

Jomo Kenyatta University of Agriculture and Technology College of Engineering and Technology School of Mechanical, Materials, and Manufacturing Engineering Department of Mechatronic Engineering

Designing a Hydrogen Fuel Cell Control System

Final year project (FYP 13-11)

Sammy Kerata Oina (ENM221-0089/2017) Earl Spencer Mogire (ENM221-0074/2017)

November 27, 2021

Declaration

We hereby declare that the work contained in this report is original; researched and documented by the undersigned students. It has not been used or presented elsewhere in any form for award of any academic qualification or otherwise. Any material obtained from other parties have been duly acknowledged. We have ensured that no violation of copyright or intellectual property rights have been committed.

1.	1. Theodore Kamau	
	SignatureDate	
2.	2. Lisa Kimondo	
	Signature	
App	approved by supervisors:	
1.	1. DrIng. Jackson G. Njiri	
	Signature	
2.	2. Prof. George N. Nyakoe	
	SignatureDate	
3.	3. Ms. Lucy W. Kariuki	
	SignatureDate	

Contents

D	eclara	ation	Ι
Ta	able o	of Contents	Ι
Li	st of	Figures	Ι
Li	st of	Tables	V
Li	st of	Abbreviations	V
\mathbf{A}	bstra	ct	J
1	Intr	oduction	1
	1.1	Background	1
	1.2	Problem statement	1
	1.3	Objectives	2
		1.3.1 Main Objectives	2
		1.3.2 Specific Objectives	2
	1.4	Justification of the study	2
2	Lite	rature Review	4
	2.1	Name of a subsection	5
	2.2	Another subsection	5
3	Met	hodology	6
	3.1	System Modelling	6
	3.2	Simulations	6
	3.3	Sensors	6
	3.4	Data Analysis	7
4	Exp	ected Outcomes	8

List of Figures

List of Tables

LIST OF TABLES V

Abstract

Operation of a hydrogen fuel cell requires the control of factors that affect the safety performance, efficiency and lifespan of the proton exchange membrane. This proposal looks into different control strategies that will be employed for variable power delivery from the hydrogen fuel cell with consideration of safety, efficiency and longevity of operation. The project will go into modelling of the control system and simulation of different operating conditions to determine the best controllers along with the control parameters. The proposal also looks into control strategies such as neural networks, linear quadratic regulator and PID control to optimize on factors such as performance and efficiency. Each of the control strategies will be modeled and tested to select the best performing controller which will be developed for the hydrogen fuel cell.

1 Introduction

1.1 Background

(Insert your content)

gghjbbnmmm

1.2 Problem statement

As a measure to curb pollution due to the industrialization and transportation sectors, world governments are turning to alternative sources of energy. These alternative sources of energy should drastically reduce the pollution rates by cutting down emissions. Fuel cell technology is one such example of alternative sources of energy. A fuel cell uses the chemical energy of hydrogen or other fuels to cleanly and efficiently produce electricity. Moreover, fuel cells can operate at higher efficiencies than combustion engines and can convert the chemical energy in the fuel directly to electrical energy with efficiencies capable of exceeding 60%. Fuel cells have lower or zero emissions compared to combustion engines.

The various departments of energy, however, have to work closely with national laboratories, universities, and industry partners to overcome critical technical barriers to fuel cell development. These barriers are cost, performance, and durability which are still key challenges in the fuel cell industry.

This design proposal seeks to provide a solution to improving the fuel cell's performance by improving the robustness and efficiency of the Fuel Cell stack system for real world conditions through precise control of reactant flow and pressure, stack temperature, and membrane humidity.

1.3 Objectives

1.3.1 Main Objectives

1. To develop a Hydrogen Fuel cell control system.

1.3.2 Specific Objectives

- 1. To design and additively manufacture a PEMFC prototype which can be adapted for domestic use and scaled for industrial applications.
- 2. To design and fabricate supporting control electronics for the Hydrogen Fuel Cell.
- 3. To achieve precise control of reactant flow and pressure, stack temperature, and membrane humidity.
- 4. To simulate and test alternative control strategies for the Hydrogen fuel cell.

