29.6

Note that

$$\alpha = \sqrt{3 - \sqrt{6}} \implies \alpha^2 - 3 = -\sqrt{6} \implies \alpha^4 - 6\alpha^2 + 3 = 0$$

meaning α is a zero of $f(x) = x^4 - 6x^2 + 3$ in $\mathbb{Q}[x]$. Since the Eisenstein criterion holds for p = 3, f(x) is irreducible. Therefore $\operatorname{irr}(\alpha, \mathbb{Q}) = f(x)$ and $\deg(\alpha, \mathbb{Q}) = 4$

29.8

Note that

$$\alpha = \sqrt{2} + i \implies \alpha^2 = 2 + 2\sqrt{2}i - 1 \implies \alpha^4 - 2\alpha^2 + 9 = 0$$

meaning α is a zero of $f(x) = x^4 - 2x^2 + 9$ in $\mathbb{Q}[x]$. If f was reducible over \mathbb{Q} , then it must have a zero in \mathbb{Z} that divides 9. Checking $\pm 1, \pm 3$ gives no such zero, hence f is irreducible. Therefore $\operatorname{irr}(\alpha, \mathbb{Q}) = f(x)$ and $\operatorname{deg}(\alpha, \mathbb{Q}) = 4$.

29.12

Since $\pi \in \mathbb{R}$ then $\sqrt{\pi} \in \mathbb{R}$. Therefore it is algebraic in \mathbb{R} with $\deg(\sqrt{\pi}, \mathbb{R}) = 1$ since it is a zero of the linear polynomial $f(x) = x - \sqrt{\pi}$.

29.16

Since $(\pi^2)^3 - (\pi^3)^2 = 0$, then π^2 is a zero of the polynomial $f(x) = x^3 - \pi^6 \in \mathbb{Q}(\pi^3)$. This polynomial is irreducible hence π^2 is algebraic in $\mathbb{Q}(\pi^3)$ with $\deg(\pi^2, \mathbb{Q}(\pi^3)) = 3$.

29.18

Part A

Proof. Note that

$$x = 0 \implies 0^2 + 1 = 1 \neq 0$$

 $x = 1 \implies 1^2 + 1 = 2 \neq 0$
 $x = 2 \implies 2^2 + 1 = 2 \neq 0$

Therefore f(x) has no zero in \mathbb{Z}_3 and hence is irreducible.

Part B

+	0	1	2	α	2α	$1 + \alpha$	$1+2\alpha$	$2 + \alpha$	$2+2\alpha$
0	0	1	2	α	2α	$1 + \alpha$	$1+2\alpha$	$2 + \alpha$	$2+2\alpha$
1	1	2	0	$1 + \alpha$	$1+2\alpha$	$2 + \alpha$	$2 + 2\alpha$	α	2α
2	2	0	1	$2 + \alpha$	$2+2\alpha$		2α	$1 + \alpha$	$1+2\alpha$
α	α	$1 + \alpha$	$2 + \alpha$	2α	0	$1+2\alpha$	1	$2+2\alpha$	2
2α	2α	$1+2\alpha$	$2+2\alpha$	0	α	1	$1 + \alpha$	2	$2+\alpha$
$1 + \alpha$	$1 + \alpha$	$2 + \alpha$	α	$1+2\alpha$	1	$2+2\alpha$	2	2α	0
$1+2\alpha$	$1+2\alpha$	$2+2\alpha$	2α	1	$1 + \alpha$	2	$2 + \alpha$	0	α
$2 + \alpha$	$2 + \alpha$	α	$1 + \alpha$	$2+2\alpha$	2	2α	0	$1+2\alpha$	1
$2 + 2\alpha$	$2 + 2\alpha$	2α	$1+2\alpha$	2	$2 + \alpha$	0	α	1	$1 + \alpha$

