1. Analyze the following circuit:

(a) What power does the source supply?

$P_s =$	
---------	--

(b) What does the voltmeter read?

$$V_{60} =$$

2. Analyze the following circuit:

	>			
120V	\geq 30Ω	\geq 60Ω	\geq 40Ω	$\gtrsim_{20\Omega}$

(a) Find the current through and power absorbed by each resistor.

(b) What does the ideal anmeter read?

$I_{=}$	
---------	--

3. Given the following 4-band resistor:

(a) What is the nominal resistance value? What would be the maximum possible resistance value (at the edge of maximum tolerance)?

 $R_{nominal} =$

 $R_{max} =$

(b) What would be the bands for a 150Ω resistor with 20% tolerance?

band 1 =

band 2 =

band 3 =

band 4 =

- 4. Given that the power absorbed by a resistor is $P = \frac{V^2}{R} = I^2 R$:
 - (a) How much voltage can you put across a 220Ω , 1W resistor?

V =

(b) How much current can you put through a 100Ω , 2W resistor?

I =