Frequenzfilter

PPG8

Udo Beier Leon Brückner Valentin Olpp Marco Zech Sebastian Ziegler

Inhaltsverzeichnis

T	Vor	wort	2
2		Oretische Betrachtung Durchlassfilter	
3	Vers 3.1 3.2	Suchsdurchführung Durchlassfilter als Frequenzfilter	
	4.1 4.2	Durchlassfilter	
	1 2 3 4 5	Schaltbild eines Durchlassfilters	4 5 6 8 8

1 Vorwort

Macht Udo

Abbildung 1: Schaltbild eines Durchlassfilters

2 Theoretische Betrachtung

2.1 Durchlassfilter

Ein Durchlassfilter ist eine Reihenschaltung aus Kondensator, Spule und Widerstand. (s.Abb. 1)

Mit den Kirchhoffschen Regeln und $U = Z \cdot I$ gilt:

$$U_a = \frac{R}{R + i\left(\omega L - \frac{1}{\omega C}\right)} \cdot U_e \tag{1}$$

$$\Rightarrow |U_a| = \frac{R}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)}} \cdot |U_e| \tag{2}$$

Bei der Frequenz

$$\omega = \omega_R = \frac{1}{\sqrt{L \cdot C}} \tag{3}$$

wird $|U_a|=|U_e|$, d.h. die Wechselspannung $U_e(\omega_R)$ wird vollständig durchgelassen, während alle anderen Frequenzen abgeschwächt werden. Setzt man nun

$$\frac{|U_a|}{|U_e|} = \frac{1}{\sqrt{2}} \tag{4}$$

und löst die quadratische Gleichung, ergibt sich die Bedingung

$$\omega_{1,2} = \pm \frac{R}{2L} + \sqrt{\frac{R^2}{4L^2} + \omega_R^2} \tag{5}$$

Berechnet man nun die Frequenzbreite $\Delta \omega = \omega_1 - \omega_2$, ergibt sich

$$\Delta\omega = \frac{R}{L} \tag{6}$$

, d.h. bei kleineren Widerständen ergeben sich 'schärfere' Peaks.

Abbildung 2: Schaltbild eines Sperrfilters

Diese Betrachtung nimmt an, dass der Ohmsche Widerstand der Spule vernachlässigbar ist, was in der Praxis jedoch nicht immer der Fall ist. Wenn die Spule einen Widerstand R_L besitzt, ändert sich Gleichung (2) zu

$$\Rightarrow |U_a| = \frac{R}{\sqrt{(R+R_L)^2 + \left(\omega L - \frac{1}{\omega C}\right)}} \cdot |U_e| \tag{7}$$

also wird die Wechselspannung U_e selbst bei der Resonanzfrequenz nicht vollständig durchgelassen.

2.2 Sperrfilter

Beim Sperrfilter werden die Spule und der Kondensator nun parallel geschaltet. (siehe Abb. 2 auf Seite 4) Analog zum Durchlassfilter ergibt sich nun

$$U_a = \frac{R}{R - i \frac{1}{\omega C - \frac{1}{r}}} \cdot U_e \tag{8}$$

$$\Rightarrow |U_a| = \frac{R}{\sqrt{R^2 + \frac{1}{(\omega C - \frac{1}{\omega L})^2}}} \cdot |U_e| \tag{9}$$

Bei der Resonanzfrequenz (3) geht nun $|U_a| \longrightarrow 0$, d.h. die Frequenz ω_R wird blockiert, während andere Frequenzen durchgelassen werden.

Berechnet man hier die Frequenzbreite analog zu (4) und (5) ergibt sich:

$$\Delta\omega = \frac{1}{RC\sqrt{1 - (1 - \frac{1}{\sqrt{2}})^2}} \tag{10}$$

Hier ergeben also größere Widerstände 'schärfere' Peaks.

Abbildung 3: Position der zusätzlich angenommenen Widerstände

Auch hier kann man der Spule einen Widerstand R_L zuweisen, außerdem wurde ein nicht weiter spezifizierter zusätzlicher Widerstand R_{zus} eingefügt. Siehe Abb. 3 auf Seite 5.

Der Gesamtwiderstand der Parallelschaltung aus Spule und Kondensator ist dann:

$$Z_{SK} = \frac{1}{\frac{1}{R_L + i\omega L} + i\omega C} \tag{11}$$

Der Gesamtwiderstand der Schaltung kann nun geschrieben werden als

$$Z_{SK} + R_{zus} + R = \frac{\gamma R_L - i\omega \gamma [C\gamma - L]}{R_L^2 + \omega^2 [C\gamma - L]^2} + R_{ges}$$
(12)

mit
$$\gamma = R_L^2 + \omega^2 L^2$$
 und $R_{ges} = R + R_{zus}$

Analoges Vorgehen zu (1) und (2) liefert schließlich:

$$\frac{|U_a|}{|U_e|} = \frac{R\beta}{\sqrt{(\gamma R_L + R_{ges}\beta)^2 + \gamma^2 \epsilon^2}}$$
mit $\gamma = R_L^2 + \omega^2 L^2$, $\epsilon = \omega [C\gamma - L]$, $\beta = R_L^2 + \epsilon^2$

Einsetzen der Substitutionen und Ausschreiben liefert dann folgende Gleichung, die für die Theoriekurven in Abb. 7 verwendet wurde.

