Lab 8 Report

Analog Filters

Alex Hirzel

Submitted to Yang Liu for $\mathrm{EE}4252$

Due November 15, 2012^1

Michigan Technological University

¹postponed to November 29, 2012 due to academic schedule

Project 1: Basic Analog Filter Design

This project creates and compares four implementations of a band-pass filter. Butterworth, Chebyshev I/II and elliptic design techniques are compared. All designs are completed using afdgui and by hand.

Butterworth filter

- (b) As seen in Listing 2, the orders of the numerator and denominator of the final band-pass filter are 5 and 10, respectively.
- (c) The low-pass prototype should be designed with order 5 (because $2 \cdot 5$ poles will appear in the resulting denominator after transforming the LPP to a band-pass.)
- (d) As seen in Listing 2, the orders of the numerator and denominator of the low-pass prototype are 0 and 5, respectively. The final band-pass filter is this low-pass prototype transformed by a function involving s^2 , so the order of the final band-pass filter is expected to be 10.
- (e) The pole-zero plot is shown in Figure 1(a). The pole locations for the low-pass prototype appear to lie equi-spaced on the left half of a circle. (This is expected.) There are no zeroes in the prototype.
- (g) Yes, the transfer functions match as seen in Listing 2.

Chebyshev I filter

- (b) As seen in Listing 2, the orders of the numerator and denominator of the final band-pass filter are 4 and 8, respectively.
- (c) The low-pass prototype should be designed with order 4 (because $2 \cdot 4$ poles will appear in the resulting denominator after transforming the LPP to a band-pass.)
- (d) As seen in Listing 2, the orders of the numerator and denominator of the low-pass prototype are 0 and 4, respectively. The final band-pass filter is this low-pass prototype transformed by a function involving s^2 , so the order of the final band-pass filter is expected to be 8.
- (e) The pole-zero plot is shown in Figure 1(b). The pole locations for the low-pass prototype appear to lie equi-spaced on the left half of an ellipse. (This is expected.) There are no zeroes in the prototype.
- (g) Yes, the transfer functions match as seen in Listing 2.

Chebyshev II filter

- (b) As seen in Listing 2, the orders of the numerator and denominator of the final band-pass filter are 4 and 8, respectively.
- (c) The low-pass prototype should be designed with order 4 (because $2 \cdot 4$ poles will appear in the resulting denominator after transforming the LPP to a band-pass.)
- (d) As seen in Listing 2, the orders of the numerator and denominator of the low-pass prototype are 0 and 4, respectively. The final band-pass filter is this low-pass prototype transformed by a function involving s^2 , so the order of the final band-pass filter is expected to be 8.
- (e) The pole-zero plot is shown in Figure 1(c). The pole locations for the low-pass prototype appear to lie equi-spaced on the left half of an ellipse. (This is expected.) The zeroes are all on the $j\omega$ axis.
- (g) Yes, the transfer functions match as seen in Listing 2.

Elliptic filter

- (b) As seen in Listing 2, the orders of the numerator and denominator of the final band-pass filter are 5 and 6, respectively.
- (c) The low-pass prototype should be designed with order 3 (because $2 \cdot 3$ poles will appear in the resulting denominator after transforming the LPP to a band-pass.)
- (d) As seen in Listing 2, the orders of the numerator and denominator of the low-pass prototype are 2 and 3, respectively. The final band-pass filter is this low-pass prototype transformed by a function involving s^2 , so the order of the final band-pass filter is expected to be 6.
- (e) The pole-zero plot is shown in Figure 1(d). The pole locations for the low-pass prototype appear to lie equi-spaced on the left half of an ellipse. (This is expected.) The zeroes are all on the $j\omega$ axis.
- (g) Yes, the transfer functions match as seen in Listing 2.

Summary

(k) The elliptic filter ends up with the smallest order for these specs (order 3). This is expected, because the elliptic filter has the largest compromise: ripple in both the passband and stopband. The designer is able to exploit this tolerance of ripple to reduce the filter order, whereas the monotonic Butterworth filter has a higher order but the (sometimes) useful property that there is no ripple.

Project 2: Subsonic Filters

The filter to be designed for this project would have a Bode plot of the following general form:

The Butterworth filter design will require the use of a third-order system (because Butterworth filters inherently decay at -20 dB/dec). The functions lpp and lp2af were used to arrive at the final filter design:

$$H(s) = \frac{s^3}{s^3 + 251.1s^2 + 31530s + 1980000}$$

which has a frequency response as shown below:

Project 3: A Multi-Band Filter

(a) For Passband 1, a Butterworth filter must be used due to the ripple requirements. A Chebyshev I filter can be used for Passband 2 because pass-band ripples are permitted. The final filter was designed in MATLAB using afd and has the following magnitude spectrum:

(b) The maximum attenuation in the range [0, 400]Hz is about 72dB at ≈ 60 Hz.

Frequency	20	40	100	150	200	300
Magnitude	0.999988	48.325129	47.800160	-11.000000	-11.000000	47.802299

(c) The filter as designed is not stable (there are zeroes in the right-half plane as shown below in Figure 1(a)). The designed filter is *not* minimum phase, however, and using minphase to transform the filter results in a stable filter (shown in Figure 1(b)).

Figure 1: Pole-zero plots of filter designed for Project 3.

(d) Overplotting shows that $H(s) == H_{\mathcal{M}}(s)$. Shown below is $H_{\mathcal{M}}(s)$.

Appendix: MATLAB Source Code

What follows is a listing of the MATLAB source code (Listing 1) and the text output of this code (Listing 2) used to generate the figures and other information presented in this report.

Listing 1: The MATLAB script used for this report, Lab08_ahirzel.m.

```
addpath ../../ClassWorkspace;
       delete 'generated/diary.txt'; diary 'generated/diary.txt'; diary on
      % FOR EACH:
      %afdgui % make sure to export the data as bw_* %mysaveas('p1a-bw', 8, 8);
10
       load bw_export
      [N, D] = lpp('bw', 5, 1); plotpz(N, D, 's'); mysaveas('pla-bw-pz', 4, 4); [Nbp, Dbp] = lp2af('bp', N, D, 20000*2*pi, 9000*2*pi); disp('Project 1: Butterworth LPP by hand:'); tf(N, D) disp('Project 1: Butterworth TFs generated by afdgui and by hand:')
       tf(bw_Numaf, bw_Denaf)
       tf(Nbp, Dbp)
      load c1_export
[N, D] = lpp('c1', 4, 1); plotpz(N, D, 's'); mysaveas('p1a-c1-pz', 4, 4);
[Nbp, Dbp] = lp2af('bp', N, D, 20000*2*pi, 9000*2*pi);
disp('Project 1: Chebyshev I LPP by hand:'); tf(N, D)
disp('Project 1: Chebyshev I TFs generated by afdgui and by hand:')

##(14 Nones of Pones)
       tf(c1_Numaf, c1_Denaf)
25
      tf(Nbp, Dbp)
       load c2_export
      [N, D] = lpp('c2', 3, [1 45]); plotpz(N, D, 's'); mysaveas('p1a-c2-pz', 4, 4);
[Nbp, Dbp] = lp2af('bp', N, D, 20000*2*pi, 9000*2*pi);
disp('Project 1: Chebyshev II LPP by hand:'); tf(N, D)
disp('Project 1: Chebyshev II TFs generated by afdgui and by hand:')
       tf(c2_Numaf, c2_Denaf)
       tf(Nbp, Dbp)
       load el_export
       load el_export
[N, D] = lpp('el', 3, [1 45]); plotpz(N, D, 's'); mysaveas('p1a-el-pz', 4, 4);
[Nbp, Dbp] = lp2af('bp', N, D, 20000*2*pi, 9000*2*pi);
disp('Project 1: Elliptic LPP by hand:'); tf(N, D)
disp('Project 1: Elliptic TFs generated by afdgui and by hand:')
       tf(el_Numaf, el_Denaf)
       tf(Nbp, Dbp)
       45
       [Nlp, Dlp] = lpp('bw', 3, 3);
[N, D] = lp2af('hp', Nlp, Dlp, 20*2*pi);
tfplot('s', N, D, [0.2, 20000], 1, 1); mysaveas('p2-final-bode', 8, 4);
       tf(N, D)
50
       [N1, D1, Nlpp1, Dlpp1] = afd('bw', 'lp', [1 45], 20, 40);
[N2, D2, Nlpp2, Dlpp2] = afd('c1', 'bp', [1 50], [150 200], [100 300]);
      HN = conv(N1, D2) + conv(10^(12/20) .* N2, D1);
HD = conv(D1, D2);
       H = @(s) polyval(HN, s) ./ polyval(HD, s);
       for f = [20 40 100 150 200 300 60 400]
             fprintf('%u,%f\n', f, -20*log10(abs(H(1j*2*pi*f))));
      pzmap(tf(HN, HD)); mysaveas('p3-pz', 4, 4);
tfplot('s', HN, HD, [1, 400], 1, 1); mysaveas('p3-bode', 10, 3);
[HNm, HDm] = minphase('s', HN, HD);
tfplot('s', HNm, HDm, [1, 400], 1, 1); mysaveas('p3-bode-minphase', 10, 3);
pzmap(tf(HNm, HDm)); mysaveas('p3-pz-minphase', 2, 4);
       diary off
```

Listing 2: The output of listing 1, diary.txt.

```
Project 1: Butterworth LPP by hand:
    Transfer function:
                               1.965
    s^5 + 3.704 s^4 + 6.861 s^3 + 7.853 s^2 + 5.556 s + 1.965
    Project 1: Butterworth TFs generated by afdgui and by hand:
10
    Transfer function:
                                    1.136e24 s^5
    s^10 + 2.095e05 s^9 + 1.009e11 s^8 + 1.465e16 s^7 + 3.59e21 s^6
15
            + 3.594e26 s^5 + 5.669e31 s^4 + 3.654e36 s^3 + 3.973e41 s^2
                                                          + 1.303e46 s + 9.82e50
    Transfer function:
                                   1.136e24 s^5
25
    s^10 + 2.095e05 s^9 + 1.009e11 s^8 + 1.465e16 s^7 + 3.59e21 s^6
            + 3.594e26 s^5 + 5.669e31 s^4 + 3.654e36 s^3 + 3.973e41 s^2
30
                                                          + 1.303e46 s + 9.82e50
    Project 1: Chebyshev I LPP by hand:
35
    Transfer function:
                         0.2457
    s^4 + 0.9528 s^3 + 1.454 s^2 + 0.7426 s + 0.2756
40
    Project 1: Chebyshev I TFs generated by afdgui and by hand:
    Transfer function:
                                    2.512e18 s^4
45
    s^8 + 5.388e04 \ s^7 + 6.781e10 \ s^6 + 2.687e15 \ s^5 + 1.646e21 \ s^4
                         + 4.243e25 s^3 + 1.691e31 s^2 + 2.122e35 s + 6.218e40
50
    Transfer function:
                                    2.512e18 s^4
55
    s^8 + 5.388e04 s^7 + 6.781e10 s^6 + 2.687e15 s^5 + 1.646e21 s^4
                         + 4.243e25 s^3 + 1.691e31 s^2 + 2.122e35 s + 6.218e40
60
    Project 1: Chebyshev II LPP by hand:
    Transfer function:
         0.07581 \text{ s}^2 + 2.041
65
    s^3 + 2.513 s^2 + 3.154 s + 2.041
    Project 1: Chebyshev II TFs generated by afdgui and by hand:
70
    Transfer function:
       0.005623 \text{ s}^3 + 1.379e09 \text{ s}^6 + 6.407e19 \text{ s}^4 + 3.44e29 \text{ s}^2 + 3.497e38
    s^8 + 1.778e05 s^7 + 7.897e10 s^6 + 9.252e15 s^5 + 2.019e21 s^4
75
                              + 1.461e26 s^3 + 1.969e31 s^2 + 7e35 s + 6.218e40
```

```
Transfer function:
                           4287 \text{ s}^5 + 5.045\text{e}14 \text{ s}^3 + 1.069\text{e}24 \text{ s}
      s^6 + 1.421e05 s^5 + 5.746e10 s^4 + 4.857e15 s^3 + 9.074e20 s^2
 85
                                                                + 3.543e25 s + 3.938e30
      Project 1: Elliptic LPP by hand:
 90
      Transfer function:
         0.04715 \text{ s}^2 + 0.5152
      s^3 + 0.9812 s^2 + 1.242 s + 0.5152
 95
      Project 1: Elliptic TFs generated by afdgui and by hand:
      Transfer function:
100
                          2666 \text{ s}^5 + 1.774\text{e}14 \text{ s}^3 + 6.649\text{e}23 \text{ s}
      s^6 + 5.548e04 s^5 + 5.135e10 s^4 + 1.845e15 s^3 + 8.108e20 s^2
                                                                 + 1.384e25 s + 3.938e30
105
      Transfer function:
110
                          2666 \text{ s}^5 + 1.774\text{e}14 \text{ s}^3 + 6.649\text{e}23 \text{ s}
      s^6 + 5.548e04 \ s^5 + 5.135e10 \ s^4 + 1.845e15 \ s^3 + 8.108e20 \ s^2
                                                                + 1.384e25 s + 3.938e30
115
      Transfer function:
      s^3
120
      s^3 + 251.1 s^2 + 3.153e04 s + 1.98e06
      20,0.999988
      40,48.325129
125
      100,47.800160
      150,-11.000000
200,-11.000000
      300,47.802299
60,71.956852
130
      400,65.019183
```