Kaggleの紹介

AI&機械学習しよう! (Do2dle) 勉強会

阿部 泰之

アジェンダ

- 1. Kaggleとは
- 2. Kaggleの特徴
- 3. まずはじめにやるのはどれがおすすめか

4. Kaggleで有効な手法の紹介

自己紹介

- 阿部 泰之 / Hiroyuki Abe
- twitter / @taki_tflare
- · https://tflare.com
- ・業務エンジニア (生命保険 主に保険金支払)
- Kaggle初めたばかり

Kaggleとは

Kaggleは企業や研究家が、データを投稿し、統計家やデータ分析家がその最適化モデルを競い合うサイトです。

(高額賞金付きのコンペが実施されることがあり 現在合計賞金1,200,000ドルのコンペ実施中 *約1億3千万円) kaggle Search kaggle Q Competitions Datasets Kernels Discussion Jobs ··· Sign In

The Home of Data Science & Machine Learning

Kaggle helps you learn, work, and play

Create an account

or

Host a competition

Competitions >

Climb the world's most elite machine learning leaderboards

Want to host a competition?

Datasets >

Explore and analyze a collection of high quality public datasets

Kernels >

Run code in the cloud and receive community feedback on your work

Kaggleの特徴

Competitions Kernels Discussion Datasets

Kaggleの特徴

Competitions Kernels Discussion Datasets

Welcome to Kaggle Competitions

Challenge yourself with real-world machine learning problems

New to Data Science?

Get started with a tutorial on our most popular competition for beginners, Titanic: Machine Learning from Disaster.

Build a Model

Get the data & use whatever tools or methods you prefer to make predictions.

InClass Learn more

Make a Submission

Upload your prediction file for real-time scoring & a spot on the leaderboard.

コンペです。

Kaggleの特徴は、

- ・実業務で使用しているデータがダウンロードできる
- ・参考になるコードが実行可能な形で置かれている
- ・議論も行われている
- チームが組める

上記により、参加しなくても参考になるデータ、コードが利用できるのが特徴

16 active compo	etitions	All Categories	-	Search competitions Q
	Passenger Screening Algorithm Challenge Improve the accuracy of the Department of Homeland Sec Featured • 2 months to go • % terrorism, image, object detection	curity's threat recognition	ı algori	\$1,500,000 thms 312 teams
Zillow	Zillow Prize: Zillow's Home Value Prediction (Zest Can you improve the algorithm that changed the world of Featured • 3 months to go • % housing, real estate • Entered			\$1,200,000 3,706 teams
Cdiscount	Cdiscount's Image Classification Challenge Categorize e-commerce photos Featured • 2 months to go • • multiclass classification			\$35,000 205 teams
	Porto Seguro's Safe Driver Prediction Predict if a driver will file an insurance claim next year. Featured • 2 months to go • ● tabular, binary classification			\$25,000 1,580 teams
	Web Traffic Time Series Forecasting Forecast future traffic to Wikipedia pages Research - a month to go - % time series, internet, tabular, forecas	ting		\$25,000 1,095 teams
En	Text Normalization Challenge - English Language Convert English text from written expressions into spoken Research - a month to go - % languages, linguistics, text - Entered	forms		\$25,000 351 teams
Ru	Text Normalization Challenge - Russian Language Convert Russian text from written expressions into spoker Research - a month to go - % languages, linguistics, text - Entered	n forms		\$25,000 144 teams

下記の1~2が用意されており、3~7を実施する

- 1. 実施内容の決定
- 2. データ入手
- → 3. データ前処理
- 4. 手法選択
 - *5. ハイパーパラメータ選択
 - 6. モデルの学習
 - 7. モデルの評価

- Kaggleのチュートリアル
- 乗客がタイタニックの沈没を生き延びたかどうかを予測し、この精度を競う
- 訓練用データ(891行 × 12列のcsv) データに一部 欠損あり
- テストデータ(418行×11列のcsv) データに一部 欠損あり

OUT[Z]:

	Passengerld	Survived	Pclass	Name		Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Herry	male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	C

詳細は一から始める機械学習(Kaggleで学ぶ機械学習)

https://speakerdeck.com/tflare/machine-learning-to-learn-at-kaggle

- Passengerld:データにシーケンシャルでついている番号
- Survived: 生存(0 = No, 1 = Yes) 訓練用データにのみ存在
- Pclass:チケットのクラス(1 = 1st, 2 = 2nd, 3 = 3rd)
- Name: 名前
- Sex:性別
- Age:年齡

- SibSp:タイタニック号に乗っていた兄弟と配偶者の数
- Parch:タイタニック号に乗っていた両親と子どもの数
- Ticket:チケット番号
- Fare:旅客運賃
- Cabin:船室番号
- Embarked: 乗船場(C = Cherbourg, Q = Queenstown, S = Southampton)

Welcome to Kaggle Kernels

The best place to explore data science results and share your own work

Code

Skip the download. Kernels is preloaded with the most common data science languages and libraries.

