Contents

1	Sets	3
	1.1	Extensionality
	1.2	Subsets
	1.3	The empty set
	1.4	Disjointness of sets
	1.5	Unordered pairing and set adjunction
	1.6	Union and intersection
		1.6.1 Union of a set
		1.6.2 Intersection of a set
		1.6.3 Binary union
		1.6.4 Binary intersection
		1.6.5 Interaction of union and intersection
	1.7	Set difference
	1.8	Tuples
	1.9	Additional results about cons
	1.10	Successor
	1.11	Symmetric difference
	1.12	Powerset
	1.13	Bipartitions
	1.14	Partitions
	1.15	Cantor's theorem
_		
2	Filte	rs 16
3	Regi	ularity 17
•	3.1	Fixpoints
4	Rela	tions 18
	4.1	Converse of a relation
		4.1.1 Domain of a relation
		4.1.2 Range of a relation
		4.1.3 Domain and range of converse
		4.1.4 Field of a relation
	4.2	Image
	4.3	Preimage
	4.4	Upward and downward closure
	4.5	Relation (and later also function) composition
	4.6	Restriction
	4.7	Set of relations
	4.8	Identity relation
	4.9	Membership relation
	4.10	Subset relation

	4.11 Properties of relations	29
	4.12 Quasiorders	30
	4.13 Equivalences	31
	4.13.1 Equivalence classes	31
	4.13.2 Quotients	32
	4.14 Closure operations on relations	33
	4.15 Injective relations	33
	4.16 Right-unique relations	33
	4.17 Left-total relations	33
	4.18 Right-total relations	34
5	Functions	34
	5.1 Image of a function	35
	5.2 Families of functions	36
	5.3 The empty function	36
	5.4 Function composition	36
	5.5 Injections	38
	5.6 Surjections	38
	5.7 Bijections	39
	5.8 Converse as a function	39
	5.8.1 Inverses of a function	39
	5.9 Identity function	40
6	Transitive sets	40
	6.0.1 Closure properties of \in -transitive sets	41
7	Ordinals	41
•	7.0.1 Construction of ordinals	43
	7.0.2 Limit and successor ordinals	44
	7.1 Natural numbers as ordinals	45
8	Natural numbers	45
9	Cardinality	45
10	Magmas	46
11	Semigroups	47
12	Regular semigroups	47
	Inverse semigroups	47
14	Topological spaces	49
	14.1 Closed sets	50

1	Sets
	14.3 Disconnections
	14.2 Topological basis

Abbreviation 1. $A \ni a \text{ iff } a \in A.$

1.1 Extensionality

The axiom of set extensionality says that sets are determined by their *extension*, that is, two sets are equal iff they have the same elements.

Axiom 2. (Set extensionality) Suppose for all a we have $a \in A$ iff $a \in B$. Then A = B.

This axiom is also available as the justification "... by set extensionality", which applies it to goals of the form "A = B" and " $A \neq B$ ".

Proposition 3. (Witness for disequality) Suppose $A \neq B$. Then there exists c such that either $c \in A$ and $c \notin B$ or $c \notin A$ and $c \in B$.

Proof. Suppose not. Then A = B by set extensionality. Contradiction.

1.2 Subsets

Definition 4. $A \subseteq B$ iff for all $a \in A$ we have $a \in B$.

Abbreviation 5. A is a subset of B iff $A \subseteq B$.

Abbreviation 6. $B \supseteq A \text{ iff } A \subseteq B.$

Proposition 7. $A \subseteq A$.

Proposition 8. Suppose $A \subseteq B \subseteq A$. Then A = B.

Proof. Follows by set extensionality.

Proposition 9. Suppose $a \in A \subseteq B$. Then $a \in B$.

Proposition 10. Suppose $A \subseteq B$ and $c \notin B$. Then $c \notin A$.

Proposition 11. Suppose $A \subseteq B \subseteq C$. Then $A \subseteq C$.

Definition 12. $A \subset B$ iff $A \subseteq B$ and $A \neq B$.

Proposition 13. $A \not\subset A$.

Proposition 14. Suppose $A \subseteq B \subseteq C$. Then $A \subseteq C$.

Proposition 15. Suppose $A \subset B$. Then there exists $b \in B$ such that $b \notin A$.

Proof. $A \subseteq B$ and $A \neq B$.

Abbreviation 16. *F* is a family of subsets of *X* iff for all $A \in F$ we have $A \subseteq X$.

1.3 The empty set

Axiom 17. For all a we have $a \notin \emptyset$.

Definition 18. A is inhabited iff there exists a such that $a \in A$.

Abbreviation 19. A is empty iff A is not inhabited.

Proposition 20. If x and y are empty, then x = y.

Proposition 21. For all a we have $\emptyset \subseteq a$.

Proposition 22. $A \subseteq \emptyset$ iff $A = \emptyset$.

1.4 Disjointness of sets

Definition 23. A is disjoint from B iff there exists no a such that $a \in A, B$.

Abbreviation 24. $A \not \equiv B$ iff A is disjoint from B.

Abbreviation 25. $A \subseteq B$ iff A is not disjoint from B.

Proposition 26. If A is disjoint from B, then B is disjoint from A.

1.5 Unordered pairing and set adjunction

Finite set expressions are desugared to iterated application of cons to \emptyset . Thus $\{x, y, z\}$ is an abbreviaton of $cons(x, cons(y, cons(z, \emptyset)))$. The cons operation is determined by the following axiom:

Axiom 27. $x \in cons(y, X)$ iff x = y or $x \in X$.

Proposition 28. $x \in cons(x, X)$.

Proposition 29. If $y \in X$, then $y \in cons(x, X)$.

Proposition 30. $a \in \{a, b\}$.

Proposition 31. $b \in \{a, b\}$.

Proposition 32. Suppose $c \in \{a, b\}$. Then a = c or b = c.

Proposition 33. $c \in \{a, b\}$ iff a = c or b = c.

Proposition 34. $a \in \{a\}$.

Proposition 35. If $a \in \{b\}$, then a = b.

Proposition 36. $a \in \{b\}$ iff a = b.

Abbreviation 37. A is a subsingleton iff for all $a, b \in A$ we have a = b.

Proposition 38. $\{a\}$ is inhabited.

Proposition 39. Let A be a subsingleton. Let $a \in A$. Then $A = \{a\}$.

Proof. Follows by set extensionality.

Proposition 40. Suppose $a \in C$. Then $\{a\} \subseteq C$.

Proposition 41. Suppose $\{a\} \subseteq C$. Then $a \in C$.

1.6 Union and intersection

1.6.1 Union of a set

Axiom 42. $z \in \bigcup X$ iff there exists $Y \in X$ such that $z \in Y$.

Proposition 43. Suppose $A \in B \in C$. Then $A \in \bigcup C$.

Proof. There exists $B \in C$ such that $A \in B$.

Proposition 44. $\bigcup \emptyset = \emptyset$.

Proposition 45. Let F be a family of subsets of X. Then $\bigcup F \subseteq X$.

Abbreviation 46. T is closed under arbitrary unions iff for every subset M of T we have $\bigcup M \in T$.

1.6.2 Intersection of a set

Definition 47. $\bigcap A = \{x \in \bigcup A \mid \text{ for all } a \in A \text{ we have } x \in a\}.$

Proposition 48. $z \in \bigcap X$ iff X is inhabited and for all $Y \in X$ we have $z \in Y$.

Proposition 49. Suppose C is inhabited. Suppose for all $B \in C$ we have $A \in B$. Then $A \in \bigcap C$.

Proposition 50. Suppose $A \in \bigcap C$. Suppose $B \in C$. Then $A \in B$.

Proposition 51. Suppose A is inhabited. Suppose for all $a \in A$ we have $C \subseteq a$. Then $C \subseteq \bigcap A$.

Proposition 52. Suppose A is inhabited. Then $C \subseteq \bigcap A$ iff for all $a \in A$ we have $C \subseteq a$.

Proposition 53. Let $B \in A$. Then $\bigcap A \subseteq B$.

Proposition 54. $\bigcap \{a\} = a$.

Proof. Every element of a is an element of $\cap \{a\}$ by propositions [36], [38] and [48]. Follows by set extensionality.

Proposition 55. $\bigcap \{\emptyset\} = \emptyset$.

Proof. Follows by set extensionality.

1.6.3 Binary union

Axiom 56. Let A, B be sets. $a \in A \cup B$ iff $a \in A$ or $a \in B$.

Proposition 57. If $c \in A$, then $c \in A \cup B$.

Proposition 58. If $c \in B$, then $c \in A \cup B$.

Proposition 59. (Commutativity of union) $A \cup B = B \cup A$.

Proof. Follows by set extensionality.

Proposition 60. (Associativity of union) $(A \cup B) \cup C = A \cup (B \cup C)$.	
<i>Proof.</i> Follows by set extensionality.	
Proposition 61. (Idempotence of union) $A \cup A = A$.	
<i>Proof.</i> Follows by set extensionality.	
Proposition 62. $A \cup B \subseteq C$ iff $A \subseteq C$ and $B \subseteq C$. Proposition 63. $A \subseteq A \cup B$. Proposition 64. $B \subseteq A \cup B$. Proposition 65. Suppose $A \subseteq C$ and $B \subseteq D$. Then $A \cup B \subseteq C \cup D$.	
Proposition 66. $A \cup \emptyset = A$.	
<i>Proof.</i> Follows by set extensionality. Proposition 67. Suppose $A = \emptyset$ and $B = \emptyset$. Then $A \cup B = \emptyset$.	
<i>Proof.</i> Follows by set extensionality.	
Proposition 68. Suppose $A \cup B = \emptyset$. Then $A = \emptyset$.	
<i>Proof.</i> Follows by set extensionality.	
Proposition 69. Suppose $A \cup B = \emptyset$. Then $B = \emptyset$.	
<i>Proof.</i> Follows by set extensionality.	
Proposition 70. Suppose $A \subseteq B$. Then $A \cup B = B$.	
<i>Proof.</i> Follows by set extensionality.	
Proposition 71. Suppose $A \subseteq B$. Then $B \cup A = B$.	
<i>Proof.</i> Follows by set extensionality.	
Proposition 72. If $A \cup B = B$, then $A \subseteq B$. Proposition 73. $\bigcup cons(b, A) = b \cup \bigcup A$.	
<i>Proof.</i> Follows by set extensionality.	
Proposition 74. $cons(b, A) \cup C = cons(b, A \cup C)$.	
<i>Proof.</i> Follows by set extensionality.	
Proposition 75. $A \cup (A \cup B) = A \cup B$.	
<i>Proof.</i> Follows by set extensionality.	
Proposition 76. $(A \cup B) \cup B = A \cup B$.	

Proof. Follows by set extensionality. **Proposition 77.** $A \cup (B \cup C) = B \cup (A \cup C)$. *Proof.* Follows by set extensionality. **Abbreviation 78.** T is closed under binary unions iff for every $U, V \in T$ we have $U \cup V \in T$. 1.6.4 Binary intersection **Definition 79.** $A \cap B = \{a \in A \mid a \in B\}.$ **Proposition 80.** If $c \in A, B$, then $c \in A \cap B$. **Proposition 81.** If $c \in A \cap B$, then $c \in A$. **Proposition 82.** If $c \in A \cap B$, then $c \in B$. **Proposition 83.** $\bigcap \{A, B\} = A \cap B$. *Proof.* $\{A,B\}$ is inhabited. Thus for all c we have $c \in \bigcap \{A,B\}$ iff $c \in A \cap B$ by propositions [33] and [48] and definition [79]. Follows by extensionality. **Proposition 84.** (Commutativity of intersection) $A \cap B = B \cap A$. *Proof.* Follows by set extensionality. **Proposition 85.** (Associativity of intersection) $(A \cap B) \cap C = A \cap (B \cap C)$. *Proof.* Follows by set extensionality. Proposition 86. (Idempotence of intersection) $A \cap A = A$. *Proof.* Follows by set extensionality. **Proposition 87.** $A \cap B \subseteq A$. **Proposition 88.** $A \cap \emptyset = \emptyset$. *Proof.* Follows by set extensionality. **Proposition 89.** Suppose $A \subseteq B$. Then $A \cap B = A$. *Proof.* Follows by set extensionality. **Proposition 90.** Suppose $A \subseteq B$. Then $B \cap A = A$. *Proof.* Follows by set extensionality. **Proposition 91.** Suppose $A \cap B = A$. Then $A \subseteq B$. **Proposition 92.** $C \subseteq A \cap B$ iff $C \subseteq A$ and $C \subseteq B$. **Proposition 93.** $A \cap B \subseteq A$.

