Indicators: Now With Pair-wise Flavor!

• Recall *I_i* is indicator variable for event *A_i* when:

$$I_i = \begin{cases} 1 & \text{if } A_i \text{ occurs} \\ 0 & \text{otherwise} \end{cases}$$

• Let X = # of events that occur: $X = \sum_{i=1}^{n} I_i$

$$E[X] = E\left[\sum_{i=1}^{n} I_{i}\right] = \sum_{i=1}^{n} E[I_{i}] = \sum_{i=1}^{n} P(A_{i})$$

- Now consider pair of events A, A, occurring
 - $I_i I_i = 1$ if both events A_i and A_i occur, 0 otherwise
 - Number of pairs of events that occur is $\binom{X}{2} = \sum_{i \neq i} I_i I_j$

From Event Pairs to Variance

· Expected number of pairs of events:

$$\begin{split} E\left[\binom{X}{2}\right] &= E\left[\sum_{i < j} I_i I_j\right] = \sum_{i < j} E[I_i I_j] = \sum_{i < j} P(A_i A_j) \\ E\left[\frac{X(X-1)}{2}\right] &= \frac{1}{2} (E[X^2] - E[X]) = \sum_{i < j} P(A_i A_j) \\ E[X^2] - E[X] &= 2\sum_{i < j} P(A_i A_j) \implies E[X^2] = 2\sum_{i < j} P(A_i A_j) + E[X] \end{split}$$

Recall: Var(X) = E[X²] - (E[X])²

$$Var(X) = 2\sum_{i < j} P(A_i A_j) + E[X] - (E[X])^2$$
$$= 2\sum_{i < j} P(A_i A_j) + \sum_{i=1}^{n} P(A_i) - \left(\sum_{i=1}^{n} P(A_i)\right)^2$$

Let's Try It With the Binomial

$$E[X] = \sum_{i=1}^{n} P(A_i) = np$$

- Each trial: $X_i \sim Ber(p)$ $E[X_i] =$
- Let event A_i = trial i is success (i.e., X_i = 1)

$$E\begin{bmatrix} X \\ 2 \end{bmatrix} = \sum_{i < j} E[X_i X_j] = \sum_{i < j} P(A_i A_j) = \sum_{i < j} p^2 = \binom{n}{2} p^2$$

$$E\begin{bmatrix} \frac{X(X-1)}{2} \end{bmatrix} = \frac{1}{2} (E[X^2] - E[X]) = \frac{n(n-1)}{2} p^2$$

$$Var(X) = E[X^2] - (E[X])^2 = (E[X^2] - E[X]) + E[X] - (E[X])^2$$

$$Var(X) = E[X^2] - (E[X])^2 = (E[X^2] - E[X]) + E[X] - (E[X])$$

$$= n(n-1)p^2 + np - (np)^2 = n^2p^2 - np^2 + np - n^2p^2$$

$$= np(1-p)$$

Computer Cluster Utilization

- Computer cluster with k servers
 - Requests independently go to server i with probability p_i
 - Let event A_i = server i receives no requests
 - X = # of events A₁, A₂, ... A_k that occur
 - Y = # servers that receive ≥ 1 request = k X
 - E[Y] after first n requests?
 - Since requests independent: $P(A_i) = (1 p_i)^n$

$$E[X] = \sum_{i=1}^{k} P(A_i) = \sum_{i=1}^{k} (1 - p_i)^n$$

$$E[Y] = k - E[X] = k - \sum_{i=1}^{k} (1 - p_i)^n$$

when
$$p_i = \frac{1}{k}$$
 for $1 \le i \le k$, $E[Y] = k - \sum_{i=1}^k (1 - \frac{1}{k})^n = k \left(1 - (1 - \frac{1}{k})^n\right)$

Computer Cluster Utilization (cont.)

- Computer cluster with k servers
 - Requests independently go to server i with probability p_i
 - Let event A_i = server *i* receives no requests
 - X = # of events A₁, A₂, ... A_k that occur
 - Y = # servers that receive \geq 1 request = k X
 - Var(Y) after first n requests? (= (-1)² Var(X) = Var(X))

• Independent requests:
$$P(A_iA_j) = (1 - p_i - p_j)^n$$
, $i \neq j$
 $E[X(X-1)] = E[X^2] - E[X] = 2\sum_{i < j} P(A_iA_j) = 2\sum_{i < j} (1 - p_i - p_j)^n$
 $Var(X) = 2\sum_{i < j} (1 - p_i - p_j)^n + E[X] - (E[X])^2$ $E[X] = \sum_{i < j}^k (1 - p_i)^n$

$$=2\sum_{i < j}(1-p_i-p_j)^n+\sum_{i=1}^k(1-p_i)^n-\left(\sum_{i=1}^k(1-p_i)^n\right)^2=\operatorname{Var}(Y)$$

