ARITHMETIC Chapter 20

Números Decimales

MOTIVATING

La fracción $\frac{1}{80!}$, ¿cuántas difas de la fracción periódicas origina?

- ✓ Siendo 80! el denominador de la fracción generatriz, el factor con mayor exponente contenido en 80! es 2.
- ✓ Para esto utilizamos un caso particular de los números primos.

Ejemplo

Luego, sumados los cocientes obtenidos

$$1 + 2 + 5 + 10 + 20 + 40 = 78$$

Concluiremos que la fracción tiene 78 cifras decimales no periódicas.

HELICOTEOR

CLASIFICACIÓN DE LOS NÚMEROS

DECIMALES NUMERO DECIMAL

Parte entera Parte decimal

Ejemplo

- 1,75
- 0,54
- 3.0472

DECIMAL EXACTO O LIMITADO

$$\frac{7}{4} = \frac{7}{2^2} = 1,75$$

$$\Rightarrow \frac{137}{2^4 \times 5^3} = \mathbf{0}, \mathbf{0685}$$

El número de cifras decimales va a estar dado por el mayor exponente de 2 y/o 5 que presente el denominador de la fracción irreductible.

BECIMAL INEXACTO O ILÍMITADO

1. DECIMAL PERIÓDICO

PURAplo

$$\frac{2}{9} = 0.222 \dots = 0, \widehat{2} = 0, [2]$$

➡ El 9 origina una cifra periódica pura.

$$\frac{675}{999} \Longleftrightarrow \frac{25}{37} = 0,675 = 0,[675]$$

El 37 origina tres cifras periódicas puras.

Tabla de nueves

$$9 = 3^{2}$$

 $99 = 3^{2} \times 11$
 $999 = 3^{3} \times 37$
 $9999 = 3^{2} \times 11 \times 101$
 $999999 = 3^{2} \times 41 \times 271$
 $9999999 = 3^{3} \times 7 \times 11 \times 13 \times 37$
 $99999999 = 3^{2} \times 239 \times 4649$

El número de cifras periódicas puras va a estar dado por el menor número de nueves contenidos en el denominador como factor.

2. DECIMAL PERIÓDICOY

Ejemplo **MIXTO**

$$\frac{5}{6} <> \frac{5}{2^1 \times 3} = 0.83 = 0.8[3]$$

El exponente del factor 2 es 1 por ende tendrá una cifra no periódica y el factor 3 origina una cifra periódica.

$$\frac{13}{2750} \iff \frac{13}{5^3 \times 2 \times 11} = 0,00472 = 0,004[72]$$

El exponente del factor 5 es 3 por ende tendrá tres cifras no periódicas y el factor 11 origina dos cifras periódicas.

Números Avales

Ejemplo

$$\frac{a}{b} = 1,4343 \dots _{(5)}$$

Número

Pentaval $F = \frac{a}{b} = \overline{x, yzw} \dots (5)$

Parte entera (característica)

Parte decimal (mantisa)

FRACCIÓN

GENERATRI. CLASE	BASE n=10	BASE n≠ 10
Decimal Exacto 0 , $\overline{abcde}_{(n)}$	$\frac{abcde}{100000}$	$\frac{\overline{abcde}_{(n)}}{100000_{(n)}}$
Decimal p. puro 0 , $\overrightarrow{abcde}_{(n)}$	<u>abcde</u> 99999	$\frac{\overline{abcde}_{(n)}}{(n-1)(n-1)\dots(n-1)_{(n)}}$
Decimal p. mixto 0 , $abc\widehat{de}_{(n)}$	<u>abcde</u> – <u>abc</u> 99000	$\frac{\overline{abcde}_{(n)}}{\overline{(n-1)(n-1)000_{(n)}}}$

Calcule la suma **E**el numerador y denominador de la fracción irreductible generatriz de 3,909090 ...

Resolución

Del dato tenemos:

$$3,90 = \frac{390 - 3}{99} = \frac{387}{99} = \frac{43}{11}$$

Suma de términos:

Rpta: 54

¿Cuántos valores toma $a \operatorname{si} \frac{a}{9} + \frac{b}{5} = 3,0666...$?

Resolución

Del dato tenemos:

$$\frac{a}{9} + \frac{b}{5} = 3,0\hat{6}$$

$$\frac{5a + 9b}{45} = \frac{276}{90}$$

$$5a + 9b = 138$$

a: 6; 15; 24.