Learn

Gain exposure to new tools and techniques. The "hottest" kernels showcase the best work on Kaggle.

New Kernel

Mentor

Give back by sharing what you know. You can answer questions and leave feedback on others' code and results.

環境が整ったクラウドでコードを実行可能、 他の人のコードもKernelをForkすることで実行可能 カーネルに対してコメントすることが可能 実行時間は最大60分まで

https://www.kaggle.com/tflare/testing-multiple-models-with-scikit-learn-0-79425

```
train_corr = train.corr()
train_corr
```

Out[3]:

	Passengerld	Survived	Polass	Age	SibSp	Parch	Fare
Passengerld	1.000000	-0.005007	-0.035144	0.036847	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307
Polass	-0.035144	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500
Age	0.036847	-0.077221	-0.369228	1.000000	-0.308247	-0.189119	0.098087
SibSp	-0.057527	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651
Parch	-0.001652	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.549500	0.096067	0.159651	0.218225	1.000000

```
#=1.0 to =0.7 Strong negative correlation

#=0.7 to =0.4 Negative correlation

#=0.4 to =0.2 Weak negative correlation

#=0.2 to +0.2 There is no correlation

#+0.2 to +0.4 Weak positive correlation

#+0.4 to +0.7 Positive correlation

#+0.7 to +1.0 Strong Positive correlation
```

```
def correct_data(train_data, test_data):

# Make missing values for training data from test data as well
train_data.Age = train_data.Age.fillna(test_data.Age.median())
train_data.Fare = train_data.Fare.fillna(test_data.Fare.median())

test_data.Age = test_data.Age.fillna(test_data.Age.median())

test_data.Fare = test_data.Fare.fillna(test_data.Fare.median())

train_data = correct_data_common(train_data)
test_data = correct_data_common(test_data)
```

Do2dle

Kernels

```
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC. LinearSVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import cross_val_score
predictors = ["Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Embarked"]
models = []
models.append(("LogisticRegression",LogisticRegression()))
models.append(("SVC",SVC()))
models.append(("LinearSVC",LinearSVC()))
models.append(("KNeighbors",KNeighborsClassifier()))
models.append(("DecisionTree",DecisionTreeClassifier()))
models.append(("RandomForest",RandomForestClassifier()))
rf2 - RandomForestClassifier(n_estimators-100, criterion-'qini',
                 max_depth=10, random_state=0, max_features=None)
models.append(("RandomForest2",rf2))
models.append(("MLPClassifier",MLPClassifier(solver='lbfgs', random_state=0)))
results = []
names = []
for name.model in models:
  result - cross_val_score(model, train_data[predictors], train_data["Survived"], cv-3)
  names.append(name)
  results.append(result)
for i in range(len(names)):
  print(names[i],results[i].mean())
```

```
alg = rf2
alg.fit(train data[predictors], train data["Survived"])
predictions = alg.predict(test_data[predictors])

submission = pd.DataFrame({
    "PassengerId": test_data["PassengerId"],
    "Survived": predictions
})

submission.to_csv('submission.csv', index=False)
```


Do2dle

Discussion

Discussion

議論ができる場です。

出題元からの説明

過去のコンペでは成績優秀者の説明、コードへのリンクなどがあり ます。

Leaderboard

順位が確認できる場所です。

・ここの順位はCompetitions毎に決められたルールで設定されます。 そのため、最終的な順位と異なる場合があります。

Titanic: Machine Learning from Disasterの場合は以下です。

^rThis leaderboard is calculated with approximately 50% of the test data.

The final results will be based on the other 50%, so the final standings may be different.

上記により、最適化しすぎるのではなく、一般化することを狙っていると思われます。

・提出できる回数は限度があります。(Zillow Prizeは1日5回まで)

Leaderboard

Kaggleの特徴

Competitions Kernels Discussion Datasets

Datasets

kaggle

Search kaggle

Q

Competitions

Datasets

Kernels

Discussion

Jobs

• • •

Welcome to Kaggle Datasets

The best place to discover and seamlessly analyze open data

Discover

Use the search box to find open datasets on everything from government, health, and science to popular games and dating trends.

Explore

Execute, share, and comment on code for any open dataset with our in-browser analytics tool, Kaggle Kernels. You can also download datasets in an easy-to-read format.

