Lecture Four

Section 4.1 – Relations and Their Properties

Definition

Let A and B be sets. A binary relation from A to B is a subset of $A \times B$

A binary relation from A to B is a set R of ordered pairs where the first element of each ordered pair comes from A and the second element comes from B. We use the notation a R b to denote that $(a, b) \in R$ and $a \not R b$ to denote that $(a, b) \notin R$. Moreover, when (a, b) belongs to R, a is said to be related to b by R.

Example

Let $A = \{0, 1, 2\}$ and $B = \{a, b\}$. Then $\{(0, a), (0, b), (1, a), (2, b)\}$ is a relation from A to B.

This means, for instance, that 0Ra but the 1Rb.

Relations can be represented graphically, as shown below, using arrows to represent ordered pairs.

Another way to represent this relation is to use a table.

R	a	b
0	X	X
1	X	
2		X

Relations on a Set

Definition

A *relation* on a set A is a relation from A to A. and it's a subset of $A \times A$

Example

Let $A = \{1, 2, 3, 4\}$ which ordered pairs are the relation $R = \{(a, b) | a \text{ divides } b\}$?

Solution

$$R = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}$$

Example

Consider these relations on the set of integers:

$$R_{1} = \{(a,b) | a \le b\}$$

$$R_{2} = \{(a,b) | a > b\}$$

$$R_{3} = \{(a,b) | a = b \text{ or } a = -b\}$$

$$R_{4} = \{(a,b) | a = b\}$$

$$R_{5} = \{(a,b) | a = b + 1\}$$

$$R_{6} = \{(a,b) | a + b \le 3\}$$

Which of these relations contain each of the pairs (1, 1), (1, 2), (2, 1), (1, -1), and (2, 2)?

Solution

$$(\mathbf{1},\mathbf{1}) \rightarrow R_1,R_3,R_4, and \ R_6$$

$$(1,2) \rightarrow R_1$$
 and R_6

$$(\mathbf{2,1}) \rightarrow R_2, R_5, and R_6$$

$$(\mathbf{1}, -\mathbf{1}) \rightarrow R_2, R_3, and R_6$$

$$(\mathbf{2},\mathbf{2}) \rightarrow R_1, R_3, and R_4$$

Example

How many relations are there on a set with n elements?

Solution

A relation on a set A is a subset of $A \times A$. Because $A \times A$ has n^2 elements when A has n elements, and a set with m elements has 2^m subsets, there are 2^{n^2} subset of $A \times A$.

Thus there are 2^{n^2} relations on a set with n elements.

Properties of Relations

Reflexive

Definition

A relation R on a set A is called **reflexive** if $(a, a) \in R$ for every element $a \in A$

Example

Consider the following relations on $\{1, 2, 3, 4\}$:

$$\begin{split} R_1 &= \big\{ (1,\,1),\,\, (1,\,2),\,\, (2,\,1),\,\, (2,\,2),\,\, (3,\,4),\,\, (4,\,1),\,\, (4,\,4) \big\} \\ R_2 &= \big\{ (1,\,1),\,\, (1,\,2),\,\, (2,\,1) \big\} \\ R_3 &= \big\{ (1,\,1),\,\, (1,\,2),\,\, (1,\,4),\,\, (2,\,1),\,\, (2,\,2),\,\, (3,\,3),\,\, (4,\,1),\,\, (4,\,4) \big\} \\ R_4 &= \big\{ (2,\,1),\,\, (3,\,1),\,\, (3,\,2),\,\, (4,\,1),\,\, (4,\,2),\,\, (4,\,3) \big\} \\ R_5 &= \big\{ (1,\,1),\,\, (1,\,2),\,\, (1,\,3),\,\, (1,\,4),\,\, (2,\,2),\,\, (2,\,3),\,\, (2,\,4),\,\, (3,\,3),\,\, (3,\,4),\,\, (4,\,4) \big\} \\ R_6 &= \big\{ (3,\,4) \big\} \end{split}$$

Which of these relations are *reflexive*?

Solution

The relations R_3 and R_5 are reflexive because they contain all pairs of the form (a, a), namely, (1, 1), (2, 2), (3, 3), and (4, 4).

 R_1 , R_2 , R_4 , and R_6 are not reflexive because (3, 3) is not in any of these relations.

Example

Is the "divides" relation on the set of positive integers reflexive?

Solution

Because $a \mid a$ whenever a is a positive integer, the "divides" relation is reflexive.

