MAT437 problem set 9

Jack Ceroni* (Dated: Monday 20th November, 2023)

I. RLL Problem 8.2

Recall that $K_1(C(X)) \simeq K_0(SC(X))$, where SC(X) is the set of suspensions over C(X), namely,

$$SC(X) = \{ f \in C([0,1], C(X)) \mid f(0) = f(1) = 0 \}$$
(1)

where 0 is the zero-function.

Lemma I.1. Let A and B be topological spaces with B compact. Let R be a C^* -algebra. Then, as topological spaces with the uniform metric, C(A, C(B, R)) and $C(A \times B, R)$ are homeomorphic. In fact, they are *-isomorphic as C^* -algebras.

Proof. Let $\Phi: C(A, C(B, R)) \to C(A \times B, R)$ be the map such that $\Phi(f)(a, b) = f(a)(b)$. We need to show that this map is actually well-defined. Indeed, suppose f is continuous in C(A, C(B)). We need to show that $\Phi(f)$ is continuous.

Let W_{ε} be the ε -ball around $f(a) \in C(B)$. Of course, since $f: A \to C(B)$ is continuous, we can pick open U in A around a such that $f(U) \subset W_{\varepsilon}$. In particular, this means that for any $x \in U$ and $f(x) \in f(U) \subset W_{\varepsilon}$, we have $\sup_{y \in B} ||f(x)(y) - f(a)(y)|| < \varepsilon$. We then pick V open in B such that $f(a)(V) \subset (f(a)(b) - \varepsilon, f(a)(b) + \varepsilon)$. Thus, if we pick some $(x, y) \in U \times V$, then

$$||\Phi(f)(x,y) - \Phi(f)(a,b)|| = ||f(x)(y) - f(a)(b)|| \le ||f(x)(y) - f(a)(y)|| + ||f(a)(y) - f(a)(b)|| \le 2\varepsilon$$
 (2)

Since we can do this for arbitrary $\varepsilon > 0$, $\Phi(f)$ must be a continuous function. Conversely, define $\Phi^{-1}(f)(a)(b) = f(a,b)$. It is clear that $\Phi^{-1}(f)(a)$ is an element of C(B), as it is the restriction of a continuous function to one input variable. All that remains is to show that $\Phi^{-1}(f): A \to C(B)$ is continuous.

For fixed a, if we choose for each point (a,b) for some $b \in B$ some $U_b \times V_b$ which is mapped by f into $B_{\varepsilon}(f(a,b))$ (the ε -ball about f(a,b)), then since B is compact, we can take a finite subcover of V_b , and intersect all of the U_b associated to get an open set U such that for some $x \in U$ and any $b \in B$, $||f(x,b) - f(a,b)|| < \varepsilon$. Thus, for $x \in U$,

$$||\Phi^{-1}(f)(x) - \Phi^{-1}(f)(a)||_{\infty} = \sup_{b \in B} ||f(x,b) - f(a,b)|| \le \varepsilon$$
(3)

so it follows immediately that $\Phi^{-1}(f)$ is continuous.

It is obvious that Φ and Φ^{-1} are inverses of each other. Clearly, Φ is linear and preserves multiplication. Moreover, $\Phi(f^*)(x,y) = f(x)(y)^* = \Phi(f)(x,y)^*$, with the same of course holding true for Φ^{-1} . Thus, we do in fact have a well-defined *-isomorphism between the two spaces.

Now, it is very clear that the subset of $f \in C([0,1],C(X))$ for which f(0)=f(1)=0 is a sub- C^* -algebra of C([0,1],C(X)). It is also clear that this function will be in bijective correspondence with the functions $g \in C([0,1] \times X,R)$ for which g(0,x)=0 and g(1,x)=0 for all $x \in X$. Clearly, this is also a sub- C^* algebra, this time of the algebra $C([0,1] \times X)$.

^{*} jackceroni@gmail.com

From this result, it follows immediately that for compact Hausdorff space X,

$$SC(X) \simeq \{ f \in C([0,1] \times X) \mid f(0,x) = f(1,x) = 0 \text{ for all } x \in X \} \coloneqq A$$

$$\Longrightarrow K_1(C(X)) \simeq K_0(SC(X)) \simeq K_0(A) \quad (4)$$

Of course, $[0,1] \times X$ is compact Hausdorff contractible. But we already know that for compact Hausdorff contractible space Y, $K_0(C(Y)) = 0$ (this was proved in an earlier chapter). Thus, $K_0(C([0,1] \times X)) = 0$. Since A is a sub-*-algebra, we must also have $K_0(A) = 0$.

II. RLL Problem 8.3

This problem will carry forward similarly to the previous problem. In particular, let us make note of the fact that $K_1(CA) \simeq K_0(SCA)$. Note that via the above proof (in the previous problem),

$$SCA \simeq F = \{ f : [0,1] \times [0,1] \to A \mid f(0,t) = 0 \text{ and } f(x,0) = f(x,1) = 0 \}$$
 (5)

Of course, the right-hand side is a sub- C^* -algebra of $C([0,1] \times [0,1] \to A)$. Since $[0,1] \times [0,1]$ is compact Hausdorff contractible, the K_0 -group of the space of function is 0. Thus, $K_0(F) = 0$, and $K_1(CA) = 0$ as well.

