import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
#to ignore warnings
import warnings
warnings.filterwarnings('ignore')

In [2]:
car_store = pd.read_csv('C:/Users/dabir/Downloads/EDA FILE/data_set/used_cars_data.csv')

In [3]:

car_store.head()

Out[3]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Ty
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	F
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	F
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	F
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	F
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Seco
4								>

will display the top 5 observations of the dataset

In [4]: ▶

```
car_store.tail()
```

Out[4]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owne
7248	7248	Volkswagen Vento Diesel Trendline	Hyderabad	2011	89411	Diesel	Manual	
7249	7249	Volkswagen Polo GT TSI	Mumbai	2015	59000	Petrol	Automatic	
7250	7250	Nissan Micra Diesel XV	Kolkata	2012	28000	Diesel	Manual	
7251	7251	Volkswagen Polo GT TSI	Pune	2013	52262	Petrol	Automatic	
7252	7252	Mercedes- Benz E- Class 2009- 2013 E 220 CDI Avan	Kochi	2014	72443	Diesel	Automatic	
4								•

the last 5 observations of the dataset

In [5]: ▶

car_store.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7253 entries, 0 to 7252
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	S.No.	7253 non-null	int64
1	Name	7253 non-null	object
2	Location	7253 non-null	object
3	Year	7253 non-null	int64
4	Kilometers_Driven	7253 non-null	int64
5	Fuel_Type	7253 non-null	object
6	Transmission	7253 non-null	object
7	Owner_Type	7253 non-null	object
8	Mileage	7251 non-null	object
9	Engine	7207 non-null	object
10	Power	7207 non-null	object
11	Seats	7200 non-null	float64
12	New_Price	1006 non-null	object
13	Price	6019 non-null	float64

dtypes: float64(2), int64(3), object(9)

memory usage: 793.4+ KB

In [6]: ▶

car_store.nunique()

Out[6]:

S.No. 7253 Name 2041 Location 11 23 Year Kilometers_Driven 3660 Fuel_Type 5 Transmission 2 Owner_Type 4 Mileage 450 Engine 150 Power 386 Seats 9 New_Price 625 Price 1373 dtype: int64

In [7]: ▶

car_store.isnull().sum()

Out[7]:

S.No.	0
Name	0
Location	0
Year	0
Kilometers_Driven	0
Fuel_Type	0
Transmission	0
Owner_Type	0
Mileage	2
Engine	46
Power	46
Seats	53
New_Price	6247
Price	1234

dtype: int64

In [8]: ▶

```
(car_store.isnull().sum()/(len(car_store)))*100
```

Out[8]:

S.No. 0.000000 Name 0.000000 Location 0.000000 Year 0.000000 Kilometers_Driven 0.000000 Fuel_Type 0.000000 Transmission 0.000000 Owner_Type 0.000000 Mileage 0.027575 Engine 0.634220 Power 0.634220 Seats 0.730732 New_Price 86.129877 Price 17.013650 dtype: float64

The percentage of missing values for the columns New Price and Price is ~86% and ~17%, respectively.

In [9]: ▶

```
car_store = car_store.drop(['S.No.'], axis = 1)
car_store.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7253 entries, 0 to 7252
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Name	7253 non-null	object
1	Location	7253 non-null	object
2	Year	7253 non-null	int64
3	Kilometers_Driven	7253 non-null	int64
4	Fuel_Type	7253 non-null	object
5	Transmission	7253 non-null	object
6	Owner_Type	7253 non-null	object
7	Mileage	7251 non-null	object
8	Engine	7207 non-null	object
9	Power	7207 non-null	object
10	Seats	7200 non-null	float64
11	New_Price	1006 non-null	object
12	Price	6019 non-null	float64

dtypes: float64(2), int64(2), object(9)

memory usage: 736.8+ KB

In [10]: ▶

