HFT - 1

Physics – Motion in a Straight Line & Vector Chemistry – Some Basic Concept of Chemistry & Redox Reaction **Botany** – Living World, Biological Classification **Zoology** – Biomolecules

Time: 2 hrs. MM: 480

General Instructions:

1. This paper carries 120 multiple choice questions; 30 each in Physics, Chemistry, Botany and Zoology.

- 2. The test is of 2 hr duration. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, 1 mark will be deducted from the
- appropriate alternative as your answer.
- total scores. 3. Each question is followed by four alternatives as suggested answers. Mark the most Only one alternative is to be selected. 4. A force of 5 N acts on a particle along a direction making an angle of 60° with vertical. Its 1. vertical component be (1) 10 N(2) 3 N(3) 4 N (4) 2.5 N A hall has the dimensions 10m x 12m x 14m. A fly starting at one corner ends up at a diametrically opposite corner. What is the magnitude of its displacement (1) 17 m (2) 26 m (3) 36 m (4) 20 m 3. Any vector in an arbitrary direction can always be replaced by two (or three) (1) Parallel vectors which have the original vector as their resultant (2) Mutually perpendicular vectors which have the original vector as their resultant (3) Arbitrary vectors which have the original vector as their resultant (4) It is not possible to resolve a vector The angle between the two vectors $\vec{A} = 3\hat{i} + 4\hat{j} + 5\hat{k}$ and $\vec{B} = 3\hat{i} + 4\hat{j} - 5\hat{k}$ will be (1) 90° $(2) 0^{\circ}$ (3) 60° (4) 45° If the sum of two unit vectors is a unit vector, then magnitude of difference is 5.
- (2) $\sqrt{3}$ (3) $1/\sqrt{2}$ (1) $\sqrt{2}$ (4) $\sqrt{5}$ A particle has displacement of 12 m towards east and 5 m towards north then 6 m vertically upward. The sum of these displacements is
 - (4) None of these (1) 12 (2) 10.04 *m* (3) 14.31 *m*

