(19) 世界知的所有権機関 国際事務局

1977 | 1877 | 1879 | 1879 | 1879 | 1879 | 1879 | 1879 | 1879 | 1879 | 1879 | 1879 | 1879 | 1879 | 1879 | 1879

(43) 国際公開日 2000 年12 月14 日 (14.12.2000)

PCT

(10) 国際公開番号 WO 00/75245 A1

(51) 国際特許分類7: C09D 11/00, B41M 5/00, B41J 2/01

(21) 国際出願番号:

PCT/JP00/03737

(22) 国際出願日:

2000年6月8日 (08.06.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

1999年6月9日(09.06.1999) 特願平11/162106 1999年6月9日(09.06.1999) 特願平11/162107 1999年6月9日(09.06.1999) JP 特願平11/162108 1999年6月9日 (09.06.1999) JР 特願平11/162675 JP 特願平11/163781 1999年6月10日(10.06.1999) 1999年6月10日(10.06.1999) JP 特願平11/163783 JP 特顧2000/46400 2000年2月23日(23.02.2000)

(71) 出願人 (米国を除く全ての指定国について): セイコー エプソン株式会社 (SEIKO EPSON CORPORATION) [JP/JP]; 〒163-0811 東京都新宿区西新宿2丁目4番1号 Tokyo (JP). (72) 発明者; および

- (75) 発明者/出願人 (米国についてのみ): 小松英彦 (KO-MATSU, Hidehiko) [JP/JP]. 中村弘人 (NAKAMURA, Hiroto) [JP/JP]. 矢竹正弘 (YATAKE, Masahiro) [JP/JP]. 林 広子 (HAYASHI, Hiroko) [JP/JP]. 松崎 眞 (MAT-SUZAKI, Makoto) [JP/JP]. 伊藤文嗣 (ITO, Fumitsugu) [JP/JP]. 太田 等 (OHTA, Hitoshi) [JP/JP]; 〒392-8502 長野県諏訪市大和3丁目3番5号 セイコーエプソン株式会社内 Nagano (JP).
- (74) 代理人: 弁理士 宮越典明(MIYAKOSHI, Noriaki); 〒107-6029 東京都港区赤坂一丁目12番32号 アーク 森ビル29階 信栄特許事務所 Tokyo (JP).
- (81) 指定国 (国内): JP, US.
- (84) 指定国 (広域): ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類:

-- 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: INK FOR INK-JET RECORDING AND PROCESS FOR PRODUCING THE SAME, INK SET FOR INK-JET RECORDING, AND INK CARTRIDGE

➡ (54) 発明の名称: インクジェット記録用インク及びその製造方法、インクジェット記録用インクセット、並びに、 ▼ インクカートリッジ

(57) Abstract: An ink for ink-jet recording which comprises: pigment particles having sulfur-containing dispersibility-imparting groups chemically bonded to the surface thereof with a sulfurized treating agent; an infiltrating agent; and water. It may be: (a) an ink wherein the sulfur content in the liquid component(s) of the ink is not higher than a given level; (b) an ink wherein the amount of the sulfur-containing dispersibility-imparting groups is not smaller than a given value; (c) an ink wherein the sulfur-containing dispersibility-imparting groups and the counter ions are specific cations; (d) an ink containing a specific antiseptic; or (e) an ink containing a specific infiltrating agent. The ink can give a printed image free from blurring and having quick-drying properties and a high density. It further has high storage stability and can be easily prepared. Also provided are an ink set for ink-jet recording and an ink cartridge which each contains the ink.

(57) 要約:

硫黄を含む処理剤により硫黄含有分散性付与基が表面に化学結合された顔料粒 子、浸透剤および水を少なくとも含むインクジェット記録用インクであって、

- (a) 該インクの液性成分中の硫黄分含有量を一定レベル以下に抑えたインク、
- (b) 前記硫黄含有分散性付与基の量を一定以上としたインク、(c) 前記硫黄含有分散性付与基が特定のイオン基であり、かつカウンターイオンであるカチオンを特定したインク、(d) 特定の防腐剤を含むインク、(e) 特定の浸透剤を含むインクであり、印字にじみが無く、また、速乾性および印字濃度が高い画像を得ることができ、更に、保存安定性が高く、調製が簡便なインクジェット記録用インクを提供する。また、上記インクを含むインクジェット記録用インクセット及びインクカートリッジを提供する。

明細書

インクジェット記録用インク及びその製造方法、インクジェット記録用インク セット、並びに、インクカートリッジ

技術分野

本発明は、インクジェット記録用インク及びその製造方法、インクジェット記録用インクセット、並びに、インクカートリッジに関する。

特に、本発明は、硫黄を含む処理剤により硫黄含有分散性付与基が表面に化学 結合された顔料粒子、浸透剤および水を少なくとも含むインクジェット記録用イ ンクであって、

- (a) 該インクの液性成分中の硫黄分含有量を一定レベル以下に抑えたインクジェット記録用インク(以下"本発明の第1のインク"という)、
- (b) 前記硫黄含有分散性付与基の量を一定以上としたインクジェット記録用インク(以下"本発明の第2のインク"という) およびその製造方法、
- (c) 前記硫黄含有分散性付与基が特定のイオン基であり、かつカウンターイオンであるカチオンを特定したインクジェット記録用インク(以下"本発明の第3のインク"という)およびその製造方法、
- (d) 特定の防腐剤を含むインクジェット記録用インク (以下 "本発明の第4のインク" という)、
- (e) 特定の浸透剤を含むインクジェット記録用インク (以下 "本発明の第5のインク" という)、

に関する。

また、本発明は、前記本発明の第1のインク、第2のインクを含むインクジェット記録用インクセットに関する。さらに、本発明は、特にインクジェット記録 装置用のインクカートリッジに関する。

背景技術

(インクに関する従来技術)

インクジェットプリンタ用インクの着色剤としては、従来から主に染料が使用 されてきたが、堅牢性に優れる顔料を利用することが検討されてきている。

顔料は、耐水性や耐光性等の堅牢性の点では染料よりも優れているものの、染料と異なり水への溶解性がないため、顔料インクでは、顔料を水中に微粒子状で安定に分散させることが重要になる。また、インクの浸透性向上を目的として浸透剤を配合した場合、顔料粒子の分散安定性を著しく阻害し、そのためインクの保存安定性(放置安定性)が確保できなくなってしまう。

そこで、顔料粒子表面を水に濡れやすくし、顔料粒子の凝集・沈降を防止する方法として、各種界面活性剤や水性樹脂等の分散剤を使用して顔料粒子を水性媒体上に分散する手法がとられている。例えば、特開平3-157464号公報には、アセチレングリコール系浸透剤を使用した顔料インクにおいて、顔料粒子の分散剤としてポリマー分散剤を、水性媒体として水、不揮発性有機溶剤、低級アルコールを使用することでその分散安定性を確保する検討が行われている。しかし、このように顔料粒子に分散剤を用いると、インク調製時の要素が多くなり、粘度などのインク物性を所望に設定するのが困難であった。また、この顔料インクにおいても、印字濃度を確保しにくいという課題については未解決である。

顔料を水中に分散させる他の手法として、顔料微粒子の表面にスルホン酸基を 導入する技術も提案されている。例えば、特開平10-110129号公報には、 活性プロトンを有さない溶剤中に分散させた有機顔料をスルホン化剤で処理して 得られるスルホン化表面処理有機顔料を含むインクジェット用記録液が記載され ている。同公報の記載によれば、前記のインクジェット用記録液は、安定な分散 性を有し、ノズルでの吐出安定性が良好であるとされている。また、特開平11 -49974号公報には、スルホン酸基を導入した有機顔料塊状体を1価金属イ オンで処理することにより、表面を正帯電させる有機顔料塊状体を調製すること が記載されており、更に、その表面正帯電有機顔料塊状体から調製された顔料微 粒子、分散剤、及び水を含み、貯蔵安定性に優れた水系インク組成物が記載され ている。

上記両公報に見られる表面処理顔料粒子を用いたインクでは、これまでの顔料 系インクジェットインクに対して種々の要求に対して優れるものとなったが、依 然として、印字品質やインクの乾燥性を付与する為に添加する様々な成分との組 み合わせにおいて、インクの保存安定性の観点から不満足なものであった。

一方、インクジェットプリンタ用インクには、種々のインク物性が要求され、特に、保存安定性、及び吐出安定性(ドット抜け及び目詰まり等の防止)を確保することが重要である。更に、記録紙上への印字に関しては、次の(1)~(3)の印字特性が要求される。

- (1) 印字画像に不規則なにじみが少ないこと。
- (2) 印字画像が印字後、素早く乾燥すること。
- (3) 印字画像の印字濃度が高いこと。

上記(1)~(3)のような条件を満たす為に以前から様々な検討が行われている。例えば、インクの浸透性を向上することで印字画像のにじみ低減と乾燥性を向上させることが検討されており、米国特許第5156675号明細書にはジエチレングリコールモノブチルエーテルの使用が、米国特許第5183502号明細書にはアセチレングリコール系の界面活性剤の使用することが検討されている。

しかしながら、上記に示すような浸透剤を使用してインクの浸透性を大きく向上したインクでは、着色剤も記録紙中に深く浸透することとなり、印字画像の印字濃度を確保しにくいという課題が発生する。

そこで、インクジェットプリンタ用インクとしては、前記したインク物性、特に保存安定性および吐出安定性(ドット抜け及び目詰まり等の防止)を確保し、しかも前記(1)~(3)の印字特性を、それぞれ同時に満足することが望まれている。

(インクに関する従来技術:主として浸透剤について)

インクジェット記録に用いられるインクには、印字の乾燥性がよいことや印字のにじみがないこと、すべての被記録体表面に均一に印字できること、多色の場合色が混じり合わないことなどの特性が要求されている。ここで、特に問題になるのは、被記録体として紙を用いた場合、その浸透性の違う繊維によるにじみの発生が生じやすいということである。

従来のインクジェット記録用インクでは、特公平2-2907号公報のように、 湿潤剤としてグリコールエーテルを用いたり、特公平1-15542号公報のよ うに、水溶性有機溶剤を用いたり、あるいは、特公平2-3837号公報のよう に、染料溶解促進剤として用いられた例が多かった。

また、浸透性を向上させるため、米国特許第5156675号明細書のように、ジェチレングリコールモノブチルエーテルを添加したり、米国特許第5183502号明細書のように、アセチレングリコール系の界面活性剤であるサーフィノール465(エアープロダクツ社製)を添加したり、あるいは、米国特許第5196056号明細書のように、ジェチレングリコールモノブチルエーテルとサーフィノール465の両方を添加することなどが検討されている。ジェチレングリコールモノーnーブチルエーテルは"ブチルカルビトール"と呼ばれ、例えば米国特許第3291580号明細書に記載されている。あるいは、米国特許第208372号明細書では、ジェチレングリコールのエーテル類をインクに用いることなどが検討されている。

さらに、顔料を用いた例としては、多くは、主に浸透性を抑えて紙の表面でのインクのぬれを抑制し、これにより、印字品質を確保する検討がなされ、実用化されている。あるいは、グリコールエーテルと顔料との組み合わせは、特開昭56-147861号公報のように、顔料にトリエチレングリコールモノメチルエーテルを用いた例や、特開平9-111165号公報のように、エチレングリコール・ジエチレングリコールあるいはトリエチレングリコールのエーテル類を用いた例などもある。

(インクセットに関する従来技術)

インクジェット記録方法は、インク組成物の小滴を飛翔させ、紙等の記録媒体 に付着させて印刷を行う印刷方法である。この方法は、比較的安価な装置で高解 像度、高品位な画像を高速で印刷可能であるという特徴を有する。

インクジェット記録方法としては、近年、多価金属塩溶液を記録媒体に適用した後、少なくとも一つのカルボキシル基を有する染料材を含むインク組成物を適用する方法が提案されている(例えば、特開平5-202328号公報等)。この方法においては、多価金属イオンと染料から不溶性複合体が形成され、この複合体の存在により、耐水性があり、かつカラーブリードがない高品位の画像を得る

ことができるとされている。

また、少なくとも浸透性を付与する界面活性剤または浸透性溶剤、および、塩を含有するカラーインクと、この塩との作用により増粘または凝集するブラックインクとを組み合わせて使用することにより、画像濃度が高く、かつカラーブリードがない高品位のカラー画像が得られるという提案もなされている(特開平6-106735号公報参照)。すなわち、塩を含有した第一液とインク組成物との二液を印字することで、良好な画像が得られるとするインクジェット記録方法が提案されている。

インクジェット記録方法において、最近では、複数のカラーインク組成物を用意し、インクジェット記録によってカラー画像を形成することが行われている。 一般に、カラー画像の形成は、イエローインク組成物、マゼンタインク組成物およびシアンインク組成物の3色、さらに場合によってブラックインク組成物を加えた4色によって行われている。

このようなカラー画像の形成に用いられるインク組成物には、それ自体が良好 な発色性を有していることに加え、複数のインク組成物と組み合わせたときに、 良好な中間色を発色することが求められる。

(インクカートリッジに関する従来技術)

インクジェットプリンタ等のプリンタでは、一般的にインクカートリッジを用いてインクをプリンタに供給している。インクカートリッジは、ケース内に多孔質体を含み、その多孔質体にインクを含浸させる。

インク合浸用として利用する多孔質体には種々の反応性物質や不純物が付着していたり、残留していることが多い。したがって、これらの多孔質体にインクを含浸させると、多孔質体からインク中へ反応性物質や不純物が溶出し、インク組成を変化させたり、インク中の配合成分と反応して結晶を形成することにより、印刷特性に影響を与えることがある。例えば、インク含浸用多孔質体として広範に利用されているポリエーテルウレタンフォームの場合には、その製造過程で触媒として有機金属化合物(例えば有機錫化合物)が用いられているので、ポリエーテルウレタンフォームがインクと接触すると、インク中へ有機金属化合物が溶出

し、インク中で有機金属化合物が再結晶してノズル内に付着することになる。そのため、吐出インクの飛行曲がりを生じたり、ノズルを閉塞させることがある。

従って、前記したインク物性、特に保存安定性および吐出安定性を確保し、しかも前記(1)~(3)の印字特性をそれぞれ同時に満足するインクジェットプリンタ用インクを開発すると同時に、そのようなインクジェットプリンタ用インクのインク物性及び印字特性を実質的に変化させないインクカートリッジの開発が望まれている。

発明の開示

(発明が解決しようとする課題)

本発明者等は、前記インクジェットプリンタ用インク、インクジェットプリンタ用インクセット、インクカートリッジにそれぞれ要求される点について鋭意研究を重ねた結果、特に、硫黄を含む処理剤により硫黄含有分散性付与基が表面に化学結合された特定の顔料粒子を開発し、本発明を完成したものである。以下、本発明に係る"インクジェット記録用インク(本発明の第1~第4のインク)""インクジェット記録用インク(本発明の第5のインク)""インクジェット記録用インクセット""インクカートリッジ"に大別して、本発明の目的(課題)を詳細に説明する。

<本発明に係るインクジェット記録用インク(本発明の第1~第4のインク)の目的(課題)>

本発明者等は、インクジェット記録用インクに求められる前記したインク物性 及び印字特性を同時に満足するインクについて鋭意研究した結果、硫黄を含む処 理剤により硫黄含有分散性付与基が表面に化学結合された顔料粒子、浸透剤およ び水を少なくとも含むインクジェット記録用インクであって、

- (a) 該インクの液性成分中の硫黄分含有量を一定レベル以下に抑えること(本発明の第1のインク)、
- (b) 前記分散性付与基の量を一定以上とすること(本発明の第2のインク)、
- (c) 前記分散性付与基が特定のイオン基であり、かつカウンターイオンである カチオンを特定すること(本発明の第3のインク)、

(d) 特定の防腐剤を含むインクジェット記録用インク(本発明の第4のインク)、 により、前記のインク物性及び印字特性を同時に満足するインクジェットプリン タ用インクを実現することができる、ことを見い出した。

本発明に係るインクジェット記録用インク(本発明の第1~第4のインク)は、 上記知見に基づくものであって、その目的とするところは、堅牢性(耐光性、耐水性等)に優れる顔料インクにおいて、インクの放置安定性を確保しつつ、しか もインクジェットプリンタ用インクにおいて要求される以下の特性

- (1) 印字画像に不規則なにじみが少ないこと、
- (2) 印字画像が印字後、素早く乾燥すること、
- (3) 印字画像の印字濃度が高いこと、
- (4) インクの優れた保存安定性を確保すること、
- (5) インク調製が簡便であること、

をすべて同時に満足するインクジェット記録用インク(本発明の第1~第4のインク)を提供することにある。

<本発明に係るインクジェット記録用インク(本発明の第5のインク)の目的(課題)>

前記「(インクに関する従来技術:主として浸透剤について)」の項で記載したように、インクの浸透性向上について検討されているが、従来の技術では、インクの紙に対する浸透性が不十分な場合が多く、紙の表面でぬれを抑える方法では、普通紙、特に多用される再生紙に対しては、滲んでしまい、印字の乾燥に時間がかかるため、連続印字の場合、印字した紙上のインクが乾きにくく、すぐ重ねることができないという課題を有していた。また、再生紙は、様々な紙の成分が混じっていて、その浸透速度が異なるものの、集合体であるため、それらの浸透速度の差によってにじみやすい。

そして、顔料を用いたインクでは、被記録媒体として通常のサイズ剤を有する 紙等に印字する場合、そのインクにある程度浸透性を付与しないと、顔料が紙等 の表面に残り、擦過性が悪くなるという課題もある。しかし、浸透性が中途半端 であると、均一な印字を行なうためには紙種が制限されたり、印字画像の低下を 引き起こしやすい。また、顔料を用いたインクでは、浸透性を制御するためグリコールエーテル類として特開昭56-147861号公報に用いるようなメチルエーテル類を用いることが多い。また、ブチルエーテル類で浸透性を向上させて多くの紙に滲みを少なく印字できる顔料系のインクジェット記録用のインクについても未だ知られていない。

そこで、本発明の第5のインクは、このような課題を解決するもので、その目的(課題)とするところは、浸透性が非常に速く、普通紙、近年多用される再生紙あるいはコート紙に対して、殆ど滲まない印字が可能であり、高い印字品質が得られるインクジェット記録用インクを提供することにある。

<本発明に係るインクジェット記録用インクセットの目的(課題)>

インクの着色剤として顔料を用いた場合、その種類毎に異なる表面物性を有するため、分散安定化を図る目的で、適宜加える分散剤の種類や添加量を変えて各顔料に適した分散手法を選択しなければならない。このような分散体の構成では、次の(6)、(7)のような課題(問題点)が生じる。

- (6) 適切な色再現範囲および高彩度が得られる顔料をインクの着色剤として選択しても、インクにした場合の物性値がインクジェットとして好ましい範囲とならず、結局、本来顔料の組み合わせが本質的に有する能力を活かしきれないという問題が生じる。
- (7) インクジェット記録用インクは、紙への浸透性を高めることでカラーブリードの防止を達成する場合が多いが、紙へ浸透性を付与するためのインク添加物は、往々にして顔料への分散剤の吸着をはずし、凝集物を生じたり、インクの物性値変化を引き起こすなどの問題が生じる。

本発明者等は、インクの着色剤として顔料を用いたインクジェット記録用インクセットにおいて、各顔料の表面状態を同じようにすることにより上記問題点を解消し得るとの知見を得た。また、特定の顔料の組み合わせが、良好なカラー画像を実現できるとの知見を得た。

本発明に係るインクジェット記録用インクセットは、上記知見に基づくものであって、その目的とするところは、

PCT/JP00/03737

- ・顔料濃度の最適化が可能であり、顔料インクの設計が極めて容易に行うことができ、かつ所望の中間色を発色させることができ、良好なカラー画像を実現し得るインクジェット記録用インクセットを提供することにあり、
- ・特定の顔料を組み合わせることにより、さらに良好なカラー画像、とりわけ、 良好な色相を実現し得るインクジェット記録用インクセットを提供することにあ り、
- ・インクの分散安定性に優れるインクジェット記録用インクセットを提供することにある。

く本発明に係るインクカートリッジの目的(課題)>

本発明者らは、種々の表面処理顔料粒子を含むインクにおいて、前記した本発明の第1のインクのように、硫黄含有量を一定レベル以下に抑制することにより、前記のインク物性及び印字特性を同時に満足するインクジェット記録用インクを 実現することができることを見出し、更に、このインクをインク含浸用フォーム に含浸させることにより、優れたインクカートリッジを製造することができるこ とを見い出した。

本発明に係るインクカートリッジは、上記知見に基づくものであって、その目的とするところは、保存安定性や吐出安定性(目詰まり等の防止)を確保することができると共に、前記インクの印字特性を安定に維持することができる、優れたインクカートリッジを提供することにある。

(課題を解決するための手段)

<本発明の第1のインク>

本発明の第1のインクは、前記 [本発明に係るインクジェット記録用インク (本発明の第1~第4のインク)の目的 (課題)] を達成する技術的構成として、硫 黄を含む処理剤により硫黄含有分散性付与基が表面に化学結合された顔料粒子、 浸透剤および水を少なくとも含むインクジェット記録用インクであって、前記インクの液性成分中に含まれる硫黄分が SO_4^{2-} 量として2000ppm以下であることを特徴とする。好ましくは1000ppmである。

本発明の第1のインクの好ましい態様としては、前記液性成分中に含まれる多価金属イオン量が800ppm以下である。また、他の好ましい態様としては、前記顔料が、カーボンブラック顔料及び/又は有機顔料である。更に、別の好ましい態様としては、前記浸透剤が、アセチレングリコール系界面活性剤、アセチレンアルコール系界面活性剤、1、2-アルキレングリコール及び/又はグリコールエーテル類である。

本発明の第1のインクの他の好ましい態様は、次の式(1)で示す構造の物質を さらに含有したインクジェット記録用インクである。

式(1) \cdots R-EOn₁-POm₁-X

[式(1)中、Rは、炭素数 $4\sim1$ 0のアルカノール基であり、n-基および/まはその他の異性体である。EOはエチレンオキシ基、POはプロピレンオキシ基であって、EOとPOは、分子中に存在することを示していて、順序は関係ない。 Xは、水素または-SO $_3$ Mである。(Mは、水素イオン、アルカリ金属、無機塩基、有機アミンである。) n_1 および m_1 は、繰り返し単位であって、系全体での平均値を示し、 n_1 は0 ~1 0であり、 m_1 は1 ~5 である。]

また、本発明の第1のインクの別の好ましい態様は、ポリマー微粒子をさらに 含有したインクジェット記録用インクである。そして、このポリマー微粒子の添 加量としては、0.5~10重量%が好ましい。

<本発明の第2のインク>

本発明の第2のインクは、前記 [本発明に係るインクジェット記録用インク (本発明の第1~第4のインク)の目的(課題)] を達成する技術的構成として、硫 黄を含む処理剤により硫黄含有分散性付与基が表面に化学結合された顔料粒子、 浸透剤および水を少なくとも含むインクジェット記録用インクであって、前記硫 黄含有分散性付与基の量が、顔料粒子1g当たり10×10⁻⁶当量以上であることを特徴とする。

本発明の第2のインクの好ましい態様としては、前記硫黄含有分散性付与基がスルホン酸基 $(-SO_2OH)$ 及び/又はスルフィン酸基 $(-RSO_2H:RkC_1 \sim C_{12}$ のアルキル基またはフェニル基およびその変性体)である。

また、他の好ましい態様としては、前記顔料粒子濃度が0.001~0.01 重量%になるようにインクをイオン交換水で希釈したインク希釈液において、2 0℃、pH8~9における顔料粒子のゼータ電位の絶対値が30mV以上である。 この場合のpHの調整は、水酸化ナトリウムと塩酸による。

更に別の好ましい態様としては、硫黄を含む処理剤により硫黄含有分散性付与基が表面に化学結合された顔料粒子、浸透剤および水を少なくとも含むインクジェット記録用インクであって、前記硫黄含有分散性付与基の量が顔料粒子1g当たり 1.0×1.0^{-6} 当量以上であり、また前記硫黄含有分散性付与基がスルホン酸基 $(-SO_2OH)$ 及び/又はスルフィン酸基 $(-RSO_2H:RiC_1\sim C_{12}O)$ アルキル基、またはフェニル基およびその変性体)であり、顔料粒子濃度が $0.01\sim 0.01$ 重量%になるようにインクをイオン交換水で希釈したインク希釈液における、2.0%、0.01 の 0.00 の 0.00

<本発明の第3のインク>

本発明の第3のインクは、前記 [本発明に係るインクジェット記録用インク (本発明の第1~第4のインク)の目的(課題)] を達成する技術的構成として、顔料粒子、浸透剤および水を少なくとも含むインクジェット記録用インクであって、前記顔料粒子の表面にスルホン酸アニオン基 $(-SO^{3-})$ 及び/又はスルフィン酸アニオン基 $(-RSO_2:RklC_1\sim C_{12}$ のアルキル基またはフェニル基およびその変性体)が化学結合され、上記スルホン酸アニオン基の対カチオン及び/又は上記スルフィン酸アニオン基の対カチオンが、アルカリ金属イオンおよび化学式 $(R_1R_2R_3R_4N)^+$ $(R_1.R_2.R_3$ および R_4 は同一でも異なってもよく、水素原子、アルキル基、ヒドロキシアルキル基またはハロゲン化アルキル基を示す)で示される1価のイオン群から選択されてなることを特徴とする。

本発明の第3のインクの好ましい態様としては、前記スルホン酸アニオン基の対カチオン及び/又は前記スルフィン酸アニオン基の対カチオンが、リチウムイオン(Li^+)、ナトリウムイオン(Na^+)、カリウムイオン(K^+)、アンモニウムイオン(NH_a^+)およびアルカノールアミンカチオンの少なくとも一種である。

また、他の好ましい態様としては、前記スルホン酸アニオン基の対カチオン及び/又は前記スルフィン酸アニオン基の対カチオンが、少なくとも Na^+ および NH_4^+ から成る。更に別の好ましい態様としては、インクの液性成分(ビヒクル)中のアルカリ金属イオンの総量が10000 pm以下である。好ましくは 2000 pm以下、さらに好ましくは1000 pm以下である。

<本発明の第4のインク>

本発明の第4のインクは、前記 [本発明に係るインクジェット記録用インク (本発明の第1~第4のインク)の目的(課題)] を達成する技術的構成として、硫 黄を含む処理剤により硫黄含有分散性付与基が表面に化学結合された、単独で水 性溶媒に分散可能な表面処理顔料、浸透剤、及び水を少なくとも含むインクジェット記録用インクであって、オキサゾリジン系化合物、アルキルイソチアゾロン、クロルアルキルイソチアゾロン、ベンズイソチアゾロン、プロモニトロアルコール及び/又はクロルキシレノールから選ばれた1種以上を含有することを特徴とする。

本発明の第4のインクの好ましい態様としては、前記オキサゾリジン系化合物が、4,4-ジメチルオキサゾリジンであり、アルキルイソチアゾロンが、オクチルイソチアゾロン及び/又はメチルイソチアゾロンであり、クロルアルキルイソチアゾロンが、クロルメチルイソチアゾロンであり、その添加量としては、0.01~0.5 重量%が好ましい。

く本発明の第5のインク>

本発明の第5のインクは、前記 [本発明に係るインクジェット記録用インク (本発明の第5のインク)の目的(課題)] を達成する技術的構成として、硫黄を含む処理剤により硫黄含有分散性付与基が表面に化学結合された顔料粒子、浸透剤および水を少なくとも含むインクジェット記録用インクであって、前記浸透剤が、下記式(2)に示す構造の物質、アセチレングリコール系界面活性剤、アセチレンアルコール系界面活性剤、1、2ーアルキレングリコール及び/又はグリコールエーテル類であることを特徴とする。

式(2) ······· R-EOn2-POm2-X

[式(2)中、Rは、炭素数 $4\sim1$ 0のアルカノール基であり、n-基および/またはその他の異性体である。EOはエチレンオキシ基、POはプロピレンオキシ基であって、EOとPOは、分子中に存在することを示していて、順序は関係ない。Xは、水素または $-SO_3$ Mである。(Mは、水素イオン、アルカリ金属、無機塩基、有機アミンである。) n_2 および m_2 は、繰り返し単位であって、系全体での平均値を示す。]

本発明の第5のインクの好ましい実施形態は、前記式(2)に示すRが、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基及び/又はデシル基であり、そして、

前記プチル基が、 n ープチル基、イソプチル基及び/又は t ープチル基を主成分とし、

前記ペンチル基が、 n ーペンチル基及び/又はその他の異性体を主成分とし、前記ペキシル基が、 n ーペキシル基及び/又はその他の異性体を主成分とし、前記ペプチル基が、 n ーペプチル基及び/又はその他の異性体を主成分とし、前記オクチル基が、 n ーオクチル基及び/又はその他の異性体を主成分とし、前記ノニル基が、 n ーノニル基及び/又はその他の異性体を主成分とし、前記デシル基が、 n ーデシル基及び/又はその他の異性体を主成分とする、ことが好ましい。

他の好ましい実施形態は、前記式(2)における n_2 が $0\sim10$ であり、 m_2 が $1\sim5$ であり、また、前記式(2)に示す物質の平均分子量が、2000以下である。

別の好ましい実施形態は、

前記アセチレングリコール系界面活性剤およびアセチレンアルコール系界面活性剤が、2、4ージメチルー5ーヘキシンー3ーオール、2、4、7、9ーテトラメチルー5ーデシンー4、7ージオール、3、6ージメチルー4ーオクチンー3、6ージオール、および/または、前記2、4ージメチルー5ーヘキシンー3ーオール、2、4、7、9ーテトラメチルー5ーデシンー4、7ージオール、3、6ージメチルー4ーオクチンー3、6ージオールにエチレンオキシ基及び/又は

プロピレンオキシ基が平均で30個以下付加したものであり、

前記 1 . 2- アルキレングリコールが、1 . 2- (炭素数 $4\sim 10$ のアルキル) ジオールであり、

前記グリコールエーテル類が、ジエチレングリコールモノ(炭素数4~8のアルキル)エーテル、トリエチレングリコールモノ(炭素数4~8のアルキル)エーテル、プロピレングリコールモノ(炭素数3~6のアルキル)エーテル、ジプロピレングリコールモノ(炭素数3~6のアルキル)エーテルから選ばれた1種または2種以上の混合物である。

<本発明の第2のインクの製造方法>

また、本発明に係るインクジェット記録用インクの製造方法の技術的構成としては、前記第2のインクの製造方法では、顔料粒子の表面に対して硫黄を含む処理剤で処理することで硫黄含有分散性付与基を顔料粒子に化学結合させ、該顔料粒子、浸透剤および水を混合させるインクジェット記録用インクの製造方法であって、前記硫黄含有分散性付与基の導入量を、前記顔料粒子1g当たり10×10-6当量以上になるように、前記処理剤で処理することを特徴とする。

第2のインクの製造方法における好ましい態様としては、前記硫黄含有分散性 付与基を、スルホン酸基 $(-SO_2OH)$ 及び/又はスルフィン酸基 $(-RSO_2H)$:Rは $C_1\sim C_{12}$ のアルキル基またはフェニル基およびその変性体)とする。 また、他の好ましい態様としては、インク中でスルホン酸基及び/又はスルフィン酸基をイオン解離させてからインク溶媒を加える工程からなる。

更に別の好ましい態様としては、顔料粒子濃度が0.001~0.01重量%になるようにインクをイオン交換水で希釈したインク希釈液において、20℃、pH8~pH9における顔料粒子のゼータ電位の絶対値が30mV以上となるようにする。この場合のpHの調整は、水酸化ナトリウムと塩酸による。

<本発明の第3のインクの製造方法>

一方、前記第3のインクの製造方法では、顔料粒子の表面にスルホン酸アニオン基 (-SO³⁻)及び/又はスルフィン酸アニオン基 (-RSO₂:RはC₁~

 C_{12} のアルキル基またはフェニル基およびその変性体)を化学結合させ、該顔料粒子、浸透剤および水を混合させるインクジェット記録用インクの製造方法であって、前記スルホン酸アニオン基の対カチオン及び/又は前記スルフィン酸アニオン基の対カチオンを、アルカリ金属イオンおよび化学式($R_1R_2R_3R_4$ 、N) $^+$ (R_1 , R_2 , R_3 および R_4 は同一でも異なってもよく、水素原子、アルキル基、ヒドロキシアルキル基またはハロゲン化アルキル基を示す)で示される1 価のイオン群から選択することを特徴とする。

第3のインクの製造方法における好ましい態様としては、前記スルホン酸アニオン基の対カチオン及び/又は上記スルフィン酸アニオン基の対カチオンを、リチウムイオン(Li^+)、ナトリウムイオン(Na^+)、カリウムイオン(K^+)、アンモニウムイオン(NH_4^+)およびアルカノールアミンカチオンの少なくとも一種とする。

また、他の好ましい態様としては、前記スルホン酸アニオン基の対カチオン及び/又は前記スルフィン酸アニオン基の対カチオンとして、少なくとも Na^+ および NH_4^+ を存在させるようにする。更に別の好ましい態様としては、前記インクの液性成分(ビヒクル)中に含まれるアルカリ金属イオンの総量を10000 ppm以下とする。好ましくは2000 ppm以下、さらに好ましくは1000 ppm以下とする。

<本発明のインクセット>

本発明に係るインクジェット記録用インクセットは、前記したインクセットの目的(課題)を達成する技術的構成として、少なくとも顔料、浸透剤、水よりなるインクジェット記録用インクセットにおいて、前記顔料が、硫黄を含む処理剤により表面に硫黄含有分散性付与基を化学結合させた表面処理顔料粒子であって、ブラック、イエロー、マゼンタ、シアンの4色の組み合わせからなることを特徴とする。

上記インクジェット記録用インクセットの好ましい態様としては、 前記ブラックの被表面処理顔料が、カーボンブラックであり、 前記イエローの被表面処理顔料が、C. I. ピグメントイエロー55.74.