1.4 Justification of the study

Additive manufacturing offers the ability to produce intricate products and parts with lower development costs, shorter lead times, less energy consumed during manufacturing as well as less material waste. This method can be used to manufacture delicate components such as the bipolar plates with elimination of the risks involved such as breakage of brittle Graphene material during production.

Precise control of reactant flow and pressure, stack temperature, and membrane humidity will increase the fuel cell's robustness as well as efficiency.

The goal of this research is to develop physic-based dynamic models of fuel cell systems and fuel processor systems and then apply multivariable control techniques to study their behavior. The analysis will give insight into the control design limitations and provide guidelines for the necessary controller structure and system re-design.

2 Literature Review

Itemization

- Item 1.
- Item 2.
- . . .

$$\dot{x} = Ax + Bu + B_d w \tag{2.1}$$

Referring a chapter in the main text. For instance Chapter 2

$$E = 210000 \frac{\mathrm{N}}{\mathrm{mm}^2}$$

$$\rho = 7.85 \frac{\text{g}}{\text{cm}^3} = 7850 \frac{\text{kg}}{\text{m}^3}.$$

$$\Delta \boldsymbol{r}_k = \boldsymbol{r}_{GBE_k} - \boldsymbol{r}_{C_k} = (x_{GBE_k} - x_{C_k}, y_{GBE_k} - y_{C_k})^T = (\Delta x_k, \Delta y_k)^T$$
(2.2)

 $k = 2 \dots n$

$$||\boldsymbol{r}_{\mathrm{GBE}_k} - \boldsymbol{r}_{\mathrm{C}_k}|| \le r_{kj}, \tag{2.3}$$

k j

[To appear in the list of tables] Caption for the table should be at the top of the table

	First column	Second column	Third column
It can also overflow to next line	1	2	4
To can also overnow to next fine	4	6	23
	34	2	0

$$\operatorname{rank} oldsymbol{Q}_{\mathrm{B}} = \operatorname{rank} \left[egin{array}{c} oldsymbol{C} oldsymbol{A} \\ oldsymbol{C} oldsymbol{A}^2 \\ \vdots \\ oldsymbol{C} oldsymbol{A}^{n-1} \end{array}
ight] = n. \eqno(2.4)$$

$$K_{\varphi} = 3.64 \frac{\text{V}}{\text{rad}} \text{ and}$$
 (2.5)
 $K_{x} = 28.32 \frac{\text{V}}{\text{m}}.$

2.1 Name of a subsection

 q_1, q_2 and q_3 (see Fig. ??).

2.2 Another subsection

3 Methodology

3.1 System Modelling

The fuel cell system model will be obtained from governing equations from which a transfer function will be generated from the linearized model. The transfer function will be used to generate a state space model for the system.

The system will then be represented in matlab and the controllers designed will be tested on the system to observe the effectiveness of each control method.

3.2 Simulations

From the generated models on matlab, simulations will be performed using the different controllers and the responses and other metrics will be plotted out for further analysis. Metrics such as rise time, settling time and stochastic response will be observed to determine the system performance.

3.3 Sensors

Sensors will be used to collect data from the system as it runs. These include:

- Humidity sensor
- Temperature sensor
- Flow rate sensor
- Pressure sensors
- Voltage sensor
- Current sensor

These sensors will be used by the controller to observe system performance and optimize for each parameter as well as the performance requirements.

3.4 Data Analysis

The data collected from the simulations and sensors will be analysed using custom software created using jupyter notebooks. Graphs will be generated to compare the performance of each controller and evaluation of the selected controller.

4 Expected Outcomes

- 1. The controller for the hydrogen fuel cell will be developed and tested
- 2. The controller supporting circuitry will be developed with a custom printed circuit board.
- 3. Hydrogen fuel cell system performance will be optimized using the controller.