7.	If vectors <i>P</i> , <i>Q</i> and <i>R</i> has <i>Q</i> and <i>R</i> is	nave magnitude 5, 12 and	d 13 units and $\vec{P} + \vec{Q}$	$\vec{R} = \vec{R}$, the angle between
	(1) $\cos^{-1}\frac{5}{12}$	(2) $\cos^{-1} \frac{5}{13}$	(3) $\cos^{-1}\frac{12}{13}$	(4) $\cos^{-1} \frac{7}{13}$
8.	The magnitudes of version angle between \vec{A} and	ectors \vec{A}, \vec{B} and \vec{C} are 3, 4 \vec{B} is	and 5 units respe	ctively. If $\vec{A} + \vec{B} = \vec{C}$, the
	$(1) \ \frac{\pi}{2}$	(2) $\cos^{-1}(0.6)$	(3) $\tan^{-1}\left(\frac{7}{5}\right)$	$(4) \qquad \frac{\pi}{4}$
9.	-	one station to another, a ninimum distance betwee		
	(1) 72 km	(2) 112 km	(3) 132 km	(4) 155 <i>km</i>
10.	If two vectors $2\hat{i} + 3\hat{j} - 3\hat{j} = 3\hat{j}$	\hat{k} and $-4\hat{i}-6\hat{j}-\lambda\hat{k}$ are pa	rallel to each other	then value of λ be
	(1) 0	(2) 2	(3) 3	(4) 4
11.		vton is applied over a parts. The work done on the p		s it from its origin to the
	(1) - 7J	(2) +13 <i>J</i>	(3) +7 J	(4) +11 J
12.		n a velocity $6\hat{i} - 4\hat{j} + 3\hat{k} m$ instantaneous power app		
	(1) 35 <i>J/s</i>	(2) 45 <i>J/s</i>	(3) 25 <i>J/s</i>	(4) 195 <i>J/s</i>
13.	A particle moves in th	e x-v plane under the ac	tion of a force \vec{F} so	uch that the value of its
	linear momentum (\vec{P}) given time t . will be	at anytime t is $P_x = 2\cos t$, p		
	given time t. will be		$p_y = 2 \sin t$. The angle of	$ heta$ between $ec{F}$ and $ec{P}$ at a
14.	given time t . will be (1) $\theta = 0^{\circ}$	at anytime t is $P_x = 2\cos t$, p	$p_y = 2 \sin t$. The angle θ	θ between \vec{F} and \vec{P} at a (4) $\theta = 180^{\circ}$
14.	given time t . will be (1) $\theta = 0^{\circ}$ A vector \vec{F}_1 is along th then \vec{F}_2 could be	at anytime t is $P_x = 2 \cos t$, p $(2) \theta = 30^{\circ}$ e positive X -axis. If its ve	$p_y = 2 \sin t$. The angle θ	θ between \vec{F} and \vec{P} at a (4) $\theta = 180^{\circ}$
	given time t . will be (1) $\theta = 0^{\circ}$ A vector \vec{F}_1 is along th then \vec{F}_2 could be (1) $4\hat{j}$	at anytime t is $P_x = 2 \cos t$, p $(2) \theta = 30^{\circ}$ e positive X -axis. If its ve	$p_y = 2 \sin t$. The angle \hat{q} (3) $\theta = 90^{\circ}$ ector product with a	θ between \vec{F} and \vec{P} at a (4) $\theta = 180^{\circ}$ nother vector \vec{F}_2 is zero
	given time t . will be (1) $\theta = 0^{\circ}$ A vector \vec{F}_1 is along th then \vec{F}_2 could be (1) $4\hat{j}$ An aeroplane flies 400	at anytime t is $P_x = 2\cos t$, p $(2) \theta = 30^{\circ}$ e positive X -axis. If its ve $(2) -(\hat{i} + \hat{j})$	$p_y = 2 \sin t$. The angle \hat{q} (3) $\theta = 90^{\circ}$ ector product with a	θ between \vec{F} and \vec{P} at a (4) $\theta = 180^{\circ}$ nother vector \vec{F}_2 is zero
15.	given time t . will be (1) $\theta = 0^{\circ}$ A vector \vec{F}_1 is along th then \vec{F}_2 could be (1) $4\hat{j}$ An aeroplane flies 400 displacement is (1) 1200 m	at anytime t is $P_x = 2 \cos t$, p $(2) \theta = 30^{\circ}$ e positive X -axis. If its vector $(2) -(\hat{i} + \hat{j})$ m north and $300 \ m$ sour m one round of a circular to	$p_y = 2 \sin t$. The angle \hat{q} (3) $\theta = 90^\circ$ ector product with a (3) $(\hat{j} + \hat{k})$ th and then flies 12 (3) 1400 m	θ between \vec{F} and \vec{P} at a θ between \vec{F} at a θ between \vec{F} and \vec{F} at a θ between \vec{F} at a θ between \vec{F} and \vec{F} and \vec{F} at a θ between \vec{F} and \vec{F} and \vec{F} at a θ between \vec{F} and \vec{F} and \vec{F} and \vec{F} and \vec{F} at a \vec{F} and \vec{F} and \vec{F} at a \vec{F} and \vec{F}
15.	given time t . will be (1) $\theta = 0^{\circ}$ A vector \vec{F}_1 is along the then \vec{F}_2 could be (1) $4\hat{j}$ An aeroplane flies 400 displacement is (1) 1200 m An athlete completes of	at anytime t is $P_x = 2 \cos t$, p $(2) \theta = 30^{\circ}$ e positive X -axis. If its vector $(2) -(\hat{i} + \hat{j})$ m north and $300 \ m$ sour m one round of a circular to	$p_y = 2 \sin t$. The angle \hat{q} (3) $\theta = 90^\circ$ ector product with a (3) $(\hat{j} + \hat{k})$ th and then flies 12 (3) 1400 m	θ between \vec{F} and \vec{P} at a θ between \vec{F} at a θ between \vec{F} and \vec{F} at a θ between \vec{F} at a θ between \vec{F} and \vec{F} and \vec{F} at a θ between \vec{F} and \vec{F} and \vec{F} at a θ between \vec{F} and \vec{F} and \vec{F} and \vec{F} and \vec{F} at a \vec{F} and \vec{F} and \vec{F} at a \vec{F} and \vec{F}
15. 16.	given time t . will be (1) $\theta = 0^{\circ}$ A vector \vec{F}_1 is along the then \vec{F}_2 could be (1) $4\hat{j}$ An aeroplane flies 400 displacement is (1) $1200 \ m$ An athlete completes of displacement at the en (1) Zero A man walks on a strait km/h . Finding the marketic strait km/h . Finding the marketic strait km/h . Finding the marketic strait km/h .	at anytime t is $P_x = 2 \cos t$, p $(2) \theta = 30^{\circ}$ e positive X -axis. If its ve $(2) -(\hat{i} + \hat{j})$ m north and 300 m sour $(2) 1300 m$ one round of a circular tod of 2 min. 20 \sec	$p_y = 2 \sin t$. The angle α $(3) \theta = 90^{\circ}$ ector product with a $(3) (\hat{j} + \hat{k})$ th and then flies 12 $(3) 1400 \ m$ rack of radius R in α $(3) 2\pi R$ to a market 2.5 km urns and walks back	the between \vec{F} and \vec{P} at a (4) $\theta = 180^{\circ}$ and $\theta = 180^{\circ}$ the section $\theta = 180^{\circ}$ for $\theta = 180^{\circ}$ and $\theta = 180^{\circ}$ for $\theta = 180^{\circ}$ fo
15. 16.	given time t . will be (1) $\theta = 0^{\circ}$ A vector \vec{F}_1 is along the then \vec{F}_2 could be (1) $4\hat{j}$ An aeroplane flies 400 displacement is (1) $1200 \ m$ An athlete completes of displacement at the en (1) Zero A man walks on a strait km/h . Finding the marketic strait km/h . Finding the marketic strait km/h . Finding the marketic strait km/h .	at anytime t is $P_x = 2\cos t$, p $(2) \theta = 30^{\circ}$ e positive X -axis. If its vector $(2) -(\hat{i} + \hat{j})$ m north and $300 \ m$ sour $(2) 1300 \ m$ one round of a circular trad of 2 min. $20 \ sec$ $(2) 2R$ ght road from his home taket closed, he instantly to	$p_y = 2 \sin t$. The angle α $(3) \theta = 90^{\circ}$ ector product with a $(3) (\hat{j} + \hat{k})$ th and then flies 12 $(3) 1400 m$ rack of radius R in α $(3) 2\pi R$ to a market 2.5 km urns and walks back a interval of time 0	the between \vec{F} and \vec{P} at a (4) $\theta = 180^{\circ}$ another vector \vec{F}_2 is zero (4) $(-4\hat{i})$ $00 \ m$ upwards then net (4) $1500 \ m$ $40 \ sec.$ What will be his (4) $7\pi R$ away with a speed of 5 k home with a speed of to $40 \ min$. is equal to

