Lecture 2: Exploration and Exploitation

Hado van Hasselt

Thursday, January 16, 2020, UCL

Background

Sutton & Barto 2018, Chapter 2

Recap

- ▶ Reinforcement learning is the science of learning to make decisions
- Agents can learn a policy, value function and/or a model
- ► The general problem involves taking into account time and consequences
- Decisions affect the reward, the agent state, and environment state

This Lecture

- Consider simple case: multiple actions, but only one state
- No sequential structure past actions do not influence the future
- \triangleright Formally: the distribution of R_t given A_t is identical and independent across time

Rat Example

Rat Example

Exploration vs. Exploitation

- Online decision-making involves a fundamental choice:
 - **Exploitation**: Maximize performance based on current knowledge
 - **Exploration**: Increase knowledge
- The best long-term strategy may involve short-term sacrifices
- We want to gather enough information to make the best overall decisions
- This differs from just trading off rewards across time (which even an optimal policy may need to do)
- ▶ Instead, this is specific to learning actively making decisions to help learning

The Multi-Armed Bandit

- We formalise the simplest setting
- \triangleright \mathcal{A} is a known set of actions (or "arms")
- ightharpoonup At each step t the agent selects an action $A_t \in \mathcal{A}$
- \triangleright The environment generates a reward R_t
- ▶ The distribution $p(r \mid a)$ is fixed, but unknown
- ▶ The goal is to maximize cumulative reward $\sum_{i=1}^{t} R_i$
- Note: we sum over the whole lifetime of the agent
- Repeated 'game against nature'

Action values

▶ The true action value for action a is the expected reward

$$q(a) = \mathbb{E}\left[R_t|A_t = a\right]$$

► A simple estimate is the average of the sampled rewards:

$$Q_t(a) = \frac{\sum_{n=1}^t R_n \, \mathcal{I}(A_n = a)}{\sum_{n=1}^t \mathcal{I}(A_n = a)}$$

 $\mathcal{I}(\cdot)$ is the **indicator** function: $\mathcal{I}(\mathsf{True}) = 1$ and $\mathcal{I}(\mathsf{False}) = 0$

▶ Let $N_t(a) = \sum_{n=1}^t \mathcal{I}(A_n = a)$ be the **count** for action a

Action values

► This can be updated incrementally:

$$Q_t(A_t) = Q_{t-1}(A_t) + lpha_t \underbrace{\left(R_t - Q_{t-1}(A_t)
ight)}_{ ext{error}},$$
 $orall a
eq A_t: Q_t(a) = Q_{t-1}(a)$

with

$$lpha_t = rac{1}{ extstyle N_t(A_t)}\,, \qquad extstyle N_t(A_t) = extstyle N_{t-1}(A_t) + 1\,, \qquad ext{ and } \qquad extstyle N_t(a) = 0\,, orall a$$

- lacktriangle We will later consider other step sizes lpha
- lacktriangle For instance, constant lpha would lead to **tracking**, rather than averaging

Rat Example

Rat Example

- ▶ Cheese: R = +1
- ▶ Shock: R = -1
- ► Then:

$$Q_6(\mathsf{white}) = -\mathbf{0.6}$$
 $Q_6(\mathsf{black}) = -1$

▶ When to stop being greedy?

Regret

- How can we reason about the exploration trade off?
- Seems natural to account for uncertainty of value estimates
- Can we reason about this formally?
- Can we trade off exploration and exploitation optimally?

Regret

The optimal value is

$$v_* = \max_{a \in \mathcal{A}} q(a) = \max_{a} \mathbb{E} \left[R_t \mid A_t = a \right]$$

Regret is the opportunity loss for one step

$$v_* - q(A_t)$$

- In hindsight, I might 'regret' taking the tube rather than cycling
- ▶ I might have regretted taking a bus even more
- The agent cannot observe or even sample the regret (we don't know v_* or $q(A_t)$, can't directly sample v_*)
- But we can use it to analyze different learning algorithms

