Exercícios Resolvidos

Anderson Feitoza Leitão Maia

MATEMÁTICA BÁSICA Ciência da Computação Universidade Federal do Ceará

22 de Junho de 2021


```
Lógica Matemática
Conjuntos
Relações
Indução
```

Questão 1

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q) = (p \land \sim q) \lor (q \land \sim p)$$

Questão 1

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q) = (p \land \sim q) \lor (q \land \sim p)$$

p	q
V	V
V	F
F	V
F	F

Lógica Matemática

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q) = (p \land \sim q) \lor (q \land \sim p)$$

1º passo: Negação de q

Questão 1

Lógica Matemática

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q) = (p \land \sim q) \lor (q \land \sim p)$$

1º passo: Negação de q

р	q	~q
V	V	F
V	F	V
F	V	F
F	F	V

Lógica Matemática

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q) = (p \land \sim q) \lor (q \land \sim p)$$

2º passo: Conjunção

Questão 1

Lógica Matemática

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q) = (p \land \sim q) \lor (q \land \sim p)$$

2º passo: Conjunção

p	q	~q F	p∧~q
V	V	F	F
V	F	V	V
F	V	F	F
F	F	V	F

Lógica Matemática

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q) = (p \land \sim q) \lor (q \land \sim p)$$

3º passo: Negação de p

Questão 1

Lógica Matemática

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q) = (p \land \sim q) \lor (q \land \sim p)$$

3º passo: Negação de p

p	q	~p
V	V	F
V	F	F
F	V	V
F	F	V

Questão 1

Lógica Matemática

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q) = (p \land \sim q) \lor (q \land \sim p)$$

4º passo: Conjunção

Lógica Matemática

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q) = (p \land \sim q) \lor (q \land \sim p)$$

4º passo: Conjunção

p	q	~p	q∧~p
V	V	F	F
V	F	F	F
F	V	V	V
F	F	V	F

Lógica Matemática

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q) = (p \land \sim q) \lor (q \land \sim p)$$

5º passo: uma vez trabalhados os dois parênteses, faremos a disjunção que os une.

Questão 1

Lógica Matemática

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q) = (p \land \sim q) \lor (q \land \sim p)$$

5º passo: uma vez trabalhados os dois parênteses, faremos a disjunção que os une.

p∧~q	q∧~p	(p∧~q)V(q∧~p)
F	F	F
V	F	V
F	V	V
F	F	F

Lógica Matemática

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q) = (p \land \sim q) \lor (q \land \sim p)$$

Se quiséssemos, poderíamos ter feito tudo em uma única tabela maior, da seguinte forma:

	p	q	~q	p∧~q	~p	q∧~p	(p∧~q)V(q∧~p)
	V	V	F	F	F	F	F
	V	F	V	V	F	F	V
ĺ	F	V	F	F	V	V	V
ĺ	F	F	V	F	V	F	F

Questão 2

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q,r) = (p \land \sim q) \rightarrow (q \lor \sim r).$$

Questão 2

Lógica Matemática

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q,r) = (p \land \sim q) \rightarrow (q \lor \sim r).$$

p	q	r
V	V	V
V	V	F
V	F	V
V	F	F
F	V	V
F	V	F
F	F	V
F	F	F

Lógica Matemática

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q,r) = (p \land \sim q) \rightarrow (q \lor \sim r).$$

1º passo: Negação de q

Questão 2

Lógica Matemática

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q,r)=(p\wedge \sim q) \rightarrow (q\vee \sim r).$$

1º passo: Negação de q

p	q	r	~q
V	V	V	F
V	V	F	F
V	F	V	V
V	F	F	V
F	V	V	F
F	V	F	F
F	F	V	V
F	F	F	V

Questão 2

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q,r) = (p \land \sim q) \rightarrow (q \lor \sim r).$$

2º passo: Conjunção do primeiro parênteses

Questão 2

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q,r) = (p \land \sim q) \rightarrow (q \lor \sim r).$$

2º passo: Conjunção do primeiro parênteses

р	q	r	~q	p ∧ ~ q
V	V	V	F	F
V	V	F	F	F
V	F	V	V	V
V	F	F	V	V
F	V	V	F	F
F	V	F	F	F
F	F	V	V	F
F	F	F	V	F

Questão 2

Lógica Matemática

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q,r) = (p \land \sim q) \rightarrow (q \lor \sim r).$$

3º passo: Negação de r

Lógica Matemática

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q,r) = (p \land \sim q) \rightarrow (q \lor \sim r).$$

