Graph Preliminaries

- Graphs are a "capstone" data structure in that they often will employ all of the other data structures discussed in this class.

 Depending on reason you are using a graph, you might encounter:
 - Hash tables
 - o Priority queues
 - Vector
 - Linked Lists
 - o Queues
 - Stacks
 - Recursion
- Graphs are just trees that can have multiple paths between two node
 - o In math and more formal CS, graph nodes are called vertices
- Unlike trees, there may not exist a path between two nodes
 - o Example:

- All trees are graphs but not all graphs are trees
- In graph theory, edges can be unidirectional (one way) or bi-directional (two way)

- In applied computer science, all edges are unidirectional. Why?
 - Because in CS, edges are pointers and pointers can only point to one thing.
 - o Implication: representing a bidirectional edge using two pointers

Programmatically representing a graph

• Consider the following graph:

Vector-based representation (Adjacency matrix)

- Adjacency matrix doesn't require any special custom classes for graph graph representation.
 - Hence, most examples on the web will use an adjacency matrix
- Matrices are typically in row-major order (we read across the matrix)
- In a basic adjacency matrix, we use 0 in a cell to represent not connected, 1 to represent connected

	Α	В	С	D	E	F	G	Н
Α	1	0	0	0	0	0	0	1
В	0	0	1	0	0	0	0	1
С	0	0	0	0	0	0	1	0
D	1	0	0	0	1	0	0	0
E	0	0	0	1	0	1	0	0
F	0	1	0	0	0	0	0	1
G	0	0	0	0	0	1	0	0
Н	1	1	0	0	1	1	0	0

- Sparse graph (matrix): Most cells contain 0 not connected
- Representing a graph using an adjacency matrix costs O(N^2) memory
 - It's wasteful to represent a graph using an adjacency matrix when the graph is sparse (no need to represent NULLs)
- Instead, it is often more space efficient to use an edge list representation

Pointer-based (pseudo LL) Representation: Edge List

- (Adam's approach): Use a hashtable to store each node. Each item in the hash table has a hash table of pointers
 - o In C++: unordered_map<string, unordered_map<string, int>>

Key	Value(HT <string,int>)</string,int>
Α	{A:1}, {H:1}
В	{C:1}, {H:1}
С	{G:1}
D	{A:1}, {E:1}
E	{D:1}, {F:1}
F	{B:1}, {H:1}
G	{F:1}
Н	{A:1}, {B:1}, {E:1}, {F:1}

• Generally, as long as the graph is at least 50% empty, an edge list representation is more memory efficient

Searching a graph

• There are two strategies for searching a graph:

- (Stack / recursion) Depth first Will touch nodes farther away before touching all nodes near the start of the search
- (Queue / iteration) Breadth first "dropping a rock in pond" We start with immediate neighbors, then examine their neighbors, etc.

Example Search on some Maze

Adjacency Matrix

_							
	Α	В	С	D	E	F	
Α	1	1	0	0	0	0	0

Edge List

Key	Value
Α	{"Self", A}, {"Right", B}
В	{"Left", A}, {"Down", "H"}, {"Self", B}

Depth-first search

Function search(MazeSpace):

If MazeSpace is null : return
If MazeSpace seen before : return

If MazeSpace is end: Done
Search(MazeSpace->Left)
Search(MazeSpace->Right)
Search(MazeSpace->Below)
Search(MazeSpace->Up)

Visit Order on DFS

DFS Tree

Breadth-first search

Function BFS(MazeSpace start):

Queue<MazeSpace> to_vist{};

to_visit.push(start)

While to_visit.empty() == false:

Front = to_visit.pop()

If front is end: done

If front not seen and front not null:

To_visit.push(front->left)

To_visit.push(front->right)

To_visit.push(front->down)

To_visit.push(front->up)

1 D1