# 기본 알고리즘



2022. Fall

국민대학교 소프트웨어학부

#### 알고리즘?



컴퓨터로 푸는 퍼즐 (혹은 수수께끼) 체계적인 문제해결방법이 필요함 꾀(trick)가 필요함 해답을 알기 전에는 매우 어렵지만, 알고 난 후에는 매우 쉬움.







### Design and Analysis of Algorithms





FFTVals(n)(index+1,:) = temp\_mag;



### 알고리즘 개발 (설계)

- 소프트웨어 개발
  - 소프트웨어 목적에 맞는 알고리즘을 개발 (설계)
  - 알고리즘을 프로그램으로 구현
- 알고리즘 개발 과정이 소프트웨어 개발 과정에서 가장 핵심이면서 가장 어려운 과정
- 알고리즘 개발 과정에서는 문제해결 능력을 요구 함





### 알고리즘 개발 중요성의 예

#### **Search Engine Algorithm**

#### 문제:

주어진 "단어"를 포함하고 있는 (웹-)문서를 모두 검색한 후, 이 문서들을 어떤 순서로 나열할 것인가?

#### **Before 1997**

WebCrawler, Lycos, Excite, Infoseek, Ask Jeeves, Altavista, Yahoo(Inktomi), ... 찾고자하는 단어가 문서에서 나타나는 빈도수나 그 문서와의 상관관계도에 따라서 페이지를 우선적으로 나열하는 알고리즘 채택

#### 1997

Google(Larry Page, Sergey Brin), Baidu(Li, China, 1996)

#### PageRank Algorithm

다른 웹-페이지로부터 웹-링크(참조)가 많은 웹-페이지가 높은 우선순위를 가지며, 이 우 선순위가 높은 페이지를 우선적으로 나열한 다.







### 알고리즘 개발 중요성의 예

#### **News Feed Algorithm**

#### 문제:

Facebook 등과 같은 SNS에서 어떤 사람에서 전달되는 수많은 News(지인 들 소식 등과 같은 정보)를 어떤 순서대로 보여줄 것인가?

#### 중요성:

- Facebook needs an algorithm, because otherwise you would miss content that is important to you.
- The algorithm tries to figure out which stories you are most likely to like, comment on, and share.
- ✓ Facebook 의 성공은 News Feed Algorithm 으로부터 시작됨..
- ✓ 매년 새로운 알고리즘으로 Update 하고 있으며,
- ✓ 최근 추세는 내가 읽어본 news의 특징을 Machine Learning Algorithm을 적용하여 추출한 후, 이를 기반으로 새로운 news중에서 유사한 특징을 가진 news를 보여주는 형태 진화하고 있음. (Youtube 등 자동추천)





#### 알고리즘 설계 및 분석

- 어떤 문제 P가 주어졌을 때,
  - 컴퓨터로 문제 P를 해결할 수 있는가?

Computability

- 해결할 수 있다면, 문제 P를 해결하는 알고리즘 A 에 대하여
  - 알고리즘 A 가 정확한가?
  - 알고리즘 A 는 얼마나 좋은 알고리즘인가?
  - 알고리즘 A 보다 더 좋은 알고리즘은?

Verification

**Efficiency** 

- 알고리즘이 좋다는 것은 어떻게 평가하는가?
  - 이 알고리즘이 수행되는 시간은?
  - 이 알고리즘이 사용하는 메모리의 양은?

Time Complexity

Space Complexity





# Complexity (복잡도)

● 문제 P를 해결하는 알고리즘 A 가 주어졌을 때,

- 어떻게 더 좋은 알고리즘을 개발할 수 있을까?
  - 더 빠른 알고리즘은?

- 메모리를 덜 사용하는 알고리즘은?

Complexity of Algorithm

- 더 좋은 알고리즘이 있을까?
  - 이 알고리즘이 가장 최선의 알고리즘인가? (더 빠른 알고리즘은 없는가?)