(0 is doesn't divide 0)

Symmetric

Definition

A relation R on a set A is called **symmetric** if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$.

$$\forall a \forall b ((a, b) \in R \rightarrow (b, a) \in R)$$

A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then a = b is called *antisymmetric*.

$$\forall a \forall b (((a, b) \in R \land (b, a) \in R) \rightarrow (a = b))$$

Example

Is the "divides" relation on the set of positive integers symmetric? Is it antisymmetric?

Solution

It is antisymmetric because 1|2 bur 2/1

Example

Consider the following relations on $\{1,2,3,4\}$:

$$\begin{split} R_1 &= \big\{ (1,\,1),\,\, (1,\,2),\,\, (2,\,1),\,\, (2,\,2),\,\, (3,\,4),\,\, (4,\,1),\,\, (4,\,4) \big\} \\ R_2 &= \big\{ (1,\,1),\,\, (1,\,2),\,\, (2,\,1) \big\} \\ R_3 &= \big\{ (1,\,1),\,\, (1,\,2),\,\, (1,\,4),\,\, (2,\,1),\,\, (2,\,2),\,\, (3,\,3),\,\, (4,\,1),\,\, (4,\,4) \big\} \\ R_4 &= \big\{ (2,\,1),\,\, (3,\,1),\,\, (3,\,2),\,\, (4,\,1),\,\, (4,\,2),\,\, (4,\,3) \big\} \\ R_5 &= \big\{ (1,\,1),\,\, (1,\,2),\,\, (1,\,3),\,\, (1,\,4),\,\, (2,\,2),\,\, (2,\,3),\,\, (2,\,4),\,\, (3,\,3),\,\, (3,\,4),\,\, (4,\,4) \big\} \\ R_6 &= \big\{ (3,\,4) \big\} \end{split}$$

Which of these relations are symmetric and which are antisymmetric?

Solution

The relations R_2 and R_3 are symmetric because in each case (b, a) belongs to the relation whenever (a, b) does. (1, 2) and (2, 1) in R_2 (1, 2), (2, 1), (1, 4) and (4, 1) in R_3 .

The relations R_1 , R_4 , R_5 and R_6 are antisymmetric because for each relations there is no pair of elements a and b with $a \ne b$ such that both (a, b) and (b, a) belong to the relation.

Transitive

Definition

A relation R on a set A is called *transitive* if whenever $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$, for all $a, b, c \in A$

$$\forall a \forall b \forall c (((a, b) \in R \land (b, c) \in R) \rightarrow (a, c) \in R)$$

Example

Consider the following relations on $\{1,2,3,4\}$:

$$\begin{split} R_1 &= \big\{ (1,\,1),\,\, (1,\,2),\,\, (2,\,1),\,\, (2,\,2),\,\, (3,\,4),\,\, (4,\,1),\,\, (4,\,4) \big\} \\ R_2 &= \big\{ (1,\,1),\,\, (1,\,2),\,\, (2,\,1) \big\} \\ R_3 &= \big\{ (1,\,1),\,\, (1,\,2),\,\, (1,\,4),\,\, (2,\,1),\,\, (2,\,2),\,\, (3,\,3),\,\, (4,\,1),\,\, (4,\,4) \big\} \\ R_4 &= \big\{ (2,\,1),\,\, (3,\,1),\,\, (3,\,2),\,\, (4,\,1),\,\, (4,\,2),\,\, (4,\,3) \big\} \\ R_5 &= \big\{ (1,\,1),\,\, (1,\,2),\,\, (1,\,3),\,\, (1,\,4),\,\, (2,\,2),\,\, (2,\,3),\,\, (2,\,4),\,\, (3,\,3),\,\, (3,\,4),\,\, (4,\,4) \big\} \\ R_6 &= \big\{ (3,\,4) \big\} \end{split}$$

Which of these relations are transitive?

Solution

The relations R_4 and R_5 are transitive because in each of these relations case that is (a, b) and (b, c) belong to this relation then (a, c) also does.

