an introduction to the semantic ontology

Semantics 3, UCLA Linguistics

Spring 2022

1 formalizing the ontology

- Church (1932): the lambda calculus, for modeling functions and their arguments
 - the lambda calculus is Turing complete, which means it's a universal model of computation with certain properties
 - o two flavors (roughly): typed and untyped
 - there is a trade-off between them in terms of power and empirical coverage: an untyped lambda calculus is more powerful (has fewer expressive restrictions)
- Montague (1970, 1973): a compositional, syntactically informed formal semantics of natural language, with a focus on quantifier scope

2 justifying the ontology

- what is the lowest number of types we need for a compositional, Fregean semantic formalism?
 - \circ Gallin (1975) typologizes typed lambda calculus: a formalism is 'Ty-n' for any amount of types n other than the foundational basic type
 - the following distinctions are discussed in detail in Rett (2022)
 - * **Type Reductionalism**: Henkin (1963); Partee (2009); Keenan (2015, 2018): Ty-0, achieved with a heavy reliance on set theory, and a reimagining of the foundational basic type
 - * Type Ersatzism: Ty-1, simply-typed (Church, 1932; Carlson, 1977; Klein, 1980)
 - * **Type Proliferationalism**: lots of types! up to Ty-5 (Champollion, 2010), Ty-7 (Bittner, 2003, 2006), and Ty-9 (Landman, 2006)
- what's the difference between a simple type and a complex type?
 - \circ (a.k.a. why semanticists get so upset about $\langle e \rangle$)
 - o how do I know a simple type when I see one?

3 different ways to be a possible world: a case study in typehood

- let's talk about possible worlds... what's the evidence that we need or want them?
- does that mean possible worlds are necessarily a basic entity or type?
- three options, historically

the semantic ontology March 28, 2022

1. we want intensionality, and we don't care about having the extra type, but we don't want the extra semantic object¹

- \circ $^{\vee}P$ refers in a possible world w to the set of entities that are P in w (type $\langle e, t \rangle$)
- o $^{\land}P$ refers in w to the set of entities that are P in all possible worlds (type $\langle s, \langle e, t \rangle \rangle$)
- so [[the unicorn]] = $\lambda P \exists x \forall y [unicorn(y) \leftrightarrow x = y \land {}^{\lor}P(x)]$
- but [Jessica seeks a unicorn]] = $seek(j, ^{\wedge}\lambda P \exists x[unicorn(x) \wedge ^{\vee}P(x)])$
- 2. as a restriction on the interpretation function (Heim & Kratzer), e.g. $\lambda w. \llbracket \alpha \rrbracket^{w,g}$
 - \circ what else have you seen indexed on the interpretation function? (what's g?)
 - why might we put something there, given your impressions of the convention?
- 3. as a semantic argument, e.g. $\lambda w. \llbracket \alpha(w) \rrbracket^g$
- our semantic theory needs a metasemantics that explains what constitutes a possible type

(1) **Semantic Types**

Option 1

- a. *e* and *t* are types
- b. If σ is a semantic type, then $\langle s, \sigma \rangle$ is a semantic type
- c. If σ and τ are semantic types, then $\langle \sigma, \tau \rangle$ is a semantic type
- d. Nothing else is a semantic type

(2) **Semantic Types**

Options 2 & 3

- a. *e* and *s* and *t* are types
- b. If σ and τ are semantic types, then $\langle \sigma, \tau \rangle$ is a semantic type
- c. Nothing else is a semantic type

4 some empirical criteria for determining what is a basic type

- anaphoric parallels: individual and tense data from Partee (1973, 1984); modal data from Stone (1997)
 - o referential readings
 - (3) a. (sitting at the bar) She left me.

individual

b. (leaving for a road trip) I didn't turn off the stove.

- tense modal
- c. (shopping for big speakers) My neighbors might/would kill me.
- o definite anaphora
 - (4) a. Sam is married. He has three children.

individual

b. When John saw Mary, he crossed the street.

tense

- c. His company would face bankruptcy if the merger succeeds. Bankruptcy would not be an immediate effect. *modal*
- o indefinite anaphora
 - (5) a. Pedro owns a donkey. He beats it.

individual

b. Mary woke up some time during the night. She turned on the light.

tense

- c. There may be other retirements come April 18, but they will be leaving by choice. *modal*
- bound variable
 - (6) a. Every woman believes she is happy.

individual

b. Whenever Mary telephoned, Sam was asleep.

tense

¹Remind me to talk to you about \lor too...

the semantic ontology March 28, 2022

c. If a concertgoer arrives late, he or she will not be permitted into the auditorium until intermission.

modal

- o donkey anaphora
 - (7) a. If Pedro owns a donkey, he beats it.

individual

b. Whenever Mary telephoned on a Friday, Sam was asleep.

tense

- If a submarine cannot self-destruct and if an enemy captures it, the enemy will learn its secrets.
- lexicalized quantifiers (Schlenker, 2006)
 - a question for this and the anaphora test: what to make of cross-linguistic syncretism between domains (e.g. how ranging over manners and degrees, Anderson and Morzycki 2015)?
- empirical adequacy: a given phenomenon can only be modeled using a different type (or subtype)
 - o degrees (Kennedy 1999, cf. Klein (1980))
 - o situations (Kratzer, 1989)
- what about parallels between different types (e.g. the difference between lattice-structured and linearlyordered domains, Rett 2015)?

