Matrix Factorization for Movie Recommendation Systems

Nipun Batra

IIT Gandhinagar

September 3, 2025

• The Problem: Why do we need recommendation systems?

- The Problem: Why do we need recommendation systems?
- Matrix View: How ratings become a mathematical problem

- The Problem: Why do we need recommendation systems?
- Matrix View: How ratings become a mathematical problem
- Key Insight: Matrix factorization as the solution

- The Problem: Why do we need recommendation systems?
- Matrix View: How ratings become a mathematical problem
- Key Insight: Matrix factorization as the solution
- Step-by-Step: Building intuition with examples

- The Problem: Why do we need recommendation systems?
- Matrix View: How ratings become a mathematical problem
- Key Insight: Matrix factorization as the solution
- Step-by-Step: Building intuition with examples
- · Algorithms: ALS vs Gradient Descent

- The Problem: Why do we need recommendation systems?
- Matrix View: How ratings become a mathematical problem
- Key Insight: Matrix factorization as the solution
- Step-by-Step: Building intuition with examples
- · Algorithms: ALS vs Gradient Descent
- Practice: Hands-on understanding

Problem Setup

Real-World Scenario:

 Netflix: 200M+ users, 15K+ titles

Real-World Scenario:

- Netflix: 200M+ users, 15K+ titles
- · Most ratings are missing!

Real-World Scenario:

- Netflix: 200M+ users, 15K+ titles
- · Most ratings are missing!

Real-World Scenario:

- Netflix: 200M+ users, 15K+ titles
- Most ratings are missing!

The Challenge:

 You've rated 100 movies out of 15,000

Sparse Rating Matrix

Real-World Scenario:

- Netflix: 200M+ users, 15K+ titles
- Most ratings are missing!

The Challenge:

- You've rated 100 movies out of 15,000
- How do we predict what you'll like?

Sparse Rating Matrix

Pop Quiz #1: Understanding the Scale

Answer this!

If Netflix has 200 million users and 15,000 movies, how many possible ratings exist?

Hint: Think about the total number of user-movie pairs

Pop Quiz #1: Understanding the Scale - Answer

Answer this!

Answer: $200 \times 10^6 \times 15 \times 10^3 = 3 \times 10^{12}$ possible ratings!

Follow-up: If typical users rate only 100 movies, what per-

centage of the matrix is filled?

Answer: $\frac{100}{15000} = 0.67\%$ - extremely sparse!

Pop Quiz #1: Understanding the Scale - Answer

Answer this!

Answer: $200 \times 10^6 \times 15 \times 10^3 = 3 \times 10^{12}$ possible ratings! **Follow-up:** If typical users rate only 100 movies, what per-

centage of the matrix is filled?

Answer: $\frac{100}{15000} = 0.67\%$ - extremely sparse!

Important: The Sparsity Challenge

99.33% of the rating matrix is empty! This is why we need smart algorithms.

The Rating Matrix $\mathbf{A} \in \mathbb{R}^{N \times M}$ with proper labels:

The Rating Matrix $\mathbf{A} \in \mathbb{R}^{N \times M}$ with proper labels:

	Sholay	Swades	Batman	Interstellar	
Arjun	a ₁₁	?	a ₁₃	?	
Priya	?	a ₂₂	?	a ₂₄	
Ravi	a ₃₁	?	?	<i>a</i> ₃₄	
	:	:	:	:	٠

The Rating Matrix $\mathbf{A} \in \mathbb{R}^{N \times M}$ with proper labels:

	Sholay	Swades	Batman	Interstellar	
Arjun	a ₁₁	?	a ₁₃	?	
Priya	?	a ₂₂	?	a ₂₄	
Ravi	a ₃₁	?	?	<i>a</i> ₃₄	
	:	:	:	:	٠

• Rows: Users $u_1 = Arjun$, $u_2 = Priya$, $u_3 = Ravi$, ..., u_N

The Rating Matrix $\mathbf{A} \in \mathbb{R}^{N \times M}$ with proper labels:

	Sholay	Swades	Batman	Interstellar	
Arjun	a ₁₁	?	a ₁₃	?	
Priya	?	a ₂₂	?	a ₂₄	
Ravi	a ₃₁	?	?	<i>a</i> ₃₄	
	:	:	:	:	٠

- Rows: Users $u_1 = Arjun$, $u_2 = Priya$, $u_3 = Ravi$, ..., u_N
- **Columns**: Movies $m_1 = \text{Sholay}, m_2 = \text{Swades}, \dots, m_M$

The Rating Matrix $\mathbf{A} \in \mathbb{R}^{N \times M}$ with proper labels:

	Sholay	Swades	Batman	Interstellar	
Arjun	a ₁₁	?	a ₁₃	?	
Priya	?	a ₂₂	?	a ₂₄	
Ravi	a ₃₁	?	?	<i>a</i> ₃₄	
	:	:	:	:	٠

- Rows: Users $u_1 = Arjun$, $u_2 = Priya$, $u_3 = Ravi$, ..., u_N
- **Columns**: Movies $m_1 = \text{Sholay}, m_2 = \text{Swades}, \dots, m_M$
- **Entries**: $a_{ij} \in \{1, 2, 3, 4, 5\}$ (when observed)

The Rating Matrix $A \in \mathbb{R}^{N \times M}$ with proper labels:

	Sholay	Swades	Batman	Interstellar	
Arjun	a ₁₁	?	a ₁₃	?	
Priya	?	a ₂₂	?	a ₂₄	
Ravi	a ₃₁	?	?	<i>a</i> ₃₄	
	:	:	:	:	٠

- Rows: Users $u_1 = Arjun$, $u_2 = Priya$, $u_3 = Ravi$, ..., u_N
- **Columns**: Movies $m_1 = \text{Sholay}, m_2 = \text{Swades}, \dots, m_M$
- **Entries**: $a_{ij} \in \{1, 2, 3, 4, 5\}$ (when observed)
- **Challenge**: Predict missing entries ?

The Rating Matrix $A \in \mathbb{R}^{N \times M}$ with proper labels:

	Sholay	Swades	Batman	Interstellar	
Arjun	a ₁₁	?	a ₁₃	?	
Priya	?	a ₂₂	?	a ₂₄	
Ravi	a ₃₁	?	?	<i>a</i> ₃₄	
	:	:	:	:	٠

- Rows: Users $u_1 = Arjun$, $u_2 = Priya$, $u_3 = Ravi$, ..., u_N
- **Columns**: Movies $m_1 = \text{Sholay}, m_2 = \text{Swades}, \dots, m_M$
- **Entries**: $a_{ij} \in \{1, 2, 3, 4, 5\}$ (when observed)
- **Challenge**: Predict missing entries ?
- **Notation**: $\Omega = \{(i,j) : a_{ij} \text{ is observed}\}$

Let's work with a small, concrete example:

Let's work with a small, concrete example:

User	Sholay	Swades	Batman	Interstellar	Shawshank
Arjun	5	4	2	3	2
Arjun Priya Ravi	?	5	1	4	?
Ravi	4	?	1	5	?

Let's work with a small, concrete example:

User	Sholay	Swades	Batman	Interstellar	Shawshank
Arjun	5	4	2	3	2
Priya	?	5	1	4	?
Ravi	4	?	1	5	?