97. 109, 110, 128, 138, 147, 151, 154, 180の 一種または二種以上から選択され、

前記マゼンタの被表面処理顔料が、C. I. ピグメントレッド122, 202, 209, C. I. ピグメントバイオレット19の一種または二種以上から選択され、

前記シアンの被表面処理顔料が、C. I. ピグメントブルー15,15:1,

15:2,15:3,15:4,15:6,16の一種または二種以上から選択される。

また、本発明に係るインクジェット記録用インクセットは、前記ブラック、イエロー、マゼンタ、シアンの4色に、さらにオレンジ、グリーンを組み合わせて 6色とすることを特徴とする。

この6色のインクジェット記録用インクセットの好ましい態様としては、前記 ブラックの被表面処理顔料、前記イエローの被表面処理顔料、前記マゼンタの被 表面処理顔料、前記シアンの被表面処理顔料を用い、さらに、

- ・前記オレンジの被表面処理顔料として、C. I. ピグメントオレンジ43, 36の一種または二種から選択され、
- ・前記グリーンの被表面処理顔料が、C. I. ピグメントグリーン7, 36の 一種または二種から選択される。

前記 4 色または 6 色の組み合わせのインクセットで用いる前記表面処理処理顔料粒子において、その分散性付与基の量が、顔料粒子 1 g当たり 1 0×1 0^{-6} 当量以上であるのが好ましい。

<本発明のインクカートリッジ>

本発明に係るインクカートリッジは、前記したインクカートリッジの目的(課題)を達成する技術的構成として、インク含浸用フォームと、そのインク含浸用フォームに含浸されたインクとを含むインクカートリッジであって、前記インクが、硫黄含有分散性付与基を表面に有する顔料粒子と浸透剤と水とを少なくとも含み、前記インク含浸用フォームに含浸されたインクの液性成分中に含まれる硫黄分が、SO42-イオン量として、2000ppm以下であることを特徴とする。

好ましくは1000ppm以下である。

本発明のインクカートリッジの好ましい実施態様は、前記顔料がカーボンブラック顔料及び/又は有機顔料であり、前記浸透剤が、アセチレングリコール系界面活性剤、アセチレンアルコール系界面活性剤、1,2-アルキレングリコール及び/又はグリコールエーテル類である。

更に別の好ましい実施態様は、前記インク含浸用フォームが、ウレタンフォームであり、前記ウレタンフォームが、触媒として有機金属化合物を用いて製造されるフォームであり、前記有機金属化合物の添加量が、前記ウレタンフォームの 重量に対して0.01~0.2重量%である。

また、本発明のインクカートリッジの好ましい実施態様は、前記インクの液性 成分中に含まれる、前記有機金属化合物触媒からの金属イオンおよびその他の多 価金属イオンの総量が、8-00ppm以下である。

そして、本発明に係るインクカートリッジは、特にインクジェット記録装置用 として好適である。

図面の簡単な説明

第1図は、本発明のインクカートリッジに用いられるインクカートリッジの概略図である。図中の符号は、以下のとおりである。

- 101…下部ケース
- 102…上部ケース(蓋)
- 103…通気穴
- 111…インク充填用フォーム
- 121…供給口
- 122…フィルタ

発明を実施するための最良の形態

次に、本発明に係るインクジェット記録用インク(本発明の第1~第5のインク)、インクジェット記録用インクセットおよびインクカートリッジの実施の形態について、詳細に説明する。なお、本明細書で、本発明の第1~第5のインク

からなるインクジェット記録用インクを、特に断らない限り "本発明のインク" という。

<本発明のインクの実施形態>

以下、本発明の第1~第5のインクに共通な実施の形態について説明する。なお、以下の実施の形態は、本発明のインクジェット記録用インクセットおよび本 発明のインクカートリッジに用いるインクについても、共通である。

(表面処理顔料)

本発明のインクは、硫黄を含む処理剤により硫黄含有分散性付与基を表面に化 学結合した顔料粒子(以下、単に"表面処理顔料"ともいう)を含有する。

ここで、「硫黄含有分散性付与基(以下、単に"分散性付与基"ともいう)」とは、インク内で顔料粒子を単独で分散させる能力を有する硫黄元素を含み、インク中でイオン解離する官能基を意味する。

表面処理顔料を構成する顔料としては、硫黄含有分散性付与基を粒子表面に担持することのできる顔料であり、分散性付与基の導入時に使用する硫黄含有処理 剤に溶解しない顔料であれば特に限定されない。このような観点から、特に、本 発明のインクにおいて好ましい顔料としては、以下の顔料を例示することができ る。

ブラック用の無機顔料としては、ファーネスブラック、ランブブラック、アセチレンブラック、チャンネルブラック等のカーボンブラック(C. 1. ピグメントブラック7)類、あるいは、酸化鉄顔料等を挙げることができる。

また、イエローインク用顔料としては、C. 1. ピグメントイエロー1(ハンザイエロー)、2、3(ハンザイエロー10G)、4、5(ハンザイエロー5G)、6、7、10、11、12、13、14、16、17、24(フラバントロンイエロー)、34、35、37、53、55、65、73、74、75、81、83、93、94、95、97、98、99、108(アントラピリミジンイエロー)、109、110、113、117(銅錯塩顔料)、120、124、128、129、133(キノフタロン)、138、139(イソインドリノン)、147、151、153(ニッケル錯体顔料)、154、167、172、180などを挙げることができる。

更に、マゼンタインク用の顔料としては、C. 1. ピグメントレッド1(パラレッド)、2、3(トルイジンレッド)、4、5(1TR Red)、6、7、8、9、10、11、12、14、15、16、17、18、19、21、22、23、30、31、32、37、38(ピラゾロンレッド)、40、41、42、88(チオインジゴ)、112(ナフトールAS系)、114(ナフトールAS系)、12(ジメチルキナクリドン)、123、144、146、149、150、166、168(アントアントロンオレンジ)、170(ナフトールAS系)、171、175、176、177、178、179(ベリレンマルーン)、185、187、209(ジクロロキナクリドン)、219、224(ベリレン系)、245(ナフトールAS系)、又は、C. I. ピグメントバイオレット19(キナクリドン)、23(ジオキサジンバイオレット)、32、33、36、38、43、50などを挙げることができる。

更にまた、シアンインク用の顔料としては、C.~1.~2 ピグメントブルー15.~15:1.~15:2.~15:3.~16 (無金属フタロシアニン)、18 (アルカリブルートナー)、25.~60 (スレンブルー)、65 (ピオラントロン)、66 (インジゴ)等を挙げることができる。

また、ブラック用の有機顔料としては、アニリンブラック(C. 1. ピグメントブラック 1)等の黒色有機顔料を用いることができる。

更にまた、マゼンタ、シアン又はイエローインク以外のカラーインクに用いる 有機顔料として、

- C. I. $\frac{1}{2}$ $\frac{1}{2}$
- C. I. ピグメントブラウン3. 5. 25. 26: あるいは
- C. I. ピグメントオレンジ1、2、5、7、13、14、15、16、24、34、36、38、40、43、63等を用いることができる。

本発明のインクにおいては、前記の顔料を1種で又は2種以上を組み合わせて 使用することができる。

本発明のインクで用いる顔料粒子の表面上に担持されている硫黄含有分散性付 与基としては、硫黄原子を含有し、しかも、水中分散性を付与する官能基であれ ば、本発明の第3のインクを除いて、特に限定されず、具体的には、スルフィン酸 (SO_3^-) 基又はスルホン酸 (SO_3^-) 基を挙げることができる。本発明のインクで用いる顔料粒子においては、前記の分散性付与基が、少なくとも粒子表面上に存在すればよく、粒子内部に含まれていてもよい。

(表面処理顔料の作製)

表面処理顔料は、顔料粒子表面に硫黄を含む処理剤(スルホン化剤)で処理により作製することができる。

(浸透剤)

本発明のインクは、インクの浸透性を高める目的で浸透剤を含有する。具体的には、アセチレングリコール系界面活性剤、及び/又は、グリコールエーテル類を使用することが好ましい。

アセチレングリコール系界面活性剤の好ましい例としては、一般式:

$$R_{1} = C = C = C = C = R_{4}$$

$$O(C_{2}H_{4}O)H = O(C_{2}H_{4}O)H$$

(式中、 R_1 , R_2 , R_3 および R_4 は、それぞれ独立してアルキル基を示し、nとmとの和は、 $0\sim30$ である。)

で表される化合物、例えば、サーフィノールTG、サーフィノール420、サーフィノール440、サーフィノール465(以上いずれもエアープロダクツ社製) 等を挙げることができる。

このような浸透剤のインクジェット記録用インクに対する添加量は、0.1~5重量%が好ましく、0.5~3重量%がより好ましい。0.1重量%より少ないと、インクの浸透力が不足し、カラーブリードが発生し、5重量%より多くなると、インク吐出ヘッドのノズル周りを不均一に濡らし、安定吐出ができにくくなる。

本発明のインクにおいては、前記のアセチレングリコール系界面活性剤にかえて、グリコールエーテル類を使用することができ、また、前記アセチレングリコ

ール系界面活性剤とグリコールエーテル類とを併用して使うことができる。 グリコールエーテル類の具体例としては、

エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテ ル、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエ ーテルアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリ コールモノエチルエーテル、ジエチレングリコールモノーn-プロピルエーテル. エチレングリコールモノーiso-プロピルエーテル. ジエチレングリコールモ ノーiso-プロピルエーテル、エチレングリコールモノーn-ブチルエーテル、 ジェチレングリコールモノ-n-ブチルエーテル.トリエチレングリコールモノ ーn-ブチルエーテル、エチレングリコールモノーt-ブチルエーテル、ジエチ レングリコールモノーt-ブチルエーテル、1-メチル-1-メトキシブタノー ル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチ ルエーテル、プロピレングリコールモノーt-ブチルエーテル、プロピレングリ コールモノーn-プロピルエーテル.プロピレングリコールモノーiso-プロ ピルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリ コールモノエチルエーテル. ジプロピレングリコールモノ-n - プロピルエーテ ル、ジプロピレングリコールモノーiso-プロピルエーテル、プロピレングリ コールモノーn-ブチルエーテル.ジプロピレングリコールモノーn-ブチルエ ーテル等を挙げることができる。

グリコールエーテル類のインクジェット用記録インクに対する添加量は、0~30重量%が好ましいが、0.5~10重量%がより好ましい。添加量が30重量%を超えると、インク吐出ヘッドのノズル周りを不均一に濡らし、安定吐出ができにくくなる。

本発明のインクにおいては、前記の浸透剤を、1種で又は2種以上を組合せて、 使用することができる。

(没透剤の助剤)

本発明のインクにおいては、前記浸透剤の助剤として、インクの浸透性を制御 し、更にノズルの耐目詰まり性、インクの保湿性、あるいは浸透剤の溶解性を向 上する目的で、他のノニオン性、アニオン性、カチオン性、両性の界面活性剤、

並びに、高沸点低揮発性の多価アルコール類、あるいは、それらのモノエーテル 化物、ジェーテル化物、若しくはエステル化物、等の親水性高沸点低揮発性溶媒 等を、1種で又は2種以上を組合せて、使用することができる。

ノニオン界面活性剤としては、例えば、フッ素系共重合物、シリコーン系共重合物、アクリル酸共重合物、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン2級アルコールエーテル、ポリオキシエチレンステロールエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンラノリン誘導体、アルキルフェノールホルマリン縮合物の酸化エチレン誘導体、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレン化合物の脂肪酸エステル型、ポリエチレンオキサイド縮合型ポリエチレングリコール脂肪酸エステル、脂肪酸モノグリセリド、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ショ糖脂肪酸エステル、脂肪酸アルカノールアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミン、アルキルアミンオキサイド等を挙げることができるが、これらに限定されるものではない。

アニオン界面活性剤としては、例えば、高級脂肪酸塩、高級アルキルシカルボン酸塩、高級アルコール硫酸エステル塩、高級アルキルスルホン酸塩、アルキルナフタレンスルホン酸塩、ナフタレンスルホン酸の塩、ホルマリン重縮合物、高級脂肪酸とアミノ酸の縮合物、ジアルキルスルホコハク酸エステル塩、アルキルスルホコハク酸塩、ナフテン酸塩等、アルキルエーテルカルボン酸塩、アシル化ペプチド、αーオレフィンスルホン酸塩、Nーアシルメチルタウリン、アルキルエーテル硫酸塩、第二級高級アルコールエトキシサルフェート、ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム塩、ポリオキシエチレンアルキルフェニルエーテル硫酸アンモニウム塩、モノグリサルフェート、アルキルエーテル燐酸エステル塩、アルキル燐酸エステル塩等を挙げることができるが、これらに限定されるものではない。前記の塩は、例えば、ナトリウム、カリウム、リチウム又はカルシウムの塩である。

カチオン界面活性剤としては、脂肪族アミン塩,第4アンモニウム塩,スルホ

ニウム塩、ホスフォニウム塩等を挙げることができ、また、両性界面活性剤としては、カルボキシベタイン型、アミノカルボン酸塩、レシチン等を挙げることができるが、これらに限定されるものではない。

高沸点低揮発性の多価アルコール類としては、例えば、グリセリン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ヘキシレングリコール、ポリエチレングリコール、若しくは、ポリプロピレングリコールや1、5ーペンタンジオール、1、2ーヘキサンジオール等のジオール類等を用いることができ、また、それらのモノエーテル化物、ジエーテル化物、若しくは、エステル化物等を用いることができ、更に、その他にもNーメチルー2ーピロリドン、2ーピロリドン、1、3ージメチルイミダゾリジノン、モノエタノールアミン、N、Nージメチルエタノールアミン、N、Nージエチルエタノールアミン、ジエタノールアミン、Nーロープチルジエタノールアミン、トリイソプロパノールアミン、若しくは、トリエタノールアミン等の含窒素有機溶剤等の親水性高沸点低揮発性溶媒を用いることもできる。

(その他の添加剤)

本発明のインクにおいては、主溶媒である水に加えて、乾燥性の向上を目的として、エタノール、プロパノール、イソプロパノール、若しくはブタノール等の 高揮発性の一価アルコール類の少量を含有することができる。

また、本発明のインクにおいては、インクを最適な p H 値に調節するために、 p H 緩衝液を使用することができる。 p H 緩衝液としては、例えば、フタル酸水素カリウム、リン酸二水素カリウム、リン酸水素ニナトリウム、四ホウ酸ナトリウム、酒石酸水素カリウム、炭酸水素ナトリウム、炭酸ナトリウム、トリス(ドロキシメチル)アミノメタン、又はトリス(ヒドロキシメチル)アミノメタン塩酸塩等を挙げることができる。 p H 緩衝液の含有量は、ヘッド部材の耐久性とインクの安定性の観点から、インクの p H 値が約7~10になる量であることが好ましい。

また、本発明のインクは、必要に応じて、その他の添加剤、例えば、防カビ剤、 防腐剤、又は防錆剤として、安息香酸、ジクロロフェン、ヘキサクロロフェン、

ソルビン酸、p-ヒドロキシ安息香酸エステル、エチレンジアミン四酢酸(EDTA)、デヒドロ酢酸ナトリウム、1,2-ベゾチアゾリン-3-オン〔製品名:プロキセルXL・(ICI製)〕、ベンゾトリアゾール、若しくは、3,4-イソチアゾリン-3-オン等を含むことができる。更に、ノズル乾燥防止の目的で、尿素、チオ尿素、及び/又はエチレン尿素等を含むこともできる。

(本発明のインクの調製)

前記表面処理顔料、前記浸透剤、および、必要に応じて用いられる前記したその他の添加剤を配合することで、本発明のインクを調製することができる。

上記調製手段としては、表面処理顔料(分散液)以外のインク添加剤をすべて加え合わせ、これを、予め所定量計量した表面処理顔料(分散液)に撹拌しながら徐々に添加する方法が好ましい。その理由は、一般的に、溶媒に対して顔料粒子を急激に加える添加方法では、ソルベントショックが起こりやすく、分散破壊に向かう傾向があるためである。

<本発明の第1のインクの実施形態>

以下、本発明の第1のインク(以下、単に "第1のインク" という)について、 作用を含めその実施形態を説明する。

第1のインクは、前記表面処理顔料(硫黄を含む処理剤により硫黄含有分散性 付与基が表面に化学結合された顔料粒子)、浸透剤および水を少なくとも含むインクジェット記録用インクであって、該インクの液性成分中に含まれる硫黄分が SO₄²-量として2000ppm以下であることを特徴とする。

前記"液性成分"とは、第1のインクを、顔料粒子などの固形部分と、それらの固形部分を分散して保持する液状部分とに分けた場合の"液状部分"を意味する。従って、例えば、第1のインクを遠心処理して上清成分と沈殿成分とに分離し、その上清成分に含まれる SO_4^{2-} イオン量や多価金属イオン量(アルカリ土類金属イオンやアルミニウム(A1)、亜鉛(Zn)、鉄(Fe)、ニッケル(Ni)、シリコン(Si)、クロム(Cr)、錫(Sn)、マンガン(Mn)、コバルト(Co)等の多価金属イオン量)を公知の任意の方法で測定することによって、前記"液性成分"中に含まれる SO_4^{2-} イオン量や多価金属イオン量を測定することができ

る。

(作用)

第1のインクは、硫黄含有分散性付与基を表面に有する顔料粒子を含むので、このインクがインクジェットプリンタのヘッドから吐出されて、記録用普通紙表面に付着した際には、記録用普通紙に含まれている多価金属イオン量(例えば、カルシウム、マグネシウム、アルミニウム等の多価金属イオン量)と、前記硫黄含有分散性付与基(特には、スルフィン酸基又はスルホン酸基)とが塩析反応により結合して、インクの凝集が起こり、優れた品質の印字が得られる。また、こうして得られた印字物の耐水性は、硫酸塩の難溶性に近い難溶性を有し、通常の分散剤(例えば、界面活性剤型、アルカリ中和樹脂分散剤型)を使用するタイプの顔料インクと比較して、それよりも強固な耐水性が得られる。

(インクの液性成分中に含まれる硫黄分)

第1のインクは、そのインクの液性成分中での硫黄分が、 SO_4^{2-} イオン量として、2000 ppm以下となるように調製して製造する。好ましくは 1000 ppm以下である。

本発明では、細心の注意を払ってインクを調製しても、インク中への種々の添加物中に含有される多価金属イオン(特には、アルカリ土類金属イオン)と塩析を起こしやすくなり、インク中に不溶性の塩を形成することがある。

硫黄分が2000ppmを超えると、これらの発生した塩がノズルに詰まり、目詰まりを起こし易くなる。あるいは、インクのゲル化が起きる等の問題が生じ易くなる。硫黄分が2000ppm以下になると、インクのゲル化は起こりにくくなるが、ノズルでの目詰まりの発生の頻度は減少し、実使用上の問題はなくなる点で好ましく、更に、1000ppm以下になると、インクのゲル化及びノズルでの目詰まりは起きず、インクの安定吐出が確保される点で好ましい。

ここで、液性成分中の硫黄分には、顔料粒子表面に化学的に結合している分散性付与基の硫黄分は含まれない。従って、"液性成分中の硫黄分"とは、顔料粒子表面のスルホン化処理の際に消費されず、しかも除去されなかったスルホン化処理剤に由来する硫黄分や、顔料や浸透剤をはじめとする配合成分に不純物として含有されている硫黄に由来する硫黄分などであり、第1のインクの水性液性成

PCT/JP00/03737

分内に、一般的に遊離イオンとして存在する。

第1のインクの好ましい態様としては、液性成分中に含まれる硫黄分が、 SO_4^2 -イオン量として、前記したように、2000ppm以下(好ましくは1000ppm以下)であり、かつ、液性成分中に含まれる前記多価金属イオン量が好ましくは800ppm以下(より好ましくは600ppm以下、最も好ましくは<math>400ppm以下)のインクである。

ここで、多価金属とは、アルカリ土類金属、例えば、ストロンチウム(Sr)、カルシウム(Ca)、マグネシウム(Mg)、ベリリウム(Be)等であり、その他、アルミニウム(A1)、亜鉛(Zn)、鉄(Fe)、ニッケル(Ni)、シリコン(Si)、クロム(Cr)、マンガン(Mn)、コバルト(Co)、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、鉛(Pb)等の多価金属イオンである。

液性成分中に含まれる前記多価金属のイオン量を前記の一定レベル以下に抑制することによって、優れたインク物性及び優れた印字特性を有するインクジェット記録用インクが得られる理由は、必ずしも充分に解明されたわけではないが、以下のように考えることができる。もっとも、本発明は、以下の推論によって限定されるものではない。

一般に、多価金属は、SO42-と水不溶性の安定な硫酸塩を生成することがよく知られている。一方、第1のインクでは、顔料粒子表面に分散性付与基としてスルフィン酸基(-SO2H)やスルホン酸基(-SO2OH)等が存在するので、前記液性成分中に、或る一定レベルを超える量で多価金属が存在すると、前記の分散性付与基と多価金属とが、前記の硫酸塩と同様に反応し、第1のインクにおける顔料粒子の分散系に悪影響を与えるものと考えらる。また、第1のインクの液性成分中に、顔料粒子の表面処理の際に添加した未反応スルホン化剤が充分に除去されずに残留し、同時に前記液性成分中に多価金属が或る一定レベルを超える量で多価金属が存在すると、それらが相互に反応して水不溶性硫酸塩が形成され、例えば、インク流路内に堆積を生じるので好ましくない。

(表面処理顔料)

第1のインクで用いる、前記顔料粒子における硫黄含有分散性付与基の導入量としては、顔料粒子1g当たり10×10⁻⁸当量以上が好ましい。顔料粒子1

PCT/JP00/03737

g当たり10×10⁻⁶当量未満であると、インクの保存安定性が低下するだけでなく、高い印字濃度が得られなくなることがある。

前記分散性付与基の導入量は、顔料水性分散体を酸素フラスコ燃焼法で処理し、 過酸化水素水溶液に吸収させた後、イオンクロマトグラフ法で硫酸イオン(2価) を定量し、スルホン酸基及びスルフィン基に換算することによって測定すること ができる。

また、第1のインクに用いる顔料粒子の平均粒径は、前記分散性付与基の導入量が、顔料粒子1g当たり10×10 $^{-6}$ 当量である限り、特に限定されるものではないが、好ましくは10~300nmである。平均粒径が10nm未満になると、耐光性がなくなることがあり、300nmを超えると、沈降して安定吐出しなくなることがある。

第1のインクにおいて、好ましい態様としては、このインクで用いる顔料が、 カーボンブラック顔料及び/又は有機顔料である。(このカーボンブラック顔料、 有機顔料の具体的な例については、前記 [本発明のインクの実施形態]の(表面 処理顔料)の項参照。)

(表面処理顔料の作製)

WO 00/75245

第1のインクで用いる硫黄含有分散性付与基を表面に有する顔料粒子は、前記の顔料化合物から、公知の方法によって調製することができる。例えば、特開平8-283596号、特開平10-110110号、特開平10-110111号、又は特開平10-110114号の各公報に記載の方法で調製される水系分散液の形で、前記の硫黄含有分散性付与基を表面に有する顔料粒子を得ることができる。

硫黄含有分散性付与基を表面に有する顔料粒子を含む水系分散液の調製方法の一例を示せば、以下のとおりである。

微細な粒子状の顔料を、顔料の3~200重量倍量の非プロトン性溶媒(例えば、N-メチル-2-ピロリドン又はスルホラン)中に入れ、顔料の分散処理を行いながら、スルホン化剤で処理する。スルホン化剤としては、例えば、スルホン化ピリジン塩、スルファミン酸、アミド硫酸、フルオロ硫酸、クロロ硫酸、三酸化硫黄、発煙硫酸、又は硫酸等を、単独で又は2種以上を組合せて用いることができる。スルホン化剤による処理は、加熱(約60~200℃)下及び撹拌下で

行うことができ、加熱は、スルホン化剤の添加前又は添加後に行うことができる。 スルホン化処理の後、得られた顔料スラリーから、非プロトン性溶媒と残留す るスルホン化剤とを除去する。除去処理は、水洗、限外濾過、逆浸透、遠心分離 および/または濾過などを繰り返して実施することができる。

続いて、スルホン化処理顔料を、10~40重量%程度の濃度になるように水 性液体(特に、イオン交換水又は蒸留水)中に添加し、更に場合により、通常の分 散処理を短時間行うことにより、顔料の乾燥工程を経ずに、スルホン化処理顔料 水性分散液を得ることができる。

(第1のインクの調製)

第1のインクの好ましい実施態様としては、浸透剤が、アセチレングリコール 系界面活性剤、アセチレンアルコール系界面活性剤、1、2-アルキレングリコ ール及び/又はグリコールエーテル類である。

このうち、アセチレンアルコール系界面活性剤としては、 2 、 4 ージメチルー 5 ー 4 ー

また、1, 2-アルキレングリコールとしては、1, 2-(炭素数 $4\sim10$ の アルキル)ジオールであるが好ましいが、これに限定するものではない。

アセチレンアルコール系界面活性剤の好ましい例としては、サーフィノール 6 1(xr-プロダクツ社製)であり、1, 2-rルキレングリコールの好ましい例としては、1, 2-ペンタンジオール, 1, 2-ペキサンジオールを挙げることができる。

(アセチレングリコール系界面活性剤、グリコールエーテル類の具体的な例については、前記 [本発明のインクの実施形態]の(浸透剤)の項参照。)

第1のインクの他の好ましい態様としては、下記式(1)で示す構造の物質を更 に配合することができる。 式(1) ……… $R-EOn_1-POm_1-X$

[式(1)中、Rは、炭素数 $4\sim10$ のアルカノール基であり、n-基および/またはその他の異性体である。EOはエチレンオキシ基、POはプロピレンオキシ基であって、EOとPOは、分子中に存在することを示していて、順序は関係ない。Xは、水素または $-SO_3$ Mである。(Mは、水素イオン、アルカリ金属、無機塩基、有機アミンである。 $)n_1$ および m_1 は、繰り返し単位であって、系全体での平均値を示し、 n_1 は $0\sim10$ であり、 m_1 は $1\sim5$ である。]

第1のインクの別の好ましい態様としては、ポリマー微粒子を更に配合することができる。第1のインクに、このようなポリマー微粒子を更に添加することにより、記録物の耐水性、耐擦性及び/又は光沢性を向上させることができる。ポリマー微粒子の添加量としては、0.5~10重量%が好ましく、上記"耐水性、耐擦性、光沢性の向上"の面から、望ましい。

上記ポリマー微粒子は、連続相を水とする樹脂エマルジョンの形態であることが好ましい。ポリマー微粒子としては、アクリル系樹脂、酢酸ビニル系樹脂、スチレンーブタジエン樹脂、塩化ビニル系樹脂、アクリルースチレン系樹脂、ブタジェン系樹脂、スチレン系樹脂、架橋アクリル樹脂、架橋スチレン樹脂、ウレタン樹脂、アクリルアミド樹脂、フェノール樹脂、シリコーン樹脂、エポキシ樹脂、あるいは、これらの混合形を用いることができる。

また、特に成膜性を有するポリマー微粒子を使用した場合には、記録媒体上のインク組成物中のポリマー微粒子同士が合一して融着し、被膜が形成され、その結果、記録物の耐擦性、耐水性、光沢性をさらに向上させることができる。

ここで、ポリマー微粒子が"成膜性を有する"とは、ポリマー微粒子をその最 低成膜温度以上に保持すると、微粒子同士が合一して融着し、それによって、ポ リマー微粒子による被膜を形成できる能力が、ポリマー微粒子が有していること を言う。

第1のインクにおいて、表面処理顔料(硫黄を含む処理剤により硫黄含有分散性付与基が表面に化学結合された顔料)を使用したインクに用いるためのポリマー微粒子は、陰イオン型であって、成膜温度が室温以下であるものが望ましい。 また、コアシェル型の分散形態になっているものの方が、インク中の安定性の観

点から、好ましい。

これらのポリマー微粒子は、一般的に、モノマーを、界面活性剤と水溶性重合開始剤の存在下で、水中で乳化重合することによって、樹脂エマルジョンとして得ることができる。例えば、アクリル系樹脂またはスチレンーアクリル系樹脂の樹脂エマルジョンは、(メタ)アクリル酸エステルまたは(メタ)アクリル酸エステル、および、スチレンを、界面活性剤と水溶性重合開始剤の存在下で、乳化重合させることによって得ることができる。

第1のインクは、前記 [本発明のインクの実施形態] の(本発明のインクの調製)の項で記載した方法に準じて調製することができる。

この調製法において、前記表面処理顔料(硫黄を含む処理剤により硫黄含有分散性付与基が表面に化学結合された顔料粒子)の含有量は、好ましくは0.5~30重量%、より好ましくは1.0~12重量%、最も好ましくは2~10重量%である。前記の顔料の含有量が0.5重量%未満になると、印字濃度が不充分となることがあり、30重量%を超えると、インク中に保湿成分を添加する量が制限され、ノズル目詰まりが発生しやすくなったり、インクの粘度が高くなり、インク吐出ノズルからの安定吐出が得られないことがある。

上記のように調製された第1のインクの諸物性は、適宜制御することができるが、好ましい態様によれば、インクの粘度は10 m P a・秒以下(20 $\mathbb C$)であるのが好ましく、より好ましくは5 m P a・秒以下(20 $\mathbb C$)である。この粘度範囲のインクは、インク吐出ヘッドから安定に吐出される。また、インクの表面張力も適宜制御することができるが、 $25\sim50$ m N / m (20 $\mathbb C$)であるのが好ましく、より好ましくは30 ~4 0 m N / m (20 $\mathbb C$)である。

<本発明の第2のインクの実施形態>

以下、本発明の第2のインク(以下、単に "第2のインク" という)について、 作用を含めその実施形態を説明する。

第2のインクは、表面処理顔料(硫黄を含む処理剤により硫黄含有分散性付与基が表面に化学結合された顔料粒子)、浸透剤および水を少なくとも含むインクジェット記録用インクであって、前記分散性付与基の量が顔料粒子1g当たり1

0×10⁻⁶当量以上であることを特徴とする。

前記分散性付与基の導入量は、顔料水性分散体を酸素フラスコ燃焼法で処理し、 過酸化水素水溶液に吸収させた後、イオンクロマトグラフ法で硫酸イオン(2価) を定量し、スルホン酸基及びスルフィン基(1価)および/またはスルフィン酸基 (1価)に換算することによって測定することができる。

第2のインクの好ましい実施形態としては、前記分散性付与基が、スルホン酸基 $(-SO_2OH)$ および/またはスルフィン酸基 $(-RSO_2H:RはC_1\sim C_{12}$ のアルキル基、または、フェニル基およびその変性体)であり、また、顔料粒子濃度が $0.001\sim0.01$ 重量%になるようにインクをイオン交換水で希釈したインク希釈液における、20%、 $pH8\sim9$ における顔料粒子のゼータ電位の絶対値が30m V以上である、表面処理顔料を用いる。

また、第2のインクの好ましい実施形態としては、インク調製時における顔料 粒子の分散性をさらに向上させるために、スルホン酸基および/またはスルフィン酸基をイオン解離させてから、水を主成分とするインク溶媒を加えて第2のインクを調製する。

(作用)

インクジェット記録用インクにおいて、印字画像のにじみを少なくする方法として、まず、インクの記録紙への浸透を極力抑える方法が考えられる。確かにインクの表面張力を高く設定して記録紙への浸透を抑えれば、記録紙のサイズ効果にもより、インクはいつまでも紙上に着弾したままの形状を保ち、にじみのない画像を得られ、印字濃度も得やすい。しかしながら、この場合、当然インクの乾燥性が悪くなるという問題が発生する。特にフルカラー印字が一般的となった今日のインクジェットプリンタでは、カラーブリードの発生を抑えることができないという点からみても、このようなインクは使用できない。

そこで、インクに浸透剤を添加して、インクを瞬間的に記録紙に浸透させることで、印字画像の不規則なにじみを抑える方法が考えられる。この場合、乾燥性も良好で、カラーブリードも抑えることもできる。

ところが、従来の各種界面活性剤や水性樹脂等の分散剤を使用して顔料粒子を 水媒体中に分散するインクでは、インクのこれらの浸透剤により顔料粒子の分散 性が不安定になりがちなほか、にじみが増大したり、十分な印字濃度を得られないという問題が発生する。にじみの増大は、顔料粒子の表面から脱離した分散剤によりインクの浸透性が中途半端になり、にじみが増大する為と考えられる。また、印字濃度が得られにくいのは、着色剤である顔料粒子の表面に吸着した分散剤や界面活性剤により、インク溶媒と共に顔料粒子も紙の繊維内に入り込んで拡散し、印字濃度を得られにくくなる為と推定される。さらに、分散剤の添加は、インクの組成を複雑化するため、各成分が影響し合って、所望のインク物性が得にくいものと考えられる。

第2のインクは、「硫黄を含む処理剤により、分散性付与基が表面に顔料粒子 1g当たり10×10⁻⁶当量以上化学結合された顔料粒子」、「浸透剤」および「水」を含有することにより、印字にじみが無く、また、速乾性および印字濃度が高い画像を得ることができ、さらには、インクの保存安定性が高く、また調製が簡便なものとなる。

すなわち、これらの分散性付与基が表面に化学結合された顔料粒子は(好ましくは、顔料粒子表面に化学結合された分散性付与基をイオン解離させることで)、顔料粒子間に電気的に反発力が生まれ、分散安定性、即ちインクの保存安定性を確保している。従って、インク中の顔料粒子表面から、インクの浸透剤の作用により、従来の各種界面活性剤や水溶性樹脂等の分散剤を容易に吸脱着させて顔料粒子の分散性が容易に損なわれること無く、分散安定性を保つことができる。

とごろで、たとえこのように、硫黄を含む処理剤により分散性付与基が表面に 化学結合された顔料粒子であっても、導入量が顔料粒子1g当たり10×10⁻⁶ 6当量未満であると、インクの保存安定性が低下するだけでなく、高い印字濃度 が得られにくくなる。これは、分散性付与基の導入量が不十分であり、浸透剤と して添加している界面活性剤等が顔料粒子表面に若干吸着して、従来の分散剤を 使用した顔料インクの場合と同様に顔料粒子が紙の繊維内に入り込んで拡散し易 くなり、印字濃度が得られなくなっている推定とされる。

また、別の数値的な切り口から、"インクの保存安定性を確保しつつ、高い印字濃度を得る為の状態"が本発明者等の実験により達成された。すなわち、顔料粒子濃度が 0.001~0.01重量%になるようにインクをイオン交換水で希

釈した場合に、20℃、pH8~9における顔料粒子のゼータ電位の絶対値を30mV以上とすることで、上記のような界面活性剤の顔料粒子表面への吸着を抑え、高い印字濃度を得ることができる。なお、インクによっては単純にイオン交換水で希釈した場合にpHが8~9の値を示さない場合がある。本発明者等は、こういった場合においても、例えば、適当なpH調整剤(0.1規定塩酸や0.1規定苛性ソーダ等)でpHを8~9の値にした時の顔料粒子のゼータ電位の絶対値は30mVであれば、優れたインクの保存安定性と高い印字濃度を満たすことがわかった。

また、特に20℃における表面張力が65mN/m以上である顔料分散液(顔 料+アルカリ化合物+水)を使用すると、印字濃度を高くすることができる。

(表面処理顔料の作製)

第2のインクで用いる表面処理顔料は、後述するように、硫黄を含む処理剤に より公知の顔料を溶剤中で直接酸化反応させることにより得ることができる。

公知の無機顔料類としては、カーボンブラック、酸化鉄顔料、酸化チタン、亜 鉛華、黄鉛、紺青、群青、鉛丹などが挙げられる。

また、公知の有機顔料類としては、キナクリドンレッド、キナクリドンマゼンタなどのキナクリドン系顔料、フタロシアニンブルー、フタロシアニングリーンなどのフタロシアニン系顔料、ペリレンレッド、ペリレンスカーレットなどのペリレン系顔料、トルイジンマルーン、ハンザエロー、ペンジジンエロー、ピラゾロンレッドなどの不溶性アゾ系顔料、リトールレッド、へリオボルドー、ピグメントスカーレット、パーマネントレッド2Bなどの溶性アゾ系顔料、キノフタロン系顔料、イソインドリノンエロー、イソインドリノンオレンジなどのイソインドリノン系顔料、ピランスロンレッド、ピランスロンオレンジなどのピランスロン系顔料、チオインジゴ系顔料、縮合アゾ系顔料、ベンズイミダゾロン系顔料、フラバンスロンエロー、アシルアミドエロー、キノフタロンエロー、ニッケルアゾエロー、銅アゾメチンエロー、ペリノンオレンジ、アンスロンオレンジ、ジアンスラキノニルレッド、ジオキサジンバイオレットまたはアリザリン、インダントロン、チオインジゴマルーンなどの建染染料からの誘導体などが挙げられる。

上記の中でも、キナクリドン系顔料、フタロシアニン系顔料、ベンズイミダゾロン系顔料、イソインドリノン系顔料およびキノフタロン系顔料からなる群より選ばれる少なくとも1種の有機顔料を用いることが堅牢性等の点から好ましい。

第2のインクで用いる顔料は、前記顔料に限定されるものではなく、後記する 硫黄含有処理剤に溶解しない顔料であれば、任意の顔料を用いることができる。

(使用可能な顔料については、前記 [本発明のインクの実施形態]の(表面処理 顔料)の項で例示した顔料参照)

硫黄を含む処理剤としては、硫酸、発煙硫酸、三酸化硫黄、クロロ硫酸、フルオロ硫酸、アミド硫酸、スルホン化ピリジン塩、スルファミン酸が挙げられ、中でも、三酸化硫黄、スルホン化ピリジン塩またはスルファミン酸等のスルホン化剤が好適である。これらを単独または2種以上を混合して用いることができる。(なお、"スルホン化剤"とは、スルホン酸 $(-SO_2OH)$ および/またはスルフィン酸 $(-RSO_2H:RidC_1\sim C_{12}$ のアルキル基、または、フェニル基およびその変性体)を付与するための処理剤である。)

また、前記三酸化硫黄を、三酸化硫黄と錯体を形成することのできる溶剤(N, N-ジメチルホルムアミドジオキサン, ピリジン, トリエチルアミン, トリメチルアミンのような塩基性溶剤、ニトロメタン、アセトニトリル等)と後述する溶剤1種以上との混合溶媒により、錯体化させることも有用である。

特に、三酸化硫黄自身では反応性が大きすぎて、顔料自身を分解または変質させたり、あるいは強酸による反応制御が困難な場合には、上記のように三酸化硫黄と第三アミンとの錯体を用いて顔料粒子の表面処理(この場合はスルホン化)を行うことが好ましい。

また、硫酸や発煙硫酸、クロロ硫酸、フルオロ硫酸などを単体で使用すると容易に顔料粒子が溶解し、一分子ごとに反応する様な強酸に対しては、反応を抑制する必要があり、後述する溶剤の種類や使用する量に関して留意する必要がある。

反応に用いられる溶剤は、硫黄を含む処理剤とは反応せず、また、上記した顔料が不溶性または難溶性となるようなものから選択され、スルホラン、Nーメチルー2-ピロリドン、ジメチルアセトアミド、キノリン、ヘキサメチルホスホリックトリアミド、クロロホルム、ジクロロエタン、テトラクロロエタン、テトラ

クロロエチレン、ジクロロメタン、ニトロメタン、ニトロベンゼン、液体二酸化 硫黄、二硫化炭素、トリクロロフルオロメタンなどが挙げられる。

硫黄を含む処理剤による処理は、顔料粒子を溶剤に分散させ、この分散液に硫 黄を含む処理剤を添加し、60~200℃に加熱、3~10時間攪拌することに より行う。具体的には、予めハイスピードミキサー等で高速せん断分散し、ある いはピーズミルやジェットミル等で衝撃分散し、スラリー状(分散液)とする方法 が好ましい。その後、穏やかな攪拌に移した後、硫黄を含む処理剤を添加し、分 散性付与基を顔料粒子表面に導入させる。この際、分散性付与基の導入量の決定 には、反応条件と硫黄を含む処理剤の種類が大きく左右する。この後に加熱処理 した後、顔料粒子のスラリーから、溶剤および残留する硫黄を含む処理剤は取り 除かれる。除去は、水洗、限外濾過、逆浸透等の方法、遠心分離、濾過等を繰り 返して行う。処理顔料粒子のレーザ散乱法により測定した平均粒径は、25μm 以下が好ましく、さらには1μm以下が好ましい。

このようにして顔料粒子表面に導入された分散性付与基の導入量は、顔料粒子 1g 当たり 10×10^{-6} 当量以上であることが好ましい。分散性付与基の導入量が 10×10^{-6} 当量未満になると、インク中から顔料粒子の凝集物が発生し易くなり、粘度変化を起こす等の保存安定性が低下するだけでなく、高い印字濃度が得られなくなることがある。

分散性付与基の導入量の上限は、特に限定されないが、60×10⁻⁶当量以上になると、分散性付与基導入量の増加に伴う保存安定性の向上効果の増加が認められなくなることがあるので、コストの点から、60×10⁻⁶当量以下であることが好ましい。また、さらにそれ以上導入した場合には、顔料が水溶化(染料化)して、耐水性の低下、分散安定性の低下などが発生する。

(第2のインクの調製)

第2のインクは、前記 [本発明のインクの実施形態] の(本発明のインクの調製)の項で記載した方法に準じて調製することができる。

この調製法において、前記表面処理顔料(硫黄を含む処理剤により硫黄含有分散性付与基が表面に化学結合された顔料粒子)の含有量は、前記第1のインクと同様、好ましくは0.5~30重量%、より好ましくは1.0~12重量%、最

PCT/JP00/03737

も好ましくは2~10重量%である。前記の顔料の含有量が0.5重量%未満になると、印字濃度が不充分となることがあり、30重量%を超えると、インク中に保湿成分を添加する量が制限され、ノズル目詰まりが発生しやすくなったり、インクの粘度が高くなり、インク吐出ノズルからの安定吐出が得られないことがある。

上記のように調製された第2のインクの諸物性は、適宜制御することができるが、好ましい態様によれば、顔料粒子濃度が $0.001\sim0.01$ 重量%になるようにインクをイオン交換水で希釈した場合に、20 $\mathbb C$, pH 8 \sim 9における顔料粒子のゼータ電位の絶対値が30 m $\mathbb V$ 以上であることが、印字濃度の点から特に好ましく、この範囲にするには、顔料粒子の表面への分散性付与基の導入量を特定の値(10×10^{-6} 当量以上)にすることにより達成することができる。(この場合のpHの調整は、水酸化ナトリウムと塩酸による。)

また、インクの粘度は、10mPa・か以下(20C)であるのが好ましく、より好ましくは5mPa・か以下(20C)である。この粘度範囲のインクは、インク吐出ヘッドから安定に吐出される。

インクの表面張力についても、浸透剤(アセチレングリコール系界面活性剤および/またはグリコールエーテル類)の添加量を適正化することにより適宜制御することができるが、 $25\sim50\,\mathrm{m\,N/m}(20\,\mathrm{C})$ であるのが好ましく、より好ましくは $30\sim40\,\mathrm{m\,N/m}(20\,\mathrm{C})$ である。

<本発明の第3のインクの実施形態>

以下、本発明の第3のインク(以下、単に "第3のインク" という)について、 作用を含めその実施形態を説明する。

第3のインクは、顔料粒子、浸透剤及び水を少なくとも含むインクジェット記録用インクであって、前記顔料粒子の表面にスルホン酸アニオン基 $(-SO_3^-)$ 及び/又はスルフィン酸アニオン基 $(-RSO_2:RはC_1\sim C_{12}$ のアルキル基またはフェニル基およびその変性体)が化学結合され、上記スルホン酸アニオン基の対カチオン及び/又は上記スルフィン酸アニオン基の対カチオンが、アルカリ金属イオンおよび化学式 $(R_1R_2R_3R_4N)^+$ $(R_1,R_2,R_3$

PCT/JP00/03737

同一でも異なってもよく、水素原子、アルキル基、ヒドロキシアルキル基または ハロゲン化アルキル基を示す)で示される1価のイオン群から選択されてなることを特徴とする。

(作用)

インクジェット記録用インクにおける技術的課題は、前記第2のインクの"作用"の項で詳記したとおりである。

第3のインクでは、前記特徴点により、印字にじみが無く、また、速乾性および印字濃度が高い画像を得ることができ、さらには、インクの保存安定性が高く、また調製が簡便なものとなる。

第3のインクの好ましい実施形態は、前記スルホン酸アニオン基の対カチオン、および/または、前記スルフィン酸アニオン基の対カチオンが、リチウムイオン (Li^+) , カリウムイオン (K^+) , ナトリウムイオン (Na^+) , アンモニウムイオン (NH_4^+) およびアルカノールアミンカチオンの少なくとも一種である。

より好ましい実施形態は、前記対カチオンがナトリウムイオン (Na^+) およびアンモニウムイオン (NH_a^+) である。

すなわち、このような顔料粒子は、その粒子表面に導入されたスルホン酸アニオン基および/またはスルフィン酸アニオン基が解離し、顔料粒子間に電気的に 反発力が生じることで、分散安定性を確保している。

従って、インク中の顔料粒子表面からインクの浸透剤の作用により、従来の各種界面活性剤や水溶性樹脂等の分散剤が容易に吸脱着され、これにより、顔料粒子の分散性が容易に損なわれること無く、分散安定性を保つことができる。

また、本発明者等の知見によれば、前記スルホン酸アニオン基の対カチオンおよび/または前記スルフィン酸アニオン基の対カチオンが、 Na^+ である場合は、印字濃度が高い画像を得ることができ、 NH_4^+ である場合は、インクの保存安定性(分散安定性)が向上することから、対カチオンが、少なくとも Na^+ および NH_4^+ から成ることで、さらに、画像の印字濃度と保存安定性を両立させることができる。

第3のインクの別の好ましい実施形態は、インクの液性成分(ビヒクル)中に含まれるアルカリ金属イオンの総量が10000ppm以下である。10000p

pmより大きいと、顔料粒子が凝集・析出することがある。そのため、インクの保存安定性を確実に得るためには、液性成分(ビヒクル)中のアルカリ金属イオンの総量が10000pm以下であるのが好ましい。より好ましくは2000ppm以下、さらに好ましくは1000ppm以下である。

"液性成分(ビヒクル)"とは、第3のインクを顔料粒子などの固形部分と、それらの固形部分を分散して保持する液状部分とに分けた場合の"液状部分(濾液)"を意味する。従って、例えば、第3のインクを遠心処理して上清成分と沈殿成分とに分離し、その上清成分に含まれるアルカリ金属イオン量を公知の任意の方法で測定することによって、前記"液性成分"中に含まれるアルカリ金属イオン量を測定することができる。(なお、"液性成分中のアルカリ金属イオン量の総量"とは、顔料粒子の表面に化学結合したスルホン酸アニオン基やスルフィン酸アニオン基を対アニオンとして有するカチオンのみならず、それ以外の対アニオンを有するアルカリ金属イオンも含む。)

(表面処理顔料の作製)

第3のインクで用いる表面処理顔料は、前記 [本発明の第2のインクの実施形態]の(表面処理顔料の作製)の項で記載した方法に準じて、"スルホン酸アニオン基および/またはスルフィン酸アニオン基が表面に化学結合された顔料粒子(表面処理顔料)"を作製し、引き続き、アルカリ化合物で処理することにより得ることができる。

上記のように作製した表面処理顔料の "スルホン酸基および/またはスルフィン酸基の導入量"は、前記第2のインクで用いる表面処理顔料と同様、顔料粒子 1 g 当たり 1 0×1 0^{-6} 当量以上であることが好ましい。その理由は、前記したとおりである。

引き続き、上記"スルホン酸基および/またはスルフィン酸基が表面に化学結合された顔料粒子(表面処理顔料)"を、アルカリ化合物で処理する。

アルカリ化合物としては、カチオンがアルカリ金属イオンまたは化学式(R_1 R_2 R_3 R_4 N) + (R_1 , R_2 , R_3 および R_4 は同一でも異なってもよく、水素原子、アルキル基、ヒドロキシアルキル基またはハロゲン化アルキル基を示す)で示される 1 価のイオンとなるアルカリ化合物が選択される。好ましくは、カチ

オンが、リチウムイオン(L_{i}^{+})、カリウムイオン(K^{+})、ナトリウムイオン(N_{a}^{+})、および、トリエタノールアミンカチオン等のアルカノールアミンカチオンとなるアルカリ化合物である。

また、画像の印字濃度及びインクの保存安定性の観点から、スルホン酸アニオン基の対カチオンおよび/またはスルフィン酸アニオン基の対カチオンを少なくとも Na^+ および NH_4^+ から成るようにするのが好ましく、カチオンが、 Na^+ となるアルカリ化合物と NH_4^+ となるアルカリ化合物との混合溶液が、好適に用いられる。その理由は、前記したとおりである。

アルカリ化合物のアニオンとしては、水酸化アニオンが好適に用いられ、その 具体例としては、アンモニア、アルカノールアミン(モノエタノールアミン、ジェタノールアミン、N、Nーブチルエタノールアミン、トリエタノールアミン、プロパノールアミン、アミノメチルプロパノール、2ーアミノイソプロパノール等)、一価のアルカリ金属の水酸化物(LiOH、NaOH、KOH)が例示できる。

また、カチオンがナトリウムイオン (Na^+) となるアルカリ化合物と、カチオンがアンモニウムイオン (NH_4^+) となるアルカリ化合物の混合溶液としては、水酸化ナトリウムと水酸化アンモニウムの混合溶液が好適に用いられる。

この場合、まず、水酸化ナトリウムで処理することで、スルホン酸アニオン基の対カチオンおよび/またはスルフィン酸アニオン基の対カチオンをナトリウムイオンとし、引き続き、所定量のアンモニアを添加することで、ナトリウムイオンの一部をアンモニウムイオンに変換するなど、処理を二段階に分けても良い。

上記したアルカリ化合物の添加量としては、顔料粒子のスルホン酸基および/ またはスルフィン酸基の中和当量以上が好ましい。さらに、アンモニア、アルカ ノールアミン等の揮発性のある添加剤については、概ね、中和当量の1.5倍以 上の添加が好ましい。

その後、イオン交換水などで洗浄し、顔料を一旦単離してから、後記するイン ク調製工程を行っても良いが、スルホン酸基および/またはスルフィン酸基に対 して、過剰量のアルカリ化合物が残存していても問題はないため [ただし、カチ オン種がアルカリ金属の場合、その液性成分(ビヒクル)中の総量は、前記したと おり、10000ppm以下であることが好ましい]、アルカリ化合物で処理した反応溶液そのままを、インク調製用の溶液として用いても良い。また、後記するインク調製工程時にアルカリ化合物を添加することで、スルホン酸基および/またはスルフィン酸を、スルホン酸アニオン基および/またはスルフィン酸アニオン基に変換する手法も有用である。

なお、操作は、アルカリ化合物中に上記スルホン酸基および/またはスルフィン酸基が表面に化学結合された顔料粒子を入れ、ペイントシェーカー等で振とうすることにより行うことができる。

(第3のインクの調製)

第3のインクは、前記 [本発明のインクの実施形態] の(本発明のインクの調製)の項で記載した方法に準じて調製することができる。(なお、インクの調製段階で、スルホン酸基および/またはスルフィン酸基が化学結合された顔料粒子に、前記アルカリ化合物を反応させ、表面にスルホン酸基アニオンおよび/またはスルフィン酸基アニオンが化学結合された顔料粒子としても良い。)

上記調製法において、"スルホン酸アニオン基および/またはスルフィン酸アニオン基が表面に化学結合された顔料粒子(表面処理顔料)"のインクに対する含有量は、前記第1、第2のインクと同様、好ましくは0.5~30重量%、より好ましくは1.0~12重量%である。

前記の顔料の含有量が 0.5重量%未満になると、印字濃度が不充分となることがあり、30重量%を超えると、インク中に保湿成分を添加する量が制限され、ノズル目詰まりが発生しやすくなったり、インクの粘度が高くなり、インク吐出ノズルからの安定吐出が得られないことがある。

上記ように調製された第3のインクの諸物性は、適宜制御することができるが、 好ましい実施態様によれば、インクの保存安定性を確実に得るために、液性成分 (ビヒクル)中のアルカリ金属イオンの総量が、10000ppm以下(好ましく は2000ppm以下、さらに好ましくは1000ppm以下)であるのが好ま しい。

また、前記第2のインクと同様、顔料粒子濃度が0.001~0.01重量%になるようにインクをイオン交換水で希釈した場合に、20℃、pH8~9にお

ける顔料粒子のゼータ電位の絶対値が30mV以上であることが、印字濃度の点から特に好ましく、この範囲にするには、顔料粒子の表面への分散性付与基の導入量を特定の値にすることにより達成することができる。

さらに、前記第1,第2のインクと同様、インク組成の粘度は、10mPa・ 秒以下であるのが好ましく、より好ましくは5mPa・秒以下(20℃)である。 この粘度範囲のインクとすることにより、インク吐出ヘッドから、インクをより 安定に吐出させることができる。

また、インクの表面張力についても、浸透剤(アセチレングリコール系界面活性剤および/またはグリコールエーテル類)の添加量を適正化をすることにより適宜制御され、 $25\sim50\,\mathrm{m\,N/m}(2\,0\,\mathrm{C})$ であるのが好ましく、より好ましくは、 $3\,0\sim4\,0\,\mathrm{m\,N/m}(2\,0\,\mathrm{C})$ である。

<本発明の第4のインクの実施形態>

以下、本発明の第4のインク(以下、単に"第4のインク"という)について、 作用を含めその実施形態を説明する。

第4のインクは、表面処理顔料(硫黄を含む処理剤により硫黄含有分散性付与基が表面に化学結合された、単独で水性溶媒に分散可能な表面処理顔料)、浸透剤及び水を少なくとも含んでなるインクジェット記録用インクであって、オキサゾリジン系化合物、アルキルイソチアゾロン、クロルアルキルイソチアゾロン、ベンズイソチアゾロン、ブロモニトロアルコール及び/又はクロルキシレノールから選ばれた1種以上を含有することを特徴とする。これにより、前記第1~第3のインクで生じる作用効果に加えて、防腐・防黴に優れたインクを提供することができる。

インクジェット記録用インクにおける技術的課題は、前記第2のインクの"作用"の項で詳記したとおりであるが、これに加えて、特に第4のインクを開発する過程で、本発明者等は以下の知見を得た。

本発明者等は、インクの浸透剤として、アセチレングリコール系界面活性剤、 アセチレンアルコール系界面活性剤、1,2ーアルキレングリコール及び/又は グリコールエーテル類を使用し、また、着色剤の分散安定性付与手段として、イ

ンク中への添加物によって、顔料粒子表面からの分散剤が吸脱着の起きない表面 処理顔料(分散性付与基が顔料粒子表面に化学結合された表面処理顔料:前記第 1~第3のインクで用いる表面処理顔料を含む)を使用することで、前記したよ うに、滲み、速乾性、印字濃度を向上させることが可能となった。

一方、インクジェット記録液には、防黴・防腐の目的で、通常、防腐剤が添加される。第4のインクは、「表面処理顔料(硫黄を含む処理剤により硫黄含有分散性付与基が表面に化学結合された、単独で水性溶媒に分散可能な表面処理顔料)、浸透剤、及び水を少なくとも含んでなるインクジェット記録用インク」であり、その構成上、分散安定保持力が静電反発力のみに頼る自己分散型顔料であるため、"イオンバランスを崩し、インクの保存安定性確保に影響する低分子量の防黴・防腐剤"の選択は、特に注意を要する。

そこで、本発明者等は、防黴・防腐剤として、「オキサゾリジン系化合物、アルキルイソチアゾロン、クロルアルキルイソチアゾロン、ベンズイソチアゾロン、ブロモニトロアルコール、クロルキシレノール」は、スルホン化した自己分散型 顔料と併用可能であることを見い出し、本発明(第4のインク)を完成するに至った。

上記防黴・防腐剤が、特異的に、分散安定性確保に対し効果があることの理由は、明確にはなっていないが、インク中において、上記オキサゾリジン系化合物は、スルホン酸基の電気的解離状態を崩し、静電反発力を小さくする構造ではない、と推定される。

第4のインクの好ましい実施態様としては、前記第1~第3のインクで用いる表面処理顔料であるが、これにのみ限定するものではない。また、第4のインクで配合するオキサゾリジン系化合物としては、4.4ージメチルオキサゾリジンが、アルキルイソチアゾロンとしては、オクチルイソチアゾロン及び/又はメチルイソチアゾロンが、クロルアルキルイソチアゾロンとしては、クロルメチルイソチアゾロンが好ましく、これらの配合により、防腐・防黴に優れたインクを提供することができる。

さらに、その添加量が $0.01\sim0.5$ 重量%が好ましい。0.01重量%より少ないと、目的とする防腐・防黴効果が得られにくく、0.5重量%より多い

と、インクの保存時に物性変化を引き起こす傾向になる。

<本発明の第5のインクの実施形態>

以下、本発明の第5のインク(以下、単に "第5のインク" という)について、 作用を含めその実施形態を説明する。

第5のインクは、前記 [本発明に係るインクジェット記録用インク(本発明の第5のインク)の目的(課題)]を達成する技術的構成として、表面処理顔料(硫黄を含む処理剤により硫黄含有分散性付与基が表面に化学結合された顔料粒子)、浸透剤および水を少なくとも含むインクジェット記録用インクであって、前記浸透剤が、下記式(2)に示す構造の物質、アセチレングリコール系界面活性剤、アセチレンアルコール系界面活性剤、1、2ーアルキレングリコール及び/又はグリコールエーテル類であることを特徴とする。

式(2) ······· R-EOn2-POm2-X

[式(2)中、Rは、炭素数 $4\sim10$ のアルカノール基であり、n-基および/またはその他の異性体である。EOはエチレンオキシ基、POはプロピレンオキシ基であって、EOとPOは、分子中に存在することを示していて、順序は関係ない。 Xは、水素または $-SO_3$ Mである。(Mは、水素イオン、アルカリ金属、無機塩基、有機アミンである。) n_2 および m_2 は、繰り返し単位であって、系全体での平均値を示す。〕

(作用)

第5のインクで用いる表面処理顔料は、浸透剤として用いる前記式(2)に示す構造の物質、アセチレングリコール系界面活性剤、アセチレンアルコール系界面活性剤、1、2ーアルキレングリコール、グリコールエーテル類に安定であるため、分散剤で分散させたものより過酷な条件に耐え、高温や低温でも安定であって、その使用範囲の広く、また、顔料であるため、耐水性や耐光性に優れたインクジェット記録用インクとすることがはじめて実現できる。

(表面処理顔料の作製)

第5のインクで用いる表面処理顔料は、例えば、前記 [本発明の第1のインクの実施形態]の(表面処理顔料の作製)の項で記載した方法で得ることができが、

これのみに限定されるものではない。

(浸透剤)

第5のインクで配合する浸透剤としては、前記した式(2)に示す構造の物質、 アセチレングリコール系界面活性剤、アセチレンアルコール系界面活性剤、1、 2-アルキレングリコール及び/又はグリコールエーテル類である。

このうち、アセチレングリコール系界面活性剤、グリコールエーテル類については、前記 [本発明のインクの実施形態] の(浸透剤)の項で例示したものを、また、アセチレンアルコール系界面活性剤、1、2ーアルキレングリコールについては、前記 [本発明の第1のインクの実施形態] の(第1のインクの調整)の項で例示したものを、それぞれ用いることができる。

また、前記した式(2)に示す構造の物質、すなわち、

式(2) ······· $R - EOn_2 - POm_2 - X$

で示す構造の物質としては、式(2)に示すRが、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基及び/又はデシル基が好ましい。そして、前記ブチル基が、nーブチル基、イソブチル基及び/又は t ーブチル基を主成分とし、前記ペンチル基が、nーペンチル基及び/又はその他の異性体を主成分とし、前記ヘキシル基が、nーヘキシル基及び/又はその他の異性体を主成分とし、前記オクチル基が、nーオクチル基及び/又はその他の異性体を主成分とし、前記オクチル基が、nーオクチル基及び/又はその他の異性体を主成分とし、前記ノニル基が、nーノニル基及び/又はその他の異性体を主成分とし、前記デシル基が、nーデシル基及び/又はその他の異性体を主成分とし、前記デシル基が、nーデシル基及び/又はその他の異性体を主成分とする、ことが好ましい。

また、第5のインクの好ましい実施形態は、前記式(2)における n_2 が $0\sim1$ 0であり、 m_2 が $1\sim5$ であり、前記式(2)に示す物質の平均分子量が、2000以下である。

第5のインクにおいて、前記浸透剤を用いることによって、普通紙と言われる一般紙の上に印字したときの印字のにじみを低減できることを見い出した。前記式(2)に示す構造の物質を用いても、同等あるいはそれ以上の印字のにじみの低減効果があることを見い出した。

前記式(2)に示すRが、炭素数4であるブチル基より小さいメチル基、エチル基あるいはペンチル基では、浸透性が向上し難いので、印字のにじみの低減の効果が低い。より好ましい形態によれば、ブチル基、ペンチル基あるいはオクチル基であり、さらに好ましい形態によれば、ブチル基、ペンチル基あるいはヘキシル基である。

更に詳細に説明すると、前記式(2)に示すRが、ペンチル基以上では、水溶性が低下してしまって溶解助剤が必要になり、印字品質の向上もあまりない。

更に詳細に説明すると、前記式(2)に示すRが、ペンチル基以上で且つXが水素である場合は、水溶性が低下してしまって溶解助剤が必要になり、印字品質向上効果を得にくくなる。

また、前記式(2)における n_2 が $0\sim1$ 0であり、 m_2 が $1\sim5$ であることが好ましい。 n_2 、 m_2 がこの範囲外の場合には、浸透性が得られにくくなり、Rの炭素数が4以下で、 n_2 、 m_2 の平均値が共に1以下のような場合には、蒸気圧が高くなり、常温で蒸発してヘッドのノズルが詰まりやすくなってしまう弊害が生じることがある。一方、 n_2 が10を超えると、泡の発生が多くなり、その泡によって印字の乱れが生じやすくなる。 m_2 が5を超えると、疎水性が高くなるため、 n_2 が10であったとしても、水溶性が低くなってしまう。

n₂およびm₂は、インク系中の平均値を示すため各分子は分子量の分布をもっているものを前提とするが、単分散でもよい。

前記式(2)の物質は、アルキルアルコールを出発原料として、アルカリ等の雰囲気下でエチレンオキシドやプロピレンオキシドを目標モル量付加することによって形成するので、通常は、単分散はないが、蒸留などのプロセスを経て単分散として用いることは何ら問題ない。

しかし、残留アルコールは、インク系中に1重量%以下が好ましい。1重量% を超えると、ヘッドのノズル面でのぬれが発生して、印字劣化を生じやすくなっ たり、アルコール臭の発生などの課題も生じてくる。

第5のインクの好ましい実施形態は、前記式(2)に示す物質に、前記1,2-アルキレングリコールを0~10重量%含む。10%を超えると、印字品質向上の効果がそれ以上なく、粘度の上昇を来すので、インクジェット用、特に電歪素

子を用いたヘッドを使う場合には好ましくない。

上記1、2-アルキレングリコールは、印字品質向上の観点から、炭素数5および/または6の1、2-ペンタンジオールおよび/または1、2-ヘキサンジオールであることが更に好ましいが、1、2-ヘキサンジオールが最もよい。

第5のインクの別の好ましい実施形態は、前記式(2)に示す物質に、前記アセチレングリコール系界面活性剤を $0\sim5$ 重量%含む。アセチレングリコール系界面活性剤を更に添加することで、印字品質をさらに向上させることができる。その添加量は、 $0\sim5$ 重量%が好ましい。5重量%を超えて添加しても、それ以上の印字品質が向上が認めにくく、逆に粘度増加などの弊害がでることがある。より好ましい添加量は $0.1\sim2$ 重量%である。

さらに、第5のインクにおいては、その他の成分として、防腐剤、酸化防止剤、 導電率調整剤、pH調整剤、粘度調整剤、表面張力調整剤、酸素吸収剤等を任意 に配合することもできる。

また、ノズル前面でインクが乾燥して詰まることを抑制するために、多くの種類の糖類を用いることもできる。単糖類および多糖類があり、グルコース、マンノース、フルクトース、リボース、キシロース、アラビノース、ラクトース、ガラクトース、アルドン酸、グルシトース、マルトース、セロピオース、スクロース、トレハロース、マルトトリオース等の他にアルギン酸およびその塩、シクロデキストリン類、セルロース類を用いることができる。そしてその添加量は0.05%以上で30%以下がよい。0.05%未満ではインクがヘッドの先端で乾燥して詰まる目詰まり現象を回復させる効果は少なく、30%を超えるとインクの粘度が上昇して適切な印字ができなくなる。

一般的な糖類である単糖類および多糖類のグルコース、マンノース、フルクトース、リボース、キシロース、アラビノース、ラクトース、ガラクトース、アルドン酸、グルシトース、マルトース、セロビオース、スクロース、トレハロース、マルトトリオース等のより好ましい添加量は3~20%である。アルギン酸およびその塩、シクロデキストリン類、セルロース類はインクにしたときの粘度が高くなり過ぎない程度の添加量にする必要がある。

<本発明のインクセットの実施形態>

以下、本発明に係るインクジェット記録用インクセット(以下、単に"本発明のインクセット"という)について、作用を含めその実施形態を説明する。

本発明のインクセットは、少なくとも顔料、浸透剤、水よりなるインクジェット記録用インクセットにおいて、該顔料が、表面処理顔料(硫黄を含む処理剤により表面に硫黄含有分散性付与基を化学結合させた表面処理顔料粒子)であって、ブラック、イエロー、マゼンタ、シアンの4色の組み合わせからなること、または、

・ブラック、イエロー、マゼンタ、シアン、オレンジ、グリーンの6色の組み合わせからなること、

を特徴とする。

本発明のインクセットの好ましい実施形態は、表面処理顔料が、前記第2のインクで用いる "分散性付与基の量が、顔料粒子1g当たり10×10⁻⁶当量以上である表面処理顔料"である。

(作用)

本発明のインクセットは、硫黄を含む処理剤により表面に分散付与基を化学結合させた顔料粒子からなる、ブラック(表面処理ブラック顔料粒子)、イエロー(表面処理イエロー顔料粒子)、マゼンタ(表面処理マゼンタ顔料粒子)、シアン(表面処理シアン顔料粒子)の4色を組み合わせたことにより、顔料濃度の最適化が可能であり、顔料インクの設計が極めて容易に行うことができ、かつ所望の中間色を発色させることができ、良好なカラー画像を実現し得るインクジェット記録用インクセットを提供することができる。

また、本発明のインクセットは、前記4色に、更に、同様に分散付与基を化学結合させた表面処理顔料粒子からなる、オレンジ(表面処理オレンジ顔料粒子)、グリーン(表面処理グリーン顔料粒子)を組み合わせて6色のインクセットとすることにより、さらに良好なカラー画像、とりわけ、良好な色相を実現し得るインクジェット記録用インクセットを提供することができる。

本発明のインクセットの好ましい実施形態は、前記表面処理顔料粒子の分散性 付与基の量を特定の値(顔料粒子1g当たり10×10⁻⁶当量以上)とすること

で、"インクの分散安定性"をより優れたものとすることができる。

本発明のインクセットの作用効果について、さらに詳細に説明すると、本発明 のインクセットは、その技術的構成の第1の特徴点としては、表面処理顔料粒子 の組み合わせからなる。これにより、次のような作用効果が生じる。

表面処理顔料粒子は、インク中で静電的な反発のみで分散安定性を保つことができる。これは、使用する顔料に対して多種多様な分散剤の種類、添加量を適正化して物性値を合わせる必要がないことを意味する。 (仮に従来の分散剤を使用するタイプで物性値的に合わせることができたとしても、多種多様な記録紙に対応するインクの設計ができない。これは、顔料は、様々な分子骨格からなり、インク溶媒との親和性に差があることに起因するためと考えられる。)

本発明では、硫黄含有分散性付与基を顔料粒子に化学的に結合させ、顔料粒子表面を一様に酸性化することで、インク溶媒との親和性を合わせることができ、これにより、顔料濃度の最適化を可能とし、顔料インクの設計を極めて容易に行うことができる。

また、上記分散性付与基の量を特定の値(顔料粒子1g当たり10×10⁻⁶当量以上)とすることで、"インク中での顔料の概集作用、インクの粘度変化"などをより一層抑制することができ、"インクの分散安定性、保存安定性"をより一層優れたものとすることができる。

また、本発明のインクセットは、その技術的構成の第2の特徴点として、特定の表面処理顔料粒子の組み合わせからなる。すなわち、表面処理ブラック顔料粒子、表面処理イエロー顔料粒子、表面処理マゼンタ顔料粒子、表面処理シアン顔料粒子の4色を組み合わせたこと、または、この4色に、更に表面処理オレンジ顔料粒子、表面処理グリーン顔料粒子を組み合わせて6色のインクセットとすることを特徴とする。

イエローインク組成物、マゼンタインク組成物、シアンインク組成物の3色の組み合わせからなるインクセットは、カラーインクジェット記録方法に一般的に用いられているが、このインクセットに、ブラック(表面処理ブラック顔料)または更にオレンジ(表面処理オレンジ顔料)、グリーン(表面処理グリーン顔料)を組み合わせて用いることで、次のような作用効果が生じる。

PCT/JP00/03737

まず、本発明のインクセットによれば、カラー画像の色再現性の範囲を拡大することができる。とりわけ、赤系および緑系の色再現性を改善することができる。

従来の一般的なカラーインクジェット記録方法において得られる画像の赤および緑の彩度は、それぞれ60および70程度であるが、本発明のインクセットによれば、70以上の彩度を実現することができる。

また、本発明のインクセットによれば、微妙な中間色の表現が可能となるという作用効果が生じる。

インクジェット記録方法においては、カラーインク組成物を "印刷する/印刷しない" の 2 値制御によってカラー画像を表現する。従って、解像度との関係で表現できる色の数は限られることとなるが、本発明のインクセットにおいて、特にオレンジ(表面処理オレンジ顔料)、グリーン(表面処理グリーン顔料)を加えることにより、表現できる色の数が大幅に増えるという顕著な作用効果が生じる。

さらに、本発明のインクセットは、顔料を着色剤とすることで、次のような作 用効果が生じる。

顔料を着色剤とするインクは、染料を着色剤とするインクと比較して、透明性が低い。従って、2色以上のインク組成物を同時印刷すると、印刷面の明度が低くなり、また、彩度も下がるという傾向がある。この傾向は、単位面積当りのインク付着量が高くなる場合、例えば赤または緑を印刷した時に顕著となる。

本発明のインクセットにおいて、特に、オレンジ顔料(表面処理オレンジ顔料). グリーン顔料(表面処理グリーン顔料粒子)を使用することにより、赤色または緑 色印刷時のインク付着量を下げることができ、明度、彩度の高い印刷物を得るこ とができる。この現象は、染料染料インクでも認められるが、インク組成物の透 明度が低い顔料の方が効果が大きい。

また、顔料を着色剤とした場合に通常得られる効果、すなわち、高い耐水性、耐候性も同時に実現できる。

なお、4色の組み合わせ(表面処理ブラック顔料粒子、表面処理イエロー顔料粒子、表面処理マゼンタ顔料粒子、表面処理シアン顔料粒子の4色を組み合わせ)は、これに、更に、表面処理オレンジ顔料粒子、表面処理グリーン顔料粒子を加えた6色の組み合わせに比して、色再現範囲(特に中間色)を広げることがで

きないものの、普通紙対応(オフイスで必要な印刷物)については、十分な色再現 範囲および低コストを達成することができる。

(表面処理顔料)

本発明のインクセットで用いる表面処理額料(硫黄を含む処理剤により分散付 与基が表面に化学結合された表面処理顔料粒子)は、前記[第2のインクの実施 形態]の(表面処理顔料)の項に詳記した手段で作製することができる。

すなわち、上記項に記載するように、硫黄を含む処理剤により、顔料:ブラック顔料、イエロー顔料、マゼンタ顔料、シアン顔料、オレンジ顔料、グリーン顔料を溶剤中で直接酸化反応させることにより得ることができる。

表面処理顔料の分散付与基の導入量としては、本発明で特に限定するものではないが、顔料粒子1g当り10×10⁻⁶当量以上が好ましい。分散付与基の導入量が10×10⁻⁶当量未満になると、インク中から顔料粒子の凝集物が発生し易くなり、粘度変化を起こす等の保存安定性が低下するだけでなく、高い印字 濃度が得られなくなることがある。

分散性付与基の導入量の上限は、特に限定されないが、 6.0×1.0^{-6} 当量以上になると、分散性付与基導入量の増加に伴う保存安定性の向上効果の増加が認められなくなることがあるので、コストの点から、 6.0×1.0^{-6} 当量以下であることが好ましい。

本発明のインクセットにおいて、顔料の種類については、特に限定するもので はないが、

ブラック顔料としては、C. I. ピグメントブラック7、

イエロー顔料としては、前記イエローの被表面処理顔料が、C. I. ピグメント イエロー55,74.97,109,110,128,138,147,151, 154,180の一種または二種以上、

マゼンタ顔料としては、C. I. ピグメントレッド122, 202, 209, C. I. ピグメントバイオレット19の一種または二種以上、

シアン顔料としては、C. I. ピグメントブルー15, 15:1, 15:2, 15:3, 15:4, 15:6, 16の一種または二種以上、

オレンジ顔料としては、C. I. ピグメントオレンジ43, 36の一種または二

種、

グリーン顔料としては、C. I. ピグメントグリーン7.36の一種または二種、の使用が好ましい。

その理由は、これらの顔料を使用した場合、他の顔料の使用に比して、より彩度の高い良好な印刷物を得ることができる。また、保存安定性. 抗目詰まり特性等インクジェットに使用するインク組成物として満たさなければならない特性を備えているからである。

< 本発明のインクカートリッジの実施形態>

以下、本発明のインクカートリッジについて、その実施形態を説明する。

本発明のインクカートリッジは、インク含浸用フォームと、そのインク含浸用フォームに含浸されたインクとを含むインクカートリッジであって、前記インクが、表面処理顔料(硫黄含有分散性付与基を表面に有する顔料粒子)と、浸透剤と、水とを少なくとも含み、前記インク含浸用フォームに含浸されたインクの液性成分中に含まれる硫黄分が、SO₄²⁻イオン量として、2000ppm以下であることを特徴とする。

すなわち、本発明のインクカートリッジは、インク含浸用フォームに含浸する インクとして、前記第1のインクを用いることを特徴とする。

従って、本発明のインクカートリッジの好ましい実施態様は、前記第1のインクと同様、インク含浸用フォームに含浸されたインクの液性成分中に含まれる硫黄分が、 SO_4^2 -イオン量として、2000 p p m以下(好ましくは1000 p p m以下)であり、かつ、前記液性成分中に含まれる多価金属イオン量が、好ましくは800 p p m以下(より好ましくは600 p p m以下、最も好ましくは400 p p m以下)である。

また、本発明のインクカートリッジの好ましい別の実施態様は、前記顔料が、カーボンブラック顔料及び/又は有機顔料であり、また、他の好ましい実施態様は、前記浸透剤が、アセチレングリコール系界面活性剤、アセチレンアルコール系界面活性剤、1,2-アルキレングリコール及び/又はグリコールエーテル類であり、いずれの実施態様も、前記第1のインクの実施態様と同じである。

さらに、本発明のインクカートリッジの好ましい実施態様は、前記フォームが、ウレタンフォームである。前記ウレタンフォームは、触媒として有機金属化合物 (例えば有機錫化合物)を用いて製造されるフォームであることができ、前記有機 金属化合物の添加量が、前記ウレタンフォームの総重量に対して、0.01~0.2 重量%であることができる。

また、本発明のインクカートリッジの好ましい別の態様は、前記インクの液性 成分中に含まれる前記有機化合物触媒からの金属イオンおよびその他の多価金属 イオンの総量が、800ppm以下である。

本発明の好ましい他の態様は、インクジェット記録装置用のインクカートリッジである。

本発明のインクカートリッジにおいて、インクの "液性成分" とは、インク合 浸用フォームに含浸されたインクに関して、それを顔料粒子などの固形部分と、それらの固形部分を分散して保持する液状部分とに分けた場合の "液状部分" を意味する。従って、その "液性成分"には、インクを調製する際にベヒクル(インク自体の液状部分)中に混入する不純物に加えて、インク含浸用フォームから前記ベヒクル中に滲み出でくる不純物も含まれている。

また、例えば、インク含浸用フォームに含浸されたインク(必要によりフォームから分離して取り出したインク)を遠心処理して上清成分と沈殿成分とに分離し、その上清成分に含まれる SO_4^{2-} イオン量、多価金属イオン(アルカリ土類金属イオン量や錫イオン量などの多価金属イオン)を公知の任意の方法で測定することによって、前記 "液性成分"中に含まれる SO_4^{2-} イオン量、多価金属イオン量を測定することができる。

なお、 "ベヒクル"とは、本発明のインクカートリッジのインク含浸用フォームに含浸させる前のインクを顔料粒子などの固形部分と、それらの固形部分を分散して保持する液状部分とに分けた場合の "液状部分"を意味する。

(表面処理顔料、インクの調製)

本発明のインクカートリッジで用いる表面処理顔料およびその作製、インク含 浸用フォームに含浸するインク(水系顔料インク)の調製については、前記[第1 のインクの実施態様]の項で記載したとおりである。

(インク含浸用フォーム)

本発明のインクカートリッジにおいては、前記の水系顔料インクをインク含浸 用フォームに含浸させて含む。

インク合浸用フォームとしては、耐インク性を有し、インクによって変質しないものであれば特に限定されず、従来公知のフォーム、例えば、特開平11-20192号、特開平5-38816号、特開平7-32613号又は特開昭64-26452号の各公報に記載のフォームを用いることができる。

インク含浸用フォームとしては、特には、ポリエーテルポリオールとイソシア ネートを、少なくとも触媒と発泡剤の存在下で反応させて得ることのできるウレ タンフォームを用いるのが好ましい。

前記ポリエーテルポリオールとしては、一般に公知のポリエーテルポリオールを広く用いることができる。ポリエーテルポリオールは、分子量が約1000~1000で、プロピレングリコール、エチレングリコール、グリセリン、トリエタノールアミン、若しくはエチレンジアミン等のポリヒドロキシ化合物と、エチレンオキサイドやプロピレンオキサイド等との反応によって得ることができる化合物、具体例としては、グリセリンベース・ポリプロピレングリコール等を挙げることができる。

一般的に、ウレタンフォームを製造するのに用いるポリオールとしては、その他にも、ポリエステルポリオール等を挙げることができるが、本発明のインクカートリッジにおいては、ウレタンフォームがインクと直接触れるので、インクがアルカリ性でも、あるいは、酸性でも、劣化の少ないポリエーテルポリオールがより好ましい。

イソシアネートとしては、2個以上のイソシアネート基を同一分子中にもつ芳香族ポリイソシアネート、脂肪族ポリイソシアネート、又はこれらの変性物を用いることができ、具体例としては、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等を挙げることができる。

また、発泡剤としては、広く一般に用いられている発泡剤、例えば、水、空気、 窒素、ペンタン、塩化メチレン、又はニトロアルカン等を用いることができる。

その他、ウレタンフォームの製造において通常使用されている添加剤、例えば、

PCT/JP00/03737

シリコーン油等の整泡剤や、ポリエーテルシロキサン等のセルオープン剤等を必要に応じて用いることもできる。

インク充填用フォームとしては、製造されたウレタンフォームをそのまま用いることもできるが、インク保持力を高めるために、酸素と水素の混合ガス等を用いて、セル間に生成した膜状物質を溶膜処理してから用いることもできる。

インク充填用フォームにおいては、インク保持の観点から、そのセル数は20~60個/インチの範囲が好ましい。セル数が多すぎると、保持することのできるインク量が減り、しかもセルの毛細管現象が強く働くために、有効インク量が少なくなり好ましくない。逆にセル数が少なすぎる場合には、そのままでは毛細管現象が働かず、また、インク保持体を圧縮して使用しても、インク保持体におけるセルの大きさが均等になり難く、フォーム内に均一にインクを保持することが困難となり、いずれも好ましいものではない。

