PREDICTING IF AN ONLINE COMMENT IS TOXIC AND REDUCING DATA BIASES

What is bias in machine learning?

- Systematic errors due to incorrect assumptions
- Biases are learned from the data

- Active area of research in the ML community

Replying to @dhh and @AppleCard

The same thing happened to us. I got 10x the credit limit. We have no separate bank or credit card accounts or any separate assets. Hard to get to a human for a correction though. It's big tech in 2019.

4:51 PM · Nov 9, 2019 · Twitter Web App

660 Retweets 3.8K Likes

- 1. Introduction
- 2. Bias in NLP
- Dataset
- 4. Text Preprocessing Pipeline
 - Tokenization
 - Normalization
 - Embeddings
- 5. Models
- 6. Results
- 7. Conclusion

Bias in NLP

NLP: Natural Language Processing

- Certain identities are overwhelmingly referred to in offensive ways
- Models incorrectly learn to associate frequently attacked minorities with toxicity

Bias in NLP

Bias in NLP

Goal:

Attempt to mitigate this bias using a solution proposed by:

Nuanced Metrics for Measuring Unintended Bias with Real Data for Text Classification (2019)

- 1. Introduction
- 2. Bias in NLP
- 3. Dataset
- 4. Text Preprocessing Pipeline
 - Tokenization
 - Normalization
 - Embeddings
- 5. Models
- 6. Results
- 7. Conclusion

2M comments from Wikipedia's talk page

- Each comment was given a toxicity label and 21 identity attributes by at least 10 annotators (up to thousands)
 - ► Comment: i'm a white woman in my late 60's and believe me, they are not too crazy about me either!!
 - ► Toxicity Label: 0.0
 - ▶ Identity Labels: female: 1.0, white: 1.0 (all others 0.0)

Only 6 identities will be used in the analysis:

- Female
- Homosexual_gay_or_lesbian
- Christian
- Jewish
- Muslim
- Black

Source: Kaggle competition - Jigsaw Unintended Bias in Toxicity Classification (2019)

- Number of comments in dataset
- % of toxic comments within the number above

Female	Homosexual	Christian	Jewish	Muslim	Black	Total	
Training Dataset							
42.9k	8.7k	30.2k	6.1k	16.6k	11.7k	1.5M	
(13.6%)	(28.9%)	(9.6%)	(16.2%)	(23.0%)	(32.3%)	(7.9%)	
Validation Dataset							
7.6k	1.4k	5.2k	1.1k	2.9k	2.1k	270K	
(13.9%)	(30.1%)	(9.0%)	(17.8%)	(22.1%)	(32.0%)	(7.9%)	
Test Dataset							
2k	491	1.8k	405	914	699	97K	
(13.2%)	(26.2%)	(10.3%)	(17.0%)	(25.6%)	(33.9%)	(7.8%)	

- ► Highly imbalanced dataset
- ► Metric: Subgroup AUC
 - AUC calculated within identity subgroups
 - ► Identity = 1

- 1. Introduction
- 2. Bias in NLP
- 3. Dataset
- 4. Text Preprocessing Pipeline
 - Tokenization
 - Normalization
 - Embeddings
- 5. Models
- 6. Results
- 7. Conclusion

Text Preprocessing Pipeline - Tokenization

Text

"NLP is a very exciting field!"

Tokens

["NLP", "is", "a", "very", "exciting", "field", "!"]

