Approximating Likelihood Ratios with Calibrated Discriminative Classifiers

Kyle Cranmer and Gilles Louppe New York University

January 20, 2016

Abstract

In particle physics, likelihood ratio tests are established tools for statistical inference. In many cases, these tests are complicated by the fact that computer simulators are used as a generative model for the data, which does not provide a way to evaluate the likelihood function. In this paper, we demonstrate that likelihood ratios are invariant under dimensionality reduction, provided the transformation is monotonic with the likelihood ratio. As a direct consequence, we show why and how discriminative classifiers can be used to approximate the likelihood ratio when only a generative model for the data is available. In particular, the proposed method offers a machine learning-based approach to statistical inference that is complementary to likelihood-free Bayesian inference algorithms, like Approximate Bayesian Computation, as it does not require the definition of a prior over model parameters. [GL: Also mention conclusions on experimental results, as required by JASA guidelines.]

Keywords: likelihood ratio, likelihood-free inference, classification, particle physics

1 Introduction

The likelihood function is the central object that summarizes the information from an experiment needed for inference of model parameters. The likelihood function is key to many areas of science that report the results of classical hypothesis tests or confidence intervals using the (generalized or profile) likelihood ratio as a test statistic. With the advance of computing technology, it has become increasingly common that a simulator (or generative model) is used to describe complex processes that tie parameters θ of an underlying theory and measurement apparatus to high-dimensional observations \mathbf{x} . However, directly evaluating the likelihood function in these cases is often impossible or is computationally impractical. In this likelihood-free setting, various methods for statistical inference have been proposed, including most notably the Approximate Bayesian Computation (ABC) class of algorithms aiming at sampling from the posterior distribution of model parameters [GL: Add references].

The main result of this paper is to show that the likelihood ratio is invariant under dimensionality reduction, under the assumption that the transformation is monotonic with the likelihood ratio. As a direct consequence, we derive and propose an alternative machine learning-based approach for likelihood-free inference that can also be used in a classical (frequentist) setting where a prior over the model parameters is not available. More specifically, we demonstrate why and how discriminative classifiers can be used to construct equivalent likelihood ratio tests when only a generative model for the data is available for training and calibration.

As a concrete example, let us consider searches for new particles at the Large Hadron Collider (LHC). The simulator that is sampling from $p(\mathbf{x}|\theta)$ is based on quantum field theory, a detailed simulation of the particle detector, and data processing algorithms that

transform raw sensor data into the feature vector x (Sjostrand et al., 2006; Agostinelli et al., 2003). The ATLAS and CMS experiments have published hundreds papers where the final result was formulated as a hypothesis test or confidence interval using a generalized likelihood ratio test (Cowan et al., 2010), including most notably the discovery of the Higgs boson (The ATLAS Collaboration, 2012; The CMS Collaboration, 2012) and subsequent measurement of its properties. The bulk of the likelihood ratio tests at the LHC are based on the distribution of a single event-level feature that discriminates between a hypothesized process of interest (labeled signal) and various other processes (labeled back-ground). Typically, pseudo-data from the simulator are used to approximate the density at various parameter points, and an interpolation algorithm is used to approximate the parametrized model (Cranmer et al., 2012). In particular, to improve the statistical power of these tests, hundreds of these searches have already been using supervised learning to train discriminative classifiers that take advantage of a high dimensional feature vector \mathbf{x} . [GL: We should then elaborate on how the proposed method could help these searches.]

The rest of this paper is organized as follows. In Section...

2 Likelihood ratio tests

Let \mathbf{X} be a random vector with values $\mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^p$ and let $p_{\mathbf{X}}(\mathbf{x}|\theta)$ denote the density probability of \mathbf{X} at value \mathbf{x} under the parametrization θ . Let also assume some i.i.d. observed data $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$. In the setting where one is interested in simple hypothesis testing between a null $\theta = \theta_0$ against an alternate $\theta = \theta_1$, the Neyman-Pearson lemma states that the likelihood ratio

$$T(\mathcal{D}; \theta_0, \theta_1) = \prod_{\mathbf{x} \in \mathcal{D}} \frac{p_{\mathbf{X}}(\mathbf{x}|\theta_0)}{p_{\mathbf{X}}(\mathbf{x}|\theta_1)}$$
(2.1)

is the most powerful test statistic. In order to evaluate $T(\mathcal{D})$, one must be able to evaluate the probability density $p_{\mathbf{X}}(\mathbf{x}|\theta)$ at any value \mathbf{x} . However, it is increasingly common in science that one has a complex simulation that can act as generative model for $p_{\mathbf{X}}(\mathbf{x}|\theta)$, but one cannot evaluate the density directly. For instance, this is the case in high energy physics (Neal, 2007) where the simulation of particle detectors can only be done in the forward mode. [GL: Reinsert citations for Scott and Nowak (2005) and Xin Tong (2013).]

3 Approximating likelihood ratios with classifiers

[GL: Think of a better section title? The equivalence is strict, not approximate.]

The main result of this paper is to generalize the observation that one can form a test statistic

$$T'(\mathcal{D}; \theta_0, \theta_1) = \prod_{\mathbf{x} \in \mathcal{D}} \frac{p_{\mathbf{Y}}(y = s(\mathbf{x}; \theta_0, \theta_1) | \theta_0)}{p_{\mathbf{Y}}(y = s(\mathbf{x}; \theta_0, \theta_1) | \theta_1)}$$
(3.1)

that is strictly equivalent to 2.1, provided the change of variable $\mathbf{Y} = s(\mathbf{X}; \theta_0, \theta_1)$ is based on a parametrized function s that is strictly monotonic with the density ratio

$$r(\mathbf{x}; \theta_0, \theta_1) = \frac{p_{\mathbf{X}}(\mathbf{x}|\theta_0)}{p_{\mathbf{X}}(\mathbf{x}|\theta_1)}.$$
(3.2)

As derived below, this allows to recast the original likelihood ratio test into an alternate form in which supervised learning can be used to build $s(\mathbf{x}; \theta_0, \theta_1)$ as a discriminative classifier. In Section 4 we extend this result to generalized likelihood ratio tests, where it will be useful to have the classifier parametrized in terms of (θ_0, θ_1) .

