# Hunting for New Threats in a Feed of Malicious Samples

#### Kevin van Liebergen

Director: Juan Caballero (Instituto IMDEA Software)

Tutor: Javier Junquera (Universidad de Alcalá)

Universidad de Alcalá

July 22, 2022



## Problem Space

- Increasing number of malware
  - Polymorphism = Malware variation to evade its detection
- Limited number of malware analysts
- Antivirus (AV) engines are not perfect and may not agree
- Online scanners analyze submitted samples with many AV engines regardless its filetype



#### File Feeds

- File Feed = File dataset updated periodically
- Malware feed = File feed of malicious samples
- We compare four feeds on the same one-year period

|               |         |              |            |             | New Samples in |
|---------------|---------|--------------|------------|-------------|----------------|
| Feed          | Type    | Free         | Start      | All Samples | One Year       |
| VT File Feed  | File    | Х            | 2004-06    | >2,400,000K | 209,600K       |
| VirusShare    | Malware | $\checkmark$ | 2012-06-15 | 37,683K     | 1,400K         |
| MalShare      | Malware | $\checkmark$ | 2017-09-14 | 4,721K      | 442K           |
| MalwareBazaar | Malware | ✓            | 2020-02-13 | 516K        | 178K           |

- VT File Feed collects 209M new samples over one-year
- We focus on the VT File Feed because of its massive volume

## VT File (Report) Feed

- Report = Metadata of a submitted file
- Sample = Unique reports
- Hash = File compression function

• Cryptographic hash = With similar inputs produces **different** outputs

• Similarity hash = With similar inputs produces **similar** outputs (i.e., groups similar malware)

- tlsh. Outperforms other similarity hashes
- vhash. VirusTotal propietary hash

#### Feature Extraction

- 27 features, 23 directly from VT reports, 4 derived by tools such as AVCLASS. VT directly reports splitted into:
  - Sample: Should have the same values across all scans
  - Scan: May differ across scans
- Feed lacks a unified filetype
- AVCLASS: Malware labeling tool, extracts the malware family, a list of tags, and if the sample is a Potentially Unwanted Program (PUP)

| Feature              | Scope   | Туре        | peexe    | apk          |
|----------------------|---------|-------------|----------|--------------|
| authentihash         | sample  | cryptohash  | <b>√</b> | Х            |
| cert_issuer          | sample  | string      | ✓        | ✓            |
| cert_subject         | sample  | string      | ✓        | ✓            |
| cert_thumbprint      | sample  | cryptohash  | ✓        | ✓            |
| cert_valid_from      | sample  | timestamp   | ✓        | ✓            |
| cert_valid_to        | sample  | timestamp   | ✓        | ✓            |
| exiftool_filetype    | sample  | string      | ✓        | ✓            |
| fseen_date           | sample  | timestamp   | ✓        | ✓            |
| icon_hash            | sample  | cryptohash  | ✓        | ✓            |
| imphash              | sample  | cryptohash  | ✓        | Х            |
| md5                  | sample  | cryptohash  | ✓        | ✓            |
| package_name         | sample  | string      | X        | ✓            |
| richpe_hash          | sample  | cryptohash  | ✓        | Х            |
| sha1                 | sample  | cryptohash  | OV.      | ✓            |
| sha256               | sample  | cryptohash  | 1        | 1            |
| tlsh                 | sample  | fuzzyhash   | <b>V</b> | V            |
| trid_filetype        | sample  | string      | 1        | $\checkmark$ |
| vhash                | sample  | structhash  | <b>—</b> | <b>~</b>     |
| detection_labels     | scan    | string list | <b>√</b> | 1            |
| scan_date            | scan    | timestamp   | ✓        | 1            |
| sig_verification_res | scan    | string ±    | <b>√</b> | Х            |
| vt_meaningful_name   | scan    | string 🚹 🚶  | <b>√</b> | 1            |
| vt_score             | scan    | integer     | <b>√</b> | 1            |
| avc2_family          | derived | string 444  | 14 V     | V            |
| avc2_tags            | derived | string list | 1        | 1            |
| avc2_is_pup          | derived | bool        | 1        | 1            |
| filetype             | derived | string      | 1        | 1            |

## Threat Hunting

- Threat hunting = Finding interesting threats in a file feed
  - To send to a human analyst
- Threat = Malicious sample or cluster of similar malicious samples
- Interesting threat examples
  - Our goal
    - Undetected malicious samples
  - Other goals
    - Unclassified clusters, e.g., unknown family
    - New / quickly growing malicious clusters
- Threat hunting challenging due to huge volume, diversity