5 what's out there?

		conventional	
entity	type	variables	origin(s)
individuals	е	x, y	Montague (1970, 1973)
possible worlds	s	w	Kripke (1959)
events	v	e	Davidson (1967)
times	i	t	Partee (1973, 1984)
degrees	d	d	Cresswell (1976)
kinds	k	k	Carlson (1977)
situations	s	s	Barwise (1981); Kratzer (1989)
vectors	v	u,v	Zwarts (1997)

- we're going to be talking about the most prominent of these this quarter: events, situations, and degrees
- but in looking at these, we'll look at the arguments for them, and some arguments for cross-domain polysemy
- and we'll also look at a few nearby, less prominent putative types, like vectors, kinds, and manners
- hopefully you'll leave this class being able to read work on any of these topics...
- ...and also be a responsible consumer of arguments for or against the need for these types...
- ...and, in so being, better understand the nature of our metasemantic desiderata writ large

the semantic ontology March 28, 2022

references

Anderson, C. and Morzycki, M. (2015). Degrees as kinds. Natural Language and Linguistic Theory, 33:791-828.

Barwise, J. (1981). Scenes and other situations. The Journal of Philosophy, 78:369–97.

Bittner, M. (2003). Word order and incremental update. In *Proceedings from the 39th Annual Regional Meeting of the Chicago Linguistics Society*, volume 1, pages 634–664. Chicago Linguistics Society.

Bittner, M. (2006). Ontology for human talk and thought (not robotics). Theoretical Linguistics, 32:47–56.

Carlson, G. (1977). Reference to Kinds in English. PhD Thesis, University of Massachusetts, Amherst.

Champollion, L. (2010). Parts of a whole: distributivity as a bridge between aspect and measurement.

Church, A. (1932). A set of postulates for the foundation of logic. *Annals of Mathematics*, 33:346–366.

Cresswell, M. (1976). The semantics of degree. In Partee, B., editor, Montague Grammar, pages 261-292. Elsevier.

Davidson, D. (1967). The logical form of action sentences. In The logic of decision and action. University of Pittsburgh.

Gallin, D. (1975). Intensional and higher-order modal logic. North-Holland.

Henkin, L. (1963). A theory of propositional types. Fundamenta Mathematicae, 52:323-344.

Keenan, E. (2015). Individuals explained away. In Bianchi, A., editor, On reference, pages 384-402. Oxford University Press.

Keenan, E. (2018). Eliminating The Universe: Logical Properties Of Natural Language. World Scientific.

Kennedy, C. (1999). Projecting the adjective. Routledge.

Klein, E. (1980). A semantics for positive and comparative adjectives. Linguistics and Philosophy, 4:1-45.

Kratzer, A. (1989). An investigation of the lumps of thought. Linguistics & Philosophy, 12:607-53.

Kripke, S. (1959). A completeness theorem in modal logic. Journal of Symbolic Logic, 24:1-14.

Landman, M. (2006). Variables in Natural Language. PhD Thesis, University of Massachusetts, Amherst.

Montague, R. (1970). English as a formal language. In Visentini, B., editor, *Linguaggi nella societé nella tecnica*, pages 189–223. Mailand.

Montague, R. (1973). The proper treatment of quantification in ordinary English. In Hintikka, J., Moravcsik, J., and Suppes, P., editors, *Approaches to Natural Language*, pages 221–242. Dordrecht.

Partee, B. (1973). Some structural analogies between tenses and pronouns in English. The Journal of Philosophy, 7:601-609.

Partee, B. (1984). Nominal and temporal anaphora. Linguistics & Philosophy, 7:243-286.

Partee, B. (2009). Do we need two basic types? Snippets, 20:37-41.

Rett, J. (2015). Antonymy in space and other strictly-ordered domains. In Glanzberg, M., Skilters, J., and Svenonius, P., editors, *Perspectives on Spatial Cognition*.

Rett, J. (2022). A typology of semantic entities. In Altshuler, D., editor, *Linguistics meets Philosophy*. Oxford University Press. Schlenker, P. (2006). Ontological symmetry in language: a brief manifesto. *Mind & Language*, 21:504–539.

Stone, M. (1997). An anaphoric parallel between modality and tense. University of Pennsylvania Department of Computer and Information Science Technical Report.

Zwarts, J. (1997). Vectors as relative positions: a compositional semantics of modified PPs. Journal of Semantics, 14:57–86.