Funções de Variáveis Complexas

Prof. Thaís Jordão

Notas por: João Vitor Lucas Giraldi Almeida Coimbra Renan Wenzel

GitHub com o Arquivo das Notas (Link clicável) https://github.com/RenanLeznew/USP-Math-LaTeX/tree/master/ComplexAnalysis

13 de janeiro de 2023

Conteúdo

1	Aul		4
	1.1	Motivações	4
	1.2	Definições Básicas	4
		1.2.1 Unicidade	4
		1.2.2 Subcorpo	4
		1.2.3 Estrutura Algébrica Independe de F	5
			5
	1.3	Representação Polar de $\mathbb C$	5
	1.4	A Esfera de Riemann	6
	1.5	Topologia de $\mathbb C$	6
2	Aul	a 02 - 05/01/2023	8
	2.1		8
	2.2		8
	2.3		9
	2.4	Compactos	
	2.5	Continuidade	
	2.6	Convergência Uniforme	
9	A1	1. 09 00/01/2022	•
3		12. da 03 - 06/01/2023 12. da 03 - 06/01/2023 12. da 03 - 06/01/2023 12. da 03 - 06/01/2023 13. da 03 - 06/01/2023 12. da 03 - 06/01/2023	
	$\frac{3.1}{3.2}$	Séries de Potências	
	$\frac{3.2}{3.3}$	Funções Analíticas	
	3.4	Ramos de Funções Inversas	
	0.1	Trainos de l'unições inversas	0
4	Aul	a 04 - 09/01/2023	6
	4.1	Motivações	6
	4.2	Equações de Cauchy-Riemann	6
	4.3	Funções Harmônicas	
	4.4	Transformações Conformes	7
5	Aul	a 05 - 10/01/2023	8
-	5.1	Motivações	
	5.2	Transformações de Möbius	
6		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	6.1	Motivações	
	6.2	Exercícios de Hoje	
		6.2.1 Jéssica	
	0.0	6.2.2 Tiago	
	6.3	Final de Transformações de Möbius	
	6.4	Simetria e Orientação	2
7	Aul	a 07 - 13/01/2023	3
	7.1	Motivações	
	7.2	Exercícios de Hoje	
		7.2.1 Ana Lídia	
		7.2.2 João Vitor Occhiucci	3
	7.3	Continuando Simetrias	
	7.4	Integração Complexa	
		7.4.1 Funções de Variação Limitada (BV - Bounded Variation)	5

8	Aula 08 - 16/01/2023	26
	8.1 Motivações	26

1 Aula 01 - 03/01/2023

1.1 Motivações

- Definir o corpos dos complexos
- Definir a topologia no corpo dos complexos
- Esfera de Riemann

1.2 Definições Básicas

<u>Definição.</u> Um corpo f é um conjunto não vazio em que definem-se duas operações $+: F \times F \to F$, $: F \times F \to F$ satisfazendo:

- i) w + z = z + w
- ii) w + (z+u) = (w+z) + u
- iii) Existe 0 em F tal que w + 0 = w
- iv) Para cada $w \in F$, existe $-w \in F$ tal que w + (-w) = 0
- v) $w \cdot z = z \cdot w$
- vi) $w \cdot (z \cdot u) = (w \cdot z) \cdot u$
- vii) Existe $e \in \mathbb{F}$ tal que $w \cdot e = w$
- viii) Para cada $w \in F \{0\}$, existe $w^{-1} \in F$ tal que $w \cdot w^{-1} = e$
 - $ix) (w+z) \cdot u = w \cdot u + z \cdot u,$

em que w, z, u pertencem a F.

Considere F um corpo contendo \mathbb{R} e tal que

$$x^2 + 1 = 0$$

tenha solução. Seja i esta solução. Segue que -i é solução dela também, -1.z=z e 0.z=0 para z em F. Definimos

$$\mathbb{C} := \{a + bi : a, b \in \mathbb{R}$$

de maneira que os elementos de $\mathbb C$ são unic
maente determinados, $\mathbb C$ é subcorpo de F e a estrutura algébrica de $\mathbb C$ não depende de F. Além disso, este corpo existe.

Com efeito,

1.2.1 Unicidade

Sejam a, b, c, $d \in \mathbb{R}$ tais que

$$a + bi = c + di.$$

Assim, $a-c=i(d-b)\Rightarrow (a-c)^2=(d-b)^2$, donde segue a unicidade a=c e d = b

1.2.2 Subcorpo

Exercício.

1.2.3 Estrutura Algébrica Independe de F

Seja F outro corpo contendo \mathbb{R} em que $x^2 + 1 = 0$ possui solução. Considere $\mathbb{C}' = \mathbb{R} + j\mathbb{R}$, em que j é a solução da equação em F'. Definimos $T : \mathbb{C} \to \mathbb{C}'$ por

$$T(a+bi) = a+bi$$

e, neste caso, T(z + w) = T(z) + T(w), T(zw) = T(z)T(w) para todos $z, w \in \mathbb{C}$. (Exercício.)

1.2.4 Existência

Seja $F=\{(a,b):a,b\in\mathbb{R}\}$ munido das operações $+:F\times F\to F, \cdot:F\times F\to F$ dadas por

$$+((a,b),(c,d)) = (a+c,b+d)$$

 $\cdot ((a,b),(c,d)) = (ac-bd,ad+bc).$

Note que $(0,1)^2 = (-1,0)$. Assim, (F, +, .) é um corpo contendo \mathbb{R} . (Exercício). Algumas propriedades(Exercícios):

- a) $Re(z) \le |z| e Im(z) \le |z|$
- b) $\overline{z+w} = \overline{z} + \overline{w} e \overline{z \cdot w} = \overline{z} \cdot \overline{w}$
- c) $\frac{\overline{1}}{z} = \frac{1}{\overline{z}}$
- d) $|z| = |\overline{z}| e |z|^2 = z \cdot \overline{z}$
- e) $z + \overline{z} = 2Re(z), z \overline{z} = 2iIm(z)$ e $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$

1.3 Representação Polar de $\mathbb C$

Dado $z \in \mathbb{C}$, temos

$$z = |z|(\cos \theta + i \sin \theta), \quad \theta = \arg z.$$

Neste caso, temos, para z não-nulo,

$$z^{-1} = |z|^{-1}(\cos -\theta + i\sin -\theta) = |z|^{-1}(\cos \theta - i\sin -\theta)$$

Para $z_1, z_2 \in \mathbb{C}$, temos

$$z_1 \cdot z_2 = |z_1||z_2|(\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2))$$

com $\theta_1 = \arg z_1, \theta_2 = z_2$. Mais geralmente,

$$\prod_{k=1}^{n} z_k = \prod_{k=1}^{n} |z_k| (\cos(\sum_{k=1}^{n} \theta_k) + i\sin(\sum_{k=1}^{n} \theta_k)),$$

com $\theta_k = \arg z_k$. Em particular,

$$z^n = |z|^n (\cos(n\theta) + i\sin(n\theta)), \quad n \in \mathbb{N}.$$

Buscando w tal que $w^n = z$ para dado z não-nulo,

$$w = |z|^{\frac{1}{n}} \left(\cos\left(\frac{\theta + 2k\pi}{n}\right) + i\sin\left(\frac{\theta + 2k\pi}{n}\right)\right), \quad k = 0, 1, \dots, n.$$

1.4 A Esfera de Riemann

Considere $\mathbb{S}^2 \subset \mathbb{R}^3$ a esfera

$$\mathbb{S}^2 := \{(x, y, z) : x^2 + y^2 + z^2 \le 1\}.$$

Chame N= $\{0, 0, 1\}$ de polo norte. Fazemos uma associação entre $\mathbb{S}^2 - \{N\}$ e o plano z=0 de \mathbb{R}^3 , chamada de projeção estereográfica. Nessa associação, o ponto $z(=x+iy) \in \mathbb{C}$ é associado a (x, y, 0), e definimos uma reta por N e z como r: N + t(x, y, -1), $t \in \mathbb{R}$. Assim,

$$r \cap \mathbb{S}^2 \Rightarrow S_z = \left(\frac{2x}{|z|^2 + 1}, \frac{2y}{|z|^2 + 1}, \frac{|z|^2 - 1}{|z|^2 + 1}\right) \in \mathbb{S}^2$$

Reciprocramente, o ponto (x, y, z) de \mathbb{S}^2 pode ser associado ao considerar a reta r: N + t(x, y, s-1), em que s é um número real. Com isso, a intersecção $r \cap \{(x,y,0): x,y \in \mathbb{R}\} \Rightarrow t = \frac{1}{1-s}$ mostra que $z = \left(\frac{x}{1-s}, \frac{y}{1-s}, 0\right)$ corresponde ao ponto z de \mathbb{C} .

