Quantum++ v1.0.0-rc2

Generated by Doxygen 1.8.13

Contents

1	Qua	ntum++																	1
2	Nam	nespace Index											7						
	2.1	Names	space List										 		 	 	 	 	7
3	Hier	erarchical Index										9							
	3.1	Class	Hierarchy	٠.									 		 	 	 	 	9
4	Clas	s Index																	11
	4.1	Class	List										 		 	 	 	 	11
5	File	Index																	15
	5.1	File Lis	st	٠.									 		 	 	 	 	15
6	Nam	espace	Docume	ntat	ion														17
	6.1	qpp Na	amespace	Ref	eren	ce .							 		 	 		 	17
		6.1.1	Detailed	Des	script	ion							 		 	 		 	29
		6.1.2	Typedef	Doc	ume	ntatio	on .						 		 	 		 	29
			6.1.2.1	big	gint .								 		 	 	 	 	29
			6.1.2.2	bra	a								 		 	 	 	 	30
			6.1.2.3	cm	nat .								 		 	 		 	30
			6.1.2.4	ср	lx .								 		 	 	 	 	30
			6.1.2.5	dn	nat .								 		 	 	 	 	30
			6.1.2.6	dy	n_co	ol_ve	ct .						 		 	 		 	30
			6.1.2.7	dy	n_m	at .							 		 	 	 	 	31
			6.1.2.8	dv	n ro	w ve	ect						 		 	 		 	31

ii CONTENTS

	6.1.2.9	idx	. 31
	6.1.2.10	ket	. 31
	6.1.2.11	to_void	. 32
6.1.3	Function	Documentation	. 32
	6.1.3.1	absm()	. 32
	6.1.3.2	abssq() [1/3]	. 32
	6.1.3.3	abssq() [2/3]	. 33
	6.1.3.4	abssq() [3/3]	. 33
	6.1.3.5	adjoint()	. 33
	6.1.3.6	anticomm()	. 34
	6.1.3.7	apply() [1/5]	. 34
	6.1.3.8	apply() [2/5]	. 35
	6.1.3.9	apply() [3/5]	. 35
	6.1.3.10	apply() [4/5]	. 36
	6.1.3.11	apply() [5/5]	. 36
	6.1.3.12	applyCTRL() [1/2]	. 37
	6.1.3.13	applyCTRL() [2/2]	. 38
	6.1.3.14	avg()	. 38
	6.1.3.15	bloch2rho()	. 39
	6.1.3.16	choi2kraus()	. 39
	6.1.3.17	choi2super()	. 40
	6.1.3.18	comm()	. 40
	6.1.3.19	complement()	. 41
	6.1.3.20	compperm()	. 41
	6.1.3.21	concurrence()	. 41
	6.1.3.22	conjugate()	. 43
	6.1.3.23	contfrac2x()	. 43
	6.1.3.24	cor()	. 44
	6.1.3.25	cosm()	. 44
	6.1.3.26	cov()	. 45

CONTENTS

6.1.3.27	cwise()	45
6.1.3.28	det()	45
6.1.3.29	dirsum() [1/4]	46
6.1.3.30	dirsum() [2/4]	46
6.1.3.31	dirsum() [3/4]	47
6.1.3.32	dirsum() [4/4]	47
6.1.3.33	dirsumpow()	48
6.1.3.34	disp() [1/5]	48
6.1.3.35	disp() [2/5]	49
6.1.3.36	disp() [3/5]	49
6.1.3.37	disp() [4/5]	50
6.1.3.38	disp() [5/5]	50
6.1.3.39	egcd()	51
6.1.3.40	eig()	51
6.1.3.41	entanglement() [1/2]	51
6.1.3.42	entanglement() [2/2]	52
6.1.3.43	entropy() [1/2]	53
6.1.3.44	entropy() [2/2]	53
6.1.3.45	evals()	53
6.1.3.46	evects()	54
6.1.3.47	expm()	54
6.1.3.48	factors()	55
6.1.3.49	funm()	55
6.1.3.50	gcd() [1/2]	55
6.1.3.51	gcd() [2/2]	56
6.1.3.52	gconcurrence()	56
6.1.3.53	grams() [1/3]	57
6.1.3.54	grams() [2/3]	57
6.1.3.55	grams() [3/3]	58
6.1.3.56	heig()	58

iv CONTENTS

6.1.3.57	hevals()	58
6.1.3.58	hevects()	59
6.1.3.59	inverse()	59
6.1.3.60	invperm()	60
6.1.3.61	ip() [1/2]	60
6.1.3.62	ip() [2/2]	60
6.1.3.63	isprime()	61
6.1.3.64	kraus2choi()	61
6.1.3.65	kraus2super()	62
6.1.3.66	kron() [1/4]	62
6.1.3.67	kron() [2/4]	63
6.1.3.68	kron() [3/4]	63
6.1.3.69	kron() [4/4]	64
6.1.3.70	kronpow()	64
6.1.3.71	lcm() [1/2]	65
6.1.3.72	lcm() [2/2]	65
6.1.3.73	load()	66
6.1.3.74	loadMATLAB() [1/2]	66
6.1.3.75	loadMATLAB() [2/2]	67
6.1.3.76	logdet()	68
6.1.3.77	logm()	68
6.1.3.78	lognegativity() [1/2]	68
6.1.3.79	lognegativity() [2/2]	69
6.1.3.80	marginalX()	69
6.1.3.81	marginalY()	69
6.1.3.82	measure() [1/9]	70
6.1.3.83	measure() [2/9]	70
6.1.3.84	measure() [3/9]	71
6.1.3.85	measure() [4/9]	71
6.1.3.86	measure() [5/9]	72

CONTENTS

6.1.3.87 measure() [6/9]
6.1.3.88 measure() [7/9]
6.1.3.89 measure() [8/9]
6.1.3.90 measure() [9/9]
6.1.3.91 measure_seq() [1/2] 75
6.1.3.92 measure_seq() [2/2] 76
6.1.3.93 mket() [1/2]
6.1.3.94 mket() [2/2]
6.1.3.95 modinv()
6.1.3.96 modmul()
6.1.3.97 modpow()
6.1.3.98 mprj() [1/2] 80
6.1.3.99 mprj() [2/2] 80
6.1.3.100 multiidx2n()
6.1.3.101 n2multiidx()
6.1.3.102 negativity() [1/2]
6.1.3.103 negativity() [2/2]
6.1.3.104 norm()
6.1.3.105 omega()
6.1.3.106 operator""""_i() [1/2]
6.1.3.107 operator""""_i() [2/2]
6.1.3.108 powm()
6.1.3.109 prj()
6.1.3.110 prod() [1/3]
6.1.3.111 prod() [2/3]
6.1.3.112 prod() [3/3]
6.1.3.113 ptrace() [1/2]
6.1.3.114 ptrace() [2/2]
6.1.3.115 ptrace1() [1/2]
6.1.3.116 ptrace1() [2/2]

vi

6.1.3.117 ptrace2() [1/2]
6.1.3.118 ptrace2() [2/2]
6.1.3.119 ptranspose() [1/2]
6.1.3.120 ptranspose() [2/2]
6.1.3.121 qmutualinfo() [1/2] 9
6.1.3.122 qmutualinfo() [2/2]
6.1.3.123 rand() [1/5]
6.1.3.124 rand() [2/5] 9
6.1.3.125 rand() [3/5] 9
6.1.3.126 rand() [4/5]
6.1.3.127 rand() [5/5]
6.1.3.128 randH()
6.1.3.129 randidx()
6.1.3.130 randket()
6.1.3.131 randkraus()
6.1.3.132 randn() [1/4] 9
6.1.3.133 randn() [2/4] 9
6.1.3.134 randn() [3/4] 9
6.1.3.135 randn() [4/4] 9
6.1.3.136 randperm()
6.1.3.137 randprime()
6.1.3.138 randprob()
6.1.3.139 randrho()
6.1.3.140 randU()
6.1.3.141 randV()
6.1.3.142 renyi() [1/2]
6.1.3.143 renyi() [2/2]
6.1.3.144 reshape()
6.1.3.145 rho2bloch()
6.1.3.146 rho2pure()

CONTENTS vii

6.1.3.147 save()
6.1.3.148 saveMATLAB() [1/2]
6.1.3.149 saveMATLAB() [2/2]
6.1.3.150 schatten()
6.1.3.151 schmidtA() [1/2]
6.1.3.152 schmidtA() [2/2]
6.1.3.153 schmidtB() [1/2]
6.1.3.154 schmidtB() [2/2]
6.1.3.155 schmidtcoeffs() [1/2]
6.1.3.156 schmidtcoeffs() [2/2]
6.1.3.157 schmidtprobs() [1/2]
6.1.3.158 schmidtprobs() [2/2]
6.1.3.159 sigma()
6.1.3.160 sinm()
6.1.3.161 spectralpowm()
6.1.3.162 sqrtm()
6.1.3.163 sum() [1/3]
6.1.3.164 sum() [2/3]
6.1.3.165 sum() [3/3]
6.1.3.166 super2choi()
6.1.3.167 svals()
6.1.3.168 svd()
6.1.3.169 svdU()
6.1.3.170 svdV()
6.1.3.171 syspermute() [1/2]
6.1.3.172 syspermute() [2/2]
6.1.3.173 trace()
6.1.3.174 transpose()
6.1.3.175 tsallis() [1/2]
6.1.3.176 tsallis() [2/2]

viii CONTENTS

		6.1.3.177	' uniform()
		6.1.3.178	3 var()
		6.1.3.179	9 x2contfrac()
	6.1.4	Variable	Documentation
		6.1.4.1	chop
		6.1.4.2	ee
		6.1.4.3	eps
		6.1.4.4	infty
		6.1.4.5	maxn
		6.1.4.6	pi
6.2	qpp::ex	ception N	amespace Reference
	6.2.1	Detailed	Description
6.3	qpp::ex	kperimenta	Il Namespace Reference
	6.3.1	Detailed	Description
6.4	qpp::in	ternal Nan	nespace Reference
	6.4.1	Detailed	Description
	6.4.2	Function	Documentation
		6.4.2.1	check_cvector()
		6.4.2.2	check_dims()
		6.4.2.3	check_dims_match_cvect()
		6.4.2.4	check_dims_match_mat()
		6.4.2.5	check_dims_match_rvect()
		6.4.2.6	check_eq_dims()
		6.4.2.7	check matching sizes()
		6.4.2.8	check nonzero size()
		6.4.2.9	check perm()
		6.4.2.10	check_qubit_cvector()
		6.4.2.11	check_qubit_matrix()
		6.4.2.12	check_qubit_rvector()
		6.4.2.13	check_qubit_vector()
		6.4.2.14	check_rvector()
		6.4.2.15	check square mat()
		6.4.2.16	check subsys match dims()
		6.4.2.17	check vector()
		6.4.2.18	dirsum2()
		6.4.2.19	get_dim_subsys()
		6.4.2.20	get_num_subsys()
		6.4.2.21	kron2()
		6.4.2.22	multiidx2n()
		6.4.2.23	n2multiidx()
		6.4.2.24	variadic_vector_emplace() [1/2]
		6.4.2.25	variadic_vector_emplace() [2/2]

CONTENTS

7	Clas	ass Documentation 12						
	7.1	qpp::C	odes Class Reference	127				
		7.1.1	Detailed Description	128				
		7.1.2	Member Enumeration Documentation	128				
			7.1.2.1 Type	128				
		7.1.3	Constructor & Destructor Documentation	129				
			7.1.3.1 Codes()	129				
			7.1.3.2 ~Codes()	129				
		7.1.4	Member Function Documentation	129				
			7.1.4.1 codeword()	129				
		7.1.5	Friends And Related Function Documentation	129				
			7.1.5.1 internal::Singleton < const Codes >	130				
	7.2	qpp::ex	xception::CustomException Class Reference	130				
		7.2.1	Detailed Description	131				
		7.2.2	Constructor & Destructor Documentation	131				
			7.2.2.1 CustomException()	132				
		7.2.3	Member Function Documentation	132				
			7.2.3.1 type_description()	132				
		7.2.4	Member Data Documentation	132				
			7.2.4.1 what	132				
	7.3	qpp::ex	xception::DimsInvalid Class Reference	133				
		7.3.1	Detailed Description	134				
		7.3.2	Member Function Documentation	134				
			7.3.2.1 type_description()	134				
	7.4	qpp::ex	xception::DimsMismatchCvector Class Reference	134				
		7.4.1	Detailed Description	136				
		7.4.2	Member Function Documentation	136				
			7.4.2.1 type_description()	136				
	7.5	qpp::ex	xception::DimsMismatchMatrix Class Reference	136				
		7.5.1	Detailed Description	137				

CONTENTS

	7.5.2	Member Function Documentation
		7.5.2.1 type_description()
7.6	qpp::ex	cception::DimsMismatchRvector Class Reference
	7.6.1	Detailed Description
	7.6.2	Member Function Documentation
		7.6.2.1 type_description()
7.7	qpp::ex	cception::DimsMismatchVector Class Reference
	7.7.1	Detailed Description
	7.7.2	Member Function Documentation
		7.7.2.1 type_description()
7.8	qpp::ex	cception::DimsNotEqual Class Reference
	7.8.1	Detailed Description
	7.8.2	Member Function Documentation
		7.8.2.1 type_description()
7.9	qpp::int	ternal::Display_Impl_ Struct Reference
	7.9.1	Member Function Documentation
		7.9.1.1 display_impl_()
7.10	qpp::ex	cception::Exception Class Reference
	7.10.1	Detailed Description
	7.10.2	Constructor & Destructor Documentation
		7.10.2.1 Exception()
	7.10.3	Member Function Documentation
		7.10.3.1 type_description()
		7.10.3.2 what()
	7.10.4	Member Data Documentation
		7.10.4.1 where
7.11	qpp::Ga	ates Class Reference
	7.11.1	Detailed Description
	7.11.2	Constructor & Destructor Documentation
		7.11.2.1 Gates()

CONTENTS xi

		7.11.2.2	~Gates()		150
	7.11.3	Member F	unction Documentation		151
		7.11.3.1	CTRL()		151
		7.11.3.2	expandout() [1/3]		151
		7.11.3.3	expandout() [2/3]		152
		7.11.3.4	expandout() [3/3]		153
		7.11.3.5 I	Fd()		153
		7.11.3.6 I	ld()		154
		7.11.3.7 I	Rn()		154
		7.11.3.8	Xd()		154
		7.11.3.9	Zd()		155
	7.11.4	Friends An	nd Related Function Documentation		155
		7.11.4.1 i	internal::Singleton < const Gates >		155
	7.11.5	Member D	ata Documentation		155
		7.11.5.1	CNOT		156
		7.11.5.2	CNOTba		156
		7.11.5.3	CZ		156
		7.11.5.4 I	FRED		156
		7.11.5.5 I	н		156
		7.11.5.6 I	ld2		156
		7.11.5.7	S		157
		7.11.5.8	SWAP		157
		7.11.5.9	Т		157
		7.11.5.10	TOF		157
		7.11.5.11	x		157
		7.11.5.12	Υ		157
		7.11.5.13	Z		158
7.12	qpp::ID	isplay Class	s Reference		158
	7.12.1	Detailed D	escription		159
	7.12.2	Constructo	or & Destructor Documentation		159

xii CONTENTS

		7.12.2.1 IDisplay() [1/3]	59
		7.12.2.2 IDisplay() [2/3]	59
		7.12.2.3 Display() [3/3]	59
		7.12.2.4 ~IDisplay()	60
	7.12.3	Member Function Documentation	60
		7.12.3.1 display()	60
		7.12.3.2 operator=() [1/2]	60
		7.12.3.3 operator=() [2/2]	60
	7.12.4	Friends And Related Function Documentation	60
		7.12.4.1 operator<< 1	61
7.13	qpp::Ini	it Class Reference	61
	7.13.1	Detailed Description	62
	7.13.2	Constructor & Destructor Documentation	62
		7.13.2.1 Init()	62
		7.13.2.2 ~Init()	62
	7.13.3	Friends And Related Function Documentation	62
		7.13.3.1 internal::Singleton < const Init >	62
7.14	qpp::int	ternal::IOManipEigen Class Reference	63
	7.14.1	Constructor & Destructor Documentation	64
		7.14.1.1 IOManipEigen() [1/2]	64
		7.14.1.2 IOManipEigen() [2/2]	64
	7.14.2	Member Function Documentation	64
		7.14.2.1 display()	64
	7.14.3	Member Data Documentation	64
		7.14.3.1 A	65
		7.14.3.2 chop	65
7.15	qpp::int	ternal::IOManipPointer< PointerType > Class Template Reference	65
	7.15.1	Constructor & Destructor Documentation	66
		7.15.1.1 IOManipPointer() [1/2]	67
		7.15.1.2 IOManipPointer() [2/2]	67

CONTENTS xiii

	7.15.2	Member Function Documentation
		7.15.2.1 display()
		7.15.2.2 operator=()
	7.15.3	Member Data Documentation
		7.15.3.1 end
		7.15.3.2 N
		7.15.3.3 p
		7.15.3.4 separator
		7.15.3.5 start
7.16	qpp::int	ternal::IOManipRange < InputIterator > Class Template Reference
	7.16.1	Constructor & Destructor Documentation
		7.16.1.1 IOManipRange() [1/2]
		7.16.1.2 IOManipRange() [2/2]
	7.16.2	Member Function Documentation
		7.16.2.1 display()
		7.16.2.2 operator=()
	7.16.3	Member Data Documentation
		7.16.3.1 end
		7.16.3.2 first
		7.16.3.3 last
		7.16.3.4 separator
		7.16.3.5 start
7.17	qpp::is_	_complex< T > Struct Template Reference
	7.17.1	Detailed Description
7.18	qpp::is_	_complex< std::complex< T > > Struct Template Reference
	7.18.1	Detailed Description
7.19	qpp::is_	_iterable < T, typename > Struct Template Reference
	7.19.1	Detailed Description
7.20		_iterable< T, to_void< decltype(std::declval< T >().begin()), decltype(std::declval< T d()), typename T::value_type > > Struct Template Reference
	7.20.1	Detailed Description

xiv CONTENTS

7.21	qpp::is_	_matrix_expression< Derived > Struct Template Reference	176
	7.21.1	Detailed Description	177
7.22	qpp::m	ake_void< Ts > Struct Template Reference	177
	7.22.1	Detailed Description	177
	7.22.2	Member Typedef Documentation	177
		7.22.2.1 type	177
7.23	qpp::ex	cception::MatrixMismatchSubsys Class Reference	178
	7.23.1	Detailed Description	179
	7.23.2	Member Function Documentation	179
		7.23.2.1 type_description()	179
7.24	qpp::ex	cception::MatrixNotCvector Class Reference	179
	7.24.1	Detailed Description	181
	7.24.2	Member Function Documentation	181
		7.24.2.1 type_description()	181
7.25	qpp::ex	cception::MatrixNotRvector Class Reference	181
	7.25.1	Detailed Description	182
	7.25.2	Member Function Documentation	182
		7.25.2.1 type_description()	182
7.26	qpp::ex	cception::MatrixNotSquare Class Reference	183
	7.26.1	Detailed Description	184
	7.26.2	Member Function Documentation	184
		7.26.2.1 type_description()	184
7.27	qpp::ex	cception::MatrixNotSquareNorCvector Class Reference	185
	7.27.1	Detailed Description	186
	7.27.2	Member Function Documentation	186
		7.27.2.1 type_description()	186
7.28	qpp::ex	cception::MatrixNotSquareNorRvector Class Reference	187
	7.28.1	Detailed Description	188
	7.28.2	Member Function Documentation	188
		7.28.2.1 type_description()	188

CONTENTS xv

7.29	qpp::ex	cception::MatrixNotSquareNorVector Class Reference	189
	7.29.1	Detailed Description	190
	7.29.2	Member Function Documentation	190
		7.29.2.1 type_description()	190
7.30	qpp::ex	cception::MatrixNotVector Class Reference	191
	7.30.1	Detailed Description	192
	7.30.2	Member Function Documentation	192
		7.30.2.1 type_description()	192
7.31	qpp::ex	cception::NoCodeword Class Reference	193
	7.31.1	Detailed Description	194
	7.31.2	Member Function Documentation	194
		7.31.2.1 type_description()	194
7.32	qpp::ex	cception::NotBipartite Class Reference	195
	7.32.1	Detailed Description	196
	7.32.2	Member Function Documentation	196
		7.32.2.1 type_description()	196
7.33	qpp::ex	cception::NotQubitCvector Class Reference	196
	7.33.1	Detailed Description	198
	7.33.2	Member Function Documentation	198
		7.33.2.1 type_description()	198
7.34	qpp::ex	cception::NotQubitMatrix Class Reference	198
	7.34.1	Detailed Description	199
	7.34.2	Member Function Documentation	199
		7.34.2.1 type_description()	199
7.35	qpp::ex	cception::NotQubitRvector Class Reference	200
	7.35.1	Detailed Description	201
	7.35.2	Member Function Documentation	201
		7.35.2.1 type_description()	201
7.36	qpp::ex	cception::NotQubitSubsys Class Reference	202
	7.36.1	Detailed Description	203

xvi CONTENTS

	7.36.2	Member Function Documentation	03
		7.36.2.1 type_description()	03
7.37	qpp::ex	cception::NotQubitVector Class Reference	04
	7.37.1	Detailed Description	05
	7.37.2	Member Function Documentation	05
		7.37.2.1 type_description()	05
7.38	qpp::ex	cception::OutOfRange Class Reference	06
	7.38.1	Detailed Description	07
	7.38.2	Member Function Documentation	07
		7.38.2.1 type_description()	07
7.39	qpp::ex	cception::PermInvalid Class Reference	08
	7.39.1	Detailed Description	09
	7.39.2	Member Function Documentation	09
		7.39.2.1 type_description()	09
7.40	qpp::ex	cception::PermMismatchDims Class Reference	09
	7.40.1	Detailed Description	11
	7.40.2	Member Function Documentation	11
		7.40.2.1 type_description()	11
7.41	qpp::Ra	andomDevices Class Reference	11
	7.41.1	Detailed Description	13
	7.41.2	Constructor & Destructor Documentation	13
		7.41.2.1 RandomDevices()	13
		7.41.2.2 ~RandomDevices()	13
	7.41.3	Member Function Documentation	13
		7.41.3.1 get_prng()	13
		7.41.3.2 load()	13
		7.41.3.3 save()	14
	7.41.4	Friends And Related Function Documentation	14
		7.41.4.1 internal::Singleton < RandomDevices >	14
	7.41.5	Member Data Documentation	14

CONTENTS xvii

		7.41.5.1 prng
		7.41.5.2 rd
7.42	qpp::int	ernal::Singleton< T > Class Template Reference
	7.42.1	Detailed Description
	7.42.2	Constructor & Destructor Documentation
		7.42.2.1 Singleton() [1/2]
		7.42.2.2 Singleton() [2/2]
		7.42.2.3 ~Singleton()
	7.42.3	Member Function Documentation
		7.42.3.1 get_instance()
		7.42.3.2 get_thread_local_instance()
		7.42.3.3 operator=()
7.43	qpp::ex	ception::SizeMismatch Class Reference
	7.43.1	Detailed Description
	7.43.2	Member Function Documentation
		7.43.2.1 type_description()
7.44	qpp::St	ates Class Reference
	7.44.1	Detailed Description
	7.44.2	Constructor & Destructor Documentation
		7.44.2.1 States()
		7.44.2.2 ~States()
	7.44.3	Member Function Documentation
		7.44.3.1 jn()
		7.44.3.2 mes()
		7.44.3.3 minus()
		7.44.3.4 one()
		7.44.3.5 plus()
		7.44.3.6 zero()
	7.44.4	Friends And Related Function Documentation
		7.44.4.1 internal::Singleton < const States >

xviii CONTENTS

7	7.44.5	Member Data Documentation
		7.44.5.1 b00
		7.44.5.2 b01
		7.44.5.3 b10
		7.44.5.4 b11
		7.44.5.5 GHZ
		7.44.5.6 pb00
		7.44.5.7 pb01
		7.44.5.8 pb10
		7.44.5.9 pb11
		7.44.5.10 pGHZ
		7.44.5.11 pW
		7.44.5.12 px0
		7.44.5.13 px1
		7.44.5.14 py0
		7.44.5.15 py1
		7.44.5.16 pz0
		7.44.5.17 pz1
		7.44.5.18 W
		7.44.5.19 x0
		7.44.5.20 x1
		7.44.5.21 y0
		7.44.5.22 y1
		7.44.5.23 z0
		7.44.5.24 z1
7.45	pp::ex	cception::SubsysMismatchDims Class Reference
7	7.45.1	Detailed Description
7	7.45.2	Member Function Documentation
		7.45.2.1 type_description()
7.46	qpp::Tiı	mer< T, CLOCK_T > Class Template Reference

CONTENTS xix

	7.46.1	Detailed Description	31
	7.46.2	Constructor & Destructor Documentation	32
		7.46.2.1 Timer() [1/3]	32
		7.46.2.2 Timer() [2/3]	32
		7.46.2.3 Timer() [3/3]	32
		7.46.2.4 ~Timer()	32
	7.46.3	Member Function Documentation	32
		7.46.3.1 display()	32
		7.46.3.2 get_duration()	33
		7.46.3.3 operator=() [1/2]	33
		7.46.3.4 operator=() [2/2]	33
		7.46.3.5 tic()	34
		7.46.3.6 tics()	34
		7.46.3.7 toc()	34
	7.46.4	Member Data Documentation	34
		7.46.4.1 end	34
		7.46.4.2 start	35
7.47	qpp::ex	ception::TypeMismatch Class Reference	35
	7.47.1	Detailed Description	36
	7.47.2	Member Function Documentation	36
		7.47.2.1 type_description()	36
7.48	qpp::ex	ception::UndefinedType Class Reference	37
	7.48.1	Detailed Description	38
	7.48.2	Member Function Documentation	38
		7.48.2.1 type_description()	38
7.49	qpp::ex	ception::Unknown Class Reference	38
	7.49.1	Detailed Description	40
	7.49.2	Member Function Documentation	40
		7.49.2.1 type_description()	40
7.50	qpp::ex	ception::ZeroSize Class Reference	40
	7.50.1	Detailed Description	41
	7.50.2	Member Function Documentation	41
		7.50.2.1 type_description()	41

CONTENTS

8	File I	Documentation	243
	8.1	classes/codes.h File Reference	243
		8.1.1 Detailed Description	243
	8.2	classes/exception.h File Reference	244
		8.2.1 Detailed Description	245
	8.3	classes/gates.h File Reference	246
		8.3.1 Detailed Description	246
	8.4	classes/idisplay.h File Reference	246
		8.4.1 Detailed Description	247
	8.5	classes/init.h File Reference	247
		8.5.1 Detailed Description	247
	8.6	classes/random_devices.h File Reference	248
		8.6.1 Detailed Description	248
	8.7	classes/states.h File Reference	248
		8.7.1 Detailed Description	249
	8.8	classes/timer.h File Reference	249
		8.8.1 Detailed Description	249
	8.9	constants.h File Reference	250
		8.9.1 Detailed Description	251
	8.10	entanglement.h File Reference	251
		8.10.1 Detailed Description	252
	8.11	entropies.h File Reference	252
		8.11.1 Detailed Description	253
	8.12	experimental/experimental.h File Reference	254
		8.12.1 Detailed Description	254
	8.13	functions.h File Reference	254
		8.13.1 Detailed Description	258
	8.14	input_output.h File Reference	258
		8.14.1 Detailed Description	259
	8.15	instruments.h File Reference	260

CONTENTS xxi

	8.15.1 Detailed Description	261
8.16	internal/classes/iomanip.h File Reference	261
	8.16.1 Detailed Description	262
8.17	internal/classes/singleton.h File Reference	262
	8.17.1 Detailed Description	263
8.18	internal/util.h File Reference	263
	8.18.1 Detailed Description	264
8.19	MATLAB/matlab.h File Reference	264
	8.19.1 Detailed Description	265
8.20	number_theory.h File Reference	265
	8.20.1 Detailed Description	266
8.21	operations.h File Reference	266
	8.21.1 Detailed Description	268
8.22	qpp.h File Reference	269
	8.22.1 Detailed Description	270
	8.22.2 Macro Definition Documentation	270
	8.22.2.1 QPP_UNUSED	270
8.23	random.h File Reference	270
	8.23.1 Detailed Description	271
8.24	statistics.h File Reference	272
	8.24.1 Detailed Description	273
8.25	traits.h File Reference	273
	8.25.1 Detailed Description	274
8.26	types.h File Reference	274
	8.26.1 Detailed Description	275
8.27	/Users/vlad/Dropbox/programming/cpp/qpp_clion/README.md File Reference	275
Index		277

Chapter 1

Quantum++

Version 1.0-rc2 - Release Candidate 2, 5 September 2017

Build status: Master Devel

Quantum++ is a modern C++11 general purpose quantum computing library, composed solely of template header files. Quantum++ is written in standard C++11 and has very low external dependencies, using only the Eigen 3 linear algebra header-only template library and, if available, the OpenMP multi-processing library.

Quantum++ is not restricted to qubit systems or specific quantum information processing tasks, being capable of simulating arbitrary quantum processes. The main design factors taken in consideration were the ease of use, high portability, and high performance. The library's simulation capabilities are only restricted by the amount of available physical memory. On a typical machine (Intel i5 8Gb RAM) Quantum++ can successfully simulate the evolution of 25 qubits in a pure state or of 12 qubits in a mixed state reasonably fast.

To report any bugs or ask for additional features/enhancements, please submit an issue with an appropriate label.

If you are interesting in contributing to this project, please contact me. To contribute, you need to have a solid knowledge of C++ (preferably C++11), including templates and the standard library, a basic knowledge of quantum computing and linear algebra, and working experience with Eigen 3.

For additional Eigen 3 documentation see http://eigen.tuxfamily.org/dox/. For a simple Eigen 3 quick ASCII reference see http://eigen.tuxfamily.org/dox/AsciiQuickReference.txt.

Copyright (c) 2013 - 2017 Vlad Gheorghiu, vgheorgh AT gmail DOT com.

Quantum++ is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

Quantum++ is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Quantum++. If not, see http-://www.gnu.org/licenses/.

2 Quantum++

Building instructions for POSIX-compliant platforms

Configuration

- Compiler: g++ version 4.8.2 or later (for good C++11 support)
- Eigen 3 linear algebra library. I assume here that the library is installed in \$HOME/eigen, although the location may vary, e.g. if the library was installed using a package manager.
- Quantum++ library located in \$HOME/qpp

Optional

- · CMake version 3.0 or later, highly recommended
- MATLAB compiler include header files: /Applications/MATLAB_R2016a.app/extern/include
- MATLAB compiler shared library files: /Applications/MATLAB_R2016a.app/bin/maci64

Building using CMake (version 3.0 or later)

The current version of the repository has a ./CMakeLists.txt configuration file for building examples using CMake. To build an example using CMake, I recommend an out-of-source build, i.e., from the root of the project (where ./include is located), type

```
mkdir ./build
cd ./build
cmake ..
make
```

The commands above build the release version (default) executable qpp, from the source file ./examples/minimal.cpp, without MATLAB support (default), inside the directory ./build.

If the location of Eigen 3 is not detected automatically by the CMake build script, then the build script will fail (with an error message). In this case the location of Eigen 3 needs to be specified manually in the CMake build command line by passing the <code>-DEIGEN3_INCLUDE_DIR=path_to_eigen3</code> flag, e.g.

```
cmake .. -DEIGEN3_INCLUDE_DIR=/usr/local/eigen3
```

To build a different configuration, e.g. the debug version with MATLAB support, type from the root of the project

```
cd ./build rm -rf \star cmake -DCMAKE_BUILD_TYPE=Debug -DWITH_MATLAB=ON .. make
```

Or, to disable OpenMP support (enabled by default), type

```
cd ./build
rm -rf *
cmake -DWITH_OPENMP=OFF ..
make
```

To change the name of the example file or the location of MATLAB installation, edit the ./CMakeLists.txt file. Inspect also ./CMakeLists.txt for additional fine-tuning options. Do not forget to clean the ./build directory before a fresh build!

Building without an automatic build system

- Example file: \$HOME/qpp/examples/minimal.cpp
- Output executable: \$HOME/qpp/examples/minimal
- You must run the commands below from inside the directory \$HOME/qpp/examples

Release version (without MATLAB support)

```
g++ -pedantic -std=c++11 -Wall -Wextra -Weffc++ -fopenmp \
    -03 -DNDEBUG -DEIGEN_NO_DEBUG \
    -isystem $HOME/eigen -I $HOME/qpp/include \
    minimal.cpp -o minimal
```

Debug version (without MATLAB support)

```
g++ -pedantic -std=c++11 -Wall -Wextra -Weffc++ -fopenmp \
    -g3 -DDEBUG \
    -isystem $HOME/eigen -I $HOME/qpp/include \
    minimal.cpp -o minimal
```

Release version (with MATLAB support)

```
g++ -pedantic -std=c++11 -Wall -Wextra -Weffc++ -fopenmp \
    -03 -DNDEBUG -DEIGEN_NO_DEBUG \
    -isystem $HOME/eigen -I $HOME/qpp/include \
    -I/Applications/MATLAB_R2016a.app/extern/include \
    -L/Applications/MATLAB_R2016a.app/bin/maci64 \
    -lmx -lmat minimal.cpp -o minimal
```

Debug version (with MATLAB support)

```
g++ -pedantic -std=c++11 -Wall -Wextra -Weffc++ -fopenmp \
    -g3 -DDEBUG \
    -isystem $HOME/eigen -I $HOME/qpp/include \
    -I /Applications/MATLAB_R2016a.app/extern/include \
    -L /Applications/MATLAB_R2016a.app/bin/maci64 \
    -lmx -lmat minimal.cpp -o minimal
```

Additional building instructions for particular platforms

Windows via Cygwin

• Some earlier versions of Cygwin had a bug related to lack of support for some C++11 math functions, see http://stackoverflow.com/questions/28997206/cygwin-support-for-c11-in-g4-9-2 for more details. Quick fix: patch the standard library header file <cmath> using the provided patch ./cmath_cygwin.patch. Latest Cygwin (as of Nov. 11, 2016) seem to have fixed the issue.