3º passo: Negação de r

p	q	r	~q	p ∧ ~ q	r
V	V	V	F	F	F
V	V	F	F	F	V
V	F	V	V	V	F
V	F	F	V	V	V
F	V	V	F	F	F
F	V	F	F	F	V
F	F	V	V	F	F
F	F	F	V	F	V

Questão 2

Lógica Matemática

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q,r) = (p \land \sim q) \rightarrow (q \lor \sim r).$$

4º passo: Disjunção do segundo parênteses

Questão 2

Lógica Matemática

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q,r) = (p \land \sim q) \rightarrow (q \lor \sim r).$$

4º passo: Disjunção do segundo parênteses

p	q	r	~q	p ∧ ~ q	~r	q v ~r
V	V	V	F	F	F	V
V	V	F	F	F	V	V
V	F	V	V	V	F	F
V	F	F	V	V	V	V
F	V	V	F	F	F	V
F	V	F	F	F	V	V
F	F	V	V	F	F	F
F	F	F	V	F	V	V

Lógica Matemática

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q,r) = (p \land \sim q) \rightarrow (q \lor \sim r).$$

5º passo: Finalmente, vamos fazer a condicional.

Questão 2

Construir a tabela verdade da seguinte proposição composta:

$$P(p,q,r) = (p \land \sim q) \rightarrow (q \lor \sim r).$$

5º passo: Finalmente, vamos fazer a condicional.

р	q	r	~q	p ∧ ~q	~r	q v ∼r	(p ∧ ~q)→(q v ~r)
V	V	V	F	F	F	V	V
V	V	F	F	F	V	V	V
V	F	V	V	V	F	F	F
V	F	F	V	V	V	V	V
F	V	V	F	F	F	V	V
F	V	F	F	F	V	V	V
F	F	V	V	F	F	F	V
F	F	F	V	F	V	V	V

Seja $U = \{1, 2, \dots, 11\}$ o conjunto universo dos conjuntos considerados

$$A = \{1, 2, 4, 5, 10\}, B = \{3, 4, 7, 8, 11\}, C = \{4, 5, 6, 9, 11\}.$$

- a) $A \cup B$ e $A \cap B$.
- b) $A \cup C$ e $A \cap C$.
- c) $B \cup C \in B \cap C$.
- d) A^c , B^c e C^c .
- e) A B, A C e B C.
- f) $A \times C$, $A \times B$, $B \times C$

Seja $U=\{1,2,\cdots,11\}$ o conjunto universo dos conjuntos considerados

$$A = \{1, 2, 4, 5, 10\}, B = \{3, 4, 7, 8, 11\}, C = \{4, 5, 6, 9, 11\}.$$

- a) $A \cup B$ e $A \cap B$.
- **Solução.** $A \cup B = \{\}$ e $A \cap B = \{\}$
- b) $A \cup C$ e $A \cap C$.
- **Solução.** $A \cup C = \{\}$ e $A \cap C = \{\}$
- c) $B \cup C \in B \cap C$.
- **Solução.** $B \cup C = \{\}$ e $B \cap C = \{\}$

Questão 3

Seja $U = \{1, 2, \dots, 11\}$ o conjunto universo dos conjuntos considerados

$$A = \{1, 2, 4, 5, 10\}, B = \{3, 4, 7, 8, 11\}, C = \{4, 5, 6, 9, 11\}.$$

Dessa forma, determine:

a) $A \cup B$ e $A \cap B$.

Solução. $A \cup B = \{1, 2, 3, 4, 5, 7, 8, 10, 11\}$ e $A \cap B = \{4\}$

b) $A \cup C$ e $A \cap C$.

Solução. $A \cup C = \{1, 2, 4, 5, 6, 9, 10, 11\}$ e $A \cap C = \{4, 5\}$

c) $B \cup C \in B \cap C$.

Solução. $B \cup C = \{3, 4, 5, 6, 7, 8, 9, 11\}$ e $B \cap C = \{4, 11\}$

Seja $U = \{1, 2, \cdots, 11\}$ o conjunto universo dos conjuntos considerados

$$A = \{1, 2, 4, 5, 10\}, \quad B = \{3, 4, 7, 8, 11\}, \quad C = \{4, 5, 6, 9, 11\}.$$

- d) A^c , B^c e C^c .
- **Solução.** $A^c = \{\}, B^c = \{\}$ e $C^c = \{\}$
- e) A B, A C e B C..
- **Solução.** $A B = \{\}, A C = \{\} \in B C = \{\}$
- f) $A \times C$, $A \times B$, $B \times C$.
- **Solução.** $A \times C = \{\}, A \times B = \{\} \in B \times C = \{\}$

Questão 3

Seja $U = \{1, 2, \dots, 11\}$ o conjunto universo dos conjuntos considerados

$$A = \{1, 2, 4, 5, 10\}, \quad B = \{3, 4, 7, 8, 11\}, \quad C = \{4, 5, 6, 9, 11\}.$$

d)
$$A^c$$
, B^c e C^c .

