Rešitve nalog: Determinante

Definicija determinante 1

(c)
$$(-1)^{n-1}$$

(c)
$$(-1)^{n-1}$$
 (e) $(-1)^{\frac{n(n-1)}{2}} \prod_{i=1}^{n} a_{i,n+1-i}$ (d) $(-1)^{n} (t^{n} - \prod_{i=1}^{n} a_{i})$

(d)
$$(-1)^n (t^n - \prod_{i=1}^n a_i)$$

1.2. (a) Če je $A(x) = [a_{ij}(x)]_{i,j=1,\dots,n}$, je $\Delta'(x) = \sum_{i=1}^n \det A_j(x)$, kjer je $A_j(x)$ matrika, katere j-ti stolpec je enak $\left[a'_{ij}(x)\right]_{i=1,\dots,n}$, ostali stolpec so pa isti kot v A(x).

(b)
$$\Delta'(x) = 0$$

1.3.
$$p^{(5)}(0) = 0$$
 in $p^{(6)}(0) = 6!$

Elementarne operacije na vrsticah in stolpcih 2

(b)
$$-400$$

2.2.
$$t \in \{0, -1\}$$

2.3.

2.4. (a)
$$\begin{cases} a_1b_1 : n = 1 \\ 0 : n > 1 \end{cases}$$

(b)
$$\begin{cases} 1 + a_1b_1 & : n = 1\\ (a_2 - a_1)(b_2 - b_1) & : n = 2\\ 0 & : n > 2 \end{cases}$$

2.5.

2.6. (a)
$$\prod_{1 \le i \le j \le n} (a_j - a_i)$$

3 Razvoj determinante po vrstici ali stolpcu

3.1. (a)
$$\frac{1+(-1)^n}{2} = \begin{cases} 1 & : n \text{ je sod} \\ 0 & : n \text{ je lih} \end{cases}$$

(b)
$$\frac{4^{n+1}-1}{3}$$

3.2.
$$(a^2 - b^2)^n$$