GENEROWANIE REALIZACJI ZMIENNYCH LOSOWYCH

- 1. METODA ODWRACANIA DYSTRBUANTY

Założenie: Mamy do dyspozycji operator liczb pseudolosowych. $U \sim U(0,1)$

Algorytm: X - zmienna losowa o rozkładzie $P(X=x_i)=p_i,\ i=1,\ldots,n.$

- 1. Generuj $U \sim U(0,1)$
- 2. Jeśli $\sum_{i=1}^{j-1} p_i < U \leqslant \sum_{i=1}^{j} p_i$ dla odpowiedniego j, to wstaw $X = x_j$.

• rozkład ciągły X - zmienna losowa ciągła o sciśle rosnącej dystrybuancie $F_X(x)$. Cel: Chcemy generować realizacje X.

FAKT 1. Niech $U \sim U(0,1)$. Niech $F_X^{-1}(y)$ będzie funkcja odwrotną do $F_X(x)$, wtedy $F_X^{-1}(U) \stackrel{d}{=} X$.

- 1. Generuj $U \sim U(0, 1)$.
- 2. Wstaw $X = F_X^{-1}(U)$.

 $\underline{\mathbf{Uwaga:}}$ Co jeśli $F_{X}\left(x
ight)$ nie jest ściśle rosnąca?

Wtedy wykorzystujemy tzw. **uogólnioną odwrotną**

 $\tilde{F}_{X}^{-1}(y) \stackrel{d}{=} inf\{x \in \mathbb{R} \mid F_{X}(x) \geqslant y\}$

Wtedy analogicznie mamy $X \stackrel{d}{=} \tilde{F}_X^{-1}(U)$

Algorytm:

- 1. Generuj $U \sim U(0,1)$
- 2. Wstaw $X = \tilde{F}_{X}^{-1}(U)$.

2. METODA AKCEPTACJI-ODRZUCANIA

rozkład dyskretny

Cel: Chcemy generować realizacje zmennej losowej X o rozkładzie $P(X=x_i)=p_i,\ i=1,2,\dots$ $(i=1,2,\dots,n)$ Założenia

- Potrafimy efektywnie generować inną zmienną losową Y o rozkładzie $P(Y=i)=q_i$, $i=1,2,\ldots$ $(i=1,2,\ldots,n)$. — Potrafimy wyznaczyć stałą c>0, taką że $\max \frac{p_i}{q_i}\leqslant c,$

(najlepiej znaleźć optymalne c, tzn. $c = \max \frac{p_i}{c}$

Algorytm:

- 1. Generuj Y.
- 2. Generuj $U \sim U(0,1), \quad U||Y.$
- 3. Jeśli $U\leqslant rac{P_Y}{c\cdot q_Y}$ to wstaw X=Yw przeciwnym razie wróć do 1.

 $\textbf{TW. 1.} \ \ \text{Powyższy} \ \ \text{algorytm} \ \ \text{zwraca} \ \ \text{realizację} \ \ \text{zmiennej} \ \ \text{losowej} \ \ \text{X} \ \ \text{o} \ \ \text{rozkładzie} \ P(X=i)=p_i, \ i=1,2,\dots \ (i=1,2,\dots,n).$

rozkład ciągły X - zmienna losowa ciągła o gęstości f(x) przyjmującej wartości dodatnie tylko na odcinku [a,b]. $m=\max_{x\in[a,b]}f(x)$.

Algorytm:

- 1. Generuj $U_1 \sim U(a,b), \ U_2 \sim U(0,m), \ \ U_1 || U_2.$
- 2. Jeśli $U_2\leqslant f(U_1)$ to wstaw $X=U_1$, w przeciwnym razie wróć do 1.
- $\mathbf{TW.}$ 2. Powyższy algorytm generuje zmienną losową X o gęstości f(x).
- dowolna gęstość

Chcemy generować realizacje zmiennej losowej X o gestości f(x). Założenia:

- Potrafimy efektywnie generować realizacje innej zmiennej losowej Y o gęstości g(x), które przyjmują wartości z tego samego zbioru A, co zmienna losowa X
- Potrafimy wyznaczyć stałą c>0, spełniającą sup $\frac{f(x)}{g(x)}\leqslant (=)c$ (najlepiej wybierać c w sposób optymalny).

Algorytm

- 1. Generuj Y.
- 2. Generuj $U \sim U(0,1), \quad U||Y.$
- 3. Jeśli $U\leqslant rac{f(Y)}{c\cdot g(Y)}$ to wstaw X=Y, w przeciwnym razie wróć do 1.
- ${\bf TW}.$ 3. Zmienna losowa X wygenerowana w powyższym algorytmie ma gęstość f(x)

3. METODA SPLOTOWA

Założenia: X ma następującą postać $X\stackrel{d}{=} Y_1+\cdots+Y_n$, gdzie Y_i-iid (niezależne, jednakowo rozłożone) oraz potrafimy generować Y_i

- 1. Generuj Y_1, \ldots, Y_n . 2. Wstaw $X = Y_1 + \cdots + Y_n$

$\underline{\mathbf{Uwaga}}\ X || Y,$

X ma gestość f(x).

Y ma gęstość g(x), X+Y ma gęstość $h(x)=\int_{\mathbb{R}}f(y)\ g(x-y)dy$.

TW. 4. $X = Y_1 + \cdots + Y_n$, gdzie $Y_i - iid$, $Y_i \sim Exp(\lambda)$.

- 1. Generuj $U_i \sim U(0,1)$, wstaw $Y_i = -\frac{1}{\lambda} log U_i \sim Exp(\lambda)$.
- 2. Wstaw $X = -\frac{1}{\lambda} log(U_1 \cdot \ldots \cdot U_n)$.
- 4. METODA KOMPOZYCJI

Zalożenie: X ma dystrybuantę postaci $F_X(x) \stackrel{*}{=} \sum_{i=1}^n p_i F_{Y_i}(x)$, gdzie $p_i > 0$, $\sum_{i=1}^n p_i = 1$, a $F_{Y_i}(x)$ to dystrybuanty zmiennych losowych Y_i , które potrafimy generować.

Jeśli X i Y_i mają gestości to (*) można równoważnie zapisać $f_X(x) = \sum_{i=1}^n p_i \cdot f_{Y_i}(x)$

 ${\it Algorytm:}$ - jak generować X o dystrybuancie (*).