Observations:

Arjun loves Bollywood films (Sholay, Swades)

Let's work with a small, concrete example:

User	Sholay	Swades	Batman	Interstellar	Shawshank
Arjun	5	4	2	3	2
Arjun Priya Ravi	?	5	1	4	?
Ravi	4	?	1	5	?

Observations:

- · Arjun loves Bollywood films (Sholay, Swades)
- Ravi enjoys Sci-Fi (Interstellar)

Let's work with a small, concrete example:

User	Sholay	Swades	Batman	Interstellar	Shawshank
Arjun	5	4	2	3	2
Priya	?	5	1	4	?
Ravi	4	?	1	5	?

Observations:

- Arjun loves Bollywood films (Sholay, Swades)
- Ravi enjoys Sci-Fi (Interstellar)
- Can we predict Priya's rating for Sholay?

Let's work with a small, concrete example:

User	Sholay	Swades	Batman	Interstellar	Shawshank
Arjun	5	4	2	3	2
Arjun Priya Ravi	?	5	1	4	?
Ravi	4	?	1	5	?

Observations:

- · Arjun loves Bollywood films (Sholay, Swades)
- Ravi enjoys Sci-Fi (Interstellar)
- Can we predict Priya's rating for Sholay?
- Can we predict Ravi's rating for Swades?

Key Insight: Latent Features

Why do you like the movies you like?

Why do you like the movies you like?

Maybe because of:

 Genre (Action, Romance, Comedy)

Why do you like the movies you like?

Maybe because of:

- Genre (Action, Romance, Comedy)
- Star cast (Shah Rukh Khan, Tom Cruise)

Why do you like the movies you like?

Maybe because of:

- Genre (Action, Romance, Comedy)
- Star cast (Shah Rukh Khan, Tom Cruise)
- Director (Christopher Nolan, Rajkumar Hirani)

Why do you like the movies you like?

Maybe because of:

- Genre (Action, Romance, Comedy)
- Star cast (Shah Rukh Khan, Tom Cruise)
- Director (Christopher Nolan, Rajkumar Hirani)
- Language (Hindi, English, Tamil)

Why do you like the movies you like?

Maybe because of:

- Genre (Action, Romance, Comedy)
- Star cast (Shah Rukh Khan, Tom Cruise)
- Director (Christopher Nolan, Rajkumar Hirani)
- Language (Hindi, English, Tamil)
- Era (90s classics, modern CGI)

Key Insight:

- Your taste = combination of preferences
- Movie appeal = combination of features
- But we don't know these explicitly!

Hypothesis: User preferences and movie characteristics can be captured by a small number of **latent features**.

Hypothesis: User preferences and movie characteristics can be captured by a small number of **latent features**. **Intuition:** Think of latent features as "hidden DNA" of movies and users!

Hypothesis: User preferences and movie characteristics can be captured by a small number of latent features. Intuition: Think of latent features as "hidden DNA" of movies and users!

For Movies:

Bollywood vs Hollywood

Hypothesis: User preferences and movie characteristics can be captured by a small number of **latent features**. **Intuition:** Think of latent features as "hidden DNA" of movies and users!

- Bollywood vs Hollywood
- Action vs Drama

Hypothesis: User preferences and movie characteristics can be captured by a small number of **latent features**. **Intuition:** Think of latent features as "hidden DNA" of movies and users!

- · Bollywood vs Hollywood
- · Action vs Drama
- Comedy vs Serious

Hypothesis: User preferences and movie characteristics can be captured by a small number of **latent features**. **Intuition:** Think of latent features as "hidden DNA" of movies and users!

- · Bollywood vs Hollywood
- · Action vs Drama
- · Comedy vs Serious
- Runtime (Short vs Long)

Hypothesis: User preferences and movie characteristics can be captured by a small number of **latent features**. **Intuition:** Think of latent features as "hidden DNA" of movies and users!

- Bollywood vs Hollywood
- · Action vs Drama
- · Comedy vs Serious
- Runtime (Short vs Long)
- Year (Classic vs Modern)

Step 1: Define Movie Features Explicitly

Let's manually define features for our 5 movies:

Step 1: Define Movie Features Explicitly

Let's manually define features for our 5 movies:

Movie	Bollywood	Sci-Fi	Drama
Sholay	0.95	0.10	0.85
Swades	1.00	0.20	0.90
Batman	0.05	0.80	0.30
Interstellar	0.05	0.95	0.70
Shawshank	0.05	0.15	0.95

Step 1: Define Movie Features Explicitly

Let's manually define features for our 5 movies:

Movie	Bollywood	Sci-Fi	Drama
Sholay	0.95	0.10	0.85
Swades	1.00	0.20	0.90
Batman	0.05	0.80	0.30
Interstellar	0.05	0.95	0.70
Shawshank	0.05	0.15	0.95

Movie Feature Matrix $H \in \mathbb{R}^{3 \times 5}$:

$$\mathbf{H} = \begin{bmatrix} 0.95 & 1.00 & 0.05 & 0.05 & 0.05 \\ 0.10 & 0.20 & 0.80 & 0.95 & 0.15 \\ 0.85 & 0.90 & 0.30 & 0.70 & 0.95 \end{bmatrix}$$

User Feature Matrix $\mathbf{W} \in \mathbb{R}^{3 \times 3}$ represents user preferences:

User Feature Matrix $\mathbf{W} \in \mathbb{R}^{3 \times 3}$ represents user preferences:

	Bollywood	Sci-Fi	Drama
Arjun	3.8	8.0	1.5
Priya	1.8	4.1	3.2
Ravi	2.4	4.8	2.1

User Feature Matrix $\mathbf{W} \in \mathbb{R}^{3 \times 3}$ represents user preferences:

	Bollywood	Sci-Fi	Drama
Arjun	3.8	0.8	1.5
Priya	1.8	4.1	3.2
Ravi	2.4	4.8	2.1

Each row = one user's preference profile

User Feature Matrix $\mathbf{W} \in \mathbb{R}^{3 \times 3}$ represents user preferences:

	Bollywood	Sci-Fi	Drama
Arjun	3.8	0.8	1.5
Priya	1.8	4.1	3.2
Ravi	2.4	4.8	2.1

Each row = one user's preference profile

Next: Let's understand what each number means!

What do these numbers tell us?

What do these numbers tell us?

	Bollywood	Sci-Fi	Drama
Arjun	3.8	8.0	1.5
Priya	1.8	4.1	3.2
Ravi	2.4	4.8	2.1

What do these numbers tell us?

	Bollywood	Sci-Fi	Drama
Arjun	3.8	0.8	1.5
Priya	1.8	4.1	3.2
Ravi	2.4	4.8	2.1

• Arjun: Strong Bollywood fan, weak Sci-Fi

What do these numbers tell us?

	Bollywood	Sci-Fi	Drama
Arjun	3.8	8.0	1.5
Priya	1.8	4.1	3.2
Ravi	2.4	4.8	2.1

· Arjun: Strong Bollywood fan, weak Sci-Fi

Priya: Strong Sci-Fi fan, moderate Drama

What do these numbers tell us?

	Bollywood	Sci-Fi	Drama
Arjun	3.8	8.0	1.5
Priya	1.8	4.1	3.2
Ravi	2.4	4.8	2.1

Arjun: Strong Bollywood fan, weak Sci-Fi

• Priya: Strong Sci-Fi fan, moderate Drama

• Ravi: Very strong Sci-Fi fan

What do these numbers tell us?