Associando N ao infinito, obtemos o plano estendido $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$, chamado de Esfera de Riemann. Se $\phi : \mathbb{C}_{\infty} \to \mathbb{S}^2$ é dada por $\phi(\infty) = N$ e, para $z \neq \infty$,

$$\phi(z) = (\frac{z + \overline{z}}{|z|^2 + 1}, \frac{z - \overline{z}}{|z|^2 + 1}, \frac{|z|^2 - 1}{|z|^2 + 1}),$$

então dados $z, w \in \mathbb{C}_{\infty}$, definimos a métrica

$$d(z,w) = \begin{cases} ||\phi(z) - \phi(w)||, & z, w \neq \infty \\ 0, & z = w = \infty \\ \infty, & \text{caso contrário} \end{cases}$$

Exemplo 1.1. Se $z, w \neq \infty$, então

$$d(z,w) = d(\phi(z),\phi(w)) = \frac{2|z-w|}{[(1+|z|^2)(1+|w|^2)]^{\frac{1}{2}}}$$

 $e, se z \neq \infty,$

$$d(z,\infty) = ||\phi(z) - N|| = \frac{2}{(1+|z|^2)^{\frac{1}{2}}}$$

1.5 Topologia de \mathbb{C}

Definição. Sejam X um conjunto $e d: X \times X \to X$ uma função. Dizemos que d é uma métrica se

- $i) d(x,y) \ge 0, d(x,y) = 0 \iff x = y$
- ii) d(x,y) = d(y,x)
- iii) $d(x,z) \le d(x,y) + d(y,z),$

em que x, y, z pertencem a X. Neste caso, chamamos a terna (X, d) de espaço métrico.

Considere (X, d) um espaço métrico. Dado x em X e r > 0,

$$B(x,r) := \{ y \in X : d(x,y) < r \}$$

é a bola aberta, seu fecho é

$$B_c(x,r) := \{ y \in X : d(x,y) = r \}$$

e a bola fechada é a união deles, ou seja,

$$\overline{B(x,r)} := \{ y \in X : d(x,y) \le r \}$$

Exemplo 1.2. Considere X não-nulo e $d(x, y) = \delta_{x,y}$. (X, d) é metrico e

$$B\left(x, \frac{1}{2}\right) = \{x\} = \overline{B\left(x, \frac{1}{2}\right)} = B\left(x, \frac{1}{333}\right), x \in X$$
$$B(x, 2) = X = B(x, 1001), x \in X$$

Utilizando bolas, definimos que um conjunto $A \subset X$ é aberto se para todo x em A, existe r > 0 tal que B(x, r) está contido em A. Por outro lado, um conjunto é fechado se seu complemenetar é aberto. A união infinita de abertos é aberta e, pelas Leis de DeMorgan, a intersecção infinita de fechados é fechada. Além disso, intersecções finitas de abertos é aberta e união finita de fechados é fechado.

Definimos, também, o interior de A como $A^{\circ} := \bigcup_{B} \{B \subset A : B \text{ aberto}\}\$, o fecho de A como $\overline{A} = \bigcap_{F} \{A \subseteq F : F \text{ fechado}\}\$ e o bordo de A como $\partial A = \overline{A} \cap \overline{A^{\circ}}$. Diremos que A é denso quando $\overline{A} = X$.

Proposição. Seja (X, d) um espaço métrico e A um subconjunto. Então,

- i) A é aberto se, e só se, $A = A^{\circ}$
- ii) A é fechado se, e só se, $A = \overline{A}$
- iii) Se x pertence a A° , então existe $\epsilon > 0$ tal que $B(x, \epsilon) \subseteq A$.
- iv) Se x pertence a \overline{A} , então para todo $\epsilon > 0$ tal que $B(x, \epsilon) \cap A \neq \emptyset$.

Um espaço métrico (X, d) é conexo se os únicos subconjuntos abertos e fechados de X são X e vazio. Caso contrário, X é dito ser desconexo, ou seja, existem abertos disjunto não-vazios cuja união dá o espaço todo. Um exercício é mostrar mostrar que um conjunto é conexo se, e só se, ele é um intervalo.

Dados z, w em C, o segmento [z, w] é o conjunto

$$[z, w] := \{tw + (1 - t)z : t \in [0, 1]\}$$

Além disso, dados z_1, \dots, z_n , a poligonal com esses vértices é

$$[z_1, \cdots, z_n] = \bigcup_{k=1}^{n-1} [z_k, z_{k+1}]$$

Proposição. Seja G um subconjunto de \mathbb{C} aberto. Então, G é conexo se, e só se para todo z, w em G, existe $uma\ poligonal\ [z, z_1, \cdots, z_n, w] \subseteq G$.

Prova. \Leftarrow) Assumindo que G satisfaz a propriedade da poligonal, suponha também que G não é conexo. Assim, podemos escrever $G = B \cup C$ com $B \cap C = \emptyset$ e B, C não-vazios. Pela propriedade de G, existe $[b, z_1, \cdots, z_n, c] \subseteq G$. Neste caso, existe k tal que $z_k \in B$ e $z_{k+1} \in C$. Agora, considere os conjuntos

$$B' = \{t \in [0,1] : tz_k + (1-t)z_{k+1} \in B\}$$

$$C' = \{t \in [0,1] : tz_k + (1-t)z_{k+1} \in C\}$$

e note que $B' \neq \emptyset$ pois $z_k \in B$ e $1 \in B'$. Analogamente, C' é não-vazio. No entanto, isso é um absurdo, pois [0, 1] seria conexo e $B' \cup C'$ seria uma cisão não trivial

⇒) Suponha, agora, que G é conexo e seja z um elemento dele. Defina

$$C = \{ w \in G : Existe \ [z, z_1, \cdots, z_n, w] \subseteq G \}$$

Observe que C é não-vazio, z pertence a G e [z] é subconjunto de G. Mostremos que C é aberto e fechado (pois implicará em C = G). Com efeito, se $w \in C \subseteq G$, existe r > 0 tal que B(w, r) está contigo em G, pois G é aberto. Assim, para todo $s \in B(w, r)$, temos $[s, w] \subseteq B(w, r)$ e, com isso, existe uma poligonal ligando s a z com $s \in C$, mostrando que C é aberto.

Mostrar que o complementar de C é aberto é análogo. Com efeito, se $C^c = \emptyset$, o resultado está provado. Por outro lado, se $C^c \neq \emptyset$, seja $w \in C^c = G$ - C. Logo, existe r > 0 tal que $B(w,r) \subseteq G$. Afirmamos que $B(w,r) \subseteq G - C$. Caso contrário, existe s em B(w,r) contido, também, em C. Neste caso, existe uma poligonal ligando s a z e s a w, uma contradição, pois isso conectaria w a z, mesmo com w no complementar de z. Portanto, o complementar é aberto e C é aberto e fechado.

2 Aula 02 - 05/01/2023

2.1 Motivações

- Sequências e suas convergências;
- Teorema de Cantor para espaços completos;
- Compacidade e Heine-Borel;
- Continuidade e convergência de funções.

2.2 Fim de Conexos

<u>Teorema</u>. Seja $G \subseteq \mathbb{C}$ um aberto e conexo, então existe uma poligonal ligando qualquer z, w em G cujos segmentos sejam paralelos ao eixo real ou imaginário.

Definição. Um subconjunto de um espaço métrico (M, d) é uma componente conexa se é um conexo maximal

Exemplo 2.1. Coloque $A = \{1, 2, 3\}.\{1\}$ é componente conexa de A, mas $\{1, 2\}$ não é.

Teorema. Seja (M, d) um espaço métrico. Então,

- 1) Para x em M, existe C_x uma componente conexa de M com x em C_x ;
- 2) As componentes são disjuntas.

Prova. 1)

Seja x em M e tomemos

$$C_x = \bigcup_{D \subseteq M} \{D : D \text{ conexos com } x \in D\}$$

Mostremos que C_x é conexo, pois a maximalidade segue da definição dada a ele. Note que $C_x \neq \emptyset$, visto que qualquer conjunto unitário é conexo. Seja $A \subseteq C_x$ aberto, fechado e não-nulo. Existe $D_x \in C_x$ tal que $D_x \cap A \neq \emptyset$, o que implica que $D_x \subseteq A$.

Finalmente, considere $D \in C_x$, de modo que $D_x \cup D$ é conexo e $(D_x \cup D) \cap A \neq \emptyset$ o que garante que $D \subseteq A$. Assim, $A = C_x$. \blacksquare .

Exercícios. 1) Prove a segunda afirmação do teorema;

2) Se D e conexo e $D \subseteq A \subseteq \overline{D}$, então A é conexo.

<u>Teorema</u>. Seja G um subconjunto aberto de \mathbb{C} . As componentes conexas são abertas e há no máximo uma quantidade enumerável delas.

Prova. Seja D uma componente conexa de G. Tome $x \in D$, tal que existe r > 0 com $B(x,r) \subseteq G$, já que G é aberto. Suponha que $B(x,r) \not\subseteq D$. Neste caso, $B(x,r) \cup D$ seria um conexo contendo D propriamente. Logo, $B(x,r) \subseteq D$ e D é aberto.

Para a segunda afirmação, considere

$$\Omega = \mathbb{Q} + i\mathbb{Q}(\overline{\Omega} = \mathbb{C})$$

Para cada componente conexa C de G, como G é aberto, existe $z \in \Omega \cap C$, o que é suficiente para garantir a enumerabilidade das componentes de G. \blacksquare .

