Regularization and shrinkage estimation

Evangelina López de Maturana & Oscar González-Recio

Large p small n problem

Need regularization methods

Fig. 1. Relationship between the number of marker effects to be estimated in regression models and the number of genotyped individuals with phenotype in livestock populations.

- many tests \rightarrow many false positives
 - e.g. 2000 (independent) tests, α =0.05 → How many expected false positives?

GUESS

- many tests \rightarrow many false positives
 - e.g. 2000 (independent) tests, α =0.05 \rightarrow How many expected false positives?

100 false positives by chance alone

- multiple testing problem
- many SNPs, many statistical tests, many p-values
 - \circ Some *p*-values are lower than the α significance level just by chance

Main difficulties to capture genetic marker signal

- Low effect size (impairs statistical power)
- LD between markers (markers share QTL information)
- Epistasis and interaction (models assume linearity)
- Many markers with (probably) null effect (sparsity)

Main difficulties to capture genetic marker signal

- Sample size
- Magnitude of effect
- MAF marker
- MAF atl
- Range of LD
- Likelihood of the model
- Experimental design

Prediction not that much interest on real effect of markers

How to cope with the problem

- Increase the sample size (e.g. Bio Banks, large reference populations)
- Reduce the number of tests
 - o Based on LD
 - Choose relevant regions (functional analysis)
- Decrease the significance threshold
 - Bonferroni correction
 - False discovery rate
 - o q-values
- Go Bayesian...

How to cope with the problem

- Increase the sample size (e.g. Bio Banks, lare reference populations)
- Reduce the number of tests
 - o Based on LD
 - Choose relevant regions (functional analysis)
- Decrease the significance threshold
 - o Bonferroni correction
 - False discovery rate
 - o q-values
- Go Bayesian...

Find a causal mutation

A needle in a haystack

Remember

https://xkcd.com/552/

Prediction aims at good correlation or classification performance!

Luckily:

Predict genomic values is different from finding causal mutations

Inference vs Prediction

Inference

Determine the effect of a covariate on the response

- Determine the <u>causal</u>
 relationship between a
 covariate and the response
- More difficult (in general)

Prediction

- Educated <u>quess</u> of the outcome
- Expected behaviour in the future
- Based on proxies/markers

Inference vs Prediction

GWAS goal

- Detect genomic markers/regions associated to phenotypes (traits) of interest
- Find biological pathways of interest
- Interaction between treatments/drugs and genes

GWP goal

- Calculate the genomic risk score
 /predisposition of a disease or trait
- Calculate the genomic merit of individuals
- Predict future performance
- Sire/dam selection in animal breeding
- Don't need to know the real marker effect

Prediction

Aim: construct a predictive (statistical) machine that provides an accurate guess of a yet to be observed phenotype

Large dimensionality problem

$$y = X\beta + \epsilon,$$

Minimize a loss function (usually minimize MSE)

$$\hat{\beta} = \arg\min_{\beta} \sum_{i} (y_i - \beta_1 - \beta_2 x_i)^2,$$

- p>>>>n
 - Run out of degrees of freedom (cannot estimate so many unknowns).
- $\hat{\beta}_{R} = \arg\min_{\beta} \{ \|y X\beta\|_{2}^{2} + \lambda_{2} \|\beta\|_{2}^{2} \},$ Need a more restrictive penalty function
- Or set a number of unknowns to zero (feature selection e.g. LASSO or elastic net)

$$\|\beta\|_2^2 \le c_2(\lambda_2)$$

$$\|\beta\|_2^2 \le c_2(\lambda_2)$$
 $\|\beta\|_0 \le c_0(\lambda_0)$

$$\|m{eta}\|_1 = \sum_{j=1}^p |m{eta}_j|,$$

Need to modelize the data

Caution with overfitting with so many variables (SNPs)

Which model does fit data the best?

Need to modelize the data

Caution with overfitting with so many variables (SNPs)

Need to modelize the data

Caution with overfitting with so many variables (SNPs)

Important to control the variance-bias trade-off

Bias

a systematic distortion of a statistical result due to a factor not allowed for in its derivation

Variance

It measures how far a set of numbers is spread out from their average value

Bias - Variance trade off

Increase model complexity might overfit the data, but impair predictive ability

Bias - Variance trade off

Parameters that control the variance-bias trade off

- Variances in the mixed models
- Lambda parameter in the LASSO
- Hyperparameters in Machine Learning methods

How to control large dimensionality

Applied more restrictive loss functions

$$\hat{\beta} = \arg\min_{\beta} \sum_{i} (y_i - \beta_1 - \beta_2 x_i)^2,$$

$$\hat{\beta}_{R} = \arg\min_{\beta} \{ \|y - X\beta\|_{2}^{2} + \lambda_{2} \|\beta\|_{2}^{2} \},$$

$$J[g(x_{\cdot})|\lambda] = \frac{1}{2}[y - W\theta - g(x_{\cdot})]'R^{-1}[y - W\theta - g(x_{\cdot})] + \frac{\lambda}{2}||g(x_{\cdot})||_{H}^{2},$$

Lasso, Bayesian LASSO, RKHS

How to control large dimensionality

- Apply simple models repeatedly over the data or residuals from previous iteration
 - Neural Networks, LASSO, Boosting, Random Forest
- Resample data during inference to increase variability of results
 - o Random Forest, Bagging
- Variable selection
 - o Random Forest, Neural Networks
- **(**
- Use **cross validation** to train predictive ability

How to control large dimensionality

- Apply simple models repeatedly over the data or residuals from previous iteration
 - Neural Networks, LASSO, Boosting, Random Forest
- Resample data during inference to increase variability of results
 - Random Forest, Bagging
- Variable selection
 - o Random Forest, Neural Networks
- Use
- Use **cross validation** to train predictive ability

More than one option

Considerations

 If a model have very high goodness of fit, it will not generalize the data (low predictive ability)

• Check predictive ability tuning hyperparameters and using internal and external cross validation.