Complexity of Problem





### 알고리즘 설계

- 알고리즘 설계
  - 설계에 사용할 도구 : Data Structure
  - 설계 기법

| 도구                                                                                                  | 설계기법                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Data Structures)                                                                                   | (Techniques)                                                                                                                                                  |
| Arrays Stacks, Queues Linked lists Sets, Dictionaries Hash Tables Trees, Binary Search Trees Graphs | Brute Force Recursion (재귀, 되부름) Divide & Conquer (분할정복기법) Dynamic Programming (동적계획법) Greedy Approach (욕심장이기법) Backtracking (되추적기법) Branch and Bound (분기한정기법) |

컴퓨터 프로그램 = 자료구조 + 알고리즘

by Niklaus Wirth





### Searching Problem

#### Searching

- 전화번호부, 사전 찾기; Dictionary Searching
  - 전화번호부에서 "이 순신" 이름을 찾고자 할 때, **어떤 방법**으로 찾는가?
  - 전화번호부에서 이름을 쉽게 찾을 수 있도록, **어떤 방법**로 이름 을 나열하고 있는가?





# 무게가 가벼운 구슬 찾기 (1)

#### Searching

- 무게가 가벼운 구슬 찾기; Searching a pebble
  - 같은 모양의 구슬이 8 개와 구슬의 무게를 잴 수 있는 천칭이 주어져 있다. 이 구슬 중에서 7개의 무게는 같으며, 한 개의 무게는 다른 구슬보다 <u>가볍다</u>. 천칭을 이용하여 이들 구슬 중에서무게가 가벼운 구슬을 찾으려고 한다. 최소 횟수로 천칭을 이용하여 가벼운 구슬을 찾는 방법을 제시하시오.







# 무게가 가벼운 구슬 찾기 (2)

• 문제: 천칭을 이용한 *무게가 가벼운* 구슬찾기

알고리즘 설계 알고리즘 분석 **Design of Algorithm Analysis of Algorihm** 천칭을 몇 번 사용하여 가벼운 구 알고리즘 1: 한 개의 구슬을 고정하고, 이 구슬과 다 슬을 찾았나? 른 모든 구슬의 무게를 각각 비교한다. 7 버





# 무게가 가벼운 구슬 찾기 (3)

| 알고리즘 설계<br>Design of Algorithm              | 알고리즘 분석<br>Analysis of Algorihm |
|---------------------------------------------|---------------------------------|
| 알고리즘 2:<br>두 개의 구슬마다 어느 구슬이 가벼운지<br>를 비교한다. | 천칭을 몇 번 사용하여 가벼운 구슬을 찾았나?       |
| QQQQQQ                                      | 4 번                             |





# 무게가 가벼운 구슬 찾기 (4)

| 알고리즘 설계<br>Design of Algorithm | 알고리즘 분석<br>Analysis of Algorihm |
|--------------------------------|---------------------------------|
| 알고리즘 3:                        | 천칭을 몇 번 사용하여 가벼운 구슬을 찾았나?       |
|                                | 3 번                             |
|                                |                                 |





# 무게가 가벼운 구슬 찾기 (5)

| 알고리즘 설계<br>Design of Algorithm | 알고리즘 분석<br>Analysis of Algorihm |
|--------------------------------|---------------------------------|
| 알고리즘 4:                        | 천칭을 몇 번 사용하여 가벼운 구슬을 찾았나?       |
|                                | 2 번                             |
|                                |                                 |





### 무게가 가벼운 구슬 찾기 (6)

- 앞에서 제시한 알고리즘 1, 2, 3, 4 중에서 어느 알고리즘 이 *효율적인* 알고리즘인가?
- 알고리즘 4에서 제시한 횟수보다 더 적은 횟수로 무게가 가벼운 구슬을 찾을 수 있을까?





# 무게가 가벼운 구슬 찾기 (7)

#### Searching

- 무게가 가벼운 구슬 찾기; Searching a pebble
  - 같은 모양의 구슬이 n 개와 구슬의 무게를 잴 수 있는 천칭이 주어져 있다. 이 구슬 중에서 (n-1) 개의 무게는 같으며, 한 개의무게는 다른 구슬보다 가볍다. 천칭을 이용하여 이들 구슬 중에서 무게가 가벼운 구슬을 찾으려고 한다. 최소 횟수로 천칭을이용하여 가벼운 구슬을 찾는 방법을 제시하시오.







