УДК 576.895:597.8

ИССЛЕДОВАНИЕ ГЕОГРАФИЧЕСКОГО РАСПРОСТРАНЕНИЯ ГЕЛЬМИНТОВ У АМФИБИЙ

В. И. Борисова

Исследована гельминтофауна прудовой (Rana lessonae Cam.) и остромордой (R. arvalis Nils.) лягушек в районах, подверженных антропогенному воздействию. Показано, что распределение двух доминирующих по численности видов Oswaldocruzia filiformes (Goeze), Cosmocerca ornata (Dujardin) в популяциях хозяев согласуется с отрицательным биномиальным распределением (ОБР). Приводится примененный способ расчета функции вероятности ОБР.

В летние месяцы 1982—1983 гг. проводилось эколого-паразитологическое исследование, во-первых, лягушек, заселяющих острова в Мешинском участке Куйбышевского водохранилища; во-вторых, популяций тех же видов амфибий, обитающих как на урбанизированной территории (г. Горький), так и в районе интенсивного сельскохозяйственного производства (Лукояновский р-н Горьковской обл.).

Из множества явлений, связанных с антропогенным воздействием на ландшафт и его элементы по силе, скорости и многоплановости воздействия, Гаранин (1983) выделяет урбанизацию, к урбанизированным ландшафтам он относит и созданные человеком крупные водохранилища.

Если в первые годы существования Куйбышевского водохранилища вследствие затопления поймы отмечалось резкое снижение численности главным образом наземных амфибий, в том числе и остромордой лягушки, то в последующие годы численность этого вида восстановилась. В настоящее время на островах *R. arvalis*, так же как и прудовая лягушка, является массовым видом.

На территории г. Горького с точки зрения интенсивности урбанизации принято выделять три зоны (Лебединский, 1981). В наших сборах материалы представлены из двух зон. Первая — лесопарковая — (популяции зеленой зоны) представляет собой относительно мало измененные деятельностью человека естественные ландшафты, расположенные на окраинах города. Вторая зона объединяет отдельные естественные или искусственно созданные природные вкрапления: овраги, поймы небольших рек, парки, заболоченные пустыри на интенсивно урбанизированной территории (автозаводские популяции).

Наблюдения показывают, что прудовая лягушка и в г. Горьком и в области весьма охотно заселяет водоемы, расположенные вдоль троп с интенсивным пешеходным движением и поэтому подвергаемые круглый год антропогенному воздействию. В летние месяцы в них насчитывалось до 15—20 особей этого вида. Параллельно с прудовой лягушкой изучались городские и лукояновская популяции остромордой лягушки.

Таблица 1 Показатели зараженности прудовой и остромордой лягушек гельминтами

Популяция		Прудовая						Остромордая			
	Осмотрено экз.	трематоды			нематоды			Осмотрено экз.	нематоды		
		эи	ии	ИО	эи	ии	ио		ЭИ	ии	ИО
Островная Зеленой зоны г. Горького Автозаводская Лукояновская	38 32 30 30	68.4 68.8 16.6 80.0	4.9 2.8 1.4 5.3	3.3 1.9 0.2 4.2	47.4 71.9 66.6 70.0	2.6 3.7 3.9 2.4	1.2 2.7 2.6 - 1.7	66 30 33 30	59.0 83.3 60.6 70.0	3.6 4.0 4.9 5.4	2.1 3.4 2.9 3.8
Bcero	130	59.2	4.2	2.5	63.0	3.2	2.0	159	66.0	4.3	2.8

Примечание. ЭИ — экстенсивность инвазии; ИИ — интенсивность инвазии; ИО — индекс обилия.

Таблица 2 Распределение прудовых лягушек по числу обнаруженных в них нематод *C. ornata* и теоретические частоты отрицательного биномиального распределения

Популяция	Объем выборки		Число нематод в лягушках									Критерий χ ²	
			0	1	2	3	4	5	6	7	8	9	$\tilde{\chi}^2$
Зеленой зоны г. Горького	32	$\frac{5.54}{1.56}$											
f_1 f_2			16 17.92	5.00	2.14	2 1.85	2 1.52	1.20	1 0.93	0 0.76	0.68	0	$\frac{1.19}{5.99}$
		5.73						9.08					
Автозаводская	30	$\frac{5.73}{1.73}$						1					
f_1		10	15	4	2	3	2	1	1	1	0	1	1.50
f_2			12.32	6.45	3.96	2.55	1.68	1.15	0.79	0.51	0.38	0.21	$\frac{1.52}{5.99}$
								11.23					0.99

 Π р и м е ч а н и е. Здесь и в табл. З f_1 — фактические абсолютные частоты; f_2 — теоретические абсолютные частоты. При расчете χ^2 в случае необходимости несколько соседних интервалов объединялись в один, для которого достигался необходимый минимальный уровень теоретической частоты (не меньше 5); $\bar{\chi}^2$ — теоретический.

