14120

RESEARCH MEMORANDUM

APPROXIMATE SOLUTIONS FOR THE FLOW ABOUT FLAT-TOP

WING-BODY CONFIGURATIONS AT HIGH

SUPERSONIC AIRSPEEDS

By Raymond C. Savin

Ames Aeronautical Laboratory Moffett Field, Calif. Mulan feel
Classification concelled a concelled the con
Ey Luthority of CON# (OFFICER AUMIGRIZED TO CHANGE)
By MS
G-5-//
18 Jan 1963

This material contains information affecting the National Defense of the United States within the meaning of the espionage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which in any manner to unauthorized person is prohibited by law.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

September 15, 1958

CONFIDENTIAL

6530

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

APPROXIMATE SOLUTIONS FOR THE FLOW ABOUT FLAT-TOP

WING-BODY CONFIGURATIONS AT HIGH

SUPERSONIC AIRSPEEDS*

By Raymond C. Savin

SUMMARY

The flow about slender flat-top wing-body configurations traveling at high supersonic speeds and small angles of attack is investigated analytically. In the case of conical configurations, approximate algebraic solutions to the flow field are obtained. In the case of configurations which are conical at the vertex but curved in the stream direction, these solutions are combined with a slender-body approximation to the generalized shock-expansion method to obtain the flow downstream of the vertex.

Surface pressures were obtained experimentally at Mach numbers from 3.0 to 6.0 and angles of attack up to 60 for several flat-top wingbody configurations. These configurations consisted of half-bodies of revolution mounted beneath thin highly swept wings. Three different bodies were employed. The two conical bodies consisted of one-half of a fineness-ratio-5 cone and one-half of a fineness-ratio-2-1/2 cone. The body of the third configuration consisted of one-half of a finenessratio-5 ogive. For the ogive configuration, the leading edges of the wing were curved and designed to just maintain the theoretically determined bow shock along the leading edge at a Mach number of 5.0 and an angle of attack of 3°. The predictions of the conical flow theory of this paper for the surface pressures are found to be in good agreement with experiment at Mach numbers of 5.0 and 6.0 up to angles of attack of approximately 3°. Estimated lift, drag, and pitching-moment coefficients, as well as maximum lift-drag ratio, are also in good agreement with existing experimental data at a Mach number of 5.0 for a comical configuration having an arrow plan-form wing. It is also found that the generalized shock-expansion method yields reasonably good agreement with experiment for the surface pressures on the half-ogive configuration at a Mach number of 5.0 and an angle of attack of 30.

^{*}Title, Unclassified.

INTRODUCTION

A class of flat-top wing-body combinations was proposed in reference l as being capable of developing high lift-drag ratios at high supersonic speeds. The type of configuration suggested consists of a thin highly swept wing of essentially arrow plan form beneath which is mounted a half-body of revolution with its vertex common to the vertex of the wing. Theoretical and experimental results presented in references 1 and 2 indicated that these configurations have a high aerodynamic efficiency at high supersonic speeds. It is of interest, therefore, to consider more refined theoretical methods for treating the flow about flat-top wing-body combinations. Such methods are necessary if accurate estimates of pressure forces and moments as well as detailed local flow properties are to be obtained. Local flow conditions are required, of course, in order to determine skin-friction and heat-transfer characteristics which are so important at hypersonic speeds.

A method for estimating the aerodynamic forces on flat-top wing-body configurations has been presented in reference 3. This method was obtained with the aid of linear theory. In fact, in the past, virtually all treatments of the flow about wing-body combinations have employed linear theory (see, e.g., refs. 3 through 7). Although these methods have been shown to be adequate for low supersonic speeds, their application to hypersonic speeds is questionable due to the restrictions of linear theory. Thus, at the present time, there is no well-established theory applicable to the accurate prediction of the aerodynamic characteristics of wing-body combinations traveling at high supersonic speeds. The objective of the present paper, therefore, is to obtain an improved theoretical method for predicting the flow about flat-top wing-body configurations having supersonic leading edges. In this connection, a hypersonic theory applicable to conical configurations is obtained. This result is then combined with a slender-body approximation to the generalized shock-expansion method to obtain the flow about configurations which are curved in the stream direction.

NOTATION

a local speed of sound, ft/sec C_A axial-force coefficient, $\frac{\text{axial force}}{q_{\infty}S}$ C_D drag coefficient, $\frac{\text{drag}}{q_{\infty}S}$ C_L lift coefficient, $\frac{\text{lift}}{q_{\infty}S}$

CONFIDENTIAL

- C_{m} pitching-moment coefficient, $\frac{moment\ about\ vertex}{q_{\infty}Sl}$
- c_N normal-force coefficient, normal force c_N
- C_p pressure coefficient, $\frac{p p_{\infty}}{q_{\infty}}$
- cp specific heat at constant pressure, ft-lb/slug OR
- cv specific heat at constant volume, ft-lb/slug OR
- E entropy, ft-lb/slug OR
- l characteristic reference length, ft
- M Mach number (ratio of local airspeed to local speed of sound)
- p static pressure, lb/sq ft
- pt total pressure, lb/sq ft
- q dynamic pressure, lb/sq ft
- R gas constant, ft-lb/slug OR
- r distance along conical ray measured from vertex, ft
- S total plan area, sq ft
- u velocity component parallel to r, ft/sec
- v velocity component normal to u in a meridian plane, ft/sec
- V resultant velocity, $\sqrt{u^2 + v^2 + w^2}$, ft/sec
- \hat{V} maximum velocity obtainable by expanding to zero temperature, ft/sec
- w velocity component normal to a meridian plane, ft/sec
- angle of attack, radians unless otherwise specified
- γ ratio of specific heats, $\frac{c_p}{c_v}$
- angle of flow inclination in meridian plane measured from configuration axis, radians unless otherwise specified
- δ_{W} wedge angle of wing in streamwise direction

CONFIDENTIAL

- △ angle of flow inclination in meridian plane measured from freestream direction, radians unless otherwise specified
- e angular difference between free-stream direction and locus of points representing center of curvature of shock in plane of symmetry, radians unless otherwise specified
- λ semivertex angle of wing (i.e., complement of leading-edge sweep angle; see fig. 1), radians unless otherwise specified
- μ Mach angle, radians unless otherwise specified
- ρ mass density, slugs/cu ft
- φ angle of meridian plane with respect to plane of symmetry, radians unless otherwise specified (see fig. 1)
- dihedral angle at shock between streamwise plane normal to shock and plane containing axis of configuration, radians unless otherwise specified
- Ψ dihedral angle at shock between streamwise plane normal to shock and plane containing free-stream velocity vector, radians unless otherwise specified
- ω angle between axis of cone and ray passing through vertex of cone, radians unless otherwise specified
- Ω angle of ray on conical shock measured with respect to free-stream direction, radians unless otherwise specified

Subscripts

- B body
- c evaluated at cone surface
- e evaluated at external surface of vortical layer
- S evaluated at shock wave
- W wing
- ∞ free-stream conditions
- o conditions at $\varphi = 0$
- $\frac{\pi}{2}$ conditions at $\varphi = \frac{\pi}{2}$

THEORY

The purpose of this analysis is to obtain a simplified theory for predicting flow fields about a class of flat-top wing-body configurations traveling at hypersonic speeds and at small angles of attack. The configuration to be treated is assumed to consist of a half-body of revolution mounted beneath a thin wing, the vertex of which is common to the vertex of the body and whose leading edges are sharp and always supersonic. Furthermore, the configuration is assumed slender and the surface slopes are everywhere small compared to 1. In addition, the free-stream Mach number is assumed large compared to 1 and the angle of attack small compared to 1. Thus, the local Mach number will be large compared to 1 and the inclination of the nose shock wave will be small. Only flow fields which are either wholly conical or conical at the vertex are studied. Consider now the flow field as it would appear in cross-section view normal to the configuration axis. A conical flow field of the double shock type is shown in sketch (a), where region l is three-dimensional in type and is generated by the body, and region 2 is a two-dimensional flow field generated by the wing (the configuration is presumed to be at angle of attack). Another conical flow field is a single-shock type as represented in sketch (b). Experimental observations of the shock-wave patterns to

date indicate that the flow field is of the single-shock type, at least for configurations having highly swept wings. It was also found that the pressures on the wing were not only continuous across the entire wing but were also higher in region 2 than the pressures which would be expected if the flow were two-dimensional in this region. In the following analysis, approximate solutions to the flow field satisfying the boundary conditions corresponding to the single-shock type will be obtained.

Flow About Conical Flat-Top Wing-Body Configurations

For conical flow fields, all derivatives with respect to radial distance vanish and the equations of motion and continuity in spherical polar coordinates become (a schematic diagram of the polar coordinate system is shown in fig. 1)

$$v \frac{\partial u}{\partial \omega} + \frac{w}{\sin \omega} \frac{\partial u}{\partial \phi} - v^2 - w^2 = 0$$
 (la)

$$v \frac{\partial v}{\partial \omega} + \frac{w}{\sin \omega} \frac{\partial v}{\partial \varphi} + \frac{1}{\rho} \frac{\partial p}{\partial \omega} + uv - w^2 \cot \omega = 0$$
 (1b)

$$v \frac{\partial w}{\partial \omega} + \frac{w}{\sin \omega} \frac{\partial w}{\partial \phi} + \frac{1}{\phi \sin \omega} \frac{\partial p}{\partial \phi} + uw + vw \cot \omega = 0$$
 (1c)

and

$$2\rho u \sin \omega + v \sin \omega \frac{\partial \omega}{\partial \rho} + \rho \sin \omega \frac{\partial \omega}{\partial \omega} + v\rho \cos \omega + w \frac{\partial \varphi}{\partial \rho} + \rho \frac{\partial w}{\partial \phi} = 0$$
 (2)

respectively. Now the law of conservation of energy requires the following relations to be satisfied:

$$\frac{\lambda}{\lambda - 1} \left(\frac{1}{\rho} \frac{\partial \hat{\sigma}}{\partial \hat{\sigma}} - \frac{\delta_{5}}{\rho} \frac{\partial \hat{\sigma}}{\partial \hat{\sigma}} \right) = - \left(\hat{\sigma} \frac{\partial \hat{\sigma}}{\partial \hat{\sigma}} + \hat{\sigma} \frac{\partial \hat{\sigma}}{\partial \hat{\sigma}} + \hat{\sigma} \frac{\partial \hat{\sigma}}{\partial \hat{\sigma}} \right)$$

$$\frac{\lambda}{\lambda - 1} \left(\frac{1}{\rho} \frac{\partial \hat{\sigma}}{\partial \hat{\sigma}} - \frac{\delta_{5}}{\rho} \frac{\partial \hat{\sigma}}{\partial \hat{\sigma}} \right) = - \left(\hat{\sigma} \frac{\partial \hat{\sigma}}{\partial \hat{\sigma}} + \hat{\sigma} \frac{\partial \hat{\sigma}}{\partial \hat{\sigma}} + \hat{\sigma} \frac{\partial \hat{\sigma}}{\partial \hat{\sigma}} \right)$$
(3)

The entropy at any point in the flow field may be expressed in the form

$$E - E_{\infty} = \frac{R}{\gamma - 1} \ln \left[\frac{p}{p_{\infty}} \left(\frac{\rho_{\infty}}{\rho} \right)^{\gamma} \right]$$
 (4)

Equations (1), (2), and (3) together with the relation

$$a^2 = \frac{\gamma - 1}{2} \left(\hat{\mathbf{y}}^2 - \mathbf{y}^2 \right)$$

may be combined (by eliminating the pressure and density terms) to obtain the equation of motion

$$\frac{\gamma - 1}{2} \left(\hat{V}^2 - V^2 \right) \left(2u + v \cot \omega + \frac{\partial v}{\partial \omega} + \frac{1}{\sin \omega} \frac{\partial w}{\partial \phi} \right) - uv^2 - uw^2 - vw^2 - vw^$$

which is general for all steady-state conical flows.

It is convenient first to define the flow conditions on the leeward or expansion side of the wing. For flows of the type under consideration, the expressions defining the Mach number and pressure are simply those applicable to a flat plate and may be written (see ref. 8)

¹Since the shock wave is assumed to be always attached to the leading edge of the wing, the flow fields on the windward and leeward sides may be treated independently.

$$\frac{M_{\infty}}{M} = 1 - \frac{\gamma - 1}{2} M_{\infty} (\alpha - \delta_{\overline{W}}) \tag{6}$$

and

$$\frac{\mathbf{p}}{\mathbf{p}_{\infty}} = \left[1 - \frac{\gamma - 1}{2} \, \mathbf{M}_{\infty} (\alpha - \delta_{\widetilde{W}})\right]^{\frac{2\gamma}{\gamma - 1}} \tag{7}$$

respectively, where α is the angle of attack and δ_W is the streamwise wedge angle of the wing.

The remaining part of this analysis will be concerned with the study of the interference flow field on the high-pressure side of flat-top wing-body configurations. Before proceeding with the actual solution for the flow field, it is convenient first to consider the basic assumptions underlying the solution and to outline briefly the method of attack in obtaining this solution. As mentioned earlier, only hypersonic flows and slender configurations at small angles of attack are considered in this paper. Thus, the following simplifications are employed throughout this analysis:

$$\begin{array}{lll} M >\!\!> 1 & & \omega <\!\!< 1 \\ \delta <\!\!< 1 & & \alpha <\!\!< 1 \end{array}$$

It is further assumed that the present flow fields represent only a small departure from flow fields generated by circular cones. The subsequent analysis, then, will be similar in many respects to that presented in reference 9 for the flow about circular cones at small angles of attack. In particular, the flow in the region of the plane of symmetry (i.e., at ϕ = 0) is assumed to be identical to that generated by a circular cone in this region. The general form of the expression for the $\,w$ component of velocity employed in reference 9 is also assumed to be applicable for the present flow fields.

The following procedure is employed with the above assumptions to obtain a solution for the interference flow field. An expression defining the w component of velocity throughout the flow field (see fig. 1) is first obtained. The flow is then treated in four parts as shown in sketch (c), which represents the boundaries of the flow field in a plane normal to the configuration axis.

Expressions which define flow conditions along the shock (1-2), in the plane of symmetry (1-3), in the plane of the wing (2-4), and around the surface of the body (3-4) will be obtained in terms of flow conditions at $\varphi = 0$ and $\varphi = \pi/2$. Solution of the flow in the plane of symmetry determines all conditions at $\varphi = 0$. All the expressions obtained, then, may be written in terms of known quantities and/or $(\Psi)_{\pi/2}$. The parameter (Y) is obtained by an iteration process which involves matching at point 4 the pressure calculated by proceeding along 1-3-4 to the pressure calculated by proceeding along 2-4. A discussion of the evaluation of $(\Psi)_{\pi/2}$ is presented. An analysis of the flow off the surface, that is, between the body surface and the shock, is discussed and expressions defining this part of the flow field will be obtained. Finally, analytic expressions in closed form are obtained for the lift, drag, and pitchingmoment coefficients for conical flat-top wing-body combinations. With these points in mind, the analysis for the w component of velocity will now be considered.

Determination of w component of velocity. It was found in reference 9 that the ω and ϕ dependence of w could be separated into a product for the case of circular cones. Since the present flow fields represent a small departure from that of the circular cone, the same dependence is assumed here; namely,

$$\frac{\mathbf{w}}{\mathbf{V}_{\infty}} = \mathbf{w}_{1}(\omega)\mathbf{w}_{2}(\varphi) \tag{8}$$

Furthermore, the variation of w with ω is assumed to be the same as in the case of the circular cone so that this variation between the surface and the shock may be written (see ref. 9)

$$w_1(\omega) = \frac{\omega_S}{\omega}$$

Now it is obvious that the variation of w with ϕ will differ from that for a circular cone since the presence of the wing will alter the boundary conditions. The term $w_2(\phi)$, then, will be defined by the polynomial (noting that w must be an odd function)

$$w_2(\varphi) = c_1 \varphi + c_2 \varphi^3 + c_3 \varphi^5$$

Since w = 0 at ϕ = 0 because of the symmetry of the flow and also at $\phi = \pi/2$ because of the presence of the wing, the coefficients in the above expression are easily evaluated in terms of $\partial w_2/\partial \phi$ at ϕ = 0 and ϕ = $\pi/2$ to yield (when combined with eq. (8))

$$\frac{W}{V_{\infty}} = \left(\frac{\omega_{S}}{\omega}\right) \varphi \left\{ \left(\frac{\partial w_{2}}{\partial \varphi}\right)_{O} - \frac{2}{\pi^{2}} \left[\left(\frac{\partial w_{2}}{\partial \varphi}\right)_{\pi/2} + 4\left(\frac{\partial w_{2}}{\partial \varphi}\right)_{O}\right] \varphi^{2} + \frac{8}{\pi^{4}} \left[\left(\frac{\partial w_{2}}{\partial \varphi}\right)_{\pi/2} + 2\left(\frac{\partial w_{2}}{\partial \varphi}\right)_{O}\right] \varphi^{4} \right\} \tag{9}$$

Expression (9) defines the w component of the velocity throughout the flow field on the windward side of the configuration. There remains, however, the determination of the shock-wave angle, ω_S , and the quantities $(\partial w_2/\partial \phi)_O$ and $(\partial w_2/\partial \phi)_{\pi/2}$. An expression for ω_S will now be obtained by considering the flow conditions at the conical shock.

Flow conditions at the shock.- The shape of the shock wave will be influenced by the shape of the body, the angle of attack, and the leading-edge sweep of the wing. For example, at $\alpha=0^{O}$ the conical shock will be circular between the planes $\phi=0$ and $\phi=\pi/2$ provided the leading-edge angle of the wing, $\lambda,$ is equal to the axially symmetric shock angle for the complete circular cone. If $\lambda>(\omega_S)_{\alpha=0},$ then the shock will impinge on the wing leading edge at an acute angle similar to that shown in sketch (d). The angle $(\psi)_{\pi/2}$ shown in this sketch (see also fig. 1)

is the angle of the dihedral between a plane normal to the shock and the plane of the wing and

$$\tan \psi = \frac{1}{\omega_S} \frac{\partial \omega_S}{\partial \phi} \tag{10}$$

which holds for any meridian plane. Consider now the case where $\alpha>0.$ As the angle of attack increases, the pressures on the body, and therefore throughout the flow field, increase causing the shock in the plane of the wing to "spread" beyond that for $\alpha=0^{\circ}.$ Now if the shock is to remain attached to the leading edge, the leading-edge sweep must be decreased. Thus, in the present analysis, there is a minimum λ (maximum sweep) which can be treated for each angle of attack. It is clear from the foregoing discussion that if a reasonably accurate prediction of the flow field is to be obtained, particular attention must be paid to the shape of the shock wave. The conical shock will then be defined by a power series in ϕ where the coefficients are determined from the following conditions:

at
$$\varphi = 0$$
,

$$\omega_{\rm S} = (\omega_{\rm S})_{\rm O} \frac{\partial \omega_{\rm S}}{\partial \phi} = 0$$

at
$$\varphi = \frac{\pi}{2}$$
,

$$\omega_{\rm S} = \lambda \qquad \frac{\partial \omega_{\rm S}}{\partial \varphi} = \lambda \, \tan(\psi)_{\pi/2}$$

Thus, the expression

$$\frac{\omega_{S}}{\delta_{c}} = \left(\frac{\omega_{S}}{\delta_{c}}\right)_{o} + \left(\frac{2}{\pi}\right)^{2} \left(\frac{\lambda}{\delta_{c}}\right) \left\{2\left[1 - \frac{(\omega_{S})_{o}}{\lambda}\right] - \frac{\pi}{4} \tan(\psi)_{\pi/2}\right\} \varphi^{2} - \left(\frac{2}{\pi}\right)^{4} \left(\frac{\lambda}{\delta_{c}}\right) \left[1 - \frac{(\omega_{S})_{o}}{\lambda} - \frac{\pi}{4} \tan(\psi)_{\pi/2}\right] \varphi^{4}$$
(11)

defines the conical shock with respect to the configuration axis. The tangent operator on ψ is retained in the above expression since at $\phi=\pi/2$ this angle represents the attenuation of the shock due to leading-edge sweep and there is no way of determining a priori its order of magnitude. Now for small angles of attack, the shock-wave angle, $\Omega,$ and flow-deflection angle, $\Delta,$ measured from the wind axis may be related to the shock angle, $\omega_{\rm S}$ and flow-deflection angle, $\delta_{\rm S},$ measured from the configuration axis by

$$\Omega = \omega_{S} + \alpha \cos \Phi \tag{12}$$

and

$$\Delta = \delta_{S} + \alpha \cos \varphi \tag{13}$$

respectively. It can also be shown that, consistent with the above approximations,

$$\Psi = \psi - \frac{\alpha \sin \varphi}{\omega_S + \alpha \cos \varphi} \tag{14}$$

where Ψ is the angle of the dihedral at a point on the shock between a streamwise plane normal to the shock and the plane containing the wind axis. Thus, the oblique-shock-wave relations may be written

$$\left(\frac{M_{\rm S}}{M_{\rm \infty}}\right)^2 = \frac{(\gamma + 1)^2 M_{\rm \infty}^2 \Omega^2 \cos^2 \Psi}{[2\gamma M_{\rm \infty}^2 \Omega^2 \cos^2 \Psi - (\gamma - 1)][(\gamma - 1) M_{\rm \infty}^2 \Omega^2 \cos^2 \Psi + 2]}$$
(15)

$$\frac{\Delta}{\delta_{\rm c}} = \frac{M_{\infty}^2 \Omega^2 \cos^2 \Psi - 1}{\frac{\gamma + 1}{2} M_{\infty} \delta_{\rm c} M_{\infty} \Omega \cos \Psi}$$
(16)

$$\frac{P_{S}}{P_{\infty}} = \frac{2\gamma M_{\infty}^{2} \Omega^{2} \cos^{2} \Psi - (\gamma - 1)}{\gamma + 1}$$
(17)

Equations (11) through (17) completely define conditions immediately downstream of the shock wave in terms of flow parameters referred to the configuration axis. It is clear, of course, that $(\omega_S)_0$ and $(\Psi)_{\pi/2}$ are yet to be determined.

Flow conditions in the plane $\phi=0$. As a by-product of the solution of the flow in this plane, the two quantities $(\omega_S)_0$ and $(\partial w_2/\partial \phi)_0$ will be determined. Because of the symmetry of the flow in this plane, w=0 and the equation of motion (eq. (5)) reduces to

$$\frac{\gamma - 1}{2} (\hat{V}^2 - V^2) \left(2u + v \cot \omega + \frac{\partial v}{\partial \omega} + \frac{1}{\sin \omega} \frac{\partial w}{\partial \phi} \right) - v^2 \left(u + \frac{\partial v}{\partial \omega} \right) = 0$$
 (18)

Now from the flow pattern, the velocity components may be written

$$u = V \cos(\omega - \delta)$$

$$v = -V \sin(\omega - \delta)$$

and from equation (la)

$$v = \frac{\partial u}{\partial \omega}$$

It can also be shown that

$$\frac{dV}{V} = -\tan(\omega - \delta)d\delta \tag{19}$$

Substitution of the above expressions into equation (18) results in

$$\frac{\gamma - 1}{2} \left[\left(\frac{\hat{V}}{V} \right)^2 - 1 \right] \left[\cot(\omega - \delta) \left(1 + \frac{\partial \delta}{\partial \omega} \right) - \cot \omega + \tan(\omega - \delta) \frac{\partial \delta}{\partial \omega} + \frac{\csc(\omega - \delta)}{V \sin \omega} \frac{\partial W}{\partial \phi} \right] - \tan(\omega - \delta) \frac{\partial \delta}{\partial \omega} = 0$$

Consistent now with the assumption of $\,\delta <\!\!< \, 1$ and $\omega <\!\!< \, 1,$ the above expression may be written

$$\frac{\delta}{\delta} + \frac{\delta}{\delta} \left[1 - (M\omega)^2 \left(1 - \frac{\delta}{\omega} \right)^2 \right] + \frac{1}{V\omega} \frac{\partial w}{\partial \phi} = 0$$

Furthermore, since $M\omega$ and δ/ω are both of the order of 1, there is finally obtained (by virtue of eq. (8))

$$\frac{\partial \omega}{\partial \delta} + \frac{\omega}{\delta} + \frac{\Lambda}{\delta} \frac{\Lambda}{\delta} \frac{\Lambda}{\delta} \frac{\Delta}{\delta} \left(\frac{\partial \Delta}{\delta} \right) = 0 \tag{50}$$

Consider now the term $(\partial w_2/\partial \phi)_O$. If the angle of attack is small and the leading-edge angle of the wing does not differ too greatly from the angle of the shock wave generated by the equivalent circular cone, then one might expect the flow in the plane of symmetry to differ but little from that of the circular cone.² It is assumed, therefore, that, as a first approximation, the flow in this plane will be the same as that for the circular cone. Then (see ref. 9)

$$\left(\frac{\partial w}{\partial \varphi}\right)_{\Omega} = V_{\infty} \in \frac{\omega_{S}}{\omega}$$

where ϵ is the angle between the axis of the conical shock and the free-stream-velocity vector. It follows, then, from equation (8) that

$$\left(\frac{\partial \Phi}{\partial M^{S}}\right)^{O} = \epsilon$$

and, therefore, equation (20) yields upon integration (noting that $V_{\infty}/V \cong 1$)

$$\frac{\delta}{\delta_{\rm C}} = \frac{\delta_{\rm C}}{\omega} - \left(\frac{\epsilon}{\delta_{\rm C}}\right) \left(\frac{\omega_{\rm S}}{\omega}\right) \ln \frac{\omega}{\delta_{\rm C}} \tag{21}$$

which defines the flow-deflection angle. The expression for the flow velocity is obtained by integration of the resulting combination of equations (19) and (21) and may be written

$$\frac{V}{V_{S}} = \left(\frac{\omega}{\omega_{S}}\right)^{\left(\delta_{c}^{2} + \epsilon\omega_{S}\right)} e^{\frac{1}{2}\left(\delta^{2} - \delta_{S}^{2}\right)} - \frac{\epsilon\omega_{S}}{2} \left[\left(\ln\frac{\omega}{\delta_{c}}\right)^{2} - \left(\ln\frac{\omega_{S}}{\delta_{c}}\right)^{2}\right]$$
(22)

Now the Mach number may be expressed in terms of the above velocity ratio by

$$M^{2} = \frac{\left(\frac{V}{V_{S}}\right)^{2} M_{S}^{2}}{1 - \frac{\gamma - 1}{2} M_{S}^{2} \left[\left(\frac{V}{V_{S}}\right)^{2} - 1\right]}$$

²Experimental results indicate (as will be shown later) that, at small angles of attack, the shock-wave angles and pressure coefficients in the plane $\varphi = 0$ are approximately the same as those for the circular cone.

which, after substitution of equation (22) and neglecting second-order terms, becomes

$$\left(\frac{M_{S}}{M}\right)^{2} = 1 - \frac{\gamma - 1}{2} \left(M_{S}\delta_{c}\right)^{2} \left\{ \left(\frac{\delta}{\delta_{c}}\right)^{2} - \left(\frac{\delta_{S}}{\delta_{c}}\right)^{2} - 2\left(1 + \frac{\epsilon \omega_{S}}{\delta_{c}^{2}}\right) \ln \frac{\omega_{S}}{\omega} - \frac{\epsilon \omega_{S}}{\delta_{c}^{2}} \left[\left(\ln \frac{\omega}{\delta_{c}}\right)^{2} - \left(\ln \frac{\omega_{S}}{\delta_{c}}\right)^{2} \right] \right\}$$
(23)

Finally, flow conditions at the shock are obtained from the oblique-shock relations given by equations (15), (16), and (17) reduced to the form

$$\left(\frac{M_{\rm S}}{M_{\rm \infty}}\right)^2 = \frac{(\gamma + 1)^2 M_{\rm \infty}^2 (\omega_{\rm S} + \alpha)^2}{[2\gamma M_{\rm \infty}^2 (\omega_{\rm S} + \alpha)^2 - (\gamma - 1)][(\gamma - 1)M_{\rm \infty}^2 (\omega_{\rm S} + \alpha)^2 + 2]} \tag{24}$$

$$M_{\infty}(\delta_{S} + \alpha) = \frac{M_{\infty}^{2}(\omega_{S} + \alpha)^{2} - 1}{\frac{\gamma + 1}{2} M_{\infty}(\omega_{S} + \alpha)}$$
(25)

and

$$\frac{p_{S}}{p_{\infty}} = \frac{2\gamma M_{\infty}^{2} (\omega_{S} + \alpha)^{2} - (\gamma - 1)}{\gamma + 1}$$
 (26)

respectively.

