Econ 675: HW 1

Erin Markiewitz

September 28, 2018

Contents

1	Simple Linear Regression w/ Measurement Error	3
	1.1	
	1.2	3
	1.3	4
	1.4	4
	1.5	4
	1.6	
	1.7	-
	1.8	_
	1.9	5
	1.10	5
	1.11	5
	1.12	6
2	Implementing Least-Squares Estimators	6
	2.1	6
	2.2	6
	2.3	6
	2.4	6
	2.5	7
	2.5.1	7
	2.5.2	7
3	Analysis of Experiments	9
•	3.1	_
	3.1.1	_
	3.1.2	9
	3.2	9
	3.2.1	10
	3.2.2	10
	3.3	
	3.3.1	11
	3.3.2	4.4
4	Code Appendix	12

1 Simple Linear Regression w/ Measurement Error

1.1

By LLN,

$$\hat{\beta}_{LS} = \frac{\tilde{\mathbf{x}}'\mathbf{x}}{\tilde{\mathbf{x}}'\tilde{\mathbf{x}}}\beta + \frac{\tilde{\mathbf{x}}'\epsilon}{\tilde{\mathbf{x}}'\mathbf{x}} = \frac{\tilde{\mathbf{x}}'\mathbf{x}/n}{\tilde{\mathbf{x}}'\tilde{\mathbf{x}}/n}\beta + \frac{\tilde{\mathbf{x}}'\epsilon/n}{\tilde{\mathbf{x}}'\mathbf{x}/n}$$

$$\rightarrow_{p} \frac{\mathbb{E}[(x_{i} + u_{i})x_{i}]}{\mathbb{E}[(x_{i} + u_{i})^{2}]}\beta = \frac{\sigma_{x}^{2}}{\sigma_{x}^{2} + \sigma_{u}^{2}}\beta = \lambda\beta$$
(1)

As $\sigma_x^2, \sigma_u^2 > 0 \implies \frac{\sigma_x^2}{\sigma_x^2 + \sigma_u^2} < 1, \lambda \beta < \beta$. $\hat{\beta}_{LS}$ is biased downward.

1.2

By LLN,

$$\hat{\sigma}_{\epsilon}^{2} = (\mathbf{y} - (\mathbf{x} + \mathbf{u})(\hat{\beta}_{LS})'(\mathbf{y} - (\mathbf{x} + \mathbf{u})(\hat{\beta}_{LS})/n
= (\epsilon - (\hat{\beta}_{LS} - \beta)\mathbf{x} - \mathbf{u}\hat{\beta}_{LS})'(\epsilon - (\hat{\beta}_{LS} - \beta)\mathbf{x} - \mathbf{u}\hat{\beta}_{LS})/n
= \epsilon'\epsilon/n - (\hat{\beta}_{LS} - \beta)\epsilon'\mathbf{x}/n - \epsilon'\mathbf{u}/n
+ (\hat{\beta}_{LS} - \beta)\mathbf{x}'\epsilon/n + (\hat{\beta}_{LS} - \beta)^{2}\mathbf{x}'\mathbf{x}/n
+ (\hat{\beta}_{LS} - \beta)\hat{\beta}_{LS}\mathbf{x}'\mathbf{u}/n + \hat{\beta}_{LS}\mathbf{x}'\epsilon/n + \beta)\hat{\beta}_{LS}\mathbf{u}'\mathbf{x}/n + \hat{\beta}_{LS}^{2}\mathbf{u}'\mathbf{u}/n
\rightarrow_{p} \sigma_{\epsilon}^{2} + o_{p}(1) + o_{p}(1) + o_{p}(1) + (1 - \lambda)^{2}\beta^{2}\sigma_{x}^{2} + o_{p}(1) + o_{p}(1) + o_{p}(1) + \lambda^{2}\beta^{2}\sigma_{u}^{2}
= \sigma_{\epsilon}^{2} + (1 - \lambda)^{2}\beta^{2}\sigma_{x}^{2} + \lambda^{2}\beta^{2}\sigma_{u}^{2}$$
(2)

which has an upward bias.

Now considering $\sigma_{\epsilon}^2(\tilde{\mathbf{x}}'\tilde{\mathbf{x}}/n)^{-1}$ using our previous results,

$$\sigma_{\epsilon}^{2}(\tilde{\mathbf{x}}'\tilde{\mathbf{x}}/n)^{-1} \to_{p} \frac{\sigma_{\epsilon}^{2} + (1-\lambda)^{2}\beta^{2}\sigma_{x}^{2} + \lambda^{2}\beta^{2}\sigma_{u}^{2}}{\sigma_{x}^{2} + \sigma_{u}^{2}} = \lambda \frac{\sigma_{\epsilon}^{2}}{\sigma_{x}^{2}} + \lambda(1-\lambda)\beta^{2}$$
(3)

We cannot sign the bias with the information provide.

By Slutsky and previous results,

$$\frac{\hat{\beta}_{LS}}{\sqrt{\sigma_{\epsilon}^{2}(\tilde{\mathbf{x}}'\tilde{\mathbf{x}}/n)^{-1}}} \to_{p} \frac{\sqrt{\lambda}\beta}{\sqrt{\frac{\sigma_{\epsilon}^{2}}{\sigma_{x}^{2}} + (1-\lambda)\beta^{2}}}$$
(4)

$$\frac{\sqrt{\lambda}\beta}{\sqrt{\frac{\sigma_{\epsilon}^2}{\sigma_x^2} + (1-\lambda)\beta^2}} < \frac{\beta}{\sqrt{\frac{\sigma_{\epsilon}^2}{\sigma_x^2}}} \tag{5}$$

So the estimate is biased downward.

