Chapter 7 Convergence and Limit Theorems

• **Definition: Limit.** Let b_n , $n = 1, 2, \dots$, be a sequence of nonstochastic real numbers. If there exists a real number b and if for every real number $\varepsilon > 0$, there exists a finite integer $N(\varepsilon)$ ($\exists N(\varepsilon)$) such that

$$|b_n - b| < \varepsilon$$

for all $n \geq N(\varepsilon)$, then b is called the *limit* of the sequence $\{b_n\}$. We write $b_n \to b$ as $n \to \infty$, or

$$\lim_{n\to\infty}b_n=b.$$

- **Remarks:** If $a_n \to a$ and $b_n \to b$ as $n \to \infty$, then when $n \to \infty$,
 - $-a_n + b_n \rightarrow a + b$.
 - $-a_nb_n \to ab.$
 - $-a_n/b_n \to a/b$ if $b \neq 0$.

• **Definition: Continuity.** The function $g : \mathbb{R} \to \mathbb{R}$ is *continuous* at point b if for any sequence $\{b_n\}$ such that $\lim_{n\to\infty} b_n = b$, we have $\lim_{n\to\infty} g(b_n) = g(b)$.

• Remarks:

– An alternative definition of continuity: If $\forall \varepsilon$, $\exists \delta(\varepsilon) > 0$ such that $|g(x) - g(b)| < \varepsilon$ for all $|x - b| < \delta(\varepsilon)$, then g is continuous at b, denoted by

$$\lim_{x \to b} g(x) = g(b).$$

• Remarks:

- If $\forall \varepsilon, \exists \delta(\varepsilon) > 0$ such that $|g(x) - g(b)| < \varepsilon$ for all $0 < x < \delta(\varepsilon)$, then we say g is right continuous at b, denoted by

$$\lim_{x \to b+} g(x) = g(b).$$

- If $\forall \varepsilon$, $\exists \delta(\varepsilon) > 0$ such that $|g(x) - g(b)| < \varepsilon$ for all $-\delta(\varepsilon) < x < 0$, then g is *left continuous* at b, denoted by

$$\lim_{x \to b^{-}} g(x) = g(b).$$

- Function g is continuous at b if and only if g is left continuous and right continuous at b.

• Definition: Order of Magnitude.

- A sequence $\{b_n\}$ is at most order n^{λ} , denoted by $b_n = O(n^{\lambda})$ or $b_n/n^{\lambda} = O(1)$, if for some (sufficiently large) real number $M < \infty$, there exists a finite integer N(M) such that for all $n \geq N(M)$, we have $|b_n/n^{\lambda}| < M$.
- A sequence $\{b_n\}$ is of order smaller than n^{λ} , denoted by $b_n = o(n^{\lambda})$ or $b_n/n^{\lambda} = o(1)$, if every real number $\varepsilon > 0$ there exists a finite integer $N(\varepsilon)$ such that for all $n \geq N(\varepsilon)$, we have $|b_n/n^{\lambda}| < \varepsilon$.

• Remarks:

- $-b_n = o(f_n)$ implies $b_n = O(f_n)$.
- Example: Let $b_n = 4 + 2n + 6n^2$, then $b_n = O(n^2)$ and $b_n = o(n^{2+\epsilon})$ for any $\epsilon > 0$.

- **Proposition:** Let $\{a_n\}$ and $\{b_n\}$ be two sequences of real numbers.
 - If $a_n = O(n^{\lambda})$ and $b_n = O(n^{\tau})$, then $a_n b_n = O(n^{\lambda+\tau})$, and $a_n + b_n = O(n^{\kappa})$, where $\kappa = \max\{\lambda, \tau\}$.
 - If $a_n = o(n^{\lambda})$ and $b_n = o(n^{\tau})$, then $a_n b_n = o(n^{\lambda+\tau})$, and $a_n + b_n = o(n^{\kappa})$, where $\kappa = \max\{\lambda, \tau\}$.
 - If $a_n = O(n^{\lambda})$ and $b_n = o(n^{\tau})$, then $a_n b_n = o(n^{\lambda+\tau})$, and $a_n + b_n = O(n^{\kappa})$, where $\kappa = \max(\lambda, \tau)$
- Question. For sample mean and variance, how can one measure the closeness of \bar{X}_n to μ and the closeness of S_n^2 to σ_n^2 ?

7.2 Convergence in Quadratic Mean and L_p -convergence

• Definition: Convergence in Quadratic Mean. Let $\{Z_n, n = 1, 2, \cdots\}$ be a sequence of random variables and Z be a random variable. Then $\{Z_n\}$ converges in quadratic mean (or converges in mean square) to Z if

$$E(Z_n - Z)^2 \to 0 \text{ as } n \to \infty,$$

or equivalently,

$$\lim_{n \to \infty} E(Z_n - Z)^2 = 0.$$

It is also denoted as $Z_n \stackrel{q.m}{\to} Z$ or $Z_n - Z = o_{q.m.}(1)$.

