Chain machine

Patent number:

DE3300073

Publication date:

1984-07-05

Inventor:

LENZ UDO [DE]; ACHTERT KARL-HEINZ [DE]

Applicant:

LENZ ACHTERT UND SUEFKE CALIFO [DE]

Classification:

- international:

A63B21/06

- european:

A63B21/062

Application number:

DE19833300073 19830104

Priority number(s): (

DE19833300073 19830104

Abstract of DE3300073

For developing muscles and training athletes, an apparatus, especially a chain machine, is used which can be easily adapted to the particular physical dimensions of the athlete in that the guide blocks of the actuating rod are detachably connected to the perforated rods. At the same time, a compensating weight ensures that when the actuating rod with the guide blocks pushed up, virtually no weight has to be lifted by the athlete. The guide blocks can be fixed at any desired height by bolts and holes provided in the perforated rods, so that the chain machine can easily be walked upon or climbed and, in addition, the rod is then to be set or locked at the particular position which is ideal for the athlete in question.

Data supplied from the esp@cenet database - Worldwide

DEUTSCHES PATENTAMT 2) Aktenzeichen: P 33 00 073.5
 2) Anmeldetag: 4. 1.83
 3) Offenlegungstag: 5. 7.84

(7) Anmelder:

Lenz, Achtert und Süfke California Geräte-Vertriebs GmbH, 4230 Wesel, DE

(7) Erfinder:

Lenz, Udo, 4170 Geldern, DE; Achtert, Karl-Heinz, 4232 Xanten, DE

Kettenmaschine

Zum Weiterbilden von Muskeln und zum Training von Sportlem dient eine Vorrichtung, insbesondere eine Kettenmaschine, die dadurch an die jeweiligen Körpermaße des Sportlers leicht anzupassen ist, daß die Führungsblöcke der Betätigungsstange mit den Lochstangen lösbar verbunden ist. Dabei wird gleichzeitig über ein Ausgleichsgewicht dafür Sorge getragen, daß beim Hochschieben der Betätigungsstange mit den Führungsblöcken praktisch kein Gewicht vom Sportler gehoben werden muß. Die Führungsblöcke können über Bolzen und in den Lochstangen vorgesehene Behrungen in beliebiger Höhe festgelegt werden, so daß die Kettenmaschine leicht zu begehen bzw. zu besteigen und darüber hinaus die Stange darn anschließend in der jeweils optimalen Position des jeweiligen Sportlers einzustellen bzw. einzuresten ist.

3300073

Dipl. Ing. Jörg Schulte

Patentanwalt

Zugelassener Vertreter beim Europäischen Patentamt

Patentanwalt Dipl. Ing. Schulte Hauptstr 73 + 4300 Essen 18

Telefon (02054) 89 66 + 8967 Hauptstraße 73 4300 Essen-Kettwig Konten: Stadtsparkasse Essen 7020571 (BLZ 36050105) Postscheck: Essen 210734-433 (BLZ 36010043)

Datum

Ref : N 1801 in der Antwort bitte angeben.

Lenz, Achtert und Süfke, California Geräte-Vertriebs GmbH, Ketteler Straße 3, 4230 Wesel

Kettenmaschine

Patentansprüche

(1) Vorrichtung zum Trainieren und Weiterbilden von Muskeln, insbesondere Kettenmaschine mit Ständer und Quertraverse, deren Betätigungsstange mit den endseitig angeordneten Führungsblöcken über Lochstangen mit einzeln ankuppelbaren Gewichtsscheiben zu verbinden ist, dad ur ch gekennzeich net, daß die Führungsblöcke (6, 7) mit den Lochstangen (8, 9), die in Richtung Quertraverse (3) verlängert ausgebildet sind, lösbar verbunden und an diesen geführt sind.

