UNIVERSITE DE NICE SOPHIA-ANTIPOLIS

POLYTECH'NICE-SOPHIA

PEIP2

ANNEE UNIVERSITAIRE 2016/2017

ESPACES VECTORIELS NORMES

René-J. BWEMBA

CHAPITRE 2- ESPACES VECTORIELS NORMES

- 1. INTRODUCTION
- 2. NORMES DANS UN ESPACE VECTORIEL
 - 2.1 PREMIERES DEFINITIONS
 - 2.2 PREMIERS EXEMPLES
- 3. GENERALITES SUR LES ESPACES VECTORIELS NORMES
- 3.1 DISTANCE ET NORME
- 3.2 BOULES OUVERTES BOULES FERMEES SPHERES
- 4. TOPOLOGIE D'ESPACES VECTORIELS NORMES
- **4.1 NORMES EQUIVALENTES**

.....

3. GENERALITES SUR LES ESPACES VECTORIELS NORMES

3.1 DISTANCE ET NORME:

DEFINITION 3.1: Notion de distance sur un espace vectoriel.

Soit A un espace vectoriel. On appelle distance sur A une application notée d définie de $A \times A$ à valeurs dans \mathbb{R}^+ vérifiant les trois propriétés suivantes :

(i)
$$\forall (x, y) \in A \times A, \ d(x, y) = 0 \iff x = y$$

(ii)
$$\forall (x, y) \in A \times A, \ d(x, y) = d(y, x)$$

(iii)
$$\forall x, y, z \in A, d(x, z) \leq d(x, y) + d(y, z)$$

Cette dernière propriété prote le nom d'inégalité triangulaire.

EXEMPLE 3.1:

(i) Prenons $A = \mathbb{R}$ et $a, b \in A$.

L'application d(a,b) = |a-b| est une distance sur $\mathbb{R} \times \mathbb{R}$

Par exemple : d(2, -3) = |2 - (-3)| = 5.

(ii) Soit l'espace $A = \mathbb{R}^n$ muni d'une norme notée \mathcal{N} . Soit $x, y \in A$.

L'application $d(x,y)=\mathcal{N}(x-y)$ est une distance $\sup \mathbb{R}^n \times \mathbb{R}^n$. C'est la distance induite par la norme \mathcal{N} (cf définition 3.4). En d'autres termes, une norme définit automatiquement une distance.

DEFINITION 3.2: espace métrique

On appelle espace métrique, le couple (A, d) dans lequel :

- A est un espace vectoriel;
- *d* est une distance définie sur *A*.

EXEMPLE 3.2:

L'espace vectoriel des nombre réels, $\mathbb R$ muni de la valeur absolue, $(\mathbb R,|.|)$ est un espace métrique.

DEFINITION 3.3: Espace vectoriel normé.

On appelle espace vectoriel normé, le couple (E, \mathcal{N}) dans lequel :

- E est un K-espace vectoriel;
- \mathcal{N} est une norme définie sur E.

EXEMPLE 3.3:

En dimension finie:

Le corps $K = \mathbb{R}$ muni de sa valeur absolue, $(\mathbb{R}, |.|)$ et le corps \mathbb{C} muni de son module $(\mathbb{C}, |.|)$ sont des espaces vectoriels normés.

De même, $(\mathbb{R}^2, \| \|_2)$ ainsi que $(\mathbb{R}^n, \| \|_1)$, $(\mathbb{R}^n, \| \|_2)$, ..., $(\mathbb{R}^n, \| \|_{\infty})$ sont des espaces vectoriels normés.

En dimension infinie:

L'espace vectoriel $E = \mathcal{C}([0,1], \mathbb{R})$ muni de la norme $\| \cdot \|_1$ est un espace vectoriel normé.

De même, $(E, \| \|_2)$, $(E, \| \|_{\infty})$ sont des espaces vectoriels normés.

DEFINITION 3.4 : Distance induite par la norme \mathcal{N} .

Soit (E,\mathcal{N}) un espace vectoriel normé. On appelle **distance induite** par la norme \mathcal{N} , l'application (notée $d_{\mathcal{N}}$) définie sur E par :

$$d_{\mathcal{N}}: E \times E \to \mathbb{R}^+$$

 $(x, y) \mapsto d_{\mathcal{N}}(x, y) = \mathcal{N}(x - y)$

REMARQUE 3.1 : (cf exemple 3.1 (ii) précédent.)

La présence d'une norme dans un espace vectoriel entraîne nécessairement la présence d'une distance.

