6. Data transmission

- * digital representation
- * digital and analog transmission
- * asynchronous and synchronous communications
- * transmission media

7-Layer OSI Reference Model

Digital transmission enables networks to support many services

6.1 Digital representation

- Bit: number with value 0 or 1
 - *n* bits: digital representation for $0, 1, ..., 2^n$
 - byte or octet, n = 8
 - computer word, n = 16, 32, or 64
- n bits allows enumeration of 2^n possibilities
 - *n*-bit field in a header
 - *n*-bit representation of a voice sample
 - message consisting of n bits
- The number of bits required to represent a message is a measure of its information content
 - more bits \rightarrow more content

Block

- Information that occurs in a single block
 - text message
 - data file
 - JPEG image
- size = bits / block

 or bytes/block
 - 1 Kbyte = 2^{10} bytes
 - 1 Mbyte = 2^{20} bytes
 - 1 Gbyte = 2^{30} bytes

Stream

- Information that is produced
 & transmitted *continuously*
 - real-time voice
 - MP3 audio
 - streaming video (H.261, MPEG-2)
- Bit rate = bits / second (bps)
 - 1 Kbps = 10^3 bps
 - 1 Mbps = 10^6 bps
 - 1 Gbps = 10^9 bps

Stream information

- a real-time voice signal must be digitized & transmitted as it is produced
- analog signal level varies continuously in time

Digitization of analog signal

- sample analog signal in time
- find closest approximation quantization

 R_s = bit rate = # bits/sample x # samples/second

Video signal

- sequence of picture frames
 - each picture digitized & compressed
- frame repetition rate
 - 10-30-60 frames/second (fps), depending on quality
- frame resolution
 - small frames for videoconferencing
 - standard frames for conventional broadcast TV
 - HDTV frames

Rate = M bits/pixel x (WxH) pixels/frame x F frames/second

Video frames

Digital video signals

Type	Method	Format	Original	Compressed
Video Conference	H.261	176x144 or 352x288 pix @10-30 fps	2-36 Mbps	64-1544 Kbps
Full Motion	MPEG-2	720x480 pix @30 fps	249 Mbps	2-6 Mbps
HDTV	MPEG-2	1920x1080 @30 fps	1.6 Gbps	19-38 Mbps

Transmission of stream information

- Constant bit-rate
 - Signals such as digitized telephone voice produce a steady stream: e.g. 64 Kbps
 - Network must support steady transfer of signal, e.g. 64
 Kbps circuit
- Variable bit-rate
 - Signals such as digitized video produce a stream that varies in bit rate, e.g. according to motion and detail in a scene
 - Network must support variable transfer rate of signal, e.g. packet switching or rate-smoothing with constant bit-rate circuit

6.2 Digital and analog transmission

Transmitter

- converts information into *signal* suitable for transmission
- injects energy into communications medium or channel
 - telephone converts voice into electric current
 - modem converts bits into tones

Receiver

- receives energy from medium
- converts received signal into form suitable for delivery to user
 - telephone converts current into voice
 - modem converts tones into bits

Communication Channel

- Pair of copper wires
- Coaxial cable
- Radio
- Light in optical fiber
- Light in air
- Infrared

Transmission Impairments

- Signal attenuation
- Signal distortion
- Spurious noise
- Interference from other signals

Analog long-distance communication

Transmission segment

Source Repeater Repeater Destination

- Each repeater attempts to restore analog signal to its original form
- Restoration is imperfect
 - Distortion is not completely eliminated
 - Noise and interference is only partially removed
- Signal quality decreases with number of repeaters
- Communication is distance-limited
- Analogy: copy a song using a cassette recorder

Analog vs. digital transmission

Analog transmission: all details must be reproduced accurately

Digital transmission: only discrete levels need to be reproduced

Digital long-distance communication

Transmission segment

Source Regenerator Destination

- Regenerator recovers original data sequence and retransmits on next segment
- Each regeneration is like the first time!
- Can design a transmission system with very low bit error rate
- Analogy: copy an MP3 file
- Communication is possible over very long distances
- Digital systems vs. analog systems
 - Less power, longer distances, lower system cost
 - Monitoring, multiplexing, coding, encryption, protocols...

