

INTÉGRALES IMPROPRES ET INTÉGRALE DÉPENDANT D'UN PARAMÈTRE

AA3: Intégrale impropre des fonctions particulières

Mathématiques de Base 4 - 2^{ème} année - **A.U.** 2020/2021

Motivation

Soit f une fonction définie et continue sur un intervalle de la forme [a,b[où $a \in \mathbb{R}$ et $b \in \mathbb{R} \cup \{+\infty\}$ (respectivement]a,b] où $a \in \mathbb{R} \cup \{-\infty\}$ et $b \in \mathbb{R}$).

On se donne une intégrale impropre en a ou en b:

$$\int_a^b f(x)dx$$

Motivation

Soit f une fonction définie et continue sur un intervalle de la forme [a,b[où $a \in \mathbb{R}$ et $b \in \mathbb{R} \cup \{+\infty\}$ (**respectivement**]a,b] où $a \in \mathbb{R} \cup \{-\infty\}$ et $b \in \mathbb{R}$).

On se donne une intégrale impropre en a ou en b:

$$\int_{a}^{b} f(x)dx$$

Objectif:

Présenter quelques intégrales impropres de fonctions particulières et étudier leurs natures.

Intégrale géométrique ou exponentielle

Une intégrale géométrique est toute intégrale de la forme

$$\int_0^{+\infty} e^{-\alpha x} dx \quad \text{où } \alpha \text{ est une constante}$$

Intégrale géométrique ou exponentielle

Une intégrale géométrique est toute intégrale de la forme

$$\int_0^{+\infty} e^{-\alpha x} dx \quad \text{où } \alpha \text{ est une constante}$$

$$\bullet \int_0^{+\infty} e^{-2x} dx$$

Intégrale géométrique ou exponentielle

Une intégrale géométrique est toute intégrale de la forme

$$\int_0^{+\infty} e^{-\alpha x} dx \quad \text{où } \alpha \text{ est une constante}$$

$$\bullet \int_0^{+\infty} e^{-2x} dx$$

$$\bullet \int_0^{+\infty} e^{\frac{x}{2}} dx$$

Intégrale géométrique ou exponentielle

Une intégrale géométrique est toute intégrale de la forme

$$\int_0^{+\infty} e^{-\alpha x} dx \quad \text{où } \alpha \text{ est une constante}$$

$$\bullet \int_0^{+\infty} e^{-2x} dx$$

$$\bullet \int_0^{+\infty} e^{\frac{x}{2}} dx$$

? Pour quelles valuers de
$$\alpha$$
, $\int_0^{+\infty} e^{-\alpha x} dx$ est convergente ?

Distinguons trois cas:

 \implies Distinguous trois cas: $\alpha = 0$,

 \implies Distinguous trois cas: $\alpha = 0$, $\alpha > 0$

 \implies Distinguous trois cas: $\alpha = 0$, $\alpha > 0$ et $\alpha < 0$

- \implies Distinguous trois cas: $\alpha = 0$, $\alpha > 0$ et $\alpha < 0$
 - Supposons $\alpha = 0$.

- \implies Distinguous trois cas: $\alpha = 0$, $\alpha > 0$ et $\alpha < 0$
 - Supposons $\alpha = 0$.

Pour tout $X \in [0, +\infty[$ on a:

$$\int_0^X e^{-\alpha x} \, dx = \int_0^X e^{-0.x} \, dx = \left[x \right]_0^X = X$$

- \blacksquare Distinguous trois cas: $\alpha = 0$, $\alpha > 0$ et $\alpha < 0$
 - Supposons $\alpha = 0$.

Pour tout $X \in [0, +\infty[$ on a:

$$\int_0^X e^{-\alpha x} \, dx = \int_0^X e^{-0.x} \, dx = \left[x \right]_0^X = X$$

Par conséquent,

$$\lim_{X \to +\infty} \int_0^X e^{-\alpha x} \, dx = \lim_{X \to +\infty} X = +\infty.$$

- \implies Distinguous trois cas: $\alpha = 0$, $\alpha > 0$ et $\alpha < 0$
 - Supposons $\alpha = 0$.

