MA 506 Probability and Statistical Inference

Instructor: Prashant Shekhar, PhD

Tentative Schedule for Fall 2023

SNo: Week of (class days)	Topic	Homework	Learning
			Outcome
Unit I: Course Basics			
1: 28 th Aug (Tu,Th)	Course introduction		1
	Python basics		1,2
2: 4 th Sept (Tu,Th)	Probability		1,2,15
	Statistical inference		1,2,15
Unit II: Regression			
3: 11 th Sept (Tu,Th)	Regression introduction	HW1 released	4,5,6,7
	Regression continued		4,5,6,7
4: 18 th Sept (Tu,Th)	Linear Regression from scratch		1,2,7
	Regression diagnostics		7
5: 25 th Sept (Tu,Th)	Confidence Intervals	HW1 due	4,5,7
	Confidence Intervals II		4,5,7
6: 2 rd Oct (Tu,Th)	Ridge and Lasso Regression	HW2 released	4,5,6,12,14
	Regression model comparison		7, 13
7: 9 th Oct (Tu ,Thu)	No Lecture		
	t-statistic, p-value, F-statistic and R^2	Project details due	3,7, 13
8: 16 th Oct (Tu, Th)	CV, GCV, K-fold CV	HW2 due	7, 11,12,13
	No Lecture	HW3 released	
9: 23 th Oct (Tu,Th)	Test:1 Review		
	Test:1		
Unit III: Classification			
	Classification introduction		8,9
10: 30^{st} Oct (Tu,Th)	Logistic regression	HW3 due	8,9
11: 6 th Nov (Tu,Th)	Logistic regression	HW4 released	8,9
	Regularized classification		12,13
12: 13 th Nov (Tu,Th)	Multiclass classification		10,11,12
	Classifier evaluation and selection		3, 10
13: 20 th Nov (Tu, Th)	Test 2 review	HW4 due	
	No Lecture		
Course Conclusion			
14: 27 th Nov (Tu,Th)	Test 2		
	Project presentation I		15
15: 4 th Dec (Tu,Th)	Project presentation II		15
	Project presentation III	Project due	15

Learning outcome: After successful completion of this course, you will acquire knowledge to:

- 1. Understand the basics of statistical learning and its relation to machine learning.
- 2. Understand the basics of python and using it as a tool to solve problems in statistical learning.
- 3. Assess the quality of various statistical learning approaches based on various available metrics
- 4. Understand different problems in supervised learning.
- 5. Delve deeper into various aspects of linear regression.
- 6. Understand and implement multiple linear regression
- 7. Better understand various issues one might face while using linear regression as a tool to understand different properties of data.
- 8. Understand basics of classification and its relation to regression.
- 9. Use logistic regression as a tool to solve classification problems.
- 10. Compare different classification models for your own problem.
- 11. Use various resampling approaches to make an intelligent choice of a model for your own data science related problem.
- 12. Use regularization as a way to produce better models.
- 13. Understand various ways of controlling the complexity of your statistical learning model.
- 14. Interpret data and models in higher dimensions.
- 15. Apply the concepts learnt in class to problems of practical importance.