	always							
	(1) Unity	(2)	Unity or less	5	(3)	Unity or more	(4) L	ess than unity
19.	The coordinates of a movin of the particle at any mome			time	are g	iven by $x = at^2$ an	d <i>y</i> = <i>i</i>	bt ² . The speed
	(1) 2t(a+b)	(2)	$2t\sqrt{(a^2-b^2)}$		(3)	$t\sqrt{a^2+b^2}$	(4)	$2t\sqrt{(a^2+b^2)}$
20.	The displacement of a boomagnitude of the accelerat	-	=	-	ortior	nal to the cube o	f time	e elapsed. The
	(1) Increasing with time	(2)	Decreasing	with	time			
	(3) Constant but not zero	(4)	Zero					
21.	A particle moves along a st	raigl	nt line such th	nat its	s disp	lacement at any t	ime t	is given by
	$S = t^3 - 6t^2 + 3t + 4$ metres. T	he v	elocity when	the a	accele	ration is zero is		
	(1) $3ms^{-1}$	(2)	$-12ms^{-1}$		(3)	$42~ms^{-1}$	(4)	$-9 ms^{-1}$
22.	A boat is sent across a river <i>km/hr,</i> then velocity of the		•	of 8 <i>k</i>	m/hr.	If the resultant v	elocit	y of boat is 10
	(1) 10 km/hr	(2)	8 km/hr		(3)	6 km/hr	(4)	4 km/hr
23.	The distance between two travel with same speeds an of 4 <i>m/sec</i> . The particles ha	nd in	the same dir		_			
	(1) 5 m/sec; 1 m/sec	(2)	4 m/sec ; 1	m/se	С			
	(3) 4 m/sec; 2 m/sec	(4)	5 m/sec ; 2 i	m/se	С			
24.	A body is released from a released from the same he bodies, two seconds after t	eight	exactly one	seco	nd lat	er. The separation		= = = = = = = = = = = = = = = = = = =
	(1) 4.9 m	(2)	9.8 m	(3)	19.6	m	(4)	24.5 m
25.	A balloon is at a height of 8 of 2 kg weight is dropped earth in			_			•	
	(1) 1.5 <i>s</i>	(2)	4.025 s	(3)	5.4 s		(4)	6.75 <i>s</i>
26.	An aeroplane is moving w taken by the packet in reac		=		-	packet from a h	eight	h. The time t
	$(1) \sqrt{\left(\frac{2g}{h}\right)}$	(2)	$\sqrt{\left(\frac{2u}{g}\right)}$	(3)	$\sqrt{\frac{h}{2g}}$	$\overline{\overline{z}}$	(4)	$\sqrt{\left(\frac{2h}{g}\right)}$
27.	A body projected vertically seconds. If $g = 10 \text{ m/sec}^2$, the seconds is $g = 10 \text{ m/sec}^2$, the seconds is $g = 10 \text{ m/sec}^2$.			a vel	ocity	u returns to the	starti	ing point in 4
	(1) 5 m/sec	(2)	10 m/sec	(3)	15 m	n/sec	(4)	20 m/sec

18. The ratio of the numerical values of the average velocity and average speed of a body is

28.	Time taken by an object and t_2 then the ratio of	-	cover the	height of h_1 and	d h ₂ is	respectively t_1
	(1) $h_1:h_2$	(2) $\sqrt{h_1} : \sqrt{h_2}$	(3) $h_1:2$	h_2	(4)	$2h_1:h_2$
29.	A particle moving in a shalf of the distance is of m/s respectively. The average of the moving in a shall be a	covered in two equa	ıl time inte	ervals with speed	d of 4.	
	(1) 4.0 <i>m/s</i>	(2) 5.0 <i>m/s</i>	(3) 5.5 <i>r</i>	n/s	(4)	4.8 m/s
30.	The acceleration of a pathe origin with an initial					
	(1) $v_0 t + \frac{1}{3} b t^2$	(2) $v_0 t + \frac{1}{3} b t^3$	(3)	$v_0t + \frac{1}{6}bt^3$	(4)	$v_0 t + \frac{1}{2} b t^2$
31.	Which contains greates (1) 1 g of O (3) 1 g of O_3	(2) 1 g of O₂(4) All have the sar	ne numbe		ss of I	J CO (molor
32.	The density (in g mL $^{-1}$ mass 98) will be:					
22	(1) 1.45	(2) 1.64	(3)	1.88	(4)	1.22
33.	1.0 g of pure calcium careactions. The strength		•		ici tor	complete
	(1) 4 <i>N</i>	(2) 2 N	(3)		(4)	0.2 <i>N</i>
34.	$KMnO_4$ reacts with oxa	` '	. ,		(-)	0.21
	$2MnO_4^- + 5C_2O_4^{2-} + 1$					
	Here, 20 mL of 0.1 M K		_	2 -		
	(1) 20 mL of 0.5 M H ₂	C_2O_4				
	(2) 50 mL of 0.1 M H ₂	C_2O_4				
	(3) $30 \text{ mL of } 0.1 \text{ M H}_2$					
	(4) $20 \text{ mL of } 0.1 \text{ M H}_2$					
35.	The maximum amount	of BaSO ₄ precipitate	ed on mixi	ng 20 mL of 0.5 <i>l</i>	M BaC	l ₂ with 20 mL
	of 1 MH_2SO_4 is:	(2) 0.5	(2)	4	(4)	0.04
20	(1) 0.25 mole	(2) 0.5 mole	(3)	1 mole	(4)	0.01 mole
36.	An element forms an o equivalent weight of the			% of the oxide by	y weig	iii, tiie
	(1) 32	(2) 40	(3)	60	(4)	128
37.	The dehydration yield	` '				
37.	100 g of cyclohexanol i		ототтехетте	. 10 7 5 7 51 17 11 14 11	54.4.5	e tire yreid) ii
	(1) 61.7 g	(2) 16.5 g	(3)	6.15 g	(4)	615 g
38.	Equal volumes of 0.1 M	` '		_	` '	•
	in the mixture will be:	2 0				J
	(1) 0.1 <i>M</i>	(2) 0.05 <i>M</i>	(3)	0.2 <i>M</i>	(4)	0.15 <i>M</i>
39.	How many moles of lea	ad (II) chloride will be	e formed f	rom a reaction be	etwee	n 6.5 g of PbO
	and 3.2 g of HCl? Mol N					
	(1) 0.333	(2) 0.011	(3)	0.029	(4)	0.044
40.	10 mL of gaseous hydro		ion gives 4	$10 \text{ mL of CO}_2(g)$ a	nd 50	mL of H ₂ O
	(vap). The hydrocarbor		(2)	CH	(4)	CH
	(1) C_4H_5	(2) C_8H_{10}	(3)	C_4H_8	(4)	C_4H_{10}