Proposition 94. $A \cap B \subseteq B$. Proposition 95. $A \cap (A \cap B) = A \cap B$.
<i>Proof.</i> Follows by set extensionality. \Box
Proposition 96. $(A \cap B) \cap B = A \cap B$.
<i>Proof.</i> Follows by set extensionality. \Box
Proposition 97. $A \cap (B \cap C) = B \cap (A \cap C)$.
<i>Proof.</i> Follows by set extensionality. $\hfill\Box$
Abbreviation 98. T is closed under binary intersections iff for every $U, V \in T$ we have $U \cap V \in T$.
1.6.5 Interaction of union and intersection
Proposition 99. (Binary intersection over binary union) $x \cap (y \cup z) = (x \cap y) \cup (x \cap z)$.
<i>Proof.</i> Follows by set extensionality. $\hfill\Box$
Proposition 100. (Binary union over binary intersection) $x \cup (y \cap z) = (x \cup y) \cap (x \cup z)$.
<i>Proof.</i> Follows by set extensionality. $\hfill\Box$
Proposition 101. Suppose $C \subseteq A$. Then $(A \cap B) \cup C = A \cap (B \cup C)$.
<i>Proof.</i> Follows by set extensionality. $\hfill\Box$
Proposition 102. Suppose $(A \cap B) \cup C = A \cap (B \cup C)$. Then $C \subseteq A$. Proposition 103. $(A \cap B) \cup (B \cap C) \cup (C \cap A) = (A \cup B) \cap (B \cup C) \cap (C \cup A)$.
<i>Proof.</i> Follows by set extensionality. $\hfill\Box$
Proposition 104. (Intersection over binary union) Suppose A and B are inhabited. Then $\bigcap A \cup B = (\bigcap A) \cap \bigcap B$.
<i>Proof.</i> $A \cup B$ is inhabited. Thus for all c we have $c \in \bigcap A \cup B$ iff $c \in (\bigcap A) \cap \bigcap B$ by definition [79], axiom [56], and proposition [48]. Follows by set extensionality.

1.7 Set difference

Definition 105. $A \setminus B = \{a \in A \mid a \notin B\}.$

Proposition 106. If $a \in A$ and $a \notin B$, then $a \in A \setminus B$.

Proposition 107. If $a \in A \setminus B$, then $a \in A$.

Proposition 108. If $a \in A \setminus B$, then $a \notin B$.

Proposition 109. $x \setminus \emptyset = x$.

Proof. Follows by set extensionality.

Proposition 110. $\emptyset \setminus x = \emptyset$.

Proof. Follows by set extensionality.

Proposition 111. $x \setminus x = \emptyset$.

Proof. Follows by set extensionality.

Proposition 112. $x \setminus (x \setminus y) = x \cap y$.

Proof. Follows by set extensionality.

Proposition 113. Suppose $y \subseteq x$. $x \setminus (x \setminus y) = y$.

Proof. Follows by propositions [90] and [112].

Proposition 114. $x \setminus (y \cap z) = (x \setminus y) \cup (x \setminus z)$.

Proof. Follows by set extensionality.

Proposition 115. $x \setminus (y \cup z) = (x \setminus y) \cap (x \setminus z)$.

Proof. Follows by set extensionality.

Proposition 116. $x \cap (y \setminus z) = (x \cap y) \setminus (x \cap z)$.

Proof. Follows by set extensionality.

Proposition 117. Let A, B be sets. Suppose $A \subset B$. Then $B \setminus A$ is inhabited.

Proof. Take b such that $b \in B$ and $b \notin A$. Then $b \in B \setminus A$.

Proposition 118. $B \setminus A \subseteq B$.

Proposition 119. Suppose $C \subseteq A$. Suppose $C \cap B = \emptyset$. Then $C \subseteq A \setminus B$.

Proposition 120. Suppose $A \subseteq B$. Then $C \setminus A \supseteq C \setminus B$.

Proposition 121. Suppose $A \cap B = \emptyset$. Then $A \setminus B = A$.

Proposition 122. $A \setminus B = \emptyset$ iff $A \subseteq B$.

Proposition 123. Suppose $B \subseteq A \setminus C$ and $c \notin B$. Then $B \subseteq A \setminus \mathsf{cons}(c, C)$.

Proposition 124. Suppose $B \subseteq A \setminus \mathsf{cons}(c, C)$. Then $B \subseteq A \setminus C$ and $c \notin B$.

Proposition 125. $A \setminus cons(a, B) = (A \setminus \{a\}) \setminus B$.

Proof. Follows by set extensionality.

Proposition 126. $A \setminus cons(a, B) = (A \setminus B) \setminus \{a\}.$

Proof. Follows by set extensionality.

Proposition 127. $A \cap (B \setminus A) = \emptyset$.

Proof. Follows by set extensionality.

Proposition 128. Suppose $A \subseteq B$. $A \cup (B \setminus A) = B$.

Proof. Follows by set extensionality.

Proposition 129. $A \subseteq B \cup (A \setminus B)$.

Proposition 130. Suppose $A \subseteq B \subseteq C$. Then $B \setminus (C \setminus A) = A$.

Proof. Follows by set extensionality.

Proposition 131. Then $(A \cup B) \setminus (B \setminus A) = A$.

Proof. Follows by set extensionality.

Proposition 132. Suppose $A, B \subseteq C$. Then $A \setminus B = A \cap (C \setminus B)$.

Proof. Follows by set extensionality.

1.8 Tuples

As with unordered pairs, ordered pairs are a primitive construct and n-tuples desugar to iterated applications of the primitive operator (-,-). For example (a,b,c,d) equals (a,(b,(c,d))) by definition. While ordered pairs could be encoded set-theoretically, we simply postulate the defining property to prevent misguiding proof automation.

Axiom 133. (a,b) = (a',b') iff $a = a' \land b = b'$.

Axiom 134. $(a,b) \neq \emptyset$.

Axiom 135. $(a, b) \neq a$.

Axiom 136. $(a, b) \neq b$.

Repeated application of the defining property of pairs yields the defining property of all tuples.

Proposition 137. (a, b, c) = (a', b', c') iff $a = a' \land b = b' \land c = c'$.

There are primitive projections fst and snd that satisfy the following axioms.

Axiom 138. fst(a, b) = a.

Axiom 139. snd(a, b) = b.

Proposition 140. (a,b) = (fst(a,b), snd(a,b)).

Definition 141. $A \times B = \{(a, b) \mid a \in A, b \in B\}.$

Proposition 142. Suppose $(x, y) \in X \times Y$. Then $x \in X$ and $y \in Y$.

Proof. Take x', y' such that $x' \in X \land y' \in Y \land (x, y) = (x', y')$ by definition [141]. Then x = x' and y = y' by axiom [133].

Proposition 143. Suppose $x \in X$ and $y \in Y$. Then $(x, y) \in X \times Y$.

Proposition 144. $\emptyset \times Y = \emptyset$.

Proposition 145. $X \times \emptyset = \emptyset$.

Proposition 146. $X \times Y$ is empty iff X is empty or Y is empty.

Proof. Follows by definitions [18] and [141].

Proposition 147. Suppose $c \in A \times B$. Then fst $c \in A$.

Proof. Take a, b such that c = (a, b) and $a \in A$ by definition [141]. $a = \operatorname{fst} c$ by axiom [138].

Proposition 148. Suppose $c \in A \times B$. Then $\operatorname{snd} c \in B$.

Proof. Take a, b such that c = (a, b) and $b \in B$ by definition [141]. $b = \operatorname{snd} c$ by axiom [139].

Proposition 149. Suppose $p \in X \times Y$. Then there exist x, y such that $x \in X$ and $y \in Y$ and p = (x, y).

Proposition 150. Suppose $p \in X \times Y$. Then fst $p \in X$ and snd $p \in Y$.

1.9 Additional results about cons

Proposition 151. Suppose $x \in X$. Suppose $Y \subseteq X$. Then $cons(x, Y) \subseteq X$.

Proposition 152. Suppose $cons(x, Y) \subseteq X$. Then $x \in X$ and $Y \subseteq X$.

Proposition 153. $cons(x, Y) \subseteq X$ iff $x \in X$ and $Y \subseteq X$.

Proposition 154. If $C \subseteq B$, then $C \subseteq cons(a, B)$.

Corollary 155. $X \subseteq cons(y, X)$.

Abbreviation 156. $B \setminus \{a\} = B \setminus \{a\}.$

Proposition 157. Suppose $a \in C \land C \setminus \{a\} \subseteq B$. Then $C \subseteq cons(a, B)$.

Proof. Follows by propositions [122] and [125].

Proposition 158. Suppose $C \subseteq B$. Then $C \subseteq cons(a, B)$.

Proposition 159. Suppose $C \subseteq cons(a, B)$. Then $C \subseteq B \lor (a \in C \land C \setminus \{a\} \subseteq B)$.

Proof. Follows by propositions [122] and [125], definition [4], and axiom [27]. **Proposition 160.** $C \subseteq cons(a, B)$ iff $C \subseteq B \lor (a \in C \land C \setminus \{a\} \subseteq B)$. **Proposition 161.** $B \setminus \{a\} = B \setminus \{a\}.$ *Proof.* Follows by set extensionality. **Proposition 162.** $\{a\} \cup B = cons(a, B)$. *Proof.* Follows by set extensionality. **Proposition 163.** cons(a, cons(b, C)) = cons(b, cons(a, C)).*Proof.* Follows by set extensionality. **Proposition 164.** Suppose $a \in A$. Then cons(a, A) = A. *Proof.* Follows by set extensionality. **Proposition 165.** Suppose $a \in A$. Then $cons(a, A \setminus \{a\}) = A$. *Proof.* Follows by set extensionality. **Proposition 166.** Then cons(a, cons(a, B)) = cons(a, B). *Proof.* Follows by set extensionality. П **Proposition 167.** Suppose B is inhabited. Then $\bigcap cons(a, B) = a \cap \bigcap B$. *Proof.* cons(a, B) is inhabited. Thus for all c we have $c \in \bigcap cons(a, B)$ iff $c \in a \cap \bigcap B$ by proposition [48], axiom [27], and definition [79]. Follows by extensionality. 1.10 Successor **Definition 168.** $x^+ = cons(x, x)$. Proposition 169. $x \in x^+$. **Proposition 170.** Suppose $x \in y$. Then $x \in y^+$. **Proposition 171.** Suppose $x \in y^+$. Then x = y or $x \in y$. **Proposition 172.** $x \in y^+$ iff x = y or $x \in y$. Proposition 173. $x^+ \neq \emptyset$. **Proposition 174.** Suppose $x^+ \subseteq y$. Then $x \in y$. Proposition 175. $x^+ \neq x$. **Proposition 176.** Suppose $x^+ = y^+$. Then x = y. *Proof.* Suppose not. $x^+ \subseteq y^+$. Hence $x \in y^+$. Then $x \in y$. $y^+ \subseteq x^+$. Hence $y \in x^+$.

Then $y \in x$. Contradiction.

Proposition 177. $x \subseteq x^+$. **Proposition 178.** Suppose $x \in y$ and $x \subseteq y$. Then $x^+ \subseteq y$. **Proposition 179.** Suppose $x^+ \subseteq y$. Then $x \in y$ and $x \subseteq y$. **Proposition 180.** There exists no z such that $x \subset z \subset x^+$. *Proof.* Follows by definitions [4], [12] and [168] and propositions [15] and [171]. 1.11 Symmetric difference **Definition 181.** $x \triangle y = (x \setminus y) \cup (y \setminus x)$. **Proposition 182.** $x \triangle y = (x \cup y) \setminus (y \cap x)$. *Proof.* Follows by set extensionality. **Proposition 183.** If $z \in x \triangle y$, then either $z \in x$ or $z \in y$. **Proposition 184.** If either $z \in x$ or $z \in y$, then $z \in x \triangle y$. *Proof.* If $z \in x$ and $z \notin y$, then $z \in x \setminus y$. If $z \notin x$ and $z \in y$, then $z \in y \setminus x$. **Proposition 185.** $x \triangle (y \triangle z) = (x \triangle y) \triangle z$. *Proof.* Follows by set extensionality. **Proposition 186.** $x \triangle y = y \triangle x$. *Proof.* Follows by set extensionality. **Proposition 187.** Suppose $A \subseteq C$. Then $A \times B \subseteq C \times B$. *Proof.* It suffices to show that for all $w \in A \times B$ we have $w \in C \times B$. **Proposition 188.** Suppose $B \subseteq D$. Then $A \times B \subseteq A \times D$. *Proof.* It suffices to show that for all $w \in A \times B$ we have $w \in A \times D$. **Proposition 189.** Suppose $w \in (A \cap B) \times (C \cap D)$. Then $w \in (A \times C) \cap (B \times D)$. *Proof.* Take a, c such that w = (a, c) by proposition [149]. Then $a \in A, B$ and $c \in C, D$ by proposition [142] and definition [79]. Thus $w \in (A \times C), (B \times D)$. **Proposition 190.** Suppose $w \in (A \times C) \cap (B \times D)$. Then $w \in (A \cap B) \times (C \cap D)$. *Proof.* $w \in A \times C$. Take a, c such that w = (a, c). $a \in A, B$ by definition [79] and proposition [142]. $c \in C, D$ by definition [79] and proposition [142]. Thus $(a, c) \in$ $(A \cap B) \times (C \cap D)$ by definition [141] and proposition [80]. **Proposition 191.** $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$.

