北京理工大学《数值分析》

2009-2010 学年第二学期期末试卷(A)卷(2008 级计算机学院)

课程编号: 12000044 北京理工大学 2009-2010 学年第二学期

2008 级计算机学院《数值分析》期末试卷 A 卷

功	E级学	号	姓名	成绩	
注意	意: ① 答题方式为闭卷。② 可以使用计算器。③ 请将填空题和选择	译题的答案直接填	在试卷上,计算	草题答在答题纸上 。	
— ,	填空题(每空2分,	共 30 分)			
1.	设函数 f(x)区间[a, b]内有二阶连续	导数,且 <i>f</i> (a)	f(b)<0, 当	时,用双点
	弦截法产生的解序列	收敛到方程 f(x)	=0 的根。		
2.	n 个求积节点的插值	型求积公式的代	数精确度至少	▷为次,n个z	
	求积公式的代数精度	为	<u> </u>		
3.	已知 a=3.201, b=0.5	7 是经过四舍五	L入后得到的i	近似值,则 a×b 有_	位有
	效数字, a+b 有	位有效数	(字。		
4.	当 x=1, -1, 2 时, 双	付应的函数值分	别为 f(-1)=0,	f(0)=2, f(4)=10, !	则 f(x)的拉格朗
	日插值多项式是				0
5.	设有矩阵 $A = \begin{bmatrix} 2 & -3 \\ 0 & 4 \end{bmatrix}$],则‖A‖ ₁ =	=o		
6.	要使√20 = 4.472135 .	的近似值的相	对误差小于(0.2%,至少要取	位有效数字。
7.	对任意初始向量 **(*)	和常数项 N ,	有迭代公式:	$x^{(k+1)} = Mx^{(k)} + N \overrightarrow{j}^2$	生的向量序列
	{x ^(*) } 收敛的充分必	要条件是			
8.	已知 n=3 时的牛顿	-科特斯系数	$C_0^{(3)} = \frac{1}{8}, C_1^{(3)}$	$=\frac{3}{8}, \ \bigvee C_2^{(4)} = \underline{\hspace{1cm}}$,
	$C_3^{(3)} = $	•			
9.	三次样条函数是在各	个子区间上的_	;	次多项式。	
			$2x_2 + x_3 = -1$		
10.	用松弛法 (@ = 0.9)角				
		$\left(2x_{2}-\right)$	$3x_2 + 10x_3 =$	3	

下山条件是。

- 二、选择填空(每题2分,共10分)
- 1. 已知数 x_1 =721 x_2 =0.721 x_3 =0.700 x_4 =7*10⁻² 是由四舍五入得到的,则它们的有效数字的位数应分别为()。

A. 3, 3, 3, 1

B. 3, 3, 3, 3

C. 3, 3, 1, 1

- D. 3, 3, 3, 2
- 2. 为求方程 $x^3-x^2-1=0$ 在区间 [1.3, 1.6] 内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是()。

A.
$$x_{n+1} = \frac{1}{\sqrt{x_n - 1}}$$

B.
$$x_{n+1} = 1 + \frac{1}{x_n^2}$$

C.
$$x_{n+1} = \sqrt[3]{1 + x_n^2}$$

D.
$$x_{n+1} = 1 + \frac{x_n^2}{x_n^2 + x_n + 1}$$

3. 线性方程组 AX=B 能用高斯消元法求解的充分必要条件是()。

A. A 为对称矩阵

B. A 为实矩阵

C. | A | ≠0

- D. A 的各阶顺序主子式不为零
- 4. 用选主元的方法解线性方程组 AX=B, 是为了()。

A. 提高计算速度

B. 减少舍入误差

C. 减少相对误差

- D. 方便计算
- 5. 下列说法不正确的是()。
 - A. 二分法不能用于求函数 f(x)=0 的复根。
 - B. 方程求根的迭代解法的迭代函数为 $\phi(x)$,则迭代收敛的充分条件是 $\phi(x)<1$ 。
 - C. 用高斯消元法求解线性方程组 AX=B 时,在没有舍入误差的情况下得到的都是精确解。
 - D. 如果插值节点相同,在满足插值条件下用不同方法建立的插值公式是等价的。
- 三、计算题(共60分)
- 1. 已知单调连续函数 y=f(x)的如下数据,若用插值法计算,x 约为多少时 f(x)=0.5,要求计算结果保留小数点后 4 位。(6 分)

