Dimensionality Reduction Part 2: MDS

Ng Yen Kaow

Dimensionality Reduction

- Linear methods
 - PCA (Principal Component Analysis)
 - CMDS (Classical Multidimensional Scaling)
- Non-linear methods
 - **KPCA** (Kernel PCA)
 - **mMDS** (Metric MDS)
 - Isomap
 - LLE (Locally Linear Embedding)
 - Laplacian Eigenmap
 - t-SNE (t-distributed Stochastic Neighbor Embedding)
 - UMAP (Uniform Manifold Approximation and Projection)

Multidimensional Scaling (MDS)

- □ Classical MDS (cMDS)
 - Reconstruct coordinates from Euclidean distance matrix
- □ Metric MDS (mMDS)
 - Redefined cMDS problem with loss function defined on any metric
- □ Non-metric MDS (nMDS)
 - When only an ordering on the distances is known
- □ Generalized (kernel) classical MDS

Classical MDS (cMDS)

- Reconstruct a set of points given their
 Euclidean distances
- □ Given $n \times n$ distance matrix $D = (d_{ij})$, reconstruct coordinates $x_1, ..., x_n \in \mathbb{R}^m$ with $||x_i x_j|| = d_{ij}$
 - The solution $X = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T \in \mathbb{R}^{n \times m}$ is not unique due to infinitely many translations, rotations, and reflections
 - A centered solution $X = (x_{ij})$ (i.e. $\forall k, 1 \le k \le m$, $\sum_i x_{ik} = 0$) can be found using cMDS
 - Note that solution is still not unique

cMDS idea

Given $D = (d_{ij})$, first note that Euclidean distance d_{ij} is related to $X = (x_{ij})$ through

$$(d_{ij})^2 = (x_i - x_j)^{\mathsf{T}} (x_i - x_j) = x_i^{\mathsf{T}} x_i + x_j^{\mathsf{T}} x_j - 2x_i^{\mathsf{T}} x_j$$

□ On the other hand, for X where $\forall k, 1 \leq k \leq m$, $\sum_{i} x_{ik} = 0$, we can show that

$$A = -2XX^{\mathsf{T}}$$

where $A = (d_{ij}^2)$

- □ Then it suffices that we compute -A/2 to obtain XX^{\top}
- \square Finally, since XX^{\top} can be factorized to recover X

□ **Step 1**. Compute matrix *CAC*

Given $D = (d_{ij})$, computed CAC

where

$$A = \left(-\frac{1}{2}d_{ij}^2\right)$$
$$C = I - \frac{1}{n}\mathbf{1}^{\mathsf{T}}\mathbf{1}$$

- CAC simultaneously centers the rows and columns of the squared distance matrix A (double centering)
- □ It can be shown that $CAC = XX^{\top}$ for centered X (proof in later slides)
 - \Rightarrow CAC is positive semi-definite (proof later)
 - \Rightarrow CAC decompose to non-negative values

□ **Step 2**. Decompose *CAC* into orthonormal basis

Method 1: Eigendecompose CAC into $Q\Lambda Q^{T}$

Then, X can be computed as $Q\Lambda^{1/2}$

Method 2: Decompose CAC directly into XX^{T} using Cholesky factorization

- Only works if CAC is positive definite
- CAC is (positive semi-definite and) positive definite iff all x_i are linearly independent
 - Cholesky in numpy/scipy will not execute unless the input is positive definite
 - Use one that works (e.g. pyre) or write your own with pivoting

- □ **Step 3**. Choose from the decomposed basis Both methods face the problem that the output matrix is not of dimension $n \times m$
 - Eigendecomposition $Q \in \mathbb{R}^{n \times n}$
 - Cholesky factorization $L \in \mathbb{R}^{n \times n}$
- \Box If n < m (fewer datapoints than features)
 - No problem in embedding the points since n points can fit on an (n-1)-D plane
 - Naturally suited for dimensionality reduction purpose if use all n-1 eigenvectors
 - □ If need fewer than (n-1)-D space, see later slides

