

Un Ejemplo

Gastos y características socio-económicas de las Familias

variables:

Gastos en Alimentación

Gastos en Vestidos

Gastos en Vivienda

Gastos en Transporte

- Gastos en Sanidad

Gastos en Educación

- Número de miembros del hogar

- Nivel de ingresos del hogar

- Nivel de estudios del sustentador pral

- Edad media de los miembros del hogar

- Número de miembros mayores de edad

- Numero de perceptores del hogar

-

¿Existe alguna relación de dependencia entre los hábitos de consumo de los hogares y las características socioeconómicas de los mismos?

Análisis de Correlación Canónica

5/7/2007

Dpto. de Estadística Económica, Estructura Económica y O.E.I.

Análisis de Correlación Canónica Objetivo

Mediante regresión lineal univariante se trata de explicar una variable Y, (variable dependiente, endógena o explicada), a partir devarias variables X_{ν} X_2 ..., X_p , (variables independientes, exógenas o explicativas), mediante una relación lineal, en el caso general, de la forma:

$$\hat{Y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p$$

o, si las variables estuviesen centradas en el origen:

$$\hat{Y} = \beta_1 X_1 + \beta_2 X_2 + ... + \beta_n X_n$$

El Análisis de Correlación Canónica trata de extender esta idea cuando, además del conjunto de variables exógenas $\{X_{l}, X_{2}, ..., X_{p}\}$ hay, no sólo una variable Y, sino un conjunto de variables endógenas $\{Y_1, Y_2, ..., Y_a\}$, para lo que trata de encontrar unos coeficientes $\alpha_1^{(k)}, \alpha_2^{(k)}, ..., \alpha_q^{(k)}$ $y\beta_1^{(k)}, \beta_2^{(k)}, ..., \beta_p^{(k)}$, que proporcionen las mejores relaciones de aproximación del tipo:

$$\alpha_1^{(k)}Y_1 + \alpha_2^{(k)}Y_2 + \ldots + \alpha_q^{(k)}Y_q = Y^{(k)} \cong X^{(k)} = \beta_1^{(k)}X_1 + \beta_2^{(k)}X_2 + \ldots + \beta_p^{(k)}X_p$$

5/7/2007

Variables canónicas

• Notando por $\alpha^{(k)}$ y $\beta^{(k)}$ los correspondientes vectores columna de coeficientes que intervienen abajo, el problema del Análisis de Correlación Canónica será encontrar una serie de nuevas variables tipificadas e incorrelacionadas en cada uno de los dos grupos, $Y^{(k)}$ y $X^{(k)}$, que llamaremos *variables canónicas*.

$$\begin{split} Y^{(k)} &= {\alpha^{(k)}}^{'} y = {\alpha_1^{(k)}} Y_1 + {\alpha_2^{(k)}} Y_2 + \ldots + {\alpha_q^{(k)}} Y_q \\ X^{(k)} &= {\beta^{(k)}}^{'} x = {\beta_1^{(k)}} X_1 + {\beta_2^{(k)}} X_2 + \ldots + {\beta_p^{(k)}} X_p \end{split}$$

de forma que sea máxima su correlación en términos absolutos (el cuadrado del coeficiente de correlación lineal):

Max
$$\rho^2(Y^{(k)}, X^{(k)})$$

Análisis de Correlación Canónica

N° 3 5/7/2007

Dpto. de Estadística Económica, Estructura Económica y O.E.I.
© Fco. Javier Callealta Barroso

Análisis de Correlación Canónica

Cálculo de la primera pareja de variables canónicas

- Notas previas:
 - Al ser centradas las variables Y₁, Y₂, ..., Y_q y X₁, X₂, ..., X_p, lo serán en consecuencia las nuevas variables canónicas y , ya que son combinaciones lineales sin términos independientes de las anteriores
 - La matriz de varianzas y covarianzas de las variables toma la forma:

$$\Sigma = E[(x; y)(x; y)'] = E\begin{bmatrix} xx' & xy' \\ yx' & yy' \end{bmatrix} = \begin{bmatrix} E[xx'] & E[xy'] \\ E[yx'] & E[yy'] \end{bmatrix} = \begin{bmatrix} \Sigma_x & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_y \end{bmatrix}$$

