Motivic Cohomology Notes

Jiantong Liu

February 28, 2024

These notes were taken from a Motivic Cohomology course taught by Professor N. Yang in Spring 2024 at BIMSA. Any mistakes and inaccuracies would be my own. References for this course include [MVW06] and [Ros96].

0 Introduction

Let $X \in \operatorname{Sm}/k$ be a smooth separated scheme over a field k. The study of motivic cohomology started with the hope that Conjecture 0.1 (Beilinson and Lichtenbaum, 1982-1987). There exists certain complexes $\mathbb{Z}(n)$ for $n \in \mathbb{N}$ of sheaves in Zariski topology on Sm/k such that

1. $\mathbb{Z}(0)$ is (quasi-isomorphic to) the constant sheaf \mathbb{Z} , i.e., the complex

$$\cdots \longrightarrow 0 \longrightarrow \mathbb{Z} \longrightarrow 0 \longrightarrow \cdots$$

concentrated at degree 0;

2. $\mathbb{Z}(1)$ is the complex $\mathcal{O}^*[-1]$, i.e., the complex

$$\cdots \longrightarrow 0 \longrightarrow \mathcal{O}^* \longrightarrow 0 \longrightarrow \cdots$$

concentrated at degree 1;

3. for every field F/k, the hypercohomology¹

$$\mathbb{H}^n_{\operatorname{Zar}}(F,\mathbb{Z}(n)) = H^n(\mathbb{Z}(n)(\operatorname{Spec}(F))) = K_n^M(F),$$

where $K_n^M(F)$ is the nth Milnor K-theory of a field F, given by the quotient of the tensor algebra $T(F^*)/\{x \otimes (1-x) : x \in F^*\}$ over \mathbb{Z} ; (lecture 5 of [MVW06], page 29)

Example 0.2.

a.
$$K_0^M(F) = K_0(F) = \mathbb{Z};$$

b.
$$K_1^M(F) = K_1(F) = F^{\times};$$

c.
$$K_2^M(F) = K_2(F)$$
.

4. $\mathbb{H}^{2n}_{Zar}(X,\mathbb{Z}(n)) = \mathrm{CH}^n(X)$ (lecture 17 of [MVW06], page 135), where the *n*th classical Chow group $\mathrm{CH}^n(X)$ is the free group given by

$$\operatorname{CH}^n(X) = \mathbb{Z}\{\text{cycles of codimension } n\}/\text{rational equivalences};$$

¹Here we use the convention that the (hyper)cohomology of F should be interpreted as of Spec(F), the corresponding space.

5. there is a natural Atiyah-Hirzebruch spectral sequence

$$E_2^{p,q} = \mathbb{H}^p_{7ar}(X,\mathbb{Z}(q)) \Rightarrow K_{2q-p}(X).$$

Moreover, tensoring with \mathbb{Q} , the spectral sequence degenerates and one has

$$\mathbb{H}^i_{\operatorname{Zar}}(X,\mathbb{Z}(n))_{\mathbb{O}} = \operatorname{gr}^n_{\gamma}(K_{2n-i}(X)_{\mathbb{O}})$$

where $\operatorname{gr}_{\gamma}^{n}$'s are the quotients (graded pieces) of γ -filtration. ([Lev94]; [Lev99], Theorem 11.7)

Remark 0.3. Such choices of complexes $\mathbb{Z}(q)$ exists, and is called the motivic complex. For a clear definition of these complexes, see Lecture 3 of [MVW06]. Moreover, by convention $\mathbb{Z}(q) = 0$ for q < 0.

Definition 0.4. The motivic cohomology of X is defined by $H^{p,q}(X,\mathbb{Z}) = \mathbb{H}^p_{\operatorname{Zar}}(X,\mathbb{Z}(q))$, the hypercohomology of the motivic complexes with respect to the Zariski topology.

Remark 0.5. In general, a motivic cohomology with coefficient in an abelian group A is a family of contravariant functors $H^{p,q}(-,A): \operatorname{Sm}/k \to \operatorname{Ab}$.

