

# Housekeeping

- Homework 7 due tonight!
- Last problem set is assigned today! Atypical due date: Wednesday 11/13

# Linear regression

Crash course; take STAT 211 for more depth!

# Fitting a line to data

- Hopefully we are all familiar with the equation of a line: y = mx + b
  - Intercept *b* and slope *m* determine specific line
  - This function is *deterministic*: as long as we know x, we know value of y exactly
- **Linear regression**: statistical method where the relationship between variable *x* and variable *y* is modeled as a **line + error**:

$$y = \underbrace{\beta_0 + \beta_1 x}_{\text{line}} + \underbrace{\epsilon}_{\text{error}}$$

# Linear regression model

$$y = \beta_0 + \beta_1 x + \epsilon$$

- We have two variables:
  - 1. y is response variable. Must be continuous numerical.
  - 2. x is explanatory variable, also called the **predictor** variable
    - Can be numerical or categorical
- $\beta_0$  and  $\beta_1$  are the model **parameters** (intercept and slope)
  - Estimated using the data, with point estimates  $b_0$  and  $b_1$
- $\epsilon$  (epsilon) represents the **error** 
  - Accounts for variability: we do not expect all data to fall perfectly on the line!
  - lacksquare Sometimes we drop the  $\epsilon$  term for convenience

## Linear relationship

Suppose we have the following data:



• Observations won't fall exactly on a line, but do fall around a straight line, so maybe a linear relationship makes sense!

#### Fitted values

Suppose we have some specific estimates  $b_0$  and  $b_1$ . We could fit the linear relationship using these values as:

$$\hat{y} = b_0 + b_1 x$$

- The hat on y signifies that this is an estimate: the estimated/**fitted** value of y given these specific values of x,  $b_0$  and  $b_1$ 
  - We observe y, but can obtain a corresponding estimate  $\hat{y}$
- Note that the fitted value is obtained without the error

### Fitted values (cont.)



- Suppose our estimated line is the yellow one
- Every observed value  $y_i$  has a corresponding fitted value  $\hat{y}_i$ ; the above plot just shows three specific examples

#### Residual

Residuals are the remaining variation in the data after fitting a model.

$$data = fit + residual$$

• For each observation i, we obtain residual  $e_i$  via:

$$y_i = \hat{y}_i + e_i \quad \Rightarrow \quad e_i = \hat{y}_i - y_i$$

- Residual = difference between observed and expected
- Since each observation has a fitted value, each observation has a residual
  - In the linear regression case, the residual is indicated by the vertical dashed line
  - What is the ideal value for a residual?

# Residual (cont.)



Residual values for the three highlighted observations:

| Х      | У      | y_hat  | residual |
|--------|--------|--------|----------|
| -2.991 | 2.481  | -0.130 | -2.611   |
| -1.005 | -1.302 | 0.691  | 1.994    |
| 3.990  | 3.929  | 2.757  | -1.172   |

## Residual plot

- Residuals are very helpful in evaluating how well a model fits a set of data
- Residual plot: original x values plotted against their corresponding residuals on y
   -axis



Red dots = specific points from previous plot

# Residual plot (cont.)

Residual plots can be useful for identifying characteristics/patterns that remain in the data even after fitting a model.

Just because you fit a model to data, does not mean the model is a good fit!



Can you identify any patterns remaining in the residuals?

• Sorry! The residuals shown here are taken as  $y_i - \hat{y}_i$ !

# Describing linear relationships

Different data may exhibit different strength of linear relationships:



• Can we quantify the strength of the linear relationship?

#### Correlation

- Correlation is describes the strength of a linear relationship between two variables
  - The observed sample correlation is denoted by *R*
  - Formula (not important):  $R = \frac{1}{n-1} \sum_{i=1}^{n} \left( \frac{x_i \bar{x}}{s_x} \right) \left( \frac{y_i \bar{y}}{s_y} \right)$
- Always takes a value between -1 and 1
  - -1 = perfectly linear and negative
  - 1 = perfectly linear and positive
  - 0 = no linear relationship
- Nonlinear trends, even when strong, sometimes produce correlations that do not reflect the strength of the relationship



# Least squares regression

In Algebra class, there exists a single (intercept, slope) pair because the (x, y) points had no error; all points landed on the line.

- Now, we assume there is error
- How do we choose a single "best"  $(b_0, b_1)$  pair?

#### Different lines

The following display the same set of 50 observations.



Which line would you say fits the data the best?

- There are infinitely many choices of  $(b_0, b_1)$  that could be used to create a line
- We want the BEST choice (i.e. the one that gives us the "line of best fit")
  - How to define "best"?

#### Line of best fit

One way to define a "best" is to choose the specific values of  $(b_0, b_1)$  that minimize the total residuals across all n data points. Results in following possible criterion:

1. Least absolute criterion: minimize sum of residual magnitudes:

$$|e_1| + |e_2| + ... + |e_n|$$

2. Least squares criterion: minimize sum of squared residuals:

$$e_1^2 + e_2^2 + \dots + e_n^2$$

- The choice of  $(b_0, b_1)$  that satisfy least squares criterion yields the **least squares** line, and will be our criterion for "best"
- On previous slide, yellow line is the least squares line, whereas pink line is the least absolute line

# Linear regression model

Remember, our linear regression model is:

$$y = \beta_0 + \beta_1 x + \epsilon$$

While not wrong, it can be good practice to be specific about an observation i:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \qquad i = 1, \dots, n$$

- Here, we are stating that each observation *i* has a specific:
  - explanatory variable value  $x_i$
  - $\blacksquare$  response variable value  $y_i$
  - error/randomness  $\epsilon_i$

# Conditions for the least squares line (LINE)

Like when using CLT, we should check some conditions before saying a linear regression model is appropriate!