частоты отрицательного filiformes Ö в них нематол

idal calbrol o	Критерий χ ³	$\tilde{\chi}^2$		5.24			7.91	
nd 10 k		14	_	0		-	0.35	
acion		13	0	0.20		_	0.38	
CKNC		12	0	0.20		0	0.43	
эниз		11	0	0.40		-	0.47	
и Гео		10	_	0.50	6.2	-	0.53	
ormes	ках	6	0	08.0		_	0.63	
О. <i>IIII</i> ІИЯ	Число нематод в лягушках	œ	0	5.50 5.30 4.60 3.70 2.90 2.40 1.60 1.30 1.00 0.80 0.50 0.40 0.20 0.20		0	1.57 1.20 1.03 0.88 0.73 0.63 0.53 0.47 0.43 0.38 0.35	
гаруженных в них нематод О. , биномиального распределения	атод в	7	2	1.30		-	0.88	
их нем распр	по нем	9	5	1.60		_	1.03	
AX B H bhoro	Чис	5	-	2.40,	3	0	1.20	
омиал		4	, e	2.90	5.3	2	1.57	
оонару бин		3	1	3.70	က	0	2.62	
ислу		2	3	4.60	∞	4	3.58	
M IIO		-	000	5.30		4	10.40 5.20 3.58 2.62	
іягуше		0	ည	5.50		13	10.40	
тордых л	σ^2	ш	3.4			$\frac{17.8}{3.0}$		
е остром	Объем		30			30		
Распределение остромордых лягушек по числу оонаруженных в них нематод О. <i>Iutforme</i> s и теоретические частоты огримательного биномиального распределения		Популяция	Зеленой зоны г. Горького			Лукоянов- ская		

Всего было обследовано 289 экз. амфибий, у которых зарегистрировано 14 видов гельминтов, относящихся к 2 типам, 2 классам и 6 семействам, это тип Plathelminthes кл. Trematoda: Diplodiscus subclavatus (Pall.), Opisthoglyphe ranae (Froelich), Pneumonoeces variegatus (Rud.), Skrjaoinoeces volgensis Sudaricov, Pleurogenes claviger (Rud.), Pleurogenoides medians (Olsson), Prosotocus confusus Loss; Nemathelminthes, Nematoda: Rhabdias bufonis (Schrank), O. filiformis, Aplectana acuminata (Schrank), Cosmocerca commutata (Diesing), C. ornata, Neoxysomatium brevicaudatum (Zeder), Neoraillietnema praeputiale (Skrjbin).

В табл. 1 указано число вскрытий лягушек по местам их нахождения, а также приведены показатели их зараженности гельминтами. Общеизвестно, что в естественных биоценозах (Рыжиков и др., 1980) в гельминтофауне амфибий, ведущих водный образ жизни, как в видовом отношении, так и по частоте встречаемости, преобладают тоды. Наблюдения показывают, что в популяциях R. lessonae, приуроченных к территориям с выраженным антропогенным воздействием, отмечается высокая степень зараженности лягушек и нематодами, которыми амфибии могут заражаться во время миграций из мелеющих к концу лета водоемов на зимовку в постоянные водоемы.

Видовой состав нематод прудовой и остромордой лягушек в целом сходный, однако группы доминирующих видов в значительной мере различаются. У прудовых лягушек во всех выборках явно преобладают нематоды рода Cosmocerca, у остромордых — рода Oswaldocruzia.

Правильно оценить место и роль паразитических организмов в биоценозах невозможно без выяснения особенностей их распределения в популяциях хозяев. В настоящее время паразитологи, как правило, не располагают достаточными знаниями, чтобы определить и характер, и степень влияния каждого из факторов. Поэтому математическое моделирование в строгом смысле слова оказывается затруднительным. В связи с этим исследователями

(Бреев, 1972; Кеннеди, 1978) был предложен другой путь решения проблемы. А именно, имея в виду уже известные в математической статистике типы распределений случайных величин, попытаться определить, какой из них наиболее сходен с изучаемым нами эмпирическим распределением. Исходя из этих положений, мы попытались определить характер распределения двух доминирующих по численности видов нематод $Cosmocerca\ ornata$, $O.\ filiformis$ в популяциях хозяев (табл. 2, 3). Эмпирический материал был обработан методами математической статистики. Для каждой выборки были рассчитаны взвешенное среднее арифметическое — m и выборочная дисперсия — σ^2 . Сопоставление этих двух показателей дало основание предположить, что распределение гельминтов в популяциях изученных видов лягушек согласуется с ОБР, так как во всех рассмотренных случаях дисперсия оказалась намного больше средней.

