Machine Learning for Smarter Customer Insights

K-Means and Random Forest Segmentation

Unlocking Business Potential

What is Segmentation?

- Grouping customers by common traits to understand them better
- Helps making smarter decisions

Why automate it?

- Saves Time
- Easily Re-trained
- Scalable
- Higher Accuracy

Popular Algorithms

- K-Means Clustering (widely used)
- DBSCAN, Agglomerative Clustering and BIRCH (specific needs)

Before K-Means

After K-Means

From ML Models to Real-World Impact

1 EDA & Pre-Processing

Dataset Description

Bank Customer Dataset 9.000 Records 17 Numerical Features

EDA & Pre-Processing

Missing Values Imputation, Outlier Detection, ... Data Distributions, Trends & Correlations

Feature Engineering

Feature Correlation Standard Scaling Principal Component Analysis(17D to 2 PCs)

2 K-Means

Optimal K

Elbow Method (k =4) Silhouette Scores (0.3981)

Applying K-Means

Fitting K- Means Model to the dataset to group customers based on similarities

Cluster Analysis

Cluster Viz using PCA components, adding cluster labels to original data & Groupby for analysis

Profiling Customers

Successfully segmenting customers into 4 distinct behavioral groups

Saving Model

Saving K-Means model & clustered customer data for future use

Clustered Customers

0

Cash Advance Users

May be risky (high balance, moderate purchases and heavy cash advances)

2

High Spenders

Most valuable segment (high balance, large purchases, high credit limits) 1

Low Spenders

Might not generate much revenue (low balance, purchases and overall engagement)

3

Installment Users

A a mix of good & cautious spenders (moderate balance & frequent installment)

3 Unsupervised to Supervised

1st Model Selection

Several models were tested and evaluated (accuracy, precision, recall & F1)

2nd Fine-Tuning

Didn't significantly improved model (already well-optimized)

3rd Analyzing & Saving

Fitting on full data & saving best model (Random Forest) for predictions

Customer Segmentation Prediction

How would you like to input customer data?

Comma Separated List

○ Individual Entries

Sliders

Enter customer data using sliders

Do you have any Questions?

