r-hued coloring of planar graphs

Xuan Hoang LA ¹ **Supervisors:** Mickael MONTASSIER, Alexandre PINLOU, Petru VALICOV ²

¹Ecole Normale Supérieure de Lyon

²Laboratoire Informatique, de Robotique et de Microélectronique de Montpellier

June 11, 2019

A graph

A graph

A graph G is (V(G), E(G)):

- where $E(G) \subseteq \{\{u,v\} | u \neq v, (u,v) \in V(G) \times V(G)\}$,
- V(G) is the set of *vertices*,
- and E(G) is the set of *edges*.

Figure 1: The Petersen graph

Proper *k*-coloring

A proper k-coloring

A *k-coloring* is a map $\phi: V(G) \to \{1, 2, ..., k\}$. A *k-coloring* ϕ is a *proper coloring*, if and only if, for all edge $xy \in E, \phi(x) \neq \phi(y)$.

Proper k-coloring

A proper k-coloring

A *k-coloring* is a map $\phi: V(G) \to \{1, 2, ..., k\}$. A *k-coloring* ϕ is a *proper coloring*, if and only if, for all edge $xy \in E, \phi(x) \neq \phi(y)$.

The chromatic number

The *chromatic number* of G, denoted $\chi(G)$, is the smallest integer k so that G has a proper k-coloring.

Proper k-coloring

A proper *k*-coloring

A *k-coloring* is a map $\phi: V(G) \to \{1, 2, ..., k\}$. A *k-coloring* ϕ is a *proper coloring*, if and only if, for all edge $xy \in E, \phi(x) \neq \phi(y)$.

The chromatic number

The *chromatic number* of G, denoted $\chi(G)$, is the smallest integer k so that G has a proper k-coloring.

(i) A non-proper 3-coloring.

(ii) A non-optimal proper 4-coloring.

(iii) An optimal proper 3-coloring.

Figure 2: A graph G with $\chi(G) = 3$.

A 2-distance k-coloring (Kramer and Kramer, 1969)

A 2-distance k-coloring is a k-coloring such that no pair of vertices at distance at most 2 has the same color.

A 2-distance k-coloring (Kramer and Kramer, 1969)

A 2-distance k-coloring is a k-coloring such that no pair of vertices at distance at most 2 has the same color.

The 2-distance chromatic number

The 2-distance chromatic number of G, denoted $\chi^2(G)$, is the smallest integer k so that G has a 2-distance k-coloring.

(i) A proper 7-coloring that is not 2-distance.

(ii) A non-optimal2-distance 7-coloring.

(iii) An optimal2-distance 6-coloring.

Figure 3: A graph G with $\chi^2(G) = 6$.

Observation

For any graph G with maximum degree Δ , $\Delta + 1 \le \chi^2(G) \le \Delta^2 + 1$.

Observation

For any graph G with maximum degree Δ , $\Delta+1\leq\chi^2(G)\leq\Delta^2+1$.

Figure 4: $\chi^{2}(G) = \Delta^{2} + 1$

Planar graphs

A graph is *planar* if we can draw its edges without intersections.

Planar graphs

A graph is *planar* if we can draw its edges without intersections.

Wegner's conjecture, 1977

Let G be a planar graph. Then,

$$\chi^{2}(G) \leq \begin{cases} 7, & \text{if } \Delta \leq 3, \\ \Delta + 5, & \text{if } 4 \leq \Delta \leq 7, \\ \lfloor \frac{3\Delta}{2} \rfloor + 1, & \text{if } \Delta \geq 8. \end{cases}$$

Planar graphs

A graph is *planar* if we can draw its edges without intersections.

Wegner's conjecture, 1977

Let G be a planar graph. Then,

$$\chi^{2}(G) \leq \begin{cases} 7, & \text{if } \Delta \leq 3, \\ \Delta + 5, & \text{if } 4 \leq \Delta \leq 7, \\ \lfloor \frac{3\Delta}{2} \rfloor + 1, & \text{if } \Delta \geq 8. \end{cases}$$

Thomassen, 2018 and Thomas *et al.*, 2018

Planar graphs with $\Delta \leq 3$ are 2-distance 7-colorable.

