CS 223 - Digital Design

Introduction

CS223 Digital Design

□ Instructor:

Alper SARIKAN (Sec1, Sec2)

Office: EA 504 email: <u>alper.sarikan@bilkent.edu.tr</u>

Office hour: Fri 14:30-15:30

Weekly Schedule 2018-2019 Fall

	Mon.	Tue	Wed	Thu	Fri
08:40 - 09:30	CS 223-001 EA-Z04	CS 223-002 EA-Z04			
09:40 - 10:30	CS 223-001 EA-Z04	CS 223-002 EA-Z04			
10:40 - 11:30	CS 223-001 EA-Z04	CS 223-002 EA-Z04			
11:40 - 12:30	CS 223-001 EA-Z04	CS 223-002 EA-Z04			
12:40 - 13:30					
13:40 - 14:30			CS 223-001 EE-04, CS 223-002 EE-04		
14:40 - 15:30			CS 223-001 EE-04*, CS 223-002 EE-04*		Office Hour EA504
15:40 - 16:30					CS 223-001 EE-04, CS 223-002 EE-04
16:40 - 17:30					CS 223-001 EE-04, CS 223-002 EE-04

Course Information

□ TEXTBOOK & RECOMMENDED BOOK

David Money Harris, Sarah L. Harris, *Digital Design* and Computer Architecture, 2nd ed. Morgan Kaufmann, 2013. (Textbook)

Frank Vahid, Digital Design, with RTL Design, VHDL and Verilog, 2nd ed. John Wiley, 2011. (Recommended)

Course Information

- Course materials on Unilica
- □ You must enroll to Unilica to access course material
- □ Enrollment key: **JTMOH**

□ Grading:

Quizzes: 15%

Labs: 15%

Project: 10%

Midterm exam: 30%

Final exam: 30%

Course Information

- □ FZ POLICY: Students who fail to meet the following requirements will receive a grade of FZ:
 - 1-Weighted average score of the midterm exam and quizzes $\frac{(2*Midterm_{score} + AvgQuiz_{scores})}{3}$: at least 40%
 - 2-Average score of the labs and project $\frac{(AvgLab_{score} + Project_{score})}{2}$: at least **50%**
 - 3-Absent from no more than 1 lab.

Only the grades until the FZ deadline will be considered while computing the average scores above. Students who receive FZ cannot attend the final exam.

Schedule (tentative)

WEEK	TOPICS COVERED	READINGS	LABS/PROJECT
1	Introduction, digital values, number systems: decimal, binary and hexadecimal	Digital Design and Computer Architecture (DDCA), 1.1- 1.4	
2	Logic gates and physical characteristics, CMOS transistors, power consumption, Boolean algebra, Boolean equations, canonical forms	DDCA 1.5-1.9, 2.1-2.3 (excludes: 1.6.4, 1.6.5, 1.7.7, 1.7.8)	
3	Combinational logic, hardware reduction, X and Z logic values, introduction to System Verilog	DDCA 2.4-2.6, 4.1-4.2	Lab #1
4	Karnaugh maps, MUXes and decoders, combinational timing and non-ideal behavior, System Verilog modeling	DDCA 2.7-2.9, 4.3 (excludes 2.9.2)	Lab #2
5	Latches & flip-flops, basic register, synchronous logic design	DDCA 3.1-3.3, 4.4-4.5	
6	Finite state machines, FSM design, encoding, Mealy vs. Moore, System Verilog modeling	DDCA 3.4, 4.6 (excludes: 3.4.4)	Lab #3
7	FSM examples		

Schedule (tentative)

WEEK	TOPICS COVERED	READINGS	LABS/PROJECT
8	Timing *Midterm*	DDCA 3.5 (excludes: 3.5.4, 3.5.5, 3.5.6, 3.6)	Lab #4
9	Arithmetic functions, adders, subtractors, comparators, shifters, ALU, System Verilog models	DDCA 5.1-5.2 (excludes Prefix Adder, 5.2.6, 5.2.7) Vahid 6.4	
10	Counters, shift registers, timers, System Verilog models	DDCA 5.4 Vahid 4.2, 4.8, 4.9	Lab #5
11	Memory, static & dynamic RAM, ROM/PROM	Vahid 5.7, 5.10	Project
12	High-level state machines	Vahid 5.1-5.5	Project
13	High-level state machines	Vahid 5.1-5.5	Project
14	FPGA, programmable processors	Vahid 7.2, 7.3, 8.1-8.5	Project Final Report & Demo during lab

Why Study Hardware?