 Y al exigirles como condición que se encuentren tipificadas e incorrelacionadas, estaremos imponiendo las siguientes condiciones sobre los respectivos parámetros:

$$\begin{aligned} & Var(Y^{(k)}) = 1 & \Leftrightarrow E\left[\left(\alpha^{(k)} \ y\right)\left(\alpha^{(k)} \ y\right)^{\cdot}\right] = \alpha^{(k)} E\left[yy'\right] \alpha^{(k)} = 1 \Leftrightarrow \alpha^{(k)} \Sigma_{y} \alpha^{(k)} = 1 \\ & Cov(Y^{(l)}, Y^{(k)}) = 0 \Leftrightarrow E\left[\left(\alpha^{(l)} \ y\right)\left(\alpha^{(k)} \ y\right)^{\cdot}\right] = \alpha^{(l)} E\left[yy'\right] \alpha^{(k)} = 0 \Leftrightarrow \alpha^{(l)} \Sigma_{y} \alpha^{(k)} = 0, \quad l \neq k \end{aligned}$$

$$Var(X^{(k)}) = 1 \Leftrightarrow E\left[(\beta^{(k)}x)(\beta^{(k)}x)\right] = \beta^{(k)}E\left[xx^{k}\right]\beta^{(k)} = 1 \Leftrightarrow \beta^{(k)}\sum_{x}\beta^{(k)} = 1$$

$$Cov(X^{(l)}, X^{(k)}) = 0 \Leftrightarrow E\left[(\beta^{(l)}x)(\beta^{(k)}x)\right] = \beta^{(l)}E\left[xx^{k}\right]\beta^{(k)} = 0 \Leftrightarrow \beta^{(l)}\sum_{x}\beta^{(k)} = 0, \quad l \neq k$$

N° 4 5/7/2007

Cálculo de la primera pareja de variables canónicas

 El coeficiente de correlación lineal de Fisher para las primeras variables canónicas será:

$$\rho^{2}(X,Y) = \frac{Cov^{2}(Y,X)}{Var(Y)\cdot Var(X)} = \frac{E^{2}[(\alpha'y)(\beta'x)']}{(\alpha'\Sigma_{\nu}\alpha)(\beta'\Sigma_{\nu}\beta)} = \frac{(\alpha'E[yx']\beta)^{2}}{(\alpha'\Sigma_{\nu}\alpha)(\beta'\Sigma_{\nu}\beta)} = \frac{(\alpha'\Sigma_{\nu}x)^{2}}{(\alpha'\Sigma_{\nu}\alpha)(\beta'\Sigma_{\nu}\beta)}$$

- por lo que el problema de obtener las primeras variables canónicas puede expresarse como sigue:
 - *Encontrar α y β tales que : Var(Y) = Var(X) = 1 y $\rho^2(X,Y)$ sea máximo o equivalentemente:

Maximizar
$$(\alpha' \Sigma_{yx} \beta)^2$$
 sujeto a las restricciones :
$$\begin{cases} \alpha' \Sigma_{y} \alpha = 1 \\ \beta' \Sigma_{x} \beta = 1 \end{cases}$$

Análisis de Correlación Canónica

N° 5 5/7/2007

Dpto. de Estadística Económica, Estructura Económica y O.E.I. © Feo. Javier Callealla Barroso

Análisis de Correlación Canónica

Cálculo de la primera pareja de variables canónicas

$$\begin{split} L &= (\alpha' \Sigma_{yx} \beta)^2 - \lambda \cdot (\alpha' \Sigma_y \alpha - 1) - \mu \cdot (\beta' \Sigma_x \beta - 1) \\ &\frac{\partial L}{\partial \alpha} = 2(\alpha' \Sigma_{yx} \beta) \Sigma_{yx} \beta - 2 \lambda \cdot \Sigma_y \alpha = 0 \Leftrightarrow (\alpha' \Sigma_{yx} \beta)^2 = \lambda \alpha' \Sigma_y \alpha = \lambda \\ &\frac{\partial L}{\partial \beta} = 2(\alpha' \Sigma_{yx} \beta) \alpha' \Sigma_{yx} - 2 \mu \beta' \Sigma_x = 0 \Leftrightarrow (\alpha' \Sigma_{yx} \beta)^2 = \mu \beta' \Sigma_x \beta = \mu \end{split} \\ \Rightarrow \lambda = \mu = (\alpha' \Sigma_{yx} \beta)^2 = \rho^2 \end{split}$$

