Видове сходимост

Дефиниция: (почти сигурна сходимост): Нека $(X_n)_{n\geq 1}$ е редица от случайни величини в едно вероятностно пространство и X е случайна величина в същото вероятностно пространство. Тогава X_n се схожда почти сигурно към X, ако $\mathbb{P}(\{\omega\in\Omega|\lim_{n\to\infty}X_n(\omega)=X(\omega)\})=1$ и пишем $X_n\overset{\mathrm{n.c.}}{\underset{n\to\infty}{\longrightarrow}}X$.

Също можем да кажем и $\mathbb{P}(\{\lim_{n o \infty} X_n = X\}) = 1$

Дефиниция: (сходимост по вероятност): Нека $(X_n)_{n\geq 1}$ е редица от случайни величини в едно вероятностно пространство и X е случайна величина в същото вероятностно пространство. Тогава X_n се схожда по вероятност към X, ако $\mathbb{P}(A_{n,\epsilon})=0$ за всяко $\epsilon>0$, където $A_{n,\epsilon}=\{\omega\in\Omega||X_n(\omega)-X(\omega)|>\epsilon\}$ и пишем $X_n\overset{\mathbb{P}}{\underset{n\to\infty}{\longrightarrow}}X$

Дефиниция: Ако X е случайна величина и F_X е функцията на разпределение на X, то $C_{F_X}=C_X=\{x\in\mathbb{R}|F_X \text{ е непрекъсната в }x\}$

Дефиниция: (сходимост по разпределение): Нека $(X_n)_{n\geq 1}$ е редица от случайни величини в едно вероятностно пространство и X е случайна величина в същото вероятностно пространство. Тогава X_n се схожда по разпределение към X, ако $\lim_{n\to\infty} F_{X_n}(x)=F_X(x)$ за всяко $x\in C_X$ и пишем $X_n\overset{d}{\underset{n\to\infty}{\longrightarrow}} X$

Твърдение: Ако $X_n { \longrightarrow \atop n o \infty} X$, то за всяка непрекъсната и ограничена функция f е изпълнено, че $\lim_{n o \infty} \mathbb{E}[f(X_n)] = \mathbb{E}[f(X)]$

Теорема: Нека $(X_n)_{n\geq 1}$ е редица от случайни величини в едно вероятностно пространство и X е случайна величина в същото вероятностно пространство. Тогава:

$$\bullet \ X_n {\overset{\mathrm{n.c.}}{\underset{n \to \infty}{\longrightarrow}}} X \Longrightarrow X_n {\overset{\mathbb{P}}{\underset{n \to \infty}{\longrightarrow}}} X$$

•
$$X_n \xrightarrow[n \to \infty]{\mathbb{F}} X \Longrightarrow X_n \xrightarrow[n \to \infty]{d} X$$

Доказателство:

1. Нека
$$L=\{\lim_{n o\infty}X_n=X\}$$
 и $\mathbb{P}(L)=1$ Искаме $\mathbb{P}(A_{n,\epsilon})\stackrel{n o\infty}{\longrightarrow}0, orall\epsilon>0$

$$L=igcap_{r=1}^\inftyigcup_{n=1}^\inftyigcap_{k\geq n}^\infty A_{k,\frac1r}^C$$
, където $A_{k,\frac1r}^C=\{\omega\in\Omega||X_k(\omega)-X(\omega)|\leq \frac1r\}$, което може да тълкуваме като: $orall r\exists Norall k\geq N: \frac1r$ е граница. Тогава $L^C=igcup_{n=1}^\inftyigcap_{n=1}^\infty U_n A_{k,\frac1r}$ и $\mathbb{P}(L^C)=0$

Тогава
$$L^C=igcup_{r=1}^\infty\bigcap_{n=1}^\infty\bigcup_{k\geq n}^\infty A_{k,\frac{1}{r}}$$
 и $\mathbb{P}(L^C)=0$ $0=\mathbb{P}(igcup_{r=1}^\infty\bigcap_{n=1}^\infty\bigcup_{k\geq n}^\infty A_{k,\frac{1}{r}})\stackrel{r=r_0}\Longrightarrow \mathbb{P}(igcap_{n=1}^\infty\bigcup_{k\geq n}^\infty A_{k,\frac{1}{r_0}})=0$ е вярно за $\forall r_0\geq 1$

$$\mathbb{P}(igcap_{n=1}^{\infty}B_{n,rac{1}{r_0}})=0$$
, където $B_{n,rac{1}{r_0}}=igcup_{k\geq n}A_{k,rac{1}{r_0}}$

$$\Longleftrightarrow \lim_{n o\infty} \mathbb{P}(B_{n,rac{1}{r_0}}) = 0$$

$$\iff \lim_{n o \infty} \mathbb{P}(igcup_{k \geq n} A_{k, rac{1}{r_0}}) = 0$$

$$\Longleftrightarrow \lim_{n o \infty} \mathbb{P}(A_{n, rac{1}{r_0}}) = 0$$

Ho
$$A_{n,\epsilon}\supseteq A_{n,rac{1}{r_0}}\Longrightarrow \mathbb{P}(A_{n,rac{1}{r_0}})\geq \mathbb{P}(A_{n,\epsilon})\geq 0$$

След граничен преход $n o \infty$ полуваме:

$$\lim_{n o\infty}\mathbb{P}(A_{n,\epsilon})=0$$
, което искахме.

