Федеральное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет «Высшая школа экономики»»

Отчет по лабораторной работе 7

Численное решение стационарных и нестационарных задач теплопроводности

Вариант 10: задачи 10.1.10, 10.3.5, 10.4.10, 10.5.10, 10.6.10

Выполнил:

Студент группы БПМ-211 Ляхов Артём Андреевич

Преподаватель:

Брандышев Петр Евгеньевич

Содержание

1	Зад	ача 10.		4	
	1.1	Формул	лировка задачи	4	
	1.2	Результ	гаты	5	
2	Зад	ача 10.	3.5	6	
	2.1	Формул	пировка задачи	6	
	2.2	Теорети	ический материал	6	
		2.2.1	Приближения второго порядка	6	
		2.2.2	Метод прогонки	7	
	2.3	Решени	ие задачи	8	
		2.3.1	Система разностных уравнений	8	
			Результаты	9	
			Код на Python	9	
3	Зал	ача 10.4	4.10	12	
	3.1	•	лировка задачи	12	
	3.2	- 0	ие задачи	13	
	J		Разностная схема	13	
			Результаты	14	
	3.3	-	Python	15	
4	Зал	ача 10.	5.10	17	
_	4.1				
	4.2	- 0	ие задачи	17 17	
	7.2		Разностная схема	17	
			Результаты	18	
		4.2.2	т езультаты	10	
5	Зад	ача 10.0	6.10	19	
	5.1	Формулировка задачи		19	
	5.2	Теорети	ический материал	19	
		5.2.1	Явные схемы	19	
		5.2.2	Неявные схемы	20	
	5.3	Решени	ие задачи	20	
			Явная разностная схема	20	
			Неявная разностная схема	21	
			Результаты	21	

5.4	Анимации процессов	24
5.5	Koд на Python	24

1 Задача 10.1.10

1.1 Формулировка задачи

Необходимо промоделировать стационарные процессы теплопроводности стержня в зависимости от входных данных задачи:

$$\begin{cases}
-\frac{d}{dx}\left(K(x)\frac{du}{dx}\right) = f \\
u(a) = U_a, \quad u(b) = U_b
\end{cases}$$

- 1. Представить K(x) в виде функции двух переменных x и c: K(x) = K(x,c), где c параметр
- 2. При заданных в индивидуальном варианте k(x) (набор 1) и f(x) найти аналитическое решение задачи символьно.
- 3. Изменяя значение параметра c в коэффициенте теплопроводности, найти решения задачи для параметров 1-3 из таблицы.
- 4. На одном чертеже построить найденные решения, сравнить полученные результаты.
- 5. Аналогично п.2 найти аналитические решения для набора параметров 4. На одном чертеже построить решений для наборов 1 и 4. Сравнить полученные результаты.
- 6. Изменяя граничные условия U_a , U_b , найти решения для наборов параметров 5-7. Изобразить их на одном чертеже. Сравнить полученные результаты.

В соответствии с индивидуальным вариантом:

$$k(x) = x$$
, $a = 0.1$, $b = 0.6$, $U_a = 1$, $U_b = 5$

1.2 Результаты

Рис. 1: Аналитические решения ДУ для наборов параметров 1-3.

Рис. 2: Аналитические решения ДУ для наборов параметров 1 и 4.

Вывод: в нашем случае на поведение решения больше всего влияет изменение характера поведения функции K(x) и изменение начальных условий.

Рис. 3: Аналитические решения ДУ для наборов параметров 5-7.

2 Задача 10.3.5

2.1 Формулировка задачи

Необходимо, используя метод конечных разностей, найти с точностью до $\varepsilon=0.1$ решение краевой задачи

$$\begin{cases} u''(x) - u'(x) + 2x^2 u(x) = x + 1 \\ u(1.3) = 1 \\ u(2.4) + u'(2.4) = 3.2 \end{cases}$$

Изобразить решение на графике. Решение системы разностных уравнений найти, используя метод прогонки.

2.2 Теоретический материал

2.2.1 Приближения второго порядка

Обозначим за u_i значение искомой функции u(x) в узле x_i , за h - длину шага сетки.