	Bollywood	Sci-Fi	Drama
Arjun	3.8	8.0	1.5
Priya	1.8	4.1	3.2
Ravi	2.4	4.8	2.1

Arjun: Strong Bollywood fan, weak Sci-Fi

• Priya: Strong Sci-Fi fan, moderate Drama

• Ravi: Very strong Sci-Fi fan

What do these numbers tell us?

	Bollywood	Sci-Fi	Drama
Arjun	3.8	0.8	1.5
Priya	1.8	4.1	3.2
Ravi	2.4	4.8	2.1

· Arjun: Strong Bollywood fan, weak Sci-Fi

• Priya: Strong Sci-Fi fan, moderate Drama

• Ravi: Very strong Sci-Fi fan

The Magic: These values \times movie features should recreate observed ratings!

Understanding w_{11} - how much Arjun likes Bollywood:

Understanding w_{11} - how much Arjun likes Bollywood:

	Bollywood	Sci-Fi	Drama
Arjun	3.8	0.8	1.5
Priya	1.8	4.1	3.2
Ravi	2.4	4.8	2.1

Understanding w_{11} - how much Arjun likes Bollywood:

	Bollywood	Sci-Fi	Drama
Arjun	3.8	0.8	1.5
Priya	1.8	4.1	3.2
Ravi	2.4	4.8	2.1

 $w_{11} = 3.8$: Arjun's strong Bollywood preference!

Understanding w_{11} - how much Arjun likes Bollywood:

	Bollywood	Sci-Fi	Drama
Arjun	3.8	0.8	1.5
Priya	1.8	4.1	3.2
Ravi	2.4	4.8	2.1

 $w_{11} = 3.8$: Arjun's strong Bollywood preference! This explains why he gave Sholay (high Bollywood content) a rating of 5.

Understanding w_{12} - how much Arjun likes Sci-Fi:

Understanding w_{12} - how much Arjun likes Sci-Fi:

	Bollywood	Sci-Fi	Drama
Arjun	3.8	0.8	1.5
Priya	1.8	4.1	3.2
Ravi	2.4	4.8	2.1

Understanding w_{12} - how much Arjun likes Sci-Fi:

	Bollywood	Sci-Fi	Drama
Arjun	3.8	0.8	1.5
Priya	1.8	4.1	3.2
Ravi	2.4	4.8	2.1

 $w_{12} = 0.8$: Arjun's weak Sci-Fi preference

Understanding w_{12} - how much Arjun likes Sci-Fi:

	Bollywood	Sci-Fi	Drama
Arjun	3.8	0.8	1.5
Priya	1.8	4.1	3.2
Ravi	2.4	4.8	2.1

 $w_{12}=0.8$: Arjun's weak Sci-Fi preference This explains why he gave Interstellar (high Sci-Fi) only a rating of 3.

	Bollywood	Sci-Fi	Drama
Arjun	3.8	8.0	1.5
Priya	1.8	4.1	3.2
Ravi	2.4	4.8	2.1

	Bollywood	Sci-Fi	Drama
Arjun	3.8	8.0	1.5
Priya	1.8	4.1	3.2
Ravi	2.4	4.8	2.1

 $w_{13} = 1.5$: Arjun's low Drama preference

	Bollywood	Sci-Fi	Drama
Arjun	3.8	0.8	1.5
Priya	1.8	4.1	3.2
Ravi	2.4	4.8	2.1

 $w_{13}=1.5$: Arjun's low Drama preference This explains why he gave Shawshank (high Drama) only a rating of 2.

Arjun's Complete Taste Profile

Putting it all together:

Arjun's Complete Taste Profile

Putting it all together:

	Bollywood	Sci-Fi	Drama
Arjun	3.8	0.8	1.5
Priya	1.8	4.1	3.2
Ravi	2.4	4.8	2.1

Arjun's Complete Taste Profile

Putting it all together:

	Bollywood	Sci-Fi	Drama
Arjun	3.8	0.8	1.5
Priya	1.8	4.1	3.2
Ravi	2.4	4.8	2.1

Key Points:

Arjun's taste profile: [3.8 Bollywood, 0.8 Sci-Fi, 1.5 Drama]

 $\textbf{Core Hypothesis:} \ \ \mathsf{Rating} = \mathsf{User} \ \mathsf{preferences} \ \cdot \ \mathsf{Movie features}$

Core Hypothesis: Rating = User preferences · Movie features

$$a_{ij} \approx \mathbf{w}_i^T \mathbf{h}_j = \sum_{k=1}^r w_{ik} h_{kj}$$

Core Hypothesis: Rating = User preferences · Movie features

$$a_{ij} pprox \mathbf{w}_i^T \mathbf{h}_j = \sum_{k=1}^r w_{ik} h_{kj}$$

In Matrix Form:

$$\mathbf{A} \approx \mathbf{WH}$$

Core Hypothesis: Rating = User preferences · Movie features

$$a_{ij} \approx \mathbf{w}_i^T \mathbf{h}_j = \sum_{k=1}^r w_{ik} h_{kj}$$

In Matrix Form:

$$\mathbf{A}_{3\times5} = \begin{bmatrix} 5 & 4 & 2 & 3 & 2 \\ ? & 5 & 1 & 4 & ? \\ 4 & ? & 1 & 5 & ? \end{bmatrix} \approx \begin{bmatrix} 3.8 & 0.8 & 1.5 \\ 1.8 & 4.1 & 3.2 \\ 2.4 & 4.8 & 2.1 \end{bmatrix} \begin{bmatrix} 0.95 & 1.00 & 0.05 & 0.05 & 0.05 \\ 0.10 & 0.20 & 0.80 & 0.95 & 0.15 \\ 0.85 & 0.90 & 0.30 & 0.70 & 0.95 \end{bmatrix} = \mathbf{W}_{3\times3}\mathbf{H}_{3\times5}$$

Let's predict Arjun's rating for Sholay step by step...

Let's predict Arjun's rating for Sholay step by step... Arjun's Profile:

• How much does he like Bollywood? $w_{11} = 3.8$

Let's predict Arjun's rating for Sholay step by step... Arjun's Profile:

- How much does he like Bollywood? $w_{11} = 3.8$
- How much does he like Sci-Fi? $w_{12} = 0.8$

Let's predict Arjun's rating for Sholay step by step... Arjun's Profile: Sholay's DNA:

- How much does he like Bollywood? $w_{11} = 3.8$
- How much does he like Sci-Fi? $w_{12} = 0.8$
- How much does he like Drama? $w_{13} = 1.5$

- Bollywood-ness: 0.95 (very high!)
- Sci-Fi-ness: 0.10 (low)
- Drama-ness: 0.85 (high)

Let's predict Arjun's rating for Sholay step by step... Arjun's Profile: Sholay's DNA:

- How much does he like Bollywood? $w_{11} = 3.8$
- How much does he like Sci-Fi? $w_{12} = 0.8$
- How much does he like Drama? $w_{13} = 1.5$

- Bollywood-ness: 0.95 (very high!)
- Sci-Fi-ness: 0.10 (low)
- Drama-ness: 0.85 (high)

