WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

A1

(11) International Publication Number:

WO 00/51990

C07D 239/04, A61K 31/495

(43) International Publication Date:

8 September 2000 (08.09.00)

(21) International Application Number:

PCT/KR00/00166

(22) International Filing Date:

3 March 2000 (03.03.00)

(30) Priority Data:

1999/7165

4 March 1999 (04,03.99)

KR

(81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(74) Agents: JANG, Seong, Ku et al.; 17th floor, KEC Building,

#275-7, Yangjae-dong, Seocho-ku, Seoul 137-130 (KR).

(71) Applicant (for all designated States except US): KOREA RE-SEARCH INSTITUTE OF CHEMICAL TECHNOLOGY [KR/KR]; #100, Jang-dong, Yuseong-gu, Daejon 305-343

(KR).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SON, Jong, Chan [KR/KR]; Hanbit Apartment 131-603, #99, Oeun-dong, Yuseong-gu, Daejeon 305-333 (KR). SHIN, Seun, Shil [KR/KR]; #1402-26, Dukjin-dong 1-ga, Dukjin-gu, Jeonju-si, Jeonrabuk-do 561-190 (KR). KIM, Shin, Keol [KR/KR]; #553-34, Banghwa-2-dong, Kangseo-gu, Seoul 157-222 (KR). LEE, Chong, Kyo [KR/KR]; Hanul Apt. 107-604, Sinseong-dong, Yuseong-gu, Daejeon 305-345 (KR). KIM, Hae, Soo [KR/KR]; Seongwon Apt. 9-1301, Uhmsa-ri, Duma-myeon, Nonsan-si, Chungcheongnam-do 320-910 (KR).

Published

With international search report.

(54) Title: ANTIVIRAL 2,4-PYRIMIDINEDIONE DERIVATIVES AND PROCESS FOR THE PREPARATION THEREOF

(57) Abstract

2,4-pyrimidinedione derivatives of formula (I) having high antiviral activity against wild-type and mutant HIV-1 and low toxicity are useful for treating AIDS (I) wherein: R¹ is a C6-10 aryl or C3-10 heteroaryl group optionally having one or more substituents selected from the group consisting of halogen, C1-6 alkyl, C1-6

alkyl substituted with one or more halogen atoms, C₃₋₆ cycloalkyl, cyano, nitro, hydroxy, thiohydroxy, azido, C₁₋₆ alkoxy, oximino, C₁₋₃ alkyloximino, O-(C₁₋₆ alkyl)-substituted oximino, C-₁₋₆ alkylcarbonyl, C₃₋₆ cycloalkylcarbonyl, hydroxymethyl, azidomethyl, C₁₋₆ alkoxymethyl, C₁₋₆ acyloxymethyl, carbamoyloxymethyl, aminomethyl, N-(C₁₋₃ alkyl) aminomethyl, N,N-di(C₁₋₃ alkyl) aminomethyl, carboxy; C₁₋₆ alkoxycarbonyl, aziridine, amino, hydroxyethylamino, cyclopropylamino, C₁₋₆ alkylamino, di(C₁₋₆ alkyl) amino, trifluoroacetamido, C₁₋₆ acylamido, carbamoyl, hydroxyethylcarbamoyl, cyclopropylcarbamoyl, C₁₋₆ alkylcarbamoyl, di(C₁₋₆ alkyl) carbamoyl, aminocarbamoyl, dimethylaminocarbamoyl, hydroxyethylcarbamoyl, cyclopropylcarbamoyl, triazolyl and tetrazolyl; a tetrahydropyridyl or piperidyl group optionally substituted with a C₁₋₆ alkyl or C₁₋₆ alkoxycarbonyl group; a tetrahydropyranyl group; or a tetrahydrofuryl group; R² is hydrogen, halogen, nitro, cyano, C₁₋₃ alkoxycarbonyl, C₁₋₃ alkylamino, di(C₁₋₃ alkyl) amino, C₁₋₃ alkylcarbamoyl, di(C₁₋₃ alkyl) carbamoyl, C₁₋₆ alkyl, C₃₋₆ cycloalkyl or benzyl; R³ and R⁴ are each independently hydrogen, halogen, hydroxy, cyano, nitro, amino, acetamido, trifluoroacetamido, azido, C₁₋₃ alkyl, C₁₋₃ alkyl substituted with one or more halogen atoms, C₁₋₃ alkoxycarbonyl, carbamoyl, C₁₋₃ alkylcarbamoyl, di(C₁₋₃ alkyl) carbamoyl, di(C₁₋₃

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain ·	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	Prance	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	T.J	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IB	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belanis	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	ſΤ	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
a	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SB	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

ANTIVIRAL 2,4-PYRIMIDINEDIONE DERIVATIVES AND PROCESS FOR THE PREPARATION THEREOF

Field of the Invention

5

The present invention relates to novel pyrimidinedione derivatives, which are useful as an antiviral agent, particularly for treating acquired immunodeficiency syndrome (AIDS), a process for the preparation thereof and a 10 pharmaceutical composition containing same as an active ingredient.

Description of the Prior Art

- Various compounds such as AZT (3'-azido-3'-deoxythymidine), DDC (2',3'-dideoxycytidine), DDI (2',3'-dideoxyinosine), D4T (3'-deoxy-2',3'-didehydrothymidine) 3TC(lamivudine), Ziagen, Nevirapine, Sustiva, Delavirdine, Indinavir, Ritonavir, Viracept, Saquinavir and Agenerase 20 have been reported to have the ability, albeit limited, to inhibit the reproduction of AIDS virus. However, they are also known to cause undesirable side effects due to their toxicity as well as to induce the mutation of the virus, thereby increasing the resistance of the virus.
- In order to minimize such problems, therefore, many 25 attempts have been made. For example, there have been reported 2,4-pyrimidinedione derivatives having alkoxymethyl substituents {J. Med. Chem., 35, 4713 (1992); <u>J. Med. Chem., 35</u>, 337 (1992); <u>J. Med. Chem.</u>, <u>34</u>, 1508 30 (1991); <u>J. Med. Chem.</u>, <u>34</u>, 1394 (1991); <u>J. Med. Chem.</u>, <u>34</u>, 349 (1991); Molecular Pharm., 39, 805 (1991); Tet. Lett., 35, 4531 (1994); J. Med. Chem., 38, 2860 (1995); Nucleosides and Nucleotides, 14, 575 (1995); J. Med. Chem., 39, 2427 (1996); J. Med. Chem., 42, 4500 (1999); EP 0,449,726 A1; EP 35 0,420,763 A2; USP 5,278,167; USP 5,318,972; USP 5,461,060; WO95/18109 A1; and USP 5,112,835); 1-allyl or propargyl substituents (USP 5,747,500); and 1-cyclopentenylmethylene

substituents (USP 5,922,727). Although these compounds exhibit improved activity against human immunodeficiency virus (HIV), there exists a need to develope non-toxic compounds having even higher potency against both wild-type 5 and mutant HIV.

Summary of the Invention

Accordingly, it is a primary object of the present 10 invention to provide a novel compound having superior antiviral activity against both wild-type and mutant HIV-1 as well as reduced toxicity.

It is another object of the present invention to provide a pharmaceutical composition containing same.

It is a further object of the present invention to provide a process for the preparation of said novel compound.

In accordance with one aspect of the present invention, there is provided a novel 2,4-pyrimidinedione compound of 20 formula(I) or a pharmaceutically acceptable salt thereof:

wherein:

R¹ is a C₆₋₁₀ aryl or C₃₋₁₀ heteroaryl group optionally having one or more substituents selected from the group consisting of halogen, C₁₋₆ alkyl, C₁₋₆ alkyl substituted with one or more halogen atoms, C₃₋₆ cycloalkyl, cyano, nitro, hydroxy, thiohydroxy, azido, C₁₋₆ alkoxy, oximino, C₁₋₃ alkyloximino, O-(C₁₋₆ alkyl)-substituted oximino, C₁₋₆ alkylcarbonyl, C₃₋₆ cycloalkylcarbonyl, hydroxymethyl, azidomethyl, C₁₋₆ alkoxymethyl, C₁₋₆ acyloxymethyl,

carbamoyloxymethyl, aminomethyl, N-(C_{1-3} alkyl)aminomethyl, $N, N-di(C_{1-3} \text{ alkyl})$ aminomethyl, carboxy, C_{1-6} alkoxycarbonyl, aziridine, amino, hydroxyethylamino, cyclopropylamino, C_{1-6} alkylamino, di(C_{1-6} alkyl)amino, trifluoroacetamido, C_{1-6} carbamoyl, hydroxyethylcarbamoyl, 5 acylamido, cyclopropylcarbamoyl, alkylcarbamoyl, C1-6 alkyl)carbamoyl, aminocarbamoyl, dimethylaminocarbamoyl, hydrazino, 1,1-dimethylhydrazino, imidazolyl, triazolyl and tetrazolyl; a tetrahydropyridyl or piperidyl substituted 10 optionally with C₁₋₆ alkyl alkoxycarbonyl group; a tetrahydropyranyl group; or a tetrahydrofuryl group;

R² is hydrogen, halogen, nitro, cyano, C₁₋₃ alkoxycarbonyl, C₁₋₃ alkylamino, di(C₁₋₃ alkyl)amino, C₁₋₃ 15 alkylcarbamoyl, di(C₁₋₃ alkyl)carbamoyl, C₁₋₆ alkyl, C₃₋₆ cycloalkyl or benzyl;

 R^3 and R^4 are each independently hydrogen, halogen, hydroxy, cyano, nitro, amino, acetamido, trifluoroacetamido, azido, C_{1-3} alkyl, C_{1-3} alkyl substituted with one or more halogen atoms, C_{1-3} alkoxycarbonyl, carbamoyl, C_{1-3} alkylcarbamoyl, di(C_{1-3} alkyl)carbamoyl or C_{1-3} alkoxy;

A is O or S; and

Z is O, S, C=O, NH or CH,.

25 Detailed Description of the Invention

Among the compounds of formula(I) of the present invention, the preferred are those wherein R¹ is a phenyl, pyridyl or N-oxopyridyl group optionally having one or more 30 substituents as listed in formula(I).

The 2,4-pyrimidinedione compound of formula(I) may be prepared by coupling a compound of formula(II) with a compound of formula(III), as shown in the Reaction Scheme A:

- 4 -

Reaction Scheme A

5
$$\stackrel{\text{O}}{\underset{\text{A}}{\bigvee}} \stackrel{\text{R}^3}{\underset{\text{III}}{\bigvee}} + \underset{\text{R}^4}{\underset{\text{R}^4}{\bigvee}} \stackrel{\text{R}^3}{\underset{\text{R}^4}{\bigvee}}$$

10

wherein:

 R^1 , R^2 , R^3 , R^4 , A and Z have the same meanings as defined in formula(I) above;

2' is same as Z with the proviso that when A is oxygen, it can be a acetamido group; and

Y is a suitable leaving group, e.g., halogen, methanesulfonyl, toluenesulfonyl or trifluoromethanesulfonyl.

In Reaction Scheme A, the above reaction may be 20 conducted in a solvent in the presence of a base at a temperature ranging from -10 to 100°C, wherein the molar ratio of the compound of formula(II) to the compound of formula(III) may range from 1:0.8 to 1:1.2. Representative 25 examples of the base include lithium hydride, sodium hydride, potassium hydride, sodium carbonate, potassium carbonate and the like. Suitable for use in this reaction polar solvent such as acetonitrile, hexamethylphosphoramide(HMPA), dimethylsulfoxide(DMSO) and 30 dimethylformamide(DMF).

The compounds of formula(II) may in some cases be prepared in accordance with the procedure disclosed in USP 5,747,500. Alternatively, the compounds of formula(II) may be advantageously prepared in some special cases by the 35 procedure illustrated in Reaction Scheme B:

Reaction Scheme B

Method (i): Useful when A is O and Z' is acetamido

Method (ii): Useful when A is O, Z' is C=O and \mathbb{R}^3 (or \mathbb{R}^4) is \mathbb{NO}_2

wherein, R^2 , R^3 and R^4 have the same meanings as defined in formula(I).

