FE8828 Programming Web Applications in Finance - Session 3 -

Data Manipulation and EDA/2

Dr. Yang Ye yy@runchee.com

Oct 1, 2020

- 1 Lecture 7: Data Manipulation and EDA/2
- 2 group_by / summarize: Examples
- 3 summarize/summarise
- 4 Assignment
- 6 Assignment

Section 1

Lecture 7: Data Manipulation and EDA/2

Joins

left_/right_/anti_/full_join

Sample data:

• data_day1

Date	Position_id	Buy/Sell	Quantity	Risk Factor	Traded Price
2019-11-07	00010001	В	100	DCE_IO_1901	
2019-11-07	00010002	В	100	DCE_IO_1901	506.8

data_day2

Date	Position_id	Buy/Sell	Quantity	Risk Factor	Traded Price
2019-11-07	00010001	В	100	DCE_IO_1901	505.3
2019-11-07	00010002	В	100	DCE_IO_1901	506.8
2019-11-08	00010003	S	-100	DCE_IO_1901	507.9

Positions are additive (to close a position, we won't change the original position but to do a new reverse trade). Suppose we have two days of position data.

left_/right_/anti_/full_join

In order to find the new positions. We will use:

anti join is like "data day2 - data day1"

order matters, data day2 needs to be placed first.

```
anti_join(data_day2, data_day1, by = "position_id")
In order to find old positions, we will use:
# inner_join ignores order
# find the common positions
inner_join(data_day2, data_day1, by = "position_id")
left_join(data_day1, data_day2, by = "position_id") # produce the sright_join(data_day1, data_day2, by = "position_id") # produce the sleft_join(data_day2, data_day1, by = "position_id") # produce all interpretation.
```

left_join / right_join

They can be used to do mapping table (aka. vlookup)

Table Product:

Table Transaction:

Table Customer:

-	customer_id	1	customer_phone	1	
-	A	1	+123	1	
-	В	1	+456	1	
1	C	1	+789	1	

Use left_join to create a full report

```
left_join(Transaction, Product, by = "type_code") %>%
left_join(Customer, by = "customer_id")
```

type_code	e quanti	ty custome:	r_id type_nam	e customer_p	hone
1	1	l A	orange	+123	- 1
2	3	l B	banana	+456	
3	4	l C	l NA	+789	1
2	1 2	D	banana	l NA	1
1	6	l B	orange	+456	1

full_join and anti_join

- full_join(a, b): Find all combinations between table a and b.
- anti_join(a, b): Find those in a but not in b.

```
# From something simple
df <- full_join(data_frame(a = 1:2), data_frame(a = 2:4), by = "a")
## Warning: `data_frame()` is deprecated as of tibble 1.1.0.
## Please use `tibble()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was</pre>
```

```
df <- anti_join(data_frame(a = 1:2), data_frame(a = 2:4), by = "a")</pre>
```

full join and anti join More # All possible combination between job and education x <- full_join(distinct(bank, job) %>% mutate(dummy = 1), distinct(bank, education) %>% mutate(dummy = 1), bv = "dummv") %select(-dummy) y <- distinct(bank, job, education) nrow(x) ## [1] 48 nrow(y) ## [1] 48 $df1 \leftarrow anti join(x, y, by = c("job", "education"))$

• df1: Empty result

job education

 $df2 \leftarrow anti join(y, x, by = c("job", "education"))$

Join is a set operation

- full_join is *
- anti_join is -
- inner_joins is -, /
- \bullet left_join/right_join is either just the same, or *, /.

group_by / summarize

group_by is the way leading to analyze the data at high-dimension. group_by is used together with summarize

```
group_by(df, ...) ... is the list of variables
summarize(df, new_field = some_func_can_process_bulk_data())
```

Functions can process bulk data:

- sum/mean/median/sd: basic statistics
- min(x), quantile(x, 0.25), max(x): min/max/quantile
- n()/n_distinct(): count and count distint
- ntile: a rough divide into a few groups
- first(x), last(x), nth(x, 2)
- ..

```
summarise(df, total = sum(a))
```

total NA

```
summarise(df, total = sum(a, na.rm = TRUE))
```

total

group_by / summarize: Examples

```
# count number of people in each age group
group_by(bank, age) %>% summarise(n = n())
## `summarise()` ungrouping output (override with `.groups` argumen
```