There remains the determination of ϵ in order to obtain the shockwave angle, ω_S , from equations (21) and (25). It can be shown by an analysis identical to that presented in reference 9 that³

$$\frac{\epsilon}{\alpha} = \frac{\gamma + 1}{4} \frac{1 + \frac{\gamma + 3}{2} (M_{\infty} \delta_{c})^{2}}{\left[1 + \frac{\gamma + 1}{2} (M_{\infty} \delta_{c})^{2}\right] \left\{1 - \frac{\gamma + 1}{8} \ln \left[\frac{(M_{\infty} \delta_{c})^{2}}{1 + \frac{\gamma + 1}{2} (M_{\infty} \delta_{c})^{2}}\right]\right\}}$$
(27)

The shock angle can now be evaluated by the simultaneous solution of equations (21), (25), and (27). This has been done with the aid of the

³An expression for $1 - \epsilon/\alpha$ was developed in reference 9 and differs from the present relation in the logarithm term since only the first term of a logarithm series was retained in that development.

IBM 650 electronic computing machine, and results in the form $(\omega_S/\delta_c)_o$ for values of $M_\infty\delta_c$ from 0.1 to 3.0 and α/δ_c from 0 to 1 are presented in table I. Once the shock-wave angle has been obtained from the table, it is a simple matter to determine all the other flow quantities in the plane ϕ = 0 from equations (21) through (27).

Flow conditions in the plane of the wing $(\phi = \pi/2)$. Because of the presence of the wing in this plane, w = 0 and the conical-flow equations obtained for the plane ϕ = 0 hold identically in the plane of the wing. Thus, the flow-deflection angle is defined by (noting that $(\omega_S)_{\pi/2} = \lambda$)

$$\frac{\delta}{\delta_{\mathbf{c}}} = \frac{\delta_{\mathbf{c}}}{\omega} - \frac{1}{\delta_{\mathbf{c}}} \left(\frac{\delta w_2}{\delta \phi} \right)_{\pi/2} \left(\frac{\lambda}{\omega} \right) \ln \frac{\omega}{\delta_{\mathbf{c}}}$$
 (28)

Similarly, the expressions for the velocity and Mach number become

$$\frac{V}{V_{S}} = \left(\frac{\omega}{\lambda}\right)^{\delta_{c}^{2} + \lambda} \left(\frac{\partial w_{2}}{\partial \phi}\right)_{\pi/2} e^{\frac{1}{2}(\delta^{2} - \delta_{S}^{2})} - \frac{\lambda}{2} \left(\frac{\partial w_{2}}{\partial \phi}\right)_{\pi/2} \left[\left(\ln \frac{\omega}{\delta_{c}}\right)^{2} - \left(\ln \frac{\lambda}{\delta_{c}}\right)^{2}\right]$$
(29)

and

$$\left(\frac{M_{\rm S}}{M}\right)^{2} = 1 - \frac{\gamma - 1}{2} \left(M_{\rm S}\delta_{\rm c}\right)^{2} \left\{ \left(\frac{\delta}{\delta_{\rm c}}\right)^{2} - \left(\frac{\delta_{\rm S}}{\delta_{\rm c}}\right)^{2} - 2\left[1 + \frac{\lambda}{\delta_{\rm c}^{2}} \left(\frac{\partial w_{2}}{\partial \phi}\right)_{\pi/2}\right] \ln \frac{\lambda}{\omega} - \frac{\lambda}{\delta_{\rm c}^{2}} \left(\frac{\partial w_{2}}{\partial \phi}\right)_{\pi/2} \left[\left(\ln \frac{\omega}{\delta_{\rm c}}\right)^{2} - \left(\ln \frac{\lambda}{\delta_{\rm c}}\right)^{2} \right] \right\} \tag{30}$$

respectively. The ratio of the local static pressure to the static pressure at the shock for hypersonic flow is given by

$$\frac{p}{p_{S}} = \left(\frac{M_{S}}{M}\right)^{\frac{2\gamma}{\gamma - 1}} \tag{31}$$

The Mach number, flow deflection, and static pressure at the shock are, of course, obtained from the oblique-shock relations (15), (16), and (17) which now become

$$\left(\frac{M_{S}}{M_{\infty}}\right)^{2} = \frac{(\gamma + 1)^{2}(M_{\infty}\lambda)^{2}\cos^{2}(\Psi)_{\pi/2}}{\left[2\gamma(M_{\infty}\lambda)^{2}\cos^{2}(\Psi)_{\pi/2} - (\gamma - 1)\right]\left[(\gamma - 1)(M_{\infty}\lambda)^{2}\cos^{2}(\Psi)_{\pi/2} + 2\right]}$$
(32)

$$\frac{\delta_{\rm S}}{\delta_{\rm c}} = \frac{\left(M_{\infty}\lambda\right)^2 \cos^2(\Psi)_{\pi/2} - 1}{\frac{\gamma + 1}{2} M_{\infty} \delta_{\rm c} M_{\infty} \lambda \cos(\Psi)_{\pi/2}} \tag{33}$$

and

$$\frac{p_{S}}{p_{\infty}} = \frac{2\gamma (M_{\infty}\lambda)^{2} \cos^{2}(\Psi)_{\pi/2} - (\gamma - 1)}{\gamma + 1}$$
(34)

respectively. Consider now equation (28) in combination with equation (33). Then,

$$\frac{1}{\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{\pi/2} = \frac{1 + \frac{\gamma + 1}{2} \left(M_{\infty} \delta_{c} \right)^{2} \cos(\Psi)_{\pi/2} - \left(M_{\infty} \lambda \right)^{2} \cos^{2}(\Psi)_{\pi/2}}{\frac{\gamma + 1}{2} M_{\infty} \delta_{c} M_{\infty} \lambda \cos(\Psi)_{\pi/2} \ln \frac{\lambda}{\delta_{c}}} \tag{35}$$

The only remaining unknown in the foregoing expressions is $(\Psi)_{\pi/2}$. If this angle were known, flow conditions on the wing, as well as those around the shock and in the plane $\phi=0$, could be calculated by means of the expressions so far obtained. As mentioned earlier in the discussion of the flow pattern shown in sketch (c), $(\Psi)_{\pi/2}$ can be evaluated by matching at the wing-body juncture the pressure calculated in the plane of the wing to the pressure calculated on the surface of the body. Now the static pressure in the plane of the wing can be calculated by means of equations (31) and (34). However, in order to calculate the static pressure on the body surface, expressions defining the flow on this surface must be obtained. Attention is therefore turned to this matter.

Flow conditions on the body surface. The concept of a vortical singularity in supersonic flow around a cone was introduced by Ferri in reference 10 where it was shown that all constant entropy surfaces must intersect along the generator lying in the meridian plane on the leeward side. It was also demonstrated that for small angles of attack the singularity lies on the surface itself. Holt, in reference 11, demonstrated that such a singularity can arise only at points where the resultant velocity is directed along the radial line (i.e., w = v = 0), and that at the singularity the velocity is many-valued and the vorticity is infinite, but the pressure is single-valued. For configurations of the type under

consideration, then, the lines of constant entropy in a plane normal to the configuration axis will appear something like those shown in sketch (e).

The singularities will occur at the wing-body junctures since w=v=0 and $\partial w/\partial \phi<0$ at these points. Thus, the angle of attack is assumed sufficiently small that the singularity will remain on the surface of the cone. The thickness of the vortical layer around the cone surface can be neglected then, since it was shown in reference 10 to be the order of $\alpha^2.$ Since the entropy on the surface is constant it must have the value that exists in the plane $\phi=0.$ Thus,

$$p_c = p_e$$
 $v_c = v_e = 0$

and

$$E_{C} = (E)_{O}$$

where the subscripts c and e refer to conditions inside and outside the vortical layer, respectively. It follows then from equation (la) that

$$\frac{\partial u}{\partial \phi} = \delta_{cw}$$

or

$$\frac{u}{\left(v_{c}\right)_{o}} = 1 + \delta_{c} \int_{o}^{\phi} \frac{w}{\left(v_{c}\right)_{o}} d\phi \tag{36}$$

which holds on either side of the vortical layer, even though w is discontinuous across the layer. Consider now the w component of velocity on the surface externally adjacent to the vortical layer expressed in the form

$$\frac{\mathbf{w_e}}{\left(\mathbf{v_c}\right)_{O}} = \mathbf{F'} \tag{37}$$

where the prime in the above expression refers to the derivative with respect to φ . Then, upon integration, equation (36) becomes

$$\frac{u_{\rm e}}{\left(V_{\rm c}\right)_{\rm o}} = 1 + \delta_{\rm c}F \tag{38}$$

and the resultant surface velocity may be written

$$\left[\frac{V_{e}}{(V_{c})_{o}}\right]^{2} = 1 + 2\delta_{c}F + (F')^{2}$$
(39)

since, as will be shown subsequently, F and F' are first-order quantities. The corresponding Mach number ratio may be expressed as

$$\left[\frac{(M_{c})_{o}}{M_{e}}\right]^{2} = \frac{1 - \frac{\gamma - 1}{2} (M_{c})_{o}^{2} \left\{\left[\frac{V_{e}}{(V_{c})_{o}}\right]^{2} - 1\right\}}{\left[\frac{V_{e}}{(V_{c})_{o}}\right]^{2}} \tag{40}$$

which, by virtue of equation (39), reduces to

$$\left[\frac{(M_{\rm c})_{\rm O}}{M_{\rm e}}\right]^2 = 1 - \frac{\gamma - 1}{2} \left(M_{\rm c}\delta_{\rm c}\right)_{\rm O}^2 \left[2\frac{F}{\delta_{\rm c}} + \left(\frac{F^{\dagger}}{\delta_{\rm c}}\right)^2\right] \tag{41}$$

where (from eqs. (9), (11), and (37))

$$\frac{F'}{\delta_{c}} = \frac{\lambda}{\delta_{c}} \varphi \left\{ \frac{(\omega_{S})_{o}}{\lambda} + \left(\frac{2}{\pi} \right)^{2} \varphi^{2} \left[2 \left(1 - \frac{(\omega_{S})_{o}}{\lambda} \right) - \frac{\pi}{4} \tan(\psi)_{\pi/2} \right] - \left(\frac{2}{\pi} \right)^{4} \varphi^{4} \left[1 - \frac{\pi}{4} \tan(\psi)_{\pi/2} - \frac{(\omega_{S})_{o}}{\lambda} \right] \right\} \left\{ \frac{1}{\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{o} - \frac{2}{\pi^{2}} \left[\frac{1}{\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{\pi/2} + \frac{4}{\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{o} \right] \varphi^{2} + \frac{8}{\pi^{4}} \left[\frac{1}{\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{\pi/2} + \frac{2}{\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{o} \right] \varphi^{4} \right\} \tag{42}$$

and (upon integration of eq. (42))

$$\frac{F}{\delta_{c}} = \frac{(\omega_{S})_{o}}{\delta_{c}} \varphi^{2} \left\{ \frac{1}{2\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{o} - \frac{1}{2\pi^{2}} \left[\frac{1}{\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{\pi/2} + \frac{\mu}{\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{o} \right] \varphi^{2} + \frac{\mu}{3\pi^{4}} \left[\frac{1}{\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{\pi/2} + \frac{2}{\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{o} \right] \varphi^{4} \right\} +$$

$$\left(\frac{2}{\pi} \right)^{2} \left(\frac{\lambda}{\delta_{c}} \right) \varphi^{4} \left[2 \left(1 - \frac{(\omega_{S})_{o}}{\lambda} \right) - \frac{\pi}{4} \tan(\psi)_{\pi/2} \right] \left\{ \frac{1}{4\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{o} - \frac{1}{3\pi^{2}} \left[\frac{1}{\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{\pi/2} + \frac{\mu}{\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{o} \right] \varphi^{2} + \frac{1}{\pi^{4}} \left[\frac{1}{\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{\pi/2} + \frac{2}{\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{o} \right] \varphi^{4} \right\} -$$

$$\left(\frac{2}{\pi} \right)^{4} \left(\frac{\lambda}{\delta_{c}} \right) \varphi^{6} \left[1 - \frac{\pi}{4} \tan(\psi)_{\pi/2} - \frac{(\omega_{S})_{o}}{\lambda} \right] \left\{ \frac{1}{\delta\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{o} - \frac{1}{4\pi^{2}} \left[\frac{1}{\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{\pi/2} + \frac{\mu}{\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{o} \right] \varphi^{2} + \frac{\mu}{5\pi^{4}} \left[\frac{1}{\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{\pi/2} + \frac{2}{\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{o} \right] \varphi^{4} \right\} -$$

$$\left(\frac{2}{\pi} \right)^{4} \left(\frac{\lambda}{\delta_{c}} \right) \varphi^{6} \left[1 - \frac{\pi}{4} \tan(\psi)_{\pi/2} - \frac{(\omega_{S})_{o}}{\lambda} \right] \left\{ \frac{1}{\delta\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{o} - \frac{1}{4\pi^{2}} \left[\frac{1}{\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{\pi/2} + \frac{\mu}{\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{o} \right] \varphi^{2} + \frac{\mu}{5\pi^{4}} \left[\frac{1}{\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{\pi/2} + \frac{2}{\delta_{c}} \left(\frac{\partial w_{2}}{\partial \varphi} \right)_{o} \right] \varphi^{4} \right\}$$

$$(43)$$

It can be seen from equations (42) and (43) that F' and F are of the order of δ_c . Thus, the two right-hand terms in equation (39) are second-order terms. The Mach number directly on the body surface, M_c , may be related to the Mach number at the vortical layer, M_e , by (see ref. 9)

$$\left(\frac{M_e}{M_c}\right)^2 = e^{\frac{E_c - E_e}{\gamma c_v}}$$

where (by virtue of eq. (4))

$$e^{\frac{E_{c}-E_{e}}{\gamma c_{V}}} = \left[\frac{2\gamma M_{\infty}^{2}(\omega_{S} + \alpha)_{o}^{2} - (\gamma - 1)}{2\gamma (M_{\infty}\Omega)^{2}\cos^{2}\Psi - (\gamma - 1)}\right]^{\frac{1}{\gamma}} \left\{\frac{(M_{\infty}\Omega)^{2}\cos^{2}\Psi[(\gamma - 1)M_{\infty}^{2}(\omega_{S} + \alpha)_{o}^{2} + 2]}{M_{\infty}^{2}(\omega_{S} + \alpha)_{o}^{2}[(\gamma - 1)(M_{\infty}\Omega)^{2}\cos^{2}\Psi + 2]}\right\}$$
(44)

and Ω and Ψ are defined by equations (12) and (14), respectively. Then,

$$\left[\frac{(M_{\rm S})_{\rm O}}{M_{\rm C}}\right]^2 = e^{\frac{E_{\rm C}-E_{\rm e}}{\gamma c_{\rm V}}} \left[\frac{(M_{\rm C})_{\rm O}}{M_{\rm e}}\right]^2 \left(\frac{M_{\rm S}}{M_{\rm C}}\right)_{\rm O}^2$$
(45)

and the ratio of the static pressure anywhere on the body surface to the static pressure at the shock at ϕ = 0 is given by

$$\frac{p_{c}}{\left(p_{S}\right)_{o}} = \left[\frac{\left(M_{S}\right)_{o}}{M_{c}}\right]^{\frac{2\gamma}{\gamma-1}} \tag{46}$$

,

Finally, the ratio of the surface pressure to the free-stream static pressure may be obtained by the combination of equations (26) and (46) which yields

$$\frac{\mathbf{p}_{c}}{\mathbf{p}_{\infty}} = \left[\frac{2\gamma \mathbf{M}_{\infty}^{2}(\omega_{S} + \alpha)_{o}^{2} - (\gamma - 1)}{\gamma + 1}\right] \left[\frac{(\mathbf{M}_{S})_{o}}{\mathbf{M}_{c}}\right]^{\frac{2\gamma}{\gamma - 1}}$$
(47)

The pressure coefficient is, of course, given by the relation

$$C_{p} = \frac{2}{\gamma M_{\infty}^{2}} \left(\frac{p_{c}}{p_{\infty}} - 1 \right)$$
 (48)

It will be noted that the foregoing equations predict the ratios of local to free-stream Mach number and local to free-stream static pressures to be the same at corresponding points on related configurations, provided the flow fields about these configurations are defined by the same respective values of the hypersonic similarity parameters, $M_{\infty}\delta_{\rm C}$, $M_{\infty}\alpha$ (or $\alpha/\delta_{\rm C}$), and $M_{\infty}\lambda$ (or $\lambda/\delta_{\rm C}$). These predictions are in agreement with those of reference 12 for inviscid flow about slender three-dimensional shapes.

Evaluation of $(\Psi)_{\pi/2}$. We are now in a position to calculate $(\Psi)_{\pi/2}$ and, therefore, all flow properties on the surface of the complete configuration. This may be accomplished in the following manner. If the Mach number, angle of attack, and the conical configuration are given, then $M_{\infty}\delta_{\rm C}$, $\alpha/\delta_{\rm C}$, and $\lambda/\delta_{\rm C}$ are known and a value for $(\Psi)_{\pi/2}$ is assumed. Then $(\psi)_{\pi/2}$ is known from equation (14) and the pressure under the vortical layer at $\varphi = \pi/2$ can be calculated by means of equation (47). The pressure externally adjacent to the vortical layer in the plane of the wing can be calculated by means of equations (31) and (34). Since there is no pressure change across the vortical layer, an iteration on $(\Psi)_{\pi/2}$ can be performed until the pressures on both sides of the layer are equal. This iteration has been performed on the IBM 650 electronic computing machine and the resulting values of $(\Psi)_{\pi/2}$ for $M_{\infty}\delta_{\rm C}$ from 0.1 to 3.0 and α/δ_c from 0 to 1 are given in table I for various values of λ/δ_c . The values of the ratio of the static pressure to the free-stream static pressure at the bottom of the body, $(p_c/p_{\infty})_0$, at the wing-body juncture, $(p_c/p_{\infty})_{\pi/2}$, and at the leading-edge of the wing, $(p/p_{\infty})_{\lambda}$, are also given in table I.

It should be noted in table I that the range of α/δ_c is restricted for certain values of λ/δ_c . As was mentioned previously in the analysis for conditions at the shock, this results from the fact that there is a maximum angle of attack for a given configuration and Mach number at which the shock wave can no longer remain attached to the leading edge of the wing. This occurs at $(\Psi)_{\pi/2}=0$, since it represents zero attenuation of the strength of the shock. Thus, the values of λ/δ_c given in table I for $(\Psi)_{\pi/2}=0$ represent minimum values (maximum leading-edge sweeps) for which the present theory will apply for a particular α/δ_c and, of

course, $M_{\infty}\delta_{\mathbf{C}}$. This is perhaps more clearly demonstrated in figure 2 where $(\lambda/\delta_{\mathbf{C}})_{\min}$ is shown plotted as a function of $(\alpha/\delta_{\mathbf{C}})_{\max}$ for various $M_{\infty}\delta_{\mathbf{C}}$. Thus, for example, each line of constant $M_{\infty}\delta_{\mathbf{C}}$ represents an upper limit of $\alpha/\delta_{\mathbf{C}}$ and a lower limit of $\lambda/\delta_{\mathbf{C}}$ on the applicability of the theory for a given free-stream Mach number.

Flow conditions off the surface. Since only flows at high Mach number are considered in this analysis, the variation of the magnitude of the resultant velocity in a meridian plane will be small. Hence, the variation of u and v will be small and may be represented by a power series in $(\omega - \delta_c)$ where the coefficients are evaluated in terms of the velocity component at the surface and at the shock and its derivative at the surface. Thus,

$$u = ue + \left(\frac{\partial u}{\partial \omega}\right) (\omega - \delta_c) \left(\frac{\omega_S - \omega}{\omega_S - \delta_c}\right) + (u_S - u_e) \left(\frac{\omega - \delta_c}{\omega_S - \delta_c}\right)^2$$
 (49)

$$v = \left(\frac{\partial v}{\partial \omega}\right)_{e} (\omega - \delta_{c}) \left(\frac{\omega_{S} - \omega}{\omega_{S} - \delta_{c}}\right) + v_{S} \left(\frac{\omega - \delta_{c}}{\omega_{S} - \delta_{c}}\right)^{2}$$
(50)

where it can be shown that (see ref. 9)

$$\left(\frac{\partial u}{\partial \omega}\right)_{e} = \left(\frac{w}{u}\right)_{e} \left[\left(\frac{\partial w}{\partial \omega}\right)_{e} + \frac{w_{e}}{\delta_{c}}\right]$$

and (setting v = 0 in eq. (5))

$$\left(\frac{\partial \mathbf{v}}{\partial \omega}\right)_{\mathbf{e}} = \left[\mathbf{u}_{\mathbf{e}} + \frac{1}{\delta_{\mathbf{c}}} \left(\frac{\partial \mathbf{w}}{\partial \phi}\right)_{\mathbf{e}}\right] \left[\mathbf{M}_{\mathbf{e}}^{2} \left(\frac{\mathbf{w}}{\mathbf{v}}\right)_{\mathbf{e}}^{2} - 1\right] - \mathbf{u}_{\mathbf{e}}$$

In the above expressions, ω_S , we, ue, and Me are given by equations (9), (11), (38), and (41), respectively, and $(\partial w/\partial \omega)_e$ and $(\partial w/\partial \phi)_e$ may be obtained by the proper differentiation of equation (9). Finally, the radial component of velocity at the shock may be determined from the relation

$$u_S = V_{\infty} cos(\omega_S + \alpha cos \phi)$$

and the normal component of velocity may be written

$$v_{S} = -\sqrt{v_{S}^{2} - u_{S}^{2} - w_{S}^{2}}$$

where

$$\left(\frac{V_{\rm S}}{\widehat{V}}\right)^2 = \frac{\frac{\gamma - 1}{2} M_{\rm S}^2}{1 + \frac{\gamma - 1}{2} M_{\rm S}^2}$$

The Mach number at the shock, Mg, is defined by equation (15). The components of the local velocity anywhere in the flow field external to the vortical layer and between the planes $\phi=0$ and $\phi=\pi/2$ are now known from equations (9), (49), and (50). Hence, the magnitude and direction of the resultant velocity and, consequently, the Mach number may be easily determined. The local pressure coefficient, then, may be obtained from the relation

$$C_p = \frac{2}{\gamma M_{\infty}^2} \left(\frac{p_S}{p_{\infty}} \frac{p}{p_S} - 1 \right)$$

where p_S/p_∞ is given by equation (17) and

$$\frac{p}{p_{\rm S}} = \left(\frac{M_{\rm S}}{M}\right)^{\frac{2\gamma}{\gamma-1}}$$

The flow field about slender, conical, flat-top wing-body configurations traveling at high supersonic speeds and at small angles of attack can be calculated by means of the foregoing expressions. Explicit expressions defining the lift, drag, and pitching-moment coefficients will now be obtained.