In accordance with the method (i) in Reaction Scheme B, a compound of formula(IV) which may be prepared by way of a known method disclosed in, e.g., Ber., 52B, 869 (1919) and J. Med. Chem., 7, 808 (1964), is subjected to a coupling reaction with an arylformamide derivative in a polar solvent, e.g., dimethylformamide, in the presence of a strong base, e.g., sodium hydride, under a nitrogen atmosphere to provide a compound of formula(V) (Step (a)). The compound of formula(V) is reacted with sodium methoxide in methanol to give a compound of formula(VI) (Step (b)). Then, the compound of formula(VI) is demethylated and acetylated by the action of acetylbromide to provide a compound of formula(II-a) (Step (c)).

In the method (ii) of Reaction Scheme B, the compound of formula (IV) is reacted with a arylacetonitrile derivative in a polar solvent, e.g., dimethylformamide, in the presence of a base, e.g., sodium hydride, to provide a compound of formula(VII) (Step (d)), which is reacted with sodium methoxide in methanol to give a compound of formula(VIII) (Step (e)). Thereafter, the compound of formula(VIII) is reacted with a base, e.g., sodium hydride, in a polar solvent, e.g., dimethylformamide, in the presence of oxygen to provide a compound of formula(IX) (Step (f)), which is hydrolyzed with an acid, e.g., hydrochloric acid, to provide a compound of formula(II-b) (Step (g)).

Each of the compounds of formula(II-a) and (II-b) may be converted to one of the compounds of formula(II) containing various substituents via further reactions.

In this regard, in accordance with another aspect of 30 the present invention, there is provided a compound of formula(II):

35

- 7 -

wherein:

R'² is ethyl or isopropyl;

 $R^{1/3}$ is nitro, amino, acetamido, trifluoroacetamido or C_{1-3} alkoxycarbonyl;

R'4 is methyl or halogen; and

Z" is C=O, NH or acetamido.

Exemplary compounds of formula(I) of the present invention which can be prepared in accordance with the methods described above are listed in the following Table 1:

10

5

Table 1

.Comp.	Α	Z	R ¹	R ²	R ³	R ⁴
1	0	C=O	N)	Isopropyl	CH ₃	CH ₃
2	0	C=O		Isopropyi	CH₃	CH ₃
3	0	C=O		Isopropyl	CH₃	CH ₃
4	0	C=O	N	Ethyl	CH₃	CH ₃
5	0	C=O	(<u>)</u> —	Ethyl	CH₃	CH ₃
6	0	C=O	(Ethyl	CH₃	CH ₃
7	0	C=O	_	Isopropyl	CH₃	F
8	0	C=O		Isopropyl	CH₃	F
9	0	C=O	$\bigcirc\!$	Isopropyi	CH ₃	F

- 8 - Table 1 (Continued)

Comm	1				·	
Comp.	A	Z	R ¹	R ²	R ³	R ⁴
10	O.	C=0	N	Ethyl	CH ₃	F
11	0	C=0	_\	Ethyl	CH ₃	F
12	0	C=0		Ethyl	CH ₃	F
13	0	C=O	N	Isopropyl	F	F
14	0	C=O		Isopropyl	F	F
15	0	C=0		Isopropyi	F	F
16	0	C=O	N	Ethyl	F	F
17	0	C=O		Ethyl	F	F
18	0	C=0		Ethyl	F	F

- 9 Table 1 (Continued)

	·			3		
Comp.	Α	Z	R ¹	R ²	R ³	R ⁴
19	0	C=O	, v.	Isopropyl	CI	CI
20	0	C=0	N	Ethyl	CI	CI
21	0	C=0	n	Isopropyl	CH ₃	CI
22	0	C=O		Isopropyl	CH₂F	CH ₃
23	0	C=O	N	Ethyl	′ CH₂F	CH ₃
24	0	0	N	Isopropyl	CH₃	CH ₃
25	0	0	N	Ethyl	CH ₃	СН₃
26	0	S	N	Isopropyl	CI	CI
27	0	S	N	Isopropyi	CH ₃	CH ₃

- 10 - Table 1 (Continued)

Comp.	A	Z	R ¹	R ²	R ³	R ⁴
28	0	s	N_>	Ethyl	CH ₃	CH ₃
29	. 0	C=0	_	Isopropyi	CF ₃	CF ₃
30	0	C=O	N	Ethyl	CF ₃	CF ₃
31	0	C=O	<u></u>	İsopropyi	CF ₃	CF ₃
32	0	C=O	N	Isopropyl	CH ₃	Н
33	0	C=O	\(\)	Ethyl	CH ₃	Н
34	0	C=O	N	Isopropyl	Н	Н
35	0	C=O	\(\)	Ethyl	Н	Н
36	0	C=O	\bigcirc	Isopropyl	CH₃	CH ₃
-						

- 11 Table 1 (Continued)

	_,		·			
Comp.	A	Z	R ¹	R ²	R ³	R ⁴
37	0	C=0		Ethyl	CH ₃	CH ₃
38	0	C=0	O ₂ N-{	Isopropyi	CH ₃	CH ₃
39	0	C=0	H ₃ CO-()	Isopropyl	CH ₃	CH ₃
40	0	C=O	H ₃ C	Isopropyi	CH ₃	CH ₃
41	0	C=O	O ₂ N-{}-	Ethyl	CH ₃	CH ₃
42	0	C=O	н₃со-√	Ethyl	CH ₃	CH ₃
43	0	C=0	F	Isopropyl	CH ₃	CH ₃
44	0	C=O	F ₃ C	Isopropyl	CH ₃	CH ₃
45	0	C=O	H₃C N	Isopropyi	CH ₃	CH ₃

- 12 - Table 1 (Continued)

Comp.	Α	Z	R ¹	R ²	R ³	R ⁴
46	0	C=O	H ₃ C	Isopropyl	CH ₃	F
47	0	C=O	H ₃ C	Isopropyl	CH ₃	CI
48	0	C=O	H³C N	Isopropyl	CI	. CI
49	0	C=O	H₃C N	Isopropyl	CH ₂ F	CH ₃
50	0	C=O	H₃C N	lsopropyl	CH ₃	н
51	0	C=O	CI	Isopropyi	. CH ₃	CH ₃
52	0	C=O	H³C	Ethyl	CH ₃	CH ₃
53	0	C=O	H ₃ C	Ethyl	CH ₃	F
54	0	C=O	CI	Ethyl	CH ₃	CH ₃

WO 00/51990 PCT/KR00/00166 -

- 13 - Table 1 (Continued)

Comp.	Α	Z	R ¹	R ²	R ³	R ⁴
55	0	C=O	H ₃ C	Isopropyl	CH ₃	CH ₃
56	0	C=O	H ₃ C	Isopropyl	F	F
57	0	C=O	H ₃ C N H ₃ C	Isopropyl	CI	CI
58	0	C=O	H₃C N H₃C	Isopropyi	CH ₂ F	СН₃
59	0	C=O	H₃C N H₃C	Isopropyi	CI	СН₃
60	0	C=O	H ₃ C	Ethyl	CH₃	CH ₃
61	0	C=O	H ₃ C	Ethyl	F	F
62	0	C=O	NC NC	Isopropyl	CH ₃	CH ₃
63	0	C=O	NC N	Isopropyl	CH₃	CI

- 14 Table 1 (Continued)

						
Comp.	- A	Z	R ¹	R ²	R ³	R ⁴
64	0	C=O	N D	Isopropyl	CH ₃	NO ₂
65	0	C=O	H ₃ C	Isopropyi	CH ₃	NO ₂
66	0	NH	N	Isopropyi	CH ₃	CH ₃
67	0	NH	N , →	Ethyl	CH ₃	CH ₃
68	0	C=0	0-4-)-	Isopropyl	CH ₃	CH ₃
69	0	C=O	H ₃ C O-N	Isopropyl	CH ₃	CH ₃
70	0	C=O	H ₃ C O-N H ₃ C	Isopropyi	CH ₃	CH ₃
71	0	C=O	H ₃ C O-N H ₃ C	Isopropyl	CH₃	CI
72	0	C=O	AcOH ₂ C	Isopropyl	CH ₃	CH ₃
73	0	C=O	H ₃ C N AcOH ₂ C	Isopropyl	CH₃	CH ₃

- 15 Table 1 (Continued)

Comp.	Α	Z	R ¹	R ²	R ³	R⁴
74	0	C=O	H ₂ C N AcOH ₂ C	Isopropyl	CH₃	CI
75	0	C=O	нон,с	isopropyi	CH₃	CH₃
76	0	C=O	H₃C N HOH₂C	lsopropyl	CH ₃	CH ₃
77	0	C=0	HOH ₂ C	Isopropyl	CH₃	CI
78	0	C=O	CH ₂ O ₂ C	Isopropyl	CH₃	СН₃
79	0	C=O	NH ₂ OC	Isopropyl	CH₃	CH ₃
80	0	C=O	NH ₂ OC	isopropyl	CH ₃	CI
81	0	C=O	H ₂ N	Isopropyi	CH₃	CH ₃

Furthermore, the present invention encompasses, within its scope, pharmaceutically acceptable salts of the 2,4-pyrimidinedione compounds of formula(I). Suitable pharmaceutically acceptable salts of the compounds of formula(I) possessing strong antiviral activity against wild-type and mutant HIV-1 may include alkali or alkaline earth metal salts, e.g., sodium, potassium, magnesium and calcium salts thereof.

The present invention also includes within its scope pharmaceutical compositions comprising one or more of the compounds of formula(I) or their above-mentioned salts as the active ingredient, in association with pharmaceutically acceptable carriers, excipients or other additives, if necessary.

15 The pharmaceutical compositions of the invention may be formulated for administration orally or by injection. composition for oral administration may take various forms such as tablets and gelatin capsules, which may contain conventional additives such as a diluent (e.g., lactose, 20 dextrose, sucrose, mannitol, sorbitol, cellulose glycine), a lubricant (e.g., silica, talc, stearic acid or its magnesium and calcium salts and polyethylene glycol). In the case of the tablet form, the composition may further comprise a binder (e.g., magnesium aluminum silicate, starch gelatin, tragacanth, methyl cellulose, carboxymethyl cellulose and polyvinyl pyrrolidone) optionally a disintegrant (e.g., starch, agar and alginic acid or its sodium salt), absorbent, colorant, flavor, sweetener and the like. The composition for injection may 30 be an isotonic solution or a suspension.

The composition may be sterilized and/or contain an adjuvant such as a preservative, stabilizer, wetting agent, emulsifier, a salt for controlling an osmotic pressure and/or a buffer solution, and other pharmaceutically effective materials.

The pharmaceutical compositions can be prepared by a conventional mixing, granulating or coating method and may

WO 00/51990

contain preferably about 0.1 to 75 %, more preferably about 1 to 50 % of the active ingredient of this invention. The unit dosage of the composition suitable for administering a person weighing about 50 to 70 kg may contain about 10 to 200mg of the active ingredient.

The following Preparations and Examples are given for the purpose of illustration only and are not intended to limit the scope of the invention.

In the Preparations and Examples, unless otherwise specified, the evaporation was conducted under reduced pressure, preferably under a pressure ranging from about 15 to 100 mmHg.

<u>Preparations</u>

The compounds of formula(II) having the structures (A) to (U), (II-a-1), (II-a-2) and (II-b-1) shown in Table 2 together with their melting points and NMR data were used in preparing respective compounds of formula(I) of the present invention.

20

Preparations 1 to 21

Each of the compounds having the specified structures (A) to (U) was prepared in accordance with the procedure described in USP 5,747,500.

25

<u>Preparation 22</u>: Synthesis of 5-isopropyl-6-(3',5'-dimethylphenylacetamido)-2,4-pyrimidinedione (Compound (II-a-1))

30 Step 1) Synthesis of 2,4-dichloro-5-isopropyl-6-(3',5'-dimethylphenylformylamido)pyrimidine

To a magnetically stirred DMF solution (80ml) of 3,5-dimethylformaniline (8.94g, 60mmol) cooled in an ice bath, 60% sodium hydride dispersion (2.88g, 72mmol) was added portionwise under a nitrogen atmosphere. After 10min, 5-isopropyl-2,4,6-trichloropyrimidine (16.2g, 72mmol) was added thereto and the reaction mixture was allowed to warm

to room temperature, followed by stirring for 24hr. Ether was then added to the reaction mixture, and the organic layer was washed with water, dried over anhydrous magnesium sulfate, and filtered. The solvent was removed under reduced pressure and the resulting residue was purified by flash chromatography (eluent - ether:hexane=1:15) to afford 3.3g (yield 17%) of the title compound as a white solid. M.p. : 151 to 153 °C

¹H-NMR (200MHz, CDCl₃) δ 1.12-1.24(6H, m), 2.30(6H, s), 10 3.22(1H, m), 6.72(2H, s), 6.96(1H, s), 8.70(1H, s) m/z(EI) 338(M⁺).

