Wersja: Δ		8-10 s.104	8-10 s. 105	8–10 s.139
			10–12 s. 5	10-12 s.104
		10-12 s.105	10-12 s.140	10–12 s.141
	Logika dla infor	rmatyków		
	Sprawdzian nr 2, 9 czas pisania: 30+			
	kty). Jeśli dla dowolnego zbio $j \mid \langle i, j \rangle \in I \times I \}$ zachodzi równ		raz dowolnej i	ndeksowanej
	$\bigcup_{i,j\in I}A_{i,j}=\bigcup_{i\in$	$\int\limits_{oldsymbol{\in}} A_{i,i}$		
to w prostokąt poniże przykład.	ej wpisz słowo "TAK". W prze	ciwnym przypadk	tu wpisz odpov	wiedni kontr-
rażenia W' jeśli oba	\mathbf{ty}). Mówimy, że w algebrze z wyrażenia oznaczają ten sam ziasy, oraz W zawiera mniej sy	zbiór, oba zawiera mboli niż W' . Np	ają tylko zmie $A \setminus B$ jest uj	nne, binarne proszczeniem
$(A \cup B) \setminus B$. Jeśli istr	nieje uproszczenie wyrażenia <i>A</i> czenie. W przeciwnym przypac	• •		ooniżej wpisz
$(A \cup B) \setminus B$. Jeśli istr		• •		poniżej wpisz
$(A \cup B) \setminus B$. Jeśli istr		• •		ooniżej wpisz
$(A \cup B) \setminus B$. Jeśli istr		• •		ooniżej wpisz
$(A \cup B) \setminus B$. Jeśli istr		• •		ooniżej wpisz
$(A \cup B) \setminus B$. Jeśli istr		• •		ooniżej wpisz
$(A \cup B) \setminus B$. Jeśli istr		• •		ooniżej wpisz
$(A \cup B) \setminus B$. Jeśli istr dowolne takie uprosze Zadanie 3 (2 punk f(n) + n. Jeśli funkcj		dku wpisz słowo , $\{0,1\}^{\mathbb{N}}\times\mathbb{N}\to\mathbb{N}$ w prostokąt poni	,NIE". zadaną wzore żej wpisz słow	m F(f, n) =
$(A \cup B) \setminus B$. Jeśli istr dowolne takie uprosze Zadanie 3 (2 punk f(n) + n. Jeśli funkcj	czenie. W przeciwnym przypac \mathbf{cty}). Rozważmy funkcję $F:\{\mathbf{j} \in F \mid \mathbf{j} \in F \text{ jest różnowartościowa to } \mathbf{j} \in F \}$	dku wpisz słowo , $\{0,1\}^{\mathbb{N}}\times\mathbb{N}\to\mathbb{N}$ w prostokąt poni	,NIE". zadaną wzore żej wpisz słow	m F(f, n) =
$(A \cup B) \setminus B$. Jeśli istr dowolne takie uprosze Zadanie 3 (2 punk f(n) + n. Jeśli funkcj	czenie. W przeciwnym przypac \mathbf{cty}). Rozważmy funkcję $F:\{\mathbf{j} \in F \mid \mathbf{j} \in F \text{ jest różnowartościowa to } \mathbf{j} \in F \}$	dku wpisz słowo , $\{0,1\}^{\mathbb{N}}\times\mathbb{N}\to\mathbb{N}$ w prostokąt poni	,NIE". zadaną wzore żej wpisz słow	m F(f, n) =
$(A \cup B) \setminus B$. Jeśli istr dowolne takie uprosze Zadanie 3 (2 punk f(n) + n. Jeśli funkcj	czenie. W przeciwnym przypac \mathbf{cty}). Rozważmy funkcję $F:\{\mathbf{j} \in F \mid \mathbf{j} \in F \text{ jest różnowartościowa to } \mathbf{j} \in F \}$	dku wpisz słowo , $\{0,1\}^{\mathbb{N}}\times\mathbb{N}\to\mathbb{N}$ w prostokąt poni	,NIE". zadaną wzore żej wpisz słow	m F(f, n) =
$(A \cup B) \setminus B$. Jeśli istr dowolne takie uprosze Zadanie 3 (2 punk f(n) + n. Jeśli funkcj	czenie. W przeciwnym przypac \mathbf{cty}). Rozważmy funkcję $F:\{\mathbf{j} \in F \mid \mathbf{j} \in F \text{ jest różnowartościowa to } \mathbf{j} \in F \}$	dku wpisz słowo , $\{0,1\}^{\mathbb{N}}\times\mathbb{N}\to\mathbb{N}$ w prostokąt poni	,NIE". zadaną wzore żej wpisz słow	m F(f, n) =