```
from datetime import date
date.today().year
car_store['Car_Age']=date.today().year-car_store['Year']
car_store.head(10)
```

Out[10]:

	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	N
0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	First	
1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	First	
2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	First	
3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	First	
4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Second	
5	Hyundai EON LPG Era Plus Option	Hyderabad	2012	75000	LPG	Manual	First	
6	Nissan Micra Diesel XV	Jaipur	2013	86999	Diesel	Manual	First	
7	Toyota Innova Crysta 2.8 GX AT 8S	Mumbai	2016	36000	Diesel	Automatic	First	
8	Volkswagen Vento Diesel Comfortline	Pune	2013	64430	Diesel	Manual	First	
9	Tata Indica Vista Quadrajet LS	Chennai	2012	65932	Diesel	Manual	Second	
4								>

```
In [11]:

car_store['Brand'] = car_store.Name.str.split().str.get(0)

car_store['Model'] = car_store.Name.str.split().str.get(1) + car_store.Name.str.get(1) + car_st
```

Out[11]:

	Name	Brand	Model
0	Maruti Wagon R LXI CNG	Maruti	WagonR
1	Hyundai Creta 1.6 CRDi SX Option	Hyundai	Creta1.6
2	Honda Jazz V	Honda	JazzV
3	Maruti Ertiga VDI	Maruti	ErtigaVDI
4	Audi A4 New 2.0 TDI Multitronic	Audi	A4New
7248	Volkswagen Vento Diesel Trendline	Volkswagen	VentoDiesel
7249	Volkswagen Polo GT TSI	Volkswagen	PoloGT
7250	Nissan Micra Diesel XV	Nissan	MicraDiesel
7251	Volkswagen Polo GT TSI	Volkswagen	PoloGT
7252	Mercedes-Benz E-Class 2009-2013 E 220 CDI Avan	Mercedes-Benz	E-Class2009-2013

7253 rows × 3 columns

```
In [12]:
```

```
print(car_store.Brand.unique())
print(car_store.Brand.nunique())
```

```
['Maruti' 'Hyundai' 'Honda' 'Audi' 'Nissan' 'Toyota' 'Volkswagen' 'Tata' 'Land' 'Mitsubishi' 'Renault' 'Mercedes-Benz' 'BMW' 'Mahindra' 'Ford' 'Porsche' 'Datsun' 'Jaguar' 'Volvo' 'Chevrolet' 'Skoda' 'Mini' 'Fiat' 'Jeep' 'Smart' 'Ambassador' 'Isuzu' 'ISUZU' 'Force' 'Bentley' 'Lamborghini' 'Hindustan' 'OpelCorsa']
33
```

The brand name 'Isuzu' 'ISUZU' and 'Mini' and 'Land' looks incorrect.

```
In [13]:

searchfor = ['Isuzu' ,'ISUZU','Mini','Land']
car_store[car_store.Brand.str.contains('|'.join(searchfor))].head(5)
```

Out[13]:

	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	
13	Land Rover Range Rover 2.2L Pure	Delhi	2014	72000	Diesel	Automatic	First	
14	Land Rover Freelander 2 TD4 SE	Pune	2012	85000	Diesel	Automatic	Second	
176	Mini Countryman Cooper D	Jaipur	2017	8525	Diesel	Automatic	Second	
191	Land Rover Range Rover 2.2L Dynamic	Coimbatore	2018	36091	Diesel	Automatic	First	
228	Mini Cooper Convertible S	Kochi	2017	26327	Petrol	Automatic	First	
4							•	
In [14]:								
<pre>car_store["Brand"].replace({"ISUZU": "Isuzu", "Mini": "Mini Cooper", "Land": "Land Rove</pre>								

