2012-2013 学年第二学期 A 卷

在你	专业_	学是			姓名		任课教师		
题号		Ξ	三	四四	五.	六	七	八	总分
得分									<u> </u>

(注意:本试卷共八大题,三大张,满分100分.考试时间为120分钟.解答题要求写出解题过程,否则不予 计分)

- 一、(24分)填空与单选题.
- 1、设A和B都是n阶方阵,A*是A的伴随矩阵,如果|A|=2,|B|=-3,则行列式 $|2A^*B^{-1}| =$ ______
- 2、设3阶方阵A与B相似,其中 $B=\begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$,则 $A^8-6400E=__$. 3、设三元非齐次线性方程组的系数矩阵的秩为2、 η_1,η_2,η_3 是它的三个解向量,其中 $\eta_1=\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$,

$$\eta_2 + \eta_3 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
,则该方程组的通解是 $x =$ _______.

4、设
$$a$$
是实数,如果集合 $V = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \middle| x_1, x_2, x_3, x_4 \in \square, x_1 + 2x_2 + 3x_3 + 4x_4 = a \right\}$ 关于向量的线

性运算成为线性空间,其中口是实数集,则 a = ____

5、设3阶方阵
$$A = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 1 & x-2 \\ 4 & 0 & 5 \end{pmatrix}$$
 可相似对角化,则 $x =$ ______.

- (A) $(2A)^{-1} = 2A^{-1}$

(B) $(2A)^* = 2A^*$

(C)
$$(2A^{-1})^T = (2A^T)^{-1}$$

(D)
$$\left[(A^{-1})^{-1} \right]^T = \left[(A^T)^{-1} \right]^{-1}$$

7、设A为n阶方阵,其中n≥2,如果存在n维非零列向量 α 和 β ,使得A的伴随矩阵

 $A^* = \alpha \beta^T$,则齐次线性方程组 Ax = 0 的解空间维数为 _____

- (A) n-1
- (B) 1
- (C) n
- (D) O

8、设 $A = (a_{ij})_{n \times n}$ 是n 阶实对称正定矩阵,则下面说法错误的是_____

(A) A的各阶子式都是恒正的

- (B) A的正惯性指数为n
- (C) 对于 $i=1,2,\dots,n$, 恒有 $a_{ii}>0$
- (D) 行列式 | A+E|>1

二、(10 分)设4阶行列式
$$D = \begin{vmatrix} 2 & 1 & -1 & 1 \\ 1 & 3 & -4 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 3 & 5 \end{vmatrix}$$
 的 (i,j) 元的代数余子式为 A_{ij} ,求

 $A_{13} + A_{23} + 4A_{33} + A_{43}$.

三、(10 分)设矩阵
$$A, B, X$$
 满足方程 $AXA + BXB = AXB + BXA + E$, 其中 $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$,

$$B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
, 求矩阵 X .

2

四、(10 分)
$$\lambda$$
取何值时,非齐次线性方程组
$$\begin{cases} (1-2\lambda)x_1+(1-\lambda)x_2+x_3=\lambda+1\\ (1-\lambda)x_1+(1-\lambda)x_2+x_3=1\\ x_1+x_2+(1-\lambda)x_3=1 \end{cases}$$

(1)有惟一解; (2)无解; (3)有无穷多个解? 在有无穷多个解时求出其通解.

五、(10 分) 已知向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 9 \\ 6 \\ -7 \end{pmatrix}$ 与向量组 $\beta_1 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$, $\beta_2 = \begin{pmatrix} a \\ 2 \\ 1 \end{pmatrix}$,

$$\beta_3 = \begin{pmatrix} b \\ 1 \\ 0 \end{pmatrix}$$
有相同的秩,且 β_3 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,求 a, b 的值.

六、(12 分) 设有二次型
$$f(x)=x^TAx$$
,其中 $x=\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}$, $A=\begin{pmatrix}1&2&-1\\-2&2&1\\1&3&2\end{pmatrix}$. 用正交变换 $x=Py$ 将该二次型化为标准形、

七、 $(12\, \mathcal{G})$ 设V是所有 2 阶实矩阵关于矩阵的线性运算构成的线性空间、取 $A=\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$,定义映射 $T:V\to V$,使得对任意的 $X\in V$,有T(X)=AX-XA.

- (1) 证明T是线性空间V中的线性变换.
- (2) 求 T 在 V 的基

$$B_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad B_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad B_4 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

下的矩阵.

八、(12分)证明题.

(1) 设方阵 A 为实斜对称矩阵,即满足 $A^T = -A$. 证明 $E - A^2$ 是正定对称矩阵.

(2) 设 α_1 , α_2 分别是矩阵A关于特征值1和2的特征向量,向量 α_3 满足 $A\alpha_3=2\alpha_1+\alpha_3$,证明向量组 α_1 , α_2 , α_3 线性无关。