x_i $\begin{bmatrix} -1 & 0 & 2 & 3 \end{bmatrix}$
--

$f(x_i)$ -4 -1 0 3

- 2. 设 a 为常数,建立计算 \sqrt{a} 的牛顿迭代公式,并求 $\sqrt{115}$ 的近似值,要求计算结果保留小数点后 5 位。(6 分)
- 3. 用三点高斯求积公式求 $I = \int_{-1}^{1} \sqrt{x + 1.5} dx$,计算结果保留小数点后 6 位 (6 分)

n	$\pm t_i$	w_i
2	0,577 350 269 2	1
3	0 0.774 596 692	0. 888 888 888 9 0. 555 555 555 6

4. 用高斯消元法解下面的线性方程组。(6分)

$$\begin{cases} x_1 + x_2 - x_3 = 1 \\ x_1 + 2x_2 - 2x_3 = 0 \\ -2x_1 + x_2 + x_3 = 1 \end{cases}$$

5. 用高斯赛德尔方法求下列方程组的解,计算结果保留 4 位小数。(6 分)

$$\begin{cases} 10 \ x_1 - 2 x_2 - x_3 = 3 \\ -2 x_1 + 10 \ x_2 - x_3 = 15 \\ -x_1 - 2 x_2 + 5 x_3 = 10 \end{cases}$$

6. 设函数 f(x) 在区间[0,3]上具有四阶连续导数,试用埃尔米特插值法求一个次数不高于 3 的多项式 P₃(x),使其满足如下数据表值,并给出截断误差估计公式。(10 分)

x	y	y'
0	0	
1	1	3
2	1	

7. 用 Euler 法和改进的欧拉法求解下述初值问题,取 h=0.1,计算到 x=0.5,要求计算 结果保留小数点后 6 位。(10 分)

$$\begin{cases} y' = y - \frac{2x}{y}, & 0 < x < 1 \\ y(0) = 1 \end{cases}$$

8. 用复化梯形公式计算积分 $I = \int_0^1 \frac{1}{1+x} dx$,若要使截断误差不超过 10^{-2} ,则应在区

3

间[0, 1]上分成多少等份?并计算积分的近似值。(10分)

课程编号: 12000044 北京理工大学 2009-2010 学年第二学期

2008 级计算机学院《数值分析》期末试卷 A 卷

玻	H级	总绩
注意	意: ① 答题方式为闭卷。② 可以使用计算器。③ 请将填空题和选择题的答案直接填在试卷上,计算题答在答题组	氏上。
_,	填空题(每空2分,共30分)	
1.	设函数 $f(x)$ 区间[a, b]内有二阶连续导数,且 $f(a)f(b)<0$, 当 _	<i>f'(x)≠0</i> 时,用双
	点弦截法产生的解序列收敛到方程 f(x)=0 的根。	
2.	n 个求积节点的插值型求积公式的代数精确度至少为	x,n 个求积节点的高斯
	求积公式的代数精度为。	
3.	已知 $a=3.201$, $b=0.57$ 是经过四舍五入后得到的近似值,则 $a=3.201$	×b 有2 位有效
	数字, a+b 有 位有效数字。	
	解析:	
	$\eta(ab) = \eta(a) + \eta(b) = \frac{0.0005}{3.201} + \frac{0.005}{0.57} \approx 0.009$	
	$\epsilon(ab) = \eta(ab) \times ab = 0.009 \times 3.201 \times 0.57 \approx 0.016 < 0.05$	
	$\epsilon(a+b)=\epsilon(a)+\epsilon(b)=0.0005+0.005=0.0055<0.05$	
4.	当 x=1, -1, 2 时,对应的函数值分别为 f(-1)=0, f(0)=2, f(4)=10,则 f(x)的拉格朗
	日插值多项式是	•
	解析:	
	$l(x) = \frac{(x-0)(x-4)}{(-1-0)(-1-4)} \times 0 + \frac{(x+1)(x-4)}{(0+1)(0-4)} \times 2 + \frac{(x+1)(x-4)}{(x+1)(x-4)} \times 2 + \frac{(x+1)(x-4)}{(x+1)$	$\frac{(x+1)(x-0)}{(4+1)(4-0)} \times 10$
	$= -\frac{1}{2}(x+1)(x-4) + \frac{1}{2}x(x+1)$	
5.	设有矩阵 $A = \begin{bmatrix} 2 & -3 \\ 0 & 4 \end{bmatrix}$,则 $\ A\ _1 = \underline{\qquad}$ 。	

