OS REPORT PROG ASSIGNMENT 4

Average waiting time Graph of TAS:

Average waiting time of a process vs no of threads(TAS)

Worst case waiting time graph of TAS:

worst case waiting time of a process vs no of threads(TAS)

Average waiting time graph of CAS:

Average waiting time of a process vs no of threads(CAS)

Worst case waiting time graph of CAS:

worst case waiting time of a process vs no of threads(CAS)

Average waiting time graph of CAS-Bounded:

Average waiting time of a process vs no of threads(CAS_Bounded)

Worst case waiting time graph of CAS-Bounded:

worst case waiting time of a process vs no of threads(CAS_bounded)

Analysis:

- 1. For all the above graphs I took lambda1(average time in critical section) and lambda2(average time in remainder section) values as 1 and 2 respectively.
- 2. From the above graphs we can see that the average waiting of TAS,CAS and CAS_Bounded is almost the same. It increases with increase in no of threads since there is more competition for a thread to enter the critical section. Another notable point is the average waiting time of CAS_Bounded is slightly bigger than the other two for more no of threads.
- But the worst case waiting time of CAS_bounded differs greatly from TAS and CAS. TAS and CAS have nearly the same worst case waiting times and their values are much larger than those of CAS Bounded.
- 4. It is because CAS_bounded prevents a process from starving while TAS,CAS don't. Also worst case waiting times of all three algorithms increase with increase in no of threads.