- Career in hardware design
 - Numerous new hardware devices introduced these days: Smartphones, smart homes, wearables, internet of things, drones, VR glasses, ...
- Good software programmers know about hardware
 - Anyone can write a web/smartphone app!
 - Inherent knowledge of computers needed to program efficiently

Chapter 1

Digital Design and Computer Architecture, 2nd Edition

David Money Harris and Sarah L. Harris

Chapter 1 :: Topics

- Background
- The Game Plan
- The Art of Managing Complexity
- The Digital Abstraction
- Number Systems
- Logic Gates
- Logic Levels
- CMOS Transistors
- Power Consumption

The Game Plan

- Purpose of course:
 - Understand what's under the hood of a computer
 - Learn the principles of digital design
 - Learn to systematically debug increasingly complex designs

The Art of Managing Complexity

- Abstraction
- Discipline
- The Three –Y's
 - Hierarchy
 - Modularity
 - Regularity

N Sio

Abstraction

Hiding details when they aren't important

focus of this course

Discipline

- Intentionally restrict design choices
- Example: Digital discipline
 - Discrete voltages instead of continuous
 - Simpler to design than analog circuits can build more sophisticated systems
 - Digital systems replacing analog predecessors:
 - i.e., digital cameras, digital television, cell phones, CDs

The Digital Abstraction

- Most physical variables are continuous
 - Voltage on a wire
 - Frequency of an oscillation
 - Position of a mass
- Digital abstraction considers discrete subset of values

Digital Discipline: Binary Values

Two discrete values:

- 1's and 0's
- 1, TRUE, HIGH
- 0, FALSE, LOW
- 1 and 0: voltage levels, rotating gears, fluid levels, etc.
- Digital circuits use voltage levels to represent 1 and 0
- Bit: Binary digit

The Three -Y's

Hierarchy

A system divided into modules and sub-modules

Modularity

Having well-defined functions and interfaces

Regularity

Encouraging uniformity, so modules can be easily reused

Motherboard of a Smart Phone

Number Systems

Decimal numbers

Binary numbers

Number Systems

Decimal numbers

1's column 10's column 100's column 1000's column

$$5374_{10} = 5 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0$$
five three seven four thousands hundreds tens ones

Binary numbers

$$1101_{2} = 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = 13_{10}$$
one
eight
one
four
one
one
one
one
one
one
one
one
one

Powers of Two

•
$$2^0 =$$

•
$$2^1 =$$

•
$$2^2 =$$

•
$$2^3 =$$

•
$$2^4 =$$

•
$$2^5 =$$

•
$$2^6 =$$

•
$$2^7 =$$

•
$$2^8 = 100000000$$

•
$$2^9 =$$

•
$$2^{10} =$$

•
$$2^{11} =$$

•
$$2^{12} =$$

•
$$2^{13} =$$

•
$$2^{14} =$$

•
$$2^{15} =$$

2

Powers of Two

•
$$2^0 = 1$$

•
$$2^1 = 2$$

•
$$2^2 = 4$$

•
$$2^3 = 8$$

•
$$2^4 = 16$$

•
$$2^5 = 32$$

•
$$2^6 = 64$$

•
$$2^7 = 128$$

•
$$2^8 = 256$$

•
$$2^9 = 512$$

•
$$2^{10} = 1024$$

•
$$2^{11} = 2048$$

•
$$2^{12} = 4096$$

•
$$2^{13} = 8192$$

•
$$2^{14} = 16384$$

•
$$2^{15} = 32768$$

• Handy to memorize up to 29

Number Conversion

- Binary to decimal conversion:
 - Convert 10011₂ to decimal

- Decimal to binary conversion:
 - Convert 47₁₀ to binary

Number Conversion

- Decimal to binary conversion:
 - Convert 10011₂ to decimal
 - $-16\times1+8\times0+4\times0+2\times1+1\times1=19_{10}$

- Decimal to binary conversion:
 - Convert 47₁₀ to binary
 - $-32\times1+16\times0+8\times1+4\times1+2\times1+1\times1=101111_2$

Binary Values and Range

- N-digit decimal number
 - How many values?
 - Range?
 - Example: 3-digit decimal number:

- N-bit binary number
 - How many values?
 - Range:
 - Example: 3-digit binary number:

Binary Values and Range

- N-digit decimal number
 - How many values? 10^N
 - Range? $[0, 10^N 1]$
 - Example: 3-digit decimal number:
 - 10³ = 1000 possible values
 - Range: [0, 999]
- N-bit binary number
 - How many values? 2^N
 - Range: [0, $2^N 1$]
 - Example: 3-digit binary number:
 - 2³ = 8 possible values
 - Range: $[0, 7] = [000_2 \text{ to } 111_2]$

ONE

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	
1	1	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	
A	10	
В	11	
С	12	
D	13	
Е	14	
F	15	

ONE

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
Е	14	1110
F	15	1111

Hexadecimal Numbers

- Base 16
- Shorthand for binary

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary

- Hexadecimal to decimal conversion:
 - Convert 0x4AF to decimal

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary
 - 0100 1010 1111₂

- Hexadecimal to decimal conversion:
 - Convert 4AF₁₆ to decimal
 - $16^2 \times 4 + 16^1 \times 10 + 16^0 \times 15 = 1199_{10}$

Bits, Bytes, Nibbles...

Bits

10010110
most least significant bit bit

Bytes & Nibbles

10010110 nibble

Bytes

CEBF9AD7

most least significant byte byte

Large Powers of Two

- $2^{10} = 1 \text{ kilo}$ $\approx 1000 (1024)$
- $2^{20} =$
- $2^{30} =$

Large Powers of Two

- $2^{10} = 1 \text{ kilo}$ $\approx 1000 (1024)$
- $2^{20} = 1 \text{ mega} \approx 1 \text{ million } (1,048,576)$
- $2^{30} = 1$ giga ≈ 1 billion (1,073,741,824)

Estimating Powers of Two

• What is the value of 2^{24} ?

 How many values can a 32-bit variable represent?

Estimating Powers of Two

• What is the value of 2^{24} ?

$$2^4 \times 2^{20} \approx 16$$
 million

 How many values can a 32-bit variable represent?

$$2^2 \times 2^{30} \approx 4$$
 billion

□ Convert 0x1A to decimal

□ Convert 0x1AB to decimal

 \square 10*CD*₁₆ * 2₁₆ =?₁₆

Review

- □ Introduction-Course Information (FZ policy, grading system, schedule)
- □ Purpose of the course
- Managing complexity (Abstraction, Discipline, Hierarchy, Modularity, Regularity)
- Number Systems (Decimal-Binary number systems, Number conversion, Binary values and ranges)
- Hexadecimal numbers (binary-hex conversion, bits, nibbles, bytes)

$$\Box ABCD_{16} * 2_{16} =?_{8}$$

□ Convert 0x2BE to decimal

$$702_{10}$$

How many bytes are in a 32-bit word? How many nibbles are in the word?

□ A particular DSL modem operates at 64kbits/sec. How many bytes can it receive in 1 minute?

 $\frac{64 \text{ kbits}}{1 \text{ sec minute}} \frac{60 \text{sec}}{8 \text{bits}}$

ONE ROM

Addition

Decimal

• Binary

Binary Addition Examples

Add the following
 4-bit binary
 numbers

Add the following
 4-bit binary
 numbers

ZNE 2

Binary Addition Examples

Add the following
 4-bit binary
 numbers

Add the following
 4-bit binary
 numbers

Overflow!

Overflow

- Digital systems operate on a fixed number of bits
- Overflow: when result is too big to fit in the available number of bits
- See previous example of 11 + 6

Exercise 1.66

A flying saucer crashes in a Nebraska cornfield. The FBI investigates the wreckage and finds an engineering manual containing an equation in the Martian number system: 325+42=411. If this equation is correct, how many **fingers** would you expect Martians to have in one hand?

Signed Binary Numbers

- Sign/Magnitude Numbers
- Two's Complement Numbers

Complement in binary system

- \Box Complement of a bit b: b', \bar{b}
- Complement idea was invented to simplify the subtraction operation in computers
- Complement of the complement restores the number to its original value

Sign/Magnitude Numbers

- 1 sign bit, *N*-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - **Positive** number: sign bit = **0** $A: \{a_{N-1}, a_{N-2}, \dots a_2, a_1, a_0\}$
 - Negative number: sign bit = 1

$$A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i$$

• Example, 4-bit sign/mag representations of \pm 6:

• Range of an *N*-bit sign/magnitude number:

Sign/Magnitude Numbers

- 1 sign bit, *N*-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - **Positive** number: sign bit = **0** $A: \{a_{N-1}, a_{N-2}, \dots a_2, a_1, a_0\}$
 - Negative number: sign bit = 1

$$A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i$$

• Example, 4-bit sign/mag representations of \pm 6:

$$+6 = 0110$$

• Range of an *N*-bit sign/magnitude number:

$$[-(2^{N-1}-1), 2^{N-1}-1]$$

Sign/Magnitude Numbers

Problems:

- Addition doesn't work, for example -6 + 6:

$$+0110$$

10100 (wrong!)

