Московский государственный технический университет имени Н.Э. Баумана

Кафедра «Программное обеспечение ЭВМ и информационные технологии»

КОНСПЕКТ ЛЕКЦИЙ

Вычислительные алгоритмы

Владимир Михайлович Градов

Вёрстка: Р.И.Инфлянскас Иллюстрации: А.С.Никичкин

Организационные вопросы

 Φ орма сдачи — зачёт.

Шкала оценок — неизвестна.

Аудитория -226л.

Содержание

1.	Аппроксимация функции
	1.1. Интерполяция функции одной и многих переменных
	1.1.1. Линейная интерполяция
	1.1.2. Нелинейная интерполяция
	1.1.3. Сплайны
	1.1.4. Многомерная интерполяция
	1.2. Наилучшее среднеквадратичное приближение
2.	Численное дифференцирование
	2.1. Полиномиальные формулы
	2.2. Разложение в ряды Тейлора
	2.3. Формулы Рунге
	2.4. Быстропеременные функции
	2.5. Регуляризация дифференцирования
	2.5.1. Регуляризация по шагу
	2.5.2. Дифференцирование предварительно сглаженной прямой
3	Интегрирование
0.	3.1. Формулы Гаусса
	3.2. Полином Лежандра
	3.3. Кратные интегралы
	3.3.1. Метод ячеек
	3.3.2. Метод последовательного интегрирования
4.	Решение СЛАУ
	4.1. Прямые методы
	4.1.1. Метод Гаусса
	4.2. Итерационные методы (двухслойные (одношаговые) методы)
	4.2.1. Метод простой итерации
	4.2.2. Метод Зейделя
5.	Нелинейные уравнения
	5.1. Метод Ньютона
6.	Некоторые замечания по численному интегрированию
	6.1. Погрешность формул
	6.1.1. Метод трапеций
	6.1.2. Метод средних
	6.1.3. Метод Симпсона
	6.2. Метод Эйлера-Маклорена
	6.3. Процесс Эйткена
	6.4. Интегрирование кусочно-непрерывных функций
	6.5. Интеграл с переменным верхним пределом

1. Аппроксимация функции

1.1. Интерполяция функции одной и многих переменных

1.1.1. Линейная интерполяция

Пусть есть таблица с числами:

$$\begin{array}{c|c}
x_i & y_i \\
\hline
\vdots & \vdots \\
\vdots & \vdots
\end{array}$$

$$y(x) \to \varphi(x, \vec{a}), \quad \vec{a} = (a_0, a_1, a_2, \dots, a_n)$$

Если речь идёт о Лагранжевой интерполяции, то параметры определяются из условия:

$$\varphi(x_i, \vec{a}) = y_i, \quad i = \overline{0, n} \tag{1}$$

При линейной интерполяции:

$$arphi(x,ec{a}) = \sum_{k=0}^n a_k arphi_k(x),$$
 где $arphi_k(x)$ — известные функции

Тогда (1) сведётся к:

$$\sum_{k=0}^{n} a_k \varphi_k(x_i) = y_i, \quad i = \overline{0, n}$$

Получим систему уравнений (Чебышевская система функций), определитель которой не равен нулю:

$$\begin{bmatrix}
\varphi_0(x_0) & \varphi_1(x_0) & \dots & \varphi_n(x_0) \\
\vdots & & & \vdots \\
\varphi_0(x_n) & \varphi_1(x_n) & \dots & \varphi_n(x_n)
\end{bmatrix} \neq 0$$

$$\varphi_k(x) = x^k$$
, то есть $\varphi(x, \vec{a}) = \sum_{k=0}^n a_k x^k$

На практике удобно не решать систему уравнений, а построить интерполяционный полином. В настоящее время используются интерполяционные полиномы Ньютона, Эрмита, Лагранжа.

Интерполяционный полином Ньютона

$$P_n(x) = P_n(x_0) + (x - x_0)P(x_0, x_1) + (x - x_0)(x - x_1)P(x_0, x_1, x_2) + \dots + (x - x_0)\cdots(x - x_{n-1})P(x_0, \dots, x_n)$$

Разделённая разность:

$$P(x_i, x_j, \ldots, x_k)$$

По определению считаем что:

$$P(x_i) = y_i$$

Разделённая разность I порядка:

$$P(x_i, x_j) = \frac{P(x_i) - P(x_j)}{x_i - x_j}$$

Разделённая разность II порядка:

$$P(x_i, x_j, x_k) = \frac{P(x_i, x_j) - P(x_j, x_k)}{x_i - x_k}$$

Разделённая разность III порядка:

$$P(x_i, x_j, x_k, x_l) = \frac{P(x_i, x_j, x_k) - P(x_j, x_k, x_l)}{x_i - x_l}$$

При Лагранжевой интерполяции интерполяционный полином совпадает с узлами:

$$P_n(x) = y(x_0) + (x - x_0)y(x_0, x_1) + (x - x_0)(x - x_1)y(x_0, x_1, x_2) + \dots + (x - x_0)\cdots(x - x_{n-1})y(x_0, \dots, x_n) = y_0 + \sum_{k=1}^n (x - x_0)\cdots(x - x_{k-1})y(x_0, x_1, \dots, x_k)$$

Пример 1 Полином первой степени.

$$P_1(x) = y(x_0) + (x - x_0)y(x_0, x_1) = y_0 + (x - x_0)\frac{y_0 - y_1}{x_0 - x_1}$$
$$y = y_0 + (x - x_0)\frac{y_0 - y_1}{x_0 - x_1}$$

Пример 2. Провести интерполяцию функции: $y(x) = \sin(30^{\circ}x)$

x	$\mid y \mid$	$y(x_i, x_{i+1})$	$y(x_i, x_{i+1}, x_{i+2})$	$y(x_i, x_{i+1}, x_{i+2}, x_{i+3})$
-3	-1.0	×	×	×
-2	-0.866	×	×	×
-1	-0.50	×	×	×
0	0	×	×	×
$1(x_1)$	0.50	0.366		×
$2(x_2)$	0.866	0.300 0.134	-0.116	×
$3(x_3)$	1	0.104		×

 $Bxo\partial: n, x$, таблица.

