Indicator (Dummy) Variables – Part II

Johns Hopkins Engineering

625.461 Statistical Models and Regression

Module 5 – Lecture 5D

Now suppose that we expect the regression lines relating tool life to the lathe speed to differ in both intercept and slope. A viable model is

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \varepsilon$$

Tool Type A:
$$y = \beta_0 + \beta_1 x_1 + \varepsilon$$

Tool Type B: $y = (\beta_0 + \beta_2) + (\beta_1 + \beta_3)x_1 + \varepsilon$

Hypotheses of interest:

$$H_0$$
: $\beta_2 = \beta_3 = 0$
 H_1 : $\beta_2 \neq 0$ and/or $\beta_3 \neq 0$

or

$$H_0: \beta_3 = 0, \quad H_1: \beta_3 \neq 0$$

We can fit the model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \varepsilon$$
 and investigate

$$SS_{R}(\beta_{1}|\beta_{0})$$
, $SS_{R}(\beta_{2}|\beta_{0},\beta_{1})$, and $SS_{R}(\beta_{3}|\beta_{0},\beta_{1},\beta_{2})$.

TABLE 8.3	Summary An	alysis for the Tool	Life Regression N	Todel in F	Example 8.2
Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0	P Value
Regression	1434.112	3	478.037	54.25	1.32×10^{-9}
Error	140.976	.16	8.811	-	
Total	1575.008	19			
Coefficient	Estimate	Standard Error	t_0	Sum of Squares	
$\overline{eta_0}$	32.775				
β_1	-0.021	0.0061	-3.45	$SS_{R}(\beta_{1} \beta_{0}) = 293.005$	
β_2	23.971	6.7690	3.45	$SS_{R}(\beta_{2} \beta_{1},\beta_{0}) = 1125.029$	
β_3	-0.012	0.0088	-1.35		$\beta_2, \beta_1, \beta_0) = 16.078$
, ~		$R^2 = 0$.9105		

$$\hat{y} = 32.775 - 0.021x_1 + 23.971x_2 - 0.012x_1x_2$$

To test
$$H_0$$
: $\beta_2 = \beta_3 = 0$

$$SS_{R}(\beta_{2}, \beta_{3}|\beta_{1}, \beta_{0}) = SS_{R}(\beta_{1}, \beta_{2}, \beta_{3}|\beta_{0}) - SS_{R}(\beta_{1}|\beta_{0})$$

= 1434.112 - 293.005
= 1141.107

$$F_0 = \frac{SS_{\rm R}(\beta_2, \beta_3 | \beta_1, \beta_0)/2}{MS_{\rm Res}} = \frac{1141.107/2}{8.811} = 64.75$$

 \Rightarrow Reject H_0 , i.e., two regression lines are not identical

To test H_0 : $\beta_3 = 0$ (i.e., common slope),

$$F_0 = \frac{SS_{\rm R}(\beta_3|\beta_2,\beta_1,\beta_0)/1}{MS_{\rm Res}} = \frac{16.078}{8.811} = 1.82$$

$$p$$
-value = 0.20

⇒ No sufficient evidence to support "different slopes"

More Indicator Variables

What if the tool has three types (A,B,C)? We can easily extend the same idea by constructing more dummies:

x_2	x_3	
0	0	if the observation is from tool type A
1	0	if the observation is from tool type I
0	1	if the observation is from tool type (

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$$

More Indicator Variables

More than one indicator variable

Ex 8.1. a second qualitative factor, type of cutting oil used, is added:

$$x_3 = \begin{cases} 0 & \text{if low-viscosity oil used} \\ 1 & \text{if medium-viscosity oil used} \end{cases}$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$$

More Indicator Variables

Various types of interaction effects may be added, e.g.,

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_1 x_2 + \beta_5 x_1 x_3 + \varepsilon$$

Tool Type	Cutting Oil	Regression Model
Ā	Low viscosity	$y = \beta_0 + \beta_1 x_1 + \varepsilon$
В	Low viscosity	$y = (\beta_0 + \beta_2) + (\beta_1 + \beta_4)x_1 + \varepsilon$
À	Medium viscosity	$y = (\beta_0 + \beta_3) + (\beta_1 + \beta_5)x_1 + \varepsilon$
В	Medium viscosity	$y = (\beta_0 + \beta_2 + \beta_3) + (\beta_1 + \beta_4 + \beta_5)x_1 + \varepsilon$