The relation R_1 is not transitive because (3, 4) and (4, 1) belong to R_1 but not (3, 1)

The relation R_2 is not transitive because (2, 1) and (1, 2) belong to R_2 but not (2, 2)

The relation R_3 is not transitive because (4, 1) and (1, 2) belong to R_3 but not (4, 2)

Example

Consider these relations on the set of integers:

$$R_{1} = \{(a, b) | a \le b\}$$

$$R_{2} = \{(a, b) | a > b\}$$

$$R_{3} = \{(a, b) | a = b \text{ or } a = -b\}$$

$$R_{4} = \{(a, b) | a = b\}$$

$$R_{5} = \{(a, b) | a = b+1\}$$

$$R_{6} = \{(a, b) | a+b \le 3\}$$

Which of these relations contain each of the pairs (1, 1), (1, 2), (2, 1), (1, -1), and (2, 2)?

Solution

The relations R_1 , R_2 , R_3 and R_4 are transitive.

 R_1 is transitive because $a \le b$ and $b \le c$ imply that $a \le c$

 R_2 is transitive because a > b and b > c imply that a > c

 R_3 is transitive because $a = \pm b$ and $b = \pm c$ imply that $a = \pm c$

 R_{Δ} is transitive because a = b and b = c imply that a = c

The relations R_5 and R_6 are not transitive.

 R_5 is not transitive because a = b + 1 and b = c + 1 imply that $a = (c + 1) + 1 = c + 2 \neq c + 1$

 R_6 is not transitive because $2+1 \le 3$ and $1+2 \le 3$ imply that $2+2 \ne 3$

Example

Is the "divides" relation on the set of positive integers transitive?

Solution

Suppose a divides b and b divides c. Then there are positive integers m and n such that b = ma and c = nb. Hence c = n(ma) = (nm)a, so a divides c.

Therefore this relation is transitive.

Combining Relations

Let
$$A = \{1, 2, 3\}$$
 and $B = \{1, 2, 3, 4\}$.

The relations
$$R_1 = \{(1, 1), (2, 2), (3, 3)\}$$
 and $R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4)\}$

$$R_1 \cup R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3)\}$$

$$R_1 \cap R_2 = \{(1, 1)\}$$

$$R_1 - R_2 = \{(2, 2), (3, 3)\}$$

$$R_2 - R_1 = \{(1, 2), (1, 3), (1, 4)\}$$

Example

Let R_1 be the "less than" relation on the set of real numbers and let R_2 be the "greater than" relation on the set of real numbers, that is $R_1 = \{(x,y) | x < y\}$ and $R_2 = \{(x,y) | x > y\}$.

What are $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 - R_2$, $R_2 - R_1$, and $R_1 \oplus R_2$?

Solution

 $(x, y) \in R_1 \cup R_2$ if and only if $(x, y) \in R_1$ or $(x, y) \in R_2$. That implies $(x, y) \in R_1 \cup R_2$ iff x < y or x > y. Since x < y or x > y means that, that follows that $R_1 \cup R_2 = \{(x, y) | x \neq y\}$.

 $R_1 \cap R_2 = \emptyset$, since it is impossible for a pair (x, y) to belong to both R_1 and R_2 because x < y and x > y.

$$R_1 - R_2 = R_1$$
, since $R_1 \cap R_2 = \emptyset$

$$R_2 - R_1 = R_2$$
, since $R_1 \cap R_2 = \emptyset$

$$R_1 \oplus R_2 = R_1 \cup R_2 - R_1 \cap R_2 = \{(x, y) | x \neq y\}$$

Definition

Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and A is the relation consisting of ordered pairs (a, c), where $a \in A, c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

Example

What is the composite of the relation R and S, where

R is the relation from $\{1, 2, 3\}$ to $\{1, 2, 3, 4\}$ with $R = \{(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)\}.$

S is the relation from $\{1, 2, 3, 4\}$ to $\{0, 1, 2\}$ with $S = \{(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)\}.$

Solution

$$R$$
 S $S \circ R$

$$(1,1) \quad (1,0) \quad \rightarrow \quad (1,0)$$

$$(1,4) (4,1) \rightarrow (1,1)$$

$$(2,3) (3,1) \rightarrow (2,1)$$

$$(2,3) (3,2) \rightarrow (2,2)$$

$$(3,1) \quad (1,0) \quad \rightarrow \quad (3,0)$$

$$(3,4) (4,1) \rightarrow (3,1)$$

$$S \circ R = \{(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)\}$$

Definition

Let *R* be a relation on the set *A*. Then powers R^n , n = 1, 2, 3, ... are defined recursively by $R^1 = R$ and $R^{n+1} = R^n \circ R$

Example

Let $R = \{(1, 1), (2, 1), (3, 2), (4, 3)\}$. Find the powers R^n , n = 2, 3, 4, ...