- 1. Generuj zmienną losową I o rozkładzie $P(I=i)=p_i,\ i=1,\ldots,n$
- 2. Generuj Y_I . 3. Wstaw $X = Y_I$.

 ${f TW}.$ 5. Powyższy algorytm generuje zmienną losową X o dystrybuancie (*)

(a) METODA BOXA-MULLERA

Założenie: Potrafimy generować zmienną $X \sim N(0,1)$

TW. 6. Niech $U_1||U_2,U_1,U_2\sim U(0,1)$. Wtedy zmienne losowe $X=\sqrt{-2logU_1}\cdot\cos 2\pi U_2$ oraz $Y=\sqrt{-2logU_1}\cdot\sin 2\pi U_2$ sa niezależne i mają rozkład N(0,1).

Algorytm:

- 1. Generuj U_1,U_2 iid, $U_i\sim U(0,1)$. 2. Wstaw $X=\sqrt{-2logU_1}\cdot\cos2\pi U_2,\,Y=\sqrt{-2logU_1}\cdot\sin2\pi U_2$

(b) METODA BIEGUNOWA

Weźmy wektor (V_1,V_2) o rozkładzie jednostajnym w kole jednostkowym ($V_1=R\cdot\cos\alpha,\ V_2=R\cdot\sin\alpha).\ U_1\sim U(0,1)$ $2\pi U_2\sim U(0,2\Pi)$

Zamiast $2\pi U_2$ wstawiamy α , zmiast U_1 wstawiamy R^2 . Otrzymujemy:

$$X = \sqrt{-2logR^2} \cdot \cos\alpha = \sqrt{-2logR^2} \cdot \frac{V_1}{R} = \sqrt{\frac{-2logR^2}{R^2}} \cdot V_1,$$

$$Y = \sqrt{-2logR^2} \cdot \sin \alpha = \sqrt{\frac{-2logR^2}{R^2}} \cdot V_2.$$

Wtedy $X||Y, X, Y \sim N(0, 1)$. Algorytm

- 1. Generuj $V_1 \sim U(-1,1), \ V_2 \sim U(-1,1).$
- 2. Wyznacz $R^2 = V_1^2 + V_2^2$
- 3. Jeśli $R^2>1$ wróć do 1.

3. Jesti
$$R^2 > 1$$
 wrot do 1.
4. Wstaw $X = \sqrt{\frac{-2logR^2}{R^2}} \cdot V_1$, $Y = \sqrt{\frac{-2logR^2}{R^2}} \cdot V_2$.

Wtedy X||Y , X , Y $\sim N(0,1)$. Prawdopodobieństwo sukcesu (akceptacji (V_1,V_2)) wynosi $\frac{\pi}{4}=p$.

Średnia liczba powtórzeń pętli wynosi $\frac{1}{n} \approx 1.2$

PROCESY LICZĄCE

Proces stochastyczny $\{X(t) \ t \in \tau\}$ - rodzina zmiennych losowych indeksowana parametrem t. Czyli $\forall_{t \in \tau}, X(t)$ jest zmienną losową, gdzie τ - zbiór indeksów,

- zazwyczaj czas
- X(t) opisuje zjawisko o charakterze losowym zachodzące w czasie.

Trajektoria (realizacja) - funkcja $t o X(t,\omega_0)$ procesu X(t) odpowiadająca ω_0

 $\textbf{Proces liczący} \ \ \text{-taki proces stochastyczny } \{N(t), t \geq 0\}, \ \text{\'e} \ N(t) \ \text{reprezentuje liczbę losowych zdarzeń, które pojawiły się do momentu t.}$

Własności procesu liczącego N(t):

- N(0)=0,
 N(t) ma niemalejące trajektorie,
- 3. N(t) przyjmuje wartości ze zbioru N_0 , 4. N(t) ma skoki wielkości 1.
- 5. N(t)-N(s) oznacza liczbę zdarzeń na przedziale [s,t)

JEDNORODNY PROCES POISSONA Jednorodny proces Poissona jest procesem liczącym, stochastycznym.

Jednorodny proces Poissona z intensywnością $\lambda>0$, to taki proces liczący $\{N(t),t\geq0\}$, że:

- 1. N(0) = 0, 2. N(t) ma niezależne przyrosty, tzn $\forall (0 < t_1 < t_2 < ... < t_n)$ zmienne losowe $N(t_1)$, $N(t_2) N(t_1)$, ..., $N(t_n) N(t_{n-1})$ są niezależne,
- 3. N(t) ma stacjonarne przyrosty, tzn $\forall_{(0 < s < t)} \ N(t) N(s) \stackrel{d}{=} N(t-s),$
- 4. $N(t) \sim Pois(\lambda t)$, czyli $P(N(t) = n) = e^{-\lambda t} \cdot \frac{(\lambda t)^n}{n!}$ dla n = 0, 1, ...
- n! 5. N(t) ma trajektorie prawostronnie ciągłe z lewostronnymi granicami (cadlag).

 $\underline{\mathbf{Uwaga}}\ EN(t) = \lambda t$

Funkcja $f:R_+ \to R$ jest klasy $\mathbf{o(t)}$, jeśli $\lim_{t\to 0} \frac{f(t)}{t} = 0$.

Jednorodny proces Poissona z intensywnością $\lambda>0$ (równoważnie) –, taki proces liczący $\{N(t),t\geq0\}$, że

- 1. N(0)=0. 2. N(t) ma niezależne przyrosty, tzn $\forall (0 < t_1 < t_2 < ... < t_n)$ zmienne losowe $N(t_1), N(t_2) N(t_1), ..., N(t_n) N(t_{n-1})$ są niezależne,
- 3. N(t) ma stacjonarne przyrosty, tzn $\forall_{(0 < s < t)} \ N(t) N(s) \stackrel{d}{=} N(t-s),$
- 4. $P(N(t) = 1) = \lambda t + o(t)$ $P(N(t) \ge 2) = o(t)$
- 5. N(t) ma trajektorie cadlag prawostronnie ciągłe z lewostronnymi granicami.

TW. 7. Dla jednorodnego procesu Poissona z intensywnością λ ciąg czasów oczekiwania na skok T_1,T_2,\dots jest ciągiem iid oraz $T_i \sim Exp(\lambda)$.

Stacjonarność: $N(t)-N(s)\stackrel{d}{=}N(t-s)$

Momenty skoków

$$S_n = \sum_{i=1}^n T_i, \ S_n \sim \Gamma(n,\lambda), \ f_{n,\lambda}(x) = \frac{\lambda e^{-\lambda x} (\lambda x)^{n-1}}{(n-1)!}$$

Symulacje trajektorii N(t)

Metoda: będziemy generować czasy oczekiwania T_i do momentu gdy $\sum_{i=1}^n T_i > T$ dla pewnego n.

