Linear Regression and Gradient Descent

Prof.Mingkui Tan

South China University of Technology Southern Artificial Intelligence Laboratory(SAIL)

September 6, 2017

Content

- 1 Linear Regression
- 2 Gradient Descent

Contents

Linear Regression

1 Linear Regression

2 Gradient Descent

Machine Learning Setup

- Inputs Input space $\mathbf{X} = \mathbb{R}^m$ feature,covariants,predictors,etc.
- Outputs
 Output space: Y
 many different types of predictions.
- Goal:Learn a hypothesis/model
 h : X → Y

Supervised Learning

• Given set of input, output pairs

$$D = (\mathbf{x}_1, y_1)...(\mathbf{x}_n, y_n)$$

- Learn the "best" model based on D.
- Predict \hat{y} for unseen x based on $h(\mathbf{x})$.

Linear Regression

Hypothesis:

ullet there is some good linear function of input to find prediction \hat{y}

Assumption:

- Parametric model $h(\mathbf{x}; \mathbf{w})$ is a linear function of \mathbf{x} .
- We select this by choosing **w**.

Linear Regression:Common

Learn $h(\mathbf{x}; \mathbf{w})$ with

- Parameters: $\mathbf{w} \in \mathbb{R}^{m-1}, w_0 \in \mathbb{R}$
- Input:**x** where $x_j \in \mathbb{R}$ for $j \in 1,...(m-1)$ features
- Model Function:

$$h(\mathbf{x}; w_0, \mathbf{w}) = w_0 + w_1 x_1 + \dots + w_{m-1} x_{m-1}$$
$$= \sum_{j=1}^{m-1} w_j x_j + w_0$$
$$= \mathbf{w}^\top \mathbf{x} + w_0$$

Performance Measure for Regression

- What makes a good model?
- Squared loss

$$\mathcal{L}_D(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^n (y_i - h(\mathbf{x}_i; \mathbf{w}))^2$$

= $\frac{1}{2} \sum_{i=1}^n (y_i - \hat{y}_i)^2$.

Training:find minimizer of this loss(least squares)

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \mathcal{L}_D(\mathbf{w})$$

Residual Terms

Contributing loss terms for 1D regression.

Contents

1 Linear Regression

② Gradient Descent

Machine Learning

Training Procedure

- ullet Define a loss criterion ${\cal L}$
- Identify a set of hypotheses h(x; w)
- Pick the best \mathbf{w}^* by minimizing a loss function $\mathcal{L}_D(\mathbf{w})$, i.e

$$\arg\min_{\boldsymbol{w}}\boldsymbol{\mathcal{L}}(\boldsymbol{w})$$

Learning is done through optimization.

Optimization

Miningmizing loss function is vary hard...

Therefore optimization is central part of machine learning.

- Gradient descent
- Linear and quadratic programming
- Newton-like methods
- Stochastic optimization
- Lots more...

Main Tool: Gradients

Typical case (with possibly parameterized g)

$$\mathcal{L}(\mathbf{w}): \mathbb{R}^n \mapsto \mathbb{R}$$

Gradient (vector of partial derivatives)

$$\frac{\partial \mathcal{L}(\mathbf{w})}{\partial \mathbf{w}} = \begin{bmatrix} \frac{\partial \mathcal{L}(\mathbf{w}_1)}{\partial w_1} \\ \frac{\partial \mathcal{L}(w_2)}{\partial w_2} \\ \vdots \\ \frac{\partial \mathcal{L}(w_n)}{\partial w_n} \end{bmatrix}$$

(We will always write as column vectors)

Linear Regression Gradient Descent

Gradient Descent

Minimize loss by repeated gradient steps(when no closed form):

- Compute gradient of loss with respect to parameters $\frac{\partial \mathcal{L}(\mathbf{w})}{\partial \mathbf{w}}$
- ullet Update parameters with rate η

$$\mathbf{w}' o \mathbf{w} - \eta \frac{\partial \mathcal{L}(\mathbf{w})}{\partial \mathbf{w}}$$

Figure: Gradient steps on a simple m = 2 loss function.