1.4

As the instrument is uncorrelated with u_i and ϵ_i ,

$$\hat{\beta}_{IV} = \frac{\mathbf{\check{x}'y}}{\mathbf{\check{x}'\tilde{x}}} = \frac{\mathbf{\check{x}'y}/n}{\mathbf{\check{x}'\tilde{x}}/n} \beta + \frac{\mathbf{\check{x}'\epsilon/n}}{\mathbf{\check{x}'\tilde{x}}/n} \to_p \frac{\mathbb{E}[\check{x}_i x_i]}{\mathbb{E}[\check{x}_i (x_i + u_i)]} \beta = \beta$$
 (6)

1.5

$$\mathbf{y} = \mathbf{x}\beta + \epsilon = (\tilde{\mathbf{x}} - \mathbf{u})\beta + \epsilon = \tilde{\mathbf{x}}\beta + (\epsilon - \mathbf{u}\beta)$$

$$\sqrt{n}(\hat{\beta}_{IV} - \beta) = \sqrt{n} \left(\frac{\check{\mathbf{x}}'\tilde{\mathbf{x}}}{\check{\mathbf{x}}'\tilde{\mathbf{x}}} \beta + \frac{\check{\mathbf{x}}'(\epsilon - \mathbf{u}\beta)}{\check{\mathbf{x}}'\tilde{\mathbf{x}}} - \beta \right)
= \frac{\check{\mathbf{x}}'(\epsilon - \mathbf{u}\beta)/\sqrt{n}}{\check{\mathbf{x}}'\tilde{\mathbf{x}}/n} = (\mathbb{E}[\check{x}_i x_i])^{-1} \frac{\check{\mathbf{x}}'(\epsilon - \mathbf{u}\beta)}{\sqrt{n}} + o_p(1) \to_d N(0, V_{IV})$$
(7)

where
$$V_{IV} = \frac{\mathbb{E}[\check{x}_i^2(\epsilon_i - u_i\beta)^2]}{(\mathbb{E}[\check{x}_ix_i])^2}$$

1.6

First, estimate heteroskedasticity-consistent standard errors:

$$\hat{V}_{IV} = \left(\frac{\check{\mathbf{x}}'\tilde{\mathbf{x}}}{n}\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} \check{x}_{i}^{2} (y_{i} - \check{x}_{i}\hat{\beta}_{IV})^{2}\right) \left(\frac{\check{\mathbf{x}}'\tilde{\mathbf{x}}}{n}\right)^{-1} = \frac{\mathbb{E}[\check{x}_{i}^{2} (\epsilon_{i} - u_{i}\beta)^{2}]}{(\mathbb{E}[\check{x}_{i}x_{i}])^{2}} + o_{p}(1)$$

$$\rightarrow_{p} V_{IV}$$
(8)

Then, construct the confidence interval

$$CI_{95} = \left[\hat{\beta}_{IV} \pm 1.96 * \sqrt{\frac{\hat{V}_{IV}}{n}}\right] \tag{9}$$

From 1.1 we know $\hat{\lambda} = \frac{\check{\sigma}_{x}^{2}}{\check{x}'\check{x}} \rightarrow_{p} \frac{\sigma_{x}^{2}}{\sigma_{x}^{2} + \sigma_{u}^{2}} = \lambda$, so $\frac{\hat{\beta}_{IV}}{\hat{\lambda}} \rightarrow_{p} \beta$

1.8

Define the function $g(w) = w_1w_2/w_3$ where $\mathbf{w} = (w_1, w_2, w_3) \in \mathbb{R}$ such that $\dot{\mathbf{g}}(\mathbf{w}) = (w_2/w_3, w_1/w_3, -w_1w_2/w_3^2)$. By the delta method.

$$\sqrt{n} \left(g \left(\begin{bmatrix} \hat{\beta}_{LS} \\ \tilde{\mathbf{x}}' \tilde{\mathbf{x}}/n \\ \tilde{\sigma}_{\mathbf{x}}^2 \end{bmatrix} \right) - g \left(\begin{bmatrix} \lambda \beta \\ \sigma_{\mathbf{x}}^2 + \sigma_{\mathbf{u}}^2 \\ \sigma_{\mathbf{x}}^2 \end{bmatrix} \right) \right) = \sqrt{n} \left(\frac{\hat{\beta}_{IV}}{\hat{\lambda}} - \beta \right) \rightarrow_d N(0, V_{VS}) \tag{10}$$

where $V_{VS} = \dot{\mathbf{g}}(\mathbf{w_0})' \Sigma \dot{\mathbf{g}}(\mathbf{w_0})$ and $\mathbf{w_0} = (\lambda \beta, \sigma_x^2 + \sigma_u^2, \sigma_x^2)$

1.9

Assuming there is an estimator $\hat{\Sigma}$,

$$CI_{95} = \left[\mathbf{g}(\hat{\mathbf{w}}) \pm 1.96 * \sqrt{\frac{\hat{V}_{VS}}{n}} \right]$$
 (11)

where $V_{VS} = \dot{\mathbf{g}}(\hat{\mathbf{w}})'\hat{\Sigma}\dot{\mathbf{g}}(\hat{\mathbf{w}})$ and $\hat{\mathbf{w}} = (\hat{\beta}_{LS}, \tilde{\mathbf{x}}'\tilde{\mathbf{x}}/n, \check{\sigma}_x^2)$

