Yakeen NEET 2.0 2026

Physics By Manish Raj Sir Laws of Motion

DPP: 3

Q1 In the figure given below, with what acceleration does the block of mass m will move? (Pulley and strings are massless and frictionless)

- (A) $\frac{g}{3}$
- (B) $\frac{3g}{5}$
- (C) $\frac{2g}{3}$
- (D) $\frac{g}{2}$
- **Q2** Four blocks of same mass connected by cords are pulled by forces F on a smooth horizontal surface, as in figure. The tension T_1, T_2 and T_3 will be-

- (A) $T_1 = F/4, T_2 = 3 \; \mathrm{F}/2, T_3 = F/4$
- (B) $T_1=F/4,\; T_2=3\;F/2,\; T_3=F/2$
- (C) ${
 m T}_1=3~{
 m F}/4,~{
 m T}_2={
 m F}/2,~{
 m T}_3={
 m F}/4$
- (D) $T_1=3~{
 m F}/4,~T_2={
 m F}/2,~T_3={
 m F}/2$
- **Q3** The surface is frictionless, the ratio of T_1 and T_2 is :-

- (A) $\sqrt{3}:1$
- (B) $1:\sqrt{3}$

- (C) 1:5
- (D) 5:1
- $\bf Q4$ A body of mass 5~kg is suspended by a spring balance on an inclined plane as shown in figure. The spring balance measure

- (A) 50 N
- (B) 25 N
- (C) 500 N
- (D) 10 N
- Q5 A body of mass 2~kg is moving with a velocity 8~m/s on a smooth surface. If it is to be brought to rest in 4 seconds, then the force to be applied is
 - (A) 8 N
 - (B) 4N
 - (C) 2N
 - (D) 1 N
- $\label{eq:Q6} \textbf{A} \mbox{ disc of mass } 1.0 \mbox{ kg is kept floating} \\ \mbox{ horizontally in air by firing bullets of mass} \\ 0.05 \mbox{ kg each vertically at it, at the rate of 10 per second. If the bullets rebound with the same speed, the speed with which these are fired will be }$

- (A) 0.098 m/s
- (B) 0.98 m/s
- (C) $9 \cdot 8 \text{ m/s}$
- (D) 98.0 m/s
- **Q7** In the arrangement shown, the mass m will ascend with an acceleration (Pulley and rope are massless)

- (A) Zero
- (B) $\frac{g}{2}$
- (C) g
- (D) 2g
- Q8 Two masses as shown are suspended from a massless pulley. Calculate the acceleration of the 10 kg mass when masses are free

- (D) $\frac{g}{7}$
- **Q9** Three blocks of masses m_1, m_2 and m_3 are connected by massless strings as shown on a frictionless table. They are pulled with a force $T_3=40~\mathrm{N}.$ If $m_1=10~\mathrm{kg}, m_2=6~\mathrm{kg}$ and $m_3=4~{
 m kg}$, the tension T_2 will be

- (C) 10 N
- (D) 32 N
- Q10 Two bodies of 5 kg and 4 kg are tied to a string as shown in the figure. If the table and pulley both are smooth, acceleration of 5 kg body will be equal to

- (A) g (C) $\frac{4g}{9}$
- Q11 A light string passes over a frictionless pulley. To one of its ends a mass of $6~\mathrm{kg}$ is attached and to its other end a mass of $10~\mathrm{kg}$ is attached. The tension in the string will be

- (A) 50 N
- (B) 75 N
- (c) 100 N
- (D) 150 N

Q12

A block of mass m_1 rests on a horizontal table. A string tied to the block is passed on a frictionless pulley fixed at the end of the table and to the other end of string is hung another block of mass m_2 . The acceleration of the system

is $\text{(A)} \ \frac{m_2g}{(m_1+m_2)}$ $\text{(B)} \ \frac{m_1g}{(m_1+m_2)}$

(C) g (D) $\frac{m_2g}{m_1}$

 $\begin{array}{ll} \textbf{Q13} & \text{Two blocks } A \text{ and } B \text{ of masses } 3 \text{ m} \text{ and } m \\ & \text{respectively are connected by a massless and} \\ & \text{inextensible string. The whole system is} \\ & \text{suspended by a massless spring as shown in} \\ & \text{figure. The magnitudes of acceleration of } A \text{ and} \\ & B \text{ immediately after the string is cut, are} \\ & \text{respectively} \end{array}$

(A) $\frac{g}{3}, g$

(B) g, g

(C) $\frac{g}{3}$, $\frac{g}{3}$ (D) g, $\frac{g}{3}$

(D) $g, \frac{g}{3}$

Q14 Two masses of $10~\rm kg$ and $20~\rm kg$ respectively are connected by a massless spring as shown in the figure. A force of $200~\rm N$ acts on the $20~\rm kg$ mass. At the instant shown, the $10~\rm kg$ mass has an acceleration of $4~\rm m/s^2$ rightwards. What is the acceleration of $20~\rm kg$ mass ?

(B) $10\ m/s^2$

(C) 4 m/s^2

(D) 8 m/s^2

Answer Key

Q1	(C)	Q8	(B)
Q2	(C)	Q9	(D)
Q3	(D)	Q10	(D)
Q4	(B)	Q11	(B)
Q5	(B)	Q12	(A)
Q6	(C)	Q13	(A)
Q7	(B)	Q14	(D)

Master NCERT with PW Books APP