# Mass Storage

Attributes of Mass Storage
Magnetic Media
Optical Media
Solid-State Media
Cloud Storage





# Attributes of mass storage

 Mass storage provides long term non-volatile information storage

- Tapes:
  - cheap! Used for archive/backup
  - good for sequential read, terrible for non-sequential
- Magnetic floppy disks (obsolete):
  - slow & 3.5 inch format limited to 1.4 MB
- Magnetic hard drives:
  - reasonably cheap, fast and reliable
- Optical disks:
  - slower than magnetic hard drive
- Non-volatile solid state memory:
  - expensive, more robust than hard drives



## Attributes of mass storage

### Access mode

- sequential data read or written contiguously
- random data may be read or written anywhere

### Access time

latency for retrieving data

### Read/Write rates

- how fast can data be read or written?
- does burst rate differ from sustained rate?



### Hard disks

- magnetic disk
- data stored by altering the magnetic orientation of areas of disk
- surface of disk accessed by spinning disk and moving an arm containing a read/write head
- performance improvements largely due to increasing density of data (aereal density)





### Hard disks cont.

data organised as circular tracks, which are composed of sectors

disk head very close to disk, so physical shock can result in a head crash



### Access time = seek time + rotational latency Seek time

time to move arm so read/write head in over the correct track

### Rotational latency

time for correct sector to spin under the read/write head



### Fragmentation

- as files are created, expand, contract and are deleted, free space on the hard drive becomes fragmented
- lengthening a file means new allocated sectors may be anywhere on disk (not contiguous). Seek time increases

| 1 |   | 3 | 1 | 2 | 3 | 5 | 1 |   | 1 |
|---|---|---|---|---|---|---|---|---|---|
| 2 | 3 | 8 | 4 |   |   | 3 | 4 |   |   |
| 2 |   | 5 | 4 |   | 4 | 6 |   |   | 6 |
|   | 5 |   | 2 | 4 |   | 3 |   | 2 |   |
| 9 | 7 |   | 6 | 4 | 6 |   | 7 | 1 |   |
| 5 |   | 3 |   | 2 |   | 1 |   |   |   |
|   |   |   |   |   |   |   |   |   |   |



### **Transfer Rates**

- Internal transfer rates: from disk to drive's controller board
  - impacted by speed of reading, head movements required, which track is being accessed (outer track larger and moves faster under the head)
- External transfer rates: from controller to computer system
  - caching allows external rate to often be larger than internal rate (in bursts)



Historical: removable magnetic storage

- floppy disks
  - flexible platter
  - 3.5 inch format
  - 1.4 MB



- high density removable disks
  - SyQuest: hard drive with removable disk platter
  - platter in sealed box



- CD (Compact Disk)
  - designed for storing music
  - soon inspired computer optical mass storage standards
  - encodes binary data as presence/absence of pits in a reflective surface
  - pits physically stamped to disk surface
  - read by a laser light (pit changes reflectivity of surface)



laser armature and compact disc move similarly to a hard disk mechanism

binary 1s and 0s represented by 'pits' etched in the disc





- CD-ROM (Read Only Memory CD)
  - computer data version of CD standard
  - 650 MB
- DVD-ROM (Digital Versitile Disk, Read Only Memory)
  - introduced 1995
  - computer data version of DVD standard
  - ~4.7 GB for single-layered DVD-ROM
  - dual-layer has semitransparent top layer. Laser can be refocused to shine through it and focus on lower layer (~ 8.5GB)
- Blu-Ray
  - introduced 2006
  - 25GB per layer. Dual layer standard at 50 GB

- Recordable optical formats
  - instead of stamping pits into a disk to alter reflectivity, change chemical makeup of disk
  - disk surface is sensitive to high intensity laser light
  - early versions (CD-R, DVD-R) were write-once (WORM: write once read many)





Re-writable (CD-RW, DVD-RW) chemicals later developed

Unlike magnetic hard drives, optical media can be ejected

platter is not securely fixed to chassis of drive

#### Seek time

- ~10 times worse than for hard drive
- seeks more common as data density not as high as on magnetic hard drive
- disk wobble means heads have to keep realigning

### Rotational latency

 ~ 5 to 10 times worse than for hard drive (as disk not held as securely)

### Fragmentation

depending on file system used, and if recording to CD-R or CD-RW, fragmentation may or may not be an issue

### Transfer rate

- optical disk rotation rate varies depending on the track being read in order to keep the same number of bits per second presented to the read/write head
- results in consistent transfer rate