• **Definition:** L_p -convergence Let $0 , let <math>Z_1, Z_2, \cdots$ be a sequence of random variables with $E|Z_n|^p < \infty$. Then we say that Z_n converges in L_p to Z if

$$\lim_{n\to\infty} E|Z_n - Z|^p = 0.$$

7.2 Convergence in Quadratic Mean and L_p -convergence

• **Example:** Suppose X_1, X_2, \cdots are i.i.d. with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2 < \infty$. Then

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{q.m} \mu.$$

- Useful inequalities.
 - Holder's inequality

$$E|XY| \le (E|X|^p)^{1/p} (E|Y|^q)^{1/q},$$

where p > 1 and 1/p + 1/q = 1.

- Minkowski's inequality

$$E|X + Y|^p \le [(E|X|^p)^{1/p} + (E|Y|^p)^{1/p}]^p$$

for $p \geq 1$.

• Definition: Convergence in Probability. A sequence of random variables $\{Z_n\}$, converges in probability to a random variable Z if for every small constant $\varepsilon > 0$,

$$P[|Z_n - Z| > \varepsilon] \to 0 \text{ as } n \to \infty.$$

When Z_n converges in probability to Z, we write $\lim_{n\to\infty} P(|Z_n-Z| > \varepsilon) = 0$ for every $\varepsilon > 0$, or $Z_n \xrightarrow{p} Z$, or $Z_n - Z = o_p(1)$, or $Z_n - Z \xrightarrow{p} 0$.

• Remarks:

- When $Z_n \xrightarrow{p} b$, where b is a constant, we say that Z_n is consistent for b.

• **Example:** Suppose X_1, X_2, \cdots are i.i.d. random variable from a $U[0, \theta]$ distribution. Let $Z_n = \max\{X_1, \cdots, X_n\}$. Is Z_n consistent for θ ?

• Solution:

- For any $\varepsilon > 0$,

$$P(|Z_n - \theta| > \varepsilon) = P(Z_n < \theta - \varepsilon)$$

$$= P(X_1 < \theta - \varepsilon, \dots, X_n < \theta - \varepsilon)$$

$$= \prod_{i=1}^{n} P(X_i < \theta - \varepsilon)$$

$$= \left(\frac{\theta - \varepsilon}{\theta}\right)^n \to 0$$

as $n \to \infty$.

 $-Z_n$ is consistent for θ .

- Definition: Order of Convergence in Probability. Suppose $\{f_n > 0\}$ is a sequence of real numbers.
 - We say a sequence of random variables $\{Z_n\}$ is of probability order $o_p(f_n)$, denoted by $Z_n = o_p(f_n)$, if

$$Z_n/f_n \stackrel{p}{\to} 0.$$

– We say $\{Z_n\}$ is of probability order $O_p(f_n)$, denoted by $Z_n = O_p(f_n)$, if for every $\varepsilon > 0$, we can find $\Delta(\varepsilon) > 0$ such that

$$P\left[|Z_n/f_n| > \Delta(\varepsilon)\right] < \varepsilon$$

for all $n = 1, 2, \cdots$.

- Boundedness in Probability. For every constant $\delta > 0$, there exists a constant $M = M(\delta)$ and an integer $N = N(\delta)$ such that $P(|Z_n| > M) < \delta$ for all $n \geq N$. Then $Z_n = O_p(1)$ and Z_n is called bounded in probability.
- **Example.** If $Z_n \sim N(0,1)$ for all $n \geq 1$. Then $Z_n = O_p(1)$ because for any give $\delta > 0$, there exists a finite constant $M = \Phi^{-1}(1 \frac{\delta}{2}) < \infty$, where $\Phi(\cdot)$ is the N(0,1) CDF, such that

$$P(|Z_n| > M) = 2[1 - \Phi(M)] = \delta < 2\delta$$

for all $n \geq 1$.

• Markov's Inequality. Suppose X is a random variable and g(X) is a nonnegative function. Then for any $\varepsilon > 0$, and any p > 0, we have

$$P[g(X) \ge \varepsilon] \le \frac{E[g(X)]^p}{\varepsilon^p}.$$

• Proof. Because

$$E[g(X)]^{p} = \int_{-\infty}^{\infty} g^{p}(x)dF(x)$$

$$\geq \int_{\{x:g(x)\geq\varepsilon\}} g^{p}(x)dF(x)$$

$$\geq \int_{\{x:g(x)\geq\varepsilon\}} \varepsilon^{p}dF(x)$$

$$= \varepsilon^{p}P[g(X)\geq\varepsilon],$$

the conclusion holds.

