4.5.1 Прохождение через границу раздела сред. Случай перпендикулярной поляризации

Геометрия задачи показана на рис.4.7.



Рис.4.7. Прохождение плоской волны с перпендикулярной поляризацией через границу раздела сред.

На рисунке обозначено:

 $\vec{k}_{na\partial}, \vec{k}_{omp}, \vec{k}_{np}$  - волновые векторы падающей, отраженной и преломленной волн, соответственно;

 $\vec{E}_{0na\partial}$ ,  $\vec{E}_{0omp}$ ,  $\vec{E}_{0np}$  - векторные амплитуды напряженностей электрического поля падающей, отраженной и преломленной волн, соответственно;

 $\vec{H}_{0na\partial}, \vec{H}_{0omp}, \vec{H}_{0np}$  - векторы амплитудных напряженностей магнитного поля падающей, отраженной и преломленной волн;

 $\phi_{na\partial}, \phi_{omp}, \phi_{np}$  - углы относительно нормали к границе раздела, под которыми распространяются падающая, отраженная и преломленная волны.

Также на рисунке учтено, что поляризация (ориентация) векторов  $\vec{E}_0$  всех волн сохраняется; направление векторов  $\vec{H}_0$  определяется свойством поперечности плоских волн и заданными направлениями распространения. Вектора  $\vec{E}_0$ ,  $\vec{H}_0$  и  $\vec{k}_{nao}$ ,  $\vec{k}_{omp}$ ,  $\vec{k}_{np}$  образуют правые тройки для всех волн. Учитывая геометрические обозначения рисунка, выражение (4.45) для падающей, отраженной и преломленной волн можно записать в следующем виде, учитывая, что  $|\vec{k}_{nao}| = |\vec{k}_{omp}| = k_1$ ;  $|\vec{k}_{np}| = k_2$ :

$$\begin{cases} \vec{E}_{na\partial} = E_{0na\partial} \vec{y}_0 e^{-jk_I (x \sin \phi_{na\partial} + z \cos \phi_{na\partial})}, \\ \vec{H}_{na\partial} = H_{0na\partial} (-\cos \phi_{na\partial} \vec{x}_0 + \sin \phi_{na\partial} \vec{z}_0) e^{-jk_I (x \sin \phi_{na\partial} + z \cos \phi_{na\partial})} \end{cases}$$

$$\begin{cases} \vec{E}_{omp} = E_{0omp} \vec{y}_0 e^{-jk_I (x \sin \phi_{omp} - z \cos \phi_{omp})}, \\ \vec{H}_{omp} = H_{0omp} (\cos \phi_{omp} \vec{x}_0 + \sin \phi_{omp} \vec{z}_0) e^{-jk_I (x \sin \phi_{omp} - z \cos \phi_{omp})} \end{cases}$$

$$\begin{cases} \vec{E}_{np} = E_{0np} \vec{y}_0 e^{-jk_2 (x \sin \phi_{na\partial} + z \cos \phi_{na\partial})}, \\ \vec{H}_{np} = H_{0np} (-\cos \phi_{np} \vec{x}_0 + \sin \phi_{np} \vec{z}_0) e^{-jk_2 (x \sin \phi_{np} + z \cos \phi_{np})} \end{cases}$$

В этих выражениях известны все параметры падающей волны, а величины  $E_{0omp}$ ,  $H_{0omp}$ ,  $\phi_{omp}$ ,  $E_{0np}$ ,  $H_{0np}$ ,  $\phi_{np}$  неизвестны и должны быть определены. Для их нахождения используем граничные условия на границе раздела сред. Считаем, что среды реальны, поэтому выражения (2.8, 2.10) имеют вид:

$$E_{\tau_1} = E_{\tau_2}; \quad H_{\tau_1} = H_{\tau_2}.$$

Полное поле в первой среде является суммой падающей и отраженной волн, а во второй среде — является полем только преломленной волны. Тангенциальными составляющими являются проекции векторов на оси X и Y, поэтому в данном случае граничные условия принимают вид:

$$\begin{aligned} E_{yna\partial}\Big|_{z=0} + E_{yomp}\Big|_{z=0} &= E_{ynp}\Big|_{z=0}, \\ H_{xna\partial}\Big|_{\tau=0} + H_{xomp}\Big|_{\tau=0} &= H_{xnp}\Big|_{\tau=0}. \end{aligned}$$