1.10

The fixed effects estimator is equivalent to the first differences estimator when t=2: $\hat{\beta}_{FE} = \frac{\Delta \tilde{\mathbf{x}} \Delta \mathbf{y}}{\Delta \tilde{\mathbf{x}} \Delta \tilde{\mathbf{x}}}$ where $\Delta \tilde{\mathbf{x}} = \tilde{\mathbf{x}}_2 - \tilde{\mathbf{x}}_1$ and $\Delta \mathbf{y} = \mathbf{y}_2 - \mathbf{y}_1$. Note, $\Delta y_i = (\Delta x_i - \Delta u_i)\beta + \Delta \epsilon_i$ where $\epsilon_i = \epsilon_{i2} - \epsilon_{i1}$

$$\hat{\beta}_{FE} = \frac{\mathbf{\Delta}\tilde{\mathbf{x}}\mathbf{\Delta}\mathbf{y}}{\mathbf{\Delta}\tilde{\mathbf{x}}\mathbf{\Delta}\tilde{\mathbf{x}}} \to_p \frac{\mathbb{E}[(\mathbf{\Delta}\mathbf{x_i} + \mathbf{\Delta}\mathbf{u_i})\mathbf{\Delta}\mathbf{x_i}]}{\mathbb{E}[(\mathbf{\Delta}\mathbf{x_i} + \mathbf{\Delta}\mathbf{u_i})^2]} \beta = \frac{\sigma_{\Delta x}^2}{\sigma_{\Delta x}^2 + \sigma_{\Delta u}^2} = \gamma\beta$$
(12)

By construction $\gamma < 1$, therefore $\hat{\beta}_{FE}$ is biased downward.

1.11

Using the previous result

$$\gamma = \frac{\sigma_{\Delta x}^{2}}{\sigma_{\Delta x}^{2} + \sigma_{\Delta u}^{2}} = \frac{\mathbb{V}[x_{i2} - x_{i1}]}{\mathbb{V}[x_{i2} - x_{i1}] + \mathbb{V}[u_{i2} - u_{i1}]} = \frac{2\sigma_{x}^{2} - 2\mathbb{C}[x_{i2}, x_{i1}]}{2\sigma_{x}^{2} - 2\mathbb{C}[x_{i2}, x_{i1}] + 2\sigma_{u}^{2} - 2\mathbb{C}[u_{i2}, u_{i1}]}$$

$$= \frac{\sigma_{x}^{2}(1 - \rho_{x})}{\sigma_{x}^{2}(1 - \rho_{x}) + \sigma_{u}^{2}(1 - \rho_{u})} = \frac{\sigma_{x}^{2}}{\sigma_{x}^{2} + \sigma_{u}^{2}\frac{(1 - \rho_{u})}{(1 - \rho_{x})}}$$
(13)

If $\rho_x \approx 1$ and $\rho_u \approx 0$, then $\gamma \approx 0$ and $\gamma = \frac{\sigma_x^2}{\sigma_x^2 + \sigma_u^2 \frac{(1-\rho_u)}{(1-\rho_x)}} < \frac{\sigma_x^2}{\sigma_x^2 + \sigma_u^2} = \lambda$. Intuitively, if regressors are highly correlated and measurement error is uncorrelated over time, then fixed-effects estimation will produced more biased estimates than simple linear regression.

2 Implementing Least-Squares Estimators

2.1

Given the Estimator: $\hat{\beta}(\mathbf{W}) = argmin_{\beta \ in \mathbb{R}^d}((\mathbf{y} - \mathbf{X}\beta)'\mathbf{W}(\mathbf{y} - \mathbf{X}\beta)')$ Take the FOC.

$$-\mathbf{X}'\mathbf{W}(\mathbf{y} - \mathbf{X}\beta) - (\mathbf{y} - \mathbf{X}\beta)'\mathbf{W}\mathbf{X} = 0$$

$$-\mathbf{X}'\mathbf{W}\mathbf{y} + \mathbf{X}'\mathbf{W}\mathbf{X}\beta + \mathbf{X}'\mathbf{W}\mathbf{X}\beta - \mathbf{X}'\mathbf{W}\mathbf{y} = 0$$

$$2\mathbf{X}'\mathbf{W}\mathbf{X}\beta = 2X'Wy$$

$$\hat{\beta}(\mathbf{W}) = (\mathbf{X}'\mathbf{W}\mathbf{X})^{-1}\mathbf{X}'\mathbf{W}\mathbf{y}$$
(14)

2.2

$$\sqrt{n} \left(\hat{\beta}(\mathbf{W}) - \beta \right) = \sqrt{n} \left((\mathbf{X}' \mathbf{W} \mathbf{X})^{-1} \mathbf{X}' \mathbf{W} (\mathbf{x}_{i}' \beta + \epsilon) - \beta \right)
= \left(\beta + \frac{\mathbf{X}' \mathbf{W} \epsilon / \sqrt{\mathbf{n}}}{(\mathbf{X}' \mathbf{W} \mathbf{X}) / \mathbf{n}} - \beta \right)
= \frac{\mathbf{X}' \mathbf{W} \epsilon / \sqrt{\mathbf{n}}}{(\mathbf{X}' \mathbf{W} \mathbf{X}) / \mathbf{n}}
\rightarrow_{d} \mathbb{V}(0, \mathbf{V}(\mathbf{W}))$$
(15)

where $\mathbf{V}(\mathbf{W}) = (\mathbf{X}'\mathbf{W}\mathbf{X})^{-1}(\mathbf{X}'\mathbf{W}\boldsymbol{\Sigma}^{-1}\mathbf{W}\mathbf{X})(\mathbf{X}'\mathbf{W}\mathbf{X})^{-1}$ Now if $\mathbb{V}[\mathbf{y}|\mathbf{X},\mathbf{W}] = \sigma^2\mathbf{I_n}$, the sandwich matrix form of $\mathbf{V}(\mathbf{W})$ simplifies: $\mathbf{V}(\mathbf{W}) = (\mathbf{X}'\mathbf{W}\mathbf{X})^{-1}(\mathbf{X}'\mathbf{W}\sigma^2\mathbf{W}\mathbf{X})(\mathbf{X}'\mathbf{W}\mathbf{X})^{-1} = (\mathbf{X}'\mathbf{X})^{-1}\sigma^2$

2.3

The following estimator is a consistent variance-covariance estimator of V(W):

$$\hat{\mathbf{V}}(\mathbf{W}) = (\mathbf{X}'\mathbf{W}\mathbf{X})/n)^{-1}(\mathbf{X}'\mathbf{W}\epsilon'\epsilon\mathbf{W}\mathbf{X}/\sqrt{n})(\mathbf{X}'\mathbf{W}\mathbf{X}/n)^{-1}$$
(16)