• Bernstein's Inequality. Let X_1, \dots, X_n be independent random variables with mean zero and bounded support: $|X_i| < M$ for all $i = 1, \dots, n$. Let $\sigma_i^2 = \text{var}(X_i)$. Suppose $V_n \geq \sigma_1^2 + \dots + \sigma_n^2$. Then for each constant $\varepsilon > 0$,

$$P[|\sum_{i=1}^{n} X_i| > \varepsilon] \le 2e^{-\frac{1}{2}\varepsilon^2/(V_n + \frac{1}{3}M\varepsilon)}.$$

• Theorem: Weak Law of Large Numbers (WLLN). Suppose random variables X_1, X_2, \cdots are i.i.d. with mean $E(X_i) = \mu$ and finite variance $var(X_i) = \sigma^2$. Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, then

$$P[|\bar{X}_n - \mu| \le \varepsilon] \to 1 \text{ as } n \to \infty,$$

or
$$\bar{X}_n - \mu \xrightarrow{p} 0$$
 or $\bar{X}_n - \mu = o_p(1)$.

• Remark: In WLLN, the second moment condition $var(X_i) < \infty$ (or equivalently, $E(X_i^2) < \infty$) is not necessary.

- **Lemma.** Suppose $Z_n \to Z$ in L_p for some p > 0. Then $Z_n \stackrel{p}{\to} Z$.
- **Proof:** By Markov's inequality, for all $\varepsilon > 0$,

$$P[|Z_n - Z| > \varepsilon] \le \frac{E|Z_n - Z|^p}{\varepsilon^p} \to 0$$

if $\lim_{n\to\infty} E|Z_n - Z|^p = 0$.

• Remarks:

- $-Z_n \xrightarrow{p} Z$ does not imply $Z_n \to Z$ in L_p .
- Example: let the pmf of d.r.v. Z_n be

$$f_n(z) = \begin{cases} 1 - 1/n & \text{for } z = 0, \\ 1/n & \text{for } z = n. \end{cases}$$

then $Z_n \xrightarrow{p} 0$, but $EZ_n^2 = n \to \infty \neq 0$.

- **Example.** Suppose $\mathbf{X}^n = (X_1, \dots, X_n)$ is an IID $N(\mu, \sigma^2)$ random sample. Then $S_n^2 \xrightarrow{p} \sigma^2$.
- Lemma: Continuity. Suppose $g : \mathbb{R} \to \mathbb{R}$ is a continuous function, and $Z_n \stackrel{p}{\to} Z$, then $g(Z_n) \stackrel{p}{\to} g(Z)$.
- **Theorem.** If function g is continuous at point b and $Z_n \xrightarrow{p} b$, then $g(Z_n) \xrightarrow{p} g(b)$.

• Proof.

- Because g is continuous at b, for every fixed $\varepsilon > 0$, we can find $\delta > 0$, s.t. $|z b| < \delta$ implies $|g(z) g(b)| < \varepsilon$.
- For every fixed $\varepsilon > 0$, $\exists \delta$ such that

$$1 = \lim_{n \to \infty} P(|Z_n - b| < \delta) \le \lim_{n \to \infty} P(|g(Z_n) - g(b)| < \varepsilon).$$

• **Definition:** Almost Sure Convergence. A sequence of random variables Z_1, Z_2, \cdots converges almost surely to a random variable Z if for every $\varepsilon > 0$,

$$P[\lim_{n\to\infty} |Z_n - Z| > \varepsilon] = 0$$

or equivalently,

$$P\left(\left\{s \in S : \lim_{n \to \infty} |Z_n(s) - Z(s)| \le \varepsilon\right\}\right) = 1,$$

where S is the sample space. When Z_n converges almost surely to Z, we write $Z_n - Z = o_{a.s.}(1)$, or $Z_n \xrightarrow{a.s.} Z$.

• **Remark:** Almost Sure Convergence is called *strong convergence*.

• **Example:** Suppose the probability space is $\{S, \mathcal{B}, P\}$, where the sample space S = [0, 1], \mathcal{B} contains all the Borel sets B such that $B \subset S$, P is the Lebesgue measure on S, i.e.,

$$P(\{s \in [a, b]\}) \stackrel{\triangle}{=} b - a$$

for any $0 \le a \le b \le 1$. Then $Z_n(s) = s + s^n$, $n = 1, 2, \dots$, and Z(s) = s are random variables.

- For $0 \le s < 1$, $Z_n(s) \to Z(s)$ as $n \to \infty$.
- For s = 1, $\lim_{n \to \infty} Z_n(s) \neq Z(s)$.
- Because $P[Z_n(s) \to Z(s)] = 1$, so $Z_n \xrightarrow{a.s.} Z$.

