

## Overview of the Intel® Internet of Things and the Commercial IoT Developer Kit

Priyanka Bagade
Intel IoT Developer Evangelist



## **TABLE OF CONTENTS**

Internet of Things Overview
Intel® IoT Platform
Getting to Know Intel IoT Commercial
Dev kit



A SERISON OF Sterlock BRCL But that has More than 3 episode Sw (Seriously Moff at) standard 20 mi I would make: GROBOT DWARVES I would make: I would make: ATardis I would make: I would make What is the I would make Internet of Things? I would make:

## **NEED FOR IOT**

The Internet of Things (IoT) is fueling innovation across a range of industries to optimize processes and increase efficiency.



IoT can optimize energy grids, which lose ~6% during transmission and distribution.<sup>3</sup>

#### **ENERGY**

Environmental data logging, substation monitoring, grid efficiencies



Greater efficiency for HVAC systems, which account for 41% of U.S. building energy use.<sup>1</sup>

#### SMART BUILDING

Energy use monitoring; sensors in heaters and chillers to find inefficiencies



Manufacturers using IoT report 82% increased efficiency and 49% fewer defects.<sup>4</sup>

#### INDUSTRIAL & MANUFACTURING

Assembly-line equipment reporting, inventory management; automation



Supermarket cost-to-sales ratios can be reduced 2% by automatic checkout.<sup>2</sup>

## RETAIL Point of sale, vending machines, supply chain

- Research & Development Roadmap for Emerging HVAC Technologies. U.S. Department of Energy (October 2014).
   The 'Internet of Things' Is Now, Connecting the Real Economy. Morgan Stanley (April 3, 2014).
- B. How much electricity is lost in transmission and distribution in the United States? U.S. Energy Information Administration (April 6, 2016).



Enhanced driver coaching can save nearly 7% on fuel costs.<sup>5</sup>

#### TRANSPORTATION

Fleet management, freight tracking, urban congestion management

- 4. "How Manufacturers Use IoT for Operational Efficiencies." Industry Week (October 21, 2015).
- Tech Today Video Series Episode 3: Vnomics. Intel (March 4, 2014)



## **IOT OVERVIEW**



<sup>1.</sup> The Internet of Things in Logistics. DHL Trend Research and Cisco (2015).

<sup>2.</sup> Cloud traffic will increase 400% by 2019. IDC FutureScape: Worldwide Internet of Things 2015 Predictions (2014).



Software developers deliver value at each step of the solution.



## **IOT END-TO-END CAPABILITIES**

| <b>(</b>              | Scalability      | Designed to easily grow to meet expanding business needs by moving computation into the cloud.      |
|-----------------------|------------------|-----------------------------------------------------------------------------------------------------|
| 5                     | Interoperability | Applications and services work across diverse platforms using secure APIs.                          |
| \$5\$.5\$<br>\$5\$0\$ | Manageability    | Discovery, provisioning, and management from edge to cloud for secure remote upgrades and services. |
|                       | Analytics        | Unlock data to extract information to make systems work smarter and more efficiently.               |
|                       | Security         | A chain of trust that is rooted in the silicon and linked throughout the software.                  |

## **INTEL® ARCHITECTURE POWERS**

Endpoints, Gateways, Networks, and Cloud

THINGS (ENDPOINTS)

**GATEWAY** 

NETWORK (DATA CENTER)

**CLOUD-BASED ANALYTICS** 

















The Intel® IoT Platform: A blueprint for connecting devices into the cloud for developers to better leverage data, customize, and scale



## **DEVELOPER CHALLENGES**



Immature platforms, tools, and standards

1000010 Lack of software development knowledge



Lack of hardware development knowledge



Monetization



High production cost



Access to market

## INTEL TOOLS—FROM PROTOTYPE TO PRODUCTION

End-to-End Capabilities

- Simplifies the IoT landscape
- Interoperability and open standards across components
- Scale applications and services across diverse platforms

Easy to Use

- Solutions to manage the underlying complexities
- Easy-to-set-up, intuitive-to-use IoT platform
- Knowledge, tools, kits, libraries, and a community of experts

Security, Manageability, Analytics

- Centralized control over geographically dispersed assets
- Multilayered, comprehensive security
- Edge and cloud analytics

## INTEL® IOT DEVELOPER KIT

- Supports Intel® IoT Gateways, Intel® Edison and the new Intel® Joule
- Middleware libraries for I/O and sensors or actuators
- IDEs and tools to create, run, debug, and optimize IoT solutions
  - Arduino\*, C/C++, JavaScript\*, Python\*, and Java\* programming language support
  - Advanced power efficiency/performance optimization tools
  - Examples with Wind River\* Helix\* Cloud
- Deep hardware and software insights to speed development, testing, and optimization
- IoT cloud and edge analytics for data collection, visualization, and analytics



More details: https://software.intel.com/en-us/iot/hardware/devkit



## INTEL® IOT DEVELOPER KIT

- Intel® NUC Gateway
- Node-RED as a prototyping tool
- Intel ® XDK IoT for JavaScript programming & Gateway configuration
- MRAA/UPM libraries for sensor interface
- Microsoft\* Azure\* connection for cloud analytics



More details: https://software.intel.com/en-us/iot/hardware/devkit



## INTEL® SOFTWARE IOT DEVELOPER PROGRAM

Access knowledge, tools, resources, and a community of experts to help you quickly and easily turn innovative ideas into IoT solutions.