2.4

Stata and R code for question 2.4 is in the code appendix

2.5.1

R code: Regression Table (matrix)

term	estimate	std.error	statistic	p.value
(Intercept)	6485.553	4513.513	1.437	0.151
treat	1535.482	638.238	2.406	0.017
black	-2592.377	794.999	-3.261	0.001
age	39.341	40.470	0.972	0.332
educ	-740.540	944.679	-0.784	0.434
$educ_sq$	60.082	53.768	1.117	0.264
earn74	-0.030	0.104	-0.288	0.774
$black_earn74$	0.175	0.132	1.330	0.184
u74	1316.032	1505.927	0.874	0.383
u75	-1167.688	1275.416	-0.916	0.360

Stata code: Regression Table (matrix)

term	estimate	std.error	statistic	p.value	CI minus	CI plus
treat	1535.4824	638.2380	2.4058	0.0166	281.0688	2789.8961
black	-2592.3766	794.9991	-3.2609	0.0012	-4154.8937	-1029.8595
age	39.3405	40.4701	0.9721	0.3315	-40.2007	118.8817
educ	-740.5400	944.6787	-0.7839	0.4335	-2597.2421	1116.1622
$educ_sq$	60.0823	53.7684	1.1174	0.2644	-45.5958	165.7604
earn74	-0.0299	0.1037	-0.2879	0.7735	-0.2337	0.1740
$black_earn74$	0.1754	0.1318	1.3304	0.1841	-0.0837	0.4344
u74	1316.0320	1505.9270	0.8739	0.3827	-1643.7657	4275.8296
u75	-1167.6884	1275.4156	-0.9155	0.3604	-3674.4316	1339.0548
(Intercept)	6485.5531	4513.5125	1.4369	0.1515	-2385.4508	15356.5570

The coefficients match up.

2.5.2

R code: Regression Table

variable	beta	se	t_test	p_value	CI_L	CI_U
const	6485.55	4513.51	1.44	0.15	-2384.89	15356.00
treat	1535.48	638.24	2.41	0.02	281.15	2789.82
black	-2592.38	795.00	-3.26	0.00	-4154.80	-1029.96
age	39.34	40.47	0.97	0.33	-40.20	118.88
educ	-740.54	944.68	-0.78	0.43	-2597.13	1116.05
$educ_sq$	60.08	53.77	1.12	0.26	-45.59	165.75
earn74	-0.03	0.10	-0.29	0.77	-0.23	0.17
$black_earn74$	0.18	0.13	1.33	0.18	-0.08	0.43
u74	1316.03	1505.93	0.87	0.38	-1643.58	4275.64
u75	-1167.69	1275.42	-0.92	0.36	-3674.27	1338.90

Stata Code:	Regression Table
	(1) earn78
treat	1535.5*
orcao	(2.41)
	(2.11)
black	-2592.4**
	(-3.26)
	20.24
age	39.34
	(0.97)
educ	-740.5
cade	(-0.78)
	(0.10)
educ2	60.08
	(1.12)
earn74	-0.0299
earn74	(-0.29)
	(-0.29)
blacke74	0.175
	(1.33)
	,
u74	1316.0
	(0.87)
u75	-1167.7
410	(-0.92)
	(0.02)
cons	6485.6
	(1.44)
N	445

t statistics in parentheses

The coefficients match up.

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

3 Analysis of Experiments

3.1

3.1.1

$$\mathbb{E}[T_{DM}] = \mathbb{E}[\bar{Y}_{1}] - \mathbb{E}[\bar{Y}_{0}] \\
= \mathbb{E}[\frac{1}{N_{1}} \sum_{i=1}^{n} D_{i}(1)Y_{i}] - \mathbb{E}[\frac{1}{n-N_{1}} \sum_{i=1}^{n} D_{i}(0)Y_{i}] \\
= \mathbb{E}[\frac{1}{N_{1}} \sum_{i=1}^{n} D_{i}(1)Y_{i}(1)] - \mathbb{E}[\frac{1}{n-N_{1}} \sum_{i=1}^{n} D_{i}(0)Y_{i}(0)] \\
= \mathbb{E}[\mathbb{E}[\frac{1}{N_{1}} \sum_{i=1}^{n} D_{i}(1)Y_{i}(1)|T_{i}]] - \mathbb{E}[\mathbb{E}[\frac{1}{n-N_{1}} \sum_{i=1}^{n} D_{i}(0)Y_{i}(0)]|T_{i}]] \\
= \mathbb{E}[\frac{1}{N_{1}} \sum_{i=1}^{n} \left(\frac{N_{1}}{n}\right) Y_{i}(1)] - \mathbb{E}[\frac{1}{n-N_{1}} \sum_{i=1}^{n} \left(\frac{N_{1}}{n}\right) Y_{i}(0)] \\
= \mathbb{E}[\frac{1}{N_{1}} \sum_{i=1}^{n} \left(\frac{N_{1}}{n}\right) Y_{i}(1)] - \mathbb{E}[\frac{1}{n-N_{1}} \sum_{i=1}^{n} \left(\frac{n-N_{1}}{n}\right) Y_{i}(0)] \\
= \mathbb{E}[\frac{1}{n} \sum_{i=1}^{n} Y_{i}(1)] - \mathbb{E}[\frac{1}{n} \sum_{i=1}^{n} Y_{i}(0)] \\
= \frac{1}{n} \sum_{i=1}^{n} Y_{i}(1) - \frac{1}{n} \sum_{i=1}^{n} Y_{i}(0)$$

3.1.2

R code: Asymptotically Conservative 95 CI for average treatment effect

TDM est	Conservative SE	CI Lower	CI Upper
1794.34	671.00	479.21	3109.47

Stata code: Asymptotically Conservative 95 CI for average treatment effect

 r rej mp e e er	0011	00 01 101 (
TDM est	Conservative SE	CI Lower	CI Upper	
1794.3431	670.9967	479.2137	3109.4725	

The point estimates, standard errors, and confidence intervals match up across platforms.

