AEEM 3042 Aircraft Performance & Design Spring Semester 2023

<u>Instructor - Mark Fellows</u>

B.S. Aerospace Engineering, UC Class of 1980 M.S. Aeronautical Engineering, AFIT Class of 1985 Aerospace MBA, UTenn Class of 2009

Robert – B.S. Aerospace Engineering, UC Class of 2011 Amanda – M.S. Aerospace Engineering, UC Class of 2011

36 year career at Wright-Patterson AFB Aircraft Performance Engineer Air Vehicle Team Leader

Teaching Assistant

Keerthan Ganeshan, Graduate Student ganeshka@mail.uc.edu

Class of 2020, B.S. Aeronautical Engineering Nitte Meenakshi Institute of Technology (NMIT) Bangalore, India

UC Aerospace Engineering M.S. Program (Fluids and Propulsion)

Class Day / Time / Location

Tuesdays & Thursdays 3:30 – 4:50 p.m. in 544 Baldwin Hall University closures – we will meet over Zoom

Communication

E-mail: fellowmk@ucmail.uc.edu (anytime)

Phone: (937) 469-1934 (10 a.m. – 11 p.m.)

Office Hours: Tuesdays and Thursdays after class 5:00 to 5:45 p.m.

in 828 Old Chem

Textbook

"Aircraft Performance and Design" by John D. Anderson, Jr

Class Materials

Engineering Scale

What is Integrated Aircraft Engineering?

Integrated = combining two or more technical disciplines

Aircraft = total system performance

Engineering = application of mathematics, physics, and practical knowledge in order to design and analyze complex systems

Aircraft Performance & Design

1976 – 1979: Co-op student at Wright-Patterson AFB 1980 – 1983: Aircraft Performance Engineer in home office F-5, F-20, X-29, F-15 1983 – 1984: Aircraft Performance Engineer in F-15 SPO F-15A/B/C/D, started F-15E 1986 – 1992: Aircraft Performance Engineer in ATF / F-22 SPO YF-22, YF-23, F-22 1992 – 2002: Flight Mechanics Team Leader in JAST / JSF / F-35 SPO X-31, X-32, X-35, F-35 2002 – 2006: Air Vehicle Team Leader in J-UCAS SPO X-45A, X-45C, X-47B 2006 – 2012: Air Vehicle Team Leader on Classified Program 2014 – present: Adjunct Professor, UC Aerospace Engineering Aircraft Design I / II Capstone, Aircraft Performance and Design Advanced Aircraft Performance (Technical Elective - seniors)

1980 – 1983: Aircraft Performance Engineer in home office

F-5, F-20, X-29, F-15

1983 – 1984: Aircraft Performance Engineer in F-15 SPO

F-15A/B/C/D, started F-15E

1986 – 1992: Aircraft Performance Engineer in ATF / F-22 SPO YF-22, YF-23, F-22

1992 – 2002: Flight Mechanics Team Leader in JAST / JSF / F-35 SPO

X-31, X-32, X-35, F-35

2002 – 2006: Air Vehicle Team Leader in J-UCAS SPO

X-45A, X-45C, X-47B

2006 – 2012: Air Vehicle Team Leader in Classified Program

Simple Free Body Diagram

Aircraft Performance

Knowing these parameters, we can determine the answers to these questions:

- How fast can it fly?
- How high can it fly?
- How far can it fly?
- How fast can it climb?
- How quickly can it turn?
- What runway length is needed for takeoff and landing?

Aircraft Performance

Calculations that we will be doing:

- Flight Envelope
- Climb / Descent
- Acceleration / Deceleration
- Instantaneous & Sustained Turn
- Cruise / Loiter
- Mission Range / Radius
- Takeoff / Landing Distance

Class Schedule

Block 1 – Ingredient Data

Aerodynamics Chapter 2

Propulsion Chapter 3

Aircraft Weights

Block 2 – Aircraft Performance

Equations of Motion Chapter 4

Steady Flight Chapter 5

Accelerated Flight Chapter 6

Block 3 – Aircraft Design

Philosophy of Aircraft Design Chapter 7

Design of Aircraft (Propeller) Chapter 8

Design of Aircraft (Jet) Chapter 9

Building Blocks

PRODUCTS

Values

Graphs

Diagrams

Aircraft Design

METHODS

Equations

Calculations

Methodologies

TOOLS

Excel Developer

Excel Name Manager

1-Dimensional Table Lookup

DATA

Atmosphere Table

Aerodynamics
Propulsion
Aircraft Weights

Aircraft Dimensions

Course Schedule – Blocks

Block	Weeks	Dates	Topics
1	1 - 3	Jan 9 – Jan 27	Ingredient Data
2a	4 - 6	Jan 30 – Feb 17	Steady State Performance
2b	7 - 9	Feb 20 – Mar 10	Accelerated Performance
3a	10 - 11	Mar 20 – Mar 31	Aircraft Design Process
3b	13 - 15	Apr 3 – Apr 20	Aircraft Design

Block 1 Schedule – Ingredient Data

Week	Day	Date	Topics	Homework Assigned
1	Tuesday	Jan 10	Introduction Atmosphere	Chapter 1 Reading Atmosphere Model
	Thursday	Jan 12	Physics of Flight Aircraft Terms	Aircraft Dimensions Quiz #1
2	Tuesday	Jan 17	Aerodynamics	Chapter 2 Reading Aerodynamics
	Thursday	Jan 19	Propulsion Aircraft Weights	Chapter 3 Reading Propulsion Aircraft Weights Quiz #2
3	Tuesday	Jan 24	Material Review Homework Review	
	Thursday	Jan 26	Exam #1	

