

Quantum Wednesday

arXiv:2201.10672

Nate Stemen

Nov 16, 2022

Today's Paper

Efficiently improving the performance of noisy quantum computers

```
Samuele Ferracin, 1, 2, * Akel Hashim, 3, 4, * Jean-Loup Ville, 3, † Ravi Naik, 3, 4 Arnaud Carignan-Dugas, 1 Hammam Qassim, 1 Alexis Morvan, 3, 4, ‡ David I. Santiago, 3, 4 Irfan Siddiqi, 3, 4, 5 and Joel J. Wallman<sup>1, 2</sup>

1 Keysight Technologies Canada, Kanata, ON K2K 2W5, Canada

2 Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

3 Quantum Nanoelectronics Laboratory, Dept. of Physics,
University of California at Berkeley, Berkeley, CA 94720, USA
```

⁴Computational Research Division, Lawrence Berkeley National Lab, Berkeley, CA 94720
⁵Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
(Dated: July 20, 2022)

https://arxiv.org/abs/2201.10672

Main Ideas

- Noiseless Output Extrapolation (NOX)
- Pauli Error Cancellation (PEC)

Main Ideas

- Noiseless Output Extrapolation (NOX)
- Pauli Error Cancellation (PEC)

Question

How are these different from Zero-Noise Extrapolation (ZNE) and Probabilistic Error Cancellation (PEC)?

Cycles

$$C = \mathcal{E}_{m+1} \mathcal{H}_m \mathcal{E}_m \cdots \mathcal{E}_2 \mathcal{H}_1 \mathcal{E}_1 \tag{1}$$

$$=: \mathcal{E}_{m+1} \left(\bigcap_{j=1}^{m} \mathcal{H}_{j} \mathcal{E}_{j} \right) \tag{2}$$

- \mathcal{E}_i : single qubit cycles
- \mathcal{H}_i : Clifford two-qubit cycles

Cycles

$$C = \mathcal{E}_{m+1} \mathcal{H}_m \mathcal{E}_m \cdots \mathcal{E}_2 \mathcal{H}_1 \mathcal{E}_1 \tag{1}$$

$$=: \mathcal{E}_{m+1} \left(\bigcap_{j=1}^{m} \mathcal{H}_{j} \mathcal{E}_{j} \right) \tag{2}$$

- \mathcal{E}_i : single qubit cycles
- \mathcal{H}_i : Clifford two-qubit cycles

Cycle Error Reconstruction¹ (CER)

 $^{^{1}}$ Hashim et al., "Randomized Compiling for Scalable Quantum Computing on a Noisy Superconducting Quantum Processor".

- 1. Noise is Markovian and time stationary $(\mathcal{D}_{\mathcal{U}}\mathcal{U})$
- 2. $\mathcal{D}_{\mathcal{U}} = \mathcal{D}$ when \mathcal{U} consists solely of single qubit gates $(\mathcal{D}_{\mathcal{E}_i}\mathcal{E}_i = \mathcal{D}\mathcal{E}_i$ for all i).

Noise processes $\mathcal{D}_{\mathcal{U}}$ taken to be a Pauli channels by Randomized Compiling.²

$$\mathcal{D}_{\mathcal{U}}(\rho) = \sum_{k=0}^{4^{n}-1} \epsilon_{k}^{(\mathcal{U})} \mathcal{P}_{k}(\rho)$$

$$\mathcal{P}_k \in \{\mathcal{I}, \mathcal{X}, \mathcal{Y}, \mathcal{Z}\}^{\otimes n}$$

²Wallman and Emerson. "Noise tailoring for scalable quantum computation via randomized compiling"

- 1. Noise is Markovian and time stationary $(\mathcal{D}_{\mathcal{U}}\mathcal{U})$.
- 2. $\mathcal{D}_{\mathcal{U}} = \mathcal{D}$ when \mathcal{U} consists solely of single qubit gates $(\mathcal{D}_{\mathcal{E}_i}\mathcal{E}_i = \mathcal{D}\mathcal{E}_i$ for all i).

$$\mathcal{D}_{\mathcal{U}}(\rho) = \sum_{k=0}^{4^{n}-1} \epsilon_{k}^{(\mathcal{U})} \mathcal{P}_{k}(\rho)$$

$$\mathcal{P}_k \in \{\mathcal{I}, \mathcal{X}, \mathcal{Y}, \mathcal{Z}\}^{\otimes n}$$
 $\epsilon_i^{(\mathcal{U})}$: Pauli error rates