• **Example:** Suppose the probability space is $\{S, \mathcal{B}, P\}$, where the sample space S = [0, 1], \mathcal{B} contains all the Borel sets B such that $B \subset S$, P is the Lebesgue measure on S. Let Z(s) = 0 and

$$Z_n(s) = \begin{cases} 1 & \text{if } s \in [i/2^k, (i+1)/2^k] \text{ for } n = 2^k + i, \\ 0 & \text{otherwise.} \end{cases}$$

Here $k = |\log_2(n)|$ and $i = 0, \dots, 2^k - 1$.

- For every $\varepsilon > 0$, $P(|Z_n Z| > \varepsilon) \le 1/2^k \to 0$ as $n \to \infty$, so Z_n converges to Z in probability.
- $-E|Z_n-Z|^p=1/2^k\to 0$ as $n\to\infty$, so Z_n converges to Z in L_p .
- For any s, $\lim_{n\to\infty} Z_n(s)$ does not exist, Z_n does not converge to Z almost surely.

• Example: Suppose the probability space is $\{S, \mathcal{B}, P\}$, where the sample space S = [0, 1], \mathcal{B} contains all the Borel sets B such that $B \subset S$, P is the Lebesgue measure on S. Define $Z_n(s)$ as

$$Z_n(s) = \begin{cases} 0 & \text{for } 1/n < s \le 1, \\ e^n & \text{for } 0 \le s \le 1/n. \end{cases}$$

- For every $\varepsilon > 0$, $P(|Z_n| > \varepsilon) \le 1/n \to 0$ as $n \to \infty$, so Z_n converges to 0 in probability.
- For any $0 < s \le 1$, $\lim_{n\to\infty} Z_n(s) = 0$, so Z_n converges to 0 almost surely.
- $-E|Z_n|^p = \frac{1}{n}e^{np}$, so Z_n does not converge to 0 in L_p .

- Lemma. If Z_n converges to Z almost surely, then Z_n converges to Z in probability.
- Theorem: Continuity. Suppose $g(\cdot)$ is a continuous function, and Z_n converges almost surely to Z, then $g(Z_n)$ also converges almost surely to g(Z).

• Proof.

– Because $g(\cdot)$ is continuous, $\lim_{n\to\infty} Z_n(s) = Z(s)$ implies $\lim_{n\to\infty} g[Z_n(s)] = g[Z(s)]$.

$$P\left(\left\{s \in S : \lim_{n \to \infty} g[Z_n(s)] = g[Z(s)]\right\}\right) \ge P\left(\left\{s \in S : \lim_{n \to \infty} Z_n(s) = Z(s)\right\}\right)$$

$$= 1,$$

therefore, $g(Z_n) \xrightarrow{a.s} g(Z)$.

• Theorem: Strong Law of Large Numbers (SLLN). Suppose random variables X_1, X_2, \cdots are i.i.d. with finite $E(X_1^4)$. Let $\mu = E(X_1)$ and $Z_n = \frac{1}{n} \sum_{i=1}^n X_i$, then

$$Z_n \xrightarrow{a.s.} \mu.$$

• Proof.

- For simplicity, assume $\mu = 0$.
- Because $E(X_i) = 0, X_1, X_2, \cdots$ are independent, then

$$E(Z_n)^4 = \frac{1}{n^4} \left[nE(X_1^4) + 3n(n-1)E(X_1^2)E(X_2^2) \right]$$

$$\leq \frac{C}{n^2} E(X_1^4),$$

where C is a constant.

• - For every $\varepsilon > 0$,

$$P\left(\limsup_{n\to\infty} \{|Z_n - Z| > \varepsilon\}\right) = \lim_{n\to\infty} P\left(\bigcup_{k=n}^{\infty} \{|Z_k| > \varepsilon\}\right)$$

$$\leq \lim_{n\to\infty} \sum_{k=n}^{\infty} P(|Z_k| > \varepsilon)$$

$$\leq \lim_{n\to\infty} \sum_{k=n}^{\infty} \frac{E\left(Z_k^4\right)}{\varepsilon^4}$$

$$\leq \lim_{n\to\infty} \sum_{k=n}^{\infty} \frac{C}{k^2 \varepsilon^4} E\left(X_1^4\right)$$

- Therefore, $Z_n \xrightarrow{a.s.} 0$.
- **Remark:** In SLLN, then forth moment condition $E\left(X_1^4\right)<\infty$ is not necessary.

