Feuille TD 1 - L'anneau $\mathbb{Z}/n\mathbb{Z}$ et le groupe \mathbb{Z}_n^{\star}

Exercice 1. Calcul modulaire et Théorème chinois des restes.

- 1. Résoudre l'équation 17x = 10[50]; et 35y = 10[50].
- 2. Trouver tous les x entiers tels que $x \equiv 4 \pmod{5}$ et $x \equiv 5 \pmod{11}$. En déduire l'inverse de 49 modulo 55.
 - Correction: $x = 4.11.11^{-1[5]} + 5.5.5^{-1[11]}[55] = 44 25.2[55] = -6[55] = 49[55].$ $Donc \ y = 49^{-1}[55] \ a \ pour \ modulo \ 4^{-1}[5] = 4[5] \ et \ 5^{-1}[11] = 9[11]. \ D'où \ y = 4.11.11^{-1[5]} + 9.5.5^{-1[11]}[55] = 44 - 45.2[55] = 46[55] = 9[55].$
- 3. Trouver tous les x entiers dont les restes par 2, 3, 4, 5, et 6 sont respectivement 1, 2, 3, 4, 5.
 - **Correction:** On ne considère dans un premier temps que le système RNS (3,4,5); on a alors $x = -1 \mod 3$, 4 et 5. Donc x = -1[60]. On a donc x = 60.k 1. On vérifie alors les 2 autres contraintes modulo 2 et 6; on a $(60k 1) \mod 2 = -1 \mod 2 = 1$ et $(60k 1) \mod 6 = -1 \mod 6 = 5$. Toutes les contraintes sont vérifiées donc x = 60k 1.
- 4. Pour le système de résidus [5,7,8,9] expliciter l'isomorphisme du théorème chinois des restes $\Phi: \mathbb{Z}/2520\mathbb{Z} \longrightarrow \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/9\mathbb{Z}$ et son inverse Φ^{-1} . Calculer de tête avec ce système $x = (67 \times 28 + (17 \times 121)^{-1}))$ mod 2520.
 - Correction: $\Phi(n) = [n \mod 5, n \mod 7, n \mod 8, n \mod 9] \text{ et } \Phi^{-1}([n_5, n_7, n_8, n_9]) = (n_5.504.(504^{-1}[5]) + n_7.360.(360^{-1}[7]) + n_8.315.(315^{-1}[8]) + n_9.280.(280^{-1}[9])) \mod 2520 = -504.n_5 + 1800.n_7 + 945.n_8 + 280.n_9[2520].$
- **Exercice 2. Fonction** ϕ **d'Euler.** On étudie ici la fonction $\varphi(n)$, introduite par Euler, d'une importance fondamentale en arithmétique. On pose $\varphi(1) = 1$ et pour n > 1, $\varphi(n)$ est le nombre d'entiers $m \in \{1, \ldots, n-1\}$ premiers avec n (i.e. $\gcd(m, n) = 1$).
 - 1 Pour $n = p^k$ où p est premier et $k \in \mathbb{N}^*$, calculer $\varphi(n)$.
 - **Correction:** Seuls les multiples de p inférieurs à p_k sont non premiers avec p_k : il y en a k-1. Donc $\varphi(p^k) = p^k k + 1$.
 - 2 Montrer que si n_1 et n_2 sont premiers entre eux : $\varphi(n_1n_2) = \varphi(n_1)\varphi(n_2)$. Indication : utiliser l'isomorphisme entre les anneaux $(\mathbb{Z}/n_1\mathbb{Z}) \times (\mathbb{Z}/n_2\mathbb{Z})$ et $(\mathbb{Z}/n_1n_2\mathbb{Z})$.
 - **Correction:** En utilisant le TCR, pour tout $m < n_1 n_2$, il existe un unique couple (a,b) tel que $m=a \mod n_1$ et $m=b \mod n_2$, et inversement (l'association est bijective). Or m premier avec $n_1 n_2 \iff m \pmod n$ premier avec n_1) et $m \pmod b$ premier avec n_2 . D'où $\varphi(n_1 n_2) = \varphi(n_1)\varphi(n_2)$.
 - 3 Dans $\mathbb{Z}/n\mathbb{Z}$, quel est le cardinal du groupe des éléments inversibles?