2.3 Sequências e Completude

<u>Definição.</u> Seja (M, d) um espaço métrico. Uma sequência $\{x_n\}$ de M é convergente se existe x em M tal que para todo $\epsilon > 0$, existe n_0 natural tal que

$$d(x_n, x) < \epsilon, \quad n \ge n_0.$$

Escrevemos, neste caso, $x_n \to x$. Dizemos que uma sequência é de Cauchy se para todo $\epsilon > 0$, existe n_0 natural satisfazendo

$$d(x_n, x_m) < \epsilon, \quad n, m \ge n_0.$$

Exercícios. i) Se $\{x_n\}$ é convergente, então $\{x_n\}$ é de Cauchy, mas a recíproca é só válida quando a sequência possui uma subsequência convergente.

- ii) Se $\{x_n\}$ é de Cauchy, então x_n é limitada.
- iii) $F \subseteq M$ é fechado se e só se toda x_n de F com $x_n \to x$ é tal que x pertence a F.

Dizemos que um espaço métrico é completo se toda sequência de Cauchy for convergente.

Exercícios. i) Mostre que \mathbb{R} , \mathbb{C} são espaços métricos completos;

ii) Se (M,d) é um espaço métrico e $S \subseteq M$, mostre que se (S,d) for completo, ele é fechado em M. Mostre e recíproca no caso em que (M,d) é completo.

O resultado a seguir é conhecido como Teorema de Cantor.

<u>Teorema</u>. Um espaço métrico é completo se e só se toda cadeia descendente de fechado $\{F_n\}$ satisfazendo

$$diam F_n \to 0, \quad n \to \infty$$

é tal que $\bigcap_{n\in\mathbb{N}} F_n$ é unitário. Aqui, diam $A := \sup\{d(x,y) : x,y\in A\}$.

<u>Prova.</u> Suponha que M é um espaço métrico completo. Se $\bigcap_{n\in\mathbb{N}} F \neq \emptyset$, então ele é unitário. De fato, se $x,y\in\cap_n F$,

$$d(x,y) \leq diam F_n(diam F_{n+1} \leq diam F_n),$$

 $mas\ diam F_n \to 0\ e\ d(x,\ y) = 0,\ de\ modo\ que\ x = y.$

Agora, seja $x_n \in F_n, n \in \mathbb{N}$ e observe que

$$d(x_n, x_{n+1}) \leq diam F_n$$

pois $F_{n+1} \subseteq F_n$. Isto garante que $\{x_n\}$ é de Cauchy e, como M é completo, existe x com $x_n \to x$. Neste caso, $x \in F_n$ para todo $n \in \bigcap_{n \in \mathbb{N}} F_n = \{x\}$.

Reciprocramente, seja $\{a_n\}$ de Cauchy em M. Construímos

$$F_n = \overline{\{a_k : k \ge n\}}$$

que são fechados satisfazendo $F_{n+1} \subseteq F_n$. Assim, $\bigcap_{n \in \mathbb{N}} F_n = \{x\}$ para algum x de M. Como

$$d(x, a_n) \le diam F_n \to 0,$$

temos, portanto, $a_n \to x$.

Um exercício que fica é mostrar que se $\{a_n\}$ é de Cauchy, então $diam F_n \to 0$

2.4 Compactos

<u>Definição.</u> Seja (M, d) um espaço métrico. Um subconjunto $S \subseteq M$ é compacto se para toda coleção A de abertos de M cobrindo S existe $A_1, \dots, A_n \in A$ tal que

$$S \subseteq \bigcup_{k=1}^{n} A_k$$

Dado um espaço métrico (M, d), M é dito sequencialmente completo se todas as sequências de M possuem subse quência convergente. Também diremos que ele é totalmente limitado se para todo $\epsilon > 0$, existe $n \in \mathbb{N}, x_1, \cdots, x_n \in M$ com

$$M = \bigcup_{i=1}^{n} B(x_i, \epsilon).$$

Um conjunto A é dito limitado se seu diametro é finito.

Exercícios. i) Se A é totalmente limitado, então A é limitado, mas a recíproca não é necessariamente verdade.

ii) Se A é compacto, então A é limitado, mas a recíproca não é necessariamente verdade.

Proposição. Seja (M, d) um espaço métrico e K um subconjutno de M. Então, K é compacto se esó se toda família de fechados com PIF tem interseção não-vazia.

A PIF é a Propriedade da Intersecção Finita, que afirma que dados conjuntos $F_1, \dots, F_n \Rightarrow \bigcap_{k=1}^n F_k \neq \emptyset$

Teorema. Seja (M, d) um espaço métrico. As seugintes afirmações são equivalentes:

- i) M é compacto;
- ii) Para todo conjunto ininito S de M, existe x em S tal que para todo $\epsilon > 0, B(x, \epsilon) \cap S \{x\} \neq \emptyset$;
- iii) M é sequencialmente compacto:
- iv) M é completo e totalmente limitado.

Teorema. Um conjunto K de \mathbb{R}^n é compacto se e só se ele é fechado e limitado.

Segue um esboço da prova.

<u>Prova.</u> Se K é compacto, ele é completo (logo, fechado) e totalmente limitado (logo, limitado). Por outro lado, se K é fechado e limitado, então K é completo porque \mathbb{R}^n é completo. Além disso, pela propriedade Arquimediana da reta, para todo $\epsilon > 0$, existem $x_1, \dots, n_n \in K$ com

$$K \subseteq \bigcup_{i=1}^{n} B(x_i, \epsilon)$$

2.5 Continuidade

<u>Definição.</u> Sejam (X, d), (Y, d') espaços métricos. $f: X \to Y$ é contínua em x de X se para todo $\epsilon > 0$, existir $\delta > 0$ tal que

$$d(x, y) < \delta \Rightarrow d'(f(x), f(y)) < \epsilon$$

f é dita contínua se isso ocorre para todos os pontos de M.

Exercícios. Mostre que equivalem à definição de contínua:

- i) $f^{-1}(B(x,\epsilon))$ contém uma bola aberta centrada em x, para todo $\epsilon > 0$;
- ii) $x_n \to x$ implies $f(x_n) \to f(x)$

iii) $F^{-1}(A)$ é aberta em X para todo aberto A com $x \in A$

Proposição. Sejam $f, g: X \to \mathbb{C}$ funções contínuas. Então,

- 1) $\alpha f + \beta g \ \acute{e} \ continua, \ \alpha, \beta \in \mathbb{C};$
- 2) fg é conínua;
- 3) Se $x \neq 0$, então f/g é contínua em x;
- 4) Se $h: Y \to X$ é continua, então $f \circ h: Y \to \mathbb{C}$ é continua.

<u>Definição.</u> Uma função $f:(X,d)\to (Y,d')$ é uniformemente contínua se para todo $\epsilon>0$, existe $\delta>0$ tal que

$$d(x,y) < \delta \Rightarrow d'(f(x),f(y)) < \epsilon.$$

Uma função $f:(X,d)\to (Y,d')$ é Lipschitz se existe c>0 tal que

$$d'(f(x), f(y)) \le cd(x, y)$$

Teorema. Seja $f:(X,d)\to (Y,d')$ uma função. Então,

- i) Se X é compacto, então f(X) é compacto;
- ii) Se X é conexo, então f(X) é conexo. Adicionalmente, se $Y = \mathbb{R}$, então f(X) é um intervalo.

<u>Corolário</u>. Se $f: X \to \mathbb{R}$ é contínua, então para todo $K \subseteq X$ compacto, existem $x_m, x_M \in K$ tais que

$$f(x_m) = \inf_{x \in K} \{ f(x) \}, \quad f(x_M) = \sup_{x \in K} \{ f(x) \}$$

Corolário. Nas mesmas condições, mas f uma função complexa, temos

$$|f(x_m)| = \inf_{x \in K} \{|f(x)|\}, \quad |f(x_M)| = \sup_{x \in K} \{|f(x)|\}$$

Teorema. Seja $f: X \to Y$ continua. Se X é compacto, então f é uniformemente contínua.

2.6 Convergência Uniforme

Definição. Uma sequência de funções $\{f_n\}$ de X em Y converge pontualmente para $f: X \to Y$ se

$$f_n(x) \to f(x), \quad n \to \infty, \forall x \in X$$

 $\{f_n\}$ converge uniformemente para f se para todo $\epsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que

$$\sup_{x \in X} \{ d'(f_n(x), f(x)) \} < \epsilon, n \ge n_0$$

<u>Teorema</u>. Se $\{f_n\}$ é uma sequência de funções continuas e $f_n \to f$ uniformemente, então f é contínua.

Teorema. Seja $u_n: X \to \mathbb{C}$ uma sequência de funções satisfazendo

$$|u_n(x)| \le c_n, n \in \mathbb{N}.$$

Se $\sum_{n=0}^{\infty} c_n < \infty$, então $\sum_{k=1}^{n} u_k \to \sum_{n=0}^{\infty} u_n$ uniformemente.

3 Aula 03 - 06/01/2023

3.1 Motivações

- i) Introdução às séries de potência e raio de convergência;
- ii) Funções analíticas e diferenciáveis em C;
- iii) Definição da exponencial complexa;
- iv) Ramos de funções inversas.