3.1 Likelihood ratios under change of variable

Theorem 1. Let **X** be a random vector vector with values in $\mathcal{X} \subseteq \mathbb{R}^p$ and parametrized probability density $p_{\mathbf{X}}(\mathbf{x} = (x_1, ..., x_p)|\theta)$ and let $s : \mathbb{R}^p \mapsto \mathbb{R}$ be a function monotonic with

the density ratio $r(\mathbf{x}; \theta_0, \theta_1) = \frac{p_{\mathbf{X}}(\mathbf{x}|\theta_0)}{p_{\mathbf{X}}(\mathbf{x}|\theta_1)}$, for given parameters θ_0 and θ_1 . In these conditions,

$$r(\mathbf{x}; \theta_0, \theta_1) = \frac{p_{\mathbf{X}}(\mathbf{x}|\theta_0)}{p_{\mathbf{X}}(\mathbf{x}|\theta_1)} = \frac{p_{\mathbf{Y}}(y = s(\mathbf{x}; \theta_0, \theta_1)|\theta_0)}{p_{\mathbf{Y}}(y = s(\mathbf{x}; \theta_0, \theta_1)|\theta_1)},$$
(3.3)

where $p_{\mathbf{Y}}(y = s(\mathbf{x}; \theta_0, \theta_1)|\theta)$ is the induced probability density of $\mathbf{Y} = s(\mathbf{X}; \theta_0, \theta_1)$.

Proof. Omitting for clarity the parametrization (θ_0, θ_1) of $s(\mathbf{X}; \theta_0, \theta_1)$, we have

$$p_{Y}(y = s(\mathbf{x})|\theta_{0}) = \frac{d}{dy} P(s(\mathbf{X}) \leq y)$$

$$= \frac{d}{dy} \int_{\{\mathbf{x}' \in \mathbb{R}^{p} : s(\mathbf{x}') \leq y\}} p_{\mathbf{X}}(\mathbf{x}'|\theta_{0}) d\mathbf{x}'$$

$$= \frac{d}{dy} \int_{\mathbb{R}^{p}} H(y - s(\mathbf{x}')) p_{\mathbf{X}}(\mathbf{x}'|\theta_{0}) d\mathbf{x}'$$

$$= \int_{\mathbb{R}^{p}} \frac{d}{dy} H(y - s(\mathbf{x}')) p_{\mathbf{X}}(\mathbf{x}'|\theta_{0}) d\mathbf{x}'$$

$$= \int_{\mathbb{R}^{p}} \delta(y - s(\mathbf{x}')) p_{\mathbf{X}}(\mathbf{x}'|\theta_{0}) d\mathbf{x}'$$
(3.4)

where H and δ are respectively the Heaviside step and the Dirac delta functions. Intuitively, this last expression can be understood as the integral over all $\mathbf{x}' \in \mathbb{R}^p$ such that $s(\mathbf{x}') = y$, as picked by the Dirac delta function. Given Theorem 6.1.5 of Hörmander (1990), it further comes

$$p_{Y}(y = s(\mathbf{x})|\theta_{0}) = \int_{\mathbb{R}^{p}} \delta(y - s(\mathbf{x}')) p_{\mathbf{X}}(\mathbf{x}'|\theta_{0}) d\mathbf{x}'$$

$$= \int_{\{\mathbf{x}' \in \mathbb{R}^{p} : s(\mathbf{x}') = y\}} \frac{1}{|\nabla s(\mathbf{x}')|} p_{\mathbf{X}}(\mathbf{x}'|\theta_{0}) dS_{\mathbf{x}'}$$
(3.5)

where $|\nabla s(\mathbf{x}')| = \sqrt{\sum_{i=1}^p |\frac{\partial}{\partial x_i} s(\mathbf{x}')|^2}$ and where $dS_{\mathbf{x}'}$ is the Euclidean surface measure on $\{\mathbf{x}' \in \mathbb{R}^p : s(\mathbf{x}') = y\}$. Also, since $s(\mathbf{x})$ is monotonic with $\frac{p_{\mathbf{X}}(\mathbf{x}|\theta_0)}{p_{\mathbf{X}}(\mathbf{x}|\theta_1)}$, it exists an invertible

function $m: \mathbb{R}^+ \to \mathbb{R}$ such that $s(\mathbf{x}) = m(\frac{p_{\mathbf{X}}(\mathbf{x}|\theta_0)}{p_{\mathbf{X}}(\mathbf{x}|\theta_1)})$. In particular, we have

$$\frac{p_{\mathbf{X}}(\mathbf{x}|\theta_0)}{p_{\mathbf{X}}(\mathbf{x}|\theta_1)} = m^{-1}(s(\mathbf{x}))$$

$$p_{\mathbf{X}}(\mathbf{x}|\theta_0) = m^{-1}(s(\mathbf{x}))p_{\mathbf{X}}(\mathbf{x}|\theta_1)$$
(3.6)

