对策论

对策论研究竞争性活动,小至游戏,大至商业竞争乃至战争,这类活动具有特点:

- 竞争对手能够采取的各种策略是清楚的;
- 各方一旦选定自己的策略, 竞争的结果就清楚了;
- 每方都试图选取对自己最有利的策略,以便在竞争中获得最好的结果,

称为对策活动。

对策活动的三个基本要素

局中人: 对策的参与者,有权决定自己的行动方案, 可以是两个,也可以是多个。

策略集:可供局中人采用的可行的行动方案全体,可以是有限的,也可以是无限的。

各局中人选定的策略形成一个局势。

赢得或支付函数: 当一个局势形成后,对策的结果 也就确定了,这个结果可以量化 为各局中人的赢得或支付函数。

对策的分类

按局中人的个数:二人对策、多人对策 按各局中人赢得函数的代数和:零和对策、非零和对策 按局中人的策略个数:有限对策、无限对策 按各局中人之间是否允许合作:合作对策、非合作对策

矩阵对策 (二人有限零和对策)

局中人: I、II

I 的策略集:
$$S_1 = \{\alpha_1, \alpha_2, \dots, \alpha_m\}$$

II 的策略集:
$$S_2 = \{\beta_1, \beta_2, \dots, \beta_n\}$$

局势: (α_i, β_i)

局中人 I 的赢得矩阵 $A = (a_{ij})_{m \times n}$

局中人 II 的赢得矩阵 $B = -A = (-a_{ij})_{m \times n}$

矩阵对策简记为:
$$G = \{I, II; S_1, S_2; A\}$$
 或 $G = \{S_1, S_2; A\}$

纯策略对策:局中人只选定某个策略。

例. 乒乓球赛排阵

甲、乙两队进行乒乓球团体赛,双方均可排出三种不同阵容,根据以往记录,两队不同阵容的交手结果(甲队的得分数)如下:

甲乙	β_1	β_2	β_3	
α_1	3	1	2	问: 两队各排什么阵容
α_2	6	1 0	- 3	最稳妥?
α_3	- 5	- 1	4	

两队应采取所谓的"理智行为",即从最坏的情形中争取最好的结果。

对于甲队,采用 α_1 时,最少得分 $\min\{3,1,2\}=1$ 采用 α_2 时,最少得分 $\min\{6,0,-3\}=-3$ 采用 α_3 时,最少得分 $\min\{-5,-1,4\}=-5$

甲队最好的结果是得分 $\max\{1,-3,-5\}=1$,即采用策略 α_1 。

即采用策略 β_{γ} 。

对于乙队,采用 β_1 时,最多失分 $\max\{3,6,-5\}=6$ 采用 β_2 时,最多失分 $\max\{1,0,-1\}=1$ 采用 β_3 时,最多失分 $\max\{2,-3,4\}=4$ 乙队最好的结果是失分 $\min\{6,1,4\}=1$,

注: 若甲队采用 α_1 ,则乙队必须采用 β_2 ,否则甲队的赢得会更大;另一方 面,若乙队采用 β_2 ,则甲队必须采用 α_1 ,否则甲队的赢得将减 少,因此, α_1 、 β_2 分别是甲乙两队的最稳 妥策略。

一般地,对于矩阵对策 $G = \{S_1, S_2; A\}$,若有 i^*, j^* 使得 $\max_i \min_j a_{ij} = \min_j \max_i a_{ij} = a_{i^*j^*}$

记 $V_G = a_{i^*j^*}$,称 V_G 为对策 G 的值,局势 $(\alpha_{i^*}, \beta_{j^*})$ 为 对策 G 的鞍点(平衡点,纯策 略意义下的解), $\alpha_{i^*}, \beta_{j^*}$ 分别是局中人 I、II 的最优纯策略。