`summarise()` ungrouping output (override with `.groups` argument

age	n
19	4
20	3
21	7
22	9
23	20
24	24

. . .

```
group by / summarize: Examples
group_by(bank, age) %>% summarise(n = n()) %>% plot
## `summarise()` ungrouping output (override with `.groups` argumen
```


Section 2

group_by / summarize: Examples

group by / summarize: Examples

`summarise()` ungrouping output (override with `.groups` argumen

age	balance_mean	count	default_count
19	393.5000	4	0
20	661.3333	3	0
21	1774.2857	7	0
22	1455.3333	9	0
23	2117.9500	20	1
24	634.6250	24	1
25	1240.0682	44	1
26	788.5584	77	3
27	851.7766	94	4
28	1025.0971	103	1

```
group by / summarize: Examples
# If combined with ggplot, to be learnt in next session
bank_age %>%
    ggplot(aes(x = age, y = balance_mean)) +
    geom_point(aes(size = count), alpha = 1/4, color = "red") +
    geom_point(aes(size = default_count), alpha = 1/3, color = "blue")
    geom smooth(se = FALSE)
```

`qeom_smooth()` using method = 'loess' and formula 'y ~ x'

Group filter

```
# Find the maximum and minimum balance on each age.
df <- bank %>%
  group_by(age) %>%
  filter(min_rank(balance) == 1 | min_rank(desc(balance)) == 1) %>%
  arrange(age, balance)
```

age	job maritaelducatiodenfau	ılbalan	deous	sin g ar	contactday	mon	t d ura	ti ca mp	papigha y	pr
19	studentsingle unknown	0	no	no	cellularl 1	feb	123	3	-1	
19	studentsingle unknowno	1169	no	no	cellular6	feb	463	18	-1	
20	studentsingle secondary	291	no	no	telepholnle	may	172	5	371	
20	studentsingle secondary	1191	no	no	cellular12	feb	274	1	-1	
21	studentsingle secondary	6	no	no	unknown	may	622	1	-1	
21	studentsingle secondary	6844	no	no	cellular14	aug	126	3	127	
22	studentsingle unknowno	47	no	no	cellular3	jul	69	3	-1	
22	admin.single secondary	4111	no	yes	cellular19	aug	65	1	-1	
23	techniciangle secondary	-	yes	no	unknow4n	jun	217	2	-1	(
		306								
23	studentsingle secondary	9216	no	no	cellular5	jun	471	2	-1	

Count for condition

TRUE \Rightarrow 1, FALSE \Rightarrow 0

```
# Generate a report for balance and job
d1 <- group_by(bank, job) %>%
  summarise(`balance > 500` = sum(balance > 500))
## `summarise()` ungrouping output (override with `.groups` argumen
d2 <- group_by(bank, job) %>%
  summarise(`balance <= 500` = sum(balance <= 500))</pre>
## `summarise()` ungrouping output (override with `.groups` argumen
# df collects all jobs, in case some jobs are missing from either d.
# This is a typical example for collecting data.
df <- distinct(bank, job) %>% arrange(job)
df <- left join(df, d1, by = "job")</pre>
df <- left join(df, d2, by = "job")
df <- mutate(df, total = `balance > 500` + `balance <= 500`)</pre>
```

job	balance > 500	balance <= 500	total
admin.	226	252	478
blue-collar	423	523	946
entrepreneur	74	94	168

group_by and summarise/summarize: Further explain

- group_by is a like folding a paper without tearing it later.
- summarise tears the paper to do individual pieces.
- Therefore, group_by can be used with other verbs, mutate, filter, which will work within the group.
- summarise can be used without group_by, then it will apply to entire data as one whole group.