本発明のインクカートリッジは、インク充填用フォームを充填してなるが、その際、必要に応じ、任意にフォームを圧縮して密度を制御して用いることができる。インク充填用フォームの圧縮率は、特に前記のウレタンフォームのセル数とおおよその相関関係をもっており、セル数が少ない場合には高圧縮、多い場合には低圧縮で用いるが、その他、インクカートリッジの形状やインクの特性、また印字ヘッドの流路構造、ノズル部位置とインクカートリッジの接合位置等、様々なパラメータによって適宜決まるものである。おおむねインクカートリッジの容積に対して、体積比で1/1~1/10で用いるのが好ましく、より好ましくは1/2~1/5程度である。

ポリエーテルウレタンは、その製造の際に、一般的に、触媒として、有機金属化合物(例えば、ジブチル錫ラウレート、オクチル酸塩錫、ナフテン酸鉛、ナフテン酸コバルトなど)や、3級アミン(N-エチルモルホリン、トリエチレンジアミン(DABBCO)など)を用いる。

このうち、特に有機金属化合物は、ポリエーテルウレタンがインクと接触する と、インク中に溶出され、インク中で結晶を形成し、吐出特性が損なわれる原因 となるため、ポリエーテルウレタンの製造時に使用する有機金属化合物の添加量 は少ないことが好ましい。単に触媒としての量が少なすぎると、未反応成分がフ ォーム内に多量に残存し、それらがインク中に溶出し、インクの特性に悪影響を 及ぼす。従って、前記有機金属化合物の添加量が、ウレタンフォームの総重量に 対して、0.01~0.2重量%であることが好ましい。

ポリエーテルウレタンは、洗浄処理又はエージング処理等の前処理を行ってから、インクを含浸させるのが好ましいが、これらの前処理は、必ずしも行う必要はない。

本発明のカートリッジは、ケース内を一室として、一種類のインクを充填する 態様でも、あるいは、ケース内を任意に仕切って、複数のインク室を設け、複数 の異なるインクを充填することもできる。

産業上の利用可能性

本発明のインクジェット記録用インク(第1のインク)によれば、保存安定性および吐出安定性(ドット抜けおよび目詰まり等の防止)を確保することができると同時に、印字画像に不規則なにじみが少なく、印字画像が印字後に素早く乾燥し、しかも印字画像の印字濃度が高いという印字特性をも同時に満足することができる。更には、普通紙への印字画像をよく観察した場合、印字がなされた面の裏面へのインクの浸透が少なく、両面印刷の印字に対応可能である。

本発明のインクジェット記録用インク(第2のインク)によれば、印字にじみが無く、また、速乾性および印字濃度が高い画像を得ることができ、さらには、保存安定性が高く、調製が簡便なインクジェット記録用インクを提供することができる。また、特に、顔料粒子濃度が0.001~0.01重量%になるように、インクをイオン交換水で希釈した場合に、20℃、pH8~pH9における顔料粒子のゼータ電位の絶対値が30mV以上となるインクジェット記録用インクとすることで、より高い印字濃度の画像を得ることができ、保存安定性がより高いインクジェット記録用インクを提供することができる。

さらに、硫黄を含む処理剤により分散性付与基が表面に化学結合された顔料粒子、浸透剤および水を含有するインクジェット記録用インクであって、上記分散性付与基の量が顔料粒子1g当たり10×10-8当量以上であり、かつ顔料粒

子濃度が 0.001~0.01重量%になるようにインクをイオン交換水で希釈 したインク希釈液において、20℃、pH8~9における顔料粒子のゼータ電位 の絶対値が 30m V以上となるインクジェット記録用インクとすることで、極め て高い画像の印字濃度を得ることができ、インク保存安定性が高いインクジェッ ト記録用インクおよびその製造方法を提供することができる。

また、本発明のインクジェット記録用インク(第2のインク)の製造方法によれば、インク中でスルホン酸基および/またはスルフィン酸基をイオン解離させてからインク溶媒を加える工程とすることで、顔料粒子の分散性がさらに高まり、インク調製がより簡便なインクジェット用インクの製造方法を提供することができる。

本発明のインクジェット記録用インク(第3のインク)によれば、印字にじみが無く、また、速乾性および印字濃度が高い画像を得ることができ、さらには、保存安定性が高く、調製が簡便なインクジェット記録用インクを提供することができる。また、特に、スルホン酸アニオン基の対カチオンおよび/またはスルフィン酸アニオン基の対カチオンが、少なくとも Na^+ および NH_4^+ から成ることで、より高い印字濃度の画像を得ることができ、保存安定性がより高いインクジェット記録用インクを提供することができる。

さらに、液性成分(ビヒクル)中のアルカリ金属イオンの総量が2000ppm 以下であることにより、より確実な保存安定性を有するインクジェット記録用インクを提供することができる。

本発明のインクジェット記録用インク(第4のインク)によれば、堅牢性の優れる顔料インクで、印字画像に不規則なにじみが少なく、また、色境界域でのカラーブリードがなく、印字後素早く乾燥して、印字濃度が高いという特徴を有し、しかも、優れた保存安定性をも確保している。さらに、言うまでもないが、着色剤が顔料であることから、従来の染料系のインクジェット記録用インクに対して優れた耐光性及び耐水性を示す。

本発明のインクジェット記録用インク(第5のインク)によれば、従来不十分であった普通紙、特に再生紙に対して、殆ど滲まない印字が可能であり、耐水性や耐光性が優れたインクジェット記録用インクを提供することができる。

本発明のインクジェット記録用インクセットによれば、表面処理ブラック顔料、表面処理イエロー顔料、表面処理マゼンタ顔料、表面処理シアン顔料の4色を組み合わせたことで、顔料濃度の最適化が可能であり、顔料インクの設計が極めて容易に行うことができ、かつ所望の中間色を発色させることができ、良好なカラー画像を実現し得るインクジェット記録用インクセットを提供することができる。また、上記4色の顔料に、更に、表面処理オレンジ顔料、表面処理グリーン顔料を組み合わせて6色とすることで、さらに良好なカラー画像、とりわけ良好な色相、を実現し得るインクジェット記録用インクセットを提供することができる。

本発明のインクカートリッジによれば、インクの含浸用フォームとしてポリウレタンフォームを収納するカートリッジと、表面処理顔料含有インクとを組み合わせたインクカートリッジにおいて、保存安定性や吐出安定性(目詰まり等の防止)を確保することができると共に、前記インクの印字特性を安定に維持することができる。

実施例

次に、実施例1~7によって本発明のインク(第1~第5のインク)、インクセットおよびインクカートリッジを具体的に説明するが、これらは本発明の範囲を限定するものではない。なお、以下の実施例1~7. 比較例1~7の説明において、硫黄含有分散性付与基を表面に有する顔料粒子を単に "表面処理顔料"とも言う。また、以下の実施例および比較例において、 "部" および "%" は、特に断らない限り "重量" による。

[本発明の第1のインクの実施例. 比較例]

以下の実施例1(実施例1-1~1-11)は、本発明の第1のインクの実施例であ

り、また、比較例1(比較例1-1~1-3)は、本発明の第1のインクに対する比較のための例である。

以下の実施例 1 (実施例 $1-1\sim1-11$)、比較例 1 (比較例 $1-1\sim1-3$)において示す "インクの液性成分中に含まれる硫酸イオン量(SO_4^2 -量)および多価金属イオン量"は、以下の方法によって決定した。

「硫酸イオン及び多価金属イオンの測定法」

(1) 液性成分の分離

各実施例1又は比較例1で調製したインクを遠心限外濾過装置(C-15;ミリポア社)によって遠心処理した。フィルターとしては、タイプNMWL1000を使用し、遠心条件は、2500G×60分とした。得られた濾液を用いて、硫酸イオン量及び多価金属イオン量を以下の方法により定量した。

(2) 硫酸イオンの定量

(3) 多価金属イオンの定量

濾液10mgを酸素フラスコ法燃焼法で処理した後、0.2%硝酸水溶液に吸収させた。続いて、前記(2)と同じイオンクロマトグラフ法で多価金属イオン量を定量した。

また、以下の実施例 1 (実施例 1-1~1-11), 比較例 1 (比較例 1-1~1-3)で示す "表面処理顔料の分散性付与基の導入量"は、以下の方法によって求めた。

「分散性付与基の導入量の定量」

各実施例1,比較例1で得た表面処理顔料を酸素フラスコ燃焼法で処理し、0.3%過酸化水素水溶液に吸収させた後、イオンクロマトグラフ法(ダイオネクス社;2000i)で硫酸イオン(2価)を定量し、この値をスルホン酸基[スルホン酸基(1価)および/またはスルフイン酸基(1価)]に換算し、顔料1g当たりの当量として示した。

さらに、以下の実施例1(実施例1-1~1-11), 比較例1(比較例1-1~1-3)で

PCT/JP00/03737

得られたインクの物性値(ゼータ電位、粘度、表面張力)は、以下の方法によって 決定した。

「インク物性値の測定」

・ゼータ電位の測定

実施例1. 比較例1で得たインクをイオン交換水で1000倍に希釈し(顔料粒子濃度が0.008重量%になるように希釈し)、0.1規定塩酸及び0.1 規定苛性ソーダを加えて20℃におけるpHを8~9にして、顔料粒子のゼータ電位をレーザー・ドップラー型電気泳動装置(大塚電子社製ELS-800)で測定し、その絶対値として示した。

・粘度の測定

実施例1. 比較例1で得たインクについて、20℃におけるインク粘度を回転 型粘度計RFS2(レオメトリック社製)によりせん断速度200/秒で測定した。

・表面張力の測定

実施例1. 比較例1で得たインクの表面張力を表面張力計(協和界面科学社製 CBVP-A3)で測定した。

以下の実施例1(実施例1-1~1-11), 比較例1(比較例1-1~1-3)にインクについて、次に示す"印字試験"および"インクの保存安定性試験"を行った。「印字試験」

インクジェット記録方式のプリンタとして、MJ-5000C(セイコーエプソン社製)を用い、これに実施例1、比較例1で得たインクを充填し、中性普通紙としてゼロックスP(富士ゼロックス社製)、酸性普通紙としてEPP(セイコーエプソン社製)、再生紙としてゼロックスR(富士ゼロックス社製)を用い、それぞれの紙に対する印字を行った。(以下、この試験結果を"当初試験結果"という。) 更に、プリンタの電源をオフにして、1週間後に同様な印字試験を行った。(以下、この試験結果を"1週間後の試験結果"という。)

「インクの保存安定性試験」

実施例1. 比較例1で調製したインクをガラス製のサンプル瓶に入れて密栓した後、60 \mathbb{C} にて1週間又は-20 \mathbb{C} にて1週間の条件で放置し、放置前後でのインクの異物発生と、インクの粘度、表面張力の変化の有無について調べた。異

物の確認方法は、インク製造直後と、それぞれの条件で放置したインクを25μ mの綾畳み金属フィルターで濾過して、顕微鏡で異物の増減を調べる方法である。

く実施例1-1>

(1) 表面処理顔料の作製:カーボンブラック

カーボンブラック(三菱化学社製「MA-7」)15部をスルホラン200部中に混合し、アイガーモーターミルM250型(アイガージャパン社製)で、ビーズ充填率70%及び回転数5000rpmの条件下で1時間分散し、分散した顔料ペーストと溶剤の混合液をエパポレーターに移し、30mmHg以下に減圧しながら、120℃に加熱して、系内に含まれる水分をできるだけ留去した後、150℃に温度制御した。次いで、三酸化硫黄25部を加えて6時間反応させ、反応終了後、過剰なスルホランで数回洗浄した後、水中に注ぎ濾過することで表面処理カーボンブラック顔料粒子を得た。

得られた表面処理カーボンブラック顔料の分散性付与基の導入量は、顔料 1g 当たり 50×10^{-6} 当量であった。

(2) インクジェット記録用インクの調製

前記実施例1-1(1)で得たカーボンブラック顔料と、浸透剤として、アセチレングリコール系界面活性剤であるサーフィノール465(エアープロダクツ社製)及びグリコールエーテル類であるトリエチレングリコールモノーnーブチルエーテルを使用した。具体的な組成を以下に示す。

実施例 1-1(1)の表面処理カーボンブラック顔料(固形分として)8. 0%サーフィノール4651. 0%トリエチレングリコールモノー n ー ブチルエーテル10. 0%グリセリン15. 0%1, 5ーペンタンジオール2. 5%トリエタノールアミン0. 8%

調製操作は以下のとおりに行った。

イオン交換水

前記実施例1-1(1)で得た表面処理カーボンブラック顔料にイオン交換水とト

残量

リエタノールアミンを加え、分散性付与基のイオン解離作業を行った。その後、別の容器にて混合したサーフィノール465、トリエチレングリコールモノー n ーブチルエーテル、グリセリン、及び1、5ーペンタンジオールの混合液を、先に調製した表面処理カーボンブラック顔料液に攪拌しながら徐々に加えることにより、本発明による実施例1-1のインクを得た。

得られたインクのゼータ電位は43mV(絶対値)であり、粘度は4.7mP a.sであり、表面張力は32mN/mであった。また、前述の定量法によって求めた SO_4^{2-} 量は1480ppmであり、多価金属イオン量は780ppmであった。

(3) 印字試験、インクの保存安定性試験

実施例1-1のインクについて、前記した「印字試験」および「インクの保存安定性試験」を行った。

印字試験の結果(当初試験結果)、得られた印字画像は、いずれも不規則な滲みが殆ど無く、高い印字濃度の良好な画像であった。また、べた印字を行った場合、インクが紙へ浸透消失するまでに要する乾燥時間は、いずれの紙においても2秒未満であり、良好な乾燥性が得られた。印字試験を通して、ドット抜けは発生せず、非常に安定な印字状況であった。(→評価 "A")

更に、プリンタの電源をオフにして、1週間後に同様な試験を行ったところ、 印字信号をプリンタに送ると同時に印字を開始し、インク吐出ノズルでの目詰ま り等の不良は確認されなかった。(→評価 "A")

インクの保存安定性試験の結果、いずれの条件においても、異物の発生および 粘度変化は殆ど確認されず、良好な保存安定性を有することを確認した。(→評価 "A")

<実施例1-2>

(1) 表面処理カーボンブラック顔料の作製

処理するカーボンブラックをPrintex150T(DEGUSSA社製)とすること以外は、前記実施例1-1(1)に記載の操作を繰り返して、表面処理カーボンブラック顔料粒子を得た。

得られた表面処理カーボンブラック顔料の分散性付与基の導入量は、顔料1g当たり 41×10^{-6} 当量であった。

(2) インクジェット記録用インクの調製

前記実施例1-1における「インクの具体的組成」中の「実施例1-1(1)の表面 処理カーボンブラック顔料(固形分として)8.0%」に代えて、「実施例1-2(1)で得たカーポンブラック顔料(固形分として)6.0%」とした点を除き、 その他は同一組成とし、そして、前記実施例1-1(2)と同一調製法によって、本 実施例1-2のインクを得た。

得られたインクのゼータ電位は39mV(絶対値)であり、粘度は4.2mP a・s であり、表面張力は33mN/mであった。また、前述の定量法によって求めた SO_4^{2-} 量は1920ppmであり、多価金属イオン量は870ppmであった。

(3) 印字試験. インクの保存安定性試験

実施例1-2のインクについて、前記した「印字試験」および「インクの保存安定性試験」を行った。

当初試験結果は、前記実施例1-1と同じであった。(→評価 "A")

更に、プリンタの電源をオフにして、1週間後に同様な試験を行ったところ、 印字信号をプリンタに送り印字を開始したが、若干のノズルで目詰まりが見られ たため、印字を停止させてクリーニング動作を行った。本実施例1-2の場合、ク リーニング動作を2回実施した後に正常動作に復帰したので、実使用における問題はないものであった。(→評価"B")

インクの保存安定性試験の結果、いずれの条件においても、粘度の変化は殆ど 確認されなかったが、市販インクカートリッジの異物捕捉用フィルターで捕捉可 能な程度の異物(顔料粒子の凝集物)が瓶の底部に確認された。(→評価 "B")

<比較例1-1>

(1) 表面処理顔料の作製:カーポンプラック

カーボンブラック15部を用い、溶剤をピロリドン300部とし、処理剤をア ミド硫酸3部に代え、エバポレーター中での反応条件を120℃及び1時間とし

て処理すること以外は、前記実施例1-1(1)に記載の操作を繰り返して、表面処理カーボンブラック顔料粒子を得た。

得られた表面処理カーボンブラック顔料の分散性付与基の導入量は、顔料1g当たり 8.5×10^{-6} 当量であった。

(2) インクジェット記録用インクの調製

前記実施例 1-1の "実施例 1-1(1)の表面処理カーボンブラック顔料(固形分として) 8.0%" に代えて、 "比較例 1-1(1)で得たカーボンブラック顔料(固形分として) 6.0%" とした点を除き、その他は、前記実施例 1-1(2)と同一処理方法によって、本比較例 1-1のインクを得た。

得られたインクのゼータ電位は28mV(絶対値)であり、粘度は4.0mP $a \cdot s$ であり、表面張力は32mN/mであった。また、前述の定量法によって求めた SO_4^{2-} 量は2320ppmであり、多価金属イオン量は610ppmであった。

(3) 印字試験, インクの保存安定性試験

本比較例1-1のインクについて、前記した「印字試験」および「インクの保存 安定性試験」を行った。

印字試験の結果(当初試験結果)、得られた印字画像は、いずれも滲みが確認され、また、印字濃度も実施例1-2に比べて低かった。しかし、べた印字を行った場合、インクが紙へ浸透消失するまでに要する乾燥時間は、いずれの紙においても2秒未満であり、良好な乾燥性が得られた。記録紙1枚の印字試験を実施する間に、ドット抜けが発生し、得られた印字物は粗雑なものであった。(→評価"C")

更に、プリンタの電源をオフにして、1週間後に同様な試験を行ったところ、 印字信号をプリンタに入力しても、多数のインク吐出ノズルで目詰まりが起った。 クリーニング動作を5回繰り返したが、全インク吐出ノズルからの正常インク吐 出には至らなかった。(→評価 "C")

インクの保存安定性試験の結果、いずれの条件においても異物が発生し、粘度値が高くなることが確認され、良好な保存安定性は得られなかった。(→評価 "C")

く実施例1-3>

(1) 表面処理顔料の作製: C. I. ピグメントブルー15:3

フタロシアニン顔料(C. I. ピグメントブルー15:3)20部をキノリン5 00部と混合し、アイガーモーターミルM250型(アイガージャパン社製)でピーズ充填率70%及び回転数5000rpmの条件下で2時間分散し、分散した顔料ペーストと溶剤の混合液をエバポレーターに移し、30mmHg以下に減圧しなが5120℃に加熱し、系内に含まれる水分をできるだけ留去した後、160℃に温度制御した。次いで、スルホン化ピリジン錯体20部を加えて8時間反応させ、反応終了後に過剰なキノリンで数回洗浄した後に水中に注ぎ、濾過することで表面処理フタロシアニンブルー顔料粒子を得た。

得られた表面処理フタロシアニン顔料の分散性付与基の導入量は、顔料1g当たり58×10⁻⁶当量であった。

(2) インクジェット記録用インクの調製

本実施例1-3では、前記実施例1-3(1)で調製した表面処理フタロシアニンブルー顔料と、浸透剤として、前記実施例1-1と同様、アセチレングリコール系界面活性剤であるサーフィノール465(エアプロダクツ社)、グリコールエーテル類であるトリエチレングリコールモノーnーブチルエーテル、および、1.2ーアルキレングリコールである1,2-ヘキサンジオールを使用した。具体的な組成を以下に示す。

実施例1-3(1)の表面処理フタロシアニンブルー顔料(固形分として)

	6.	0 %
サーフィノール465	0.	8 %
トリエチレングリコールモノーn-ブチルエーテル	7.	5 %
グリセリン	10.	0 %
トリエチレングリコール	3.	0 %
1. 2-ヘキサンジオール	5.	0 %
トリエタノールアミン	3.	0 %
イオン交換水		残量

調製操作は以下のとおりに行った。

前記実施例 1-3(1)で調製した表面処理フタロシアニンブルー顔料に、イオン交換水とトリエタノールアミンを加え、分散性付与基のイオン解離作業を行った。その後、別の容器にて混合したサーフィノール465、トリエチレングリコールモノーnーブチルエーテル、グリセリン、トリエチレングリコール、及び、1、2-ヘキサンジオールの混合液を、先に調製した表面処理フタロシアニンブルー顔料液に攪拌しながら徐々に加えることにより、本発明による実施例 1-3のインクを得た。

得られたインクのゼータ電位は $5.6\,\mathrm{m\,V}$ (絶対値)であり、粘度は $3.9\,\mathrm{m\,P}$ $a\cdot s$ であり、表面張力は $2.9\,\mathrm{m\,N\,/m}$ であった。また、前述の定量法によって求めた SO_4^{2-} 量は $3.1.0\,\mathrm{p\,p\,m}$ であり、多価金属イオン量は $2.8.0\,\mathrm{p\,p\,m}$ であった。

(3) 印字試験、インクの保存安定性試験

実施例1-3のインクについて、前記した「印字試験」および「インクの保存安定性試験」を行った。

当初試験結果は、前記実施例1-1と同じであり(評価 "A")、1週間後の試験結果も前記実施例1-1と同じであった(評価 "A")。また、保存安定性試験の結果についても、前記実施例1-1と同じであった(評価 "A")。

く実施例1-4>

(1) 表面処理顔料の作製

(2) インクジェット記録用インクの調製

本実施例1-4では、前記実施例1-3(1)で調製した表面処理フタロシアニン顔料と、浸透剤として、前記実施例1-1と同様、アセチレングリコール系界面活性剤であるサーフィノール440(エアープロダクツ社製)、グリコールエーテル類

であるトリエチレングリコールモノーnーブチルエーテル、および、1,2-アルキレングリコールである1,2-ヘキサンジオールを使用した。具体的な組成を以下に示す。

実施例1-3(1)の表面処理フタロシアニンブルー顔料(固形分として)

	6.	0 %
サーフィノール440	0.	8 %
トリエチレングリコールモノーn-ブチルエーテル	7.	5.%
グリセリン	10.	0 %
1, 2-ヘキサンジオール	5.	0 %
モノエタノールアミン	1.	0 %
トリスヒドロキシメチルアミノメタン	0.	2 %
ヘキサクロロフェン	0.	03%
イオン交換水		残量

調製操作は以下のとおりに行った。

前記実施例1-3(1)で調製した表面処理フタロシアニンブルー顔料にイオン交換水とモノエタノールアミンを加え、分散性付与基のイオン解離作業を行った。 その後、別の容器にて混合したサーフィノール440、トリエチレングリコール モノーローブチルエーテル、グリセリン、1,2ーヘキサンジオール、トリスヒ ドロキシメチルアミノメタン及びヘキサクロロフェンの混合液を、先に得られた 表面処理フタロシアニンブルー顔料液に攪拌しながら徐々に加えることにより、 本発明による実施例1-4のインクを得た。

得られたインクのゼータ電位は $5.6\,\mathrm{m\,V}$ (絶対値)であり、粘度は $3.8\,\mathrm{m\,P}$ $a\cdot s$ であり、表面張力は $3.0\,\mathrm{m\,N/m}$ であった。また、前述の定量法によって求めた SO_4^{2-} 量は $1.3.2.0\,\mathrm{p\,p\,m}$ であり、多価金属イオン量は $8.8.0\,\mathrm{p\,p\,m}$ であった。

(3) 印字試験、インクの保存安定性試験

実施例1-4のインクについて、前記した「印字試験」および「インクの保存安定性試験」を行った。

当初試験結果は、前記実施例1-1と同じであった(評価 "A")。1週間後の試

験結果については、前記実施例 1-2と同じであった(評価 "B")。また、保存安定性試験の結果についても、前記実施例 1-2と同じであった(評価 "B")。

く実施例1-5>

(1) 表面処理顔料の作製: C. I. ピグメントブルー15:3

本実施例 1-5(1)の作製法では、前記実施例 1-4(1)の作製法 [前記実施例 1-3(1)の作製法] における反応時間 "8時間"を "6時間"と短くした点以外は、前記実施例 1-4(1)の作製法 [前記実施例 1-3(1)の作製法] と同一条件で処理し、本実施例 1-5の表面処理フタロシアニンブルー顔料粒子を得た。

得られた表面処理フタロシアニンブルー顔料の分散性付与基の導入量は、顔料 1g 当たり 46×10^{-6} 当量であった。

(2) インクジェット記録用インクの調製

前記実施例 1-5(1)で得たフタロシアニンブルー顔料と、浸透剤として、アセチレンアルコール系界面活性剤であるサーフィノール 61(xr-プロダクツ社製)及びグリコールエーテル類であるジエチレングリコールモノーn-プチルエーテル、式(1)で示す構造の物質としてRが $t-プチル基で、<math>n_1$ が 3.0で、 m_1 が 1.0で、Xが水素である式(1) - A を使用した。具体的な組成を以下に示す。

実施例1-5(1)の表面処理フタロシアニンブルー顔料(固形分として)

•	8.	0 %
サーフィノール 6 1	0.	8 %
ジェチレングリコールモノーn-ブチルエーテル	5.	0 %
式(1)-A	2.	0 %
グリセリン	15.	0 %
プロパノールアミン	0.	8 %
イオン交換水		残量

調製操作は以下のとおりに行った。

前記実施例1-5(1)で得た表面処理フタロシアニン顔料にイオン交換水とプロパノールアミンを加え、分散性付与基のイオン解離作業を行った。その後、別の

容器にて混合したサーフィノール61、ジエチレングリコールモノーnーブチルエーテル、式(1)-A、及びグリセリンの混合液を、先に調製した表面処理フタロシアニンブルー顔料液に撹拌しながら徐々に加えることにより、本発明による実施例1-5のインクを得た。

得られたインクのゼータ電位は $41\,\mathrm{m\,V}$ (絶対値)であり、粘度は $3.9\,\mathrm{m\,P}$ $a\cdot s$ であり、表面張力は $30\,\mathrm{m\,N/m}$ であった。また、前述の定量法によって求めた SO_4^{2-} 量は $1760\,\mathrm{p\,p\,m}$ であり、多価金属イオン量は $790\,\mathrm{p\,p\,m}$ であった。

(3) 印字試験、インクの保存安定性試験

実施例1-5のインクについて、前記した「印字試験」および「インクの保存安定性試験」を行った。

当初試験結果は、前記実施例1-1と同じであり(評価 "A")、1週間後の試験 結果も前記実施例1-1と同じであった(評価 "A")。また、保存安定性試験の結 果についても、前記実施例1-1と同じであった(評価 "A")。

<比較例1-2>

(1) 表面処理顔料の作製: C. I. ピグメントブルー15:3

フタロシアニンブルー顔料(C. I. ピグメントブルー15:3)15部を用い、溶剤をピロリドン300部とし、処理剤をアミド硫酸3部に代え、エバポレーター中での反応条件を120で及び1時間として処理したこと以外は、前記実施例1-3(1)に記載の操作を繰り返して、表面処理フタロシアニン顔料を得た。

得られた表面処理フタロシアニンブルー顔料の分散性付与基の導入量は、顔料 1g 当たり 6×10^{-6} 当量であった。

(2) インクジェット記録用インクの調製

本比較例 1-2では、前記実施例 1-4における「インクの具体的組成」中の「実施例 1-3(1)の表面処理フタロシアニンブルー顔料」に代えて「比較例 1-2(1)の表面処理フタロシアニンブルー顔料」とした点を除き、その他は同一組成とし、そして、前記実施例 1-4(2) と同一調製法によって、本比較例 1-2のインクを得た。

得られたインクのゼータ電位は $24\,\text{mV}$ (絶対値)であり、粘度は $4.1\,\text{mP}$ a・sであり、表面張力は $31\,\text{mN}/\text{m}$ であった。また、前述の定量法によって求めた SO_4^{2-} 量は $2710\,\text{ppm}$ であり、多価金属イオン量は $550\,\text{ppm}$ であった。

(3) 印字試験、インクの保存安定性試験

比較例1-2のインクについて、前記した「印字試験」および「インクの保存安定性試験」を行った。

当初試験結果は、前記比較例 1-1と同じであり(評価 "C")、 1 週間後の試験 結果も前記比較例 1-1と同じであった(評価 "C")。また、保存安定性試験の結 果についても、前記比較例 1-1と同じであった(評価 "C")。

く実施例1-6>

(1) 表面処理顔料の作製: C. I. ピグメントイエロー110

イソインドリノン顔料(C. I. ピグメントイエロー110)20部をキノリン500部と混合し、アイガーモータミルM250型(アイガージャパン社製)でピーズ充填率70%及び回転数5000rpmの条件下で2時間分散させ、分散終了した顔料ペーストと溶剤の混合液をエバポレーターに移し、30mmHg以下に減圧しながら、120℃に加熱し系内に含まれる水分をできるだけ留去した後、160℃に温度制御した。次いで、反応剤としてスルホン化ピリジン錯体20部を加えて4時間反応させ、反応終了後に過剰なギノリンで数回洗浄してから水中に注ぎ、濾過することにより表面処理イソインドリノン顔料粒子を得た。

得られた表面処理イソインドリノン顔料の分散性付与基の導入量は、顔料 1g 当たり 49×10^{-6} 当量であった。

(2) インクジェット記録用インクの調製

本実施例1-6では、浸透剤として、アセチレングリコール系界面活性剤であるサーフィノール465(エアープロダクツ社製)を使用した。具体的な組成を以下に示す。

実施例1-6(1)の表面処理イソインドリノン顔料(固形分として)7. 0% サーフィノール465 2. 0%

アンモニア(28%水溶液)	0.2%
アンモニア (28%水浴板) 2-ピロリドン	3. 0%
イオン交換水	残量

調製操作は以下のとおりに行った。

前記実施例1-6(1)で調製した表面処理イソインドリノン顔料にイオン交換水とアンモニアを加え、分散性付与基のイオン解離作業を行った。その後、別の容器にて混合したサーフィノール465、グリセリン、ポリオキシエチレン(PO=8)ノニルフェニルエーテル、1、5ーペンタンジオール、プロパノール、及び2ーピロリドンの混合液を、先に調製した表面処理イソインドリノン顔料に攪拌しながら徐々に加えることにより、本発明による実施例1-6のインクを得た。

得られたインクのゼータ電位は $5.3\,\text{mV}$ (絶対値)であり、粘度は $4.4\,\text{mP}$ a・s であり、表面張力は $2.9\,\text{mN}/\text{m}$ であった。また、前述の定量法によって求めた SO_4^{2-} 量は $1.1.70\,\text{ppm}$ であり、多価金属イオン量は $8.2.0\,\text{ppm}$ であった。

(3) 印字試験、インクの保存安定性試験

実施例1-6のインクについて、前記した「印字試験」および「インクの保存安 定性試験」を行った。

当初試験結果は、乾燥時間が4秒未満であった点を除き、前記実施例1-1と同じであり(評価 "A")、1週間後の試験結果も前記実施例1-2と同じであった(評価 "B")。また、保存安定性試験の結果については、前記実施例1-2と同じであった(評価 "B")。

<実施例1-7>

(1) 表面処理顔料の作製: C. I. ピグメントレッド 122

本実施例1-7では、ジメチルキナクリドン顔料(C. I. ピグメントレッド1

22)を用いた。そして、前記実施例1-6(1)の表面処理顔料の作製において、「イソインドリノン顔料(C. I. ピグメントイエロー110)20部」に代えて.「ジメチルキナクリドン顔料(C. I. ピグメントレッド122)20部」に代えたこと以外は、前記実施例1-6(1)と同様な処理方法により、本実施例1-7の表面処理顔料粒子を得た。

得られた表面処理ジメチルキナクリドン顔料の分散性付与基の導入量は、顔料 1g 当たり 35×10^{-6} 当量であった。

(2) インクジェット記録用インクの調製

本実施例 1-7では、前記実施例 1-6における「インクの具体的組成」中の「実施例 1-6(1)の表面処理イソインドリン顔料(固形分として) 7.0%」に代えて「実施例 1-7(1)の表面処理ジメチルキナクリドン顔料(固形分として) 6.0%」とした点を除き、その他は同一組成とし、そして、前記実施例 1-6(2)と同一調製法によって、本実施例 1-7のインクを得た。

得られたインクのゼータ電位は38mV(絶対値)であり、粘度は4.7mP a・sであり、表面張力は30mN/mであった。また、前述の定量法によって求めた SO_4^{2-} 量は730ppmであり、多価金属イオン量は850ppmであった。

(3) 印字試験、インクの保存安定性試験

実施例1-7のインクについて、前記した「印字試験」および「インクの保存安 定性試験」を行った。

当初試験結果は、乾燥時間が4秒未満であった点を除き、前記実施例1-1と同じであった(評価 "A")。1週間後の試験結果については、前記実施例1-2と同じであった(評価 "B")。また、保存安定性試験の結果も前記実施例1-2と同じであった(評価 "B")。

<比較例1-3>

(1) 表面処理顔料の作製:カーボンブラック

本比較例1-3の表面処理カーボンブラック顔料は、前記比較例1-1(1)で調製した表面処理カーボンブラック顔料を使用した。従って、顔料1g当たりのスル

ホン酸基に換算した分散性付与基の導入量は、顔料1g当たり8.5×10⁻⁶ 当量であった。

(2) インクジェット記録用インクの調製

インクの処方としては、本発明の必須成分である浸透剤(アセチレングリコール系界面活性剤及び/又はグリコールエーテル類)を含有しない処方である。具体的な組成を以下に示す。

F	Ł較例1-1(1)の表面処理カーボンブラック顔料(固形分として)	7.	0 %
1	プリセリン 1	5.	0 %
1	, 5ーペンタンジオール	3.	0 %
7	プロパノール	3.	0 %
7	アンモニア (28%水溶液)	0.	3 %
ì	·リスヒドロキシメチルアミノメタン	0.	2 %
,	ヽキサクロロフェン	0	03%
Ψ,	マルチトール	5.	0 %
,	(オン交換水		残量

調製操作は以下のとおりに行った。

前記比較例1-1(1)で調製した表面処理カーボンブラック顔料にイオン交換水とアンモニア(28%水溶液)を加え、分散性付与基のイオン解離作業を行った。その後、別の容器にて混合したグリセリン、1、5ーペンタンジオール、プロパノール、アンモニア(28%水溶液)、トリスヒドロキシメチルアミノメタン、ヘキサクロロフェン、及びマルチトールの混合液を、先に調製した表面処理カーボンブラック顔料液に攪拌しながら徐々に加えることにより、比較例1-3のインクを得た。

得られたインクのゼータ電位は $42\,\text{mV}$ (絶対値)であり、粘度は $4.2\,\text{mP}$ $a\cdot s$ であり、表面張力は $63\,\text{mN}/\text{m}$ であった。また、前述の定量法によって求めた SO_4^{2-} 量は $2110\,\text{ppm}$ であり、多価金属イオン量は $420\,\text{ppm}$ であった。

(3) 印字試験, インクの保存安定性試験

比較例1-3のインクについて、前記した「印字試験」および「インクの保存安

定性試験」を行った。

印字試験の結果は、得られた印字画像は、本比較例 1-3のインク(顔料添加量 = 7%)と前記実施例 1-1のインク(顔料添加量 = 8%)と比較すると、両者の印字画像は同程度であるが、印字滲みの観点からでは、中性紙普通紙を除いて、不規則な滲みが多く鮮明な画像が得られなかった。また、べた印字を行った場合、インクが紙へ浸透消失するまでに要する乾燥時間は、いずれの紙においても60秒以上要し、紙送りローラの擦り後が残る等不満足な結果であった。印字試験を通して、記録紙 1 枚の印字試験を実施する間に、ドット抜けが発生し得られた印字物は粗雑なものであった(評価 "D")。

更に、プリンタの電源をオフにして、1週間後に同様な試験を行ったところ、 印字信号をプリンタに入力したが、多数のインク吐出ノズルで目詰まりが起こっ た。クリーニング動作を5回繰り返したが、全インク吐出ノスルからの正常イン ク吐出には至らなかった(評価 "D")。

また、保存安定性試験の結果、前記比較例 1-1と同様、いずれの条件において も、異物の発生及び粘度値が高くなることが確認され、良好な保存安定性は得ら れなかった(評価 "C")。

<実施例1-8~実施例1-11>

次に、実施例1-8~1-11において、本発明の第1のインクのポリマー微粒子を添加する場合のインクの実施例について示す。添加するポリマー微粒子としては、水溶性のエマルジョンとして添加するのが好ましい。その添加量は、1重量%以上10重量%以下であることが好ましい。添加量が1重量%未満では、添加による耐擦性、光沢性の向上効果が十分得られない場合があり、10重量%を超えて添加すると、インク中の固形分の濃度が高くなることにより、吐出安定性が低下する。

以下、本実施例1-8~1-11において、ポリマー微粒子として使用したエマルジョンの作製方法を示す。

(エマルジョンの作製)

・エマルジョンA

滴下装置、温度計、水冷式還流コンデンサー、撹拌機を備えた反応容器に、イオン交換水100部を入れ、撹拌しながら窒素雰囲気70℃で、重合開始剤の過硫酸カリを0.2部添加しておく。イオン交換水7部にラウリル硫酸ナトリウムを0.05部、グリシドキシアクリレート4部、スチレン5部、テトラヒドロフルフリルアクリレート6部、ブチルメタクリレート5部、および、セードデシルメルカプタン0.02を入れたモノマー溶液を、先に用意した反応容器に70℃で滴下して反応させ、1次物質を作製する。次に、反応容器内の1次物質に、過硫酸アンモニウム10%溶液2部を添加して撹拌する。最後に、イオン交換水30部、ラウリル硫酸カリ0.2部、スチレン30部、ブチルメタクリレート25部、ブチルアクリレート6部、アクリル酸2部、1.6一へキサンジオールジメタクリレート1部、セードデシルメルカプタン0.5部よりなる反応液を更に反応容器に、70℃で撹拌しながら、添加して重合反応させた後、水酸化ナトリウムで中和し、pH8~8.5にして0.3μmのフィルターでろ過し、ポリマー 微粒子水溶液を作製して "エマルジョンA"とした。

