A New, Cheap, and Accurate CASSCF-like Method

James E. T. Smith

University of Colorado, Boulder, Department of Chemistry

Table of contents

- 1. Background
- 2. HCl Algorithm
- 3. HCISCF
- 4. Applications
- 5. Conclusion and Future Work

Background

Working in Second Quantization

• Working with occupation number vectors (determinants) i.e. $|\mathbf{k}\rangle=|k_1,k_2,...,k_N\rangle$ where k_i is 0 or 1 if unoccupied or occupied

Working in Second Quantization

- Working with occupation number vectors (determinants) i.e. $|\mathbf{k}\rangle = |k_1, k_2, ..., k_N\rangle$ where k_i is 0 or 1 if unoccupied or occupied
- The wavefunction lives in a linear vector space spanned by all determinants |k| called the Fock Space

Working in Second Quantization

- Working with occupation number vectors (determinants) i.e. $|\mathbf{k}\rangle = |k_1, k_2, ..., k_N\rangle$ where k_i is 0 or 1 if unoccupied or occupied
- The wavefunction lives in a linear vector space spanned by all determinants |k| called the Fock Space

$$|\Psi\rangle = \sum_{i} C_{i} |i\rangle \tag{1}$$

Single Reference Methods

HF wavefunction:

$$|\kappa\rangle = \exp(-\hat{\kappa})|0\rangle$$
 (2)

Solve for orbital rotation parameter $\hat{\kappa}.$

Single Reference Methods

HF wavefunction:

$$|\kappa\rangle = \exp(-\hat{\kappa})|0\rangle$$
 (2)

Solve for orbital rotation parameter \hat{k} .

CCSD wavefunction:

$$|\mathsf{CCSD}\rangle = \exp\left(\sum_{AI} t_I^A a_A^\dagger a_I + \sum_{A>B,I>J} t_{IJ}^{AB} a_A^\dagger a_B^\dagger a_I a_J\right) |\kappa\rangle \qquad \text{(3)}$$

Solve for amplitude parameters $t_{IJ}^{AB}. \label{eq:solve}$

Single Reference Methods

HF wavefunction:

$$|\kappa\rangle = \exp(-\hat{\kappa})|0\rangle$$
 (2)

Solve for orbital rotation parameter $\hat{\kappa}$.

CCSD wavefunction:

$$|\mathsf{CCSD}\rangle = \exp\!\left(\sum_{AI} t_I^A a_A^\dagger a_I + \sum_{A>B,I>J} t_{IJ}^{AB} a_A^\dagger a_B^\dagger a_I a_J\right) |\pmb{\kappa}\rangle \qquad \textbf{(3)}$$

Solve for amplitude parameters t_{IJ}^{AB} .

CI wavefunction

$$|\mathbf{C}\rangle = \sum_{i} C_{i} |i\rangle \tag{4}$$

Solve for determinant coefficenct C_i .

FCI

FCI wavefunction:

$$|\mathsf{FCI}
angle = \sum_{i} C_{i} |i
angle$$
 (5)

 Computation intractable even for medium systems

FCI

FCI wavefunction:

$$|\mathsf{FCI}\rangle = \sum_{i} C_i |i\rangle$$
 (5)

- Computation intractable even for medium systems
- ullet E.g. 16 electrons and 16 orbitals (spatial) ightarrow 20 GB (too small for most systems)

FCI

FCI wavefunction:

$$|\mathsf{FCI}\rangle = \sum_{i} C_i |i\rangle$$
 (5)

- Computation intractable even for medium systems
- E.g. 16 electrons and 16 orbitals (spatial) \rightarrow 20 GB (too small for most systems)
- ullet E.g. (20e,20o) ightarrow 4.4 TB

FCI wavefunction:

$$|\mathsf{FCI}
angle = \sum_{i} C_i |i
angle$$
 (5)

- Computation intractable even for medium systems
- E.g. 16 electrons and 16 orbitals (spatial) \rightarrow 20 GB (too small for most systems)
- ullet E.g. (20e,20o) ightarrow 4.4 TB

Figure 1: Log plot of RAM required for storing FCI determinants.

 FCI procedure for a subset of orbitals and electrons

- FCI procedure for a subset of orbitals and electrons
- Partition orbitals into inactive, active, and virtual

Figure 2: General MO diagram showing partitioning of the active space. Highlighted orbitals around fermi level are active, above and below are the virtual and inactive respectively.

