PROPOSITIONAL LOGIC

MATHEMATICAL LOGIC

- Logic is the foundation of computation.
- We will use logic for multiple purposes:
 - Describing specifications
 - Describing program executions
 - Mathematical guarantees of logic will translate to guarantees of program correctness
 - Decision procedures for logic will be used for verification.

PROPOSITIONAL LOGIC

Is
$$p \to q \to r \leftrightarrow (p \land q) \to r$$
 valid?
Is $p \land \bot \to \neg q \lor \top$ satisfiable?

SYNTAX

Atom	Truth Values - ⊥ : False, ⊤: True Propositional Variables - p,q,r
Logical Connectives	\wedge : and, \vee : or, \neg : not, \rightarrow : implies, \leftrightarrow : if and only if(iff)
Literal	Atom or its negation
Formula	A literal or the application of logical connectives to formulae

SEMANTICS

Interpretation I

I : Set of Propositional Variables $\rightarrow \{ \perp, \top \}$

MODEL OF

Given an interpretation I and Formula F,

$$I \models F$$

F evaluates to Tunder I

$$I \nvDash F$$

F evaluates to \(\preceq\) under I

SEMANTICS: INDUCTIVE DEFINITION

Base Case:

$I \vDash \top$		
$I \nvDash \bot$		
$I \vDash p$	iff I(p)=T	
$I \nvDash p$	iff I(p)= <u></u>	

Inductive Case:

$I \vDash \neg F$	iff $I \nvDash F$
$I \vDash F_1 \land F_2$	$iff\ I \vDash F_1 \ and\ I \vDash F_2$
$I \vDash F_1 \lor F_2$	iff $I \vDash F_1$ or $I \vDash F_2$
$I \vDash F_1 \to F_2$	iff $I \nvDash F_1$ or $I \vDash F_2$
$I \vDash F_1 \leftrightarrow F_2$	iff $I \vDash F_1$ and $I \vDash F_2$, or $I \nvDash F_1$ and $I \nvDash F_2$
Other cases	

 $I = \{p : True, q : False\}$

$$F = p \land q \to p \lor \neg q$$

 $ls I \models F?$

- $1. I \nvDash q$
- 2. $I \nvDash p \land q$
- 3. $I \models p \land q \rightarrow p \lor \neg q$

PRECEDENCE OF LOGICAL CONNECTIVES

- We assume the following precedence from highest to lowest:
 - \neg , \wedge , \vee , \rightarrow , \leftrightarrow
 - Example: $\neg p \land q \rightarrow p \lor q \land r$ is the same as $((\neg p) \land q) \rightarrow (p \lor (q \land r))$.
- · We assume that all logical connectives associate to the right.
 - Example: $p \to q \to r$ is the same as $p \to (q \to r)$
- Parenthesis can be used to change precedence or associativity.

SATISFIABILITY AND VALIDITY

- A formula F is satisfiable iff there exists an interpretation I such that $I \models F$.
- A formula F is valid iff for all interpretations I, $I \models F$.
- A formula F is valid iff $\neg F$ is unsatisfiable.
 - A Decision Procedure for satisfiability is therefore also a decision procedure for validity. How?

QUESTIONS

- A formula can either be SAT, UNSAT or VALID.
 - Does Validity ⇒ Satisfiability?
 - Does Satisfiability ⇒ Validity?
- Can a decision procedure for Validity be used as a decision procedure for Satisfiability?
 - F is satisfiable iff ¬F is not valid.
- Are the following formulae are sat, unsat or valid?
 - $p \land q \rightarrow p \lor q$
 - $p \lor q \to \neg p \lor \neg q$
 - $(p \rightarrow q \rightarrow r) \land (p \land q \land \neg r)$

MORE TERMINOLOGY

- Formulae F_1 and F_2 are equivalent (denoted by $F_1 \Leftrightarrow F_2$) when the formula $F_1 \leftrightarrow F_2$ is valid.
 - Example: $p \rightarrow q \Leftrightarrow \neg p \lor q$
 - Another definition: F_1 and F_2 are equivalent if for all interpretations I, $I \models F_1$ if and only if $I \models F_2$.
- Formula F_1 implies F_2 (denoted by $F_1 \Rightarrow F_2$) when the formula $F_1 \to F_2$ is valid.
 - Example: $(p \to q) \land p \Rightarrow q$
- Formulae F_1 and F_2 are equisatisfiable when F_1 is satisfiable if and only if F_2 is satisfiable.
 - Example: $p \land (q \lor r)$ and $q \lor r$ are equisatisfiable

MORE EXAMPLES

- Which of the following are true?
 - $\neg (F_1 \land F_2) \Leftrightarrow \neg F_1 \lor \neg F_2$
 - $(F_1 \leftrightarrow F_2) \land (F_2 \leftrightarrow F_3) \Rightarrow (F_1 \leftrightarrow F_3)$
 - $p \Leftrightarrow p \land q$
 - p and q are equisatisfiable.
- What is the simplest example of two formulae which are not equisatisfiable?