Solução.
$$A^c = U - A = \{3, 6, 7, 8, 9, 11\},$$

$$B^c = U - B = \{1, 2, 5, 6, 9, 10\} \text{ e } C^c = U - C = \{1, 2, 3, 7, 8, 10\}$$

e)
$$A - B$$
, $A - C$ e $B - C$..

Solução.
$$A - B = \{1, 2, 5, 10\}, A - C = \{1, 2, 10\}$$
 e

$$B-C=\{3,7,8\}$$

f)
$$A \times C$$
, $A \times B$, $B \times C$.

Solução.
$$A \times C =$$

$$\{(1,4),(1,5),(1,6),(1,9),(1,11),(2,4),(2,5),(2,6),(2,9),(2,11),$$

$$(4,4), (4,5), (4,6), (4,9), (4,11), (5,4), (5,5), (5,6), (5,9), (5,11), (10,4), (10,5), (10,6), (10,9), (10,11)$$

Seja $U = \{1, 2, \dots, 11\}$ o conjunto universo dos conjuntos considerados

$$A = \{1, 2, 4, 5, 10\}, B = \{3, 4, 7, 8, 11\}, C = \{4, 5, 6, 9, 11\}.$$

f)
$$A \times C$$
, $A \times B$, $B \times C$.

Solução.
$$A \times B =$$

$$\{(1,3),(1,4),(1,7),(1,8),(1,11),(2,3),(2,4),(2,7),(2,8),(2,11),(4,3),(4,4),(4,7),(4,8),(4,11),(5,3),(5,4),(5,7),(5,8),(5,11),(10,3),(10,4),(10,7),(10,8),(10,11)\}$$

$$(10,3), (10,4), (10,7), (10,8), (10,11)$$

$$B \times C =$$

$$\{(3,4), (3,5), (3,6), (3,9), (3,11), (4,4), (4,5), (4,6), (4,9), (4,11), (7,4), (7,5), (7,6), (7,9), (7,11), (8,4), (8,5), (8,6), (8,9), (8,11), (8,1), (8$$

Questão 4

Mostre que as igualdades entre os conjuntos abaixo, usando as definições de conjunto união, interseção, complementar relativo e absoluto:

- a) $(A \cup B \cup C)^c = A^c \cap B^c \cap C^c$.
- b) $A \subseteq B$ se e somente se $B^c \subseteq A^c$ (PARA CASA).

Conjuntos

Questão 4

Mostre que as igualdades entre os conjuntos abaixo, usando as definições de conjunto união, interseção, complementar relativo e absoluto:

a)
$$(A \cup B \cup C)^c = A^c \cap B^c \cap C^c$$
.

Solução. Vamos provar que $(A \cup B \cup C)^c \subset A^c \cap B^c \cap C^c$.

Questão 4

Mostre que as igualdades entre os conjuntos abaixo, usando as definições de conjunto união, interseção, complementar relativo e absoluto:

a)
$$(A \cup B \cup C)^c = A^c \cap B^c \cap C^c$$
.

Solução. Vamos provar que $(A \cup B \cup C)^c \subset A^c \cap B^c \cap C^c$.

Se
$$x \in (A \cup B \cup C)^c$$

Questão 4

Mostre que as igualdades entre os conjuntos abaixo, usando as definições de conjunto união, interseção, complementar relativo e absoluto:

a)
$$(A \cup B \cup C)^c = A^c \cap B^c \cap C^c$$
.

Solução. Vamos provar que $(A \cup B \cup C)^c \subset A^c \cap B^c \cap C^c$.

Se $x \in (A \cup B \cup C)^c$ então $x \notin A \cup B \cup C$.