Regret

Goal: Trade-off exploration and exploitation by minimizing total regret:

$$L_t = \sum_{i=1}^t (v_* - q(a_i))$$

- Note: maximise cumulative reward ≡ minimise total regret
- Note: the sum extends beyond (single step) episodes
- ▶ View extends over 'lifetime of learning', rather than over 'current episode'

Regret of greedy

- Regret can grow unbounded
- More interesting is how fast it grows
- ► The greedy policy has linear regret
- ► This means that, in expectation, the regret grows as a function that is linear in t
 - Suppose $p(\text{cheese} \mid \text{white}) = 0.1$ and $p(\text{cheese} \mid \text{black}) = 0.9$
 - Then $v_* = q(black) = 0.8$ and q(white) = -0.8
 - ► The greedy rat incurs regret of 1.6*t* (If the first two actions and rewards are as shown on the left)

Counting Regret

The action regret Δ_a for a given action is the difference between the optimal value and the true value of a:

$$\Delta_a = v_* - q(a)$$

Total regret then depends on action regrets and action counts

$$L_t = \sum_{i=1}^t v_* - q(a_i) = \sum_{a \in \mathcal{A}} N_t(a)(v_* - q(a)) = \sum_{a \in \mathcal{A}} N_t(a)\Delta_a$$

- ▶ A good algorithm ensures small counts for large action regrets
- But, action regrets are unknown...

Exploration

- ▶ We need to **explore** to learn the values
- ▶ One common solution: ϵ -greedy
 - ▶ Select greedy action (exploit) w.p. 1ϵ
 - ightharpoonup Select random action (explore) w.p. ϵ
- ► Is this enough?
- ▶ How to pick ϵ ?

ϵ-Greedy Algorithm

- Greedy can lock onto a suboptimal action forever
 - ⇒ Greedy has linear expected total regret
- ▶ The ϵ -greedy algorithm continues to explore forever
 - With probability 1ϵ select $a = \operatorname{argmax} Q_t(a)$
 - \blacktriangleright With probability ϵ select a random action
- ▶ Will continue to select all suboptimal actions with, at least, probability $\epsilon/|\mathcal{A}|$ $\Rightarrow \epsilon$ -greedy, with constant ϵ , has linear expected total regret

Lower Bound

- ► The performance of any algorithm is determined by similarity between optimal arm and other arms
- ► Hard problems have arms with similar distributions but different means
- ▶ This is described formally by the gap Δ_a and the similarity in distributions $KL(p(r|a)||p(r|a_*))$

Theorem (Lai and Robbins)

Asymptotic total regret is at least logarithmic in number of steps

$$\lim_{t o \infty} L_t \geq \log t \sum_{a \mid \Delta_a > 0} rac{\Delta_a}{\mathit{KL}(p(r|a) \mid\mid p(r|a_*))}$$

Note: logarithmic is a whole lot better than linear! (Note: $KL_a \propto \Delta_a^2$)

Upper Bound?

- ▶ We now have a lower bound on regret
- ► But what is attainable?
- ► Can we get close?

- Which action should we pick?
- More uncertainty about its value: more important to explore that action

Upper Confidence Bounds

- Estimate an upper confidence $U_t(a)$ for each action value, such that $q(a) \leq Q_t(a) + U_t(a)$ with high probability
- Select action maximizing upper confidence bound (UCB)

$$a_t = \operatorname*{argmax}_{a \in \mathcal{A}} Q_t(a) + U_t(a)$$

- \triangleright The uncertainty depends on the number of times N(a) has been selected
 - ▶ Small $N_t(a) \Rightarrow \text{large } U_t(a)$ (estimated value is uncertain)
 - ▶ Large $N_t(a)$ \Rightarrow small $U_t(a)$ (estimated value is accurate)
- For averages the uncertainty decreases as $\sqrt{N_t(a)}$, by the central limit theorem (If variance of rewards is bounded.)
- Can we derive an optimal algorithm?

