Bluetooth LE

Not your father's Bluetooth

Antoni Kędracki

Cele

- Czym jest Bluetooth 4.0?
- Dlaczego powstał?
- Jak to działa?
- A ile urządzeń to wspiera?

Trochę Historii

- Stworzone w 1994
- Sieć PAN
- Wspólne radio
- Wiele profili (RFCOMM)
- Parowanie?!

"Klasyczny" Bluetooth

Bluetooth 4.0

- Dwie konfiguracje
 - Basic/Extended Bit Rate BR/EBR
 - Low Energy LE
- Cel:
 - Obniżenie wymagań prądowych
 - Ułatwienie implementacji
- Rozwiązanie
 - Uproszczone radio
 - Nowy sposób "rozgłaszania"
 - Pojedynczy profil (GATT)

"Penny, everything is better with bluetooth!"

Sheldon Cooper, The Big Bang Theory

BLE w liczbach

	rozmiar	waga	moc/praca
BLE112	18mm x 12mm x 2.3mm	~2g	TX: 27mA sleep: 0.5uA
CR2032	19,9mm	3g	225mAh

Na czym to chodzi?

- Apple (iOS5+, OS X 10.7+)
 - iPhone 4S+, iPad 3+, iPad Mini, iPod Touch 5Gen
 - MacBook Air i Mac Mini mid2011+, reszta mid2012+
- Android (lipiec 2013 4.3+)
 - Google Nexus 4, Nexus 7 (2013)
 - Samsung Galaxy S3, S4, S4 Mini, Note 2
 - Sony 2013+
 - HTC 2012+
 - Motorola 2012+

Bluetooth "Smart"

"Smart" vs. "Klasyczny"

Bluetooth "Smart Ready"

GATT

"One protocol to rule them all"

GATT

- Zdefiniowane role:
 - Serwer
 - wystawia model
 - informuje o schemie tego modelu
 - przykładowo: czujnik tętna, termometr, myszka
 - Klient
 - konsumuje model
 - przykładowo: telefon, samochód

GATT

- Key/Value Store na sterydach
 - Klucz + wartość == charakterystyka
 - Grupa charakterystyk == serwis
 - Metadane charakterystyki == deskryptor
- Wszystko ma identyfikator UUID (16/128 bit)

Serwis pomiaru tętna

- Heart Rate (0x180D)
 - Body Sensor Location (0x2A38) [read]
 - Heart Rate Control Point (0x2A39) [write]
 - Heart Rate Measurement (0x2A37) [notify]

notify 0x2A37

notify 0x2A37

notify 0x2A37

DEMO

Charakterystyka pomiaru tętna

Heart Rate Measurement (0x2A37)

Flags	8bit	I - format 2,3 - contact status 4 - energy expanded 5 - RR interval 6,7,8 - reserved
HR Value	uint8/uint16	bpm
Energy Expended	uint l 6	kJ
RR Interval	uint l 6	1/1024s

Bluetooth 4.0 LE nie wspiera SPP?!

Radio

"ET phone's home"

Problem wielodostępu

- Bluetooth operuje na paśmie ISM 2.4GHz
- Tak samo jak WiFi, ZigBee, i wiele innych
- Wszystko to się zakłuca

Frequency Hopping w LE

- Oparty o inkrementacje o stałą wartość i operacje modulo
- Mapa używanych kanałów
- Algorytm
 - unmappedChannel = (lastUnmappedChannel + hopIncrement) mod 37
 - użyj unmappedChannel jeśli jest w mapie używanych kanałów
 - w przeciwnym razie użyj kanału pod pozycją remappinglndex = unmappedChannel mod numUsedChannels

Rozgłaszanie

"Ja Brzoza, ja Brzoza, Grab, jak mnie słyszysz?"

Rozgłaszanie

- Jak wszystko w LE zoptymalizowane pod kątem zużycia energii
- Pasywne i aktywne skanowanie
- Możliwość umieszczenia własnych danych w pakietach rozgłoszeniowych

Kanały rozgłaszające

- 3 (z 40) kanałów przeznaczone wyłącznie do rozgłaszania
- algorytm:
 - posiedź na kanale A przez x
 - posiedź na kanale B przez x
 - posiedź na kanale C przez x
 - i od nowa!

Pasywne rozgłaszanie

Aktywne rozgłaszanie

Pakiety AD

- Do 31 bajtów danych
- Elastyczne format

GAP + GATT

- [GATT] serwis Generic Access(0x1800)
 - Device Name (0x2A00)
- [GAP] AD flags
 - typ 0x02-0x07 UUID dostępnych serwisów GATT
 - typ 0x08-0x09 nazwa

Rozgłaszanie serwisów GATT

length	type	flags
0×02	0x01	0xIA
2	FLAGS	

length	type	UUIDI	UUID2
0×09	0x03	0×1800	0x180D
9	complete list of 16bit UUID	Generic Access	HRM

length	type	name	
0×07	0×09	0x41 6E 74 6F 6E 69	
7	local name	"Antoni"	

iBeacon

- Cały mechanizm opiera się na rozgłaszaniu
- Odległość liczona na podstawie RSSI odbioru i wartości referencyjnej

length	type	flags
0×02	0x01	0×IA
2	FLAGS	

length	type	vendor	?	beacon UUID	major	minor	?
0xIA	0×FF	0x4C00	0x0215	0xA1A2A3A4 B1B2 C1C2 D1D2 E1E2E3E4E5E6	0×000E	0x000F	0xC5
26	CUSTOM	Apple					

Nawiązanie połączenia

"You talkin' to me?"

"Przygotowanie" do interakcji

Odkrywanie modelu

- zamiana UUID na uchwyty
- doprecyzowanie które z opcjonalnych charakterystyk jest wspierane

Bezpieczeństwo

"z czy bez?"

- Domyślnie urządzenia w BLE komunikują bez szyfrowania i autentykacji
- charakterystyki mogą zdeklarować że operacje na nich mogą przebiegać wyłącznie po zabezpieczonym połączeniu

Parowanie

- Polega na autentykacji i wymianie kluczy szyfrujących (AES-128)
- procesem rządzi "master"
- "slave" może zgłosić chęć parowania
- trzy metody autentykacji:
 - just works
 - passkey
 - OOB

Czy to oby wystarczy?

- proces ustalania/wymiany kluczy jest podatny na podsłuch
- postronne urządzenie może wymusić ponowne jego przeprowadzenie
- passkey ma 6 cyfr?!
- cała nadzieja w OOB lub szyfrowaniu w warstwie aplikacji

Producenci

"You can have it in every color! As long as it's black"

Master

- Apple (iOS5+, OS X 10.7+)
 - iPhone 4S+, iPad 3+, iPad Mini, iPod Touch 5Gen
 - MacBook Air i Mac Mini mid2011+, reszta mid2012+
- Android (lipiec 2013 4.3+)
 - Google Nexus 4, Nexus 7 (2013)
 - Samsung Galaxy S3, S4, S4 Mini, Note 2
 - Sony 2013+
 - HTC 2012+
 - Motorola 2012+

Slave

- Wsparcje po stronie iOS spowodowało eksplozje ilości urządzeń
 - Fitbit, Nike+ Fuelband 2.0, etc
 - Dice+
 - HRM
 - tokeny
- SmartWatch?

Podziękowania i Źródła

- Bluetooth Core Specification 4.0 Volumes 1-6
- Smartphone designed by George Agpoon from The Noun Project

Q&A

