## COMP 6721 Applied Artificial Intelligence (Winter 2022)

## Worksheet #5: Neural Networks

**Perceptron.** Calculate your first neuron activation for the *Perceptron* (only 100 billion–1 more to go!):



Activation function:

$$f(\vec{x}) = \begin{cases} 1, & \text{if } \vec{x} \cdot \vec{w} \ge \text{threshold} \\ 0, & \text{otherwise} \end{cases}$$

(use a threshold of 0.55):  $f(\vec{x}) =$ 

**Perceptron Learning.** Ok, so for the first training example, the perceptron did not produce the right output. To learn the correct result, it has to adjust the weights:  $\Delta w = \eta(T-O)$ , where we set  $\eta = 0.05$  (our *learning rate*). T is the expected output and O the output produced by the perceptron. Remember to only update weights for *active* connections (i.e., with non-zero input):

|         | Features (x <sub>i</sub> ) |       |             |         | Output         |  |
|---------|----------------------------|-------|-------------|---------|----------------|--|
| Student | 'A' last year?             | Male? | Works hard? | Drinks? | 'A' this year? |  |
| Richard | Yes                        | Yes   | No          | Yes     | No             |  |
| Alan    | Yes                        | Yes   | Yes         | No      | Yes            |  |
| Alison  | No                         | No    | Yes         | No      | No             |  |

| Student | $w_1$ | $w_2$ | $w_3$ | $w_4$ | $f(\vec{x})$ | ok? |
|---------|-------|-------|-------|-------|--------------|-----|
| Richard | 0.2   | 0.2   | 0.2   | 0.2   |              |     |
| Alan    |       |       |       |       |              |     |
| Alison  |       |       |       |       |              |     |

**Delta Rule.** In the generalized delta rule for training the perceptron, we add a bias input that is always one and has its own weight (here  $w_3$ ). Weight changes  $\Delta w_i$  now take the input value  $x_i$  into account. We want the perceptron to learn the two-dimensional data shown on the right:



Assume we use the sign function with a threshold of 0 and a learning rate  $\eta = 0.2$ . The weights are initialized randomly as shown in the table. Apply the generalized delta rule for updating the weights:  $\Delta w_i = \eta(T - O)x_i$ 

| X <sub>1</sub> | $X_2$ | Output |
|----------------|-------|--------|
| 1.0            | 1.0   | 1      |
| 9.4            | 6.4   | -1     |
| 2.5            | 2.1   | 1      |
| 8.0            | 7.7   | -1     |
| 0.5            | 2.2   | 1      |

| Data | $w_1$ | $w_2$ | $w_3$ | $f(\vec{x})$ | ok? |
|------|-------|-------|-------|--------------|-----|
| #1   | 0.75  | 0.5   | -0.6  |              |     |
| #2   |       |       |       |              |     |
| #3   |       |       |       |              |     |
| #4   |       |       |       |              |     |

**Neural Network for XOR.** To learn a non-linearly separable function like XOR, we'll use a neural network with a hidden layer (the weights have been initialized randomly):

$$\begin{array}{c|ccccc} x_1 & x_2 & x_1 \text{ XOR } x_2 \\ \hline 1 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ \end{array}$$

$$O_i = \text{sigmoid}\left(\sum_j w_{ji} x_j\right)$$
$$= \frac{1}{1 + e^{-\left(\sum_j w_{ji} x_j\right)}}$$



Step 1. Compute the output for the three neurons  $O_3, O_4$  and  $O_5$  for the input  $(x_1 = 1, x_2 = 1)$ :  $O_3 = O_5 = O_5$ 

$$\delta_k \leftarrow g'(x_k) \times \operatorname{Err}_k = O_k(1 - O_k) \times (O_k - T_k)$$

starting from the output neuron  $O_5$ :  $\delta_5 = O_5(1-O_5) \times (O_5-T_5) =$ \_\_\_\_\_\_

**Step 3.** Now we calculate the error terms for the hidden layer:

$$\delta_h \leftarrow g'(x_h) \times \operatorname{Err}_h = O_k(1 - O_k) \times \sum_{k \in \text{outputs}} w_{kh} \delta_k$$

For the two neurons (3), (4) in the hidden layer:

- $\delta_3 = O_3(1 O_3)\delta_5 w_{35} =$ \_\_\_\_\_\_
- $\delta_4 = O_4(1 O_4)\delta_5 w_{45} =$ \_\_\_\_\_\_

Step 4. Now we can update our weights using

$$w_{ij} \leftarrow w_{ij} + \Delta w_{ij}$$
, where  $\Delta w_{ij} = -\eta \delta_j x_i$ 

Here, we assume a constant learning rate  $\eta = 0.1$ :

- $\Delta w_{14} =$ \_\_\_\_\_\_\_
- $\Delta w_{24} =$  \_\_\_\_\_\_\_
- $\Delta w_{45} =$  \_\_\_\_\_\_
- $\Delta\Theta_5 =$

And finally update the weights  $(w_{ij} \leftarrow w_{ij} + \Delta w_{ij})$ :

- $\bullet \ w_{14} = w_{14} + \Delta w_{14} = \underline{\hspace{1cm}}$
- $\bullet \ w_{24} = w_{24} + \Delta w_{24} = \underline{\hspace{2cm}}$
- $\bullet \ w_{45} = w_{45} + \Delta w_{45} = \underline{\hspace{1cm}}$
- $\bullet \ \Theta_5 = \Theta_5 + \Delta\Theta_5 = \underline{\hspace{1cm}}$