

CONCEPTION ET VÉRIFICATION DE SYSTÈMES CRITIQUES LA SPÉCIFICATION DES PROPRIÉTÉS AVEC LA LOGIQUE LTL

2A Cursus Ingénieurs - ST5 : Modélisation fonctionnelle et régulation

m CentraleSupelec - Université Paris-Saclay - 2025/2026

PLAN

- > La logique temporelle LTL
- Exemples de proriétés LTL
- Spécification de propriétés

Retour au plan - Retour à l'accueil

PRINCIPE DU MODEL-CHECKING

RAPPEL

- Un systèmes de transition TS est un tuple $(S, \delta, I, AP, \mathcal{L})$
- Un fragment de chemin infini π est une séquence d'états infinie : $\pi = s_0 s_1 s_2 \ldots$ tel que $\forall i \geq 0, s_i \longrightarrow s_{i+1} \in \delta$
- La trace du chemin $\pi = s_0 s_1 s_2 \ldots \in S^\omega$ avec $\mathcal{L}: S \longrightarrow 2^{AP}$ • $trace(\pi) = \sigma = \mathcal{L}(s_0) \mathcal{L}(s_1) \mathcal{L}(s_2) \ldots \in (2^{AP})^\omega$

PLAN

- La logique temporelle LTL
- Exemples de proriétés LTL
- Spécification de propriétés

Retour au plan - Retour à l'accueil

PRINCIPE DU MODEL-CHECKING

LOGIQUES TEMPORELLES POURQUOI?

- Permettent d'exprimer des propriétés sur des séquences d'observations
- Utilisation de connecteurs temporels et de quantificateurs sur les chemins
- On pourrait utiliser la logique du premier ordre.

$$\phi ::= true \mid a \mid \phi \land \phi \mid \neg \phi \mid \exists x. \ \phi \mid \ldots$$

- Exemple : "toute requête sera un jour satisfaite"
- $\forall t. (\text{requete} \rightarrow \exists t' \geq t. (\text{reponse}))$
- ✗ difficile à écrire/comprendre
- vérification peu efficace

LOGIQUES TEMPORELLES POURQUOI?

- Pas de variable pour gérer le temps (instants implicites)
- Temporel ≠ temporisé
 la logiques temporelles ne quantifient pas écoulement du temps.
- Deux approches :
 - 1. temps linéaire: propriétés des séquences d'exécutions (futur déterminé)
 - 2. temps arborescent : propriétés de l'arbre d'exécutions (tous les futurs possibles)

PROPOSITIONAL LINEAR TEMPORAL LOGIC (LTL)

OPÉRATEURS TEMPORELS DÉRIVÉS

L'OPÉRATEUR UNTIL

$$\phi \ ::= \ true \ | \ a \ | \ \phi \ \wedge \ \phi \ | \ \neg \phi \ | \ \bigcirc \phi \ | \ \Box \phi \ | \ \phi \ \bigcup \phi$$

$$try \Rightarrow \bigcirc deliv$$

$$try \Rightarrow \Diamond deliv$$

$$try \Rightarrow \Diamond deliv$$

$$try \ deliv$$

$$try \ deliv$$

$$try \ deliv$$

 $\Diamond \phi \equiv true \cup \phi$ et $\Box \phi \equiv \neg \Diamond \neg \phi$

LA SÉMANTIQUE DES OPÉRATEURS LTL

PLAN

- > La logique temporelle LTL
- > Exemples de proriétés LTL
- Spécification de propriétés

Retour au plan - Retour à l'accueil

PROPRIÉTÉ DU TEMPS LINÉAIRE

- Les propriétés du temps linéaire spécifient le comportement admissible du système considéré
 - lacktriangle La propriété LT spécifie les traces qu'un TS peut exhiber

Définition formelle

- lacksquare Une propriété temporelle linéaire P sur AP est un sous-ensemble de $(2^{AP})^\omega$
- TS satisfait P (sur AP):

$$\circ TS \vDash P$$

si et seulement si

$$Traces(TS) \subseteq P \subseteq (2^{AP})^{\omega}$$

ullet Nous utiliserons la logique temporelle linéaire (LTL) pour formaliser P

EXEMPLE I

Prenant la trace $\sigma = \mathsf{Off} \, \mathsf{On} \, \mathsf{Err} \, \mathsf{Err} \, \mathsf{Err} \, \ldots = \mathsf{Off} \, \mathsf{On} \, \mathsf{Err}^{\omega}$

- $\sigma \models \mathsf{Off}$ mais $\sigma \not\models \mathsf{On}$ alors $\sigma \models \neg \mathsf{On}$
- $\sigma \models X On$
- $\sigma \models XX Err$
- $\sigma \models (\mathsf{Off} \lor \mathsf{On}) U \mathsf{Err}$
- $\sigma \models G(Err \Rightarrow XErr)$
- $\sigma \models G(Err \Rightarrow GErr)$
- $\sigma \models FG Err$
- $\sigma \models XX G Err$

EXEMPLE II

Prenant la trace $\sigma = \text{Off On Off On Off } \ldots = (\text{Off On})^{\omega}$

