Properties of Operators

Commutativity:

- $\circ \quad P \land Q = Q \land P, \text{ or }$
- \circ P \vee O = O \vee P.

• Associativity:

- $\circ \quad (P \land Q) \land R = P \land (Q \land A)$
 - R),
- $\circ \quad (P \lor Q) \lor R = P \lor (Q \lor R)$

• Associativity:

- $\circ \quad (P \land Q) \land R = P \land (Q \land A)$
 - R),
- $\circ \quad (P \lor Q) \lor R = P \lor (Q \lor Q)$

Distributive:

- $\circ \quad P \wedge (Q \vee R) = (P \wedge Q) \vee (P \wedge R).$
- $\circ \quad P \lor (Q \land R) = (P \lor Q) \land (P \lor R).$

o DE Morgan's Law:

- $\circ \quad \neg (P \land Q) = (\neg P) \lor (\neg Q)$
- $\circ \neg (P \lor Q) = (\neg P) \land (\neg Q).$

O Double-negation elimination:

- Identity element:
 - \circ P \wedge True = P,
 - \circ P \vee True= True.

INFERENCE

- 1. Generating the conclusions from evidence and facts is termed as Inference.
- 2. Rules
 - 2.1. **Implication:** represented as $P \rightarrow Q$
 - 2.2. Converse: The converse of implication, which means the right-hand side proposition goes to the left-hand side and vice-versa. It can be written as $Q \rightarrow P$.
 - 2.3. Contrapositive: The negation of converse is termed as contrapositive : $\neg Q \rightarrow \neg P$.
 - 2.4. **Inverse:** The negation of implication is called inverse: $\neg P \rightarrow \neg Q$.

P	Q	P → Q	Q→ P	$\neg Q \rightarrow \neg P$	$\neg P \rightarrow \neg Q$.
T	T	T	T	T	T
T	F	F	T	F	T
F	T	T	F	T	F
F	F	T	T	T	T

Types of Inference Rules

- 1. Modus Ponens
- 2. Modus Tollens
- 3. Hypothetical Syllogism
- 4. Disjunctive Syllogism
- 5. Addition
- 6. Simplification
- 7. Resolution

Modus Ponens

It states that if P and P \rightarrow Q is true, then we can infer that Q will be true. It can be represented as:

Notation for Modus ponens:
$$\frac{P \rightarrow Q, P}{\therefore Q}$$

Example:

Statement-1:	"If	I	am	sleepy	then	I	go	to	bed"	==>	$P \rightarrow$	Q
Statement-2:			''I	an	n		sleepy	,11		==>		P
Conclusion:		"I		go	t	0	1	bed."		==>		Q.

Hence, we can say that, if $P \rightarrow Q$ is true and P is true then Q will be true.

Proof by Truth table:

P	Q	P → Q
0	0	0
0	1	1
1	0	0
1	1	1 ←

Modus Tollens

It state that if $P \rightarrow Q$ is true and $\neg Q$ is true, then $\neg P$ will also true. It can be represented as:

Notation for Modus Tollens: $P \rightarrow Q, \sim Q \over \sim P$

Statement-1: "If I am sleepy then I go to bed" \Longrightarrow P \rightarrow Q

Statement-2: "I do not go to the bed."==> \sim Q

Statement-3: Which infers that "I am not sleepy" $=> \sim P$

Proof by Truth table:

P	Q	~P	~Q	P -	→ Q
0	0	1	1	1	+
0	1	1	0	1	
1	0	0	1	0	
1	1	0	0	1	

Hypothetical Syllogism

It states that if $P \rightarrow R$ is true whenever $P \rightarrow Q$ is true, and $Q \rightarrow R$ is true.

Statement-1: If you have my home key then you can unlock my home. $P \rightarrow Q$

Statement-2: If you can unlock my home then you can take my money. $\mathbf{Q} \rightarrow \mathbf{R}$

Conclusion: If you unlock my home key then you can take my money. $P \rightarrow R$

Proof by truth table:

P	Q	R	$P \rightarrow Q$	$Q \rightarrow R$	P	r o R
0	0	0	1	1	1	-
0	0	1	1	1	1	•
0	1	0	1	0	1	
0	1	1	1	1	1	•
1	0	0	0	1	1	
1	0	1	0	1	1	
1	1	0	1	0	0	
1	1	1	1	1	1	-

Disjunctive Syllogism

It states that if $P \lor Q$ is true, and $\neg P$ is true, then Q will be true

Notation of Disjunctive syllogism:
$$\frac{P \lor Q, \neg P}{Q}$$

Example:

Statement-1: Today is Sunday or Monday. $==>P \lor Q$ **Statement-2:** Today is not Sunday. $==> \neg P$

Conclusion: Today is Monday. ==> Q

Proof by truth-table:

Р	Q	$\neg P$	$P \lor Q$
0	0	1	0
0	1	1	1 4
1	0	0	1
1	1	0	1

Addition

It states that If P is true, then $P \lor Q$ will be true

Notation of Addition:
$$\frac{P}{P \vee Q}$$

Example:

Statement:Ihaveavanillaice-cream.==>PStatement-2:IhaveChocolateice-cream.

Conclusion: I have vanilla or chocolate ice-cream. \Longrightarrow (P \vee Q)

Proof by Truth-Table:

P	Q	$P \lor Q$
0	0	0
1	0	1 -
0	1	1
1	1	1 4

Simplification

It states that if $P \land Q$ is true, then Q or P will also be true

Notation of Simplification rule:
$$\frac{P \wedge Q}{Q}$$
 Or $\frac{P \wedge Q}{P}$

Proof by Truth-Table:

P	Q	$P \wedge Q$
0	0	0
1	0	0
0	1	0
1	1	1

Resolution

It states that if PVQ and $\neg PAR$ is true, then QVR will also be true

Notation of Resolution
$$P \lor Q, \neg P \land R$$

$$Q \lor R$$

Proof by Truth-Table:

P	¬ P	Q	R	$P \lor Q$	¬ P/AR	$Q \vee R$
0	1	0	0	0	0	0
0	1	0	1	0	0	1
0	1	1	0	1	1	1 ←
0	1	1	1	1	1	1 ←
1	0	0	0	1	0	0
1	0	0	1	1	0	1
1	0	1	0	1	0	1
1	0	1	1	1	0	1 4