Pour tout $X \in [0, +\infty[$ on a:

$$\int_0^X e^{-\alpha x} \, dx = \int_0^X e^{-0.x} \, dx = \left[x \right]_0^X = X$$

Par conséquent,

$$\lim_{X\to +\infty} \int_0^X e^{-\alpha x} \, dx = \lim_{X\to +\infty} X = +\infty.$$

Ainsi, l'intégrale impropre $\int_0^{+\infty} e^{-\alpha x} dx$ est divergente.

Pour tout $X \in [0, +\infty[$ on a:

$$\int_0^X e^{-\alpha x} dx = \left[-\frac{1}{\alpha} e^{-\alpha x} \right]_0^X = -\frac{1}{\alpha} e^{-\alpha X} + \frac{1}{\alpha}.$$

Pour tout $X \in [0, +\infty[$ on a:

$$\int_0^X e^{-\alpha x} dx = \left[-\frac{1}{\alpha} e^{-\alpha x} \right]_0^X = -\frac{1}{\alpha} e^{-\alpha X} + \frac{1}{\alpha}.$$

Par conséquent,

$$\lim_{X \to +\infty} \int_0^X e^{-\alpha x} \, dx = \lim_{X \to +\infty} -\frac{1}{\alpha} e^{-\alpha X} + \frac{1}{\alpha} = \frac{1}{\alpha}.$$

Pour tout $X \in [0, +\infty[$ on a:

$$\int_0^X e^{-\alpha x} dx = \left[-\frac{1}{\alpha} e^{-\alpha x} \right]_0^X = -\frac{1}{\alpha} e^{-\alpha X} + \frac{1}{\alpha}.$$

Par conséquent,

$$\lim_{X\to +\infty} \int_0^X e^{-\alpha x} \, dx = \lim_{X\to +\infty} -\frac{1}{\alpha} e^{-\alpha X} + \frac{1}{\alpha} = \frac{1}{\alpha}.$$

Ainsi, l'intégrale impropre $\int_0^{+\infty} e^{-\alpha x} dx$ est **convergente** et vaut $\frac{1}{\alpha}$.

Pour tout $X \in [0, +\infty)$ on a:

$$\int_0^X e^{-\alpha x} \, dx = \left[-\frac{1}{\alpha} e^{-\alpha x} \right]_0^X = -\frac{1}{\alpha} e^{-\alpha X} + \frac{1}{\alpha}.$$

Pour tout $X \in [0, +\infty[$ on a:

$$\int_0^X e^{-\alpha x} dx = \left[-\frac{1}{\alpha} e^{-\alpha x} \right]_0^X = -\frac{1}{\alpha} e^{-\alpha X} + \frac{1}{\alpha}.$$

Par conséquent,

$$\lim_{X \to +\infty} \int_0^X e^{-\alpha x} \, dx = \lim_{X \to +\infty} -\frac{1}{\alpha} e^{-\alpha X} + \frac{1}{\alpha} = +\infty.$$

Pour tout $X \in [0, +\infty[$ on a:

$$\int_0^X e^{-\alpha x} dx = \left[-\frac{1}{\alpha} e^{-\alpha x} \right]_0^X = -\frac{1}{\alpha} e^{-\alpha X} + \frac{1}{\alpha}.$$

Par conséquent,

$$\lim_{X \to +\infty} \int_0^X e^{-\alpha x} \, dx = \lim_{X \to +\infty} -\frac{1}{\alpha} e^{-\alpha X} + \frac{1}{\alpha} = +\infty.$$

Ainsi, l'intégrale impropre $\int_0^{+\infty} e^{-\alpha x} dx$ est **divergente**.