Proof. Follows by set extensionality.

Proposition 192. $(X \cap Y) \times Z = (X \times Z) \cap (Y \times Z)$.

Proof. Follows by set extensionality.

Proposition 193. $X \times (Y \cap Z) = (X \times Y) \cap (X \times Z)$.

Proof. Follows by set extensionality.

Proposition 194. Suppose $w \in (A \cup B) \times (C \cup D)$. Then $w \in (A \times C) \cup (B \times D) \cup (A \times D) \cup (B \times C)$.

Proof. Take a, c such that w = (a, c). $a \in A$ or $a \in B$ by axiom [56] and proposition [142]. $c \in C$ or $c \in D$ by axiom [56] and proposition [142]. Thus $(a, c) \in (A \times C)$ or $(a, c) \in (B \times D)$ or $(a, c) \in (A \times D)$ or $(a, c) \in (B \times C)$. Thus $(a, c) \in (A \times C) \cup (B \times D) \cup (A \times D) \cup (B \times C)$.

Proposition 195. Suppose $w \in (A \times C) \cup (B \times D) \cup (A \times D) \cup (B \times C)$. Then $w \in (A \cup B) \times (C \cup D)$.

Proof. Case: $w \in (A \times C)$. Straightforward. Case: $w \in (B \times D)$. Straightforward. Case: $w \in (A \times D)$. Straightforward. \square

Proposition 196. $(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D) \cup (A \times D) \cup (B \times C)$.

Proof. Follows by set extensionality.

Proposition 197. $(X \cup Y) \times Z = (X \times Z) \cup (Y \times Z)$.

Proof. Follows by set extensionality.

Proposition 198. $X \times (Y \cup Z) = (X \times Y) \cup (X \times Z)$.

Proof. Follows by set extensionality.

1.12 Powerset

Abbreviation 199. The powerset of X denotes Pow(X).

Axiom 200. $B \in Pow(A)$ iff $B \subseteq A$.

Proposition 201. Suppose $A \subseteq B$. Then $A \in Pow(B)$.

Proposition 202. Let $A \in Pow(B)$. Then $A \subseteq B$.

Proposition 203. $\emptyset \in Pow(A)$.

Proposition 204. $A \in Pow(A)$.

Proposition 205. Let A be a set. Let B be a subset of Pow(A). Then $\bigcup B \subseteq A$.

Proof. Follows by definition [4], proposition [202], and axiom [42]. \Box

Proposition 206. $| \mathsf{JPow}(A) = A.$

<i>Proof.</i> Follows by set extensionality. \Box
Proposition 207. $\bigcap Pow(A) = \emptyset$.
<i>Proof.</i> Follows by set extensionality. \Box
Proposition 208. $Pow(A) \cup Pow(B) \subseteq Pow(A \cup B)$.
<i>Proof.</i> $Pow(A) \subseteq Pow(A) \cup Pow(B)$ by proposition [63]. $Pow(B) \subseteq Pow(A) \cup Pow(B)$ by proposition [64]. Follows by definition [4], axioms [56] and [200], and propositions [14] and [202].
Proposition 209. $Pow(\emptyset) = {\emptyset}.$
Proposition 210. $Pow(A) \cup Pow(B) \subseteq Pow(A \cup B)$.
Proposition 211. $A \subseteq Pow(\bigcup A)$.
<i>Proof.</i> Follows by definition [4], axiom [200], and proposition [43]. \Box
Proposition 212. $\bigcup Pow(A) = A$.
Proposition 213. $\bigcup A \in Pow(B)$ iff $A \in Pow(Pow(B))$.
Proposition 214. $Pow(A \cap B) = Pow(A) \cap Pow(B)$.
<i>Proof.</i> Follows by axioms [2] and [200], definition [79], and proposition [92]. \Box
1.13 Bipartitions
Abbreviation 215. C is partitioned by A and B iff $A, B \neq \emptyset$ and A is disjoint from B and $A \cup B = C$.
Definition 216. Bipartitions $X = \{p \in Pow(X) \times Pow(X) \mid X \text{ is partitioned by fst } p \text{ and snd } p\}.$
Abbreviation 217. P is a bipartition of X iff $P \in Bipartitions X$.
Proposition 218. Suppose C is partitioned by A and B . Then (A, B) is a bipartition of C .
<i>Proof.</i> $(A,B) \in Pow(C) \times Pow(C)$. C is partitioned by $fst(A,B)$ and $snd(A,B)$. Thus (A,B) is a bipartition of C by definition [216].
Proposition 219. Suppose (A, B) is a bipartition of C . Then C is partitioned by A and B .
$\textit{Proof. } fst(A,B) = A. \; snd(A,B) = B. \\ \square$
Proposition 220. Bipartitions \emptyset is empty.
Proposition 221. Suppose $d \notin C$. Suppose $A \cup B = cons(d, C)$. Suppose $A, B \neq \{d\}$. Then $A \setminus \{d\} \cup B \setminus \{d\} = C$.
<i>Proof.</i> Follows by set extensionality.

Proposition 222. Suppose $d \notin C$. Suppose cons(d, C) is partitioned by A and B. Suppose $A, B \neq \{d\}$. Then C is partitioned by $A \setminus \{d\}$ and $B \setminus \{d\}$.

Proof.
$$A \setminus \{d\}, B \setminus \{d\} \neq \emptyset$$
. $A \setminus \{d\} \cup B \setminus \{d\} = C$ by proposition [221].

1.14 Partitions

Definition 223. P is a partition iff $\emptyset \notin P$ and for all $B, C \in P$ such that $B \neq C$ we have B is disjoint from C.

Abbreviation 224. P is a partition of A iff P is a partition and $\bigcup P = A$.

Proposition 225. \emptyset is a partition of \emptyset .

Definition 226. P' is a refinement of P iff for every $A' \in P'$ there exists $A \in P$ such that $A' \subseteq A$.

Abbreviation 227. $P' \leq P$ iff P' is a refinement of P.

Proposition 228. Suppose $P'' \leq P' \leq P$. Then $P'' \leq P$.

Proof. It suffices to show that for all $A'' \in P''$ there exists $A \in P$ such that $A'' \subseteq A$. Fix $A'' \in P''$. Take $A' \in P'$ such that $A'' \subseteq A'$ by definition [226]. Take $A \in P$ such that $A' \subseteq A$. Then $A'' \subseteq A$. Follows by definition.

1.15 Cantor's theorem

Theorem 229. (Cantor) There exists no surjection from A to Pow(A).

Proof. Suppose not. Consider a surjection f from A to Pow(A). Let $B = \{a \in A \mid a \notin f(a)\}$. Then $B \in Pow(A)$. There exists $a' \in A$ such that f(a') = B by the definition of surjectivity. Now $a' \in B$ iff $a' \notin f(a') = B$. Contradiction.

2 Filters

Abbreviation 230. F is upward-closed in S iff for all A, B such that $A \subseteq B \subseteq S$ and $A \in F$ we have $B \in F$.

Definition 231. F is a filter on S iff F is a family of subsets of S and S is inhabited and $S \in F$ and $\emptyset \notin F$ and F is closed under binary intersections and F is upward-closed in S.

Definition 232. $\uparrow_S A = \{X \in \mathsf{Pow}(S) \mid A \subseteq X\}.$

Proposition 233. Suppose $A \subseteq S$. Suppose A is inhabited. Then $\uparrow_S A$ is a filter on S.

Proof. S is inhabited. $\uparrow_S A$ is a family of subsets of S. $S \in \uparrow_S A$. $\emptyset \notin \uparrow_S A$. $\uparrow_S A$ is closed under binary intersections. $\uparrow_S A$ is upward-closed in S. Follows by definition [231]. \square

Proposition 234. Suppose $A \subseteq S$. $A \in \uparrow_S A$.

Proof. $A \in Pow(S)$.

Proposition 235. Let $X \in Pow(S)$. Suppose $X \notin \uparrow_S A$. Then $A \not\subseteq X$.		
Proof.		
Definition 236. F is a maximal filter on S iff F is a filter on S and there exists no filter F' on S such that $F \subset F'$.		
Proposition 237. Suppose $a \in S$. Then $\uparrow_S\{a\}$ is a filter on S .		
<i>Proof.</i> $\{a\} \subseteq S$. $\{a\}$ is inhabited. Follows by proposition [233].		
Proposition 238. Suppose $a \in S$. Then $\uparrow_S\{a\}$ is a maximal filter on S .		
<i>Proof.</i> $\{a\} \subseteq S$. $\{a\}$ is inhabited. Thus $\uparrow_S\{a\}$ is a filter on S by proposition [233]. It suffices to show that there exists no filter F' on S such that $\uparrow_S\{a\} \subset F'$. Suppose not Take a filter F' on S such that $\uparrow_S\{a\} \subset F'$. Take $X \in F'$ such that $X \notin \uparrow_S\{a\}$. $X \in Pow(S)$. Thus $\{a\} \not\subseteq X$ by proposition [235]. Thus $a \notin X$. $\{a\} \in F'$ by definitions [12 and [232] and propositions [7], [9], [57], [70] and [201]. Thus $\emptyset = X \cap \{a\}$. Hence $\emptyset \in F$ by definition [231]. Follows by contradiction to the definition of a filter.		
3 Regularity		
Abbreviation 239. a is an \in -minimal element of A iff $a \in A$ and $a \not\equiv A$.		
Lemma 240. For all a, A such that $a \in A$ there exists $b \in A$ such that $b \not\equiv A$.		
Proof by ∈-induction on a. Case: $a \not \equiv b$. Straightforward. Case: $a \not \equiv b$. Take a' such that $a' \in a, b$. Straightforward.		
Proposition 241. (Regularity) Let A be an inhabited set. Then there exists a \in -minimal element of A .		
<i>Proof.</i> Follows by lemma [240] and definition [18]. \Box		
Theorem 242. (Foundation) Let A be a set. Then $A = \emptyset$ or there exists $a \in A$ such that for all $x \in a$ we have $x \notin A$.		
<i>Proof.</i> Case: $A = \emptyset$. Straightforward. Case: A is inhabited. Take a such that a is a \in -minimal element of A . Then for all $x \in a$ we have $x \notin A$.		
•		
Proposition 243. For all sets A we have $A \notin A$.		
Proof by \in -induction. Straightforward.		
Proposition 244. If $a \in A$, then $a \neq A$.		
Proposition 245. For all sets a, b such that $a \in b$ we have $b \notin a$.		
Proof by \in -induction on a. Straightforward.		

3.1 Fixpoints

Definition 246. a is a fixpoint of f iff $a \in \text{dom } f$ and f(a) = a.

Definition 247. f is \subseteq -preserving iff for all $A, B \in \text{dom } f$ such that $A \subseteq B$ we have $f(A) \subseteq f(B)$.

Theorem 248. (Knaster–Tarski) Let f be a \subseteq -preserving function from Pow(A) to Pow(A). Then there exists a fixpoint of f.

Proof. dom $f = \mathsf{Pow}(A)$. Let $P = \{a \in \mathsf{Pow}(A) \mid a \subseteq f(a)\}$. $P \subseteq \mathsf{Pow}(A)$. Thus $\bigcup P \in \mathsf{Pow}(A)$. Hence $f(\bigcup P) \in \mathsf{Pow}(A)$.

Show $\bigcup P \subseteq f(\bigcup P)$. Subproof. It suffices to show that every element of $\bigcup P$ is an element of $f(\bigcup P)$. Fix $u \in \bigcup P$. Take $p \in P$ such that $u \in p$. Then $u \in f(p)$. $p \subseteq \bigcup P$. $f(p) \subseteq f(\bigcup P)$ by definition [247]. Thus $u \in f(\bigcup P)$. \square

Now $f(\bigcup P) \subseteq f(f(\bigcup P))$ by definition [247]. Thus $f(\bigcup P) \in P$ by definition. Hence $f(\bigcup P) \subseteq \bigcup P$.

Thus $f(\bigcup P) = \bigcup P$ by proposition [8]. Follows by definition [246].

4 Relations

Definition 249. R is a relation iff for all $w \in R$ there exists x, y such that w = (x, y).

Definition 250. a is comparable with b in R iff a R b or b R a.

Proposition 251. Let R, S be relations. Suppose for all x, y we have x R y iff x S y. Then R = S.

Proof. Follows by set extensionality.

Abbreviation 252. F is a family of relations iff every element of F is a relation.

Proposition 253. Let F be a family of relations. Then $\bigcup F$ is a relation.

Proposition 254. Let F be a family of relations. Then $\bigcap F$ is a relation.

Proposition 255. Let R, S be relations. Then $R \cup S$ is a relation.

Proposition 256. Suppose $R \subseteq A \times B$. Suppose $S \subseteq C \times D$. Then $R \cup S \subseteq (A \cup C) \times (B \cup D)$.

Proof. Follows by definition [4], propositions [65] and [195], and axiom [56]. \Box

Proposition 257. Let R, S be relations. Then $R \cap S$ is a relation.