group_by

```
# mutate with group_by
df <- group_by(data.frame(a = 1:10), quantile = ntile(a, 2)) %>%
  mutate(b = a / sum(a))
```

a	quantile	b
1	1	0.0666667
2	1	0.1333333
3	1	0.2000000
4	1	0.2666667
5	1	0.3333333
6	2	0.1500000
7	2	0.1750000
8	2	0.2000000
9	2	0.2250000
10	2	0.2500000

group by / 2 # filter with group_by df <- group_by(bank, age) %>% filter(balance == max(balance))

age	job	maritaeducatidenfau	ılbalan	d e ou	ısir lg ar	ncontactday	mon	t h ura	iti oa mpa	a pigha ysp
22	admin.	single secondary	4111	no	yes	cellular19	aug	65	1	-1
78	housen	n aid rriesdecondancy	499	no	no	telepholne	mar	80	4	-1
23	student	single second arc y	9216	no	no	cellular5	jun	471	2	-1
46	manage	e men tieselcondancy	12186	no	no	unknow210	jun	29	3	-1
64	retired	marriednknowno	2923	no	no	cellular12	mar	120	1	-1
77	retired	marrietertiaryno	7802	no	no	telepho 1 e	may	421	1	92
39	manage	e sinegli e tertiaryno	12437	no no	no	telepholn2e	nov	40	1	-1
28	student	single second arc y	11555	no	no	cellular8	apr	125	2	-1
81	retired	marriesdecondancy	1	no	no	cellular19	aug	65	5	-1
33	housem	n aiid gle tertiaryno	23663	yes	no	cellular16	apr	199	2	146
40	self-	marrietertiaryno	13669	no	no	cellular15	oct	138	1	136
	employ	ed								
31	housem	n siid gle primar y no	26965	i no	no	cellular21	apr	654	2	-1
30	manage	e sinegli e tertiaryno	19358	no	no	cellular19	nov	258	2	-1
67	blue-	marriedecondany	16353	no	no	cellular27	oct	223	2	-1
	collar									
	Dr. Yang Ye yy	@runchee.com FE8828		g Web Ap	plications in	Finance - Sessic			Oct 1, 202	24 / 55

Section 3

summarize/summarise

summarize/summarise

```
# summarise with group_by
df <- group_by(data.frame(a = 1:10), quantile = ntile(a, 2)) %>%
    summarise(b = sum(a))
## `summarise()` ungrouping output (override with `.groups` argumen
```

quant	ile	b
	1	15
	2	40

```
# summarise without a group_by. It will treat entire df as a whole.
df <- summarise(bank,</pre>
```

```
with_housing = sum(housing == "yes") / n(),
age_min = min(age),
duration_mean = mean(duration))
```

with_housing	age_min	duration_mean
0.5660252	19	263.9613

group_by/ungroup

ungroup() removes group definition, restores the "ungrouped"" data frame back to entire data. Because group_by will leave a trace

```
# wrong
df_wrong <- group_by(bank, age) %>%
  filter(balance == max(balance)) %>%
  summarize(balance = mean(balance)) %>%
 head(n = 3)
## `summarise()` ungrouping output (override with `.groups` argumen
# correct.
df correct <- group by(bank, age) %>%
  filter(balance == max(balance)) %>%
 ungroup %>%
  summarize(balance = mean(balance))
```

age	balance
19	1169
20	1191
21	6844

```
group by/ungroup
# We can't remove age
# R will prompt for "Adding missing grouping variables: `age`"
df1 <- group by(bank, age) %>%
  filter(balance == max(balance)) %>%
  select(-age) \%>\% head(n = 3)
## Adding missing grouping variables: `age`
# We can remove age with ungroup
df2 <- group_by(bank, age) %>%
  filter(balance == max(balance)) %>%
  ungroup %>%
  select(-age) %>% head(n = 3)
         maritaeducatide faulbalande ousing an contactday monthuration mpaiglayspro
age job
    admin.single secondary
                         4111 no yes cellular19 aug 65 1
    housenmandriesdecondancy 499 no no telepholitie mar 80 4 -1
```

studentsingle secondary 9216 no no cellular5 jun 471 2 23 -1

78

iob

rowwise

Sometimes, we need to use rowwise() which is a special group_by which makes every one row a group. rowwise() use case, it applies to complex logic that can't be applied as a group.

```
df <- data.frame(throw_dices = 1:10)
df <- rowwise(df) %>% mutate( mean = mean(sample(1:6, throw_dices, near throw_dices))
```

throw_dices	mean
1	5.000000
2	4.500000
3	5.666667
4	4.500000
5	4.000000
6	2.833333
7	3.428571
8	3.500000
9	3.777778
10	4.100000

bind_rows

• bind_rows is the + operator for data frames.

