Oppgaver for kapittel 0

0.1.1

Skriv som fullstendige kvadrat.

a)
$$x^2 + 6x + 9$$

a)
$$x^2 + 6x + 9$$
 b) $b^2 + 14b + 49$ c) $a^2 - 2a + 1$

c)
$$a^2 - 2a + 1$$

d)
$$k^2 - \frac{2}{3}k + \frac{1}{9}$$
 e) $c^2 - \frac{1}{2}c + \frac{1}{16}$ f) $y^2 + \frac{6}{7}y + \frac{9}{49}$

e)
$$c^2 - \frac{1}{2}c + \frac{1}{16}$$

f)
$$y^2 + \frac{6}{7}y + \frac{9}{49}$$

0.1.2

Skriv som fullstendige kvadrat.

a)
$$25a^2 + 90a + 81$$
 b) $9b^2 + 12a + 4$ c) $64c^2 - 16c + 1$

b)
$$9b^2 + 12a + 4$$

c)
$$64c^2 - 16c + 1$$

d)
$$\frac{1}{4}d^2 + \frac{3}{4}d + \frac{9}{16}$$

e)
$$\frac{1}{25}e^2 + \frac{4}{35}e + \frac{4}{49}$$

d)
$$\frac{1}{4}d^2 + \frac{3}{4}d + \frac{9}{16}$$
 e) $\frac{1}{25}e^2 + \frac{4}{35}e + \frac{4}{49}$ f) $\frac{81}{64}f^2 - \frac{15}{4}f + \frac{25}{9}$

0.1.3

- a) Gitt to heltall a og b. Forklar hvorfor $(a + \sqrt{b})(a \sqrt{b})$ er et heltall.
- b) Skriv om brøken $\frac{5}{2-\sqrt{3}}$ til en brøk med heltalls nevner.

0.1.4

Skriv om til et uttrykk der x er et ledd i et fullstendig kvadrat.

a)
$$x^2 + 6x - 7$$

b)
$$x^2 - 8x - 20$$

a)
$$x^2 + 6x - 7$$
 b) $x^2 - 8x - 20$ c) $x^2 + 12 - 45$

0.1.5

Hvorfor er det i a_1a_2 -metoden lurte å starte med å finne tall som oppfyller kravet $a_1a_2 = c$ (i motsetning til å finne tall som oppfyller kravet $a_1 + a_2 = b$?

0.1.6

Faktoriser uttrykkene fra oppgave 0.1.4.

0.1.7

Faktoriser uttrykkene.

a)
$$x^2 - 10kx + 25k^2$$

b)
$$y^2 + 8yz + 16z^2$$

1

a)
$$x^2 - 10kx + 25k^2$$
 b) $y^2 + 8yz + 16z^2$ c) $a^2 - 20aq + 100q^2$

d)
$$x^2 + xy - 20y^2$$

e)
$$a^2 - 9ab + 14b^2$$

d)
$$x^2+xy-20y^2$$
 e) $a^2-9ab+14b^2$ f) $y^2-9k^5y-k^2y+9k^7$

0.2.1

Gitt likningen

$$ax^2 + bx = 0$$

Vis, uten å bruke *abc*-formelen, at

$$x = 0$$
 \forall $x = -\frac{b}{a}$

0.2.2

Løs likningene.

- a) $2x^2 4x = 0$ b) $3x^2 + 27x = 0$
- c) $7x^2 + 2x = 0$ d) $8x 9x^2 = 0$

0.2.3

Løs likningene.

- a) $x^2 4x 4 = 0$ b) $x^2 + 2x 15$ c) $x^2 + 3x 70 = 0$

- d) $x^2 + 5x 7 = 0$ e) $x^2 x 1 = 0$ f) $x^2 2x 9 = 0$

- g) $5x^2+2x-7=0$ h) $8x^2-2x^2-9=0$ i) $3x^2-12x+1=0$

0.3.1

Løs likningen

$$7 \cdot 5^x = 14$$

Gruble 0.1

For en trekant med sidelengder $a,\,b$ og c er arealet A gitt ved Herons formel:

$$A = \frac{1}{4}\sqrt{(a+b+c)(a+b-c)(a-b+c)(b+c-a)}$$

Bevis formelen.