## Our Threat Hunting Goal

- Find undetected malicious samples (with zero AV engine detections)
- Intuition:
  - Cluster all files, regardless if benign or malicious
  - Identify malicious clusters, i.e., with a majority of malicious samples that also contain samples with zero detections
    - Malicious samples = Samples with  $\geq$  4 detections
- We identify 190K potentially malicious samples in 29K clusters

## Architecture Overview



#### State of the Art

### Threat hunting works

- Graziano et al. developed an early detection approach while users submit first-stage samples to online scanners for peexe samples
- Huan et al. followed up the work but for apk samples
- Yuan et al. is a follow up of above works adding a scalability component
- Spotlight [Kaczmarczyck et al'20] threat hunting tool
  - The input is only malicious samples
  - Clusters ranking depends on the goal

#### Our work

- Our threat hunting approach may find samples regardless its filetype
- We include samples regardless its AV detections

## State of the Art

#### VT Feed work

- Characterization of the VT **URL** Feed [Pen et al '19] measuring phishing websites
- Characterization the VT File Feed during **one day** [Ugarte-Pedrero et al'19]

#### Our work

• We characterize the VT File Feed during one year



### Contributions

- Threat Hunting
  - Evaluate two clustering approaches
  - Identify potentially malicious samples originally thought to be benign
- VT File Feed
  - One-year characterization of the VT File Feed



# Table of Contents

1 Introduction

2 VT File Feed

3 Threat Hunting



### Volume



|             | Mean      | Median    |
|-------------|-----------|-----------|
| Reports     | 1,681,470 | 1,879,952 |
| Samples     | 1,493,410 | 1,680,520 |
| New samples | 1,028,370 | 1,120,242 |

| Data           | All    |        |       | other |
|----------------|--------|--------|-------|-------|
| Data           | All    | peexe  | apk   | otner |
| Reports        | 328.3M | 220.3M | 15.9M | 92.0M |
| Samples        | 235.7M | 155.5M | 8.2M  | 72.0M |
| New samples    | 209.6M | 134.6M | 5.6M  | 69.3M |
| Signed samples | 13.3M  | 5.8M   | 7.5M  | 94.8K |

- Collected 328M reports for 235M samples
- ullet The 89% of the samples are new



## VT File Feed Analysis: Daily statistics



Figure: Reverse ECDF of each sample since 2021/11/19.

 $\bullet$  VT File Feed is not a malware feed (  $\geq 50\%$  samples have zero detections)

## Filetype distribution

| Filetype   | Samples     | Perc   |  |
|------------|-------------|--------|--|
| peexe      | 155,526,594 | 65.97% |  |
| javascript | 21,048,404  | 8.93%  |  |
| html       | 12,540,571  | 5.32%  |  |
| pdf        | 11,346,815  | 4.81%  |  |
| apk        | 7,992,206   | 3.40%  |  |
| Other      | 24,843,745  | 11.56% |  |
| ALL        | 235,745,107 | 100.0% |  |

Table: Top 5 filetypes of VT File Feed.

 The feed is a good source of samples to create malware datasets for especially peexe and apk

## Family distribution

 The feed is diverse with 4.9K families with at least 100 samples. So, is a good source of samples to create malware datasets for a large variety of malware families

| Filetype | Family                | Class      | Samples    |
|----------|-----------------------|------------|------------|
| peexe    | FAM:berbew            | backdoor   | 19,371,273 |
| рсскс    | FAM:dinwod            | downloader | 9.398.314  |
|          | FAM:virlock           | virus      | 7.921.534  |
|          | FAM:pajetbin          | worm       | 7,164,373  |
|          | FAM:sivis             | virus      | 6,222,693  |
| apk      | FAM:smsreg            | pup        | 616,406    |
| •        | FAM:ewind             | pup:adware | 430,531    |
|          | FAM:hiddad            | pup:adware | 219,577    |
|          | FAM:fakeadblocker     | pup:adware | 82,715     |
|          | FAM:adlibrary:airpush | pup:adware | 80,704     |
| elf      | FAM:xorddos           | ddos       | 287,631    |
|          | FAM:mirai             | backoor    | 163,525    |
|          | FAM:mirai:gafgyt      | backoor    | 59,348     |
|          | FAM:tsunami           | backoor    | 3,381      |
|          | FAM:mirai:hajime      | downloader | 2,499      |
| macho    | FAM:flashback         | downloader | 33,087     |
|          | FAM:mackontrol        | backdoor   | 15,459     |
|          | FAM:mackeeper         | pup        | 15,017     |
|          | FAM:evilquest         | ransomware | 7,070      |
|          | FAM:cimpli            | pup:adware | 5,444      |
| doc      | FAM:emotet            | infosteal  | 24,643     |
|          | FAM:valyria           | downloader | 10,182     |
|          | FAM:thus              | virus 🔳    | 4,917      |
|          | FAM:sagent            | downloader | 4,717      |
|          | FAM:donoff            | downloader | 2,437      |

Table: Top 5 families per top filetypes.