I - liczba skoków N(t) na [0,T],

 $S_1\,,\,\ldots,\,S_I$ - momenty skoków, t - suma czasów oczekiwania $T_i\,.$

- Ustaw I=0, t=0.
- 2. Generuj $U \sim U(0,1)$.
- 3. Wstaw $t=t-\frac{1}{\lambda}\log U$ (=Exp(λ)). Jeśli t>T STOP
- 4. Wstaw I=I+1, $\hat{S}_{I}=t$.
- 5. Wróć do 2.
- Metoda 2

Będziemy bezpośrednio generować wektor momentów skoków.

TW. 8. Niech N(t) będzie procesem Poissona z intensywnoscią λ . Wtedy warunkowy rozkład wektora momentów skoków $(S_1,...,S_n)$ pod warunkiem N(t)=n, jest równy rozkładowi wektora statystyk pozycyjnych $(U_{1:n},U_{2:n},...,U_{n:n})$, gdzie $U_1,...,U_n$ są iid, $U\sim U(0,T)$. $U_{k:n}$ - k-ta najmniejsza wartość ze zbioru $\{U_1,...,U_n\}$, $U_{1:n}=\min\{U_1,...,U_n\}$, $U_{n:n}=\max\{U_1,...,U_n\}$.

- 1. Generuj $n \sim P(\lambda T)$
- 2. Jeśli n=0 STOP.
- 3. Generuj $U_1,\,...,\,U_n$ iid, $U_i\,\sim\,U(0,\,T)$
- 4. Sortuj $(U_1,\,\ldots,\,U_n)$ aby otrzymać $(U_{1:n},\,U_{2:n},\,\ldots,\,U_{n:n})$
- 5. Wstaw $S_i = U_{i:n}$ (statystyki pozycyjne), i = 1, ..., n

2. NIEJEDNORODNY PROCES POISSONA

```
Niejednorodny proces Poissona z funkcją intensywności \lambda(t) , (\lambda(t)>0, ciągła) to proces liczący spełniający (intensywność zależy od czasu):
                 (\lambda(t) > 0, ciągła) to proces licza
1. N(0) = 0,
2. N(t) ma niezależne przyrosty,
                3. P(N(t+h)-N(t)=1)=\lambda(t)\cdot h+o(h) P(N(t+h)-N(t)\geq 2)=o(h), 4. N(t) ma trajektoric cadlag.
{f Uwaga} Będziemy zakładać, że: \overline{(i)} \lambda(t) \geq 0, \overline{(ii)} \lambda(t) jest ciągła.
```

TW. 9.
$$N(t) - N(s) \sim P(\int_s^t \lambda(u)du)$$

Whioski - poza przypadkiem
$$\lambda(t) = const$$
, $N(t)$ nie ma stacjonarnych przyrostów. $N(t) - N(s) \sim P(\int_s^t \lambda(u)du) \neq P(\int_0^{t-s} \lambda(u)du) \sim N(t-s)$ - dla $\lambda(t) = const$, $N(t)$ jest jednorodnym procesem Poissona.

Metody symulacji niejednorodnego N(t)

• Rozrzedzenie(thinning)

TW. 10. Niech $ilde{N}(t)$ będzie jednorodnym procesem Poissona z intensywnością λ . Oznaczmy przez $\{ ilde{S}_i\}_{i=1}^\infty$ ciąg momentów skoków $ilde{N}(t)$. Załóżmy, że każdy z tych momentów skoków jest niezależnie akceptowany z prawdopodobieństwem $P(\tilde{S}_i)$, gdzie p: $R_+ \to [0,1]$. Wtedy proces liczący N(t), którego momenty skoków tworzą tylko zaakceptowane momenty \tilde{S}_i jest niejednorodnym procesem Poissona z funkcją intensywności $\lambda(t) = \lambda \cdot p(t)$.

Symulacja trajektorii Cel: chcemy symulować jedną trajektorię procesem N(t) z funkcją intensywności $\lambda(t)$ na [0,T]. I - liczba skoków N(t) na [0,T], S_1,\ldots,S_I - momenty skoków,

Wyznaczamy górne ograniczenie $\lambda(t)$ na [0,T], czyli wyznaczamy stałą $\lambda \geq \lambda(t)$, $\forall t \in [0,T]$. Najlepiej $\lambda = \max_{t \in [0,T]} \lambda(t)$ (optymalne). Wtedy $p(t) = \frac{\lambda(t)}{\lambda} \leq 1$

Algorytm:

- $\begin{array}{ll} 1. & \text{Wstaw t=0, I=0.} \\ 2. & \text{Generuj } U_1 \sim U(0,1). \\ 3. & \text{Wstaw } t=t-\frac{1}{\lambda} \log U(\sim Exp(\lambda)). \text{ Jeśli } t>T \text{ STOP} \\ 4. & \text{Generuj } U_2 \sim U(0,1), U_2 \underline{\parallel} U_1 \\ & \text{Supplementation } t = t \frac{1}{\lambda} \log U(t) \\ & \text{Supplementation } t = t \frac$
- 5. Jeśli $U_2 \leq \frac{\lambda(t)}{\lambda}$ to $\mathbf{I} = \mathbf{I} + 1$, $S_I = t$
- 6. Wróć do 2.

Metoda 2 Będziemy generować bezpośrednio kolejne czasy oczekiwania na skok.

TW. 11. Niech N(t) będzie niejednorodnym procesem Poissona z funkcją intensywności $\lambda(t)$. Jeśli proces N(t) miał skok w punkcie s to dystrybuanta czasu oczekiwania na kolejny skok jest równa $F_S(x) = 1 - e^{\left(-\int_S^{s+x} \lambda(u)du\right)}$

Algorytm:

Założenie: Potrafimy wyznaczyć $F_S^{-1}(y)$ - funkcję odwrotną do $F_S(x)$ względem zmiennej x.

- 1. Wstaw t=0, I=0. 2. Generuj $U_1 \sim U(0, 1)$.
- 3. Wstaw $\tau=F^{-1}(U),\,t=t+\tau.$ Jeślit>TSTOP 4. Wstaw I=I+1, $S_I=t$ 5. Wróć do 2.

