

Einführung in R

Prof. Dr. Stephan Trahasch Hochschule Offenburg

Links

- https://www.rstudio.com/resources/cheatsheets/
- R for Data Science http://r4ds.had.co.nz/
- https://www.tidyverse.org/
- Free course Introduction to R
 https://www.datacamp.com/courses/free-introduction-to-r

https://www.r-bloggers.com/

Übersicht

- Was ist R?
- Ecosystem
- Shiny
- R in Produktion
- Syntax
- ggplot2

Survey 2015-2017 von kdnuggets.com

https://www.kdnuggets.com/2017/05/poll-analytics-data-science-machine-learning-software-leaders.html

Geschichte: S, S-Plus und R

- 1977 wurde am Bell Labs Sprache S zur Organisation, Analyse und Visualsierung von Daten entwickelt. http://ect.bell-labs.com/sl/S/
 "In 1998, S became the first statistical system to receive the Software System Award, the top software award from the ACM."
- S-PLUS kommerzielle Implementierung von S
- R Open Source, die auf S aufbaut, unbhängig von S weiter entwickelt wird. Ross Ihaka und Robert Gentleman implementierten erste R-Version an University of Auckland.

- R Foundation f\u00f6rdert ",das 'R Project for Statistical Computing'
 um eine freie Open Source Softwareumgebung f\u00fcr
 Datenanalyse und Graphik zur Verf\u00fcgung zu stellen."
 http://www.R-project.org
- R Consortium f\u00f6rdert Entwicklung von R, um R im Unternehmensumfeld komfortabler einzusetzen. https://www.r-consortium.org/

R Ecosystem

R Core Group

CRAN

R-bloggers

R User Groups

Vorteile von R

- Domain Specific Language zur Datenanalyse und Visualisierung
 → R for Reproducible Scientific Analysis
- Open Source (GNU GPL)
- Verfügbar für (fast) alle Platformen: Windows, Mac OS, Linux,
 Solaris, ...
- Sehr große User Community
- Große Anzahl an Packages (> 10.000) in einer sehr guten Qualität!!!
- Integration in viele Tools und Sprachen
 wie Microsoft SQL, Power BI, KINIME, RapidMiner, SAS etc. und Bindings/Interfaces für Programiersprachen

R wird in vielen Unternehmen produktiv eingesetzt

CRAN - Comprehensive R Archive Network

- Funktionsumfang kann durch eine Vielzahl von zusätzlichen Paketen erweitert werden.
- Zentrales Archiv ist Comprehensive R Archive Network (CRAN)
 mit zahlreichen Spiegelservern wie https://stat.ethz.ch/CRAN/
- https://mran.microsoft.com/ Daily Snapshots
- 12.323 Packages sind verfügbar (Stand 18.3.2018)
- Weitere Pakete bei Bioconductor (ca. 3.000) und GitHub
- Pakete bei CRAN und Bioconductor haben eine hohe Qualität und sind dokumentiert.
- R Manuals auch auf CRAN

Entwicklungstools

R im Web mit Shiny

https://shiny.rstudio.com/

ShinyProxy

- Deploying Shiny Apps
- LDAP Authentication und Authorization
- Skalierbar
- https://www.shinyproxy.io

Verarbeitung großer Datenmengen mit R

In-Memory Operation

Expensive Data Movement & Duplication

Lack of Parallelism

Verschiedene Skalierungsmöglichkeiten

Scale-Out: Verwende mehrere Server (Distributed Computing)