Pour tout $X \in [0, +\infty[$ on a:

$$\int_0^X e^{-\alpha x} \, dx = \left[-\frac{1}{\alpha} e^{-\alpha x} \right]_0^X = -\frac{1}{\alpha} e^{-\alpha X} + \frac{1}{\alpha}.$$

Par conséquent,

$$\lim_{X\to +\infty} \int_0^X e^{-\alpha x} \, dx = \lim_{X\to +\infty} -\frac{1}{\alpha} e^{-\alpha X} + \frac{1}{\alpha} = +\infty.$$

Ainsi, l'intégrale impropre $\int_0^{+\infty} e^{-\alpha x} dx$ est **divergente**.

Conclusion

L'intégrale
$$\int_0^{+\infty} e^{-\alpha x} dx$$
 est $\begin{cases} \text{convergente} & \text{si } \alpha > 0 \\ \text{divergente} & \text{si } \alpha \leq 0. \end{cases}$

Intégrale exponentielle ou géométrique

Théorème

Soit $\alpha \in \mathbb{R}$. $\int_0^{+\infty} e^{-\alpha x} dx$ est convergente si et seulement si $\alpha > 0$.

Intégrale exponentielle ou géométrique

Théorème

Soit $\alpha \in \mathbb{R}$. $\int_0^{+\infty} e^{-\alpha x} dx$ est convergente si et seulement si $\alpha > 0$.

Exemples:

• L'intégrale $\int_0^{+\infty} e^{-2x}\,dx$ est une intégrale géométrique avec α = 2 > 0, donc elle est convergente et vaut $\frac{1}{2}$

Intégrale exponentielle ou géométrique

Théorème

Soit $\alpha \in \mathbb{R}$. $\int_0^{+\infty} e^{-\alpha x} dx$ est convergente si et seulement si $\alpha > 0$.

- L'intégrale $\int_0^{+\infty}e^{-2x}\,dx$ est une intégrale géométrique avec α = 2 > 0, donc elle est convergente et vaut $\frac{1}{2}$
- L'intégrale $\int_0^{+\infty} e^{\frac{x}{2}} dx$ est une intégrale géométrique avec $\alpha = -\frac{1}{2} < 0$, donc elle est divergente.

• Soit *p* une constante.

Définition (a > 0)

L'intégrale

$$\int_{a}^{+\infty} \frac{1}{x^{p}} \, dx$$

est dite une intégrale de Riemann

 \bullet Soit p une constante.

Définition (a > 0)

L'intégrale

$$\int_{a}^{+\infty} \frac{1}{x^{p}} \, dx$$

est dite une intégrale de Riemann

$$\bullet \int_{1}^{+\infty} \frac{1}{x^3} \, dx$$

• Soit *p* une constante.

Définition (a > 0)

L'intégrale

$$\int_{a}^{+\infty} \frac{1}{x^{p}} \, dx$$

est dite une intégrale de Riemann

$$\bullet \int_{1}^{+\infty} \frac{1}{x^3} dx \qquad \bullet \int_{1}^{+\infty} \frac{1}{\sqrt{x}} dx$$

$$\bullet \int_1^{+\infty} \frac{1}{\sqrt{x}} \, dx$$

• Soit *p* une constante.

Définition (a > 0)

L'intégrale

$$\int_{a}^{+\infty} \frac{1}{x^{p}} \, dx$$

est dite une intégrale de Riemann

Définition $(-\infty < a < b < +\infty)$

Les intégrales

Ou

sont dites intégrale de Riemann

Exemples:

•
$$\int_1^{+\infty} \frac{1}{x^3} dx$$
 • $\int_1^{+\infty} \frac{1}{\sqrt{x}} dx$

• Soit *p* une constante.

Définition (a > 0)

L'intégrale

$$\int_{a}^{+\infty} \frac{1}{x^{p}} \, dx$$

est dite une intégrale de Riemann

Définition $(-\infty < a < b < +\infty)$

Les intégrales

Ou

sont dites intégrale de Riemann

Exemples:

•
$$\int_1^{+\infty} \frac{1}{x^3} dx$$
 • $\int_1^{+\infty} \frac{1}{\sqrt{x}} dx$

$$\bullet \int_0^1 \frac{1}{x} dx$$

 \bullet Soit p une constante.