Lift, drag, and pitching-moment coefficients.— Because of the rather complicated nature of the expressions previously developed, resort must be made to graphical or numerical integration of the pressures acting on the surface in order to calculate the integrated aerodynamic forces. It is first undertaken, therefore, to obtain algebraic expressions, yielding the surface pressures, which are amenable to simple analytic integration. In this regard, the tabulated pressure ratios in table I may be used to good advantage. For example, it will be noted from equation (lc) that $\partial p/\partial \phi=0$ when w=v=0. On the surface of the body, then, $\partial p/\partial \phi=0$ at $\phi=0$ and $\phi=\pi/2$, since w=v=0 at these two points. Therefore, to a good approximation, the variation of static pressure around the body surface may be expressed in the form

$$\frac{p_{c}}{p_{\infty}} = \left(\frac{p_{c}}{p_{\infty}}\right) \cos^{2}\varphi + \left(\frac{p_{c}}{p_{\infty}}\right) \sin^{2}\varphi \tag{51}$$

Similarly, the pressure at any axial station on the wing may be expressed in terms of the pressure at the wing-body juncture, the derivative at

this point, and the pressure at the leading edge. Thus4

$$\frac{p}{p_{\infty}} = \left(\frac{p_{c}}{p_{\infty}}\right)_{\pi/2} - \left[\left(\frac{p_{c}}{p_{\infty}}\right)_{\pi/2} - \left(\frac{p}{p_{\infty}}\right)_{\lambda}\right] \left(\frac{\tan \omega - \tan \delta_{c}}{\tan \lambda - \tan \delta_{c}}\right)^{2}$$
(52)

since, from equation (lb), $\partial p/\partial \omega = 0$ when w = v = 0. The surface pressures can be easily calculated by means of equations (51) and (52) and with the aid of table I. These equations are also easily integrated to obtain the lift, drag, and pitching-moment coefficients. Thus, for example, the normal-force coefficient for the body may be written

$$C_{N_B} = \frac{2l_B^2 \tan \delta_c}{\gamma M_{\infty}^2 S} \int_0^{\pi/2} \left(\frac{p_c}{p_{\infty}} - 1\right) \cos \phi \, d\phi$$
 (53)

whereas that due to the wing may be expressed in the form

$$C_{N_{W}} = \frac{2}{\gamma M_{\infty}^{2} S} \int_{\delta_{\mathbf{C}}}^{\lambda} \left(\frac{\mathbf{p}}{\mathbf{p}_{\infty}} - 1\right) r_{te}^{2} d\omega - \frac{2}{\gamma M_{\infty}^{2}} \left\{ \left[1 - \frac{\gamma - 1}{2} M_{\infty}(\alpha - \delta_{W})\right]^{\frac{2\gamma}{\gamma - 1}} - 1 \right\}$$

$$(54)$$

where S is the total plan area and r_{te} is the radial distance from the vertex of the wing to the trailing edge. The integral term in equation (54) represents the normal force due to the pressures acting on the exposed area of the windward side of the wing whereas the last term is the contribution due to the leeward side of the wing. The axial-force coefficient for the body and the wing may be written (neglecting base drag)

$$C_{A_B} = \frac{2l_B^2 \tan^2 \delta_c}{\gamma M_m^2 S} \int_0^{\pi/2} \left(\frac{p_c}{p_\infty} - 1\right) d\phi$$
 (55)

and

$$C_{A_W} = \frac{2 \tan \delta_W}{\gamma M_{\infty}^2} \left\{ \left[1 - \frac{\gamma - 1}{2} M_{\infty} (\alpha - \delta_W) \right]^{\frac{2\gamma}{\gamma - 1}} - 1 \right\}$$
 (56)

⁴The tangents are retained rather than the angles in the following expression to facilitate a subsequent analytic integration to obtain the aerodynamic forces acting on the wing.

respectively. Consider now a configuration having an arrow plan-form wing as shown in sketch (f). Then

$$r_{\text{te}} = \frac{l_{\text{B}}l_{\text{W}}(\tan \lambda - \tan \delta_{\text{c}})\sec \omega}{l_{\text{W}}\tan \lambda - l_{\text{B}}\tan \delta_{\text{c}} - (l_{\text{W}} - l_{\text{B}})\tan \omega}$$
 (57)

and

$$S = l_B l_W (\tan \lambda - \tan \delta_c) + l_B^2 \tan \delta_c$$
 (58)

Thus, upon substitution of equations (51) and (58) into (53) and equations (52), (57), and (58) into (54) there is obtained, upon integration,

$$C_{N_{B}} = \frac{2\left[\frac{2}{3}\left(\frac{p_{c}}{p_{\infty}}\right)_{O} + \frac{1}{3}\left(\frac{p_{c}}{p_{\infty}}\right)_{\pi/2} - 1\right]}{\gamma M_{\infty}^{2} \left[\left(\frac{l_{W}}{l_{B}}\right)\left(\frac{\tan \lambda}{\tan \delta_{c}} - 1\right) + 1\right]}$$
(59)

$$C_{N_{W}} = \frac{2\left(\frac{l_{W}}{l_{B}}\right)\left(\frac{\tan \lambda}{\tan \delta_{c}} - 1\right)}{\gamma M_{\infty}^{2}\left[\left(\frac{l_{W}}{l_{B}}\right)\left(\frac{\tan \lambda}{\tan \delta_{c}} - 1\right) + 1\right]}\left\{\frac{p_{c}}{p_{\infty}}\right\}_{\pi/2} - 1 - \left[\frac{p_{c}}{p_{\infty}}\right]_{\pi/2} - \left(\frac{p}{p_{\infty}}\right)_{\Lambda}\left[\frac{l_{W}}{l_{B}}\right]\left(\frac{l_{W}}{l_{B}}\right)^{2} - 2\left(\frac{l_{W}}{l_{B}}\right)\ln\frac{l_{W}}{l_{B}} - 1\right] - \left(\frac{l_{W}}{l_{B}} - 1\right)^{3}$$

$$\frac{2}{\gamma M_{\infty}^{2}}\left\{\left[1 - \frac{\gamma - 1}{2}M_{\infty}(\alpha - \delta_{W})\right]^{\frac{2\gamma}{\gamma - 1}} - 1\right\}$$
(60)

In the case of a delta wing (i.e., $l_W = l_B$), equation (60) is indeterminate in its present form. However, it can be shown that when $l_W = l_B$

$$C_{N_W} = \frac{2\left(1 - \frac{\tan \delta_c}{\tan \lambda}\right)}{\gamma M_{\infty}^2} \left[\frac{2}{3} \left(\frac{p_c}{p_{\infty}}\right)_{\pi/2} + \frac{1}{3} \left(\frac{p}{p_{\infty}}\right)_{\lambda} - 1\right] - \frac{2}{\gamma M_{\infty}^2} \left\{\left[1 - \frac{\gamma - 1}{2} M_{\infty}(\alpha - \delta_W)\right]^{\frac{2\gamma}{\gamma - 1}} - 1\right\}$$
(61)

The axial-force coefficient due to the body is obtained by the integration of equation (55) which yields

$$C_{A_{B}} = \frac{\pi \tan \delta_{c} \left[\frac{1}{2} \left(\frac{p_{c}}{p_{\infty}} \right)_{O} + \frac{1}{2} \left(\frac{p_{c}}{p_{\infty}} \right)_{\pi/2} - 1 \right]}{\gamma M_{\infty}^{2} \left[\left(\frac{l_{W}}{l_{B}} \right) \left(\frac{\tan \lambda}{\tan \delta_{c}} - 1 \right) + 1 \right]}$$
(62)

The axial-force coefficient contributed by the wing is given by equation (56). Finally, the lift and pressure-drag coefficients may be calculated from the expressions

CONFIDENTIAL.

V

$$C_{L} = C_{N}\cos \alpha - C_{A}\sin \alpha$$
 (63)

$$C_D = C_{A}\cos \alpha + C_{N}\sin \alpha$$
 (64)

where, of course,

$$C_{\mathbb{N}} = C_{\mathbb{N}_{\mathbb{B}}} + C_{\mathbb{N}_{\mathbb{W}}}$$

$$C_{\mathbb{A}} = C_{\mathbb{A}_{\mathbb{B}}} + C_{\mathbb{A}_{\mathbb{W}}}$$

Now the expression for the pitching-moment coefficient due to the pressure forces acting on the fuselage side of an arrow plan-form wing may be written (see sketch (f))

$$(c_{m_W})_{lower} = -\frac{4}{3\gamma M_{\infty}^2 l_B S} \int_{\delta_c}^{\lambda} \left(\frac{p}{p_{\infty}} - 1\right) r_{te}^3 \cos \omega \, d\omega$$
 (65)

which, upon substitution of equations (52), (57), and (58), may be integrated to yield

$$\left(\mathbf{C}_{m_{\widetilde{W}}} \right)_{\text{lower}} = - \frac{2 \left(\frac{l_{\widetilde{W}}}{l_{B}} \right) \left(\frac{\tan \lambda}{\tan \delta_{c}} - 1 \right)}{3 \gamma M_{\infty}^{2} \left[\left(\frac{l_{\widetilde{W}}}{l_{B}} \right) \left(\frac{\tan \lambda}{\tan \delta_{c}} - 1 \right) + 1 \right]} \left\{ \left(\frac{l_{\widetilde{W}}}{l_{B}} + 1 \right) \left[\left(\frac{p_{c}}{p_{\infty}} \right)_{\pi/2} - 1 \right] - \frac{1}{2 \sqrt{2} \left(\frac{l_{\widetilde{W}}}{l_{B}} \right) \left(\frac{\tan \lambda}{\tan \delta_{c}} - 1 \right) + 1} \right] \right\}$$

$$\frac{\left(\frac{l_{W}}{l_{B}}\right)^{2} \left[\left(\frac{p_{c}}{p_{\infty}}\right)_{\pi/2} - \left(\frac{p}{p_{\infty}}\right)_{\lambda}\right] \left[\left(\frac{l_{W}}{l_{B}} - 3\right) \left(\frac{l_{W}}{l_{B}} - 1\right) + 2 \ln \frac{l_{W}}{l_{B}}\right]}{\left(\frac{l_{W}}{l_{B}} - 1\right)^{3}} }$$
(66)

Since the pressure on the leeward side of the wing is assumed constant, this contribution to the pitching-moment coefficient can be shown to be (by virtue of eq. (7))

$$(C_{m_{W}})_{upper} = \frac{2}{\gamma M_{\infty}^{2}} \left\{ \left[1 - \frac{\gamma - 1}{2} M_{\infty} (\alpha - \delta_{W}) \right]^{\frac{2\gamma}{\gamma - 1}} - 1 \right\}$$

$$\left\{ \frac{2 \left(\frac{l_{W}}{l_{B}} \right)^{3} \frac{\tan \lambda}{\tan \delta_{C}} - \left(\frac{l_{W}}{l_{B}} - 1 \right) \left[\left(\frac{l_{W}}{l_{B}} \right) \left(\frac{\tan \lambda}{\tan \delta_{C}} + 1 \right) + 2 \left(\frac{l_{W}}{l_{B}} \right)^{2} \frac{\tan \lambda}{\tan \delta_{C}} + 2 \right]}{3 \left[\left(\frac{l_{W}}{l_{B}} \right) \left(\frac{\tan \lambda}{\tan \delta_{C}} - 1 \right) + 1 \right]}$$

$$(67)$$

The pitching-moment coefficient for slender conical bodies of revolution is defined by

$$C_{m_B} = -\frac{2}{3} C_{N_B}$$

Thus, the total pitching-moment coefficient may be written

$$C_{m} = -\frac{2}{3} C_{N_{B}} + (C_{m_{\overline{W}}})_{lower} + (C_{m_{\overline{W}}})_{upper}$$
(68)

In the case of a delta wing configuration (i.e., $l_W = l_B$), the total pitching-moment coefficient is, of course,

$$C_{\rm m} = -\frac{2}{3} C_{\rm N}$$

The lift and major portion of the pressure drag, as well as the pitching moment, may be calculated by means of the foregoing expressions⁵ since the pressure ratios in these expressions are tabulated in table I. It is clear, of course, that the leading-edge drag, base-pressure drag, and skin-friction drag must also be considered in a complete evaluation of the lift and drag characteristics of the configuration.

⁵The retention of the trigonometric functions is optional in these expressions. They have been retained since they result from purely geometrical considerations.

Flow About Pointed Flat-Top Wing-Body Configurations
Which are Curved in the Stream Direction

It was demonstrated in reference 13 that many three-dimensional hypersonic flows may be treated by a generalized shock-expansion method which is analogous to that employed in reference 8 for two-dimensional flows. Application of the method in meridian planes about curved bodies of revolution (see ref, 13) indicated that these flow fields could be calculated with good accuracy provided the hypersonic similarity parameter, $M_m \delta_c$, is about 1 or greater and the angle of attack is small. Since the present configurations are assumed to have half-bodies of revolution, the generalized shock-expansion method is also applicable to these configurations when $M_{\infty}\delta_{\mathbf{C}} \geq 1$ and $\alpha << 1$. In fact, the general procedure of calculating the flow is identical to that employed in reference 9. It is clear, of course, that the initial conical flow conditions at the vertex are determined from the expressions previously developed in the present paper. In this connection, expressions defining the flow downstream of the vertex are obtained which are applicable to hypersonic flow about slender configurations and, thus, are compatible with those defining the flow at the vertex. The following expressions, then, can be deduced directly from those presented in reference 9 by applying the condition of hypersonic flow and slender bodies. With these points in mind, attention is first turned to the calculation of the flow on the surface of the body.

Flow conditions on the body surface. The differential equation for Prandtl-Meyer flow relating the change in Mach number with flow inclination angle along a streamline reduces to (see ref. 14)

$$d\mu = \frac{\gamma - 1}{2} d\delta$$

for hypersonic flows. This expression is easily integrated to yield

$$\frac{M_{c}}{M} = 1 - \frac{\gamma - 1}{2} (M_{c} \delta_{c}) \left(1 - \frac{\delta}{\delta_{c}} \right)$$

where $M_{\rm C}$ is the Mach number under the vortical layer at the vertex and is defined by equation (45). Now the pressure rise across the shock is given by equation (26) and the ratio of the pressure anywhere on the body surface to the pressure at the shock in the plane ϕ = 0 may be determined from the relation

⁶It should be noted that since w = 0 at $\phi = 0$ and $\phi = \pi/2$, the meridian lines in these two planes are exactly streamlines.

$$\frac{p}{(p_S)_O} = \left[\frac{(M_S)_O}{M}\right]^{\frac{2\gamma}{\gamma-1}}$$

Thus, the expression defining the pressure coefficient anywhere on the surface of the body may be written in the form

$$C_{p} = \frac{2}{\gamma M_{\infty}^{2}} \left\{ \frac{2\gamma M_{\infty}^{2} (\omega_{S} + \alpha)_{o}^{2} - (\gamma - 1)}{\gamma + 1} \left[\frac{(M_{S})_{o}}{M_{c}} - \frac{\gamma - 1}{2} (M_{S} \delta_{c})_{o} \left(1 - \frac{\delta}{\delta_{c}} \right) \right]^{\frac{2\gamma}{\gamma - 1}} - 1 \right\}$$

Flow conditions in the plane of the wing. Flow properties on the wing surface are dictated by the flow field generated by the body in the plane $\phi=\pi/2$, subject, of course, to the boundary conditions imposed by the wing. Thus, the calculation of the flow in this plane is similar to the calculation of the flow field between the body surface and the shock in a meridian plane for a body of revolution. Consistent, then, with the hypersonic approximations of the present paper, expressions presented in reference 9 for calculating the flow inclination, the static pressure, and the total pressure along a line normal to the body axis a short distance downstream of the vertex reduce to

$$\delta = \delta_{\rm B} \left[1 - \zeta \left(\frac{y}{y_{\rm B}} - 1 \right) \right] + \left\{ \delta_{\rm S} - \delta_{\rm B} \left[1 - \zeta \left(\frac{y_{\rm S}}{y_{\rm B}} - 1 \right) \right] \right\} \left(\frac{y - y_{\rm B}}{y_{\rm S} - y_{\rm B}} \right)^2$$

$$\mathbf{p} = \mathbf{p}_{\mathrm{B}} \left[\mathbf{1} - \gamma \mathbf{K}_{\mathrm{B}} \mathbf{M}_{\mathrm{B}}^{2} (\mathbf{y} - \mathbf{y}_{\mathrm{B}}) \right] + \left\{ \mathbf{p}_{\mathrm{S}} - \mathbf{p}_{\mathrm{B}} \left[\mathbf{1} - \gamma \mathbf{K}_{\mathrm{B}} \mathbf{M}_{\mathrm{B}}^{2} (\mathbf{y}_{\mathrm{S}} - \mathbf{y}_{\mathrm{B}}) \right] \right\} \left(\frac{\mathbf{y} - \mathbf{y}_{\mathrm{B}}}{\mathbf{y}_{\mathrm{S}} - \mathbf{y}_{\mathrm{B}}} \right)^{2}$$

and

$$p_{t} = (p_{t})_{B} + \left[\frac{(dp_{t}/d\theta)(d\theta/dS)}{\theta - \delta}\right]_{S} (y - y_{S}) + \left[\frac{(p_{t})_{B} - (p_{t})_{S} - \left[\frac{(dp_{t}/d\theta)(d\theta/dS)}{\theta - \delta}\right]_{S} (y_{B} - y_{S})\right] \left(\frac{y - y_{S}}{y_{B} - y_{S}}\right)^{2}$$

respectively, where B and S are points on the line corresponding to the body surface (wing-body juncture) and the shock (wing leading edge), respectively. The derivatives in the above expressions reduce to

$$\frac{\mathrm{d} p_{\mathsf{t}}}{\mathrm{d} \theta} = -\frac{4 \gamma}{(\gamma + 1) \theta} \left[\frac{(\gamma + 1)^2 (\mathsf{M}_{\infty} \theta)^2}{2 \gamma (\mathsf{M}_{\infty} \theta)^2 - (\gamma - 1)} \right]^{\frac{\gamma}{\gamma - 1}} \left\{ \frac{\left[(\mathsf{M}_{\infty} \theta)^2 - 1 \right]^2}{\left[(\gamma - 1) (\mathsf{M}_{\infty} \theta)^2 + 2 \right]^{\frac{2\gamma - 1}{\gamma - 1}}} \right\}$$

and

$$\left(\frac{\mathrm{d}\theta}{\mathrm{d}S}\right)_{\mathrm{vertex}} = K_{\mathrm{B}} \left[\frac{2\gamma \left(M_{\infty}\theta\right)^{2} - (\gamma - 1)}{4M_{\infty}\theta}\right] \left(\frac{M_{\mathrm{C}}}{M_{\infty}}\right) \left[1 - M_{\mathrm{C}}(\lambda - \delta_{\mathrm{C}})\right]^{\frac{1}{2\zeta}} \tag{69}$$

where KB is the curvature of the body at the vertex;

$$\theta = \lambda \cos \Psi \tag{70}$$

$$\zeta = 1 + \frac{\lambda}{\delta_c^2} \left(\frac{\partial w_2}{\partial \phi} \right)_{\pi/2}$$

and $(1/\delta_c)(\partial w_2/\partial \phi)_{\pi/2}$ is given by equation (35). The derivative given by equation (69) is evaluated at the vertex and therefore can be determined from the previous solution of the flow about flat-top conical configurations. The shock-wave parameter, θ , in the above expressions is defined by equation (70) and represents the shock angle associated with the component of free-stream Mach number normal to the shock at the leading edge. Flow conditions on the surface of the wing in the region of the vertex can be completely determined by means of the foregoing expressions. The remainder of the flow field in the plane of the wing can be calculated by employing the procedure discussed in reference 9 pertaining to bodies of revolution. The pressure on the leeward side of the wing may be calculated from equation (7).

It is interesting to note that the flow about flat-top configurations having wings with straight leading edges, as well as those which are curved in the stream direction, can be calculated by means of the generalized shock-expansion method. To illustrate, consider the following three cases: (1) a wing with leading edges which are curved but with the shock always normal to the leading edge; (2) a wing with constant leading-edge sweep; and (3) a wing with curved leading edges but with local sweeps always less than case (1). All these wings, of course, have supersonic leading edges. Now if the shock is normal to the leading edge, then $\Psi = 0$ (see sketch (c)) and the variation of λ can be determined from equation (70). This is tantamount to replacing θ by λ in the Rankine-Hugoniot shock relations. Thus, case (1) corresponds to the calculation of the flow on a wing which is designed to just contain the flow field bounded by the body surface and the bow shock and the "design" plan form will vary with angle of attack. The flow on the wings corresponding to cases (2) and (3) can also be calculated since \(\lambda\) is known and, therefore, \(\Psi\) can be calculated from equation (70) once θ has been determined.

CONFIDENTIAL

EXPERIMENT

In order to obtain a check on the predictions of the preceding theoretical analysis, the pressures acting on the surfaces of several wing-body configurations were determined experimentally at Mach numbers from 3.0 to 6.0 and at angles of attack up to 6°. A brief description of these tests follows.

Test Apparatus

Tests were conducted in the Ames 10- by 14-inch supersonic wind tunnel. A detailed description of the wind tunnel and auxiliary equipment may be found in reference 15. The pressures acting on the model surfaces were measured with a mercury U-tube manometer or by means of a dibutyl-phthalate U-tube manometer when the pressures were low enough to be recorded on the latter.

Pressure-distribution models were mounted on a 3° bent support which could be pitched through an angle-of-attack range of -3° to $+3^{\circ}$. The test models consisted of three basic configurations - two conical models and one ogive model. The conical models consisted of thin triangular wings beneath which were mounted fuselages composed of, in one case, one-half of a fineness-ratio-5 cone and, in the other, one-half of a fineness-ratio-2-1/2 cone. Two wings of different leading-edge sweep were tested on each body. In the case of the ogive model, the fuselage consisted of one-half of a fineness-ratio-5 ogive mounted beneath a thin wing, the leading edges of which were coincident with the theoretically determined shock wave for $(\Psi)_{\pi/2} = 0$ (case (1) in the analysis section) at a Mach number of 5.0 and an angle of attack of 3° . The dimensions of these models and the location of the pressure orifices are shown in figure 3.

Pressures on the model surfaces were measured at 0° , 3° , and 6° angles of attack at test Mach numbers of 3.0, 4.0, 5.0, and 6.0. The Reynolds number per foot varied from 8.6 million at Mach number 3.0 to 1.4 million at Mach number 6.0. The pressures around the body surface and on the high-pressure side of the wing were recorded simultaneously at each Mach number and angle of attack at stations symmetrically disposed with respect to the plane of symmetry (i.e., $\pm \varphi$; see fig. 3). These pressures were reduced to coefficient form and the average pressure coefficient was assumed to represent the pressure coefficient at each meridian angle, φ , and ray angle, ω .

Accuracy of Test Results

The variation in Mach number from the nominal value did not exceed ± 0.05 in the region of the test section where the models were located. The precision of the computed pressure coefficients was affected by inaccuracies in the pressure measurements, as well as uncertainties in the stream angle and the free-stream dynamic pressure. The resulting errors in pressure coefficients were generally less than ± 0.005 throughout the Mach number range for all angles of attack. The meridian angles and angular wing stations at which the pressure coefficients are plotted are considered accurate to within $\pm 1^{\circ}$.

RESULTS AND DISCUSSION

It will be recalled in the development of the theory that the flow field in the plane of symmetry $(\varphi = 0)$ was assumed to be the same as that for the circular cone. It is appropriate, therefore, to examine the validity of this assumption before proceeding with a comparison of the theoretical and experimental surface pressures. To this end, the shockwave angle at $\varphi = 0$ was measured from shadowgraph pictures for each test Mach number at $\alpha = 3^{\circ}$. The results of these measurements are compared in figure 4 with the shock angles for the complete cones which were also obtained from shadowgraph pictures. Only one set of data is shown for each fuselage since the effect of leading-edge sweep was not discernible from the shadowgraph pictures. Also shown for comparative purposes are the predictions of Stone's first-order theory for inclined circular cones (ref. 16), as presented in reference 17, along with the predictions of the theory of the present paper. It is evident that the wing has little effect on the shock-wave angle of the cone at $\varphi = 0$, at least for angles of attack up to 30. It will be noted that the present theory yields shock-wave angles which are slightly too large. The variation of pressure coefficient at $\varphi = 0$ with angle of attack for the two test configurations is shown in figure 5 for the test Mach numbers 3.0 and 5.0. Experimental results taken from reference 9 are also shown for the fineness-ratio-2-1/2 cone $(\delta_c = 11.42^{\circ})$. As in the case of the shock-wave angles, only one set of pressure data for each configuration is shown since the pressures were essentially unaffected by the small changes in leading-edge sweep of the test models. (Experimental data for a fineness-ratio-5 cone were not available.) Stone's second-order theory for inclined cones (ref. 18) applied in the manner described in reference 19 is also presented except for the case where $\delta_{\rm C}$ = 11.420 and M_{∞} = 5.0 which is beyond the range of the M.I.T. tables (ref. 20). For this case, the predictions of the theory for inclined cones presented in reference 9 are shown. It appears in figure 5 that the presence of the wing increases the pressures slightly in the plane $\varphi = 0$, particularly in the case of the more slender of the two configurations. However, this effect is sufficiently small

CONFIDENTIAL

(approximately within the range of experimental scatter) so that it can, for all practical purposes, be neglected. It should be noted that agreement between the present theory and experiment improves with increasing slenderness and increasing Mach number. On the basis of the comparisons shown in figures 4 and 5 it is indicated that, at least for cases where the leading edges of the wing are subsonic (M < 5) or moderately supersonic, flow conditions in the plane ϕ = 0 can be considered to be the same as those associated with the corresponding circular cone with only a slight loss in accuracy.

The experimental pressure distributions obtained on the four conical flat-top wing-body combinations (see fig. 3) are shown in figures 6, 7, 8, and 9. The data are plotted in the form of surface pressure coefficients as a function of the meridian angle, φ , for the body and as a function of the difference between the ray angle, ω , and the body vertex angle, δ_c , for the wing. Also shown in these figures are the predictions of the present conical-flow theory, where applicable, as well as results obtained from reference 21 for noninclined cones. Although the latter results are strictly applicable only for the cases where the wing leadingedge angle is equal to the axially symmetric shock angle produced by the body (i.e., $M_{\infty} = 5.0$, $\lambda = 13^{\circ}$ and $\lambda = 16.9^{\circ}$; see figs. 6(c) and 8(c)), the theoretical pressure coefficients are nevertheless shown for all test Mach numbers at $\alpha = 0^{\circ}$. It is interesting to note that the results of reference 21 are in good agreement with experiment even for the subsonic leading-edge cases $(M_{\infty} < 5)$. It also appears from the magnitude and continuous distribution of pressures on the wing at $M_{\infty} = 6.0$ that the bow shock remains attached to the leading edge and the cone pressure field is distributed over the entire surface of the wing. It should also be noted that the pressures on the body are negligibly affected by the wing at all test Mach numbers at $\alpha = 0^{\circ}$. Consider now the predictions of the conical flow theory of the present paper. Although the theory is not strictly applicable below a Mach number of 5.0 for the test configurations (see fig. 2), theoretical results obtained for $(\Psi)_{\pi/2} = 0$ are nevertheless shown for the lower test Mach numbers at $\alpha = 0^{\circ}$. As in the case of the predictions of reference 21, the present theory may, from a practical standpoint, also be considered applicable to wings whose leading edges lay inboard of the bow shock wave at $\alpha = 0^{\circ}$. It should be recalled, however, that the theory is applicable to hypersonic flow fields and, therefore, would be expected to yield good results only at relatively high Mach numbers. It can be seen from figure 2 that for $\lambda = 13^{\circ}$ $(\lambda/\delta_c = 2.28)$ the theory is applicable only for $\alpha = 0^\circ$ at $M_\infty = 5.0$ and for angles of attack up to 3° ($\alpha/\delta_c = 0.525$) at $M_{\infty} = 6.0$ (fig. 6). Similarly, when $\lambda = 14.6^{\circ}$ ($\lambda/\delta_c = 2.55$), the theory is applicable for angles of attack up to 3° at $M_{\infty} = 5.0$ and for angles of attack up to 5.7° $(\alpha/\delta_c = 1)$ at $M_{\infty} = 6.0$ (fig. 7). The same general remarks concerning the applicability of theory also apply to the less slender configurations. The predictions of theory where applicable are compared with experiment for these configurations in figures 8 and 9. It will be recalled that the development of the theory proceeded from the basic assumptions

CONFIDENTIAL

that $\delta \ll 1$, $\omega \ll 1$, and $M \gg 1$. It would be expected, then, that theory should yield more reliable results for slender configurations at high Mach numbers. It is indicated by the results shown in figures 6 through 9 that agreement between theory and experiment improves with increasing Mach number and, in general, agreement is better for the more slender configurations. The pressure distributions calculated by means of equations (51) and (52) are also shown in figures 6, 7, 8, and 9 and, in general, are in reasonably good agreement with experiment, although equation (52) tends to overestimate the pressures slightly on the wing (compared to the more exact equation) at $\alpha = 0^{\circ}$. It should be noted in table I that $(\Psi)_{\pi/2}$ attains its maximum value at α = 0° when λ > $(\omega_{\rm S})_{\alpha=0}$ and increases quite rapidly with increasing λ . Thus, for example, for the case where $\lambda = 14.6^{\circ}$ at $M_{\infty} = 6.0$ and $\alpha = 0^{\circ}$ (fig. 7(d)), $(\Psi)_{\pi/2}$ is 41° . From the definition of Y as shown in figure 1, it can readily be seen that the cross-sectional shape of the conical shock will deviate considerably from a circular arc when $(\Psi)_{\pi/2} = 41^{\circ}$.

Since the theory is based on the assumptions $\delta << 1$ and $\lambda << 1$, it is evident that when the wing semivertex angle is large compared to the axially symmetric shock angle produced by the body or, in effect, large values of λ/δ_c , the theory will tend to break down. More experimental data are needed to determine the practical range of applicability of the theory with respect to this parameter. It should be noted, however, that considerations of drag and aerodynamic heating will dictate high sweep and, hence, moderate values of λ/δ_c at hypersonic speeds.

It is of interest now to consider briefly the accuracy of the predictions of theory for the lift, drag, and pitching-moment coefficients. These coefficients have been calculated by means of equations (63), (64), and (68) (and, of course, table I) for a configuration having an arrow plan-form wing ($\lambda = 15^{\circ}$) beneath which is mounted one-half of a fineness-ratio-5 cone. The results of these calculations for a Mach number of 5.0 along with experimental results taken from reference 2 (model 6 in that reference) are shown in figure 10. The drag polar was obtained by calculating the variation of drag with angle of attack by means of equation (64). The drag coefficient was then matched with the experimentally measured drag coefficient at $\alpha = 0^{\circ}$. The difference in drag coefficient thus obtained was assumed constant over the angle-of-attack range. In effect, then, the skin-friction drag, leading-edge drag, and base-pressure drag were assumed to be independent of angle of attack. In general, agreement between theory and experiment is good.