Planar graphs

A graph is *planar* if we can draw its edges without intersections.

Wegner's conjecture, 1977

Let G be a planar graph. Then,

$$\chi^{2}(G) \leq \begin{cases} 7, & \text{if } \Delta \leq 3, \\ \Delta + 5, & \text{if } 4 \leq \Delta \leq 7, \\ \lfloor \frac{3\Delta}{2} \rfloor + 1, & \text{if } \Delta \geq 8. \end{cases}$$

Thomassen, 2018 and Thomas *et al.*, 2018

Planar graphs with $\Delta \leq 3$ are 2-distance 7-colorable.

Havet et al., 2017

Planar graphs are 2-distance $(\frac{3}{2}\Delta(1+o(1)))$ -colorable when $\Delta \to \infty$.

Figure 5: A graph with $\chi^2 = \lfloor \frac{3\Delta}{2} \rfloor + 1$

State of the art

Coefficient 1 before Δ

Every planar graph G of girth $g \geq g_0$, and maximum degree $\Delta \geq \Delta_0$, satisfies $\chi^2(G) \leq \Delta + c(g_0, \Delta_0)$, where $c(g_0, \Delta_0)$ is a constant depending only on g_0 and Δ_0 .

$\chi^2(G)$	$\Delta + 1$	$\Delta + 2$	$\Delta + 3$	$\Delta + 4$	$\Delta + 5$	$\Delta + 6$	$\Delta + 7$	Δ+8
3				$\Delta = 3$				
4								
5		$\Delta \geq 10^7$	$\Delta \geq 339$	$\Delta \geq 312$	$\Delta \geq 15$	$\Delta \geq 12$	$\Delta \neq 7,8$	all Δ
6		$\Delta \geq 17$	$\Delta \geq 9$		all Δ			
7	$\Delta \geq 16$			$\Delta = 4$				
8	$\Delta \geq 10$ $\Delta \geq 9$		$\Delta = 5$					
9	$\Delta \geq 8$	$\Delta = 5$	$\Delta = 3$					
10	$\Delta \geq 6$							
11		$\Delta = 4$						
12	$\Delta = 5$	$\Delta = 3$						
13								
14	$\Delta \geq 4$							
22	$\Delta = 3$							

Table 1: Results from almost 20 different papers.

An r-hued coloring (Montgomery, 2001)

An *r*-hued *k*-coloring of *G* is a proper *k*-coloring, such that, for all vertex, the number of colors in its neighborhood is at least $\min\{d_G(v), r\}$.

An r-hued coloring (Montgomery, 2001)

An *r*-hued *k*-coloring of *G* is a proper *k*-coloring, such that, for all vertex, the number of colors in its neighborhood is at least $\min\{d_G(v), r\}$.

The r-hued chromatic number

The *r*-hued chromatic number of G, denoted $\chi_r(G)$, is the smallest integer k so that G has an r-hued k-coloring.

The link between r-hued coloring, proper coloring, and 2-distance coloring:

$$\chi(G) = \chi_1(G) \le \chi_2(G) \le \cdots \le \chi_{\Delta}(G) = \chi_{\Delta+1}(G) = \cdots = \chi^2(G)$$

(i) A 2-hued 5-coloring that is not 2-distance.

(ii) A 5-hued 6-coloring which is also 2-distance.

Figure 6

(i) A 2-hued 5-coloring that is not 2-distance.

(ii) A 5-hued 6-coloring which is also 2-distance.

Figure 6

Observation

For any graph G and any integer r, $r+1 \le \chi_r(G) \le r^2+1$.