Combining equations 3.5 and 3.6, we have

$$p_{Y}(y = s(\mathbf{x})|\theta_{0}) = \int_{\{\mathbf{x}' \in \mathbb{R}^{p}: s(\mathbf{x}') = y\}} \frac{p_{\mathbf{X}}(\mathbf{x}'|\theta_{0})}{|\nabla s(\mathbf{x}')|} dS_{\mathbf{x}'}$$

$$= \int_{\{\mathbf{x}' \in \mathbb{R}^{p}: s(\mathbf{x}') = y\}} \frac{1}{|\nabla s(\mathbf{x}')|} m^{-1}(s(\mathbf{x}')) p_{\mathbf{X}}(\mathbf{x}'|\theta_{1}) dS_{\mathbf{x}'}$$

$$= \int_{\{\mathbf{x}' \in \mathbb{R}^{p}: s(\mathbf{x}') = y\}} \frac{1}{|\nabla s(\mathbf{x}')|} m^{-1}(y) p_{\mathbf{X}}(\mathbf{x}'|\theta_{1}) dS_{\mathbf{x}'}$$

$$= m^{-1}(s(\mathbf{x})) \int_{\{\mathbf{x}' \in \mathbb{R}^{p}: s(\mathbf{x}') = y\}} \frac{1}{|\nabla s(\mathbf{x}')|} p_{\mathbf{X}}(\mathbf{x}'|\theta_{1}) dS_{\mathbf{x}'}$$

$$= \frac{p_{\mathbf{X}}(\mathbf{x}|\theta_{0})}{p_{\mathbf{X}}(\mathbf{x}|\theta_{1})} \int_{\{\mathbf{x}' \in \mathbb{R}^{p}: s(\mathbf{x}') = y\}} \frac{1}{|\nabla s(\mathbf{x}')|} p_{\mathbf{X}}(\mathbf{x}'|\theta_{1}) dS_{\mathbf{x}'}$$

$$(3.7)$$

Similarly, Equation 3.5 can be used to derive $p_Y(y=s(\mathbf{x})|\theta_1)$, finally yielding

$$\frac{p_{Y}(y=s(\mathbf{x})|\theta_{0})}{p_{Y}(y=s(\mathbf{x})|\theta_{1})} = \frac{p_{\mathbf{X}}(\mathbf{x}|\theta_{0})}{p_{\mathbf{X}}(\mathbf{x}|\theta_{1})} \frac{\int_{\{\mathbf{x}' \in \mathbb{R}^{p}: s(\mathbf{x}') = y\}} \frac{1}{|\nabla s(\mathbf{x}')|} p_{\mathbf{X}}(\mathbf{x}'|\theta_{1}) dS_{\mathbf{x}'}}{\int_{\{\mathbf{x}' \in \mathbb{R}^{p}: s(\mathbf{x}') = y\}} \frac{1}{|\nabla s(\mathbf{x}')|} p_{\mathbf{X}}(\mathbf{x}'|\theta_{1}) dS_{\mathbf{x}'}}$$

$$= \frac{p_{\mathbf{X}}(\mathbf{x}|\theta_{0})}{p_{\mathbf{X}}(\mathbf{x}|\theta_{1})}.$$
(3.8)

3.2 Probabilistic classification for approximating ratios

Proposition 2. Let $\mathbf{X} = (X_1, ..., X_p)$ and Y be random input and output variables with values in $\mathcal{X} \subseteq \mathbb{R}^{p_1}$ and $\mathcal{Y} = \{0, 1\}$ and mixed joint probability density function $p_{\mathbf{X},Y}(\mathbf{x}, y)^2$.

¹Without loss of generality, the discussion assumes continuous random variables, but can be extended to random variables of mixed types with the Dirac delta function.

²Defined as $p_{\mathbf{X},Y}(\mathbf{x},y) = p_{\mathbf{X}|Y}(\mathbf{x}|y)P(Y=y) = P(Y=y|X=x)p_{\mathbf{X}}(\mathbf{x})$.

For the squared error loss, the best regression function $s: \mathcal{X} \mapsto [0,1]$, or equivalently the best probabilistic classifier, is

$$s^*(\mathbf{x}) = \frac{P(Y=1)p_{\mathbf{X}|Y}(\mathbf{x}|Y=1)}{P(Y=0)p_{\mathbf{X}|Y}(\mathbf{x}|Y=0) + P(Y=1)p_{\mathbf{X}|Y}(\mathbf{x}|Y=1)}.$$
 (3.9)

Proof. For the squared error loss,

$$s^{*}(\mathbf{x}) = \underset{s(\mathbf{x})}{\operatorname{arg \, min}} \mathbb{E}_{Y|\mathbf{X}=\mathbf{x}} \{ (Y - s(\mathbf{x}))^{2} \}$$

$$= \underset{s(\mathbf{x})}{\operatorname{arg \, min}} \mathbb{E}_{Y|\mathbf{X}=\mathbf{x}} \{ Y^{2} \} - 2s(\mathbf{x}) \mathbb{E}_{Y|\mathbf{X}=\mathbf{x}} \{ Y \} + s(\mathbf{x})^{2}$$

$$= \underset{s(\mathbf{x})}{\operatorname{arg \, min}} -2s(\mathbf{x}) \mathbb{E}_{Y|\mathbf{X}=\mathbf{x}} \{ Y \} + s(\mathbf{x})^{2}$$

$$(3.10)$$

The last expression is minimized when $\frac{d}{ds(\mathbf{x})}(-2s(\mathbf{x})\mathbb{E}_{Y|\mathbf{X}=\mathbf{x}}\{Y\} + s(\mathbf{x})^2) = 0$, that is when $-2\mathbb{E}_{Y|\mathbf{X}=\mathbf{x}}\{Y\} + 2s(\mathbf{x}) = 0$, hence

$$s^*(\mathbf{x}) = \mathbb{E}_{Y|\mathbf{X}=\mathbf{x}}\{Y\}. \tag{3.11}$$

For $\mathcal{Y} = \{0, 1\},\$

$$\mathbb{E}_{Y|\mathbf{X}=\mathbf{x}}\{Y\} = P(Y=0|\mathbf{X}=\mathbf{x}) \times 0 + P(Y=1|\mathbf{X}=\mathbf{x}) \times 1$$

$$= \frac{P(Y=1)p_{\mathbf{X}|Y}(\mathbf{x}|Y=1)}{p_{\mathbf{X}}(\mathbf{x})}$$

$$= \frac{P(Y=1)p_{\mathbf{X}|Y}(\mathbf{x}|Y=1)}{P(Y=0)p_{\mathbf{X}|Y}(\mathbf{x}|Y=0) + P(Y=1)p_{\mathbf{X}|Y}(\mathbf{x}|Y=1)}.$$
(3.12)