Apache Spark mitSparkR odersparklyr

Microsoft R Server
 jetzt unter dem Name
 Microsoft
 Machine Learning Server

— R on Docker → Rocker

R Syntax

```
\Rightarrow 🔝 🔚 🗌 Source on Save 🔍 🎢 🗸 🗐
                                                                                              1 #### Decision Trees
                                                                                           ^ Libraries
 2
                                                                                              Example Iris data
 3 → # Libraries -
                                                                                              Example breast cancer data
 4 library(rpart)
                         # Popular decision tree algorithm
                                                                                              Bia tree
   library(rattle) # Fancy tree plot
library(RColorBrewer) # Color selection for fancy tree plot
   library(party) # Alternative decision tree algorithm
library(caret) # Just a data source for this script but also a very import
 9
    # help rpart
10
11
    ?rpart
12
13 - # Example Iris data -----
14
15
    # The famous Fisher Iris dataset is included in R
    # but you should import it from UCI
16
    # http://archive.ics.uci.edu/ml/machine-learning-databases/iris/
17
    # t.url <- "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.dat
18
    # iris <- read.csv(t.url, header = FALSE, sep = ",", quote = "\"", dec = ".")</pre>
19
    # colnames(iris) <- c("Sepal.L", "Sepal.W", "Petal.L", "Petal.W", "Class")</pre>
20
21
22
    ?iris
23
    data(iris)
24
    iris
25
    formula <- Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
26
    # alternative way for formula. Dot . means all features
27
    # formula <- Species ~ .
28
29
    tree <- rpart(formula, data=iris, method="class", control=rpart.control(cp=0.0, mir
30
31
32
                                                                                         >
```

R als Taschenrechner

 $+, -, *, /, \sin(x), \operatorname{sqrt}(x), \exp(x), \dots$

```
3.5 + 1.5
[1] 5
```

```
x = 2^2
print(x)
[1] 4
```


Einfache Datentypen

Data type	Example
Integer	1
Logical	TRUE
Numeric	1.1
String / character	"Red"
Factor (enumerated string)	"Amber" or 2 in c ("Red", "Amber", "Green")
Complex	i
Date	2015-04-24
NA	NA

Vergleiche

```
# Comparison of numerics
                                       ## [1] TRUE
-6 * 5 + 2 > = 10 + 1
                                       # Comparison of logicals
                                       TRUE > FALSE
## [1] FALSE
# Comparison of numerics
                                       ## [1] TRUE
6 * 15 != 17 - 101
## [1] TRUE
# Comparison of character strings
"useR" == "user"
## [1] FALSE
# Comparison of character strings
"raining" <= "raining dogs"</pre>
## [1] TRUE
# Compare a logical with a numeric
TRUE == 1
```

Kontrollstrukturen

```
# Variables
medium <- "LinkedIn"</pre>
num views <- 14
# Control structure for medium
if (medium == "LinkedIn") {
  print("Showing LinkedIn information")
} else if (medium == "Twitter") {
  # do something
} else {
  print("Unknown medium")
# Control structure for num views
if (num_views > 15) {
  print("More than 15 views")
} else if (num_views <= 15 & num_views > 10) {
  # do something
} else {
  print("Nothing do show.")
```

Vektoren

Vektorisiert (empfohlen)

```
a <- seq(from = 1, to = 3, by = 1) # entspricht c(1,2,3)
b <- 9:7 # entspricht c(9, 8, 7)

a
[1] 1 2 3
b
[1] 9 8 7</pre>
```

Manuell

```
c <- c(0, 0, 0)
for (i in 1:length(a)) {
    c[i] <- a[i] + b[i]
}
c
[1] 10 10 10</pre>
```

```
c <- a + b
c
[1] 10 10 10
```

Vektoren und Funktionen

Funktionen werden auf jedes Element eines Vektors angewandt.

```
a <- 1:4
sqrt(a) # square root

[1] 1.000000 1.414214 1.732051 2.000000

max(a^2) # biggest element

[1] 16

sum(a^2) # sum of all elements

[1] 30</pre>
```

Data Frame

- Liste aus Vektoren gleicher Länge (=Spalten), die Namen haben
- Wichtigste Datenstruktur

