Computer Networks (part 4)

Rémi Emonet – 2021 Université Jean Monnet – Laboratoire Hubert Curien

Computer Networks: global overview

- 1. Introduction to computer networks
- 2. Networking application layer (HTTP, FTP, DNS, ...)
- 3. Data transfer layer (UDP, TCP, ...)
- 4. Network layer (routing, IP, ICMP, NAT, ...)
- 5. Lower layers, wireless and mobile (Ethernet, ARP, ...)
- 6. Security (SSL, ...)

2 / 53 - Rémi Emonet - Computer Networks (part 4

Computer Networks 4: Plan

- Goal: network layer
 - understand the principles of the network layer
 - understand their implementation inside Internet
- Overview
 - Network layer: role, transfer, routing
 - How a router works: forwarding, buffering, ...
 - IP: Internet Protocol
 - Routing algorithms
 - Routing in Internet
 - Broadcast and multicast

physical

Computer Networks 4: Plan

- Goal: network layer
 - understand the principles of the network layer
 - understand their implementation inside Internet
- Overview
 - Network layer: role, transfer, routing
 - How a router works: forwarding, buffering, ...
 - IP: Internet Protocol
 - Routing algorithms
 - Routing in Internet

Broadcast and multicast

transport
network
link
physical

application

/ 53 – Rémi Emonet – Computer Networks

Router: reminders

The Network Layer (IP)

- Goal: transport segments (TCP, UDP) between hosts
 - un-guaranteed transport
- Sending a segment
 - encapsulation in a datagram
- Receiving a segment
 - de-encapsulation of the
 - delivery of the segment to the transport layer
- At the core of the network
 - in all routers
 - routers manipulate IP headers

• Router: routes/transfers packets

forwarding table

3 packets of L bits

- Router: stores and forward
 - unit of transfer: a packet (datagram)
 - receives a whole packet
 - then, forwards it
- Queuing (buffering) if the output link is busy

7 / 53 – Rémi Emonet – Computer Networks (part 4

5 / 53 – Rémi Emonet – Computer Networks (part 4)

Datagram Network

- No concept of connection in the network
- Routers ignore (transport layer) connections
- Send only datagram
- Packet transfer based on the destination IP address
- Transfer using forwarding tables
 - association IP → interface (link)
 - created by routing algorithms

/ 53 - Rémi Emonet - Computer Networks (part 4)

Forwarding Tables: address ranges

- 4 millions possible addresses ⇒ using ranges
- Default destination

emi Emonet – Computer Networks (part 4)

Forwarding Tables: longest prefix

IP Address Range	Interface
11001000 00010111 00010*** *******	0
11001000 00010111 00011000 *******	1
11001000 00010111 00011*** *******	2
******* ******* ******* *******	3

- Representing ranges as prefixes
 - routing using the longest-common-prefix rule
- Often, storing as a prefix-tree (or trie)
 - faster lookup and retrieval
 - more compact representation

11 / 53 – Rémi Emonet – Computer Networks (part 4

© <u>0</u>

@ **①**

Datagram Network and Alternatives

- Internet (datagram)
 - exchanges between computers (hosts)
 - best effort: no guarantees, no hard constraints
 - heterogeneity (a lot of different types of links)
 - heterogeneity → difficulty to offer a uniform service
 - intelligent hosts (computers)
 - can adapt, do verification, correct errors
 - complex hosts ⇒ simpler network
- ATM (Asynchronous Transfer Mode, network of virtual circuits)
 - inspired by phone infrastructures
 - hard constraints
 - strict delays
 - guaranteed transfer
 - simplistic terminals (phones)
 - complexity moved inside the network
- NB: we won't cover virtual circuit networks

12 / 53 – Rémi Emonet – Computer Networks (part

Computer Networks 4: Plan

- Goal: network layer
 - understand the principles of the network layer
 - understand their implementation inside Internet
- Overview
 - Network layer: role, transfer, routing
 - How a router works: forwarding, buffering, ...
 - IP: Internet Protocol
 - Routing algorithms
 - Routing in Internet
 - Broadcast and multicast

18 / 53 - Rémi Emonet - Computer Networks (part 4

Computer Networks 4: Plan

- Goal: network layer
 - understand the principles of the network layer
 - understand their implementation inside Internet
- Overview
 - Network layer: role, transfer, routing
 - How a router works: forwarding, buffering, ...
 - IP: Internet Protocol
 - Routing algorithms
 - Routing in Internet
 - Broadcast and multicast