Algorithm idea

- ▶ Recall, we want to minimize: $\sum_a N_t(a) \Delta_a$
- ▶ If regret Δ_a is big, we want count $N_t(a)$ to be small
- ▶ If count $N_t(a)$ is big, we want regret Δ_a to be small
- Not all $N_t(a)$ can be small (as their sum has to be t)
- We know $N_t(a)$; can we also know something about Δ_a ?

Hoeffding's Inequality

Theorem (Hoeffding's Inequality)

Let $X_1, ..., X_n$ be i.i.d. random variables in [0,1], and let $\overline{X}_t = \frac{1}{n} \sum_{i=1}^n X_i$ be the sample mean. Then

$$p\left(\mathbb{E}\left[X\right] \geq \overline{X}_n + u\right) \leq e^{-2nu^2}$$

- ▶ We can apply Hoeffding's Inequality to bandits with bounded rewards
- ightharpoonup E.g., if $R_t \in [0,1]$, then

$$p(q(a) \ge Q_t(a) + U_t(a)) \le e^{-2N_t(a)U_t(a)^2}$$

Calculating Upper Confidence Bounds

- Pick a maximal probability p that the true value exceeds upper bound
- Now solve for $U_t(a)$

$$e^{-2N_t(a)U_t(a)^2} = p$$
 $\Longrightarrow U_t(a) = \sqrt{\frac{-\log p}{2N_t(a)}}$

We then know the **actual** probability that this happens is smaller than p

ldea: reduce p as we observe more rewards, e.g., p = 1/t

$$U_t(a) = \sqrt{\frac{\log t}{2N_t(a)}}$$

- ► This ensures that we always keep exploring
- **ightharpoonup** But we select optimal action much more often as $t o \infty$

UCB

► This leads to the UCB algorithm

$$a_t = \operatorname*{argmax}_{a \in \mathcal{A}} Q_t(a) + c \sqrt{\dfrac{\log t}{N_t(a)}}$$

where c can be considered a hyper-parameter

Theorem (Auer et al., 2002)

The UCB algorithm (with $c=\sqrt{2}$) achieves logarithmic expected total regret

$$L_t \leq 8 \sum_{a \mid \Delta_a > 0} \frac{\log t}{\Delta_a} + O(\sum_a \Delta_a), \quad \forall t$$

UCB

► UCB:

$$a_t = \operatorname*{argmax}_{a \in \mathcal{A}} Q_t(a) + c \sqrt{\dfrac{\log t}{N_t(a)}}$$

- Intuition:
 - ▶ Suppose that Δ_a is large.
 - ▶ Then, $N_t(a)$ will be small, because $U_t(a)$ rarely spans the whole gap.
 - ▶ So, either Δ_a is low, or $N_t(a)$ is low.
 - ▶ In fact, $\Delta_a N_t(a) \leq O(\log t)$, for all a

Values or Models?

► This is a value-based algorithm:

$$Q_t(A_t) = Q_{t-1}(A_t) + \alpha_t(R_t - Q_{t-1}(A_t)).$$

▶ What about a model-based approach?

$$\hat{\mathcal{R}}_t(A_t) = \hat{\mathcal{R}}_{t-1}(A_t) + \alpha_t(R_t - \hat{\mathcal{R}}_{t-1}(A_t)).$$

- Indistinguishable? (For bandits)
- ► We could model more, e.g., the distribution of rewards

Bayesian Bandits

- **Bayesian bandits** model parameterized distributions over rewards, $p(R_t \mid \theta, a)$
- ightharpoonup Compute posterior distribution over θ

$$p_t(\theta \mid a) \propto p(R_t \mid \theta, a)p_{t-1}(\theta \mid a)$$

- ▶ Allows us to inject rich prior knowledge $p_0(\theta \mid a)$
- Use posterior to guide exploration
 - Upper confidence bounds
 - Probability matching

Bayesian Bandits: Example

- \triangleright Consider bandits with **Bernoulli** reward distribution: rewards are 0 or +1
- \blacktriangleright For each action, the prior could be a uniform distribution on [0,1]
- ightharpoonup This means we think each mean reward in [0,1] is equally likely
- The posterior is a Beta distribution Beta (x_a, y_a) with initial parameters $x_a = 1$ and $y_a = 1$ for each action a
- Updating the posterior:
 - \triangleright $x_{A_t} \leftarrow x_{A_t} + 1$ when $R_t = 0$
 - $y_{A_t} \leftarrow y_{A_t} + 1$ when $R_t = 1$