-	mpg ‡	cylinders [‡]	displacement †	horsepower $^{\scriptsize \scriptsize $	weight ‡	acceleration $^{\scriptsize \scriptsize $	year ‡	origin [‡]	carname
1	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
2	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320
3	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite
4	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst
5	17.0	8	302.0	140	3449	10.5	70	1	ford torino
6	15.0	8	429.0	198	4341	10.0	70	1	ford galaxie 500
7	14.0	8	454.0	220	4354	9.0	70	1	chevrolet impala
8	14.0	8	440.0	215	4312	8.5	70	1	plymouth fury iii
9	14.0	8	455.0	225	4425	10.0	70	1	pontiac catalina
10	15.0	8	390.0	190	3850	8.5	70	1	amc ambassador dpl

Zwei Indices: df[Zeile(n) , Spalte(n)]

Data Frame: Zugriff auf Inhalte

Zugriff auch über Spaltenname möglich

```
> df[1, ] # erste Zeile, alle Spalten

mpg cylinders displacement horsepower weight acceleration year origin carname
1 18 8 307 130 3504 12 70 1 chevrolet chevelle malibu
```

> df\$cylinder # alle Zeile, Merkmal cylinder

```
> df[1,3] # erste Zeile, dritte Spalten
```

Zugriff auf Elemente

```
x <- 1:5
x[3]
## [1] 3

x[3] <- 42
x
## [1] 1 2 42 4 5</pre>
```


From @hadleywickham

Packages

Vor der ersten Nutzung und nach R-Updates müssen Packages einmalig installiert werden.

Im Code müssen die Packages in die Session geladen werden.

```
# Get a package
install.packages("caret")

# Activate a package
library(caret)
```

Learning R the Tidyverse

Tidyverse ist eine Sammlung von R Packages, die alle nach gleichen Grundprinzipien arbeiten.

https://www.tidyverse.org/

Um alle Packages zu nutzen, genügt:
install.packages("tidyverse")
library(tidyverse)

Pipe-Operator

%>%

- Weitergabe des Ergebnisses der ersten Funktion als Input für die nächste Funktion "... und dann ..."
- Statt f2(f1(x))) schreibt man x %>% f1 %>% f2

```
finally_last_step(
    and_then_third(
        then_second(
            do_first(data)
     )
    )
)
```

```
data %>%
  do_first() %>%
  then_second() %>%
    and_then_third() %>%
    finally_last_step()
```

Beispiel

```
data(iris)
iris[, 1:4] %>%  # select first 4 columns
  head() %>%  # show 1st 6 rows of 4 columns
  rowSums()  # row sums of 6 rows of 4 cols

#> 1 2 3 4 5 6
#> 10.2 9.5 9.4 9.4 10.2 11.4
```

RStudio

Visualize Data with

"The simple graph has brought more information to the data analyst's mind than any other device. "

- John Tukey

Vorgehen

- 1.Initialisiere einen Plot mit ggplot()
- 2. Füge Layers mit geom_X Funktionen hinzu.


```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy))
```

Syntax

```
+ before new line
                data
ggplot(data = mpg) +
  geom\_point(mapping = aes(x = displ, y = hwy))
                                 x variable
     type of layer
                        aes()
                                             y variable
ggplot(data = <DATA>) +
   <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))
```

Aesthetics

aesthetic property

Variable to map it to

```
ggplot(mpg) +geom_point(aes(x = displ, y = hwy, color = class))
ggplot(mpg) +geom_point(aes(x = displ, y = hwy, size = class))
ggplot(mpg) +geom_point(aes(x = displ, y = hwy, shape = class))
ggplot(mpg) +geom_point(aes(x = displ, y = hwy, alpha = class))
```

Legend added automatically

geom_ functions

Beispiel für geom_function


```
ggplot(data = mpg) +
   geom_boxplot(mapping = aes(x = class, y = hwy))
```

Beispiel für geom_function


```
ggplot(data = mpg)+
  geom_density(mapping = aes(x = hwy, color = class))
```

Jedes geom_X fügt einen neuen Layer hinzu

ggplot2 Template

ggplot2.tidyverse.org und www.r-graph-gallery.com