[&]quot;Wallman and Emerson, "Noise tailoring for scalable quantum computation via randomized compiling"

- 1. Noise is Markovian and time stationary $(\mathcal{D}_{\mathcal{U}}\mathcal{U})$.
- 2. $\mathcal{D}_{\mathcal{U}} = \mathcal{D}$ when \mathcal{U} consists solely of single qubit gates $(\mathcal{D}_{\mathcal{E}_i} \mathcal{E}_i = \mathcal{D} \mathcal{E}_i)$ for all i.

$$\mathcal{D}_{\mathcal{U}}(\rho) = \sum_{k=0}^{4^{n}-1} \epsilon_{k}^{(\mathcal{U})} \mathcal{P}_{k}(\rho)$$

$$\mathcal{P}_k \in \{\mathcal{I}, \mathcal{X}, \mathcal{Y}, \mathcal{Z}\}^{\otimes n}$$
 $\epsilon_{:}^{(\mathcal{U})}$: Pauli error rates

²Wallman and Emerson, "Noise tailoring for scalable quantum computation via randomized compiling"

- 1. Noise is Markovian and time stationary $(\mathcal{D}_{\mathcal{U}}\mathcal{U})$.
- 2. $\mathcal{D}_{\mathcal{U}} = \mathcal{D}$ when \mathcal{U} consists solely of single qubit gates $(\mathcal{D}_{\mathcal{E}_i} \mathcal{E}_i = \mathcal{D} \mathcal{E}_i)$ for all i.

$$\mathcal{D}_{\mathcal{U}}(\rho) = \sum_{k=0}^{4^{n}-1} \epsilon_{k}^{(\mathcal{U})} \mathcal{P}_{k}(\rho)$$

$$\mathcal{P}_k \in \{\mathcal{I}, \mathcal{X}, \mathcal{Y}, \mathcal{Z}\}^{\otimes r}$$
 $\epsilon_k^{(\mathcal{U})}$: Pauli error rates

 $^{^2}$ Wallman and Emerson, "Noise tailoring for scalable quantum computation via randomized compiling".

- 1. Noise is Markovian and time stationary $(\mathcal{D}_{\mathcal{U}}\mathcal{U})$.
- 2. $\mathcal{D}_{\mathcal{U}} = \mathcal{D}$ when \mathcal{U} consists solely of single qubit gates $(\mathcal{D}_{\mathcal{E}_i} \mathcal{E}_i = \mathcal{D} \mathcal{E}_i)$ for all i).

$$\mathcal{D}_{\mathcal{U}}(\rho) = \sum_{k=0}^{4^{n}-1} \epsilon_{k}^{(\mathcal{U})} \mathcal{P}_{k}(\rho)$$

$$\mathcal{P}_k \in \{\mathcal{I}, \mathcal{X}, \mathcal{Y}, \mathcal{Z}\}^{\otimes n}$$
 $\epsilon_k^{(\mathcal{U})}$: Pauli error rates

²Wallman and Emerson, "Noise tailoring for scalable quantum computation via randomized compiling".

- Need a way to scale the noise: $\mathcal{D}_{\mathcal{H}_i}\mathcal{H}_i \to \mathcal{D}_{\mathcal{H}_i}^{\alpha}\mathcal{H}_i$
- ZNE uses pulse stretching, or unitary folding³: $\mathcal{H}_i(\mathcal{H}_i\mathcal{H}_i^{-1})^{\alpha}$ 1. \mathcal{H}_i and \mathcal{H}_i^{-1} have identical noise models 2. $\mathcal{D}_{\mathcal{H}_i}\mathcal{H}_i=\mathcal{H}_i\mathcal{D}_{\mathcal{H}_i}$
- CER can detect when these assumptions apply
- Otherwise, scale noise from single cycle:

$$C'_{j,\alpha} = \mathcal{E}_{m+1} \mathcal{D}_{\mathcal{H}_m} \mathcal{H}_m \mathcal{E}_m \cdots (\mathcal{D}_{\mathcal{H}_j})^{\alpha} \mathcal{H}_j \cdots \mathcal{D}_{\mathcal{H}_1} \mathcal{H}_1 \mathcal{E}_1$$

$$\langle O \rangle \approx E_{\mathsf{NOX}}(O) := E_{\mathsf{noisy}}(O) + \sum_{j=1}^{m} \frac{E_{\mathsf{noisy}}(O) - E_{j,\alpha}(O)}{\alpha - 1}$$
 (3)