• Theorem: Kolmogorov's Strong Law of Large Numbers. Suppose random variables X_1, X_2, \cdots are i.i.d. with finite $E|X_i|$. Let $\mu = E(X_i)$ and $Z_n = \frac{1}{n} \sum_{i=1}^n X_i$, then

$$Z_n \xrightarrow{a.s.} \mu.$$

• Theorem: Uniform Strong Law of Large Numbers (USLLN). Suppose (a) $\mathbf{X}^n = (X_1, \dots, X_n)$ is an IID random sample; (b) function $g(x;\theta)$ is continuous over $\Omega \times \Theta$ where Ω is the support of X_i and Θ is a compact set in \mathcal{R}^d with d finite and fixed; (c) $E[\sup_{\theta \in \Theta} |g(X_1, \theta)|] < \infty$. Then as $n \to \infty$,

$$\sup_{\theta \in \Theta} \left| n^{-1} \sum_{i=1}^{n} g(X_i, \theta) - E[g(X_1, \theta)] \right| \to 0 \text{ almost surely.}$$

Moreover, $Eg(X_1, \theta)$ is a continuous function of θ over Θ .

• Definition: Convergence in Distribution (Weak Convergence).

A sequence of random variables Z_1, Z_2, \cdots converges in distribution to a random variable Z, denoted by $Z_n \xrightarrow{d} Z$, if

$$\lim_{n\to\infty} F_n(z) = F_Z(z)$$

for all z where $F_Z(z)$ is **continuous**. Here $F_n(z)$ and $F_Z(z)$ are the CDF's of Z_n and Z, respectively. $F_Z(z)$ is called the *limiting (or asymptotic)* distribution of $\{Z_n\}$.

• Remarks:

- Weak Convergence: $E[h(Z_n)] \to E[h(Z)]$ for all continuous bounded functions $h(\cdot)$.
- Convergence in distribution means that the cdf's converge, not the random variables. Usually, $Z_n \stackrel{d}{\to} Z$ does not contain the information about $|Z_n Z|$.
- The cdf $F_Z(z)$ at most has countable number of discontinuous points.
- If $Z_n \stackrel{d}{\to} Z$, $F_n(z)$ may not tend to $F_Z(z)$ at the discontinuous points of F_Z .

• Example: Let $Z_n \sim N\left(0, \frac{1}{n}\right)$ and Z = 0. Then

$$F_Z(z) = \begin{cases} 0 & \text{for } z < 0, \\ 1 & \text{for } z \ge 0. \end{cases}$$

Because for any z < 0, $\lim_n F_n(z) \to 0$ and for any z > 0, $\lim_n F_n(z) \to 1$, so $Z_n \xrightarrow{d} Z$. However, $F_n(0) = 0.5 \neq F_z(0)$.

• **Lemma.** Let Z_n be a random variable with distribution function $F_n(z)$, and let Z be a random variable with distribution function $F_Z(z)$. If $Z_n \stackrel{d}{\to} Z$, then $Z_n = O_p(1)$.

• **Example:** Suppose $\{X_i\}$ is a random sample following $U[0, \theta]$ distribution. Let $Z_n = \max\{X_1, \dots, X_n\}$. Derive the limiting distribution of $n(\theta - Z_n)$.

• Solution:

- For any given $u \geq 0$, we have

$$P[n(\theta - Z_n) > u] = P\left(Z_n < \theta - \frac{u}{n}\right)$$
$$= \left(1 - \frac{u}{n\theta}\right)^n.$$

- Therefore,

$$F_n(u) = P[n(\theta - Z_n) \le u] \to 1 - e^{-u/\theta}.$$

The limiting distribution of $n(\theta - Z_n)$ is an exponential (θ) distribution.

– In this example, $\theta - Z_n = O_p(n^{-1})$.

• Lemma. $Z_n \stackrel{p}{\to} Z$ implies $Z_n \stackrel{d}{\to} Z$.

• Proof.

- We want to show for every continuous point z of F_Z and every $\varepsilon > 0$, we can find N, such that $|F_n(z) F_Z(z)| < \varepsilon$ for all n > N.
- Because $F_Z(z)$ is continuous at Z, we can find $\delta > 0$ such that $|F_Z(z \pm \delta) F_Z(z)| < \varepsilon/2$.
- Because $Z \leq z \delta$ implies $Z_n \leq z$ or $|Z_n Z| > \delta$, so

$$P(Z \le z - \delta) \le P\left(\{Z_n \le z\} \cup \{|Z_n - Z| > \delta\}\right).$$

Then we have

$$F_Z(z-\delta) - P(|Z_n-Z| > \delta) \le F_n(z).$$

- Similarly,

$$F_n(z) \le F_Z(z+\delta) + P(|Z_n - Z| > \delta).$$

• - Therefore,

$$F_Z(z - \delta) - P(|Z_n - Z| > \delta) \le F_n(z) \le F_Z(z + \delta) + P(|Z_n - Z| > \delta).$$

 $|F_n(z) - F_Z(z)| < \varepsilon/2 + P(|Z_n - Z| > \delta).$

- Because $Z_n \xrightarrow{p} Z$, we can find N such that $P(|Z_n Z| > \delta) < \varepsilon/2$ for all n > N.
- Then $|F_n(z) F_Z(z)| < \varepsilon$ for all n > N. Hence $Z_n \xrightarrow{d} Z$.
- Remark: $Z_n \stackrel{d}{\to} Z$ does not imply $\lim_{n\to\infty} E(Z_n) = E(Z)$.