Proposition 258. Let R, S be relations. Then $R \setminus S$ is a relation.

4.1 Converse of a relation

Definition 259. $R^{\mathsf{T}} = \{ z \mid \exists w \in R. \exists x, y. w = (x, y) \land z = (y, x) \}.$ **Proposition 260.** If y R x, then $x R^{\mathsf{T}} y$. **Proposition 261.** If $x R^{\mathsf{T}} y$, then y R x. **Proposition 262.** $x R^{\mathsf{T}} y \text{ iff } y R x.$ **Proposition 263.** R^{T} is a relation. **Proposition 264.** $x R^{\mathsf{TT}} y \text{ iff } x R y.$ **Proposition 265.** Let R be a relation. Then $R^{\mathsf{T}^{\mathsf{T}}} = R$. *Proof.* Follows by set extensionality. **Proposition 266.** Suppose $R \subseteq A \times B$. Then $R^{\mathsf{T}} \subseteq B \times A$. *Proof.* Follows by definitions [4] and [259] and propositions [142] and [143]. **Proposition 267.** Then $B \times A^{\mathsf{T}} = A \times B$. *Proof.* For all w we have $w \in B \times A^{\mathsf{T}}$ iff $w \in A \times B$ by definitions [141] and [259] and propositions [142] and [149]. Follows by extensionality. Proposition 268. Then $\emptyset^{\mathsf{T}} = \emptyset$. *Proof.* Follows by set extensionality. **Proposition 269.** Let R be a relation. If $R \subseteq S$, then $R^{\mathsf{T}} \subseteq S^{\mathsf{T}}$. *Proof.* Follows by definitions [4], [249] and [259]. **Proposition 270.** Let R be a relation. If $R^{\mathsf{T}} \subseteq S^{\mathsf{T}}$, then $R \subseteq S$. *Proof.* Follows by definitions [4], [249] and [259] and propositions [264] and [269]. **Proposition 271.** Let R be a relation. $R^{\mathsf{T}} \subseteq S^{\mathsf{T}}$ iff $R \subseteq S$. *Proof.* Follows by propositions [269] and [270]. **Proposition 272.** $(R \cup S)^{\mathsf{T}} = R^{\mathsf{T}} \cup S^{\mathsf{T}}$. *Proof.* $(R \cup S)^{\mathsf{T}}$ is a relation by proposition [263]. $R^{\mathsf{T}} \cup S^{\mathsf{T}}$ is a relation by propositions [255] and [263]. For all a, b we have $(a, b) \in (R \cup S)^{\mathsf{T}}$ iff $(a, b) \in R^{\mathsf{T}} \cup S^{\mathsf{T}}$ by axiom [56] and proposition [262]. Follows by extensionality. **Proposition 273.** $(R \cap S)^{\mathsf{T}} = R^{\mathsf{T}} \cap S^{\mathsf{T}}$. *Proof.* $(R \cap S)^{\mathsf{T}}$ is a relation by proposition [263]. $R^{\mathsf{T}} \cap S^{\mathsf{T}}$ is a relation by propositions [257] and [263]. For all a,b we have $(a,b) \in (R \cap S)^{\mathsf{T}}$ iff $(a,b) \in R^{\mathsf{T}} \cap S^{\mathsf{T}}$ by definition [79] and proposition [262]. Follows by extensionality.

Proposition 274. $(R \setminus S)^{\mathsf{T}} = R^{\mathsf{T}} \setminus S^{\mathsf{T}}$. *Proof.* $(R \setminus S)^{\mathsf{T}}$ is a relation by proposition [263]. $R^{\mathsf{T}} \setminus S^{\mathsf{T}}$ is a relation by propositions [258] and [263]. For all a, b we have $(a, b) \in (R \setminus S)^{\mathsf{T}}$ iff $(a, b) \in R^{\mathsf{T}} \setminus S^{\mathsf{T}}$. Follows by extensionality. 4.1.1 Domain of a relation **Definition 275.** dom $R = \{x \mid \exists w \in R. \exists y. w = (x, y)\}.$ **Proposition 276.** $a \in \text{dom } R$ iff there exists b such that a R b. **Proposition 277.** Suppose a R b. Then $a \in \text{dom } R$. *Proof.* Follows by proposition [276]. **Proposition 278.** dom $\emptyset = \emptyset$. *Proof.* Follows by set extensionality. **Proposition 279.** $dom(A \times B) \subseteq A$. **Proposition 280.** Suppose $b \in B$. dom $(A \times B) = A$. *Proof.* Follows by set extensionality. **Proposition 281.** dom cons((a, b), R) = cons(a, dom R). *Proof.* Follows by set extensionality. **Proposition 282.** $dom(A \cup B) = dom A \cup dom B$. *Proof.* Follows by set extensionality. **Proposition 283.** $dom(A \cap B) \subseteq dom A \cap dom B$.

Proof. Follows by definitions [4] and [79] and proposition [276].

Proposition 284. $dom(A \setminus B) \supseteq dom A \setminus dom B$.

4.1.2 Range of a relation

Definition 285. ran $R = \{y \mid \exists w \in R. \exists x. w = (x, y)\}.$ **Proposition 286.** $b \in \operatorname{ran} R$ iff there exists a such that a R b. **Proposition 287.** Suppose a R b. Then $b \in \operatorname{ran} R$. *Proof.* Follows by proposition [286]. **Proposition 288.** ran $\emptyset = \emptyset$. *Proof.* Follows by set extensionality. **Proposition 289.** $ran(A \times B) \subseteq B$. **Proposition 290.** Suppose $a \in A$. $ran(A \times B) = B$. *Proof.* Follows by set extensionality. **Proposition 291.** ran(cons((a, b), R)) = cons(b, ran R).*Proof.* Follows by set extensionality. **Proposition 292.** $ran(A \cup B) = ran A \cup ran B$. *Proof.* Follows by set extensionality. **Proposition 293.** $ran(A \cap B) \subseteq ran A \cap ran B$. *Proof.* Follows by definitions [4] and [79] and proposition [286]. **Proposition 294.** $ran(A \setminus B) \supseteq ran A \setminus ran B$. *Proof.* Follows by definitions [4] and [105] and proposition [286]. 4.1.3 Domain and range of converse **Proposition 295.** dom $R^{\mathsf{T}} = \operatorname{ran} R$. *Proof.* Follows by set extensionality. **Proposition 296.** ran $R^{\mathsf{T}} = \operatorname{dom} R$. *Proof.* Follows by set extensionality.

4.1.4 Field of a relation

Definition 297. field $R = \text{dom } R \cup \text{ran } R$. **Proposition 298.** $c \in \text{field } R \text{ iff there exists } d \text{ such that } c R d \text{ or } d R c.$ *Proof.* Follows by definition [297], propositions [276] and [286], and axiom [56]. **Proposition 299.** Suppose $(a, b) \in R$. Then $a \in \text{field } R$. *Proof.* Follows by definitions [275] and [297] and axiom [56]. **Proposition 300.** Suppose $(a, b) \in R$. Then $b \in \text{field } R$. *Proof.* Follows by definitions [285] and [297] and axiom [56]. **Proposition 301.** Then dom $R \subseteq \text{field } R$. *Proof.* Follows by definition [297] and proposition [63]. **Proposition 302.** Then ran $R \subseteq \text{field } R$. *Proof.* Follows by definition [297] and proposition [64]. **Proposition 303.** field $(A \times B) \subseteq A \cup B$. *Proof.* Follows by definition [297] and propositions [65], [279] and [289]. **Proposition 304.** Let R be a relation. Suppose $w \in R$. Then $w \in \text{field } R \times \text{field } R$. *Proof.* Take a, b such that w = (a, b) by definition [249]. Then $a, b \in \text{field } R$ by propositions tion [298]. Thus $(a, b) \in \text{field } R \times \text{field } R$ by proposition [143]. **Proposition 305.** Let R be a relation. Then $R \subseteq \mathsf{field}\,R \times \mathsf{field}\,R$. *Proof.* Follows by proposition [304] and definition [4]. **Proposition 306.** field $(A \times A) = A$. **Proposition 307.** field $\emptyset = \emptyset$. **Proposition 308.** field(cons((a, b), R)) = cons(a, cons(b, field R)). **Proposition 309.** field $(A \cup B) = \text{field } A \cup \text{field } B$. Proof. $field(A \cup B) = dom(A \cup B) \cup ran(A \cup B)$ [by definition [297]] $= (\operatorname{dom} A \cup \operatorname{dom} B) \cup (\operatorname{ran} A \cup \operatorname{ran} B)$ [by propositions [282] and [292]] $= (\operatorname{dom} A \cup \operatorname{ran} A) \cup (\operatorname{dom} B \cup \operatorname{ran} B)$ [by propositions [59] and [60]] = field $A \cup$ field B [by definition [297]]

Proposition 310.	$field(A \cap B) \subseteq fieldA \cap fieldB.$		
<i>Proof.</i> Follows by de	efinition [4] and propositions [92] and [298].		
Proposition 311.	$field(A \setminus B) \supseteq field A \setminus field B.$		
<i>Proof.</i> Follows by pr	ropositions [118] and [298] and definitions [4] and [105].		
Proposition 312.	$fieldR^T=fieldR.$		
<i>Proof.</i> Follows by de	efinition [297] and propositions [59], [295] and [296].		
4.2 Image			
Definition 313. <i>H</i>	$R^{\rightarrow}(A)=\{b\in\operatorname{ran} R\mid \exists a\in A.a\;R\;b\}.$		
	Suppose $a \in A$ and $a R b$. Then $b \in R^{\rightarrow}(A)$.		
Proof. Follows by de	efinitions [285] and [313].		
Proposition 315.	$b \in R^{\rightarrow}(A)$ iff there exists $a \in A$ such that $a R b$.		
Proposition 316.	Suppose $A \subseteq B$. Then $R^{\rightarrow}(A) \subseteq R^{\rightarrow}(B)$.		
<i>Proof.</i> Follows by de	efinition [4] and proposition [315].		
Proposition 317.	Then $R^{\rightarrow}(A) \subseteq \operatorname{ran} R$.		
Proposition 318.	Then $R^{\rightarrow}(\operatorname{dom} R) = \operatorname{ran} R$.		
Proposition 319.	$R^{\to}(A \cup B) = R^{\to}(A) \cup R^{\to}(B).$		
<i>Proof.</i> Follows by as	xioms [2] and [56] and proposition [315].		
Proposition 320.	$R^{\rightarrow}(A\cap B)\subseteq R^{\rightarrow}(A)\cap R^{\rightarrow}(B).$		
<i>Proof.</i> Follows by pr	roposition [315] and definitions [4] and [79].		
Proposition 321.	$R^{\to}(A \setminus B) \supseteq R^{\to}(A) \setminus R^{\to}(B).$		
<i>Proof.</i> Follows by pr	roposition [315] and definitions [4] and [105].		
Proposition 322.	$b \in R^{\rightarrow}(\{a\})$ iff $a R b$.		
Proposition 323.	Suppose $b \in R^{\rightarrow}(\{a\})$. Then $b \in \operatorname{ran} R$ and $(a, b) \in R$.		
<i>Proof.</i> Follows by propositions [9], [36], [315] and [317]. $\hfill\Box$			
Proposition 324.	$R^{\rightarrow}(\{a\})=\{b\in\operatorname{ran} R\mid (a,b)\in R\}.$		
Proposition 325.	$R^{\to}(\emptyset) = \emptyset.$		

 ${\it Proof.}$ Follows by set extensionality.

4.3 Preimage

Definition 326. $R^{\leftarrow}(B) = \{a \in \text{dom } R \mid \exists b \in B.a \ R \ b\}.$

Proposition 327. $a \in R^{\leftarrow}(B)$ iff there exists $b \in B$ such that a R b.

Proposition 328. $R^{\leftarrow}(B) = R^{\mathsf{T}^{\rightarrow}}(B)$.

Proof. Follows by set extensionality.

Proposition 329. Suppose $A \subseteq B$. Then $R^{\leftarrow}(A) \subseteq R^{\leftarrow}(B)$.

Proposition 330. Then $R^{\leftarrow}(A) \subseteq \text{dom } R$.

Proposition 331. $R^{\leftarrow}(A \cup B) = R^{\leftarrow}(A) \cup R^{\leftarrow}(B)$.

Proof. Follows by set extensionality.

Proposition 332. $R^{\leftarrow}(A \cap B) \subseteq R^{\leftarrow}(A) \cap R^{\leftarrow}(B)$.

Proposition 333. $R^{\leftarrow}(A \setminus B) \supseteq R^{\leftarrow}(A) \setminus R^{\leftarrow}(B)$.

4.4 Upward and downward closure

Definition 334. $a^{\uparrow R} = \{b \in \operatorname{ran} R \mid a R b\}.$

Definition 335. $b^{\downarrow R} = \{a \in \text{dom } R \mid a R b\}.$

Proposition 336. $a \in b^{\downarrow R}$ iff a R b.

