Санкт-Петербургский Политехнический Университет

Высшая школа прикладной математики и вычислительной физики, ФизМех

01.03.02 Прикладная математика и информатика

Лабораторная работа №3

Дисциплина "Дискретная математика"

Тема "Деревья"

Вариант "Проверка свойства древочисленности (субцикличность)"

Поставленная задача

Проверить является ли граф деревом, ацикличность, субцикличность, древочисленность.

Используемый язык программирования

Python 3.12.6

Описание проверки свойств Проверка ацикличности: Функция is_acyclic(graph): 1. Создаём пустое множество visited. 2. Создаём пустой словарь parent. 3. Для каждой вершины v от 0 до V - 1: 3.1. Если вершина v не была посещена: - Создаём стек stack и кладём в него пару (v, -1). 3.2. Пока стек не пуст: - Извлекаем из стека пару (current, prev). - Если current не в visited: - Добавляем current в visited. - Записываем parent[current] = prev. - Для каждого соседа neighbor вершины current: - Если adj_matrix[current][neighbor] == 1 (есть ребро): - Если neighbor ещё не посещён: - Кладём (neighbor, current) в стек. - Иначе, если neighbor уже посещён и не равен prev: - Найден цикл. Возвращаем False. 4. Если цикл не найден после обхода всех вершин, возвращаем True. Проверка субцикличности: Функция is_subcyclic(graph): 1. Для каждой пары вершин (u, v), где u != v:

1.1. Если между u и v нет ребра (adj_matrix[u][v] == 0):

- Временно добавляем ребро:
adj_matrix[u][v] = 1
adj_matrix[v][u] = 1
- Подсчитываем количество циклов в графе:
num_cycles = count_cycles()
- Если num_cycles > 1:
- Удаляем добавленное ребро:
аdj_matrix[u][v] = 0
, _
adj_matrix[v][u] = 0
- Возвращаем False и пару (u, v).
- Иначе:
- Удаляем добавленное ребро:
adj_matrix[u][v] = 0
adj_matrix[v][u] = 0
Проверка древочисленности: Функция is_drevocislen(graph):
1. Инициализируем переменную edge_count = 0 для подсчёта количества рёбер.
2. Для каждой вершины u от 0 до V - 1:
2.1. Для каждой вершины v от u + 1 до V - 1:
- Если adj_matrix[u][v] == 1 (есть ребро между u и v):
- Увеличиваем edge_count на 1.
3. После завершения подсчёта рёбер:
- Если edge_count == V - 1:
- Возвращаем True (граф древочисленный).
- Иначе:
- Возвращаем False (граф не древочисленный).

Пример работы

Рассмотрим граф для примера

	0	1	2	3
0	0	1	0	1
1	1	0	1	0
2	0	1	0	1
3	1	0	1	0

Количество вершин p = 4, ребер q = 4

Древочисленность. q = p - 1. 4 = 4 - 1. Следовательно граф не является древочисленным.

Ацикличность z(G) = 0. С помощью алгоритма DFS обнаруживаем цикл 0 - 1 - 2 - 3 - 0, следовательно граф не является ацикличным.

Субцикличность z(G+x) = 1. При добавлении ребра 0 2 появляется цикл, следовательно граф не субцикличный.

Сложность

Ацикличность. Алгоритм проверки ацикличности основывается на поиске цикла через DFS. Алгоритм обхода графа с использованием DFS посещает каждую вершину и каждое ребро один раз. Для поиска цикла используется множество посещенных вершин и структура родителя для отслеживания предков. Это имеет сложность O(V+E).

Субцикличность. Алгоритм проверки ацикличности основывается на подсчете циклов через DFS. Основной цикл проходит по всем парам вершин, а для каждой пары вызывается подсчет циклов, дающий итоговую сложность O(V^2 (V + E)).

Входные и выходные данные

Входные данные. Квадратная матрица $n \times n$, где n - kоличество вершин в графе. Каждая строка матрицы представляет связи (ребра) для одной вершины.

Область применимости

Проверка графа на свойства и дальнейшая работа с ним особенно полезен в области сетей, алгоритмической оптимизации, системного проектирования и научных исследований.

Представление графов в программе

Для представления графа в программе я буду использовать матрицу смежности. Доступ к данным в матрице занимает O(1) что делает возможным прямую и быструю работу с каждой парой вершин. Кроме того, добавление или удаление ребра также выполняется за O(1), так как достаточно изменить один элемент матрицы.

Вывод

Данный код предоставляет универсальный инструментарий для анализа свойств графов, включая проверку их ацикличности, связности, субцикличности, древовидности и других характеристик. Он эффективно реализует алгоритмы на основе матрицы смежности, что делает его подходящим для решения задач в широком спектре областей, таких как теория графов, сетевой анализ, оптимизация маршрутов, проектирование систем и научные исследования.