Bыход: y(x)

Дано: x = 1.5, n = 2

Решение:

$$y(x) = y_1 + (x - x_1)y(x_1, x_2) + (x - x_1)(x - x_2)y(x_1, x_2, x_3) =$$

$$= 0.5 + (1.5 - 1)0.366 + (1.5 - 1)(1.5 - 2)(-0.116) = 0.712$$

Точное значение $y(1.5) = \sin 45^{\circ} = 0.707$

Погрешность представления функции полиномом Ньютона.

$$\omega_n = \prod_{i=0}^n (x - x_i)$$

$$|y(x) - P_n(x)| \le \frac{M_n + 1}{(n+1)!} |\omega_n(x)|$$

$$M_{n+1} = \max(y^{(n+1)}(\xi))$$

$$x_0 \le \xi \le x_n$$

Оценка погрешности интерполяционного полинома по вышеприведённой формуле называется априорной. Она позволяет установить факторы, определяющие точность: крутизна функции и конфигурация узлов (в центре — точнее). На практике применяется апостериорная оценка. В ходе вычислений наблюдают за поведением членов ряда и в соответствии с этим решается вопрос с количеством узлов.

Полином Лагранжа

$$L_n(x) = \sum_{i=0}^n L_i^{(n)}(x) y_i$$
$$L_i^{(n)}(x) = \prod_{\substack{k=0\\k\neq i}}^n \frac{x - x_k}{x_i - x_k}$$

Полином Эрмита Полином Эрмита учитывает также производные. Он более точен.

1.1.2. Нелинейная интерполяция

Есть функция, которая быстро меняется с точки зрения апроксимации. Выбираются выравнивающие переменные.

$$y = x^{n}$$

$$\ln y = n \ln x$$

$$\begin{cases} \eta = \ln y \\ \xi = \ln x \end{cases}$$

$$\eta = n\xi$$

$$y = a^{x}$$

$$\ln y = x \ln a$$

$$\begin{cases} \eta = \ln y \\ \xi \equiv x \end{cases}$$

$$\eta = x \ln a$$

Пример 3.

$$\begin{cases} \eta = \ln y \\ \xi \equiv x \end{cases}$$

$$\eta(x) = x_0 + (x - x_0) \frac{\eta_0 - \eta_1}{x_0 - x_1}$$

$$\ln y(x) = \ln y_0 + (\ln y_0 - \ln y_1) \frac{x - x_0}{x_0 - x_1}$$

$$\ln \frac{y(x)}{y_0} = \ln \left(\frac{y_0}{y_1}\right)^{\frac{x - x_0}{x_0 - x_1}}$$

$$y(x) = y_0 \left(\frac{y_0}{y_1}\right)^{\frac{x - x_0}{x_0 - x_1}}$$

1.1.3. Сплайны

Кубический сплайн — это кривая, состоящая из "состыкованных" полиномов третьей степени $(y^{(IV)}(x) = 0)$. В точках стыковки значения и производные двух соседних полиномов равны.

$$\varphi(x) = a_i + b_i(x - x_{i-1}) + c_i(x - x_{i-1})^2 + d_i(x - x_{i-1})^3$$

4N неизвестных коэффициента $a_i, b_i, c_i, d_i \ i = 1, 2, \dots, N$

$$\varphi(x_{i-1}) = y_{i-1} = a_i \tag{2}$$

$$\varphi(x_i) = y_i = a_i + b_i h_i + c_i h_i^2 + d_i h_i^3, \quad h_i = x_i - x_{i-1}$$
(3)

$$\varphi'(x_i) = b_i + 2c_i(x - x_{i-1}) + 3d_i(x - x_{i-1})^2$$

$$\varphi''(x_i) = 2c_i + 6d_i(x_i - x_{i-1})$$

$$b_i + 2c_i h_i + 3d_i h_i^2 = b_{i+1} \leftarrow \varphi'(x_i) = \varphi'(x_i)$$

$$(4)$$

$$c_i + 3d_i h_i = c_{i+i} \tag{5}$$

Выбирая в качестве недостающих уравнений краевые условия (y''=0), получаем

слева:
$$c_1 = 0 \quad x = x_0$$
 (6)

справа:
$$c_N + 3d_N h_N = 0 \quad x = x_N \tag{7}$$

Сведём данную систему к системе из 4N уравнений относительно коэффициента c_i . Другие коэффициенты вычислим через c_i .

Из (5) возьмём d_i и подставим в (3). Оттуда найдём b_i и подставим b_i , d_i в (4), получим

$$\begin{cases} c_1=0\\ h_{i-1}c_{i-1}+2(h_{i-1}+h_i)c_i+h_ic_{i+1}=3\left(\frac{y_i-y_{i-1}}{h_i}-\frac{y_{i-1}-y_{i-2}}{h_{i-1}}\right)\\ c_{N+1}=0 \quad \text{(из (5) и (7))} \end{cases}$$
 СЛАУ с трёхдиагональной матрицей. Для решения существует

Получим СЛАУ с трёхдиагональной матрицей. Для решения существует специальный метод — метод прогонки.

