COVID-19 World Vaccination Progress

Basic Visualization

- 1. Vaccination by Country
 - 1.1 Total Vaccinations
 - 1.2 People Vaccinated
 - 1.3 People Fully Vaccinated
- 2. Vaccination by Country per Hundred
 - 2.1 Total Vaccinations
 - 2.2 People Vaccinated
 - 2.3 People Fully Vaccinated
- 3. Daily Vaccinations
 - 3.1 Daily Vaccinations by Country
 - 3.2 Daily Vaccinations by Country per Million

Advanced Visualization

- 1. Total Vaccination & 30-day Rolling
- 2. Daily Vaccination
 - 2.1 Day of Week
 - 2.2 Month
- 3. Total Vaccination Status Across Countries

Import packages

```
In [1]:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
Pandas default settings
In [2]:
# pd.set_option('display.max_rows', 500)
pd.set_option('display.max_columns', 30)
pd.set_option('display.float_format', '{:,.2f}'.format)
In [3]:
#Load Dataset
df_vaccination = pd.read_csv('../input/covid-world-vaccination-progress/country_vacci
nations.csv')
#data is from : https://qpreda/covid-world-vaccination-progress
Exploring the dataset
In [4]:
#Display first 5 rows
```

df_vaccination.head()

Out[4]:

	co un try	is o - c o d e	d a t e	total _va ccin atio ns	peo ple_ vacc inat ed	peopl e_full y_vac cinate d	daily _vacc inatio ns_ra w	dail y_v acci nati ons	total_v accinati ons_pe r_hund red	people_ vaccina ted_per _hundr ed	people_f ully_vac cinated_ per_hund red	daily_v accinati ons_pe r_milli on	vacc ines	so urc e_ na me	sourc e_we bsite
0	Af gh an ist an	A F G	2 0 2 1 - 0 2 - 2 2	0.00	0.00	NaN	NaN	Na N	0.00	0.00	NaN	NaN	John son & Johnson, Oxfo rd/A straZ enec a, Pfize r/Bi	W orl d He alt h Or ga niz ati on	https: //covi d19. who.i nt/
1	Af gh an ist an	A F G	2 0 2 1 - 0 2 - 2 3	Na N	Na N	NaN	NaN	1,36 7.00	NaN	NaN	NaN	34.00	John son & Johnson, Oxfo rd/A straZ enec a, Pfize r/Bi	W orl d He alt h Or ga niz ati on	https: //covi d19. who.i nt/
2	Af gh an ist an	A F G	2 0 2 1 - 0 2 - 2 4	Na N	Na N	NaN	NaN	1,36 7.00	NaN	NaN	NaN	34.00	John son & John son n, Oxfo rd/A straZ enec a, Pfize r/Bi	W orl d He alt h Or ga niz ati on	https: //covi d19. who.i nt/

	co un try	is o - c o d e	d a t e	total _va ccin atio ns	peo ple_ vacc inat ed	peopl e_full y_vac cinate d	daily _vacc inatio ns_ra w	dail y_v acci nati ons	total_v accinati ons_pe r_hund red	people_ vaccina ted_per _hundr ed	people_f ully_vac cinated_ per_hund red	daily_v accinati ons_pe r_milli on	vacc ines	so urc e_ na me	sourc e_we bsite
													•		
3	Af gh an ist an	A F G	2 0 2 1 - 0 2 - 2 5	Na N	Na N	NaN	NaN	1,36 7.00	NaN	NaN	NaN	34.00	John son &Jo hnso n, Oxfo rd/A straZ enec a, Pfize r/Bi	W orl d He alt h Or ga niz ati on	https: //covi d19. who.i nt/
4	Af gh an ist an	A F G	2 0 2 1 - 0 2 - 2 6	Na N	Na N	NaN	NaN	1,36 7.00	NaN	NaN	NaN	34.00	John son & Johnson, Oxfo rd/A straZ enec a, Pfize r/Bi	W orl d He alt h Or ga niz ati on	https: //covi d19. who.i nt/

