

1/2/ALL

11/2/1

DIALOG(R) File 351:Derwent WPI
 (c) 2002 Thomson Derwent. All rts. reserv.

008542065

WPI Acc No: 1991-046128/199107

XRAM Acc No: C91-019544

Synergistic skin care cosmetic compsn. giving increased protection -
 contg. polyunsaturated fatty acid, vegetable fat unsaponifiable material
 and vitamin-E

Patent Assignee: SEDERMA SA (SEDE-N)

Inventor: GREFF D

Number of Countries: 001 Number of Patents: 001

Basic Patent:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
FR 2648347	A	19901221	FR 898092	A	19890615	199107 B

Priority Applications (No Type Date): FR 898092 A 19890615

Abstract (Basic): FR 2648347 A

Cosmetic compsns. contain a combination of the 3 following active principles: (i) fatty acid polyunsatd. in W-3; (ii) unsaponifiable fractions of vegetable fats, and (iii) vitamin E.

(i) Comprise alpha-linoleic acid (C18:3W3), octadecatetraenoic acid (C18 : 4W3); eicosatetraenoic acid (C20 : 4W3); eicosapentaenoic acid (C20 : 5W3); docosapentaenoic acid (C22 : 5W3) or docosahexaenoic acid (C22 : 6W3). (i) May be present in free form or as esters with triglycerides, phospholipids or sphingolipids.

USE/ADVANTAGE - Partic. for skin care compsn. The 3 components act synergically to give increased protection to the skin. They are partic. used for combatting various forms of stress and as (post)solar prods.

(7pp Dwg.No 0/0)

Title Terms: SYNERGISTIC; SKIN; CARE; COSMETIC; COMPOSITION; INCREASE; PROTECT; CONTAIN; POLYUNSATURATED; FATTY; ACID; VEGETABLE; FAT; UNSAPONIFIABLE; MATERIAL; VITAMIN-E

Derwent Class: D21; E17; E19

International Patent Class (Additional): A61K-007/40; C07C-057/03; C07D-311/72

File Segment: CPI

Manual Codes (CPI/A-N): D08-B09A; D10-A06; E05-G09D; E06-A01; E10-C04H; E10-G02G

Chemical Fragment Codes (M3):

```
*01* B415 B701 B713 B720 B815 B831 H181 H7 H723 J0 J011 J013 J171 J273
L722 M225 M226 M231 M262 M273 M281 M282 M283 M312 M313 M320 M321
M332 M342 M343 M383 M392 M411 M510 M520 M530 M540 M650 M782 M903
M904 Q254 R021 9107-B4601-M 9107-B4602-M 9107-B4603-M 9107-B4604-M
*02* D012 D016 D023 D024 D025 D120 H401 H441 J011 J241 M210 M211 M225
M233 M240 M262 M281 M283 M320 M412 M511 M520 M530 M540 M782 M903
M904 Q254 R021 9107-B4605-M
```

Generic Compound Numbers: 9107-B4601-M; 9107-B4602-M; 9107-B4603-M;
 9107-B4604-M; 9107-B4605-M

?

(19) RÉPUBLIQUE FRANÇAISE
INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE
PARIS

(11) N° de publication :
(à utiliser que pour les commandes de reproduction)

2 648 347

(D)

(21) N° d'enregistrement national :

89 08092

(51) Int Cl⁵ : A 61 K 7/40; C 07 C 57/03; C 07 D 311/72.

(12)

DEMANDE DE BREVET D'INVENTION

A1

(22) Date de dépôt : 15 juin 1989.

(71) Demandeur(s) : SEDERMA SA. — FR.

(30) Priorité :

(72) Inventeur(s) : Daniel Greff.

(43) Date de la mise à disposition du public de la demande : BOPI « Brevets » n° 51 du 21 décembre 1990

(73) Titulaire(s) :

(60) Références à d'autres documents nationaux apparentés :

(74) Mandataire(s) :

(54) Préparations cosmétiques possédant des propriétés adoucissantes.

(57) L'invention concerne des préparations cosmétiques renfermant l'association d'acides gras polyinsaturés en w 3, de fractions insaponifiables de matières grasses végétales et de vitamine E. Les préparations obtenues sont destinées à la lutte contre les agressions de la peau.

