Matricola:	
Cognome:	B
Nome:	

Basi di Dati e Web/Multimedia Prova scritta del 24 settembre 2008

Avvertenze: e' seven	amente vietato con	ısultare libri e appunt
-----------------------------	--------------------	-------------------------

Durata 2h15m

DOMANDE PRELIMINARI (è necessario rispondere in modo sufficiente alle seguenti tre domande per poter superare la prova scritta con esito positivo; in caso di mancata o errata risposta a queste domande il resto del compito non verrà corretto)

a)	Si illustri la proprietà di isolamento di una transazione.	

b) Dato il seguente schema concettuale nel modello ER, si produca la sua traduzione nel modello relazionale

- c) Date le due seguenti relazioni: $R1(\underline{A}, B, C)$ e $R2(\underline{D}, E, F)$ (tutti gli attributi sono di tipo numerico) scrivere;
 - c.1) un'espressione in algebra relazionale che restituisca i valori distinti contenuti nell'attributo B di R1;
 - c.2) un'espressione ottimizzata dell'algebra relazionale che contenga un theta join e una proiezione su R2 e produca come risultato le tuple t di R2 tali che esiste una tupla t' di R1 dove t[D]<t'[C].

Modulo TEORIA

1. Si vuole progettare un sistema informativo per gestire le informazioni relative alle attività di un ufficio che gestisce concorsi. Il sistema registra per ogni concorso gestito dall'ufficio: codice univoco, nome, la data di emissione del bando e la data di scadenza per le domande. Ogni concorso ha una propria commissione esaminatrice composta da un presidente e da due o più membri. Il sistema registra per ogni concorso il nome, il cognome, il codice fiscale, la provenienza (ente, università o azienda) e il ruolo di ogni componente della commissione. Si noti che una persona può far parte di commissioni di più concorsi eventualmente con ruoli diversi.

Ogni concorso inoltre prevede una o più prove. Per ogni prova il sistema memorizza: la data, l'ora, il luogo in cui si svolge e il tipo di prova: orale/scritto/prova attitudinale.

Il sistema memorizza inoltre i dati di tutti i partecipanti ai concorsi registrando per ognuno: il cognome, il nome, il codice fiscale, la data e il luogo di nascita e il concorso a cui si è iscritto. Si noti che una persona può in generale partecipare a più concorsi. Per ogni prova del concorso si registrano i presenti e il voto ottenuto da ogni partecipante alla prova.

Vengono infine memorizzati dal sistema i risultati del concorso indicando per ogni partecipante: il punteggio ottenuto oppure 'ritirato' o 'assente'.

Progettare lo schema concettuale utilizzando il modello entità-relazione e lo schema relazionale della base di dati (indicare esplicitamente per ogni relazione dello schema relazionale: le chiavi primarie, gli attributi che possono contenere valori nulli e i vincoli di integrità referenziale). Non aggiungere attributi non esplicitamente indicati nel testo.

- 2. Dato lo schema relazionale dell'esercizio 1, esprimere in algebra relazionale ottimizzata le seguenti interrogazioni:
 - 2.a Trovare i concorsi che prevedono almeno una prova scritta e hanno come presidente una persona dell'università di Verona, riportando il nome del concorso, la data di emissione e la data di scadenza del bando.
 - 2.b Trovare i concorsi che non prevedono prove orali, riportando il nome e il cognome dei partecipanti.
 - 2.c Trovare il nome, il cognome e la data di nascita delle persone che hanno partecipato ad almeno due concorsi diversi.
- 3. Dato il seguente schema relazionale (chiavi primarie sottolineate) contenente le informazioni relative alle visite eseguite dai pazienti di un unità sanitaria locale:

PAZIENTE(CodiceSSN, Nome, Cognome, Ntelefono, Indirizzo, Città);

VISITA(Paziente, Medico, Datalnizio, Oralnizio, Durata)

MEDICO(CodFisc, Cognome, Nome, Specialita)

Vincoli di integrità: VISITA.Paziente -> PAZIENTE,

VISITA.Medico -> MEDICO

formulare in SQL le seguenti interrogazioni (definire viste solo dove è necessario):

- 3.a Trovare per ogni Specialità il numero, la durata totale e la durata massima delle visite fatte nel mese di giugno 2008, riportando il nome della specialità e i conteggi richiesti.
- 3.b Trovare il cognome, il nome e l'indirizzo dei pazienti di Verona che non hanno mai fatto visite in oculistica.
- 4. Lo studente illustri le caratteristiche fondamentali della tecnica per il controllo della concorrenza detta LOCKING a due fasi stretto.
- 5. Dato il seguente schedule, indicare se è VSR, CSR oppure non serializzabile:

r2(x), r0(x), w2(x), r0(y), r2(y), w2(z), w1(y), w1(z), r3(z), w3(z), w0(t), w3(t)