Step 2) Synthesis of 2,4-dimethoxy-5-isopropyl-6-(3',5'-dimethylphenylamino)pyrimidine

Sodium (1.02g, 44mmol) was added portionwise to a stirred anhydrous methanol (40ml) at room temperature under a nitrogen atmosphere to prepare sodium methoxide solution. The compound obtained in Step 1) (3g, 8.88mmol) was added to the solution and the mixture was refluxed for 4hr. The reaction mixture was allowed to cool to room temperature and neutralized with excess ammonium chloride. The solvent was removed under reduced pressure and the resulting residue was purified by flash chromatography (eluent - ethyl acetate:hexane=1:15) to afford 2.6g (yield 97%) of the title compound as a white solid.

M.p. : 126 to 127 °C 1 H-NMR(200MHz, CDCl₃) δ 1.31(6H, d, J=7.1Hz), 2.31(6H, s), 3.12(1H, m), 3.92(3H, s), 3.93(3H, s), 6.44(1H, s), 6.70(1H, s), 7.21(2H, s)

30 m/z(EI) 301(M⁺).

Step 3) Synthesis of 5-isopropyl-6-(3',5'-dimethylphenylacetamido)-2,4-pyrimidinedione

The compound obtained in Step 2) (2.6g, 8.6mmol) was refluxed with acetyl bromide (30ml) for 19hr. The reaction mixture was allowed to cool to room temperature and the solvent was removed under reduced pressure. The resulting

15

residue was purified by flash chromatography (eluent - ethyl acetate:hexane=2:1) to afford 2.6g (yield 96%) of the title compound as a white solid.

5 Preparation 23: Synthesis of 5-ethyl-6-(3',5'-dimethylphenylacetamido)-2,4-pyrimidinedione (Compound (II-a-2))

The procedure of Preparation 22 was repeated using 5-10 ethyl-2,4,6-trichloropyrimidine in place of 5-isopropyl-2,4,6-trichloropyrimidine to prepare the title compound.

<u>Preparation 24</u>: Synthesis of 5-isopropyl-6-(3'-nitro-5'-methylbenzoyl)-2,4-pyrimidinedione (Compound (II-b-1))

Step 1) Synthesis of 2,4-dichloro-5-isopropyl-6-(α -cyano-3'-nitro-5'-methylbenzyl)pyrimidine

To a magnetically stirred DMF solution (30ml) of 3nitro-5-methylphenylacetonitrile (2.64g, 15mmol) and 5-20 isopropyl-2,4,6-trichloropyrimidine (4.05g, 18mmol) cooled in an ice bath, 60% sodium hydride dispersion (1.15g, 30mmol) was added portionwise under a nitrogen atmosphere. After stirring for 2hr, the reaction mixture was allowed to warm to room temperature and stirred for 16hr. The reaction 25 mixture was then neutralized with aqueous ammonium chloride and ethyl ether was added thereto. The organic layer was washed with water, dried over anhydrous magnesium sulfate, and filtered. The solvent was removed under reduced pressure and the resulting residue was purified by flash 30 chromatography (eluent - ethyl acetate:hexane=1:4) to afford 3.99g (yield 73%) of the title compound as a white solid. M.p. : 124 to 125 °C

¹H-NMR(200MHz, CDCl₃) δ 1.23(3H, d, J=7.2Hz), 1.38(3H, d, J=7.2Hz), 2.51(3H, s), 3.34(1H, m), 5.60(1H, s), 7.57(1H, s), 7.99(1H, s), 8.07(1H, s)

m/z(EI) 365(M⁺).

Step 2) Synthesis of 2,4-dimethoxy-5-isopropyl-6-(α -cyano-3'-nitro-5'-methylbenzyl)pyrimidine

To a stirred anhydrous methanol solution (60ml) of the compound obtained in Step 1) (3.65g, 10mmol), sodium 5 methoxide (3.24g, 60mmol) was added at room temperature under a nitrogen atmosphere and refluxed for 24hr. The reaction mixture was then allowed to cool to room temperature and neutralized with excess ammonium chloride. After removing the solvent, the resulting residue was purified by flash chromatography (eluent - ether:hexane=1:3) to afford 1.8g (yield 50%) of the title compound as a light yellow solid.

M.p. : 134 to 135 °C

¹H-NMR(200MHz, CDCl₃) δ 1.15(3H, d, J=6.7Hz), 1.20(3H, d, J=6.7Hz), 2.49(3H, s), 3.05(1H, m), 4.00(3H, s), 4.01(3H, s), 5.48(1H, s), 7.62(1H, s), 8.00(2H, s) m/z(EI) 356(M⁺).

Step 3) Synthesis of 2,4-dimethoxy-5-isopropyl-6-(3'-nitro-20 5'-methylbenzoyl)pyrimidine

To a stirred DMF solution (20ml) of the compound obtained in Step 2) (1.7g, 4.7mmol), 60% sodium hydride dispersion (283mg, 7.1mmol) was added at room temperature under a nitrogen atmosphere. The mixture was then stirred in the presence of oxygen. After 5hr, the reaction mixture was neutralized with ammonium chloride and ethyl ether was added thereto. The organic layer was washed with water, dried over anhydrous magnesium sulfate, and filtered. The solvent was removed under reduced pressure and the resulting residue was purified by flash chromatography (eluent - dichloromethane:hexane=97:3) to afford 1.03g (yield 62%) of the title compound as a white solid.

M.p. : 111 to 112 °C

¹H-NMR(200MHz, CDCl₃) δ 1.21(6H, d, J=6.9Hz), 2.54(3H, s), 2.88(1H, m), 3.93(3H, s), 4.09(3H, s), 8.05(1H, s), 8.27(1H, s), 8.44(1H, s) m/z(EI) 345(M^+).

- 21 -

Step 4) Synthesis of 5-isopropyl-6-(3'-nitro-5'-methylbenzoyl)-2,4-pyrimidinedione

The compound obtained in Step 3) (630mg, 1.8mmol) was refluxed with conc. hydrochloric acid (6ml) for 4hr and the reaction mixture was allowed to cool to room temperature. The precipitate was then collected, washed with distilled water and hexane, and dried to give 560mg (yield 98%) of the title compound as a white solid.

- 22 -

Table 2

Prep.				
No.	Comp.	Structure	M.p.(°C)	'H-NMR
1.	(A)	HN CH.	238-239	(200MHz, CDCl ₃ /CD ₃ OD) δ : 1.16(6H, d, J=6.9Hz), 2.35-2.49(7H, m), 7.35(2H, s). 7.53(2H, s).
2	(B)		249-250	(200MHz, CDCl ₃ /CD ₃ OD) δ: 0.97(3H, t, J=7.4Hz), 2.17(2H, q, J=7.4Hz), 2.39(6H, s), 7.32(1H, s), 7.50(2H, s).
3	(C)	HN NH CH,		(200MHz, CD ₃ OD/DMSO-d ₆) δ: 1.36(6H, d, J=6.9Hz), 2.38(1H, m), 2.46(3H, s), 7.26(1H, d, J=9.0Hz), 7.43(1H, d, J=8.4Hz), 7.52(1H, s).
4	(D)	HN CH,	235-236	(200MHz, $CD_3OD/DMSO-d_6$) δ : 0.99(3H, t, J=7.4Hz), 2.17(2H, q, J=7.4Hz), 2.50(3H, s), 7.44(1H, d, J=9.4Hz), 7.59(1H, d, J=8.8Hz), 7.70(1H, m).
5	(E)		000 004	(200MHz, CDCl ₃ /CD ₃ OD) δ: 1.06(6H, d, J=7.0Hz), 2.32(1H, m), 7.07(1H, m), 7.25-7.38(2H, m).
6	(F)	N N N N N N N N N N N N N N N N N N N	211-212	(200MHz, CDCl ₃ /CD ₃ OD) δ : 0.88(3H, t, J=7.3Hz), 2.06(2H, q, J=7.3Hz), 7.06(1H, m), 7.32-7.37(2H, m)
7	(G)		220-221	(200MHz, CD₃OD) δ : 1.16(6H, d, J=7.0Hz), 2.45(1H, m), 7.61-8.02(5H, m)
8	(H)		218-219	(200MHz, CD₃OD) δ : 0.98(3H, t, J=7.5Hz), 2.17(2H, q, J=7.5Hz), 7.58−8.03(5H, m)
9	(I)	HN CF3	220-221	(200MHz, CDCl ₃ /CD ₃ OD) δ: 1.17(6H, d, J=6.8Hz), 2.39(1H, m), 8.21(1H, s), 8.37(2H, s).

- 23 - Table 2 (Continued)

		·		
Prep. No.	Comp.	Structure	M.p.(°C)	H-NMR
10	(I)	The case	227-228	(200MHz, CDCl ₂ /CD ₃ OD) δ: 1.13(6H, d, J=7.0Hz), 2.35-2.50(4H, m), 7.42-7.72(4H, m), 9.82(1H, s).
11	(K)	HN CH	236-237	(200MHz, CDCl ₃ /CD ₃ OD) δ: 0.97(3H, t, J=7.5Hz), 2.18(2H, q, J=7.5Hz), 2.44(3H, s), 7.28-7.71(4H, m), 9.70(1H,s).
12	(L)			(200MHz, CDCl ₃ /CD ₃ OD) δ: 1.11(6H, d, J=6.9Hz), 2.33(1H, m), 7.61-7.73(3H, m).
13	(M)		242-243	(200MHz, CDCl ₃ /CD ₃ OD) δ: 0.90(3H, t, J=7.5Hz), 2.07(2H, q, J=7.5Hz), 7.59(1H, t, J=1.8Hz), 7.67(2H, d, J=1.8Hz).
14	(N)		254-255	(200MHz, CDCl ₃ /CD ₃ OD) δ : 1.17(6H, d, J=6.9Hz), 2.25-2.45(4H, m), 7.50-7.71(3H, m).
15	(O)	THE CHAPTER OF THE CH	218-219	(200MHz, CDCl ₃ /CD ₃ OD) δ: 1.10(6H, d, J=6.9Hz), 2.32-2.52(4H, m), 5.41(2H, d, J=47.0Hz), 7.51-7.70(3H, m), 9.15(1H, s), 9.66(1H, s).
16	(P)	HI CHF	224-225	(200MHz, CDCl ₃ /CD ₃ OD) δ : 0.98(3H, t, J=7.4Hz), 2.16(2H, q, J=7.4Hz), 2.47(3H, s), 5.43(2H, d, J=47.2Hz), 7.54–7.71(3H, m).
17	(Q)	HAN CHO	229-230	(200MHz, CD ₃ OD) & : 1.20(6H, d, J=7.1Hz), 2.33(6H, s), 3.35(1H, m), 6.64(2H, s), 6.83(1H, s).
18	(R)	HY CH	221-222	(200MHz, CD ₃ OD) 8: 0.90(3H, t, J=7.4Hz), 2.17-2.25(8H, m), 6.62(2H, s), 6.78(1H, s).

- 24 - Table 2 (Continued)

Prep. No.	Comp.	Structure	M.p.(℃)	¹H-NMR
19	(S)		225-226	(200MHz, CDCl ₃) δ : 1.34(6H, d, J=7.0Hz), 2.35(6H, s), 3.11(1H, m), 7.14(1H, s), 7.16(2H, s), 9.30(1H, s).
20	(T)	HN L C	224-225	(200MHz, DMSO-d ₆) δ: 1.17(6H, d, J=6.8Hz), 3.22(1H, m), 7.42(2H, s), 7.56(1H, s), 10.96(1H, s), 11.18(1H, s).
21	(U)	HY CH	224-225	(200MHz, CDCl ₃) δ : 1.14(3H, t, J=7.5Hz), 2.36(6H, s), 2.55(2H, q, J=7.5Hz), 7.06(1H, s), 7.16-7.26(3H, m), 9.04(1H, s)
22	(II-a- 1)	HN CH ₃	224-226	(200MHz, CDCl ₃) δ: 1.12-1.33(6H, m), 2.02-2.15(3H, m), 2.31(6H, s), 2.90(1H, m), 6.99(3H, s)
23	(II-a- 2)	The case of the ca	238-239	(200MHz, CDCl ₃) δ : 0.93(3H, t, J=7.5Hz), 2.05-2.15(3H, m), 2.24-2.40(8H, m), 6.94-6.99(3H, m)
24	(II-b- 1)	HN HO2 CH ₃		(200MHz, CDCl ₃ /CD ₃ OD) δ: 1.12(6H, d, J=7.0Hz), 2.40(1H, m), 2.54(3H, s), 8.11(1H, s), 8.37(1H, s), 8.49(1H, s)

Example 1 : Synthesis of 1-(4'-picolyl)-5-isopropyl-6(3',5'-dimethylbenzoyl)-2,4-pyrimidinedione (Compound 1)

To a magnetically stirred DMF solution (5ml) of compound (A) obtained in Preparation 1 (286mg, 1mmol) maintained at room temperature, were added anhydrous potassium carbonate (276mg, 2mmol), lithium iodide (134mg, 1mmol), and 4-picolyl chloride hydrochloride (164mg, 1mmol), in this order. After stirring for 16hr, the solvent was removed under reduced pressure and the resulting residue was purified by flash chromatography (eluent - ethyl acetate:hexane=3:1) to afford 120mg (yield 32%) of the title compound as a white solid.

M.p. : 264 to 265 °C

15 ¹H-NMR (200MHz, CDCl₃) δ 1.12(3H, d, J=6.7Hz), 1.23(3H, d, J=6.7Hz), 2.30-2.40(7H, m), 4.66(1H, d, J=16.3Hz), 4.88(1H, d, J=16.3Hz), 6.98-7.36(5H, m), 8.41-8.44(2H, m), 9.91(1H, s)

m/z(EI) 377 (M^+) .

20

Example 2 : Synthesis of 1-(3'-picolyl)-5-isopropyl-6-(3',5'-dimethylbenzoyl)-2,4-pyrimidinedione (Compound 2)

The procedure of Example 1 was repeated using 3-picolyl 25 chloride hydrochloride in place of 4-picolyl chloride hydrochloride to prepare the title compound.

M.p. : 179 to 180 °C

¹H-NMR(200MHz, CDCl₃) δ 1.12(3H, d, J=6.9Hz), 1.22(3H, d, J=6.9Hz), 2.20-2.38(7H, m), 4.71(1H, d, J=16.0Hz), 4.93(1H,

30 d, J=16.0Hz), 7.09-7.56(5H, m), 8.29-8.43(2H, m), 10.18(1H, s)

 $m/z(EI) 377(M^{+})$.

Example 3 : Synthesis of 1-(2'-picolyl)-5-isopropyl-635 (3',5'-dimethylbenzoyl)-2,4-pyrimidinedione (Compound 3)

The procedure of Example 1 was repeated using 2-picolyl

- 26 -

chloride hydrochloride in place of 4-picolyl chloride hydrochloride to prepare the title compound.

M.p. : 214 to 215 °C

¹H-NMR (200MHz, CDCl₃) δ 1.12(3H, d, J=6.9Hz), 1.23(3H, d, J=6.9Hz), 2.20-2.40(7H, m), 4.77(1H, d, J=16.8Hz), 5.16(1H, d, J=16.8Hz), 7.01-7.48(6H, m), 8.36(2H, m), 9.90(1H, s) m/z(EI) 377(M⁴).

Examples 4 to 65

10

The procedure of Example 1 was repeated to obtain the 2,4-pyrimidinedione derivatives of Examples 4-65 shown in Table 3.

- 27 -

Table 3

Ex.								
No.	Α	Z	R1	R ²	R3	R⁴	'H-NMR(200MHz, CDCl ₃) δ	M.p.(℃)
4	О	C=O	~	Ethyl	СН₃	СН₃	0.97(3H, t, J=7.3Hz), 2.05(1H, m), 2.2 0-2.35(7H,m). 4.70(1H, d, J=16.4Hz), 4.90(1H, d, J=16.4Hz), 6.98-7.01(2H, m), 7.27(1H, s), 7.34(2H, s), 8.41-8.4 4(2H, m), 9.25(1H, s).	267-268
5	0	C=0		Ethyl	СН₃	СН₃	0.95(3H, t, J=7.3Hz), 2.02(1H, s), 2.20-2.40(7H, m), 4.72(1H, d, J=16.4Hz), 4.90(1H, d, J=16.4Hz), 7.14(1H,s), 7.34(2H, s), 7.52(1H, m), 8.29-8.43(2H, m), 9.25(1H, s).	197-198
6	0	C=O		Ethyl	СН₃	СН₃	0.95(3H, t, J=7.1Hz), 2.05(1H, m), 2.20-2.40(7H, m), 4.81(1H, d, J=16.4Hz), 5.14(1H, d, J=16.4Hz), 7.01-7.52(6H, m), 8.40(1H, m), 9.11(1H, s).	
7	0	C=O	·	Isopropyl	СН₃	F	1.14(3H, d, J=6.7Hz), 1.23(3H, d, J=6.7Hz), 2.22-2.38(4H, m), 4.63(1H, d, J=16.3Hz), 4.94(1H, d, J=16.3Hz), 7.00-7.36(5H, m), 8.41-8.45(2H, m). 9.56(1H, s).	207-209
8	0	C=0	<u></u>	Isopropyl	СН₃		1.12(3H, d, J=6.7Hz), 1.22(3H, d, J=6.7Hz), 2.27(1H, m), 2.34(3H, s), 4.64(1H, d, J=15.6Hz), 5.00(1H, d, J=16.4Hz), 7.10-7.53(5H, m), 8.27-8.42(2H, m), 9.41(1H, s).	
9	O	C=O		Isopropyl	СН₃	F	1.13(3H, d, J=6.9Hz), 1.22(3H, d, J=6.9Hz), 2.20-2.35(4H, m), 4.69(1H, d, J=16.4Hz), 5.29(1H, d, J=16.4Hz), 7.00-7.52(6H, m), 8.37(1H, m), 9.15(1H, s).	187-189
10	0	C=O	√ >	Ethyl	СН₃	F	m), 8.44-8.46(2H, m), 10.39(1H, s).	233-234
11	0	C=O	(N)	Ethyl	СН₃	F	0.95(3H, t, J=7.3Hz), 2.02(1H, m), 2.05(1H, m), 2.33(3H, s), 4.72(1H, d, J=16.4Hz), 5.02(1H, d, J=16.4Hz), 7.11-7.56(5H, m), 8.30-8.44(2H, m).	190_100
12	0	C=O		Ethyl	СН₃	F	0.96(3H, t, J=7.3Hz), 2.03(1H, m), 2.22(1H, m), 2.33(3H, s), 4.74(1H, d, J=16.4Hz), 5.23(1H, d, J=16.4Hz), 7.02-7.53(6H, m), 8.39(1H, m), 9.17(1H, s).	158-159

- 28 - Table 3 (Continued)

Ex.	Α	Z	R ¹	R ²	R ³	R ⁴	¹ H−NMR(200MH₂, CDCl₃) δ M.p.(℃
	0	C=O	~	Isopropyl	F	F	1.15(3H, d, J=7.0Hz), 1.23(3H, d, J=7.0Hz), 2.26(1H, m), 4.63(1H, d, J=16.2Hz), 4.94(1H, d, J=16.2Hz), 189-19 6.97-7.26(5H, m), 8.43-8.46(2H, m), 8.90(1H, s).
14	0	C=O	☆	Isopropyl	F	F	1.12(3H, d, J=6.7Hz), 1.21(3H, d, J=6.7Hz), 2.23(1H, m), 4.63(1H, d, J=15.8Hz), 5.06(1H, d, J=15.8Hz), 227-23(1.7.01-7.54(5H, m), 8.26(1H, m), 8.42(1H, m), 9.49(1H, s).
15	0	C=O		Isopropyl	F	F	1.15(3H, d, J=6.9Hz), 1.22(3H, d, J=6.9Hz), 2.23(1H, m), 4.62(1H, d, J=16.6Hz), 5.31(1H, d, J=16.6Hz), 214-215(6.95-7.54(6H, m), 8.37(1H, m), 9.10(1H, s).
16	0	C=O	N)—	Ethyl	F	r	0.97(3H, t, J=7.4Hz), 2.02(1H, m), 2.25(1H, m), 4.65-4.92(2H, m), 6.99-7.40(5H, m), 8.43-8.46(2H, m), 9.73(1H, s).
17	0	C=O		Ethyl	F	10	0.96(3H, t, J=7.3Hz), 2.00(1H, m), 2.22(1H, m), 4.68(1H, m), 5.04(1H, m), 7.03-7.27(4H, m), 7.54(1H, m), 8.28-8.44(2H, m), 9.89(1H, s).
18	0	C=O		Ethyl	F	F	0.97(3H, t, J=7.5Hz), 2.01(1H, m), 2.22(1H, m), 4.76(1H, m), 5.31(1H, m), 6.95-7.55(6H, m), 8.37(1H, m), 9.03(1H, s).
19	0	C=O	~	Isopropyl	CI	Cl	1.12(3H, d, J=6.9Hz), 1.25(3H, d, J=6.9Hz), 2.21(1H, m), 4.59(1H, d, J=16.6Hz), 4.99(1H, d, J=16.6Hz), 232-233 6.98(2H, d, J=5.9Hz), 7.55(3H, s), 8.44(2H, d, J=5.9Hz).
20	0	C=O	n	Ethyl	Cl	Cl	0.98(3H, t, J=7.5Hz), 2.05(1H, m), 2.28(1H, m), 4.68(1H, d, J=16.5Hz), 5.02(1H, d, J=16.5Hz), 6.98(2H, d, 243-245 J=5.9Hz), 7.54-7.74(3H, m), 8.45(2H, d, J=5.9Hz), 9.36(1H, s).

- 29 - Table 3 (Continued)

Ex. No.	Α	Z	\mathbb{R}^1	R ²	R ³	R ⁴	¹H-NMR(200MHz, CDCl₃) δ	M.p.(℃)
	0	C=O		Isopropyl	СН₃	Cl	1.14(3H, d, J=6.7Hz), 1.23(3H, d, J=6.7Hz), 2.20-2.38(4H, m), 4.61(1H, d, J=16.3Hz), 4.95(1H, d, J=16.3Hz), 6.97-8.44(7H, m), 9.35(1H, s).	248-249
22	0	C=O	~	Isopropyl	СН₂Ғ	СН₃	1.07(3H, d, J=6.7Hz), 1.18(3H, d, J=6.7Hz), 2.25(1H, m), 2.32(3H, s), 4.61(1H, d, J=16.4Hz), 4.84(1H, d, J=16.4Hz), 5.29(2H, d, J=47.2Hz), 6.97(2H, d, J=5.9Hz), 7.39–7.53(3H, m), 8.32(2H, d, J=5.9Hz).	190
23	0	C=O		Ethyl	СЊ₽	СН₃	0.97(3H, t, J=7.5Hz), 2.04(1H, m), 2.25(1H, m), 2.36(3H, s), 4.68(1H, d, J=15.0Hz), 4.94(1H, d, J=15.0Hz), 5.33(2H, d, J=47.2Hz), 6.98-7.01(2H, m), 7.42-7.54(3H, m), 8.39-8.42(2H, m), 9.48(1H, s).	227-228
24	0	0	~	Isopropyl	СН₃		1.14(6H, d, J=7.1Hz), 2.27(6H, s), 2.84(1H, m), 4.88(2H, s), 6.44(2H, s), 6.75(1H, s), 7.11(2H, dd, J=4.5Hz, J=1.6Hz), 8.54(2H, dd, J=4.5Hz, J=1.6Hz), 9.79(1H, s).	
25	0	0	~	Ethyl	СН₃	СН₃	0.94(3H, t, J=7.5Hz), 2.21(2H, q, J=7.5Hz), 2.27(6H, s), 4.92(2H, s), 6.45(2H, s), 6.76(1H, s), 7.13(2H, d, J=6.1Hz), 8.54(2H, d, J=6.1Hz), 8.95(1H, s).	229-230
26	0	s	N	Isopropyl	Cl		1.21(6H, d, J=6.9Hz), 3.33(1H, m), 5.20(2H, s), 6.81-7.11(5H, m), 8.43-8.46(2H, m), 9.70(1H, s).	
27	0	S	~	Isopropyl	СН₃	СН₃	1.26(6H, d, J=6.9Hz), 2.21(6H, s), 3.52(1H, m), 5.25(2H, s), 6.65(2H, s), 6.80(1H, s), 7.01(2H, d, J=5.7Hz), 8.50(2H, d, J=5.7Hz), 10.82(1H, s).	186-187
28	0	S	n	Ethyl	СН₃	СН₃	1.07(3H, t, J=7.5Hz), 2.23(6H, s), 2.73(2H, q, J=7.5Hz), 5.21(2H, s), 6.68(2H, s), 6.82(1H, s), 6.98(2H, d, J=6.3Hz), 8.48(2H, d, J=6.3Hz), 8.97(1H, s).	191-192