Song et al.'s conjecture, 2014

Let G be a planar graph. Then,

$$\chi_r(G) \leq \begin{cases} r+3, & \text{if } 1 \leq r \leq 2, \\ r+5, & \text{if } 3 \leq r \leq 7, \\ \lfloor \frac{3r}{2} \rfloor + 1, & \text{if } r \geq 8. \end{cases}$$

State of the art

Coefficient 1 before r

Let r and r_0 be integers such that $r \ge r_0$, all planar graph G, of girth $g(G) \ge g_0$, satisfies $\chi_r(G) \le r + c(g_0, r_0)$, where $c(g_0, r_0)$ is a constant depending only on g_0 and r_0 .

$\chi_r(G)$	r+1	r + 2	r + 3	r + 4	r + 5	r + 6	r + 7	 r + 10
3		$r = 2^*$	r=2				r=3	
4								
5					<i>r</i> ≥ 15			all r
6					<i>r</i> ≥ 3			
7		r=2		r = 3				
8	$r \geq 9$							
9	$r \ge 8$		r=3					
10	$r \ge 6$							
11								
12	$r \ge 5$							
14		r=3						

Table 2: Results from almost 10 different papers

Our results

Theorem

If G is a planar graph with $g(G) \ge 8$, then $\chi_r(G) = r + 1$ for $r \ge 9$.

Corollary

If G is a planar graph with $g(G) \ge 8$ and $\Delta(G) \ge 9$, then $\chi^2(G) = \Delta(G) + 1$.

Our results

Theorem

If G is a planar graph with $g(G) \ge 8$, then $\chi_r(G) = r + 1$ for $r \ge 9$.

Corollary

If G is a planar graph with $g(G) \ge 8$ and $\Delta(G) \ge 9$, then $\chi^2(G) = \Delta(G) + 1$.

Theorem (An example)

If G is a planar graph with $g(G) \ge 24$ and $\Delta(G) \ge 3$, then $\chi^2(G) = \Delta(G) + 1$.

The discharging method (on planar graphs):

1: Suppose that there exists a counter-example *G* and suppose that *G* has the smallest number of vertices.

- **1:** Suppose that there exists a counter-example *G* and suppose that *G* has the smallest number of vertices.
- **2:** Study the structural properties of *G*.

- **1:** Suppose that there exists a counter-example *G* and suppose that *G* has the smallest number of vertices.
- **2:** Study the structural properties of *G*.
- 3: Assign charges to vertices and faces so that the sum of all charges is negative thanks to the Euler's formula (|V| |E| + |F| = 2).

- **1:** Suppose that there exists a counter-example *G* and suppose that *G* has the smallest number of vertices.
- **2:** Study the structural properties of *G*.
- **3:** Assign charges to vertices and faces so that the sum of all charges is negative thanks to the Euler's formula (|V| |E| + |F| = 2).
- **4:** Redistribute the charges without changing the total sum, and show that we obtain a non-negative final amount, thanks to the structural properties, which is a contradiction.

Theorem (An example)

If G is a planar graph with $g(G) \ge 24$ and $\Delta(G) \ge 3$, then $\chi^2(G) = \Delta(G) + 1$.

Step 1: Suppose that there exists G, the graph with the minimum number of vertices such that $g \geq 24$, $\Delta \geq 3$, and $\chi^2(G) \geq \Delta + 2$.

Step 2: Structural properties of *G*.

Lemma • G is connected. • G has no O • S • U • W • G has no O • O • O

Step 3: Assign charges to vertices and faces so that the total sum is negative thanks to the Euler's formula (|V| - |E| + |F| = 2).

Charge assignment

We define the following charge assignment μ :

$$v \mapsto 11d(v) - 24$$
 and $f \mapsto d(f) - 24$

Step 3: Assign charges to vertices and faces so that the total sum is negative thanks to the Euler's formula (|V| - |E| + |F| = 2).

Charge assignment

We define the following charge assignment μ :

$$v \mapsto 11d(v) - 24$$
 and $f \mapsto d(f) - 24$

Proof.
$$|V| - |E| + |F| = 2$$

$$-24|V| + 24|E| - 24|F| = -48$$

$$(22|E| - 24|V|) + (2|E| - 24|F|) = -48$$

$$(22 \cdot \frac{1}{2} \sum_{v \in V} d(v) - 24|V|) + (2 \cdot \frac{1}{2} \sum_{f \in F} d(f) - 24|F|) = -48$$

$$\sum_{v \in V} (11d(v) - 24) + \sum_{f \in F} (d(f) - 24) < 0$$

Step 4: Redistribute the charges to obtain a non-negative sum.