Conjuntos

Questão 4

Mostre que as igualdades entre os conjuntos abaixo, usando as definições de conjunto união, interseção, complementar relativo e absoluto:

a) $(A \cup B \cup C)^c = A^c \cap B^c \cap C^c$. **Solução.** Vamos provar que $(A \cup B \cup C)^c \subset A^c \cap B^c \cap C^c$. Se $x \in (A \cup B \cup C)^c$ então $x \notin A \cup B \cup C$. Portanto, $x \notin A, x \notin B$ e *x* ∉ *C*

Conjuntos

Questão 4

Mostre que as igualdades entre os conjuntos abaixo, usando as definições de conjunto união, interseção, complementar relativo e absoluto:

a)
$$(A \cup B \cup C)^c = A^c \cap B^c \cap C^c$$
.
Solução. Vamos provar que $(A \cup B \cup C)^c \subset A^c \cap B^c \cap C^c$.
Se $x \in (A \cup B \cup C)^c$ então $x \notin A \cup B \cup C$. Portanto, $x \notin A, x \notin B$ e $x \notin C$, isto é, $x \in A^c, x \in B^c$ e $x \in C^c$

Questão 4

Mostre que as igualdades entre os conjuntos abaixo, usando as definições de conjunto união, interseção, complementar relativo e absoluto:

a)
$$(A \cup B \cup C)^c = A^c \cap B^c \cap C^c$$
.

Solução. Vamos provar que $(A \cup B \cup C)^c \subset A^c \cap B^c \cap C^c$.

Se $x \in (A \cup B \cup C)^c$ então $x \notin A \cup B \cup C$. Portanto, $x \notin A, x \notin B$

Questão 4

Mostre que as igualdades entre os conjuntos abaixo, usando as definições de conjunto união, interseção, complementar relativo e absoluto:

a)
$$(A \cup B \cup C)^c = A^c \cap B^c \cap C^c$$
.

Solução. Vamos provar que $(A \cup B \cup C)^c \subset A^c \cap B^c \cap C^c$. Se $x \in (A \cup B \cup C)^c$ então $x \notin A \cup B \cup C$. Portanto, $x \notin A, x \notin B$ e $x \notin C$, isto é, $x \in A^c$, $x \in B^c$ e $x \in C^c$. Logo, $x \in A^c \cap B^c \cap C^c$. Assim.

$$(A \cup B \cup C)^c \subset A^c \cap B^c \cap C^c$$

Questão 4

Mostre que as igualdades entre os conjuntos abaixo, usando as definições de conjunto união, interseção, complementar relativo e absoluto:

a)
$$(A \cup B \cup C)^c = A^c \cap B^c \cap C^c$$
.

Solução. Vamos provar que $(A \cup B \cup C)^c \subset A^c \cap B^c \cap C^c$.

Se $x \in (A \cup B \cup C)^c$ então $x \notin A \cup B \cup C$. Portanto, $x \notin A, x \notin B$ e $x \notin C$, isto é, $x \in A^c$, $x \in B^c$ e $x \in C^c$. Logo, $x \in A^c \cap B^c \cap C^c$. Assim,

$$(A \cup B \cup C)^c \subset A^c \cap B^c \cap C^c$$

Agora, vamos provar que $A^c \cap B^c \cap C^c \subset (A \cup B \cup C)^c$.

Questão 4

Mostre que as igualdades entre os conjuntos abaixo, usando as definições de conjunto união, interseção, complementar relativo e absoluto:

a) $(A \cup B \cup C)^c = A^c \cap B^c \cap C^c$.

Solução. Vamos provar que $(A \cup B \cup C)^c \subset A^c \cap B^c \cap C^c$. Se $x \in (A \cup B \cup C)^c$ então $x \notin A \cup B \cup C$. Portanto, $x \notin A, x \notin B$ e $x \notin C$, isto é, $x \in A^c$, $x \in B^c$ e $x \in C^c$. Logo, $x \in A^c \cap B^c \cap C^c$. Assim,

$$(A \cup B \cup C)^c \subset A^c \cap B^c \cap C^c$$

Agora, vamos provar que $A^c \cap B^c \cap C^c \subset (A \cup B \cup C)^c$. Se $x \in A^c \cap B^c \cap C^c$

Conjuntos

Questão 4

Mostre que as igualdades entre os conjuntos abaixo, usando as definições de conjunto união, interseção, complementar relativo e absoluto:

a)
$$(A \cup B \cup C)^c = A^c \cap B^c \cap C^c$$
.

