## CMSC320 Final Project (Covid-19)

## Luobin Chen, Yufei Zhang

Loading and Plotting Data

We find the data from Kaggle (https://www.kaggle.com/imdevskp/corona-virus-report? select=covid\_19\_clean\_complete.csv (https://www.kaggle.com/imdevskp/corona-virus-report? select=covid\_19\_clean\_complete.csv)). Now, We download the data and perform some simple plots to analyze the data. The first step is extracting the csv file then passing that to our data frame. Since we want to use the data for nucleic acids test(NAT) for further analysis, we download the data test.csv from Kaggle. (https://www.kaggle.com/imdevskp/corona-virus-report?select=tests.csv) (https://www.kaggle.com/imdevskp/corona-virus-report?select=tests.csv)) We read the file using read\_csv after importing essential library "tidyverse". We renamed "Country/Region" to "Region" and "Province/States" to be easier to reference.

```
library(tidyverse)
df <- read_csv("covid_19_clean_complete.csv")
names(df)[1] <- "State"
names(df)[2] <- "Region"
head(df)</pre>
```

```
## # A tibble: 6 x 8
##
    State Region
                                 Lat
                                       Long Date
                                                    Confirmed Deaths Recovered
##
    <chr> <chr>
                               <dbl>
                                      <dbl> <chr>
                                                        <dbl>
                                                              <dbl>
                                                                         <dbl>
## 1 <NA> Afghanistan
                                      65
                                            1/22/20
                                                            0
                                                                             0
## 2 <NA> Albania
                                41.2 20.2 1/22/20
                                                            0
                                                                   0
                                                                             0
                                                                   0
## 3 <NA> Algeria
                                     1.66 1/22/20
                                                            0
                                                                             0
                                28.0
                                                                   0
## 4 <NA> Andorra
                                42.5
                                     1.52 1/22/20
                                                            n
                                                                             n
## 5 <NA> Angola
                               -11.2 17.9 1/22/20
                                                            0
                                                                   0
                                                                             0
## 6 <NA>
         Antigua and Barbuda 17.1 -61.8 1/22/20
                                                                   0
                                                                              0
```

```
test <- read_csv("tests.csv")
head(test)</pre>
```

```
## # A tibble: 6 x 5
##
     Country `Cases per 1M pop` `Deaths per 1M pop` `Total Tests` `Tests per 1M po...
##
     <chr>
                            <dbl>
                                                  <dbl>
                                                                 <dbl>
                                                                                    <dbl>
## 1 USA
                             4256
                                                    252
                                                               9935720
                                                                                    30017
## 2 Spain
                             5765
                                                    576
                                                               2467761
                                                                                    52781
## 3 Russia
                             1591
                                                     14
                                                               5805404
                                                                                    39781
## 4 UK
                             3336
                                                    482
                                                               2007146
                                                                                    29566
## 5 Italy
                             3659
                                                    511
                                                               2673655
                                                                                     44221
## 6 France
                             2730
                                                    414
                                                               1384633
                                                                                    21213
```

Now we have two essential data set for our analysis. First data set "df" has the information of confirmed cases, deaths, and recovered cases for every countries over the world from 1/22/20 to 5/09/2020. Additionally, it includes lat and long attributes for our interaction visualization. Second data set "test" has the information of ratio of confirmed cases, deaths, and NAT per 1 million population for each country.

Now let's make some plot to have a general view of the data set. Initially, we want to plot all the confirmed cases for each country until 5/9/2020. However, because of a large amount of data, we can't plot all the region attribute as color. There are too many data points which will make the x and y axis hard to see and analyze. Therefore, we first use arrange to sort data points by their confirmed cases. Then, we use slice command to slice out the top 15 countries that have the highest

/

number of confirmed cases. We use group\_by and sum command to get confirmed case for different regions/countries. The ungroup command is necessary for arrange command. We create a new data frame called "confirmed" which contains the information for the top 15 countries on the purpose of making the plot.

The ggplot command helps us to make the plot. The data is from the first data set "df". Here we map the Region attribute to the x position in the plot and the Confirmed\_cases\_for\_country attribute to the y position in the plot. The ggplot contains the aes call. Here we choose points as the geometric representations of our chosen graphical characteristics using the geom\_point function.

```
# Confirmed case for top 20
confirmed <- df %>%
  filter(Date=="5/9/20") %>%
  group_by(Region) %>%
  mutate(Confirmed_cases_for_country=sum(Confirmed)) %>%
  ungroup(Region) %>%
  arrange(desc(Confirmed_cases_for_country))

confirmed <- unique(data.frame(Region=confirmed$Region,Confirmed_cases_for_country=confirmed$Confirmed_cases_for_country))

confirmed</pre>
```

| ## |     | Region               | Confirmed_cases_for_country |
|----|-----|----------------------|-----------------------------|
| ## | 1   | US                   | 1309550                     |
| ## | 2   | Spain                | 223578                      |
| ## | 3   | Italy                | 218268                      |
| ## | 4   | United Kingdom       | 216525                      |
| ## | 15  | Russia               | 198676                      |
| ## | 16  | France               | 176782                      |
| ## | 27  | Germany              | 171324                      |
| ## | 28  | Brazil               | 156061                      |
| ## | 29  | Turkey               | 137115                      |
| ## | 30  | Iran                 | 106220                      |
| ## | 31  | China                | 83990                       |
| ## | 64  | Canada               | 68918                       |
| ## | 78  | Peru                 | 65015                       |
| ## | 79  | India                | 62808                       |
| ## | 80  | Belgium              | 52596                       |
| ## | 81  | Netherlands          | 42575                       |
| ## | 85  | Saudi Arabia         | 37136                       |
| ## | 86  | Mexico               | 33460                       |
| ## | 87  | Switzerland          | 30251                       |
| ## | 88  | Ecuador              | 29071                       |
| ## | 89  | Pakistan             | 28736                       |
| ## | 90  | Portugal             | 27406                       |
| ## | 91  | Chile                | 27219                       |
| ## | 92  | Sweden               | 25921                       |
| ## | 93  | Ireland              | 22760                       |
| ## | 94  | Singapore            | 22460                       |
| ## | 95  | Belarus              | 22052                       |
| ## | 96  | Qatar                | 21331                       |
| ## | 97  | United Arab Emirates | 17417                       |
| ## | 98  | Israel               | 16454                       |
| ## |     | Austria              | 15833                       |
| ## | 100 | Japan                | 15663                       |
|    | 101 | Poland               | 15651                       |
|    | 102 | Romania              | 15131                       |
|    | 103 | Ukraine              | 14710                       |
|    | 104 | Bangladesh           | 13770                       |
|    | 105 | Indonesia            | 13645                       |
|    | 106 | South Korea          | 10874                       |
|    | 107 | Philippines          | 10610                       |
|    | 108 | Denmark              | 10517                       |
|    | 111 | Colombia             | 10495                       |
|    | 112 | Serbia               | 10032                       |
|    | 113 | Dominican Republic   | 9882                        |
|    | 114 | South Africa         | 9420                        |
|    | 115 | Egypt                | 8964                        |
|    | 116 | Panama               | 8282                        |
|    | 117 | Norway               | 8099                        |
|    | 118 | Czechia              | 8095                        |
|    | 119 | Kuwait               | 7623                        |
|    | 120 | Australia            | 6939                        |
|    | 128 | Malaysia             | 6589                        |
|    | 129 | Morocco              | 5910                        |
|    | 130 | Finland              | 5880                        |
|    | 131 | Argentina            | 5776                        |
|    | 132 | Algeria              | 5558                        |
|    | 133 | Kazakhstan           | 4975                        |
|    | 134 | Moldova              | 4867                        |
| ## | 135 | Bahrain              | 4774                        |