Step 4: Redistribute the charges to obtain a non-negative sum.

$$\sum_{v \in V} (11d(v) - 24) + \sum_{f \in F} (d(f) - 24) < 0$$

Step 4: Redistribute the charges to obtain a non-negative sum.

$$\sum_{v \in V} (11d(v) - 24)$$

$$+ \sum_{f \in F} (d(f) - 24) < 0$$

Discharging rules:

Step 4: Redistribute the charges to obtain a non-negative sum.

$$\sum_{v \in V} (11d(v) - 24) + \sum_{f \in F} (d(f) - 24) < 0$$

Discharging rules:

R0: 2 2

R1: (3+) (2)

Step 4: Redistribute the charges to obtain a non-negative sum.

Faces: $d(f) - 24 \ge 0$ since $g \ge 24$.

$$\sum_{v \in V} (11d(v) - 24) + \sum_{f \in F} (d(f) - 24) < 0$$

Discharging rules:

R0: 2 2

R1: (3+) (2)

Step 4: Redistribute the charges to obtain a non-negative sum. **Faces:** d(f) - 24 > 0 since g > 24.

$$\sum_{v \in V} (11d(v) - 24)$$

$$+\sum_{f\in F}(d(f)-24)<0$$

• d(v) > 3

Vertices: If

$$\mu^*(v) \ge 3$$

 $\mu^*(v) = \mu(v) - 3d(v)$
 $= 8d(v) - 24 \ge 0$.

Discharging rules:

Step 4: Redistribute the charges to obtain a non-negative sum.

$$\sum_{v \in V} (11d(v) - 24)$$

$$+ \sum_{f \in F} (d(f) - 24) < 0$$

Discharging rules:

Faces: $d(f) - 24 \ge 0$ since $g \ge 24$.

Vertices: If

•
$$d(v) \ge 3$$

 $\mu^*(v) = \mu(v) - 3d(v)$
 $= 8d(v) - 24 \ge 0$.

•
$$d(v) = 2$$

For our proof:

For our proof:

• 8 lemmas,

 $Figure \ 16: \ Configurations \ of \ Lemma \ \ 20 \ (black \ vertices \ have \ fixed \ degree, \ which \ is \ represented \ on \ the \ figure) .$

For our proof:

8 lemmas,

22 rules,

For our proof:

8 lemmas,

22 rules,

• 11 pages of proof.

Future work

$\chi_r(G)$	r+1	r + 2	r + 3	r + 4	r + 5	r + 6	r + 7	 r + 10
3	?	$r = 2^*$	r=2	r=2			r=3	
4	?							
5	?				$r \ge 15$			all r
6	?				<i>r</i> ≥ 3			
7	<i>r</i> ≥ 14	r=2		r=3				
8	$r \ge 9(8)$							
9	<i>r</i> ≥ 8		r=3					
10	$r \ge 6$							
11								
12	$r \geq 5$							
13								
14		r=3						
?	$r \ge 2$							

Future work

$\chi_r(G)$	r+1	r + 2	r + 3	r + 4	r + 5	r + 6	r + 7	• • •	r + 10
3	?	$r = 2^*$	r=2	r=2			r=3		
4	?								
5	?				$r \ge 15$				all r
6	?				$r \geq 3$				
7	<i>r</i> ≥ 14	r=2		r=3					
8	$r \ge 9(8)$								
9	<i>r</i> ≥ 8		r=3						
10	$r \ge 6$								
11									
12	$r \geq 5$								
13									
14		r=3							
?	$r \ge 2$								

Question:

How does χ_r behave when $r \ll \Delta$ compare to χ^2 $(r \ge \Delta)$?