4

6. 要使 $\sqrt{20}$ = 4.472135 ... 的近似值的相对误差小于 0.2%, 至少要取<u>3</u>位有效数

解析: ||A||₁=max{2+0,3+4}=7

字。

解析:
$$\frac{\varepsilon(\sqrt{20})}{\sqrt{20}}$$
 < 0.2%, $\varepsilon(\sqrt{20})$ < $\sqrt{20}$ × 0.2% ≈ 0.009
0.005<0.009

- 7. 对任意初始向量 $x^{(0)}$ 和常数项 N ,有迭代公式 $x^{(k+1)} = Mx^{(k)} + N$ 产生的向量序列 $\{x^{(k)}\}$ 收敛的充分必要条件是 $\rho(M) < 1$ 。
- 9. 三次样条函数是在各个子区间上的___3___ 次多项式。
- 10. 用松弛法 $(\omega = 0.9)$ 解方程组 $\begin{cases} 5x_1 + 2x_2 + x_3 = -12 \\ -x_1 + 4x_2 + 2x_3 = 20 \end{cases}$ 的迭代公式是 $2x_2 3x_2 + 10x_3 = 3$

$$\begin{cases} x_1^{k+1} = x_1^k + \frac{0.9}{5} (-12 - 5x_1^k - 2x_2^k - x_3^k) \\ x_2^{k+1} = x_2^k + \frac{0.9}{4} (20 + x_1^{k+1} - 4x_2^k - 2x_3^k) \\ x_3^{k+1} = x_3^k + \frac{0.9}{10} (3 - 2x_1^{k+1} + 3x_2^{k+1} - 10x_3^k) \end{cases}$$

11. 用 牛 顿 下 山 法 求 解 方 程 $\frac{x^3}{3} - x = 0$ 根 的 迭 代 公 式 是

$$x_{n+1} = x_n - \frac{3\lambda(x_n^2 - 1)}{x_n^3 - 3x}$$

______,下山条件是<u>|f(x_{n+1})|< |f(x_n)|</u>。

解析: 牛顿迭代公式:
$$x_{n+1}=x_n-f(x_n)/f'(x_n)$$

牛顿下山法迭代公式: $x_{n+1}=x_n-\lambda f'(x_n)/f(x_n)$

$$f'(x) = x^2 - 1$$

$$x_{n+1}=x_n-\lambda(x_n^3/3-x_n)/(x_n^2-1)=x_n-\lambda x_n(x_n^3-3)/(3x_n^2-3)$$

二、选择填空(每题2分,共10分)

- 1. 已知数 $x_1=721$ $x_2=0.721$ $x_3=0.700$ $x_4=7*10^{-2}$ 是由四舍五入得到的,则它们的有效 数字的位数应分别为(A)。
 - A. 3, 3, 3, 1

B. 3, 3, 3, 3

C. 3, 3, 1, 1

- D. 3, 3, 3, 2
- 2. 为求方程 $x^3 x^2 1 = 0$ 在区间 [1.3, 1.6] 内的一个根,把方程改写成下列形式,并建 立相应的迭代公式, 迭代公式不收敛的是(A,D)。

