

Преподаватель

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТ	ТЕТ <u>СПЕЦИАЛЬНО</u>	Е МАШИНОСТРОЕНИЕ
КАФЕДРА	а <u>РОБОТОТЕХНИ</u>	ЧЕСКИЕ СИСТЕМЫ И МЕХАТРОНИКА
	OTHE	
	OIAEI	ГО МРС КОНТРОЛЛЕР
Студент		27.10.2023 Гунъе Цзиньлун
	(Группа)	(Подпись, дата) (И.О.Фамилия)

<u> 27.10.2023 Вассуф Язан</u>

(И.О.Фамилия)

(Подпись, дата)

Оглавление

1. Постановка задачи	
2. Контроллер управления скоростью без фильтра4	

1. Постановка задачи

Подобрать коэффициенты (параметры) MPC для устойчивого движения робота со скоростью 10 м/сек.

2. Контроллер МРС скоростьи

Алгоритмические принципы

В этой задаче используется контроллер МРС для управления скоростью движения робота. Установлена целевая функция:

$$J=k_{cte}\cdot cte^2+k_{epsi}\cdot epsi^2+k_v\cdot verr^2+k_{steer_cost}\cdot steer_cost^2$$

где:

- сte представляет собой поперечную ошибку (Cross Track Error).
- epsi представляет ошибку угла крена.
- Verr представляет собой ошибку скорости.
- steer_cost представляет собой угловую скорость поворота.

 k_{cte} , k_{epsi} , k_{v} и k_{steer_cost} являются весовыми коэффициентами, используемыми для настройки относительной важности различных компонентов в оптимизации.

Цель контроллера - найти управляющие воздействия, минимизирующие значение этой целевой функции.

Что касается параметров, основное изменение касается дискретности шагов и времени дискретизации. При большом количестве шагов вычисления становятся более точными, но это может привести к невозможности удовлетворения требований по скорости вычислений и сделать контроллер слишком чувствительным к шумам, что приведет к увеличению ошибок. Поэтому после тестирования было установлено, что при времени дискретизации 0.25 сек и количестве шагов равном 3, можно обеспечить высокую точность управления при соблюдении требований к скорости вычислений.

