

CHAPTER 14

Complex Integration

- 14.1 Line Integral in the Complex Plane
- 14.2 Cauchy's Integral Theorem
- 14.3 Cauchy's Integral Formula
- 14.4 Derivatives of Analytic Functions

SUMMARY

Ch. 14 Complex Integration (복소적분)

- Importance of Complex Integration
 - Practical reason: Complex integration can evaluate certain real integrals that appear in applications that are not accessible by real integral calculus
 - Theoretical reason: Some basic properties of analytic functions are easily proved otherwise difficult to prove.

14.1 Line Integral in the Complex Plane (복소평면에서의 선적분)

Complex definite integrals are called (complex) line integrals.

$$\int_C f(z)dz$$

Path of Integration: C

(1)
$$z(t) = x(t) + iy(t)$$
 $(a \le t \le b)$

Positive sense: the sense of increasing t Negative sense: the sense of decreasing t

Assume C is a smooth curve.

Smooth curve:

C has a continuous and non-zero derivative at each point.

$$\dot{z}(t) = \frac{dz}{dt} = \lim_{\Delta t \to 0} \frac{z(t + \Delta t) - z(t)}{\Delta t}$$

$$= \dot{x}(t) + i\dot{y}(t)$$

• means d/dt, ' means d/dz.

Definition of a Complex Line Integral

(2)
$$S_n = \sum_{m=1}^n f(\zeta_m) \Delta z_m$$
 where $\Delta z_m = z_m - z_{m-1}$

(3)
$$\int_C f(z)dz$$
 or by $\oint_C f(z)dz$

f(z) is assumed to be piecewise smooth.

Basic Properties

1. Linearity

(4)
$$\int_{C} [k_1 f_1(z) + k_2 f_2(z)] dz = k_1 \int_{C} f_1(z) dz + k_2 \int_{C} f_2(z) dz$$

2. Sense reversal

(5)
$$\int_{z_0}^{Z} f(z) dz = -\int_{Z}^{z_0} f(z) dz$$

3. Partitioning of path

(6)
$$\int_{C} f(z)dz = \int_{C_1} f(z)dz + \int_{C_2} f(z)dz$$

$$C_2$$

$$C_2$$

Existence of the Complex Line Integral

$$\int_{C} f(z)dz$$

exists if

- 1. C is smooth
- 2. f(z) is piecewise continuous.

First Evaluation Method

THEOREM 1 Indefinite Integration of Analytic Functions

(9)
$$\int_{z_0}^{z_1} f(z)dz = F(z)|_{z_0}^{z_1} = F(z_1) - F(z_0)$$
where $F'(z) = f(z)$

EX 1:
$$\int_0^{1+i} z^2 dz = \frac{1}{3} z^3 \bigg|_0^{1+i} = \frac{(1+i)^3}{3} = -\frac{2}{3} + \frac{2}{3}i$$

$$= \sum_{-\pi i}^{\pi i} \cos z dz = \sin z \bigg|_{-\pi i}^{\pi i} = 2 \sin \pi i = 2i \sinh \pi = 23.097i$$

EX 3:
$$\int_{8+\pi i}^{8-3\pi i} e^{z/2} dz = 2e^{z/2} \Big|_{8+\pi i}^{8-3\pi i} = 2(e^{4-3\pi i/2} - e^{4+\pi i/2}) = 0$$

Since e^z is periodic with period 2π .

