Digital Logic Systems

Sequential Logic

Assist. Prof. Özge ÖZTİMUR KARADAĞ ALKÜ

Last Week

- Completed Combinational Circuits
 - Decoder
 - Encoder
 - Multiplexer
- Able to design/analyze combinational circuits with any combination of logic gates, decoders, multiplexers.
- Can design decoders / multiplexers by combining decoders / multiplexers in various sizes.

Digital Logic Systems

Digital Logic Design:
 Combinational Circuits

Digital Logic Systems:
 Sequential Circuits

Synchronous Sequential Logic

Block Diagram of Sequential Circuit

Memory Elements

- Store binary data.
- This data is referred as the current state of the flip-flop.

Sequential Circuit

- Determines the output using input and the current state.
- Input and the current state determine the next state.

Sequential Circuit

- is defined by?
 - Time
 - input
 - output
 - state
- Types:
 - **Synchronous sequential Circuit**: A *synchronous* sequential circuit is a system whose behavior can be defined from the knowledge of its signals at discrete instant s of time.
 - Asynchronous sequential Circuit: The behavior of an asynchronous sequential circuit depends upon the input signals at any instant of time and the order in which the inputs change.

Types of Sequential Circuits

Synchronous Sequential Circuit

Asynchronous Sequential Circuit

Synchronous Sequential Circuit

- Employs signals that affect the storage elements at only discrete instant of time.
- Synchronization is achieved by a timing device called a *clock* generator which provides a clock signal having the form of a periodic train of *clock* pulses.
- The clock pulses are distributed throughout the system in such a way that storage elements are affected only with the arrival of each pulse.
- The clock pulses determine when computational activity will occur
- Other signals (external inputs and otherwise) determine what changes will take place affecting the storage elements and the outputs

Memory Elements

- Flip-flop: A flip-flop is a binary storage device capable of storing one bit of information.
- Flip-flop has two outputs.
 - Bit which determines the state of the flip-flop.
 - Complement of the bit representing the state of the flip-flop.
- Depending on the number of bits represented by the sequential circuit, the number of flip-flops is determined.

Synchronous Sequential Circuit

Flip-Flops

- A flip-flop can hold its state until an input signal is asserted to change its state.
- Types of Flip-flops vary:
 - By the number of input signals.
 - How the inputs effect the binary state of the flip-flop.

A Simple Flip-flop Circuit

х	у	x NOR y
0	0	1
0	1	0
1	0	0
1	1	0

Q state of the flip-flop, Q' complement of Q. Q=1, Q'=0 set Q=0, Q'=1 reset

Flip-Flop with NAND Gates

Х	у	x NAND y
0	0	1
0	1	1
1	0	1
1	1	0

(b) Function table

RS Flip-Flop

Q(t+1)=S + R'Q SR = 0 Characteristic Equation

Q	S	R	Q(t+1)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Characteristic Table

D Flip-Flop

Characteristic Table

Q(t+1)=D Characteristic Equation

(a) Logic diagram

(b) Function table

J-K Flip-Flop

_____ J
____ > Clk
_____ K

(b) Graphic symbol

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Q	J	K	Q(t+1)
0 1 0 0 1 1 1 0 0 1 0 1 1 1 0	0	0	0	
0 1 1 1 0 0 1 0 1 1 1 0	0	0	1	
1 0 0 1 0 1 1 1 0	0	1	0	
1 0 1 1 1 0	0	1	1	
1 1 0	1	0	0	
	1	0	1	
1 1 1	1	1	0	
	1	1	1	

Characteristic Table

T Flip-Flop

Q	T	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

Characteristic Table

Q(t+1)=TQ'+T'Q Characteristic Equation

Graphical Symbols of Flip-Flops

Flip-Flop and Clock Signal

- If flip-flops respond to a level of clock, indetermined conditions may arise.
 - If the flip-flop outputs change while the output of the combinational circuit which are fed as input to flip flops then indetermined condition arises.
 - Solution: Flip-flops respond to clock transitions..

Positive Edge Triggered D Flip-Flop

- For the third flip-flop
 - S=0, R=1 \rightarrow Q=1
 - S=1, R=0 \rightarrow Q=0
- 4 conditions:
 - CP=0, D=0 \rightarrow
 - R=1, S=1 \rightarrow Forbidden
 - CP=0, D=1 \rightarrow
 - R=1, S=1 \rightarrow Forbidden
 - CP=1, D=0 \rightarrow
 - R=0, S=1 \rightarrow Q=0
 - CP=1, D=1 \rightarrow
 - R=1, S=0 \rightarrow Q=1
- Summary: When the input CLK signal changes make a positive transition, value of D is transferred to Q.
- When CP is always 1 changes in D are not transferred to Q.

Graphical Representation of Edge Triggered D Flip-Flops

Flip-Flop Characteristic Tables

<i>JK</i> Flip-Flop			
J	K	Q(t + 1)	l)
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

D Flip-Flop		<i>T</i>	<i>T</i> Flip-Flop	
D	Q(t + 1)	T	Q(t + 1)	
0	0 Reset	0	Q(t) No change	
1	1 Set	1	Q(t) No change $Q'(t)$ Complement	

• Questions?

References

• Morris Mano, Digital Design