

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

ГОСУДАРСТВЕННОЕ ПАТЕНТНОЕ
ВЕДОМСТВО СССР
(ГОСПАТЕНТ СССР)

(19) SU (11) 1831709 А3

(11)5 G 02 C 7/00

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К ПАТЕНТУ

1

- (21) 5012499/10
(22) 26.11.91
(46) 30.07.93. Бюл. № 28
(76) А.М. Соколюк, Н.В. Кокоша, З.Р. Ульберг и Ф.Д. Овчаренко
(56) Авторское свидетельство СССР № 959313, кл. G 02 C 7/00. 1978.

(54) СПОСОБ ПОЛУЧЕНИЯ МЯГКОЙ КОНТАКТНОЙ ЛИНЗЫ

(57) Сущность изобретения: способ получения мягкой контактной линзы заключается в том, что акриламид и N,N'-метилен-бис-ак-

2

риламид предварительно подвергают очистке, а затем готовят исходные растворы акриламида, N,N'-метилен-бис-акриламида, N,N,N',N'-тетраметилэтилендиамина и персульфата аммония с концентрацией в приемлемом растворителе, г/л: акриламид 310,0-750,0, N,N'-метилен-бис-акриламида 0,5-9,0, N,N,N',N'-тетраметилэтилендиамин 0,1-3,0, персульфат аммония 0,1-4,0. После приготовления исходных растворов их смешивают и проводят полимеризацию в замкнутом объеме, имеющем форму контактной линзы. 1 з.п. ф-лы. 1 табл.

Изобретение относится к области медицинской техники, в частности к офтальмологической технике, и может быть использовано для контактной коррекции зрения.

Задачей изобретения является создание способа получения мягкой контактной линзы у которого, выполняемые операции и используемые в определенных концентрациях реагенты, позволили бы повысить эксплуатационные свойства мягкой контактной линзы, полученный предлагаемым способом, за счет повышения физико-механических показателей при сохранении высокого влагосодержания и снижения аллергических реакций при ее применении.

Поставленная задача решается тем, что в способе получения мягкой контактной линзы, заключающемся в том, что готовят исходные растворы акриламида, N,N'-метилен-бис-акриламида, N,N,N',N'-тетраметилэтилендиамина и персульфата аммония в приемлемом растворителе, смешивают их в определенном соотношении и проводят полимеризацию в замкнутом объеме, имеющем форму контактной линзы, согласно изо-

бретению. акриламид и N,N'-метилен-бис-акриламид перед приготовлением растворов предварительно подвергают очистке, а растворы акриламида, N,N'-метилен-бис-акриламида, N,N,N',N'-тетраметилэтилендиамина и персульфата аммония готовят с концентрацией, г/л:

акриламид	310,0-750,0
N,N'-метилен-бис-	
акриламид	0,5-9,0
N,N,N',N'-тетраметил-	
этилендиамин	0,1-3,0
персульфат аммония	0,1-4,0

Предлагаемый способ получения мягкой контактной линзы обеспечивает повышение эксплуатационных свойств мягкой контактной линзы за счет повышения физико-механических показателей при сохранении высокого влагосодержания и снижения аллергических реакций при ее применении;

Это достигается тем, что предлагаемая дополнительная очистка акриламида и N,N'-метилен-бис-акриламида позволяет очистить указанные мономеры от остатка акриловой кислоты, так как удаление ее из

(19) SU (11) 1831709 А3

гелевой структуры практически невозмож но, а наличие даже следов акриловой кислоты в мягкой контактной линзе вызывает аллергические реакции слизистой оболочки глаза. Операция очистки акриламида и N,N'-метилен-бис-акриламида от следов акриловой кислоты является актуальной для мономеров, полученных различными фирмами, поскольку эти нежелательные компоненты присутствуют в них. Кроме того, акриламид в процессе хранения частично полимеризуется, а присутствие полиакриламида в мономере отрицательно оказывается на физико-механических свойствах полученной мягкой контактной линзы. N,N'-метилен-бис-акриламид в процессе хранения образует димеры и тримеры, а их присутствие в исходном растворе также приводит к ухудшению прочностных характеристик геля.

Повышение физико-механических показателей обеспечивается также тем, что растворы реагентов, используемых в способе для изготовления мягких контактных линз готовят в предлагаемых концентрациях.

