2.6 Long Run Industry Equilibrium - Practice Problems

Ryan Safner
ECON 306 - Spring 2020

The supply of bicycle rentals in a small town is given by:

$$q_S = 10p - 200$$

1. Find the inverse supply function.

Solve the supply function for p:

 $q_S = 10p - 200 \qquad \text{The supply function}$ $q_S - 10p = -200 \qquad \text{Subtracting } 10p$ $-10p = -200 - q_S \qquad \text{Subtracting } q_S$ $p = 20 + \frac{1}{10}q_S \qquad \text{Dividing by } -10$

2. What is the price elasticity of supply at a price of \$25.00?

First we use the supply function and find q_S when p=25:

 $q_S = 10p - 200$ The supply function $q_S = 10(25) - 200$ Plugging in 25 $q_S = 250 - 200$ Multiplying $q_S = 50$ Subtracting

Now we know the price, quantity, and slope, so we can use the elasticity formula.

 $\epsilon_S = \frac{1}{slope} \times \frac{p}{q_S}$ The formula for elasticity $\epsilon_S = \frac{1}{\frac{1}{10}} \times \frac{25}{50}$ Plugging in $\epsilon_S = 10 \times 0.5$ Simplifying $\epsilon_S = 5$ Multiplying

This is relatively elastic.

3. What is the price elasticity of supply at a price of \$50.00?

First we use the supply function and find q_S when p = 50:

$$q_S = 10p - 200$$
 The supply function $q_S = 10(50) - 200$ Plugging in 25 $q_S = 500 - 200$ Multiplying $q_S = 300$ Subtracting

Now we know the price, quantity, and slope, so we can use the elasticity formula.

$$\begin{split} \epsilon_S &= \frac{1}{slope} \times \frac{p}{q_S} &\quad \text{The formula for elasticity} \\ \epsilon_S &= \frac{1}{\frac{1}{10}} \times \frac{50}{300} &\quad \text{Plugging in} \\ \epsilon_S &= 10 \times \frac{50}{300} &\quad \text{Simplifying} \\ \epsilon_S &= 1.667 &\quad \text{Multiplying} \end{split}$$

This is also relatively elastic, but less elastic than at the lower price.