# Table of Contents

Introduction

2 VT File Feed

3 Threat Hunting



## Clustering

- The goal is to group similar samples, i.e., belongs to the same family
- Scalable approach to cluster 1.5M daily samples in less than 24h
- ullet  $\uparrow$  Precision = Same feature cluster is not split in many families

#### Clustering approaches:

- HAC-T [Oliver et al '20]
  - Cluster by tlsh feature
- Feature Value Grouping (FVG)
  - Equality comparison: Group samples with same feature, i.e., vhash, certificate thumbprint

## Clustering Evaluation

 We evaluate the clustering on four popular malware ground truth datasets: Malicia, Malsign, AMD, and Drebin

| Feature      | Algor.   | Clust. | Prec. | Recall | F1    |
|--------------|----------|--------|-------|--------|-------|
| authentihash | fvg      | 9,909  | 100%  | 0.5%   | 1.1%  |
| avc2_family  | fvg      | 284    | 97.0% | 75.4%  | 84.8% |
| cert_thumb.  | fvg      | 9,410  | 100%  | 1.8%   | 3.5%  |
| icon_hash    | fvg      | 9,766  | 99.9% | 1.0%   | 1.9%  |
| imphash      | fvg      | 1,843  | 99.7% | 5.7%   | 10.7% |
| richpe_hash  | fvg      | 9,899  | 100%  | 0.6%   | 1.2%  |
| vhash        | fvg      | 900    | 98.8% | 12.8%  | 22.7% |
| tlsh         | hact-opt | 3,772  | 99.9% | 6.2%   | 11.8% |
| tlsh         | hact     | 3,899  | 99.9% | 3.8%   | 7.3%  |
|              |          |        |       |        |       |

Table: Malicia dataset (9.9K samples).

• FVG and HAC-T produces clusters with 97.0%-99.9% precision

## Clustering Runtime

- FVG-vhash cluster 235M samples of the VT File Feed in 15 hours
- HAC-T does not finish to cluster one day with 2.2M samples



# Threat Hunting

- Not-so-benign
  - Detect malicious clusters over FVG-vhash
  - Samples with zero detections in clusters

• We identify 190K potentially malicious samples in 29K clusters

## **Takeaways**

#### VT File Feed

- Collected 328M reports for 235M samples
- The 89% of the samples are new
- VT File Feed is not a malware feed ( $\geq 50\%$  samples have zero detections)
- The feed is a good source of samples to create malware datasets for:
  - Especially peexe and apk filetypes
  - A large variety of malware families. The feed is diverse with 4.9K families with at least 100 samples

## Threat Hunting

- FVG produce scalable clusters with 97.0%-99.9% precision
- We identify 190K potentially malicious samples in 29K clusters

### Future Work

- Detect other threats
- Early detection
- Create alert rules while clustering
- Download, run, and analyze if the samples detected are really malicious
- Comparative analysis over different AV engines
- Investigate other scalable clustering approaches

# Table of Contents

4 Backup slides



#### Limitations

- Validate results of potentially malicious samples
- Scalable clustering approach in terms of F1-score



## **Telemetry**

- Telemetry file of an antivirus vendor with metadata of users
- Telemetry 17 times larger than VT File Feed
  - However, 8 times less malware
- New samples get detected a median of 4.4 hours early in the telemetry
- Can not make a systematic comparison with the telemetry file because its magnitude

## Other Clustering Approaches

- Hierarchical Agglomerative Clustering (HAC)
- Hierarchical DBSCAN (HDBSCAN)
- Problem:  $\mathcal{O}(n^2)$  complexity



# **Ground Truth Summary**

| Dataset | Plat. | Samples | Fam. | Collection        |
|---------|-------|---------|------|-------------------|
| Malsign | Win   | 142,513 | 127  | 06/2012 - 02/2015 |
| AMD     | And   | 24,551  | 71   | 11/2010 - 03/2016 |
| Malicia | Win   | 9,908   | 52   | 03/2012 - 02/2013 |
| Drebin  | And   | 5,560   | 179  | 08/2010 - 10/2012 |

Table: Ground truth datasets used to evaluate clustering.