Searching Sorted Data

Consider the following sorted array

 When searching for a number x using binary search, we always start by looking at the midpoint, index 4

- Then, 3 things can happen
 - \circ x = 12 (and we are done)
 - 0×12
 - 0 x > 12

- If x < 12, the next index we look at is necessarily 2
- If x > 12, the next index we look at is **necessarily** 7

- Assume x < 12, so we look at 4
 - \circ if x = 4, we are done
 - \circ if x < 4, we **necessarily** look at 0
 - \circ if x > 4, we **necessarily** look at 7

- Assume x < 4, so we look at 0
 - \circ if x = 0, we are done
 - \circ if x < 0, we necessarily look at -2

 We can map out all possible sequences of elements binary search may examine, for any x

- An array provides direct access to all elements
 - O This is overkill for binary search
 - O At any point, it needs direct access to at most two elements

- We can achieve the same access pattern by pairing up each element with two pointers
 - one to each of the two elements that may be examined next

We are losing direct access to arbitrary elements,

o but it retains access to the elements that matter to binary search

more power than needed

Towards an Implementation

• We can capture this idea with this type declaration:

This arrangement of data in memory is called a tree

Constructing this Tree

```
typedef struct tree_node tree;
struct tree_node {
  tree* left;
  int data;
  tree* right;
};
```

```
Let's build the first few nodes of this example
tree* T = alloc(tree);
T->data = 12;
T->left = alloc(tree);
T->right= alloc(tree);
T->right->data = 42;
T->left->left = alloc(tree);
```

The End of the Line

typedef struct tree_node tree;
struct tree_node {
 tree* left;
 int data;
 tree* right;
};

 What should the blank left/right fields point to?

 \circ NULL

➤ each sequence of left/right pointers works like a NULL-terminated list

 \circ a dummy node

We used dummy nodes to get direct access to the end of a list

> not very useful here

Searching

- We are doing the **same steps** as binary search
- Starting from an n-element array, the cost is O(log n)

If the tree is obtained as in this example

Searching

- We are doing the **same steps** as binary search
- Starting from an n-element array, the cost is O(log n)

If the tree is obtained as in this example

Recall our Goal

- Develop a data structure that has guaranteed O(log n) worst-case complexity for lookup, insert and find_min > always!
 - O lookup has cost O(log n)
 in this setup

	Target data structure
lookup	O(log n)
insert	O(log n)
find_min	O(log n)

O What about insert and find_min?

Insertion

- We are doing the same steps we would do to search for it, and then put it where it should have been
 - o so that we find it when searching for it next time
- For an n-element array, this costs O(log n)

We couldn't get this with sorted arrays

If the tree is obtained as in this example

Finding the Smallest Key

- Starting from an n-element array, we can go left at most O(log n) times
 - The cost is O(log n)

If the tree is obtained as in this example

Recall our Goal

- Develop a data structure that has guaranteed O(log n) worst-case complexity for lookup, insert and find_min > always!
 - lookup, insert and find_min all have cost O(log n)

	Target data structure	
lookup	O(log n)	√
insert	O(log n)	√
find_min	O(log n)	√

Trees

Terminology

- This arrangement of data is called a (binary) tree
 - o each item in it is called a node
 - o the part of a tree hanging from a node is called a **branch**

Terminology

- The node at the top is called the root of the tree
 - o the nodes at the bottom are the leaves of the tree
 - o the other nodes are called inner nodes

Terminology

- Given any node
 - o the node to its left is its left child

Concrete Tree Diagrams

- When drawing trees, we generally omit the details of the memory diagrams
 - o draw just the data in a node
 - > not the pointer fields

Pictorial Abstraction

- We will often reason about trees that are arbitrary
 - o their actual content is unimportant, so we abstract it away
 - We draw a generic tree as a triangle

We represent the empty tree by simply writing "Empty"

Empty

What do Trees Look Like?

Abstract trees come in many shapes

- When working with trees, we need to account for all these possibilities
 - o we will forget some
- Is there a simpler description?

What Trees Look Like

A tree can be

- o either empty
- or a root witha tree on its left anda tree on its right

EMPTY

• Every tree reduces to these two cases

What Trees Look Like

A tree can be

- o either empty
- or a root witha tree on its left anda tree on its right

- We only need to consider these two cases when
 - o writing code about trees
 - o reasoning about trees

A Minimal Tree Invariant

We only need to consider these two cases when writing code about trees

 Let's apply this to write a basic invariant about trees of entries

 Just check that the data field is never NULI

Recall we are using trees to implement dictionaries:

entry data; tree* right;

};

struct tree_node {
 tree* left:

// != NULL

- we store entries in nodes
- valid entries are non-NULL

- This is a **recursive** function
 - o the **base case** is about the empty tree
 - the recursive case is about every tree that is not empty
 - > with a root
 - > and two subtrees

A Minimal Tree Invariant

 We just check that the data field is never NULL

- But trees have constraints on their structure
 - o a node does not point to an ancestor
 - o a node has at most one parent

 What additional constraints on contents do we need to use trees to implement dictionaries?

Binary Search Trees

Binary Search Trees

- What additional constraints on the contents do we need to use trees to implement dictionaries?
- Because lookup emulates binary search, the data in the

tree need to be **ordered**

- o smaller values on the left
- o bigger values on the right

 A tree whose nodes are ordered is called a binary search tree

The BST Invariant

 A tree whose nodes are ordered is called a binary search tree

We can write a specification function that check BSTs

