外部附件设计说明

学校: 电子科技大学 (UESTC)

赛队名: TOEFL.GRE

本赛队的参赛装置包含以下外部附件:

1. 光源:

采用 卤钨灯 (图1) 作为光源,一共 6 个,每个功率为 0.3w,通过设计灯板固定结构(如图2),让灯 均匀的排列成围绕 中心通光孔 的 圆形,从而做成光源,以实现自制光谱仪的光源设计。

价格为: 0.035元/个,合计0.21元。

图1: 卤钨灯

图2: 灯板

2. 光学路结构

我们通过 通光小孔 , 平凸透镜 , 球面反射镜1 、 闪耀光栅 和 球面反射镜2 构成 交叉式切尼-特纳 (Czerny-Turner) 光谱采集系统 (如图3)

图3 交叉式切尼-特纳 (Czerny-Turner)结构

图4 Zemax Studio 仿真图

在完成仿真的同时,我们采用 3D打印 技术,对于光路进行建图,其中3D图如图5所示,所采用的光学元件见表1。

图5 3D光路结构

表1 光学元件参数

部件序号 (见图5)	名称	参数/mm	其他	价 格/ 元
1	通光孔	r=2	通光孔与灯板一体	1
2	平凸透镜	Φ25.0, EFL=31.5, BFL=26.33, Tc=7.86, Te=2.00	NIR 650-1050nm增 透膜	150
3	球面反射镜1	Ф25.0, f75, Tc=6, Te=6.52	普通铝膜	235
4	闪耀光栅	Size=25x25x6, λ=750nm, 600grooves/mm, γ=13° 0'	反射铝膜,闪耀波长 750-1600nm	300
5	球面反射镜2	Ф25.0, f75, Tc=6, Te=6.52	普通铝膜	235
6	CCD	TCD1304	3648点单色CCD	20

根据上表反馈的数据,我们实际在光路成本为941元,实际花费为740元。

3. 图像采集部分设计 (CCD光谱采集电路设计)

通过 Spartan-6 xc6s1x9-2tqg144c Xi1inx FPGA 为主控,控制CCD/CIS专用并行ADC HT82v38 和 Toshiba CCD TCD1304以及转串口芯片 CH340E,电路的逻辑框图如图6所示,电路板原理图如图7所示,电路板实物图如图8所示,元件及成本如表2所示。

图6 电路框图

图7电路原理图

图8图像采集部分实物图表2元件成本

元件	价格/元
xc6slx9-2tqg144c	30
HT82V38	12
TCD1304	20
CH340E	5
若干阻容感和接插件	5

由于4层板打样费用为免费,因此图像采集部分成本为72元。

4. 总结

通过对外部电路和光路的附件设计, 我们实现了以下优点:

- 采用近红外宽光谱测量能得到较高准确性。
- 体积小旦无需外部供电,不存在机械附件,便携稳定性好。
- 兼顾不同品牌手机,无需考虑不同手机CMOS带来的差异,且对手机的要求低,任何手机均可流畅运行,通用性高。
- 使用国产深度学习框架,适配鸿蒙系统,国产化程度高。
- 成本低,综合试产成本不足900元。