Remark 0.6. The motivic cohomology of X satisfies the cancellation property: set $\mathbb{G}_m = \mathbb{A}^1 \setminus \{0\}$, then

$$H^{p,q}(X \times \mathbb{G}_m, \mathbb{Z}) = H^{p,q}(X, \mathbb{Z}) \oplus H^{p-1,q-1}(X, \mathbb{Z}).$$

Remark 0.7. It turns out that the group remains unchanged if we replace the Zariski topology by Nisnevich topology.² If one uses étale topology instead, we retrieve Lichtenbaum motivic cohomology $H_L^{p,q}(X,\mathbb{Z})$. If $\operatorname{char}(k) \nmid n$, it admits the comparison

$$H_L^{p,q}(X, \mathbb{Z}/n\mathbb{Z}) = H_{\text{\'etale}}(X, \mathbb{Z}/n\mathbb{Z}(q)),$$

where $\mathbb{Z}/n\mathbb{Z}(q)$ is the q-twist $\mu_n^{\otimes q}$.

We may compare Lichtenbaum motivic cohomology with motivic cohomology by the following theorem, formerly known as Beilinson-Lichtenbaum Conjecture³:

Theorem 0.8 ([Voe11]). The natural map

$$H^{p,q}(X,\mathbb{Z}/n\mathbb{Z}) \to H^{p,q}_L(X,\mathbb{Z}/n\mathbb{Z})$$

is an isomorphism if $p \le q$, is a monomorphism if p = q + 1, and gives a spectral sequence for any pair of p, q.

Corollary 0.9. For $p \leq q$, we have

$$H^{p,q}(X, \mathbb{Z}/n\mathbb{Z}) = H^p_{\text{train}}(X, \mathbb{Z}/n\mathbb{Z}(q)).$$

In particular, for $X = \operatorname{Spec}(k)$ as a point, this is the theorem formerly known as Milnor conjecture:

Corollary 0.10 ([Voe97], [Voe03a], [Voe03b]).

- $H^{p,p}(k,\mathbb{Z}/n\mathbb{Z})=K_p^M(k)/n=H_{\text{\'etale}}^p(X,\mathbb{Z}/n\mathbb{Z}(p))$ as the Galois cohomology;
- in general,

$$H^{p,q}(k, \mathbb{Z}/n\mathbb{Z}) = \begin{cases} 0, & p > q \\ H^{p,p}(k, \mathbb{Z}/n\mathbb{Z}) \cdot \tau^{q-p}, & p < q \end{cases}$$

where $\tau \in \mu_n(k) = H^{0,1}(k,\mathbb{Z})$ is a primitive *n*th root of unity.

Remark 0.11. Unlike finite coefficients, $H^{p,q}(k,\mathbb{Z})$ is quite hard to compute for small p < q; for $p \ge q$, this is 0.

A current long-standing conjecture is

²Recall that the Nisnevich topology is a Grothendieck topology on the category of schemes that is finer than the Zariski topology but coarser than the étale topology.

³This is also known as the norm residue isomorphism theorem, or (formerly) Bloch-Kato conjecture.

Conjecture 0.12 (Beilinson-Soulé Vanishing Conjecture, [Lev93]). $H^{p,q}(k,\mathbb{Z}) = 0$ if p < 0.

Remark 0.13. Here are a few known cases:

- for char(k) = 0, this is known for number fields ([Bor74]), function fields of genus 0 ([Dég08]), curves over number fields, and their inductive limits (more precise references required); ([DG05])
- for char(k) > 0, this is known for finite fields ([Qui72]) and global fields ([Har77]).

Remark 0.14. The motivic cohomology could be realized in a tensor triangulated category, namely the category of effective motives DM(k). For any pair of p, q, we can find an Eilenberg-Maclane space and a corresponding representable functor so that

$$H^{p,q}(X,\mathbb{Z}) = \operatorname{Hom}_{DM}(\mathbb{Z}(X),\mathbb{Z}(q)[p])$$

where $\mathbb{Z}(X)$ is the motive of X and $\mathbb{Z}(q)[p] = \mathbb{G}_m^{\wedge q}[p-q]$.