- FCI procedure for a subset of orbitals and electrons
- Partition orbitals into inactive, active, and virtual
- Typically choose orbitals near fermi level for active space

Figure 2: General MO diagram showing partitioning of the active space. Highlighted orbitals around fermi level are active, above and below are the virtual and inactive respectively.

- FCI procedure for a subset of orbitals and electrons
- Partition orbitals into inactive, active, and virtual
- Typically choose orbitals near fermi level for active space
- Still scales combinatorially, this time with size of the active space

Figure 2: General MO diagram showing partitioning of the active space. Highlighted orbitals around fermi level are active, above and below are the virtual and inactive respectively.

HCI Algorithm

Working smarter, not harder

 Many of the determinants in CAS wavefunctions are not important

Working smarter, not harder

- Many of the determinants in CAS wavefunctions are not important
- Select determinants for variational space more intelligently

Figure 3: Hamiltonian elements connected determinants to HF span many orders of magnitude, so there are lots of unimportant determinants that do not significantly impact our WF. From Holmes, Tubman, and Umrigar 2016

Working smarter, not harder

- Many of the determinants in CAS wavefunctions are not important
- Select determinants for variational space more intelligently
- HCI approximates FCI w/in the active space through variational WF optimization and a perturbative energy correction

Figure 3: Hamiltonian elements connected determinants to HF span many orders of magnitude, so there are lots of unimportant determinants that do not significantly impact our WF. From Holmes, Tubman, and Umrigar 2016

 $\textbf{Goal} \colon \mathsf{iteratively} \ \mathsf{grow}$

variational determinant space where our

WF lives

Wavefunction at iteration μ :

$$|\Psi_0^{\mu}\rangle = \sum_{|D_i\rangle\in\mathcal{V}^{\mu}} c_i^{\mu} |D_i\rangle$$
 (6)

Figure 4: "Growing" the active space in HCI from Smith et al. 2017

Wavefunction at iteration μ :

$$|\Psi_0^{\mu}\rangle = \sum_{|D_i\rangle \in \mathcal{V}^{\mu}} c_i^{\mu} |D_i\rangle \tag{6}$$

Connected determinant space:

$$C^{\mu}(\epsilon_1) = \{ |D_a\rangle \mid f^{\mu}(|D_a\rangle) > \epsilon_1 \}$$
 (7)

Figure 4: "Growing" the active space in HCI from Smith et al. 2017

Wavefunction at iteration μ :

$$|\Psi_0^{\mu}\rangle = \sum_{|D_i\rangle \in \mathcal{V}^{\mu}} c_i^{\mu} |D_i\rangle \tag{6}$$

Connected determinant space:

$$C^{\mu}(\epsilon_1) = \{ |D_a\rangle \mid f^{\mu}(|D_a\rangle) > \epsilon_1 \}$$
 (7)

Importance Criterion (add to V^{μ} ?):

$$f_{\mathrm{HCI}}^{\mu}(|D_{a}\rangle) = \max_{|D_{i}\rangle \in \mathcal{V}^{\mu}} |H_{ai}c_{i}^{\mu}| \qquad \text{(8)}$$

Figure 4: "Growing" the active space in HCI from Smith et al. 2017

Wavefunction at iteration μ :

$$|\Psi_0^{\mu}\rangle = \sum_{|D_i\rangle \in \mathcal{V}^{\mu}} c_i^{\mu} |D_i\rangle \tag{6}$$

Connected determinant space:

$$C^{\mu}(\epsilon_1) = \{ |D_a\rangle \mid f^{\mu}(|D_a\rangle) > \epsilon_1 \}$$
 (7)

Importance Criterion (add to V^{μ} ?):

$$f_{\mathrm{HCI}}^{\mu}(|D_a\rangle) = \max_{|D_i\rangle \in \mathcal{V}^{\mu}} |H_{ai}c_i^{\mu}| \qquad (8)$$

 $V_{h_1+1} = I_{h_1} + C_h$

Figure 4: "Growing" the active space in HCI from Smith et al. 2017

Only requires single parameter ϵ_1

HCI Algorithm: Perturbative Stage

Epstein-Nesbet PT Hamiltonian:

$$\hat{H}_{0} = \sum_{|D_{i}\rangle, |D_{j}\rangle \in \mathcal{V}} H_{ij} |D_{i}\rangle \langle D_{j}| + \sum_{|D_{a}\rangle \notin \mathcal{V}} H_{aa} |D_{a}\rangle \langle D_{a}|$$
(9)