- 2. Vorrichtung nach Anspruch 1, dad urch gekennzeichnet, daß die Lochstange (8, 9) im verlängerten Bereich Bohrungen aufweist, über die die hochgeschobenen Führungsblöcke (6, 7) in wählbarer Höhe festlegbar sind.
- 3. Vorrichtung nach Anspruch 2, dad urch gekennzeichnet, daß die Bohrungen in der Lochstange (8, 9) im Abstand von 0,1 bis 0,3 m, vorzugsweise 0,25 m ausgebildet sind.
- 4. Vorrichtung nach Anspruch 1 undAnspruch 2, dad urch gekennzeichnet, daß den Führungsblöcken (6, 7) federbelastete Bolzen (19) zugeordnet und vom Griffbereich (15) der Betätigungsstange (5) aus zu verschieben sind.
- 5. Vorrichtung nach Anspruch 4,
 d a d u r c h g e k e n n z e i c h n e t,
 daß der federbelastete Bolzen (19) über eine Kette (18)
 mit einem in den Griffbereich (15) hineinragend angeordneten
 und verschwenkbar ausgebildeten Handhebel (17) verbunden
 ist.
- 6. Vorrichtung nach Anspruch 1, dad urch gekennzeichnet, daß die Führungsblöcke (6, 7) über an der Quertraverse (3) in Umlenkrollen (22) geführte Seile (23, 24) mit Ausgleichsgewichten (25) verbunden sind.
- 7. Vorrichtung nach Anspruch 1 und Anspruch 6, dad urch gekennzeichnet, daß die Umlenkrollen (22) eine gemeinsame Achse (26) aufweisen, die beidseitig im Ständer (2) gelagert ist.

- 8. Vorrichtung nach Anspruch 7, dad urch gekennzeichnet, daß die Umlenkrollen (22) bzw. die Seile (23, 24) zwischen Lochstangen (8, 9) und Ständer (2) angeordnet und über einen vorspringenden Kettenhalter (27) mit dem jeweiligen Führungsblock (6, 7) verbunden sind.
- 9. Vorrichtung nach Anspruch 1, dad urch gekennzeichnet, daß die Führungsblöcke (6, 7) eine Kugelbuchsenführung (30) aufweisen.
- 10. Vorrichtung nach Anspruch 9, dad urch gekennzeichnet, daß in die Durchführungen (33, 34) für die Führungsstangen (31) Linearkugellager (32) eingesetzt sind.
- 11. Vorrichtung nach Anspruch 1,
 d a d u r c h g e k e n n z e i c h n e t,
 daß die Betätigungsstange (5) mittig etwa über ein Drittel
 ihrer Länge in Richtung Quertraverse (3) ausgenommen ausgebildet ist.
- 12. Vorrichtung nach Anspruch 1, dad u rch gekennzeichnet, daß die Betätigungsstange (5) im Griffbereich (15) gerändelt ist.

Die Erfindung betrifft eine Vorrichtung zum Trainieren und Weiterbilden von Muskeln, insbesondere Kettenmaschine mit Ständer und Quertraverse, deren Betätigungsstange mit den endseitig angeordneten Führungsblöcken über Lochstangen mit einzeln ankuppelbaren Gewichtsscheiben zu verbinden ist.

Derartige Vorrichtungen, insbesondere Kettenmaschinen werden von Sportlern und sogenannten Budy-Buildern eingesetzt, um die verschiedensten Muskelbereiche zu trainieren und in der Regel dadurch auch intensiv weiterzubilden. Bei Kettenmaschinen liegt der Sportler beispielsweise auf einer Liege und stämmt in dieser Position über eine Betätigungsstange Gewichte aus einer Startposition in eine Endposition. Während dieses Weges werden die entsprechenden Muskelbereiche in einer berechenbaren Intensität belastet. Der Betätigungsstange können dabei Gewichtsscheibe zugeordnet werden, so daß die Belastung hierdurch eingestellt und variiert werden kann. Die Betätigungsstange mit den zugeordneten Lochstangen und den einzelnen Gewichtsscheiben ist dabei in Führungsblöcken bzw. in Führungsstangen geführt, so daß die Richtung der auszuführenden Bewegung vorgegeben ist und darüberhinaus eine Gefahr für den Sportler nicht vorhanden ist.

Nachteilig bei den bekannten Kettenmaschinen ist die schwierige Einstiegsmöglichkeit in die Maschine und die fehlende Einstellmöglichkeit auf die Körpermaße des jeweiligen Sportlers. Dadurch bedingt kann eine ganze Zahl von Sportlern Muskelbereiche nicht ausreichend trainieren, bei denen eine weite Herabführung der Betätigungsstange auf den Brustkorb des Sportlers notwendig ist.

Der Erfindung liegt die Aufgabe zugrunde, eine einfach auf die jeweiligen Körpermaße einstellbare und leicht be-

steigbare Kettenmaschine zu schaffen.

Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Führungsblöcke mit den Lochstangen, die in Richtung Quertraverse verlängert ausgebildet sind, lösbar verbunden und an diesen geführt sind.