Solução. Vamos provar que $(A \cup B \cup C)^c \subset A^c \cap B^c \cap C^c$. Se $x \in (A \cup B \cup C)^c$ então $x \notin A \cup B \cup C$. Portanto, $x \notin A, x \notin B$ e $x \notin C$, isto é, $x \in A^c$, $x \in B^c$ e $x \in C^c$. Logo, $x \in A^c \cap B^c \cap C^c$. Assim.

$$(A \cup B \cup C)^c \subset A^c \cap B^c \cap C^c$$

Agora, vamos provar que $A^c \cap B^c \cap C^c \subset (A \cup B \cup C)^c$. Se $x \in A^c \cap B^c \cap C^c$, então $x \in A^c, x \in B^c$ e $x \in C^c$.

Questão 4

Mostre que as igualdades entre os conjuntos abaixo, usando as definições de conjunto união, interseção, complementar relativo e absoluto:

a)
$$(A \cup B \cup C)^c = A^c \cap B^c \cap C^c$$
.

Solução. Vamos provar que $(A \cup B \cup C)^c \subset A^c \cap B^c \cap C^c$. Se $x \in (A \cup B \cup C)^c$ então $x \notin A \cup B \cup C$. Portanto, $x \notin A, x \notin B$

e $x \notin C$, isto é, $x \in A^c$, $x \in B^c$ e $x \in C^c$. Logo, $x \in A^c \cap B^c \cap C^c$. Assim,

$$(A \cup B \cup C)^c \subset A^c \cap B^c \cap C^c$$

Agora, vamos provar que $A^c \cap B^c \cap C^c \subset (A \cup B \cup C)^c$. Se $x \in A^c \cap B^c \cap C^c$, então $x \in A^c, x \in B^c$ e $x \in C^c$. Assim. $x \notin A, x \notin B \in x \notin C$.

Conjuntos

Questão 4

Mostre que as igualdades entre os conjuntos abaixo, usando as definições de conjunto união, interseção, complementar relativo e absoluto:

a)
$$(A \cup B \cup C)^c = A^c \cap B^c \cap C^c$$
.

Solução. Vamos provar que $(A \cup B \cup C)^c \subset A^c \cap B^c \cap C^c$. Se $x \in (A \cup B \cup C)^c$ então $x \notin A \cup B \cup C$. Portanto, $x \notin A, x \notin B$ e $x \notin C$, isto é, $x \in A^c$, $x \in B^c$ e $x \in C^c$. Logo, $x \in A^c \cap B^c \cap C^c$. Assim,

$$(A \cup B \cup C)^c \subset A^c \cap B^c \cap C^c$$

Agora, vamos provar que $A^c \cap B^c \cap C^c \subset (A \cup B \cup C)^c$. Se $x \in A^c \cap B^c \cap C^c$, então $x \in A^c, x \in B^c$ e $x \in C^c$. Assim, $x \notin A, x \notin B$ e $x \notin C$, isto é, $x \notin A \cup B \cup C$.

Conjuntos

Lógica Matemática

Questão 4

Mostre que as igualdades entre os conjuntos abaixo, usando as definições de conjunto união, interseção, complementar relativo e absoluto:

a) $(A \cup B \cup C)^c = A^c \cap B^c \cap C^c$.

Solução. Vamos provar que $(A \cup B \cup C)^c \subset A^c \cap B^c \cap C^c$. Se $x \in (A \cup B \cup C)^c$ então $x \notin A \cup B \cup C$. Portanto, $x \notin A, x \notin B$ e $x \notin C$, isto é, $x \in A^c$, $x \in B^c$ e $x \in C^c$. Logo, $x \in A^c \cap B^c \cap C^c$. Assim.

$$(A \cup B \cup C)^c \subset A^c \cap B^c \cap C^c$$

Agora, vamos provar que $A^c \cap B^c \cap C^c \subset (A \cup B \cup C)^c$. Se $x \in A^c \cap B^c \cap C^c$, então $x \in A^c, x \in B^c$ e $x \in C^c$. Assim, $x \notin A, x \notin B$ e $x \notin C$, isto é, $x \notin A \cup B \cup C$. Logo, $x \in (A \cup B \cup C)^c$.

Mostre que as igualdades entre os conjuntos abaixo, usando as definições de conjunto união, interseção, complementar relativo e absoluto:

a)
$$(A \cup B \cup C)^c = A^c \cap B^c \cap C^c$$
.

