

Computer Vision Systems Programming VO Image Processing Recap

Christopher Pramerdorfer
Computer Vision Lab, Vienna University of Technology

Topics

Brief *Image Processing* (IP) recap Assuming you are already familiar with it

mages from Prince 201

Image Processing Recap

We use IP to extract good features from images

- Preprocessing step for CV
- ▶ IP has great influence on CV performance

What are good features? More on this later

Let's recap some basic IP methods

No details, this is not an IP lecture

Linear Filtering

Used for many low-level tasks

Pixel values are linear combination of neighbor values

Computed via *convolution* (or correlation) with kernel h

Different responses depending on kernel

$$f'(x,y) = \sum_{i,j} f(x-i, y-j)h(i,j)$$

Gain robustness to noise via image blurring

Can be performed by using a 2D Gaussian as kernel \boldsymbol{h}

$$h(i,j) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{i^2 + j^2}{2\sigma^2}\right)$$

Images from Prince 2012

Brightness changes can be valuable information

► Object boundaries, textured regions

Use a Laplacian of Gaussian (LoG) filter as kernel h

- ► Gaussian for noise reduction
- Laplacian approximates $abla^2 = f_{xx} + f_{yy}$

LoG filters respond to intensity changes

- ► Regardless of direction
- \blacktriangleright At a frequency defined by σ of Gaussian

Linear Filtering Detecting Brightness Changes – LoG Filter

Bright and dark regions indicate brightness changes

Images from Prince 2012

Linear Filtering Detecting Brightness Changes – Gabor Filter

Direction of brightness changes can be valuable

Texture characteristics

Use a Gabor filter as kernel h, which consists of

- A Gaussian for noise reduction
- A Sinusoid for change detection

Gabor filters respond to intensity changes at a

- Phase and orientation defined by the Sinusoid
- ▶ Frequency defined by the Gaussian and Sinusoid

Linear Filtering

Detecting Brightness Changes - Gabor Filter

Images from Prince 2012

Interest Point Detection

Interest points (keypoints) are

- ► Distinctive locations in images
- ▶ Invariant and robust to image transformations

Can be detected reliably in multiple images of same object

Used for object detection, structure from motion

Interest Point Detection SIFT Keypoints

Scale invariant blob detector

▶ A blob is an image region with similar intensity

Blob detection accomplished via LoG filtering

lackbox LoG filter responds to blobs of size that depends on σ

Scale invariance is achieved by

- ightharpoonup Applying LoG filter with multiple σ
- ► Finding local maxima in resulting scale-space

Interest Point Detection SIFT Scale Space

Images from Prince 2012

Interest Point Detection SIFT Keypoints

Found local maxima are

- ▶ Discarded unless on image corners
- Assigned an orientation via gradient histograms (slide 15)

Image from Prince 2012

Local Descriptors

Compact representations of contents of an image region
Usually computed at interest point locations
Invariant in conjunction with suitable interest points
Pool information locally to achieve robustness

Local Descriptors SIFT Descriptor

Computed from gradient histograms

Usually used together with SIFT interest points

► Compensate for scale, rotation

Images from Prince 2012

Local Descriptors SIFT Descriptor

SIFT descriptors are

- Invariant to scale and rotation (interest points)
- Invariant to global intensity changes (gradients)
- Robust to small affine transformations (pooling)

Dimensionality Reduction

Reduce the dimensionality of x by removing irrelevant features

▶ Irrelevant means redundant or not discriminative (e.g. noise)

Advantages

- ▶ We get a better x automatically
- Facilitates data visualization

Assume the following data (30 samples $x_1 \cdots x_{30}$, $\dim(x) = 2$)

► Features are highly correlated

Dimensionality Reduction PCA

We want to map the \mathbf{x}_k to a linear subspace Spanned by directions of largest data variation

Dimensionality Reduction PCA

Standardize individual features (zero mean, unit stddev)

Compute covariance matrix Σ

 \blacktriangleright Eigenvectors $\mathbf{u}_1, \mathbf{u}_2$ of Σ are sought direction vectors

Represent \mathbf{x}_k in the $U=(\mathbf{u}_1,\mathbf{u}_2)$ basis, $\mathbf{x}_k^r=U^{\top}\mathbf{x}_k$

ightharpoonup $\mathbf{u}_1,\mathbf{u}_2$ are orthogonal, so U is a rotation matrix

Now we can simply drop features that vary little

• Encoded by the corresponding eigenvalues λ_1,λ_2

Dimensionality Reduction PCA

If desired we can approximate \mathbf{x}_k by multiplying with U

Dimensionality Reduction PCA

This method is called Principal Component Analysis (PCA)

Used to find features that retain e.g. 99% of variance

▶ Often leads to a significant dimensionality reduction

Used to perform whitening

- ▶ To obtain uncorrelated features with same variance
- Needed by some ML algorithms

Bibliography

Prince, S.J.D. (2012). *Computer Vision: Models Learning and Inference*. Cambridge University Press.