Définition (a > 0)

L'intégrale

$$\int_{a}^{+\infty} \frac{1}{x^{p}} \, dx$$

est dite une intégrale de Riemann

Définition $(-\infty < a < b < +\infty)$

Les intégrales

Ou

sont dites intégrale de Riemann

Exemples:

•
$$\int_1^{+\infty} \frac{1}{x^3} dx$$
 • $\int_1^{+\infty} \frac{1}{\sqrt{x}} dx$

$$\bullet \int_0^1 \frac{1}{x} dx \qquad \bullet \int_1^2 \frac{1}{(2-x)^3} dx$$

9

? Pour quelles valuers de p, l'intégrale de Riemann $\int_{1}^{+\infty} \frac{1}{x^{p}} dx$ est convergente ?

? Pour quelles valuers de p, l'intégrale de Riemann $\int_1^{+\infty} \frac{1}{x^p} dx$ est convergente ?

Distinguons trois cas:

? Pour quelles valuers de p, l'intégrale de Riemann $\int_1^{+\infty} \frac{1}{x^p} dx$ est convergente ?

Distinguous trois cas: p = 1,

? Pour quelles valuers de p, l'intégrale de Riemann $\int_1^{+\infty} \frac{1}{x^p} dx$ est convergente ?

Distinguous trois cas: p = 1, p > 1 et

? Pour quelles valuers de p, l'intégrale de Riemann $\int_1^{+\infty} \frac{1}{x^p} dx$ est convergente ?

Distinguous trois cas: p = 1, p > 1 et p < 1

? Pour quelles valuers de p, l'intégrale de Riemann $\int_1^{+\infty} \frac{1}{x^p} dx$ est convergente ?

Distinguous trois cas: p = 1, p > 1 et p < 1

• Supposons p = 1.

? Pour quelles valuers de p, l'intégrale de Riemann $\int_1^{+\infty} \frac{1}{x^p} dx$ est convergente ?

Distinguous trois cas: p = 1, p > 1 et p < 1

• Supposons p = 1.

Pour tout $X \in [1, +\infty[$ on a:

$$\int_{1}^{X} \frac{1}{x^{p}} dx = \int_{1}^{X} \frac{1}{x} dx = \left[\ln(x)\right]_{1}^{X} = \ln(X)$$

? Pour quelles valuers de p, l'intégrale de Riemann $\int_1^{+\infty} \frac{1}{x^p} dx$ est convergente ?

Distinguous trois cas: p = 1, p > 1 et p < 1

• Supposons p = 1.

Pour tout $X \in [1, +\infty)$ on a:

$$\int_{1}^{X} \frac{1}{x^{p}} dx = \int_{1}^{X} \frac{1}{x} dx = \left[\ln(x)\right]_{1}^{X} = \ln(X)$$

$$\lim_{X \to +\infty} \int_1^X \frac{1}{x^p} dx = \lim_{X \to +\infty} \ln(X) = +\infty.$$

? Pour quelles valuers de p, l'intégrale de Riemann $\int_1^{+\infty} \frac{1}{x^p} dx$ est convergente ?

Distinguous trois cas: p = 1, p > 1 et p < 1

• Supposons p = 1.

Pour tout $X \in [1, +\infty)$ on a:

$$\int_{1}^{X} \frac{1}{x^{p}} dx = \int_{1}^{X} \frac{1}{x} dx = \left[\ln(x)\right]_{1}^{X} = \ln(X)$$

Par conséquent,

$$\lim_{X \to +\infty} \int_1^X \frac{1}{x^p} dx = \lim_{X \to +\infty} \ln(X) = +\infty.$$

Ainsi, l'intégrale impropre $\int_1^{+\infty} \frac{1}{x^p} dx$ est **divergente**.

