

USB introduction

USB introduction 2

- Do you know what is USB?
 - It's easy, just check-out WIKI @ http://en.wikipedia.org/wiki/USB

Which are your USB projects?

What are your key USB requirements?

Who are the main competitors of ST and WHY?

the Universal Serial Bus

- The USB Universal Serial Bus is an industry standard developed in the mid-1990s that **defines**
 - Bus architecture
 - Cables, Connectors, Electrical levels
 - Communications protocols

- USB was designed to standardize the connection of computer peripherals
 - keyboards, pointing devices, digital cameras, printers, portable media players, disk drives and network adapters
- It has become common interface on other devices, such as smartphones, PDAs and video game consoles.
- USB has effectively replaced a variety of earlier interfaces, such as serial and parallel ports.

the Universal Serial Bus

Hot pluggable	YES
Protocol	Serial, pooled, host centric
Bitrate	1.5/ 12/ 480/ 5,000/ 10,000/ 20,000 Mbit/s
Max Length	5m
Max Voltage	5V (without PD)
Max Current	0.5A general0.1A from USB-powered HUB5A charging deviceUp to 100W over USB-C power delivery
Max Devices	127
Pins	4-5 (USB 2.0) 1 supply, 2 data, 1 ground (optional ID signal)
Topology	Tired star

USB History 5

- The original USB **1.0** specification was introduced in January 1996
 - Defined data transfer rates of 1.5 Mbit/s" Low Speed" and 12 Mbit/s "Full Speed" The first widely used version of USB was 1.1, was released in September 1998.
 - Low speed designed for MCUs without USB peripheral (software emulation)
- The USB 2.0 specification was released in April 2000
 - Develop a higher data transfer rate achieving 480 Mbit/s
 - a 40-times increase over the original USB 1.1 specification
- The USB 3.0 specification was published on 12 November 2008.
 - Increase the data transfer rate (up to 5 Gbit/s)
 - decrease power consumption, increase power output
 - backwards-compatible with USB 2.0. USB 3.0 includes a new, higher speed bus called SuperSpeed in parallel with the USB 2.0 bus.
- The USB 3.1 specification was released on 31 July 2013
 - Introducing a faster transfer mode called "SuperSpeed USB 10 Gbps"

USB History

- The USB 3.2 specification was announced on 25 September 2017
 - Enhancing SuperSpeed up to 20 Gbps with existing SuperSpeed physical layer
 - Two-lane operation using USB-C cables

www.usb.org

Universal Serial Bus SUPER SPEED Search About USB-IF Home Channel Press Developers Members SuperSpeed USB USB Implementers Forum, Inc. **USB Power Delivery** • is a non-profit corporation that **developed** the USB **specification** Wireless USB • The Forum facilitates the development of high-quality Hi-Speed USB compatible USB peripherals (devices), and the quality of products USB On-The-Go and that have passed **compliance testing**. Some of the many Embedded Host activities that the USB-IF supports include: Tools ☐ USB Compliance Workshops and compliance test and tool USB-IF eStore development Documents ☐ USB Developer Conferences **USB-IF Compliance Program** ☐ Assignment of a **vendor ID USB FAQ** ■ www.usb.org Web site ☐ and many more... **Events** Join USB-IF, Inc.

Resources

Bus Topology 8

- The USB physical interconnect is a tiered star topology.
- The USB connects USB devices with the USB host.
- A hub is at the center of each star. Each wire segment is a point-to-point connection.
- The maximum of 127 devices can be connected in the bus.
 - Each device has assigned 7-bit address
 - Address 0 reserved for not enumerated device
- The maximum of 5 hubs can be connected in series.
- The maximum number of tiers allowed is seven
- The maximum cable length is 5meter

Tiered star topology 9

The maximum of **5 hubs** can be connected in series

Physical layer flow 11

- Packed is coded to NRZI with Bit Stuffing
 - This ensures there are enough edges for synchronization
- Then is send over differential bus

Bit stuffing 12

- Bit stuffing
 - Insert "0" after six consecutive "1"

NRZI (non return to zero inverted) 13

- NRZI (non return to zero inverted)
 - Toggle the voltage value for 0
 - Keep the voltage value for 1

NRZI (non return to zero inverted) —14

- NRZI (non return to zero inverted)
 - Toggle the voltage value for 0
 - Keep the voltage value for 1

Electrical •

- USB is a serial bus, using four shielded wires for the USB 2.0 variant:
 - two for power (VBUS and GND),
 - two for differential data signals (D+ and D-).