4 Quantum++

Windows via Visual Studio

• Visual Studio versions preceeding version 2015 do not have full C++11 support. If you decide to use Visual Studio make sure you install version 2015 or later.

• Visual Studio 2015 only supports OpenMP 2.0. Quantum++ uses features from OpenMP 3. ← 0, hence Quantum++ will not compile on Visual Studio 2015 if you enable OpenMP (disabled by default) in

Project/Properties/Configuration Properties/C_C++/Language/Open MP Support

and #define WITH OPENMP in your source file.

• To create a Visual Studio 2015 or later console solution, start by creating a Win32 Console Application

```
*File/New/Project.../Installed/Templates/Visual C++/Win32/Win32 Console Application*
Click *Next* then select *Console Application* as *Application Type*.
Click *Finish* to create the solution. Next select
*Project/Properties*
from the main menu. The *Property Pages* configuration window will open.
From the latter select *All configurations* from the top left
*Configuration* drop box. Next select
*Configuration Properties/C_C++/General*
and add to the field *Additional Include Directories* the location of
Quantum++ './include' folder as well as the location of
[Eigen 3] (http://eigen.tuxfamily.org). It should look similar to
**C:\Users\User\Downloads\eigen;C:\Users\User\Downloads\qpp\include;%(AdditionalIncludeDirectories)**
Finally select
*Configuration Properties/C_C++/Advanced*
and add to the field *Disable Specific Warnings* the values **4503;4996**.
Click *Ok* to save the settings and close the *Property Pages* window.
You are now ready to go.
```

OS X/macOS

- If you want to compile with clang++ version 3.7 or later, I highly recommend to install it via macports.
- If you run the program with MATLAB support, make sure that the environment variable DYLD_LIBRARY_← PATH is set to point to the MATLAB compiler library location, see the run_mac_MATLAB script. Otherwise, you get a runtime error similar to

```
> dyld: Library not loaded: @rpath/libmat.dylib.
```

- I recommend running via a script, as otherwise setting the DYLD_LIBRARY_PATH globally may interfere with macports' CMake installation (in case you use CMake from macports). If you use a script, then the environment variable is local to the script and does not interfere with the rest of the system.
- Example of script, assumed to be located in the root directory of Quantum++

```
#!/bin/sh
MATLAB=/Applications/MATLAB_R2016a.app
export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:$MATLAB/bin/maci64
./build/qpp
```

• If you build a debug version with g++ and use gdb to step inside template functions you may want to add -fno-weak compiler flag. See http://stackoverflow.com/questions/23330641/gnu-gdb-can-not-st for more details about this problem.

Unit testing

Quantum++ was extensively tested under multiple flavours of Linux, OS X/macOS, Windows XP/7/10, Solaris 11.x via a suite of unit tests constructed with Google Test 1.8.0 (included with the project in ./unit_tests/lib/gtest-1.8.0). The source code of the unit tests is provided under ./unit_ \leftarrow tests/tests. To build and run the unit tests, I strongly recommend to use CMake version 3.0 or later. Assuming you do use CMake, switch to the ./unit_tests directory, create a build directory inside it, then from the newly created ./unit_tests/build type

```
cmake ..
```

The commands above build ./unit_tests/build/tests/qpp_testing, which you then may run. Note that qpp::Timer tests or tests related to random functions such as qpp::rand() may sometime (very rarely) fail, due to timing imprecision or statistical errors. Such behaviour is perfectly normal.

Note

The CMake configuration file ./unit_tests/CMakeLists.txt defines the same building options and default choices as the main ./CMakeLists.txt of Quantum++. Therefore you can use the same flags as the ones mentioned at the beginning of this document when customizing the build. You should modify ./unit_ctests/CMakeLists.txt accordingly in case your Eigen 3 library or MATLAB include/library files are in a different location than the one assumed in this document.

Additional remarks

• If you use clang++ version 3.7 or later and want to use OpenMP (enabled by default), make sure to modify CLANG_LIBOMP and CLANG_LIBOMP_INCLUDE in CMakeLists.txt so they point to the correct location of the OpenMP library, as otherwise clang++ will not find <omp.h> and the libomp shared library.

6 Quantum++

Chapter 2

Namespace Index

2.1 Namespace List

Here is a list of all namespaces with brief descriptions:

dbb
Quantum++ main namespace
qpp::exception
Quantum++ exception hierarchy namespace
qpp::experimental
Experimental/test functions/classes, do not use or modify
qpp::internal
Internal utility functions, do not use them directly or modify them

8 Namespace Index

Chapter 3

Hierarchical Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

qpp::internal::Display_Impl
qpp::internal::IOManipEigen
std::exception
qpp::exception::Exception
qpp::exception::CustomException
qpp::exception::DimsInvalid
qpp::exception::DimsMismatchCvector
qpp::exception::DimsMismatchMatrix
qpp::exception::DimsMismatchRvector
qpp::exception::DimsMismatchVector
qpp::exception::DimsNotEqual
qpp::exception::MatrixMismatchSubsys
qpp::exception::MatrixNotCvector
qpp::exception::MatrixNotRvector
qpp::exception::MatrixNotSquare
qpp::exception::MatrixNotSquareNorCvector
qpp::exception::MatrixNotSquareNorRvector
qpp::exception::MatrixNotSquareNorVector
qpp::exception::MatrixNotVector
qpp::exception::NoCodeword
qpp::exception::NotBipartite
qpp::exception::NotQubitCvector
qpp::exception::NotQubitMatrix
qpp::exception::NotQubitRvector
qpp::exception::NotQubitSubsys
qpp::exception::NotQubitVector
qpp::exception::OutOfRange
qpp::exception::PermInvalid
qpp::exception::PermMismatchDims
qpp::exception::SizeMismatch
qpp::exception::SubsysMismatchDims
qpp::exception::TypeMismatch
qpp::exception::UndefinedType
qpp::exception::Unknown
qpp::exception::ZeroSize

10 Hierarchical Index

false type	
qpp::is_complex< T >	172
qpp::is_iterable < T, typename >	174
qpp::IDisplay	158
qpp::internal::IOManipEigen	163
qpp::internal::IOManipPointer< PointerType >	165
qpp::internal::IOManipRange< InputIterator >	169
qpp::Timer< T, CLOCK_T >	230
is_base_of	
qpp::is_matrix_expression< Derived >	176
$qpp::make_void < Ts > \dots $	177
$qpp::internal::Singleton < T > \dots \dots$	215
$qpp \text{::internal::Singleton} < const \ Codes > \dots $	215
qpp::Codes	127
qpp::internal::Singleton < const Gates >	215
qpp::Gates	148
qpp::internal::Singleton< const Init >	
qpp::Init	
qpp::internal::Singleton < const States >	
qpp::States	
${\sf qpp::internal::Singleton} < {\sf RandomDevices} > \dots $	
qpp::RandomDevices	211
true_type	
$qpp::is_complex < std::complex < T >> \dots \dots \dots \dots \dots \dots \dots \dots$	173
$qpp::is_iterable < \ T, \ to_void < \ decltype(std::declval < \ T \ > ().begin()), \ decltype(std::declval < \ T \ > ())$	clval< T
>().end()), typename T::value type >>	175

Chapter 4

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

qpp::Codes
Const Singleton class that defines quantum error correcting codes
qpp::exception::CustomException
Custom exception
qpp::exception::DimsInvalid
Invalid dimension(s) exception
qpp::exception::DimsMismatchCvector
Dimension(s) mismatch column vector size exception
qpp::exception::DimsMismatchMatrix
Dimension(s) mismatch matrix size exception
qpp::exception::DimsMismatchRvector
Dimension(s) mismatch row vector size exception
qpp::exception::DimsMismatchVector
Dimension(s) mismatch vector size exception
qpp::exception::DimsNotEqual
Dimensions not equal exception
qpp::internal::Display_Impl
qpp::exception::Exception
Base class for generating Quantum++ custom exceptions
qpp::Gates
Const Singleton class that implements most commonly used gates
qpp::IDisplay
Abstract class (interface) that mandates the definition of virtual std::ostream& display(std↔
::ostream& os) const
qpp::Init
Const Singleton class that performs additional initializations/cleanups
qpp::internal::IOManipEigen
qpp::internal::IOManipPointer< PointerType >
qpp::internal::IOManipRange < InputIterator >
qpp::is_complex< T >
Checks whether the type is a complex type
qpp::is_complex< std::complex< T > >
Checks whether the type is a complex number type, specialization for complex types 173
qpp::is_iterable< T, typename >
Checks whether T is compatible with an STI -like iterable container 174

12 Class Index

<pre>qpp::is_iterable< T, to_void< decltype(std::declval< T >().begin()), decltype(std::declval< T >().end()),</pre>	
Checks whether <i>T</i> is compatible with an STL-like iterable container, specialization for STL-like iterable containers	175
qpp::is matrix expression< Derived >	
Checks whether the type is an Eigen matrix expression	176
qpp::make_void< Ts >	
Helper for qpp::to_void<> alias template	177
qpp::exception::MatrixMismatchSubsys	
Matrix mismatch subsystems exception	178
qpp::exception::MatrixNotCvector	
Matrix is not a column vector exception	179
qpp::exception::MatrixNotRvector	
Matrix is not a row vector exception	181
qpp::exception::MatrixNotSquare	
Matrix is not square exception	183
qpp::exception::MatrixNotSquareNorCvector	
Matrix is not square nor column vector exception	185
qpp::exception::MatrixNotSquareNorRvector	
Matrix is not square nor row vector exception	187
qpp::exception::MatrixNotSquareNorVector	
Matrix is not square nor vector exception	189
qpp::exception::MatrixNotVector	
Matrix is not a vector exception	191
qpp::exception::NoCodeword	
Codeword does not exist exception	193
qpp::exception::NotBipartite	
Not bi-partite exception	195
qpp::exception::NotQubitCvector	
Column vector is not 2 x 1 exception	196
qpp::exception::NotQubitMatrix	
Matrix is not 2 x 2 exception	198
qpp::exception::NotQubitRvector	
Row vector is not 1 x 2 exception	200
qpp::exception::NotQubitSubsys	
Subsystems are not qubits exception	202
qpp::exception::NotQubitVector	
Vector is not 2 x 1 nor 1 x 2 exception	204
qpp::exception::OutOfRange	
Parameter out of range exception	206
qpp::exception::PermInvalid	
Invalid permutation exception	208
qpp::exception::PermMismatchDims	
Permutation mismatch dimensions exception	209
qpp::RandomDevices	
Singeleton class that manages the source of randomness in the library	211
qpp::internal::Singleton< T >	
Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously	045
recurring template pattern)	215
qpp::exception::SizeMismatch	047
Size mismatch exception	217
qpp::States	040
Const Singleton class that implements most commonly used states	219
qpp::exception::SubsysMismatchDims Subsystems mismatch dimensions exception	220
qpp::Timer< T, CLOCK_T >	228
Chronometer	230
Cinchellists	200

4.1 Class List

qpp::exception::TypeMismatch	
Type mismatch exception	235
qpp::exception::UndefinedType	
Not defined for this type exception	237
qpp::exception::Unknown	
Unknown exception	238
qpp::exception::ZeroSize	
Object has zero size exception	240

14 Class Index

Chapter 5

File Index

5.1 File List

Here is a list of all files with brief descriptions:

constants.h	
Constants	250
entanglement.h	
Entanglement functions	251
entropies.h	
Entropy functions	252
functions.h	
Generic quantum computing functions	254
input_output.h	
	258
instruments.h	
	260
number_theory.h	
,,	265
operations.h	
	266
qpp.h	
	269
random.h	
	270
statistics.h	270
	272
traits.h	270
Mr. c. c. c. c.	273
types.h Type aliases	274
rype allases	2/4
	243
classes/exception.h	143
	244
classes/gates.h	144
	246
classes/idisplay.h	-40
Display interface via the non-virtual interface (NVI)	246
classes/init.h	-+0
	247

16 File Index

lasses/random_devices.h	
Random devices	248
lasses/states.h	
Quantum states	248
lasses/timer.h	
Timing	249
xperimental/experimental.h	
Experimental/test functions/classes	254
nternal/util.h	
Internal utility functions	263
nternal/classes/iomanip.h	
Input/output manipulators	261
nternal/classes/singleton.h	
Singleton pattern via CRTP	262
IATLAB/matlab.h	
Input/output interfacing with MATLAB	264

Chapter 6

Namespace Documentation

6.1 qpp Namespace Reference

Quantum++ main namespace.

Namespaces

· exception

Quantum++ exception hierarchy namespace.

· experimental

Experimental/test functions/classes, do not use or modify.

internal

Internal utility functions, do not use them directly or modify them.

Classes

· class Codes

const Singleton class that defines quantum error correcting codes

· class Gates

const Singleton class that implements most commonly used gates

· class IDisplay

Abstract class (interface) that mandates the definition of virtual std::ostream& display(std::ostream& os) const.

class Init

const Singleton class that performs additional initializations/cleanups

· struct is complex

Checks whether the type is a complex type.

struct is_complex< std::complex< T >>

Checks whether the type is a complex number type, specialization for complex types.

struct is_iterable

Checks whether T is compatible with an STL-like iterable container.

struct is_iterable< T, to_void< decltype(std::declval< T >().begin()), decltype(std::declval< T >().end()), typename T::value type > >

Checks whether T is compatible with an STL-like iterable container, specialization for STL-like iterable containers.

struct is_matrix_expression

Checks whether the type is an Eigen matrix expression.

· struct make_void

Helper for qpp::to_void<>> alias template.

class RandomDevices

Singeleton class that manages the source of randomness in the library.

· class States

const Singleton class that implements most commonly used states

· class Timer

Chronometer.

Typedefs

```
    template<typename... Ts>
        using to_void = typename make_void< Ts... >::type
        Alias template that implements the proposal for void_t.
    using idx = std::size t
```

Non-negative integer index.

• using bigint = long long int

Big integer.

using cplx = std::complex< double >

Complex number in double precision.

• using ket = Eigen::VectorXcd

Complex (double precision) dynamic Eigen column vector.

using bra = Eigen::RowVectorXcd

Complex (double precision) dynamic Eigen row vector.

• using cmat = Eigen::MatrixXcd

Complex (double precision) dynamic Eigen matrix.

• using dmat = Eigen::MatrixXd

Real (double precision) dynamic Eigen matrix.

• template<typename Scalar >

```
using dyn_mat = Eigen::Matrix < Scalar, Eigen::Dynamic, Eigen::Dynamic >
```

Dynamic Eigen matrix over the field specified by Scalar.

• template<typename Scalar >

```
using dyn_col_vect = Eigen::Matrix< Scalar, Eigen::Dynamic, 1 >
```

Dynamic Eigen column vector over the field specified by Scalar.

template<typename Scalar >

```
using dyn_row_vect = Eigen::Matrix < Scalar, 1, Eigen::Dynamic >
```

Dynamic Eigen row vector over the field specified by Scalar.

Functions

```
• constexpr cplx operator"" _i (unsigned long long int x) noexcept
```

User-defined literal for complex $i=\sqrt{-1}$ (integer overload)

• constexpr cplx operator"" _i (long double x) noexcept

User-defined literal for complex $i=\sqrt{-1}$ (real overload)

• cplx omega (idx D)

D-th root of unity.

 $\bullet \ \ \mathsf{template} \mathord{<} \mathsf{typename} \ \mathsf{Derived} >$

dyn_col_vect< double > schmidtcoeffs (const Eigen::MatrixBase< Derived > &A, const std::vector< idx >
&dims)

Schmidt coefficients of the bi-partite pure state A. $\bullet \ \ {\it template}{<} {\it typename Derived}>$ dyn_col_vect< double > schmidtcoeffs (const Eigen::MatrixBase< Derived > &A, idx d=2) Schmidt coefficients of the bi-partite pure state A. template<typename Derived > cmat schmidtA (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims) Schmidt basis on Alice side. • template<typename Derived > cmat schmidtA (const Eigen::MatrixBase< Derived > &A, idx d=2) Schmidt basis on Alice side. template<typename Derived > cmat schmidtB (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims) Schmidt basis on Bob side. template<typename Derived > cmat schmidtB (const Eigen::MatrixBase< Derived > &A, idx d=2) Schmidt basis on Bob side. template<typename Derived > std::vector< double > schmidtprobs (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims) Schmidt probabilities of the bi-partite pure state A. template<typename Derived > std::vector< double > schmidtprobs (const Eigen::MatrixBase< Derived > &A, idx d=2) Schmidt probabilities of the bi-partite pure state A. • template<typename Derived > double entanglement (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims) Entanglement of the bi-partite pure state A. template < typename Derived > double entanglement (const Eigen::MatrixBase< Derived > &A, idx d=2) Entanglement of the bi-partite pure state A. template<typename Derived > double gconcurrence (const Eigen::MatrixBase< Derived > &A) G-concurrence of the bi-partite pure state A. template<typename Derived > double negativity (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims) Negativity of the bi-partite mixed state A. template<typename Derived > double negativity (const Eigen::MatrixBase< Derived > &A, idx d=2) Negativity of the bi-partite mixed state A. template<typename Derived > double lognegativity (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims) Logarithmic negativity of the bi-partite mixed state A. template<typename Derived > double lognegativity (const Eigen::MatrixBase< Derived > &A, idx d=2) Logarithmic negativity of the bi-partite mixed state A. template<typename Derived > double concurrence (const Eigen::MatrixBase< Derived > &A) Wootters concurrence of the bi-partite qubit mixed state A. ullet template<typename Derived >double entropy (const Eigen::MatrixBase< Derived > &A)

von-Neumann entropy of the density matrix A
double entropy (const std::vector< double > &prob)
Shannon entropy of the probability distribution prob.

```
• template<typename Derived >
  double renyi (const Eigen::MatrixBase< Derived > &A, double alpha)
     Renyi- \alpha entropy of the density matrix A, for \alpha \geq 0.

    double renyi (const std::vector< double > &prob, double alpha)

     Renyi- \alpha entropy of the probability distribution prob, for \alpha \geq 0.
template<typename Derived >
  double tsallis (const Eigen::MatrixBase< Derived > &A, double q)
      Tsallis- q entropy of the density matrix A, for q \geq 0.

    double tsallis (const std::vector< double > &prob, double q)

      Tsallis- q entropy of the probability distribution prob, for q \geq 0.
• template<typename Derived >
  double qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &subsysA, const
  std::vector< idx > &subsysB, const std::vector< idx > &dims)
      Quantum mutual information between 2 subsystems of a composite system.

    template<typename Derived >

  double qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &subsysA, const
  std::vector< idx > &subsysB, idx d=2)
     Quantum mutual information between 2 subsystems of a composite system.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > transpose (const Eigen::MatrixBase< Derived > &A)
      Transpose.
template<typename Derived >
  dyn mat< typename Derived::Scalar > conjugate (const Eigen::MatrixBase< Derived > &A)
     Complex conjugate.
ullet template<typename Derived >
  dyn_mat< typename Derived::Scalar > adjoint (const Eigen::MatrixBase< Derived > &A)
     Adjoint.

    template<typename Derived >

  dyn mat< typename Derived::Scalar > inverse (const Eigen::MatrixBase< Derived > &A)

    template<typename Derived >

  Derived::Scalar trace (const Eigen::MatrixBase< Derived > &A)
      Trace.

    template<typename Derived >

  Derived::Scalar det (const Eigen::MatrixBase < Derived > &A)
     Determinant.

    template<typename Derived >

  Derived::Scalar logdet (const Eigen::MatrixBase< Derived > &A)
     Logarithm of the determinant.

    template<typename Derived >

  Derived::Scalar sum (const Eigen::MatrixBase< Derived > &A)
     Element-wise sum of A.
• template<typename Derived >
  Derived::Scalar prod (const Eigen::MatrixBase< Derived > &A)
     Element-wise product of A.

    template<typename Derived >

  double norm (const Eigen::MatrixBase< Derived > &A)
     Frobenius norm.

    template<typename Derived >

  std::pair< dyn col vect< cplx >, cmat > eig (const Eigen::MatrixBase< Derived > &A)
     Full eigen decomposition.

    template<typename Derived >

  dyn_col_vect< cplx > evals (const Eigen::MatrixBase< Derived > &A)
```

```
Eigenvalues.
• template<typename Derived >
  cmat evects (const Eigen::MatrixBase< Derived > &A)
     Eigenvectors.

    template<typename Derived >

  std::pair< dyn_col_vect< double >, cmat > heig (const Eigen::MatrixBase< Derived > &A)
     Full eigen decomposition of Hermitian expression.
template<typename Derived >
  dyn_col_vect< double > hevals (const Eigen::MatrixBase< Derived > &A)
     Hermitian eigenvalues.
• template<typename Derived >
  cmat hevects (const Eigen::MatrixBase< Derived > &A)
     Hermitian eigenvectors.

    template<typename Derived >

  std::tuple< cmat, dyn_col_vect< double >, cmat > svd (const Eigen::MatrixBase< Derived > &A)
     Full singular value decomposition.

    template<typename Derived >

  dyn_col_vect< double > svals (const Eigen::MatrixBase< Derived > &A)
     Singular values.

    template<typename Derived >

  cmat svdU (const Eigen::MatrixBase< Derived > &A)
     Left singular vectors.

    template<typename Derived >

  cmat svdV (const Eigen::MatrixBase< Derived > &A)
     Right singular vectors.

    template<typename Derived >

  cmat funm (const Eigen::MatrixBase< Derived > &A, cplx(*f)(const cplx &))
     Functional calculus f(A)
template<typename Derived >
  cmat sqrtm (const Eigen::MatrixBase< Derived > &A)
     Matrix square root.
• template<typename Derived >
  cmat absm (const Eigen::MatrixBase< Derived > &A)
     Matrix absolute value.

    template<typename Derived >

  cmat expm (const Eigen::MatrixBase< Derived > &A)
     Matrix exponential.

    template<typename Derived >

  cmat logm (const Eigen::MatrixBase< Derived > &A)
     Matrix logarithm.

    template<typename Derived >

  cmat sinm (const Eigen::MatrixBase< Derived > &A)
     Matrix sin.

    template<typename Derived >

  cmat cosm (const Eigen::MatrixBase< Derived > &A)
     Matrix cos.

    template<typename Derived >
```

cmat spectralpowm (const Eigen::MatrixBase< Derived > &A, const cplx z)

Fast matrix power based on the SQUARE-AND-MULTIPLY algorithm.

dyn mat< typename Derived::Scalar > powm (const Eigen::MatrixBase< Derived > &A, idx n)

Matrix power. • template<typename Derived >

```
• template<typename Derived >
  double schatten (const Eigen::MatrixBase< Derived > &A, double p)
     Schatten matrix norm.

    template<typename OutputScalar , typename Derived >

  dyn mat< OutputScalar > cwise (const Eigen::MatrixBase< Derived > &A, OutputScalar(*f)(const type-
  name Derived::Scalar &))
     Functor.

    template<typename T >

  dyn_mat< typename T::Scalar > kron (const T &head)
     Kronecker product.
• template<typename T , typename ... Args>
  dyn_mat< typename T::Scalar > kron (const T &head, const Args &... tail)
     Kronecker product.

    template < typename Derived >

  dyn_mat< typename Derived::Scalar > kron (const std::vector< Derived > &As)
     Kronecker product.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > kron (const std::initializer_list< Derived > &As)
     Kronecker product.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > kronpow (const Eigen::MatrixBase< Derived > &A, idx n)
     Kronecker power.
• template<typename T >
  dyn_mat< typename T::Scalar > dirsum (const T &head)
     Direct sum.
• template<typename T , typename ... Args>
  dyn_mat< typename T::Scalar > dirsum (const T &head, const Args &... tail)
     Direct sum.
ullet template<typename Derived >
  dyn mat< typename Derived::Scalar > dirsum (const std::vector< Derived > &As)
     Direct sum.
\bullet \ \ {\it template}{<} {\it typename Derived}>
  dyn_mat< typename Derived::Scalar > dirsum (const std::initializer_list< Derived > &As)

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > dirsumpow (const Eigen::MatrixBase< Derived > &A, idx n)
     Direct sum power.
• template<typename Derived >
  dyn mat< typename Derived::Scalar > reshape (const Eigen::MatrixBase< Derived > &A, idx rows, idx
  cols)
     Reshape.

    template<typename Derived1 , typename Derived2 >

  dyn_mat< typename Derived1::Scalar > comm (const Eigen::MatrixBase< Derived1 > &A, const Eigen::⊷
  MatrixBase< Derived2 > &B)
     Commutator.

    template < typename Derived1 , typename Derived2 >

  dyn_mat< typename Derived1::Scalar > anticomm (const Eigen::MatrixBase< Derived1 > &A, const
  Eigen::MatrixBase< Derived2 > &B)
     Anti-commutator.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > prj (const Eigen::MatrixBase< Derived > &A)
     Projector.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > grams (const std::vector< Derived > &As)
```

Gram-Schmidt orthogonalization.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > grams (const std::initializer_list< Derived > &As)

Gram-Schmidt orthogonalization.

template<typename Derived >

dyn_mat< typename Derived::Scalar > grams (const Eigen::MatrixBase< Derived > &A)

Gram-Schmidt orthogonalization.

std::vector< idx > n2multiidx (idx n, const std::vector< idx > &dims)

Non-negative integer index to multi-index.

• idx multiidx2n (const std::vector< idx > &midx, const std::vector< idx > &dims)

Multi-index to non-negative integer index.

ket mket (const std::vector< idx > &mask, const std::vector< idx > &dims)

Multi-partite qudit ket.

ket mket (const std::vector < idx > &mask, idx d=2)

Multi-partite qudit ket.

cmat mprj (const std::vector < idx > &mask, const std::vector < idx > &dims)

Projector onto multi-partite qudit ket.

cmat mprj (const std::vector < idx > &mask, idx d=2)

Projector onto multi-partite qudit ket.

template<typename InputIterator >

std::vector< double > abssq (InputIterator first, InputIterator last)

Computes the absolute values squared of an STL-like range of complex numbers.

template < typename Container >

std::vector< double > abssq (const Container &c, typename std::enable_if< is_iterable< Container >::value >::type *=nullptr)

Computes the absolute values squared of an STL-like container.

template<typename Derived >

std::vector< double > abssq (const Eigen::MatrixBase< Derived > &A)

Computes the absolute values squared of an Eigen expression.

• template<typename InputIterator >

std::iterator traits< InputIterator >::value type sum (InputIterator first, InputIterator last)

Element-wise sum of an STL-like range.

• template<typename Container >

Container::value_type sum (const Container &c, typename std::enable_if< is_iterable< Container >::value >::type *=nullptr)

Element-wise sum of the elements of an STL-like container.

template<typename InputIterator >

std::iterator_traits< InputIterator >::value_type prod (InputIterator first, InputIterator last)

Element-wise product of an STL-like range.

template<typename Container >

Container::value_type prod (const Container &c, typename std::enable_if< is_iterable< Container >::value >::type *=nullptr)

Element-wise product of the elements of an STL-like container.

• template<typename Derived >

dyn_col_vect< typename Derived::Scalar > rho2pure (const Eigen::MatrixBase< Derived > &A)

Finds the pure state representation of a matrix proportional to a projector onto a pure state.

template<typename T >

```
std::vector< T > complement (std::vector< T > subsys, idx N)
```

Constructs the complement of a subsystem vector.

template<typename Derived >

```
std::vector< double > rho2bloch (const Eigen::MatrixBase< Derived > &A)
```

Computes the 3-dimensional real Bloch vector corresponding to the qubit density matrix A.

cmat bloch2rho (const std::vector< double > &r)

Computes the density matrix corresponding to the 3-dimensional real Bloch vector r.

• template<typename Derived >

internal::IOManipEigen disp (const Eigen::MatrixBase< Derived > &A, double chop=qpp::chop)

Eigen expression ostream manipulator.

internal::IOManipEigen disp (cplx z, double chop=qpp::chop)

Complex number ostream manipulator.

• template<typename InputIterator >

internal::IOManipRange < InputIterator > disp (InputIterator first, InputIterator last, const std::string &separator, const std::string &start="[", const std::string &end="]")

Range ostream manipulator.

• template<typename Container >

internal::IOManipRange< typename Container::const_iterator > disp (const Container &c, const std::string &separator, const std::string &start="[", const std::string &end="]", typename std::enable_if< is_iterable< Container >::value >::type *=nullptr)

Standard container ostream manipulator. The container must support std::begin(), std::end() and forward iteration.

• template<typename PointerType >

internal::IOManipPointer< PointerType > disp (const PointerType *p, idx N, const std::string &separator, const std::string &start="[", const std::string &end="]")

C-style pointer ostream manipulator.

template<typename Derived >

void save (const Eigen::MatrixBase< Derived > &A, const std::string &fname)

Saves Eigen expression to a binary file (internal format) in double precision.

template<typename Derived >

dyn_mat< typename Derived::Scalar > load (const std::string &fname)

Loads Eigen matrix from a binary file (internal format) in double precision.

• template<typename Derived >

dyn_col_vect< typename Derived::Scalar > ip (const Eigen::MatrixBase< Derived > &phi, const Eigen::← MatrixBase< Derived > &psi, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Generalized inner product.

• template<typename Derived >

dyn_col_vect< typename Derived::Scalar > ip (const Eigen::MatrixBase< Derived > &phi, const Eigen::

MatrixBase< Derived > &psi, const std::vector< idx > &subsys, idx d=2)

Generalized inner product.

 $\bullet \ \ {\it template}{<} {\it typename Derived}>$

std::tuple< idx, std::vector< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks)

Measures the state A using the set of Kraus operators Ks.

template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const std::initializer_list< cmat > &Ks)

Measures the state A using the set of Kraus operators Ks.

template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const cmat &U)

Measures the state A in the orthonormal basis specified by the unitary matrix U.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

• template<typename Derived >

 $std::tuple < idx, std::vector < cmat >> measure (const Eigen::MatrixBase < Derived > &A, const std::initializer_list < cmat > &Ks, const std::vector < idx > &subsys, const std::vector < idx > &dims)\\$

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

template<typename Derived >
 std::tuple < idx, std::vector < double >, std::vector < cmat > > measure (const Eigen::MatrixBase < Derived
 > &A, const std::vector < cmat > &Ks, const std::vector < idx > &subsys, idx d=2)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

• template<typename Derived >

std::tuple < idx, std::vector < double >, std::vector < cmat > > measure (const Eigen::MatrixBase < Derived > &A, const std::initializer_list < cmat > &Ks, const std::vector < idx > &subsys, idx d=2)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const cmat &V, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Measures the part subsys of the multi-partite state vector or density matrix A in the orthonormal basis or rank-1 POVM specified by the matrix V.

template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > measure (const Eigen::MatrixBase< Derived > &A, const cmat &V, const std::vector< idx > &subsys, idx d=2)

Measures the part subsys of the multi-partite state vector or density matrix A in the orthonormal basis or rank-1 POVM specified by the matrix V.

template<typename Derived >

std::tuple< std::vector< idx >, double, cmat > measure_seq (const Eigen::MatrixBase< Derived > &A, std::vector< idx > subsys, std::vector< idx > dims)

Sequentially measures the part subsys of the multi-partite state vector or density matrix A in the computational basis.

• template<typename Derived >

 $std::tuple < std::vector < idx >, double, cmat > measure_seq (const Eigen::MatrixBase < Derived > \&A, std::vector < idx > subsys, idx d=2)$

Sequentially measures the part subsys of the multi-partite state vector or density matrix A in the computational basis.

 $\bullet \ \ {\it template}{<} {\it typename Derived}>$

std::enable_if< std::is_same< typename Derived::Scalar, cplx >::value, dyn_mat< cplx > >::type loadM ← ATLAB (const std::string &mat file, const std::string &var name)

Loads a complex Eigen dynamic matrix from a MATLAB .mat file,.

template<typename Derived >

std::enable_if<!std::is_same< typename Derived::Scalar, cplx >::value, dyn_mat< typename Derived::

Scalar > >::type loadMATLAB (const std::string &mat_file, const std::string &var_name)

Loads a non-complex Eigen dynamic matrix from a MATLAB .mat file,.

template<typename Derived >

std::enable_if< std::is_same< typename Derived::Scalar, cplx >::value >::type saveMATLAB (const Eigen::MatrixBase< Derived > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)

Saves a complex Eigen dynamic matrix to a MATLAB .mat file,.

template<typename Derived >

 $std::enable_if < !std::is_same < typename Derived::Scalar, cplx >::value >::type saveMATLAB (const Eigen::MatrixBase < Derived > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode) \\$

Saves a non-complex Eigen dynamic matrix to a MATLAB .mat file,.

std::vector< int > x2contfrac (double x, idx N, idx cut=1e5)

Simple continued fraction expansion.

double contfrac2x (const std::vector< int > &cf, idx N=idx(-1))

Real representation of a simple continued fraction.