Solução. Vamos provar que $(A \cup B \cup C)^c \subset A^c \cap B^c \cap C^c$. Se $x \in (A \cup B \cup C)^c$ então $x \notin A \cup B \cup C$. Portanto, $x \notin A, x \notin B$ e $x \notin C$, isto é, $x \in A^c$, $x \in B^c$ e $x \in C^c$. Logo, $x \in A^c \cap B^c \cap C^c$. Assim,

$$(A \cup B \cup C)^c \subset A^c \cap B^c \cap C^c$$

Agora, vamos provar que $A^c \cap B^c \cap C^c \subset (A \cup B \cup C)^c$. Se $x \in A^c \cap B^c \cap C^c$, então $x \in A^c, x \in B^c$ e $x \in C^c$. Assim, $x \notin A, x \notin B$ e $x \notin C$, isto é, $x \notin A \cup B \cup C$. Logo, $x \in (A \cup B \cup C)^c$. Portanto.

$$A^c \cap B^c \cap C^c \subset (A \cup B \cup C)^c$$
.

Relações

Questão 5

Seja $U=\{1,2,\cdots,11\}$ o conjunto universo dos conjuntos considerados

$$A = \{1, 2, 4, 5, 10\}, B = \{3, 4, 7, 8, 11\}, C = \{4, 5, 6, 9, 11\}.$$

Considere o produto cartesiano $A \times C$ e apresente a relação definida pelos pares que apresentam na segunda ordenada um número par. Em seguida apresente o domínio e a imagem da relação. Por fim, apresente a relação inversa.

Questão 5

Seja $U = \{1, 2, \cdots, 11\}$ o conjunto universo dos conjuntos considerados

$$A = \{1, 2, 4, 5, 10\}, B = \{3, 4, 7, 8, 11\}, C = \{4, 5, 6, 9, 11\}.$$

Considere o produto cartesiano $A \times C$ e apresente a relação definida pelos pares que apresentam na segunda ordenada um número par. Em seguida apresente o domínio e a imagem da relação. Por fim, apresente a relação inversa.

Solução. Primeiramente calculamos $A \times C$.

$$A \times C =$$
 {(1,4), (1,5), (1,6), (1,9), (1,11), (2,4), (2,5), (2,6), (2,9), (2,11), (4,4), (4,5), (4,6), (4,9), (4,11), (5,4), (5,5), (5,6), (5,9), (5,11), (10,4), (10,5), (10,6), (10,9), (10,11)}.

Questão 5

Seja $U = \{1, 2, \dots, 11\}$ o conjunto universo dos conjuntos considerados

$$A = \{1, 2, 4, 5, 10\}, B = \{3, 4, 7, 8, 11\}, C = \{4, 5, 6, 9, 11\}.$$

Considere o produto cartesiano $A \times C$ e apresente a relação definida pelos pares que apresentam na segunda ordenada um número par. Em seguida apresente o domínio e a imagem da relação. Por fim, apresente a relação inversa.

Agora pegamos os pares que pertencem a relação.

$$R = \{(x, y) \in A \times C | y \text{ \'e par} \}$$

Questão 5

Seja $U=\{1,2,\cdots,11\}$ o conjunto universo dos conjuntos considerados

$$A = \{1, 2, 4, 5, 10\}, B = \{3, 4, 7, 8, 11\}, C = \{4, 5, 6, 9, 11\}.$$

Considere o produto cartesiano $A \times C$ e apresente a relação definida pelos pares que apresentam na segunda ordenada um número par. Em seguida apresente o domínio e a imagem da relação. Por fim, apresente a relação inversa.

Agora pegamos os pares que pertencem a relação.

$$R = \{(x,y) \in A \times C | y \in par\} = \{(1,4), (2,4), (4,4), (5,4), (10,4), (1,6), (2,6), (4,6), (5,6), (10,6).\}$$

Questão 5

Seja $U = \{1, 2, \cdots, 11\}$ o conjunto universo dos conjuntos considerados

$$A = \{1, 2, 4, 5, 10\}, \quad B = \{3, 4, 7, 8, 11\}, \quad C = \{4, 5, 6, 9, 11\}.$$

Considere o produto cartesiano $A \times C$ e apresente a relação definida pelos pares que apresentam na segunda ordenada um número par. Em seguida apresente o domínio e a imagem da relação. Por fim, apresente a relação inversa.

Agora pegamos os pares que pertencem a relação.

$$R = \{(x,y) \in A \times C | y \in par\} = \{(1,4),(2,4),(4,4),(5,4),(10,4),(1,6),(2,6),(4,6),(5,6),(10,6).\}$$

Em seguida, calculemos o Domínio e a Imagem da Relação.

$$D_R = \{\} e I_R = \{\}.$$

Questão 5

Seja $U = \{1, 2, \dots, 11\}$ o conjunto universo dos conjuntos considerados

$$A=\{1,2,4,5,10\},\quad B=\{3,4,7,8,11\},\quad C=\{4,5,6,9,11\}.$$

Considere o produto cartesiano $A \times C$ e apresente a relação definida pelos pares que apresentam na segunda ordenada um número par. Em seguida apresente o domínio e a imagem da relação. Por fim, apresente a relação inversa.