| ## 136           | Ghana                     | 4263         |
|------------------|---------------------------|--------------|
| ## 137           | Nigeria                   | 4151         |
| ## 138           | Afghanistan               | 4033         |
| ## 139           | Luxembourg                | 3877         |
| ## 140           | Oman                      | 3224         |
| ## 141           | Hungary                   | 3213         |
| ## 142           | Armenia                   | 3175         |
| ## 143           | Thailand                  | 3004         |
| ## 144           | Greece                    | 2710         |
| ## 145           | Iraq                      | 2679         |
| ## 146           | Bolivia                   | 2437         |
| ## 147           | Azerbaijan                | 2422         |
| ## 148           | Uzbekistan                | 2349         |
| ## 149<br>## 150 | Cameroon<br>Croatia       | 2274<br>2176 |
| ## 150           | Bosnia and Herzegovina    | 2090         |
| ## 151           | Guinea                    | 2042         |
| ## 153           | Bulgaria                  | 1921         |
| ## 154           | Honduras                  | 1830         |
| ## 155           | Iceland                   | 1801         |
| ## 156           | Cuba                      | 1754         |
| ## 157           | Estonia                   | 1733         |
| ## 158           | Cote d'Ivoire             | 1667         |
| ## 159           | Senegal                   | 1634         |
| ## 160           | North Macedonia           | 1622         |
| ## 161           | New Zealand               | 1494         |
| ## 162           | Slovakia                  | 1455         |
| ## 163           | Slovenia                  | 1454         |
| ## 164           | Lithuania                 | 1444         |
| ## 165           | Djibouti                  | 1189         |
| ## 166           | Sudan                     | 1164         |
| ## 167           | Tunisia                   | 1032         |
| ## 168           | Somalia                   | 997          |
| ## 169           | Guatemala                 | 967          |
| ## 170           | Congo (Kinshasa)          | 937          |
| ## 171           | Kyrgyzstan                | 931          |
| ## 172           | Latvia                    | 930          |
| ## 173           | Cyprus                    | 892          |
| ## 174           | Kosovo                    | 862          |
| ## 175           | Albania                   | 856          |
| ## 176           | Sri Lanka                 | 847          |
| ## 177           | Niger                     | 815          |
| ## 178<br>## 179 | Lebanon<br>Maldives       | 809          |
| ## 179           | Maidives<br>El Salvador   | 790<br>784   |
| ## 180           | El Salvador<br>Costa Rica | 784<br>780   |
| ## 181           | Andorra                   | 754          |
| ## 183           | Burkina Faso              | 748          |
| ## 183           | Diamond Princess          | 748          |
| ## 185           | Uruguay                   | 702          |
| ## 186           | Mali                      | 692          |
| ## 187           | Paraguay                  | 689          |
| ## 188           | Gabon                     | 661          |
| ## 189           | Kenya                     | 649          |
| ## 190           | Guinea-Bissau             | 641          |
| ## 191           | San Marino                | 637          |
| ## 192           | Georgia                   | 626          |
| ## 193           | Tajikistan                | 612          |
| ## 194           | Jordan                    | 522          |
| ## 195           | Tanzania                  | 509          |
| T                |                           |              |