- Lemma: Asymptotic Equivalence. If $Y_n Z_n \stackrel{p}{\to} 0$ and $Z_n \stackrel{d}{\to} Z$ as $n \to \infty$, then $Y_n \stackrel{d}{\to} Z$.
- Definition: Degenerate Distribution. A random variable Z is said to have a degenerate distribution if P(Z=c)=1 for some constant c.
- **Theorem.** Let $F_n(z)$ be the CDF of a random variable Z_n whose distribution depends on the positive integer n. Let c denotes a constant which does not depend upon n. The sequence $\{Z_n, n = 1, 2, \cdots\}$ converges in probability to constant c if and only if the limiting distribution of Z_n is degenerate at z = c.
- Theorem: Continuous Mapping Theorem. Suppose a sequence of $k \times 1$ random vectors $Z_n \stackrel{d}{\to} Z$ as $n \to \infty$ and $g : \mathcal{R}^k \to \mathcal{R}^J$ is a continuous function. Then $g(Z_n) \stackrel{d}{\to} g(Z)$.

• Theorem: Lindeberg-Levys Central Limit Theorem (CLT).

Let X_1, X_2, \cdots be a sequence of i.i.d. random variables with $E(X_1) = \mu$ and finite variance $\sigma^2 = \text{Var}(X_1)$. Define $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, then

$$Z_n = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \stackrel{d}{\to} N(0, 1).$$

• Remarks:

- $-E(Z_n) = 0$ and $Var(Z_n) = 1$ for all n.
- $-X_i$ can be discrete or continuous.
- The CLT says that

$$\lim_{n \to \infty} P(Z_n \le z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du \text{ for all } z \in \mathbb{R}.$$

• Proof.

- Let $Y_i = (X_i \mu)/\sigma$, then $Z_n = \sum_{i=1}^n Y_i/\sqrt{n}$.
- Define $\phi(t) = E(e^{iY_1t})$, then the characteristic function of Z_n is

$$E\left(e^{itZ_n}\right) = \prod_{i=1}^n E\left(e^{itY_i/\sqrt{n}}\right) = \left[\phi(t/\sqrt{n})\right]^n$$
$$= \left[1 + \phi'(0)\frac{t}{\sqrt{n}} + \frac{1}{2}\phi''(0)\frac{t^2}{n} + o(1/n)\right]^n$$

.

- Because $\phi'(0) = 0$, $\phi''(0) = -1$, $E\left(e^{itZ_n}\right) \to e^{-t^2/2}$ for all t as $n \to \infty$.
- Hence $Z_n \stackrel{d}{\rightarrow} N(0,1)$.
- **Remark:** We use the characteristic function rather than the moment generating function, because the mgf may not exist for some distribution with finite variance.

- Example: Normal Approximation for the Binomial Distribution. For a Binomial (n, p) random variable S, we can write $Z_n = \sum_{i=1}^n X_i$, where $\{X_i\}$ are independent Bernoulli random variables with $P(X_i = 1) = p$. By the CLT, $\frac{Z_n np}{\sqrt{np(1-p)}}$ approximately follows a N(0, 1) distribution.
- Examples: Normal approximation of χ_n^2 . Suppose X_1, \dots, X_n is a random sample following N(0,1) distribution. Then $Z_n = \sum_{i=1}^n X_n^2$ follows a χ_n^2 distribution. We have

$$E(X_1^2) = 1, \quad Var(X_1^2) = 2.$$

By the CLT, $\frac{Z_n-n}{\sqrt{2n}}$ approximately follows a N(0,1) distribution when n is large.

• Theorem: Liapounov's CLT. Suppose the random variables X_1, X_2, \cdots are independent and $E|X_i-E(X_i)|^3 < \infty$ for $i=1,2,\cdots$. Let $\mu_i=E(X_i)$, $\sigma_i^2 = \operatorname{Var}(X_i)$, and suppose

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n} E|X_i - \mu_i|^3}{\left(\sum_{i=1}^{n} \sigma^2\right)^{3/2}} = 0.$$

Then as $n \to \infty$, we have

$$Z_n = \frac{\sum_{i=1}^n (X_i - \mu_i)}{\sqrt{\sum_{i=1}^n \sigma_i^2}} \xrightarrow{d} N(0, 1).$$

• **Remark:** This theorem relaxes the identical distribution assumption.

