

CONTENT

- **>INTRODUCTION**
- ➤ EDA(EXPLORATORY DATA ANALYSIS)
- > FEATURE ENGINEERING
- > DATA FEATURING
- > VISUALIZATION
- > CONCLUSION

INTRODUCTION

The Importance of Marketing Analytics

Market analysis is one of the vital components to help business with all the essential information and making wise business decisions.

What is EDA?

EDA stands for Exploratory Data Analysis. It is a process that shows you or rather helps you to explore your data using visualization and transformation methodologies in a systematic way.

• <u>Imported Libraries:</u>

```
#Import libraries
import pandas as pd
import numpy as np
import seaborn as sns
sns.set()
import matplotlib.pyplot as plt
%matplotlib inline
import datetime as dt
```

data.columns

• <u>Total number of rows and columns:</u>

Missing data:

```
data.isnull().sum()

ID 0
Year_Birth 0
Education 0
Marital Status 0
Income 24
```

[] #Remove null values
 data['Income'] = data['Income'].fillna(data['Income'].mean())

data.nunique()

ID	2240
Year_Birth	59
Education	5
Marital_Status	8
Income	1974
Kidhome	3
Teenhome	3
Dt_Customer	663
Recency	100
MntWines	776
MntFruits	158
MntMeatProducts	558
MntFishProducts	182
MntSweetProducts	177
MntGoldProds	213
NumDealsPurchases	15
NumWebPurchases	15
NumCatalogPurchases	14
NumStorePurchases	14
NumWebVisitsMonth	16
AcceptedCmp3	2
AcceptedCmp4	2
AcceptedCmp5	2
AcceptedCmp1	2
AcceptedCmp2	2
Response	2
Complain	2
Country	8
dtype: int64	

[] data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2240 entries, 0 to 2239
Data columns (total 28 columns):
Column Non-Null County

#	Column	Non-Null Count	Dtype		
		2240 pop pull	int64		
0	ID	2240 non-null 2240 non-null	int64		
1 2	Year_Birth Education	2240 non-null			
			object		
3	Marital_Status	2240 non-null	object		
4 5	Income Kidhome	2216 non-null	object		
	Teenhome	2240 non-null	int64		
6		2240 non-null	int64		
7	Dt_Customer	2240 non-null	object		
8	Recency	2240 non-null	int64		
9	MntWines	2240 non-null	int64		
10	MntFruits	2240 non-null	int64		
11	MntMeatProducts	2240 non-null	int64		
12	MntFishProducts	2240 non-null	int64		
13	MntSweetProducts	2240 non-null	int64		
14	MntGoldProds	2240 non-null	int64		
15	NumDealsPurchases	2240 non-null	int64		
16	NumWebPurchases	2240 non-null	int64		
17	NumCatalogPurchases	2240 non-null	int64		
18	NumStorePurchases	2240 non-null	int64		
19	NumWebVisitsMonth	2240 non-null	int64		
20	AcceptedCmp3	2240 non-null	int64		
21	AcceptedCmp4	2240 non-null	int64		
22	AcceptedCmp5	2240 non-null	int64		
23	AcceptedCmp1	2240 non-null	int64		
24	AcceptedCmp2	2240 non-null	int64		
25	Response	2240 non-null	int64		
26	Complain	2240 non-null	int64		
27	Country	2240 non-null	object		
dtypes: int64(23), object(5)					
memo	ry usage: 490.1+ KB				

DATA CLEANING

Removal of special symbol and converting the data type:

```
[6] data.rename({' Income ' : 'Income'}, axis = 1, inplace = True)

data['Income'] = data['Income'].str.replace('$', '')
data['Income'] = data['Income'].str.replace(',', '').astype(float)
```

Formatting Dt_Customer into datetime:

```
[10] data['Dt_Customer'] = pd.to_datetime(data['Dt_Customer'])
```

Deleting Unwanted Columns:

[21] data.drop(columns=['ID', 'Dt_Customer', 'Teenhome', 'Kidhome'], inplace=True)

People With Age more than 80 are segregated:

- [6] data['Customer_Age'] = data['Dt_Customer'].dt.year data['Year_Birth']
- data[data['Customer_Age'] >=80]

