Base de Datos (75.15 / 75.28 / 95.05)

Evaluación Integradora - 05 de julio de 2017

	TEMA 20:	171C2	Padrón:		
CRT	SQL	Proc.	Apellido:		
CyT	Rec.	NoSQL	Nombre:		
Corrigi	ó:	-	Cantidad de hojas:		
Nota:			\square Aprobado \square Insuficiente		

Criterio de aprobación: El examen está compuesto por 6 ítems, cada uno de los cuales se corrige como B/B-/Reg/Reg-/M. Se aprueba con nota mayor o igual a 4(cuatro), equivalente a desarrollar el 60 % del examen correctamente.

- 1. (Cálculo Relacional de Tuplas) Hoy es miércoles y vamos al cine. Las siguientes relaciones nos indican las funciones disponibles en los distintos cines:
 - Cines(<u>nombre_cine</u>, barrio, dirección)
 - Funciones(nombre_cine, fecha, hora, sala, nombre_película, idioma_audio)
 - Películas(nombre_película, género, año, idioma_original)

Escriba una consulta en el lenguaje del Cálculo Relacional de Tuplas que nos devuelva el listado de cines (columnas nombre_cine, barrio y dirección) en que proyecten alguna película de terror en su idioma original (idioma_audio = idioma_original) esta noche después de las 22:00hs.

2. (Integridad referencial en SQL) Una compañía de seguros guarda información sobre sus clientes, las polizas que poseen y los incidentes que las mismas cubren. El esquema de base de datos relacional fue creado a través de las siguientes consultas SQL, siendo su estado actual el descripto en el Cuadro 1:

```
CREATE TABLE Clientes (
 legajo INT PRIMARY KEY,
 nombre VARCHAR(30),
 fecha_alta DATE,
 email VARCHAR(30)
);
CREATE TABLE Polizas (
 nro_poliza INT PRIMARY KEY,
 legajo_cliente INT,
 patente VARCHAR(10),
 FOREIGN KEY (legajo_cliente) REFERENCES Clientes(legajo) ON DELETE RESTRICT
 ON UPDATE CASCADE
);
CREATE TABLE Coberturas (
 nro_poliza INT,
 incidente VARCHAR(20),
 PRIMARY KEY(nro_poliza, incidente),
 FOREIGN KEY (nro_poliza) REFERENCES Polizas(nro_poliza) ON DELETE CASCADE
 ON UPDATE CASCADE
);
```

- a) Para cada una de las consultas siguientes, indique si podrá ejecutarse exitosamente o será restringida por el SGBD. Tenga en cuenta el estado actual de la base de datos mostrado en el Cuadro 1 y las restricciones de integridad definidas a través de SQL.
 - 1) DELETE FROM Polizas WHERE legajo_cliente=271490;
 - 2) DELETE FROM Coberturas WHERE nro_poliza=130515;
 - 3) UPDATE Polizas SET legajo_cliente=391996 WHERE legajo_cliente=372088;
 - 4) UPDATE Clientes SET legajo=391996 WHERE legajo=372088;
 - 5) DELETE FROM Clientes WHERE legajo=380040;
- b) Ejecute aquellas consultas que no serán restringidas, y muestre el resultado final en formato de tablas, en base al estado actual mostrado en el Cuadro 1.

CLIENTES

legajo	nombre	fecha_alta	email
271490	Ángeles Hudson	17-01-2009	ahudson@mimail.com
287315	Rosario Sierra	26-08-2011	sierarr@outmail.com
	Mario García	12-07-2014	mgarcía@abase.com
380040	Úrsula Gómez	03-12-2015	$ursu_15_g@bmail.com.ar$

POLIZAS

nro_poliza	$legajo_cliente$	patente
152703	271490	MHL316
192041	271490	FZU570
130515	287315	AA030MK
613219	372088	DAB918
908821	380040	AB218CB

COBERTURAS

nro_poliza	incidente
152703	TERCEROS
192041	TERCEROS
130515	TERCEROS
130515	ROBO
613219	TERCEROS
908821	TERCEROS
908821	ROBO
908821	INCENDIO

Cuadro 1: Instancias de relación para el Ejercicio 2 (Integridad referencial en SQL).

- 3. (Procesamiento de Consultas) El Instituto Nacional de Coordinación Agrícola se ocupa de brindar asistencia a los productores rurales, contando con un extenso equipo de asesores asignados a las distintas provincias del país. Su base de datos cuenta con los siguientes esquemas de relación con datos sobre los asesores y los productores rurales:
 - Asesores(legajo, nombre, email, prov_asignada)
 - Productores(cuit, nombre, email, hectáreas, prov_origen)

Se quiere construir una tabla para poner en contacto a los asesores con los productores de las provincias que les fueron asignadas, a través de la siguiente operación de junta:

$Asesores \bowtie_{prov_asignada=prov_origen} Productores$

Estime la cardinalidad del resultado de esta junta, utilizando el siguiente histograma de frecuencias extraído de la información de catálogo que muestra la frecuencia de las 5 provincias principales de cada tabla. Considere además que $V(prov_asignada, Asesores) = V(prov_origen, Productores) = 23.$

	Bs.As.	Santa Fe	Córdoba	Río Negro	Entre Ríos	otras
Asesores.prov_asignada	115	80	60	40	40	130
Productores.prov_origen	2300	1500	1600	980	960	2100

- 4. (Concurrencia y Transacciones) Enuncie el protocolo de lock de dos fases (2PL, Two-phase lock). Indique si un SGBD que lo utilice garantizará la serializabilidad y/o la recuperabilidad de las transacciones que ejecuta.
- 5. (Recuperación) Luego de una caída, un SGBD que implementa el algoritmo REDO de recuperación encuentra el siguiente archivo de log:

```
(BEGIN, T1)
(WRITE, T1, A, 4)
(WRITE, T1, B, 2)
(BEGIN, T2)
(WRITE, T2, C, 8)
(COMMIT, T1)
(WRITE, T2, B, 5)
(BEGIN, T3)
(WRITE, T3, A, 3)
(COMMIT, T3)
```

Suponga que la caída no afectó al medio de almacenamiento en que se persiste la base de datos. Indique si las siguientes afirmaciones respecto al reinicio del sistema son verdaderas ó falsas. Justifique cada una de sus respuestas.

- a) Es posible que sea necesario deshacer la transacción T3.
- b) Será necesario rehacer la operación WRITE de T2 escribiendo 8 en el ítem C.
- c) No está garantizado que el ítem A contenga en disco el valor 3.
- d) Cuando termine la recuperación, la base de datos quedará en un estado en que B=5.
- 6. (NoSQL) Explique en qué consiste el mecanismo de *sharding* en MongoDB y cuáles son sus objetivos.