3.2 Séries de Potências

<u>Definição.</u> Considere $\{a_n\}$ uma sequência em \mathbb{C} . A série de potência em $\{a_n\}$, denotada por $\sum_{n=0}^{\infty}$, é dita convergente se para todo $\epsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que $|\sum_{n=0}^{k} -a|, k \geq n_0$, para algum $a \in \mathbb{C}$. Denotamos isso por

$$a = \sum_{n=0}^{\infty} a_n < \infty,$$

A série $\sum_{n=0}^{\infty} a_n$ é absolutamente convergente se $\sum_{n=0}^{\infty} |a_n| < \infty$.

Exercícios. Mostre que se uma soma converge absolutamente, ela também converge normalmente.

Definição. Uma série de potências é uma série da forma

$$\sum_{n=0}^{\infty} a_n (z-a)^n, \quad z \in \mathbb{C},$$

em que $\{a_n\}$ é uma sequência de \mathbb{C} e a é um número complexo.

Exemplo 3.1. No caso da série geométrica $\sum_{n=0}^{\infty} z^n, z \in \mathbb{C}$, considere a soma parcial $s_n = \sum_{k=0}^{n} = \frac{1-z^{n+1}}{1-z}, z \neq 1$. Se |z| < 1, então $z^{n+1} \to 0$ e $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}, |z| < 1$. Caso $|z| \geq 1$, a série geométrica diverge.

Denotamos por $\limsup_{n\to\infty}\{b_n\}$ a expressão $\lim_{n\to\infty}\sup_{k\geq n}\{b_k\}$.

<u>**Teorema.**</u> Considere a série de potências $\sum_{n=0}^{\infty} (z-a)^n$ e $\frac{1}{R} := \limsup_{n \to \infty} \{\sqrt[n]{|a_n|}\}$. Então,

- 1) A série converge absolutamente em B(a, R)
- 2) A série diverge se |z-a| > R
- 3) A série converge uniformemente em B(a, r) para 0 < r < R.

Prova. Sem perda de generalidade, suponha a=0. 1.) Seja $z \in B(0,R)$. Existe |z| < r < R e $n_0 \in \mathbb{N}$ tal que $|a_n^{\frac{1}{n}}| < \frac{1}{r}, n \geq n_0$. Daí, temos

$$\sum_{k=n_0}^{\infty} |a_n| |z^n| \le \sum_{k=n_0}^{\infty} \frac{|z^n|}{r^n} < \infty.$$

Como essa fração é menor que um, o resultado está provado.

2.) Seja |z|>R e r tal que |z|>r>R. Existe $\{a_{n_k}\}_k$ tal que $|a_{n_k}|^{\frac{1}{n_k}}>\frac{1}{r}, k=0,1,\cdots$. Assim, temos

$$|a_{n_k}||z|^{n_k} > \left(\frac{|z|}{r}\right)^{n_k} \to \infty$$

 $Conforme\ k\ tende\ a\ infinito.$

3.) Seja 0 < r < R e $r < \rho < R$. Se z pertence a uma bola B(0, r), então

$$|a_n||z|^n < \left(\frac{r}{\rho}\right)^n, \quad n \ge n_0, n_0 \in \mathbb{N}.$$

Como consequência do teste M de Weierstrass, já que $\frac{r}{a}$ é um número, segue o resultado.

Exercícios. Mostre que o R do teorema acima é único.

Exemplo 3.2. Considere a série que define a exponencial de z:

$$\sum_{n=0}^{\infty}\frac{z^n}{n!}, R=\infty. \quad e^z:=\sum_{n=0}^{\infty}\frac{z^n}{n!}, z\in\mathbb{C}.$$

Este série é convergente pelo teste da razão. Com efeito,

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left(\frac{(n+1)!}{n!} \right) = \infty.$$

Com isso, a série converge para todos os valores possíveis, pois seu raio de convergência é infinito.

Proposição. Nas notações da proposição anterior, se $R < \infty$, então

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|.$$

3.3 Funções Analíticas

Definição. Seja G um aberto de \mathbb{C} e $f:G\to\mathbb{C}$ uma função. Dizemos que ela é diferenciável em $z\in G$ se

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \lim_{w \to z} \frac{f(z) - f(w)}{z - w}$$

existe. Neste caso, o denotamos por f'(z). Diremos que f é diferenciável se f'(z) existe para todo z de G.

<u>Definição.</u> Se $f:G\to\mathbb{C}$ é diferenciável e $f':G\to\mathbb{C}(z\mapsto f'(z))$ é contínua, então dizemos que f é continuamente diferenciável.

Analogamente, se $f': G \to \mathbb{C}$ é diferenciável e $f'': G \to \mathbb{C}$ (f'' = (f')') é contínua, então f é duas vezes continuamente diferenciável. Nesta linha, diremos que uma função é analítica se ela é continuamente diferenciável em G.

Proposição. Seja G um aberto de C. Então

- i) Se $f: G \to \mathbb{C}$ é diferenciável em $a \in G$, então f é contínua em a;
- ii) Se f e g são analíticas em G, então f+g e f.g são analíticas em G. Se $G'=G-\{0\}$, então f/g é analítica em G'. Valem as regras clássicas de derivação.
- iii) Sejam f e g analíticos em G_f , G_g , respectivamente, com $f(G_f) \subseteq f(G_g)$. Então, $g \circ f$ é analítica em G_f e

$$(g \circ f)'(z) = g'(f(z))f'(z), \quad z \in G.$$

Prova. Exercício. ■

Proposição. Seja $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ com raio de convergência R. Então, f é infinitamente diferenciável em B(a, R). Além disso, a derivada de ordem k é

$$f^{(k)}(z) = \sum_{n=k}^{\infty} a_n \frac{n!}{(n-k)!} (z-a)^{n-k}, k \in \mathbb{N}$$

com mesmo raio de convergência de f.

Prova. A última afirmação fica como exercício.

Consideremos

$$s_n(z) = \sum_{k=0}^n a_k (z-a)^k, \quad R_n(z) = f(z) - s_n(z),$$

$$g(z) = \sum_{n=1}^{\infty} a_n n(z-a)^{n-1}, \quad z \in B(a,R), n \in \mathbb{N}.$$

Seja $\delta > 0$ tal que $B(z, \delta) \subseteq B(a, r)$ com |z| < r < R. Assim, para w em $B(z, \delta)$

$$\frac{f(z) - f(w)}{z - w} - g(z) = \frac{s_n(z) - s_n(w)}{z - w} + \frac{R_n(z) - R_n(w)}{z - w} - g(z) = \left[\frac{s_n(z) - s_n(w)}{z - w} - s_n'(z)\right] + \left[\frac{R_n(z) - R_n(w)}{z - w}\right] - (g(z) - s_n'(z)).$$

Note que

$$\left| \frac{R_n(z) - R_n(w)}{z - w} \right| = \left| \frac{1}{z - w} \sum_{k=n+1}^{\infty} a_k \frac{\left[(z - a)^k - (w - a)^k \right]}{(z - a) - (w - a)} \right| = \left| \sum_{k=n+1}^{\infty} a_k \left((z - a)^{k-1} + \dots + (w - a)^{k-1} \right) \right| \le \sum_{k=n+1}^{\infty} |a_k| k r^{k-1} \to 0$$

pois $g(r) < \infty$, em que n tende a infinito. Como as duas expressões em chaves tendem a 0 quando w tende a z, concluímos que

$$\lim_{z \to w} \frac{f(z) - f(w)}{z - w} = g(z)$$

e a afirmação segue.

Corolário. Nas notações e condições da proposição anterior, f é analítica em B(a, R) e

$$a_n = \frac{f^{(n)}(a)}{n!}, n \in \mathbb{N}$$

Prova. Exercício.

Proposição. Seja G aberto e conexo. Se $f: G \to \mathbb{C}$ é tal que $f'(z) = 0, z \in G$, então f é constante.

<u>Prova.</u> Seja $z_0 \in G$ e considere $C = f^{-1}(\{f(z_0)\})$, tal que C é não-vazio e fechado. Mostremos que C é, também, aberto. Seja z um elemento de C e r > 0 tal que $B(z,r) \subseteq G$. Para todo $w \in B(z,w)$, definimos $g: [0,1] \to \mathbb{C}$ por g(t) = f(tz + (1-t)w). Neste caso,

$$g'(t) = f'(tz + (1-t)w)(z - w) = 0.$$

Como g é real, segue que ela é constante. Com isso, note que $f(w) = g(0) = g(1) = f(z) = f(z_0)$, tal que $w \in C$.

Exemplo 3.3. $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}, R = \infty$

Coloque $g(z) = e^z e^{z-w}, w \in \mathbb{C}$ fixo. Temos $g'(z) = (e^z)' e^{w-z} + e^z (e^{w-z})' - 0$. Assim, g é constante e, como $g(0) = e^w$, concluímos que $e^w = e^z e^{w-z}$ para todo $z, w \in \mathbb{C}$.

