# **Optimizing Loan Acceptance Prediction**

# Faruk Yasar



### **Objective**

**The problem:** Predicting customer loan acceptance to identify factors influencing their decisions.

**The Objective:** Minimize False Negatives (maximize Recall) to improve targeting of customers likely to accept offers.

## Business Impact:

- Enhanced targeting efficiency.
- Reduced missed opportunities for loan conversions.
- The Challenge: The data is significantly imbalanced.





### **Data and Methodology**

#### **Dataset:**

- 5,000 records, 11 features.
- Target: Personal Loan (Accepted = 1, Not Accepted = 0).
- Features:
- Income, Education, Family Size, Credit Card Spending.

### Methodology:

- Data Preprocessing: Scaling, and SMOTE for balancing.
- Model Comparison: Logistic Regression, Random Forest, Gradient Boosting, XGBoost.
- Hyperparameter Tuning: Focused on Gradient Boosting and XGBoost for Recall.

| Data | eIndex: 5000 entries<br>columns (total 14 c<br>Column | olumn |            | Dtype  |
|------|-------------------------------------------------------|-------|------------|--------|
| #    | Co cumn                                               | Non-  | vutt Count | Dtype  |
| 0    | ID                                                    | 5000  | non-null   | int64  |
| 1    | Age                                                   | 5000  | non-null   | int64  |
| 2    | Experience                                            | 5000  | non-null   | int64  |
| 3    | Income                                                | 5000  | non-null   | int64  |
| 4    | ZIP Code                                              | 5000  | non-null   | int64  |
| 5    | Family                                                | 5000  | non-null   | int64  |
| 6    | CCAvg                                                 | 5000  | non-null   | float6 |
| 7    | Education                                             | 5000  | non-null   | int64  |
| 8    | Mortgage                                              | 5000  | non-null   | int64  |
| 9    | Personal Loan                                         | 5000  | non-null   | int64  |
| 10   | Securities Account                                    | 5000  | non-null   | int64  |
| 11   | CD Account                                            | 5000  | non-null   | int64  |
| 12   | Online                                                | 5000  | non-null   | int64  |
| 13   | CreditCard                                            | 5000  | non-null   | int64  |
| dtyp | es: float64(1), int6                                  | 4(13) |            |        |

Dataset shape: (5000, 14)

### **Model Evaluation and Selection**

| Model                            | Recall | ROC-AUC | Precision | F1 Score |
|----------------------------------|--------|---------|-----------|----------|
| Logistic Regression              | 0.8523 | 0.9529  | 0.4870    | 0.6198   |
| Random Forest                    | 0.9091 | 0.9963  | 0.9524    | 0.9302   |
| Gradient Boosting (Pre-tune)     | 0.9205 | 0.9979  | 0.9101    | 0.9153   |
| Gradient Boosting<br>(Post-tune) | 0.9318 | 0.9983  | 0.9123    | 0.9219   |
| XGBosst (Pre-tune)               | 0.9205 | 0.9962  | 0.9000    | 0.9101   |
| XGBoost (<br>Post-tune)          | 0.8864 | 0.9966  | 0.9176    | 0.9012   |



Confusion matrix for Gradient Boosting Post-Tune model showing minimal False Negatives (6) and False Positives (4).

### **Feature Importance and Business Insights**

#### **Features**

- Income : Signals financial stability.
- Education : Higher education levels linked to better financial literacy.
- 3. **Family Size** : Larger families often have higher financial needs.
- 4. **CCAvg (Credit Card Spending)** =: Indicates financial engagement and creditworthiness.



### **Business Insights**

- High-income customers are most likely to accept personal loan offers.
- Education level is a strong predictor of loan acceptance, indicating trust in financial products.
- Larger families show increased loan acceptance, reflecting higher financial needs.
- Credit card usage signals financial engagement and creditworthiness.

# **Recommendations and Impact**

## **©** Target High-Potential Segments

- Focus on high-income, highly educated customers.
- Use family size and spending patterns for personalized marketing.

## Customize Marketing Strategies

- Emphasize financial benefits to educated customers.
- Promote flexible repayment plans for families.

### Business Impact

- Improve conversion rates.
- Reduce missed opportunities by targeting the right customers.
- Improve marketing ROI through better-aligned strategies.

### Summary

Selected model: Post-tuned Gradient Boosting

#### **Achieved Metrics**

- Recall: 93.18% (minimizing False Negatives).
- ROC-AUC: 99.83% (excellent discriminative ability).

### **Impact Summary**

- Enhanced targeting will reduce missed opportunities and improve conversion rates.
- Tailored marketing strategies will boost ROI for personal loan campaigns.

#### **Next Steps**

- 1. Deploy the Gradient Boosting model into production.
- 2. Monitor model performance and retrain periodically to maintain accuracy.
- Use insights to refine marketing strategies and optimize loan products.

Deploy Model

2 Moritor Perform

Retrain