Martin Weisenhorn 27. März 2020

Lernübungen – Sinusförmige Wechselgrössen

Aufgabe 1. (Den Verlauf einer sinusförmigen Wechselgrösse skizzieren) Gegeben ist die Spannung

$$u(t) = \hat{u}\cos(2\pi ft + \varphi_u),$$

wobei $\hat{u} = 2 V$ und $\varphi_u = \pi/4$.

- Zeichnen Sie den Verlauf dieser Spannung für f = 1 Hz in dem Intervall -0.5 s $\leq t \leq 1$ s in ein Koordinatensystem. Stellen Sie auf der horizontalen Achse die Zeit t und auf der vertikalen Achse die Spannung u(t) dar. Gehen Sie dabei in den folgenden Schritten vor:
 - a) Berechnen Sie die Periodendauer T der Spannung.
 - b) Berechnen Sie die Zeit t_u an der Maximalwert der Cosinus-förmigen Spannung auftritt. Dabei soll berücksichtigt werden dass der Nullphasenwinkels φ_u von Null verschieden ist..
 - c) Zeichnen Sie auf der t-Achse die Dauer einer Periode ein. Teilen Sie diese Periode in 12 gleiche Teile und skizzieren Sie mit deren Hilfe den Verlauf der Spannung u(t) entlang einer Periode.
- Zeichnen Sie in das Koordinatensystem der vorigen Teilaufgabe die Spannung u(t) für f = 2 Hz ein. Wiederholen Sie dabei nach Bedarf die obigen Schritte. Die Spannung u(t) besitzt dieselbe Phase φ_u unabhängig ob f = 1 Hz oder f = 2 Hz. Die Zeitverschiebung t_u ist jedoch eine andere. Warum?

Aufgabe 2. (Die mathematische Beschreibung einer sinusförmigen Wechselgrösse aus einem Graphen ablesen) Abb. 1 zeigt den Verlauf einer sinusförmigen Wechselspannungen u(t). Bestimmen Sie für diese Spannung die Konstanten φ_u , \hat{u} , sowie f in dem Ausdruck $u(t) = \hat{u}\cos(2\pi ft + \varphi_u)$. Gehen Sie nach den folgenden Punkten vor:

Abbildung 1: Sinusförmiger Spannungsverlauf.

- a) Bestimmen Sie die Periodendauer T mit Hilfe eines Lineals.
- b) Berechnen Sie aus der Periodendauer T die Frequenz f.
- c) Bestimmen Sie den Scheitelwert \hat{u} .
- d) Zeichnen Sie den Zeitpunkt t_u in Abb. 1 ein.
- e) Lesen Sie den Wert für t_u ab.
- f) Berechnen Sie aus t_u und anderen Konstanten die Sie bereits ermittelt haben den Zahlenwert für φ_u .
- g) Achten Sie darauf, dass alle Zahlenwerte mit der jeweils richtigen Einheit versehen sind.

Abbildung 2: Verlauf der Funktion $u(t) = \cos(2\pi f t + \varphi_u)$.

Lösung 1.

a)
$$T = \frac{1}{f} = 1 \, \mathrm{s}$$

b) Die Spannung $u(t) = \hat{u}\cos(2\pi ft + \varphi_u)$ erreicht ihr Maximum, wenn das Argument $2\pi ft + \varphi_u$ der Sinusfunktion entweder gleich Null oder ein ganzzahliges Vielfaches von 2π ist. Es gibt also mehrere Zeitpunkte t_u welche die geforderte Bedingung erfüllen. Uns interessiert jedoch nur jener Zeitpunkt der in dem Intervall von \pm einer halben Periode um den Zeitpunkt t=0 liegt. Wir finden diesen Zeitpunkt t_u indem wir die folgende Gleichung nach t_u auflösen:

$$2\pi f(-t_u) + \varphi_u = 0 \Leftrightarrow t_u = \frac{\varphi_u}{2\pi f} = \frac{\pi/4}{2\pi f} = \frac{1}{8f} = 1/8 \,\mathrm{s}$$

Es bestätigt sich also die Gleichung $t_u = \frac{\varphi_u}{\omega}$.

- c) Siehe Abb. 2a.
- d) Siehe Abb. 2b. Es gilt $t_u = \frac{\varphi_u}{\omega}$, damit hängt t_u von der Frequenz ab. Die Phase $\omega t + \varphi_u$ eines Sinussignals $u(t) = \hat{u} \cos(\omega t + \varphi_u)$ bzw. der Verlauf von u(t) ändert sich umso schneller, je höher dessen Kreisfrequenz ω ist.

Abbildung 3: Sinusförmiger Spannungsverlauf.

Lösung 2.

a) Die mit Hilfe des Lineals ermittelte Periodendauer T beträgt $10 \,\mathrm{ms}$.

$$f = \frac{1}{T} = 100\,\mathrm{Hz}$$

- c) Der Scheitelwert kann einfach abgelesen werden, er beträgt $\hat{u} = 1.5 \,\mathrm{V}$.
- d) Siehe Abb. 3.
- e) Der Zeitpunkt $t_u = 5/4 \,\mathrm{ms}$.

$$\varphi_u = -\omega t_u = -2\pi f t_u = -2\pi 100 \,\text{Hz} \, 5/4 \,\text{ms} = -\frac{\pi}{4} \,\, \hat{=} \,\, -45^{\circ}$$