³This is referred to as "identity insertion" in the paper

- Need a way to scale the noise: $\mathcal{D}_{\mathcal{H}_i}\mathcal{H}_i \to \mathcal{D}_{\mathcal{H}_i}^{\alpha}\mathcal{H}_i$
- ullet ZNE uses pulse stretching, or unitary folding 3 : $\mathcal{H}_i(\mathcal{H}_i\mathcal{H}_i^{-1})^{lpha}$
 - 1. \mathcal{H}_i and \mathcal{H}_i^{-1} have identical noise models
 - 2. $\mathcal{D}_{\mathcal{H}_i}\mathcal{H}_i = \mathcal{H}_i\mathcal{D}_{\mathcal{H}}$
- CER can detect when these assumptions apply
- Otherwise, scale noise from single cycle:

$$C'_{j,\alpha} = \mathcal{E}_{m+1} \mathcal{D}_{\mathcal{H}_m} \mathcal{H}_m \mathcal{E}_m \cdots \left(\mathcal{D}_{\mathcal{H}_j} \right)^{\alpha} \mathcal{H}_j \cdots \mathcal{D}_{\mathcal{H}_1} \mathcal{H}_1 \mathcal{E}_1$$

$$\langle O \rangle \approx E_{\mathsf{NOX}}(O) := E_{\mathsf{noisy}}(O) + \sum_{j=1}^{m} \frac{E_{\mathsf{noisy}}(O) - E_{j,\alpha}(O)}{\alpha - 1}$$
 (3)

³This is referred to as "identity insertion" in the paper.

- Need a way to scale the noise: $\mathcal{D}_{\mathcal{H}_i}\mathcal{H}_i \to \mathcal{D}_{\mathcal{H}_i}^{\alpha}\mathcal{H}_i$
- ullet ZNE uses pulse stretching, or unitary folding 3 : $\mathcal{H}_i(\mathcal{H}_i\mathcal{H}_i^{-1})^{lpha}$
 - 1. \mathcal{H}_i and \mathcal{H}_i^{-1} have identical noise models
 - 2. $\mathcal{D}_{\mathcal{H}_i}\mathcal{H}_i = \mathcal{H}_i\mathcal{D}_{\mathcal{H}_i}$
- CER can detect when these assumptions apply
- Otherwise, scale noise from single cycle:

$$\mathcal{C}'_{j,\alpha} = \mathcal{E}_{m+1} \mathcal{D}_{\mathcal{H}_m} \mathcal{H}_m \mathcal{E}_m \cdots \left(\mathcal{D}_{\mathcal{H}_j} \right)^{\alpha} \mathcal{H}_j \cdots \mathcal{D}_{\mathcal{H}_1} \mathcal{H}_1 \mathcal{E}_1$$

$$\langle O \rangle \approx E_{\mathsf{NOX}}(O) := E_{\mathsf{noisy}}(O) + \sum_{j=1}^{m} \frac{E_{\mathsf{noisy}}(O) - E_{j,\alpha}(O)}{\alpha - 1}$$
 (3)

³This is referred to as "identity insertion" in the paper.

- Need a way to scale the noise: $\mathcal{D}_{\mathcal{H}_i}\mathcal{H}_i \to \mathcal{D}_{\mathcal{H}_i}^{\alpha}\mathcal{H}_i$
- ullet ZNE uses pulse stretching, or unitary folding 3 : $\mathcal{H}_i(\mathcal{H}_i\mathcal{H}_i^{-1})^{lpha}$
 - 1. \mathcal{H}_i and \mathcal{H}_i^{-1} have identical noise models
 - 2. $\mathcal{D}_{\mathcal{H}_i}\mathcal{H}_i = \mathcal{H}_i\mathcal{D}_{\mathcal{H}_i}$
- CER can detect when these assumptions apply
- Otherwise, scale noise from single cycle:

$$\mathcal{C}'_{j,\alpha} = \mathcal{E}_{m+1} \mathcal{D}_{\mathcal{H}_m} \mathcal{H}_m \mathcal{E}_m \cdots \left(\mathcal{D}_{\mathcal{H}_j} \right)^{\alpha} \mathcal{H}_j \cdots \mathcal{D}_{\mathcal{H}_1} \mathcal{H}_1 \mathcal{E}_1$$

$$\langle O \rangle \approx E_{\mathsf{NOX}}(O) := E_{\mathsf{noisy}}(O) + \sum_{j=1}^{m} \frac{E_{\mathsf{noisy}}(O) - E_{j,\alpha}(O)}{\alpha - 1}$$
 (3)

³This is referred to as "identity insertion" in the paper.

