## **HW\_3\_corrected**

A repo on this hw can be found here.

# 2. MadGraph Bhabha scattering $e^+e^- ightarrow e^+e^-$ (20 points).

The differential cross section for Bhabha scattering in QED in the high-energy limit can be written in terms of the Mandelstam variables  $s=(p_1+p_2)^2$ ,  $t=(p_1-p_3)^2$ , and  $u=(p_1-p_4)^2$ ,

$$rac{d\sigma}{d\Omega} = rac{\pi lpha^2}{s} \Bigg[ u^2 igg(rac{1}{s} + rac{1}{t}igg)^2 + igg(rac{t}{s}igg)^2 + igg(rac{s}{t}igg)^2 \Bigg] \ .$$

Note that if we ignore the electron mass, s + t + u = 0.

## a. (5 points) 🗸

Rewrite this formula in terms of s and  $\cos \theta$ .

We ought to know that at high energies,

$$egin{aligned} t &= (p_1 - p_1')^2 \ &pprox -2p_1 \cdot p_1' \ &= -2|ec{p_1}||ec{p_1}'|(1-\cos heta) \end{aligned}$$

Since we're in the center of mass frame we can reasonably define

$$ec{p_1} = E[1,0,0,1] 
ightarrow |ec{p_1}| = E.$$

And since we're doing  $e^+e^- \to e^+e^-$ , we can also assume  $|\vec{p_1}|=|\vec{p_1}'|=E$ . We also ought to know that  $s\approx 4E^2$  at high energy. Altogether this gets us

$$t = -\frac{s}{2}(1 - \cos \theta).$$

Jamming this stuff into s + t + u = 0 we get an expression for u:

$$u=-rac{s}{2}(1+\cos heta).$$

One thoroughly jammed, we can move onto plugging into the differential crosssection, which according to Mathematica turns out to be,

$$rac{d\sigma}{d\Omega} = rac{\pi lpha^2 (\cos(2 heta) + 7)^2}{8s(\cos( heta) - 1)^2}.$$

## b. (5 points) X

What feature of the diagrams causes the differential cross section to diverge as  $\theta \to 0$ ?

As  $\theta \to 0$ ,  $t \to 0$ , and so the momentum transfer approaches zero.

I was sorta right about the t-channel thing. The inclusion of the t-channel is why there's a divergence. The reason turns out that  $t \to 0$  corresponds to the intermediate photon approaching on-shell.

Why didn't we see this for  $e^+e^- o \mu^+\mu^-$ ?

My guess is that the momentum transfer does not approach zero in this case.

To elaborate, it's because there is no t-channel to diverge in this process.

### c. (10 points) **3**

Generate 10,000 events using MadGraph (excluding the Z boson exchange diagram) at  $\sqrt{s}=1 {\rm TeV}.$ 

Plot the resulting distribution as a function of  $\cos\theta$  and compare to the theoretical expectation.



#### What difference(s) do you observe?

There's no divergence in the MadGraph, probably because there's some sort of cutoff.

# 3. MadGraph vs. ALEPH experimental results (20 points).

Using MadGraph, reproduce the experimental results from the ALEPH Collaboration, i.e. the total (inclusive) cross section  $\sigma$  and forward-backward asymmetry  $A_{\rm FB}$  of the muons as a function of  $\sqrt{s}$  in the process  $e^+e^- \to \mu^+\mu^-$ .

You will need to run MadGraph at a series of  $\sqrt{s}$  values, so you will need to edit the runcard.dat directly. Of course, both Z boson and  $\gamma$  exchange diagrams need to be included.

The forward-backward asymmetry is a measure of how many the imbalance between the forward and the backward directions:

$$A_{ ext{FB}} = rac{\sigma(\cos heta>0) - \sigma(\cos heta<0)}{\sigma(\cos heta>0) + \sigma(\cos heta<0)}$$

For  $e^+e^- o \mu^+\mu^-$ , this quantity is nonzero in the standard model because of the chiral couplings of the Z boson.

In particular, generate 1,000 events at  $\sqrt{s}=60$ , 70, 80, 85, 88, 90, 91, 92, 95, 100, 110, and 120,GeV. Plot  $\sigma$  and  $A_{\rm FB}$  versus  $\sqrt{s}$  and compare to the data.

The peak  $\sigma$  at 90 GeV matches with Aleph, which is a good sign.



The "zeroness" of the  $A_{FB}$  at 90 GeV matching that of Aleph is also a good sign.



## 4. $e^+e^- ightarrow e^+e^-$ at NLO in QED (10 points).

## a. Draw all the LO and NLO in QED diagrams for $e^+e^- \rightarrow e^+e^-$ . How many are there in total? $\checkmark$

The simplest thing I can do to the s-channel is replace an electron/positron edge with an  $e^\pm \to e^\pm \gamma \to e^\pm$  diagram, or I can replace the  $\gamma$  edge with a  $\gamma \to e^+ e^- \to \gamma$  diagram.

So I can make a single change on one of the 5 edges in the  $e^+e^- \to e^+e^-$ , leaving us with 5 NLO diagrams for the s-channel.

Similarly for the t-channel, leaving us with a total of 10 NLO diagrams and 2 LO diagrams.

## b. Use MadGraph to generate the diagrams up to NLO order in QED.

The MadGraph syntax for this is:

The syntax that I ended up doing after downloading and extracting loop\_qcd\_qed\_sm:

```
convert model ./loop_qcd_qed_sm
import ./loop_qcd_qed_sm/
generate e+ e- > e+ e- / g ghg ghg~ u c d s b u~ c~ d~ s~ b~ gh;
```

However, this get's me a bunch of explicitly, non-loop diagrams, with an added absorbed or emitted photon.

Makes me feel like I did not properly exclude everything.

Maybe I didn't properly exclude ghosts?

Anyways, there were 24 NLO diagrams generated in total. Their postscripts can be found <u>here</u>.