Exercícios. Prove que, para $z, w \in \mathbb{C}$,:

- 1) $e^{z+w} = e^z e^w$;
- 2) $e^z e^{-z} = 1$;
- 3) $e^{\overline{z}} = \overline{(e^z)}$:
- 4) $|e^z| = e^{Re(z)}$.

Exemplo 3.4. Defina, para z complexo,

$$\cos(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$$
$$\sin(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}.$$

Exercícios. Dado z complexo, mostre que

i)
$$(\sin(z)' = \cos(z), (\cos(z))' = -\sin(z);$$

ii)
$$\cos(z) = \frac{1}{2} \left(e^{iz} + e^{-iz} \right)$$
, $\sin(z) = \frac{1}{2} \left(e^{iz} - e^{-iz} \right)$;

iii)
$$\cos^2(z) + \sin^2(z) = 1$$
;

$$iv$$
) $e^{iz} = \cos(z) + i\sin(z)$.

3.4 Ramos de Funções Inversas

Seja $z \in \mathbb{C}$. Buscamos $w \in \mathbb{C}$ tal que $e^w = z, z \neq 0$. Logo, w deve satisfazer $|e^w| = e^{Re(w)} = |z| \Rightarrow Re(w) = \ln|z|$. Se w = x + iy, então

$$e^{w} = e^{x}e^{iy} = e^{x}\left(\cos\left(y\right) + i\sin\left(y\right)\right) = z = |z|\left(\cos\left(\theta\right) + i\sin\left(\theta\right)\right)$$

com $\theta = \arg z$. Assim, $y = \theta + 2k\pi$ para algum k. Portanto, $w = \ln|z| + i(\arg z + 2k\pi), k \in \mathbb{Z}$.

<u>Definição.</u> Seja G um aberto conexo de $\mathbb{C}ef:G\to\mathbb{C}$ contínua. Diremos que f é um ramo de logarítmo em G se $e^{f(z)}=z,z\in G$.

Proposição. Se G é um aberto conexo e f, g são ramos de logarítmos em G, então $f(z) = g(z) + 2k\pi i$ para $algum \ k \in \mathbb{Z}$.

Prova. Seja z em G. Mostraremos que

$$\frac{f(z) - g(z)}{2\pi i} \in \mathbb{Z}.$$

Observe que $e^{f(z)-g(z)} = \frac{e^{f(z)}}{e^{g(z)}} = \frac{z}{z} = 1$. Daí, $f(z) = g(z) + 2k\pi i$ para algum inteiro k, pois

$$f(z) - g(z) = \ln|1| + i(\arg 1 + 2k\pi)$$

Definition $h: G \to \mathbb{C}$ por

$$h(w) = \frac{f(w) - g(w)}{2\pi i}, \quad \in G.$$

De forma análoga ao anterior, concluímos $Im(h) \subseteq \mathbb{Z}$ deve ser conexo, pois h é contínua. Assim, h é constante, pois os únicos conexos de \mathbb{Z} são o vazio e conjuntos unitários, provando o resultado.

Proposição. Sejam G, Ω abertos e $f: G \to \mathbb{C}$ e $g: \Omega \to \mathbb{C}$ contínuas com $f(G) \subseteq \Omega$ e satisfazendo $\overline{f(g(z))} = z, z \in G$. Se g é diferenciável em z e $g'(f(z)) \neq 0$, então

$$f'(z) = \frac{1}{g'(f(z))}.$$

Caso g seja analítica, f também o é.

Prova. Exercício.

Considere G um aberto conexo. Chamamos a função $f:G\to\mathbb{C}$ dada por

$$f(z) = \ln|z| + i\theta, \quad \theta = \arg(z) \in (-\pi, \pi)$$

de ramo principal do logarítmo.

4 Aula 04 - 09/01/2023

4.1 Motivações

- Equações de Cauchy-Riemann;
- Funções Harmônicas e suas Relações com as Analíticas.
- Funções Conformes e Transformações de Möbius

4.2 Equações de Cauchy-Riemann

Definição. Uma região G do plano complexo é um aberto conexo dele.

Considere uma função $f:G\to\mathbb{C}$ analítica sobre a região G e defina

$$u(x,y) = Re(f(z)), \quad v(x,y) = Im(f(z)), \quad z = x + iy, x, y \in \mathbb{R}$$

Assim, $f(z) = u(x, y) + iv(x, y), z = x + iy \in \mathbb{C}$. Observe que

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \lim_{ih \to 0} \frac{f(z+ih) - f(z)}{ih}$$

$$= \lim_{h \to 0} \left(\frac{u(x+h,y) - u(x,y)}{h} + i \frac{v(x+h,y) - v(x,y)}{h} \right)$$

$$= \frac{du}{dx}(x,y) + i \frac{dv}{dx}(x,y), \quad z = x + iy$$
(1)

$$= \lim_{ih \to 0} \left(\frac{u(x, y+h) - u(x, y)}{ih} + i \left(\frac{v(x, y+h) - v(x, y)}{ih} \right) \right)$$

$$= \frac{1}{i} \frac{du}{dy}(x, y) + \frac{dv}{dy}(x, y) = \frac{dv}{dy}(x, y) - i \frac{du}{dy}(x, y).$$
(2)

A partir de (1) e (2), derivamos as equações de Cauchy-Riemann:

$$\boxed{\frac{du}{dx} = \frac{dv}{dy} \quad e \frac{dv}{dx} = -\frac{du}{dy}}$$

4.3 Funções Harmônicas

Além disso, se u e v possuem derivadas de segunda ordem, temos

$$\frac{d}{dy}\left(\frac{du}{dx}\right) = \frac{d^2v}{dy^2}, \quad \frac{d}{dy}\left(\frac{dv}{dx}\right), \quad \frac{d^2v}{dx^2} = -\frac{dy}{dxdy}$$

de onde segue que

$$\frac{d^2v}{dx^2} + \frac{d^2v}{dy^2} = 0$$

e, de forma análoga, u é harmônica. Nesta lógica, diremos que f é harmônica se $\Delta f = \frac{d^2 f}{dx^2} + \frac{d^2 f}{dy^2} = 0$. Seja $u:G\to\mathbb{R}$ harmônica, a busca por $v:G\to\mathbb{R}$ harmônica satisfazendo Cauchy-Riemman é um

Seja $u:G\to\mathbb{R}$ harmônica, a busca por $v:G\to\mathbb{R}$ harmônica satisfazendo Cauchy-Riemman é um questão. Um exercício é mostrar que a existência de v depende de G e que, em geral, não encontra-se v harmônica satisfazendo Cauchy-Riemann. (Por exemplo, $G=G-\{0\}, \quad u(x,y)=\ln{(x^2+y^2)}^{\frac{1}{2}}$)

<u>Teorema</u>. Sejam $u, v : G \to \mathbb{R}$ harmônicas de classe C^1 . Então, f = u + iv é analítica se e só se u e v satisfazem Cauchy-Riemann.

Prova. Exercício.

Dada $u:G\to\mathbb{R}$ harmônica, uma função $v:G\to\mathbb{R}$ tal que f = u + iv seja analítica é dita ser a função harmônica conjugada de u.

Exercícios.

- 1) Seja $f: G \to \mathbb{C}$ um ramo e n um natural. Então, $z^n = e^{nf(z)}, z \in G$.
- 2) Mostre que $Re(z^{\frac{1}{2}}) > 0$;
- 3) tome $G = \mathbb{C} \{z : z \leq 0\}$. Ache todos as funções analíticas tais que $z = (f(z))^n$.
- 4) Seja $f: G \to \mathbb{C}$, G conexo e f anaítica. Se, para todo z de G, f(z) é real, então f é constante.

Teorema. Considere $G = \mathbb{C}$ ou G = B(0,r), r > 0. Se $u: G \to \mathbb{R}$, então u admite harmônico conjugado.

Prova. Buscamos $v: G \to \mathbb{R}$ satisfazendo Cauchy-Riemann. Coloque

$$v(x,y) = \int_0^y \frac{du}{dx}(x,t)dt + \phi(x)$$

em que $\phi(x) = -\int_{0}^{x} \frac{du}{dy}(t,0)dt$.

Portanto,

$$f = u(x,y) + i \left(\int_0^y \frac{du}{dx}(x,t)dt - \int_0^x \frac{du}{dy}(t,0)dt. \right). \quad \blacksquare$$

4.4 Transformações Conformes

Exercícios. Mostre que e^z leva retas ortogonais em curvas ortogonais.

Definição. Uma γ é uma curva numa região G se $\gamma:[a,b]\to G$ é contínua.

Sejam γ_1, γ_2 curvas em G tais que $\gamma_1'(t_1) \neq 0, \gamma_2'(t_2) \neq 0, \gamma_1(t_1) = \gamma_2(t_2) = z_0 \in G$. O ângulo entre γ_1 e γ_2 em z_0 é dado por

$$\arg(\gamma_1'(t_1)) - \arg(\gamma_2'(t_2)).$$

Observe que se γ é uma curva em G e $f:G\to\mathbb{C}$ é analítica, $\sigma=f\circ\gamma$ é uma curva em \mathbb{C} . Assumimos $\gamma\in C^1$. Neste caso, $[a,b]=Dom(\gamma)$, ou seja, temos

$$\gamma'(t) = f'(\gamma(t))\gamma'(t), \quad t \in [a, b],$$

donde segue que

$$arg(\gamma'(t)) = arg(f'(\gamma(t))) + arg(\gamma'(t))$$

Teorema. Seja $f: G \to \mathbb{C}$ analítica. Então, f preserva ângulos para todo z em G tal que $f'(z) \neq 0$.

