Parámetro	Supuesto	Estimador	Distribución del estimador	Intervalo de confianza
μ	σ conocido	-	$\bar{x} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$	$\left(\bar{x} \pm Z_{\left(1-\frac{\alpha}{2}\right)} \frac{\sigma}{\sqrt{n}}\right)$
μ	σ desconocido, $n > 30$	$\frac{-}{x}$	$\bar{x} \sim N\left(\mu, \frac{S}{\sqrt{n}}\right)$	$\left(\frac{1}{x} \pm Z_{\left(1-\frac{\alpha}{2}\right)} \frac{S}{\sqrt{n}} \right)$
μ	σ desconocido, $n < 30$	$\frac{-}{x}$	$\frac{\overline{x} - \mu}{\frac{S'}{\sqrt{n}}} = t_{(n-1)}$	$\left(\overline{x} \pm t_{\left(1-\frac{\alpha}{2}:n-1\right)} \frac{S'}{\sqrt{n}}\right)$
σ^2	Población normal	S^2	$\frac{n.S^2}{\sigma^2} = \chi^2_{(n-1)} \circ \frac{(n-1).S^{12}}{\sigma^2} = \chi^2_{(n-1)}$	$\left(\begin{array}{c} \frac{n.S^2}{\chi^2_{\binom{1-\frac{\alpha}{2},n-1}}} \leq \sigma^2 \leq \frac{n.S^2}{\chi^2_{\binom{\frac{\alpha}{2},n-1}}} \end{array}\right)$
π	Población normal	p	$Z = \frac{p - \pi}{\sqrt{\frac{\pi(1 - \pi)}{n}}}$	$\left(p \pm Z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{\pi(1-\pi)}{n}}\right)$
$\mu_x - \mu_y$	σ_x, σ_y conocidas	$\overline{x} - \overline{y}$	$\overline{x} - \overline{y} \sim N \left(\mu_x - \mu_y, \sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}} \right)$	$\left(\left(\overline{x} - \overline{y} \right) \pm Z_{\left(1 - \frac{\alpha}{2}\right)} \sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}} \right)$
$\mu_x - \mu_y$	σ_x, σ_y desconocidas $n > 30$	$\overline{x} - \overline{y}$	$\overline{x} - \overline{y} \sim N \left(\mu_x - \mu_y, \sqrt{\frac{S_x^2}{n_x} + \frac{S_y^2}{n_y}} \right)$	$\left(\overline{\left(\overline{x}-\overline{y}\right)} \pm Z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{S_x^2}{n_x}+\frac{S_y^2}{n_y}}\right)$

$\mu_x - \mu_y$	σ_x , σ_y desconocidas pero iguales $n < 30$	$\overline{x} - \overline{y}$	$ \frac{\bar{x} - \bar{y} - (\mu_{x} - \mu_{y})}{Sw \cdot \sqrt{\frac{1}{n_{x}} + \frac{1}{n_{y}}}} = t_{(n_{x} + n_{y} - 2)} $ $ con Sw = \sqrt{\frac{(n_{x} - 1) \cdot S_{x}^{2} + (n_{y} - 1) \cdot S_{y}^{2}}{n_{x} + n_{y} - 2}} $ $ \delta con Sw = \sqrt{\frac{n_{x} \cdot S_{x}^{2} + n_{y} \cdot S_{y}^{2}}{n_{x} + n_{y} - 2}} $	$\left(\left(\overline{x}-\overline{y}\right) \ \pm \ t_{\left(1-\frac{\alpha}{2}\right)} \cdot S_w \cdot \sqrt{\frac{1}{n_x}+\frac{1}{n_y}}\right)$
$\mu_x - \mu_y$	σ_x, σ_y desconocidas y distintas $n < 30$	$\overline{x} - \overline{y}$	$\frac{\overline{x} - \overline{y} - (\mu_x - \mu_y)}{\sqrt{\frac{S'_x^2}{n_x} + \frac{S'_y^2}{n_y}}} = t_v$ $con v = \frac{\left(\frac{S'_x^2}{n_x} + \frac{S'_y^2}{n_y}\right)^2}{\left(\frac{S'_x^2}{n_x}\right)^2 + \left(\frac{S'_y^2}{n_y}\right)^2} - 2$ $\frac{\left(\frac{S'_x^2}{n_x}\right)^2}{n_x + 1} + \frac{\left(\frac{S'_y^2}{n_y}\right)^2}{n_y + 1}$	$\left(\left(\overline{x} - \overline{y} \right) \pm t_{\left(1 - \frac{\alpha}{2}\right), \upsilon} \sqrt{\frac{S_x^2}{n_x} + \frac{S_y^2}{n_y}} \right)$
$\pi_1 - \pi_2$	Poblaciones normales	$p_{1} - p_{2}$	$p_1 - p_2 \sim N \left(\pi_1 - \pi_1; \sqrt{\frac{\pi_1(1 - \pi_1)}{n_1} + \frac{\pi_2(1 - \pi_2)}{n_2}} \right)$	$\left(\Delta p \pm Z_{\left(1-\frac{\alpha}{2}\right)} \left(I\right)\right)$ $\left(I\right) = \sqrt{\frac{\pi_1\left(1-\pi_1\right)}{n_1} + \frac{\pi_2\left(1-\pi_2\right)}{n_2}}$
$\frac{\sigma_x^2}{\sigma_y^2}$	Poblaciones normales	$\frac{\frac{s_x^2}{s_y^2}}{\frac{s_y^2}{s_y^2}}$	$F = \frac{\frac{S_x^2}{\sigma_x^2}}{\frac{S_y^2}{\sigma_y^2}}$	$ \left(\frac{S_x^2}{S_y^2}(I) \le \frac{\sigma_x^2}{\sigma_y^2} \le \frac{S_x^2}{S_y^2}(II)\right) (I) = \frac{1}{F_{\left(\frac{\alpha}{2}:n_x-1:n_y-1\right)}}(II) = F_{\left(\frac{\alpha}{2}:n_x-1:n_y-1\right)} $

Parámetro	Supuesto	Estimador	Distribución del estimador	Intervalo de confianza
α	Población Normal	а	$a \sim N \left(\alpha, \sqrt{\sigma^2 \left(\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2}\right)}\right)$	$ \overline{ \left(a \pm Z_{\left(1 - \frac{\alpha}{2}\right)} \sqrt{\sigma^2 \left(\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n \left(x_i - \overline{x} \right)} \right) } \right) } $
β	Población Normal	ь	$b \sim N \left(\beta, \sqrt{\frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2}}\right)$	$\left(b \pm Z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{\sigma^2}{\sum_{i=1}^{n} \left(x_i - \overline{x}\right)^2}}\right)$

Varianza de la Predicción	Varianza del Pronóstico	
$\sigma^{2}(\hat{Y}_{h}) = \sigma^{2} \left(\frac{1}{n} + \frac{\left(X_{h} - \overline{X}\right)^{2}}{\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}} \right)$	$\sigma^{2}(Y_{i} - \hat{Y}_{h}) = \sigma^{2} \left(1 + \frac{1}{n} + \frac{(X_{h} - \overline{X})^{2}}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}\right)$	