Agora pegamos os pares que pertencem a relação.

$$R = \{(x,y) \in A \times C | y \in par\} = \{(1,4), (2,4), (4,4), (5,4), (10,4), (1,6), (2,6), (4,6), (5,6), (10,6).\}$$

Em seguida, calculemos o Domínio e a Imagem da Relação.

$$D_R = \{1, 2, 4, 5, 10\} \text{ e } I_R = \{\}.$$

Questão 5

Seja $U = \{1, 2, \cdots, 11\}$ o conjunto universo dos conjuntos considerados

$$A = \{1, 2, 4, 5, 10\}, B = \{3, 4, 7, 8, 11\}, C = \{4, 5, 6, 9, 11\}.$$

Considere o produto cartesiano $A \times C$ e apresente a relação definida pelos pares que apresentam na segunda ordenada um número par. Em seguida apresente o domínio e a imagem da relação. Por fim, apresente a relação inversa.

Agora pegamos os pares que pertencem a relação.

$$R = \{(x,y) \in A \times C | y \in par\} = \{(1,4), (2,4), (4,4), (5,4), (10,4), (1,6), (2,6), (4,6), (5,6), (10,6).\}$$

Em seguida, calculemos o Domínio e a Imagem da Relação.

$$D_R = \{1, 2, 4, 5, 10\} \text{ e } I_R = \{4, 6\}.$$

$$A = \{1, 2, 4, 5, 10\}, B = \{3, 4, 7, 8, 11\}, C = \{4, 5, 6, 9, 11\}.$$

Considere o produto cartesiano $A \times C$ e apresente a relação definida pelos pares que apresentam na segunda ordenada um número par. Em seguida apresente o domínio e a imagem da relação. Por fim, apresente a relação inversa.

Agora pegamos os pares que pertencem a relação.

$$R = \{(x,y) \in A \times C | y \text{ \'e par}\} =$$

$$\{(1,4),(2,4),(4,4),(5,4),(10,4),(1,6),(2,6),(4,6),(5,6),(10,6).\}$$

Em seguida, calculemos o Domínio e a Imagem da Relação.

$$D_R = \{1, 2, 4, 5, 10\} \text{ e } I_R = \{4, 6\}.$$

Por fim, calculemos a relação inversa.

$$R^{-1} = \{(y, x) \in C \times A | (x, y \in R)\}$$

Relações

000000000

Lógica Matemática

$$A = \{1, 2, 4, 5, 10\}, B = \{3, 4, 7, 8, 11\}, C = \{4, 5, 6, 9, 11\}.$$

Considere o produto cartesiano $A \times C$ e apresente a relação definida pelos pares que apresentam na segunda ordenada um número par. Em seguida apresente o domínio e a imagem da relação. Por fim, apresente a relação inversa.

Agora pegamos os pares que pertencem a relação.

$$R = \{(x, y) \in A \times C | y \text{ \'e par}\} = 0$$

$$\{(1,4),(2,4),(4,4),(5,4),(10,4),(1,6),(2,6),(4,6),(5,6),(10,6).\}$$

Em seguida, calculemos o Domínio e a Imagem da Relação.

$$D_R = \{1, 2, 4, 5, 10\} \text{ e } I_R = \{4, 6\}.$$

Por fim, calculemos a relação inversa.

$$R^{-1} = \{(y,x) \in C \times A | (x,y \in R)\} = \{(4,1), (4,2), (4,4), (4,5), (4,10), (6,1), (6,2), (6,4), (6,5), (6,10).\}$$

Questão 6

Usando o princípio da indução, mostre a igualdade abaixo:

Para $n \in \mathbb{N}$ temos

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$
.

Questão 6

Usando o princípio da indução, mostre a igualdade abaixo: Para $n \in \mathbb{N}$ temos

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$
.

Solução. 1. Verifiquemos que P(1) é verdadeira.

Questão 6

Usando o princípio da indução, mostre a igualdade abaixo:

Para $n \in \mathbb{N}$ temos

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}.$$

Solução. 1. Verifiquemos que P(1) é verdadeira.

Para n = 1, L.E.: 1

Questão 6

Usando o princípio da indução, mostre a igualdade abaixo: Para $n \in \mathbb{N}$ temos

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}.$$

Solução. 1. Verifiquemos que P(1) é verdadeira.

