Table of Contents

Objectives	3
Components Required	3
De-Morgan's Theorem	3
De-Morgan's First Theorem	3
De-Morgan's Second Theorem	3
Procedure	4
Logic Circuit Diagram	4
➤ Verifying De-Morgan's First Theorem	4
Verifying De-Morgan's First Theorem using Truth Table	5
➤ Verifying De-Morgan's Second Theorem	5
Verifying De-Morgan's Second Theorem using Truth Table	5
Experiment Pictures:	6
REVIEW QUESTIONS	8
Q1. Simplify the expression using De-Morgan's theorems and verify the two expressions	
experimentally	8
F= ((A . B)' + A)'	8
Answer:	8
Q2. Determine experimentally whether the given circuits are equivalent. Then use De-Morgan's	
theorem to prove your answer algebraically	9
Answer:	9

Objectives

> To be able to experimentally verify the De-Morgan's theorem using two input variables.

Components Required

- o 7432 quad 2-input OR gate
- o 7404 hex inverter
- o LED
- o 7430 quad 2-input AND gate
- o DIP switch
- \circ Three 1 k Ω resistors

De-Morgan's Theorem

De-Morgan's Theorems are basically two sets of rules or laws developed from the Boolean expressions for AND, OR and NOT using two input variables, A and B. These two rules or theorems allow the input variables to be negated and converted from one form of a Boolean function into an opposite form.

De-Morgan's first theorem states that two (or more) variables NOR´ed together is the same as the two variables inverted (Complement) and AND´ed, while the second theorem states that two (or more) variables NAND´ed together is the same as the two terms inverted (Complement) and OR´ed. That is replace all the OR operators with AND operators, or all the AND operators with an OR operator.

De-Morgan's First Theorem

$$\circ$$
 $(X + Y)' = X'. Y' \dots (a)$

De-Morgan's Second Theorem

$$\circ$$
 (X. Y)' = X' + Y'(b)

Procedure

- 1. Build the circuit for left part of equation (a) as shown in figure 1 and monitor the behavior of LED for different test inputs
- 2. Then complete the circuit of figure 2 for the right part of equation (a) and complete the truth table 3.1 by testing each combination of inputs of appropriate switches
- 3. Compare both the column results and check whether equation (a) is verified or not
- 4. Repeat the above process by building the circuits of figure 3 and 4 and comparing its results for De-Morgan's theorem verification of equation (b)

Logic Circuit Diagram

> Verifying De-Morgan's First Theorem

Fig. 1: Circuit for (X+Y)'

Fig. 2: Circuit for X'. Y'

Verifying De-Morgan's First Theorem using Truth Table

X	Υ	(X + Y)'	(X' . Y')
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

Truth Table

➤ Verifying De-Morgan's Second Theorem

Fig. 3: Circuit for (X.Y)'

Fig. 4: Circuit for (X' + Y')

Verifying De-Morgan's Second Theorem using Truth Table

Х	Υ	(X . Y)'	(X' + Y')
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

Truth Table

Experiment Pictures:

Figure :Experiment's Pictures

Figure: Experiment's Pictures

REVIEW QUESTIONS

Q1. Simplify the expression using De-Morgan's theorems and verify the two expressions experimentally.

$$F = ((A . B)' + A)'$$

Answer:

From the Algebraic simplified expression and experimental circuit implementation, it is clear that the particular function F has zero output.

Q2. Determine experimentally whether the given circuits are equivalent. Then use De-Morgan's theorem to prove your answer algebraically.

Answer:

It was found in the experiment that both the given circuit in the question are equivalent.

Verification Using De-Morgan's Law:

From Circuit#1:-
(A+B').C'
-> Applying Distribution.
[AC' + B'C] - B
From Gravit #2:- (A' * B) + C)' -> Applying Demorgan's theorem.
(A'+B)+C)'
-> Applying Demorgan's theorem.
(A'.B)'. C'
-> Again Applying De-morgan's theorem. (A+B').C
-> Apply Distribution.
[AC'+B'C'] -> 8

By comparing simplified form of both the expression from circuit 1 and circuit 2, it is clear that **both the given circuits are equivalent.** Since, expression from circuit 1 is equal to circuit 2 – that is,

$$AC' + B'C' = AC' + B'C'$$

Hence, Proved.

