Fall Risk Prediction with Artificial Intelligence Models

UNIVERSITY OF LINCOLN

Introduction

Literature Review

3 Methodology

4 Results

5 Conclusion

Outline

Introduction

Problem Statement

The purpose of the study is to introduces a predictive model for fall risk classification, comparing deep learning and machine learning techniques to support the development of preventive measures in the health sector.

Background

- The elderly are particularly affected.
- Serious health problems like disability and loss of independence.
- Psychological impact, increasing depression and stress.
- High mortality rates and frequent hospitalisations in older adults.

Objectives & Aims

- Video data from specific location.
- Computer vision for feature extraction.
- kNN, SVM, CNN and LSTM to classify
- Ensemble Methods to improve accuracy

Literature Review

- Computer Vision
- Machine Learning

- Computer Vision
- Kinect Motion system
- Machine Learning

- Tinetti scale
- Machine Learning
- Deep Convolutional Neural Network (DCNN)
- ResNet 50 and Convolutional Neural Network (CNN)

Methods

Public dataset from the Mendeley Data website, consisting of 188 videos categorized into three subfolders: Knee Osteoarthritis (KOA), Parkinson's Disease (PD), and Normal/Healthy (NM) individuals with early (EL), mild (ML), moderate (MD), and severe (SV) categories.

Demographic information

Methods

Used Tools

- Jupyter Notebook
- Python
- NumPy
- Pandas
- OpenCV
- Scikit-Learn
- Seaborn
- Matplotlib
- TensorFlow

Applied Techniques

<u>Computer Vision</u>

2D anatomical key points

2

Machine Learning

- k-Nearest Neighbor (KNN)
- Support Vector Machine (SVM)

Deep Learning

3

- Convolutional Neural Network (CNN)
- Long Short-Term Memory (LSTM)

1

Ensemble Method

- Gradient Boosting
- Random Forest

Results

Ensemble Methods

Random Forest Classifier: Accuracy: 0.9162462159434914

Classification Report:

		precision	recall	f1-score	support
	0	0.89	0.88	0.89	369
	1	0.93	0.94	0.93	622
accuracy				0.92	991
macro	avg	0.91	0.91	0.91	991
weighted	avg	0.92	0.92	0.92	991

Gradient Boosting Classifier: Accuracy: 0.9202825428859738

Classification Report:

	precision	recall	f1-score	support
0	0.93	0.85	0.89	369
1	0.92	0.96	0.94	622
accuracy			0.92	991
macro avg	0.92	0.91	0.91	991
weighted avg	0.92	0.92	0.92	991

Confusion Matrices

Statistical Metrics

Method	Accuracy	Precision	Recall	F1-score
k-Nearest Neighbor (kNN)	0.72	0.71	0.65	0.66
Support Vector Machine (SVM)	0.64	0.61	0.59	0.59
Convolutional Neural Network (CNN)	0.83	0.82	0.81	0.81
Long Short Term Memory (LSTM)	0.70	0.67	0.65	0.66
Random Forest Classifier	0.91	0.91	0.91	0.91
Gradient Boosting Classifier	0.92	0.91	0.91	0.91

Conclusions

Limitations and Successes

1

Study Limitations: A limited, controlled dataset reduces the generalisability to real world scenarios.

Key Achievements: OpenPose integration with ensemble methods, especially gradient boosting, improved predictive accuracy.

Future Work

- Dataset Expansion
- Sensor Integration
- Exploring Alternative Algorithms

Real World Application

- Enhanced Fall Prediction and Prevention
- Applications in Rehabilitation
- Applications in Safety Protocols

3

References

Cedeno-Moreno, Rogelio, et al. "Computer Vision System Based on the Analysis of Gait Features for Fall Risk Assessment in Elderly People." Applied Sciences, vol. 14, no. 9, 1 Jan. 2024, p. 3867, www.mdpi.com/2076- 3417/14/9/3867, https://doi.org/10.3390/app14093867

Chen, Biao, et al. "Computer Vision and Machine Learning-Based Gait Pattern Recognition for Flat Fall Prediction." Sensors, vol. 22, no. 20, 19 Oct. 2022, p. 7960, https://doi.org/10.3390/s22207960

McCall, Sheldon, et al. "Computer Vision Based Transfer Learning-Aided Transformer Model for Fall Detection and Prediction." IEEE Access, vol. 12, 1 Jan. 2024, pp. 28798–28809, doaj.org/article/9976af289f504788ad964f5e9a5d68e1, https://doi.org/10.1109/ACCESS.2024.3368065

Sampath Dakshina Murthy, Achanta, et al. "Gait-Based Person Fall Prediction Using Deep Learning Approach." Soft Computing, 4 Sept. 2021, https://doi.org/10.1007/s00500-021-06125-1

THANK YOU

27435249

Sebnem Keles

27435249@students.lincoln.ac.uk