Digitization of analog signals

- 1. Sampling: obtain samples of x(t) at uniformly spaced time intervals
- 2. Quantization: map each sample into an approximation value of finite precision
 - Pulse Code Modulation (PCM): telephone speech
 - CD audio
- 3. Compression: to lower bit rate further, apply additional compression method
 - Differential coding: cellular telephone speech
 - Subband coding: MP3 audio

Sampling rate and bandwidth

- A signal that varies faster needs to be sampled more frequently
- Bandwidth measures how fast a signal varies

- What is the bandwidth of a signal?
- How is bandwidth related to sampling rate?

Periodic signals

• A periodic signal with period *T* can be represented as sum of sinusoids using Fourier Series:

- $|a_k|$ determines amount of power in kth harmonic
- Amplitude spectrum $|a_0|$, $|a_1|$, $|a_2|$, ...

Example - Fourier series

$$x_{1}(t) = 0 + \frac{4}{\pi}\cos(2\pi 4000t)$$

$$x_{2}(t) = 0 + \frac{4}{\pi}\cos(2\pi 1000t)$$

$$+ \frac{4}{3\pi}\cos(2\pi 3(4000)t)$$

$$+ \frac{4}{5\pi}\cos(2\pi 5(4000)t) + \dots$$

$$+ \frac{4}{5\pi}\cos(2\pi 5(1000t)t)$$

$$x_2(t) = 0 + \frac{4}{\pi} \cos(2\pi 1000t) + \frac{4}{3\pi} \cos(2\pi 3(1000)t) + \frac{4}{5\pi} \cos(2\pi 5(1000)t) + \dots$$

Spectrum and bandwidth

- Spectrum of a signal:
 magnitude of amplitudes as a function of frequency
- $x_1(t)$ varies faster in time and has more high frequency content than $x_2(t)$
- Bandwidth W_s is defined as range of frequencies where a signal has non-negligible power, e.g. range of band that contains 99% of total signal power

Spectrum of $x_1(t)$

Spectrum of $x_2(t)$

Bandwidth of general signals

- Not all signals are periodic
 - e.g. voice signal varies according to sound
 - vowels are periodic, "s" is noise-like
- Spectrum of long-term signal
 - averages over many sounds, many speakers
 - involves Fourier transform
- Telephone speech: 4 KHz
- CD Audio: 22 KHz

Sampling theorem

Nyquist: Perfect reconstruction if sampling rate $1/T > 2W_s$

Digital transmission of analog information

Quantization of analog samples

Quantizer maps input into closest of **2**^m representation values

Quantization error: "noise" = x(nT) - y(nT)

Example: voice and audio

Telephone voice

- $W_s = 4 \text{ KHz} \rightarrow 8000 \text{ samples/sec}$
- 8 bits/sample
- $R_s = 8 \times 8000 = 64 \text{ Kbps}$
- Cellular phones use more powerful compression algorithms: 8-12 Kbps

CD Audio

- $W_s = 22 \text{ KHz} \rightarrow 44,000 \text{ samples/sec}$
- 16 bits/sample
- $R_s = 16 \times 44000 = 704 \text{ Kbps per}$ audio channel
- MP3 uses more powerful compression algorithms: 50
 Kbps per audio channel

Quantizer performance

 $M = 2^m$ levels, Dynamic range $(-V, V) \Delta = 2V/M$

If the number of levels M is large, then the error is approximately uniformly distributed between $(-\Delta/2, \Delta2)$

Average Noise Power = Mean Square Error:

$$\sigma_{\rm e}^2 = \int_{\frac{\Delta}{2}}^{\frac{\Delta}{2}} x^2 \frac{1}{\Delta} dx = \frac{\Delta^2}{12}$$

Figure of merit:

Signal-to-Noise Ratio (SNR) = average signal power / average noise power Let σ_x^2 be the signal power, then

$$SNR = \frac{\sigma_x^2}{\Delta^2/12} = \frac{12\sigma_x^2}{4V^2/M^2} = 3(\frac{\sigma_x}{V})^2 M^2 = 3(\frac{\sigma_x}{V})^2 2^{2m}$$

The ratio $V/\sigma_x \approx 4$

The SNR is usually stated in decibels:

SNR dB = 10
$$\log_{10} \sigma_x^2 / \sigma_e^2 = 6m + 10 \log_{10} 3\sigma_x^2 / V^2$$

SNR dB = $6m - 7.27$ dB for $V / \sigma_x = 4$

Example: telephone speech

W = 4 KHz, so Nyquist sampling theorem

$$\Rightarrow$$
 2W = 8000 samples/second

Suppose error requirement = 1% error

$$SNR = 10 \log(1/.01)^2 = 40 dB$$

Assume $V/\sigma_x = 4$, then

$$40 \text{ dB} = 6m - 7$$

$$\rightarrow$$
 $m = 8$ bits/sample

PCM telephone speech:

Bit rate= 8000 x 8 bits/sec= 64 Kbps

Communication channel

- A physical medium is an inherent part of a communications system
 - copper wires, radio medium, or optical fiber
- Communications system includes electronic or optical devices that are part of the path followed by a signal
 - equalizers, amplifiers, signal conditioners
- By communication channel we refer to the combined end-to-end physical medium and attached devices
- Sometimes we use the term *filter* to refer to a channel especially in the context of a specific mathematical model for the channel

Signal Bandwidth

 In order to transfer data faster, a signal has to vary more quickly.

Channel Bandwidth

- A channel or medium has an inherent limit on how fast the signals it passes can vary
- Limits how tightly input pulses can be packed

Transmission Impairments

- Signal attenuation
- Signal distortion
- Spurious noise
- Interference from other signals
- Limits accuracy of measurements on received signal

Frequency domain channel characterization

- Apply sinusoidal input at frequency f
 - Output is sinusoid at same frequency, but attenuated & phase-shifted
 - Measure amplitude of output sinusoid (of same frequency f)
 - Calculate amplitude response
 - A(f) = ratio of output amplitude to input amplitude
 - If $A(t) \approx 1$, then input signal passes readily
 - If A(f) ≈ 0, then input signal is blocked
- Bandwidth W_c is range of frequencies passed by channel

Ideal Low-Pass Filter

 Ideal filter: all sinusoids with frequency f < W_c are passed without attenuation and delayed by τ seconds; sinusoids at other frequencies are blocked

$$y(t) = A_{tt} \cos(2\pi f t - 2\pi f \tau) = A_{tt} \cos(2\pi f (t - \tau)) = x(t - \tau)$$

Phase Response

Time-domain characterization

- Time-domain characterization of a channel requires finding the *impulse response h*(*t*)
- Apply a very narrow pulse to a channel and observe the channel output
 - h(t) typically a delayed pulse with ringing
- Interested in system designs with h(t) that can be packed closely without interfering with each other

Nyquist pulse with zero InterSymbol Interference (ISI)

• For channel with ideal low pass amplitude response of bandwidth W_c , the impulse response is a Nyquist pulse $h(t)=s(t-\tau)$, where $T=1/2W_c$, and

- s(t) has zero crossings at t = kT, $k = \pm 1$, ± 2 , ...
- Pulses can be packed every T seconds with zero interference

Example - composite waveform

Three Nyquist pulses shown separately

- \bullet + s(t)
- \bullet + s(t-T)
- - s(t-2T)

Composite waveform

$$r(t) = s(t) + s(t-T) - s(t-2T)$$

Samples at kT

$$r(0)=s(0)+s(-T)-s(-2T)=+1$$

$$r(T)=s(T)+s(0)-s(-T)=+1$$

$$r(2T)=s(2T)+s(T)-s(0)=-1$$

Zero ISI at sampling times kT

Digital binary signal

Bit rate = 1 bit / T seconds

For a given communications medium:

- How do we increase transmission speed?
- How do we achieve reliable communications?
- Are there limits to speed and reliability?