Solution

$$R^{2} = R \circ R = \{(1, 1), (2, 1), (3, 1), (4, 2)\}$$

$$R^{3} = R^{2} \circ R = \{(1, 1), (2, 1), (3, 1), (4, 1)\}$$

$$R^{4} = R^{3} \circ R = \{(1, 1), (2, 1), (3, 1), (4, 1)\}$$

From that, it follows that $R^n = R^3$ for $n = 5, 6, 7, \dots$

Theorem

The relation on a set A is transitive **iff** $R^n \subseteq R$ for n = 1, 2, 3, ...

Proof

Suppose that $R^n \subseteq R$ for n = 1, 2, 3, ... In particular, $R^2 \subseteq R$. If $(a, b) \in R$ and $(b, c) \in R$, then by definition of composite, $(a, c) \in R^2$. Because $R^2 \subseteq R$, this means that $(a, c) \in R$. Hence, R is transitive.

Using mathematical induction to prove the only if part of the theorem

Assume that $R^n \subseteq R$ where n is a positive integer. This is the inductive hypothesis.

To complete the inductive step we must show that this implies that R^{n+1} is also a subset of R. Assume that $(a, b) \in R^{n+1}$, then because $R^{n+1} = R^n \circ R$, there is an element x with $x \in A$ such that $(a, x) \in R$ and $(x, b) \in R^n$. The inductive hypothesis, namely, that $R^n \subseteq R$, implies that $(x, b) \in R$ Furthermore, because R is transitive, and $(a, x) \in R$ and $(x, b) \in R$, it follows that $(a, b) \in R$.

This shows that $R^n \subseteq R$.

Exercises **Section 4.1 – Relations and Their Properties**

1.	List the ordered pairs in the relation R from $A = \{0, 1, 2, 3, 4\}$ to $B = \{0, 1, 2, 3\}$ where $(a, b) \in R$ if
	and only if

$$a$$
) $a = b$

b)
$$a+b=4$$

$$c)$$
 $a > b$

$$d)$$
 $a \mid b$

$$e)$$
 $gcd(a,b)=1$

a)
$$a = b$$
 b) $a + b = 4$ c) $a > b$
d) $a \mid b$ e) $gcd(a,b) = 1$ f) $lcm(a,b) = 2$

- a) List all the ordered pairs in the relation $R = \{(a, b) | a \text{ divides } b\}$ on the set $\{1, 2, 3, 4, 5, 6\}$ 2.
 - b) Display this relation graphically.
 - c) Display this relation in tabular form.
- 3. For each of these relations on the set {1, 2, 3, 4}, decide whether it is reflexive, symmetric, antisymmetric and transitive

a)
$$\{(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)\}$$

$$c)$$
 {(2, 4), (4, 2)}

$$f$$
) {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)}

- **4.** Determine whether the relation R on the set of all people is reflexive, symmetric, antisymmetric, and/or transitive, where $(a, b) \in R$ if and only if
 - a) a is taller than b.
 - **b**) a and b were born on the same day
 - c) a has the same first name as b.
 - d) a and b have a common grandparent.
- 5. Determine whether the relation **R** on the set of all **real numbers** is reflexive, symmetric, antisymmetric, and/or transitive, where $(x, y) \in \mathbf{R}$ if and only if

$$a) \quad x + y = 0$$

$$b$$
) $x = \pm y$

a)
$$x + y = 0$$
 b) $x = \pm y$ c) $x - y$ is a rational number d) $x = 2y$

$$d$$
) $x = 2y$

$$e$$
) $xy \ge 0$

$$f) \quad xy = 0 \qquad g) \quad x = 1$$

$$g$$
) $x=1$

h)
$$x = 1 \text{ or } y = 1$$

6. Determine whether the relation R on the set of all *integers numbers* is reflexive, symmetric, antisymmetric, and/or transitive, where $(x, y) \in R$ if and only if

$$a)$$
 $x \neq y$

$$\boldsymbol{b}$$
) $xy \ge 1$

b)
$$xy \ge 1$$
 c) $x = y + 1$ or $x = y - 1$ **d**) $x = y \pmod{7}$

$$d) \quad x \equiv y (mod 7)$$

$$e$$
) x is a multiple of y

$$f) \quad x = y^2 \qquad g) \quad x \ge y^2$$

$$\varphi$$
) $x \ge v^2$

- 7. Show that the relation $R = \emptyset$ on nonempty set S is symmetric and transitive, but not reflexive.
- 8. Show that the relation $R = \emptyset$ on nonempty set $S = \emptyset$ is reflexive, symmetric and transitive.