· de donde

$$\Sigma_{yx}\beta = (\alpha'\Sigma_{yx}\beta)\Sigma_{y}\alpha \Leftrightarrow \alpha = \frac{\sum_{y}^{-1}\Sigma_{yx}\beta}{(\alpha'\Sigma_{yx}\beta)}$$

$$\alpha'\Sigma_{yx} = (\alpha'\Sigma_{yx}\beta)\beta'\Sigma_{x} \Leftrightarrow \Sigma_{xy}\alpha = (\alpha'\Sigma_{yx}\beta)\Sigma_{x}\beta \Leftrightarrow \beta = \frac{\sum_{x}^{-1}\Sigma_{xy}\alpha}{(\alpha'\Sigma_{yx}\beta)}$$

lo que conduce a

$$\beta' \Sigma_{xy} \Sigma_{y}^{-1} \Sigma_{yx} \Sigma_{x}^{-1} = (\alpha' \Sigma_{yx} \beta)^{2} \beta' = \rho^{2} \beta' \Leftrightarrow (\Sigma_{x}^{-1} \Sigma_{xy} \Sigma_{y}^{-1} \Sigma_{yx}) \beta = \rho^{2} \beta'$$
$$(\Sigma_{y}^{-1} \Sigma_{yx} \Sigma_{x}^{-1} \Sigma_{xy}) \alpha = (\alpha' \Sigma_{yx} \beta)^{2} \alpha = \rho^{2} \alpha$$

 $N^o 6$

Cálculo de la primera pareja de variables canónicas

• Por lo que:

 β es un autovector de la matriz $\Sigma_x^{-1} \Sigma_{xy} \Sigma_y^{-1} \Sigma_{yx}$ α es un autovector de la matriz $\Sigma_y^{-1} \Sigma_{yx} \Sigma_x^{-1} \Sigma_{xy} \Sigma_x$

- esas matrices, de dimensiones p·p y q·q respectivamente tienen el mismo número (Min(p,q)) de autovalores no nulos (ρ^2) y coinciden dos a dos
- se define el primer coeficiente de correlación canónica como el coeficiente de correlación lineal simple de Fisher, ρ, entre dichas dos primeras variables canónicas
- Además,

$$\alpha = \frac{\sum_{y}^{-1} \sum_{yx} \beta}{(\alpha' \sum_{yx} \beta)} = \frac{\sum_{y}^{-1} \sum_{yx} \beta}{\rho} \quad \text{y} \quad \beta = \frac{\sum_{x}^{-1} \sum_{xy} \alpha}{(\alpha' \sum_{yx} \beta)} = \frac{\sum_{x}^{-1} \sum_{xy} \alpha}{\rho}$$

Análisis de Correlación Canónica

N° 7 5/7/2007

Dpto. de Estadística Económica, Estructura Económica y O.E.I. © Feo. Javier Callealta Barroso

Análisis de Correlación Canónica

Cálculo de las sucesivas variables canónicas

• Supongamos que ya disponemos de *r-1* parejas de variables canónicas, que ordenamos matricialmente de la siguiente forma:

$$A_{(r-1)} = \begin{pmatrix} \alpha_1^{(1)} & \alpha_1^{(2)} & \dots & \alpha_1^{(r-1)} \\ \alpha_2^{(1)} & \alpha_2^{(2)} & \dots & \alpha_2^{(r-1)} \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_q^{(1)} & \alpha_q^{(2)} & \dots & \alpha_q^{(r-1)} \end{pmatrix} \quad , \quad B_{(r-1)} = \begin{pmatrix} \beta_1^{(1)} & \beta_1^{(2)} & \dots & \beta_1^{(r-1)} \\ \beta_2^{(1)} & \beta_2^{(2)} & \dots & \beta_2^{(r-1)} \\ \vdots & \vdots & \vdots & \vdots \\ \beta_p^{(1)} & \beta_p^{(2)} & \dots & \beta_p^{(r-1)} \end{pmatrix}$$

• Estas variables canónicas cumplirán, por las exigencias anteriores que sus correlaciones internas en cada grupo serán nulas; lo que podemos expresar como:

 $A'_{(r-1)}\Sigma_y A_{(r-1)} = I$ y que $B'_{(r-1)}\Sigma_x B_{(r-1)} = I$

• y que las correlaciones cruzadas con las anteriores sean nulas; lo que podemos expresar como $(\rho_0, 0, 0, 0)$

 $\vec{A}_{(r-1)} \Sigma_{yx} B_{(r-1)} = \begin{pmatrix} \rho_{(1)} & 0 & 0 \\ 0 & \rho_{(2)} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \rho_{(r-1)} \end{pmatrix}_{(r-1)\cdot (r-1)} = \mathbf{P}_{(r-1)}$

 $N^o 8$

Cálculo de las sucesivas variables canónicas

 el problema de encontrar la r-ésima pareja de variables canónicas será:

*Encontrar los vectores columnas $\alpha^{(r)}$ y $\beta^{(r)}$ tales que :

$$A'_{(r)}\Sigma_{v}A_{(r)} = I$$
, $B'_{(r)}\Sigma_{x}B_{(r)} = I$, $A'_{(r)}\Sigma_{vx}B_{(r)} = P_{(r)}$

y que hagan máximo el cuadrado de la correlación lineal ρ^2 entre las variables $X^{(r)}, Y^{(r)}$ siendo:

$$Y^{(r)} = \alpha_1^{(r)} Y_1 + \alpha_2^{(r)} Y_2 + \ldots + \alpha_q^{(r)} Y_q \quad \text{ y } \quad X^{(r)} = \beta_1^{(r)} X_1 + \beta_2^{(r)} X_2 + \ldots + \beta_p^{(r)} X_p$$

o, equivalentemente

$$\text{Maximizar } \rho_{(r)}^2 = (\alpha^{(r)} \Sigma_{yx} \beta^{(r)})^2 \quad \text{sujeto a las restricciones} : \begin{cases} A_{(r)}^{'} \Sigma_{y} A_{(r)} = I \\ B_{(r)}^{'} \Sigma_{x} B_{(r)} = I \\ A_{(r)}^{'} \Sigma_{yx} B_{(r)} = P_{(r)} \end{cases}$$

Análisis de Correlación Canónica

N° 9 5/7/2007

Dpto. de Estadística Económica, Estructura Económica y O.E.I.
© Fco. Javier Callealta Barroso

Análisis de Correlación Canónica

Cálculo de las sucesivas variables canónicas

- las nuevas parejas de variables canónicas vuelven a estar caracterizadas
 por los autovectores de las mismas matrices deducidas para la primera
 variable canónica, \(\Sigma_{x_1}^{-1}\Sigma_{x_p}\Sigma_{y_1}^{-1}\Sigma_{y_x}\Sigma_{x_1}^{-1}\Sigma_{x_p}\Sigma_{x_p}^{-1}\Sigma_{x_p}\), presentando siempre el
 mismo autovalor asociado para cada pareja.
- Así, si son $\rho_{(1)}^2 \ge \rho_{(2)}^2 \ge ... \ge \rho_{(\min(p,q))}^2 \ge 0$ los mayores autovalores de ambas matrices, las sucesivas parejas de variables canónicas serán justamente aquéllas que toman por coeficientes los autovectores asociados a los autovalores, $\rho_{(p)}^2$, de sus correspondientes matrices anteriormente deducidas, ordenadamente de mayor a menor.
- $\rho_{\text{(r)}}^2$ será pues el coeficiente de determinación entre las r-ésimas variables canónicas; por lo que se define el *r-ésimo coeficiente de correlación canónica* como el coeficiente de correlación lineal simple de Fisher, $\rho_{\text{(r)}}$, entre dichas r-ésimas variables canónicas.

