Introducción: *El camino más corto*Clase 11

Investigación Operativa UTN FRBA 2020

Curso: 14051

Elaborado por: Rodrigo Maranzana

Docente: Martín Palazzo

¿Cómo modelizar el camino más corto?

- Programación matemática (formalización)
- Teoría de grafos

Grafos de camino más corto

- Grafos orientados
- Nodos como "lugares" (estados)

Ejemplo didáctico: línea de producción

Camino de un nuevo producto por la planta

Grafos de camino más corto

- La complejidad depende del algoritmo y del problema.
- Un buen algoritmo agilizar la búsqueda.
- La densidad y tamaño del grafo pueden ser altísimos.
 - Ej: "Pathfinding"

i Espacio de complejidad exponencial!: $O(8^n)$

Algoritmos de búsqueda en grafos

- Dependiendo del algoritmo y problema: óptimo local o global.
- Heurística: regla empírica de decisión
- Ventajas: soluciones en grafos extremadamente densos

Breath first search; Depth first search; Dijkstra; Bellman-Ford; A*; ...

¿Camino más corto implica distancia?

- El peso del arco puede ser de cualquier magnitud.
- Ej: Camino Crítico de Proyectos caso particular de camino más corto
 - --- Arcos con tiempo
- Ej: Google Maps con vehículos
 - --- tiempo y distancia

¿Qué tan difícil puede ser en la realidad?

- Grafo estocástico
- Información en tiempo real
- Optimización en tiempo real
- Optimización dinámica dependiente de otros resultados