Będziemy generować wektor momentów skoków $(S_1, ..., S_n)$ na [0,T]

TW. 12. Niech N(t) będzie niejednorodnym procesem Poissona z funkcją intensywności $\lambda(t)$. Wtedy warunkowy rozkład wektora momentów skoków (S_1,\ldots,S_n) pod warunkiem $\text{N(t)} = \text{n, jest równy rozkładowi wektora statystyk pozycyjnych } (V_{1:n}, ..., V_{n:n}), \text{ gdzie zmienne losowe } V_1, ..., V_n \text{ sa iid o gęstości } f(t) = \frac{\lambda(t)}{\int_0^T \lambda(u) du}$ $---, t \in [0, T]$

Symulacja

Symtacja Będziemy generowac jedną trajektorię N(t) na [0,T]. Oznaczenia n - liczba skoków N(t) na [0,T], S_1,\ldots,S_n - momenty skoków

- 1. Generuj $n \sim Poiss(\int_0^T \lambda(u)du)$

MIESZANY PROCES POISSONA Idea Chcemy, aby intensywność w jednorodnym procesie Poissona była zmienną losową. Zastosowanie Ubezpieczenia komunikacyjne - w zależności od wieku kierowcy inna jest intensywność powodowanych wypadków.

DEF. 1. Niech $\tilde{N}(t)$ będzie jednorodnym procesem Poissona z intensywnością równą 1. Niech $\Lambda>0$ będzie zmienną losową niezależną od $\tilde{N}(t)$. Wtedy proces $N(t)\stackrel{def}{=}\tilde{N}(\Lambda t)$ nazywamy mieszanym procesem Poissona ze zmienną mieszającą Λ .

Własności (i) $EN(t)=E\tilde{N}(\Lambda t)=E(E(\tilde{N}(\Lambda t)|\Lambda))=E(\Lambda t)=tE\Lambda$

(ii) N(t) ma stacjonarne przyrosty $t_1 < t_2: N(t_2-t_1) \stackrel{d}{=} N(t_2) - N(t_1)$ (iii) Poza przypadkiem $\Lambda = const$ N(t) nie ma niezależnych przyrostów $t_1 < t_2 < t_3 < t_4$

Symulacja $N(t) = \tilde{N}(\Lambda t)$ Założenie Potrafimy generować realizacje Λ

Algorytm

- 1. Generuj jedna realizację λ zmiennej losowej $\Lambda.$ 2. Ustaw t=0, I=0. 3. Generuj $U\sim U(0,1),\ U\underline{\|}\Lambda.$

- 4. Wstaw $t=t-\frac{1}{\lambda}log(U)$. Jeśli t>T STOP. 5. Wstaw I=I+1, $S_I=t$. 6. Wróć do 3.

Algorytm

- 1. Generuj jedną realizację λ zmiennej losowej Λ . 2. Generuj $n \sim Pois(\lambda T)$. 3. Jeśli n=0 STOP. 4. Generuj $U_1, ..., U_n$ iid, $U_i \sim U(0,T), U_i \underline{\parallel} \Lambda$. 5. Sortuj $U_1, ..., U_n$ aby uzyskać $(U_1; n, ..., U_n; n)$. 6. Wstaw $S_i = U_1; n, i = 1, ..., n$.

- 1. Jednorodny proces Poissona, $\lambda=const$ 2. Niejednorodny proces Poissona $\lambda(t)$ 3. Mieszany proces Poissona, Λ -zmienna losowa.

4. PROCES COXA (podstawowe stochastyczne prawa Poissona)

Proces Coxa - podwójnie stochastyczny proces Poissona.

Idea - Chcemy, aby funkcja intensywności w niejednorodnym procesie Poissona była procesem stochastycznym

Zastosowanie procesu Coxa Liczenie zjawisk o intensywności zmiennej w czasie, losowej (trzęsienia ziemi).

 ${f DEF.}$ 2. Niech $ilde{N}(t)$ będzie jednorodnym procesem Poissona z intensywnością równą 1. Niech $\Lambda(t)$ będzie startującym w zerze, niemalejącym procesem stochastycznym, niezależnym od $\tilde{N}(t)$. Wtedy proces: $N(t) \stackrel{def}{=} \tilde{N}(\Lambda(t))$ nazywamy **procesem Coxa** .

- Własności procesu Coxa (i) $EN(t) = E(E(\tilde{N}(\Lambda(t))|\Lambda(t))) = E(\Lambda(t))$ (ii) Jeśli $\Lambda(t)$ ma stacjonarne przyrosty, to N(t) ma stacjonarne przyrosty. (iii) Jeśli $\Lambda(t)$ ma niezależne przyrosty, to N(t) ma niezależne przyrosty.

Symulacja

- Metoda 1. $N(t)=\tilde{N}(\Lambda(t)),\,t\in[0,T]$ przedział jednej trajektorii. **Założenie**: Potrafimy generować realizację procesu $\Lambda(t)$.

- 1. Generuj $\Lambda(t)$ na [0,T]. 2. Generuj $\tilde{N}(t)$ na $[0,\Lambda(t)]$ 3. Wstaw $N(t) = \tilde{N}(\Lambda(t)), t \in [0,T]$.

Założenie: Potrafimy generować realizacje procesu $\lambda(t)$, gdzie $\Lambda(t) = \int_0^t lambda(u)du$

- $\begin{array}{ll} 1. & \text{Generuj } \lambda(t) \text{ na } [0,T]. \\ 2. & \text{Wyznacz } \lambda \geq max\lambda(t), t \in [0,T] \\ 3. & \text{Wstaw } t{=}0, \text{I}{=}0. \\ 4. & \text{Generuj } U_1 \sim U(0,1), U_1 \underline{\parallel} \lambda(t) \end{array}$

- $\begin{array}{ll} \dots & \text{Schery} \ \ \cup_1 \sim U(0,1), U_1 \underline{\parallel} \lambda(t) \\ 5. & \text{Wstaw} \ t = t \frac{1}{\lambda} log U_1, \ \text{jeśli} \ t > T \ \text{STOP} \\ 6. & \text{Generuj} \ U_2 \sim U(0,1), U_1 \underline{\parallel} U_2 \underline{\parallel} \lambda(t) \\ 7. & \text{Jeśli} \ U_2 \leq \frac{\lambda(t)}{\lambda}, \ \text{to I=I+1}, \ S_I = t \\ 8. & \text{Wróć do 4}. \end{array}$

- 5. PROCESY ODNOWY
 - DEF. 3. Proces liczący N(t), którego ciąg czasów oczekiwania na kolejny skok $\{T_i\}_{i=1}^\infty$ jest ciągiem iid, nazywamy procesem odnowy, np. jednorodny proces Poissona jest procesem odnowy. $(T_1, \ldots, T_n \text{ są iid})$.

