Adopted Levels, Gammas

 $Q(\beta^-)$ =-11874.4 9; S(n)=12740.3 7; S(p)=5896.2 7; $Q(\alpha)$ =-6429.7 7 2021Wa16 S(2n)=29805.6 8, S(2p)=11039.4 7, $Q(\varepsilon)$ =5966.2 7 (2021Wa16). Isotope discovery: ${}^{32}S(\alpha,n){}^{35}Ar$ at Purdue (1940Ki12,1941Ki01,1941El04). Shell-model calculations: 2020Ri06, 2020RiZX, 2020RiZZ.

³⁵Ar Levels

Cross Reference (XREF) Flags

	A B C D	35 K ε decay (175 ms) 36 Ca εp decay (100.9 ms) 1 H(36 Ar,d) 16 O(24 Mg, α n γ)	$\begin{array}{lll} E & ^{24}{\rm Mg}(^{16}{\rm O},\alpha {\rm n}\gamma) & {\rm I} & ^{36}{\rm Ar}({\rm p,d}) \\ F & ^{32}{\rm S}(\alpha,{\rm n}) & {\rm J} & ^{36}{\rm Ar}({\rm d,t}) \\ G & ^{33}{\rm S}(^{3}{\rm He},{\rm n}\gamma) & {\rm K} & ^{36}{\rm Ar}(^{3}{\rm He},\alpha) \\ {\rm H} & ^{35}{\rm Cl}(^{3}{\rm He,t}) & \end{array}$
E(level) [†]	\mathtt{J}^{π}	$T_{1/2}$ XREF	Comments
0.0	3/2+	1.7756 s 14 ABCDEFG IJ	$\%ε+\%β^+=100$ $μ=+0.6322\ 2\ (2002Ma41,2019StZV)$ $Q=-0.084\ 15\ (1996Kl04,2021StZZ)$ $μ: β-NMR\ (2002Ma41).$ Others: $+0.633\ 2\ (1965Ca04),\ +0.633$ $7\ (1996Kl04).$ Measured using $β-NMR$ method. Also from 2019StZV, 1989Ra17. $Q: β-NMR\ (1996Kl04).$ Also from 2021StZZ. $J^π:\ L(p,d)=L(d,t)=L(^3He,α)=L^1H(^{36}Ar,d)=2$ from 0^+ . Allowed $ε+β^+$ feedings to $1/2^+$ levels in ^{35}Cl . Mirror level: $3/2^+$
			T _{1/2} : weighted average of 1.83 s <i>3</i> (1956Ki29), 1.83 s <i>2</i> (1959Al10), 1.79 s <i>I</i> (1960Ja12), 1.84 s <i>I0</i> (1960Wa04), 1.76 s <i>3</i> (1963Ne05), 1.770 s <i>6</i> (1969Wi18), 1.787 s <i>I2</i> (1971Ge04), 1.774 s <i>4</i> (1977Az01), and 1.7754 s <i>I1</i> (2006Ia05).
			Evaluated rms nuclear charge radius R=3.3636 fm 42 (2013An02).
1184.08 25	1/2+	ABC FG IJ	· · · · · · · · · · · · · · · · · · ·
1750.78 22	(5/2)+	A DEFG IJ	E(level): 1963Ne05 (α ,n) observed the second excited state in 35 Ar at 2030 80 keV. J ^{π} : L(3 He, α)=2 from 0 ⁺ . Mirror level: 5/2 ⁺ at 1763 keV in
2603.22 28	7/2 ⁽⁺⁾	DE G	³⁵ Cl. J ^{π} : ΔJ=2 γ to 3/2 ⁺ in (¹⁶ O, α n γ). Mirror level: 7/2 ⁺ at 2646
	•		keV in ³⁵ Cl.
2638.01 26	3/2+	A IJ	XREF: I(2615) J^{π} : L(p,d)=L(3 He, α)=2 from 0 ⁺ with J dependence in (p,d).
2982.79 12	5/2+	A C IJ	
3196.98 [‡] 26	7/2-	CDE G IJ	
3884 10	1/2+		J^{π} : L(3 He, α)=0 from 0 ⁺ .
4012 <i>10</i> 4065.0? <i>4</i>	$\frac{1/2^{-},3/2^{-}}{(1/2^{+},3/2^{+},5/2^{+})}$	A	J^{π} : L(³ He, α)=1 from 0 ⁺ . XREF: A(?) J^{π} : possibly allowed ε + β ⁺ feeding from 3/2 ⁺ parent with log ft =5.6 +4-2.