Learn More

New Dataset

Create a Dataset

Contribute to the open data movement and connect with other data enthusiasts by clicking "New Dataset" to publish an open dataset of your own.

Datasetsの3つの機能

Datasetsでは、以下3つの機能があります。

- ・データセットを探す
- ・データセットについて探究する(ダウンロードする、コードを書く、コメントをする)
 - ・新しくデータセットを作る

具体的なデータセットを通じてみてみましょう。

Complete FIFA 2017 Player dataset (Global)

https://www.kaggle.com/artimous/complete-fifa-2017-player-dataset-global

データセットの内容

The dataset for people who double on Fifa and Data Science

Content

- 17,000+ players
- 50+ attributes per player ranging from ball skills aggression etc.
- Player's attributes sourced from EA Sports' FIFA video game series, including the weekly updates
- · Players from all around the globe
- URLs to their homepage
- · Club logos
- Player images male and female
- · National and club team data

Weekly Updates would include:

- Real life data (Match events etc.)
- The fifa generated player dataset
- · Betting odds
- Growth

Do2dle

データセットの内容

■ c	lubNames.csv	FullData.csv							
⊞ FullData.csv		1.33 MB · Updated 6 months ago							
⊞ N	ationalNames		•						
⊞ P	layerNames.csv								
E C	lubPictures.zip	About this f	ile 🥖						
	Antalyaspor.png	Details of al	ll the active pl	ayers fifa 17					
i i	Arsenal.png	Preview (fin	st 100 rows)	Column Metadata					00
	AS Monaco.png	Name	Nationality	National_Position	National_Kit	Club	Club_Position	Club_Kit	Club_
[A	Attico Madrid.png	Cristiano	_	LS	7.0	Real	LW	7.0	07/01
	Blackburn Rovers.png	Ronaldo	Portugal	LS	7.0	Madrid	LVV	7.0	07/01
		Lional Messi	Argentina	RW	10.0	FC Barcelona	RW	10.0	07/01
		Neymar	Brazil	LW	10.0	FC	LW	11.0	07/01
14		Luis Suárez	Henenes	LS	9.0	Barcelona FC	ST	9.0	07/41
<u> </u>	Crystal Palace.png	Luis Suarez	Uruguay	LS	51.0	Barcelona	51	25.41	07/11,
	Deport. Alava.png total)	Manuel Neuer	Germany	GK	1.0	FC Bayern	GK	1.0	07/01
₽ P	ictures.zip	De Gea	Spain	GK	1.0	Manchester Utd	GK	1.0	07/01
	Adam Lallana.png	Robert Lewandowski	Poland	LS	9.0	FC Bayern	ST	9.0	07/01
-		Gareth Bale	Wales	RS	11.0	Real Madrid	RW	11.0	09/03
-	Adn.png	Zlatan	Sweden			Manchester	ST	9.0	07/01
ia.	Adrien Rabiot.png	Ibrahimović		0.1		Utd	214	40.0	
14	Adrien Silva.png	Thibaut Courtois	Belgium	GK	1.0	Chelsea	GK	13.0	07/26
-		Jérôme Boateng	Germany	RCB	17.0	FC Bayern	Sub	17.0	07/14
120	Alan Dzagoev.png	Eden Hazard	Belgium	LF	10.0	Chelsea	LW	10.0	07/01
	Alejandro Gmez.png	Laborate 111	0			BI	BOM		00 10
	Aleksandar Kolarov	Luka Modrić	Croatla			Real	RCM	19.0	08/01

データセットの機能

データセット毎に、Kernels、Discussionがあって、実行可能なコード、ディスカッションが行われている。

どのようにすすめればよいか

まずは、Titanic: Machine Learning from Disasterをやりあとは気になったCompetitionsをやるです。 私は以下をやっています。

- Zillow Prize: Zillow's Home Value Prediction (Zestimate)
- Text Normalization Challenge English Language
- Text Normalization Challenge Russian Language

まだやっていませんが、以下はデータ量が少なくて始めやすそうです

Porto Seguro's Safe Driver Prediction

どのようにすすめればよいか

Cdiscount's Image Classification Challenge

上記はTrainデータが58.19 GB、Testデータが14.53 GBあります。 データ量の多い、画像関連のCompetitionsは性能が高いGPUがな

い場合、上位に行くことは困難です。

(AWS、GCP等でGPUを搭載しているインスタンスを借りても良いですが)