Метод прогонки Запишем СЛАУ с трёхдиагональной матрицей в каноническом виде:

$$A_i y_{i-1} - B_i y_i + D_i y_{i+1} = -F_i$$

 $y_i = \xi_{i+1} y_{i+1} + \eta_{i+1}, \quad \xi_{i+1}, \eta_{i+1}$ — прогоночные коэффициенты (8)

Зададимся такой формой решения:

$$y_{i-1} = \xi_i y_i + \eta_i$$

Подставим в канонический вид СЛАУ:

$$A_{i}\xi_{i}y_{i} + A_{i}\eta_{i} - B_{i}y_{i} + D_{i}y_{i+1} = -F_{i}$$

$$y_{i} = -\frac{D_{i}}{A_{i}\xi_{i} - B_{i}}y_{i+1} + \frac{-F_{i} - A_{i}\eta_{i}}{A_{i}\xi_{i} - B_{i}}$$

$$y_{i} = \frac{D_{i}}{B_{i} - A_{i}\xi_{i}}y_{i+1} + \frac{F_{i} + A_{i}\eta_{i}}{B_{i} - A_{i}\xi_{i}}$$
(9)

или

Сравнивая (8) и (9) видим:

$$\xi_{i+1} = \frac{D_i}{B_i - A_i \xi_i}$$

$$\eta_{i+1} = \frac{F_i + A_i \eta_i}{B_i - A_i \xi_i}$$
(10)

Метод прогонки выполняется в 2 этапа:

- 1. По формулам (10) при заданных начальных коэффициентах ξ_i, η_i находим все прогоночные коэффициенты.
- 2. При известном y_N определяются все $y_i, i = \overline{1,N}$ обратный ход по формуле (8).

Применительно к задаче поиска коэффициентов сплайна имеем $c_i \leftrightarrow y_i$.

$$c_1=0$$

$$c_1=\xi_2c_2+\eta_2$$
— аналогично (8)
$$\begin{cases} \xi_2=0\\ \eta_2=0 \end{cases}$$

Имея граничные условия находим начальные коэффициенты (прямой ход). Нахождение всех c (обратный ход):

$$c_i = \xi_{i+1}c_{i+1} + \eta_{i+1}, \quad c_{N+1} = 0, \quad c_N = \eta_{i+1}$$

При найденных c:

$$a_{i} = y_{i-1}$$

$$d_{i} = \frac{c_{i+1} - c_{i}}{3h_{i}} d_{N} = -\frac{c_{N}}{3h_{N}}$$

$$b_{i} = \frac{y_{i} - y_{y-1}}{h_{i}} - \frac{1}{3}h_{i}(c_{i+1} + 2c_{i})$$

Возвращаясь к общей форме, покажем как найти прогоночные коэффициенты в общем случае.

$$A_i y_0 - B_1 y_1 = -F_1$$
обычно
$$\begin{cases} M_i y_0 - K_1 y_1 = -N_1 \\ y_0 = \xi_1 y_1 + \eta_1 \end{cases}$$

$$y_0 = \frac{K_1}{M_1} y_1 - \frac{N_1}{M_1}$$

$$\begin{cases} \xi_1 = \frac{K_1}{M_1} \\ \eta_1 = -\frac{N_1}{M_1} \end{cases}$$

$$|B_i| \geqslant |A_i| + |D_i|$$

Алгоритм:

- 1. Строим таблицу.
- Задаём x.
- 3. Находим k-ый интервал, куда попадает x.
- 4. $y = \varphi(x) = a_i + b_i(x x_{i-1}) + c_i(x x_{i-1})^2 + d_i(x x_{i-1})^3$
- Выдать *у*.

1.1.4. Многомерная интерполяция

Пусть есть функция двух переменных:

$$z = f(x, y)$$

Рассмотрим интерполяцию на регулярной сетке. Функция задана в узлах сетки. Задание функции — двумерный массив.

- 1. Задаём полином по каждому направлению, например, полином третьей степени по Ox, полином второй степени по Oy.
- 2. Для каждого ряда проводим интерполяцию (сначала по Ox, потом по Oy):

$$z(x_i, y_i), j = 0, 1, 2$$

Можно построить полином Ньютона:

$$P_n(x,y) = \sum_{i=0}^n \sum_{j=0}^{n-i} z(x_0, x_1, \dots, x_i; y_0, y_1, \dots, y_j) \prod_{p=0}^{i-1} (x - x_p) \prod_{q=0}^{j-1} (y - y_q)$$

Разделённая разность:

$$z(x_0, x_1; y_0) = \frac{z(x_0, y_0) - z(x_1, y_0)}{x_0 - x_1}$$

1.2. Наилучшее среднеквадратичное приближение

Если точки заданы с какой-то точностью, то не надо проводить кривую непосредственно через них.