FR 2 648 347 - A1

Vente des fascicules à l'IMPRIMERIE NATIONALE 27 rue de la Convention - 75732 PARIS CEDEX 15

BAD ORIGINAL

La peau est soumise en permanence à des agressions nombreuses et variées qui peuvent être regroupées en quatre grandes catégories :

- Les agressions par les radiations lumineuses et plus 5 particulièrement, par les radiations ultra-violettes du soleil.
- Les agressions chimiques occasionnées par les produits d'entretien ou la pollution atmosphérique.
- Les agressions mécaniques dues, par exemple, aux frottements 10 des vêtements.
- Les agressions thermiques consécutives au passage sans transition d'une atmosphère surchauffée à une atmosphère froide, ou inversement.

Toutes ces agressions contribuent à altérer les lipides 15 épidermiques et les différentes macromolécules responsables des propriétés mécaniques du derme (collagène, élastine, acide hyaluronique ...). Il s'en suit à long terme un vieillissement accéléré de la peau dont la manifestation la plus visible est l'apparition de rides.

20 La lutte contre ces différentes agressions constitue donc un axe important de la cosmétologie moderne. Sachant que certaines d'entre elles (telles que les radiations ultra-violettes ou certains produits chimiques) induisent la formation de radicaux libres au sein de la peau, des substances capables de piéger 25 les radicaux libres ont été introduites dans des produits cosmétiques. Cependant, bien qu'ils présentent une activité certaine, ces produits n'ont jusqu'à présent pas permis d'obtenir le degré de protection escompté.

Or, il est apparu que l'association de trois familles de 30 principes actifs, constituées par :

- des acides gras polyinsaturés en ω 3
- des fractions insaponifiables de matières grasses d'origine végétale
- de la vitamine E

35 présentait un effet protecteur très important vis-à-vis des agressions précitées, nettement supérieur à la protection qu'il est possible d'obtenir avec chacun de ces ingrédients pris individuellement ou combinés deux à deux. En effet, des essais réalisés en associant des acides gras polyinsaturés en ω 3 aux 40 fractions insaponifiables seules, ou à la vitamine E seule, et

des essais réalisés en associant les fractions insaponifiables à la vitamine E, n'ont jamais permis de reproduire les résultats obtenus avec l'association des trois familles de produits, quelles que soient les concentrations utilisées. Il en résulte donc que l'association de ces trois types de substances présente un effet de synergie qui était a priori imprévisible.

En ce qui concerne les principes actifs entrant dans la composition des préparations cosmétiques selon l'invention, leur nature peut être précisée comme suit :

- 10 - Par acides gras polyinsaturés en ω 3, on entend, conformément à la nomenclature usuelle utilisée en biochimie, des acides gras présentant plusieurs insaturations, dont la première est située entre les carbones 3 et 4 comptés à partir du groupement méthyle terminal opposé au groupement carboxylique.
- 15 A titre d'exemple, et de façon non limitative, on peut citer dans cette catégorie les acides α -linolénique (ou octadécatriénoïque) (C18:3 ω 3), octadécatétráenoïque (C18: 4 ω 3), éicosatétráenoïque (C20:4 ω 3), éicosapentaénoïque (C20:5 ω 3), docosapentanénoïque (C22:5 ω 3) et
- 20 docosahexaénoïque (C22:6 ω 3). Ils peuvent être introduits sous la forme d'acides gras libres, ou estérifiés dans des triglycérides, des phospholipides ou des sphingolipides. Ces molécules peuvent être incorporées sous la forme de substances pures ou en tant que composants d'huiles naturelles. Dans ce dernier cas, on peut utiliser avantageusement des huiles extraites de poisson, préférentiellement désodorisées, ou d'algues (macroalgues ou microalgues). Ces huiles possèdent en effet la propriété d'être particulièrement riches en acides gras polyinsaturés en ω 3.
- 25 30 - Par fractions insaponifiables de matières grasses végétales, on entend, en accord avec la terminologie usuelle de l'industrie chimique, la fraction des corps gras d'origine végétale qui, après action prolongée d'une base alcaline, reste insoluble dans l'eau et peut être extraite par un solvant organique. Il s'agit toujours de mélanges complexes qui peuvent contenir des hydrocarbures aliphatiques, des terpènes et leurs dérivés, des stérols, des tocophérols ainsi qu'un grand nombre de substances complexes, le plus souvent non encore identifiées. Ces insaponifiables peuvent être
- 35 40 obtenus à partir de matières grasses végétales se présentant à

