Corrigé de l'Examen Administration des SGBD MIL-SII-RSD

Partie I: Fonctions générales de SGBD 08 pts

1. Dans quels cas une insertion dans la table PERSONNE est rejetée par le SGBD ?

Réponse : 0.5 pts

- Problème de clé primaire : insert into PERSONNE values(1,'Ahmed Hania', 53,'feminin',3);

insert into PERSONNE values(1,'Aissa Nadia', 21,'feminin',2);

- Problème de clé étrangère: insert into PERSONNE values(2,'Labdi Lina,21,'feminin',123); la catégorie 123 n'existe pas.

Pour bien mener l'enquête, l'institut a engagé des employés et les a structurés de cette façon :

- 100 Enquêteurs peuvent voir la table QUESTION et modifier les tables PERSONNE et AVIS.
- 10 responsables chargés d'études et de synthèses peuvent voir les tables QUESTION et AVIS.
- Un Directeur a tous les droits.
- Les tables CATEGORIE et PERSONNE peuvent être vues par tous les employés de l'enquête.
- 2. Donner la meilleure stratégie d'attribution des droits d'accès pour cette enquête. Donner les commandes SQL utilisées pour appliquer cette stratégie.

Réponse : 02 pts

créer un rôle pour chaque catégorie : Rôle ENQUETEURS, Rôle CHARGES_ETUDES_SYNTHESES.

CREATE ROLE ENQUETEURS;

CREATE ROLE CHARGES ETUDES SYNTHESES;

Le directeur peut être créé directement sans rôle (on lui associe les deux rôles).

- attribuer les privilèges à chaque rôle.

GRANT SELECT ON QUESTION TO ENQUETEURS;

GRANT UPDATE ON PERSONNE TO ENQUETEURS;

GRANT UPDATE ON AVIS TO ENQUETEURS;

GRANT SELECT ON QUESTION TO CHARGES_ETUDES_SYNTHESES;

GRANT SELECT ON AVIS TO CHARGES_ETUDES_SYNTHESES;

- créer des utilisateurs réels et leur attribuer le rôle correspondant.

CREATE USER usern IDENTIFIED pswn; (110 utilisateurs)

CREATE USER directeur IDENTIFIED pswdirecteur;

GRANT ENQUETEURS TO user1, user2, user3, ..., user100;

GRANT CHARGES_ETUDES_SYNTHESES TO user101, user102, user103, ..., user110;

GRANT ENQUETEURS, CHARGES_ETUDES_SYNTHESES TO directeur;

- pour la table CATEGORIE et PERSONNE, attribuer un privilège à tous les utilisateurs :

GRANT SELECT ON CATEGORIE TO PUBLIC;

GRANT SELECT ON PERSONNE TO PUBLIC;

3. L'administrateur veut interdire les personnes mineurs (moins de 18 ans) à remplir le questionnaire.

Réponse : 01.5 pts

a. Proposer une solution au niveau de la table Personne

Contrainte d'intégrité de type check sur l'attribut age de la table PERSONNE :

ALTER TABLE PERSONNE ADD CONSTRAINT CHECK_AGE CHECK(AGE>18); 0.5 pts

b. Proposer une autre solution au niveau de la table AVIS :

Un trigger avant l'ajout dans avis, il vérifie que l'âge de personne est supérieur à 18, sinon, il invalide la mise à jour : 01 pts

```
CREATE OR REPLACE TRIGGER CHECK_AGE_TRIGGER

BEFORE INSERT ON AVIS

FOR EACH ROW

AGE_PERSONNE PERSONNE.AGE%TYPE; /* VARIABLE POUR RECUPERER L'AGE*/

BEGIN

/* RECHERCHER L'AGE DE LA PERSONNE*/

SELECT AGE TO AGE_PERSONNE FROM PERSONNE WHERE NUMPERS=:NEW.NUMPERS;

IF AGE_PERSONNET<=18 THEN RAISE_APPLICATION_ERROR (-20001, 'VOUS N'ETES PAS AUTORISE A REPONDRE A CE QUESTIONNAIRE');

END IF

END
```

4. Proposer une vue permettant, pour chaque question, de calculer et d'afficher le nombre de personnes qui y ont répondues.