Можно оценивать близость функций по-разному:

$$||y(x) - \varphi(x)||_{C} \max |y(x) - \varphi(x)|$$

$$||y(x) - \varphi(x)||_{C} \max |y(x) - \varphi(x)|$$

$$I = \sum_{i=1}^{N} \rho(x_i) [y(x_i) - \varphi(x_i, \overline{a})]^2$$

$$\varphi(x, \overline{a}, \overline{a} = (a_0, a_1, \dots, a_n))$$

$$I < \varepsilon; I - \min$$

В общем случае задача является сложной, поэтому можно принять такую функцию:

$$\varphi(x,\overline{a}) = \sum_{k=0}^{n} a_k \varphi_k(x), \ (\varphi_k(x) = x^k)$$

Введём скалярное произведение:

$$(f, \psi) = \sum_{i=1}^{N} \rho(x_i) f(x_i) \psi(x_i)$$

В пределе:

$$(f,\psi) = \int_{a}^{b} \rho(x)f(x)\psi(x)dx$$

 $\rho(x)$ — весовая функция, она добавляет ещё одну степень свободы. В простейшем случае: $\rho(x)\sim\frac{1}{\varepsilon^2},\,\varepsilon$ — относительная точность.

$$I = (y(x) - \varphi(x, \vec{a}), y(x) - \varphi(x, \vec{a}))) = (y, y) - 2(y, \varphi(x, \vec{a})) + (\varphi(x, \vec{a})), \varphi(x, \vec{a})) = (y, y) - 2(y, \sum_{k=0}^{n} a_k \varphi_k(x)) + (\sum_{k=0}^{n} a_k \varphi_k(x), \sum_{m=0}^{n} a_m \varphi_m(x)) = (y, y) - 2(\sum_{k=0}^{n} a_k (y, \varphi_k(x)) + \sum_{k=0}^{n} \sum_{m=0}^{n} a_k a_m (\varphi_k(x), \varphi_m(x))$$

$$\sum_{m=0}^{n} (\varphi_{\kappa}, \varphi_{m}) a_{m} = (y, \varphi_{\kappa}), \ k = 0, 1, \dots, n$$

$$\tag{11}$$

Определитель Грамма:

$$\begin{vmatrix} (\varphi_0, \varphi_0) & (\varphi_0, \varphi_1) & \dots & (\varphi_0, \varphi_n) \\ \vdots & & & & \\ (\varphi_n, \varphi_0) & (\varphi_n, \varphi_1) & \dots & (\varphi_n, \varphi_n) \end{vmatrix} \neq 0$$

, если $\varphi_k(x)$ — линейно независимы.

Если $\varphi_k, \varphi_m =$

Наиболее часто в качестве функции $\varphi_k(x)$ выбирается x^k . Тогда (11):

$$\sum_{m=0}^{n} (x^{k}, x^{m}) a_{m} = (y, x^{k})$$
$$(x^{k}, x^{m}) = \sum_{i=1}^{N} \rho(x_{i}) x_{i}^{k+m}$$
$$(y, x^{k}) = \sum_{i=1}^{N} \rho(x_{i}) y(x_{i}) x_{i}^{k}$$

Пример 4. Пусть n = 1, то есть $\varphi(x) = a_0 + a_1 x$. Тогда:

$$k = 0, (x^{0}, x^{0})a_{0} + (x^{0}, x^{1})a_{1} = (y, x^{0})$$

$$k = 1, (x^{1}, x^{0})a_{0} + (x^{1}, x^{1})a_{1} = (y, x^{1})$$

$$\begin{cases} \sum_{i=1}^{N} \rho_{i}a_{0} + (\sum_{i=1}^{N} \rho_{i}x_{i})a_{1} = \sum_{i=1}^{N} \rho_{i}y_{i} \\ \sum_{i=1}^{N} \rho_{i}x_{i}a_{0} + (\sum_{i=1}^{N} \rho_{i}x_{i}^{2})a_{1} = \sum_{i=1}^{N} \rho_{i}x_{i}y_{i} \end{cases}$$

$$a_{0} = \frac{(\sum \rho_{i}y_{i})(\sum \rho_{i}x_{i}^{2}) - (\sum \rho_{i}x_{i})(\sum \rho_{i}x_{i}y_{i})}{\sum \rho_{i}\sum \rho_{i}x_{i}^{2} - (\sum \rho_{i}x_{i})^{2}}$$

 a_1 — аналогично.

Лабораторная работа №2 $Bxo\partial$: таблица (x_i, y_i, ρ_i)

Bыход: значения φ_i .

2. Численное дифференцирование

2.1. Полиномиальные формулы

Строится полином Ньютона и он дифференцируется.

$$y(x) \approx y_0 + (x - x_0)y(x_0, x_1) + (x - x_0)(x - x_1)y(x_0, x_1, x_2) + (x - x_0)(x - x_1)(x - x_2)y(x_0, x_1, x_2, x_3) + \dots$$

$$y'(x) = y(x_0, x_1) + [(x - x_0) + (x - x_1)]y(x_0, x_1, x_2) + [(x - x_0)(x - x_1) + (x - x_0)(x - x_2) + (x - x_1)(x - x_2)$$

$$y''(x) = 2y(x_0, x_1, x_2) + 2[(x - x_0) + (x - x_1) + (x - x_2)]y(x_0, x_1, x_3) + \dots$$

$$y'''(x) = 6y(x_0, x_1, x_2, x_3, x_4) + \dots$$

$$\vdots$$

 $y^{(k)} = k! y(x_0, x_1, x_2, \dots, x_k)$

2.2. Разложение в ряды Тейлора

Условные обозначения:

$$y_i = y(x_i)$$
 $y'_i = y'(x_i)$ $y''_i(x_i)$

$$y_{i+1} = y_i + hy_i' + \frac{h^2 y_i''}{2!} + \frac{h^3 y_i^{III}}{3!} + \frac{h^4 y_i^{IV}}{4!} + \dots$$
 (12)

$$y_{i-1} = y_i - hy_i' + \frac{h^2 y_i''}{2!} - \frac{h^3 y_i^{III}}{3!} + \frac{h^4 y_i^{IV}}{4!} - \dots$$
 (13)

Из (12):

$$y'_{i} = \frac{y_{i+1} - y_{i}}{h} - \frac{hy''_{i}}{2!} = \frac{y_{i+1} - y_{i}}{h} + o(h)$$