Bayesian Bandits: Example

Suppose:
$$R_1 = +1$$
, $R_2 = +1$, $R_3 = 0$, $R_4 = 0$

Bayesian Bandits with Upper Confidence Bounds

- Compute posterior distribution over action-values
- Estimate upper confidence from posterior
 - e.g., $U_t(a) = c\sigma_t(a)$ where $\sigma(a)$ is std dev of $p_t(q(a))$
- ▶ Pick action that maximizes $Q_t(a) + c\sigma(a)$

Probability Matching

▶ **Probability matching** selects action *a* according to probability that *a* is the optimal action

$$\pi_t(a) = p\left(q(a) = \max_{a'} q(a') \mid H_{t-1}\right)$$

- Probability matching is optimistic in the face of uncertainty: Uncertain actions have higher probability of being max
- ightharpoonup Can be difficult to compute $\pi(a)$ analytically from posterior

Thompson Sampling

- Thompson sampling:
 - ► Sample $Q_t(a) \sim p_t(q(a)), \forall a$
 - Select action maximising sample, $A_t = \underset{a \in A}{\operatorname{argmax}} Q_t(a)$
- Thompson sampling is sample-based probability matching

$$egin{aligned} \pi_t(a) &= \mathbb{E}\left[\mathcal{I}(Q_t(a) = \max_{a'} Q_t(a'))
ight] \ &= p\left(q(a) = \max_{a'} q(a')
ight) \end{aligned}$$

 For Bernoulli bandits, Thompson sampling achieves Lai and Robbins lower bound on regret, and therefore is optimal

Value of Information

- Exploration is valuable because information is valuable
- Can we quantify the value of information?
- ▶ You gain more information when you are uncertain
- ▶ Therefore it makes sense to explore novel situations more
- ▶ If we know value of information, we can trade-off exploration and exploitation

Information State Space

- We have viewed bandits as one-step decision-making problems
- Can also view as sequential decision-making problems
- At each step there is an **information state** S_t^i summarising all information accumulated so far
- Each action A_t causes a transition to a new information state S_{t+1}^i (by adding information), with probability $p(S_{t+1}^i \mid A_t, S_t^i)$
- ▶ We then have a Markov decision problem
- Here states = observations = internal information state (There is no external environment state)
- ▶ Even in bandits, actions affect the future after all, because they affect learning

Example: Bernoulli Bandits

► Consider a Bernoulli bandit, such that

$$p(R_t = 1 \mid A_t = a) = \mu_a$$

 $p(R_t = 0 \mid A_t = a) = 1 - \mu_a$

- ightharpoonup e.g. Win or lose a game with probability μ_a
- lacktriangle Want to find which arm has the highest μ_a
- ▶ The information state is $I = (\alpha, \beta)$
 - $ightharpoonup \alpha_a$ counts the pulls of arm a where reward was 0
 - $ightharpoonup eta_a$ counts the pulls of arm a where reward was 1

Solving Information State Space Bandits

- ▶ We formulated the bandit as an infinite MDP over information states
- This can be solved by reinforcement learning
- Model-free reinforcement learning
 - e.g. Q-learning (Duff, 1994)
- Bayesian model-based reinforcement learning
 - e.g. Gittins indices (Gittins, 1979)
- The latter approach is known as Bayes-adaptive RL
- Finds Bayes-optimal exploration/exploitation trade-off with respect to the prior distribution
- ► Can be unwieldy... unclear how to scale

Policy search

- ▶ What about learning policies $\pi(a)$ directly?
- Lets parameterize the policy can we learn this without learning values?
- ▶ For instance, define action preferences $H_t(a)$ and a policy

$$\pi(a) = \frac{e^{H_t(a)}}{\sum_b e^{H_t(b)}}$$
 (softmax)

- The preferences do not have to have value semantics
- ► View them as learnable parameters
- Can we optimize the preferences

Policy gradients

- ▶ Idea: update policy parameters such that the expected value increases
- ► We can consider **gradient ascent** on the expected value
- ▶ So, in the bandit case, we want to update:

$$\theta = \theta + \alpha \nabla_{\theta} \mathbb{E}[R_t | \pi_{\theta}],$$

where θ are the policy parameters

► Can we compute this gradient?

