FQP14N30

300V N-Channel MOSFET

General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switching DC/DC converters, switch mode power supply.

Features

- 14.4A, 300V, $R_{DS(on)}$ = 0.29 Ω @V_{GS} = 10 V Low gate charge (typical 30 nC)
- Low Crss (typical 23 pF)
- · Fast switching
- · 100% avalanche tested
- · Improved dv/dt capability

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter		FQP14N30	Units	
V _{DSS}	Drain-Source Voltage		300	V	
I _D	Drain Current - Continuous (T _C = 25°C	C)	14.4	А	
	- Continuous (T _C = 100	°C)	9.1	А	
I _{DM}	Drain Current - Pulsed	(Note 1)	57.6	Α	
V _{GSS}	Gate-Source Voltage		± 30	V	
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	600	mJ	
I _{AR}	Avalanche Current	(Note 1)	14.4	А	
E _{AR}	Repetitive Avalanche Energy	(Note 1)	14.7	mJ	
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns	
P _D	Power Dissipation (T _C = 25°C)		147	W	
	- Derate above 25°C		1.18	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C	
T _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C	

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		0.85	°C/W
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink	0.5		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	300			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25	°C	0.34		V/°C
I _{DSS} Zero	Zero Gate Voltage Drain Current	V _{DS} = 300 V, V _{GS} = 0 V			1	μΑ
		V _{DS} = 240 V, T _C = 125°C			10	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
On Cha	aracteristics					
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 7.2 A		0.23	0.29	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 50 V, I _D = 7.2 A (Note	e 4)	9.5		S
C _{oss} C _{rss}	Output Capacitance Reverse Transfer Capacitance	f = 1.0 MHz		200	260 30	pF pF
C _{rss}	Reverse Transfer Capacitance			23	30	pF
Switch	ing Characteristics					
$t_{d(on)}$	Turn-On Delay Time	V _{DD} = 150 V, I _D = 14.4 A,		22	55	ns
t _r	Turn-On Rise Time	$R_G = 25 \Omega$		145	300	no
ዣ		1 NG - 23 32				ns
	Turn-Off Delay Time	S		45	100	ns
t _{d(off)}	Turn-Off Delay Time Turn-Off Fall Time	(Note 4		45 70	100 150	
t _{d(off)}	· · · · · · · · · · · · · · · · · · ·	S	1 5)			ns
t _{d(off)}	Turn-Off Fall Time	(Note 4	4, 5)	70	150	ns ns
t _{d(off)} t _f Q _g	Turn-Off Fall Time Total Gate Charge	(Note 4) V _{DS} = 240 V, I _D = 14.4 A,	4, 5)	70	150 40	ns ns nC
t _{d(off)} t _f Q _g Q _{gs} Q _{gd}	Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DS} = 240 \text{ V}, I_{D} = 14.4 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4)	4, 5)	70 30 7.5	150 40 	ns ns nC
$t_{d(off)}$ t_{f} Q_{g} Q_{gs} Q_{gd}	Turn-Off Fall Time Total Gate Charge Gate-Source Charge	(Note 4) V _{DS} = 240 V, I _D = 14.4 A, V _{GS} = 10 V (Note 4)	4, 5)	70 30 7.5	150 40 	ns ns nC
$t_{d(off)}$ t_{f} Q_{g} Q_{gs} Q_{gd}	Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and	(Note 4) $V_{DS} = 240 \text{ V}, I_D = 14.4 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4) And Maximum Ratings and Forward Current	 4, 5)	70 30 7.5 13	150 40 	ns ns nC nC
$t_{d(off)}$ t_{f} Q_{g} Q_{gs} Q_{gd} Drain-S	Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and Maximum Continuous Drain-Source Diode	(Note 4) $V_{DS} = 240 \text{ V}, I_D = 14.4 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4) And Maximum Ratings and Forward Current	4, 5) 4, 5)	70 30 7.5 13	150 40 14.4	ns ns nC nC
$t_{d(off)}$ t_{f} Q_{g} Q_{gs} Q_{gd} Drain-S t_{SM}	Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and Maximum Continuous Drain-Source Diode Fallows Dr	(Note 4) $V_{DS} = 240 \text{ V, } I_D = 14.4 \text{ A,}$ $V_{GS} = 10 \text{ V}$ (Note 4) and Maximum Ratings and Forward Current Forward Current	4, 5) 4, 5) 	70 30 7.5 13	150 40 14.4 57.6	ns ns nC nC

- **Notes:**1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 4.8mH, I_{AS} = 14.4A, V_{DD} = 50V, R_G = 25 Ω, Starting T_J = 25°C 3. I_{SD} \leq 14.4A, di/dt \leq 200A/μs, V_{DD} \leq BV_{DSS}, Starting T_J = 25°C 4. Pulse Test : Pulse width \leq 300μs, Duty cycle \leq 2% 5. Essentially independent of operating temperature

Typical Characteristics

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

Figure 5. Capacitance Characteristics

Figure 6. Gate Charge Characteristics

©2000 Fairchild Semiconductor International Rev. A, April 2000

Typical Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 8. On-Resistance Variation vs. Temperature

Figure 9. Maximum Safe Operating Area

Figure 10. Maximum Drain Current vs. Case Temperature

Figure 11. Transient Thermal Response Curve

©2000 Fairchild Semiconductor International Rev. A, April 2000

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching Test Circuit & Waveforms

Peak Diode Recovery dv/dt Test Circuit & Waveforms

©2000 Fairchild Semiconductor International Rev. A, April 2000

Body Diode Forward Voltage Drop

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FACT™ QFET™ FACT Quiet Series™ QS™

FAST[®] Quiet Series™ FASTr™ SuperSOT™-3 GTO™ SuperSOT™-6

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to

result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2000 Fairchild Semiconductor International Rev. A, January 2000