DECISION PROCEDURES FOR SATISFIABILITY AND VALIDITY

- Two methods
 - Truth Tables: Search for satisfying interpretation
 - Semantic Argument: Rule-based deductive approach
- Modern SAT solvers use combination of both approaches

TRUTH TABLES - EXAMPLE

 $p \land q \rightarrow p \lor \neg q$

p	q	$\neg q$	$p \wedge q$	$p \vee \neg q$	$\begin{array}{c} p \land q \rightarrow \\ p \lor \neg q \end{array}$
0	0	1	0	1	1
0	1	0	0	0	1
1	0	1	0	1	1
1	1	0	1	1	1

TRUTH TABLES - EXAMPLE

 $p \land q \rightarrow p \lor \neg q$ is valid

p	q	$\neg q$	$p \wedge q$	$p \vee \neg q$	$\begin{array}{c} p \land q \rightarrow \\ p \lor \neg q \end{array}$
0	0	1	0	1	1
0	1	0	0	0	1
1	0	1	0	1	1
1	1	0	1	1	1

SEMANTIC ARGUMENT METHOD

- Deductive approach for showing validity based on proof rules
- Main Idea: Proof by Contradiction.
 - Assume that a falsifying interpretation exists.
 - Use proof rules to deduce more facts.
 - Find contradictory facts.

$$\frac{I \models \neg F}{I \not\models F}$$

$$\begin{array}{c|cccc} I & \not\models & \neg F \\ \hline I & \models & F \end{array}$$

PROOF RULES (CONJUNCTION)

$$\begin{array}{c|c} I & \models & F \wedge G \\ \hline I & \models & F \\ I & \models & G \end{array}$$

PROOF RULES (CONJUNCTION)

$$\begin{array}{c|c} I & \models & F \wedge G \\ \hline I & \models & F \\ I & \models & G \end{array}$$

$$\frac{I \not\models F \land G}{I \not\models F \mid I \not\models G}$$

PROOF RULES (CONJUNCTION)

$$\begin{array}{c|c} I & \models & F \wedge G \\ \hline I & \models & F \\ I & \models & G \end{array}$$

Need to show a contradiction in every branch

PROOF RULES (DISJUNCTION)

$$\frac{I \models F \lor G}{I \models F \mid I \models G}$$

$$\begin{array}{c|c} I \not \models F \lor G \\ \hline I \not \models F \\ I \not \models G \end{array}$$

PROOF RULES (IMPLICATION)

$$\frac{I \models F \to G}{I \not\models F \mid I \models G}$$

$$\begin{array}{c|cccc}
I & \not\models & F \to G \\
\hline
I & \models & F \\
I & \not\models & G
\end{array}$$

PROOF RULES (IFF)

$$\frac{I \not\models F \leftrightarrow G}{I \models F \land \neg G \mid I \models \neg F \land G}$$

PROOF RULES (CONTRADICTION)

$$\begin{array}{c|c} I & \models & F \\ \hline I & \not\models & F \\ \hline I & \models & \bot \end{array}$$

$$I \nvDash p \land q \rightarrow p \lor \neg q$$

$$I \nvDash p \land q \to p \lor \neg q$$
$$I \vDash p \land q \quad I \nvDash p \lor \neg q$$

$$I \nvDash p \land q \rightarrow p \lor \neg q$$

$$I \vDash p \land q \qquad I \nvDash p \lor \neg q$$

$$I \vDash p \qquad \qquad I \nvDash p$$

$$I \vDash q \qquad \qquad I \nvDash \neg q$$

$$I \nvDash p \land q \rightarrow p \lor \neg q$$

$$I \vDash p \land q \qquad I \nvDash p \lor \neg q$$

$$I \vDash p \qquad \qquad I \nvDash p$$

$$I \vDash q \qquad \qquad I \not \vDash \neg q$$

$$CONTRADICTION$$

Prove that $(p \rightarrow q) \land p \rightarrow q$ is valid

Prove that
$$(p \to q) \land p \to q$$
 is valid
$$I \not\models (p \to q) \land p \to q$$