Let's predict Arjun's rating for Sholay step by step... Arjun's Profile: Sholay's DNA:

- How much does he like Bollywood? $w_{11} = 3.8$
- How much does he like Sci-Fi? $w_{12} = 0.8$
- How much does he like Drama? $w_{13} = 1.5$

- Bollywood-ness: 0.95 (very high!)
- Sci-Fi-ness: 0.10 (low)
- Drama-ness: 0.85 (high)

The Magic Formula:

Arjun's rating = Arjun's preferences · Sholay's features

Let's compute Arjun's predicted rating for Sholay:

```
Let's compute Arjun's predicted rating for Sholay: 
 Arjun's preferences: \mathbf{w}_1 = [3.8, 0.8, 1.5]
Sholay's features: \mathbf{h}_1 = [0.95, 0.10, 0.85]^T
```

Let's compute Arjun's predicted rating for Sholay:

Arjun's preferences: $\mathbf{w}_1 = [3.8, 0.8, 1.5]$ Sholay's features: $\mathbf{h}_1 = [0.95, 0.10, 0.85]^T$

$$\hat{\boldsymbol{a}}_{11} = \mathbf{w}_1^T \mathbf{h}_1 \tag{1}$$

$$= 3.8 \cdot 0.95 + 0.8 \cdot 0.10 + 1.5 \cdot 0.85 \tag{2}$$

$$= 3.61 + 0.08 + 1.28 = 4.97 \tag{3}$$

Let's compute Arjun's predicted rating for Sholay:

Arjun's preferences: $w_1 = [3.8, 0.8, 1.5]$ Sholay's features: $h_1 = [0.95, 0.10, 0.85]^T$

$$\hat{\mathbf{a}}_{11} = \mathbf{w}_1^T \mathbf{h}_1 \tag{1}$$

$$= 3.8 \cdot 0.95 + 0.8 \cdot 0.10 + 1.5 \cdot 0.85 \tag{2}$$

$$= 3.61 + 0.08 + 1.28 = 4.97 \tag{3}$$

$$\hat{a}_{11} = 4.97 \approx 5 \checkmark$$

This shows how matrix factorization works: find user preferences that recreate observed ratings!

Answer this!

Answer this!

If we have N users, M movies, and r latent features:

1. What are the dimensions of A?

Answer this!

- 1. What are the dimensions of A?
- 2. What are the dimensions of **W**?

Answer this!

- 1. What are the dimensions of A?
- 2. What are the dimensions of **W**?
- 3. What are the dimensions of **H**?

Answer this!

- 1. What are the dimensions of A?
- 2. What are the dimensions of **W**?
- 3. What are the dimensions of **H**?
- 4. How many parameters do we need to learn?

Pop Quiz #2: Matrix Dimensions - Answers

Answer this!

Answers:

- 1. $\mathbf{A} \in \mathbb{R}^{N \times M}$ (rating matrix)
- 2. $\mathbf{W} \in \mathbb{R}^{N \times r}$ (user preferences)
- 3. $\mathbf{H} \in \mathbb{R}^{r \times M}$ (movie features)
- 4. Total parameters: Nr + rM = r(N + M)

Pop Quiz #2: Matrix Dimensions - Answers

Answer this!

Answers:

- 1. $\mathbf{A} \in \mathbb{R}^{N \times M}$ (rating matrix)
- 2. $\mathbf{W} \in \mathbb{R}^{N \times r}$ (user preferences)
- 3. $\mathbf{H} \in \mathbb{R}^{r \times M}$ (movie features)
- 4. Total parameters: Nr + rM = r(N + M)

Key Points:

If $r \ll \min(N, M)$, we have huge parameter reduction!

Learning the Factorization

Objective: Minimize prediction error on observed ratings only

Objective: Minimize prediction error on observed ratings only

$$\mathsf{minimize}_{\mathbf{W},\mathbf{H}} \sum_{(i,j) \in \Omega} (a_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2$$

Objective: Minimize prediction error on observed ratings only

$$\mathsf{minimize}_{\mathbf{W},\mathbf{H}} \sum_{(i,j) \in \Omega} (a_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2$$

In Matrix Notation:

$$\mathsf{minimize}_{\mathbf{W},\mathbf{H}} \, \| P_{\Omega}(\mathbf{A} - \mathbf{W}\mathbf{H}) \|_F^2$$

Objective: Minimize prediction error on observed ratings only

$$\mathsf{minimize}_{\mathbf{W},\mathbf{H}} \sum_{(i,j) \in \Omega} (a_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2$$

In Matrix Notation:

minimize_{W,H}
$$\|P_{\Omega}(\mathbf{A} - \mathbf{WH})\|_F^2$$

Where:

• $P_{\Omega}(\cdot)$: only consider entries where we have ratings

Objective: Minimize prediction error on observed ratings only

$$\mathsf{minimize}_{\mathbf{W},\mathbf{H}} \sum_{(i,j) \in \Omega} (a_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2$$

In Matrix Notation:

minimize_{W,H}
$$\|P_{\Omega}(\mathbf{A} - \mathbf{WH})\|_F^2$$

Where:

- $P_{\Omega}(\cdot)$: only consider entries where we have ratings
- $\|\cdot\|_F$: Frobenius norm

Objective: Minimize prediction error on observed ratings only

$$\mathsf{minimize}_{\mathbf{W},\mathbf{H}} \sum_{(i,j) \in \Omega} (a_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2$$

In Matrix Notation:

minimize_{W,H}
$$\|P_{\Omega}(\mathbf{A} - \mathbf{WH})\|_F^2$$

Where:

- $P_{\Omega}(\cdot)$: only consider entries where we have ratings
- $\|\cdot\|_F$: Frobenius norm
- Ω : set of observed (i,j) pairs

Problem Characteristics:

• Non-convex: Multiple local minima exist

- Non-convex: Multiple local minima exist
- Bilinear: Linear in W when H fixed, and vice versa

- Non-convex: Multiple local minima exist
- Bilinear: Linear in W when H fixed, and vice versa
- Large-scale: Millions of users and items

- Non-convex: Multiple local minima exist
- Bilinear: Linear in W when H fixed, and vice versa
- Large-scale: Millions of users and items
- Sparse: Only 0.1-1% of entries observed

- Non-convex: Multiple local minima exist
- Bilinear: Linear in W when H fixed, and vice versa
- Large-scale: Millions of users and items
- Sparse: Only 0.1-1% of entries observed

Problem Characteristics:

- Non-convex: Multiple local minima exist
- Bilinear: Linear in W when H fixed, and vice versa
- · Large-scale: Millions of users and items
- **Sparse:** Only 0.1-1% of entries observed

Key Insight: While non-convex jointly, it's convex in each matrix individually!

Alternating Least Squares (ALS): A Visual Derivation

Step 0: Recap of Standard Least Squares

Objective: Estimate $\theta \in \mathbb{R}^{d \times 1}$ from data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and label vector $\mathbf{y} \in \mathbb{R}^{n \times 1}$.

$$\mathbf{y} pprox \mathbf{X} oldsymbol{ heta} \quad \Rightarrow \quad \hat{ heta} = \arg\min_{oldsymbol{ heta}} \|\mathbf{y} - \mathbf{X} oldsymbol{ heta}\|_2^2$$

Solution:
$$\hat{\theta} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

ALS Problem Setup

Goal: Decompose $A \in \mathbb{R}^{n \times m}$ as **WH** with:

$$\mathbf{W} \in \mathbb{R}^{n imes k}$$
 $\mathbf{H} \in \mathbb{R}^{k imes m}$

Objective: $A \approx WH$ with $k \ll \min(n, m)$

Challenge: Both **W** and **H** are unknown.

