

WHO WE ARE

Founded in 2012 as a Dutch consultancy specializing in knowledge engineering

Practical application of knowledge graphs

Reseller and implementation partner TopQuadrant's TopBraid suite for local customers

Meet the speakers

Eliana Papoutsoglou Linked data consultant Taxonic

Jan Voskuil
Ontologist | CEO
Taxonic

Agenda

Introduction
Rethinking asset information
management

Demo
Seamless information exchange in construction projects

Evolving usageInnovative usage scenarios

Datafication

FROM DOCUMENTS TO DATA

Documents still rule

Large infra projects use up to 10M documents

Manual processes

Computers offer tremendous potential

Move towards data

Computers understand data, not text

Datafication **EASIER SAID THAN DONE**

Black hole

Data without data model are unusable

Data models hard-coded

Data models cannot be exchanged

Knowledge graphs

Knowledge graphs represent data **and** data model

RDF **Exchanging data models**

Importance of data models

Data models provide semantics so that computers "understand" data

Semantic triangle

Class hierarchy, definition, constraints

Between the generating station and consumer, electric power may flow through several substations at different voltage levels. A substation may include transformers to change voltage levels between high transmission voltages and lower distribution voltages, or at the interconnection of two different transmission voltages. Substations may be owned and operated by an electrical utility, or may be owned by a large industrial or commercial customer. Generally substations are unattended, relying on SCADA for remote supervision and control. The word substation comes from the days before the distribution system became a grid. As central generation stations became larger, smaller generating plants were converted to distribution stations, receiving their energy supply from a larger plant instead of using their own generators. (en)

picture:

RULES CONSTRAINTS

▼ Properties

declared properties:

0

inherited properties:

RULES CONSTRAINTS

USING GRAPHS

The principal's perspective

Exchangeable models

Object Type Library Engineering Class Library Reference Data Library Ontology

Many examples

Schiphol AIM project

MAIN DIRECTION OF INFORMATION FLOW

USING GRAPHS

The contractor's perspective

Many exchangeable models

Each project a different OTL

Integration with IT-systems

Knowledge graphs solve this problem

Graph coalescence Combining graphs

MAPPING RULES

HOW MAPPINGS ARE GENERATED

Simple similarity of labels

This is used in the demo

Adding more labels

More matches (also false positives)

Third party taxonomies

Transitive closure

Unified approach Combining graphs

- Project OTL
 Combining two OTLs and mappings
- Project database
 Conco-OTL is the leading model
- Integration with back-end IT Interfaces reusable across projects
- Reusable SHACL Rules for executing the mapping rules

TAKE-AWAYS

Key points

- One standardized work process
- ❖ Based on mappings
- ❖ Data integration across projects

Knowledge graphs crucially express data and data models in a unified way

Eliana

Jan

eliana.papoutsoglou@taxonic.com jan.voskuil@taxonic.com