Computer Cluster = Coupon Collecting

- Computer cluster with k servers
 - Requests independently go to server i with probability p_i
 - Let event A_i = server i receives no requests
 - X = # of events A₁, A₂, ... A_k that occur
 - Y = # servers that receive ≥ 1 request = k X
- · This is really another "Coupon Collector" problem
 - Each server is a "coupon type"
 - Request to server = collecting a coupon of that type
- Hash table version
 - Each server is a bucket in table
 - Request to server = string gets hashed to that bucket

Product of Expectations

 Let X and Y are <u>independent</u> random variables, and g(•) and h(•) are real-valued functions

$$E[g(X)h(Y)] = E[g(X)]E[h(Y)]$$

Proof:

Proof:

$$E[g(X)h(Y)] = \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} g(x)h(y)f_{X,Y}(x,y) dx dy$$

$$= \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} g(x)h(y)f_X(x)f_Y(y) dx dy$$

$$= \int_{x=-\infty}^{\infty} g(x)f_X(x) dx \cdot \int_{y=-\infty}^{\infty} h(y)f_Y(y) dy$$

$$= E[g(X)]E[h(Y)]$$

The Dance of the Covariance

- Say X and Y are arbitrary random variables
- · Covariance of X and Y:

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$

Equivalently:

$$Cov(X,Y) = E[XY - E[X]Y - XE[Y] + E[Y]E[X]]$$

$$= E[XY] - E[X]E[Y] - E[X]E[Y] + E[X]E[Y]$$

$$= E[XY] - E[X]E[Y]$$

- X and Y independent, $E[XY] = E[X]E[Y] \rightarrow Cov(X,Y) = 0$
- But Cov(X,Y) = 0 does <u>not</u> imply X and Y independent!

Dependence and Covariance

· X and Y are random variables with PMF:

YX	-1	0	1	p _Y (y)
0	1/3	0	1/3	2/3
1	0	1/3	0	1/3
p _X (x)	1/3	1/3	1/3	1

$$Y = \begin{cases} 0 & \text{if } X \neq 0 \\ 1 & \text{otherwise} \end{cases}$$

•
$$E[X] = -1(1/3) + 0(1/3) + 1(1/3) = 0$$

•
$$E[Y] = 0(2/3) + 1(1/3) = 1/3$$

•
$$Cov(X, Y) = E[XY] - E[X]E[Y] = 0 - 0 = 0$$

· But, X and Y are clearly dependent!

Example of Covariance

- · Consider rolling a 6-sided die
 - Let indicator variable X = 1 if roll is 1, 2, 3, or 4
 - Let indicator variable Y = 1 if roll is 3, 4, 5, or 6
- · What is Cov(X, Y)?
 - E[X] = 2/3 and E[Y] = 2/3

• E[XY] =
$$\sum_{x} \sum_{y} xy \ p(x, y)$$

= $(0 * 0) + (0 * 1/3) + (0 * 1/3) + (1 * 1/3) = 1/3$

•
$$Cov(X, Y) = E[XY] - E[X]E[Y] = 1/3 - 4/9 = -1/9$$

- Consider: P(X = 1) = 2/3 and P(X = 1 | Y = 1) = 1/2
 - $_{\circ}$ Observing Y = 1 makes X = 1 less likely

Another Example of Covariance

· Consider the following data:

Properties of Covariance

- Say X and Y are arbitrary random variables
 - Cov(X,Y) = Cov(Y,X)
 - $Cov(X, X) = E[X^2] E[X]E[X] = Var(X)$
 - Cov(aX + b, Y) = aCov(X, Y)
- · Covariance of sums of random variables
 - X₁, X₂, ..., X_n and Y₁, Y₂, ..., Y_m are random variables

•
$$Cov\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{m} Y_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} Cov(X_{i}, Y_{j})$$

Variance of Sum of Variables

$$\begin{split} \bullet \operatorname{Var} \left(\sum_{i=1}^n X_i \right) &= \sum_{i=1}^n \operatorname{Var}(X_i) + 2 \sum_{i=1}^n \sum_{j=i+1}^n \operatorname{Cov}(X_i, X_j) \\ \bullet \operatorname{Proof:} \\ \operatorname{Var} \left(\sum_{i=1}^n X_i \right) &= \operatorname{Cov} \left(\sum_{i=1}^n X_i, \sum_{j=1}^n X_j \right) \\ &= \sum_{i=1}^n \sum_{j=1}^n \operatorname{Cov}(X_i, X_j) & \operatorname{Note:} \operatorname{Cov}(X, X) = \operatorname{Var}(X) \\ &= \sum_{i=1}^n \operatorname{Var}(X_i) + \sum_{i=1}^n \sum_{j=i,j\neq i}^n \operatorname{Cov}(X_i, X_j) & \operatorname{By \, symmetry:} \\ &= \sum_{i=1}^n \operatorname{Var}(X_i) + 2 \sum_{i=1}^n \sum_{j=i+1}^n \operatorname{Cov}(X_i, X_j) \\ &= \sum_{i=1}^n \operatorname{Var}(X_i) + 2 \sum_{i=1}^n \sum_{j=i+1}^n \operatorname{Cov}(X_i, X_j) \\ &\bullet \text{ If all } X_j \text{ and } X_j \text{ independent } (i \neq j) : \operatorname{Var} \left(\sum_{i=1}^n X_i \right) = \sum_{i=1}^n \operatorname{Var}(X_i) \end{split}$$

