The sound of Pixels

ECCV 2018

Related work

- Visually indicated sounds
 - Auditory is not as sensitive as visual

Related work

Look, Listen and Learn

Related work

- Sound source separation
 - https://sisec18.unmix.app/#/
- Demo
 - http://sound-of-pixels.csail.mit.edu/

- Video analysis network
 - Input: T by H by W by 3
 - Output: T by (H/16) by (W/16) by K
 - Extract per-frame features and apply temporal pooling / sigmoid, denoted as $i_k(x, y)$
 - Dilated ResNet is used (can be replaced with other model)

- Audio analysis network
 - Split input audio (log-spectrogram) into K components s_k
 - Based on U-net architecture

- Sound synthesizer network
 - The output sounds could be separated from masks
 - A mask $M(x,y) = \sigma(\sum_{k=1}^{K} \alpha_k i_k(x,y) s_k + \beta_0)$

Training

Training

- Objective
 - Binary mask: per-pixel sigmoid cross entropy loss

$$M_n(u, v) = [s_n(u, v) \ge s_m(u, v)], \forall m = (1, ..., N)$$

Ratio mask: per-pixel L1 loss

$$M_n(u,v) = \frac{s_n(u,v)}{s_{mix}(u,v)}$$

Dataset

- MUSIC (Multimodal Sources of Instrument Combinations)
 - Videos from Youtube
 - 714 untrimmed videos of musical solos and duets

Dataset

- Preprocessing
 - Sampling rate is 11kHz, the highest frequency is 5.5kHz (resampled from higher sampling rate signal)
 - Length of each audio sample is approximately 6s
 - STFT parameter: window size 1024, hop length 256
 - STFT output shape is 512 by 256,
 and resample on a log-frequency scale to obtain a 256 by 256

Experiments

	$\ NMF\ $	DeepConvSep	Spectral	Ratio Mask		Binary Mask	
	[42]	[7]	Regression	Linear scale	Log scale	Linear scale	Log scale
NSDR	3.14	6.12	5.12	6.67	8.56	6.94	8.87
SIR	6.70	8.38	7.72	12.85	13.75	12.87	15.02
SAR	10.10	11.02	10.43	13.87	14.19	11.12	12.28

Table 1. Model performances of baselines and different variations of our proposed model, evaluated in NSDR/SIR/SAR. Binary masking in log frequency scale performs best in most metrics.

- Source separation
 - Normalized Signal-to-Distortion Ratio (NSDR)
 - Signal-to-Interference Ratio (SIR)
 - Signal-to-Artifact Ratio (SAR)

Experiments

- Visual grounding of sounds
 - Sound localization
 - "Which pixels are making sounds?"
 - Calculate the sound energy (or volume) of each pixel in the image

Experiments

- Visual grounding of sounds
 - Clustering of sounds
 - "What sounds do these pixels make?"
 - Apply PCA on log-spectrogram (output dimension is 3, RGB)