La réciproque est-elle vraie ? Une distance définit-elle automatiquement une norme ?

L'homogénéité est-elle toujours vérifiée ?

DEFINITION 3.5 : Norme induite par une application linéaire injective.

Soit φ une application **linéaire injective** définie sur un K-espace vectoriel E, et à valeurs dans un K-espace vectoriel **normé** $(F, \|.\|_F)$. L'application φ définit sur E une norme notée $\|.\|_{E,\varphi}$ telle que :

$$||x||_{E,\varphi} = ||\varphi(x)||_F$$
, $\forall x \in E$

C'est la norme induite sur E par l'application φ .

DEFINITION 3.6: Norme sur un sous-espace vectoriel.

Soit (E,\mathcal{N}) un espace vectoriel normé, et soit F un sous-espace vectoriel de E. La restriction \mathcal{N}_F de la norme de E sur F définit une norme sur F, c'est-à-dire que le couple (E,\mathcal{N}_F) est un espace vectoriel normé.

DEFINITION 3.7: Norme sur un espace vectoriel produit.

Soient (E, \mathcal{N}_E) et (F, \mathcal{N}_F) deux espaces vectoriels normés. L'application notée $\mathcal{N}_{E \times F}$ définie sur l'espace produit $E \times F$ par :

$$\mathcal{N}_{E \times F}$$
: $(u, v) \mapsto \max(\mathcal{N}_E(u), \mathcal{N}_F(v))$

est une norme sur l'espace-produit.

Soit (E, \mathcal{N}) un espace vectoriel normé, soit $X \in E$ et soit r > 0.

DEFINITION 3.8: Boules et sphère.

(i) On appelle boule ouverte de centre $X_0 \in E$ et de rayon r, l'ensemble défini par :

$$\mathcal{B}_{\mathcal{N}}(X_0, r) = \{X \in E, \mathcal{N}(X - X_0) < r\} = \{X \in E, d_{\mathcal{N}}(X, X_0) < r\}$$

où $d_{\mathcal{N}}$ est la distance induite (cf Définition 3.4) par la norme \mathcal{N} sur E.

(ii) On appelle boule fermée de centre $X_0 \in E$ et de rayon r, l'ensemble défini par :

$$\overline{\mathcal{B}_{\mathcal{N}}}(X_0, r) = \{X \in E, \mathcal{N}(X - X_0) \le r\} = \{X \in E, d_{\mathcal{N}}(X, X_0) \le r\}$$

(iii) On appelle sphère de centre $X_0 \in E$ et de rayon r, l'ensemble noté défini par :

$$S_{\mathcal{N}}(X_0, r) = \{X \in E, \mathcal{N}(X - X_0) = r\} = \{X \in E, d_{\mathcal{N}}(X, X_0) = r\}$$

REMARQUE 3.5:

S'il n'y a pas d'ambiguité, on notera simplement : $\mathcal{B}(X_0,r)$, $\overline{\mathcal{B}}(X_0,r)$, $\mathcal{S}(X_0,r)$.

DEFINITION 3.9: Partie bornée.

Soit *E* un *K*-espace vectoriel.

Une partie (sous-espace vectoriel) \mathcal{A} de E est dite bornée si elle est incluse dans une boule de centre 0_E , c'est-à-dire, s'il existe r>0, tel que $\mathcal{N}(X)< r$, $\forall X\in\mathcal{A}$.

EXEMPLE 3.4:

1. Dans l'espace vectoriel normé normé $(\mathbb{R}, | |)$

Ici, dim E=1; $X_0 \in \mathbb{R}$, r>0;

$$\mathcal{B}_{\mathcal{N}}(X_0, r) = |X_0 - r, X_0 + r|$$

$$\overline{\mathcal{B}_{\mathcal{N}}}(X_0, r) = [X_0 - r, X_0 + r]$$

$$S_{\mathcal{N}}(X_0, r) = \{X_0 - r, X_0 + r\}$$

2. Dans l'espace vectoriel normé normé $(\mathbb{R}^2, \|.\|_2)$

Ici, dim E = 2; $X_0(x_0, y_0) \in \mathbb{R}^2$, R > 0;

$$X(x,y) \in \mathcal{B}(X_0,R) \iff ||X - X_0||_2 < R$$

$$\iff ||(x - x_0, y - y_0)||_2 < R$$

$$\iff \sqrt{(x - x_0)^2 + (y - y_0)^2} < R$$

$$\iff (x - x_0)^2 + (y - y_0)^2 < R^2$$

 $\mathcal{B}(X_0,R)$ est le disque ouvert de centre X_0 et de rayon R.