Internet Protocol: headers

Bit	0 1 2 3	4 5 6 7	8 9 10 11 12 13	14 15	16 17 18	19 20 21 22 23 24 25 26 27 28 29 30 31	
0	Version	IHL	DSCP	ECN		Total Length	
32	Identification		Flags	Fragment Offset			
64	Time To Live		Protocol		Header Checksum		
96	Source IP Address						
128	Destination IP Address						
160	Options (if IHL > 5)						
	Data						
	(UDP Segment, TCP Segment, etc)						

- Total length: size in bytes
- Time to live (TTL): number of routers before dropping a packet
- Protocol: protocol used in the transport layer
- Source IP and destination IP address: 32-bit addresses of hosts
- Fragment...: split of a single datagram in several datagrams

IPv4 Addressing

- IPv4 address
 - 32 bits
 - identifies a network interface (network adapter on a host, port on a router, ...)
 - unique in the network (unless there is some NAT)
- IPv4 addressing: example
 - 223.1.1.1 (4 bytes)
 - 11011111 00000001 00000001 00000001 (binary)
- Interface
 - connection between a host (or router) and a physical link
 - hosts often have one or more interfaces at a given instant (wifi, cable, loopback, ...)
 - routers most of the time have multiple interfaces
- Important: each interface has an IP address

a sub-network

- Sub-network
 - group of addresses
 - physical access without a router
 - common most significant bits
- CIDR: Classless InterDomain Routing
 - subnet mask
 - example: 192.168.10.0/24
 - 24-bit subnet
 - 8-bit for hosts in the subnet
 - example: 223.1.16.0/23

22 / 53 - Rémi Emonet - Computer Networks (part 4

23 / 53 – Rémi Emonet – Computer Networks (part 4)

How to obtain an IP address? What entities and/or machines are involved in giving you your IP?

Dynamic Host Configuration Protocol

- Goal: dynamic allocation of IP addresses (by a server)
 - IP address allocation
 - bail renewal
 - reuse of unused addresses
- Principles
 - the client broadcasts "DHCP discover"
 - the server answers with an address in a "DHCP offer"
 - the client asks the address with "DHCP request"
 - the server acknowledges with "DHCP ack"
- Other information sent by the server
 - gateway address
 - name and IP of DNS servers
 - subnet mask
- DHCP uses UDP

53 – Rémi Emonet – Computer Networks (part 4)

25 / 53 – Rémi Emonet – Computer Networks (part 4)

How does the client communicates with the DHCP server? How to use UDP without IP address?

/ 53 – Rémi Emonet – Computer Networks (part 4)

Hierarchical Addressing and Aggregation

- Efficient and compact routing handling
- Based on the longest common prefix principle

© <u>0</u>

Allocation of IP Ranges

- How do an Internet Service Provider (ISP) get its IP addresses?
- ICANN: Internet Corporation for Assigned Names and Numbers
 - allocation of IP addresses
 - management of DNS
 - allocation of domain names
 - conflict resolution
- Typical situation: quick summary
 - the ICANN allocates IP ranges to ISPs
 - ISPs allocates sub-ranges to their clients
 - a DHCP server is configured for a given address range
 - the DHCP server allocates addresses dynamically to the hosts

NAT: Network Address Translation

- Motivation: many local networks with multiple devices
 - a single address given by the ISP (not a big range)
 - freedom to reorganize a local network
 - freedom to change ISP without changing the local network
 - make local hosts invisible from the outside (security)
- Generic principle, having an external IP ext-IP
 - on connection from int-IP1:port1, select a free external port port2
 - change source in outgoing messages int-IP1:port1 → ext-IP:port2
 - change target in inbound messages ext-IP:port2 → int-IP1:port1
 - and more
 - static port forwarding to allow connections from outside
 - various "optimization"
 - traversal: ICE, STUN, TURN, ...
- Private subnets
 - **1**0.0.0.0/8; 172.16.0.0/12 (255.240.0.0); 192.168.0.0/16
- Problem?

