

Current Sensors

Description

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Features

- ◆ Hall effect measuring principle
- ◆ Galvanic isolation between primary and secondary circuit
- ◆ Low power consumption
- ◆ Extended measuring range
- ◆ Insulated plastic case recognized according to UL 94-V0

 $I_{PN} = 1000A$

Advantages

- ◆ Very good linearity
- ◆ Excellent accuracy
- ◆ Low temperature drift
- ◆ Wide frequency bandwidth
- ◆ Optimized response time
- ◆ No insertion losses
- High immunity against external Interference
- Excellent performance and price

Industrial applications

- ◆ AC variable speed drives
- ◆ Battery supplied applications
- ◆ Uninterruptible Power Supplies (UPS)
- ◆ Power supplies for welding applications
- ◆ Static converters for DC motor drives
- ◆ Switched-Mode Power Supplies (SMPS)

TYPES OF PRODUCTS									
	Primary nominal current r. m. s I _{PN} (A)	Primary current measuring range I _P (A) (@ ±24)	Measuring resistance						
Туре			$TA=70 \ \mathbb{C}$ $R_{M}(\Omega)$	TA=85 $^{\circ}$ C $R_{M}(\Omega)$	CONDITIONS				
BSH-1000IC V5M	1000	0~±1500	0 ~ 18	0~15	with ±15V@ ±1000Amax				
			0 ~ 7	0~4	with ±15V@ ±1200Amax				
			5 ~ 60.5	10~57.5	with ±24V@ ±1000Amax				
			5 ~ 24	10~21	with ±24V@ ±1500Amax				

BSH-1000ICV5M

Current Sensors

Parameters Table

PARAMETERS	SYMBOL	UNIT	VALUE	CONDITIONS				
Electrical data								
Supply voltage(±5%)	$V_{\rm C}$	V	±1524					
Current consumption	Ic	mA	28(@±24)+Is					
Secondary nominal r.m.s. current	I_{SN}	mA	200	@I _{PN}				
Conversion ratio	K _N		1:5000					
Accuracy - Dynamic perform	nance data							
Linearity	$\epsilon_{ m L}$	%	<±0.1					
Accuracy	X _G	%	< <u>±</u> 0.4	@ I_{PN} , $T_A = 25$ °C				
Offset current	Io	mA	< <u>±</u> 0.4	@ $I_P = 0, T_A = 25 ^{\circ}$				
Magnetic offset current	I_{OM}	mA	<±0.2	@ $I_P = 0$, after an overload of $3 \times I_{PN}$				
Thermal drift of Io	Іот	mA	< <u>±</u> 0.5	@ I _P = 0, −10 ℃~+85 ℃				
Thermal drift of 10	101		< <u>±0.8</u>	@ I _P = 0, −40 ℃ ~ −10 ℃				
Response time	t _r	μS	<1	@ 90% of I _{PN} step				
d _i /d _t accurately followed	d _i /d _t	A/μS	>100					
Frequency bandwidth (1)	BW	kHz	DC~150	@-1dB				
General data								
Ambient operating temperature	TA	$^{\circ}$	-40 ~ +85					
Ambient storage temperature	Ts	$^{\circ}$	-45 ~ +100					
Secondary coil resistance	Rs	Ω	48	@ T _A = 70 °C				
Mass	m	g	51 550	@ T _A = 85 °C				
Isolation characteristics	111	5	330					
R. m. s voltage for AC isolation test	V _d	KV	3.8	@50Hz, 1 min				
Impulse withstand voltage 1.2/50us	V_{w}	KV	16					
Creepage distance	dCp	mm	20.6					
Clearance distance	dCI	mm	19.6					
Comparative Tracking Index	CTI		175	Group IIIa				

Notes:

(1) Please refer to derating curves in the technical file to avoid excessive core heating at high frequency.

Current Sensors

Dimensions BSH-1000ICV5M (in mm. 1 mm = 0.0394 inch)

◆Instructions of use

- 1. When the test current passes through the sensor, you can get the size of the output current. (Warning: wrong connection may lead to sensors damage.)
- 2. I_s is positive when I_p flows in the direction of the arrow.
- 3. According to user needs, different rated input currents and output currents of the sensors can be customized.

BSH-1000ICV5M

Current Sensors

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- BYD Semiconductor Co., Ltd. exerts the greatest possible effort to ensure high quality and reliability. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing products, to comply with the standards of safety in making a safe design for the entire system, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue. In developing your designs, please ensure that products are used within specified operating ranges as set forth in the most recent products specifications.
- The products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of products listed in this document shall be made at the customer's own risk.