

SPA

Dokumentacja Projektu grupowego

Harmonogram i specyfikacja wymagań

Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska

Nazwa i akronim projektu:	Zleceniodawca:	
Symulator Pojazdu Autonomicznego – SPA	dr inż. Paweł Kowalski	
Numer zlecenia:	Kierownik projektu:	Opiekun projektu:
4@KAMS'2023/24	Łukasz Nowakowski	dr inż. Paweł Kowalski

Nazwa / kod dokumentu:	Nr wersji:
Harmonogram i specyfikacja wymagań –	
HiSW	1.01
Odpowiedzialny za dokument:	Data pierwszego sporządzenia:
Konrad Bryłowski	31.10.2023
	Data ostatniej aktualizacji:
	14.12.2023
	Semestr realizacji Projektu grupowego: 1

Historia dokumentu

l	Wersja	Opis modyfikacji	Rozdział / strona	Autor modyfikacji	Data
	1.00	wstępna wersja	całość	Konrad Bryłowski	31.10.2023
	1.01	dodane opisy zadań	rozdział 3	Konrad Bryłowski	14.12.2023

Spis treści

1	Wprc	owadzenie - o dokumencie	3
	1.1	Cel dokumentu	3
	1.2	Odbiorcy	3
	1.3	Terminologia	3
2	Harm	nonogram prac zespołu projektowego	3
	2.1	Opis etapów wytwarzania (prowadzenia projektu)	3
	2.1.1	Etap A (Ustalenie organizacji pracy)	3
	2.1.2	Etap B (Przegląd dostępnych rozwiązań)	3
	2.1.3		
	2.1.4		4
	2.1.5		4
	2.1.6		
	2.1.7	Etap G (Opracowanie Raportu semestralnego oraz Plakatu)	4
3	Pland	owany podział zadań i ról w projekcie w zespole projektowym	
	3.1	Opis zadań planowanych do realizacji ze wskazaniem osób odpowiedzialnych	
	3.1.1	Ustalenie organizacji pracy (etap A)	4
	3.1.2	Przegląd dostępnych rozwiązań (etap B)	4
	3.1.3	Przygotowanie podstawowego modelu i sceny (etap C)	4
	3.1.4	Implementacja sterowania modelem przy pomocy klawiatury (etap D)	5
	3.1.5	Symulacja poruszania się rzeczywistego modelu (etap E)	5
	3.1.6		5
	3.1.7	Opracowanie Raportu semestralnego i Plakatu (etap G)	5
4	Wym	agania dla produktu i kryteria akceptacji	
	4.1	Ogólny opis planowanego produktu	5
	4.2	Wymagania minimalne dla produktu	5
	4.3	Warunki odbioru	5
5	Posta	anowienia	6
	5.1	Postanowienia w zakresie zmian w stosunku do pierwotnego planu i zakresu prac	6
	5.2	Inne postanowienia	6

1 Wprowadzenie - o dokumencie

1.1 Cel dokumentu

Celem dokumentu udokumentowanie zaplanowanego harmonogramu realizacji projektu w semestrze, planowanego podziału zadań w zespole projektowym, wskazanie i opisanie zadań oraz ról osób odpowiedzialnych, a także wyspecyfikowanie wymagań dla projektu wraz z kryteriami akceptacji, nałożonych przez opiekuna i klienta.

1.2 Odbiorcy

Odbiorcami dokumentu są członkowie zespołu projektowego oraz zleceniodawca i opiekun projektu.

1.3 Terminologia

{wyjaśnienie używanych w dokumencie pojęć i skrótów, oznaczenia używane wewnątrz dokumentu np. oznaczenia wymagań}

AI – sztuczna inteligencja

assety – reprezentacja rzeczywistych obiektów w silniku symulacji (np. graficzny model budynku, dźwięk przejeżdżającego samochodu, animacja)

framework – szkielet do budowy aplikacji, definiujący strukturę oraz ogólny mechanizm działania aplikacji

GitHub – platforma do przechowywania i zarządzania projektami korzystającymi z systemu kontroli wersii Git

silnik – framework zawierający konieczne biblioteki oraz środowisko m. in. do edytowania scen system kontroli wersji – oprogramowanie służące do śledzenia zmian w kodzie źródłowym oraz pomagające łączyć zmiany dokonane przez różnych członków zespołu

2 Harmonogram prac zespołu projektowego

Etap	Nazwa	Wykonawcy	Początek	Koniec
Α	Ustalenie organizacji pracy	cały zespół	03.10.2023	24.10.2023
В	Przegląd dostępnych rozwiązań	Krystian Nowakowski, Aleksander Czerwionka	25.10.2023	31.10.2023
С	Przygotowanie podstawowego modelu i sceny	Aleksander Czerwionka	01.11.2023	07.11.2023
D	Implementacja sterowania modelem przy pomocy klawiatury	Michał Krause, Krystian Nowakowski	01.11.2023	14.11.2023
Е	Symulacja poruszania się rzeczywistego modelu	cały zespół	08.11.2023	21.11.2023
F	Przygotowanie drugiej sceny	cały zespół	22.11.2023	22.12.2023
G	Opracowanie Raportu semestralnego oraz Plakatu	Konrad Bryłowski	03.01.2024	17.01.2024

