IoT System Design

Diagram

Below is the IoT System Design Diagram, which illustrates the system's components and data flow:

https://drive.google.com/file/d/1Mcdfp0UCmfV8SBa -pnz1XoiF7pxiWfM/view?usp=drive link

1. Sensors

The IoT system uses two key sensors embedded in the smartphone to collect activity data:

- **Accelerometer**:
- **Type:** Measures linear acceleration along the X, Y, and Z axes.
- **Specifications:**
- Range: ±2g to ±16g.
- Resolution: Up to 16 bits.

- Sampling Frequency: 50 Hz.
- **Role:** Captures movement data to detect changes in user activity patterns (e.g., walking, sitting).
- **Limitations:**
- Sensor noise can affect accuracy.
- Continuous operation may drain the device's battery.
- Requires periodic calibration to maintain accuracy.
- **Gyroscope**:
- **Type:** Measures angular velocity along the X, Y, and Z axes.
- **Specifications:**
- Range: ±250°/s to ±2000°/s.
- Resolution: Up to 16 bits.
- Sampling Frequency: 50 Hz.
- **Role:** Tracks rotational movements, complementing accelerometer data to classify complex activities.
- **Limitations:**
- Noise from small vibrations may cause inaccuracies.
- Higher power consumption compared to accelerometers.
- Requires periodic recalibration.

2. Edge Processing

The smartphone acts as the edge device in this system, performing basic data preprocessing tasks before transmission to the cloud.

- **Purpose of Edge Processing**:
- Reduces the size of raw data, minimizing network usage.
- Filters out noise to improve data quality.
- **Tasks Performed**:
- Combine accelerometer and gyroscope readings into a single magnitude metric:

```
\[ Magnitude = \sqrt{X^2 + Y^2 + Z^2} \
```

- Apply a low-pass filter to remove noise.
- Segment time-series data into windows for activity classification (e.g., 5-second intervals).
- **Requirements**:
- Minimum hardware specifications:
- 2 GB RAM.
- Quad-core processor.
- Software for real-time computation (e.g., lightweight Python libraries like NumPy and SciPy).

3. Networking

The processed data is transmitted from the smartphone to cloud storage via two networking options:

- **Short-Range Communication**:
- **Method:** Bluetooth.
- **Role:** Transfers data to nearby edge gateways or other devices.
- **Limitations:** Limited range (10-30 meters).
- **Long-Range Communication**:
- **Method:** Wi-Fi.
- **Role:** Sends data directly to cloud storage.
- **Limitations:** Dependent on network stability and bandwidth availability.
- **Messaging Protocol**:
- HTTP or MQTT is used to communicate between the smartphone and cloud storage.
- MQTT is preferred for low-latency real-time updates.
- **Transmission Frequency**:
- Processed data is transmitted every 10 seconds to ensure near real-time updates.
- **Security Measures**:
- Data is encrypted during transmission using HTTPS to ensure privacy and security.

4. Data Storage and Processing

The system uses cloud storage and processing services to manage and analyze data.

- **Storage**:
- **Platform: ** AWS S3 or Google Cloud Storage.
- **Scalability:** Supports distributed storage to handle growing datasets.
- **Backup and Redundancy:** Implements automated backups to prevent data loss and ensure reliability.
- **Processing**:
- **Platform: ** Python-based tools such as TensorFlow, Pandas, and NumPy.
- **Tasks Performed:**
 - Train machine learning models for activity classification.
 - Generate insights, such as predicting sedentary behavior trends.

- **Insights Generated**:
- Example: Predict sedentary behavior patterns and send alerts to encourage movement.
- Classify activities in real time (e.g., walking, sitting).
- Provide personalized health recommendations based on activity patterns (e.g., reminders to exercise).

Summary

This IoT system integrates multiple components, including sensors, edge devices, networking, and cloud processing, to deliver real-time health insights. The careful design of each element ensures efficiency, scalability, and reliability. Advanced security measures, periodic backups, and redundancy further enhance the system's robustness and usability.