bind_rows: Use case

I usually use bind_rows to collect results. For example, new_positions <- data.frame()</pre> closed_positions <- data.frame()</pre> for (i in length(dates)-1) { old date <- dates[i] new date <- dates[i+1] new_data <- filter(position, date == new_date)</pre> old data <- filter(position, date == old date) new positions <- bind rows(new positions, anti join(new data, old data, by = "pos

new positions contains all new positions on their day 1

bind_rows: Use case

If row order matters, bind_row can be used to re-order/splice and recombine.

age	job	maritaeducatidenfau	albalan	deou	sin g ar	ıcontactday	mon	t H ura	ıti ca m	papighay	yspre
19	stude	enstingle primaryno	103	no	no	cellular10	jul	104	2	-1	0
19	stude	enstingle unknowno	0	no	no	cellularl1	feb	123	3	-1	0
19	stude	enstingle secondancy	302	no	no	cellular16	jul	205	1	-1	0
19	stude	enstingle unknowno	1169	no	no	cellular6	feb	463	18	-1	0
20	stude	enstingle secondancy	502	no	no	cellular30	apr	261	1	-1	0
83	retire	ddivorc p dimar y no	0	no	no	telephobile	may	664	1	77	3
83	retire	ddivorc p dimar y no	1097	no	no	telepho ñ e	mar	181	1	-1	0
84	retire	ddivorc p dimar y no	639	no	no	telepholn2e	may	353	3	-1	0
86	retire	dmarriedecondancy	1503	no	no	telepholn3e	mar	165	3	101	1
87	retire	dmarri qo rimar y no	230	no	no	cellular30	oct	144	1	-1	0

bind rows: Use case

```
# summary
```

df1 <- summarise_if(bank, is.numeric, mean)</pre>

age	balance	day	duration	campaign	pdays	previous
41.1701	1422.658	15.91528	263.9613	2.79363	39.76664	0.5425791

```
# add summary to the records
df2<- tail(bind_rows(bank, summarise_if(bank, is.numeric, mean)), n</pre>
```

diz vari(bina_rowb(bank, banmaribo_ri(bank, ib.namerie, mean//, r

age job maritellucatdefaultalandeousilogan contaday monthurationampajiglays produced 452241.170NA NA NA NA 1422.658A NA NA NA 15.9158BA 263.9623793639.76664

bind rows: Use case

```
# bind_rows can match column names and type.
# let's adjust the column order.
# As due-deligence, better to check the result.
# I remember earlier version of dplyr doesn't do match.
df <- tail(bind_rows(bank, summarise_if(bank, is.numeric, mean) %>%
    select(balance, day, everything())), n = 1)
```

age job maritaltucatdefaultalandeousikugan contaday monthurationampajigkays pr 452241.170NA NA NA NA 1422.658A NA NA 15.91528A 263.9623793639.76664

bind_cols

• bind_cols is to extend the data frame in width.

Use cases

- It's a lazyman's left_join or select
- It copies the columns
- I usually find it useful to generate data frame for reports.

```
dt1 <- bind_cols(select(bank, job), select(bank, education))
dt1[1:3,]</pre>
```

job	education
unemployed	primary
services	secondary
management	tertiary

bind_cols

```
dt2 <- bind_cols(dt1, dt1)
## New names:
## * job -> job...1
## * education -> education...2
## * job -> job...3
## * education -> education...4
dt2[1:3,]
```

job1	education2	job3	education4
unemployed	primary	unemployed	primary
services	secondary	services	secondary
management	tertiary	management	tertiary

bind_cols: Use cases

```
d1 <- filter(bank, month == "sep") %>%
  summarize(duration = mean(duration)) %>%
  rename(`Duration Sep` = duration)
d2 <- filter(bank, month == "oct") %>%
  summarize(duration = mean(duration)) %>%
  rename(`Duration Oct` = duration)
d3 <- filter(bank, month == "nov") %>%
  summarize(duration = mean(duration)) %>%
  rename(`Duration Nov` = duration)
df <- bind_cols(d1, d2, d3)
```