Ozinaczenia.
$$S_n = \sum_{i=1}^{\infty} T_i$$
 - moment n-tego skoku, $N(t) = \sum_{n=1}^{\infty} 1_{\left\{S_n \leq t\right\}}$, $N(t) = \max\{n \in N_0 : S_n \leq t\}$ Najważniejsze twierdzenia w teorii odnowy:

 ${f TW.~13.~Niech~}ET_1<\infty.~{
m Wtedy:}$

- (i) $\frac{EN(t)}{t} \stackrel{t \to \infty}{\longrightarrow} \frac{1}{ET_1}$
- (ii) $\xrightarrow{N(t)} \xrightarrow{t \to \infty, a.s.} \xrightarrow{1} \xrightarrow{ET_1}$

$$\mathbf{TW. \ 14. \ Niech } \ ET_1 < \infty \ \text{oraz \ niech } \{X_i\}_{i=1}^{\infty} \ \text{b\'eta} \ \text{dzie \ ciagiem \ iid \ oraz } \{X_i\} \underline{\|} \{T_i\}. \ \text{Wtedy: (CTRW-bl\'eta} \ \text{dzenie \ losowe \ z \ czasem \ ciaglym)} \ \xrightarrow{t \to \infty, a.s.} \ \underbrace{EX.}_{ET_i} \ \underbrace{t \to \infty, a.s.}_{ET_i} \ \underbrace{t \to \infty, a.s.}_{ET_i} \ \underbrace{EX.}_{ET_i} \ \underbrace{t \to \infty, a.s.}_{ET_i} \ \underbrace{t \to \infty, a.s.}$$

Symulacja procesu odnowy

Algorytm:

- $\begin{array}{lll} 1. & \text{Wstaw} \ t=0 \,, \ I=0. \\ 2. & \text{Generuj} \ T_i \\ 3. & \text{Wstaw} \ t=t+T_i \,, \ \text{jeśli} \ t>T \ \text{STOP} \\ 4. & \text{Wstaw} \ I=I+1, \ S_I=t \\ 5. & \text{Wr\'o\'e} \ \text{do} \ 2. \end{array}$

PROCESY RYZYKA

- 1. GENEROWANIE TRAJEKTORII PROCESU RYZYKA
 - Proces ryzyka proces opisujący kapitał firmy ubezpieczeniowej.

$$R(t) \stackrel{d}{=} u + c(t) - \sum_{i=1}^{N(t)} X_i \ u > 0 \text{ - kapital początkowy,}$$
 $c(t)$ - premia (pieniądze uzyskane ze sprzedaży polis),

- N(t) proces liczący liczbe szkód, X_i wielkość i-tej szkody; X_i iid, $\mathbb{E}|X_i| \leq \infty.$

Przykłady - sposoby doboru premii.

- N_t jednorodny proces Poissona z intensywnością $\lambda>0$ N_t niejednorodny proces Poissona z funkcją intensywności $\lambda(t)$ mieszany proces Poissona proces Coxa
- (e) N_t proces odnowy
- 2. ESTYMACJA PARAMETRÓW I ROZKŁADÓW PROCESU RYZYKA
 - (a) Wykorzystując dane historyczne tworzymy próbke statystyczna (X_1, \ldots, X_n) .
 - (b) Wyznaczamy rozkład (X_1,\ldots,X_n)
 - dystrybuanta empiryczna,

 - momenty empiryczne,
 qqplot wykres kwantylowy,
 test Kołmogorowa-Smirnowa
 - (c) Estymacja parametru λ .
 - N(t) jednorodny proces Poissona $(T_1, \dots, T_n), \ T_i$ -iid, $T_i \sim Exp(\lambda)$ $ET_i = \frac{1}{\lambda}$ $\frac{1}{n} \sum_{i=1}^n T_i \approx \frac{1}{\lambda} \rightarrow \lambda = \frac{1}{\frac{1}{n} \sum_{i=1}^{N(t)}}$
 - N(t) niejednorodny proces Poissona = $\lambda(t)$ $N(t) = EN_t = \int_0^t \lambda(u) du = \Lambda(t)$, Dobieramy funkcję $\Lambda(t)$ do trajektorii, wtedy $\lambda(t)=\Lambda^{\iota}(t).$

Algorytm

- 1. Generuj jedna realizację N_t na [0,T]. 2. Generuj X_1,\ldots,X_{N^+} iid.
- 3. Wraw $R(t) = u + c(t) \sum_{i=1}^{N_t} X_i, t \in [0, T].$