température ambiante sous forme liquide ou solide, selon n'importe quel procédé classique. Ces derniers font généralement intervenir une première phase de saponification de la matière grasse au moyen de soude ou de potasse, à froid ou à chaud, suivie d'une phase d'extraction avec des solvants tels que, par exemple et de façon non limitative : de l'éther de pétrole, de l'hexane, du dichloréthane, de l'éther éthylique, de l'acétone ou du benzène. Les matières grasses servant à préparer la fraction insaponifiable peuvent être extraites d'un très grand nombre de plantes. On peut citer à titre d'exemple et de façon non limitative les amandes douces, l'avocat, le café, les pépins de framboise, le fénugrec, les germes de blé, le karité, la luzerne, le maïs, l'olive, l'onagre, les pépins de raisin, le soja et le voacanga.

15 - En ce qui concerne la vitamine E, on peut utiliser les tocophérols α , β , γ ou δ , soit individuellement, soit sous forme de mélanges. Ces tocophérols peuvent être introduits sous forme libre, à l'état pur ou en association avec des huiles, ou comme constituants d'huiles naturelles riches en vitamine E, ou sous forme d'acétates. Le mode d'action des produits obtenus selon l'invention n'est pas encore parfaitement élucidé. Il est clair que la vitamine E agit en tant que piégeur de radicaux libres. Les fractions insaponifiables de matières grasses végétales et les acides gras polyinsaturés en $\omega 3$ pourraient avoir une activité anti-inflammatoire, ces derniers plus spécifiquement en réprimant la synthèse des prostaglandines. Quant à l'effet de synergie obtenue par l'association des trois types de principes actifs, son origine demeure inexpliquée.

20 Les produits réalisés selon l'invention peuvent être employés avantageusement pour la lutte contre les différentes formes de stress pouvant affecter la peau. Ils peuvent en particulier et de façon non limitative, être utilisés comme produits solaires ou après solaires, ou, d'une façon plus générale comme

25 produits destinés à lutter contre les effets du stress, physiologique et psychologique.

A ce sujet, il est apparu lors des essais, et cela constitue également l'une des caractéristiques de cette invention, qu'il était possible d'obtenir des produits efficaces pour une gamme étendue de concentrations en principes actifs. En particulier,

30

35

40

le fait de modifier les proportions entre les différentes familles de principes actifs ou les concentrations absolues de ces principes actifs dans le produit permet de moduler son action et de l'orienter plus spécifiquement vers un domaine 5 d'activité donné. Cependant, le mécanisme d'action des produits réalisés selon l'invention n'étant pas exactement connu, il n'est pas possible de prévoir a priori vers quelle forme de protection particulière s'orientera préférentiellement une formulation donnée. Seuls des essais 10 permettent de la déterminer.

Les principes actifs entrant dans la composition des produits réalisés selon l'invention étant tous de nature lipidique, il est souhaitable que les préparations cosmétiques dans lesquelles ils doivent être incorporés comportent une phase grasse dans 15 laquelle ils peuvent se dissoudre. Les produits selon l'invention peuvent donc indifféremment être des crèmes, des laits ou des huiles. Les principes actifs peuvent également être incorporés à l'intérieur de membranes de liposomes ou à l'intérieur de micro ou nanocapsules ou de micro ou 20 nanoparticules à cœur hydrophobe. Ces différents types de vecteurs renfermant les principes actifs selon l'invention, peuvent être dispersés non seulement dans crèmes, des laits ou des huiles, mais également dans des gels aqueux.

Des exemples non limitatifs de compositions cosmétiques selon 25 l'invention sont présentés ci-dessous :

1) Crème contre le stress

Stéarate de sorbitan	3,00
Polysorbate 60	4,00
Alcool cétylique	1,50
30 Huile d'algues	20,00
Insaponifiable de karité	2,00
Acétate de vitamine E	1,00
p-hydroxybenzoate de méthyle	0,30
Eau	68,00
35 Parfum	0,20

2) Crème contre le stress

Stéarate de triéthanolamine	3,00
Stéarate de glycérol	3,00
Alcool cétylique	2,00
40 Huile de poisson	1,00

