Tema 1 - Matrices

Curso de Álgebra Lineal 6/12/2018

Matrices

Creación de una matriz

Para crear una matriz en lenguaje R se utiliza la instrucción matrix:

- Los datos de la matriz deben ir en un vector c(...)
- Hay que indicar el número de filas y/o columnas con nrow o ncol
- Debemos usar el parámetro byrow=T/F para indicar si hemos escrito los números del vector por fila o por columna.

Para acceder a una fila/columna/elemento de una matriz. Para acceder al elemento de la fila i de la columna j se utiliza la sintaxis A[i,j]:

```
A[1, ] #primera fila

## [1] 1 1 3 5

A[ ,1] #primera columna

## [1] 1 2 -2
```

[1] 1

Si queremos usar las funciones bind:

A[1,1] #primer elemento

```
C = rbind(c(1,2,3), c(4,5,6), c(7,8,9), c(0,1,0))
C
```

1	2	3
4	5	6
7	8	9
0	1	0

Table 1: Una matriz creada por filas

1	1	3	5
2	4	3	-2
-2	2	-1	3

Table 2: Una matriz creada por columnas

1	3	1
0	3	-2
2	2	3

```
D = cbind(c(1,2,3), c(4,5,6), c(7,8,9), c(0,1,0))
D
   4 7 0
   5
      8
         1
3 | 6 | 9 | 0
E = diag(c(0,-1,6,8,5))
Ε
    0 0 0 0
0 -1
         0 0
      0
            0
0
   0 6
         0
0
    0
       0
          8
            0
```

Manipulación de una matriz

0 5

0 0

```
M = rbind(c(1,0,1), c(2,-1,5), c(3,3,2))
М
1
    0
       1
 2 -1
        5
    3
3
diag(M)
## [1] 1 -1 2
nrow(M) # = dim(M)[1]
## [1] 3
ncol(M) # = dim(M)[2]
## [1] 3
\dim(M) \quad \# = c(nrow(M), ncol(M))
## [1] 3 3
sum(M)
## [1] 16
prod(M)
## [1] 0
mean(M) # = sum(M) / (nrow(M) * ncol(M))
## [1] 1.777778
```

```
rowSums(M)

## [1] 2 6 8

colSums(M)

## [1] 6 2 8

rowMeans(M)

## [1] 0.66666667 2.0000000 2.6666667

colMeans(M)

## [1] 2.0000000 0.6666667 2.6666667

t(M)
```

 $\begin{array}{c|cccc}
 & & & & & \\
 & 1 & 2 & 3 \\
\hline
 0 & -1 & 3 \\
 1 & 5 & 2 \\
\end{array}$

La matriz M pertenece a las matrices 3×3 sobre el cuerpo \mathbb{R} .

Operaciones con matrices

```
A = rbind(c(1,2,3), c(4,5,6), c(7,8,9))
B = rbind(c(1,0,1), c(2,1,0), c(1,1,1))
A+B
```

2	2	4
6	6	6
8	9	10

B+A

2	2	4
6	6	6
8	9	10

A+B == B+A

TRUE	TRUE	TRUE
TRUE	TRUE	TRUE
TRUE	TRUE	TRUE

3*A

3	6	9
12	15	18
21	24	27

A%*%B

8	5	4
20	11	10
32	17	16

B**%*%**A

8	10	12
6	9	12
12	15	18

A%*%B == B%*%A

TRUE	FALSE	FALSE
FALSE	FALSE	FALSE
FALSE	FALSE	FALSE

Biodem::mtx.exp(A, 4)## potencia aproximada de una matriz

7560	9288	11016
17118	21033	24948
26676	32778	38880

A%^%4

7560	9288	11016
17118	21033	24948
26676	32778	38880

Determinante, Rango e Inversa

det(A)

[1] 6.661338e-16

qr(A)\$rank

[1] 2

det(B)

[1] 2

qr(B)\$rank

[1] 3

solve(B)

0.5	0.5	-0.5
-1.0	0.0	1.0
0.5	-0.5	0.5

B%*%solve(B)

1	0	0
0	1	0
0	0	1

solve(B, c(1,2,3))

[1] 0 2 1