Remark 0.15. Dually, we can define the motivic homology by

$$H_{p,q}(X,\mathbb{Z}) = \operatorname{Hom}_{DM}(\mathbb{Z}(q)[p],\mathbb{Z}(X)).$$

Remark 0.16 ([MVW06] Properties 14.5, page 110). By taking the hom functor from the aspect of motives, we can derive theorems for all (co)homologies which can be represented in DM. The main derives are the following:

- 1. If $E \to X$ is an \mathbb{A}^n -bundle, then motives $\mathbb{Z}(E) = \mathbb{Z}(X)$ in DM.
- 2. If $\{U, V\}$ is a Zariski open covering of X, we have a Mayer-Vietoris sequence

$$\mathbb{Z}(U \cap V) \longrightarrow \mathbb{Z}(U) \oplus \mathbb{Z}(V) \longrightarrow \mathbb{Z}(X) \longrightarrow \mathbb{Z}(U \cap V)[1]$$

in the form of a distinguished triangle in DM.

3. If $Y \subseteq X$ is a closed embedding of codimension c in Sm/k, then we have a Gysin triangle

$$\mathbb{Z}(X\backslash Y) \longrightarrow \mathbb{Z}(X) \longrightarrow \mathbb{Z}(Y)(c)[2c] \longrightarrow \mathbb{Z}(X\backslash Y)[1]$$

which is a distinguished triangle where $\mathbb{Z}(Y)(c)[2c] := \mathbb{Z}(Y) \otimes \mathbb{Z}(c)[2c]$.

4. For any vector bundle of rank n on X, we have the projective bundle formula

$$\mathbb{Z}(\mathbb{P}(E)) = \bigoplus_{i=0}^{n} \mathbb{Z}(X)(i)[2i]$$

which defines the Chern class of E.

5. Let X be a proper smooth scheme and let d_X be its dimension, then $\mathbb{Z}(X)$ has a strong dual $\mathbb{Z}(X)(-d_X)[-2d_X]$ in DM by stabilization. This gives a Poincaré duality⁵

$$H^{p,q}(X,\mathbb{Z}) \cong H_{2d_X-p,d_X-q}(X,\mathbb{Z})$$

1 Intersection Theory

Definition 1.1. Let X be a scheme of finite type over k. We define the ith cycle on the scheme X to be a free abelian group

$$Z_i(X) = \bigoplus_{\substack{\text{irreducible closed } c \subseteq X \\ \text{with } \dim(c) = i}} \mathbb{Z} \cdot c$$

and set $Z(X)=\bigoplus Z_i(X)$. Define a set $K_i(X)$ to be the set of coherent sheaves $\mathcal F$ on X with $\dim(\operatorname{supp}(F))\leqslant i.^6$

⁴Again, this notation goes back to the concise definition of the motivic complexes: see Lecture 3 from [MVW06] as well as the concept of presheaves with transfers.

⁵We can use cohomology with compact support for this.

⁶Despite the notation, this has nothing to do with a K-theory.

Remark 1.2. Let (A, \mathfrak{m}) be a Noetherian local ring and M be an A-module, then by the dimension theorem, we know $\dim(M) = d(M) = \dim(\operatorname{supp}(M))$, where d(M) is the degree of the Hilbert-Samuel polynomial $P_{\mathfrak{m}}(M, n)$.

Definition 1.3. Let $X \in \operatorname{Sm}/k$ and let $U, V \subseteq X$ be irreducible and closed. Suppose $W \subseteq U \cap V$ is a irreducible and closed component. If $\dim(W) = \dim(U) + \dim(V) - \dim(X)$, i.e., $\operatorname{codim}(W) = \operatorname{codim}(U) + \operatorname{codim}(V)$, we say that U and V intersect properly at W.

Remark 1.4. This condition is weaker than saying they intersect transversely: we do not require information about tangent spaces.

Theorem 1.5. Let $A \supseteq k$ be a Noetherian regular ring, M, N be finitely-generated A-modules, and suppose $\ell(M \otimes_A N) < \infty$, then

- 1. $\ell(\operatorname{Tor}_i^A(M,N)) < \infty$ for all $i \ge 0$;
- 2. the Euler-Poincaré characteristic $\chi(M,N):=\sum_{i=0}^{\dim(A)}(-1)^i\ell(\operatorname{Tor}_i^A(M,N))\geqslant 0;$
- 3. by Remark 1.2, we have $\dim(M) + \dim(N) \leq \dim(A)$;
- 4. in particular, we have $\dim(M) + \dim(N) < \dim(A)$ if and only if $\chi(M, N) = 0$.