Тогда для того, чтобы построить приближение значений функции $\{u_i\}_{i=0}^n$ необходимо составить систему разностных уравнений. Для этого

можно воспользовать следующими аппроксимациями:

$$u_i'' \approx \frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} \tag{1}$$

$$u_i' \approx \frac{u_{i+1} - u_{i-1}}{2h} \tag{2}$$

$$u_0' \approx \frac{-u_2 + 4u_1 - 3u_0}{2h} \tag{3}$$

$$u_n' \approx \frac{3u_n - 4u_{n-1} + u_{n-2}}{2h} \tag{4}$$

Все приближения выше имеют второй порядок точности. Это значит, что разность между искомым значением и аппроксимацией равняется $O(h^2)$, при $h \to 0$.

2.2.2 Метод прогонки

Предположим, что нам необходимо решить систему линейных уравнений Ax = b, где A - трёхдиагольная матрица, тогда по-другому эту систему можно записать в следующем виде:

$$A_i x_{i-1} + B_i x_i + C_i x_{i-1} = F_i (5)$$

Решить подобную систему можно, используя *метод прогонки*. Этот метод основывается на предположении, что искомые неизвестные связаны рекуррентным соотношением:

$$x_i = \alpha_{i+1} x_{i+1} + \beta_{i+1}, \quad 1 \le i \le n-1$$
 (6)

Подставив 6 в уравнение 5, мы получаем рекуррентные соотношения для α_i и β_i :

$$\begin{cases}
\alpha_{i+1} = \frac{-C_i}{A_i \alpha_i + B_i} \\
\beta_{i+1} = \frac{F_i - A_i \beta_i}{A_i \alpha_i + B_i}
\end{cases}$$
(7)

$$\begin{cases} \alpha_2 = -C_1/B_1 \\ \beta_2 = F_1/B_1 \end{cases}$$
(8)

Таким образом, решение задачи методом прогонки состоит из двух частей. Первая, называемая прямой прогонкой заключается в том, что, используя соотношения 7 и 8, мы находим коэффициенты α_i , β_i . Вторая часть, называемая обратной прогонкой, состоит в нахождении x_i при помощи соотношения 6.

2.3 Решение задачи

2.3.1 Система разностных уравнений

$$\frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} - \frac{u_{i+1} - u_{i-1}}{2h} + 2x_i^2 u_i = x_i + 1 \quad 1 \le i \le n - 1$$

Из начальных условий также получаем два уравнения:

$$\begin{cases} u_0 = 1\\ u_n + \frac{3u_n - 4u_{n-1} + u_{n-2}}{2h} = 3.2 \end{cases}$$

После преобразований и исключения переменной u_{n-2} из уравнения для второго начального условия мы получаем итоговую систему разностных уравнений:

$$\begin{cases} u_0 = 1 \\ (2 - h)u_{i+1} + (-4 + 4x_i^2 h^2)u_i + (2 + h)u_{i-1} = 2h^2(x_i + 1) & 1 \le i \le n \\ (2h^2 + 8h + 4)u_n - 4(h + 1 + x_{n-1}^2 h^2)u_{n-1} = 6.4h(h + 2) - 2h^2(x_{n-1} + 1) \end{cases}$$

Обратим внимание, что из первого уравнения получившейся системы мы сразу знаем u_0 . В дальнейшем если мы будем воспринимать u_0 как известную константу, то мы можем заметить, что получившаяся система линейных уравнений относительно $u_1, \ldots u_n$ имеет трёхдиагональную матрицу и может быть решена с помощью метода прогонки.

2.3.2 Результаты

Рис. 4: Графики найденных решений для n=150 и n=300. Точность решения для n=150 оценивалась по правилу Рунге и составляла $1.1\cdot 10^{-4}$.