Bei einer derart ausgebildeten Kettenmaschine kann die Betätigungsstange zum Besteigen der Kettenmaschine unabhängig von den Gewichten hochgeführt und dann bis dicht auf den Oberkörper des Sportlers herabgesenkt werden, ohne daß dieser dafür einer Hilfsperson oder besonderer Kraftanstrengungen bedarf. Die Betätigungsstange wird zunächst aus ihrem Kontakt mit den Lochstangen gelöst, dann an diesen geführt hochgeschoben und in der oberen Position wieder festgelegt. Danach begibt sich der Sportler auf die Liege oder in die jeweilige Betätigungsposition, woraufhin die Betätigungsstange wieder aus ihrer Verbindung mit den Lochstangen gelöst und in die optimale Position abgesenkt wird. Der Sportler kann dann sofort mit seinen Betätigungen beginnen, wobei er die Betätigungsstange in der untersten optimalen Endstellung vorfindet. Die Verbindung der einzelnen Gewichtsscheiben erfolgt auf übliche Art und Weise durch Einstecken von Bolzen in die jeweilige unterste Gewichtsscheibe. Um die Betätigungsstange jeweils in der oberen Position, d.h. zum Einsteigen in die Kettenmaschine festlegen zu können, ist es von Vorteil, die Lochstange im verlängerten Bereich Bohrungen aufweisen zu lassen, über die die hochgeschobenen Führungsblöcke in wählbarer Höhe festlegbar sind. Die Lochstangen weisen hierzu zweckmäßigerweise auch im verlängerten Bereich Bohrungen auf und zwar im Abstand von 0,1 bis 0,3, vorzugsweise 0,25 m. In der Regel wird der Abstand 0,25 m ausreichen, doch kann es insbesondere im Betätigungsbereich zweckmäßig sein, den Bohrungsabstand zu verringern.

Um das Einrasten der Betätigungsstange bzw. der Führungsblöcke in den jeweiligen Positionen und eine feste Verbindung sicherzustellen, ist erfindungsgemäß vorgesehen, daß den Führungsblöcken federbelastete Bolzen zugeordnet und vom Griffbereich der Betätigungsstange aus zu verschieben sind. Hierzu ist es zweckmäßig, daß der federbelastete Bolzen über eine Kette mit einem in den Griffbereich hineinragend angeordneten und verschwenkbar ausgebildeten Handhebel verbunden ist. Bei einer derart ausgebildeten Vorrichtung kann der Sportler selbst durch Betätigen der Handhebel in der Art der Bremshebel bei Fahrrädern die Ketten oder den Bautenzug so beeinflussen, daß der federbelastete Bolzen gegen die Kraft der Feder aus der entsprechenden Bohrung in der Lochstange herausgezogen wird, so daß die Betätigungsstange an den Lochstangen und den üblichen Führungsstangen geführt verschoben werden kann. So wie die Handgriffe bzw. Handhebel wieder losgelassen werden, rasten die Bolzen aufgrund der Belastung durch die Federn in die nächste freie Bohrung ein. So ist die Betätigungsstange leicht in der jeweiligen Position festzulegen.

Um das Hochschieben und das Einstellen der Betätigungsstange in die jeweilige optimale Position zu erleichtern und den ganzen Vorgang annähernd gewichtslos betreiben zu können, ist erfindungsgemäß vorgesehen, daß die Führungsblöcke über an der Quertraverse in Umlenkrollen geführte Seile mit Ausgleichsgewichten verbunden sind. Diese Ausgleichsgewichte verbunden sind. Diese Ausgleichsgewichte sind so eingestellt, gewählt und geführt, daß sie jeweils das Gewicht der Führungsblöcke und der Betätigungsstange ausgleichen, so daß der Sportler mit geringster Kraftaufwendung die Kettenmaschine einstellen bzw. in diese einsteigen kann.

Nach einer Ausbildung der Erfindung ist vorgesehen, daß die Umlenkrollen eine gemeinsame Achse aufweisen, die beidseitig im Ständer gelagert ist. Hierdurch wird zur Stabilisierung der Kettenmaschine beigetragen und gleichzeitig eine optimal einfache und zweckmäßige Ausbildung und Anordnung der Umlenkrollen erreicht.

Die üblichen Maße von Kettenmaschinen können ohne weiteres eingehalten werden, wenn, wie erfindungsgemäß vorgeschlagen, die Umlenkrollen bzw. die Seile zwischen Lochstangen und Ständer angeordnet und über einen vorspringenden Kettenhalter mit dem jeweiligen Führungsblock verbunden sind. Die Umlenkrollen mit ihren Ausgleichsgewichten und ihren Führungen sind somit in einen Bereich gelegt, wo sie die Handhabung der Betätigungsstange und der Gewichte nicht behindern, andererseits aber ihre Funktion voll erfüllen können.