Perturbative energy correction using subset of determinants (determined by ϵ_2):

$$E_2(\epsilon_2) = \sum_{|D_a\rangle \in \mathcal{C}(\epsilon_2)} \frac{1}{E_0 - H_{aa}} \left(\sum_{|D_i\rangle \in \mathcal{V}}^{(\epsilon_2)} H_{ai} c_i \right)^2 \tag{10}$$

$$E_2 = \langle \Psi_0 | \, \hat{V} \frac{1}{E_0 - \hat{H}_0} \hat{V} \, | \Psi_0 \rangle \tag{11}$$

$$E_2 = \langle \Psi_0 | \hat{V} \frac{1}{E_0 - \hat{H}_0} \hat{V} | \Psi_0 \rangle$$
 (11)

If N_{var} is the number of determinants in the variational space, then the number of determinants connected by \hat{V} is c.a. $n_{unocc}^2 n_{elec}^2 N_{var}$

$$E_2 = \langle \Psi_0 | \hat{V} \frac{1}{E_0 - \hat{H}_0} \hat{V} | \Psi_0 \rangle$$
 (11)

If N_{var} is the number of determinants in the variational space, then the number of determinants connected by \hat{V} is c.a. $n_{unocc}^2 n_{elec}^2 N_{var}$

For system with 10^7 determinants and 20 electrons in 20 unoccupied orbitals, this would require storing and manipulating 10^{12} - 10^{13} determinants

$$E_2 = \langle \Psi_0 | \hat{V} \frac{1}{E_0 - \hat{H}_0} \hat{V} | \Psi_0 \rangle$$
 (11)

If N_{var} is the number of determinants in the variational space, then the number of determinants connected by \hat{V} is c.a. $n_{unocc}^2 n_{elec}^2 N_{var}$

For system with 10^7 determinants and 20 electrons in 20 unoccupied orbitals, this would require storing and manipulating 10^{12} - 10^{13} determinants

We could calculate $E_2(\epsilon_2)$ stochastically by only sampling the variational space, but this introduces stochastic noise

$$E_2 = \langle \Psi_0 | \hat{V} \frac{1}{E_0 - \hat{H}_0} \hat{V} | \Psi_0 \rangle \tag{11}$$

If N_{var} is the number of determinants in the variational space, then the number of determinants connected by \hat{V} is c.a. $n_{unocc}^2 n_{elec}^2 N_{var}$

For system with 10^7 determinants and 20 electrons in 20 unoccupied orbitals, this would require storing and manipulating 10^{12} - 10^{13} determinants

We could calculate $E_2(\epsilon_2)$ stochastically by only sampling the variational space, but this introduces stochastic noise

Reduce stochastic noise by calculating tractable part of PT correction deterministically

$$E_2(\epsilon_2) = E_2^D(\epsilon_2^d) + (E_2^S(\epsilon_2) - E_2^S(\epsilon_2^d))$$
 (12)

Butadiene: CAS(22e,82o)

Butadiene: CAS(22e,82o)

Table 1: All energies shifted by 155 Ha.

ϵ_1	N_{var}	vHCI	SHCI
3×10^{-5}	1.1×10^{7}	-0.5411	-0.5534(1)
2×10^{-5}	2.1×10^{7}	-0.5441	-0.5540(1)
1×10^{-5}	5.9×10^{7}	-0.5481	-0.5550(1)
CCSD(T)	-0.5550		
CCSDT	-0.5560		
DMRG(M=6000)	-0.5572		

Butadiene: CAS(22e,82o)

Table 1: All energies shifted by 155 Ha.