EX 4:
$$\int_{-i}^{i} \frac{dz}{z} = \operatorname{Ln}z \Big|_{-i}^{i} = \operatorname{Ln}(i) - \operatorname{Ln}(-i) = \frac{i\pi}{2} - \frac{-i\pi}{2} = i\pi$$

Second Evaluation Method

THEOREM 2 Integration by the Use of the Path

(10)
$$\int_C f(z)dz = \int_a^b f[z(t)]\dot{z}(t)dt \qquad \left(\dot{z} = \frac{dz}{dt}\right)$$

$$C: \quad z(t), \quad a \le t \le b$$

Steps in Applying Theorem 2

- (A) Represent the path C in the form z(t) (a≤t≤b)
- (B) Calculate the derivative dz/dt.
- (C) Substitute z(t) for every z.
- (D) Integrate: $\int_{a}^{b} f[z(t)]\dot{z}(t)dt$

PROOF

EX 5 A Basic Result: Integral of 1/z Around the Unit Circle

Show the following:

(11)
$$\oint_C \frac{dz}{z} = 2\pi i$$
 (Unit Circle, CCW)

Sol.

(A) Represent the path C in the form z(t) (a≤t≤b)

$$z(t) = \cos t + i \sin t = e^{it} \quad (0 \le t \le 2\pi)$$

(B) Calculate the derivative dz/dt.

$$\dot{z}(t)=ie^{it}$$

(C) Substitute z(t) for every z.

$$f(z) = 1/z = 1/e^{it} = e^{-it}$$

(D) Integrate:

$$\oint_C rac{dz}{z} = \int_0^{2\pi} e^{-it} \cdot i e^{it} dt = 2\pi i$$

EX 6 Integral of 1/z m with Integer Power m

$$\oint_C (z-z_0)^m dz$$

Sol.

$$z = z_0 + \rho(\cos t + i\sin t) = z_0 + \rho e^{it}$$
 $(z - z_0)^m = (\rho e^{it})^m = \rho^m e^{imt}$
 $dz = i\rho e^{it} dt$, $(0 \le t \le 2\pi)$

$$oldsymbol{\oint}_C (z-z_0)^m dz = \int_0^{2\pi}
ho^m e^{imt} \cdot i
ho e^{it} dt$$

$$= i
ho^{m+1} \int_0^{2\pi} e^{i(m+1)t} dt$$

$$\oint_C (z-z_0)^m dz = i\rho^{m+1} \int_0^{2\pi} e^{i(m+1)t} dt$$

m = -1:

$$\oint_C (z-z_0)^m dz = i \rho^{m+1} \int_0^{2\pi} e^{i(m+1)t} dt = 2\pi i$$

 $m \neq -1$ and integer:

$$oldsymbol{\phi}_{C}^{}(z-z_{0})^{m}dz=i
ho^{m+1}\int_{0}^{2\pi}e^{i(m+1)t}dt \ =i
ho^{m+1}igg[rac{e^{i(m+1)t}}{i(m+1)}igg]_{0}^{2\pi}=0$$

EX 7 Integral of a Nonanalytic Function. Dependence on Path

(a)
$$\int_{C^*} Rez \, dz$$

$$(b) \int_{C_1-C_2}\!\!\!Rez\,dz$$

Sol.

(a)
$$\int_{C^*} Rez \, dz$$

$$z(t) = \frac{d}{dt}(t + i2t) = 1 + i2 \qquad f[z(t)] = x = t$$

$$\int_{C^*} Rez \, dz = \int_0^1 Rez \, \frac{dz}{dt} \, dt = \int_0^1 t(1 + i2) \, dt$$

$$= (1 + 2i) \frac{t^2}{2} \Big|_0^1 = \frac{1}{2} + i$$

$$(b) \int_{C_1-C_2}^{Rez \, dz} \int_{C_1-C_2}^{2} \int_{C_1-C_2}^{2} \int_{C_1-C_2}^{2} \int_{C_1-C_2}^{2} \int_{C_1-C_2}^{2} \int_{C_1-C_2}^{2} \int_{C_1-C_2}^{2} \int_{C_1-C_2}^{2} \int_{C_1-C_2}^{2} \int_{C_1}^{2} \int_{C_1-C_2}^{2} \int_{C_1-C_2}^{$$

