MÉTODO SIMPLEX - SOLUÇÃO INICIAL ARTIFICIAL

- Problemas de PL nos quais todas as restrições são (≦) com lados direitos não negativos oferecem uma solução básica inicial viável conveniente, na qual todas as variáveis são de folga.
- Isso não acontece com os modelos que envolvem restrições (=) ou (≥).
 - Chamados de problemas de PL "mal comportados"

MÉTODO SIMPLEX - SOLUÇÃO INICIAL ARTIFICIAL

- O procedimento para *iniciar* a resolução de problemas de PL "mal comportados", com restrições (=) ou (≥), é usar *variáveis artificiais* que desempenham o papel de folgas na primeira iteração e, então, descartá-las legitimamente em iterações posteriores.
- Para isso, existem dois métodos principais:
 - Método M-Grande mais antigo, porém não utilizado em situações práticas;
 - Método das Duas Fases

Fase I

- Expresse o problema na forma de equações e adicione as variáveis artificiais necessárias às restrições para garantir uma solução básica inicial.
- Em seguida, ache uma solução básica com as equações resultantes que, independentemente de o problema de PL ser de Maximização ou Minimização, sempre minimizará a soma das variáveis artificiais.
 - Se o valor mínimo da soma for positivo, o problema de PL não tem solução viável, o que encerra o processo (OBS.: uma variável artificial positiva significa que uma restrição original não foi satisfeita.
 - Caso contrário, passe para a FASE II.

Fase II

 Use a solução viável da Fase I como uma solução básica viável inicial para o problema original.

Dado o problema de PL

$$Minimizar z = 4x_1 + x_2$$

$$3x_1 + x_2 = 3$$

 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 4$
 $x_1, x_2 \ge 0$

Dado o problema de PL

$$Minimizar z = 4x_1 + x_2$$

$$3x_1 + x_2 = 3$$
 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 4$
 $x_1, x_2 \ge 0$

Transformando em equações:

Minimizar
$$z = 4x_1 + x_2$$

 $(z - 4x_1 - x_2 = 0)$

$$3x_1 + x_2 = 3$$
 $4x_1 + 3x_2 - s_1 = 6$
 $x_1 + 2x_2 + s_2 = 4$
 $x_1, x_2, s_1, s_2 \ge 0$

• **FASE I** – Adicionando as variáveis artificiais R_1 e R_2

Minimizar
$$z = R_1 + R_2$$

 $(z - R_1 - R_2 = 0)$

$$3x_{1} + x_{2} + R_{1} = 3$$

$$4x_{1} + 3x_{2} - s_{1} + R_{2} = 6$$

$$x_{1} + 2x_{2} + s_{2} = 4$$

$$x_{1}, x_{2}, s_{1}, s_{2}, R_{1}, R_{2} \ge 0$$

► FASE I – A tabela inicial é

Base	<i>x1</i>	<i>x2</i>	s1	s2	<i>R1</i>	R2	Solução
z	0	0	0	0	-1	-1	0
R_1	3	1	0	0	1	0	3
R_2	4	3	-1	0	0	1	6
x_4	1	2	0	1	0	0	4

Próximo passo:

- o A tabela está inconsistente, em função da inclusão de R_1 e R_2
- Substituir os valores de R_1 e R_2 na linha z usando o cálculo:

Nova Linha z = Velha Linha z + (1 * Linha R₁ + 1 * Linha R₂)

► FASE I – A tabela inicial é

Nova Linha
$$z = Velha$$
 Linha $z + (1 * Linha R_1 + 1 * Linha R_2)$

Nova Linha
$$z = (0\ 0\ 0\ 0\ -1\ -1\ 0) + (3\ 1\ 0\ 0\ 1\ 0\ 3) + (4\ 3\ -1\ 0\ 0\ 1\ 6))$$

Nova Linha
$$z = (0\ 0\ 0\ 0\ -1\ -1\ 0) + (7\ 4\ -1\ 0\ 1\ 1\ 9)$$

Nova Linha z = (7 4 - 1 0 0 0 9)

► FASE I – A tabela inicial é

Base	x1	<i>x2</i>	<i>s1</i>	s2	R 1	R2	Solução
z	7	4	-1	0	0	0	9
R_1	3	1	0	0	1	0	3
R_2	4	3	-1	0	0	1	6
x_4	1	2	0	1	0	0	4

Próximo passo:

• Resolver normalmente a FASE I do problema, a fim de encontrar uma nova solução em que R_1 e R_2 não façam parte da solução.