In vorteilhafter Weise wird die Handhabung der Kettenmaschine erleichtert und gleichzeitig die Betätigungssicherheit erhöht, indem die Führungsblöcke eine Kugelbuchsenführung aufweisen. Diese kann auf einfache Art und Weise dadurch verwirklicht werden, daß in die Durchführungen für die Führungsstangen Linearkugellager eingesetzt sind. Durch diese Ausbildung ist ein besonders leichter Lauf bzw. eine hervorragende Führung des Führungsblockes und damit der Betätigungsstange mit den anhängenden Gewichtsscheiben möglich. Das wirkt sich auf die Betätigung durch den Sportler und die Belastung der einzelnen Muskelpartien positiv aus.

Um die Betätigungsstange möglichst weit herunterziehen zu können und damit auch sonst nicht oder nur ungenügend zu belastende Muskelpartien zu erreichen, ist erfindungsgemäß vorgesehen, daß die Betätigungsstange mittig etwa über ein Drittel ihrer Länge in Richtung Quertraverse aus-

genommen ausgebildet ist. Dadurch kann der Sportler die Betätigungsstange bzw. den jeweils zu beeinflussenden Griffbereich relativ tief über den Brustkorbbereich herabziehen bzw. von dieser Position aus die Gewichte hochstämmen. Vorteilhaft ist es dabei, die Betätigungsstange im Griffbereich gerändelt auszubilden, da so eine einwandfreie Betätigung auch nach längerer Handhabung möglich ist. Die Handhabungssicherheit wird zusätzlich erhöht, da ein Abrutschen der Häne so nicht zu befürchten ist.

Die Erfindung zeichnet sich insbesondere dadurch aus, daß eine auf die jeweiligen Körpermaße leicht und vom Sportler selbst einstellbare Kettenmaschine geschaffen ist, die in vorteilhafter Weise gleichzeitig so auch leichter zu besteigen ist. Die Stellung der Liege braucht so nicht verändert zu werden und darüberhinaus kann die Kettenmaschine auch für andere Ausgangsstellungen benutzt werden. Außerdem wird in vorteilhafter Weise die Betätigungssicherheit verbessert und ein sicherer und leichter Lauf der Betätigungsstange, der Führungsblöcke und der Gewichte sichergestellt.

Weitere Einzelheiten und Vorteile des Erfindungsgegenstandes ergeben sich aus der nachfolgenden Beschreibung der zugehörigen Zeichnung, in der ein bevorzugtes Ausführungsbeispiel mit den dazu notwendigen Einzelheiten und Einzelteilen dargestellt ist. Es zeigen:

- Fig. 1 eine Vorkopfansicht der Kettenmaschine,
- Fig. 2 eine Seitenansicht der Kettenmaschine,
- Fig. 3 einen Ausschnitt im Bereich des Lagers für die Umlenkrollen,
- Fig. 4 den Hebelhalter in Draufsicht und
- Fig. 5 einen Führungsblock im Schnitt.

Die in Fig. 1 gezeigte Kettenmaschine besteht im wesentlichen aus dem Ständer 2, der die beiden Seitenteile verbindenden Quertraversen 3 und der Bodenplatte 4. Nicht dargestellt ist die Liege oder der Standplatz für den Sportler, der an der Kettenmaschine trainieren will.

Mittig verläuft die Betätigungsstange 5, die endseitig Führungsblöcke 6, 7 aufweist. Diese Führungsblöcke 6, 7 weisen Bohrungen bzw. Durchführungen auf, so daß die Führungsblöcke 6, 7 und damit gleichzeitig die Betätigungsstange 5 in senkrechter Richtung verschoben werden können. Dabei sind die Führungsblöcke 6, 7 mit den senkrecht angeordneten Lochstangen 8, 9 zu verbinden, wie im einzelnen noch später erläutert wird. Am unteren Ende der Lochstangen 8, 9 sind verschiedene Gewichtsscheiben 10, 11, 12 anzubringen, so daß das über die Betätigungsstange zu beeinflussende Gewicht den jeweiligen Wünschen bzw. Notwendigkeiten leicht angepaßt werden kann.

Die Lochstangen 8, 9 sind im dargestellten Beispiel über die Führungsblöcke 6, 7 hinaus hochgeführt und mit nicht dargestellten Bohrungen versehen, die beispielsweise im Abstand von 0,25 m ausgebildet sind.