Bounds for Integrals. ML-Inequality

$$\left| \int_C f(z) \, dz \right| \leq ML \quad (ML-inequality)$$

PROOF

$$|S_n| = \left|\sum_{m=1}^n f(\zeta_m) \Delta z_m \right| \leq \sum_{m=1}^n |f(\zeta_m)| |\Delta z_m| \leq M \sum_{m=1}^n f(\zeta_m) |\Delta z_m|$$
 $\lim_{n o \infty} |S_m| \leq \lim_{n o \infty} \left[M \sum_{m=1}^n f(\zeta_m) |\Delta z_m| \right] = ML$

$$\left|\int_{C}\!\!f(z)\,dz
ight| \leq \int_{C}\!\!|f(z)|dz \leq M\!\!\int_{C}\!\!dz = M\!L$$

EX 8 Estimation of an Integral

Find an upperbound of $\int_C z^2 dz$

Sol.

$$M = \max |f(z)| = \max |z^2| = (\max |z|)^2 = (\sqrt{2})^2 = 2$$

$$L = \sqrt{2}$$

$$\left| \int_C z^2 \, dz \right| \leq ML = 2\sqrt{2}$$

1. FIND THE PATH and sketch it.

$$z(t) = (1 + \frac{1}{4}i)t \quad (1 \le t \le 6)$$

$$= x + iy$$

$$x = t, \quad y = (1/4) t = (1/4)x$$

2. FIND THE PATH and sketch it.

$$z(t) = 3 + i + (1 - i)t \quad (0 \le t \le 3)$$

$$= x + iy$$

$$x = 3 + t,$$

$$y = 1 - t = 1 - (x - 3) = -x + 4$$

Problems for Sec. 14.1

4. FIND THE PATH and sketch it.

$$z(t) = t + (1 - t)^{2}i \quad (-1 \le t \le 1)$$

$$= x + iy$$

$$x = t,$$

$$y = (1-t)^{2} = (1-x)^{2}$$

5. FIND THE PATH and sketch it.

$$z(t) = 3 - i + \sqrt{10}e^{-it} \quad (0 \le t \le 2\pi)$$

$$= x + iy$$

$$x = 3 + \sqrt{10} \cos t$$

$$y = -1 - \sqrt{10} \sin t$$

$$\cos^2 t + \sin^2 t = \left(\frac{x - 3}{\sqrt{10}}\right)^2 + \left(\frac{y + 1}{\sqrt{10}}\right)^2 = 1$$

$$(x - 3)^2 + (y + 1)^2 = 10$$

Problems for Sec. 14.1

11. FIND A PARAMETRIC REPRESENTATION and sketch the path.

Segment from (-1, 1) to (1, 3)

$$z(t) = x + iy$$

= (-1,1)+(1-(-1), 3-1)t
= (-1+2t, 1+2t) $0 \le t \le 1$

$$x = -1+2t$$
, $y = 1+2t = 1+(1+x)=x+2$

16. FIND A PARAMETRIC REPRESENTATION and sketch the path.

Ellipse $4x^2 + 9y^2 = 36$, counterclockwise

$$(x/3)^2 + (y/2)^2 = 1$$

$$z(t) = x + iy = 3\cos t + i 2\sin t, \qquad 0 \le t \le \pi$$

Problems for Sec. 14.1

17. FIND A PARAMETRIC REPRESENTATION and sketch the path.

$$|z + a + ib| = r$$
, clockwise

$$|(x+iy)+a+ib|=r$$

 $(x+a)^2 + (y+b)^2 = r^2$

$$x+a = r \cos(-t), x = -a + r \cos t$$

 $y+b = r \sin(-t) = -r \sin t, y = -b - r \sin t, 0 \le t \le 2\pi$

14.2 Cauchy's Integral Theorem (Cauchy의 적분정리)

1. A simple closed path

2. A simply connected domain D

p-fold connected domain if its boundary consists of p closed connected sets without common points.

3-fold connected domain

The boundary has 3 closed connected sets without common points.

THEOREM 1 Cauchy's Integral Theorem

If f(z) is analytic in a simply connected domain D. then for every closed path C in D,

(1)
$$\oint_C f(z) dz = 0$$

A simple closed path is sometimes called a contour.

