Mixed Integer Programming (MIP) Approaches for Adaptive Choice-Based Conjoint Analysis

Juan Pablo Vielma

Massachusetts Institute of Technology

Joint work with Denis Saure

ISMS Marketing Science Conference, University of Southern California, Los Angeles, California. June, 2017.

Adaptive Choice-Based Conjoint Analysis

Today: Minimize variance of parameter estimates

Parametric Model = **Logistic Regression**

Product profile

MNL Random Linear Utility

Feature	Chewbacca	BB-8
Wookiee	Yes	No
Droid	No	Yes
Blaster	Yes	No
Prefer?		
	1	2

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = x^2$$

Thewbacca BB-8

Yes No

No Yes

Yes No

$$x^1 \quad x^2 \quad \Leftrightarrow \quad z = x^1 - x^2$$

$$x^1 \quad x^2$$

$$\Leftrightarrow z = x^1 - x^2$$

Question:
$$x^{1} \succeq x^{2} \Leftrightarrow U_{1} \stackrel{"}{\geq} U_{2} \\ \Leftrightarrow \beta \cdot z \stackrel{"}{\geq} 0 \qquad \mathbb{P}\left(x^{1} \succeq x^{2} \mid \beta\right) = \frac{1}{1 + e^{-\beta \cdot z}}$$

$$\mathbb{P}\left(x^{1} \succeq x^{2} \mid \beta\right) = \frac{1}{1 + e^{-\beta \cdot z}}$$

Bayesian Model with Normal Prior

Geometric Models ≈ Bayesian Model

Method	Response Error
Polyhedral Method (Toubia et al. '03,'04)	No
Probabilistic Polyhedral Method (T. et al. '07)	Yes , ≈ Bayesian
Robust Method (Bertsimas and O'Hair '13)	Yes, Robust
Ellipsoidal Method (Saure and Vielma '16)	Yes , = Bayesian

Bayesian v/s Geometric

	Bayesian	Geometric
Response Error	MNL	None / Non-MNL or ≈ MNL
Update	Integration or MCMC	Simple Linear Algebra
Question Selection	Integration + Enumeration	MIP

Ellipsoidal Method:

D-Efficiency and Expected Posterior Variance

$$f(z, \mu, \Sigma) := \mathbb{E}_{y, \beta} \left\{ (\det \operatorname{cov}(\beta \mid y, z))^{1/m} \right\}$$

$$\max_{z \in \{-1,0,1\}^n} f(z,\mu,\Sigma)$$

• $f(z, \mu, \Sigma)$ is hard to evaluate, non-convex and n large

Reformulation from V. and Saure '16

• D-efficiency f(z) = Non-convex function f(d, v) of

mean: $d := \mu \cdot z$

variance:

$$v := z' \cdot \sum \cdot z$$

Can evaluate f(d, v) with 1-dim integral \odot

Piecewise Linear Interpolation

Linear MIP formulation (standard linearization)

Aligns with selection criteria from Toubia et al. '04: minimize mean and maximize variance

Easy to Build through julia & JuMP

PiecewiseLinearOpt.jl (Huchette and V. 2017)

```
\exp(x+y)
min
                            Automatically select Δ
s.t.
                           Automatically construct
        x, y \in [0, 1]
                          formulation (easily chosen)
                                                            10
```

```
using JuMP, PiecewiseLinearOpt
m = Model()
@variable(m, x)
@variable(m, y)
z = piecewiselinear(m, x, y, 0:0.1:1, 0:0.1:1, (u,v) -> exp(u+v))
@objective(m, Min, z)
```

MIP-based Adaptive Questionnaires

 Optimal one-step look-ahead moment-matching approximate Bayesian approach = Ellipsoidal Method

Optimal One-Step Look-Ahead = MIP

Solve with MIP formulation

$$\min_{x^1, x^2, d, v \in Q} f(d, v)$$

Sampling: all precomputed (2-dim grid)

Moment-Matching Approximate Bayesian Update

Answer likelihood

$$\beta \sim N\left(\mu^i, \Sigma^i\right)$$

Posterior distribution

$$\beta \stackrel{approx.}{\sim} N\left(\mu^{i+1}, \Sigma^{i+1}\right)$$

- $\mu^{i+1} = \mathbb{E}\left(\beta \mid y, x^1, x^2\right)$ 1-d integral : I(d, v)
- $\Sigma^{i+1} = \operatorname{cov}\left(\beta \mid y, x^1, x^2\right)$ Sampling : all precomputed

Simulation Experiments

- 16 questions, 2 options, 12 features
- Simulate MNL responses with known β^*
- 100 individual β^* sampled from $N(\mu, \Sigma)$ prior
- Methods:
 - Polyhedral, Prob. Polyhedral, Robust and Ellipsoidal
 - All get same ellipsoidal prior
 - All < 30" inter-question (except robust < 90")

Metrics:

- RMSE of β estimator, error in market share and D-eff.
- Normalized values = smaller better
- Versions: Method, Individual and Hierarchical Bayesian
- Sensitivity: Wrong prior μ , all errors in first/second half

D-Efficiency for Individual Bayesian

RMSE for Methods Estimator

RMSE for Individual Bayesian Estimator

RMSE for Hierarchical Bayesian Estimator

Market share for Baseline

Summary

- Mixed Integer Programming for ACBCA
 - n-variate function to 2-variate function + MIP
 - Precomputed 2-variate PWL function
 - Advanced MIP formulation + solver
 - Easy to access with Jump!
 - Ask me and get a sticker
- Also for other estimator variance / linear models
- Significantly faster reduction of estimator variance
 - Maybe too fast for HB?
- Future: MIP flexibility → Managerial Objective