Step 1: Fix W, Learn H One Column at a Time

Idea: With W fixed, each column of H can be estimated via LS.

$$\mathbf{A}[:,j] \approx \mathbf{W} \cdot \mathbf{H}[:,j]$$

 $\mathbf{W}: n \times k$ $\mathbf{H}[:,j]: k \times 1$ $\mathbf{A}[:,j]: n \times 1$

This becomes: $\mathbf{y} \approx \mathbf{X}\boldsymbol{\theta}$ (just like standard LS)

Repeat: for j = 0 to m - 1 $H[:,j] \leftarrow LS(W, A[:,j])$

Step 2: Fix **H**, Learn **W** One Row at a Time

Goal: Learn $\mathbf{W}[i,:] \in \mathbb{R}^{1 \times k}$ row by row.

Start from: $A[i,:] \approx W[i,:] \cdot H$

Transpose both sides:

$$\mathbf{A}[i,:]^{\top} \approx \mathbf{H}^{\top} \cdot \mathbf{W}[i,:]^{\top}$$

Looks like LS again: $y \approx X\theta$

$$\mathbf{H}^{\top} \qquad \qquad \mathbf{W}[i,:]^{\top} \qquad \mathbf{A}[i,:]^{\top} \\ \times \qquad \qquad \times \qquad \qquad \times \qquad \qquad \times \qquad \qquad \mathbf{M}[i,:]^{\top}$$

Solve: $\mathbf{W}[i,:]^{\top} \leftarrow \mathsf{LS}(\mathbf{H}^{\top}, \mathbf{A}^{\top}[:,i])$ for all i

Final ALS Loop Summary

Repeat for T iterations:

- Fix **W**, then for each j, compute $\mathbf{H}[:,j] \leftarrow \mathsf{LS}(\mathbf{W},\mathbf{A}[:,j])$
- Fix **H**, then for each i, compute $\mathbf{W}[i,:]^{\top} \leftarrow \mathsf{LS}(\mathbf{H}^{\top}, \mathbf{A}^{\top}[:,i])$

All updates use standard least squares!

Algorithm 2: Gradient **Descent**

Goal: Find $\mathbf{W} \in \mathbb{R}^{n \times k}$ and $\mathbf{H} \in \mathbb{R}^{k \times m}$ such that:

 $\mathbf{A} \approx \mathbf{WH}$

Objective Function:

$$L(\mathbf{W}, \mathbf{H}) = \sum_{(i,j)\in\Omega} (a_{ij} - \mathbf{w}_i^{\top} \mathbf{h}_j)^2$$

Goal: Find $\mathbf{W} \in \mathbb{R}^{n \times k}$ and $\mathbf{H} \in \mathbb{R}^{k \times m}$ such that:

 $\textbf{A} \approx \textbf{WH}$

Objective Function:

$$L(\mathbf{W}, \mathbf{H}) = \sum_{(i,j) \in \Omega} (a_{ij} - \mathbf{w}_i^{\top} \mathbf{h}_j)^2$$

Initialize:

- W: $n \times k$ matrix with small random values
- **H**: $k \times m$ matrix with small random values

Goal: Find $\mathbf{W} \in \mathbb{R}^{n \times k}$ and $\mathbf{H} \in \mathbb{R}^{k \times m}$ such that:

 $\textbf{A}\approx \textbf{WH}$

Objective Function:

$$L(\mathbf{W}, \mathbf{H}) = \sum_{(i,j) \in \Omega} (a_{ij} - \mathbf{w}_i^{\top} \mathbf{h}_j)^2$$

Initialize:

- W: $n \times k$ matrix with small random values
- **H**: $k \times m$ matrix with small random values

Gradient Descent Loop:

- For t = 1 to T:
 - $\mathbf{W} \leftarrow \mathbf{W} \alpha \cdot \nabla_{\mathbf{W}} L(\mathbf{W}, \mathbf{H})$
 - $\mathbf{H} \leftarrow \mathbf{H} \alpha \cdot \nabla_{\mathbf{H}} \mathcal{L}(\mathbf{W}, \mathbf{H})$

Goal: Find $\mathbf{W} \in \mathbb{R}^{n \times k}$ and $\mathbf{H} \in \mathbb{R}^{k \times m}$ such that:

 $\mathbf{A}\approx\mathbf{WH}$

Objective Function:

$$L(\mathbf{W}, \mathbf{H}) = \sum_{(i,j) \in \Omega} (a_{ij} - \mathbf{w}_i^{\top} \mathbf{h}_j)^2$$

Initialize:

- W: $n \times k$ matrix with small random values
- **H**: $k \times m$ matrix with small random values

Gradient Descent Loop:

- For t = 1 to T:
 - $\mathbf{W} \leftarrow \mathbf{W} \alpha \cdot \nabla_{\mathbf{W}} L(\mathbf{W}, \mathbf{H})$
 - $\mathbf{H} \leftarrow \mathbf{H} \alpha \cdot \nabla_{\mathbf{H}} L(\mathbf{W}, \mathbf{H})$

Note: Gradients can be computed either over all $(i,j) \in \Omega$ (Batch GD) or stochastically.

Algorithm Comparison

Algorithm Comparison and Practical Considerations

ALS vs SGD: Head-to-Head Comparison

Aspect	ALS	SGD
Updates	Alternating	Simultaneous
Convergence	Faster, more stable	Slower, can oscillate
Parallelization	Excellent	Limited
Memory	Higher	Lower
Implementation	Complex	Simple
Hyperparameters	Few (rank r)	Many (α , schedule)
Scalability	Very good	Good

ALS vs SGD: Head-to-Head Comparison

Aspect	ALS	SGD
Updates	Alternating	Simultaneous
Convergence	Faster, more stable	Slower, can oscillate
Parallelization	Excellent	Limited
Memory	Higher	Lower
Implementation	Complex	Simple
Hyperparameters	Few (rank r)	Many (α , schedule)
Scalability	Very good	Good

When to Use Which?

• ALS: Large-scale, production systems (Spark, distributed)

ALS vs SGD: Head-to-Head Comparison

Aspect	ALS	SGD
Updates	Alternating	Simultaneous
Convergence	Faster, more stable	Slower, can oscillate
Parallelization	Excellent	Limited
Memory	Higher	Lower
Implementation	Complex	Simple
Hyperparameters	Few (rank r)	Many $(\alpha$, schedule)
Scalability	Very good	Good

When to Use Which?