• Supposons p > 1. Pour tout $X \in [1, +\infty[$ on a:

$$\int_{1}^{X} \frac{1}{x^{p}} \, dx = \int_{1}^{X} x^{-p} \, dx = \left[\frac{1}{-p+1} . x^{-p+1} \right]_{1}^{X} = \frac{1}{-p+1} . X^{-p+1} - \frac{1}{-p+1}$$

Pour tout $X \in [1, +\infty[$ on a:

$$\int_{1}^{X} \frac{1}{x^{p}} dx = \int_{1}^{X} x^{-p} dx = \left[\frac{1}{-p+1} . x^{-p+1} \right]_{1}^{X} = \frac{1}{-p+1} . X^{-p+1} - \frac{1}{-p+1}$$

$$\lim_{X \to +\infty} \int_1^X \frac{1}{x^p} \, dx = \lim_{X \to +\infty} \frac{1}{-p+1} \cdot X^{-p+1} - \frac{1}{-p+1} = \frac{1}{p-1}.$$

Pour tout $X \in [1, +\infty[$ on a:

$$\int_{1}^{X} \frac{1}{x^{p}} dx = \int_{1}^{X} x^{-p} dx = \left[\frac{1}{-p+1} . x^{-p+1} \right]_{1}^{X} = \frac{1}{-p+1} . X^{-p+1} - \frac{1}{-p+1}$$

Par conséquent,

$$\lim_{X \to +\infty} \int_1^X \frac{1}{x^p} \, dx = \lim_{X \to +\infty} \frac{1}{-p+1} . X^{-p+1} - \frac{1}{-p+1} = \frac{1}{p-1}.$$

Ainsi, l'intégrale impropre $\int_1^{+\infty} \frac{1}{x^p} dx$ est **convergente** et vaut $\frac{1}{p-1}$.

• Supposons p < 1. Pour tout $X \in [1, +\infty[$ on a:

$$\int_{1}^{X} \frac{1}{x^{p}} dx = \int_{1}^{X} x^{-p} dx = \left[\frac{1}{-p+1} . x^{-p+1} \right]_{1}^{X} = \frac{1}{-p+1} . X^{-p+1} - \frac{1}{-p+1}$$

Pour tout $X \in [1, +\infty)$ on a:

$$\int_{1}^{X} \frac{1}{x^{p}} dx = \int_{1}^{X} x^{-p} dx = \left[\frac{1}{-p+1} . x^{-p+1} \right]_{1}^{X} = \frac{1}{-p+1} . X^{-p+1} - \frac{1}{-p+1}$$

$$\lim_{X \to +\infty} \int_1^X \frac{1}{x^p} \, dx = \lim_{X \to +\infty} \frac{1}{-p+1} \cdot X^{-p+1} - \frac{1}{-p+1} = +\infty.$$

• Supposons p < 1. Pour tout $X \in [1, +\infty[$ on a:

$$\int_{1}^{X} \frac{1}{x^{p}} dx = \int_{1}^{X} x^{-p} dx = \left[\frac{1}{-p+1} . x^{-p+1} \right]_{1}^{X} = \frac{1}{-p+1} . X^{-p+1} - \frac{1}{-p+1}$$

Par conséquent,

$$\lim_{X \to +\infty} \int_1^X \frac{1}{x^p} dx = \lim_{X \to +\infty} \frac{1}{-p+1} \cdot X^{-p+1} - \frac{1}{-p+1} = +\infty.$$

Ainsi, l'intégrale impropre $\int_{1}^{+\infty} \frac{1}{x^{p}} dx$ est **divergente**.

Conclusion

L'intégrale
$$\int_1^{+\infty} \frac{1}{x^p} dx$$
 est $\begin{cases} \text{convergente} & \text{si } p > 1 \\ \text{divergente} & \text{si } p \leq 1. \end{cases}$

Théorème

Soit $p \in \mathbb{R}$.

• $\int_a^{+\infty} \frac{1}{x^p} dx$ est convergente si et seulement si p > 1.

Théorème

Soit $p \in \mathbb{R}$.

• $\int_a^{+\infty} \frac{1}{x^p} dx$ est convergente si et seulement si p > 1.