N° 10 5/7/2007

Interpretación geométrica

• En el espacio de los casos, el coseno del ángulo que forma cada pareja de variables canónicas puede calcularse como:

$$\cos(\phi) = \frac{\left(Y\alpha^{(k)}\right)\left(X\beta^{(k)}\right)}{\left|Y\alpha^{(k)}\right|\left|X\beta^{(k)}\right|} \Leftrightarrow \cos^{2}(\phi) = \frac{\left(\left(Y\alpha^{(k)}\right)\left(X\beta^{(k)}\right)\right)^{2}}{\left|Y\alpha^{(k)}\right|^{2}\left|X\beta^{(k)}\right|^{2}} = \frac{\left(\left(Y\alpha^{(k)}\right)\left(X\beta^{(k)}\right)\left(X\beta^{(k)}\right)\right)^{2}}{\left(Y\alpha^{(k)}\right)\left(Y\alpha^{(k)}\right)\left(X\beta^{(k)}\right)\left(X\beta^{(k)}\right)}$$

de donde

$$\cos^{2}(\phi) = \frac{\left(\alpha^{(k)'} \frac{1}{n} (Y'X) \beta^{(k)}\right)^{2}}{\left(\alpha^{(k)'} \frac{1}{n} (Y'Y) \alpha^{(k)}\right) \left(\beta^{(k)'} \frac{1}{n} (X'X) \beta^{(k)}\right)} = \frac{\left(\alpha^{(k)'} S_{yx} \beta^{(k)}\right)^{2}}{\left(\alpha^{(k)'} S_{y}^{2} \alpha^{(k)}\right) \left(\beta^{(k)'} S_{x}^{2} \beta^{(k)}\right)} = \hat{\rho}_{(k)}^{2}$$

Análisis de Correlación Canónica

N° 11 5/7/2007

Dpto. de Estadística Económica, Estructura Económica y O.E.I.

Análisis de Correlación Canónica

Propiedades

- Las variables canónicas $(X^{(r)})$ están tipificadas y se encuentran incorrelacionadas entre sí para r \neq s. Análogamente para las $(Y^{(r)})$.
- Las parejas de variables canónicas (X^(r),Y^(s)), presentan una correlación máxima cuando r=s=min(r,s), y una correlación nula cuando r≠s.
- El cuadrado del coeficiente de correlación lineal, $\rho_{(r)}^2$, que presetan las parejas de variables canónicas $(X^{(r)},Y^{(s)})$, es su autovalor (común) asociado.
- Ese autovalor representa la proporción de varianza de $X^{(r)}$ explicada por las $\{Y_p, Y_2, ..., Y_q\}$; así como la proporción de varianza de $Y^{(r)}$ explicada por las $\{X_p, X_2, ..., X_p\}$.

Propiedades

• los coeficientes de la r-ésima pareja de variables canónicas son los autovectores ligados al mismo r-ésimo autovalor (una vez ordenados de mayor a menor) de las matrices: $\Sigma_{v}^{-1}\Sigma_{vx}\Sigma_{x}^{-1}\Sigma_{xv}$ (sus autovector son los $\alpha^{(r)}$)

 $\sum_{r}^{y_1} \sum_{r}^{y_2} \sum_{r}^{z_1} \sum_{v}^{x_2} \sum_{r}^{z_1} \sum_{v}^{x_2}$ (sus autovector son los $\beta^{(r)}$)

- La variable opuesta a una variable canónica, también lo es.
- Las correlaciones canónicas son invariantes ante cambios de origen y escala (transformaciones lineales) de las variables originales: Es decir, si

$$\widetilde{y} = A'y + a$$
 y $\widetilde{x} = B'x + b$

entonces, las correlaciones canónicas entre estas nuevas variables son las mismas que entre y y x; y sus vectores canónicos son:

$$\widetilde{\alpha}^{(r)} = A^{-1}\alpha^{(r)}$$
 y $\widetilde{\beta}^{(r)} = B^{-1}\beta^{(r)}$

Las correlaciones canónicas no varían al sustituir las variables originales por un mismo número de combinaciones l.i. de las mismas.

Análisis de Correlación Canónica

5/7/2007

Dpto. de Estadística Económica, Estructura Económica y O.E.I.

