Casual Queries

Manoel Galdino

2024-06-04

Antes da aula começar

- Trabalho final
- última aula do curso

Introdução

- Queries causais: uso de DAGs para estudos de caso e métodos mistos
- Abordagem quantitativa para estudos qualitativos
- Supõe considerar as variáveis como binárias
- Relações causais determinísticas (um caso tem ou não aquele efeito causal)

Tipos Causais

Adverso

- Definição: Aqueles que melhorariam se e somente se não recebessem o tratamento.
- Representação: Adverso → a

Benéfico

- Definição: Aqueles que melhorariam se e somente se recebessem o tratamento.
- Representação: Benéfico $\rightarrow b$

Crônico

- Definição: Aqueles que permanecerão doentes, independentemente de receberem ou não o tratamento.
- Representação: Crônico o c

Destinado

- Definição: Aqueles que melhorarão, independentemente de receberem ou não o tratamento
- Representação: Destinado $\rightarrow d$

Participação Relativa dos Tipos

• Usamos os termos λ_a , λ_b , λ_c , λ_d para denotar a participação relativa desses tipos na população de interesse.

Tipos Potenciais

Variável Y

- \bullet Usamos θ^Y para capturar o "tipo" da unidade: como Y responde às suas causas potenciais.
- Adicionamos subscritos para denotar tipos particulares.

Notação θ_{ii}^{Y}

- i: resultado potencial quando X = 0
- j: resultado potencial quando X = 1

Exemplificação dos Tipos

- Com quatro tipos possíveis, utilizamos θ_{ii}^{Y} para representar cada caso específico:
 - θ_{00}^{Y} : Y é 0 quando X = 0 e 0 quando X = 1. Aka crônico.
 - $\theta_{01}^{\widetilde{Y}}$: Y é 0 quando X=0 e 1 quando X=1. Aka **b**enéfico
 - θ_{10}^{Y} : Y é 1 quando X = 0 e 0 quando X = 1. Aka adverso. θ_{11}^{Y} : Y é 1 quando X = 0 e 1 quando X = 1. Aka destinado.

Tabela dos Tipos Potenciais

	Tipo a: (θ_{10}^Y)	Tipo b: (θ_{01}^Y)	Tipo c: (θ_{00}^Y)	Tipo d: (θ_{11}^Y)
X = 0	Y(0) = 1	Y(0) = 0	Y(0) = 0	Y(0) = 1
X = 1	Y(1) = 0	Y(1)=1	Y(1) = 0	Y(1) = 1

Generalizando para N causas

- Em geral, fenômenos sociais são multicausais
- Portanto, precisamos generalizar nossa notação para mais de uma causa.
- Suponha duas causas, X₁ e X₂, ambas binárias. Temos quatro possibilidades de combinação de valores de X₁ e X₂.
- ullet Portanto, escreveremos $heta_{hijk}^{Y}$ de acordo com a notação abaixo:

$$\theta_{hijk}^{Y} \begin{cases} Y(0,0) = h \\ Y(1,0) = i \\ Y(0,1) = j \\ Y(1,1) = k \end{cases}$$
 (1)

- O primeiro argumento de Y(.,.) é o valor de X_1 e o segundo argumento o valor de X_2 .
- Por exemplo, θ_{0101}^Y significa que Y=1 quando $X_1=1$ e $X_2=0$ e quando ambos $X_1=1$ e $X_2=1$. Ou seja, só X_1 tem efeito. θ_{0011}^Y é o tipo em que Y=1 se e somente se $X_2=1$.