4.5 Relation (and later also function) composition

Composition ignores the non-relational parts of sets. Note that the order is flipped from usual relation composition. This lets us use the same symbol for composition of functions.

Definition 337. $S \circ R = \{(x, z) \mid x \in \text{dom } R, z \in \text{ran } S \mid \exists y. \ x \ R \ y \ S \ z\}.$

Proposition 338. $S \circ R$ is a relation.

Proposition 339. Suppose x R y S z. Then $x (S \circ R) z$.

Proof. $x \in \text{dom } R$ and $z \in \text{ran } S$. Then $(x, z) \in S \circ R$ by definition [337].

Proposition 340. Suppose $x (S \circ R) z$. Then there exists y such that x R y S z.

Proof. There exists y such that x R y S z by definition [337] and axiom [133].

Proposition 341. $x (S \circ R) z$ iff there exists y such that x R y S z.

Proposition 342. $(T \circ S) \circ R = T \circ (S \circ R)$.

Proof. For all a, b we have $(a, b) \in (T \circ S) \circ R$ iff $(a, b) \in T \circ (S \circ R)$ by proposition [341]. Now $(T \circ S) \circ R$ is a relation and $T \circ (S \circ R)$ is a relation by proposition [338]. Follows by relation extensionality.

Proof. Take b such that $a S^{\mathsf{T}} b R^{\mathsf{T}} c$. Now c R b S a by proposition [262]. Hence $c(S \circ R) a$. Thus $a(S \circ R)^{\mathsf{T}} c$. **Proposition 344.** Suppose $(a,c) \in (S \circ R)^{\mathsf{T}}$. Then $(a,c) \in R^{\mathsf{T}} \circ S^{\mathsf{T}}$. *Proof.* $c(S \circ R)$ a. Take b such that c R b S a. Now $a S^{\mathsf{T}} b R^{\mathsf{T}} c$. Proposition 345. $(S \circ R)^{\mathsf{T}} = R^{\mathsf{T}} \circ S^{\mathsf{T}}$. *Proof.* $(S \circ R)^\mathsf{T}$ is a relation. $R^\mathsf{T} \circ S^\mathsf{T}$ is a relation. For all x, y we have $(x, y) \in (S \circ R)^\mathsf{T}$ iff $(x, y) \in R^\mathsf{T} \circ S^\mathsf{T}$. Thus $(S \circ R)^\mathsf{T} = R^\mathsf{T} \circ S^\mathsf{T}$ by proposition [251]. 4.6 Restriction **Definition 346.** $R|_{X} = \{w \in R \mid \exists x, y.x \in X \land w = (x, y)\}.$ **Proposition 347.** $a R|_{X} b \text{ iff } a R b \text{ and } a \in X.$ Proposition 348. $R|_{X} \subseteq R$. **Proposition 349.** Suppose $x \in \text{dom } R|_X$. Then $x \in \text{dom } R, X$. *Proof.* Take y such that $x \in X$ and $(x,y) \in R|_X$. Then $(x,y) \in R$. Thus $x \in \text{dom } R$. \square **Proposition 350.** Suppose $x \in \text{dom } R, X$. Then $x \in \text{dom } R|_X$. *Proof.* Take y such that $(x,y) \in R$ by proposition [276]. Then $(x,y) \in R|_X$. $x \in \operatorname{\mathsf{dom}} R|_{\scriptscriptstyle X}.$ **Proposition 351.** Suppose R is a relation. $R|_X = R \cap (X \times ran R)$. *Proof.* For all a we have $a \in R \cap (X \times \operatorname{ran} R)$ iff $a \in R|_X$ by definitions [79] and [346] and propositions [143], [149] and [286]. Follows by extensionality. Corollary 352. Suppose R is a relation. dom $R|_X = \text{dom } R \cap X$. *Proof.* Follows by set extensionality. **Proposition 353.** Suppose $V \subseteq U$. Then $R|_{U|_{V}} = R|_{V}$. *Proof.* For all w we have $w \in R|_{U}|_{V}$ iff $w \in R|_{V}$ by definitions [4] and [346]. Follows by extensionality. **Proposition 354.** Let R be a relation. Then $R|_{\text{dom }R} = R$. *Proof.* For all w we have $w \in R|_{\text{dom }R}$ iff $w \in R$ by definitions [249], [275] and [346]. Follows by extensionality.

Proposition 343. Suppose $(a, c) \in R^{\mathsf{T}} \circ S^{\mathsf{T}}$. Then $(a, c) \in (S \circ R)^{\mathsf{T}}$.

Proposition 355. Then dom $R|_X \subseteq X$.

Proposition 356. Suppose $X \subseteq \text{dom } R$. Let $b \in \text{ran } R|_X$. Then $b \in R^{\to}(X)$. *Proof.* Take $a \in X$ such that $(a,b) \in R|_X$ by definitions [4], [275] and [285] and proposition [355]. Then a R b and $b \in \operatorname{ran} R$. Thus $b \in R^{\rightarrow}(X)$ by definition [313]. **Proposition 357.** Suppose $X \subseteq \text{dom } R$. Let $b \in R^{\rightarrow}(X)$. Then $b \in \text{ran } R|_{Y}$. *Proof.* Follows by definition [313] and propositions [287] and [347]. **Proposition 358.** Suppose $X \subseteq \text{dom } R$. Then $\text{ran } R|_{X} = R^{\rightarrow}(X)$. *Proof.* Follows by set extensionality. **Proposition 359.** Suppose $X \subseteq \text{dom } R$. Then $R|_{X}^{\rightarrow}(A) = R^{\rightarrow}(X \cap A)$. *Proof.* For all b we have $b \in R|_X \stackrel{\longrightarrow}{} (A)$ iff $b \in R \stackrel{\longrightarrow}{} (X \cap A)$ by propositions [315] and [347] and definition [79]. Follows by extensionality. 4.7 Set of relations **Abbreviation 360.** *R* is a binary relation on *X* iff $R \subseteq X \times X$. **Proposition 361.** Let R be a relation. Suppose $\operatorname{ran} R \subseteq B$. Suppose $\operatorname{dom} R \subseteq A$. Suppose $w \in R$. Then $w \in A \times B$. *Proof.* Take a, b such that (a, b) = w. Then $a \in \text{dom } R$ and $b \in \text{ran } R$. Thus $a \in A$ and $b \in B$. Thus $(a, b) \in A \times B$. **Proposition 362.** Let R be a relation. Suppose $\operatorname{\mathsf{ran}} R \subseteq B$. Suppose $\operatorname{\mathsf{dom}} R \subseteq A$. Then $R \subseteq A \times B$. **Proposition 363.** Suppose $R \subseteq A \times B$. Suppose $a \in \text{dom } R$. Then $a \in A$. *Proof.* Take w, b such that $w \in R$ and w = (a, b). Follows by definition [275] and propositions [9] and [142]. **Proposition 364.** Suppose $R \subseteq A \times B$. Then dom $R \subseteq A$. *Proof.* Follows by definition [4] and proposition [363]. **Proposition 365.** Suppose $R \subseteq A \times B$. Suppose $b \in \operatorname{ran} R$. Then $b \in B$. *Proof.* Take w, a such that $w \in R$ and w = (a, b). Follows by definition [285] and propositions [9] and [142]. **Proposition 366.** Suppose $R \subseteq A \times B$. Then ran $R \subseteq B$. *Proof.* Follows by definition [4] and proposition [365]. **Definition 367.** $Rel(A, B) = Pow(A \times B)$. **Proposition 368.** Suppose $R \subseteq A \times B$. Then $R \in \text{Rel}(A, B)$.

Proposition 369. Let R be a relation. Suppose $\operatorname{dom} R \subseteq A$. Suppose $\operatorname{ran} R \subseteq B$. Then $R \in \operatorname{Rel}(A,B)$.
Proof. $R \subseteq A \times B$.
Proposition 370. Suppose $R \in \text{Rel}(A, B)$. Then $R \subseteq A \times B$. Proposition 371. Suppose $R \in \text{Rel}(A, B)$. Then dom $R \subseteq A$.
<i>Proof.</i> Follows by propositions [364] and [370]. \Box
Proposition 372. Suppose $R \in Rel(A, B)$. Then ran $R \subseteq B$.
<i>Proof.</i> Follows by propositions [366] and [370]. \Box
Proposition 373. Let $R \in Rel(A, B)$. Then R is a relation.
<i>Proof.</i> It suffices to show that for all $w \in R$ there exists x, y such that $w = (x, y)$. Fix $w \in R$. Now $R \subseteq A \times B$ by proposition [370]. Thus $w \in A \times B$.
Proposition 374. Let $R \in \text{Rel}(A, B)$. Suppose $A \subseteq C$. Then $R \in \text{Rel}(C, B)$.
<i>Proof.</i> $R \subseteq A \times B \subseteq C \times B$. Thus $R \subseteq C \times B$.
Proposition 375. Let $R \in \text{Rel}(A, B)$. Suppose $B \subseteq D$. Then $R \in \text{Rel}(A, D)$.
<i>Proof.</i> $R \subseteq A \times B \subseteq A \times D$. Thus $R \subseteq A \times D$.
Proposition 376. Let $R \in \text{Rel}(A, B)$. Suppose $(a, b) \in R$. Then $(a, b) \in A \times B$.
<i>Proof.</i> $R \subseteq A \times B$ by proposition [370].
Proposition 377. Let $R \in \text{Rel}(A, B)$. Suppose $(a, b) \in R$. Then $a \in A$.
<i>Proof.</i> $(a,b) \in A \times B$ by proposition [376].
Proposition 378. Let $R \in \text{Rel}(A, B)$. Suppose $(a, b) \in R$. Then $b \in B$.
<i>Proof.</i> $(a,b) \in A \times B$ by proposition [376].
Proposition 379. Let $R \in Rel(A, B)$. Then $R \in Rel(dom R, B)$.
<i>Proof.</i> R is a relation by proposition [373]. $\operatorname{dom} R \subseteq \operatorname{dom} R$ by proposition [7]. $\operatorname{ran} R \subseteq B$. Follows by proposition [369].
Proposition 380. Let $R \in Rel(A, B)$. Then $R \in Rel(A, ran R)$.
<i>Proof.</i> R is a relation by proposition [373]. dom $R \subseteq A$. ran $R \subseteq \operatorname{ran} R$ by proposition [7]. Follows by proposition [369].

4.8 Identity relation

Definition 381. $id_A = \{(a, a) \mid a \in A\}.$

Proposition 382. $a \text{ id}_A b \text{ iff } a = b \in A.$

Proof. Follows by definition [381] and axiom [133].

Proposition 383. Suppose $a \in A$. Then $(a, a) \in id_A$.

Proof. Follows by definition [381].

Proposition 384. Suppose $w \in id_A$. Then there exists $a \in A$ such that w = (a, a).

Proof. Follows by definition [381].

Proposition 385. id_A is a relation.

Proposition 386. dom id A = A.

Proof. For every $a \in A$ we have $(a, a) \in id_A$. dom $id_A = A$ by set extensionality.

Proposition 387. ranid $_A = A$.

Proof. For every a we have $a \in \mathsf{ranid}_A$ iff $a \in A$ by propositions [286] and [382]. For every $a \in A$ we have $(a, a) \in \mathsf{id}_A$. $\mathsf{ranid}_A = A$ by set extensionality. \square

Proposition 388. $id_A^{\rightarrow}(B) = A \cap B$.

Proof. Follows by set extensionality.

Proposition 389. $id_A \in Rel(A, A)$.

4.9 Membership relation

Definition 390. $\in_A = \{(a, b) \mid a \in A, b \in A \mid a \in b\}.$

Proposition 391. Suppose $a, b \in A$. Suppose $a \in b$. Then $(a, b) \in A$.

Proposition 392. Suppose $w \in A$. Then there exists $a, b \in A$ such that w = (a, b) and $a \in b$.

Proof. Follows by definition [390].

Proposition 393. \in_A is a relation.

4.10 Subset relation

Definition 394. $\subseteq_A = \{(a,b) \mid a \in A, b \in A \mid a \subseteq b\}.$

Proposition 395. \subseteq_A is a relation.

4.11 Properties of relations

Definition 396. R is left quasireflexive iff for all x, y such that x R y we have x R x.

Definition 397. R is right quasireflexive iff for all x, y such that x R y we have y R y.

Definition 398. R is quasireflexive iff for all x, y such that x R y we have x R x and y R y.

Definition 399. R is coreflexive iff for all x, y such that x R y we have x = y.

Definition 400. R is reflexive on X iff for all $x \in X$ we have x R x.

Definition 401. R is irreflexive iff for all x we have $(x, x) \notin R$.

Proposition 402. Suppose R is quasireflexive. Then R is reflexive on field R.

Proposition 403. Suppose R is reflexive on field R. Then R is quasireflexive.

Proposition 404. Let F be an inhabited family of relations. Suppose every element of F is reflexive on A. Then $\bigcap F$ is reflexive on A.

Proof. For all $a \in A$ we have for all $R \in F$ we have a R a. Thus for all $a \in A$ we have $a \cap F = a$.