Prove that
$$(p \rightarrow q) \land p \rightarrow q$$
 is valid

$$I \nvDash (p \to q) \land p \to q$$

$$I \vDash (p \rightarrow q \land p) \quad I \nvDash q$$

Prove that
$$(p \to q) \land p \to q$$
 is valid
$$I \nvDash (p \to q) \land p \to q$$

$$I \vDash (p \to q \land p) \qquad I \nvDash q$$

$$I \vDash (p \rightarrow q) \quad I \vDash p$$

EXAMPLE WITH BRANCHING

Prove that
$$(p \to q) \land p \to q$$
 is valid $I \nvDash (p \to q) \land p \to q$
$$I \vDash (p \to q \land p) \quad I \nvDash q$$

$$I \vDash (p \to q) \quad I \vDash p$$

$$I \nvDash p \quad I \vDash q$$

EXAMPLE WITH BRANCHING

Prove that
$$(p \to q) \land p \to q$$
 is valid $I \not\models (p \to q) \land p \to q$
$$I \models (p \to q \land p) \quad I \not\models q$$

$$I \models (p \to q) \quad I \models p$$

$$I \not\models p \quad I \models q$$

EXAMPLE WITH BRANCHING

Prove that
$$(p \to q) \land p \to q$$
 is valid $I \nvDash (p \to q) \land p \to q$
$$I \vDash (p \to q \land p) \qquad I \nvDash q$$

$$I \vDash (p \to q) \qquad I \vDash p$$

$$I \nvDash p \qquad I \vDash q$$

$$CONTRADICTION$$

Each branch should lead to a contradiction

ANNOUNCEMENTS

- Lectures slides and recorded video lectures are available on the course webpage.
- Chapter 1 of the BM book is uploaded on the course moodle page.
 - Please try Exercises 1.1-1.5.

QUESTIONS

- Is the semantic argument method complete?
- Can we use the semantic argument method for satisfiability?
- What is the time complexity of the semantic argument method?

DECISION PROCEDURES FOR SAT

- We will go through the DPLL algorithm.
 - Davis-Putnam-Logemann-Loveland Algorithm
 - Combines truth table and deductive approaches
 - Requires formulae in Conjunctive Normal Form (CNF)
 - Forms the basis of modern SAT solvers

NORMAL FORMS

- A Normal Form of a formula F is another equivalent formula F' which obeys some syntactic restrictions.
- Three important normal forms:
 - Negation Normal Form (NNF): Should use only \neg , \wedge , \vee as the logical connectives, and \neg should only be applied to literals
 - Disjunctive Normal Form (DNF): Should be a disjunction of conjunction of literals
 - Conjunctive Normal Form (CNF): Should be a conjunction of disjunction of literals

CONJUNCTIVE NORMAL FORM

A conjunction of disjunction of literals

$$\bigwedge_i \bigvee_j \ell_{i,j} \quad \text{for literals } \ell_{i,j}$$

- Each inner disjunct is also called a clause
- Is every formula in CNF also in NNF?

CNF CONVERSION

- We can use distribution of ∨ over ∧ to obtain formula in CNF
 - $F_1 \vee (F_2 \wedge F_3) \Leftrightarrow (F_1 \vee F_2) \wedge (F_1 \vee F_3)$
 - Causes exponential blowup.
- Tseitin's transformation algorithm can be used to obtain an equisatisfiable CNF formula linear in size
 - BM Chapter 1

TRUTH TABLE BASED METHOD

Decision Procedure for Satisfiability: Returns true if F is SAT, false if F is UNSAT

```
SAT(F){
   if (F = T) return true;
   if (F = L) return false;
   Choose a variable p in F;
   return SAT(F[T/p]) ∨ SAT(F[L/p]);
}
```

F[G/P] : G REPLACES EVERY OCCURRENCE OF P IN F, THEN SIMPLIFY

SIMPLIFICATION

- Following equivalences can be used to simplify:
 - F ∧ ⊥ ⇔ ⊥
 - $F \wedge T \Leftrightarrow F$
 - $F \lor \bot \Leftrightarrow F$
 - $F \lor T \Leftrightarrow T$

EXAMPLE

- SAT $((P \rightarrow Q) \land P \land \neg Q)$
- $F = (\neg P \lor Q) \land P \land \neg Q$
- $F[\top/P] \triangleq (\bot \lor Q) \land \top \land \neg Q \equiv Q \land \neg Q$

SIMPLIFICATION MAY SAVE BRANCHING ON SOME OCCASIONS