Explorando Combos em Jogos de Luta Através de Reinforcement Learning

Rodrigo Peixe Oliveira

Ciência da Computação UNIFESP São José dos Campos, Brasil rodrigo.peixe@unifesp.br Rennam Victor Cabral de Faria

Ciência da Computação UNIFESP São José dos Campos, Brasil rennam.faria@unifesp.br

Overview

- 1. Introdução
 - Jogos de Luta
 - Combos
 - Objetivo
- 2. Metodologia
 - Ambiente
 - Domínio
 - Experimentos
 - Pré-Processamento
 - Processamento
 - Pós-Processamento
- 3. Resultados
- 4. Conclusão

Introdução

Jogos de Luta

- Gênero de jogo competitivo
- Objetivo: derrotar oponente
- Costumam ser complexos

Jogos de Luta

- Torneios com prêmios milionários que reúnem centenas de milhares de pessoas por ano
- Jogos buscam ser justos e divertidos tanto para jogadores quanto para espectadores

Combos

- Sequências de ataques em que o oponente não pode responder (ordinariamente)
- Recompensa jogadores por encontrarem aberturas e punirem seus oponentes
- Essenciais para o balanceamento do jogo, porém difíceis de testar

Objetivo

- Utilizar aprendizado por reforço para tentar encontrar o combo mais longo possível em um jogo de luta
- Comparar diferentes algoritmos quanto a eficiência e eficácia
 - > A2C
 - > PPO
 - > GA

Trabalhos Relacionados

- G. Zuin, Y. Macedo, L. Chaimowicz e G. Pappa, "Discovering combos in fighting games with evolutionary algorithms", 2016
 - Inspiração para este trabalho
 - Utilizou algoritmos genéticos
 - Jogo criado para propósitos da pesquisa
- G. Zuin e Y. Macedo, "Attempting to discover infinite combos in fighting games using Hidden Markov Models", 2015
 - Trabalho anterior ao de cima
 - Utilizou Modelos Ocultos de Markov
- Outras pesquisas em jogos de luta costumam focar em utilizar IA para tentar imitar o jogador ou vencer o jogo

Metodologia

Ambiente

- Jogo utilizado: Street Fighter Alpha 3 (GBA)
 - Presença de combos infinitos
 - > Emuladores disponíveis
 - Leve de rodar
- Biblioteca: Stable Retro, Stable Baselines3
 - Integram o código com o emulador e permitem acessar a memória do jogo

Domínio

- Iniciar com o oponente contra a parede
 - Mais rotas de combo
- Iniciar no modo Variable Combo (ou Custom Combo)
- Impedir que o botão de provocação seja selecionado
- Ryu VS Ken: personagens relativamente genéricos

Experimentos

- Objetivo: maximizar a duração do combo (medido pelo número de *frames* em que o oponente não consegue agir)
- Reinforcement Learning
 - Recompensas: 1 por frame de combo
 - Condição de fim: combo termina (oponente pode agir novamente) ou limite de tempo (600 *frames*)
 - A cada certo número de passos, rodar 10 episódios de validação de forma estocástica
- Genetic Algorithm (G. Zuin *et al*)

Implementação completa no artigo (2016)
$$F = \sum_{i=1}^n f(i), \quad f(i) = \begin{cases} \frac{\text{ComboSize}}{(1 + \text{LeftZeroes})^2} & \text{if right of longest} \\ \frac{\text{ComboSize}}{(1 + \text{RightZeroes})^2} & \text{if left of longest} \end{cases}$$
 ComboSize if the longest

Pré-Processamento

- Transformações na imagem para acelerar processamento
 - > Redução do tamanho
 - Escala de cinza
- Memória de ações
 - > Ajuda a aprender sequências de ações
- Frame Stacking
 - > Ajuda a perceber movimento
- Limite de tempo
- Filtro de ações
 - Impedir botões inúteis

Processamento

- A2C (Advanced Actor Critic)
 - Utiliza diversos trabalhadores para processar e eliminar a necessidade de um replay de buffer
- PPO (Proximal Policy Optimization)
 - Descida em Gradiente
 - Trabalhadores Múltiplos + Região de confiança
- GA (Algoritmo Genético)
 - Evolução biológica
 - Implementação completa no trabalho de Zuin et al.

Pós-Processamento

- Salvar resultado do combo mais longo
- Biblioteca: TensorBoard
- Analise
 - Média de recompensa por Períodos (Mean Reward)
 - Comportamentos da Função de Perda (Loss Function)

Resultados

A2C

Recompensa média durante treino

Recompensa média durante validação

A2C

PPO

Recompensa média durante treino

Recompensa média durante validação

PPO

Value Loss

Policy Loss

GA

Duração de combo média por geração

Duração de combo máxima por geração

GA

Fitness média por geração

Fitness máxima por geração

Resultados e Discussão

	Duração de combo máximo (frames)		
	A2C	PPO	GA
Média	147.35	249.22	218.56
Maior	284.00	511.00	470.00

Número de passos	Tempo de Execução (h)	
(timesteps)	A2C	PPO
2M	01:00	01:36
4M	02:12	03:24
6M	03:36	05:18
8M	05:00	07:12
10M	06:30	09:12

Geração	Tempo de Execução (h)
200	00:42
400	01:18
600	01:54
800	02:36
1000	03:12

Melhores Combos

https://www.youtube.com/watch?v=RttH05aGbQA

Conclusão

- Embora não tenham sido encontrados combos infinitos, foram descobertos combos impressionantes
- GA teve uma melhora inicial muito rápida, mas logo se estagnou
 - Possibilidade de usar para uma primeira análise durante balanceamento
- Algoritmo PPO de RL encontrou o combo mais longo, mas apresentou o maior tempo de execução
 - Possibilidade de usar para uma análise mais aprofundada
- Possibilidade de explorar outros algoritmos de RL e otimizar parâmetros

Perguntas

Explorando Combos em Jogos de Luta Através de Reinforcement Learning

Rodrigo Peixe Oliveira

Ciência da Computação UNIFESP São José dos Campos, Brasil rodrigo.peixe@unifesp.br Rennam Victor Cabral de Faria

Ciência da Computação UNIFESP São José dos Campos, Brasil rennam.faria@unifesp.br