	Insaponifiable de karité	0,20
	Insaponifiable de maïs	0,01
	Acétate de vitamine E	0,10
	p-hydroxybenzoate de méthyle	0,30
5	Eau	88,64
	Sorbitol	1,00
	parfum	0,15
	3) <u>Lait contre le stress</u>	
10	Polysorbate 60	1,50
	Alcool oléique	0,50
	Cire d'abeille	1,50
	Huile de vaseline	3,00
	Acide éicosapentaénoïque	0,30
15	Acide docosahexaénoïque	0,15
	Insaponifiable de Karité	0,10
	Acétate de vitamine E	0,50
	p-hydroxybenzoate de méthyle	0,30
	Eau	87,55
	Carbopol 940	0,20
20	Triéthanolamine	0,20
	Glycérine	4,00
	Parfum	0,20
	4) <u>Gels aux liposomes</u>	
25	Carbopol 1342	0,40
	PEG-8	0,50
	Glycérine	5,00
	Huile de silicone	1,00
	p-hydroxybenzoate de méthyle	0,30
	Eau	62,40
30	Triéthanolamine	0,40
	Liposomes (contenant : acide éicosa- ...	30,00
	pentaénoïque 0,1 % - insaponifiable	
	d'onagre 0,1 % - tocopherol 0,1 %)	
	5) <u>Huile contre le stress</u>	
35	Huile de vaseline	92,50
	Huile de poisson	1,00
	Huile d'algues	4,00
	Insaponifiable de karité	1,00
	Insaponifiable de maïs	0,50
40	Acétate de vitamine E	1,00

2

REVENDICATIONS

1. Compositions cosmétiques caractérisées en ce qu'elles contiennent une association de chacun des trois types de principes actifs suivants :
 - un ou plusieurs acides gras polyinsaturés en ω 3
 - une ou plusieurs fractions insaponifiables de matières grasses végétales
 - vitamine E
2. Compositions cosmétiques selon la revendication 1 caractérisées en ce que les acides gras polyinsaturés en ω 3 sont choisis parmi les acides α -linolénique ($C18:3\omega 3$) octadécatétrenoïque ($C18:4\omega 3$), éicosatétrenoïque ($C20:4\omega 3$), éicosapentaenoïque ($C20:5\omega 3$), docosapentaénique ($C22:5\omega 3$), docosahexaenoïque ($C22:6\omega 3$).
10
3. Compositions cosmétiques selon les revendications 1 et 2, caractérisées en ce que les acides gras polyinsaturés en ω 3 peuvent être présents sous forme d'acides gras libres, ou estérifiés dans des triglycérides, des phospholipides ou des sphingolipides.
15
4. Compositions cosmétiques selon les revendications 1 à 3, caractérisées en ce que l'on utilise comme source d'acides gras polyinsaturés en ω 3 des huiles de poisson ou d'algues (macroalgues ou microalgues).
20
5. Compositions cosmétiques selon la revendication 1, caractérisées en ce que les fractions insaponifiables sont extraites de matières grasses d'amandes douces, d'avocat, de café, de pépins de framboise, de fénugrec, de germes de blé, de karité, de luzerne, de maïs, d'olive, d'onagre, de pépins de raisin, de soja, de voacanga.
25
6. Compositions cosmétiques selon la revendication 1, caractérisées en ce que la vitamine E est constituée par les tocophérols α , β , γ , δ , pris individuellement ou en association.
30

7. Compositions cosmétiques selon les revendications 1 et 6, caractérisées en ce que la vitamine E est introduite sous forme libre, à l'état pur ou en association avec des huiles, ou comme constituant d'huiles naturelles riches en vitamine E.
5. E.
8. Compositions cosmétiques selon les revendications 1 et 6, caractérisées en ce que la vitamine E est présente sous forme d'acéate.
9. Compositions cosmétiques selon l'une quelconque des 10 revendications 1 à 8, caractérisées en ce qu'elles sont destinées à la lutte contre les différentes formes de stress.
10. Compositions cosmétiques selon l'une quelconque des revendications 1 à 8, caractérisées en ce qu'elles sont utilisées comme produits solaires ou après solaires.
- 15 11. Compositions cosmétiques selon l'une quelconque des revendications 1 à 10, caractérisées en ce que les principes actifs selon l'invention sont contenus dans les membranes de liposomes ou à l'intérieur de micro ou nanocapsules ou de micro ou nanoparticules.
- 20 12. Compositions cosmétiques selon l'une quelconque des revendications 1 à 11, caractérisées en ce qu'elles se présentent sous la forme de crèmes, de laits, d'huiles ou de gels.