Подстановка в эти выражения составляющих из (4.47) дает:

$$E_{0na\partial}e^{-jk_{1}x\sin\phi_{na\partial}} + E_{0omp}e^{-jk_{1}x\sin\phi_{omp}} = E_{0np}e^{-jk_{2}x\sin\phi_{np}};$$

$$-H_{0na\partial}\cos\phi_{na\partial}e^{-jk_{1}x\sin\phi_{na\partial}} + H_{0omp}\cos\phi_{omp}e^{-jk_{1}x\sin\phi_{omp}} =$$

$$= -H_{0np}\cos\phi_{np}e^{-jk_{2}x\sin\phi_{np}}.$$

$$(4.48)$$

Граничные условия должны выполняться в каждой точке границы одинаково и не зависеть от координаты x, т.к. все точки границы одинаковы и начало координат выбрано произвольно. Поэтому выражения (4.48) необходимо преобразовать так, чтобы зависимость от координаты x исчезла. Это можно сделать, приравняв показатели всех экспонент, тогда экспоненциальные множители, содержащие координату x можно сократить.

$$-jk_{1}x\sin\phi_{na\partial}=-jk_{1}x\sin\phi_{omp}=-jk_{2}x\sin\phi_{np},$$

или 
$$\phi_{na\partial} = \phi_{omp}$$
,  $\phi_{np} = \arcsin\left(\frac{k_1}{k_2}\sin\phi_{na\partial}\right)$ ; (4.49)

или 
$$k_i \sin \phi_i = const$$
. (4.50)

Выражения (4.49) были получены в оптике экспериментально и известны как закон Снеллиуса; выражение (4.50) называется обобщенным законом Снеллиуса.

Преобразуем (4.48), учитывая (4.49):

$$\begin{cases} E_{0na\partial} + E_{0omp} = E_{0np}, \\ H_{0na\partial} \cos \phi_{na\partial} - H_{0omp} \cos \phi_{omp} = H_{0np} \cos \phi_{np}. \end{cases}$$
(4.51)

Амплитуды напряженностей электрического и магнитного полей плоской волны связаны через волновое сопротивление:

$$\frac{E_{0na\partial}}{H_{0na\partial}} = W_1; \quad \frac{E_{0omp}}{H_{0omp}} = W_1; \quad \frac{E_{0np}}{H_{0np}} = W_2.$$

Поэтому (4.51) можно преобразовать:

$$\begin{cases} E_{0na\partial} + E_{0omp} = E_{0np}, \\ \frac{E_{0na\partial}}{W_I} \cos \phi_{na\partial} - \frac{E_{0omp}}{W_I} \cos \phi_{omp} = \frac{E_{0np}}{W_2} \cos \phi_{np}. \end{cases}$$

Решаем систему уравнений относительно  $E_{0\mathit{omp}}$  и  $E_{0\mathit{np}}$ :

$$E_{0omp} = E_{0na\partial} \frac{W_2 \cos \phi_{na\partial} - W_1 \cos \phi_{np}}{W_2 \cos \phi_{na\partial} + W_1 \cos \phi_{np}},$$

$$E_{0np} = E_{0na\partial} \frac{2W_2 \cos \phi_{na\partial} + W_1 \cos \phi_{np}}{W_2 \cos \phi_{na\partial} + W_1 \cos \phi_{np}}.$$
(4.52)

Используем определение.

Коэффициент отражения  $\Gamma$  плоской волны от границы раздела сред — это отношение комплексной амплитуды напряженности электрического поля отраженной волны к комплексной амплитуде падающей волны, вычисляемое на границе раздела.