Signaling with Nyquist pulses

- p(t) pulse at receiver in response to a single input pulse (takes into account pulse shape at input, transmitter and receiver filters, and communications medium)
- r(t) waveform that appears in response to sequence of pulses
- If p(t) is a Nyquist pulse, then r(t) has zero intersymbol interference (ISI) when sampled at multiples of T

Pulse transmission rate

• Objective: maximize pulse rate through a channel, that is, make *T* as small as possible

- If input is a narrow pulse, then typical output is a spread-out pulse with ringing
- Question: How frequently can these pulses be transmitted without interfering with each other?
- Answer: $2 \times W_c$ pulses/second where W_c is the bandwidth of the channel

Multilevel signaling

- Nyquist pulses achieve the maximum signalling rate with zero ISI, $\frac{2W_c}{pulses}$ per second or $2W_c$ pulses / W_c Hz = 2 pulses / Hz
- With two signal levels, each pulse carries one bit of information Bit rate = $2W_c$ bits/second
- With $M = 2^m$ signal levels, each pulse carries m bits

 Bit rate = $2W_c$ pulses/sec. * m bits/pulse = $2W_c$ m bps
- Bit rate can be increased by increasing number of levels
- r(t) includes additive noise, that limits number of levels that can be used reliably.

Example

- Four levels {-1, -1/3, 1/3, +1} for {00, 01, 10, 11}
- Waveform for 11, 10, 01 sends +1, +1/3, -1/3
- Zero ISI at sampling instants

Noise limits accuracy

- Receiver makes decision based on transmitted pulse level + noise
- Error rate depends on relative value of noise amplitude and spacing between signal levels
- Large (positive or negative) noise values can cause wrong decision
- Noise level below impacts 8-level signaling more than 4-level signaling

Noise distribution

- Noise is characterized by probability density of amplitude samples
- Likelihood that certain amplitude occurs
- Thermal electronic noise is inevitable (due to vibrations of electrons)
- Noise distribution is Gaussian (bell-shaped) as below

Probability of error

- Error occurs if noise value exceeds certain magnitude
- Probability of large values drops quickly with Gaussian noise
- Target probability of error achieved by designing system so separation between signal levels is appropriate relative to average noise power

Channel noise affects reliability

- If transmitted power is limited, then as *M* increases spacing between levels decreases
- Presence of noise at receiver causes more frequent errors to occur as M is increased

Shannon channel capacity:

The maximum reliable transmission rate over an ideal channel with bandwidth *W* Hz, with Gaussian distributed noise, and with SNR *S/N* is

$$C = W \log_2 (1 + S/N) \text{ bps}$$

 Reliable means error rate can be made arbitrarily small by proper coding

Example

- Consider a 3 KHz channel with 8-level signaling. Compare bit rate to channel capacity at 20 dB SNR
- 3KHz telephone channel with 8 level signaling
 Bit rate = 2*3000 pulses/sec * 3 bits/pulse = 18 Kbps
- 20 dB SNR means $10 \log_{10} S/N = 20$ Implies S/N = 100
- Shannon channel capacity is then $C = 3000 \log_2 (1 + 100) = 19,974 \text{ bps}$

Bit rates of digital transmission systems

System	Bit Rate	Observations
Telephone twisted pair	33.6-56 Kbps	4 KHz telephone channel
Ethernet twisted pair	10 Mbps, 100 Mbps	100 meters of unshielded twisted copper wire pair
Cable modem	500 Kbps-4 Mbps	Shared CATV return channel
ADSL twisted pair	64-640 Kbps in, 1.536- 6.144 Mbps out	Coexists with analog telephone signal
2.4 GHz radio	2-11 Mbps	IEEE 802.11 wireless LAN
28 GHz radio	1.5-45 Mbps	5 Km multipoint radio
Optical fiber	2.5-10 Gbps	1 wavelength
Optical fiber	>1600 Gbps	Many wavelengths

Line coding

- Mapping of binary information sequence into the digital signal that enters the channel
 - Example "1" maps to +A square pulse; "0" to -A pulse
- Line code selected to meet system requirements:
 - *Transmitted power*: Power consumption = \$
 - *Bit timing*: Transitions in signal help timing recovery
 - Bandwidth efficiency: Excessive transitions wastes bandwidth
 - Low frequency content: Some channels block low frequencies
 - Waveform should not have low-frequency content
 - Error detection: Ability to detect errors helps
 - *Complexity/cost*: Is code implementable in chip at high speed?

