Galaxy-IGM Workshop 2020 Groupwork IGM観測班

Panoramic observations of multi-phase gas components in z~2 clusters

馬渡健、Ren Yi、菊地原正太郎、Yongming Liang

Theme

Propose an observational study of the CGM and/or IGM utilizing the Subaru Telescope's strength

Panoramic observations of multi-phase gas components in z~2 clusters

Introduction / Motivation

- Where's majority of baryon? ("Missing baryon problem")
 - Gases and stars. The theoretical value of Ω b, derived from BBN, CMB and observations from Planck, is larger than the sum of all the known baryonic matter, which is known as the missing baryon problem.
 - It is believed that ~10% of all baryons are collapsed objects and the remaining baryons reside in IGM, CGM (large scale gas structures), of which 30% are still missing in local universe (shully et al.2012).

What should we observe?

• Multi-phase:

- 1. Hot gas -> X-ray
- 2. Diffuse warm gas -> Lya emission
- 3. Diffuse cold gas -> Lya absorption
- Dense cold(?) gas in galaxy -> Ha emission

• Environment?

- Rich clusters (with X-ray detection)
- Proto-clusters (without X-ray detection)

Assume most of baryon are in cluster H (at high-z)

Dayal+18

Subaru/PFS vs. VLT/MUSE

PFS Wide FoV (WIN)

PFS: $\sim 1.3 \text{ deg}^2$

MUSE/WFM: ~ 1 arcmin^2

(* typical proto-cluster > 10 arcmin)

Prime Focus Instrument Wide Field Corrector

Spectrographs

Fiber Positioner "Cobra"

Wide wavelength coverage (WIN) (* highest-z X-ray cluster @z~2.5)

→ Feasibility: Achieve our goal with reasonable time.

FoVs

X-ray data & Target: the rich cluster

- Fields with deep X-ray in need
 → Lx / the upper limit of Lx
- Chandra/XMM-Newton deep fields

- The most distant cluster with X-ray emission to date:
 CL J1001+0220 @z=2.5 (Wang+16)
 - * Size: ~ 16 arcmin^2 (Core: 80 arcsec^2).
 - * Selected tracer: Distant red gal. (DRGs) with X-ray
 - * Data: 1) <u>Available</u>: Multi-wave incl. X-ray, 3D HI map
 - 2) To obs.: Lα emi., Hα emi.

* 3D HI map available from CLAMATO DR1 (Lee+18)

Target: the protoclusters

- (1) E-CDFS z2.80 2.84 PCs: 6σ Significance (<u>Zheng+16</u>).
 - * Size: ~ 900 arcmin^2
 - * Selected tracer:

LAEs

- * Visibility: 5-6 hr/nt @ MK.
- * Data:
- 1) <u>Available</u>: Multi-wave incl. X-ray
- 2) <u>To obs</u>.: Opt spec for Lya forest, Lya emi., Ha emi.

* 2.8<photo-z<4 Obj: ~5 K (<u>Tsu+14</u>)

- (2) COSMOS z2.44 PC from IGM tomography (CLAMATO; Lee+16).
 - * Size: D ~ 160 arcmin^2
 - * Selected tracer:

HI from Lyα abs.

- * Data:
- Available: Multi-wave incl. X-ray, 3D HI map,
- 2) <u>To obs</u>.: Lyα emi., Hα emi.

Lya diffuse emission

Subaru/PFS Blue

Sensitivity (5 σ , 1hr, whole area of cluster) -18Detection threshold $\log_{10}(\Sigma_{\rm Ly\alpha}/[{\rm erg\,s^{-1}\,cm^{-2}\,arcsec^{-2}}])$ Optically thick limit Possible to -20be detected w/ UVB Models in SSA22 I_{UVB} = 50 ----E-CDFS PC 16 17 18 19 **COSMOS PC** $\log_{10}(N_{\rm HI}/[{\rm cm}^{-2}])$ Umehata+19

✓ Likely to be detected

✓ Can see spatial variance too

-SB Lya -> M H assuming n H

Lya diffuse absorption w/ PFS

Area @z=2.5	N of FoVs	Tomographic resolution	Target bkg brightness	Δλ after smoothing	Time/FoV	Required nights
 Pi x 70cMpc)^2	2	~3cMpc Essential	<24.8 in UV < 25.1 in Lya-forest range	4Å ~ 3cMpc	18hours To detect 25.1mag with 2sigma	5 ~ 7

Enough for clusters And surrounding LSS

Absorption strength map -> HI column density map
Spatially integrate HI column density to obtain HI mass

Ha emission

- ULTIMATE-Subaru
 - 14'x14' FoV, NIR

- CL J1001: 11 galaxies w/ f_Ha >~ 3e-17erg/s/cm2
- If this holds also for other clusters, >5σ detection w/ 5hr
- SWIMS also available w/ comparable feasibility but smaller FoV (3.3'x6.6')
- How to estimate M_gas
 - SFR ∝ L_Ha
 - SFR ∝ M_gas^n (right fig.; assume this holds also at high-z) _3
 - => M_gas from L_Ha

What we discuss

- 1. Total gas mass
 - a. Hot plasma(X-ray) + HII (Lya em) + HI(Lya abs) + SF clouds (Ha em)
 - b. Assuming majority of baryon in cluster hydrogen gas, estimate baryon density (Ω_b ,obs)
 - c. Comparison with theoretical value $\Omega_b(z^2) Confirmation of high-z missing baryon problem$
- 2. Fraction of different phase (temperature) gas components
 - a. Comparison with simulation -> History/process of cluster gas heating

Redshift	hot gas	WHIM	cold gas	star
Nicastro et al. (2018) ^a	9±4.5	≳24 & ≲55	29.7±11	7±2
Haider et al. (2016)b	6.5	53.9	32.8	10 4 3
z = 0	4.6±0.7 (4.6±0.1)	41.3±1.1 (38.3±1.0)	50.9±0.1 (50.6±0.2)	3.2±0.1 (6.5±0.2)
z = 0.6	2.4±0.4 (1.1±0.2)	34.9±1.1 (29.7±1.1)	60.2±0.1 (65.0±0.1)	2.5±0.1 (4.2±0.2)
z = 1.0	1.3±0.2 (0.3±0.0)	28.7±1.1 (21.9±1.0)	68.1±0.1 (74.8±0.1)	1.9±0.1 (2.8±0.1)
z = 2.1	$0.2\pm0.0\ (0.0\pm0.0)$	10.8±0.5 (6.2±0.4)	88.2±0.1 (92.9±0.0)	0.8 ± 0.0 (0.8 ± 0.0)