Para n = 1, L.E.: 1 e L.D.: $\frac{n(n+1)}{2} = \frac{1(1+1)}{2} = 1$. Portanto, é verdadeiro.

Questão 6

Usando o princípio da indução, mostre a igualdade abaixo: Para $n \in \mathbb{N}$ temos

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}.$$

Solução. 1. Verifiquemos que P(1) é verdadeira.

Para n = 1, L.E.: 1 e L.D.: $\frac{n(n+1)}{2} = \frac{1(1+1)}{2} = 1$. Portanto, é verdadeiro.

2. Admitamos que P(k), com $k \in \mathbb{N}$, seja verdadeira:

Questão 6

Usando o princípio da indução, mostre a igualdade abaixo:

Para $n \in \mathbb{N}$ temos

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}.$$

Solução. 1. Verifiquemos que P(1) é verdadeira.

Para n = 1, L.E.: 1 e L.D.: $\frac{n(n+1)}{2} = \frac{1(1+1)}{2} = 1$. Portanto, é verdadeiro.

2. Admitamos que P(k), com $k \in \mathbb{N}$, seja verdadeira:

$$1+2+3+\cdots+k=\frac{k(k+1)}{2}$$
.

Questão 6

Lógica Matemática

Usando o princípio da indução, mostre a igualdade abaixo: Para $n \in \mathbb{N}$ temos

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$
.

Solução. 1. Verifiquemos que P(1) é verdadeira.

Para n = 1, L.E.: 1 e L.D.: $\frac{n(n+1)}{2} = \frac{1(1+1)}{2} = 1$. Portanto. é verdadeiro.

2. Admitamos que P(k), com $k \in \mathbb{N}$, seja verdadeira:

$$1+2+3+\cdots+k=\frac{k(k+1)}{2}$$
.

3. Provemos que decorre a validade de P(k+1) a partir de 2. Ou seja,

$$1+2+3+\cdots+k+k+1=\frac{(k+1)(k+2)}{2}.$$

Usando o princípio da indução, mostre a igualdade abaixo:

Para $n \in \mathbb{N}$ temos

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}.$$

Solução. Temos que

$$1+2+3+\cdots+k=\frac{k(k+1)}{2}$$
.

Usando o princípio da indução, mostre a igualdade abaixo:

Para $n \in \mathbb{N}$ temos

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}.$$

Solução. Temos que

$$1+2+3+\cdots+k=\frac{k(k+1)}{2}$$
.

Somando (k+1) a igualdade acima, temos:

$$1+2+3+\cdots+k+k+1=\frac{k(k+1)}{2}+k+1.$$

Usando o princípio da indução, mostre a igualdade abaixo:

Para $n \in \mathbb{N}$ temos

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$
.

Solução. Temos que

$$1+2+3+\cdots+k=\frac{k(k+1)}{2}$$
.

Somando (k+1) a igualdade acima, temos:

$$1+2+3+\cdots+k+1=\frac{k(k+1)}{2}+k+1=\frac{k(k+1)+2(k+1)}{2}.$$

Usando o princípio da indução, mostre a igualdade abaixo: Para $n \in \mathbb{N}$ temos

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$
.

Solução. Temos que

$$1+2+3+\cdots+k=\frac{k(k+1)}{2}$$
.

Somando (k+1) a igualdade acima, temos:

$$1+2+3+\cdots+k+k+1 = \frac{k(k+1)}{2}+k+1 = \frac{k(k+1)+2(k+1)}{2} = \frac{(k+1)(k+2)}{2}.$$

Para $n \in \mathbb{N}$ temos

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$
.

Solução. Temos que

$$1+2+3+\cdots+k=\frac{k(k+1)}{2}$$
.

Somando (k+1) a igualdade acima, temos:

$$1+2+3+\cdots+k+k+1 = \frac{k(k+1)}{2}+k+1 = \frac{k(k+1)+2(k+1)}{2} = \frac{(k+1)(k+2)}{2}.$$

Portanto, a propriedade vale para todo n

Usando o princípio da indução, mostre a igualdade abaixo:

Para todos os inteiros $n \ge 2$ temos

$$\frac{1}{2 \cdot 1} + \frac{1}{3 \cdot 2} + \frac{1}{4 \cdot 3} + \frac{1}{5 \cdot 4} + \dots + \frac{1}{n(n-1)} = 1 - \frac{1}{n}$$

Thank you

Lógica Matemática

Thank you for your attention!