In [5]:

df_vaccination.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 77709 entries, 0 to 77708
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	country	77709 non-null	object
1	iso_code	77709 non-null	object
2	date	77709 non-null	object
3	total_vaccinations	40048 non-null	float64
4	people_vaccinated	37945 non-null	float64

```
people fully vaccinated
                                        35465 non-null float64
 6
    daily vaccinations raw
                                        32591 non-null float64
                                        77429 non-null float64
 7
    daily vaccinations
    total_vaccinations_per_hundred
                                        40048 non-null float64
 8
    people vaccinated per hundred
                                        37945 non-null float64
 10 people fully vaccinated per hundred 35465 non-null float64
 11 daily vaccinations per million
                                        77429 non-null float64
 12 vaccines
                                        77709 non-null object
 13 source name
                                        77709 non-null object
 14 source website
                                        77709 non-null object
dtypes: float64(9), object(6)
memory usage: 8.9+ MB
```

Content

The data (country vaccinations) contains the following information:

- Country- this is the country for which the vaccination information is provided;
- Country ISO Code ISO code for the country;
- Date date for the data entry; for some of the dates we have only the daily vaccinations, for others, only the (cumulative) total;
- **Total number of vaccinations** this is the absolute number of total immunizations in the country;
- **Total number of people vaccinated** a person, depending on the immunization scheme, will receive one or more (typically 2) vaccines; at a certain moment, the number of vaccination might be larger than the number of people;
- **Total number of people fully vaccinated** this is the number of people that received the entire set of immunization according to the immunization scheme (typically 2); at a certain moment in time, there might be a certain number of people that received one vaccine and another number (smaller) of people that received all vaccines in the scheme;
- Daily vaccinations (raw) for a certain data entry, the number of vaccination for that date/country;
- **Daily vaccinations** for a certain data entry, the number of vaccination for that date/country;
- **Total vaccinations per hundred** ratio (in percent) between vaccination number and total population up to the date in the country;
- Total number of people vaccinated per hundred ratio (in percent) between population immunized and total population up to the date in the country;
- Total number of people fully vaccinated per hundred ratio (in percent) between
 population fully immunized and total population up to the date in the country;
- **Daily vaccinations per million** ratio (in ppm) between vaccination number and total population for the current date in the country;
- Vaccines used in the country total number of vaccines used in the country (up to date);
- **Source name** source of the information (national authority, international organization, local organization etc.);
- Source website website of the source of information;

In [6]:

#Find the number or rows and columns

df_vaccination.shape

#There are 76095 rows and 15 columns

Out[6]:

(77709, 15)

In [7]:

df_vaccination.isnull().sum()

#There are no empty rows for country, iso_code or date columns.

Out[7]:

country	0
iso_code	0
date	0
total_vaccinations	37661
people_vaccinated	39764
<pre>people_fully_vaccinated</pre>	42244
daily_vaccinations_raw	45118
daily_vaccinations	280
total_vaccinations_per_hundred	37661
<pre>people_vaccinated_per_hundred</pre>	39764
<pre>people_fully_vaccinated_per_hundred</pre>	42244
daily_vaccinations_per_million	280
vaccines	0
source_name	0
source_website	0
dtypo: int61	

dtype: int64

In [8]:

General Overview of the calculations in data

df_vaccination.describe()

Out[8]:

	total_v accinat ions	people _vacci nated	people_fu lly_vacci nated	daily_vac cinations _raw	daily_v accinat ions	total_vaccin ations_per_h undred	people_vacci nated_per_h undred	people_fully_v accinated_per_ hundred	daily_vaccin ations_per_ million
c o u nt	40,048	37,945. 00	35,465.00	32,591.0 0	77,429. 00	40,048.00	37,945.00	35,465.00	77,429.00
m ea n	40,384 ,563.3 0	15,903, 249.33	12,278,48 6.43	276,490. 71	135,95 7.05	73.11	38.60	32.81	3,417.77
st	202,53 3,898.	63,330,	49,156,65	1,245,21	797,86	63.46	28.74	27.62	4,028.63