³⁵Ar Levels (continued)

E(level) [†]	${\rm J}^{\pi}$	XREF	Comments				
4110 10		K					
4142 10	$1/2^{-},3/2^{-}$	K	J^{π} : L(³ He, α)=1 from 0 ⁺ .				
4359.0 5	$(9/2^{-})$	DE K	J^{π} : $\Delta J=(1) \gamma$ to $7/2^-$ in $(^{16}O,\alpha n\gamma)$. Possible mirror level: $9/2^-$ at 4348 keV in				
			³⁵ Cl.				
4528.3 <i>4</i> 4725.9 <i>6</i>	$(1/2^+, 3/2^+, 5/2^+)$ $1/2^+$	A K A Hi K	J^{π} : possibly allowed $\varepsilon + \beta^+$ feeding from $3/2^+$ parent with log $ft = 5.4 + 4 - 2$. XREF: i(4756)				
4723.70	•	A III K	J^{π} : $L(^{3}\text{He},\alpha)=0$ from 0^{+} . Other: $L(p,d)=0$ from 0^{+} for a group at 4756 28.				
4785.8 11	1/2+,3/2+,5/2+	A Hi K	XREF: i(4756) J^{π} : allowed $\varepsilon + \beta^+$ feeding from 3/2 ⁺ parent with log $ft = 5.2$ 2. Other: L(p,d)=0				
			from 0^+ for a group at 4756 28.				
5048 10		K					
5113 10	3/2+,5/2+	HI K	E(level): weighted average of 5102 20 from (p,d) and 5116 10 from (3 He, α). J^{π} : L(3 He, α)=2 from 0 ⁺ . Discrepancy: L(p,d)=3 from 0 ⁺ (1968Ko04).				
5205 10		н к	· · -(,) · ·, · -(+,) · · · · · · · · · · · · · · · · ·				
5384.2 [‡] 4	$(11/2^{-})$	DE I K	XREF: I(5400)				
3304.2 4	(11/2)	DL IK	J^{π} : $\Delta J=2 \gamma$ to $7/2^-$ in ($^{16}O,\alpha n\gamma$) and ($^{24}Mg,\alpha n\gamma$); band assignment. γ to				
			(9/2 ⁻) in ($^{16}\text{O},\alpha$ n γ) and ($^{24}\text{Mg},\alpha$ n γ). Possible mirror level: $11/2^-$ at 5407 keV in ^{35}Cl .				
5404 10	2/2+ 5/2+	77 77	J^{π} : L(${}^{3}\text{He},\alpha$)=2 from 0 ⁺ .				
5484 <i>10</i> 5572.67 <i>15</i>	3/2 ⁺ ,5/2 ⁺ 3/2 ⁺	H K A G	T^{-1} : L(T^{-1} He, α)=2 from 0°. T=3/2				
3312.01 13	3/2	A G	XREF: G(5537)				
			J^{π} : isobaric analog state of $3/2^{+35}$ K g.s. with log $ft=3.31$ 4. L(3 He,n)=(0) from				
			3/2+.				
5592 10	3/2+,5/2+	C HI K	XREF: C(5570)				
			Evaluators consider the 5992 level to be different from the T=3/2 level at				
			5572.67 because (p,d) and (3 He, α) from T=0 should not populate T=3/2 levels.				
			E(level): weighted average of 5598 20 from (p,d) and 5591 10 from (${}^{3}\text{He},\alpha$).				
			J^{π} : L(p,d)=L(³ He, α)=2 from 0 ⁺ .				
5613.6 9	$(11/2^{-})$	E	J^{π} : Possible mirror level: $11/2^{-}$ at 5927 keV in 35 Cl.				
5765.8 <i>5</i>	$(13/2^{-})$	DE	J^{π} : $\Delta J=1$ γ to $(11/2^{-})$ in $(^{16}O,\alpha n\gamma)$ and $(^{24}Mg,\alpha n\gamma)$. $\Delta J=(2)$ γ to $(9/2^{-})$ in				
			($^{16}\text{O},\alpha$ n γ). Possible mirror level: $13/2^-$ at 6087 keV in ^{35}Cl .				
5913 5		н јк	E(level): from (d,t). Other: 5911 10 from (${}^{3}\text{He},\alpha$).				
5991 <i>3</i>		J					
6037 <i>3</i>	3/2+,5/2+	HIJK	XREF: I(6024)K(6033)				
			J^{π} : $L(p,d) = L(^{3}He,\alpha) = 2$ from 0^{+} .				
6055? 3		J	XREF: J(?)				
6076 3		J	70 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
6163 3		JK	E(level): weighted average of 6164 3 from (d,t) and 6153 10 from (${}^{3}\text{He},\alpha$).				
6253 3		JK	E(level): from (d,t). Other: 6258 10 from (${}^{3}\text{He},\alpha$).				
6273 3		J					
6302 3		j					
6332 3	(1/0.2/0.5/0)	. J	E(I I) 6 (1) 01 (240 H 6 35H 1				
6345 3	(1/2,3/2,5/2)	A J	E(level): from (d,t). Other: 6348 11 from 35 K ε decay. J^{π} : $\varepsilon + \beta^{+}$ feeding from $3/2^{+}$ parent with log $ft = 7.2$ 1.				
6415 2		J	MDDE IO				
6439? 4		J	XREF: J(?)				
6460 <i>3</i>		J					
6523 <i>3</i>		J					
6557 <i>3</i> 6585 <i>3</i>		J J					
6606 3		iJk	XREF: i(6620)k(6631)				
6617 2		iJk	XREF: i(6620)k(6631)				
001. 2		13R	J^{π} : L(p,d)=L(3 He, α)=0 from 0 ⁺ gives 1/2 ⁺ for a group at 6620 30 and 6631 10,				
			υ . Σ(ρ,ω) Σ(110,ω) – υ 110111 υ - β1100 1/2 - 101 α group αι 0020 30 απα 0031 10,				

