Theory of Computation, Fall 2021 Assignment 3 (Due October 16 Saturday 9:35am)

- Q1. [1, Chapter 1.3] For any two regular expressions R_1 and R_2 , we say $R_1 = R_2$ if $L(R_1) = L(R_2)$. Let R be a regular expression. Are the following statements true or false? Provide counterexamples for false statements.
 - (a) $R \cup \emptyset = R$
 - (b) $R\emptyset = R$
 - (c) $R \cup \emptyset^* = R$
 - (d) $R\emptyset^* = R$
- Q2. Write a regular expression for the language

 $\{w \in \{a, b\}^* : \text{ the number of } b\text{'s in } w \text{ is divisible by } 3\}.$

Q3. Consider the NFA N in Figure 1. Construct a regular expression R such that L(R) = L(N). You should strictly follow the algorithm we used in the class, and show all the intermediate steps. More precisely, you should first convert N into an equivalent NFA that satisfies certain conditions, and then eliminate state q_1 and q_2 in order.

Figure 1: N

Q4. Let N be the NFA in Figure 1. Someone constructs another NFA N' as in Figure 2 and claims that $L(N') = (L(N))^*$. Prove that he\she is wrong. (Hint: It suffices to find a string that is in L(N') but not in $(L(N))^*$).

Figure 2: N'

Q5. Construct a NFA that accepts $(ab \cup aba)^*$.

- Q6. Are the following statement true of false? Explain your answer. You may use the fact that the language $\{a^ib^i: i \geq 0\}$ is not regular (we will prove this using pumping theorem in next class).
 - (a) Every subset of a regular language is regular.
 - (b) The union of a finite number of regular languages must be regular.
 - (c) Languages that contain only a finite number of strings must be regular.
 - (d) The union of an infinite number of regular languages must be regular.
 - (e) The intersection of an infinite number of regular languages must be regular. (Hint: Think about the De Morgan's Laws)

References

- [1] Sipser M.. Introduction to the Theory of Computation. CENGAGE Learning (2013)
- [2] Lewis H., Papadimitriou C.. Elements of the Theory of Computation. Prentice-Gall (1998)