

L2 informatique - Année 2020-2021

TD d'Éléments d'Algorithmique n° 5

Dans ce TD, "trié" signifie "trié par ordre croissant".

* Les exercices marqués d'une étoile sont à faire à la maison.

Exercice 1. Dichotomie.

1. Exécutez l'algorithme de dichotomie récursif vu en cours sur la valeur 42 et chacun des tableaux suivants :

$$[1, 2, 42, 57, 99]$$
 $[1, 2, 3, 4, 42]$ $[1, 2, 3, 57, 99]$

Combien de comparaisons a-t-il fallu faire dans chaque cas?

2. Même question avec l'algorithme itératif.

Exercice 2. Recherche dans un tableau arbitraire.

Dans cet exercice, on suppose qu'un test d'égalité qui implique des éléments d'un tableau a le même coût qu'une comparaison qui implique des éléments du tableau et on appelle les deux opérations des "comparaisons". On a un tableau de taille n dans lequel on veut effectuer m recherches. Combien de comparaisons faut-il faire dans le pire des cas :

- 1. si on effectue m recherches séquentielles;
- 2. si on effectue un tri par insertion suivi de m recherches par dichotomie.
- 3. si on effectue un tri faisant $n \log n$ comparaisons (par exemple le tri fusion) suivi de m recherches par dichotomie?

Exercice 3. Diviser pour régner.

On dispose d'un tas de n pièces $p_0, p_1 \dots p_{n-1}$ dont exactement une est fausse; toutes les pièces ont le même poids sauf la pièce fausse, qui est plus légère. On dispose d'une balance à deux plateaux.

- 1. Combien de pesées sont nécessaires pour déterminer la pièce fausse lorsque n=4? n=8? n=9?
- 2. Écrivez un algorithme récursif qui permet de déterminer la pièce fausse lorsque le nombre de pièces est une puissance de deux. Combien de pesées fait-il?
- 3. Même question lorsque le nombre de pièces est une puissance de trois.
- 4. Et dans le cas général?

Exercice 4. Recherche dans un tableau bi-dimensionel.

Dans cet exercice, on considère un tableau bi-dimensionel T de taille $n \times m$ d'entiers dont les lignes et les colonnes sont triées. On veut effectuer une recherche d'un élément x dans ce tableau.

- 1. Écrivez un algorithme qui fait une recherche séquentielle. Combien de comparaisons effectue votre algorithme au pire de cas?
- 2. Écrivez un algorithme qui fait n recherches dichotomiques (une par ligne). Combien de comparaisons effectue cet algorithme au pire de cas?
- 3. Écrivez un algorithme qui fait m recherches dichotomiques (une par colonne). Combien de comparaisons effectue l'algorithme dans ce cas?

- 4. Enfin, proposer un algorithme efficace qui n'effectue qu'au plus m+n comparaisons au pire de cas.
- 5. Exécuter les algorithmes proposés pour l'élément x=14 sur le tableau T suivant :

1	4	6	7	9
2	7	8	9	11
3	9	10	13	15
6	10	15	17	20
14	18	19	21	22

Exercice 5. Point fixe*.

Cet exercice est à faire à la maison. Répondez aux deux premieres questions dans un commentaire que vous insèrerez dans le fichier source que vous utilisez pour la dernière question.

On considère un tableau trié T d'entiers relatifs tous distincts. On dit qu'un indice i est un point fixe de T si T[i] = i, un pré-point fixe si $T[i] \le i$, et post-point fixe si $T[i] \ge i$.

- 1. Quels sont les pré- et post-points fixes du tableau T = [-1, 0, 1, 3, 4, 8]?
- 2. Quelle propriété satisfont les ensembles de pré- et post-points fixes d'un tel tableau?
- 3. Déduisez-en un algorithme itératif efficace qui prend en entrée un tableau trié T d'entiers relatifs tous distincts et retourne vrai si et seulement s'il existe un indice i tel que T[i] = i. Combien votre algorithme fait-il de comparaisons dans le cas pire?