Exemples:

- L'intégrale $\int_1^{+\infty} \frac{1}{x^3} dx$ est une intégrale de Riemann avec p=3>1, donc elle est **convergente** et vaut $\frac{1}{2}$.
- L'intégrale $\int_1^{+\infty} \frac{1}{\sqrt{x}} dx$ est une intégrale de Riemann avec $p = \frac{1}{2} < 1$, donc elle est divergente.

Intégrale de Riemann $(-\infty < a < b < +\infty)$

$$\int_a^b \frac{1}{(x-a)^p} dx \text{ ou } \int_a^b \frac{1}{(b-x)^p} dx$$

? Pour quelles valuers de p, l'intégrale de Riemann $\int_0^1 \frac{1}{x^p} dx$ est convergente ?

Intégrale de Riemann
$$(-\infty < a < b < +\infty)$$

$$\int_a^b \frac{1}{(x-a)^p} dx \text{ ou } \int_a^b \frac{1}{(b-x)^p} dx$$

Distinguons trois cas: p = 1,

Intégrale de Riemann
$$(-\infty < a < b < +\infty)$$

$$\int_a^b \frac{1}{(x-a)^p} dx \text{ ou } \int_a^b \frac{1}{(b-x)^p} dx$$

Distinguous trois cas: p = 1, p > 1,

Intégrale de Riemann
$$(-\infty < a < b < +\infty)$$

$$\int_a^b \frac{1}{(x-a)^p} dx \text{ ou } \int_a^b \frac{1}{(b-x)^p} dx$$

Distinguous trois cas: p = 1, p > 1, et p < 1.

Intégrale de Riemann
$$(-\infty < a < b < +\infty)$$

$$\int_a^b \frac{1}{(x-a)^p} dx \text{ ou } \int_a^b \frac{1}{(b-x)^p} dx$$

Distinguous trois cas: p = 1, p > 1, et p < 1.

• Supposons p = 1.

Intégrale de Riemann
$$(-\infty < a < b < +\infty)$$

$$\int_a^b \frac{1}{(x-a)^p} dx \text{ ou } \int_a^b \frac{1}{(b-x)^p} dx$$

Distinguous trois cas: p = 1, p > 1, et p < 1.

• Supposons p = 1. Pour tout $X \in]0,1]$ on a:

$$\int_{X}^{1} \frac{1}{x^{p}} dx = \int_{X}^{1} \frac{1}{x} dx = \left[\ln(x)\right]_{X}^{1} = -\ln(X)$$

Intégrale de Riemann $(-\infty < a < b < +\infty)$

$$\int_a^b \frac{1}{(x-a)^p} dx \text{ ou } \int_a^b \frac{1}{(b-x)^p} dx$$

? Pour quelles valuers de p, l'intégrale de Riemann $\int_0^1 \frac{1}{x^p} dx$ est convergente ?

Distinguous trois cas: p = 1, p > 1, et p < 1.

• Supposons p = 1. Pour tout $X \in]0,1]$ on a:

$$\int_{X}^{1} \frac{1}{x^{p}} dx = \int_{X}^{1} \frac{1}{x} dx = \left[\ln(x)\right]_{X}^{1} = -\ln(X)$$

$$\lim_{X \to 0^+} \int_X^1 \frac{1}{x^p} dx = \lim_{X \to 0^+} -\ln(X) = +\infty.$$

Intégrale de Riemann $(-\infty < a < b < +\infty)$

$$\int_a^b \frac{1}{(x-a)^p} dx \text{ ou } \int_a^b \frac{1}{(b-x)^p} dx$$

? Pour quelles valuers de p, l'intégrale de Riemann $\int_0^1 \frac{1}{x^p} dx$ est convergente ?

Distinguous trois cas: p = 1, p > 1, et p < 1.

• Supposons p = 1. Pour tout $X \in]0,1]$ on a:

$$\int_{X}^{1} \frac{1}{x^{p}} dx = \int_{X}^{1} \frac{1}{x} dx = \left[\ln(x)\right]_{X}^{1} = -\ln(X)$$

Par conséquent,

$$\lim_{X \to 0^+} \int_X^1 \frac{1}{x^p} dx = \lim_{X \to 0^+} -\ln(X) = +\infty.$$

Ainsi, l'intégrale impropre $\int_0^1 \frac{1}{x^p} dx$ est divergente.

