

Image-to-Image Translation: A Literature Review

Speaker: Yuanwen Yue

Supervisor: Priyanka Chaudhary

Outline

- Introduction
- Supervised image-to-image translation
- Unsupervised image-to-image translation
- Image-to-image translation in Geomatics
- **Summary**

What is image-to-image translation?

 Image-to-image (I2I) translation refers to the task of mapping an image from a source domain to a target domain.

Application of I2I translation

- Sketch to photo, Blurry to sharp, Day to night, Labels to street scene, Data augmentation, etc.
- Geomatics: Aerial to map, SAR to optical image, etc.

Sketch to photo

Blurry to sharp

Day to night

Gray-scale to color

Labels to street scene

Aerial to map

SAR to optical image

Supervised vs. Unsupervised

- Supervised: require paired training data as supervision.
- Unsupervised: learn the mappings between two image collections without paired training data.

Generative Adversarial Networks (GANs)

- Generator (G): generate fake examples that can fool D.
- Discriminator (D): classify fake samples vs. real images.

Supervised Image-to-image Translation

Pix2pix: conditional GANs

- **Conditional**: condition on an input image and generate a corresponding output image.
 - Generator (G)
 - Discriminator (D)

Pix2pix: conditional GANs

Pros:

- Applicable in a wide variety of tasks.
- A simple framework sufficient to achieve good results on graphics tasks, like photo generation.

Cons:

- Work not well on vision tasks, like semantic segmentation.
- One-to-one mapping between the two domains (Unimodality).

[Isola et al. 2017]

Towards Multimodal I2I Translation

Multimodality: give multiple translation answers.

One possible approach: pix2pix + noise

BicycleGAN: Multimodal I2I Translation

- Conditional Variational AutoEncoder GAN (cVAE-GAN)
 - The purpose is to reconstruct ground truth image
 - $\blacksquare B \to Z \to \hat{B}$
- Conditional Latent Regressor GAN (cLR-GAN)
 - The purpose is to recover the original latent vector
 - $Z \rightarrow B \rightarrow \hat{Z}$
- BicycleGAN: cVAE-GAN + cLR-GAN

Unsupervised Image-to-image Translation

Plain GAN for unsupervised I2I translation

- Exploit supervision at the level of sets
 - Train a mapping $G: X \to Y$
 - Make the output $\hat{y} = G(x), x \in X$ indistinguishable from images $y \in Y$
 - Problem: individual inputs and outputs x and y are not paired up in a meaningful way.

CycleGAN and UNIT

- CycleGAN: Cycle-Consistent Adversarial Networks [Zhu et al. 2017]
 - Cycle consistency

- UNIT: UNsupervised Image-to-image Translation [Liu et al. 2017]
 - Shared latent space

Multimodal unsupervised I2I Translation

 EGSC-IT: Exemplar Guided & Semantically Consistent Image-to-image Translation

- Weight sharing for domain-shared content -> adopt UNIT
- Exemplar-based AdaIN for domain-specific style
- Feature masks for semantic consistency

Image-to-image Translation in Geomatics

Aerial photos → maps

- CycleGAN-based model [Gu et al. 2019]
 - Generator (G):

- G_{global} : a global generator operator at a low resolution
- G_{local} : a local generator operator at a high resolution

Discriminator (D): multi-scale discriminators

SAR image to optical image

- Conditional GANs, CycleGAN, etc.
- **Opportunity**
 - Reduce the speckle effect
 - Produce smooth textures
 - Fill missing content

Challenge

- Resolution
- Level of detail
- Fictional objects

Necessary optimization

- Size of the patches
- Add several residual layers
- Intensity clipping, normalization...

SAR image

Optical image

SAR image to optical image

SAR-GAN

- Learn a mapping from input speckled SAR images to visible images.
- Despeckling sub-network G_D
- Colorization subnetwork G_c
- Generative adversarial loss

Summary

GAN: a power tool for I2I translation

Representative works

- Supervised vs. unsupervised
- Unimodal vs. multimodal
- Most practical: unsupervised + multimodal

	12I tra	nslation	in	geomatics
--	---------	----------	----	-----------

- Aerial photos to maps
- SAR image to optical image

Challenges

- Mode collapse
- Non-trivial training
- Geometric changes

	Unsupervised	Multimodal
Pix2pix	×	×
BicycleGAN	×	V
CycleGAN	\checkmark	×
UNIT	\checkmark	×
EGSC-IT	\checkmark	\checkmark

horse → zebra [Zhu et al. 2017]

Thank you

