DYNAMIQUE HOMOGÈNE

LA TEAM CAIPI

Contents

1.	Pistes bibliographiques	1
2.	Introduction à la dynamique homogène	1
2.1.	Translation sur le tore	1
3.	Benoist-Quint sur le tore	2
References		3

1. Pistes bibliographiques

Bourbaki de Ghys sur Ratner: [Ghy]. La Takagi lecture de Benoist-Quint: [BQa]. Bourbaki de Ledrappier sur BQ: [Led].

2. Introduction à la dynamique homogène

2.1. **Translation sur le tore.** On note \mathbb{T}^d le tore de dimension d. On fixe $v \in \mathbb{R}^d$ et considère T la translation $x \mapsto x + v$. On a la dichotomie:

Lemme 1. La translation est (topologiquement) minimal si et seulement si la famille $(1, v_1, \ldots, v_d)$ est algébriquement libre sur Q.

Proof. Soit on connait la classification des sous-groupes fermés du tore, soit on regarde en Fourier. $\hfill\Box$

On se place dans le cas minimal (on dit que v est générique). La dynamique de T est très particulière:

- c'est la translation sur un groupe (compact, abélien).
- c'est une isométrie (drift = dérive = 0).

La translation T préserve (par définition) la mesure de Haar λ sur le tore.

Lemme 2. La mesure de Haar λ est ergodique pour T.

Proof. On décompose une fonction L^1 invariante en Fourier et on voit que les coefficients non constant doivent être nuls.

La translation est en fait uniquement ergodique. On peut le voir de plusieurs manières: De manière générale, sur un groupe abélien compact, si une translation est ergodique pour la mesure de Haar alors elle est uniquement ergodique (voir [KH] prop. 4.2.3).

Sinon méthode par "dérive nulle": soit μ une autre mesure ergodique. Soit f une fonction continue Soit x générique pour λ et y générique pour μ , c'est à dire que

$$\frac{1}{n} \sum_{k=0}^{n-1} f(T^k x) \to \int f d\lambda$$
$$\frac{1}{n} \sum_{k=0}^{n-1} f(T^k y) \to \int f d\mu.$$

Comme l'orbite de x est dense, on peut supposer que x est aussi proche de y que l'on veut. Plus précisemment, soit $\varepsilon > 0$ et $\delta > 0$ un module de continuité de f pour ε . On suppose que $d(x,y) < \delta$.

Comme $d(T^kx, T^ky) = d(x, y)$ on a $f(T^kx) = f(T^ky) + O(\varepsilon)$ pour tout k. Done:

$$\frac{1}{n} \sum_{k=0}^{n-1} f(T^k x) = \frac{1}{n} \sum_{k=0}^{n-1} f(T^k y) + O(\varepsilon)$$

$$\Longrightarrow$$

$$\int f d\lambda = \int f d\mu + O(\varepsilon).$$

Comme c'est vrai pour tout ε , on a l'égalité.

3. Benoist-Quint sur le tore

On considère le groupe $SL_d(\mathbb{Z})$ agissant sur le tore \mathbb{T}^d . Fixons une mesure de probabilité μ sur $SL_d(\mathbb{Z})$ telle que:

- \bullet le support de μ est finie
- le (semi)groupe Γ engendré par le support de μ agit sur \mathbb{R}^d de manière proximal et fortement irréductible.

On s'intéresse à la marche aléatoire engendrée par μ et son action sur \mathbb{T}^d . On veut comprendre le théorème de Benoist-Quint [BQb] suivant:

Théorème 3. Toute mesure de probabilité μ -stationaire sur le tore est une combinaison de la mesure de Haar sur le tore et d'atomes.

Plan grossier de la preuve:

- On introduit l'espace des tirages (B, β) et on décompose la mesure stationnaire $\nu = \int \nu_b \beta(db)$. C'est un résultat classique de Furstenberg.
- Il existe une application $b \mapsto V_b$ qui à chaque tirage associe une droite de \mathbb{R}^d telle que pour toute valeure d'adhérence (projective) π de $b_1 \cdots b_n$ on ait $Im(\pi) = V_b$ (c'est la direction de contraction de $b_1 \cdots b_n$). C'est aussi Furstenberg, cela résulte du

- point précédent appliqué à une mesure stationnaire sur l'espace projectif et la proximalité.
- Lemme clé: la proba ν_b est V_b -invariante (c'est à dire par le flot dans la direction V_b ?) Donc c'est Haar sur un sous-tore.
- Lemme intermédiaire: un SL_n -espace dénombrable alors toute proba μ -stationaire et ergodique est Γ -invariante et de support fini.
- Soit Φ l'application de B vers ST l'ensemble des sous-tores de \mathbb{T}^d qui à b associe la composante connexe du stabilisateur de ν_b . L'ensemble ST est dénombrable et est munie de la mesure stationaire $m = \Phi_*\beta$. Par le lemme intermédiaire, le support de m est fini et Γ -invariant.
- Si un certain sous-tore de cette ensemble fini n'est pas le tore en entier, alors on peut contredire la forte irréductibilité.
- Finalement, presque sûrement ν_b est Haar sur le tore. On en déduit que ν est Haar sur le tore, par $\nu = \mathcal{E}(\nu_b)$.

References

- [BQa] Yves Benoist and Jean-François Quint. Introduction to random walks on homogeneous spaces. 7(2):135–166.
- [BQb] Yves Benoist and Jean-François Quint. Mesures stationnaires et fermés invariants des espaces homogènes. 174(2):1111–1162.
- [Ghy] Étienne Ghys. Dynamique des flots unipotents sur les espaces homogènes. page 45.
- [KH] Anatole Katok and Boris Hasselblatt. Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press. Library Catalog: www.cambridge.org.
- [Led] François Ledrappier. Mesures stationaires sur les espaces homogènes.