Коэффициент преломления T плоской волны на границе раздела сред – это отношение комплексной амплитуды напряженности электрического поля преломленной волны к комплексной амплитуде падающей волн, вычисляемое на границе раздела сред.

С учетом определений для случая перпендикулярной поляризации имеем:

$$\Gamma_{\perp} = \frac{W_2 \cos \phi_{na\partial} - W_1 \cos \phi_{np}}{W_2 \cos \phi_{na\partial} + W_1 \cos \phi_{np}},$$

$$T_{\perp} = \frac{2W_2 \cos \phi_{na\partial} + W_1 \cos \phi_{np}}{W_2 \cos \phi_{na\partial} + W_1 \cos \phi_{np}}.$$
(4.53)

Подставим сюда значения волновых сопротивлений и значение угла преломления из (4.49):

$$\Gamma_{\perp} = \frac{\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}}\cos\phi_{na\partial} - \sqrt{\frac{\mu_{1}}{\varepsilon_{1}}}\sqrt{1 - \frac{\mu_{1}\varepsilon_{1}}{\mu_{2}\varepsilon_{2}}}\sin^{2}\phi_{na\partial}}{\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}}\cos\phi_{na\partial} + \sqrt{\frac{\mu_{1}}{\varepsilon_{1}}}\sqrt{1 - \frac{\mu_{1}\varepsilon_{1}}{\mu_{2}\varepsilon_{2}}}\sin^{2}\phi_{na\partial}}},$$

$$T_{\perp} = \frac{2\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}}\cos\phi_{na\partial}}{\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}}\cos\phi_{na\partial} + \sqrt{\frac{\mu_{1}}{\varepsilon_{1}}}\sqrt{1 - \frac{\mu_{1}\varepsilon_{1}}{\mu_{2}\varepsilon_{2}}}\sin^{2}\phi_{na\partial}}}.$$
(4.54)

Эти выражения известны как формулы Френеля для перпендикулярной поляризации. Подстановка найденных значений в (4.47) дает полное решение задачи прохождения плоской волны через границу раздела сред для случая перпендикулярной поляризации.

## 4.5.2. Случай параллельной поляризации

Для решения этой задачи необходимо проделать се выкладки, аналогично материалу подраздела 4.5.1. В результате получатся формулы Френеля для параллельной поляризации. Поскольку определения  $\Gamma$  и T будут аналогичными, случаи перпендикулярной и параллельной поляризации являются взаимосвязанными. Действительно, при угле падения равном нулю невозможно однозначно определить плоскость падения, поэтому случаи обеих поляризаций сливаются в один, значит, формулы Френеля должны иметь одинаковый вид при  $\phi_{na\partial} = 0$ . Это накладывает ограничения на исходное геометрическое построение. На рис.4.8 показана геометрия задачи с учетом сделанного замечания.



Рис.4.8 Прохождение плоской волны с параллельной поляризацией через границу раздела сред

Обозначения на рис.4.8 аналогичны обозначениям на рис.4.7. Записываем выражение для всех плоских волн задачи:

$$\begin{cases} \vec{E}_{na\partial} = E_{0na\partial}(\vec{x}_0 \cos \phi_{na\partial} - \vec{z}_0 \sin \phi_{na\partial}) e^{-jk_1(x \sin \phi_{na\partial} + z \cos \phi_{na\partial})}, \\ \vec{H}_{na\partial} = H_{0na\partial}\vec{y}_0 e^{-jk_1(x \sin \phi_{na\partial} + z \cos \phi_{na\partial})}. \end{cases}$$

$$(4.55)$$

$$\begin{cases} \vec{E}_{omp} = E_{0omp}(\vec{x}_0 \cos \phi_{omp} + \vec{z}_0 \sin \phi_{na\partial}) e^{-jk_1(x \sin \phi_{omp} - z \cos \phi_{omp})}, \\ \vec{H}_{omp} = -H_{0omp}\vec{y}_0 e^{-jk_1(x \sin \phi_{omp} - z \cos \phi_{omp})}. \end{cases}$$

$$\begin{cases} \vec{E}_{np} = E_{0np}(\vec{x}_0 \cos \phi_{np} - \vec{z}_0 \sin \phi_{np}) e^{-jk_2(x \sin \phi_{np} + z \cos \phi_{np})}, \\ \vec{H}_{np} = H_{0np}\vec{y}_0 e^{-jk_2(x \sin \phi_{np} + z \cos \phi_{np})}. \end{cases}$$