USB 1.x/2.0 standard pinout

Pin	Name	Wire color	Description
1	V _{BUS}	Red (or Orange)	+5 V
2	D-	White (or Gold)	Data-
3	D+	Green	Data+
4	GND	Black (or Blue)	Ground

Example for full-speed:

Timing

- For hosts, hubs and high-speed capable functions(=USB device) required data-rate accuracy when transmitting at any speed is ± 0.05% (500 ppm)
- For full-speed only functions required data-rate when transmitting is 12 Mb/s ± 0.25% (2500 ppm)
 - USB specification chapter 7.1.11 Data Signaling Rate
- Clock accuracy is very strict for USB
 - If no advance solution for clock synchronization (e.g. Clock Recovery System) is supported by the MCU, HSE usage is mandatory

Mechanica 18

life.augmented

Measuring signal quality

- USBET20 PC tool can be downloaded at http://www.usb.org/
- Loads CSV file with signals
 - Should be measured on the other end of the USB cable
- Generates eye diagram
- Checks timing
- Checks voltage levels
- Inrush current measurement

USB bus states 21

Bus State	Condition
Differential 1	D+ high, D- low
Differential 0	D- high, D+ low
Single Ended Zero (SE0)	D+ and D- low
Single Ended One (SE1)	D+ and D- high
Data J	Low Speed: Differential 0 Full Speed: Differential 1
Data K	Low Speed: Differential 1 Full Speed: Differential 0

Bus State	Condition
Start of Packet (SOP)	Switching from Idle to K state
End of Packet	SE0 for 2 bit times followed by J state for 1 bit time
Disconnect	SE0 for more than 2 us
Connect	Idle for more than 2.5 us
Reset	SE0 for more than 2.5 us acceptable (required >= 10 us)

USB LS/FS 22

USB LS/FS 23

LS de 24

FS de 25

J-State (FS) 26

K-State (FS)

Connect (FS) 30

Reset 31

Switching to high-speed 33

- USB reset signaled by driving both lines (D+ and D-) low by host for 10ms
- High-speed uses different signaling than full-speed / low-speed
- Special chirp handshake done during USB reset
 - Device sends the chirp sequence (if it supports HS)
 - Host/HUB sends response to chirp sequence (if it supports HS)
 - If handshake was successful, communication starts in HS with pull-up disconnected after USB reset is finished
- Also additional descriptors must be defined
 - Full-speed only USB host/hub can recommend user to switch to high-speed port
- Every HS device must support FS communication

Switching to HS sequence 34

USB extensions 38

- Link power management
 - Specifies 2 additional low-power states
 - L0 On device running
 - L1 Sleep Same as suspend, but faster entry and no consumption limitation
 - L2 Suspend suspend by missing SOFs
 - L3 Off Device powered down
- Battery charging detection
 - Can detect USB charging equipment
 - Device can draw more current from the port

USB-C and power delivery 39

- USB-C is new type of connector for both host and device
 - Can be plugged both ways (180° rotation)
 - Supports other interfaces (HDMI, Display port, Ethernet, audio, authentification)
 - Need special negotiation / error handling (e.g. when 2 hosts are connected)
 - USB-C ≠ USB 3.x
- It allows "USB power delivery"
 - Higher voltage and current flow through the cable
 - This requires good quality cable
 - Power flow doesn't depend on host / device role
 - Can work as separate channel (independent of the USB communication)
 - Communication on CC lines
- Example: Power bank connected to laptop via USB-C
 - When laptop is not connected to power source, it will be powered from power bank
 - When laptop is connected to power source, it will charge the power bank

USB OTG 40

USB On-the-Go (OTG)

- Selecting the default role (device / host) based on the connected cable
 - Detected through the ID signal
 - Allows compatibility with device-only and host-only devices
- Can switch roles at runtime through negotiation process
 - Host negotiation protocol (HNP)
 - Only point-to-point connection
 - Not supported by ST library, but HW is capable
- Requires micro-AB receptacle
 - It accepts both micro-A and micro-B connectors
- Examples:
 - Smart phones, tablets, cameras (file storage)
 - device when connected to PC
 - host when USB disk is connected or HID device (keyboard, mouse) is connected