An integral over a simple closed path is a contour integral.

PROOF

EX 1. Entire Functions

An entire function is a function that is analytic for all z.

$$\oint_C e^z \, dz = 0$$

$$\oint_C \cos z \, dz = 0$$

$$\oint_C z^n dz = 0, \ (n = 0, 1, \cdots)$$

EX 2. Points outside the Contour Where f(x) is Not Analytic

Sol.

$$\begin{aligned} \cos z &= (1/2)(e^{iz} + e^{-iz}) = 0 \\ e^{2iz} + 1 &= 0, \quad t^2 + 1 = 0 \\ e^{iz} &= e^{i(x+iy)} = e^{-y}e^{ix} = \pm i \\ e^{-y} &= 1 \quad \therefore y = 0 \\ e^{ix} &= \cos x + i \sin x = \pm i, \quad x = \pm (n+0.5)\pi \\ z &= \pm (n+0.5)\pi \quad (n=0,1,2,\cdots) \end{aligned}$$

D: a circle centered at the origin with 1<radius<0.5п.

EX 3. Nonanalytic Function

$$\oint_C \overline{z} \ dz = 2\pi i$$

Sol.

$$\oint_C \overline{z} \, dz = \int_C \overline{z} \, \frac{dz}{dt} \, dt$$

$$= \int_0^{2\pi} e^{-it} \cdot i e^{it} dt = 2\pi i$$

EX 4. Analyticity Sufficient, Not Necessary

$$\oint_C \frac{1}{z^2} \, dz = 0$$

Sol.

$$\oint_C \frac{1}{z^2} dz = \int \frac{1}{z^2} \frac{dz}{dt} dt = \int_0^{2\pi} e^{-2it} \cdot i e^{it} dt$$

$$= \int_0^{2\pi} i e^{-it} dt = \frac{i e^{-it}}{-i} \Big|_0^{2\pi} = 0$$

Not analytic in D, but the closed integral is zero Thus, the analyticity is sufficient rather than necessary for integral of zero.

EX 5. Simple Connectedness Essential

$$\oint_C \frac{dz}{z} = 2\pi i$$

Sol.

$$\oint_C \frac{dz}{z} = \int \frac{1}{z} \frac{dz}{dt} dt$$

$$= \int_0^{2\pi} e^{-it} \cdot i e^{it} dt = 2\pi i$$

Analytic in D, but D is not simply connected.

Thus, the simple connectedness is necessary for integral of zero.

Independence of Path

THEOREM 2 Independence of Path

If f(z) is analytic in a simply connected domain D, then the integral of f(x) is independent of path in D.

PROOF

$$egin{align} \int_{C_1} f(z) \, dz + \int_{C_2^*} f(z) \, dz &= 0 \ \int_{C_1} f(z) \, dz - \int_{C_2} f(z) \, dz &= 0 \ \therefore \int_{C_1} f(z) \, dz &= \int_{C_2} f(z) \, dz \ \end{pmatrix}$$

Principle of Deformation of Path(경로변형의 원리)

Consider a deformation of a path of an integral, keeping the ends fixed. As long as the deforming path always contains only points at which f(z) is analytic, the integral retains the same value.

EX 6. A Basic Result: Integral of Integer Powers

(3)
$$\oint_C (z-z_0)^m dz = \begin{cases} 2\pi i, & (m=-1) \\ 0, & (m \neq -1) \text{ and integer} \end{cases}$$