- $\sigma \nvDash (\mathsf{Off} \lor \mathsf{On}) \mathsf{U} \mathsf{Err}$
- $\sigma \models F Err \Rightarrow ((Off \lor On) U Err)$ car $\sigma \nvDash F Err$
- $\sigma \models G(On \lor Off)$
- $\sigma \models \operatorname{GF} \operatorname{On} \wedge \operatorname{GF} \operatorname{Off}$
- $\sigma \nvDash FG \text{ On } \vee FG \text{ Off}$
- $\sigma \models G (\mathsf{Off} \Rightarrow X \mathsf{On}) \land G (\mathsf{On} \Rightarrow X \mathsf{Off})$

PLAN

- > La logique temporelle LTL
- Exemples de proriétés LTL
- > Spécification de propriétés

Retour au plan - Retour à l'accueil

RAPPEL DE L'EXEMPLE

y=0 signifie "le verrou est actuellement possédé"; y=1 signifie "le verrou est libre"

RAPPEL DE L'EXEMPLE

 $n_i : noncrit_i, \quad w_i : wait_i, \quad c_i : crit_i$

COMMENT SPÉCIFIER L'EXCLUSION MUTUELLE?

L'exclusion mutuelle

Il y a au plus un processus dans la section critique

- Soit $AP = \{crit_1, crit_2\}$
 - les autres propositions atomiques n'ont aucune pertinence pour cette propriété
- Formalisation LTL de la propriété LT

$$P_{mutex} = \operatorname{G}
eg (crit_1 \wedge crit_2)$$

• L'algorithme basé sur le sémaphore satisfait-il P_{mutex} ?

OUI! car il n'existe aucun état accessible étiqueté avec $\{crit_1, crit_2\}$

COMMENT SPÉCIFIER L'ABSENCE DE FAMINE?

L'absence de famine

Un processus qui veut entrer dans la section critique est finalement capable de le faire

- ullet Soit $AP=\{wait_1,crit_1,wait_2,crit_2\}$
- Formalisation LTL de la propriété LT $P_{nostarve} = ext{G} \; (wait_1 \Rightarrow ext{F} \; crit_1) \land ext{G} \; (wait_2 \Rightarrow ext{F} \; crit_2)$
- L'algorithme basé sur le sémaphore satisfait-il $P_{nostarve}$?

NON! Le processus un ou le processus deux risquent de mourir de faim!

prenant mais

$$\sigma = \emptyset(\{wait_1\}\{wait_1, wait_2\}\{wait_1, crit_2\})^\omega \in Traces(TS) \ \sigma \vDash \mathrm{F}(wait_1 \wedge \mathrm{G} \neg \, crit_1) \Rightarrow \sigma \not\in P_{nostarve}$$

$$\sigma = \emptyset(\{wait_2\}\{wait_1, wait_2\}\{crit_1, wait_2\})^\omega \in Traces(TS) \ \sigma \vDash \mathrm{F}(wait_2 \wedge \mathrm{G} \neg \ crit_2) \Rightarrow \sigma \not \in P_{nostarve}$$

LA PROPRIÉTÉ D'INVARIANTS

- Propriété de sécurité typique → propriété d'exclusion mutuelle
 - lacktriangle la mauvaise chose (avoir >1 processus dans la section critique) ne se produit jamais
- Une autre propriété de sécurité typique → vérifie les limites des variables (dépassement)

Ces propriétés sont des invariants

- Un invariant est une propriété LT
 - lacktriangle qui est donné par une **condition** ϕ sur AP
 - exige que la condition ϕ soit vraie pour tous les états (atteignables)
 - exemple : la propriété d'exclusion mutuelle $\phi = \neg(crit_1 \land crit_2)$

LA PROPRIÉTÉ D'INVARIANTS DÉFINITION FORMELLE

• Une propriété LT P_{inv} sur AP est un invariant s'il existe une formule pure propositionnelle ϕ sur AP telle que :

$$P_{inv} = \mathrm{G} \; \phi$$

- ullet ϕ est appelé une condition invariante de P_{inv}
- Notez que:

$$TS \models P_{inv}$$
 si et seulement si $orall s \in Reach(TS), \; \mathcal{L}(s) dash_{prop} \phi$

ullet ϕ doit être satisfait par tous les états initiaux et tous les états atteignables de TS

PROPRIÉTÉS DE SÉCURITÉ

PROPRIÉTÉS DE VIVACITÉ

- Les propriétés de sécurité précisent que "quelque chose de mauvais n'arrive jamais"
- Ne rien faire satisfait facilement une propriété de sécurité
 - car cela ne mènera jamais à une "mauvaise" situation
- Les propriétés de sécurité sont complétées par des propriétés de vivacité (Liveness properties)
 - qui nécessitent des progressions dans l'exécution
 - qui affirment → "quelque chose de bien arrivera éventuellement"
- ullet Un exemple LTL typique $ightarrow F \ \phi$

EXEMPLES DE PROPRIÉTÉS DE VIVACITÉ

MERCI

PDF version of the slides

Retour à l'accueil - Retour au plan