III. RLL Problem 8.5

Let us recall the identification of Proposition 8.1.6 of RLL. Namely, when we have a unital C^* -algebra A, then there exists an isomorphism $\rho: K_1(A) \to \mathcal{U}_{\infty}(A)/\sim_1$ making the following diagram commute:

$$\mathcal{U}_{\infty}(\widetilde{A}) \xrightarrow{\mu} \mathcal{U}_{\infty}(A)$$

$$\downarrow^{[\cdot]_{1}} \qquad \qquad \downarrow^{[\cdot]_{1}}$$

$$K_{1}(A) \xrightarrow{\rho} \mathcal{U}_{\infty}(A)/\sim_{1}$$

where $\mu(a + \alpha(1_{\widetilde{A}} - 1_A)) = a$ is the projection map. Now, consider $\varphi : A \to B$. We can extend φ to a map $\widetilde{\varphi} : \mathcal{U}_{\infty}(\widetilde{A}) \to \mathcal{U}_{\infty}(\widetilde{B})$ between the matrix algebras of the unitizations, in the usual, element-wise way. In fact, we have $K_1(\varphi)([u]_1) = [\widetilde{\varphi}(u)]_1$ for $u \in \mathcal{U}_{\infty}(\widetilde{A})$, as was shown in RLL. Pick $u \in \mathcal{U}_n(A)$. Let $1_{\widetilde{A}}$ be the unit in \widetilde{A} . Let 1_A be the unit in A. Note that

$$\varphi(u + (1_{\widetilde{A}} - 1_A)) = u \quad \text{and} \quad (u + (1_{\widetilde{A}} - 1_A))^* (u + (1_{\widetilde{A}} - 1_A)) = u^* u - 1_A + 1_{\widetilde{A}} = 1_{\widetilde{A}}$$
 (6)

so $u + (1_{\widetilde{A}} - 1_A)$ is unitary in \widetilde{A} , the unitization. Via the above commutative diagram, we identify $[u]_1$ (one the right-hand side) with $[u + (1_{\widetilde{A}} - 1_A)]_1$ (on the left-hand side). We then have

$$K_1(\varphi)([u + (1_{\widetilde{A}} - 1_A)]_1) = [\widetilde{\varphi}(u + (1_{\widetilde{A}} - 1_A))]_1 = [\varphi(u) + 1_{\widetilde{A}} - \varphi(1_A)]_1$$
(7)

To find the equivalence class of $\mathcal{U}_{\infty}(A)/\sim_1$ to which this element of the K_1 -group corresponds, we map via ρ , which via the above diagram, is equivalent to mapping the unitary representative $\varphi(u) + 1_{\widetilde{A}} - \varphi(1_A)$ via μ , and then by $[\cdot]_1$ (the projection on the right). We have

$$\mu(\varphi(u) + 1_{\widetilde{A}} - \varphi(1_A)) = \mu(\varphi(u) - \varphi(1_A) + 1_A + (1_{\widetilde{A}} - 1_A)) = \varphi(u) + 1_A - \varphi(1_A)$$

$$\tag{8}$$

so the corresponding equivalence class is $[\varphi(u) + 1_A - \varphi(1_A)]_1$, as desired. Thus, if φ is unital, then the equivalence class will be $[\varphi(u)]_1$, and the *-homomorphism will respect the structure of the unitization.

IV. RLL Problem 8.8

Part 1. Let $\alpha \in \text{Inn}(A)$, so that $\alpha(x) = uxu^{-1}$ for some unitary $u \in A$. Of course, we have $K_1(\alpha)([v]_1) = [\alpha(v)]_1 = [uvu^{-1}]_1$. From Whitehead lemma, we have

$$\begin{pmatrix} uvu^{-1} & 0 \\ 0 & 1 \end{pmatrix} \sim_h \begin{pmatrix} vu^{-1} & 0 \\ 0 & u \end{pmatrix} \sim_h \begin{pmatrix} v & 0 \\ 0 & 1 \end{pmatrix} \tag{9}$$

Therefore, $uvu^{-1} \sim_1 v$, so $[uvu^{-1}]_1 = [v]_1$. Therefore, $K_1(\alpha) = \mathrm{id}$.

Part 3. Let us pick $\alpha \in \text{Aut}(A)$. Clearly, $K_1(\alpha) : K_1(A) \to K_1(A)$ is group homomorphism. We need to show that this homomorphism is an isomorphism. In particular, note that if $K_1(\alpha)([u]_1) = [1]_1$, then $[\alpha(u)]_1 = [1]_1$ so that $\alpha(u) \sim_1 1$. Since α is invertible and unit preserving, and we know that $\alpha(u) \oplus 1_m \sim_h 1$ via homotopy f, then the homotopy $\alpha^{-1}(f(t))$ will connect $u \oplus 1_m$ and $\alpha^{-1}(1) = 1$, so that $[u]_1 = [1]_1$. It follows that $K_1(\alpha)$ must be an injection. In additin, it is obviously a surjection as $K_1(\alpha)([\alpha^{-1}(u)]_1) = [u]_1$ for all $[u]_1 \in K_1(A)$. Thus, $K_1(\alpha) \in \text{Aut}(K_1(A))$ as desired.

Part 4. Of course, we showed that $K_1(\alpha) \in \text{Aut}(K_1(A))$. To show that this is a group homomorphism, we require that $K_1(\alpha \circ \beta) = K_1(\alpha) \circ K_1(\beta)$. In particular,

$$K_1(\alpha \circ \beta)([u]_1) = [(\alpha \circ \beta)(u)]_1 = K_1(\alpha)([\beta(u)]_1) = (K_1(\alpha) \circ K_1(\beta))([u]_1)$$
(10)

and the proposition is proved.