Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2115 – Programación como herramienta para la Ingeniería

Introducción

Profesores: Hans Löbel

Francisco Garrido

El curso busca preparar y especializar a los ingenieros en herramientas computacionales de desarrollo avanzado

• Evaluar y utilizar de manera efectiva distintos lenguajes y herramientas de programación, para resolver problemas asociados a sus áreas de especialización, en base a los requerimientos de estos.

Que lata (miedo) programar

Excelente, si lo programo sale mejor/más fácil

 Proponer y desarrollar soluciones novedosas utilizando la programación, ya sea para problemas tradicionales o para nuevos problemas en ingeniería.

¿Es difícil/nuevo? Si no hay librería/software que lo haga, busco otra cosa

Ningún problema, voy a implementarlo yo mismo

El curso cubre múltiples temas divididos en 8 capítulos

- Herramientas básicas
- Programación orientada a objetos
- Estructuras de datos
- Programación funcional
- Técnicas para la resolución de problemas
- Bases de datos
- Análisis y visualización de datos
- Tópicos avanzados

Todo el desarrollo estará basado en Python más algunas otras herramientas o librerías dependiendo del tema.

Metodología de clase invertida obliga a ser más responsable

- Cada capítulo se desarrollará durante dos semanas, mediante un laboratorio práctico evaluado.
- El laboratorio se desarrollará en parejas aleatorias, y deberá ser entregado antes de iniciar el capítulo siguiente.
- Sesiones de clases tendrán formato de taller, donde se avanzará en el desarrollo del laboratorio.
- Además de esto, el cuerpo docente realizará durante la segunda sesión, una evaluación del avance parcial, que tendrá efecto en la nota del laboratorio.

Metodología de clase invertida obliga a ser más responsable

- Antes de iniciar un nuevo capítulo, se realizará un control escrito, para evaluar el conocimiento y participación individual de cada alumno en la materia recién terminada.
- Apuntes y libros con el contenido completo para preparar las actividades prácticas.

Muchas evaluaciones

- $N_F = 6$ controles = 35%.
- $N_1 = 7$ laboratorios = 55%.
- N_P = Asistencia = 10%.

Para aprobar: N_E y N_L deben ser ≥ 3.95 En caso contrario, N_{FR} = mín(3.9, N_F)

Cronograma de actividades

Fecha	Actividades	Tópicos
07/08	Introducción al curso	
09/08	Uso de herramientas básicas	Jupyter Notebook, git, GitHub y Syllabus, errores
16/08	Inicio Lab. 1	Programación orientada a objetos
23/08	Continuación Lab. 1	Programación orientada a objetos
30/08	Control 1, Inicio Lab. 2	Estructuras de datos
06/09	Continuación Lab. 2	Estructuras de datos
13/09	Control 2, Inicio Lab. 3	Programación funcional
20/09	Continuación Lab. 3	Programación funcional
27/09	Control 3, Inicio Lab. 4	Técnicas y algoritmos
04/10	Continuación Lab. 4	Técnicas y algoritmos
11/10	Control 4, Inicio Lab. 5	Bases de datos y archivos
18/10	Continuación Lab. 5	Bases de datos y archivos
25/10	Control 5, Inicio Lab. 6	Análisis y visualización de datos
08/11	Continuación Lab. 6	Análisis y visualización de datos
15/11	Control 6, Inicio Lab. 7	Tópicos avanzados
22/11	Continuación Lab. 7	Tópicos avanzados

Todo lo relacionado con el curso se encuentra en el *Syllabus* (*github.com/IIC2115/Syllabus*)

- Es importante tenerlo continuamente actualizado (más sobre esto en un rato).
- Dudas de materia o administrativas se pueden plantear como *Issues*, que serán respondidas oportunamente por el cuerpo docente del curso.
- El Syllabus está montado sobre la plataforma GitHub, que usaremos de manera constante durante todo el semestre, tanto para el material de clases como para la entrega de laboratorios.

El entorno de desarrollo que utilizaremos, se basará en Jupyter Notebook

- Jupyter Notebook es un entorno de desarrollo que permite crear y compartir documentos que contienen código fuente, ecuaciones, visualizaciones y texto explicativo.
- Su interfaz se presente como una página web, que nos permite, dentro de otras cosas, interactuar con código Python.
- Con el fin de evitar problemas de compatibilidad en la instalación, este semestre utilizaremos la plataforma Colab de Google: colab.research.google.com

¿Qué pasa si no puedo traer un computador a clases?

- El DCC les puede prestar un notebook por la duración de la sesión.
- Para obtenerlo, deben escribir un mail a los profesores, con al menos 1 día de anticipación (miércoles en la mañana).

Last but not least...

Como miembro de la comunidad de la Pontificia Universidad Católica de Chile me comprometo a respetar los principios y normativas que la rigen. Asimismo, prometo actuar con rectitud y honestidad en las relaciones con los demás integrantes de la comunidad y en la realización de todo trabajo, particularmente en aquellas actividades vinculadas a la docencia, el aprendizaje y la creación, difusión y transferencia del conocimiento. Además, velaré por la integridad de las personas y cuidaré los bienes de la Universidad.

¿Qué sigue a continuación?

- Clases este jueves 09/08 para terminar (en lo posible) las herramientas básicas del curso.
- Próximo jueves 16/08 comienza el primer laboratorio. El material ya está disponible.
- Parejas (y puestos de trabajo) se darán a conocer durante la mañana del día de inicio del laboratorio.

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2115 – Programación como herramienta para la Ingeniería

Introducción

Profesor: Hans Löbel