Kaggleで有効な手法の紹介

Otto Group Product Classification Challenge

商品の特徴(93種類)から商品をカテゴリ分けする課題 trainデータ6万 testデータ14万以下は優勝者のモデルです。

1st PLACE - WINNER SOLUTION - Gilberto Titericz & Stanislav Semenov

https://www.kaggle.com/c/otto-group-product-classification-challenge/discussion/14335

Kaggleで有効な手法の紹介

33モデルを組み合わせることで精度を実現しています。

機械学習の研究・実践ではシンプルな手法が良いが、

Kaggleでは勝てればなんでもよい。

→ 他の人との差別化のために、複数モデルの組み合わせを行うことがよくある。

Kaggleで有効な手法の紹介

ノーフリーランチ定理

どのような問題に対しても一番性能が良い万能 アルゴリズムはない。

複数の識別器を組み合わせて、性能を上げる方法 (アンサンブル学習)の検討が前から行われてい る。

Kaggleで有効な手法の紹介

Otto Group Product Classification Challenge でも使われており、今でも使われることが多い以下2つの説明をします。

- Xgboost
- Stacked generalization

Xgboostとは

Gradient Boosting(勾配ブースティング)の高速な実装です。

Kaggleで最も人気のある機械学習手法です。

利点:早い、外れ値や欠損値に強い、線形分離不可能パター

ンに強い

欠点:線形分離可能パターンに弱い

Boostingとは

Boosting (ブースティング) は、複数の弱識別器を用意して、学習を直列的にし、前の弱識別器の学習結果を参考にしながら一つずつ弱識別器を学習する。...

平井 有三 (2012) はじめてのパターン認識 p188 森北出版

Gradient Boostingとは

Gradient Boosting(勾配ブースティング)は、簡単に言うとBoostingの各ステップのパラメタ最適化の際に、勾配降下法を用いる方法

Xgboostの強み

deep learningは画像、音声、テキスト処理などに 力を発揮する。

樹木モデル(Xgboostも含む)は表形式のデータ 処理に力を発揮する。

上記は両方が重要であり、状況に応じて使い分け る必要がある。

もっとGradient Boosting

A Kaggle Master Explains Gradient Boosting

http://blog.kaggle.com/2017/01/23/a-kaggle-master-explains-gradient-boosting/

XGBoostについては以下を参照ください。

Introduction to Boosted Trees (公式ドキュメントと元になった資料)

http://xgboost.readthedocs.io/en/latest/model.html

https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf

Github

https://github.com/dmlc/xgboost

主要なアンサンブル学習

Kaggleではアンサンブル学習がよく使われています。

主要なアンサンブル学習は以下の5つです。

- Voting
- Averaging
- Rank averaging
- Stacked generalization
- Blending

主要なアンサンブル学習

Kaggleではアンサンブル学習がよく使われています。

主要なアンサンブル学習は以下の5つです。

- Voting
- Averaging
- Rank averaging
- Stacked generalization
- Blending

今回は上記の中からよく使われる Stacked generalizationについて説明します。

Stacked generalization 2 (2016)

アンサンブル学習の中でKaggleで成績上位者の中でよく使われるのが、 Stacked generalizationです

Stacked generalizationの基本的な考え方は、識別器を組み合わせて、より 精度の良いモデルをつくると言うもの

Stacked generalization 2 (2016)

Stacked generalization 2 (2016)

異なる種類の識別器を組み合わせて、より性能の高いモデルを作成する。 最終的に平均などで結果を決める。

Stacked generalizationは自由度が高い手法で、

Kaggleなどのコンテストで、他の人との差別化を行うために使われている。

もっとStacked generalization

stacked generalization

http://puyokw.hatenablog.com/entry/2015/12/12/090000

論文

http://www.cs.utsa.edu/~bylander/cs6243/wolpert92stacked.pdf

主要なアンサンブル学習

Kaggleではアンサンブル学習がよく使われています。

主要なアンサンブル学習は以下の5つです。

- Voting
- Averaging
- Rank averaging
- Stacked generalization
- Blending

他のアンサンブル手法

Voting

Original signal:

1110110011

Encoded:

10,3 101011001111101100111110110011

Decoding:

1010110011

1110110011

1110110011

Majority vote:

1110110011

他のアンサンブル手法を一例紹介させていただきました。

興味がある方はKAGGLE ENSEMBLING GUIDEの参照をお願いします。

https://mlwave.com/kaggle-ensembling-guide/

参考になるサイト

以下が参考になります。

· No Free Hunch (The Official Blog of Kaggle.com)

WINNERS' INTERVIEWS

http://blog.kaggle.com/category/winners-interviews/

· kaggle_memo

https://github.com/nejumi/kaggle_memo