For $P(Y=0)=P(Y=1)=\frac{1}{2}$, the best regression function s^* simplifies to

$$s^*(\mathbf{x}) = \frac{p_{\mathbf{X}|Y}(\mathbf{x}|Y=1)}{p_{\mathbf{X}|Y}(\mathbf{x}|Y=0) + p_{\mathbf{X}|Y}(\mathbf{x}|Y=1)}.$$
(3.13)

If we further assume that samples for Y = 0 are drawn from some parametrized distribution with probability density $p_{\mathbf{X}}(\mathbf{x}|\theta_0)$ and similarly for Y = 1, then the best regression function can be rewritten as

$$s^*(\mathbf{x}) = \frac{p_{\mathbf{X}}(\mathbf{x}|\theta_1)}{p_{\mathbf{X}}(\mathbf{x}|\theta_0) + p_{\mathbf{X}}(\mathbf{x}|\theta_1)}.$$
 (3.14)

In particular, this regression function satisfies conditions of Theorem 1 since $s^*(\mathbf{x}) = m(\frac{p_{\mathbf{X}}(\mathbf{x}|\theta_0)}{p_{\mathbf{X}}(\mathbf{x}|\theta_1)})$, for $m(r(\mathbf{x})) = \frac{1}{1+r(\mathbf{x})}$, is monotonic with $\frac{p_{\mathbf{X}}(\mathbf{x}|\theta_0)}{p_{\mathbf{X}}(\mathbf{x}|\theta_1)}$. In other words, Proposition 2 yields a sufficient procedure for Theorem 1 to hold, guaranteeing that any universally strongly consistent algorithm can be used for learning s^* . Note however, that it is not a necessary procedure since Theorem 1 holds for any monotonic function m of the density ratio, i.e., not for $m(r(\mathbf{x})) = \frac{r(\mathbf{x})}{1+r(\mathbf{x})}$ only.

Equivalently, since $m^{-1}(s^*(\mathbf{x})) = \frac{1-s^*(\mathbf{x})}{s^*(\mathbf{x})} = r(\mathbf{x})$, Proposition 2 shows that the density ratio estimation problem is strictly equivalent to probabilistic classification, and that algorithms proposed to solve one can be used for solving the other. In this context, Theorem 1 shows that in case we learn a probabilistic classifier $s(\mathbf{x})$ which is imperfect up to a monotonic transformation of $r(\mathbf{x})$, then one can still resort to calibration (i.e., modelling $p_Y(y=s(\mathbf{x}))$) to compute $r(\mathbf{x})$ exactly.

[GL: Discuss that training on signal vs background instead of signal+background vs background is OK because this learns a function which is 1:1.]

[GL: Discuss the capacity of the classifier; Generalization to decomposed ratios Discuss about the need of calibration in case of imperfect classifiers (was first paragraphs of section 5)]

4 Generalized likelihood ratio tests

In the case of composite hypotheses $\theta \in \Theta_0$ against an alternative $\theta \in \Theta_0^C$, the generalized likelihood ratio³ test is commonly used

$$\lambda(\Theta_0) = \frac{\sup_{\theta \in \Theta_0} p(D|\theta)}{\sup_{\theta \in \Theta} p(D|\theta)}.$$
 (4.1)

This generalized likelihood ratio can be used both for hypothesis tests in the presence of nuisance parameters or to create confidence intervals with or without nuisance parameters. Often, the parameter vector is broken into two components $\theta = (\mu, \nu)$, where the μ components are considered parameters of interest while the ν components are considered nuisance parameters. In that case Θ_0 corresponds to all values of ν with μ fixed.

Denote the maximum likelihood estimator

$$\hat{\theta} = \arg\max_{\theta} p(D|\theta) \tag{4.2}$$

and the conditional maximum likelihood estimator

$$\hat{\hat{\theta}} = \underset{\theta \in \Theta_0}{\arg \max} p(D|\theta) . \tag{4.3}$$

It is not obvious that if we are working with the distributions $p(s|\theta)$ (for some particular $s(x;\theta_0,\theta_1)$ comparison) that we can find the same estimators. Fortunately, there is a construction based on $p(s|\theta)$ that works. The maximum likelihood estimate of Eq. 4.2 is the same as the value that maximizes the likelihood ratio with respect to $p(D|\theta_1)$ for some fixed value of θ_1 . This allows us to use Theorem 1 to reformulate the maximum likelihood estimate

$$\hat{\theta} = \arg\max_{\theta} \sum \ln \frac{p(x_e|\theta)}{p(x_e|\theta_1)} = \arg\max_{\theta} \sum \ln \frac{p(s(x_e;\theta,\theta_1)|\theta)}{p(s(x_e;\theta,\theta_1)|\theta_1)}. \tag{4.4}$$

It is important that we include the denominator $p(s(x_e; \theta, \theta_1)|\theta_1)$ because this cancels Jacobian factors that vary with θ .

³Also known as the profile likelihood ratio.

5 Learning the correct mapping and its distribution

In order for this approach to be useful in the likelihood-free setting, where it is not possible to evaluate the density $p(x|\theta)$, we need to be able to approximate both $s(x|\theta_0, \theta_1)$ and $p(s|\theta)$ based on samples $\{x_i\}$ drawn from the generative model $p(x|\theta)$. Denote the dimensionality reduction map $\hat{s}(x;\theta_0,\theta_1)$ and its distribution $\hat{p}(\hat{s}|\theta)$.