Análisis de Correlación Canónica

Contrastación del modelo

Enfoque Muestral

• En la Práctica, podremos estimar las variables canónicas a partir de los autovalores y autovectores de las matrices muestrales:

$$S_y^{-1} S_{yx} S_x^{-1} S_{xy}$$
 y $S_x^{-1} S_{xy} S_y^{-1} S_{yx}$

siendo sus autovectores estimadores máximoverosímiles de los coeficientes $\alpha^{(r)}$ y $\beta^{(r)}$ recíprocamente, y sus autovalores, estimadores máximoverosímiles de los cuadrados de los correspondientes coeficientes de correlación canónica

Contrastación del modelo

- Adecuación del Modelo $\begin{cases} H_0 : \Sigma_{yx} = 0 \\ H_1 : \Sigma_{yx} \neq 0 \end{cases}$ (matriz nula)
- Bajo la hipótesis de Normalidad Multivariante N(0,Σ) para el conjunto de todas las variables observadas y, por tanto, de los vectores y'={Y_p, Y₂, ..., Y_q} ∈ N(0,Σ_v) y x'={X₁, X₂, ..., X_p} ∈ N(0,Σ_x), ocurrirá que:

$$\Lambda = \frac{\left|\Sigma\right|}{\left|\Sigma_{y}\right|\left|\Sigma_{x}\right|} = \left|I - \Sigma_{x}^{-1}\Sigma_{xy}\Sigma_{y}^{-1}\Sigma_{yx}\right| = \prod_{r=1}^{h}\left(1 - \rho_{(r)}^{2}\right) \xrightarrow{BajoH_{0}} \Lambda(p, n - 1 - q, q)$$

De donde se obtiene, a partir del test de razón de verosimilitudes

$$\lambda = -2\ln(\lambda^*) = -2\ln(\Lambda^{n/2}) = -n\ln(\Lambda) = -n\ln\left(\prod_{r=1}^{h} (1 - \rho_{(r)}^2)\right) = -n\left(\sum_{r=1}^{h} \ln(1 - \rho_{(r)}^2)\right) \xrightarrow{BajoH_0 \atop n \to \infty} \chi_{pq}^2$$

• y por la aproximación de Bartlett $-\left(s - \frac{n-t+1}{2}\right) \ln(\Lambda(n,s,t)) \xrightarrow{s \to \infty} \chi_{nt}^{2}$ que $-\left(n - \frac{3+p+q}{2}\right) \ln(\Lambda) = -\left(n - \frac{3+p+q}{2}\right) \left(\sum_{n=0}^{\infty} \ln(1-\rho_{(r)}^{2})\right) \xrightarrow{BajoH_{0} \\ n \to \infty} \chi_{pq}^{2}$

Análisis de Correlación Canónica

N° 15 5/7/2007

Dpto. de Estadística Económica, Estructura Económica y O.E.I. © Feo. Javier Callealta Barroso

Análisis de Correlación Canónica

Contrastación del Modelo

Análisis de la Dimensionalidad

$$\begin{cases} H_0: \rho_{(k+1)}^2 = 0 & \left(\Rightarrow \rho_{(k+2)}^2 = ... \rho_{(h)}^2 = 0 \right) \\ H_1: \rho_{(k+1)}^2 > 0 & , k = 0, 1, ..., h-1 \end{cases}$$

Bajo la hipótesis de Normalidad Multivariante N(0,Σ) para el conjunto de todas las variables observadas y, por tanto, de los vectores y'={Y_p, Y₂, ..., Y_q}∈ N(0,Σ_y) y x'={X_p, X₂, ..., X_p}∈ N(0,Σ_x), el estadístico experimental del correspondiente contraste de razón de verosimilitudes será:

$$\lambda = -\left(n - \frac{3 + p + q}{2}\right) \left(\sum_{r=k+1}^{h} \ln\left(1 - \rho_{(r)}^{2}\right)\right) \xrightarrow{\text{Bajo } H_{0}} \chi_{(p-k)(q-k)}^{2}$$

• Aternativamente, el estadístico experimental de Bartlett-Lawley será:

$$L_k = - \left(n - k - \frac{3 + p + q}{2} + \sum_{r=1}^k \rho_{(r)}^{-2} \right) \left(\sum_{r=k+1}^h \ln \left(1 - \rho_{(r)}^2 \right) \right) \xrightarrow[n \to \infty]{Bajo H_0} \chi^2_{(p-k)(q-k)}$$

Nº 16

5/7/2007

Relación con otras técnicas de análisis multivariante

· Regresión simple

- es el caso p=q=1
- las submatrices Σ_y, Σ_{yx}, Σ_x son respectivamente los escalares varianza de Y,
 Covarianza de Y con X y varianza de X; por lo que el coeficiente de correlación canónica es:

$$\rho^2 = \Sigma_y^{-1} \Sigma_{yx} \Sigma_x^{-1} \Sigma_{xy} = \frac{\sigma_{xy}^2}{\sigma_x^2 \cdot \sigma_y^2}$$