# 무게가 가벼운 구슬 찾기 (8)

| 알고리즘 설계<br>Design of Algorithm | 알고리즘 분석<br>Analysis of Algorihm |
|--------------------------------|---------------------------------|
| 알고리즘 1:                        | 천칭을 몇 번 사용하여 가벼운 구슬을 찾았나?       |
|                                | (n-1) 번                         |
|                                |                                 |





# 무게가 가벼운 구슬 찾기 (9)

| 알고리즘 설계<br>Design of Algorithm | 알고리즘 분석<br>Analysis of Algorihm |
|--------------------------------|---------------------------------|
| 알고리즘 2:                        | 천칭을 몇 번 사용하여 가벼운 구슬을 찾았나?       |
| QQQQQ                          | $\left \frac{n}{2}\right $ 번    |
| QQQQQO                         |                                 |
|                                |                                 |





# 무게가 가벼운 구슬 찾기 (10)

| 알고리즘 설계<br>Design of Algorithm                            | 알고리즘 분석<br>Analysis of Algorihm |
|-----------------------------------------------------------|---------------------------------|
| 알고리즘 3:  Recursive Algorithm - Base case - Recursive step | 천칭을 몇 번 사용하여 가벼운 구<br>슬을 찾았나?   |
| TO COLOR                                                  | ? 번                             |
|                                                           |                                 |
|                                                           |                                 |





# 무게가 가벼운 구슬 찾기 (11)

| 알고리즘 설계<br>Design of Algorithm                            | 알고리즘 분석<br>Analysis of Algorihm |
|-----------------------------------------------------------|---------------------------------|
| 알고리즘 4:  Recursive Algorithm - Base case - Recursive step | 천칭을 몇 번 사용하여 가벼운 구슬을 찾았나?       |
|                                                           | ? 번                             |
|                                                           |                                 |





### 무게가 가벼운 구슬 찾기 (12)

- 문제: 천칭을 이용한 *무게가 가벼운* 구슬찾기
  - 위 알고리즘들은 임의의 개수의 구슬이 주어지더라도 반드시 무게가 가벼운 구슬을 찾을 수 있는가? (verification)
  - 앞에서 제시한 알고리즘 1, 2, 3, 4 중에서 어느 알고리즘 이 *효율적인* 알고리즘인가?
  - 알고리즘 4에서 제시한 횟수보다 더 적은 횟수로 무게가 가벼운 구슬을 찾을 수 있을까?
    - Recursive하게 계속 2개의 group 으로 묶어서 무게를 다는 것 보다 3개의 group 으로 묶어서 무게를 다는 것이 횟수를 줄일 수 있음. 그러면, 4개의 group, 5개의 group, ... 으로 묶어서 무 게를 다는 것이 더 횟수를 줄일 수 있지 않을까?





# 무게가 가벼운 구슬 찾기 (13)

- 알고리즘 1,2,3,4 비교
  - 천칭을 사용하는 횟수

| 알고리즘 | 8개 구슬 | n개 구슬                      |
|------|-------|----------------------------|
| 1    | 7     | n-1                        |
| 2    | 4     | $\lfloor n/2 \rfloor$      |
| 3    | 3     | $\lfloor \log_2 n \rfloor$ |
| 4    | 2     | $\lceil \log_3 n \rceil$   |

- 알고리즘 2는 1보다 얼마나 적은 횟수를 사용하는가?
- 알고리즘 3은 2보다 얼마나 적은 횟수를 사용하는가?
- 알고리즘 4는 3보다 얼마나 적은 횟수를 사용하는가?