・エマルジョンB

滴下装置、温度計、水冷式還流コンデンサー、撹拌機を備えた反応容器に、イオン交換水100部を入れ、撹拌しながら窒素雰囲気70℃で、重合開始剤の過硫酸カリを0.2部添加しておく。イオン交換水7部に、ラウリル硫酸ナトリウムを0.05部、スチレン10部、グリシドキシメタクリレート5部、ブチルメタクリレート15部およびtードデシルメルカプタン0.02部を入れたモノマー溶液を、先に用意した反応容器に70℃で滴下して反応させて1次物質を作製する。次に、反応容器内の1次物質に、過硫酸アンモニウム10%溶液2部を添加して撹拌する。最後に、イオン交換水30部、ラウリル硫酸カリ0.2部、スチレン35部、ブチルアクリレート25部、アクリル酸10部、アクリルアミド1部、tードデシルメルカプタン0.5部よりなる反応液を、更に反応容器に70℃で撹拌しながら添加して重合反応させた後、トリエタノールアミンで中和し、pH8~8.5にして0.3μmのフィルターでろ過したポリマー微粒子水溶液を作製して"エマルジョンB"とした。

[・]エマルジョンC

滴下装置、温度計、水冷式還流コンデンサー、撹拌機を備えた反応容器に、イオン交換水100部を入れ、撹拌しながら窒素雰囲気70℃で、重合開始剤の過硫酸カリを0.2部添加しておく。イオン交換水7部に、ラウリル硫酸ナトリウム0.05部、スチレン15部、グリシドキシメタクリレート2部、ベンジルメタクリレート16部、ブチルメタクリレート15部、および、tードデシルメルカプタン0.02を入れたモノマー溶液を、先に用意した反応容器70℃に滴下して反応させ、1次物質を作製する。次に、反応容器内の1次物質に、過硫酸アンモニウム10%溶液2部を添加して撹拌する。最後に、イオン交換水30部、ラウリル硫酸カリ0.2部、スチレン30部、ブチルメタクリレート15部、アクリル酸10部、トリエタノールプロパントリメタクリレート1部、1.6一へキサンジオールジメタクリレート1部、tードデシルメルカプタン0.5部よりなる反応液を、反応容器に70℃で撹拌しながら、添加して重合反応させた後、水酸化カリウムで中和し、pH8~8.5にして、0.3μmのフィルターでる過し、ポリマー微粒子水溶液を作製して"エマルジョンC"とした。

く実施例1-8>

(1) 表面処理顔料の作製:カーボンブラック

本実施例1-8では、前記実施例1-1(1)で調製した表面処理カーボンブラック 顔料を用いた。従って、表面処理カーボンブラック顔料1g当たりのスルホン酸 基に換算した分散性付与基の導入量は、顔料1g当たり50×10⁻⁶当量であ る。

(2) インクジェット記録用インクの調製

前記実施例 1-1(1) で得たカーボンブラック顔料と、浸透剤として、アセチレングリコール系界面活性剤であるサーフィノール 420(xr-r) ロダクツ社製)及びグリコールエーテル類であるトリエチレングリコールモノーx-r ルンズ(1)で示す構造の物質としてx-r 化 x-r が x-r で、x-r が x-r が x-r で、x-r が x-r で、x-r が x-r で 使用した。

具体的な組成を以下に示す。

PCT/JP00/03737

イオン交換水		残量
エマルジョンA (固形分として) 1	0.	0 %
トリエタノールアミン	0,.	8 %
式(1)-B	2.	5 %
グリセリン 1	5.	0 %
トリエチレングリコールモノーn-ブチルエーテル	5.	0 %
サーフィノール420	0.	5 %
実施例1-1(1)の表面処理カーボンブラック顔料(固形分として)	8.	0 %

調製操作は、以下のとおりに行った。

前記実施例 1-1(1)で得た表面処理カーボンブラック顔料にイオン交換水とトリエタノールアミンを加え、分散性付与基のイオン解離作業を行った。その後、別の容器にて混合したサーフィノール420、トリエチレングリコールモノーローブチルエーテル、グリセリン、式(1) - B及びエマルジョンAの混合液を、先に調製した表面処理カーボンブラック顔料液に撹拌しながら徐々に加えることにより、本発明による実施例 1-8のインクを得た。

得られたインクのゼータ電位は43 mV(絶対値)であり、粘度は4.9 mP $a\cdot s$ であり、表面張力は32 mN/mであった。また、前述の定量法によって求めた SO_4^{2-} 量は1480 ppmであり、多価金属イオン量は780 ppmであった。

(3) 印字試験, インクの保存安定性試験

実施例1-8のインクについて、前記した「印字試験」および「インクの保存安定性試験」を行った。

当初試験結果は、前記実施例 1-1と同じであり(評価 "A")、1週間後の試験 結果も前記実施例 1-1と同じであった(評価 "A")。また、保存安定性試験の結 果についても、前記実施例 1-1と同じであった(評価 "A")。

(4) 光沢メディアへの印字試験

本実施例1-8について、特に光沢記録メディアへの印字試験を行った。使用した光沢メディアは、光沢メディアX、Y、Zの3種類で、光沢メディアXは、ポリエステルシート上にシリカゾルが塗布されたプクトリコ型、光沢メディアYは、

ポリエステルシート上に樹脂を塗布したもので、インクによる膨潤型、光沢メディアZは、紙上に平均粒子径500nmのコロイダルシリカを、ラテックスをバインダーとして、塗布したものである。

本実施例1-8のインクによれば、いずれの光沢メディアへの印字においても、 高い耐擦性、耐水性を示した。また、印字画像の光沢感は、いずれのメディアで も良好であった(→評価 "A")。

く実施例1-9>

(1) 表面処理顔料の作製:カーポンブラック

本実施例1-9では、前記実施例1-1(1)で調製した表面処理カーボンブラック 顔料を用いた。従って、表面処理カーボンブラック顔料1g当たりのスルホン酸 基に換算した分散性付与基の導入量は、顔料1g当たり50×10⁻⁶当量であ る。

(2) インクジェット記録用インクの調製

前記実施例 1-8における「インクの具体的組成」中の「エマルジョンAの添加量を15%(固形分として)」とした点を除き、その他は同一組成とし、そして、前記実施例 1-8(2)と同一調整法によって、本実施例 1-9のインクを得た。

得られたインクのゼータ電位は43mV(絶対値)であり、粘度は5.9mPa・sであり、表面張力は32mN/mであった。また、前述の定量法によって求めた SO_4^{2-} 量は1480ppmであり、多価金属イオン量は780ppmであった。

(3) 印字試験、インクの保存安定性試験

実施例1-9のインクについて、前記した「印字試験」および「インクの保存安定性試験」を行った。

当初試験結果は、前記実施例 1-1と同じであり(評価 "A")、 1 週間後の試験結果は、前記実施例 1-2と同じであった(評価 "B")。また、保存安定性試験結果についても、前記実施例 1-2と同じであった(評価 "B")。

(4) 光沢紙への印字試験

本実施例1-9のインクにおいても、実施例1-8と同様に、光沢メディアX、Y.

Zへの印字試験を行った。本実施例1-9のインクによれば、いずれの光沢メディ アへの印字においても、高い耐擦性、耐水性を示した。また、印字画像の光沢感 は、いずれのメディアでも良好であった。(→評価 "A")。

<実施例1-10>

(1) 表面処理顔料の作製:C. I. ピグメントブルー15:3

本実施例 1-10では、前記実施例 1-3(1)で調製した表面処理フタロシアニン 顔料を用いた。従って、表面処理フタロシアニン顔料 1 g当たりのスルホン酸基 に換算した分散性付与基の導入量は、顔料 1 g当たり 5 8 × 1 0 ⁻⁶当量である。 (2) インクジェット記録用インクの調製

前記実施例1-1(1)で得たフタロシアニン顔料と、浸透剤として、アセチレングリコール系界面活性剤であるサーフィノール465(エアープロダクツ社製)及びグリコールエーテル類であるトリエチレングリコールモノーnーブチルエーテルと、更にポリマー微粒子として"エマルジョンB"を使用した。

具体的な組成を以下に示す。

実施例1-3(1)の表面処理フタロシアニン顔料(固形分として)6.0%サーフィノール4650.8%トリエチレングリコールモノーnープチルエーテル7.5%グリセリン15.0%1,2ーヘキサンジオール5.0%トリエタノールアミン3.0%エマルジョンB(固形分として)1.0%イオン交換水残量

調製操作は、以下のとおりに行った。

前記実施例1-3(1)で得た表面処理フタロシアニン顔料にイオン交換水とトリエタノールアミンを加え、分散性付与基のイオン解離作業を行った。その後、別の容器にて混合したサーフィノール465、トリエチレングリコールモノーnープチルエーテル、グリセリン、及び1,2-ヘキサンジオール、エマルジョンBの混合溶液を、先に調製した表面処理フタロシアニン顔料液に撹拌しながら徐々

に加えることにより、本発明による実施例1-10のインクを得た。

得られたインクのゼータ電位は $5.6\,\mathrm{m\,V}$ (絶対値)であり、粘度は $4.1\,\mathrm{m\,P}$ $a\cdot s$ であり、表面張力は $3.2\,\mathrm{m\,N\,/m}$ であった。また、前述の定量法によって求めた SO_4^{2-} 量は $3.30\,\mathrm{p\,p\,m}$ であり、多価金属イオン量は $4.50\,\mathrm{p\,p\,m}$ であった。

(3) 印字試験, インクの保存安定性試験

実施例1-10のインクについて、前記した「印字試験」および「インクの保存 安定性試験」を行った。

当初試験結果は、前記実施例1-1と同じであり(評価 "A")、1週間後の試験 結果も前記実施例1-1と同じであった(評価 "A")。また、保存安定性試験の結 果についても、前記実施例1-1と同じであった(評価 "A")。

(4) 光沢紙への印字試験

本実施例1-10のインクにおいても、実施例1-8と同様に、光沢メディアX, Y, Zへの印字試験を行った。本実施例1-10のインクによれば、いずれの光沢 メディアへの印字においても、高い耐擦性、耐水性を示した。また、印字画像の 光沢感は、いずれのメディアでも良好であった(→評価"A")。

く実施例1-11>

(1) 表面処理顔料の作製: C. I. ピグメントブルー15:3

本実施例 1-11では、前記実施例 1-3(1)で調製した表面処理フタロシアニン 顔料を用いた。従って、表面処理フタロシアニン顔料 1 g 当たりのスルホン酸基 に換算した分散性付与基の導入量は、顔料 1 g 当たり 5 8 × 1 0 - 6 当量である。

(2) インクジェット記録用インクの調製

前記実施例1-3(1)で得たフタロシアニン顔料と、浸透剤として、アセチレングリコール系界面活性剤であるサーフィノール465(エアープロダクツ社製)及びグリコールエーテル類であるトリエチレングリコールモノーnーブチルエーテルと、更にポリマー微粒子として"エマルジョンC"を使用した。

具体的な組成を以下に示す。

実施例1-3(1)の表面処理フタロシアニン顔料(固形分として) 6. 0%

PCT/JP00/03737

サーフィノール465	0.8%
トリエチレングリコールモノーn-ブチルエーテル	7.5%
グリセリン	15.0%
1. 2-ヘキサンジオール	5.0%
トリエタノールアミン	3.0%
エマルジョンC	0.5%
イオン交換水	残量

調製操作は、以下のとおりに行った。

前記実施例1-3(1)で得た表面処理フタロシアニン顔料にイオン交換水とトリエタノールアミンを加え、分散性付与基のイオン解離作業を行った。その後、別の容器にて混合したサーフィノール465、トリエチレングリコールモノーローブチルエーテル、グリセリン、及び1,2-ヘキサンジオール、エマルジョンCの混合溶液を、先に調製した表面処理フタロシアニン顔料液に撹拌しながら徐々に加えることにより、本発明による実施例1-11のインクを得た。

得られたインクのゼータ電位は $5.6\,\text{mV}$ (絶対値)であり、粘度は $4.0\,\text{mP}$ $a\cdot s$ であり、表面張力は $3.2\,\text{mN}$ /mであった。また、前述の定量法によって求めた SO_4^{2-} 量は $3.2\,0\,\text{ppm}$ であり、多価金属イオン量は $3.5\,0\,\text{ppm}$ であった。

(3) 印字試験, インクの保存安定性試験

実施例1-11のインクについて、前記した「印字試験」および「インクの保存 安定性試験」を行った。

当初試験結果は、前記実施例 1-1と同じであり(評価 "A")、1週間後の試験 結果も前記実施例 1-1と同じであった(評価 "A")。また、保存安定性試験の結 果についても、前記実施例 1-1と同じであった(評価 "A")。

(4) 光沢紙への印字試験

本実施例1-11のインクにおいても、実施例1-8と同様に、光沢メディアX.
Y. Zへの印字試験を行った。本実施例1-11のインクによれば、いずれの光沢メディアへの印字においても、高い耐水性を示した(評価 "A")。耐擦性については、光沢メディアY. Zにおいて高い耐擦性であったが、光沢メディアXにつ

いては、強いこすれに対して印字画像の汚れが確認された(評価 "B")。また、 光沢感について各メディアの高 duty部分で光沢感が低下する場合があった (評価 "B")。以上の結果より、本実施例 1-11では、エマルジョン添加量が十 分ではないと考えられる。

なお、表 1 に、前記「印字試験」「インクの保存安定性試験」の結果を含め、 実施例 $1-1\sim1-11$,比較例 $1-1\sim1-3$ の各インクについて、まとめて表示した。

(表1)

		+	ンクの物性値	生師	47.0	の液性成分	1					
	分散性付与基	₹ - ₹	報	李丽等七	H	のまれ	日	签	1	光光	光沢低への印字試験	字試驗
	の総入事(※申)					多価金属は2量		1 週間後	茶 女 数 数		_	
	(= T		(S. 22.1111)	(BIN/B)	(Edd)	(pdd)	当初政政	の政策		型無存	光沢在	配水布
夹施例 1-1	50 × 10-8	43	4.7	35	1480	780	٧	Ą	4			
実施例 1-2	41 × 10-8	38	4.2	33	1920	870	4	æ	B			
比較例 1-1	8.5×10-	82	4.0	32	2320	610	υ	U	U			
栗施例 1-3	58 × 10-	99	3.9	58	310	280	4	A	4			
実施例 1-4	58 × 10-*	28	& &	30	1320	880	A	В	В			
実施例 1-5	46 × 10-°	41	3.8	30	1760	780	4	4	A			
比較例 1-2	6 × 10-8	24	4.1	31	2710	550	U	O	O			
実施例 1-6	49 × 10-8	23	4.4	82	1170	820	A	В	Д			
実施例 1-7	35 × 10 ⁻⁸	38	4.7	90	730	850	A	m	В			-
比較例 1-3	8.5×10-	42	4.2	83	2110	420	Ω	Α	O			
実施例 1-8	8-01 × 09	43	4.8	32	1480	780	4	Ą	4	A	⋖	∢
実施例 1-9	50 × 10-	43	5.9	32	1480	780	4	В	В	V	4	4
実施例 1-10	58 × 10-°	99	4.1	32	330	450	A	A	4	4	4	4
実施例 1-11	68 × 10-4	99	4.0	32	320	350	4	4	A	п	m	▼
											!	•

82

[本発明の第2のインクの実施例]

以下の実施例 $2(実施例 2-1 \sim 2-5)$ は、本発明の第 2 のインクの実施例であり、また、比較例 $2(比較例 2-1 \sim 2-2)$ は、本発明の第 2 のインクに対する比較のための例である。

以下の実施例 2 (実施例 2-1~2-5)、比較例 2 (比較例 2-1~2-2)で示す "表面処理顔料の分散性付与基の導入量" "インクの物性値(ゼータ電位、粘度、表面張力)"は、いずれも前記実施例 1 に記載した方法による。

また、実施例 2 (実施例 2-1~2-5), 比較例 2 (比較例 2-1~2-2)で得られたインクの「印字試験」「インクの保存安定性試験」についても、前記実施例 1 に記載した方法による。

<実施例2-1>

(1) 表面処理顔料の作製:カーボンブラック

カーボンブラック(三菱化学株式会社製「MA-7」)15部をスルホラン200部中で三酸化硫黄25部と混合し、アイガーモータミルM250型(アイガージャパン社)でビーズ充填率70%、回転数5000rpmで1時間分散させ、分散した顔料ペーストと溶剤の混合液をエバポレーターに移し、30mmHg以下に減圧しながら120℃に加熱し、系内に含まれる水分をできるだけ留去した後、150℃に温度制御した。次いで、三酸化硫黄25部を加えて6時間反応させ、反応終了後過剰なスルホランで数回洗浄後水中に注ぎ、濾過することにより表面処理されたカーボンブラック顔料を得た。

得られた表面処理カーボンブラック顔料の分散性付与基の導入量は、顔料1g当たり 50×10^{-8} 当量であった。

(2) インクジェット用記録インクの調製

実施例2-1では、着色剤として上記表面処理されたカーボンブラック顔料、浸透剤としてジエチレングリコールモノーnーブチルエーテルと1, 2ーペンタンジオールを使用した。具体的な組成を以下に示す。

表面処理されたカーボンブラック顔料 (固形分として) 8 部 ジェチレングリコールモノー n - ブチルエーテル 6 部

PCT/JP00/03737

WO 00/75245

グリセリン 10部

1, 2-ペンタンジオール 5部

アンモニア (28%) 水 0. 2部

イオン交換水 残量

得られた表面処理カーボンブラック顔料にイオン交換水とアンモニア(28% 水溶液)を加え分散性付与基のイオン解離作業を行った。その後、別の容器にて混合したジェチレングリコール、グリセリン、1.2-ペンタンジオールの混合液を表面処理カーボンブラック顔料に撹拌しながら徐々に加えることにより、本発明の実施例2-1で用いるインクとした。

得られたインクのゼータ電位は $4.5\,\mathrm{m\,V}$ (絶対値)であり、粘度は $4.6\,\mathrm{m\,P}$ a・sであり、表面張力は $3.2\,\mathrm{m\,N/m}$ であった。

(3) 印字試験、インクの保存安定性試験

実施例2-1のインクについて、前記した「印字試験」および「インクの保存安定性試験」を行った。

印字試験の結果、得られた印字画像は、いずれも不規則なにじみが殆ど無く、高い印字濃度の非常に良好な印字画像であった。また、べた印字を行った場合、インクが紙へ浸透消失する乾燥時間は、いずれも2秒未満であり、非常に良好な乾燥性であった(評価 "A")。また、インクの保存安定性試験の結果、いずれの条件でも、放置前後で異物の発生、物性値(粘度、表面張力)の変化が殆ど無く、良好な保存安定性であった(評価 "A")。

<比較例2-1>

(1) 表面処理されたカーボンブラックの作製

実施例2-1の(表面処理されたカーボンブラックの作製)において、カーボンブラック15部、溶剤をピロリドン300部とし、硫黄を含む処理剤をアミド硫酸3部に代え、エバホレーター中での反応条件を120℃、1時間で処理した以外は実施例2-1と同様の操作を行った。

得られた表面処理カーボンブラック顔料の分散性付与基の導入量は、顔料1g当たり 8.5×10^{-6} 当量であった。

(2) インクジェット用記録インクの調製

実施例2-1の表面処理されたカーボンブラック顔料を比較例2-1の表面処理されたカーボンブラック顔料に代えて同様に行った。得られたインクのゼータ電位は28mV(絶対値)であり、粘度は4.1mPa・sであり、表面張力は32mN/mであった。

(3) 印字試験、インクの保存安定性試験

比較例2-1のインクについて、前記した「印字試験」および「インクの保存安定性試験」を行った。

印字試験の結果、得られた印字画像は、いずれも滲みが確認され、また、印字 濃度も実施例2-2に比べても低かった(評価 "C")。なお、べた印字を行った場 合、インクが紙へ浸透消失する乾燥時間は、いずれも2秒未満であり、乾燥性に ついては問題なかった。また、保存安定性試験の結果、いずれの条件でも、放置 後に異物の発生、物性値(粘度、表面張力)の変化が確認され、良好な保存安定性 が得られなかった(評価 "C")。

<実施例2-2>

(1) 表面処理されたフタロシアニン顔料の作製

フタロシアニン顔料(C. I. ピグメントブルー15:3)20部をキノリン500部と混合し、アイガーモータミルM250型(アイガージャパン社製)でピーズ充填率70%、回転数5000rpmで2時間分散させ、分散した顔料ペーストと溶剤の混合液をエバポレーターに移し、30mmHg以下に減圧しながら120℃に加熱し、系内に含まれる水分をできるだけ留去した後、160℃に温度制御した。次いで、スルホン化ピリジン錯体20部を加えて8時間反応させ、反応終了後過剰なキノリンで数回洗浄後水中に注ぎ、濾過することにより表面処理されたフタロシアニン顔料粒子を得た。

得られた表面処理フタロシアニン顔料の分散性付与基の導入量は、顔料1g当たり 58×10^{-6} 当量であった。

(2) インクジェット用記録インクの調製

実施例2-2では、着色剤として上記表面処理されたフタロシアニン顔料と、浸

PCT/JP00/03737

透剤として、アセチレングリコール系界面活性剤であるサーフィノール485とサーフィノールTG(いすれもエアープロダクツ社製)と、グリコールエーテル類であるプロピレングリコールモノーn-ブチルエーテル、1, 2-アルキレングリコール類である1, 2-ヘキサンジオールを使用した。具体的な組成を以下に示す。

表面処理されたフタロシアニン顔料(固形分として)		8部
サーフィノール485	0.	8部
サーフィノールTG	0.	7部
プロピレングリコールモノーn-ブチルエーテル	5.	0 部
グリセリン	12.	0 部
1, 2-ヘキサンジオール	5.	0 部
2ーピロリドン	5.	0 部
トリエタノールアミン	3.	0 部
EDTA(エチレンジアミン四酢酸)	0.0	3部
イオン交換水		残量

得られ表面処理フタロシアニン顔料にイオン交換水(添加分の8割)とトリエタノールアミンを加え、分散性付与基のイオン解離作業を行った。その後、別の容器にて混合したサーフィノール485、サーフィノールTG、プロピレングリコールモノーnーブチルエーテル、グリセリン、1,2ーヘキサンジオール、2ーピロリドン、イオン交換水(添加分の2割)、EDTA(予めイオン交換水に溶解させたもの)の混合液を、先に調製した表面処理フタロシアニン顔料液に撹拌しながら徐々に加えることにより、本発明による実施例2-2のインクとした。

得られたインクのゼータ電位は $5.6\,\text{mV}$ (絶対値)であり、粘度は $4...3\,\text{mP}$ a・sであり、表面張力は $2.9\,\text{mN/m}$ であった。

(3) 印字試験、インクの保存安定性試験

実施例2-2のインクについて、前記した「印字試験」および「インクの保存安 定性試験」を行った。

印字試験の結果、乾燥時間が1秒未満であった点を除き、前記実施例2-1と同じであった(評価 "A")。また、保存安定性試験の結果も前記実施例2-1と同じ

であった(評価 "A")。

<比較例2-2>

(1) 表面処理されたフタロシアニン顔料の作製

前記実施例 2-20 (表面処理されたフタロシアニン顔料の作製)において、フタロシアニン 15 部、溶剤をピロリドン 300 部とし、硫黄を含む処理剤をアミド 硫酸 3 部に代え、エバホレーター中での反応条件を 120 \mathbb{C} 、 1 時間で処理した以外は、前記実施例 2-2 と同様の操作を行った。

得られた表面処理フタロシアニン顔料の分散性付与基の導入量は、顔料1g当たり 6×10^{-8} 当量であった。

(2) インクジェット用記録インクの調製

前記実施例2-2の表面処理されたフタロシアニン顔料を、比較例2-2(1)の表面処理されたフタロシアニン顔料に代えて同様に行った。得られたインクのゼータ電位は22mV(絶対値)であり、粘度は4.5mPa・sであり、表面張力は30mN/mであった。

(3) 印字試験, インクの保存安定性試験

比較例2-2のインクについて、前記した「印字試験」および「インクの保存安 定性試験」を行った。

印字試験の結果、得られた印字画像は、いずれも掺みが確認され、また、印字 濃度も実施例2-2に比べても低かった(評価 "C")。なお、べた印字を行った場合、インクが紙へ浸透消失する乾燥時間は、いずれも1秒未満であり、乾燥性に ついては問題なかった。また、保存安定性試験の結果は、前記比較例2-1と同じ であった(評価 "C")。

<実施例2-3>

(1) 表面処理されたキノフタロンイエロー顔料の作製

キノフタロンイエロー顔料(C. I. ピグメントイエロー138)20部をキノリン500部と混合し、アイガーモータミルM250型(アイガージャパン社製)でビーズ充填率70%、回転数5000rpmで2時間分散させ、分散した顔料

ペーストと溶剤の混合液をエバポレーターに移し、30mmHg以下に減圧しながら120℃に加熱し、系内に含まれる水分をできるだけ留去した後、160℃に温度制御した。次いで、スルホン化ピリジン錯体20部を加えて8時間反応させ、反応終了後、過剰なキノリンで数回洗浄後水中に注ぎ、濾過することにより表面処理されたキノフタロンイエロー顔料粒子を得た。

得られた表面処理キノフタロンイエロー顔料の分散性付与基の導入量は、顔料 1 g 当たり 48×10^{-6} 当量であった。

(2) インクジェット用記録インクの調製

実施例2-3では、着色剤として上記表面処理されたキノフタロンイエロー顔料、 浸透剤として実施例2-2と全く同様のものを使用し、インクの組成、調整方法も 実施例2-2と全く同様とした。得られたインクのゼータ電位は54mV(絶対値) であり、粘度は4.6mPa・sであり、表面張力は31mN/mであった。

(3) 印字試験, インクの保存安定性試験

実施例2-3のインクについて、前記した「印字試験」および「インクの保存安 定性試験」を行った。

印字試験の結果は、前記実施例2-2と同じであった(評価 "A")。また、保存 安定性試験の結果も、前記実施例2-2と同じであった(評価 "A")。

く実施例2-4>

(1) 表面処理されたキナクリドンレッド顔料の作製

前記実施例2-3のキノフタロンイエロー顔料をキナクリドン顔料(C. I. ピグメントバイオレッド19)に代えた以外は、分散溶剤、硫黄を含む処理剤、および反応条件、製造方法は実施例2-3と全く同じ方法とした。

得られた表面処理キナクリドン顔料の分散性付与基の導入量は、顔料1g当たり 35×10^{-6} 当量であった。

(2) インクジェット用記録インクの調製

実施例2-4では、着色剤として上記表面処理されたキナクリドンレッド顔料、 浸透剤として実施例2-2と同様のものを使用し、インクの組成、調製方法も実施 例2-2と全く同様とした。得られたインクのゼータ電位は38mV(絶対値)であ PCT/JP00/03737

り、粘度は4.3mPa・sであり、表面張力は30mN/mであった。

(3) 印字試験、インクの保存安定性試験

実施例2-4のインクについて、前記した「印字試験」および「インクの保存安定性試験」を行った。

印字試験の結果は、前記実施例2-2と同じであった(評価 "A")。また、保存 安定性試験の結果も、前記実施例2-2と同じであった(評価 "A")。

く実施例2-5>

WO 00/75245

(1) 表面処理されたアニリンブラック顔料の作製

アニリンブラック顔料(C. I. ピグメントブラック1)15部をピロリドン800部と混合し、アイガーモータミルM250型(アイガージャパン社製)でピーズ充填率70%、回転数5000rpmで1時間分散させ、分散した顔料ペーストと溶剤の混合液をエバポレーターに移し、30mmHg以下に減圧しながら120℃に加熱し、系内に含まれる水分をでるだけ留去した後、140℃に温度制御した。次いで、スルファミン酸20部を加えて、反応を開始した。なお、実施例2-7については反応途中で分散体を取り出し、溶剤で分散体を洗浄を繰り返し、前記「分散性付与基の導入量の定量法」により顔料1g当たり15×10-6当量となるまで反応を進めた。実施例2-5での反応時間は3時間程度であった。

したがって、得られた表面処理アニリンブラック顔料の分散性付与基の導入量は、顔料 1g 当たり 15×10^{-6} 当量であった。

(2) インクジェット用記録インクの調製

実施例2-5では、着色剤として上記表面処理されたアニリンブラック顔料、浸透剤として、前記実施例2-2と同様のものを使用した。実施例2-2のフタロシアニン顔料を上記表面処理されたアニリンブラック顔料に代えた以外は、インクの組成および組成比は実施例2-2と全く同様とした。

即ち、予め、サーフィノール465、プロピレンエチレングリコールモノブチルエーテル、1、2ヘキサンジオール、グリセリン、トリエタノールアミン、イオン交換水、EDTA(予めイオン交換水に溶解させたもの)等の混合液を得られた表面処理アニリンブラック顔料分散液に添加して、実施例2-7のインクジェッ

ト用記録インクを得た。

得られたインクのゼータ電位は42mV(絶対値)であり、粘度は4.4mPa・sであり、表面張力は29mN/mであった。

但し、本実施例2-5においては、分散媒を表面処理アニリンブラック顔料に加えた場合に、顔料の軽度の凝集が見られ、実施例2-1~2-4の概ね3倍程度の攪拌時間を必要とした。従来のインクに対しては充分満足できるものの、本発明の一つの目的であるインク調製が簡便であることに対しては、実施例2-1~2-4と比べて不満足な結果となった。

(3) 印字試験、インクの保存安定性試験

攪拌時間を長くして、完全に均一分散させて得られた実施例2-5のインクについて、前記した「印字試験」および「インクの保存安定性試験」を実施した。

印字試験の結果では、前記実施例2-2と同じであった(評価 "A")。また、保存安定性試験の結果も、前記実施例2-2と同じであった(評価 "A")。

以上の実施例 $2-1\sim 2-5$ および比較例 $2-1\sim 2-2$ のインクについて、試験結果を含め表 2 に示す。

(表2)

保存安定性試験 インクの試験結果 A Ö K C K ď ⋖ 印字試験 A ∢ 4 4 Ö ⋖ O 表面强力 m/Nm n//n m//m m/Vm m//m nN/n mN/m 32 32 88 30 31 30 28 mPa·s mPa·s mPa·s mPa·s ンクの物性値 4.1 mPa·s 4.3 mPa·s 4.6 mPa·s 度 架 4.6 4.3 വ 4 4 タ電位 МV a V m V шV Z W W W шV 38 42 45 82 56 22 表面処理額料の 分散性付与基の 導入量 斯丽。-01× ×10-9巡回 ¥Ⅲ0-01× ×10-0当最 8.5×10-0当量 ×10-9当最 專票。-01× 32 15 8 48 20 2 -2 2-3 2-4 ٠ 2 2-1 2-1Ø 0 実施例 比較例 荚施例 **开数**图 灾施例 実施例 実施例

[表2]

[本発明の第3のインクの実施例]

以下の実施例3(実施例3-1~3-8)は、本発明の第3のインクの実施例であり、また、比較例3は、本発明の第3のインクに対する比較のための例である。この実施例3(実施例3-1~3-8). 比較例3で示す "スルホン酸基および/またはスルフィン酸基(表面処理顔料の分散性付与基)の導入量" および "インクの物性値(ゼータ電位、粘度、表面張力)"は、いずれも前記実施例1に記載した方法による。

また、この実施例3(実施例3-1~3-8)、比較例3で示す"インクの液性成分(ビヒクル)中のアルカリ金属イオン量"は、前記実施例1に記載した「硫酸イオン及び多価金属イオンの測定法」に準じて定量した。

即ち、実施例3で調製したインクを遠心限外濾過装置(C-15:ミリポア社製)によって遠心分離処理した。フィルターとしては、タイプNMWL10000を使用し、遠心条件は2500G×60分とした。得られた濾液10mgを酸素フラスコ燃焼法で処理した後、0.2%硝酸水溶液に吸収させ、続いて、イオンクロマトグラフ法(カラム ionPac AS12A;日本ダイオネクス社製DX-500)で、液性成分(ビヒクル)中のアルカリ金属イオンを定量した。

また、以下の実施例 3 (実施例 3 -1 \sim 3 -8),比較例 3 で得られたインクの「印字試験」については、前記実施例 1 に記載の方法で実施した。「インクの保存安定性試験」についても、前記実施例 1 に記載した方法と同様、実施例 3 で調整したインクをガラス製のサンプル瓶に入れ密栓後、それぞれ 6 0 $\mathbb{C}/1$ 週間,-2 0 $\mathbb{C}/1$ 週間放置して、放置前後でのインクの発生異物と物性値(粘度、表面張力)について調べた。なお、異物の評価は 2 5 μ m 綾畳みフィルターでインクを濾過した後、顕微鏡によりフィルター上に残っている異物量を観察することで行った。

く実施例3-1>

(1) 表面処理カーボンブラックの作製

前記実施例2-1と同一の作製手段で、スルホン酸基および/またはスルフィン酸基が表面に化学結合されたカーボンブラック分散液を得た。得られた表面処理

顔料のスルホン酸基および/またはスルフィン酸基の導入量は、顔料粒子1g当たり 50×10^{-6} 当量であった。

(2) インクジェット用記録インクの調製

前記実施例2-1と同一の組成を有するインクを調製した。得られたインクのゼータ電位は45mV(絶対値)であり、粘度は4.6mPa・sであり、表面張力は32mN/mであった。また、前述の定量法によって求めた液性成分(ビヒクル)中のアルカリ金属イオンの濃度は960ppmであった。

(3) 印字試験、インクの保存安定性試験

実施例3-1のインクについて、前記した「印字試験」および「インクの保存安定性試験」を行った。

印字試験の結果、得られた印字画像は、いずれも不規則なにじみが殆ど無く、 高い印字濃度の非常に良好な印字画像であった。また、べた印字を行った場合、 インクが紙へ浸透消失する乾燥時間は、いずれも2秒未満であり、非常に良好な 乾燥性であった(評価 "A")。また、インクの保存安定性試験の結果、いずれの 条件でも、放置前後で異物の発生、物性値(粘度、表面張力)の変化が殆ど無く、 良好な保存安定性であった(評価 "A")。

く実施例3-2>

(1) 表面処理顔料

本実施例3-2では、前記実施例3-1と同じ"スルホン酸基および/またはスルフィン酸基が表面に化学結合されたカーボンブラック顔料を用いた。従って、得られた表面処理カーボンブラック顔料のスルホン酸基および/またはスルフィン酸基の導入量は、顔料粒子1g当たり50×10-6当量であった。

(2) インクジェット用記録インクの調製

インクジェット用記録インクの調製は、下記の組成のように、アルカリ化合物としてアンモニアおよび水酸化ナトリウムを用いた以外は、前記実施例3-1と同様の操作を行った。得られたインクのゼータ電位は50mV(絶対値)であり、粘度は4.7mPa・sであり、表面張力は33mN/mであった。また、前述の定量法によって求めた液性成分(ビヒクル)中のアルカリ金属イオンの濃度は16

20ppmであった。

・実施例3-2の具体的なインク組成

スルホン酸基および/またはスルフィン酸基が表面に化学結合されたカーボン ブラック顔料 (固形分として) 8部

ジェチレングリコールモノブチルエーテル

6部

グリセリン

10部

1.2-ペンタンジオール

5部

アンモニア (28%) 水

0.3部

水酸化ナトリウム (20%) 水溶液

0.2部

イオン交換水

残量

(3) 印字試験、インクの保存安定性試験

本実施例3-2のインクについて、前記した「印字試験」および「インクの保存 安定性試験」を行った。

印字試験の結果は、前記実施例3-1と同じであった(評価 "A")。また、インクの保存安定性試験の結果も前記実施例3-1と同じであった(評価 "A")。

<実施例3-3>

(1) 表面処理顔料

本実施例3-3では、前記実施例3-1と同じ"スルホン酸基および/またはスルフィン酸基が表面に化学結合されたカーボンブラック顔料を用いた。従って、得られた表面処理カーボンブラック顔料のスルホン酸基および/またはスルフィン酸基の導入量は、顔料粒子1g当たり50×10-6当量であった。

(2) インクジェット用記録インクの調製

インクジェット用記録インクの調製は、下記の組成のように、アルカリ化合物として水酸化ナトリウムを用いた以外は、前記実施例3-1と同様の操作を行った。 得られたインクのゼータ電位は49mV(絶対値)であり、粘度は4.8mPa・sであり、表面張力は32mN/mであった。また、前述の定量法によって求めた液性成分(ビヒクル)中のアルカリ金属イオンの濃度は2060ppmであった。

・実施例3-3の具体的なインク組成

スルホン酸基および/またはスルフィン酸基が表面に化学結合されたカーボンプラック顔料(固形分として) 8部 ジェチレングリコールモノブチルエーテル 6部 イリセリン 1 0部 1、2ーペンタンジオール 5部 水酸化ナトリウム(20%)水 2部 イオン交換水 残量

(3) 印字試験、インクの保存安定性試験

本実施例3-3のインクについて、前記した「印字試験」および「インクの保存 安定性試験」を行った。

印字試験の結果は、前記実施例3-1と同じであった(評価 "A")。また、インクの保存安定性試験の結果については、いずれの条件でも、放置前後で、異物の発生、物性値(粘度、表面張力)の変化が若干生じ、保存安定性の面でやや不満が残った(評価 "B")。

く実施例3-4>

(1) 表面処理顔料

本実施例3-4では、前記実施例1-3(1)で作製した表面処理フタロシアニン顔料(C. I. ピグメントブルー15:3)を用いた。即ち、前記実施例1-3(1)と同一の作製手段で、スルホン酸基および/またはスルフィン酸基が表面に化学結合されたフタロシアニン顔料を得た。得られた表面処理顔料のスルホン酸基および/またはスルフィン酸基の導入量は、顔料粒子1g当たり58×10-6当量であった。

(2) インクジェット用記録インクの調製

スルホン酸基および/またはスルフィン酸基が表面に化学結合されたフタロシアニン顔料にイオン交換水(添加分の8割)とトリエタノールアミンを加え、スルホン酸基/スルフィン酸基をスルホン酸アニオン基および/またはスルフィン酸アニオン基に変換した。

その後、別の容器にてサーフィノール465、サーフィノール61、トリエチ

レングリコールモノーn-ブチルエーテル、1.2-ヘキサンジオール、グリセリン、イオン交換水(添加量の2割)、EDTA(予めイオン交換水に溶解させたもの)の混合液を表面処理フタロシアニン顔料に撹拌しながら徐々に加えることにより、本発明の実施例3-4に用いるインクとした。