- Product life-cycle support—from prototype to production
- Software tools and environments for creating IoT solutions
- Find and share solutions in the Support Community

https://software.intel.com/iot

Key Developer Program Elements



Intel® IoT Developer Kit



Intel IoT roadshows, hackathons, and workshops



Online community

## Getting to Know the Commercial Dev Kit

Intel NUC + Arduino 101 + Grove Kit

### What's in the Kit?



• Intel NUC running Windriver Linux

- Grove Starter Kit Plus
- Arduino/Genuino 101 (Sold Separately )



## Intel NUC



- Runs on Windriver Linux
- Includes Dev Hub, Node-RED, App Cloud, and connectivity to the 01.org repo for additional packages
- Node-RED is the easiest way to get started
- Python, Node.js, Java, and a full C/C++ toolchain are available as well
- libmraa can be used to interface with sensors connected to the Arduino 101



## Key Features in Windriver Linux

Developer Hub, Node-RED, Security Features, and more

## IoT Gateway Developer Hub



- Manage Sensors (Node-RED)
- Visualize Data with Charts
- Manage Packages
- Administration
  - Factory reset, create USB images, upgrade, file manager, console, etc.
- Documentation
  - Walk through getting started use cases
- Login: root/root



## **IoT Gateway Security**



#### Hardware

Resiliency (Intel® SoC HW root of trust and Grub-IMA)

#### Secure Boot

What you intend to have booted is what's being booted

#### Discrete TPM\*\*\*

Locking and storing private materials inside the trusted platform module

#### OS and Applications

Resiliency (Intel SoC HW root of trust and Grub-IMA)

McAfee\* Embedded Control or Linux\* IMA\*\*

Provides system integrity and change control, that is whitelisting

#### GRSecurity

Allow programs to execute as least privilege policy

#### Signed RPM Packages

Intel® IoT Gateway confirms signature before it applies RPM system

#### Data

Data protection (at rest and securing network comms) and resiliency (firewall)

#### DM-Crypt

SW stack to enable data at rest protection

#### Open SSL and IPSec VPN

Create private tunnels to raise assurance of the target destination

#### **IPTables**

Linux firewall and network routing software

<sup>\*</sup>Protecting the firmware with security rooted in the HW. The ODM must enable these features in order to have the OEM realize the benefits

<sup>\*\*</sup>McAfee Embedded Control includes McAfee whitelisting. Linux IMA is an alternative for countries where McAfee Embedded Control may be unavailable.

<sup>\*\*\*</sup> Note that Discrete TPM is not supported in PRC. DK100 & 300 are the only Intel-branded dev kits that support TPM.

## Multiple Language Support



- JavaScript XDK or AppCloud (Cloud9)
- Visual Programming Node-RED

C++ - Intel System Studio

Python Runtime



## **Sensor Kit: Starter Pack**



- Grove Base Shield v2
- Buzzer
- Button
- LED Socket
- Sound Sensor
- Rotary Angle Sensor
- Touch Sensor
- 3 Axis Digital Accelerometer
- Light Sensor
- Temperature Sensor
- Grove Stepper Motor and Driver
- Red, Green and Blue LEDs
- Grove LCD RGB Backlight



## Arduino 101



- Connects to the gateway over USB
- Powered by Intel Curie
- I/O abstracted using libmraa
  - Digital in/out
  - Analog in
  - PWM out
  - 12C



## Using Node-RED

Overview and example

## What is Node-RED?



## Visual Programming Language built on top of the Node.js runtime

- Does not require programming language background
- Runs in browser
- Excellent tool for rapid prototyping / proof of concepts
- · Easy to install and use
- Easy to share projects



## Node-RED Nodes



- Nodes are the building blocks of a Node-RED which are connected to create a "flow".
- Standard nodes include: mqtt, http requests, web sockets, etc.
- Easily install new nodes from a huge node library.
- Create custom nodes with some JavaScript and html knowledge



## Read Sensor Data with Node-RED



- Pull in Sensor Nodes you wish to use
- Double click the node to configure
- Select an Analog Port
- Plug in Sensor from kit into the Port you specified
- Wire the outputs to the "debug" node under "Outputs"
- Click Deploy
- Open the debug tab to view sensor data



# Find support and more info: software.intel.com/iot





