TP: Méthode Numérique

TP Nº2: Interpolation et approximation polynômiale

1. But du TP

Durant ce TP, nous allons implémenter sous Matlab des algorithmes d'interpolation étudiés pendant le cours de méthodes numériques : la méthode de Lagrange et la méthode de Newton

2. Énoncé du TP

Pendant les travaux pratiques de mesures on a effectué la caractérisation d'une thermistance, la chaine de mesure et le matériel utilisé dans cette expérimentation sont illustrés sur la figure suivante :

Les résultats expérimentaux ont donnés la caractéristique reportée sur le tableau :

Température (25°C)	15	20	30	40	50	60
Resistance (Ω)	15.11	14.04	9.28	6.44	4.44	2.9

- a) Tracer la courbe résistance en fonction de température ?
- b) Interpolation de Lagrange
 - Déterminer d'abord ce polynôme de façon analytique.
 - Ecrire un algorithme sous MATLAB permettant l'implémentation de la méthode de Lagrange.
 - ❖ Déterminer la valeur estimée de la résistance à la température T = 35° C

- c) Interpolation par le polynôme de Newton
 - Déterminer le degré du polynôme de Newton qui passe par tous ces points?
 - Donner l'expression du polynôme de Newton correspondant ?
 - Réaliser un algorithme sous MATLAB permettant l'implémentation de la méthode de Newton?
 - Quelle est la valeur estimée de la résistance à la température $T = 35^{\circ}C$?