	total_v accinat ions	people _vacci nated	people_fu lly_vacci nated	daily_vac cinations _raw	daily_v accinat ions	total_vaccin ations_per_h undred	people_vacci nated_per_h undred	people_fully_v accinated_per_ hundred	daily_vaccin ations_per_ million
d	56	416.02	1.29	0.53	8.94				
m in	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
2 5 %	472,14 1.25	314,53 8.00	211,664.0 0	5,240.00	972.00	13.31	9.72	5.58	704.00
5 0 %	3,141, 270.00	1,939,9 70.00	1,442,791 .00	26,278.0 0	7,869.0 0	59.37	37.40	27.31	2,253.00
7 5 %	15,091 ,858.2 5	8,102,7 81.00	6,399,728 .00	129,159. 00	45,644. 00	123.68	65.33	58.32	4,933.00
m a x	3,063, 391,00 0.00	1,266,4 26,000. 00	1,228,340 ,000.00	24,741,0 00.00	22,424, 286.00	333.76	123.75	121.14	117,497.00

Data Preparation

In [9]:

#drop the source_name, source_website and vaccine columns

df_vaccine_country = df_vaccination.drop(['source_name','source_website','vaccines'],
axis=1)
df_vaccine_country.head()

Out[9]:

	cou ntry	iso _c od e	d at e	total_ vacci natio ns	peopl e_vac cinate d	people_ fully_v accinate d	daily_v accinati ons_ra w	daily_ vacci nation s	total_vacc inations_p er_hundre d	people_va ccinated_p er_hundre d	people_fully _vaccinated _per_hundre d	daily_vac cinations_ per_millio n
--	-------------	----------------------	--------------	--------------------------------	-------------------------------	-------------------------------------	------------------------------------	--------------------------------	--	---	---	--

	cou ntry	iso _c od e	d at e	total_vacci natio ns	peopl e_vac cinate d	people_ fully_v accinate d	daily_v accinati ons_ra w	daily_vacci nation s	total_vacc inations_p er_hundre d	people_va ccinated_p er_hundre d	people_fully _vaccinated _per_hundre d	daily_vac cinations_ per_millio n
0	Afg han ista n	A F G	2 0 2 1 - 0 2 - 2 2	0.00	0.00	NaN	NaN	NaN	0.00	0.00	NaN	NaN
1	Afg han ista n	A F G	2 0 2 1 - 0 2 - 2 3	NaN	NaN	NaN	NaN	1,367. 00	NaN	NaN	NaN	34.00
2	Afg han ista n	A F G	2 0 2 1 - 0 2 - 2 4	NaN	NaN	NaN	NaN	1,367. 00	NaN	NaN	NaN	34.00
3	Afg han ista n	A F G	2 0 2 1 - 0 2 - 2 5	NaN	NaN	NaN	NaN	1,367. 00	NaN	NaN	NaN	34.00

	cou ntry	iso _c od e	d at e	total_ vacci natio ns	peopl e_vac cinate d	people_ fully_v accinate d	daily_v accinati ons_ra w	daily_ vacci nation s	total_vacc inations_p er_hundre d	people_va ccinated_p er_hundre d	people_fully _vaccinated _per_hundre d	daily_vac cinations_ per_millio n
4	Afg han ista n	A F G	2 0 2 1 - 0 2 - 2 6	NaN	NaN	NaN	NaN	1,367. 00	NaN	NaN	NaN	34.00

In [10]:

convert Date column to date type and fill na values with 0 for calculation

```
df_vaccine_country["date"] = pd.to_datetime(df_vaccine_country["date"], format = '%Y-
%m-%d')
```

```
df_vaccine_country = df_vaccine_country.replace([np.inf, -np.inf], np.nan)
df_vaccine_country = df_vaccine_country.fillna(0)
df_vaccine_country.isnull().sum()
```

Out[10]:

country	0
iso_code	0
date	0
total_vaccinations	0
people_vaccinated	0
<pre>people_fully_vaccinated</pre>	0
daily_vaccinations_raw	0
daily_vaccinations	0
total_vaccinations_per_hundred	0
<pre>people_vaccinated_per_hundred</pre>	0
<pre>people_fully_vaccinated_per_hundred</pre>	0
daily_vaccinations_per_million	0

dtype: int64 In [11]:

#Function to find total, avergae, maximum and minimum of different vaccinations status by country

def vaccination_country(col_name,func_name):

. . .