41.	Vapour density of a me of the metal is:	etal chloride is 66. Its oxid	le con	itains 53% metal.	The at	tomic	weight
	(1) 21	(2) 54	(3)	27.06	(4)	2.70	6
42.	The percentage of P_2O	₅ in diammonium hydrog	en ph	$osphate, (NH_4)_2 I$	HPO_4	is	
	(1) 23.48	(2) 46.96	(3)		(4)	71.0	0
43.	The haemoglobin from	the red blood corpuscles	of m	ost mammals con	tains		
	approximately 0.33% o	f iron by weight. The mo	lecula	r weight of haemo	oglobi	n as 6	57,200.
	The number of iron ato	oms in each molecule of h	naemo	oglobin is			
	(atomic weight of iron	= 56):					
	(1) 2	(2) 3	(3)	4		(4)	5
44.	The normality of 4% (w	rt./vol.) NaOH is:					
	(1) 0.1	(2) 1.0	(3)	0.05	(4)	0.01	
45.	25.3 g solution carbona	ate, $\mathrm{Na_{2}CO_{3}}$ was dissolve	d in e	nough water to m	ake 2	50 ml	_ of
	solution. If sodium cark	onate dissociates compl	etely,	molar concentrat	ion of	Na ⁺	and
	carbonate ions are resp	-					
	(mol. mass of Na ₂ CO ₃						
	(1) 0.9555 <i>M</i> and 1.910						
	(2) 1.910 <i>M</i> and 0.955						
	(3) 1.90 <i>M</i> and 1.1910						
	(4) 0.477 <i>M</i> and 0.477						
46.		ite on being strongly hea					
	(1) 2.16 g	(2) 2.48 g	(3)	•	(4)	2.32	•
47.	= = =	lecolourised iodine by the		_	-		copper
		I. The value of x' is (mole		-	$_20$ is	-	
	(1) 5.0 g	/3\ 1 3F ~					
	` '	(2) 1.25 g	(3)	_	(4)	_	
48.	1.5 litre of a solution of	f normality N and 2.5 litr	es of 2	2 M HCl are mixed	` '	_	The
48.	1.5 litre of a solution of resultant solution had a	f normality N and 2.5 litres a normality 5. The value α	es of 2 of <i>N</i> is	2 M HCl are mixed	` '	ther. ⁻	
	1.5 litre of a solution of resultant solution had a (1) 6	f normality N and 2.5 litral normality 5. The value (2) 10	es of 2 of <i>N</i> is (3)	2 <i>M</i> HCl are mixed s: 8	toge	ther. ⁻ (4)	4
48. 49.	1.5 litre of a solution of resultant solution had a(1) 6Versene, a chelating ag	f normality N and 2.5 litromorphisms and 2.5 litromorphisms and 2.5 litromorphisms (2) 10 (2) formulating themical formulating themical formulating chemical formulating chemical formulating themical formulating chemical formulating chemi	es of 2 of <i>N</i> is (3)	2 <i>M</i> HCl are mixed s: 8	toge	ther. ⁻ (4)	4
	1.5 litre of a solution of resultant solution had a(1) 6Versene, a chelating ag this compound could b	f normality <i>N</i> and 2.5 litr a normality 5. The value ((2) 10 ent having chemical forn ind 1 mole of	es of 2 of <i>N</i> is (3) nula C	$2 M$ HCl are mixed s: $8 C_2 H_4 N_2 (C_2 H_2 O_2 N_2 O_2 N_$	toge	ther. ⁻ (4) f each	4 mole of
	1.5 litre of a solution of resultant solution had a (1) 6 Versene, a chelating ag this compound could b Ca ² +, then the rating of	f normality N and 2.5 litromorphisms and 2.5 litromorphisms and 2.5 litromorphisms (2) 10 (2) formulating themical formulating themical formulating chemical formulating chemical formulating themical formulating chemical formulating chemi	es of 2 of <i>N</i> is (3) nula C	$2 M$ HCl are mixed s: $8 C_2 H_4 N_2 (C_2 H_2 O_2 N_2 O_2 N_$	toge	ther. ⁻ (4) f each	4 mole of
	1.5 litre of a solution of resultant solution had a (1) 6 Versene, a chelating ag this compound could b Ca ² +, then the rating chelating agent is:	f normality N and 2.5 litranormality 5. The value (2) 10 (2) 10 (2) modern from the formal from the formal formal formal formal formal formal from the formal formal formal formal formal formal from the formal formal formal formal formal formal formal formal formal from the formal f	es of 2 of <i>N</i> is (3) nula C	$2~M$ HCl are mixed s: $8~{ m C}_2{ m H}_4{ m N}_2({ m C}_2{ m H}_2{ m O}_2{ m N}_2$ mg of ${ m CaCO}_3$ bou	toge $a)_4. I$ $nd pe$	ther. ⁻ (4) f each	4 mole of
49.	1.5 litre of a solution of resultant solution had a (1) 6 Versene, a chelating ag this compound could b Ca ² +, then the rating chelating agent is: (1) 100 mg	f normality <i>N</i> and 2.5 litres normality 5. The value of (2) 10 gent having chemical formind 1 mole of pure versene express (2) 163 mg	es of 2 of N is (3) nula C ed as (3)	$2~M$ HCl are mixed s: $8 \\ C_2H_4N_2(C_2H_2O_2N) \\ mg~of~CaCO_3~bou$	toge $a)_4. I$ and pe (4)	ther. ⁻ (4) f each	4 mole of
	1.5 litre of a solution of resultant solution had a (1) 6 Versene, a chelating ag this compound could b Ca ² +, then the rating chelating agent is: (1) 100 mg How many g of NaOH v	f normality <i>N</i> and 2.5 litres normality 5. The value of (2) 10 gent having chemical formind 1 mole of pure versene express (2) 163 mg will be needed to prepare	es of 2 of N is (3) nula C ed as (3)	$2~M$ HCl are mixed s: $8~{ m C}_2{ m H}_4{ m N}_2({ m C}_2{ m H}_2{ m O}_2{ m N}$ mg of ${ m CaCO}_3$ bou 200 mg mL of 0.1 M soluti	toge $a)_4. l$ and pe (4) on?	ther (4) f each r g of	4 mole of
49. 50.	1.5 litre of a solution of resultant solution had a (1) 6 Versene, a chelating ag this compound could b Ca ² +, then the rating chelating agent is: (1) 100 mg How many g of NaOH v (1) 1 g	f normality N and 2.5 litres normality 5. The value of (2) 10 gent having chemical formind 1 mole of pure versene express (2) 163 mg will be needed to prepare (2) 10 g	es of 2 of N is (3) nula C ed as	$2~M$ HCl are mixed s: $8 \\ C_2H_4N_2(C_2H_2O_2N) \\ mg~of~CaCO_3~bou$	toge $a)_4. I$ and pe (4)	ther. ⁻ (4) f each	4 mole of
49.	1.5 litre of a solution of resultant solution had a (1) 6 Versene, a chelating ag this compound could b Ca^2+ , then the rating chelating agent is: (1) 100 mg How many g of NaOH v (1) 1 g In $C + H_2O \rightarrow CO + H_2O$	f normality N and 2.5 litres a normality 5. The value of (2) 10 gent having chemical formind 1 mole of of pure versene express (2) 163 mg will be needed to prepare (2) 10 g H_2 ; H_2 0 acts as:	es of 2 of <i>N</i> is (3) nula <i>C</i> ed as (3) = 250 is (3)	$2~M$ HCl are mixed s: 8 $C_2H_4N_2(C_2H_2O_2N_3)$ mg of C_3 bound C_4 C_5 C_6	toge $a)_4. I$ nd pe (4) on? (4)	(4) f each r g of 263	4 mole of mg
49.50.51.	1.5 litre of a solution of resultant solution had a (1) 6 Versene, a chelating ag this compound could b Ca²+, then the rating chelating agent is: (1) 100 mg How many g of NaOH v (1) 1 g In C + H ₂ O → CO + H (1) Oxidant	f normality N and 2.5 litres normality 5. The value of (2) 10 gent having chemical formind 1 mole of pure versene express (2) 163 mg will be needed to prepare (2) 10 g H ₂ ; H ₂ O acts as: (2) Reductant	es of 2 of N is (3) nula C ed as (3) = 250 i (3)	$2 M$ HCl are mixed s: 8 $C_2H_4N_2(C_2H_2O_2N_3)$ mg of $CaCO_3$ bou 200 mg mL of $0.1 M$ soluti 4 g	(4) (4) N	ther (4) f each er g of 263 6 g	4 mole of mg
49. 50.	1.5 litre of a solution of resultant solution had a (1) 6 Versene, a chelating ag this compound could b Ca²+, then the rating chelating agent is: (1) 100 mg How many g of NaOH v (1) 1 g In C + H₂O → CO + H (1) Oxidant 2 mole of FeSO₄ are ox	f normality N and 2.5 litres a normality 5. The value of (2) 10 gent having chemical formind 1 mole of pure versene express (2) 163 mg will be needed to prepare (2) 10 g H ₂ ; H ₂ O acts as: (2) Reductant cidized by 'X' mole of KM	es of 2^{-1} of N is (3) nula C ed as (3) $= 250 \text{ i}$ (3) $= (3)$ $= (3)$ $= (3)$ $= (3)$ $= (3)$ $= (3)$	$2 M$ HCl are mixed s: 8 $C_2H_4N_2(C_2H_2O_2N_3)$ mg of $CaCO_3$ bou 200 mg mL of $0.1 M$ soluti 4 g	(4) (4) N	ther (4) f each er g of 263 6 g	4 mole of mg
49.50.51.	1.5 litre of a solution of resultant solution had a (1) 6 Versene, a chelating ag this compound could b Ca²+, then the rating chelating agent is: (1) 100 mg How many g of NaOH v (1) 1 g In C + H₂O → CO + H (1) Oxidant 2 mole of FeSO₄ are ox by 'Y' mole of KMnO₄.	f normality N and 2.5 litres a normality 5. The value of (2) 10 gent having chemical formind 1 mole of of pure versene express (2) 163 mg will be needed to prepare (2) 10 g H_2 ; H_2O acts as: (2) Reductant cidized by 'X' mole of KM The ration of 'X' and 'Y' is	es of 2 of N is (3) and (3) ed as (3) es 250 i (3) en O_4 where O_4 where O_4 is O_4 where O_4 is O_4 in O_4 where O_4 is O_4 in O_4 i	$2 M$ HCl are mixed s: 8 $C_2H_4N_2(C_2H_2O_2N_3)$ mg of C_3 bound C_4 C_5 C_5 C_6	(4) (4) (4) (4) (4) N	ther. (4) f each r g of 263 6 g Jone o	4 mole of mg
49.50.51.52.	1.5 litre of a solution of resultant solution had a (1) 6 Versene, a chelating ag this compound could b Ca²+, then the rating chelating agent is: (1) 100 mg How many g of NaOH v (1) 1 g In C + H₂O → CO + H (1) Oxidant 2 mole of FeSO₄ are ox by 'Y' mole of KMnO₄. T (1) 1:3	f normality N and 2.5 litres a normality 5. The value of (2) 10 gent having chemical formind 1 mole of of pure versene express (2) 163 mg will be needed to prepare (2) 10 g H ₂ ; H ₂ O acts as: (2) Reductant cidized by 'X' mole of KM The ration of 'X' and 'Y' is (2) 1:2	es of 2^{-1} of N is (3) nula C ed as (3) $= 250 \text{ i}$ (3) $= (3)$ $= (3)$ $= (3)$ $= (3)$ $= (3)$ $= (3)$	$2 M$ HCl are mixed s: 8 $C_2H_4N_2(C_2H_2O_2N_3)$ mg of $CaCO_3$ bou 200 mg mL of $0.1 M$ soluti 4 g	(4) (4) N	ther (4) f each er g of 263 6 g	4 mole of mg
49.50.51.	1.5 litre of a solution of resultant solution had a (1) 6 Versene, a chelating ag this compound could b Ca²+, then the rating chelating agent is: (1) 100 mg How many g of NaOH v (1) 1 g In C + H₂O → CO + H (1) Oxidant 2 mole of FeSO₄ are ox by 'Y' mole of KMnO₄. (1) 1:3 The ox.no. of S in Na₂S	f normality N and 2.5 litres a normality 5. The value of (2) 10 gent having chemical formind 1 mole of of pure versene express (2) 163 mg will be needed to prepare (2) 10 g H ₂ ; H ₂ O acts as: (2) Reductant cidized by 'X' mole of KM The ration of 'X' and 'Y' is (2) 1:2	es of 2 of N is (3) and (3) ed as (3) es 250 i (3) en O_4 where O_4 where O_4 is O_4 where O_4 is O_4 in O_4 where O_4 is O_4 in O_4 i	$2 M$ HCl are mixed s: 8 $C_2H_4N_2(C_2H_2O_2N_3)$ mg of C_3 bound C_4 C_5 C_5 C_6	(4) (4) (4) (4) (4) N	ther. (4) f each r g of 263 6 g Jone o	4 mole of mg
49.50.51.52.	1.5 litre of a solution of resultant solution had a (1) 6 Versene, a chelating ag this compound could b Ca²+, then the rating of chelating agent is: (1) 100 mg How many g of NaOH v (1) 1 g In C + H₂O → CO + H (1) Oxidant 2 mole of FeSO₄ are ox by 'Y' mole of KMnO₄. The ox.no. of S in Na₂S (1) + 2.5	f normality N and 2.5 litres a normality 5. The value of (2) 10 gent having chemical formind 1 mole of of pure versene express (2) 163 mg will be needed to prepare (2) 10 g H_2 ; H_2 0 acts as: (2) Reductant cidized by 'X' mole of KM The ration of 'X' and 'Y' is (2) 1:2 H_2 0 is:	es of 2 of N is (3) nula 0 ed as (3) (3) (3) mO ₄ w is : (3)	$2 M$ HCl are mixed s: 8 $C_2H_4N_2(C_2H_2O_2N_3)$ mg of C_3 bound C_4 C_5 C_5 C_6	(4) (4) (4) (4) (4) N	ther. (4) f each r g of 263 6 g Jone o	4 mole of mg
49.50.51.52.	1.5 litre of a solution of resultant solution had a (1) 6 Versene, a chelating ag this compound could b Ca^2+ , then the rating chelating agent is: (1) 100 mg How many g of NaOH v (1) 1 g In $C + H_2O \rightarrow CO + H$ (1) Oxidant 2 mole of FeSO ₄ are ox by 'Y' mole of KMnO ₄ . The ox.no. of S in Na ₂ S (1) + 2.5 (2) +2 and +3 (two S had	f normality N and 2.5 litres a normality S . The value of (2) 10 gent having chemical formind 1 mole of of pure versene express (2) 163 mg will be needed to prepare (2) 10 g S_2 ; S_2 0 acts as: (2) Reductant cidized by 'X' mole of KM The ration of 'X' and 'Y' is (2) 1:2 S_4 06 is:	es of 2 of N is (3) nula C ed as (3) (3) (3) nO ₄ w is : (3)	$2 M$ HCl are mixed s: 8 $C_2H_4N_2(C_2H_2O_2N_3)$ mg of C_3 bound C_4 C_5 C_5 C_6	(4) (4) (4) (4) (4) N	ther. (4) f each r g of 263 6 g Jone o	4 mole of mg
49.50.51.52.	1.5 litre of a solution of resultant solution had a (1) 6 Versene, a chelating ag this compound could b Ca²+, then the rating chelating agent is: (1) 100 mg How many g of NaOH v (1) 1 g In C + H₂O → CO + H (1) Oxidant 2 mole of FeSO₄ are ox by 'Y' mole of KMnO₄. (1) 1:3 The ox.no. of S in Na₂S (1) + 2.5 (2) +2 and +3 (two S ha (3) +2 and +3 (three S ha)	f normality N and 2.5 litres a normality 5. The value of (2) 10 gent having chemical formind 1 mole of of pure versene express (2) 163 mg will be needed to prepare (2) 10 g H_2 ; H_2 0 acts as: (2) Reductant cidized by 'X' mole of KM The ration of 'X' and 'Y' is (2) 1:2 H_2 0 is:	es of 2 of N is (3) ed as (3) (3) (3) (3) enO ₄ w (5) (3)	$2 M$ HCl are mixed s: 8 $C_2H_4N_2(C_2H_2O_2N_1)$ mg of C_3 bound C_3 bound C_4 C_5 C_4 C_5 C_5 C_5 C_6	(4) (4) (4) (4) (4) N	ther. (4) f each r g of 263 6 g Jone o	4 mole of mg

