GATE - 2014- MA

1

EE1030: Matrix Theory Indian Institute of Technology Hyderabad

Satyanarayana Gajjarapu AI24BTECH11009

1 53 - 65

1) Suppose that X is a population random variable with probability density function

$$f(x; \theta) = \begin{cases} \theta x^{\theta - 1} & \text{if } 0 < x < 1\\ 0 & \text{otherwise,} \end{cases}$$

where θ is a parameter. In order to test the null hypothesis H_0 : $\theta = 2$, against the alternative hypothesis H_1 : $\theta = 3$, the following test is used: Reject the null hypothesis if $X_1 \ge \frac{1}{2}$ and accept otherwise, where X_1 is a random sample of size 1 drawn from the above population. Then the power of the test is

2) Suppose that X_1, X_2, \dots, X_n is a random sample of size n drawn from a population with probability density function

$$f(x; \theta) = \begin{cases} \frac{x}{\theta^2} e^{-\frac{x}{\theta}} & \text{if } x > 0\\ 0 & \text{otherwise,} \end{cases}$$

where θ is a parameter such that $\theta > 0$. The maximum likelihood estimator of θ is

- a) $\sum_{i=1}^{n} X_i$
- b) $\frac{\sum\limits_{i=1}^{n} X_{i}}{\sum\limits_{n-1}^{n-1} X_{i}}$ c) $\frac{\sum\limits_{i=1}^{n} X_{i}}{2n}$ d) $\frac{2\sum\limits_{i=1}^{n} X_{i}}{n}$

- 3) Let \overrightarrow{F} be a vector field defined on $\mathbb{R}^2 \setminus \{(0,0)\}$ by

$$\overrightarrow{F}(x,y) = \frac{y}{x^2 + y^2}\hat{i} - \frac{x}{x^2 + y^2}\hat{j}.$$

Let $\gamma, \alpha : [0, 1] \to \mathbb{R}^2$ be defined by

$$\gamma(t) = (8\cos(2\pi t), 17\sin(2\pi t))$$
 and $\alpha(t) = (26\cos(2\pi t), -10\sin(2\pi t))$.

If
$$3\int_{\alpha} \overrightarrow{F} \cdot d\overrightarrow{r} - 4\int_{\gamma} \overrightarrow{F} \cdot d\overrightarrow{r} = 2m\pi$$
, then m is _____

4) If $g: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by

$$g(x, y, z) = ((3y + 4z, 2x - 3z, x + 3y)$$

and let $S = \{(x, y, z) \in \mathbb{R}^3 : 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1\}$. If

$$\iiint_{\sigma(S)} (2x + y - 2z) dx dy dz = \alpha \iiint_{S} z dx dy dz,$$

then α is ____

- 5) Let T_1 , $T_2 : \mathbb{R}^5 \to \mathbb{R}^3$ be linear transformations such that $rank(T_1) = 3$ and $nullity(T_2) = 3$. Let $T_3 : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that $T_3 \circ T_1 = T_2$. Then $rank(T_3)$ is _____
- 6) Let \mathbb{F}_3 be the field of 3 elements and let $\mathbb{F}_3 \times \mathbb{F}_3$ be the vector space over \mathbb{F}_3 . The number of distinct linearly dependent sets of the form $\{u, v\}$, where $u, v \in \mathbb{F}_3 \times \mathbb{F}_3 \setminus \{0, 0\}$ and $u \neq v$ is
- 7) Let \mathbb{F}_{125} be the field of 125 elements. The number of non-zero elements $\alpha \in \mathbb{F}_{125}$ such that $\alpha^5 = \alpha$ is
- 8) The value of $\iint_R xy \ dx \ dy$, where R is the region in the first quadrant bounded by the curves $y = x^2$, y + x = 2 and x = 0 is _____
- 9) Consider the heat equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \ 0 < x < \pi, \ t > 0,$$

with the boundary conditions u(0,t)=0, $u(\pi,t)=0$ for t>0, and the initial condition $u(x,0)=\sin(x)$. Then $u\left(\frac{\pi}{2},1\right)$ is _____

- 10) Consider the partial order in \mathbb{R}^2 given by the relation $(x_1, y_1) < (x_2, y_2)$ EITHER if $x_1 < x_2$ OR if $x_1 = x_2$ and $y_1 < y_2$. Then in the order topology on \mathbb{R}^2 defined by the above order
 - a) $[0,1] \times \{1\}$ is compact but $[0,1] \times [0,1]$ is NOT compact
 - b) $[0,1] \times [0,1]$ is compact but $[0,1] \times \{1\}$ is NOT compact
 - c) both $[0,1] \times [0,1]$ and $[0,1] \times \{1\}$ are compact
 - d) both $[0,1] \times [0,1]$ and $[0,1] \times \{1\}$ are NOT compact
- 11) Consider the following linear programming problem: Minimize: $x_1 + x_2 + 2x_3$

Subject to

$$x_1 + 2x_2 \ge 4$$
,
 $x_2 + 7x_3 \le 5$,
 $x_1 - 3x_2 + 5x_3 = 6$,
 $x_1, x_2 \ge 0$, x_3 is unrestricted

The dual to this problem is: Maximize: $4y_1 + 5y_2 + 6y_3$

Subject to

$$y_1 + y_3 \le 1$$
,
 $2y_1 + y_2 - 3y_3 \le 1$,
 $7y_2 + 5y_3 = 2$

and further subject to:

- a) $y_1 \ge 0$, $y_2 \le 0$ and y_3 is unrestricted
- b) $y_1 \ge 0$, $y_2 \ge 0$ and y_3 is unrestricted
- c) $y_1 \ge 0$, $y_3 \le 0$ and y_2 is unrestricted
- d) $y_3 \ge 0$, $y_2 \le 0$ and y_1 is unrestricted
- 12) Let $X = C^1[0, 1]$. For each $f \in X$, define

$$p_1(f) := \sup \{ |f(t)| : t \in [0, 1] \}$$

$$p_2(f) := \sup \{ |f'(t)| : t \in [0, 1] \}$$

$$p_3(f) := p_1(f) + p_2(f).$$

Which of the following statements is TRUE?

- a) (X, p_1) is a Banach space
- b) (X, p_2) is a Banach space
- c) (X, p_3) is NOT a Banach space
- d) (X, p_3) does NOT have denumerable basis
- 13) If the power series

$$\sum_{n=0}^{\infty} a_n (z+3-i)^n$$

converges at 5i and diverges at -3i, then the power series

- a) converges at -2 + 5i and diverges at 2 3i
- b) converges at 2-3i and diverges at -2+5i
- c) converges at both 2 3i and -2 + 5i
- d) diverges at both 2 3i and -2 + 5i