Целесообразно очистку акриламида и N,N'-метилен-бис-акриламида вести перекристаллизацией, при этом достигается наиболее эффективная очистка.

Для реализации предлагаемого способа получения мягкой контактной линзы используют следующие основные реагенты: акриламид, N,N'-метилен-бис-акриламид, N,N,N',N'-тетраметилэтилендиамин, персульфат аммония.

Используют акриламид – C₃H₅NO, молекулярная масса 71,08; белый кристаллический порошок без запаха; температура плавления 84,5 ± 0,3°C. Плотность 1,122 г/см³; растворимость в воде при температуре 25°C 215,5 г в 100 г воды; растворим в метаноле, этаноле, ацетоне, хлороформе, бензоле. Содержание основного вещества 98,6 %. Производство "Reanal", Венгрия, "Aldrich" США. N,N'-метилен-бис-акриламид – C₇H₁₀N₂O₃, молекулярная масса 154,16; белый кристаллический порошок без запаха; температура плавления 185°C; растворимость в воде при температуре 20°C 3 г в 100 г воды.

Содержание основного вещества 96,8 %. Производство "Reanal" Венгрия, "Fluka Chemika" (Швейцария).

N,N,N',N'-тетраметилэтилендиамин C₆H₁₆N₂; молекулярная масса 116,21; бесцветная жидкость, плотность 0,78 г/см³. Содержание основного вещества 98,2 %. Производство "Reanal" (Венгрия); Персульфат аммония; молекулярная масса 228,19; бесцветные пластинчатые кристаллы; плот-

ность 1,982 г/см³; температура разложения 120°C; растворимость в воде при температуре 15,5°C 74,8 г в 100 г воды. Содержание основного вещества 98 %. Производство "Reanal" Венгрия.

Перед приготовлением исходных растворов проводят дополнительную очистку акриламида и N,N'-метилен-бис-акриламида. Очистку проводят, например, перекристаллизацией.

Перекристаллизацию акриламида проводят следующим образом: растворяют 70 г акриламида в 1 л хлороформа при 50–60°C, а затем фильтруют раствор горячим. Фильтрат охлаждают в морозильной камере до (-15)–(-20)°C. Выпавшие кристаллы отфильтровывают и промывают на фильтре холодным хлороформом. После сушки кристаллов определяют температуру плавления. Содержание основного вещества – 99 %.

Перекристаллизацию N,N'-метилен-бис-акриламида проводят из ацетона. Для этого 30 г N,N'-метилен-бис-акриламида растворяют в 1 л ацетона, кипятят с обратным ходильником, фильтруют через фильтр Шотта, охлаждают до отрицательных температур и отфильтровывают кристаллы. Определяют температуру плавления. Содержание основного вещества – 98 %.

Затем готовят исходные растворы акриламида, N,N'-метилен-бис-акриламида, N,N,N',N'-тетраметилэтилендиамина и персульфата аммония. Для приготовления исходных растворов используют физиологический раствор или другой приемлемый растворитель, например дистиллированную воду. Готовят раствор акриламида с концентрацией 310,0–750,0 г/г, раствор N,N'-метилен-бис-акриламида с концентрацией 0,5–9,0 г/л, раствор N,N,N',N'-тетраметилэтилендиамина с концентрацией 0,1–3,0 г/л, раствор персульфата аммония с концентрацией 0,1–4,0 г/л.

Соотношение N,N,N',N'-тетраметилэтилендиамина к смеси акриламида и N,N'-метилен-бис-акриламида в составе используют таким, чтобы соотношение объема N,N,N',N'-тетраметилэтилендиамина к объему смеси акриламида и N,N'-метилен-бис-акриламида составляет от 1:6 до 1:25. Полученный состав для изготовления мягкой контактной линзы помещают в форму для проведения полимеризации. Полимеризацию осуществляют при температуре 20–25°C в течение от 45 до 60 мин.

После завершения процесса полимеризации мягкую контактную линзу извлекают из формы, отмывают в течение 24 ч в физиологическом растворе с трехразовой заменой раствора. При этом завершается

набухание мягкой контактной линзы до равновесного состояния.