Definition 405. R is antisymmetric iff for all x, y such that x R y R x we have x = y. **Definition 406.** (Symmetry) R is symmetric iff for all x, y we have $x R y \iff$

Definition 406. (Symmetry) R is symmetric iff for all x, y we have $x R y \iff y R x$.

Definition 407. R is asymmetric iff for all x, y such that x R y we have $y \not R x$.

Proposition 408. Suppose R is asymmetric. Then R is irreflexive.

Proposition 409. Suppose R is asymmetric. Then R is antisymmetric.

Proposition 410. Suppose R is antisymmetric. Suppose R is irreflexive. Then R is asymmetric.

Definition 411. (Transitivity) R is transitive iff for all x, y, z such that x R y R z we have x R z.

Proposition 412. Suppose R is transitive. Suppose $a \in b^{\downarrow R}$. Suppose $c \in a^{\downarrow R}$. Then $c \in b^{\downarrow R}$.

Proof. c R a R b. Thus c R b by transitivity.

Proposition 413. Suppose R is transitive. Suppose $a \in b^{\downarrow R}$. Then $a^{\downarrow R} \subseteq b^{\downarrow R}$.

Definition 414. R is dense iff for all x, z such that x R z there exists y such that x R y R z.

Definition 415. R is quasiconnex iff for all $x, y \in \text{field } R$ such that $x \neq y$ we have x R y or y R x.

Definition 416. R is connex on X iff for all $x, y \in X$ such that $x \neq y$ we have x R y or y R x.

Definition 417. R is strongly quasiconnex iff for all $x, y \in \mathsf{field}\,R$ we have x R y or y R x.

Definition 418. R is strongly connex on X iff for all $x, y \in X$ we have x R y or y R x.

Proposition 419. R is strongly quasiconnex iff R is quasiconnex and quasireflexive.

Proof. Follows by definitions [297], [400], [415] and [417] and propositions [402] and [403].

Proposition 420. Suppose R is connex on A. Let $a, b \in A \setminus \operatorname{ran} R$. Then a = b.

Proof. Suppose not. $a, b \in A$. Then $(a, b) \in R$ or $(b, a) \in R$ by definition [416]. $(a, b) \notin R$. $(b, a) \notin R$. Thus a = b.

Definition 421. R is right Euclidean iff for all a, b, c such that a R b, c we have b R c.

Definition 422. R is left Euclidean iff for all a, b, c such that a, b R c we have a R b.

4.12 Quasiorders

Abbreviation 423. R is a quasiorder iff R is quasireflexive and transitive.

Abbreviation 424. R is a quasiorder on A iff R is a binary relation on A and R is reflexive on A and transitive.

Struct 425. A quasiordered set X is a onesorted structure equipped with

 $1. \leq$

such that

- 1. \leq_X is a binary relation on X.
- 2. \leq_X is reflexive on X.
- 3. \leq_X is transitive.

Lemma 426. Let X be a quasiordered set. Let $a, b, c, d \in X$. Suppose $a \leq_X b \leq_X c \leq_X d$. Then $a \leq_X d$.

Proof. \leq_X is transitive. Thus $a \leq_X c \leq_X d$ by transitivity. Hence $a \leq_X d$ by transitivity. \Box

Proposition 427. \subseteq_A is a quasiorder on A.

Proof. \subseteq_A is reflexive on A. \subseteq_A is transitive.

4.13 Equivalences

Abbreviation 428. E is a partial equivalence iff E is transitive and symmetric.

Proposition 429. Let E be a partial equivalence. Then E is quasireflexive.

Abbreviation 430. E is an equivalence iff E is a symmetric quasiorder.

Abbreviation 431. E is an equivalence on A iff E is a symmetric quasiorder on A.

Proposition 432. Let F be a family of relations. Suppose every element of F is an equivalence. Then $\bigcap F$ is an equivalence.

Proof. $\cap F$ is quasireflexive by definition [398] and propositions [48] and [50]. $\cap F$ is symmetric by definition [406] and propositions [48] and [50]. $\cap F$ is transitive by definition [411] and propositions [48] and [50].

Proposition 433. Let F be an inhabited family of relations. Suppose every element of F is an equivalence on A. Then $\bigcap F$ is an equivalence on A.

Proof. $\bigcap F$ is reflexive on A by proposition [404]. $\bigcap F$ is symmetric. $\bigcap F$ is transitive.

4.13.1 Equivalence classes

Abbreviation 434. $[a]_E = a^{\downarrow E}$.

Abbreviation 435. The *E*-equivalence class of *a* is $[a]_E$.

Proposition 436. Let E be an equivalence. Let $a \in \text{field } E$. Then $a \in [a]_E$.

Proof. a E a by definition [400] and proposition [402].

Proposition 437. Let E be an equivalence on A. Let $a \in A$. Then $a \in [a]_E$.

Proof. a E a by definition [400].

Proposition 438. Let E be an equivalence on A. Let $a,b\in A$. Suppose a E b. Then $[a]_E=[b]_E$.

Proof. Follows by set extensionality.

Proposition 439. Let E be an equivalence on A. Let $a, b \in A$. Suppose $[a]_E = [b]_E$. Then $a \to b$.

Proposition 440. Let E be an equivalence on A. Let $a, b \in A$. Then a E b iff $[a]_E = [b]_E$.

Proposition 441. Let E be a partial equivalence. Suppose $[a]_E \neq [b]_E$. Then $[a]_E$ is disjoint from $[b]_E$.

Proof. Suppose not. Take c such that $c \in [a]_E, [b]_E$. Then c E a and c E b. E is symmetric. Thus a E c by symmetry. E is transitive. Thus a E b by transitivity. Then b E a by symmetry. Thus $a \in [b]_E$ and $b \in [a]_E$ by proposition [336]. Hence $[a]_E \subseteq [b]_E \subseteq [a]_E$ by proposition [413]. Contradiction by proposition [8].

Corollary 442. Let E be an equivalence. Suppose $[a]_E \neq [b]_E$. Then $[a]_E$ is disjoint from $[b]_E$.

Proof. Follows by proposition [441].

Corollary 443. Let E be an equivalence on A. Suppose $[a]_E \neq [b]_E$. Then $[a]_E$ is disjoint from $[b]_E$.

Proof. Follows by proposition [441].

4.13.2 Quotients

Definition 444. $A/E = \{[a]_E \mid a \in A\}.$

Proposition 445. $\emptyset/\emptyset = \emptyset$.

Proposition 446. Let E be an equivalence on A. Suppose $B, C \in A/E$ and $B \neq C$. Then B is disjoint from C.

Proof. Take b such that $B = [b]_E$. Take c such that $C = [c]_E$. Then B is disjoint from C by corollary [443].

Proposition 447. Let E be an equivalence on A. Suppose $C \in A/E$. Then C is inhabited.

Proof. Take $a \in A$ such that $C = [a]_E$. Then $a \in [a]_E$. C is inhabited by definitions [18] and [444] and proposition [436].

Proposition 448. Let E be an equivalence on A. Suppose $a \in C \in A/E$. Then $a \in A$.

Proof. Take $b \in A$ such that $C = [b]_E$ by definition [444]. Then $a \in B$ b. Thus $a \in A$ by proposition [142] and definition [4].

Corollary 449. Let E be an equivalence on A. $\emptyset \notin A/E$.

Proposition 450. Let E be an equivalence on A. A/E is a partition.

Proof. $\emptyset \notin A/E$. For all $B, C \in A/E$ such that $B \neq C$ we have B is disjoint from C. \square

Proposition 451. Let E be an equivalence on A. A/E is a partition of A.

Proof. $\bigcup (A/E) = A$ by set extensionality.

Definition 452. $E_P = \{(a, b) \mid a \in A, b \in A \mid \exists C \in P. \ a, b \in C\}.$

Proposition 453. Let P be a partition of A. Let $a, b \in A$. Suppose $a, b \in C \in P$. Then $a E_P b$.

Proposition 454. Let P be a partition of A. E_P is reflexive on A.

Proposition 455. Let P be a partition. E_P is symmetric.

Proof. Follows by definitions [406] and [452] and axiom [17].

Proposition 456. Let P be a partition. E_P is transitive.

Proposition 457. Let P be a partition of A. E_P is an equivalence on A.

Proposition 458. Let E be an equivalence on A. Then $E_{A/E} = E$.

Proof. Follows by set extensionality.

Proposition 459. Let P be a partition of A. Then $A/E_P = P$.

Proof. Follows by set extensionality.

4.14 Closure operations on relations

Definition 460. ReflCl_X(R) = $R \cup id_X$.

Proposition 461. ReflCl $_X(R)$ is reflexive on X.

Definition 462. ReflReduc $_X(R) = R \setminus id_X$.

Definition 463. SymCl $(R) = R \cup R^{\mathsf{T}}$.

4.15 Injective relations

Definition 464. R is injective iff for all a, a', b such that a, a' R b we have a = a'.

Abbreviation 465. R is left-unique iff R is injective.

Proposition 466. Suppose $S \subseteq R$. Suppose R is injective. Then S is injective.

Proposition 467. Suppose R is injective. Then $R|_A$ is injective.

Proof.
$$R|_A \subseteq R$$
.

Proposition 468. Suppose R and S are injective. Then $S \circ R$ is injective.

Proposition 469. Then id_A is injective.

4.16 Right-unique relations

Definition 470. R is right-unique iff for all a, b, b' such that a R b, b' we have b = b'.

Abbreviation 471. R is one-to-one iff R is right-unique and injective.

Proposition 472. Suppose $S \subseteq R$. Suppose R is right-unique. Then S is right-unique.

Proposition 473. Suppose R and S are right-unique. Then $S \circ R$ is right-unique.

4.17 Left-total relations

Definition 474. R is left-total on A iff for all $a \in A$ there exists b such that a R b.

4.18 Right-total relations

Definition 475. R is right-total on B iff for all $b \in B$ there exists a such that a R b. Abbreviation 476. R is surjective on B iff R is right-total on B.

5 Functions

Abbreviation 477. f is a function iff f is right-unique and f is a relation.

Definition 478. $f(x) = \bigcup f^{\rightarrow}(\{x\}).$

Proposition 479. Let f be a function. Suppose $(a, b), (a, b') \in f$. Then b = b'.

Proof. Follows by right-uniqueness.

Proposition 480. Let f be a function. Suppose $(a, b) \in f$. Then f(a) = b.

Proof. Let $B = f^{\rightarrow}(\{a\})$. $B = \{b' \in \text{ran } f \mid (a,b') \in f\}$ by proposition [324]. $b \in \text{ran } f$. For all $b' \in B$ we have $(a,b') \in f$. For all $b',b'' \in B$ we have b' = b'' by right-uniqueness. Then $B = \{b\}$ by proposition [39]. Then $\bigcup B = b$. Thus f(a) = b by definition [478]. \square

Proposition 481. Let f be a function. Suppose $w \in f$. Then there exists $x \in \text{dom } f$ such that w = (x, f(x)).

Proof. Follows by definitions [249], [275] and [478] and proposition [480]. \Box

Proposition 482. Let f be a function. Suppose $x \in \text{dom } f$. Then $(x, f(x)) \in f$.

Proof. Follows by propositions [276] and [480].

Proposition 483. Let f be a function. $(a,b) \in f$ iff $a \in \text{dom } f$ and f(a) = b.

Proposition 484. Let f, g be functions. Suppose dom $f \subseteq \text{dom } g$. Suppose for all $x \in \text{dom } f$ we have f(x) = g(x). Then $f \subseteq g$.

Proof. For all x, y such that $(x, y) \in f$ we have $(x, y) \in g$. Follows by definitions [4] and [249].

Proposition 485. (Function extensionality) Let f, g be functions. Suppose dom f = dom g. Suppose for all x we have f(x) = g(x). Then f = g.

Proof. dom $f \subseteq \text{dom } g \subseteq \text{dom } f$. For all $x \in \text{dom } f$ we have f(x) = g(x). Thus $f \subseteq g$. For all $x \in \text{dom } g$ we have f(x) = g(x). Thus $g \subseteq f$.

Abbreviation 486. f is a function on X iff f is a function and X = dom f.

Abbreviation 487. f is a function to Y iff f is a function and for all $x \in \text{dom } f$ we have $f(x) \in Y$.

Proposition 488. Let f be a function to B. Suppose $B \subseteq C$. Then f is a function to C.

