Nonlinear Optimization Lecture 4 Garrick Aden-Buie

Thursday, January 21, 2016

Last time

Theorem S is a non-empty, closed convex set and $y \notin S$, then $\bar{x} \in S$ is the min. distance point. And $(y - \bar{x})^T (x - \bar{x}) \leq 0, \ \forall x \in S.$

Separation

Let $S_1, S_2 \subset \mathbb{R}^n$ and $H = \{x \in \mathbb{R}^n \colon p^T x = \alpha\}.$

Definition. H separates S_1 and S_2 if

$$p^T x \ge \alpha \quad \forall x \in S_1$$

 $p^T x \le \alpha \quad \forall x \in S_2$

Figure 1: Types of separation

H strictly separates S_1 and S_2 if

$$p^T x > \alpha \quad \forall x \in S_1$$
$$p^T x < \alpha \quad \forall x \in S_2$$

H strongly separates S_1 and S_2 if

$$p^T x \ge \alpha + \epsilon \quad \forall x \in S_1$$
$$p^T x \le \alpha \quad \forall x \in S_2$$

for some $\epsilon > 0$.

Theorem If S is a non-empty, closed, convex set and $y \notin S$. Then there exists a hyperplane that strongly separates S and $\{y\}$ (singleton).

Figure 2: Requirement of convexity for theorem

Proof. There exists an $\bar{x} \in S$ such that $(y - \bar{x})^T (x - \bar{x}) \le 0$, $\forall x \in S$.

Let

$$p = y - \bar{x}$$

$$\Rightarrow p^{T}(x - \bar{x}) \le 0 \quad \forall x \in S$$

$$p^{T}x \le p^{T}\bar{x} \quad \forall x \in S$$

$$p^{T}x \le \alpha \quad \forall x \in S$$

where $\alpha = p^T \bar{x}$.

Now we want to show that

$$p^T x \ge \alpha + \epsilon \ \forall x = y$$

for some $\epsilon > 0$, or

$$p^Ty>\alpha$$

.

$$p^{T}y - \alpha \ (>0)$$

$$= (y - \bar{x})^{T}y - (y - \bar{x})^{T}\bar{x}$$

$$= (y - \bar{x})^{T}(y - \bar{x})$$

$$= ||y - \bar{x}||^{2} > 0$$

(Note that all norms satisfy ||a|| = 0 iff a = 0.)

This proves the two conditions listed above for strong separation.

Supporting Hyperplane

Let $S \in \mathbb{R}^n$, $S \neq \emptyset$, $\bar{x} \in \delta S$, and $H = \{x \in \mathbb{R}^n : p^T(x - \bar{x}) = 0\}$. Note that H is a hyperplane that passes through \bar{x} because setting $x = \bar{x}$ satisfies $p^T(x - \bar{x}) = 0$.

$$H^{+} = \{x \in \mathbb{R}^{n} : p^{T}(x - \bar{x}) \ge 0\}$$

$$H^{-} = \{x \in \mathbb{R}^{n} : p^{T}(x - \bar{x}) \le 0\}$$

H is a supporting hyperplane for S at \bar{x} if $S \subset H^+$ or $S \subset H^-$.

Figure 3:

Theorem Let $S \subset \mathbb{R}^n$ be a closed, non-empty convex set, $y \notin S$ and $\bar{x} \in S$ is the closest point to y. Then there exists a supporting hyperplane at \bar{x} . Intuition: Consider y and \bar{x} . If you move y closer and closer to \bar{x} , then eventually you move the hyperplane up to the boundary of S. This "process" would converge to the supporting hyperplane.

Figure 4: Intuition illustrated

Convex Functions

f is convex on S if

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$
$$\forall x_1, x_2 \in S, \ \lambda \in [0, 1]$$

Level Set

Let $\alpha \in \mathbb{R}$, then $S_{\alpha} = \{x \in S : f(x) \leq \alpha\}$ is the level set.

Theorem If f is convex on S, then S_{α} is a convex set for all $\alpha \in \mathbb{R}$.