As a final point, consideration is now given to the accuracy with which the solutions for flow about conical configurations in combination with the generalized shock-expansion method predict the flow about wingbody combinations which are curved in the stream direction. The pressure distributions on the surface of a configuration having a fuselage consisting of one-half of a fineness-ratio-5 ogive mounted beneath a thin wing whose leading edges were theoretically determined so that they coincided

with the shock wave for $(\Psi)_{\pi/2}=0$ at $M_\infty=5.0$ and $\alpha=3^{\circ}$ were calculated using the methods of this paper. These distributions along with the results of pressure-distribution tests are presented in figure 11. The trend of the pressure distribution on the wing is in good agreement with experiment. Although the absolute magnitude of the pressure is low, it should be noted that the similarity parameter, $M_\infty\delta_{\rm C}$, is 1 in this case and, thus, represents the minimum condition for applicability of the shock-expansion method.

CONCLUDING REMARKS

The flow about conical flat-top wing-body configurations at high supersonic speeds was investigated analytically. With the assumptions of high supersonic Mach numbers, slender configurations, supersonic leading edges, and small angles of attack, an approximate theory was developed yielding the Mach number and pressure distributions on the surface. Simple, explicit, algebraic expressions for calculating the lift, pressuredrag, and pitching-moment coefficients were also presented. A solution to the flow about pointed flat-top wing-body configurations which are curved in the stream direction was obtained by combining the conical flow solution with a slender-body approximation to the generalized shock-expansion method.

Surface pressures were obtained experimentally at Mach numbers from 3.0 to 6.0 and angles of attack up to 60 for several flat-top wing-body configurations. These configurations consisted of half-bodies of revolution mounted beneath thin highly swept triangular wings. The bodies of the conical configurations consisted of one-half of a fineness-ratio-5 cone in one case and one-half of a fineness-ratio-2-1/2 cone in the other. The body of the third configuration consisted of one-half of a finenessratio-5 ogive. For this configuration, the leading edges of the wing were curved and designed to just maintain the theoretically determined bow shock along the leading edge at a Mach number of 5.0 and an angle of attack of 30. The predictions of the conical-flow theory of this paper for the surface pressures were in good agreement with experiment at Mach numbers of 5.0 and 6.0 up to angles of attack of approximately 3°. Estimated lift, drag due to lift, and pitching-moment coefficients were in good agreement with existing experiment for a conical configuration at a Mach number of 5.0. The generalized shock-expansion method yielded reasonably good agreement with experiment for the half-ogive configuration at a Mach number of 5.0 and angle of attack of 30.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., June 2, 1958

CONFIDENTIAL

REFERENCES

- 1. Eggers, A. J., Jr., and Syvertson, Clarence A.: Aircraft Configurations Developing High Lift-Drag Ratios at High Supersonic Speeds.

 NACA RM A55L05, 1956.
- 2. Syvertson, Clarence A., Wong, Thomas J., and Gloria, Hermilo R.: Additional Experiments With Flat-Top Wing-Body Combinations at High Supersonic Speeds. NACA RM A56Ill, 1957.
- 3. Migotsky, E., and Adams, Gaynor J.: Some Properties of Wing and Half-Body Arrangements at Supersonic Speeds. NACA RM A57E15, 1957.
- 4. Browne, S. H., Friedman, L., and Hodes, I.: A Wing-Body Problem in a Supersonic Conical Flow. Jour. Aero. Sci., vol. 15, no. 8, Aug. 1948, pp. 443-452.
- 5. Ferri, Antonio, Clarke, Joseph H., and Casaccio, Anthony: Drag Reduction in Lifting Systems by Advantageous Use of Interference. PIBAL Rep. 272, Polytechnic Institute of Brooklyn, Dept. of Aero. Engr. and Appl. Mech., May 1955.
- 6. Reyn, John W., and Clarke, Joseph H.: An Assessment of Body Lift Contributions and of Linearized Theory for Some Particular Wing-Body Configurations. PIBAL Rep. 305, Polytechnic Institute of Brooklyn, Dept. of Aero. Engr. and Appl. Mech., June 1956.
- 7. Rossow, Vernon J.: A Theoretical Study of the Lifting Efficiency at Supersonic Speeds of Wings Utilizing Indirect Lift Induced by Vertical Surfaces. NACA RM A55LO8, 1956.
- 8. Eggers, A. J., Jr., Syvertson, Clarence A., and Kraus, Samuel: A Study of Inviscid Flow About Airfoils at High Supersonic Speeds. NACA Rep. 1123, 1953. (Supersedes NACA TN's 2646 and 2729)
- 9. Savin, Raymond C.: Application of the Generalized Shock-Expansion Method to Inclined Bodies of Revolution Traveling at High Supersonic Speeds. NACA TN 3349, 1955.
- 10. Ferri, Antonio: Supersonic Flow Around Circular Cones at Angles of Attack. NACA Rep. 1045, 1951. (Supersedes NACA TN 2236)
- 11. Holt, M.: A Vortical Singularity in Conical Flow. Quart. Jour. Mech. and Appl. Math., vol. VII, pt. 4, Dec. 1954, pp. 438-445.
- 12. Hamaker, Frank M., Neice, Stanford E., and Wong, Thomas J.: The Similarity Law for Hypersonic Flow and Requirements for Dynamic Similarity of Related Bodies in Free Flight. NACA Rep. 1147, 1953. (Supersedes NACA TN's 2443 and 2631)

CONFIDENTIAL

- 13. Eggers, A. J., Jr., and Savin, Raymond C.: A Unified Two-Dimensional Approach to the Calculation of Three-Dimensional Hypersonic Flows, With Application to Bodies of Revolution. NACA Rep. 1249, 1955.
- 14. Eggers, A. J., Jr., and Savin, Raymond C.: Approximate Methods for Calculating the Flow About Nonlifting Bodies of Revolution. NACA TN 2579, 1951.
- 15. Eggers, A. J., Jr., and Nothwang, George J.: The Ames 10- by 14-Inch Supersonic Wind Tunnel. NACA TN 3095, 1954.
- 16. Stone, A. H.: On Supersonic Flow Past a Slightly Yawing Cone. Jour. Math. and Phys., vol. XXVII, no. 1, April 1948, pp. 67-81.
- 17. Staff of the Computing Section, under the Direction of Zdeněk Kopal:
 Tables of Supersonic Flow Around Yawing Cones. MIT, Dept. of Elec.
 Engr., Center of Analysis. Tech. Rep. No. 3, Cambridge, 1947.
- 18. Stone, A. H.: On Supersonic Flow Past a Slightly Yawing Cone. II. Jour. Math. and Phys., vol. XXX, no. 4, Jan. 1952, pp. 200-213.
- 19. Roberts, Richard C., and Riley, James D.: A Guide to the Use of the MIT Cone Tables. NAVORD Rep. 2606, 1953.
- 20. Staff of the Computing Section, under the Direction of Zdeněk Kopal: Tables of Supersonic Flow Around Cones of Large Yaw. MIT, Dept. of Elec. Engr., Center of Analysis. Tech. Rep. No. 5, Cambridge, 1947.
- 21. Staff of the Computing Section, under the Direction of Zdeněk Kopal: Tables of Supersonic Flow Around Cones. MIT, Dept. of Elec. Engr., Center of Analysis. Tech. Rep. No. 1, 1947.

TABLE I.- FUNCTIONS FOR CALCULATING THE FLOW ABOUT FLAT-TOP CONFIGURATIONS

M _∞ δ _C	$\frac{\lambda}{\delta_c}$	$\frac{\alpha}{\delta_c}$	$\left(\frac{\omega_{\text{B}}}{\delta_{\text{C}}}\right)_{\text{O}}$	$\left(\frac{p_c}{p_{\infty}}\right)_{O}$	(Ψ) _{π/2}	$\left(\frac{p_{c}}{p_{\infty}}\right)_{\pi/2}$	$\left(\frac{p}{p_{\infty}}\right)_{\lambda}$
0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	101992 101992 101992 101992 101992 101992 101992 101992 101992 101992	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0 1.0 0	10.0598 09.9854 09.9112 09.8374 09.7638 09.6906 09.6177 09.5451 09.4728 09.4008 09.3292	01.0399 01.0446 01.0494 01.0599 01.0654 01.0711 01.0771 01.0833 01.0896 01.0962	0 0 1 6 6 0 0 0 1 5 9 5 0 0 1 5 2 2 0 0 1 4 4 0 0 0 1 3 4 8 0 0 1 2 4 3 0 0 1 1 2 3 0 0 0 9 8 2 0 0 0 8 0 9 0 0 0 5 7 5 0 0 0 0 0	01.0399 01.0429 01.0496 01.0533 01.0572 01.0614 01.0657 01.0703 01.0750 01.0799	01.0138 01.0163 01.0191 01.0220 01.0250 01.0257 01.0357 01.0357 01.0390 01.0429 01.0469
0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	101823 101823 101823 101823 101823 101823 101823 101823 101823	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0	10.0598 09.9854 09.9112 09.8374 09.7638 09.6906 09.6177 09.5451 09.4728 09.4008	01.0399 01.0446 01.0494 01.0599 01.0654 01.0711 01.0771 01.0833 01.0896	0 0 1 5 5 7 0 0 1 4 8 7 0 0 1 4 0 9 0 0 1 3 2 0 0 0 1 2 1 8 0 0 1 1 0 1 0 0 0 9 6 4 0 0 0 7 9 4 0 0 0 5 6 5 0 0 0 0 0	01.0399 01.0429 01.0462 01.0497 01.0533 01.0614 01.0657 01.0703 01.0750	0 1.0 1 3 8 0 1.0 1 6 4 0 1.0 1 9 1 0 1.0 2 2 0 0 1.0 2 8 3 0 1.0 3 1 7 0 1.0 3 5 3 0 1.0 3 9 1 0 1.0 4 2 9
010 010 010 010 010 010 010 010	101661 101661 101661 101661 101661 101661 101661 101661 101661	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0	1 0 .0 5 9 8 0 9 .9 8 5 4 0 9 .9 1 1 2 0 9 .8 7 6 3 8 0 9 .6 9 0 6 0 9 .6 1 7 7 0 9 .4 7 2 8	01.0399 01.0446 01.0494 01.0546 01.0599 01.0654 01.0771 01.0771	0 0.1 4 5 2 0 0.1 3 7 6 0 0.1 2 9 2 0 0.1 1 9 2 0 0.1 0 7 8 0 0.0 9 4 4 0 0.0 5 5 5 0 0.0 0 0	01.0399 01.0429 01.0462 01.0497 01.0534 01.0573 01.0614 01.0657 01.0702	01.0139 01.0164 01.0191 01.0220 01.0251 01.0251 01.0318 01.0354 01.0391
0 1 0 0 1 0	101505 101505 101505 101505 101505 101505 101505	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0	10.0598 09.9854 09.9112 09.8374 09.6906 09.6177 09.5451	01.0399 01.0446 01.0494 01.0546 01.0599 01.0654 01.0711	0 0 1 3 4 2 0 0 1 2 5 9 0 0 1 1 6 4 0 0 1 0 5 5 0 0 0 9 2 4 0 0 0 7 6 3 0 0 0 5 4 4 0 0 0 0 0 0	01.0399 01.0429 01.0462 01.0497 01.0534 01.0573 01.0614 01.0657	01.0139 01.0164 01.0192 01.0281 01.0252 01.0284 01.0318 01.0354
0.10 0.10 0.10 0.10 0.10 0.10	101355 101355 101355 101355 101355 101355 101355	0.00 0.10 0.20 0.30 0.40 0.50 0.60	10.0598 09.9854 09.9112 09.8374 09.7638 09.6906 09.6177	01.0399 01.0446 01.0494 01.0546 01.0599 01.0654 01.0711	0 0 1 2 2 7 0 0 1 1 3 6 0 0 1 0 2 9 0 0 0 9 0 3 0 0 0 7 4 6 0 0 0 5 3 2 0 0 0 0 0 0	01.0399 01.0429 01.0462 01.0497 01.0534 01.0573 01.0614	0 1.0 1 3 9 0 1.0 1 6 5 0 1.0 1 9 2 0 1.0 2 8 1 0 1.0 2 5 2 0 1.0 2 8 4 0 1.0 3 1 8
010 010 010 010 010	101212 101212 101212 101212 101212	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0	10.0598 09.9854 09.9112 09.8374 09.7638 09.6906	01.0399 01.0446 01.0494 01.0546 01.0599 01.0654	00.1105 00.1003 00.0881 00.0728 00.0521 00.0000	01.0399 01.0429 01.0462 01.0497 01.0534 01.0573	0 1.0 1 3 9 0 1.0 1 6 5 0 1.0 1 9 2 0 1.0 2 2 1 0 1.0 2 5 2 0 1.0 2 8 5
010 010 010 010	101076 101076 101076 101076 101076	0.00 0.10 0.20 0.30 0.40	10.0598 09.9854 09.9112 09.8374 09.7638	01.0399 01.0446 01.0494 01.0546 01.0599	0 0 .0 9 7 5 0 0 .0 8 5 7 0 0 .0 7 1 0 0 0 .0 5 0 8 0 0 .0 0 0 0	0 1.0 3 9 9 0 1.0 4 2 9 0 1.0 4 6 2 0 1.0 4 9 7 0 1.0 5 3 4	0 1.01 3 9 0 1.01 6 5 0 1.01 9 2 0 1.02 2 2 0 1.02 5 2
010 010 010 010	10.0946 10.0946 10.0946 10.0946	0.00 0.10 0.20 0.30	1 0.0598 0 9.9854 0 9.9112 0 9.8374	01.0399 01.0446 01.0494 01.0546	0 0 .0 8 3 3 0 0 .0 6 9 0 0 0 .0 4 9 5 0 0 .0 0 0 0	0 1.0 3 9 9 0 1.0 4 2 9 0 1.0 4 6 2 0 1.0 4 9 7	0 1.0 1 4 0 0 1.0 1 6 5 0 1.0 1 9 3 0 1.0 2 2 2
010 010 010	10.0823 10.0823 10.0823	0.00 0.10 0.20	10.0598 09.9854 09.9112	01.0399 01.0446 01.0494	0 0 .0 6 7 0 0 0 .0 4 8 1 0 0 .0 0 0	01.0399 01.0429 01.0462	0 1.0 1 4 0 0 1.0 1 6 5 0 1.0 1 9 3
010	10.0707	0.00	10.0598	01.0399	00.0466	01.0399	01.0140
010	10.0598	0.00	10.0598	01.0399	00.000	01.0399	01.0140

TABLE I. - FUNCTIONS FOR CALCULATING THE FLOW ABOUT FLAT-TOP
CONFIGURATIONS - Continued

M _∞ δ _C	$\frac{\lambda}{\delta_c}$	$\frac{\alpha}{\delta_c}$	$\left(\frac{\omega_{\rm g}}{\delta_{\rm c}}\right)_{\rm o}$	$\left(\frac{p_{c}}{p_{\infty}}\right)_{c}$	(¥) _{¶/2}	$\left(\frac{p_c}{p_{\infty}}\right)_{\pi/2}$	$\left(\frac{p}{p_{\infty}}\right)_{\lambda}$
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	05,4437 05,4437 05,4437 05,4437 05,4437 05,4437 05,4437 05,4437 05,4437 05,4437	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0 1.0 0	05.1186 05.0504 04.9830 04.9830 04.8504 04.7853 04.7210 04.6574 04.5947 04.5328 04.4718	01.1246 01.1422 01.1606 01.1797 01.1996 01.2202 01.2415 01.2637 01.28666 01.3102 01.3347	003512 003356 003186 002999 002792 002562 002302 002001 001637 001156 00.0000	01.1246 01.1372 01.1505 01.1645 01.1793 01.1948 01.2110 01.2280 01.2456 01.2639 01.2824	0 1.05 2 5 0 1.06 6 2 0 1.08 0 6 0 1.09 5 6 0 1.1 1 1 2 0 1.1 2 7 4 0 1.1 4 4 2 0 1.1 6 1 6 0 1.1 7 9 5 0 1.1 9 7 8 0 1.2 1 6 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	05.4080 05.4080 05.4080 05.4080 05.4080 05.4080 05.4080 05.4080 05.4080	0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90	05.1186 05.0504 04.9830 04.9504 04.7853 04.7853 04.76574 04.5947 04.5328	01.1246 01.1422 01.1606 01.1797 01.1996 01.2202 01.2415 01.2637 01.2866 01.3102	00.3323 00.3156 00.2973 00.2770 00.2543 00.2286 00.1989 00.1628 00.1150 00.0000	01.1246 01.1372 01.1505 01.1646 01.1793 01.1948 01.211 01.2280 01.2456 01.2635	01.0529 01.0667 01.0811 01.0961 01.1118 01.1281 01.1449 01.1623 01.1802 01.1982
020 020 020 020 020 020 020 020	05.3730 05.3730 05.3730 05.3730 05.3730 05.3730 05.3730 05.3730 05.3730	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0	05.1186 05.0504 04.9830 04.9863 04.8504 04.78504 04.78510 04.6574 04.5947	01.1246 01.1422 01.1606 01.1797 01.1996 01.2202 01.2415 01.2637 01.2866	0 0 .3 1 2 4 0 0 .2 9 4 4 0 0 .2 7 4 5 0 0 .2 5 2 2 0 0 .2 2 6 9 0 0 .1 9 7 8 0 0 .1 1 4 4 0 0 .0 0 0	01.1246 01.1372 01.1505 01.1646 01.17949 01.2111 01.2280 01.2453	01.0533 01.0671 01.0815 01.0966 01.1124 01.1287 01.1456 01.1630 01.1805
020 020 020 020 020 020 020	05.3385 05.3385 05.3385 05.3385 05.3385 05.3385 05.3385	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0	05.1186 05.0504 04.9830 04.9163 04.8504 04.7853 04.7210 04.6574	01.1246 01.1422 01.1606 01.1797 01.1996 01.2202 01.2415 01.2637	00.2913 00.2718 00.2499 00.2249 00.1959 00.1606 00.1137 00.000	01.1246 01.1372 01.1506 01.1646 01.1794 01.1950 01.2111 01.2277	0 1.0 5 3 6 0 1.0 6 7 5 0 1.0 8 2 0 0 1.0 9 7 2 0 1.1 2 9 0 1.1 2 9 3 0 1.1 4 6 2 0 1.1 6 3 3
020 020 020 020 020 020 020	053047 053047 053047 053047 053047 053047 053047	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0	05.1186 05.0504 04.9830 04.9163 04.8504 04.7853 04.7210	011246 011422 011606 011797 011996 012202 012415	0 0 .2 6 8 7 0 0 .2 4 7 2 0 0 .2 2 2 7 0 0 .1 9 4 1 0 0 .1 5 9 3 0 0 .1 1 2 9 0 0 .0 0 0	01.1246 01.1372 01.1506 01.1647 01.1795 01.1950 01.2109	01.0540 01.0679 01.0825 01.0977 01.1135 01.1299 01.1465
020 020 020 020 020 020	052716 052716 052716 052716 052716 052716	0.00 0.10 0.20 0.30 0.40 0.50	05.1186 05.0504 04.9830 04.9163 04.8504 04.7853	01.1246 01.1422 01.1606 01.1797 01.1996 01.2202	002443 002202 001921 001578 001120 00.0000	01.1246 01.1373 01.1506 01.1647 01.1795 01.1948	0 1.0 5 4 4 0 1.0 6 8 3 0 1.0 8 2 9 0 1.0 9 8 2 0 1.1 1 4 0 0 1.1 3 0 2
020 020 020 020 020	052393 052393 052393 052393 052393	0.00 0.10 0.20 0.30 0.40	05.1186 05.0504 04.9830 04.9163 04.8504	01.1246 01.1422 01.1606 01.1797 01.1996	00.2175 00.1899 00.1561 00.1110 00.0000	0 1.1 2 4 6 0 1.1 3 7 3 0 1.1 5 0 7 0 1.1 6 4 7 0 1.1 7 9 4	0 1.0 5 4 7 0 1.0 6 8 7 0 1.0 8 3 4 0 1.0 9 8 6 0 1.1 1 4 4
020 020 020 020	052078 052078 052078 052078	0.00 0.10 0.20 0.30	05.1186 05.0504 04.9830 04.9163	01.1246 01.1422 01.1606 01.1797	001874 001543 001098 00.000	01.1246 01.1373 01.1507 01.1646	01.0550 01.0691 01.0838 01.0990
0.20 0.20 0.20	051771 051771 051771	0.00 0.10 0.20	05.1186 05.0504 04.9830	01.1246 01.1422 01.1606	00.1522 00.1085 00.0000	01.1246 01.1373 01.1506	0 1.05 5 4 0 1.06 9 5 0 1.08 4 1
020	051474	0.00	051186 05.0504	01.1246	001070	01.1246	01.0557
020	05.1186	0.00	05.1186	01.1246	00.000	01.1246	01.0560

TABLE I. - FUNCTIONS FOR CALCULATING THE FLOW ABOUT FLAT-TOP

CONFIGURATIONS - Continued

M _∞ 8 _c	$\frac{\lambda}{\delta_c}$	ය විප	$\left(\frac{\omega_{B}}{\delta_{C}}\right)_{O}$	$\left(\frac{p_c}{p_\infty}\right)_O$	(Ψ) _{π/2}	$\left(\frac{p_c}{p_\infty}\right)_{\pi/2}$	$\left(\frac{p}{p_{\infty}}\right)_{\lambda}$
030 030 030 030 030 030 030 030 030 030	03.9427 03.9427 03.9427 03.9427 03.9427 03.9427 03.9427 03.9427 03.9427	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0 1.0 0	0 3.5 0 8 7 0 3.4 4 6 4 0 3 3.8 5 3 0 3 3.2 5 5 0 3 2.6 7 0 0 3 2.5 4 1 0 3 0.9 9 7 0 3 0.4 6 6 0 2 9 9 5 0 0 2 9 4 4 7	01.2390 01.2735 01.3097 01.3476 01.3871 01.4284 01.4714 01.5162 01.6615	0 0 .4 8 4 7 0 0 .4 6 17 0 0 .4 3 6 8 0 0 .4 0 9 8 0 0 .3 8 0 2 0 0 .3 4 7 7 0 0 .3 1 1 2 0 0 .2 6 9 4 0 0 .2 1 9 4 0 0 .1 5 3 9 0 0 .0 0 0 0	0 1.2 3 9 1 0 1.2 6 2 7 0 1.2 8 7 8 0 1.3 1 4 6 0 1.3 4 2 9 0 1.3 7 2 8 0 1.4 0 4 3 0 1.4 3 7 3 0 1.4 7 1 9 0 1.5 0 7 8 0 1.5 4 3 8	01.1112 01.1417 01.1735 01.2065 01.2407 01.2761 01.3125 01.3499 01.3882 01.4272 01.4655
030 030 030 030 030 030 030 030 030	03.8971 03.8971 03.8971 03.8971 03.8971 03.8971 03.8971 03.8971 03.8971	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0	03.5087 03.4464 03.3853 03.3255 03.2670 03.2099 03.1541 03.0997 03.0466 02.9950	012390 012735 013097 013476 013871 014284 014714 01.5162 01.5628 01.6112	00.4608 00.4362 00.4095 00.3802 00.3478 00.3115 00.2699 00.2199 00.1544 00.0000	01.2390 01.2627 01.2879 01.3147 01.3430 01.3730 01.4044 01.4374 01.4717 01.5064	0 1.1 1 2 7 0 1.1 4 3 3 0 1.1 7 5 8 0 1.2 4 2 8 0 1.2 7 8 2 0 1.3 1 4 7 0 1.3 5 2 1 0 1.3 9 0 3 0 1.4 2 8 0
030 030 030 030 030 030 030 030	03.8519 03.8519 03.8519 03.8519 03.8519 03.8519 03.8519 03.8519 03.8519	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0	0 3 .5 0 8 7 0 3 .4 4 6 4 0 3 .3 8 5 5 5 0 3 3 .2 6 7 0 0 3 .2 0 9 9 1 0 3 .0 9 9 7 0 3 .0 4 6 6	01.2390 01.2735 01.3097 01.3476 01.3871 01.4284 01.4714 01.5162 01.5628	00.4353 00.4089 00.3799 00.3117 00.2701 00.2203 00.1549	01.2390 01.2627 01.287 01.3148 01.3431 01.3731 01.4045 01.4373 01.4706	0 1.1 1 4 2 0 1.1 4 5 0 0 1.1 7 7 0 0 1.2 1 0 3 0 1.2 4 4 8 0 1.2 8 0 3 0 1.3 1 6 8 0 1.3 5 4 2 0 1.3 9 1 3
030 030 030 030 030 030 030	03.8071 03.8071 03.8071 03.8071 03.8071 03.8071 03.8071 03.8071	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0	03.5087 03.4464 03.3853 03.3255 03.2670 03.2699 03.1541 03.0997	01.2390 01.2735 01.3097 01.3476 01.3871 01.4284 01.4714 01.5162	00.4079 00.3793 00.3474 00.3116 00.2702 00.2206 00.1552 00.0000	01.2390 01.2627 01.2880 01.3149 01.3731 01.4044 01.4363	0 1.1 1 5 7 0 1.1 4 6 6 0 1.1 7 8 8 0 1.2 1 2 2 0 1.2 4 6 7 0 1.2 8 2 3 0 1.3 1 8 8 0 1.3 5 5 2
030 030 030 030 030 030 030	03.7627 03.7627 03.7627 03.7627 03.7627 03.7627 03.7627	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0	03.5087 03.4464 03.3853 03.3255 03.2670 03.2099 03.1541	012390 012735 013097 013476 013871 014284 014714	003782 003467 003112 002701 002207 001555 00.0000	01.2390 01.2628 01.2881 01.3149 01.3433 01.3731 01.4037	01.1172 01.1482 01.1805 01.2141 01.2487 01.2842 01.3199
030 030 030 030 030	03.7188 03.7188 03.7188 03.7188 03.7188 03.7188	0.00 0.10 0.20 0.30 0.40 0.50	03.5087 03.4464 03.3853 03.3255 03.2670 03.2099	01.2390 01.2735 01.3097 01.3476 01.3871 01.4284	00.3457 00.3105 00.2698 00.2206 00.1557 00.0000	01.2390 01.2628 01.2881 01.3150 01.3433 01.3725	0 1.1 1 8 7 0 1.1 4 9 9 0 1.1 8 2 3 0 1.2 1 5 9 0 1.2 5 0 5 0 1.2 8 5 4
0.30 0.30 0.30 0.30 0.30	03.6754 03.6754 03.6754 03.6754 03.6754	0.00 0.10 0.20 0.30 0.40	03.5087 03.4464 03.3853 03.3255 03.2670	01.2390 01.2735 01.3097 01.3476 01.3871	00.3094 00.2691 00.2203 00.1557 00.0000	01.2390 01.2628 01.2882 01.3150 01.3429	011202 011515 011840 012176 012517
030 030 030 030	03.6326 03.6326 03.6326 03.6326	0.00 0.10 0.20 0.30	03.5087 03.4464 03.3853 03.3255	01.2390 01.2735 01.3097 01.3476	00.2681 00.2198 00.1556 00.0000	0 1.2 3 9 0 0 1.2 6 2 8 0 1.2 8 8 2 0 1.3 1 4 7	011217 011531 011856 012189
0.30 0.30 0.30	03.5905 03.5905 03.5905	0.00 0.10 0.20	0 3.5 0 8 7 0 3.4 4 6 4 0 3.3 8 5 3	01.2390 01.2735 01.3097	00.2189 00.1552 00.0000	01.2390 01.2629 01.2880	0 1.1 2 3 1 0 1.1 5 4 6 0 1.1 8 7 0
030	03.5492	0.00	03.5087	01.2390	00.1547	01.2390	01.1246
030	03.5087	0.00	03.5087	012390	00.000	01.2390	01.1260

