

Library Indian Institute of Science Education and Research Mohali

DSpace@IISERMohali (/jspui/)

- / Publications of IISER Mohali (/jspui/handle/123456789/4)
- / Research Articles (/jspui/handle/123456789/9)

Please use	this identifier to cite or link to this item: http://hdl.handle.net/123456789/3051
Title:	Optically probing torsional fatigueless and superelastic behavior in spider silks.
Authors:	Kumar, Bhupesh (/jspui/browse?type=author&value=Kumar%2C+Bhupesh) Singh, K.P. (/jspui/browse?type=author&value=Singh%2C+K.P.)
Keywords:	Superelastic Torsional fatigueless Optically probing
Issue Date:	2014
Publisher:	The optical society
Citation:	Proceedings 12th International Conference on Fiber Optics and Photonics, Photonics 2014
Abstract:	We investigate torsion properties of spider silks using optical technique. We find that spider silks are torsionally superelastic and fatigueless in that they can reversibly withstand great torsion strains of over 103 cycles. The fatigueless twist response of draglines is due to reversible molecular deformation. These unique twist responses of draglines could find applications in durable miniature devices
URI:	https://www.osapublishing.org/abstract.cfm?URI=Photonics-2014-M3B.3 (https://www.osapublishing.org/abstract.cfm?URI=Photonics-2014-M3B.3) http://hdl.handle.net/123456789/3051 (http://hdl.handle.net/123456789/3051)
Appears in Collections:	Research Articles (/jspui/handle/123456789/9)

Files in This Item:

File	Description	Size	Format	
need to add pdfodt (/jspui/bitstream/123456789/3051/1/need%20to%20add%20pdfodt)		8.12 kB	OpenDocument Text	View/Open (/jspui/bitstream/1234

Show full item record (/jspui/handle/123456789/3051?mode=full)

. (/jspui/handle/123456789/3051/statistics)

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.