Class Discussion

Unit 9 Topic 7 Part 1 Conics in the polar equation form

A polar equation with the following form are conics with focus on the pole and directrix at either x = a or y = a (a is a constant)

$$r = \frac{ep}{1 \pm e \cos \theta}$$
 with vertical directrix $x = p$

$$r = \frac{ep}{1 \pm e \sin \theta}$$
 with horizontal directrix $y = p$

Where

$$e:$$
 eccentricity. $e=\frac{c}{a}$, $e\in(0,\infty)$

If e < 1, the conic is an ellipse

If e = 1 , the conic is a parabola

If e > 1, the conic is a hyperbola

Ex 1: Identify the location and orientation of the directrix

(a)
$$r = \frac{2}{1 + \cos \theta}$$
 (b) $r = \frac{2}{1 - \cos \theta}$ (c) $r = \frac{2}{1 + \sin \theta}$ (d) $r = \frac{2}{1 - \sin \theta}$

Ex 2: Graph
$$r = \frac{2}{2 + \cos \theta}$$