63.	Which of the following statements concerning prokaryotes is / are true?							
	(1)	Because prokar out cellular resp	•	_	anel	les, they cannot ph	otosy	nthesize or carry
	(2)	Prokaryotes hav	e no e	chromosomes and	ther	efore lack DNA		
	(3)	(3) Prokaryotic flagella are dissimilar in structure to eukaryotic flagella						
	(4)	None of the abo	ove					
64.	All	of the following s	tatem	ents are correct a	bout	plasmids except -		
	(1)	they are extrach	nromo	somal DNA				
	(2)	•				aked DNA that con resistance to antibi		ertain unique
	(3)	They are used in	n gene	etic engineering				
	(4)	It helps in the re	eplicat	ion of nucleoid				
65.	Wh	ich of the followi	ng pai	rs is mismatched ?	·.			
	(1)	Glycocalyx - ma	y be c	apsule or slime lay	er			
	(2)	Pili - Reproducti	ion					
	(3)	Cell wall- Protec	ctive, o	determines shape,	prev	ents from bursting		
	(4)	Flagella, Pilli and	d Fimb	oriae - Surface stru	cture	es of bacterial cell		
66.	Wh	ich is mismatche	d pair	?				
	(1)	Capsule - Thick	and to	ough glycocalyx				
	(2)	Slime layer - Loc	ose gly	/cocalyx				
	(3)	Pili - Motility or	gan					
	(4)	Bacterial cells-N	/lotile	or nonmotile				
67.	Gla	ssy and sculptu	red ce	ell wall is a featur	e of			
	(1)	Diatoms	(2)	Fire algae	(3)	Euglenoids	(4)	All of these
68.	Cel	wall is present	in					
	(1)	Euglena	(2)	Slime mold in veg	etati	ve phase		
	(3)	Mycoplasma	(4)	Dinoflagellates				
69.	Pro	tein rich layer i.e	. pellio	cle over the body is	s pre	sent in		
	(1)	Diatom	(2)	Euglena	(3)	Dinoflagellates	(4)	All of these
70.	"R	ed tide" appears	due t	o over growth of		_		
	(1)	Red diatoms	(2)	Gonyaulax	(3)	Desmids	(4)	All of these
71.	Con	cept of 3- domai	ins wa	s give by				
		Whittaker	(2)	Linnaeus	(3)	Copeland	(4)	Carl Woese
72.	Wh	ich of the followi	ng wa	s not a kingdom in		ngdom system of c	lassif	ication
		Monera	(2)	Protista		Fungi		Plantae
					- •	-		

