Classification

Introduction to Classification

What is classification?

A machine learning task that deals with identifying the class to which an instance belongs

A classifier performs classification

(**Rīgeskliptilikeildpat**ss), Ngrams)

Headthibs.tatss, Salary)
(a1, a2,... an)

Classifier

Discrete-valued

Category of document? State Loae (1 / Sesaight) Signs (abelovies, Biology)

Classification learning

Training phase

Learning the classifier from the available data 'Training set' (Labeled)

Testing phase

Testing how well the classifier performs
'Testing set'

Generating datasets

- Methods:
 - O Holdout (2/3rd training, 1/3rd testing)
 - Cross validation (n fold)
 - O Divide into n parts
 - Train on (n-1), test on last
 - Repeat for different combinations
 - O Bootstrapping
 - Select random samples to form the training set

Evaluating classifiers

- Outcome:
 - Accuracy
 - Confusion matrix
 - If cost-sensitive, the expected cost of classification (attribute test cost + misclassification cost)

etc.

Decision Trees

Example tree

Lear nodes: Class predictions

Example algorithms: ID3, C4.5, SPRINT, CART

Decision Tree schematic

Decision Tree Issues

How to determine the attribute for split?

Alternatives:

1. Information Gain

Gain (A, S) = Entropy (S) – Σ ((Sj/S)*Entropy(Sj))

Other options:

Gain ratio, etc.

Lazy learners

Lazy learners

- •'Lazy': Do not create a model of the training instances in advance
- •When an instance arrives for testing, runs the algorithm to get the class prediction
- •Example, K nearest neighbor classifier
- (K NN classifier)
- "One is known by the company one keeps"

K-NN classifier schematic

For a test instance,

- 1) Calculate distances from training pts.
- 2) Find K-nearest neighbours (say, K = 3)
- 3) Assign class label based on majority

$$dist(X_1, X_2) = \sqrt{\sum_{i=1}^{n} (x_{1i} - x_{2i})^2}.$$

$$v' = \frac{v - min_A}{max_A - min_A},$$

K-NN classifier Issues

How to determine distances between values of categorical attributes?

Alternatives:

- 1. Boolean distance (1 if same, 0 if different)
- 2. Differential grading (e.g. weather 'drizzling' and 'rainy' are closer than 'rainy' and 'sunny')

Decision Lists

Decision Lists

A sequence of boolean functions that lead to a result

$$f(y) = cj$$
, if $j = min \{i | hi(y) = 1\}$ exists otherwise

Decision List example

Test instance

Decision List learning

Decision list Issues

What is the terminating condition?

- 1. Size of R (an upper threshold)
- 2. $Q_k = null$
- 3. S' contains examples of same class

Probabilistic classifiers

Probabilistic classifiers: NB

- Based on Bayes rule
- Naïve Bayes : Conditional independence assumption

Naïve Bayes Issues

Problems due to sparsity of data?

Problem: Probabilities for some values may be zero

Solution: Laplace smoothing

For each attribute value, update probability m / n as : (m + 1) / (n + k) where k = domain of values

Probabilistic classifiers: BBN

- OBayesian belief networks: Attributes ARE dependent
- O A directed acyclic graph and conditional probability tables

BBN learning

(when network structure known)

- Input: Network topology of BBN
- Output: Calculate the entries in conditional probability table

(when network structure not known)

O???

Learning structure of BBN

OUse Naïve Bayes as a basis pattern

- Add edges as required
- Examples of algorithms: TAN, K2

Artificial Neural Networks

Artificial Neural Networks

- Based on biological concept of neurons
- Structure of a fundamental Monit of ANN:

Perceptron learning algorithm

- Initialize values of weights
- Apply training instances and get output
- Update weights according to the update rule:

n : learning rate

t: target output

o: observed output

$$w_i \leftarrow w_i + \Delta w_i$$

$$\Delta w_i = \eta(t - o)x_i$$

- Repeat till converges
- O Can represent linearly separable functions only

Sigmoid perceptron

$$\sigma(y) = \frac{1}{1 + e^{-y}}$$

$$\frac{d\sigma(y)}{dy} = \sigma(y) \cdot (1 - \sigma(y))$$

Basis for multilayer feedforward networks

Multilayer feedforward networks

Multilayer? Feedforward?

Diagram from Han-Kamber

Backpropagation

$$\delta_j = (t_j - o_j) o_j (1 - o_j)$$

$$\delta_h \leftarrow o_h(1-o_h) \sum_{k \in outputs} w_{kh} \delta_k$$

- Apply training instances as input and produce output
- Update weights in the 'reverse' direction as follows:

$$\Delta w_{ii} = \eta \delta j o_i$$

ANN Issues

Learning the structure of the network

- 1. Construct a complete network
- 2. Prune using heuristics:
 - Remove edges with weights nearly zero
 - Remove edges if the removal does not affect accuracy

Support vector machines

Support vector machines

SVM Issues

What if n-classes are to be predicted?

Problem: SVMs deal with two-class classification

Solution: Have multiple SVMs each for one class

Combiningclassifiers

Combining Classifiers

- 'Ensemble' learning
- Use a combination of models for prediction
 - Bagging: Majority votes
 - O Boosting: Attention to the 'weak' instances
- Goal : An improved combined model

Bagging

At random. May use bootstrap sampling with replacement

Boosting (AdaBoost)

The last slice

Data preprocessing

- Attribute subset selection
 - Select a subset of total attributes to reduce complexity
- Dimensionality reduction
 - Transform instances into 'smaller' instances

Attribute subset selection

- Information gain measure for attribute selection in decision trees
- Stepwise forward / backward elimination of attributes

Dimensionality reduction

Number of attributes of a data instance

Principal Component Analysis

- Computes k orthonormal vectors : Principal c
- O Ess $\mathbf{S} = \mathbf{U}^T \mathbf{X}$. Dvid $\mathbf{w}_1 = \arg\max_{\|\mathbf{w} = 1\|} \mathrm{Var}\{\mathbf{x}^T \mathbf{w}\} \mathrm{dec}^{Y_2}$. Variance

$$\mathbf{s} = \mathbf{W}\mathbf{x}$$
 $(k(X)n) \cdot (k(X)p)$

Diagram from Han-Kamber

end of slideshow