One strength of this approach is that it factorizes the approximation of the per-event likelihood ratio $(\hat{s}(x;\theta_0,\theta_1) \approx s(x;\theta_0,\theta_1))$ from the calibration procedure $(\hat{p}(\hat{s}|\theta) \approx p(\hat{s}|\theta))$. Thus, even if the classifier does a poor job of reproducing the level sets of the per-event likelihood ratio, the density of \hat{s} can still be well calibrated. In that case, one might loose power, but the resulting inference will still be valid. This point was made by Neal (2007) and is well appreciated by the particle physics community that typically takes a conservative attitude towards the use of machine learning classifiers precisely due to concerns about the calibration p-values in the face of nuisance parameters associated to the simulator.

5.1 The fixed discriminative classification setting

For fixed θ_0 and θ_1 we can generate large samples from each model and train a classifier. To be concrete, let us use $p(x|\theta_0)$ to generate training data $(x_i, y_i = 0)$ and $p(x|\theta_1)$ to generate training data $(x_i, y_i = 1)$. With balanced training data (p(y = 1) = p(y = 0) = 1/2) a quadratic loss function will lead to classifiers that approximate the regression function $\hat{s}(x) \approx p(y|x) = p(x|\theta_1)/(p(x|\theta_0) + p(x|\theta_1))$, which is monotonic with the desired per-event likelihood ratio q(x). Thus, standard supervised learning algorithms with various surrogate loss functions lead to discriminative classifiers that approximate a monotonic function of per-event likelihood ratio q(x).

5.2 Training a parametrized classifier

In order to provide parameter inference in the likelihood-free setting, we must train a family of classifiers parametrized by θ_0 and θ_1 , the parameters associated to the null and alternate hypotheses, respectively. While this could be done independently for all θ_0 and θ_1 , it is desirable and convenient to have a smooth evolution of the classification score as a function of the parameters. Thus, we anticipate a single learning stage based on training data with input $(x, \theta_0, \theta_1)_i$ and target y_i . Somewhat unusually, the unknown values of the parameters are taken as input to the classifier; their values will be specified via the enveloping (generalized) likelihood ratio of Eq. ??. We denote the learned family of classifiers $\hat{s}(x; \theta_0, \theta_0)$, and anticipate the training based roughly on the following algorithmic flow.

While the function $p(x|\theta_1)/(p(x|\theta_0) + p(x|\theta_1))$ will minimize the expected squared loss based on training data produced according to Algorithm ??, it is not clear how training data from $\theta'_0 \neq \theta_0$ and $\theta'_1 \neq \theta_1$ will influence a real world classifier with finite capacity. This is left as an area for future work.

5.3 Practicalities of embedding the classifier into the likelihood

Once the classifier is trained, we can use the generative model together with a univariate density estimation technique (e.g. histograms or kernel density estimation) to approximate $\hat{p}(\hat{s}|\theta)$ for specific parameter points. For an single parameter point, this is a tractable univariate density estimation problem. The challenge comes from the need to estimate this density for all values of θ . A straight forward approach would be to run the generative model on demand for any particular value of θ . In the context of a likelihood fit this would mean that the optimization algorithm that is trying to maximize the likelihood with

respect to θ needs access to the generative model $p(x|\theta)$. This can be impractical when the generative model is computationally expensive or has high-latency (for instance some human intervention is required to reconfigure the generative model). In HEP with a fixed classifier, it has become common to interpolate the distribution between discrete values of θ in order to produce a continuous parametrization for $\hat{p}(\hat{s}|\theta)$ (Cranmer et al., 2012).

There is a mild technical challenge in embedding the classifier into the likelihood. In the case of a fixed classifier $\hat{s}(x)$ it is possible to pre-compute $\hat{s}_e = \hat{s}(x_e)$ and never refer back to the original features x_e . In the parametrized setting it is not possible to pre-compute $\hat{s}(x_e; \theta_0, \theta_1)$ since one does not know the true values of θ_0 and θ_1 . Thus one must implement the embedding of the classifier as in Eq. ??. A concrete realization of this has been performed for probability models implemented with the RooFit probabilistic programing language and classifiers implemented with scikit-learn and TMVA (Verkerke and Kirkby, 2003; Pedregosa et al., 2011; Hocker et al., 2007).

One can easily imagine a number of approaches to embedding the classifier and estimating the density $\hat{p}(\hat{s}|\theta)$ and the relative merits of those approaches will depend critically on the dimensionality of θ and the computational cost of the generative model. We leave a more general strategy for this overarching optimization problem as an area of future work.

6 Applications in HEP

In HEP we are often searching for some class of events, generically referred to as *signal*, in the presence of a separate class of *background* events. For each event we measure some quantities x that have corresponding distributions $p_b(x|\nu)$ for background and $p_s(x|\nu)$ for signal, where ν are nuisance parameters describing uncertainties in the underlying physics prediction or response of the measurement device. The total model is a mixture of the

signal and background, and μ is the mixture coefficient associate to the signal component.

$$p(D \mid \mu, \nu) = \prod_{e=1}^{n} \left[\mu p_s(x_e \mid \nu) + (1 - \mu) p_b(x_e \mid \nu) \right] , \qquad (6.1)$$

New particle searches at the LHC are typically framed as hypothesis test where the null corresponds to $\mu = 0$, and the generalized likelihood ratio (profiling over ν as in Eq. 4.3) is used as a test statistic (Cowan et al., 2010). This approach was used for the discovery of the Higgs boson (The ATLAS Collaboration, 2012; The CMS Collaboration, 2012).