TABLE I.- FUNCTIONS FOR CALCULATING THE FLOW ABOUT FLAT-TOP CONFIGURATIONS - Continued

M _∞ δ _c	$\frac{\lambda}{\delta_c}$	$\frac{\alpha}{\delta_c}$	$\left(\frac{\omega_{B}}{\delta_{C}}\right)_{O}$	$\left(\frac{p_c}{p_{\infty}}\right)_{\mathcal{Q}}$	(Ψ) _{π/2}	$\left(\frac{p_c}{p_{\infty}}\right)_{\pi/2}$	$\left(\frac{p}{p_{\infty}}\right)_{\lambda}$
0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40	0 3 4 4 6 9 9 0 3 3 4 4 6 6 9 9 0 3 3 4 4 4 2 4 2 6 6 9 9 0 3 3 4 4 4 2 4 2 2 4 2 6 6 9 9 0 3 3 4 4 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00	0 2 7 2 9 5 0 2 6 7 2 9 0 2 6 1 8 1 0 2 5 6 5 2 0 2 5 1 4 1 0 2 4 6 4 9 0 2 4 1 7 6 0 2 3 7 2 1 0 2 2 8 6 7 0 2 2 4 6 7	01.3783 01.4336 01.4921 01.5536 01.6183 01.7576 01.8323 01.9104 01.9921 02.0774	00.5840 00.5546 00.5231 00.4893 00.4527 00.4128 00.3684 00.3180 00.2580 00.1799	0 1.3 7 8 8 0 1.4 1 4 1 0 1.4 5 2 2 0 1.4 9 3 1 0 1.5 3 6 8 0 1.5 8 3 4 0 1.6 8 5 0 0 1.7 3 9 9 0 1.7 3 7 3 0 1.8 5 4 4	0 1.1862 0 1.2381 0 1.2920 0 1.3477 0 1.4052 0 1.4643 0 1.5250 0 1.5871 0 1.6149 0 1.7771
0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0	031754 031754 031754 031754 031754 031754 031754 031754 031754	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0	02.7295 02.6729 02.6181 02.5652 02.5141 02.4649 02.4176 02.3721 02.3285 02.2867	01.3783 01.4336 01.4921 01.5536 01.6183 01.6863 01.757 01.8323 01.9104 01.9921	00.5567 00.5254 00.4916 00.4551 00.4151 00.3706 00.3200 00.2598 00.1814 00.0000	0 1.37 8 7 0 1.41 4 0 0 1.45 2 2 0 1.49 3 1 0 1.53 6 9 0 1.5 8 3 4 0 1.6 3 2 7 0 1.6 8 4 8 0 1.7 3 9 2 0 1.7 9 3 7	0 1.1 9 0 1 0 1.2 4 2 1 0 1.2 9 6 1 0 1.3 5 1 9 0 1.4 0 9 4 0 1.4 6 8 6 0 1.5 2 9 3 0 1.5 9 1 3 0 1.6 5 4 3 0 1.7 1 5 5
0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0	031242 031242 031242 031242 031242 031242 031242 031242 031242	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0	02.7295 02.6729 02.6181 02.5652 02.5141 02.4649 02.4176 02.3721 02.3285	01.3783 01.4336 01.4921 01.5536 01.6183 01.6863 01.7576 01.8323 01.9104	0 0.5 2 7 3 0 0.4 9 3 8 0 0.4 5 7 3 0 0.4 1 7 3 0 0.3 7 2 8 0 0.3 2 2 0 0 0.2 6 1 7 0 0 1 8 2 9 0 0.0 0 0	01.3786 01.4140 01.4522 01.4932 01.5369 01.6326 01.6842 01.7362	0 1.1 9 3 9 0 1.2 4 6 0 0 1.3 0 0 1 0 1.3 5 6 0 0 1.4 1 3 6 0 1.4 7 2 8 0 1.5 3 3 4 0 1.5 9 5 0 0 1.6 5 5 3
0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40	0 3.0 7 3 2 0 3.0 7 3 2	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0	02.7295 02.6729 02.6181 02.5652 02.5141 02.4649 02.4176 02.3721	01.3783 01.4336 01.4921 01.5536 01.6183 01.7576 01.8323	0 0 .4 9 5 6 0 0 .4 5 9 2 0 0 .4 1 9 3 0 0 .3 7 4 8 0 0 .3 2 3 9 0 0 .2 6 3 4 0 0 .1 8 4 4 0 0 .0 0 0	01.3785 01.4140 01.4522 01.4932 01.5369 01.5834 01.6322 01.6818	01.1977 01.2499 01.3041 01.3601 01.41768 01.5371 01.5964
0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0	03.0227 03.0227 03.0227 03.0227 03.0227 03.0227 03.0227	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0	02.7295 02.6729 02.6181 02.5652 02.5141 02.4649 02.4176	01.3783 01.4336 01.4921 01.5536 01.6183 01.6863 01.7576	0 0.4 6 0 9 0 0.4 2 1 1 0 0.3 7 6 6 0 0.3 2 5 8 0 0.2 6 5 1 0 0.1 8 5 8 0 0.0 0 0 0	01.3785 01.4140 01.4523 01.4933 01.5369 01.5831 01.6303	01.2015 01.2539 01.3081 01.3642 01.4217 01.4806 01.5388
0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0	02.9725 02.9725 02.9725 02.9725 02.9725 02.9725	0.00 0.10 0.20 0.30 0.40 0.50	02.7295 02.6729 02.6181 02.5652 02.5141 02.4649	01.3783 01.4336 01.4921 01.5536 01.6183 01.6863	00.4225 00.3782 00.3274 00.2667 00.1872 00.0000	01.3784 01.4140 01.4523 01.4933 01.5368 01.5816	0 1.2 0 5 3 0 1.2 5 7 8 0 1.3 1 2 1 0 1.3 6 8 1 0 1.4 2 5 5 0 1.4 8 2 7
0.40 0.40 0.40 0.40 0.40	029227 029227 029227 029227 029227	0.00 010 020 030 0.40	02.7295 02.6729 02.6181 02.5652 02.5141	01.3783 01.4336 01.4921 01.5536 01.6183	00.3795 00.3288 00.2681 00.1886 00.0000	01.3783 01.4140 01.4523 01.4932 01.5357	012091 012616 013160 013719 014279
0.4 0 0.4 0 0.4 0 0.4 0	02.8734 02.8734 02.8734 02.8734	0.0 0 0.1 0 0.2 0 0.3 0	18.3036 02.6729 02.6181 02.5652	11.8904 01.4336 01.4921 01.5536	00.3299 00.2693 00.1898 00.0000	01.3783 01.4140 01.4523 01.4925	0 1.2129 0 1.2655 0 1.3197 0 1.3746
0.4 0 0.4 0 0.4 0	02.8247 02.8247 02.8247	0.00 0.10 0.20	02.7295 02.6729 02.6181	01.3783 01.4336 01.4921	00.2702 00.1908 00.0000	01.3783 01.4140 01.4518	01.2166 01.2692 01.3228
0.40	02.7767	0.00	02.7295	01.3783	00.1916	01.3783	01.2203
0.40	02.7295	0.00	02.7295	01.3783	00.000	01.3783	01.2240

W

TABLE I.- FUNCTIONS FOR CALCULATING THE FLOW ABOUT FLAT-TOP CONFIGURATIONS - Continued

M _∞ δ _C	$\frac{\lambda}{\delta_c}$	<u>α</u> δ _c	$\left(\frac{\omega_g}{\delta_c}\right)_O$	$\left(\frac{p_{c}}{p_{\infty}}\right)_{O}$	(Ψ) _{π/2}	$\left(\frac{p_{c}}{p_{\infty}}\right)_{\pi/2}$	$\left(\frac{p}{p_{\infty}}\right)_{\lambda}$
00000000000000000000000000000000000000	02.8166 02.8166 02.8166 02.8166 02.8166 02.8166 02.8166 02.8166 02.8166 02.8166	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0 1.0 0	0 2 2 8 0 4 0 2 2 2 9 4 0 2 1 8 0 8 0 2 1 3 4 5 0 2 .0 9 0 6 0 2 .0 4 8 9 0 1 .9 7 2 2 0 1 .9 3 7 1 0 1 .9 0 4 0 0 1 .8 7 2 8	01.5412 01.6217 01.7073 01.7981 01.8942 01.9958 02.1029 02.2158 02.3346 02.4592 02.4592 02.5900	0 0.6 6 0 7 0 0.6 25 7 0 0.5 8 8 6 0 0.5 4 9 3 0 0.5 0 7 1 0 0.4 6 1 4 0 0.4 1 0 9 0 0.3 5 3 8 0 0.2 8 6 3 0 0.1 9 8 7	0 1.5 4 3 2 0 1.5 9 0 5 0 1.6 4 2 4 0 1.6 9 8 8 0 1.7 5 9 8 0 1.8 2 5 4 0 1.8 9 5 6 0 1.9 7 0 6 0 2.0 5 0 0 0 2.1 3 3 3 5 0 2.2 1 6 1	0 1.2 7 5 8 0 1.3 5 3 6 0 1.4 3 3 9 0 1.5 1 6 5 0 1.6 0 1 4 0 1.6 8 8 6 0 1.7 7 8 0 0 1.8 6 9 4 0 1.9 6 2 6 0 2.0 5 7 0 0 2.1 4 7 2
5 5 0 0 0 5 5 0 0 0 5 5 5 0 0 0 0 0 0 0	02.7605 02.7605 02.7605 02.7605 02.7605 02.7605 02.7605 02.7605 02.7605	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0	0 2 2 8 0 4 0 2 2 2 9 4 0 2 1 8 0 8 0 2 1 3 4 5 0 2 0 9 0 6 0 2 0 4 8 9 0 2 0 0 9 5 0 1 9 7 2 2 0 1 9 3 7 1 0 1 9 0 4 0	01.5 412 01.6 217 01.7 073 01.7 981 01.8 942 01.9 958 02.1 029 02.2 158 02.3 346 02.4 592	0 0.6 3 0 5 0 0.5 9 3 3 0 0.5 5 3 8 0 0.5 1 4 0 0.4 6 5 4 0 0.4 1 4 6 0 0.3 5 7 1 0 0.2 8 9 2 0 0.2 0 1 0 0 0.0 0 0	0 1.5 4 2 8 0 1.5 9 0 2 0 1.6 4 2 1 0 1.6 9 8 5 0 1.7 5 9 4 0 1.8 2 4 9 0 1.8 9 4 9 0 1.9 6 9 4 0 2.0 4 8 0 0 2.1 2 6 2	0 1.2 8 3 5 0 1.3 6 1 1 0 1.4 4 1 2 0 1.5 2 3 7 0 1.6 0 8 4 0 1.6 9 5 3 0 1.7 8 4 4 0 1.8 7 5 3 0 1.9 6 7 5 0 2.0 5 6 0
55500000000000000000000000000000000000	02.7049 02.7049 02.7049 02.7049 02.7049 02.7049 02.7049 02.7049	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0	022804 022294 021808 021345 020906 020489 02095 019722 019371	01.5412 01.6217 01.7073 01.7981 01.8942 01.9958 02.1029 02.2158 02.3346	0 0.5 9 7 9 0 0.5 5 8 2 0 0.5 1 5 8 3 0 0.4 6 9 3 0 0.4 1 8 3 0 0.3 6 0 4 0 0.2 9 2 0 0 0.2 0 3 2 0 0.0 0 0	0 1.5 4 2 5 0 1.5 8 9 9 0 1.6 4 1 8 0 1.6 9 8 2 0 1.7 5 9 2 0 1.8 2 4 4 0 1.8 9 4 2 0 1.9 6 7 9 0 2.0 4 1 9	01.2912 01.3686 01.4485 01.5308 01.6153 01.7019 01.7904 01.8804 01.9673
0 5 0	02.6497 02.6497 02.6497 02.6497 02.6497 02.6497 02.6497 02.6497	0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70	0 2 2 8 0 4 0 2 2 2 9 4 0 2 1 8 0 8 0 2 1 3 4 5 0 2 .0 9 0 6 0 2 .0 9 5 0 1 .9 7 2 2	01.5412 01.6217 01.7073 01.7981 01.8942 01.9958 02.1029 02.2158	0 0.5 6 2 5 0 0.5 1 9 7 0 0.4 7 3 3 0 0.4 2 1 9 0 0 3 2 9 4 9 0 0 2 0 5 6 0 0 0 0 0 0	0 1.5 4 2 2 0 1.5 8 9 7 0 1.6 4 1 6 0 1.6 9 8 8 0 1.7 5 8 8 0 1.8 2 3 9 0 1.8 9 3 0 0 1.9 6 3 0	01.2988 01.3760 01.4557 01.5379 01.6219 01.7081 01.7958 01.8811
050 050 050 050 050 050 050	02.5950 02.5950 02.5950 02.5950 02.5950 02.5950	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0	022804 022294 021808 021345 02.0906 02.0489 02.0095	01.5412 01.6217 01.7073 01.7981 01.8942 01.9958 02.1029	00.5237 00.4771 00.4255 00.3670 00.2978 00.2079 00.0000	0 1.5 4 1 9 0 1.5 8 9 5 0 1.6 4 1 5 0 1.6 9 7 8 0 1.7 5 8 4 0 1.8 2 3 1 0 1.8 8 9 1	01.3063 01.3833 01.4628 01.5445 01.6283 01.7138 01.7975
0.50 0.50 0.50 0.50 0.50	02.5408 02.5408 02.5408 02.5408 02.5408 02.5408	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0	022804 022294 021808 021345 020906 020489	01.5412 01.6217 01.7073 01.7981 01.8942 01.9958	00.4806 00.4289 00.3702 00.3007 00.2102 00.0000	0 1.5 4 1 7 0 1.5 8 9 3 0 1.6 4 1 3 0 1.6 9 7 6 0 1.7 5 7 9 0 1.8 2 0 1	01.3138 01.3906 01.4698 01.5511 01.6343 01.7163
0.50 0.50 0.50 0.50 0.50	02.4872 02.4872 02.4872 02.4872 02.4872	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0	022804 022294 021808 021345 020906	01.5412 01.6217 01.7073 01.7981 01.8942	00.4321 00.3732 00.3034 00.2126 00.0000	0 1.5 4 1 5 0 1.5 8 9 2 0 1.6 4 1 2 0 1.6 9 7 3 0 1.7 5 5 7	0 1.3 2 1 3 0 1.3 9 7 7 0 1.4 7 6 6 0 1.5 5 7 3 0 1.6 3 7 6
0.50 0.50 0.50 0.50	0 2 .4 3 4 2 0 2 .4 3 4 2 0 2 .4 3 4 2 0 2 .4 3 4 2	0.00 0.10 0.20 0.30	0 2.28 0 4 0 2.229 4 0 2.18 0 8 0 2.13 4 5	01.5412 01.6217 01.7073 01.7981	00.3760 00.3060 00.2148 00.0000	0 1.5 4 1 3 0 1.5 8 9 1 0 1.6 4 1 0 0 1.6 9 5 7	0 1.3 2 8 6 0 1.4 0 4 8 0 1.4 8 3 1 0 1.5 6 1 6
0.50 0.50 0.50	023820 023820 023820	0.00 0.10 0.20	022804 022294 021808	01.5412 01.6217 01.7073	00.3083 00.2169 00.0000	0 1.5 4 1 2 0 1.5 8 9 0 0 1.6 4 0 1	01.3359 01.4116 01.4882
0.50	023306 023306	0.00	022804	01.5412	00.2188	01.5412	01.3430
0.50	022804	0.00	022804	01.5412	00.000	01.5412	01.3500

TABLE I. - FUNCTIONS FOR CALCULATING THE FLOW ABOUT FLAT-TOP CONFIGURATIONS - Continued

M _∞ 8 _c	$\frac{\lambda}{\delta_c}$	δ _c	$\left(\frac{\omega_{\rm B}}{\delta_{\rm C}}\right)_{\rm O}$	$\left(\frac{p_c}{p_\infty}\right)_{\mathcal{O}}$	(Ψ) _{π/2}	$\left(\frac{p_{c}}{p_{\infty}}\right)_{\pi/2}$	$\left(\frac{p}{p_{\infty}}\right)_{\lambda}$
0 à 0 0 à 0	0 2 .5 .6 .3 0 2 .5 .5 .5 .6 .3 0 2 .5 .5 .5 .6 .3 0 2 .5 .5 .6 .5 .5 .6 .5 .5 .6 .5 .5 .5 .6 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0 1.0 0	01.9944 01.9489 01.9062 01.8661 01.8287 01.7938 01.7613 01.7311 01.7030 01.6770 01.6529	01.7.278 01.8384 01.9567 02.0830 02.2175 02.3603 02.5118 02.6719 02.8410 03.0191 03.2063	0 0.7 218 0 0.6 817 0 0.6 4 0 0 0 0.5 9 6 0 0 0.5 4 9 3 0 0.4 9 9 0 0 0.4 4 3 7 0 0.3 814 0 0.3 0 7 9 0 0.2 1 2 8 0 0.0 0 0 0	01.7336 01.7931 01.8595 01.9329 02.0132 02.1006 02.1952 02.2970 02.4058 02.5209 02.6341	0 1.3 7 9 7 0 1.4 8 8 2 0 1.5 9 9 2 0 1.7 1 2 9 0 1.8 2 9 7 0 1.9 4 9 4 0 2.0 7 2 1 0 2.1 9 7 7 0 2.3 2 5 5 0 2.4 5 5 5 0 2.5 7 7 9
0 & 0 0 & 0	02.4964 02.4964 02.4964 02.4964 02.4964 02.4964 02.4964 02.4964 02.4964	0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90	01.9944 01.9489 01.9062 01.8661 01.8287 01.7938 01.7613 01.7311 01.7030 01.6770	01.7278 01.8384 01.93830 02.2175 02.3603 02.5118 02.6719 02.8410 03.0191	00.6889 00.6467 00.6023 00.5551 00.5043 00.4485 00.3857 00.3116 00.2157	01.7325 01.7921 01.8585 01.9317 02.0119 02.0991 02.1932 02.2942 02.4015 02.5079	01.3932 01.5006 01.6107 01.7237 01.8397 01.9586 02.0804 02.2048 02.3310 02.4509
0 20.0 0 20.0 0 20.0 0 20.0 0 20.0 0 20.0 0 20.0	02.4372 02.4372 02.4372 02.4372 02.4372 02.4372 02.4372 02.4372 02.4372	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0	01.9944 01.9489 01.9062 01.8661 01.8287 01.7938 01.7613 01.7311 01.7030	01.7278 01.8384 01.9567 02.0830 02.2175 02.3603 02.5118 02.6719 02.8410	0 0.6 5 3 3 0 0.6 0 8 5 0 0.5 6 9 6 0 0.4 5 3 4 0 0.3 9 0 0 0 0.2 1 8 6 0 0.0 0 0	01.7315 01.7911 01.8575 01.9307 02.0108 02.1912 02.2909 02.3907	01.4065 01.5129 01.6221 01.7343 01.8494 02.0881 02.2107 02.3280
0 3.0 0 3.0 0 3.0 0 3.0 0 3.0 0 3.0 0 3.0 0 3.0 0 3.0	02.3785 02.3785 02.3785 02.3785 02.3785 02.3785 02.3785 02.3785	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0	01.9944 01.9489 01.9062 01.8661 01.7938 01.7613 01.7311	01.7278 01.8384 01.9567 02.0830 02.2175 02.3603 02.5118 02.6719	0 0.6 1 4 5 0 0.5 6 6 6 0 0.5 1 4 9 0 0.4 5 8 2 0 0 .3 9 4 3 0 0 .3 1 9 0 0 0 .2 2 1 6 0 0 .0 0 0	01.7306 01.7903 01.8567 01.9299 02.0997 02.0961 02.1886 02.2822	0 1.4 1 9 6 0 1.5 2 4 9 0 1.6 3 3 2 0 1.7 4 4 5 0 1.8 5 8 7 0 1.9 7 5 7 0 2.0 9 4 7 0 2.2 0 9 4
0 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0 0 & 0	023206 023206 023206 023206 023206 023206 023206	0.00 0.10 0.20 0.30 0.40 0.50 0.60	01.9944 01.9489 01.9062 01.8661 01.8287 01.7938 01.7613	01.7278 01.8384 01.9567 02.0830 02.2175 02.3603 02.5118	0 0.5 7 1 9 0 0.5 2 0 0 0 0.4 6 2 9 0 0.3 9 8 6 0 0.3 2 2 7 0 0.2 2 4 6 0 0.0 0 0	01.7298 01.7896 01.8561 01.9291 02.0086 02.0942 02.1817	0 1.4 3 2 5 0 1.5 3 6 7 0 1.6 4 4 1 0 1.7 5 4 4 0 1.8 6 7 6 0 1.9 8 2 9 0 2.0 9 5 1
0 3.0 0 3.0 0 3.0 0 3.0 0 3.0 0 3.0 0 3.0	022634 022634 022634 022634 022634 022634	0.00 0.10 0.20 0.30 0.40 0.50	019944 019489 019062 018661 018287 017938	01.7278 01.8384 01.9567 02.0830 02.2175 02.3603	0 0 .5 2 4 7 0 0 .4 6 7 4 0 0 .4 0 2 7 0 0 .3 2 6 3 0 0 .2 2 7 5 0 0 .0 0 0 0	01.7291 01.7891 01.8555 01.9284 02.0073 02.0889	0 1.4 4 5 1 0 1.5 4 8 3 0 1.6 5 4 7 0 1.7 6 3 9 0 1.8 7 5 6 0 1.9 8 5 1
0 & 0 0 & 0 0 & 0 0 & 0 0 & 0	022072 022072 022072 022072 022072	0.00 0.10 0.20 0.30 0.40	01.9944 01.9489 01.9062 01.8661 01.8287	01.7278 01.8384 01.9567 02.0830 02.2175	0 0.4 7 1 4 0 0.4 0 6 5 0 0.3 2 9 8 0 0.2 3 0 4 0 0.0 0 0 0	01.7286 01.7886 01.8550 01.9275 02.0033	0 1.4 5 7 5 0 1.5 5 9 6 0 1.6 6 4 9 0 1.7 7 2 8 0 1.8 7 9 4
0 & 0 0 & 0 0 & 0 0 & 0	021520 021520 021520 021520	0.0 0 0.1 0 0.2 0 0.3 0	01.9944 01.9489 01.9062 01.8661	01.7278 01.8384 01.9567 02.0830	0 0.4 0 9 8 0 0.3 3 2 9 0 0.2 3 3 1 0 0.0 0 0 0	0 1.7 2 8 2 0 1.7 8 8 2 0 1.8 5 4 5 0 1.9 2 4 7	0 1.4 6 9 6 0 1.5 7 0 6 0 1.6 7 4 5 0 1.7 7 8 4
0.60	02.0980 02.0980 02.0980	0.00 010 020	01.9944 01.9489 01.9062	01.7278 01.8384 01.9567	00.3356 00.2357 00.0000	01.7279 01.7880 01.8528	0 1.4 8 1 4 0 1.5 8 1 2 0 1.6 8 1 9
0 & 0	02.0454	0.00	01.9944	01.7278 01.8384	00.2378	01.7277 01.7872	01.4929
0.60	019944	0.00	019944	01.7278	00.000	01.7278	01.5040

TABLE I.- FUNCTIONS FOR CALCULATING THE FLOW ABOUT FLAT-TOP CONFIGURATIONS - Continued

M _∞ δ _c	$\frac{\lambda}{\delta_c}$	<u>α</u> δc	$\left(\frac{\omega_{\rm B}}{\delta_{\rm C}}\right)_{\rm O}$	$\left(\frac{p_c}{p_{\infty}}\right)_{O}$	(Ψ) _{π/2}	$\left(\frac{p_c}{p_\infty}\right)_{\pi/2}$	$\left(\frac{p}{\overline{p}_{\infty}}\right)_{\lambda}$
0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	023802 023802 023802 023802 023802 023802 023802 023802 023802 023802 023802	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0 1.0 0	01.8002 01.7598 01.7225 01.6880 01.6563 01.6273 01.6006 01.5761 01.5538 01.5333 01.5147	01.9388 02.0849 02.2420 02.4106 02.5909 02.7832 02.9876 03.2045 03.4339 03.6760 03.9309	00.7711 00.7265 00.6807 00.6330 00.5825 00.5284 00.4692 00.4027 00.3244 00.2234	01.9522 02.0239 02.1057 02.1975 02.2994 02.4117 02.5344 02.6677 02.8113 02.9640 03.1133	0 1.4 9 9 0 0 1.5 4 3 1 0 1.7 8 9 8 0 2.0 9 1 8 0 2.2 4 8 8 0 2.4 0 9 8 0 2.5 7 4 7 0 2.7 4 2 9 0 2.9 1 3 0 0 3.0 7 2 0
0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	023171 023171 023171 023171 023171 023171 023171 023171 023171 023171	0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90	01.8002 01.7598 01.7225 01.6880 01.6563 01.6273 01.6006 01.5761 01.5538 01.5333	01.9388 02.0849 02.2420 02.4106 02.5909 02.7832 02.9876 03.2045 03.4339 03.6760	00.7357 00.6891 00.6407 00.5897 00.5350 00.4752 00.4080 00.3290 00.2269	01.9496 02.0214 02.1032 02.1949 02.2966 02.4084 02.5304 02.6625 02.8036	01.5204 01.6618 01.8053 02.1049 02.2603 02.4196 02.5823 02.7473 02.9027
0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	0 2 2 5 4 8 0 2 2 5 5 4 8 0 2 2 2 2 5 5 4 8 0 2 2 2 2 2 5 5 4 8 0 2 2 2 2 5 5 4 8	0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80	01.8002 01.7598 01.7225 01.6863 01.6273 01.62761 01.5761	01.9388 02.0849 02.2420 02.4106 02.5909 02.7832 02.9876 03.2045 03.4339	0 0.6 9 7 3 0 0.6 4 8 3 0 0.5 9 6 7 0 0.5 4 1 4 0 0.4 8 1 0 0 0.4 1 3 2 0 0 .3 3 3 0 5 0 0 .0 0 0 0	01.9473 02.0192 02.1010 02.1925 02.2940 02.4053 02.65565 02.7864	0 1.5 4 1 2 0 1.6 8 0 0 0 1.8 2 2 0 0 1.9 6 7 7 0 2.1 1 7 4 0 2.2 7 1 0 0 2.4 2 8 3 0 2.5 8 8 0 0 2.7 3 9 7
0.70 0.70 0.70 0.70 0.70 0.70 0.70	021932 021932 021932 021932 021932 021932 021932	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0	01.8002 01.7598 01.7225 01.6880 01.6563 01.6273 01.6006 01.5761	01.9388 02.0849 02.2420 02.4106 02.5909 02.7832 02.9876 03.2045	0 0.6 5 5 5 0 0.6 0 3 4 0 0.5 4 7 6 0 0.4 8 6 7 0 0.4 1 8 3 0 0.3 3 3 7 9 0 0.2 3 4 0 0 0 0.0 0 0	01.9452 02.0173 02.0991 02.1905 02.2916 02.4022 02.5218 02.6425	01.5614 01.6977 01.8376 01.9815 02.1293 02.2809 02.4352 02.5831
0.70 0.70 0.70 0.70 0.70 0.70	021325 021325 021325 021325 021325 021325 021325	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0	01.8002 01.7598 01.7225 01.6880 01.6563 01.6273 01.6006	01.9388 02.0849 02.2420 02.4106 02.5909 02.7832 02.9876	0 0.6 0 9 5 0 0.5 5 3 4 0 0.4 9 2 1 0 0.4 2 3 2 0 0.3 4 2 2 0 0 2 3 7 5 0 0.0 0 0 0	01.9434 02.0156 02.0974 02.1887 02.2893 02.3987 02.5107	01.5811 01.7149 01.8527 01.9946 02.1404 02.2892 02.4331
0.70 0.70 0.70 0.70 0.70	02.0730 02.0730 02.0730 02.0730 02.0730 02.0730	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0	01.8002 01.7598 01.7225 01.6880 01.6563 01.6273	01.9388 02.0849 02.2420 02.4106 02.5909 02.7832	00.5585 00.4969 00.4277 00.3462 00.2408 00.0000	01.9418 02.0142 02.0960 02.1870 02.2867 02.3902	01.6002 01.7316 01.8673 02.0071 02.1502 02.2899
0.70 0.70 0.70 0.70	02.0147 02.0147 02.0147 02.0147 02.0147	0.00 0.10 0.20 0.30 0.40	01.8002 01.7598 01.7225 01.6880 01.6563	01.9388 02.0849 02.2420 02.4106 02.5909	00.5009 00.4316 00.3498 00.2439 00.0000	01.9406 02.0131 02.0948 02.1852 02.2804	0 1.6 1 8 7 0 1.7 4 7 8 0 1.8 8 1 2 0 2.0 1 8 5 0 2.1 5 3 8
0.70 0.70 0.70 0.70	01.9580 01.9580 01.9580 01.9580	0.00 010 020 030	01.8002 01.7598 01.7225 01.6880	01.9388 02.0849 02.2420 02.4106	0 0.4 3 4 6 0 0.3 5 2 9 0 0.2 4 6 8 0 0.0 0 0 0	01.9396 02.0123 02.0937 02.1808	0 1.6 3 6 6 0 1.7 6 3 3 0 1.8 9 4 3 0 2.0 2 5 0
0.70 0.70 0.70	01.9031 01.9031 01.9031	0.00 0.10 0.20	01.8002 01.7598 01.7225	01.9388 02.0849 02.2420	00.3550 00.2491 00.0000	01.9390 02.0116 02.0910	01.6538 01.7781 01.9039
0.70	01.8504 01.8504	0.00	01.8002 01.7598	01.9388 02.0849	00.2507	01.9387	01.6703 01.7907
0.70	01.8002	0.00	01.8002	01.9388	00.000	01.9388	01.6860

