程序的机器级表示

指令系统简介

主讲人: 邓倩妮

上海交通大学

本节内容

- 指令系统
- 指令格式
- 寻址方式
- RISC 与 CISC

指令系统基本概念

- 机器指令(指令)
 - 计算机能直接识别、执行的某种操作命令。
- 指令系统(指令集)
 - 一台计算机中所有机器指令的集合。
 - 机器硬件设计的依据,也是软件设计的基础。
 - 硬件和软件间的界面,直接影响计算机系统性能

计算机指令系统特性

- 完备性:指令丰富,功能齐全,使用方便。
- 有效性:程序占空间小,执行速度快。
- 规整性:
 - 对称性(所有寄存器、存储单元同等对待)、匀齐性(一种操作支持多种数据类型):
 - 指令格式和数据格式的一致性(指令长度和数据长度通常是字节的整数倍):
- 兼容性:系列机软件向上兼容

系列计算机

- 基本指令系统相同,基本系统结构相同的计算机。
- IBM, PDP-11, VAX-11, Intel-x86, Pentium
- 系列计算机主要是解决软件兼容的问题。新计算机中必须包含老计算机的指令系统,保证软件向上兼容,保护用户投资。

指令格式

- 表示一条指令的机器字,称为指令字,简称指令。
- 指令格式:用二进制代码表示指令的结构形式。

操作码字段

地址码字段

操作码(OP)与地址码(AC)

操作码字段

地址码字段

- 指令系统中每一条指令对应一个操作码
- 操作码的长度取决于指令系统的规模
 - $L_{OP} = (log_2 n)$
- 定长指令、变长指令
- 地址码包括被操作数,操作数,操作结果

指令分类方法

- 按操作数个数分类
- 按操作数物理位置分类
- 按指令长度分类

按操作数个数分类

按操作数的物理位置分类

- 访问内存
 - 存储器 存储器 (SS) 型
- 访问寄存器
 - 寄存器 寄存器 (RR) 型
- 访问内存和寄存器型
 - 寄存器 存储器 (RS) 型

指令字长度

- 指令中包含二进制代码的位数
- 与机器字的长度有关: 单字长,双字长,半字长。
- 等长指令: 结构简单, 控制线路简单。
- 变长指令:结构灵活,充分利用指令长度,控制 复杂

指令字助记符

- ADD
- SUB
- MOV
- JMP
- STR
- LDA

寻址方式

- 寻找指令或操作数有效地址的方式
 - 指令寻址
 - ■顺序寻址
 - 跳跃寻址
 - 操作数寻址

顺序寻址

- 程序的指令序列在主存顺序存放。程序执行时从第一条 指令开始,逐条取出并逐条执行,这种程序的顺序执行 过程,称为顺序寻址方式。
- 为了达到顺序寻址的目的,CPU中必须有一个程序计数器(PC)对指令的顺序号进行计数。PC中开始时存放程序的首地址,每执行一条指令,PC加1,以指出下条指令的地址,直到程序结束。
- PC存放下一条指令的地址

顺序寻址过程

跳跃寻址

- 当程序中出现分支或循环时,就会改变程序的执行顺序。此时对指令寻址就要采取跳跃寻址方式。
- 所谓跳跃,就是指下条指令的地址不是通过程序计数器 PC当前值获得的,而是由指令本身给出。
- 跳跃的处理方式是重新修改PC的内容。然后进入取指令 阶段。

跳跃寻址过程

操作数的寻址方式

- 形成操作数有效地址的方法。
 - 单地址指令地址码的构成: X, I,D
 - 实际有效地址为E, 实际操作数S
 - S= (E)

寻址方式分类

- 立即寻址
- 直接寻址
- 间接寻址 (已经不使用)
- 寄存器寻址

- 寄存器间接寻址
- 相对寻址
- 变址寻址
- 复合寻址

立即寻址

- 地址码字段是操作数本身
 - 例: MOV AX,2038H (2038H→AX)

寄存器寻址(Register Addressing)

- · 操作数在CPU的内部寄存器中.
 - 例如 INC R1

直接寻址(Direct Addressing)

- 地址码字段直接给出操作数在内存的地址
- MOV AX, [200]

间接寻址(Indirect Addressing)

• D单元的内容是操作数地址, D是操作数地址的地址

寄存器间接寻址(Register Indirect Addressing)

■ 寄存器中的内容是操作数的内存地址,

例如: INC (R1)

相对寻址 (Relative Addressing)

· 指令中的D加上PC的内容作为操作数的地址.

变址寻址(Index Addressing)

- 指定一个寄存器R,其存放基址,R被称为变址寄存器。它与本指令的地址无关,R的内容可以随要求填入。
- E=D+(R)
- MOV AX, 200[SI] SI,DI 都称为变址寄存器

复合寻址(Composite Addressing)

- ▶ 将间址,相对,变址,基值等寻址方式组合.
- 例如:变址间址 先变址,后间址 E=((R)+D)

各种常见寻址方式的汇编指令表示

寻址方式	汇编表示	操作内容		
直接寻址	load adr	load adr ac←mem[adr]		
间接寻址	load (adr)	ac←mem[mem[adr]]		
相对寻址	load adr(pc)	ac←mem[pc+adr]		
立即寻址	load #n	ac←n		
变址寻址	load adr(rn)	ac←mem[adr+rn]		
寄存器寻址	load rn	ac←rn		
寄存器间接寻址	load (rn)	ac←mem[rn]		

指令系统发展方向

- CISC---复杂指令系统计算机
 - Complex Instruction System Computer
 - 指令数量多,指令功能,复杂的计算机。
- RISC---精简指令系统计算机
 - Reduced Instruction System Computer
 - 指令数量少,指令功能单一的计算机。

高级语言中各种语句的动态出现频度

	Pascal	С	
赋值语句	45	38	
循环语句	5	3	
程序调用语句	15	12	
判断语句	29	43	
直接转移语句	_	3	
其它	6	1	

精减指令系统(RISC)

- 选取使用频率最高的一些简单指令,指令条数少;
- 寻址方式简单
- 指令长度固定,指令格式简单
- CPU设置大量寄存器
- 只有存/取数指令才能访问存储器,
- 其余指令的操作都在寄存器之间进行.
- 每一个机器周期完成一条机器指令

CISC与RISC的比较

	CISC		RISC		
特征	IBM 370	VAX 11	Intel 80486	SPARC	MIPS R4000
开发年份	1973	1978	1989	1987	1991
指令数量/条	208	303	235	69	94
指令长度/B	2 ~ 6	2 ~ 5	1 ~ 11	4	4
寻址方式	4	22	11	2	2
通用寄存器数/个	16	16	8	40~ 520	32
控制存储器大小/Kb	420	480	246	_	_
Cache大小/KB	64	64	8	32	128

谢谢!