- Need a way to scale the noise: $\mathcal{D}_{\mathcal{H}_i}\mathcal{H}_i \to \mathcal{D}_{\mathcal{H}_i}^{\alpha}\mathcal{H}_i$
- ullet ZNE uses pulse stretching, or unitary folding 3 : $\mathcal{H}_i(\mathcal{H}_i\mathcal{H}_i^{-1})^{lpha}$
 - 1. \mathcal{H}_i and \mathcal{H}_i^{-1} have identical noise models
 - 2. $\mathcal{D}_{\mathcal{H}_i}\mathcal{H}_i = \mathcal{H}_i\mathcal{D}_{\mathcal{H}_i}$
- CER can detect when these assumptions apply
- Otherwise, scale noise from single cycle:

$$\mathcal{C}'_{j,\alpha} = \mathcal{E}_{m+1} \mathcal{D}_{\mathcal{H}_m} \mathcal{H}_m \mathcal{E}_m \cdots \left(\mathcal{D}_{\mathcal{H}_j} \right)^{\alpha} \mathcal{H}_j \cdots \mathcal{D}_{\mathcal{H}_1} \mathcal{H}_1 \mathcal{E}_1$$

$$\langle O \rangle \approx E_{\mathsf{NOX}}(O) := E_{\mathsf{noisy}}(O) + \sum_{j=1}^{m} \frac{E_{\mathsf{noisy}}(O) - E_{j,\alpha}(O)}{\alpha - 1}$$
 (3)

³This is referred to as "identity insertion" in the paper.

- Need a way to scale the noise: $\mathcal{D}_{\mathcal{H}_i}\mathcal{H}_i \to \mathcal{D}_{\mathcal{H}_i}^{\alpha}\mathcal{H}_i$
- ullet ZNE uses pulse stretching, or unitary folding 3 : $\mathcal{H}_i(\mathcal{H}_i\mathcal{H}_i^{-1})^{lpha}$
 - 1. \mathcal{H}_i and \mathcal{H}_i^{-1} have identical noise models
 - 2. $\mathcal{D}_{\mathcal{H}_i}\mathcal{H}_i = \mathcal{H}_i\mathcal{D}_{\mathcal{H}_i}$
- CER can detect when these assumptions apply
- Otherwise, scale noise from single cycle:

$$C'_{j,\alpha} = \mathcal{E}_{m+1} \mathcal{D}_{\mathcal{H}_m} \mathcal{H}_m \mathcal{E}_m \cdots (\mathcal{D}_{\mathcal{H}_j})^{\alpha} \mathcal{H}_j \cdots \mathcal{D}_{\mathcal{H}_1} \mathcal{H}_1 \mathcal{E}_1$$

$$\langle O \rangle \approx E_{\mathsf{NOX}}(O) \coloneqq E_{\mathsf{noisy}}(O) + \sum_{j=1}^{m} \frac{E_{\mathsf{noisy}}(O) - E_{j,\alpha}(O)}{\alpha - 1}$$
 (3)

³This is referred to as "identity insertion" in the paper.

- Need a way to scale the noise: $\mathcal{D}_{\mathcal{H}_i}\mathcal{H}_i \to \mathcal{D}_{\mathcal{H}_i}^{\alpha}\mathcal{H}_i$
- ullet ZNE uses pulse stretching, or unitary folding 3 : $\mathcal{H}_i(\mathcal{H}_i\mathcal{H}_i^{-1})^{lpha}$
 - 1. \mathcal{H}_i and \mathcal{H}_i^{-1} have identical noise models
 - 2. $\mathcal{D}_{\mathcal{H}_i}\mathcal{H}_i = \mathcal{H}_i\mathcal{D}_{\mathcal{H}_i}$
- CER can detect when these assumptions apply
- Otherwise, scale noise from single cycle:

