Liam Donohoe RCSID: donohl RIN: 661634267

Crypto HW2.a

1. A. Prove $a = b \pmod{n}$ implies $b = a \pmod{n}$.

First, we start with the assumption that a, and b are both integers, and that $a = b \pmod{n}$. Assuming both of these are true, then, a - b = k * n for some integer k. Using this equation, we can rewrite it as b - a = (-k) * n, showing that $b = a \pmod{n}$ as well, proving that $a = b \pmod{n}$ implies $b = a \pmod{n}$.

B. Prove $a = b \pmod{n}$ and $b = c \pmod{n}$ implies $a = c \pmod{n}$.

We start by assuming that a, b, and c are integers, and we are also given $a = b \pmod n$ and, $b = c \pmod n$. Similarly to the previous proof, we get the equation a - b = k * n for some k, from the first statement, and we can also obtain b - c = p * n for some p, from the second statement. If we add these statements together, we get the following; a - b + b - c = k * n + p * n. Simplifying this equation, we arrive at; a - c = (k + p) * n. This equation represents $a = c \pmod n$, proving that $a = b \pmod n$ and $b = c \pmod n$ imply $a = c \pmod n$.

2. Multiplicative Inverse using Extended Euclidean Algorithm

a. 1234 mod 4321

Q	Smaller Value	Larger Value	Vector for Small	Vector for Large
3	1234	4321	(1, 0)	(0, 1)
1	619	1234	(0, 1)	(1, -3)
1	615	619	(1, -3)	(-1, 4)
153	4	615	(-1, 4)	(2, -7)
1	3	4	(2, -7)	(-307, 1075)
3	1	3	(-307, 1075)	(309, -1082)
0	0	1	(309, -1082)	

Multiplicative inverse of $1234 \mod 4321 = -1082$.

b. 24140 mod 40902

Q	Smaller Value	Larger Value	Vector for Small	Vector for Large
1	24140	40902	(1, 0)	(0, 1)
1	16762	24140	No need to fill	In the rest
2	7378	16762	Of the table.	
3	2006	7378		
1	1360	2006		
2	646	1360		
9	68	646		
2	34	68		
	0	34		

Reduces to 0, and second value is not 1, therefore there is no multiplicative inverse.

c. 550 mod 1769

Q	550	1769	(1, 0)	(0, 1)
3	119	550	(0, 1)	(1, -3)
4	74	119	(1, -3)	(-4, 13)
1	45	74	(-4, 13)	(5, -16)
1	29	45	(5, -16)	(-9, 29)
1	16	29	(-9, 29)	(14, -45)
1	13	16	(14, -45)	(-23, 74)
1	3	13	(-23, 74)	(39, -119)
4	1	3	(37, -119)	(-171, 550)

The multiplicative inverse of $550 \mod 1769 = 550$.

3. Determine which of the following are reducible over GF(2)

a.
$$x^3 + 1 \Rightarrow (x+1)(x^2 + x + 1)$$

b.
$$x^3 + x^2 + 1 => Not Reducible$$

c.
$$x^4 + 1 \Rightarrow (x + 1)^4$$

- 4. Determine the GCD of the following pair of polynomials
 - a. $x^3 x + 1$ and $x^2 + 1$ over GF(2) => $x^3 x + 1$ is not reducible, therefore there is no GCD between the polynomials (besides 1).

$$f(0) = 0 - 0 + 1 = 1$$

$$f(1) = 1 - 1 + 1 = 1$$

0 is not obtainable.

b. $x^5 + x^4 + x^3 - x^2 - x + 1$ and $x^3 + x^2 + x + 1$ over GF(3) => Both are reducible

$$f_1(0) = 1$$

$$f_2(0) = 1$$

$$f_1(1) = 1$$

$$f_2(1) = 1$$

$$f_1(2) = 0$$

$$f_2(2) = 0$$

As both equations are equal to 0 when x = 2, we know we have a solution at x - 2 = 0.

In GF(3) this is equivalent to x-1, so we can use this to reduce the polynomials.

$$f_1(x) = (x + 1) (x^4 + x^3 + x^2 - x - 1)$$

$$f_2(x) = (x + 1)(x^2 + 1).$$

Therefore, GCD of these equations is (x + 1).

5. This cryptosystem is not valid, so we will use the equation,

$$H(K|C) = -\operatorname{Sum}_{(k \text{ in } K, c \text{ in } C)} \operatorname{Pr}(c) \operatorname{Pr}(k|c) \log_{2}(\operatorname{Pr}(k|c))$$

$$Pr(k|c) = Pr(c|k) Pr(k) / Pr(c)$$

$$P(1) = \frac{1}{2}$$

$$P(2) = \frac{1}{4}$$

$$P(3) = \frac{1}{8}$$

$$P(4) = \frac{1}{8}$$

$$P(1|K_1) = \frac{3}{4}$$
, $P(2|K_1) = \frac{1}{4}$, $P(3|K_1) = 0$, $P(4|K_1) = 0$

$$P(1|K_2) = \frac{1}{2}$$
, $P(2|K_2) = \frac{1}{4}$, $P(3|K_2) = \frac{1}{4}$, $P(4|K_2) = 0$

$$P(1|K_3) = 0$$
, $P(2|K_3) = \frac{1}{4}$, $P(3|K_3) = \frac{1}{4}$, $P(4|K_3) = \frac{1}{2}$

$$P(1|K_4) = 0$$
, $P(2|K_4) = 0$, $P(3|K_4) = \frac{1}{4}$, $P(4|K_4) = \frac{3}{4}$

$$P(K_1|1) = \frac{3}{4}$$
, $P(K_1|2) = \frac{1}{2}$, $P(K_1|3) = 0$, $P(K_1|4) = 0$,

$$P(K_2|1) = \frac{1}{4}$$
, $P(K_2|2) = \frac{1}{4}$, $P(K_2|3) = \frac{1}{2}$, $P(K_2|4) = 0$,

$$P(K_3|1) = 0$$
, $P(K_3|2) = \frac{1}{4}$, $P(K_3|3) = \frac{1}{2}$, $P(K_3|4) = 1$,

$$P(K_4|1) = 0$$
, $P(K_4|2) = 0$, $P(K_4|3) = 0$, $P(K_4|4) = 0$.

Now, using the above formula for H(K|C), we get: