Pair Making

The brute-force solution will include iterating through all pairs of numbers $\leq n$. This makes the solution $O(n^2)$ and will result in a TLE. Here is a faster solution:

For all positive integers i such that i < p, calculate $j = inverse(i^2) \times k$.

Now, we have 2 integers i, j such that 0 < i, j < p and $i^2 j \equiv k \pmod{p}$.

For all such i, j, find the number of ordered pairs (a, b) such that $a \equiv i \pmod{p}$ and $b \equiv j \pmod{p}$, $1 \le a, b \le n$ as $(\frac{n+p-i}{p}) \times (\frac{n+p-j}{p})$.

Final answer:

$$\sum_{i=1}^{p-1}(\frac{n+p-i}{p})\times(\frac{n+p-j}{p})$$
 where $j=inverse(i^2)\times k$

Time Complexity : $O(p \log p)$ (There are p iterations of i and each inverse function is $O(\log p)$)

Space Complexity: O(1)

Note: inverse(x) stands for "modular inverse" of x with respect to p.