Asymptotic Notations

Text Chapters 3

Asymptotic Notation

- ■What does "the order of" mean
- □Big O, Ω, and Θ notations
- ☐Properties of asymptotic notation
- □Limit rule

A notation for "the order of"

- ☐ We'd like to measure the efficiency of an algorithm
 - Determine mathematically the resources needed
- ☐ There is no such a computer which we can refer to as a standard to measure computing time
- We introduce "asymptotic" notation
 - An asymptotically superior algorithm is often preferable even on instances of moderate size

Definition of big O

 $O(g(n)) = \{ f(n) \mid (\exists c \in R^+, n_0 \in N) (\forall n \ge n_0) [0 \le f(n) \le cg(n)] \}$

- ☐ Typically used for asymptotic upper bound
- Attention
 - O(f(n)) is a **set** of functions
- Pitfall
 - Traditionally we say $n^2 = O(n^2)$ as used in our text book
 - It really means $n^2 \in O(n^2)$

A graphical view of asymptotic definition

Example

☐ Prove that following statements

$$13n^2 + n + 5 \in O(n^2)$$

$$13n^2 + n + 5 \in O(n^2 \log n)$$

$$f(n) \in O(n) \to f^2(n) \in O(n^2)$$

$$O(n) \subset O(n^2)$$

$$13n^{2} + n + 5 \in O(n^{2}) \quad \forall n \ge 3, \quad 13n^{2} + n + 5 \le 14n^{2}$$

$$14n^{2}$$

$$13n^{2} + n + 5$$

$$200$$

$$150$$

$$150$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

Several notations

- \square Logarithm time O(log n)
- \Box Linear time O(n)
- \Box Quadratic time $O(n^2)$
- \Box Cubic time $O(n^3)$
- \square Exponential time $O(c^n)$, c>1

$$O(\lg n) \subset O(n^c) \subset O(n^c \lg n) \subset O(n^{c+\varepsilon} \lg n) \subset O(d^n)$$
 $c, \varepsilon > 0, d > 1$

□Order of growth

The Maximum rule

- Let $f,g: N \to R^{\geq 0}$, then $O(f(n) + g(n)) = O(\max(f(n), g(n)))$
- □ Proof
 - the key is $max(f(n),g(n)) \le f(n)+g(n) \le 2*max(f(n),g(n))$
- **□**Examples
 - $O(12n^3-5n+n\log n+36)$
- ☐ The maximum rule let us ignore lower-order terms

Example

- ☐True or false
 - ? $5 = O(\log n)$
 - $? \log n = O(5)$
 - ? $n = O(n^{0.6} log n)$
 - $? n^{0.6} logn = O(n)$
 - ? $n^8 = O((n^2-3n+5)^4)$

Definition of Ω

 $\Omega(g(n)) = \{ f(n) \mid (\exists c \in R^+, n_0 \in N) (\forall n \ge n_0) [f(n) \ge cg(n) \ge 0] \}$

- $\square \Omega$ is typically used to describe *asymptotic lower bound*
 - For example, insertion sort take time in $\Omega(n)$
- $\square \Omega$ for algorithm complexity
 - We use it to give the lower bounds on the intrinsic difficulty of solving problems
 - Example, any comparison-based sorting algorithm takes time $\Omega(nlogn)$

Example of $\Omega(n^2)$

- \square n^2
- \square n^2+n
- \square n^2 -n
- $n^{2.0001}$
- \square n²log n
- **□**2ⁿ

The ^{\to}notation

Definition:

$$\Theta(g(n)) = \{ f(n) \mid (\exists c_1, c_2 \in R^+, n_0 \in N) (\forall n \ge n_0) [0 \le c_1 g(n) \le f(n) \le c_2 g(n)] \}$$

Equivalent to:

$$\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$$

- □ Used to describe asymptotically tight bound
- \square Example: selection sort take time in $\Theta(n^2)$