Из (13):

$$y_i' = \frac{y_i - y_{i-1}}{h} + \frac{hy_i''}{2!} = \frac{y_i - y_{i-1}}{h} + o(h)$$

Вычтем (13) из (12) получим формулу центральной разности:

$$y_i' = \frac{y_{i+1} - y_{y-1}}{2h} + \frac{h^2}{2 \cdot 3!} y_i''' = \frac{y_{i+1} - y_{i-1}}{2h} + o(h^2)$$

Сложим (12) и (13):

$$y_i'' = \frac{y_{i-1} - 2y_i + y_{i+1}}{h^2} + o(h^2)$$

Повышение порядка точности в крайних узлах

$$y_1 = y_0 + hy_0' + \frac{h^2}{2!}y_0'' + \frac{h^3}{3!}y_0''' + \dots$$
 (14)

$$y_2 = y_0 + (2h)y_0' + \frac{(2h)^2}{2!}y_0'' + \frac{(2h)^3}{3!}y_0''' + \dots$$
 (15)

Умножим (14) на 4 и вычтем (15):

$$4y_1 - y_2 = 4y_0 - y_0 + 2hy_0' + o(h^3)$$

$$y_0' = \frac{-3y_0 + 4y_1 - y_2}{2h} + o(h^2)$$

Теперь надо разложить для N-ого узла и получить y'_N .

Аналогично получим:

$$y_0'' = \frac{-y_3 + 4y_2 - 5y_1 + 2y_0}{h^2} + o(h^2)$$

2.3. Формулы Рунге

$$z(x) = \xi(x,h) + \psi(x)h^p + o(h^{p+1})$$
(16)

$$z(x) = \xi(x, rh) + \psi(x)(rh)^p + o((rh)^{p+1})$$
(17)

$$z(x) = \xi(x, rh) + \psi(x)r^{p}h^{p} + o(h^{p+1})$$
(18)

Вычтем (16) из (18):

$$0 = \xi(x, rh) - \xi(x)h^{p}(r^{p} - 1) + o(h^{p+1})$$
$$\psi(x)h^{p} = \frac{\xi(x, h) - \xi(x, rh)}{r^{p} - 1} + o(h^{p+1})$$

Из (16) получим II формулу Рунге:

$$z(x) = \xi(x,h) + \frac{\xi(x,h) - \xi(x,rh)}{r^p - 1} + o(h^{p+1})$$

Пример 5.

 $x \quad y = lg(x)$ 1 0
2 0.301
3 0.478
4 0.602
5 0.699

По (14):

$$y_i' = \frac{y_{i+1} - y_{y-1}}{2h}$$

$$h = 1$$

$$y_{h=1}(3) = \frac{0.602 - 0.301}{2 \cdot 1} \approx 0.151$$

$$h = 2$$

$$y_{h=2}(3) = \frac{0.699 - 0}{2 \cdot 2} \approx 0.175$$

По формуле Рунге:

$$y'(3) = 0.151 + \frac{0.151 - 0.175}{2^2 - 1} \approx 0.143$$
 (точное значение $y'(3) \approx 0.145$)

Пример 6.

 $y'_{1.5} = \frac{1}{24h}(y_0 - 27y_1 + 27y_2 - y_3) + o(n^4)$

Где:

$$y'_{1.5} = \frac{y_2 - y_1}{h}$$
 $y'_{1.5} = \frac{y_3 - y_0}{3h}$

Замечание о некорректности операции дифференцирования Π усть y=f(x).

$$y = f(x) + \frac{1}{n}\sin n^2 x$$
$$y' = f'(x) + n\cos n^2 x$$
$$n \to \infty, \ y \to f(x) \ y' \to \infty$$

Лабораторная работа №3 Задана таблица $y_i(x_i)$. Найти односторонние левые, правые производные, центральные разности, формулы повышенной точности на краях, однократное применение II формулы Рунге для заданного узла. Предусмотреть (по желанию, ибо не элементарно) введение погрешности вида $\delta(y) = \frac{1}{n} \sin n^2 x, \ n = 1,1000,1000000$.

2.4. Быстропеременные функции

Вводятся выравнивающие переменные:

$$\eta = \eta(y)
\xi = \xi(x)
\eta'_x = \eta'_y y'_x
\eta'_x = \eta'_\xi \xi'_x
y'_x = \eta'_\xi \frac{\xi'_x}{\eta'_y}$$

2.5. Регуляризация дифференцирования

2.5.1. Регуляризация по шагу

$$y_i' = \frac{y_{i+1} - y_i}{h} - M_2 h \quad |f''(x)| < M_2$$

$$y_i' = \frac{(\tilde{y}_{i+1} + \delta) - (\tilde{y}_i - \delta)}{h} - M_2 h =$$

$$= \frac{\tilde{y}_{i+1} - \tilde{y}_i}{h} + \underbrace{\frac{2\delta}{h} - M_2 h}_{R_Z}$$

$$R_z = \underbrace{\frac{2\delta}{h}}_{R_1} + \underbrace{M_2 h}_{R_2}$$

Найдём оптимальный шаг:

$$\frac{dR_z}{dh} = 0$$
$$-\frac{2\delta}{h^2} - M_2 = 0$$
$$h_{\text{oht}} = \sqrt{\frac{2\delta}{M_2}}$$

Регуляризация дифференцирования по шагу состоит в том, что существует оптимальный шаг. При этом расчёт с шагами меньше оптимального бессмыслен.

2.5.2. Дифференцирование предварительно сглаженной прямой

Сначала сглаживаем, например, методом наименьших квадратов, потом полученную формулу дифференцируем.