<u>Prova.</u> Seja $z_0 \in G$ tal que $f'(z_0) \neq 0$. Considere curvas γ_1, γ_2 tais que $\gamma_1(t_1) = \gamma_2(t_2) = z_0$. Se θ é ângulo entre γ_1 e γ_2 em z_0 , então

$$\theta = \arg(\gamma_1'(t_1)) - \arg(\gamma_2'(t_2))$$

Agora, note que o ângulo entre $\sigma_1 = f \circ \gamma_1$ e $\sigma_2 = f \circ \gamma_2$ em $f(z_0)$ é

$$\arg \sigma_1'(t_1) - \arg \sigma_2'(t_2) = \theta.$$

Portanto, f preserva ângulos. \blacksquare .

Seja $f:G\to\mathbb{C}$ que preserva ângulo e

$$\lim_{w \to z} \frac{|f(z) - f(w)|}{|z - w|}$$

existe. Então, f é dita aplicação conforme. Por exemplo, $f(z) = e^z$ é injetora em qualquer faixa horizontal de largura menor que 2π .

Corolário. $e^G = \mathbb{C} - \{z : z \leq 0\}.$

Se G é uma faixa aberta de comprimento 2π , o ramo de log faz o caminho inverso. Adicionalmente, $\frac{1}{z}$ é a sua derivada.

5 Aula 05 - 10/01/2023

5.1 Motivações

- Transformações de Möbius elementares;
- Consequências Geométricas da Transformação de Möbius;

5.2 Transformações de Möbius

<u>Definição.</u> Uma fração linear é $\frac{az+b}{cz+d}$, $z \in \mathbb{C}$, $a, b, c, d \in \mathbb{C}$ fixos.

Definição. Uma fração linear tal que $ad - bc \neq 0$ define uma transformação

$$T(z) = \frac{az+b}{cz+d}, \quad z \in \mathbb{C},$$

chamada tranformação de Möbius.

Consideraremos a tranformação como sendo $T:\mathbb{C}_\infty\to\mathbb{C}_\infty$ da seguinte maneira:

$$T(z) = \frac{az+b}{cz+d}, \quad z \neq -\frac{d}{c}$$

$$T\left(-\frac{d}{c}\right) = \infty \quad \text{e} \quad T(\infty) = \frac{a}{c}.$$

Neste caso, $T^{-1}(z)=\frac{dz-b}{-cz+a}, \quad z\in\mathbb{C}_{\infty}.$ Note, também, que os coeficientes de uma Transformação de Möbius são unicamente determinados, pois

$$\frac{az+b}{cz+d} = \frac{(\lambda a)z + (\lambda b)}{(\lambda c)z + (\lambda d)}, \quad \lambda \neq 0.$$

Denotaremos por TM a coleção de transformações de Möbuis.

Exemplo 5.1. As TM's elementares, dado $a \in \mathbb{C}$, são

- Translação: $T(z) = z + a, z \in \mathbb{C}_{\infty}$,
- Rotação: $R(z) = e^{i\theta}z, \theta \in \mathbb{R}$,
- Inversão: $I(z) = \frac{1}{z}$,
- Homotetia: H(z) = az.

Proposição. Toda TM é composição de TM's elementares.

Prova. Seja $T \in TM$ dada por $T(z) = \frac{az+b}{cz+d}$.

Caso 1) Se c = 0, então $T(z) = \frac{az}{d} + \frac{b}{d}$. Neste caso, $H(z) = \frac{a}{d}z$ e $S(z) = z + \frac{b}{d}$, tal que $T(z) = S \circ H(z)$ Caso 2) Se $c \neq 0$, então tome

$$T_1(z) = z + \frac{d}{c}, I(z) = \frac{1}{z}, H(z) = \frac{(bc - ad)z}{c^2}, \ e \ T_2(z) = z + \frac{a}{c}.$$

Com isso, temos

$$t_2 \circ H \circ I \circ T_1 = t$$
.

Exercícios. 1) Mostre que (TM, \circ) é um grupo.

2) Se $T \in TM$ é tal que $T(z_i) = z_i, i = 1, 2, 3, z_i \neq z_j, i \neq j$, então $T = Id_{\mathbb{C}_{\infty}}$.

Proposição. Sejam $z_1, z_2, z_3 \in \mathbb{C}_{\infty}$, distintos. Existe uma única $T \in TM$ tal que

$$T(z_1) = 1, T(z_2) = 0, T(z_3) = \infty.$$

Prova. Unicidade:

Se existem $T, S \in TM$ satisfazendo a hipótese, então $S^{-1}(T(z_i)) = z_i, i = 1, 2, 3$. Logo, $S^{-1} \circ T = Id_{\mathbb{C}_{\infty}}$ e S = T.

<u>Existência</u>: Defina $T: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ por

$$T(z) = \begin{cases} \frac{z-z_2}{z-z_3}, & z_i \in \mathbb{C}, i = 1, 2, 3; \\ \frac{z_1-z_2}{z_1-z_3}, & z_1 = \infty; \\ \frac{z-z_2}{z-z_3}, & z_2 = \infty; \\ \frac{z-z_3}{z-z_3}, & z_2 = \infty; \\ \frac{z-z_2}{z_1-z_2}, & z_3 = \infty. \end{cases}$$

tal que $T \in TM$ satisfazendo a hipótese.

<u>Corolário</u>. Dados $z_1, z_2, z_3, w_1, w_2, w_3$ distintos em \mathbb{C}_{∞} , existe uma única $T \in TM$ tal que

$$T(z_i) = w_i, \quad i = 1, 2, 3.$$

Prova. Exercício. ■

Observe que se $z_i \in \mathbb{C}_{\infty}$, i=1,2,3, distintos e $T \in TM$ é tal que a proposição seja satisfeita, denotaremos T(z) por $T(z) := [z, z_1, z_2, z_3]$.

Exemplo 5.2. Se $[z,1,0,\infty] = z, z \in \mathbb{C}_{\infty}, z_1,z_2,z_3 \in \mathbb{C}_{\infty}$ distintos, então

$$[z_1, z_1, z_2, z_3] = 1;$$

 $[z_2, z_1, z_2, z_3] = 0;$
 $[z_3, z_1, z_2, z_3] = \infty.$

Proposição. Sejam $z_1, z_2, z_3 \in \mathbb{C}_{\infty}$ distintos e $S \in TM$. Então,

$$[z, z_1, z_2, z_3] = [S(z), S(z_1), S(z_2), S(z_3)], \quad z \in \mathbb{C}_{\infty}.$$

Prova. Seja $T(z) = [z, z_1, z_2, z_3]$ e tome $M = T \circ S^{-1}$. Note que

$$M(S(z_1)) = 1,$$

$$M(S(z_2)) = 0,$$

$$M(S(z_3)) = \infty.$$

Assim,

$$M(z) = [S(z), S(z_1), S(z_2), S(z_3)]$$

$$e\ T(z) = M(S(z)) = [S(z), S(z_1), S(z_2), S(z_3)].$$

Proposição. Sejam $z_1, z_2, z_3, z_4 \in \mathbb{C}_{\infty}$ distintos. Então, $[z_1, z_2, z_3, z_4] \in \mathbb{R}$ se e só se $z_i \in C$ para algum círculo.

Prova. \Rightarrow) Se $z_i \in C$, i = 1, 2, 3, 4, então $z_1 \in D$, em que D é o único círculo determinado por z_2, z_3, z_4 .

Exercícios. Mostre que $[z_1, z_2, z_3, z_4] \in \mathbb{R}$

 \Leftarrow) Definimos $S(z) = [z, z_2, z_3, z_4], z \in \mathbb{C}_{\infty}$. Mostraremos que $S^{-1}(\mathbb{R}) \subseteq \mathbb{R}$ e $S^{-1}(\mathbb{R}_{\infty})$ é um círculo. Caso 1: Seja $w \in S^{-1}(\mathbb{R})$ e sejam a, b, c, d números complexos tais que

$$S(z) = \frac{az+b}{cz+d}.$$

como S(w) pertence a \mathbb{R} , temos $S(w) = \overline{S(w)}$, donde segue que

$$\frac{aw+b}{cw+d} = \frac{\bar{a}\bar{w} + \bar{b}}{\bar{c}\bar{w} + \bar{d}},$$

o que implica em $(cw + d)(\bar{a}\bar{w} + \bar{b}) = (aw + b)(\bar{c}\bar{w} + \bar{d})$. Logo,

$$(c\bar{a}-a\bar{c})|w|^2+(c\bar{b}-a\bar{d})w+(d\bar{a}-b\bar{c})\bar{w}+(d\bar{b}-b\bar{d})=2iIm(a\bar{c})+2i(Im(w(-\bar{b}c+a\bar{d}))+2iIm(b\bar{d}))=0. \eqno(3)$$

<u>Caso 1.1</u>: $Im(\bar{a}c) = 0$, seja $\alpha = bc - ad$. Segue de 3 que

$$2i(Im(w\alpha) + Im(d\bar{b})) = 0.$$

Logo, $Im(\alpha w + \beta) = 0, \beta = Im(d\bar{b})$. Assim, $\alpha w + \beta \in r$, em que $r : \frac{-\beta t}{\alpha}, t \in \mathbb{R}$. <u>Caso 1.2</u>: $\rho = Im(\bar{a}c) \neq 0$. Seja $\gamma = c\bar{b} - a\bar{d}$. Então, dividindo 3 por $2i\rho$, temos

$$|w|^2 + Im(\frac{\gamma}{\rho})w + Im(\frac{d\bar{b}}{\rho}) = 0$$

$$|w - \gamma|^2 = (|\gamma|^2 - \beta)^{\frac{1}{2}} = r > 0.$$

6 Aula 06 - 12/01/2023

6.1 Motivações

- Transformações de Möbius e Harmônicos Conjugados;
- Simetrias e Orientação no Plano C;
- Integração Complexa.