73.	According to Whittaker's five kingdom classification the unicellular, non-nucleated organisms are placed in							
	(1)	Monera	(2) Protista	(3)	Plantae	(4)	Animalia	
74.	'Тах	a' differs from 'ta	xon' due to	` ,		. ,		
	(1)	this being a highe	r taxonomic category	y than t	axon			
	(2)	this being lower to	axonomic category tl	han tax	on			
	(3)	this being the plui	ral of taxon					
	(4)	this being the sing	gular of taxon					
75.	5. A group of related genera, with still less number of similarities as compared to the genus and species, constitutes							
	(1)	Order	(2) Class	(3)	Family	(4)	Division	
76.	Whi	ch of the followin	g statement for fung	i is fal	se ?			
	(1)	wheat rust is cau	sed by <i>Puccinia</i>					
	(2)	yeasts are unice	llular					
	(3)	fungi cause disea	ises in plants and ani	mals				
	(4)	They prefer to gr	ow in cool and humi	d place	S.			
77.	7. Which of the following statement for fungi is false?							
		all fungi are filan						
		• •	e called coenocytic h					
		_	at diversity in morph	ology a	nd habitat.			
		toadstools are fu						
78.			of reproduction in ba					
		endospore form			inary fission			
		sexual reproduct			onjugation			
79.	_		choose the correct o	-				
	Α.		e the sole members o	_				
	B.		eria shows		mode of nutrition	•		
	(1)	A – Amoeba; B	·					
	(2)	A - Bacteria; B -	•					
	(3)		3 - Chemosynthetic					
	(4)	A - Bacteria; B - F	•					
80.		ect an incorrect sta						
	(1)	_	om classification of W					
	(2)	Viruses did not fi	nd a place in classific	cation s	ince they are not	truly 'l	iving'	
	(3)	The name virus t	hat means venom or	poisor	ous fluid was give	en by P	asteur	
(4) D.J. Ivanowsky (demonstrated that the extract of the infected plants of tobacco								

