MBA em Ciência de Dados

Técnicas Avançadas de Captura e Tratamento de Dados

Módulo III - Aquisição e Transformação de Dados

Normalização de atributos

Material Produzido por Moacir Antonelli Ponti

CeMEAI - ICMC/USP São Carlos

Intervalos de valores de variáveis

Variáveis possuem intervalos diferentes de valores possíveis devido a sua natureza.

A princípio é positivo que tenhamos acesso ao valor real das variáveis, mas a depender do modelo que utilizamos, variáveis de maior magnitude dominam as estatísticas.

```
In [1]: # carregando as bibliotecas necessárias
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# carregando dados
data = pd.read_csv("./dados/municipios_mba.csv")
data.head()
```

Out[1]:

	gid	UF	nome	Censo	PIB	pop	classe	desemprego	pol
0	752	ACRE	Acrelândia	2010.0	151120.015625	12241	2	5.2	33
1	747	ACRE	Assis Brasil	2010.0	48347.300781	5662	1	5.0	32
2	748	ACRE	Brasiléia	2010.0	194979.828125	20238	1	3.0	31
3	754	ACRE	Bujari	2010.0	88708.031250	6772	2	4.8	33
4	751	ACRE	Capixaba	2010.0	89052.679688	9287	1	4.4	33

```
for var in data:
In [2]:
             print(var,"- tipo: ", data[var].dtype.name)
        gid - tipo: int64
        UF - tipo: object
        nome - tipo: object
        Censo - tipo: float64
        PIB - tipo: float64
        pop - tipo: int64
        classe - tipo:
                       int64
        desemprego - tipo: float64
        pop_sanea - tipo:
                          float64
        expec vida - tipo: float64
        pobreza - tipo: float64
        IDH - tipo: int64
        urbaniz - tipo: object
        dens pop urbana - tipo: object
```

Vamos estudar as variáveis abaixo, exibindo seus gráficos de caixa.

```
In [3]: attrs = ['pobreza', 'IDH', 'PIB']
attrs_cat = ['pobreza', 'IDH', 'PIB', 'UF', 'nome']
data.boxplot(attrs)
```

Out[3]: <matplotlib.axes._subplots.AxesSubplot at 0x7f9ef3eafc40>

Muitos métodos, em especial de aprendizado, utilizam funções de divergência/distância para aprender.

Por exemplo, podemos utilizar a distância Euclidiana entre dois vetores a e b dada por:

$$dEuc(a,b) = \sqrt{\sum_{i=1}^n (a_i - b_i)^2}$$

```
In [4]: # implementando a funcao
def dEuclidean(a, b):
    return np.sqrt(np.sum((a - b) ** 2))
```

Vamos selecionar um grupo de exemplos para comparar

```
In [5]: np.random.seed(2)
    select_data = np.random.rand(data.shape[0])<0.0015

# aqui copiamos e resetamos o índice do dataframe
    subdata = data[select_data].copy().reset_index()
    size = subdata[attrs].shape[0]
    print("Exemplos selecionados: ", size)
    subdata</pre>
```

Exemplos selecionados: 5

Out[5]:

		index	gid	UF	nome	Censo	PIB	pop	classe	dese
•	0	1690	3099	MINAS GERAIS	Campos Gerais	2010.0	240981.671875	27964	1	
	1	2737	2336	PARAÍBA	São Domingos	2010.0	12841.704102	2822	1	
	2	3412	1280	PIAUÍ	Campo Largo do Piauí	2010.0	18738.593750	7035	1	
	3	3468	949	PIAUÍ	Jardim do Mulato	2010.0	14268.646484	4318	1	
	4	4704	5000	SANTA CATARINA	Xaxim	2010.0	538854.125000	25444	2	

```
In [6]: # selecionando um exemplo próximo ao primeiro para comparar
        ind 0 = subdata.loc[0,'index']
        a = np.array(data[attrs].loc[ind 0+2,:])
        print("\nExemplo 'a' para comparacao: ")
        print(data.loc[ind 0+2,attrs cat])
        print("Vetor de atributos: ")
        print(a)
        # percorremos todos, comparando com 'a'
        dists = np.empty(size)
        for i in range(size):
            b = np.array(subdata[attrs].loc[i,:])
            dists[i] = dEuclidean(a.b)
        print("\nDistancias obtidas entre 'a' e os selecionados: ")
        print(np.round(dists,1))
        Exemplo 'a' para comparacao:
        pobreza
                            5.5
        IDH
                            732
        PIB
                        28926.7
        UF
                  MINAS GERAIS
        nome
                          Canaã
        Name: 1692, dtype: object
        Vetor de atributos:
        [5.50000000e+00 7.32000000e+02 2.89267109e+04]
        Distancias obtidas entre 'a' e os selecionados:
                   16085.2 10188.5 14658.3 509927.41
        [212055.
```