3. ROZKŁADY LEKKO I CIĘŻKOOGONOWE Funkcja generująca momenty $M_{X}(z)\stackrel{d}{=}Ee^{zX}$ **DEF. 4.** Zmienna losowa X ma **rozkład lekkoogonowy**, jeśli $\exists_{a,b>0} \forall_{x>0} \ P(X>x) = 1 - F_X(x) \leqslant ae^{-bx}$ Równoważnie: $\exists_{z>0} M_X(z) < \infty$ $\label{eq:continuity} \textbf{Interpretacja: Ogon rozkładu } P(X>x) \ zanika \ do \ 0 \ wykładniczo lub szybciej. Przykłady rozkładów lekkoogonowych:$ $\begin{array}{ll} 1. & X \sim Exp(\lambda) \\ 2. & X \sim \Gamma(\alpha,\beta) \\ 3. & \operatorname{rozkład} \ \operatorname{Weibulla} \\ 4. & \operatorname{rozkład} \ \operatorname{hiperwykładniczy} \end{array}$ DEF. 5. Mówimy, ze X>0 ma rozkład ciężkoogonowy, jeśli $\forall_{a,b>0}\ \exists_{x>0}\ 1-F_X(x)>ae^{-bx}$ Równoważnie: $\exists z>0\ M_{X}(z)=\infty$ ${\bf Interpretacja}:$ Ogon rozkladu P(x>x)zanika do 0 wolniej niż wykładniczo. Przykłady rozkładów cieżkoogonowych: rozkład Weibulla
 rozkład lognormalny
 rozkład Pareto
 rozkład Burra 4. PRAWDOPODOBIEŃSTWO RUINY W SKOŃCZONYM I NIESKOŃCZONYM HORYZONCIE CZASOWYM • RUINA W SKOŃCZONYM CZASIE Klasyczny proces ryzyka $R(t) = u + c(t) - \sum_{i=1}^{N(t)} X_i$ $c=(1+\Theta)~\lambda~\mu$ $\mu=EX_i,~X_i\text{-iid}$ N_t - jednorodny proces Poissona z intensywnością $\lambda>0$ $\textbf{Moment ruiny } \tau(u) = \inf\{t>0: R(t)<0\} \quad \text{- pierwszy moment, w którym proces ryzyka spada poniżej } 0.$ Prawdopodobieństwo ruiny w skończonym czasie T $\Psi(u,T)=P(\tau(u)\leqslant T)$ Prawdopodobieństwo ruiny w nieskończonym czasie $\Psi(u) = P(\tau(u) < \infty)$ 1. Generuj N trajektorii $R^{(1)}(t),\dots,R^{(N)}(t)$ procesu ryzyka na odcinku [0,T]. Wyznacz liczbę trajektorii, które spadły poniżej 0. $n = \#\{i : \inf_{t \in [0,T]} R^{(i)}(t) < 0\}$ 3. Wstaw $\Psi(u, T) = \frac{n}{N}$ Inne metody aproksymacji $\Psi(u, t)$ dysfuzyjnade Vyldera RUINA W NIESKOŃCZONYM CZASIE Wzór Pollaczka-Chinczyna $\Psi(u) = \frac{\theta}{1+\theta} \sum_{n=0}^{\infty} \left(\frac{1}{1+\theta}\right)^n \cdot B_n(u),$ gdzie $B_n(u)=P(Y_1+\cdots+Y_k>u)$ oraz Y_i - zmienne losowe iid o gęstości $f(x)=\frac{1-P(X_i\leqslant x)}{\mu}=\frac{P(X_i>x)}{\mu}$ Aproksymacja $\Psi(u)=P(\tau(u)<\infty)$ metodą Monte Carlo. $\underline{\mathbf{Uwaga}}\ \Psi(u)=P(Y_1+\cdots+Y_k)>u$, gdzie K jest zmienną losową o rozkładzie geometrycznym $P(K=n)=p\cdot (1-p)^n$, $n=0,1,\ldots$ niezależną od $Y_1,Y_2,\ldots,p=rac{ heta}{1+ heta}$ Algorytm: 1. Wstaw I=0. 2. for i=1:N Generuj $k \sim Geo(\frac{\theta}{1+\theta})$ Generuj Y_1,\ldots,Y_k Jeśli $Y_1,\ldots,Y_k>u$ to I=I+1. 3. Wstaw $\Psi(u) = \frac{I}{N}$ Jawna postać $\Psi(u)$ 1. $\boldsymbol{X}_i \, \sim \, Exp(\beta), \, \mu = E\boldsymbol{X}_i \, = \, \frac{1}{\beta},$ 2. $X \sim \Gamma(\alpha, \beta),$ 3. X_i - mieszanie rozkładów wykładniczych. PROCESY SAMOPODOBNE **DEF. 6.** Mówimy, że proces X(t), $t \ge 0$ jest **samopodobny**, jeśli $\forall_{a>0} \ \exists_{b>0} \ X(at) \stackrel{d}{=} bX(t)$, $t \ge 0$. Interpretacja: Dla procesu samopodobnego przeskalowanie czasu jest równoważne (według rozkładu) przeskalowaniu wartości procesu. Trajektorie X(t) na krótkich i długich przedziałach mają DEF. 7. Proces X(t) jest ciągły według prawdopodobieństwa w punkcie t, jeśli $\forall_{\varepsilon>0}\lim_{h\to 0}P(|X(t+h)-X(t)|>\varepsilon)=0.$ **DEF. 8.** Mówimy, że $\mathbf{X}(\mathbf{t}),\ t\geq 0$ jest $\mathbf{trywialny},\ \mathsf{jeśli}\ \forall t_0>0\ X(t_0)$ jest stałą TW. 15. (Lamperti) Niech $X(t),\ t\geq 0$ będzie nietrywialnym, ciągłym według prawdopodobieństwa w zerze oraz samopodobnym procesem stochastycznym. Wtedy $b=a^H$ dla pewnego $H\geq 0.\ \forall a>0 X(at)=a^H X(t).$ Stąd nazwa procesy H-samopodobne, H-indeks samopodobieństwa (Hursta). TW. 16. (Lamperti 1962) Fundamentalne Twierdzenie Graniczne (i) Niech $Y(t),\ t\geq 0$ będzie procesem stochastycznym takim, że dla pewnego ciągu $a_n\nearrow\infty$ zachodzi zbieżność $\underbrace{Y(nt)}_{a_n}\stackrel{d,n\to\infty}{\longrightarrow} X(t)$. Wtedy X(t) jest H-samopodobny. (ii) Ciąg a_n w powyższym wzorze ma postać $a_n=n^HL(n)$, gdzie ${\rm L(n)}$ jest funkcją wolno zmieniającą się, (iii) Dowolny proces H-samopodobny możemy uzyskać jako granicę $\frac{Y(nt)}{an} \stackrel{d,n \to \infty}{\longrightarrow} X(t)$. Własności procesów H-samopodobnych (i) jeśli H>0 to X(0)=0 a.s. (ii) Niech X(t) begiz nietrywialnym, ciągłym według prawdopodobieństwa w zerze, H-samopodobnym procesem stochastycznym. Wtedy $H=0 \iff X(t)=X(0), \quad a.s., \quad \forall t>0$ $\underline{\mathbf{Uwaga}}$ W praktyce rozważamy jedynie procesy samopodobne. które są nietrywialne, ciągłe wg prawdopodobieństwa w zerze oraz zt>0 $\underline{\textbf{Uwaga2}} \ \ \texttt{Samopodobieństwo to własność n-wymiarowych rozkładów, czyli} \ \ \forall_{a>0} \ (X(at_1),...,X(at_n) \stackrel{d}{=} a^H(X(t_1),...,X(t_n)))$

te same własności statystyczne.

(iii) transformacje Lampertiego jeśli X(t) jest H-samopodobny to $Y(t) \stackrel{def}{=} e^{-tH}X(e^t)$ jest procesem stacjonarnym.

