Laurea Triennale in Informatica, Università di Roma Tor Vergata

Calcolo delle Probabilità e Statistica (ed insegnamenti mutuati)

Anno accademico: 2011-2012. Titolare del corso: Claudio Macci

Simulazione 1

Esercizio 1. Un'urna ha 4 palline numerate con i numeri 0,1,2,3. Si estraggono a caso 2 palline in blocco.

- D1) Trovare la densità della variabile aleatoria X che indica il massimo tra i due numeri estratti.
- D2) Calcolare la probabilità di estrarre la pallina numero 2 sapendo che il minimo tra i due numeri estratti è 0.

Esercizio 2. Abbiamo due urne, ciascuna delle quali ha 1 pallina bianca e 1 pallina nera. Viene estratta a caso una pallina dalla prima urna, e questa viene messa nella seconda urna. Poi vengono estratte a caso due palline in blocco dalla seconda urna. Sia X la variabile aleatoria che conta il numero di palline bianche estratte dalla seconda urna.

- D3) Trovare la densità di X.
- D4) Calcolare la probabilità di aver estratto una pallina bianca dalla prima urna sapendo di aver estratto due palline con colori diversi dalla seconda urna.

Esercizio 3. Consideriamo la seguente densità congiunta: per $k \ge 1$ intero, si ha $p_{X_1,X_2}(k,k) = \frac{2}{3}(\frac{1}{2})^k$ e $p_{X_1,X_2}(-k,k) = \frac{1}{3}(\frac{1}{2})^k$.

- D5) Trovare la densità marginale di X_2 .
- D6) Calcolare $P(X_2 = k | X_1 > 0)$ per ogni $k \ge 1$ intero.

Esercizio 4. Sia X una variabile aleatoria con densità continua $f(t) = 3at^2 1_{(0,b)}(t)$, dove a, b > 0 sono costanti arbitrarie opportune.

- D7) Calcolare il valore di b (affinché si abbia una densità continua) nel caso in cui si ha a = 8.
- D8) Trovare la densità continua di $Y = e^X$ nel caso in cui a = b = 1.

Esercizio 5. Sia $N_t = \sum_{n \geq 1} 1_{T_n \leq t}$ (per $t \geq 0$) un processo di Poisson con intensità di $\lambda = 3$. D9) Calcolare $P(N_4 = k | N_4 \leq 2)$ per $k \in \{0, 1, 2\}$. D10) Calcolare $Var[T_2]$.

Esercizio 6. Sia X una variabile aleatoria normale con media $\mu=2$ e varianza $\sigma^2=4$. D11) Calcolare P(X>3.2).

Inoltre siano $\{X_n : n \ge 1\}$ variabili aleatorie indipendenti e uniformi in (0, 12).

D12) Trovare i valori di a_1 e a_2 per cui si ha $\lim_{n\to\infty} P(X_1 + \dots + X_n < a_1n + a_2\sqrt{n}) = \Phi(2\sqrt{12})$.

Esercizio 7 (solo per ST-Materiali). Consideriamo una catena di Markov omogenea $\{X_n : n \ge 0\}$ con spazio degli stati $E = \{1, 2, 3\}$ e matrice di transizione

$$P = \begin{pmatrix} q & a(1-q) & (1-a)(1-q) \\ p_1 & p_2 & p_3 \\ 0 & 0 & 1 \end{pmatrix}.$$

per $a, q \in (0, 1)$; inoltre supponiamo di avere $p_1, p_2, p_3 \ge 0$ tali che $p_1 + p_2 + p_3 = 1$, con $p_2 \ne 1$.

- D13) Trovare la/e distribuzioni stazionaria/e.
- D14) Calcolare la probabilità di passaggio in $C = \{2\}$ partendo da 1.

Cenno alle soluzioni (Ogni segnalazione di errori o sviste (sempre possibili) è gradita)

Esercizio 1.

Abbiamo $\binom{4}{2} = 6$ casi tutti con probabilità $\frac{1}{6}$: $\{0,1\},\{0,2\},\{0,3\},\{1,2\},\{1,3\},\{2,3\}$. D1) Abbiamo $p_X(1) = P(\{\{0,1\}\}) = \frac{1}{6}, p_X(2) = P(\{\{0,2\},\{1,2\}\}) = \frac{2}{6},$

 $p_X(3) = P(\{\{0,3\},\{1,3\},\{2,3\}\}) = \frac{3}{6}.$

D2) Si deve calcolare $P(A|B) = \frac{P(A \cap B)}{P(B)}$ dove $A = \{\{0,2\},\{1,2\},\{2,3\}\}$ e $B = \{\{0,1\},\{0,2\},\{0,3\}\}$. Allora $P(A \cap B) = P(\{\{0,2\}\}) = \frac{1}{6}$ e $P(B) = \frac{3}{6}$, da cui segue $P(A|B) = \frac{1}{3}$.