以下にインクの具体的な組成を示す。なお、浸透剤としては、アセチレングリコール系界面活性剤であるサーフィノール465(エアープロダクツ社製)、アセチレンアルコール系界面活性剤であるサーフィノール61(エアープロダクツ社製)と、グリコールエーテル類であるトリエチレングリコールモノーnーブチルエーテルと、1、2ーアルキレングリコール類である1、2ーへキサンジオールとを併用した。得られたインクのデータ電位は53mV(絶対値)であり、粘度は4.6mPa・sであり、表面張力は31mN/mであった。また、前述の定量法によって求めた液性成分(ビヒクル)中のアルカリ金属イオンの濃度は560ppmであった。

・実施例3-4の具体的なインク組成

スルホン酸基および/またはスルフィン酸基が表面に化学結合されたフタロシ

アニン顔料(固形分として)	る部
サーフィノール465	0.8部
サーフィノール 6 1	0.5部
トリエチレングリコールモノーnーブチルエーテル	5 部
1, 2-ヘキサンジオール	6 部
グリセリン	10部
トリエタノールアミン	0.9部
EDTA(エチレンジアミン四酢酸)	0.03部
イオン交換水	残量

(3) 印字試験、インクの保存安定性試験

本実施例3-4のインクについて、前記した「印字試験」および「インクの保存 安定性試験」を行った。

印字試験の結果は、乾燥時間が1秒未満である点を除き、前記実施例3-1と同じであった(評価 "A")。また、インクの保存安定性試験の結果についても、前

PCT/JP00/03737 WO 00/75245

記実施例3-1と同じであった(評価"A")。

<実施例3-5>

(1) 表面処理顔料

前記実施例3-4と同様のスルホン酸基および/またはスルフィン酸基が表面に 化学結合されたフタロシアニン顔料を用いた。したがって、得られた表面処理顔 料のスルホン酸基および/またはスルフィン酸基の導入量は、顔料粒子1g当た り58×10⁻⁶ 当量であった。

(2) インクジェット用記録インクの調製

インクジェット用記録インクの調製は、下記の組成のように、アルカリ化合物 としてアンモニアおよび水酸化ナトリウムを用いた以外は、実施例3-4と同様の 操作を行った。以下に、具体的なインク組成を示す。

得られたインクのゼータ電位は47mV(絶対値)であり、粘度は4.7mP a·sであり、表面張力は33mN/mであった。また、前述の定量法によって 求めた液性成分(ビヒクル)中のアルカリ金属イオンの濃度は1760ppmであ った。

・実施例3-5の具体的なインク組成

スルホン酸基および/またはスルフィン酸基が表面に化学結合されたフタロシ 8部 アニン顔料(周形分として)

ーン 興代 (国が力として)	O LP
サーフィノール465	0.8部
サーフィノール61	0.5部
トリエチレングリコールモノーnーブチルエーテル	5 部
1. 2-ヘキサンジオール	6 部
グリセリン	10部
アンモニア(28%)水	0.2部
水酸化ナトリウム(20%)水酢酸	0.2部
EDTA(エチレンジアミン四酢酸)	0.03部
イオン交換水	残量

(3) 印字試験、インクの保存安定性試験

本実施例3-5のインクについて、前記した「印字試験」および「インクの保存 安定性試験」を行った。

印字試験の結果は、乾燥時間が1秒未満である点を除き、前記実施例3-1と同じであった(評価 "A")。また、インクの保存安定性試験の結果についても、前記実施例3-1と同じであった(評価 "A")。

<実施例3-6>

(1) 表面処理顔料

実施例3-4と同様のスルホン酸基および/またはスルフィン酸基が表面に化学結合されたフタロシアニン顔料を用いた。従って、得られた表面処理顔料のスルホン酸基および/またはスルフィン酸基の導入量は、顔料粒子1g当たり58×10-6当量であった。

(2) インクジェット用記録インクの調製

インクジェット用記録インクの調製は、下記の組成のように、アルカリ化合物としてアンモニアおよび水酸化ナトリウム、浸透剤としてジエチレングリコールモノーn-ブチルエーテルと1、2-ペンタンジオールを用いた以外は、前記実施例3-4と同様の操作を行った。以下に具体的なインク組成を示す。

得られたインクのゼータ電位は45mV(絶対値)であり、粘度は4.8mPa・sであり、表面張力は32mN/mであった。また、前述の定量法によって求めた液性成分(ビヒクル)中のアルカリ金属イオンの濃度は2100ppmであった。

・実施例3-6の具体的なインク組成

スルホン酸基および/またはスルフィン酸基が表面に化学結合されたフタロシアニン顔料(固形分として) 8部

ジエチレングリコールモノーnーブチルエーテル 6部 グリセリン 1 0部 1,2-ペンタンジオール 5部 アンモニア (28%) 水 1.0部

水酸化ナトリウム (20%) 水溶液 1.0部

イオン交換水

残量

(3) 印字試験、インクの保存安定性試験

本実施例3-6のインクについて、前記した「印字試験」および「インクの保存 安定性試験」を行った。

印字試験の結果は、前記実施例3-1と同じであった(評価 "A")。また、インクの保存安定性試験の結果についても、前記実施例3-1と同じであった(評価 "A")。また、インクの保存安定性試験の結果、いずれの条件でも、放置前後で、異物の発生、物性値(粘度、表面張力)の変化が若干生じ、保存安定性の面でやや不満が残った(評価 "B")。

<実施例3-7>

(1) 表面処理顔料

本実施例3-7では、前記実施例1-6と同様のスルホン酸基および/またはスルフィン酸基が表面に化学結合されたイソインドリノン顔料(C. I. ピグメントイエロー110)を用いた。したがって、得られた表面処理顔料のスルホン酸基および/またはスルフィン酸基の導入量は、顔料粒子1g当たり49×10⁻⁶ 当量であった。

(2) インクジェット用記録インクの調製

インクジェット用記録インクの調製は、下記の組成のように、アルカリ化合物としてトリエタノールアミンおよびモノエタノールアミンを、浸透剤としてジエチレングリコールモノーnーブチルエーテルと1、2ーペンタンジオールを用いた以外は、前記実施例3-4と同様の操作を行った。

得られたインクのゼータ電位は49mV(絶対値)であり、粘度は4.7mPa・sであり、表面張力は32mN/mであった。また、前述の定量法によって求めた液性成分(ビヒクル)中のアルカリ金属イオンの濃度は1330ppmであった。

・実施例3-7の具体的なインク組成

スルホン酸基および/またはスルフィン酸基が表面に化学結合されたイソインドリノン顔料(周形分として) 8部

PCT/JP00/03737

ジェチレングリコールモノーnーブチルエーテル6部グリセリン1 0部1. 2ーペンタンジオール5部トリエタノールアミン0. 5部モノエタノールアミン0. 4部イオン交換水残量

(3) 印字試験、インクの保存安定性試験

本実施例3-7のインクについて、前記した「印字試験」および「インクの保存 安定性試験」を行った。

印字試験の結果は、前記実施例3-1と同じであった(評価 "A")。インクの保存安定性試験の結果についても、前記実施例3-1と同じであった(評価 "A")。

<実施例3-8>

(1) 表面処理顔料

本実施例3-8では、前記実施例1-7(1)と同様のスルホン酸基および/またはスルフィン酸基が表面に化学結合されたジメチルキナクリドン顔料(C. I. ピグメントレッド122)を用いた。得られた表面処理顔料のスルホン酸基および/またはスルフィン酸基の導入量は、顔料粒子1g当たり35×10-8当量であった。

(2) インクジェット用記録インクの調製

インクジェット用記録インクの調製は、下記組成のように、アルカリ化合物としてN、N-ジェチルエタノールアミンおよび水酸化リチウムを用いた以外は、前記実施例3-7と同様の操作を行った。得られたインクのゼータ電位は48mV(絶対値)であり、粘度は4.6mPa・sであり、表面張力は32mN/mであった。また、前述の定量法によって求めた液性成分(ビヒクル)中のアルカリ金属イオンの濃度は1510ppmであった。

・実施例3-8の具体的なインク組成

スルホン酸基および/またはスルフィン酸基が表面に化学結合されたキナクリドン顔料(固形分として) 8部

PCT/JP00/03737

ジェチレングリコールモノー n ー ブチルエーテル6部グリセリン1 0部1, 2 ー ペンタンジオール5部N, N ー ジェチルエタノールアミン0.3部水酸化リチウム (10%) 水溶液0.2部イオン交換水残量

(3) 印字試験、インクの保存安定性試験

本実施例3-8のインクについて、前記した「印字試験」および「インクの保存安定性試験」を行った。

印字試験の結果は、前記実施例3-1と同じであった(評価 "A")。インクの保存安定性試験の結果についても、前記実施例3-1と同じであった(評価 "A")。

<比較例3>

(1) 表面処理カーポンプラックの作製

前記実施例3-1と同一の作製手段で、スルホン酸基および/またはスルフィン酸基が表面に化学結合されたカーボンブラック顔料粒子を得た。得られた表面処理カーボンブラック顔料のスルホン酸基および/またはスルフィン酸基の導入量は、顔料粒子1g当たり50×10-6当量であった。

(2) インクジェット用記録インクの調製

比較例3のインクについては、アルカリ化合物として水酸化カリウム(20%)水溶液を使用した。本比較例3では、インク液性成分中のアルカリ金属イオンの 濃度を高くするように、水酸化カリウムを剰量添加した。それ以外は、前記実施 例3-1と同様の操作を行った。

得られたインクのゼータ電位は29mV(絶対値)であり、粘度は5.6mPa・sであり、表面張力は34mN/mであった。また、前述の定量法によって求めた液性成分(ビヒクル)中のアルカリ金属イオンの濃度は14800ppmであった。

(3) 印字試験、インクの保存安定性試験

比較例3のインクについて、前記した「印字試験」および「インクの保存安定

性試験」を行った。

印字試験の結果、得られた印字画像は、不規則なにじみが多く、鮮明な画像が得られなかった。特に、印字試験を通して、記録紙1枚の印字試験を実施する間に、ドット抜け、飛行曲がりが頻発したため、印字物は、粗雑で評価に耐えるものではなかった(評価 "C":印字濃度の評価不可)。また、インクの保存安定性試験の結果、いずれの条件でも、放置前後で異物の発生、物性値(粘度、表面張力)の変化が生じ、保存安定性は良くなかった(評価 "C")。

以上の実施例3-1~3-8および比較例3のインクについて、試験結果を含め表3に示す。

(表3)

保存安定性試験 ンクの試験結果 ď ပ ď B K K K K B 印字試験 ¥ 4 ¥ 4 ď Ö ٧ ∢ ⋖ インクの液性成分 中に含まれる アルカリ金属イオン濃度 度 ≡dd ₽dd ₽dd ₩dd **Edd** mdd 田dd udd ⊠dd 096 1510 14800 2100 1330 1620 2060 560 1760 mN/m aN/a m/Nm m//m aN/a m//m aN/a mN/m m//m 表面强力 33 32 32 32 34 32 33 32 3 mPa∙s nPa∙s mPa·s mPa·s mPa·s mPa·s mPa·s の物性値 mPa·s mPa·s 度 架 4.6 4.8 4.7 4.7 4.7 9 8 8 4 1 4 S. λ 白 »× я > <u>ه</u> m шV m V Уш Ē m V P N R 45 48 48 82 53 45 20 48 47 4 表面処理顔料の 分散性付与基の 導入量 10-9当量 本10-e개章 ×10-9当最 ¥10-01× 本10-e県 ×10-0湯 事示0-01× × 10-9 当 x 10-8 账 X 35 48 20 28 20 20 50 28 28 3-7 က က က က က က က က **无数**室 実施例 灾瓶例 東施例 安施例 実施例 뀢施例 実施例 実施例

103

以上、実施例3-1~実施例3-8のインクの「印字試験」「インクの保存安定性 試験」について、その結果を更に別の観点からまとめたものを表4に示す。

表4中の評価(A、B)の意味は、下記の通りである。

(にじみ) A:全くにじまなかった

B:殆どにじまなかった

(印字濃度) A:非常に高い濃度を有した

B:高い濃度を有した

(異物) A:異物は殆ど発生しなかった

B:異物が若干確認された

(物性値) A:物性値は殆ど変化しなかった

B:物性値が若干変化した

表4中、顔料種、アルカリ化合物、浸透剤、その他の添加物の欄の数字は、インク中の重量部であり、残りはイオン交換水である。なお、TEAはトリエタノールアミン、MEAはモノエタノールアミン、DEEAはN、Nージエチルエタノールアミン、サーフィ465はサーフィノール465、DEGmBEはジエチレングリコールモノブチルエーテル、TEGmBEはトリエチレングリコールモノブチルエーテル、Glyはグリセリン、1、5ーPDは1、5ペンタンジオール、1、2ーHDは1、2ヘキサンジオール、EDTAはエチレンジアミン四酢酸の略である。

(表	4)

Ŋ	(数4)					i	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	M 47 44	E +
			実施例 3-1	実施例 3 - 2	実施 <u>の</u> 3 - 3	来商约 3 - 4	米麗倉 3 - 5	※	来	夹舱例 3-8
7	アルカリ金属イオン濃度(ppi	r ン濃度(ppm)	0 9 6	1620	2060	560	1760	2 1 0 0	1330	1510
	箱料種	カーボンブラック	8	8	8					
	!	776062				œ	8	œ		
		1717/11/2							∞	
		キナクリドン								æ
H	進入最(#)		50×10-6	50×10-	50×10-6	58×10^{-6}	58×10^{-8}	58×10-ª	49×10-6	35×10-8
1	アルカリ	NH3 (28%) aq.	0.2	0.3			0. 2	1.0		
	产 小巷	NaOH (20%) ag.		0.2	2		0. 2	1.0		
	3					0.9			0.5	
		MRA							0.4	
		DRRA								0.3
桵		1.iOH(10%) ag.								0.2
	英樂 與					0.8	0.8			
	£	#-711-1 B1				0.5	0.5			
		DRGMRR	9	9	9			9	9	9
		TRGMBE				2	2			
		1. 2-PD	2	5	5			2	വ	2
		1. 2-HD				9	9			
	かの名	GIV	10	1 0	1 0	1 0	1 0	1 0	10	1 0
		BDTA				0.03	0.03			
	1000	にじみ	æ	В	В	A	A	В	В	В
當	•	田字豫度	æ	Ą	A	В	Α	А	В	В
<u>.</u>		洪 乾件	2秒未満	2 秒未満	2秒未満	1秒未満	1秒未満	2秒未満	2 秒未満	2秒未満
甪	1770	異物	¥	Ą	В	Α	А	В	A	A
<u>[</u>	保存安定性	物性值	A	A	В	А	A	В	A	A
*	(*)顏料粒子表面に化学結合。 NH3:77年7、NBOH: 水酸化	に化学結合されの語、水酸化汁が	たストホン 1、TBA: ト	蛟基および ルケーバシ、 コチレがコー	/またはス MBA: モ/19 は1-n-行む	ラレィン酸 アーグジ、DBI ユザ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	酸基の導入量 DBBA: N, N-シエラ 2-PD: 1.2-ヘンン	(当量/顔) トルエタノールアミン タンメスール、 1.	A粒子 1 g) 、LiOH: 水 2-HD: 1,2-	g) 水酸化リチウム、 2-ヘキサンシオール、
ਤੂ ਤ	GEBB: VITVVV	リコールセノノエルムーフル	· I DUMDD ·	111111111	7. II // II		1			

105

前記表4からもわかるように、アルカリ化合物として、水酸化ナトリウムを用いると、即ち、スルホン酸アニオン基および/またはスルフィン酸アニオン基の 対カチオンをナトリウムイオンとすると、画像の高い印字濃度が得られた。

また、アンモニアを用いると、即ち、上記対カチオンをアンモニウムイオンと すると、高いインクの保存安定性が得られた。

更に、実施例3-2および実施例3-5のように、アンモニアと水酸化ナトリウムの両方を用いることで、即ち、上記対カチオンとしてアンモニウムイオンとナトリウムイオンを共に存在させることで、高い画像の印字濃度と高いインクの保存安定性を両立させることができた。実施例3-3および実施例3-6のように、アルカリ金属イオンの総量がビヒクルに対して2000ppm以上の場合は、インクの保存安定性が若干低下した。

なお、実施例3-4および実施例3-5は、画像の印字にじみ、速乾性に極めて優れていたが、これは、サーフィノール465、サーフィノール61、トリエチレングリコールモノーnーブチルエーテル、1、2-ヘキサンジオール等の個々の添加による効果か、もしくは、併用したことによる効果と考えられる。

[本発明の第4のインクの実施例]

次の実施例4(実施例4-1~4-6)は、本発明の第4のインクの実施例であり、 比較例4(比較例4-1~4-2)は、本発明の第4のインクに対する比較のための例 である。以下の実施例4、比較例4で示す "インクの物性値(粘度、表面張力)" は、いずれも前記実施例1に記載した方法による。

本実施例 4 (実施例 4-1~4-6), 比較例 4 (比較例 4-1~4-2)のインクについて、次の「インクの保存安定性試験」を行った。

「インクの保存安定性試験」

本実施例4. 比較例4で調整したインクをガラス製のサンプル瓶に入れ、密栓後、35℃放置2週間の放置条件で保存安定性試験を行い、異物(黴・微生物等、あるいは顔料凝集物)の発生、物性値(粘度、表面張力)について調べた。

<実施例4-1>

(1) 顔料分散液の作製

カーボンブラック(三菱化学社製「MA-100」)8部を水性溶媒中に分散し、 スルファミン酸6部を添加して、120~135℃で加熱しながら8時間撹拌した。水洗と濾過を繰り返した後、ジメチルアミノエタノールを加えてpHを8. 5に調製し、16%のスルホン化処理カーボンブラック分散液を得た。

(2) インクの調製

本実施例4-1では、着色剤として、上記スルホン化処理カーボンブラック分散 液を、浸透剤として、グリコールエーテル類であるエチレングリコールモノー n ープチルエーテルを、防腐剤として、オキサゾリジン系化合物である4.4-ジメチルオキサゾリジンを、それぞれ使用した。具体的な組成を以下に示す。

顔料分散液39部エチレングリコールモノーnープチルエーテル8部グリセリン10部4、4ージメチルオキサゾリジン0.5部

イオン交換水 42.5部

(3) インクの保存安定性試験

本実施例4-1のインクについて、前記「インクの保存安定性試験」を行った。 インクの保存安定性試験の結果、放置前後で、異物の発生、物性値の変化が殆ど 無く、良好な保存安定性であった(評価 "A")。

<実施例4-2>

(1) 顔料分散液の作製

本実施例4-2では、前記実施例4-1と同様な工程で、カーボンブラック(三菱化学社製「MA-100」)を処理し、16%のスルホン化処理カーボンブラック 顔料分散液を得た。

(2) インクの調製

本実施例4-2では、着色剤として、上記スルホン化処理カーボンブラック分散 液を、浸透剤として、アセチレンアルコール界面活性剤であるサーフィノール8 2 及びグリコールエーテル類であるジプロピレングリコールモノーnーブチルエーテルを、防腐剤として、クロルキシレノールである4ークロルー3、5ージメチルーキシレノールを使用した。具体的な組成を以下に示す。

額料分散液
 サーフィノール82
 ジプロピレングリコールモノーnーブチルエーテル
 イリセリン
 4ークロルー3、5ージメチルーキシレノール
 5部
 イオン交換水
 42.5部

上記成分を混合後、濾過し、実施例 4-2で用いるインクとした。インクの粘度は、4.5 m P $a\cdot s$ であり、インクの表面張力は 4.2 m N ℓ m であった (何れも2.0 \mathbb{C} の値)。

(3) インクの保存安定性試験

本実施例 4-2のインクについて、前記「インクの保存安定性試験」を行った。 インクの保存安定性試験の結果、放置前後で、物性値の変化が殆ど無く、微・ 微生物等の発生もなかった。但し、市販インクカートリッジの異物捕捉用フィル ターで捕捉可能な程度の顔料凝集物が生じたが、実使用上問題ないレベルであった(評価 "B")。

く実施例4-3>

(1) 顔料分散液の作製

 $5\sim10$ \mathbb{C} の発煙硫酸 $(SO_3$ 濃度 25% 品) 100 部中にフタロシアニン顔料 $(C.I. \mathbb{C}$ \mathbb{C} $\mathbb{C$

生じた懸濁液を濾過洗浄後、トリエタノールアミンを加えてpH8.2に調整し、18%のスルホン化処理フタロシアニン顔料分散液を得た。

(2) インクの調製

本実施例4-3では、着色剤として上記スルホン化処理フタロシアニン顔料分散 液を、浸透剤としてグリコールエーテル類であるジエチレングリコールモノー t ープチルエーテルとトリエチレングリコールモノエチルエーテルを、防腐剤としてアルキルイソチアゾロン系化合物である2-n-オクチル-4-イソチアゾリン-3-オンを使用した。具体的な組成を以下に示す。

顔料分散液			3	5 部	
ジエチレングリコールモノーt-ブチルエーテル			1	0 部	
トリエチレングリコールモノエチルエーテル				5 部	
グリセリン			1	0 部	
2-n-オクチルー4-イソチアゾリンー3-オン		0.	0	1部	
イオン交換水	3	9.	9	9 部	

上記成分を混合後、濾過し、実施例 4-3で用いるインクとした。インクの粘度は、 $4.1 \text{ mPa} \cdot \text{s}$ であり、インクの表面張力は4.0 mN / mであった(何れも2.0 Cの値)。

(3) インクの保存安定性試験

本実施例4-3のインクについて、前記「インクの保存安定性試験」を行った。 その結果は、前記実施例4-2と同じであった(評価 "B")。

く実施例4-4>

(1) 顔料分散液の作製

本実施例4-4では、前記実施例4-3と同様な工程で縮合アゾ顔料(C. I. ピグメントイエロー128)を処理し、15%のスルホン化処理イソインドリノン顔料分散液を得た。

(2) インクの調製

本実施例4-4では、着色剤として上記スルホン化処理黄色縮合アゾ顔料分散液を、浸透剤としてアセチレングリコール系界面活性剤であるサーフィノールTGとグリコールエーテル類であるトリエチレングリコールモノー t ーブチルエーテルを、防腐剤として、アルキルイソチアゾロンである2ーメチルー4ーイソチアゾリン-3-オン、クロルアルキルイソチアゾロンである5-クロロー2ーメチ

ルーイソチアゾリンー3ーオン、プロモニトロアルコールである2ープロモー2ーニトロプロパンー1、3ージオールを使用した。具体的な組成を以下に示す。

35部 顔料分散液 0.2部 サーフィノールTG トリエチレングリコールモノー t - ブチルエーテル 12部 10部 グリセリン 0.02部 2-メチル-4-イソチアゾリン-3-オン 0.08部 5-クロロ-2-メチル-イソチアゾリン-3-オン 0.32部 2-プロモー2-ニトロプロパン-1, 3-ジオール 42.3部 イオン交換水

上記成分を混合し、十分攪拌後、濾過し、実施例 4 -4 で用いるインクとした。インクの粘度は 4 の 3 m P a·s であり、インクの表面張力は 2 9 m N / m であった (何れも 2 0 $\mathbb C$ の値)。

(3) インクの保存安定性試験

本実施例 4-3のインクについて、前記「インクの保存安定性試験」を行った。 その結果は、前記実施例 4-2と同じであった(評価 "B")。

く実施例4-5>

(1) 顔料分散液の作製

本実施例4-5では、前記実施例4-3と同様な工程でキナクリドンマゼンタ顔料(C. I. ピグメントレッド122)を処理し、16%のスルホン化処理キナクリドンマゼンタ顔料分散液を得た。

(2) インクの調製

本実施例4-5では、着色剤として上記スルホン化処理キナクリドンマゼンタ顔料分散液を、浸透剤としてアセチレングリコール系界面活性剤であるサーフィノール465を、防腐剤としてオキサゾリジン系化合物である4、4ージメチルオキサゾリジンを使用した。具体的な組成を以下に示す。

額料分散液38部サーフィノール4651部

PCT/JP00/03737 WO 00/75245

10部 グリセリン 4. 4-ジメチルオキサゾリジン 0. 2部

50.8部

上記成分を混合し、十分攪拌後、濾過し、実施例4-5で用いるインクとした。 インクの粘度は3. 9mPa·sであり、インクの表面張力は31mN/mであ - った(何れも20℃の値)。

(3) インクの保存安定性試験

イオン交換水

本実施例4-5のインクについて、前記「インクの保存安定性試験」を行った。 その結果は、前記実施例4-1と同じであった(評価 "A")。

く実施例4-6>

(1) 顔料分散液の作製

本実施例4-6では、前記実施例4-3と同様な工程でキナクリドンマゼンタ顔料 (C. I. ピグメントレッド122)を処理し、16%のスルホン化処理キナクリ ドンマゼンタ顔料分散液を得た。

(2) インクの調製

本実施例4-6では、着色剤として上記スルホン化処理キナクリドンマゼンタ顔 料分散液を、浸透剤としてアセチレンアルコール系界面活性剤であるサーフィノ ール61と1.2ーアルキレングリコールである1.2ーペンタンジオールを、 防腐剤としてベンズイソチアゾロンである1.2-ベンズイソチアゾリン-3-オンを使用した。具体的な組成を以下に示す。

38部 顔料分散液

0.5部 サーフィノール61

1, 2-ペンタンジオール 5 部

10部 グリセリン

0.2部 1、2-ベンズイソチアゾリン-3-オン

46.3部 イオン交換水

上記成分を混合し、十分撹拌後、濾過し、実施例4-6で用いるインクとした。 インクの粘度は3.9mPa·sであり、インクの表面張力は31mN/mであ

った(何れも20℃の値)。

(3) インクの保存安定性試験

本実施例 4-6のインクについて、前記「インクの保存安定性試験」を行った。 その結果は、前記実施例 4-2と同じであった(評価 "B")。

<比較例4-1>

前記実施例4-5のインクから、4、4-ジメチルオキサゾリジンを除いたこと、 グリセリンの添加量を15%としたこと以外は、全て実施例4-1に準ずるインク 作製方法とした。具体的なインクの組成を以下に示す。

顔料分散液	38部
サーフィノール465	1部
グリセリン	15部
イオン交換水	41部

上記成分を混合後、濾過し、比較例 4 -1 で用いるインクとした。インクの粘度は4 8 m P a・s であり、インクの表面張力は4 6 m N / m であった(何れも、2 0 $\mathbb C$ の値)。

(インクの保存安定性試験)

本比較例4-1のインクについて、前記「インクの保存安定性試験」を行った。 インクの保存安定性試験の結果、放置前後で、異物として微・微生物等の発生が 認められた。また、物性値については、表面張力の変化は確認されなかったが、 0.3mPa・s程度の粘度上昇が確認された(評価 "C")。

<比較例4-2>

前記実施例4-2で試作した顔料分散液を使って、以下の処方(インクの組成)により比較例4-2のインクを製造した。

(インクの組成)

顔料分散液	4 2 部
エチレングリコールモノーn-ブチルエーテル	10部
グリセリン	10部

PCT/JP00/03737

1. 2-ベンズイソチアゾリンー3ーオン

0.8部

イオン交換水

37. 2部

上記成分を混合後、濾過し、比較例 4-2で用いるインクとした。インクの粘度は 4.8 mPa·sであり、インクの表面張力は 4.2 mN/mであった (何れも、 2.0 Co の値)。

(インクの保存安定性試験)

本比較例 4-2のインクについて、前記「インクの保存安定性試験」を行った。 インクの保存安定性試験の結果、放置前後で、物性値の変化が殆どなく、微・微 生物等の発生もなかった。但し、顔料凝集物と思われる異物が発生した。また、 物性値については、表面張力の変化は確認されなかったが、1.1mPa・s 程度の粘度上昇が確認された(評価 "C")。

以上、実施例 $4-1\sim4-6$. 比較例 $4-1\sim4-2$ で得られたインクの「インクの保存安定性試験」について、その結果をまとめて表 5 に示す。

(表5)

	al made of the	インクの物性値		インクの
	防腐剤の種類	粘度	表面張力	保存安定性試験
実施例4-1	4, 4ージメチルオキサゾリジン	4.5 mPa·s	42 mN/m	A
実施例4-2	4-クロルー3、5ージメチルーキシレノール	4.5 mPa·s	42 mN/m	В
実施例4-3	2-n-オクチル-4-イソチアゾリン-3-オン	4.1 mPa·s	40 mN/m	В
実施例 4 -4	2-メチルー4-イソチアゾリン-3-オン 5-クロロ-2-メチル-イソチアゾリン-3-オン 2-プロモ-2-ニトロプロバン-1、3-ジオール	4.3 mPa·s	29 mN/m	В
実施例4-5	4、4ージメチルオキサゾリジン	3.9 mPa·s	31 mN/m	A
実施例4-6	1、2ーベンズイソチアゾリンー3ーオン	3.9 mPa·s	31 mN/m	В
比較例4-1	無	4.8 mPa·s	46 mN/m	С
比較例 4-2	1, 2-ベンズイツチアゾリン-3-オン	4.8 mPa·s	42 mN/m	С

(印字試験)

さらに、本実施例 $4-1\sim 4-6$ のインクについて、印字試験を行った。すなわち、インクジェット記録方式のプリンタとして、SC-740C(セイコーエプソン 社製)を用い、中性普通紙としてゼロックーP(富士ゼロックス社製)、酸性普通紙としてEPP(セイコーエプソン社製)、再生紙としてゼロックスR(富士ゼロックス社製)を用い、それぞれの紙に対する印字試験を行った。得られた印字画像は、いずれも不規則な滲みが殆どなく、高い印字濃度の非常に良好な印字画像であった。また、べた印字を行った場合の乾燥性も良好であった。

以上の「インクの保存安定性試験」「印字試験」の評価結果から明らかなように、本発明の第4のインクは、概ね、(1)印字画像の滲みが低下できる。(2)印字物の速乾性が良好である。(3)印字濃度が高いことを満たすことが確認される。さらに、(4)本発明による防腐剤を添加することで、インクの保存安定性が確保されることが確認できた。

「本発明の第5のインクの実施例]

次の実施例 5(実施例 $5-1\sim5-7)$ は、本発明の第5のインクの実施例であり、 比較例 5(比較例 $5-1\sim5-3)$ は、本発明の第5のインクに対する比較のための例である。

本実施例 5 (実施例 5-1~5-7)、比較例 5 (比較例 5-1~5-3)のインクについて、次の「印字試験」を行った。特に、本実施例では、ヨーロッパ、アメリカおよび日本で市販されている 1 0 種類以上の普通紙への印字試験を実施し、普通紙に対する印字品質について、詳細な評価を行った。

「印字試験」

インクジェット記録方式のプリンターとして、MJ-930C(セイコーエプソン社製)を用い、これに本実施例5、比較例5で調整したインクを充填し、ヨーロッパ、アメリカおよび日本で市販されている10種類以上の普通紙(Conqueror紙、Favorit紙、Modo Copy紙、Rapid Copy紙、EPSON EPP紙、Xerox 4024紙、Xerox 10紙、Neenha Bond紙、Ricopy 6200紙、やまゆり紙、Xero

x R紙)のそれそれの紙に対する印字試験を行った。

く実施例5-1>

(1)表面処理カーポンプラック顔料分散液の作製

カーポンプラック(コロンピアンカーボン社製(「RAVEN C」)15部をスルホラン250部中に混合し、アイガーモーターミルM250型(アイガージャパン社製)で、ピーズ充填率70%及び回転数5000rpmの条件下で1時間整粒分散し、整粒分敏した顔料ペーストと溶剤の混合液をエバボレーターに移し、30mmHg以下に減圧しながら、120℃に加熱して、系内に含まれる水分をできるだけ留去したのち、150℃に温度制御した。次いで、三酸化硫黄25部を加えて6時間反応させ、反応終了後、過剰なスルホランで数回洗浄した後に水中に注ぎ、濾過することで、表面処理カーボンブラック顔料粒子を得た。

次に、得られた表面処理カーボンブラック15部にトリエタノールアミン2部、 イオン交換水83部を加えて攪拌することにより、15%の表面処理カーボンブ ラック分散液を得た。

(2) インクジェット記録用インクの調製

上記で得られた表面処理カーボンブラック顔料分散液40部に対して、式(2)の物質Aを6部、サーフィノール465を0.8部、プロピレングリコールモノーnーブチルエーテルを5部、1、2ーヘキサンジオールを5部、グリセリンを10部、エマルジョンAを3部、イオン交換水35部を攪拌しながら徐々に加えることにより、本発明による実施例5-1のインクを得た。

インク組成を以下に示す。

表面処理カーポンプラック顔料(固形分として)	6.0%
式(2)の物質 A	2.0%
サーフィノール465	0.8%
プロピレングリコールモノーn-ブチルエーテル	5.0%
2-ヘキサンジオール	5.0%
エマルジョンA(固形分として)	3.0%
グリセリン	10.0%

PCT/JP00/03737

トリエタノールアミン

0.8%

イオン交換水

残量

(尚、式(2)の物質Aは、Rがネオペンチル基であり、 n_2 が3, m_2 が1.5 であり、Xが水素である。エマルジョンAは、実施例1-8と同様のものを使用している。また、インク組成中の表面処理顔料、トリエタノールアミン、及びイオン交換水の一部は、表面処理顔料分散液として添加している。)

<実施例5-2>

(1) 表面処理カーボンブラック顔料分散液の作製

本実施例 5-2では、前記実施例 5-1同様のカーボンブラック分散液を使用した。 (2) インクジェット記録用インクの調製

上記で得られた表面処理カーボンブラック顔料分散液40部に対して、式(2)の物質Bを6部、サーフィノール465を0.8部、プロピレングリコールモノエチルエーテルを5部、1.2ーヘキサンジオールを5部、グリセリンを10部、エマルジョンBを5部、イオン交換水35部を攪拌しながら徐々に加えることにより、本発明による実施例5-2のインクを得た。

インク組成を以下に示す。

表面処理カーボンブラック顔料(固形分として)	6.	0 %
式(2)の物質A	2.	0 %
サーフィノール465	0.	8 %
プロピレングリコールモノエチルエーテル	5.	0 %
2-ヘキサンジオール	5.	0 %
エマルジョンB(固形分として)	5.	0 %
グリセリン	10.	0 %
トリエタノールアミン	0.	8 %
イオン交換水		残量

(尚、式(2)の物質Bは、Rがt-ブチル基であり、 n_2 が3、 m_2 が1.3であり、Xが水素である。エマルジョンBは、実施例1-10と同様のものを使用している。また、インク組成中の表面処理顔料、トリエタノールアミン、及びイオ

ン交換水の一部は、表面処理顔料分散液として添加している。)

く実施例5-3>

(1) 表面処理カーボンブラック顔料分散液の作製

本実施例5-3では、前記実施例5-1と同様のカーボンブラック分散液を使用した。

(2) インクジェット記録用インクの調製

上記で得られた表面処理カーボンブラック顔料分散液40部に対して、式(2)の物質Cを4部、サーフィノールTGを0.8部、トリエチレングリコールモノエチルエーテルを5部、1,2ーペンタンジオールを5部、グリセリンを10部、エマルジョンCを5部、イオン交換水35部を攪拌しながら徐々に加えることにより、本発明による実施例5-3のインクを得た。

インク組成を以下に示す。

表面処理カーボンブラック顔料(固形分として)	6.0%
式(2)の物質C	2.0%
サーフィノールTG	0.8%
トリエチレングリコールモノエチルエーテル	5.0%
2ーペンタンジオール	5.0%
エマルジョンC(固形分として)	5.0%
グリセリン	10.0%
トリエタノールアミン	0.8%
イオン交換水	残量

(なお、式(2)の物質Cは、Rが1、3-ジメチルブチル基であり、 n_2 が0、 m_2 が1.5であり、XがS O_3 N a である。エマルジョンCは、実施例1-11と同様のものを使用している。また、インク組成中の表面処理顔料、トリエタノールアミン、及びイオン交換水の一部は、表面処理顔料分散液として添加している。)

<実施例5-4>

(1) 表面処理有機顔科分散液の作製

フタロシアニン顔料(C. I. ピグメントブルー15:3)15部をキノリン450部と混合し、アイガーモーターミルM250型(アイガージャパン社製)で、ビーズ充填率70%及び回転数5000rpmの条件下で2時間整粒分散し、整粒分散した顔料ペーストと溶剤の混合液をエバポレーターに移し、30mmHg以下に減圧しながら120℃に加熱し、系内に含まれる水分をできるだ留去した後、160℃に温度制御した。次いで、スルホン化ピリジン錯体20部を加えて8時間反応させ、反応終了後に過剰なキノリンで数回洗浄した後に水中に注ぎ、濾過することで、表面処理フタロシアニン顔料粒子を得た。

次に、得られた表面処理フタロシアニン顔料15部にトリエタノールアミン2部、イオン交換水83部を加えて攪拌することにより、15%の表面処理フタロシアニン顔料分散液を得た。

(2) インクジェット記録用インクの調製

上記で得られた表面処理フタロシアニン顔料分散液 4 0 部に対して、式(2)の物質 Dを 8 部、サーフィノール 6 1 を 0. 5 部、ジエチレングリコールモノー n ープロピルエーテルを 5 部、1. 2 ーペンタンジオールを 5 部、グリセリンを 1 0 部、エマルジョン Dを 1 部、およびイオン交換水を攪拌しながら徐々に加えることにより、本発明による実施例 5 -4のインクを得た。

インク組成を以下に示す。

表面処理フタロシアニン顔料(固形分として)	6.0%
式(2)の物質D	8.0%
サーフィノール465	0.5%
ジエチレングリコールモノーnープロピルエーテル	5.0%
2ーペンタンジオール	5.0%
エマルジョンD(固形分として)	1.0%
グリセリン	10.0%
トリエタノールアミン	0.8%
イオン交換水	残量

(なお、式(2)の物質 Dは、Rがn-ヘキシル基50%と2-エチルヘキシル基

50%とする混合物であり、両方とも n_2 が0, m_2 が2であり、Xは両方とも SO_3NH_4 である。インク組成中の表面処理顔料、トリエタノールアミン、及びイオン交換水の一部は、表面処理顔料分散液として添加している。エマルジョンDの合成方法は以下に示す。)

(エマルジョンDの作製)