Réponse : 01 pts

```
CREATE OR REPLACE VIEW TOTAL_REPONSES_QUESTION

AS

(SELECT COUNT(NUMPERS) AS TOTAL_REPONSES, Q.NUMQ AS NUM_QUESTION

FROM QUESTION Q, AVIS A

WHERE Q.NUMQ=A.NUMQ

GROUP BY Q.NUMQ

);
```

5. L'administrateur veut sauvegarder dans la BD, pour chaque question, le nombre de personnes qui y ont répondus.

Réponse : 02 pts

- a. Proposer une solution en supposant que toutes les tables sont encore vides Donner la requête SQL en donnant les catalogues modifiés par cette solution.
 - a.1) ALTER TABLE QUESTION ADD TOTAL_REPONSE INTEGER default 0; 0.25 pts
 - a.2) La création d'un nouvel attribut a pour conséquences : 0.75 pts
 - Dans le catalogue attribut : l'insertion d'une ligne décrivant l'attribut (Nom attribut : TOTAL_REPONSE, type : integer,)
 - Dans le catalogue relation : Modification de la cardinalité de la relation attribut : card = card + 1
 - Modification de la la relation question: Degré = Degré + 1, Taille d'un tuple = Taille d'un tuple + Longueur d'un entier, Version = version +1.
- b. Ecrire le script permettant de mettre à jour automatiquement ce nombre 01 pts

```
CREATE OR REPLACE TRIGGER MAJ_NBREPONSES_QUESTION_TRIGGER

AFTER INSERT OR DELETE ON AVIS

FOR EACH ROW

BEGIN

IF INSERTING THEN UPDATE QUESTION SET TOTAL_REPONSE=TOTAL_REPONSE+1

WHERE NUMQ=:NEW.NUMQ

ELSEIF DELETING THEN UPDATE QUESTION SET TOTAL_REPONSE=TOTAL_REPONSE-1

WHERE NUMQ=:OLD.NUMQ

END IF

END
```

6. Comment adapter la solution donnée en 5.a pour qu'elle soit applicable au cas où toutes les tables contiennent déjà des données.

Réponse: 01 pts

Après la création de la colonne, utiliser la vue définie dans 4 pour initialiser la colonne

CREATE OR REPLACE PROCEDURE INTIALISER_TOTAL_REPONSE(NUM_QUEST QUESTION.NUMQ%TYPE) AS

BEGIN

UPDATE QUESTION SET TOTAL_REPONSE:=SELECT TOTAL_REPONSES FROM TOTAL_REPONSES_QUESTION WHERE NUM_QUESTION=NUM_QUEST;

END

Partie II : Mémoire relationnelle 04 pts

La projection sur numPers de la table PERSONNE donne l'ensemble suivant :

 $\{1,5,3,6,22,31,7,12,45,21,60,13,14,15,16\}.$

7. Expliquez la différence entre un index dense et un index non-dense. Quels sont les avantages et les inconvénients de chacun de ces deux types d'index?

Réponse : voir le cours 0.75 pts

8. On construit un index sur cet attribut, de type B-arbre d'ordre 3 et ses feuilles peuvent contenir au maximum 3 enregistrements. Dessinez l'arbre correspondant à l'insertion progressive des valeurs précédentes, en respectant l'ordre donné. On prendra soin de donnera les b-arbres intermédiaires remarquables.

Réponse: 01.5 pts

Construction de b-arbre par insertion progressive :

On alloue une page P1 vide pour insérer 1:

9. Combien de pages le SGBD doit-il lire pour trouver les attributs de la personne 12 ? Indiquez précisément les pages lues.

Réponse: 0.25 pts

Pour trouver les attributs de la personne 12, on suit ce chemin : P7, P6, P5 donc 3 pages.

10. Monter l'état de l'index après la suppression de la personne 60.

Réponse: 0.5 pts

Pour trouver les attributs de la personne 60, on suit ce chemin : P7, P10, P8.

P8 ne respecte pas la règle (<2), on fusionne avec le frère à gauche P4

P10 ne respecte pas la règle (<2), on équilibre entre P6 et P10

Partie III : Accès concurrent et Reprise après panne

L'exécution suivante est reçue par le système de l'institut de sondage :

O1: R1(X) R2(Y) W1(X) R3(Y) R2(X) W3(Y) R2(Z) R3(Z) W2(Z) W3(Z)

Parmi les programmes qui s'exécutent dans le système, nous nous intéressons à la procédure ModifierAvis(<u>numPers</u>, Description_question, Réponse_donnée, Nouvelle_réponse), qui modifie une réponse d'une personne donnée à une question décrite par l'attribut « description_question ».

11. Quelles transactions de O1 pourraient provenir de ModifierAvis.

Réponse: 01 pts

Les transactions extraites de l'ordonnancement O1 sont :

T1: R1(X) W1(X)

T2: R2(Y) R2(X) R2(Z) W2(Z) T3: R3(Y) W3(Y) R3(Z) W3(Z)

On lit le nuplet de QUESTION ayant description_question et on récupère le numéro de question. Ensuite, pour le numéro de question et numéro personne (numPers) on lit les nuplet AVIS correspondant. Enfin, on modifie Réponse_donnée par Nouvelle réponse. La seule transaction qui correspond est **T2**.

12. Supposons que O1 est correct. Vérifiez si O1 est sérialisable en utilisant le graphe de précédence.

Réponse : 01 pts

Les conflits :

sur X : W1(X)-R2(X)sur Y : R2(Y)-W3(Y)

sur Z: R2(Z)-W3(Z), R3(Z)-W2(Z), W2(Z)-W3(Z)

Le graphe de précédence contient des arcs T1→T2, T2→T3 et T3 → T2. Il y a un cycle T2 - T3 - T2, donc O1 n'est pas sérialisable.

