Replication of Green & Vasudevan

Zenobia Chan, Alicia Cooperman, & Lauren Young

Columbia University

October 2015

Overview

- Theory
- lacksquare Design
- Replication of main results
- Robustness to other coding of vote buying
- Heterogeneous effects

Theory

brief discussion of theory

Design

Intervention:

Does this really test the theory that you've laid out?

Suggestions for replication package

- Code written in Matlab + Stata
 - Randomization Stata
 - Data Building Stata
 - Regressions Matlab
 - Standard Errors Matlab
 - Randomization Inference Simulations Stata
 - p-values Matlab
- Possible to do everything in R
- Include a roadmap (master R file, markdown, etc)

Main results from the paper

Table 6: Average Treatment Effect (ATE) of receiving radio ads on vote-share of votebuying parties and on the voter turnout rate

	Vote-share of vote-buying parties (%)						Turnout rate (%)		
	Specific	ation 1 ⁵	Specifi	cation 2	Specific	Specification 3		Tunious rate (70)	
	IPW	FE	IPW	FE	IPW	FE	IPW	FE	
ATE ¹	-5.86	-6.04	-7.68	-7.73	-3.68	-3.41	-0.49	-0.61	
SE ²	3.97	4.08	3.92	4.18	1.92	2.04	0.96	0.99	
p-value ³	0.08	0.08	0.00	0.00	0.02	0.03	0.64	0.57	
R-squared	0.44	0.43	0.38	0.28	0.51	0.33	0.80	0.76	
Mean4 (Control)	67	.23	90.85		91.73		68	.45	
N	62	28	6	65	60	55	6	65	
Control	31	15	33	24	32	24	33	24	
Treatment	31	13	34	41	341		34	41	

All specifications have the lagged outcome variable as covariate.

¹IPW are inverse probability weighted and FE are fixed effects regression estimates respectively.

²Standard errors are robust to heteroskedasticity and known cross-sectional dependence of the error term.

³p-values obtained from randomization inference with 10,000 iterations.
⁴Control Means are inverse probability weighted.

⁵Responses identifying vote-buying parties for 37 ACs are missing.

Imagine a scenario of 3 clusters with 2 units each.

Table: Constant error variance

Table : Not-constant error
$$\Sigma$$

Table: Not-constant error Z						
		e_{12}	e_{21}	e_{22}	e_{31}	e_{32}
e_{11}	σ_{11}^2	0	0	0	0	0
e_{12}	0	σ_{12}^2	0	0	0	0
e_{21}	0	0	σ_{21}^2	0	0	0
e_{22}	0	0	0	σ_{22}^2	0	0
e_{31}	0	0	0	0	σ_{31}^2	0
e_{32}	0	0	0	0	0	σ_{32}^2

$$Var(\hat{\beta}) = (X'X)^{-1}(X'\Sigma X)(X'X)^{-1}$$

Huber-White "Robust" SEs estimate $\hat{\Sigma}$ where σ_i^2 is \hat{u}_i^2 But, still assumes no clustered or spatial correlation

Imagine a scenario of 3 clusters with 2 units each.

Cluster-robust "block diagonal"

Table : Cluster robust								
	e_{11}	e_{12}	e_{21}	e_{22}	e_{31}	e_{32}		
e_{11}	σ_{11}^2	$\sigma_{11}\sigma_{12}$	0	0	0	0		
e_{12}	$\sigma_{12}\sigma_{11}$	σ_{12}^2	0	0	0	0		
e_{21}	0	0	σ_{21}^2	$\sigma_{21}\sigma_{22}$	0	0		
e_{22}	0	0	$\sigma_{22}\sigma_{21}$	σ_{22}^2	0	0		
e_{31}	0	0	0	0	σ_{31}^2	$\sigma_{31}\sigma_{32}$		
e_{32}	0	0	0	0	$\sigma_{32}\sigma_{31}$	σ_{32}^2		

Imagine a scenario of 3 clusters with 2 units each, but Station 1 covers 11, 12, 21; Station 2 covers cluster 2; Station 3 covers cluster 3.

