Practice – Week 04

Practice – 01

1. Use Gauss Elimination to solve the following equations!

$$3x_1 - x_2 + 4x_3 = 2$$

$$17x_1 + 2x_2 + x_3 = 14$$

$$x_1 + 12x_2 - 7x_3 = 54$$

Practice – 01 – Answer

0

Practice – 02

2. Use Gauss-Jordan Elimination to solve the above equations!

Practice – 02 – Answer

3 17 1	-1 2 12	4 1 -7	2 14 54	R1/3	1 17 1	-0.333 2 12	1.333 1 -7	0.667 14 54	R2 – 17*R1 R3 – R1
1 0 0	-0.333 7.667 12.333	1.333 -21.667 -8.333	0.667 2.667 53.333	3*R2/23	1 0 0	-0.333 1 12.333	1.333 -2.826 -8.333	0.667 0.348 53.333	R1 – R2/(-3) R3 – 37*R2/3
1 0 0	0 1 0	0.391 -2.826 26.522	0.783 0.348 49.043	1830*R3/69	1 0 0	0 1 0	0.391 -2.826 1	0.783 0.348 1.849	R1 – 9*R3/23 R2 – (-65)*R3/23

Practice – 02 – Answer

1	0	0	0.059	X_1	=	0.05902
0	1	0	5.574	X_2	=	5.57377
0	0	1	1.849	X_3	=	1.84918

Practice – 02

3. Determine the lower triangular matrix L and upper triangular matrix U from the equations!

Practice – 03 – Answer

Python Code -1: Linear Eqs. Solution

```
In [1]: import numpy as np
        A = np.array([[3,-1,4],
                       [17,2,1],
                       [1,12,-7]]
        y = np.array([2,14,54])
        x1, x2, x3 = np.linalg.solve(A, y)
        print(f'x1 = \{x1:.5f\}')
        print(f'x2 = \{x2:.5f\}')
        print(f'x3 = \{x3:.5f\}')
        x1 = 0.05902
        x2 = 5.57377
        x3 = 1.84918
```

Python Code -2: LU Decomposition (A)

```
In [2]: import numpy as np
       import scipy.linalg as sp la
       A = np.array([[3,-1,4],
                    [17,2,1],
                    [1,12,-7]]
                                 [[0. 0. 1.]
       P, L, U = sp la.lu(A)
                                  [1. 0. 0.]
                                  [0. 1. 0.]]
       print(P)
                                 [[17. 2.
       print(U)
                                  [ 0. 11.88235294 -7.05882353]
       print(L)
                                  「 0.
                                                         3.01980198]]
                                              Θ.
       print(np.dot(L,U))
                                  [ 0.05882353 1.
                                  [ 0.17647059 -0.11386139 1.
                                 [[17. 2. 1.]
                                  [ 1. 12. -7.]
                                  [ 3. -1. 4.]]
```

Python Code – 2 : LU Decomposition (B)

```
In [3]: import numpy as np
       import scipy.linalg as sp la
       B = np.array([[17,2,1], # abs(17) >= abs(2) + abs(1) \longrightarrow --> Array with big size :
                   [1,12,-7], # abs(12) >= abs(1) + abs(-7) \rightarrow --> Use Gauss-Seidel
                   [3,-1,4]) # abs(4) >= abs(3) + abs(-1) \longrightarrow --> for safety
                               [[1. 0. 0.]
       P, L, U = sp la.lu(B)
                               [0. 1. 0.]
                               [0. 0. 1.]]
       print(P)
                               [[17. 2. 1.
       print(U)
                               [ 0. 11.88235294 -7.05882353]
       print(L)
                                print(np.dot(L,U))
                               [[ 1. 0. 0.
                                [ 0.05882353 1. 0.
                                [ 0.17647059 -0.11386139 1.
                               [[17. 2. 1.]
                                [ 1. 12. -7.]
                                [3. -1. 4.]]
```

Python Code – 2 : LU Decomposition – P

This **permutation matrix** record how do we change the order of the equations for easier calculation purposes (for example, if first element in first row is zero, it can not be the pivot equation, since you can not turn the first elements in other rows to zero. Therefore, we need to switch the order of the equations to get a new pivot equation).

```
P L, U = sp_la.lu(B)

print(P)
print(U)
print(L)
print(np.dot(L,U))

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]
[17. 2. 1. 3.01980198]
[0. 0. 3.01980198]
[1. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
[1. 0. 0. 0. 3.01980198]
```