C: any CCW simple closed path containing z_0 in its interior

Sol.
$$z=z_0+
ho(\cos t+i\sin t)=z_0+
ho e^{it}$$
 $(z-z_0)^m=(
ho e^{it})^m=
ho^m e^{imt}$ $dz=i
ho e^{it}dt, \quad (0\leq t\leq 2\pi)$ $\oint_C (z-z_0)^m dz=\int_0^{2\pi}
ho^m e^{imt}\cdot i
ho e^{it}dt$ $=i
ho^{m+1}\int_0^{2\pi} e^{i(m+1)t}dt$

$$\oint_C (z-z_0)^m dz = i\rho^{m+1} \int_0^{2\pi} e^{i(m+1)t} dt$$

m = -1:

$$\oint_C (z-z_0)^m dz = i
ho^{m+1} \int_0^{2\pi} e^{i(m+1)t} dt = 2\pi i$$

 $m \neq -1$ and integer:

$$egin{align} \oint_C (z-z_0)^m dz &= i
ho^{m+1} \int_0^{2\pi} e^{i(m+1)t} dt \ &= i
ho^{m+1} igg[rac{e^{i(m+1)t}}{i(m+1)} igg]_0^{2\pi} = 0 \ \end{aligned}$$

Existence of Indefinite Integral

THEOREM 3 Existence of Indefinite Integral

If f(z) is analytic in a simply connected domain D, then

(1) there exists an indefinite integral of f(z)

(2)
$$\int_{z_0}^{z_1} f(z)dz$$
 can be evaluated by

$$\int_{z_0}^{z_1} f(z)dz = F(z)|_{z_0}^{z_1} = F(z_1) - F(z_0)$$
where $F'(z) = f(z)$

Integral paths are any path in D joining any two points in D.

PROOF

Cauchy's Integral Theorem for Multiply Connected Domains

Let D be a doubly connected domain with outer boundary curve C_1 and inner C_2 .

If f(z) is analytic in any domain D* that contains D and its boundary curves, then

(6)
$$\oint_{C_1} f(z) dz = \oint_{C_2} f(z) dz$$
 C_2
 C_1

PROOF

Triply connected domain

$$\oint_{C_1} f(z) dz = - \int_{C_2} f(z) dz - \int_{C_3} f(z) dz$$

9. CAUCHY'S THEOREM APPLICABLE?

Integrate f(z) counterclockwise around the unit circle. Indicate whether Cauchy's integral theorem applies. Show the details.

$$f(z) = \exp\left(-z^2\right)$$

THEOREM 1 Cauchy's Integral Theorem

If f(z) is analytic in a simply connected domain D, then for every closed path C in D,

(1)
$$\oint_C f(z) dz = 0$$

$$\frac{d}{dz}\left(e^{-z^2}\right) = -2ze^{z^2}$$

Thus, f(z) is analytic in the domain including the unit circle.

By Cauchy's Integral Theorem,
$$\oint_C e^{-z^2} dz = 0$$

10. CAUCHY'S THEOREM APPLICABLE?

Integrate f(z) counterclockwise around the unit circle. Indicate whether Cauchy's integral theorem applies. Show the details.

$$f(z) = \tan \frac{1}{4}z$$

$$\frac{d}{dz}\left(\tan\frac{1}{4}z\right) = \frac{1}{4}\sec^2\frac{1}{4}z$$

Thus, f(z) is analytic in the domain including the unit circle.

By Cauchy's Integral Theorem,
$$\oint_C \tan \frac{1}{4} z dz = 0$$

11. CAUCHY'S THEOREM APPLICABLE?

Integrate f(z) counterclockwise around the unit circle. Indicate whether Cauchy's integral theorem applies. Show the details.

$$f(z) = 1/(2z - 1)$$

$$f(z) = \frac{1}{2z - 1} = \frac{1/2}{z - 1/2}$$

f(z) is not analytic at z=1/2.

