Area-level excess mortality in times of COVID-19 in Switzerland

geographical, socioeconomic and political determinants

Julien Riou, Radoslaw Panczak, Garyfallos Konstantinoudis, Matthias Egger

2 November 2023

Background

- ► Excess all-cause mortality is central to assessing the impact of the COVID-19 pandemic
- Spatial granularity: country, region, canton, municipality? (Staub et al. 2022, Konstantinoudis et al. 2022, Riou et al. 2023)
- Association with local characteristics (Bertoli et al. 2020, Brandily et al. 2021)

Study aims

- 1. Estimate excess all-cause mortality at the municipality level
- 2. Explore correlations with local characteristics:
- urbanisation
- language region
- vicinity of international borders
- socioeconomic position
- ▶ voting behavior for COVID-19 referendums

Data

- ➤ All-cause deaths by week, municipality, age, sex for 2011-2020 from BFS (through Swiss National Cohort)
- ► Temperature from ERA5

The usual approach:

- ▶ fit a regression model on 2011-2019
- predict expected deaths for 2020 by week, municipality, age, sex
- excess = observed expected
- **problem**: difficult to work with so many strata (2,141 municipalities, 4 age groups, 2 sex groups → 17,128 strata)

The chosen solution was to use downscaling:

- estimate expected at a higher level (canton) for the full year 2020
- distribute the expected deaths from the cantonal to the municipality level according to the observed distribution of deaths
- random draws from a multinomial distribution repeated 100 times
- take the median

Age group	Sex	Observed	Expected (median)	Expected (lower bound)	Expected (upper bound)	Relative excess (median)	Relative excess (lower bound)	Relative excess (upper bound)
40-59	Female	1,713	1,769	1,642	1,895	0.97	0.90	1.04
40-59	Male	2,966	2,230	2,074	2,396	1.33	1.24	1.43
60-69	Female	2,611	2,592	2,421	2,753	1.01	0.95	1.08
60-69	Male	4,478	3,201	3,013	3,449	1.40	1.30	1.49
70-79	Female	6,203	5,028	4,708	5,376	1.23	1.15	1.32
70-79	Male	8,972	5,953	5,615	6,310	1.51	1.42	1.60
+08	Female	27,541	17,205	16,453	18,284	1.60	1.51	1.67
80+	Male	20,292	17,677	16,791	18,900	1.15	1.07	1.21
Total	Total	74,776	55,676	53,865	57,821	1.34	1.29	1.39

Mapping raw excess deaths by municipality:

▶ does not account for population size

Scale by population:

▶ does not account for population structure (age, sex. . .)

Scale by expected mortality (\rightarrow relative excess mortality):

problems with zero denominators and small area estimation

Step 2: local correlates of excess mortality

Explore correlations with local covariates:

- > yet another Poisson regression model
- let $O_{t,i,j,k}$ be the number of observed deaths during week t in municipality i, age group j and sex group k
- \triangleright depends on the number of expected deaths $E_{t,i,j,k}$
- ▶ and a log-linear predictor $\log \lambda = \alpha + \beta X$

$$O_i \sim \mathsf{Poisson}(\lambda E_i)$$

Step 2: local correlates of excess mortality

Other advantage:

- stabilizes small area estimation using spatial models
- ▶ log link means that all effects are multiplicative

Iterative model development:

- start simple and add complexity progressively
- compare models with WAIC

We start with a baseline model without covariates (only α):

• $\lambda = \exp(\alpha)$ can be interpreted as a relative excess mortality $(\lambda = O/E)$

Code:

```
m1.0 = inla( observed ~ 1 + offset( expected ), ...)
```

Results:

```
## mean 0.025quant 0.975quant
## (Intercept) 1.38 1.37 1.39
```

▶ this corresponds to the overall average relative excess

Check model fit and residuals:

WAIC = 49278.96

We expect that excess mortality differs by age and sex:

added as a covariate (as everything multiplies)