@ **①**

@ **①**

29 / 53 – Rémi Emonet – Computer Networks (part 4

ICMP: Internet Control Message Protocol

- Used between hosts and routers
 - "echo", used by the ping command
 - used also by traceroute
 - designed for error reporting
- ICMP Message
 - on top of IP
 - content
 - type
 - and the first 8 bytes of the datagram that caused the error

Traceroute and ICMP

- Successive emission of UDP segments
 - with a random port
 - first with TTL = 1
 - second with TTL = 2
 - third with TTL = 3
 - ...
- ullet When datagram n arrives at router n
 - the router drops the datagram
 - the router sends an ICMP(type=11, code=0) (TTL expired)
 - the message contains the router address
- RTT = time between UDP emission and ICMP message reception
- Stopping criterion
 - we reached the destination
 - materialized by ICMP(type=3, code=3) (dest. port unreachable)

IPv6: quick overview

- Main motivations
 - no more IP addresses...
 - IPv4 is sub-optimal at the header level (options, ...)
- Differences with IPv4
 - 128-bit addresses (instead of 32 bits)
 - fixed-size headers (40 bytes)
 - no fragmentation allowed
 - ICMPv6
 - "packet too big"
 - multicast groups
 - no more checksum
- Transition
 - progressive transition
 - cohabitation of the two protocols
 - IPv4 tunnels to connect IPv6 islands
 - IPv6 datagram inside a IPv4 datagram
 - slow adoption

32 / 53 - Rémi Emonet - Computer Networks (part 4)

Computer Networks 4: Plan

- Goal: network layer
 - understand the principles of the network layer
 - understand their implementation inside Internet
- Overview
 - Network layer: role, transfer, routing
 - How a router works: forwarding, buffering, ...
 - IP: Internet Protocol
 - Routing algorithms
 - Routing in Internet
 - Broadcast and multicast

Computer Networks (part 4)

Abstraction: graph of routers

- Cost: different cases
 - constant to 1
 - inverse of the bandwidth
 - depending on the congestion
 - combinations of these
- Goal: find the shortest path

34 / 53 - Rémi Emonet - Computer Networks (part 4)

<u>_ 0</u>_ _ 0

@ **①**

Routing Algorithms

- Dijkstra: link-state (wikipedia: Dijkstra's algorithm)
 - global algorithm
 - requires knowledge about the complete network topology
- Distance Vector
 - distributed/decentralized algorithm
 - knowledge of the neighbors only
 - iterative process
- Periodic updates
 - necessary when the topology changes
 - necessary when costs change

35 / 53 – Rémi Emonet – Computer Networks (part 4)

<u>©</u> 0

Distance Vector (DV)?

- Each node estimates the optimal distance
 - from: itself and each of its neighbors
 - to: all nodes
- Each node communicates
 - to each of its neighbors
 - a vector of distancesfrom: itself
 - to: all (known) nodes
- Message-passing algorithm
 - distributed optimization, iterative process
 - message exchange between neighbors
 - on reception by x of a DV from a neighbor

 - + in case of change, notification to all neighbors
- Example with 4 nodes: a, b, c, d

@ **①**

Distance Vector (DV)

- on reception by *x* of a DV from a neighbor
 - $\forall y, D_x(y) = \min_{x \in \mathcal{X}} (c(x, y) + D_y(y)) \Rightarrow \text{notification on change}$

38 / 53 – Rémi Emonet – Computer Networks (part 4)

Computer Networks 4: Plan

- Goal: network layer
 - understand the principles of the network laver
 - understand their implementation inside Internet
- Overview
 - Network layer: role, transfer, routing
 - How a router works: forwarding, buffering, ...
 - IP: Internet Protocol
 - Routing algorithms
 - Routing in Internet
 - Broadcast and multicast

Hierarchical Routing and Autonomous Systems (AS)

- Routing algorithms
 - do not work with 2³² addresses
 - too many entries, too much data exchanged (size of DVs)
- Using address ranges
- Internet = network of networks
 - autonomy of each network
 - control of the internal routing
- Aggregation of routers in regions or Autonomous Systems (AS)
 - internal routing algorithms: intra-AS protocols
 - gateway router at the border of an AS
 - global routing algorithms: inter-AS protocols
- Forwarding tables = mixed of info from different algorithms
 - intra-AS ⇒ table for internal destinations
 - inter-AS ⇒ table for remote destinations