3.2

3.2.1

R code: Sharp Null Hypothesis of No Treatment Effect

 DM P value
 KS P value

 0.05
 0.033

Stata Code: Sharp Null Hypothesis of No Treatment Effect

DM P value KS P Value .0045 .034

The p-values line up for the most part. The differences are rounding errors.

3.2.2

Stata Code: Finite Sample valid 95 CI for the treatment effect

diff	1794.343	656.4896	2.73	0.006	507.6472	3081.039
	Observed Coef.	Bootstrap Std. Err.	z	P> z		-based Interval]

R Code: Finite Sample valid 95 CI for the treatment effect

Hypothesized Treatme	ent Effect	p_value
	5000.00	0.00
	4750.00	0.00
	4500.00	0.00
	4250.00	0.00
	4000.00	0.00
	3750.00	0.00
	3500.00	0.01
	3250.00	0.02
	3000.00	0.07
	2750.00	0.13
	2500.00	0.28
	2250.00	0.49
	2000.00	0.75
	1750.00	0.95
	1500.00	0.64
	1250.00	0.41
	1000.00	0.21
	750.00	0.10
	500.00	0.04
	250.00	0.01
	0.00	0.01
	-250.00	0.00
	-500.00	0.00
	-750.00	0.00
	-1000.00	0.00
	-1250.00	0.00
	-1500.00	0.00

The confidence intervals match up across platforms. The Rubin's technique of bootstrapping the p-value was easier to implement the question in R. Looking at the table from R, it is clear that the confidence interval from Stata is congruent.

3.3.1

3.3.2

Stata computes that the sufficient sample size: 1436.824051 R computes that the sufficient sample size: 1436.824

The difference is clearly a rounding error.