TABLE I. - FUNCTIONS FOR CALCULATING THE FLOW ABOUT FLAT-TOP CONFIGURATIONS - Continued

M∞8c	$\frac{\lambda}{\delta_c}$	<u>α</u> δ _c	$\left(\frac{\omega_{\rm B}}{\delta_{\rm C}}\right)_{\rm O}$	$\left(\frac{p_c}{\overline{p}_{\infty}}\right)_{O}$	(Ψ) _{π/2}	$\left(\frac{p_{\mathbf{c}}}{p_{\infty}}\right)_{\pi/2}$	$\left(\frac{p}{p_{\infty}}\right)_{\lambda}$
0 8 0 0 8 0	02 2 5 5 4 02 2 5 5 5 4 02 2 5 5 5 4 02 2 2 5 5 5 4	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0 1.0 0	01.6621 01.6264 01.5939 01.5643 01.5133 01.4914 01.4716 01.45376 01.4230	02.1751 02.3623 02.5647 02.7827 03.0165 03.2666 03.5330 03.8161 04.1159 04.4326 04.7662	0 0.8 11 0 0 0.7 6 2 2 0 0.7 1 3 0 0 0.6 6 2 1 0 0.6 0 8 6 0 0.5 5 1 4 0 0.4 8 9 1 0 0.4 1 9 1 0 0.3 3 1 3 0 0.0 0 0	0 2.2 0 1 7 0 2.2 8 5 2 0 2.3 8 2 9 0 2.4 9 4 7 0 2.6 2 0 7 0 2.7 6 1 0 0 2.9 1 5 9 0 3.0 8 5 5 0 3.2 6 9 4 0 3.4 6 5 8 0 3.6 5 7 0	01.6354 01.8204 02.0066 02.1961 02.3901 02.5891 02.7933 03.0026 03.2162 03.4320 03.6316
0.8.0 0.8.0 0.8.0 0.8.0 0.8.0 0.8.0 0.8.0 0.8.0	021897 021897 021897 021897 021897 021897 021897 021897 021897	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0	01.6 6 2 1 01.6 2 6 4 01.5 9 3 9 01.5 6 4 3 01.5 3 7 6 01.5 1 3 3 01.4 7 1 6 01.4 5 3 8 01.4 3 7 6	021751 023623 025647 027827 030165 032666 0353360 038161 041159 044326	0 0 .7 7 3 3 0 0 .7 2 3 0 0 0 .6 7 1 3 0 0 .6 1 7 0 0 0 .5 5 9 2 0 0 .4 9 6 1 0 0 .4 2 5 4 0 0 .3 4 2 4 0 0 .2 3 5 5 0 0 .0 0 0 0	02.1965 02.2803 02.3782 02.4898 02.6154 02.7551 02.9091 03.0770 03.2573 03.4349	01.6667 01.8463 02.0285 02.2148 02.4060 02.6024 02.8039 03.0099 03.2186 03.4135
0.80 0.80 0.80 0.80 0.80 0.80 0.80	021247 021247 021247 021247 021247 021247 021247 021247 021247	0.00 0.10 0.20 0.30 0.40 0.50 0.70 0.80	01.6621 01.6264 01.59643 01.5376 01.5133 01.4914 01.4716 01.4538	02.1751 02.3623 02.56247 02.7827 03.0165 03.2666 03.5333 03.8161 04.1159	0 0.7 3 2 5 0 0.6 8 5 0 1 0 0.5 6 6 6 0 0.5 0 2 9 0 0.4 3 1 5 0 0 .3 4 7 7 0 0 .2 3 9 6 0 0 .0 0 0 0	021917 022760 023739 024854 02.6107 02.7497 02.9023 03.0674 03.2319	0 1.6 9 6 7 0 1.8 7 1 4 0 2.0 4 9 7 0 2.2 3 2 8 0 2.4 2 1 1 0 2.6 1 4 6 0 3.0 1 4 3 0 3.2 0 4 2
0.8 0 0.8 0 0.8 0 0.8 0 0.8 0 0.8 0 0.8 0	02.0607 02.0607 02.0607 02.0607 02.0607 02.0607 02.0607 02.0607	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0	01.6621 01.6264 01.5939 01.5643 01.5376 01.5133 01.4914 01.4716	02.1751 02.3623 02.5647 02.7827 03.0165 03.2666 03.5330 03.8161	0 0.6 8 8 0 0 0.6 3 2 6 0 0.5 7 3 6 0 0.5 0 9 4 0 0.4 3 7 3 0 0.3 5 2 7 0 0.2 4 3 7 0 0.0 0 0 0	0 2.1 8 7 5 0 2.2 7 2 1 0 2.3 7 0 2 0 2.4 8 1 6 0 2.6 0 6 4 0 2.7 4 4 4 0 2.8 9 4 9 0 3.0 4 6 8	01.7256 01.8955 02.0702 02.2501 02.4353 02.6255 02.8194 03.0040
0.80 0.80 0.80 0.80 0.80 0.80	01.9977 01.9977 01.9977 01.9977 01.9977 01.9977	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0	01.6621 01.6264 01.5939 01.5643 01.5376 01.5133 01.4914	021751 023623 025647 027827 030165 032666 035330	0 0.6 3 9 0 0 0.5 7 9 8 0 0.5 1 5 2 0 0.4 4 2 7 0 0.3 5 7 5 0 0.2 4 7 6 0 0.0 0 0 0	0 2.1 8 3 9 0 2.2 6 8 8 0 2.3 6 6 9 0 2.4 7 8 1 0 2.6 0 2 3 0 2.7 3 8 7 0 2.8 7 8 5	01.7534 01.9189 02.0898 02.2664 02.4483 02.6343 02.8132
0.8.0 0.8.0 0.8.0 0.8.0 0.8.0	01,9362 01,9362 01,9362 01,9362 01,9362 01,9362	0.00 0.10 0.20 0.30 0.40 0.50	01.6621 01.6264 01.5939 01.5643 01.5376 01.5133	02.1751 02.3623 02.5647 02.7827 03.0165 03.2666	00.5846 00.5200 00.4473 00.3618 00.2512 00.0000	02.1808 02.2661 02.3642 02.4751 02.5981 02.7260	0 1.7 8 0 0 0 1.9 4 1 3 0 2.1 0 8 6 0 2.2 8 1 7 0 2.4 5 9 4 0 2.6 3 2 4
0.8.0 0.8.0 0.8.0 0.8.0	01.8763 01.8763 01.8763 01.8763 01.8763	0.00 0.10 0.20 0.30 0.40	01.6621 01.6264 01.5939 01.5643 01.5376	021751 023623 025647 027827 030165	0 0 .5 2 3 3 0 0 .4 5 0 9 0 0 .3 6 5 4 0 0 .2 5 4 4 0 0 .0 0 0 0	02.1783 02.2639 02.3620 02.4720 02.5887	01.8056 01.9628 02.1264 02.2954 02.4620
0.8.0 0.8.0 0.8.0	01.8185 01.8185 01.8185 01.8185	0.00 0.10 0.20 0.30	01.6621 01.6264 01.5939 01.5643	02.1751 02.3623 02.5647 02.7827	00.4528 00.3678 00.2571 00.0000	02.1765 02.2623 02.3600 02.4655	01.8300 01.9833 02.1429 02.3025
080	01.7632 01.7632 01.7632	0.00 010 020	01.6621 01.6264 01.5939	02.1751 02.3623 02.5647	00.3686 00.2588 00.0000	02.1754 02.2611 02.3560	01.8533 02.0026 02.1546
080	01.7109 01.7109	0.00	01.6621	021751 023623	00.2593	02.1749	01.8753
0.80	01.6621	0.00	01.6621	021751	00.000	02.1751	01.8960

TABLE I. - FUNCTIONS FOR CALCULATING THE FLOW ABOUT FLAT-TOP CONFIGURATIONS - Continued

М∞8с	$\frac{\lambda}{\delta_{\mathbf{g}}}$	<u>α</u> δ _c	$\left(\frac{\omega_{\rm g}}{\delta_{\rm C}}\right)_{\rm O}$	$\left(\frac{p_c}{p_{\infty}}\right)_{O}$	(Ψ) _{π/2}	$\left(\frac{p_c}{p_\infty}\right)_{\pi/2}$	$\left(\frac{p}{p_{\infty}}\right)_{\lambda}$
0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	021638 021638 021638 021638 021638 021638 021638 021638 021638	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0 1.0 0	01.5603 01.5288 01.5006 01.4753 01.4527 01.4325 01.4144 01.3983 01.3840 01.3711 01.3596	02.4374 02.6719 02.9261 03.2007 03.4959 03.8121 04.1495 04.5082 04.8883 05.2900 05.7133	0 0 .8 4 3 0 0 0 .7 9 0 7 0 0 .7 3 8 5 0 0 .6 8 5 0 0 0 .6 2 9 1 0 0 .5 6 9 4 0 0 .5 0 4 4 0 0 .4 3 1 8 0 0 3 4 6 7 0 0 2 3 7 3	02.4847 02.5790 02.6931 02.8263 02.9786 03.1502 03.3414 03.5522 03.7821 04.0286 04.2673	0 1.7 9 1 4 0 2.0 2 2 2 2 0 2.2 5 2 7 0 2.4 8 6 7 0 2.7 2 6 1 0 2.9 7 2 0 0 3.2 2 4 4 0 3.4 8 3 1 0 3.7 4 7 2 0 4.0 1 3 5 0 4.2 5 7 9
0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	02,0959 02,0959 02,0959 02,0959 02,0959 02,0959 02,0959 02,0959	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0	01.5603 01.5288 01.5006 01.4753 01.4527 01.4325 01.4144 01.3983 01.3840 01.3711	02.4374 02.6719 02.9261 03.2007 03.4959 03.8121 04.1495 04.5082 04.8883 05.2900	0 0 .8 0 3 4 0 0 .7 5 0 0 0 0 .6 9 5 5 0 0 .6 3 8 7 0 0 .5 7 8 2 0 0 .5 1 2 5 0 0 .4 3 8 9 0 0 .3 5 2 8 0 0 .2 4 2 0 0 0 .0 0 0 0	02.4751 02.5705 02.6850 02.8182 02.9701 03.1410 03.5399 03.5395 03.7647 03.9856	0 1.8 3 4 2 0 2.0 5 6 0 0 2.2 8 0 2 0 2.5 0 9 4 6 0 2.9 8 6 6 0 3.2 3 5 0 0 3.4 8 9 1 0 3.7 4 6 3 0 3.9 8 4 7
0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0	0 2 2 2 2 8 8 8 8 8 2 2 2 2 2 2 8 8 8 8	0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80	01.5603 01.5288 01.5006 01.4753 01.4527 01.4325 01.4125 01.3983 01.3840	02.4374 02.6719 02.9261 03.2007 03.4959 03.8121 04.1495 04.5082 04.8883	0 0.7 6 0 6 0 0.7 0 5 3 0 0 .6 4 7 7 0 0 .5 2 0 2 0 0 .4 4 5 9 0 0 .3 5 8 8 0 0 .2 4 6 7 0 0 .0 0 0	02.46629 02.5679 02.6779 02.67109 02.96325 03.13208 03.5225 03.7293	0 1.8 7 4 7 0 2.0 8 8 5 0 2.3 0 6 7 0 2.5 3 1 0 0 2.7 6 2 0 0 2.9 9 9 7 0 3.2 4 3 5 0 3.4 9 1 1 0 3.7 2 3 0
0,9,0 0,9,0 0,9,0 0,9,0 0,9,0 0,9,0 0,9,0	01.9627 01.9627 01.9627 01.9627 01.9627 01.9627 01.9627 01.9627	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0	01.5603 01.5288 01.5006 01.4753 01.4525 01.4325 01.4144 01.3983	02.4374 02.6719 02.9261 03.2007 03.4959 03.8121 04.1495 04.5082	0 0.7 1 3 8 0 0.6 5 5 9 0 0.5 9 4 3 0 0.5 2 7 4 0 0.4 5 2 4 0 0.3 6 4 5 0 0.2 5 1 2 0 0.0 0 0 0	0 2.4 5 8 9 0 2.5 5 6 2 0 2.6 7 1 4 0 2.8 0 4 5 0 2.9 5 5 5 0 3.1 2 4 5 0 3.3 0 9 7 0 3.4 9 6 8	0 1.9 1 3 3 0 2.1 1 9 6 0 2.3 3 2 1 0 2.5 5 1 5 0 2.7 7 8 0 0 3.0 1 1 0 0 3.2 4 8 6 0 3.4 7 3 5
0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0	01.8978 01.8978 01.8978 01.8978 01.8978 01.8978 01.8978	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0	01.5603 01.5288 01.5006 01.4753 01.4527 01.4325 01.4144	02.4374 02.6719 02.9261 03.2007 03.4959 03.8121 04.1495	00.6622 00.6007 00.5336 00.4582 00.3697 00.2555 00.0000	0 2.4 5 2 4 0 2.5 5 0 4 0 2.6 6 5 9 0 2.7 9 8 9 0 2.9 4 9 3 0 3.1 1 5 9 0 3.2 8 6 9	0 1.9 5 0 0 0 2.1 4 9 5 0 2.3 5 6 4 0 2.5 7 0 9 0 2.7 9 2 5 0 3.0 1 9 4 0 3.2 3 6 8
0.90 0.90 0.90 0.90 0.90	01.8345 01.8345 01.8345 01.8345 01.8345 01.8345	0.00 0.10 0.20 0.30 0.40 0.50	01.5603 01.5288 01.5006 01.4753 01.4527 01.4325	02.4374 02.6719 02.9261 03.2007 03.4959 03.8121	00.6049 00.5382 00.4629 00.3742 00.2594 00.0000	0 2.4 4 7 0 0 2.5 4 5 6 0 2.6 6 1 3 0 2.7 9 4 0 0 2.9 4 2 8 0 3.0 9 8 2	0 1.9 8 5 1 0 2.1 7 8 1 0 2.3 7 9 5 0 2.5 8 8 8 0 2.8 0 4 4 0 3.0 1 3 7
0.90 0.90 0.90 0.90	01.7733 01.7733 01.7733 01.7733 01.7733	0.00 0.10 0.20 0.30 0.40	01.5603 01.5288 01.5006 01.4753 01.4527	02.4374 02.6719 02.9261 03.2007 03.4959	00.5404 00.4659 00.3775 00.2627 00.0000	02.4427 02.5419 02.6576 02.7893 02.9297	0 2.0 1 8 4 0 2.2 0 5 3 0 2.4 0 1 2 0 2.6 0 4 6 0 2.8 0 5 0
0.90 0.90 0.90 0.90	01.7147 01.7147 01.7147 01.7147	0.00 0.10 0.20 0.30	01.5603 01.5288 01.5006 01.4753	02.4374 02.6719 02.9261 03.2007	00.4664 00.3791 00.2650 00.0000	02.4397 02.5392 02.6545 02.7802	02.0500 02.2311 02.4212 02.6117
0.90 0.90 0.90	01.6592 01.6592 01.6592	0.00 0.10 0.20	01.5603 01.5288 01.5006	02.4374 02.6719 02.9261	00.3784 00.2659 00.0000	0 2.4 3 7 8 0 2.5 3 7 3 0 2.6 4 9 0	02.0799 02.2552 02.4349
0.90	01.6075 01.6075	0.00	01.5603 01.5288	02.4374	002649	02.4371	02.1079
0.90	01.5603	0.00	01.5603	02.4374	00.000	02.4374	02.1340

TABLE I. - FUNCTIONS FOR CALCULATING THE FLOW ABOUT FLAT-TOP CONFIGURATIONS - Continued

M∞8c	$\frac{\lambda}{\delta_c}$	<u>α</u> δ _c	$\left(\frac{\omega_{B}}{\delta_{C}}\right)_{O}$	$\left(\frac{p_{\mathbf{c}}}{p_{\infty}}\right)_{\mathbf{c}}$	(Ψ) _{π/2}	$\left(\frac{\overline{p}_{c}}{\overline{p}_{\infty}}\right)_{\pi/2}$	$\left(\frac{p}{p_{\infty}}\right)_{\lambda}$
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	02.0945 02.0945 02.0945 02.0945 02.0945 02.0945 02.0945 02.0945 02.0945 02.0945	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0 1.0 0	01.4832 01.4555 01.4310 01.4393 01.3902 01.37584 01.3584 01.3452 01.3232 01.3140	02.7.266 03.0143 03.3.271 03.6656 04.0300 04.4.207 04.8379 05.2816 05.7.520 06.2491 06.7.728	0 0 .8 6 8 5 0 0 .8 1 3 2 0 0 .7 5 8 7 0 0 .7 0 3 1 0 0 .6 4 5 1 0 0 .5 8 3 4 0 0 .5 1 6 4 0 0 .4 4 1 5 0 0 .3 5 4 0 0 0 .2 4 1 7	0 2.8 0 3 3 0 2.9 0 7 1 0 3.0 3 7 6 0 3.1 9 3 4 0 3.3 7 4 2 0 3.5 8 0 4 0 3.8 1 2 0 0 4.0 6 9 1 0 4.0 5 3 8 0 4.6 5 3 8 0 4.9 4 5 8	01.9691 02.2502 02.5290 02.8118 03.1013 03.3986 03.7040 04.0172 04.6585 04.9517
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	02,0249 02,0249 02,0249 02,0249 02,0249 02,0249 02,0249 02,0249 02,0249 02,0249	0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90	01.4832 01.4555 01.4310 01.4093 01.3733 01.3584 01.3455 01.3232	02.7266 03.0143 03.3271 03.6656 04.0300 04.4207 04.8379 05.7520 06.2491	0 0 .8 2 7 4 0 0 .7 7 1 4 0 0 .7 1 4 7 0 0 .6 5 5 3 0 0 .5 9 3 2 0 0 .5 2 5 3 0 0 .4 4 9 5 0 0 .3 6 0 8 0 0 .2 4 6 9 0 0 .0 0 0 0	0 2.78 7 2 0 2.89 3 4 0 3.0 2 49 0 3.1 8 1 0 0 3.3 6 1 7 0 3.5 6 7 1 0 3.79 7 2 0 4.0 5 1 5 0 4.3 2 7 0 0 4.5 9 6 4	0 2.0 2 4 4 0 2.2 9 2 2 0 2.5 6 2 2 0 2.6 3 8 2 0 3.1 2 1 9 0 3.7 1 4 0 0 4.0 2 1 0 0 4.0 3 1 4 0 4.6 1 7 1
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	01,9561 01,9561 01,9561 01,9561 01,9561 01,9561 01,9561 01,9561 01,9561	0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70	01.4832 01.4555 01.4393 01.3902 01.3733 01.35452 01.3335	02.7266 03.0143 03.3271 03.6656 04.0307 04.4207 04.8379 05.2816 05.7520	00.7829 00.7254 00.6626 00.6026 00.5339 00.4572 00.3674 00.2521 00.0000	0 2.7 7 3 0 0 2.8 8 1 1 0 3.0 1 3 6 0 3.1 7 0 1 0 3.3 5 0 5 0 3.5 5 4 9 0 3.7 8 3 0 0 4.0 3 2 3 0 4.2 7 9 8	02.0763 02.5324 02.5940 02.8633 03.1411 03.4274 03.7212 04.0195 04.2972
1.00 1.00 1.00 1.00 1.00 1.00 1.00	01.8882 01.8882 01.8882 01.8882 01.8882 01.8882 01.8882	0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70	01.4832 01.4555 01.4310 01.4093 01.3902 01.3733 01.3584 01.3452	02.7266 03.0143 03.3271 03.6656 04.0300 04.4207 04.8379 05.2816	0 0.7 3 4 3 0 0.6 7 4 4 0 0.6 1 0 9 0 0.5 4 1 7 0 0.4 6 4 4 0 0.3 7 3 7 0 0.2 5 7 1 0 0.0 0 0 0	0 2.7 6 0 5 0 2.8 7 0 4 0 3.0 0 3 7 0 3.1 6 0 4 0 3.3 4 0 4 0 3.5 4 3 5 0 3.7 6 7 7 0 3.9 9 4 1	0 2.1 2 5 3 0 2.3 7 0 8 0 2.6 2 4 3 0 2.8 8 6 9 0 3.1 5 8 5 0 3.4 3 8 4 0 3.7 2 3 9 0 3.9 9 2 8
1.00 1.00 1.00 1.00 1.00 1.00	01.8217 01.8217 01.8217 01.8217 01.8217 01.8217 01.8217	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0	01.4832 01.4555 01.4310 01.4093 01.3902 01.3733 01.3584	02.7266 03.0143 03.3271 03.6656 04.0300 04.4207 04.8379	0 0.6 8 0 7 0 0.6 1 7 4 0 0.5 4 8 3 0 0.4 7 0 6 0 0.3 7 9 4 0 0.2 6 1 8 0 0.0 0 0 0	0 2.7 4 9 9 0 2.8 6 1 3 0 2.9 9 5 3 0 3.1 5 2 1 0 3.3 3 1 2 0 3.5 3 1 5 0 3.7 3 7 3	0 2.1 7 1 6 0 2.4 0 7 4 0 2.6 5 3 2 0 2.9 0 9 0 0 3.1 7 3 9 0 3.4 4 5 6 0 3.7 0 4 9
1.00 1.00 1.00 1.00 1.00	01.7570 01.7570 01.7570 01.7570 01.7570 01.7570	0.00 0.10 0.20 0.30 0.40 0.50	01.4832 01.4555 01.4310 01.4093 01.3902 01.3733	02.7266 03.0143 03.3271 03.6656 04.0300 04.4207	00.6210 00.5526 00.4753 00.3841 00.2659 00.0000	02.7412 02.8538 02.9883 03.1448 03.3221 03.5080	0 2.2 1 5 6 0 2.4 4 2 4 0 2.6 8 0 6 0 2.9 2 9 2 0 3.1 8 6 1 0 3.4 3 4 8
1.00 1.00 1.00 1.00 1.00	01.6947 01.6947 01.6947 01.6947 01.6947	0.00 0.10 0.20 0.30 0.40	01.4832 01.4555 01.4310 01.4093 01.3902	02.7266 03.0143 03.3271 03.6656 04.0300	00.5538 00.4777 00.3872 00.2692 00.0000	02.7344 02.8479 02.9827 03.1380 03.3046	02.2572 02.4756 02.7062 02.9468 03.1838
1.00 1.00 1.00 1.00	01.6354 01.6354 01.6354 01.6354	0.00 0.10 0.20 0.30	01.4832 01.4555 01.4310 01.4093	02.7266 03.0143 03.3271 03.6656	004767 003879 002711 00.0000	02.7296 02.8438 02.9781 03.1260	02.2966 02.5070 02.7296 02.9534
1.00	01.5798 01.5798 01.5798	0.00 0.10 0.20	01.4832 01.4555 01.4310	02.7266 03.0143 03.3271	00.3854 00.2712 00.000	02.7268 02.8411 02.9709	0 2.3 3 3 6 0 2.5 3 6 2 0 2.7 4 5 2
1.00	01.5289 01.5289	0.00	01.4832	02.7266	00.2687	02.7258	02.3682
1.00	01.4832	000	01.4832	02.7266	00.000	02.7266	02.4000