- □ **Step 3**. Choose from the decomposed basis Both methods face the problem that the output matrix is not of dimension $n \times m$
 - Eigendecomposition $Q \in \mathbb{R}^{n \times n}$
 - Cholesky factorization $L \in \mathbb{R}^{n \times n}$
- □ If n > m (more datapoints than features)
 Problem 1
 - CAC is not positive definite since there are insufficient features for linear independence
 - Bad news for Cholesky factorization

- □ **Step 3**. Choose from the decomposed basis Both methods face the problem that the output matrix is not of dimension $n \times m$
 - Eigendecomposition $Q \in \mathbb{R}^{n \times n}$
 - Cholesky factorization $L \in \mathbb{R}^{n \times n}$
- □ If n > m (more datapoints than features) Problem 2
 - Need to deduce m
 - □ In an ideal eigendecomposition there will be $\operatorname{rank}(XX^{\top})$ ($\leq m$) positive eigenvalues and $n \operatorname{rank}(XX^{\top})$ zero eigenvalues
 - But eigendecomposition usually not ideal with zero eigenvalues, often resulting in complex numbers

- Step 3. Choose from the decomposed basis
 - Many implementations will output negative eigenvalues, so extra care is needed
 - For eigendecomposition
 - \square Remove the eigenpairs with small, negative, or complex eigenvalues, forming Q_1 and Λ_1
 - Choose the set of eigenvalues S from Λ_1 such that $\frac{\sum_{\lambda' \in S} \lambda'}{\sum_{\lambda \in \Lambda_1} \lambda}$ is sufficiently large
 - \Box Finally, compute $Q_1\Lambda_1^{1/2}$ and retain only those in S
 - For Cholesky factorization
 - Choose the vectors with the largest norms

(Proof) $XX^{\mathsf{T}} = CAC$ for centered X

- \square Will expand XX^{\top} and CAC and show equivalence
- □ Given $X \in \mathbb{R}^{m \times n}$, denote XX^{\top} as B, then we can write the Euclidean distance between x_i and x_j as

$$d_{ij}^2 = b_{ii} + b_{jj} - 2b_{ij} (1)$$

 \Box If $\forall k$, $\sum_{i} x_{ik} = 0$ (X is centered), then

$$\sum_{j=1}^{n} b_{ij} = \sum_{j=1}^{n} \sum_{k=1}^{m} x_{ik} x_{jk} = \sum_{k=1}^{m} x_{ik} \left(\sum_{j=1}^{n} x_{jk} \right) = 0$$

Denote $\operatorname{tr}(B) = \sum_{i=1}^{n} b_{ii}, \ \because \sum_{j=1}^{n} b_{ij} = 0, \ (1) \Rightarrow$

$$\sum_{i=1}^{n} d_{ij}^{2} = \sum_{i=1}^{n} b_{ii} + \sum_{i=1}^{n} b_{jj} = \operatorname{tr}(B) + nb_{jj}$$

$$\sum_{j=1}^{n} d_{ij}^{2} = \sum_{j=1}^{n} b_{ii} + \sum_{j=1}^{n} b_{jj} = nb_{ii} + \operatorname{tr}(B)$$

$$\sum_{i,j=1}^{n} d_{ij}^{2} = \sum_{i,j=1}^{n} b_{ii} + \sum_{i,j=1}^{n} b_{jj} = 2n\operatorname{tr}(B)$$

(Proof) $XX^{\mathsf{T}} = CAC$ for centered X

Rewrite (1) as
$$b_{ij} = \frac{1}{2} (b_{ii} + b_{jj} - d_{ij}^2)$$
, then (1)+(2)

$$b_{ij} = \frac{1}{2} \left(\frac{1}{n} \left(\sum_{i=1}^{n} d_{ij}^{2} - \text{tr}(B) + \sum_{j=1}^{n} d_{ij}^{2} - \text{tr}(B) \right) - d_{ij}^{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{n} \left(\sum_{i=1}^{n} d_{ij}^{2} + \frac{1}{n} \sum_{j=1}^{n} d_{ij}^{2} - \frac{1}{n} \sum_{i,j=1}^{n} d_{ij}^{2} \right) - d_{ij}^{2} \right)$$