4 Code Appendix

Stata

```
1 clear all
2 set more off
  global dir "/Users/aaronmarkiewitz/Dropbox/Phd_Coursework/Econ
     675"
4 cd "$dir"
  set seed 675
  set scheme s2mono
  global dir $dir\data
  global dir $dir\data
  import delimited LaLonde_1986.csv
11
12
  *Question 2.5
13
14
                           = 1
  gen cons
                           = educ^2
  gen educ2
  gen blacke74
                   = black*earn74
  local y earn 78
  local xlist treat black age educ educ2 earn74 blacke74 u74 u75
     cons
21
  local alpha .05
  local n = N
  local d = wordcount("'xlist'")
  *Procedure writen for Question 2.4
 mata:
^{27} W = I('d')
  st_view(y=.,.,"'y")
  st_view(X=., ., tokens("`xlist""))
 XW
          = cross(X', W)
          = cross(XW, X)
_{33} XWXinv = invsym(XWX)
 XWXinvc = cholinv(XWX)
  b = XWXinv*cross(X, y)
  bc = XWXinvc*cross(X, y)
36
 e = y - X*b
 v_e = diag(e:*e)
```

```
n = rows(X)
41
  dof = 'n' - 'd'
42
  V = XWXinv*(X'*v_e*X)*XWXinv*(n/dof)
43
  se = sqrt (diagonal (V))
45
  t_stat = (b):/se
46
  p = 2*ttail(rows(X)-cols(X), abs(t_stat))
47
  cil = b+invt(dof, ('alpha'/2))*se
  ciu = b+invt(dof, (1-'alpha'/2))*se
49
  st_matrix("b", b')
50
  st_matrix("V", V')
51
52
  end
53
54
  mata: output = (b, se, t_stat, p, cil, ciu)
  mmat2tex output using .\mata_out.tex, replace
56
57
  reg 'y' 'xlist', nocons robust
58
  esttab using .\q2_5outreg.tex, replace
60
61
62
  ** Question 3 **
  clear all
64
  import delimited LaLonde_1986.csv
66
67
68
  *Question 3.1
69
70
  sum earn 78 if treat == 0
  local N0 = r(N)
  local mu0 = r(mean)
  local sd0 = r(sd)
  local V0 = r(Var)/r(N)
  local sig_sq0 = r(Var)
76
77
  sum earn 78 if treat == 1
  local N1 = r(N)
  local mu1 = r(mean)
  local sd1 = r(sd)
  local V1 = r(Var)/r(N)
  local sig_sq1 = r(Var)
83
84
```

```
local tau = 'mu1' - 'mu0'
   local v = sqrt('V1'+'V0')
   local t_stat = 'tau'/'v'
   local p = 2*normal(-abs('t_stat'))
   local mu0 = round(`mu0', .01)
   local mu1 = round('mu1', .0001)
   local sd0 = round('sd0', .01)
   local sd1 = round('sd1', .0001)
94
   di "'tau'"
95
96
97
   local cil = 'tau' - invnormal(0.975)*'v'
98
   local ciu = 'tau' + invnormal(0.975)*'v'
99
100
   di "'CIlower'"
101
   di "'CIupper'"
102
103
104
105
   mata: output = ('tau', 'v', 't_stat', 'p', 'cil', 'ciu')
   mmat2tex output using .\31_out_mata.tex, replace
107
108
109
110
   *Question 3.2a
111
112
   * difference in means estimator
   permute treat diffmean=(r(mu_2)-r(mu_1)), reps(1999) nowarn: ttest
114
       earn 78, by (treat)
   matrix pval_dm = r(p)
   local p_dm = pval_dm[1,1]
   di "DM p-value"
117
   di "DM p-value= 'p_dm'"
119
   * KS statistic
121
   permute treat ks=r(D), reps(1999) nowarn: ksmirnov earn78, by(
      treat)
   matrix pval_ks = r(p)
123
   local p_ks = pval_ks[1,1]
124
   di "KS p-value= 'p_ks'"
125
126
127
```

```
128
   *Question 3.2b
129
130
   * Infer missing values under the null of constant treatment effect
131
             Y1_imputed = earn 78
132
   replace Y1_imputed = earn78 + 'tau' if treat==0
133
134
             Y0_{-imputed} = earn78
   gen
135
   replace Y0_imputed = earn78 - 'tau' if treat==1
136
137
138
   * Write program to put into bootstrap function
139
   program define meandiff, rclass
140
             summarize
                            Y1_imputed if treat==1
141
                                 tau1 = r(mean)
             local
142
                                 Y0_imputed if treat==0
             sum
143
                                 tau0 = r(mean)
             local
144
                            scalar meandiff = 'tau1' - 'tau0'
             return
145
   end
146
   * Run bootstrap function using meandiff program
148
   bootstrap diff = r(meandiff), reps(1999): meandiff
150
   /*
151
152
153
   *Question 3.3
154
   twoway function y = 1 - \text{normal}(\text{invnormal}(0.975) - \text{x/'v'}) + \text{normal}(-
       invnormal (0.975)-x/'v', range (-50005000)
   graph export stata_power.png, replace
156
157
   mata: mata clear
158
   mata:
159
    function myfunc(N, s0, s1, p, tau){
160
161
       return (1 - \text{normal (invnormal } (0.975) - \text{tau/sqrt } (1/\text{N}*\text{s1}*(1/\text{p}) + 1/\text{N}*\text{s0})
162
          *(1/(1-p)))) +
            normal(-invnormal(0.975)-tau/sqrt(1/N*s1*(1/p)+1/N*s0))
163
               *(1/(1-p)))) -0.8)
164
     }
165
            30072466.58373794
    s0 =
166
    s1 =
            61896056.06715253
167
               = 2/3
        р
168
       tau
              = 1000
169
```

```
170
     mm_root(x=., \&myfunc(), 1000, 1500, 0, 10000, s0, s1, p, tau)
171
172
            Х
173
174
175
   end
   \mathbf{R}
  #Set up
   library (data.table)
   library (Matrix)
  library (lmtest)
   library (sandwich)
  library (broom)
   library (ggplot2)
   library (xtable)
   rm(list = ls(pos = ".GlobalEnv"), pos = ".GlobalEnv")
   options (scipen = 999)
   cat("\f")
12
   setwd ("/Users/aaronmarkiewitz/Dropbox/Phd_Coursework/Econ 675")
   set . seed (675)
   \#Q2.4
  # generate data for test case
   # set n_col and n_row
   n_{col} < -5
   n_{row} < -100
   n_cell <- n_col*n_row
23
   # create random matrices
   y_data \leftarrow matrix(runif(n_row, 0, 100), nrow = n_row, ncol = 1)
   x_{data} \leftarrow matrix(runif(n_{cell}, 0, 1), nrow = n_{row}, ncol = n_{col})
27
   # function
28
   mat_reg <- function(x = NULL, y = NULL, opt_chol = FALSE, CI_level
29
       = .95)
30
     # get matrix size parameters
31
     n_{col} \leftarrow ncol(x)
32
     n_{-}row \leftarrow nrow(x)
33
34
     # estimate beta
35
```

```
# check which inverse function to use
     if (!opt_chol) {
37
38
           standard
39
        B \leftarrow Matrix :: solve(Matrix :: crossprod(x, x))\%*\%(Matrix ::
            crossprod(x, y)
     else
41
42
        # cholesky
43
        chol_m \leftarrow chol(Matrix::crossprod(x, x))
44
        B \leftarrow \text{chol2inv}(\text{chol}_m)\% *\%(\text{Matrix} :: \text{crossprod}(x, y))
^{45}
46
     }
47
48
     # estimate V
49
50
     # residuals
51
     my_resid \leftarrow y - x\%*B
52
53
     # grab diagonal of var matrix
     M_{\text{diag}} \leftarrow \text{diag}(\text{as.numeric}(\text{my\_resid}^2*(\text{n\_row}/(\text{n\_row}-\text{n\_col}))))
55
         nrow = n_row, ncol = n_row
     M \leftarrow (t(x) \%\% M_{diag} \%\% x)
56
     # asymptotic variance
58
     if (!opt_chol) {
59
60
        V \leftarrow solve(crossprod(x, x)) \% \% M \% \% solve(crossprod(x, x))
61
62
     else{
63
64