Assume for now that x is continuous numerical.

- 1. Linearity: data should show a linear trend between x and y
- 2. **Independence**: the observations i are independent of each other
  - e.g. random sample
  - Non-example: time-series data
- 3. **Normality/nearly normal residuals**: the residuals should appear approximately Normal
  - Possible violations: outliers, influential points (more on this later)
- 4. **Equal variability**: variability of points around the least squares line remains roughly constant

## Running example

We will see how to check for these four LINE conditions using the cherry data from openintro.

| diam | volume |
|------|--------|
| 8.3  | 10.3   |
| 8.6  | 10.3   |
| 8.8  | 10.2   |
| 10.5 | 16.4   |
| 10.7 | 18.8   |

- Explanatory variable x: diam
- Response variable y: volume

# 1. Linearity

Assess *before* fitting the linear regression model by making a scatterplot of x vs. y:



Does there appear to be a linear relationship between diameter and volume?

I would say yes

## 2. Independence

Assess *before* fitting the linear regression model by understanding how your data were sampled.

• The cherry data do not explicitly say that the trees were randomly sampled, but it might be a reasonable assumption

An example where independence is violated:



Here, the data are a time series, where observation at time point i depends on the observation at time i-1.

 Successive/consecutive observations are highly correlated

# Fitting the model

At this point, it is time to actually fit our model

volume = 
$$\beta_0 + \beta_1$$
 diameter +  $\epsilon$ 

• After fitting the model, we get the following estimates:  $b_0 = -36.94$  and  $b_1 = 5.07$ . So our **fitted model** is:

$$\widehat{\text{volume}} = -36.94 + 5.07 \times \text{diameter}$$

Remember: the "hat" denotes an estimated/fitted value!

- We will soon see how  $b_0$  and  $b_1$  are calculated and how to interpret them
- The next two checks can only occur *after* fitting the model.

### 3. Nearly normal residuals

Assess after fitting the model by obtaining residuals and making a histogram.

• Remember, residuals are  $\hat{y}_i - y_i$ 

```
1 cherry |>
2 mutate(volume_hat = -36.94 + 5.07*diam)
3 mutate(residual = volume_hat - volume)
```

| diam | volume | volume_hat | residual |
|------|--------|------------|----------|
| 8.3  | 10.3   | 5.108      | -5.192   |
| 8.6  | 10.3   | 6.628      | -3.672   |
| 8.8  | 10.2   | 7.641      | -2.559   |
| 10.5 | 16.4   | 16.253     | -0.147   |
| 10.7 | 18.8   | 17.266     | -1.534   |



- Do the residuals appear approximately Normal?
  - I think so!

## 4. Equal variance

Assess after fitting the model by examining a residual plot and looking for patterns.

A good residual plot:

A bad residual plot:



We usually have a horizontal line at 0 to compare residuals to

## 4. Equal variance (cont.)

Let's examine the residual plot of our fitted model for the cherry data:



- Based on this plot, I would say the equal variance condition is not perfectly met.
  - Some of the variability in the errors appear related to diameter

# Fitting the least-squares line

#### Parameter estimates

- Like in previous topics, we have to estimate the parameters using data
- We want to estimate  $\beta_0$  and  $\beta_1$  using the  $(x_i, y_i)$ 
  - In practice, we let software do this for us
- However, we *can* derive the least-squares estimates using properties of the least-squares line

# Estimating slope and intercept

First obtain  $b_1$ :

$$b_1 = \frac{s_y}{s_x} R$$

where:

- $s_x$  and  $s_y$  are the sample standard deviations of the explanatory and response variables
- *R* is the correlation between *x* and *y*

Then obtain  $b_0$ :

$$b_0 = \bar{y} - b_1 \bar{x}$$

where

- $\bar{y}$  is the sample mean of the response variable
- *x* is the sample mean of the explanatory variable

Take STAT 0211 or 0311 to see where these formulas come from!

# Fitting cherry model (by hand)

Verify estimates  $b_0 = -36.94$  and  $b_1 = 5.07$  from our model for the cherry data:

```
cherry |>
pivot_longer(cols = c(diam, volume), names_to = "variable", values_to = "val") |>
select(-height) |>
group_by(variable) |>
summarise(mean = mean(val), s = sd(val))
```

| variable | mean   | S      |  |
|----------|--------|--------|--|
| diam     | 13.248 | 3.138  |  |
| volume   | 30.171 | 16.438 |  |

```
1 R <- cor(cherry$diam, cherry$volume)
2 R
```

[1] 0.9671194

• Set-up the calculations:

$$\bullet b_1 = \frac{s_y}{s_x} R$$

$$b_0 = \bar{y} - b_1 \bar{x}$$

• 
$$b_1 = \frac{16.438}{3.138} \times 0.967 = 5.07$$

• 
$$b_0 = 30.171 - 5.07 \times 13.248 = -36.94$$