Examples

Spectrum of line codes

Assume 1s and 0s independent and equiprobable

Unipolar NRZ

- "1" maps to +A pulse
- "0" maps to no pulse
- High Average Power
 0.5*A² +0.5*0²=A²/2
- Long strings of A or 0
 - Poor timing
 - Low-frequency content
- Simple

Polar NRZ

- "1" maps to +A/2 pulse
- "0" maps to -A/2 pulse
- Better Average Power
 0.5*(A/2)² +0.5*(-A/2)²=A²/4
- Long strings of +A/2 or -A/2
 - Poor timing
 - Low-frequency content
- Simple

- Three signal levels: $\{-A, 0, +A\}$
- "1" maps to +A or –A in alternation
- "0" maps to no pulse
 - Every +pulse matched by –pulse so little content at low frequencies
- String of 1s produces a square wave
 - Spectrum centered at T/2
- Long string of 0s causes receiver to lose synchronization
- Zero-substitution codes

- "1" maps into A/2 first T/2, -A/2 last T/2
- "0" maps into -A/2 first T/2, A/2 last T/2
- Every interval has transition in middle
 - Timing recovery easy
 - Uses double the minimum bandwidth
- Simple to implement
- Used in 10-Mbps Ethernet and other LAN standards

- \bullet mBnB line code
- Maps block of *m* bits into *n* bits
- Manchester code is 1B2B code
- 4B5B code used in FDDI LAN
- 8B10B code used in Gigabit Ethernet
- 64B66B code used in 10G Ethernet

- Errors in some systems cause transposition in polarity, +A become -A and vice versa
 - All subsequent bits in Polar NRZ coding would be in error
- Differential line coding provides robustness to this type of error
- "1" mapped into transition in signal level
- "0" mapped into no transition in signal level
- Same spectrum as NRZ
- Errors occur in pairs
- Also used with Manchester coding

6.3 Asynchronous and synchronous communications

- Recommended Standard (RS) 232
- serial line interface between computer and modem or similar device
- Data Terminal Equipment (DTE): computer
- Data Communications Equipment (DCE): modem
- mechanical and electrical specification

Synchronization

- Synchronization of clocks in transmitters and receivers.
 - clock drift causes a loss of synchronization
- Example: assume '1' and '0' are represented by V volts and 0 volts respectively
 - Correct reception
 - Incorrect reception due to incorrect clock (slower clock)

- Incorrect reception
- How to avoid a loss of synchronization?
 - Asynchronous transmission
 - Synchronous transmission

Asynchronous transmission

• Avoids synchronization loss by specifying a short maximum length for the bit sequences and resetting the clock in the beginning of each bit sequence.

Synchronous transmission

- Sequence contains data + clock information (line coding)
 - i.e. Manchester encoding, self-synchronizing codes, is used.
- R transition for R bits per second transmission

6.4 Transmission media

- Information bearing capacity
 - Amplitude response and bandwidth
 - depend on distance
 - Susceptibility to noise and interference
 - error rates and SNRs
- Propagation speed of signal
 - $c = 3 \times 10^8$ m/s in vacuum
 - $n = c/\sqrt{e}$ speed of light in medium where e > 1 is the dielectric constant of the medium
 - $n = 2.3 \times 10^8$ m/s in copper wire; $n = 2.0 \times 10^8$ m/s in optical fiber

frequency of communication signals

Wireless Media

- Signal energy propagates in space, limited directionality
- Interference possible, so spectrum regulated
- Limited bandwidth
- Simple infrastructure: antennas & transmitters
- No physical connection between network & user
- Users can move

Wired Media

- Signal energy contained & guided within medium
- Spectrum can be re-used in separate media (wires or cables), more scalable
- Extremely high bandwidth
- Complex infrastructure: ducts, conduits, poles, right-of-way

- Attenuation varies with media
 - Dependence on distance of central importance
- Wired media has exponential dependence
 - Received power at d meters proportional to 10-kd
 - Attenuation in dB = k d, where k is dB/meter
- Wireless media has logarithmic dependence
 - Received power at d meters proportional to d⁻ⁿ
 - Attenuation in dB = $n \log d$, where n is path loss exponent; n=2 in free space
 - Signal level maintained for much longer distances
 - Space communications possible

Twisted pair

- Two insulated copper wires arranged in a regular spiral pattern to minimize interference
- Various thicknesses, e.g. 0.016 inch (24 gauge)
- Low cost
- Telephone subscriber loop from customer to CO
- Old trunk plant connecting telephone COs
- Intra-building telephone from wiring closet to desktop
- In old installations, loading coils added to improve quality in 3 KHz band, but more attenuation at higher frequencies