– Two representations of $0 (\pm 0)$:

0000

Two's Complement Numbers

- Don't have same problems as sign/magnitude numbers:
 - Addition works
 - Single representation for 0

Two's Complement Numbers

• Msb has value of -2^{N-1}

$$A = a_{n-1} \left(-2^{n-1} \right) + \sum_{i=0}^{n-2} a_i 2^i$$

- Most positive 4-bit number:
- Most negative 4-bit number:
- The most significant bit still indicates the sign (1 = negative, 0 = positive)
- Range of an *N*-bit two's comp number:

Two's Complement Numbers

• Msb has value of -2^{N-1}

$$A = a_{n-1} \left(-2^{n-1} \right) + \sum_{i=0}^{n-2} a_i 2^i$$

- Most positive 4-bit number: 0111
- Most negative 4-bit number: 1000
- The most significant bit still indicates the sign (1 = negative, 0 = positive)
- Range of an *N*-bit two's comp number:

$$[-(2^{N-1}), 2^{N-1}-1]$$

"Taking the Two's Complement"

- Flip the sign of a two's complement number
- Method:
 - 1. Invert the bits
 - 2. Add 1
- Example: Flip the sign of $3_{10} = 0011_2$

"Taking the Two's Complement"

- Flip the sign of a two's complement number
- Method:
 - 1. Invert the bits
 - 2. Add 1
- Example: Flip the sign of $3_{10} = 0011_2$
 - 1. 1100

$$\frac{2. + 1}{1101} = -3_{10}$$

Two's Complement Examples

• Take the two's complement of $6_{10} = 0110_2$

• What is the decimal value of 1001₂?

Two's Complement Examples

- Take the two's complement of $6_{10} = 0110_2$
 - 1. 1001

$$\frac{2. + 1}{1010_2 = -6_{10}}$$

- What is the decimal value of the two's complement number 1001₂?
 - 1. 0110

$$\frac{2. + 1}{0111_2} = 7_{10}, \text{ so } 1001_2 = -7_{10}$$

True or False

I can take 2s complement of a number as follows:

- 1. Examine the bits starting from the LSB
- 2. Let k be the index where the first "1" is found
- 3. Invert all bits to the left of k

$$6_{10} = 0110_2$$
$$-6_{10} = 1010_2$$

10102

Two's Complement Addition

• Add 6 + (-6) using two's complement numbers

• Add -2 + 3 using two's complement numbers

Two's Complement Addition

Add 6 + (-6) using two's complement numbers
 111
 0110

• Add -2 + 3 using two's complement numbers

 Convert the following hexadecimal numbers to decimal

a)
$$A5_{16}$$

b)
$$3B_{16}$$

 Convert the following decimal numbers to 8-bit two's complement numbers

a)	42_{10}
,	

b)
$$-63_{10}$$

c)
$$124_{10}$$

□ Consider representing 12_{10} and -12_{10} in an eight-bit format: (Signed Magnitude Representation)

$$12_{10} = 00001100_2$$

 $-12_{10} = 10001100_2$

□ Consider representing 12_{10} and -12_{10} in an eight-bit format: (2's Complement Representation)

$$12_{10} = 00001100_2$$

 $-12_{10} = 11110100_2$

- □ 1001 0111 0110
- □ Unsigned binary

$$2^{11} + 2^8 + 2^6 + 2^5 + 2^4 + 2^2 + 2^1 = 2422$$

□ Signed magnitude

$$= (-)101110110 = 2^8 + 2^6 + 2^5 + 2^4 + 2^2 + 2^1 = -374$$

□ 2's complement

$$= (-)11010001010 = 2^{10} + 2^9 + 2^7 + 2^3 + 2^1 = -1674$$

Increasing Bit Width

- Extend number from N to M bits (M > N):
 - Sign-extension
 - Zero-extension

Sign-Extension

- Sign bit copied to msb's
- Number value is same

Example 1:

- 4-bit representation of 3 = 0011
- 8-bit sign-extended value: 00000011

Example 2:

- 4-bit representation of -5 = 1011
- 8-bit sign-extended value: 11111011

Zero-Extension

- Zeros copied to msb's
- Value changes for negative numbers

Example 1:

$$0011_2 = 3_{10}$$

- 8-bit zero-extended value: $00000011 = 3_{10}$

Example 2:

$$1011 = -5_{10}$$

- 8-bit zero-extended value:
$$00001011 = 11_{10}$$

ZNE

Number System Comparison

Number System	Range
Unsigned	$[0, 2^{N}-1]$
Sign/Magnitude	$[-(2^{N-1}-1), 2^{N-1}-1]$
Two's Complement	$[-2^{N-1}, 2^{N-1}-1]$

For example, 4-bit representation:

Logic Gates

- Perform logic functions:
 - inversion (NOT), AND, OR, NAND, NOR, etc.
- Single-input:
 - NOT gate, buffer
- Two-input:
 - AND, OR, XOR, NAND, NOR, XNOR
- Multiple-input

Single-Input Logic Gates

NOT

$$Y = \overline{A}$$

BUF

$$Y = A$$

Α	Y
0	
1	

Single-Input Logic Gates

NOT

$$Y = \overline{A}$$

BUF

$$Y = A$$

Α	Y
0	0
1	1

Two-Input Logic Gates

AND

$$Y = A.B$$

 $Y = A \cap B$ $Y = AB$

Α	В	Y
0	0	
0	1	
1	0	
1	1	

OR

$$Y = A + B$$
 $Y = A \cup B$

Α	В	Y
0	0	
0	1	
1	0	
1	1	

Two-Input Logic Gates

AND

$$Y = AB$$

Α	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

OR

$$Y = A + B$$

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

More Two-Input Logic Gates

XOR

$$Y = A \oplus B$$

Α	В	Y
0	0	
0	1	
1	0	
1	1	

NAND

$$Y = \overline{AB}$$

Α	В	Y
0	0	
0	1	
1	0	
1	1	

NOR

$$Y = \overline{A + B}$$

A	В	Y
0	0	
0	1	
1	0	
1	1	

XNOR

$$Y = \overline{A + B}$$

_ <i>A</i>	В	Υ
0	0	
0	1	
1	0	
1	1	

More Two-Input Logic Gates

XOR

$$Y = A \oplus B$$

Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

NAND

$$Y = \overline{AB}$$

Α	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

NOR

$$Y = \overline{A + B}$$

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

XNOR

$$Y = \overline{A + B}$$

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

NE

Multiple-Input Logic Gates

NOR₃

$$Y = \overline{A + B + C}$$

Α	В	С	Y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

AND4

$$Y = ABCD$$

A	В	С	Y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

NE

Multiple-Input Logic Gates

NOR3

$$Y = \overline{A + B + C}$$

A B C Y 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0

AND4

$$Y = ABCD$$

Α	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

• Multi-input XOR: Odd parity

Questions

□ How many unique 2-input logic functions can we define?

There are 16 possible functions of 2 input variables:

□ How many unique k-input logic functions can we define? 2^{2k} functions of k inputs

□ Write the Boolean equations corresponding to the following circuits

□ Write the binary logic demonstrated by simple switches

- □ Write the Boolean equation corresponding to the following circuit containing one AND gate and one OR gate.
- □ Form the truth table corresponding to the function.

Logic Levels

- Discrete voltages represent 1 and 0
- For example:
 - -0 = ground (GND) or 0 volts
 - $-1 = V_{DD}$ or 5 volts
- What about 4.99 volts? Is that a 0 or a 1?
- What about 3.2 volts?

Logic Levels

- Range of voltages for 1 and 0
- Different ranges for inputs and outputs to allow for noise

What is Noise?

What is Noise?

- Anything that degrades the signal
 - E.g., resistance, power supply noise, coupling to neighboring wires, etc.
- Example: a gate (driver) outputs 5 V but, because of resistance in a long wire, receiver gets 4.5 V

 Noise

 Driver

The Static Discipline

 With logically valid inputs, every circuit element must produce logically valid outputs

 Use limited ranges of voltages to represent discrete values

Logic Levels

Noise Margins

$$NM_H = V_{OH} - V_{IH}$$

 $NM_L = V_{IL} - V_{OL}$

$$NM_I = V_{II} - V_{OI}$$

The noise margin is the amount of noise that could be added to a worst-case output such that the signal can still be interpreted as a valid input.

