Question 1 1 / 1 point

Given are the running times of some algorithms. Please select all the **efficient** algorithm running times.

Question 2 1 / 1 point

Let's consider a box packing problem discussed in class: 12 boxes of capacities {10, 32, 7, 10, 16, 21, 20, 73, 42, 49, 31, 30} and 14 items of sizes {21, 24, 1, 91, 27, 43, 29, 10, 33, 29, 33, 29, 23, 68}. Please select the maximum number of items that can be placed in the boxes.

7

Question 2 1 / 1 point

Let's consider a box packing problem discussed in class: 12 boxes of capacities {10, 32, 7, 10, 16, 21, 20, 73, 42, 49, 31, 30} and 14 items of sizes {21, 24, 1, 91, 27, 43, 29, 10, 33, 29, 33, 29, 23, 68}. Please select the maximum number of items that can be placed in the boxes.

7	box-item 10-10
8	32-29
	7-1 21-21
V	73-68 42-33
<u> </u>	49-43
Duestion 3	31-29 30-27

Question 3 1/1 point

Consider an interval scheduling problem instance: 12 jobs with [starting time, finish time) as follows: [2, 7), [3, 6), [1, 4), [1, 3), [0, 3), [7, 10), [2, 4), [6, 7), [3, 5), [4, 8), [5, 7), [8, 9). Please select **all** solutions that provide a maximum-size subset of mutually compatible jobs following the Greedy algorithm "Schedule the job with the earliest finish time".

Ouestion 4 1 / 1 point

Question 4 1 / 1 point

Consider an **interval partition problem** instance: 12 jobs with [starting time, finish time) as follows: [6, 7), [3, 6), [1, 4), [1, 3), [0, 3), [7, 10), [2, 4), [6, 7), [3, 5), [4, 8), [5, 7), [8, 9). Please select **all** solutions that provide a minimum number of machines to schedule all jobs.

machine 1: [0, 3), [7, 10)

Must be in different machines because all have 3

machine 2: [1, 3), [3, 6), [8, 9)

machine 3: [1, 4), [4, 8)

machine 4: [2, 4), [6, 7)

machine 5: [3, 5), [5, 7), [6, 7)

machine 1: [0, 3), [3, 5), [5, 7), [7, 10)

machine 2: [1, 3), [3, 6), [6, 7), [8, 9)

machine 3: [1, 4), [4, 8)

machine 4: [2, 4), [6, 7)

machine 1: [0, 3), [3, 6), [6, 7)

machine 2: [1, 3), [3, 5), [6, 7)

machine 3: [1, 4), [5, 7), [7, 10)

machine 4: [2, 4), [4, 8), [8, 9)

/ machine 1: [0, 3), [3, 5), [6, 7)

machine 2: [1, 3), [3, 6), [6, 7)

machine 3: [1, 4), [4, 8), [8, 9)

machine 4: [2, 4), [5, 7), [7, 10)

machine 2: [1, 3), [3, 6), [6, 7)

machine 3: [1, 4), [4, 8), [8, 9)

machine 4: [2, 4), [5, 7), [7, 10)

Question 5 1 / 1 point

Consider a directed acyclic graph (DAG) with 6 vertices labeled from A to F and the following directed edges:

 A → B 	\rightarrow		\rightarrow		> -7
 A → C 	Stack	Stack	Stack	Stack	Stack
• B → E		D		E	F
• C → D	C	D	-D	-D	-E
• D → F	B -A	-C B	-C B	-C -B	-D
• D → F		-A	-A	-В -А	-C -B
• E → F					-A
Ordering when pop:	A-1	C-2	D-3	B-4	E-5

Using the Topological-Sort algorithm in the lecture notes with the following conditions to compute the topological ordering: (1) Use S as a **Stack** in **Line 7** and **Line 11** of the algorithm. (2) When processing the neighbors of vertex v in Line 9, consider them in **alphabetical order**.

Please provide the topological order ($\underline{1}$, $\underline{2}$, $\underline{3}$, $\underline{4}$, $\underline{5}$, $\underline{6}$) of the vertices for this graph.

- <u>3</u> D
- <u>2</u> C
- <u>5</u> E
- __<u>1</u>__ A
- <u>4</u> B
- <u>6</u> F

- _<u>4</u>__ B
- <u>6</u> F

Question 6 1 / 1 point

Consider a directed acyclic graph (DAG) with 6 vertices labeled from A to F and the following directed edges:

- A → B
 A → C
 B → E ABC ABCD ABCDE ABCDEF
 C → D ABCD ABCDE
 D → E
 D → F
- Using the Topological-Sort algorithm in the lecture notes with the following conditions to compute the topological ordering: (1) Use S as a **Queue** in **Line 7** and **Line 11** of the algorithm. (2) When processing the neighbors of vertex v in Line 9, consider them in **alphabetical order**.

Please provide the topological order ($\underline{1}$, $\underline{2}$, $\underline{3}$, $\underline{4}$, $\underline{5}$, $\underline{6}$) of the vertices for this graph.

<u>4</u> D

• $E \rightarrow F$

- __<u>1</u>__ A
- <u>3</u> C
- <u>6</u> F
- __<u>2</u>__ B
- __<u>5</u>__ E

Done