Thus, Cauchy's Integral Theorem is not applicable.

$$\int_{C} f(z)dz = \frac{1}{2} \int_{C} \frac{1}{z - 1/2} dz = \frac{1}{2} \cdot 2\pi i = \pi i$$

12. CAUCHY'S THEOREM APPLICABLE?

Integrate f(z) counterclockwise around the unit circle. Indicate whether Cauchy's integral theorem applies. Show the details.

$$f(z) = \bar{z}^3$$

f(z) is not analytic. Thus, Cauchy's Integral Theorem is not applicable.

$$f(z) = \overline{z}^{3} = (x-iy)^{3} = x^{3} - 3x^{2}(iy) + 3x(iy)^{2} - (iy)^{3}$$

$$= (x - 3xy^{2}) + i(-3x^{2}y + y^{3})$$

$$u = x - 3xy^{2}, \quad v = -3x^{2}y + y^{3}$$

$$ux = 1 - 3y^{2} \neq vy = -3x^{2} + 3y^{2} : \text{Not analytic}$$

$$\int_C \overline{z^3} dz = \int_C \overline{z^3} \frac{dz}{dt} dt = \int_0^{2\pi} e^{-3it} i e^{it} dt = i \int_0^{2\pi} e^{-2it} dt = 0$$

$$C: z = e^{it}$$

13. CAUCHY'S THEOREM APPLICABLE?

Integrate f(z) counterclockwise around the unit circle. Indicate whether Cauchy's integral theorem applies. Show the details.

$$f(z) = 1/(z^4 - 1.1)$$

$$z^4 = r^4 e^{4i\theta} = 1.1 = 1.1 e^{i2n\pi} \, \text{eV} \quad r = (1.1)^{1/4} > 1$$

Thus, f(z) is analytic inside and on the unit circle.

By Cauchy's Integral Theorem,
$$\oint_C \frac{1}{z^4 - 1.1} dz = 0$$

14. CAUCHY'S THEOREM APPLICABLE?

Integrate f(z) counterclockwise around the unit circle. Indicate whether Cauchy's integral theorem applies. Show the details.

$$f(z) = 1/\bar{z}$$

f(z) is not analytic at z=0 which is inside the unit circle. Thus, Cauchy's Integral Theorem is not applicable.

$$\int_{C} \frac{1}{\bar{z}} dz = \int_{C} \frac{1}{\bar{z}} \frac{dz}{dt} dt = \int_{0}^{2\pi} \frac{1}{e^{-it}} ie^{it} dt$$

$$C: z = e^{it}$$

$$= i \int_{0}^{2\pi} e^{2it} dt = i \frac{e^{2it}}{2i} \Big|_{0}^{2\pi} = 0$$

15. CAUCHY'S THEOREM APPLICABLE?

Integrate f(z) counterclockwise around the unit circle. Indicate whether Cauchy's integral theorem applies. Show the details.

$$f(z) = \operatorname{Im} z$$

$$f(z) = \operatorname{Im} z = \operatorname{Im} (x+iy) = y$$

$$u = 0, \ v = y$$

 $u_x = 0 \neq v_y = 1$: Not analytic

$$\int_{C} \operatorname{Im} z \, dz = \int_{C} \operatorname{Im} z \, \frac{dz}{dt} \, dt = \int_{0}^{2\pi} \sin t \cdot i(\cos t + i \sin t) \, dt$$

$$C: z = e^{it}$$

$$= \int_0^{2\pi} (i \sin t \cos t - \sin^2 t) dt = \int_0^{2\pi} \left(i \frac{\sin 2t}{2} - \frac{1 - \cos 2t}{2} \right) dt = -\pi$$

16. CAUCHY'S THEOREM APPLICABLE?

Integrate f(z) counterclockwise around the unit circle. Indicate whether Cauchy's integral theorem applies. Show the details.

$$f(z) = 1/(\pi z - 1)$$

f(z) is not analytic at $z=1/\pi$ which is inside the unit circle. Thus, Cauchy's Integral Theorem is not applicable.

$$\int_{C} f(z)dz = \frac{1}{\pi} \int_{C} \frac{1}{z - 1/\pi} dz = \frac{1}{\pi} \cdot 2\pi i = 2i$$

17. CAUCHY'S THEOREM APPLICABLE?

Integrate f(z) counterclockwise around the unit circle. Indicate whether Cauchy's integral theorem applies. Show the details.

$$f(z) = 1/|z|^2$$

 $f(z) = 1/|z|^2$ is not analytic at |z|=0 or z=0 which is inside the unit circle.

