Tutorato di Automi e Linguaggi Formali

Homework 1: DFA, NFA ed ϵ -NFA, conversioni ed operazioni su linguaggi

Gabriel Rovesti

Corso di Laurea in Informatica - Università degli Studi di Padova

Tutorato 1 - 10-03-2025

1 Progettazione di DFA

Esercizio 1. Progettare un DFA sull'alfabeto $\Sigma = \{0,1\}$ che riconosca il linguaggio

$$L_1 = \{ w \in \{0, 1\}^* \mid w \text{ termina con } 10 \}.$$

- a) Disegnare il diagramma degli stati.
- b) Fornire la tabella di transizione completa.

Esercizio 2. Progettare un DFA sull'alfabeto $\Sigma = \{0, 1\}$ che riconosca il linguaggio $L_2 = \{w \in \{0, 1\}^* \mid w \text{ contiene un numero pari di 1 e un numero dispari di 0}\}.$

- a) Disegnare il diagramma degli stati.
- b) Fornire la tabella di transizione completa.

Esercizio 3. Progettare un DFA sull'alfabeto $\Sigma = \{0, 1\}$ che riconosca il linguaggio $L_3 = \{w \in \{0, 1\}^* \mid \text{ogni occorrenza di } 0 \text{ è immediatamente seguita da almeno due } 1\}.$

- a) Disegnare il diagramma degli stati.
- b) Fornire la tabella di transizione completa.

2 Progettazione di NFA

Esercizio 4. Progettare un NFA sull'alfabeto $\Sigma = \{a, b\}$ che riconosca il linguaggio $L_4 = \{w \in \{a, b\}^* \mid w \text{ contiene la sottostringa } aba\}.$

- a) Disegnare il diagramma degli stati.
- b) Fornire la tabella di transizione completa.

Esercizio 5. Progettare un NFA sull'alfabeto $\Sigma = \{0, 1\}$ che riconosca il linguaggio $L_5 = \{w \in \{0, 1\}^* \mid w \text{ inizia con 1 oppure termina con 0}\}.$

- a) Disegnare il diagramma degli stati.
- b) Fornire la tabella di transizione completa.

3 Conversione da NFA a DFA

Esercizio 6. Si consideri il seguente NFA N sull'alfabeto $\Sigma = \{a, b\}$:

	a	b
$\rightarrow q_0$	$\{q_0,q_1\}$	$\{q_0\}$
q_1	Ø	$\{q_2\}$
$*q_2$	$\{q_2\}$	$\{q_1\}$

- a) Applicare la costruzione per sottoinsiemi per ottenere il DFA equivalente D.
- b) Disegnare il diagramma degli stati del DFA ottenuto.
- c) Determinare il linguaggio riconosciuto dall'automa.

4 ϵ -NFA e ϵ -chiusure

Esercizio 7. Dato il seguente ϵ -NFA sull'alfabeto $\Sigma = \{a, b\}$:

	a	b	ϵ
$\rightarrow q_0$	Ø	Ø	$\{q_1,q_3\}$
q_1	$\{q_2\}$	Ø	Ø
q_2	Ø	$\{q_4\}$	$\{q_3\}$
q_3	$\{q_5\}$	Ø	Ø
q_4	Ø	$\{q_5\}$	Ø
$*q_5$	$ \emptyset$	Ø	Ø

- a) Calcolare l' ϵ -chiusura di ciascuno stato: ECLOSE (q_0) , ECLOSE (q_1) , ECLOSE (q_2) , ECLOSE (q_3) , ECLOSE (q_4) , ECLOSE (q_5) .
- b) Convertire l' ϵ -NFA in un NFA equivalente senza ϵ -transizioni, fornendo la tabella di transizione completa.

5 Operazioni su Linguaggi e Automi

Esercizio 8. Siano $L_1 = \{w \in \{0,1\}^* \mid w \text{ inizia con } 0\} \text{ e } L_2 = \{w \in \{0,1\}^* \mid w \text{ termina con } 1\}.$

- a) Progettare un DFA che riconosca L_1 .
- b) Progettare un DFA che riconosca L_2 .
- c) Utilizzando le operazioni sui linguaggi regolari, costruire un NFA che riconosca il linguaggio $L_1 \cup L_2$.
- d) Convertire il NFA ottenuto in un DFA equivalente mediante la costruzione per sottoinsiemi.

Esercizio 9. Siano $L_1 = \{w \in \{a,b\}^* \mid \text{ogni } a \text{ è seguita da almeno una } b\} \text{ e } L_2 = \{w \in \{a,b\}^* \mid w \text{ contiene la sottostringa } ab\}.$

- a) Progettare un DFA per L_1 e un NFA per L_2 .
- b) Costruire un NFA che riconosca $L_1 \cap L_2$.
- c) Qual è l'interpretazione di questo linguaggio in linguaggio naturale?

Esercizio 10. Sia $L = \{w \in \{0,1\}^* \mid w \text{ contiene un numero pari di } 0\}.$

- a) Progettare un DFA A che riconosca L.
- b) Costruire un DFA che riconosca il complemento di L, ovvero $\overline{L} = \{w \in \{0,1\}^* \mid w \text{ contiene un numero dispari di } 0\}.$
- c) Costruire un NFA che riconosca $L^* = \{w_1 w_2 \dots w_k \mid k \geq 0 \text{ e } w_i \in L \text{ per ogni } i\}.$