微分積分学演習第二 T

22B30460 知念 優 (ちねん ゆう)

2022/10/12

C10

(1) |a|<1 のとき, a_n は 0 に収束する.それ以外のとき, a_n は収束しない. (2)

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = \lim_{n \to -\infty} \left(\left(1 + \frac{1}{n} \right)^n \right)^{-1}$$
$$= e^{-1}$$

である. これを利用すると,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^{n^2}$$
$$= e^{-\infty}$$
$$= 0$$

となる.

(3) e の定義より

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{2n}$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \left(1 + \frac{1}{n} \right)^n$$

$$= e \times e$$

$$= e^2$$

となる.

C12

(1) a_n が有界でかつ単調であることを示す.

$$a_{n+1} = \frac{2a_n + 1}{a_n + 1}$$
$$= 2 - \frac{1}{a_{n+1}}$$

であることと, $a_n1=1$ より帰納的に $1\leq a_n\leq 2$ である.よって,数列 $\{a_n\}$ は有界である.

また, $a_{n+1}-a_n$ を考えると,その正負は帰納的に a_2-a_1 と一致する. $a_2-a_1=\frac{3}{2}-1>0$ なので, $a_{n+1}-a_n$ である.

以上より、数列 $\{a_n\}$ は有界で単調増加な数列なので、収束する.

(2) (1) より数列 $\{a_n\}$ は収束するから、 $\lim_{n\to\infty}a_n=\alpha$ とおく.これを $a_{n+1}=\frac{2a_n+1}{a_n+1}$ に代入して α について解くと, $\alpha=\frac{1\pm\sqrt{5}}{2}$ となる.(1) より $1\leq a_n\leq 2$ なので, $\alpha=\frac{1+\sqrt{5}}{2}$ となる.よって, $\lim_{n\to\infty}a_n=\frac{1+\sqrt{5}}{2}$ である.

C14

(1)

$$\lim_{x \to \infty} \sqrt{(x+a)(x+b)} - x = \lim_{x \to \infty} \frac{(x+a)(x+b) - x^2}{\sqrt{(x+a)(x+b)} + x}$$

$$= \lim_{x \to \infty} \frac{(a+b)x + ab}{\sqrt{(x+a)(x+b)} + x}$$

$$= \lim_{x \to \infty} \frac{(a+b) + \frac{ab}{x}}{\sqrt{(1+\frac{a}{x})(1+\frac{b}{x})} + 1}$$

$$= \frac{a+b}{2}$$

(2) $\frac{1}{x} \to \infty (x \to \infty)$ は既知とする. x=0 付近で, $0 < x^n < x$ であるから, $\frac{1}{x} < \frac{1}{x^n}$ である.追い出しの原理より, $\frac{1}{x^n} \to \infty (x \to \infty)$ である.

(3)

$$\lim_{x \to \infty} \frac{1 - \cos x}{x^2} = \lim_{x \to \infty} \frac{1 - \cos x}{x^2} \cdot \frac{1 + \cos x}{1 + \cos x}$$

$$= \lim_{x \to \infty} \frac{1 - \cos^2 x}{x^2 (1 + \cos x)}$$

$$= \lim_{x \to \infty} \frac{\sin^2 x}{x^2} \cdot \frac{1}{1 + \cos x}$$

$$= \lim_{x \to \infty} \frac{1}{1 + \cos x}$$

$$= \frac{1}{2}$$

 $(4)x \to \infty$ を考えるので、x > 0 としてもよい. $-1 \le \sin x \le 1$ なので、両辺を x で割ると

$$-\frac{1}{x} \le \frac{\sin x}{x} \le \frac{1}{x}$$

となる. $x\to\infty$ を両辺で考えると,それぞれ 0 に収束するから,はさみうちの原理より $\lim_{x\to\infty}\frac{\sin x}{x}=0$ となる.

C16

(1) 答え: A

 ϵ を任意にとれるので、|f(x)|=0 を満たすのが必要で、f(x)=0 はこれを満たし、かつ十分.

(2) 答え: A, D, G

A, D, G 以外は x=0 近傍で満たさない.

(3) 答え:A, C	
f(x) が有界であればいい.	
(4) 答え:A, B, C, D, G	
E,F は $x=0$ 近傍で満たさない.	
(5) 答え:A, B, C, G	
$\mathrm{D},\;\mathrm{E},\;\mathrm{F}$ は有界でないから, δ を任意に取ることができない.	
(6) 答え: $A,~G~A,~G~$ 以外は, $ f(x) eq 0$ となる x が存在するので満たさない.	