Thus, Cauchy's Integral Theorem is not applicable for this problem.

$$\oint_C \frac{1}{|z|^2} dz = \oint_C \frac{1}{|z|^2} \frac{dz}{dt} dt = \int_0^{2\pi} \frac{1}{1^2} i e^{it} dt$$

$$C: z = e^{it}$$

$$= i \frac{e^{it}}{i} \Big|_0^{2\pi} = e^{2\pi i} - 1 = 0$$

18. CAUCHY'S THEOREM APPLICABLE?

Integrate f(z) counterclockwise around the unit circle. Indicate whether Cauchy's integral theorem applies. Show the details.

$$f(z) = 1/(4z - 3)$$

f(z) = 1/(4z - 3) is not analytic at 4z - 3 = 0 or z = 3/4 which is inside the unit circle.

Thus, Cauchy's Integral Theorem is not applicable for this problem.

$$\oint_{C} \frac{1}{4z - 3} dz = \oint_{C} \frac{1}{4} \frac{1}{z - 3/4} \frac{dz}{dt} dt \quad C: z = e^{it}$$

$$= \oint_{C} \frac{1}{4} \frac{1}{z - 3/4} \frac{dz}{dt} dt \quad C': z - 3/4 = e^{it}$$

$$= \oint_{C'} \frac{1}{4} \frac{1}{e^{it}} i e^{it} dt = \frac{1}{4} i \cdot 2\pi = \frac{1}{2}\pi i$$

19. CAUCHY'S THEOREM APPLICABLE?

Integrate f(z) counterclockwise around the unit circle. Indicate whether Cauchy's integral theorem applies. Show the details.

$$f(z) = z^3 \cot z$$

$$\frac{d}{dz}(z^3 \cot z) = 3z^2 \cot z - z^3 \csc^2 z$$

Thus, f(z) is analytic inside and on the unit circle.

By Cauchy's Integral Theorem, $\oint_C z^3 \cot z \, dz = 0$

Evaluate the integral. Does Cauchy's theorem apply? Show details.

 $\oint_C \operatorname{Ln}(1-z) \, dz, \, C \text{ the boundary of the parallelogram with vertices } \pm i, \, \pm (1+i).$

Ln (1 - z) is not analytic if 1-z is negative real number or z is a real number larger than 1.

Thus, the function $\operatorname{Ln}(1-z)$ is analytic inside and on the unit circle.

By Cauchy's Integral Theorem,

$$\oint_C \operatorname{Ln} \left(1 - z\right) dz = 0$$

Evaluate the integral. Does Cauchy's theorem apply? Show details.

$$\oint_C \frac{dz}{z - 3i}$$
, C the circle $|z| = \pi$ counterclockwise.

1/(z-3i) is not analytic at z=3i which lies inside of the unit circle. Thus, Cauchy's Integral Theorem is not applicable for this problem.

$$C^*: z - 3i = e^{it} (0 \le t \le 2\pi)$$

$$\oint_C \frac{dz}{z - 3i} = \oint_{C^*} \frac{1}{z - 3i} \frac{dz}{dt} dt$$

$$= \int_0^{2\pi} \frac{1}{e^{it}} i e^{it} dt = 2\pi i$$

Evaluate the integral. Does Cauchy's theorem apply? Show details. $\oint_C \text{Re } z \, dz$,