Done, but for notation simplicity let $a_{ij} = -\frac{1}{2}d_{ij}^2$, then

$$b_{ij} = -\frac{1}{n} \sum_{i=1}^{n} a_{ij} - \frac{1}{n} \sum_{j=1}^{n} a_{ij} + \frac{1}{n^2} \sum_{i,j=1}^{n} a_{ij} + \frac{a_{ij}}{n^2}$$

Further make things easy to see with

$$a_{i\bullet} = \frac{1}{n} \sum_{i=1}^{n} a_{ij}, \ a_{\bullet j} = \frac{1}{n} \sum_{j=1}^{n} a_{ij}, \ a_{\bullet \bullet} = \frac{1}{n^2} \sum_{i,j=1}^{n} a_{ij}$$

$$\Rightarrow b_{ij} = a_{ij} - a_{i\bullet} - a_{\bullet j} + a_{\bullet \bullet}$$

(Proof) $XX^{\mathsf{T}} = CAC$ for centered X

 \square Now expand CAC into terms consisting of a_{ij}

Given
$$A = (a_{ij})$$
, observe that $[1 \ 1 \ ... \ 1]A = n(a_{i \blacksquare})$ $A[1 \ 1 \ ... \ 1] = n(a_{\blacksquare j})$ $[1 \ 1 \ ... \ 1]A[1 \ 1 \ ... \ 1] = n^2(a_{\blacksquare \blacksquare})$ (3)

On the other hand,

$$CAC = \left(I - \frac{1}{n}J\right)A\left(I - \frac{1}{n}J\right)$$
$$= A - \frac{1}{n}JA - \frac{1}{n}AJ + \frac{1}{n^2}JAJ \qquad (4)$$

Finally, (3)+(4) gives

$$(CAC)_{ij} = a_{ij} - a_{i \bullet} - a_{\bullet i} + a_{\bullet \bullet} = b_{ij}$$

(Proof) CAC is PSD

- □ Follows immediately from the fact that $CAC = XX^{T}$, an inner product
 - An inner product $B = XX^{T}$ of any matrix X (centered or not) is called a Gram matrix, or Gramian
 - Gramians are known to be positive semidefinite (see proof in other slides)

Comparison with PCA

•	MDS	PCA
Input	Euclidean distances D $(n \times n)$	Dataset X $(n \times m)$
Matrix considered in theory	Gramian XX^{T} $(n \times n)$	Covariance matrix X^TX $(m \times m)$
Matrix used for decomposition	$-\frac{1}{2}CD^{2}C (n \times n)$ C=centering matrix	$X^{T}X\ (m\times m)$
Output	Reconstructed X , or X in lower dimension	Principal directions and principal component scores (XV)
Decomposition Method	Cholesky factorization or Eigendecomposition	SVD or Eigendecomposition
n < m	No problem	No problem
m < n	For exact reconstruction of X , rank deficiency revealed in eigendecomposition needed to deduce m	No problem

Comparison with PCA

Equivalence of PCA and cMDS

- □ Principal component scores XV are the same as the reconstructed $X = Q\Lambda^{1/2}$
- \square Given SVD of $X = USV^{\top}$
 - U = eigenbasis of XX^T , or Q
 - $V = eigenbasis of X^TX$
 - $S = eigenvalues of XX^{T}, or \Lambda^{1/2}$

Clearly $US = Q\Lambda^{1/2}$

However, $XV = USV^{T}V = US$

Hence $Q\Lambda^{1/2} = XV$

 Since the dimensionality reduction for both methods works at the eigenbasis Q and V respectively, PCA is equivalent to cMDS

