# **VERMES MIKLÓS Fizikaverseny**

2023. március 13. *Megyei szakasz* 

### IX. osztály

# **JAVÍTÓKULCS**

## Tudod-e? (Kovács Zoltán)

Karikázd be a helyes választ! Minden helyes válasz 0,1 pontot ér.

| Hogyan lehet a dinamika alaptörvényét felírni az impulzussal? (0,1 pont)                                                                  | $F = \Delta t/\Delta p$                                   | $F = \Delta p/\Delta t$                                        | $F = \Delta p \cdot \Delta t$                           |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|
| Melyik az impulzus mértékegysége az<br>SI mértékrendszerben? (0,1 pont)                                                                   | $[p] = 1 \text{ N} \cdot \text{m}$                        | $[p] = 1 \text{ m/s}^2$                                        | [p] = 1  N·s                                            |
| Melyik a súrlódási erőre vektoriálisan helyesen felírt összefüggés? (0,1 pont)                                                            | $\overrightarrow{F_s} = \mu \cdot \overrightarrow{N}$     | $\overrightarrow{F_s} = -\mu N \frac{\overrightarrow{v}}{v}$   | $\overrightarrow{F_s} = \mu \cdot \overrightarrow{G_n}$ |
| Mit értünk a körmozgást végző anyagi<br>pont vonalsebessége alatt? (0,1 pont)                                                             | a megtett húr<br>hosszának és az<br>időnek a<br>hányadosa | a megtett<br>körív és a<br>ehhez<br>szükséges idő<br>hányadosa | az időegység<br>alatt megtett<br>körív hossza           |
| Mi a vonalsebesség mértékegysége? (0,1 pont)                                                                                              | 1 m/s                                                     | 1 m/s <sup>2</sup>                                             | 1 rad/s                                                 |
| Milyen irányba mutat a vonalsebességvektor? (0,1 pont)                                                                                    | érintőleges a<br>körhöz                                   | a kör<br>központjából<br>kifele                                | a kör központja<br>fele                                 |
| Melyik a vonalsebesség képlete? (0,1 pont)                                                                                                | $v = \Delta \omega / \Delta t$                            | $v = \Delta \alpha / \Delta t$                                 | $v = \Delta s/\Delta t$                                 |
| Melyik a centripetális gyorsulás képlete? (0,1 pont)                                                                                      | $a_{\rm cp} = \omega \cdot v$                             | $a_{\rm cp} = \omega \cdot r$                                  | $a_{\rm cp} = \omega/v$                                 |
| Melyik képlet szolgál a radián és a fok<br>közötti átalakításra? (0,1 pont)                                                               | $2\pi$ ·rad = 180 fok                                     | $\pi$ ·rad = 360 fok                                           | $\pi$ ·rad = 180 fok                                    |
| Melyik képlettel lehet kiszámítani az <i>R</i> sugarú kör körívhosszát a hozzá tartozó, radiánban megadott középponti szöggel? (0,1 pont) | $\Delta s = R/\Delta \alpha$                              | $\Delta s = \Delta \alpha / R$                                 | $\Delta s = R \cdot \Delta \alpha$                      |

Összesen: 1 pont

## 1. Feladat (FIRKA 1. 2022/2023. F. 652. Ferenczi János – Kovács Zoltán)



| b) | $CB = OB \cos \beta = 12,25 \cdot 0,707 = 8,66 \text{ m}$ | 0,1              |
|----|-----------------------------------------------------------|------------------|
|    | AB = CB - CA = 8,66 - 5 = 3,66  m                         | 0,1              |
|    | $v = AB/\Delta t = 3,66/10 = 0,366 \text{ m/s}$           | 0,2              |
| c) | A mozgástörvény: $x = x_0 + v(t - t_0)$ és $y = y_0$      | 0,4              |
|    | Konkrétan: $x = 5 + 0.366(t - 0)$ és $y = 8.66$           | 0,2              |
|    |                                                           | Összesen: 2 pont |

### **2. Feladat** (*FIRKA* 5-6. 1993/1994 F.L. 92.)

|    |                                                                                                       | Pont             |
|----|-------------------------------------------------------------------------------------------------------|------------------|
| a) | m = G/g = 600/10 = 60  kg.                                                                            | 0,3              |
|    | A lift gyorsulása: $a_1 = (F_1 - G)/m = 2 \text{ m/s}^2$ . tehát a lift felfele emelkedett.           | 0,4              |
| b) | Az első szakasz végén a lift sebessége: $v_1 = a_1 \cdot t_1 = 10 \text{ m/s}$ .                      | 0,3              |
|    | Az első szakaszban megtett úthossz: $x_1 = a_1 \cdot t_1^2 / 2 = 25$ m.                               | 0,3              |
|    | A második szakaszban egyenletesen haladt, és megtett $x_2 = v_1 \cdot t_2 = 200$ m utat.              | 0,3              |
|    | A harmadik szakaszban fékezett: $a_3 = (F_3 - G)/m = -2 \text{ m/s}^2$ .                              | 0,3              |
|    | Ezalatt $0 = v_1^2 + 2a_3x_3$ , ahonnan $x_3 = -v_1^2/2a_3 = 25$ m utat tett meg.                     | 0,3              |
|    | A megtett teljes úthossz a mozgás 30 s alatt: $x_{\text{teljes}} = x_1 + x_2 + x_3 = 250 \text{ m}$ . | 0,3              |
|    | Egy emelet magassága $h = x_{\text{teljes}}/50 = 5 \text{ m}.$                                        | 0,3              |
|    | Az épület legalább $H = 100.5 + 5 = 505$ m magas, mert földszint is van.                              | 0,2              |
|    |                                                                                                       | Összesen: 3 pont |

### **3. Feladat** (*FIRKA* 3. 2013/2014. F.539)

Pont Az ábra 1 0,4 A dinamika II. törvényének felírása a két testre:  $m_1 a = m_1 g \sin \alpha - \mu_1 m_1 g \cos \alpha - T$  $m_{1}\alpha = m_{1}g \sin \alpha + m_{1}m_{1}g \cos \alpha - m_{2}a = m_{2}g \sin \alpha + T - \mu_{2}m_{2}g \cos \alpha$   $a = g \left[ \sin \alpha - \frac{(\mu_{1}m_{1} + \mu_{2}m_{2})\cos \alpha}{m_{1} + m_{2}} \right] = 7,3 \frac{m}{s^{2}}$   $T = \frac{(\mu_{2} - \mu_{1})m_{1}m_{2}g \cos \alpha}{(m_{1} + m_{2})} = -0,06 \text{ N} = -60 \text{ mN}$ 0,4 0,5 A negatív előjel jelentése:  $(\mu_2 > \mu_1)$  a feszítőerő iránya ellenkező. A rajznak 0,1 megfelelő feszültségirányhoz:  $\mu_2 < \mu_1$ . 0.1 Ha a két test esetén  $\mu_2 = \mu_1$ , akkor T = 0. 0,1 Az  $m_1m_2/(m_1 + m_2) = m_r$  a redukált tömeg. 0,10.1 Ha  $m_1 = m_2 = m$ , akkor  $m_r = m/2$ ), T a redukált tömegnek megfelelő súrlódási erővel egyenlő, amelyben  $\mu_2 - \mu_1 = \mu_r$  a 0,1 relatív súrlódási együttható. 0,1Összesen 3 pont