Esercizio 2. Sia B l'evento "si estrae pallina bianca dalla prima urna".

D3) Per $k \in \{0,1,2\}$, usando la formula delle probabilità totali si ha P(X=k) = P(X=k) $k|B)P(B) + P(X = k|B^c)P(B^c) = \frac{\binom{2}{k}\binom{1}{2-k}}{\binom{3}{3}}\frac{1}{2} + \frac{\binom{1}{k}\binom{2}{2-k}}{\binom{3}{3}}\frac{1}{2}$, da cui segue $p_X(0) = p_X(2) = \frac{1}{6}$ e $p_X(1) = \frac{4}{6}$.

D4) Per la formula di Bayes (e per il valore di P(X=1) calcolato prima) si ha P(B|X=1) $\frac{P(X=1|B)P(B)}{P(X=1)} = \frac{\frac{\binom{2}{1}\binom{1}{1}}{\binom{3}{2}}}{\frac{4}{3}} = \frac{1}{3}\frac{6}{4} = \frac{1}{2}.$

Esercizio 3.

D5) Per ogni $k \ge 1$ intero si ha $p_{X_2}(k) = p_{X_1,X_2}(k,k) + p_{X_1,X_2}(-k,k) = \frac{2}{3}(\frac{1}{2})^k + \frac{1}{3}(\frac{1}{2})^k = (\frac{1}{2})^k$. D6) Per ogni $k \ge 1$ intero si ha $P(X_2 = k|X_1 > 0) = \frac{P(\{X_2 = k\} \cap \{X_1 > 0\})}{P(X_1 > 0)} = \frac{P(\{X_2 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 = k\})}{\sum_{j=1}^{\infty} P(X_1 = j)} = \frac{P(\{X_1 = k\} \cap \{X_1 =$ $\frac{\frac{2}{3}(\frac{1}{2})^k}{\sum_{j=1}^{\infty} \frac{2}{3}(\frac{1}{2})^j} = \frac{(\frac{1}{2})^k}{\sum_{j=1}^{\infty} (\frac{1}{2})^j} = (\frac{1}{2})^k.$

Esercizio 4.

D7) Si deve avere $1 = \int_{-\infty}^{\infty} f_X(t) dt = \int_0^b 3at^2 dt = a[t^3]_{t=0}^{t=b} = ab^3$, cioè $ab^3 = 1$. Allora, posto a = 8, otteniamo $8b^3 = 1$; quindi $b^3 = \frac{1}{8}$, da cui segue $b = \frac{1}{2}$.

D8) Si vede che $P(1 \le e^X \le e) = 1$, da cui $F_Y(y) = 0$ per $y \le 1$ e $F_Y(y) = 1$ per $y \ge e$. Per $y \in (1, e)$ si ha $F_Y(y) = P(e^X \le y) = P(X \le \log y) = \int_0^{\log y} 3t^2 dt = [t^3]_0^{\log y} = (\log y)^3$. Quindi la densità è $f_Y(y) = \frac{3(\log y)^2}{y} 1_{(1,e)}(y)$.

Esercizio 5.

D9) Per $k \in \{0, 1, 2\}$ si ha $P(N_4 = k | N_4 \le 2) = \frac{P(\{N_4 = k\} \cap \{N_4 \le 2\})}{P(N_4 \le 2)} = \frac{P(N_4 = k)}{\sum_{j=0}^2 P(N_4 = j)} = \frac{\frac{(3 \cdot 4)^k}{k!} e^{-3 \cdot 4}}{\sum_{j=0}^2 \frac{(3 \cdot 4)^j}{j!} e^{-3 \cdot 4}};$ quindi si ha $P(N_4 = 0 | N_4 \le 2) = \frac{1}{85}, \ P(N_4 = 1 | N_4 \le 2) = \frac{12}{85} e \ P(N_4 = 2 | N_4 \le 2) = \frac{72}{85}.$ D10) Per proprietà della distribuzione Gamma si ha $\operatorname{Var}[T_2] = \frac{2}{3^2} = \frac{2}{9}.$

Esercizio 6.

D11) Si ha $P(X > 3.2) = P(Z_X > \frac{3.2-2}{\sqrt{4}}) = 1 - \Phi(0.6) = 1 - 0.72575 = 0.27425.$

D12) Osserviamo che $P(X_1 + \cdots + X_n < a_1 n + a_2 \sqrt{n}) = P\left(\frac{X_1 + \cdots + X_n - a_1 n}{c\sqrt{n}} < \frac{a_2}{c}\right)$ per ogni c > 0. Allora, per il Teorema Limite Centrale, esiste il limite e coincide con $\Phi(2\sqrt{12})$ se $a_1=6$ (perché $\mathbb{E}[X_1] = \frac{12+0}{2} = 6$), $c = \sqrt{12}$ (perché $\text{Var}[X_1] = \frac{(12-0)^2}{12} = 12$) e $\frac{a_2}{c} = 2\sqrt{12}$; quindi $a_2 = 2(\sqrt{12})^2 = 12$

Esercizio 7.