6.2 Exercícios de Hoje

6.2.1 Jéssica

- a) $(7+i,1,0,\infty)$
- b) (2, 1-i, 1, 1+i)
- c) (0,1,i,-1)
- d) $(i-1,\infty,1+i,0)$

Utilizaremos os seguintes casos: Se $z_2, z_3, z_4 \in \mathbb{C}$, então $S(z) = \frac{\frac{z-z_3}{z-z_4}}{\frac{z_2-z_3}{z_2-z_4}}$. Caso $z_3 = \infty, S(z) = \frac{z-z_3}{z-z_4}$. Por fim,

se
$$z_4 = \infty$$
, $S(z) = \frac{z - z_3}{z_2 - z_3}$.

Assim, vamos às contas.

a)

$$S(7+i) = \frac{7+i}{1} = 7+i;$$

b)

$$S(2) = \frac{\frac{2-1}{2-1-i}}{\frac{1-i-1}{1-i-1-i}} = \frac{\frac{1}{1-i}}{\frac{i}{2i}} = \frac{2}{1-i} \frac{1+i}{1+i} = \frac{2}{2}(1+i) = 1+i$$

c)

$$S(0) = \frac{\frac{0-i}{0+1}}{\frac{1-i}{2}} = \frac{-2i}{1-i} \frac{1+i}{1+i} = \frac{-2i}{2} (1+i) = 1-i;$$

d)

$$S(1i) = \frac{i - 1 - 1 - i}{i - 1 - 0} = \frac{-2}{i - 1} \frac{1 + i}{1 + i} = \frac{-2}{-2} 1 + i = 1 + i.$$

6.2.2 Tiago

Vamos mostrar que $T(\mathbb{R}_{\infty}) = \mathbb{R}_{\infty} \iff a, b, c, d \in \mathbb{R}$. \Rightarrow) Suponha que $T(\mathbb{R}_{\infty}) = \mathbb{R}_{\infty}, T(z_0) = 0, z_0 \in \mathbb{R}_{\infty}$. Então,

$$\frac{az_0+b}{cz_0+d}=0 \Rightarrow az_0+b=0 \Rightarrow z_0=\frac{-b}{a} \in \mathbb{R}_{\infty}.$$

No caso de $z_{\infty} \in \mathbb{R}_{\infty} = \infty$, então

$$\frac{az_{\infty}+b}{cz_{\infty}+d}=\infty\Rightarrow\frac{cz_{\infty}+d}{az_{\infty}+b}=0\Rightarrow cz_{\infty}+d=0\Rightarrow z_{\infty}=\frac{-d}{c}\in\mathbb{R}_{\infty}.$$

Agora, para $z_1 \in \mathbb{R}_{\infty}, T(z_1) = 1$, tal que

$$\frac{az_1+b}{cz_1+d}=1 \Rightarrow az_1+b=cz_1+d \Rightarrow z_1(a-c)=db \Rightarrow az_1\left(1-\frac{c}{a}\right)=db \Rightarrow z_1\left(1-\frac{c}{a}\right)=\frac{db}{a}$$

$$\Rightarrow \frac{z_1}{c} - \frac{z_1}{a} = \frac{\frac{d}{a}}{c} - \frac{\frac{b}{a}}{c} \Rightarrow \frac{z_1}{c} - \frac{z_1}{a} = \frac{r_2}{a} - \frac{r_1}{c} \Rightarrow \frac{z_1 + r_1}{c} = \frac{r_2 + z_1}{a} \Rightarrow \frac{z_1 + r}{z_1 + r_2} = \frac{c}{a}$$
$$\Rightarrow \frac{d}{a} = \frac{d}{c} \frac{c}{c} \in \mathbb{R}_{\infty} = r_2 r_3$$

Logo, colocando $r_1 = \frac{b}{a}, r_2 = \frac{d}{c}, r_3 = \frac{c}{a}$, encontramos os coeficientes

$$Tz = \frac{az+b}{cz+d} = \frac{a}{a} \frac{z+\frac{b}{a}}{z\frac{c}{a}+\frac{d}{a}} = \frac{z+r_1}{r_3z+r_2r_3}.$$

 \Leftarrow) Para provar esse lado, considere $z \in \mathbb{R}_{\infty}$. Então, $T(z) = \frac{az+b}{cz+d} \in \mathbb{R}_{\infty}$. Portanto, $T(\mathbb{R}_{\infty}) = \mathbb{R}_{\infty}$.

6.3 Final de Transformações de Möbius.

A continuação da prova da proposição é exercício.

Teorema. Transformações de Möbius levam círculos em círculos.

Prova. Exercício.

6.4 Simetria e Orientação.

Dada uma circunferência Ω e $z_1,z_2,z_3\in\Omega$ distintos, diremos que z e z* são simétricos se $[z^*,z_1,z_2,z_3]=\overline{[z,z_1,z_2,z_3]}$

Exemplo 6.1. Um ponto é simétrico a si mesmo se $z \in C$ com C o círculo determinado por z_1, z_2, z_3 .

Exercícios. Mostre que a definição de simetria não depende da escolha dos z's.

A ideia geométrica por trás desse conceito é a seguinte: Considere γ uma reta e $z_1, z_2 \in \mathbb{C}$ e coloque $z_3 = \infty$. Dizer que z e z* são simétricos equivale a

$$[z^*, z_1, z_2, \infty] = \overline{[z, z_1, z_2, z_3]} \Longleftrightarrow \frac{z^* - z_2}{z_1 - z_2} = \overline{\left(\frac{z - z_2}{z_1 - z_2}\right)} = = \left(\frac{\overline{z} - \overline{z_2}}{\overline{z_1} - \overline{z_2}}\right).$$

Assim, obtemos

$$\frac{z^* - z_2}{z_1 - z_2} = \frac{\overline{z} - \overline{z_2}}{\overline{z_1} - \overline{z_2}}$$

o que implica

$$\frac{z^*-z_2}{|z_1-z_2|^2}=\overline{z}-\overline{z_2}\quad \text{(Exercício: } |z^*-z_2|=|z-z_2|\text{)}$$

para qualquer z_2 em r. Logo, d(z*, r) = d(z, r). Além disso, $[z^*, z] \perp r$.

A seguir, vamos lidar com o conceito de simetria com relação à um círculo de C. De fato, tome

$$\begin{split} &\Omega = \{z: |z-a| = r\}, \quad r > 0.\\ &[z^*, z_1, z_2, z_3] = \overline{[z, z_1, z_2, z_3]} = \quad \text{(Aplicando translação, inversão, homotetia:)}\\ &= [\overline{z}, \overline{z}_1, \overline{z}_2, \overline{z}_3] = \left[\frac{r^2}{\overline{z} - \overline{a}}, \frac{r^2}{\overline{z}_1 - \overline{a}}, \frac{r^2}{\overline{z}_2 - \overline{a}}, \frac{r^2}{\overline{z}_3 - \overline{a}}\right]\\ &= \left[\frac{r^2 + a}{\overline{z} - \overline{a}}, z_1 - a, z_2 - a, z_3 - a\right]. \end{split}$$

Decorre que

$$z^* = a + \frac{r^2}{\bar{z} - \bar{a}}$$

Exercícios. $z^* \in l := \{a + t(z - a) : 0 < t < \infty\}$

7 Aula 07 - 13/01/2023

7.1 Motivações

- Simetrias e Transformações d Möbius;
- Orientação;
- Funções de Variação Limitada.

