Presentation on how to install LAUETOOLSNN

Ravi raj purohit PURUSHOTTAM RAJ PUROHIT¹, Jean-Sebastien MICHA¹

¹French CRG beamline BM32, ESRF, Grenoble

Requirements

- Anaconda distribution
 - https://www.anaconda.com/products/individual
- Create a new environment
 - conda create –name lauenn python=3.8
 - Lauetoolsnn requires python >3.6
- Activate the created environment and install lauetoolsnn
 - conda activate lauenn
 - pip install lauetoolsnn
 - Includes all required libraries (in case of errors; try the last command with "--user" suffix)

4.0.0

0.7.0

0.7.0

4.2.2

2021.9.30

2021.10.8

bleach

brotlipy

build

ca-certificates

cachetools

217 packages available

certifi

Discover premium data science content

Documentation

Anaconda Blog

Create

Clone

Import

Remove

Easy, whitelist-based html-sanitizing tool

O Certificates for use with other packages.

O Python bindings to the brotli compression library

Extensible memoizing collections and decorators

O Python package for providing mozilla's ca bundle.

Conda environment with lauetoolsnn installed

Once installed, launch the GUI by calling lauetoolsnn in the terminal

config file for LaueNeuralNetwork ## comments [GLOBAL_DIRECTORY] ## directory where all training related data and results will be saved main directory = C:\Users\purushot\Desktop\pattern matching\experimental\GUIv0\latest version ## same material key as lauetools (see dictlauetools.py for complete key) ## as of now symmetry can be cubic, hexagonal, orthorhombic, tetragonal, trigonal, monoclinic, triclinic symmetry = hexagonal ## if second phase is present, else none material1 = In epsilon symmetry1 = tetragonal ## path to detector calibration file (.det) detectorfile = C:\Users\purushot\Desktop\In_JSM\calib.det ## Max and Min energy to be used for generating training dataset, as well as for calcualting matching emax = 21 ## classes_with_frequency_to_remove: HKL class with less appearance than specified will be ignored in ## desired_classes_output : can be all or an integer: to limit the number of output classes ## max_HKL_index : can be auto or integer: Maximum index of HKL to build output classes ## max_nb_grains : Maximum number of grains to simulate per lauepattern classes_with_frequency_to_remove = 500 desired_classes_output = all $max_HKL_index = 5$ max_nb_grains = 1 ###### Material 1 ## HKL class with less appearance than specified will be ignored in output classes_with_frequency_to_remove1 = 500 desired classes output1 = all max_HKL_index1 = 5 max_nb_grains1 = 1 ## Max number of simulations per number of grains ## Include single crystal misorientation (1 deg) data in training ## Maximum angular distance to probe (in deg) ## step size in angular distribution to discretize (in deg) ## batch size and epochs for training max_simulations = 1000 include small misorientation = false angular distance = 90 step_size = 0.1 batch size = 50 epochs = 5 # model_weight_file: if none, it will select by default the latest H5 weight file, else provide a specific # softmax threshold global: thresholding to limit the predicted spots search zone # mr_threshold_global: thresholding to ignore all matricies less than the MR threshold # cap_matchrate: any UB matrix providing MR less than this will be ignored # coeff: should be same as cap_matchrate or no? (this is for try previous UB matrix) # coeff_overlap: coefficient to limit the overlapping between spots; if more than this, new solution will be # mode_spotCycle: How to cycle through predicted spots (slow or fast or multiorimat) ##slow is more reliable but slow as the name suggests UB matrix to detect = 1 $image_grid_x = 51$ image_grid_y = 51 matrix_tolerance1 = 0.9

Example_config: provides a template to create a config file for automated analysis

- ### config file for LaueNeuralNetwork
- [GLOBAL DIRECTORY]
- prefix =

Prefix: specify a string to distinguish the model files or keep blank

- ## directory where all training related data and results will be saved
- main directory = C:\Users\purushot\Desktop\pattern matching\experimental\GUIv0\latest version
- [MATERIAL]
- ## same material key as lauetools (see dictlauetools.py for complete key)
- ## as of now symmetry can be cubic, hexagonal, orthorhombic, tetragonal, trigonal, monoclinic, triclinic
- material = In2Bi
- symmetry = hexagonal

If 2 materials present specify them here; in case of only 1 material, keep none for the other

- ## if second phase is present, else none
- material1 = In epsilon
- symmetry1 = tetragonal
- [DETECTOR]
- ## path to detector calibration file (.det)

Detector settings

- detectorfile = C:\Users\purushot\Desktop\In_JSM\calib.det
- ## Max and Min energy to be used for generating training dataset, as well as for calcualting matching rate
- emax = 21
- emin = 5

•

- [TRAINING]
- · ## classes_with_frequency_to_remove: HKL class with less appearance than specified will be ignored in output
- ## desired_classes_output : can be all or an integer: to limit the number of output classes
- ## max_HKL_index: can be auto or integer: Maximum index of HKL to build output classes
- ## max_nb_grains : Maximum number of grains to simulate per lauepattern
- ###### Material 0
- classes with frequency to remove = 500
- desired_classes_output = all
- max_HKL_index = 5
- max_nb_grains = 1
- ###### Material 1
- ## HKL class with less appearance than specified will be ignored in output
- classes_with_frequency_to_remove1 = 500
- desired_classes_output1 = all
- max HKL index1 = 5
- max_nb_grains1 = 1
- ## Max number of simulations per number of grains
- ## Include single crystal misorientation (1 deg) data in training
- ## Maximum angular distance to probe (in deg)
- ## step size in angular distribution to discretize (in deg)
- ## batch size and epochs for training
- max simulations = 1000
- include_small_misorientation = false
- angular distance = 90
- step_size = 0.1
- batch_size = 50
- epochs = 5

Settings related to Training of Neural network

If unsure, just modify max_nb_grains and max_nb_grains1; i.e. maximum grains expected per material

All the other settings can be kept same

- [PREDICTION]
- # model_weight_file: if none, it will select by default the latest H5 weight file, else provide a specific model
- # softmax_threshold_global: thresholding to limit the predicted spots search zone
- # mr_threshold_global: thresholding to ignore all matricies less than the MR threshold
- # cap_matchrate: any UB matrix providing MR less than this will be ignored
- # coeff: should be same as cap_matchrate or no? (this is for try previous UB matrix)
- # coeff_overlap: coefficient to limit the overlapping between spots; if more than this, new solution will be computed
- # mode_spotCycle: How to cycle through predicted spots (slow or fast or multiorimat) ##slow is more reliable but slow as the name suggests
- UB matrix to detect = 1

Settings related to Prediction

- image_grid_x = 51
- image_grid_y = 51
- matrix_tolerance = 0.9
- matrix tolerance1 = 0.9
- material0_limit = 1
- material1_limit = 1
- model weight file = none
- softmax_threshold_global = 0.85
- mr threshold global = 0.80
- cap_matchrate = 0.01
- coeff = 0.3
- coeff_overlap = 0.3
- mode spotCycle = slow

- if unsure, just modify
- Grid_x and grid_y: dimension (steps) of scan area
- matrix_tolerance and matrix_tolerance1; tolerance angle to search for
- spots: keep 0.5 if unsure
- How many grains to detect per material: material0_limit, material1_limit
- restricts that
- use_previous = true; for trying previously identified rotation matrix
- mode_spotCycle: graphmode, beamtime mode are the fastest; subsequently
- ##true for few crystal and prefered texture case, otherwise time consuming: advised for single phase alone on can use alone for more thorough search.
 use previous = true
 - All the other settings can be kept same

- [EXPERIMENT]
- experiment_directory = C:\Users\purushot\Desktop\In_JSM\ech875_ROI01
- experiment_file_prefix = ech875_ROI01_
- [PEAKSEARCH]
- intensity_threshold = 90
- boxsize = 15
- fit peaks gaussian = 1
- FitPixelDev = 15
- NumberMaxofFits = 3000
- [STRAINCALCULATION]
- strain_compute = true
- tolerance_strain_refinement = 0.7,0.6,0.5,0.4,0.3,0.2
- tolerance_strain_refinement1 = 0.7,0.6,0.5,0.4,0.3,0.2
- [POSTPROCESS]
- hkls_subsets = [1,1,0],[1,0,0],[1,1,1]
- [DEVELOPMENT]
- # could be 1 or 2 / none in case of single phase
- material_phase_always_present = 1
- write_MTEX_file = true
- material0_lauegroup = 9
- material1_lauegroup = 5

Settings related to Experiment and misc

material_phase_always_present = 1; forces the neural network to predict always the first grain from material 1; leads to nice plots

MTEX output for plotting PF and IPFs ; specifiy the proper laue group to get proper colors

Predefined uniform orientation distribution for all symmetries (used during training)

It is possible to define particular orientations too (in case of preferred texture) → however this will lead to bias in model

