Métodos Numéricos para la Ciencia e Ingeniería Informe Tarea 2

Benjamín Guerrero 1 de Octubre, 2015

1. Introducción

Sea una partícula de masa m que solo se mueve verticalmente en el eje Y, rebotando contra un suelo que oscila de forma sinusoidal con amplitud A y frecuencia ω . El choque es inelástico, y sigue la siguiente regla:

$$v_p'(t^*) = (1+\eta)v_s(t^*) - \eta v_p(t^*)$$

En la fórmula, t^* es el instante del bote, v_p y v_p son las velocidades justo antes y justo después del bote, v_s es la velocidad del suelo en ese instante y η es un coeficiente de restitución (η entre 0, y 1; η =1 corresponde al caso elástico).

Inicialmente (t=0), la partícula está en contacto con el suelo, y su velocidad hacia arriba es mayor a la velocidad del suelo (se despega de éste).

Los parámetros del problema son (A, ω, η, m, g) y la condición inicial (y(0), v(0)). Se adimensializa el problema con m=1, g=1, y A=1. y(0) ya se escogió (pegado al suelo), así que solo queda por elegir v(0), η y ω .

Primero, se pide escribir una rutina que permita calcular (y_{n+1}, v'_{n+1}) dados (y_n, v'_n) , que son la posición y velocidad luego del n-ésimo choque.

Luego, usando η =0.15 y para ω = 1.66, se pide estimar N_{relax} , el número de botes necesarios para relajar el sistema.

Después, se pide probar con un par de otros valores para ω entre 1.66 y 1.7, y comparar el resultado de N_{relax} .

Finalmente, se pide hacer un gráfico de v_n versus ω con ω entre 1.66 y 1.79 y n =2× N_{relax} ,..., 2× N_{relax} + 49, es decir, plotear 50 valores de v_n por cada valor de ω .

2. Procedimiento

Para empezar, se crea un programa llamado rebote_*pelota.py*, que realizará lo pedido. Por conveniencia, se programan las siguientes funciones:

 $Ppiso_oscilador$, que determina la posición del piso. Como es una función sinusoidal, esta es así: $y(t) = Asen(\omega t)$. Derivando esta función se obtiene $Vpiso_oscilador$, que determina la velocidad del piso de la siguiente manera: $V(t) = A\omega \cos \omega t$.

Luego tenemos $arco_pelota$ y $velocidad_pelota$, que determinan la posición y la velocidad de la pelota, respectivamente. Como es un movimiento uniforme acelerado, las ecuaciones respectivas son $y(t) = y_o + V_o - \frac{1}{2}gt^2$, y $V(t) = V_o - gt$.

Finalmente, tenemos *rebote_pelota*, que calcula la velocidad de la pelota después del rebote. Esta función es la descrita en la introducción:

$$v_p'(t^*) = (1+\eta)v_s(t^*) - \eta v_p(t^*)$$

Una vez hecho esto, se realizan una serie de inputs para que el usuario entre los valores de v_n , y_n , η , y ω . También se especifica si el piso va subiendo o bajando. Se añadieron while loops que aseguran que los valores de y_n , y η no estén fuera de sus límites.

Luego, haciendo el reverso de la función $Ppiso_oscilador$, se saca t_n , el tiempo inicial asociado (este tiempo dependerá si el piso sube o baja).

Después, se usa el método de Brent para sacar la raíz de $Ppiso_oscilador-arco_pelota$, en función de t. Esto da t^* , el tiempo del siguiente rebote. Luego, con ese tiempo, se sacan $Y_{s(n+1)}$ y $V_{s(n+1)}$, la posición y velocidad del piso en el momento t^*+t_n . También se puede sacar la velocidad de la pelota justo antes del choque, y, usando $rebote_pelota$, se saca la velocidad de la pelota después del rebote. Así, se tiene lo pedido.

- 3. Resultados
- 4. Conclusión