TABLE I.- FUNCTIONS FOR CALCULATING THE FLOW ABOUT FLAT-TOP

CONFIGURATIONS - Continued

M∞8c	$\frac{\lambda}{\delta_c}$	δς	$\left(\frac{\omega_{\rm B}}{\delta_{\rm C}}\right)_{\rm O}$	$\left(\frac{p_c}{p_{\infty}}\right)_{\mathcal{O}}$	(Y) _{π/2}	$\left(\frac{p_c}{p_\infty}\right)_{\pi/2}$	$\left(\frac{p}{P_{\infty}}\right)_{\lambda}$
120 120 120 120 120 120 120 120 120	01.9985 01.9985 01.9985 01.9985 01.9985 01.9985 01.9985 01.9985 01.9985 01.9985	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.5 0 0.7 0 0.8 0 0.9 0 1.0 0	013764 013549 013364 013304 013204 012947 012843 012753 012607 012848	03.3873 03.8001 04.2503 04.7384 05.2647 05.8293 06.4324 07.7740 07.7541 08.4726 09.2296	0 0 .9 0 4 6 0 0 .8 4 5 1 0 0 .7 8 7 3 0 0 .7 2 8 6 0 0 .6 6 7 6 0 0 .6 0 3 0 0 0 .5 3 3 0 0 0 .4 5 4 9 0 0 .3 6 3 9 0 0 .2 4 7 4 0 0 .0 0 0 0	0 3.5 5 3 7 0 3.6 7 0 0 0 3.8 3 2 4 0 4.0 3 6 6 0 4.2 8 1 2 0 4.5 6 6 0 0 4.8 9 1 1 0 5.2 5 6 0 0 5.6 5 9 1 0 6.0 9 4 5 0 6.5 1 0 7	0 2 3 9 5 9 0 2 7 8 8 4 0 3 1 7 5 7 0 3 5 6 8 6 0 3 9 7 1 2 0 4 3 8 5 3 0 4 8 1 1 1 0 5 2 4 7 8 0 5 6 9 3 1 0 6 1 4 0 8 0 6 5 4 3 2
120 120 120 120 120 120 120 120	01.9264 01.9264 01.9264 01.9264 01.9264 01.9264 01.9264 01.9264 01.9264	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0	01.3764 01.3549 01.3364 01.3204 01.32066 01.2947 01.2843 01.2753 01.2675 01.2607	0 3 .3 8 7 3 0 3 .8 0 0 1 0 4 .2 5 0 3 0 4 .7 3 8 4 0 5 .2 6 4 7 0 5 .8 2 9 3 0 6 .4 3 2 4 0 7 .0 7 4 0 0 7 .7 5 4 1 0 8 .4 7 2 6	0 0.8 6 1 6 0 0.8 0 2 0 0 0.7 4 2 1 0 0.6 8 0 2 0 0.6 1 4 5 0 0.5 4 3 5 0 0.4 6 4 2 0 0 3 7 1 8 0 0 2 5 3 5 0 0.0 0 0	0 3.5 1 7 1 0 3.6 4 0 8 0 3.8 0 1 2 9 0 4 .2 5 8 1 0 4.5 4 2 5 7 0 5.2 2 6 6 4 0 5.6 1 9 9 0 6.0 0 2 3	02.4775 02.8471 03.2198 03.6016 03.9950 04.4005 04.8177 05.2446 05.6755 06.0675
120 120 120 120 120 120 120 120	01.8549 01.8549 01.8549 01.8549 01.8549 01.8549 01.8549 01.8549	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0	013764 013364 013364 013306 013066 012947 012843 012753 012675	0 3 3 8 7 3 0 3 .8 0 0 1 0 4 .2 5 0 0 0 4 .7 3 8 4 0 5 .2 6 4 7 0 5 .8 2 9 3 0 6 .4 3 2 4 0 7 .0 7 4 0 0 7 .7 5 4 1	0 0.8 1 4 9 0 0.7 5 4 3 0 0.6 9 1 7 0 0.6 2 5 4 0 0.5 5 3 5 0 0.4 7 3 2 0 0.3 7 9 6 0 0.2 5 9 5 0 0.0 0 0	0 3.48 5 3 0 3.61 5 0 0 3.78 4 3 0 3.99 2 0 0 4.2 3 7 7 0 4.5 2 1 2 0 4.8 4 1 5 0 5.1 9 4 8 0 5.5 4 4 3	0 2.5 5 3 1 0 2.9 0 2 9 0 3.2 6 1 8 0 3.6 3 2 7 0 4.0 1 6 8 0 4.4 1 2 8 0 4.8 1 9 9 0 5.2 3 3 0 0 5.6 1 3 5
120	01.7844	0.00	013764	0 3 3 8 7 3	0 0 .7 6 3 8	0 3.4 5 7 9	0 2.6 2 3 7
120	01.7844	0.10	013549	0 3 8 0 0 1	0 0 .7 0 1 3	0 3.5 9 2 5	0 2.9 5 6 0
120	01.7844	0.20	013364	0 4 2 5 0 3	0 0 .6 3 4 8	0 3.7 6 4 7	0 3.3 0 1 6
120	01.7844	0.30	013204	0 4 7 3 8 4	0 0 .5 6 2 5	0 3.9 7 3 7	0 3.6 6 1 5
120	01.7844	0.40	0132066	0 5 2 6 4 7	0 0 .4 8 1 5	0 4.2 1 9 5	0 4 0.3 5 3
120	01.7844	0.50	012947	0 5 8 2 9 3	0 0 .3 8 6 9	0 4.5 0 1 4	0 4 4 2 1 2
120	01.7844	0.60	012843	0 6 4 3 2 4	0 0 .2 6 5 3	0 4.8 1 6 2	0 4 8 1 5 0
120	01.7844	0.70	012753	0 7 0 7 4 0	0 0 .0 0 0	0 5.1 3 3 6	0 5 1 8 2 8
120	01.7154	0.00	013764	0 3 3 8 7 3	0 0.7 0 7 2	0 3.4 3 4 8	0 2.6 9 0 1
120	01.7154	0.10	013549	0 3 .8 0 0 1	0 0.6 4 1 6	0 3.5 7 3 6	0 3.0 0 6 5
120	01.7154	0.20	013364	0 4 .2 5 0 3	0 0.5 6 9 6	0 3.7 4 8 1	0 3.3 3 9 4
120	01.7154	0.30	013204	0 4 .7 3 8 4	0 0.4 8 8 5	0 3.9 5 8 1	0 3.6 8 8 1
120	01.7154	0.40	013066	0 5 .2 6 4 7	0 0.3 9 3 3	0 4.2 0 3 2	0 4.0 5 0 9
120	01.7154	0.50	012947	0 5 .8 2 9 3	0 0.2 7 0 7	0 4.4 8 1 2	0 4.4 2 3 7
120	01.7154	0.60	012843	0 6 .4 3 2 4	0 0.0 0 0 0	0 4.7 6 7 4	0 4.7 7 7 1
120	01.6485	0.0 0	013764	03.3873	0 0 .6 4 4 1	0 3.4 1 6 1	02.7529
120	01.6485	0.1 0	013549	03.8001	0 0 .5 7 3 6	0 3.5 5 8 2	03.0546
120	01.6485	0.2 0	013364	04.2503	0 0 .4 9 3 3	0 3.7 3 4 5	03.3750
120	01.6485	0.3 0	013204	04.7384	0 0 .3 9 8 3	0 3.9 4 4 8	03.7120
120	01.6485	0.4 0	013066	05.2647	0 0 .2 7 5 2	0 4.1 8 7 4	04.0617
120	01.6485	0.5 0	012947	05.8293	0 0 .0 0 0 0	0 4.4 4 3 4	04.3990
120	01.5845	0.0 0	013764	03.3873	0 0.5 7 2 7	0 3.4 0 1 8	02.8124
120	01.5845	0.1 0	013549	03.8001	0 0.4 9 4 7	0 3.5 4 6 5	03.1004
120	01.5845	0.2 0	013364	04.2503	0 0.4 0 1 0	0 3.7 2 3 8	03.4083
120	01.5845	0.3 0	013204	04.7384	0 0.2 7 8 5	0 3.9 3 2 8	03.7322
120	01.5845	0.4 0	013066	05.2647	0 0.0 0 0 0	0 4.1 5 9 3	04.0510
120	01.5242	0.0 0	013764	03.3873	0 0 .4 9 0 9	0 3.3 9 2 0	02.8688
120	01.5242	0.1 0	013549	03.8001	0 0 .4 0 0 2	0 3.5 3 8 4	03.1436
120	01.5242	0.2 0	013364	04.2503	0 0 .2 7 9 8	0 3.7 1 5 5	03.4385
120	01.5242	0.3 0	013204	04.7384	0 0 .0 0 0 0	0 3.9 1 3 5	03.7361
120	01.4687	0.0 0	013764	03.3873	00.3946	0 3.3 8 6 5	02.9218
120	01.4687	0.1 0	013549	03.8001	00.2783	0 3.5 3 3 6	03.1839
120	01.4687	0.2 0	013364	04.2503	00.0000	0 3.7 0 4 2	03.4574
120	01.4192 01.4192	0.00	013764	03.3873	00.2731	03.3852	02.9710
120	013764	0.00	013764	03.3873	00.000	03.3873	03.0160

TABLE I. - FUNCTIONS FOR CALCULATING THE FLOW ABOUT FLAT-TOP CONFIGURATIONS - Continued

M∞8c	$\frac{\lambda}{\delta_c}$	δ _C	$\left(\frac{\omega_{\rm g}}{\delta_{\rm c}}\right)_{\rm o}$	$\left(\frac{p_c}{p_\infty}\right)_{\mathcal{O}}$	(Y) _{π/2}	$\left(\frac{p_c}{p_\infty}\right)_{\pi/2}$	$\left(\frac{p}{p_{\infty}}\right)_{\lambda}$
1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	01,9366 01,9366 01,9366 01,9366 01,9366 01,9366 01,9366 01,9366 01,9366	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0 1.0 0	013077 012911 012770 012651 012551 012392 012330 012277 012232 012193	041604 047230 053374 060041 067231 074945 083184 091946 101231 111038 121366	0 0 .9 2 7 1 0 0 .8 6 5 3 0 0 .8 0 5 4 0 0 .7 4 4 8 0 0 .6 8 2 0 0 0 .6 1 5 4 0 0 .5 4 3 4 0 0 .4 6 3 2 0 0 .3 7 0 0 0 0 2 5 5 0 8 0 0 .0 0 0 0	0 4.4615 0 4.5793 0 4.7710 0 5.0271 0 5.3440 0 5.7206 0 6.1561 0 6.6497 0 7.7923 0 8.3566	02.9220 03.4386 03.9494 04.4687 05.0021 05.5514 06.168 06.6968 07.2880 07.28811 08.4091
1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	01.8628 01.8628 01.8628 01.8628 01.8628 01.8628 01.8628 01.8628 01.8628	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0	01.3077 01.2911 01.2751 01.26551 01.2465 01.23330 01.2277 01.2232	0 4 1 6 0 4 0 4 7 2 3 0 0 5 3 3 7 4 0 6 0 0 4 1 0 6 7 2 3 1 0 7 4 9 4 5 0 8 3 1 8 4 0 9 1 9 4 6 1 0 1 2 3 1 1 1 1 0 3 8	00.8832 00.8216 00.75958 00.6282 00.55550 00.4787 00.3787 00.2574	0 4.39 3 2 0 4.52 7 4 0 4.72 7 5 0 4.98 8 2 0 5.3 0 7 5 0 5.6 8 4 3 0 6.1 1 7 9 0 6.6 0 5 8 0 7.1 4 0 5 0 7.6 5 7 6	03.0296 03.5137 04.0035 04.5075 05.0276 05.5647 06.1176 06.6833 07.2537 07.7679
1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	01.7896 01.7896 01.7896 01.7896 01.7896 01.7896 01.7896 01.7896	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0	01.3077 01.2911 01.2777 01.2651 01.2551 01.2455 01.2392 01.2330 01.2277	0 4.1 6 0 4 0 4.7 2 3 0 0 5.3 3 7 4 0 6.0 0 4 1 0 6.7 2 3 1 0 7.4 9 4 5 0 8.3 1 8 4 0 9.1 9 4 6 1 0.1 2 3 1	0 0.8 3 5 5 0 0.7 7 3 1 0 0.7 0 8 6 0 0.6 4 0 2 0 0.5 6 6 1 0 0.4 8 3 5 0 0.3 8 7 3 0 0.2 6 4 0 0 0.0 0 0	0 4.3 3 4 5 0 4.4 8 1 8 0 4.6 8 9 3 0 4.9 5 4 2 0 5.2 7 5 3 0 5.6 5 1 8 0 6.0 8 1 9 0 6.5 5 9 4 0 7.0 3 0 3	0 3.1 2 8 9 0 3.5 8 5 0 0 4.0 5 5 4 0 4.5 4 3 5 0 5.0 4 9 8 0 5.5 7 3 6 0 6.1 1 2 0 0 6.6 5 7 7 0 7.1 5 6 5
1.40 1.40 1.40 1.40 1.40 1.40 1.40	01.7173 01.7173 01.7173 01.7173 01.7173 01.7173 01.7173	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0	013077 012911 012770 012651 012551 012465 012392 012330	0 4.1 6 0 4 0 4.7 23 0 0 5.3 3 7 4 0 6.0 0 4 1 0 6.7 2 3 1 0 7.4 9 4 5 0 8.3 1 8 4 0 9.1 9 4 6	0 0.7 8 3 0 0 0.7 1 8 9 0 0.6 5 0 5 0 0.5 7 6 0 0 0.4 9 2 7 0 0.3 9 5 4 0 0.2 7 0 4 0 0.0 0 0	0 4.2 8 4 4 0 4.4 4 2 5 0 4.6 5 6 4 0 4.9 2 4 8 0 5.2 4 7 1 0 5.6 2 2 0 0 6.0 4 4 5 0 6.4 7 0 2	0 3.2 2 1 5 0 3.6 5 2 6 0 4.1 0 4 2 0 4.5 7 6 5 0 5.0 6 8 2 0 5.5 7 6 9 0 6.0 9 5 9 0 6.5 7 7 2
1.40 1.40 1.40 1.40 1.40 1.40	01.6466 01.6466 01.6466 01.6466 01.6466 01.6466	0.00 0.10 0.20 0.30 0.40 0.50 0.60	01.3077 01.2911 01.2770 01.2651 01.2551 01.2465 01.2392	0 4.1 6 0 4 0 4.7 2 3 0 0 5.3 3 7 4 0 6.0 0 4 1 0 6.7 2 3 1 0 7.4 9 4 5 0 8.3 1 8 4	0 0.7 2 4 7 0 0.6 5 7 6 0 0.5 8 3 7 0 0.5 0 0 3 0 0.4 0 2 4 0 0.2 7 6 3 0 0.0 0 0 0	0 4.2 4 2 6 0 4.4 0 9 5 0 4.6 2 8 7 0 4.8 9 9 8 0 5.2 2 2 1 0 5.5 9 1 9 0 5.9 7 3 5	0 3.3 0 8 7 0 3.7 1 7 2 0 4 1 5 0 4 0 4.6 0 6 3 0 5.0 8 2 1 0 5.5 7 1 7 0 6.0 3 3 1
1.40 1.40 1.40 1.40 1.40	01.5781 01.5781 01.5781 01.5781 01.5781 01.5781	0.00 0.10 0.20 0.30 0.40 0.50	013077 012911 012770 012651 012551 012465	0 4 1 6 0 4 0 4 .7 2 3 0 0 5 .3 3 7 4 0 6 .0 0 4 1 0 6 .7 2 3 1 0 7 .4 9 4 5	0 0 .6 5 9 3 0 0 .5 8 7 4 0 0 .5 0 5 3 0 0 .4 0 7 7 0 0 .2 8 1 3 0 0 .0 0 0 0	0 4.2 0 9 0 0 4.3 8 3 0 0 4.6 0 6 2 0 4.8 7 8 7 0 5.1 9 8 2 0 5.5 3 6 7	0 3.3 9 1 4 0 3.7 7 8 8 0 4.1 9 3 8 0 4.6 3 2 6 0 5.0 8 9 2 0 5.5 2 8 0
1.40 1.40 1.40 1.40 1.40	01.5128 01.5128 01.5128 01.5128 01.5128	0.00 0.10 0.20 0.30 0.40	01.3077 01.2911 01.2770 01.2651 01.2551	04.1604 04.7230 05.3374 06.0041 06.7231	00.5851 00.5058 00.4101 00.2846 00.0000	04.1836 04.3629 04.5888 04.8603 05.1570	0 3.4 7 0 3 0 3.8 3 7 8 0 4.2 3 4 4 0 4.6 5 3 8 0 5.0 6 6 3
1.40 1.40 1.40 1.40	01.4518 01.4518 01.4518 01.4518	0.00 0.10 0.20 0.30	01.3077 01.2911 01.2770 01.2651	04.1604 04.7230 05.3374 06.0041	00.4999 00.4081 00.2853 00.0000	0 4.1 6 6 5 0 4.3 4 9 4 0 4.5 7 5 8 0 4.8 3 2 0	0 3.5 4 5 5 0 3.8 9 3 9 0 4.2 7 1 2 0 4.6 5 3 0
1.40 1.40 1.40	013966 013966 013966	0.00 0.10 0.20	013077 012911 012770	04.1604 04.7230 05.3374	0 0 .4 0 0 0 0 0 .2 8 2 5 0 0 .0 0 0 0	0 4.1 5 7 5 0 4.3 4 2 0 0 4.5 5 9 5	0 3.6 1 6 8 0 3.9 4 6 6 0 4.2 9 3 1
1.40	013483 013483	0.00	01.3077	04.1604	00.2751	04.1559	03.6834
1.40	013077	0.00	01.3077	04.1604	00.000	04.1604	0 3.7 4 4 0

M _∞ δ _C	$\frac{\lambda}{\delta_c}$	<u>α</u> δ _c	$\left(\frac{\omega_{B}}{\delta_{C}}\right)_{O}$	$\left(\frac{p_c}{p_{\infty}}\right)_{O}$	(Y) _{π/2}	$\left(\frac{p_c}{p_\infty}\right)_{\pi/2}$	$\left(\frac{p}{p_{\infty}}\right)_{\lambda}$
1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	01.89 4 4 01.89 4 4	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0 1.0 0	01.2612 01.2482 01.2375 01.2286 01.2212 01.2099 01.2056 01.2020 01.1989 01.1964	05.0478 05.7847 06.5900 07.4638 08.4061 09.4169 10.4961 11.6435 12.859 14.1424 15.4937	0 0 .9 4 1 4 0 0 .8 7 8 5 0 0 .8 1 7 4 0 0 .7 5 5 5 0 0 .6 9 1 4 0 0 .6 2 3 5 0 0 .5 5 0 2 0 0 .4 6 8 6 0 0 .3 7 3 8 0 0 .2 5 2 8 0 0 .0 0 0 0	05.5312 05.6374 05.8547 06.1657 06.5634 07.0450 07.6085 08.2518 08.9701 09.7498	0 3.5 4 6 8 0 4.2 0 0 3 0 4.8 4 9 7 0 5.5 1 2 3 0 6.1 9 4 1 0 6.8 9 7 4 0 7.6 2 1 8 0 8.3 6 5 1 0 9.1 8 2 1 1 0.5 5 1 5
1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	01.819 4 01.819 4 01.819 4 01.819 4 01.819 4 01.819 4 01.819 4 01.819 4 01.819 4	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0	01.2612 01.2482 01.2375 01.2286 01.2212 01.2151 01.2056 01.2020 01.1989	05.0478 05.7847 06.5900 07.4638 08.4061 09.4169 10.4961 11.6435 12.8590	00.8973 00.8345 00.7715 00.7062 00.6372 00.5626 00.4797 00.3831 00.2598 00.0000	05.4196 05.55555 05.7883 06.1081 06.5107 06.9938 07.5555 08.1917 08.8913 09.5650	03.6799 04.2917 04.9142 05.5561 06.2204 06.9071 07.6147 08.3385 09.0675 09.7202
1.60 1.60 1.60 1.60 1.60 1.60 1.60	01.7450 01.7450 01.7450 01.7450 01.7450 01.7450 01.7450 01.7450	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0	01.2612 01.2482 01.2386 01.2212 01.2159 01.2056 01.2056	05.0478 05.7847 06.5900 07.4638 08.4061 09.4169 10.4961 11.6435 12.8590	0 0.8 4 9 1 0 0.7 8 5 7 0 0.7 1 9 9 0 0.6 5 0 1 0 0.5 7 4 5 0 0.4 9 0 4 0 0.3 9 2 3 0 0.2 6 6 9 0 0.0 0 0	0 5.3 2 4 2 0 5.4 8 3 9 0 5.7 3 0 2 0 6.0 5 8 0 0 6.9 4 8 5 0 7.5 0 6 1 0 8.1 2 8 3 0 8.7 4 0 5	0 3.8 0 2 8 0 4.3 7 8 3 0 4.9 7 5 1 0 5.5 9 6 2 0 6.9 1 0 8 0 7.5 9 8 5 0 8.2 9 5 2 0 8.9 2 7 9
1.60 1.60 1.60 1.60 1.60 1.60 1.60	01.6715 01.6715 01.6715 01.6715 01.6715 01.6715 01.6715 01.6715	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0	01.2612 01.2482 01.2375 01.2286 01.2215 01.2151 01.2099 01.2056	05.0478 05.7847 06.5900 07.4638 08.4061 09.4169 10.4961 11.6435	00.7959 00.7308 00.6611 00.5851 00.5002 00.4010 00.2738 00.0000	0 5.2 4 3 3 0 5.4 2 2 4 0 5.6 8 0 4 0 6.0 1 5 1 0 6.4 2 4 9 0 6.9 0 7 2 0 7.4 5 5 0 0 8.0 0 6 6	0 3.9 1 7 7 0 4.4 6 0 7 0 5.0 3 2 5 0 5.6 3 2 4 0 6.2 5 8 5 0 6.9 0 6 7 0 7.5 6 8 1 0 8.1 7 8 0
1.60 1.60 1.60 1.60 1.60 1.60	01.5995 01.5995 01.5995 01.5995 01.5995 01.5995	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0	01.2612 01.2482 01.2375 01.2286 01.2212 01.2151 01.2099	05.0478 05.7847 06.5900 07.4638 08.4061 09.4169 10.4961	0 0.7 3 6 6 0 0.6 6 8 5 0 0.5 9 3 2 0 0.5 0 8 3 0 0.4 0 8 5 0 0 2 8 0 1 0 0 .0 0 0	05.1760 05.3710 05.6388 05.9789 06.3897 06.8659 07.3581	0 4.0 2 6 3 0 4.5 3 9 4 0 5.0 8 6 6 0 5.6 6 4 5 0 6.2 6 8 8 0 6.8 9 0 9 0 7.4 7 4 7
1.60 1.60 1.60 1.60 1.60	01,5299 01,5299 01,5299 01,5299 01,5299	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0	01,2612 01,2482 01,2375 01,2286 01,2212 01,2151	05.0478 05.7847 06.5900 07.4638 08.4061 09.4169	0 0.6 6 9 7 0 0.5 9 6 9 0 0.5 1 3 4 0 0.4 1 4 1 0 0.2 8 5 3 0 0.0 0 0 0	0 5.1 2 2 2 0 5.3 2 9 8 0 5.6 0 5 3 0 5.9 4 8 6 0 6.3 5 6 4 0 6.7 9 0 5	0 4.1 3 0 1 0 4.6 1 5 0 0 5.1 3 7 5 0 5.6 9 1 9 0 6.2 6 9 9 0 6.8 2 3 5
1.60 1.60 1.60 1.60	01.4636 01.4636 01.4636 01.4636 01.4636	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0	01.2612 01.2482 01.2375 01.2286 01.2212	05.0478 05.7847 06.5900 07.4638 08.4061	0 0.5 9 3 5 0 0.5 1 3 4 0 0.4 1 6 2 0 0.2 8 8 6 0 0.0 0 0 0	05.0818 05.2990 05.5796 05.9225 06.3000	0 4.2 2 9 9 0 4.6 8 7 9 0 5.1 8 5 2 0 5.7 1 2 9 0 6.2 3 1 0
1.60 1.60 1.60 1.60	01.4021 01.4021 01.4021 01.4021	0.00 0.10 0.20 0.30	01.2612 01.2482 01.2375 01.2286	05.0478 05.7847 06.5900 07.4638	0 0 .5 0 5 9 0 0 .4 1 3 3 0 0 .2 8 8 9 0 0 .0 0 0	05.0550 05.2786 05.5609 05.8837	0 4.3 2 6 1 0 4.7 5 8 0 0 5.2 2 8 5 0 5.7 0 5 1
1.60 1.60 1.60	013471 013471 013471	0.0 0 0.1 0 0.2 0	01.2612 01.2482 01.2375	05.0478 05.7847 06.5900	0 0.4 0 3 3 0 0.2 8 5 1 0 0.0 0 0 0	0 5.0 4 1 4 0 5.2 6 8 1 0 5.5 3 9 0	0 4.4 1 8 3 0 4.8 2 4 4 0 5.2 5 3 0
1.60	012998 012998	0.00	01.2612	05.0478 05.7847	00.2759	05.0398	0 4.5 0 4 9 0 4.8 7 9 5
1.60	012612	0.00	01.2612	05.0478	00.000	05.0478	0 4.5 8 4 0