• bigint gcd (bigint a, bigint b)

Greatest common divisor of two integers.

bigint gcd (const std::vector< bigint > &as)

Greatest common divisor of a list of integers.

• bigint lcm (bigint a, bigint b)

Least common multiple of two integers.

bigint lcm (const std::vector< bigint > &as)

Least common multiple of a list of integers.

std::vector< idx > invperm (const std::vector< idx > &perm)

Inverse permutation.

std::vector< idx > compperm (const std::vector< idx > &perm, const std::vector< idx > &sigma)

Compose permutations.

std::vector< bigint > factors (bigint a)

Prime factor decomposition.

bigint modmul (bigint a, bigint b, bigint p)

Modular multiplication without overflow.

bigint modpow (bigint a, bigint n, bigint p)

Fast integer power modulo p based on the SQUARE-AND-MULTIPLY algorithm.

std::tuple < bigint, bigint, bigint > egcd (bigint a, bigint b)

Extended greatest common divisor of two integers.

• bigint modiny (bigint a, bigint p)

Modular inverse of a mod p.

bool isprime (bigint p, idx k=80)

Primality test based on the Miller-Rabin's algorithm.

bigint randprime (bigint a, bigint b, idx N=1000)

Generates a random big prime uniformly distributed in the interval [a, b].

template < typename Derived1, typename Derived2 >

Applies the controlled-gate A to the part subsys of the multi-partite state vector or density matrix state.

• template<typename Derived1 , typename Derived2 >

dyn_mat< typename Derived1::Scalar > applyCTRL (const Eigen::MatrixBase< Derived1 > &state, const
Eigen::MatrixBase< Derived2 > &A, const std::vector< idx > &ctrl, const std::vector< idx > &subsys, idx
d=2)

Applies the controlled-gate A to the part subsys of the multi-partite state vector or density matrix state.

template < typename Derived1, typename Derived2 >

```
\frac{\text{dyn\_mat}<\text{typename Derived1::Scalar}>\text{apply (const Eigen::MatrixBase}<\text{Derived1}>\text{\&state, const Eigen} \\ \text{::MatrixBase}<\text{Derived2}>\text{\&A, const std::vector}<\text{idx}>\text{\&subsys, const std::vector}<\text{idx}>\text{\&dims})}
```

Applies the gate A to the part subsys of the multi-partite state vector or density matrix state.

template<typename Derived1 , typename Derived2 >

```
dyn_mat< typename Derived1::Scalar > apply (const Eigen::MatrixBase< Derived1 > &state, const Eigen ← ::MatrixBase< Derived2 > &A, const std::vector< idx > &subsys, idx d=2)
```

Applies the gate A to the part subsys of the multi-partite state vector or density matrix state.

• template<typename Derived >

```
cmat apply (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks)
```

Applies the channel specified by the set of Kraus operators Ks to the density matrix A.

template<typename Derived >

```
cmat apply (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std::vector< idx
> &subsys, const std::vector< idx > &dims)
```

Applies the channel specified by the set of Kraus operators Ks to the part subsys of the multi-partite density matrix A.

template<typename Derived >

```
cmat apply (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std::vector< idx
> &subsys, idx d=2)
```

Applies the channel specified by the set of Kraus operators Ks to the part subsys of the multi-partite density matrix A.

cmat kraus2super (const std::vector< cmat > &Ks)

Superoperator matrix.

cmat kraus2choi (const std::vector< cmat > &Ks)

Choi matrix.

std::vector< cmat > choi2kraus (const cmat &A)

Orthogonal Kraus operators from Choi matrix.

• cmat choi2super (const cmat &A)

Converts Choi matrix to superoperator matrix.

cmat super2choi (const cmat &A)

Converts superoperator matrix to Choi matrix.

template<typename Derived >

dyn_mat< typename Derived::Scalar > ptrace1 (const Eigen::MatrixBase< Derived > &A, const std ← ::vector < idx > &dims)

Partial trace.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > ptrace1 (const Eigen::MatrixBase< Derived > &A, idx d=2)

Partial trace

template<typename Derived >

dyn_mat< typename Derived::Scalar > ptrace2 (const Eigen::MatrixBase< Derived > &A, const std ← ::vector< idx > &dims)

Partial trace.

template<typename Derived >

dyn_mat< typename Derived::Scalar > ptrace2 (const Eigen::MatrixBase< Derived > &A, idx d=2)

Partial trace.

• template<typename Derived >

 $dyn_mat < typename Derived::Scalar > ptrace (const Eigen::MatrixBase < Derived > &A, const std::vector < idx > &subsys, const std::vector < idx > &dims)$

Partial trace.

ullet template<typename Derived >

dyn_mat< typename Derived::Scalar > ptrace (const Eigen::MatrixBase< Derived > &A, const std::vector
idx > &subsys, idx d=2)

Partial trace.

• template<typename Derived >

Partial transpose.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > ptranspose (const Eigen::MatrixBase< Derived > &A, const std ← ::vector< idx > &subsys, idx d=2)

Partial transpose.

• template<typename Derived >

Subsystem permutation.

 $\bullet \ \ {\sf template}{<} {\sf typename \ Derived} >$

Subsystem permutation.

• double rand (double a, double b)

Generates a random real number uniformly distributed in the interval [a, b)

• bigint rand (bigint a, bigint b)

Generates a random big integer uniformly distributed in the interval [a, b].

idx randidx (idx a=std::numeric_limits < idx >::min(), idx b=std::numeric_limits < idx >::max())

Generates a random index (idx) uniformly distributed in the interval [a, b].

• template<typename Derived >

Derived rand (idx rows, idx cols, double a=0, double b=1)

Generates a random matrix with entries uniformly distributed in the interval [a, b)

template<>

dmat rand (idx rows, idx cols, double a, double b)

Generates a random real matrix with entries uniformly distributed in the interval [a, b), specialization for double matrices (qpp::dmat)

template<>

cmat rand (idx rows, idx cols, double a, double b)

Generates a random complex matrix with entries (both real and imaginary) uniformly distributed in the interval [a, b), specialization for complex matrices (qpp::cmat)

• template<typename Derived >

Derived randn (idx rows, idx cols, double mean=0, double sigma=1)

Generates a random matrix with entries normally distributed in N(mean, sigma)

template<>

dmat randn (idx rows, idx cols, double mean, double sigma)

Generates a random real matrix with entries normally distributed in N(mean, sigma), specialization for double matrices (qpp::dmat)

template<>

cmat randn (idx rows, idx cols, double mean, double sigma)

Generates a random complex matrix with entries (both real and imaginary) normally distributed in N(mean, sigma), specialization for complex matrices (qpp::cmat)

• double randn (double mean=0, double sigma=1)

Generates a random real number (double) normally distributed in N(mean, sigma)

cmat randU (idx D=2)

Generates a random unitary matrix.

cmat randV (idx Din, idx Dout)

Generates a random isometry matrix.

std::vector < cmat > randkraus (idx N, idx D=2)

Generates a set of random Kraus operators.

cmat randH (idx D=2)

Generates a random Hermitian matrix.

ket randket (idx D=2)

Generates a random normalized ket (pure state vector)

• cmat randrho (idx D=2)

Generates a random density matrix.

std::vector < idx > randperm (idx N)

Generates a random uniformly distributed permutation.

std::vector< double > randprob (idx N)

Generates a random probability vector uniformly distributed over the probability simplex.

std::vector< double > uniform (idx N)

Uniform probability distribution vector.

std::vector< double > marginalX (const dmat &probXY)

Marginal distribution.

std::vector< double > marginalY (const dmat &probXY)

Marginal distribution.

• template<typename Container >

double avg (const std::vector< double > &prob, const Container &X, typename std::enable_if< is_iterable< Container >::value >::type *=nullptr)

Average.

• template<typename Container >

double cov (const dmat &probXY, const Container &X, const Container &Y, typename std::enable_if< is_← iterable< Container >::value >::type *=nullptr)

Covariance.

template<typename Container >
 double var (const std::vector< double > &prob, const Container &X, typename std::enable_if< is_iterable<
 Container >::value >::type *=nullptr)

Variance.

• template<typename Container > double sigma (const std::vector< double > &prob, const Container &X, typename std::enable_if< is_ container >::value >::type *=nullptr)

Standard deviation.

template<typename Container >
 double cor (const dmat &probXY, const Container &X, const Container &Y, typename std::enable_if< is_
 iterable< Container >::value >::type *=nullptr)

Correlation.

Variables

• constexpr double chop = 1e-10

Used in qpp::disp() for setting to zero numbers that have their absolute value smaller than qpp::chop.

• constexpr double eps = 1e-12

Used to decide whether a number or expression in double precision is zero or not.

• constexpr idx maxn = 64

Maximum number of allowed qubits/qudits (subsystems)

• constexpr double pi = 3.141592653589793238462643383279502884

 π

constexpr double ee = 2.718281828459045235360287471352662497

Base of natural logarithm, e.

• constexpr double infty = std::numeric_limits<double>::max()

Used to denote infinity in double precision.

6.1.1 Detailed Description

Quantum++ main namespace.

6.1.2 Typedef Documentation

6.1.2.1 bigint

```
using qpp::bigint = typedef long long int
```

Big integer.

```
6.1.2.2 bra
```

```
using qpp::bra = typedef Eigen::RowVectorXcd
```

Complex (double precision) dynamic Eigen row vector.

6.1.2.3 cmat

```
using qpp::cmat = typedef Eigen::MatrixXcd
```

Complex (double precision) dynamic Eigen matrix.

6.1.2.4 cplx

```
using qpp::cplx = typedef std::complex<double>
```

Complex number in double precision.

6.1.2.5 dmat

```
using qpp::dmat = typedef Eigen::MatrixXd
```

Real (double precision) dynamic Eigen matrix.

6.1.2.6 dyn_col_vect

```
template<typename Scalar >
using qpp::dyn_col_vect = typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1>
```

Dynamic Eigen column vector over the field specified by Scalar.

Example:

```
// type of colvect is Eigen::Matrix<float, Eigen::Dynamic, 1>
dyn_col_vect<float> colvect(2);
```

```
6.1.2.7 dyn_mat
```

```
template<typename Scalar >
using qpp::dyn_mat = typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>
```

Dynamic Eigen matrix over the field specified by Scalar.

Example:

```
// type of mat is Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic>
dyn_mat<float> mat(2, 3);
```

6.1.2.8 dyn_row_vect

```
template<typename Scalar >
using qpp::dyn_row_vect = typedef Eigen::Matrix<Scalar, 1, Eigen::Dynamic>
```

Dynamic Eigen row vector over the field specified by Scalar.

Example:

```
// type of rowvect is Eigen::Matrix<float, 1, Eigen::Dynamic>
dyn_row_vect<float> rowvect(3);
```

6.1.2.9 idx

```
using qpp::idx = typedef std::size_t
```

Non-negative integer index.

6.1.2.10 ket

```
using qpp::ket = typedef Eigen::VectorXcd
```

Complex (double precision) dynamic Eigen column vector.

6.1.2.11 to_void

```
template<typename... Ts>
using qpp::to_void = typedef typename make_void<Ts...>::type
```

Alias template that implements the proposal for void_t.

See also

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3911

6.1.3 Function Documentation

6.1.3.1 absm()

Matrix absolute value.

Parameters

```
A Eigen expression
```

Returns

Matrix absolute value of A

6.1.3.2 abssq() [1/3]

Computes the absolute values squared of an STL-like range of complex numbers.

Parameters

	first	Iterator to the first element of the range
Г	last	Iterator to the last element of the range

Real vector consisting of the range absolute values squared

Computes the absolute values squared of an STL-like container.

Parameters

```
c STL-like container
```

Returns

Real vector consisting of the container's absolute values squared

Computes the absolute values squared of an Eigen expression.

Parameters

```
A Eigen expression
```

Returns

Real vector consisting of the absolute values squared

6.1.3.5 adjoint()

Adjoint.

```
A Eigen expression
```

Returns

Adjoint (Hermitian conjugate) of A, as a dynamic matrix over the same scalar field as A

6.1.3.6 anticomm()

Anti-commutator.

See also

qpp::comm()

Anti-commutator $\{A,B\} = AB + BA$. Both A and B must be Eigen expressions over the same scalar field.

Parameters

Α	Eigen expression
В	Eigen expression

Returns

Anti-commutator AB + BA, as a dynamic matrix over the same scalar field as A

6.1.3.7 apply() [1/5]

Applies the gate A to the part subsys of the multi-partite state vector or density matrix state.

Note

The dimension of the gate A must match the dimension of subsys

state	Eigen expression
Α	Eigen expression
subsys	Subsystem indexes where the gate A is applied
dims	Dimensions of the multi-partite system

Returns

Gate A applied to the part subsys of state

Applies the gate A to the part subsys of the multi-partite state vector or density matrix state.

Note

The dimension of the gate A must match the dimension of subsys

Parameters

state	Eigen expression
Α	Eigen expression
subsys	Subsystem indexes where the gate A is applied
d	Subsystem dimensions

Returns

Gate A applied to the part subsys of state

Applies the channel specified by the set of Kraus operators Ks to the density matrix A .

Α	Eigen expression
Ks	Set of Kraus operators

Returns

Output density matrix after the action of the channel

Applies the channel specified by the set of Kraus operators *Ks* to the part *subsys* of the multi-partite density matrix *A*.

Parameters

Α	Eigen expression
Ks	Set of Kraus operators
subsys	Subsystem indexes where the Kraus operators Ks are applied
dims	Dimensions of the multi-partite system

Returns

Output density matrix after the action of the channel

Applies the channel specified by the set of Kraus operators *Ks* to the part *subsys* of the multi-partite density matrix *A*.

Α	Eigen expression
Ks	Set of Kraus operators
subsys	Subsystem indexes where the Kraus operators Ks are applied
d	Subsystem dimensions

Returns

Output density matrix after the action of the channel

6.1.3.12 applyCTRL() [1/2]

Applies the controlled-gate A to the part subsys of the multi-partite state vector or density matrix state.

See also

```
qpp::Gates::CTRL()
```

Note

The dimension of the gate *A* must match the dimension of *subsys*. Also, all control subsystems in *ctrl* must have the same dimension.

Parameters

state	Eigen expression
Α	Eigen expression
ctrl	Control subsystem indexes
subsys	Subsystem indexes where the gate A is applied
dims	Dimensions of the multi-partite system

Returns

CTRL-A gate applied to the part subsys of state

6.1.3.13 applyCTRL() [2/2]

```
template<typename Derived1 , typename Derived2 > dyn_mat<typename Derived1::Scalar> qpp::applyCTRL ( const Eigen::MatrixBase< Derived1 > & state, const Eigen::MatrixBase< Derived2 > & A, const std::vector< idx > & ctrl, const std::vector< idx > & subsys, idx d = 2)
```

Applies the controlled-gate A to the part subsys of the multi-partite state vector or density matrix state.

See also

```
qpp::Gates::CTRL()
```

Note

The dimension of the gate A must match the dimension of subsys

Parameters

state	Eigen expression
Α	Eigen expression
ctrl	Control subsystem indexes
subsys	Subsystem indexes where the gate A is applied
d	Subsystem dimensions

Returns

CTRL-A gate applied to the part subsys of state

6.1.3.14 avg()

Average.

Parameters

prob	Real probability vector representing the probability distribution of X
X	Real random variable values represented by an STL-like container

Average of X

6.1.3.15 bloch2rho()

Computes the density matrix corresponding to the 3-dimensional real Bloch vector *r*.

See also

qpp::rho2bloch()

Parameters

r 3-dimensional real vector

Returns

Qubit density matrix

6.1.3.16 choi2kraus()

Orthogonal Kraus operators from Choi matrix.

See also

qpp::kraus2choi()

Extracts a set of orthogonal (under Hilbert-Schmidt operator norm) Kraus operators from the Choi matrix A

Note

The Kraus operators satisfy $Tr(K_i^\dagger K_j) = \delta_{ij}$ for all $i \neq j$

Parameters

A Choi matrix

Set of orthogonal Kraus operators

6.1.3.17 choi2super()

Converts Choi matrix to superoperator matrix.

See also

qpp::super2choi()

Parameters

```
A Choi matrix
```

Returns

Superoperator matrix

6.1.3.18 comm()

Commutator.

See also

qpp::anticomm()

Commutator [A, B] = AB - BA. Both A and B must be Eigen expressions over the same scalar field.

Parameters

Α	Eigen expression
В	Eigen expression

Commutator AB-BA, as a dynamic matrix over the same scalar field as ${\it A}$

6.1.3.19 complement()

Constructs the complement of a subsystem vector.

Parameters

subsys	Subsystem vector
N	Total number of systems

Returns

Complement of *subsys* with respect to the set $\{0,1,\ldots,N-1\}$

6.1.3.20 compperm()

Compose permutations.

Parameters

perm	Permutation
sigma	Permutation

Returns

Composition of the permutations *perm* o *sigma* = perm(sigma)

6.1.3.21 concurrence()

Wootters concurrence of the bi-partite qubit mixed state A.

A Eigen expression

Returns

Wootters concurrence

6.1.3.22 conjugate()

Complex conjugate.

Parameters

A Eigen expression

Returns

Complex conjugate of A, as a dynamic matrix over the same scalar field as A

6.1.3.23 contfrac2x()

Real representation of a simple continued fraction.

See also

qpp::x2contfrac()

Note

If N is greater than the size of cf (by default it is), then all terms in cf are considered.

Parameters

cf	Integer vector containing the simple continued fraction expansion
Ν	Number of terms considered in the continued fraction expansion.

Real representation of the simple continued fraction

6.1.3.24 cor()

Correlation.

Parameters

probXY	Real matrix representing the joint probability distribution of X and Y in lexicographical order (X labels the rows, Y labels the columns)
Χ	Real random variable values represented by an STL-like container
Υ	Real random variable values represented by an STL-like container

Returns

Correlation of X and Y

6.1.3.25 cosm()

Matrix cos.

Parameters

```
A Eigen expression
```

Returns

Matrix cosine of A

6.1.3.26 cov()

Covariance.

Parameters

probXY	Real matrix representing the joint probability distribution of X and Y in lexicographical order (X labels the rows, Y labels the columns)
Χ	Real random variable values represented by an STL-like container
Y	Real random variable values represented by an STL-like container

Returns

Covariance of X and Y

6.1.3.27 cwise()

Functor.

Parameters

Α	Eigen expression
f	Pointer-to-function from scalars of A to OutputScalar

Returns

Component-wise f(A), as a dynamic matrix over the $\operatorname{\it OutputScalar}$ scalar field

6.1.3.28 det()

Determinant.

A Eigen expression

Returns

Determinant of A, as a scalar over the same scalar field as A. Returns $\pm \infty$ when the determinant overflows/underflows.

Direct sum.

See also

qpp::dirsumpow()

Used to stop the recursion for the variadic template version of qpp::dirsum()

Parameters

```
head Eigen expression
```

Returns

Its argument head

```
6.1.3.30 dirsum() [2/4]
```

Direct sum.

See also

qpp::dirsumpow()

head	Eigen expression
tail	Variadic Eigen expression (zero or more parameters)

Returns

Direct sum of all input parameters, evaluated from left to right, as a dynamic matrix over the same scalar field as its arguments

Direct sum.

See also

qpp::dirsumpow()

Parameters

```
As std::vector of Eigen expressions
```

Returns

Direct sum of all elements in As, evaluated from left to right, as a dynamic matrix over the same scalar field as its arguments

Direct sum.

See also

qpp::dirsumpow()

```
As std::initializer_list of Eigen expressions, such as {A1, A2, ..., Ak}
```

Returns

Direct sum of all elements in As, evaluated from left to right, as a dynamic matrix over the same scalar field as its arguments

6.1.3.33 dirsumpow()

Direct sum power.

See also

qpp::dirsum()

Parameters

Α	Eigen expression
n	Non-negative integer

Returns

Direct sum of A with itself n times $A^{\oplus n}$, as a dynamic matrix over the same scalar field as A

Eigen expression ostream manipulator.

Parameters

Α	Eigen expression
chop	Set to zero the elements smaller in absolute value than chop

Instance of qpp::internal::IOManipEigen

Complex number ostream manipulator.

Parameters

Z	Complex number (or any other type implicitly cast-able to std::complex <double>)</double>
chop	Set to zero the elements smaller in absolute value than chop

Returns

Instance of qpp::internal::IOManipEigen

Range ostream manipulator.

Parameters

first	Iterator to the first element of the range
last	Iterator to the last element of the range
separator	Separator
start	Left marking
end	Right marking

Returns

Instance of qpp::internal::IOManipRange

```
6.1.3.37 disp() [4/5]
```

Standard container ostream manipulator. The container must support std::begin(), std::end() and forward iteration.

Parameters

С	Container
separator	Separator
start	Left marking
end	Right marking

Returns

Instance of qpp::internal::IOManipRange

C-style pointer ostream manipulator.

Parameters

р	Pointer to the first element
N	Number of elements to be displayed
separator	Separator
start	Left marking
end	Right marking

Returns

Instance of qpp::internal::IOManipPointer

6.1.3.39 egcd()

Extended greatest common divisor of two integers.

See also

qpp::gcd()

Parameters

а	Integer
b	Integer

Returns

Tuple of: 1. Integer m, 2. Integer n, and 3. Non-negative integer gcd(a,b) such that ma + nb = gcd(a,b)

6.1.3.40 eig()

Full eigen decomposition.

See also

qpp::heig()

Parameters

A Eigen expression

Returns

Pair of: 1. Eigenvalues of *A*, as a complex dynamic column vector, and 2. Eigenvectors of *A*, as columns of a complex dynamic matrix

6.1.3.41 entanglement() [1/2]

```
template<typename Derived >
double qpp::entanglement (
```

```
const Eigen::MatrixBase< Derived > & A,
const std::vector< idx > & dims )
```

Entanglement of the bi-partite pure state A.

Defined as the von-Neumann entropy of the reduced density matrix of one of the subsystems

See also

```
qpp::entropy()
```

Parameters

Α	Eigen expression	
dims	Dimensions of the bi-partite system	

Returns

Entanglement, with the logarithm in base 2

6.1.3.42 entanglement() [2/2]

Entanglement of the bi-partite pure state A.

Defined as the von-Neumann entropy of the reduced density matrix of one of the subsystems

See also

```
qpp::entropy()
```

Parameters

Α	Eigen expression
d	Subsystem dimensions

Returns

Entanglement, with the logarithm in base 2

von-Neumann entropy of the density matrix A

Parameters

```
A Eigen expression
```

Returns

von-Neumann entropy, with the logarithm in base 2

Shannon entropy of the probability distribution prob.

Parameters

```
prob Real probability vector
```

Returns

Shannon entropy, with the logarithm in base 2

6.1.3.45 evals()

Eigenvalues.

See also

qpp::hevals()

A Eigen expression

Returns

Eigenvalues of A, as a complex dynamic column vector

6.1.3.46 evects()

Eigenvectors.

See also

qpp::hevects()

Parameters

A Eigen expression

Returns

Eigenvectors of A, as columns of a complex dynamic matrix

6.1.3.47 expm()

Matrix exponential.

Parameters

A Eigen expression

Returns

Matrix exponential of A

```
6.1.3.48 factors()
```

Prime factor decomposition.

Note

Runs in $\mathcal{O}(\sqrt{n})$ time complexity

Parameters

a Integer different from 0, 1 or -1

Returns

Integer vector containing the factors

6.1.3.49 funm()

Functional calculus f(A)

Parameters

Α	Eigen expression	
f	Pointer-to-function from complex to complex	

Returns

f(A)

Greatest common divisor of two integers.

See also

qpp::lcm()

а	Integer
b	Integer

Returns

Greatest common divisor of a and b

Greatest common divisor of a list of integers.

See also

qpp::lcm()

Parameters

```
as List of integers
```

Returns

Greatest common divisor of all numbers in as

6.1.3.52 gconcurrence()

G-concurrence of the bi-partite pure state A.

Note

Both local dimensions must be equal

Uses qpp::logdet() to avoid overflows

See also

qpp::logdet()

A Eigen expression

Returns

G-concurrence

Gram-Schmidt orthogonalization.

Parameters

As std::vector of Eigen expressions as column vectors

Returns

Gram-Schmidt vectors of As as columns of a dynamic matrix over the same scalar field as its arguments

Gram-Schmidt orthogonalization.

Parameters

As std::initializer_list of Eigen expressions as column vectors

Returns

Gram-Schmidt vectors of As as columns of a dynamic matrix over the same scalar field as its arguments

Gram-Schmidt orthogonalization.

Parameters

A Eigen expression, the input vectors are the columns of A

Returns

Gram-Schmidt vectors of the columns of A, as columns of a dynamic matrix over the same scalar field as A

6.1.3.56 heig()

Full eigen decomposition of Hermitian expression.

See also

qpp::eig()

Parameters

A Eigen expression

Returns

Pair of: 1. Eigenvalues of A, as a real dynamic column vector, and 2. Eigenvectors of A, as columns of a complex dynamic matrix

6.1.3.57 hevals()

Hermitian eigenvalues.

See also

qpp::evals()

```
A Eigen expression
```

Returns

Eigenvalues of Hermitian A, as a real dynamic column vector

6.1.3.58 hevects()

Hermitian eigenvectors.

See also

qpp::evects()

Parameters

```
A Eigen expression
```

Returns

Eigenvectors of Hermitian A, as columns of a complex matrix

6.1.3.59 inverse()

Inverse.

Parameters

```
A Eigen expression
```

Returns

Inverse of A, as a dynamic matrix over the same scalar field as A

6.1.3.60 invperm()

Inverse permutation.

Parameters

on

Returns

Inverse of the permutation perm

const std::vector< idx > & subsys,
const std::vector< idx > & dims)

Generalized inner product.

Parameters

phi	Column vector Eigen expression	
psi	Column vector Eigen expression	
subsys	Subsystem indexes over which phi is defined	
dims	Dimensions of the multi-partite system	

Returns

Inner product $\langle \phi_{subsys} | \psi \rangle$, as a scalar or column vector over the remaining Hilbert space

Generalized inner product.

phi	Column vector Eigen expression
psi	Column vector Eigen expression
subsys	Subsystem indexes over which phi is defined
d	Subsystem dimensions

Returns

Inner product $\langle \phi_{subsys} | \psi \rangle$, as a scalar or column vector over the remaining Hilbert space

6.1.3.63 isprime()

Primality test based on the Miller-Rabin's algorithm.

Parameters

р	Integer different from 0, 1 or -1
k	Number of iterations. The probability of a false positive is 2^{-k} .

Returns

True if the number is (most-likely) prime, false otherwise

6.1.3.64 kraus2choi()

Choi matrix.

See also

qpp::choi2kraus()

Constructs the Choi matrix of the channel specified by the set of Kraus operators Ks in the standard operator basis $\{|i\rangle\langle j|\}$ ordered in lexicographical order, i.e. $|0\rangle\langle 0|$, $|0\rangle\langle 1|$ etc.

Note

The superoperator matrix S and the Choi matrix C are related by $S_{ab,mn}=C_{ma,nb}$

Ks Set of Kraus operators

Returns

Choi matrix

6.1.3.65 kraus2super()

Superoperator matrix.

Constructs the superoperator matrix of the channel specified by the set of Kraus operators Ks in the standard operator basis $\{|i\rangle\langle j|\}$ ordered in lexicographical order, i.e. $|0\rangle\langle 0|$, $|0\rangle\langle 1|$ etc.

Parameters

```
Ks Set of Kraus operators
```

Returns

Superoperator matrix

```
6.1.3.66 kron() [1/4]
```

Kronecker product.

See also

qpp::kronpow()

Used to stop the recursion for the variadic template version of app::kron()

Parameters

head Eigen expression

Its argument head

Kronecker product.

See also

qpp::kronpow()

Parameters

head	Eigen expression
tail	Variadic Eigen expression (zero or more parameters)

Returns

Kronecker product of all input parameters, evaluated from left to right, as a dynamic matrix over the same scalar field as its arguments

Kronecker product.

See also

qpp::kronpow()

Parameters

As std::vector of Eigen expressions

Kronecker product of all elements in *As*, evaluated from left to right, as a dynamic matrix over the same scalar field as its arguments

Kronecker product.

See also

qpp::kronpow()

Parameters

As std::initializer_list of Eigen expressions, such as {A1, A2, ..., Ak}

Returns

Kronecker product of all elements in As, evaluated from left to right, as a dynamic matrix over the same scalar field as its arguments

6.1.3.70 kronpow()

Kronecker power.

See also

qpp::kron()

Parameters

Α	Eigen expression
n	Non-negative integer

Kronecker product of A with itself n times $A^{\otimes n}$, as a dynamic matrix over the same scalar field as A

Least common multiple of two integers.

See also

```
qpp::gcd()
```

Parameters

а	Integer
b	Integer

Returns

Least common multiple of a and b

Least common multiple of a list of integers.

See also

qpp::gcd()

Parameters

```
as List of integers
```

Returns

Least common multiple of all numbers in as

6.1.3.73 load()

Loads Eigen matrix from a binary file (internal format) in double precision.

See also

```
qpp::save()
```

The template parameter cannot be automatically deduced and must be explicitly provided, depending on the scalar field of the matrix that is being loaded.

Example:

```
// loads a previously saved Eigen dynamic complex matrix from "input.bin"
cmat mat = load<cmat>("input.bin");
```

Parameters

fname Output file name

6.1.3.74 loadMATLAB() [1/2]

Loads a complex Eigen dynamic matrix from a MATLAB .mat file,.

See also

```
qpp::saveMATLAB()
```

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// loads a previously saved Eigen ket
// from the MATLAB file "input.mat"
ket psi = loadMATLAB<ket>("input.mat");
```

Template Parameters

Derived Complex Eigen type

mat_file	MATALB .mat file
var_name	Variable name in the .mat file representing the matrix to be loaded

Returns

Eigen dynamic matrix

6.1.3.75 loadMATLAB() [2/2]

Loads a non-complex Eigen dynamic matrix from a MATLAB .mat file,.

See also

qpp::saveMATLAB()

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// loads a previously saved Eigen dynamic double matrix
// from the MATLAB file "input.mat"
dmat mat = loadMATLAB<dmat>("input.mat");
```

Template Parameters

Derived	Non-complex Eigen type
---------	------------------------

Parameters

mat_file	MATALB .mat file
var_name	Variable name in the .mat file representing the matrix to be loaded

Returns

Eigen dynamic matrix

6.1.3.76 logdet()

Logarithm of the determinant.

Useful when the determinant overflows/underflows

Parameters

```
A Eigen expression
```

Returns

Logarithm of the determinant of A, as a scalar over the same scalar field as A

6.1.3.77 logm()

Matrix logarithm.

Parameters

```
A Eigen expression
```

Returns

Matrix logarithm of A

6.1.3.78 lognegativity() [1/2]

Logarithmic negativity of the bi-partite mixed state A.

Parameters

Α	Eigen expression
dima	Dimensions of the bi partite system
aims	Dimensions of the bi-partite system

Logarithmic negativity, with the logarithm in base 2

Logarithmic negativity of the bi-partite mixed state A.

Parameters

Α	Eigen expression
d	Subsystem dimensions

Returns

Logarithmic negativity, with the logarithm in base 2

6.1.3.80 marginalX()

Marginal distribution.

Parameters

probXY	Real matrix representing the joint probability distribution of X and Y in lexicographical order (X labels
	the rows, Ylabels the columns)

Returns

Real vector consisting of the marginal distribution of X

6.1.3.81 marginalY()

Marginal distribution.

probXY	Real matrix representing the joint probability distribution of X and Y in lexicographical order (X labels	1
	the rows, Y labels the columns)	

Returns

Real vector consisting of the marginal distribution of Y

Measures the state A using the set of Kraus operators Ks.

Parameters

Α	Eigen expression
Ks	Set of Kraus operators

Returns

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

```
6.1.3.83 measure() [2/9]
```

Measures the state A using the set of Kraus operators Ks.

Parameters

Α	Eigen expression
Ks	Set of Kraus operators

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

Measures the state A in the orthonormal basis specified by the unitary matrix U.

Parameters

Α	Eigen expression	
U	Unitary matrix whose columns represent the measurement basis vectors	1

Returns

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

See also

```
qpp::measure_seq()
```

Note

The dimension of all Ks must match the dimension of *subsys*. The measurement is destructive, i.e. the measured subsystems are traced away.

Α	Eigen expression
Ks	Set of Kraus operators
subsys	Subsystem indexes that are measured
dims	Dimensions of the multi-partite system

Returns

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

6.1.3.86 measure() [5/9]

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

See also

```
qpp::measure_seq()
```

Note

The dimension of all Ks must match the dimension of *subsys*. The measurement is destructive, i.e. the measured subsystems are traced away.

Parameters

Α	Eigen expression
Ks	Set of Kraus operators
subsys	Subsystem indexes that are measured
dims	Dimensions of the multi-partite system

Returns

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

const std::vector< idx > & subsys,

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

See also

```
qpp::measure_seq()
```

idx d = 2)

Note

The dimension of all *Ks* must match the dimension of *subsys*. The measurement is destructive, i.e. the measured subsystems are traced away.

