

FACULTAD DE CIENCIAS

FUNDAMENTOS DE BASES DE DATOS - 7094

T A R E A 5

EQUIPO:

DEL MONTE ORTEGA MARYAM MICHELLE - 320083527

SOSA ROMO JUAN MARIO - 320051926

CASTILLO HERNÁNDEZ ANTONIO - 320017438

ERIK EDUARDO GÓMEZ LÓPEZ - 320258211

FECHA DE ENTREGA:
5 DE NOVIEMBRE DE 2024

Profesor:

M. EN I.Z GERARDO AVILÉS ROSAS

AYUDANTES:

LUIS ENRIQUE GARCÍA GÓMEZ KEVIN JAIR TORRES VALENCIA RICARDO BADILLO MACÍAS ROCÍO AYLIN HUERTA GONZÁLEZ

Tarea 5

1. Dada una relación R(A, B, C, D, E, G) y el siguiente conjunto de dependencias funcionales F:

$$F = \{AB \rightarrow C, BC \rightarrow D, D \rightarrow EG, CG \rightarrow BD, C \rightarrow A, ACD \rightarrow B, BE \rightarrow C, CE \rightarrow AG \ \}$$

Para las siguientes sentencias, determina si son **verdaderas** o **falsas**. Para aquellas sentencias que resulten falsas, deberás **explicar** por qué consideras que no se cumplen:

No.	Sentencia	Verdadera	Falsa	Justificación
1	La cerradura de BC es $\{A, D, E, G\}$		√	$\{\mathrm{BC}\}+=\{\mathrm{BCDEGA}\}$
2	Todos los atributos de R están en la cerradura de BC	√		
3	La cerradura de AC es $\{A, C\}$	✓		
4	ABC es una superllave de R	√		Como BC es llave pues tiene todos los atributos de R, agregar A significa que es superllave.
5	ABC es una llave candidata de R		√	Contiene redundancia podemos eliminar A sin destruir la propiedad de iden tificación única.
6	BC es la única llave candidata de R		√	Porque {AB}+ = {ABCDEG} cumple con identificación única y no redundancia.

2.

3. Para cada uno de los **esquemas** que se muestran a continuación, con su respectivo **conjunto de dependencias funcionales**:

a.
$$R(A, B, C, D, E, F, G)$$
 con $F = \{AB \rightarrow C, AB \rightarrow F, A \rightarrow D, A \rightarrow E, B \rightarrow G\}$

b.
$$R(A, B, C, D, E, F)$$
 con $F = \{AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CF \rightarrow B\}$

- Indica alguna llave candidata para la relación R.
 - a. $\{AB\}+=\{ABCFDEG\}$ es llave candidata pues cumple con **identificación única** por tener a todos los atributos de \mathbf{R} y **no redundancia.** pues si eliminamos a cualquiera de sus atributos, no se cumple con la identificación única.
 - b. {CF}+ = {CFABDE} notemos que aqui tenemos que incluir a F pues la unica manera de agregarlo es directamente (no existe DF con F a la derecha) y no podemos quitar a ninguno de los atributos de la llave candidata pues no se cumple con la identificación única.

- Especifica todas las violaciones a la BCNF.
 - a. Calculamos la cerraduras de los lados izquierdos: (ninguna es trivial)

$$\{AB\}+=\{ABCFDEG\} \text{ Es llave } \\ \{AB\}+=\{ABCFDEG\} \text{ Es llave } \\ \{A\}+=\{ADE\} \text{ Violación a BCNF, la elegimos para normalizar } \\ \{A\}+=\{ADE\} \text{ Violación a BCNF } \\ \{B\}+=\{BG\} \text{ Violación a BCNF }$$

b. Calculamos la cerraduras de los lados izquierdos: (ninguna es trivial)

$$\{AB\}+=\{ABCDE\}$$
 Violación a BCNF, la elegimos para normalizar $\{BC\}+=\{BCADE\}$ Violación a BCNF
$$\{D\}+=\{DE\}$$
 Violación a BCNF
$$\{CF\}+=\{CFBADE\}$$
 Es llave

- Normaliza de acuerdo con BCNF, asegúrate de indicar cuáles son las relaciones resultantes con sus respectivas dependencias funcionales.
 - a. Elegimos la primera violación y dividimos R:

$$R_1(A,D,E)$$
 con $F = \{A \to D, A \to E\}; \{A\} + = \{ADE\} \to A$ es llave para $R_1(A,B,C,F,G)$ con $F = \{AB \to C,AB \to F,B \to G\}$

En R_1 no hay violación a BCNF, revisamos R_2 :

$$\{AB\}+=\{ABCFG\}$$
 Es llave para R_2
 $\{B\}+=\{BG\}$ Violación a BCNF, la elegimos para normalizar

Divido R_2 :

$$R_3=(B,G) \text{ con } F=\{B\to G\}; \{B\}+=\{BG\}\to \text{A es llave para } R_3\\ R_4=(B,A,C,F) \text{ con } F=\{AB\to C,AB\to F\}; \{AB\}+=\{ABCF\}\to \text{A es llave para } R_4$$

Finalmente:

$$R_1(A, D, E)$$
 con $F = \{A \to D, A \to E\}$
 $R_3(B, G)$ con $F = \{B \to G\}$
 $R_4(B, A, C, F)$ con $F = \{AB \to C, AB \to F\}$

b. Elegimos la primera violación y dividimos R:

$$R_1(A, B, C, D, E)$$
 con $F = \{AB \to C, BC \to AD, D \to E\};$
 $R_2(A, B, F)$ con $F = \{ABF \to ABF\}; \to ABF$ es llave para R_2

Aqui observamos 2 cosas, la primera es que R_2 al no cumplir ninguna dependencia funcional, solo se tiene la trivial y trivialmente es llave, ademas de esto, vemos que perdemos la DF

 $CF \to B$ por lo que deberiamos parar la normalización en R_2 , pero como el profesor hizo vamos a seguir por fines didacticos. Revisamos R_1 :

$$\{AB\}+=\{ABCDE\}$$
 Es llave para R_1
 $\{BC\}+=\{BCADE\}$ Es llave para R_1
 $\{D\}+=\{DE\}$ Violación a BCNF, la elegimos para normalizar

Dividimos R_1 :

$$R_3(D,E)$$
 con $F=\{D\to E\};\{D\}+=\{DE\}\to D$ es llave para R_3 $R_4(D,A,B,C)$ con $F=\{AB\to C,BC\to AD\};$

Revisamos R_4 :

$$\{AB\}+=\{ABCD\}$$
 Es llave para R_4
 $\{BC\}+=\{BCAD\}$ Es llave para R_4

Finalmente:

$$R_2(A,B,F) \text{ con } F = \{ABF \to ABF\}$$

$$R_3(D,E) \text{ con } F = \{D \to E\}$$

$$R_4(D,A,B,C) \text{ con } F = \{AB \to C,BC \to AD\}$$

Como nota importante, se presenta join con perdida, DF perdidas: $CF \rightarrow B$

5.