³⁵Ar Levels (continued)

E(level) [†]	J^{π}	XREF		Comments		
6644 3			Jk	respectively, which could be a multiplet of 6606+6617+6644+6651 in (d,t). XREF: i(6620)k(6631)		
6651 <i>3</i> 6673 <i>4</i>	5/2- 7/2-	1 I	Jk	XREF: i(6620)k(6631)		
0073 4	5/2-,7/2-	1	.J	XREF: I(6700) E(level): weighted average of 6700 20 from (p,d) and 6672 3 from (d,t). J^{π} : L(p,d)=3 from 0 ⁺ .		
6826 10	3/2+,5/2+	I	K	E(level): weighted average of 6820 30 from (p,d) and 6827 10 from (3 He, α). J^{π} : L(p,d)=2 from 0 $^+$.		
6959 10			K	* '		
7051 10	3/2+,5/2+	A I	K	XREF: I(7030) E(level): weighted average of 7053 11 from 35 K ε decay, 7030 20 from (p,d), and 7055 10 from (3 He, α). J^{π} : L(p,d)=2 from 0^{+} .		
7117 10			K			
7255 11		Α				
7289 10		A	K	E(level): weighted average of 7283 11 from 35 K ε decay and 7293 10 from $^{(3}$ He, α).		
7427 10		A	K	E(level): weighted average of 7431 11 from 35 K ε decay and 7423 10 from (3 He, α).		
7509 <i>10</i>	1/2+,3/2+,5/2+	A	K	E(level): weighted average of 7518 11 from 35 K ε decay and 7502 10 from $^{(3)}$ He, α). J ^{π} : allowed ε + β ⁺ feeding from 3/2 ⁺ parent with log ft <5.0.		
7840 <i>10</i>			K	3. anowed $e+p$ recuiring from $5/2$ parent with $\log p < 5.0$.		
8019 <i>10</i>			K			
8109.7 [‡] <i>13</i>	(15/2 ⁻)	E		J^{π} : γ to (11/2 ⁻) and (13/2 ⁻) in (¹⁶ O, α n γ); band assignment. Possible mirror level: 15/2 ⁻ at 8319 keV in ³⁵ Cl.		
8212.6 8	$(15/2^-)$	E		J ^π : $\Delta J=2 \gamma$ to $(11/2^-)$ and γ to $(13/2^-)$ in $(^{16}O,\alpha n\gamma)$. Possible mirror level: $15/2^-$ at 8487 keV in ^{35}Cl .		
8393? 20	1/2+,3/2+,5/2+	A		XREF: A(?) E(level): from (35 K ε decay). J^{π} : allowed $\varepsilon + \beta^{+}$ feeding from $3/2^{+}$ parent with log $ft=4.6+3-2$.		
9906.0‡ 20	(19/2 ⁻)	E		J^{π} : $\Delta J=2$ γ to (15/2 ⁻) in (16 O, α n γ); band assignment. Possible mirror level: 19/2 ⁻ at 10180 keV in 35 Cl.		
12277.0 [‡] 32	(23/2 ⁻)	E		J^{π} : $\Delta J=2 \gamma$ to $(19/2^{-})$ in $(^{16}O,\alpha n\gamma)$; band assignment. Possible mirror level: $23/2^{-}$ at 12571 keV in ^{35}Cl .		