Вновь отмечаем, что выражения (4.55) содержат неизвестные величины  $E_{0omp}$ ,  $H_{0omp}$ ,  $E_{0np}$ ,  $H_{0np}$ ,  $\phi_{omp}$ ,  $\phi_{np}$ , которые можно найти, применяя граничные условия. Тангенциальными составляющими относительно границы раздела являются составляющие векторов поля по координатам X и У. Поэтому граничные условия дают следующие выражения:

$$\begin{cases} E_{x \, na\partial} \Big|_{z=0} + E_{x \, omp} \Big|_{z=0} = E_{x \, np} \Big|_{z=0}, \\ H_{y \, na\partial} \Big|_{z=0} + H_{y \, omp} \Big|_{z=0} = H_{y \, np} \Big|_{z=0}. \end{cases}$$

Подстановка в эти выражения составляющих из (4.55) дает:

$$\begin{cases} E_{0na\partial}\cos\phi_{na\partial}e^{-jk_{1}x\sin\phi_{na\partial}} + E_{0omp}\cos\phi_{omp}e^{-jk_{1}x\sin\phi_{omp}} = \\ = E_{0np}\cos\phi_{np}e^{-jk_{2}x\sin\phi_{np}}, \\ H_{0na\partial}e^{-jk_{1}x\sin\phi_{na\partial}} - H_{0omp}e^{-jk_{1}x\sin\phi_{omp}} = H_{0np}e^{-jk_{2}x\sin\phi_{np}}. \end{cases}$$

Проводя рассуждения о выполнении граничных условий, аналогичные сделанным, для предыдущего случая получаем соотношения (4.49) и (4.50), известные как закон Снеллиуса. Учитывая это, имеем:

$$\begin{cases} E_{0na\partial}\cos\phi_{na\partial} + E_{0omp}\cos\phi_{omp} = E_{0np}\cos\phi_{np}, \\ H_{0na\partial} - H_{0omp} = H_{0np}. \end{cases}$$

Вновь используем взаимосвязь между амплитудами напряженностей электрического и магнитного полей через волновые сопротивления сред, аналогично предыдущему случаю, и получаем:

$$\begin{cases} E_{0na\partial}\cos\phi_{na\partial} + E_{0omp}\cos\phi_{omp} = E_{0np}\cos\phi_{np}, \\ \frac{E_{0na\partial}}{W_{I}} - \frac{E_{0omp}}{W_{I}} = \frac{E_{0np}}{W_{2}}. \end{cases}$$

Решаем систему уравнений относительно  $E_{0omp}$  и  $E_{0np}$ , и сразу же используем определения коэффициентов отражения и преломления. Для случая параллельной поляризации получаем:

$$\Gamma_{\parallel} = \frac{E_{0omp}}{E_{0na\partial}}\Big|_{z=0} = \frac{W_2 \cos \phi_{np} - W_1 \cos \phi_{na\partial}}{W_2 \cos \phi_{np} + W_1 \cos \phi_{na\partial}},$$

$$T_{\parallel} = \frac{E_{0np}}{E_{0na\partial}}\Big|_{z=0} = \frac{2W_2 \cos \phi_{np}}{W_2 \cos \phi_{np} + W_1 \cos \phi_{na\partial}}.$$
(4.56)

