Problem 1 (8.5.7). Provide all the details in the proof of the formula for the solution of the Dirichlet problem in a strip discussed in Section 1.3. Recall that it suffices to compute the solution at the points z = iy with 0 < y < 1.

(a) Show that if $re^{i\theta} = G(iy)$, then

$$re^{i\theta} = i\frac{\cos \pi y}{1 + \sin \pi y}$$

This leads to two separate cases: either $0 < y \le 1/2$ and $\theta = \pi/2$ or $1/2 \le y < 1$ and $\theta = -\pi/2$. In either case, show that

$$r^2 = \frac{1 - \sin \pi y}{1 + \sin \pi y}$$
 and $P_r(\theta - \varphi) = \frac{\sin \pi y}{1 - \cos \pi y \sin \varphi}$

(b) In the integral $\frac{1}{2\pi} \int_0^{\pi} P_r(\theta - \varphi) \widetilde{f}_0(\varphi) d\varphi$ make the change of variables $t = F(e^{i\varphi})$. Observe that

$$e^{i\varphi} = \frac{i - e^{\pi t}}{i + e^{\pi t}}$$

and then take the imaginary part and differentiate both sides to establish the two identities

$$\sin \varphi = \frac{1}{\cosh \pi t}$$
 and $\frac{d\varphi}{dt} = \frac{\pi}{\cosh \pi t}$

Hence deduce that

$$\begin{split} \frac{1}{2\pi} \int_0^{\pi} P_r(\theta - \varphi) \widetilde{f_0}(\varphi) d\varphi &= \frac{1}{2\pi} \int_0^{\pi} \frac{\sin \pi y}{1 - \cos \pi y \sin \varphi} \widetilde{f_0}(\varphi) d\varphi \\ &= \frac{\sin \pi y}{2} \int_{-\infty}^{\infty} \frac{f_0(t)}{\cosh \pi t - \cos \pi y} dt \end{split}$$

(c) Use a similar argument to prove the formula for the integral $\frac{1}{2\pi} \int_{-\pi}^{0} P_r(\theta - \varphi) \widetilde{f}_1(\varphi) d\varphi$.

Proof.

Problem 2 (8.5.9). Prove that the function u defined by

$$u(x,y) = \Re(\frac{i+z}{i-z}), \quad u(0,1) = 0$$

is harmonic in the unit disc and vanishes on the boundary. Note that u is not bounded in \mathbb{D} .

Proof. Since u is the real part of a holomorphic function it is harmonic. If we write z = x + iy we can rewrite u(x, y) as

$$\Re(\frac{i+z}{i-z}) = \frac{1-x^2-y^2}{x^2+(1-y)^2} = \frac{1-|z|^2}{x^2+(1-y)^2}$$

If |z| = 1 and $z \neq i$, the top vanishes giving us that u(x, y) = 0. Since we decreed that u(0, 1) = 0 we can conclude that u vanishes on $\partial \mathbb{D}$.

Problem 3 (8.5.16). Let

$$f(z) = \frac{i-z}{i+z}$$
 and $f^{-1}(w) = i\frac{1-w}{1+w}$

(a) Given $\theta \in \mathbb{R}$, find real numbers a, b, c, d so that ad - bc = 1, and so that for any $z \in \mathbb{H}$

$$\frac{az+b}{cz+d} = f^{-1}(e^{i\theta}f(z))$$

(b) Given $\theta \in \mathbb{R}$, find real numbers a, b, c, d so that ad - bc = 1, and so that for any $z \in \mathbb{H}$

$$\frac{az+b}{cz+d} = f^{-1}(\psi_{\alpha}(f(z)))$$

with ψ_a defined in Section 2.1.

(c) Prove that if g is an automorphism of the unit disc, then there exist real numbers a,b,c,d such that ad-bc=1 and so that for any $z\in\mathbb{H}$

$$\frac{az+b}{cz+d} = f^{-1} \circ g \circ f(z)$$

[Hint: Use parts (a) and (b)].

