Cloud-based Quality Assessment Platform for Neuroscientific Imaging

Christoph Jansen Berlin, Germany

QMROCT - Project

Quality Management for Retinal Optical Coherence Tomographies

QMROCT - Interdisciplinary Collaboration

BEUTH HOCHSCHULE FÜR TECHNIK BERLIN

University of Applied Sciences

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Medicine:

OCT

Quality measures

Math & Physics:

Image analysis

Algorithms

Computer Science:

Infrastructure

Platform

My Position - Christoph Jansen

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

- Graduate Student in International Media and Computing
 - Computer Science

- Research Assistant
 - Backend programming for QMROCT platform

Quality Assessment Platform

- Requirements:
 - Secure storage of patient data
 - Secure processing of algorithms
 - Scalable processing for huge amounts of data

Encrypted communication (HTTPS) between components

XNAT - Secure Storage

- Storing medical image data (and meta data)
- Fine-grained user access control per project
- Extensible data types
 - We improved OCT support
 - Custom data types for results
- Pipeline engine: run external programs
- Web interface: upload / download and manage data

Architecture

OpenStack - Cloud Computing

Virtual Machines (VM)

- Virtualized Hardware
 - CPUs
 - Memory
 - Abstraction of physical hardware

- Run full operating system from VM image
 - contains algorithms for processing

- OpenStack can boot and delete VMs
 - No traces of data left after deleting a VM

Processing

XNAT sends job parameters to Gateway

- Gateway:
 - Start new VM
 - Forward job to VM
- VM:
 - Download data from XNAT
 - Process data
 - Upload results to XNAT
- Gateway:
 - Delete VM

Problem

- Virtual Machines are big and slow
 - need lots of physical resources
 - long start up times
- Bad for scalability

Docker

- Virtualized operating system kernel
 - Run encapsulated processes on kernel (container)
 - With its own root file system

- Concepts (Docker is fairly new)
 - Based on Linux cgroups + namespaces
 - But easier to use

- Docker Container (DC)
 - Security advantages of VM
 - Smaller and faster

Docker driver for OpenStack

Improvements

- Startup times (sequential and parallel)
 - VM starts in 5 6 minutes
 - Docker starts in 30 seconds

Resources

- github.com/QMROCT/ISAC
 - Presentation slides
 - Conference paper
 - Publications
 - Links