注: 并非所有矩阵对策在纯策略意义下都有解。

例. 田忌齐王赛马

田忌的 齐王 策略 的策略	β ₁ (上中下)	β ₂ (上下中)	β ₃ (中上下)	β ₄ (中下上)	β ₅ (下上中)	β ₆ (下中上)	
α_1 (上中下)	3	1	1	1	- 1	1	-1
$lpha_2$ (上下中)	1	3	1	1	1	- 1	-1
$lpha_3$ (中上下)	1	- 1	3	1	1	1	-1
$lpha_4$ (中下上)	- 1	1	1	3	1	1	-1
$lpha_5$ (下上中)	1	1	1	- 1	3	1	-1
$lpha_6$ (下中上)	1	1	- 1	1	1	3	-1
	3	3	3	3	3	3	

定理1: 矩阵对策在纯策略意义下有解的充要条件:

存在纯局势 $(\alpha_{i*}, \beta_{i*})$ 使得对一切 i, j 均有

$$a_{ij^*} \leq a_{i^*j^*} \leq a_{i^*j}$$

 $(a_{i^*j^*}$ 是 j^* 列的最大值, i^* 行的最小值)

证明: 设 $\max_{i} \min_{j} a_{ij} = \min_{j} a_{i*j}$, $\min_{j} \max_{i} a_{ij} = \max_{i} a_{ij*}$,

曲 $\max_{i} \min_{j} a_{ij} = \min_{j} a_{i^*j} \le a_{i^*j^*} \le \max_{i} a_{ij^*} = \min_{j} \max_{i} a_{ij}$ 易证结论成立。

例 求矩阵对策的解,设矩 阵对策 $G = \{S_1, S_2; A\}$,其中 $S_1 = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}, S_2 = \{\beta_1, \beta_2, \beta_3, \beta_4\}$.赢得矩阵为

II的 策略 I的策略	$oldsymbol{eta}_1$	$oldsymbol{eta}_2$	$oldsymbol{eta}_3$	$oldsymbol{eta}_4$	min
$oldsymbol{lpha}_1$	6	5	6	5	5
$oldsymbol{lpha}_2$	1	4	2	- 1	-1
$oldsymbol{lpha}_3$	8	5	7	5	5
$oldsymbol{lpha}_4$	0	2	6	2	0
max	8	5	7	5	

当矩阵对策的解不唯一时,具有可交换性:

若 $(\alpha_{i_1}, \beta_{j_1})$ 、 $(\alpha_{i_2}, \beta_{j_2})$ 皆是对策 G 的解,则 $(\alpha_{i_1}, \beta_{j_2})$ 、 $(\alpha_{i_2}, \beta_{j_1})$ 也是对策 G 的解,即局中人可任意选取最 优纯策略,不依赖于对方的策略。

混合策略对策: 局中人按某种概率分布选用各个策略。

设局中人 I 以概率 x_i 采用策略 α_i , 即

$$0 \le x_i \le 1, \quad \sum_{i=1}^m x_i = 1$$

局中人 II 以概率 y_j 采用策略 β_j , 即

$$0 \le y_j \le 1, \quad \sum_{j=1}^n y_j = 1$$

称 $x = (x_1, x_2, \dots, x_m)^T$ 为局中人 I 的一个混合策略, $y = (y_1, y_2, \dots, y_n)^T$ 为局中人 II 的一个混合策略, (x, y) 为一个(混合)局势。

局中人 I 的期望赢得
$$E(x,y) = x^T A y = \sum_{i=1}^m \sum_{j=1}^n a_{ij} x_i y_j$$

- 当局中人 I 采用混合策略 x 时,最不利的期望赢得是 $\min_{v} E(x,y)$
- 因此 I 可保证自己的期望赢得不少于 $\max \min_{x} E(x,y)$

同样,局中人 II 可保证自己的期望支付不多于 min max E(x,y)

y x

一般地, 若有局势 (x*, y*) 使得

$$E(x^*, y^*) = \max_{x} \min_{y} E(x, y) = \min_{y} \max_{x} E(x, y)$$

称 (x^*, y^*) 为对策 $G = (S_1, S_2; A)$ 在混合策略意义下的解(鞍点), x^*, y^* 为 I、II 的最优混合策略。

矩阵对策在混合策略意义下有解的充要条件:

存在局势 x^*, y^* 使得对一切 x, y 有 $E(x, y^*) \le E(x^*, y^*) \le E(x^*, y)$.