ϵ_1	$N_{\sf var}$	vHCI	SHCI
3×10^{-5}	1.1×10^{7}	-0.5411	-0.5534(1)
2×10^{-5}	2.1×10^7	-0.5441	-0.5540(1)
1×10^{-5}	5.9×10^{7}	-0.5481	-0.5550(1)
$SHCI(\epsilon_1 o 0)$	-0.5574(8)		
CCSD(T)	-0.5550		
CCSDT	-0.5560		
DMRG(M=6000)	-0.5572		

Butadiene: Extrapolation

$$E_{HCI} = E_0(\epsilon_1) + E_2(\epsilon_2; \epsilon_1) \tag{13}$$

$$E_{HCI} = E_0(\epsilon_1) + E_2(\epsilon_2; \epsilon_1) \tag{13}$$

 After calculation, remove some determinants from variational space and repeat (automatic in Dice)

$$E_{HCI} = E_0(\epsilon_1) + E_2(\epsilon_2; \epsilon_1) \tag{13}$$

 After calculation, remove some determinants from variational space and repeat (automatic in Dice)

Figure 5: Extrapolation to FCI limit for butadiene from Smith et al. 2017.

$$E_{HCI} = E_0(\epsilon_1) + E_2(\epsilon_2; \epsilon_1) \tag{13}$$

- After calculation, remove some determinants from variational space and repeat (automatic in Dice)
- W/in chemical accuracy even before extrapolation

Figure 5: Extrapolation to FCI limit for butadiene from Smith et al. 2017.

$$E_{HCI} = E_0(\epsilon_1) + E_2(\epsilon_2; \epsilon_1) \tag{13}$$

- After calculation, remove some determinants from variational space and repeat (automatic in Dice)
- W/in chemical accuracy even before extrapolation
- We can set ϵ_2 arbitrarily low so we effectively have a single parameter ϵ_1

Figure 5: Extrapolation to FCI limit for butadiene from Smith et al. 2017.

MCSCF

Now we want to optimize the orbitals for a \boldsymbol{set} of determinants at once

MCSCF

Now we want to optimize the orbitals for a set of determinants at once

Multiconfigurational Self Consistent Field (MCSCF) wavefunction:

$$|\kappa, \mathbf{C}\rangle = \exp(-\hat{\kappa}) \sum_{i} C_i |i\rangle$$
 (14)

Solve for C_i and $\hat{\kappa}$.

Using only variational (vHCISCF)

Energy of variational portion of HCI:

$$E_{HCI}[\kappa, \mathbf{c}] = E_0[\kappa, \mathbf{c}] \tag{15}$$

Using only variational (vHCISCF)

Energy of variational portion of HCI:

$$E_{HCI}[\kappa, \mathbf{c}] = E_0[\kappa, \mathbf{c}] \tag{15}$$

Energy gradient w.r.t orbital rotation parameter

$$\frac{dE_{\text{HCI}}}{d\kappa} = \frac{\partial E_0}{\partial \kappa} + \frac{\partial E_0}{\partial \mathbf{c}} \frac{d\mathbf{c}}{d\kappa} = \frac{\partial E_0}{\partial \kappa}$$
 (16)

Using only variational (vHCISCF)

Energy of variational portion of HCI:

$$E_{HCI}[\kappa, \mathbf{c}] = E_0[\kappa, \mathbf{c}] \tag{15}$$

Energy gradient w.r.t orbital rotation parameter

$$\frac{dE_{\text{HCI}}}{d\kappa} = \frac{\partial E_0}{\partial \kappa} + \frac{\partial E_0}{\partial \mathbf{c}} \frac{d\mathbf{c}}{d\kappa} = \frac{\partial E_0}{\partial \kappa}$$
 (16)

$$= \sum_{ijkl} \frac{\partial H_{0,ijkl}}{\partial \kappa} \Gamma_{ijkl}^{\mathbf{c,c}} \tag{17}$$

HCISCF

Energy as a function of orb. rot. param. κ , Lagrangian multiplier \mathcal{E}_0 , and the determinant coefficients in the variational (\mathbf{c}) and perturbative (\mathbf{d}) wavefunctions.

$$E_{\mathsf{HCI}}[\boldsymbol{\kappa}, \mathbf{c}, \mathcal{E}_0, \mathbf{d}] = E_0[\boldsymbol{\kappa}, \mathbf{c}, \mathcal{E}_0] + E_2[\boldsymbol{\kappa}, \mathbf{c}, \mathbf{d}]$$
(18)

HCISCF

Energy as a function of orb. rot. param. κ , Lagrangian multiplier \mathcal{E}_0 , and the determinant coefficients in the variational (c) and perturbative (d) wavefunctions.

$$E_{\mathsf{HCI}}[\boldsymbol{\kappa}, \mathbf{c}, \mathcal{E}_0, \mathbf{d}] = E_0[\boldsymbol{\kappa}, \mathbf{c}, \mathcal{E}_0] + E_2[\boldsymbol{\kappa}, \mathbf{c}, \mathbf{d}]$$
(18)

