STA623 - Bayesian Data Analysis - Practical 5

Marc Henrion

2024-11-01

Practical 5

Notation

- X, Y, Z random variables
- x, y, z measured / observed values
- \bar{x} , \bar{y} , \bar{z} sample mean estimates of X, Y, Z
- \hat{T} , \hat{t} given a statistic T, estimator and estimate of T
- P(A) probability of an event A occurring
- $f_X(.), f_Y(.), f_Z(.)$ probability mass / density functions of X, Y, Z; sometimes $p_X(.)$ etc. rather than $f_X(.)$
- p(.) used as a shorthand notation for pmfs / pdfs if the use of this is unambiguous (i.e. it is clear which is the random variable)
- $X \sim F$ X distributed according to distribution function F
- E[X], E[Y], E[Z], E[T] the expectation of X, Y, Z, T respectively

Exercise 1

Fit the model from Practical 3, Exercise 3 using JAGS and the rjags package. Use this as the data from the sampling model:

$$y = (1, 3, 2, 3, 0, 2, 6, 4, 4, 1, 1, 3, 2, 3, 1, 1, 3, 0)$$

Inspect the trace plot and plot the posterior distribution.

Compute the posterior mean and the quantile-based 95% Bayesian confidence interval.

Exercise 2

Generate the following data

```
N<-100
x<-rnorm(N)
z<-2-4*x
p<-1/(1+exp(-z))
y<-rbinom(n=N,size=1,prob=p)
dat<-list(N=N,x=x,y=y)</pre>
```

Use R and JAGS to fit a Bayesian logistic regression model to these data:

$$g(E[Y|X]) = \beta_0 + \beta_1 X$$

```
where g(\pi) = \log(\pi/(1-\pi)).
```

Compute the Gelman-Rubin convergence statistic and inspect trace plots and autocorrelations for the samples from the posterior distributions.

Compute the posterior mean, median, a 95% quantile-based confidence interval and a 95% highest posterior density confidence interval.

Compute the effective sample sizes for β_0, β_1 .

[end of STA623 BDA Practical 5]