# 日101日9**5**三

<del>-------</del> 컴퓨터 구조 <del>------</del>



## Alpha Numeric : 수치, 문자, 특수문자 등을 입력하여 메모리에 저장하기 위해 '0'과 '1로 코드화 한 것

영문자, 숫자 등을 표현할 수 있는 ASCII 코드 다국어 표현이 가능한 유니코드 등

넓은 의미

좁은 의미

## Numeric(수치코드)

산술 연산용 숫자

수치 만을 표현할 수 있는 코드

계산을 위해 만들어진 컴퓨터의 본 목적을 만족시킴

0, 1, 2, ... 8,9 (10개)

## Alpha (영문자 코드)

데이터 처리용 영문자

대문자 A,B, ... Y, Z (26자)

소문자 a,b, ... y, z (26자)

\* 영어를 제외한 외국어는 영문자의 확장판

## 특수 목적용 기호 (Special)

특수 문자, 제어문자 등을 표현 !,@,#,\$, ... \*,(,+,-,}

## 진수와 진법

$$10 = 1 \times 2^{1} + 0 \times 2^{0} = 2$$

진법 - 0부터 n개의 숫자를 사용하여 수를 표현하는 방법,  $0\sim(n-1)$ 만큼 표현 진수 - 진법으로 나타내어진 수로 n진법으로 나타낸 수

기수(radix) - 진법(숫자 표현)에 기준이 되는 수 ex)radix-2 : 2진 {0,1}, radix-10 : 10진 {0,1,...9}

## 41.5 변환해보기

10진수 :  $4 \times 10^{1} + 1 \times 10^{0} + 5 \times 10^{1} = 41.5$ 

2진수:  $1 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} = 101001.1$ 

8진수: 5 x 8<sup>1</sup> + 1 x 8<sup>0</sup> + 4 x 8<sup>-1</sup> = 51.4

16진수 : 2 x 16<sup>1</sup> + 9 x 16<sup>0</sup> + 8 x 16<sup>-1</sup> = 29.8

## 소수가 포함되어 있는 경우에는 정수부와 소수부를 나눠 계산한다.

Tip : 소수가 있는 10진수를 n진수로 바꾸기

- 1. 소수가 있는 10진수에 'x n'를 한다
- 2. 소수 부분이 0이 될때까지 계속 곱한다.
- 3. 위에서부터 읽어내린다.



#### 2진화 8진수 Octal

| Octal<br>number | Binary-coded octal | Decimal<br>equivalent |
|-----------------|--------------------|-----------------------|
| 0               | 000                | 0                     |
| 1               | 001                | 1                     |
| 2               | 010                | 2                     |
| 3               | 011                | 3                     |
| 4               | 100                | 4                     |
| 5               | 101                | 5                     |
| 6               | 110                | 6                     |
| 7               | 111                | 7                     |
| 10              | 001 000            | 8                     |
| 11              | 001 001            | 9                     |
| 12              | 001 010            | 10                    |
| 13              | 001 011            | 11                    |
| 36              | 011 110            | 30                    |
| 62              | 110 010            | 50                    |
| 143             | 001 100 011        | 99                    |
| 310             | 011 001 000        | 200                   |
| 620             | 110 010 000        | 400                   |

2진화 16진수 Hexadecimal

| Hexadecimal number | Binary-coded hexadecimal | Decimal<br>equivalent |
|--------------------|--------------------------|-----------------------|
| 0                  | 0000                     | 0                     |
| 1                  | 0001                     | 1                     |
| 2                  | 0010                     | 2                     |
| 3                  | 0011                     | 3                     |
| 4                  | 0100                     | 4                     |
| 5                  | 0101                     | 5                     |
| 6                  | 0110                     | 6                     |
| 7                  | 0111                     | 7                     |
| 8                  | 1000                     | 8                     |
| 9                  | 1001                     | 9                     |
| Α                  | 1010                     | 10                    |
| В                  | 1011                     | 11                    |
| С                  | 1100                     | 12                    |
| D                  | 1101                     | 13                    |
| E                  | 1101                     | 14                    |
| F                  | 1111                     | 15                    |
| F8                 | 1111 1000                | 248                   |

