Lesson 7: Economic Growth

Contents

	0.1	What is Economic Growth?	1
1	Cha	apter Six: Solow Growth Model	1
	1.1	Notation	1
	1.2	Big Finding of Solow Model	2
	1.3	Steady-State of Investment	2
	1.4	Per-Worker Production Function	2
	1.5	Steady-State of Consumption	3
	1.6	Reaching the Steady-State	5
	1.7	Changes to the Solow Model	6
2	Inse	ert growth paths after Romer model	9

What is Economic Growth?

Economic growth is an increase in living standards, which has traditionally been measured using Real GDP per capita.

Chapter Six: Solow Growth Model 1

1.1 Notation

- \bullet L_t Number of workers
- n growth rate of work force
 - population growth rate
- \bullet K_t capital stock
- δ depreciation rate
- Y_t output (GDP)
- \bullet C_t consumption
- \bullet I_t gross investment

$$-C_t = Y_t - I_t$$

- $\begin{array}{ll} \bullet & y_t = \frac{Y_t}{L_t} \text{ ouput per worker} \\ \bullet & c_t = \frac{C_t}{L_t} \text{ consumption per worker} \end{array}$
- $k_t = \frac{K_t}{L_t}$ capital per worker (capital-labor ratio) $i_t = \frac{I_t}{L_t}$ investment per worker

1.2 Big Finding of Solow Model

In the solow model, if the is no productivity growth (an increase in TFP A), then the economy reaches a steady state. At a steady state y_t , k_t , and c_t are all constant while Y, K, and C will grow at the rate n (population growth rate).

1.3 Steady-State of Investment

I_t (Investment) serves two main purposes:

- 1. Expand the size of capital stock (K_t)
- 2. Replace depreciated capital (δK_t)

Since in steady state we know that capital stock K_t will grow at the rate n, we can conclude that $I_t = nK_t + \delta K_t$, which brings per worker steady state of investment to:

$$i = (n + \delta)k$$

1.4 Per-Worker Production Function

Recall that we stated Y = AF(K, L). We can add the time aspect in to get $Y_t = AF(K_t, L_t)$. Now let's find the per-worker equation:

$$\frac{Y_t}{L_t} = \frac{AF(K_t, L_t)}{L_t}$$

$$\frac{Y_t}{L_t} = A \frac{1}{L_t} F(K_t, L_t)$$

From here, if the function F(K_t, L_t) has constant return to scales we can conclude:

$$\frac{Y_t}{L_t} = AF(\frac{K_t}{L_t}, \frac{L_t}{L_t})$$

Which in our notation is

$$y_t = Af(k_t)$$

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

Per worker Production function

1.5 Steady-State of Consumption

We know two things:

$$1. C_t = Y_t - I_t$$

2.
$$I_t = (n + \delta)K_t$$
 at steady state

So we can conclude that $C_t = Y_t - (n + \delta)K_t$ and per worker we get:

$$c = y - (n + \delta)k$$

$$c = Af(k) - (n + \delta)k$$

If capital increases what happens to production?

- If k increases, then f(k) increases, but at a decreasing rate, so c (consmumption increases)
- If k increases, then $(n + \delta)k$ increases, but at a rate of $(n + \delta)$, so c (consumption decreases)

What happens if we try to maximize consumption? (not related to steady state)

```
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
```

Steady State investment vs production

$geom_smooth()$ using method = 'loess' and formula 'y ~ x'

Consumption per worker (Diff of production and steady invest)

The maximum of consumption happens at the value of k with the biggest difference of y and $(n + \delta)k$. Consumption comes back down to zero where production is equal to $(n + \delta)k$.

1.6 Reaching the Steady-State

At steady state let us assume there is no change in TFP (A). We know that in steady state $I_t = (n + \delta)K_t$ and that Savings = Investment in equilbrium. Let us define s as the savings rate.

$$S_t = sY_t$$

Since we stated savings = investment:

$$sY_t = (n+\delta)K_t$$

Which gives us the per worker steady-state condition:

$$sf(k) = (n + \delta)k$$

$$sy = (n + \delta)k$$

Add in savings rate to compare steady state and actual investment:

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

Warning: Removed 300 rows containing non-finite values (stat_smooth).

$geom_smooth()$ using method = 'loess' and formula 'y ~ x'

Warning: Removed 300 rows containing non-finite values (stat_smooth).

When the level of capital is less than K^* (K (low)), then actual investment is greater than that required for steady state, so the capital-labor ratio increases until it hits steady state, which also increases per worker production. In the other case when the level of capital is greater than K^* (K (high)), then the actual investment is less than that required for steady state, so the capital-labor ratio decreases until it hits the steady state, which decrease per worker production.

1.7 Changes to the Solow Model

There are three main factors that change the solow model

- 1. Changes in TFP (A) change sf(k)
- 2. Cahnges in savings rate (s) change sf(k)
- 3. Changes in the population growth rate (n) change $(n + \delta)k$

1.7.1 Changes in A

```
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
```

Warning: Removed 300 rows containing non-finite values (stat_smooth).

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

- ## Warning: Removed 300 rows containing non-finite values (stat_smooth).
- ## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
- ## Warning: Removed 300 rows containing non-finite values (stat_smooth).
- ## $geom_smooth()$ using method = 'loess' and formula 'y ~ x'
- ## Warning: Removed 300 rows containing non-finite values (stat_smooth).

Steady State investment vs Actual Investment

1.7.2 Changes in s

- ## $geom_smooth()$ using method = 'loess' and formula 'y ~ x'
- ## Warning: Removed 300 rows containing non-finite values (stat_smooth).
- ## $geom_smooth()$ using method = 'loess' and formula 'y ~ x'
- ## Warning: Removed 300 rows containing non-finite values (stat_smooth).
- ## $geom_smooth()$ using method = 'loess' and formula 'y ~ x'
- ## Warning: Removed 300 rows containing non-finite values (stat_smooth).

```
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
```

Warning: Removed 300 rows containing non-finite values (stat_smooth).

1.7.3 Changes in n

- ## $geom_smooth()$ using method = 'loess' and formula 'y ~ x'
- ## Warning: Removed 300 rows containing non-finite values (stat_smooth).
- ## $geom_smooth()$ using method = 'loess' and formula 'y ~ x'
- ## Warning: Removed 300 rows containing non-finite values (stat_smooth).
- ## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
- ## Warning: Removed 300 rows containing non-finite values (stat_smooth).
- ## $geom_smooth()$ using method = 'loess' and formula 'y ~ x'
- ## Warning: Removed 300 rows containing non-finite values (stat_smooth).

2 Insert growth paths after Romer model