Energy gradient w.r.t. orbital rotation parameter κ :

$$\frac{dE_{\rm HCI}}{d\kappa} = \frac{\partial E_{\rm HCI}}{\partial \kappa} + \frac{\partial E_{\rm HCI}}{\partial \mathbf{c}} \frac{d\mathbf{c}}{d\kappa} + \frac{\partial E_{\rm HCI}}{\partial \mathcal{E}_0} \frac{d\mathcal{E}_0}{d\kappa} + \frac{\partial E_{\rm HCI}}{\partial \mathbf{d}} \frac{d\mathbf{d}}{d\kappa}$$
(19)

HCISCF

Energy as a function of orb. rot. param. κ , Lagrangian multiplier \mathcal{E}_0 , and the determinant coefficients in the variational (c) and perturbative (d) wavefunctions.

$$E_{\mathsf{HCI}}[\boldsymbol{\kappa}, \mathbf{c}, \mathcal{E}_0, \mathbf{d}] = E_0[\boldsymbol{\kappa}, \mathbf{c}, \mathcal{E}_0] + E_2[\boldsymbol{\kappa}, \mathbf{c}, \mathbf{d}]$$
(18)

Energy gradient w.r.t. orbital rotation parameter κ :

$$\frac{dE_{\rm HCI}}{d\kappa} = \frac{\partial E_{\rm HCI}}{\partial \kappa} + \frac{\partial E_{\rm HCI}}{\partial \mathbf{c}} \frac{d\mathbf{c}}{d\kappa} + \frac{\partial E_{\rm HCI}}{\partial \mathcal{E}_0} \frac{d\mathcal{E}_0}{d\kappa} + \frac{\partial E_{\rm HCI}}{\partial \mathbf{d}} \frac{d\mathbf{d}}{d\kappa}$$
(19)

Derivatives of CI coefficients w.r.t. κ are messy to calculate. We want Eq. 19 to be stationary w.r.t. all parameters.

In other words, we want a **totally** variational expression, which we can enforce with Lagrangian multipliers.

In other words, we want a **totally** variational expression, which we can enforce with Lagrangian multipliers.

Generally we have $E[\mathbf{V},\mathbf{T}]$, where \mathbf{V} are variational parameters and \mathbf{T} are non-variational ones (w/ $\frac{\partial E}{\partial \mathbf{V}}=0$ and the general rule $R[\mathbf{T}]=0$)

In other words, we want a **totally** variational expression, which we can enforce with Lagrangian multipliers.

Generally we have $E[\mathbf{V},\mathbf{T}]$, where \mathbf{V} are variational parameters and \mathbf{T} are non-variational ones (w/ $\frac{\partial E}{\partial \mathbf{V}}=0$ and the general rule $R[\mathbf{T}]=0$)

Create the following Lagrangian:

$$L[\mathbf{V}, \mathbf{T}, \lambda] = E[\mathbf{V}, \mathbf{T}] + \lambda R[\mathbf{T}]$$
(20)

$$\frac{\partial L}{\partial \mathbf{V}} = \frac{\partial E}{\partial \mathbf{V}} = 0 \tag{21}$$

$$\frac{\partial L}{\partial \mathbf{V}} = \frac{\partial E}{\partial \mathbf{V}} = 0 \tag{21}$$

$$\frac{\partial L}{\partial \lambda} = R[\mathbf{T}] = 0 \tag{22}$$

$$\frac{\partial L}{\partial \mathbf{V}} = \frac{\partial E}{\partial \mathbf{V}} = 0 \tag{21}$$

$$\frac{\partial L}{\partial \lambda} = R[\mathbf{T}] = 0 \tag{22}$$

$$\frac{\partial L}{\partial \mathbf{T}} = \frac{\partial E}{\partial \mathbf{T}} + \lambda \frac{\partial R}{\partial \mathbf{T}}$$

$$\frac{\partial L}{\partial \mathbf{V}} = \frac{\partial E}{\partial \mathbf{V}} = 0 \tag{21}$$

$$\frac{\partial L}{\partial \lambda} = R[\mathbf{T}] = 0 \tag{22}$$

$$\frac{\partial L}{\partial \mathbf{T}} = \frac{\partial E}{\partial \mathbf{T}} + \lambda \frac{\partial R}{\partial \mathbf{T}} = 0$$
 (23)