[†] From a least-squares fit to γ -ray energies for levels connected with γ transitions; from particle-transfer reactions or 35 K $\varepsilon + \beta^+$ -delayed proton decays for other levels. [‡] Band(A): Band based on $f_{7/2}$ orbital.

 γ (35Ar)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Comments
1184.08	1/2+	1184.1 <i>3</i>	100	0.0	3/2+	E_{γ} : weighted average of 1184.0 3 from 35 K ε decay and 1184.3 4 from 36 Ca εp decay.
1750.78	$(5/2)^+$	1750.6 <i>3</i>	100	0.0	3/2+	E _γ : weighted average of 1750.5 <i>3</i> from 35 K ε decay, 1750.7 <i>4</i> from (24 Mg, α nγ), and 1750.8 <i>5</i> from (16 O, α nγ).
2603.22	7/2 ⁽⁺⁾	851.9 9	12.3 33	1750.78	(5/2)+	E _γ : weighted average of 852 I from (24 Mg, α n γ) and 851.8 9 from (16 O, α n γ). I _γ : weighted average of 10 5 from (24 Mg, α n γ) and 13.3 33 from (16 O, α n γ).

γ ⁽³⁵Ar) (continued)</sup>

$E_i(level)$	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	$_{\mathrm{I}_{\gamma}}{^{\dagger}}$	E_f	J_f^π	Mult.‡	Comments
2603.22	7/2 ⁽⁺⁾	2603.0 5	100 10	0.0	3/2+	Q	E _{γ} : weighted average of 2603.0 5 from (24 Mg, α n γ) and 2602.6 15 from (16 O, α n γ). I _{γ} : other: 100 22 from (24 Mg, α n γ).
2638.01	3/2+	886.8 [#] 5 2638.0 [#] 4	16 [#] 6 100 [#] 13	1750.78 0.0	$(5/2)^+$ $3/2^+$		-,
2982.79	5/2+	1798.9 [#] 5 2982.68 [#] 13	3.5 [#] 6 100 [#] 4	1184.08	-		
3196.98	7/2-	593.7 2	16.4 30	2603.22	7/2 ⁽⁺⁾		E _{γ} : weighted average of 593 I from $(^{24}\text{Mg},\alpha n\gamma)$ and 593.7 2 from $(^{16}\text{O},\alpha n\gamma)$. I _{γ} : weighted average of 16 δ from $(^{24}\text{Mg},\alpha n\gamma)$ and 16.4 δ from $(^{16}\text{O},\alpha n\gamma)$.
		1446.2 2	100 8	1750.78	(5/2)+	D	E _y : weighted average of 1446.2 2 from $(^{24}\text{Mg},\alpha n\gamma)$, 1446.1 6 from $(^{16}\text{O},\alpha n\gamma)$, and 1446.0 6 from $(^{3}\text{He},n\gamma)$. I _y : other: 100 9 from $(^{24}\text{Mg},\alpha n\gamma)$.
		3197.0 7	21 5	0.0	3/2+	Q	E _{γ} : from (24 Mg, α n γ). Other: 3197 6 from (16 O, α n γ). I _{γ} : weighted average of 18 5 from
4065.0?	$(1/2^+,3/2^+,5/2^+)$	1426.8 [#] 4	100#	2638.01	3/2+		$(^{24}\text{Mg},\alpha \text{n}\gamma)$ and 24 5 from $(^{16}\text{O},\alpha \text{n}\gamma)$.
4359.0	(9/2 ⁻)	1162.0 8	65 24	3196.98		(D)	E _{γ} : weighted average of 1162 I from (24 Mg, α n γ) and 1162.0 8 from (16 O, α n γ). I _{γ} : unweighted average of 41 II from (24 Mg, α n γ) and 88 $I8$ from (16 O, α n γ).
		1756 <i>I</i>	100 15	2603.22	7/2 ⁽⁺⁾		E _γ : weighted average of 1756 <i>I</i> from $(^{24}\text{Mg},\alpha n\gamma)$ and 1756.3 <i>I4</i> from $(^{16}\text{O},\alpha n\gamma)$.
							I_{γ} : from (²⁴ Mg,αn γ). Other: 100 53 from (¹⁶ O,αn γ).
4528.3 4725.9	(1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺) 1/2 ⁺	4527.9 [#] 7 3542.0 [#] 6 4724.5 [#] 11	100 [#] 100 [#] 21 41 [#] 17	0.0 1184.08 0.0	3/2 ⁺ 1/2 ⁺ 3/2 ⁺		
4785.8 5384.2	1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺ (11/2 ⁻)	4785.4 [#] 11 1025.2 4	100 [#] 14 <i>4</i>	0.0 4359.0	3/2 ⁺ (9/2 ⁻)		E _{γ} : weighted average of 1025 <i>I</i> from (24 Mg, α n γ) and 1025.2 <i>4</i> from (16 O, α n γ). I _{γ} : weighted average of 21 8 from 24 Pi 2
		2187.1 4	100 6	3196.98	7/2-	Q	$(^{24}\text{Mg},\alpha n\gamma)$ and 12 4 from $(^{16}\text{O},\alpha n\gamma)$. E_{γ} : weighted average of 2187.4 4 from $(^{24}\text{Mg},\alpha n\gamma)$ and 2186.8 4 from $(^{16}\text{O},\alpha n\gamma)$. I_{γ} : other: 100 13 from $(^{24}\text{Mg},\alpha n\gamma)$.