• Supposons p > 1. Pour tout $X \in]0,1]$ on a:

$$\int_X^1 \frac{1}{x^p} \, dx = \int_X^1 x^{-p} \, dx = \left[\frac{1}{-p+1} . x^{-p+1} \right]_X^1 = \frac{1}{-p+1} - \frac{1}{-p+1} . X^{-p+1}$$

Pour tout $X \in]0,1]$ on a:

$$\int_{X}^{1} \frac{1}{x^{p}} dx = \int_{X}^{1} x^{-p} dx = \left[\frac{1}{-p+1} . x^{-p+1} \right]_{X}^{1} = \frac{1}{-p+1} - \frac{1}{-p+1} . X^{-p+1}$$

$$\lim_{X \to 0^+} \int_X^1 \frac{1}{x^p} \, dx = \lim_{X \to 0^+} \frac{1}{-p+1} - \frac{1}{-p+1} \cdot X^{-p+1} = +\infty.$$

Pour tout $X \in]0,1]$ on a:

$$\int_{X}^{1} \frac{1}{x^{p}} dx = \int_{X}^{1} x^{-p} dx = \left[\frac{1}{-p+1} . x^{-p+1} \right]_{X}^{1} = \frac{1}{-p+1} - \frac{1}{-p+1} . X^{-p+1}$$

Par conséquent,

$$\lim_{X\to 0^+} \int_X^1 \frac{1}{x^p} \, dx = \lim_{X\to 0^+} \frac{1}{-p+1} - \frac{1}{-p+1}.X^{-p+1} = +\infty.$$

Ainsi, l'intégrale impropre $\int_0^1 \frac{1}{x^p} dx$ est **divergente**.

Pour tout $X \in]0,1]$ on a:

$$\int_X^1 \frac{1}{x^p} dx = \int_X^1 x^{-p} dx = \left[\frac{1}{-p+1} . x^{-p+1} \right]_X^1 = \frac{1}{-p+1} - \frac{1}{-p+1} . X^{-p+1}$$

Pour tout $X \in]0,1]$ on a:

$$\int_X^1 \frac{1}{x^p} \, dx = \int_X^1 x^{-p} \, dx = \left[\frac{1}{-p+1} . x^{-p+1} \right]_X^1 = \frac{1}{-p+1} - \frac{1}{-p+1} . X^{-p+1}$$

$$\lim_{X \to 0^+} \int_X^1 \frac{1}{x^p} \, dx = \lim_{X \to 0^+} \frac{1}{-p+1} - \frac{1}{-p+1}.X^{-p+1} = \frac{1}{-p+1}.$$

Pour tout $X \in]0,1]$ on a:

$$\int_X^1 \frac{1}{x^p} \, dx = \int_X^1 x^{-p} \, dx = \left[\frac{1}{-p+1} . x^{-p+1} \right]_X^1 = \frac{1}{-p+1} - \frac{1}{-p+1} . X^{-p+1}$$

Par conséquent,

$$\lim_{X \to 0^+} \int_X^1 \frac{1}{x^p} \, dx = \lim_{X \to 0^+} \frac{1}{-p+1} - \frac{1}{-p+1} \cdot X^{-p+1} = \frac{1}{-p+1}.$$

Ainsi, l'intégrale impropre $\int_0^1 \frac{1}{x^p} dx$ est **convergente** et vaut $\frac{1}{-p+1}$.

Conclusion

L'intégrale
$$\int_0^1 \frac{1}{x^p} dx$$
 est $\begin{cases} \text{convergente} & \text{si } p < 1 \\ \text{divergente} & \text{si } p \ge 1. \end{cases}$

Théorème

Soit $p \in \mathbb{R}$.

•
$$\mathcal{I}_1 = \int_a^b \frac{1}{(x-a)^p} dx$$
 ou $(\mathcal{I}_2 = \int_a^b \frac{1}{(b-x)^p} dx)$ est convergente si et seulement si $p < 1$.