3. Интегрирование

3.1. Формулы Гаусса

Квадратурная формула:

$$\int_{1}^{1} f(t)dt \approx \sum_{i=1}^{n} A_{i} f(t_{i})$$

 $\it 3adaua$: определить коэффициенты $\it A_i$ и узлы $\it t_i$, чтобы формула была точна для полинома наивысшей возможной степени.

Для этого необходимо и достаточно, чтобы формула была точна для всех степеней t:

$$\int_{-1}^{1} t^k dt = \sum_{i=1}^{n} A_i t_i^k \tag{19}$$

Действительно:

$$\int_{-1}^{1} f(t)dt = \int_{-1}^{1} \sum_{k=0}^{p} a_k t^k dt = \sum_{k=0}^{p} a_k \int_{-1}^{1} t^k dt =$$

$$= \sum_{k=0}^{p} a_k \sum_{i=1}^{n} t_i^k$$

Итак, из (19):

$$\frac{t^{k+1}}{k+1}|_{-1}^1 = \frac{1-(-1)^{k+1}}{k+1} = \begin{cases} \frac{2}{k+1}, & \text{если } k - \text{чётное} \\ 0, & \text{если } k - \text{нечётное} \end{cases}$$

$$k=0$$

$$\sum_{i=1}^n = 2$$

$$k=1$$

$$\sum_{i=1}^n t_i = 0$$

$$k=2$$

$$\sum_{i=1}^n t_i^2 = \frac{2}{3}$$

$$\vdots$$

$$k=2n-1$$

$$\sum_{i=1}^n t_i^{2n-1} = 0$$

3.2. Полином Лежандра

$$\mathcal{P}_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 - 1)^n]$$

$$\mathcal{P}_0(x) = 1$$

$$\mathcal{P}_1(x) = \frac{1}{2 \cdot 1!} \frac{d}{dx} [(x^2 - 1) = x]$$

$$\mathcal{P}_3(x) = \frac{1}{2} (5x^3 - 3x)$$

Полином Лежандра $\mathcal{P}_n(x)$ имеет n различных действительных корней на отрезке [-1,1] $\mathcal{P}_n(1)=1,\quad \mathcal{P}_n(-1)=(-1)^n$

$$\int_{-1}^{1} \mathcal{P}_n(x) \mathcal{P}_m(x) dx = \delta_{nm} N_m,$$

$$\delta_{nm} = \begin{cases} 1, & n = m \\ 0, & n \neq m \end{cases}$$

$$N_m = \frac{2}{2m+1}$$

$$\int_{-1}^{1} Q_k(x) \mathcal{P}_n(x) dx = 0, \text{ если } k < n$$

$$\mathcal{P}_n(x) = \frac{1}{n} [(2n-1)x \mathcal{P}_{n-1}(x) - (n-1)\mathcal{P}_{n-2}(x)]$$

$$\int_{-1}^{1} t^K \mathcal{P}_n(t) dt = \sum_{i=1}^{n} A_i t_i^k \mathcal{P}_n(t_i) = 0, \quad k = 0, 1, \dots, n-1$$

Таким образом:

$$\mathcal{P}_n(t_i) = 0 \tag{20}$$

Формула в которой a_i определяется из системы 2, а корни являются корнями полинома Лежандра, называется формулой Гаусса:

$$\int_{1}^{1} f(t)dt = \sum_{i=1}^{n} A_i f(t_i)$$

Таким образом при использовании формулы Гаусса надо задаться количеством узлов n, из (20) найти t_i , из первых n уравнений (3.1) найти A_i .

Обычно берётся: $\frac{\Delta x_i}{x_i} \approx 10^{-5}$

Пример 7.

$$\mathcal{P}_3(t) = \frac{1}{2}(5t^3 - 3t) = 0$$

$$t(5^3 - 3) = 0$$

$$t_1 = -\sqrt{\frac{3}{5}}$$

$$t_2 = 0$$

$$t_3 = \sqrt{\frac{3}{5}}$$

Из (3.1):

$$k = 0$$

$$A_1 + A_2 + A_3 = 2$$

$$k = 1$$

$$-A_1\sqrt{\frac{3}{5}} + A_3\sqrt{\frac{3}{5}} = 0$$

$$k = 2$$

$$A_1\frac{3}{5} + A_3\frac{3}{5} = \frac{2}{3}$$

получим:

$$A_1 = A_3 = \frac{5}{9}$$

$$A_2 = \frac{8}{9}$$

Итак,

$$\int_{-1}^{1} f(t)dt = \frac{1}{9} \left[5f(-\sqrt{\frac{3}{5}}) + 8f(0) + 5f(\sqrt{\frac{3}{5}}) \right]$$

Снимем ограничение на интервал [-1,1] путём замены переменных $x = \frac{b-a}{2}t + \frac{a+b}{2}$:

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \int_{-1}^{1} f(\frac{b-a}{2}t + \frac{a+b}{2})dt$$

Таким образом:

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \sum_{i=1}^{n} A_{i}f(x_{i}),$$

где $x_i = \frac{b-a}{2}t_i + \frac{b+a}{2}, t_i$ — корни полинома Лежандра n-ой степени.