设 (x^*, y^*) 为对策 $G = (S_1, S_2; A)$ 在混合策略意义下的解(鞍点), x^*, y^* 为 I、II 的最优混合策略。

$$E(x^*, y^*) = \max_{x} \min_{y} E(x, y) = \min_{y} E(x^*, y)$$

$$E(x^*, y^*) = \min_{y} \max_{x} E(x, y) = \max_{x} E(x, y^*)$$

$$E(x,y) = \sum_{i} \sum_{j} a_{ij} x_{i} y_{j} = xAy$$

当局中人 I 取纯策略 α_i 时,其期望赢得为

$$E(i, y) = e_i^T Ay = \sum_{j=1}^n a_{ij} y_j$$

其中 e_i 为 m 维单位向量;

当局中人 II 取纯策略 β_j 时,其期望赢得为

$$E(x,j) = x^T A \overline{e}_j = \sum_{i=1}^m a_{ij} x_i$$

其中 \bar{e}_i 为 n 维单位向量。

$$E(x,y) = \sum_{i} \sum_{j} a_{ij} x_{i} y_{j} = \sum_{i} x_{i} E(i,y) = \sum_{j} y_{j} E(x,j)$$

定理: 矩阵对策在混合策略意义下有解的充要条件:

存在局势 x^* , y^* 使得对一切 $i=1,\dots,m$, $j=1,\dots,n$ 有

$$E(i, y^*) \le E(x^*, y^*) \le E(x^*, j)$$
.

证明:必要性由上一结论直接可得。

充分性. 任给 x, y,

$$E(x, y^*) = \sum_{i=1}^m x_i e_i^T A y^* \le E(x^*, y^*) \sum_{i=1}^m x_i = E(x^*, y^*),$$

$$E(x^*, y) = (x^*)^T A \sum_{j=1}^n \overline{e}_j y_j \ge E(x^*, y^*) \sum_{j=1}^n y_j = E(x^*, y^*),$$

同样由上一结论可得。

矩阵对策的基本定理:

任何矩阵对策一定在混合策略意义下有解。

证明: 只需证明存在 x^*, y^* 使得对一切 i, j 有 $E(i, y^*) \le E(x^*, y^*) \le E(x^*, j)$.

考虑两个线性规划:

(P) (D)

max
$$w$$
 min v

s.t. $\sum_{i=1}^{m} a_{ij} x_i \ge w$, $\forall j$ s.t. $\sum_{j=1}^{n} a_{ij} y_j \le v$, $\forall i$

$$\sum_{i=1}^{m} x_i = 1$$

$$x_i \ge 0, \ \forall i$$

$$y_j \ge 0, \ \forall j$$

(P) 和 (D) 互为对偶问题,且

$$(P)$$
 有可行解 $x = e_1$, $w = \min_j a_{1j}$

$$(D)$$
 有可行解 $y = \overline{e}_1$, $v = \max_i a_{i1}$

因此,(P) 和 (D) 皆有最优解,设为 (x^*, w^*) $, (y^*, v^*)$,则

$$E(i, y^*) \le v^* = w^* \le E(x^*, j), \quad \forall i, j.$$

又

$$E(x^*, y^*) = \sum_{i} E(i, y^*) x_i^* \le v^* \sum_{i} x_i^* = v^*$$

$$E(x^*, y^*) = \sum_{j} E(x^*, j) y_j^* \ge v^* \sum_{j} y_j^* = v^*$$

即
$$E(x^*,y^*)=v^*$$
。

矩阵对策的解法

优超原理:

对于矩阵对策 $G = \{S_1, S_2; A\}$,若对一切 $j = 1, \dots, n$ 有 $a_{i_1 j} \geq a_{i_2 j}$,

称纯策略 α_{i_1} 优超 α_{i_2} ,因此局中人 I 不必选用 α_{i_2} 。

若对一切 $i = 1, \dots, m$ 有 $a_{ij_1} \leq a_{ij_2}$,

称纯策略 β_{j_1} 优超 β_{j_2} ,因此局中人 II 不必选用 β_{j_2} 。

例.