Generalizando para N causas - cont

- Aqui, esse modelo captura interações entre variáveis. O tipo θ_{0001}^{Y} diz que X_2 tem um efeito sobre Y apenas quando $X_1=1$.
- Os tipos θ_{0001}^{Y} e θ_{1000}^{Y} são complementares, isto é, X_1 e X_2 se complementam. No primeiro tipo, uma variável só tem efeito na presença da outra, no outro caso, só há efeito na ausência das duas (efeito negativo).
- Os tipos θ_{0111}^{γ} e θ_{1000}^{γ} são substitutos, pois no primeiro caso o efeito causal de X_2 só existe quando $X_1 = 0$, e no segundo caso, X_1 tem um efeito causal negativo apenas quando $X_2 = 0$.
- Fica claro que múltiplas causas é impraticável, embora logicamente possível.
- Mais de duas categorias também explode o número de combinações (embora logicamente possível).
- ullet Similarmente podemos ampliar o modelo para n causas. E teremos 2^{2^n} tipos.
- Nesse framework, causas não precisam ser rivais.

Modelos de Queries causais

- Efeito Causal Médio, Causas ao nível de casos (case-level causal analysis) e caminhos causais podem ser entendidos como queries (consultas) causais a um modelo.
- Query causal: um algoritmo que recebe um modelo M como entrada e retorna uma quantidade Q(M) como saída.
- Quatro queries causais chave:
- Efeitos causais ao nível de caso (case-level)
- Atribuição causal ao nível de caso
- Efeitos causais médios (ATE)
- Caminhos causais

Efeito causal ao nível do caso

- Muitas perguntas de pesquisa são do tipo: X tem um efeito causal em Y neste caso? Exemplo: Há uma literatura que diz que crises econômicas são importantes para termos impeachment. Portanto, nos perguntar: se houvesse uma crise econômica no Brasil de hoje, Lula sofreria Impeachment?
- Em termos contrafactuais, estamos interessados em saber: se eu pudesse intervir (exogenamente) no valor de X, como mudaria o valor de Y?

Efeito causal ao nível do caso - cont.

- ullet Aqui, perguntar qual o efeito causal de X é perguntar qual o tipo de Y.
- Podemos fazer outras perguntas: Qual a probabilidade de Y ser do tipo θ_{01}^Y , isto é, que X tem um efeito causal positivo sobre Y?
- Podemos perguntar "Qual a probabilidade que X importe para o valor de Y? Ou seja, somar as probabilidades de $\theta_{01}^Y + \theta_{10}^Y$.
- Por fim, podemos nos perguntar "Qual o efeito esperado de X sobre Y?", ou seja, subtrair a probabilidade θ_{10}^{Y} de θ_{10}^{Y}

Atribuição causal ao nível do caso

Perguntas de atribuição causal são do tipo: "X de fato causou Y?". Continuando com nosso exemplo, perguntaria: "a crise econômica causou o impeachment da Dilma em 2016?".

- Em termos contrafactuais, estamos interessados em saber: *Dado os valores que X e
 Y de fato assumiram, o valor de Y seria diferente se o valor de X fosse diferente?"
- Parece similar ao anterior, mas é diferente. Aqui estamos falando do degrau 3 na escada de causalidade de Pearl

Escada da causalidade de Pearl

- Pearl separou a escada da causalidade em três degraus: associacional, intervencional e contrafactual. Os verbos associados a cada degrau são ver, agir e imaginar.
- Degrau 2 é uma intervenção (a pergunta anterior). Degrau 3 é imaginação (pergunta atual).
- Para entender a diferença, considere o seguinte caso. Em uma população, tenho 50% dos casos são do tipo crônico, isto é, θ_{00}^{Y} e 50% dos casos são do tipo destinado, isto é, θ_{11}^{Y} . Aqui, o efeito causal médio do tratamento X é zero.
- Em outra população, tenho 50% dos casos do tipo adverso (θ_{10}^Y) e 50% são do tipo benéfico (θ_{01}^Y) . Novamente, o efeito causal médio do tratamento é zero, já que os tipos B cancelam o efeito do tipo A.
- Mas as perguntas do tipo 3 geram respostas distintas em cada população.
- Na primeira população, como o tratamente não tem efeito para ninguém, então para um caso particular, alguém que recebeu o tratamento teria o mesmo resultado se não tivesse recebido o tratamento.
- Na segunda população, quem recebeu o tratamento X=1 e teve um resultado ruim Y=0 é do tipo adverso. Portanto, teria um resultado melhor se não recebesse o tratamento

Degraus de causalidade (cont.)