Proof. See [Ser12], page 106.

Remark 1.6. Part 3. from Theorem 1.5 implies that $\dim(W) \ge \dim(U) + \dim(V) - \dim(X)$, i.e., $\operatorname{codim}(W) \le \operatorname{codim}(U) + \operatorname{codim}(V)$ in the notation of Definition 1.3.

Definition 1.7. Let X, U, V, W be as in Definition 1.3, then we define the intersection multiplicity $m_W(U, V)$ of U and V at W by

$$m_W(U, V) = \chi^{\mathcal{O}_{X,W}}(\mathcal{O}_{X,W}/P_U, \mathcal{O}_{X,W}/P_V)$$

where P_U and P_V are prime ideals defining U and V, respectively.

Remark 1.8. By Theorem 1.5, we know $m_W(U, V) \ge 0$, and $m_W(U, V) = 0$ if and only if U and V do not intersect properly at W.

Definition 1.9. Let $X \in \operatorname{Sm}/k$, and let $U \in Z_a(X)$ and $V \in Z_b(X)$. If U and V intersect properly at every component, then we define

$$U \cdot V = \sum_{\substack{W \subseteq U \cap V \\ \dim(W) = a+b-d_X}} m_W(U, V) \cdot W \in Z_{a+b-d_X}(X).$$

Example 1.10. Let X be a smooth projective surface, and let C and D be divisors on X. For any point $x \in C \cap D$, locally we think of $C = \{f = 0\}$ and $D = \{g = 0\}$ around x, then $m_x(C, D) = \ell_{\mathcal{O}_X, x}(\mathcal{O}_{X, x}/(f, g))$.

Definition 1.11. Suppose X is a scheme of finite type over k, and $\mathcal{F} \in K_n(X)$ is a coherent sheaf, then we define $Z_a(\mathcal{F}) = \sum_{\dim(\bar{\eta})=a} (\mathcal{O}_{X,\eta}(\mathcal{F}_{\eta}) \cdot \bar{\eta}) \in Z_a(X)$.

Therefore, we define the cycle of F as an element of the cycle of X.

Definition 1.12 ([Har13], Exercise III.6.9). Every coherent sheaf \mathcal{F} on $X \in \operatorname{Sm}/k$ has a resolution

$$0 \longrightarrow E_k \longrightarrow E_{k-1} \longrightarrow \cdots \longrightarrow E_0 \longrightarrow F \longrightarrow 0$$

where E_i 's are locally free of finite rank. Therefore, for any coherent sheaf \mathcal{G} , we can define the Tor functor of coherent sheaves by

$$\operatorname{Tor}_i(\mathcal{F},\mathcal{G}) = H_i(E_* \otimes_F G).$$

Proposition 1.13. Let $X \in \text{Sm}/k$. Suppose $\mathcal{F} \in K_a(X)$ and $\mathcal{G} \in K_b(X)$ intersect properly, then

$$Z_a(\mathcal{F}) \cdot Z_b(G) = \sum_{i=0}^{d_X} (-1)^i \cdot Z_{a+b-d_X}(\operatorname{Tor}_i(\mathcal{F}, \mathcal{G})).$$

Proof. We only have to do it locally, so we can assume X to be affine, and count the coefficients of $\bar{\xi}$ where $\dim(\xi) = a + b - d_X$. It suffices to show that the stalks at ξ satisfies

$$\chi(F_{\xi}, G_{\xi}) = \sum_{\substack{\dim(\bar{\lambda}) = a \\ \dim(\beta\eta) = b \\ \xi \in \bar{\lambda} \cap \bar{\eta}}} \ell(\mathcal{F}_{\lambda}) \cdot \ell(G_{\eta}) \cdot m_{\bar{\xi}}(\bar{\lambda}, \bar{\eta}).$$

