

Instituto Federal de Educação, Ciência e Tecnologia de Brasília – Câmpus Taguatinga Ciência da Computação – Análise de Algoritmos

Lista de Exercícios – Análise Assintótica

Prof. Daniel Saad Nogueira Nunes

Aluno:	
Matrícula:	

Exercício 1

Demonstre que:

- (a) $n! \in \omega(2^n)$
- (b) $n! \in o(n^n)$
- (c) $k \log n \in \Theta(n) \Rightarrow k \in \Theta(n/\log n)$.

Exercício 2

Sejam f(n) e g(n) funções monotonicamente crescentes. Prove ou ache um contra-exemplo cada uma das seguintes conjecturas:

- (a) $f(n) \in O(g(n)) \Rightarrow g(n) \in O(f(n))$
- (b) $f(n) + g(n) \in \Theta(\min(f(n), g(n)))$
- (c) $f(n) \in O(g(n)) \Rightarrow \log(f(n)) \in O(\log(g(n)),$ onde $\log(g(n)) \ge 1$ e $f(n) \ge 1$ para n suficientemente largo
- (d) $f(n) \in O(g(n)) \Rightarrow 2^{f(n)} \in O(2^{g(n)})$
- (e) $f(n) \in O((f(n))^2)$
- (f) $f(n) \in O(g(n)) \Rightarrow g(n) \in \Omega(f(n))$
- (g) $f(n) \in \Theta(f(n/2))$
- (h) $f(n) + o(f(n)) \in \Theta(f(n))$

Exercício 3

Mostre que para constantes $a, b \in \mathbb{R}$ com $b \geq 0$ que:

$$(n+a)^b \in \Theta(n^b)$$

Exercício 4

Seja

$$p(n) = \sum_{i=0}^{d} a_i n^i$$

onde $a_i > 0$. Seja k uma constante, ise as definições de notação assintótica para provar as seguintes propriedades:

- (a) Se $k \ge d$, então $p(n) \in O(n^k)$
- (b) Se $k \leq d$, então $p(n) \in \Omega(n^k)$
- (c) Se k = d, então $p(n) \in \Theta(n^k)$
- (d) Se k > d, então $p(n) \in o(n^k)$
- (e) Se k < d, então $p(n) \in \omega(n^k)$

Exercício 5

Indique, para cada par de expressões (A,B) na tabela abaixo, se A é O, o, Ω , ω ou Θ de B. Assuma $k \geq 1$, $\epsilon > 0$ e c > 1 são constantes. Sua resposta deve estar na forma "sim" ou "não".

	A	В	O	0	Ω	ω	Θ
a)	$\log^k n$	n^{ϵ}					
b)	n^k	c^n					
c)	\sqrt{n}	$c^{\sin(n)}$					
d)	2^n	$2^{n/2}$					
e)	$n^{\log c}$	$c^{\log n}$					
f)	$\lg(n!)$	$\lg(n^n)$					

Exercício 6

Demonstre que:

$$n! >> c^n >> n^3 >> n^2 >> n^{1+\epsilon} >> n \log n >> n >> \sqrt{n} >> \log^2 n >> \log n >> \log n / \log \log n >> \log \log n >> 1$$

Exercício 7

Verdadeiro ou falso?

- (a) $2^{n+1} \in O(2^n)$
- (b) $2^{2n} \in O(2^n)$

Exercício 8

Para cada um dos seguintes pares f(n) e g(n), identifique se $f(n) \in O(g(n))$, $f(n) \in \Omega(g(n))$ ou $f(n) \in \Theta(g(n))$.

