

33° **52**′ **37′′S** 151° 06' 04"E

10 ADV

- distance formula: $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

JE MATHS

JE MATHS

2. Given that a circle with the centre $O(-5, -\sqrt{3})$. If one point $P(-1, \sqrt{3})$ is on this circle, find the equation of this circle.

JE MATHS

JE MATHS

- midpoint formula:
$$(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$$

MATHS

3. Given that O(-1,2) is the centre of a circle with a diameter AB going through it.

If $\Lambda(-3, 6)$, find the coordinate of B.

JE MATHS

 Given that P(4, -7) is one vertex of a rhombus PQRS, and the centre of the rhombus is O(8, -2), find the coordinates of the opposite vertex R.

- gradient formula: $m = \frac{rise}{run} = \frac{y_1 y_2}{x_1 x_2}$
- 5. Find the gradient of $P(2\sqrt{2},2)$ from its inverse point Q.

JE MATHS

- the angle of inclination: $\tan \alpha = m$
- 6. Find the exact angle of inclination α if the gradient is $-\frac{\sqrt{3}}{\cancel{13}}$

- two lines are parallel: $l_1 \parallel l_2 \Leftrightarrow m_1 = m_2$

- two lines are perpendicular: $l_1 \perp l_2 \iff m_1 \cdot m_2 = -1$
- The interval PQ has gradient -3. A second line passes through Λ(-2, 4) and B(1, k). Find k.
 (a) if ΛB is parallel to PQ.

JE MATHS

(b) if AB is perpendicular to PQ.

- For A(k, 1), B(-2, -3), C(2, 3) and D(1, k), find k:
 - (a) if AB is parallel to CD.

JE MATHS

JE MATHS

JE MATHS

(b) if AB is perpendicular to CD. JE MATHS

JE MATHS

- equation of lines:

- general form: ax + by + c = 0

JE MATHS

- point-gradient form: $y - y_1 = m(x - x_1)$

- two points form: $y-y_1 = \frac{y_1-y_2}{x_1-x_2}(x-x_1)$

- analytical geometry:

JE MATHS

JE MATHS

9. The three points Λ(1, 0), B(0, 8) and C(7, 4) form a triangle.

Let θ be the angle between AC and the x-axis.

(a) Plot all points to the given number plane and indicate the angle θ .

(b) Find the value of θ , to the nearest degree.

JE MATHS

JE MATHS 6

(c) Find the general equation of AC.

JE MATHS

JE MATHS

(d) If D is the mid-point of AC, find the coordinate of point D.

(e) Show that:

(i)
$$AB = BC$$

(ii) AC⊥BD.

(f) Name ΔABC.

JE MATHS

JE MATHS

(g) Find the area of ΔABC.

JE MATHS

JE MATHS

JE MATHS

10. The points A(-5, -1), B(-1, 5) and D(0, -3) are 3 vertices of a quadrilateral.

(a) Write down the coordinates of the 4th vertex C, such that ABCD is a parallelogram.

JE MATHS

(b) Find the general equation of BD.

JR M

(c) Find the distance of

(i) BD.

(ii) AB

(iii) AD

JE MATHS

(d) Find ∠A by using the cosine rule, to the nearest minutes.

JE MATHS

(e) Find the area of ABCD by using the area of the triangle by sine. (0dp)

11.	Prove that the midpoin	t of hypotenuse of a right angle tria	ngle is equidistance from its vertices.
	JE MATHS	JE MATHS	JE MATHS
		JE MATHS	JE MATHS

- (a) Sketch the diagram from the above with the given information marked clearly.
- (b) Find the equation of the circle.
- (c) Show that the coordinate of points Λ (2, 6) and point B (4, 4) by solving simultaneous equations.

Descartes and Fermat founded analytic geometry in the 1630s

(d) Find the general equation of line XC.

(e) If line CX meets the y-ax (i) Find the coordinates o	is at D and line AB meets the x-axis of D and F.	at F.	
JE MATHS	JE MATHS		JE MATHS
(ii) Hence, find the area of	of the quadrilateral DEFO.		
-	THS	THS	
	JE MATHS	JE MATHS	
(f) Show that ΔAXC is an is	osceles right angle triangle.		
-	IR m.		
. mus			. mtIS
JE MATHS			JE MATHS
_	. mus		
	JE MATHS		
(g) Prove that $\angle \Lambda CX = 45^{\circ}$.			
(g) Flove mat 2ACA = 45.		JE MATHS	
-			
(h) Show that $\angle AEC = 22^{\circ}3$	JE MATHS 30'.		

	JE MATHS		
(i) Prove that $\cos 22^{\circ}30' = -\frac{1}{2}$	$\frac{2+\sqrt{2}}{2\sqrt{1+\sqrt{2}}}$ by using trigonometry.		
-			
-			
JE MATHS	JE MATHS		JE MATHS
	-		
-			

13. (a) Sketch the following region:

(b) Hence, sketch the common region to $y \le 2x$ and 2x - y > 1.

14. Solve graphically the following system of linear inequalities.

15. (a) Sketch the region bounded by

$$\begin{cases} 2x + y \le 6 \\ y \ge x \end{cases}$$

and show all of the vertices of the region.

$$x \ge -1$$

JE MATHS

JE MATHS

(b) Find the area of the common region.

IB MATHS

16. (a) Sketch the following region:

(i) $y \le x^3$

JE MATHS

(b) Hence, sketch the common region of $y \le x^3$ and x < 1.

JE MATHS

JE MATHS

- Sketch the common region of the following two curve lines and indicate their intersection points.
 - (a) $y \ge x^2$ and $y \le x^3$

(b) $y \le \sin x$ and $y \ge \cos x$,

$$0^{\circ} \le x \le 360^{\circ}$$

18. Use coordinate geometry to prove that the midpoint of the hypotenuse of a right angle is equidistant from the three vertices.

Question: Given that $\triangle OAB$ is a right angle triangle, with A(0, a) and B(b, 0), if C is the midpoint of AB, show that AC=CO=BC.

JE MATHS

JE MATHS

- 19. Given that a circle of center C(r, r) with radius r inscribe in a Rt △ABO with Rt∠ at the origin.
 - (a) Find the equations of:

(ii) circle C.

JE MATHS

(b) Show that the contact point $D(r(\frac{1}{\sqrt{2}}+1), r(\frac{1}{\sqrt{2}}+1))$

JE MATHS

- JE MATHS
- JE MATHS
- (c) Show that $\triangle ADO$ is an isosceles right angle triangle.

JE MATHS

JE MATHS

(d) Hence, show that $A(r(\sqrt{2}+2),0)$.

	1 2 3		
	Avg:		

Week

A

Д

Want to learn? We will help u.

Don't want to learn? We will change u.

ph: 0422 777 073