Parameters

Α	Eigen expression
Ks	Set of Kraus operators
subsys	Subsystem indexes that are measured
d	Subsystem dimensions

Returns

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

6.1.3.88 measure() [7/9]

Measures the part *subsys* of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

See also

```
qpp::measure_seq()
```

Note

The dimension of all *Ks* must match the dimension of *subsys*. The measurement is destructive, i.e. the measured subsystems are traced away.

Α	Eigen expression
Ks	Set of Kraus operators
subsys	Subsystem indexes that are measured
d	Subsystem dimensions

Returns

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

6.1.3.89 measure() [8/9]

Measures the part *subsys* of the multi-partite state vector or density matrix *A* in the orthonormal basis or rank-1 POVM specified by the matrix *V*.

See also

```
qpp::measure_seq()
```

Note

The dimension of V must match the dimension of subsys. The measurement is destructive, i.e. the measured subsystems are traced away.

Parameters

Α	Eigen expression
V	Matrix whose columns represent the measurement basis vectors or the bra parts of the rank-1 POVM
subsys	Subsystem indexes that are measured
dims	Dimensions of the multi-partite system

Returns

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

const std::vector< idx > & subsys,

Measures the part *subsys* of the multi-partite state vector or density matrix *A* in the orthonormal basis or rank-1 POVM specified by the matrix *V*.

See also

```
qpp::measure_seq()
```

idx d = 2)

Note

The dimension of *V* must match the dimension of *subsys*. The measurement is destructive, i.e. the measured subsystems are traced away.

Parameters

Α	Eigen expression
V	Matrix whose columns represent the measurement basis vectors or the bra parts of the rank-1 POVM
subsys	Subsystem indexes that are measured
d	Subsystem dimensions

Returns

Tuple of: 1. Result of the measurement, 2. Vector of outcome probabilities, and 3. Vector of post-measurement normalized states

Sequentially measures the part *subsys* of the multi-partite state vector or density matrix *A* in the computational basis.

See also

qpp::measure()

A Eigen expression	
subsys	Subsystem indexes that are measured
dims	Dimensions of the multi-partite system

Returns

Tuple of: 1. Vector of outcome results of the measurement (ordered in increasing order with respect to *subsys*, i.e. first measurement result corresponds to the subsystem with the smallest index), 2. Outcome probability, and 3. Post-measurement normalized state

Sequentially measures the part subsys of the multi-partite state vector or density matrix A in the computational basis.

See also

qpp::measure()

Parameters

Α	Eigen expression
subsys	Subsystem indexes that are measured
d	Subsystem dimensions

Returns

Tuple of: 1. Vector of outcome results of the measurement (ordered in increasing order with respect to *subsys*, i.e. first measurement result corresponds to the subsystem with the smallest index), 2. Outcome probability, and 3. Post-measurement normalized state

Multi-partite qudit ket.

Constructs the multi-partite qudit ket $|\text{mask}\rangle$, where mask is a std::vector of non-negative integers. Each element in mask has to be smaller than the corresponding element in dims.

mask	std::vector of non-negative integers
dims	Dimensions of the multi-partite system

Returns

Multi-partite qudit state vector, as a complex dynamic column vector

Multi-partite qudit ket.

Constructs the multi-partite qudit ket $|mask\rangle$, all subsystem having equal dimension *d. mask* is a std::vector of non-negative integers, and each element in *mask* has to be strictly smaller than *d*.

Parameters

mask	std::vector of non-negative integers
d	Subsystem dimensions

Returns

Multi-partite qudit state vector, as a complex dynamic column vector

6.1.3.95 modinv()

Modular inverse of a mod p.

See also

qpp::egcd()

Note

a and p must be co-prime

а	Non-negative integer
р	Non-negative integer

Returns

Modular inverse $a^{-1} \mod p$

6.1.3.96 modmul()

Modular multiplication without overflow.

Computes $ab \bmod p$ without overflow

Parameters

а	Integer
b	Integer
р	Positive integer

Returns

ab mod p avoiding overflow

6.1.3.97 modpow()

Fast integer power modulo *p* based on the SQUARE-AND-MULTIPLY algorithm.

Note

Uses qpp::modmul() that avoids overflows

Computes $a^n \mod p$

а	Non-negative integer
n	Non-negative integer
р	Strictly positive integer

Returns

```
a^n \bmod p
```

Projector onto multi-partite qudit ket.

Constructs the projector onto the multi-partite qudit ket $|mask\rangle$, where mask is a std::vector of non-negative integers. Each element in mask has to be smaller than the corresponding element in dims.

Parameters

mask	std::vector of non-negative integers
dims	Dimensions of the multi-partite system

Returns

Projector onto multi-partite qudit state vector, as a complex dynamic matrix

Projector onto multi-partite qudit ket.

Constructs the projector onto the multi-partite qudit ket $|mask\rangle$, all subsystem having equal dimension d. mask is a std::vector of non-negative integers, and each element in mask has to be strictly smaller than d.

Parameters

mask	std::vector of non-negative integers
d	Subsystem dimensions

Projector onto multi-partite qudit state vector, as a complex dynamic matrix

6.1.3.100 multiidx2n()

Multi-index to non-negative integer index.

See also

```
qpp::n2multiidx()
```

Uses standard lexicographical order, i.e. 00...0, 00...1 etc.

Parameters

midx	Multi-index
dims	Dimensions of the multi-partite system

Returns

Non-negative integer index

6.1.3.101 n2multiidx()

```
std::vector<idx> qpp::n2multiidx ( idx \ n, const std::vector< idx > & dims ) [inline]
```

Non-negative integer index to multi-index.

See also

```
qpp::multiidx2n()
```

Uses standard lexicographical order, i.e. 00...0, 00...1 etc.

Parameters

n	Non-negative integer index
dims	Dimensions of the multi-partite system

Multi-index of the same size as dims

Negativity of the bi-partite mixed state A.

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Negativity

```
6.1.3.103 negativity() [2/2]
```

```
template<typename Derived > double qpp::negativity ( const Eigen::MatrixBase< Derived > & A, idx d = 2)
```

Negativity of the bi-partite mixed state A.

Parameters

Α	Eigen expression
d	Subsystem dimensions

Returns

Negativity

6.1.3.104 norm()

Frobenius norm.

Parameters

```
A Eigen expression
```

Returns

Frobenius norm of A

```
6.1.3.105 omega()
```

```
cplx qpp::omega ( \label{eq:cplx} \mbox{idx } \mbox{\it D} \mbox{\it )} \quad \mbox{\it [inline]}
```

D-th root of unity.

Parameters

```
D Non-negative integer
```

Returns

D-th root of unity $\exp(2\pi i/D)$

User-defined literal for complex $i = \sqrt{-1}$ (integer overload)

Example:

```
cplx z = 4_i; // type of z is std::complex<double>
```

User-defined literal for complex $i=\sqrt{-1}$ (real overload)

Example:

```
cplx z = 4.5_i; // type of z is std::complex<double>
```

6.1.3.108 powm()

Fast matrix power based on the SQUARE-AND-MULTIPLY algorithm.

See also

qpp::spectralpowm()

Explicitly multiplies the matrix A with itself n times. By convention $A^0 = I$.

Parameters

Α	Eigen expression
n	Non-negative integer

Returns

Matrix power A^n , as a dynamic matrix over the same scalar field as A

6.1.3.109 prj()

Projector.

Normalized projector onto state vector

Parameters

```
A Eigen expression
```

Returns

Projector onto the state vector A, or the matrix Zero if A has norm zero (i.e. smaller than qpp::eps), as a dynamic matrix over the same scalar field as A

Element-wise product of A.

Parameters

```
A Eigen expression
```

Returns

Element-wise product of A, as a scalar over the same scalar field as A

Element-wise product of an STL-like range.

Parameters

first	Iterator to the first element of the range	
	last	Iterator to the last element of the range

Returns

Element-wise product of the range, as a scalar over the same scalar field as the range

Element-wise product of the elements of an STL-like container.

```
c STL-like container
```

Element-wise product of the elements of the container, as a scalar over the same scalar field as the container

Partial trace.

See also

```
qpp::ptrace1(), qpp::ptrace2()
```

Partial trace of the multi-partite state vector or density matrix over a list of subsystems

Parameters

Α	Eigen expression
subsys	Subsystem indexes
dims	Dimensions of the multi-partite system

Returns

Partial trace $Tr_{subsys}(\cdot)$ over the subsytems *subsys* in a multi-partite system, as a dynamic matrix over the same scalar field as A

```
6.1.3.114 ptrace() [2/2]
```

Partial trace.

See also

```
qpp::ptrace1(), qpp::ptrace2()
```

Partial trace of the multi-partite state vector or density matrix over a list of subsystems

Α	Eigen expression
subsys	Subsystem indexes
d	Subsystem dimensions

Returns

Partial trace $Tr_{subsys}(\cdot)$ over the subsytems *subsys* in a multi-partite system, as a dynamic matrix over the same scalar field as A

6.1.3.115 ptrace1() [1/2]

Partial trace.

See also

qpp::ptrace2()

Partial trace over the first subsystem of bi-partite state vector or density matrix

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Partial trace $Tr_A(\cdot)$ over the first subsytem A in a bi-partite system $A\otimes B$, as a dynamic matrix over the same scalar field as A

6.1.3.116 ptrace1() [2/2]

Partial trace.

See also

qpp::ptrace2()

Partial trace over the first subsystem of bi-partite state vector or density matrix

Α	Eigen expression
d	Subsystem dimensions

Returns

Partial trace $Tr_A(\cdot)$ over the first subsytem A in a bi-partite system $A\otimes B$, as a dynamic matrix over the same scalar field as A

Partial trace.

See also

qpp::ptrace1()

Partial trace over the second subsystem of bi-partite state vector or density matrix

Parameters

Α	Eigen expression	
dims	Dimensions of the bi-partite system	

Returns

Partial trace $Tr_B(\cdot)$ over the second subsytem B in a bi-partite system $A\otimes B$, as a dynamic matrix over the same scalar field as A

Partial trace.

See also

qpp::ptrace1()

Partial trace over the second subsystem of bi-partite state vector or density matrix

Α	Eigen expression
d	Subsystem dimensions

Returns

Partial trace $Tr_B(\cdot)$ over the second subsytem B in a bi-partite system $A\otimes B$, as a dynamic matrix over the same scalar field as A

6.1.3.119 ptranspose() [1/2]

Partial transpose.

Partial transpose of the multi-partite state vector or density matrix over a list of subsystems

Parameters

Α	Eigen expression
subsys	Subsystem indexes
dims	Dimensions of the multi-partite system

Returns

Partial transpose $(\cdot)^{T_{subsys}}$ over the subsytems *subsys* in a multi-partite system, as a dynamic matrix over the same scalar field as A

6.1.3.120 ptranspose() [2/2]

Partial transpose.

Partial transpose of the multi-partite state vector or density matrix over a list of subsystems

Α	Eigen expression
subsys	Subsystem indexes
d	Subsystem dimensions

Returns

Partial transpose $(\cdot)^{T_{subsys}}$ over the subsytems *subsys* in a multi-partite system, as a dynamic matrix over the same scalar field as A

6.1.3.121 qmutualinfo() [1/2]

Quantum mutual information between 2 subsystems of a composite system.

Parameters

Α	Eigen expression
subsysA	Indexes of the first subsystem
subsysB	Indexes of the second subsystem
dims	Dimensions of the multi-partite system

Returns

Mutual information between the 2 subsystems

6.1.3.122 qmutualinfo() [2/2]

Quantum mutual information between 2 subsystems of a composite system.

Α	Eigen expression
subsysA	Indexes of the first subsystem
subsysB	Indexes of the second subsystem
d	Subsystem dimensions

Returns

Mutual information between the 2 subsystems

Generates a random real number uniformly distributed in the interval [a, b)

Parameters

а	Beginning of the interval, belongs to it
b	End of the interval, does not belong to it

Returns

Random real number (double) uniformly distributed in the interval [a, b)

Generates a random big integer uniformly distributed in the interval [a, b].

Note

To avoid ambiguity with double qpp::rand(double, double) cast at least one of the arguments to qpp::bigint

а	Beginning of the interval, belongs to it
b	End of the interval, belongs to it

Random big integer uniformly distributed in the interval [a, b]

Generates a random matrix with entries uniformly distributed in the interval [a, b)

If complex, then both real and imaginary parts are uniformly distributed in [a, b)

This is the generic version that always throws qpp::Exception::Type::UNDEFINED_TYPE. It is specialized only for qpp::dmat and qpp::cmat

Generates a random real matrix with entries uniformly distributed in the interval [a, b), specialization for double matrices (qpp::dmat)

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// generates a 3 x 3 random Eigen::MatrixXd,
// with entries uniformly distributed in [-1,1)
dmat mat = rand<dmat>(3, 3, -1, 1);
```

rows	Number of rows of the random generated matrix
cols	Number of columns of the random generated matrix
а	Beginning of the interval, belongs to it
b	End of the interval, does not belong to it

Random real matrix

```
6.1.3.127 rand() [5/5]

template<>>
cmat qpp::rand (
        idx rows,
        idx cols,
        double a,
        double b) [inline]
```

Generates a random complex matrix with entries (both real and imaginary) uniformly distributed in the interval [a, b), specialization for complex matrices (qpp::cmat)

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// generates a 3 x 3 random Eigen::MatrixXcd,
// with entries (both real and imaginary) uniformly distributed in [-1,1)
cmat mat = rand<cmat>(3, 3, -1, 1);
```

Parameters

rows	Number of rows of the random generated matrix
cols	Number of columns of the random generated matrix
а	Beginning of the interval, belongs to it
b	End of the interval, does not belong to it

Returns

Random complex matrix

6.1.3.128 randH()

```
cmat qpp::randH (
    idx D = 2 ) [inline]
```

Generates a random Hermitian matrix.

Parameters

D Dimension of the Hilbert space

Random Hermitian matrix

6.1.3.129 randidx()

Generates a random index (idx) uniformly distributed in the interval [a, b].

Parameters

	Beginning of the interval, belongs to it
b	End of the interval, belongs to it

Returns

Random index (idx) uniformly distributed in the interval [a, b]

6.1.3.130 randket()

```
ket qpp::randket (
idx D = 2) [inline]
```

Generates a random normalized ket (pure state vector)

Parameters

```
D Dimension of the Hilbert space
```

Returns

Random normalized ket

6.1.3.131 randkraus()

```
std::vector<cmat> qpp::randkraus (
    idx N,
    idx D = 2 ) [inline]
```

Generates a set of random Kraus operators.

Note

The set of Kraus operators satisfy the closure condition $\sum_i K_i^\dagger K_i = I$

Parameters

Ν	Number of Kraus operators
D	Dimension of the Hilbert space

Returns

Set of N Kraus operators satisfying the closure condition

Generates a random matrix with entries normally distributed in N(mean, sigma)

If complex, then both real and imaginary parts are normally distributed in N(mean, sigma)

This is the generic version that always throws qpp::Exception::Type::UNDEFINED_TYPE. It is specialized only for qpp::dmat and qpp::cmat

```
6.1.3.133 randn() [2/4]

template<>>
dmat qpp::randn (
        idx rows,
        idx cols,
        double mean,
        double sigma ) [inline]
```

Generates a random real matrix with entries normally distributed in N(mean, sigma), specialization for double matrices (qpp::dmat)

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// generates a 3 x 3 random Eigen::MatrixXd,
// with entries normally distributed in N(0,2)
dmat mat = randn<dmat>(3, 3, 0, 2);
```

rows	Number of rows of the random generated matrix
cols	Number of columns of the random generated matrix
mean	Mean
sigma	Standard deviation

Returns

Random real matrix

Generates a random complex matrix with entries (both real and imaginary) normally distributed in N(mean, sigma), specialization for complex matrices (qpp::cmat)

The template parameter cannot be automatically deduced and must be explicitly provided

Example:

```
// generates a 3 x 3 random Eigen::MatrixXcd, 
// with entries (both real and imaginary) normally distributed in N(0,2) cmat mat = randn<cmat>(3, 3, 0, 2);
```

Parameters

rows	Number of rows of the random generated matrix
cols	Number of columns of the random generated matrix
mean	Mean
sigma	Standard deviation

Returns

Random complex matrix

Generates a random real number (double) normally distributed in N(mean, sigma)

Parameters

mean	Mean
sigma	Standard deviation

Returns

Random real number normally distributed in N(mean, sigma)

6.1.3.136 randperm()

```
std::vector<idx> qpp::randperm (
    idx N ) [inline]
```

Generates a random uniformly distributed permutation.

Uses Knuth shuffle method (as implemented by std::shuffle), so that all permutations are equally probable

Parameters

```
N Size of the permutation
```

Returns

Random permutation of size N

6.1.3.137 randprime()

```
bigint qpp::randprime (
          bigint a,
          bigint b,
          idx N = 1000 ) [inline]
```

Generates a random big prime uniformly distributed in the interval [a, b].

а	Beginning of the interval, belongs to it
b	End of the interval, belongs to it
N	Maximum number of candidates

Random big integer uniformly distributed in the interval [a, b]

6.1.3.138 randprob()

```
\label{eq:continuous_double} $$\operatorname{double} : \operatorname{qpp}::\operatorname{randprob} ($$\operatorname{idx} N$) [inline]
```

Generates a random probability vector uniformly distributed over the probability simplex.

Parameters

N Size of the probability vector

Returns

Random probability vector

6.1.3.139 randrho()

```
cmat qpp::randrho (
    idx D = 2) [inline]
```

Generates a random density matrix.

Parameters

D | Dimension of the Hilbert space

Returns

Random density matrix

6.1.3.140 randU()

```
cmat qpp::randU (
    idx D = 2) [inline]
```

Generates a random unitary matrix.

D Dimension of the Hilbert space

Returns

Random unitary

6.1.3.141 randV()

Generates a random isometry matrix.

Parameters

Din	Size of the input Hilbert space
Dout	Size of the output Hilbert space

Returns

Random isometry matrix

```
6.1.3.142 renyi() [1/2]
```

Renyi- α entropy of the density matrix ${\it A}$, for $\alpha \geq 0$.

Note

When $\alpha \to 1$ the Renyi entropy converges to the von-Neumann entropy, with the logarithm in base 2

Α	Eigen expression
alpha	Non-negative real number, use qpp::infty for $\alpha=\infty$

Renyi- α entropy, with the logarithm in base 2

Renyi- α entropy of the probability distribution *prob*, for $\alpha \geq 0$.

Note

When $\alpha \to 1$ the Renyi entropy converges to the Shannon entropy, with the logarithm in base 2

Parameters

prob	Real probability vector
alpha	Non-negative real number, use qpp::infty for $\alpha=\infty$

Returns

Renyi- α entropy, with the logarithm in base 2

6.1.3.144 reshape()

Reshape.

Uses column-major order when reshaping (same as MATLAB)

Α	Eigen expression
rows	Number of rows of the reshaped matrix
cols	Number of columns of the reshaped matrix

Reshaped matrix with rows rows and cols columns, as a dynamic matrix over the same scalar field as A

6.1.3.145 rho2bloch()

Computes the 3-dimensional real Bloch vector corresponding to the qubit density matrix A.

See also

qpp::bloch2rho()

Note

It is implicitly assumed that the density matrix is Hermitian

Parameters

A Eigen expression

Returns

3-dimensional Bloch vector

6.1.3.146 rho2pure()

Finds the pure state representation of a matrix proportional to a projector onto a pure state.

Note

No purity check is done, the input state A must have rank one, otherwise the function returns the first non-zero eigenvector of A

Parameters

A Eigen expression, assumed to be proportional to a projector onto a pure state, i.e. A is assumed to have rank one

The unique non-zero eigenvector of A (up to a phase), as a dynamic column vector over the same scalar field as A

6.1.3.147 save()

Saves Eigen expression to a binary file (internal format) in double precision.

See also

qpp::load()

Parameters

Α	Eigen expression
fname	Output file name

6.1.3.148 saveMATLAB() [1/2]

Saves a complex Eigen dynamic matrix to a MATLAB .mat file,.

See also

qpp::loadMATLAB()

Template Parameters

Complex Eigen type

Α	Eigen expression over the complex field
---	---

mat_file	MATALB .mat file
var_name Variable name in the .mat file representing the matrix to be saved	
mode	Saving mode (append, overwrite etc.), see MATLAB matOpen() documentation for details

6.1.3.149 saveMATLAB() [2/2]

Saves a non-complex Eigen dynamic matrix to a MATLAB .mat file,.

See also

qpp::loadMATLAB()

Template Parameters

Npn-complex	Eigen type
-------------	------------

Parameters

Α	Non-complex Eigen expression
mat_file	MATALB .mat file
var_name	Variable name in the .mat file representing the matrix to be saved
mode	Saving mode (append, overwrite etc.), see MATLAB matOpen() documentation for details

6.1.3.150 schatten()

Schatten matrix norm.

	Α	Eigen expression
ſ	р	Real number, greater or equal to 1, use app::infty for $p = \infty$

Schatten-p matrix norm of A

Schmidt basis on Alice side.

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Unitary matrix \boldsymbol{U} whose columns represent the Schmidt basis vectors on Alice side.

Schmidt basis on Alice side.

Parameters

Α	Eigen expression
d	Subsystem dimensions

Returns

Unitary matrix U whose columns represent the Schmidt basis vectors on Alice side.

6.1.3.153 schmidtB() [1/2] template<typename Derived >

cmat qpp::schmidtB (

```
const Eigen::MatrixBase< Derived > & A,
const std::vector< idx > & dims )
```

Schmidt basis on Bob side.

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Unitary matrix ${\cal V}$ whose columns represent the Schmidt basis vectors on Bob side.

6.1.3.154 schmidtB() [2/2]

Schmidt basis on Bob side.

Parameters

Α	Eigen expression
d	Subsystem dimensions

Returns

Unitary matrix ${\cal V}$ whose columns represent the Schmidt basis vectors on Bob side.

6.1.3.155 schmidtcoeffs() [1/2]

Schmidt coefficients of the bi-partite pure state A.

Note

The sum of the squares of the Schmidt coefficients equals 1

See also

qpp::schmidtprobs()

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Schmidt coefficients of A, ordered in decreasing order, as a real dynamic column vector

6.1.3.156 schmidtcoeffs() [2/2]

Schmidt coefficients of the bi-partite pure state A.

Note

The sum of the squares of the Schmidt coefficients equals 1

See also

qpp::schmidtprobs()

Parameters

Α	Eigen expression
d	Subsystem dimensions

Returns

Schmidt coefficients of A, ordered in decreasing order, as a real dynamic column vector

6.1.3.157 schmidtprobs() [1/2]

Schmidt probabilities of the bi-partite pure state A.

Defined as the squares of the Schmidt coefficients. The sum of the Schmidt probabilities equals 1.

See also

qpp::schmidtcoeffs()

Parameters

Α	Eigen expression
dims	Dimensions of the bi-partite system

Returns

Real vector consisting of the Schmidt probabilites of A, ordered in decreasing order

6.1.3.158 schmidtprobs() [2/2]

Schmidt probabilities of the bi-partite pure state A.

Defined as the squares of the Schmidt coefficients. The sum of the Schmidt probabilities equals 1.

See also

qpp::schmidtcoeffs()

Parameters

Α	Eigen expression
d	Subsystem dimensions

Returns

Real vector consisting of the Schmidt probabilites of A, ordered in decreasing order

6.1.3.159 sigma()

Standard deviation.

prob	Real probability vector representing the probability distribution of X
X	Real random variable values represented by an STL-like container

Returns

Standard deviation of X

6.1.3.160 sinm()

Matrix sin.

Parameters

A Eigen expression

Returns

Matrix sine of A

6.1.3.161 spectralpowm()

Matrix power.

See also

qpp::powm()

Uses the spectral decomposition of A to compute the matrix power. By convention $A^0=I$.

Α	Eigen expression
Z	Complex number

Matrix power A^z

6.1.3.162 sqrtm()

Matrix square root.

Parameters

```
A Eigen expression
```

Returns

Matrix square root of A

```
6.1.3.163 sum() [1/3]
```

Element-wise sum of A.

Parameters

```
A Eigen expression
```

Returns

Element-wise sum of A, as a scalar over the same scalar field as A

```
6.1.3.164 sum() [2/3]
```

Element-wise sum of an STL-like range.

first	Iterator to the first element of the range
last	Iterator to the last element of the range

Returns

Element-wise sum of the range, as a scalar over the same scalar field as the range

Element-wise sum of the elements of an STL-like container.

Parameters

```
c STL-like container
```

Returns

Element-wise sum of the elements of the container, as a scalar over the same scalar field as the container

6.1.3.166 super2choi()

Converts superoperator matrix to Choi matrix.

See also

qpp::choi2super()

Parameters

A Superoperator matrix

Choi matrix

6.1.3.167 svals()

Singular values.

Parameters

A Eigen expression

Returns

Singular values of A, ordered in decreasing order, as a real dynamic column vector

6.1.3.168 svd()

Full singular value decomposition.

Parameters

A Eigen expression

Returns

Tuple of: 1. Left sigular vectors of A, as columns of a complex dynamic matrix, 2. Singular values of A, ordered in decreasing order, as a real dynamic column vector, and 3. Right singular vectors of A, as columns of a complex dynamic matrix

6.1.3.169 svdU()

Left singular vectors.

```
A Eigen expression
```

Returns

Complex dynamic matrix, whose columns are the left singular vectors of A

6.1.3.170 svdV()

Right singular vectors.

Parameters

```
A Eigen expression
```

Returns

Complex dynamic matrix, whose columns are the right singular vectors of A

6.1.3.171 syspermute() [1/2]

Subsystem permutation.

Permutes the subsystems of a state vector or density matrix. The qubit perm[i] is permuted to the location i.

Α	Eigen expression
perm	Permutation
dims	Dimensions of the multi-partite system

Permuted system, as a dynamic matrix over the same scalar field as A

Subsystem permutation.

Permutes the subsystems of a state vector or density matrix. The qubit *perm[i]* is permuted to the location *i*.

Parameters

Α	Eigen expression
perm	Permutation
d	Subsystem dimensions

Returns

Permuted system, as a dynamic matrix over the same scalar field as A

6.1.3.173 trace()

Trace.

Parameters

```
A Eigen expression
```

Returns

Trace of A, as a scalar over the same scalar field as A

6.1.3.174 transpose()

Transpose.

Parameters

```
A Eigen expression
```

Returns

Transpose of A, as a dynamic matrix over the same scalar field as A

```
6.1.3.175 tsallis() [1/2]  \begin{tabular}{ll} template < typename Derived > \\ double qpp::tsallis ( & const Eigen::MatrixBase < Derived > & A, \\ double $q$ ) \end{tabular}
```

Tsallis- q entropy of the density matrix A, for $q \ge 0$.

Note

When $q \to 1$ the Tsallis entropy converges to the von-Neumann entropy, with the logarithm in base e

Parameters

Α	Eigen expression
q	Non-negative real number

Returns

Tsallis- q entropy

Tsallis- q entropy of the probability distribution *prob*, for $q \ge 0$.

Note

When $q \to 1$ the Tsallis entropy converges to the Shannon entropy, with the logarithm in base e

Parameters

prob	Real probability vector
q	Non-negative real number

Returns

Tsallis- q entropy

6.1.3.177 uniform()

```
std::vector<double> qpp::uniform (
    idx N ) [inline]
```

Uniform probability distribution vector.

Parameters

```
N Size of the alphabet
```

Returns

Real vector consisting of a uniform distribution of size N

6.1.3.178 var()

Variance.

p	rob	Real probability vector representing the probability distribution of X
X		Real random variable values represented by an STL-like container

Variance of X

6.1.3.179 x2contfrac()

Simple continued fraction expansion.

See also

qpp::contfrac2x()

Parameters

X	Real number
Ν	Maximum number of terms in the expansion
cut	Stop the expansion when the next term is greater than <i>cut</i>

Returns

Integer vector containing the simple continued fraction expansion of x. If there are M less than N terms in the expansion, a shorter vector with M components is returned.

6.1.4 Variable Documentation

6.1.4.1 chop

```
constexpr double qpp::chop = 1e-10
```

Used in qpp::disp() for setting to zero numbers that have their absolute value smaller than qpp::chop.

6.1.4.2 ee

```
constexpr double qpp::ee = 2.718281828459045235360287471352662497
```

Base of natural logarithm, e.

6.1.4.3 eps

```
constexpr double qpp::eps = 1e-12
```

Used to decide whether a number or expression in double precision is zero or not.

Example:

```
if(std::abs(x) < qpp::eps) // x is zero</pre>
```

6.1.4.4 infty

```
constexpr double qpp::infty = std::numeric_limits<double>::max()
```

Used to denote infinity in double precision.

6.1.4.5 maxn

```
constexpr idx qpp::maxn = 64
```

Maximum number of allowed qubits/qudits (subsystems)

Used internally to allocate arrays on the stack (for performance reasons):

6.1.4.6 pi

```
constexpr double qpp::pi = 3.141592653589793238462643383279502884
```

6.2 qpp::exception Namespace Reference

Quantum++ exception hierarchy namespace.

Classes

class CustomException

Custom exception.

· class DimsInvalid

Invalid dimension(s) exception.

· class DimsMismatchCvector

Dimension(s) mismatch column vector size exception.

· class DimsMismatchMatrix

Dimension(s) mismatch matrix size exception.

· class DimsMismatchRvector

Dimension(s) mismatch row vector size exception.

· class DimsMismatchVector

Dimension(s) mismatch vector size exception.

· class DimsNotEqual

Dimensions not equal exception.

class Exception

Base class for generating Quantum++ custom exceptions.

• class MatrixMismatchSubsys

Matrix mismatch subsystems exception.

· class MatrixNotCvector

Matrix is not a column vector exception.

· class MatrixNotRvector

Matrix is not a row vector exception.

· class MatrixNotSquare

Matrix is not square exception.

class MatrixNotSquareNorCvector

Matrix is not square nor column vector exception.

class MatrixNotSquareNorRvector

Matrix is not square nor row vector exception.

class MatrixNotSquareNorVector

Matrix is not square nor vector exception.

class MatrixNotVector

Matrix is not a vector exception.

class NoCodeword

Codeword does not exist exception.

class NotBipartite

Not bi-partite exception.

• class NotQubitCvector

Column vector is not 2 x 1 exception.

· class NotQubitMatrix

Matrix is not 2 x 2 exception.

class NotQubitRvector

Row vector is not 1 x 2 exception.

class NotQubitSubsys

Subsystems are not qubits exception.

class NotQubitVector

Vector is not 2 x 1 nor 1 x 2 exception.

· class OutOfRange

Parameter out of range exception.

· class PermInvalid

Invalid permutation exception.

class PermMismatchDims

Permutation mismatch dimensions exception.

· class SizeMismatch

Size mismatch exception.

· class SubsysMismatchDims

Subsystems mismatch dimensions exception.

class TypeMismatch

Type mismatch exception.

class UndefinedType

Not defined for this type exception.

· class Unknown

Unknown exception.

· class ZeroSize

Object has zero size exception.

6.2.1 Detailed Description

Quantum++ exception hierarchy namespace.

6.3 qpp::experimental Namespace Reference

Experimental/test functions/classes, do not use or modify.

6.3.1 Detailed Description

Experimental/test functions/classes, do not use or modify.

6.4 qpp::internal Namespace Reference

Internal utility functions, do not use them directly or modify them.

Classes

- struct Display_Impl_
- class IOManipEigen
- · class IOManipPointer
- class IOManipRange
- class Singleton

Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously recurring template pattern)

Functions

- void n2multiidx (idx n, idx numdims, const idx *const dims, idx *result) noexcept
- idx multiidx2n (const idx *const midx, idx numdims, const idx *const dims) noexcept
- template<typename Derived >

bool check_square_mat (const Eigen::MatrixBase< Derived > &A)

• template<typename Derived >

bool bool check_vector (const Eigen::MatrixBase Derived > &A)

ullet template<typename Derived >

bool check_rvector (const Eigen::MatrixBase< Derived > &A)

• template<typename Derived >

bool check_cvector (const Eigen::MatrixBase< Derived > &A)

• template<typename T >

bool check nonzero size (const T &x) noexcept

• template<typename T1 , typename T2 >

bool check_matching_sizes (const T1 &lhs, const T2 &rhs) noexcept

- bool check_dims (const std::vector< idx > &dims)
- template<typename Derived >

 $bool\ check_dims_match_mat\ (const\ std::vector < idx > \&dims,\ const\ Eigen::MatrixBase < Derived > \&A)$

 $\bullet \ \ {\it template}{<} {\it typename Derived} >$

bool check_dims_match_cvect (const std::vector< idx > &dims, const Eigen::MatrixBase< Derived > &A)

- $\bullet \ \ {\it template}{<} {\it typename Derived}>$
 - $bool\ check_dims_match_rvect\ (const\ std::vector < idx > \&dims,\ const\ Eigen::MatrixBase < Derived > \&A)$
- bool check_eq_dims (const std::vector < idx > &dims, idx dim) noexcept
- bool check_subsys_match_dims (const std::vector < idx > &subsys, const std::vector < idx > &dims)
- template<typename Derived >

bool check_qubit_matrix (const Eigen::MatrixBase< Derived > &A) noexcept

template<typename Derived >

bool check_qubit_cvector (const Eigen::MatrixBase< Derived > &A) noexcept

• template<typename Derived >

bool check_qubit_rvector (const Eigen::MatrixBase< Derived > &A) noexcept

- $\bullet \ \ \mathsf{template}{<}\mathsf{typename} \ \mathsf{Derived}>$
 - bool check_qubit_vector (const Eigen::MatrixBase< Derived > &A) noexcept
- bool check_perm (const std::vector < idx > &perm)
- template<typename Derived1 , typename Derived2 >

dyn_mat< typename Derived1::Scalar > kron2 (const Eigen::MatrixBase< Derived1 > &A, const Eigen::← MatrixBase< Derived2 > &B)

• template<typename Derived1 , typename Derived2 >

 dyn_mat < typename Derived1::Scalar > dirsum2 (const Eigen::MatrixBase< Derived1 > &A, const Eigen \leftrightarrow ::MatrixBase< Derived2 > &B)

• template<typename T >

void variadic_vector_emplace (std::vector< T > &)

- template<typename T , typename First , typename ... $\mathsf{Args}{>}$

void variadic_vector_emplace (std::vector< T > &v, First &&first, Args &&... args)

- idx get_num_subsys (idx sz, idx d)
- idx get_dim_subsys (idx sz, idx N)

6.4.1 Detailed Description

Internal utility functions, do not use them directly or modify them.

6.4.2 Function Documentation

6.4.2.1 check_cvector()