Block 2a Schedule – Steady Flight

Week	Day	Date	Topics	Homework Assigned
4	Tuesday	Jan 31	Exam #1 Review Num Methods Flight Envelope	Chapter 4 Reading Atmos Table Lookup Flight Envelope
	Thursday	Feb 2	Thrust Required Range Endurance	Chapter 5-1 Reading Thrust Required Range & Endurance Quiz #3
5	Tuesday	Feb 7	Energy Concepts Min & Max Velocities	Chapter 5-2 Reading Energy & P _s Min & Max Velocities
	Thursday	Feb 9	Rate of Climb Ceilings	Chapter 5-3 Reading Rate of Climb Ceilings Quiz #4
6	Tuesday	Feb 14	Material Review Homework Review	
	Thursday	Feb 16	Exam #2	

Block 2b Schedule – Accelerated Flight

Week	Day	Date	Topics	Homework Assigned
7	Tuesday	Feb 21	Exam #2a Review Climb & Accel TFD	Climb & Accel TFD
	Thursday	Feb 23	Energy, P _s , Turning	Chapter 6-1 Reading Maneuver
8	Tuesday	Feb 28	Takeoff Landing	Chapter 6-2 Reading Airfield Quiz #5
	Thursday	Mar 2		
9	Tuesday	Mar 7	Material Review Homework Review	
	Thursday	Mar 9	Exam #3	

Course Grading

3% Quiz #1

3% Quiz #2

10% Exam #1

3% Quiz #3

3% Quiz #4

10% Exam #2

3% Quiz #5

10% Exam #3

15% Project #1

15% Project #2

25% Homework Assignments

Quiz Time is limited to 30 minutes 5 attempts permitted Will cover concepts Taken via Canvas & due with HW

Exam Time is limited to class time
Will need a calculator for calculations
Taken via Canvas in our classroom

Homework Assignments (25%)

Will be posted and submitted online via Canvas

Homework assigned on Tuesdays and Thursdays are due by 11:59 pm ET on Monday night

Each Homework Assignment is worth 1% of your final grade Helps the students understand the calculations & prepare for exams

Weekly Schedule:

Tuesday HW assigned during class

Thursday HW assigned during class

Monday HW Help Session 4:00 to 5:00 pm ET (proposed)

HW & Quiz due by 11:59 pm ET

Course Flow Diagram

Blocks 1 & 2 – Aircraft Performance

How can I get a good grade in this class?

Be present for all class sessions

Pay attention in class (put away your cell phones!)

Read and study the assigned sections in the textbook

Do your homework

Follow the instructions!

Be prepared for the tests

THIS IS A FAST-PACED COURSE! DON'T FALL BEHIND!

Helpful Hints

Keep track of all of the important terms and understand what they mean If you understand the material and the homework you will probably get a B or better

There will be one part on each test that will challenge your understanding of the material ... if you get that part right you could possibly get an A

Ask questions if you don't understand!!

Pre-Junior Year

This is going to be a tough semester!!

Lots of engineering classes, homework, and projects

Students just turned 21 or will be turning 21 = lots of parties!

You will definitely get bogged down during this semester with concurrent activities, project deadlines, and tests

Weekly Time Management (168 hours)

Rule of thumb: 2 – 3 hours spent on homework and studying per 1 hour of classroom time

Weekly: 17 hours in class + 34 hours outside class = 51 hours (full time job!)

Gotta sleep! 8 hours x 7 days = 56 hours

Gotta eat! 3 hours x 7 days = 21 hours

Gotta have some fun! Whatever is left over (40 hours)

The "Iceberg Illusion"

Semester Grade

Establish Good Habits

Avoid Bad Results

Helpful Advice

ALWAYS KEEP UP WITH YOUR CLASSES!

Schedule time for doing homework early in the day
Pay attention to how your time is spent
Do not procrastinate on tasks that need to get done
Do not leave assignments and projects until the last minute

(planned procrastination, the "Student Syndrome", Parkinson's Law)

Strategies

Pay attention to the syllabus and instructor announcements Listen in class – there are occasional hints dropped Use a daily planner Stay one day ahead

Class Expectations

Be present for all class sessions – this class will be FAST PACED and CALCULATION INTENSIVE!

Pay attention in class (put away your cell phones)

Get started early on your assignments! Do not procrastinate!

Prepare quality work for all homework, projects, and presentations

Turn in your assignments on time!

Academic Integrity

Do your own work (homework assignments and exams) Cite sources (projects)

Final Helpful Hints

Keep track of all of the important terms and understand what they mean Understand each parameter's units and know how to convert **Learn the various computational techniques and use them** Follow the instructions!

"Even a fool, when he keeps silent, is counted wise."

~ Proverbs 17:28

"He who asks a question may appear as a fool for five minutes; he who does not ask a question remains a fool forever."

~ Chinese Proverb

Ask questions if you don't understand!!

Otherwise, I will assume that everyone understands the material

Homework Assignment

Reading – Chapter 1 in textbook

The student is encouraged to read certain chapters of the textbook that will augment the lecture material discussed in class

The textbook's author provides:
Historical perspectives
In-depth explanations for aircraft performance topics

Well worth reading!!!

Questions?