| ## 196           | Jamaica                       | 490      |
|------------------|-------------------------------|----------|
| ## 197           | Malta                         | 490      |
| ## 198           | Taiwan*                       | 440      |
| ## 199           | Equatorial Guinea             | 439      |
| ## 200           | Venezuela                     | 402      |
| ## 201           | West Bank and Gaza            | 375      |
| ## 202           | Mauritius                     | 332      |
| ## 203           | Montenegro                    | 324      |
| ## 204           | Chad                          | 322      |
| ## 205           | Sierra Leone                  | 291      |
| ## 206           | Vietnam                       | 288      |
| ## 207           | Benin                         | 284      |
| ## 208           | Rwanda                        | 280      |
| ## 209           | Congo (Brazzaville)           | 274      |
| ## 210           | Zambia                        | 252      |
| ## 211           | Cabo Verde                    | 236      |
| ## 212           | Ethiopia                      | 210      |
| ## 213           | Sao Tome and Principe         | 208      |
| ## 214           | Liberia                       | 199      |
| ## 215           | Madagascar                    | 193      |
| ## 216           | Burma                         | 178      |
| ## 217           | Eswatini                      | 163      |
| ## 218           | Togo                          | 153      |
| ## 219           | Haiti                         | 151      |
| ## 220           | Central African Republic      | 143      |
| ## 221           | Brunei                        | 141      |
| ## 222           | Cambodia                      | 122      |
| ## 223           | South Sudan                   | 120      |
| ## 224           | Trinidad and Tobago           | 116      |
| ## 225           | Uganda                        | 116      |
| ## 226           | Nepal                         | 110      |
| ## 227           | Monaco                        | 96       |
| ## 228           | Guyana                        | 94       |
| ## 229           | Bahamas                       | 92       |
| ## 230           | Mozambique                    | 87       |
| ## 231           | Barbados                      | 84       |
| ## 232           | Liechtenstein                 | 82       |
| ## 233           | Libya                         | 64       |
| ## 234           | Malawi                        | 56       |
| ## 235           | Syria                         | 47       |
| ## 236           | Angola                        | 43       |
| ## 237           | Mongolia                      | 42       |
| ## 238           | Eritrea                       | 39       |
| ## 239           | Zimbabwe                      | 35       |
| ## 240           | Yemen                         | 34       |
| ## 241           | Antigua and Barbuda           | 25       |
| ## 242<br>## 243 | Timor-Leste<br>Botswana       | 24<br>23 |
| ## 243           |                               | 23       |
| ## 244           | Grenada<br>Gambia             | 21       |
| ## 245           | Laos                          | 19       |
| ## 246           | Fiji                          | 19       |
| ## 247           | Saint Lucia                   | 18       |
| ## 249           | Belize                        | 18       |
|                  | at Vincent and the Grenadines | 17       |
| ## 250 Sain      | Namibia                       | 16       |
| ## 251           | Namibia<br>Nicaragua          | 16       |
| ## 252           | Dominica                      | 16       |
| ## 254           | Saint Kitts and Nevis         | 15       |
| ## 255           | Burundi                       | 15       |
| "" 233           | Buruilar                      | 13       |

| ## | 256 Holy See         | 12  |  |
|----|----------------------|-----|--|
| ## | 257 Seychelles       | 11  |  |
| ## | 258 Comoros          | 11  |  |
| ## | 259 Suriname         | 10  |  |
| ## | 260 MS Zaandam       | . 9 |  |
| ## | 261 Mauritania       | 8   |  |
| ## | 262 Papua New Guinea | 8   |  |
| ## | 263 Bhutan           | 7   |  |
| ## | 264 Western Sahara   | 6   |  |
|    |                      |     |  |

```
confirmed %>%
  slice(1:15) %>%
  ggplot(mapping=aes(y=Confirmed_cases_for_country,x=Region,color=Region)) +
  geom_point()
```



From the plot, we can see the top 15 countries that have the highest number of confirmed cases clearly. They are US, Spain, Italy, United Kingdom, Russia, France, Germany, Brazil, Turkey, Iran, China, Canada, Peru, India, Belgium. We can see from the plot that the rate of confirmed cases in the United States is much higher than in other countries.

Now, we want to take advantage of the interaction visualization to make a more intuitive graph. We use the data form our data set "df". We select all the data points from the last date which is 5/9/20. We use Leaflet library to generate the graph for each states or provinces.

We learned from this website https://rstudio.github.io/leaflet/markers.html (https://rstudio.github.io/leaflet/markers.html) to generate useful icons. Base on our condition, states with less than 10000 confirmed cases have green popup icons. States with less than 50000 confirmed cases have orange popup icons. States will more than 50000 confirmed cases have red popup icons. These icons give us a better understanding of the distribution of corona virus. Additionally, it's easier to see which area has the highest number of confirmed cases.

