MATH 5B - Single Variable Calculus II

Spring 2019

§9.1 Modeling with Differential Equations

In-class Activity 9.1

Dr. Jorge Basilio

gbasilio@pasadena.edu

Activity 1:

Verify that $y(t) = \frac{2}{3}e^t + e^{-2t}$ is a solution to the DE $y' + 2y = 2e^t$.

Activity 2:

Which of the following functions are solutions to $y'' + y = \sin(x)$?

- (A) $y(x) = \sin(x)$
- (B) $y(x) = \cos(x)$
- (C) $y(x) = \frac{1}{2}x\sin(x)$
- (D) $y(x) = -\frac{1}{2}x\cos(x)$

Activity 3:

Find the (i) general solutions and (ii) particular solutions to the following differential equations:

(a)
$$\frac{dy}{dt} = t; y(0) = 1$$

(b)
$$\frac{dy}{dt} = \cos(t); y(0) = -2$$

(c)
$$\frac{dy}{dt} = \frac{1}{1+t^2}$$
; $y(1) = \frac{\pi}{4} + 1$

Activity 4:

Match the differential equations with the solution graphs labeled I-IV. Give reasons for your choices.

(a)
$$y' = 1 + x^2 + y^2$$

(b)
$$y' = xe^{-x^2 - y^2}$$

(c)
$$y' = \frac{1}{1 + e^{x^2 + y^2}}$$

(d)
$$y' = \sin(xy)\cos(xy)$$