```
template<typename Derived >
bool qpp::internal::check_cvector (
             const Eigen::MatrixBase< Derived > & A )
6.4.2.2 check_dims()
bool qpp::internal::check_dims (
             const std::vector< idx > & dims ) [inline]
6.4.2.3 check_dims_match_cvect()
{\tt template}{<}{\tt typename \ Derived} \,>\,
bool qpp::internal::check\_dims\_match\_cvect (
             const std::vector< idx > & dims,
             const Eigen::MatrixBase< Derived > & A )
6.4.2.4 check_dims_match_mat()
template<typename Derived >
bool qpp::internal::check_dims_match_mat (
             const std::vector< idx > & dims,
             const Eigen::MatrixBase< Derived > & A )
6.4.2.5 check_dims_match_rvect()
template<typename Derived >
bool qpp::internal::check_dims_match_rvect (
             const std::vector< idx > & dims,
             const Eigen::MatrixBase< Derived > & A )
6.4.2.6 check_eq_dims()
bool qpp::internal::check_eq_dims (
             const std::vector< idx > & dims,
             idx dim ) [inline], [noexcept]
```

```
6.4.2.7 check_matching_sizes()
```

```
template<typename T1 , typename T2 >
bool qpp::internal::check_matching_sizes (
             const T1 & lhs,
             const T2 & rhs ) [noexcept]
6.4.2.8 check_nonzero_size()
template<typename T >
bool qpp::internal::check_nonzero_size (
             const T & x ) [noexcept]
6.4.2.9 check_perm()
bool qpp::internal::check_perm (
             const std::vector< idx > & perm ) [inline]
6.4.2.10 check_qubit_cvector()
template < typename Derived >
bool qpp::internal::check_qubit_cvector (
             const Eigen::MatrixBase< Derived > & A ) [noexcept]
6.4.2.11 check_qubit_matrix()
template<typename Derived >
bool qpp::internal::check_qubit_matrix (
             const Eigen::MatrixBase< Derived > & A ) [noexcept]
6.4.2.12 check_qubit_rvector()
{\tt template}{<}{\tt typename \ Derived >}
bool qpp::internal::check_qubit_rvector (
            const Eigen::MatrixBase< Derived > & A ) [noexcept]
```

6.4.2.13 check_qubit_vector()

```
template<typename Derived >
bool qpp::internal::check_qubit_vector (
             const Eigen::MatrixBase< Derived > & A ) [noexcept]
6.4.2.14 check_rvector()
template<typename Derived >
bool qpp::internal::check_rvector (
             const Eigen::MatrixBase< Derived > & A )
6.4.2.15 check_square_mat()
template < typename Derived >
bool qpp::internal::check_square_mat (
             const Eigen::MatrixBase< Derived > & A )
6.4.2.16 check_subsys_match_dims()
bool qpp::internal::check_subsys_match_dims (
             const std::vector< idx > & subsys,
             const std::vector< idx > & dims ) [inline]
6.4.2.17 check_vector()
template<typename Derived >
bool qpp::internal::check_vector (
             const Eigen::MatrixBase< Derived > & A )
6.4.2.18 dirsum2()
template<typename Derived1 , typename Derived2 >
\label{lem:dyn_mat} $$\operatorname{dyn\_mat}<\operatorname{typename}$$ Derived1::Scalar> qpp::internal::dirsum2 (
             const Eigen::MatrixBase< Derived1 > & A,
             const Eigen::MatrixBase< Derived2 > & B )
```

```
6.4.2.19 get_dim_subsys()
```

```
idx qpp::internal::get_dim_subsys (
            idx sz,
             idx N ) [inline]
6.4.2.20 get_num_subsys()
idx qpp::internal::get_num_subsys (
             idx sz,
             idx d ) [inline]
6.4.2.21 kron2()
template<typename Derived1 , typename Derived2 >
dyn_mat<typename Derived1::Scalar> qpp::internal::kron2 (
            const Eigen::MatrixBase< Derived1 > & A,
             const Eigen::MatrixBase< Derived2 > & B )
6.4.2.22 multiidx2n()
idx qpp::internal::multiidx2n (
             const idx *const midx,
             idx numdims,
             const idx *const dims ) [inline], [noexcept]
6.4.2.23 n2multiidx()
void qpp::internal::n2multiidx (
            idx n,
             idx numdims,
             const idx *const dims,
             idx * result ) [inline], [noexcept]
6.4.2.24 variadic_vector_emplace() [1/2]
template<typename T >
void qpp::internal::variadic_vector_emplace (
            std::vector < T > & )
6.4.2.25 variadic_vector_emplace() [2/2]
template<typename T , typename First , typename ... Args>
void qpp::internal::variadic_vector_emplace (
            std::vector< T > & v,
            First && first,
             Args &&... args )
```

Chapter 7

Class Documentation

7.1 qpp::Codes Class Reference

const Singleton class that defines quantum error correcting codes

#include <classes/codes.h>

Inheritance diagram for qpp::Codes:

Collaboration diagram for qpp::Codes:

Public Types

enum Type { Type::FIVE_QUBIT = 1, Type::SEVEN_QUBIT_STEANE, Type::NINE_QUBIT_SHOR }
 Code types, add more codes here if needed.

Public Member Functions

ket codeword (Type type, idx i) const
 Returns the codeword of the specified code type.

Private Member Functions

• Codes ()

Default constructor.

∼Codes ()=default

Default destructor.

Friends

class internal::Singleton < const Codes >

Additional Inherited Members

7.1.1 Detailed Description

const Singleton class that defines quantum error correcting codes

7.1.2 Member Enumeration Documentation

7.1.2.1 Type

```
enum qpp::Codes::Type [strong]
```

Code types, add more codes here if needed.

See also

qpp::Codes::codeword()

Enumerator

FIVE_QUBIT	[[5,1,3]] qubit code
SEVEN_QUBIT_STEANE	[[7,1,3]] Steane qubit code
NINE_QUBIT_SHOR	[[9,1,3]] Shor qubit code

7.1.3 Constructor & Destructor Documentation

7.1.3.1 Codes()

```
qpp::Codes::Codes ( ) [inline], [private]
```

Default constructor.

7.1.3.2 ∼Codes()

```
qpp::Codes::~Codes ( ) [private], [default]
```

Default destructor.

7.1.4 Member Function Documentation

7.1.4.1 codeword()

Returns the codeword of the specified code type.

See also

```
qpp::Codes::Type
```

Parameters

type	Code type
i	Codeword index

Returns

i-th codeword of the code type

7.1.5 Friends And Related Function Documentation

7.1.5.1 internal::Singleton < const Codes >

```
friend class internal::Singleton< const Codes > [friend]
```

The documentation for this class was generated from the following file:

· classes/codes.h

7.2 qpp::exception::CustomException Class Reference

Custom exception.

```
#include <classes/exception.h>
```

Inheritance diagram for qpp::exception::CustomException:

Collaboration diagram for qpp::exception::CustomException:

Public Member Functions

• CustomException (const std::string &where, const std::string &what)

Private Member Functions

• std::string type_description () const override Exception type description.

Private Attributes

std::string what_{{}}

7.2.1 Detailed Description

Custom exception.

Custom exception, the user must provide a custom message

7.2.2 Constructor & Destructor Documentation

7.2.2.1 CustomException()

7.2.3 Member Function Documentation

7.2.3.1 type_description()

```
std::string qpp::exception::CustomException::type_description ( ) const [inline], [override],
[private], [virtual]
```

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

7.2.4 Member Data Documentation

7.2.4.1 what_

```
std::string qpp::exception::CustomException::what_ {} [private]
```

The documentation for this class was generated from the following file:

classes/exception.h

7.3 qpp::exception::DimsInvalid Class Reference

Invalid dimension(s) exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::DimsInvalid:

Collaboration diagram for qpp::exception::DimsInvalid:

Public Member Functions

• std::string type_description () const override Exception type description.

7.3.1 Detailed Description

Invalid dimension(s) exception.

std::vector<idx> of dimensions has zero size or contains zeros

7.3.2 Member Function Documentation

7.3.2.1 type_description()

```
std::string qpp::exception::DimsInvalid::type_description ( ) const [inline], [override],
[virtual]
```

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

• classes/exception.h

7.4 qpp::exception::DimsMismatchCvector Class Reference

Dimension(s) mismatch column vector size exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::DimsMismatchCvector:

Collaboration diagram for qpp::exception::DimsMismatchCvector:

Public Member Functions

• std::string type_description () const override Exception type description.

7.4.1 Detailed Description

Dimension(s) mismatch column vector size exception.

Product of the elements of std::vector<idx> of dimensions is not equal to the number of elements of the Eigen::

Matrix (assumed to be a column vector)

7.4.2 Member Function Documentation

7.4.2.1 type_description()

std::string qpp::exception::DimsMismatchCvector::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.5 qpp::exception::DimsMismatchMatrix Class Reference

Dimension(s) mismatch matrix size exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::DimsMismatchMatrix:

Collaboration diagram for qpp::exception::DimsMismatchMatrix:

Public Member Functions

std::string type_description () const override
 Exception type description.

7.5.1 Detailed Description

Dimension(s) mismatch matrix size exception.

Product of the elements of std::vector<idx> of dimensions is not equal to the number of rows of the Eigen::Matrix (assumed to be a square matrix)

7.5.2 Member Function Documentation

7.5.2.1 type_description()

std::string qpp::exception::DimsMismatchMatrix::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.6 qpp::exception::DimsMismatchRvector Class Reference

Dimension(s) mismatch row vector size exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::DimsMismatchRvector:

Collaboration diagram for qpp::exception::DimsMismatchRvector:

Public Member Functions

std::string type_description () const override
 Exception type description.

7.6.1 Detailed Description

Dimension(s) mismatch row vector size exception.

Product of the elements of std::vector<idx> of dimensions is not equal to the number of elements of the Eigen::

Matrix (assumed to be a row vector)

7.6.2 Member Function Documentation

7.6.2.1 type_description()

std::string qpp::exception::DimsMismatchRvector::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.7 qpp::exception::DimsMismatchVector Class Reference

Dimension(s) mismatch vector size exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::DimsMismatchVector:

Collaboration diagram for qpp::exception::DimsMismatchVector:

Public Member Functions

• std::string type_description () const override Exception type description.

7.7.1 Detailed Description

Dimension(s) mismatch vector size exception.

Product of the elements of std::vector<idx> of dimensions is not equal to the number of elements of the Eigen::

Matrix (assumed to be a row/column vector)

7.7.2 Member Function Documentation

7.7.2.1 type_description()

std::string qpp::exception::DimsMismatchVector::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.8 qpp::exception::DimsNotEqual Class Reference

Dimensions not equal exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::DimsNotEqual:

Collaboration diagram for qpp::exception::DimsNotEqual:

Public Member Functions

• std::string type_description () const override Exception type description.

7.8.1 Detailed Description

Dimensions not equal exception.

Local/global dimensions are not equal

7.8.2 Member Function Documentation

7.8.2.1 type_description()

std::string qpp::exception::DimsNotEqual::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.9 qpp::internal::Display_Impl_ Struct Reference

```
#include <internal/util.h>
```

Inheritance diagram for qpp::internal::Display_Impl_:

Public Member Functions

template<typename T >
 std::ostream & display_impl_ (const T &A, std::ostream &os, double chop=qpp::chop) const

7.9.1 Member Function Documentation

7.9.1.1 display_impl_()

The documentation for this struct was generated from the following file:

• internal/util.h

7.10 qpp::exception::Exception Class Reference

Base class for generating Quantum++ custom exceptions.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::Exception:

Collaboration diagram for qpp::exception::Exception:

Public Member Functions

- Exception (const std::string &where)
 - Constructs an exception.
- virtual const char * what () const noexcept override
 - Overrides std::exception::what()
- virtual std::string type_description () const =0

Exception type description.

Private Attributes

· std::string where_

7.10.1 Detailed Description

Base class for generating Quantum++ custom exceptions.

Derive from this class if more exceptions are needed, making sure to override qpp::exception::Exception::type_ description() in the derived class and to inherit the constructor qpp::exception::Exception::Exception(). Preferably keep your newly defined exception classes in the namespace qpp::exception.

Example:

7.10.2 Constructor & Destructor Documentation

7.10.2.1 Exception()

Constructs an exception.

Parameters

where Text representing where the exception occurr
--

7.10.3 Member Function Documentation

7.10.3.1 type_description()

```
std::string qpp::exception::Exception::type_description ( ) const [inline], [pure virtual]
```

Exception type description.

Returns

Exception type description

Implemented in qpp::exception::CustomException, qpp::exception::UndefinedType, qpp::exception::SizeMismatch, qpp::exception::TypeMismatch, qpp::exception::OutOfRange, qpp::exception::NotCodeword, qpp::exception::OtBipartite, qpp::exception::NotQubitSubsys, qpp::exception::NotQubitVector, qpp::exception::NotQubitRvector, qpp::exception::NotQubitCvector, qpp::exception::NotQubitMatrix, qpp::exception::PermMismatchDims, qppc::exception::DimsMismatchDims, qppc::exception::DimsMismatchVector, qppc::exception::DimsMismatchRvector, qpp::exception::DimsMismatchCvector, qpp::exception::DimsMismatchSubsys, qppcc::exception::MatrixNotSquareNorVector, qpp::exception::MatrixNotSquareNorVector, qpp::exception::MatrixNotSquareNorVector, qpp::exception::MatrixNotRvector, qpp::exception::MatrixNotRvector, qpp::exception::MatrixNotRvector, qpp::exception::MatrixNotRvector, qpp::exception::MatrixNotRvector, qpp::exception::MatrixNotRvector, qpp::exception::MatrixNotRvector, qpp::exception::MatrixNotRvector, qpp::exception::Unknown.

7.10.3.2 what()

```
virtual const char* qpp::exception::Exception::what ( ) const [inline], [override], [virtual],
[noexcept]
```

Overrides std::exception::what()

Returns

Exception description

7.10.4 Member Data Documentation

7.10.4.1 where_

std::string qpp::exception::Exception::where_ [private]

The documentation for this class was generated from the following file:

• classes/exception.h

7.11 qpp::Gates Class Reference

const Singleton class that implements most commonly used gates

#include <classes/gates.h>

Inheritance diagram for qpp::Gates:

Collaboration diagram for qpp::Gates:

Public Member Functions

cmat Rn (double theta, const std::vector< double > &n) const

Qubit rotation of theta about the 3-dimensional real (unit) vector n.

• cmat Zd (idx D=2) const

Generalized Z gate for qudits.

cmat Fd (idx D=2) const

Fourier transform gate for qudits.

• cmat Xd (idx D=2) const

Generalized X gate for qudits.

• template<typename Derived = Eigen::MatrixXcd>

Derived Id (idx D=2) const

Identity gate.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > CTRL (const Eigen::MatrixBase< Derived > &A, const std::vector<
idx > &ctrl, const std::vector< idx > &subsys, idx N, idx d=2) const

Generates the multi-partite multiple-controlled-A gate in matrix form.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > expandout (const Eigen::MatrixBase< Derived > &A, idx pos, const
std::vector< idx > &dims) const

Expands out.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > expandout (const Eigen::MatrixBase< Derived > &A, idx pos, const
std::initializer_list< idx > &dims) const

Expands out.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > expandout (const Eigen::MatrixBase< Derived > &A, idx pos, idx N,
idx d=2) const

Expands out.

Public Attributes

• cmat Id2 {cmat::Identity(2, 2)}

Identity gate.

cmat H {cmat::Zero(2, 2)}

Hadamard gate.

cmat X {cmat::Zero(2, 2)}

Pauli Sigma-X gate.

cmat Y {cmat::Zero(2, 2)}

Pauli Sigma-Y gate.

cmat Z {cmat::Zero(2, 2)}

Pauli Sigma-Z gate.

cmat S {cmat::Zero(2, 2)}

S gate.

cmat T {cmat::Zero(2, 2)}

T gate.

• cmat CNOT {cmat::Identity(4, 4)}

Controlled-NOT control target gate.

cmat CZ {cmat::Identity(4, 4)}

Controlled-Phase gate.

cmat CNOTba {cmat::Zero(4, 4)}

```
Controlled-NOT target control gate.
```

• cmat SWAP {cmat::Identity(4, 4)}

SWAP gate.

• cmat TOF {cmat::ldentity(8, 8)}

Toffoli gate.

• cmat FRED {cmat::ldentity(8, 8)}

Fredkin gate.

Private Member Functions

• Gates ()

Initializes the gates.

∼Gates ()=default

Default destructor.

Friends

class internal::Singleton < const Gates >

Additional Inherited Members

7.11.1 Detailed Description

const Singleton class that implements most commonly used gates

7.11.2 Constructor & Destructor Documentation

```
7.11.2.1 Gates()
```

```
qpp::Gates::Gates ( ) [inline], [private]
```

Initializes the gates.

7.11.2.2 \sim Gates()

```
qpp::Gates::\sim Gates ( ) [private], [default]
```

Default destructor.

7.11.3 Member Function Documentation

7.11.3.1 CTRL()

Generates the multi-partite multiple-controlled-A gate in matrix form.

See also

```
qpp::applyCTRL()
```

Note

The dimension of the gate A must match the dimension of subsys

Parameters

Α	Eigen expression
ctrl	Control subsystem indexes
subsys	Subsystem indexes where the gate A is applied
N	Total number of subsystems
d	Subsystem dimensions

Returns

CTRL-A gate, as a matrix over the same scalar field as A

7.11.3.2 expandout() [1/3]

Expands out.

See also

```
qpp::kron()
```

Expands out A as a matrix in a multi-partite system. Faster than using qpp::kron(I, I, ..., I, A, I, ..., I).

Parameters

Α	Eigen expression
pos	Position
dims	Dimensions of the multi-partite system

Returns

Tensor product $I\otimes\cdots\otimes I\otimes A\otimes I\otimes\cdots\otimes I$, with A on position pos, as a dynamic matrix over the same scalar field as A

```
7.11.3.3 expandout() [2/3]
```

Expands out.

See also

qpp::kron()

Expands out A as a matrix in a multi-partite system. Faster than using qpp::kron(I, I, ..., I, A, I, ..., I).

Note

The std::initializer_list overload exists because otherwise, in the degenerate case when *dims* has only one element, the one element list is implicitly converted to the element's underlying type, i.e. qpp::idx, which has the net effect of picking the wrong (non-vector) qpp::expandout() overload

Parameters

Α	Eigen expression
pos	Position
dims	Dimensions of the multi-partite system

Returns

Tensor product $I\otimes\cdots\otimes I\otimes A\otimes I\otimes\cdots\otimes I$, with A on position pos, as a dynamic matrix over the same scalar field as A

7.11.3.4 expandout() [3/3]

Expands out.

See also

qpp::kron()

Expands out A as a matrix in a multi-partite system. Faster than using qpp::kron(I, I, ..., I, A, I, ..., I).

Parameters

Α	Eigen expression
pos	Position
Ν	Number of subsystems
d	Subsystem dimension

Returns

Tensor product $I \otimes \cdots \otimes I \otimes A \otimes I \otimes \cdots \otimes I$, with A on position pos, as a dynamic matrix over the same scalar field as A

7.11.3.5 Fd()

```
cmat qpp::Gates::Fd (
    idx D = 2 ) const [inline]
```

Fourier transform gate for qudits.

Note

Defined as
$$F = \sum_{j,k=0}^{D-1} \exp(2\pi \mathrm{i} jk/D) |j\rangle\langle k|$$

Parameters

D Dimension of the Hilbert space

Returns

Fourier transform gate for qudits

7.11.3.6 ld()

```
template<typename Derived = Eigen::MatrixXcd>
Derived qpp::Gates::Id (
    idx D = 2 ) const [inline]
```

Identity gate.

Note

Can change the return type from complex matrix (default) by explicitly specifying the template parameter

Parameters

```
D Dimension of the Hilbert space
```

Returns

Identity gate on a Hilbert space of dimension D

7.11.3.7 Rn()

Qubit rotation of *theta* about the 3-dimensional real (unit) vector *n*.

Parameters

theta	Rotation angle
n	3-dimensional real (unit) vector

Returns

Rotation gate

7.11.3.8 Xd()

```
cmat qpp::Gates::Xd (
    idx D = 2 ) const [inline]
```

Generalized X gate for qudits.

Note

```
Defined as X=\sum_{j=0}^{D-1}|j\oplus 1\rangle\langle j|, i.e. raising operator X|j\rangle=|j\oplus 1\rangle
```

Parameters

D Dimension of the Hilbert space

Returns

Generalized X gate for qudits

```
7.11.3.9 Zd()
```

```
cmat qpp::Gates::Zd (
    idx D = 2 ) const [inline]
```

Generalized Z gate for qudits.

Note

Defined as
$$Z = \sum_{j=0}^{D-1} \exp(2\pi \mathrm{i} j/D) |j\rangle\langle j|$$

Parameters

D Dimension of the Hilbert space

Returns

Generalized Z gate for qudits

7.11.4 Friends And Related Function Documentation

```
7.11.4.1 internal::Singleton < const Gates >
```

```
friend class internal::Singleton< const Gates > [friend]
```

7.11.5 Member Data Documentation

```
7.11.5.1 CNOT
```

```
cmat qpp::Gates::CNOT {cmat::Identity(4, 4)}
```

Controlled-NOT control target gate.

```
7.11.5.2 CNOTba
```

```
cmat qpp::Gates::CNOTba {cmat::Zero(4, 4)}
```

Controlled-NOT target control gate.

```
7.11.5.3 CZ
```

```
cmat qpp::Gates::CZ {cmat::Identity(4, 4)}
```

Controlled-Phase gate.

7.11.5.4 FRED

```
cmat qpp::Gates::FRED {cmat::Identity(8, 8)}
```

Fredkin gate.

7.11.5.5 H

```
cmat qpp::Gates::H {cmat::Zero(2, 2)}
```

Hadamard gate.

7.11.5.6 ld2

```
cmat qpp::Gates::Id2 {cmat::Identity(2, 2)}
```

Identity gate.

```
7.11.5.7 S
cmat qpp::Gates::S {cmat::Zero(2, 2)}
S gate.
7.11.5.8 SWAP
cmat qpp::Gates::SWAP {cmat::Identity(4, 4)}
SWAP gate.
7.11.5.9 T
cmat qpp::Gates::T {cmat::Zero(2, 2)}
T gate.
7.11.5.10 TOF
cmat qpp::Gates::TOF {cmat::Identity(8, 8)}
Toffoli gate.
7.11.5.11 X
cmat qpp::Gates::X {cmat::Zero(2, 2)}
Pauli Sigma-X gate.
7.11.5.12 Y
cmat qpp::Gates::Y {cmat::Zero(2, 2)}
Pauli Sigma-Y gate.
```

7.11.5.13 Z

```
cmat qpp::Gates::Z {cmat::Zero(2, 2)}
```

Pauli Sigma-Z gate.

The documentation for this class was generated from the following file:

· classes/gates.h

7.12 qpp::IDisplay Class Reference

Abstract class (interface) that mandates the definition of virtual std::ostream& display(std::ostream& os) const.

```
#include <classes/idisplay.h>
```

Inheritance diagram for qpp::IDisplay:

Public Member Functions

• IDisplay ()=default

Default constructor.

IDisplay (const IDisplay &)=default

Default copy constructor.

• IDisplay (IDisplay &&)=default

Default move constructor.

• IDisplay & operator= (const IDisplay &)=default

Default copy assignment operator.

• IDisplay & operator= (IDisplay &&)=default

Default move assignment operator.

virtual ∼IDisplay ()=default

Default virtual destructor.

Private Member Functions

virtual std::ostream & display (std::ostream &os) const =0
 Must be overridden by all derived classes.

Friends

std::ostream & operator<< (std::ostream &os, const IDisplay &rhs)
 Overloads the extraction operator.

7.12.1 Detailed Description

Abstract class (interface) that mandates the definition of virtual std::ostream& display(std::ostream& os) const.

This class defines friend inline std::ostream& operator<< (std::ostream& os, const qpp::IDisplay& rhs). The latter delegates the work to the pure private virtual function qpp::IDisplay::display() which has to be overridden by all derived classes.

7.12.2 Constructor & Destructor Documentation

```
7.12.2.1 | IDisplay() [1/3]

qpp::IDisplay::IDisplay ( ) [default]

Default constructor.

7.12.2.2 | IDisplay() [2/3]
```

const IDisplay &) [default]

Default copy constructor.

qpp::IDisplay::IDisplay (

Default move constructor.

7.12.2.4 \sim IDisplay()

```
virtual qpp::IDisplay::~IDisplay ( ) [virtual], [default]
```

Default virtual destructor.

7.12.3 Member Function Documentation

7.12.3.1 display()

Must be overridden by all derived classes.

The actual stream extraction processing is performed by the overriden member function in the derived class. This function is automatically invoked by friend inline std::ostream& operator<<(std::ostream& os, const IDisplay& rhs).

Implemented in qpp::internal::IOManipEigen, qpp::Timer< T, CLOCK_T >, qpp::internal::IOManipPointer< PointerType >, and qpp::internal::IOManipRange< InputIterator >.

```
7.12.3.2 operator=() [1/2]
```

Default copy assignment operator.

```
7.12.3.3 operator=() [2/2]
```

Default move assignment operator.

7.12.4 Friends And Related Function Documentation

7.12.4.1 operator <<

Overloads the extraction operator.

Delegates the work to the virtual function qpp::IDisplay::display()

The documentation for this class was generated from the following file:

· classes/idisplay.h

7.13 qpp::Init Class Reference

const Singleton class that performs additional initializations/cleanups

```
#include <classes/init.h>
```

Inheritance diagram for qpp::Init:

Collaboration diagram for qpp::Init:

Private Member Functions

```
• Init ()
```

Additional initializations.

• ∼Init ()

Cleanups.

Friends

• class internal::Singleton< const Init >

Additional Inherited Members

7.13.1 Detailed Description

const Singleton class that performs additional initializations/cleanups

7.13.2 Constructor & Destructor Documentation

```
7.13.2.1 Init()

qpp::Init::Init ( ) [inline], [private]
```

Additional initializations.

```
7.13.2.2 \simInit() 
 qpp::Init::\simInit ( ) [inline], [private] 
 Cleanups.
```

7.13.3 Friends And Related Function Documentation

```
7.13.3.1 internal::Singleton < const Init >
friend class internal::Singleton < const Init > [friend]
```

The documentation for this class was generated from the following file:

· classes/init.h

7.14 qpp::internal::IOManipEigen Class Reference

#include <internal/classes/iomanip.h>

Inheritance diagram for qpp::internal::IOManipEigen:

Collaboration diagram for qpp::internal::IOManipEigen:

Public Member Functions

- template<typename Derived > IOManipEigen (const Eigen::MatrixBase< Derived > &A, double chop=qpp::chop)
- IOManipEigen (const cplx z, double chop=qpp::chop)

Private Member Functions

std::ostream & display (std::ostream &os) const override
 Must be overridden by all derived classes.

Private Attributes

- · cmat A_
- · double chop_

7.14.1 Constructor & Destructor Documentation

7.14.2 Member Function Documentation

```
7.14.2.1 display()
```

Must be overridden by all derived classes.

The actual stream extraction processing is performed by the overriden member function in the derived class. This function is automatically invoked by friend inline std::ostream& operator<<(std::ostream& os, const IDisplay& rhs).

Implements qpp::IDisplay.

7.14.3 Member Data Documentation

7.14.3.1 A_

```
cmat qpp::internal::IOManipEigen::A_ [private]
```

7.14.3.2 chop_

```
double qpp::internal::IOManipEigen::chop_ [private]
```

The documentation for this class was generated from the following file:

• internal/classes/iomanip.h

7.15 qpp::internal::IOManipPointer< PointerType > Class Template Reference

```
#include <internal/classes/iomanip.h>
```

Inheritance diagram for qpp::internal::IOManipPointer< PointerType >:

Collaboration diagram for qpp::internal::IOManipPointer< PointerType >:

Public Member Functions

- IOManipPointer (const PointerType *p, idx N, const std::string &separator, const std::string &start="[", const std::string &end="]")
- IOManipPointer (const IOManipPointer &)=default
- IOManipPointer & operator= (const IOManipPointer &)=default

Private Member Functions

std::ostream & display (std::ostream &os) const override
 Must be overridden by all derived classes.

Private Attributes

- const PointerType * p_
- idx N_
- std::string separator_
- std::string start_
- std::string end_

7.15.1 Constructor & Destructor Documentation

7.15.1.1 **IOManipPointer()** [1/2]

7.15.1.2 **IOManipPointer()** [2/2]

7.15.2 Member Function Documentation

7.15.2.1 display()

Must be overridden by all derived classes.

The actual stream extraction processing is performed by the overriden member function in the derived class. This function is automatically invoked by friend inline std::ostream& operator<<(std::ostream& os, const IDisplay& rhs).

Implements qpp::IDisplay.

7.15.2.2 operator=()

7.15.3 Member Data Documentation

```
7.15.3.1 end_
template<typename PointerType>
std::string qpp::internal::IOManipPointer< PointerType >::end_ [private]
7.15.3.2 N_
template<typename PointerType>
idx qpp::internal::IOManipPointer< PointerType >::N_ [private]
7.15.3.3 p_
template<typename PointerType>
const PointerType* qpp::internal::IOManipPointer< PointerType >::p_ [private]
7.15.3.4 separator_
template<typename PointerType>
std::string qpp::internal::IOManipPointer< PointerType >::separator_ [private]
7.15.3.5 start_
```

The documentation for this class was generated from the following file:

std::string qpp::internal::IOManipPointer< PointerType >::start_ [private]

• internal/classes/iomanip.h

template<typename PointerType>

7.16 qpp::internal::IOManipRange < InputIterator > Class Template Reference

#include <internal/classes/iomanip.h>

Inheritance diagram for qpp::internal::IOManipRange< InputIterator >:

Collaboration diagram for qpp::internal::IOManipRange< InputIterator >:

Public Member Functions

- IOManipRange (InputIterator first, InputIterator last, const std::string &separator, const std::string &start="[", const std::string &end="]")
- IOManipRange (const IOManipRange &)=default
- IOManipRange & operator= (const IOManipRange &)=default

Private Member Functions

std::ostream & display (std::ostream &os) const override
 Must be overridden by all derived classes.

Private Attributes

- InputIterator first_
- InputIterator last
- std::string separator
- std::string start_
- · std::string end_

7.16.1 Constructor & Destructor Documentation

```
7.16.1.1 IOManipRange() [1/2]
```

7.16.1.2 IOManipRange() [2/2]

7.16.2 Member Function Documentation

7.16.2.1 display()

Must be overridden by all derived classes.

The actual stream extraction processing is performed by the overriden member function in the derived class. This function is automatically invoked by friend inline std::ostream& operator<<(std::ostream& os, const IDisplay& rhs).

Implements qpp::IDisplay.

7.16.2.2 operator=()

7.16.3 Member Data Documentation

```
7.16.3.1 end
template<typename InputIterator>
std::string qpp::internal::IOManipRange< InputIterator >::end_ [private]
7.16.3.2 first_
template<typename InputIterator>
InputIterator qpp::internal::IOManipRange< InputIterator >::first_ [private]
7.16.3.3 last_
template<typename InputIterator>
InputIterator qpp::internal::IOManipRange< InputIterator >::last_ [private]
7.16.3.4 separator_
template<typename InputIterator>
std::string qpp::internal::IOManipRange< InputIterator >::separator_ [private]
7.16.3.5 start_
template<typename InputIterator>
std::string qpp::internal::IOManipRange< InputIterator >::start_ [private]
```

The documentation for this class was generated from the following file:

internal/classes/iomanip.h

7.17 qpp::is_complex< T > Struct Template Reference

Checks whether the type is a complex type.

#include <traits.h>

Inheritance diagram for qpp::is_complex< T >:

Collaboration diagram for qpp::is_complex< T >:

7.17.1 Detailed Description

template < typename T > struct qpp::is_complex < T >

Checks whether the type is a complex type.

Provides the constant member *value* which is equal to *true*, if the type is a complex type, i.e. *std::complex<T>*

The documentation for this struct was generated from the following file:

traits.h

7.18 qpp::is_complex < std::complex < T > > Struct Template Reference

Checks whether the type is a complex number type, specialization for complex types.