Погрешность

$$R_n = \frac{(b-a)^{2n+1}(n!)^4}{(2n+1)[(2n)!]^3} f^{2n}(\xi), \quad \xi \in [a,b]$$

Лабораторная работа №4 *Постановка задачи*: Есть цилиндр, заполнен газом, произошёл пробой, давление повышается.

$$\int\limits_0^R 2\pi r dr n_{\rm t}(T(r),p)=\frac{p_0}{kT_0}\pi R^2$$

$$\frac{p_0}{RT^0}=2\int\limits_0^1 n_{\rm t}(T(z),p)zdz,\quad F(p)=0,\quad k-\text{пост. Больцмана}$$

 $3a \partial a ho$: Таблица n_T :

$$T(z) = (T_w - T_0)z^m + T_0$$

В интерфейсе: $T_0=8000$, $T_w=2000$, m=6, $p_0=0.5$ атм., $T^0=293K$, таблица n_T , количество точек для итерации.

$$2\int_{0}^{1} n_{\text{\tiny T}}(T(z), p) z dz = \frac{p_0 \cdot 7242}{T^0}$$

Интерполировать можно полиномом первой степени.

Интегрирование должно производиться тремя методами, один из которого — полином Λ ежандра.

Hайmu: p

3.3. Кратные интегралы

3.3.1. Метод ячеек

$$I = \int_{a}^{b} \int_{c}^{d} f(x, y) dx dy$$

$$I_{i,j} = \int_{x_i=1}^{x_i} \int_{y_i=1}^{y_i} f(x, y) dx dy = S_{i,j} f(\overline{x_i}, \overline{y_j}),$$

где

$$\overline{x_i} = \frac{x_{i-1}}{2}, \quad \overline{y_j} = \frac{y_{j-1} + y_j}{2}$$

Много формул...

3.3.2. Метод последовательного интегрирования

Лабораторная работа №5

$$\varepsilon = \frac{F}{\pi I_p} = \frac{4}{\pi} \int_{\varphi=0}^{\pi/2} \int_{\theta=0}^{\pi/2} (1 - e^{-kl(\theta,\varphi)}) \cos \theta \sin \theta d\theta d\varphi$$
$$l(\theta,\varphi) = \frac{2R \cos \theta}{1 - \sin^2 \theta \cos^2 \varphi}$$

Haŭmu: $\varepsilon(\tau)$

Метод ячеек или метод последовательного приближения. Взять метод Симпсона по одному направлению и метод средних прямоугольников по другому.

4. Решение СЛАУ

Общий вид:

$$A = \begin{pmatrix} a_1 1 & a_1 2 & \dots & a_1 n \\ \vdots & & & & \\ a_n 1 & a_n 2 & \dots & a_n n \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad b = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

В компьютерных вычислениях методы решения СЛАУ делятся на прямые и итерационные.

4.1. Прямые методы

4.1.1. Метод Гаусса

Модификации метода Гаусса:

- 1. Выбор наибольшего в столбце ведущего элемента в строке и перестановка строк.
- 2. Метод Гаусса с итерациями.
- 3. Метод прогонки.

Метод Гаусса позволяет решить другие задачи:

- 1. Нахождение обратной матрицы.
- 2. Нахождение собственных чисел матрицы.

4.2. Итерационные методы (двухслойные (одношаговые) методы)

$$B^{(s+1)}\frac{y^{(s+1)}-y^{(s)}}{\tau}+Ay^{(s)}=b,$$
где
$$B^{(s+1)}-\text{невырожденная матрица, }\tau-\text{параметр}$$

 $y^{(s)}$ — решение на s-итерации:

$$y^{(0)}, y^{(1)}, \dots, y^{s+1}, \dots, \to X$$

Если B, τ не меняются от итерации к итерации, то метод называется стационарным, иначе — не стационарным.

4.2.1. Метод простой итерации

$$B^{(s+1)} = E$$
 $\tau^{(s+1)} = \tau$
 $y^{(s+1)} = y^{(s)} - \tau A y^{(s)} + b \tau$

Условие сходимости:

Если матрица симметричная, то параметр τ при котором метод сходится при любом начальном приближении, образует диапазон $0 < \tau < \tau_0$.

4.2.2. Метод Зейделя

Пусть:

$$A = A^+D + A^-,$$

где A^+, A^- — верхняя, нижняя треугольные матрицы без диагонали, D — диагональная матрица.

$$(A^- + D)y^{(s+1)} + A^+y^{(s)} = b$$

При расписывании по строкам из первой находим y_1 , из второй y_2 при найденном y_1, y_3 по y_1, y_2 .

Метод сходится при любом выборе начального приближения если исходная матрица симметричная и положительно определённая или матрица наделена свойством диагонального преобладания $(|a_ii| \ge \sum_{k=1}^{i-1} |a_ik| + \sum_{k=i+1}^n |a_ik|)$.

5. Нелинейные уравнения

5.1. Метод Ньютона

Решается путём разложения левой части

Лабораторная работа №6. Решение нелинейной системы уравнений Определить количество XeI, XeII, XeIII, XeV.

$$\frac{n_e n_{i+1}}{n_i} = K(T), \ i = 1, 2, 3, 4, \ n_e$$
 — количество $e, n_1 - XeI, \dots$

$$n_e = \sum_{i=2}^{5} z_i n_i$$

$$\frac{p}{kT} = n_e + \sum_{i=1}^{5} n_i - \frac{\chi_d^3}{24\pi}$$

(f)

Исходные данные:

$$E_1 = 12.139B$$

 $E_2 = 20.989B$
 $E_3 = 31.009B$
 $E_4 = 45.009B$

$$n_i^* = n_i \cdot 10^{-18}, \text{ cm}^{-3}$$

$$n_e^* = n_e \cdot 10^{-18}$$

$$v = \ln n_e^*$$

$$x_i = \ln n_i^*$$

$$v + x_{i+1} - x_i = \ln(\frac{K_i(T)}{10^{18}}) = \ln K_i^*$$

(f)