D13) La distribuzione stazionaria sarà del tipo (α, β, γ) . La relazione matriciale

$$(\alpha, \beta, \gamma) \begin{pmatrix} q & a(1-q) & (1-a)(1-q) \\ p_1 & p_2 & p_3 \\ 0 & 0 & 1 \end{pmatrix} = (\alpha, \beta, \gamma)$$

fornisce le seguenti equazioni:

$$\begin{cases} \alpha q + \beta p_1 = \alpha \\ \alpha a(1-q) + \beta p_2 = \beta \\ \alpha (1-a)(1-q) + \beta p_3 + \gamma = \gamma. \end{cases}$$

Ricordiamo che cerchiamo le soluzioni (α, β, γ) del sistema tali che $\alpha, \beta, \gamma \geq 0$ e $\alpha + \beta + \gamma = 1$; quindi, essendo (1-a)(1-q) > 0 per ipotesi, l'ultima equazione fornisce la condizione $\alpha = 0$. Allora, tenendo conto che $p_2 \neq 1$ per ipotesi, sostituendo $\alpha = 0$ nella seconda equazione si ottiene $\beta = 0$. In conclusione si ha $\gamma = 1$ e l'unica distribuzione stazionaria è (0,0,1).

D14) Lo stato 1 comunica con $C = \{2\}$, mentre lo stato 3 non comunica con $C = \{2\}$. Quindi si ha $D_C = \{1\}$ e il sistema si riduce ad un'unica equazione con incognita λ_1 :

$$\lambda_1 = a(1-q) + \lambda_1 q.$$

In corrispondenza si ha $\lambda_1(1-q)=a(1-q)$, da cui si ottiene $\lambda_1=a$.

Commenti.

La somma dei valori di ciascuna densità discreta che appare è 1 in accordo con la teoria.

D2) Essendo un modello uniforme (insieme finito di punti, tutti con la stessa probabilità) la probabilità condizionata è uguale al rapporto tra la cardinalità di $A \cap B$ e la cardinalità di B.

D4) Si vede che P(B|X=1)=P(B) e quindi gli eventi B e $\{X=1\}$ sono indipendenti. Del resto l'indipendenza tra i due eventi si verifica rapidamente come segue a partire da calcoli già fatti: $P(B\cap\{X=1\})=P(X=1|B)P(B)=\frac{1}{3}$ e $P(B)P(X=1)=\frac{1}{2}\frac{4}{6}=\frac{1}{3}$. Inoltre, a partire da calcoli già fatti ancora una volta, non abbiamo la stessa situazione se consideriamo gli eventi $\{X=k\}$ per $k\in\{0,2\}$: $P(B)P(X=k)=\frac{1}{2}\frac{1}{6}=\frac{1}{12},\ P(B\cap\{X=0\})=P(X=0|B)P(B)=0$ e $P(B\cap\{X=2\})=P(X=2|B)P(B)=\frac{1}{6}$.

D13) Si poteva rispondere che (0,0,1) è l'unica distribuzione stazionaria senza fare calcoli. Infatti ciascuno degli stati 1 e 2 comunica con 3, ma non vale il viceversa; quindi 1 e 2 sono stati transitori, mentre lo stato 3 non lo è (essendo uno stato assorbente). Se si avesse $p_2 = 1$ (cioè se fosse violata la condizione $p_2 \neq 1$), anche lo stato 2 sarebbe assorbente e anche (0,1,0) sarebbe una distribuzione stazionaria; quindi le distribuzioni stazionarie sarebbero del tipo $(0,\beta,1-\beta)$ per $\beta \in [0,1]$.

D14) In altro modo si ha

$$\lambda_1 = P(X_1 = 2|X_0 = 1) + P(X_1 = 1, X_2 = 2|X_0 = 1) + \cdots$$

$$+ \cdots + P(X_1 = 1, \dots, X_{n-1} = 1, X_n = 2|X_0 = 1) + \cdots$$

$$= \sum_{j=0}^{\infty} (q^{j-1}a(1-q)) = a(1-q)\frac{1}{1-q} = a.$$

Poi abbiamo la seguente interpretazione: λ_1 coincide con il rapporto tra la probabilità di andare dallo stato 1 allo stato 2 (che è a(1-q)) diviso la probabilità che la catena lasci lo stato 1 (che è a(1-q)+(1-a)(1-q)=1-q).