#### 2진화 10진수 BCD(Binary Code Decimal)

| Decimal<br>number | Binary-coded decimal number |
|-------------------|-----------------------------|
| 0                 | 0000                        |
| 1                 | 0001                        |
| 2                 | 0010                        |
| 3                 | 0011                        |
| 4                 | 0100                        |
| 5                 | 0101                        |
| 6                 | 0110                        |
| 7                 | 0111                        |
| 8                 | 1000                        |
| 9                 | 1001                        |
| 10                | 0001 0000                   |
| 20                | 0010 0000                   |
| 50                | 0101 0000                   |
| 99                | 1001 1001                   |
| 247               | 0010 0100 0111              |
| 330               | 0011 0011 0000              |
| 1000              | 0001 0000 0000 0000         |

#### 컴퓨터는 0과 1의 순서 만 이해 화면에 정확히 표시되어야하는 것을 알기 위해서는 각각의 고유 번호를 각 기호에 지정

#### BCD 코드

| 존병 | 비트 | ← | 숫자 | 비트 | $\rightarrow$ |
|----|----|---|----|----|---------------|
| Α  | В  | 8 | 4  | 2  | 1             |
| Х  | Х  | Х | Х  | Х  | X             |

존 비트 AB의 값 00:0, 19(1010, 00011001) 01:문자 AI(00011001) 10:문자 R(00011001) 11:문자 S(00101001)

| 존 | 존 비트 |   | 비트 숫자 비트 표현<br>문자 존 비! |   | 비트 | 숫자 비트 |   |   | 표현<br>문자 | 존 비트 |   | 표현 문자 지트 |   | 비트 | 숫자 비트 |   |   |   | 표현<br>문자 |   |   |   |   |   |   |   |   |
|---|------|---|------------------------|---|----|-------|---|---|----------|------|---|----------|---|----|-------|---|---|---|----------|---|---|---|---|---|---|---|---|
| 0 | 0    | 0 | 0                      | 0 | 1  | 1     | 0 | 1 | 0        | 0    | 0 | 1        | A | 1  | 0     | 0 | 0 | 0 | 1        | J |   |   |   |   |   |   |   |
| 0 | 0    | 0 | 0                      | 1 | 0  | 2     | 0 | 1 | 0        | 0    | 1 | 0        | В | 1  | 0     | 0 | 0 | 1 | 0        | K | 1 | 1 | 0 | 0 | 1 | 0 | S |
| 0 | 0    | 0 | 0                      | 1 | 1  | 3     | 0 | 1 | 0        | 0    | 1 | 1        | С | 1  | 0     | 0 | 0 | 1 | 1        | L | 1 | 1 | 0 | 0 | 1 | 1 | Т |
| 0 | 0    | 0 | 1                      | 0 | 0  | 4     | 0 | 1 | 0        | 1    | 0 | 0        | D | 1  | 0     | 0 | 1 | 0 | 0        | М | 1 | 1 | 0 | 1 | 0 | 0 | U |
| 0 | 0    | 0 | 1                      | 0 | 1  | 5     | 0 | 1 | 0        | 1    | 0 | 1        | Е | 1  | 0     | 0 | 1 | 0 | 1        | N | 1 | 1 | 0 | 1 | 0 | 1 | ٧ |
| 0 | 0    | 0 | 1                      | 1 | 0  | 6     | 0 | 1 | 0        | 1    | 1 | 0        | F | 1  | 0     | 0 | 1 | 1 | 0        | 0 | 1 | 1 | 0 | 1 | 1 | 0 | W |
| 0 | 0    | 0 | 1                      | 1 | 1  | 7     | 0 | 1 | 0        | 1    | 1 | 1        | G | 1  | 0     | 0 | 1 | 1 | 1        | Р | 1 | 1 | 0 | 1 | 1 | 1 | Х |
| 0 | 0    | 1 | 0                      | 0 | 0  | 8     | 0 | 1 | 1        | 0    | 0 | 0        | Н | 1  | 0     | 1 | 0 | 0 | 0        | Q | 1 | 1 | 1 | 0 | 0 | 0 | Υ |
| 0 | 0    | 1 | 0                      | 0 | 1  | 9     | 0 | 1 | 1        | 0    | 0 | 1        | 1 | 1  | 0     | 1 | 0 | 0 | 1        | R | 1 | 1 | 1 | 0 | 0 | 1 | Z |
| 0 | 0    | 1 | 0                      | 1 | 0  | 0     |   |   |          |      |   |          |   |    |       |   |   |   |          |   |   |   |   |   |   |   |   |

