

5.DIMA (Direct Memory Access)

DR. SOMSIN THONGKRAIRAT

DMA (Direct Memory Access)

Transfer data directly without CPU

Transfer From Memory to Memory

Transfer From Peripheral to Memory

Transfer From Memory to Peripheral

DMA architecture

Purpose (จุดประสงค์)

การ copy ข้อมูลเป็นงานที่ไม่ซับซ้อน แต่ในระบบปกติเป็นการทำงานที่ขาดไม่ได้

Q: อะไรคือการ Copy ข้อมูล

A: การใช้เครื่องหมาย =

* มีโปรแกรมใหนไม่ใช้เครื่องหมาย = ในการทำงานได้บ้าง

Typical method (mem to mem)

ในกรณีปกติ CPU จะ Copy และ PASTE ข้อมูลทีละ Unit ในขณะที่ CPU กำลังทำงานดังกล่าวอยู่ CPU จะถือว่าอยู่ใน State Busy หรือกำลังทำงานอยู่ และไม่สามารถทำอย่าง อื่นได้เลย เช่น

int a = 3,b = 5;int c = a;

Peripheral to memory

DMA Method

CPU แจกงานให้ DMA ทำแทน โดยให้ Source Address , Destination Address และ จำนวนข้อมูลที่ต้องการ copy

ในขณะที่ DMA ทำงาน CPU สามารถไป ทำงานอย่างอื่นได้

LAB 1 copy array

4. Check DMA

```
/- USER CODE BEGIN 2 -/
HAL_UART_Transmit(&huart2, "haruhi_DMA\r\n", 13, 1000);
/* USER CODE END 2 */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{

HAL_DMA_Start (&hdma_memtomem_dma1_channel1, string_source, string_destination, 22);
while(HAL_DMA_PollForTransfer(&hdma_memtomem_dma1_channel1, HAL_DMA_FULL_TRANSFER, 100) != HAL_OK)
{
    __NOP();
}

string_buffer_size_=_sprintf(string_buffer, "src_=_%sdest_=_%s\r\n", string_source, string_destination);
HAL_UART_Transmit(&huart2, string_buffer, string_buffer_size, 1000);
HAL_Delay(2000);
/* USER CODE_END_WHILE */

/* USER_CODE_END_WHILE */

/* USER_CODE_END_3 */
```

```
/* USER CODE BEGIN 1 */
 uint8 t string_source[128] = "Somsin Thongkrairat\r\n";
 uint8_t string_destination[128] = "Thanavit Anuwongpinit\r\n";
 unsigned char string buffer[256];
int string buffer size = -1;
 /* USER CODE END 1 */
 /* USER CODE BEGIN 2 */
 HAL_UART_Transmit(&huart2, "haruhi DMA\r\n", 13, 1000);
 /* USER CODE END 2 */
 /* Infinite loop */
 /* USER CODE BEGIN WHILE */
 while (1)
 HAL_DMA_Start (&hdma_memtomem_dma1_channel1, string_source, string_destination, 22);
 while(HAL DMA PollForTransfer(&hdma memtomem dma1 channel1, HAL DMA FULL TRANSFER, 100) !=
 HAL_OK)
__NOP();
 string_buffer_size = sprintf(string_buffer, "src = %sdest =
 %s\r\n",string source,string destination);
 HAL UART Transmit(&huart2, string buffer, string buffer size, 1000);
 HAL_Delay(2000);
 /* USER CODE END WHILE */
```

/* USER CODE END 3 */

```
/" USEK CODE BEGIN 2 "/
HAL_UART_Transmit(&huart2, "haruhi DMA\r\n", 13, 1000);
/* USER CODE END 2 */
                                                                          Assign Work to DMA
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
                                                                                        Wait until copy completed
   HAL_DMA_Start (&hdma_memtomem_dma1_channel1, string_source, string_destination, 22);
   while(HAL_DMA_PollForTransfer(&hdma_memtomem_dma1_channel1, HAL_DMA_FULL_TRANSFER, 100) != HAL_OK)
      __NOP();
   string buffer size = sprintf(string buffer, "src = %sdest = %s\r\n", string source, string destination);
   HAL UART Transmit(&huart2, string buffer, string buffer size, 1000);
   HAL Delay(2000);
  /* USER CODE END WHILE */
                                                                                                     Print Output
  /* USER CODE BEGIN 3 */
```

/* HISED CODE END WHILE */

```
HAL_DMA_Start (&hdma_memtomem_dma1_channel1, string_source, string_destination, 22);
while(HAL_DMA_PollForTransfer(&hdma_memtomem_dma1_channel1, HAL_DMA_FULL_TRANSFER, 100) != HAL_OK)

{
    __NOP();|
}
src = Somsin Thongkrairat
dest = Somsin Thongkrairat

string_buffer_size = sprintf(string_buffer, "src = %sdest = %s\r\n", string_source, string_destination);
HAL_UART_Transmit(&huart2, string_buffer, string_buffer_size, 1000);
HAL_Delay(2000);
* USER CODE_END_WHILE */
```

```
/*HAL_DMA_Start (&hdma_memtomem_dmal_channel1, string_source, string_destination, 22);
while(HAL_DMA_PollForTransfer(&hdma_memtomem_dmal_channel1, HAL_DMA_FULL_TRANSFER, 100) != HAL_OK)

{
    NOP(); Comment!

}*/

string_buffer_size = sprintf(string_buffer, "src = %sdest = %s\r\n", string_source, string_destination);
HAL_UART_Transmit(&huart2, string_buffer, string_buffer_size, 1000);
HAL_Delay(2000);
```

DMA not Copy

```
src = Somsin Thongkrairat
dest = Thanavit Anuwongpinit
```

DMA Transferring data

string_source

string destination

Peripheral to memory (ADC to RAM)

ยังจำ ADC กันได้ใช้ไหมครับ?

CPU Method

ADC using DMA

ADC using DMA

CPU ไม่ต้อง Polling ข้อมูลจาก DMA เหมือน Polling method และสามารถไปทำอย่างอื่น ระหว่างที่ DMA และ ADC ทำงานได้

*จะสังเกตว่า CPU ไม่ได้ ติดต่อกับ ADC เลย มีเพียง ขั้นตอน Setup (Set resolution, Set sequence การเชื่อมต่อ) เท่านั้น ที่ CPU ติดต่อกับ ADC

LAB 2 DMA ADC (ยากมากกกก)

LAB 2 DMA ADC (ยากมากกกก)

LAB 2 DMA ADC Setup

Data Width

Half Word

Half Word

Incremen Address

Half word or word should fine

5.Add DMA to ADC

LAB 2 DMA ADC (ยากมากกกก)


```
MX ADC1 Init();
 98
                                                                                   /* USER CODE BEGIN 2 */
 99
      /* USER CODE BEGIN 2 */
                                                                                   HAL ADCEx Calibration Start(&hadc1); // Calibrate ADC
100
      HAL ADCEx Calibration Start(&hadc1); // Calibrate ADC
                                                                                   unsigned char string_buffer[256];
101
                                                                                   int string buffer size = -1;
102
      unsigned char string buffer[256];
                                                                                   volatile unsigned int ADC value = 0;
      int string_buffer_size = -1;
103
                                               Setup ADC in DMA Mode
104
105
      volatile unsigned int ADC value = 0;
                                                                                   HAL_ADC_Start_DMA(&hadc1, &ADC_value, 1);
106
                                                                                   /* USER CODE END 2 */
      HAL ADC Start DMA(&hadc1, &ADC value, 1);
107
      /* USER CODE END 2 */
108
109
                                                                                   /* Infinite loop */
      /* Infinite loop */
110
111
      /* USER CODE BEGIN WHILE */
                                                                                   /* USER CODE BEGIN WHILE */
112
      while (1)
                                                                                   while (1)
113
          string buffer size = sprintf(string_buffer, "ADC = %d\r\n", ADC_value);
114
                                                                                   string buffer_size = sprintf(string_buffer, "ADC = %d\r\n", ADC value);
115
          HAL UART Transmit(&huart2, string buffer, string buffer size, 1000);
                                                                                   HAL UART Transmit(&huart2, string buffer, string buffer size, 1000);
          HAL Delay(1000);
116
                                                                                   HAL_Delay(1000);
117
        /* USER CODE END WHILE */
                                                                                   /* USER CODE END WHILE */
112
```

จะสังเกตว่า CPU ทำเพียงแค่การอ่านค่า และนำเข้า function sprint การ เปลี่ยนแปลงค่าของตัวแปร *ADC_value* ถูกเปลี่ยนจากที่อื่น ไม่ใช่ด้วย CPU และ main function

```
ADC = 1246
ADC = 1232
ADC = 1238
ADC = 1220
ADC = 1244
ADC = 1222
ADC = 1238
ADC = 1246
ADC = 1233
ADC = 1216
ADC = 1247
ADC = 1233
ADC = 1232
ADC = 1234
ADC = 1254
ADC = 1235
ADC = 1211
```

```
MX ADC1 Init();
 98
       /* USER CODE BEGIN 2 */
 99
       HAL_ADCEx_Calibration_Start(&hadc1);
100
                                             // Calibrate ADC
101
102
       unsigned char string buffer[256];
103
       int string buffer size = -1;
104
105
       volatile unsigned int ADC_value = 0;
106
107
       HAL ADC Start DMA(&hadc1, &ADC value, 1);
       /* USER CODE END 2 */
108
109
       /* Infinite loop */
110
111
       /* USER CODE BEGIN WHILE */
112
       while (1)
113
114
           string_buffer_size = sprintf(string_buffer,"ADC = %d\r\n",ADC_value);
115
           HAL UART Transmit(&huart2, string buffer, string buffer size, 1000);
116
           HAL Delay(1000);
117
         /* USER CODE END WHILE */
112
```

DMA Keep change *ADC value* Value

Serial DMA

LAB3 DMA Serial

Add ADC

- USART2_RX (ตัวรับ , Receiver)
- Circular Mode
- Byte data (ASCII code)

LAB3 DMA Serial


```
MX USART2 UART Init();
  95
       /* USER CODE BEGIN 2 */
       unsigned char string buffer[256];
  96
       int string buffer size = -1;
       volatile unsigned char Rx value = 'H';
  98
  99
100
       HAL UART Receive DMA(&huart2, &Rx value, 1);
101
       /* USER CODE END 2 */
102
 103
       /* Infinite loop */
 104
       /* USER CODE BEGIN WHILE */
 105
       while (1)
 106
107
          string buffer size = sprintf(string buffer, "Rx = %c\r\n", Rx value);
108
          HAL UART Transmit(&huart2, string buffer, string buffer size, 1000);
109
          HAL Delay(1000);
110
          /* USER CODE END WHILE */
```

```
/* USER CODE BEGIN 2 */
unsigned char string_buffer[256];
int string_buffer_size = -1;
volatile unsigned char Rx_value = 'H';

HAL UART Receive DMA(&huart2, &Rx_value, 1);
/* USER CODE END 2 */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
    string_buffer_size = sprintf(string_buffer, "Rx = %c\r\n", Rx_value);
HAL_UART_Transmit(&huart2, string_buffer, string_buffer_size, 1000);
HAL_Delay(1000);
/* USER CODE END WHILE */
```

ลองพิมสักอย่างที่ console ลองดู

```
Rx = H

aRx = a

rRx = r

uRx = u

hRx = h

iRx = i

Rx = i
```

```
MX_USART2_UART_Init();
       /* USER CODE BEGIN 2 */
       unsigned char string_buffer[256];
       int string_buffer_size = -1;
       volatile unsigned char Rx value = 'H';
  99
100
       HAL UART Receive DMA(&huart2, &Rx value, 1);
101
       /* USER CODE END 2 */
102
103
        /* Infinite loop */
104
       /* USER CODE BEGIN WHILE */
105
       while (1)
106
107
          string buffer size = sprintf(string buffer, "Rx = %c\r\n", Rx value);
108
         HAL UART Transmit(&huart2, string buffer, string buffer size, 1000);
109
         HAL_Delay(1000);
110
          /* USER CODE END WHILE */
```

DMA Keep change Rx value Value

*สำหรับคนที่ใช้ Arduino

ให้เลือก ending word เป็น No Line Ending

LAB ให้เลือก 2 อย่าง ทำแบบใหนก็ได้

- 1. ถ้ากด A-Z ที่ keyboard ให้ไฟ LD4 ติด แต่ถ้า กดเลข 1-9 ให้ LD4 ดับ
- 2. ถ้าจ่าย 0-2 V เข้าที่ขา A0 ให้ LD4 ติด แต่ถ้า จ่าย 2-3.3V ให้ LD4 ดับ

ทำอะไรก็ได้ เลือกมา 1 อย่าง

กันลืม (Reminder)

สั่งให้ไฟติด

HAL_GPIO_WritePin(LED_GREEN_GPIO_Port,LED_GREEN_Pin, 1);

สั่งให้ไฟดับ

HAL_GPIO_WritePin(LED_GREEN_GPIO_Port,LED_GREEN_Pin, 0);