```
car_store["Brand"].replace({"ISUZU": "Isuzu", "Mini": "Mini Cooper","Land":"Land Rover"}
In [16]:
car_store.describe().T
```

Out[16]:

	count	mean	std	min	25%	50%	75%
Year	7253.0	2013.365366	3.254421	1996.00	2011.0	2014.00	2016.00
Kilometers_Driven	7253.0	58699.063146	84427.720583	171.00	34000.0	53416.00	73000.00
Seats	7200.0	5.279722	0.811660	0.00	5.0	5.00	5.00
Price	6019.0	9.479468	11.187917	0.44	3.5	5.64	9.95
Car_Age	7253.0	9.634634	3.254421	4.00	7.0	9.00	12.00
4							>

- Years range from 1996- 2019 and has a high in a range which shows used cars contain both latest models and old model cars.
- On average of Kilometers-driven in Used cars are ~58k KM. The range shows a huge difference between min and max as max values show 650000 KM shows the evidence of an outlier. This record can be removed.
- Min value of Mileage shows 0 cars won't be sold with 0 mileage. This sounds like a data entry issue.
- It looks like Engine and Power have outliers, and the data is right-skewed.

- The average number of seats in a car is 5. car seat is an important feature in price contribution.
- The max price of a used car is 160k which is quite weird, such a high price for used cars, There may be an outlier or data entry issue.

In [17]: ▶

car_store.describe(include='all').T

Out[17]:

	count	unique	top	freq	mean	std	min	2
Name	7253	2041	Mahindra XUV500 W8 2WD	55	NaN	NaN	NaN	N
Location	7253	11	Mumbai	949	NaN	NaN	NaN	N
Year	7253.0	NaN	NaN	NaN	2013.365366	3.254421	1996.0	201
Kilometers_Driven	7253.0	NaN	NaN	NaN	58699.063146	84427.720583	171.0	3400
Fuel_Type	7253	5	Diesel	3852	NaN	NaN	NaN	N
Transmission	7253	2	Manual	5204	NaN	NaN	NaN	N
Owner_Type	7253	4	First	5952	NaN	NaN	NaN	N
Mileage	7251	450	17.0 kmpl	207	NaN	NaN	NaN	N
Engine	7207	150	1197 CC	732	NaN	NaN	NaN	N
Power	7207	386	74 bhp	280	NaN	NaN	NaN	N
Seats	7200.0	NaN	NaN	NaN	5.279722	0.81166	0.0	
New_Price	1006	625	63.71 Lakh	6	NaN	NaN	NaN	N
Price	6019.0	NaN	NaN	NaN	9.479468	11.187917	0.44	
Car_Age	7253.0	NaN	NaN	NaN	9.634634	3.254421	4.0	
Brand	7253	32	Maruti	1444	NaN	NaN	NaN	Ν
Model	7252	726	SwiftDzire	189	NaN	NaN	NaN	N
4								•

```
In [18]: ▶
```

```
cat_cols=car_store.select_dtypes(include=['object']).columns
num_cols = car_store.select_dtypes(include=np.number).columns.tolist()
print("Categorical Variables:")
print(cat_cols)
print("Numerical Variables:")
print(num_cols)
```

In [20]: ▶

```
for col in num_cols:
    print(col)
    print('Skew :', round(car_store[col].skew(), 2))
    plt.figure(figsize = (15, 4))
    plt.subplot(1, 2, 1)
    car_store[col].hist(grid=False)
    plt.ylabel('count')
    plt.subplot(1, 2, 2)
    sns.boxplot(x=car_store[col])
    plt.show()
```

Year Skew : -0.84

Kilometers_Driven

Seats Skew : 1.9

Price

Car_Age Skew : 0.84

In [25]:

```
# Function for log transformation of the column
def log_transform(car_store,col):
    for colname in col:
        if (car_store[colname] == 1.0).all():
            car_store[colname + '_log'] = np.log(car_store[colname]+1)
            car_store[colname + '_log'] = np.log(car_store[colname])
    car_store.info()
log_transform(car_store,['Kilometers_Driven','Price'])
#Log transformation of the feature 'Kilometers_Driven'
sns.distplot(car_store["Kilometers_Driven_log"], axlabel="Kilometers_Driven_log");
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 7253 entries, 0 to 7252 Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype
0	Name	7253 non-null	object
1	Location	7253 non-null	object
2	Year	7253 non-null	int64
3	Kilometers_Driven	7253 non-null	int64
4	Fuel_Type	7253 non-null	object
5	Transmission	7253 non-null	object
6	Owner_Type	7253 non-null	object
7	Mileage	7251 non-null	object
8	Engine	7207 non-null	object
9	Power	7207 non-null	object
10	Seats	7200 non-null	float64
11	New_Price	1006 non-null	object
12	Price	6019 non-null	float64
13	Car_Age	7253 non-null	int64
14	Brand	7253 non-null	object
15	Model	7252 non-null	object
16	<pre>Kilometers_Driven_log</pre>	7253 non-null	float64
17	Price_log	6019 non-null	float64
dtyp	es: float64(4), int64(3), object(11)	