Полученная система:

$$K_i^* = 2A \frac{Q_{i+1}}{Q_i} T^{1.5} e^{-(E_i - \Delta E_i) \cdot 11603/T}$$
$$A = 2.415 \cdot 10^{-3}$$

На входе: p[5-50], T[2000-26000]

$$n_{e}^{*} = n_{2}^{*}$$

$$T, K \quad n_{e}^{*} \quad n_{1}^{*} \quad n_{2}^{*} \quad n_{3}^{*} \quad n_{4}^{*} \quad n_{5}^{*} \quad \tilde{\Gamma}$$

$$2000 \quad \times \quad \times \quad \times \quad \times \quad \times \quad \times \quad \times$$

$$\dots \quad \times \quad \times \quad \times \quad \times \quad \times \quad \times \quad \times$$

$$26000 \quad \times \quad \times \quad \times \quad \times \quad \times \quad \times$$

Г находится методом половинного деления.

6. Некоторые замечания по численному интегрированию

6.1. Погрешность формул

6.1.1. Метод трапеций

$$\int_{x_{i}}^{x_{i+1}} f(x)dx = \frac{h}{2}[f(x_{i}) + f(x_{i+1})]$$

$$R_{i} = \int_{x_{i}}^{x_{i+1}} f(x)dx - \frac{h}{2}[f(x_{i}) + f(x_{i+1})]$$

$$f(x) = f(\overline{x}_{i}) + (x - \overline{x}_{i})f'(\overline{x}_{i}) + \frac{(x - \overline{x}_{i})^{2}}{2!}f''(\overline{x}_{i}); \ \overline{x}_{i} = \frac{x_{i} + x_{i+1}}{2}$$

$$R_{i} = -\frac{1}{12}h^{3}f''(\overline{x}_{i})$$

$$R = \sum_{1}^{N} R_{i} = -\frac{1}{12}h^{2}\int_{a}^{b} f''(x)dx = o(h^{2}) \text{ (вторая производная существует и непрерывна)}$$

$$R = \frac{1}{12}h^{2}M_{2}(b - a), \ M_{2} = max|f''(x)| - \text{мажорантная оценка}$$

6.1.2. Метод средних

$$R = \frac{1}{24}h^2 \int_{a}^{b} f''(x)dx = o(h^2)$$

6.1.3. Метод Симпсона

$$R = \frac{1}{180}h^4 \int_{a}^{b} f^{IV}(x)dx = o(h^4)$$

В случае, если нужные производные не существуют, то теоретический порядок точности не реализуется (метод трапеций):

$$R = \frac{b-a}{4}hjM_1, \ M_1 = max\big|f(x)\big|$$

6.2. Метод Эйлера-Маклорена

$$\int_{x_{i}}^{x_{i+1}} f(x)dx = \frac{h}{2}[f(x_{i}) + f(x_{i+1})]$$

$$R_{i} = -\frac{1}{12}h^{3}\frac{f'(x_{i+1}) - f'(x_{i})}{h} = \frac{1}{12}h^{2}[f(x_{i}) + f(x_{i+1})]$$

$$\int_{x_{i}}^{x_{i+1}} f(x)dx \approx \frac{h}{2}[f(x_{i}) + f(x_{i+1})] + \frac{1}{12}h^{2}[f(x_{i}) + f(x_{i+1})]$$

$$\int_{x_{i}}^{x_{i+1}} f(x)dx = h\left[\frac{f(a) + f(b)}{2} + \sum_{i=1}^{N-1} f(x_{i})\right] + \frac{1}{12}h^{2}[f'(a) - f'(b)]$$

Точность:

$$R_i = \frac{1}{720} h^5 f^{IV}(\overline{x}_i; \quad R = \frac{1}{720} h^4 \int_a^b f^{IV}(x) dx = o(h^4)$$

Формула Эйлера, в которой производные повышенной точности на краях называются формулами Грегори.

6.3. Процесс Эйткена

Позволяет уточнить значение функции и определить эффективный порядок точности формулы численного интегрирования.

Рассматривается 3 сетки: $h_1 = h$, $h_2 = qh$, $h_3 = qh_2 = q^2h$.

$$F = F_k + \alpha h_k^p$$

$$\begin{cases} F - F_1 &= \alpha h^p \\ F - F_2 &= \alpha (qh)^p \\ F - F_3 &= \alpha (q^2h)^p \end{cases}$$

$$\alpha h^p = \beta$$

$$q^p = \gamma$$

$$\begin{cases} F - F_1 &= \beta \\ F - F_2 &= \beta \gamma \\ F - F_3 &= \beta \gamma^2 \end{cases}$$

$$(F - F_2)^2 = (F - F_1)(F - F_3)$$

$$F = F_1 + \frac{(F_1 - F_2)}{2F_2 - F_1 - F_3}$$

Определим р:

$$\begin{cases} F_2 - F_1 &= \beta (1 - \gamma) \\ F_3 - F_2 &= \beta \gamma (1 - \gamma) \end{cases}$$

$$\gamma = \frac{F_3 - F_2}{F_2 - F_1}$$

$$p \ln q = \ln q$$

$$p = \frac{1}{\ln q} \ln \left(\frac{F_3 - F_2}{F_2 - F_1} \right)$$

6.4. Интегрирование кусочно-непрерывных функций

Узлы выбираются так, чтобы они совпадали с точками разрыва.

6.5. Интеграл с переменным верхним пределом

$$\int_{a}^{b} f(x) dx$$

 $\int_{a}^{b} f(x)dx$ Составляется таблица (x_{i}) , интерполируется с помощью полинома Эрмита.