                       chol2inv(chol_m) %*% M %*% chol2inv(chol_m)
        A_{inv} \leftarrow
65
        V \leftarrow A_i nv
66
67
68
     sqrt (diag (V))
69
70
     # other stats
71
72
     # beta and variance
73
     out_dt <- data.table(beta = as.numeric(B), V_hat = diag(V))
74
75
     # standard errors
76
     out_dt[, se := sqrt(V_hat)]
77
```

```
# t test
      out_dt[, t_test := beta/(se)]
80
81
      # p values
82
      \operatorname{out}_{-}\operatorname{dt}[, \operatorname{p\_value} := 2*(1 - \operatorname{pt}((\operatorname{abs}(\operatorname{t\_test})), \operatorname{n\_row} - \operatorname{n\_col}))]
84
      # confidence interval
85
      out_dt[, CI_L := beta - (se) * qt(1-((1-CI_level)/2), n_row)]
86
      out_dt[, CI_U := beta + (se) * qt(1-((1-CI_level)/2), n_row)]
87
88
      # drop v_hat
89
      out_dt[, V_hat := NULL]
90
91
92
      out_list <- list()
93
94
      out_list[["results"]] <- out_dt
95
      out_list[["varcov"]] <- V
96
97
      return (out_list)
98
99
100
101
102
   # run function to check difference between cholesky and symmetric
       inverse
   reg_1 \leftarrow mat_reg(x = x_data, y = y_data, opt_chol = FALSE)
104
   reg_2 \leftarrow mat_reg(x = x_data, y = y_data, opt_chol = TRUE)
105
106
   # compare coefficients
107
   coeff_diff <- reg_1[["results"]][, beta] - reg_2[["results"]][,
108
       beta]
109
   # Check
110
    all.equal(reg_1$varcov, reg_2$varcov)
   reg_1$varcov - reg_2$varcov
112
113
114
   \#Q 2.5
115
116
   # load data #note paste is so it fits on pdf in markdown
   lalonde_dt <- fread (paste0 ("LaLonde_1986.csv"))
118
119
   # grab y matrix
120
   y_la <- as.matrix(lalonde_dt[, earn78])
```

```
122
  # create other vars for regression
123
   lalonde_dt[, educ_sq := educ^2]
   lalonde_dt[, black_earn74 := black*earn74]
125
   lalonde_dt[, const := 1]
127
   # grab x vars
128
   x_vars <- c("treat", "black", "age", "educ",
129
                "educ_sq", "earn74", black_earn74",
130
                "u74","u75")
131
132
   # make x matrix
133
   x_{la} \leftarrow as.matrix(lalonde_{dt}[, c("const", x_{vars}), with = FALSE])
134
135
   # run function on this data
136
   lalonde_reg \leftarrow mat_reg(x = x_la, y = y_la)
137
138
   # grab the results
139
   results_2_5_a <- lalonde_reg[["results"]]
140
   # add in coef label
142
   results_2_5_a [, variable := c("const", x_vars)]
144
   # put variables in front
145
   setcolorder (results_2_5_a, c("variable", setdiff (colnames (
      results_2_5_a), "variable")))
147
148
   # using lm
149
150
151
   # get regression formula
   reg_form <- as.formula(paste("earn78~", paste(x_vars, collapse
153
      ="+"))
154
   # run regression
155
   lalonde_lm <- lm(reg_form, lalonde_dt)
156
157
   # get summary, NOTE: these are NOT robust standard errors
   lalong_lm_dt <- summary(lalonde_lm) $coefficients
159
160
  # get robust standard errors. I use HC2 to match my math above
  # any differences are floating point errors
  lm_robust <- coeftest(lalonde_lm , vcov = vcovHC(lalonde_lm , type="</pre>
      HC1"))
```

```
164
   results_2_5_b <- data.table(tidy(lm_robust))
165
166
167
   # 3.1.a
168
   TDM <- lalonde_dt[treat == 1, mean(earn78)] - lalonde_dt[treat ==
      0, mean(earn 78)]
170
   # get variance
171
   s1\_sq \leftarrow lalonde\_dt[treat == 1, var(earn78)]
   s0\_sq \leftarrow lalonde\_dt[treat == 0, var(earn78)]
174
   # get V_tdm
175
   V_{tdm} \leftarrow s1_{sq}/lalonde_{dt}[treat = 1, .N] + s0_{sq}/lalonde_{dt}[treat]
       == 0, .N
177
      standard error
178
   se_tdm <- sqrt (V_tdm)
179
180
   # convidence interval
   tdm_CI_L \leftarrow TDM - se_tdm * qnorm(.975)
182
   tdm_CI_U \leftarrow TDM + se_tdm * qnorm(.975)
183
184
   # put together resuts
   results_3_1_b \leftarrow data.table("TDM est" = TDM,
186
                                    "Conservative SE" = se_tdm,
                                    "CI Lower" = tdm_CI_L,
188
                                    "CI Upper" = tdm_CI_U)
189
190
   # fisher
191
192
   # write function
193
   fisher_p <- function(in_data
                                            = NULL,
194
                                            = NULL,
                            y_var
195
                                            = NULL,
                            treat_-var
196
                            null_hyp
                                            = 0,
197
                            opt_test_stat = "DM",
198
                            n_iter
                                            = 1999){
199
200
     # check that a test has ben speciies
201
     if (!opt_test_stat %chin% c("DM", "KS")){
202
        stop ("Specify either DM of KS test")
203
204
205
     # check for non-zero null under the KS test (function doesn't do
```

```
that)
     if(opt_test_stat == "KS" & null_hyp != 0){
207
       stop ("The KS test is not compatibe with a non-zero null at the
208
            moment")
     }
209
210
     \# copy data so I can create y(0) and y(1) cols without altering
211
        input data set
     data_c <- copy(in_data)
212
213
     # create colums for sharp null treated and untreated y variables
214
     data_c[get(treat_var) = 1, y_1 := get(y_var)]
215
     data_c[get(treat_var) = 0, y_1 := get(y_var) + null_hyp]
216
     data_c[get(treat_var) = 0, y_0 := get(y_var)]
217
     data_c[get(treat_var) = 1, y_0 := get(y_var) - null_hyp]
218
219
     # create a data.table for the results of bootstrap
220
     sim_data \leftarrow data.table(iteration = c(1:(n_iter+1)))
221
222
     # get the number of treated vars
223
     n_{treat} \leftarrow nrow(data_{c}[get(treat_{var}) = 1, ])
224
     n_row <- nrow(data_c)
225
226
     # do actual test
227
     if(opt_test_stat = "DM"){
228
229
       # get mean of treatment
230
       m_t \leftarrow data_c [get(treat_var) = 1, mean(get(y_var))]
231
232
       # get mean of untreated
233
       m_{unt} \leftarrow data_{c} [get(treat_{var}) = 0, mean(get(y_{var}))]
234
235
       test_1 < -m_t - m_unt - null_hyp
236
237
238
     if(opt_test_stat = "KS")
239
       ksout <- suppressWarnings(ks.test(data_c[get(treat_var) == 1,
240
           get(y_var),
                                              data_c[get(treat_var) = 0,
241
                                                 get(y_var))
        test_1 <- ksout$statistic
242
     }
243
244
     # put results of actual data in table
245
     sim_data[iteration = 1, test := test_1]
246
```

```
247
     # for each iteration
248
     for (i in 2:(n_{iter} + 1))