Vamos agora inspecionar o exemplo relativo à menor distância:

Note que foi selecionado um exemplo de outro estado e com valor de IDH (643 vs 732) e pobreza (21.2 vs 5.5) bastante diferente!

Na verdade, esses atributos tem peso pequeno na distância.

```
In [8]: | # vamos zerar esses atributos, e recomputar as distâncias
        a[:2] = 0
        print("Novo vetor de atributos:")
        print(a)
        dists = np.empty(size)
        for i in range(size):
            b = np.array(subdata[attrs].loc[i,:])
            dists[i] = dEuclidean(a,b)
        print("\nNovas distâncias e exemplo mais próximo:")
        print(np.round(dists,1))
        print(subdata.loc[np.argmin(dists),attrs cat])
        Novo vetor de atributos:
             0.
                                     28926.71093751
        Novas distâncias e exemplo mais próximo:
        [212056.2 16098.4 10208.4 14672.4 509928.]
                                   21.2
        pobreza
        IDH
                                    643
        PIB
                                18738.6
        UF
                                  PIAUÍ
                   Campo Largo do Piauí
        nome
        Name: 2, dtype: object
```

Normalização

Há várias formas de normalização e sua escolha depende também do cenário.

Alguns desses métodos também são chamados de reescalamento de atributos ou *feature (re)scaling*

- 1. Normalização min-max
- 2. Normalização pela média
- 3. Padronização *z*-score (*whitening*)
- 4. Normalização de soma unitária (ou norma L1)
- 5. Normalização normas L2 e L ∞

Min-max

Gera um atributo x^\prime num novo intervalo [a,b]

$$x' = a + \frac{[x - \min(x)](b-a)}{\max(x) - \min(x)}$$

para [0,1]

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

Média

Gera um atributo x centralizado com relação a média, em que \bar{x} é a média entre todos os valores de x

$$x' = \frac{x - \bar{x}}{\max(x) - \min(x)}$$

Padronização z-score (whitening)

Gera um atributo x centralizado com relação a média e cujo desvio padrão passa a ser unitário

$$x'=rac{x-ar{x}}{\sigma},$$

 \bar{x} é a média entre todos os valores de x,

 σ é o desvio padrão calculado a partir de x

6 of 13

Soma unitária (ou norma L1)

Gera um atributo x cuja soma dos valores é unitária. Isso permite por exemplo interpretar o atributo como um vetor distribuição de probabilidade.

$$x'=rac{x}{||x_i||},$$

 $||x_i||$ é a norma do vetor x.

Calculada pela soma dos valores absolutos $||x_i||=\sum_i |x_i|$, essa normalização é também chamada de norma L1 pois é a norma considerada no denominador.