2.3.3 Код на Python

```
def tridiagonal_solver(l, m, u, r):

"""

Solves a system of linear equations
with a tridiagonal matrix by the run-through method.

:param l np.ndarray: the lower diagonal of matrix.
:param: np.ndarray m: the main diagonal of matrix.
:param: np.ndarray u: the upper diagonal of matrix.
:param: np.ndarray r: the right size of system.

:return np.ndarray: vector with solution of system
```

```
11 11 11
                # l.size = u.size = n - 1
n = m.size
a = np.zeros(n)
b = np.zeros(n)
a[0] = -u[0] / m[0]
b[0] = r[0] / m[0]
for i in range(1, n-1):
   a[i]=-u[i] / (l[i-1] * a[i-1] + m[i])
   b[i]=(r[i] - 1[i-1] * b[i-1]) \setminus
   /(1[i-1] * a[i-1] + m[i])
X = np.zeros(n)
b[n - 1] = (r[n - 1] - 1[n - 2] * b[n - 2]) \setminus
/(m[n-1] + l[n-2] * a[n-2])
X[n - 1] = b[n - 1]
for i in range(n - 2, -1, -1):
    X[i] = a[i]*X[i+1] + b[i]
return X
```

```
def get_solution3(n):
    a = 1.3
    b = 2.4

Ua = 1
    Ub = 3.2

h = (b - a) / n
    x_arr = np.linspace(a, b, n + 1)

lower = np.zeros(n - 1)
    main = np.zeros(n)
```

```
upper = np.zeros(n - 1)
b = np.zeros(n)
for i in range(n):
   x = x_arr[i+1]
    if i == 0:
        main[i] = -4 + 4 * (x ** 2) * (h ** 2)
        upper[i] = 2 - h
        b[i] = 2 * (h ** 2) * (x + 1) - (2 + h) * Ua
    elif 0 < i and i < n-1:
        lower[i - 1] = 2 + h
        main[i] = -4 + 4 * (x ** 2) * (h ** 2)
        upper[i] = 2 - h
        b[i] = 2 * (h ** 2) * (x + 1)
    else:
        x_prev = x_arr[-2]
        lower[i - 1] = -4 * h - 4 - 4 * 
            (x_prev ** 2) * (h ** 2)
        main[i] = 2 * (h ** 2) + 8 * h + 4
        b[i] = 2 * h * Ub * (h + 2) - 
            2 * (h ** 2) * (x_prev + 1)
y_{arr} = np.zeros(n + 1)
y_arr[0] = Ua
y_arr[1:] = tridiagonal_solver(lower, main, upper, b)
return x_arr, y_arr
```

3 Задача 10.4.10

3.1 Формулировка задачи

Промоделировать стационарные теплопроводности стержня в зависимости в зависимости от входных данных задачи - переменного коэффициента теплопроводности k(x) и плотности источников тепла f(x):

$$\begin{cases} -\frac{d}{dx} \left(k(x) \frac{du}{dx} \right) = f \\ u(a) = U_a, \quad u(b) = U_b \end{cases}$$

Порядок решения задачи:

- 1. Составить разностную схему второго порядка точности для решения указанной задачи.
- 2. Взять исходные данные из задачи 10.1.10 ($a=0.1,\ b=0.6,\ U_a=1,\ U_b=5,\ k(x)=x,\ f(x)=\ln(x)$), шаг сетки положить равным h=(b-a)/150.
- 3. Промоделировать процесс теплопроводности в зависимости от коэффициента k(x). Сначала для случая, когда стержень состоит из двух материалов:

$$\begin{cases} k_1, \ a \le x \le (b+a)/2 \\ k_2, \ (b+a)/2 < x \le b \end{cases}$$

для ситуаций а) $k_1 \ll k_2$, б) $k_1 \gg k_2$

Затем для случая, когда стержень состоит из трёх материалов:

$$\begin{cases} k_1, & a \le x \le a + (b-a)/3 \\ k_2, & a + (b-a)/3 < x \le a + 2(b-a)/3 \\ k_3, & a + 2(b-a)/3 < x \le b \end{cases}$$

для ситуаций а) $k_1 < k_2 < k_3$, б) $k_1 > k_2 > k_3$, в) $k_1 = k$, $k_2 = 10k$, $k_3 = k$, г) $k_1 = 100k$, $k_2 = k$, $k_3 = 100k$

4. Промоделировать процесс теплопроводности в зависимости от правой части - функции f(x), предполагая, что f(x) - точечный источник тепла, то есть $f(x) = c\delta(x - x_0)$. Рассмотреть следующие варианты: а) точечный источник поставлен в середину отрезка [a, b], б)

два одинаковых источника поставлены в разные точки, симметричные относительно середины отрезка, в) два различных источника поставлены симметрично. г) предложить свой вариант расположения источников.