- (a) $f(n) = \log^2 n; g(n) = \log n + 5$
- (b) $f(n) = \sqrt{n}; g(n) = \lg n$
- (c) $f(n) = \log^2 n$; $g(n) = \log n$
- (d) $f(n) = n; g(n) = \log^2 n$
- (e) $f(n) = n \log n; g(n) = \log n$
- (f) $f(n) = 10; g(n) = \log 10$
- (g) $f(n) = 2^n; g(n) = 10n^2$

- (h) $f(n) = 2^n$; $g(n) = 3^n$
- (i) $f(n) = n + 2\sqrt{n}$; $g(n) = n^2$
- (j) $f(n) = n \log n; g(n) = \frac{n\sqrt{n}}{2}$
- (k) $f(n) = n + \log n; g(n) = \sqrt{n}$
- (1) $f(n) = 2(\log n)^2$; $g(n) = \log n + 1$
- (m) $f(n) = 4n \log n$; $g(n) = (n^2 n)/2$

Exercício 9

Prove que $n^3 - 3n^2 - n + 1 \in \Theta(n^3)$

Exercício 10

Demonstre que:

- (a) Se $f_1(n) \in O(g_1(n))$ e $f_2(n) \in O(g_2(n))$, então $f_1(n) + f_2(n) \in O(g_1(n) + g_2(n))$
- (b) Se $f_1(n) \in \Omega(g_1(n))$ e $f_2(n) \in \Omega(g_2(n))$, então $f_1(n) + f_2(n) \in \Omega(g_1(n) + g_2(n))$
- (c) Se $f_1(n) \in \Omega(g_1(n))$ e $f_2(n) \in \Omega(g_2(n))$, então $f_1(n) \cdot f_2(n) \in \Omega(g_1(n)) \cdot g_2(n)$

Exercício 11

Liste as funções da menor pra maior ordem assintótica. Se duas funções são da mesma ordem, indique.

Exercício 12

Ache, caso existam, duas funções f(n) e g(n) que satisfazem as sequintes relações,

- (a) $f(n) \in o(g(n))$ e $f(n) \notin \Theta(g(n))$
- (b) $f(n) \in \Theta(g(n))$ e $f(n) \notin o(g(n))$
- (c) $f(n) \in \Theta(q(n))$ e $f(n) \notin O(q(n))$
- (d) $f(n) \in \Omega(q(n))$ e $f(n) \notin O(q(n))$

Exercício 13

Para cada uma das perguntas, justifique sua resposta:

- (a) Se existe uma prova que um algoritmo leva no pior caso tempo $O(n^2)$, é possível que ele leve tempo O(n) em algumas instâncias?
- (b) Se existe uma prova que um algoritmo leva no pior caso tempo $O(n^2)$, é possível que ele leve tempo O(n) em todas as instâncias?
- (c) Se existe uma prova que um algoritmo leva no pior caso tempo $\Theta(n^2)$, é possível que ele leve tempo O(n) em algumas as instâncias?
- (d) Se existe uma prova que um algoritmo leva no pior caso tempo $\Theta(n^2)$, é possível que ele leve tempo O(n) em todas as instâncias?

(e) A função $f(n) \in \Theta(n^2)$ onde $f(n) = 100n^2$, para n par e $f(n) = 20n^2 - n \log n$ para n impar?

Exercício 14

Qual das afirmativas é verdadeira?

(a)
$$\sum_{i=1}^{n} 3^i \in \Theta(3^{n-1}).$$

(b)
$$\sum_{i=1}^{n} 3^{i} \in \Theta(3^{n}).$$

(c)
$$\sum_{i=1}^{n} 3^i \in \Theta(3^{n+1}).$$

Exercício 15

Analise os algoritmos abaixo de maneira mais justa possível:

```
(a) sum = 0;

2 for (int i=0;i<n;i++){

3 for (int j=i;j<n;j++){

4 sum++;

5 }

6 }
```

```
(b) sum = 0; for (int i=1;i<=n;i*=2){
    for (int j=1;j<=n;j++){
        sum++;
    }
}
```

```
(c) sum = 0;
2 for (int i=1;i<=n;i*=2){
3 for (int j=1;j<=n;j+=i){
4 sum++;
5 }
6 }
```