1

Assignment 12

Neha Rani EE20MTECH14014

Download the latex-tikz codes from

https://github.com/neharani289/MatrixTheory/Assignment12

1 Problem

(hoffman/page189/5):

Let

$$\mathbf{A} = \begin{pmatrix} 6 & -3 & -2 \\ 4 & -1 & -2 \\ 10 & -5 & -3 \end{pmatrix} \tag{1.0.1}$$

Is A similar over the field R to a diagonal matrix? Is A similar over the field C to a diagonal matrix?

2 DEFINITION AND THEOREM USED

Theorem 2	Let T be the linear operator on a finite dimensional space V and $c_1,,c_k$ be a distinct
	characteristic values of T and let W_i be the null space of $(T - c_i I)$ then
	1)T is diagonalizable
	2) characteristic polynomial for T is $f = (x - c_1)^{d_1}(x - c_k)^{d_k}$ and
	3) $dimW_i = d_i, i = 1,k$
Condition	A linear operator T on a n -dimensional space V is
for diagonalization	diagonalizable, if and only if T has n distinct
	characteristic vectors or null spaces corresponding to the characteristic values

3 Solution

Given	Let the given matrix be
	$\mathbf{A} = \begin{pmatrix} 6 & -3 & -2 \\ 4 & -1 & -2 \\ 10 & -5 & -3 \end{pmatrix}$
Finding Characteristics polynomial	Characteristics polynomial of the matrix A is $det(xI - A)$ $det(xI - A) = \begin{vmatrix} (x - 6) & 3 & 2 \\ -4 & (x + 1) & 2 \\ -10 & 5 & x + 3 \end{vmatrix}$ Characteristic Polynomial = $(x - 2)(x^2 + 1) = (x - 2)(x - i)(x + i)$
Checking whether A similar over the field R to a diagonal matrix	As the characteristics polynomial is not product of linear factors over R . Therefore from Theorem 2, A is not diagonalizable over R
Checking whether A similar over the field C to a diagonal matrix	The Characteristic Polynomial can be written as a product of linear factors over C i.e det(xI - A) = (x - 2)(x - i)(x + i)
	To find characteristic values of the operator $det(xI - A) = 0$ which gives $c_1 = 2, c_2 = i, c_3 = -i$
	Thus over C matrix A has three distinct characteristic values.
	There will be atleast one characteristics vector i.e., one dimension with each characteristics value .
	From Theorem 2; $\sum_{i} W_{i} = n = 3$, which is equal to dim of A .
	Thus, A is diagonalizable over C .
Conclusion	1) A is not diagonalizable over R.
	2) A is diagonalizable over C.