NOMBRE: Matías Duhalde

 N^{Ω} LISTA:

PUNTAJE:

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE Escuela de Ingeniería DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN

IIC2223 — Teoría de Autómatas y Lenguajes Formales — 2' 2021

Tarea 6 – Respuesta Pregunta 1

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una CFG LL(k), para algún k. Por contradicción, supongamos que \mathcal{G} es ambigua, es decir, existe una palabra $w \in \mathcal{L}(G)$ tal que w pueda ser derivada por la izquierda de más de una manera. Se definen las siguientes derivaciones de w, con $u, v_1, v_2, w \in \Sigma^*$, $X \in V$, $y, \gamma_1, \gamma_2, \beta \in (\Sigma \cup V)^*$:

$$d_1: S \xrightarrow[]{*} uX\beta \implies u\gamma_1\beta \xrightarrow[]{*} uv_1 = w$$

$$d_2: S \xrightarrow[]{*} uX\beta \implies u\gamma_2\beta \xrightarrow[]{*} uv_2 = w$$

$$d_2: S \stackrel{*}{\underset{\text{lm}}{\Longrightarrow}} uX\beta \implies u\gamma_2\beta \stackrel{*}{\underset{\text{lm}}{\Longrightarrow}} uv_2 = u$$

Por nuestra suposición, tenemos que existe más de una derivación distinta por la izquierda para encontrar w, por lo que existen d_1 y d_2 tal que $d_1 \neq d_2$. Entonces, en d_1 y d_2 , existe al menos un paso en el cual se toma una producción distinta, tal que en d_1 se toma la producción $X \to \gamma_1$ y en d_2 se toma la producción $X \to \gamma_2$, con $\gamma_1 \neq \gamma_2$. Dado que ambas derivaciones producen w, $uv_1 = uv_2$ y $v_1 = v_2$, por lo que también se cumple que $v_1|_k = v_2|_k$ para todo k. Sin embargo, dado que $\gamma_1 \neq \gamma_2$, la gramática definida no puede ser LL(k), dado que se contradice su definición, por lo que se evidencia una contradicción en lo propuesto.

Por lo tanto, si una gramática \mathcal{G} es LL(k) para algún k, entonces \mathcal{G} no puede ser ambigua (y en consecuencia, debe ser unambigua). NOMBRE: Matías Duhalde

Nº LISTA:

PUNTAJE:

IIC2223 — Teoría de Autómatas y Lenguajes Formales — 2' 2021

Tarea 6 – Respuesta Pregunta 2

Definición de LL(k) fuerte: Para todas dos reglas distintas $Y \to \gamma_1, Y \to \gamma_2 \in P$ se tiene que:

$$\mathtt{first}_k(\gamma_1)\odot_k\mathtt{follow}_k(Y)\cap\mathtt{first}_k(\gamma_2)\odot_k\mathtt{follow}_k(Y)=\emptyset$$

1.

2.