<u>Pure</u>

Contents

inomial Expansion	2
Definitions	2
Expansions	2
alculus	3
Elementary Derivatives	3
Composition Laws	3
Integral Tricks	3
xponentials and Logarithms	4
Exponentials	4
Log Laws	4
Log Plots	4
rigonometry	5
Definitions	5
Identities	5
Calculus	6
Graphs	7
equences and Series	8
Arithmetic	8
Geometric	8

Binomial Expansion

Definitions

The factorial
$$n! \equiv n \times (n-1) \times (n-2) \times \cdots \times 3 \times 2 \times 1$$
.

The falling factorial $n^{\underline{k}} \equiv n \times (n-1) \times (n-2) \times \cdots \times (n-(k-2)) \times (n-(k-1))$. It has k terms.

$$0! = n^{\underline{0}} = 1$$

The choose function
$${}^{n}C_{r} \equiv \boxed{\begin{pmatrix} n \\ r \end{pmatrix} \equiv \frac{n!}{r!(n-r)!}}$$

Expansions

For a natural number n, the expansion of $(a+b)^n$ is

$$a^{n} + na^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \cdots + \binom{n}{r}a^{n-r}b^{r} + \cdots + \cdots + \binom{n}{r}a^{n-r}b^{r} + \cdots + \binom{n}{r}a^{n-r}b^{r$$

In general,
$$(a+b)^n = \sum_{r=0}^n \binom{n}{r} a^{n-r} b^r$$
 $(n \in \mathbb{N})$

That's true if n is a natural number, but there is a version that works for all real numbers. For an expression $(a+bx)^n$, it should first be normalised to $a^n(1+\frac{b}{a}x)^n$. Let $y=\frac{b}{a}x$. Then the expansion of $(1+y)^n$ is given by

$$1 + ny + \frac{n(n-1)}{2!}y^2 + \frac{n(n-1)(n-2)}{3!}y^3 + \dots + \frac{n(n-1)(n-2)\cdots(n-(r-1))}{r!}y^r + \dots$$

In general,
$$\boxed{(a+bx)^n=a^n\sum_{r=0}^\infty \frac{n^r}{r!}\left(\frac{b}{a}x\right)^r}\ (n\in\mathbb{R})$$

Calculus

Elementary Derivatives

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

f	C	x^n	$\sin x$	$\cos x$	a^x	$\ln x$
f'	0	nx^{n-1}	$\cos x$	$-\sin x$	$a^x \ln a$	$\frac{1}{x}$

Composition Laws

Let f and g be differentiable functions over x.

The ' mark denotes the derivative with respect to x, so $f' = \frac{df}{dx}$ and $g' = \frac{dg}{dx}$.

The \circ symbol denotes function composition, so $(f \circ g)(x) = f(g(x))$.

$$(f \pm g)' = f' \pm g'$$
 $(fg)' = fg' + f'g$

$$(f \circ g)' = (f' \circ g)g'$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

Integral Tricks

For integrals of the form on the left, consider the function on the right.

Exponentials and Logarithms

Exponentials

$$\frac{d}{dx}e^x = e^x$$

$$\frac{d}{dx}e^{kx} = ke^{kx}$$

$$\frac{d}{dx}e^{f(x)} = f'(x)e^{f(x)}$$

 $\ln x$ is the inverse of e^x , meaning its graph is reflected in the line y = x.

Log Laws

$$\log_a b \equiv \frac{\ln b}{\ln a}$$

$$\log xy \equiv \log x + \log y$$

$$\log y \qquad \qquad \log \frac{x}{y} \equiv \log x - \log y$$

$$\log x^y \equiv y \log x$$

$$\log_a a \equiv 1$$

$$\log 1 \equiv 0$$

$$\log \frac{1}{x} \equiv -\log x$$

Log Plots

Trigonometry

Definitions

$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$$

$$\sec\theta \equiv \frac{1}{\cos\theta}$$

$$\csc\theta \equiv \frac{1}{\sin\theta}$$

$$\cot \theta \equiv \frac{1}{\tan \theta} \equiv \frac{\cos \theta}{\sin \theta}$$

<u>Identities</u>

$$\sin^2\theta + \cos^2\theta \equiv 1$$

$$1 + \tan^2 \theta \equiv \sec^2 \theta$$

$$1 + \cot^2 \theta \equiv \csc^2 \theta$$

$$\sin(\alpha \pm \beta) \equiv \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\cos(\alpha \pm \beta) \equiv \cos\alpha \cos\beta \mp \sin\alpha \sin\beta$$

$$\tan(\alpha \pm \beta) \equiv \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

$$\sin 2\theta \equiv 2\sin\theta\cos\theta$$

$$\tan 2\theta \equiv \frac{2\tan \theta}{1 - \tan^2 \theta}$$

$$\cos 2\theta \equiv \cos^2 \theta - \sin^2 \theta$$
$$\equiv 2\cos^2 \theta - 1$$
$$\equiv 1 - 2\sin^2 \theta$$

<u>Calculus</u>

$$\frac{d}{dx}\sin x = \cos x$$

$$\int \sin x \, dx = -\cos x + C$$

$$\frac{d}{dx}\cos x = -\sin x$$

$$\int \cos x \, dx = \sin x + C$$

$$\int \tan x \, dx = \ln|\sec x| + C$$

$$\int \tan x \, dx = \ln|\tan x + \sec x| + C$$

$$\int \sec x \, dx = \ln|\tan x + \sec x| + C$$

$$\int \csc x \, dx = \ln|\tan x + \sec x| + C$$

$$\int \csc x \, dx = -\ln|\cot x + \csc x| + C$$

$$\int \cot x \, dx = \ln|\sin x| + C$$

$$\int \cot x \, dx = \ln|\sin x| + C$$

$$\int \cot x \, dx = \ln|\sin x| + C$$

$$\int \cot x \, dx = x \arcsin x + \sqrt{1 - x^2} + C$$

$$\int \arctan x \, dx = x \arctan x - \frac{\ln(x^2 + 1)}{2} + C$$

$$\int \arctan x \, dx = x \arctan x - \frac{\ln(x^2 + 1)}{2} + C$$

Graphs

Sequences and Series

Arithmetic

a is the first term. d is the common difference. Counting starts from n=1.

The nth term of the sequence is given by:

$$u_n = a + (n-1)d$$

The sum of the first n terms (inclusive) of the series is given by:

$$S_n = \frac{n}{2}(2a + (n-1)d)$$

Or
$$S_n = \frac{n}{2}(a+l)$$
 where l is the last term.

Geometric

a is the first term. r is the common ratio. Counting starts from n=1.

The nth term of the sequence is given by:

$$u_n = ar^{n-1}$$

The sum of the first n terms (inclusive) of the series is given by:

$$S_n = \frac{a(1-r^n)}{1-r} = \frac{a(r^n-1)}{r-1} \quad (r \neq 1)$$

The sum to infinity of a geometric series is **only valid** when |r| < 1 and is given by:

$$\boxed{S_{\infty} = \frac{a}{1 - r} \left(|r| < 1 \right)}$$