7.2 Exercícios de Hoje

7.2.1 Ana Lídia

Dado z em C, temos \bar{z} em C também, tal que $|z|^2=z\bar{z}=1$. Como queremos T(C) = C, |T(z)|=1 e $T(z)\overline{T(z)}=1 \forall z \in C$. Note que

$$T(z)\overline{T(z)} = 1 \Longleftrightarrow \frac{az + b}{cz + d} \frac{\overline{az} + \overline{b}}{\overline{cz} + \overline{d}} = 1 \Longleftrightarrow$$

$$0 = z\overline{z} \left(a\overline{a} - c\overline{c} \right) + \overline{z} \left(b\overline{a} - d\overline{c} \right) + z(\overline{b}a - \overline{d}c) + b\overline{b} - d\overline{d}.$$

Como $z\bar{z} - 1 = 0$, temos

$$\begin{cases} a\bar{a} - c\bar{c} = 1\\ b\bar{a} - d\bar{c} = 0\\ a\bar{b} - c\bar{d} = 0\\ b\bar{b} - d\bar{d} = -1 \end{cases}$$

Daí,

$$|a|^2 - |c|^2 = 1, |b|^2 - |d|^2 = -1 \Rightarrow |a|^2 - |c|^2 = -|b|^2 + |d|^2 \Rightarrow |a|^2 + |b|^2 = |c|^2 + |d|^2.$$

Assim, as condições suficientes para o sistema são

$$a\overline{b} - c\overline{d} = 0$$
, $e |a|^2 + |b|^2 = |c|^2 + |d|^2$.

Para a condição necessária, suponha $c = \lambda \bar{b}$. Então,

$$a\overline{b} - \lambda \overline{b}\overline{d} = 0 \Rightarrow (a - \lambda \overline{d})\overline{b} = 0 \Rightarrow a = \lambda \overline{d} \Longleftrightarrow d = \frac{\overline{a}}{\lambda}$$

7.2.2 João Vitor Occhiucci

Do Teorema 3.14, sabemos transformações de Möbius levam círculos em círculos, portanto $T(\mathbb{R}_{\infty}) = \mathbb{R}_{\infty}$ é equivalente a $Tz = (z, z_2, z_3, z_4)$ com $z_2, z_3, z_4 \in \mathbb{R}_{\infty}$ distintos. Ademais, do exercício 3.7, temos

$$z_2 = \frac{d-b}{a-c}$$
$$z_3 = -\frac{b}{a}$$
$$z_4 = -\frac{d}{c}$$

Portanto, é imediato que se existirem a, b, c e d
 reais para T, então z_2, z_3, z_4 estarão em \mathbb{R}_{∞} e, consequentemente,
 $T(\mathbb{R}_{\infty}) = \mathbb{R}_{\infty}$. Por outro lado, se tivermos uma transformação de Möbius T, tal que $T(\mathbb{R}_{\infty}) = \mathbb{R}_{\infty}$, então $T(z) = (z, z_2, z_3, z_4)$ com $z_2, z_3, z_4 \in \mathbb{R}_{\infty}$ distintos. Daí, tome

$$a = \frac{1}{z_2 - .3}, b = \frac{z_3}{z_2 - z_3}, c = \frac{1}{z_2 - z_4} \in d = \frac{z_4}{z_2 - .4}$$

 \mathbf{e}

$$Uz = \frac{az+b}{cz+d}$$

Veja que $Uz_2=1, Uz_3=0$ e $Uz_4=\infty$, portanto, pela proposição 3.9, U=T, ou seja, podemos escolher a, b, c e d reais tais que $Tz=\frac{az+b}{cz+d}$.

7.3 Continuando Simetrias

Proposição. Transformações de Möbius levam pontos simétricos em pontos simétricos.

<u>Prova</u>. Seja l uma circunferência e z e z* simétricos com relação à Ω . Devemos mostrar que T(z), $T(z^*)$ são simétricos com relação a $T(\Omega)$. Em outras palavras, queremos

$$[T(z), T(z_1), T(z_2), T(z_3)] = \overline{[T(z^*), T(z_1), T(z_2), T(z_3)]}.$$

(Fica como exercício mostrar que $[T(z), T(z_1), T(z_2), T(z_3)] = [\bar{z}, \bar{z_1}, \bar{z_2}, \bar{z_3}]$).

<u>Definição.</u> Dada uma circunferência Ω e uma tripla $z_i \in \Omega, i = 1, 2, 3$, dizemos que esta tripla é uma orientação. Definimos o conjunto

$$D_l = \{z : Im[z, z_1, z_2, z_3] > 0\}$$

como o lado direito de l. O lado esquerdo, por outro lado, é

$$E_l = \{z : Im[z, z_1, z_2, z_3] < 0\}.$$

Exemplo 7.1. Um circuito passando por $\infty < z_1, z_2, z_3$ em \mathbb{R}_{∞} . Seja $T(z) = [z, z_1, z_2, z_3], z \in \mathbb{R}_{\infty}$. Neste caso, $T(z) = \frac{az+b}{cz+d}$, $a, b, c, d \in \mathbb{R}_{\infty}$. Assim,

$$\frac{az+b}{cz+d}\frac{c\bar{z}+d}{c\bar{z}+d} = \frac{ac|z|^2 + adz + cb\bar{z} + bd}{|cz+d|^2}.$$

 $\label{eq:logo} \operatorname{Logo},\,\operatorname{Im}(T(z))>0 \Longleftrightarrow \operatorname{Im}\bigg[(\operatorname{ad}-\operatorname{bc})z\bigg]>0.\,\,\operatorname{Portanto},\,\operatorname{se}\,\Omega\,\,\acute{\operatorname{e}}\,\operatorname{o}\,\,\operatorname{c\'{r}\!r}\operatorname{culo},$

$$D_{\Omega} = \{z : (ad - bc)Im(z) > 0.\}$$

Proposição. Sejam Ω_1, Ω_2 circunferências em \mathbb{C}_{∞} e T uma TM com $T(\Omega_1) = \Omega_2$. Então, T preserva orientação.

Prova. Exercício.

Exemplo 7.2. Seja $D = \{z : Rez > 0\}, D^U = \{z : |z| < 1\}$. Seja Ω_1 o círculo e Ω_2 dados por

$$\Omega_1 = \{z : z = iy, y \in \mathbb{R}\}$$
$$\Omega_2 = \{e^{iy}, y \in \mathbb{R}.\}$$

Assim,

$$D_{\Omega_1} = \{z : Im[z, -i, 0, i] > 0\} = \{z : Im(iz) > 0\} = \{z : Re(z) > 0\}.$$
$$D_{\Omega_2} = \{z : Im[z, -i, -1, i] > 0\} = \{z : |z| < 1\}.$$

A TM que leva Ω_1 em Ω_2 é dada por

$$T(z) = \frac{z-1}{z+1},$$

$$e\ M(z) = \frac{e^z - 1}{e^z + 1}$$
 é tal que $M(D) = D^U$.

7.4 Integração Complexa

7.4.1 Funções de Variação Limitada (BV - Bounded Variation)

Definição. Seja $\gamma:[a,b]\to\mathbb{C}$ uma função. Diremos que γ tem variação limitada se

$$\sum_{k=1}^{n} |\gamma(t_k) - \gamma(t_{k+1})| < M, \quad M > 0,$$

com $P = \{a = t_0, t_1, \dots, t_n = b\}$ partição de [a, b]. Se γ é BV, a quantia

$$V(\gamma) = \sup_{p} v(\gamma, P)$$

é chamada variação de γ .

Exercícios. Se $P \subseteq Q$, então $V(\gamma, P) \leq V(\gamma, Q)$. Se γ_1, γ_2 são BV, então $\alpha \gamma_1 + \beta \gamma_2$ é BV para $\alpha, \beta \in \mathbb{C}$. Além disso,

$$V(\alpha \gamma_1 + \beta \gamma_2) \le |\alpha| V(\gamma_1) + |\beta| V(\gamma_2)$$

Exercícios. Se γ é BV, então ela é limitada, mas a recíproca não vale.

Exemplo 7.3. Tome $\gamma:[a,b]\to\mathbb{C}, Im(\gamma)=0$ e γ crescente. Neste caso, γ é BV. Com efeito, para toda partição P de [a,b], temos

$$v(\gamma, P) = \sum_{k=1}^{n} |\gamma(t_k) - \gamma(t_{k+1})| = \gamma(b) - \gamma(a)$$

De fato, dada uma γ com as duas características acima, ela é BV se, e só se, $\gamma = \gamma_1 - \gamma_2$, com γ_1, γ_2 monótonas crescentes.

Exercícios.

$$\gamma(t) = \left\{ \begin{array}{ll} t \sin\left(\frac{1}{t}\right), & t \in [0, 2\pi] \\ 0, t = 0 \end{array} \right.$$

não é bv, apesar de ser continua.

Dica: Tome
$$t_n = \frac{1}{n\pi + \frac{\pi}{2}} \Rightarrow \gamma(t_n) = \frac{(-1)^n}{n\pi + \frac{\pi}{2}} \Rightarrow v(\gamma, P) \ge c \sum_{k=1}^n \frac{1}{k}$$
.

Dada γ BV em [a, b], considere

$$\gamma_t: [a,t] \to \mathbb{R}$$

a restrição de γ . Então, considerando a aplicação $v(\gamma_t), t \in [a, b]$, crescente e BV, defina $g(t) = \gamma(t) + v(\gamma_t)$, de modo que

$$\gamma(t) = -q(t)_v(\gamma_t).$$

8 Aula 08 - 16/01/2023

8.1 Motivações

• Integração Complexa em Curvas;