Probability Theory

Aamod Varma

Contents

Chapter 1

Introduction

1.1 Sample Spaces and Sigma-Algebras

Definition 1.1 (Sample Space). A sample space Ω is any set and its elements are called outcomes.

Example. Flip a coin twice, sample space is,

$$\{HH, HT, TH, TT\}$$

 \Diamond

Events are subsets of sample space such that,

- 1. The whole space Ω should be an event (The event that something happened).
 - 2. If an event $A \in \Omega$ then $A^c \in \Omega$
 - 3. If $A, B \in \Omega$ then $A \cup B \in \Omega$

Definition 1.2 (Algebra). An algebra is a collection Σ of subsets of Ω satisfying the following,

- 1. $\Omega \in \Sigma$
- 2. If $A \in \Sigma$ then $A^c \in \Sigma$
- 3. If $A, B \in \Sigma$ then $A \cup B \in \Sigma$

Definition 1.3 (Sigma-algebra). A sigma-algebra is an algebra such that if whenever $A_1, A_2, \dots \in \Sigma$ we also have $\bigcup_{n=0}^{\infty} A_n \in \Sigma$ we call Σ a sigma-algebra.

Remark. The key different is a sigma-algebra allows for a countably infinite union and intersection of elements while a ordinary algebra allows for a finite intersection and union.

Remark.

Some consequences are,

- 1. $\phi \in \Sigma$
- 2. If $A, B \in \Sigma$ then $A \cap B \in \Sigma$

Proof.
$$A \cap B = (A^c \cup B^c)^c$$

3. If Σ is a sigma-algebra then $A_1, \dots \in \Sigma$ means that $\bigcap_{n=1}^{\infty} \in \Sigma$

Proof.
$$\bigcap_n A_n = (\bigcup_n A_n^c)^c$$

Example.

- 1. If Ω is any set, then $\{\phi,\Omega\}$ is a sigma-algebra (the trivial sigma-algebra)
- 2. If Ω is any set, then the power set $P(\Omega)$ is a sigma-algebra.
- 3. Let $\Omega=(0,1]$ and define Σ as finite disjoint unions of half-open intervals. \diamond Consider $\Sigma_0=\{(a_1,b_1]\cup\cdots\cup(a_n,b_n]:n\in\mathbb{N},0\leq a_i\leq b_i\leq 1,\forall i,(a_i,b_i]\cap(a_j,b_j]=\phi,\forall i\neq j\}$

Proposition 1.4. Σ_0 is an algebra but not a sigma-algebra.

Proof. $\Omega = (0,1] \in \Sigma_0$.

If $A \in \Sigma_0$, wirte it as $A = (a_1, b_1] \cup \cdots \cup (a_n, b_n], a_1 \leq b_1 \leq a_2 \leq b_2 \cdots \leq a_n \leq b_n$

Then $A^c = (0, a_1] \cup (b_1, a_2] \cup \cdots \cup (b_n, 1] \in \Sigma_0$

Now if $A, A^c \in \Sigma_0$ we have,

$$A = (a_1, b_1] \cup \dots \cup (a_n, b_n]$$
$$A^c = (a'_1, b'_1] \cup \dots \cup (a'_m, b'_m]$$

Definition 1.5. If A is a collection of subsets of Σ then the sigma-algebra generated by A written as $\sigma(A)$, is the intersection of all sigma-algebras that contain A.

Proof. If e is a collection of sigma-algebras of Ω then $\bigcup_{\Sigma \in e} \Sigma$ is a sigma-algebra

Example.

- 1. The sigma-alg generated by $\{\phi\}$ is $\{\phi,\Omega\}$
- 2. The sigma-algebra generated by open subsets of \mathbb{R}^d is called the Bore sigma-algebra
- 3. If $A \subset B$ then $\sigma(A) \subset \sigma(B)$
- 4. If Σ is a sigma-algebra then $\sigma(\Sigma) = \Sigma$
- 5. $\sigma(A)$ is the "smallest sigma-algebra containing A". If Σ is some sigma-algebra s.t. $A \subset \Sigma$ then $\sigma(A) \subset \Sigma$

1.2 Probability Measures

Definition 1.6. Let Ω be a set and Σ be a sigma-alebra on Ω . A function $\mathbb{P}: \Sigma \to \mathbb{R}$ is a probability measure if,

- 1. $0 \leq \mathbb{P}(A) \leq 1, \forall A \in \Sigma$,
- 2. $\mathbb{P}(\Omega) = 1$,
- 3. (Countable additivity) If A_1, A_2, \ldots is a sequence of pairwise disjoint elements of Σ_1 then,

$$\mathbb{P}(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$$

Some properties are,

- $A \in \Sigma$, $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$. So, $\mathbb{P}(\phi) = 1 \mathbb{P}(\Omega)$ | **Proof.** $1 = \mathbb{P}(\Omega) = \mathbb{P}(A \cup A^c) = \mathbb{P}(A) + \mathbb{P}(A^c)$
- (inclusion-exclusion). If $A, B \in \Sigma$ then,

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

Proof.
$$\mathbb{P}(A \cup B) = \mathbb{P}(A - B) + \mathbb{P}(B - A) + \mathbb{P}(A \cap B)$$
$$= \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

• (general inclusion-exclusion)

$$\mathbb{P}(\bigcup_{k=1}^{n} A_k) = \sum_{k=1}^{n} \mathbb{P}(A_u) - \sum_{i < j} \mathbb{P}(A_i \cup A_j) + \sum_{i < j < k} \mathbb{P}(A_i \cup A_j \cup A_k) + \dots$$
$$+ (-1)^{n+1} \mathbb{P}(A_1 \cup \dots \cup A_n)$$

Proof. Using induction

• $A_1,A_2,\dots\in\Sigma$ then, $\mathbb{P}(\bigcup_{n=1}^\infty A_n)\leq \sum_{n=1}^\infty \mathbb{P}(A_n)$