

Please write clearly in	า block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	
	I declare this is my own work.

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS

(9665/FM03) Unit FP2 Pure Mathematics

Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphic calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
TOTAL	

	Answer all questions in the spaces provided.	
1	A curve C has equation	
	$y = \tan^{-1}(x+1) + \tanh^{-1}(\frac{x}{2})$ where $-2 < x < 2$	
1 (a)	Find $\frac{dy}{dx}$	[2 marks]
1 (b)	Answer	not
1 (b)	Hence find an equation of the normal to C at the point P on the curve given t the x -coordinate of P is 0	[3 marks]
	Answer	

 $\mathbf{2} \qquad \text{ The matrix } \ \mathbf{A} \ = \ \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$

? (a)	Describe fully the single transformation represented by the matrix $f A$	[2 marks
? (b)	For this transformation, state the line of invariant points.	[1 mark

Answer

Turn over for the next question

3	(a)	Express $\frac{6}{(r-1)(r+1)}$ in the form $\frac{A}{r-1} + \frac{B}{r+1}$, where A and B are integrated as $\frac{6}{r+1} + \frac{B}{r+1} = \frac{1}{r+1}$.	gers.
			[2 marks]
		$\frac{6}{(r-1)(r+1)} =$	
		(r-1)(r+1)	
3	(b)	Use the method of differences to show that	
	(2)		
		$\sum_{r=2}^{n} \frac{6}{(r-1)(r+1)} = \frac{an^2 + bn + c}{2n(n+1)}$	
		where a , b and c are integers.	
		where u , v and c are integers.	[4 marks]
			_

	Do not write outside the
	box
	6
Turn over for the next question	
rum over for the next queetion	

4	Solve the differential equation	
	$4\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4\frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$	
	given that $y = 4$ and $\frac{dy}{dx} = 1$ when $x = 0$	[6 marks]
		[6 marks]
	Answer	

Do not write outside the box

(a)	Explain why $\int_0^\infty \ln x dx$ is an improper integral.	[1 mark]
b)	Evaluate $\int_{0}^{e^{2}} \ln x dx$ showing the limiting process used.	
IJ,	o make anowing the limiting process used.	[6 marks]

(a)	A student states that vectors \mathbf{r} , \mathbf{m} and \mathbf{n} can be found such that
	$\mathbf{r} \times \mathbf{m} = \mathbf{n}$ and $\mathbf{m} \cdot \mathbf{n} = 12$
	Explain why the student is not correct. [2 marks
(b)	The points A , B and C have position vectors ${\bf a}$, ${\bf b}$ and ${\bf c}$ respectively relative to an origin O , where
	$\mathbf{a} = 2\mathbf{i} + p\mathbf{j} - \mathbf{k}$ $\mathbf{b} = -p\mathbf{i} + 4\mathbf{j} - 7\mathbf{k}$ $\mathbf{c} = -4\mathbf{i} + 2p\mathbf{j} - 9\mathbf{k}$
	and p is real.
	The position vectors ${f a}$, ${f b}$ and ${f c}$ define the edges of a parallelepiped.
	The volume of the parallelepiped is 17 cubic units.
	Answer

7		The matrix $\mathbf{M} = \begin{bmatrix} 3 & -2 \\ 5 & p \end{bmatrix}$ where p is a constant.		out
		The matrix ${f M}$ has two distinct eigenvalues.		
		One of the eigenvalues is 1		
7	(a)	Find the other eigenvalue.	[4 marks]	
		Answer		
7	(b)	Find an eigenvector for each eigenvalue.	[3 marks]	
		Eigenvectors	and	

8 (a) By direct expansion, or otherwise, show that

$$\begin{vmatrix} k & 2 & k-4 \\ 2k-2 & 3k-2 & 4 \\ 2k+3 & 3k & 5 \end{vmatrix} = -8k^2 + pk + q$$

where $\,p\,$ and $\,q\,$ are positive integers.

[2 marks]

8 (b) A system of equations is given such that

$$kx + 2y + (k-4)z = a$$

$$(2k-2)x+(3k-2)y+4z=b$$

$$(2k+3)x+3ky+5z=c$$

where k, a, b and c are real constants.

8 **(b) (i)** Find the two values of k for which the system of equations does **not** have a unique solution.