6.1 Typical usage pattern

In this setting, large samples of pseudo-data $\{x_i, y_i\}$ generated with some nominal values of the parameters ν_0 , where y=0 corresponds to the background density $p_b(x|\nu_0)$ and y=1 corresponds to signal density $p_s(x|\nu_0)$. Importantly, the y=1 label corresponds to the signal only, and not to the alternate signal-plus-background hypothesis. The resulting classifier approximates the regression function $p_s(x|\nu_0)/(p_s(x|\nu_0)+p_b(x|\nu_0))$, which is one to one with the likelihood ratio of the null to the alternate $p(x|\mu=0,\nu_0)/p(x|\mu,\nu_0)$ for all μ . Associating the y=1 label to the signal component has advantages because it helps the classifier focus its capacity on the relevant regions in the feature space, particularly when the signal is a very small perturbation to the background (i.e. $\mu \ll 1$).

Once the classifier is trained, large samples of pseudo-data are drawn from $p_s(x|\nu)$ and $p_b(x|\nu)$ and we estimate the distributions $\hat{p}_s(\hat{s}|\nu)$ and $\hat{p}_b(\hat{s}|\nu)$ continuously parametrized in ν . An example of the distributions of \hat{s} for the signal and background events with $\nu = \nu_0$ is shown in Figure 1.

These steps feed into a subsequent statistical test based on the observed data $D = (x_1, \ldots, x_n)$. For each event, the classifier is evaluated and one performs inference on a parameter μ related to the presence of the signal contribution. In particular, one forms the statistical

Figure 1: Left: an example of the distributions $p_b(\hat{s}|\nu)$ and $p_s(\hat{s}|\nu)$ when the classifier s is a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and other classifiers. (Figures taken from TMVA manual.)

$$p(D \mid \mu, \nu) = \prod_{e=1}^{n} \left[\mu \hat{p}_s(\hat{s}(x_e) \mid \nu) + (1 - \mu) \, \hat{p}_b(\hat{s}(x_e) \mid \nu) \right] . \tag{6.2}$$

6.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP. In fact, most discussions would related to the training and optimizing the classifier only consider $p_b(x)$ and $p_s(x)$ with $\nu = \nu_0$ being implicit. However, as experimentalists we know that we must account for various forms of systematic uncertainty, parametrized by nuisance parameters ν . In practice, we take the classifier as fixed and then propagate uncertainty through the classifier as in Eq. 6.2. Building the distribution $p(\hat{s}|\nu)$ for values of ν other than the nominal ν_0 used to train the classifier can be thought of as a calibration necessary for classical statistical inference; however, this classifier is clearly not optimal for $\nu \neq \nu_0$.

⁴Sometimes there is an additional Poisson term when expected number of signal and background events is known, which is referred to as an extended likelihood or marked Poisson model.

6.3 A more powerful approach

The standard use of machine learning in HEP can be improved by training a parametrized classifier corresponding to the generalized likelihood ratio test

$$\lambda(\mu) = \frac{p(D|\mu, \hat{\nu})}{p(D|\hat{\mu}, \hat{\nu})}, \qquad (6.3)$$

following the approach outlined in Section ??.

There is an interesting distinction between this approach and the standard use in which the classifier is trained for a fixed ν_0 . In the standard use one trains a classifier for signal vs. background, which is equivalent (in an ideal setting) to training a classifier for null (background-only) vs. alternate (signal-plus-backgound) since the resulting regression functions are one-to-one with each other. In contrast, in the case of the generalized likelihood ratio test

$$\frac{p(x|0,\hat{\nu})}{p(x|\hat{\mu},\hat{\nu})} = \frac{p_b(x|\hat{\nu})}{\hat{\mu}p_s(x_e|\hat{\nu}) + (1-\hat{\mu})p_b(x_e|\hat{\nu})},$$
(6.4)

the background components don't cancel and there is an additional term $p_b(x|\hat{\nu})/p_b(x|\hat{\nu})$. In practice, with classifiers of finite capacity, there will be some tradeoff between taking into account this additional term and the more challenging learning problem when μ is very small.

6.4 Decomposing tests between mixture models into their components

In this section we generalize the capacity focusing technique of training classifiers to discriminate between components of a mixture model. First, we generalize Eq. 6.1 to a mixture

model of several components

$$p(x|\theta) = \sum_{c} w_c(\theta) p_c(x|\theta) . \qquad (6.5)$$

It is possible to re-write the target likelihood ratio between two mixture models in terms of pairwise classification problems.

$$\frac{p(x|\theta_0)}{p(x|\theta_1)} = \frac{\sum_c w_c(\theta_0) p_c(x|\theta_0)}{\sum_{c'} w_{c'}(\theta_1) p_{c'}(x|\theta_1)}$$
(6.6)

$$= \sum_{c} \left[\sum_{c'} \frac{w_{c'}(\theta_1)}{w_{c}(\theta_0)} \frac{p_{c'}(x|\theta_1)}{p_{c}(x|\theta_0)} \right]^{-1}$$
(6.7)

$$= \sum_{c} \left[\sum_{c'} \frac{w_{c'}(\theta_1)}{w_{c}(\theta_0)} \frac{p_{c'}(s_{c,c',\theta_0,\theta_1}|\theta_1)}{p_{c}(s_{c,c',\theta_0,\theta_1}|\theta_0)} \right]^{-1}$$
(6.8)

The second line is a trivial, but useful decomposition into pair-wise classification between $p_{c'}(x|\theta_1)$ and $p_c(x|\theta_0)$. The third line uses Theorem 1 to relate the high-dimensional likelihood ratio into an equivalent calibrated likelihood ratio based on the univariate density of the corresponding classifier, denoted $s_{c,c',\theta_0,\theta_1}$. In the situation where the only free parameters of the model are the mixture coefficients w_c , then the distributions $p_c(s_{c,c',\theta_0,\theta_1}|\theta)$ are independent of θ and can be pre-computed (after training the discriminative classifier, but before evaluating the likelihood ratio). Equation 6.8 allows one to take advantage of both the parametrized classifier as in Eq. 6.4 and the capacity focusing technique in the typical HEP usage pattern.

