3 Autoencoder: Working Principle and Architecture

An **Autoencoder (AE)** is a type of neural network used for *unsupervised learning*, primarily for dimensionality reduction, feature extraction, and data denoising. It consists of two main components:

- Encoder: Compresses the input into a lower-dimensional latent representation.
- **Decoder**: Reconstructs the original input from the compressed representation

The network is trained to minimize the reconstruction error, forcing it to capture essential features of the input data.

4 Working Principle of Autoencoders

4.1 Step 1: Encoding

The encoder transforms the input X into a latent representation Z:

$$Z = f(W_e X + b_e) \tag{39}$$

where:

- W_e and b_e are the encoder weights and biases.
- $f(\cdot)$ is the activation function (e.g., ReLU, Sigmoid).

4.2 Step 2: Bottleneck (Latent Space)

The latent space contains the compressed version of the input, enforcing dimensionality reduction.

4.3 Step 3: Decoding

The decoder reconstructs the original input from the latent representation:

$$\hat{X} = g(W_d Z + b_d) \tag{40}$$

where:

- W_d and b_d are the decoder weights and biases.
- $g(\cdot)$ is the activation function.

4.4 Step 4: Loss Function

The goal of training is to minimize the reconstruction error, often measured using Mean Squared Error (MSE):

$$L = ||X - \hat{X}||^2 \tag{41}$$

where:

- \bullet X is the original input.
- \hat{X} is the reconstructed output.

5 Autoencoder Architecture

A basic autoencoder consists of the following layers:

Layer	Function
Input Layer	Takes the original data (e.g., images, text, audio)
Encoder	Compresses input into a lower-dimensional representation
Bottleneck (Latent Space)	Stores the compressed feature representation
Decoder	Reconstructs the input from the latent space
Output Layer	Outputs a reconstruction of the original input

6 Mathematical Representation

The overall transformation can be represented as:

$$\hat{X} = g(f(X)) \tag{42}$$

where:

- f(X) represents the **Encoder** transformation.
- g(Z) represents the **Decoder** transformation.
- \hat{X} is the reconstructed input.

7 Types of Autoencoders

Autoencoders can be modified for different applications:

- Vanilla Autoencoder: Basic encoder-decoder structure with MSE loss.
- Denoising Autoencoder (DAE): Learns to reconstruct input from a corrupted version.

- Sparse Autoencoder: Uses sparsity constraints on latent representation.
- Variational Autoencoder (VAE): Learns a probabilistic latent space for generating new data.
- Convolutional Autoencoder (CAE): Uses CNNs for image-based feature extraction.

8 Applications of Autoencoders

Autoencoders are widely used for:

- Dimensionality Reduction (alternative to PCA)
- Data Denoising (removing noise from images, signals)
- Feature Extraction (unsupervised representation learning)
- Anomaly Detection (fraud detection, cybersecurity)
- Image Compression (reducing storage size)
- Generative Modeling (Variational Autoencoders for image synthesis)