Function that requires vaccination column name, and sum/mean/max/min function name as string arguments.

```
if func_name == 'sum':
```

```
return (df_vaccine_country[['country',col_name]].groupby(by='country')
                                 .sum()
                                 .sort values(by=col name,ascending= False)
                                 .reset index()
                            )
    elif func_name == 'mean':
        return (df_vaccine_country[['country',col_name]].groupby(by='country')
                                 .mean()
                                 .sort values(by=col name,ascending= False)
                                 .reset_index()
                                )
    elif func_name == 'max':
        return (df vaccine country[['country',col name]].groupby(by='country')
                                 .max()
                                 .sort values(by=col name,ascending= False)
                                 .reset_index()
    elif func name == 'min':
        return (df_vaccine_country[['country',col_name]].groupby(by='country')
                                 .min()
                                 .sort_values(by=col_name,ascending= False)
                                 .reset index()
In [12]:
# Calculating different vaccinations for visualizations
max_total_vaccinations = vaccination_country('total_vaccinations','max')
sum_people_vaccinated = vaccination_country('people_vaccinated','sum')
sum_people_fully_vaccinated = vaccination_country('people_fully_vaccinated','sum')
avg_total_vaccinations = vaccination_country('total_vaccinations_per_hundred','mean')
avg_people_vaccinated = vaccination_country('people_vaccinated_per_hundred','mean')
avg_people_fully_vaccinated = vaccination_country('people_fully_vaccinated_per_hundre
avg_daily_vaccinations = vaccination_country('daily_vaccinations_per_million','mean')
In [13]:
#Function for Country with maximum and minimum daily vaccinations
def daily_vaccination_country(col_name,func_name):
    . . .
    A function that requires daily vaccination column and max/min function name as st
ring arguments.
    daily vaccination = (df vaccine country
                                 .pivot table(index='country',columns='date',values=c
ol name)
                                    )
    if func name == 'max':
```

```
daily_vaccination['Highest Daily Vaccination'] = daily_vaccination.max(axis=1)
        daily vaccination['Date - Highest Daily Vaccination'] = daily vaccination.idx
max(axis=1)
       daily_vaccination.sort_values(by='Highest Daily Vaccination',ascending=False,
inplace=True)
       daily_vaccination.rename_axis('',axis=1,inplace=True)
        return daily vaccination[['Highest Daily Vaccination','Date - Highest Daily V
accination']].reset index()
    elif func_name == 'min':
        daily_vaccination.replace(0.00,np.nan,inplace=True)
        daily_vaccination['Lowest Daily Vaccination'] = daily_vaccination.min(axis=1)
        daily vaccination['Date - Lowest Daily Vaccination'] = daily vaccination.idxm
in(axis=1)
        daily vaccination.sort values(by='Lowest Daily Vaccination',ascending=False,i
nplace=True)
        daily vaccination.rename axis('',axis=1,inplace=True)
        return daily_vaccination[['Lowest Daily Vaccination','Date - Lowest Daily Vac
cination']].reset index()
In [14]:
#Calculating highest and lowest daily vaccination and the respective dates.
highest_daily_vaccination = daily_vaccination_country('daily_vaccinations','max')
lowest_daily_vaccination = daily_vaccination_country('daily_vaccinations','min')
Data Visualization
1.1 Top & Bottom 5 Countries in terms of Total Vaccination
In [15]:
#Set sns theme and default figsize for all the sns visualizations.
sns.set_theme(style='whitegrid')
sns.set(rc={'figure.figsize' : (12,5)})
fig, axes = plt.subplots(2,1)
sns.barplot(x='country',y='total_vaccinations',data=max_total_vaccinations.head(),ax=
axes[0])
axes[0].set(xlabel = '', ylabel = 'Total Vaccinations', title ='Top 5 Countries in te
rms of total vaccinations!')
sns.barplot(x='country',y='total vaccinations',data=max total vaccinations.tail(),ax=
axes[1])
axes[1].set(xlabel = '', ylabel = 'Total Vaccinations', title ='Bottom 5 Countries in
terms of total vaccinations!')
fig.tight_layout()
plt.show()
```