滴下装置、温度計、水冷式還流コンデンサー、攪拌機を備えた反応容器に、イオン交換水100部を入れ、攪拌しながら窒素雰囲気70℃で、重合開始剤の過流酸カリ0.2部を添加しておく。イオン交換水7部にラウリル硫酸ナトリウムを0.05部、スチレン15部、トリレンジイソシアネートと1.5ーペンタンジオールよりなるウレタンプレポリマー1部、ブチルメタクリレート15部およびtードデシルメルカプタン0.02部を入れたモノマー溶液を、先に用意した反応容器に70℃にて滴下して反応させて1次物質を作製する。次に、反応容器内の1次物質に、過硫酸アンモニウム10%溶液2部を添加して攪拌し、さらにイオン交換水30部、ラウリル硫酸カリ0.2部、スチレン30部、アクリルアミド1部、ブチルメタクリレート15部、ジベンタエリスリトールへキサメタクリレート1部、tードデシルメルカブタン0.6部よりなる反応液を70℃で攪拌しながら添加して重合反応させた後、アンモニアで中和し、pH8~8.5にして0.3μmフィルターでろ過した高分子微粒子水溶液を作製して"エマルジョンD"とした。

<実施例5-5>

(1) 表面処理有機顔料の作製

本実施例 5-5では、前記実施例 5-4と同様な工程で、ベンズイミダゾロン顔料 (CI. ピグメントイエロー 180)を処理し、15%の表面処理ベンズイミダゾロン顔料分散液を得た。

(2) インクジェット記録用インクの調製

上記で得られた表面処理ベンズイミダゾロン顔料分散液 4 0 部に対して、式(2)の物質 Dを 4 部、サーフィノール 6 1 を 0.5 部、エチレングリコールモノーiso-プロピルエーテルを 5 部、1.2-ペンタンジオールを 5 部、グリセ

PCT/JP00/03737

リンを10部、エマルジョンAおよびBを各1部とイオン交換水を攪拌しながら徐々に加えることにより、本発明による実施例5-5のインクを得た。
インク組成を以下に示す。

表面処理ベンズイミダゾロン顔料(固形分として)	6.0%
式(2)の物質D	4.0%
サーフィノール 6 1	0.5%
エチレングリコールモノーiso-プロピルエーテル	5.0%
2-ペンタンジオール	5.0%
エマルジョンA (固形分として)	1.0%
エマルジョンB(固形分として)	1.0%
グリセリン	10.0%
トリエタノールアミン	0.8%
イオン交換水	残量

(なお、式(2)の物質Dは、Rがn-ヘキシル基50%と2-エチルヘキシル基50%とする混合物であり、両方とも n_2 が0. m_2 が2であり、Xは両方とも SO_3NH_4 である。エマルジョンAおよびBは、実施例5-1および実施例5-2と同様のものを使用した。また、インク組成中の表面処理顔料、トリエタノールアミン、及びイオン交換水の一部は、表面処理顔料分散液として添加している。)

く実施例5-6>

WO 00/75245

(1) 表面処理有機顔料の作製

本実施例 5-6では、前記実施例 5-4と同様な工程で、アントラキノン顔料(C. I. ピグメントイエロー147)を処理し、15%の表面処理アントラキノン顔料分散液を得た。

(2) インクジェット記録用インクの調製

上記で得られた表面処理縮合アソ顔料分散液40部に対して、式(2)の物質Eを 2部、サーフィノール465を0.5部、トリエチレングリコールモノーnープ チルエーテルを5部、1,2-ヘキサンジオールを5部、グリセリンを10部、

エマルジョンAを1部、およびイオン交換水を攪拌しながら徐々に加えることにより、本発明による実施例5-5のインクを得た。

インク組成を以下に示す。

表面処理アントラキノン顔料(固形分として)	6. 0	%
式(2)の物質E	2. 0	%
サーフィノール465	0.5	%
トリエチレングリコールモノーn-ブチルエーテル	5. 0	%
2-ヘキサンジオール	5. 0	%
エマルジョンA(固形分として)	3. 0	%
グリセリン	10.0	%
トリエタノールアミン	0.8	%
イオン交換水	残	量

(なお、式(2)の物質 Eは、Rが n - n + ν ν 基であり、 n_2 n_2 n_3 n_4 n_4 n_5 n_5

く実施例5-7>

(1) 表面処理有機顔料の作製

本実施例 5-7では、前記実施例 5-4と同様な工程で、キナクリドン顔料(C. I. ピグメントレッド 1 2 2)を処理し、1 5%の表面処理キナクリドンマゼンタ顔料分散液を得た。

(2) インクジェット記録用インクの調製

表面処理縮合アゾ顔料分散液の代わりに、表面処理キナクリドンマゼンタ顔料 分散液を使用する以外は、実施例 5-6と同様の組成により、本発明による実施例 5-7のインクを得た。

インク組成を以下に示す。

表面処理キナクリドンマゼンタ顔料 (固形分として) 6.0% 式(2)の物質E 2.0%

サーフィノール465	0.	5 %
トリエチレングリコールモノーn - ブチルエーテル	5.	0 %
2-ヘキサンジオール	5.	0 %
エマルジョンA(固形分として)	3.	0 %
グリセリン	10.	0 %
トリエタノールアミン	0.	8 %
イオン交換水		残量

<比較例5-1>

(1) 樹脂分散型カーボンブラック顔料の作製

スチレンーアクリル酸共重合体樹脂(重量平均分子量=7000:酸価=150)8部、トリエタノールアミン3部、及びイソプロピルアルコール0.5部を、イオン交換水73.5部に、70 $\mathbb C$ の加温下で、完全に溶解させた。次に、カーボンブラック(コロンピアンカーボン社製「RAVEN C」)15部を前記溶液に加え、プレミキシングを行った後、アイガーミル(アイガージャパン社製)で分散を行い(ピーズ充填率=70%:メディア径=0.7mm)、15%の樹脂分散型カーボンブラック分散液を得た。

(2) インクジェット記録用インクの調製

上記で得られた樹脂分散型カーボンブラック顔料分散液40部に対して、非イオン系界面活性剤1部、グリセリンを10部とイオン交換水部を攪拌しながら徐々に加えることにより、本発明による比較例5-1のインクを得た。

インク組成を以下に示す。

樹脂分散型カーボンブラック顔料(固形分として)6.0%グリセリン10.0%トリエタノールアミン1.2%

イソプロピルアルコール

0.2%

分散剤

3. 2%

イオン交換水

残量

(なお、インク組成中のカーボンブラック顔料、トリエタノールアミン、イソプロピルアルコール、分散剤、及びイオン交換水の一部は、顔料分数液として添加している。)

<比較例5-2>

(1) 樹脂分散型有機顔料の作製

本比較例 5-2では、前記比較例 5-1と同様な工程で、フタロシアニン顔料(C. I. ピグメントブルー 15:3)を処理し、15%の樹脂分散型フタロシアニン顔料分散液を得た。

(2) インクジェット記録用インクの調製

上記で得られた樹脂分数型フタロシアニン顔料分散液 4 0 部に対して、非イオン系界面活性剤 1 部、グリセリンを 1 0 部と、イオン交換水部を攪拌しながら徐々に加えることにより、本発明による比較例 5-1のインクを得た。

インク組成を以下に示す。

樹脂分散型フタロシアニン顔料(固形分として)	6.0%	
グリセリン	10.0%	
トリエタノールアミン	1. 2%	
イソプロピルアルコール	0.2%	
分散剤	3. 2%	
イオン交換水	残量	

(なお、インク組成中のフタロシアニン顔料、トリエタノールアミン、イソプロ ピルアルコール、分散剤、及びイオン交換水の一部は、顔料分散液として添加し ている。)

<比較例5-3>

(1) 樹脂分散型有機顔料の作製

本比較例5-3では、顔料の代わりに水溶性染料(フードブラック2)を使用した。

(2) インクジェット記録用インクの調製

上記水溶性染料を下記の組成でインク化して本比較例 5-3のインクとした。 インク組成を以下に示す。

水溶性染料(フードブラック2)	6.09	6
グリセリン	10.09	6
トリエタノールアミン	1. 29	6
イソプロピルアルコール	0. 29	6
イオン交換水	残!	赴

(印字試験)

前記実施例 5 (実施例 5 -1 \sim 5 -7) および比較例 5 (比較例 5 -1 \sim 5 -3) の各インクについて、印字試験を実施した。その結果を表 6 に示す。表 6 に、印字の評価結果として、文字を印字したときのにじみの評価結果を示す。表 6 中、A は極めてよい、B はよい、C は悪い、D は極めて悪い、ということを示す。

(表6)

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \										
			聚	湖	<u>.</u>			म	比較例5	
	- 1	- 2	. l	4-	- 5	9 –	<u> </u>	- 1	- 2	ا 3
Conqueror	Æ	A	A	¥.	A	А	Α	ပ	ပ	ပ
Favorit	A	A	A	A	А	А	Α.	D	Q,	Ω
Modo Copy	A	A	А	А	Α	А	А	ပ	Д	Д
Rapid Copy	A	4	Ą	A	¥	А	A	ပ	Ω	Ω
BPSON BPP	Æ	4	4	A	A	A	A	၁	ပ	Ω
Xerox P	A	⋖	4	A	A	A	А	ပ	Û	Ω
Xerox 4024	A	A	4	A	А	A	А	၁	D	Ω
Xerox 10	A	4	∢	4	А	¥	А	В	Ω	Д
Neenha Bond	A	4	4	4	А	А	A	ပ	Ω	Ω
Ricopy 6200	A	4	∢	A	А	А	A	Д	ပ	Ω
Yamayuri	⋖	⋖	∢	V	А	A	ď	Ω	Ω	Ω
Xerox R	4	∢	A	A	A	A	A	၁	Ω	Ω

125

PCT/JP00/03737

表6の結果から明らかなように、比較例5(比較例5-1~5-3)で用いるようなインクは、印字品質が悪いが、第5のインクを用いると、印字品質が良好なことが分かる。

以上のように、第5のインクにおいては、印字画像の紙等の被記録体に対する にじみが低減される、高品質で、実用性の高いインクジェット記録用インクを提 供することができる。

なお、本発明の第5のインクは、前記した実施例に限定されると考えるべきで はなく、本発明の主旨を逸脱しない限り、種々の変更は可能である。

[本発明のインクセットの実施例]

次の実施例 6 (実施例 $6-1\sim6-2$) は、本発明のインクセットの実施例であり、 比較例 6 (比較例 $6-1\sim6-2$) は、本発明のインクセットに対する比較のための例 である。

以下の実施例 6-1, 6-2で使用する各表面処理顔料粒子について、ここでまとめて説明する。

・表面処理ブラック顔料粒子:

前記実施例2-1(1)で作製したものを用いた。(分散性付与基の導入量が顔料 粒子1g当たり50×10⁻⁶当量の"表面処理ブラック顔料粒子")

・表面処理イエロー顔料粒子:

前記実施例 2-5(1)で作製したものを用いた。(分散性付与基の導入量が顔料 粒子1g当たり49×10-6当量の"表面処理イエロー顔料粒子")

・表面処理マゼンタ顔料粒子:

前記実施例1-7(1)で作製したものを用いた。(分散性付与基の導入量が顔料 粒子1g当たり35×10-6当量の"表面処理マゼンタ顔料粒子")

・表面処理シアン顔料粒子:

前記実施例 2-3(1) で作製したものを用いた。(分散性付与基の導入量が顔料 粒子 1 g 当たり 5 8 × 1 0 $^{-6}$ 当量の "表面処理シアン顔料粒子")

・表面処理オレンジ顔料粒子の調製:

С. І. ピグメントオレンジ43(ペリノン顔料)10重量部を5~10℃の発

煙硫酸(SO3濃度25%品)100重量部中に攪拌しながら15分間かけて添加した。得られた混合物を70~90℃で更に数時間攪拌した後、氷水中に注入した。生じた懸濁液を濾過してから洗浄し、得られた生成物を乾燥し、表面処理オレンジ顔料粒子を得た。(得られた表面処理オレンジ顔料粒子について、前記実施例1に記載の方法に準じて分散性付与基の導入量を定量したところ、顔料粒子1g当たり23×10⁻⁶当量であった。)

・表面処理グリーン顔料粒子の調製:

C. I. ピグメントグリーン7(79 ロシアニン顔料)10 重量部を5~10 での発煙硫酸(SO_3 濃度25 %品)100 重量部中に攪拌しながら15 分間かけて添加した。得られた混合物を120 でで更に6 時間攪拌しながら反応させた後、氷水中に注入した。生じた懸濁液を濾過してから洗浄し、得られた生成物を乾燥して表面処理グリーン顔料粒子を得た。(得られた表面処理グリーン顔料粒子について、前記実施例1 に記載の方法に準じて分散性付与基の導入量を定量したところ、顔料粒子1 g 当たり 15×10^{-6} 当量であった。)

<実施例6-1)

以下の表面処理顔料粒子を以下の液媒体に分散させて、4色インク組成物からなるインクセットを得た。

・表面処理顔料粒子

前記表面処理ブラック顔料粒子8 重量%前記表面処理イエロー顔料粒子6 重量%前記表面処理マゼンタ顔料粒子6 重量%前記表面処理シアン顔料粒子6 重量%

・液媒体

サーフィノール465 (エアプロダクツ社製)1.0重量%ジエチレングリコールモノーnープチルエーテル10重量%グリセリン15重量%1,2-ヘキサンジオール2.5重量%トリエタノールアミン1.0重量%

イオン交換水

残量

<実施例6-2>

以下の表面処理顔料粒子を以下の液媒体に分散させて、6色インク組成物からなるインクセットを得た。

·表面処理顔料粒子

前記表面処理ブラック顔料粒子	8 重量%
前記表面処理イエロー顔料粒子	8重量%
前記表面処理マゼンタ顔料粒子	8重量%
前記表面処理シアン顔料粒子	8 重量%
前記表面処理オレンジ顔料粒子	6重量%
前記表面処理グリーン顔料粒子	6 重量%

・液媒体

サーフィノール465(エアプロダクツ社製)	1.0重量%
トリエチレングリコールモノ-n-ブチルエーテル	7.5重量%
グリセリン	15重量%
1. 5-ペンタンジオール	2.5重量%
トリエタノールアミン	0.9重量%
イオン交換水	残量

<比較例6-1>

前記実施例6-1の表面処理顔料粒子にかえて表面処理を施さない顔料粒子を用いた以外は、前記実施例6-1と同様のインクセットを用意した。

<比較例6-2>

前記実施例 6-2の表面処理顔料粒子にかえて表面処理を施さない顔料粒子を用いた以外は、実施例 6-2と同様のインクセットを用意した。

「インクセットの評価試験」

前記実施例6-1, 6-2および比較例6-1, 6-2の各インクセットについて、次

PCT/JP00/03737 WO 00/75245

の評価1~3および評価4に従って評価した。

なお、印字は、インクジェットプリンタMJ700V2Cを用いて以下に示す 記録紙に行った。

- (1) インクジェット用光沢フイルム (セイコーエプソン(株)製)
- (2) Хегох Р (ゼロックス(株)製)

「評価1:赤色の発色性」

上記実施例6-1, 6-2および比較例5-1, 5-2のインクセットのマゼンター顔 料インクとイエロー顔料インクとを0.5:0.5の割合で混合して赤色を実現 した。得られた印刷物の色彩を測定し、その結果を以下に示す基準に従って評価 した。

- ・彩度が80以上
- ・彩度が70以上80未満

・彩度が60以上70未満

- В
- ・彩度が60未満
- C NG

<評価2:緑色の発色性>

上記実施例6-1. 6-2および比較例6-1. 6-2のインクセットのイエロー顔料 インクとシアン顔料インクとを0.6:0.4の割合で混合して緑色を実現した。 得られた印刷物の色彩を測定し、その結果を以下に示す基準に従って評価した。

- ・彩度が80以上
- Α
- ・彩度が70以上80未満
- ・彩度が60以上70未満 С
- ・彩度が60未満

·N G

<評価3:オレンジ色の発色性>

上記実施例 6-1, 6-2および比較例 6-1, 6-2のインクセットのオレンジ顔料 インクとマゼンタ顔料インクとを0.9:0.1の割合で混合してオレンジ色を 実現した。得られた印刷物の色彩を測定し、その結果を以下に示す基準に従って 評価した。

- ・彩度が80以上
- ・彩度が70以上80未満 В

・彩度が60以上70未満 C

・彩度が60未満

NG

く評価4:インク放置安定性>

上記実施例 6-1、 6-2および比較例 6-1、 6-2の各インクセットを "60 $\mathbb C$ で 1 週間、続いて-20 $\mathbb C$ $\mathbb C$ で 1 週間 "放置し、放置前後でのインクの粘度変化について調べ、その結果を以下に示す基準に従って評価した。

・各インクセットの粘度変化量: 0.5mPas以内 A

・各インクセットの粘度変化量:0.5mPasを超えるもの NG

実施例 6-1, 6-2 および比較例 6-1, 6-2 の各インクセットについての評価結果を表7に示す。

(表7)

	二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二		则 趧	2	即。	3	評価 4
	光沢フイルム	Xerox P 紙	光祝フイルム	Xerox P 紙	光沢フイルム	Xerox P 紙	
実施例 6-1	В	В	В	В	В	В	A
実施例 6-2	A	¥	А	А	А	¥	A
比較例 6-1	ວ	NG	ວ	NG	၁	ÐN	ŊΝ
比較例 6-2	U	ບ	ט	ບ	U	C	NG

131

上記表7から明らかなように、本発明による表面処理顔料粒子を用いた実施例 6-1のインクセットは、表面処理を施さない顔料粒子を用いたもの(比較例 6-1) より発色性が向上することがわかり、更に、本発明の実施例 6-2のインクセットは、発色性向上に対しての効果が更に高いことがわかった。また、インク安定性においても、本発明によるインクの放置安定性は高かった。

[本発明のインクカートリッジの実施例]

次の実施例 7(実施例 $7-1\sim7-10)$ は、本発明のインクカートリッジの実施例であり、比較例 7(比較例 $7-1\sim7-2)$ は、本発明のインクカートリッジに対する比較のための例である。

くインクジェットインク用カートリッジの製造例>

(1) インク充填用フォームの製造

以下の実施例 7 (実施例 7-1~ 7-10), 比較例 7 (比較例 7-1~ 7-2) において 使用するインク充填用フォームを表 8 に記載の組成から製造した。

(表8)

フォーム	Fl	F2	F 3	F 4	F 5
ポリエーテルポリオール (注1)	100	100	100	100	100
イソシアネート トリレンジイソシアネート キシリレンジイソシアネート	100	100	_ 100	100 -	- 100
触媒 オクチル酸第一錫 ジプチル錫ジラウレート Nーエチルモルホリン	0. 08 - 0. 6	- 0.01 0.5	0. 2 - -	0. 005 0. 5	0. 24 - -
発泡剤:水	3.5	3	5	3	5
整泡剤(注2)	1	_	1	-	1

(注1): グリセリンベース・ポリプロピレングリコール (MW3000)

(注2): SF2961: 東芝ダウコーニングシリコーン製

具体的には、イソシアネート成分以外の全成分を混合し、攪拌した後、イソシアネート成分を加えて更に攪拌し、全体を適当な容器に入れ、140℃で10分

間加熱して発泡させ、ウレタンフォームを得た。

このウレタンフォームを、直方体($30\,\mathrm{mm} \times 30\,\mathrm{mm} \times 20\,\mathrm{mm}$)に裁断した後、密閉容器内に入れ、容器内を酸素/水素混合気体(酸素:水素比=およそ1:2; 圧力 $9.8\times10^4\,\mathrm{Pa}$)で置換し、発火させて溶膜処理を行い、インク充填用フォーム" $F1\sim F5$ "を得た。

(2) インクジェットインク用カートリッジの製造

図1の組立分解図に示すように、インク充填用フォームF1~F5(111)をポリプロピレン製下部ケース(101)に圧縮充填し、ポリプロピレン製上部ケース(102)を熱溶着してインクジェットインク用カートリッジを製造した。なお、下部ケースの底部に設けた供給口(121)の内側にフィルター(122)を配置した。後述する実施例7又は比較例7に記載のイング15gをシリンジで通気穴(103)から注入し、常温で1日放置してインクをフォーム内部に均一に分散させ、インクジェットインク用カートリッジを得た。インク充填用フォームF1~F5を充填したインクジェットインク用カートリッジをそれぞれカートリッジC1~C5と称する。

< 硫酸イオン、多価金属イオン(= 有機金属化合物触媒からの金属イオン+その他の多価金属イオン)、有機金属化合物触媒からの金属イオンの測定法>

以下の実施例7及び比較例7において示す硫酸イオン量、多価金属イオンの総量(=有機金属イオン化合物からの金属イオン量+その他の多価金属イオン量)、有機金属化合物触媒からの金属イオン量(錫イオン量)は、以下の方法によって決定した。

(1) 液性成分の分離

各実施例7又は比較例7で製造したインクカートリッジの通気穴より、シリンジを使用してインクを必要量取り出し、遠心限外濾過装置(C-15:ミリポア社)によって遠心分離処理した。フィルターとしては、タイプNMWL10000を使用し、遠心条件は、2500G×60分とした。得られた濾液を用いて硫酸イオン量、多価金属イオン量の総量及び有機金属化合物触媒からの金属イオン量(錫イオン量)を以下の方法により定量した。

(2) 硫酸イオンの定量

PCT/JP00/03737

10mgを酸素フラスコ法燃焼法で処理した後、0.2%硝酸水溶液に吸収させた。続いて、イオンクロマトグラフ法(カラム ionPac AS12A:日本ダイオネクス社DX-500)で定量した。

(3) 多価金属イオンの総量の定量

10mgを酸素フラスコ法燃焼法で処理した後、0.2%硝酸水溶液に吸収させた。続いて、前記と同じイオンクロマトグラフ法で定量した。

(4) 有機金属化合物触媒からの金属イオン量 (錫イオン量) の定量

10mgを酸素フラスコ法燃焼法で処理した後、0.2%硝酸水溶液に吸収させた。続いて、前記と同じイオンクロマトグラフ法で有機金属化合物からの金属イオン量 (例えば触媒として有機錫化合物を使用している場合は錫イオン量:本実施例では、有機錫化合物を使用→表8参照)を定量した。

く実施例7-1>

(1) 表面処理顔料:カーポンプラック

前記実施例 1-1(1) で作製した表面処理カーボンブラック分散液を用いた。従って、顔料 1 g 当たりのスルホン酸基に換算した分散性付与基の導入量は、5 0 × 1 0 $^{-6}$ 当量であった。

(2) インクジェット記録用インク

前記実施例 1-1(2) で調製したインクを用いた。従って、このインクの物性値は、ゼータ電位: $43\,\text{mV}$ (絶対値)、粘度: $4.7\,\text{mPa} \cdot \text{s}$ 、表面張力: $32\,\text{mN/m}$ であった。

(3) インクジェットカートリッジの製造

前記実施例7-1(2)のインクを、前記「インクジェットインク用カートリッジの製造例」に記載のカートリッジC4に、シリンジを用いて通気穴から注入し、本実施例7-1に使用するインクカートリッジを得た。

(4) SO₄²⁻量、多価金属イオンの総量及び錫イオン量の定量

前記「硫酸イオン、多価金属イオン(=有機金属化合物触媒からの金属イオン +その他の多価金属イオン)、有機金属化合物触媒からの金属イオンの測定法」 に記載の定量方法により測定したところ、SO₄²⁻量は1480ppmであり、

多価金属イオンの総量は800ppmであり、錫イオン量は20ppmであった。 (5) 印字試験

インクジェット記録方式のプリンタとして、MJ-5000C(セイコーエプソン社製)に、前記実施例7-1(3)で製造したインクカートリッジを挿入し、中性普通紙としてゼロック-P(富士ゼロックス製)、酸性普通紙としてEPP(セイコーエプソン製)、再生紙としてゼロックス-R(富士ゼロックス製)のそれぞれの紙に対する印字試験を行った(以下、この試験結果を"当初試験結果"という)。更に、プリンタの電源をオフにして、1週間後に同様な印字試験を行った(以下、この試験結果を"1週間後の試験結果"という)。

印字試験の結果(当初試験結果)、得られた印字画像は、いずれも不規則なにじみが殆ど無く、高い印字濃度の非常に良好な印字画像であった。また、べた印字を行った場合、インクが紙へ浸透消失する乾燥時間は、いずれも2秒未満であり、非常に良好な乾燥性であった。また、印字試験を通して、ドット抜け、飛行曲がりは発生せず、非常に安定な印字状況であった(評価 "A")。

更に、プリンタの電源をオフにして放置し、1週間後に同様な試験を行ったところ、印字信号をプリンタに送信すると同時に印字を開始し、インク吐出のノズルでの目詰まり等の不具合は確認されなかった(評価 "A")。

(6) インクの保存安定性試験

前記実施例 7-1(3)で製造したインクカートリッジを、それぞれ60℃/1週間, -20℃/1週間放置して、放置前後におけるカートリッジ内のインクの発生異物と物性値(粘度,表面張力)について調べた。異物の評価は、25μm綾畳みフィルターでインクを濾過後、顕微鏡によりフィルター上に残っている異物量を観察することで行った。

上記インクの保存安定性試験の結果、いずれの条件でも、放置前後で異物の発生、物性値(粘度、表面張力)の変化が殆ど無く、良好な保存安定性であった(評価 "A")。

<実施例7-2>

(1) 表面処理顔料:カーポンプラック

前記実施例 1-2(1) で作製した表面処理カーポンプラック分散液を用いた。従って、顔料 1 g 当たりのスルホン酸基に換算した分散性付与基の導入量は、4 1 1 0^{-6} 当量であった。

(2) インクジェット記録用インク

前記実施例 1-2(2) で調製したインクを用いた。従って、このインクの物性値は、ゼータ電位:39mV(絶対値)、粘度: $4.2mPa\cdot s$ 、表面張力:33mN/mであった。

(3) インクカートリッジの製造

前記実施例7-2(2)のインクを、前記「インクジェットインク用カートリッジの製造例」に記載のカートリッジC4に、シリンジを用いて通気穴から注入し、本実施例7-2に使用するインクカートリッジを得た。

(4) SO₄2-量, 多価金属イオンの総量及び錫イオン量の定量

前記「硫酸イオン、多価金属イオン(=有機金属化合物触媒からの金属イオン +その他の多価金属イオン)、有機金属化合物触媒からの金属イオンの測定法」 に記載の定量方法により測定したところ、SO42-量は1920ppmであり、 多価金属イオンの総量は880ppmであり、錫イオン量は10ppmであった。

(5) 印字試験

前記実施例 7-1(5)と同様の印字試験を実施した。当初試験結果は、前記実施例 7-1と同じであった(評価 "A")。更に、プリンタの電源をオフにして放置し、1週間後に同様な試験を行ったところ、印字信号をプリンタに送信し印字を開始したが、若干のノズルでインクジェットヘッドの目詰まりが見られたため、印字を停止してクリーニング動作を行った。本実施例 7-2の場合、クリーニング動作を2回行うことで、正常の動作に復帰し実使用における問題はないものであった。(1週間後の試験結果→評価 "B")

(6) インクの保存安定性試験

前記実施例7-1(6)と同様の保存安定性試験を実施した。その結果、いずれの条件でも、放置前後で、粘度の変化は殆ど確認されなかったが、若干の異物がフィルター上に確認された(評価 "B")。

く実施例7-3>

(1) 表面処理顔料

本実施例7-3では、前記実施例7-1(1)の表面処理カーボンブラック顔料粒子を用いた。従って、顔料1g当たりのスルホン酸基の導入量は、顔料1g当たり 5.0×1.0^{-6} 等量であった。

(2) インクジェット記録用インクの調製

本実施例 7-3では、前記実施例 7-1(1)の表面処理カーボンブラック顔料と、 浸透剤としてアセチレングリコール系界面活性剤であるサーフィノール 4 6 5 (エアープロダクツ社製)及びグリコールエーテル類であるプロピレングリコール モノー t - ブチルエーテルを使用した。具体的な組成を示す。

実施例7-1(1)の表面処理カーボンブラック顔料(固形分として) 6. 0%サーフィノール4651. 0%プロピレングリコールモノー t ーブチルエーテル5. 0%グリセリン1 5. 0%1. 5ーペンタンジオール2. 5%2ーピロリドン5. 0%モノエタノールアミン0. 8%イオン交換水残量

調製操作は以下のとおりに行った。

前記実施例 7-1(1)の表面処理カーボンブラック顔料にイオン交換水とモノエタノールアミンを加え、分散性付与基のイオン解離作業を行った。その後、別の容器にて混合したサーフィノール 4 6 5、プロピレングリコールモノー t ー ブチルエーテル、グリセリン、2ーピロリドン及び1、5ーペンタンジオールの混合液を、先に調製した表面処理カーボンブラック顔料液に攪拌しながら徐々に加えることにより、本発明による実施例 7-3のインクを得た。

得られたインクの物性値は、ゼータ電位: 42mV(絶対値), 粘度: 4.1m Pa・s、表面張力: 33mN/mであった。

(3) インクカートリッジの製造

前記実施例7-3(2)で調製したインクを、前記「インクジェットインク用カー

トリッジの製造例」に記載のカートリッジC3に、シリンジを用いて通気穴から 注入し、本実施例7-3に使用するインクカートリッジを得た。

(4) SO₄²⁻量、多価金属イオンの総量及び錫イオン量の定量

前記「硫酸イオン、多価金属イオン(=有機金属化合物触媒からの金属イオン +その他の多価金属イオン)、有機金属化合物触媒からの金属イオンの測定法」 に記載の定量方法により測定したところ、SO₄²⁻量は1350ppmであり、 多価金属イオンの総量は820ppmであり、錫イオン量は150ppmであった。

(5) 印字試験

前記実施例 7-1(5)と同様の印字試験を実施した。その結果は、前記実施例 7-2と同様であった。(当初試験結果:評価 "A", 1週間後の試験結果:評価 "B")

(6) インクの保存安定性試験

前記実施例7-1(6)と同様の保存安定性試験を実施した。その結果は、その結果は、前記実施例7-2と同様であった(評価 "B")。

<実施例7-4>

(1) 表面処理顔料

本実施例 7-4では、前記実施例 7-1(1)の表面処理カーボンブラック顔料粒子を用いた。従って、顔料 1 g 当たりのスルホン酸基の導入量は、顔料 1 g 当たり 5.0×1.0^{-8} 等量であった。

(2) インクジェット記録用インク

本実施例 7-4では、前記実施例 7-3(2) で調製したインクを用いた。従って、このインクの物性値は、ゼータ電位:42mV(絶対値)、粘度:4.2mPa・s、表面張力:32mN/mであった。

(3) インクカートリッジの製造

前記実施例7-4(2)のインクを、前記「インクジェットインク用カートリッジの製造例」に記載のカートリッジC1に、シリンジを用いて通気穴から注入し、本実施例7-4に使用するインクカートリッジを得た。

(4) SO₄²⁻量、多価金属イオンの総量及び錫イオン量の定量

前記実施例7-1(4)と同様な方法により定量したところ、 SO_4^2- 量は125Oppmであり、多価金属イオンの総量は<math>720ppmであり、錫イオン量は9Oppmであった。

(5) 印字試験.

前記実施例 7-1(5) と同様の印字試験を実施した。その結果、得られた印字画像は、若干にじみが生じたが、印字濃度は高く、印字画像のレベルは、実用上問題ないものであった。また、べた印字を行った場合、インクが紙へ浸透消失する乾燥時間は、いずれも 2 秒未満であり非常に良好な乾燥性であった。印字試験を通して、ドット抜けは発生せず、若干飛行曲がりによる乱れは生じたが、許容範囲内であった。 $(\rightarrow$ 評価 "B") 1週間後の試験結果は、前記実施例 7-1 と同じであった(評価 "A")。

(6) インクの保存安定性試験

前記実施例7-1(6)と同様の保存安定性試験を実施した。その結果は、前記実施例7-2と同じであった(評価 "B")。

<比較例 7-1>

(1) 表面処理顔料:カーボンブラック

前記比較例 1-1 で作製された表面処理カーボンブラック顔料を用いた。したがって、顔料 1 g 当たりのスルホン酸基に換算した分散性付与基の導入量は、 8 . 5×10^{-8} 当量であった。

(2) インクジェット記録用インク

本比較例 7-1では、前記比較例 1-1(2)で調製したインクを用いた。したがって、このインクの物性値は、ゼータ電位:28mV(絶対値)、粘度:4.0mP a・s、表面張力:32mN/mであった。

(3) インクカートリッジの製造

前記比較例 7-1(2)のインクを、前記「インクジェットインク用カートリッジの製造例」に記載のカートリッジ C4に、シリンジを用いて通気穴から注入し、本比較例 7-1に使用するインクカートリッジを得た。

PCT/JP00/03737

(4) SOィ2-量、多価金属イオンの総量及び錫イオン量の定量

前記実施例7-1(4)と同様な方法により定量したところ、 SO_4^2- 量は2.3.20 ppmであり、アルカリ土類金属イオン量は6.6.0 ppmであり、錫イオン量は5.0 ppmであった。

(5) 印字試験

前記実施例 7-1(5)と同様の印字試験を実施した。その結果、得られた印字画像は、いずれもにじみが確認され、また、印字濃度も実施例 7-2と比較して、低いものであった。べた印字を行った場合、インクが紙へ浸透消失する乾燥時間は、いずれも 2 秒未満であり、乾燥性は非常に良好であった。記録紙 1 枚の印字試験を実施する間に、ドット抜けが発生し、得られた印物は粗雑なものであった。(→評価 "C")

更に、プリンタの電源をオフにして放置し、1週間後に同様な試験を行ったところ、印字信号をプリンタに送信しても、多数のインク吐出ノズルで目詰まりが起った。クリーニング動作を5回繰り返したが、全インク吐出ノズルからの正常なインク吐出には至らなかった。(→評価 "C")

(6) インクの保存安定性試験

前記実施例7-1(6)と同様の保存安定性試験を実施した。その結果、いずれの条件でも、異物の発生、粘度上昇が確認され、良好な保存安定性は得られなかった。(→評価 "C")

く実施例7-5>

(1) 表面処理顔料: C. I. ピグメントブルー15:3

前記実施例 1-3(1) で作製された表面処理フタロシアニン顔料を用いた。従って、顔料 1 g 当たりのスルホン酸基に換算した分散性付与基の導入量は、5 8 × 1 0^{-6} 当量であった。

(2) インクジェット記録用インク

本実施例 7-5では、前記実施例 1-3で調製したインクを用いた。従って、このインクの物性値は、ゼータ電位: $56\,\mathrm{m\,V}$ (絶対値)、粘度: $3.9\,\mathrm{m\,P\,a\cdot s}$ 、表面張力: $29\,\mathrm{m\,N\,/m}$ であった。

(3) インクカートリッジの製造

前記実施例7-5(2)のインクを、前記「インクジェットインク用カートリッジの製造例」に記載のカートリッジC1に、シリンジを用いて通気穴から注入し、本実施例7-5に使用するインクカートリッジを得た。

(4) S〇42-量, 多価金属イオンの総量及び錫イオン量の定量

前記実施例7-1(4)と同様な方法により定量したところ、 SO_4^{2-} 量は142Oppmであり、多価金属イオンの総量は610ppmであり、錫イオン量は100ppmであった。

(5) 印字試験

前記実施例7-1(5)と同様の印字試験を実施した。その結果、当初試験結果、 1週間後の試験結果とも前記実施例7-1と同じであった。(当初試験結果:評価 "A", 1週間後の試験結果:評価"A")

(6) インクの保存安定性試験

前記実施例 7-1(6)と同様の保存安定性試験を実施した。その結果は、前記実施例 7-1と同じであった(評価 "A")。

<実施例7-6>

(1) 表面処理顔料

本実施例 7-6では、前記実施例 7-5(1)の表面処理フタロシアニン顔料粒子を用いた。従って、顔料 1 g 当たりのスルホン酸基に換算した分散性付与基の導入量は、 5.8×1.0^{-6} 当量であった。

(2) インクジェット記録用インク

本実施例 7-6では、前記実施例 1-4で調製したインクを用いた。従って、このインクの物性値は、ゼータ電位:58mV(絶対値)、粘度:4.0mPa·s、表面張力:29mN/mであった。

(3) インクカートリッジの製造

前記実施例7-6(2)のインクを、前記「インクジェットインク用カートリッジの製造例」に記載のカートリッジC5に、シリンジを用いて通気穴から注入し、本実施例7-6に使用するインクカートリッジを得た。

(4) SO₄²⁻量、多価金属イオンの総量及び錫イオン量の定量

前記実施例7-1(4)と同様な方法により定量したところ、 SO_4^2- 量は132Oppmであり、多価金属イオンの総量は<math>820ppmであり、錫イオン量は260ppmであった。

(5) 印字試験

前記実施例7-1(5)と同様の印字試験を実施した。その結果は、前記実施例7-2と同じであった。(当初試験結果:評価 "A", 1週間後の試験結果:評価 "B")

(6) インクの保存安定性試験

前記実施例7-1(6)と同様の保存安定性試験を実施した。その結果は、前記実施例7-2と同じであった(評価 "B")。

<比較例 7-2>

(1) 表面処理顔料: C. I. ピグメントブルー15:3

前記比較例 1-2(1) で作製した表面処理フタロシアニンブルー顔料を用いた。 したがって、顔料 1 g 当たりのスルホン酸基に換算した分散性付与基の導入量は、 6×10^{-6} 当量であった。

(2) インクジェット記録用インク

本比較例 7-2では、前記比較例 1-2(2) で調製したインクを用いた。従って、このインクの物性値は、ゼータ電位:24mV(絶対値)、粘度:4.1mPa・s、表面張力:31mN/mであった。

(3) インクカートリッジの製造

前記比較例7-2(2)のインクを、前記「インクジェットインク用カートリッジの製造例」に記載のカートリッジC5に、シリンジを用いて通気穴から注入し、本比較例6-2に使用するインクカートリッジを得た。

(4) SO₄²-量, 多価金属イオンの総量及び錫イオン量の定量

前記実施例7-1(6)と同様な方法により定量したところ、 SO_4^{2-} 量は2710 ppmであり、多価金属イオンの総量は830ppmであり、錫イオン量は280ppmであった。