3.2 Решение задачи

3.2.1 Разностная схема

Запишем ДУ из системы в следующем виде:

$$-k'(x)u'(x) - k(x)u''(x) = f(x)$$

Теперь запишем систему разностных уравнений, используя аппроксимации второго порядка для u'(x) и u''(x):

$$-k_i'\frac{u_{i+1} - u_{i-1}}{2h} - k_i\frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} = f_i$$

После дополнительных преобразований и с учётом начальных условий система разностных уравнений будет иметь следующий вид:

$$\begin{cases} u_0 = U_a, & u_n = U_b \\ (-hk'_i - 2k_i)u_{i+1} + 4k_iu_i + (hk'_i - 2k_i)u_{i-1} = 2h^2f_i & 1 \le i \le n-1 \end{cases}$$

3.2.2 Результаты

Рис. 5: График функции u(x) для первого набора параметров из задачи 10.1.10.

Рис. 6: График функции u(x) для случаев, когда стержень состоит из двух и трёх материалов. Для случая двух материалов брались значения: а) $k_1=10^{-3},\ k_2=10^3,\ 6)\ k_1=10^3,\ k_2=10^{-3}.$ Для трёх материалов значения составляли: а) $k_1=10^{-2},\ k_2=150,\ k_3=10^4$ б) $k_1=10^4,\ k_2=150,\ k_3=10^{-2}$ в-г) k=0.1.

Рис. 7: График функции u(x) при моделировании с использованием точечного источника тепла. При моделировании использовалось $c=10^4$. Вариант d включал в себя расположение двух источников, первый из которых имел мощность 2c и находился на расстоянии 0.1(b-a) от начала отрезка, второй имел мощность c и находился на расстоянии 0.2(b-a) от конца отрезка.

3.3 Код на Python

```
def get_solution4(n, k_func, k_der_func, f_func,
a, b, Ua, Ub):
h = (b - a) / n

x_arr = np.linspace(a, b, n + 1)

lower = np.zeros(n - 2)
main = np.zeros(n - 1)
upper = np.zeros(n - 2)
b_arr = np.zeros(n - 1)

x_arr = np.linspace(a, b, n + 1)
```

```
for i in range(n-1):
    xi = x_arr[i+1]
    ki = k_func(xi)
    dki = k_der_func(xi)
    fi = f_func(xi)
    if i == 0:
        main[i] = 4 * ki
        upper[i] = -h * dki - 2 * ki
        b_arr[i] = 2 * (h ** 2) * fi - \
            Ua * (h * dki - 2 * ki)
    elif 0 < i and i < n-2:
        lower[i-1] = (h * dki - 2 * ki)
        main[i] = 4 * ki
        upper[i] = -h * dki - 2 * ki
        b_arr[i] = 2 * (h ** 2) * fi
    else:
        lower[i - 1] = (h * dki - 2 * ki)
        main[i] = 4 * ki
        b_arr[i] = 2 * (h ** 2) * fi -\
            Ub * (-h * dki - 2 * ki)
y_{arr} = np.zeros(n + 1)
y_arr[0] = Ua
y_arr[-1] = Ub
y_arr[1:-1] = tridiagonal_solver(
    lower, main, upper, b_arr
return x_arr, y_arr
```

4 Задача 10.5.10

4.1 Формулировка задачи

Методом конечных разностей найти приближённое решение краевой задачи

$$\begin{cases} -(k(x)u'(x))' + q(x)u(x) = f(x), & x \in (a,b) \\ -k(a)u'(a) + 0.5u(a) = 0 \\ k(b)u'(b) + 0.5u(b) = 0, \end{cases}$$

с тремя верными значащими цифрами. Решение системы разностных уравнений найти, использую метод прогонки.

Согласно индивидуальному варианту:

$$k(x) = \begin{cases} 1.8, & a < x < c \\ 0.6, & c < x < b \end{cases}$$
$$q(x) = \begin{cases} 6.5, & a < x < c \\ 7.8, & c < x < b \end{cases}$$
$$f(x) = 8x(2.5 - x), \quad a = 0, \ b = 2, \ c = 1.125$$

4.2 Решение задачи

4.2.1 Разностная схема

Перепишем ДУ в другом виде:

$$-k'(x)u'(x) - k(x)u''(x) + q(x)u(x) = f(x)$$

Использовав аппроксимации второго порядка 1 и 2, получаем систему разностных уравнений:

$$-k_i'\frac{u_{i+1}-u_{i-1}}{2h}-k_i\frac{u_{i+1}-2u_i+u_{i-1}}{h^2}+q_iu_i=f_i, \quad i\in\{1,\ldots,n-1\}$$