- ALS: Large-scale, production systems (Spark, distributed)
- SGD: Online learning, real-time updates, research

Problem: Basic matrix factorization can overfit to training data

Problem: Basic matrix factorization can overfit to training data

Solution: Add regularization terms to control complexity

$$\mathsf{minimize}_{\mathbf{W},\mathbf{H}} \sum_{(i,j)\in\Omega} (a_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2 + \lambda(\|\mathbf{W}\|_F^2 + \|\mathbf{H}\|_F^2)$$

Problem: Basic matrix factorization can overfit to training data

Solution: Add regularization terms to control complexity

$$\mathsf{minimize}_{\mathbf{W},\mathbf{H}} \sum_{(i,j) \in \Omega} (a_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2 + \lambda (\|\mathbf{W}\|_F^2 + \|\mathbf{H}\|_F^2)$$

What this does:

Penalizes large feature values

Problem: Basic matrix factorization can overfit to training data **Solution:** Add regularization terms to control complexity

$$\mathsf{minimize}_{\mathbf{W},\mathbf{H}} \sum_{(i,j) \in \Omega} (a_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2 + \lambda (\|\mathbf{W}\|_F^2 + \|\mathbf{H}\|_F^2)$$

What this does:

- Penalizes large feature values
- Prevents overfitting to observed ratings

Problem: Basic matrix factorization can overfit to training data

Solution: Add regularization terms to control complexity

$$\mathsf{minimize}_{\mathbf{W},\mathbf{H}} \sum_{(i,j) \in \Omega} (a_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2 + \lambda (\|\mathbf{W}\|_F^2 + \|\mathbf{H}\|_F^2)$$

What this does:

- Penalizes large feature values
- Prevents overfitting to observed ratings
- λ controls regularization strength

Problem: Basic matrix factorization can overfit to training data

Solution: Add regularization terms to control complexity

$$\mathsf{minimize}_{\mathbf{W},\mathbf{H}} \sum_{(i,j) \in \Omega} (a_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2 + \lambda (\|\mathbf{W}\|_F^2 + \|\mathbf{H}\|_F^2)$$

What this does:

- Penalizes large feature values
- Prevents overfitting to observed ratings
- λ controls regularization strength
- · Helps generalization to unseen ratings

Real-world insight: Not all ratings differences are due to preferences!

Real-world insight: Not all ratings differences are due to preferences! **Bias sources:**

• Global bias μ : Average rating across all users/movies

Real-world insight: Not all ratings differences are due to preferences!

Bias sources:

- Global bias μ : Average rating across all users/movies
- User bias b_i : Some users rate higher than others

Real-world insight: Not all ratings differences are due to preferences!

Bias sources:

- Global bias μ : Average rating across all users/movies
- **User bias** b_i : Some users rate higher than others
- **Item bias** b_j : Some movies are generally better rated

Real-world insight: Not all ratings differences are due to preferences!

Bias sources:

- Global bias μ : Average rating across all users/movies
- **User bias** b_i : Some users rate higher than others
- **Item bias** b_j : Some movies are generally better rated

Real-world insight: Not all ratings differences are due to preferences!

Bias sources:

- Global bias μ : Average rating across all users/movies
- **User bias** b_i : Some users rate higher than others
- Item bias b_j : Some movies are generally better rated

Enhanced model:

$$\hat{a}_{ij} = \mu + b_i + b_j + \mathbf{w}_i^T \mathbf{h}_j$$

Real-world insight: Not all ratings differences are due to preferences!

Bias sources:

- Global bias μ : Average rating across all users/movies
- **User bias** b_i : Some users rate higher than others
- Item bias b_j: Some movies are generally better rated

Enhanced model:

$$\hat{\mathbf{a}}_{ij} = \mu + b_i + b_j + \mathbf{w}_i^\mathsf{T} \mathbf{h}_j$$

Example: Example

Mean rating = 3.5, Arjun rates 0.5 higher, Sholay gets 0.8 higher

$$\hat{a}_{\mathsf{Arjun},\mathsf{Sholay}} = 3.5 + 0.5 + 0.8 + \mathbf{w}_{\mathsf{Arjun}}^{\mathsf{T}} \mathbf{h}_{\mathsf{Sholay}}$$

Beyond explicit ratings: Many systems have only implicit feedback

Beyond explicit ratings: Many systems have only implicit feedback

Examples of implicit feedback:

• User clicked on movie (binary: 0 or 1)

Beyond explicit ratings: Many systems have only implicit feedback

Examples of implicit feedback:

- User clicked on movie (binary: 0 or 1)
- User watched movie for 5 minutes vs 2 hours

Beyond explicit ratings: Many systems have only implicit feedback

Examples of implicit feedback:

- User clicked on movie (binary: 0 or 1)
- User watched movie for 5 minutes vs 2 hours
- User added to watchlist vs ignored

Beyond explicit ratings: Many systems have only implicit feedback

Examples of implicit feedback:

- User clicked on movie (binary: 0 or 1)
- User watched movie for 5 minutes vs 2 hours
- User added to watchlist vs ignored

Beyond explicit ratings: Many systems have only implicit feedback

Examples of implicit feedback:

- User clicked on movie (binary: 0 or 1)
- User watched movie for 5 minutes vs 2 hours
- · User added to watchlist vs ignored

Confidence weighting:

Confidence: $c_{ij} = 1 + \alpha \cdot \text{frequency}_{ij}$

Beyond explicit ratings: Many systems have only implicit feedback

Examples of implicit feedback:

- User clicked on movie (binary: 0 or 1)
- User watched movie for 5 minutes vs 2 hours
- User added to watchlist vs ignored

Confidence weighting:

Confidence:
$$c_{ij} = 1 + \alpha \cdot \text{frequency}_{ij}$$

Key Points:

Idea: More interactions = higher confidence in preference

Advanced Considerations: Cold Start Problem

The Challenge: What about new users or movies with no ratings?

Advanced Considerations: Cold Start Problem

The Challenge: What about new users or movies with no ratings? **Strategies:**

• Content-based features: Use movie genres, actors, directors

Advanced Considerations: Cold Start Problem

The Challenge: What about new users or movies with no ratings?

Strategies:

- Content-based features: Use movie genres, actors, directors
- Demographic information: Age, location, gender of users

The Challenge: What about new users or movies with no ratings?

Strategies:

- Content-based features: Use movie genres, actors, directors
- Demographic information: Age, location, gender of users
- **Hybrid approaches:** Combine collaborative + content-based

The Challenge: What about new users or movies with no ratings?

Strategies:

- Content-based features: Use movie genres, actors, directors
- Demographic information: Age, location, gender of users
- **Hybrid approaches:** Combine collaborative + content-based
- Popular items: Recommend trending content initially

The Challenge: What about new users or movies with no ratings?

Strategies:

- Content-based features: Use movie genres, actors, directors
- Demographic information: Age, location, gender of users
- **Hybrid approaches:** Combine collaborative + content-based
- Popular items: Recommend trending content initially

The Challenge: What about new users or movies with no ratings?