(iv) Jeśli Y(t) jest stacjonarny, to $X(t) \stackrel{def}{=} \left\{ \begin{array}{ll} t^H Y(\log t) & \text{gdy } t > 0 \\ 0 & \text{gdy } t = 0 \end{array} \right.$ jest H-samopodobny.

```
1. RUCH BROWNA (PROCES WIENERA)
     Przykłady procesów H-samopodobnych (i) X(t) = t^H, X(at) = a^H t^H = a^H X(t)
     (ii) Z - dowolna zmienna losowa
     X(t) = t^{H}
     X(t) = t^{H} \cdot Z

X(at) = a^{H}t^{H} \cdot Z = a^{H}X(t)
     (iii) ruch Browna
    (III) rect Blows.

1. B(0)=0

2. B(t) ma niezależne, stacjonarne przyrosty.

3. B(t) \sim N(0, t)

4. B(t) ma ciągle trajektorie.
     B(t) jest \frac{1}{2}-samopodobny, B(at) = a^{\frac{1}{2}}B(t), H = \frac{1}{2}
```

Gel: Cheemy wygenerować trajektorię B(t) w punktach $t_0,t_1,...,t_n$, gdzie $t_i=ih,\ h=\frac{T}{n}$, i=0,1,...,n. Cheemy wygenerować wektor $(B(t_0),B(t_1),...,B(t_n))$. Zauważmy, że $B(t_k) - B(t_{k-1}) \stackrel{d}{=} B(t_k - t_{k-1}) = B(h) \sim N(0,1). \text{ Zatem wystarczy generować przyrosty B(t)}. \textbf{Algorytm:}$

- 1. $B(t_0) = 0$, $(t_0 = 0)$
- 2. $B(t_{i+1}) = B(t_i) + h^{\frac{1}{2}} \xi_i$, i=0,1,...,n-1, $\xi_0, \, \dots, \, \xi_{n-1} \, - \, iid, \, \, \xi_i \, \sim \, N(0,1),$
- $h^{\frac{1}{2}}\xi_i \sim N(0,h)$

 $\textbf{DEF. 9.} \ \ Proces \ X(t) \ jest \ gaussowski jeśli jego rozkłady skończenie wymiarowe są gaussowskie. \ Przykład: ruch Browna$

Uwaga Proces gaussowski jest jednoznacznie wyznaczony przez funkcję wartości średniej m(t)=EX(t) oraz funkcję autokowariancji Cov(X(s), X(t))

2. UŁAMKOWY RUCH BROWNA

DEF. 10. Ułamkowym ruchem Browna $B_H(t), t \geq 0, H \in (0,1]$, nazywamy proces gaussowski o średniej $m(t) = EB_H(t) = 0$ oraz funkcji autokowariancji $Cov(B_H(s), B_H(t)) = \frac{\sigma^2}{2}(t^{2H} + s^{2H} - |t-s|^{2H})$.

 $\underline{\textbf{Uwaga}} \text{ Weźmy } H = \frac{1}{2}. \text{ Wtedy } c(s,t) = \frac{\sigma^2}{2}(t+s-|t-s|) = \sigma^2 \frac{t+s-|t-s|}{2} = \sigma^2 min(s,t), \text{ czyli dla } H = \frac{1}{2}. B_{\frac{1}{2}}(t) = \sigma \cdot B(t), \text{ gdzie B(t) jest standardowym ruchem Browna decomposition } B_{\frac{1}{2}}(t) = \frac{\sigma^2}{2}(t+s-|t-s|) = \frac$

Uwaga Weźmy H=1. Wtedy $B_1(t) \stackrel{def}{=} t \cdot B_1(1)$.

Własności $B_H(t)$: (i) $B_H(t)$ jest H-samopodobny

(ii) $B_H(t)$ ma stacjonarne przyrosty, zatem $B_H(t+h)-B_H(h)\stackrel{d}{=}B_H(t)$ **Lemat:** Niech X(t) będzie procesem H-samopodobnym o stacjonarnych przyrostach i skończonym drugim momencie. W tedy $EX(t)X(s)=\frac{\sigma^2}{2}(t^{2H}+s^{2H}-|t-s|^{2H})$. Tutaj $\sigma^2=EX^2(1)$.

DEF. 11. Ułamkowym ruchem Browna nazywamy proces gaussowski, który jest H-samopodobny, ma stacjonarne przyrosty i średnią zero.

 $\begin{aligned} & \textbf{UŁAMKOWY RUCH BROWNA JAKO CAŁKA STOCHASTYCZNA:} \\ & \textbf{Dla } H \in (0,1), \ B_H(t) \ \text{możemy zdefiniować jako:} \ B_H(t) = c_H[\int_{-\infty}^0 \left((t-s)^{H-\frac{1}{2}} - (-s)^{H-\frac{1}{2}} \right) dB(s) + \int_0^t \left(t-s \right)^{H-\frac{1}{2}} dB(s)], \end{aligned}$ $\text{gdzie } c_H = \sigma [\int_{-\infty}^0 {((1-s)^{H-\tfrac{1}{2}} - (-s)^{H-\tfrac{1}{2}})^2 ds} + \frac{1}{2H}]^{-\tfrac{1}{2}}$ Własności: $\int_a^b f(s)dB(s) \sim N(0, \int_a^b f(s)ds)$.

LINIE KWANTYLOWE PROCESÓW - SAMOPODOBNYCH

 $\textbf{DEF. 12. Linią kwantylową} \text{ rzędu } p \in (0,1) \text{ dla procesu } \mathbf{X}(t) \text{ nazywamy funkcję } q_p(t) \text{ spełniającą zależność: } P(X(t) \leq q_p(t)) = p$

 $\underline{\mathbf{Uwaga}}$ Dla ustalonego t $q_p(t)$ jest kwantylem rzędu p zmiennej losowej $\mathbf{X}(\mathbf{t})$.

 $\underline{\mathbf{Uwaga}}$ Jeśli X(t) ma rozkład ciągły ze ściśle rosnącą dystrybuantą $F_{X(t)}(x)$, to $q_p(t) = F_{X(t)}^{-1}(p)$

Estymacja kwantyla rzędu p
 zmiennej losowej X: $(X_1,..,X_n)$. Estymator kwantyla rzędu p
 ma postać: $q_p=X_{\llbracket n\cdot p\rrbracket:n}.$

FAKT 2. Niech $\mathbf{X}(\mathbf{t})$ będzie procesem H-samopodobnym. Wtedy $q_p(t) = t^H \cdot q_p$, gdzie q_p jest kwantylem rzędu p zmiennej losowej $\mathbf{X}(1)$.