Table: Barrios Dependency Matrix

	i i		F		,	
	e_{11}	e_{12}	e_{21}	e_{22}	e_{31}	e_{32}
e_{11}	1	1	1	0	0	0
e_{12}	1	1	1	0	0	0
e_{21}	1	1	1	1	0	0
e_{22}	0	0	1	1	0	0
e_{31}	0	0	0	0	1	1
e_{32}	0	0	0	0	1	1

Multiply this matrix element-by-element with $\hat{u}\hat{u}'$

Imagine a scenario of 3 clusters with 2 units each, but Station 1 covers 11, 12, 21; Station 2 covers cluster 2; Station 3 covers cluster 3.

Table : Barrios $\hat{\Sigma}$								
	e_{11}	e_{12}	e_{21}	e_{22}	e_{31}	e_{32}		
e_{11}	σ_{11}^2	$\sigma_{11}\sigma_{12}$	$\sigma_{11}\sigma_{21}$	0	0	0		
e_{12}	$\sigma_{12}\sigma_{11}$	σ_{12}^2	$\sigma_{12}\sigma_{21}$	0	0	0		
e_{21}	$\sigma_{21}\sigma_{11}$	$\sigma_{21}\sigma_{12}$	σ_{21}^2	$\sigma_{21}\sigma_{22}$	0	0		
e_{22}	0	0	$\sigma_{22}\sigma_{21}$	σ_{22}^2	0	0		
e_{31}	0	0	0	0	σ_{31}^2	$\sigma_{31}\sigma_{32}$		
e_{32}	0	0	0	0	$\sigma_{32}\sigma_{31}$	σ_{32}^2		

$$Var(\hat{\beta}) = (X'X)^{-1}(X'\hat{\Sigma}X)(X'X)^{-1}$$

Main results from the paper

	Spe	ec 1	Spe	ec 2	Spe	ec 3
	IPW	FE	IPW	FE	IPW	FE
ATE	-5.86	-6.04	-7.68	-7.73	-3.68	-3.41
SE	3.97	4.08	3.92	4.18	1.92	2.04
p-value (Barrios)	0.07	0.07	0.03	0.03	0.03	0.05
p-value (RI)	0.08	0.08	0.00	0.00	0.02	0.03
\mathbb{R}^2	0.44	0.43	0.38	0.28	0.51	0.33

- Very innovative measure of illicit electoral technique
 - Cost-effective
 - Draws on local expertise
 - Covers comprehensive area
- What is the data generating process?
 - Journalistic ethics to tell the truth
 - Journalists have ideological biases?
 - Journalists pay more attention to major parties?
- How to think about uncertainty with journalist data?
 - Levels of informedness
 - Under-identification
 - Over-identification
 - Random noise

Robustness to the definition of vote buying party

Robustness to the definition of vote buying party

Heterogeneous effects: Urban

Dummy: More than 90% Rural

	Coef.	SE	p
Treat	-4.68	3.6	0.1
Rural $>90~{\rm pc}$	1.69	2.55	0.25
Treat:Rural90	-3.16	3.83	0.2
R squared	0.44		

Continuous	s Rural		
	Coef.	SE	p
Treat	1.79	6.79	0.4
Rural pc	-0.01	0.05	0.45
Treat:Rural pc	-0.1	0.06	0.06
R squared	0.44		

Histogram of Percent Rural in AC

Heterogeneous effects: Minority voters

Dummy:	>50%	SC_{i}	/ST
--------	------	----------	-----

	Coef.	SE	p
Treat	-6	4.4	0.09
SC/ST > 50 pc	-4.88	3.66	0.09
Treat:SC/ST50	1.87	5.06	0.36
R squared	0.44		

Continuous SC/ST

	Coef.	SE	p
Treat	-6.03	6.36	0.17
ST/SC pc	-0.06	0.09	0.26
Treat:SC/ST pc	0.01	0.11	0.48
R squared	0.44		