Text Preprocessing Pipeline - Normalization

Pad/truncate comments to a pre-defined length

Maximum length = 200

Text Preprocessing Pipeline - Normalization

Example:

7 Tokens ["NLP", "is", "a", "very", "exciting", "field", "!"]

10 Tokens

```
["NLP", "is", "a", "very", "exciting", "field", "!", "<PAD>", "<PAD>", "<PAD>"]
```

Text Preprocessing Pipeline - Embeddings

Embeddings: Learned representation for text

Idea: Computers understand numbers not words (tokens)

Text Preprocessing Pipeline - Embeddings

Embedding =

GloVe (300-dimensions) + fastText (300-dimensions)

Text Preprocessing Pipeline - Embeddings

- 1. Introduction
- 2. Bias in NLP
- 3. Dataset
- 4. Text Preprocessing Pipeline
 - Tokenization
 - Normalization
 - Embeddings
- 5. Models
- 6. Results
- 7. Conclusion

Models

- 2 models
 - Model 1: 1.2M trainable params
 - Model 2: 1.6M trainable params
- 2 losses (regular loss & custom loss)
- Total of 4 models

Models

Model 1:

Models

Model 2:

Models - Hyperparameters

► Batch size: 512

Max length: 200

Optimizer: Adam

Learning rate: 0.001

Models - Losses

- Binary Cross Entropy (BCE)
 - ► True toxicity label y
 - Predicted toxicity label \hat{y}

$$BCE = -\frac{1}{N} \sum_{i}^{N} y_{i} log \hat{y}_{i} + (1 - y_{i}) log (1 - \hat{y}_{i})$$

Models - Losses

Custom Loss

$$Loss = \begin{cases} 1 * BCE, & \text{if } y = 0 \text{ & identity} = 0 \\ 1.5 * BCE, & \text{if } y = 1 \\ 2 * BCE, & \text{if } y = 0 \text{ & identity} = 1 \end{cases}$$

- Separability within subgroup
- Reduce false positives
- Reduce false negatives

- 1. Introduction
- 2. Bias in NLP
- 3. Dataset
- 4. Text Preprocessing Pipeline
 - Tokenization
 - Normalization
 - Embeddings
- Models
- 6. Results
- 7. Conclusion

Results - Metrics

Model 1: Validation AUC

Female	Homosexual	Christian	Jewish	Muslim	Black	Total		
Model 1								
(BCE loss)								
92.8	84.0	93.6	86.6	86.1	84.6	92.4		
Model 1								
(Custom loss)								
93.0	84.6	93.8	87.7	86.7	84.9	92.7		

AUC (custom loss) - AUC (BCE loss) ≈ 0.3

Results - Metrics

Model 2: Validation AUC

Female	Homosexual	Christian	Jewish	Muslim	Black	Total		
Model 2								
(BCE loss)								
93.1	84.7	93.6	87.8	86.5	85.4	92.4		
Model 2								
(Custom loss)								
93.3	84.1	93.8	88.3	86.9	85.6	92.5		

AUC (custom loss) - AUC (BCE loss) ≈ 0.3

- 1. Introduction
- 2. Bias in NLP
- 3. Dataset
- 4. Text Preprocessing Pipeline
 - Tokenization
 - Normalization
 - Embeddings
- 5. Models
- 6. Results
- 7. Conclusion

Conclusion

Models with the custom loss perform slightly better than regular BCE loss (∼ 0.3 Subgroup AUC)

Conclusion

- In my opinion, time and resources to train new models make it impractical
- Worth it in a competition (Kaggle) but not for real-world applications
- Bias is a big issue and more efforts should go towards it

BACK-UP

Text Preprocessing Pipeline - Embeddings

GloVe embedding

- Open-source pre-trained embedding (5.5 GBs)
- ► 1.9M words
- 300-dimensional embeddings
- Trained on word-word co-occurrence statistics
- Corpus: Common Crawl dataset

Text Preprocessing Pipeline - Embeddings

fastText embedding

- Open-source pre-trained embedding (4.4 GBs)
- 2M words
- 300-dimensional embeddings
- Trained using modified word2vec algorithm
- Corpus: Common Crawl dataset

GloVe

"The dog ran after the man"

,	the	dog	ran	after	man
the	0	1	0	1	1
dog	1	0	1	0	0
ran	0	1	0	1	0
after	1	0	1	0	0
man	1	0	0	0	0