Подставляя сюда выражения для волновых сопротивлений сред и значение угла преломления, получаем формул Френеля для случая параллельной поляризации:

$$T_{\parallel} = \frac{\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}} \sqrt{1 - \frac{\mu_{1}\varepsilon_{1}}{\mu_{2}\varepsilon_{2}} \sin^{2}\phi_{na\partial}} - \sqrt{\frac{\mu_{1}}{\varepsilon_{1}}} \cos\phi_{na\partial}}{\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}} \sqrt{1 - \frac{\mu_{1}\varepsilon_{1}}{\mu_{2}\varepsilon_{2}}} \sin^{2}\phi_{na\partial}} + \sqrt{\frac{\mu_{1}}{\varepsilon_{1}}} \cos\phi_{na\partial}},$$

$$T_{\parallel} = \frac{2\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}} \sqrt{1 - \frac{\mu_{1}\varepsilon_{1}}{\mu_{2}\varepsilon_{2}}} \sin^{2}\phi_{na\partial}}}{\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}} \sqrt{1 - \frac{\mu_{1}\varepsilon_{1}}{\mu_{2}\varepsilon_{2}}} \sin^{2}\phi_{na\partial}} + \sqrt{\frac{\mu_{1}}{\varepsilon_{1}}} \cos\phi_{na\partial}}.$$

$$(4.57)$$

Отметим, что формулы (4.57) совпадают с формулами (4.54) при  $\phi_{na\partial}=0$  .

## 4.5.3 Дополнительные замечания к подразделу 4.5.

Анализ полученных в разделе 4.5 результатов позволяет сделать ряд важных замечаний.

- 4.5.3.1. В средах с потерями при  $tg\delta\neq 0$  выражения для полей, полученные в подразделе, видоизменяются соответственно пункту 4.3.3, в частности изменяется вид формул (4.49) и (4.50). Так обобщенный закон Снеллиуса пример вид  $k_i$  sin  $\phi_i = const$ .
- 4.5.3.2. Для случая параллельной поляризации при отсутствии потерь существует такой угол падения, при котором коэффициент отражения становится равным нулю. Отраженная волна исчезает, и вся энергия поля падающей волны переходит во вторую среду. Такое явление называется полным преломлением, а соответствующий ему угол падения называется углом Брюстера.
- 4.5.3.3. В том случае, если  $\mu_1 \mathcal{E}_1 > \mathcal{E}_2 \mu_2$  существует такой угол падения, при котором угол преломления становится равным  $90^\circ$ . При этом, во второй среде формируется электромагнитное поле, которое называется

поверхностной волной или неоднородной плоской волной. Поле характеризуется тем, что его амплитуда экспоненциально убывает при удалении от границы раздела сред, а фазовая скорость направлена вдоль границы. Энергия падающей волны в среднем за период колебаний во вторую среду не поступает. Такое явление называется полным внутренним отражением, а соответствующий ему угол падения называется углом полного внутреннего отражения.

4.5.3.4. При падении плоской волны на границу раздела с металлом угол преломления стремится к нулю с учетом замечания 4.5.3.1 и оценки k' сделанной в 4.3.4. Т.к. плоская волна в металле остается поперечной, то вектора поля в металле являются почти параллельными границе раздела:

$$E_{2\tau} \approx E_2$$
 и  $H_{2\tau} \approx H_2$ ,

поэтому граничные условия для тангенциальных составляющих поля на границе воздух – металл можно записать в виде

$$\begin{split} E_{l\tau} &= E_{2\tau}\,, \\ H_{l\tau} &= H_{2\tau}\,, \end{split} \quad \begin{aligned} E_{l\tau} &\approx E_2\,, \\ H_{l\tau} &\approx H_2. \end{aligned}$$

Вычисляя отношение выражений, получаем:

$$\frac{E_{I\tau}}{H_{I\tau}} \approx W_2 \ . \tag{4.58}$$

Это выражение известно как приближенное импедансное граничное условие Щукина — Леонтовича. Оно часто применяется при решении задач излучения и дифракции электромагнитных волн в присутствии реальных металлов.

4.5.3.5. Из выражений (4.54) и (4.57) следует, что при угле падения, стремящемся к  $90^{\circ}$ , численное значение модуля коэффициента отражения от границы раздела сред стремится к единице.