6.5 Measuring particle properties

While the original motivation for this work was to improve the treatment of systematic uncertainties in new particle searches by parametrizing the classifier in terms of the nuisance parameters ν , the same approach can be used for parameter inference. In the case of new

particle searches the parameter of interest is the mixture coefficient for the signal component $p_s(x|\nu)$. When measuring particle properties the distribution of the features also depend on parameters such as a particle's mass and quantum numbers. This is easily accommodated by extending $p_s(x|\nu) \to p_s(x|\theta)$, where θ includes both parameters of interest and nuisance parameters.

This formalism represents a significant step forward in the usage of machine learning in HEP, where classifiers have always been used between two static classes of events and not parametrized explicitly in terms of the physical quantities we wish to measure. The work of (Whiteson and Whiteson, 2007) is similar as the stochastic optimization was directly trying to minimize the measurement uncertainty of a particle's mass; however, the resulting classifier was fixed. This approach also offers the advantage that it explicitly reformulates the per-experiment optimization to the per-event optimization, which is less computationally intensive.

Another approach that is similar in spirit is the so-called matrix element method, in which one directly computes an approximate likelihood ratio by performing a computationally intensive integral associated to the detector response (Volobouev, 2011). In the approach considered in this paper, the detector response is naturally handled by the Monte Carlo sampling used in the simulation of the detector; however, that integral is intractable for the matrix element method. Even with drastic simplifications of the detector response, the matrix element method can take several minutes of CPU time to calculate the likelihood ratio q(x) for a single event. The work here can be seen as aiming at the same conceptual target, but utilizing machine learning to overcome the complexity of the detector simulation. It also offers enormous speed increase for evaluating the likelihood at the cost of an initial training stage. In practice, the matrix element method has only been used for searches and measurement of a single physical parameter (sometimes with a single

nuisance parameter as in (Aaltonen et al., 2010)).

Contemporary examples where the technique presented here could have major impact on HEP include the measurement of coefficients to quantum mechanical operators describing the decay of the Higgs boson (Chen et al., 2015) and, if we are so lucky, measurement of the mass of supersymmetric particles in cascade decays (Allanach et al., 2000). Both of these examples involve data sets with many events, each with a feature vector x that has on the order of 10 components, and a parameter vector θ with 5-10 parameters of interest and possibly many more nuisance parameters. The state of the art for the operator coefficients of the Higgs decay uses the so-called matrix element likelihood analysis (MELA) in which the equivalent of $s(x; \theta_0, \theta_1)$ is approximated by neglecting detector effects (Gao et al., 2010; Bolognesi et al., 2012).

7 Related work

Scott and Nowak (2005) and Xin Tong (2013) consider the machine learning problem associated to Neyman-Pearson hypothesis testing. As in this work, they consider the situation where one does not have access to the underlying distributions, but only has i.i.d. samples from each hypothesis. This work generalizes that goal from the Neyman-Pearson setting to generalized likelihood ratio tests and emphasizes the connection with classification. Perhaps a formal treatment similar to the Neyman-Pearson case can be brought to bear in this more general setting. In a similarly titled work, Gutmann et al. (2014) advocate using the cross-validated classification accuracy as the similarity metric used in ABC. While the goal there is also parameter inference in the likelihood-free setting, "classifier ABC" is very different than the approach presented here. Jaakkola and Haussler (1998) explore a way of leveraging generative models to derive kernel functions for use in discriminative methods.

This interesting work is distinct from the point made here in which the generative model is being used for the purpose of providing training data and calibration. Zadrozny and Elkan (2001) emphasize the importance of calibrated probability estimates from decision trees and naive Bayesian classifiers and investigate various approaches to achieve this. In contrast to that work, we are not interested in calibrated probability estimates for p(y|x) for individual events, but instead we use the calibration to correct for non-linear transformations of the target likelihood ratio and, perhaps, to provide calibrated p-values based on those likelihood ratio tests. Ihler et al. (2004) take on a different problem (tests of statistical independence) by using machine learning algorithms to find scalar maps from the high-dimensional feature space that achieve the desired statistical goal when the fundamental high-dimensional test is intractable.

Neal (2007) also considered the problem of approximating the likelihood function when only a generative model is available. That work sketches a scheme in which one uses a classifier with both x and θ as an input to serve as a dimensionality reduction map. The key distinction comes in the handling of θ . Neal says "we cannot use the classifier on real data, since we don't know the correct value for $[\theta]$ " and goes on to outline an approach where one uses regression on a per-event basis to estimate $\hat{\theta}(x)$ and perform the composition $s(x; \hat{\theta}(x))$ (much like profiling).⁵ This can lead to a significant loss of information since (at least in most particle physics examples) a single event carries little information about the true value of θ , though the full data set D may be informative – for instance, a single observation would not be sufficient to estimate the variance of a distribution, though repeated observations would. The work of Neal correctly identifies this as an approximation of the target likelihood even in the case of a ideal classifier. In

⁵Neal considers a lower-dimensional 'bottlenecks' $\theta^* = g(\theta)$, which are not essential to the discussion here.

contrast, the approach described here does not eliminate the dependence of the classifier on θ .⁶ Instead, we embed a parametrized classifier into the likelihood and postpone the evaluation of the classifier to the point of evaluation of the likelihood when θ is explicitly being tested. This avoids the loss of information that occurs from the regression step $\hat{\theta}(x)$ proposed by Neal and leads to Theorem 1, which is an exact result in the case of an ideal classifier. In both cases, the quality of the classifier is factorized from the calibration of its density, which allows for valid inference even if there is a loss of power due to a non ideal classifier.