2.1 Opis etapów wytwarzania (prowadzenia projektu)

2.1.1 Etap A (Ustalenie organizacji pracy)

Celem pierwszego etapu jest ustalenie organizacji pracy i przygotowanie środowiska. Główne zadania to wyłonienie kierownika projektu oraz osoby odpowiedzialnej za dokumentację, utworzenie organizacji i repozytorium na platformie GitHub, ustalenie stałego terminu spotkań na platformie Discord, który pasuje wszystkim członkom zespołu, a także ustalenie sposobów kontaktu z opiekunem i przekazywania mu efektów pracy zespołu. Etap można uznać za ukończony w momencie, gdy kierownik projektu będzie zgłoszony opiekunowi, a dokument Informacje o projekcie pojawi się do zaakceptowania przez członków zespołu na gotowym do pracy repozytorium w organizacji na platformie GitHub.

2.1.2 Etap B (Przegląd dostępnych rozwiązań)

Celem tego etapu jest przegląd dostępnych rozwiązań oraz dostępnych technologii wykonania i przybliżenie zespołowi funkcji obecnych w gotowych rozwiązaniach. Kryterium akceptacji jest

przedstawienie pozostałym członkom zespołu wyników przeglądu oraz wspólny wybór silnika, w którym będzie realizowany program.

2.1.3 Etap C (Przygotowanie podstawowego modelu i sceny)

Celem etapu C jest przygotowanie podstaw do dalszej pracy nad symulatorem. Zadaniem wykonawców jest przygotowanie płaskiej sceny z wyznaczoną drogą oraz modelu pojazdu w wybranym w etapie B silniku. Etap zostanie uznany za ukończony po umieszczeniu kodu źródłowego w repozytorium w sposób pozwalający zapoznanie się opiekunowi i zespołowi oraz przedstawienie go pozostałym członkom zespołu do akceptacji.

2.1.4 Etap D (Implementacja sterowania modelem przy pomocy klawiatury)

W tym etapie wykonawcy zaimplementują sterowanie na utworzonej w etapie C scenie za pomocą klawiatury z możliwością regulacji przyspieszenia, hamowania i skrętu kół. Zakończeniem tego etapu będzie prezentacja wyników dotychczasowej pracy zespołu opiekunowi.

2.1.5 Etap E (Symulacja poruszania się rzeczywistego modelu)

W tym etapie model przygotowany w etapie C zostanie dostosowany do rzeczywistego modelu samochodu z uwzględnieniem parametrów takich jak maksymalny promień skrętu kół. Parametry te zostaną ustalone podczas spotkania z opiekunem. Zostanie również utworzona Dokumentacja techniczna projektu. Efektem tego etapu powinien być zmieniony model i sterowanie nim według ustalonych parametrów oraz pierwsza wersja dokumentu Dokumentacji Technicznej Projektu.

2.1.6 Etap F (Przygotowanie drugiej sceny)

Podczas tego etapu zespół będzie przygotowywał scenę z ulicami i budynkami – fragment kampusu Politechniki Gdańskiej. Etap ten obejmuje przygotowanie assetów oraz umieszczenie ich na nowej scenie. Po zakończeniu prac nad tym etapem powinna być gotowa wstępna wersja sceny z odwzorowanym układem drogowym wybranego fragmentu kampusu PG oraz przygotowanymi assetami kluczowych punktów orientacyjnych, które zostaną przedstawione opiekunowi.

2.1.7 Etap G (Opracowanie Raportu semestralnego oraz Plakatu)

Ostatnim etapem prac w pierwszym semestrze realizacji projektu jest opracowanie Raportu semestralnego i Plakatu przez osobę odpowiedzialną za dokumentację w porozumieniu z kierownikiem i zespołem. Kryterium akceptacji tego etapu będzie zaakceptowanie raportu i plakatu przez członków zespołu i opiekuna.

