Pushdown Automata

Chapter 12

Recognizing Context-Free Languages

We need a device similar to an FSM except that it needs more power.

The insight: Precisely what it needs is a stack, which gives it an unlimited amount of memory with a restricted structure.

Example: Bal (the balanced parentheses language)

(((()))

Definition of a Pushdown Automaton

 $M = (K, \Sigma, \Gamma, \Delta, s, A)$, where:

K is a finite set of states

 Σ is the input alphabet

 Γ is the stack alphabet

 $s \in K$ is the initial state

 $A \subseteq K$ is the set of accepting states, and

 Δ is the transition relation. It is a finite subset of

$$(K \times (\Sigma \cup \{\epsilon\}) \times \Gamma^*) \times (K \times \Gamma^*)$$
state input or ϵ string state string of to pop to push from top of stack

Definition of a Pushdown Automaton

A configuration of M is an element of $K \times \Sigma^* \times \Gamma^*$.

The initial configuration of M is (s, w, ε) .

Yields

Let $c \in \Sigma \cup \{\epsilon\}$, $\gamma_{1}, \gamma_{2}, \gamma \in \Gamma^*$, and $w \in \Sigma^*$.

Then:

$$(q_1, cw, \gamma_1 \gamma) \mid_{-M} (q_2, w, \gamma_2 \gamma) \text{ iff } ((q_1, c, \gamma_1), (q_2, \gamma_2)) \in \Delta.$$

Let $|-_{M}$ * be the reflexive, transitive closure of $|-_{M}$.

 C_1 yields configuration C_2 iff $C_1 \mid -M^* C_2$

Computations

A *computation* by M is a finite sequence of configurations $C_0, C_1, ..., C_n$ for some $n \ge 0$ such that:

- C_0 is an initial configuration,
- C_n is of the form (q, ε, γ) , for some state $q \in K_M$ and some string γ in Γ^* , and
- $C_0 \mid -_M C_1 \mid -_M C_2 \mid -_M \dots \mid -_M C_n$.

Nondeterminism

If *M* is in some configuration (q_1, s, γ) it is possible that:

- \bullet Δ contains exactly one transition that matches.
- \bullet Δ contains more than one transition that matches.
- \bullet Δ contains no transition that matches.

Accepting

A computation *C* of *M* is an **accepting computation** iff:

•
$$C = (s, w, \varepsilon) \mid -_{M}^{*} (q, \varepsilon, \varepsilon)$$
, and (empty stack)
• $q \in A$. (accepting state)

M accepts a string *w* iff at least one of its computations accepts.

Other paths may:

- Read all the input and halt in a nonaccepting state,
- Read all the input and halt in an accepting state with the stack not empty,
- Loop forever and never finish reading the input, or
- Reach a dead end where no more input can be read.

The *language accepted by M*, denoted L(M), is the set of all strings accepted by M.

Rejecting

A computation C of M is a **rejecting computation** iff:

- $C = (s, w, \varepsilon) \mid -M^* (q, w', \alpha),$
- C is not an accepting computation, and
- *M* has no moves that it can make from (q, w', α) .

M **rejects** a string *w* iff all of its computations reject.

So note that it is possible that, on input *w*, *M* neither accepts nor rejects.

A PDA for Balanced Parentheses


```
M = (K, \Sigma, \Gamma, \Delta, s, A), where:

K = \{s\} the states

\Sigma = \{ (, ) \} the input alphabet

\Gamma = \{ ( ) \} the stack alphabet

A = \{s\}

\Delta contains:

((s, (, \varepsilon^{\dagger}), (s, ()))

((s, ), (), (s, \varepsilon))
```

This does not mean that the stack is empty

A PDA for $A^nB^n = \{a^nb^n : n \ge 0\}$

A PDA for $\{wcw^R: w \in \{a, b\}^*\}$


```
M = (K, \Sigma, \Gamma, \Delta, s, A), where:

K = \{s, f\} the states

\Sigma = \{a, b, c\} the input alphabet

\Gamma = \{a, b\} the stack alphabet

A = \{f\} the accepting states

\Delta contains: ((s, a, \varepsilon), (s, a))

((s, b, \varepsilon), (s, b))

((s, c, \varepsilon), (f, \varepsilon))

((f, a, a), (f, \varepsilon))

((f, b, b), (f, \varepsilon))
```

A PDA for $\{a^nb^{2n}: n \geq 0\}$

A PDA for PalEven = $\{ww^R: w \in \{a, b\}^*\}$

$$S \rightarrow \varepsilon$$

 $S \rightarrow aSa$
 $S \rightarrow bSb$

A PDA:

A PDA for $\{w \in \{a, b\}^* : \#_a(w) = \#_b(w)\}$

Accepting Mismatches

$$L = \{a^m b^n : m \neq n; m, n > 0\}$$

Start with the case where n = m:

- If stack and input are empty, halt and reject.
- If input is empty but stack is not (m > n) (accept):
- If stack is empty but input is not (m < n) (accept):

Accepting Mismatches

 $L = \{a^m b^n : m \neq n; m, n > 0\}$

• If input is empty but stack is not (m > n) (accept):

Accepting Mismatches

 $L = \{a^m b^n : m \neq n; m, n > 0\}$

• If stack is empty but input is not (m < n) (accept):

Putting It Together

 $L = \{a^m b^n : m \neq n; m, n > 0\}$

- Jumping to the input clearing state 4: Need to detect bottom of stack.
- Jumping to the stack clearing state 3:
 Need to detect end of input.