```
#include <traits.h>
```

Inheritance diagram for qpp::is_complex < std::complex < T > :

Collaboration diagram for qpp::is_complex< std::complex< T > >:

7.18.1 Detailed Description

```
template<typename T> struct qpp::is_complex< std::complex< T > >
```

Checks whether the type is a complex number type, specialization for complex types.

The documentation for this struct was generated from the following file:

· traits.h

7.19 qpp::is_iterable < T, typename > Struct Template Reference

Checks whether T is compatible with an STL-like iterable container.

```
#include <traits.h>
```

Inheritance diagram for qpp::is_iterable < T, typename >:

Collaboration diagram for qpp::is_iterable < T, typename >:

7.19.1 Detailed Description

template<typename T, typename = void> struct qpp::is_iterable< T, typename >

Checks whether T is compatible with an STL-like iterable container.

Provides the constant member *value* which is equal to *true*, if *T* is compatible with an iterable container, i.e. provides at least *begin()* and *end()* member functions. Otherwise, *value* is equal to *false*.

The documentation for this struct was generated from the following file:

traits.h

7.20 qpp::is_iterable < T, to_void < decltype(std::declval < T >().begin()), decltype(std \leftarrow ::declval < T >().end()), typename T::value_type > > Struct Template Reference

Checks whether *T* is compatible with an STL-like iterable container, specialization for STL-like iterable containers.

```
#include <traits.h>
```

Inheritance diagram for qpp::is_iterable < T, to_void < decltype(std::declval < T >().begin()), decltype(std::declval < T >().end()), typename T::value_type > >:

Collaboration diagram for qpp::is_iterable< T, to_void< decltype(std::declval< T >().begin()), decltype(std:: \leftarrow :declval< T >().end()), typename T::value_type > >:

7.20.1 Detailed Description

```
template < typename \ T > \\ struct \ qpp::is\_iterable < \ T, \ to\_void < \ decltype(std::declval < \ T > ().begin()), \ decltype(std::declval < \ T > ().end()), \ typename \ T \leftarrow \\ ::value\_type > >
```

Checks whether *T* is compatible with an STL-like iterable container, specialization for STL-like iterable containers.

The documentation for this struct was generated from the following file:

· traits.h

7.21 qpp::is_matrix_expression < Derived > Struct Template Reference

Checks whether the type is an Eigen matrix expression.

```
#include <traits.h>
```

Inheritance diagram for qpp::is_matrix_expression< Derived >:

Collaboration diagram for qpp::is matrix expression< Derived >:

7.21.1 Detailed Description

```
template < typename Derived > struct qpp::is_matrix_expression < Derived >
```

Checks whether the type is an Eigen matrix expression.

Provides the constant member *value* which is equal to *true*, if the type is an Eigen matrix expression of type *Eigen ∷MatrixBase Oerived >*. Otherwise, *value* is equal to *false*.

The documentation for this struct was generated from the following file:

· traits.h

7.22 qpp::make_void < Ts > Struct Template Reference

```
Helper for <a href="mailto:qpp::to_void">qpp::to_void<>> alias template.</a>
```

```
#include <traits.h>
```

Public Types

· typedef void type

7.22.1 Detailed Description

```
template<typename... Ts> struct qpp::make_void< Ts>
```

Helper for qpp::to_void<>> alias template.

See also

```
qpp::to void<>
```

7.22.2 Member Typedef Documentation

7.22.2.1 type

```
template<typename... Ts>
typedef void qpp::make_void< Ts >::type
```

The documentation for this struct was generated from the following file:

· traits.h

7.23 qpp::exception::MatrixMismatchSubsys Class Reference

Matrix mismatch subsystems exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::MatrixMismatchSubsys:

Collaboration diagram for qpp::exception::MatrixMismatchSubsys:

Public Member Functions

• std::string type_description () const override Exception type description.

7.23.1 Detailed Description

Matrix mismatch subsystems exception.

Matrix size mismatch subsystem sizes (e.g. in qpp::apply())

7.23.2 Member Function Documentation

7.23.2.1 type_description()

std::string qpp::exception::MatrixMismatchSubsys::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

• classes/exception.h

7.24 qpp::exception::MatrixNotCvector Class Reference

Matrix is not a column vector exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::MatrixNotCvector:

Collaboration diagram for qpp::exception::MatrixNotCvector:

Public Member Functions

• std::string type_description () const override Exception type description.

7.24.1 Detailed Description

Matrix is not a column vector exception.

Eigen::Matrix is not a column vector

7.24.2 Member Function Documentation

7.24.2.1 type_description()

std::string qpp::exception::MatrixNotCvector::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.25 qpp::exception::MatrixNotRvector Class Reference

Matrix is not a row vector exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::MatrixNotRvector:

Collaboration diagram for qpp::exception::MatrixNotRvector:

Public Member Functions

• std::string type_description () const override Exception type description.

7.25.1 Detailed Description

Matrix is not a row vector exception.

Eigen::Matrix is not a row vector

7.25.2 Member Function Documentation

7.25.2.1 type_description()

std::string qpp::exception::MatrixNotRvector::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.26 qpp::exception::MatrixNotSquare Class Reference

Matrix is not square exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::MatrixNotSquare:

Collaboration diagram for qpp::exception::MatrixNotSquare:

Public Member Functions

std::string type_description () const override
 Exception type description.

7.26.1 Detailed Description

Matrix is not square exception.

Eigen::Matrix is not a square matrix

7.26.2 Member Function Documentation

7.26.2.1 type_description()

std::string qpp::exception::MatrixNotSquare::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.27 qpp::exception::MatrixNotSquareNorCvector Class Reference

Matrix is not square nor column vector exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::MatrixNotSquareNorCvector:

Collaboration diagram for qpp::exception::MatrixNotSquareNorCvector:

Public Member Functions

• std::string type_description () const override Exception type description.

7.27.1 Detailed Description

Matrix is not square nor column vector exception.

Eigen::Matrix is not a square matrix nor a column vector

7.27.2 Member Function Documentation

7.27.2.1 type_description()

std::string qpp::exception::MatrixNotSquareNorCvector::type_description () const [inline],
[override], [virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.28 qpp::exception::MatrixNotSquareNorRvector Class Reference

Matrix is not square nor row vector exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::MatrixNotSquareNorRvector:

Collaboration diagram for qpp::exception::MatrixNotSquareNorRvector:

Public Member Functions

• std::string type_description () const override Exception type description.

7.28.1 Detailed Description

Matrix is not square nor row vector exception.

Eigen::Matrix is not a square matrix nor a row vector

7.28.2 Member Function Documentation

7.28.2.1 type_description()

std::string qpp::exception::MatrixNotSquareNorRvector::type_description () const [inline],
[override], [virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.29 qpp::exception::MatrixNotSquareNorVector Class Reference

Matrix is not square nor vector exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::MatrixNotSquareNorVector:

Collaboration diagram for qpp::exception::MatrixNotSquareNorVector:

Public Member Functions

std::string type_description () const override
 Exception type description.

7.29.1 Detailed Description

Matrix is not square nor vector exception.

Eigen::Matrix is not a square matrix nor a row/column vector

7.29.2 Member Function Documentation

7.29.2.1 type_description()

std::string qpp::exception::MatrixNotSquareNorVector::type_description () const [inline],
[override], [virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.30 qpp::exception::MatrixNotVector Class Reference

Matrix is not a vector exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::MatrixNotVector:

Collaboration diagram for qpp::exception::MatrixNotVector:

Public Member Functions

std::string type_description () const override
 Exception type description.

7.30.1 Detailed Description

Matrix is not a vector exception.

Eigen::Matrix is not a row or column vector

7.30.2 Member Function Documentation

7.30.2.1 type_description()

std::string qpp::exception::MatrixNotVector::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.31 qpp::exception::NoCodeword Class Reference

Codeword does not exist exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::NoCodeword:

Collaboration diagram for qpp::exception::NoCodeword:

Public Member Functions

• std::string type_description () const override Exception type description.

7.31.1 Detailed Description

Codeword does not exist exception.

Codeword does not exist, thrown when calling qpp::Codes::codeword() with an invalid index

7.31.2 Member Function Documentation

7.31.2.1 type_description()

std::string qpp::exception::NoCodeword::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.32 qpp::exception::NotBipartite Class Reference

Not bi-partite exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::NotBipartite:

Collaboration diagram for qpp::exception::NotBipartite:

Public Member Functions

std::string type_description () const override
 Exception type description.

7.32.1 Detailed Description

Not bi-partite exception.

std::vector<idx> of dimensions has size different from 2

7.32.2 Member Function Documentation

7.32.2.1 type_description()

std::string qpp::exception::NotBipartite::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

• classes/exception.h

7.33 qpp::exception::NotQubitCvector Class Reference

Column vector is not 2 x 1 exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::NotQubitCvector:

Collaboration diagram for qpp::exception::NotQubitCvector:

Public Member Functions

• std::string type_description () const override Exception type description.

7.33.1 Detailed Description

Column vector is not 2 x 1 exception.

Eigen::Matrix is not 2 x 1

7.33.2 Member Function Documentation

7.33.2.1 type_description()

std::string qpp::exception::NotQubitCvector::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.34 qpp::exception::NotQubitMatrix Class Reference

Matrix is not 2 x 2 exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::NotQubitMatrix:

Collaboration diagram for qpp::exception::NotQubitMatrix:

Public Member Functions

• std::string type_description () const override Exception type description.

7.34.1 Detailed Description

Matrix is not 2 x 2 exception.

Eigen::Matrix is not 2 x 2

7.34.2 Member Function Documentation

7.34.2.1 type_description()

std::string qpp::exception::NotQubitMatrix::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.35 qpp::exception::NotQubitRvector Class Reference

Row vector is not 1 x 2 exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::NotQubitRvector:

Collaboration diagram for qpp::exception::NotQubitRvector:

Public Member Functions

• std::string type_description () const override Exception type description.

7.35.1 Detailed Description

Row vector is not 1 x 2 exception.

Eigen::Matrix is not 1 x 2

7.35.2 Member Function Documentation

7.35.2.1 type_description()

std::string qpp::exception::NotQubitRvector::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.36 qpp::exception::NotQubitSubsys Class Reference

Subsystems are not qubits exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::NotQubitSubsys:

Collaboration diagram for qpp::exception::NotQubitSubsys:

Public Member Functions

• std::string type_description () const override Exception type description.

7.36.1 Detailed Description

Subsystems are not qubits exception.

Subsystems are not 2-dimensional (qubits)

7.36.2 Member Function Documentation

7.36.2.1 type_description()

std::string qpp::exception::NotQubitSubsys::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.37 qpp::exception::NotQubitVector Class Reference

Vector is not 2 x 1 nor 1 x 2 exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::NotQubitVector:

Collaboration diagram for qpp::exception::NotQubitVector:

Public Member Functions

• std::string type_description () const override Exception type description.

7.37.1 Detailed Description

Vector is not 2 x 1 nor 1 x 2 exception.

Eigen::Matrix is not 2 x 1 nor 1 x 2

7.37.2 Member Function Documentation

7.37.2.1 type_description()

std::string qpp::exception::NotQubitVector::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

• classes/exception.h

7.38 qpp::exception::OutOfRange Class Reference

Parameter out of range exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::OutOfRange:

Collaboration diagram for qpp::exception::OutOfRange:

Public Member Functions

• std::string type_description () const override Exception type description.

7.38.1 Detailed Description

Parameter out of range exception.

Parameter out of range

7.38.2 Member Function Documentation

7.38.2.1 type_description()

std::string qpp::exception::OutOfRange::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.39 qpp::exception::PermInvalid Class Reference

Invalid permutation exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::PermInvalid:

Collaboration diagram for qpp::exception::PermInvalid:

Public Member Functions

• std::string type_description () const override Exception type description.

7.39.1 Detailed Description

Invalid permutation exception.

std::vector<idx> does note represent a valid permutation

7.39.2 Member Function Documentation

7.39.2.1 type_description()

std::string qpp::exception::PermInvalid::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.40 qpp::exception::PermMismatchDims Class Reference

Permutation mismatch dimensions exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::PermMismatchDims:

Collaboration diagram for qpp::exception::PermMismatchDims:

Public Member Functions

• std::string type_description () const override Exception type description.

7.40.1 Detailed Description

Permutation mismatch dimensions exception.

Size of the std::vector<idx> representing the permutation is different from the size of the std::vector<idx> of dimensions

7.40.2 Member Function Documentation

7.40.2.1 type_description()

std::string qpp::exception::PermMismatchDims::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.41 qpp::RandomDevices Class Reference

Singeleton class that manages the source of randomness in the library.

```
#include <classes/random_devices.h>
```

Inheritance diagram for qpp::RandomDevices:

Collaboration diagram for qpp::RandomDevices:

Public Member Functions

• std::mt19937 & get_prng ()

Returns a reference to the internal PRNG object.

• std::istream & load (std::istream &is)

Loads the state of the PRNG from an input stream.

• std::ostream & save (std::ostream &os) const

Saves the state of the PRNG to an output stream.

Private Member Functions

• RandomDevices ()

Initializes and seeds the random number generators.

∼RandomDevices ()=default

Default destructor.

Private Attributes

• std::random_device rd_

used to seed std::mt19937 prng_

std::mt19937 prng_

Mersenne twister random number generator.

Friends

• class internal::Singleton < RandomDevices >

Additional Inherited Members

7.41.1 Detailed Description

Singeleton class that manages the source of randomness in the library.

Consists of a wrapper around an std::mt19937 Mersenne twister random number generator engine and an std ∴ ::random_device engine. The latter is used to seed the Mersenne twister.

Warning

This class DOES NOT seed the standard C number generator used by Eigen::Matrix::Random(), since it is not thread safe. Do not use Eigen::Matrix::Random() or functions that depend on the C style random number engine, but use qpp::rand() instead!

7.41.2 Constructor & Destructor Documentation

7.41.2.1 RandomDevices()

```
qpp::RandomDevices::RandomDevices ( ) [inline], [private]
```

Initializes and seeds the random number generators.

7.41.2.2 ∼RandomDevices()

```
qpp::RandomDevices::~RandomDevices ( ) [private], [default]
```

Default destructor.

7.41.3 Member Function Documentation

```
7.41.3.1 get_prng()
```

```
std::mt19937& qpp::RandomDevices::get_prng ( ) [inline]
```

Returns a reference to the internal PRNG object.

Returns

Reference to the internal PRNG object

7.41.3.2 load()

Loads the state of the PRNG from an input stream.

Do					
Pа	ra	m	eı	re.	rs

```
is Input stream
```

Returns

The input stream

```
7.41.3.3 save()
```

Saves the state of the PRNG to an output stream.

Parameters

```
os Output stream
```

Returns

The output stream

7.41.4 Friends And Related Function Documentation

```
7.41.4.1 internal::Singleton < RandomDevices >
```

```
\label{lem:class} \mbox{friend class internal::Singleton} < \mbox{RandomDevices} > \mbox{ [friend]}
```

7.41.5 Member Data Documentation

```
7.41.5.1 prng_
```

```
std::mt19937 qpp::RandomDevices::prng_ [private]
```

Mersenne twister random number generator.

```
7.41.5.2 rd
```

```
std::random_device qpp::RandomDevices::rd_ [private]
```

used to seed std::mt19937 prng

The documentation for this class was generated from the following file:

· classes/random_devices.h

7.42 qpp::internal::Singleton < T > Class Template Reference

Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously recurring template pattern)

```
#include <internal/classes/singleton.h>
```

Static Public Member Functions

- static T & get_instance () noexcept(std::is_nothrow_constructible < T >::value)
- static T & get_thread_local_instance () noexcept(std::is_nothrow_constructible < T >::value)

Protected Member Functions

- Singleton () noexcept=default
- Singleton (const Singleton &)=delete
- Singleton & operator= (const Singleton &)=delete
- virtual ∼Singleton ()=default

7.42.1 Detailed Description

```
\label{template} \begin{tabular}{ll} template < typename T > \\ class & qpp::internal::Singleton < T > \\ \end{tabular}
```

Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously recurring template pattern)

To implement a singleton, derive your class from qpp::internal::Singleton, make qpp::internal::Singleton a friend of your class, then declare the constructor and destructor of your class as private. To get an instance, use the static member function qpp::internal::Singleton::get_instance() (qpp::internal::Singleton::get_thread_local_cinstance()), which returns a reference (thread_local_reference) to your newly created singleton (thread-safe in C++11).

Example:

See also

Code of qpp::Codes, qpp::Gates, qpp::Init, qpp::RandomDevices, qpp::States or qpp.h for real world examples of usage.

7.42.2 Constructor & Destructor Documentation

7.42.3 Member Function Documentation

7.42.3.1 get_instance()

```
template<typename T>
static T& qpp::internal::Singleton< T >::get_instance ( ) [inline], [static], [noexcept]
```

7.42.3.2 get_thread_local_instance()

```
template<typename T>
static T& qpp::internal::Singleton< T >::get_thread_local_instance ( ) [inline], [static],
[noexcept]
```

7.42.3.3 operator=()

The documentation for this class was generated from the following file:

• internal/classes/singleton.h

7.43 qpp::exception::SizeMismatch Class Reference

Size mismatch exception.

```
#include <classes/exception.h>
```

Inheritance diagram for qpp::exception::SizeMismatch:

Collaboration diagram for qpp::exception::SizeMismatch:

Public Member Functions

• std::string type_description () const override Exception type description.

7.43.1 Detailed Description

Size mismatch exception.

Sizes do not match

7.43.2 Member Function Documentation

7.43.2.1 type_description()

std::string qpp::exception::SizeMismatch::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

classes/exception.h

7.44 qpp::States Class Reference

const Singleton class that implements most commonly used states

#include <classes/states.h>

Inheritance diagram for qpp::States:

Collaboration diagram for qpp::States:

Public Member Functions

• ket mes (idx d=2) const

Maximally entangled state of 2 qudits.

• ket zero (idx n, idx d=2) const

Zero state of n qudits.

• ket one (idx n, idx d=2) const

One state of n qudits.

• ket jn (idx j, idx n, idx d=2) const

 $|j\rangle^{\otimes n}$ state of n qudits

• ket plus (idx n) const

Plus state of n qubits.

• ket minus (idx n) const

Minus state of n qubits.

Public Attributes

```
    ket x0 {ket::Zero(2)}

      Pauli Sigma-X 0-eigenstate |+>

    ket x1 {ket::Zero(2)}

      Pauli Sigma-X 1-eigenstate |->

    ket y0 {ket::Zero(2)}

      Pauli Sigma-Y 0-eigenstate |y+>

    ket y1 {ket::Zero(2)}

      Pauli Sigma-Y 1-eigenstate |y->

    ket z0 {ket::Zero(2)}

      Pauli Sigma-Z 0-eigenstate |0>

    ket z1 {ket::Zero(2)}

      Pauli Sigma-Z 1-eigenstate | 1>

    cmat px0 {cmat::Zero(2, 2)}

      Projector onto the Pauli Sigma-X 0-eigenstate |+><+|.
• cmat px1 {cmat::Zero(2, 2)}
      Projector onto the Pauli Sigma-X 1-eigenstate |-><-|.

    cmat py0 {cmat::Zero(2, 2)}

      Projector onto the Pauli Sigma-Y 0-eigenstate |y+\rangle < y+|.

    cmat py1 {cmat::Zero(2, 2)}

      Projector onto the Pauli Sigma-Y 1-eigenstate |y-><y-|.

    cmat pz0 {cmat::Zero(2, 2)}

      Projector onto the Pauli Sigma-Z 0-eigenstate |0><0|.

    cmat pz1 {cmat::Zero(2, 2)}

      Projector onto the Pauli Sigma-Z 1-eigenstate | 1><1|.

    ket b00 {ket::Zero(4)}

      Bell-00 state (following the convention in Nielsen and Chuang)
ket b01 {ket::Zero(4)}
      Bell-01 state (following the convention in Nielsen and Chuang)

    ket b10 {ket::Zero(4)}

      Bell-10 state (following the convention in Nielsen and Chuang)

    ket b11 {ket::Zero(4)}

      Bell-11 state (following the convention in Nielsen and Chuang)

    cmat pb00 {cmat::Zero(4, 4)}

      Projector onto the Bell-00 state.

    cmat pb01 {cmat::Zero(4, 4)}

      Projector onto the Bell-01 state.

    cmat pb10 {cmat::Zero(4, 4)}

      Projector onto the Bell-10 state.

    cmat pb11 {cmat::Zero(4, 4)}

      Projector onto the Bell-11 state.
ket GHZ {ket::Zero(8)}
      GHZ state.
ket W {ket::Zero(8)}
      W state.
cmat pGHZ {cmat::Zero(8, 8)}
      Projector onto the GHZ state.
cmat pW {cmat::Zero(8, 8)}
```

Projector onto the W state.

Private Member Functions

- States ()
- ∼States ()=default

Default destructor.

Friends

class internal::Singleton < const States >

Additional Inherited Members

7.44.1 Detailed Description

const Singleton class that implements most commonly used states

7.44.2 Constructor & Destructor Documentation

```
7.44.2.1 States()

qpp::States::States ( ) [inline], [private]

Initialize the states

7.44.2.2 ~States()

qpp::States::~States ( ) [private], [default]

Default destructor.
```

7.44.3 Member Function Documentation

```
7.44.3.1 jn()
ket qpp::States::jn (
```

idx n,

idx d = 2) const [inline]

 $|j\rangle^{\otimes n}$ state of *n* qudits

Parameters

j	Non-negative integer
n	Non-negative integer
d	Subsystem dimensions

Returns

```
|j\rangle^{\otimes n} state of n qudits
```

7.44.3.2 mes()

```
ket qpp::States::mes (
idx d = 2 ) const [inline]
```

Maximally entangled state of 2 qudits.

Parameters

d Subsystem dimensions

Returns

Maximally entangled state $\frac{1}{\sqrt{d}} \sum_{j=0}^{d-1} |jj\rangle$ of 2 qudits

7.44.3.3 minus()

```
ket qpp::States::minus (
        idx n ) const [inline]
```

Minus state of *n* qubits.

Parameters

n Non-negative integer

Returns

Minus state $|-\rangle^{\otimes n}$ of n qubits

7.44.3.4 one()

```
ket qpp::States::one (
         idx n,
         idx d = 2) const [inline]
```

One state of *n* qudits.

Parameters

n	Non-negative integer	
d	Subsystem dimensions	

Returns

One state $|1\rangle^{\otimes n}$ of n qudits

7.44.3.5 plus()

```
ket qpp::States::plus (
        idx n ) const [inline]
```

Plus state of *n* qubits.

Parameters

```
n Non-negative integer
```

Returns

Plus state $|+\rangle^{\otimes n}$ of n qubits

7.44.3.6 zero()

Zero state of *n* qudits.

Parameters

n	Non-negative integer	
d	Subsystem dimensions	

Returns

```
Zero state |0\rangle^{\otimes n} of n qudits
```

7.44.4 Friends And Related Function Documentation

```
7.44.4.1 internal::Singleton < const States >
friend class internal::Singleton < const States > [friend]
```

7.44.5 Member Data Documentation

```
7.44.5.1 b00
ket qpp::States::b00 {ket::Zero(4)}
```

Bell-00 state (following the convention in Nielsen and Chuang)

```
7.44.5.2 b01
ket qpp::States::b01 {ket::Zero(4)}
```

Bell-01 state (following the convention in Nielsen and Chuang)

```
7.44.5.3 b10
```

```
ket qpp::States::b10 {ket::Zero(4)}
```

Bell-10 state (following the convention in Nielsen and Chuang)

```
7.44.5.4 b11
```

```
ket qpp::States::b11 {ket::Zero(4)}
```

Bell-11 state (following the convention in Nielsen and Chuang)

```
7.44.5.5 GHZ
ket qpp::States::GHZ {ket::Zero(8)}
GHZ state.
7.44.5.6 pb00
cmat qpp::States::pb00 {cmat::Zero(4, 4)}
Projector onto the Bell-00 state.
7.44.5.7 pb01
cmat qpp::States::pb01 {cmat::Zero(4, 4)}
Projector onto the Bell-01 state.
7.44.5.8 pb10
cmat qpp::States::pb10 {cmat::Zero(4, 4)}
Projector onto the Bell-10 state.
7.44.5.9 pb11
cmat qpp::States::pb11 {cmat::Zero(4, 4)}
Projector onto the Bell-11 state.
```

```
Projector onto the GHZ state.
```

cmat qpp::States::pGHZ {cmat::Zero(8, 8)}

7.44.5.10 pGHZ

```
7.44.5.11 pW
cmat qpp::States::pW {cmat::Zero(8, 8)}
Projector onto the W state.
7.44.5.12 px0
cmat qpp::States::px0 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-X 0-eigenstate |+><+|.
7.44.5.13 px1
cmat qpp::States::px1 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-X 1-eigenstate |-><-|.
7.44.5.14 py0
cmat qpp::States::py0 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-Y 0-eigenstate |y+><y+|.
7.44.5.15 py1
cmat qpp::States::py1 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-Y 1-eigenstate |y-><y-|.
7.44.5.16 pz0
cmat qpp::States::pz0 {cmat::Zero(2, 2)}
```

Projector onto the Pauli Sigma-Z 0-eigenstate |0><0|.

```
7.44.5.17 pz1
cmat qpp::States::pz1 {cmat::Zero(2, 2)}
Projector onto the Pauli Sigma-Z 1-eigenstate |1><1|.
7.44.5.18 W
ket qpp::States::W {ket::Zero(8)}
W state.
7.44.5.19 x0
ket qpp::States::x0 {ket::Zero(2)}
Pauli Sigma-X 0-eigenstate |+>
7.44.5.20 x1
ket qpp::States::x1 {ket::Zero(2)}
Pauli Sigma-X 1-eigenstate |->
7.44.5.21 y0
ket qpp::States::y0 {ket::Zero(2)}
Pauli Sigma-Y 0-eigenstate |y+>
7.44.5.22 y1
ket qpp::States::y1 {ket::Zero(2)}
Pauli Sigma-Y 1-eigenstate |y->
```

7.44.5.23 z0

```
ket qpp::States::z0 {ket::Zero(2)}
```

Pauli Sigma-Z 0-eigenstate |0>

7.44.5.24 z1

```
ket qpp::States::z1 {ket::Zero(2)}
```

Pauli Sigma-Z 1-eigenstate |1>

The documentation for this class was generated from the following file:

· classes/states.h

7.45 qpp::exception::SubsysMismatchDims Class Reference

Subsystems mismatch dimensions exception.

```
#include <classes/exception.h>
```

Inheritance diagram for qpp::exception::SubsysMismatchDims:

Collaboration diagram for qpp::exception::SubsysMismatchDims:

Public Member Functions

std::string type_description () const override
 Exception type description.

7.45.1 Detailed Description

Subsystems mismatch dimensions exception.

std::vector<idx> of subsystem labels has duplicates, or has entries that are larger than the size of the std ::vector<idx> of dimensions

7.45.2 Member Function Documentation

7.45.2.1 type_description()

std::string qpp::exception::SubsysMismatchDims::type_description () const [inline], [override],
[virtual]

Exception type description.

230 Class Documentation

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

• classes/exception.h

7.46 qpp::Timer < T, CLOCK_T > Class Template Reference

Chronometer.

```
#include <classes/timer.h>
```

Inheritance diagram for qpp::Timer < T, CLOCK_T >:

Collaboration diagram for qpp::Timer < T, CLOCK_T >:

Public Member Functions

· Timer () noexcept

Constructs an instance with the current time as the starting point.

· void tic () noexcept

Resets the chronometer.

· const Timer & toc () noexcept

Stops the chronometer.

· double tics () const noexcept

Time passed in the duration specified by T.

• template<typename U = T>

U get_duration () const noexcept

Duration specified by U.

• Timer (const Timer &)=default

Default copy constructor.

• Timer (Timer &&)=default

Default move constructor.

• Timer & operator= (const Timer &)=default

Default copy assignment operator.

• Timer & operator= (Timer &&)=default

Default move assignment operator.

virtual ∼Timer ()=default

Default virtual destructor.

Protected Attributes

- CLOCK_T::time_point start_
- CLOCK_T::time_point end_

Private Member Functions

 std::ostream & display (std::ostream &os) const override *qpp::IDisplay::display() override*

7.46.1 Detailed Description

 $template < typename\ T = std::chrono::duration < double >, typename\ CLOCK_T = std::chrono::steady_clock > class\ qpp::Timer < T,\ CLOCK_T >$

Chronometer.

Template Parameters

T	Tics duration, default is std::chrono::duration <double, 1="">, i.e. seconds in double precision</double,>
CLOCK↔	Clock's type, default is std::chrono::steady_clock, not affected by wall clock changes during runtime
_T	

232 Class Documentation

7.46.2 Constructor & Destructor Documentation

Constructs an instance with the current time as the starting point.

```
7.46.2.2 Timer() [2/3]
```

Default copy constructor.

```
7.46.2.3 Timer() [3/3]
```

Default move constructor.

```
7.46.2.4 \simTimer()
```

```
template<typename T = std::chrono::duration<double>, typename CLOCK_T = std::chrono::steady←
   _clock>
virtual qpp::Timer< T, CLOCK_T >::~Timer ( ) [virtual], [default]
```

Default virtual destructor.

7.46.3 Member Function Documentation

```
7.46.3.1 display()
```

qpp::IDisplay::display() override

Parameters

```
os Output stream
```

Returns

Writes to the output stream the number of tics (specified by T) that passed between the instantiation/reset and invocation of qpp::Timer::toc().

Implements qpp::IDisplay.

7.46.3.2 get_duration()

```
template<typename T = std::chrono::duration<double>, typename CLOCK_T = std::chrono::steady 
_clock>
template<typename U = T>
U qpp::Timer< T, CLOCK_T >::get_duration ( ) const [inline], [noexcept]
```

Duration specified by U.

Template Parameters

U Duration, default is T, which defaults to std::chrono::duration<double, 1>, i.e. seconds in double precision

Returns

Duration that passed between the instantiation/reset and invocation of qpp::Timer::toc()

7.46.3.3 operator=() [1/2]

Default copy assignment operator.

7.46.3.4 operator=() [2/2]

Default move assignment operator.

234 Class Documentation

7.46.3.5 tic()

```
 \begin{tabular}{ll} template < type name T = std::chrono::duration < double>, type name CLOCK_T = std::chrono::steady & clock> \\ void qpp::Timer < T, CLOCK_T >::tic ( ) [inline], [noexcept] \\ \end{tabular}
```

Resets the chronometer.

Resets the starting/ending point to the current time

7.46.3.6 tics()

```
 \begin{tabular}{ll} template < typename T = std::chrono::duration < double >, typename CLOCK_T = std::chrono::steady \leftarrow \_clock > \\ double qpp::Timer < T, CLOCK_T >::tics ( ) const [inline], [noexcept] \\ \end{tabular}
```

Time passed in the duration specified by T.

Returns

Number of tics (specified by T) that passed between the instantiation/reset and invocation of qpp::Timer::toc()

7.46.3.7 toc()

```
 \begin{tabular}{ll} template < type name $T = std::chrono::steady \leftarrow \_clock > \\ const $Timer\& $qpp::Timer < T, $CLOCK_T > ::toc ( ) [inline], [noexcept] \end{tabular}
```

Stops the chronometer.

Set the current time as the ending point

Returns

Current instance

7.46.4 Member Data Documentation

7.46.4.1 end

```
template<typename T = std::chrono::duration<double>, typename CLOCK_T = std::chrono::steady←
   _clock>
CLOCK_T::time_point qpp::Timer< T, CLOCK_T >::end_ [protected]
```

7.46.4.2 start_

```
template<typename T = std::chrono::duration<double>, typename CLOCK_T = std::chrono::steady
_clock>
CLOCK_T::time_point qpp::Timer< T, CLOCK_T >::start_ [protected]
```

The documentation for this class was generated from the following file:

· classes/timer.h

7.47 qpp::exception::TypeMismatch Class Reference

Type mismatch exception.

```
#include <classes/exception.h>
```

Inheritance diagram for qpp::exception::TypeMismatch:

236 Class Documentation

Collaboration diagram for qpp::exception::TypeMismatch:

Public Member Functions

• std::string type_description () const override Exception type description.

7.47.1 Detailed Description

Type mismatch exception.

Scalar types do not match

7.47.2 Member Function Documentation

7.47.2.1 type_description()

std::string qpp::exception::TypeMismatch::type_description () const [inline], [override],
[virtual]

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

classes/exception.h

7.48 qpp::exception::UndefinedType Class Reference

Not defined for this type exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::UndefinedType:

Collaboration diagram for qpp::exception::UndefinedType:

238 Class Documentation

Public Member Functions

• std::string type_description () const override Exception type description.

7.48.1 Detailed Description

Not defined for this type exception.

Templated specialization is not defined for this type

7.48.2 Member Function Documentation

7.48.2.1 type_description()

```
std::string qpp::exception::UndefinedType::type_description ( ) const [inline], [override],
[virtual]
```

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

• classes/exception.h

7.49 qpp::exception::Unknown Class Reference

Unknown exception.

#include <classes/exception.h>

Inheritance diagram for qpp::exception::Unknown:

Collaboration diagram for qpp::exception::Unknown:

Public Member Functions

std::string type_description () const override
 Exception type description.

240 Class Documentation

7.49.1 Detailed Description

Unknown exception.

Thrown when no other exception is suitable (not recommended, it is better to define another suitable exception type)

7.49.2 Member Function Documentation

7.49.2.1 type_description()

```
std::string qpp::exception::Unknown::type_description ( ) const [inline], [override], [virtual]
```

Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

7.50 qpp::exception::ZeroSize Class Reference

Object has zero size exception.