- 30 Table 3 (Continued)

Ex. No.	Α	Z	R¹	R ²	R ³	R ⁴	¹H-NMR(200MHz, CDCl₃) δ	M.p.(℃)
29	0	C=0	\	Iso pro pyl	CF ₃	CF₃	1.14(3H, d, J=6.9Hz), 1.24(3H, d, J=6.9Hz), 2.18(1H, m), 4.51(1H, d, J=16.3Hz), 5.28(1H, d, J=16.3Hz), 6.95(2H, d, J=6.1Hz), 8.07(1H, s), 8.11(2H, s), 8.37(2H, d, J=6.1Hz).	236-237
30	0	C=O	~	Ethyl	CF ₃	CF₃	0.97(3H, t, J=7.3Hz), 2.00-2.35(2H,	208-209
31	0	C=0		Isopropyl	CF ₃	CF₃	1.14(3H, t, J=6.7Hz), 1.23(3H, d, J=6.7Hz), 2.16(1H, m), 4.51(1H, d, J=16.4Hz), 5.51(1H, d, J=16.4Hz), 6.94-7.49(3H, m), 8.03-8.32(4H, m), 9.61(1H, s).	185-186
32	0	C=0	N	Isopropyl	СН₃	Н	1.12(3H, d, J=6.7Hz), 1.22(3H, d, J=6.7Hz), 2.26-2.36(4H, m), 4.65(1H, d, J=16.0Hz), 4.86(1H, d, J=16.0Hz), 6.97(2H, d, J=5.9Hz), 7.25-7.60(4H, m), 8.38(2H, d, J=5.9Hz).	
33	Ο	C=0	N	Ethyl	СН₃		0.97(3H, t, J=7.4Hz), 2.06(1H, m), 2.26(1H, m), 2.34(3H, s), 4.72(1H, d, J=16.0Hz), 4.84(1H, d, J=16.0Hz), 6.99-7.02(2H, m), 7.29-7.62(4H, m), 8.41-8.44(2H, m), 9.93(1H, s).	218-219
34	0	C=0	~ _	Isopropyl	Н	н	1.15(3H, d, J=6.9Hz), 1.25(3H, d, J=6.9Hz), 2.34(1H, m), 4.70(1H, d, J=16.4Hz), 4.87(1H, d, J=16.4Hz), 6.99–7.82(7H, m), 8.40–8.44(2H, m), 10.16(1H, s).	
35	0	C=O	~ >	Ethyl	Н	н	9.68(1H, s).	219-220
36	0	C=O	○	Isopropyl	СН₃		1.08(3H, d, J=6.9Hz), 1.21(3H, d, J=6.9Hz), 2.20-2.40(7H, m), 4.59(1H, d, J=15.6Hz), 5.07(1H, d, J=15.6Hz), 7.02-7.12(5H, m), 7.18(1H, s), 7.26(2H, s), 8.85(1H, s).	

- 31 Table 3 (Continued)

Ex. No.	Α	Z	R ¹	Ř²	R ³	R ⁴	¹H-NMR(200MHz, CDCl₃) δ M.p.(℃)
37	0	C=O	<u> </u>	Ethyl	СЊ₃	СН₃	0.93(3H, t, J=7.3Hz), 2.02(1H, m), 2.12-2.28(7H, m), 4.64(1H, d, J=15.6Hz), 5.07(1H, d, J=15.6Hz), 7.02-7.26(8H, m), 8.97(1H, s).
38	0	C=O	02N-{}	Isopropyl	СН₃	СН₃	1.12(3H, d, J=6.9Ha), 1.22(3H, d, J=6.9Hz), 2.20-2.40(7H, m), 4.77(1H, d, J=16.0Hz), 4.98(1H, d, J=16.0Hz), 203-204 7.23-7.32(5H, m), 8.00(2H, d, J=8.5Hz), 8.97(1H, s).
39	0	C=O	H₃CO- { }	Isopropyl	СН₃	СН₃	1.07(3H, d, J=6.9Hz), 1.20(3H, d, J=6.9Hz), 2.20-2.40(7H, m), 3.69(3H, s), 4.50(1H, d, J=15.2Hz), 5.07(1H, d, 156-157 J=15.2Hz), 6.57-7.31(7H, m), 8.74(1H, s).
40	0	C=0	H ₃ C	Isopropyl	СН₃	СН₃	1.10(3H, d, J=6.7Hz), 1.21(3H, d, J=6.7Hz), 2.11(3H, s), 2.25-2.38(7H, m), 4.34(1H, d, J=15.8Hz), 5.23(1H, d, J=15.8Hz), 6.66(1H, s), 6.77(1H, s), 6.83(1H, s), 7.19(1H, s), 7.27(2H, s), 8.72(1H, s).
41	0	C=O	O ₂ N-{}	Ethyl	СН₃	СН₃	0.96(3H, t, J=7.5Hz), 2.08(1H, m), 2.20-2.40(7H, m), 4.84(1H, d, J=16.6Hz), 5.00(1H, d, J=16.6Hz), 230-231 7.25-7.32(5H, m), 7.98-8.05(2H, m), 9.43(1H, s).
42	0	C=O	н₃со-{_}	Ethyl	СН₃	СН₃	0.92(3H, t, J=7.3Hz), 2.05(1H, m), 2.10-2.40(7H, m), 3.69(3H, s), 4.56(1H, d, J=15.4Hz), 5.07(1H, d, 157-158 J=15.4Hz), 6.59-7.26(7H, m), 9.25(1H, s).
43	0	C=O	F	Isopropyl	СН₃	СН₃	1.12(3H, d, J=6.9Hz), 1.22(3H, d, J=6.9Hz), 2.22-2.40(7H, m), 4.54(1H, d, J=16.3Hz), 4.99(1H, d, J=16.3Hz), 208-209 6.50-6.60(3H, m), 7.24(1H, s), 7.35(2H, s), 9.25(1H, s).
44	0	C=O	F ₃ C	Isopropyl	СН₃	CH₃	1.12(3H, d, J=6.9Hz), 1.23(3H, d, J=6.9Hz), 2.25(6H, s), 2.30(1H, m), 4.62(1H, d, J=15.9Hz), 5.33(1H, d, 184-185 J=15.9Hz), 7.19-7.30(3H, m), 7.51(2H, s), 7.58(1H, s), 9.92(1H, s).

- 32 Table 3 (Continued)

Ex. No.	Α	Z	R¹	R ²	R³	R ⁴		М.р.(℃)
45	0	C=0	#\$¢	Isopropyl	СН₃	СН₃	1.05(3H, d, J=6.7Hz), 1.15(3H, d, J=6.7Hz), 2.22-2.32(10H, m), 4.44(1H, d, J=16.0Hz), 4.90(1H, d, J=16.0Hz), 6.69-6.72(2H, m), 7.16(1H, s), 7.19(2H, s), 8.20(1H, d, J=5.5Hz), 8.82(1H, s).	269-270
46	Ō	C=0	H ₃ C	Isopropyl	СН₃	F	1.15(3H, d, J=7.0Hz), 1.20(3H, d, J=7.0Hz), 2.21(1H, m), 2.24(3H, s), 2.34(3H, s), 4.42(1H, d, J=16.2Hz), 4.96(1H, d, J=16.2Hz), 6.70-7.26(5H, m), 8.21(1H, d, J=5.9Hz), 9.25(1H, s).	217-218
47	0	C=0	H ₉ C	Isopropyl	СН₃	Cl	1.14(3H, d, J=6.7Hz), 1.22(3H, d, J=6.7Hz), 2.22-2.38(4H, m), 2.41(3H, s), 4.46(1H, d, J=16.2Hz), 5.07(1H, d, J=16.2Hz), 6.77-8.30(6H, m), 9.50(1H, s),	253-254
48	O	C=0	F, C, C, P, H	Isopropyl	Cl	Cl	1.15(3H, d, J=6.9Hz), 1.23(3H, d, J=6.9Hz), 2.23(1H, m), 2.44(3H, s), 4.41(1H, d, J=16.2Hz), 5.18(1H, d, J=16.2Hz), 6.75-8.30(6H, m), 9.42(1H, s).	
49	0	C=0	H ₃ C	Isopropyl	CH₂F	CH₃	1.12(3H, d, J=6.7Hz), 1.22(3H, d, J=6.7Hz), 2.26-2.37(7H, m), 4.48(1H, d, J=16.5Hz), 5.04(1H, d, J=16.5Hz), 5.31(2H, d, J=47.2Hz), 6.75-6.78(2H, m), 7.39-7.52(3H, m), 8.24(1H, m), 8.85(1H, s).	253-255
50	0	C=0	H ₃ C	Isopropyl	СН₃	н	1.13(3H, d, J=7.0Hz), 1.23(3H, d, J=7.0Hz), 2.24-2.39(7H, m), 4.54(1H, d, J=16.1Hz), 4.95(1H, d, J=16.1Hz), 6.77-8.28(7H, m), 8.96(1H, s).	
51	0	C=0	م کی	Isopropyl	СН₃	СН₃	1.15(3H, d, J=6.7Hz), 1.24(3H, d, J=6.7Hz), 2.28-2.42(7H, m), 4.55(1H, d, J=16.4Hz), 4.97(1H, d, J=16.4Hz), 6.94-6.96(2H, m), 7.26(1H, s), 7.35(2H, s), 8.18(1H, m), 9.29(1H, s).	253-254
52	0	C=0	H ₅ C	Ethyl	СН₃	СН₃	0.96(3H, t, J=7.5Hz), 2.05(1H, m), 2.20-2.30(7H, m), 2.40(3H, s), 4.57(1H, d, J=16.3Hz), 4.96(1H, d, J=16.3Hz), 6.79-6.82(2H, m), 7.24(1H, s), 7.31(2H, s), 8.29(1H, d, J=4.6Hz), 9.55(1H, s).	

- 33 Table 3 (Continued)

<u></u>	T						
Ex No	1 1	Z	R ¹	R ²	R ³	R⁴	1. IVI.p.(C)
53	0	C=O	H ₃ C	Ethyl	СН₃	F	0.97(3H, t, J=7.4Hz), 2.02(1H, m), 2.22-2.31(4H, m), 2.42(3H, s), 4.56(1H, d, J=16.8Hz), 5.02(1H, d, J=16.8Hz), 183-184 6.79-7.33(5H, m), 8.30(1H, m), 9.64(1H, s).
54	0	C=O	a N	Ethyl	СН₃	СН₃	0.98(3H, t, J=7.5Hz), 2.10(1H, m), 2.25-2.32(7H, m), 4.59(1H, d, J=15.6Hz), 4.96(1H, d, J=15.6Hz), 6.94-6.97(2H, m), 7.27(1H, s), 7.33(2H, s), 8.19(1H, m), 9.34(1H, s).
55	0	C=O	H ₃ C	Isopropy)	СНз	СН₃	1.11(3H, d, J=6.7Hz), 1.21(3H, d, J=6.7Hz), 2.22-2.38(13H, m), 4.37(1H, d, J=16.0Hz), 5.05(1H, d, J=16.0Hz), 6.56(2H, s), 7.19(1H, s), 7.27(2H, s), 9.70(1H, s).
56	0	C=O	H ₂ C	Isopropyl	F	F	1.15(3H, d, J=6.7Hz), 1.22(3H, d, J=6.7Hz), 2.23(1H, m), 2.36(6H, s), 4.34(1H, d, J=16.2Hz), 5.18(1H, d, J=16.2Hz), 6.58(2H, s), 7.01-7.20(3H, m), 9.25(1H, s).
57	0	C=0	H ₃ C	Isopropyl	Cl	Cl	1.13(3H, d, J=6.9Hz), 1.23(3H, d, J=6.9Hz), 2.20(1H, m), 2.35(6H, s), 4.22(1H, d, J=16.3Hz), 5.30(1H, d, J=16.3Hz), 6.54(2H, s), 7.46(2H, s), 7.50(1H, s), 9.35(1H, s).
58	0	C=0	H ₂ C N	Isopropyl	СН₂F	СН₃	1.12(3H, d, J=6.7Hz), 1.22(3H, d, J=6.7Hz), 2.22-2.35(10H, m), 4.35(1H, d, J=16.0Hz), 5.13(1H, d, J=16.0Hz), 5.31(2H, d, J=47.2Hz), 6.56(2H, s), 7.37-7.50(3H, m), 9.06(1H, s).
59	0	C=0	H ₃ C N H ₃ C	Isopropyl	CI	СН₃	1.13(3H, d, J=6.7Hz), 1.23(3H, d, J=6.7Hz), 2.20-2.35(10H, m), 4.32(1H, d, J=16.0Hz), 5.19(1H, d, J=16.0Hz), 222-223 6.56(2H, s), 7.27-7.50(3H, m), 9.34(1H. s).
60	0	C=0	H ₃ C N H ₃ C	Ethyl	СН₃	СН₃	0.95(3H, t, J=7.5Hz), 2.02(1H, m), 2.20-2.33(13H, m), 4.45(1H, d, J=16.0Hz), 5.05(1H, d, J=16.0Hz), 6.59(2H, s), 7.22(1H, s), 7.29(2H, s), 9.45(1H, s).