13. Quelle est l'exécution obtenue par verrouillage à deux phases à partir de O1?

Réponse: 01.5 pts

Transaction	Action	Demande Verrou	Réponse	
T1	R1(X)	SLOCK(X)	Ok	
T2	R2(Y)	SLOCK (Y)	Ok	
T1	W1(X)	XLOCK (X)	Ok, fin de T1 d'où UNLOCK(X)	
Т3	R3(Y)	SLOCK(Y)	Ok	
T2	R2(X)	SLOCK(X)	Ok	
Т3	W3(Y)	XLOCK(Y)	Non, T3 attend T2	
T2	R2(Z)	SLOCK(Z)	Ok	
Т3	R3(Z)	SLOCK(Z)	T3 en attente de T2	
T2	W2(Z)	XLOCK(Z)	Ok, fin de T1 d'où UNLOCK(X), UNLOCK(Y), UNLOCK(Z) et réveiller T3	
Т3	W3(Y)	XLOCK(Y)	Ok	
Т3	R3(Z)	SLOCK(Z)	Ok	
Т3	W3(Z)	XLOCK(Y)	Ok, fin de T3 d'où UNLOCK(Y) et UNLOCK(Z)	

On constate que sur O1 il n'y a pas de deadlock.

14. L'algorithme d'estampillage (à deux estampilles) accepte-t-il cette exécution sans rejets ?

Réponse: 01 pts

Transaction	Action	EL(X)	EE(X)	EL(Y)	EE(Y)	EL(Z)	EE(Z)
		0	0	0	0	0	0
T1	R1(X)	1	0	0	0	0	0
T2	R2(Y)	1	0	2	0	0	0
T1	W1(X)	1	1	2	0	0	0
T3	R3(Y)	1	1	3	0	0	0
T2	R2(X)	2	1	3	0	0	0
Т3	W3(Y)	2	1	3	3	0	0
T2	R2(Z)	2	1	3	3	2	0
Т3	R3(Z)	2	1	3	3	3	0
T2	W2(Z)	EE(Z)=3>2, T2 est annulée et sera relancée à la fin					

D'où l'algorithme s'exécute avec un rejet

15. Soit une nouvelle exécution composée de trois transactions T4, T5 et T6 illustrée par l'ordonnancement O2 suivant : R4(X) W4(X)R6(X)R5(Y)R5(X)R5(Z)R6(Y)W5(Y)W6(Z)W6(Z)W5(X)

Construire le graphe d'attente de cet ordonnancement. Existe-t-il un deadlock ? Si oui, proposer une solution à ce problème.

Réponse : 02 pts

a- 01 pts

- V2P:

Transaction	Action	Demande Verrou	Réponse	
T4	R4(X)	SLOCK(X)	Ok	
T4	W4(X)	XLOCK(X)	Ok, Fin de T4, UNLOCK(X)	
Т6	R6(X)	SLOCK(X)	Ok	
T5	R5(Y)	SLOCK(Y)	Ok	
T5	R5(X)	SLOCK(X)	Ok	
T5	R5(Z)	SLOCK(Z)	Ok	
Т6	R6(Y)	SLOCK(Y)	Ok	
T5	W5(Y)	XLOCK(Y)	Non, T5 attend T6	
Т6	W6(X)	XLOCK(X)	Non, T6 attend T5	
Т6	W6(Z)	XLOCK(Z)	T6 en attente de T5	
T5	W5(X)	XLOCK(X)	T5 en attente de T6	

- Graphe d'attente :

- b- De graphe d'attente, on constate qu'on un cycle T5-T6-T5 d'où on un inter-blockage. 0.5 pts
- c- Pour lever l'inter blocage on choisit une transaction victime parmi T5 etT6 on l'annule et on la relance à la fin. Pour T5 victime on aura la séquence : T4 T6 T5 ; Ou bien T6 victime : T4 T5 T6 ; 0.5 pts
- 16. Si une panne intervient après l'exécution de W2(Z) dans le cadre de l'ordonnancement O1 suivant le schéma ci-après : R1(X) R2(Y) W1(X) R3(Y) R2(X) W3(Y) CHEKPOINT R2(Z) R3(Z) W2(Z) PANNE W3(Z)

Réponse: 01.5 pts

a. Donner l'état des transactions juste après le Checkpoint ensuite juste avant la panne.

- Juste après le Checkpoint: 0.5 pts

T1 est Validée
T2 et T3 sont actives

- Juste avant la panne: 0.5 pts

T1 est terminée
T2 partiellement validée
T3 active

b. Donner les actions à entreprendre après la reprise. 0.5 pts

T1 est terminée, T2 sera refaite et T3 sera défaite.