Recherche documentaire de tests d'adéquation

TRAN QUOC NHAT HAN - AMINE MOUSTATIH

8 octobre 2018

Sommaire

1	Test χ^2											
2	Test de Shapiro-Wilk											
	2.1 Histoire en bref											
	2.2 Processus											
	2.3 Code en R											
0	A 1											
Anderson L	Oarling Control of the Control of th											

Résumé

Ce rapport est un petit recherche documentaire concernant quelques tests d'adéquation usuels :

— Test χ^2 — Test de Shapiro-Wilk

— Test d'Anderson Darling

1 Test χ^2

2 Test de Shapiro-Wilk

2.1 Histoire en bref

Ce test non-paramétrique est publié en 1965 par *Samuel Sanford Shapiro* et *Martin Wilk* pour tester si un échantillon d'une variable **continue** (sous 2000 observations) suit **une loi normale**.

2.2 Processus

Soit une variable continue X dont n observations étaient réalisées $x_1, x_2, ..., x_n$. Soient 2 hypothèses :

- $H_0: X$ suit une loi normale $N(\mu, \sigma^2)$.
- $H_1: X$ ne suit pas la loi normale.

Nous effectuons le test comme suivant :

- 1. Ordonner les réalisations dans l'ordre croissant $y_1 \leq y_2 \leq ... \leq y_n$.
- 2. Calculer

$$S^{2} = \sum_{1}^{n} (y_{i} - \overline{y})^{2} = \sum_{1}^{n} (x_{i} - \overline{x})^{2}$$

Donc \overline{y} , \overline{x} désignent la moyenne de y, x respectivement.

3. Calculer des différences (entre le premier y_1 et le dernier y_n , le deuxième y_2 et l'avant-dernier y_{n-1} , et ainsi la suite, le médian y_{k+1} est ignoré si n = 2k + 1). Appliquer un coefficient de pondérer lu dans la table 1. Les additionner et élever au carré.

$$b^{2} = \left(\sum_{1}^{\left\lfloor \frac{n}{2} \right\rfloor} a_{i} \left(y_{n+1-i} - y_{i} \right) \right)^{2}$$

4. Calculer le statistique du test

$$W = \frac{b^2}{S^2}$$

5. Rechercher la valeur W dans la table 2. Petit W signifie une distribution non normale. Choisir la valeur plus proche à W dans la ligne correspondant à n. Regarder alors le niveau (level) de signifiance p-value. Si $p-value > \alpha$ (α est le risque, souvent 1% ou 5%), l'hypothèse H_0 est accepté.

i^n	2	3	4	5	6	7	8	9	10
1	0.7071	0.7071	0.6872	0.6646	0.6431	0.6233	0.6052	0.5888	0.5739
2	_	.0000	$\cdot 1677$	$\cdot 2413$	$\cdot 2806$	$\cdot 3031$	$\cdot 3164$	$\cdot 3244$	$\cdot 3291$
3				.0000	$\cdot 0875$	·1401	$\cdot 1743$	$\cdot 1976$	$\cdot 2141$
4	_	-		-		.0000	$\cdot 0561$	$\boldsymbol{\cdot 0947}$	$\cdot 1224$
5	_	_					—	$\cdot 0000$	$\cdot 0399$

Figure 1 – Coefficients a_{n+1-i} pour n = 1..10

	Level									
n	0.01	0.02	0.05	0.10	0.50	0.90	0.95	0.98	0.99	
3	0.753	0.756	0.767	0.789	0.959	0.998	0.999	1.000	1.000	
4	$\cdot 687$.707	.748	$\cdot 792$	$\cdot 935$.987	$\cdot 992$	$\cdot 996$	$\cdot 997$	
5	.686	$\cdot 715$	$\cdot 762$	·806	$\cdot 927$	$\cdot 979$	$\cdot 986$	$\cdot 991$	$\cdot 993$	
6	0.713	0.743	0.788	0.826	0.927	0.974	0.981	0.986	0.989	
7	$\cdot 730$.760	.803	.838	$\cdot 928$	$\cdot 972$	$\cdot 979$	$\cdot 985$	•988	
8	$\cdot 749$	$\cdot 778$.818	.851	$\cdot 932$	$\cdot 972$	$\cdot 978$.984	$\cdot 987$	
9	$\cdot 764$	$\cdot 791$	$\cdot 829$	$\cdot 859$	$\cdot 935$	$\cdot 972$	$\cdot 978$	$\cdot 984$	•986	
10	·781	·806	$\cdot 842$.869	$\cdot 938$	$\cdot 972$.978	$\cdot 983$	$\cdot 986$	

Figure 2 – Pourcentage de W pour n = 1..10

2.3 Code en R

shapiro.test(x)

x désigne un vecteur de données.

Exemples

```
> shapiro.test(rnorm(100, mean = 5, sd = 3))
```

Résultat de la commande:

Shapiro-Wilk normality test

```
data: rnorm(100, mean = 5, sd = 3)
W = 0.9895, p-value = 0.6211
```

p est significativement plus grand que $\alpha=5\%.$ L'hypothèse nulle est donc non rejetable.

```
> shapiro.test(runif(100, min = 2, max = 4))
```

3 Anderson Darling

Références

- [1] S. S. Shapiro et M. B. Wilk, An analysis of variance test for normality (complete samples)
 - https://github.com/haghish/ST516/blob/master/Articles/ Shapiro-Wilks%20test/An%20analysis%20of%20variance%20test% 20for%20normality%20(complete%20samples).pdf
- [2] http://www.jybaudot.fr/Inferentielle/testsnormalite.html
- [3] http://www.sthda.com/french/wiki/test-de-normalite-avec-r-test-de-shapiro-wil
- [4] https://stat.ethz.ch/R-manual/R-patched/library/stats/html/shapiro.test.html