Proposition 489. Let f be a function to B. Then ran $f \subseteq B$. *Proof.* Follows by definitions [4], [275], [285] and [478], proposition [481], and axiom [133]. **Definition 490.** Fun $(A, B) = \{ f \in Rel(A, B) \mid A = \text{dom } f \text{ and } f \text{ is right-unique} \}.$ **Abbreviation 491.** f is a function from X to Y iff $f \in \text{Fun}(X,Y)$. **Proposition 492.** Let $f \in \text{Fun}(A, B)$. Then f is a relation. *Proof.* Follows by definition [490] and proposition [373]. **Proposition 493.** Let $f \in \text{Fun}(A, B)$. Then f is a function. **Proposition 494.** Fun $(A, B) \subseteq Rel(A, B)$. *Proof.* Follows by definitions [4] and [490]. **Proposition 495.** Let f be a function to B such that A = dom f. Then $f \in \text{Fun}(A, B)$. *Proof.* dom $f \subseteq A$ by proposition [7]. ran $f \subseteq B$ by proposition [489]. Thus $f \in Rel(A, B)$ by proposition [369]. Thus $f \in \operatorname{Fun}(A, B)$ by definition [490]. **Proposition 496.** Let $f \in \operatorname{Fun}(A, B)$. Then f is a function to B such that $A = \operatorname{dom} f$. *Proof.* f is a function by proposition [493]. It suffices to show that for all $a \in \text{dom } f$ we have $f(a) \in B$. Fix $a \in \text{dom } f$. Take b such that f(a) = b. Thus $(a, b) \in f$ by proposition [482]. Now $b \in \operatorname{ran} f$ by proposition [286]. Finally $\operatorname{ran} f \subseteq B$ by definition [490] and proposition [372]. **Proposition 497.** Let $f \in \operatorname{Fun}(A, B)$. Suppose $B \subseteq D$. Then $f \in \operatorname{Fun}(A, D)$. *Proof.* $f \in Rel(A, D)$ by definition [490] and proposition [375]. Follows by definition [490]. **Proposition 498.** Let $f \in \text{Fun}(A, B)$. Let $a \in A$. Then $f(a) \in B$. *Proof.* $(a, f(a)) \in f$. Thus $f(a) \in B$ by definition [490] and proposition [378]. 5.1 Image of a function **Proposition 499.** Let f be a function. Suppose $x \in \text{dom } f \cap X$. Then $f(x) \in f^{\rightarrow}(X)$. *Proof.* $x \in X$ by proposition [82]. Thus $(x, f(x)) \in f$ by propositions [81] and [482]. \square **Proposition 500.** Let f be a function. Suppose $y \in f^{\rightarrow}(X)$. Then there exists $x \in \mathsf{dom}\, f \cap X \text{ such that } y = f(x).$ *Proof.* Take $x \in X$ such that $(x,y) \in f$. Then $x \in \text{dom } f$ and y = f(x) by propositive $f(x,y) \in f$. tions [277] and [483].

Proposition 501. Suppose f is a function. $f^{\rightarrow}(X) = \{f(x) \mid x \in \text{dom } f \cap X\}$.

Proof. Follows by propositions [499] and [500].

5.2 Families of functions

Abbreviation 502. F is a family of functions iff every element of F is a function.

Proposition 503. Let F be a family of functions. Suppose that for all $f, g \in F$ we have $f \subseteq g$ or $g \subseteq f$. Then $\bigcup F$ is a function.

Proof. $\bigcup F$ is a relation by proposition [253]. For all x, y, y' such that $(x, y), (x, y') \in \bigcup F$ there exists $f \in F$ such that $(x, y), (x, y') \in f$ by axiom [42] and definition [4]. Thus $\bigcup F$ is right-unique by definition [470].

5.3 The empty function

Proposition 504. \emptyset is a function.

Proposition 505. \emptyset is a function on \emptyset .

Proposition 506. \emptyset is a function to X.

Proposition 507. \emptyset is injective.

5.4 Function composition

Abbreviation 508. g is composable with f iff ran $f \subseteq \text{dom } g$.

Proposition 509. Suppose f and g are right-unique. Then $g \circ f$ is a function.

Proposition 510. Let f, g be functions. Suppose g is composable with f. Let $x \in \text{dom } f$. Then $(g \circ f)(x) = g(f(x))$.

Proof. $(x, g(f(x))) \in g \circ f$ by definitions [4], [285] and [337] and proposition [482]. $g \circ f$ is a function by proposition [509]. Thus $(g \circ f)(x) = g(f(x))$ by proposition [480].

Proposition 511. Let f, g be functions. Suppose g is composable with f. dom $g \circ f = f^{\leftarrow}(\text{dom } g)$.

Proof. Every element of $\operatorname{\mathsf{dom}} g \circ f$ is an element of $f^{\leftarrow}(\operatorname{\mathsf{dom}} g)$ by definitions [275], [326] and [337] and axiom [133]. Follows by set extensionality.

Proposition 512. Let f, g be functions. Suppose ran f = dom g. dom $g \circ f = \text{dom } f$.

Proof. Every element of $\operatorname{\mathsf{dom}} g \circ f$ is an element of $\operatorname{\mathsf{dom}} f$. Follows by set extensionality.

Proposition 513. Let f, g be functions. Suppose g is composable with f. Suppose $g \in g^{\rightarrow}(\operatorname{ran} f)$. Then $g \in \operatorname{ran} g \circ f$.

Proof. Take $x \in \operatorname{ran} f$ such that $(x, y) \in g$. Take $x' \in \operatorname{dom} f$ such that $(x', x) \in f$. Then $(x', y) \in g \circ f$. Follows by proposition [287].

Proposition 514. Let f, g be functions. Suppose g is composable with f. Suppose $g \in \operatorname{ran} g \circ f$. Then $g \in g^{\rightarrow}(\operatorname{ran} f)$.

Proof. Take $x \in \text{dom } f$ such that $(x,y) \in g \circ f$ by definitions [275], [285] and [337] and proposition [341]. $f(x) \in \text{ran } f$. $(f(x),y) \in g$ by propositions [341] and [480] and definition [478]. Follows by proposition [315].

Proposition 515. Let f, g be functions. Suppose g is composable with f. Then $\operatorname{ran} g \circ f = g^{\rightarrow}(\operatorname{ran} f)$.

Proof. Follows by set extensionality.

Proposition 516. Let f, g be functions. Suppose ran f = dom g. Then ran $g \circ f = \text{ran } g$. *Proof.*

$$\operatorname{ran} g \circ f = g^{\rightarrow}(\operatorname{ran} f)$$
 [by propositions [7] and [515]]
= $g^{\rightarrow}(\operatorname{dom} g)$
= $\operatorname{ran} g$ [by proposition [318]]

Proposition 517. Let f, g be functions. Let A be a set. Suppose $\operatorname{ran} f \subseteq \operatorname{dom} g$. Suppose $c \in g \circ f^{\rightarrow}(A)$. Then $c \in g^{\rightarrow}(f^{\rightarrow}(A))$.

Proof. Take $a \in A$ such that $(a,c) \in g \circ f$. Take b such that $(a,b) \in f$ and $(b,c) \in g$. Then $b \in f^{\rightarrow}(A)$. Follows by proposition [315].

Proposition 518. Let f, g be functions. Let A be a set. Suppose $\operatorname{ran} f \subseteq \operatorname{dom} g$. Then $g \circ f^{\rightarrow}(A) = g^{\rightarrow}(f^{\rightarrow}(A))$.

Proof. For all c we have $c \in g^{\rightarrow}(f^{\rightarrow}(A))$ iff $c \in g \circ f^{\rightarrow}(A)$ by propositions [315] and [341]. Follows by extensionality.

Proposition 519. Let f be a function. Let A be a set. $f|_A$ is a function.

Proposition 520. Let f be a function. Suppose $A \subseteq \text{dom } f$. Let $a \in A$. Then $(f|_A)(a) = f(a)$.

Proof. Then $(a, f(a)) \in f$. Then $(a, f(a)) \in f|_A$ by proposition [347]. Thus $(f|_A)(a) = f(a)$.

Proposition 521. Suppose $x \notin \text{dom } f$. Then $f(x) = \emptyset$.

Proof. $f^{\rightarrow}(\{x\}) = \emptyset$ by axioms [2] and [17] and propositions [277] and [322]. Follows by definition [478] and proposition [44].

Proposition 522. Suppose f is a function. f is injective iff for all $x, y \in \text{dom } f$ we have $f(x) = f(y) \implies x = y$.
<i>Proof.</i> Follows by definition [464] and proposition [483]. \Box
Abbreviation 523. f is an injection iff f is an injective function. Definition 524. $Inj(A, B) = \{ f \in Fun(A, B) \mid \text{ for all } x, y \in A \text{ such that } f(x) = f(y) \text{ we have } x = y \}$
5.6 Surjections
Abbreviation 525. f is a surjection onto Y iff f is a function such that f is surjective on Y .
Definition 526. Surj $(A,B) = \{ f \in \operatorname{Fun}(A,B) \mid \text{for all } b \in B \text{ there exists } a \in A \text{ such that } f(a) = b \}.$
Abbreviation 527. f is a surjection from A to B iff $f \in Surj(A, B)$.
Lemma 528. Let f be a function. Then f is surjective on ran f .
<i>Proof.</i> It suffices to show that for all $y \in \operatorname{ran} f$ there exists $x \in \operatorname{dom} f$ such that $f(x) = y$. Fix $y \in \operatorname{ran} f$. Take x such that $(x,y) \in f$. Then $x \in \operatorname{dom} f$ and $f(x) = y$.
Lemma 529. Let $f \in Surj(A, B)$. Then $f \in Fun(A, B)$.
Lemma 530. Let $f \in \operatorname{Fun}(A,B)$. Then $f \in \operatorname{Surj}(A,\operatorname{ran} f)$.
<i>Proof.</i> $f \in \text{Rel}(A, \text{ran } f)$ by definition [490] and proposition [380]. Thus $f \in \text{Fun}(A, \text{ran } f)$ by definition [490]. It suffices to show that for all $b \in \text{ran } f$ there exists $a \in A$ such that $f(a) = b$ by definition [526]. Fix $b \in \text{ran } f$. Take a such that $(a, b) \in f$. Then $a \in \text{dom } f = A$.
Definition 531. f surjects onto Y iff $Y = \{f(x) \mid x \in \text{dom } f\}$.
Proposition 532. f surjects onto $f^{\rightarrow}(\text{dom } f)$.
<i>Proof.</i> Omitted.
Proposition 533. Suppose f surjects onto Y . Then $Y \subseteq f^{\rightarrow}(\text{dom } f)$.
<i>Proof.</i> Omitted. \Box
Proposition 534. Let f be a function. Suppose f surjects onto Y . Then $\operatorname{ran} f = Y$.
<i>Proof.</i> $Y \subseteq \operatorname{ran} f$ by definitions [4] and [531] and propositions [286] and [483]. $\operatorname{ran} f \subseteq Y$ by definition [531] and proposition [489]. Follows by antisymmetry.
Proposition 535. Let f be a function. Suppose $\operatorname{ran} f = Y$. Then f surjects onto Y .
<i>Proof.</i> Omitted. \Box

Proposition 536. Let f be a function. f surjects onto Y iff ran f = Y. Proof. Omitted. 5.7 Bijections **Definition 537.** f is a bijection from X to Y iff dom f = X and f surjects onto Y and f is an injection. **Proposition 538.** Let f be a bijection from A to B. Let g be a bijection from B to C. Then $g \circ f$ is a bijection from A to C. *Proof.* dom f = A. dom $g = B = \operatorname{ran} f$ by definition [537] and proposition [536]. dom $g \circ$ f = A by definition [537] and proposition [512]. $g \circ f$ surjects onto C. $g \circ f$ is an injection. 5.8 Converse as a function **Proposition 539.** Let f be a function. Then f^{T} is injective. **Proposition 540.** Suppose f is injective. Then f^{T} is a function. **Proposition 541.** Let f be a bijection from A to B. Then f^{T} is a function. *Proof.* Follows by definition [537] and proposition [540]. **Proposition 542.** Let f be a bijection from A to B. Then f^{T} is a bijection from B to A. *Proof.* f^{T} is a function by proposition [541]. f^{T} is injective by definition [537] and proposition [539]. f^{T} surjects onto A. dom $f^{\mathsf{T}} = \operatorname{\mathsf{ran}} f = B$ by definition [537] and propositions [295] and [536]. Follows by definition [537]. 5.8.1 Inverses of a function **Abbreviation 543.** g is a left inverse of f iff for all $x \in \text{dom } f$ we have g(f(x)) = x. **Abbreviation 544.** g is a right inverse of f iff $f \circ g = id_{dom g}$. **Abbreviation 545.** g is a right inverse of f on B iff $f \circ g = id_B$. **Proposition 546.** Let f be an injection. Then f^{T} is a left inverse of f.

Proof. f^{T} is a function by proposition [540].

Omitted.

5.9 Identity function

Proposition 547. id_A is right-unique.

Proof. Follows by definitions [381] and [470] and axiom [133].

Proposition 548. id_A is a function.

Proposition 549. id_A is a function on A.

Proposition 550. id_A is a function to A.

Proposition 551. id_A is a function from A to A.

Proposition 552. $id_A \in Fun(A, A)$.

Proof. id_A is a function. $id_A \in Rel(A, A)$. $dom id_A \subseteq A$.

Proposition 553. Suppose $a \in A$. Suppose $f = id_A$. Then f(a) = a.

Proof. $(a, a) \in id_A$ by proposition [382]. Follows by propositions [480] and [548].

