Pairwise Ranking via Stable Committee Selection

Sruthi Gorantla

Department of Computer Science and Automation

Committee Selection

- Voters: $V = \{1, 2, ..., n\}$.
- Candidates: $C = \{1, 2, ..., m\}$.
- Each candidate $i \in C$ is associated with a non-zero weight s_i .
- A committee is a subset of candidates.
 - The weight of the committee is $w(S) = \sum_{i \in S} s_i$.
- Goal: Given a weight limit $K \geq 0$, find a committee of weight $\leq K$.
- The voters have preference over committees.
 - Example: {School, Park} > {Factory}
- Satisfies monotonicity: $S \succeq_{v} S'$ if $S \supseteq S'$
- Applications to: Multi-winner voting, Participatory budgeting, network design etc.

Budget: $K \ge 0$

STABLE COMMITTEE

- Every demographic of voters should feel that they have been fairly represented. They should not deviate and choose their own committee of proportionally smaller size.
- Given two committees $S_1, S_2 \subseteq C$, the pairwise score of S_2 over S_1 is the number of voters who strictly prefer S_2 to S_1 :

$$V(S_1, S_2) := |\{v \in V : S_2 \succ_v S_1\}|$$

• Given a committee $S\subseteq C$ of weight at most K, we say that the committee S' blocks S if,

$$\frac{V(S, S')}{n} \ge \frac{w(S')}{K}$$

• Committee S is stable if there is no blocking S'.

Non Existence [Cheng et al 2020]

- Y. Cheng, Z. Jiang, K. Munagala, and K. Wang. Group fairness in committee selection. *ACM Trans. Econ. Comput.*, 8(4), Oct. 2020.
- 6 voters and 6 candidates, K = 3.
- Preference model given by Ranking.

Voters	Ranking
1	$a \succ b \succ c \succ d \succeq e \succeq f$
2	$b \succ c \succ a \succ d \succeq e \succeq f$
3	$c \succ a \succ b \succ d \succeq e \succeq f$
4	$d \succ e \succ f \succ a \succeq b \succeq c$
5	$e \succ f \succ d \succ a \succeq b \succeq c$
6	$f \succ d \succ e \succ a \succ b \succ c$

Not Stable

- W.l.o.g., choose $S = \{a, d, e\}$.
- Then voters 2 and 3 are not satisfied.
- Can deviate and choose $S = \{c\}$, then,

$$2 = V(S, S') = \frac{K'}{K} \cdot n = \frac{1}{3} \cdot 6 = 2.$$

 $\implies \{c\} \text{ blocks } \{a, d, e\}$

Key Idea [Jiang et al]: Randomised Committee

- Z. Jiang, K. Munagala, and K. Wang. **Approximately stable** committee selection, STOC 2020.
- STABLE LOTTERY: Nothing but a randomised stable committee.
 - A distribution (or lottery) Δ over committees of weight at most K is stable if for all committees $S' \subseteq C$:

$$\mathbf{E}_{S \sim \Delta} \left[\frac{V(S, S')}{n} \right] < \frac{w(S')}{K}$$

Budget: $K \ge 0$

Approximate Stability

• A committee $S \subseteq C$ of weight at most K is C-approximately stable if for all committees $S' \subseteq C$

$$\frac{V(S,S')}{n} < c \cdot \frac{w(S')}{K}$$

• A lottery Δ over the committees of weight at most K is c-approximately stable if for all committees $S'\subseteq C$

$$\mathbf{E}\left[\frac{V(S,S')}{n}\right] < c \cdot \frac{w(S')}{K}$$

- Main Theorem: A 32-approximately stable committee always exists.
- Lemma: A 2-approximately stable lottery always exists.
- Proof Idea of Main Theorem:
 - 1. Construct a 2-approximately stable lottery.
 - **2.** Construct a deterministic solution from the lottery found in step 1, using iterated rounding.

Duality View [Cheng et. al., 2020]

- Stability as a two player zero-sum game.
 - Players: { Attacker (a), Defender (d) }.
 - Strategies: Pure: Committees S_a and S_d Mixed: Lotteries Δ_a and Δ_d
 - Utilities: $u_a(S_a, S_d) = V(S_d, S_a) c \cdot \frac{w(S_a)}{K} \cdot n = -u_d(S_a, S_d)$.
 - Defender plays first: $\min_{\Delta_d} \max_{S_a} \mathbf{E}_{S_d \sim \Delta_d} \left[V(S_d, S_a) c \cdot \frac{w(S_a)}{K} \cdot n \right] < 0$
 - Because of the duality of the zero-sum games, this is equivalent to the following.
 - Attacker plays first: $\max_{\Delta_a} \min_{S_d: w(S_d) \leq K} \mathbf{E}_{S_a \sim \Delta_a} \left[V(S_d, S_a) c \cdot \frac{w(S_a)}{K} \cdot n \right] < 0$
 - Lemma: A 2-approximately stable lottery always exists.
 - Proof Idea: Straight forward using randomised dependent rounding.

Stable committee exists if this is feasible

From Randomised to Deterministic

- For any instance, we have a 2-approximately stable randomised committee Δ .
- Let x_i be the probability that Δ realises S_i .
- Then for a voter v, the committee S is good if S is within the top 75% of her preferences measured by Δ

$$\mathcal{G}_{v}(\Delta) = \left\{ S \subseteq C : \sum_{S_{i} \succeq_{v} S} x_{i} \le 1 - \beta \right\} \quad \text{and} \quad \mathcal{B}_{v}(\Delta) = \left\{ S \subseteq C : \sum_{S_{i} \succeq_{v} S} x_{i} \le \beta \right\}$$

Good committees

Bad committees

Properties of good committees:

- 1. Any committee S_a is considered good by no more than $8 \cdot \frac{w(S_a)}{K} \cdot n$ voters.
- 2. There is a committee S_d considered good by at least 0.75n voters.

