Trees COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

Trees

In COMS10007, you used (rooted) trees to model heaps, recursion, and the decisions of comparison-based sorting algorithms.

In this course, we will think of trees as examples of graphs.

We define a **forest** to be a graph which contains no cycles, and a **tree** to be a **connected** graph with no cycles.

(So the components of a forest are trees, and all trees are forests!)

Notice how any edge we add to the tree from the last slide forms a cycle.

Notice how any edge we add to the tree from the last slide forms a cycle.

This is not a coincidence!

Lemma: If T = (V, E) is a tree, then any pair of vertices $u, v \in V$ is joined by a **unique** path uTv in T.

Proof: T is connected, so there is a path $P_1 = x_0 \dots x_k$ from u to v. Suppose there is another path $P_2 = y_0 \dots y_k$ from u to v.

Notice how any edge we add to the tree from the last slide forms a cycle.

This is not a coincidence!

Lemma: If T = (V, E) is a tree, then any pair of vertices $u, v \in V$ is joined by a **unique** path uTv in T.

Proof: T is connected, so there is a path $P_1 = x_0 \dots x_k$ from u to v. Suppose there is another path $P_2 = y_0 \dots y_k$ from u to v.

Then P_1 and P_2 must diverge from each other and come back together. Let $I = \min\{i : x_i \neq y_i\} - 1$ be the point of divergence. Let $J = \min\{i > I : x_i \in \{y_I, \dots, y_k\}\}$ be the point of remerging.

Let K be the corresponding point on P_2 , so $y_K = x_J$.

Then $x_1x_{i+1}...x_jy_{K-1}y_{K-2}...y_i$ is a cycle, so T is not a tree.

John Lapinskas Trees 3 / 13

Lemma 1: Any pair of vertices in a tree is joined by a unique path.

Lemma 2: Any *n*-vertex tree has n-1 edges.

Proof: We start by showing how to turn a tree T = (V, E) into a **rooted** tree, like those you worked with last year.

Let $r \in V$ be arbitrary — this will be the **root**. Every vertex $v \neq r$ has a unique path P_v from r to v by the lemma. Direct its edges from r to v.

Lemma 1: Any pair of vertices in a tree is joined by a unique path.

Lemma 2: Any *n*-vertex tree has n-1 edges.

Proof: We start by showing how to turn a tree T = (V, E) into a **rooted** tree, like those you worked with last year.

Let $r \in V$ be arbitrary — this will be the **root**. Every vertex $v \neq r$ has a unique path P_v from r to v by the lemma. Direct its edges from r to v.

Lemma 1: Any pair of vertices in a tree is joined by a unique path.

Lemma 2: Any *n*-vertex tree has n-1 edges.

Proof: We start by showing how to turn a tree T = (V, E) into a **rooted** tree, like those you worked with last year.

Let $r \in V$ be arbitrary — this will be the **root**. Every vertex $v \neq r$ has a unique path P_v from r to v by the lemma. Direct its edges from r to v.

Lemma 1: Any pair of vertices in a tree is joined by a unique path.

Lemma 2: Any *n*-vertex tree has n-1 edges.

Proof: We start by showing how to turn a tree T = (V, E) into a **rooted** tree, like those you worked with last year.

Let $r \in V$ be arbitrary — this will be the **root**. Every vertex $v \neq r$ has a unique path P_v from r to v by the lemma. Direct its edges from r to v.

Why are the directions consistent?

Suppose some path P_v directs $a \to b$. And suppose b is also on another path P_w .

Then both P_v and P_w must start with P_b , since P_b is the **unique** path from r to b. So P_w also directs $a \to b$.

Lemma 1: Any pair of vertices in a tree is joined by a unique path.

Lemma 2: Any *n*-vertex tree T = (V, E) has n - 1 edges.

Proof idea: Take an arbitrary root $r \in V$. For all vertices v, let P_v be the unique path from r to v. Direct T's edges along these paths.

Because these paths are unique, every vertex other than r has in-degree 1, and r has in-degree 0.

So by the directed handshake lemma:

$$|E| = \sum_{v \in V} d^{-}(v) = n - 1.$$

Bonus: We also just defined rooted trees in terms of graphs.

Lemma 1: Any pair of vertices in a tree is joined by a unique path.

Lemma 2: Any *n*-vertex tree has n-1 edges.

We **root** a tree T = (V, E) at $r \in V$ as follows. For all vertices $v \neq r$, let P_v be the unique path from r to v. Then direct each P_v from r to v.

In a **rooted tree** with root *r*:

u is an ancestor of v (or v is a descendant of u)
 if u is on P_v.

Lemma 1: Any pair of vertices in a tree is joined by a **unique** path.

Lemma 2: Any *n*-vertex tree has n-1 edges.

We **root** a tree T = (V, E) at $r \in V$ as follows. For all vertices $v \neq r$, let P_v be the unique path from r to v. Then direct each P_v from r to v.