MCSCF with the Help of Lagrange

$$\mathcal{L}[\boldsymbol{\kappa}, \mathbf{c}, \mathcal{E}_0, \mathbf{d}, \boldsymbol{\lambda}_{\mathsf{c}}, \boldsymbol{\lambda}_{\mathsf{d}}] = E_0[\boldsymbol{\kappa}, \mathbf{c}, \mathcal{E}_0] + E_2[\boldsymbol{\kappa}, \mathbf{c}, \mathbf{d}] + \lambda_{\mathsf{c}}^{\dagger} \frac{\partial E_0}{\partial \mathbf{c}^{\dagger}} + \lambda_{\mathsf{d}}^{\dagger} \frac{\partial E_2}{\partial \mathbf{d}^{\dagger}}$$
(24)

MCSCF with the Help of Lagrange

$$\mathcal{L}[\boldsymbol{\kappa}, \mathbf{c}, \mathcal{E}_0, \mathbf{d}, \boldsymbol{\lambda}_{\mathsf{c}}, \boldsymbol{\lambda}_{\mathsf{d}}] = E_0[\boldsymbol{\kappa}, \mathbf{c}, \mathcal{E}_0] + E_2[\boldsymbol{\kappa}, \mathbf{c}, \mathbf{d}] + \lambda_{\mathsf{c}}^{\dagger} \frac{\partial E_0}{\partial \mathbf{c}^{\dagger}} + \lambda_{\mathsf{d}}^{\dagger} \frac{\partial E_2}{\partial \mathbf{d}^{\dagger}}$$
(24)

$$\frac{\partial L}{\partial \kappa} = \sum_{ijkl} \frac{\partial H_{0,ijkl}}{\partial \kappa} \Gamma_{ijkl}^{\mathsf{c,c}} + \frac{\partial H_{0,ijkl}}{\partial \kappa} \Gamma_{ijkl}^{\mathsf{d,d}} + 2 \frac{\partial V_{ijkl}}{\partial \kappa} \Gamma_{ijkl}^{\mathsf{d,c}} + 2 \frac{\partial H_{0,ijkl}}{\partial \kappa} \Gamma_{ijkl}^{\lambda_{\mathsf{c,c}}}$$
(25)

$$|\kappa, \mathbf{C}
angle = \exp(-\hat{\kappa}) \sum_i C_i |i
angle$$
 (26)

$$|\kappa, \mathbf{C}\rangle = \exp(-\hat{\kappa}) \sum_{i} C_{i} |i\rangle$$
 (26)

PySCF optimizes orbitals and writes 1-/2-electron integrals

$$|\kappa,\mathbf{C}
angle = \exp(-\hat{\kappa}) \sum_{i} C_{i} |i
angle$$
 (26)

PySCF optimizes orbitals and writes 1-/2-electron integrals

Dice reads 2-electron integrals, optimizes CI coeffs

$$|\kappa, \mathbf{C}\rangle = \exp(-\hat{\kappa}) \sum_{i} C_{i} |i\rangle$$
 (26)

PySCF optimizes orbitals and writes 1-/2-electron integrals

Dice reads 2-electron integrals, optimizes CI coeffs

Dice returns 2RDM, which PySCF uses to calculate new orbital gradients

$$|\kappa, \mathbf{C}\rangle = \exp(-\hat{\kappa}) \sum_{i} C_i |i\rangle$$
 (26)

PySCF optimizes orbitals and writes 1-/2-electron integrals

Dice reads 2-electron integrals, optimizes CI coeffs

Dice returns 2RDM, which PySCF uses to calculate new orbital gradients

Figure 6: Overview of workflow for HCISCF module from Smith et al. 2017

Running the calculations

- 1. Run HCISCF to generate multiconfigurational orbitals
- 2. Run final SHCI calculation w/ tight settings (more determinants) to get final energy

Applications

Figure 7: Fe(II)(porphyrin)

Model system for active site of heme group

Figure 7: Fe(II)(porphyrin)

- Model system for active site of heme group
- Coordination compound with d-orbital degeneracy

Figure 7: Fe(II)(porphyrin)

- Model system for active site of heme group
- Coordination compound with d-orbital degeneracy
- Test impact of PT correction in HCISCF

