Independent of Tail Sigma Algebra

于峥 518030910437

June 2, 2020

Problem 1 (Exercise 4.9 of *Chapter E*)

Let $Y_0, Y_1, Y_2, ...$ be independent random variables with

$$P(Y_n = +1) = P(Y_n = -1) = \frac{1}{2}, \forall n$$

For $n \in \mathbb{N}$, define

$$X_n := Y_0 Y_1 \dots Y_n$$

Prove that the variables $X_1, X_2, ...$ are independent. define

$$\mathcal{Y} := \sigma(Y_1, Y_2, \dots), \quad \mathcal{T}_n := \sigma(X_r : r > n)$$

Prove that

$$\mathcal{L} := \bigcup_{n} \sigma(\mathcal{Y}, \mathcal{T}_{n}) \neq \sigma\left(\mathcal{Y}, \bigcup_{n} \mathcal{T}_{n}\right) =: \mathcal{R}$$

Proof: (a)

For i < j, let $Y_{ij} = Y_{i+1}Y_{i+2}...Y_j$, then we can know $P(Y_{ij} = +1) = P(Y_{ij} = -1) = \frac{1}{2}$ by symmetry.

And we can easily get for j > i, X_i , Y_{ij} be independent variable. Hence

$$\begin{split} P(X_i = 1, X_j = 1) &= P(X_i = 1, Y_{in} = 1) = P(X_i = 1) P(Y_{in} = 1) = \frac{1}{4} \\ P(X_i = 1, X_j = -1) &= P(X_i = 1, Y_{in} = -1) = P(X_i = 1) P(Y_{in} = -1) = \frac{1}{4} \\ P(X_i = -1, X_j = 1) &= P(X_i = -1, Y_{in} = -1) = P(X_i = -1) P(Y_{in} = -1) = \frac{1}{4} \\ P(X_i = -1, X_j = -1) &= P(X_i = -1, Y_{in} = 1) = P(X_i = -1) P(Y_{in} = 1) = \frac{1}{4} \end{split}$$

Therefore X_i and X_j are independent for all $i \neq j$.

(b) Obviously, Y_0 is independent of \mathcal{Y} . $X_0 = Y_0$, so Y_0 is independent of X_n for n > 0. Therefore Y_0 is independent of \mathcal{T}_n for all n. So Y_0 is independent of \mathcal{R} .

Then we can proof $Y_0 \in m\mathcal{L}$, it means Y_0 is measurable in \mathcal{L} . And we know that $Y_0 = X_{n+1}/Y_{1,n+1}$, X_{n+1} is measurable in \mathcal{T}_n , and $Y_{1,n+1}$ is measurable in \mathcal{T}_n . It means that X_{n+1} and $Y_1, Y_2, \ldots, Y_{n+1}$ enables us to solve Y_0 . Hence Y_0 ignorespaces measurable in $\sigma(\mathcal{F}, \mathcal{T}_n)$ for all n. It implies that Y_0 is measurable in \mathcal{L} .

Because Y_0 is independent of \mathcal{R} and Y_0 is measurable in \mathcal{L} , we conclude that $\mathcal{L} \neq \mathcal{R}$.