In a **rooted tree** with root *r*:

- u is an ancestor of v (or v is a descendant of u)
 if u is on P_v.
- u is the **parent** of v (or v is a **child** of u) if $u \in N^-(v)$.

Lemma 1: Any pair of vertices in a tree is joined by a unique path.

Lemma 2: Any *n*-vertex tree has n-1 edges.

We **root** a tree T = (V, E) at $r \in V$ as follows. For all vertices $v \neq r$, let P_v be the unique path from r to v. Then direct each P_v from r to v.

In a **rooted tree** with root *r*:

- u is an ancestor of v (or v is a descendant of u)
 if u is on P_v.
- u is the **parent** of v (or v is a **child** of u) if $u \in N^-(v)$.
- The first level L_0 of T is $\{r\}$, and $L_{i+1} = N^+(L_i)$.
- The **depth** of T is $\max\{i: L_i \neq \emptyset\}$, e.g. this tree has depth 3.

Lemma 1: Any pair of vertices in a tree is joined by a unique path.

Lemma 2: Any *n*-vertex tree has n-1 edges.

We **root** a tree T = (V, E) at $r \in V$ as follows. For all vertices $v \neq r$, let P_v be the unique path from r to v. Then direct each P_v from r to v.

In a **rooted tree** with root *r*:

- u is an ancestor of v (or v is a descendant of u)
 if u is on P_v.
- u is the parent of v (or v is a child of u) if $u \in N^-(v)$.
- The first level L_0 of T is $\{r\}$, and $L_{i+1} = N^+(L_i)$.
- The **depth** of T is $\max\{i: L_i \neq \emptyset\}$, e.g. this tree has depth 3.

In a **rooted** tree: A **leaf** is a vertex with no children. In a **non-rooted** tree: A **leaf** is a degree-1 vertex.

These definitions agree except for a rooted tree whose root has one child.

Lemma 1: Any pair of vertices in a tree is joined by a unique path.

Lemma 2: Any *n*-vertex tree has n-1 edges.

A leaf is a degree-1 vertex.

Lemma 3: Any *n*-vertex tree T = (V, E) with $n \ge 2$ has at least 2 leaves.

Proof: Let x be the number of leaves in T.

By the handshaking lemma, $|E|=\frac{1}{2}\sum_{v\in V}d(v)$. Also, |E|=n-1.

Since T is connected and $n \ge 2$, every vertex has degree at least 1.

So all non-leaves have degree at least 2, and $\sum_{v \in V} d(v) \ge 2(n-x) + x$.

Plugging this in gives $|E| = n - 1 = \frac{1}{2} \sum_{v \in V} d(v) \ge n - \frac{x}{2}$.

Solving for x gives $x \ge 2$, so we're done!

The Fundamental Lemma of Trees

A tree is a connected graph with no cycles.

Lemma 1: Any pair of vertices in a tree is joined by a unique path.

Lemma 2: Any n-vertex tree has n-1 edges.

When you're actually working with trees, it's good to have one single result that tells you that all the "obvious" things are true. This is that result.

Lemma: The following are equivalent for an *n*-vertex graph T = (V, E):

- (A) T is connected and has no cycles, i.e. is a tree;
- (B) T has n-1 edges and is connected;
- (C) T has n-1 edges and has no cycles;
- (D) T has a unique path between any pair of vertices.

We've already proved (A) \Rightarrow (D) (Lemma 1)... as well as (A) \Rightarrow (B) and (A) \Rightarrow (C) (Lemma 2).

- (A) T is connected and has no cycles, i.e. is a tree;
- (B) T has n-1 edges and is connected;
- (C) T has n-1 edges and has no cycles;
- (D) T has a unique path between any pair of vertices.

$$(A) \Rightarrow (B)$$
, (C) and (D) :

(D) \Rightarrow (A): T has a path between any pair of vertices, so it's connected.

And on any cycle $v_0 \dots v_k$, there are two different paths from v_0 to v_k :

• the path $v_0 \dots v_k$; and

John Lapinskas Trees 9/13

- (A) T is connected and has no cycles, i.e. is a tree;
- (B) T has n-1 edges and is connected;
- (C) T has n-1 edges and has no cycles;
- (D) T has a unique path between any pair of vertices.

$$(A) \Rightarrow (B)$$
, (C) and (D) :

(D) \Rightarrow (A): T has a path between any pair of vertices, so it's connected.

And on any cycle $v_0 \dots v_k$, there are two different paths from v_0 to v_k :

- the path $v_0 \dots v_k$; and
- the edge v_0v_k .

- (A) T is connected and has no cycles, i.e. is a tree;
- (B) T has n-1 edges and is connected;
- (C) T has n-1 edges and has no cycles;
- (D) T has a unique path between any pair of vertices.

$$(A) \Rightarrow (B)$$
, (C) and (D) :

(D) \Rightarrow (A): T has a path between any pair of vertices, so it's connected.

