Lesson	Ob	iectiv	'es
		,	

- 1. Modeling with Linear Functions
- 2. Applications with Linear Models
- 3. Piecewise-Defined (Linear) Functions

A. Modeling with Linear Functions

To model a quantity that is changing at a constant rate with f(x) = mx + b, the following formula may be used:

f(x) = (rate of char	nge,	_amount, or)	_+ (amount
	constant c graph of <i>f</i> .	of change (chan	ging amount) co	orrespon	ds to the	eof
• The	amour	nt (starting or fi	xed amount) co	rrespond	ls to the	intercept.
	PLE: Brand C soup contest the number of mi		_			<u>-</u>
Let	x = your var f(x) =				tracking	?
Noti Beca Also	ntify the ice the initial (or start ause we are counting , with zero cans of so t's reasonable to ass	ting) amount is x cans of soup oup, there's also	not explicitly sta , there isn't fewon	ated in ther than _ dium.	nis probl c	em.
Sinc INCI	ntify the e each can of soup ha REASES by that amou changing amount, th	as m _i nt, 889 mg, for	g of sodium, the each can of sou	n the tot		
	te the					
f(x)) =	or more	simply:			

B	Ann	lications	with	Linear	M	ode	15
υ.			VVICII	LITICUT	1 V I	Ouc	ı

- **EXAMPLE:** A 900-gallon tank is initially full of water and is being drained at a rate of 30 gallons per minute. Complete parts (a) through (d) below. [2.4.19]
 - (a) Write a linear function W that gives the gallons of water in the tank after t minutes.
 - A. Define your variables:

Let t = _____ in minutes Let W(t) = after t minutes

B. Identify initial amount:

When $t = ____$, draining hasn't started yet, so tank is full at 900 gallons. Initial amount = _____ (keywords: 900-gallon tank is initially _____)

C. Identify changing amount (rate):

The tank is _____ at a ____ of ___ gallons per minute.

Changing amount = ____ (keyword: draining, which is _____)

D. Write the formula: $f(x) = (\text{changing amount}) \cdot x + \text{initial amount}$ So, the formula is:

(b) How much water is in the tank after 4 minutes?

Use the formula you just found to compute this.

After 4 minutes means t =____:

Use W(t) = -30t + 900, with t = 4.

W(4) = _____ = ____ = ____

So, after 4 minutes, there are gallons of water in the tank.

(c) Graph function *W* and identify and interpret the intercepts. Choose the correct graph below.

Recall from previous page that the function is: W(t) = -30t + 900

The t-intercept is where _____ (same thing as y) must be zero (that is ____ = 0).

Refer to the formula found earlier:

$$W(t) = -30t + 900$$

Set W(t) equal to zero to find the t-intercept.

$$\underline{} = -30t + 900$$

Now, solve the equation for *t*.

$$\frac{-900}{-100} = \frac{-30}{100}t$$

So, the t-intercept is at (0).

$$= t$$

The **W-intercept** is where ___ = 0. Time = zero sec. (_____amount of water in tank).

Refer to the formula found earlier:

$$W(t) = -30t + 900$$

The *W*-intercept (or the *y*-intercept, *b*) is:

(d) Find the domain of W. (Use set-builder notation)

Remember that domain is ____, but with this function, the domain involves ____ (time).

The tank _____ draining at t = 0 minutes and it _____ draining at t = 30 minutes.

So, the domain is: {t| ______} }. (the time is ______ zero and 30 minutes)

C. Piecewise-Defined (Linear) Functions

- **EXAMPLE:** The graph of y = f(x) gives the speed limit y along a rural highway x miles from its starting point. [2.4.27]
 - (a) What are the maximum and minimum speed limits along this stretch of highway?
 - (b) Estimate the miles of highway with a speed limit of 45 miles per hour.
 - (c) Evaluate f(9), f(24), and f(3).
 - (d) At what x-values is the graph discontinuous? Interpret each discontinuity.