Example 1.18 CALCULATING NOISE MARGINS

Consider the inverter circuit of Figure 1.24. V_{O1} is the output voltage of inverter I1, and V_{I2} is the input voltage of inverter I2. Both inverters have the following characteristics: $V_{DD} = 5 \text{ V}$, $V_{IL} = 1.35 \text{ V}$, $V_{IH} = 3.15 \text{ V}$, $V_{OL} = 0.33 \text{ V}$, and $V_{OH} = 3.84 \text{ V}$. What are the inverter low and high noise margins? Can the circuit tolerate 1 V of noise between V_{O1} and V_{I2} ?

V_{DD} Scaling

- In 1970's and 1980's, $V_{DD} = 5 \text{ V}$
- V_{DD} has dropped
 - Avoid frying tiny transistors
 - Save power
- 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, 1.0 V, ...
- Be careful connecting chips with different supply voltages

Chips operate because they contain magic smoke

Proof:

 if the magic smoke is let out, the chip stops working

Logic Family Examples

Logic Family	V_{DD}	V_{IL}	V_{IH}	V_{OL}	V_{OH}
TTL	5 (4.75 - 5.25)	0.8	2.0	0.4	2.4
CMOS	5 (4.5 - 6)	1.35	3.15	0.33	3.84
LVTTL	3.3 (3 - 3.6)	0.8	2.0	0.4	2.4
LVCMOS	3.3 (3 - 3.6)	0.9	1.8	0.36	2.7
Output Characteristics	nput Characteristics				

To achieve communication between two families, the following conditions must be satisfied

Logic Families

- □ Which of the logic families can communicate with each other?

$$V_{IL} > V_{OL}$$
 and $V_{OH} > V_{IH}$

□ A CMOS gate can communicate with a TTL gate

$$V_{IL} = 0.8V > V_{OL} = 0.33V$$
 and $V_{OH} = 3.84V > V_{IH} = 2V$

- □ A TTL gate can not communicate with a CMOS gate
 - $V_{IL} = 1.35V > V_{OL} = 0.4V$ and $V_{OH} = 2.4V < V_{IH} = 3.15V$

Review₃

- □ Logic levels (Discrete voltages)
- □ Noise, noise margins
- □ Logic families (TTL, CMOS, LVTTL, LVCMOS)
- CMOS Gates
- >>Transistors, (nMOS, pMOS)

Example 1.18 CALCULATING NOISE MARGINS

Consider the inverter circuit of Figure 1.24. V_{O1} is the output voltage of inverter I1, and V_{I2} is the input voltage of inverter I2. Both inverters have the following characteristics: $V_{DD} = 5 \text{ V}$, $V_{IL} = 1.35 \text{ V}$, $V_{IH} = 3.15 \text{ V}$, $V_{OL} = 0.33 \text{ V}$, and $V_{OH} = 3.84 \text{ V}$. What are the inverter low and high noise margins? Can the circuit tolerate 1 V of noise between V_{O1} and V_{I2} ?

$$N_{MH} = V_{OH} - V_{IH} = (3.84 \text{ V} - 3.15 \text{ V}) = 0.69 \text{V}$$

 $N_{ML} = V_{IL} - V_{OL} = (1.35 \text{ V} - 0.33 \text{ V}) = 1.02 \text{V}$

Transistors

- Logic gates built from transistors
- 3-ported voltage-controlled switch
 - 2 ports connected depending on voltage of 3rd
 - d and s are connected (ON) when g is 1

Robert Noyce, 1927-1990

- Nicknamed "Mayor of Silicon Valley"
- Cofounded Fairchild Semiconductor in 1957
- Cofounded Intel in 1968
- Co-invented the integrated circuit

Silicon

- Transistors built from silicon, a semiconductor
- Pure silicon is a poor conductor (no free charges)
- Doped silicon is a good conductor (free charges)
 - n-type (free negative charges, electrons)
 - p-type (free positive charges, holes)

Diode

MOS Transistors

Metal oxide silicon (MOS) transistors:

- Polysilicon (used to be metal) gate
- Oxide (silicon dioxide) insulator
- Doped silicon

gate
source drain

nMOS

NE 20

Transistors: nMOS

Gate = 0

OFF (no connection between source and drain)