У мягких контактных линз определяли относительное удлинение, прочность на разрыв, коэффициент преломления, влагосодержание. Прочность на разрыв и относительное удлинение определяли на модифицированном приборе Вейлера-Ребиндера при скорости раздвижения зажимов 9,6 см/мин. Испытание проводили при температуре $20 \pm 3^\circ\text{C}$. Показатель преломления определяли при помощи рефрактометра при температуре $20 \pm 3^\circ\text{C}$. Влагосодержание определяли весовым методом путем взвешивания равновесно набухших мягких контактных линз и линз, взвешенных до постоянного веса. Диоптрийность мягких контактных линз определяли при помощи диоптрометра.

Пример 1. Способ получения мягкой контактной линзы, согласно изобретению, осуществляли по технологии, описанной выше.

Для получения мягкой контактной линзы использовали раствор акриламида с концентрацией 310 г/л, раствор N,N'-метилен-бис-акриламида с концентрацией 9,0 г/л, раствор N,N,N',N'-тетраметилэтilentдиамина с концентрацией 0,1 г/л, раствор персульфата аммония с концентрацией 4,0 г/л.

Соотношение объема раствора N,N,N',N'-тетраметилэтilentдиамина к объему смеси акриламида и N,N'-метилен-бис-акриламида составляло 1:6. Время полимеризации 60 мин. температура полимеризации 25°C .

Полученная мягкая контактная линза имела - 3Д.

У мягкой контактной линзы определяли также относительное удлинение, прочность на разрыв, влагосодержание и коэффициент преломления.

Результаты приведены в табл. 1.

Пример 2. Способ получения мягкой контактной линзы, согласно изобретению, осуществляли по технологии, описанной выше.

Для получения мягкой контактной линзы использовали растворы: акриламида с концентрацией 750 г/л, раствор N,N'-метилен-бис-акриламида с концентрацией 0,5 г/л, раствор N,N,N',N'-тетраметилэтентдиамина с концентрацией 3,0 г/л, раствор персульфата аммония с концентрацией 0,1 г/л.

Соотношение объема раствора N,N,N',N'-тетраметилэтентдиамина к объему смеси акриламида и N,N'-метилен-бис-акриламида составляло 1:11.

Время полимеризации 45 мин, температура - 25°C .

Полученная мягкая контактная линза имела - 10 Д.

5 У мягкой контактной линзы определяли, также относительное удлинение, прочность на разрыв, влагосодержание и коэффициент преломления.

Результаты приведены в таблице.

10 **Пример 3.** Способ получения мягкой контактной линзы, согласно изобретению, осуществляли по технологии, описанной выше.

15 Для получения мягкой контактной линзы использовали растворы: акриламида с концентрацией 520 г/л, раствор N,N'-метилен-бис-акриламида с концентрацией 5,0 г/л, раствор N,N,N',N'-тетраметилэтентдиамина с концентрацией 1,0 г/л, раствор персульфата аммония с концентрацией 2,0 г/л.

20 Соотношение объема раствора N,N,N',N'-тетраметилэтентдиамина с объему смеси исходных растворов (акриламида и метилен-бис-акриламида) составляло 1:7.

Время полимеризации 50 мин, температура 25°C .

25 Полученная мягкая контактная линза имела + 6 Д.

30 У мягкой контактной линзы определяли также относительное удлинение, прочность на разрыв, коэффициент преломления, влагосодержание, коэффициент преломления.

35 Результаты приведены в таблице.

40 **Пример 4 (сравнительный).** Способ получения мягкой контактной линзы, согласно изобретению, осуществляли по технологии, описанной выше.

45 Для получения мягкой контактной линзы использовали растворы акриламида с концентрацией 300 г/л, раствор N,N'-метилен-бис-акриламида с концентрацией 9,0 г/л, раствор N,N,N',N'-тетраметилэтентдиамина с концентрацией 0,1 г/л, раствор персульфата аммония с концентрацией 4,0 г/л.

50 Соотношение объема раствора N,N,N',N'-тетраметилэтентдиамина к объему смеси растворов акриламида и N,N'-метилен-бис-акриламида составляло 1:5.

55 Время полимеризации 40 мин, температура 25°C .

Получена мягкая контактная линза + 5 Д.

У мягкой контактной линзы определяли также относительное удлинение, прочность на разрыв, влагосодержание, коэффициент преломления.

Результаты приведены в таблице.

Пример 5 (сравнительный). Способ получения мягкой контактной линзы, согласно изобретению, осуществляли по технологии, описанной выше.