4 En déduire un algorithme de calcul de l'inverse dans $\mathbb{Z}/n\mathbb{Z}$. Application : calculer (le plus vite possible) 22^{-1} mod 63 et 5^{2001} mod 24.

Correction: Soit $n = \prod_{i=1}^k p_i^{\delta_i}$ la factorisation de n en facteurs premiers. D'après 2 et 1, on $a:\phi(n)=\prod_{i=1}^k \phi(p_i^{\delta_i}=\prod_{i=1}^k (p_i^{\delta_i}-\delta_i+1).$ Algorithme: On fait le TCR sur les entiers: avec $n=n_1n_2$. Soit $m_1=m[n_1]$ et $m_2=m[n_2]$.

On a $m=m_2n_1^{-1[n_2]}n_1+m_1n_2^{-1[n_1]}n_2[n_1.n_2].$ D'où: $m^{-1[n]}=m_2^{-1[n_2]}n_1^{-1[n_2]}n_1+m_1^{-1[n_1]}n_2^{-1[n_1]}n_2[n_1.n_2].$ Application: $63=9.7 \text{ et } 9^{-1/7}.9=4.9=36 \text{ et } 7^{-1/9}.7=4.7=28. \quad D$ 'où: $22=1.36+4.28[63] \Longrightarrow 22^{-1[63]}=1.36+4^{-1[9]}28[63]=36+7.28[63]=43[63].$ ou astuce: 22=21+1 et (21+1)(21-1)=-1[63] d'où $22^{-1[63]}=-20=43[63].$ $5^2=1[24]$ Donc $5^{2001}=5[24]$ et $5^{-1[24]}=5.$ D'où $5^{-2001}=5[24].$

Exercice 3.

1. Soit $N = n_1.n_2...n_k$ avec $n_1, ... n_k$ premiers 2 à 2 et f un polynôme. Montrer que le nombre de solutions de l'équation $f(x) \equiv 0[N]$ est le produit du nombre de racines des équations $f(x) \equiv 0[n_i]$.

Correction:

2. Montrer que n_1, n_2, n_3, n_4 sont premiers 2 à 2 ssi $\gcd(n_1.n_2, n_3.n_4) = \gcd(n_1.n_3, n_2.n_4) = 1$. Généraliser en montrant que n_1, \ldots, n_k sont premiers 2 à 2 ssi $\lceil \log_2 k \rceil$ nombres que l'on explicitera sont premiers 2 à 2.

Exercice 4. Le groupe \mathbb{Z}_{10}^{\star} .

1. Que vaut $\Phi(10)$? Expliciter \mathbb{Z}_{10}^{\star} et calculer l'ordre de chaque élément.

Correction: $\mathbb{Z}_{10}^{\star} = \{1, 3, 7, 9\}$. Ordres respectifs: 1:1; 3:4; 7:4; 9:2.

2. Soit g la plus petite racine primitive de \mathbb{Z}_{10}^{\star} ; calculer la table des indices par rapport à g des éléments de \mathbb{Z}_{10}^{\star} . A quel groupe additif \mathbb{Z}_{10}^{\star} est-il isomorphe ?

Correction: g = 3. Ind(1)=0; Ind(3)=1; Ind(7)=3; Ind(9)=2. \mathbb{Z}_{10}^{\star} est isomorphe au groupe $(\mathbb{Z}/4\mathbb{Z}, +0)$

3. En utilisant l'élévatuion à la puissance modulo n, donner un algorithme pour calculer x^{-1} dans \mathbb{Z}_n^{\star} connaissant $\Phi(n)$. Préciser le coût.

Correction: