

Dependability for Java Mobile Code A pragmatic research view

Pierre Parrend CITI Laboratory INRIA – ARES Team Lyon, France OWASP Swiss Chapter Meeting July 2007 Zürich

The Vision

A Net of Applications

- Interconnected world
 - Web Servers, Handheld Devices, Home PC, Home Boxes
 - Each device can consume and use services
- Shifting programming model
 - Client Server webs apps are no longer satisfactory for mobile devices
 - Ressource limited devices need extensible execution environment: Mobile Java Apps (MIDP, OSGi, ...)
- Consequence on Security
 - Specific approach to security concerns

The Vision

Example – On-board desktop

GPS

Security for Java Mobile Code

Summary

- The OWASP and the Java World
 - The OWASP Java Project
 - From Client-Server to extensible Applications
- Dependability for Java Mobile Code
- A Contribution for Hardened OSGi Platforms

Java and the OWASP

- The OWASP Java Project
 - Started 30 June 2006
 - Mailing List: 111 members
 - Articles: 26
 - Growing ...
- Related Development Projects
 - LAPSE
 - Lightweight Analysis for Program Security in Eclipse
 - Benjamin Livshits

Java and the OWASP

- The OWASP Java Project
 - Targeted at Web Application Servers
 - Focus on 4 questions
 - J2EE Security for Architects
 - J2EE Security for Developpers
 - J2EE Security for Deployers
 - J2EE Security for Analysts and Testers
 - Work in progress

- Motivation
 - Restricted applications for mobile devices
- Classical Web Client-Server Approach
 - Deskop Browser rich user experience requires sufficient client side-resources (memory, screen size)
 - Java Applets, Web start (and many others) for Web-based applications
- Connection and Apps for Mobile Devices
 - Wap access for mobile devices
 - Default apps for mobile devices

- Solution: Extensible Component Platforms for embedded devices
 - Existing technologies
 - Java MIDP, OSGi
 - Target systems
 - Mobile phones, automotive entertainment, home gateways, e-health systems
 - Features
 - Discovery of Apps Repositories
 - Installation of new Apps during runtime
 - Multi-Application systems
 - Uninstallation of Apps

- Extensible Component Platforms prove to be powerfull for server management too
 - Benefits
 - No reboot required
 - Centralized (and possibly remote) component management
 - Transparent update of System and Applications
 - Eclipse IDE
 - Based on OSGi Equinox
 - IBM Websphere 6.1
 - JBoss
 - OSGi Felix

- Java Extensible Component Platforms
 - MIDP vs. OSGi
 - MIDP
 - CLDC (Connected Limited Device Configuration) Profile
 - Very lighweigth environments
 - e.g.: Mobile Phones
 - OSGi
 - J2ME CDC (Connected Device Configuration) Foundation Profile
 - Leightweight or standard environments
 - e.g: PDAs

MIDP

- Mobile Information Device Profile
- Defined by Sun
- Applications
 - Middlet Suites
 - Defined in an external JAD File
 - Java Application Descriptor

- OSGi
 - Was 'Open Service Gateway Initiative'
 - · Is now an adjective
 - Forstered by the OSGi Alliance
 - The Platform

- The Bundles

- OSGi
 - Communication between bundles
 - Package or Services
 - Internal Description, enables Dependency Resolution
 - And thus dynamic discovery

Summary

- The OWASP and the Java World
- Dependability for Java Mobile Code
 - From Security to Dependability
 - Security for Java Mobile Code: State of the Art
- A Contribution for Hardened OSGi Platforms

- Java Extensible Component Platforms: an Evolving Threat Model
 - Web Servers
 - Hackers can come from the Internet
 - Attack Surface is kept as small as possible
 - Extensible Component Platforms
 - Hackers can come from the Internet
 - Hackers can hide malware in Components
 - Attack Surface is as big as the Specification ...
 - Or at least is made of all actions the Component is allowed to do

- A new approach to security is required
 - A firewall is not enough
 - AAA model outdated
 - Control on code is more necessary than ever
 - It is so easy to block a system when executing code on it
 - Current JVMs are designed for secure execution of single applications
 - Multi-Application save ressource
 - But are likely to bring big troubles
 - Dependability
 - Security + Robustness

Dependability

- Threat Model for Extensible Component Platform
 - Deployment

- Threat Model for Extensible Component Platform
 - Execution At the Example of the OSGi Platform
 - Each Element of the Execution Platform Can be the source of vulnerabilities
 - JVM
 - Execution Platform
 - API
 - OSGi Platform
 - Life-Cycle Layer bundle management
 - Module Layer package management
 - Service Layer

- Principle of Security for Java Code
 - Strong Data Typing
 - No buffer overflow
 - Automatic Memory Management
 - No memory leak
 - Bytecode verification
 - Before execution
 - Secure Class Loading
 - Permission mechanism

MIDP Security

<u>Tommi Mikkonen, Uni. Tampere (Fi.)</u>

- Three security levels
 - Low-level ~ virtual machine level security
 - Application-level ~ applications do not escape 'sandbox'
 - End-to-end ~ Security in all phases of e.g. a connection via e.g. encryption
- Digital signature to enable trusted applications (only after CLDC 1.1)
 - Manufacturer, operator, trusted 3rd party, untrusted
 - Needed for phone calls, push networking features, etc
 - User authorization may also be used if the trust level is not enough for certain feature
- Midlet Signature: in the JAD File

MIDP Security

Tommi Mikkonen, Uni. Tampere (Fi.)

End-to-end security:

- Security in all phases of e.g. a connection via e.g. encryption

Application-level security:

- Do not escape sandbox

Low-level security:

- Virtual machine level

MIDP Security

Tommi Mikkonen, Uni. Tampere (Fi.)

- OSGi Security
 - Secure Deployment

- OSGi Security
 - Digital Bundle Signature

- OSGi Security
 - Java Permissions
 - OSGi Permissions
 - AdminPermission
 - Lifecycle, metadata, listener, execute
 - PackagePermission
 - Export, import
 - ServicePermission
 - Register, get

- OSGi Security
 - Permission Management
 - At runtime
 - Conditional Permissions
 - Perform additional check

```
{
    [..BundleSignerCondition "*; o=ACME"]
    (..AdminPermission "(signer=\*; o=ACME)" "*")
    (..ServicePermission "..ManagedService" "register")
    (..ServicePermission "..ManagedServiceFactory"
"register")
    (..PackagePermission "..cm" "import")
}
```


- Current Security Level
 - Secure Deployment
 - Restrictions on execution are possible
- Requirements
 - No Guarantee on the executed code
 - Simply trust the Issuer
 - Research efforts
 - Proof Carrying Code
 - Can only proove subsets of programming languages
 - 'I can tell you that your virus will never crash', Peter Lee

Summary

- The OWASP and the Java World
- Dependability for Java Mobile Code
- A Contribution for Hardened OSGi Platforms
 - Engineering Dependable Applications
 - Toward a Hardened OSGi Platform

- Requirement
 - Life-Cycle long support of security
- The Bundle Life-Cycle

Secure Coding throughout Bundle Life-Cycle

- Tools for Secure Deployment of OSGi Bundle
 - SF-Jarsigner, http://sf-jarsigner.gforge.inria.fr
 - SFelix, http://sfelix.gforge.inria.fr

Sfelix

- http://sfelix.gforge.inria.fr/
- Sfelix v0.1
 - OSGi Release 4 Implementation of the Bundle Signature Validation Process
 - Beware of JVM-only solutions!
- Sfelix v0.2
 - Robust against ill-coded Bundles
 - In a near future still need to be published

Sfelix

```
-> obr start "HTTP Service"
larget resource(s):
  HTTP Service (0.8.0.SNFPSHOT)
Deploying...Resolver: Install error - org.abathe.felix.http.jetty
org.osgi,framework.BundleException: Could not create bundle object.
        at org.abache.felix.franework.Felix.installBundle(Felix.java:1347)
        at org.abache.felix.framework.Felix.installBundle(Felix.java:1322)
        at org.apache.felix.framework.BundleContextImpl.installBundle(3undleContextImpl.java:90)
        at org, abache, felix, bundlerepository, ResolverImpl, deploy(ResolverImpl, java:457)
        at.org,apache,felix,bundlerepository,lbrCommandImpi,_deploy(ObrCommancImpl,java:356)
        at org.abache.felix,bundlerepository.DbrCommandImpl.deploy(ObrCommandImpl.java:294)
        at org.apache.felix.bundlerepository.DbrCommandImpl.execute(ObrCommancImpl.java 108)
        at org.abache.felix.sheil.impl.Activator$ShellServiceImpl.executaCommanc(Activator.java:253)
        at org.abache.felix.shell.tui.Activator$ShellTuiRunnable.run(Activator. ava:165)
        at .java.lang.Thread.run(Thread.java:595)
Caused by: org.osgi.framework.BundleException: Bunelc Unsecure
        at fr.innia.ares.framework.cache.DefaultSecuredBundleNrchive.checkNrchiveValiditu(DefaultSecuredBundleNrchive.java:73)
        at org.abache.felix.framework.Felix.installBundle(Felix.java:1323)
        ... 9 nore
done.
```


- The SF-JarSigner Tool
 - http://sf-jarsigner.gforge.inria.fr/
 - The Archive Analysis PanelF

- The SF-JarSigner Tool
 - The Bundle Repository Management Panel

- The SF-JarSigner Tool
 - The Bundle Publication Panel

- Requirements
 - Specification for an hardened OSGi platform
- OSGi Platform Model

- The Semi-formal Vulnerability Pattern for the OSGi **Extensible Component Platform**
 - Reference
 - Vulnerability Pattern (VP) Id
 - Taxonomy-based characterization
 - Description
 - More Text
 - Protection
 - Actual Protection
 - Potential ones
 - Implementation
 - Robust and Vulnerable platforms

 Specific Taxonomies for the OSGi extensible Component Platform

Building a robust OSGi Platform

- Identified Protection Mechanisms
 - Platform hardening
 - Java Permissions
 - Code Analysis
- Hardened OSGi Platform
 - INRIA Sfelix Project Prototype, V0.2
 - http://sfelix.gforge.inria.fr/
 - 8 vulnerabilities out of 29 patched
 - 13 more are protected with Java Permissions
 - 75 % of vulnerabilities prevented
 - Felix: 48%
 - Equinox: 58%

Recommandations for the OSGi Specifications

- Do not rely on the embedded Java Archive verifier
 - OSGi R4, Paragraph 2.3
- Bundle Resolution Process should be robust
 - Ignore duplicate imports (currently: abort; see R4 par. 3.5.4; Equinox ignores)
 - Handle large manifests without radical performance breakdown
- Bundle Start Process
 - Start the Bundle Activator in a separate process (R4 par. 4.3.5)
- OSGi Service Registration
 - Explicit limitation of the number of registered services (R4 par. 5.2.3)
 - Absolute Maximum could be 50 ?

Recommandations for the OSGi Specifications

- Bundle Installation process
 - Maximum storage size of bundle archive (for embedded devices) (R4 par. 4.3.3)
 - Should be performed before download when relevant
- Bundle Uninstallation process
 - Remove Bundle data on the local file system (R4 par. 4.3.8)

Conclusions

- Java Mobile Apps are taking off
 - OWASP is active in the applicative domain too
 - Shift from Security to Dependability focus
- Need of a Life-Cycle long control
 - Security keeps being a management-level question
- OSGi is one solution
 - With so far only reduced implemented security features

Questions?