Network Level Modeling in Neurosciences

Darshan Mandge CNP Lab
IIT Bombay

Large Neural Networks

Image from Cajal, 1899

Simulators

Biophysical Neural Network Modelling Software

Choosing Parameters

- Information from Anatomical Studies
 - Neuronal subtypes
 - Numbers
 - Connections
 - Conduction Velocity
 - Morphology, etc.
- Everything not available in Literature!!
- For some brain parts Hippocampus, Basal Ganglia
 - Fairly good amount of Data

Evaluation of Models

- Data from Behavioural Studies
- Dynamics of Information Processing
 - Interspike interval (ISI), Type of Spiking Regular, Fast, Burst; Firing Rate, etc.

Image from Scholarpedia & genesis-sim.org

Patterns of Connectivity

- Principal Cells
- Afferent inputs to Principal Cells
- Interneurons

Idealized chemotaxis network

Feedback and Feedforward Inhibition

Axonal and Synaptic Properties

- Axonal delay and Synaptic Transmission
- Synaptic Plasticity e.g. Hebb's Rule

Scaling of networks

To account for the decreased Synaptic Inputs to neurons in the network, we can Scale the Connection Strength

Hodgkin Huxley Neuron

Integrate and Fire Neurons

Perfect Integrate-and-Fire Unit

Leaky Integrate-and-Fire Unit

Adapting Integrate-and-Fire Unit

Images from Biophysics of Computation- Koch, icwww.epfl.ch & Scholarpedia

Izhikevich Neuron

Image from Izhikevich, 2003

Perceptron (Artificial Neuron)

Model: Neural Network Controlling the Bladder

Model: Neural Network Controlling the Bladder

Human Brain Project

Build and simulate unifying human brain models

- 1. Accelerate understanding of the human brain
- Increase the value of all past and future experiments
- Gather and organize all fragments of data and knowledge on the brain
- 4. Provide publicly accessible brain atlases
- 5. Fill knowledge gaps using novel ICT tools
- Generate strategically selected missing data that will not be generated otherwise
- Prioritize, optimize and accelerate biological experiments
- Establish massive collaborative science on the brain

Human Brain Project

Video Link:

http://www.youtube.com/watch?v= UFOSHZ22q4

OpenWorm

References

Papers

Eugene M. Izhikevich, Simple Model of Spiking Neurons, IEEE Transactions On Neural Networks, Vol. 14,
 No. 6, November 2003 1569

Books

- Comparative Study of the Sensory Areas of the Human Cortex, Santiago Ramon Y Cajal, 1899
- Computational Neuroscience Realistic Modelling for Experimentalists, Erik De Schutter, 2001
- Foundations of Cellular Neurophysiology, Johnston and Wu, 1994.
- Biophysics of Computation Information Processing in Single Neurons, Christof Koch, 1999

Websites (Last Accessed on 5th March 2014)

- http://www.csi.uoregon.edu/projects/celegans/talks/figures/nips97/5.network.gif
- http://icwww.epfl.ch/~gerstner/SPNM/node26.html#
- http://www.scholarpedia.org/article/Bursting
- http://www.scholarpedia.org/article/Neural inhibition
- http://www.genesis-sim.org
- https://class.coursera.org/bluebrain-001
- http://www.youtube.com/user/TheHumanBrainProject
- https://www.openworm.org
- http://www.docstoc.com/docs/44381865/Artificial%C2%A0Neural%C2%A0Networks-The%C2%A0Perceptron