₽		ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	Recency	MntWines	MntFruits	${\tt MntMeatProducts}$	Mnt	1
	513	11004	1893	2n Cycle	Single	\$60,182.00	0	1	2014-05-17	23	8	0	5		
	827	1150	1899	PhD	Together	\$83,532.00	0	0	2013-09-26	36	755	144	562		
	2233	7829	1900	2n Cycle	Divorced	\$36,640.00	1	0	2013-09-26	99	15	6	8		1

Adding different columns and creating new column:

One-hot encoding:

```
# one-hot encoding of categorical features
from sklearn.preprocessing import OneHotEncoder
# get categorical features and review number of unique values
cat = data.select dtypes(exclude=np.number)
print("Number of unique values per categorical feature:\n", cat.nunique())
# use one hot encoder
enc = OneHotEncoder(sparse=False).fit(cat)
cat_encoded = pd.DataFrame(enc.transform(cat))
cat encoded.columns = enc.get feature names(cat.columns)
# merge with numeric data
num = data.drop(columns=cat.columns)
data = pd.concat([cat_encoded, num], axis=1)
data.head()
Number of unique values per categorical feature:
Education
Marital Status
Country
dtype: int64
```

VISUALIZATION

Average Income W.R.T Education:

```
plt.figure(figsize=(12,9))

sns.barplot(x='Education', y='Income', data=data, estimator=np.mean, palette='coolwarm')
plt.title('Income and Education', fontsize=20)
plt.xlabel('Education',fontsize=12)
plt.ylabel('Income',fontsize=12);
```


 People who have done graduation or higher have better Income than those who did not.

CATEGORIZATION OF INCOME BY DIFFERENT AGE GROUP AND COUNTRY

[] data['Customer_age_grp'] = pd.cut(data.Customer_Age, bins=[18,35,50,80], labels=['Adult','Middle','Old'])

- Graph one and two illustrates that old age group, especially in countries such as Spain, Canada, Australia, Germany, India and south Africa have the highest income.
- According to graph two, Mexico have the highest where as India has the lowest income among adults.

• ADULT: 18-35

• MIDDLE: 35-50

• OLD: 50-80

PURCHASE W.R.T AGE GROUP AND CHILDREN:

 People with 0 or 1 child tends to buy more Meat where as people with 2 to 3 kids buy more Wine.

PRODUCT PURCHASED W.R.T MARITAL STATUS:

- Married people or people living together tends to purchase most amount of Meat.
- Wine is the second most purchased product.

TOTAL EXPENDITURE OF CUSTOMERS:

sns.lmplot(x='Income', y='TotalMnt', data=data[data['Income'] < 200000]);</pre>

- The line-graph represents the total amount spent by customers according to their income.
- People with high income
 often spend more with some
 exceptions.
- To remove outliers we have limiting income to less than 200000.

USERS IN PARTICULAR COUNTRY:

data["Country"].value_counts().to_frame()

	Country
SP	1094
SA	336
CA	268
AUS	160
IND	147
GER	120
US	109
ME	3

- Spain has the most amount of Customers.
- And Mexico has the least amount of Customers.

WHICH COUNTRY SPENDS THE MOST?

→ People in **Spain** purchase the most among all other countries.

Total Purchase W.R.T Country:

WHICH MARKETING CAMPAIGN IS MOST SUCCESSFUL?

→ Wine and Meat seems to have done the best.

CA

AUS

4.8%

US

→ People prefer to purchase products from **Stores.**

```
prod = data[['NumDealsPurchases', 'NumWebPurchases', 'NumCatalogPurchases', 'NumStorePurchases']].agg([sum]).T
sns.barplot(x = prod.index, y = prod['sum'])
plt.gca().set_xticklabels(['Deals', 'Web', 'Catalog', 'Store'])
plt.xlabel('Service')
plt.ylabel('Amount')
Text(0, 0.5, 'Amount')
   12000
   10000
Amount
    8000
    6000
    4000
    2000
        0
                                  Catalog
             Deals
                         Web
                                               Store
                             Service
```


SUMMARY

- We can conclude that the most successful products are wine and meat.
- Advertising campaign acceptance is positively correlated with income and negatively correlated with having children.
- The new campaign was the most successful advertising campaign and was especially successful in Spain.
- The best performing channels are web and store purchases.
- The underperforming channels are deals and catalog purchases.
- Despite Mexico having the highest youth income, they spend the least because company has least users from Mexico.

THANK YOU!