B.Sc. (Honours) Semester -VI Examination 2016

Computer Science Course : BCSC - 62

(Formal Language and Automata)

Time: Three Hours Full Marks: 40

Questions are of value as indicated in the margin.

Answer Question No.1 and any four from the rest.

1. Answer **any four** from the following:

 $2 \times 4 = 8$

- (a) State the properties of transition functions of a finite automata.
- (b) Identify the highest type in the following:

number of the gramma which is the applied

$$S \rightarrow aS \mid bA \mid c \qquad A \rightarrow cA \mid d$$

- (c) What is Chomsky Normal form?
- (d) What is the advantage of push down automata over finite automata?
- (e) Define Tuning Machine.
- 2. (a) Find a deterministic acceptor equivalent to M whose δ is given below

3+5=8

States Σ	0	1
$\rightarrow q_1$	q_1, q_2	q_3
q_2	q_1	q_2
q_3		q_1, q_2

(b) Convert the following Moore machine to Mealy machine

Present State	Nex $a = 0$	t State $a = 1$	Output
$\rightarrow q_0$	q_0	q_1	0
q_1	q_0	q_1	0
q_2	q_0	q_2	0

Draw the transition diagram for both the machines.

3. (a) Construct the grammar accepting the following set

3+3+2=8

$${O^n 1^{2n} \mid n \ge 1}$$

- (b) Construct a grammar which generates all positive integers upto 998 which are divisible by 5.
- (c) State Arden's Thearem.
- 4. (a) Write the algorithm to remove Λ -moves in a transition system.

2+3+3=8

(b) Find the strings recognized by the following transition system

P.T.O.

5. (a) Shows that the set $L = \{O^i 1^i | i \ge 1\}$ is not regular.

4+4=8

(b) Constant a regular grammar G generating the regular set represented by P = a*b (a+b)*

6. (a) Consider the following production

6+2=8

$$S \rightarrow aB|bA \quad A \rightarrow aS|bAA|a \quad B \rightarrow aS|aBB|b$$

For the string aaabbabbba find leftmost derivation, right most derivation and parse tree.

(b) Show that the following grammar is ambiguous.

$$S \rightarrow aB|ab \quad A \rightarrow aAB|a \quad B \rightarrow ABb|b$$

- 7. (a) Design a Turing machine to recognize all strings consisting of odd number of 0's. 3+3+2=8
 - (b) Reduce the following grammar to chomsky normal form.

$$A \rightarrow A0$$
, $A \rightarrow 0B$ $B \rightarrow 0A$ $B \rightarrow 1$

(c) State pumping lemma for context free languages.