Notes on 'Sheaf Theory' by Bredon

Bailey Arm

$\mathrm{June}\ 22,\ 2025$

Contents

Ι	Sheaf Theory, Bredon			
1	Sheaves and Presheaves			
	1.1 Definitions			
	1.2 Homomorphisms, Subsheaves and Quotient Sheaves			
	1.3 Direct and Inverse Images			
	1.4 Cohomomorphisms			
	1.5 Algebraic Constructions			
	1.6 Supports			
	1.7 Classical Cohomology Theories			
2	Sheaf Cohmology			
	2.1 Differential Sheaves and Resolutions			
	2.2 The Canonical Resolution and Sheaf Cohomology			
	2.3 Injective Sheaves			
	2.4 Acyclic Sheaves			
	2.5 Flabby Sheaves			
	2.6 Connected Sequences of Functors			
	2.7 Axioms for Cohmomology and the Cup Product			
	2.8 Maps of Spaces			
	2.9 Φ-Soft and Φ-Fine Sheaves			
	2.10 Subspaces			
	2.11 The Vietoris Maping Theorem and Homotopy Invariance			
	2.12 Relative Cohomology			
	2.13 Mayer-Vietoris Theorems			
	2.14 Continuity			
	2.15 The Künneth and Universal Coefficient Theorems			
	2.16 Dimension			
	2.17 Local Connectivity			
	2.18 Change pf Supports and Local Cohomology Groups			
	2.19 The Transfer Homomorphism and the Smith Sequences			
	2.20 Steenrod's Cyclic Reduced Powers			
	2.21 The Steenrod Operations			
3	Comparison with Other Cohomology Theories			
-	3.1 Singular Cohomology			
	3.2 Alexander-Spanier Cohomology			
	3.3 de Rham Cohmomology			
	3.4 Cech Cohomology			
	3.4 Cecii Collolliology			

4	App	dications of Spectral Sequences
	4.1	The Spectral Sequence of a Differential Sheaf
	4.2	The Fundamental Theorems of Sheaves
	4.3	Direct Image Relative to a Support Family
	4.4	The Leray Sheaf
	4.5	Extension of a Support Family by a Family on the Base Space
	4.6	The Leray Spectral Sequence of a Map
	4.7	Fiber Bundles
	4.8	Dimension
	4.9	The Spectral Sequences of Borel and Cartan
	4.10	
	1.10	The Spectral Sequence of a Filtered Differential Sheaf
		The Fary Spectral Sequence
		Sphere Bundles with Singularities
	4.14	The Oliver Transfer and the Conner Conjecture
5	Bor	el-Moore Homology
	5.1	Cosheaves
	5.2	The Dual of a Differential Cosheaf
	5.3	Homology Theory
	5.4	Maps of Spaces
	5.5	1 00
	5.6	The Viertoris Theorem, Homotopy and Covering Spaces
	5.7	The Homology Sheaf of a Map
	5.8	The Basic Spectral Sequence
	5.9	Poincaré Duality
		The Cap Product
		Intersection Theory
		Uniqueness Theorems
		Uniqueness Theorems for Maps and Relative Homology
	5.14	The Künneth Formula
	5.15	Change of Rings
	5.16	Generalised Manifolds
		Locally Homogenous Spaces
	5.18	Homological Fibrations and p-adic Transformation Groups
	5.19	The Transfer Homomorphism on Homology
		Smith Theory in Homology
6	Cos	heaves and Cech Homology 5
	6.1	Theory of Cosheaves
	6.2	Local Triviality
	6.3	Local Isomorphisms
	6.4	Chech Homology
	6.5	The Reflector
	6.6	Spectral Sequences
	6.7	Coresolutions
	6.8	Relative Cech Homology
	6.9	Locally Paracompact Spaces
	6.10	Borel-Moore Homology
		Modified Barel-Moore Homology
		Singular Homology
		Acyclic Coverings
		Applications to Maps
	0.14	принамонь и тарь

Part I

Sheaf Theory, Bredon

1 Sheaves and Presheaves

1.1 Definitions

Definition 1 Presheaf: A presheaf of abelian groups on a topological space X is a functor

$$A:\mathfrak{Opn}_X^{op}\to\mathfrak{Ab}$$

i.e. an assignment to each open set $U \in Ob(\mathfrak{Opn}_X^{op})$ an abelian group $A(U) \in Ob(\mathfrak{Ab})$, and on inclusion functions $V \stackrel{\iota_U^V}{\hookrightarrow} U$ restriction functions $r_V^U : A(U) \to A(V)$ such that:

- $r_U^U = id_U$,
- $U \subset V \subset W \implies r_V^W r_U^V = r_U^W$

One can switch out the target category with other algebraic categories to obtain the definitions of presheaves over R-modules, algebras, etc.

