1η σειρά ασχήσεων

Μαθηματικά III

Σχολή Χημικών Μηχανικών

Ημερομηνία παράδοσης: 14/11/2018

Άσκηση 1

Να λύσετε τις Σ.Δ.Ε.:

a)
$$x^x y' + x^x (\ln x + 1)y = 5^{x+3}$$
 β) $y' + 4y = xe^{-2x}$ γ) $(1 + x^2)y' + 4xy = (1 + x^2)^{-2}$

$$\delta) y' = \frac{y+x}{x-y} \qquad \qquad \varepsilon) \frac{y}{x} + (y^3 + \ln x)y' = 0 \quad \sigma\tau) xy' - y = x^2 e^{-x}, \ x > 0$$

Άσκηση 2

Να λύσετε τα Π.Α.Τ.:

a)
$$\frac{x}{1+y} - \frac{y}{1+x}y' = 0$$
, $y(1) = \frac{3}{2}$ β) $y' - xy = -xy^3$, $y(0) = 2$

$$\gamma(xy + (x^2 + y^2 + 1)y' = 0, \ y(1) = 2 \quad \delta(2y - xe^x) + xy' = 0, \ y(1) = 2$$

$$\varepsilon$$
) $y' = xy^3(1+x^2)^{-\frac{1}{2}}$, $y(0) = 1$ $\sigma \tau$) $x^2y' + 2xy - y^3 = 0$, $y(1) = 2$, $x > 0$

Άσκηση 3

Να λύσετε τη Σ.Δ.Ε.:

$$y' = \frac{2x + 9y - 20}{6x + 2y - 10}$$

χρησιμοποιώντας τις αντικαταστάσεις x = u + 1, y = v + 2.

Άσκηση 4

Να αποδείξετε ότι αν η παράσταση $\frac{M_y-N_x}{N-M}=f(x+y),$ τότε υπάρχει ολοκληρώνοντας παράγοντας

$$\mu(x+y) = e^{\int f(x+y)d(x+y)}$$

που μετατρέπει την εξίσωση M(x,y)+N(x,y)y'=0 σε αχριβή.

Άσκηση 5

Να λύσετε τις Σ.Δ.Ε.:

a)
$$y'' - y' - 2y = 0$$
 β) $y'' - 2y' - y = 0$ γ) $y'' - 4y' + 4y = 0$

$$δ) y'' + 9y = 0$$
 $ε) y'' - 3y' = 0$ $στ) y'' - 2y' + 2y = 0$

Άσκηση 6

Να λύσετε τα Π.Α.Τ.:

a)
$$y'' - 5y' + 6y = 0$$
, $y(1) = 3$, $y'(1) = 4$ β) $3y'' - 2y' - y = 0$ $y(0) = 2$, $y'(0) = 1$

$$\gamma$$
) $y'' + 3y = 0$, $y(1) = 2$, $y'(1) = 4$ δ) $y'' + 6y' + 9 = 0$, $y(2) = 0$, $y'(2) = 1$

$$\varepsilon$$
) $y'' + 5y' = 0$, $y(-1) = 2$, $y'(-1) = 0$ $\sigma \tau$) $y'' + 4y' + 5 = 0$, $y(0) = 1$, $y'(0) = 2$

Άσκηση 7

Να προσδιορίσετε το μέγιστο διάστημα στο οποίο το Π.Α.Τ.:

$$xy'' + 3y = x$$
, $y(1) = 1$, $y'(1) = 2$

είναι βέβαιο ότι έχει δύο φορές παραγωγίσιμη λύση. Να μην λύσετε το Π.Α.Τ.

Άσκηση 8

Αν οι συναρτήσεις y_1, y_2 συγκροτούν θεμελιώδες σύνολο λύσεων της y'' + py' + qy = 0, να αποδείξετε ότι μεταξύ δύο διαδοχικών ριζών της y_1 υπάρχει μια ακριβώς ρίζα της y_2 .

Άσκηση 9

Να βρείτε την ορίζουσα Wronski δύο λύσεων των Σ.Δ.Ε.:

a)
$$x^2y'' - x(x+2)y' + (x+2)y = 0$$
 β) $x^2y'' + xy' + (x^2 - \nu^2)y = 0$

Άσκηση 10

Να αποδείξετε ότι αν οι y_1, y_2 έχουν μέγιστο ή ελάχιστο στο ίδιο σημείο του I, τότε δεν μπορούν να συγκροτούν θεμελιώδες σύνολο λύσεων σε αυτό το διάστημα.