Anonymous and Copy-Robust Delegations for Liquid Democracy

Markus Utke
TU Eindhoven

Ulrike Schmidt-Kraepelin

Simons Laufer Mathematical Sciences Institute (SLMath)

Liquid Democracy with Ranked Delegations

Ranked Delegation Graph

Each voter either casts their vote or delegates their vote by indicating a weak ranking over other voters.

casting voter

delegating voter

 $-n \rightarrow n^{\text{th}}$ preference for delegation

Fractional Delegation Rule

Input: delegation graph and voter vOutput: probability distribution f_v over casting voters

 $f_b(x) = \frac{1}{3}$

 $f_b(y) = \frac{2}{3}$

Voting Weight

Total voting weight of a casting voter received from all delegating voters:

$$\pi(c) = \sum_{v} f_v(c)$$

Rules

Mixed Borda

Borda Branching [1]: Minimum cost B_1 : acyclic subgraph such that every delegating voter has a path to a casting voter.

Mixed Borda Rule:

- 1. Sample a Borda Branching \boldsymbol{B} uniformly at $\frac{\boldsymbol{B_2}}{2}$ random
- 2. Define $f_{\boldsymbol{v}}(\boldsymbol{w})$ as the probability that delegating voter \boldsymbol{v} reaches casting voter \boldsymbol{w} in \boldsymbol{B}

$$f_b(x) = \frac{1}{3}$$
 $f_b(y) = \frac{2}{3}$

Random Walk Rule

- 1. Assign each edge with rank r a probability proportional to $arepsilon^{(r-1)}$
- 2. For each delegating voter v compute probability $\mathbf{P}_{\varepsilon}(v \to w)$ of ending in each casting voter w when starting a random walk in v
- 3. Compute the limit for $\varepsilon \to 0$

$$f_b(x) = \lim_{\varepsilon \to 0} \mathbb{P}_{\varepsilon}(b \to x)$$

~: weights need to be scaled down proportionally

Axioms

Anonymity

The names of voters do not matter.

 $f_a(x) \stackrel{!}{=} f_b(y)$

Copy-robustness

When a delegating voter v decides to cast their vote themselves, the joint voting power of v and its representatives should not change.

 $\pi_G(y) \stackrel{!}{=} \pi_H(c) + \pi_H(y)$

Confluence

The voting weight that reaches some voter should be passed along in the same way as the own vote of this voter.

$$\begin{array}{c|c} a & -1 \rightarrow b & \stackrel{1}{\searrow} & f_a \stackrel{!}{=} f_b \end{array}$$

Our Results

Equivalence

Mixed Borda and the Random Walk Rule return **the same** probability distribution. (We apply the Markov Chain Tree Theorem.)

Algorithm

We provide a **polynomial time** algorithm for computing the outcome of Mixed Borda (and hence the Random Walk Rule). This algorithm is of independent interest, e.g., in the context of semisupervised learning [2].

Axiomatic Analysis

We show that Mixed Borda (and hence the Random Walk Rule) satisfies **all three axioms**. For the non-fractional case, we prove an **impossibility theorem**, stating that no such rule exists.