- · Regresión múltiple
 - es el caso p=p, q=1
 - las submatrices Σ_y , Σ_{yx} , Σ_x son respectivamente el escalar varianza de Y, el vector de dimensión p de las covarianzas de la variable Y con las X's y la matriz de dimensión $p \cdot p$ de varianzas y covarianzas de las X's; por lo que el coeficiente de correlación canónica es:

$$\rho^2 = \Sigma_y^{-1} \Sigma_{yx} \Sigma_x^{-1} \Sigma_{xy} = \frac{\Sigma_{yx} \Sigma_x^{-1} \Sigma_{xy}}{\sigma_y^2} = \frac{\sigma_{\hat{y}}^2}{\sigma_y^2}$$

Análisis de Correlación Canónica

N° 17 5/7/2007

Dpto. de Estadística Económica, Estructura Económica y O.E.I. © Feo. Javier Callealta Barroso

Análisis de Correlación Canónica

Relación con otras técnicas de análisis multivariante

- Análisis Discriminante
 - Es el caso cuando definimos las q variables Y s como indicadoras de pertenencia a cada uno de los q+1 grupos de la variable categórica grupo del Análisis Discriminante, de la forma usual (método indicador)

$$Y_i = \begin{cases} 1 & \text{si el caso pertenece al grupo i - \'esimo,} & i = 1, ..., q \\ 0 & \text{si el caso pertenece a otro grupo distinto} \end{cases}$$

En este caso, el cuadrado del coeficiente de correlación canónica es:

$$\rho_r^2 = \frac{\lambda_r}{1 + \lambda_r} = \frac{\text{varianza inter - grupos del eje discriminante r - ésimo}}{\text{varianza total del eje discriminante r - ésimo}} = \frac{u_r B u_r}{u_r S u_r} = \eta_r^2$$

siendo $\lambda_{\rm r}$ el autovalor asociado a la función discriminante r-ésima

N° 18 5/7/2007

Relación con otras técnicas de análisis multivariante

- Tablas de Contingencia
 - Es el caso en que definimos las q variables Y s como indicadoras de la observación de cada una de las q modalidades de uno de los atributos de la tabla (por ejemplo, atributo-columna) y las p variables X s como indicadoras de ocurrencia de cada una de las p modalidades del otro atributo de la tabla (por ejemplo, atributo-fila).

 $Y_i = \begin{cases} 1 \text{ si el caso presenta el atributo columna i - ésimo} \\ 0 \text{ si el caso pertenece a otro grupo distinto} \end{cases}$

 $X_i = \begin{cases} 1 \text{ si el caso presenta el atributo fila i - ésimo} \\ 0 \text{ si el caso pertenece a otro grupo distinto} \end{cases}$

- la asociación entre los atributos (variables cualitativas) puede estudiarse a partir de h-I=min(p,q)-1 relaciones canónicas
- Si la primera pareja de variables canónicas presente correlación canónica nula, ello indicaría la no asociación o independencia de los dos atributos enfrentados en la tabla.

Análisis de Correlación Canónica

N° 19 5/7/2007

Dpto. de Estadística Económica, Estructura Económica y O.E.I. © Feo. Javier Callealta Barroso

Análisis de Correlación Canónica

Coeficientes de Redundancia

- Se define *Coeficiente de Redundancia* entre la variable $X^{(k)} = \beta^{(k)} x = \beta_1^{(k)} X_1 + \beta_2^{(k)} X_2 + ... + \beta_p^{(k)} X_p$ y el conjunto de variables endógenas $Y_1, Y_2, ..., Y_q$, como el promedio de los cuadrados de las correlaciones entre la variable $X^{(k)}$ y cada una de las $Y_1, Y_2, ..., Y_q$.
- Supuestas las variables tipificadas, como

$$Corr(y, X^{(k)}) = Cov(y, X^{(k)}) = E\left[y\left(\beta^{(k)}x\right)\right] = E\left[yx'\right]\beta^{(k)} = \Sigma_{yx}\beta^{(k)} = P_{yx}\beta^{(k)}$$

entonces:

$$CR(y \mid X^{(k)}) = \frac{1}{q} \left(\sum_{yx} \beta^{(k)} \right) \left(\sum_{yx} \beta^{(k)} \right) = \frac{1}{q} \beta^{(k)} \sum_{xy} \sum_{yx} \beta^{(k)} = \frac{1}{q} \beta^{(k)} P_{xy} P_{yx} \beta^{(k)}$$