$$A = \begin{pmatrix} 3 & 2 & 0 & 3 & 0 \\ 5 & 0 & 2 & 5 & 9 \\ 7 & 3 & 9 & 5 & 9 \\ 4 & 6 & 8 & 7 & 6 \\ 6 & 0 & 8 & 8 & 3 \end{pmatrix}$$

$$eta_1$$
 优超 eta_3 $egin{pmatrix} 7 & 3 \ 4 & 6 \ 6 & 0 \end{pmatrix}$ $egin{pmatrix} lpha_3$ 优超 $lpha_5$ $\begin{pmatrix} 4 & 6 \ 6 & 0 \end{pmatrix}$

$$\alpha_3$$
优超 α_5 α_5 α_5 α_5 α_6

组合优超:

若对一切 $j=1,\dots,n$ 有

$$\sum_{s=1}^t \lambda_s a_{i_s j} \geq a_{i_{t+1} j}, \quad \sharp \vdash \sum_{s=1}^t \lambda_s = 1, \quad \lambda_1, \dots, \lambda_t \geq 0,$$

则称 $\alpha_{i_1}, \dots, \alpha_{i_t}$ 组合优超 $\alpha_{i_{t+1}}$ 。

若对一切 $i=1,\dots,m$ 有

$$\sum_{s=1}^{t} \mu_s a_{ij_s} \leq a_{ij_{t+1}}, \quad \sharp + \sum_{s=1}^{t} \mu_s = 1, \quad \mu_1, \dots, \mu_t \geq 0,$$

则称 $\beta_{j_1}, \cdots, \beta_{j_t}$ 组合优超 $\beta_{j_{t+1}}$ 。

例.

$$A = \begin{pmatrix} 3 & 2 & 4 & 2 \\ 4 & 3 & 2 & 8 \\ 2 & 4 & 6 & 2 \end{pmatrix}$$

$$\frac{\frac{1}{2}\alpha_2 + \frac{1}{2}\alpha_3 \text{ 优超 } \alpha_1}{2 \quad 4 \quad 6 \quad 2}$$

$$\beta_1$$
 优超 β_4 $\begin{pmatrix} 4 & 3 & 2 \\ 2 & 4 & 6 \end{pmatrix}$

$$\frac{\frac{1}{2}\beta_1 + \frac{1}{2}\beta_3 \text{ 优超 } \beta_2}{\square} \qquad \begin{pmatrix} 4 & 2 \\ 2 & 6 \end{pmatrix}$$

求解矩阵对策 $G = \{S_1, S_2; A\}$ 等价于求解不等式组:

$$\sum_{i=1}^{m} a_{ij} x_{i} \geq v, \quad \forall j$$

$$\sum_{j=1}^{n} a_{ij} y_{j} \leq v, \quad \forall i$$

$$\sum_{i=1}^{m} x_{i} = 1$$

$$\sum_{j=1}^{n} y_{j} = 1$$

$$x_{i} \geq 0, \quad \forall i$$

$$y_{j} \geq 0, \quad \forall j$$

特例:

若存在 v^* 和概率向量 x^*, y^* 使得

$$\sum_{i=1}^{m} a_{ij} x_{i}^{*} = v^{*}, \quad \forall j, \qquad \sum_{j=1}^{n} a_{ij} y_{j}^{*} = v^{*}, \quad \forall i$$

则 (x^*, y^*) 为对策 $G = (S_1, S_2; A)$ 的解, v^* 为对策的值。

2X2对策的解法

例.
$$A = \begin{pmatrix} 7 & 3 \\ 4 & 6 \end{pmatrix}$$

解.
$$\begin{cases} 7x_1 + 4x_2 = v & 7y_1 + 3y_2 = v \\ 3x_1 + 6x_2 = v & 4y_1 + 6y_2 = v \\ x_1 + x_2 = 1 & y_1 + y_2 = 1 \end{cases}$$

$$x_1 = \frac{1}{3}$$
, $x_2 = \frac{2}{3}$, $y_1 = y_2 = \frac{1}{2}$
 $v = 5$

求解矩阵对策 $G = \{S_1, S_2; A\}$ 等价于求解线性规划:

假设每个 $a_{ij} > 0$,否则可对矩阵 A 的每个元素加上 常数 δ 使得 $a_{ij} + \delta > 0$,对策的解不变。

线性规划 (P) 等价于

max

s.t.
$$\sum_{i=1}^{m} a_{ij} \frac{x_i}{w} \ge 1, \quad \forall j$$

$$\sum_{i=1}^{m} \frac{x_i}{w} = \frac{1}{w}$$

$$\frac{x_i}{w} \geq 0$$
, $\forall i$

$$\min \sum_{i=1}^{m} \frac{x_i}{w}$$

s.t.
$$\sum_{i=1}^{m} a_{ij} x_i \ge 1, \quad \forall j$$

$$x_i \geq 0$$
, $\forall i$

$$\frac{x_i}{w} \geq 0, \quad \forall i$$

类似地,线性规划(D)等价于

$$(D') \qquad \max \sum_{j=1}^{n} y_{j}$$

$$s.t. \qquad \sum_{j=1}^{n} a_{ij} y_{j} \le 1, \quad \forall i$$

$$y_{j} \ge 0, \quad \forall j$$

(P')和 (D') 互为对偶问题。设 x^*, y^* 是 (P')和 (D')的最优解, $\sum_{i=1}^m x_i^* = \sum_{j=1}^n y_j^* = \frac{1}{v^*}$,则 (v^*x^*, v^*y^*) 是对策的解, v^* 是对策的值。

例.
$$A = \begin{pmatrix} 7 & 3 \\ 4 & 6 \end{pmatrix}$$

$$(P) \quad \min \quad x_1 + x_2$$

$$s.t. \quad 7x_1 + 4x_2 \ge 1$$

$$3x_1 + 6x_2 \ge 1$$

$$x_1, x_2 \ge 0$$

$$x_1, x_2 \geq 0$$

$$x_1 = \frac{1}{15}, \quad x_2 = \frac{2}{15}$$

$$v* = 5$$
, $x* = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \end{pmatrix}$, $y* = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \end{pmatrix}$

$$(D) \quad \max \quad y_1 + y_2$$

$$s.t. \quad 7y_1 + 3y_2 \le 1$$

$$4y_1 + 6y_2 \le 1$$

$$y_1, y_2 \geq 0$$

$$y_1 = y_2 = \frac{1}{10}$$

$$y* = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$2 \times n$ 或 $m \times 2$ 对策的图解法

例.
$$A = \begin{pmatrix} 2 & 3 & 11 \\ 7 & 5 & 2 \end{pmatrix}$$

设局中人I采取混合策略 $(x_1, 1-x_1)$, $0 \le x_1 \le 1$

当局中人 II 采取策略 β_1 、 β_2 、 β_3 时,局中人 I 的赢得分别是

$$2x_1 + 7(1 - x_1)$$

$$3x_1 + 5(1 - x_1)$$

$$11x_1 + 2(1 - x_1),$$

对应三条直线。

局中人
$$I$$
 按最小最大原则应选择 $x*$ 为最优策略,由

$$3x_1 + 5(1 - x_1) = 11x_1 + 2(1 - x_1) = v$$

 $4x_1 = 3/11, x_2 = 8/11, v = 49/11$

$$2x_1 + 7(1 - x_1)$$

$$3x_1 + 5(1 - x_1)$$

$$11x_1 + 2(1 - x_1)$$

局中人 I 的最优 策略(3/11,8/11)

对策的值 49/11

下面求局中人 II 的最优策略,设 $y^*=(y_1^*,y_2^*,y_3^*)$

由
$$2x_1*+7(1-x_1*)>v*$$
, 得 $y_1*=0$

由
$$x_1^*$$
, $x_2^* > 0$, 得

$$3y_2 * +11y_3 * = 49/11$$

$$5y_2 * + 2y_3 * = 49 / 11$$

$$y_2 * + y_3 * = 1$$

所以 y₂*=9/11, y₃*=2/11