Duration Sep	Duration Oct	Duration Nov
215.7308	272.8	272.0668

Exercise

• How to know the row number of the wrong date

```
df \leftarrow data.frame(dt = c("2019-10-01", "2019-31-12", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03-17", "2019-03", "2019-03", "2019-03", "2019-03", "2019-03", "2019-03", "2019-03", "2019-03", "2019-03", "2019-03", "2019-03", "2019-03", "2019-03", "2019-03", "2019-03", "2019-03", "2019-03",
```

dt 2019-10-01 2019-31-12 2019-03-17 2019-02-29 2019-09-30

Output:

Wrong dates on rows: 2, 4

Exercise

• How to get sub-total and total on mean of age and balance, group by job and education?

job	education	mean(Age)	median(Balance)
services services	primary		
services	+		
+	+	•••	

Exercise

To evaluate a portfolio of options for its total value.

tidyr: gather/spread

Wide format <=> Long format

- Wide format is more familiar to us. Column name is the data attribute.
- Long format is what we reformat the data that common attributes are gathered together as a single variable.
- Reference: Tidy data https://en.wikipedia.org/wiki/Tidy_data

Wide v.s. Long

Wide format

date	Copper_qty	Gold_qty	Silver_qty
2019-01-01	157	733	893
2019-01-02	295	626	462
2019-01-03	929	139	650
2019-01-04	335	137	440
2019-01-05	809	465	235

Wide v.s. Long

Long format

```
library(tidyr)
df <- gather(wfmt, key, value, -date)</pre>
```

date	key	value
2019-01-01	Copper_qty	157
2019-01-02	Copper_qty	295
2019-01-03	Copper_qty	929
2019-01-04	Copper_qty	335
2019-01-05	Copper_qty	809
2019-01-01	Gold_qty	733
2019-01-02	Gold_qty	626
2019-01-03	Gold_qty	139
2019-01-04	Gold_qty	137
2019-01-05	Gold_qty	465
2019-01-01	Silver_qty	893
2019-01-02	Silver_qty	462
2019-01-03	Silver_qty	650
2019-01-04	Silver_qty	440

spread/gather convert for Wide format <=> Long format

... is where you want to make as independent columns. You need to specify all columns that should be gathered (or before gather, remove all columns that should *not* be gathered).

gather example with *Bank* dataset

wfmt <- group_by(bank, job) %>% summarize(yy = sum(ifelse(default ==
`summarise()` ungrouping output (override with `.groups` argumen
df <- gather(wfmt, default, value, -job) %>% arrange(job, default)

job	уу	nn
admin.	6	472
blue-collar	14	932
entrepreneur	7	161
housemaid	2	110
management	14	955
retired	3	227
self-employed	4	179

. . .

job	default	value
admin.	nn	472
admin.	уу	6
blue-collar	nn	932

spread

```
# Original help
spread(data, key, value)
# My annotated version
spread(data, colname_to_be_header, value_to_be_filled_under_header)
```

spread example with Bank dataset

```
lfmt <- group_by(bank, job, default) %>% summarize(nn = n())
## `summarise()` regrouping output by 'job' (override with `.groups
df <- spread(lfmt, default, nn)
# How to take care of converting NA to zero?</pre>
```

job	default	nn
admin.	no	472
admin.	yes	6
blue-collar	no	932
blue-collar	yes	14
entrepreneur	no	161
entrepreneur	yes	7
housemaid	no	110

• • •

job	no	yes
admin.	472	6
blue-collar	932	14

Combine different columns' Quantity

date	Copper_qty	Gold_qty	Silver_qty
2019-01-01	243	99	654
2019-01-02	936	512	326
2019-01-03	597	91	301
2019-01-04	990	251	319
2019-01-05	606	375	134

```
df <- wfmt %>%
      gather(key, value, -date) %>%
      group_by(date) %>%
      summarize(value1 = sum(value)) %>%
      rename(value = value1) %>%
      mutate(key = "Total") %>%
      spread(key = key, value = value) %>%
      inner join(wfmt, ., by = "date")
## `summarise()` ungrouping output (override with `.groups` argumen
```

