Тема 17. Многомерные пространства. Сходимость последовательностей в n-мерном пространстве

Определение 1. Множество всех упорядоченных наборов $x = (x_1, \dots, x_n)$ n действительных чисел, для которых определены линейные комбинации

$$\lambda x + \mu y := (\lambda x_1 + \mu y_1, \lambda x_2 + \mu y_2, ..., \lambda x_n + \mu y_n), \quad \lambda, \mu \in \mathbb{R}, \tag{1}$$

и скалярное произведение

$$(x,y) := x_1 y_1 + x_2 y_2 + \dots + x_n y_n, \tag{2}$$

называется n— мерным арифметическим евклидовым векторным пространством и обозначается \mathbb{R}^n . Его элементы $x=(x_1,...,x_n)$ называются n— мерными векторами, а числа $x_1,x_2,...,x_n$ — их координатами.

Длина |x| n-мерного вектора x определяется равенством

$$|x| := \sqrt{(x,x)} \implies |x| = \sqrt{x_1^2 + \dots + x_n^2}.$$
 (3)

Свойства скалярного произведения:

1°. Неравенство Коши-Шварца

$$|(x,y)| < |x| \cdot |y|, \quad x \in \mathbb{R}^n, \ y \in \mathbb{R}^n. \tag{4}$$

 2^{o} . Для любых $x,y\in\mathbb{R}^{n}$ справедливо неравенство

$$|x+y| \le |x| + |y|. \tag{5}$$

 3^{o} . Для любых $x,y \in \mathbb{R}^{n}$ справедливо неравенство

$$||x| - |y|| \le |x - y|. \tag{6}$$

Для элементов $x = (x_1, ..., x_n), y = (y_1, ..., y_n)$ можно ввести понятие расстояния между ними

$$\rho(x,y) := |x-y| = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}.$$
 (7)

Определение 2. Пусть $x \in \mathbb{R}^n$, $\varepsilon > 0$. Совокупность всех таких точек $y \in \mathbb{R}^n$, что $\rho(x,y) < \varepsilon$, называется n- мерным открытым шаром радиуса ε с центром в точке x или $\varepsilon-$ окрестностью точки x в пространстве \mathbb{R}^n и обозначается

$$U(x,\varepsilon):=\left\{y\in\mathbb{R}^n:\;\rho(x,y)<\varepsilon\right\}.$$

В координатной записи это выглядит так:

$$U(x,\varepsilon) = \left\{ y = (y_1, ..., y_n) : \sum_{i=1}^n (y_i - x_i)^2 < \varepsilon \right\}.$$

Множество $U(x,\varepsilon)$ называется сферической окрестностью точки x.

Определение 3. Пусть $x \in \mathbb{R}^n, \ \delta_i > 0, \ i = 1, ..., n.$ Множество

$$P(x, \delta_1, ..., \delta_n) := \{ y = (y_1, ..., y_n) : |y_i - x_i| < \delta_i, \quad i = 1, ..., n \}$$

называется прямоугольной окрестностью точки x.

Рассмотрим последовательность $\{x^{(m)}\}$ точек пространства \mathbb{R}^n , т.е. отображение $f: \mathbb{N} \to \mathbb{R}^n$ множества натуральных чисел \mathbb{N} в пространство \mathbb{R}^n , где $x^{(m)} = f(m), m \in \mathbb{N}$.

Определение 4. Точка $x \in \mathbb{R}^n$ называется пределом последовательности $x^{(m)} \in \mathbb{R}^n$, m = 1, 2, ..., если

$$\lim_{m \to \infty} \rho(x^{(m)}, x) = 0. \tag{8}$$

В этом случае пишут $\lim_{m\to\infty} x^{(m)} = x$ и говорят, что последовательность $\{x^{(m)}\}$ сходится к точке x. Условие (8) означает, что

$$\forall \quad \varepsilon > 0 \ \exists \ m_0 : \ \forall \ m > m_0 \ x^{(m)} \in U(x, \varepsilon).$$

Теорема 1. Для того чтобы последовательность $x^{(m)} = \left(x_1^m, ..., x_n^{(m)}\right) \in \mathbb{R}^n, m = 1, 2, ...,$ имела своим пределом точку $x = (x_1, ..., x_n) \in \mathbb{R}^n \Leftrightarrow \lim_{m \to \infty} x_i^{(m)} = x_i, i = 1, 2, ..., n.$

Доказательство. Для любых чисел $a_1, a_2, ..., a_n$ справедливо неравенство:

$$|a_i| \le \sqrt{a_1^2 + \dots + a_n^2} \le |a_1| + |a_2| + \dots + |a_n|, \ i = 1, 2, \dots, n.$$

Это неравенство доказывается возведением в квадрат обеих его частей.

Применим его для $a_i = x_i^{(m)} - x_i$:

$$\left| x_i^{(m)} - x_i \right| \le \rho \left(x^{(m)}, x \right) \le \left| x_1^{(m)} - x_1 \right| + \dots + \left| x_n^{(m)} - x_n \right|, \quad i = 1, \dots, n.$$

Полученное неравенство доказывает теорему.

Из Теоремы 1 и свойств пределов числовых последовательностей следует, что если последовательность точек имеет предел, то он единственный, и что всякая подпоследовательность сходящейся последовательности сходится к тому же пределу, что и вся последовательность.

Определение 5. Множество в n- мерном пространстве называется *ограниченным*, если оно содержится в некотором n- мерном шаре.

Определение 6. Последовательность точек пространства \mathbb{R}^n называется ограниченной, если множество её значений ограничено.

Дополним пространство \mathbb{R}^n бесконечно удаленной точкой, которая обозначается ∞ .

Определение 7. ε -окрестностью $U(\infty,\varepsilon)$ бесконечно удаленной точки ∞ , $\varepsilon > 0$, называется множество, состоящее из всех таких точек $x \in \mathbb{R}^n$, что $\rho(x,0) > \frac{1}{\varepsilon}$, и из бесконечно удаленной точки ∞ , т.е.

$$U(\infty, \varepsilon) = \left\{ x : \ \rho(x, 0) > \frac{1}{\varepsilon} \right\} \cup \{\infty\},$$

где 0 — начало координат пространства \mathbb{R}^n .

Определение 8. Последовательность $\{x^{(m)}\}$ называется последовательностью, стремящейся к бесконечности, если

$$\lim_{m \to \infty} \rho\left(x^{(m)}, 0\right) = +\infty.$$

Замечание 1. В случае n>1 бесконечный предел определен только для бесконечности без знака (∞) .