteristika** tělesa.

- Aditivní grupa:
 - \circ řád p^n
 - o neutrální prvek 0
 - \circ inverze k $b_1b_2...b_n$ je (p-b_1)(p-b_2)...(p-b_n)
 - \circ pro n>1 není cyklická
- Multiplikativní grupa:
 - \circ řád p^n-1
 - o neutrální prvek 1
 - o inverzi ke každému prvku lze pomocí REA nalézt v poly čase
 - vždy cyklická

3 z 3