# 무게가 가벼운 구슬 찾기 (14)

- 알고리즘 1,2,3,4 비교
  - 알고리즘 2는 1보다 얼마나 적은 횟수를 사용하는가?

| 알고리즘 | n개 구슬                 |
|------|-----------------------|
| 1    | n-1                   |
| 2    | $\lfloor n/2 \rfloor$ |

$$\frac{\left\lfloor \frac{n}{2} \right\rfloor}{n-1} \ge \frac{\frac{n-1}{2}}{n-1} \ge \frac{1}{2}$$

Note that 
$$\frac{n-1}{2} \le \left\lfloor \frac{n}{2} \right\rfloor \le \frac{n+1}{2}$$

- \_ 즉
  - 알고리즘 2는 1보다 반(1/2) 이상의 횟수를 사용한다. (1/2 배 보다 더 적은 횟수를 사용하지는 않는다) (최대 2배 빠르다)





# 무게가 가벼운 구슬 찾기 (15)

- 알고리즘 1,2,3,4 비교
  - 알고리즘 4는 3보다 얼마나 적은 횟수를 사용하는가?

| 알고리즘 | n개 구슬                      |
|------|----------------------------|
| 3    | $\lfloor \log_2 n \rfloor$ |
| 4    | $\lceil \log_3 n \rceil$   |

$$\frac{\lceil \log_3 n \rceil}{\lceil \log_2 n \rceil} \ge \frac{\log_3 n}{\log_2 n} \ge \log_3 2$$

Note that 
$$x - 1 < \lfloor x \rfloor \le x$$
  $x \le \lceil x \rceil < x + 1$ 

- \_ 즉
  - 알고리즘 4는 3보다  $\log_3 2 \sim 0.631$  배 이상의 횟수를 사용한다.  $(\log_3 2 \sim 0.631$ 배 보다 더 적은 횟수를 사용하지는 않는다) (최대  $\log_2 3 \sim 1.585$  배 빠르다)





# 무게가 가벼운 구슬 찾기 (16)

- 알고리즘 1,2,3,4 비교
  - 알고리즘 3는 2보다 얼마나 적은 횟수를 사용하는가?

| 알고리즘 | n개 구슬                 |
|------|-----------------------|
| 2    | $\lfloor n/2 \rfloor$ |
| 3    | $[\log_2 n]$          |

$$\frac{\lfloor \log_2 n \rfloor}{\lfloor n/2 \rfloor} \ge C$$
 for all  $n > k$  for some  $k$  임의의 상수  $C$ 

- 즉, 아래와 같이 표현할 수 있는가? (임의의 상수 C 에 대하여)
  - 알고리즘 3은 2보다 C 배 이상의 횟수를 사용한다.
     (C 배 보다 더 적은 횟수를 사용하지는 않는다)
     (최대 1/C 배 빠르다)

이 경우에는 불가능함 (나중에!)





# 무게가 가벼운 구슬 찾기 (17)

- 이론이 아닌 실제 실행시 알고리즘 1,2,3,4 비교
  - 이론적 천칭을 사용하는 횟수

| <u></u> 고리즘 | n개 구슬                      |                            |
|-------------|----------------------------|----------------------------|
| 1           | n-1                        | 최대 2 배 빠름                  |
| 2           | $\lfloor n/2 \rfloor$      | 기대 2 메 메 <del> </del>      |
| 3           | $\lfloor \log_2 n \rfloor$ | ᅕᅥᄗᆝᇃᇎᇽᄖᆘᆛᄙ                |
| 4           | $\lceil \log_3 n \rceil$   | 최대 log <sub>2</sub> 3 배 빠름 |

- 알고리즘 1(3)를 실행(실제로 천칭으로 구슬의 무게를 다는 일) 하는 사람이 알고리즘 2(4)을 실행하는 사람보다 천칭을 한 번 다는 속도가 2(log<sub>2</sub> 3)배 이상 빠르다면
  - 알고리즘 1(3)을 실행하는 속도가 빠르게 됨.
  - 즉, 실제 실행 속도 비교는 이론적인 속도 비교의 <mark>반대</mark>가 되게 됨.





# 무게가 가벼운 구슬 찾기 (18)

- 이론이 아닌 실제 실행시 알고리즘 1,2,3,4 비교
  - 이론적 천칭을 사용하는 횟수

| 알고리즘 | n개 구슬                      |        |
|------|----------------------------|--------|
| 1    | n-1                        |        |
| 2    | $\lfloor n/2 \rfloor$      | 최대 상수  |
| 3    | $\lfloor \log_2 n \rfloor$ | 기대 8 1 |
| 4    | $\lceil \log_3 n \rceil$   |        |

