AV-GeN
Generalisable AudioVisual Navigation
Framework

Presented by
Shunqi Mao, BCST (Advanced) (Hons)
School of Computer Science
Supervised by
A/Prof Weidong (Tom) Cai

Outline

- Motivation
- Background
- Methods
- Results
- Conclusion and Future Work

Motivation - Embodied Al

- Learn from environments instead of randomized datasets.
- Experienced based on interactions instead of fixed inputs/targets.

Motivation - Goal Oriented Navigation

Navigate to **goal** positions with motion commands

Motivation - Goal Oriented Navigation

- Navigate to goal positions with motion commands
- In different tasks, goal could be defined differently
 - Point
 - Object
 - Image
 - Language
 - Audio
 - **–** ...

Motivation - Goal Oriented Navigation

- Navigate to **goal** positions with motion commands
- In different tasks, goal could be defined differently
 - Point
 - Object
 - Image
 - Language
 - Audio
 - **–** ...

Natural Language Instructions

Instruction 1:

Walk down the flight of stairs then make a right and wait on the steps in front of the bathroom.

Instruction 2:

Walk down the stairs to the bottom of the staircase. Continue down the next small flight of stairs toward the bathroom at the lower level.

Instruction 3:

Walk down one flight of stairs, turn right, and wait at the top of the steps.

Audio-Visual Navigation (AVN)

Intelligent agent should also be able to hear!

Multi-sensory inputs: vision + acoustic signals

Actions:

Move Forward 0.5m

- Turn Left
- Turn Right
- Stop

Criteria

- Accurate Stop
- Short Path

Image adapted from Chen et al., 2020

- Audio-Visual Navigation (AV-NAV) Framework
 - CNN for feature extraction
 - GRU for agent memory
 - Actor-critics for reinforcement learning

- Audio-Visual Navigation (AV-NAV) Framework
 - CNN for feature extraction
 - GRU for agent memory
 - Actor-critics for reinforcement learning

- Audio-Visual Navigation (AV-NAV) Framework
 - CNN for feature extraction
 - GRU for agent memory
 - Actor-critics for reinforcement learning

- Audio-Visual Navigation (AV-NAV) Framework
 - CNN for feature extraction
 - GRU for agent memory
 - Actor-critics for reinforcement learning

- Occupancy Map and Dynamic Path Planner
- Acoustic Mapping
- AV-WaN: Waypoint Navigation
- Transformer-Based Navigation Memory (Semantic AVN)
- Distracting Sound (Adversarial AVN)

Existing Limitations

Existing frameworks performs poorly at navigating towards un-familiar audio goals.

When evaluated on unfamiliar target sounds, performance drops for a half compared to evaluated on training sounds

Generalisable Audio-Visual Navigation (AV-GeN) Framework

Generalisable Audio-Visual Navigation (AV-GeN) Framework

Generalisable Audio-Visual Navigation (AV-GeN) Framework

Generalisable Audio-Visual Navigation (AV-GeN) Framework

Generalisable Audio-Visual Navigation (AV-GeN) Framework

Generalisable Audio-Visual Navigation (AV-GeN) Framework

Generalisable Audio-Visual Navigation (AV-GeN) Framework

Visual Mapping

- Project depth image to a local top-down occupancy map
- Maintain a global occupancy map in an egocentric view.
- Learn geometrical mapping features with a CNN.

Acoustic Mapping

- Maintain a global map of the intensity values of audio signals.
- Crop a local acoustic map from the global map.
- Learn acoustic mapping features with a CNN.

AFSO-Based Audio Encoding

CNN-based audio feature extractors are prune to overfitting.

We propose Audio Feature Similarity Optimisation (**AFSO**) to regularise the audio encoder, where the sound-agnostic goaldriven latent representations can be learnt.

Intuition

The audio encoder does not need to learn the semantic class of sounds, but only need to focus on the **source-receiver spatial relationships** implied by the audio signals.

The feature similarity between audio features should be **maximised** if they imply the same audio goal position, even if they are emitted from different audio sources.

The feature similarity between audio features should be **minimised** if they imply the different audio goal position, even if they are emitted from the same audio sources.

- The pair of audio observations is considered positive only if the audios are sourced from the same scene, audio source position, and receiver position.
- We directly simulate the positive pairing elements.

Batch Sampling

Some audio pairs with similar relative position information might be treated as negative pairs.

We randomly sample a mini-batch of audio observations to reduce the false-negative pairs in the contrastive optimisation.

Batch of Audios

- The pair of audio observations is considered positive only if the audios are sourced from the same scene, audio source position, and receiver position.
- We directly simulate the positive pairing elements.