Proof. (a) The equivalent transformation is

$$\frac{\sin(\theta/2) + \cos(\theta/2)z}{\cos(\theta/2) - \sin(\theta/2)z}$$

To see this use begin $f^{-1}(e^{i\theta}f(z))$ and simplify to get

$$\frac{(e^{i\theta} - 1) + iz(1 + e^{i\theta})}{i(1 + e^{i\theta}) - (e^{i\theta} - 1)z} =$$

(b) Similarly the equivalent transformation is

$$\frac{\Re(\alpha) - 1 + z\Im(\alpha)}{z(\Re(\alpha) + 1) - \Im(\alpha)} \cdot \frac{(1 - |\alpha|^2)^{-1/2}}{(1 - |\alpha|^2)^{-1/2}}$$

To derive this, begin with $f^{-1} \circ \psi_{\alpha} \circ f(z)$ to get

$$\frac{i-i\frac{\alpha-\frac{i-z}{i+z}}{1-\overline{\alpha}\frac{i-z}{i+z}}}{1+\frac{\alpha-\frac{i-z}{i+z}}{1-\overline{\alpha}\frac{i-z}{i+z}}}=$$

(c) From class we know that any automorphism of $\mathbb D$ is the composition of a rotation $\rho(z)$ and a $\psi_{\alpha}(z)$. Let $g(z) = \rho \circ \psi_{\alpha}(z)$. Then

$$f^{-1} \circ g \circ f(z) = f^{-1} \circ \rho \circ \psi_{\alpha} \circ f(z)$$
$$= (f^{-1} \circ \rho \circ f) \circ (f^{-1} \circ \psi_{\alpha} \circ f)(z)$$

At this point we know that both $f^{-1} \circ \rho \circ f$ and $f^{-1} \circ \psi_{\alpha} \circ f$ are of the form $\frac{az+b}{cz+d}$ with ad-bc=1. Moreover since composition of two transformations of the above form gives another of its kind it must be that g(z) is of the form $\frac{az+b}{cz+d}$.

Problem 4 (8.5.20). Other examples of elliptic integrals providing conformal maps form the upper half-plane to rectangles providing conformal maps from the upper half-plane to rectangles are given below.

(a) The function

$$S(z) = \int_0^z \frac{d\zeta}{\sqrt{\zeta(\zeta - 1)(\zeta - \lambda)}}, \quad \lambda \in \mathbb{R} \setminus \{1\}$$

maps the upper half-plane conformally to a rectangle, one of whose vertices is the image of the point at infinity.

(b) In the case $\lambda = -1$, the image of

$$S(z) = \int_0^z \frac{d\zeta}{\sqrt{\zeta(\zeta^2 - 1)}}$$

is a square whose side lengths are $\frac{\Gamma^2(1/4)}{2\sqrt{2\pi}}.$

Proof. (a) By proposition 8.4.1, we fall into the second case, and so the image of the upper half plane is a quadrangle with corners $S(0), S(1), S(\lambda)$, and $S(\infty)$ where the angle corresponding to $S(\infty)$ is $\pi/2$. As such if we can confirm that the opposite angle is $\pi/2$ we will know that this polygon is in fact a rectangle.

(b) From above we know that the shape is a rectangle. All that is left to confirm is that the side lengths are $\frac{\Gamma^2(1/4)}{2\sqrt{2\pi}}$.

Problem 5 (8.5.21). We consider the conformal mappings to triangles.

(a) Show that

$$S(w) = \int_0^w z^{-\beta_1} (1-z)^{-\beta_2} dz$$

with $0 < \beta_1 < 1$, $0 < \beta_2 <$, and $1 < \beta_1 + \beta_2 < 2$, maps \mathbb{H} to a triangle whose vertices are the images of 0, 1, and ∞ , and with angles $\alpha_1 \pi, \alpha_2 \pi$, and $\alpha_3 \pi$, where $\alpha_j + \beta_j = 1$ and $\beta_1 + \beta_2 + \beta_3 = 2$.

- (b) What happens when $\beta_1 + \beta_2 = 1$?
- (c) What happens when $0 < \beta_1 + \beta_2 < 1$?
- (d) In (a), the length of the side of the triangle opposite angle $\alpha_j \pi$ is $\frac{\sin(\alpha_j \pi)}{\pi} \Gamma(\alpha_1) \Gamma(\alpha_2) \Gamma(\alpha_3)$.