The Limit Rule

- $\Box \text{ Let } f, g: N \to R^{\geq 0}, \text{ then }$
- 1. If $\lim_{n\to\infty} \frac{f(n)}{g(n)} \in \mathbb{R}^+$ then $f(n) \in \Theta(g(n))$
- 2. If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$ then $f(n) \in O(g(n))$ but $f(n) \notin \Omega(g(n))$
- 3. If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = +\infty$ then $f(n) \in \Omega(g(n))$ but $f(n) \notin O(g(n))$

Example

$$(n^c)' = cn^{c-1}$$

$$(\ln n)' = \frac{1}{n}$$
 (ln n means log_en, the text use log)

When c>0

$$\lim_{n\to\infty} \frac{\ln n}{n^c} = \lim_{n\to\infty} \frac{(\ln n)'}{(n^c)'} = \lim_{n\to\infty} \frac{1/n}{cn^{c-1}} = \lim_{n\to\infty} \frac{1}{cn^c} = 0$$

$$\ln n \in O(n^c)$$
 for any $c>0$

Semantics of big-O and Ω

- When we say an algorithm takes worst-case time t(n) = O(f(n)), then there exist a real constant c such that c*f(n) is an upper bound for any instances of size of sufficiently large n
- When we say an algorithm takes worst-case time $t(n) = \Omega(f(n))$, then there exist a real constant d such that there exists at least one instance of size n whose execution time >= d*f(n), for any sufficiently large n
- Example
 - Is it possible an algorithm takes worst-case time O(n) and $\Omega(nlog\ n)$?

Practice Problems

True or false

- anAlgorithm(int n)
 {
 // if (x) is an elementary
 // operation
 if (x) {
 some work done
 by n² elementary
 operations;
 } else {
 some work done
 by n³ elementary
 operations;
 }
 }
- The algorithm takes time in O(n²)
- The algorithm takes time in $\Omega(n^2)$
- The algorithm takes time in O(n³)
- The algorithm takes time in $\Omega(n^3)$
- The algorithm takes time in $\Theta(n^3)$
- The algorithm takes time in $\Theta(n^2)$
- The algorithm takes worst case time in $O(n^3)$
- The algorithm takes worst case time in $\Omega(n^3)$
- The algorithm takes worst case time in $\Theta(n^3)$
- The algorithm takes best case time in $\Omega(n^3)$

Definition of o and ω

Definition

$$o(g(n)) = \{ f(n) \mid (\forall c \in R^+, \exists n_0 \in N, \forall n \ge n_0) [0 \le f(n) < cg(n)] \}$$

$$\omega(g(n)) = \{ f(n) \mid (\forall c \in R^+, \exists n_0 \in N, \forall n \ge n_0) [f(n) > cg(n) \ge 0] \}$$

- Denote upper/lower bounds that are not asymptotically tight
- Example $1000 \ n \in o(n^2); \quad 1000 \ n^2 \notin o(n^2)$ $1000 \ n^2 \in \omega(n); \quad 1000 \ n^2 \notin \omega(n^2)$
- Properties $f(n) \in o(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

$$f(n) \in \omega(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

Relational Properties

- □ Transitivity: O, o, Ω, ω, θ
- \square Reflexivity: O, Ω , θ
- Symmetry: $f(n) = \Theta(g(n)) \Leftrightarrow g(n) \in \Theta(f(n))$
- ☐ Transpose symmetry (Duality)

$$f(n) = O(g(n)) \Leftrightarrow g(n) \in \Omega(f(n))$$
$$f(n) = o(g(n)) \Leftrightarrow g(n) \in \omega(f(n))$$

■ Analogy

$$f(n) \in O(g(n)) \approx a \le b$$

$$f(n) \in \Omega(g(n)) \approx a \ge b$$

$$f(n) \in \Theta(g(n)) \approx a = b$$

$$f(n) \in o(g(n)) \approx a < b$$

$$f(n) \in \omega(g(n)) \approx a > b$$