/

```
df <- df %>%
  filter(Date=="5/9/20")
head(df)
```

```
## # A tibble: 6 x 8
##
    State Region
                                Lat
                                      Long Date
                                                 Confirmed Deaths Recovered
    <chr> <chr>
                              <dbl> <dbl> <chr>
                                                     <dbl> <dbl>
                                                                      <dbl>
## 1 <NA> Afghanistan
                               33
                                     65
                                           5/9/20
                                                              115
                                                                        502
                                                       4033
## 2 <NA> Albania
                                                                        627
                               41.2 20.2 5/9/20
                                                       856
                                                               31
## 3 <NA> Algeria
                               28.0
                                    1.66 5/9/20
                                                      5558
                                                              494
                                                                       2546
## 4 <NA> Andorra
                               42.5
                                      1.52 5/9/20
                                                       754
                                                               48
                                                                        545
## 5 <NA> Angola
                              -11.2 17.9 5/9/20
                                                        43
                                                                2
                                                                         13
## 6 <NA> Antigua and Barbuda 17.1 -61.8 5/9/20
                                                         25
                                                                3
                                                                         19
```

```
library(leaflet)
getColor <- function(df) {</pre>
  sapply(df$Confirmed, function(Confirmed) {
  if(Confirmed <= 10000) {</pre>
    "green"
  } else if(Confirmed <= 50000) {</pre>
    "orange"
  } else {
    "red"
  } })
}
icons <- awesomeIcons(</pre>
  icon = 'ios-close',
  iconColor = 'black',
  library = 'ion',
  markerColor = getColor(df)
)
map <- leaflet(df) %>%
  addTiles() %>%
  addAwesomeMarkers(~Long,~Lat,popup=~as.character(Confirmed),icon=icons,label=~as.character(Co
nfirmed))
map
```





Now let's look at our second data set. Initially, we want to ask if tests is enough for each country. Does confirmed cases affected by the number of tests? Is there any people with symptoms in the country still haven't recieve test?

First, we chose to change the name for each attributes for easier reference. We arrange the data frame base on their total tests. Then we compute the ratio of Cases\_per\_1M\_pop/Tests\_per\_1M\_pop.

If the ratio is very small, it's good. This means we have enough test to examine more people in the country. However, if the ration is very large, it means that it's possible there are still a lot of people who haven't been tested. We select top 50 countries which has large ratio. Base on ratio, we can conclude that countries which has ratio larger than 0.1 don't have enough NAT.

```
names(test)[2] <- "Cases_per_1M_pop"
names(test)[3] <- "Deaths_per_1M_pop"
names(test)[4] <- "Total_Tests"
names(test)[5] <- "Tests_per_1M_pop"

test %>%
  mutate(ratio=Cases_per_1M_pop/Tests_per_1M_pop) %>%
  arrange(desc(ratio)) %>%
  slice(1:50)
```

```
## # A tibble: 50 x 6
##
      Country Cases per 1M pop Deaths per 1M p... Total Tests Tests per 1M pop ratio
##
      <chr>
                           <dbl>
                                             <dbl>
                                                          <dbl>
                                                                            <dbl> <dbl>
##
   1 Sao Tom...
                             949
                                              23
                                                                              799 1.19
                                                            175
                                                           6500
                                                                              148 0.932
##
    2 Algeria
                             138
                                              12
   3 Guinea-...
                             417
                                               2
                                                           1500
                                                                              762 0.547
                             313
                                               3
                                                                              609 0.514
##
   4 Equator...
                                                            854
##
   5 Yemen
                                                                                 4 0.5
                               2
                                               0.3
                                                            120
   6 Andorra
##
                                                                            21653 0.453
                            9810
                                             621
                                                           1673
##
    7 Bolivia
                             254
                                              11
                                                           7651
                                                                              655 0.388
    8 Honduras
                             210
                                              12
                                                           5653
                                                                              571 0.368
##
    9 Ecuador
                            1724
                                             132
                                                          85223
                                                                             4830 0.357
## 10 Cabo Ve...
                             480
                                               4
                                                            791
                                                                             1423 0.337
## # ... with 40 more rows
```