Proof. (a)

- (b) Following in a similar fashion to the last problem we get a "degenerate" triangle that is a straight line (angle at infinity is π).
- (c) We get a triangle with a vertex at infinity and a vertex at S(0), S(1) with non-intersecting rays emerging from each.

(d)

Problem 6 (8.6.2). The angle between two non-zero complex numbers z and w (taken in that order) is simply the oriented angle, in $(-\pi, \pi]$, that is formed between the two vectors in \mathbb{R}^2 corresponding to the points z and w. This oriented angle, say α , is uniquely determined by the two quantities

$$\frac{(z,w)}{|z||w|}$$
 and $\frac{(z,-iw)}{|z||w|}$

which are simply the cosine and sine of α , respectively. Here, the notation (\cdot, \cdot) corresponds to the usual Euclidean inner product in \mathbb{R}^2 , which in terms of complex numbers takes the form $(z, w) = \Re(z\overline{w})$.

In particular, we may now consider two smooth curves $\gamma:[a,b]\to\mathbb{C}$ and $\eta:[a,b]\to\mathbb{C}$, that intersect at z_0 , say $\gamma(t_0)=\eta(t_0)=z_0$ for some $t_0\in(a,b)$. If the quantities $\gamma'(t_0)$ and $\eta'(t_0)$ are non-zero, then they represent the tangents to the curves γ and η at the point z_0 , and we say that the two curves intersect at z_0 at the angle formed by the two vectors $\gamma'(t_0)$ and $\eta'(t_0)$.

A holomorphic function f defined near z_0 is said to **preserve angles** at z_0 if for any two smooth curves γ and η intersecting at z_0 , the angle formed between the curves γ and η at z_0 equals the angle formed between the curves $f \circ \gamma$ and $f \circ \eta$ at $f(z_0)$. In particular we assume that the tangents to the curves γ , η , $f \circ \gamma$, and $f \circ \eta$ at the point z_0 and $f(z_0)$ are all non-zero.

(a) Prove that if $f: \Omega \to \mathbb{C}$ is holomorphic, and $f'(z_0) \neq 0$, then f preserves angles at z_0 . [Hint: Observe that

$$(f'(z_0)\gamma'(t_0), f'(z_0)\eta'(t_0)) = |f'(z_0)|^2(\gamma'(t_0), \eta'(t_0)))$$

(b) Conversely, prove the following: suppose $f: \Omega \to \mathbb{C}$ is complex-valued function, that is real differentiable at $z_0 \in \Omega$, and $J_f(z_0) \neq 0$. If f preserves angles at z_0 , then f is holomorphic at z_0 with $f'(z_0) \neq 0$.

Proof. (a) From the problem description if the two listed quantities are preserved then so is the angle. Using the suggested inequality along with the chain rule we get

$$\begin{split} \frac{(f'(z_0)\gamma'(t_0), f'(z_0)\eta'(t_0))}{|f'(z_0)\gamma'(t_0)||f'(z_0)\eta'(t_0)|} &= \frac{|f'(z_0)|^2(\gamma'(t_0), \eta'(t_0)))}{|f'(z_0)\gamma'(t_0)||f'(z_0)\eta'(t_0)|} \\ &= \frac{(\gamma'(t_0), \eta'(t_0)))}{|\gamma'(t_0)||\eta'(t_0)|} \end{split}$$

And similarly

$$\frac{(f'(z_0)\gamma'(t_0), if'(z_0)\eta'(t_0))}{|f'(z_0)\gamma'(t_0)||f'(z_0)\eta'(t_0)|} = \frac{|f'(z_0)|^2(\gamma'(t_0), i\eta'(t_0)))}{|f'(z_0)\gamma'(t_0)||f'(z_0)\eta'(t_0)|}$$
$$= \frac{(\gamma'(t_0), i\eta'(t_0)))}{|\gamma'(t_0)||\eta'(t_0)|}$$

(b)