A.
$$x_{n+1} = \frac{1}{\sqrt{x_n - 1}}$$

B.
$$x_{n+1} = 1 + \frac{1}{x_n^2}$$

C.
$$x_{n+1} = \sqrt[3]{1 + x_n^2}$$

D.
$$x_{n+1} = 1 + \frac{x_n^2}{x_n^2 + x_n + 1}$$

解析: A:

$$\varphi'(1.3)|\approx 3.1 \quad |\varphi'(1.6)| \approx 1.1$$

$$\varphi'(x) = \frac{1}{-2\sqrt{(x-1)^3}} |\varphi'(1.3)| \approx 3.1 |\varphi'(1.6)| \approx 1.1$$

B:
$$\varphi'(x) = \frac{-2}{x^3} |\varphi'(1.3)| \approx 0.9$$

C:
$$\varphi'(x) = \frac{-2x}{3\sqrt[3]{(1+x^2)^2}}$$

D:
$$\varphi'(x) = \frac{2x(x^2 + x + 1) + x^2(2x + 1)}{(x^2 + x + 1)^2} = \frac{4x^3 + 3x^2 + 2x}{(x^2 + x + 1)^2}$$

- 3. 线性方程组 AX=B 能用高斯消元法求解的充分必要条件是(D)。
 - A. A 为对称矩阵

B. A 为实矩阵

C. | A | ≠0

- D. A 的各阶顺序主子式不为零
- 4. 用选主元的方法解线性方程组 AX=B, 是为了(B)。
 - A. 提高计算速度

B. 减少舍入误差

C. 减少相对误差

- D. 方便计算
- 5. 下列说法不正确的是(B)。
 - A. 二分法不能用于求函数 f(x)=0 的复根。
 - B. 方程求根的迭代解法的迭代函数为 φ(x),则迭代收敛的充分条件是 φ(x)<1。
 - C. 用高斯消元法求解线性方程组 AX=B 时, 在没有舍入误差的情况下得到的都是 精确解。
 - D. 如果插值节点相同,在满足插值条件下用不同方法建立的插值公式是等价的。

三、计算题(共60分)

1. 已知单调连续函数 y=f(x)的如下数据,若用插值法计算,x 约为多少时 f(x)=0.5,要求计算结果保留小数点后 4 位。(6 分)

x_i	-1	0	2	3	
$f(x_i)$	-4	-1	0	3	

解答:

用反插值法:

$$l(y) = \frac{(y+1)(y-0)(y-3)}{(-4+1)(-4)(-4-3)} \times (-1) + \frac{(y+4)(y-0)(y-3)}{(-1+4)(-1)(-1-3)} \times 0$$

$$+ \frac{(y+4)(y+1)(y-3)}{(0+4)(0+1)(0-3)} \times 2 + \frac{(y+4)(y+1)(y-0)}{(3+4)(3+1)3} \times 3$$

$$= -\frac{1}{84} y(y+1)(y-3) - \frac{1}{6} (y+4)(y+1)(y-3) + \frac{1}{28} y(y+4)(y+1)$$

1(0.5)=2.91667

2. 设 a 为常数,建立计算 \sqrt{a} 的牛顿迭代公式,并求 $\sqrt{115}$ 的近似值,要求计算结果保留小数点后 5 位。(6 分)

解答:

令 $p(x)=x^2-a$,则 p(x)=0 的解即为 \sqrt{a} 。

其牛顿迭代公式为:

$$x_{n+1} = x_n - f(x_n)/f'(x_n)$$

$$= x_n - (x_n^2 - a)/2x_n$$

$$= \frac{1}{2}(x_n + a/x_n)$$

取 a=115, $x_{n+1}=\frac{1}{2}(x_n+115/x_n)$

 $x_1=\frac{1}{2}(11+115/11)=10.72727$

 $x_2=\frac{1}{2}(10.72727+115/10.72727)=10.72381$

 $x_2 = \frac{1}{2}(10.72381 + 115/10.72381) = 10.72381$

3. 用三点高斯求积公式求 $I = \int_{-1}^{1} \sqrt{x + 1.5} dx$,计算结果保留小数点后 6 位 (6 分)

n	$\pm t_i$	w_i
2	0.577 350 269 2	1
3	0 0.774 596 692	0. 888 888 888 9 0. 555 555 555 6

