1 Operatori lineari tra spazi vettoriali normati

Definizione: Siano $(V, ||.||_V)$ e $(W, ||.||_W)$ due spazi vettoriali normati. Un operatore lineare da V in W è una funzione $T: V \to W$ tale che

$$T(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 T(v_1) + \lambda_2 T(v_2) \ \forall v_1, v_2 \in V, \ \forall \lambda_1, \lambda_2 \in \mathbb{R}$$

Esempi

1) $V = W = \mathbb{R}^n, T : \mathbb{R}^n \to \mathbb{R}^n$

$$T(v) = A \cdot v$$
, con $A \in \mathcal{M}(n \times n, \mathbb{R})$

2) $V = C^0([a, b])$, fisso $x_0 \in (a, b)$, W = R

$$T: V \to W$$
 definita da $T(f) = f(x_0)$

3) $V = C^1([a,b]), W = C^0([a,b])$

$$T:V\to W$$
 definita da $T(f)=f'$

Osservazione: T operatore lineare $\implies T(0) = 0$

Definizione: $T:V\to W$ op. lineare, si dice continuo se, $\forall v\in V,\, T$ è continuo in v, ovvero:

$$v_n \to v \implies T(v_n) \to T(v)$$

Rispettivamente nella norma di V e W.

Osservazione: Sia $T:V\to W$ op. lineare, allora T è continuo su $V\Longleftrightarrow T$ è continuo in v=0.

Dimostrazione

 (\Longrightarrow) è immediata

(\Leftarrow) Verifichiamo che se la proprietà vale per v=0, vale per v qualsiasi.

Sia v qualsiasi, e sia $v_n \to v$; considero $v_n - v \to 0$, quindi, per ipotesi $T(v_n - v) \to T(0)$

Ovvero $T(v_n) - T(v) \to 0$, cioè $T(v_n) \to T(v)$.

Definizione: Sia T op. lineare: $(V, ||.||_V) \to (W, ||.||_W)$. Si dice che T è limitato se:

$$\exists M > 0$$
 tale che $||T(v)||_W \leq M||v||_V \ \forall v \in V$

ovvero

$$\exists M > 0 \text{ tale che } \frac{\|T(v)\|_W}{\|v\|_V} \le M \ \forall v \in V \setminus \{0\}.$$

$$\exists M>0 \text{ tale che } \sup_{v\in V\backslash\{0\}}\frac{\|T(v)\|_W}{\|v\|_V}\leq M$$

Esempi:

1) $T: (\mathbb{R}^2, ||.||_2) \to (\mathbb{R}, |.|)$ definite da $T(v) = v_0 \cdot v$ operatore lineare.

T è limitato, $M = ||v_0||$

2) $T: (C^1([a,b]), \|.\|_{C^1}) \to (C^0([a,b]), \|.\|_{C^0}), T(f) = f'$ op. lineare.

T è limitato con la scelta M=1

3) $T:(L^2(0,1),\|.\|_2)\to (\mathbb{R},|.|),$ $T(f)=\int_0^1 f_0\cdot fdx$ dove $f_0\in L^2(0,1)$ T è limitato con la scelta $M=\|f_0\|_2$ (Tramite disuguaglianza di Holder)

Osservazione: Considerando $T:(L^p(0,1),\|.\|_p)\to(\mathbb{R},|.|)$ definito da T(f)= $\int_0^1 f_0 f dx$ questo è lineare continuo prendendo $f_0 \in L^{p'}(0,1)$.

Proposizione: Sia $T:(V,\|.\|_V) \to (W,\|.\|_W$ lineare. Allora

$$T$$
 continuo $\iff T$ limitato

Dimostrazione

(\iff) Supposto T limitato, basta mostrare che T è continuo in 0, ovvero: se $v_n \to 0$, allora $T(v_n) \to T(0) = 0$

$$||T(v_n)||_W \le M||v_n||_V \to 0$$

 (\Longrightarrow) Supposto T non limitato mostriamo T non continuo

$$\sup_{v \in V \setminus \{0\}} \frac{\|T\|_W}{\|v\|_V} = +\infty \implies \exists \{v_n\} \subseteq V \setminus \{0\} : \frac{\|T(v_n)\|_W}{\|v_n\|_V} \to +\infty$$

ovvero, siccome T è lineare:

$$\left\| T\left(\frac{v_n}{\|v_n\|_V}\right) \right\|_W \to +\infty$$

Quindi se considero $u_n := \frac{v_n}{\|v_n\|_V}$, ha che

$$\begin{cases} ||u_n||_V = 1\\ ||T(u_n)||_W \to +\infty \end{cases}$$

Posso costruire una successione y_n tale che $y_n \to 0$ ma $T(y_n) \not\to 0$ Ponendo $y_n = \frac{u_n}{\|T(u_n)\|_W}$

• $y_n \to 0$ poiché

$$||y_n||_V = \left\| \frac{u_n}{\|T(u_n)_W\|} \right\|_V \to 0$$

• $T(y_n) = 1$ perché

$$T(y_n) = T\left(\frac{u_n}{\|T(u_n)\|_W}\right) = \frac{T(u_n)}{\|T(u_n)\|_W} \not\to 0$$

Definizione: Dati $(V, ||.||_V), (W, ||.||_W)$ spazi normati

$$\mathcal{L}(V, W) := \{ \text{op. lineari limitati da } V \text{ in } W \}$$

È uno spazio vettoriale munito delle operazioni naturali

È possibile introdurre su questo spazio una norma, ponendo

$$||T||_{\mathcal{L}(V,W)} := \sup_{v \in V \setminus \{0\}} \frac{||T(v)||_W}{||v||_V}$$

ovvero, per definizione, la più piccola costante M tale che $\|T(v)\|_W \leq M\|v\|_V \ \forall v \in V$.

 ${\bf Osservazione:}$ Si può verificare che quella definita sopra è effettivamente una norma.

In particolare

Definizione: Quando $W = (\mathbb{R}, |.|)$

 $\mathcal{L}(V,W) = V'$ spazio duale di V

$$||T||_{V'} := \sup_{v \in V \setminus \{0\}} \frac{|T(v)|_{\mathbb{R}}}{||v||_{V}}$$

Esempi: Vedere i casi 1) e 3)