- 34 Table 3 (Continued)

Ex. No.	Α	Z	\mathbb{R}^1	R^2	R³	R ⁴	¹H-NMR(200MHz, CDCl₃) δ M.p.(℃
61	0	C=O	H ₃ C	Ethyl	F	F	1.15(3H, d, J=6.7Hz), I.22(3H, d, J=6.7Hz), 2.23(1H, m), 2.36(6H, s), 4.34(1H, d, J=16.2Hz), 5.18(1H, d, 176-176), J=16.2Hz), 6.58(2H, s), 7.01-7.20(3H, m), 9.25(1H, s).
62	0	C=O	NC N	Isop ro pyl	СН₃	СН₃	1.14(3H, d, J=6.7Hz), 1.23(3H, d, J=6.7Hz), 2.30-2.40(7H, m), 4.69(1H, d, J=16.4Hz), 236-23(7.27-7.37(5H, m), 8.52(1H, m), 9.50(1H, s).
63	0	C=O	NC N	Isopropyl	СН₃	Cl	1.16(3H, d, J=6.7Hz), 1.22(3H, d, J=6.7Hz), 2.30(1H, m), 2.40(3H, s), 4.77(2H, s), 7.27-7.56(5H, m), 8.56(1H, d, J=5.1Hz), 9.27(1H, s).
64	0	C=O	n))—	Isopropyl	СН₃	NO ₂	(CDCl ₃ /CD ₃ OD)
65	0	C=O	H ₃ C	Iso pro pyl	СН₃	NO₂	1.13(3H, d, J=6.7Hz), 1.23(3H, d, J=6.7Hz), 2.22(1H, m), 2.37(3H, s), 2.46(3H, s), 4.41(1H, d, J=16.2Hz), 5.25(1H, d, J=16.2Hz), 6.75-6.79(2H, m), 7.76(1H, s), 8.21-8.28(3H, m), 9.76(1H, s).

Example 66: Synthesis of 1-(4'-picolyl)-5-isopropyl-6-(3',5'-dimethylphenylamino)-2,4-pyrimidinedione (Compound 66)

5 To a magnetically stirred DMF solution (10ml) of compound (II-a-1) obtained in Preparation 22 (630mg, 2mmol) room temperature, were added anhydrous potassium carbonate (552mg, 4mmol), lithium iodide (268mg, 2mmol), and 4-picolyl chloride hydrochloride (328mg, 2mmol). 10 stirring for 24hr, the solvent was removed under reduced pressure and the resulting residue was purified by flash chromatography (eluent - ethyl acetate) to give 276mg (yield 1-(4'-picoly1)-5-isopropy1-6-(3',5'dimethylphenylacetamido) - 2, 4-pyrimidinedione. The compound 15 thus obtained was then refluxed in methanol (10ml) with sodium methoxide (110mg, 2mmol) for 6hr. The reaction mixture was allowed to cool to room temperature and neutralized with excess ammonium chloride. The solvent was removed under reduced pressure and the resulting residue was 20 purified by flash chromatography (eluent methanol:ether=8:92) to afford 280mg (yield 88%) of the title compound as a white solid.

M.p. : 272 to 273 °C

¹H-NMR(200MHz, CDCl₃) δ 1.20(6H, d, J=6.9Hz), 2.24(6H, s), 25 2.90(1H, m), 4.90(2H, s), 6.27(2H, s), 6.61(1H, s), 7.04-7.06(2H, m), 8.42-8.45(2H, m) m/z(EI) 364(M⁺).

Example 67 : Synthesis of 1-(4'-picolyl)-5-ethyl-6-(3',5'30 dimethylphenylamino)-2,4-pyrimidinedione (Compound 67)

The procedure of Example 66 was repeated using compound (II-a-2) obtained in Preparation 23 in place of compound (II-a-1) to prepare the title compound.

35 M.p.: 250 to 251 °C 1 H-NMR(200MHz, CDCl₃/CD₃OD) δ 0.99(3H, t, J=7.5Hz), 2.24(6H, s), 2.37(2H, q, J=7.5Hz), 4.91(2H, s), 6.31(2H, s), 6.62(1H,

- 36 -

s), 7.04-7.07(2H, m), 8.40-8.43(2H, m)m/z(EI) $350(M^{+})$.

Example 68 : Synthesis of 1-(N-oxo-4'-picolyl)-5-isopropyl5 6-(3',5'-dimethylbenzoyl)-2,4-pyrimidinedione (Compound 68)

Compound 1 obtained in Example 1 (2.26g, 6mmol) was stirred with m-chloroperbenzoic acid (2.72g, 9mmol) in dichloromethane (120ml) at room temperature. After 6hr, the solvent was removed and the residue was purified by flash chromatography (eluent - chloroform:methanol=93:7) to afford 2g (yield 84%) of the title compound as a white solid.

M.p.: 254 to 255 °C

¹H-NMR(200MHz, CDCl₃) δ 1.12(3H, d, J=6.7Hz), 1.22(3H, d, J=6.7Hz), 2.25-2.36(7H, m), 4.69(2H, s), 7.05-7.41(5H, m), 8.05-8.09(2H, m), 9.52(1H, s) m/z(EI) 393(M^+).

Example 69 : Synthesis of 1-(N-oxo-3'-methyl-4'-picolyl)-520 isopropyl-6-(3',5'-dimethylbenzoyl)-2,4-pyrimidinedione
 (Compound 69)

Compound 45 obtained in Example 45 (834mg, 2.13mmol) was stirred with m-chloroperbenzoic acid (969mg, 3.2mmol) in dichloromethane (40ml) at room temperature. After 5hr, the solvent was removed and the residue was purified by flash chromatography (eluent - ethyl acetate:methanol=7:1) to afford 860mg (yield 99%) of the title compound as a white solid.

30 M.p.: 223 to 224 °C

¹H-NMR(200MHz, CDCl₃) δ 1.13(3H, d, J=6.7Hz), 1.23(3H, d, J=6.7Hz), 2.25-2.40(10H, m), 4.56(1H, d, J=16.0Hz), 4.85(1H, d, J=16.0Hz), 6.93(1H, m), 7.31(1H, s), 7.37(2H, s), 8.10(1H, m), 10.08(1H, s)

35 m/z(EI) 407(M⁺).

Example 70 : Synthesis of 1-(N-oxo-3',5'-dimethyl-4'-

35

picolyl)-5-isopropyl-6-(3',5'-dimethylbenzoyl)-2,4pyrimidinedione (Compound 70)

Compound 55 obtained in Example 55 (840mg, 2mmol) was stirred with m-chloroperbenzoic acid (942mg, 3mmol) in dichloromethane (40ml) at room temperature. After 21hr, the solvent was removed and the residue was purified by flash chromatography (eluent - dichloromethane:methanol=15:1) to afford 800mg (yield 95%) of the title compound as a white solid.

M.p. : 241 to 242 °C 1 H-NMR(200MHz, CDCl₃) δ 1.12(3H, d, J=6.7Hz), 1.22(3H, d, J=6.7Hz), 2.30-2.34(13H, m), 4.41(1H, d, J=16.0Hz), 4.98(1H, d, J=16.0Hz), 6.80(2H, s), 7.27(1H, s), 7.34(2H, s), 9.21(1H, s) m/z(EI) 421(M⁺).

Example 71: Synthesis of 1-(N-oxo-3',5'-dimethyl-4'-20 picolyl)-5-isopropyl-6-(3'-chloro-5'-methylbenzoyl)-2,4-pyrimidinedione (Compound 71)

Compound 59 obtained in Example 59 (860mg, 2mmol) was stirred with m-chloroperbenzoic acid (942mg, 3mmol) in dichloromethane (40ml) at room temperature. After 20hr, the solvent was removed and the residue was purified by flash chromatography (eluent - ethyl acetate:hexane=10:1) to afford 870mg (yield 98%) of the title compound as a white solid.

30 M.p.: 225 to 226 °C

¹H-NMR(200MHz, CDCl₃) δ 1.13(3H, d, J=6.9Hz), 1.22(3H, d, J=6.9Hz), 2.22-2.36(10H, m), 4.39(1H, d, J=16.0Hz), 5.04(1H, d, J=16.0Hz), 6.80(2H, s), 7.33-7.54(3H, m), 9.14(1H, s) m/z(EI) 441(M[†]).

Example 72 : Synthesis of 1-(3'-acetoxymethyl-4'-picolyl)-5isopropyl-6-(3',5'-dimethylbenzoyl)-2,4-pyrimidinedione

(Compound 72)

Compound 69 obtained in Example 69 (800mg, 1.96mmol) was dissolved in acetic anhydride (10ml) and the solution 5 was heated in an oil bath (120-140 °C) with stirring for 4hr. The solvent was then removed under reduced pressure and the residue was purified by flash chromatography (eluent - ethyl acetate:hexane=2:1) to afford 150mg (yield 17%) of the title compound as a syrup.

10 ¹H-NMR (200MHz, CDCl₃) δ 1.14 (3H, d, J=6.7Hz), 1.28 (3H, d, J=6.7Hz), 2.16 (3H, s), 2.22-2.40 (7H, m), 4.68 (1H, d, J=16.2Hz), 4.88 (1H, d, J=16.2Hz), 5.08 (2H, s), 7.00-7.02 (2H, m), 7.26 (1H, s), 7.36 (2H, s), 8.44 (1H, m) m/z (EI) 449 (M⁺).

15

Example 73: Synthesis of 1-(3'-acetoxymethyl-5'-methyl-4'-picolyl)-5-isopropyl-6-(3',5'-dimethylbenzoyl)-2,4-pyrimidinedione (Compound 73)

Compound 70 obtained in Example 70 (300mg, 0.71mmol) was dissolved in acetic anhydride (3ml) and the solution was heated in an oil bath (120-130 °C) with stirring for 2hr. The solvent was then removed under reduced pressure and the residue was purified by flash chromatography (eluent - ethyl acetate:hexane=1:1) to afford 110mg (yield 33%) of the title compound as a foam.

¹H-NMR(200MHz, CDCl₃) δ 1.13(3H, d, J=6.9Hz), 1.23(3H, d, J=6.9Hz), 2.10-2.41(10H, m), 4.53(1H, d, J=16.0Hz), 4.96(1H, d, J=16.0Hz), 5.00(2H, s), 6.78-6.81(2H, m), 7.24(1H, s), 30 7.34(2H, s)

m/z(EI) 463 (M^{+}).

Example 74 : Synthesis of 1-(3'-acetoxymethyl-5'-methyl-4'picolyl)-5-isopropyl-6-(3'-chloro-5'-methylbenzoyl)-2,435 pyrimidinedione (Compound 74)

Compound 71 obtained in Example 71 (700mg, 1.58mmol)

- 39 -

was dissolved in acetic anhydride (10ml) and the solution was heated in an oil bath (120-130 °C) with stirring for 5hr. The solvent was then removed under reduced pressure and the residue was purified by flash chromatography (eluent - ethyl acetate:hexane=2:1) to afford 115mg (yield 15%) of the title compound as a foam.