4. 用高斯消元法解下面的线性方程组。(6分)

$$\begin{cases} x_1 + x_2 - x_3 = 1 \\ x_1 + 2x_2 - 2x_3 = 0 \\ -2x_1 + x_2 + x_3 = 1 \end{cases}$$

解答:

l11=1,u11=1	u12=1	u13=-1	z1=1
121=1/1=1	122=1,u22=2-1×1=1	u23=-2-1×(-1)=-1	$z2=0-1 \times 1=-1$
104 0/4 0			
131=-2/1=-2	132=1-(-2) ×1=3	133=1,u33=1-(-2)×(-1)-3×	$z3=1-(-2)\times 1-3\times$
		(-1)=2	(-1)=6

$$\begin{cases} x_1 + x_2 - x_3 = 1 \\ x_2 - x_3 = -1 \\ 2x_3 = 6 \end{cases} \qquad \begin{cases} x_1 = 2 \\ x_2 = 2 \\ x_3 = 3 \end{cases}$$

5. 用高斯赛德尔方法求下列方程组的解,计算结果保留 4 位小数。(6 分)

$$\begin{cases} 10 \ x_1 - 2 x_2 - x_3 = 3 \\ -2 x_1 + 10 \ x_2 - x_3 = 15 \\ -x_1 - 2 x_2 + 5 x_3 = 10 \end{cases}$$

解答:

$$\begin{cases} x_{1}^{k+1} = \frac{1}{10} (3 + 2x_{2}^{k} + x_{3}^{k}) \\ x_{2}^{k+1} = \frac{1}{10} (15 + 2x_{1}^{k+1} + x_{3}^{k}) \\ x_{3}^{k+1} = \frac{1}{5} (10 + x_{1}^{k+1} + 2x_{2}^{k+1}) \end{cases} \begin{cases} x_{1}^{k+1} = 0.3 + 0.2 x_{2}^{k} + 0.1 x_{3}^{k}) \\ x_{2}^{k+1} = 1.5 + 0.2 x_{1}^{k+1} + 0.1 x_{3}^{k}) \\ x_{3}^{k+1} = 2 + 0.2 x_{1}^{k+1} + 0.4 x_{2}^{k+1}) \end{cases}$$

取 x0=(0,0,0)

x1=(0.3,1.56,2.684)

x2=(0.8804,1.9445,2.9539)

x3=(0.9843,1.9923,2.9938)

x4=(0.9978,1.9989,2.9991)

x5=(0.9997,1.9999,2.9999)

x6=(1.0000,2.0000,3.0000)

x7=(1.0000,2.0000,3.0000)

6. 设函数 f(x) 在区间[0,3]上具有四阶连续导数,试用埃尔米特插值法求一个次数不高于 3 的多项式 P₃(x),使其满足如下数据表值,并给出截断误差估计公式。(10 分)

x	y	y'
0	0	
1	1	3
2	1	

解答:

构造差商表:

x	y	$f[x_i,x_{i+1}]$	$f[x_i, x_{i+1}, x_{i+2}]$	$f[x_i, x_{i+1}, x_{i+2}, x_{i+3}]$
0	0			
1	1	(1-0)/(1-0)=1		
1	1	y'/1!=3	(3-1)/(1-0)=2	
2	1	(1-1)/(2-1)=0	(0-3)/(2-1)=-3	(-3-2)/(2-0)=-2.5

$$P_3(x)=0+x\times 1+x(x-1) \times 2+x(x-1)^2\times (-2.5)=-2.5x^3-3x^2-3.5x$$

截断误差公式: $R(x)=f'(\xi)/4! \times x \times (x-1)^2 (x-2)$ $\xi \in [0,2]$

7. 用 Euler 法和改进的欧拉法求解下述初值问题,取 h=0.1,计算到 x=0.5,要求计算 结果保留小数点后 6 位。(10 分)

$$\begin{cases} y' = y - \frac{2x}{y}, & 0 < x < 1 \\ y(0) = 1 \end{cases}$$

8. 用复化梯形公式计算积分 $I = \int_0^1 \frac{1}{1+x} dx$,若要使截断误差不超过 10^{-2} ,则应在区间[0, 1]上分成多少等份?并计算积分的近似值。(10 分)