Для получения мягкой контактной линзы использовали растворы: акриламида с концентрацией 760 г/л, раствор N,N'-метилен-бис-акриламида с концентрацией 10,0 г/л, раствор N,N,N',N'-тетраметилэтилендиамина с концентрацией 4,0 г/л, раствор персульфата аммония с концентрацией 5,0 г/л.

Соотношение объема раствора N,N,N',N'-тетраметилэтилендиамина к объему смеси растворов акриламида и N,N'-метилен-бис-акриламида составляло 1:12.

Время полимеризации 45 мин, температура 25°C.

Полученная мягкая контактная линза имела - 9,5 Д.

У мягкой контактной линзы определяли также относительное удлинение, прочность на разрыв, водосодержание и коэффициент преломления.

Результаты приведены в таблице.

Пример 6 (сравнительный). Способ получения мягкой контактной линзы, согласно изобретению, осуществляли по технологии, описанной выше.

Для получения мягкой контактной линзы использовали раствор акриламида с концентрацией 500 г/л, раствор N,N'-метилен-бис-акриламида с концентрацией 0,4 г/л, раствор N,N,N',N'-тетраметилэтилендиамина с концентрацией 0,05 г/л, раствор персульфата аммония с концентрацией 0,06 г/л.

Соотношение объема раствора N,N,N',N'-тетраметилэтилендиамина к объему смеси растворов акриламида и N,N'-метилен-бис-акриламида составляло 1:7.

Время полимеризации 45 мин, температура 25°C.

Полученная мягкая контактная линза имела 0,0Д.

У мягкой контактной линзы определяли также относительное удлинение, прочность на разрыв, водосодержание и коэффициент преломления.

Результаты приведены в таблице.

Как видно из табл. 1 мягкие контактные линзы, полученные в соответствии с предлагаемым способом обладают более высокими физико-механическими показателями при высоком влагосодержании по сравнению с мягкими контактными линзами, полученными в соответствии с SU, A. 959313.

Сравнительные примеры (примеры 4-6) показывают, что существенным в получении мягких контактных линз по предлагаемому способу является использование исходных растворов с предлагаемыми концентрациями, а также в определенных соотношениях в реакционной смеси, так как изменение этих концентраций и соотношений ведет к снижению физико-механических и оптических показателей (пример 4, 6) или к ухудшению качества поверхности мягкой контактной линзы (пример 5).

Следовательно, выше приведены лишь некоторые конкретные примеры реализации изобретения. Однако, очевидно, что возможны также и другие модификации не изменяющие изобретение по существу.

25

Ф о р м у л а и з о б р е т е н и я

1. Способ получения мягкой контактной линзы, заключающийся в том, что готовят исходные растворы акриламида, N,N'-метилен-бис-акриламида, N,N,N',N'-тетраметилэтилендиамина и персульфата аммония в приемлемом растворителе, смешивают их в определенных соотношениях и проводят полимеризацию в замкнутом объеме, имеющем форму контактной линзы, отличающейся тем, что акриламид и N,N'-метилен-бис-акриламид перед приготовлением растворов предварительно подвергают очистке, а растворы акриламида, N,N'-метилен-бис-акриламида, N,N,N',N'-тетраметилэтилендиамина и персульфата аммония готовят с концентрацией, г/л: акриламид - 310,0-750,0; N,N'-метилен-бис-акриламид - 0,5-0,9; N,N,N',N'-тетраметилэтилендиамин - 0,1-3,0; персульфат аммония - 0,1-4,0.

2. Способ по п.1, отличающийся тем, что очистку акриламида и N,N'-метилен-бис-акриламида ведут перекристаллизацией.

50

Показатель	В соответствии с изобретением			Сравнительные примеры			В соответствии с А. 959313
	Пример 1	Пример 2	Пример 3	Пример 4	Пример 5	Пример 6	
Относительное удлинение, %	210,0	320,0	300,0	240,0	Качество поверхности не удовлетворительное	370,0	150,0
Прочность на разрыв, КПа	173,0	154,0	97,0	129,0		93,0	90,0
Влагосодержание, %	87,0	81,0	90,0	88,0		90,0	90,0
Коэффициент преломления	1,355	1,370	1,353	1,355		1,343	1,336

Редактор Н. Коляда

Составитель А. Соколяк
Техред М. Моргентал

Корректор Л. Филь

Заказ 2551

Тираж

Подписьное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул. Гагарина, 101