```
#include <classes/exception.h>
```

Inheritance diagram for qpp::exception::ZeroSize:

Collaboration diagram for qpp::exception::ZeroSize:

Public Member Functions

• std::string type_description () const override Exception type description.

7.50.1 Detailed Description

Object has zero size exception.

Zero sized object, e.g. empty Eigen::Matrix or std::vector with no elements

7.50.2 Member Function Documentation

7.50.2.1 type_description()

std::string qpp::exception::ZeroSize::type_description () const [inline], [override], [virtual]
Exception type description.

Returns

Exception type description

Implements qpp::exception::Exception.

The documentation for this class was generated from the following file:

· classes/exception.h

242 Class Documentation

Chapter 8

File Documentation

8.1 classes/codes.h File Reference

Quantum error correcting codes.

This graph shows which files directly or indirectly include this file:

Classes

• class qpp::Codes

const Singleton class that defines quantum error correcting codes

Namespaces

• qpp

Quantum++ main namespace.

8.1.1 Detailed Description

Quantum error correcting codes.

8.2 classes/exception.h File Reference

Exceptions.

This graph shows which files directly or indirectly include this file:

Classes

class qpp::exception::Exception

Base class for generating Quantum++ custom exceptions.

· class qpp::exception::Unknown

Unknown exception.

class qpp::exception::ZeroSize

Object has zero size exception.

• class qpp::exception::MatrixNotSquare

Matrix is not square exception.

• class qpp::exception::MatrixNotCvector

Matrix is not a column vector exception.

· class qpp::exception::MatrixNotRvector

Matrix is not a row vector exception.

class qpp::exception::MatrixNotVector

Matrix is not a vector exception.

class qpp::exception::MatrixNotSquareNorCvector

Matrix is not square nor column vector exception.

class qpp::exception::MatrixNotSquareNorRvector

Matrix is not square nor row vector exception.

• class qpp::exception::MatrixNotSquareNorVector

Matrix is not square nor vector exception.

class qpp::exception::MatrixMismatchSubsys

Matrix mismatch subsystems exception.

· class qpp::exception::DimsInvalid

Invalid dimension(s) exception.

class qpp::exception::DimsNotEqual

Dimensions not equal exception.

class qpp::exception::DimsMismatchMatrix

Dimension(s) mismatch matrix size exception.

class qpp::exception::DimsMismatchCvector

Dimension(s) mismatch column vector size exception.

· class qpp::exception::DimsMismatchRvector

Dimension(s) mismatch row vector size exception.

class qpp::exception::DimsMismatchVector

Dimension(s) mismatch vector size exception.

• class qpp::exception::SubsysMismatchDims

Subsystems mismatch dimensions exception.

class qpp::exception::PermInvalid

Invalid permutation exception.

class qpp::exception::PermMismatchDims

Permutation mismatch dimensions exception.

• class qpp::exception::NotQubitMatrix

Matrix is not 2 x 2 exception.

• class qpp::exception::NotQubitCvector

Column vector is not 2 x 1 exception.

class qpp::exception::NotQubitRvector

Row vector is not 1 x 2 exception.

• class qpp::exception::NotQubitVector

Vector is not 2 x 1 nor 1 x 2 exception.

class qpp::exception::NotQubitSubsys

Subsystems are not qubits exception.

class qpp::exception::NotBipartite

Not bi-partite exception.

class qpp::exception::NoCodeword

Codeword does not exist exception.

class qpp::exception::OutOfRange

Parameter out of range exception.

class qpp::exception::TypeMismatch

Type mismatch exception.

class qpp::exception::SizeMismatch

Size mismatch exception.

class qpp::exception::UndefinedType

Not defined for this type exception.

class qpp::exception::CustomException

Custom exception.

Namespaces

• qpp

Quantum++ main namespace.

• qpp::exception

Quantum++ exception hierarchy namespace.

8.2.1 Detailed Description

Exceptions.

8.3 classes/gates.h File Reference

Quantum gates.

This graph shows which files directly or indirectly include this file:

Classes

• class qpp::Gates

const Singleton class that implements most commonly used gates

Namespaces

• qpp

Quantum++ main namespace.

8.3.1 Detailed Description

Quantum gates.

8.4 classes/idisplay.h File Reference

Display interface via the non-virtual interface (NVI)

This graph shows which files directly or indirectly include this file:

Classes

· class qpp::IDisplay

Abstract class (interface) that mandates the definition of virtual std::ostream& display(std::ostream& os) const.

Namespaces

• qpp

Quantum++ main namespace.

8.4.1 Detailed Description

Display interface via the non-virtual interface (NVI)

8.5 classes/init.h File Reference

Initialization.

This graph shows which files directly or indirectly include this file:

Classes

· class qpp::Init

const Singleton class that performs additional initializations/cleanups

Namespaces

• qpp

Quantum++ main namespace.

8.5.1 Detailed Description

Initialization.

8.6 classes/random_devices.h File Reference

Random devices.

This graph shows which files directly or indirectly include this file:

Classes

• class qpp::RandomDevices

Singeleton class that manages the source of randomness in the library.

Namespaces

qpp

Quantum++ main namespace.

8.6.1 Detailed Description

Random devices.

8.7 classes/states.h File Reference

Quantum states.

This graph shows which files directly or indirectly include this file:

Classes

class qpp::States

const Singleton class that implements most commonly used states

Namespaces

• qpp

Quantum++ main namespace.

8.7.1 Detailed Description

Quantum states.

8.8 classes/timer.h File Reference

Timing.

This graph shows which files directly or indirectly include this file:

Classes

class qpp::Timer < T, CLOCK_T >
 Chronometer.

Namespaces

• qpp

Quantum++ main namespace.

8.8.1 Detailed Description

Timing.

8.9 constants.h File Reference

Constants.

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Quantum++ main namespace.

Functions

• constexpr cplx qpp::operator"" _i (unsigned long long int x) noexcept

User-defined literal for complex $i = \sqrt{-1}$ (integer overload)

• constexpr cplx qpp::operator"" _i (long double x) noexcept

User-defined literal for complex $i = \sqrt{-1}$ (real overload)

• cplx qpp::omega (idx D)

D-th root of unity.

Variables

• constexpr double qpp::chop = 1e-10

Used in qpp::disp() for setting to zero numbers that have their absolute value smaller than qpp::chop.

• constexpr double qpp::eps = 1e-12

Used to decide whether a number or expression in double precision is zero or not.

• constexpr idx qpp::maxn = 64

Maximum number of allowed qubits/qudits (subsystems)

• constexpr double qpp::pi = 3.141592653589793238462643383279502884

 π

• constexpr double qpp::ee = 2.718281828459045235360287471352662497

Base of natural logarithm, e.

constexpr double qpp::infty = std::numeric_limits<double>::max()

Used to denote infinity in double precision.

8.9.1 Detailed Description

Constants.

8.10 entanglement.h File Reference

Entanglement functions.

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Quantum++ main namespace.

Functions

```
    template<typename Derived >
        dyn_col_vect< double > qpp::schmidtcoeffs (const Eigen::MatrixBase< Derived > &A, const std::vector<
        idx > &dims)
```

Schmidt coefficients of the bi-partite pure state A.

```
    template<typename Derived >
        dyn_col_vect< double > qpp::schmidtcoeffs (const Eigen::MatrixBase< Derived > &A, idx d=2)

    Schmidt coefficients of the bi-partite pure state A.
```

template<typename Derived >
 cmat qpp::schmidtA (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)
 Schmidt basis on Alice side.

template < typename Derived >
 cmat qpp::schmidtA (const Eigen::MatrixBase < Derived > &A, idx d=2)

Schmidt basis on Alice side.

template < typename Derived >
 cmat qpp::schmidtB (const Eigen::MatrixBase < Derived > &A, const std::vector < idx > &dims)
 Schmidt basis on Bob side.

template < typename Derived >
 cmat qpp::schmidtB (const Eigen::MatrixBase < Derived > &A, idx d=2)

Schmidt basis on Bob side.

template<typename Derived >
 std::vector< double > qpp::schmidtprobs (const Eigen::MatrixBase< Derived > &A, const std::vector< idx
 > &dims)

Schmidt probabilities of the bi-partite pure state A.

template<typename Derived >

std::vector< double > qpp::schmidtprobs (const Eigen::MatrixBase< Derived > &A, idx d=2)

Schmidt probabilities of the bi-partite pure state A.

• template<typename Derived >

double qpp::entanglement (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)

Entanglement of the bi-partite pure state A.

template<typename Derived >

double qpp::entanglement (const Eigen::MatrixBase< Derived > &A, idx d=2)

Entanglement of the bi-partite pure state A.

• template<typename Derived >

double qpp::gconcurrence (const Eigen::MatrixBase Derived > &A)

G-concurrence of the bi-partite pure state A.

• template<typename Derived >

double qpp::negativity (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)

Negativity of the bi-partite mixed state A.

template<typename Derived >

double qpp::negativity (const Eigen::MatrixBase Derived > &A, idx d=2)

Negativity of the bi-partite mixed state A.

 $\bullet \ \ \mathsf{template} \mathord{<} \mathsf{typename} \ \mathsf{Derived} >$

double qpp::lognegativity (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &dims)

Logarithmic negativity of the bi-partite mixed state A.

• template<typename Derived >

double qpp::lognegativity (const Eigen::MatrixBase< Derived > &A, idx d=2)

Logarithmic negativity of the bi-partite mixed state A.

• template<typename Derived >

double qpp::concurrence (const Eigen::MatrixBase Derived > &A)

Wootters concurrence of the bi-partite qubit mixed state A.

8.10.1 Detailed Description

Entanglement functions.

8.11 entropies.h File Reference

Entropy functions.

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Quantum++ main namespace.

Functions

template < typename Derived >
 double qpp::entropy (const Eigen::MatrixBase < Derived > &A)
 von-Neumann entropy of the density matrix A

double qpp::entropy (const std::vector< double > &prob)

Shannon entropy of the probability distribution prob.

template<typename Derived >

double qpp::renyi (const Eigen::MatrixBase Derived > &A, double alpha)

Renyi- α entropy of the density matrix A, for $\alpha \geq 0$.

double qpp::renyi (const std::vector< double > &prob, double alpha)

Renyi- α entropy of the probability distribution prob, for $\alpha \geq 0$.

 $\bullet \ \ {\sf template}{<} {\sf typename \ Derived}>$

double qpp::tsallis (const Eigen::MatrixBase< Derived > &A, double q)

Tsallis- q entropy of the density matrix A, for $q \ge 0$.

double qpp::tsallis (const std::vector< double > &prob, double q)

Tsallis- q entropy of the probability distribution prob, for $q \geq 0$.

• template<typename Derived >

double qpp::qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &subsysA, const std::vector< idx > &subsysB, const std::vector< idx > &dims)

Quantum mutual information between 2 subsystems of a composite system.

template<typename Derived >

double qpp::qmutualinfo (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &subsysA, const std::vector< idx > &subsysB, idx d=2)

Quantum mutual information between 2 subsystems of a composite system.

8.11.1 Detailed Description

Entropy functions.

8.12 experimental/experimental.h File Reference

Experimental/test functions/classes.

Namespaces

qpp

Quantum++ main namespace.

• qpp::experimental

Experimental/test functions/classes, do not use or modify.

8.12.1 Detailed Description

Experimental/test functions/classes.

8.13 functions.h File Reference

Generic quantum computing functions.

This graph shows which files directly or indirectly include this file:

Namespaces

dbb

Quantum++ main namespace.

Functions

```
• template<typename Derived >
  dyn_mat< typename Derived::Scalar > qpp::transpose (const Eigen::MatrixBase< Derived > &A)
• template<typename Derived >
  dyn mat< typename Derived::Scalar > qpp::conjugate (const Eigen::MatrixBase< Derived > &A)
      Complex conjugate.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > qpp::adjoint (const Eigen::MatrixBase< Derived > &A)
      Adjoint.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > qpp::inverse (const Eigen::MatrixBase< Derived > &A)
      Inverse.

    template<typename Derived >

  Derived::Scalar qpp::trace (const Eigen::MatrixBase < Derived > &A)
• template<typename Derived >
  Derived::Scalar <a href="mailto:qpp::det">qpp::det</a> (const Eigen::MatrixBase</a> Derived > &A)

    template<typename Derived >

  Derived::Scalar qpp::logdet (const Eigen::MatrixBase< Derived > &A)
     Logarithm of the determinant.

    template<typename Derived >

  Derived::Scalar <a href="mailto:qpp::sum">qpp::sum</a> (const Eigen::MatrixBase< Derived > &A)
      Element-wise sum of A.
template<typename Derived >
  Derived::Scalar <a href="mailto:open:prod">open:prod</a> (const Eigen::MatrixBase</a> Derived > &A)
      Element-wise product of A.

    template<typename Derived >

  double <a href="mailto:qpp::norm">qpp::norm</a> (const Eigen::MatrixBase< Derived > &A)
      Frobenius norm.

    template<typename Derived >

  std::pair< dyn_col_vect< cplx >, cmat > qpp::eig (const Eigen::MatrixBase< Derived > &A)
      Full eigen decomposition.
• template<typename Derived >
  dyn_col_vect< cplx > qpp::evals (const Eigen::MatrixBase< Derived > &A)
      Eigenvalues.
• template<typename Derived >
  cmat qpp::evects (const Eigen::MatrixBase< Derived > &A)
      Eigenvectors.

    template<typename Derived >

  std::pair< dyn_col_vect< double >, cmat > qpp::heig (const Eigen::MatrixBase< Derived > &A)
      Full eigen decomposition of Hermitian expression.

    template<typename Derived >

  dyn_col_vect< double > qpp::hevals (const Eigen::MatrixBase< Derived > &A)
     Hermitian eigenvalues.

    template<typename Derived >

  cmat qpp::hevects (const Eigen::MatrixBase< Derived > &A)
      Hermitian eigenvectors.

    template<typename Derived >

  std::tuple< cmat, dyn_col_vect< double >, cmat > qpp::svd (const Eigen::MatrixBase< Derived > &A)
      Full singular value decomposition.
```

```
• template<typename Derived >
  dyn_col_vect< double > qpp::svals (const Eigen::MatrixBase< Derived > &A)
     Singular values.

    template<typename Derived >

  cmat qpp::svdU (const Eigen::MatrixBase< Derived > &A)
     Left singular vectors.
• template<typename Derived >
  cmat <a href="mailto:gpp::svdV">gpp::svdV</a> (const Eigen::MatrixBase</a> Derived > &A)
     Right singular vectors.

    template<typename Derived >

  cmat qpp::funm (const Eigen::MatrixBase< Derived > &A, cplx(*f)(const cplx &))
     Functional calculus f(A)

    template<typename Derived >

  cmat qpp::sqrtm (const Eigen::MatrixBase< Derived > &A)
     Matrix square root.

    template < typename Derived >

  cmat qpp::absm (const Eigen::MatrixBase< Derived > &A)
     Matrix absolute value.
• template<typename Derived >
  cmat qpp::expm (const Eigen::MatrixBase< Derived > &A)
     Matrix exponential.
template<typename Derived >
  cmat qpp::logm (const Eigen::MatrixBase< Derived > &A)
     Matrix logarithm.

    template<typename Derived >

  cmat qpp::sinm (const Eigen::MatrixBase< Derived > &A)
     Matrix sin.
• template<typename Derived >
  cmat gpp::cosm (const Eigen::MatrixBase< Derived > &A)
     Matrix cos.
• template<typename Derived >
  cmat qpp::spectralpowm (const Eigen::MatrixBase< Derived > &A, const cplx z)
     Matrix power.
• template<typename Derived >
  dyn_mat< typename Derived::Scalar > qpp::powm (const Eigen::MatrixBase< Derived > &A, idx n)
     Fast matrix power based on the SQUARE-AND-MULTIPLY algorithm.
template<typename Derived >
  double <a href="mailto:qpp::schatten">qpp::schatten</a> (const Eigen::MatrixBase</a> Derived > &A, double p)
     Schatten matrix norm.
• template<typename OutputScalar , typename Derived >
  dyn_mat< OutputScalar > qpp::cwise (const Eigen::MatrixBase< Derived > &A, OutputScalar(*f)(const
  typename Derived::Scalar &))
     Functor.
• template<typename T >
  dyn_mat< typename T::Scalar > qpp::kron (const T &head)
     Kronecker product.
• template<typename T , typename ... Args>
  dyn mat< typename T::Scalar > qpp::kron (const T &head, const Args &... tail)
     Kronecker product.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > qpp::kron (const std::vector< Derived > &As)
     Kronecker product.
```

```
• template<typename Derived >
  dyn_mat< typename Derived::Scalar > qpp::kron (const std::initializer_list< Derived > &As)
     Kronecker product.
template<typename Derived >
  dyn mat< typename Derived::Scalar > qpp::kronpow (const Eigen::MatrixBase< Derived > &A, idx n)
     Kronecker power.
template<typename T >
  dyn_mat< typename T::Scalar > qpp::dirsum (const T &head)
     Direct sum.
• template<typename T , typename ... Args>
  dyn_mat< typename T::Scalar > qpp::dirsum (const T &head, const Args &... tail)
     Direct sum.

    template < typename Derived >

  dyn_mat< typename Derived::Scalar > qpp::dirsum (const std::vector< Derived > &As)

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > qpp::dirsum (const std::initializer_list< Derived > &As)
• template<typename Derived >
  dyn_mat< typename Derived::Scalar > qpp::dirsumpow (const Eigen::MatrixBase< Derived > &A, idx n)
     Direct sum power.
• template<typename Derived >
  dyn mat< typename Derived::Scalar > gpp::reshape (const Eigen::MatrixBase< Derived > &A, idx rows,
  idx cols)
     Reshape.

    template<typename Derived1 , typename Derived2 >

  dyn_mat< typename Derived1::Scalar > qpp::comm (const Eigen::MatrixBase< Derived1 > &A, const
  Eigen::MatrixBase< Derived2 > &B)
     Commutator.
• template<typename Derived1 , typename Derived2 >
  dyn_mat< typename Derived1::Scalar > qpp::anticomm (const Eigen::MatrixBase< Derived1 > &A, const
  Eigen::MatrixBase< Derived2 > &B)
     Anti-commutator.

    template<typename Derived >

  dyn mat< typename Derived::Scalar > qpp::prj (const Eigen::MatrixBase< Derived > &A)
     Projector.
• template<typename Derived >
  dyn_mat< typename Derived::Scalar > qpp::grams (const std::vector< Derived > &As)
     Gram-Schmidt orthogonalization.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > qpp::grams (const std::initializer_list< Derived > &As)
     Gram-Schmidt orthogonalization.

    template<typename Derived >

  dyn_mat< typename Derived::Scalar > qpp::grams (const Eigen::MatrixBase< Derived > &A)
     Gram-Schmidt orthogonalization.

    std::vector< idx > qpp::n2multiidx (idx n, const std::vector< idx > &dims)

     Non-negative integer index to multi-index.

    idx qpp::multiidx2n (const std::vector< idx > &midx, const std::vector< idx > &dims)

     Multi-index to non-negative integer index.

    ket qpp::mket (const std::vector< idx > &mask, const std::vector< idx > &dims)

     Multi-partite qudit ket.

    ket qpp::mket (const std::vector < idx > &mask, idx d=2)
```

Multi-partite qudit ket.

cmat qpp::mprj (const std::vector < idx > &mask, const std::vector < idx > &dims)

Projector onto multi-partite qudit ket.

cmat qpp::mprj (const std::vector< idx > &mask, idx d=2)

Projector onto multi-partite qudit ket.

• template<typename InputIterator >

std::vector< double > qpp::abssq (InputIterator first, InputIterator last)

Computes the absolute values squared of an STL-like range of complex numbers.

• template<typename Container >

std::vector< double > qpp::abssq (const Container &c, typename std::enable_if< is_iterable< Container >::value >::type *=nullptr)

Computes the absolute values squared of an STL-like container.

template<typename Derived >

```
std::vector< double > qpp::abssq (const Eigen::MatrixBase< Derived > &A)
```

Computes the absolute values squared of an Eigen expression.

template<typename InputIterator >

```
std::iterator traits < InputIterator >::value type qpp::sum (InputIterator first, InputIterator last)
```

Element-wise sum of an STL-like range.

• template<typename Container >

```
Container::value_type qpp::sum (const Container &c, typename std::enable_if< is_iterable< Container >
::value >::type *=nullptr)
```

Element-wise sum of the elements of an STL-like container.

template<typename InputIterator >

```
std::iterator_traits< InputIterator >::value_type qpp::prod (InputIterator first, InputIterator last)
```

Element-wise product of an STL-like range.

• template<typename Container >

```
Container::value_type qpp::prod (const Container &c, typename std::enable_if< is_iterable< Container >
::value >::type *=nullptr)
```

Element-wise product of the elements of an STL-like container.

template<typename Derived >

```
dyn col vect< typename Derived::Scalar > qpp::rho2pure (const Eigen::MatrixBase< Derived > &A)
```

Finds the pure state representation of a matrix proportional to a projector onto a pure state.

• template<typename T >

```
std::vector< T > qpp::complement (std::vector< T > subsys, idx N)
```

Constructs the complement of a subsystem vector.

 $\bullet \ \ {\it template}{<} {\it typename Derived}>$

```
std::vector< double > qpp::rho2bloch (const Eigen::MatrixBase< Derived > &A)
```

Computes the 3-dimensional real Bloch vector corresponding to the qubit density matrix A.

cmat qpp::bloch2rho (const std::vector< double > &r)

Computes the density matrix corresponding to the 3-dimensional real Bloch vector r.

8.13.1 Detailed Description

Generic quantum computing functions.

8.14 input output.h File Reference

Input/output functions.

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Quantum++ main namespace.

Functions

template<typename Derived >
 internal::IOManipEigen qpp::disp (const Eigen::MatrixBase< Derived > &A, double chop=qpp::chop)
 Eigen expression ostream manipulator.

• internal::IOManipEigen qpp::disp (cplx z, double chop=qpp::chop)

Complex number ostream manipulator.

 $\bullet \ \ \text{template}{<} \text{typename InputIterator} >$

internal::IOManipRange< InputIterator > qpp::disp (InputIterator first, InputIterator last, const std::string &separator, const std::string &start="[", const std::string &end="]")

Range ostream manipulator.

• template<typename Container >

internal::IOManipRange< typename Container::const_iterator > qpp::disp (const Container &c, const std⇔ ::string &separator, const std::string &start="[", const std::string &end="]", typename std::enable_if< is_⇔ iterable< Container >::value >::type *=nullptr)

Standard container ostream manipulator. The container must support std::begin(), std::end() and forward iteration.

 $\bullet \ \ \text{template}{<} \text{typename PointerType}>$

internal::IOManipPointer< PointerType > qpp::disp (const PointerType *p, idx N, const std::string &separator, const std::string &start="[", const std::string &end="]")

C-style pointer ostream manipulator.

template<typename Derived >

void qpp::save (const Eigen::MatrixBase< Derived > &A, const std::string &fname)

Saves Eigen expression to a binary file (internal format) in double precision.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > qpp::load (const std::string &fname)

Loads Eigen matrix from a binary file (internal format) in double precision.

8.14.1 Detailed Description

Input/output functions.

8.15 instruments.h File Reference

Measurement functions.

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Quantum++ main namespace.

Functions

template<typename Derived >
 dyn_col_vect< typename Derived::Scalar > qpp::ip (const Eigen::MatrixBase< Derived > &phi, const Eigen::MatrixBase< Derived > &psi, const std::vector< idx > &subsys, const std::vector< idx > &dims)
 Generalized inner product.

template<typename Derived >

dyn_col_vect< typename Derived::Scalar > qpp::ip (const Eigen::MatrixBase< Derived > &phi, const Eigen::MatrixBase< Derived > &psi, const std::vector< idx > &subsys, idx d=2)

Generalized inner product.

 $\bullet \ \ {\it template}{<} {\it typename Derived}>$

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks)

Measures the state A using the set of Kraus operators Ks.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const std::initializer_list< cmat > &Ks)

Measures the state A using the set of Kraus operators Ks.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const cmat &U)

Measures the state A in the orthonormal basis specified by the unitary matrix U.

 $\bullet \ \ {\it template}{<} {\it typename Derived}>$

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const std::initializer_list< cmat > &Ks, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std::vector< idx > &subsys, idx d=2)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const std::initializer_list< cmat > &Ks, const std::vector< idx > &subsys, idx d=2)

Measures the part subsys of the multi-partite state vector or density matrix A using the set of Kraus operators Ks.

template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const cmat &V, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Measures the part subsys of the multi-partite state vector or density matrix A in the orthonormal basis or rank-1 POVM specified by the matrix V.

• template<typename Derived >

std::tuple< idx, std::vector< double >, std::vector< cmat > > qpp::measure (const Eigen::MatrixBase< Derived > &A, const cmat &V, const std::vector< idx > &subsys, idx d=2)

Measures the part subsys of the multi-partite state vector or density matrix A in the orthonormal basis or rank-1 POVM specified by the matrix V.

• template<typename Derived >

std::tuple < std::vector < idx >, double, cmat > qpp::measure_seq (const Eigen::MatrixBase < Derived > &A, std::vector < idx > subsys, std::vector < idx > dims)

Sequentially measures the part subsys of the multi-partite state vector or density matrix A in the computational basis.

 $\bullet \ \ {\it template}{<} {\it typename Derived} >$

 $std::tuple < std::vector < idx>, double, cmat>qpp::measure_seq (const Eigen::MatrixBase < Derived> \&A, std::vector < idx> subsys, idx d=2)$

Sequentially measures the part subsys of the multi-partite state vector or density matrix A in the computational basis.

8.15.1 Detailed Description

Measurement functions.

8.16 internal/classes/iomanip.h File Reference

Input/output manipulators.

This graph shows which files directly or indirectly include this file:

Classes

- class qpp::internal::IOManipRange< InputIterator >
- class qpp::internal::IOManipPointer< PointerType >
- class qpp::internal::IOManipEigen

Namespaces

qpp

Quantum++ main namespace.

• qpp::internal

Internal utility functions, do not use them directly or modify them.

8.16.1 Detailed Description

Input/output manipulators.

8.17 internal/classes/singleton.h File Reference

Singleton pattern via CRTP.

This graph shows which files directly or indirectly include this file:

Classes

class qpp::internal::Singleton< T >

Singleton policy class, used internally to implement the singleton pattern via CRTP (Curiously recurring template pattern)

Namespaces

• qpp

Quantum++ main namespace.

· qpp::internal

Internal utility functions, do not use them directly or modify them.

8.17.1 Detailed Description

Singleton pattern via CRTP.

8.18 internal/util.h File Reference

Internal utility functions.

This graph shows which files directly or indirectly include this file:

Classes

• struct qpp::internal::Display_Impl_

Namespaces

dbb

Quantum++ main namespace.

qpp::internal

Internal utility functions, do not use them directly or modify them.

Functions

- void qpp::internal::n2multiidx (idx n, idx numdims, const idx *const dims, idx *result) noexcept
- idx qpp::internal::multiidx2n (const idx *const midx, idx numdims, const idx *const dims) noexcept
- template<typename Derived >
 bool qpp::internal::check_square_mat (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 bool qpp::internal::check_vector (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 bool qpp::internal::check_rvector (const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 bool qpp::internal::check_cvector (const Eigen::MatrixBase< Derived > &A)
- template < typename T >
 bool qpp::internal::check_nonzero_size (const T &x) noexcept

- template<typename T1, typename T2 >
 bool qpp::internal::check_matching_sizes (const T1 &lhs, const T2 &rhs) noexcept
- bool qpp::internal::check_dims (const std::vector< idx > &dims)
- template<typename Derived >
 bool qpp::internal::check_dims_match_mat (const std::vector< idx > &dims, const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 bool qpp::internal::check_dims_match_cvect (const std::vector< idx > &dims, const Eigen::MatrixBase< Derived > &A)
- template<typename Derived >
 bool qpp::internal::check_dims_match_rvect (const std::vector< idx > &dims, const Eigen::MatrixBase< Derived > &A)
- bool qpp::internal::check_eq_dims (const std::vector< idx > &dims, idx dim) noexcept
- bool qpp::internal::check_subsys_match_dims (const std::vector< idx > &subsys, const std::vector< idx > &dims)
- template<typename Derived >
 bool qpp::internal::check_qubit_matrix (const Eigen::MatrixBase< Derived > &A) noexcept
- template<typename Derived >
 bool qpp::internal::check_qubit_cvector (const Eigen::MatrixBase< Derived > &A) noexcept
- template<typename Derived >
 bool qpp::internal::check_qubit_rvector (const Eigen::MatrixBase< Derived > &A) noexcept
- template<typename Derived >
 bool qpp::internal::check qubit vector (const Eigen::MatrixBase< Derived > &A) noexcept
- bool qpp::internal::check_perm (const std::vector< idx > &perm)
- template<typename Derived1, typename Derived2 >
 dyn_mat< typename Derived1::Scalar > qpp::internal::kron2 (const Eigen::MatrixBase< Derived1 > &A,
 const Eigen::MatrixBase< Derived2 > &B)
- template<typename Derived1, typename Derived2 >
 dyn_mat< typename Derived1::Scalar > qpp::internal::dirsum2 (const Eigen::MatrixBase< Derived1 > &A,
 const Eigen::MatrixBase< Derived2 > &B)
- template<typename T >
 void qpp::internal::variadic vector emplace (std::vector< T > &)
- template<typename T, typename First, typename ... Args>
 void qpp::internal::variadic_vector_emplace (std::vector< T > &v, First &&first, Args &&... args)
- idx qpp::internal::get num subsys (idx sz, idx d)
- idx qpp::internal::get_dim_subsys (idx sz, idx N)

8.18.1 Detailed Description

Internal utility functions.

8.19 MATLAB/matlab.h File Reference

Input/output interfacing with MATLAB.

