# Virtual comparison of a reverberant room, Direct Field Acoustic Test and analytical Diffuse Acoustic Field









Alexis Castel, Bryce Gardner, Augusto Medeiros, Chad Musser 06/2018

## Agenda

- What are we comparing?
- What can we compare?
  - Diffusivity
  - Uniformity
- Who wins the diffusivity competition?
  - Open field case
- How about uniformity?
- In the end, is it all the same?
  - Comparing the test article response
- Conclusions



## What are we comparing?

#### Virtual DAF

#### Reverberant room

## **DFAT** setup









#### Virtual DAF

#### Sum of incoherent plane waves



- Legacy method
- No Additional elements besides the structure
- Field is known to be diffuse
  - Diffusivity depends on the number of plane waves
- Represents an idealized test
  - For the actual test, it is often difficult to obtain a diffuse field in the low frequency





#### Reverberant room

#### Test article is placed in a reverberant room



- Represents the traditional test
- One velocity constraint is representing a horn
- A few rigid panels are introduced to break the standing waves
- Here the diffusivity is introduced by the [H] matrices as  $[S_{ww}]$  is of size 1x1



Size matches JPL's room



**(()** VA One<sup>®</sup>

## **DFAT** setup

#### Test article is excited with stacks of speakers and a control loop

$$[S_{pp}] = [H_{pw}][S_{ww}][H_{pw}]^{H}$$
$$[S_{qq}] = [H_{qw}][S_{ww}][H_{qw}]^{H}$$

Cross Spectral Excitation matrix is n\_stacks x n\_stacks and is optimized to have a diffuse field at the control microphones

- New testing method
- Speaker stacks are represented by faces with constraints at their surface
  - Measured impedance is placed at the stack surface
  - Here each stack is correlated but alternative configurations can be studied
- Ground is modeled with an infinite rigid plane





## **DFAT** setup

#### Test article is excited with stacks of speakers and a control loop

$$[S_{pp}] = [H_{pw}][S_{ww}][H_{pw}]^{H}$$
$$[S_{qq}] = [H_{qw}][S_{ww}][H_{qw}]^{H}$$

Cross Spectral Excitation matrix is n stacks x n stacks and is optimized to have a diffuse field at the control microphones

- $[S_{ww}]$  is optimized using pseudo inverse of  $[H_{pw}]$  for an ideal  $\left[S_{pp}\right]_{\text{Control Mic}}$  based on the control microphone locations
  - $[S_{pp}]_{\text{Control Mic}}$  can be obtained based on the known cross correlation of a diffuse acoustic field between any two known control microphones

$$S_{pp}(r) = A \frac{\sin(k_0 r)}{k_0 r}$$





## Additional "complicating" effects

- Stacks are made of subwoofers and mid-frequency speakers
  - Terms of  $[H_{pw}]$  and  $[H_{nw}]$  are then null when speakers do not output power
  - Here subwoofers output power up to 240Hz
  - Mid-frequency speakers do not output power below 200Hz
- f < 200 Hz, 6 active stacks
- f > 200 Hz & f < 240 Hz, 15 active stacks
- f > 240 Hz, 9 active stacks

- Certain speakers may be correlated with each other
  - Introduction of a control matrix defining which speakers are correlated with each other
  - For this example, all speakers within stack are correlated
- MSI uses a proprietary Matrix Switch that combines drives
  - This can be accounted for
  - For this study, 24 control microphones are placed around the tested structure (no Matrix switch)



## What can we compare? **Uniformity**

- Pressure field amplitude is expected to be uniform
  - A reverberant room is expected to show less than 1.5dB of pressure standard deviation
- Simulation can recover a lot of pressure information
  - We can easily quantify the pressure standard deviation

In the 3<sup>rd</sup> Octave band!



# What can we compare? Diffusivity

- $[S_{pp}]$  is known for all data recovery faces
  - Defines the cross-correlation between any two nodes where the pressure is recovered
  - $[S_{pp}]$  is known for a Diffuse Acoustic Field (DAF) but is difficult to visualize
  - The corresponding Wavenumber-Frequency spectrum can also be calculated

$$S_{pp}(\mathbf{k}, \omega) = \text{FFT}([S_{pp}(\mathbf{x}, \omega)])$$

• For a DAF,  $S_{pp}(\mathbf{k}, \omega) = \frac{2\pi}{k_0^2} \frac{1}{\sqrt{1-|\mathbf{k}|^2/k_0^2}}, |\mathbf{k}| < k_0$ 

One can then evaluate the field diffusivity by comparing the simulated  $S_{pp}(\mathbf{k},\omega)$  to its analytical form for a DAF





## Who wins the diffusivity competition? Open field study



What's happening in the reverb room?



• Each discrete frequency does not seem diffuse



Individual modes are projected on the data recovery and form high intensity regions at discrete frequencies

## What's happening in the reverb room?

Looking at the WFS in the third Octave band







The room has indeed a diffuse field in the high frequency!

# Who wins the diffusivity competition? Open field study

#### 3<sup>rd</sup> Octave band results



## How about uniformity?

### Discrete Frequency Contour

Plane waves

Reverb Room

Narrow band results

**DFAT** 





## How about uniformity?

#### 3rd Octave Standard deviation





#### 3<sup>rd</sup> Octave band results

Again, we can't look at the field uniformity for a single discrete frequency.

Data needs to be converted to the 3<sup>rd</sup> Octave band.



## DFAT Average Plane Pressure vs Target

#### 3<sup>rd</sup> Octave band results

#### **Engineering Units**





- Control microphones do not exceed the target level
- Levels are better matched when the number of stacks is greater





## Looking at the contour plot

- Average SPL on the plane may not be ideal
  - Too large
  - Receives direct field from speaker
- After discussing with MSI, having the spacecraft present helps eliminating hot spots within the circle





## In the end, is it all the same? Structural response comparison

### Guess which is DFAT?

Acceleration Sensor Response-Reflector Center Sensor







## In the end, is it all the same? Structural response comparison Acceleration Sensor Response-Reflector Center Sensor

## Solution





Frequency (Hz)\*

## In the end, is it all the same? Structural response comparison

#### Acceleration Sensor Response-Reflector support Sensor





## In the end, is it all the same? Structural response comparison

#### Acceleration Sensor Response-Solar Panel Sensor





#### Conclusions

- Simulation processes are available to simulate diffuse acoustic field excitations
  - DFAT simulation process is now available
- Simulating analytic DAF vs simulating the test shows major differences
  - Reverberant room is only exhibiting DAF properties
    - In the high frequency range (>160 Hz for the simulated case)
    - When looking at specifications in the third octave band
  - DFAT field is more diffuse and more uniform at discrete frequencies
  - Reverb room is still diffuse and uniform when the results are in the third octave band
- Once a test article is present, the field is more uniform and it is hard to distinguish responses from any of the three simulation methods
- Next step
  - Correlation study of DFAT test data
  - Using simulation to optimize the physical test