$$\begin{split} \oint_{C} \operatorname{Re} z \, dz &= \int_{C_{1}} \operatorname{Re} z \, dz \, + \int_{C_{2}} \operatorname{Re} z \, dz \, = \int_{C_{1}} \operatorname{Re} z \, dz \, + \int_{C_{2}} \operatorname{Re} z \, \frac{dz}{dt} \, dt \\ &= \int_{-\pi}^{\pi} x \, dx + \int_{0}^{\pi} \cos t \, i e^{it} dt \, = x^{2} \Big|_{-\pi}^{\pi} + i \int_{0}^{\pi} \cos t \, (\cos t + i \sin t) \, dt \\ &= i \int_{0}^{\pi} \cos^{2} t + i \sin t \cos t \, dt \, = i \int_{0}^{\pi} \left[\frac{1 + \cos 2t}{2} + \frac{i}{2} \sin 2t \right] dt \\ &= i \left[\frac{t + (\sin 2t)/2}{2} + \frac{i}{2} \frac{\cos 2t}{2} \right]_{0}^{\pi} = \frac{\pi i}{2} \end{split}$$

Evaluate the integral. Does Cauchy's theorem apply? Show details.

$$\oint_C \frac{2z-1}{z^2-z} dz, \quad C:$$

Use partial fractions.

$$\oint_C \frac{2z-1}{z^2-z} dz = \oint_C \left(\frac{1}{z} + \frac{1}{z-1}\right) dz$$

$$= \oint_C \frac{1}{z} dz + \oint_C \frac{1}{z-1} dz$$

$$= \oint_{C_1} \frac{1}{z} dz + \oint_{C_2} \frac{1}{z-1} dz$$

$$= 2\pi i + 2\pi i = 4\pi i$$

24. FURTHER CONTOUR INTEGRALS

Evaluate the integral. Does Cauchy's theorem apply? Show details.

$$\oint_C \frac{dz}{z^2 - 1}, \quad C:$$
Use partial fractions.

Use C

Use partial fractions.

$$\oint_{C} \frac{dz}{z^{2} - 1} = \oint_{C} \frac{1}{2} \left(\frac{1}{z - 1} - \frac{1}{z + 1} \right) dz$$

$$= \oint_{C_{1}} \frac{1}{2} \left(\frac{1}{z - 1} - \frac{1}{z + 1} \right) dz + \oint_{C_{2}} \frac{1}{2} \left(\frac{1}{z - 1} - \frac{1}{z + 1} \right) dz$$

$$= 0 - \frac{1}{2} \oint_{C_{1}} \frac{1}{z + 1} dz + \frac{1}{2} \oint_{C_{2}} \frac{1}{z - 1} dz = -\frac{1}{2} 2\pi i + \frac{1}{2} 2\pi i = 0$$

Evaluate the integral. Does Cauchy's theorem apply? Show details.

$$\oint_C \frac{e^z}{z} dz$$
, C consists of $|z| = 2$ counterclockwise and $|z| = 1$ clockwise.

$$\oint_C \frac{e^z}{z} dz = \oint_{C_1} \frac{e^z}{z} dz + \oint_{C_2} \frac{e^z}{z} dz$$
$$= 2\pi i - 2\pi i = 0$$

26. FURTHER CONTOUR INTEGRALS

Evaluate the integral. Does Cauchy's theorem apply? Show details.

$$\oint_C \coth \frac{1}{2}z \, dz$$
, C the circle $|z - \frac{1}{2}\pi i| = 1$ clockwise.

$$\oint_C \coth \frac{1}{2}z \, dz = \oint_C \frac{1}{\tanh \frac{1}{2}z} \, dz$$

$$\tanh \frac{1}{2}z = 0 \longrightarrow 0, \pm 2\pi i, \pm 4\pi i, \cdots$$

Outside of the circle

$$\oint_C \coth \frac{1}{2}z \, dz = \oint_C \frac{1}{\tanh \frac{1}{2}z} \, dz = 0$$

Evaluate the integral. Does Cauchy's theorem apply? Show details.

$$\oint_C \frac{\cos z}{z} dz$$
, C consists of $|z| = 1$ counterclockwise and $|z| = 3$ clockwise.

$$\frac{\cos z}{z}$$
 is analytic in the given domain.

Thus, Cauchy's Integral Theorem is applicable.

$$\oint_C \frac{\cos z}{z} \, dz = 0$$