¹H-NMR (200MHz, CDCl₃) δ 1.14 (3H, d, J=6.9Hz), 1.24 (3H, d, J=6.9Hz), 2.16 (3H, s), 2.20-2.32 (4H, m), 2.42 (3H, s), 4.48 (1H, d, J=16.3Hz), 5.00 (2H, s), 5.06 (1H, d, J=16.3Hz), 6.76 (2H, d, J=5.9Hz), 7.32 (1H, s), 7.39 (1H, s), 7.52 (1H, s), 9.46 (1H, s)
m/z (EI) 483 (M⁺).

Example 75 : Synthesis of 1-(3'-hydroxymethyl-4'-picolyl)-5isopropyl-6-(3',5'-dimethylbenzoyl)-2,4-pyrimidinedione
(Compound 75)

Compound 72 obtained in Example 72 (100mg, 0.22mmol) was stirred with ammonium hydroxide (0.5ml) in methanol (5ml) at room temperature. After 6hr, the solvent was evaporated in vacuo and the resulting residue was recrystallized from methanol-chloroform to give 70mg (yield 77%) of the title compound as a white solid.

M.p.: 256 to 257 °C

25 ¹H-NMR (200MHz, DMSO-d₆) δ 1.05(3H, d, J=6.8Hz), 1.11(3H, d, J=6.8Hz), 2.15(1H, m), 2.28(6H, s), 4.44(2H, d, J=5.5Hz), 4.59(1H, d, J=16.7Hz), 4.70(1H, d, J=16.7Hz), 5.35(1H, t, J=5.5Hz), 6.90(1H, m), 7.15(1H, s), 7.32(1H, s), 7.55(2H, s), 8.25(1H, m), 11.66(1H, s)

30 m/z(EI) 407(M⁺).

Example 76: Synthesis of 1-(3'-hydroxymethyl-5'-methyl-4'-picolyl)-5-isopropyl-6-(3',5'-dimethylbenzoyl)-2,4-pyrimidinedione (Compound 76)

Compound 73 obtained in Example 73 (150mg, 0.32mmol) was stirred with ammonium hydroxide (0.5ml) in methanol

35

- 40 -

(5ml) at room temperature. After 5hr, the solvent was evaporated in vacuo and the resulting residue was recrystallized from methanol-chloroform to give 100mg (yield 74%) of the title compound as a white solid.

Example 77 : Synthesis of 1-(3'-hydroxymethyl-5'-methyl-4'picolyl)-5-isopropyl-6-(3'-chloro-5'-methylbenzoyl)-2,4pyrimidinedione (Compound 77)

Compound 74 obtained in Example 74 (100mg, 0.21mmol) was stirred with ammonium hydroxide (0.5ml) in methanol (5ml) at room temperature. After 6hr, the solvent was evaporated in vacuo and the resulting residue was recrystallized from methanol-chloroform to afford 78mg (yield 85%) of the title compound as a white solid.

M.p.: 238 to 240 °C

¹H-NMR (200MHz, DMSO-d₆) δ 1.05(3H, d, J=6.8Hz), 1.10(3H, d, J=6.8Hz), 2.11(1H, m), 2.27(3H, s), 2.49(3H, s), 4.37(2H, d, J=5.7Hz), 4.47(1H, d, J=17.1Hz), 4.82(1H, d, J=17.1Hz), 5.27(1H, t, J=5.7Hz), 6.75(1H, s), 6.93(1H, s), 7.56(1H, s), 7.66(1H, s), 7.74(1H, s), 11.63(1H, s)

m/z (EI) 441 (M⁺).

30

Example 78 : Synthesis of 1-(3'-methoxycarbonyl-4'-picolyl)5-isopropyl-6-(3',5'-dimethylbenzoyl)-2,4-pyrimidinedione
(Compound 78)

Compound 62 obtained in Example 62 (100mg, 0.25mmol) was stirred with potassium carbonate (138mg, 1mmol) and distilled water (0.5ml) in methanol (5ml) at room

35

temperature. After 18hr, the reaction mixture was acidified
with glacial acetic acid and the solvent was evaporated in
vacuo. The resulting residue was purified by flash
chromatography (eluent - ethyl acetate:hexane=4:1) to afford
5 74mg (yield 68%) of the title compound as a white solid.
M.p. : 138 to 140 °C

¹H-NMR(200MHz, CDCl₃) δ 1.14(3H, d, J=6.9Hz), 1.23(3H, d,
J=6.9Hz), 2.28-2.38(7H, m), 3.98(3H, s), 4.68(1H, d,
J=16.0Hz), 5.00(1H, d, J=16.0Hz), 7.21-7.33(4H, m), 7.73(1H,
10 s), 8.54(1H, m), 9.45(1H, s)
m/z(EI) 435(M⁺).

Example 79: Synthesis of 1-(3'-carbamoyl-4'-picolyl)-5-isopropyl-6-(3',5'-dimethylbenzoyl)-2,4-pyrimidinedione (Compound 79)

Compound 62 obtained in Example 62 (60mg, 0.15mmol) was stirred with conc. sulfuric acid (1ml) in an oil bath (80 °C). After 10min, the reaction mixture was allowed to cool to room temperature and poured into distilled water (10ml). The resulting precipitate was collected by filtration, washed with distilled water and hexane, and dried in vacuo to afford 38mg (yield 61%) of the title compound as a white solid.

25 M.p.: 295 to 296 °C

¹H-NMR(500MHz, DMSO-d₆) δ 1.03(3H, d, J=6.9Hz), 1.10(3H, d, J=6.9Hz), 2.14(1H, m), 2.25(6H, s), 4.67(1H, d, J=17.6Hz), 4.75(1H, d, J=17.6Hz), 7.26(1H, dd, J=5.0Hz, J=1.7Hz), 7.29(1H, s), 7.53(2H, s), 7.63(1H, d, J=2.5Hz), 7.69(1H, s), 8.04(1H, d, J=2.1Hz), 8.40(1H, d, J=5.0Hz), 11.71(1H, s) m/z(EI) 420(M⁺).

Example 80 : Synthesis of 1-(3'-carbamoyl-4'-picolyl)-5-isopropyl-6-(3'-chloro-5'-methylbenzoyl)-2,4-pyrimidinedione (Compound 80)

Compound 63 obtained in Example 63 (90mg, 0.21mmol) was

- 42 -

stirred with conc. sulfuric acid (1ml) in an oil bath (80 °C). After 10min, the reaction mixture was allowed to cool to room temperature and poured into distilled water (10ml). The resulting precipitate was collected by filtration, washed with distilled water and hexane, and dried in vacuo to afford 87mg (yield 92%) of the title compound as a white solid.

M.p. : 284 to 285 °C

¹H-NMR(500MHz, DMSO-d₆) δ 1.03(3H, d, J=6.8Hz), 1.10(3H, d, J=6.8Hz), 2.12(1H, m), 2.29(3H, s), 4.68(1H, d, J=17.3Hz), 4.76(1H, d, J=17.3Hz), 7.29(1H, dd, J=5.0Hz, J=1.7Hz), 7.58(1H, s), 7.63(1H, d, J=2.5Hz), 7.71(1H, s), 7.74(1H, s), 7.80(1H, s), 8.04(1H, d, J=2.5Hz), 8.41(1H, d, J=5.0Hz), 11.72(1H, s)

15 m/z(EI) 440(M⁺).

Example 81 : Synthesis of 1-(4'-aminobenzyl)-5-isopropyl-6(3',5'-dimethylbenzoyl)-2,4-pyrimidinedione (Compound 81)

Compound 38 obtained in Example 38 (50mg, 0.12mmol) in methanol (5ml) was stirred under an atmosphere of hydrogen in the presence of platinium oxide catalyst (10mg) at room temperature for 4hr. The reaction mixture was filtered through celite and the solvent was removed under reduced pressure. The resulting residue was purified by flash chromatography (eluent - ethyl acetate:hexane=1:1) to afford 32mg (yield 70%) of the title compound as a yellow solid. M.p.: 173 to 175 °C

¹H-NMR(200MHz, CDCl₃) δ 1.07(3H, d, J=6.9Hz), 1.20(3H, d, 30 J=6.9Hz), 2.20-2.40(7H, m), 3.57(2H, s), 4.46(1H, d, J=15.2Hz), 5.00(1H, d, J=15.2Hz), 6.35(2H, d, J=8.3Hz), 6.81(2H, d, J=8.3Hz), 7.21(1H, s), 7.26(2H, s), 8.86(1H, s) m/z(EI) 391(M^{+}).

- 43 -

Antiviral Activity and Cytotoxicity Test

The <u>in vitro</u> anti-HIV-1 assays were based on the inhibition of the virus-induced cytopathic effect in MT-4 cells, as described in <u>J. Med. Chem</u>, <u>34</u>, 349 (1991).

First, MT-4 cells were suspended in a culture medium at a concentration of 1 x 10⁴ cells/ml and infected with 500 TCID₅₀ (50% cell culture infective dose)/well of HIV-1. Immediately after the virus infection, 100 µl of the cell suspension was added to each of the wells of a flat-bottomed microtiter tray containing various concentrations of the test compounds(1) to (81). After incubating for 4 or 5 days at 37 °C, the number of viable cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, as disclosed in J. Virol. Methods, 20, 309 (1988).

The cytotoxicity of the compounds of the present invention was assessed in parallel with their antiviral activity. It was based on the viability of mock-infected host cells as determined by the MTT method (see J. Virol. Methods, 20, 309 (1988)). MKC-442(6-benzyl-1-ethoxymethyl-5-isopropyluracil) was employed as a comparative compound.

The results of the tests are shown in Table 4.

- 44 -

Table 4

Ex. No. (Compound)	CD ₅₀ (µg/ml)*	ED ₅₀ (μg/ml)**	S.I. (CD ₅₀ /ED ₅₀)***
1	22.6	0.0026	8,600
2	27.2	0.0036	7,578
3	26.1	0.0055	4,788
4	. 64.0	0.0027	23,940
5	18.7	0.012	1,553
6	28.2	0.0127	2,215
7	22.7	0.0034	6,597
8	28.16	0.008	3,451
9 .	40.5	0.0119	3,401
10	51.7	0.0101	5,133
11	47.4	0.0178	2,658
12	38.9	0.0542	716
13	42.3	0.0124	3,414
14	29.81	0.049	612
15	49.87	0.053	943
16	50.6	0.0601	841
17	74.3	0.112	663
18	93.2	0.1189	784
19	11.28	0.003	3,394
20	32.9	0.012	2,758
21	55.07	0.0023	23,501
22	92.8	0.002	48,305
MKC-442	27.7	0.005	5,544

Foot note:

Cytotoxic concentration that causes death of MT-4 cells by 50 % Effective concentration for the inhibition of the proliferation of HIV-1 by 50% Selectivity index = (CD_{50}/ED_{50})

- 45 -Table 4 (Continued)

Ex. No. (Compound)	CD ₅₀ (µg/ml)°	ED ₅₀ (μg/mt)**	S.I. (CD ₅₀ /ED ₅₀)***
23	52.1	. 0.003	15,245
24	15.8	0.010	1,628
25	>100	0.018	>5,557
26	6.5	0.003	2,112
27	8.5	0.002	5,747
28	12.5	0.004	3,516
29	44.9	1.867	24
30	52.3	1.935	27
31	11.7	1.8	6
32	40.4	0.003	12,039
33	57.1	0.011	5,073
34	37.4	0.014	2,663
35	>100	0.0606	>1,650
36	8.01	0.004	2,170
37	5.78	0.003	2,066
38	5.65	0.005	1,172
39	7.46	0.003	2,654
40	7.97	0.0348	229
41	4.63	0.009	497
42	2.14	0.002	921
43	7.16	0.0035	2,057
44	8.17	1.80	5
MKC-442	27.7	0.005	5,544

Foot note:

Cytotoxic concentration that causes death of

MT-4 cells by 50 % Effective concentration for the inhibition of the proliferation of HIV-1 by 50%Selectivity index = (CD_{50}/ED_{50})

- 46 -Table 4 (Continued)

Ex. No. (Compound)	CD ₅₀ (µg/ml)*	ED ₅₀ (μg/ml)**	S.I. (CD ₅₀ /ED ₅₀)***
45	>100	0.0098	>10,170
46	22.9	0.0024	9,691
47	93.75	0.0027	35,133
48	12.07	0.0030	4,021
49	64.39	0.0076	8,440
50	47.68	0.0029	16,351
51	17.1	0.0010	17,812
52	14.3	0.0010	14,684
53	37.8	0.0031	12,110
54	8.7	0.0017	4,992
55	9.9	0.0010	10,274
56	87.2	0.0044	19,648
57	9.46	0.0028	3,411
58	36.03	0.0025	14,300
59	8.68	0.0021	4,126
60	17.5	0.0026	6,739
61	37.5	0.0151	2,475
62	9.15	0.0016	5,858
63	8.55	0.0029	2,966
64	. 46	0.0096	4,801
65	44.08	0.0075	5,916
66	>100	0.08	>1,287
MKC-442	27.7	0.005	5,544