Strategies:

- Content-based features: Use movie genres, actors, directors
- Demographic information: Age, location, gender of users
- **Hybrid approaches:** Combine collaborative + content-based
- Popular items: Recommend trending content initially

Important: Real-World Solution

Most production systems use hybrid approaches combining multiple signals

Hands-On Understanding

Let's Build Intuition: Small Example

Our 3×3 rating matrix:

$$\mathbf{A} = \begin{bmatrix} 5 & ? & 2 \\ 4 & 4 & ? \\ ? & 5 & 1 \end{bmatrix}$$

Let's Build Intuition: Small Example

Our 3×3 rating matrix:

$$\mathbf{A} = \begin{bmatrix} 5 & ? & 2 \\ 4 & 4 & ? \\ ? & 5 & 1 \end{bmatrix}$$

Goal: Find $\mathbf{W} \in \mathbb{R}^{3 \times 2}$ and $\mathbf{H} \in \mathbb{R}^{2 \times 3}$ such that:

$$\mathbf{A} \approx \mathbf{WH} = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \\ w_{31} & w_{32} \end{bmatrix} \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \end{bmatrix}$$

Let's Build Intuition: Small Example

Our 3×3 rating matrix:

$$\mathbf{A} = \begin{bmatrix} 5 & ? & 2 \\ 4 & 4 & ? \\ ? & 5 & 1 \end{bmatrix}$$

Goal: Find $\mathbf{W} \in \mathbb{R}^{3 \times 2}$ and $\mathbf{H} \in \mathbb{R}^{2 \times 3}$ such that:

$$\mathbf{A} \approx \mathbf{WH} = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \\ w_{31} & w_{32} \end{bmatrix} \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \end{bmatrix}$$

Constraint: Only minimize error on observed entries!

Step-by-Step ALS Solution

Iteration 1: Initialize randomly

$$\mathbf{W}^{(0)} = \begin{bmatrix} 0.5 & 0.3 \\ 0.4 & 0.6 \\ 0.2 & 0.8 \end{bmatrix}, \quad \mathbf{H}^{(0)} = \begin{bmatrix} 1.0 & 0.5 & 0.2 \\ 0.3 & 1.2 & 0.8 \end{bmatrix}$$

Step-by-Step ALS Solution

Iteration 1: Initialize randomly

$$\mathbf{W}^{(0)} = \begin{bmatrix} 0.5 & 0.3 \\ 0.4 & 0.6 \\ 0.2 & 0.8 \end{bmatrix}, \quad \mathbf{H}^{(0)} = \begin{bmatrix} 1.0 & 0.5 & 0.2 \\ 0.3 & 1.2 & 0.8 \end{bmatrix}$$

Update User 1: Only use observed ratings (positions 1,3)

$$\mathbf{y}_1 = [5, 2]^T \tag{4}$$

$$\mathbf{X}_{1} = \begin{bmatrix} 1.0 & 0.3 \\ 0.2 & 0.8 \end{bmatrix} \text{ (columns 1,3 of } \mathbf{H}^{(0)T} \text{)}$$
 (5)

Step-by-Step ALS Solution

Iteration 1: Initialize randomly

$$\mathbf{W}^{(0)} = \begin{bmatrix} 0.5 & 0.3 \\ 0.4 & 0.6 \\ 0.2 & 0.8 \end{bmatrix}, \quad \mathbf{H}^{(0)} = \begin{bmatrix} 1.0 & 0.5 & 0.2 \\ 0.3 & 1.2 & 0.8 \end{bmatrix}$$

Update User 1: Only use observed ratings (positions 1,3)

$$\mathbf{y}_1 = [5, 2]^T \tag{4}$$

$$\mathbf{X}_{1} = \begin{bmatrix} 1.0 & 0.3 \\ 0.2 & 0.8 \end{bmatrix} \text{ (columns 1,3 of } \mathbf{H}^{(0)T} \text{)}$$
 (5)

Solve: $\mathbf{w}_1^{(1)} = \mathsf{LS}(\mathbf{X}_1, \mathbf{y}_1)$

Continue for all users and movies...

Answer this!

You're Netflix's lead ML engineer. You have:

- 200M users, 15K movies
- 20B ratings (0.67% filled)
- Need real-time recommendations
- New users/movies arrive daily

Answer this!

You're Netflix's lead ML engineer. You have:

- 200M users, 15K movies
- 20B ratings (0.67% filled)
- Need real-time recommendations
- New users/movies arrive daily

Design your recommendation system:

1. Which algorithm: ALS or SGD? Why?

Answer this!

You're Netflix's lead ML engineer. You have:

- 200M users, 15K movies
- 20B ratings (0.67% filled)
- Need real-time recommendations
- New users/movies arrive daily

- 1. Which algorithm: ALS or SGD? Why?
- 2. What rank r would you choose?

Answer this!

You're Netflix's lead ML engineer. You have:

- 200M users, 15K movies
- 20B ratings (0.67% filled)
- · Need real-time recommendations
- · New users/movies arrive daily

- 1. Which algorithm: ALS or SGD? Why?
- 2. What rank r would you choose?
- 3. How to handle new users?

Answer this!

You're Netflix's lead ML engineer. You have:

- 200M users, 15K movies
- 20B ratings (0.67% filled)
- · Need real-time recommendations
- New users/movies arrive daily

- 1. Which algorithm: ALS or SGD? Why?
- 2. What rank r would you choose?
- 3. How to handle new users?
- 4. How to handle the scale?

Answer this!

You're Netflix's lead ML engineer. You have:

- 200M users, 15K movies
- 20B ratings (0.67% filled)
- · Need real-time recommendations
- New users/movies arrive daily

- 1. Which algorithm: ALS or SGD? Why?
- 2. What rank r would you choose?
- 3. How to handle new users?
- 4. How to handle the scale?

Answer this!

You're Netflix's lead ML engineer. You have:

- 200M users. 15K movies
- 20B ratings (0.67% filled)
- · Need real-time recommendations
- New users/movies arrive daily

Design your recommendation system:

- 1. Which algorithm: ALS or SGD? Why?
- 2. What rank r would you choose?
- 3. How to handle new users?
- 4. How to handle the scale?

Suggested Solution:

Summary and Key Takeaways

1. **Sparsity** ⇒ **Factorization**: Sparse matrices can be approximated by low-rank factorizations

- 1. **Sparsity** ⇒ **Factorization**: Sparse matrices can be approximated by low-rank factorizations
- 2. Latent Features: Users and items characterized by hidden factors

- 1. **Sparsity** ⇒ **Factorization**: Sparse matrices can be approximated by low-rank factorizations
- Latent Features: Users and items characterized by hidden factors
- 3. Bilinear Problem: Non-convex jointly, convex individually

4. Scale Matters: Algorithm choice depends on data size

- 4. Scale Matters: Algorithm choice depends on data size
- 5. **Real-World Complexity**: Need regularization, bias terms, cold start solutions

- 4. Scale Matters: Algorithm choice depends on data size
- 5. **Real-World Complexity**: Need regularization, bias terms, cold start solutions

- 4. Scale Matters: Algorithm choice depends on data size
- 5. **Real-World Complexity**: Need regularization, bias terms, cold start solutions

The Mathematical Beauty:

 $\begin{tabular}{ll} Collaborative Filtering = Matrix Factorization = Dimensionality Reduct \\ \end{tabular}$

Non-negative Matrix Factorization (NMF):

Non-negative Matrix Factorization (NMF):

Definition: NMF Constraint

All factors must be non-negative: $\mathbf{W} \geq 0, \mathbf{H} \geq 0$

Non-negative Matrix Factorization (NMF):

Definition: NMF Constraint

All factors must be non-negative: $\mathbf{W} \ge 0, \mathbf{H} \ge 0$

Why this matters:

Factors represent "parts" or "components"

Non-negative Matrix Factorization (NMF):

Definition: NMF Constraint

All factors must be non-negative: $\mathbf{W} \geq 0, \mathbf{H} \geq 0$

Why this matters:

- Factors represent "parts" or "components"
- No negative contributions o interpretable

Non-negative Matrix Factorization (NMF):

Definition: NMF Constraint

All factors must be non-negative: $\mathbf{W} \geq 0, \mathbf{H} \geq 0$

Why this matters:

- · Factors represent "parts" or "components"
- No negative contributions o interpretable
- Example: Genre weights are always positive

Non-negative Matrix Factorization (NMF):

Definition: NMF Constraint

All factors must be non-negative: $\mathbf{W} \geq 0, \mathbf{H} \geq 0$

Why this matters:

- · Factors represent "parts" or "components"
- No negative contributions o interpretable
- Example: Genre weights are always positive

Non-negative Matrix Factorization (NMF):

Definition: NMF Constraint

All factors must be non-negative: $\mathbf{W} \geq 0, \mathbf{H} \geq 0$

Why this matters:

- · Factors represent "parts" or "components"
- No negative contributions o interpretable
- · Example: Genre weights are always positive

Example: Movie Example

If factor 1 = "Action-ness", then $h_{1j} \ge 0$ means movie j has some amount of action (never "negative action")

Extensions: Deep Learning Approaches

Deep Matrix Factorization:

Extensions: Deep Learning Approaches

Deep Matrix Factorization: Limitation of linear factorization:

$$\hat{a}_{ij} = \mathbf{w}_i^T \mathbf{h}_j$$
 (only linear interactions)

Extensions: Deep Learning Approaches

Deep Matrix Factorization: Limitation of linear factorization:

$$\hat{a}_{ij} = \mathbf{w}_i^T \mathbf{h}_j$$
 (only linear interactions)

Deep learning solution:

$$\hat{a}_{ij} = f_{NN}(\mathbf{w}_i, \mathbf{h}_j)$$

where f_{NN} is a neural network

Deep Matrix Factorization:

Limitation of linear factorization:

$$\hat{a}_{ij} = \mathbf{w}_i^T \mathbf{h}_j$$
 (only linear interactions)

Deep learning solution:

$$\hat{a}_{ij} = f_{NN}(\mathbf{w}_i, \mathbf{h}_j)$$

where f_{NN} is a neural network

Key Points:

Captures complex, non-linear user-item interaction patterns!

Deep Matrix Factorization:

Limitation of linear factorization:

$$\hat{a}_{ij} = \mathbf{w}_i^T \mathbf{h}_j$$
 (only linear interactions)

Deep learning solution:

$$\hat{a}_{ij} = f_{NN}(\mathbf{w}_i, \mathbf{h}_j)$$

where f_{NN} is a neural network

Key Points:

Captures complex, non-linear user-item interaction patterns!

Examples:

Neural Collaborative Filtering

Deep Matrix Factorization:

Limitation of linear factorization:

$$\hat{a}_{ij} = \mathbf{w}_i^T \mathbf{h}_j$$
 (only linear interactions)

Deep learning solution:

$$\hat{a}_{ij} = f_{NN}(\mathbf{w}_i, \mathbf{h}_j)$$

where f_{NN} is a neural network

Key Points:

Captures complex, non-linear user-item interaction patterns!

Examples:

- Neural Collaborative Filtering
- AutoRec (Autoencoder-based)

Deep Matrix Factorization:

Limitation of linear factorization:

$$\hat{a}_{ij} = \mathbf{w}_i^T \mathbf{h}_j$$
 (only linear interactions)

Deep learning solution:

$$\hat{a}_{ij} = f_{NN}(\mathbf{w}_i, \mathbf{h}_j)$$

where f_{NN} is a neural network

Key Points:

Captures complex, non-linear user-item interaction patterns!

Examples:

- Neural Collaborative Filtering
- AutoRec (Autoencoder-based)
- Deep Factorization Machines

Extensions: Advanced Interaction Modeling

Factorization Machines: Handle multi-way interactions

Extensions: Advanced Interaction Modeling

Factorization Machines: Handle multi-way interactions

Example: Beyond User-Movie

Traditional: User × Movie

FM: User \times Movie \times Time \times Device \times Location \times Weather

Extensions: Advanced Interaction Modeling

Factorization Machines: Handle multi-way interactions

Example: Beyond User-Movie

Traditional: User × Movie

FM: User \times Movie \times Time \times Device \times Location \times Weather

Key Points:

Enable richer context-aware recommendations

Variational Autoencoders:

Probabilistic approach with uncertainty estimates

Variational Autoencoders:

- Probabilistic approach with uncertainty estimates
- Can generate diverse, novel recommendations

Variational Autoencoders:

- Probabilistic approach with uncertainty estimates
- Can generate diverse, novel recommendations

Variational Autoencoders:

- Probabilistic approach with uncertainty estimates
- · Can generate diverse, novel recommendations

Graph Neural Networks:

Model interactions as graph structure

Variational Autoencoders:

- Probabilistic approach with uncertainty estimates
- Can generate diverse, novel recommendations

Graph Neural Networks:

- · Model interactions as graph structure
- Examples: GraphRec, NGCF, LightGCN

Extensions: Exploration and Real-World Applications

Multi-armed Bandits: Balance exploration vs exploitation

Extensions: Exploration and Real-World Applications

Multi-armed Bandits: Balance exploration vs exploitation

Important: The Dilemma

Recommend known good items vs explore new possibilities?

Extensions: Exploration and Real-World Applications

Multi-armed Bandits: Balance exploration vs exploitation

Important: The Dilemma

Recommend known good items vs explore new possibilities?

Key Points:

Balance accuracy with discovery!

Matrix factorization is everywhere:

• E-commerce: Amazon recommendations

- E-commerce: Amazon recommendations
- Music streaming: Spotify Discover Weekly

- E-commerce: Amazon recommendations
- Music streaming: Spotify Discover Weekly
- Social media: Facebook friend suggestions

- E-commerce: Amazon recommendations
- Music streaming: Spotify Discover Weekly
- Social media: Facebook friend suggestions
- Advertising: Targeted ads

- E-commerce: Amazon recommendations
- Music streaming: Spotify Discover Weekly
- Social media: Facebook friend suggestions
- Advertising: Targeted ads

Matrix factorization is everywhere:

- E-commerce: Amazon recommendations
- Music streaming: Spotify Discover Weekly
- Social media: Facebook friend suggestions
- Advertising: Targeted ads

Key Points:

Same principles apply across domains!

Pop Quiz #4: Matrix Factorization Fundamentals

Answer this!

True or False?

- 1. Matrix factorization can only work with explicit ratings
- 2. ALS always converges to the global optimum
- 3. A rank-1 factorization means all users have identical preferences

Pop Quiz #4: Answers - Fundamentals

Answer this!

Answers:

- 1. False Works with implicit feedback too
- 2. False Converges to local optimum only
- 3. False Rank-1 means one pattern, not identical

Pop Quiz #5: Advanced Topics

Answer this!

True or False?

- Adding regularization always improves recommendations
- 2. SGD is better than ALS for all applications

Bonus: What are the main trade-offs between ALS and SGD?

Pop Quiz #5: Answers - Advanced Topics

Answer this!

Answers:

- 1. False Too much regularization causes underfitting
- 2. False Choice depends on data scale and needs

Bonus: ALS: Fast, parallel. SGD: Online, low memory.