```
#include "mat.h"
#include "mex.h"
```

Namespaces

• qpp

Quantum++ main namespace.

Functions

template<typename Derived >
 std::enable_if< std::is_same< typename Derived::Scalar, cplx >::value, dyn_mat< cplx > >::type qpp
 ::loadMATLAB (const std::string &mat_file, const std::string &var_name)

Loads a complex Eigen dynamic matrix from a MATLAB .mat file,.

• template<typename Derived >

std::enable_if<!std::is_same< typename Derived::Scalar, cplx >::value, dyn_mat< typename Derived::

Scalar > >::type qpp::loadMATLAB (const std::string &mat_file, const std::string &var_name)

Loads a non-complex Eigen dynamic matrix from a MATLAB .mat file,.

• template<typename Derived >

std::enable_if< std::is_same< typename Derived::Scalar, cplx >::value >::type qpp::saveMATLAB (const Eigen::MatrixBase< Derived > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)

Saves a complex Eigen dynamic matrix to a MATLAB .mat file,.

• template<typename Derived >

std::enable_if<!std::is_same< typename Derived::Scalar, cplx >::value >::type qpp::saveMATLAB (const Eigen::MatrixBase< Derived > &A, const std::string &mat_file, const std::string &var_name, const std::string &mode)

Saves a non-complex Eigen dynamic matrix to a MATLAB .mat file,.

8.19.1 Detailed Description

Input/output interfacing with MATLAB.

8.20 number theory.h File Reference

Number theory functions.

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Quantum++ main namespace.

Functions

std::vector< int > qpp::x2contfrac (double x, idx N, idx cut=1e5)

Simple continued fraction expansion.

double qpp::contfrac2x (const std::vector< int > &cf, idx N=idx(-1))

Real representation of a simple continued fraction.

bigint qpp::gcd (bigint a, bigint b)

Greatest common divisor of two integers.

bigint qpp::gcd (const std::vector< bigint > &as)

Greatest common divisor of a list of integers.

• bigint qpp::lcm (bigint a, bigint b)

Least common multiple of two integers.

bigint qpp::lcm (const std::vector< bigint > &as)

Least common multiple of a list of integers.

std::vector< idx > qpp::invperm (const std::vector< idx > &perm)

Inverse permutation.

• std::vector< idx > qpp::compperm (const std::vector< idx > &perm, const std::vector< idx > &sigma)

Compose permutations.

std::vector< bigint > qpp::factors (bigint a)

Prime factor decomposition.

bigint qpp::modmul (bigint a, bigint b, bigint p)

Modular multiplication without overflow.

• bigint qpp::modpow (bigint a, bigint n, bigint p)

Fast integer power modulo p based on the SQUARE-AND-MULTIPLY algorithm.

• std::tuple< bigint, bigint, bigint > qpp::egcd (bigint a, bigint b)

Extended greatest common divisor of two integers.

• bigint qpp::modinv (bigint a, bigint p)

Modular inverse of a mod p.

• bool qpp::isprime (bigint p, idx k=80)

Primality test based on the Miller-Rabin's algorithm.

bigint qpp::randprime (bigint a, bigint b, idx N=1000)

Generates a random big prime uniformly distributed in the interval [a, b].

8.20.1 Detailed Description

Number theory functions.

8.21 operations.h File Reference

Quantum operation functions.

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Quantum++ main namespace.

Functions

template<typename Derived1, typename Derived2 >
 dyn_mat< typename Derived1::Scalar > qpp::applyCTRL (const Eigen::MatrixBase< Derived1 > &state,
 const Eigen::MatrixBase< Derived2 > &A, const std::vector< idx > &ctrl, const std::vector< idx > &subsys,
 const std::vector< idx > &dims)

Applies the controlled-gate A to the part subsys of the multi-partite state vector or density matrix state.

template<typename Derived1 , typename Derived2 >
 dyn_mat< typename Derived1::Scalar > qpp::applyCTRL (const Eigen::MatrixBase< Derived1 > &state,
 const Eigen::MatrixBase< Derived2 > &A, const std::vector< idx > &ctrl, const std::vector< idx > &subsys,
 idx d=2)

Applies the controlled-gate A to the part subsys of the multi-partite state vector or density matrix state.

template<typename Derived1 , typename Derived2 >
 dyn_mat< typename Derived1::Scalar > qpp::apply (const Eigen::MatrixBase< Derived1 > &state, const
 Eigen::MatrixBase< Derived2 > &A, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Applies the gate A to the part subsys of the multi-partite state vector or density matrix state.

template<typename Derived1 , typename Derived2 >
 dyn_mat< typename Derived1::Scalar > qpp::apply (const Eigen::MatrixBase< Derived1 > &state, const
 Eigen::MatrixBase< Derived2 > &A, const std::vector< idx > &subsys, idx d=2)

Applies the gate A to the part subsys of the multi-partite state vector or density matrix state.

template<typename Derived >
 cmat qpp::apply (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks)
 Applies the channel specified by the set of Kraus operators Ks to the density matrix A.

template<typename Derived >
 cmat qpp::apply (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std
 ::vector< idx > &subsys, const std::vector< idx > &dims)

Applies the channel specified by the set of Kraus operators Ks to the part subsys of the multi-partite density matrix A.

template<typename Derived >
 cmat qpp::apply (const Eigen::MatrixBase< Derived > &A, const std::vector< cmat > &Ks, const std
 ::vector< idx > &subsys, idx d=2)

Applies the channel specified by the set of Kraus operators Ks to the part subsys of the multi-partite density matrix A.

cmat qpp::kraus2super (const std::vector< cmat > &Ks)

Superoperator matrix.

cmat qpp::kraus2choi (const std::vector< cmat > &Ks)

Choi matrix.

std::vector< cmat > qpp::choi2kraus (const cmat &A)

Orthogonal Kraus operators from Choi matrix.

cmat qpp::choi2super (const cmat &A)

Converts Choi matrix to superoperator matrix.

cmat qpp::super2choi (const cmat &A)

Converts superoperator matrix to Choi matrix.

template<typename Derived >

Partial trace.

template<typename Derived >

dyn_mat< typename Derived::Scalar > qpp::ptrace1 (const Eigen::MatrixBase< Derived > &A, idx d=2)

Partial trace.

template<typename Derived >

dyn_mat< typename Derived::Scalar > qpp::ptrace2 (const Eigen::MatrixBase< Derived > &A, const std ← ::vector< idx > &dims)

Partial trace.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > qpp::ptrace2 (const Eigen::MatrixBase< Derived > &A, idx d=2)

Partial trace.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > qpp::ptrace (const Eigen::MatrixBase< Derived > &A, const std \leftrightarrow ::vector< idx > &subsys, const std::vector< idx > &dims)

Partial trace.

• template<typename Derived >

dyn_mat< typename Derived::Scalar > qpp::ptrace (const Eigen::MatrixBase< Derived > &A, const std ← ::vector< idx > &subsys, idx d=2)

Partial trace.

template<typename Derived >

dyn_mat< typename Derived::Scalar > qpp::ptranspose (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &subsys, const std::vector< idx > &dims)

Partial transpose.

template<typename Derived >

 $dyn_mat < typename Derived::Scalar > qpp::ptranspose (const Eigen::MatrixBase < Derived > &A, const std::vector < idx > &subsys, idx d=2)$

Partial transpose.

template<typename Derived >

dyn_mat< typename Derived::Scalar > qpp::syspermute (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &perm, const std::vector< idx > &dims)

Subsystem permutation.

 $\bullet \ \ {\it template}{<} {\it typename Derived} >$

dyn_mat< typename Derived::Scalar > qpp::syspermute (const Eigen::MatrixBase< Derived > &A, const std::vector< idx > &perm, idx d=2)

Subsystem permutation.

8.21.1 Detailed Description

Quantum operation functions.

8.22 qpp.h File Reference

Quantum++ main header file, includes all other necessary headers.

```
#include <algorithm>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <cstdlib>
#include <cstring>
#include <exception>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <iterator>
#include <limits>
#include <memory>
#include <numeric>
#include <ostream>
#include <random>
#include <sstream>
#include <stdexcept>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
#include <Eigen/Dense>
#include <Eigen/SVD>
#include "types.h"
#include "classes/exception.h"
#include "constants.h"
#include "traits.h"
#include "classes/idisplay.h"
#include "internal/util.h"
#include "internal/classes/iomanip.h"
#include "input_output.h"
#include "internal/classes/singleton.h"
#include "classes/init.h"
#include "functions.h"
#include "classes/codes.h"
#include "classes/gates.h"
#include "classes/states.h"
#include "classes/random devices.h"
#include "statistics.h"
#include "operations.h"
#include "entropies.h"
#include "entanglement.h"
#include "random.h"
#include "classes/timer.h"
#include "instruments.h"
#include "number_theory.h"
```

Namespaces

• qpp

Quantum++ main namespace.

Macros

• #define QPP_UNUSED_

8.22.1 Detailed Description

Quantum++ main header file, includes all other necessary headers.

8.22.2 Macro Definition Documentation

```
8.22.2.1 QPP_UNUSED_
```

#define QPP_UNUSED_

8.23 random.h File Reference

Randomness-related functions.

This graph shows which files directly or indirectly include this file:

Namespaces

qpp

Quantum++ main namespace.

Functions

double qpp::rand (double a, double b)

Generates a random real number uniformly distributed in the interval [a, b)

bigint qpp::rand (bigint a, bigint b)

Generates a random big integer uniformly distributed in the interval [a, b].

idx qpp::randidx (idx a=std::numeric_limits < idx >::min(), idx b=std::numeric_limits < idx >::max())

Generates a random index (idx) uniformly distributed in the interval [a, b].

• template<typename Derived >

Derived qpp::rand (idx rows, idx cols, double a=0, double b=1)

Generates a random matrix with entries uniformly distributed in the interval [a, b)

template<>

dmat qpp::rand (idx rows, idx cols, double a, double b)

Generates a random real matrix with entries uniformly distributed in the interval [a, b), specialization for double matrices (qpp::dmat)

template<>

cmat qpp::rand (idx rows, idx cols, double a, double b)

Generates a random complex matrix with entries (both real and imaginary) uniformly distributed in the interval [a, b), specialization for complex matrices (qpp::cmat)

template<typename Derived >

Derived qpp::randn (idx rows, idx cols, double mean=0, double sigma=1)

Generates a random matrix with entries normally distributed in N(mean, sigma)

• template<>

dmat qpp::randn (idx rows, idx cols, double mean, double sigma)

Generates a random real matrix with entries normally distributed in N(mean, sigma), specialization for double matrices (qpp::dmat)

• template<>

cmat qpp::randn (idx rows, idx cols, double mean, double sigma)

Generates a random complex matrix with entries (both real and imaginary) normally distributed in N(mean, sigma), specialization for complex matrices (qpp::cmat)

• double qpp::randn (double mean=0, double sigma=1)

Generates a random real number (double) normally distributed in N(mean, sigma)

cmat qpp::randU (idx D=2)

Generates a random unitary matrix.

cmat qpp::randV (idx Din, idx Dout)

Generates a random isometry matrix.

std::vector< cmat > qpp::randkraus (idx N, idx D=2)

Generates a set of random Kraus operators.

cmat qpp::randH (idx D=2)

Generates a random Hermitian matrix.

ket qpp::randket (idx D=2)

Generates a random normalized ket (pure state vector)

cmat qpp::randrho (idx D=2)

Generates a random density matrix.

std::vector< idx > qpp::randperm (idx N)

Generates a random uniformly distributed permutation.

std::vector< double > qpp::randprob (idx N)

Generates a random probability vector uniformly distributed over the probability simplex.

8.23.1 Detailed Description

Randomness-related functions.

8.24 statistics.h File Reference

Statistics functions.

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Quantum++ main namespace.

Functions

std::vector< double > qpp::uniform (idx N)

Uniform probability distribution vector.

std::vector< double > qpp::marginalX (const dmat &probXY)

Marginal distribution.

std::vector< double > qpp::marginalY (const dmat &probXY)

Marginal distribution.

• template<typename Container >

double qpp::avg (const std::vector< double > &prob, const Container &X, typename std::enable_if< is_← iterable< Container >::value >::type *=nullptr)

Average.

• template<typename Container >

double qpp::cov (const dmat &probXY, const Container &X, const Container &Y, typename std::enable_if< is_iterable< Container >::value >::type *=nullptr)

Covariance.

• template<typename Container >

double qpp::var (const std::vector< double > &prob, const Container &X, typename std::enable_if< is_← iterable< Container >::value >::type *=nullptr)

Variance.

• template<typename Container >

double qpp::sigma (const std::vector< double > &prob, const Container &X, typename std::enable_if< is_← iterable< Container >::value >::type *=nullptr)

Standard deviation.

• template<typename Container >

double qpp::cor (const dmat &probXY, const Container &X, const Container &Y, typename std::enable_if is_iterable Container >::value >::type *=nullptr)

Correlation.

8.25 traits.h File Reference 273

8.24.1 Detailed Description

Statistics functions.

8.25 traits.h File Reference

Type traits.

This graph shows which files directly or indirectly include this file:

Classes

- struct qpp::make_void< Ts >
 - Helper for qpp::to_void<> alias template.
- struct qpp::is_iterable < T, typename >

Checks whether T is compatible with an STL-like iterable container.

• struct qpp::is_iterable< T, to_void< decltype(std::declval< T >().begin()), decltype(std::declval< T >().comend()), typename T::value_type >>

Checks whether T is compatible with an STL-like iterable container, specialization for STL-like iterable containers.

struct qpp::is_matrix_expression< Derived >

Checks whether the type is an Eigen matrix expression.

struct qpp::is_complex< T >

Checks whether the type is a complex type.

struct qpp::is_complex< std::complex< T >>

Checks whether the type is a complex number type, specialization for complex types.

Namespaces

qpp

Quantum++ main namespace.

Typedefs

```
    template < typename... Ts>
        using qpp::to_void = typename make_void < Ts... > ::type
        Alias template that implements the proposal for void_t.
```

8.25.1 Detailed Description

Type traits.

8.26 types.h File Reference

Type aliases.

This graph shows which files directly or indirectly include this file:

Namespaces

• qpp

Quantum++ main namespace.

Typedefs

```
using qpp::idx = std::size_t
```

Non-negative integer index.

 using qpp::bigint = long long int Big integer.

using qpp::cplx = std::complex < double >

Complex number in double precision.

using qpp::ket = Eigen::VectorXcd

Complex (double precision) dynamic Eigen column vector.

• using qpp::bra = Eigen::RowVectorXcd

Complex (double precision) dynamic Eigen row vector.

• using qpp::cmat = Eigen::MatrixXcd

Complex (double precision) dynamic Eigen matrix.

• using qpp::dmat = Eigen::MatrixXd

Real (double precision) dynamic Eigen matrix.

template<typename Scalar >

```
using \ \ qpp::dyn\_mat = Eigen::Matrix < Scalar, \ Eigen::Dynamic, \ Eigen::Dynamic > \\
```

Dynamic Eigen matrix over the field specified by Scalar.

• template<typename Scalar >

```
using qpp::dyn_col_vect = Eigen::Matrix< Scalar, Eigen::Dynamic, 1 >
```

Dynamic Eigen column vector over the field specified by Scalar.

 $\bullet \ \ \text{template}{<} \text{typename Scalar} >$

```
using qpp::dyn_row_vect = Eigen::Matrix< Scalar, 1, Eigen::Dynamic >
```

Dynamic Eigen row vector over the field specified by Scalar.

8.26.1	Dotail	ad Dag	cription
8.20. I	Detail	ea ves	scribtion

Type aliases.

8.27 /Users/vlad/Dropbox/programming/cpp/qpp_clion/README.md File Reference

Index

/Users/vlad/Dropbox/programming/cpp/qpp_clion/RE \hookleftarrow	CNOTba
ADME.md, 275	qpp::Gates, 156
\sim Codes	CNOT
qpp::Codes, 129	qpp::Gates, 155
\sim Gates	CTRL
qpp::Gates, 150	qpp::Gates, 151
\sim IDisplay	check_cvector
qpp::IDisplay, 159	qpp::internal, 121
~Init	check_dims
qpp::Init, 162	qpp::internal, 122
~RandomDevices	check_dims_match_cvect
qpp::RandomDevices, 213	qpp::internal, 122
~Singleton	check_dims_match_mat
qpp::internal::Singleton, 216	qpp::internal, 122
~States	check_dims_match_rvect
qpp::States, 221	qpp::internal, 122
~Timer	check_eq_dims
qpp::Timer, 232	qpp::internal, 122
Λ.	check_matching_sizes
A_	qpp::internal, 122
qpp::internal::IOManipEigen, 164	check_nonzero_size
absm	qpp::internal, 123
qpp, 32	check_perm
abssq	qpp::internal, 123
qpp, 32, 33	check_qubit_cvector
adjoint	qpp::internal, 123
qpp, 33	check_qubit_matrix
anticomm	qpp::internal, 123
qpp, 34	check_qubit_rvector
apply	qpp::internal, 123
qpp, 34–36	check_qubit_vector
applyCTRL	qpp::internal, 123
qpp, 37	check_rvector
avg	qpp::internal, 124
qpp, 38	check_square_mat
b00	app::internal, 124
qpp::States, 224	check_subsys_match_dims
b01	qpp::internal, 124
qpp::States, 224	check_vector
b10	qpp::internal, 124
qpp::States, 224	choi2kraus
φρρσιαίες, 224 b11	qpp, 39
qpp::States, 224	choi2super
	qpp, 40
bigint	chop
qpp, 29	qpp, 117
bloch2rho	
qpp, 39	chop_ qpp::internal::IOManipEigen, 16
app. 29	classes/codes.h. 243
MMM. EV	0140000/0040011. 47 0

classes/exception.h, 244	dmat
classes/gates.h, 246	qpp, <mark>30</mark>
classes/idisplay.h, 246	dyn_col_vect
classes/init.h, 247	qpp, 30
classes/random_devices.h, 248	dyn_mat
classes/states.h, 248	qpp, 30
classes/timer.h, 249	dyn_row_vect
cmat	qpp, 31
qpp, 30	-11-1- <i>)</i> -
Codes	ee
qpp::Codes, 129	qpp, 117
codeword	egcd
qpp::Codes, 129	qpp, 50
comm	eig
	qpp, 51
qpp, 40	end_
complement	qpp::Timer, 234
qpp, 41	qpp::internal::IOManipPointer, 167
compperm	
qpp, 41	qpp::internal::IOManipRange, 171
concurrence	entanglement
qpp, 41	qpp, 51, 52
conjugate	entanglement.h, 251
qpp, 43	entropies.h, 252
constants.h, 250	entropy
contfrac2x	qpp, 52, 53
qpp, 43	eps
cor	qpp, 117
qpp, 44	evals
cosm	qpp, 53
qpp, 44	evects
COV	qpp, 54
qpp, 44	Exception
cplx	qpp::exception::Exception, 147
qpp, 30	expandout
CustomException	qpp::Gates, 151, 152
qpp::exception::CustomException, 131	experimental/experimental.h, 254
cwise	expm
	qpp, 54
qpp, 45	qpp, 3 4
CZ	FRED
qpp::Gates, 156	qpp::Gates, 156
det	factors
qpp, 45	
dirsum	qpp, 54
qpp, 46, 47	Fd
	qpp::Gates, 153
dirsum2	first_
qpp::internal, 124	qpp::internal::IOManipRange, 171
dirsumpow	functions.h, 254
qpp, 48	funm
disp	qpp, <u>55</u>
qpp, 48–50	
display	GHZ
qpp::IDisplay, 160	qpp::States, 224
qpp::Timer, 232	Gates
qpp::internal::IOManipEigen, 164	qpp::Gates, 150
qpp::internal::IOManipPointer, 167	gcd
qpp::internal::IOManipRange, 170	qpp, 55, 56
display_impl_	gconcurrence
qpp::internal::Display_Impl_, 144	qpp, 56
· · · · · · · · · · · · · · · · · · ·	 .

get_dim_subsys	invperm
qpp::internal, 124	qpp, 59
get_duration	ip
qpp::Timer, 233	qpp, 60
get_instance	isprime
qpp::internal::Singleton, 216	qpp, 61
get_num_subsys	9PP, 01
qpp::internal, 125	jn
	qpp::States, 221
get_prng	qppStates, 221
qpp::RandomDevices, 213	ket
get_thread_local_instance	
qpp::internal::Singleton, 217	qpp, 31
grams	kraus2choi
qpp, 5 7	qpp, 61
	kraus2super
Н	qpp, 62
qpp::Gates, 156	kron
heig	qpp, 62–64
qpp, 58	kron2
hevals	qpp::internal, 125
qpp, 58	kronpow
hevects	qpp, 64
	qpp, o -
qpp, 59	last
IDisplay	_
• •	qpp::internal::IOManipRange, 171
qpp::IDisplay, 159	lcm
IOManipEigen	qpp, 65
qpp::internal::IOManipEigen, 164	load
IOManipPointer	qpp, 65
qpp::internal::IOManipPointer, 166, 167	qpp::RandomDevices, 213
IOManipRange	loadMATLAB
qpp::internal::IOManipRange, 170	qpp, 66, 67
ld	logdet
qpp::Gates, 154	qpp, 67
ld2	logm
qpp::Gates, 156	qpp, 68
idx	
qpp, 31	lognegativity
	qpp, 68, 69
infty	MATLAB/matlab.h, 264
qpp, 118	
Init	marginalX
qpp::Init, 162	qpp, 69
input_output.h, 258	marginalY
instruments.h, 260	qpp, 69
internal/classes/iomanip.h, 261	maxn
internal/classes/singleton.h, 262	qpp, 118
internal/util.h, 263	measure
internal::Singleton< const Codes >	qpp, 70–74
qpp::Codes, 129	measure_seq
internal::Singleton< const Gates >	qpp, 75, 76
qpp::Gates, 155	mes
internal::Singleton< const Init >	qpp::States, 222
qpp::Init, 162	minus
internal::Singleton < const States >	qpp::States, 222
qpp::States, 224	mket
internal::Singleton < RandomDevices >	qpp, 76, 78
qpp::RandomDevices, 214	modinv
inverse	qpp, <mark>78</mark>
qpp, 59	modmul

qpp, 79	qpp, 84, 85
modpow	ptrace
qpp, 79	qpp, 86
mprj	ptrace1
qpp, 80	qpp, 87
multiidx2n	ptrace2
qpp, 81	qpp, 89
qpp::internal, 125	ptranspose
n2multiidx	qpp, 90
qpp, 81	pW
qpp; 61 qpp::internal, 125	qpp::States, 225
N	px0
qpp::internal::IOManipPointer, 168	qpp::States, 226
negativity	px1
qpp, 82	qpp::States, 226
norm	py0
qpp, 82	qpp::States, 226 py1
number_theory.h, 265	qpp::States, 226
Tidiniooi_tirooi yiii, 200	pz0
omega	qpp::States, 226
qpp, 83	pz1
one	qpp::States, 226
qpp::States, 222	qppotatoo, 220
operations.h, 266	QPP_UNUSED_
operator<<	qpp.h, 270
qpp::IDisplay, 160	qmutualinfo
operator=	qpp, <mark>91</mark>
qpp::IDisplay, 160	qpp, 17
qpp::Timer, 233	absm, 32
qpp::internal::IOManipPointer, 167	abssq, 32, 33
qpp::internal::IOManipRange, 170	adjoint, 33
qpp::internal::Singleton, 217	anticomm, 34
operator"" _i	apply, <mark>34–36</mark>
qpp, 83	applyCTRL, 37
	avg, <mark>38</mark>
p_	bigint, 29
qpp::internal::IOManipPointer, 168	bloch2rho, 39
pGHZ	bra, 29
qpp::States, 225	choi2kraus, 39
pb00	choi2super, 40
qpp::States, 225	chop, 117
pb01	cmat, 30
qpp::States, 225	comm, 40
pb10	complement, 41
qpp::States, 225 pb11	compperm, 41
·	concurrence, 41 conjugate, 43
qpp::States, 225	confrac2x, 43
pi	
qpp, 118 plus	cor, 44 cosm, 44
qpp::States, 223	cov, 44
powm	cplx, 30
qpp, 83	cwise, 45
prj	det, 45
qpp, 84	dirsum, 46, 47
prng	dirsumpow, 48
qpp::RandomDevices, 214	disp, 48–50
prod	dmat, 30
piou.	amat, oo

dyn_col_vect, 30	ptrace1, 87
dyn_mat, 30	ptrace2, 89
dyn_row_vect, 31	ptranspose, 90
ee, 117	qmutualinfo, 91
egcd, 50	rand, 92–94
eig, 51	randH, 94
entanglement, 51, 52	randidx, 95
entropy, 52, 53	randket, 95
eps, 117	randkraus, 95
evals, 53	randn, 96, 97
evects, 54	randperm, 98
expm, 54	randprime, 98
factors, 54	randprob, 99
funm, 55	randrho, 99
gcd, 55, 56	randU, 99
gconcurrence, 56	randV, 100
grams, 57	renyi, 100, 101
heig, 58	reshape, 101
hevals, 58	rho2bloch, 102
hevects, 59	rho2pure, 102
idx, 31	save, 103
infty, 118	saveMATLAB, 103, 104
inverse, 59	schatten, 104
invperm, 59	schmidtA, 105
ip, 60	schmidtB, 105, 106
isprime, 61	schmidtcoeffs, 106, 107
ket, 31	schmidtprobs, 107, 108
kraus2choi, 61	sigma, 108
kraus2super, 62	sinm, 109
kron, 62–64	spectralpowm, 109
kronpow, 64	sqrtm, 110
lcm, 65	sum, 110, 111
load, 65	super2choi, 111
loadMATLAB, 66, 67	svals, 112
logdet, 67	svd, 112
logm, 68	svdU, 112
lognegativity, 68, 69	svdV, 113
marginalX, 69	syspermute, 113, 114
marginalY, 69	to_void, 31
maxn, 118	trace, 114
measure, 70–74	transpose, 114
measure_seq, 75, 76	tsallis, 115
mket, 76, 78	uniform, 116
modiny, 78	var, 116
modmul, 79	x2contfrac, 117
modpow, 79	qpp.h, 269
mprj, 80	QPP_UNUSED_, 270
multiidx2n, 81	
n2multiidx, 81	qpp::Codes, 127 ∼Codes, 129
negativity, 82	Codes, 129
norm, 82	codeword, 129
omega, 83	internal::Singleton< const Codes >, 129
operator""_i, 83	Type, 128
pi, 118	qpp::Gates, 148
powm, 83	∼Gates, 150
prj, 84	CNOTba, 156
prod, 84, 85	CNOT, 155
ptrace, 86	CTRL, 151

CZ, 156	px1, 226
expandout, 151, 152	py0, 226
FRED, 156	py1, 226
Fd, 153	pz0, 226
Gates, 150	pz1, 226
H, 156	States, 221
ld, 154	W, 227
ld2, 156	x0, 227
internal::Singleton< const Gates >, 155	x1, 227
Rn, 154	y0, 22 7
S, 156	y1, 227
SWAP, 157	z0, 227
T, 157	z1, 228
TOF, 157	zero, 223
X, 157	qpp::Timer
Xd, 154	\sim Timer, 232
Y, 157	display, 232
Z, 157	end_, 234
Zd, 155	get_duration, 233
qpp::IDisplay, 158	operator=, 233
\sim IDisplay, 159	start_, 234
display, 160	tic, 233
IDisplay, 159	tics, 234
operator<<, 160	Timer, 232
operator=, 160	toc, 234
qpp::Init, 161	qpp::Timer< T, CLOCK_T >, 230
∼Init, 162	qpp::exception, 118
Init, 162	qpp::exception::CustomException, 130
internal::Singleton< const Init >, 162	CustomException, 131
qpp::RandomDevices, 211	type_description, 132
~RandomDevices, 213	what , 132
get_prng, 213	qpp::exception::DimsInvalid, 133
internal::Singleton< RandomDevices >, 214	type_description, 134
load, 213	qpp::exception::DimsMismatchCvector, 134
prng_, 214	type_description, 136
RandomDevices, 213	qpp::exception::DimsMismatchMatrix, 136
rd_, 214	type_description, 137
save, 214	qpp::exception::DimsMismatchRvector, 138
qpp::States, 219	type description, 139
~States, 221	qpp::exception::DimsMismatchVector, 140
b00, 224	type_description, 141
b01, 224	qpp::exception::DimsNotEqual, 142
b10, 224	type_description, 143
b11, 224	qpp::exception::Exception, 145
GHZ, 224	Exception, 147
internal::Singleton< const States >, 224	type_description, 147
jn, 221	what, 147
mes, 222	where_, 148
minus, 222	qpp::exception::MatrixMismatchSubsys, 178
one, 222	type_description, 179
pGHZ, 225	qpp::exception::MatrixNotCvector, 179
pb00, 225	type_description, 181
pb01, 225	qpp::exception::MatrixNotRvector, 181
pb10, 225	type_description, 182
pb10, 225 pb11, 225	qpp::exception::MatrixNotSquare, 183
plus, 223	type_description, 184
pW, 225	qpp::exception::MatrixNotSquareNorCvector, 185
px0, 226	type_description, 186
PAO, 220	typo_description, 100

qpp::exception::MatrixNotSquareNorRvector, 187	get_dim_subsys, 124
type_description, 188	get_num_subsys, 125
qpp::exception::MatrixNotSquareNorVector, 189	kron2, 125
type_description, 190	multiidx2n, 125
qpp::exception::MatrixNotVector, 191	n2multiidx, 125
type_description, 192	variadic_vector_emplace, 125
qpp::exception::NoCodeword, 193	qpp::internal::Display_Impl_, 144
type_description, 194	display_impl_, 144
qpp::exception::NotBipartite, 195	qpp::internal::IOManipEigen, 163
type_description, 196	A_, 164
qpp::exception::NotQubitCvector, 196	chop_, 165
type_description, 198	display, 164
qpp::exception::NotQubitMatrix, 198	IOManipEigen, 164
type_description, 199	qpp::internal::IOManipPointer
qpp::exception::NotQubitRvector, 200	display, 167
type_description, 201	end_, 167
qpp::exception::NotQubitSubsys, 202	IOManipPointer, 166, 167
type_description, 203	N_, 168
qpp::exception::NotQubitVector, 204	operator=, 167
type_description, 205	p_, 168
qpp::exception::OutOfRange, 206	separator_, 168
type_description, 207	start_, 168
qpp::exception::PermInvalid, 208	qpp::internal::IOManipPointer< PointerType >, 165
type_description, 209	qpp::internal::IOManipRange
qpp::exception::PermMismatchDims, 209	display, 170
type_description, 211	end_, 171
qpp::exception::SizeMismatch, 217	first_, 171
type_description, 218	IOManipRange, 170
qpp::exception::SubsysMismatchDims, 228	last_, 171
type_description, 229	operator=, 170
qpp::exception::TypeMismatch, 235	separator_, 171
type_description, 236	start_, 171
qpp::exception::UndefinedType, 237	qpp::internal::IOManipRange< InputIterator >, 169
type description, 238	qpp::internal::Singleton
qpp::exception::Unknown, 238	\sim Singleton, 216
type_description, 240	get_instance, 216
qpp::exception::ZeroSize, 240	get_thread_local_instance, 217
type_description, 241	operator=, 217
qpp::experimental, 120	Singleton, 216
qpp::internal, 120	qpp::internal::Singleton< T >, 215
check_cvector, 121	qpp::is_complex < std::complex < T > >, 173
check_dims, 122	qpp::is_complex< T >, 172
check_dims_match_cvect, 122	qpp::is_iterable< T, to_void< decltype(std::declval< T
check_dims_match_mat, 122	>().begin()), decltype(std::declval< T >().
check_dims_match_rvect, 122	end()), typename T::value_type > >, 175
check_eq_dims, 122	qpp::is_iterable < T, typename >, 174
check_matching_sizes, 122	qpp::is_matrix_expression< Derived >, 176
check_nonzero_size, 123	qpp::make_void
check_perm, 123	type, 177
check_qubit_cvector, 123	qpp::make_void< Ts >, 177
check_qubit_matrix, 123	rand
check_qubit_rvector, 123	qpp, 92–94
check_qubit_vector, 123	randH
check_rvector, 124	qpp, 94
check_square_mat, 124	randidx
check_subsys_match_dims, 124	qpp, 95
check_vector, 124	randket
dirsum2, 124	qpp, 95
anounie, ie i	7FF, ~~

randkraus	qpp, 109
qpp, 95	spectralpowm
randn	qpp, 109
qpp, 96, 97	sqrtm
random.h, 270	qpp, 110
RandomDevices	start_
qpp::RandomDevices, 213	qpp::Timer, 234
randperm	qpp::internal::IOManipPointer, 168
qpp, 98	qpp::internal::IOManipRange, 171
randprime	States
qpp, 98	qpp::States, 221
randprob	statistics.h, 272
qpp, 99	sum
randrho	qpp, 110, 111
qpp, 99	super2choi
randU	qpp, 111
qpp, 99	svals
randV	qpp, 112
qpp, 100	svd
rd	qpp, 112
qpp::RandomDevices, 214	svdU
renyi	qpp, 112
qpp, 100, 101	svdV
reshape	qpp, 113
qpp, 101	syspermute
rho2bloch	qpp, 113, 114
qpp, 102	Ψρρ, 110, 114
rho2pure	T
·	qpp::Gates, 157
qpp, 102 Rn	TOF "
	qpp::Gates, 157
qpp::Gates, 154	tic
S	qpp::Timer, 233
qpp::Gates, 156	tics
SWAP	qpp::Timer, 234
qpp::Gates, 157	Timer
save	qpp::Timer, 232
qpp, 103	to_void
qpp::RandomDevices, 214	qpp, 31
saveMATLAB	toc
qpp, 103, 104	qpp::Timer, 234
schatten	trace
qpp, 104 schmidtA	qpp, 114
	traits.h, 273
qpp, 105	transpose
schmidtB	qpp, 114
qpp, 105, 106	tsallis
schmidtcoeffs	qpp, 115
qpp, 106, 107	Type
schmidtprobs	qpp::Codes, 128
qpp, 107, 108	type
separator_	qpp::make_void, 177
qpp::internal::IOManipPointer, 168	type_description
qpp::internal::IOManipRange, 171	qpp::exception::CustomException, 132
sigma	qpp::exception::DimsInvalid, 134
qpp, 108	qpp::exception::DimsMismatchCvector, 136
Singleton	qpp::exception::DimsMismatchMatrix, 137
qpp::internal::Singleton, 216	qpp::exception::DimsMismatchRvector, 139
sinm	qpp::exception::DimsMismatchVector, 141

```
qpp::exception::DimsNotEqual, 143
                                                             qpp::States, 227
     gpp::exception::Exception, 147
                                                        у1
    qpp::exception::MatrixMismatchSubsys, 179
                                                             qpp::States, 227
     qpp::exception::MatrixNotCvector, 181
                                                        Ζ
     qpp::exception::MatrixNotRvector, 182
                                                             qpp::Gates, 157
     gpp::exception::MatrixNotSquare, 184
                                                        z0
     qpp::exception::MatrixNotSquareNorCvector, 186
                                                             qpp::States, 227
     qpp::exception::MatrixNotSquareNorRvector, 188
                                                        z1
     qpp::exception::MatrixNotSquareNorVector, 190
                                                             qpp::States, 228
     qpp::exception::MatrixNotVector, 192
                                                        Zd
     qpp::exception::NoCodeword, 194
                                                             qpp::Gates, 155
     qpp::exception::NotBipartite, 196
                                                        zero
     qpp::exception::NotQubitCvector, 198
                                                             qpp::States, 223
     qpp::exception::NotQubitMatrix, 199
     qpp::exception::NotQubitRvector, 201
     qpp::exception::NotQubitSubsys, 203
     app::exception::NotQubitVector, 205
     qpp::exception::OutOfRange, 207
     qpp::exception::PermInvalid, 209
     gpp::exception::PermMismatchDims, 211
     qpp::exception::SizeMismatch, 218
     qpp::exception::SubsysMismatchDims, 229
     qpp::exception::TypeMismatch, 236
     qpp::exception::UndefinedType, 238
     qpp::exception::Unknown, 240
     qpp::exception::ZeroSize, 241
types.h, 274
uniform
    qpp, 116
var
     qpp, 116
variadic_vector_emplace
     qpp::internal, 125
W
     qpp::States, 227
what
     qpp::exception::Exception, 147
what
     qpp::exception::CustomException, 132
where
     qpp::exception::Exception, 148
Χ
     qpp::Gates, 157
х0
     qpp::States, 227
х1
     qpp::States, 227
x2contfrac
     qpp, 117
Xd
     qpp::Gates, 154
Υ
     qpp::Gates, 157
y0
```