Exercise 14

Résolvons dans Z² les équations suivants

Comme $17 \times 6 = 1$, alors cette équation a une polution dans \mathbb{Z}^2 .

$$A = 6 \times 2 + 5$$

$$6 = 5 \times 1 + 1$$

$$= 0 \quad A7 \times (-1) + 6 \times 3 = 1$$

Lone ((-1); 3) est une solution de cette équation.

Ainsi ma:
$$\begin{cases} 17x + 6y = 1 \\ 17x(-1) + 6x 3 = 1 \end{cases}$$
 (1)

En faisant (1)-(2), ona: 17 (x+1)+6(y-3)=0

L'où 17 (x+1)=6(3-y) (x)

6 divose 17 (x+1) et 61 17=1

donc d'aprè le Théorème de Gauss, 6

divise x+1. Donc nécessairement, ona:

x+1=6k, avec keZ.

Don
$$x=6k-1$$
, on $k\in\mathbb{Z}$.
En remplaçant x par sa valeur dans (x) , mas $AT(6k-1+1)=6(3-y)$
 $DAT \times 6k=18-6y$
 $DAT \times 6k=3-y$
 $DAT \times 6k=3-y$

$$b) 27x + 25y = 1$$

Comme 27 1 25 = 1, alors cette équation admet au moins une volution

$$27 = 25 + 2$$

 $\Rightarrow p = 25 \times (3 + 27 \times (-12) = 1$
 $25 = 2 \times (2 + 1)$

Donc (-12; 13) est une solution de cette équation ona: $\begin{cases} 27x + 25y = 1 \\ 27x(-12) + 25x(3) = 1 \end{cases}$ (1)

$$(36)$$
 (1) - (2) = D 27 $(1+12)$ + 25 $(y-13)$ = 0

Alono 25 devise 27 (x+12) = 25 (13-y). (4x)

Alono 25 devise 27 (x+12) et 27
$$n$$
 25 = 1,

donc d'après le Théorème de Gauss 25 devise (x+12)

Donc necessairement, on a: $x+12 = 25k$, $k \in \mathbb{Z}$

C'ext- a-dire, $x = 35k-12$, $k \in \mathbb{Z}$.

En pemplagant x four sa valeur dans (*x)

On a: 27 (25k) = 25 (13-y)

Devis $27 \times 25k = 25$ (13-y)

Devis $37 \times 25k = 25$ (13-y)

Devis $37 \times 25k = 25$ (13-y)

Devis $37 \times 25k = 25$ (25k-12; 13-27k); $37 \times$

(37)

Comme 118 à 35 = 1, alors cette équation admet au moins une solution.

alors (-8; 27) est une solution de cette equation et

ma:
$$\int 118 \times + 35 y = 4$$
 (1)
 $\int 118 \times (-8) + 35 \times 4 = 1$ (2)

$$(1)-(2) = 0118(x+8) + 35(y-27) = 0$$

$$= 0118(x+8) = 35(27-y) (*x*)$$

alors 35 devise 118 (x+8) et 351 118 = 1 dinc 35 devise (x+8);

autroi x+8 = 35k, k ∈ Z

d'on x=35k-8, kez.

En remplaçant \propto par sa valeur dans (***), ma: 118(35k) = 35(27-y)

(38) =D y=27-118k, keZ.

$$d) 39x + 26y = 1$$

Comme 39=3×13 et 26=2×13

allor 39 et 13 ne sont pas premiers entre enso Ame cette equation n'admet pas de solution dans