De même,

 $\overline{\mathcal{B}}(X_0,R)$ est le disque fermé centré en X_0 et de rayon R.

Εt

$$\mathcal{S}(X_0,r) = \{X(x,y) \in \mathbb{R}^2, \, (x-x_0)^2 + (y-y_0)^2 = R^2$$

est le cercle de centre X_0 et de rayon R.

Représentation des boules unités associées aux normes $\|.\|_1, \|.\|_2, \|.\|_{\infty}$ de \mathbb{R}^2 .

4 TOPOLOGIE D'ESPACES VECTORIELS NORMES.

Nous allons à présent définir la notion de topologie sur un espace vectoriel normé, que nous notons dorénavant : (E, \mathcal{N}) .

4.1 NORMES EQUIVALENTES:

DEFINITION 4.1:

Deux normes \mathcal{N}_1 et \mathcal{N}_2 définies sur E sont dites équivalentes sur E s'il existe deux réels, $\alpha,\beta>0$ tels que :

$$\forall x \in E$$
, $\alpha \mathcal{N}_1(x) \leq \mathcal{N}_2(x) \leq \beta \mathcal{N}_1(x)$

REMARQUE 4.1:

Grâce à la propriété d'homogénéité, il suffira de démontrer ces inégalités pour les vecteurs de E de norme 1.

PROPOSITION 4.1:

Soient $\mathcal{N}_1, \mathcal{N}_2, \mathcal{N}_3$, trois normes définies sur E.

Si
$$\mathcal{N}_1 \sim \mathcal{N}_2$$
 et $\mathcal{N}_2 \sim \mathcal{N}_3$ alors $\mathcal{N}_1 \sim \mathcal{N}_3$.

DEMONSTRATION:

Rappelons que:

$$\mathcal{N}_1 \sim \mathcal{N}_2 \iff \exists \alpha_1, \beta_1 > 0, \forall x \in E, \alpha_1 \mathcal{N}_1(x) \leq \mathcal{N}_2(x) \leq \beta_1 \mathcal{N}_1(x)$$

Notons respectivement (1) et (2) les deux inégalités précédentes. On a également par hypothèse :

$$\mathcal{N}_2 \sim \mathcal{N}_3 \iff \exists \alpha_2, \beta_2 > 0, \forall x \in E, \alpha_2 \mathcal{N}_2(x) \leq \mathcal{N}_3(x) \leq \beta_2 \mathcal{N}_2(x)$$

Notons cette fois-ci (3) et (4) ces deux dernières inégalités.

On a alors, en divisant (3) et (4) par α_2 , puis en tenant compte de (1) et (2) :

$$\alpha_1 \mathcal{N}_1(x) \le \mathcal{N}_2(x) \le \frac{1}{\alpha_2} \mathcal{N}_3(x) \le \frac{\beta_2}{\alpha_2} \mathcal{N}_2(x) \le \frac{\beta_1 \beta_2}{\alpha_2} \mathcal{N}_1(x)$$

C'est-à-dire

$$\alpha_1 \mathcal{N}_1(x) \le \frac{1}{\alpha_2} \mathcal{N}_3(x) \le \frac{\beta_1 \beta_2}{\alpha_2} \mathcal{N}_1(x)$$

Puis, en multipliant ces deux inégalités par $\alpha_2>0$, on obtient :

$$\alpha \mathcal{N}_1(x) \leq \mathcal{N}_3(x) \leq \beta \mathcal{N}_1(x)$$

Οù

$$\alpha = \alpha_1 \alpha_2$$
 , $\beta = \beta_1 \beta_2$

Conclusion : $\mathcal{N}_1 \sim \mathcal{N}_3$.

Enonçons à présent une caractérisation de l'équivalence des normes, par les boules fermées de l'espace.

PROPOSITION 4.2:

Deux normes \mathcal{N}_1 , \mathcal{N}_2 définies sur E sont équivalentes si et seulement s'il existe deux réels $\alpha,\beta>0$ tels que :

$$\overline{\mathcal{B}}_{\mathcal{N}_1}(0,\alpha)\subseteq\overline{\mathcal{B}}_{\mathcal{N}_2}(0,1)\subseteq\overline{\mathcal{B}}_{\mathcal{N}_1}(0,\beta)$$

Schématiquement :