Numer indeksu:

Grupa¹:

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 4 (2 punkty). Mówimy, że formuła φ logiki I rzędu jest w preneksowej postacinormalnej, jeśli jest postaci $Q_1x_1\dots Q_nx_n\psi$, gdzie x_i są zmiennymi, Q_i są kwantyfikatorami (czyli $Q_i \in \{\forall, \exists\}$ dla $i=1,\ldots,n$), a formuła ψ nie zawiera kwantyfikatorów. Przykładowo, formuła $\forall x>0. \exists y. x=y$ nie jest w preneksowej postaci normalnej ze względu na podformułę x>0 występującą przed kwantyfikatorem $\exists y.$ Jeśli istnieje formuła w preneksowej postaci normalnej równoważna formule

$\forall o \in O. \exists b. Bywa($	[o, b]	$) \land \forall s. Podają($	[b, s]	$) \Rightarrow Lubi($	(o,s)).

$\forall o \in O. \exists b. Bywa(o, b) \land \forall s. Podajq(b, s) \Rightarrow Lubi(o, s),$
to w prostokąt poniżej wpisz dowolną taką formułę. W przeciwnym przypadku wpisz słowo "NIE".
Zadanie 5 (2 punkty). Jeśli istnieje relacja niezwrotna, nieantyzwrotna, słabo antysymetryczna i przechodnia, to w prostokąt poniżej wpisz dowolny przykład takiej relacji. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taka relacja nie istnieje. Dla przypomnienia: relacja $R \subseteq A \times A$ jest antyzwrotna jeśli dla wszystkich $a \in A$ zachodzi $\langle a,a \rangle \notin R$.

Numer in	ndeksu:	Grupa ¹ :		
		8–10 s.104	8-10 s. 105	8–10 s.139
Wersja: A			10–12 s. 5	10–12 s.104
		10–12 s.105	10–12 s.140	10–12 s.141

Zadanie 6 (5 punktów). Czy dla dowolnych zbiorów A i B zachodzi implikacja jeśli $A \setminus B = B \setminus A$ to A = B? Uzasadnij odpowiedź.

Zadanie 7 (5 punktów). Mówimy, że relacja $R \subseteq A \times B$ jest funkcją częściową jeśli dla wszystkich $a \in A$ oraz wszystkich $b_1, b_2 \in B$ zachodzi implikacja $\langle a, b_1 \rangle \in R \wedge \langle a, b_2 \rangle \in R \Rightarrow b_1 = b_2$.

Udowodnij, że $R \subseteq A \times B$ jest funkcją częściową wtedy i tylko wtedy gdy R^{-1} ; $R \subseteq I_B$. Tutaj $I_B = \{\langle b, b \rangle \mid b \in B\}$ jest relacją identycznościową na zbiorze B.

Zadanie 8 (5 punktów). Dla relacji binarnej $S \subseteq A \times A$ definiujemy $S^1 = S$ oraz $S^{n+1} = S$; S^n dla wszystkich $n \ge 1$. Niech $R = \{\langle m+3, m \rangle \mid m \in \mathbb{N}\}$. Udowodnij, że dla wszystkich liczb naturalnych $n \ge 1$ relacja R^n jest zawarta w relacji $\{\langle i, j \rangle \in \mathbb{N} \times \mathbb{N} \mid \exists k \in \mathbb{N}. i - j = 3k\}$.

 $^{^1\}mathrm{Prosz}$ ę zakreślić właściwą grupę ćwiczeniową.

