Diagnosing BCNF is NP-hard in general.
Possible that no loss less join dependency preserving BENF decomposition. 3NF: looks like BCNF but also allows X - Y E F+ to imply that each attribute of Y is contained in a condidate key of R. F= {AB > C, C>B} R= { A, B, C} Minimal Cover Definition Two sets of dependencies F and U are equivalent iff F+ = G+. Definition A set of dependencies F is minimal if: 1) every RHS of a dependency in F is a single attribute

2) for no X > A is the set F- [X > A]

equivalent to F.

3) for no X > A and Z a proper subs

3) for no X -1 A and Z a proper subset of X is the set F = {x - A} U {z -> A}

equivalent to t.
(2) efficiently check usin) A & Compuk K (X, F- {X > 143})
A & Compute X (X, F- 1x -) A S)
Theorem
For every set of dependencies F there is an
equivalent uninimal set of dependencies (minimal
equivalent minimal set of dependencies (minimal cover) -> poly time
(3) A & Compale K+ (Z, F)
Finding Minimal Covers
(000:
1. replace $X \rightarrow YZ$ with $X \rightarrow Y$ and $X \rightarrow Z$ 2. remove $X \rightarrow A$ from F ; F $A \in Compute X^{f}$
2. remove X-) A from F : F A & ComputeXt
(X, F - \X74})
3. remove A from LHS of X+B if
F if BE Compute X+ (X-4A), F)
(we have a minimal over here)
4. replace X+Y and X+> 7 in P by
X > Y &
A lossless-join 3NF decomposition that is
A lossless-join 3NF decomposition that is dependency preserving can be efficiently computed.

func Compute 3NP (P, P): result: 9; Pt:= min cover for F for each (X, Y) & F+ do result := result v {xy} if 73 R; E result s.t. (i) his contains a condidak key for R then

(ii) compute a condidate key K for R

result := result u EKY return result line (ii): repeatedly remove attributes from R
to turn superkey into candidate key using hill climbing
line (i): check if superday using R= Compokt (Pi, F = {A -1B, (-1D} R= {A, 8, C, 9} R, = &A, B} \$2 : {C, 0} R3 = {A, C} = added to make decomposition lossless R= { Sno, Sname, City, Ino, Inany Prize} F= 2 Sno, Ino -> Supplied_ Items, Sno -> Sname,
Sno -> City, Ino -> Iname }

F'= { Sno, Ino -> Sname,, Sno, City -> Price, Sno +> Snew
Sno -> City, Ino -> Inme? F' = { Sno, Ino -> Price, Sno -> Snane, City, Tno -> Iname? -> Sives 3 3NF tables
In Inamez > 5ives 3 3NF tables
-FOS give ches toward elinination of some
redundancies in a rel ⁿ schema
- goals: decompose rela schemas s.t. the
decomposition is: O lassless-join
3 dependency - preserving
3 BCNF (and if we fill here, at least 3NI