

*Systems Center
San Diego*

Usability of 3D Perspective Displays

Kathleen Fernandes,
Ph.D.
fernande@spawar.navy.mil

Systems Center
San Diego

Overview

- **Determine how 3D perspective displays affect user performance**
 - Representation of space: 2D vs. 3D views
 - Representation of objects: 2D vs. 3D symbols
- **Focus on human factors and displays research**
 - Select studies with military-relevant tasks, displays, and objects
 - Look at effectiveness of 3D perspective view vs. 2D plan view
 - Assess importance of monocular and binocular depth cues (e.g., drop-lines, shading, stereopsis)
 - Determine if performance varies as a function of task
 - » Recognition of objects
 - » Recognition of relative spatial locations of objects
 - » Recognition of physical and/or functional connections between objects

Considerations in Using Perspective Displays

- **Advantages**
 - Provide a visual representation of depth information
 - May be more intuitive and natural to use (and easier to operate)
 - Are preferred by users
 - May present a clearer picture of tactical information (eliminate need to search text boxes for attributes such as altitude and to do mental integration of information from different views)
- **Disadvantages**
 - Are prone to distortion (due to distortions associated with parameters of perspective)
 - Are prone to clutter (less display area near horizon so more objects are packed into smaller area; addition of depth cues such as drop-lines increase number of objects displayed)
 - Are poor for precision tasks (e.g., realistic icons do not scale well; distant objects may be too small to be recognizable)

Impact of 2D vs. 3D Displays on Performance (1)

- Research provides mixed results concerning performance benefits of 3D perspective displays compared to 2D plan-view displays
 - Aggregation of results difficult because studies differ in tasks and displays used
 - Studies of 3D displays vary in depth cues present vs. manipulated (e.g., drop-lines)
 - Results may reflect differences in the performance demands of a task rather than the nature of the displays themselves
 - Users may prefer to use displays that hinder rather than enhance their performance

Impact of 2D vs. 3D Displays on Performance (2)

- In general, perspective displays are useful for understanding shape/layout of complex objects but impair judgments of relative position of objects
 - Bemis et al., 1988 - Performance in air intercept control was better with a 3D view compared to a 2D view
 - Baumann et al., 1997 - Performance was better with a 3D view when the task was to identify most (70%) aircraft but better with a 2D view when the task was to identify all aircraft
 - Smallman et al., 1999 - Situation awareness (SA) was better during the first 4 min. of scenario monitoring with a 2D view, but increased faster with a 3D view during the first 5 min. and was equivalent to 2D view after 9 min. of monitoring
 - St. John et al., 2000 - Performance in understanding terrain shape and layout was better with a 3D view, but performance in selecting the higher terrain elevation was better with a 2D view

Systems Center
San Diego

Investigation of Depth Cues in 3D Displays

- Determine which depth cues in computer-generated perspective displays will minimize bias and distortion in user judgments of spatial information
 - Monocular cues
 - » Light (e.g., luminance/brightness, shadows, color)
 - » Texture (e.g., density gradients, linear perspective)
 - » Occlusion/interposition (e.g., size-distance invariance, object size)
 - » Motion (e.g., motion parallax, kinetic depth effect)
 - Binocular cues (e.g., binocular disparity/stereopsis)
- User tasks
 - Judge the separation (relative depth/altitude) between a reference object and a target object located above a ground plane
 - Judge the time to collision for two objects or the time for an object to collide with an observer

Impact of Depth Cues on Performance (1)

- **User performance was improved by the presence of**
 - **Yeh & Silverstein, 1992; Hendrix & Barfield, 1997 - Eye-point elevation angles between 15 and 45 degrees (i.e., the elevation of the computer graphics virtual camera above the computer-generated scene)**
 - **Delucia, 1995 - Drop-lines (i.e., ground-intercept information) and pictorial relative size (i.e., objects equal in projected size)**
 - **Hendrix & Barfield, 1995 - For depth judgments: Drop-lines alone and with texture (i.e., wire-frame grid), and location of target object relative to reference object (i.e., target object in front was better)**
 - **Barfield, 1998 - Ability to rotate the perspective scene interactively (motion parallax)**

Impact of Depth Cues on Performance (2)