## EBCDIC 코드

|      | <u> </u> | 네군시  |      |      |      |        | -11:09(00001001) |      |      |      |      |      |      |      |      |      |
|------|----------|------|------|------|------|--------|------------------|------|------|------|------|------|------|------|------|------|
| 상위   | 0000     | 0001 | 0010 | 0011 | 0100 | 0101   | 0110             | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
| 0000 | NUL      | DLE  | DS   |      | SP   | &      | -                |      |      |      |      |      | { ↑  | }    | ₩(\) | 0    |
| 0001 | SOH      | DC1  | SOS  |      |      |        | /                |      | а    | j    | ~    |      | A    | J    |      | 1    |
| 0010 | STX      | DC2  | FS   | SYN  |      |        |                  |      | b    | k    | s    |      | В    | К    | s    | 2    |
| 0011 | ETX      | TM   |      |      |      |        |                  |      | С    | 1    | t    |      | С    | L    | Т    | 3    |
| 0100 | PF       | RES  | BYP  | PN   |      |        |                  |      | d    | m    | u    |      | D    | М    | U    | 4    |
| 0101 | HT       | NL   | LF   | RS   |      |        |                  |      | е    | n    | v    |      | Е    | N    | ٧    | 5    |
| 0110 | LC       | BS   | ETB  | UC   |      |        |                  |      | f    | 0    | w    |      | F    | 0    | W    | 6    |
| 0111 | DEL      | IL   | ESC  | EOT  |      |        |                  |      | 9    | р    | х    |      | G    | Р    | Х    | 7    |
| 1000 | GE       | CAN  |      |      |      |        |                  |      | h    | q    | у    |      | Н    | Q    | Υ    | 8    |
| 1001 | RLF      | EM   |      |      |      |        |                  |      | i    | r    | z    |      | 1    | R    | Z    | 9    |
| 1010 | SMM      | CC   | SM   |      | ¢    | !      |                  | :    |      |      |      |      |      |      |      |      |
| 1011 | VT       | CU1  | CU2  | CU3  |      | \$     | ,                | #    |      |      |      |      |      |      |      |      |
| 1100 | FF       | IFS  |      | DC4  | <    | •      | %                | @    |      |      |      |      |      |      |      |      |
| 1101 | CR       | IGS  | ENQ  | NAK  | (    | )      | -                | '    |      |      |      |      |      |      |      |      |
| 1110 | SO       | IRS  | ACK  |      | +    | ;      | >                | =    |      |      |      |      |      |      |      |      |
| 1111 | SI       | IUS  | BEL  | SUB  | - 1  | $\neg$ | ?                | •    |      |      |      |      |      |      |      |      |

6비트를 사용하며, 8비트를 사용하며, 상위 2비트의 존비트와 하위 4비트의 숫자 비트로 구성 상위 4비트의 존비트와 하위 4비트의 숫자 비트로 구성

В

D

#### 영숫자 표시

ASCII 코드의 구성

|   | <del>←</del> ; | 존 비트 |   | <b>—</b> | 숫자 | 비트 | <b>→</b> |
|---|----------------|------|---|----------|----|----|----------|
|   |                |      |   | 8        | 4  | 2  | 1        |
| ı | Х              | Х    | Х | Х        | Х  | Х  | Х        |

