## Chap 1 : Corps pur et mélange

## I. <u>Définitions</u>

Voir TP1

## I. <u>Identification d'espèces chimiques</u>

## 1. Propriétés physiques des espèces chimiques

Les caractéristique physiques d'une espèce chimique constituent sa carte d'identité et permettent de l'identifier.

# a) températures de changement d'état



# b) la masse volumique

$$\rho \text{ espèce} = \frac{m \, \acute{e} chantillon \, de \, l \, 'espèce}{V \, \acute{e} chantillon \, de \, l \, 'espèce}$$

$$\rho$$
 eau = 1,0 g.mL<sup>-1</sup>  
 $\rho$  eau = 1,0 kg.L<sup>-1</sup>

c) densité
$$\rho \text{ espèce} = \frac{\rho \operatorname{espèce}}{\rho \operatorname{eau}} g.mL^{-1}$$
sans unité

$$\rho eau = \frac{\rho eau}{\rho eau} = 1$$

- si d espèce > d eau c-à-d si d espèce > 1, alors l'espèce coule
  si d espèce < d eau c-à-d si d espèce < 1, alors l'espèce flotte</li>
  - c) solubilité

C'est la masse maximale d'un soluté que l'on peut dissoudre dans 1L d'eau.

$$s = \frac{masse max du soluté}{volume du solvant}$$

$$g.L^{-1}$$

### 2. <u>Les tests chimiques</u>

Certaines espèces chimiques peuvent être identifiées à l'aide de tests chimiques simples. (voir feuille)

#### 3. Chromatographie sur couche mince

### III. La composition d'un mélange

#### 1. Le cas de l'air

L'air non polluée est un mélange homogène composé d'environ 78 % de diazote  $(N_2)$ , 21 % de dioxygène  $(0_2)$  et 1 % d'autres gaz.

La masse volumique de l'eau dépend de la température et de la pression.

A la pression P = 1013 hPa (1 bar) et la température  $\theta = 20^{\circ}$ C, la masse volumique de l'air est de 1,20 g.L<sup>-1</sup>

## 2. <u>Cas d'un mélange solide ou liquide</u>

Pour déterminer la composition d'un mélange, on mesure sa masse volumique et on la compare aux masses volumiques des composant.

## 3. Composition massique ou volumique d'un mélange

- a) composition massique
- 1. La composition d'un mélange est donnée par une grandeure quotient. La fraction massique notée ou le pourcentage massique noté m %.

$$f = \frac{m \, esp\`{e}ce}{m \, m\'{e}lange}$$
,  $m = f \cdot 100$ 

f est sans unité et 0 < f < 1, 0 < m% < 100