Master M1 de Sciences de la Matière

2021-2022

École Normale Supérieure et Université Claude Bernard de Lyon

Intervenants: Eric Brillaux et Léo Mangeolle

TD Quantification des Champs Libres

TD 1: Notions de Base

Répétition des concepts du cours

1) Soit φ_r (avec r = 1, ..., n) une collection de n champs classiques avec la densité lagrangienne $\mathcal{L}(\varphi_r, \partial_\mu \varphi_r)$. Montrer les équations d'Euler Lagrange

$$\frac{\partial \mathcal{L}}{\partial \varphi_r} - \partial_\mu \left(\frac{\partial \mathcal{L}}{\partial (\partial_\mu \varphi_r)} \right) = 0, \qquad \forall r = 1, \dots, n.$$

2) On rappelle la presentation concrete des générateurs de translation et de transformations de Lorentz

$$P_{\mu} = -i\partial_{\mu},$$
 $M_{\mu\nu} = -i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu}).$

Verifier qu'elles satisfont l'algèbre de Poincaré.

Exercise I:

Soit $\phi(x)$ un champ réel dépendant de $x \in \mathbb{R}^d$ (avec composants réelles $x^{i=1,\dots,d}$) et $\Gamma[\phi]$ une fonctionnelle quelconque du champ. La dérivée fonctionnelle de Γ par rapport à $\phi(x)$ est obtenue en considérant une variation $\phi \to \phi + \delta \phi$ à support compact, et en écrivant la variation de la fonctionnelle sous la forme

$$\Gamma[\phi + \delta\phi] - \Gamma[\phi] = \int_{\mathbb{R}^d} d^dx \, \delta\phi(x) \, \frac{\delta\Gamma}{\delta\phi(x)} + \mathcal{O}(\delta\phi^2) \, .$$

Calculer la dérivée fonctionnelle $\frac{\delta \Gamma}{\delta \phi(x)}$ pour les fonctionnelles suivantes

- 1) $\Gamma[\phi] = \int d^d x \, \frac{1}{2} \, (\phi(x))^2$
- 2) $\Gamma[\phi] = \int d^dx \, \frac{1}{2} \, \eta^{ij} \, (\partial_i \phi(x))(\partial_j \phi(x))$ avec $\eta^{ij} = \eta^{ji}$ (independent de ϕ) et $\partial_i = \frac{\partial}{\partial x^i}$
- 3) $\Gamma[\phi] = \phi(z)$ avec $z \in \mathbb{R}^d$ fix.
- **4)** $\Gamma[\phi] = \int d^dx \int d^dy \frac{1}{2} \phi(x) G(x,y) \phi(y)$ avec G(x,y) = G(y,x) une fonction $G: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ (independent de ϕ).

Exercise II:

On considére une système quantique avec des opérateurs q_i et p_i (pour $i=1,\ldots,n$) sur une

espace de Hilbert \mathcal{H} . Le théorème de Stone-von Neumann assure que pour n fini, il n'y a qu'une représentation irréductible des relations de commutation canoniques $[q_i, p_j] = i \delta_{ij} \mathbb{1}$ avec $\mathbb{1}$ l'opérateur identité sur \mathcal{H} . Un autre point de vue est que si on trouve un autre ensemble d'opérateurs Q_i et P_i , qui satisfont les mêmes relations de commutation $[Q_i, P_j] = i \delta_{ij} \mathbb{1}$, il existe une transformation unitaire U de l'espace de Hilbert \mathcal{H} qui relie (q_i, p_j) et (Q_i, P_j)

$$Q_i = U q_i U^{-1},$$
 et $P_i = U p_i U^{-1},$ $\forall i = 1, ..., n.$

1) On considère d'abord le case n=1 et introduit les opérateurs d'annihilation et de creation

$$a = \frac{1}{\sqrt{2}} (q_1 + ip_1),$$
 et $a^{\dagger} = \frac{1}{\sqrt{2}} (q_1 - ip_1).$

