INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR DEPARTMENT OF CHEMICAL ENGINEERING

MID SEMESTER EXAMINATION 2017-18 (SPRING)

Computer Aided Process Engineering (CH30016)

Numbe	er of Students - 98	FULL MARKS -	30	Ansv	ver all	the q	ues	tions	
NAME :		<u>.</u> 1	Roll No:		С	Н			
	Submit this S	Sheet duly filled in s	along wit	th you	ır Ans	wer I	Book	ζ.	
1.	the composite of	and Cold Composite work Design? Base curve and show grand told utility.	d on the	strea	m tabl	e of (D-3.	deve	lon
								8	
2.	From the following	ng stream table, des	ign the M	ÆR h	eat exc	hang	er ne	etworl	k
•	(a) Without S	Stream-splitting							

(b)	With Stream-splitting
	Explain how do you optimize this stream splitting strategy?

Stream Type	CP (kW/°C)	T _s (°C)	T _t (°C)
1. Cold	5	250	550
2. Hot	15	570	370
3. Cold	5	230	530

Assume:

 $\Delta T_{min} = 20 \, {}^{\circ}\mathbf{C}$

Pinch temperature for the hot stream is 570°C.

4+2+4=10

P.T.O.

Do not ask any question at the Examination Hall. If in doubt, make suitable assumptions and proceed. Handwriting and figures should be neat. Parts of a question should be answered together, in one place.

Submit this Sheet duly filled in along with your Answer Book

3. From a process flow-sheet, the following "Stream table" has been extracted.

Stream Type	CP (MW/ °C)	T _s (°C)	T _t (°C)
1. Hot	0.2	150	50
2. Hot	0.1	170	40
3. Cold	0.3	50	120
4. Cold	0.5	80	110

Using the "Problem table	method"	based on	he MER design,
and assuming $\Delta T_{min} = 1$	l0 ℃ :		

Calculate and fill up the boxes below and submit with the answer script:

	-4- C. H	anger Networ	k (Gria rep	resentation) a	ind fill i
relevant data i	nto iollowing	g tabular forma	ıt:		
	T h,in	T h,out	T _{c,in}	T c,out	ΔΗ (Ν
HE1					
HE2					
HE3		-			
HE4				 -	
HE5					
Heater		7			-
					-
Cooler	ŀ	1			

Cooling water: $T_s = 20$ °C, $T_t = 30$ °C, and Cost = 0.0075 Rs./kg Steam (saturated): T = 258 °C, Latent Heat = 1,676 kJ/kg and Cost = 0.03 Rs./kg Equipment operability 8,000 hr/yr. 2+2+6+2=12

Hot Utility and Cold Utility

Submit this Sheet duly filled in along with your Answer Book