7비트를 사용하며 상위 3비트의 존비트와 하위 4비트의 숫자 비트로 구성

행은 숫자비트, 열은 존비트

| 왕위   | 000 | 001 | 010 | 011 | 100 | 101  | 110 | 111 |
|------|-----|-----|-----|-----|-----|------|-----|-----|
| 0000 | NUL | DLE | SP  | 0   | @   | Р    | *   | р   |
| 0001 | SOH | DC1 | !   | 1   | A   | Q    | а   | q   |
| 0010 | STX | DC2 | ,   | 2   | В   | R    | b   | г   |
| 0011 | ETX | DC3 | 2   | 3   | C   | s    | С   | s   |
| 0100 | EOT | DC4 | \$  | 4   | D   | Т    | d   | t   |
| 0101 | B/D | NAK | %   | 5   | E   | U    | е   | U   |
| 0110 | ACK | SYN | &   | 6   | F   | ٧    | 1   | ٧   |
| 0111 | BBL | ETB | *   | 7   | G   | W    | 9   | w   |
| 1000 | BS  | CAN | (   | 8   | Н   | Х    | h   | х   |
| 1001 | HT  | EM  | )   | 9   | - 1 | Υ    | i   | у   |
| 1010 | LF  | SUB | •   | ·   | J   | Z    | j   | z   |
| 1011 | VT  | ESC | +   | :   | К   | ]    | k   | {   |
| 1100 | FF  | FS  |     | <   | L   | ₩(\) | - 1 | I   |
| 1101 | CR  | GS  | -   | =   | М   | ]    | m   | }   |
| 1110 | 90  | RS  |     | >   | N   | ٨    | n   | ~   |
| 1111 | SI  | US  | /   | ?   | 0   | -    | 0   | DEL |

#### International Morse Code

- The length of a dot is one unit.
   A dash is three units.
- 3. The space between parts of the same letter is one unit.
- 4. The space between letters is three units.5. The space between words is seven units.





#### 컴퓨터는 연산을 진행할 때 두자기 특징을 가진다.

- 1. 2진수 사용
- 2. 가산기 사용(더한다)

곱하기는 더하기를 여러 번 반복 그렇다면 빼기는?

컴퓨터에서는 보수를 이용해 뺄셈을 덧셈으로 해결한다!

\* 나누기는 빼기의 연속

## Ex) 9에서 6을 빼보자

암산: 9 - 6 = 3

가산기

x = -6에 대한 보수

10칸 이동

$$9 + 4 = 13$$

## 보수의 정의

보충을 해주는 수 진법의 기수(radix)에 대응하는 역(reverse) 값 가산기를 이용해 음수 연산을 하기 위한 장치 즉, 뺄셈을 덧셈으로 하기 위해서 만들어 놓은 장치 ex) 1에 대한 10의 보수는 9, 4에 대한 15의 보수는 11, 2에 대한 1의 보수는 1

## 1의보수 (4비트)

$$|3 - 10|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0 - 3|$$

$$|0$$

마지막에 생긴 최상위 비트(캐리비트)를 캐리비트가 발생하지 않았을 때는 최하위 비트에 더해줌 1의 보수를 한 번 더 취하고 -부호를 더해줌

## 2의보수 (4비트)

$$||0| + 0||0 = ||00||^{(3)} = 00||^{(3)}$$

$$||0| + 0||0 = ||00||^{(3)}$$

$$||0| + 0||0 = ||00||^{(3)}$$

$$||0| + 0||0 = ||00||^{(3)}$$

$$||0| + 0||0 = ||00||^{(3)}$$

$$||0| + 0||0 = ||00||^{(3)}$$

$$||0| + 0||0 = ||00||^{(3)}$$

$$||0| + 0||0 = ||00||^{(3)}$$

$$||0| + 0||0 = ||00||^{(3)}$$

$$||0| + 0||0 = ||00||^{(3)}$$

$$||0| + 0||0 = ||00||^{(3)}$$

$$||0| + 0||0 = ||00||^{(3)}$$

$$||0| + 0||0 = ||00||^{(3)}$$

마지막에 생긴 최상위 비트(캐리비트) 버림 캐리비트가 발생하지 않았을 때는 2의 보수를 한 번 더 취하고 -부호를 더해줌