1.6 #24

Logical error after step 3 and 5.

The original statement is not True in general.

1.6 #28

If $\neg R(c)$ for arbitrary c,

Universal modus tollens gives $\neg(\neg P(c) \land Q(c))$ from the second premise.

By De Morgan's law, $P(c) \vee \neg Q(c)$.

Universal instantiation from the first premise gives $P(c) \vee Q(c)$ for arbitrary c.

Resolution gives $P(c) \vee P(c)$ thus P(c).

Universal generalization gives $\forall x(\neg R(x) \rightarrow P(x))$

1.7 #18

a) Contraposition: $\forall n \in \mathbb{N}$, if n is odd, 3n+2 is odd.

If n is odd, 3n is odd and 3n+2 doesn't change the parity of 3n thus 3n+2 is odd.

b) Suppose n is odd. Then 3n+2 is odd. Contradiction; n must be even.

1.7 #32

$$(i) \Rightarrow (ii)$$

 $x\in\mathbb{Q}$ then by definition, $x=rac{p}{q}$ where $p,q\in\mathbb{Z}$, q
eq 0.

Then $\frac{x}{2} = \frac{p}{2q}$ and $\frac{x}{2}$ satisfies the definition of rational numbers. $\therefore \frac{x}{2} \in \mathbb{Q}$

 $(i) \Leftrightarrow (iii)$

 $x \in \mathbb{Q}$ if and only if 3x-1 is rational. (Trivial!)

 $(ii) \Rightarrow (iii)$

 $x/2 \in \mathbb{Q}$ then $3x-1 \in \mathbb{Q}$ (Trivial)

Three statements are equivalent.

1.8 #12

Divide numbers into two groups, non-negative and negative.

There are three numbers and two groups.

Thus by pigeonhole principle two numbers must be in the same group.

Multiply those two numbers to get a non-negative product.

1.8 #36

Suppose $r \in \mathbb{Q}$, $s \in \mathbb{R} - \mathbb{Q}$.

Suppose $\frac{r+s}{2}$ is rational. Let this value x. Then s=2x-r.

Since \mathbb{Q} is closed under addition, $2x-r \in \mathbb{Q}$. Contradiction;

$$\frac{r+s}{2}$$
 is irrational.

2.1 #10

- a) T
- b) T
- c) F
- d) T
- e) T
- f) T
- g) F (Not a proper subset)

2.1 #28

$$A \times B := \{(a, b) : a \in A \land b \in B\}$$

Maps courses to professors (assignment)

2.1 #44

- a) $\{x: x \ge 1 \land x \in \mathbb{Z}\}$
- b) Ø
- c) $\{x : (x < 0 \lor x > 1) \land x \in \mathbb{Z}\}$

2.2 #26

Up-left: A, Up-right: B, Down: C

2.2 #30

- a) No. $A = \{1\}, B = \{2\}, C = \{1, 2\}.$
- b) No. $A = \{1, 3\}, B = \{1, 4\}, C = \{1\}.$
- c) WLOG, it suffices to show that $A \subseteq B$.

Suppose $x \in A$. $A \cup C = B \cup C$ thus $x \in B \cup C$.

 $x \in B$ or $x \in C$.

If $x \in B$, we are done.

If $x \in C$, $x \in A \cap C$. Then from $A \cap C = B \cap C$, $x \in B \cap C$. Therefore $x \in B$ Thus $\forall x$, $x \in A \rightarrow x \in B$, $A \subseteq B$.

2.2 #50

a)
$$\bigcup_{i=1}^{\infty} A_i = \{n : n \ge 1 \land n \in \mathbb{N}\}, \ \bigcap_{i=1}^{\infty} A_i = \emptyset$$
,

b)
$$\bigcup_{i=1}^{\infty}A_{i}=\mathbb{N}$$
 (non-negative integers), $\bigcap_{i=1}^{\infty}A_{i}=\{0\}$

c)
$$\bigcup_{i=1}^{\infty} A_i = \mathbb{R}^+$$
 (positive real), $\bigcap_{i=1}^{\infty} A_i = \{x : 0 < x < 1 \land x \in \mathbb{R}\}$

d)
$$\bigcup_{i=1}^{\infty} A_i = (1, \infty), \bigcap_{i=1}^{\infty} A_i = \emptyset$$