Bayesian additive regression tree (BART)

- Nonparametric prediction tool
- Ensemble of 'weak learners' that leads to robust out-of-sample predictions
- Dynamically learns important predictors via a sparsity inducing prior Mathematically, a BART model looks like:

$$Y_i \sim N(\mu_i, \sigma^2)$$

$$\mu_i = \sum_{t=1}^{T} \sum_{I \in L_t} \psi_{It} I(x_i \leadsto (t, I))$$

 $I(x_i \leadsto (t, l)) = 1$ if x_i falls into node (t, l) of tree t; 0 otherwise.

March 1, 2022

Shared Forest

- An extension of BART for multivariate responses
- Correlation between responses is utilized via shared tree structures
- Variables that predict Y_1 are likely the same variables that predict Y_2 (though the nature of the relationship may be different!)
- Information sharing \Rightarrow better predictions for Y_1 and Y_2

1 binary, 1 continuous

$$Y_i \sim N(\mu_i, \sigma_i^2) \tag{1}$$

$$\delta_i \sim Bernoulli(\pi_i)$$
 (2)

• $\begin{pmatrix} \mu_i \\ \pi_i \end{pmatrix}$ modeled jointly using a shared forest model

$$\begin{pmatrix} \mu_i \\ \Phi(\pi_i) \end{pmatrix} = \begin{pmatrix} \sum_{t=1}^{T} \sum_{l \in L_t} \psi_{lt} I(x_i \leadsto (t, l)) \\ \sum_{t=1}^{T} \sum_{l \in L_t} \theta_{lt} I(x_i \leadsto (t, l)) \end{pmatrix}$$

• Likelihood involves two dimensional response: $\{Y_i, \delta_i\}_{i=1}^N$

Simulation Study

Setup

We run 100 simulations. In each:

- $n_{train} = 500$, $n_{test} = 500$
- We set the number of covariates to P = 150.
- $x_1, \ldots, x_{150} \sim Unif(0,1)$
- True underlying means based on a modification of the "Friedman function"

$$y_i = 10\sin(\pi x_{1i}x_{2i}) + 20(x_{3i} - 0.5)^2 + 10x_{4i} + 5x_{5i} + \epsilon_i^Y$$

$$\delta_i = \begin{cases} 1 & \text{if5}\sin(\pi x_{1i}x_{2i}) + 25(x_{3i} - 0.5)^2 + 5x_{4i} + 10x_{5i} + \epsilon_i^{\delta} > 0\\ 0 & \text{otherwise} \end{cases}$$

where
$$(\epsilon_i^Y, \epsilon_i^\delta) \stackrel{iid}{\sim} N(0, 1)$$

1 binary, 1 continuous

Two quantities may be of interest for prediction

- $E(\delta^*, y^* \mid x)$, where * indicates those observations come from a test / hold-out sample
 - ex) Predict salary of individual, conditional on cellular traits x_i
 - ex) Predict gender of individual, conditional on cellular traits x_i
- $E(y^* \mid \delta)$
 - ex) Predict mean salary of females (avg. across traits observed for females)

Predicting Individual Y^*

Predicting Individual $\delta*$

₹ 990

March 1, 2022

Predicting $E(Y^* | \delta^*)$

₽ 99€

March 1, 2022

Predicting $E(Y^* | \delta^*)$

δ	Model	MSE	L_bound	U_bound
0	BART	0.004875	0.000004	0.023207
0	Shared Forest	0.004330	0.000007	0.017697
1	BART	0.028464	0.000042	0.119264
1	Shared Forest	0.010399	0.000011	0.041591

Table: Mean of the squared errors (across simulations) comparing the true $E(Y^* \mid \delta^*)$ to the estimated $\hat{E}(Y^* \mid \hat{\delta})$.

2 binary responses

The model structure is the same as described before; however, the likelihood reflects that:

$$\delta_{1i} \sim Bernoulli(\pi_{1i})$$
 (3)

$$\delta_{2i} \sim Bernoulli(\pi_{2i})$$
 (4)

As before, the tree structures will be built using information shared between δ_1 and δ_2 , while the location parameters are estimated separately.

2 binary responses

In this context, we are interested in predicting $P(\delta_2^*=1\mid \delta_1^*)$.

ex) Probability a randomly selected female is employed. $(\delta_1 = \text{gender}, \delta_2 = \text{employment})$

We measure model performance by looking at the squared errors comparing the true population (conditional) means to the estimated.

Predicting $E(\delta_2^* \mid \delta_1^*)$