And on any cycle $v_0 \dots v_k$, there are two different paths from v_0 to v_k :

- the path $v_0 \dots v_k$; and
- the edge v_0v_k .

So T has no cycles.

- (A) T is connected and has no cycles, i.e. is a tree;
- (B) T has n-1 edges and is connected;
- (C) T has n-1 edges and has no cycles;
- (D) T has a unique path between any pair of vertices.

$$(A) \Rightarrow (B), (C) \text{ and } (D): \qquad \checkmark \qquad (D) \Rightarrow (A):$$

(C) \Rightarrow (A): Suppose T has no cycles and components C_1, \ldots, C_r .

Each of these components has no cycles, and is connected, so it's a tree. So by (A) \Rightarrow (B) (or Lemma 2), each C_i has $|V(C_i)| - 1$ edges.

Every edge of T is in some C_i , so $|E| = \sum_i (|V(C_i)| - 1) = n - r$. But we know |E| = n - 1, so we must have r = 1.

John Lapinskas Trees 10 / 13

- (A) T is connected and has no cycles, i.e. is a tree;
- (B) T has n-1 edges and is connected;
- (C) T has n-1 edges and has no cycles;
- (D) T has a unique path between any pair of vertices.
- $(A) \Rightarrow (B), (C) \text{ and } (D): \qquad \checkmark \qquad (C) \text{ and } (D) \Rightarrow (A): \qquad \checkmark$
- (B) \Rightarrow (A): We will need to use:
- **Claim:** If T = (V, E) is connected, and $e \in E$ is on a cycle, then T e is connected.
- **Proof from Claim:** Suppose T is not a tree, so it has a cycle.
- We form a new graph T' by repeatedly removing edges from cycles in T (in arbitrary order) until no more cycles remain.
- Then T' has no cycles, and the Claim implies it's connected, so it's a tree. So by $(A) \Rightarrow (B)$ (or Lemma 2), T' has n-1 edges.
- So T must have had **more than** n-1 edges a contradiction.

John Lapinskas Trees 11 / 13

For all $a, b \in V$, we must find a path from a to b in T - e.

Let $P = x_0 \dots x_k$ be a path from a to b in T.

If *e* **is not in** *P*: Then *P* is the path we want.

If e is in P: Write $e = \{x_I, x_{I+1}\}$. Let $C = y_0 \dots y_\ell$ be a cycle in T containing e — without loss of generality we can take $y_0 = x_I$ and $y_\ell = x_{I+1}$.

Then $x_0 \dots x_l y_1 \dots y_\ell x_{l+2} \dots x_k$ is a walk from a to b in T-e. Any walk from a to b contains a path from a to b (see quiz 2), so we're done. \checkmark

For all $a, b \in V$, we must find a path from a to b in T - e.

Let $P = x_0 \dots x_k$ be a path from a to b in T.

If *e* **is not in** *P*: Then *P* is the path we want.

If e is in P: Write $e = \{x_I, x_{I+1}\}$. Let $C = y_0 \dots y_\ell$ be a cycle in T containing e — without loss of generality we can take $y_0 = x_I$ and $y_\ell = x_{I+1}$.

Then $x_0 \dots x_l y_1 \dots y_\ell x_{l+2} \dots x_k$ is a walk from a to b in T - e. Any walk from a to b contains a path from a to b (see quiz 2), so we're done. \checkmark

For all $a, b \in V$, we must find a path from a to b in T - e.

Let $P = x_0 \dots x_k$ be a path from a to b in T.

If *e* **is not in** *P*: Then *P* is the path we want.

If e is in P: Write $e = \{x_I, x_{I+1}\}$. Let $C = y_0 \dots y_\ell$ be a cycle in T containing e — without loss of generality we can take $y_0 = x_I$ and $y_\ell = x_{I+1}$.

Then $x_0 \dots x_l y_1 \dots y_\ell x_{l+2} \dots x_k$ is a walk from a to b in T-e. Any walk from a to b contains a path from a to b (see quiz 2), so we're done.

For all $a, b \in V$, we must find a path from a to b in T - e.

Let $P = x_0 \dots x_k$ be a path from a to b in T.

If *e* **is not in** *P*: Then *P* is the path we want.

If e is in P: Write $e = \{x_I, x_{I+1}\}$. Let $C = y_0 \dots y_\ell$ be a cycle in T containing e — without loss of generality we can take $y_0 = x_I$ and $y_\ell = x_{I+1}$.

Then $x_0 \dots x_l y_1 \dots y_\ell x_{l+2} \dots x_k$ is a walk from a to b in T-e. Any walk from a to b contains a path from a to b (see quiz 2), so we're done. \checkmark

- (A) T is connected and has no cycles, i.e. is a tree;
- (B) T has n-1 edges and is connected;
- (C) T has n-1 edges and has no cycles;
- (D) T has a unique path between any pair of vertices.

Our reward for proving this lemma is: we never have to think about basic tree properties in this level of detail ever again. (Except on the exam!)

And there was much rejoicing.