LISTA DE REVISÃO PARA P1 - SOLUÇÃO

- 1) Recupere a representação decimal dos números **double** abaixo:

	123,125
	número
1 + f	1,923828
expoente	1029
sinal	+

sinal	-
expoente	1030
1 + f	1,642578
	número
	-210,25

[Lembre-se que: $n = (-1)^{sinal}2^{expoente-1023}(1+f)$]

2) Determine o conjunto solução do sistema abaixo usando o método de Gauss:

$$\begin{cases} 3x_1 - x_2 + x_3 + 2x_4 = 8 \\ 6x_1 - 4x_2 + 3x_3 + 5x_4 = 13 \\ 3x_1 - 13x_2 + 9x_3 + 3x_4 = -19 \\ -6x_1 + 4x_2 + x_3 - 18x_4 = -34 \end{cases}$$

x1	x2	х3	x4	b
3	-1	1	2	8
6	-4	3	5	13
3	-13	9	3	-19
-6	4	1	-18	-34

3	-1	1	2	8	L1 ↔ L1
0	-2	1	1	-3	L2 →L2 - 2L1
0	-12	8	1	-27	L3 →L3 - L1
0	2	3	-14	-18	L4 →L4 +2L1

-1	1	2	8	L1 ↔ L1
-2	1	1	-3	L2 ↔ L2
0	2	-5	-9	L3 →L3 - 6L2
0	4	-13	-21	L4 →L4 +L2
				<u>-</u>
-1	1	2	8	$L1 \leftrightarrow L1$
-2	1	1	-3	L2 ↔ L2
0	2	-5	-9	L3 ↔ L3
0	0	-3	-3	L4 →L4 -2L3
	-2 0 0 -1 -2	-2 1 0 2 0 4 -1 1 -2 1	-2 1 1 1 0 2 -5 0 4 -13 -2 1 1 0 2 -5 0 2 -5	-2 1 1 -3 0 2 -5 -9 0 4 -13 -21 -1 1 2 8 -2 1 1 -3 0 2 -5 -9

x1	3
x2	1
х3	-2
х4	1

3) Obtenha uma solução aproximada de uma das raízes de

$$f(x) = x^4 - 3x^3 + x^2 + x + 1$$

pelo método da Bissecção no intervalo [0.5,1.5], com precisão de ε < 0.01. Utilize a métrica |f(x)| < ε como critério de parada. Monte uma tabela com n, a, b, p = (b + a)/2, f(a), f(b), f(p) e Erro.

Iteração	а	b	р	f(a)	f(b)	f(p)		0,01
1	0,5	1,5	1	1,4375	-0,3125	1	0	
2	1	1,5	1,25	1	-0,3125	0,394531	0	
3	1,25	1,5	1,375	0,394531	-0,3125	0,04126	0	
4	1,375	1,5	1,4375	0,04126	-0,3125	-0,13744	0	
5	1,375	1,4375	1,40625	0,04126	-0,13744	-0,04829	0	
6	1,375	1,40625	1,390625	0,04126	-0,04829	-0,00354	1	

raiz **1,3906250**

4) Aplique o Método de Newton à função $f(x) = (x-2)^2 - \ln x$, no intervalo $1 \le x \le 2$ e encontre uma raiz com precisão de $\epsilon = 0.001$. Utilize a métrica $|f(x_n) - f(x_{n-1})| < \epsilon$ como critério de parada. Apresente uma tabela com n, x_n e $f(x_n)$, utilizando pelo menos 6 dígitos após a vírgula

		f(pn-1)	f'(pn-1)	pn	Erro	0,001
p0	1	1	-3	1,3333333		
p1	1,333333333	0,15676237	-2,0833333	1,4085793	0,843238	
p2	1,408579272	0,00719689	-1,8927767	1,4123816	0,149565	
рЗ	1,412381564	1,8094E-05	-1,8832608	1,4123912	0,007179	
p4	1,412391172	1,1545E-10	-1,8832368	1,4123912	1,81E-05	

5) Resolva o problema abaixo pelo método de Jacobi com precisão ϵ < 0.01, usando como critério de parada:

$$\frac{\left\|x^{(k)} - x^{(k-1)}\right\|_{\infty}}{\left\|x^{(k)}\right\|_{\infty}} < \varepsilon$$

$$\begin{cases}
-10x_1 + x_2 - 2x_3 &= -6 \\
-x_1 + 11x_2 - x_3 + 3x_4 &= 25 \\
2x_1 - x_2 + 10x_3 - x_4 &= -11 \\
6x_2 - 2x_3 + 16x_4 &= 30
\end{cases}$$

	x1	x2	x3	x4	b			
	-10	1	-2	0	-6			
	-1	11	-1	3	25			
	2	-1	10	-1	-11			
	0	6	-2	16	30			
iterações	0	1	2	3	4	5	6	7
x1	0	0,6	1,0473	0,9326	1,0152	0,989	1,0032	0,9981
x2	0	2,2727	1,7159	2,0533	1,9537	2,0114	1,9922	2,0023
x3	0	-1,1	-0,8052	-1,0494	-0,9681	-1,0103	-0,9945	-1,002
x4	0	1,875	0,8852	1,1309	0,9738	1,0214	0,9944	1,0036
Erros		1	0,57684	0,164321	0,080412	0,028686	0,013553	0,005044