Figure 7: Fe(II)(porphyrin)

- Model system for active site of heme group
- Coordination compound with d-orbital degeneracy
- Test impact of PT correction in HCISCF
- Widespread disagreement between theory and experiment

Figure 7: Fe(II)(porphyrin)

- Model system for active site of heme group
- Coordination compound with d-orbital degeneracy
- Test impact of PT correction in HCISCF
- Widespread disagreement between theory and experiment
- \bullet Experiment suggest triplet groundstate: either $^3A_{2g}$ or 3E_g

Figure 7: Fe(II)(porphyrin)

- Model system for active site of heme group
- Coordination compound with d-orbital degeneracy
- Test impact of PT correction in HCISCF
- Widespread disagreement between theory and experiment
- \bullet Experiment suggest triplet groundstate: either $^3A_{2g}$ or 3E_g
- \bullet Almost all theoretical work suggests $^5A_{1g}$

Fe(porphyrin): Comparing vHCISCF and HCISCF

First, we investigate, how including PT correction during HCISCF affects final calculation

Fe(porphyrin): Comparing vHCISCF and HCISCF

First, we investigate, how including PT correction during HCISCF affects final calculation

	ϵ_1 (Ha)	E_{HCISCF} (Ha)	E_{SHCI} (Ha)
vHCISCF	1×10^{-4}	-2244.9980	-2245.0314
vHCISCF	5×10^{-5}	-2245.0121	-2245.0313
HCISCF	5×10^{-5}	-2245.0178	-2245.0314

Other Theoretical Work

E_{ex}	Method	Active Space	Reference
(kcal/mo	ol)	·	
20.3	CASSCF (6e,5o)	Fe 3d	Pierloot 2002
9.4	CASSCF (8e,11o)	Fe 3d, 3d', σ Fe-N	Pierloot 2002
16.4	CASSCF (8e,11o)	Fe 3d, Fe 3d', Fe-N σ	Phung 2016
20.0	CASSCF (14e,13o)	Fe 3d, 4 π	Pierloot 2002
-13.0	DMRGCI (44e,44o)	Fe 3/4d, 4px/y, π , N 2px/y	Ghosh 2015
12.2	CASPT2 (6e,5o)	Fe 3d	Pierloot 2002
4.9	CASPT2 (8e,11o)	Fe 3d, 3d', σ Fe-N	Pierloot 2002
12.1	CASPT2 (14e,13o)	Fe 3d, 4 π	Pierloot 2002
-0.9	CASPT2 (16e,15o)	Fe 3d, 3d', 3s, 3p, Fe-N σ	Vancoillie 2011

Fe(porphyrin): CAS(32e,29o)

Include all Fe 3d and all the conjugated $\boldsymbol{\pi}$ orbitals in active space

Fe(porphyrin): CAS(32e,29o)

Include all Fe 3d and all the conjugated $\boldsymbol{\pi}$ orbitals in active space

Basis	Sym.	$E_{vHCISCF}$	E_{SHCI}	E_{ex}	T_{OO}	T_{CI}
		(Ha)	(Ha)	(kcal/mol)	(sec)	(sec)
cc-pVDZ	$^5A_{\sf g}$	-2244.9980	-2245.0314(5)	16.7	126	52
cc-pVDZ	$^3B_{1g}$	-2244.9776	-2245.0049(6)	10.7	114	56
cc-pVTZ	$^5A_{ m g}$	-2245.2229	-2245.2549(5)	16.4	2236	70
cc-pVTZ	$^{3}B_{1g}$	-2245.1958	-2245.2288(6)		2270	98

Fe(porphyrin): What now?

HCISCF was fast, but we couldn't predict the ordering correctly, so what now?

Fe(porphyrin): What now?

HCISCF was fast, but we couldn't predict the ordering correctly, so what now?

We can try to capture Fe-N by adding N 2px/y and stabilize triplet by adding Fe 4d (44e,44o)

Fe(porphyrin): What now?

HCISCF was fast, but we couldn't predict the ordering correctly, so what now?

