Problem Sheet 1

discussion: week of Monday, 17.10.2022

1.1. Consider the approximation of the integral $\int_0^1 f(x)$ by the trapezoidal rule

$$\int_0^1 f(x) dx \approx T(h) := \sum_{i=0}^{N-1} \frac{h}{2} (f(x_i) + f(x_{i+1})), \qquad x_i = ih, \qquad h = \frac{1}{N}$$

as well as the box rule

$$\int_0^1 f(x) \, dx \approx R(h) := \sum_{i=0}^{N-1} h f(x_i), \qquad x_i = ih, \qquad h = \frac{1}{N}.$$

- a) Write one program that, given N and a function f, returns T(h) and one that returns R(h) with h = 1/N.
- b) For $f(x) = e^x$ and $N(i) = 2^i$, $i = 1, \ldots, 10$, set h(i) = 1/N(i). For these 10 values of h, compute the actual errors $\operatorname{err}(i) = \int_0^1 e^x \, dx T(h(i)) = e 1 T(h(i))$. Plot the (absolute value) of the true error in a "log-log" plot. That is, in matlab notation with the vectors h and err (both of length 10)

Does the true error behave like Ch^2 ?

Do the same thing for the box rule as well. What error behaviour do you see?

Remark: In python loglog plotting is realized with matplotlib.pyplot.loglog and the array limits have to be adapted since arrays start at 0 in python.

- **1.2.** Again, consider the approximation of the integral $\int_0^1 f(x)$ by the trapezoidal rule T(h) from exercise 1.1. The aim is to design an error estimator as it was done for the "box scheme" in the lecture.
 - a) For the error estimator, make the ansatz

$$\int_0^1 f(x) \, dx - T(h) \stackrel{!}{=} Ch^2$$

and compute C from (calculated) T(h) and T(h/2). The error estimator is then $E(h) = Ch^2$.

b) Modify your program from exercise 1.1(a) such that it also computes the error estimator E(h). For the test-case in exercise 1.1(b) do also compute the ratios $\mathbf{r}(i) := \mathbf{err}(i)/E(h(i))$ of the true error to estimated error. Plot the ratio \mathbf{r} in a semilogarithmic plot versus h. That is, in matlab notation with the vectors h and \mathbf{r} (both of length 10)

- **1.3.** Let the data (0,0), (1,2), (4,8) be given.
 - a) Write down the (quadratic) interpolating polynomial p in the Lagrange form, i.e., $p(x) = \sum_{i=0}^{2} f_i \ell_i(x)$.
 - b) The quadratic interpolating polynomial $p(x) = a_0 + a_1x + a_2x^2$ can also be determined by solving a linear system of equations for the coefficients a_0 , a_1 , a_2 . Formulate the system and solve for the a_i .
 - c) Check your approximation p(2) using the matlab or numpy routines polyfit($\mathbf{x}, \mathbf{f}, n$) and polyval. Note that polyfit also returns the coefficients a_i of part c). Compare.

Note: The use of polyfit and polyval in the context of polynomial interpolation should rather be viewed as a "quick and dirty" method since polyfit is based on polynomial approximation in the monomial basis $\{1, x, x^2, \dots, x^n\}$ and therefore numerically unsuitable for large/largish n.

- **1.4.** a) Write a routine that has as input the vectors \mathbf{x} and \mathbf{f} of knots and data (both vectors have the length n+1) and returns the value of the interpolating polynomial at the point 0, i.e., p(0) and the polynomial p of degree n satisfies $p(\mathbf{x}_i) = \mathbf{f}_i$ for all i. To simplify matters, you may use polyfit and polyval.
 - **b)** Define the values $h_i := 2^{-i}$, $i = 0, 1, \ldots$ Based on a), write a function whose input is a function handle f and integers $m, n \in \mathbb{N}_0$. The output is a matrix $N \in \mathbb{R}^{(m+1)\times(n+1)}$ with entries $N_{j,k} := p_{j,k}(0)$, where $j = 0, \ldots, m, k = 0, \ldots, n$ and $p_{j,k}$ is the polynomial of degree k that interpolates the data $(h_{j+\ell}, f(h_{i+\ell})), \ell = 0, \ldots, k$.

Remark: This matrix N is the so-called Neville-scheme for interpolation although it is usually set up differently. (This will be done later in class.)

c) Apply your routine of b) to the function

$$f(h) = \frac{e^h - 1}{h}$$

and select m = 10 and n = 2. You expect the columns of N to converge to $\lim_{h\to 0} f(h) = 1$. To check that, plot (in matlab notation)

$$\log\log(h(1:m+1), \mathtt{abs}(N(:,1)-1), \quad h(1:m+1), \mathtt{abs}(N(:,2)-1), \quad h(1:m+1), \mathtt{abs}(N(:,3)-1))$$

What convergence behavior do you observe for these 3 graphs?

1.5. A common way to approximate a function by a polynomial is to use Taylor polynomials around a point x_0 given as

$$f(x) \simeq \sum_{j=0}^{n} \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2} (x - x_0)^2 + \dots$$

Compute the Taylor polynomial of degree n=2 for the function $f=\sin(x)$ at $x_0=0$ and at $x_0=\frac{\pi}{2}$. Compare it with the interpolating polynomial of order 2 from the lecture, what do you observe?