Code:

As expected, the relative excess mortality varies a lot across age and sex groups:

##		mean	$0.025 { m quant}$	0.975quant
##	sexFemale:age_group40-59	1.01	0.96	1.06
##	sexMale:age_group40-59	1.42	1.37	1.48
##	sexFemale:age_group60-69	1.04	1.00	1.08
##	sexMale:age_group60-69	1.52	1.47	1.56
##	sexFemale:age_group70-79	1.26	1.23	1.30
##	sexMale:age_group70-79	1.61	1.57	1.64
##	sexFemale:age_group80+	1.64	1.62	1.66
##	sexMale:age_group80+	1.16	1.15	1.18

Big improvement of model fit:

deltaWAIC = -2088.29

Allow for spatial variability:

- ▶ i.i.d. random effect by municipality
- all effects are pulled towards a global average
- excess by municipality can vary independently from the others around this global average
- "municipality effect" applies the same to all age and sex groups.

Code:

The age and sex effect remains similar:

##		mean	$0.025 { m quant}$	0.975quant
##	sexFemale:age_group40-59	1.01	0.96	1.06
##	sexMale:age_group40-59	1.43	1.38	1.48
##	sexFemale:age_group60-69	1.04	1.00	1.08
##	sexMale:age_group60-69	1.52	1.48	1.57
##	sexFemale:age_group70-79	1.27	1.24	1.30
##	sexMale:age_group70-79	1.61	1.58	1.64
##	sexFemale:age_group80+	1.64	1.62	1.66
##	sexMale:age_group80+	1.17	1.15	1.18

```
Again, improvement of model fit:
```

```
## deltaWAIC = -31.47579
```

Now we can look at the spatial variation:

Structured spatial variability:

- municipalities are no longer independent
- correlation between neighboring municipalities with a BYM model

Code:

```
Improvement of model fit:
```

```
## deltaWAIC = -178.0986
```

The proportion of "structured variability" (as opposed to i.i.d) is high:

Actual spatial variation:

We now have a good model of excess mortality by municipality, we can add local covariates:

- urbanisation
- socioeconomic position
- international links
- ► language region
- voting behavior for COVID-19 referendums (June and Nov 2020)

Model 1.4a

For urbanisation, FSO classifies Swiss municipalities in 3 classes (urban, peri-urban or rural):

Association with relative excess mortality

Model 1.4b

For socioeconomic position, we take the median of the Swiss neighbourhood index of SEP, then transform into quintiles:

Association with relative excess mortality

Model 1.4c

For international links, we assess whether municipality belongs to a cross-border labor region (FSO):

Association with relative excess mortality

International bords

Model 1.4d

For language regions, we take the official language of each municipality:

Association with relative excess mortality

Model 1.4d

This one is not so easy:

▶ the association is likely confounded by the way the first wave started (in Ticino and the South-West)

Model 1.4d

Adding language region disrupts the geographical variation observed before:

Model 1.4e

For voting behavior, we take the proportion of Yes at the June 2020 referendum (November is very similar):

Association with relative excess mortality

Model 1.4e

November is very similar:

Association with relative excess mortality

Multivariable analysis:

Intercorrelation between SEP and voting behaviour:

▶ impossible to disentengle between the two

Residual municipality effect (after removing the effects of covariates):

- Expected higher excesses in Ticino and Southwestern Switzerland
- ➤ A visible barrier between French-speaking and German-speaking regions
- ► Lower excess in the large cities of the German-speaking part (Zurich, Basel, Bern)
- Lower excess in relatively isolated valleys of Graubunden

Conclusions

- Small-area excess mortality varied substantially in Switzerland in 2020, depending on the geographical location and type of municipality.
- ➤ Areas most affected included Ticino, the Lake of Geneva region, the Jura and the Northeast of the country.
- Rural municipalities, municipalities of lower socioeconomic position and showing lower support for COVID-19 control measures experienced higher excess mortality.