Recursion

• Properties of good committees:

- 1. Any committee S_a is considered good by no more than $8 \cdot \frac{w(S_a)}{K} \cdot n$ voters.
- 2. There is a committee S_d considered good by at least 0.75n voters.

Selected committee

Park

ALGORITHM: Iterated Rounding

1.
$$t \leftarrow 0$$
; $V^{(0)} \leftarrow [n]$; $T^{(0)} \leftarrow \phi$; $K^{(0)} \leftarrow (1 - \alpha)K$.

- 2. While $V^{(t)} \neq \phi$ do
 - 1. $\Delta^{(t)} \leftarrow \text{Lottery}(V^{(t)}, K^{(t)})$ Gives 2-approximately stable lottery
 - 2. Let $S^{(t)}$ be any committee such that $\left|\left\{v \in V^{(t)}: S^{(t)} \notin \mathcal{B}_v\left(\Delta^{(t)}\right)\right\}\right| \geq (1-\beta) \cdot |V^{(t)}|$.

3.
$$W^{(t)} \leftarrow \left\{ v \in V^{(t)} \mid S^{(t)} \notin \mathcal{B}_v\left(\Delta^{(t)}\right) \right\}$$

- 4. $V^{(t+1)} \leftarrow V^{(t)} \setminus W^{(t)}$ Remove the users that are satisfied
- 5. $T^{(t+1)} \leftarrow T^{(t)} \cup S^{(t)}$ Add committee to the final output
- 6. $K^{(t+1)} \leftarrow \alpha K^{(t)}$ Decrease the budget
- 7. $t \leftarrow t + 1$
- 3. Return $T^f \leftarrow T^{(t)}$

Not a bad committee for majority

GTMD 2021

Open Questions

- 1. Deterministic exact committees in more specific settings approval voting.
- 2. Do exactly stable lotteries exist?
- 3. Closing the gap.
 - [2,32].
- 4. Computing stable committees efficiently.
 - Currently the running time is exponential in the number of committees.

Other Problems

Problem	Preference Model
Ranking	Voter has a ranking over the candidates. Prefers committees in which top-1 candidate is ranked higher.
Approval Voting	Voter approves a subset of candidates. Prefers committees with more number of approved candidates.
Participatory Budgeting	Voter has a utility for every candidate. Prefers the committee with higher utility.
Facility Location	Voter has a distance metric over the candidates. Prefers the committee with closest distance candidate.

My Ideas: PAIRWISE RANKING

Which committee would you prefer?

Orange or Green?

In Ranking, the green committee is preferred over the orange committee.

In Pairwise Ranking, I propose to look at the number of pairwise winners.

So, orange committee Is preferred.

GTMD 202

Sruthi Gorantla

My Ideas: PAIRWISE RANKING

• [Def] **Pairwise majority Score:** Let each voter v have a ranking \beth_v over all the m candidates in the set [m]. Let $S, S' \in 2^{[m]}$ be any two committees. Let $k = \min\{ |S|, |S'| \}$. Then for voter v, the pairwise majority score function $h_v : 2^{[m]} \times 2^{[m]} \to \mathbf{Z}_{\geq 0}$ is given by the following,

$$h_{\mathcal{V}}(S,S') = \sum_{i \in S_k} \sum_{j \in S'_k} \mathbf{I} \left[i \, \beth_{\mathcal{V}} \, j \right]$$
 Here S_k is the top k candidates in S

• [Def] Pairwise Ranking: Each candidate has unit weight. Each voter v has a a ranking over candidates,

$$S \succeq_{v} S' \iff h_{v}(S, S') \geq h_{v}(S', S)$$

Pairwise Ranking is Monotone

- Lemma 1: The preference model in Pairwise Ranking is complete.
- **Proof:** Fix a voter v. For $S, S' \in 2^{[m]}$ either $h_v(S, S') \ge h_v(S', S)$ or $h_v(S', S) \ge h_v(S, S')$. Therefore, either $S \ge_v S'$ or $S' \ge_v S$.
- Lemma 2: The preference model in Pairwise Ranking is monotone.
- **Proof:** Fix a voter v. For $S, T \in 2^{[m]}$ such that $T \supseteq S$. Then,
 - $\forall k \in \{1, ..., |S|\}, i \in T_k \backslash T_{k-1}, j \in S_k \backslash S_{k-1},$
 - either i = j or $i \supset_{\mathcal{V}} j \implies h_{\mathcal{V}}(T,S) > h_{\mathcal{V}}(S,T) \implies T \succ_{\mathcal{V}} S$.
 - It is easy to see that this is always true because otherwise, $\exists k \in \{1,...,|S|\}$ such that $i \in T_k \backslash T_{k-1}, j \in S_k \backslash S_{k-1}$, and $i \sqsubset_v j$,
 - $\Longrightarrow j \notin T_k \backslash T_{k-1} \Longrightarrow S \nsubseteq T$ (Contradiction).

Approximate Pairwise Ranking

- **Theorem:** For the preference model given by Pairwise Ranking with n voters and m candidates, unit weights and the cost-threshold $K \ge 0$, a 32-approximately stable committee of weight at most K always exists.
- Proof: Follows by Lemma 1, Lemma 2, and the main theorem of Jiang et al. Monotonicity is key.

CONCLUSIONS:

- 1. Pairwise Ranking gives a more practical preference model.
- 2. A 32-approximate stable committee for pairwise ranking always exits.
- 3. Interesting open direction to close the gap [2,32].