Contrastive Optimisation

For a positive pair of audio signal (i,j), the loss function is defined as:

$$l_{i,j} = -log \frac{exp(sim(z_i, z_j)/\tau)}{\sum_{k=1}^{2N} 1_{k \neq i} exp(sim(z_i, z_j)/\tau)},$$

where sim denotes the cosine similarity $sim(u, v) = \frac{u^{t}v}{\|u\| \|v\|}$, and τ denotes a temperature parameter (InfoNCE Loss).

Sound Augmentation

Reverse

$$R(S[i_1, i_2, ..., i_n]) = S[i_n, i_{n-1}, ..., i_1]$$

Mix-up

$$S_m = \lambda S_1 + (1 - \lambda)S_2$$
$$\lambda \sim Beta(\alpha, \alpha)$$

Waypoint Prediction and Path Planning

 GRU for navigation memory and actor-critic RL algorithm to optimise the networks.

Predict a waypoint as an intermediate navigation goal

 Navigate to the intermediate goal using Dijkstra's algorithm.

Generalisable Audio-Visual Navigation (AV-GeN) Framework

Experiments

Matterport3D dataset contains 85 real-world scans with an average floor space of $517m^2$

- Train/val/test split
 - -59/10/11 scenes
 - -73/11/18 sounds

Image adapted from Chang et al., 2017

Quantitative Results

- Success Rate (SR)
- Success Weighted by Number of Actions (SNA)
- Success Weighted by Path Length (SPL)

	SPL%↑	SR%↑	SNA%↑
AV-NAV	26.3	43.6	11.8
AV-WaN	36.2	57.4	27.4
AV-GeN (Ours)	48.4	73.9	37

Visualisations

Visualisations

Visualisations

Ablations

We study the importance of each designed module in the two novel methods proposed, AFSO and sound augmentation.

Method	AFSO		Augmentation		Performance		
	Sampling	Projection	Mix-up	Reverse	SPL%↑	SR%↑	SNA%↑
AV-GeN	$\sqrt{}$	×	$\sqrt{}$	$\sqrt{}$	48.4	73.9	37.0
w/o Aug	$\sqrt{}$	$\sqrt{}$	-	-	43.3	66.4	33.9
w/o AFSO	-	-	$\sqrt{}$	$\sqrt{}$	39.9	68	31.0
w/o both	-	-	-	-	36.7	56.4	28.1
Ablations on AFSO	$\sqrt{}$	×	-	-	41.2	67.8	32.4
	×	$\sqrt{}$	-	-	41.5	65.6	31.9
	×	×	-	-	40.8	62.4	32.7
Ablations on augmentation	-	-	×	$\sqrt{}$	37.0	66.2	28.3
	-	-	$\sqrt{}$	×	37.7	62.6	29.7

Publications

Top-1 SR and Top-3 SPL in the <u>SoundSpaces</u> Challenge

Accepted to <u>CVPR 2022 Embodied AI Workshop</u>

Discussion and Conclusion

Contributions

- Propose Audio Feature Similarity Optimisation (AFSO) method
- Propose Source Sound Augmentation method
- Develop the AV-GeN framework

Advantages

- Improve generalisation
- Flexible adaption
- Cheap computational cost

Limitations

- Result fluctuations
- Generalise differently to distinct sounds

Future Work

Improve the AV-GeN framework

- Validate the framework with different AVN variants
- False-negative pairs removal
- Parameter-free similarity loss estimation

– ...

Towards more generalisable frameworks

- Learnable acoustic mapping
- Few-shot learning

– ...

Many other fun stuffs with audio-visual environment!

References

- 1. Changan Chen, Unnat Jain, Carl Schissler, Sebastia Vicenc Amengual Gari, Ziad Al-Halah, Vamsi Krishna Ithapu, Philip Robinson, and Kristen Grauman. Soundspaces: Audio-visual navigation in 3D environments. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pages 17–36, 2020.
- 2. Changan Chen, Sagnik Majumder, Al-Halah Ziad, Ruohan Gao, Santhosh Kumar Ramakrishnan, and Kristen Grauman. Learning to set waypoints for audio-visual navigation. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2021.
- Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in indoor environments. *Proceedings of the International Conference on 3D Vision (3DV)*, pages 667–676, 2017.
- 4. Jisu Hwang and Incheol Kim. Joint multimodal embedding and backtracking search in vision-and-language navigation. *Sensors*, 21:1012, 02 2021. doi: 10.3390/s21031012.
- 5. Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A platform for embodied ai research. *Proceedings of IEEE/CVF International Conference on Computer Vision (ICCV)*, pages 9338–9346, 2019.
- 6. Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv Batra. Embodied Question Answering. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*,2018.