Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2019-1

[Cod: CM334] [Curso: Análisis Numérico I]

Práctica Dirigida N^o 4

1. Supongamos que usamos una computadora con aritmética de punto flotante que tiene una precisión de 4 dígitos decimales con el redondeo. Resuelva el siguiente sistema lineal usando la eliminación de Gauss con pivote fila:

$$\begin{bmatrix} 6 & 2 & 2 \\ 2 & \frac{2}{3} & \frac{1}{3} \\ 1 & 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$$

¿Cuáles son el error absoluto y el error relativo?

2. Sea $A \in \mathbb{R}^{N \times N}, \ N = \sum_{i=1}^m n_i, \ n_i \in \mathbb{N}, \ 1 \leq i \leq m \ \mathrm{y} \ b \in \mathbb{R}^N$

$$A = \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1m} \\ A_{21} & A_{22} & \dots & A_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \dots & A_{mm} \end{bmatrix}, \quad b = (b_1, b_2, \dots, b_m)^T$$

donde $A_{ij} \in \mathbb{R}^{n_i \times n_j}$, $1 \le i, j \le m$, $b_i \in \mathbb{R}^{n_i}$, $1 \le i \le m$.

- a) Considere la solución del sistema lineal algebraico Ax = b. Utilice una estructuración correspondiente del vector de solución $x \in \mathbb{R}^N$ y proporcione una variante de bloque de eliminación de Gauss.
- b) Dar una variante de bloque de la descomposición de LR para matrices tridiagonal por bloques $A \in \mathbb{R}^{N \times N}$, i.e., $A_{ij} = 0$ para $|i j| \ge 2$, $1 \le i, j \le m$.
- 3. Sea $A \in \mathbb{R}^{N \times N}$, $N = n_1 + n_2$, $1 \le i \le 2$ una matriz por bloques definida positiva simétrica de la forma

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^T & A_{22} \end{bmatrix}$$

Demuestre que $S=A_22-A_{12}^TA_{11}^{-1}A_{12}$ es también definida positiva simétrica.

4. Una matriz $A \in \mathbb{R}^{n \times n}$ se denomina matriz de Toeplitz simétrica normalizada, si

$$A_{ij} = r_{|i-j|}, \quad 1 \le i, j \le n$$

donde $r_0 = 1$ y $r = (r_1, r_2, \dots, r_n)^T \in \mathbb{R}^n$ tal que A es definida positiva. La solución del sistema algebraico lineal Ax = -r, se conoce como el problema de Yule-Walker, que desempeña un papel importante en los algoritmos para la reconstrucción de señales ruidosas. Considere una partición de la matriz A tal como

$$A = \begin{bmatrix} \tilde{A} & P_{n-1}\tilde{r} \\ \tilde{r}^T & 1 \end{bmatrix}$$

donde $\tilde{A} \in \mathbb{R}^{(n-1)\times(n-1)}$, $\tilde{r} = (r_1, r_2, \dots, r_{n-1})^T$ y

$$P_{n-1} = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 1 & 0 & 0 & \dots & 0 & 0 & 0 \end{bmatrix}$$

Utilice una partición correspondiente del lado derecho y del vector de solución. Desarrolle un algoritmo recursivo para el problema de Yule-Walker que calcula la solución para la dimensión n, siempre que se conozca la solución para la dimensión n-1.

- 5. Suponga que $A \in \mathbb{R}^{n \times n}$ es semidefinida positiva de rango r con r < n. Demuestre las siguientes afirmaciones:
 - a) Existe una matriz triangular superior R con elementos diagonales no negativos tal que $A=R^TR$.
 - b) Existe una matriz de permutación P tal que P^TAP tiene una descomposición de Cholesky única de la forma

$$P^T A P = T^T R, \quad R = \begin{bmatrix} R_{11} & R_{12} \\ 0 & 0 \end{bmatrix}$$

donde R_{11} es una matriz triangular superior $r \times r$ con elementos diagonales positivos.

- 6. Demuestre que si Q es unitaria si y solo si sus filas constituyen un conjunto ortonormal.
- 7. Sea A una matriz de $m \times n, b$ un vector $m \times 1$ y $\alpha > 0$. Utilizando la norma euclidiana, defina:

$$F(x) = ||Ax - b||_2^2 + \alpha ||x||_2^2.$$

Demuestre que F(x) alcanza un mínimo cuando x es solución de la ecuación

$$(A^TA + \alpha I)x = A^Tb$$

Demuestre que cuando x se define de esa manera,

$$F(x+h) = F(x) + (Ah)^{T} + \alpha h^{T} h$$

8. Demuestre que si Q es unitaria, entonces para todo x y todo y

$$||x||_2 = ||Qx||_2 = y \quad \langle x, y \rangle = \langle Qx, Qy \rangle$$

9. Programe el algoritmo de Gram-Schmidt y el algoritmo modificado de Gram-Schmidt y pruébelos para ver cual es mejor. La primera prueba podría comprender una matriz de 20×10 con elementos aleatorios uniformemente distribuidos en el intervalo [0,1]. La segunda prueba podría comprende una matriz de 20×10 con elementos generados por una función elemental, como por ejemplo

$$a_{ij} = \left(\frac{2i - 2j}{19}\right)^{j-1}$$

En cada caso genere a partir de A una matriz B cuyas columnas deberán ser ortonormales. Examine B^TB para ver cuan próxima es a la matriz identidad.

10. Encuentre un polinomio de grado 3 que ajuste

11. Encuentre un polinomio de grado 4 que ajuste

12. Encuentre una función potencia $y = ax^n$ que ajuste

13. Encuentre una función exponencial $y=ae^{bx}$ que ajuste

14. Encuentre una función $y = axe^{bx}$ que ajuste

15. Encuentre una función $k = \frac{ac^2}{b+c^2}$ que ajuste

16. Encuentre una función $x=e^{\frac{y-b}{a}}$ que ajuste

UNI, 26 de abril del 2019*

 $^{^*}$ Hecho en L $^{\!\!A}$ TFX