▶ Log-likelihood trick (also known as REINFORCE trick, Williams 1992):

$$\nabla_{\theta} \mathbb{E}[R_{t}|\pi_{\theta}] = \nabla_{\theta} \sum_{a} \pi_{\theta}(a) \underbrace{\mathbb{E}[R_{t}|A_{t} = a]}$$

$$= \sum_{a} q(a) \nabla_{\theta} \pi_{\theta}(a)$$

$$= \sum_{a} q(a) \frac{\pi_{\theta}(a)}{\pi_{\theta}(a)} \nabla_{\theta} \pi_{\theta}(a)$$

$$= \sum_{a} \pi_{\theta}(a) q(a) \frac{\nabla_{\theta} \pi_{\theta}(a)}{\pi_{\theta}(a)}$$

$$= \mathbb{E}\left[R_{t} \frac{\nabla_{\theta} \pi_{\theta}(A_{t})}{\pi_{\theta}(A_{t})}\right] = \mathbb{E}\left[R_{t} \nabla_{\theta} \log \pi_{\theta}(A_{t})\right]$$

▶ Log-likelihood trick (also known as REINFORCE trick, Williams 1992):

$$abla_{ heta} \mathbb{E}[R_t | \theta] = \mathbb{E}\left[R_t \nabla_{\theta} \log \pi_{\theta}(A_t)\right]$$

- ► We can sample this!
- ► So

$$\theta = \theta + \alpha R_t \nabla_{\theta} \log \pi_{\theta}(A_t),$$

this is stochastic gradient ascent on the (true) value of the policy

► Can use **sampled** rewards — does not need value estimates

For soft max:

$$H_{t+1}(a) = H_t(a) + \alpha R_t \frac{\partial \log \pi_t(A_t)}{\partial H_t(a)}$$
$$= H_t(a) + \alpha R_t (\mathcal{I}(a = A_t) - \pi_t(a))$$

ightharpoons

$$H_{t+1}(A_t) = H_t(A_t) + \alpha R_t(1 - \pi_t(A_t))$$

 $H_{t+1}(a) = H_t(a) - \alpha R_t \pi_t(a)$ if $a \neq A_t$

 Preferences for actions with higher rewards increase more (or decrease less), making them more likely to be selected again

Policy gradients with baselines

Note that $\sum_{a} \pi_{\theta}(a) = 1$. Therefore, for any b,

$$\sum_{\mathsf{a}} b
abla_{ heta} \pi_{ heta}(\mathsf{a}) = b
abla_{ heta} \sum_{\mathsf{a}} \pi_{ heta}(\mathsf{a})$$
 $= 0$

as long as b does not depend on θ or a.

This means we can subtract a baseline, and instead use

$$\theta = \theta + \alpha (R_t - b) \nabla_\theta \log \pi_\theta(A_t)$$

Baselines <u>do not</u> change the expected update, but they <u>do</u> change variance

Policy gradients with baselines

A natural baseline is the average reward $\frac{1}{t} \sum_{i=1}^{t} R_i$

- ► These gradient methods can be extended
 - ...to include context
 - ...to full MDPs
 - ...to partial observability
- ▶ We will discuss them again in lecture on **policy gradients**

Rat Example

action reward The second reward

probability of selecting black

- ► Greedy: ?
- $ightharpoonup \epsilon$ -greedy: ?
- ► UCB: ?
- ► Thompson sampling: ?

Rat Example

action reward

probability of selecting black

- ► Greedy: 0
- ightharpoonup ϵ -greedy: $\epsilon/2$
- ► UCB: 0
- ► Thompson sampling: 0.25