Temos ainda outras opções:

norma L2 (ou Euclidiana)

$$x'=\frac{x}{\left|\left|x_{i}\right|\right|_{2}},$$

sendo
$$\left|\left|x_i
ight|\right|_2 = \sqrt{\sum_{i=1}^n x_i^2}$$
 ,

norma L ∞ (ou Infinita, ou Chessboard)

$$x'=rac{x}{\leftert \leftert \leftert \leftert _{i}
ightert \leftert _{\infty }
ightert ,$$

sendo
$$\left|\left|x_{i}\right|\right|_{\infty}=\max_{i}(x_{i})$$
,

Vamos calcular o *z*-score das variáveis e recomputar as distâncias!

```
In [9]: # percorrendo variáveis e normalizando
# pelo método z-score
for var in attrs:
    # computa média e desvio padrao
    var_mean = data[var].mean()
    var_sigm = data[var].std()

# computa normalizacao
    var_norm = (data[var] - var_mean) / var_sigm

# novo nome e variável normalizada
    newvar = var + '_z'
    data[newvar] = var_norm

# descrevendo os novos atributos
attrs_n = ['pobreza_z', 'IDH_z', 'PIB_z']
attrs_cat_n = ['pobreza_z', 'IDH_z', 'PIB_z', 'UF', 'nome']
data[attrs_n].describe()
```

Out[9]:

	pobreza_z	IDH_z	PIB_z
count	4.730000e+03	5.565000e+03	5.565000e+03
mean	3.364938e-16	6.332960e-16	1.021445e-17
std	1.000000e+00	1.000000e+00	1.000000e+00
min	-1.245828e+00	-1.212018e+01	-9.081290e-02
25%	-8.979751e-01	-7.829776e-01	-8.566745e-02
50%	-6.145397e-01	2.767312e-01	-7.902384e-02
75%	9.185886e-01	5.963259e-01	-5.921052e-02
max	2.181165e+00	1.925167e+00	6.125307e+01

```
In [10]:
         np.random.seed(2)
         select data = np.random.rand(data.shape[0])<0.0015</pre>
         subdata = data[select data].copy().reset index()
         size = subdata.shape[0]
         print("Exemplos selecionados: ", size)
         # selecionando um exemplo próximo ao primeiro para comparar
         ind 0 = subdata.loc[0.'index']
         a = np.array(data[attrs n].loc[ind 0+2,:])
         print("\nExemplo 'a' para comparacao: ")
         print(data.loc[ind 0+2,attrs cat n])
         print("Vetor de atributos: ")
         print(a)
         dists = np.empty(size)
         for i in range(size):
             b = np.array(subdata[attrs n].loc[i,:])
             dists[i] = dEuclidean(a,b)
         print("\nDistancias obtidas entre 'a' e os selecionados: ")
         print(np.round(dists,1))
         Exemplos selecionados: 5
         Exemplo 'a' para comparacao:
         pobreza_z -0.627423
         IDH_z
                         0.310373
         PIB_z
                       -0.0871641
         UF
                    MINAS GERAIS
         nome
                             Canaã
         Name: 1692, dtype: object
         Vetor de atributos:
         [-0.62742308  0.31037276  -0.08716414]
         Distancias obtidas entre 'a' e os selecionados:
         [0.2 1.9 2.5 2.6 1. ]
In [11]: # argmin retorna a posicao com o valor mínimo
         print(subdata.loc[np.argmin(dists),attrs cat n])
         pobreza_z
IDH_z
                        -0.782024
                           0.411297
                         -0.0537506
         PIB z
         UF
                      MINAS GERAIS
         nome
                      Campos Gerais
         Name: 0, dtype: object
```

```
In [12]: print(subdata.loc[np.argmin(dists),attrs cat])
         print(data[attrs cat].loc[ind 0+2,:])
                               4.3
         pobreza
         IDH
                               738
         PIB
                            240982
         UF
                     MINAS GERAIS
                    Campos Gerais
         nome
         Name: 0, dtype: object
         pobreza
         IDH
                              732
                          28926.7
         PIB
         UF
                    MINAS GERAIS
         nome
                           Canaã
         Name: 1692, dtype: object
```

Uma desvantagem da normalização é que os valores perdem a semântica original.

Por exemplo, o que significa uma pobreza de -0.78 ?

Por isso é conveniente manter os atributos originais para depois interpretar os resultados

Em experimentos envolvendo treinamento e teste:

A normalização deve ser calculada no treinamento, e depois apenas aplicada no teste

Por exemplo, no caso da *z*-score:

- os valores da média e desvio padrão devem ser calculados no treinamento,
- depois aplicados para normalizar o(s) exemplo(s) de teste

Vamos selecionar um subconjunto maior para mostrar essa idéia, sendo que o exemplo a para comparação será considerado exemplo de teste.