Proof. Let $x_1, x_2 \in S_\alpha$ and $\lambda \in [0, 1]$. We need to show that $\lambda x_1 + (1 - \lambda)x_2 \in S_\alpha$ for all $\alpha \in \mathbb{R}$. We know that

$$f(x_1) \le \alpha$$
$$f(x_2) \le \alpha$$
$$\Rightarrow \lambda f(x_1) \le \lambda \alpha$$
$$(1 - \lambda)f(x_2) \le (1 - \lambda)\alpha$$

Figure 5: Level sets

f is convex, so

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

$$\le \lambda \alpha + (1 - \lambda)\alpha$$

$$= \alpha$$

Epigraph

Definition. An epigraph of $f = \text{epi} f = \{(x,y) \colon x \in \mathbb{R}^n, y \in \mathbb{R}^1, y \geq f(x)\}.$ Thus, $f \colon \mathbb{R}^n \to \mathbb{R}$ and $\text{epi} f \subset \mathbb{R}^{n+1}.$

Figure 6: Epigraph

Theorem $f : \mathbb{R}^n \to \mathbb{R}$. f is a convex function \Leftrightarrow epif is a convex set.

Proof. Homework assignment. Sketch: show \Rightarrow and then show \Leftarrow . Intuition, if you have a non-convex function, then clearly epif is going to be a non-convex set.

Derivatives

When we talk about minimizing functions, $\min f(x)$, then the most obvious thing to do is to take the first derivative of f and setting equal to zero, f'(x) = 0.

Partial Derivative and Gradient

Consider

$$\lim_{\lambda \to 0} \frac{f(x + \lambda e_i) - f(x)}{\lambda}$$

where e_i is the i^{th} unit vector = $[0 \dots 1 \dots 0]^T$ with 1 at i^{th} element.

If the above limit exists

$$\frac{\partial f}{\partial x_i}(x) = \lim_{\lambda \to 0} \frac{f(x + \lambda e_i) - f(x)}{\lambda}$$

(which is the partial derivative of f(x) with respect to x_i , then the gradient of f at x is

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x) \end{bmatrix} \in \mathbb{R}^n$$

(Note that in the single-variable case, we would typically have Δx in the denominator. But the multidirectional case, this term would be a vector. So we need to rely on the partial derivative instead.)

Directional Derivative

For any $d \in \mathbb{R}^n$ the directional derivative of f in the direction d is

$$f'(x;d) = \lim_{\lambda \to 0^+} \frac{f(x+\lambda d) - f(x)}{\lambda}$$

Def. f is differentiable at x if and only if $\nabla f(x)$ exists and $\nabla f(x)^T d = f'(x;d)$ for all $d \in \mathbb{R}^n$. This is Gateaux-differentiability.

We will be using this definition many times in discussing optimality conditions.

Theorem Given $f: \mathbb{R}^n \to \mathbb{R}$ is convex and $\bar{x} \in \mathbb{R}^n$, $d \in \mathbb{R}^n$ a non-zero direction.

Then the directional derivative

$$f'(\bar{x};d)$$

exists.

Figure 7:

Remark. Can a convex function be discontinuous on its own domain? (Answer is no.)

Remark. Can a convex function be non-differentiable? (Answer: yes, consider y = |x|. Notice that in this case, y is not differentiable at one point, but the directional derivative does exist. The directional derivative is a more "general" derivative.)

Taylor Expansion

Given $f(x) : \mathbb{R}^n \to \mathbb{R}$:

1.
$$f(x) = f(\bar{x}) + f'(\bar{x})(x - \bar{x}) + \frac{1}{2!}f''(x)(x - \bar{x})^2 + \cdots$$

1.
$$f(x) = f(\bar{x}) + f'(\bar{x})(x - \bar{x}) + \frac{1}{2!}f''(x)(x - \bar{x})^2 + \cdots$$

2. $f(x) = f(\bar{x}) + (x - \bar{x})^T \nabla f(\bar{x}) + \frac{1}{2!}(x - \bar{x})^T H(x)(x - \bar{x}) + \cdots$

• Where $\nabla f(\bar{x})$ is the gradient and H(x) is the Hessian (look up!)

Precisely the (\cdots) terms in (2) is a function $||x - \bar{x}||^2 \cdot \alpha(\bar{x}; x - \bar{x})$ and $\lim_{x \to \bar{x}} \alpha(\bar{x}; x - \bar{x}) = 0$.