Histogram of Percent SC/ST in AC

Heterogeneous effects: Date of election

		_		
	Dependent variable:			
	Vote Share VB 2014	Table : Treatment by Date		
Treat	-17.979**** (3.543)		С	Т
Poll 2014-04-17	-3.271 (2.818)	2014-04-10	37	37
Poll 2014-04-24	0.678 (3.120)	2014-04-17	131	144
Poll 2014-04-30	-15.522****(3.316)		_	
Poll 2014-05-07	32.088*** (3.730)	2014-04-24	65	65
Vote Share VB 2009	0.634*** (0.025)	2014-04-30	49	19
Num Radio 1	4.927 (15.262)	2014-05-07	33	47
Num Radio 2	5.406 (15.391)	2014-05-12	0	1
Treat:Poll 2014-04-17	17.296*** (4.003)			
Treat:Poll 2014-04-24	12.344*** (4.445)			
Treat:Poll 2014-04-30	22.415*** (5.438)			
Treat:Poll 2014-05-07	-13.280****(4.940)			
Constant	26.732* (15.507)			
Observations	627			
\mathbb{R}^2	0.590			
Adjusted R ²	0.582			
Residual Std. Error	15.136 (df = 614)			
F Statistic	$73.514^{***} \text{ (df} = 12; 614)$	_		
Note:	*p<0.1; **p<0.05; ***p<0.0	 1		

Omitted Date 2014-04-10, Excludes 2014-05-12

Heterogeneous effects: Competitiveness of election

	Dependent variable:	
	VB Share 2014	
Treat	-4.213(3.111)	
Margin 5-10	2.896 (3.058)	
Margin 10-20	-1.788(3.042)	
Margin 20-30	-0.441(3.811)	
Margin 30+	1.873 (5.742)	
VB share 2009	0.557*** (0.031)	υŚ
1 Station	6.856 (18.436)	-requency
2 Stations	9.066 (18.595)	ĕ
Treat:Margin 5-10	-1.423(4.333)	_
Treat:Margin 10-20	1.862 (4.436)	
Treat:Margin 20-30	-5.958(5.393)	
Treat:Margin 30+	-5.392(7.175)	
Constant	27.781 (18.620)	
Observations	531	
\mathbb{R}^2	0.407	
Adjusted R ²	0.393	
Residual Std. Error	18.309 (df = 518)	
F Statistic	29.575*** (df = 12; 518)	
Note:	*p<0.1; **p<0.05; ***p<0.05	1

Histogram of Margin of Victory in 2009

Heterogeneous effects: State

Table: Treatment Status of ACs by State		
	Control AC	Treated AC
Andhra Pradesh	82	31
Bihar	0	14
Chattisgarh	15	27
Jharkhand	15	17
Karnataka	50	25
Madhya Pradesh	27	18
Maharashtra	60	38
Orissa	23	26
Rajasthan	42	54
Uttar Pradesh	1	63

Heterogeneous effects: State

	Dependent variable:
	2014 Vote Share
	Vote Buying Parties
State Bihar	-26.287**** (5.571)
State Chattisgarh	-5.774(4.893)
State Jharkhand	-3.946 (4.916)
State Karnataka	-8.440^{***} (3.115)
State Madhya Pradesh	-2.123(3.875)
State Maharashtra	-4.945*(2.909)
State Orissa	-4.407(4.084)
State Rajasthan	1.235 (3.420)
State Uttar Pradesh	-61.526*** (17.276)
Vote Share 2009	0.588*** (0.030)
Num Radio 1	2.224 (17.458)
Num Radio 2	1.392 (17.560)
Constant	35.029** (17.569)

Treat	4.353 (3.702)
Treat:Bihar	
Treat:Chattisgarh	-9.903 (6.618)
Treat:Jharkhand	0.761 (7.062)
Treat:Karnataka	-3.484 (5.559)
Treat:Madhya Pradesh	-11.592*(6.357)
Treat:Maharashtra	-8.632*(5.113)
Treat:Orissa	-8.085 (6.116)
Treat:Rajasthan	-14.242^{***} (5.046)
Treat:Uttar Pradesh	43.523** (17.650)
Constant	35.029** (17.569)
Observations	628
\mathbb{R}^2	0.485
Adjusted R ²	0.467
Residual Std. Error	17.111 (df = 606)
F Statistic	$27.158^{***} (df = 21; 606)$
Note:	*p<0.1; **p<0.05; ***p<0.01

Interpretation of the results

Common to switch parties and punish incumbents in India. Among 289 comp. ACs in 2009, 179 switched parties in 2014.

Interpretation of the results

Are people fleeing major parties and voting for minor parties? Does this change the results of elections?

Next step:

- Among ACs competitive in 2009, would the treatment have changed election outcome?
- Check if winner, runner-up parties in 2014 were vote-buyers
- Is the winner non-VB party while runner-up is VB party?
- Check margin of victory in 2014 smaller than ATE?