Standard	Data Rate	Distance
T-1	1.544 Mbps	18,000 feet, 5.5 Km
DS2	6.312 Mbps	12,000 feet, 3.7 Km
1/4 STS-1	12.960 Mbps	4500 feet, 1.4 Km
1/2 STS-1	25.920 Mbps	3000 feet, 0.9 Km
STS-1	51.840 Mbps	1000 feet, 300 m

- Twisted pairs can provide high bit rates at short distances
- Asymmetric Digital Subscriber Loop (ADSL)
 - High-speed Internet Access
 - Lower 3 KHz for voice
 - Upper band for data
 - 64 Kbps inbound
 - 640 Kbps outbound
- Much higher rates possible at shorter distances
 - Strategy for telephone companies is to bring fiber close to home and then twisted pair
 - Higher-speed access + video

Ethernet LAN

- Category 3 unshielded twisted pair (UTP): ordinary telephone wires
- Category 5 UTP: tighter twisting to improve signal quality
- Shielded twisted pair (STP): to minimize interference; costly
- 10BASE-T Ethernet
 - 10 Mbps, Baseband, Twisted pair
 - Two Cat3 pairs
 - Manchester coding, 100 meters
- 100BASE-T4 Fast Ethernet
 - 100 Mbps, Baseband, Twisted pair
 - Four Cat3 pairs
 - Three pairs for one direction at-a-time
 - 100/3 Mbps per pair;
 - 3B6T line code, 100 meters
- Cat5 and STP provide other options

Coaxial cable

- Cylindrical braided outer conductor surrounds insulated inner wire conductor
- High interference immunity
- Higher bandwidth than twisted pair
- Hundreds of MHz
- Cable TV distribution
- Long distance telephone transmission
- Original Ethernet LAN medium

Optical fiber

- Light sources (lasers, LEDs) generate pulses of light that are transmitted on optical fiber
 - Very long distances (>1000 Km)
 - Very high speeds (>40 Gbps/wavelength)
 - Nearly error-free (BER of 10⁻¹⁵)
- Profound influence on network architecture
 - Dominates long distance transmission
 - Distance less of a cost factor in communications
 - Plentiful bandwidth for new services

Total Internal Reflection in optical fiber

- Very fine glass cylindrical core surrounded by concentric layer of glass (cladding)
- Core has higher index of refraction than cladding
- Light rays incident at less than critical angle θ_c is completely reflected back into the core

Multimode fiber: multiple rays follow different paths

- Multimode: thicker core, shorter reach
 - Rays on different paths interfere causing dispersion and limiting bit rate
- Single mode: very thin core supports only one mode (path)
 - More expensive lasers, but achieves very high speeds

Radio transmission

- Radio signals: antenna transmits sinusoidal signal ("carrier") that radiates in air/space
- Information embedded in carrier signal using modulation, e.g. Quadrature Amplitude Modulation (QAM)
- Communications without tethering
 - cellular phones, satellite transmissions, wireless LANs
- Multipath propagation causes fading
- Interference from other users
- Spectrum regulated by national and international regulatory organizations

Frequency (Hz)

Omni-directional applications

Point-to-Point applications

Examples

Cellular Phone

- Allocated spectrum
- First generation:
 - 800, 900 MHz
 - Initially analog voice
- Second generation:
 - 1800-1900 MHz
 - Digital voice, messaging

Wireless LAN

- Unlicenced ISM spectrum
 - Industrial, Scientific, Medical
 - 902-928 MHz, 2.400-2.4835
 GHz, 5.725-5.850 GHz
- IEEE 802.11 LAN standard
 - 11-54 Mbps

Satellite Communications

- Geostationary satellite @ 36,000 Km above equator
- Relays microwave signals from uplink frequency to downlink frequency
- Long distance telephone
- Satellite TV broadcast

Chapter Summary

- ♦ digital representation of information
- ◆ digital transmission digitization of analog signal, characterization of communication channel, limitations, line coding
- ♦ asynchronous and synchronous communications
- ♦ transmission media

Reference

Chapter 3, Communication
Networks: Fundamental Concepts
and Key Architectures