Routing to Another AS: inter-AS protocols

- Router A from AS2 receives a packet for a remote destination
 - to which router should it be forwarded? B or C?
- Inter-AS protocol: AS2 must
 - learn what addresses can be reached via AS1 and AS3
 - propagate this information, internally and externally
- When multiple possibilities, select the faster AS-exit

Routing Protocols for Internet

- Inside an AS (intra-AS), Interior Gateway Protocols
 - RIP: Routing Information Protocol
 - distance vector, with a cost of 1 for each link
 - IGRP: Interior Gateway Routing Protocol (kind of DV, by Cisco)
 - OSPF: Open Shortest Path First, link-state (Dijkstra)
 - IS-IS: Intermediate System Intermediate System (Dijkstra)
- Between AS (inter-AS), Border Gateway Protocol (BGP)
 - cement between multiple AS
 - interconnection
 - routing policies (network management) Do we accept to transfer traffic for another given entity?
 - - exposes to another AS the accessible prefixes ⇒ promise that we will forward these packets
 - receives (from another AS) what prefixes are accessible
 - exchanging "routes": prefixes + list of AS to traverse
 - iBGP
 - propagates this information inside an AS

Intra-AS Differences and Details

- RIP: Routing Information Protocol
 - distance vector, constant cost of 1
 - sends DV every 30 seconds
 - send at most 25 sub-networks (prefixes)
 - uses UDP, executable: routed
- IGRP: Interior Gateway Routing Protocol
 - proprietary
 - distance vector
 - advertises every 90 seconds
 - hop count of 100
 - multiple metrics
- OSPF: Open Shortest Path First
 - link-state (Dijkstra)
 - all routers of the AS learn the topology
 - directly over IP
- IS-IS: Intermediate System to Intermediate System
 - very close to OSPF

Inter-AS and Routing Policies (political)

- X has two providers (redundancy, failure safety)
 - X does not want to be a "pipe" between B and C
 - ⇒ X do not advertise itself as a route between B and C
- · Advertisement propagation
 - A advertises route AW to B
 - B advertises route BAW to X
- B advertises route BAW to C?
 - no! it paid to provide a service to its clients, not to others
 - forces the C → W traffic to pass through A directly

Computer Networks 4: Plan

- Goal: network layer
 - understand the principles of the network layer
 - understand their implementation inside Internet
- Overview
 - Network layer: role, transfer, routing
 - How a router works: forwarding, buffering, ...
 - IP: Internet Protocol
 - Routing algorithms
 - Routing in Internet
 - Broadcast and multicast

@ **①**

Broadcast and Multicast

- Motivation
 - send a message to all hosts in a network
 - or, to a set of hosts (multicast)
- Duplication by the source
 - explicitly sending to all hosts
 - inefficient...
 - who is "all hosts"?

operational problems, issues?

46 / 53 – Rémi Emonet – Computer Networks (part 4)

- Flooding
 - each router sends a copy of the packet on each link
 - problems with cycles and flooding (too many copies)
- · Controlled flooding
 - a node only broadcasts a message the first time
 - need to keep the message identifier for each broadcasted message
 - or, reverse shortest path, does the message arrives from the shortest path?
- Use of a spanning tree
 - tree: no cycles
 - spanning: covers all nodes
 - to be created automatically
- IP Broadcasting (IPv4)
 - an address representing all hosts
 - "all ones" host
 - e.g. 192.168.255.255 when in a subnet 192.168.0.0/16
 - special case: 255.255.255 means only this network

49 / 53 - Rémi Emonet - Computer Networks (part 4)

IP Multicasting

- 224.0.0.0/4
 - set of multicast reserved addresses
- 224.0.0.0/24
 - only for the local network
 - routers should not forward these
- 224.0.1.0/24
 - some standard protocols (PTP, service discovery, ...)
- 239.0.0.0/8
 - private in an organization
 - blocked by routers at the frontier
- and more...

50 / 53 - Rémi Emonet - Computer Networks (part 4)

© <u>0</u>

@ **①**

Computer Networks 4: Plan

- Goal: network layer
 - understand the principles of the network layer
 - understand their implementation inside Internet
- Overview
 - Network layer: role, transfer, routing
 - How a router works: forwarding, buffering, ...
 - IP: Internet Protocol
 - Routing algorithms
 - Routing in Internet
 - Broadcast and multicast

51 / 53 – Rémi Emonet – Computer Networks (part

