Statistics, Probability and Noise Part 2

Brief Review from Last Week

- Signal Domain
 - Time, Frequency and Space
- Characterization of signals using statistics
 - Mean, Variance and Standard Deviation
 - Variance is the power of the fluctuations around the mean
- Running Statistics
- Signal to Noise Ratio and Coefficient of Variation

Today's Topics

- Random Variables and Typical Error
- Adding Random Signals
- **Process Stationarity**
- Histograms Histogram, PMF, PDF
- The Normal Distribution
- Precision and Accuracy
- Digital Noise Generation

Random Variables and **Typical Error**

Random Variables

- A random variable is a variable whose values depend on outcomes of a random phenomenon
 - We can describe the variable by its probabilities
 - Example: The output voltage from a sensor can be a random variable. It may consist of a DC value and random noise.

Random Variables

- The variable has a *true* mean, a *true* variance and a true standard deviation
- When we calculate the average, we are estimating the value of the true mean
- When we calculate the standard deviation, we are making an estimate of the true standard deviation

Estimates of the Mean and **Standard Deviation**

When we estimate the mean, there may be an error between the estimate and the true mean

The "hat" indicates an estimate

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\hat{\sigma} = \sqrt{\frac{1}{N-1} \sum_{i=0}^{N-1} (x_i - \hat{\mu})^2}$$

Estimates of the Variable **Example**

- A random variable can be described by its probabilities. Example:
 - Given a random variable with a true mean of 6 and a true standard deviation of 1
 - We can <u>estimate</u> the mean of the variable using a test statistic consisting of a set of N samples of the variable:

$$\hat{\mu} = \bar{x} = \frac{1}{N} \sum_{i=0}^{N-1} x_i$$
 $\hat{\mu}$ is the estimate of the true mean

Estimates of the Variable Example

- The estimate of the mean $\hat{\mu}$ may be in error from the <u>true mean</u> μ
 - How much in error?
 - The "typical" error of the estimates is determined by: $\sigma_{estimate} = \frac{\sigma_{var}}{\sqrt{N}}$

 Sometimes called the standard deviation of the estimates

- Different from the SD of the signal
- Function of the true standard deviation and the number of samples used to estimate the mean

Typical Error

 The "typical error" of the <u>estimate</u> is a function of the true standard deviation of the variable and the number of samples used in making the estimate.

$$Typical\ Error = \sigma_{estimate} = \frac{\sigma}{\sqrt{N}}$$

 The "typical error" of the estimate decreases by the square root of the number of samples

Law of Large Numbers

 The Law of Large Numbers says that as N approaches infinity, the typical error approaches 0

$$Typical\ Error = \frac{\sigma}{\sqrt{N}} \to 0 \text{ for large N}$$

- Why is this important?
 - We can control the amount of error in the estimate by selecting the number of samples used in the estimate

In Class Problem Typical Error

- A variable has a standard deviation of $\sigma = .15$
 - How many samples N, do I need to use in the estimate of the mean, to have a typical error of the estimate equal to .01?

Adding Random Signals

Adding Random Variables

The mean of the sum of two random variables will be the sum of the means

$$\mu_{total} = \mu_1 + \mu_2$$

If two random variables are added, their variances add:

$$\sigma_{total}^2 = \sigma_1^2 + \sigma_2^2$$

 σ_1

 The standard deviation of the combined signal is:

$$\sigma_{total} = \sqrt{\sigma_1^2 + \sigma_2^2}$$

In Class Problem Adding Two Signals with Noise

Given two signals with the following statistics:

Signal 1
$$\mu_1 = 2, \sigma_1 = .5$$

Signal 2 $\mu_2 = 1, \sigma_2 = .125$

- Compute their individual SNR's
- Compute the SNR of the sum of the 2 signals

Process Stationarity

Non-stationary Processes

- If the underlying process changes over time, the process is said to be non-stationary
- **Examples:**

Histograms

Histograms

- Describes the number of samples in the data set that have a given value or range of values.
 - Example: Samples from an 8-bit A/D converter

Histogram With More Data Samples

Increasing the number of samples reveals the underlying distribution:

Selection of the Number of Bins

Number of bins is too large Poor vertical resolution

Number of bins is too small Poor horizontal resolution

Selection of the Number of Bins

- A rule of thumb is to use between 5 and 20 bins
 - Another approach is to use Sturge's rule*

$$K = 1 + \log_2 N$$

Where:

