The "Data Mining" Specialization

Learn More

×

Feedback — Week 1 Quiz

Help Center

Thank you. Your submission for this quiz was received.

You submitted this quiz on **Sat 2 May 2015 10:50 AM PDT**. You got a score of **13.00** out of **13.00**.

Question 1

Which of the following statements are true?

Your Answer		Score	Explanation
Clustering analysis in unsupervised learning since it does not require labeled training data.	~	0.25	
When clustering, we want to put two dissimilar data objects into the same cluster.	~	0.25	This is false because, as discussed in the lecture, the objective of clustering is having similar objects in the same cluster.
✓ Clustering analysis has a wide range of applications in tasks such as data summarization, dynamic trend detection, multimedia analysis, and biological network analysis.	~	0.25	
■ It is impossible to cluster objects in a data stream. We must have all the data objects that we need to cluster ready before clustering can be performed.	~	0.25	This is false because clustering algorithms can be adapted to perform clustering in a streaming fashion.
Total		1.00 /	
		1.00	

Question Explanation

The correct answers are: "Clustering analysis in unsupervised learning since it does not require

labeled training data." and "Clustering analysis has a wide range of applications in tasks such as data summarization, dynamic trend detection, multimedia analysis, and biological network analysis."

Question 2

What are some common considerations and requirements for cluster analysis?

Your Answer		Score	Explanation
✓ In order to perform cluster analysis, we need to have a similarity measure between data objects.	~	0.25	
We need to consider the desired shape and size of clusters.	~	0.25	
Cluster analysis requires a large amount of labeled training data.	~	0.25	This is false since cluster analysis is unsupervised learning, which by definition does not require training data.
✓ We need to consider the space on which the clustering is performed. In other words, we need to decide what subset of the available features we are going to consider in the similarity measure.	•	0.25	
Total		1.00 / 1.00	

Question Explanation

The correct answers are: "In order to perform cluster analysis, we need to have a similarity measure between data objects.", "We need to consider the desired shape and size of clusters." and "We need to consider the space on which the clustering is performed. In other words, we need to decide what subset of the available features we are going to consider in the similarity measure."

Question 3

Which of the following statements are true?

Your Answer	Score	Explanation

■ We can only visualize the clustering results when the data is 2-dimensional.	✔ 0.25	This is false because we can also easily visualize clusters in 3D. HD-eye is an example of software used for visualizing higher dimensional clusters.
When dealing with high-dimensional data, we sometimes consider only a subset of the dimensions when performing cluster analysis.	✔ 0.25	
Agglomerative clustering is an example of a distance- based clustering method.	✔ 0.25	
✓ Graphs, time-series data, text, and multimedia data are all examples of data types on which cluster analysis can be performed.	✔ 0.25	
Total	1.00 /	

Question Explanation

The correct answers are: "Agglomerative clustering is an example of a distance-based clustering method.", "When dealing with high-dimensional data, we sometimes consider only a subset of the dimensions when performing cluster analysis.", and "Graphs, time-series data, text, and multimedia data are all examples of data types on which cluster analysis can be performed."

Question 4

The following real dataset contains information about Iris setosa and versicolor.

1.00

What is the supremum distance between these two objects?

Species	Sepal length	Sepal width	Petal length	Petal width
Iris setosa	4.9	3.0	1.4	0.2
Iris versicolor	5.6	2.5	3.9	1.1

Your Answer	Score	Explanation	
2.8			
4.6			

● 2.5✓ 1.00

Total 1.00 / 1.00

Question Explanation

7.8

The supremum distance, corresponding to p = 2 Minkowski distance, between two objects is defined as follows:

 $d \propto (i,j) = | \max_{k=1} | x_{i,k} - x_{j,k} |$

Question 5

The following real dataset contains information about Iris setosa and versicolor.

Cases	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10
1	0	1	1	0	0	0	1	1	1	1
2	0	1	0	0	1	0	1	0	0	1

Assume all the activities are symmetric binary variables. What is the distance between Case 1 and Case 2?

Your Answer Score Explanation

4/7

3/7

3/10

4/10

1.00

Total

1.00 / 1.00

Question Explanation

If the binary variables are symmetric, we have:

$$d(i,j) = r + s / q + r + s + t = 4/10$$

Question 6

The following real world dataset contains two samples from Car Evaluation Database, which was derived from a simple hierarchical decision model originally developed for the demonstration of DEX (M. Bohanec, V. Rajkovic: Expert System for Decision Making. Sistemica 1(1), pp. 145-157, 1990.). The model evaluates cars according to the following concept structure:

CAR car acceptability

. PRICE overall price

.. buying buying price

. TECH technical characteristics

.. COMFORT comfort

... doors number of doors

... persons capacity in terms of persons to carry

... lug_boot the size of luggage boot

. . safety estimated safety of the car

The attribute values are as follows:

Attrubute	Values (categorical)
buying	v-high, high, med, low
maint	v-high, high, med, low
doors	2, 3, 4, 5-more
persons	2, 4, more
lug_boot	small, med, big
safety	low, med, high

Case	buying	maint	doors	persons	lug_boot	safety
Car 1	med	v-high	3	more	small	med
Car 2	high	v-high	4	4	big	med

To calculate the distance between objects with categorical attributes, we use a set of binary attributes to represent each categorical attribute. Assume all the binary attributes are symmetric. What is the distance between Car 1 and Car 2?