Расчет функции вероятностей отрицательного биномиального распределения был произведен по формуле (Эренберг, 1981)

$$p_r = \frac{(k+r-1)!}{r!(k-1)!} \left(\frac{m+k}{k}\right)^{-k} \left(\frac{m}{m+k}\right)^r,$$

где r — значение исследуемого признака (величина переменная); m — фактическое значение средней арифметической. Численное значение k определялось путем приравнивания теоретической дисперсии фактической.

Теоретическая дисперсия равна

$$\sigma^2 = m \left(1 + rac{m}{k}
ight),$$
 отсюда $k = rac{m^2}{\sigma^2 - m}$.

Здесь следует иметь в виду, что k обычно не является целым числом, а факториальные выражения типа $(k+r-1)!;\ (k-1)!;\ r!$ следует записывать с помощью гамма-функций, поскольку для дробных значений факториалы не определены.

Таблица 4 Распределение 30 остромордых лягушек (популяция зеленой зоны) по числу обнаруженных в них нематод *O. filiformes*

Классы численности	Наблюдаемые частоты (ƒ)	Ожидаемые по отрицательному биномиальному распределению частоты (f_1)	$\frac{(f-\widetilde{f}_1)}{\widetilde{f}_1}$	Ожидаемые по распределению Пуассона частоты ($ ilde{f_2}$)	$\frac{(f-\bar{f}_2)}{\bar{f}_2}$
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	5 8 3 1 3 1 5 2 0 0 1 0 0 0	5.50 5.30 4.60 3.70 2.90 2.40 1.60 1.30 1.00 0.80 0.50 0.40 0.20 0.20 0	0 1.38 2.28 0.32 1.26 $\chi_{1}^{2}=5.24$ $\tilde{\chi}_{1}^{2}=9.49$	1.00 3.40 5.80 6.57 5.59 3.79 2.16 1.00 0.44 0.17 0.06 0.02 0 0	3.30 4.72 1.20 $\chi_{2}^{2}=9.94$ $\tilde{\chi}_{2}^{2}=7.81$

В итоге нами были получены ряды распределения. Из данных табл. 2—4 видно, что во всех случаях наблюдаются различия между теоретически ожидавшимися рядами распределения и реально наблюдаемыми величинами.

Полезным методом, позволяющим судить о том, соответствуют ли результаты наблюдения той или иной гипотезе, является метод хи-квадрат. Им мы и воспользовались. Из данных табл. 2, 3 следует, что во всех рассмотренных нами случаях значение фактического χ^2 оказалось меньше χ^2 теоретического (при 5 %-ном уровне значимости). Следовательно, можно с полным основанием утверждать, что распределение этих гельминтов в популяциях изученных видов амфибий согласуется с ОБР.

Литература

Б р е е в К. А. Применение негативного биномиального распределения для изучения популяционной экологии паразитов. Л., Наука, 1972. 69 с.

якологии паразятов. Л., Паука, 1972. 09 с.
Гаранин В. И. Герпетофауна и урбанизация. — В кн.: Наземные и водные экосистемы. Межвузовский сб., Горький, 1983, с. 37—43.
Кеннеди К. Экологическая паразитология. М., Мир, 1978. 230 с.
Лебединский А. А. Особенности размещения амфибий на урбанизированной территории. —

В кн.: Наземные и водные экосистемы. Межвузовский сб., Горький, 1981, с. 49—56. Рыжиков К. М., Шарпило В. П., Шевченко Н. Н. Гельминты амфибий фауны СССР. М., Наука, 1980. 275 с. Эренберг А. Анализ и интерпретация статистических данных. М., Финансы и статистика, 1981. 405 с.

Горьковский государственный университет им. Н. И. Лобачевского

Поступила 26.11.1985 после доработки 9.03.1988

STUDIES ON THE GEOGRAPHICAL DISTRIBUTION OF AMPHIBIAN HELMINTHS

V. I. Borisova

SUMMARY

Helminth fauna of Rana lessonae Cam. and R. arvalis in regions subjected to a strong anthropogenic influence was studied. It is shown that the distribution of two most abundant species of nematodes, *Oswaldocruzia filiformis* (Goeze) and *Cosmocerca ornata* (Dujardin), in investigated hosts populations is in keeping with negative binomial distribution.