Reproducible Research (1)

Zhuanghua Shi

14 April 2016

shared folder

https://goo.gl/1KIMnQ

A survey

- How many times do you usually repeat for analyzing the same dataset?
- Have you ever experienced big mistakes simply due to small coding errors or dumb copy-and-paste?
- Do you feel a need for filling a gap between data analysis and writing?

Estimation of my time spent on Research

Traditional approach

Traditional tools: SPSS, Matlab, R and Word

- problems occur for multiple experiments and data mining
- copy-and-past is error-prone
- data and files are separated, independent
- codes are not reusuable
- multiple copies

Reproducible Research (RR)

An ideal RR process should be able to adapt to flexible research process:

- easy to expand experiments and data analyses
- easy to maintain codes and text
- easy to replot figures and to output statistics

Git, R, Markdown, and Knitr /Pandoc

- git for version controls (e.g., multiple experiments, minor variations)
- R for data analysis
- RMarkdown for writing
- Knitr / Pandoc for universal document converters

Examples of RR

- An except from my own study audiovisual temporal integration in AM
- ► The book 'Reproducible Research with R and RStudio'
- The book Pro Git
- A demo from Lakens/perfect-t-test ¹ Lakens/perfect-t-test.git

¹Ondrej mentioned this, thanks.

First step: organizing your data and files

- literature
- Mendeley
- experimental codes (matlab, R) and data
- dropbox / owncloud with git
- git for managing different versions and changes

multiple version of documents

Traditional manual version control:

- error prone
- difficult to find a right version

git can help you solve this problem

what is git

- ► A widely used source code version control system
- Distributed system
- Developed by Linus Torvalds (father of Linux system)

what is git

- Managing codes, files for collaboration
- Adopted by many applications
- Psychtoolbox
- Matlab
- R
- Open source codes
- Github.com
- Bitbucket.org

Benefits of using git in research

- Managing experimental codes
- Reusing codes for multiple experiments
- ► Tracking various changes
- Playground for your new projects
- Tracking your data analyses and writing
- Data minging requires multiple tries
- Multiple revisions of a manuscript
- Collaborating
- Parallel data analyses / writing

git basics

Initializing a Repository in an Existing Directory

git init

Tracking New Files

git add FILENAME

Committing your changes

git commit -m "Version 9: new methods"

Viewing your changes

git diff

Viewing history

git log

Working with remove clouds

Cloning an Existing Repository

git clone

https://github.com/christophergandrud/Rep-Res-Book.git

Adding remote repositories

git remote add [shortname] [url]

Fetching and Pulling from Remotes

git fetch [remote-name]
git pull [remote-name] (difference from fetch: fetch and merge
with local)

Pushing to your remotes

git push origin master

Tagging

git tag

Git GUI clients

You can find many git GUI clients in its official website, e.g.:

- SourceTree
- ▶ GitHub Desktip
- ▶ TortoiseGit

Git in RStudio and Matlab

Git is integrated in latest RStudio and Matlab. You can direct do git tasks inside R or Matlab.

Course schedule

dates	contents
2016-04-14	Version control system - git
2016-04-28	Data import and manipulation
2016-05-12	Publication-ready figures
2016-05-26	Statstics and Modeling
2016-06-09	Reusable data analysis
2016-06-30	RMarkdown and writing