Because our ring is Noetherian, then ${\mathcal F}$ admits a filtration

$$0 = M_0 \subseteq \cdots \subseteq M_d = \mathcal{F}$$

such that $M_i/M_{i-1} \cong \mathcal{O}_X/\mathcal{I}$ is coherent for prime ideal \mathcal{I} . By the additivity of both sides of the isomorphism, we may assume $\mathcal{F} = \mathcal{O}_X/\mathfrak{p}$ with dimension at most a, where $\mathfrak{p} \sim \lambda \in X$. Similarly, we may assume $\mathcal{G} = \mathcal{O}_X/\mathfrak{q}$ with dimension at most b, where $\mathfrak{q} \sim \eta \in X$. Moreover, set $\xi \in \bar{\lambda} \cap \bar{\eta}$. By definition, we now have $\chi(\mathcal{F}_{\xi}, \mathcal{G}_{\xi}) = m_{\bar{\xi}}(\bar{\lambda}, \bar{\eta})$.

- If $\dim(\bar{\lambda}) = a$ and $\dim(\bar{\eta}) = b$, then the equality follows from the fact that $\ell(\mathcal{F}_{\lambda}) = \ell(\mathcal{G}_{\eta}) = 1$.
- If not, then either $\dim(\bar{\lambda}) < a$ or $\dim(\bar{\eta}) < b$, then $\bar{\lambda}$ and $\bar{\eta}$ do not intersect properly at $\bar{\xi}$, so both the left-hand side and the right-hand side become 0.

Proposition 1.14. The intersection product is commutative.

Proof. This is obvious since the Tor functor is commutative.

Proposition 1.15. The intersection product is associative.

REFERENCES

- [Bor74] Armand Borel. Stable real cohomology of arithmetic groups. In *Annales scientifiques de l'École Normale Supérieure*, volume 7, pages 235–272, 1974.
- [Dég08] Frédéric Déglise. Motifs génériques. Rendiconti del Seminario Matematico della Università di Padova, 119:173–244, 2008.
- [DG05] Pierre Deligne and Alexander B Goncharov. Groupes fondamentaux motiviques de tate mixte. In *Annales scientifiques de l'École Normale Supérieure*, volume 38, pages 1–56. Elsevier, 2005.
- [Har77] Günter Harder. Die kohomologie s-arithmetischer gruppen über funktionenkörpern. *Inventiones mathematicae*, 42:135–175, 1977.
- [Har13] Robin Hartshorne. Algebraic geometry, volume 52. Springer Science & Business Media, 2013.
- [Lev93] Marc Levine. Tate motives and the vanishing conjectures for algebraic k-theory. *Algebraic K-theory and algebraic topology*, pages 167–188, 1993.
- [Lev94] Marc Levine. Bloch's higher chow groups revisited. Astérisque, 226(10):235–320, 1994.
- [Lev99] Marc Levine. K-theory and motivic cohomology of schemes. preprint, 166:167, 1999.
- [MVW06] Carlo Mazza, Vladimir Voevodsky, and Charles A Weibel. *Lecture notes on motivic cohomology*, volume 2. American Mathematical Soc., 2006.
 - [Qui72] Daniel Quillen. On the cohomology and k-theory of the general linear groups over a finite field. *Annals of Mathematics*, 96(3):552–586, 1972.
 - [Ros96] Markus Rost. Chow groups with coefficients. Documenta Mathematica, 1:319–393, 1996.
 - [Ser12] Jean-Pierre Serre. Local algebra. Springer Science & Business Media, 2012.

- [Voe97] Vladimir Voevodsky. The milnor conjecture, 1997.
- [Voe03a] Vladimir Voevodsky. Motivic cohomology with **z**/2-coefficients. *Publications Mathématiques de l'IHÉS*, 98:59–104, 2003.
- [Voe03b] Vladimir Voevodsky. Reduced power operations in motivic cohomology. *Publications Mathématiques de l'IHÉS*, 98:1–57, 2003.
- [Voe11] Vladimir Voevodsky. On motivic cohomology with z/l-coefficients. Annals of mathematics, pages 401–438, 2011.