Magnetic Phase Shift Torque Sensor

Anusha, Jamie, Jill, and Riley

Ideation

Idea	Explanation	Sketch
Optical	Rotating disks, one with LEDs, one with photodiodes	
Inductor (eddy current solenoid)	Run current through inductor on axle, measure current on inductor parallel	+
Permanent Magnet	Dipole magnet attached to axle, sense when North	5
Strain Gauge	Attach parallel to axle, look at degree of twist	

Feasibility Testing - Optical

- Placed cardboard piece over rotating shaft of impact driver and applied varied torque
- Detected changes in photoresistor value based on displacement of light when shaft deformed
- Needed multiple photodiodes and lights to quantify extent of deformation

Conclusion: Implementation would require extensive geometry of components and heavy software component

Feasibility Testing - Eddy Currents

- Attempted to measure the eddy currents induced by a rotating shaft
- Used a drill to rotate a shaft, and an inductor to measure the eddy current

Conclusion: Implementation probably possible, but we don't know how. The method of using eddy currents requires a more fundamental understanding of electrostatics than we have.

Feasibility Testing - Hall Effect

Permanent Magnet:

- Rotated magnet over a hall effect sensor (using a dowel)
- Detected changes in sensor output

Inductor:

 Measure response to varying distance from inductor and varying current

Conclusion: Phase shift is visible, method is viable.

Feasibility Testing - Strain Gauge

- Performed theoretical analysis, as components were prohibitively expensive
- Required components were two strain gauges to measure torsional load, however combination of small size and accuracy were hard to balance

Conclusion: Implementation was straightforward, but iteration would come at a heavy cost.

Final Decision

We selected to move forward with the **Hall effect sensor-based design** because it has:

- High opportunity for iterative development
- Challenges aligned with our learning goals
- Clearest path to direct torque measurement
- Low complexity in terms of collecting raw data
- Dependable and predictable results
- Scalable, depending on products available for purchase

High level overview

- Prove that the behavior of magnets can achieve a torque measurement of adequate granularity, for both static and dynamic applications
- Main concepts to harness for success:
 - Magnets
 - Hall effect sensors
 - Axles
 - Couplers

Axle Testing

- Phase shift measurement requires flexible shaft
- Experimented with different materials and densities
 - TPU 30% fill
 - TPU 70% fill
 - PLA 50% fill
 - PLA 70% fill

Couplers

- Wanted to maintain couplers present in default motor configuration
- Ideas to 3D print axles with coupling ends
 - Magnet within
 - Magnet on the outside
- Two magnets mounted on either end of axle and couplers

Hall Effect Sensors

- Movement of charge based on applied magnetic force
- 3 pronged hall effect, coupled with amplifier
- Head on and side to side detection (not all or nothing)
- Required a diametric form of magnet to take full advantage of hall effect sensing

Diametric magnets

Electromagnetic Ring

We played with the idea of creating an electromagnetic ring that would have a diametric field.

- Used parallel LR circuits to create desired mag. field
- Chose resistor values so that the strength of the fields followed a sinusoidal pattern.

Permanent vs Electro Magnets

BENEFITS	DOWNFALLS
Didn't have to make	Can't adjust
Knew exactly how it behaved	Was a design restriction
Sturdy	

Software - Phase Offset Determination

Use difference between magnet outputs to determine phase shift due to torque using hardware like <u>phase</u> <u>comparator IC</u> or software-based methods such as <u>autocorrelation</u>.

```
# Determine the phase offset between the two signals using the correlation.
correlation = np.correlate(ref_signal, shifted_signal, 'full')
time_delta = np.linspace(-time[-1], time[-1], (2*number_of_samples)-1)
time_shift = time_delta[correlation.argmax()]
# Constrain to between pi and pi.
calc_phase_shift = ((2* np.pi) * (time_shift/(1/frequency) % 1))
# Prints the actual value of the shift and the adjusted phase shift.
print("Actual phase shift: %f", phase_shift)
print("Computed phase shift: %f", calc_phase_shift)
```

Firmware - Torque Calculation

- Build calibration curve to quantify directly proportional relationship between the phase shift and torque
- During operation, quantify phase shift and use calibration curve to convert to torque
- Built software mockup in Arduino