최대 상수배 빠른 것이 불가능함

- 그러나 알고리즘 2와 3의 경우에는 알고리즘 2를 실행하는 사람의 속도가 아무리 상수배 만큼 빨라도 위와 같이 <u>빠르기가 역전</u> <u>될 수 없음</u>.
- 이러한 현상의 수학적으로 어떻게 표현할 것인가?
  - Big-O notation (Asymptotic Analysis 가 필요함)





| 알고리즘 | n개 구슬                 |
|------|-----------------------|
| 1    | n-1                   |
| 2    | $\lfloor n/2 \rfloor$ |



$$f(n) = n - 1$$

$$g(n) = \lfloor n/2 \rfloor$$

$$\frac{1}{3}f(n)$$

$$\frac{1}{3}f(n) \le g(n) \le f(n), \qquad n \ge 2$$





| 알고리즘 | n개 구슬                 |
|------|-----------------------|
| 1    | n-1                   |
| 2    | $\lfloor n/2 \rfloor$ |



$$f(n) = n - 1$$

$$g(n) = \lfloor n/2 \rfloor$$

$$\frac{1}{2}f(n)$$

*g(n)* ≤ *f(n)* 이지만, *f(n)*을 2배 빠르게 실행하게 되면 *0.5f(n)* ≤ *g(n)* 이 된다.

$$\frac{1}{2}f(n) \le g(n) \le f(n), \qquad n \ge 2$$
, integer





| 알고리즘 | n개 구슬                    |
|------|--------------------------|
| 3    | $[\log_2 n]$             |
| 4    | $\lceil \log_3 n \rceil$ |



*g(n)* ≤ *f(n)* 이지만, *f(n)*을 2배 빠르게 실행하게 되면 *0.5f(n)* ≤ *g(n)* 이 된다.

$$\frac{1}{2}f(n) \le g(n) \le f(n), \qquad n \ge 0$$





| 알고리즘 | n개 구슬                      |
|------|----------------------------|
| 2    | $\lfloor n/2 \rfloor$      |
| 3    | $\lfloor \log_2 n \rfloor$ |



- ✓ g(n) ≤ f(n) 이지만, C·f(n) ≤ g(n)
   이 되는 어떠한 상수 C도 존재하지 않는다
- ✓ 즉, 아무리 상수 1/*C* 배 빨리 *f(n)* 을 실행하더라도 *g(n)*보다 빠를 수는 없다.
- ✓ Why? Note that  $\lim_{n \to \infty} \frac{n/2}{\log_2 n} = \infty$

 $Cf(n) \le g(n) \le f(n), \quad n \ge 4$ 인 상수 C는 존재하지 않음





- Space Complexity (공간복잡도)
  - 알고리즘을 수행하기 위해 필요한 메모리의 양
- Time Complexity (시간복잡도)
  - 알고리즘이 수행되는데 걸리는 시간
- 알고리즘 분석에서는 time complexity 를 space complexity 보다 더 중요하게 고려함





- Time complexity analysis
  - 프로그램이 수행되는 하드웨어적인 요소와 프로그램이 구현되는 소프트웨어적인 요소와 무관한 이론적인 분석 이 필요함

#### – Method 1:

• 알고리즘을 구현하는 모든 primitive operation (assignment, array indexing, 덧셈, 곱셈, 함수호출 등) 의 수행 회수를 계산

#### - Method 2:

- 알고리즘의 수행시간이 어떤 연산의 수행 횟수에 비례하는 가장 핵심적인 연산을 찾아서, 그 연산이 수행되는 회수를 계산
- 핵심연산 (Basic Operation)





- Time complexity analysis
  - Primitive operation
  - Basic operation

• 예: 삽입정렬

```
Primitive operation
```





- Time complexity analysis
  - 이론적인 분석
  - 이론적인 수행시간을 입력의 크기(개수)를 변수로 하는 함수로 표현
  - -T(n)
    - n : 입력데이터의 크기 (개수)
    - T(n) : 입력데이터의 크기가 n 일 때, primitive operation 혹은 basic operation 의 수행 회수





## Time Complexity

- Worst-case time complexity analysis
  - 알고리즘 수행시간은 입력되는 데이터의 종류에 따라 다름
  - 알고리즘 수행시간을 가장 길게 요하는 데이터가 입력되는 것을 가정하고 분석
    - 예 : 무게가 가벼운 구슬 찾기