N is the number of samples K is the number of bins

https://www.statology.org/sturges-rule/

Estimating the Mean and Variance from the Histogram

- One can estimate the mean and variance from parameters of the histogram
- H_i is the number samples in the i^{th} bin

$$N = \sum_{i=0}^{M-1} H_i$$
 Total samples N $\hat{\mu} = \frac{1}{N} \sum_{i=0}^{M-1} iH_i$

$$\hat{\sigma}^2 = \frac{1}{N-1} \sum_{i=0}^{M-1} (i-\mu)^2 H_i$$

Probability Mass Function Vs Histogram

Histogram:

Formed from a finite number of samples of a signal – a statistical estimate of the underlying probability

Probability Mass Function:

The underlying probability for a signal that takes on discrete values.

Probability Density Function: The underlying probably for a signal that is a continuous function

PDF For Square and Triangle Waves

PDF for Random Noise

PDF for this signal is a *normal* distribution

PDF for Uniform Random Noise

The PDF is "flat" across the amplitude range

PDF for this signal is a <u>uniform</u> distribution

The Normal Distribution

Normal Distribution Example

Many random signals found in nature have a *normal* distribution

Area under the curve = 1

68.3% of values fall within $\pm 1\sigma$.

95.5% of values fall within $\pm 2\sigma$

Centered at $\mu = 10$

Characteristics of the Normal (or Gaussian) Distribution

- The likelihood of values far from the mean, e.g. 4 sigma away from the mean, is very low.
- This is why the signal appears to have a bounded peak to peak value of 6-8 times sigma $(\pm 3\sigma\ to\ \pm 4\sigma)$

RIT

EEET-425 Digital Signal Processing

The Central Limit Theorem

The Central Limit Theorem

- The sum of random variables becomes normally distributed as more and more random variables are added together.
- True even if the random numbers being added together are from different probability distributions.

Central Limit Theorem MATLAB Example

 Generate 6 uniformly distributed random numbers and add them. What is the distribution of the sum?

Central Limit Theorem MATLAB Example

 The sum of two uniform random variables starts to look somewhat like a normal distribution

Distribution of the sum of 2 Uniform Random Variables

Central Limit Theorem MATLAB Example

 The distribution of 6 uniform random variables looks very much like a normal distribution

Distribution of the sum of 6 Uniform Random Variables

Precision and Accuracy

Precision and Accuracy

Accuracy

• A measure of how close the estimated mean $\hat{\mu}$ is compared to the true mean:

$$Accuracy = \hat{\mu} - \mu$$

Precision

- A measure of how well the individual measurements or samples compare with each other:
 - Expressed by the Signal to Noise Ratio (SNR) or by the Coefficient of Variation (CV)

$$SNR = \frac{\hat{\mu}^2}{\hat{\sigma}^2} \qquad CV = \frac{\hat{\sigma}}{\hat{\mu}} \times 100$$

Precision and Accuracy

Neither Accurate Nor Precise

Not Accurate But Precise

Accurate but not Precise

Accurate
And Precise

EEET-425 Digital Signal Processing

Precision and Accuracy

Example: For a normally distributed signal

Digital Noise Generation

Digital Noise Generation

- Generating random noise is helpful for testing how DSP algorithms operate in the presence of noise
- Most programming languages can produce uniformly distributed random numbers
 - MATLAB -> "rand" function
- By adding uniformly distributed random numbers, you can create normally (Gaussian) distributed random numbers

Summary

Summary of Today

- Random Variables and Typical Error
 - The typical error of an estimate of μ is a function of the true σ and the number of samples N
- Adding Random Signals
 - The mean of two signals add algebraically
 - The SD of two signals add in quadrature
- Histograms can help estimate the PMF or PDF
 - PMF is for discrete signals, PDF for continuous

Summary of Today

- The Normal Distribution
 - Many random variables are normally distributed
 - Use the CDF to compute probabilities (text)
- Precision and Accuracy
 - Precision is related to standard deviation and can be express in terms of SNR as well.
- **Digital Noise Generation**
 - Uniform random variables can be combined according the Central Limit Theorem to produce a normally distributed random variable.