Théorème

Soit $p \in \mathbb{R}$.

•
$$\mathcal{I}_1 = \int_a^b \frac{1}{(x-a)^p} dx$$
 ou $(\mathcal{I}_2 = \int_a^b \frac{1}{(b-x)^p} dx)$ est convergente si et seulement si $p < 1$.

Exemples:

- L'intégrale $\int_0^1 \frac{1}{x^3} dx$ est une intégrale de Riemann avec p=3>1, donc elle est **divergente**.
- L'intégrale $\int_0^1 \frac{1}{\sqrt{x}} dx$ est une intégrale de Riemann avec $p = \frac{1}{2} < 1$, donc elle est **convergente** et vaut 2.

Intégrales de Bertrand :

Les intégrales de Bertrand sont les intégrales de la forme

$$\int_a^{+\infty} \frac{1}{x^\alpha (\ln(x))^\beta} dx \quad \text{avec} \quad a > 1, \quad \text{Intégrale de Bertrand au voisinage de } +\infty$$

$$\int_0^b \frac{1}{x^\alpha \mid \ln(x) \mid^\beta} dx \quad \text{avec} \quad b < 1, \quad \text{Intégrale de Bertrand au voisinage de } 0$$

$$\int_0^b \frac{1}{x^\alpha \mid \ln(x) \mid \beta} dx \quad \text{avec} \quad b < 1,$$

où $\alpha, \beta \in \mathbb{R}$.

Proposition

$$\bullet \ \int_a^{+\infty} \frac{1}{x^\alpha (\ln(x))^\beta} dx \ \text{est convergente} \iff \begin{cases} \alpha > 1 \\ \text{ou} \\ \alpha = 1 \ \text{et} \ \beta > 1. \end{cases}$$

$$\bullet \ \int_0^b \frac{1}{x^\alpha \mid \ln(x) \mid^\beta} dx \ \text{est convergente} \iff \begin{cases} \alpha < 1 \\ \text{ou} \\ \alpha = 1 \ \text{et} \ \beta > 1. \end{cases}$$

$$\bullet \ \int_0^b \frac{1}{x^\alpha \mid \ln(x) \mid^\beta} dx \ \text{est convergente} \iff \begin{cases} \alpha < 1 \\ \text{ou} \\ \alpha = 1 \ \text{et} \ \beta > 1. \end{cases}$$

$$\bullet \ \int_0^b \frac{1}{x^\alpha \mid \ln(x) \mid^\beta} dx \ \text{est convergente} \iff \begin{cases} \alpha < 1 \\ \text{ou} \\ \alpha = 1 \ \text{et} \ \beta > 1. \end{cases}$$

Exemples:

(1)
$$\int_{2}^{+\infty} \frac{1}{x \ln(x)} dx$$
 diverge

(Intégrale de Bertrand au voisinage de $+\infty$ avec $\alpha = 1$ et $\beta = 1$).

(2)
$$\int_3^{+\infty} \frac{1}{x^4 \ln(x)} dx$$
 converge

(Intégrale de Bertrand au voisinage de $+\infty$ avec $\alpha = 4 > 1$ et $\beta = 1$).

(3)
$$\int_{e}^{+\infty} \frac{1}{x \ln^{2}(x)} dx$$
 converge

(Intégrale de Bertrand au voisinage de $+\infty$ avec $\alpha=1$ et $\beta=2>1$).

(3)
$$\int_0^{\frac{1}{2}} \frac{1}{\sqrt{x \ln^3(x)}} dx$$
 converge

(Intégrale de Bertrand au voisinage de 0 avec $\alpha = \frac{1}{2} < 1$ et $\beta = 3$).

(4)
$$\int_0^{\frac{1}{e}} \frac{1}{x\sqrt{-\ln(x)}} dx$$
 diverge

(Intégrale de Bertrand au voisinage de 0 avec $\alpha = 1$ et $\beta = \frac{1}{2} \le 1$).