

КОЛЛИНЕАРНОСТЬ. ОБРАБОТКА КАТЕГОРИАЛЬНЫХ ПЕРЕМЕННЫХ

КУХАЛЬСКИЙ НИКОЛАЙ ГЕННАДЬЕВИЧ

Вопросы занятия

- 1. Коллинеарность;
- 2. Обработка категориальных переменных:
- One hot encoding
- Counts
- Weights of evidence

НЕЛИНЕЙНЫЕ ДАННЫЕ

НЕЛИНЕЙНЫЕ ДАННЫЕ

Графики ошибок для линейной и квадратичной регрессии

КОРРЕЛЯЦИЯ ОШИБОК

Ошибки, полученные при моделировании временной последовательности

ho - уровень корреляции ошибок между смежными временными точками

КОРРЕЛЯЦИЯ ОШИБОК

- Оцененная std. err. меньше чем реальная
- Параметры рассчитываются точнее, чем на самом деле
- Чаще отвергаем Но
- Существуют тесты для определения корреляции ошибок

НЕПОСТОЯННОЕ ОТКЛОНЕНИЕ ОШИБКИ

Гетероскедастичность можно обнаружить по форме изображения ошибок (похожа на воронку)

НЕПОСТОЯННОЕ ОТКЛОНЕНИЕ ОШИБКИ

Лечится преобразованием предсказываемых данных

ВЫБРОСЫ

ВЫБРОСЫ

- На графике Fitted value-Residual выброс не всегда очевиден
- Вместо Residual используют Studentize residual

$$e_i^{st} = \frac{e_i}{SE(\hat{y})}$$

• Возможный выброс, если $e^{st_i} > 3$

HIGH-LEVERAGE POINTS

- Необычное значение уі выброс
- Необычное значение x_i точка с высоким коэффициентом усиления
- HL-точка 41, влияет на результирующую модель намного сильнее, чем точкавыброс 20

HIGH-LEVERAGE POINTS

LEVERAGE STATISTICS

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{i'=1}^n (x_{i'} - \bar{x})}$$

• Сильная корреляция между двумя и более предикторами

Модель: предсказание кредитного баланса

Контуры RSS в зависимости от значений $oldsymbol{eta}$ для Age, Limit и Rating

- Увеличивает std. err.
- Страдает t-statistics (не можем отвергнуть H_0)
- Простой способ определения матрица корреляций (не работает с мультиколлинеарностью)
- Variance inflation factor:

$$VIF(\hat{\beta}_j) = \frac{1}{1 - R_{X_j|X_{-j}}^2}$$

 $R^2_{X_j \mid X_{-j}}$ - R^2 посчитанный для регрессии от X_{j} относительно всех остальных

• VIF = 1 - нет коллинеарности

Решение коллинеарности

- Удалить один из атрибутов
- Скомбинировать атрибуты

cars.csv

Виды трансформации категориальных переменных

- Label encoding
- One hot encoding
- Counts (Likelihood encoding)
- Weights of evidence (WOE)

Encoding

Label Encoding

Food Name	Categorical #	Calories
Apple	1	95
Chicken	2	231
Broccoli	3	50

One Hot Encoding

Apple	Chicken	Broccoli	Calories
1	0	0	95
0	1	0	231
0	0	1	50

Counts (Likelihood encoding)

- Для каждой категории считаем среднюю долю целевого события
- С математической точки зрения условная вероятность целевого события при известной категории соответствующей фичи
- Получается в какой-то степени смещенный результат
- Желательно делать KFold, исключая возможность переобучения

Weight of Evidence

$$Weight of Evidence = ln(\frac{DistributionGood_i}{DistributionBad_i})$$

где:

DistrGood — отношение числа хороших наблюдений, имевших значение атрибута из данного бина, к общему числу хороших наблюдений;

DistrBad — отношение числа плохих наблюдений, имевших значение атрибута из данного бина, к общему числу плохих наблюдений.

$$IV = \sum (DistributionGood_i - DistributionBad_i) \times WOE_i$$

- оценка информативности переменной.

На основе коэффициентов WoE вычисляется величина, определяющая значимость признака в модели бинарной классификации, называемая информационным индексом (IV)

cars.csv

Taxi_Moscow.ipynb

Paribas.csv

КОЛЛИНЕАРНОСТЬ. ОБРАБОТКА КАТЕГОРИАЛЬНЫХ ПЕРЕМЕННЫХ

КУХАЛЬСКИЙ НИКОЛАЙ ГЕННАДЬЕВИЧ