1.2 Top & Bottom 5 Countries in terms of People Vaccinated

```
In [16]:
fig, axes = plt.subplots(2,1)
sns.barplot(x='country',y='people_vaccinated',data=sum_people_vaccinated.head(),ax=ax
es[0])
axes[0].set(xlabel = '', ylabel = 'People Vaccinated', title = 'Top 5 Countries in ter
ms of people vaccinated!')
sns.barplot(x='country', y='people_vaccinated',data=sum_people_vaccinated.tail(),ax=a
axes[1].set(xlabel = '', ylabel = 'People Vaccinated', title ='Bottom 5 Countries in
terms of people vaccinated!')
fig.tight layout()
plt.show()
1.3 Top & Bottom 5 Countries in terms of People Fully Vaccinated
In [17]:
fig, axes = plt.subplots(2,1)
sns.barplot(x='country',y='people fully vaccinated',data=sum people fully vaccinated.
head(),ax=axes[0])
axes[0].set(xlabel = '', ylabel = 'People Fully Vaccinated', title ='Top 5 Countries
in terms of people fully vaccinated!')
sns.barplot(x='country',y='people fully vaccinated',data=sum people fully vaccinated.
tail(),ax=axes[1])
axes[1].set(xlabel = '', ylabel = 'People Fully Vaccinated', title ='Bottom 5 Countri
es in terms of people fully vaccinated!')
# plt.ticklabel format(style='plain', axis='y') #Uncomment if y label needs to displa
y accurate values
fig.tight layout()
plt.show()
2.1 Top & Bottom 5 Countries in terms of Total Vaccinations per Hundred
In [18]:
fig, axes = plt.subplots(2,1)
sns.barplot(x='country', y='total_vaccinations_per_hundred',data=avg_total_vaccinatio
ns.head(),ax=axes[0])
axes[0].set(xlabel='', ylabel='Average Vaccinations per 100', title='Top 5 Countries
in terms of average vaccinations per hundred!')
sns.barplot(x='country', y='total vaccinations per hundred',data=avg total vaccinatio
ns.tail(),ax=axes[1])
axes[1].set(xlabel='', ylabel='Average Vaccinations per 100', title='Bottom 5 Countri
es in terms of average vaccinations per hundred!')
```

```
fig.tight layout(h pad=3)
plt.show()
2.2 Top & Bottom 5 Countries in terms of People Vaccinated per Hundred
In [19]:
fig, axes = plt.subplots(2,1)
sns.barplot(x='country', y='people_vaccinated_per_hundred',data=avg_people_vaccinated.
head(),ax=axes[0])
axes[0].set(xlabel='', ylabel='People Vaccinated per 100', title='Top 5 Countries in
terms of average people vaccinated per hundred!')
sns.barplot(x='country', y='people_vaccinated_per_hundred',data=avg_people_vaccinated.
tail(),ax=axes[1])
axes[1].set(xlabel='', ylabel='People Vaccinated per 100', title='Bottom 5 Countries
in terms of average people vaccinated per hundred!')
fig.tight_layout()
plt.show()
2.3 Top & Bottom 5 Countries in terms of People Fully Vaccinated per Hundred
In [20]:
fig, axes = plt.subplots(2,1)
sns.barplot(x='country', y='people_fully_vaccinated_per_hundred',data=avg_people_full
y vaccinated.head(),ax=axes[0])
axes[0].set(xlabel='', ylabel='People Fully Vaccinated per 100', title='Top 5 Countri
es in terms of average people fully vaccinated per hundred!')
sns.barplot(x='country', y='people_fully_vaccinated_per_hundred',data=avg_people_full
y vaccinated.tail(),ax=axes[1])
axes[1].set(xlabel='', ylabel='People Fully Vaccinated per 100', title='Bottom 5 Coun
tries in terms of average people fully vaccinated per hundred!')
fig.tight_layout(h_pad=3)
plt.show()
3.1 Highest & Lowest 5 Daily Vaccination by Country
unfold moreshow hidden code
In [22]:
fig, axes = plt.subplots(1,2)
sns.barplot(data=daily_top5_highest,x="country", y="Highest Daily Vaccination",ax=axe
s[0], hue='Date - Highest Daily Vaccination')
axes[0].set(xlabel='',ylabel='Daily Vaccination',title='Highest Daily Vaccination by
Country')
```

```
sns.barplot(data=daily_top5_lowest,x="country", y="Lowest Daily Vaccination",ax=axes
[1].hue='Date - Lowest Daily Vaccination')
axes[1].set(xlabel='',ylabel='Daily Vaccination',title='Lowest Daily Vaccination by C
ountry')
# plt.ticklabel_format(style='plain', axis='y')
fig.tight_layout()
plt.show()
3.2 Top & Bottom 5 Daily Vaccination by Country per Million
In [23]:
fig, axes = plt.subplots(2,1)
sns.barplot(x='country', y='daily_vaccinations_per_million',data=avg_daily_vaccinatio
ns.head(),ax=axes[0])
axes[0].set(xlabel='', ylabel='Daily Vaccinations per Million', title='Top 5 Countrie
s in terms of daily vaccinations per million!')
sns.barplot(x='country', y='daily vaccinations per million',data=avg daily vaccinatio
ns.tail(),ax=axes[1])
axes[1].set(xlabel='', ylabel='Daily Vaccinations per Million', title='Bottom 5 Count
ries in terms of daily vaccinations per million!')
fig.tight_layout(h_pad=3)
plt.show()
Advanced Data Visualization
Import Plotly Library
In [24]:
from plotly.offline import init_notebook_mode
import plotly.express as px
init_notebook_mode(connected=True)
1. Total Vaccination & 30-day Rolling by Top 5 Country
In [25]:
#Top 5 country with highest total vaccinations
list(max_total_vaccinations['country'].head())
Out[25]:
['China', 'India', 'United States', 'Brazil', 'Indonesia']
In [26]:
# Filter the top 5 countries and find their 30 day rolling average of total vaccinati
top5 country total = ['China', 'India', 'United States', 'Brazil', 'Indonesia']
top5_country_total_day = df_vaccine_country[df_vaccine_country['country'].isin(top5_c
ountry total)].copy()
top5 country total day['30 - Day Rolling'] = top5 country total day['total vaccinatio
ns'].rolling(window=30).mean()
```

```
In [27]:
fig = px.line(top5_country_total_day,x="date",y="total_vaccinations",color='country',
                labels={"country" : 'Top 5 Country', 'date' : 'Date', 'total_vaccina
tions' : "Total Vaccinations"},
               title="Total Vaccination Progress - Top 5 Country", template='plotly d
ark')
for country in top5_country_total_day['country'].unique():
    fig.add_scatter(x=top5_country_total_day[top5_country_total_day['country'] == cou
ntry]['date']
                    ,y=top5_country_total_day[top5_country_total_day['country'] == co
untry]['30 - Day Rolling']
                    ,mode="lines",name='30 Day Rolling Vaccination ' + country)
2.1 Daily Vaccination by Day of Week by Top 5 Country
In [28]:
# Get the name of the day of vaccinations
top5_country_total_day['Day of Week'] = top5_country_total_day['date'].apply(lambda x:
x.day name())
top5_country_total_day['Day of Week'].unique()
Out[28]:
array(['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday',
       'Saturday'], dtype=object)
In [29]:
fig = px.box(top5_country_total_day,x='Day of Week',y='daily_vaccinations',color='cou
ntry',
             labels={"country" : 'Top 5 Country', 'daily_vaccinations' : "Daily Vacci
nation"},
                title="Dailly Vaccination by Day of Week - Top 5 Country", template='p
lotly dark')
2.2 Daily Vaccination by Month by Top 5 Country
In [30]:
# Get the name of the month of vaccinations
top5_country_total_day['Month'] = top5_country_total_day['date'].apply(lambda x:x.mon
top5_country_total_day['Month'].unique()
Out[30]:
array(['January', 'February', 'March', 'April', 'May', 'June', 'July',
       'August', 'September', 'October', 'November', 'December'],
      dtype=object)
In [31]:
linkcode
fig = px.bar(top5_country_total_day,x='Month',y='daily_vaccinations',color='country',
             labels={"country" : 'Top 5 Country', 'daily_vaccinations' : "Daily Vacci
nation"},
                title="Dailly Vaccination by Month - Top 5 Country",template='plotly_
dark')
3. Total Vaccination Status Across Countries
In [32]:
```