Yapay Zeka ve Python Programlama

Emir Öztürk

Makine Öğrenmesi

- •Makine Öğrenmesi
- Geçmiş verilerden öğrenme (Training Data)
- Matematiksel modeller
- Tahmin

Makine Öğrenmesi – Kullanım Alanları

- •Görüntü işleme / Tanıma
- Yüz tanıma
- Medikal resimler / Hastalık tespiti
- •Ses işleme / Tanıma
- Trafik verisi
- Trafik lambaları
- Araçlar
- Yayalar

- •Ürün önerisi / Satış desteği
- •Saldırı / Spam / Virüs tespiti
- •Karar destek sistemleri
- Doğal Dil işleme
- Çeviri
- Özetleme
- Soru cevaplama

Makine Öğrenmesi

Makine Öğrenmesi

Öğrenme Çeşitleri

- Supervised
- Unsupervised
- Reinforcement

Supervised Learning

- •Girdi verisinin bir fonksiyon ile çıktı verisine haritalanması
- •Etiketlenmiş veri ihtiyacı
- •Etiket tahmini
- •Regression (Regression)
- •Sınıflandırma (Classification)

Regresyon

- •Sürekli verilerin tahmini
- •Belirli değer girdi-çıktı ikililerinin arasındaki fonksiyonun tespiti
- •Lineer regresyon
- •Regresyon ağaçları
- •Non-lineer regresyon
- Polinomiyal regresyon

Sınıflandırma

- •Kategorik (Nominal) değerlerin tahmini
- •Verilerin özelliklerine göre dahil olduğu sınıfın tespiti
- •Sınıflandırma türü
- Binary
- Multiclass
- •Karar ağaçları
- Lojistik regresyon
- •Random forest
- •Karar destek makineleri

Unsupervised Learning

- •Etiketsiz veri ihtiyacı
- •Grup sayısı verilmeli
- •Kümeleme (Clustering)
- Atama (Association)

Unsupervised Learning

- •K-means
- •KNN

Reinforcement Learning

- Veri ihtiyacı yok
- •Ödül fonksiyonu tanımı
- •Ödülün maksimize edilmesi
- •Yanlış hareketlerin cezalandırılması

V=0.81	V=0.9	V=1	54
V=0.73	s6	s7	\$8
V=0.66	s10	s11	s12

$Y(s) = \max [R(s,a) + \gamma V(s)]$	V=0.
	s1

V=0.81	V=0.9	V=1	54
V=0.73	s6	V=0.9	58
V=0.66	V=0.73	V=0.81	V=0.73

Reinforcement Learning

State-action-reward-state-action

Q-Learning

Deep Q-Networks

