Funciones Biyectivas

Departamento de Matemáticas

1 / 1

Coneptualización previa.

Considerando los temas tratados en las lecturas previas, responda las siguientes interrogantes:

- $\mathbf{0}$ ¿Cuando una función f es inyectiva?
- 2 ¿Cuando una función f es epiyectiva?
- 3 ¿Cuando una función f es biyectiva?
- **3** Si f es una función invertible, entonces $f^{-1}(x) = \frac{1}{f(x)}$?

Miguel Ángel Muñoz Jara miguel.munoz.j@unab.cl

Funciones inyectivas

Definición. Sea $f: A \rightarrow B$ una función. f se denomina función inyectiva:

$$f(x) = f(y) \Rightarrow x = y$$

Es decir, una función f es inyectiva si dados dos elementos distintos del dominio ellos admiten imágenes distintas.

Ejemplo. Considere $f: \mathbb{R} \to \mathbb{R}$ función definida por $f(x) = x^2 - 6x + 9$. Observe que f(2) = f(4) = 1. Por lo tanto f no es inyectiva ya que 2 y 4 admiten la misma imagen.

Ejemplo. Considere $f: \mathbb{R} - \{1\} \to \mathbb{R}$, función definida por $f(x) = \frac{3x+1}{x-1}$. Observe que:

$$f(x) = f(y) \implies \frac{3x+1}{x-1} = \frac{3y+1}{y-1}$$

$$\Rightarrow (3x+1)(y-1) = (3y+1)(x-1)$$

$$\Rightarrow 3xy - 3x + y - 1 = 3xy - 3y + x - 1$$

$$\Rightarrow x = y$$

Por lo tanto f es una función inyectiva

3/1

Funciones epiyectivas

Definición. Sea $f:A\to B$ una función. f se denomina función epiyectiva o sobreyectiva si:

$$\forall y \in B, \exists x \in A : f(x) = y$$

Es decir, una función f es epiyectiva si todo elemento del conjunto de llegada admite preimage.

Ejemplo. Considere $f: \mathbb{R} \to \mathbb{R}$ función definida por $f(x) = x^2 + 9$. Observe que $f(x) \ge 0$, para todo $x \in \mathbb{R}$. Por lo tanto f no es epiyectiva ya que $-1 \in \mathbb{R}$ y no existe $x \in \mathbb{R}$ tal que f(x) = -2.

Ejemplo. Sea $f: \mathbb{R} - \{1\} \to \mathbb{R} - \{3\}$, función definida por $f(x) = \frac{3x+1}{x-1}$.

Observe que:

$$f(x) = y \quad \Leftrightarrow \frac{3x+1}{x-1} = y$$

$$\Leftrightarrow (3x+1) = y(x-1)$$

$$\Leftrightarrow x = \frac{y+1}{y-3} \in \mathbb{R} - \{1\};$$

Por lo tanto f es una función epiyectiva

Funciones invertibles

Definición. Sea $f: A \to B$ una función. f se denomina función invertible si existe $g: B \to A$ función tal que:

$$(g \circ f)(x) = x$$
, $\forall x \in A$

$$(f \circ g)(y) = y$$
, $\forall y \in B$

g se denomina función inversa de f y se denota por f^{-1} . Es importante mencionar que una función f(x) que tiene función inversa se denomina **Función Biyectiva**.

Ejemplo. Considere $f: \mathbb{R} - \{1\} \to \mathbb{R} - \{-1\}$, definida por $f(x) = \frac{5-x}{x-1}$. Suponiendo que f(x) es biyectiva calcule su función inversa.

Solución. Observe: $\mathrm{Dom}(f) = \mathbb{R} - \{1\}$. Por otro lado f(x) = y si y solamente si:

$$\frac{5-x}{x-1} = y \quad \Leftrightarrow 5-x = xy - y$$
$$\Leftrightarrow 5+y = xy + x \Leftrightarrow \frac{5+y}{y+1} = x$$

Así de lo anterior es posible establecer que f admite función inversa:

$$f^{-1}(y) = \frac{5+y}{y+1}$$

Ejemplos

Ejemplo. Considere $f:A\subset\mathbb{R}\to B\subset\mathbb{R}$ definida por $f(x)=\frac{3x+1}{9x-18}$. Determine $A,B\subset\mathbb{R}$ máximos, de manera que f admita función inversa y determínela.

Solución. Observe que $\operatorname{Dom}(f) = \{x \in \mathbb{R}/9x - 18 \neq 0\} = \mathbb{R} - \{2\}$. Por otro lado:

$$f(x) = y \quad \Leftrightarrow \frac{3x+1}{9x-18} = y$$
$$\Leftrightarrow 3x+1 = 9xy - 18y$$
$$\Leftrightarrow x(3-9y) = -1 - 18y$$
$$\Leftrightarrow x = \frac{1+18y}{9y-3}$$

Por lo tanto $\operatorname{Im}(f) = \mathbb{R} - \left\{\frac{1}{3}\right\}$. Así $f: \mathbb{R} - \{2\} \to \mathbb{R} - \left\{\frac{1}{3}\right\}$ es una función epiyectiva. Para determinar la existencia de la función inversa solo basta analizar si f es inyectiva. De hecho:

Miguel Ángel Muñoz Jara miguel.munoz.j@unab.cl

6/1

Ejemplos

$$f(a) = f(b) \Leftrightarrow \frac{3a+1}{9a-18} = \frac{3b+1}{9b-18}$$
$$\Leftrightarrow (9b-18)(3a+1) = (3b+1)(9a-18)$$
$$\Leftrightarrow 27ab+9b-54a-18 = 27ab+9a-54b-18 \Leftrightarrow a = b$$

Por lo tanto $f:\mathbb{R}-\{2\} \to \mathbb{R}-\left\{rac{1}{3}
ight\}$ es biyectiva con $f^{-1}(y)=rac{1+18y}{9y-3}.$

Observación. De la definición de función inversa es posible establecer las siguientes propiedades:

1 Si $f: A \rightarrow B$ es una función biyectiva, entonces:

$$(f \circ f^{-1})(y) = y \quad \forall y \in B$$

 $(f^{-1} \circ f)(x) = x \quad \forall x \in A$

2 Considere $f: A \to B$ y $g: B \to C$ funciones biyectivas, entonces $g \circ f: A \to C$ es una función biyectiva con inversa $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Miguel Ángel Muñoz Jara miguel.munoz,j@unab.cl

Taller 1. Trabajo grupal. (3 integrantes)

• En cada caso determine bajo que condiciones existe la inversa de la función dada.

a
$$f(x) = 3x + 1, x \in \mathbb{R}$$

b
$$A(r) = \pi r^2, r \ge 0$$

1
$$f(x) = 3x + 1, x \in \mathbb{R}$$
 1 $A(r) = \pi r^2, r \ge 0$ **1** $V(r) = \frac{4\pi r^2}{3}, r \ge 0$

- **2** Considere $f: A \to B$ función definida por $f(x) = \frac{x+2}{x+a}$. Determine Ay B máximos de manera que f admita inversa y determínela.
- **3** Utilice el resultado del ítem anterior para determine si existe $a \in \mathbb{R}$ tal que f(f(x)) = x.
- 4 Considere f una función creciente, determine si f es inyectiva.
- **6** Determine si toda función impar es inyectiva.