Linear Regression Gradient Descent

More Limitation of Gradient Descent

Linear Regression Gradient Descent

Convex Function

If the cost fuction is convex, then a locally optimal point is globally optimal

D ,a domain in \mathbb{R}^n .

A convex function $f:D\mapsto \mathbb{R}$ is one that satisfies,for any x_0 and x_1 in D:

$$f((1-\alpha)x_0 + \alpha x_1) \le (1-\alpha)f(x_0) + \alpha f(x_1)$$

Gradient descent algorithm for Regression

The loss function $\mathcal{L}(\mathbf{w})$:

$$\sum_{i=1}^n (y_i - h(\mathbf{x}_i; \mathbf{w}))^2$$

Gradient descent algorithm for Regression

To minimize a cost function $\mathcal{L}(\mathbf{w})$ use the iterative update

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta_t \frac{\partial \mathcal{L}(\mathbf{w}_t)}{\partial \mathbf{w}_t}$$

where η is the learning rate and $\frac{\partial \mathcal{L}(\mathbf{w})}{\partial \mathbf{w}}$ is :

$$\frac{\partial \mathcal{L}(\mathbf{w})}{\partial \mathbf{w}} = -\sum_{i=1}^{n} (y_i - \mathbf{w}^{\top} \mathbf{x}_i) \mathbf{x}_i$$
$$= -\sum_{i=1}^{n} y_i \mathbf{x}_i + (\sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^{\top}) \mathbf{w}$$

Matrix Version

$$D = \{(x_1, y_1), ...(x_n, y_n)\}\$$

• Inputs: $\mathbf{X} \in \mathbb{R}^{n \times m}$

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,m} \\ x_{2,1} & x_{2,2} & \dots & x_{2,m} \\ \vdots & \vdots & \dots & \vdots \\ \vdots & \vdots & \dots & \vdots \\ x_{n,1} & x_{n,2} & \dots & x_{n,m} \end{bmatrix}$$

Matrix Version

• Outputs(target vector): $\mathbf{y} \in \mathbb{R}^{n \times 1}$

$$\mathbf{y} = egin{bmatrix} y_1 \ y_2 \ dots \ y_n \end{bmatrix}$$

Least Square Loss(Matrix Form)

Same as above, but using matrix caculus identities

$$\begin{split} L(\mathbf{w}) &= \frac{1}{2} (\mathbf{y} - \mathbf{X} \mathbf{w})^{\top} (\mathbf{y} - \mathbf{X} \mathbf{w}) \\ &= (\mathbf{y}^{\top} \mathbf{y} - 2 \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{y} + \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w}) \\ \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} &= \frac{1}{2} \frac{\partial \mathbf{y}^{\top} \mathbf{y}}{\partial \mathbf{w}} - \frac{\partial 2 \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{y}}{\partial \mathbf{w}} + \frac{\partial \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w}}{\partial \mathbf{w}} \\ &= \frac{1}{2} (-2 \mathbf{X}^{\top} \mathbf{y} + (\mathbf{X}^{\top} \mathbf{X} + (\mathbf{X}^{\top} \mathbf{X})^{\top}) \mathbf{w}) \\ &= -\mathbf{X}^{\top} \mathbf{y} + \mathbf{X}^{\top} \mathbf{X} \mathbf{w} \end{split}$$

Least Square Loss(Matrix Form)

$$rac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = -\mathbf{X}^{ op}\mathbf{y} + \mathbf{X}^{ op}\mathbf{X}\mathbf{w}$$

Set to 0, and solve for optimal parameters \mathbf{w}^*

$$\mathbf{w}^* = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} = \arg\min_{\mathbf{w}} L_D(\mathbf{w})$$

(Known as Moore-Penrose pseudo-inverse

$$(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$$

Generalization of inverse for non-square matrix).

THANK YOU!