•	0	1	2	α	2α	$1 + \alpha$	$1+2\alpha$	$2 + \alpha$	$2+2\alpha$
0	0	0	0	0	0	0	0	0	0
1	0	1	2	α	2α	$1 + \alpha$	$1+2\alpha$	$2 + \alpha$	$2+2\alpha$
2	0	2	1	2α	α	$2 + 2\alpha$	$2 + \alpha$	$1+2\alpha$	$1 + \alpha$
α	0	α	2α	2	1	$2 + \alpha$	$1 + \alpha$	$2+2\alpha$	$1+2\alpha$
2α	0	2α	α	1	2	$1 + 2\alpha$	$2+2\alpha$	$1 + \alpha$	$2+\alpha$
$1 + \alpha$	0	$1 + \alpha$	$2+2\alpha$	$2 + \alpha$	$1+2\alpha$	2α	2	1	α
$1+2\alpha$	0	$1 + 2\alpha$	$2 + \alpha$	$1 + \alpha$	$2+2\alpha$	2	α	2α	1
$2 + \alpha$	0	$2 + \alpha$	$1+2\alpha$	$2 + 2\alpha$	$1 + \alpha$	1	2α	α	2
$2+2\alpha$	0	$2+2\alpha$	$1 + \alpha$	$1 + 2\alpha$	$2 + \alpha$	α	1	2	2α

29.25

Part A

Proof. Let $f(x) = x^3 + x^2 + 1$. Since f(0) = 1 and f(-1) = 1, f has no zeroes in \mathbb{Z}_2 and is hence irreducible.

Part B

(1)
$$x^{2} + (1+d)x + (d^{2}+d)$$

 $x-d | x^{3} + x^{2} + 1$

$$\frac{-(x^{3} - dx^{2})}{(1+d)x^{2}}$$

$$\frac{-((1+d)x^{2} - (d^{2}+d)x)}{(d^{2}+d)x + 1}$$

$$\frac{-(d^{2}+d)x - (d^{3}+d^{2})}{1 - (d^{3}+d^{2})}$$

Part (1) shows that $x - \alpha$ is a linear factor of f(x). Checking α^2 shows that is a zero of the remainder, hence doing another long division as demonstrated in (2) gives another factor of $x - \alpha^2$. Therefore

$$x^3+x^2+1=(x-\alpha)(x-\alpha^2)(x+1+\alpha+\alpha^2).$$
 in $\mathbb{Z}_2(\alpha)$.

2

$$X-d^{2} \int \frac{X + (1+d+d^{2})}{X^{2} + (1+d)X + (d^{2}+d)}$$

$$\frac{X^{2} - d^{2} \times X}{(1+d+d^{2})X}$$

$$\frac{(1+d+d^{2})X}{d^{2}+d+d^{2}+d^{3}+d^{4}} = 0$$

29.26

Since $\langle \mathbb{Z}_2(\alpha), + \rangle$ is abelian of order 8 and $\alpha + \alpha = 0$ for all α in it, it is isomorphic to just $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. Furthermore, since $\langle \mathbb{Z}_2(\alpha), \cdot \rangle$ is abelian of order 7, and 7 is prime, then it must be isomorphic to just \mathbb{Z}_7 .

29.29

Proof. Since α is algebraic in $F(\beta)$, there is a polynomial f(x) with coefficients in $F(\beta)$ such that $f(\alpha) = 0$. The coefficients of f have the form of a ration of two polynomials in F[x]. By multiplying all the denominators together, a polynomial is achieved such that when multiplied with f, f still remains 0 but with coefficients in β . Since indeterminates are order-free, it follows β is algebraic in $F(\beta)$

29.30

Proof. Note that every element of $F(\alpha)$ can be expressed as

$$b_0 + b_1 \alpha + \ldots + b_{n-1} \alpha^{n-1}.$$

for $b_i \in F$. Since F contains q elements, there are q choices for each coefficient that give each a unique element in $F(\alpha)$. Since there are n coefficients, there are then n choices meaning q^n elements in $F(\alpha)$.