cause infection in healthy plants

81. Match the items given in Column I with those in Column II and select the correct option given below:

	Column I	Column II
a.	Herbarium	(i) It is a place having a collection of preserved plants and
		animals
b.	Key	(ii) A list that enumerates methodically all the species found in
		an area with brief description aiding identification
c.	Museum	(iii) Is a place where dried and pressed plant specimens mounted
		on sheets are kept
d.	Catalogue	(iv) A booklet containing a list of characters and their alternates
		which are helpful in identification of various taxa.

	а	В	С	d
(1)	(ii)	(ii)	(i)	(iv)
(2)	(ii)	(iv)	(iii)	(i)
(3)	(i)	(iv)	(iii)	(ii)
(4)	(iii)	(iv)	(i)	(ii)

82. Select an incorrect statement for lichen

- (1) Fungi provide shelter and absorb mineral nutrients and water
- (2) Lichens grow in polluted areas
- (3) The fungal component is called mycobiont
- (4) The algal component is known as phycobiont
- 83. Which of the following statement for fungi is false?
 - (1) Reproduction in fungi can take place by vegetative means
 - (2) Most fungi absorb soluble organic matter from dead substrates
 - (3) some fungi have septae or cross walls in their hyphae
 - (4) They prefer to grow in warm and dry places
- 84. Which of the following statement for fungi is false?
 - (1) Fusion of protoplasms between two motile or non-motile gametes called plasmogamy
 - (2) Fusion of two nuclei called karyogamy.
 - (3) Meiosis in zygote resulting in haploid spores
 - (4) Most fungi are parasites
- 85. Which of the following statement for fungi is false?
 - (1) both saprophytic and parasitic fungi can also live as symbionts
 - (2) sexual reproduction is by oospores, ascospores and basidiospores
 - (3) Asexual reproduction is by spores called conidia
 - (4) Members of phycomycetes are found in aquatic habitats
- 86. The sexual cycle in fungi does not involves
 - (1) Fusion of protoplasms between two gametes called
 - (2) Fusion of two nuclei
 - (3) Meiosis in zygote
 - (4) formation of fruit

- 87. Study the four statements (A-D) given below and select the two correct ones out of them
 - A. Definition of biological species was given by Ernst Mayr.
 - B. Photoperiod does not affect reproduction in plants
 - C. Binomial nomenclature system was given by R.H. Whittaker.
 - D. In unicellular organisms, reproduction is synonymous with growth

The two correct statements are

- (1) B and C
- (2) C and D
- (3) A and D
- (4) A and B
- 88. Match column I with column II for housefly classification and select the correct option using the codes given below

	Column - I		Column - II
A.	Family	(i)	Diptera
В.	Order	(ii)	Arthropoda
C.	Class	(iii)	Muscidae
D.	Phylum	(iv)	Insecta

- (1) A-iii, B-i, C-iv, D-ii
- (2) A-iii, B-ii, C-iv, D-i
- (3) A-iv, B-iii, C-ii, D-i
- (4) A-iv, B-ii, C-i, D-iii
- 89. Which of the following statement for fungi is false?
 - (1) In some fungi the fusion of two haploid cells immediately results in diploid cells
 - (2) in ascomycetes and basidiomycetes, an dikaryotic stage occurs
 - (3) mode of spore formation form the basis for the division of the kingdom into various classes.
 - (4) sexual reproduction is by oospores, ascospores and sporangiospores
- 90. Which of the following statement for fungi is false?
 - (1) Meiosis in zygote resulting in haploid spores
 - (2) Fusion of two nuclei called plasmogamy
 - (3) Fusion of protoplasms between two motile or non-motile gametes called karyogamy
 - (4) both (2) and (3)
- 91. What will be the correct sequence of % weight of elements in human body?
 - (1) Na > K > O > C
- (2) C > H > O > N
- (3) H > N > Na > S
- (4) O > C > N > S
- 92. Identify the incorrect statement:
 - (1) All the carbon compounds obtained from a living tissue are termed as bio-molecules
 - (2) In human body, S is less abundant than Ca
 - (3) In a cell, carbohydrates are more abundant than proteins
 - (4) Lipids are found in acid insoluble fraction