Numer indeks	u:	Grupa ¹ :				
		8–10 s.104	8-10 s. 105	8–10 s.139		
Wersja: $ \mathbf{D} $			10–12 s. 5	10–12 s.104		
		10-12 s. 105	10–12 s.140	10–12 s.141		
I	ogika dla inform	atyków				
Spra	wdzian nr 2, 9 gr	udnia 2016				
_	zas pisania: 30+60					
	•					
rażenia W' jeśli oba wyrażenia ozn symbole \cup, \cap, \setminus i nawiasy, oraz W z	Zadanie 1 (2 punkty). Mówimy, że w algebrze zbiorów wyrażenie W jest uproszczeniem wyrażenia W' jeśli oba wyrażenia oznaczają ten sam zbiór, oba zawierają tylko zmienne, binarne symbole \cup, \cap, \setminus i nawiasy, oraz W zawiera mniej symboli niż W' . Np. $A \setminus B$ jest uproszczeniem $(A \cup B) \setminus B$. Jeśli istnieje uproszczenie wyrażenia $(A \setminus B) \cup (A \cap B \cap C)$ to w prostokąt poniżej					
Zadanie 2 (2 punkty). Mówimy, że formuła φ logiki I rzędu jest w preneksowej postaci normalnej, jeśli jest postaci $Q_1x_1\ldots Q_nx_n\psi$, gdzie x_i są zmiennymi, Q_i są kwantyfikatorami (czyli $Q_i \in \{\forall, \exists\}$ dla $i=1,\ldots,n$), a formuła ψ nie zawiera kwantyfikatorów. Przykładowo, formuła $\forall x>0$. $\exists y.\ x=y$ nie jest w preneksowej postaci normalnej ze względu na podformułę $x>0$ występującą przed kwantyfikatorem $\exists y$. Jeśli istnieje formuła w preneksowej postaci normalnej równoważna formule						
$\forall \epsilon > 0. \; \exists \delta > 0.$	$\forall x. \ \Big((x - x_0 < \delta) \Big)$	$\Rightarrow f(x) - g <$	$<\epsilon$),			
to w prostokąt poniżej wpisz dow "NIE".	olną taką formulę	. W przeciwny	m przypadku	wpisz słowo		

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 3 (2 punkty). Jeśli dla dowolnego zbioru indeksów I oraz dowolnej indeksowanej odziny zbiorów $\{X_{i,j} \mid \langle i,j \rangle \in I \times I\}$ zachodzi równość
$\bigcap_{i,j\in I} X_{i,j} = \bigcap_{i\in I} X_{i,i}$

$i,j \in I$ $i \in I$
o w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrazykład.
Zadanie 4 (2 punkty). Jeśli istnieje relacja niezwrotna, nieantyzwrotna, symetryczna i prze chodnia, to w prostokąt poniżej wpisz dowolny przykład takiej relacji. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taka relacja nie istnieje. Dla przypomnienia: relacja $R \subseteq A \times A$ est antyzwrotna jeśli dla wszystkich $a \in A$ zachodzi $\langle a, a \rangle \notin R$.
Zadanie 5 (2 punkty). Rozważmy funkcję $F:\mathcal{P}(\mathbb{N})\times\mathbb{N}\to\mathbb{N}$ zadaną wzorem
$F(X,n) = \begin{cases} n, & \text{gdy } n \in X, \\ 0, & \text{wpp.} \end{cases}$
Jeśli funkcja F jest różnowartościowa to w prostokąt poniżej wpisz słowo "RÓŻNOWARTOŚCIOWA". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

		Numer indeksu:	Grupa ¹ :		
			8–10 s.104	8-10 s. 105	8-10 s. 139
Wersja:	$ \mathbf{D} $			10–12 s. 5	10–12 s.104
			10-12 s. 105	10-12 s. 140	10–12 s.141

Zadanie 6 (5 punktów). Mówimy, że relacja $R \subseteq A \times B$ jest lewostronnie całkowita jeśli dla wszystkich $a \in A$ istnieje takie $b \in B$, że $\langle a, b \rangle \in R$.

Udowodnij, że $R \subseteq A \times B$ jest lewostronnie całkowita wtedy i tylko wtedy gdy $I_A \subseteq R$; R^{-1} . Tutaj $I_A = \{\langle a, a \rangle \mid a \in A\}$ jest relacją identycznościową na zbiorze A.

Zadanie 7 (5 punktów). Czy dla dowolnych zbiorów A, B i C zachodzi implikacja $jeśli \ A \cap B = A \cap C$ oraz $A \cup B = A \cup C$ to B = C? Uzasadnij odpowiedź.

Zadanie 8 (5 punktów). Dla relacji binarnej $S \subseteq A \times A$ definiujemy $S^1 = S$ oraz $S^{n+1} = S$; S^n dla wszystkich $n \geq 1$. Niech $R = \{\langle m, 2m \rangle \mid m \in \mathbb{N}\}$. Udowodnij, że dla wszystkich liczb naturalnych $n \geq 1$ relacja R^n jest zawarta w relacji $\{\langle i, j \rangle \in \mathbb{N} \times \mathbb{N} \mid \exists k \in \mathbb{N}. \ j = i2^k\}$.

¹Proszę zakreślić właściwą grupę ćwiczeniową.