$$\frac{\left|\frac{U_{a}}{U_{e}}\right| = R\left(R_{L}^{2} + \omega^{2}\left[C\left(R_{L}^{2} + \omega^{2}L^{2}\right) - L\right]^{2}\right)}{\sqrt{\left(R_{L}^{2} + \omega^{2}L^{2}\right)R_{L} + R_{ges}\left\{R_{L}^{2} + \omega^{2}\left[C\left(R_{L}^{2} + \omega^{2}L^{2}\right) - L\right]^{2}\right\}^{2} + \left(R_{L}^{2} + \omega^{2}L^{2}\right)^{2}\omega^{2}\left[C\left(R_{L}^{2} + \omega^{2}L^{2}\right) - L\right]}}$$
(14)

3 Versuchsdurchführung

3.1 Durchlassfilter als Frequenzfilter

Zur Überprüfung der Funktionsweise eines Frequenzfilters wurde zunächst die Schaltung aus Abb. 1 auf Seite 3 wie in Abb. 4a realisiert. Nach anfänglichen Problemen mit der richtigen Dimensionierung der verwendeten Spule haben wir schließlich eine Spule "Leybold 56214"mit 500 Windungen und einer Induktivität von 9 mH verwendet, wobei hier das Augenmerk auf einer möglichst geringen Windungszahl liegt, um den in anderen Bauteilen angesiedelten Widerstand möglichst gering zu halten. Dieser liegt für die Spule bei angegebenen 2,5 Ω , was durch Messung bestätigt wurde. Auf der anderen Seite musste auch eine hinreichend große Induktivität garantiert werden, damit die Resonanzfrequenz, in deren Umgebungen die Messungen stattfanden, in einem gut erfassbaren Bereich lagen. Weiter wurde ein Plastikfolienkondensator der Firma "WIMA"der Kapazität 0,22 mF sowie in einem zweiten Teilversuch ein Kondensator gleicher Bauart, allerdings mit 4,7 mF Kapazität verwendet. Ebenfalls als variabel wurde der Widerstand gewählt, wobei hier ein Widerstandskasten, mit dem Widerstände im Bereich von 1Ω bis mehrere $M\Omega$ zugeschaltet werden können, verwendet wurde.

Zur Erzeugung der Eingangsspannung wurde zunächst ein Frequenzgenerator der Marke Hameg (Programmable 15 MHz Function Generator, HM8131/2) verwendet, zur Vereinfachung und Automatisierung der Messung wurde dieser allerdings durch das Power-Cassy ersetzt. Die Messung der über dem Widerstand abfallenden Ausgangsspannung wurde bei einem ersten Aufbau mit einem Oszilloskop (Tektronix TDS 2024 100mHz, PPL28/2/001) durchgeführt. Hierbei stellte sich allerdings heraus, dass die Messungen etwas an Genauigkeit zu wünschen übrig ließen. Bei der tatschlichen Durchführung des Experiments haben wir stattdessen das Sensor-Cassy zugeschalten; Vorteil hierbei ist klar die direkte Übertragung der Daten in die Cassy-Software.

Abbildung 4: Fotos der Versuchsaufbauten

3.2 Sperrfilter als Frequenzfilter

Für die Abwandlung des Durchlassfilters zu einem Frequenzfilter müssen lediglich Kapazität und Induktivität parallel anstatt in Reihe geschaltet werden. Für diesen Versuch

wurden mit Ausnahme des Widerstandes die selben Bauteile erhalten. Um für dieses Experiment den teilweise recht schwach ausgebildeten Peak deutlicher sichtbar zu machen, also eine geringere Breite zu erreichen, wurde allerdings die Widerstandsbox durch einen einfachen Steckwiderstand, wie etwa in Abb. 4b ersetzt. Grund dafür ist, dass die Widerstandsbox insbesondere bei den kleinsten Widerständen einen zu großen Widerstand liefert.

4 Diskussion der Ergebnisse

4.1 Durchlassfilter

Beim Aufzeichnen der Spannungskurven für verschiedene Ohmsche Wiederstände fiel auf, dass die Maxima im Vergleich zu denen der Theoriekurven viel zu klein waren. (siehe Abb. 56)

Abb. 6 zeigt die gleiche Messreihe, nur wurde hier zur Berechnung der Theoriekurve der Gesamtwiederstand des Stromkreises von 5.4 Ohm verwendet. Den größten Anteil an diesem Wert hatte die Spule.

Die geringen Abweichungen, die unter Berücksichtigung dieses Wiederstandes noch zu sehen sind, könnten unter anderem auf ungenauigkeiten der Messung mit dem SSensor-Cassyßowie auf ungenaue Kapazitäts- und Induktivitäts-Angaben zurückgeführt werden, fallen allerdings kaum ins Gewicht.

4.2 Sperrfilter

Genau so verhält es sich mit den aus dem Betrieb der Schaltung als Sperrfilter entstandenen Kurven. Nach Berücksichtigung des Ohmschen Wiederstandes der Spule ergeben sich nur noch minimale Abweichungen der Theorie zu den Messwerten, einzig die Resonanzfrequenz konnte nicht getroffen werden. Hier schien es uns am warscheinlichsten, dass der Wert der Induktivität der zweiten Spule mit 36 mH nicht korrekt war.

Abbildung 5: Plot der Messdaten des Durchlassfilters (unter Vernachlässigung des Restlichen Wiederstandes)

Abbildung 6: Plot der Messdaten des Durchlassfilters unter Berücksichtigung des gefitteten Gesamtwiederstandes

Abbildung 7: Plot der Messdaten des Sperrfilters mit Theoriekurven