• Theorem: Slutsky's Theorem. Suppose $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{p}{\to} c$, where c is a constant. Then

$$-X_n + Y_n \stackrel{d}{\to} X + c.$$

$$-X_n - Y_n \xrightarrow{d} X - c.$$

$$-X_nY_n \xrightarrow{d} Xc.$$

$$-X_n/Y_n \xrightarrow{d} X/c$$
. if $c \neq 0$.

• Remarks:

- If $Y_n \stackrel{p}{\to} Y$, where Y does not follow a degenerate distribution, then $X_n + Y_n$ may not converge to X + Y in distribution.
- Example: Suppose X, X_1, X_2, \cdots are i.i.d. following N(0,1) distribution. Let $Y_n = X$ for $n = 1, 2, \cdots$ and let Y = X. Then $X_n + Y_n \sim N(0,2)$, but $X + Y = 2X \sim N(0,4)$.

• **Example:** Suppose X_1, X_2, \cdots are i.i.d. with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$. We have

$$\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \xrightarrow{d} N(0, 1).$$

If $S_n^2 \xrightarrow{p} \sigma^2$, then

$$\frac{\sqrt{n}(\overline{X}_n - \mu)}{S_n} \xrightarrow{d} N(0, 1)$$

by Slutsky's theorem.

• **Example.** Suppose $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{d}{\to} Y$ as $n \to \infty$. Do we have the following results?

$$-X_n \pm Y_n \xrightarrow{d} X \pm Y \text{ as } n \to \infty;$$

$$-X_nY_n \stackrel{d}{\to} XY \text{ as } n \to \infty.$$

• Lemma: Delta Method. Suppose $\sqrt{n}(\bar{X}_n - \mu)/\sigma \stackrel{d}{\to} N(0,1), g(\cdot)$ is a continuously differentiable $(g'(\cdot))$ is continuously with $g'(\mu) \neq 0$. Then as $n \to \infty$,

$$\sqrt{n}[g(\bar{X}_n) - g(\mu)] \xrightarrow{d} N\left(0, \sigma^2[g'(\mu)]^2\right).$$

• Remark: By the Slutsky's theorem again, we have

$$\frac{\sqrt{n}[g(\bar{X}_n) - g(\mu)]}{\sigma g'(\bar{X}_n)} \stackrel{d}{\to} N(0, 1).$$

• **Example:** Suppose $\sqrt{n}(Z_n - \mu) \stackrel{d}{\to} N(0, \sigma^2)$, find the limiting distribution of $\sqrt{n}(1/Z_n - 1/\mu)$.

• Lemma: Second-order Delta Method. Suppose random variables $\sqrt{n}(\bar{X}_n - \mu)/\sigma \stackrel{d}{\to} N(0,1)$, and $g(\cdot)$ is a twice continuously differentiable function such that $g'(\mu) = 0$, g'' is continuous at μ and $g''(\mu) \neq 0$. Then as $n \to \infty$,

$$\frac{n[g(\bar{X}_n) - g(\mu)]}{\sigma^2} \xrightarrow{d} \frac{g''(\mu)}{2} \chi_1^2.$$

• Proof.

- Using the first order Taylor expansion,

$$n[g(\bar{X}_n) - g(\mu)] = \frac{g''(\lambda)}{2} \left[\sqrt{n}(\bar{X}_n - \mu) \right]^2,$$

where $\lambda(s)$ is a point between μ and $Z_n(s)$. Hence $\lambda(s) \xrightarrow{p} \mu$.

– By the Slutsky's theorem, $n[g(\bar{X}_n) - g(\mu)] \xrightarrow{d} \sigma^2 \frac{g''(\mu)}{2} \chi_1^2$

- Lemma: Cramer-Wold Device. Let d be a fixed positive integer. A sequence of random vectors $Z_n = (Z_{1n}, \dots, Z_{dn})'$ converges in distribution to a random vector Z if $\lim_{n\to\infty} F_n(z) = F(z)$ at every point z where F(z) is continuous, where $F_n(z)$ is the CDF of Z_n and F(z) is the CDF of Z. Then a sequence of random vectors Z_n converges in distribution to a random vector Z if and only if $a'Z_n \stackrel{d}{\to} a'Z$ for every constant vector $a \neq 0$.
- **Example.** Suppose $Z_n \xrightarrow{d} Z \sim N(0, \Sigma)$, where μ is $m \times 1$ and Σ is an $m \times m$ nonsingular matrix, where the dimension m is fixed. If $\hat{\Sigma} \xrightarrow{p} \Sigma$ as $n \to \infty$, then the quadratic form

$$Z'_n \hat{\Sigma}_n^{-1} Z_n \stackrel{d}{\to} Z/\Sigma^{-1} Z \sim \chi_m^2.$$

