PMATH 343 Winter 2023 HW4

Due: Friday March 10 2023 at 11:59pm on Crowdmark **Problem 0:** Read Chapters 8 and 9.

Problem 1: Let V and W be vector spaces. Show that there is a unique linear isomorphism

$$\beta: V \otimes W \to W \otimes V$$

such that $\beta(v \otimes w) = w \otimes v$ on $V \otimes W$.

We call such β the braiding isomorphism of vector spaces.

Problem 2: We shall now establish properties of the Frobenius Reciprocity natural isomorphism.

For finite dimensional vector spaces V and W, let

 $\phi_{V,W}^{-1}: \operatorname{Lin}(V,W) \to W \otimes V^*.$

For $T \in \text{Lin}(V, W)$ and $S \in \text{Lin}(U, V)$, show that

$$\phi_{U,W}^{-1}(T \circ S) = (T \otimes \mathbf{1}_{V^*}) \circ \phi_{U,V}^{-1}(S).$$

Hint: Provide a diagrammatic proof.

Problem 3: Let U, V, W be vector spaces, and recall that Bil(U, V; W) denotes the set of bilinear maps $U \times V \to W$.

a: Show that $\mathsf{Bil}(U,V;W) \subset \mathsf{Fun}(U \times V,W)$ –the set of all functions $U \times V \to W$ – is a subspace, and hence $\mathsf{Bil}(U,V;W)$ is a vector space in its own right.

b: Show that the usual map $Bil(U, V; W) \to Lin(U \otimes V, W)$ given by the universal property of tensor products is an isomorphism.

Problem 4: We shall see how to embed a vector space canonically into its double dual.

Let V be a vector space. Recall that for $v \in V$, the function $ev_v : V^* \to \mathbb{F}$ mapping $f \to f(v)$.

A: Show that ev_v is linear and thus belongs to $(V^*)^*$.

B: Show that $ev : V \to V^{**}$ mapping $v \to ev_v$ is linear.

C: Show that if V is finite dimensional then the map from B is an isomorphism.

Warning: keep en eye on the various different contractions/evaluation maps.

Problem 5: Let V, W be vector spaces.

A: Show that the map

$$m: \operatorname{Lin}(V, W) \times V \to W$$
$$(T, v) \mapsto T(v)$$

is bilinear and hence descends to a linear map $\hat{m}: \mathsf{Lin}(V,W) \otimes V \to W$ given by $\hat{m}(T \otimes v) = T(v)$

B: Let ϕ be the Frobenius Reciprocity natural isomorphism from above, and let $\lambda: W \otimes \mathbb{F} \to W$ be the *unitor* that absorbs the scalar field; ie $\lambda(w \otimes \mathbf{1}_W) = w$ on W. Show that $\hat{m} = \lambda \circ (\mathbf{1} \otimes \mathsf{ev}_V) \circ (\phi_{V,W}^{-1} \otimes \mathbf{1}_V)$. Here, $\mathsf{ev}_V: V^* \otimes V \to \mathbb{F}$ is given by $f \otimes v \mapsto f(v)$. hint: Give a diagrammatic proof.

Problem 6: The trace map is intrinsic.

Let V be a finite dimensional vector space. Show that the definition of the trace on a linear map $T \in \text{Lin}(V, V)$ is independent from the choice of basis. hint: Use the change of basis formula for $[T]_{\mathcal{B},\mathcal{B}}$ and the identity tr(AB) = tr(BA).

Problem 7: String diagrammatic gymnastics.

Show that the canonical isomorphism $Lin(V, V) \to Lin(V, V)^*$ maps $\mathbf{1}_V$ to tr. Provide also a diagrammatic proof.