N° 20 5/7/2007

Análisis de Correlación Canónica

Coeficientes de Redundancia

- Se define Coeficiente de Redundancia Total como la suma de las redundancias anteriores para el conjunto de las h combinaciones lineales
- Supuestas las variables tipificadas,

$$CR(y \mid x) = \sum_{k=1}^{h} CR(Y \mid X^{(k)}) = \frac{1}{q} \sum_{k=1}^{h} \beta^{(k)} \sum_{xy} \sum_{yx} \beta^{(k)} = \frac{1}{q} \sum_{k=1}^{h} \beta^{(k)} P_{xy} P_{yx} \beta^{(k)}$$

 Cuando se aplican sobre las variables canónicas obtenidas por el procedimiento anteriormente expuesto sobre las variables tipificadas, puede demostrarse que:

$$CR(y \mid x) = \frac{Traza(P_{yx}P_{xx}^{-1}P_{xy})}{Traza(P_{yy})} = \frac{1}{q} \sum_{k=1}^{q} R_{Y_k;X_1,X_2,...,X_p}^2$$

Análisis de Correlación Canónica

N° 21 5/7/2007

Dpto. de Estadística Económica, Estructura Económica y O.E.I. © Feo. Javier Callealta Barroso

Análisis de Correlación Canónica

Análisis Canónico Asimétrico

- Uno de los conjuntos de variables (por ejemplo las X's) se consideran variables exógenas o explicativas de las variables del otro grupo (en este caso, las Y's) que se consideran variables endógenas o explicadas.
- El Análisis Canónico Asimétrico, desarrollado por Stewart y Love (1968)
 y Gudmundsson (1977), trata de encontrar combinaciones lineales tipificadas de las variables exógenas

$$X^{(k)} = \beta^{(k)} x = \beta_1^{(k)} X_1 + \beta_2^{(k)} X_2 + ... + \beta_p^{(k)} X_p$$

de forma que presenten las más altas correlaciones con las variables del conjunto de variables endógenas $Y_1, Y_2, ..., Y_q$ que se pretenden explicar, y utilizando como medida de correlación global el coeficiente de Redundancia Total; que en el caso de variables tipificadas es:

$$CR(y \mid x) = \sum_{k=1}^{h} CR(Y \mid X^{(k)}) = \frac{1}{q} \sum_{k=1}^{h} \beta^{(k)} \Sigma_{xy} \Sigma_{yx} \beta^{(k)} = \frac{1}{q} \sum_{k=1}^{h} \beta^{(k)} P_{xy} P_{yx} \beta^{(k)}$$

 $N^o 22$

Análisis Canónico Asimétrico

- Si todas las variables X's e Y's se encuentran tipificadas, el problema se plantea como:
 - * Encontrar $\beta^{(1)}$ tal que : $Var(X^{(1)})=1$ y $CR(y\mid X^{(1)})$ sea máximo o lo que es equivalente,

Maximizar $\beta^{(1)} \dot{\Sigma}_{xy} \Sigma_{yx} \beta^{(1)}$ sujeto a la restricción : $\beta^{(1)} \dot{\Sigma}_{xx} \beta^{(1)} = 1$

lo que conduce a la ecuación:

$$\Sigma_{xy}\Sigma_{yx}\beta^{(1)} = \lambda\Sigma_{xx}\beta^{(1)}$$
 o equivalentemente $\Sigma_{xx}^{-1}\Sigma_{xy}\Sigma_{yx}\beta^{(1)} = \lambda\beta^{(1)}$

- La solución sería el autovector de la matriz $H = \sum_{x}^{-1} \sum_{y} \sum_{yx}$ asociado a su mayor autovalor λ .
- Imponiendo que las sucesivas variables canónicas (en este enfoque asimétrico) sean ortogonales a las anteriores, las obtendríamos como los autovectores de los sucesivos autovalores de la anterior matriz H.

N° 23 5/7/2007

Análisis de Correlación Canónica