TABLE I. - FUNCTIONS FOR CALCULATING THE FLOW ABOUT FLAT-TOP CONFIGURATIONS - Continued

M∞8c	$\frac{\lambda}{\delta_c}$	<u>α</u> δ _c	$\left(\frac{\omega_{\rm S}}{\delta_{\rm C}}\right)_{\rm O}$	$\left(\frac{p_{\rm C}}{p_{\rm eq}}\right)_{\rm O}$	(Y) _{π/2}	$\left(\frac{p_{c}}{p_{\infty}}\right)_{\pi/2}$	$\left(\frac{p}{p_{\infty}}\right)_{\lambda}$
1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80	01.8643 01.8643 01.8643 01.8643 01.8643 01.8643 01.8643 01.8643 01.8643 01.8643	0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00	012283 012182 012100 012033 011979 011935 011898 011869 011844 011824 011808	06.0504 06.9862 08.0087 09.1181 10.3141 11.5967 12.9656 14.4206 15.9615 17.5881 19.3002	0 0 .9 5 0 9 0 0 .8 8 7 4 0 0 .8 25 5 0 0 .7 6 2 9 0 0 .6 9 7 8 0 0 .6 2 9 1 0 0 .5 5 4 8 0 0 .4 7 2 2 0 0 .3 7 6 3 0 0 .25 4 0 0 0 .0 0 0 0	0 6.7 6 61 0 6.8 4 5 6 0 7.08 3 8 0 7.4 5 2 5 0 7.9 3 9 7 0 8.5 3 9 7 0 9.2 4 8 8 1 0.0 6 3 4 1 0.9 7 6 1 1 1.9 6 8 3 1 2.9 0 1 0	0 4 2 6 7 9 0 5 0 7 1 8 0 5 8 7 8 6 0 6 6 9 8 6 0 7 5 4 7 1 0 8 4 2 3 2 0 9 3 2 6 3 1 0 2 5 3 2 1 1 1 9 7 3 1 2 1 7 1 8
1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80	01.7886 01.7886 01.7886 01.7886 01.7886 01.7886 01.7886 01.7886 01.7886	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0	012283 012182 012100 012033 011979 011935 011894 011869 011844 011824	06.0504 06.9862 08.0087 09.1181 10.3141 11.5967 12.9656 14.4206 15.9615 17.5881	00.9068 00.8434 00.7796 00.7134 00.6435 00.5678 00.4838 00.3861 00.2614 00.0000	0 6.59 8 9 0 6.7 2 6 1 0 6.9 8 9 5 0 7.3 7 2 8 0 7.8 6 8 3 0 8.4 7 1 8 0 9.1 7 9 4 0 9.9 8 5 2 1 0.8 7 3 6 1 1.7 2 6 2	0 4.4 2 6 4 0 5.1 7 9 8 0 5.9 5 0 3 0 6.7 4 7 1 0 7.5 7 3 2 0 8.4 2 8 1 0 9.3 0 9 4 1 0.21 0 9 1 1.1 1 8 1 1 1.9 2 5 9
1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80	01.7133 01.7133 01.7133 01.7133 01.7133 01.7133 01.7133 01.7133	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0	012283 012182 012100 012033 011979 011935 011869 011844	0 6.0 5 0 4 0 6.9 8 6 2 0 8.0 0 8 7 0 9.1 1 8 1 1 0.3 1 4 1 1 1 .5 9 6 5 1 4.4 2 0 6 1 5.9 6 1 5	0 0.8 5 8 5 0 0.7 9 4 3 0 0.7 27 7 0 0.6 5 7 0 0 0.5 8 0 4 0 0.4 9 5 1 0 0.3 9 5 7 0 0.2 6 8 8 0 0.0 0 0 0	0 6.4 5 6 6 0 6.6 2 2 1 0 6.9 0 7 5 0 7.3 0 3 9 0 7.8 0 6 7 0 8.4 1 2 1 0 9.9 0 3 1 1 0.6 7 6 5	0 4.5 7 3 2 0 5.2 8 2 0 0 6.0 2 0 3 0 6.7 9 0 8 0 7.5 9 3 1 0 8.4 2 4 9 0 9.2 8 0 4 1 0.1 4 6 6 1 0.9 2 9 3
1.80 1.80 1.80 1.80 1.80 1.80 1.80	01.6389 01.6389 01.6389 01.6389 01.6389 01.6389 01.6389	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0	012283 012182 012100 012033 011979 011935 011898 011869	06.0504 06.9862 08.0087 09.1181 10.31441 11.5967 12.9656 14.4206	0 0.8 0 5 0 0 0.7 3 9 1 0 0.6 6 8 5 0 0.5 9 1 5 0 0.5 0 5 4 0 0.4 0 4 8 0 0.2 7 6 0 0 0.0 0 0 0	0 6.3 3 6 4 0 6.5 3 3 2 0 6.8 3 7 5 0 7.2 4 5 3 0 7.7 5 3 6 0 8.3 5 8 2 0 9.0 4 9 0 0 9.7 4 4 3	0 4.7 1 1 1 0 5.3 7 9 5 0 6.0 8 6 1 0 6.8 2 9 5 0 7.6 0 6 3 0 8.4 1 1 3 0 9.2 3 2 4 0 9.9 8 6 5
1.80 1.80 1.80 1.80 1.80 1.80	01.5660 01.5660 01.5660 01.5660 01.5660 01.5660 01.5660	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0	01.2283 01.2182 01.2100 01.2033 01.1979 01.1935 01.1898	06.0504 06.9862 08.0087 09.1181 10.3141 11.5967 12.9656	0 0.7 4 5 0 0 0.6 7 6 1 0 0.6 0 0 0 0 0.5 1 3 9 0 0.4 1 2 8 0 0.2 8 2 6 0 0.0 0 0 0	0 6.2 3 6 9 0 6.4 5 9 1 0 6.7 7 9 3 0 7.1 9 6 2 0 7.7 0 7 2 0 8.3 0 4 5 0 8.9 2 2 7	0 4.8 4 2 2 0 5.4 7 2 9 0 6.1 4 8 0 0 6.8 6 2 9 0 7.6 1 1 4 0 8.3 8 2 2 0 9.1 0 3 0
1.80 1.80 1.80 1.80 1.80 1.80	01.4954 01.4954 01.4954 01.4954 01.4954 01.4954	0.00 0.10 0.20 0.30 0.40 0.50	012283 012182 012100 012033 011979 011935	06.0504 06.9862 08.0087 09.1181 10.3141 11.5967	00.6771 00.6036 00.5191 00.4185 00.2880 00.0000	06.1574 06.4000 06.7327 07.1555 07.6633 08.2060	0 4.9 6 8 3 0 5.5 6 3 1 0 6.2 0 6 3 0 6.8 9 0 5 0 7.6 0 4 5 0 8.2 8 6 5
1.80 1.80 1.80 1.80 1.80	01.4284 01.4284 01.4284 01.4284 01.4284	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0	012283 012182 012100 012033 011979	06.0504 06.9862 08.0087 09.1181 10.3141	00.5995 00.5187 00.4205 00.2913 00.0000	06.0979 06.3560 06.6973 07.1206 07.5895	05.0908 05.6507 06.2609 06.9099 07.5461
1.80 1.80 1.80 1.80	013666 013666 013666 013666	0.00 0.10 0.20 0.30	012283 012182 012100 012033	06.0504 06.9862 08.0087 09.1181	00.5100 00.4168 00.2913 00.0000	06.0587 06.3273 06.6719 07.0697	05.2103 05.7359 06.3106 06.8930
1.80 1.80 1.80	013117 013117 013117	0.00 0.10 0.20	01.2283 01.2182 01.2100	06.0504 06.9862 08.0087	0 0.4 0 5 4 0 0.2 8 6 6 0 0.0 0 0 0	0 6.0 3 9 5 0 6.3 1 3 1 0 6.6 4 3 6	05.3260 05.8175 06.3374
1.80	012654 012654	0.00	01.2283	06.0504	00.2762	06.0380	05.4357
1.80	01.2283	0.00	01.2283	06.0504	00.000	06.0504	05.5360

TABLE I.- FUNCTIONS FOR CALCULATING THE FLOW ABOUT FLAT-TOP CONFIGURATIONS - Continued

M‱8c	<u>λ</u> δc	<u>α</u> გc	$\left(\frac{\omega_{S}}{\delta_{C}}\right)_{O}$	$\left(\frac{p_c}{p_{\infty}}\right)_{O}$	(Ψ) _{π/2}	$\left(\frac{p_c}{p_{\infty}}\right)_{\pi/2}$	$\left(\frac{p}{p_{\infty}}\right)_{\lambda}$
2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00	01.8422 01.8422 01.8422 01.8422 01.8422 01.8422 01.8422 01.8422 01.8422 01.8422 01.8422	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0 1.0 0	012042 011963 011901 011851 011812 011785 011735 011735 011719 011706 011697	07.1690 08.3278 09.5939 10.9671 12.4471 14.0337 15.72566 17.5256 19.4300 21.4404 23.5559	0 0 .9 5 7 3 0 0 .8 9 3 3 6 0 0 .8 9 3 6 0 0 .7 6 8 0 0 0 .7 0 2 4 0 0 .6 3 3 0 0 0 .4 7 4 8 0 0 .2 5 4 8 0 0 .2 5 4 8 0 0 .2 5 0	08.16.81 08.20.43 08.45.84 08.48.75 09.47.30 10.20.51 11.07.78 12.08.51 13.21.69 14.44.84 15.60.18	05.0824 06.0517 07.0266 08.0272 09.0606 10.12896 11.23616 13.5616 13.5616 13.5616 13.5616
2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	01.7659 01.7659 01.7659 01.7659 01.7659 01.7659 01.7659 01.7659 01.7659	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0	01.2042 01.1963 01.1901 01.1851 01.1812 01.1780 01.1755 01.1719 01.1706	07.1690 08.3278 09.5939 10.9671 12.4471 14.03337 15.7266 17.52566 17.5266	00.9134 00.8497 00.7853 00.7185 00.6479 00.5716 00.4867 00.3882 00.2625 00.0000	07.9329 08.0398 08.0398 08.7825 09.3806 10.1185 10.9903 11.9872 13.0883 14.1421	052671 061768 071114 08.0801 09.0858 101277 11.2020 12.3011 13.4062 14.3860
2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	01.6900 01.6900 01.6900 01.6900 01.6900 01.6900 01.6900 01.6900	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0	01.2042 01.1963 01.1901 01.1851 01.1812 01.1780 01.1755 01.1735	07.1690 08.3278 09.5939 10.9671 12.4471 15.7266 17.5256 19.4302	0 0.8 6 5 2 0 0.8 0 0 6 0 0.7 3 3 3 0 0.6 6 1 9 0 0.5 8 4 4 0 0.3 9 8 2 0 0.2 7 0 1 0 0.0 0 0	07.7334 07.8972 08.2215 08.6922 09.3014 10.0432 10.9100 11.8845 12.8395	05.4389 06.2954 07.1907 08.1270 09.1033 10.1160 11.1580 12.2124 13.1616
8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	01.6149 01.6149 01.6149 01.6149 01.6149 01.6149 01.6149	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0	012042 011963 011901 011851 011812 011755 011735	07.1690 08.3278 09.5939 10.9671 12.447337 15.7266	0 0.8 1 1 5 0 0.7 4 5 1 0 0.6 7 3 8 0 0.5 9 6 1 0 0.5 0 9 1 0 0.2 7 7 6 0 0.0 0 0	07.5653 07.7756 08.1280 08.6158 09.23357 10.6844	05.6009 06.4085 07.2650 08.1676 09.1121 11.0897 12.0035
00.S 00.S 00.S 00.S 00.S 00.S	01.5413 01.5413 01.5413 01.5413 01.5413 01.5413 01.5413	0.00 0.10 0.20 0.30 0.40 0.50 0.60	01.2042 01.1963 01.1901 01.1851 01.1812 01.1780 01.1755	07.1690 08.3278 09.5939 10.9671 12.4471 14.0337 15.7266	0 0.7 5 1 1 0 0.6 8 1 7 0 0.6 0 4 8 0 0.5 1 7 9 0 0.4 1 5 8 0 0.2 8 4 4 0 0.0 0 0 0	07.4263 07.6746 08.0507 08.5523 09.1751 09.9085 10.6685	0 5.7 5 5 7 0 6.5 1 7 2 0 7.3 3 4 7 0 8.2 0 1 7 0 9.1 1 0 3 1 0.0 4 6 2 1 0.9 1 8 9
0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	01.4700 01.4700 01.4700 01.4700 01.4700 01.4700	0.00 0.10 0.20 0.30 0.40 0.50	012042 011963 011901 011851 011812 011780	071690 083278 095939 109671 124471 140337	00.6825 00.6085 00.5232 00.4217 00.2899 00.0000	07.3155 07.5941 07.9891 08.4999 09.1198 09.7843	0 5.9 0 5 7 0 6.6 2 2 7 0 7.4 0 0 2 0 8.2 2 8 4 0 9.0 9 3 3 0 9.9 1 7 6
200 200 200 200 200	01.4025 01.4025 01.4025 01.4025 01.4025	0.00 0.10 0.20 0.30 0.40	012042 011963 011901 011851 011812	07.1690 08.3278 09.5939 10.9671 12.4471	00.6038 00.5225 00.4235 00.2933 00.0000	07.2328 07.5345 07.9426 08.4553 09.0265	0 6.0 5 2 7 0 6.7 2 6 1 0 7.4 6 1 7 0 8.2 4 5 1 0 9.0 1 2 1
00.S 00.S 00.S	013403 013403 013403 013403	0.0 0 0.1 0 0.2 0 0.3 0	012042 01.1963 01.1901 01.1851	071690 083278 095939 109671	0 0.5 1 3 0 0 0.4 1 9 3 0 0.2 9 3 0 0 0.0 0 0 0	07.1786 07.4960 07.9097 08.3909	0 6.1 9 7 8 0 6.8 2 7 6 0 7.5 1 7 7 0 8.2 1 6 9
0.0.2	012856 012856 012856	0.00 0.10 0.20	012042 011963 011901	07.1690 08.3278 09.5939	0 0.4 0 6 6 0 0.2 8 7 6 0 0.0 0 0 0	07.1524 07.4776 07.8742	0 6.3 3 9 9 0 6.9 2 5 9 0 7.5 4 6 5
2.00	01.2400 01.2400	0.00	012042	07.1690 08.3278	00.2761	07.1513	06.4757
2.00	012042	0.00	01.2042	071690	00.000	07.1690	0 6.6 0 0 0

TABLE I. - FUNCTIONS FOR CALCULATING THE FLOW ABOUT FLAT-TOP CONFIGURATIONS - Continued

M _∞ δ _C	$\frac{\lambda}{\delta_c}$	$\frac{\alpha}{\delta_c}$	$\left(\frac{\omega_{\rm B}}{\delta_{\rm C}}\right)_{\rm O}$	$\left(\frac{p_c}{p_{\infty}}\right)_{O}$	(¥) _{π/2}	$\left(\frac{p_{\mathbf{c}}}{p_{\infty}}\right)_{\pi/2}$	$\left(\frac{p}{p_{\infty}}\right)_{\lambda}$
55555555555555555555555555555555555555	01.8072 01.8072 01.8072 01.8072 01.8072 01.8072 01.8072 01.8072 01.8072	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0 1.0 0	011662 011621 011592 011570 011554 011535 011535 011537 011527 011527	10.4755 12.2973 14.2863 16.4420 18.7639 21.2515 23.9042 26.7217 29.7036 32.8495 36.1591	0 0 9 6 6 7 0 0 9 0 2 8 0 0 8 3 9 9 0 0 7 7 5 8 0 0 7 0 9 3 0 0 5 6 2 9 0 0 4 7 8 5 0 0 3 8 0 6 0 0 2 5 5 9	12.4136 12.2613 12.3638 13.1238 13.1238 13.1278 16.4778 18.0614 19.8487 21.7957 23.6068	07.5173 08.9691 10.44497 13.5453 15.1795 18.5974 20.3605 22.1205 23.6466
222222222222222222222222222222222222222	01.7299 01.7299 01.7299 01.7299 01.7299 01.7299 01.7299 01.7299	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0	01.1662 01.1621 01.1592 01.1554 01.1554 01.1533 01.15330 01.15328 01.1527	10.4755 12.2973 14.2863 16.4420 18.7639 21.2515 23.9042 26.7217 29.7036 32.8495	00.9232 00.8591 00.7939 00.7262 00.6546 00.5771 00.4912 00.2640 00.0000	1 1.9 5 1 7 1 1.9 5 1 6 1 2.3 0 1 8 1 2.9 4 1 7 1 3.8 3 9 7 1 4.9 7 6 8 1 6.3 3 8 4 1 7.9 0 6 8 1 9.6 4 4 3 2 1.2 9 8 4	07.7739 09.1415 10.5575 12.0318 13.5661 15.1581 16.8008 18.4813 20.1691 21.6545
250 250 250 250 2550 2550 2550 2550 255	01.6530 01.6530 01.6530 01.6530 01.6530 01.6530 01.6530 01.6530	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0	011662 011621 011592 011570 011554 011543 011530 011538	10.4755 12.2973 14.2863 16.4420 18.7639 21.2515 23.9042 26.7217 29.7036	00.8753 00.8100 00.7418 00.6694 00.5909 00.5034 00.4018 00.2720 00.0000	1 1.5 6 2 2 1 1.6 8 5 1 1 2.1 0 5 3 1 2.7 8 7 1 1 3.7 0 9 3 1 4.8 5 6 6 1 6.2 1 2 6 1 7.7 4 5 5 1 9.2 4 2 4	0 8.0 1 4 5 0 9.3 0 4 9 1 0.6 6 1 9 1 2.0 8 5 9 1 3.5 7 4 0 1 5.1 1 9 5 1 6.7 1 0 2 1 8.3 1 8 6 1 9.7 5 6 8
55555555555555555555555555555555555555	01.5768 01.5768 01.5768 01.5768 01.5768 01.5768 01.5768 01.5768	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0	011662 011621 011592 011570 011554 011543 011535	10.4755 12.2973 14.2863 16.4420 18.7639 21.2515 23.9042 26.7217	0 0.8 2 1 5 0 0.7 5 4 3 0 0.6 8 2 0 0 0.6 0 3 1 0 0.5 1 4 8 0 0.4 1 1 7 0 0.2 7 9 9 0 0.0 0 0 0	11.2357 11.4593 11.9398 12.6581 13.5999 14.7507 16.0838 17.4237	0 8.2 4 3 3 0 9.4 6 1 0 1 0.7 5 8 6 1 2.1 2 9 9 1 3.5 6 7 3 1 5.0 5 8 6 1 6.5 7 9 0 1 7.9 6 2 3
250 250 2550 2555 255 255 255 255 255 25	01.5020 01.5020 01.5020 01.5020 01.5020 01.5020 01.5020	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0	011662 011621 011592 011570 011554 011543 011535	10.4755 12.2973 14.2863 16.4420 18.7639 21.2515 23.9042	00.7607 00.6904 00.6123 00.5241 00.4204 00.2871 00.0000	1 0.9 6 6 7 1 1.2 7 2 6 1 1.8 0 4 0 1 2.5 5 2 2 1 3.5 0 6 4 1 4.6 4 5 5 1 5.8 2 8 6	0 8.4 6 4 2 0 9.6 1 1 9 1 0.8 4 8 5 1 2.1 6 3 1 1 3.5 4 2 8 1 4.9 6 4 2 1 6.2 8 2 7
2.50 2.50 2.50 2.50 2.50 2.50	01.4295 01.4295 01.4295 01.4295 01.4295 01.4295	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0	011662 011621 011592 011570 011554 011543	10.4755 12.2973 14.2863 16.4420 18.7639 21.2515	00.6910 00.6160 00.5295 00.4265 00.2928 00.0000	1 0.7 5 2 5 1 1.1 2 4 4 1 1.6 9 6 7 1 2.4 6 6 0 1 3.4 1 8 5 1 4.4 4 6 0	0 8.6 8 1 5 0 9.7 5 9 7 1 0.9 3 2 5 1 2.1 8 4 3 1 3.4 9 2 7 1 4.7 3 4 5
250 250 250 250 250 250	013610 013610 013610 013610 013610	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0	011662 011621 011592 011570 011554	10.4755 12.2973 14.2863 16.4420 18.7639	00.6106 00.5284 00.4281 00.2961 00.0000	10.5930 11.0154 11.6167 12.3930 13.2675	08.8989 09.9070 11.0114 12.1894 13.3394
2.5 0 2.5 0 2.5 0 2.5 0	012983 012983 012983 012983	0.00 0.10 0.20 0.30	011662 011621 011592 011570	10.4755 12.2973 14.2863 16.4420	00.5173 00.4228 00.2953 00.0000	1 0.48 9 1 1 0.9 4 6 0 1 1.5 6 1 2 1 2.28 8 3	09.1186 10.0550 11.0836 12.1243
2.50 2.50 2.50	012439 012439 012439	0.0 0 0.1 0 0.2 0	011662 011621 011592	10.4755 12.2973 14.2863	00.4080 00.2886 00.0000	10.4403 10.9149 11.5046	093392 102018 111158
2.50 2.50	011997 011997	0.00	011662	10.4755	00.2751	10.4404	09.5535
2.50	011662	0.00	011662	10.4755	00.0000	10.4755	09.7500

TABLE I.- FUNCTIONS FOR CALCULATING THE FLOW ABOUT FLAT-TOP CONFIGURATIONS - Concluded

M∞8c	$\frac{\lambda}{\delta_c}$	<u>α</u> δ _c	$\left(\frac{\omega_{\rm B}}{\delta_{\rm C}}\right)_{\rm O}$	$\left(\frac{p_{c}}{p_{\infty}}\right)_{O}$	(Y) _{1/2}	$\left(\frac{\overline{p_c}}{\overline{p_{\infty}}}\right)_{\pi/2}$	$\left(\frac{p}{p_{\infty}}\right)_{\lambda}$
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	01.7874 01.7874 01.7874 01.7874 01.7874 01.7874 01.7874 01.7874 01.7874 01.7874	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0 1.0 0	01.1450 01.1433 01.1422 01.1416 01.1414 01.1414 01.1425 01.1425 01.1430 01.1436	14.5128 171.469 20.0211 23.1345 26.4863 30.0756 33.9019 37.9646 42.2632 46.7972 51.5663	0 0 9 7 1 4 0 0 9 0 7 6 0 0 8 4 4 4 0 0 7 7 9 9 0 0 7 1 2 9 0 0 6 5 2 4 0 0 4 8 0 5 0 0 3 8 1 9 0 0 2 5 6 4 0 0 0 0 0 0	17.7 2 19 17.2 6 05 17.5 11 5 18.2 8 8 1 19.5 0 1 4 2 11 0 3 3 2 3.0 6 3 9 2 5.3 5 8 2 2 7.9 5 3 7 3 0.7 8 2 3 3 3.4 0 1 8	1 0.5 1 0 3 1 2.5 4 7 4 1 4.6 3 1 8 1 6.7 8 9 7 1 9 0.2 9 5 2 1 3 5 1 5 2 3.7 5 0 1 2 6.2 1 3 9 2 8 7 2 2 1 3 1.2 2 2 2 3 3 3 8 0 1
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	01.7097 01.7097 01.7097 01.7097 01.7097 01.7097 01.7097 01.7097	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0	01.1450 01.1433 01.1422 01.1414 01.1414 01.1414 01.1426 01.1420 01.1425 01.1430	14.5128 17.1469 20.0211 23.1345 26.4863 30.0756 33.9019 37.9646 42.2632 46.7972	0 0 .9 2 8 4 0 0 .8 6 4 1 0 0 .7 9 8 5 0 0 .7 3 0 3 0 0 .6 5 8 1 0 0 .5 8 0 1 0 0 .4 9 3 4 0 0 .3 9 2 8 0 0 .2 6 4 7	16.9512 16.7597 17.1529 18.0099 19.2708 20.8976 22.8629 25.1362 27.6587 30.0514	1 0.8 5 1 0 12.7 7 5 0 1 4.7 7 6 5 1 6.8 6 5 7 1 9.0 4 3 5 2 1.3 0 5 1 2 3.6 9 3 2 6.0 2 8 3 3 0.5 2 5 5
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	01.6322 01.6322 01.6322 01.6322 01.6322 01.6322 01.6322 01.6322	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0	011450 011433 011422 011414 011414 011414 011420 011425	1 4.5 1 2 8 1 7.1 4 6 9 2 0.0 2 1 1 2 3 1 3 4 5 2 6.4 8 6 3 3 0.0 7 5 6 3 3 9 0 1 9 3 7 9 6 4 6 4 2 2 6 3 2	0 0.8 8 0 6 0 0.8 15 1 0 0.7 46 4 0 0.6 7 3 4 0 0.5 9 4 2 0 0.5 0 6 1 0 0.4 0 3 6 0 0.2 7 3 0 0 0.0 0 0	16.3041 16.3310 16.8457 17.7760 19.0790 22.6839 24.9056 27.0702	1 1.1 7 2 0 1 2.9 9 0 5 1 4.9 0 9 3 1 6.9 2 7 0 1 9.0 3 8 1 2 1.2 3 2 1 2 3.4 9 0 6 2 5.7 7 3 3 2 7.8 0 6 1
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	01.5554 01.5554 01.5554 01.5554 01.5554 01.5554 01.5554 01.5554	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0	01.1450 01.1433 01.1422 01.1416 01.1414 01.1416 01.1416 01.1420	14.5128 17.1469 20.0211 23.1345 26.4863 30.0756 33.9019 37.9646	00.8270 00.7593 00.6864 00.6069 00.5178 00.4139 00.2810	15.7639 15.9695 16.5895 17.5830 18.9203 20.5742 22.5010 24.4361	1 1.4 7 8 7 1 3.1 9 6 5 1 5.0 3 1 1 1 6.9 7 3 0 4 2 1.1 2 5 2 2 3 2 8 0 6 2 5 2 3 4 4
3.00 3.00 3.00 3.00 3.00 3.00 3.00	01.4798 01.4798 01.4798 01.4798 01.4798 01.4798 01.4798	0.00 0.10 0.20 0.30 0.40 0.50 0.60	011450 011433 011422 011416 011414 011416	14.5128 17.1469 20.0211 23.1345 26.4863 30.0756 33.9019	0 0.7 6 6 0 0 0.6 9 5 1 0 0.6 1 6 4 0 0.5 2 7 4 0 0.4 2 2 9 0 0.2 8 8 4 0 0.0 0 0 0	15.3201 15.6717 16.3807 17.4263 18.7862 20.4251 22.1296	1 1.7 7 7 3 1 3.3 9 6 1 1 5.1 4 3 2 1 7.0 0 2 8 1 8.9 5 5 6 2 0.9 6 7 4 2 2.8 2 7 9
3.00 3.00 3.00 3.00 3.00 3.00	01.4067 01.4067 01.4067 01.4067 01.4067 01.4067	0.0 0 0.1 0 0.2 0 0.3 0 0.4 0 0.5 0	011450 011433 011422 011416 011414 011414	14.5128 17.1469 20.0211 23.1345 26.4863 30.0756	00.6958 00.6202 00.5329 00.4291 00.2944 00.0000	1 4.9 6 7 0 1 5.4 3 6 0 1 6.2 1 6 9 1 7.2 9 9 9 1 8.6 6 0 3 2 0.1 3 4 3	12.0740 13.5931 15.2473 17.0145 18.8619 20.6107
3.00 3.00 3.00 3.00 3.00	013375 013375 013375 013375 013375	0.00 0.10 0.20 0.30 0.40	011450 011433 011422 011416 011414	14.5128 17.1469 20.0211 23.1345 26.4863	00.6144 00.5315 00.4305 00.2976 00.0000	1 4.7 0 3 9 1 5.2 6 3 0 1 6.0 9 5 6 1 7.1 9 3 0 1 8.4 3 9 2	12.3754 13.7918 15.3447 17.0019 18.6164
3.00 3.00 3.00 3.00	012745 012745 012745 012745	0.00 0.10 0.20 0.30	011450 011433 011422 011416	14.5128 17.1469 20.0211 23.1345	00.5194 00.4245 00.2963 00.0000	1 4.5 3 2 8 1 5.1 5 3 8 1 6.0 1 2 2 1 7.0 3 8 8	1 2.6 8 5 7 1 3.9 9 4 9 1 5.4 3 3 8 1 6.8 8 7 7
3.00 3.00 3.00	012203 012203 012203	0.0 0 0.1 0 0.2 0	011450 011433 011422	14.5128 17.1469 20.0211	00.4083 00.2887 00.0000	1 4.4 5 3 5 1 5.1 0 6 7 1 5.9 2 9 6	13.0029 14.2003 15.4680
3.00 3.00	011770 011770	0.00	01.1450	14.5128	00.2740	14.4552	13.3144
3.00	011450	0.00	011450	14.5128	00.0000	14.5128	1 3.6 0 0 0

Figure 1.- Schematic diagram of polar coordinate system.

7

Figure 2. - Variation of wing semivertex angle with maximum angle of attack for applicability of theory; $(\Psi)_{\pi/2} = 0$.

+ denotes orifice locations .OO4 constant leading edge thickness for all wings

(a) Conical models.

Figure 3.- Dimensions of pressure-distribution test models showing location of pressure orifices.

Figure 3.- Concluded.

Figure 4.- Variation of shock-wave angle at $\,\phi$ = 0 with Mach number for $\,\alpha$ = $3^{\text{O}}.\,$

Figure 5.- Variation of pressure coefficient at $\phi = 0$ with angle of attack for Mach numbers 3.0 and 5.0.

Figure 5.- Concluded.

Figure 6.- Surface pressure coefficients for configuration with $\delta_c = 5.71^{\circ}$ and $\lambda = 13^{\circ}$ at angles of attack of 0°, 3°, and 6°.

Figure 7.- Surface pressure coefficients for configuration with $\delta_c = 5.71^\circ$ and $\lambda = 14.6^\circ$ at angles of attack of 0°, 3°, and 6°.

Figure 8.- Surface pressure coefficients for configuration with $\delta_c = 11.42^\circ$ and $\lambda = 16.9^\circ$ at angles of attack of 0°, 3°, and 6°.

W

Figure 8.- Concluded.

Figure 9.- Surface pressure coefficients for configuration with δ_c = 11.42° and λ = 18.4° at angles of attack of 0°, 3°, and 6°.

Figure 9 .- Concluded.

Figure 10.- Aerodynamic characteristics of a conical flat-top wing-body configuration at M_{∞} = 5.0; $\delta_{\rm C}$ = 5.71°; λ = 15°.

NACA RM A58F02

0W

Figure 11.- Variation of surface pressure coefficient on ogive configuration at $\rm\,M_{\infty}=5.0$ and $\rm\,\alpha=3^{\circ}.$

130 SE 11 SE

CONFIDENTIAL

AFMDC DAS '58 - 7071