3 Planowany podział zadań i ról w projekcie w zespole projektowym

3.1 Opis zadań planowanych do realizacji ze wskazaniem osób odpowiedzialnych

3.1.1 Ustalenie organizacji pracy (etap A)

Zadania:

- ustalenie stałego terminu cotygodniowych wewnętrznych spotkań zespołu wszyscy
- ustalenie terminu konsultacji projektu z opiekunem wszyscy
- przekazanie opiekunowi informacji o kierowniku projektu oraz adresie repozytorium Łukasz Nowakowski

3.1.2 Przegląd dostępnych rozwiązań (etap B)

Zadania:

- przegląd dostępnych silników możliwych do użycia w realizacji projektu Aleksander Czerwionka
- przegląd dostępnych na rynku gotowych rozwiązań, bibliotek itp. Krystian Nowakowski
- prezentacja w gronie zespołu dostępnych silników wraz z zaletami i wadami ich wyboru zakończona wspólnym wyborem silnika – Aleksander Czerwionka
- prezentacja dostępnych na rynku gotowych rozwiązań, omówienie ich zasady działania
 Krystian Nowakowski

3.1.3 Przygotowanie podstawowego modelu i sceny (etap C)

Zadania:

- przygotowanie prostej sceny z wyznaczoną ścieżką do śledzenia w wybranym silniku wraz z implementacją podstawowej fizyki symulacji – Aleksander Czerwionka
- przygotowanie prostego modelu pojazdu z możliwością kontrolowania podstawowych parametrów typu przyspieszenie, skręt kół – Michał Krause

 prezentacja wyników na cotygodniowym spotkaniu zespołu – Michał Krause, Aleksander Czerwionka

3.1.4 _ Implementacja sterowania modelem przy pomocy klawiatury (etap D)

Zadania:

- przygotowanie oraz zaimplementowanie w silniku kodu umożliwiającego sterowanie modelem za pomocą klawiatury, który będzie możliwy do wykorzystania zarówno dla przygotowanego prostego modelu, jak i w finalnym symulatorze – Michał Krause
- prezentacja sterowania podczas spotkania zespołu Michał Krause
- prezentacja wyników dotychczasowej pracy opiekunowi Michał Krause

3.1.5 _ Symulacja poruszania się rzeczywistego modelu (etap E)

Zadania:

- zmierzenie wymiarów i parametrów jazdy udostępnionego przez opiekuna pojazdu Michał Krause, Aleksander Czerwionka
- wykonanie modelu pojazdu w symulatorze Łukasz Nowakowski, Konrad Bryłowski
- implementacja funkcji pozwalającej na nagrywanie i zapisywanie klatek obrazu z perspektywy pojazdu w symulatorze wraz z obecnymi w momencie zapisu parametrami jazdy – Krystian Nowakowski
- przygotowanie Dokumentacji technicznej projektu Konrad Bryłowski
- prezentacja wyników pracy opiekunowi wszyscy

3.1.6 Przygotowanie drugiej sceny (etap F)

Zadania:

- utworzenie edytora scen pozwalającego użytkownikom symulatora na tworzenie własnych scen lub edytowanie istniejących – Łukasz Nowakowski, Aleksander Czerwionka
- wykorzystanie dostępnych w Internecie zasobów oraz ich uzupełnienie własnymi fotografiami lub nagraniami do utworzenia assetów budynków PG – Krystian Nowakowski, Michał Krause
- wybranie fragmentu kampusu oraz odwzorowanie jego układu drogowego w odpowiedniej skali w symulatorze – Konrad Bryłowski

3.1.7 Opracowanie Raportu semestralnego i Plakatu (etap G)

Zadania:

- opracowanie Raportu semestralnego Konrad Bryłowski
- opracowanie Plakatu Konrad Bryłowski

4 Wymagania dla produktu i kryteria akceptacji

4.1 Ogólny opis planowanego produktu

Planowanym produktem jest proste w instalacji i konfiguracji oprogramowanie pozwalające na trenowanie sztucznej inteligencji kierującej pojazdem autonomicznym bez konieczności uruchamiania jej na modelu rzeczywistym. Przewiduje się dwa tryby nauki – naśladowanie operatora oraz samodzielną naukę – oraz dwie sceny – płaską platformę ze ścieżką do śledzenia oraz platformę z ulicami i budynkami. Produkt ma pozwalać na wstępne wytrenowanie sieci neuronowych przed umieszczeniem ich w rzeczywistych modelach pojazdów.

4.2 Wymagania minimalne dla produktu

Produkt finalny powinien minimalnie obsługiwać dwa tryby - uczenie sieci neuronowej przez naśladowanie ruchu operatora pokonującego trasę treningową oraz samodzielną naukę sieci na różnych losowo generowanych trasach typu "śledź linię", a także umieszczanie kilku modeli sterowanych przez AI w celu porównania skuteczności różnych sieci neuronowych. Powinna być również możliwość prezentacji wyników.

4.3 Warunki odbioru

Symulator zostanie przetestowany z wykorzystaniem popularnych architektur sieci neuronowych, które powinny pokonać całą wygenerowaną trasę.

5 Postanowienia

5.1 Postanowienia w zakresie zmian w stosunku do pierwotnego planu i zakresu prac

nie dotyczy

5.2 Inne postanowienia

nie dotyczy