Кроме того дополнительно подставим оценки 3 и 4 в начальные условия задачи, у нас выйдет ещё два уравнения:

$$\begin{cases} -k_0 \frac{-u_2 + 4u_1 - 3u_0}{2h} + \frac{1}{2}u_0 = 0\\ -k_n \frac{3u_n - 4u_{n-1} + u_{n-2}}{2h} + \frac{1}{2}u_n = 0 \end{cases}$$

После несложных преобразований учёта того, что в нашей задаче k'(x) = 0, и исключения u_2 и u_{n-2} из первого и второго уравнения выше соответственно, получаем итоговую систему разностных уравнений:

$$\begin{cases} (-2k_1k_0 + h^2k_0q_1)u_1 + (2k_0k_1 + k_1h)u_0 = k_0f_1h^2 \\ -k_iu_{i+1} + (2k_i + h^2q_i)u_i - k_iu_{i-1} = f_ih^2, & i \in \{1, \dots, n-1\} \\ (2k_nk_{n-1} + hk_{n-1})u_n + (-2k_nk_{n-1} + k_nh^2q_{n-1})u_{n-1} = k_nf_{n-1}h^2 \end{cases}$$

Полученная система линейных уравнений относительно $u_0, \dots u_n$ имеет трёхдиагональную матрицу и может быть решена с помощью метода прогонки.

4.2.2 Результаты

Рис. 8: Приближённое решение u(x). В качестве n бралось значение n=300. Оценка погрешности осуществлялась по правилу Рунге и составляет $7 \cdot 10^{-4}$.

5 Задача 10.6.10

5.1 Формулировка задачи

Промоделировать нестационарные процессы теплопроводности в зависимости от входных данных задачи - коэффициента теплопроводности k(x) и начальной температуры $\phi(x)$:

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(k(x) \frac{\partial u}{\partial x} \right) + f(x) (1 - e^{-t}), & 0 < x < l, \quad 0 < t < T \\ u(0, t) = UA, \quad u(l, t) = UB, \quad 0 \le t \le T \\ u(x, 0) = \phi(x), \quad 0 \le x \le l \end{cases}$$

Порядок решения:

- 1. Найти приближённое решение задачи с шагами $\tau=0.05$ и h=0.1, используя явную разностную схему. Построить графики решений при значениях $t=0.5\tau,\,t=10\tau,\,t=20\tau.$
- 2. Используя результаты задачи 10.1, экспериментально определить момент времени t, при котором происходит установление процесса.
- 3. Произвести анимацию процесса установления.
- 4. Исследовать, как влияет начальная температура на процесс установления, взяв другие функции $\phi(x)$, согласованные с начальными условиями.

Согласно индивидуальному варианту:

$$k(x) = x$$
, $f(x) = \ln(x)$, $\phi(x) = \frac{UB - UA}{b - a}(x - a) + UA$
 $a = 0.1$, $UA = 1$, $b = 0.6$, $UB = 5$

5.2 Теоретический материал

5.2.1 Явные схемы

Явные схемы - это численные методы, в которых для нахождения приближённого решения в j+1 момент времени используется только информация о приближённом решении в j момент времени. Подобный подход позволяет в явном виде выписать значения $\{u_i^{j+1}\}_{i=0}^n$.

Явные схемы очень просты с точки зрения реализации, но при этом в большинстве случаев являются условно устойчивыми, что накладывает существенные ограничения на длину временного шага τ .

5.2.2 Неявные схемы

Неявные схемы — это численные методы, где значения функции на следующем временном шаге зависят от неизвестных значений в текущем шаге. В большинстве случае, использование подобного подхода требует на каждом временном шаге решать систему линейных уравнений.

Неявные схемы являются более сложными с точки зрения реализации, по сравнению с явными схемы. Но при этом в большинстве задач неявные схемы обладают безусловной устойчивостью, что позволяет выбирать большие значения временного шага τ и делает процесс построения решения быстрым.