GloVe

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	$2.2 imes 10^{-5}$	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

fastText

$$n = 3$$

"artificial" = <ar, art, rti, tif, ifi, fic, ici, ial, al>

Common Crawl Dataset

Component	Raw Size	Weight	Epochs	Effective Size	Mean Document Size
Pile-CC	227.12 GiB	18.11%	1.0	227.12 GiB	4.33 KiB
PubMed Central	90.27 GiB	14.40%	2.0	180.55 GiB	30.55 KiB
Books3 [†]	100.96 GiB	12.07%	1.5	151.44 GiB	538.36 KiB
OpenWebText2	62.77 GiB	10.01%	2.0	125.54 GiB	3.85 KiB
ArXiv	56.21 GiB	8.96%	2.0	112.42 GiB	46.61 KiB
Github	95.16 GiB	7.59%	1.0	95.16 GiB	5.25 KiB
FreeLaw	51.15 GiB	6.12%	1.5	76.73 GiB	15.06 KiB
Stack Exchange	32.20 GiB	5.13%	2.0	64.39 GiB	2.16 KiB
USPTO Backgrounds	22.90 GiB	3.65%	2.0	45.81 GiB	4.08 KiB
PubMed Abstracts	19.26 GiB	3.07%	2.0	38.53 GiB	1.30 KiB
Gutenberg (PG-19)†	10.88 GiB	2.17%	2.5	27.19 GiB	398.73 KiB
OpenSubtitles [†]	12.98 GiB	1.55%	1.5	19.47 GiB	30.48 KiB
Wikipedia (en)†	6.38 GiB	1.53%	3.0	19.13 GiB	1.11 KiB
DM Mathematics†	7.75 GiB	1.24%	2.0	15.49 GiB	8.00 KiB
Ubuntu IRC	5.52 GiB	0.88%	2.0	11.03 GiB	545.48 KiB
BookCorpus2	6.30 GiB	0.75%	1.5	9.45 GiB	369.87 KiB
EuroParl†	4.59 GiB	0.73%	2.0	9.17 GiB	68.87 KiB
HackerNews	3.90 GiB	0.62%	2.0	7.80 GiB	4.92 KiB
YoutubeSubtitles	3.73 GiB	0.60%	2.0	7.47 GiB	22.55 KiB
PhilPapers	2.38 GiB	0.38%	2.0	4.76 GiB	73.37 KiB
NIH ExPorter	1.89 GiB	0.30%	2.0	3.79 GiB	2.11 KiB
Enron Emails [†]	0.88 GiB	0.14%	2.0	1.76 GiB	1.78 KiB
The Pile	825.18 GiB			1254.20 GiB	5.91 KiB

AUC

Losses

Model 1:

Left: BCE loss (Biased). Right: Custom loss (Unbiased).

Losses

Model 2:

Left: BCE loss (Biased). Right: Custom loss (Unbiased).

Text Preprocessing Pipeline - Normalization

Lower case conversion

```
\mathsf{Dog} \to \mathsf{dog} \mathsf{Cat} \to \mathsf{cat}
```

- Remove punctuation and special characters (Greek letters, mathematical symbols)
- Expand common abbreviations

```
you're \rightarrow you are aren't \rightarrow are not
```

Models - Custom Loss

Custom Loss

$$\textit{Loss} = \textit{BCE} (1 + 0.5(\textit{SUB} + \textit{BPSN} + \textit{BNSP}))$$
 where,

- Subgroup (SUB):
 - SUB=1, if identity=1
 - Separability within subgroup
- Background Positive Subgroup Negative (BPSN):
 - \circ BPSN=1, if y=1 & identity=0
 - Reduce false positives
- Background Negative Subgroup Positive (BNSP):
 - ∘ BNSP=1, if y=0 & identity=1
 - Reduce false negatives

Source: Nuanced Metrics for Measuring Unintended Bias with Real Data for Text Classification (2019)