Die Betätigungsstange 5 weist zwischen den beiden Griffbereichen 15 eine Ausbuchtung 16 auf, die dem jeweiligen Brustbereich des Sportlers entspricht und es ermöglicht, die Betätigungsstange in eine entsprechend tiefergelegene Ausgangsposition zu bringen. In den Griffbereich 15 ragt ein Handhebel 17 hinein, über den der jeweilige Sportler eine Kette 18 beeinflussen kann, so daß der Bolzen 19, der über die Feder 20 belastet ist, gegen deren Kraft aus der jeweiligen Bohrung in der Lochstange 8, 9 herausgezogen werden kann. Dadurch wird es möglich, die Führungsblöcke 6, 7 und damit die Betätigungsstange 5 unabhängig

von den Lochstangen 8, 9 und den Gewichtsscheiben 10, 11, 12 in senkrechter Richtung zu verschieben. Erst wenn die Handhebel losgelassen werden, können die Bolzen in die nächsten Bohrungen einrasten, so daß dann die Führungsblöcke 6, 7 und damit die Betätigungsstange 5 eine neue Position einnimmt. In dieser Position kann der Sportler in die Kettenmaschine einsteigen, auf der Liege beispielsweise platznehmen und dann die Betätigungsstange durch Drücken der Handhebel 17 wieder zu sich herabziehen. Nach Loslassen der Handhebel 17 rasten die Bolzen 19 in die jeweilig optimale Position ein, so daß der Sportler nun aus optimal günstiger Lage die Betätigungsstange zur körperlichen Ertüchtigung hochdrücken bzw. langsam herunternehmen kann. Der Handhebel 17 ist hierzu im Hebelhalter 21 verschwenkbar gehalten.

Zwischen Ständer 2 und Lochstange 8, 9 verläuft ein Seil 23, 24, das über die oberhalb der Quertraverse 3 angeordneten Umlenkrollen 22 umgelenkt wird. Ein Ende des jeweiligen Seils 23, 24 ist, wie auch der Fig. 2 zu entnehmen ist, mit dem Führungsblock 6, 7 bzw. dem Kettenhalter 27 verbunden, während das andere Ende des Seils 23 bzw. 24 ein Ausgleichsgewicht 25 trägt. Hierdurch wird das Betätigen bzw. alleinige Hochschieben der Führungsblöcke 6, 7 und der Betätigungsstange 5 zusätzlich erleichtert.

Fig. 3 zeigt die Lagerung der Umlenkrollen 22 auf einer gemeinsamen Achse 26. Die Achse 26 ist beidseltig über ein Kugellager 29 so gelagert, daß das Hochschieben bzw. Herunterziehen der Betätigungsstange beim Einstellen der Kettenmaschine dadurch nicht behindert wird.

Fig. 2 zeigt die Kettenmaschine in Seitenansicht, wobei die Anordnung der Umlenkrollen 22 und des ihnen zugeordneten Seils 23 bzw. 24 verdeutlicht. Das Seil 23, 23' wird dabei durch den Block 28 geführt, der gleichzeitig auch zur Führung bzw. Halterung der Führungsstangen 31 dient.

Fig. 5 zeigt einen Schnitt durch einen Führungsblock 6, und die Anordnung bzw. Ausbildung der Kugelbuchsenführung 30. Diese Kugelbuchsenführung in Form eines Linearkugellagers 32 ist in der Durchführung 33 bzw. 34 für die Führungsstangen 31 so angeordnet, daß beim Hochschieben bzw. Herunterziehen der Führungsblöcke ein leichter und glatter Lauf gewährleistet ist. Mittig des Führungsblockes 6 ist die Durchführung 35 für die Lochstange 8 bzw. 9 vorgesehen.

Fig. 4 zeigt einen Hebelhalter 21, der über geeignete Verschraubungen bzw. Klemmvorrichtungen an der Betätigungsstange 5 fixiert wird. Hierzu weist er eine entsprechend dem Durchmesser der Betätigungsstange 5 ausgebildete Ausnehmung 36 auf. Am oberen Ende 37 ist zur Fixierung des Handhebels 17 eine weitere Ausnehmung 38 vorgesehen, in der der jeweilige Handhebel gleichzeitig so festgelegt werden kann, daß er um diesen Punkt verschwenkbar ist.

- Leerseite -

Nummer:

33 00 073

Int. CI.3:

A 63 B 21/06

Anmeldetag: Offenlegungstag: 4. Januar 1983 5. Juli 1984 Fig.1

3300073

Fig.4

3