

#### **School of Computing**

College of Engineering, Computing and Cybernetics (CECC)

# Unleashing the power of Machine Learning in Geodynamics

— 12 pt Honours project (S2 2023)

A thesis submitted for the degree Bachelor of Advanced Computing (Honours)

#### By:

Xuzeng He

#### Supervisors:

Dr. Rhys P. Hawkins

Dr. Alberto F. Martin Huertas

Dr. Siavash Ghelichkhan

#### **Declaration:**

I declare that this work:

- upholds the principles of academic integrity, as defined in the University Academic Misconduct Rules;
- is original, except where collaboration (for example group work) has been authorised in writing by the course convener in the class summary and/or Wattle site;
- is produced for the purposes of this assessment task and has not been submitted for assessment in any other context, except where authorised in writing by the course convener;
- gives appropriate acknowledgement of the ideas, scholarship and intellectual property of others insofar as these have been used;
- in no part involves copying, cheating, collusion, fabrication, plagiarism or recycling.

September, Xuzeng He

# Abstract

### Table of Contents

| 1  | Introduction                                                              | 1      |
|----|---------------------------------------------------------------------------|--------|
| 2  | Background                                                                | 2      |
| 3  | Related Work                                                              | 3      |
| 4  | Geoid prediction  4.1 Dataset of Geoid prediction                         |        |
| 5  | Mantle Convection Simulation  5.1 Dataset of mantle convection simulation | 5<br>5 |
| 6  | Concluding Remarks 6.1 Conclusion                                         |        |
| Bi | liography                                                                 | 7      |

| Chapter | 1 |
|---------|---|
|---------|---|

# Introduction

| Chapter : | <b>2</b> |
|-----------|----------|
|-----------|----------|

# Background

### Related Work

A machine-learning-based surrogate model of Mars' thermal evolution (Agarwal et al., 2020)

Deep learning for surrogate modeling of two-dimensional mantle convection (Agarwal et al., 2021)

#### ${\bf Chapter}~4$

### Geoid prediction

- 4.1 Dataset of Geoid prediction
- 4.2 Fully connected Neural Networks (FNN) for Prediction

#### Mantle Convection Simulation

- 5.1 Dataset of mantle convection simulation
- 5.2 Compression of temperature fields
- 5.3 Fully Connected Neural Network (FNN) for Prediction
- 5.4 Long short-term memory (LSTM) for Prediction

#### Chapter 6

# **Concluding Remarks**

- 6.1 Conclusion
- 6.2 Future Work

### **Bibliography**

AGARWAL, S.; Tosi, N.; Breuer, D.; Padovan, S.; Kessel, P.; and Montavon, G., 2020. A machine-learning-based surrogate model of mars' thermal evolution. *Geophysical Journal International*, 222, 3 (may 2020), 1656–1670. doi:10.1093/gji/gg aa234. https://doi.org/10.1093/gji/ggaa234. [Cited on page 3.]

AGARWAL, S.; Tosi, N.; Kessel, P.; Breuer, D.; and Montavon, G., 2021. Deep learning for surrogate modeling of two-dimensional mantle convection. *Physical Review Fluids*, 6, 11 (nov 2021). doi:10.1103/physrevfluids.6.113801. https://doi.org/10.1103/physrevfluids.6.113801. [Cited on page 3.]