48 / 55

separate/unite

```
separate(data, col, into, sep = "[^[:alnum:]]+", remove = TRUE,
 convert = FALSE, extra = "warn", fill = "warn", ...)
\# # A tibble: 6 × 3
#> country year
                            rate
#> * <chr> <int>
                                <chr>>
#> 1 Afghanistan 1999 745/19987071
#> 2 Afghanistan 2000 2666/20595360
#> 3 Brazil 1999 37737/172006362
#> 4 Brazil 2000 80488/174504898
#> 5 China 1999 212258/1272915272
#> 6 China 2000 213766/1280428583
separate(df, rate, into = c("cases", "population"))
separate(df, rate, into = c("cases", "population"), convert = TRUE)
unite(df, century, year) # default sep is "_"
unite(df, century, year, sep = "") # seamless unite
```

Rules of Thumb for use list of data frame

- Use list to store app data, i.e. configuration. conf <list(use_calendar_days = TRUE, do_fx_conversion = FALSE, year_convention = 252)
- User data frame to store repeating data of similar structure.
- Every data frame is better to have a id column, like item_id. It can be number or character. Make it unique. If item_id is a number, when insert new record to the data frame, we need to increment it somewhere. So, use a variable to keep it somewhere, or use max(item_id) + 1 (It will do calculation for all ids. Performance still good with small data set)
- Delete is not good for enterprise. We need to leave an audit trail. And we can
 prevent from wrong operation. Add a column name with a common name,
 e.g. SYS_DEL. Its default value is FALSE, when you want to delete it, set it to
 TRUE. When extracting data, use filter(df1, !SYS_DEL). The advanced
 version involves the user and datetime, i.e. SYS_DEL_USER,
 SYS_DEL_DATETIME.

```
| position_id | call_put | amount | strike | SYS_DEL | | X123 | | | |
```

CRUD in dplyr

Create:

add new rows. bind_rows()

Read:

• You have known enough: filter/select/joins/... to get what you need.

Update:

• Use either data frame way or mutate.

```
bank1 <- bank
bank1[row_nums, "taxable"] <- "no"
bank1[setdiff(1:nrow(bank), row_nums), "taxable"] <- "yes"</pre>
```

Section 4

Assignment

Assignment

• Exploratory Data Work on the bank dataset. Find 10 findings from data. Use R Markdown.

```
title: "FE8828 Assignment for Exploratory Data Analysis"
author: "Yang Ye <sub> <Email:yy@runchee.com> </sub>"
date: "Sep 2019"
output: html_document
```{r setup, include=FALSE}
library(tidyverse)
library(lubridate)
library(bizdays)
Use echo = TRUE for assignment is an exception, so code is visible
knitr::opts chunk$set(echo = TRUE, fig.align="center", collapse = TRUE,
bank <- read.csv("https://goo.gl/PBQnBt", sep = ";")</pre>
```

# Finding #1

## Section 5

Assignment

## Assignment

- Book option trades
- 1.1 Copy the options data from https://www.nasdaq.com/symbol/goog/option-chain?dateindex=1

```
Gather data for "Dec 20, 2019" and store into following data frame:

| Expiry Date | Strike | Open Interest | Underlying | Call/Put
```

```
1.2 Count the total valuation of 1) call alone, 2) put alone, 3) call and put. Open Interest * (Bid + Ask) / 2
```

- 1.3 Find those in the money and get their total Open Interest.
- 1.4. Plot the volatility curve, strike v.s. vol. For strike < current price, use puts' price; for strike > current price, use calls' price.

```
GBSVolatility(price, TypeFlag, S, X, Time, r, b, tol, maxiter) # Use Price to back-out implied volatility. Assume <math>r = 0.03 # Example:
```

GBSVolatility(867.30, "c", 1135.67, 240,