Feature Pyramid Networks for Object Detection (2017)

Tsung-Yi Lin • Piotr Dollar • Ross Girshick Kaiming He • Bharath Hariharan • Serge Belongie

> Facebook AI Research Cornell University and Cornell Tech

> > Presented by

Selahaddin HONİ

Digital Video Processing
Spring 2021

Content

Introduction

Feature Maps Image Pyramid & Sliding Windows

Literature Review

Featurized Image Pyramid :: DPM Single Feature Map :: Faster R-CNN Pyramidal Feature Hierarchy :: SSD

Feature Pyramid Networks

Theory
Simple Illustration
Applications: RPN
Applications: Fast R-CNN

Benchmark

Introduction | Feature Maps Refresh :: Resolution & Semantic

Semantic value increases with higher level features

Introduction | Image Pyramid & Sliding Windows for Object Detection

Image pyramid is simply the scale variations of an image. Main purpose is detecting an object in different scales. Sliding windows is a basic search mechanism.

Proposed network architectures for detecting in different scales

Literature Review | (a) Featurized Image Pyramid

Problem is too slow.

Fig. 3. A feature pyramid and an instantiation of a person model within that pyramid. The part filters are placed at twice the spatial resolution of the placement of the root.

Literature Review | (b) Single Feature Map

Problem

RPN only use the final feature map of the backbone to propose the regions.

Faster R-CNN

Literature Review | (b) Single Feature Map :: Faster R-CNN (ResNet50 – COCO)

Input Image

First Conv Block (512x512)

Second Conv Block (256x256)

Third Conv Block (128x128)

Literature Review | (c) Pyramidal Feature Hierarchy

Single Shot Detector

SSD predicts offset of predefined anchor boxes ('default boxes' in the paper[1]) for every location of the feature map.

Problem is SSD misses to use the low-level features or high resolution map. It is important for detecting small objects.

Hierarchy starts from at the end of the backbone.

^[1] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg (2016). "SSD: Single Shot MultiBox Detector"

^[2] Object Detection Part 4: Fast Detection Models (lilianweng.github.io)

Feature Pyramid Networks | Theory

Upsampling (Nearest Neighbor)

1x1 conv adjusts the channel dimension and adds non-linearity

^[1] YasinEnigma/Image Interpolation: Image interpolation implementation using pure python and compare result with Opency. (github.com)

^[2] Networks in Networks and 1x1 Convolutions - Deep Convolutional Models: Case Studies | Coursera

Feature Pyramid Networks | Theory :: FPN on ResNet-50

Feature Pyramid Networks | Theory :: ResNet Details

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer							
conv1	112×112			7×7 , 64, stride 2									
			3×3 max pool, stride 2										
conv2_x	56×56	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$							
conv3_x			$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	Γ 1 ∨ 1 120 T	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 8 $							
conv4_x			$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 1024 \end{bmatrix}$	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 23 $	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36 $							
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $							
	1×1	1×1 average pool, 1000-d fc, softmax											
FLOPs		1.8×10^9	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10^9							

Feature Pyramid Networks | Illustration :: FPN on ResNet-50 (Not Actual Implementation)

Feature Pyramid Networks | Region Proposal Network (RPN)

FPN-based RPN generates more anchors because more than one feature maps are fed into RPN input.

First Stage of Faster R-CNN

Feature Pyramid Networks | RPN & Faster R-CNN Detection Out

Feature Pyramid Networks | Faster R-CNN

Reference: Understanding Feature Pyramid Networks for object detection (FPN) | by Jonathan Hui | Medium

RPN	feature	# anchors	lateral?	top-down?	AR^{100}	AR^{1k}	AR^{1k}_s	AR^{1k}_m	AR^{1k}_l
(a) baseline on conv4	C_4	47k			36.1	48.3	32.0	58.7	62.2
(b) baseline on conv5	C_5	12k			36.3	44.9	25.3	55.5	64.2
(c) FPN	$\{P_k\}$	200k	✓	✓	44.0	56.3	44.9	63.4	66.2
Ablation experiments follow:									
(d) bottom-up pyramid	$\{P_k\}$	200k	✓		37.4	49.5	30.5	59.9	68.0
(e) top-down pyramid, w/o lateral	$\{P_k\}$	200k		✓	34.5	46.1	26.5	57.4	64.7
(f) only finest level	P_2	750k	✓	✓	38.4	51.3	35.1	59.7	67.6

FPN increases the #anchors generated in RPN even though scale variations are eliminated. (RPN anchor parameter k is less)

Faster R-CNN	proposals	feature	head	lateral?	top-down?	AP@0.5	AP	AP_s	AP_m	AP_l
(*) baseline from He <i>et al</i> . $[16]^{\dagger}$	RPN, C_4	C_4	conv5			47.3	26.3	-	-	-
(a) baseline on conv4	RPN, C_4	C_4	conv5			53.1	31.6	13.2	35.6	47.1
(b) baseline on conv5	RPN, C_5	C_5	2fc			51.7	28.0	9.6	31.9	43.1
(c) FPN	RPN, $\{P_k\}$	$\{P_k\}$	2fc	✓	\checkmark	56.9	33.9	17.8	37.7	45.8

Inference Time on NVIDIA M40 GPU

0.148 secFPN-based Faster R-CNN (ResNet-50)0.172 secStandard Faster R-CNN (ResNet-50)

FPN has extra layers but has a lighter weight head.

			image	test-dev				test-std					
method	backbone	competition	pyramid	AP _{@.5}	AP	AP_s	AP_m	AP_l	AP _{@.5}	AP	AP_s	AP_m	$\overline{AP_l}$
ours, Faster R-CNN on FPN	ResNet-101	-		59.1	36.2	18.2	39.0	48.2	58.5	35.8	17.5	38.7	47.8
Competition-winning single-model results follow:													
G-RMI [†]	Inception-ResNet	2016		-	34.7	-	-	-	-	-	-	-	
AttractioNet [‡] [10]	VGG16 + Wide ResNet [§]	2016	✓	53.4	35.7	15.6	38.0	52.7	52.9	35.3	14.7	37.6	51.9
Faster R-CNN +++ [16]	ResNet-101	2015	✓	55.7	34.9	15.6	38.7	50.9	-	-	-	-	-
Multipath [40] (on minival)	VGG-16	2015		49.6	31.5	-	-	-	-	-	-	-	-
ION [‡] [2]	VGG-16	2015		53.4	31.2	12.8	32.9	45.2	52.9	30.7	11.8	32.8	44.8

Thank you