Foot note:

CD₅₀: Cytotoxic concentration that causes death of

MT-4 cells by 50 %

Effective concentration for the inhibition of the proliferation of HIV-1 by 50%Selectivity index = (CD_{50}/ED_{50})

*** S.I.:

- 47 -Table 4 (Continued)

Ex. No. (Compound)	$ ext{CD}_{50}(\mu ext{g/ml})^{\circ}$	ED ₅₀ (μg/ml)**	S.I. (CD ₅₀ /ED ₅₀)***
67	54.5	0.42	130
68	56.9	0.0145	3,928
69	48.25	0.0125	3,853
70	25.84	0.0055	4,712
71	25.44	0.0082	3,092
72	38.49	0.0088	4,365
73	39.65	0.0067	5,903
74	28.81	0.0134	2,152
75	42.06	0.0031	13,444
76	38.39	0.0084	4,561
77	23.51	0.0115	2,052
78	40.79	0.0075	5,414
79	>100	0.0091	>10,942
80	27.83	0.0111	2,507
81	9.63	0.015	648
MKC-442	27.7	0.005	5,544

Foot note:

Cytotoxic concentration that causes death of MT-4 cells by 50 % Effective concentration for the inhibition of the proliferation of HIV-1 by 50% Selectivity index = (CD₅₀/ED₅₀)

Antiviral activity against mutant HIV-1

Antiviral activities of the inventive compounds were determined against Y181C which is representative HIV-1 mutant having high resistance against anti-HIV-1 nonnucleosides, e.g., Nevirapine, by the MTT method. MKC-442 was employed as a comparative compound.

The representative results of the tests are shown in Table 5.

10

Table 5

Compound	EC ₅₀ (μM) *	
1	0.005 - 0.014	
4	0.010 - 0.041	
MKC-442	13.4**	

15

Foot note:

*EC₅₀: Effective concentration for the inhibition of the proliferation of mutant HIV-1 by 50%
**Reference : <u>J. Med. Chem.</u>, <u>42</u>, 4500 (1999)

20

25

As the above results show, the novel antiviral 2,4-pyrimidinedione derivatives of the present invention possess high antiviral activity against HIV-1, both wild-type and mutant HIV-1, and at the same time show high selectivity indices, i.e., low toxicity. The inventive compounds can therefore be used as a drug for treating AIDS.

While the invention has been described with respect to the specific embodiments, it should be recognized that various modifications and changes may be made by those skilled in the art to the invention which also fall within the scope of the invention as defined by the appended claims. WO 00/51990

- 49 -

What is claimed is:

1. A compound of formula(I) or a pharmaceutically acceptable salt thereof:

5

10

wherein:

 R^1 is a C_{6-10} aryl or C_{3-10} heteroaryl group optionally 15 having one or more substituents selected from the group consisting of halogen, C_{1-6} alkyl, C_{1-6} alkyl substituted with one or more halogen atoms, C3-6 cycloalkyl, cyano, nitro, hydroxy, thiohydroxy, azido, C₁₋₆ alkoxy, oximino, alkyloximino, $O-(C_{1-6}$ alkyl)-substituted oximino, alkylcarbonyl, C₃₋₆ cycloalkylcarbonyl, hydroxymethyl, azidomethyl, alkoxymethyl, C₁₋₆ C₁₋₆ acyloxymethyl, carbamoyloxymethyl, aminomethyl, $N-(C_{1-3}$ alkyl)aminomethyl, $N, N-di(C_{1-3} \text{ alkyl})$ aminomethyl, carboxy, C_{1-6} alkoxycarbonyl, aziridine, amino, hydroxyethylamino, cyclopropylamino, C_{1-6} alkylamino, di(C_{1-6} alkyl)amino, trifluoroacetamido, C_{1-6} carbamoyl, hydroxyethylcarbamoyl, acylamido, cyclopropylcarbamoyl, C₁₋₆ alkylcarbamoyl, alkyl)carbamoyl, aminocarbamoyl, dimethylaminocarbamoyl, hydrazino, 1,1-dimethylhydrazino, imidazolyl, triazolyl and tetrazolyl; a tetrahydropyridyl or piperidyl optionally substituted with C₁₋₆ alkyl alkoxycarbonyl group; a tetrahydropyranyl group; or a tetrahydrofuryl group;

35 R^2 is hydrogen, halogen, nitro, cyano, C_{1-3} alkoxycarbonyl, C_{1-3} alkylamino, di(C_{1-3} alkyl)amino, C_{1-3} alkylcarbamoyl, di(C_{1-3} alkyl)carbamoyl, C_{1-6} alkyl, C_{3-6}

30

cycloalkyl or benzyl;

R³ and R⁴ are each independently hydrogen, halogen, hydroxy, cyano, nitro, amino, acetamido, trifluoroacetamido, azido, C₁₋₃ alkyl, C₁₋₃ alkyl substituted with one or more halogen atoms, C₁₋₃ alkoxycarbonyl, carbamoyl, C₁₋₃ alkylcarbamoyl, di(C₁₋₃ alkyl)carbamoyl or C₁₋₃ alkoxy;

A is O or S; and

Z is O, S, C=O, NH or CH,.

- The compound of claim 1 wherein R1 is a phenyl, 10 pyridyl or N-oxopyridyl group optionally having one or more substituents selected from the group consisting of halogen, C_{1-6} alkyl, C_{1-6} alkyl substituted with one or more halogen atoms, C3-6 cycloalkyl, cyano, nitro, hydroxy, thiohydroxy, 15 azido, C_{1-6} alkoxy, oximino, C_{1-3} alkyloximino, $O-(C_{1-6}$ alkyl)substituted oximino, C₁₋₆ alkylcarbonyl, cycloalkylcarbonyl, hydroxymethyl, azidomethyl, alkoxymethyl, C_{1-6} acyloxymethyl, carbamoyloxymethyl, N- (C₁₋₃ alkyl)aminomethyl, aminomethyl, N, N-di (C1-3 alkyl) aminomethyl, carboxy, C_{1-6} alkoxycarbonyl, aziridine, amino, hydroxyethylamino, cyclopropylamino, C₁₋₆ alkylamino, di(C₁₋₆ alkyl)amino, trifluoroacetamido, C₁₋₆ acylamido, carbamoyl, hydroxyethylcarbamoyl, cyclopropylcarbamoyl, C_{1-6} alkylcarbamoyl, di(C₁₋₆ alkyl)carbamoyl, aminocarbamoyl, dimethylaminocarbamoyl, hydrazino, 1,1-dimethylhydrazino, imidazolyl, triazolyl and tetrazolyl; a tetrahydropyridyl or piperidyl group optionally substituted with a C_{1-6} alkyl or C_{1-6} alkoxycarbonyl group; a tetrahydropyranyl group; or a tetrahydrofuryl group.
- 3. The compound of claim 1 wherein R¹ is a phenyl, pyridyl or N-oxopyridyl group optionally having one or more substituents selected from the group consisting of halogen, C₁₋₃ alkyl, C₁₋₃ alkyl substituted with one or more halogen atoms, hydroxymethyl, acetoxymethyl, amino, cyclopropylamino, C₁₋₃ alkylamino, di(C₁₋₃ alkyl)amino, C₁₋₄ alkoxy, hydroxy, cyano, nitro, carboxy, C₁₋₄ alkoxycarbonyl,

carbamoyl, cyclopropylcarbamoyl, C₁₋₄ alkylcarbamoyl and di(C₁₋₄ alkyl)carbamoyl; R² is C₁₋₆ alkyl; R³ and R⁴ are each independently hydrogen, halogen, cyano, nitro, amino, acetamido, trifluoroacetamido, C₁₋₃ alkyl, C₁₋₃ alkyl substituted with one or more halogen atoms or C₁₋₃ alkoxycarbonyl; A is O or S; and Z is O, S, C=O or NH.

- 4. The compound of claim 3 wherein R¹ is a phenyl, pyridyl or N-oxopyridyl group optionally having one or more substituents selected from the group consisting of methyl, amino, nitro, methoxy, trifluoromethyl, fluoro, chloro, cyano, hydroxymethyl, acetoxymethyl, methoxycarbonyl and carbamoyl; R² is ethyl or isopropyl; R³ and R⁴ are each independently hydrogen, chloro, fluoro, methyl, fluoromethyl, trifluoromethyl or nitro; A is O; and Z is O, S, C=O or NH.
- A process for the preparation of the compound of claim 1 which comprises coupling a compound of formula(II)
 with a compound of formula(III) in the presence of a base:

 R^1 -CH₂-Y (III)

wherein:

25

30

 R^1 , R^2 , R^3 , R^4 and A have the same meanings as defined in claim 1;

Z' is same as Z defined in claim 1 with the proviso that when A is oxygen, it can be a acetamido group; and

Y is halogen, methanesulfonyl, toluenesulfonyl or trifluoromethanesulfonyl.

- 52 -

6. A compound having the formula(II):

wherein:

10 R'² is ethyl or isopropyl;

 ${R^\prime}^3$ is nitro, amino, acetamido, trifluoroacetamido or C_{1-3} alkoxycarbonyl;

R'4 is methyl or halogen; and Z" is C=0, NH or acetamido.

15

5

7. An antiviral composition comprising a therapeutically effective amount of the 2,4-pyrimidinedione compound or a pharmaceutically acceptable salt thereof of claim 1 as an active ingredient, and a pharmaceutically acceptable carrier and/or adjuvant.

INTERNATIONAL SEARCH REPORT

unternational application No. PCT/KR00/00166

		C1/KR00/00166	
A. CLASSIFICATION OF SUBJECT MATTER			
IPC7 C07D 239/04, A61K 31/495			
According to International Patent Classification (IPC) or to both national classification and IPC			
B. FIELDS SEARCHED			
Minimun documentation searched (classification system followed	by classification symbols)		
C07D 239/04, A61K 31/495			
Documentation searched other than minimun documentation to the	extent that such documents are in	cluded in the fileds recented	
Korean Patents and applications for inventions since 1975	The state of the s	oranged in the meds scalefied	
Electronic data base consulted during the intertnational search (nat	me of data base and, where practice	able, search trerms used)	
WPI, MEDLINE	•	•	
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category* Citation of document, with indication, where a	ppropriate, of the relevant passage	Relevant to claim No.	
A JP 07-165731(AJINOMOTO CO., INC.) 27 June 19 see entire document.	995(27.06.1995),	1-7	
see chure document.			
Further documents are listed in the continuation of Box C.	X See patent family a	innex.	
Special categories of cited documents:	"T" later document published after	the international filing date or priority	
"A" document defining the general state of the art which is not considered to be of particular relevence	date and not in conflict with	the application but cited to understand	
"E" earlier application or patent but published on or after the international	"X" document of particular releven	ing the invention cannot be	
filing date "L" document which may throw doubts on priority claim(s) or which is	considered novel or cannot be step when the document is tak	e considered to involve an inventive	
cited to establish the publication date of citation or other special reason (as specified)	"Y" document of particular releven	ce; the claimed invention cannot be	
"O" document referring to an oral disclosure, use, exhibition or other		ntive step when the document is her such documents, such combination	
means "P" document published prior to the international filing date but later	being obvious to a person skille	d in the art	
document published prior to the international filing date but later "&" document member of the same patent family than the priority date claimed			
Date of the actual completion of the international search	Date of mailing of the internation	nal search report	
15 JUNE 2000 (15.06.2000)	19 JUNE 2000 (19.06	5.2000)	
Name and mailing address of the ISA/KR	Authorized officer		
Korean Industrial Property Office Government Complex-Taejon, Dunsan-dong, So-ku, Taejon	LEC C. II		
Metropolitan City 302-701, Republic of Korea	LEE, Su Hyoung	(45 24.	
Facsimile No. 82-42-472-7140	Telephone No. 82-42-481-560	2	

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/KR00/00166

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
ЛР 07-165731	27.06.95	EP00649840 US 5496824	26.04.95 05.03.96