memory usage: 1020.1+ KB

In [30]: ▶

```
fig, axarr = plt.subplots(4, 2, figsize=(12, 18))
car_store.groupby('Location')['Price_log'].mean().sort_values(ascending=False).plot.bar(a
axarr[0][0].set_title("Location Vs Price", fontsize=18)
car store.groupby('Transmission')['Price_log'].mean().sort_values(ascending=False).plot.t
axarr[0][1].set_title("Transmission Vs Price", fontsize=18)
car_store.groupby('Fuel_Type')['Price_log'].mean().sort_values(ascending=False).plot.bar(
axarr[1][0].set_title("Fuel_Type Vs Price", fontsize=18)
car_store.groupby('Owner_Type')['Price_log'].mean().sort_values(ascending=False).plot.bar
axarr[1][1].set_title("Owner_Type Vs Price", fontsize=18)
car_store.groupby('Brand')['Price_log'].mean().sort_values(ascending=False).head(10).plot
axarr[2][0].set_title("Brand Vs Price", fontsize=18)
car_store.groupby('Model')['Price_log'].mean().sort_values(ascending=False).head(10).plot
axarr[2][1].set_title("Model Vs Price", fontsize=18)
car_store.groupby('Seats')['Price_log'].mean().sort_values(ascending=False).plot.bar(ax=a
axarr[3][0].set_title("Seats Vs Price", fontsize=18)
car_store.groupby('Car_Age')['Price_log'].mean().sort_values(ascending=False).plot.bar(ax
axarr[3][1].set_title("Car_Age Vs Price", fontsize=18)
plt.subplots_adjust(hspace=1.0)
plt.subplots_adjust(wspace=.5)
sns.despine()
```


Observations

- · The price of cars is high in Coimbatore and less price in Kolkata and Jaipur
- Automatic cars have more price than manual cars.
- Diesel and Electric cars have almost the same price, which is maximum, and LPG cars have the lowest price

- · First-owner cars are higher in price, followed by a second .
- The third owner's price is lesser than the Fourth and above .
- · Lamborghini brand is the highest in price
- · Gallardocoupe Model is the highest in price
- · 2 Seater has the highest price followed by 7 Seater
- · The latest model cars are high in price

In [31]: ▶

plt.figure(figsize=(12, 7))
sns.heatmap(car_store.drop(['Kilometers_Driven','Price'],axis=1).corr(), annot = True, vn
plt.show()

- The engine has a strong positive correlation to Power 0.86
- Price has a positive correlation to Engine 0.69 as well Power 0.77
- · Mileage has correlated to Engine, Power, and Price negatively
- · Price is moderately positive in correlation to year.
- Kilometer driven has a negative correlation to year not much impact on the price
- Car age has a negative correlation with Price *car Age is positively correlated to Kilometers-Driven as
 the Age of the car increases; then the kilometer will also increase of car has a negative correlation with
 Mileage this makes sense.

Conclusion

- Most of the customers prefer 2 Seat cars hence the price of the 2-seat cars is higher than other cars.
- The price of the car decreases as the Age of the car increases.
- · Customers prefer to purchase the First owner rather than the Second or Third.
- Due to increased Fuel price, the customer prefers to purchase an Electric vehicle.
- · Automatic Transmission is easier than Manual.

In []:

M