2. Нека
$$\lim_{n o\infty}\mathbb{P}(A_{n,\epsilon})=0$$

Искаме
$$\mathbb{P}(X_n \leq x) \overset{n o \infty}{ o} \mathbb{P}(X \leq x)$$

Нека фиксираме $\epsilon > 0$

$$\mathbb{P}(X_n \leq x) = \mathbb{P}(X_n \leq x, A_{n,\epsilon}) + \mathbb{P}(X_n \leq x, A_{n,\epsilon}^C) =$$

Понеже
$$\mathbb{P}(X_n \leq x, A_{n,\epsilon}) < \mathbb{P}(A_{n,\epsilon}) o 0$$
, то

$$\lim_{n o\infty}\mathbb{P}(X_n\leq x)=\lim_{n o\infty}\mathbb{P}(X_n\leq x,A_{n,\epsilon}^C)\leq \mathbb{P}(X\leq x+\epsilon)$$

$$\lim_{n o\infty}\mathbb{P}(X_n\leq x)\leq F_X(x+\epsilon)$$

$$\lim_{\epsilon o 0} \lim_{n o \infty} \mathbb{P}(X_n \le x) \le \lim_{\epsilon o 0} F_X(x + \epsilon)$$

$$\lim_{n \to \infty} \mathbb{P}(X_n \leq x) \leq F_X(x)$$

Сега искаме да проверим дали
$$\lim_{n o\infty}\mathbb{P}(X_n\leq x)\geq F_X(x)$$
 $\mathbb{P}(X_n\leq x)\geq \mathbb{P}(X_n\leq x,A_{n,\epsilon}^C)\geq \mathbb{P}(X_n\leq x-\epsilon,A_{n,\epsilon}^C)$

Аналогично получаваме желаното и окончателно $\lim_{n o\infty} \mathbb{P}(X_n \leq x) = F_X(x)$

Твърдение: Нека $(X_n)_{n\geq 1}$ е редица от случайни величини в едно вероятностно пространство и $X_n \stackrel{a}{\longrightarrow} c$. Тогава $X_n \stackrel{\mathbb{P}}{\longrightarrow} c$

Доказателство:

Искаме $X_n {\overset{\mathbb{P}}{\longrightarrow}} c$ или $(X_n-c) {\overset{\mathbb{P}}{\longrightarrow}} 0$, което е същото като $orall \epsilon > 0: \lim_{n o \infty} \mathbb{P}(|X_n-c| > \epsilon) = 0$

Първо $X_n=c$, тогава е валидно желаното.

Нека сега
$$Y_n = X_n - c {\displaystyle \mathop{\longrightarrow}_{n
ightarrow \infty}} 0$$

Имаме, че
$$\lim_{n \to \infty} \mathbb{E}[f(Y_n)] = \mathbb{E}[f(Y)] = f(0)$$
 $f_{\epsilon}(y) = \min(|y|, \epsilon)$ и $f_{\epsilon}(0) = 0$ $\mathbb{E}[\min(|Y_n|, \epsilon)] \to 0 = f_{\epsilon}(0)$ $\mathbb{E}[\min(|Y_n|, \epsilon)] = \mathbb{E}[\min(|Y_n|, \epsilon) \cdot \mathbb{1}_{\{|Y_n| \le \epsilon\}}] + \mathbb{E}[\min(|Y_n|, \epsilon) \cdot \mathbb{1}_{\{|Y_n| \le \epsilon\}}] = \epsilon \cdot \mathbb{P}(|Y_n| > \epsilon) + \mathbb{E}[|Y_n| \cdot \mathbb{1}_{\{|Y_n| \le \epsilon\}}] \ge \epsilon \cdot \mathbb{P}(|Y_n| > \epsilon)$ Тогава имаме $\mathbb{E}[\min(|Y_n|, \epsilon)] \ge \epsilon \cdot \mathbb{P}(|Y_n| > \epsilon) \ge 0$ и след граничен преход $n \to \infty$

получаваме

$$egin{aligned} 0 &\geq \epsilon \cdot \lim_{n o \infty} \mathbb{P}(|Y_n| > \epsilon) \geq 0 \Longrightarrow \lim_{n o \infty} \mathbb{P}(|Y_n| > \epsilon) = 0 \ &Y_n \overset{\mathbb{P}}{\longrightarrow} 0 \ &X_n - c \overset{\mathbb{P}}{\longrightarrow} 0 \ &X_n \overset{\mathbb{P}}{\longrightarrow} c \end{aligned}$$

Теорема: (неравенство на Чебишов): Нека X е случайна величина с крайна дисперсия и a>0. Тогава

$$\mathbb{P}(|X - \mathbb{E}[X]| > a) \leq rac{\mathbb{D}[X]}{a^2}$$

Доказателство:

$$egin{aligned} \mathbb{D}[X] &= \mathbb{E}[(X - \mathbb{E}[X])^2] \ &= \mathbb{E}[(X - \mathbb{E}[X])^2 \cdot \mathbb{1}_{\{|X - \mathbb{E}[X]| > a\}}] + \mathbb{E}[(X - \mathbb{E}[X])^2 \cdot \mathbb{1}_{\{|X - \mathbb{E}[X]| \le a\}}] \ &\geq a^2 \mathbb{E}[\mathbb{1}_{\{|X - \mathbb{E}[X]| > a\}}] + 0 \ &= a^2 \mathbb{P}(|X - \mathbb{E}[X]| > a) \end{aligned}$$

Откъдето
$$\mathbb{P}(|X - \mathbb{E}[X]| > a) \leq rac{\mathbb{D}[X]}{a^2}$$

Твърдение: Нека X е случайна величина, такава, че $\mathbb{E}[|X|^n] < \infty$ за някое $n \in \mathbb{Z}^+$. Тогава

$$\mathbb{P}(|X| > a) < \frac{\mathbb{E}[|X|^n]}{a^n}$$

И

$$\mathbb{P}(|X - \mathbb{E}[X]| > a) < rac{\mathbb{E}[|X - \mathbb{E}[X]|^n]}{a^n}$$

за всяко a>0