γ (35Ar) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}^π_f	Mult.‡	Comments
5572.67	3/2+	1044.4 [#] 4	2.5# 8	4528.3	$(1/2^+,3/2^+,5/2^+)$		
		1507.4 [#] 5	3.7 [#] 8	4065.0?	$(1/2^+, 3/2^+, 5/2^+)$		
		2589.8 [#] 1	100 [#] 4	2982.79	5/2 ⁺		
		2934.5 [#] 5	6.7 [#] 12	2638.01	3/2+		
		3821.7 [#] 7	6.7 [#] <i>14</i>	1750.78	$(5/2)^+$		
		4387.2 [#] 9	6.7 [#] 16	1184.08	1/2+		
		5572.3 [#] 10	11.7 [#] <i>31</i>	0.0	3/2+		
5613.6	$(11/2^{-})$	1254.6 8	100	4359.0	$(9/2^{-})$		
5765.8	(13/2 ⁻)	381.6 <i>I</i>	100 10	5384.2	(11/2 ⁻)	D	E _γ : weighted average of 381.6 I from $(^{24}\text{Mg},\alpha n\gamma)$ and 381.5 3 from $(^{16}\text{O},\alpha n\gamma)$.
		1406.9 7	17.2 35	4359.0	$(9/2^{-})$	(Q)	
8109.7	$(15/2^{-})$	2342.6 28	100 25	5765.8	$(13/2^{-})$		
0212 ((15/0-)	2725.7 14	50 13	5384.2	$(11/2^{-})$		
8212.6	$(15/2^{-})$	2446.6 <i>16</i> 2828.3 <i>7</i>	21 <i>7</i> 100 <i>18</i>	5765.8 5384.2	$(13/2^{-})$ $(11/2^{-})$	0	
9906.0	$(19/2^{-})$	1693.3 27	100 18	8212.6	$(15/2^{-})$	Q Q	
,,,,,,,	(/-)	1796.3 25	67 20	8109.7	$(15/2^{-})$	Q	
12277.0	$(23/2^{-})$	2370.9 25	100	9906.0	(19/2-)	Q	

[†] From ($^{16}\text{O},\alpha$ n γ), unless otherwise noted. [‡] Deduced by evaluators from measured $\gamma\gamma(\theta)(\text{ADO})$ in ($^{16}\text{O},\alpha$ n γ) and ratios of yields $R(\gamma(\theta))$ in ($^{24}\text{Mg},\alpha$ n γ), unless otherwise noted. # From 35 K ε decay.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

Adopted Levels, Gammas

 $\begin{array}{c} \textbf{Band(A): Band based on } f_{7/2} \\ \textbf{orbital} \end{array}$

