Universidad de los Andes-Dpto. de Física Mecánica Cuántica II -Sem.I/2015

Tarea 2

- I.- Scattering de onda p por una esfera dura de radio r_0 . Se quiere encontrar el desfase $\delta_1(k)$ asociado al scattering por una esfera dura sobre la onda p (l = 1). En particular, se quiere verificar que $\delta_1(k)$ es despreciable ante $\delta_0(k)$ a bajas energías.
 - 1. Escribir la ecuación radial para la función $u_{k,1}(r)$ para $r > r_0$. Demostrar que su solución general tiene la forma

$$u_{k,1}(r) = C \left[\frac{\operatorname{sen}(kr)}{kr} - \cos(kr) + a \left(\frac{\cos(kr)}{kr} + \operatorname{sen}(kr) \right) \right]$$
 (1)

donde C y a son constantes.

- 2. Demostrar que la definición de $\delta_1(k)$ implica que $a = \tan \delta_1(k)$.
- 3. Determine el valor de la constante a de la condición $u_{k,1}(r_0) = 0$.
- 4. Demuestre que cuando $k \longrightarrow 0$, $\delta_1(k)$ se comporta como $(kr_0)^3$, lo que lo hace despreciable ante $\delta_0(k)$.

II.- Quantum Scattering in 2 dimensions.-

El objetivo de esta última parte de la tarea es adecuar el método de las ondas parciales y la aproximación de Born a problemas de scattering (colisiones elásticas) en dos dimensiones y aplicarlo a algunos casos sencillos. Considere el impacto de partículas cuánticas de masa μ sobre un centro dispersor definido por un potencial central, es decir $V(\vec{r}) = V(r)$, donde \vec{r} es un vector en el plano X-Y.

- 1. Escriba la ecuación de valores propios (E positivos!) del Hamiltoniano del sistema en representación de posición y en coordenadas polares (r, θ) . Use las definiciones $k^2 = \frac{2\mu E}{\hbar^2}$, $U(r) = \frac{2\mu V(r)}{\hbar^2}$ y las funciones de onda estacionarias $\psi(r, \theta)$.
- 2. Justifique por qué se pueden buscar las funciones estacionarias como $\psi(r,\theta) = R(r)T(\theta)$. Escriba la ecuación que debe cumplir $T(\theta)$ y demuestre que sus soluciones normalizadas deben ser de la forma $T_m(\theta) = \frac{1}{\sqrt{\epsilon_m \pi}} \cos(m\theta)$, con m = 0, 1, 2, 3, ... y $\epsilon_m = 1 + \delta_{m,0}$.

3. Escriba la ecuación radial, ecuación que debe cumplir R(r). Demuestre que para detectores muy alejados de la zona de colisión y para potenciales V(r) de corto alcance $(V(r) \to 0 \text{ si } r > r_0)$, esa ecuación toma la forma

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{dR(r)}{dr}\right) + \left(k^2 - \frac{m^2}{r^2}\right)R(r) = 0 \tag{2}$$

Confirme que la Ec.(2) es una ecuación de Bessel con soluciones $J_m(kr)$ (funciones de Bessel) y $N_m(kr)$ (funciones de Neumann).

4. Para una onda plana incidente en la dirección X positiva la función de onda de scattering $(r \to \infty)$ puede ser escrita como

$$\psi(r,\theta) \to e^{ikx} + \frac{e^{ikr}}{\sqrt{r}} f(\theta)$$
 (3)

donde $f(\theta)$ es la amplitud bi-dimensional de scattering. Justifique la presencia de \sqrt{r} en el denominador del segundo término en la Ec.(3). El análogo de la sección eficaz diferencial tri-dimensional, $\frac{d\sigma}{d\Omega}$, es ahora la longitud eficaz diferencial dada por

$$\frac{d\sigma}{d\theta} = |f(\theta)|^2 \tag{4}$$

En qué unidades se mide $\frac{d\sigma}{d\theta}$?.

5. Para $r>r_0$ la solución más general de la Ec.(2) tiene la forma

$$R_m(kr) = aJ_m(kr) + bN_m(kr) \tag{5}$$

Justifique que en el límite $r \to \infty$, la Ec.(5) adopta la forma

$$R_m(kr) \to \frac{A_m}{\sqrt{kr}} \cos\left[kr - \frac{\pi}{4}(2m+1) + \delta_m\right]$$
 (6)

Es decir la función de onda de scattering tiene la forma

$$\psi(r,\theta) \to \sum_{m=0}^{\infty} \frac{A_m}{\sqrt{kr}} \cos\left[kr - \frac{\pi}{4}(2m+1) + \delta_m\right] \cos(m\theta)$$
 (7)

donde A_m y δ_m (desfasajes) son constantes que serán determinadas a continuación.

6. Dado que una onda plana se puede expandir en términos de funciones de Bessel en la forma

$$e^{ikx} = e^{ikr\cos\theta} = \sum_{m=0}^{\infty} \epsilon_m i^m \cos(m\theta) J_m(kr)$$
(8)

insertar esta última expresión en la Ec.(3) y al comparar con la Ec.(7) deducir, primero,

$$A_m = \sqrt{\frac{2}{\pi}} \epsilon_m i^m e^{i\delta_m} \tag{9}$$

y luego

$$f(\theta) = \sqrt{\frac{1}{2\pi i k}} \sum_{m=0}^{\infty} \epsilon_m \cos(m\theta) \left[e^{2i\delta_m} - 1 \right]$$
 (10)

Demostrar que la longitud total de scattering, definida como $\lambda_T = \int_0^{2\pi} \left(\frac{d\sigma}{d\theta}\right) d\theta$, resulta ser

$$\lambda_T = \frac{4}{k} \sum_{m=0}^{\infty} \epsilon_m \mathrm{sen}^2 \delta_m \tag{11}$$

7. Aplicación #1: Calcular los desfasajes δ_m para un potencial dispersor tipo círculo duro, es decir

$$V(r) = \begin{cases} 0 & , \quad r > r_0 \\ \infty & , \quad r < r_0 \end{cases}$$
(12)

Grafique $\frac{d\sigma}{d\theta}$ como función del ángulo θ , para distintos valores de energía y distintos cortes m-máximo. Compare con el resultado obtenido por aproximación de Born.

8. Aplicación #2: Calcular los desfasajes δ_m para un potencial dispersor tipo capa de Dirac, es decir $V(r) = V_0 r_0 \delta(r - r_0)$. Grafique $\frac{d\sigma}{d\theta}$ como función del ángulo θ , para distintos valores de energía y distintos cortes m-máximo. Compare con el resultado obtenido por aproximación de Born.

III.- Spin + orbital angular momentum.- Ejercicio # 1 de Cohen-Tannoudji et al., Complemento B-IX.