- **User performance was not affected by the presence of**
 - Hendrix & Barfield, 1995 - For depth judgments: texture (i.e., wire-frame grid), drop-shadows for objects
 - Hendrix & Barfield, 1995 - For altitude judgments: Drop-lines, texture, drop-shadows for objects, location of target object relative to reference object - results may be due to "favorable viewing conditions"
 - Barfield, 1998 - Shading and shading with shadows added to a wire-frame grid - results may be due to use of drop-lines in all displays
- **User performance was not affected by the presence of binocular depth cues if judgments could be made easily from the monocular cues available**
 - Yeh & Silverstein, 1992; Barfield & Rosenberg, 1995 - Stereopsis had positive effect on performance
 - Hendrix & Barfield, 1995; Hendrix & Barfield, 1997 - Stereopsis had no effect; may be due to presence of drop-lines

Systems Center
San Diego

Object Representation

- **Non-realistic symbols**
 - NTDS symbols - object represented as frame; shape and color indicate threat and environment; address engagement domain
 - MIL-STD 2525 symbols - object represented as frame with color fill and icon; shape and color indicate threat and environment; address engagement and force domains
- **Realistic icons**
 - 2D realistic icons - object represented pictorially, top-down view and north-oriented
 - 3D realistic icons - object represented pictorially, oriented in direction of movement

MIL-STD 2525 Background

- Aug 93 - MCEB directed development of symbology standard using “accelerated” process
- Feb 94 - Symbology Standards Management Committee (SSMC) chartered
- Sep 94 - MIL-STD 2525 Version 1 (Draft) published
 - Based on STANAG 2019 and FM 101-5-1 for force domain and STANAG 4420 and NTDS for engagement domain
 - Used frame shapes consistent with NTDS
- Dec 96 - MIL-STD 2525A published
 - Revisited frame shapes per Army/Marine Corps request
 - Used frames shapes consistent with FM 101-5-1 per MCEB
 - Validated via questionnaire, rather than operator testing, per MCEB
- Jan 99 - MIL-STD 2525B published
 - Corrected errors in 2525A, added symbols for specific communities
 - Provided complete set of tactical graphics

Key Requirements of MIL-STD 2525

- Defines symbol composed of frame, fill, and icon, with text/graphic modifiers
- Requires use of standard frame shapes and colors but allows systems to extend as needed to meet requirements
- Supports multiple options for display (e.g., render as frame/fill, frame only, dot)

NTDS 2525

Color coding

Blue	Friend	Friend
Red	Hostile	Hostile
Green	Neutral	Neutral
Yellow	Unknown	Unknown

Shape coding

Circle	Friend	Friend (Sea)
Rectangle	Friend (Ground)	
Diamond	Hostile	Hostile
Square	Unknown	Neutral
Quatrafotil	Neutral	Unknown

Impact of Object Representation on Performance

- **NATO STANAG 4420 (similar to MIL-STD 2525) vs. NTDS**
 - **NATO Testing, 1991 - Symbol recognition better with NATO symbols than with NTDS symbols**
 - **SODA Project, 1991-1994 - Visual search better with NATO symbols than with NTDS symbols; no differences between symbols in recall**
- **3D and 2D realistic icons vs. MIL-STD 2525 symbols**
 - **Smallman et al., 1999 - 2525 symbols were learned faster and with fewer errors than were 3D and 2D realistic icons; icons provided better situation awareness for altitude, attitude, and heading attributes than did the 2525 symbols**
 - **Smallman et al., 2000 - 2525 symbols were named faster and with fewer errors than were 3D and 2D realistic icons, even though participants indicated they preferred to view icons; no differences between icons and symbols in platform categorization task**

Implications for Display Design

- **Representation of display space**
 - Support both perspective and plan views so users can select the display that is more appropriate for a specific task or judgment
 - Provide artificial depth cues (e.g., drop-lines) to reduce distortion; include a show/hide capability so users can manage display clutter
 - Allow users to rotate the view interactively so they can optimize the position of the objects being judged
 - Consider providing binocular depth cues (stereopsis) if monocular cues would be insufficient to support accurate judgments
- **Representation of display objects**
 - Render objects in a uniform size unless uniformity would be counterintuitive
 - Ensure that the manner in which objects are represented supports the task being performed
 - » Provide 2D symbols if rapid, accurate identification is required
 - » Provide 3D icons if monitoring spatial attributes (e.g., altitude) is required