Definition 2 Germ: Let $x \in X$ be a point and A a presheaf over X. The set \mathfrak{M} of elements $s \in A(U)$, $x \in U \in Ob\mathfrak{Dpn}_X^{op}$. The germs of the presheaf A at x is thus the quotient

$$\mathfrak{G}_{A,x} := \mathfrak{M}/\sim$$

where $s, t \in \mathfrak{M}$ are equal if there is $W \subset dom(s) \cap dom(t)$ such that $s|_{W} = t|_{W}$. The equivalence class [s] of germs of A(U) is called the germ of s at $x \in U$.

The set of germs of A at x, A_x is then the direct limit

$$\mathcal{A}_s = \lim_{\to} A(U)$$

From here we can define a topology on the disjoint union $\sqcup_{x \in X} A_x$ as follows. Fix an element $s \in A(U)$, for each $x \in U$ we have the germ s_x of s at x. For fixed s the set of all germs $s_x \in A_x$ is defined to be an open set. With this definition we get the sheaf generated by the presheaf AL

$$\mathcal{A} = \mathfrak{Sheaf}(A) = \mathfrak{Sheaf}(U \to A(U))$$

Definition 3 *Sheaf:* A sheaf on X is a pair (A, π) satisfying:

- A is a (typically non-Hasuforff) topological space,
- $\pi: \mathcal{A} \to X$ os a local homeomorphism
- Each $A_x = \pi^{-1}(x)$ for $x \in X$ is an abelian group, and is called the stalk of A at x
- The group operations are continuous

An example of a sheaf is Ω^0 of germs of $\mathcal{C}^{\infty}(\mathbb{R})$ functions on a differentiable manifold M^n , this is a sheaf of unital rings, and $\Omega^p(M^n)$ of germs of differential p-forms on M^n which is also a Ω^0 -module.

If \mathcal{A} is a sheaf on X with projection $\pi: \mathcal{A} \to X$ and if $Y \subset X$ then the restriction $\mathcal{A}|Y$ of \mathcal{A} is defined:

$$\mathcal{A}|Y = \pi^{-1}(Y)$$

If \mathcal{A} is a sheaf on $X, Y \subset X$ then a section of \mathcal{A} over Y is a map $s: Y \to \mathcal{A}$ such that $\pi \circ s$ is the identity on Y. Note that every point $x \in Y$ admits a section s over some neighborhood U of x. We can then access the 0 section over any open set $U \subset X$ and so we can endow $\mathcal{A}(Y)$ with the structure of an abelian group. Thus the presheaf of sections of A is defined:

$$\Gamma(\mathcal{A}) = \mathcal{A}(X)$$

An example of a non-Hausdorff sheaf is the sheaf on the real line that has 0 stalk everywhere but 0 which has the stalk \mathbb{Z}_2 . That is $\pi^{-1}(x \neq 0) = 0, \pi^{-1}(0) = \mathbb{Z}_2$

- 1.2 Homomorphisms, Subsheaves and Quotient Sheaves
- 1.3 Direct and Inverse Images
- 1.4 Cohomomorphisms
- 1.5 Algebraic Constructions
- 1.6 Supports
- 1.7 Classical Cohomology Theories
- 2 Sheaf Cohmology
- 2.1 Differential Sheaves and Resolutions
- 2.2 The Canonical Resolution and Sheaf Cohomology
- 2.3 Injective Sheaves
- 2.4 Acyclic Sheaves
- 2.5 Flabby Sheaves
- 2.6 Connected Sequences of Functors
- 2.7 Axioms for Cohmomology and the Cup Product
- 2.8 Maps of Spaces
- 2.9 Φ -Soft and Φ -Fine Sheaves
- 2.10 Subspaces
- 2.11 The Vietoris Maping Theorem and Homotopy Invariance
- 2.12 Relative Cohomology
- 2.13 Mayer-Vietoris Theorems
- 2.14 Continuity
- 2.15 The Künneth and Universal Coefficient Theorems
- 2.16 Dimension
- 2.17 Local Connectivity
- 2.18 Change of Supports and Local Cohomology Groups
- 2.19 The Transfer Homomorphism and the Smith Sequences
- 2.20 Steenrod's Cyclic Reduced Powers
- 2.21 The Steenrod Operations
- 3 Comparison with Other Cohomology Theories
- 3.1 Singular Cohomology
- 3.2 Alexander-Spanier Cohomology
- 3.3 de Rham Cohmomology
- 3.4 Cech Cohomology
- 4 Applications of Spectral Sequences
- 4.1 The Spectral Sequence of a Differential Sheaf
- 4.2 The Fundamental Theorems of Sheaves
- An Diata Dalai a Cara di