

实验报告

开课学期:	2023 年春季		
课程名称:	计算机网络		
实验名称:	VLAN 与接口模式配置		
实验性质:	课内实验		
实验时间:	3月29日 地点: T2507		
学生专业:	一一一 计算机科学与技术		
学生学号:	200110513		
学生姓名:	 宗晴		
评阅教师:			
报告成绩:			
· , , , , , - , - , · .			

实验与创新实践教育中心印制 2023年3月

实验一 VLAN 与接口模式配置

1. 给出你自己的实验组网图(把你在 Cisco Packet Tracer 上的拓扑图截图即可)。

2. 在 VLAN 实验中,实验中的计算机能否通讯,请将结果填入下表:

		所用命令	能否 ping 通
同一 VLAN 中	PCO ping PC2	ping 192.168.2.13	能
	PC1 ping PC3	ping 192.168.3.14	能
不同 VLAN 中	PC0 ping PC1	ping 192.168.3.12	不能
	PC2 ping PC3	ping 192.168.3.14	不能

3. 如何将交换机接口 Fa0/5 划分到 VLAN 2?

假设交换机名称为 Switch0

Switch0>enable Switch0#configure terminal

// 若 vlan 2 已创建,则下述三行可省略

Switch0(config)#vlan 2 //创建 vlan 2 Switch0(config-vlan)#exit Switch0(config)#

Switch0(config)#interface f0/5
Switch0(config-if)#switchport access vlan 2 //将 f0/5 端口划分给 vlan 2
Switch0(config-if)#exit
Switch0(config)#exit
Switch0#

4. 在本实验中,交换机在没有配置 VLAN 时,广播域各有哪些端口?配置了 VLAN 以后呢? 在本实验中,涉及到的端口有 Fa0/11, Fa0/12, Fa0/13, Fa0/14

交换机在没有配置 VLAN 时,交换机的所有端口都默认在 VLAN1,因此 VLAN1 的广播域有端口: Fa0/11, Fa0/12, Fa0/13, Fa0/14

在配置了 VLAN 以后,同一个 VLAN 中的端口属于同一个广播域,如 VLAN2 的端口 Fa0/11,Fa0/13 在同一广播域广播域; VLAN3 的端口 Fa0/12,Fa0/14 在同一广播域。

5. 下图中 Switch0 的 Fa0/1 和 Fa0/4 属于同一个 VLAN 2, Switch1 的 Fa0/1 和 Fa0/4 属于同一个 VLAN 3, 这四个端口都是 access 口, 试验结果 PC0 和 PC1 能互通, 请问属于不同 VLAN 中的 PC0 和 PC1 为什么也能通, 当把 Switch0 的 Fa0/4 和 Switch1 的 Fa0/4 改成 trunk 模式 (其 pvid=1, 默认值)反而不通?请分析其原因,并写入实验报告中。

当四个端口都是 access 端口时: 首先,PC0 发送出报文。Switch0 的 Fa0/1 接收到的报文不含有 VLAN 标签,因此打上该 Fa0/1 端口的 PVID (默认为 VLAN ID 即 VLAN 2)并进行交换转发,

然后 Switch0 的 Fa0/4 收到该报文,由于 Switch0 的 Fa0/1 和 Fa0/4 在同一 VLAN 中,所以该端口接收到的报文的 tag 中的 VID 与 PVID 相同,因此可<u>将报文的 VLAN 信息剥离然后发送出去</u>。然后,Switch1 的 Fa0/4 接收到的报文同样不含有 VLAN 标签,因此打上该 Fa0/4 端口的 PVID (默认为 VLAN ID 即 VLAN 3)并进行交换转发,然后 Switch1 的 Fa0/1 收到该报文,由于 Switch1 的 Fa0/1 和 Fa0/4 在同一 VLAN 中,所以该端口接收到的报文的 tag 中的 VLAN ID 与 PVID 相同,因此可将报文的 VLAN 信息剥离,直接发送出去。最终 PC1 收到报文,因此 PC0 和 PC1 能互通。

当把 Switch0 的 Fa0/4 和 Switch1 的 Fa0/4 改成 trunk 模式时: 首先,PC0 发送出报文。Switch0 的 Fa0/1 接收到的报文不含有 VLAN 标签,因此打上该 Fa0/1 端口的 PVID (默认为 VLAN ID 即 VLAN 2) 并进行交换转发。然后 Switch0 的 Fa0/4 收到该报文, 由于 Switch0 的 Fa0/4 被改成了 trunk 模式,而报文中又含有 tag,但 tag 中的 VLAN ID 为 2,而该端口的 PVID 为默认值 1,因此 VLAN ID 但并不等于 PVID,所以并不会剥离报文的 VLAN 信息,而是将报文直接转发。然后,Switch1 的 Fa0/4 接收到了含有 tag 的报文,该端口也被改成了 trunk 模式,PVID 为默认值 1,由于接收到的报文的 tag 中的 VLAN ID 即 VLAN 2 并不在允许列表中,所以丢弃。因此PC0 和 PC1 不能互通。