Examenul national de bacalaureat 2021 Proba E. c)

Matematică M_st-nat

Testul 7

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **1.** Determinați termenul a_{2021} al progresiei aritmetice $(a_n)_{n>1}$, știind că $a_1=2$ și $a_3=8$. 5p
- 2. Determinați coordonatele punctului de intersecție a graficului funcției $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x 3 cu 5p dreapta d de ecuație y = -x + 3.
- 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{3^{x+2}} = 27$. 5p
- **4.** Calculați probabilitatea ca, alegând un număr din mulțimea $A = \{0,1,2,3,4,5,6,7,8,9\}$, acesta să fie 5p divizor al numărului 48.
- 5. Se consideră vectorii $\vec{u} = 2\vec{i} + m\vec{j}$ și $\vec{v} = (m-4)\vec{i} + 2\vec{j}$, unde m este număr real. Determinați 5p numărul real *m* pentru care $\vec{u} \cdot \vec{v} = 0$.
- **6.** Se consideră triunghiul ABC cu AB = 6, AC = 3 și unghiul A de 120°. Calculați perimetrul **5p** triunghiului ABC.

SUBIECTUL al II-lea (30 de puncte)

1. Se consideră matricea $A(a) = \begin{pmatrix} 2a & 1 & 1 \\ 1 & 2a & 1 \\ 1 & a & -1 \end{pmatrix}$ și sistemul de ecuații $\begin{cases} 2ax + y + z = 1 \\ x + 2ay + z = 1 \end{cases}$, unde a este x + ay - z = -1

număr real.

- a) Arătați că $\det(A(-1)) = -3$. **5**p
- b) Determinați valorile reale ale lui a pentru care sistemul de ecuații admite soluție unică. **5p**
- c) Determinați numărul întreg a, știind că există numerele reale y_0 și z_0 astfel încât $(1, y_0, z_0)$ este **5p** soluție a sistemului de ecuații.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x \circ y = x + 5xy + y$.
- a) Verificați dacă e = 0 este elementul neutru al legii de compoziție " \circ ". 5p
- **b)** Demonstrați că $x \circ y = 5\left(x + \frac{1}{5}\right)\left(y + \frac{1}{5}\right) \frac{1}{5}$, pentru orice numere reale x și y. **5**p
- c) Calculați partea întreagă a numărului $q = \left(-\frac{1}{2}\right) \circ \left(-\frac{1}{3}\right) \circ ... \circ \left(-\frac{1}{2021}\right)$. 5p

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x)=(x+1)\ln x$.
- a) Arătați că $f'(x) = 1 + \frac{1}{x} + \ln x$, $x \in (0, +\infty)$. 5p
- **b**) Determinați ecuația tangentei la graficul funcției f în punctul A(1,0). 5p
- c) Demonstrați că funcția f este convexă pe $[1,+\infty)$. **5p**
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^n + 1}{x^2 + 1}$, unde *n* este număr natural nenul.
- a) Pentru n=3, se consideră funcția $g:\mathbb{R}\to\mathbb{R}$, $g(x)=(x^2+1)f(x)$. Determinați primitiva G a **5p** funcției g pentru care G(0) = 2021.

- **5p b)** Pentru n=1, calculați $\int_{0}^{1} f(x) dx$.
- **5p** c) Demonstrați că $\frac{\pi}{4} \le \int_{0}^{1} f(x) dx \le 1$, pentru orice număr natural $n, n \ge 2$.