# Deep Learning Assignment 1 - Report

#### **Students**

- Student name Leor Ariel Rose, ID 208373365
- Student name Aviv Rovshitz, ID 307974162

#### **Auxiliary functions**

• **split\_given\_size** - A function to split an array into chunks by size. Receives as input an array to split and size of each chunk. Returns a list of array chunks by size. This function is used to create batches.

#### **Changes to support dropout**

- **Defining KEEP\_PROB parameter** using the following code:
  - KEEP PROB = 0.8
- **L\_model\_forward** receive boolean flag "use\_dropout" in order to indicate whether to use dropout or not. Also dropout occurs in this function using the following code:
  - if use dropout:
  - D = np.random.rand(A.shape[0], A.shape[1]) < KEEP PROB</li>
  - $\circ \qquad \qquad A = np.multiply(A, D)$
  - A /= KEEP PROB

And the D array is added to cache for backpropagation:

- o cache["dropout"] = {"D" : D}
- L\_model\_backward receive boolean flag "use\_dropout" in order to indicate whether
  to use dropout or not. Also dropout backpropagation occurs in this function using the
  following code:
  - if use\_dropout:
  - o dA\_prev = np.multiply(dA\_prev, caches[i]["dropout"]["D"])
- **L\_layer\_model** receive boolean flag "use\_dropout" in order to indicate whether to use dropout or not. And pass this flag to L\_model\_forward and L\_model\_backward.

#### Approach 1 - MNIST classification with no batchnorm and no dropout

- Batch size 32
- Number of epochs (training steps) 16
- Number of iterations 24000
- Final train accuracy 94.5958%
- Final validation accuracy 94.0417%
- Final test accuracy 93.8500%
- The cost value for each 100 training iterations:



### Approach 2 - MNIST classification with batchnorm and no dropout

- Batch size 32
- Number of epochs (training steps) 32
- Number of iterations 48000
- Final train accuracy 87.9417%
- Final validation accuracy 87.4667%
- Final test accuracy 87.8500%

#### • The cost value for each 100 training iterations:



### Approach 3 - MNIST classification with no batchnorm and dropout

- Batch size 32
- Number of epochs (training steps) 24
- Number of iterations 36000
- Final train accuracy 86.4417%
- Final validation accuracy 85.7500%
- Final test accuracy 85.8100%
- The cost value for each 100 training iterations:



### Approach 4 - MNIST classification with batchnorm and dropout

- Batch size 32
- Number of epochs (training steps) 24
- Number of iterations 36000
- Final train accuracy 37.8563%
- Final validation accuracy 37.6667%
- Final test accuracy 38.6900%
- The cost value for each 100 training iterations:



## Comparison

| Approach | Performance<br>(accuracy) on<br>train set | Performance<br>(accuracy) on<br>validation set | Performance<br>(accuracy) on<br>test set | Epochs<br>(training<br>steps) | Number of iterations |
|----------|-------------------------------------------|------------------------------------------------|------------------------------------------|-------------------------------|----------------------|
| 1        | 94.5958%                                  | 94.0417%                                       | 93.8500%                                 | 16                            | 24000                |
| 2        | 87.9417%                                  | 87.4667%                                       | 87.8500%                                 | 32                            | 48000                |
| 3        | 86.4417%                                  | 85.7500%                                       | 85.8100%                                 | 24                            | 36000                |
| 4        | 37.8563%                                  | 37.6667%                                       | 38.6900%                                 | 24                            | 36000                |