Задача 2. Дадено е уравнението

$$y' = \frac{4y - 2x - 6}{x + y - 3} \tag{*}$$

- 1.) Намерете пресечната точка (a,b) на правите $l_1:4y-2x-6=0$ и $l_2:x+y-3=0$.
- 2.) Уравнение от какъв тип се получава за функцията z(t) = y(t+a) b след като направите смяна на променливите x = t+a, y = z+b в уравнението (*)?

Решение:

Всяко уравнение от вида $y' = \frac{ax + by + c}{mx + ny + p}$ може да бъде сведено до хомогенно

уравнение като се намери пресечната точка на двете прави $l_1:ax+by+c=0$ и $l_2:mx+ny+p=0$ (ако съществува пресечна точка).

1.)
$$\begin{cases} 4y - 2x - 6 = 0 \\ x + y - 3 = 0 \end{cases}$$
, $y = 3 - x$, $4(3 - x) - 2x - 6 = 0$; $12 - 4x - 2x - 6 = 0$; $2 - x - 1 = 0$; $x = 1 \Rightarrow y = 2$. Т.е. пресечната точка на двете прави е $(a,b) = (1,2)$.

2.)
$$z(t) = y(t+a) - b = y(t+1) - 2$$
; $x = t+1$, $y = z+2$

$$y' = \frac{4(z+2) - 2(t+1) - 6}{t+1+z+2-3} = \frac{4z - 2t}{z+t} = \frac{4\left(\frac{z}{t}\right) - 2}{\frac{z}{t}+1}; \quad y' = (z+2)' = z' \implies$$

$$z'=rac{4\left(rac{z}{t}
ight)-2}{rac{z}{t}+1}$$
, хомогенно диференциално уравнение.