import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
from sklearn import linear_model
import statsmodels
import statsmodels.api as sm

df=pd.read_excel('/content/EXCEL FILE 1.xlsx')

df

\Rightarrow		Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	Cate
	0	1	Male	27	Software Engineer	6.1	6	42	6	Over
	1	2	Male	28	Doctor	6.2	6	60	8	Ν
	2	3	Male	28	Doctor	6.2	6	60	8	Ν
	3	4	Male	28	Sales Representative	5.9	4	30	8	(
	4	5	Male	28	Sales Representative	5.9	4	30	8	(
	369	370	Female	59	Nurse	8.1	9	75	3	Over
	370	371	Female	59	Nurse	8.0	9	75	3	Over
	371	372	Female	59	Nurse	8.1	9	75	3	Over
	372	373	Female	59	Nurse	8.1	9	75	3	Over

df.columns

x=df[['Sleep Duration']]
y=df['Stress Level']

df.describe()

	Person ID	Age	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	Hear Rat
count	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000	374.00000
mean	187.500000	42.184492	7.132086	7.312834	59.171123	5.385027	70.16577
std	108.108742	8.673133	0.795657	1.196956	20.830804	1.774526	4.13567
min	1.000000	27.000000	5.800000	4.000000	30.000000	3.000000	65.00000
25%	94.250000	35.250000	6.400000	6.000000	45.000000	4.000000	68.00000
50%	187.500000	43.000000	7.200000	7.000000	60.000000	5.000000	70.00000
75%	280.750000	50.000000	7.800000	8.000000	75.000000	7.000000	72.00000

sns.regplot(x='Stress Level', y= 'Sleep Duration',data=df)

<Axes: xlabel='Stress Level', ylabel='Sleep Duration'>

df.corr()

<ipython-input-11-2f6f6606aa2c>:1: FutureWarning: The default value of numeric
 df.corr()

	Person ID	Age	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	Heart Rate	I S
Person ID	1.000000	0.990516	0.296305	0.431612	0.149882	-0.394287	-0.225467	0.04
Age	0.990516	1.000000	0.344709	0.473734	0.178993	-0.422344	-0.225606	0.0
Sleep Duration	0.296305	0.344709	1.000000	0.883213	0.212360	-0.811023	-0.516455	-0.0
Quality of Sleep	0.431612	0.473734	0.883213	1.000000	0.192896	-0.898752	-0.659865	0.0
Physical Activity Level	0.149882	0.178993	0.212360	0.192896	1.000000	-0.034134	0.136971	0.7

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test=train_test_split(x,y, test_size=0.2)

x_train_sm=sm.add_constant(x_train)
x_train_sm.head()

	const	Sleep	Duration
316	1.0		8.5
328	1.0		8.3
294	1.0		6.1
104	1.0		7.2
370	1.0		8.0

```
lr=sm.OLS(y_train, x_train_sm)
lr_model=lr.fit()
lr_model.params
```

const 18.186836 Sleep Duration -1.797411

dtype: float64

Linear regression equation = Stress Level = (-1.82) Sleep Duration + 18.40

If, I take 5 hours of sleep then 9.2

if I take 8 hours of sleep then 3.83

if I take 10 hours of sleep. then 0.25

lr_model.summary()

OLS Regression Results

Dep. Variable:Stress LevelR-squared:0.661Model:OLSAdj. R-squared:0.660Method:Least SquaresF-statistic:579.4

Date: Tue, 03 Oct 2023 Prob (F-statistic): 9.22e-72

Time: 19:18:25 **Log-Likelihood:** -432.86 **No. Observations:** 299 **AIC:** 869.7

Df Residuals: 297 BIC: 877.1

Df Model: 1

Covariance Type: nonrobust

coef std err t P>ltl [0.025 0.975]

const 18.1868 0.537 33.851 0.000 17.130 19.244

Sleep Duration -1.7974 0.075 -24.071 0.000 -1.944 -1.650

Omnibus: 13.316 Durbin-Watson: 1.858

Prob(Omnibus): 0.001 Jarque-Bera (JB): 14.378

Skew: -0.534 **Prob(JB):** 0.000755

Kurtosis: 2.889 **Cond. No.** 66.0

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

plt.scatter(x, y)

<matplotlib.collections.PathCollection at 0x7c9e58788130>

x_train

	Sleep	Duration
316		8.5
328		8.3
294		6.1
104		7.2
370		8.0
51		7.5
135		7.3
94		7.2
254		6.5
0		6.1

299 rows × 1 columns

x_test

	Sleep	Duration
237		6.5
369		8.1
8		7.8
5		5.9
43		7.8
285		6.0
270		6.1
364		8.0
236		6.4
3		5.9

75 rows × 1 columns

y_train

Name: Stress Level, Length: 299, dtype: int64

```
y_test
```

```
237
       3
369
8
       6
5
43
       6
285
270
       8
364
       3
236
       7
       8
Name: Stress Level, Length: 75, dtype: int64
```

from sklearn.linear_model import LinearRegression
clf=LinearRegression()
clf.fit(x_train, y_train)

```
LinearRegression
LinearRegression()
```

x_test

	Sleep	Duration
237		6.5
369		8.1
8		7.8
5		5.9
43		7.8
285		6.0
270		6.1
364		8.0
236		6.4
3		5.9

75 rows × 1 columns

clf.predict(x_test)

```
array([6.50366683, 3.62780971, 4.16703292, 7.58211324, 4.16703292, 5.42522041, 5.24547934, 5.24547934, 5.42522041, 3.44806864, 5.06573827, 4.34677399, 6.32392576, 5.42522041, 5.24547934, 6.50366683, 4.70625613, 3.62780971, 3.62780971, 4.34677399, 7.40237217, 5.78470255, 7.2226311, 3.44806864, 4.34677399, 4.16703292, 7.2226311, 6.50366683, 3.26832757, 5.24547934, 6.50366683, 7.40237217, 7.2226311, 6.50366683, 4.8859972, 7.58211324, 7.2226311, 5.96444362, 6.6834079, 6.32392576, 3.44806864, 6.50366683, 6.50366683, 6.32392576, 6.50366683, 4.34677399, 6.32392576, 3.0885865, 4.8859972, 6.6834079, 5.06573827, 4.34677399, 5.42522041, 5.24547934, 5.06573827, 4.16703292, 5.24547934, 3.80755078, 7.2226311, 7.04289003, 3.0885865, 6.50366683, 6.32392576, 7.2226311, 2.90884543, 3.62780971, 5.24547934, 4.70625613, 7.76185431, 4.16703292, 7.40237217, 7.2226311, 3.80755078, 6.6834079, 7.58211324])
```

```
y_test
    237
    369
    8
    43
    285
            8
    270
            8
    364
            3
    236
            7
            8
    Name: Stress Level, Length: 75, dtype: int64
clf.score(x_test, y_test)
    0.638286384175617
new_sleep_duration = [[6]]
predicted_stress_level = clf.predict(new_sleep_duration)
    /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X do
      warnings.warn(
print("Predicted Stress Level", predicted_stress_level[0])
    Predicted Stress Level 7.402372174377762
```