[2 marks]

		11	
			Do not write outside the box
		Answer	
8	(b) (ii)	For the integer value of k found in part (b)(i) , find an expression for b in terms of a and c such that the system of equations is consistent. [3 marks]	
		h—	7
		b=	

9	(a)	Explain why the cubic equation	
		$ax^3 + bx^2 + cx + 8 = 0$	
		where \boldsymbol{a} , \boldsymbol{b} and \boldsymbol{c} are real numbers, cannot have exactly one non-real root.	[1 mark]
9	(b)	The equation	
		$2z^3 + pz^2 + 4z - 6i = 0$	
		where p is a constant, has roots $lpha$, eta and γ	
9	(b) (i)	Show that	
		$(\alpha\beta+2)(\alpha\gamma+2)(\beta\gamma+2)=k-3ip$	
		where k is an integer.	[4 marks]
			[4 marks]

	[3 mar
Answer	

$\left(\cos\theta + \mathrm{i}\sin\theta\right)^n = \cos n\theta + \mathrm{i}\sin n\theta$	
	[5 marks]

Find, in terms of π , the two smallest positive values of θ that satisfy the equation		
$2(\cos\theta + i\sin\theta)^3 = 1 - i\sqrt{3}$	[4 marks	
Anguar		
Answer		

11	The plane Π_1 has equation $\mathbf{r} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} + \lambda \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} + \mu \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$	
	The plane Π_2 has equation $\mathbf{r} \cdot \begin{bmatrix} -3 \\ 1 \\ 2 \end{bmatrix} = 5$	
11 (a)	Find an equation for the plane Π_1 in the form $\mathbf{r} \cdot \mathbf{n} = d$	[4 marks]
	Answer	
11 (b)	Find the acute angle between the planes $\Pi_{\scriptscriptstyle 1}$ and $\Pi_{\scriptscriptstyle 2}$ giving your answer to the nearest 0.1°	[4 marks]

	Answer	
Write do	vn a Cartesian equation of the plane $ m I$	П ₂
,	nswer	
	ctor equation for the line of intersection the form $(\mathbf{r}-\mathbf{a})\times\mathbf{b}=0$	
		[5 m
	_	

12	It is given that $y = \ln\left[e^{2x}\left(1 + \tan^2 x\right)\right]$	
12 (a) (i)	Show that $\frac{dy}{dx} = 2(1 + \tan x)$	[2 marks]
12 (a) (ii)	Find $\frac{d^4y}{dx^4}$ in terms of x	[3 marks]
	Answer	

12 (b)	Hence, show that the first three non-zero terms in ascending powers of x in the Maclaurin series of $\ln\left[e^{2x}\left(1+\tan^2x\right)\right]$ are		
	$2x + x^2 + \frac{1}{6}x^4$	[3 marks]	
		[o marko]	
2 (c)	Show that		
	$\lim_{x \to 0} \left[\frac{2\ln(\cos x) + x\sin x}{2\sqrt{x^8 + x^{10}}} \right]$		
	exists and state its value.	[4 marks]	
	Answer _		

13 (a)	Use the definitions of $\cosh \theta$ and $\sinh \theta$ in terms of e^{θ} and $\mathrm{e}^{-\theta}$ to show that
	$1 + \sinh^2 \theta = \cosh^2 \theta$ [3 marks]
13 (b)	Use an integrating factor to find the general solution of the differential equation $\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{x}{1+x^2}y = 2$
	Give your answer in the form $y = f(x)$ [11 marks]

	Do not write outside the
	box
	_
	_
Answer	14

14	A curve C_1 is given parametrically by the equations
	$x = 2e^{0.5\theta}\cos\theta$ and $y = 2e^{0.5\theta}\sin\theta$
	The point P on C_1 is where $\theta = 0$
	The point Q on C_1 is where $\theta = \pi$
14 (a)	Find the length of the arc PQ of the curve C_1
	Give your answer in an exact form. [7 marks]
	į, marko
	Answer
14 (b)	A curve C_2 has polar equation
	$r=2\mathrm{e}^{0.5 heta}-1$ where $0\leq heta\leq \pi$
	The point D on C_2 is where $\theta = 0$
	The point E on C_2 is where $\theta=\pi$

Do not	write
outside	the
ho	v

14 (b) (i) Sketch the curve C_2

[2 marks]

14 (b) (ii) By finding the polar equation of the curve C_1 , or otherwise, show that the area of the region bounded by C_1 and C_2 and the line segments PD and QE is

$$\frac{1}{2} \left(a e^{\frac{\pi}{2}} + b + c \pi \right)$$

where a, b and c are integers.

[5	m	ar	KS _.	l
[၁	m	ar	KS	

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED Copyright information For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 Oxford International AQA Examinations and its licensors. All rights reserved.

IB/G/Jun22/FM03

Do not write outside the