CIS 678 Machine Learning

Features encoding!

Outline

- Label Encoding
- One-Hot Encoding

Age (Yr)	Height (M)	Weight (Kg)
10	1.3	45
30	1.7	67
65	1.5	57

Given a Data Table

Age (Yr)	Height (M)	Weight (Kg)
10	1.3	45
30	1.7	67
65	1.5	57

Numeric (R) values at different scales

Given a Data Table

\sim					_		
Giv	ION	α	1 1/	1ta	10	n	0
UII	/CII	u	$\boldsymbol{\mathcal{L}}$	ılu	ıu	v	C

Age (Yr)	Height (M)	Weight (Kg)	Sex], _ , _ , _ , . 	Categorical Feature
10	1.3	45	F		
30	1.7	67	М		i
65	1.5	57	F		

Given a Data Table

Age (Yr)	Height (M)	Weight (Kg)	Sex	
10	1.3	45	F	
30	1.7	67	M	i
65	1.5	57	F	

Categorical Feature

{F, M}

 $\{F=0, M=1\}$

Given a Data Table

Age (Yr)	Height (M)	Weight (Kg)	Sex	Color preference	Categorical Feature
10	1.3	45	F	Red	Feature
30	1.7	67	М	Blue	
65	1.5	57	F	Green	
• • •					

Given a Data Table

Age (Yr)	Height (M)	Weight (Kg)	Sex	Color preference	Categorical Feature
10	1.3	45	F	Red	Feature
30	1.7	67	M	Blue	[
65	1.5	57	F	Green	

$$\{R=0, G=1, B=2\}$$

Given a Data Table

Age (Yr)	Height (M)	Weight (Kg)	Sex	Color preference
10	1.3	45	F	Red
30	1.7	67	M	Blue
65	1.5	57	F	Green

{F, M}

 $\{R, G, B\}$

 $\{F=0, M=1\}$

 $\{R=0, G=1, B=2\}$

Label encoder

Categorical Feature

Given a Data Table

Age (Yr)	Height (M)	Weight (Kg)	Sex	Color preference
10	1.3	45	F	Red
30	1.7	67	M	Blue
65	1.5	57	F	Green

 $\{R=0, G=1, B=2\}$

Label encoder

Do you see any issue here?

Given a Data Table

Age (Yr)	Height (M)	Weight (Kg)	Sex	Color preference
10	1.3	45	F	Red
30	1.7	67	M	Blue
65	1.5	57	F	Green

• We are saying, Green is closer to Red than Blue,

$$\{R=0, G=1, B=2\}$$

Do you see any issue here?

Label encoder

Given a Data Table

Age (Yr)	Height (M)	Weight (Kg)	Sex	Color preference
10	1.3	45	F	Red
30	1.7	67	M	Blue
65	1.5	57	F	Green

- We are saying, Green is closer to Red than Blue,
- And enforcing Bias in the Vector Space

 $\{R=0, G=1, B=2\}$

Do you see any issue here?

Label encoder

Given a Data Table

Age (Yr)	Height (M)	Weight (Kg)	Sex	Color preference
10	1.3	45	F	Red
30	1.7	67	M	Blue
65	1.5	57	F	Green

- We are saying, Green is closer to Red than Blue,
- And enforcing Bias in the Vector Space
- Which doesn't seem ok.

 $\{R=0, G=1, B=2\}$

Do you see any issue here?

Label encoder

One Hot Encoding

How many colors do we have?

- How many colors do we have?
- 3 {R, G, B}

- How many colors do we have?
- 3 {R, G, B}
- So, we use 3 Bits to define each color

- How many colors do we have?
- 3 {**R**, **G**, **B**}
- So, we use 3 Bits to define each color
- How does it solves the Vector Space Distance Problem?

- How many colors do we have?
- 3 {**R**, **G**, **B**}
- So, we use 3 Bits to define each color
- How does it solves the Vector Space Distance Problem?
- We have debiased the definition. Isn't it Cool!

One hot encoding (cont.)

Classification task:

- Binary example {Cat vs Dog}
- Set size is 2
 - o Cat (0, 1)
 - o Dog (1, 0)
 - o Or vice versa
- Same rule applies every categorical data

Notebook Presentation!

Regression task with categorical variables.

QA