Natural and Contextual Semantics

Lecture 4 CS 565

Natural Semantics

The semantics given previously is known as "small-step"

- Evaluation relation shows how each individual step in the computation takes place
- · Closely mirrors how an interpreter might evaluate a program
- Apply a multi-step evaluation relation →* on top to talk about terms evaluating (in many steps) to values

formulates the notion of "this term evaluates to this value" An alternative style called "natural semantics" directly

(Details omitted)

Evaluation Contexts

Both styles of semantics address two concerns:

order of evaluation

explicit in small-step semantics implicit in natural semantics

· meaning of terms

Can we separate out these two notions?

- Decompose a term into two parts:
- the part of the term that is to be evaluated
- the remaining portion of the term that should be examined after the subterm evaluates; call this part of the term a "context"

Contextual semantics

Small-step semantics where the atomic execution step is a rewrite of the program

- Evaluation terminates when program has been rewritten to a terminal program
- For IMP terminal command is "skip"

Need to define

- What constitutes an atomic reduction step
- How to select the next reduction step

Redex

A redex is a term that can be transformed in a single step

A redex has no antecedents

```
Ö
:= x \mid x := int \mid int + int' \mid skip;
                                                    c_2
                                                                            true and b | false or b
                        true then c1 else c2
                                                   if false then c1 else
   Н
```

Evaluation Contexts

An evaluation context is a term with a "hole" in the place of a subterm

- Location of the hole points to the next subexpression that should be evaluated
- If E is a context then E[r] is the expression obtained by replacing redex r for the hole defined by context E
- Now, if $r, \sigma \to t, \sigma$ then $E[r], \sigma \to E[t], \sigma$

Global reduction rule + Local reduction rules for individual ${f r}$

Contexts

Can define evaluation context via a grammar:

simplify the number and structure of the rules used in the The grammar fixes the order of evaluation, allowing us to semantics

Evaluation Contexts

A context has exactly one hole

Redexes that are substituted for a context are never values A context uniquely identifies the next redex to be evaluated

Consider e1+e2 and its decomposition as $\mathbb{E}[\,r\,]$

- and e2=n2 then E=[] and r=n1+n2• If e1=n1
- e2=E'[r]and e2≠n2 then E=n1+E' and • |f e1=n1
- ' If e1≠n1 then E=E'+e2 and e1=E'[r]

Last two cases are evaluated recursively

Evaluation Contexts

Consider c = c1; c2

Suppose c1 = skip.

Then, c=E[skip;c2] with E=[]

Suppose $c1 \neq skip$.

Then, c1=E[r] and c=E'[r] with E'=E;c2

Consider c = if b then c1 else c2

- If b=true then $c=\mathbb{E}[r]$ where r is a redex in c1 and E defines its context
- If b=false then c=E[r] where r is a redex in c2 and Edefines its context
- then c1 曰 if Otherwise, b=E[r], so c=E'[r] where E'=c2 else

Evaluation Contexts

Decomposition theorem:

If $c \neq skip$ then there exists unique E, r such that c = E[r]

exists ⇒ progress

unique ⇒ determinism

Example

Consider the evaluation of:

$$x:=1; x:=x+1 \text{ with } \sigma = [x -> 0]$$

Context State

Redex

skip; x := x+1

x:=1

2

∷

1 + 1

×

skip, [x->2]

E

Contexts

$$E = a_2$$

 $int = E$
 $E < a_3$

$$E < a_2$$

 $int < E$
 E and b_2

$$bool$$
 and E
 $E + a_2$
 $int + E$

$$int + E$$
 $E * a_2$

$$int * E$$
 $E - a_2$

$$int - E$$

$$\mathbf{x} := E$$

$$E; c_2$$

if E then
$$c_1$$
 else c_2

φ' C' ρ c ,

$$c = \mathbf{E}[\mathbf{r}]$$

$$r, \sigma \longrightarrow r', \sigma'$$

$$c' = \mathbf{E}[\mathbf{r}']$$

$$c, \sigma \Longrightarrow c', \sigma'$$

$$CTXT$$

$$\mathbf{skip};\,c,\,\sigma\implies c,\,\sigma$$

SKIP

$$r, \sigma \longrightarrow r', \sigma'$$

$$r, \sigma \longrightarrow r', c$$

$$\frac{\sigma\left(\mathbf{x}\right) = int}{\sigma\left(\mathbf{x}\right) = \frac{int}{\sigma\left(\mathbf{x}\right)}} \quad \text{AEXPVAR}$$

$$\frac{int_1 + int_2 = int_3}{int_1 + int_2, \sigma \longrightarrow int_3, \sigma}$$
 AEXPPLUS

$$\frac{int_1 * int_2 = int_3}{int_1 * int_2 , \sigma \longrightarrow int_3 , \sigma} \quad \text{AEXPTIMES}$$

$$\frac{int_1 - int_2 = int_3}{int_1 - int_2, \sigma \longrightarrow int_3, \sigma}$$
 AEXPSUB

$$int_1 = int_2, \sigma \longrightarrow \text{true}, \sigma$$

 $int_1 \neq int_2$
 $int_1 = int_2, \sigma \longrightarrow \text{false}, \sigma$

BEXPNEQ

BEXPNOTT

BEXPNOTF

$$\mathbf{not}\,\mathtt{true}\,,\,\sigma\,\longrightarrow\,\mathtt{false}\,,\,\sigma$$

$$\begin{array}{c} \textbf{not false} , \sigma \longrightarrow \texttt{true} , \sigma \\ \\ bool_1 \, \textbf{and} \, bool_2 = bool \\ \hline \\ bool_1 \, \textbf{and} \, bool_2 , \sigma \longrightarrow bool , \sigma \end{array}$$

Bexpand

Bexpor

 $bool_1$ or $bool_2$, $\sigma \longrightarrow bool$, σ

 $bool_1$ or $bool_2 = bool$

$$\frac{\sigma' = \sigma \left[\mathbf{x} \mapsto int \right]}{\mathbf{x} := int, \ \sigma \longrightarrow \mathbf{skip}, \ \sigma'}$$

$$\mathbf{if} \text{ true then } c_1 \text{ else } c_2, \ \sigma \longrightarrow$$

$$\overline{ ext{if true then } c_1 ext{else } c_2, \, \sigma \longrightarrow c_1, \, \overline{\sigma}}$$

IFT

Assign

false then
$$c_1$$
 else $c_2,\,\sigma \longrightarrow c_3,\,\sigma$

$$\overline{ \text{if false then } c_1 \, \text{else} \, c_2 \,, \, \sigma \, \longrightarrow \, c_3 \,, \, \sigma } \quad \text{IFF}$$

while $b \operatorname{do} c_1$, $\sigma \longrightarrow \operatorname{if} b \operatorname{then} c_1$; while $b \operatorname{do} c_1 \operatorname{else} \operatorname{skip}$, σ

Contextual Semantics

Summary

- Think of a hole as representing a program counter Must decompose entire command at every step The rules for advancing holes is non-trivial How would you implement this?
- Major advantage of contextual semantics is that allows a mix of global and local reduction rules
 - Global rules indicate next redex to be evaluated defined by contexts
- Local rules indicate how to perform the reduction one for each redex