Aerodynamics-TD3

Boundary Layer and Over Drag

Exercise 1:

Flow between two parallel walls(as shown below), steady, incompressible, neglect body force, 2-D. Determine velocity distribution u(y), volume flow rate Q and the wall shear stresses τ_w .

Exercise 2:

A factory chimney height l=25m , diameter d=40cm, and environment temperature is 25^{0} C. Standard atmospheric pressur, the wind speed is respectively V_{1} =8 m/s , V_{2} = 20 m/s and V_{3} = 200m/s. Under different wind speed, determine:

- 1. Drag coefficient C_D .
- 2. Drag F_D.
- 3. Torque M.

空气的物理性质 (标准大气压)

温度	密度	动力粘度	运动粘度	比热比	声速
T/°C	$ ho / \mathrm{kg/m}^3$	$\mu/\mathrm{N} \cdot \mathrm{s/m}^2$	$v/m^2/$ s	γ	c/m/ s
-40	1. 514	1.57E-5	1. 04E-5	1. 401	306. 2
-20	1. 395	1. 63E-5	1. 17 E-5	1. 401	319. 1
0	1. 292	1. 71E-5	1. 32 E-5	1. 401	331. 4
5	1. 269	1. 73E-5	1. 36 E-5	1. 401	334. 4
10	1. 247	1. 76E-5	1. 41 E-5	1. 401	337. 4
15	1. 225	1.80E-5	1. 47 E-5	1. 401	340. 4
20	1. 204	1.82E-5	1. 51 E-5	1. 401	343. 3
25	1. 184	1.85E-5	1. 56 E-5	1. 401	346. 3
30	1. 165	1.86E-5	1. 60 E-5	1. 400	349. 1
40	1. 127	1.87E-5	1.66 E-5	1. 400	354. 7
50	1. 109	1. 95E-5	1. 76 E-5	1. 400	360. 3
60	1.060	1. 97E-5	1.86 E-5	1. 399	365. 7
70	1. 029	2. 03E-5	1. 97 E-5	1. 399	371. 2
80	0. 9996	2. 07E-5	2. 07 E-5	1. 399	376. 6
90	0. 9721	2. 14E-5	2. 20 E-5	1. 398	381. 7
100	0. 9461	2. 17E-5	2. 29 E-5	1. 397	386. 9
200	0. 7461	2. 53E-5	3. 39 E-5	1. 390	434. 5
300	0. 6159	2. 98E-5	4. 84 E-5	1. 379	476. 3
400	0. 5243	3. 32E-5	6. 43 E-5	1. 368	514. 1
500	0. 4565	3. 64E-5	7. 97 E-5	1. 357	548. 8
1000	0. 2772	5. 04E-5	1.82 E-4	1. 321	694.8

圆柱绕流阻力系数随 Re数的变化