5.3 Решение задачи

Прежде, чем решать задачу, введём обозначение. $g(x,t) = f(x)(1-e^{-t})$, а также раскроем уравнение в частных производных:

$$\frac{\partial u}{\partial t} = k(x)\frac{\partial^2 u}{\partial x^2} + k'(x)\frac{\partial u}{\partial x} + g(x,t)$$

5.3.1 Явная разностная схема

Запишем конечные разности для решаемого дифференциального решения с использованием левой разности первого порядка для оценки u_t' :

$$\frac{u_i^{j+1} - u_i^j}{\Delta t} = k_i \frac{u_{i+1}^j - 2u_i^j + u_{i-1}^j}{h^2} + k_i' \frac{u_{i+1}^j - u_{i-1}^j}{2h} + g_i^j$$

Выразим из этого равенства величину u_i^{j+1} :

$$u_i^{j+1} = \Delta t \left(\frac{k_i'}{2h} + \frac{k_i}{h^2} \right) u_{i+1}^j + \left(1 - \frac{2\Delta t k_i}{h^2} \right) u_i^j + \Delta t \left(-\frac{k_i'}{2h} + \frac{k_i}{h^2} \right) u_{i-1}^j + \Delta t g_i^j$$

5.3.2 Неявная разностная схема

Для решаемого нами дифференциального уравнения запишем конечные разности, где u_t' будем оценивать правой разностью:

$$\frac{u_i^{j+1} - u_i^j}{\Delta t} = k_i \frac{u_{i+1}^{j+1} - 2u_i^{j+1} + u_{i-1}^{j+1}}{h^2} + k_i' \frac{u_{i+1}^{j+1} - u_{i-1}^{j+1}}{2h} + g_i^{j+1}$$

В данном случае мы уже не можем явно выразить u_i^{j+1} , однако мы можем составить систему линейных уравнений с трёхдиагональной матрицей, которую в будущем мы сможем решить с помощью метод прогонки:

$$\Delta t \left(\frac{k_i'}{2h} + \frac{k_i}{h^2} \right) u_{i+1}^{j+1} + \left(-1 - \frac{2\Delta t k_i}{h^2} \right) u_i^{j+1} + \Delta t \left(\frac{k_i}{h^2} - \frac{k_i'}{2h} \right) u_{i-1}^{j+1} = -u_i^j - \Delta t g_i^{j+1}$$

5.3.3 Результаты

Рис. 9: График u(x) в момент времени t=5. Разностная схема - явная. Начальная температура - $\phi(x)$. Параметры сетки: $\Delta t = \tau = 0.05, h = 0.1$.

Как мы можем наблюдать, при использовании параметров $\Delta t = \tau = 0.05$ и h = 0.1 из условия задачи явная разностная схема разошлась.

Эксперименты по подбору параметра Δt показали, что при $\Delta t=0.01$ схема сходится. Анализ анимации процесса показал, что при T=0.2 происходит установление процесса.

Рис. 10: График решения в момент t=0.2. Разностная схема - явная. Начальная температура - $\phi(x)$. Параметры сетки: $\Delta t=0.01, \, h=0.1$.

Дальнейший анализ изменения решения со временем будем производить, использую неявную схему. Это позволит ускорить процесс нахождение решения.

Рис. 11: Графики решений в моменты $t=0.5\tau,\,t=10\tau,\,t=20\tau.$ Разностная схема - неявная. Начальная температура - $\phi(x)$. Параметры сетки: $\Delta t=\tau/2=0.025,\,h=0.1.$

Построим численное решение ещё для двух начальных температур. Для того, чтобы быть согласованной с начальными условиями $\hat{\phi}(x)$ долж-

на удовлетворять:

$$\begin{cases} \hat{\phi}(a) = Ua \\ \hat{\phi}(b) = Ub \end{cases}$$

В качестве второй функции-начальной температуры возьмём кусочнопостоянную функцию $\phi_2(x)$:

$$\phi_2(x) = \begin{cases} Ua, & a \le x \le (b+a)/2 \\ Ub, & (b+a)/2 < x \le b \end{cases}$$

Рис. 12: Графики u(x,t) в моменты $t=0.5\tau,\,t=10\tau,\,t=20\tau$. Разностная схема - неявная. Начальная температура - $\phi_2(x)$. Параметры сетки: $\Delta t=\tau/10=0.005,\,h=0.01$.