(a) What are the maximum and minimum speed limits along this stretch of highway?

Maximum speed limit = ____mph

Minimum speed limit = mg

(b) Estimate the miles of highway with a speed limit of 45 miles per hour.

Estimated miles of highway with speed of 45 mph = ____ pieces × ____ miles = ____ miles

(c) Evaluate f(9), f(24), and f(3).

Use the _____ dot, not the open dot!

The _____-coordinate when x = 9

$$f(24) =$$

The _____-coordinate when x = 24

$$f(3) =$$

The -coordinate when x = 3

(d) At what x-values is the graph discontinuous? Interpret each discontinuity.

discontinuous: where there is a "______" in the graph, with another value _____ it. If you were to graph by hand, you need to ______ your pencil to continue the graph.

The graph is discontinuous at x =

(NOTE: it is NOT discontinuous at x =_____ because there is nothing following it)

- **EXAMPLE:** The graph of y = f(x) shows the amount of water y in thousands of gallons remaining in a swimming pool after x days. [2.4.32]
 - (a) Estimate the initial and final amounts of water in the pool. (Type a whole number.)
 - (b) When did the amount of water in the pool remain constant?
 - (c) Approximate f(2) and f(4).
 - (d) At what rate was water being drained from the pool when $3 \le x \le 5$?

(a) Estimate the initial and final amounts of water in the pool. (Type a whole number.)

Recall that the initial amount is the *y*-intercept, *b*, so find that location in the graph:

The initial amount of water in the pool was_____ gallons.

The final amount is the number of gallons seen at the end (far right) of the graph:

The final amount of water in the pool was gallons.

(b) When did the amount of water in the pool remain constant?

In the graph, a **constant** amount is _______ because it isn't changing.

Choose the correct answer below

- **A.** The amount of water in the pool was constant when $0 \le x \le 2$ and $2 \le x \le 4$.
- **B.** The amount of water in the pool was constant when $0 \le x \le 1$ and $2 \le x \le 4$.
- **C.** The amount of water in the pool was constant when $0 \le x \le 1$ and $2 \le x \le 3$.
- **D.** The amount of water in the pool was constant when $0 \le x \le 2$ and $2 \le x \le 3$.

(c) Approximate f(2) and f(4).

f(2) means find ___when ___ = 2. (Use the graph) f(2) = _____ This means that after 2 days, there are about 50,000 gallons in the pool. f(4) means find ___ when ___ = 4. (Use the graph) f(4) =

This means that after 4 days, there are about 45,000 gallons in the pool.

(d) At what rate was water being drained from the pool when $3 \le x \le 5$?

When $3 \le x \le 5$, that's between days 3 and 5. The **rate** is its **slope**.

$$rate = slope = \frac{rise}{run} = \frac{ri$$

gallons day

The water drained at a rate of gallons per day when $3 \le x \le 5$.

	EXAMPLE:	For the	following	function	find the	values	Ωf
•	EAMIVIPLE.	roi tile	IOHOWINE	TUITCHOIL	illia tile	values	UΙ

(a)
$$G(-18)$$
 (b) $G(3)$ (c) $G(-1)$

(b)
$$G(3)$$

(c)
$$G(-1)$$

[*Bittinger 2.2.97]

$$G(x) = \begin{cases} x - 4, & \text{if } x \le -1 \\ x, & \text{if } x > -1 \end{cases}$$
 • • These are _____ restrictions

ALWAYS start here first with

(a)
$$G(-18)$$
 means $\underline{\hspace{1cm}} = -18$. $\underline{\hspace{1cm}}$ it in the $\underline{\hspace{1cm}}$ (inequality) part first.

