Parallel Computing with GPUs

Sorting and Libraries Part 3 - Applications of Sorting

Dr Paul Richmond http://paulrichmond.shef.ac.uk/teaching/COM4521/

This Lecture (learning objectives)

- ☐ Applications of Sorting (binning)
 - ☐ Present the concept of spatial binning
 - Demonstrate the use of spatial binning for particle interactions

Sorting and parallel primitives

- ☐ Can be very useful for building data structures
 - ☐ We can use prefix sum for writing multiple values per element
- ☐ Remember Gather vs Scatter
 - ☐ What if our outputs are scattered to output
 - □ Very common in particle simulations etc.
 - ☐ Outputs might represent spatial bins

ThreadIdx.x 0 1 2 3 4 5 6 7

Memory Values/Locations

Scatter operation

- ☐ Write to a number of locations
- ☐ Random access write?
- ☐ How to read multiple values afterwards?

Binning and Sorting

Build a data structure

Unique write indices
Count(Write_Index)

thrust::inclusive_scan(count)

0	1	2	3	4	-5	6	7
1	1	1	0	1	2	1	1
0	1	2	3	3	4	6	7

☐We can now read varying values from each bin

- ☐ E.g. for location 5
 - ☐ inclusive_scan gives starting index of 4
 - ☐ Iterate from index 4 for a count of 2 to find all values of write_index 5

i.e. how many threads want to write to this index

Particle interaction example

- ☐ As with previous slide use sorting
 - ☐ Divide the environment according to some interaction radius
 - □Output particle key value pairs (keys are location determined through some hash function)
 - ☐Sort Keys
 - ☐ Reorder particles based on key pairs
 - ☐ Generate a partition boundary table
 - ☐ Histogram count and prefix sum
 - ☐ Each particle needs to read all particles in its own location and any neighbouring location
 - ☐ Guarantees particle interactions within the interaction radius

0	1	1 2	3
3 •4	5	6	7
8	9	1 ⁷ 0	11
12	1 %	14	15

Partition	First agent	Last agent
0		
1		
2	1	2
3		
4	3	4
5	5	6
6		
7		
8		
9		
10	7	7
11		
12		
13	8	8
14		
15		

Example: FLAME GPU

Summary

- □ Applications of Sorting (binning)
 - ☐ Present the concept of spatial binning
 - ☐ Demonstrate the use of spatial binning for particle interactions