В качестве третьей функции-начальной температуры возьмём функцию, моделирующую два источника тепла, первый из которых находится в начале отрезка и имеет мощность Ua, второй - в конце отрезка и имеет мощность Ub:

$$\phi_3(x) = U_a \cdot \delta(x-a) + U_b \cdot \delta(x-b)$$

Рис. 13: Графики u(x,t) в моменты $t=0.5\tau,\,t=10\tau,\,t=20\tau.$ Разностная схема - неявная. Начальная температура - $\phi_3(x)$. Параметры сетки: $\Delta t=\tau/20=0.0025,\,h=0.01.$

Как мы можем для всех трёх начальных температур к моменту времени T=0.2 происходит установление одного и того же процесса.

5.4 Анимации процессов

Анимации процессов для начальных температур $\phi_1(x)$, $\phi_2(x)$ и $\phi_3(x)$ можно найти в zip-apxиве Animations.zip, прикреплённом вместе с данным отчётом.

5.5 Код на Python

```
class ExplicitNPDESolution:
    """

    Represents numerical solution of PDE
    using explicit scheme
    """

    def __init__(self, k_func, k_der_func, g_func,
    a, b, ua, ub, phi_func, tau, h):
        self.n = int((b - a) / h)
        self.time = 0
        self.tau = tau
        self.h = h
        self.bounds = (a, b)
```

```
self.bc = (ua, ub)
    self.x_list = np.linspace(a, b, self.n + 1)
   self.ki_list = np.array(
        [k_func(x) for x in self.x_list]
    self.dki_list = np.array(
        [k_der_func(x) for x in self.x_list]
    self.y_list = np.array(
        [phi_func(x) for x in self.x_list]
    self.g_function = g_func
def get_solution(self, return_time=False):
   if return_time:
        return self.x_list, self.y_list, self.time
   return self.x_list, self.y_list
   def update(self):
   time = self.time
   ua, ub = self.bc
   tau, h = self.tau, self.h
   y_now = self.y_list
   y_next = np.zeros_like(self.y_list)
   y_next[0], y_next[-1] = ua, ub
   dki = self.dki_list
   ki = self.ki_list
   gi = np.array(
        [self.g_function(x, time) for x in self.x_list]
    )
   ai = tau * (dki[1:-1] / (2 * h) + ki[1:-1] /
```

```
class ImplicitNPDESolution:
    Represents numerical solution of PDE
    using implicit scheme
   def __init__(self, k_func, k_der_func, g_func,
    a, b, ua, ub, phi_func, tau, h):
        self.n = int((b - a) / h)
        self.time = 0
       self.tau = tau
        self.h = h
        self.bounds = (a, b)
        self.bc = (ua, ub)
        self.x_list = np.linspace(a, b, self.n + 1)
        self.ki_list = np.array(
            [k_func(x) for x in self.x_list]
        self.dki_list = np.array(
            [k_der_func(x) for x in self.x_list]
        self.y_list = np.array(
```

```
[phi_func(x) for x in self.x_list]
    )
    self.g_function = g_func
def get_solution(self, return_time=False):
    if return_time:
        return self.x_list, self.y_list, self.time
    return self.x_list, self.y_list
def update(self):
    time = self.time
    ua, ub = self.bc
   tau, h = self.tau, self.h
   y_next = np.zeros_like(self.y_list)
   y_next[0], y_next[-1] = ua, ub
   upper = np.empty(0)
   lower = np.empty(0)
   main = np.empty(0)
   vector = np.empty(0)
   for i in range(1, self.n):
        xi = self.x_list[i]
        ki = self.ki_list[i]
        dki = self.dki_list[i]
        ui = self.y_list[i]
        gi = self.g_function(xi, time + tau)
        ai = tau * (dki / (2 * h) + ki / (h ** 2))
        bi = -1 - (2 * tau * ki) / (h ** 2)
        ci = tau * (ki / (h ** 2) - dki / (2 * h))
        di = -ui - tau * gi
        if i == 1:
            upper = np.append(upper, ai)
```

```
main = np.append(main, bi)
        vector = np.append(
            vector, di - ci * y_next[0]
        )
    elif i < self.n - 1:</pre>
        upper = np.append(upper, ai)
        main = np.append(main, bi)
        lower = np.append(lower, ci)
        vector = np.append(vector, di)
    elif i == self.n - 1:
        main = np.append(main, bi)
        lower = np.append(lower, ci)
        vector = np.append(
            vector, di - ai * y_next[-1]
        )
y_next[1:-1] = tridiagonal_solver(
    lower, main, upper, vector
)
self.y_list = y_next
self.time += self.tau
```