Gate = 1

ON (channel between source and drain)

Transistors: pMOS

- pMOS transistor is opposite
 - ON when Gate = 0
 - OFF when Gate = 1

Transistor Function

nMOS

pMOS

Transistor Function

 nMOS: pass good 0's, so connect source to GND

• pMOS: pass good 1's, so connect source to

 V_{DD}

CMOS Gates: NOT Gate

NOT

$$Y = \overline{A}$$

A	P1	N1	Y
0		0	1
1	0		()

ZNE

CMOS Gates: NOT Gate

NOT

$$Y = \overline{A}$$

A	P1	N1	Y
0	ON	OFF	1
1	OFF	ON	0

What is the function of this gate?

What is the function of this gate?

Transmission Gate

□ Parallel combination of nmos and pmos transistors is called a transmission gate and it behaves like an idal switch.

ONE

CMOS Gates: NAND Gate

NAND

$$Y = \overline{AB}$$

Α	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

A	B	P1	P2	N1	N2	Y
0	0					
0	1					
1	0					
1	1					

ONE

CMOS Gates: NAND Gate

NAND

$$Y = \overline{AB}$$

Α	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

_	\overline{A}	B	P1	P2	N1	N2	Y
	0	0	ON	ON	OFF	OFF	1
	0	1	ON	OFF	OFF	ON	1
	1	0	OFF	ON	ON	OFF	1
	1	1	OFF	OFF	ON	ON	0

ONE FROM

CMOS Gate Structure

NOR Gate

How do you build a three-input NOR gate?

ONE

NOR3 Gate

Other CMOS Gates

How do you build a two-input AND gate?

AND2 Gate

What is the function of this gate?

What is the function of this gate?

Gordon Moore, 1929-

Cofounded Intel in 1968 with Robert Noyce.

Moore's Law:

number of transistors on a computer chip doubles every year (observed in 1965)

Since 1975, transistor counts have doubled every two years.

Moore's Law

"If the automobile had followed the same development cycle as the computer, a Rolls-Royce would today cost \$100, get one million miles to the gallon, and explode once a year . . ."

Robert Cringley

Moore's Law

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Review₄

- □ Transistors, (nMOS, pMOS)
- CMOS Gates

Review₄- Transistor Function

nMOS g —

pMOS g⊸[

g = 0

d
OFF

g = 1 d \downarrow ON s

Power Consumption

- Power = Energy consumed per unit time
 - Dynamic power consumption
 - Static power consumption

Power Consumption

$$P_{dynamic} = \frac{1}{2}cV_{dd}^{2}f$$

$$P_{static} = I_{dd}V_{dd}$$

$$We would with the state of the$$

Generally dynamic
 power consumption of a
 chip is much larger than
 static power consumption

Dynamic Power Consumption

- Power to charge transistor gate capacitances
 - Energy required to charge a capacitance, C, to V_{DD} is CV_{DD}^2
 - Circuit running at frequency f: transistors switch (from 1 to 0 or vice versa) at that frequency
 - Capacitor is charged f/2 times per second (discharging from 1 to 0 is free)
- Dynamic power consumption:

$$P_{dynamic} = \frac{1}{2}CV_{DD}^2 f$$

Static Power Consumption

- Power consumed when no gates are switching
- Caused by the quiescent supply current, I_{DD}
 (also called the leakage current)
- Static power consumption:

$$P_{static} = I_{DD}V_{DD}$$

Power Consumption Example

Estimate the power consumption of a wireless handheld computer

$$-V_{DD} = 1.2 \text{ V}$$

$$-C = 20 \text{ nF}$$

$$-f = 1 \text{ GHz}$$

$$-I_{DD} = 20 \text{ mA}$$

1 (N2 f 2 (1/10) 1 (20110) 2

NE 2

Power Consumption Example

Estimate the power consumption of a wireless handheld computer

$$-V_{DD} = 1.2 \text{ V}$$

$$-C = 20 \text{ nF}$$

$$-f = 1 \text{ GHz}$$

$$-I_{DD} = 20 \text{ mA}$$

$$P = \frac{1}{2}CV_{DD}^2f + I_{DD}V_{DD}$$

=
$$\frac{1}{2}$$
(20 nF)(1.2 V)²(1 GHz) + (20 mA)(1.2 V)

$$= 14.4 W$$

Useful Information

- □ Logic Ics
- □ Breadboard
- □ LED