# Time Complexity (2)

• Example : 삽입정렬







# Time Complexity (3)

- Example : 삽입정렬
  - T(n): basic operation 수행 횟수

Best-case input data

$$T(n) = 1+1+... + 1 = n-1$$

Worst-case input data

$$T(n) = 1+2+... + (n-1) = n(n-1)/2$$





# Time Complexity (4)

- Example : 삽입정렬
  - T(n): primitive operation 수행 횟수 (worst-case)

| <pre>void insertionSort(int a[], int n) {    int i, j, value;</pre> | Primitive operation 수 | Primitive operation 총 수행 횟수 |  |  |  |  |
|---------------------------------------------------------------------|-----------------------|-----------------------------|--|--|--|--|
| for(i=1;                                                            | 1                     | 1                           |  |  |  |  |
| i <n; i++)<="" th=""><th>2</th><th>2(n-1)</th></n;>                 | 2                     | 2(n-1)                      |  |  |  |  |
| {                                                                   |                       |                             |  |  |  |  |
| <pre>value = a[i];</pre>                                            | 2                     | 2(n-1)                      |  |  |  |  |
|                                                                     |                       |                             |  |  |  |  |
| for(j=i-1;                                                          | 2                     | 2(n-1)                      |  |  |  |  |
| j>=0; j)                                                            | 2                     | n(n-1)                      |  |  |  |  |
| <pre>if (a[j] &gt; value)</pre>                                     | 2                     | n(n-1)                      |  |  |  |  |
| a[j+1] = a[j];                                                      | 4                     | 2n(n-1)                     |  |  |  |  |
| else                                                                |                       |                             |  |  |  |  |
| break;                                                              |                       |                             |  |  |  |  |
|                                                                     |                       |                             |  |  |  |  |
| a[j+1] = value;                                                     | 3                     | 3(n-1)                      |  |  |  |  |
| 1                                                                   |                       |                             |  |  |  |  |



# Time Complexity (5)

- Example : 삽입정렬
  - T(n) : worst-case
    - Basic operation 수행 횟수

$$- T(n) = n(n-1)/2$$
  
= 0.5n<sup>2</sup> - 0.5n

• Primitive operation 수행 횟수

$$- T(n) = 4n(n-1) + 9(n-1) + 1$$
$$= 4n^2 + 5n - 8$$





# Time Complexity (6)

### • Example : 버블정렬

```
void bubbleSort(int a[], int n)
{
   int i, j, tmp;

   for(i=0; i<n; i++)
       for(j=0; j<n-1; j++)
       if (a[j] > a[j+1])
       {
       tmp = a[j];
       a[j] = a[j+1];
       a[j+1] = a[j];
   }
}
```

#### **Basic operation**



인접한 두 정수의 위치를 계속 바꾸어줌

$$T(n) = n(n-1)$$





# Time Complexity (7)

#### • Example : 선택정렬

$$T(n) = (n-1)+... +2+1 = n(n-1)/2$$







# Big O Notation

- 수행시간의 증가율 (Growth rate of running time)
  - 알고리즘을 구현하는 소프트웨어와 하드웨어의 변화는
    - 시간복잡도 T(n) 의 상수배 정도 영향을 미치고
    - T(n) 의 증가율에는 영향을 미치지 않음

#### \_ 예

- 버블정렬의 시간복잡도 T(n)=n(n-1) 와 선택정렬의 시간복잡도 T(n)=n(n-1)/2 은 약 2배의 차이가 있다. 이는 두 알고리즘이 구현되는 소프트웨어 환경이나 하드웨어 영향에 따라 어느 알고리즘의 수행시간이 더 빠른지에 영향을 미친다.
- 그러나, 병합정렬의 시간복잡도는 위 두 알고리즘의 시간복잡도 보다 더 느리게 증가하는 함수로서, 구현되는 소프트웨어나 하 드웨어에 영향을 받지 않고, n 이 매우 클 경우에는 항상 병합정 렬이 위 두 알고리즘보다 훨씬 빠르다.





- Big O Notation (빅-오 표기법)
  - Asymptotic analysis (점근적 분석)
    - 시간복잡도 T(n) 에서 n 이 매우 큰 경우 (n → ∞ ) 에만 고려함.
  - $T(n) = O(f(n)) \qquad (T(n) \in O(f(n)))$ 
    - T(n) 이 입력데이터의 크기 n 이 매우 큰 경우에는 함수 f(n)의 상수배를 초과하지 않음을 나타냄.
    - O(f(n)) 을 order 라 부름

**Definition**:  $T(n) \in O(f(n))$  if there exist constants c > 0 and  $n_0 > 0$  such that

$$T(n) \le cf(n)$$
 for all  $n \ge n_0$ .





#### • Example:

$$-(\log n)^2 = O(n)$$



$$T(n) = (\log n)^2$$
$$f(n) = n$$

 $(\log n)^2 \le n \text{ for all } n \ge 16, \text{ so } (\log n)^2 = O(n)$ 





- Big O Notation (빅-오 표기법)
  - T(n) = n(n-1)
    - $T(n) = O(n^2)$
    - $T(n) = O(n^2-n)$
    - $T(n) = O(n^3)$
    - $T(n) = O(5n^4 + 4n^3 + n)$

- T(n)=O( f(n) )
$$\lim_{n\to\infty} \frac{f(n)}{T(n)} = C \quad \text{or} \quad \lim_{n\to\infty} \frac{f(n)}{T(n)} = \infty$$





- Time complexity (order) 의 비교
  - Order 가 각각 O(f(n)), O(g(n)) 인 알고리즘 F, G 의 비교

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \begin{cases} 0 & \text{(case 1)} \\ c & \text{(case 2)} \\ \infty & \text{(case 3)} \end{cases}$$

- case 1: 알고리즘 G가 알고리즘 F 보다 우수
- case 2: 알고리즘 G와 알고리즘 F는 우열을 가릴 수 없음(비슷함)
- case 3: 알고리즘 F가 알고리즘 G 보다 우수





- Time complexity (order) 의 비교 예-1
  - 공정한 떡 나누기 알고리즘

| 알고리즘   | 위치표시의 수               |
|--------|-----------------------|
| 알고리즘-1 | $T_1(n) = n(n-1)/2-1$ |
| 알고리즘-3 | $T_3(n) = nlog_2n$    |

$$\lim_{n \to \infty} \frac{T_2(n)}{T_1(n)} = \lim_{n \to \infty} \frac{n \log_2 n}{n(n-1)/2 - 1} = 0$$





- Time complexity (order) 의 비교 예-2
  - 무게가 가벼운 구슬 찾기 알고리즘

| 알고리즘   | 위치표시의 수            |
|--------|--------------------|
| 알고리즘-1 | $T_1(n) = n/2$     |
| 알고리즘-2 | $T_2(n) = log_2 n$ |
| 알고리즘-3 | $T_3(n) = log_3 n$ |

$$\lim_{n\to\infty} \frac{T_2(n)}{T_1(n)} = \lim_{n\to\infty} \frac{\log_2 n}{n/2} = 0$$

$$\lim_{n \to \infty} \frac{T_3(n)}{T_2(n)} = \lim_{n \to \infty} \frac{\log_3 n}{\log_2 n} = \frac{\log n / \log 3}{\log n / \log 2} = \frac{\log 2}{\log 3}$$





- Big O Notation (빅-오 표기법)
  - T(n)을 어떻게 표현하는 것이 가장 좋은가?
    - T(n) = O(f(n))에서 f(n)은 T(n)에서 가장 고차단항이면서 계수 가 1인 식으로 표현.
    - 즉, 다음을 만족하는 f(n) 중에서 단항이면서 계수가 1인 식

$$\lim_{n\to\infty}\frac{f(n)}{T(n)}=C$$

\_ 예

• 
$$T(n) = 5n^4 + 4n^3 + n$$
  
-  $T(n) = O(n^4)$ 





- Big O Notation (빅-오 표기법)
  - Order 의 순서의 예

$$O(1)$$
  $O(\log n)$   $O(\sqrt{n})$   $O(n)$   $O(n\log n)$   $O(n^2)$   $O(n^3)$   $O(n^{1000})$   $O(2^n)$   $O(3^n)$   $O(1000^n)$   $O(n^n)$ 





# Analysis of Algorithms: Example

- Maximum Contiguous Subsequence Sum
  - -n 개의 정수  $a_1$ ,  $a_2$ , ...,  $a_n$  이 주어졌을 때, 연속적인 부분수열의 합  $\sum_{k=i}^{j} a_k$  이 최대가 되는 구간 (i, j) 와 그 구간 의 합을 계산하시오.







# Analysis of Algorithms: Example

#### 예

 과거의 주식가격이 주어졌을 때, 과거 어느 시점에서 그 주식을 구매하고, 어느 시점에서 매각하는 것이 가장 최 대의 이익을 얻을 수 있는가? 또한 그 때의 최대이익은 얼마인가?



| Day    | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8  | 9   | 10 | 11  | 12  | 13  | 14 | 15 | 16 |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|----|-----|-----|-----|----|----|----|
| Price  | 100 | 113 | 110 | 85  | 105 | 102 | 86  | 63  | 81 | 101 | 94 | 106 | 101 | 79  | 94 | 90 | 97 |
| Change |     | 13  | -3  | -25 | 20  | -3  | -16 | -23 | 18 | 20  | -7 | 12  | -5  | -22 | 15 | -4 | 7  |





# Max. Conti. Subseq. Sum (MCSS)

- 알고리즘 1 (Brute-force, 주먹구구, 모든 경우 시도)
  - 모든 구간 (i,j)  $(1 \le i \le j \le n)$  에 대하여 그 구간의 합  $\sum_{k=i}^{j} a_k$ 을 계산하고, 이 합들 중에서 가장 큰 합을 계산한다.

```
int maxSubsequenceSum (int a[], int n,
                    int *start, int *end)
    int i, j, k;
    int maxSum = 0;
    *start = *end = -1;
    for(i=0; i<n; i++)
        for(j=i; j<n; j++)
            int thisSum = 0;
            for(k=i; k<=j; k++)
                thisSum += a[k];
            if(thisSum > maxSum)
                maxSum = thisSum;
                *start = i;
                *end = i;
    return maxSum;
                                          55
```

KOOKMIN UNIVERSITY

$$T(n) = \sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{k=i}^{j} 1$$

$$= \frac{n(n+1)(n+2)}{6}$$

$$= O(n^{3})$$



# Max. Conti. Subseq. Sum (MCSS) (2)

#### • 알고리즘 2

- 알고리즘 1에서  $\sum_{k=i}^{j} a_k = \sum_{k=i}^{j-1} a_k + a_j$  을 이용하면 좀 더 효율적인 알고리즘을 만들 수 있다.

```
int maxSubsequenceSum (int a[], int n,
                     int *start, int *end)
    int i, j;
    int maxŠum = 0;
    *start = *end = -1;
    for(i=0; i<n; i++)
        int thisSum = 0;
        for(j=i; j<n; j++)</pre>
            thisSum += a[i];
            if(thisSum > maxSum)
                 maxSum = thisSum;
                 *start = i;
                 *end = j;
    return maxSum;
                                           56
```

$$T(n) = \sum_{i=1}^{n} \sum_{j=i}^{n} 1$$

$$= n + (n-1) + \dots + 1$$

$$= \frac{n(n+1)}{2}$$

$$= O(n^{2})$$



## Max. Conti. Subseq. Sum (MCSS) (3)

#### • 알고리즘 3

```
int maxSubsequenceSum (int a[], int n,
                     int *start, int *end)
{
    int i, j;
    int maxSum = 0, thisSum = 0;
    *start = *end = -1;
    for(i=0, j=0; j<n; j++)
        thisSum += a[j];
        if(thisSum > maxSum)
            maxSum = thisSum;
            *start = i;
            *end = i;
        élse if(thisSum < 0)</pre>
            i = j+1;
            thisSum = 0;
    return maxSum;
```

```
5 -7 2 3 -4 5 2 -7 8 -7
```

$$T(n) = n$$
$$= O(n)$$