(a)
$$G(-18)$$
 means $\underline{\hspace{1cm}} = -18$. _____ it in the _____ (inequality) part first.

$$G(x) = \begin{cases} x - 4, & \text{if } x \le -1 \\ x, & \text{if } x > -1 \end{cases}$$

$$-18 \stackrel{?}{\leq} -1 \qquad -\text{use the } \underline{\hspace{1cm}} \text{row to plug in } x = -18$$

$$-18 \stackrel{?}{>} -1 \qquad -\text{do} \underline{\hspace{1cm}} \text{use the second row for } x = -18$$

Using the FIRST row of the function, G(x) =_____ G(-18) =____ =____

$$G(x) =$$

$$G(-18) = \underline{} = \underline{}$$

(b)
$$G(3)$$
 means $\underline{\hspace{1cm}} = 3$. **Test it** in the **domain** (inequality) part first.

$$G(x) = \begin{cases} x - 4, & \text{if } x \le -1 \\ x, & \text{if } x > -1 \end{cases}$$

$$3 \stackrel{?}{\le} -1 \qquad -\text{do} \qquad \text{use the first row for } x = -18$$

$$3 \stackrel{?}{>} -1 \qquad -\text{use the} \qquad \text{row to plug in } x = -18$$

Using the SECOND row of the function, G(x) =

$$G(3) =$$

(c)
$$G(-1)$$
 means $x = -1$. Test it in the domain (inequality) part first.

$$G(x) = \begin{cases} x - 4, & \text{if } x \le -1 \\ x, & \text{if } x > -1 \end{cases}$$

$$-1 \stackrel{?}{\le} -1 \qquad \text{use the } \text{row to plug in } x = -1$$

$$-1 \stackrel{?}{\le} -1 \qquad \text{FALSE-do NOT use the second row for } x = -1$$

Using the FIRST row of the function,
$$G(x) = \underline{\hspace{1cm}}$$

$$G(-1) = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$G(x) = \underline{\hspace{1cm}}$$

$$G(-1) = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

- **EXAMPLE:** The charges for renting a moving van are \$75 for the first 30 miles and \$5 for each additional mile. Assume that a fraction of a mile is rounded up.
 - (i) Determine the cost of driving the van 84 miles.
 - (ii) Find a symbolic representation for a function f that computes the cost of driving the van x miles, where $0 < x \le 100$.

(Hint: Express *f* as a piecewise-defined function)

[*Lial 2.6-30]

[SOLUTION]

(Total = ___ miles) Price
First ___ miles
$$\rightarrow \rightarrow \rightarrow \rightarrow$$
 \$___

Miles remaining:

Total price:

ANSWER:
$$f(x) = \begin{cases} 75 & \text{if } 0 < x \le 30 \\ 75 + 5(x - 30) & \text{if } 30 < x \le 100 \end{cases}$$

Use ____row:
$$f(x) = 75 + 5(x - 30)$$

 $f(84) = 75 + 5(84 - 30)$
 $= 75 + 5(54)$
 $= 75 + 270 = 345

need to use _____ row because x =____ miles

A. \$6570;
$$f(x) = \begin{cases} 75x & \text{if } 0 < x \le 30 \\ 75 + 5(x - 30) & \text{if } 30 < x \le 100 \end{cases}$$

B. \$645;
$$f(x) = \begin{cases} 75 & \text{if } 0 < x \le 30 \\ 75 + 5(x + 30) & \text{if } 30 < x \le 100 \end{cases}$$

c. \$345;
$$f(x) = \begin{cases} 75 & \text{if } 0 < x \le 30 \\ 75 + 5(x - 30) & \text{if } 30 < x \le 100 \end{cases}$$

D. \$645;
$$f(x) = \begin{cases} 75 & \text{if } 0 < x \le 30 \\ 75 + 5(x - 30) & \text{if } 30 < x \le 100 \end{cases}$$

Sources Used:

- 1. Pearson MyLab Math College Algebra with Integrated Review, 12th Edition, Lial
- 2. Pearson MyLab Math College Algebra with Modeling and Visualization, 6th Edition, Rockswold
- 3. Pearson MyLab Math Intermediate Algebra: Concepts and Applications, 10th Edition, Bittinger