Hola Compadre: La Distribución Binomial

- Let Y ~ Bin(n, p)
 - n independent trials
 - Let X_i = 1 if i-th trial is "success", 0 otherwise
 - $X_i \sim Ber(p)$ $E[X_i] = p$
 - $Var(Y) = Var(X_1) + Var(X_2) + ... + Var(X_n)$
 - $Var(X_i) = E[X_i^2] (E[X_i])^2$

=
$$E[X_i] - (E[X_i])^2$$
 since $X_i^2 = X_i$
= $p - p^2 = p(1 - p)$

• $Var(Y) = nVar(X_i) = np(1 - p)$

Variance of Sample Mean

- Consider n I.I.D. random variables X₁, X₂, ... X_n
 - X_i have distribution F with $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$
 - We call sequence of X_i a <u>sample</u> from distribution F
 - Recall sample mean: $\overline{X} = \sum_{i=1}^{n} \frac{X_i}{n}$ where $E[\overline{X}] = \mu$
 - What is $Var(\overline{X})$?

$$\operatorname{Var}(\overline{X}) = \operatorname{Var}\left(\sum_{i=1}^{n} \frac{X_i}{n}\right) = \left(\frac{1}{n}\right)^2 \operatorname{Var}\left(\sum_{i=1}^{n} X_i\right)$$
$$= \left(\frac{1}{n}\right)^2 \sum_{i=1}^{n} \operatorname{Var}(X_i) = \left(\frac{1}{n}\right)^2 \sum_{i=1}^{n} \sigma^2 = \left(\frac{1}{n}\right)^2 n \sigma^2$$
$$= \frac{\sigma^2}{n}$$

Sample Variance

- Consider n I.I.D. random variables X₁, X₂, ... X_n
 - X_i have distribution F with E[X_i] = μ and Var(X_i) = σ²
 - We call sequence of X_i a sample from distribution F
 - Recall sample mean: $\overline{X} = \sum_{i=1}^{n} \frac{X_i}{n}$ where $E[\overline{X}] = \mu$
 - Sample deviation: $\overline{X} X_i$ for i = 1, 2, ..., n
 - Sample variance: $S^2 = \sum_{i=1}^n \frac{(X_i \overline{X})^2}{n-1}$
 - What is E[S2]?
 - $E[S^2] = \sigma^2$
 - We say S^2 is "unbiased estimate" of σ^2

Proof that $E[S^2] = \sigma^2$ (just for reference)

$$E[S^{2}] = E\left[\sum_{i=1}^{n} \frac{(X_{i} - \overline{X})^{2}}{n-1}\right] \Rightarrow (n-1)E[S^{2}] = E\left[\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}\right]$$

$$(n-1)E[S^{2}] = E\left[\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}\right] = E\left[\sum_{i=1}^{n} ((X_{i} - \mu) + (\mu - \overline{X}))^{2}\right]$$

$$= E\left[\sum_{i=1}^{n} (X_{i} - \mu)^{2} + \sum_{i=1}^{n} (\mu - \overline{X})^{2} + 2\sum_{i=1}^{n} (X_{i} - \mu)(\mu - \overline{X})\right]$$

$$= E\left[\sum_{i=1}^{n} (X_{i} - \mu)^{2} + n(\mu - \overline{X})^{2} + 2(\mu - \overline{X})\sum_{i=1}^{n} (X_{i} - \mu)\right]$$

$$= E\left[\sum_{i=1}^{n} (X_{i} - \mu)^{2} + n(\mu - \overline{X})^{2} + 2(\mu - \overline{X})n(\overline{X} - \mu)\right]$$

$$= E\left[\sum_{i=1}^{n} (X_{i} - \mu)^{2} - n(\mu - \overline{X})^{2}\right] = \sum_{i=1}^{n} E[(X_{i} - \mu)^{2}] - nE[(\mu - \overline{X})^{2}]$$

$$= n\sigma^{2} - nVar(\overline{X}) = n\sigma^{2} - n\frac{\sigma^{2}}{n} = n\sigma^{2} - \sigma^{2} = (n-1)\sigma^{2}$$
• So, $E[S^{2}] = \sigma^{2}$