Your Answer		Score	Explanation
O 2/3			
8/21	~	1.00	

8/10

1/38/17

Total

1.00 / 1.00

Question Explanation

Considering converting the categorical random variables into binary random variables, there will be (4 + 4 + 4 + 3 + 3 + 3 = 21) binary random variables in total. Moreover, we have the following contingency table:

	Car 1				
		1	0	sum	
Car 2	1	2	4	6	
	0	4	11	15	
	sum	6	15	21	

If all the binary attributes are asymmetric, we have the distance between Car 1 and Car 2 as:

d(i,j) = s+r/q+s+r+t = 8/21

Question 7

Given the following two short texts with punctuation removed, calculate the cosine similarity between them based on the bag of words model.

Text1: language is the source of misunderstandings

Text2: language is the soul of a nation

Your Answer		Score	Explanation
0			
0.44			
0.095			
0.617	~	1.00	
Total		1.00 / 1.00	

Question Explanation

We can get the vector representations for the two short texts,

$$T1 = (1, 1, 1, 1, 1, 1, 0, 0, 0)$$
$$T2 = (1, 1, 1, 0, 1, 0, 1, 1, 1),$$

where the dimensions correspond to: language, is, the, source, of, misunderstanding, soul, a, nation.

The cosine similarity can be obtained via

$$cos(T1,T2) = T1*T2/||T1|| ||T2|| = 4/\sqrt{6}\sqrt{7}$$

Question 8

With regard to the species of Iris setosa, we have sampled data on the features of sepal length and sepal width, as follows:

Feature	Sepal length	Sepal width
Case 1	5.1	3.5
Case 2	4.9	3.0
Case 3	4.7	3.2
Case 4	4.6	3.1
Case 5	5.0	5.4

What is the sample correlation coefficient between sepal length and sepal width?

Your Answer	Score	Explanation
○ 2.396		
0.185		
● 0.479	1.00	
0.895		
0.398		
Total	1.00 / 1.00	

Question Explanation

The sample correlation coefficient can be calculated as:

$$\rho_{12} = \sigma_{12}/\sigma_1 \; \sigma_2 = {}^n\Sigma_{i=1} \; (x_{i1} - {}_{\mu I})(x_{i2} - {}_{\mu}) \; / \; \sqrt{\; {}^n\Sigma_{i=1} \; (x - {}_{\mu_2})^2}$$

Question 9

Considering the K-means algorithm, after the current iteration, we have 3 centroids (0, 1) (2, 1), (-1, 2). Will points (0.5, 0.5) and (-0.5, 0) be assigned to the same cluster in the next iteration?

Your Answer		Score	Explanation
Yes	~	1.00	
○ No			
Total		1.00 / 1.00	

Question Explanation

They will be both assigned to (0, 1).

Question 10

Considering the K-means algorithm, if points (1, -3), (1, 1), and (-2, 2) are the only points which are assigned to the first cluster now, what is the new centroid for this cluster?

Your Answer		Score	Explanation
(0, 0)	~	1.00	
(0, 3)			
(0, 2)			
(-2, 1)			
Total		1.00 / 1.00	

Question Explanation

Calculate the average value for x and y separately. You will then find the answers are 0 and 0, and thus, the new centroid should be (0, 0).

Question 11

K-means++ algorithm is designed for better initialization for K-means, which will take the

farthest point from the currently selected centroids. Suppose k = 2 and we have selected the first centroid is (0, 0). Among the following points (these are all the remaining points), which one should we take for the second centroid? (Here, the distance is measured by Euclidean Distance).

Your Answer		Score	Explanation
(3, 0)	~	1.00	
O (0, 1)			
(2, -2)			
O (-2, 1)			
Total		1.00 / 1.00	

Question Explanation

K-means++ will take the farthest point from the currently selected centroids.

Question 12

Considering the K-median algorithm, if points (-1, 3), (-3, 1), and (-2, -1) are the only points which are assigned to the first cluster now, what is the new centroid for this cluster?

Your Answer		Score	Explanation
(0, 2)			
(-2, 1)	~	1.00	
(0, 0)			
(0, 3)			
Total		1.00 / 1.00	

Question Explanation

Calculate the median value for x and y separately. You will then find the answers are -2 and 1, and thus the new centroid should be (-2, 1)

Question 13

Which of the following statements about K-medoids, K-median, and K-modes algorithms are correct?

Your Answer	Score	Explanation
The centroids in the K-means algorithm may not be any observed data points.	✔ 0.25	
The K-modes algorithm is designed for categorical data.	✔ 0.25	
The K-medoids and K-median algorithms are less sensitive to outliers than K-means.	✔ 0.25	
The centroids in the K-medoids algorithm may not be any observed data points.	✔ 0.25	
Total	1.00 / 1.00	

Question Explanation

In the K-medoids algorithm, the centroids are selected from the given data points.