249
250
        # create a permutation
251
        sample_i_1 <- sample.int(n = n_row, size = n_treat)
252
        sample_{i_0} \leftarrow setdiff(c(1: n_row), sample_{i_0})
253
254
        # calculate the averate treatment effect for this given sample
255
        if(opt\_test\_stat == "DM"){
256
257
          test_i \leftarrow data_c [sample_{i-1}, mean(y_1)] - data_c [sample_{i-0}, mean(y_1)]
258
               mean(y_0) - null_hyp
259
        if(opt\_test\_stat == "KS")
260
          ksout <- suppressWarnings(ks.test(data_c[sample_i_1, y_1],
261
              data_c[sample_i_0, y_0])
          test_i <- ksout$statistic
262
        }
263
264
265
        # store this value in the data table
266
        sim_data[i, test := test_i]
267
     }
268
269
     # get absolute value and rank of the tests
270
     sim_data[, abs_test := abs(test)]
271
     sim_data[, test_rank := frank(abs_test)]
272
273
     # get p value
274
     p_value <- (nrow(sim_data) - sim_data[iteration == 1, test_rank]
275
          + 1)/\text{nrow}(\text{sim}_{-}\text{data})
276
     return (p_value)
277
278
279
280
281
   # run function on data
   results_3_2_a_DM <- fisher_p (in_data
                                                      = lalonde_dt,
283
                                                      = "earn78",
                                      y_var
284
                                                      = "treat",
                                      treat_var
285
                                      null_hyp
                                                      = 0,
286
                                      opt_test_stat = "DM",
287
                                      n_iter
                                                      = 1999)
288
```

```
results_3_2_a_KS <- fisher_p (in_data
                                                    = lalonde_dt,
290
                                                    = "earn78",
                                    y_var
291
                                                    = "treat",
                                    treat_var
292
                                    null_hyp
                                                    = 0,
293
                                    opt_test_stat = "KS",
294
                                                    = 1999)
                                    n_iter
295
296
   # make it fancy for output
297
   results_3_2_a_DM <- data.table("DM P value" =
                                                          results_3_2_a_DM
298
   results_3_2_a_KS <- data.table("KS P value" =
                                                          results_3_2_a_KS )
299
300
301
   \# construct 95\% confidence interval
302
303
304
   # run functions
305
   grid \leftarrow seq(5000, -1500, -250)
306
307
   dm_p_list <- lapply (grid,
308
                          fisher_p,
309
                          in_data= lalonde_dt,
310
                          y_var = "earn78",
311
                          treat_var = "treat"
312
                          opt_test_stat = "DM",
313
                          n_{iter} = 999
314
315
   results_3_2_b <- data.table(hyp_treat = grid, p_value = dm_p_list)
316
   setnames (results_3_2_b, "hyp_treat", "Hypothesized Treatment
317
      Effect")
318
319
   # Power calculations
320
321
   # plot attributes from EA
   plot_attributes <- theme(plot.background = element_rect(fill = "
323
      lightgrey"),
                               panel.grid.major.x = element_line(color =
324
                                    "gray90"),
                                panel.grid.minor = element_blank(),
325
                                panel.background = element_rect(fill = "
                                   white",
                                                                    colour =
327
                                                                       "black
                                                                       ")
```

```
panel.grid.major.y = element_line(color =
328
                                      "gray90"),
                                  text = element_text(size= 30),
329
                                  plot.title = element_text(vjust=0,
330
                                                                 colour = "#0
331
                                                                    B6357",
                                                                 face = "bold",
332
                                                                 size = 30)
333
334
335
   # write power function
336
   power_function <- function(x, se= NULL) {
337
     1 - pnorm(qnorm(0.975)-x/se) + pnorm(-qnorm(0.975)-x/se)
338
339
340
   # plot function
   power_plot \leftarrow ggplot (data = data.frame(x = 0), mapping = aes(x = x
342
   power_plot <- power_plot + stat_function (fun = power_function,
343
                                                     args = list (se=
344
                                                        results_3_1_b '
                                                        Conservative SE'),
                                                     color = "blue")
345
   power_plot \leftarrow power_plot + xlim(-5000,5000) + xlab("tau") + ylab("
346
                + plot_attributes
      Power")
   power_plot
347
348
349
   # find
350
351
   # Parameterize the equation
352
   р
          = 2/3
353
          = 1000
   tau
354
355
   # Write down the power function, which implicitly defines N
356
   Fun \leftarrow function(N, s.0 = s0\_sq, s.1 = s1\_sq)
357
      -0.8 + 1 - \text{pnorm}(\text{qnorm}(0.975) - \text{tau/sqrt}(1/\text{N}*\text{s.}1*(1/\text{p}) + 1/\text{N}*\text{s})
358
         .0*(1/(1-p)))) +
        pnorm(-qnorm(0.975)-tau/sqrt(1/N*s.1*(1/p)+1/N*s.0*(1/(1-p))))
359
   }
360
361
   # Solve for N
362
   N. sol \leftarrow uniroot(Fun, c(0, 100000000)) $root
364
365
```

```
# save stuff
367
   # save plot
368
   png("power_func_r.png", height = 800, width = 800, type = "cairo")
369
   print ( power_plot )
   dev.off()
371
372
   # save results
373
   res_objects <- ls()[grepl("results", ls())]</pre>
375
   save_tex_tables <- function(obj_name = NULL){</pre>
376
377
     table <- get(obj_name)
378
379
     print(xtable(table, type = "latex"),
380
            file = paste0(obj_name, ".tex"),
381
            include.rownames = FALSE,
382
            floating = FALSE)
383
384
385
386
   lapply (res_objects, save_tex_tables)
```