Limitation of cMDS

- For cMDS to work, input distances have to be Euclidean
- More precisely, the Pythagorean principle

$$(d_{ij})^2 = (x_i - x_j)^{\mathsf{T}} (x_i - x_j)$$

(or, in terms of the Gramian, $d_{ij}^2 = b_{ii} + b_{jj} - 2b_{ij}$)

is used in establishing the relation $XX^{T} = CAC$

- Such a relationship cannot be assumed for most datasets
- $\square XX^{\top} = CAC$ does not hold for other metrics

Metric MDS (mMDS)

Given distance matrix $(\delta_{ij})_{n\times n}$ and weights $(w_{ij})_{n\times n}$, find $X = [x_1 \quad \dots \quad x_n]^{\mathsf{T}}$ where $x_i \in \mathbb{R}^r$, which minimizes

$$stress(X) = \sum_{i,j,i < j} w_{ij} (d(x_i, x_j) - \delta_{ij})^2$$

where $d(x_i, x_j)$ denotes the distance between x_i and x_j

□ The weights w_{ij} allow removing entries where δ_{ii} is not available

SMACOF Algorithm for mMDS

- \square Minimize stress(X) through majorization
- $\exists \text{ stress}(X) = \sum_{i,j,i < j} w_{ij} \left(d(x_i, x_j) \delta_{ij} \right)^2$ $= \sum_{i,j,i < j} w_{ij} \delta_{ij}^2 2\sum_{i,j} w_{ij} \delta_{ij} d(x_i, x_j)$ Since
 - $\sum w_{ij}\delta_{ij}^2$ is constant, C

 - $\sum w_{ij} \delta_{ij} d(x_i, x_j) = \operatorname{tr}(X'B(X)X) \ge \operatorname{tr}(X')B(Z)Z$ where $B(Z) = (b_{ij})$ for

$$b_{ij} = \begin{cases} -\frac{w_{ij}\delta_{ij}}{d(x_i, x_j)} & \text{if } d(x_i, x_j) \neq 0 \text{ and } i \neq j \\ 0 & \text{if } d(x_i, x_j) = 0 \text{ and } i \neq j \end{cases}$$

$$b_{ii} = -\sum_{j=1, j \neq i}^{n} b_{ij}$$

SMACOF Algorithm for mMDS

- □ stress(X) = C + tr(X'VX) − 2tr(X'B(X)X) which is bounded above by C + tr(X'VX) − 2tr(X'B(Z)Z) = $\tau(X,Z)$
- □ Majorization iteratively updates X^k at the k^{th} iteration to $\min_{X} \tau(X, X^{k-1})$
 - stress(X) will decrease monotonically
 - Stops iteration when $stress(X^k)$ $stress(X^{k-1})$ is below a given threshold
- Proofs for the majorization method requires too much details to provide here

Sammon mapping

- □ A special case of stress(X) where weights are inversely proportional to distance δ_{ij}
 - lacktriangle Emphasize accuracy on small δ_{ij} distances
- Given distance matrix $(\delta_{ij})_{n \times n}$, find $X = [x_1 \dots x_n]^T$ where $x_i \in \mathbb{R}^r$, which minimizes

$$stress(X) = \frac{1}{\sum_{i,j,i < j} \delta_{ij}} \sum_{i,j,i < j} \frac{\left(d(x_i, x_j) - \delta_{ij}\right)^2}{\delta_{ij}}$$

where $d(x_i, x_j)$ denotes the distance between x_i and x_i

□ The simpler stress(X) allows a gradient descent optimization

nMDS vs cMDS

- Similarity vs dissimilarity
 - cMDS attempts to recover XX^{T} , a measure of the similarity between x_i and x_j
 - nMDS attempts to recover distances $d(x_i, x_j)$, a measure of the dissimilarity between x_i and x_i
- Linear vs non-linear
 - cMDS attempts to recover XX^{T} , a linear kernel
 - nMDS, for instance Sammon mapping, can be considered as recovering a non-linear distance measure with an inverse $(1/\delta)$ factor
- Closed-form vs iterative method
 - cMDS is solved through a closed-form solution
 - nMDS can only be approximated iteratively using gradient descent or majorization