9.	Give an example of a relation on a set that is
	a) both symmetric and antisymmetric
	b) neither symmetric nor antisymmetric
10.	A relation R is called <i>asymmetric</i> if $(a,b) \in R$ implies that $(b,a) \notin R$. Explore the notion of an
	asymmetric relation to the following
	a) $\{(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)\}$
	b) $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$

```
4)}
```

b)
$$\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$$

$$c)$$
 {(2, 4), (4, 2)}

$$d) \{(1, 2), (2, 3), (3, 4)\}$$

$$e) \{(1, 1), (2, 2), (3, 3), (4, 4)\}$$

$$f$$
) {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)}

g)
$$a$$
 is taller than b .

i)
$$a$$
 has the same first name as b .

$$j$$
) a and b have a common grandparent.

11. Let R be the relation
$$R = \{(a, b) | a < b\}$$
 on the set of integers. Find

a)
$$R^{-1}$$
 b) \overline{R}

12. Let R be the relation
$$R = \{(a, b) | a \text{ divides } b\}$$
 on the set of positive integers. Find

a)
$$R^{-1}$$
 b) \overline{R}

$$a) R^{-1}$$

$$b) \overline{R}$$

14. Let
$$R_1 = \{(1, 2), (2, 3), (3, 4)\}$$
 and

$$R_2 = \{(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (3, 4)\}$$
 be relation from $\{1, 2, 3\}$ to $\{1, 2, 3, 4\}$. Find

$$a$$
) $R_1 \cup R_2$

a)
$$R_1 \cup R_2$$
 b) $R_1 \cap R_2$ c) $R_1 - R_2$ d) $R_2 - R_1$

$$c$$
) $R_1 - R_2$

d)
$$R_2 - R_1$$

15. Let the relation
$$R = \{(1, 2), (1, 3), (2, 3), (2, 4), (3, 1)\}$$
 and the relation $S = \{(2, 1), (3, 1), (3, 2), (4, 2)\}$. Find $S \circ R$

16.
$$R_1 = \{(a,b) \in \mathbb{R}^2 | a > b\}$$
 $R_3 = \{(a,b) \in \mathbb{R}^2 | a < b\}$ $R_5 = \{(a,b) \in \mathbb{R}^2 | a = b\}$ $R_2 = \{(a,b) \in \mathbb{R}^2 | a \ge b\}$ $R_4 = \{(a,b) \in \mathbb{R}^2 | a \le b\}$ $R_6 = \{(a,b) \in \mathbb{R}^2 | a \ne b\}$

Find the following:

$$a$$
) $R_1 \cup R_3$

$$\boldsymbol{b}$$
) $R_1 \cup R_5$

a)
$$R_1 \cup R_3$$
 b) $R_1 \cup R_5$ **c**) $R_2 \cap R_4$ **d**) $R_3 \cap R_5$ **e**) $R_1 - R_2$

$$d$$
) $R_3 \cap R_5$

$$e)$$
 $R_1 - R_2$

- $\textbf{\textit{f}}) \quad R_2 R_1 \qquad \textbf{\textit{g}}) \quad R_1 \oplus R_3 \qquad \textbf{\textit{h}}) \quad R_2 \oplus R_4 \qquad \textbf{\textit{i}}) \quad R_1 \circ R_1 \qquad \qquad \textbf{\textit{j}}) \quad R_1 \circ R_2$

- **k**) $R_1 \circ R_3$ **l**) $R_1 \circ R_4$ **m**) $R_1 \circ R_5$ **n**) $R_1 \circ R_6$ **o**) $R_2 \circ R_3$
- 17. Let R_1 and R_2 be the "divides" and "is a multiple of" relations on the set of all positive integers, respectively. That is $R_1 = \{(a,b)/a \text{ divides } b\}$ and $R_2 = \{(a,b)/a \text{ is a multiple of } b\}$ Find the following:
 - $\boldsymbol{a)} \quad R_1 \cup R_2 \qquad \boldsymbol{b)} \quad R_1 \cap R_2 \qquad \boldsymbol{c)} \quad R_1 R_2 \qquad \boldsymbol{d)} \quad R_2 R_1 \qquad \boldsymbol{e)} \quad R_1 \oplus R_2$