93.	Correct sequence of % mass of components in a cell is:						
	(1) Water > Lipids > Nu	cleic acid > Carbohydr	ates				
	(2) Lipids > Water > Car	rbohydrates > Proteins	S				
	(3) Water > Carbohydra	ates > Proteins > Nucle	eic Aci	ids			
	(4) Water > Proteins > 1	Nucleic acids > Carboh	ydrat	es			
94.	Which of the following polysaccharide is wrongly matched with its monomer?						
	(1) Starch : Glucose						
	(2) Chitin: N-Acetyl glucosamine (NAG)						
	(3) Inulin : Mannose						
	(4) Mucopolysaccharid	e : Amino sugars and o	other	chemically modifie	ed sugars		
95.	95. In a typical polysaccharide molecule, a long chain with branches is present. Its right end in termed as:						
	(1) N-terminal	(2) C-terminal					
	(3) Reducing end	(4) Non-reducing end	I				
96.	Lecithin a compound fo	ound in cell membrane	is ch	emically :			
	(1) Simple fatty acid (2) Complex fatty acid						
	(3) Lipoprotein (4) Phospholipid						
97.	For being functional, a	protein has to acquire	at lea	ast:			
	(1) Primary structure	(2) Secondary structu	ıre				
	(3) Tertiary structure	(4) Quaternary struct	ure				
98.	Which of the following	is not the component	of nu	cleotide ?			
	(1) Nitrogenous base	(2) Phosphate	(3)	Pentose sugar	(4) None of these		
99.	Which protein is respon	nsible for transport of	gluco	se into the cells?			
	(1) Collagen	(2) Insulin	(3)	GLUT-4	(4) Glucagon		
100.	Which set of secondary	metabolites belong to	o cate	gory-alkaloids?			
	(1) Rubber, Gums		(2)	Morphine, Codeir	ne		
	(3) Anthocyanins, Caro	tenoids	(4)	Abrin, Ricin			
101.	Lemon grass oil belong	s to which category of	seco	ndary metabolites	?		
	(1) Alkaloids	(2) Lectins	(3)	Essential oils	(4) Toxins		
102.	Backbone of DNA is for	med by:					
	(1) H-bonds	(2) Gluycosidic bonds	;				
	(3) Amide bonds	(4) Phosphodiester be	onds				
103.	Usually the concentrati	on of hormones is me	asure	d in:			
	(1) Picograms / ml of b	olood	(2)	Nanograms / ml o	of blood		
	(3) Micrograms / ml of	blood	(4)	Milligrams / ml of	blood		
104.	Which of the following	does not act as cofact	or?				
	(1) Prosthetic group	(2) Metal ions	(3)	Apoenzyme	(4) coenzyme		

105.	Select the correct pair :						
	(1) H	Haem-Prosthet	tic group for peroxidase				
	(2) L	igases-Hydroly	rsis of bonds				
	(3) P	yrimidines-Im	portant component of pr	oteins			
	(4) Z	n-Coenzyme fo	or carboxypeptidase				
106.	Carb	onic anhydras	e enzyme is abundant in:				
	(1)	RBC	(2) WBC	(3)	Platelets	(4) Mast cells	
107.	Taqı	oolymerase en	zyme is obtained from:				
	(1)	Bacteria	(2) Fungi	(3)	Algae	(4) Diatoms	
108.	Chiti	n is:					
	(1)	Homopolyme	r of glucose	(2)	Homopolymer of	NAG	
	(3)	Heteropolyme	er of amino sugars	(4)	Heteropolymer o	f glucose and NAG	
109.	Cofa	ctor is a1 o	constituent that bound	2 to	become active3	3	
	(1)	1-protein, 2-a	poenzyme, 3-coenzyme				
	(2)	1-protein, 2-h	oloenzyme, 3-apoenzym	e			
	(3)	1-non protein	, 2-homoenzyme, 3-coen	zyme			
	(4)	1-non-protein	, 2-apoenzyme, 3-holoen	zyme			
110.	Seled	ct the wrong st	atement ?				
	(1)	Ester bound is	s formed between –OH gi	roup o	of glycerol and –CO	OH group off acids	
	(2)	Cellulose is a	polymeric primary metal	oolite			
	(3)	Phosphate is a	absent in nucleoside				
	(4)	Melting point	of gingely oil is low				
111.	Orga	nic compound	firmly bound to an apoe	nzyme	e to make it catalyt	ically active:	
	(1)	Coenzyme	(2) Metal ion	(3)	Prosthetic group	(4) Holoenzyme	
112.	Diter	penes, Abrin,	ng metabolites, how mar Curcumin, Amino acids, G in, Morphine, Carbohydra	Gums,	•		
	(1)	4	(2) 5	(3)	6	(4) 8	
113.	In wl	nich macromol	lecule glycosidic bond is p	resen	t ?		
	(1)	Carbohydrate	(2) Lipids	(3)	Nucleic acids	(4) Proteins	
114.	Mat	ch the compou	und (Column I) with its co	rrect o	chemical identity (C	Column II)	
		Column I	Column II				
	(1)	Inulin	Heteropolymer of fructo	ose an	d glucose		
	(2)	Lecithin	Complex fatty acid				
	(3)	Chitin	Homoplymer polysacch	aride			
	(4)	Gingely oil	Simple fatty acid				

115.	. Which of the following is most abundant animal protein?							
	(1)	Trypsin	(2) Myosin	(3)	Pepsin	(4)	Collulose	
116.	Whi	ch of the following	is an essential amino a	cid ?				
	(1)	Leusine	(2) Alanine	(3)	Aspartic acid	(4)	Glycine	
117.	Whi	ch of the following	is not correctly matche	ed wi	th its category?			
	(1)	Chitin-Carbohydra	ites	(2)	Glut-4-Protein			
	(3)	Lecithin-Glycoprot	tein	(4)	Adenylic acid-Nucl	Adenylic acid-Nucleotide		
118.	DNA	lacks following nu	cleotide :					
	(1)	Cytidylic acid	(2) Guanylic acid	(3)	Adenylic acid	(4)	Uridylic acid	
119.	Leng	th of each turn of	DNA is:					
	(1)	2Å	(2) 3.4Å	(3)	34Å	(4)	20Å	
120.	Cecl	n and Altman receiv	ved Nobel prize in 1989	for t	he discovery of cata	lytic	properties of:	
	(1)	Taq polymerase	(2) RNA					
	(3)	Myoglobin	(4) Carbonic anhydras	e				