We can try to capture Fe-N by adding N 2px/y and stabilize triplet by adding Fe 4d (44e,44o)

Basis	Sym.	$E_{vHCISCF}$	E_{SHCI}	E_{ex}	T_{OO}	T_{CI}
		(Ha)	(Ha)	(kcal/mol)	(sec)	(sec)
cc-pVDZ	$^5A_{ m g}$	-2245.1457	-2245.1964(9)	-2.0	277	185
cc-pVDZ	$^3B_{1g}$	-2245.1567	-2245.1995(6)	-2.0	264	147

Conclusion and Future Work

Wrap up:

 SHCI formulation allows caclulation of PT correction even for large systems

- SHCI formulation allows caclulation of PT correction even for large systems
- Derived new extension of SHCI algorithm called HCISCF, for optimizing CI coefficients and orbitals

- SHCI formulation allows caclulation of PT correction even for large systems
- Derived new extension of SHCI algorithm called HCISCF, for optimizing CI coefficients and orbitals
- Active space orbitals relatively insensitive to the accuracy of HCI calculations

- SHCI formulation allows caclulation of PT correction even for large systems
- Derived new extension of SHCI algorithm called HCISCF, for optimizing CI coefficients and orbitals
- Active space orbitals relatively insensitive to the accuracy of HCI calculations
- Performed the largest CASSCF-like calculation on Fe(porphyrin) in only a few hours

Wrap up:

- SHCI formulation allows caclulation of PT correction even for large systems
- Derived new extension of SHCI algorithm called HCISCF, for optimizing CI coefficients and orbitals
- Active space orbitals relatively insensitive to the accuracy of HCI calculations
- Performed the largest CASSCF-like calculation on Fe(porphyrin) in only a few hours

Up next:

• Adding out-of-active space dynamical correlation (NEVPT/MRLCC)

Wrap up:

- SHCI formulation allows caclulation of PT correction even for large systems
- Derived new extension of SHCI algorithm called HCISCF, for optimizing CI coefficients and orbitals
- Active space orbitals relatively insensitive to the accuracy of HCI calculations
- Performed the largest CASSCF-like calculation on Fe(porphyrin) in only a few hours

Up next:

- Adding out-of-active space dynamical correlation (NEVPT/MRLCC)
- Using machine learning to grow variational space even more intelligently

Acknowledgements

Thanks to Sandeep Sharma, Bastien Mussard, and Adam Holmes for putting up with all my questions and offering countless helpful advice. This work was supported by Sandeep's startup grant and the GAANN Fellowship.

Questions

Thanks you for your attention! Do you have any questions?

Pentacene: Motivation

- Radical character of linear acenes increases with chain length
- Linear acenes used frequently in singlet fission, want predictive accuracy

Figure 8:

Pentacene: Comparing vHCISCF and HCISCF

	ϵ_1 (Ha)	ϵ_1 (Ha) E_{HCISCF} (Ha)	
vHCISCF	8.5×10^{-5}	-841.5936	-841.6174
vHCISCF	5.0×10^{-5}	-841.6005	-841.6175
HCISCF	8.5×10^{-5}	-841.6021	-841.6173

Pentacene: Calculations

Sym.	$E_{ m vHCISCF}$ (Ha)	E_{SHCI} (Ha)	$E_{\rm ex}$ (kcal/mol)	E_{ref} (kcal/mol)	$T_{\rm OO}$ (sec)	T_{CI} (sec)		
		Sing	let Geometry					
$^1A_{ m g}$	-841.5936	-841.6174(6)	28.5	27.0	50	33		
$^3B_{2\mathrm{u}}$	-841.5457	-841.5720(8)	20.5	21.0	70	24		
	Triplet Geometry							
$^1A_{g}$	-841.5823	-841.6050(7)	18.6	_	57	26		
$^3B_{2\mathrm{u}}$	-841.5556	-841.5751(9)		_	57	31		

Pentacene: Calculations

- Orbital optimization is the rate limiting step in these calculations
- Not as close to the other theoretical work as we'd like for singlet geometry (maybe b/c small basis difference)
- Triplet geometry w/in c.a. 1 kcal/mole of experimental gap

References

Holmes, A. A., Norm M. Tubman, and C. J. Umrigar (2016). "Heat-bath Configuration Interaction: An efficient selected CI algorithm inspired by heat-bath sampling". In: *J. Chem. Theory Comput.* 12, 3674.

Smith, J. E. T. et al. (2017). "Cheap and Near Exact CASSCF with Large Active Spaces". In: *J. Chem. Theory Comput.*

Legal

Get the source of this theme and the demo presentation from

github.com/matze/mtheme

The theme *itself* is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