(5) 印字試験

前記実施例7-1(5)と同様の印字試験を実施した。その結果は、前記比較例7-1と同じであった(当初試験結果:評価 "C", 1週間後の試験結果:評価 "C")。

(6) インクの保存安定性試験

前記実施例 7-1(6)と同様の保存安定性試験を実施した。その結果は、前記比較例 7-1と同じであった(評価 "C")。

く実施例7-7>

(1) 表面処理顔料: C. I. ピグメントイエロー110

前記実施例 1-6で作製した表面処理イソインドリノン顔料を用いた。したがって、顔料 1 g 当たりのスルホン酸基に換算した分散性付与基の導入量は、4 9 × 1 0 $^{-6}$ 当量であった。

(2) インクジェット記録用インク

本実施例7-7では、前記実施例1-6(2)で調製したインクを用いた。従って、このインクの物性値は、ゼータ電位:53mV(絶対値), 粘度:4.4mPa・s.表面張力:29mN/mであった。

(3) インクカートリッジの製造

前記実施例 7-7(2)のインクを、前記「インクジェットインク用カートリッジの製造例」に記載のカートリッジ C4に、シリンジを用いて通気穴から注入し、本実施例 7-7に使用するインクカートリッジを得た。

(4) SO42-量、多価金属イオンの総量及び錫イオン量の定量

前記実施例7-1(4)と同様な方法により定量したところ、 SO_4^2 ー量は1170 ppmであり、多価金属イオンの総量は850 ppmであり、錫イオン量は30 ppmであった。

(5) 印字試験

前記実施例7-1(5)と同様の印字試験を実施した。その結果は、前記実施例7-2と同じであった。(当初試験結果:評価 "A", 1週間後の試験結果:評価 "B")

(6) インクの保存安定性試験

前記実施例7-1(6)と同様の保存安定性試験を実施した。その結果は、前記実施例7-2と同じであった(評価 "B")。

く実施例7-8>

(1) 表面処理顔料の作製

本実施例 7-8では、前記実施例 7-7(1)の表面処理イソインドリノン顔料を用いた。従って、顔料 1 g 当たりのスルホン酸基に換算した分散性付与基の導入量は、 4.9×1.0^{-6} 当量であった。

(2) インクジェット記録用インクの調製

本実施例 7-8では、前記実施例 7-7(1)で調製した表面処理イソインドリノン 顔料にイオン交換水とアンモニアを加え、分散性付与基のイオン解離作業を行っ た。その後、別の容器にて混合したサーフィノール 4 6 5、グリセリン、ポリオ キシエチレン(PO=8)ノニルフェニルエーテル、1.5ーペンタンジオール、 プロパノール、及び尿素の混合液を、先に調製した表面処理イソインドリノン顔 料液に攪拌しながら徐々に加えることにより、本発明による実施例 7-8のインク を得た。具体的な組成を以下に示す。

実施例7-7(1)の表面処理イソインドリノン顔料(固形分として)7.	0 %
サーフィノール465	0 %
グリセリン 12.	0 %
ポリオキシエチレン($PO=8$) ノニルフェニルエーテル 0 .	2 %
1, 5-ペンタンジオール 5.	0 %
プロパノール 3.	0 %
アンモニア (28%水溶液) 0.	2 %
尿素 3.	0 %
イオン交換水	残量

得られたインクの物性値は、ゼータ電位: 53mV(絶対値), 粘度: 4.5m Pa·s, 表面張力: 29mN/mであった。

(3) インクカートリッジの製造

前記実施例7-8(2)で調製したインクを、前記「インクジェットインク用カートリッジの製造例」に記載のカートリッジC4に、シリンジを用いて通気穴から 注入し、本実施例7-8に使用するインクカートリッジを得た。

(4) SO₄²⁻量, 多価金属イオンの総量及び錫イオン量の定量

前記実施例 7-1(4)と同様な方法により定量したところ、SO42-量は113 Oppmであり、多価金属イオンの総量は830ppmであり、錫イオン量は2 Oppmであった。

(5) 印字試験

前記実施例7-1(5)と同様の印字試験を実施した。当初試験結果は、前記実施例7-1と同じであった(評価 "A")。1週間後の試験結果は、クリーニング動作を4回行うことを除いて、前記実施例7-2と同じであった(評価「B"」)。

(6) インクの保存安定性試験

前記実施例 7-1(6)と同様の保存安定性試験を実施した。その結果は、その結果は、前記実施例 7-2と同じであった(評価 "B")。

<実施例7-9>

(1) 表面処理顔料の作製: C. I. ピグメントレッド 1 2 2

ジメチルキナクリドン顔料(C. I. ピグメントレッド122)20部をキノリン500部と混合し、アイガーモータミルM250型(アイガージャパン社製)でピーズ充填率70%及び回転数5000rpmの条件下で2時間分散させ、分散終了した顔料ペーストと溶剤の混合液をエパポレーターに移し、30mmHg以下に減圧しながら、120℃に加熱し系内に含まれる水分をできるだけ留去した後、160℃に温度制御した。次いで、反応剤としてスルホン化ピリジン錯体20部を加えて4時間反応させ、反応終了後に過剰なキノリンで数回洗浄してから水中に注ぎ、濾過することにより表面処理ジメチルキナクリドン顔料粒子を得た。

得られた表面処理ジメチルキナクリドン顔料のスルホン酸基に換算した分散性 付与基の導入量は、顔料1g当たり35×10⁻⁸当量であった。

(2) インクジェット記録用インクの調製

本実施例7-9では、浸透剤として、アセチレングリコール系界面活性剤である

サーフィノール465(エアプロダクツ社)を使用した。具体的な組成を以下に示す。

実施例7-9(1)の表面処理ジメチルキナクリドン顔料(固形分として)

	7.	0 %
サーフィノール465	2.	0 %
グリセリン	12.	0 %
ポリオキシエチレン(PO=8)ノニルフェニルエーテル	0.	2 %
1. 5-ペンタンジオール	5.	0 %
プロパノール	3.	0 %
アンモニア(28%水溶液)	0.	2 %
尿素	3.	0 %
イオン交換水		残量

調製操作は以下のとおりに行った。

前記実施例 7-9(1)で調製した表面処理ジメチルキナクリドン顔料にイオン交換水とアンモニアを加え、分散性付与基のイオン解離作業を行った。その後、別の容器にて混合したサーフィノール 465、グリセリン、ポリオキシエチレン(PO=8)ノニルフェニルエーテル、1、5ーペンタンジオール、プロパノール、及び尿素の混合液を、先に調製した表面処理ジメチルキナクリドン顔料液に攪拌しながら徐々に加えることにより、実施例 6-9のインクを得た。

得られたインクの物性値は、ゼータ電位: 48mV(絶対値). 粘度: 4.6m Pa·s,表面張力: 30mN/mであった。

(3) インクカートリッジの製造

前記実施例 7-9(2)で調製したインクを、前記「インクジェットインク用カートリッジの製造例」に記載のカートリッジ C5に、シリンジを用いて通気穴から 注入し、本実施例 7-9に使用するインクカートリッジを得た。

(4) SO₄²-量, 多価金属イオンの総量及び錫イオン量の定量

前記実施例7-1(4)と同様な方法により定量したところ、SO₄²-量は730 ppmであり、多価金属イオンの総量は770ppmであり、錫イオン量は21 0ppmであった。

(5) 印字試験

前記実施例7-1(5)と同様の印字試験を実施した。その結果は、前記実施例7-1と同じであった。(当初試験結果:評価 "A", 1週間後の試験結果:評価 "A")

(6) インクの保存安定性試験

前記実施例 7-1(6)と同様の保存安定性試験を実施した。その結果は、前記実施例 7-1と同じであった(評価 "A")。

く実施例7-10>

(1) 表面処理顔料の作製

本実施例 7-10では、前記実施例 7-9(1) で調製した表面処理ジメチルキナクリドン顔料 (C.~I.~L' ピグメントレッド 122) 粒子を用いた。従って、顔料 1g 当たりのスルホン酸基に換算した分散性付与基の導入量は、 35×10^{-6} 当量であった。

(2) インクジェット記録用インクの調製

本実施例 7-10は、前記実施例 7-9(1)で調製した表面処理ジメチルキナクリドン顔料と、浸透剤として、アセチレングリコール系界面活性剤であるサーフィノール 4 6 5 (エアプロダクツ社)を使用した。具体的な組成を以下に示す。

実施例7-9(1)の表面処理ジメデルキナクリドン顔料(固形分として)

	7.0%
サーフィノール 4 6 5	2.0%
グリセリン	12.0%
ポリオキシエチレン(PO=8)ノニルフェニルエーテル	0.2%
1, 5-ペンタンジオール	5.0%
プロパノール	3.0%
アンモニア (28%水溶液)	0.2%
尿素	3.0%
イオン交換水	残量

調製操作は以下のとおりに行った。

前記実施例7-9(1)で調製した表面処理ジメチルキナクリドン顔料にイオン交換水とアンモニアを加え、分散性付与基のイオン解離作業を行った。その後、別の容器にて混合したサーフィノール465、グリセリン、ポリオキシエチレン(PO=8)ノニルフェニルエーテル、1.5-ペンタンジオール、プロパノール、及び尿素の混合液を、先に調製した表面処理ジメチルキナクリドン顔料液に攪拌しながら徐々に加えることにより、実施例7-10のインクを得た。

得られたインクの物性値は、ゼータ電位: 38mV(絶対値), 粘度: 4.6m Pa·s.表面張力: 29mN/mであった。

(3) インクカートリッジの製造

前記実施例 7-10(2)で調製したインクを、前記「インクジェットインク用カートリッジの製造例」に記載のカートリッジ C 2

に、シリンジを用いて通気穴から注入し、本実施例7-10に使用するインクカートリッジを得た。

(4) SO₄²-量, 多価金属イオンの総量及び錫イオン量の定量

前記実施例7-1(4)と同様な方法により定量したところ、 SO_4^2- 量は750 ppmであり、多価金属イオンの総量は610 ppmであり、錫イオン量は60 ppmであった。

(5) 印字試験

前記実施例 7-1(5)と同様の保存安定性試験を実施した。その結果は、前記実施例 7-4と同じであった。(当初試験結果:評価 "B", 1週間後の試験結果:評価 "A")

(6) インクの保存安定性試験

前記実施例 7-1(6)と同様の保存安定性試験を実施した。その結果、いずれの条件においても、放置前後で、若干の粘度変化、及び異物がフィルター上に確認された。(→評価「B'」)

実施例 $7-1\sim7-10$ および比較例 $7-1\sim7-2$ について、試験結果を含め表 9 に示す。

(表9)

[4 6]											9
			7	ンクの物性値	生值	Τ,	インクの液和成分由でもよる事	(2分	6	4	-
•				#	十	•	1 L B 9 4 C 9	=	•	- 1	保存安定件
	カートリッジ	が政性付予をの導入量	調件	₽ . ₹	女団状ン	SO42~ 4	多面金属の	(錫付7量	48 H //	1週間後	試響
	種類	(暑景)	(M)	(mPa·s)	(mN/m)	(mdd)	松黄 (bbm)	(pdd)	山乞政殿	の労働	-
実施例 7-1	C 4	50 × 10-ª	43	4.7	32	1480	800	(20)	A	A	A
実施例 7-2	C 4	41 × 10 ⁻⁶	39	4.2	33	1920	880	(10)	4	В	В
実施例 7-3	C 3	50 × 10-6	42	4.1	33	1350	820	(150)	А	В.	В
実施例 7-4	C 1	50 × 10-6	42	4.2	32	1250	720	(06)	В	A	В
比較例 7-1	C 4	8.5×10-6	82	4.0	32	2320	099	(20)	U	Ü	ပ
実施例 7-5	C 1	58 × 10-*	99	3.9	88	1420	810	(100)	A	А	A
実施例 7-6	C 5	58 × 10-8	58	4.0	62	1320	820	(260)	A	В	В
比較例 7-2	C 5	6 × 10 ⁻⁸	24	4.1	31	2710	830	(082)	O	U	ပ
実施例 7-7	C 4	49 × 10 ⁻⁸	23	4.4	87	1170	850	(30)	А	В	В
実施例 7-8	C 4	49 × 10-8	53	4.5	58	1130	830	(20)	A	B,	В
実施例 7-9	C 2	35 × 10 ⁻⁸	48	4.6	30	730	770	(210)	A	A	A
実施例 7-10	C 2	35 × 10-8	38	4.6	58	750	610	(09)	В	A	B,

.

149

請求の範囲

- 1. 硫黄を含む処理剤により硫黄含有分散性付与基が表面に化学結合された顔料粒子、浸透剤および水を少なくとも含むインクジェット記録用インクであって、前記インクの液性成分中に含まれる硫黄分がSO₄²⁻量として2000ppm以下であることを特徴とするインクジェット記録用インク。
- 2. 前記液性成分中に含まれる多価金属イオン量が800ppm以下である、 請求の範囲第1項に記載のインクジェット記録用インク。
- 3. 前記顔料が、カーポンプラック顔料及び/又は有機顔料である、請求の範囲第1項又は第2項に記載のインクジェット記録用インク。
- 4. 前記浸透剤が、アセチレングリコール系界面活性剤、アセチレンアルコール系界面活性剤、1,2-アルキレングリコール及び/又はグリコールエーテル類である、請求の範囲第1項~第3項のいずれか一項に記載のインクジェット記録用インク。
- 5. 下記式(1)で示す構造の物質をさらに含有してなる、請求の範囲第1項~ 第4項のいずれか一項に記載のインクジェット記録用インク。
 - 式(1) $\cdots \sim R EOn_1 POm_1 X$
- 6. ポリマー微粒子をさらに含有してなる、請求の範囲第1項~第5項のいず

PCT/JP00/03737

れか一項に記載のインクジェット記録用インク。

- 7. 前記ポリマー微粒子の添加量が0.5~15重量%である、請求の範囲第6項に記載のインクジェット記録用インク。
- 8. 硫黄を含む処理剤により硫黄含有分散性付与基が表面に化学結合された顔料粒子、浸透剤および水を少なくとも含むインクジェット記録用インクであって、前記硫黄含有分散性付与基の量が、顔料粒子1g当たり10×10⁻⁶当量以上であることを特徴とするインクジェット記録用インク。
- 9. 前記硫黄含有分散性付与基がスルホン酸基 $(-SO_2OH)$ 及び/又はスルフィン酸基 $(-RSO_2H:RはC_1\sim C_{12}$ のアルキル基、またはフェニル基およびその変性体)である、請求の範囲第8項に記載のインクジェット記録用インク。
- 10. 前記顔料粒子濃度が0.001~0.01重量%になるようにインクをイオン交換水で希釈したインク希釈液において、20℃、pH8~pH9における顔料粒子のゼータ電位の絶対値が30mV以上である、請求の範囲第8項または第9項に記載のインクジェット記録用インク。
- 11. 硫黄を含む処理剤により硫黄含有分散性付与基が表面に化学結合された 餌料粒子、浸透剤および水を少なくとも含むインクジェット記録用インクであって、

前記硫黄含有分散性付与基の量が顔料粒子1g当たり 10×10^{-6} 当量以上であり、また前記硫黄含有分散性付与基がスルホン酸基 $(-SO_2OH)$ 及び/又はスルフィン酸基 $(-RSO_2H:RkC_1\sim C_{12}$ のアルキル基、またはフェニル基およびその変性体)であり、顔料粒子濃度が $0.001\sim0.01$ 重量%になるようにインクをイオン交換水で希釈したインク希釈液における、20 $\mathbb C$ 、 $\mathbb P$ $\mathbb P$

を特徴とするインクジェット記録用インク。

12. 顔料粒子、浸透剤および水を少なくとも含むインクジェット記録用インクであって、

前記顔料粒子の表面にスルホン酸アニオン基 $(-SO_3^-)$ 及び/又はスルフィン酸アニオン基 $(-RSO_2:RitC_1\sim C_{12}$ のアルキル基またはフェニル基およびその変性体)が化学結合され、上記スルホン酸アニオン基の対カチオン及び/又は上記スルフィン酸アニオン基の対カチオンが、アルカリ金属イオンおよび化学式 $(R_1R_2R_3R_4N)^+$ $(R_1,R_2,R_3$ および R_4 は同一でも異なってもよく、水素原子、アルキル基、ヒドロキシアルキル基またはハロゲン化アルキル基を示す)で示される1価のイオン群から選択されてなることを特徴とするインクジェット記録用インク。

- 13. 前記スルホン酸アニオン基の対カチオン及び/又は前記スルフィン酸アニオン基の対カチオンが、リチウムイオン(Li^+)、ナトリウムイオン(Na^+)、カリウムイオン(K^+)、アンモニウムイオン(NH_4^+)およびアルカノールアミンカチオンの少なくとも一種である、請求の範囲第12項に記載のインクジェット記録用インク。
- 14. 前記スルホン酸アニオン基の対カチオン及び/又は前記スルフィン酸アニオン基の対カチオンが、少なくとも Na^+ および NH_4^+ から成る、請求の範囲第12項または第13項に記載のインクジェット記録用インク。
- 15. 前記インクの液性成分(ビヒクル)中に含まれるアルカリ金属イオンの総量が10000ppm以下である、請求の範囲第12項~第14項のいずれか一項に記載のインクジェット記録用インク。
- 16. 硫黄を含む処理剤により硫黄含有分散性付与基が表面に化学結合された、単独で水性溶媒に分散可能な表面処理顔料、浸透剤、及び水を少なくとも含むイ

ンクジェット記録用インクであって、オキサゾリジン系化合物、アルキルイソチアゾロン、クロルアルキルイソチアゾロン、ベンズイソチアゾロン、プロモニトロアルコール及び/又はクロルキシレノールから選ばれた1種以上を含有することを特徴とするインクジェット記録用インク。

- 17. 前記オキサゾリジン系化合物が、4.4ージメチルオキサゾリジンであり、アルキルイソチアゾロンが、オクチルイソチアゾロン及び/又はメチルイソチアゾロンであり、クロルアルキルイソチアゾロンがクロルメチルイソチアゾロンである、請求の範囲第16項に記載のインクジェット記録用インク。
- 18. 前記オキサゾリジン系化合物、オキサゾリジン系化合物、アルキルイソチアゾロン、クロルアルキルイソチアゾロン、ベンズイソチアゾロン、ブロモニトロアルコール及び/又はクロルキシレノールから選ばれた1種以上の添加量が0.01~0.5重量%である、請求の範囲第16項または第17項に記載のインクジェット記録用インク。
- 19. 硫黄を含む処理剤により硫黄含有分散性付与基が表面に化学結合された 顔料粒子、浸透剤および水を少なくとも含むインクジェット記録用インクであって、前記浸透剤が、下記式(2)に示す構造の物質、アセチレングリコール系界面活性剤、アセチレンアルコール系界面活性剤、1、2-アルキレングリコール及 び/又はグリコールエーテル類であることを特徴とするインクジェット記録用インク。
 - 式(2) ······· R-EOn2-POm2-X
- [式(2)中、Rは、炭素数 $4\sim1$ 0のアルカノール基であり、n-基および/またはその他の異性体である。E0はエチレンオキシ基、P0はプロピレンオキシ基であって、E0とP0は、分子中に存在することを示していて、順序は関係ない。Xは、水素または-S0 $_3$ Mである。(Mは、水素イオン、アルカリ金属、無機塩基、有機アミンである。) n_2 および m_2 は、繰り返し単位であって、系全体での平均値を示す。]

PCT/JP00/03737

20. 前記式(2)に示すRが、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基及び/又はデシル基である、請求の範囲第19項に記載のインクジェット記録用インク。

WO 00/75245

- 21. 前記式(2)に示すRである、前記ブチル基が、nープチル基、イソブチル基及び/又はtーブチル基を主成分とし、前記ペンチル基が、nーペンチル基及び/又はその他の異性体を主成分とし、前記ヘキシル基が、nーヘキシル基及び/又はその他の異性体を主成分とし、前記ヘプチル基が、nーヘプチル基及び/又はその他の異性体を主成分とし、前記オクチル基が、nーオクチル基及び/又はその他の異性体を主成分とし、前記ノニル基が、nーノニル基及び/又はその他の異性体を主成分とし、前記デシル基が、nーデシル基及び/又はその他の異性体を主成分とし、前記デシル基が、nーデシル基及び/又はその他の異性体を主成分とする、請求の範囲第20項に記載のインクジェット記録用インク。
- 22. 前記式(2)における n_2 が $0\sim1$ 0であり、 m_2 が $1\sim5$ である、請求の範囲第19項に記載のインクジェット記録用インク。
- 23 前記式(2)に示す物質の平均分子量が、2000以下である、請求の範囲第19項に記載のインクジェット記録用インク。
- 24. 前記アセチレングリコール系界面活性剤およびアセチレンアルコール系界面活性剤が、2、4ージメチルー5ーへキシンー3ーオール、2、4、7、9ーテトラメチルー5ーデシンー4、7ージオール、3、6ージメチルー4ーオクチンー3、6ージオール、および/または、前記2、4ージメチルー5ーへキシンー3ーオール、2、4、7、9ーテトラメチルー5ーデシンー4、7ージオール、3、6ージメチルー4ーオクチンー3、6ージオールにエチレンオキシ基及び/又はプロピレンオキシ基が平均で30個以下付加したものである、請求の範囲第19項に記載のインクジェット記録用インク。

25. 前記1, 2-アルキレングリコールが、1, 2-(炭素数4~10のアルキル)ジオールである、請求の範囲第19項に記載のインクジェット記録用インク。

- 26. 前記グリコールエーテル類が、ジエチレングリコールモノ(炭素数4~8のアルキル)エーテル、トリエチレングリコールモノ(炭素数4~8のアルキル)エーテル、プロピレングリコールモノ(炭素数3~6のアルキル)エーテル、ジプロピレングリコールモノ(炭素数3~6のアルキル)エーテルから選ばれた1種または2種以上の混合物である、請求の範囲第19項に記載のインクジェット記録用インク。
- 27. 顔料粒子の表面に硫黄を含む処理剤で処理することで、硫黄含有分散性 付与基を顔料粒子に化学結合させた顔料粒子、浸透剤および水を混合させるイン クジェット記録用インクの製造方法であって、前記硫黄含有分散性付与基の導入 量を、前記顔料粒子1g当たり10×10⁻⁶当量以上になるように、前記処理 剤で処理することを特徴とするインクジェット記録用インクの製造方法。
- 28 前記硫黄含有分散性付与基を、スルホン酸基 $(-SO_2OH)$ 及び/又はスルフィン酸基 $(-RSO_2H:RklC_1\sim C_{12}$ のアルキル基、またはフェニル基およびその変性体)とする、請求の範囲第27項に記載のインクジェット記録用インクの製造方法。
- 29. インク中でスルホン酸基及び/又はスルフィン酸基をイオン解離させてからインク溶媒を加える工程からなる、請求の範囲第27項に記載のインクジェット記録用インクの製造方法。
- 30. 顔料粒子濃度が0.001~0.01重量%になるようにインクをイオン交換水で希釈したインク希釈液において、20℃、pH8~9における顔料粒子のゼータ電位の絶対値が30mV以上となるようにする、請求の範囲第27項

または第28項に記載のインクジェット記録用インクの製造方法。

31. 顔料粒子の表面にスルホン酸アニオン基 $(-SO^{3-})$ 及び/又はスルフィン酸アニオン基 $(-RSO_2:RはC_1\sim C_{12}$ のアルキル基またはフェニル基およびその変性体)を化学結合させ、該顔料粒子、浸透剤および水を混合させるインクジェット記録用インクの製造方法であって、

前記スルホン酸アニオン基の対カチオン及び/又は前記スルフィン酸アニオン基の対カチオンを、アルカリ金属イオンおよび化学式 $(R_1R_2R_3R_4N)^+$ $(R_1,R_2,R_3$) は同一でも異なってもよく、水素原子、アルキル基、ヒドロキシアルキル基またはハロゲン化アルキル基を示す)で示される1 価のイオン群から選択することを特徴とするインクジェット記録用インクの製造方法。

- 32. 前記スルホン酸アニオン基の対カチオン及び/又は上記スルフィン酸アニオン基の対カチオンを、リチウムイオン(Li^+)、ナトリウムイオン(Na^+)、カリウムイオン(K^+)、アンモニウムイオン(NH_4^+)およびアルカノールアミンカチオンの少なくとも一種とする、請求の範囲第31項に記載のインクジェット記録用インクの製造方法。
- 33. 前記スルホン酸アニオン基の対カチオン及び/又は前記スルフィン酸アニオン基の対カチオンとして、少なくともNa+およびNH₄+を存在させるようにする、請求の範囲第31項または第32項に記載のインクジェット記録用インクの製造方法。
- 34. 前記インクの液性成分(ビヒクル)中に含まれるアルカリ金属イオンの総量を10000ppm以下とする、請求の範囲第31項~第33項のいずれか一項に記載のインクジェット記録用インクの製造方法。
- 35. 少なくとも顔料、浸透剤、水よりなるインクジェット記録用インクセットにおいて、前記顔料が、硫黄を含む処理剤により表面に硫黄含有分散性付与基

PCT/JP00/03737

を化学結合させた表面処理顔料粒子であって、ブラック、イエロー、マゼンタ、 シアンの組み合わせからなることを特徴とするインクジェット記録用インクセット。

36. 前記ブラックの被表面処理顔料が、カーボンブラックであり、前記イエローの被表面処理顔料が、C. I. ピグメントイエロー55,74,97,109,110,128,138.147,151,154.180の一種または二種以上から選択され、前記マゼンタの被表面処理顔料が、C. I. ピグメントレッド122,202.209,C. I. ピグメントバイオレット19の一種または二種以上から選択され、前記シアンの被表面処理顔料が、C. I. ピグメントブルー15,15:1,15:2,15:3,15:4,15:6,16の一種または二種以上から選択される、請求の範囲第35項に記載のインクジェット記録用インクセット。

37. 少なくとも顔料、浸透剤、水よりなるインクジェット記録用インクセットにおいて、前記顔料が、硫黄を含む処理剤により表面に硫黄含有分散性付与基を化学結合させた表面処理顔料粒子であって、ブラック、イエロー、マゼンタ、シアン、オレンジ、グリーンの組み合わせからなることを特徴とするインクジェット記録用インクセット。

38. 前記ブラックの被表面処理顔料が、カーボンブラックであり、前記イエローの被表面処理顔料が、C. I. ピグメントイエロー55,74,97,109,110,128,138,147,151,154,180の一種または二種以上から選択され、前記マゼンタの被表面処理顔料が、C. I. ピグメントレッド122,202,209,C. I. ピグメントバイオレット19の一種または二種以上から選択され、前記シアンの被表面処理顔料が、C. I. ピグメントブルー15,15:1,15:2,15:3,15:4,15:6,16の一種または二種以上から選択され、前記オレンジの被表面処理顔料が、C. I. ピグメントフルー15,15:1,15:2,15:3,15:4,15:6,16の一種または二種以上から選択され、前記オレンジの被表面処理顔料が、C. I. ピグメントオレンジ43,36の一種または二種から選択され、前記グリーンの被表

面処理顔料が、C. I. ピグメントグリーン7, 36の一種または二種から選択される、請求の範囲第37項に記載のインクジェット記録用インクセット。

- 39. 前記表面処理処理顔料粒子における前記分散性付与基の量が、顔料粒子 1g当たり10×10⁻⁶当量以上である、請求の範囲第35項~第38項のい ずれか一項に記載のインクジェット記録用インクセット。
- 40. インク合浸用フォームと、そのインク合浸用フォームに合浸されたインクとを含むインクカートリッジであって、前記インクが、硫黄合有分散性付与基を表面に有する顔料粒子と浸透剤と水とを少なくとも含み、前記インク合浸用フォームに合浸されたインクの液性成分中に含まれる硫黄分が、SO₄²⁻イオン量として、2000ppm以下であることを特徴とするインクカートリッジ。
- 41. 前記顔料が、カーポンプラック顔料及び/又は有機顔料である、請求の範囲第40項に記載のインクカートリッジ。
- 42. 前記浸透剤が、アセチレングリコール系界面活性剤、アセチレンアルコール系界面活性剤、1,2-アルキレングリコール及び/又はグリコールエーテル類である、請求の範囲第40項に記載のインクカートリッジ。
- 43. 前記インク含浸用フォームがウレタンフォームである、請求の範囲第40項に記載のインクカートリッジ。
- 44. 前記ウレタンフォームが、触媒として有機金属化合物を用いて製造されるウレタンフォームである、請求の範囲第43項に記載のインクカートリッジ。
- 45. 前記有機金属化合物の添加量が、前記ウレタンフォームの重量に対して 0.01~0.2重量%である、請求の範囲第44項に記載のインクカートリッジ。

46. 前記インクの液性成分中に含まれる、前記有機金属化合物触媒からの金属イオンおよびその他の多価金属イオンの総量が、800ppm以下である、請求の範囲第40項~第45項のいずれか一項に記載のインクカートリッジ。

47. インクジェット記録装置用のインクカートリッジである、請求の範囲第 40項~第46項のいずれか一項に記載のインクカートリッジ。

第1図

International application No.

PCT/JP00/03737

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C09D11/00, B41M5/00, B41J2/01					
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS	SEARCHED	1 15 11 1512			
Int.	ocumentation searched (classification system followed by C1 ⁷ C09D11/00-11/20, B41M5/00,	B4132/01-2/21			
Documentati	ion searched other than minimum documentation to the	extent that such documents are included i	n the fields searched		
	in the internal court (name	of data base and where practicable, sear	ch terms used)		
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)					
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.		
X	EP. 851005, A2 (Seiko Epson Cor		1-5		
Y	01 July, 1998 (01.07.98), Claims; page 6, lines 9 to 15; & US, 6083315, A & JP, 11-49	implementation example 974, A	6,7		
x	EP, 834537, Al (Toyo Ink Manufa 08 April, 1998 (08.04.98),	cturing Co., Ltd.),	1-5,		
Y	O8 April, 1998 (08.04.987, Claims; implementation example & US, 5928419, A & JP, 10-11 & JP, 10-110111, A & JP, 10-11 & JP, 10-110129, A	0110, A 0114, A	6,7		
x	JP, 10-110127, A (Toyo Ink Manu 28 April, 1998 (28.04.98),	facturing Co., Ltd.),	1-5		
Y	Claims; implementation example	(Family: none)	6,7		
x	JP, 11-49995, A (Citizen Watch 23 February, 1999 (23.02.99),	Co., Ltd.),	1-3		
Y	Claims; implementation example	(Family: none)	4-7		
Y	Y EP, 859037, Al (Seiko Epson Corporation), 4-6 19 August, 1998 (19.08.98),				
Furthe	er documents are listed in the continuation of Box C.	See patent family annex.			
* Specia "A" docum consid "E" earlier date "L" docum cited t specia "O" docum means "p" docum than ti	"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "A" " "X" "				
Name and	mailing address of the ISA/ anese Patent Office	Authorized officer			
Facsimile 1	No	Telephone No.			

International application No.
PCT/JP00/03737

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	Claims; implementation example	
Y	& JP, 10-287837, A JP, 10-204347, A (MINOLTA CO., LTD.), 04 August, 1998 (04.08.98), Claims; implementation example (Family: none)	6,7
	•	
		1
	·	
	·	
	•	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

International application No.

PCT/JP00/03737

Box I C	Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This inter	mational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.:
	because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:
Se	ee extra sheet
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. 🗌	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. 🛚	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: ~7
Remar	k on Protest
	No protest accompanied the payment of additional search fees.

International application No.

PCT/JP00/03737

Continuation of Box No.II of continuing of first sheet (1)

A matter common to claims 1 to 47 is considered to be "an ink for ink-jet recording which comprises: pigment particles having sulfur-containing dispersibility-imparting groups chemically bonded to the surface thereof with a sulfurized treating agent; an infiltrating agent; and water".

- (1) Claims 1 to 7 pertain to an ink in which the sulfur content is not higher than a given value.
- (2) Claims 8 to 10 and 27 to 30 pertain to an ink in which the sulfur content is not lower than a given value and to a process for producing the same.
- (3) Claim 11 pertains to an ink in which the sulfur-containing dispersibility-imparting groups are specific groups and the pigment particles have a specific value of zeta potential.
- (4) Claims 12 to 15 and 31 to 34 pertain to an ink in which the sulfur-containing dispersibility-imparting groups and the counter ions thereof are specific groups and to a process for producing the same.
- (5) Claims 16 to 18 pertain to an ink further containing a specific antiseptic.
- (6) Claims 19 to 26 pertain to an ink in which the infiltrating agent is a specific one.
- (7) Claims 35 to 39 pertain to an ink set comprising a combination of the above inks.
- (8) Claims 40 to 47 pertain to an ink cartridge containing an ink impregnation foam impregnated with any of the above inks in which the liquid component(s) has a sulfur content not higher than a given value.

As a result of the international search, the matter common to claims 1 to 47 was found to be disclosed in document JP, 10-110129, A (Toyo Ink Mgf. Co., Ltd.), 28 April, 1998 (28.04.98). This matter is hence not novel and is not considered to be a special technical feature in Rule 13.2 of the Regulations under the PCT.

Futhermore, (1) to (8) are not considered to have any other common matter which is regarded as the special technical matter.

There is no special technical feature common to all the claims. Therefore, the claims 1 to 47 are not considered to be a group of inventions so linked as to form a single general inventive concept.

国際調査報告

発明の属する分野の分類(国際特許分類(IPC))

Int. Cl' C09D11/00, B41M5/00, B41J2/01

調査を行った分野 В.

調査を行った最小限資料(国際特許分類(IPC))

Int. C1' C09D11/00-11/20, B41M5/00, B41J2/01-2/21

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連する	5と認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
· X	EP, 851005, A2 (セイコーエプソン株式会社) 01.7月.1998 (01.07.98),特許請求の範囲,第6頁第9~15行,実施例&US,6083315,A&JP,11-49	1-5, 8-15, 19- 35, 37, 39-47
Y	974, A	6, 7, 16–18, 36, 38
х	EP, 834537, A1 (東洋インキ製造株式会社) 08. 4 月. 1998 (08. 04. 98), 特許請求の範囲, 実施例&U S, 5928419, A&JP, 10-110110, A&JP, 10-110111, A&JP, 10-110114, A&JP,	1-5, 8-11, 16- 30, 35, 37, 39- 47

X C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査報告の発送日 国際調査を完了した日 10.10.00 30.08.00 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4 V 9356 (mi) 日本国特許庁(ISA/JP) 井上 千弥子 郵便番号100-8915 電話番号 03-3581-1101 内線 3483 東京都千代田区霞が関三丁目4番3号

国際出願番号 PCT/JP00/03737

C (続き).	関連すると認められる文献	
引用文献の	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
カテゴリー* Y	10-110129、 A	6, 7, 12-15, 31 -34, 36, 38
x	JP, 10-110127, A (東洋インキ製造株式会社) 28. 4月. 1998 (28. 04. 98), 特許請求の範囲, 実施例 (ファミリーなし)	1-5, 8-11, 16- 30, 35, 37, 39- 47
Y		6, 7, 12–15, 31 –34, 36, 38
x	JP, 11-49995, A (シチズン時計株式会社) 23. 2 月. 1999 (23. 02. 99), 特許請求の範囲, 実施例 (ファミリーなし)	1-3, 8-11, 27- 30, 35, 37, 39- 41, 43-47
Y		4-7, 12-26, 31 -34, 36, 38, 42
Y	EP, 859037, A1 (セイコーエプソン株式会社) 19.8 月.1998 (19.08.98), 特許請求の範囲, 実施例&J P, 10-287837, A	1-47
Y	JP, 10-204347, A (ミノルタ株式会社) 4.8月.1 998 (04.08.98), 特許請求の範囲, 実施例 (ファミリーなし)	1-47

玉	窽	7	査	報	告

国際出願番号 PCT/JP00/03737

第I欄	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第8条 成しなか	第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作った。
1.	請求の範囲は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
2. 🗌	請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3. 🗌	請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ欄	発明の単一性が欠如しているときの意見 (第1ページの3の続き)
次に近	べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
	別紙参照
1. X	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2. 🗌	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。
3. 🗌	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納 付のあった次の請求の範囲のみについて作成した。
4. 🗍	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る 次 の請求の範囲について作成した。
	査手数料の異議の申立てに関する注意 」 追加調査手数料の納付と共に出願人から異議申立てがあった。 X 追加調査手数料の納付と共に出願人から異議申立てがなかった。

(第11欄別紙)

請求の範囲1~47に共通の事項は「硫黄を含む処理剤により硫黄含有分散性付与基が表面に化学結合された顔料粒子、浸透剤および水を少なくとも含むインクジェット記録用インク」であって、

- (1)請求の範囲1~7は、上記硫黄含有量が一定以下であるインクの発明であり、
- (2)請求の範囲8~10,27~30は、上記硫黄含有量が一定以上であるインク及びその製造方法の発明であり、
- (3)請求の範囲11は、上記硫黄含有分散性付与基が特定の基であって、顔料粒子のゼータ電位が特定値であるインクの発明であり、
- (4)請求の範囲12~15,31~34は、上記硫黄含有分散性付与基及びそのカウンターイオンが特定の基であるインク及びその製造方法の発明であり、
- (5)請求の範囲16~18は、さらに特定の防腐剤を含有するインクの発明であり、
- (6)請求の範囲19~26は、上記浸透剤が特定のものであるインクの発明であり、
- (7)請求の範囲35~39は、上記インクを組み合わせたインクセットの発明であり、
- (8)請求の範囲40~47は、インク含浸用フォームに含浸された上記インクの液性成分中に含まれる硫黄分が一定以下であるインクカートリッジの発明であると認められる。

調査の結果、上記請求の範囲 $1\sim4$ 7に共通の事項は、文献JP, 10-110129, A (東洋インキ製造株式会社)、28.4月、1998 (28.04.98) に開示されているから、新規なものではなく、PCT規則13.2における特別な技術的特徴であると認めることができない。

また、上記 $(1) \sim (8)$ に、上記特別な技術的特徴となりうる他の共通の事項が存在するとも認められない。

したがって、請求の範囲全てに共通する特別な技術的特徴は認められないから、請求の範囲1~47が、単一の一般的発明概念を形成するように連関している一群の発明であると認めることができない。