15 7

24 2

La cantidad de valores de a es:

Rpta:

3

Se le preguntó a Henry Julca, estudiante del colegio Apeiron, sobre la cantidad de goles que había metido en $f = \frac{7}{83} = 0, \widehat{ab ... x} = \frac{ab ... x}{99 ... 9}$ el campeonato interescolar 2018, y este respondió:

"La cantidad de goles que metí, es igual a la última cifra del periodo que genera la fracción $\frac{7}{83}$ ".

¿Cuántos goles metió Henry en dicho campeonato?

Resolución

$$\mathbf{f} = \frac{7}{83} = 0, \widehat{ab \dots x} = \frac{\overline{ab \dots x}}{99 \dots 9}$$

$$\frac{7}{(...3)} = \frac{(...x)}{(...9)}$$

$$(7)(...9) = (...3)(...x)$$

$$(...3) = (...3)(...x)$$

La cantidad de goles que metió es:1

Rpta:

Si:
$$0$$
, $\hat{a} + 0$, $\hat{b} + 0$, $\hat{a}\hat{b} = 1$, $\widehat{42}$, calcule ab .

Resolución

Del dato tenemos:

$$\frac{a}{9} + \frac{b}{9} + \frac{ab}{99} = \frac{142 - 1}{99}$$

$$\frac{11a + 11b + 10 \ a + b}{99} = \frac{141}{99}$$

$$21a + 12b = 141$$

$$7a + 4b = 47$$

$$ab = 5 \times 3 =$$

Rpta:

15

Efectúe:
$$E = \frac{2}{7} + \frac{5}{7^2} + \frac{E_2}{7^3} + \frac{5}{7^4} + \frac{2}{7^5} + \frac{5}{7^6} + \cdots$$

Resolución

$$E = \frac{2}{7} + \frac{5}{7^2} + \frac{2}{7^3} + \frac{5}{7^4} + \frac{2}{7^5} + \frac{5}{7^6} + \cdots$$

E =
$$2 \times 7^{-1} + 5 \times 7^{-2} + 2 \times 7^{-3} + 5 \times 7^{-4} + 2 \times 7^{-5} + 5 \times 7^{-6} + \dots$$

descomposición polinómica de un aval

Donde:

$$E = 0.25_{(7)} = \frac{25_{(7)}}{66_{(7)}}$$

Piden a base 10:
$$E = \frac{19}{48}$$

19/48

Reduzca y dé como respuesta el valor del numerador en:

$$E = (\sqrt{0.41666 \dots} + \sqrt{6.666 \dots})^2.$$

Resolución

Del dato tenemos:

* 0,41[6] =
$$\frac{416 - 41}{900}$$

= $\frac{375}{900}$ = $\frac{5}{12}$

$$*6,[6] = \frac{66-6}{9} = \frac{20}{3}$$

reemplazando:

$$E = \left(\sqrt{\frac{5}{12}} + \sqrt{\frac{20}{3}}\right)^2 = \frac{5}{12} + \frac{20}{3} + 2x\left(\sqrt{\frac{5}{12}x^{\frac{20}{3}}}\right)$$

$$E = \frac{125}{12}$$

El valor del numerador es

Rpta:

125

¿Cuántas cifras periódicas $\frac{1}{2}$ no periódicas genera f?

$$f = \frac{24}{16500}$$

Resolución

Del dato tenemos:

$$f = \frac{24}{16500}$$

Descomposición canónica

$$f = \frac{2^3 \times 3^4}{2^3 \times 5^3 \times 5^3 \times 11}$$

$$f = \frac{2^1}{5^3 \times 11}$$

sabemos:

- el 11 origina, 2 cifras periódicas
- como el exponente de 5 es 3, habra 3 cifras no periódicas

Rpta:

2 y 3 cifras

Si:
$$\frac{31}{29} = m$$
, $ab ... xy$ Calcule: $a + b + x + y + m$.

Resolución

Del dato tenemos:

Donde:

$$m = 1$$

$$a = 0$$

$$b = 6$$

además:
$$\frac{31}{29} = 1, [06 ... xy] = \frac{\overline{106 ... xy} - 1}{99 ... 99}$$

$$31 \times 99 \dots 99 = 29 \times 106 \dots x(y-1)$$

donde:

$$(y-1) x 9 = ... 9 y = 2$$

* orden 2

$$x \times 9 = \dots 4$$

$$x = 6$$

Piden:

$$a + b + x + y + m =$$
Rpta: 15