$$C'_{j,\alpha} = \mathcal{E}_{m+1} \mathcal{D}_{\mathcal{H}_m} \mathcal{H}_m \mathcal{E}_m \cdots (\mathcal{D}_{\mathcal{H}_j})^{\alpha} \mathcal{H}_j \cdots \mathcal{D}_{\mathcal{H}_1} \mathcal{H}_1 \mathcal{E}_1$$

$$\langle O \rangle \approx E_{\mathsf{NOX}}(O) := E_{\mathsf{noisy}}(O) + \sum_{j=1}^{m} \frac{E_{\mathsf{noisy}}(O) - E_{j,\alpha}(O)}{\alpha - 1}$$
 (3)

³This is referred to as "identity insertion" in the paper.

Pauli Error Cancellation

• Like Prob. EC, start with quasiprobability distribution:

$$C_{\mathsf{tot}} \sum_{i=1}^{L} s_i q_i \operatorname{tr} \left(O\widetilde{\mathcal{U}}_i(\rho_{\mathsf{in}}) \right) = \operatorname{tr} \left[O\mathcal{U}(\rho_{\mathsf{in}}) \right] + \delta$$

- $\widetilde{\mathcal{U}}_i$: implementable operations
- $s_k=\pm 1$ depending on number of Pauli cycles
- r_k results from PEC circuits

$$C_{\text{tot}} = \prod_{j=1}^{m} \frac{1}{\left(\epsilon_0^{(\mathcal{H}_j)}\right)^2 - \sum_{k=1}^{4^n - 1} \left(\epsilon_k^{(\mathcal{H}_j)}\right)^2} \tag{4}$$

$$\langle O \rangle \approx E_{\mathsf{PEC}}(O) = C_{\mathsf{tot}} \sum_{k=1}^{N} \frac{s_k r_k}{N}$$
 (5)

Pauli Error Cancellation

 Like Prob. EC, start with quasiprobability distribution:

$$C_{\mathsf{tot}} \sum_{i=1}^{L} s_i q_i \operatorname{tr} \left(O\widetilde{\mathcal{U}}_i(\rho_{\mathsf{in}}) \right) = \operatorname{tr} \left[O\mathcal{U}(\rho_{\mathsf{in}}) \right] + \delta$$

- $\widetilde{\mathcal{U}}_i$: implementable operations
- $s_k=\pm 1$ depending on number of Pauli cycles
- r_k results from PEC circuits

$$C_{\text{tot}} = \prod_{j=1}^{m} \frac{1}{\left(\epsilon_0^{(\mathcal{H}_j)}\right)^2 - \sum_{k=1}^{4^n - 1} \left(\epsilon_k^{(\mathcal{H}_j)}\right)^2} \tag{4}$$

$$\langle O \rangle \approx E_{\mathsf{PEC}}(O) = C_{\mathsf{tot}} \sum_{k=1}^{N} \frac{s_k r_k}{N}$$
 (5)

Summary

	NOX	Unmit.
Runtime		

- m circuit depth
- $n\varepsilon$ cycle error rate
- n number of qubits
- $\delta_{\rm rec}$ accuracy of noise reconstruction

Summary

	PEC	NOX	Unmit.
Runtime	$\frac{1}{(1-n\varepsilon)^{2m}}$	m^3	1
Bias	$\mathcal{O}(mn^2\varepsilon^2) + \delta_{rec}$	$\mathcal{O}\!\left(m^2n^2arepsilon^2 ight) + \delta_{rec}$	$\mathcal{O}(mn\varepsilon)$

- m circuit depth
- $n \varepsilon$ cycle error rate
- n number of qubits
- δ_{rec} accuracy of noise reconstruction

References

- Ferracin, Samuele et al. "Efficiently improving the performance of noisy quantum computers". In: (Jan. 2022). arXiv: 2201.10672 [quant-ph].
- Hashim, Akel et al. "Randomized Compiling for Scalable Quantum Computing on a Noisy Superconducting Quantum Processor". In: *Phys. Rev. X* 11 (4 Nov. 2021), p. 041039. DOI: 10.1103/PhysRevX.11.041039.
- Wallman, Joel J. and Joseph Emerson. "Noise tailoring for scalable quantum computation via randomized compiling". In: *Phys. Rev. A* 94 (5 Nov. 2016), p. 052325. DOI: 10.1103/PhysRevA.94.052325.

