Homework 2/3

Nathan Burwig

April 16, 2022

Problem 1

Take a vector $x = x^1e_1 + x^2e_2 + ... + x^ne_n$ with components x^i in the basis e_i . Let e'_i be a new basis and a transformation matrix A between e_i and e'_i given by a set of linear equations:

In the new basis, vector x can be written as $x' = x'^1 e'_1 + x'^2 e'_2 + ... + x'^n e'_n$, it will have different components, but it is the same vector x = x'.

Find how the components of vector transform under base change given by A - substitute for e'_i and find the transformation between $x_1, x_2...x_n$ and $x'_1, x'_2...x'_n$

Problem 2

The notation is x^k for components of a contravariant vector (tensor of rank 1 - tensor with 1 contravariant index and 0 covariant indices) and x_k for a covariant vector.

If base vectors transform like:

$$e_{k'} = A_{k'}^i e_i$$
, or $e' = Me$, or $e = M^{-1}e'$

Then a contravariant vector (like a position vector) transforms like:

$$x_{k'} = A_{k'}^i x_i$$
, or $x' = Mx$

in the same way as coefficients of a linear 1-form $f(x) \to \mathbb{R}$:

$$f_{k'} = A_{k'}^i f_i$$
, or $f' = Mf$

Show explicitly, that the gradient of a scalar function taken with respect to a contravariant vector transforms like a covariant vector, and a derivative of a scalar function with respect to a covariant vector transforms transforms like a contravariant vector.

Problem 3

Take an anti-symmetric bilinear form $f_{i,j} = -f_{i,j}$ in 3-dimensions - see the handout where it is shown how coefficients of a 1-form transform, and do the same for an anti-symmetric 2-form $f(a,b) = -f(b,a) \to \mathbb{R}$, where a,b two vectors (a linear two-form is a function which takes two contravariant vectors as arguments and gives a number in a field over which the vector field is defined - in our case it is \mathbb{R})

Make the identification $g^1 = f_{23}, g^2 = f_{31}, g^3 = f_{12}$

Show that components g^1 transform under a base transformation $e_k \to e_{k'}$ given by $e_{k'} = A^i_{k'}e_i$, or e' = Me

Like
$$g' = det(M)M^{-1}g$$

Notice that a covariant vector transforms like $x' = M^{-1}x$.

What we call a vector product in 3D of two vectors \vec{a} and \vec{b} , $\vec{c} = \vec{a}$ is really an object which is a result of identifying the coefficients of an anti-symmetric two form $f_{i,j}(a,b).a$ with $f^k = \epsilon_{ijk}f_{ij} = c$, where ϵ_{ijk} is the completely antisymmetric Levi-Civirta symbol (or tensor).