- Então, tomando o exemplo anterior a distinção entre efeito causal ao nível do caso (pergunta 1) e atribuição causal ao nível do caso (pergunta 2) pode ser traduzido em:
- Qual a probabilidade do meu caso ser do tipo θ^Y₀₁? Se meu caso for da população 1, a resposta é zero. Se for da população 2, a resposta (a priori) é 50%. Se eu observar X = 1 e Y = 0, ou é do tipo adverso (população 2) ou do tipo crônico (população 1) e, portanto, continuo com a mesma probabilidade 50% de ter efeito causal positivo e 50% de probabilidade de não ter efeito causal.
- ② Dado que eu observei um certo valor de X (digamos, X=1) e o valor de Y (digamos, Y=0), qual seria o valor de Y se X=0? Com 50% de chance, Y seria 1 (tipo adverso) e com 50% de chance Y=0 (tipo crônico).
- Veja que com um experimento, vou recuperar o efeito causal médio, mas não o efeito

Efeito Causal Médio

- Podemos também fazer perguntas sobre efeitos causais médios em populações.
- Para tratamentos binários e respostas binárias, é a diferença entre a proporção de casos em que o efeito é benéfico menos a proporção de casos em que o efeito é negativo: λ_b – λ_a ou λ₀₁^γ – λ₁₀^γ

Nodal type drawn from a parameterized distribution

• Aqui, U^{θ^Y} representa um sorteio aleatório do caso a partir da distribuição de probabilidade dos tipos dada por λ^Y .

Caminhos causais

- Suponha que tenho voas evidências de de X causou Y em um dado caso. Porém, será que foi via M, um mediador?
- Em notação de resultados potenciais, seria: Y(X = x, M = M(X = 1)) > Y(X = x, M = M(X = 0)).
- Ou seja, haveria um aumento no valor de Y se M mudasse como se fosse devido a uma mudanca em X, mas sem uma mudanca real em X?

Causas de fato/reais/atuais (actual)

- Nossa defininção de causalidade contrafactual (resultados potenciais) gera o seguinte "paradoxo":
- Digamos que Suzy e Bob jogam uma pedra em uma garrafa. A peda de Suzy atinge a garrafa primeiro, quebrando a garrafa. Porém, se a pedra de Suzy não tivesse atingido a garrafa, Bob teria acertado a garrafa e ela teria quebrado.
- Portanto, o "tratamento" Suzy jogar pedra não é um efeito causal da garrafa quebrada, pois o resultado potencial é o mesmo quer ela jogue a garrafa ou não.

Causas de fato/atuais (actual) - cont.

- Porém, óbvio que foi a pedra de Suzy que quebrou a garrafa.
- Chamamos de causas de fato (ou atuais) este tipo de causa, cujo efeito depende de condicionarmos em outra variável (no caso, a pedra de Bob não ter atingido a garrafa antes).
- Nós podemos usar o modelo de queries causais para responder a esse tipo de pergunta e diferenciar causais atuais (de fato) de causas no sentido contrafactual.
- Causas de fato existem quando tenho duas (ou mais) causas suficientes para um resultado, mas uma impede o efeito da outra.
- Não vou entrar aqui nesse detalhe. Consutem o apêndice do cap. 4 do livro para saber mais sobre esse caso.

Mapeando Queries a tipos causais

- Na prática, podemos utilizar o pacote CausalQueries para responder nossas queries.
- As queries envolvem alguns parâmetros:
- **9** Para uma variável x_1 qualquer, ela pode assumir valores $\{-1,0,1\}$, em que -1 significa "não controlada por essa variável", 0 significa que $x_1=0$ exogenamente (do operation) e analogamente 1 é $x_1=1$ exogenamente.
- Posso ter *n* variáveis, dada por $x = (x_1, x_2, ..., x_n)$.
- O valor $V_j(pa_j, \theta_t)$ é o valor que o nó j assume dado os valores dos parentes de j, pa_j e o tipo causal θ_t .
- Como todas as variáveis são binárias, é possível identificar todas as possobilidade de um nós responder aos valores dos seus parentes (isto é, determinar o tipo do nó Y).