### Solid state media

- Magnetic and optical drives are mechanical
  - compared to electronics: slow slow slow!
  - lots of energy to power motors etc.
  - huge: macro mechanicals
  - not robust to dust, mechanical shock etc.
- Flash EEPROMs (Flash memory)
  - non-volatile
  - compact, no moving components
  - expensive but getting cheaper
- Solid state disks
  - made of multiple flash memory chips
  - replaces hard drive

### Solid-state media

USB key





Solid-state disk

### Solid state media

### Seek time

 no mechanical parts so access and seek time much better than hard drive

#### Write time

- as with other forms of storage, writing takes much longer than reading as state is being changed rather than just observed
- writing to flash memory is much slower than reading

### Transfer rate

 you get what you pay for (cheap flash is much slower than more expensive flash)

### Solid state media

### Memory system

- SLC (Single-level cell): each memory cell can store one of two states (0/1)
- MLC (Multi-level cell): each memory cell can store one of four or eight states (i.e. 2 or 4 bits of information)

### Wear

- flash memory cell will wear out after multiple write operations
- solid-state disks often built with extra memory, to replace worn out cells
- wear levelling: controller spreads writes out over chip(s)

# Cloud storage

- It is now common for people to have the save their data 'to the cloud'.
- It is typically implemented as
  - A website where upload / download is a browser activity
  - A 'virtual peripheral' or device, or
    - In other words, it can be made to look like any other media storage option.



- Potentially massive storage is possible
  - All transaction data as they happen. Anywhere.
     eg. Security video feeds for 20 cameras around your property for a month

# Cloud Storage business model

Business Model – Why are they so nice to do this for you?

- Customer lock-in
  - They become a part of your business, hopefully one that become essential to you and so guarantees ongoing business
- They get to look at your data
  - Do your customers know this? Should they?
  - Google's search engine optimisation only works if the data volume feeding it is massive
- It opens other possibilities for business for them. For you also.
  - Offline Backup
  - Data Analytics, Particularly allowing you to 'compare' your data with other people's data even if you don't have access to the other people's data itself

## Cloud Storage business model 2

Business Model – Why are they so nice to do this for you?

- It facilitates project collaboration
  - within your business
    - geographic diversity is possible
    - your business can be lean and mean and thin.
  - with outside service providers
    - Stick to what you know well,
      - » and pay others for what they know well.
- It makes out-sourcing easier, cheaper since forms of access are uniform
  - With cloud providers as facilitators, job/people providers
  - Common data and processing formats
    - Accounts, Payroll, Spare parts, Delivery Tracking,

# Cloud storage – Risks

- Advantages
  - Simplifying your system
    - Backup is no longer your problem
    - The data is available on all your devices
      - interfacing is no longer your problem
  - Sharing
    - The data can be easily shared with others at user level
    - Some vendors give a precise level of control
    - Security break-in issues are 'not your problem'
- Disadvantages
  - Speed, limited by network bandwidth
    - How fast can you access your transaction data
  - Security
    - What do they know about your business and customers?
      - What do you know about them?
    - You are legally responsible for the security of your data not them.
    - Impact of failure
      - If your data gets lost, what happens to them? What happens to you!!
      - How much is your data worth?
        - » Can you prove it?
        - » Can you recover / regenerate it?

As always: Look at the terms of service for answers



# **Big Data**

In some ways, a special case of cloud data storage,

- Characterised by the "3,4,5 or 7 V's"
  - Volume
    - It's BIG. TB / PB per day are not unknown
      - eg. internet of things (IoT) device data streams
  - Velocity
    - generated very quickly typically it is streaming data
      - no time for detailed analysis directly on the data itself
      - best to quickly summarize and analyse these instead
  - Volatility / Variability
    - original streaming data not stored only summary or analytics
    - analysis cannot be repeated if wrong
  - Veracity / Validity
    - you have to trust it, since there is no time to double-check
  - Variety
    - data formats are often not uniform, may need meta-analysis
  - [ <u>Value</u>, <u>Visualisation</u> ]
- Who is responsible for the consequences of bad data?



# Summary

- Attributes of Mass Storage
  - Fragmentation
  - Transfer Rate
- Magnetic Media
  - Spinning disk with magnetic heads
- Optical Media
  - CD / DVD / Rewritable
- Solid State Media
  - Semi Conductor
  - Seek Time / Write Time
  - Memory System / Wear
- Cloud Storage
  - Business Model
  - Risks
  - Big Data