- a) Montrer que $[a, a^{\dagger}] = 1$
- b) On définit sur ce système la transformation linéaire (pour $\theta \in \mathbb{R}$)

$$a(\theta) = \cosh(\theta) a + \sinh(\theta) a^{\dagger}, \quad \text{et} \quad a^{\dagger}(\theta) = \sinh(\theta) a + \cosh(\theta) a^{\dagger}.$$
 (1)

Quelle est l'algèbre des opérateurs $a(\theta)$ et $a^{\dagger}(\theta)$?

c) On définit la transformation

$$U(\theta) = \exp\left(\frac{\theta}{2}(a^2 - (a^{\dagger})^2)\right), \quad \text{avec} \quad \theta \in \mathbb{R}.$$

Montrer que $U(\theta)$ est une transformation unitaire.

d) Soit

$$b(\theta) = U(\theta) \, a \, U^{-1}(\theta) \,, \qquad \qquad \text{et} \qquad \qquad b^\dagger(\theta) = U(\theta) \, a^\dagger \, U^{-1}(\theta) \,.$$

Montrer que les opérateurs $b(\theta)$ et $b^{\dagger}(\theta)$ satisfont les équations différentielles

$$\frac{d}{d\theta} b(\theta) = b^{\dagger}(\theta),$$
 et $\frac{d}{d\theta} b^{\dagger}(\theta) = b(\theta).$

En intégrant ces équations, montrer que la transformation unitaire $U(\theta)$ réalise la transformation (1), c.à.d.

$$a(\theta) = U(\theta) a U^{-1}(\theta),$$
 et $a^{\dagger}(\theta) = U(\theta) a^{\dagger} U^{-1}(\theta).$

- 2) On note $|0\rangle$ le vide des opérateurs (a, a^{\dagger}) (c.à.d. $a|0\rangle = 0$) et $|\theta\rangle = U(\theta)|0\rangle$. On cherche a calculer $\langle 0|\theta\rangle$.
 - a) Montrer que $|\theta\rangle$ est le vide des opérateurs $(a(\theta), a^{\dagger}(\theta))$.
 - b) Montrer l'équation différentielle

$$\frac{d}{d\theta} \langle 0|\theta \rangle = -\frac{1}{2} \langle 0|U(\theta) (a^{\dagger})^{2}|0 \rangle = \frac{1}{2} \langle 0|a^{2} U(\theta)|0 \rangle.$$

c) En utilisant le résultat precedent montrer

$$\frac{d}{d\theta} \langle 0 | \theta \rangle = -\frac{1}{2} \frac{\sinh(\theta)}{\cosh(\theta)} \langle 0 | \theta \rangle.$$

d) En déduire

$$\langle 0|\theta\rangle = \frac{1}{\sqrt{\cosh(\theta)}}.$$

3) On a maintenant un ensemble de N oscillateurs (a_i, a_i^{\dagger}) . On rappelle que l'espace de Hilbert \mathcal{H}^N est le produit tensoriel des N espaces de Hilbert associés à chaque oscillateur. En particulier, le vide $|0\rangle^N$ es le produit tensoriel des N vecteurs vide associés à chaque oscillateur. On suppose que l'on fait la même transformation sur chacun des oscillateurs

$$a_i(\theta) = \cosh(\theta) a_i + \sinh(\theta) a_i^{\dagger}, \quad \text{et} \quad a_i^{\dagger}(\theta) = \sinh(\theta) a_i + \cosh(\theta) a_i^{\dagger},$$

et on note $|\theta\rangle^N$ le vide des N oscillateurs $(a_i(\theta), a_i^{\dagger}(\theta))$.

- a) Que vaut le produit scalaire ${}^N\langle 0|\theta\rangle^N$? Que vaut sa limite lorsque N tends vers l'infini?
- b) Toujours dans la limite $N \to \infty$, soit $|\psi\rangle^{\infty}$ un état dont le nombre d'occupation, c.à.d. la valeur propre de l'opérateur $\mathcal{N} = \sum_{i=1}^{\infty} a_i^{\dagger} a_i$, est fini. Que vaut le produit scalaire ${}^{\infty}\langle\psi|\theta\rangle^{\infty}$? Interpreter le résultat.