Mapeando Queries a tipos causais - cont.

- \bullet Exemplo, para nós X e Y.
- Q_1: 1(Y(X=1)=1)) pergunta se ao setar X=1, obtenho Y=1. Ou seja, qual o Valor do Y, dado seu tipo causal e X=1 exogenamente. Q_2: 1(Y(X=1)=1)&1(Y(X=0)=0)) pergunta se é simultaneamente verdade que Y=1 quando X=1 e Y=0 quando X=0. Em outras palavras, se é um tipo causal benéfico.

```
library(CausalQueries)
model <- make_model("X -> M -> Y <- X")
# Equivalente
model1 <- make_model("X -> M -> Y; X -> Y")
```

• Podemos plotar os DAGs, para verificar que fizemos corretamente:

Declarando modelos no CausalQueries - cont

```
library(knitr)
my_model <- make_model("X -> Y")
df <- my_model$parameters_df
kable(df)</pre>
```

param_names	node	gen	param_set	nodal_type	given	param_value	priors
X.0	Χ	1	Х	0		0.50	1
X.1	X	1	X	1		0.50	1
Y.00	Υ	2	Υ	00		0.25	1
Y.10	Υ	2	Υ	10		0.25	1
Y.01	Υ	2	Υ	01		0.25	1
Y.11	Υ	2	Υ	11		0.25	1

 vinhetas: https://ftp.yz.yamagata-u.ac.jp/pub/cran/web/packages/CausalQueries/index.html

Manoel Galdino Casual Queries 2024-06-04 26 / 33

Caso aplicado

- Boix (1999) apresenta uma teoria influente sobre a escolha de sistemas eleitorais e um teste quantitativo da teoria.
- Em resumo, Boix teoriza que as preferências dos partidos governantes entre regras de pluralidade e representação proporcional (RP) dependem da ameaça dos partidos desafiantes sob as regras vigentes.

Preferências dos Partidos

- A presença de um partido de oposição forte, juntamente com a falha de coordenação entre os partidos governantes, cria fortes incentivos para que os governos mudem da pluralidade para a RP.
- Boix foca em um conjunto de 22 casos europeus do período entre guerras.
- Nesse contexto—com a extensão do sufrágio universal permitindo o surgimento de desafiantes socialistas—a teoria implica que os partidos governantes deveriam ter mais probabilidade de mudar para RP onde a esquerda era eleitoralmente forte e a direita era fragmentada.

Teoria de Boix (1999)

- **Hipótese Principal**: Governos são mais propensos a adotar RP quando enfrentam uma oposição forte e uma divisão entre partidos de direita.
- Contexto Histórico: Extensão do sufrágio universal e ascensão de desafiantes socialistas no período entre guerras na Europa.

Hipóteses Testadas

- Força da Esquerda: Quanto mais forte a esquerda eleitoralmente, maior a probabilidade de mudança para RP.
- Divisão da Direita: Quanto mais fragmentada a direita, maior a probabilidade de mudança para RP.
- Interação: A combinação de uma esquerda forte e uma direita fragmentada aumenta significativamente a probabilidade de mudança para RP.

Resultados

- A regressão mostra uma interação negativa significativa entre a força da esquerda e a divisão da direita.
- Conclusão: Resultados consistentes com a teoria de Boix sobre a escolha de sistemas eleitorais.

DAG do modelo de Boix

• Um modelo com três causas binárias possui $2^{2^3} = 256$ tipos. Vamos usar o pacote CausalQueries com duas causas binárias para ficarmos com 16 tipos.

```
library(CausalQueries)
# Steps 1 and 2
# We define a model with three binary nodes and
# specified edges between them:
model <- make_model("E -> Y; D -> Y")
```