Perception and evaluation of sound fields

Hagen Wierstorf¹, Sascha Spors², Alexander Raake¹

¹Assessment of IP-based Applications, Technische Universität Berlin ² Institute of Communications Engineering, Universität Rostock

12. September 2012

Introduction

How to assess and model the perception of a sound field?

Why to assess and model the perception of a sound field?

This will be discussed with the example of localization

Sound Field Synthesis

physically motivated synthesis

Sound Field Synthesis

psychoacoustically motivated synthesis

Wierstorf, Spors, Raake Perception of sound fields

Localization within a sound field

listener experiments

Localization within a sound field definition

localization error := deviation of the direction of the auditory event from the direction of the sound event

Localization within a sound field

binaural modelling

Wierstorf, Spors, Raake Perception of sound fields

virtual sources

- connection between sound field synthesis and psychoacoustics (Völk, 2008)
- dynamic binaural synthesis via head tracker
- transparent with individual HRTFs (Langendijk, 2000)

virtual sources

- connection between sound field synthesis and psychoacoustics (Völk, 2008)
- dynamic binaural synthesis via head tracker
- transparent with individual HRTFs (Langendijk, 2000)

virtual sources

- connection between sound field synthesis and psychoacoustics (Völk, 2008)
- dynamic binaural synthesis via head tracker
- transparent with individual HRTFs (Langendijk, 2000)

virtual sources

- connection between sound field synthesis and psychoacoustics (Völk, 2008)
- dynamic binaural synthesis via head tracker
- transparent with individual HRTFs (Langendijk, 2000)

Binaural synthesis and localization

real vs. virtual sources

- localization error is between 1°-5° for the horizontal plane for real and virtual sources (Makous 1990, Hess 2004, Bronkhorst 1995, ...)
- it varies with different experimental methods (Majdak 2008)
- it is the same with individual HRTFs as for real sources, but slightly larger for non-individual HRTFs (Seeber 2003)

Makous and Middlebrooks (1990), Two-dimensional sound localization by human listeners, JASA

Hess (2004), Influence of head-tracking on spatial perception, 117th AES

Bronkhorst (1995), Localization of real and virtual sound sources, JASA

Majdak et al. (2008), The Accuracy of Localizing Virtual Sound Sources: Effects of Pointing Method and Visual Environment, 124th AES

Seeber (2004), Untersuchung der auditiven Lokalisation mit einer Lichtzeigermethode, Technische Universität München

apparatus

apparatus

method

- head-pointing method with laser pointer mounted on the head (Makous 1990)
 - ⇒ listener has to face the source, smallest human lateralisation error (Mills 1958)
 - ⇒ laser pointer gives visual feedback and enhances the cooperation with the motor system (Lewald 2000)
- white noise pulses 700 ms long, 300 ms pause
- 11 subjects, 11 loudspeakers
- 5 repetitons for each condition and loudspeaker position
- 3 conditions: real loudspeaker, anechoic HRTF, room HRTF

Makous and Middlebrooks (1990), Two-dimensional sound localization by human listeners, JASA Mills (1958), On the minimum audible angle, JASA Lewald et al. (2000), Sound localization with eccentric head position, Behav Brain Res

room HRTFs

Results

mean signed error +95% confidence interval

Results

summary

	Loudspeaker	room HRTF	anechoic HRTF
unsigned error /° standard deviation /° time / s	2.4 ± 0.59	1.5 ±0.26	2.0 ± 0.56
	2.2 ± 0.15	2.4 ±0.28	3.8 ± 0.30
	3.5 ± 0.65	3.7 ±0.55	5.5 ± 1.72

Results

summary

	Loudspeaker	room HRTF	anechoic HRTF
unsigned error /° standard deviation /° time / s	2.4 ± 0.59	1.5 ± 0.26	2.0 ± 0.56
	2.2 ± 0.15	2.4 ± 0.28	3.8 ± 0.30
	3.5 ± 0.65	3.7 ± 0.55	5.5 ± 1.72

Conclusion

Why to assess and model the perception of a sound field?

Sound field synthesis methods are more psychoacoustically motivated than considered. Localization and coloration still not fully understand.

How to assess and model the perception of a sound field?

With binaural synthesis.

- full control of stimuli reaching the listener or a auditory model
- every position and loudspeaker array possible
- not fully transparent, but localization with anechoic HRTFs feasible