Aqui vamos calcular a normalização apenas no subconjunto.

In [13]: # reselectionando dados, agora um pouco mais! np.random.seed(3) select_data = np.random.rand(data.shape[0])<0.01 subdata = data[select_data].copy() # vamos remover linhas com nulos e resetar o indice! subdata = subdata.dropna().reset_index() size = subdata.shape[0] print("Exemplos selectionados: ", size) subdata</pre>

Exemplos selecionados: 11

Out[13]:

	index	gid	UF	nome	Censo	PIB	pop	classe
0	218	4858	BAHIA	Anguera	2010.0	26372.318359	9826	1
1	244	4834	BAHIA	Belo Campo	2010.0	54279.222656	15185	1
2	315	4399	BAHIA	Crisópolis	2010.0	85858.242188	20279	1
3	357	4476	BAHIA	Ibirataia	2010.0	104637.359375	24544	1
4	555	113	BAHIA	São Felipe	2010.0	80595.312500	20952	1
5	582	183	BAHIA	Souto Soares	2010.0	53800.070312	19407	1
6	663	1561	CEARÁ	Cedro	2010.0	90544.523438	25591	1
7	860	1467	ESPIRITO SANTO	Piúma	2010.0	127082.007812	17212	1
8	1283	1743	MARANHÃO	Raposa	2010.0	100919.585938	25837	1
9	5433	5488	TOCANTINS	Aparecida do Rio Negro	2010.0	40615.371094	4200	2
10	5505	587	TOCANTINS	Muricilândia	2010.0	29540.205078	2958	2

```
# percorrendo variáveis e normalizando
In [15]:
         means = []
         stds = []
         for var in attrs:
             var mean = subdata[var].mean()
             var sigm = subdata[var].std()
             # computa normalizacao
             var norm = (subdata[var] - var mean) / var sigm
             # novo nome e variável normalizada
             newvar = var + '_z'
             subdata[newvar] = var norm
             # quardando valores da normalizacao
             means.append(var mean)
             stds.append(var sigm)
         # selecionando um exemplo próximo ao primeiro para comparar
         ind 0 = subdata.loc[0,'index']
         a = np.array(data[attrs].loc[ind 0+2,:])
         print("\nExemplo 'a' para comparacao: ")
         print(data.loc[ind 0+2, attrs cat])
         print(" - Vetor de atributos: ")
         print(a)
         anorm = (a-means)/stds
         print(" - Vetor de atributos normalizado: ")
         print(anorm)
         dists = np.empty(size)
         for i in range(size):
             b = np.array(subdata[attrs n].loc[i,:])
             dists[i] = dEuclidean(anorm,b)
         print("\n*Exemplo mais próximo")
         # argmin retorna a posicao com o valor mínimo
         print(subdata.loc[np.argmin(dists),attrs cat])
```

```
Exemplo 'a' para comparacao:
pobreza
                     17.4
IDH
                      657
PIB
                  52209.5
UF
                    BAHTA
nome Antônio Cardoso
Name: 220, dtype: object
 - Vetor de atributos:
[1.74000000e+01 6.57000000e+02 5.22095391e+04]
 - Vetor de atributos normalizado:
[ 0.24569143 -0.61136435 -0.60122108]
*Exemplo mais próximo
pobreza
                  16.9
IDH
                   655
PIB
               53800.1
UF
                 BAHIA
          Souto Soares
nome
Name: 5, dtype: object
```

Observe que o vetor de características poder gerar valores abaixo de -1 ou acima de 1, o que não ocorreu anteriormente quando o exemplo que comparamos foi utilizado no cálculo da normalização.

Assim, mesmo a informação da normalização não pode vazar do teste para o treinamento!

Resumo:

- Normalizar pode ser fundamental para obter modelos que consideram todos os atributos de forma equilibrada
- O método deve considerar as características dos dados
- Apenas o conjunto de treinamento deve ser usado para computar os parâmetros da normalização