

Voda

Makroskopske fizikalne lastnosti vode so posebne!

- temperatura vrelišča in tališča (odstopa glede na H₂S ...)
- gostota (nenavadna temperaturna odvisnost)
- specifična toplota (ena najvišjih sploh)
- površinska napetost (velika na večini materialov)
- viskoznost (velika za snov s tako majhno M)
- absorpcija EMV (v zelo različnih delih spektra: IR, MV)
- veliko različnih oblik v trdnem agregatnem stanju

Zakaj ima voda vse te lastnosti?

Molekule vode so polarne

Naboj elektronov ni enakomerno porazdeljen

 \rightarrow električni dipolni moment (oznake u,p,d, μ)

El. dipolni moment povzroča urejanje molekul v zunanjem el. polju:

- plašč okoli ionov
- sledenje polju EM valovanja
 - → absorpcija

Vodikove vezi

- Strukturiranje vode: pri 20°C je tvorjenih kar 80% možnih H-vezi
- Ključne za vezavo vode na površine biomolekul, delovanje kanalčkov, ...

Lipidi

- Več kot 1000 različnih vrst
 - Fosfolipidi, steroli, sfingolipidi, glikolipidi, ...
- Lastnosti
 - Amfifilne molekule (polaren in nepolaren del)
 - Pogosto zwitter-ionska oblika, el. naboj in dipol
- V vodi agregirajo v dvosloje (membrane) in micele
 - repi zavzemajo velik konformacijski prostor
 - membrane so tekoče (hitra difuzija znotraj sloja)
 - nizka propustnost za ione
- Vloge
 - kompartmentalizacija prostora
 - vir energije

Nukleinske kisline

- Polimer iz nukleotidov, ki jih sestavljajo
 - baze (A,G,T,C)
 - sladkorji
 - fosfat
- Ključne močne interakcije
 - zelo velik el. naboj
 - vodikove vezi osnova za enolično podvojevanje
- Vloge
 - DNA = shramba genetske informacije
 - RNA = prenosnik genetske informacije
 - + ...

Proteini

- Polimeri iz aminokislin
 - 20 vrst AK z različnimi lastnostmi (polarnost, naboj, velikost, rigidnost ...)
 - zaporedje AK (1D/I. struktura) določa jakosti interakcij znotraj proteina in z okolico ter s tem 3D strukturo proteina (II.-III.)
- Izjemno raznolike vloge v celici
 - zgradba (citoskelet, kontakti)
 - transport snovi (motorji, črpalke, kanalčki)
 - katalizatorji reakcij (encimi)
 - prenašanje signalov (citokini, receptorji, ligandi, kanalčki)
 - kontrola aktivnosti (transkripcijski faktorji)

Polisaharidi

• Biopolimeri iz sladkornih enot

obramba in odstranjevanje tujkov

- ekstremno polarni
- z veliko gostoto naboja
- vežejo veliko vode

glavni vir energije

• ogrodje struktur

komunikacija

• pritrditev celic

Branched heteropolysaccharide

Lipoproteini

- Nanometrske supramolekularne strukture z lipofilno notranjostjo
 - lipidni monosloj z apolipoproteini
 - znotraj trigliceredi in esterificiran holesterol
 - prenos lipofilnih snovi po telesu: HDL, LDL, VLDL, hilomikroni

V: Kako velike (majhne) so molekule?

B. Franklin (1773): olje ene jedilne žlice se razleze preko polovice ribnika ...

Velikost povprečnega proteina?