► FASE I – A tabela ótima da Fase I é

Base	<i>x1</i>	<i>x2</i>	s1	s2	R 1	R2	Solução
z	0	0	0	0	-1	-1	0
x_1	1	0	1/5	0	3/5	-1/5	3/5
x_2	0	1	-3/5	0	-4/5	3/5	6/5
x_4	0	0	1	1	1	-1	1

• Próximo passo:

- o Com z = 0, a Fase I produz a solução básica viável $x_1 = 3/5$, $x_2 = 6/5$ e $x_4 = 1$.
- As variáveis artificiais concluíram sua missão e suas colunas podem ser eliminadas.
- Passamos para a Fase II.

- FASE II Solução final
 - O problema "original" é reescrito como

Minimizar
$$z = 4x_1 + x_2$$

 $(z - 4x_1 - x_2 = 0)$

$$x_1 + 1/5s_1 = 3/5$$

 $x_2 - 3/5s_1 = 6/5$
 $s_1 + s_2 = 1$
 $x_1, x_2, s_1, s_2 \ge 0$

 FASE II – A tabela da Fase II representa uma solução básica viável inicial

Base	<i>x1</i>	x2	s1	s2	Solução
z	-4	-1	0	0	0
x_1	1	0	1/5	0	3/5
x_2	0	1	-3/5	0	6/5
x_4	0	0	1	1	1

Próximo passo:

 Como as variáveis básicas x1 e x2 têm coeficientes não zero na linha z, elas devem ser substituídas com o seguinte cálculo:

Nova Linha z = Velha Linha z + (4 * Linha x₁ + 1 * Linha x₂)

► FASE II – A Nova Linha z é

Nova Linha
$$z = Velha Linha z + (4 * Linha x1 + 1 * Linha x2)$$

Nova Linha
$$z = (-4 - 1 \ 0 \ 0 \ 0) + (4 * (1 \ 0 \ 1/5 \ 0 \ 3/5) + 1 * (0 \ 1 \ -3/5 \ 0 \ 6/5))$$

Nova Linha
$$z = (-4 - 1 \ 0 \ 0 \ 0) + (4 \ 0 \ 4/5 \ 0 \ 12/5) + (0 \ 1 \ -3/5 \ 0 \ 6/5))$$

Nova Linha $z = (-4 - 1 \ 0 \ 0 \ 0) + (4 \ 1 \ 1/5 \ 0 \ 18/5)$

Nova Linha $z = (0 \ 0 \ 1/5 \ 0 \ 18/5)$

► FASE II – A nova tabela inicial é

Base	x1	x2	s1	s2	Solução
z	0	0	1/5	0	18/5
x_1	1	0	1/5	0	3/5
x_2	0	1	-3/5	0	6/5
x_4	0	0	1	1	1

• Próximo passo:

- Resolver normalmente pelo método Simplex
- o s_1 entra na solução básica e s_2 sai, sendo necessário apenas concluir essa iteração para encontrar a solução ótima.

Exercícios

- Agora sim....
- Resolva o problema da Casa das Rações pelo Método Simplex;
- Desenvolva todos os cálculos necessários, passo a passo;
- Compare a sua solução com a realizada no software TORA;
- Encaminhe a solução para o e-mail do professor.

Comentários finais:

- A remoção das variáveis artificiais e suas colunas no final da Fase I só pode ocorrer quando todas elas forem não básicas.
- Se uma ou mais variáveis artificiais forem básicas no final da Fase I, então é preciso executar as etapas a seguir para removê-las antes do início da Fase II.

Comentários finais:

Etapa 1

- Selecione uma variável artificial com coeficiente igual a zero para sair da solução básica e designe sua linha como a linha pivô.
- A variável que entra pode ser qualquer variável não básica (não artificial) que tenha um coeficiente não zero (positivo ou negativo) na linha pivô.
- Execute a iteração simplex associada.

Etapa 2

- Remova da tabela a coluna da variável artificial (que acabou de sair).
- Se todas as variáveis artificiais com coeficiente igual a zero tiverem sido removidas da solução básica, passe para a Fase II.
- o Caso contrário, volte para a Etapa I.

REFERÊNCIAS BIBLIOGRÁFICAS

• TAHA, H. A. **Pesquisa Operacional**. 8. ed. São Paulo: Pearson, 2008.

