Problem 1: Before implementing anything, we need to think about what we want to do and how to do it. We want to obtain U: $U = \frac{\partial}{\partial \beta} \sum_{n=1}^{\infty} e^{-\beta \xi_{n}}$ $\sum_{n=1}^{\infty} e^{-\beta \xi_{n}}$ = - 3 log (Q(N,T)) According to Eq. (1) of the paper: $Q(N,T) = \frac{1}{N} \sum_{k=1}^{N} (\pm 1)^{k+1} S(k) Q(N-k,T)$ I for the assignment: use the plus sign (we've dealing with bosons) hote, the paper uses 2 to denote the partition function -> to get W(2,T), we need to know Q(1,T) and Q(0,T); to get (2(3,T), we need to know Q(Z, T), Q(1, T), Q(0, T). Q(D,T)=1 by definition

100	three	particles	, ω	re ho	.d	two	"classes" of
conff	ata Ti au	· integr	als				
	7.	1		3			ž.
		0 3	6				3
		, ,	5	1 2			. 3
	3 +	polosio	ally	eguin	ralent		1 tonologically equin
	"gra	phs bosic	1				1 topologically equive
	Sy	urtiles	, 2	lines	5		3 partiles, 3 lines
How v	nany	grapes	on	-d	class	se s	do we have for
70ur /	photicle	. 5 : 4	part	hicles	~~>	res	nive 3 lines
						but	can have 4 lines . 5
						but	can have 4 lines, 5
						-	can have 4 lines, 5
						-	
Start	w/ 3	3 lines:	2-8-1	3		-	
Start	w/ 3	3 lines:	2 6			6~	six lines
Start	w/ 3	3 lines:	26			6~	six lines
Start	w(3	3 lines:	2 6			6~	there are 12 graphs of this type
Start	w(3	3 lines:	2 6			6~	there are 12 graphs of this type
Start	w(3	S lines:	2 6			6~	six lines
Start	w(3	3 lines:	2 6			6~	there are 12 grouphs of this type let's keep 1 and 4 but switch 2 and 3
		3 lines:	26			6~	there are 12 grouphs of this type let's Seep 1 and 4 but switch 2 and 3 then, we can 12, 13, 24, 34 instead of 14 a
Start 16 tot		3 lines:	26			6~	there are 12 grouphs of this type let's keep 1 and 4 but switch 2 and 3

Homework 8, Problem 3: We want to calculate to for the hard wall protential and for the square well potential (az = - toz): az= 211 S (1-e-(5v(r)) r dr v(r) = 00 for r < 0 exp (- Bv(r)) = 2 0 for re6 $= 7 \qquad a_2 = \frac{2\pi}{d^3} \qquad \int r^2 dr$ $= + \frac{2\pi}{1^3} + \frac{1}{3} + \frac{2\pi}{3}$ $= + \frac{z\pi d^3}{3\lambda^3}$

(b)
$$v(r) = \begin{cases} -\varepsilon & \text{for } r = 0 \\ 0 & \text{for } r > \alpha c c \end{cases}$$

$$exp(-fv(r)) = \begin{cases} 0 & \text{exp}(+\beta \varepsilon) & \text{exp}(+\beta \varepsilon) \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{exp}(-\beta \varepsilon) \end{cases} \end{cases} \begin{cases} v = \alpha c \\ 1 & \text{$$

Homework 8, Problem 4: We know az , az ,... x = E + az t z + az t z + ay t + ... We know bz, bz, ... y = t + bz t 2 + bz t 4 + by t + -.. We want to find Az, Az, Ay: y = x + Azx2+ A3x3+A4x4+... (*) Stuff with (and in set (on l.h.s. and (** on r.h.s.: t + b2 t2 + b3 t3 + b4 t4 + ... = t + az t + az t 3 + a4 t 4 + ... + Az (t+azt2+azt3+a4t4+...)2 + A3 (t + azt2+a3t3 + a4 t4+...)3 + Ay (t + azte + ast 3 + ay t4+...)4

Collect terms that have the same power of t.

insert () = by -ay -az2(bz-az) - 2az(bz-az) and 2 - 3 az (b3 - a3 - 2azbz + 2a2) = by -ay - az bz + a23 - Zazbz + 2azaz - 3azb3 + 3aza3 + 6azb2 - 6az Ay = by -ay + 5a2 b2 - 5a2 - 2a3b2 + 5 az a3 - 3az b3