8 Conclusions

We have outlined a technique to reformulate generalized likelihood ratio test over a highdimensional data set with multiple events in terms of a univariate density of a classifier score. We have shown that a parametrized family of discriminative classifiers $\hat{s}(x;\theta_0,\theta_1)$ trained and calibrated with a simulator $p(x|\theta)$ can be used to approximate the likelihood ratio $\prod_i p(x_i|\theta_0)/p(x_i|\theta_1)$ even when it is not possible to directly evaluate the likelihood $p(x|\theta)$. It offers an alternative to approximate Bayesian computation for parameter inference in the likelihood-free setting that can also be used in the frequentist formalism without specifying a prior over the parameters. A strength of this approach is that it separates the quality of the approximation of the target likelihood from the quality of the calibration. The former is related to the ability of supervised learning approaches to classification,

⁶As a technical point, in Neal's work, the focus is on approximating the likelihood function (up to a multiplicative constant), which is equivalent to evaluating the ratio with respect to a fixed θ_1 as in Eq. 4.4. In Neal's case, the dependence on θ is eliminated via $s(x; \hat{\theta}(x))$ and the map is constant; however, in this approach the map ratio is explicitly parametrized in terms of θ , so the ratio is important for canceling the corresponding Jacobian factors.

which will continue to improve. The calibration procedure for a particular parameter point is fairly straight forward since it involves estimating a univariate density using a generative model of the data. The difficulty of the calibration stage is performing this calibration continuously in θ . Different strategies to this calibration are anticipated depending on the dimensionality of θ , the complexity of the resulting likelihood function, and the difficulties associated to running the simulator.

References

- Aaltonen, T. et al. (2010). Top Quark Mass Measurement in the Lepton + Jets Channel Using a Matrix Element Method and in situ Jet Energy Calibration. *Phys.Rev.Lett.*, 105:252001.
- Agostinelli, S. et al. (2003). GEANT4: A Simulation toolkit. *Nucl.Instrum.Meth.*, A506:250–303.
- Allanach, B., Lester, C., Parker, M. A., and Webber, B. (2000). Measuring sparticle masses in nonuniversal string inspired models at the LHC. *JHEP*, 0009:004.
- Bolognesi, S., Gao, Y., Gritsan, A. V., Melnikov, K., Schulze, M., et al. (2012). On the spin and parity of a single-produced resonance at the LHC. *Phys.Rev.*, D86:095031.
- Chen, Y., Di Marco, E., Lykken, J., Spiropulu, M., Vega-Morales, R., et al. (2015). 8D likelihood effective Higgs couplings extraction framework in $h \to 4\ell$. JHEP, 1501:125.
- Cowan, G., Cranmer, K., Gross, E., and Vitells, O. (2010). Asymptotic formulae for likelihood-based tests of new physics. *Eur. Phys. J.*, C71:1554.

- Cranmer, K., Lewis, G., Moneta, L., Shibata, A., and Verkerke, W. (2012). HistFactory: A tool for creating statistical models for use with RooFit and RooStats. CERN-OPEN-2012-016, http://inspirehep.net/record/1236448.
- Gao, Y., Gritsan, A. V., Guo, Z., Melnikov, K., Schulze, M., et al. (2010). Spin determination of single-produced resonances at hadron colliders. *Phys.Rev.*, D81:075022.
- Gutmann, M. U., Dutta, R., Kaski, S., and Corander, J. (2014). Likelihood-free inference via classification. http://arxiv.org/abs/1407.4981.
- Hocker, A., Stelzer, J., Tegenfeldt, F., Voss, H., Voss, K., et al. (2007). TMVA Toolkit for Multivariate Data Analysis. *PoS*, ACAT:040.
- Hörmander, L. (1990). The Analysis of Linear Partial Differential Operators I. Springer Science, Business Media.
- Ihler, A., Fisher, J., and Willsky, A. (2004). Nonparametric Hypothesis Tests for Statistical Dependency. *IEEE Transactions on Signal Processing*, 52(8):2234–2249. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1315943.
- Jaakkola, T. and Haussler, D. (1998). Exploiting Generative Models in Discriminative Classifiers. http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.7709.
- Neal, R. M. (2007). Computing likelihood functions for high-energy physics experiments when distributions are defined by simulators with nuisance parameters. In *Proceedings* of *PhyStat2007*, *CERN-2008-001*, pages 111–118. http://inspirehep.net/record/776337.
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,

- D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830.
- Scott, C. and Nowak, R. (2005). A neyman-pearson approach to statistical learning. *IEEE Trans. Inform. Theory*, 51:3806–3819. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.103.6850&rank=5.
- Sjostrand, T., Mrenna, S., and Skands, P. Z. (2006). PYTHIA 6.4 Physics and Manual. JHEP, 0605:026.
- The ATLAS Collaboration (2012). Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. *Phys.Lett.*, B716:1–29.
- The CMS Collaboration (2012). Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. *Phys.Lett.*, B716:30–61.
- Verkerke, W. and Kirkby, D. P. (2003). The RooFit toolkit for data modeling. *eConf*, C0303241:MOLT007.
- Volobouev, I. (2011). Matrix Element Method in HEP: Transfer Functions, Efficiencies, and Likelihood Normalization. http://arxiv.org/abs/1101.2259.
- Whiteson, S. and Whiteson, D. (2007). Stochastic optimization for collision selection in high energy physics. Association for the Advancement of Artificial Intelligence, 292.
- Xin Tong (2013). A Plug-in Approach to Neyman-Pearson Classification. *Journal of Machine Learning Research*, 14:3011–3040.

Zadrozny, B. and Elkan, C. (2001). Obtaining calibrated probability estimates from decision trees and naive bayesian classifiers. In *In Proceedings of the Eighteenth International Conference on Machine Learning*, pages 609–616. Morgan Kaufmann. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.3039.