AnBnCn vs ¬AnBnCn

Consider $A^nB^nC^n = \{a^nb^nc^n : n \ge 0\}.$

PDA for AnBnCn?

Now consider $L = \neg A^n B^n C^n$. L is the union of two languages:

- 1. $\{w \in \{a, b, c\}^* : the letters are out of order\}$, and
- 2. $\{a^ib^jc^k: i, j, k \ge 0 \text{ and } (i \ne j \text{ or } j \ne k)\}$ (in other words, unequal numbers of a's, b's, and c's).

A PDA for $L = \neg A^nB^nC^n$

Are the Context-Free Languages Closed Under Complement?

¬AⁿBⁿCⁿ is context free.

If the CF languages were closed under complement, then

$$\neg \neg A^n B^n C^n = A^n B^n C^n$$

would also be context-free.

But we will prove that it is not.

$L = \{a^n b^m c^p : n, m, p \ge 0 \text{ and } n \ne m \text{ or } m \ne p\}$

```
S \rightarrow NC
                           l^* n \neq m, then arbitrary c's
S \rightarrow QP
                           /* arbitrary a's, then p \neq m
N \rightarrow A
                       /* more a's than b's
                       /* more b's than a's
N \rightarrow B
A \rightarrow a
A \rightarrow aA
A \rightarrow aAb
B \rightarrow b
B \rightarrow Bb
B \rightarrow aBb
C \rightarrow \varepsilon \mid cC /* add any number of c's
P \rightarrow B'
                       /* more b's than c's
P \rightarrow C'
                         /* more c's than b's
B' \rightarrow b
B' \rightarrow bB'
B' \rightarrow bB'c
C' \rightarrow c \mid C'c
C' \rightarrow C'c
C' \rightarrow bC'c
Q \rightarrow \varepsilon | aQ /* prefix with any number of a's
```

PDAs and Context-Free Grammars

Theorem 12.3: The class of languages accepted by PDAs is exactly the class of context-free languages.

Recall: context-free languages are languages that can be defined with context-free grammars.

Restate theorem:

Can describe with context-free grammar

Can accept by PDA

Going One Way

Theorem 12.1: Each context-free language is accepted by some PDA.

Proof (by construction) (not required for midterm !!)

The idea: Let the stack do the work.

Two approaches:

- Top down
- Bottom up

Top Down

The idea: Let the stack keep track of expectations.

Example: Arithmetic expressions

$$E \rightarrow E + T$$

 $E \rightarrow T$
 $T \rightarrow T * F$
 $T \rightarrow F$
 $F \rightarrow (E)$
 $F \rightarrow id$

- (1) $(q, \varepsilon, E), (q, E+T)$
- (2) $(q, \varepsilon, E), (q, T)$
- (3) $(q, \varepsilon, T), (q, T*F)$
- (4) $(q, \varepsilon, T), (q, F)$
- (5) $(q, \varepsilon, F), (q, (E))$
- (6) $(q, \varepsilon, F), (q, id)$

- (7) $(q, id, id), (q, \varepsilon)$
- (8) $(q, (, (), (q, \varepsilon))$
- (9) $(q,),), (q, \varepsilon)$
- (10) $(q, +, +), (q, \varepsilon)$
- (11) $(q, *, *), (q, \varepsilon)$

A Top-Down Parser

The construction in general:

- $M = (\{p, q\}, \Sigma, V, \Delta, p, \{q\}), \text{ where } \Delta \text{ contains:}$
 - The start-up transition $((p, \varepsilon, \varepsilon), (q, S))$.
 - For each rule $X \to s_1 s_2 ... s_n$. in R, the transition: $((q, \epsilon, X), (q, s_1 s_2 ... s_n))$.
 - For each character $c \in \Sigma$, the transition: $((q, c, c), (q, \varepsilon))$.

Example: $L = \{a_nb^*a_n\}$

input = a a b b a a

Trans	state	unread input	stack	
		p a a	b b a a	ε
0		q a a	b b a a	S
3		q a a	b b a a	aSa
6		q	a b b a a	Sa
3		q	a b b a a	aSaa
6		q	b b a a	Saa
2		q	b b a a	Baa
5		q	b b a a	bBaa
7		q	b a a	Baa
5		q	b a a	bBaa
7		q	a a	Ваа
4		q	a a	aa
6		q	a	a
6		q	ε	ε

Going The Other Way

Theorem 12.2: If a language is accepted by a pushdown automaton M, it is context-free (i.e., it can be described by a context-free grammar).

The proof is by construction - very complicated, not required!!

Nondeterminism, minimality

A PDA *M* is **deterministic** iff:

- Δ_M contains no pairs of transitions that compete with each other
- Whenever *M* is in an accepting configuration it has no available moves.
- 1. Determinism is strictly less powerful: There are context-free languages for which no deterministic PDA exists.
- 2. It is possible that a PDA may
 - not halt,
 - not ever finish reading its input.
- 3. There exists no algorithm to minimize a PDA. It is undecidable whether a PDA is minimal.