• THE END

• Theorem: Multivariate Delta Method. Suppose X_1, X_2, \cdots is a sequence of i.i.d. random vectors, where $X_i = (X_{1,i}, \cdots, X_{p,i})'$. Let $\mu_j = E(X_{j,1}), \ \sigma_{j,k} = \text{Cov}(X_{j,1}, X_{k,1}) < \infty. \ g(x_1, \cdots, x_p)$ is a continuous differentiable function. Let

$$\tau^{2} = \sum_{j} \sum_{k} \sigma_{j,k} \frac{\partial g(\mu_{1}, \cdots, \mu_{p})}{\partial x_{j}} \frac{\partial g(\mu_{1}, \cdots, \mu_{p})}{\partial x_{k}}$$
$$= \left(\frac{\partial g}{\partial \boldsymbol{x}}\right)' \Sigma \left(\frac{\partial g}{\partial \boldsymbol{x}}\right) \Big|_{\boldsymbol{x} = (\mu_{1}, \cdots, \mu_{p})'},$$

where $\Sigma = (\sigma_{j,k})_{p \times p}$ is the variance matrix of random vector X_i . Then

$$\sqrt{n}\left[g(\overline{X}_{1,n},\cdots,\overline{X}_{p,n})-g(\mu_1,\cdots,\mu_p)\right] \stackrel{d}{\to} N(0,\tau^2),$$

where $\overline{X}_{j,n} = \frac{1}{n} \sum_{i=1}^{n} X_{j,i}$.

- Example: Ratio Estimator. Suppose X_1, X_2, \cdots and Y_1, Y_2, \cdots are two sequence of i.i.d. random variables. The variances of X_i and Y_i are finite. Let $\mu_X = E(X_1)$ and $\mu_Y = E(Y_1)$.
 - We can use $\overline{X}_n/\overline{Y}_n$ as an estimator of the ratio μ_X/μ_Y .
 - Using the multivariate delta method, we have

$$\sqrt{n} \left[\overline{X}_n / \overline{Y}_n - \mu_X / \mu_Y \right] \stackrel{d}{\to} N(0, \tau^2),$$

where

$$\tau^{2} = \frac{1}{\mu_{Y}^{2}} \operatorname{Var}(X) - \frac{2\mu_{X}}{\mu_{Y}^{3}} \operatorname{Cov}(X, Y) + \frac{\mu_{X}^{2}}{\mu_{Y}^{4}} \operatorname{Var}(Y)$$

$$= \frac{\mu_{X}^{2}}{\mu_{Y}^{2}} \left(\frac{\operatorname{Var}(X)}{\mu_{X}^{2}} - \frac{2\operatorname{Cov}(X, Y)}{\mu_{X}\mu_{Y}} + \frac{\operatorname{Var}(Y)}{\mu_{Y}^{2}} \right).$$

- Example: Importance Sampling. Suppose X is a random variable with pdf f(x). We want to calculate $E[h(X)] = \int_{-\infty}^{\infty} h(x)f(x) dx$ ($< \infty$) that does not have an analytic form.
 - If we can draw i.i.d samples X_1, \dots, X_n from distribution f(x), then

$$\frac{1}{n} \sum_{i=1}^{n} h(X_i) \xrightarrow{a.s.} E[h(X)].$$

– If we can't directly draw samples from f(x), we can draw i.i.d samples X_1, \dots, X_n from a different distribution g(x), whose support contains the support of f(x). Then let $w(X_i) = f(X_i)/g(X_i)$, we have

$$\frac{1}{n} \sum_{i=1}^{n} w(X_i) h(X_i) \xrightarrow{a.s.} E[h(X)],$$

$$\frac{\sum_{i=1}^{n} w(X_i)h(X_i)}{\sum_{i=1}^{n} w(X_i)} \xrightarrow{a.s.} E[h(X)].$$

- In many cases, $\frac{\sum_{i=1}^{n} w(X_i)h(X_i)}{\sum_{i=1}^{n} w(X_i)}$ is a more convenient estimate of E[h(X)] because we don't need to calculate some multiplicative constants in $w(X_i)$.
 - If $\operatorname{Var}[w(X_1)] < \infty$, $\operatorname{Var}[w(X_1)h(X_1)] < \infty$, and $\operatorname{Cov}[w(X_1)h(X_1), w(X_1)] < \infty$, then by the delta method,

$$\sqrt{n} \left[\frac{\sum_{i=1}^{n} w(X_i) h(X_i)}{\sum_{i=1}^{n} w(X_i)} - E[h(X)] \right] \stackrel{d}{\to} N(0, \tau^2),$$

where

$$\tau^{2} = \operatorname{Var}_{g}[w(X_{1})h(X_{1})] - 2E_{f}[h(X)]\operatorname{Cov}_{g}[w(X_{1})h(X_{1}), w(X_{1})] + E_{f}^{2}[h(X)]\operatorname{Var}_{g}[w(X_{1})].$$

– We want to choose g(x) so that τ^2 is small.