 ${f Uwaga}$ Jeśli chcemy sprawdzić, czy X(t) jest H-samopodobny, to estymujemy linie kwantylowe i sprawdzamy, czy są one postaci: $q_p(t)=t^H\cdot q_p$. $\overline{ extbf{Uwaga}}$ Dla $B_H(t)$ linie kwantylowe mają postać: $q_p(t) = t^H \cdot q_p$, gdzie q_p jest kwantylem rzędu p rozkładu $N(0,\sigma^2)$.

Ułamkowy szum gaussowski – stacjonarny proces z dyskretnym czasem: $b_H(n)\stackrel{def}{=} B_H(n+1) - B_H(n), \ n \in \mathbb{N}_0$. $b_H(n)$ – proces przyrostów ułamkowego ruchu Browna; proces gaussowski $E(b_H(n)) = 0$

DEF. 13. Mówimy, że proces stacjonarny $X(n),\ n\in\mathbb{N}_0,\ \mathbb{E}X^2(n)\leq\infty$ ma własność długiej pamięci (długoterminowej zależności), jeśli $\sum_{k=0}^\infty |Cov(X(k),X(0))|=\infty$.

Interpretacja: Kowariancja powoli zanika do 0, nawet odlegle zdarzenia mają na siebie istotny wpływ, tzn. kowariancje niesumowalne

- i) dla $H>\frac{1}{2},$ $\sum_{k=0}^{n}|s_k|=\infty,$ $s_k\sim c\cdot k^{2H-2},$ $\sum\frac{1}{k^{2-2H}}=\infty,$ 2-2H<1, $H>\frac{1}{2}$ oznacza, że szereg jest rozbieżny, tzn. długa pamięć
- ii) $H=rac{1}{2}$ mamy $s_k=0$, $\sum_{t=-0}^{\infty}|s_k|<\infty$ brak długiej pamięci, ekstremalnie krótka pamięć, bo wszytsko jest niezależne
- iii) $H < \frac{1}{2}$, $\sum_{k=0}^{\infty} |s_k| < \infty$ brak długiej pamięci, autokowariancja powoli zanika do 0. $\sum \frac{1}{k^{2-2H}} < \infty$ dla $H < \frac{1}{2}$

Symulacja $b_H(n)$ Cel: Chcemy wygenerować wektor $(b_H(0),\ldots,b_H(N-1)),\ N\in\mathbb{N}$ Algorytm Daviesa-Harte'a:

- 1. Dla $k=0,\dots,2N-1$. Wyznacz $A_{K,N}=\sum\limits_{j=0}^{N}s_{j}$ $e^{\displaystyle\frac{-i\pi kj}{N}}+\sum\limits_{j=N+1}^{2N-1}s_{2N-j}$ $e^{\displaystyle\frac{-i\pi kj}{N}}$ 2. Sprawdź, że $A_{k,N}\geqslant 0$ dla wszystkich k. 3. Generui zo
- 3. Generuj z_0,\dots,z_{2N-1} iid, $z_i \sim N(0,1)$. 4. Wyznacz

$$\begin{aligned} & \text{4. Wyznacz} \\ & Y_k = \begin{cases} & \sqrt{2NA_{0,N}} \cdot z_0 & \text{gdy } k = 0 \\ & \sqrt{NA_{k,N}} \cdot (z_{2k-1} + iz_{2k}) & \text{gdy } 1 \leqslant k \leqslant N-1 \\ & \sqrt{2NA_{N,N}} \cdot z_{2N-1} & \text{gdy } k = N \\ & \sqrt{NA_{k,N}} \cdot (z_{4N-1-2k} + iz_{4N-2k}) & \text{gdy } N+1 \leqslant k \leqslant 2N-1 \end{cases} \\ & \text{5. Wstaw } b_H(n) = \frac{1}{2N} \sum_{k=0}^{2N-1} Y_k \ e^{\frac{-i\pi k_n}{N}}, \ n = 0, 1, \dots, N-1 \end{aligned}$$

Symulacja $B_H(t)$ (ułamkowy ruch Browna) Cel: Chcemy wygenerować wektor $(B_H(t_0),\dots,B_H(t_N))$. $t_i=i\cdot n,\ n=\frac{T}{N}$ $b_H(n)=B_H(n+1)-B_H(n)$ Algorytm:

- 1. Generuj $(b_H(0), \ldots, b_H(N-1))$.
- 2. Wstaw $(B_H(t_0), \dots, B_H(t_N)) = h^H$ cumsum $([0, b_H(0), \dots, b_H(N-1)])$.

PROCES (SZEREG CZASOWY) ARFIMA(0, d, 0)

 $d \in \mathbb{R} \setminus \mathbb{Z}$

Proces ARFIMA - rozwiązanie:
$$\Delta^d X(n) = \xi_n$$
, $n \in \mathbb{N}_0$ ξ_n - iid, $\xi_i \sim N(0,1)$ biały szum gaussa
$$\Delta X(n) \stackrel{d}{=} X(n) - X(n-1)$$
 $\Delta = 1 - B$
$$BX(n) \stackrel{d}{=} X(n-1)$$

$$\Delta^d = (1-B)^d \stackrel{d}{=} \sum_{n=0}^{\infty} \binom{d}{n} (-B)^n$$

$$\binom{d}{n} = \frac{\Gamma(d+1)}{\Gamma(n-1) \cdot \Gamma(d-n+1)}$$

Arfima ma postać: $X(n) = \sum_{k=0}^{\infty} \binom{-d}{k} (-1)^k \xi_n$

 ${f TW.}$ 17. X(n) jest dobrze określony i stacjonarny dla $d<rac{1}{2}$

TW. 18. $Cov(X(n),X(0)) \sim c \cdot n^{2d-1}, \ n \to \infty$. Wniosek: dla $0 < d < \frac{1}{2},\ X(n)$ ma długą pamięć.

 $\textbf{TW. 19. Weźmy } t > 0. \text{ Wtedy } \frac{X(1) + X(2) + \dots + X([nt])}{n^H} \xrightarrow{d,n \to \infty} B_H(t). \text{ Zatem } b_H(n) \approx X(n). \text{ (te dwa procesy są bardzo blisko siebie)}. \ H = d + \frac{1}{2}$

$$\begin{split} & \text{Symulacje } X(n) \\ & X(n) \approx \sum_{k=0}^{M} \binom{-d}{k} (-1)^k \ \xi_{n-k}, \\ & M \text{ - duža liczba} \end{split}$$