Proposition 554. id_A is a bijection from A to A.

Proof. id_A is an injection by propositions [469] and [548]. $\mathsf{dom}\,\mathsf{id}_A = A$ by proposition [386]. id_A surjects onto A by propositions [387] and [536]. Follows by definition [537].

6 Transitive sets

We use the word transitive to talk about sets as relations, so we will explicitly talk about \in -transitivity here.

Definition 555. A set A is \in -transitive iff for all x, y such that $x \in y \in A$ we have $x \in A$.

Proposition 556. A is \in -transitive iff for all $a \in A$ we have $a \subseteq A$.

Proposition 557. A is \in -transitive iff $A \subseteq Pow(A)$.

Proof. For all $a \in A$ we have $a \subseteq A \iff a \in Pow(A)$. Follows by propositions [9] and [556], definition [4], and axiom [200].

Proposition 558. A is \in -transitive iff $\bigcup A^+ = A$.

Proof. Follows by definitions [4], [168] and [555], propositions [8], [178], [204], [205] and [557], and axiom [42]. \Box

Proposition 559. A is \in -transitive iff $\bigcup A \subseteq A$.

Proposition 560. Suppose A is \in -transitive. Suppose $\{a,b\} \in A$. Then $a,b \in A$.

6.0.1 Closure properties of *∈*-transitive sets

Proposition 561. \emptyset is \in -transitive.

Proposition 562. Suppose A and B are \in -transitive. Then $A \cup B$ is \in -transitive.

Proposition 563. Let A, B be \in -transitive sets. Then $A \cap B$ is \in -transitive.

Proposition 564. Let A be an \in -transitive set. Then A^+ is \in -transitive.

Proposition 565. Let A be an \in -transitive set. Then $\bigcup A$ is \in -transitive.

Proposition 566. Suppose every element of A is an \in -transitive set. Then $\bigcup A$ is \in -transitive.

Proof. Follows by definition [555] and axiom [42].

Proposition 567. Suppose every element of A is an \in -transitive set. Then $\bigcap A$ is \in -transitive.

Proof. Follows by definitions [47] and [555] and proposition [566]. \Box

7 Ordinals

Definition 568. α is an ordinal iff α is \in -transitive and every element of α is \in -transitive.

Proposition 569. Suppose α is \in -transitive. Suppose every element of α is \in -transitive. Then α is an ordinal.

Proposition 570. Let α be an ordinal. Then α is \in -transitive.

Proposition 571. Let α be an ordinal. Suppose $A \in \alpha$. Then A is \in -transitive.

Proposition 572. Let α be an ordinal. Suppose $\beta \in \alpha$. Then β is an ordinal.

Proposition 573. Suppose α^+ is an ordinal. Then α is an ordinal.

Proposition 574. Let α be an ordinal. Suppose $\beta \subseteq \alpha$. Suppose β is \in -transitive. Then β is an ordinal.

Proof. Follows by definitions [4] and [568].

Proposition 575. Let α, β be ordinals. Suppose $\alpha \in \beta$. Then $\alpha \subseteq \beta$.

Proposition 576. Let α be an ordinal. Suppose $\gamma \in \beta \in \alpha$. Then $\gamma \in \alpha$.

Proof. Follows by definitions [555] and [568].

Proposition 577. Let β be an ordinal. Suppose $\alpha \in \beta$. Then $\alpha^+ \subseteq \beta$.

Abbreviation 578. $\alpha < \beta$ iff β is an ordinal and $\alpha \in \beta$.

Abbreviation 579. $\alpha \leq \beta$ iff β is an ordinal and $\alpha \subseteq \beta$.

Lemma 580. Let α, β be sets. Suppose $\alpha < \beta$. Then α is an ordinal.

We already have global irreflexivity and asymmetry of \in . \in is transitive on ordinals by definition. To show that \in is a strict total order it only remains to show that \in is connex. **Proposition 581.** For all ordinals α, β we have $\alpha \in \beta \vee \beta \in \alpha \vee \alpha = \beta$. *Proof by* \in -induction on α . Assume α is an ordinal. Show for all ordinals γ we have $\alpha \in \gamma \vee \gamma \in \alpha \vee \alpha = \gamma$. Subproof. [Proof by \in -induction on γ] Assume γ is an ordinal. Follows by axiom [2] and definitions [555] and [568]. \square **Proposition 582.** Let α, β be ordinals. Suppose $\alpha \subset \beta$. Then $\alpha \in \beta$. *Proof.* $\beta \setminus \alpha$ is inhabited. Take γ such that γ is an \in -minimal element of $\beta \setminus \alpha$. Now $\gamma \in \beta$ by proposition [107]. Hence $\gamma \subseteq \beta$ by definition [568] and proposition [556]. For all $\delta \in \beta \setminus \alpha$ we have $\delta \notin \gamma$. Thus $\gamma \setminus \alpha = \emptyset$. Hence $\gamma \subseteq \alpha$. It suffices to show that for all $\delta \in \alpha$ we have $\delta \in \gamma$. Suppose not. Take $\delta \in \alpha$ such that $\delta \notin \gamma$. Now if $\delta = \gamma$ or $\gamma \in \delta$, then $\gamma \in \alpha$ by definition [568] and propositions [9], [556], [572] and [581]. **Proposition 583.** Let α, β be ordinals. Suppose $\alpha \in \beta$. Then $\alpha \subset \beta$. *Proof.* $\alpha \subseteq \beta$. **Proposition 584.** Let α, β be ordinals. Suppose $\alpha \leq \beta$. Then $\alpha \subseteq \beta$. *Proof.* Case: $\alpha = \beta$. Trivial. Case: $\alpha < \beta$. $\alpha \subset \beta$. **Proposition 585.** Let α, β be ordinals. Then $\alpha \in \beta$ or $\beta \subseteq \alpha$. **Proposition 586.** Let α, β be ordinals. Then $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$. **Proposition 587.** Let α, β be ordinals. Suppose $\alpha \subseteq \beta$. Then $\alpha \in \beta$ or $\alpha = \beta$. **Corollary 588.** Let α, β be ordinals. Then $(\alpha \subset \beta \lor \beta \subset \alpha) \lor \alpha = \beta$. **Proposition 589.** Let α, β be ordinals. Suppose neither $\alpha \in \beta$ nor $\beta \in \alpha$. Then $\alpha = \beta$. *Proof.* Neither $\alpha \subset \beta$ nor $\beta \subset \alpha$. **Proposition 590.** Let α, β be ordinals. Then $(\alpha \in \beta \vee \beta \in \alpha) \vee \alpha = \beta$. *Proof.* Suppose not. Then neither $\alpha \in \beta$ nor $\beta \in \alpha$. Thus $\alpha = \beta$ by proposition [589]. Contradiction. **Corollary 591.** Let α, β be ordinals. Suppose neither $\alpha < \beta$ nor $\beta < \alpha$. Then $\alpha = \beta$. *Proof.* Follows by proposition [589]. **Corollary 592.** Let α, β be ordinals. Then $\alpha \in \beta$ or $\beta \subseteq \alpha$.

Proof. Follows by proposition [572].

7.0.1 Construction of ordinals

Proposition 593. \emptyset is an ordinal. **Proposition 594.** Let α be an ordinal. α^+ is an ordinal. *Proof.* α^+ is \in -transitive by definition [568] and proposition [564]. For every $\beta \in \alpha$ we have that β is \in -transitive. **Proposition 595.** α is an ordinal iff α^+ is an ordinal. **Proposition 596.** Let α be an ordinal. Then $\alpha \in \alpha^+$. Corollary 597. Let α be an ordinal. Then $\alpha < \alpha^+$. **Proposition 598.** Let α, β be ordinals. Suppose $\alpha \in \beta$. Then $\alpha \subseteq \beta^+$. *Proof.* $\alpha \subset \beta$. In particular, $\alpha \subseteq \beta$. Hence $\alpha \subseteq \mathsf{cons}(\beta, \beta)$. **Proposition 599.** Let α be an ordinal. Then $| \cdot | \alpha$ is an ordinal. *Proof.* For all x, y such that $x \in y \in [] \alpha$ we have $x \in [] \alpha$ by proposition [43], axiom [42], and definitions [555] and [568]. Thus $\bigcup \alpha$ is \in -transitive. Every element of $\bigcup \alpha$ is \in transitive. **Lemma 600.** Let α be an ordinal. Then $\bigcup \alpha \subseteq \alpha$. *Proof.* Follows by definition [568] and proposition [559]. **Proposition 601.** Let α, β be ordinals. Then $\alpha \cup \beta$ is an ordinal. *Proof.* $\alpha \cup \beta$ is \in -transitive by proposition [562] and definition [568]. Every element of $\alpha \cup$ β is \in -transitive by definitions [555] and [568] and axiom [56]. Follows by definition [568]. **Proposition 602.** For all ordinals α we have $\alpha = \emptyset$ or $\emptyset \in \alpha$. Proof by \in -induction. Straightforward. П **Proposition 603.** Let A be a set. Suppose that for every $\alpha \in A$ we have α is an ordinal. Suppose that A is \in -transitive. Then A is an ordinal. **Theorem 604.** (Burali-Forti antimony) There exists no set Ω such that for all α we have $\alpha \in \Omega$ iff α is an ordinal. *Proof.* Suppose not. Take Ω such that for all α we have $\alpha \in \Omega$ iff α is an ordinal. For all x, y such that $x \in y \in \Omega$ we have $x \in \Omega$. Thus Ω is \in -transitive. Thus Ω is an ordinal. Therefore $\Omega \in \Omega$. Contradiction. **Proposition 605.** Let A be an inhabited set. Suppose for every $\alpha \in A$ we have α is an ordinal. Then $\bigcap A$ is an ordinal. *Proof.* It suffices to show that $\bigcap A$ is \in -transitive.

Proposition 606. Let A be an inhabited set. Suppose for every $\alpha \in A$ we have α is an ordinal. Then for all $\alpha \in A$ we have $\bigcap A \subseteq \alpha$.
Proposition 607. Let A be an inhabited set. Suppose for every $\alpha \in A$ we have α is an ordinal. Then $\bigcap A \in A$.
<i>Proof.</i> Follows by propositions [48], [53], [244], [587] and [605]. $\hfill\Box$
Proposition 608. Let A be an inhabited set. Suppose for every $\alpha \in A$ we have α is an ordinal. Then $\bigcap A$ is an \in -minimal element of A .
<i>Proof.</i> For all $\alpha \in A$ we have $\bigcap A \subseteq \alpha$.
Proposition 609. Let A be an inhabited set. Suppose for every $\alpha \in A$ we have α is an ordinal. Then for all $\alpha \in A$ we have $\bigcap A = \alpha$ or $\bigcap A \in \alpha$.
<i>Proof.</i> For all $\alpha \in A$ we have $\bigcap A \subseteq \alpha$.
Proposition 610. Let α, β be ordinals. Then $\alpha \cap \beta$ is an ordinal.
<i>Proof.</i> $\alpha \cap \beta$ is \in -transitive by definitions [79], [555] and [568]. Every element of $\alpha \cap \beta$ is \in -transitive by definitions [79], [555] and [568]. Follows by definition [568].
7.0.2 Limit and successor ordinals
Definition 611. λ is a limit ordinal iff $\emptyset < \lambda$ and for all $\alpha \in \lambda$ we have $\alpha^+ \in \lambda$.
Definition 612. α is a successor ordinal iff there exists an ordinal β such that $\alpha = \beta^+$.
Lemma 613. Let α be an ordinal such that $\emptyset < \alpha$. Then α is a limit ordinal or α is a successor ordinal.
<i>Proof.</i> Case: α is a limit ordinal. Trivial. Case: α is not a limit ordinal. Take β such that $\beta \in \alpha$ and $\beta^+ \notin \alpha$ by definition [611].
Lemma 614. \emptyset is not a successor ordinal.
Lemma 615. \emptyset is not a limit ordinal.
<i>Proof.</i> Suppose not. Then $\emptyset < \emptyset$ by axiom [17] and definition [611]. Thus $\emptyset \in \emptyset$. Contradiction.
Lemma 616. Let λ be a limit ordinal. Let $\alpha \in \lambda$. Then $\alpha^+ \in \lambda$.
<i>Proof.</i> Follows by definition [611]. \Box
Lemma 617. Let λ be a limit ordinal. Then $\bigcup \lambda = \lambda$.
<i>Proof.</i> $\bigcup \lambda \subseteq \lambda$ by definition [611] and lemma [600]. For all $\alpha \in \lambda$ we have $\alpha \in \alpha^+ \in \lambda$ by proposition [169] and lemma [616]. Thus $\lambda \subseteq \bigcup \lambda$ by definition [4] and proposition [43]. Follows by proposition [8].

7.1 Natural numbers as ordinals

Lemma 618. Let $n \in \mathcal{N}$. Suppose $n \neq \emptyset$. Then n is a successor ordinal.

Proof. Let $M = \{m \in \mathcal{N} \mid m = \emptyset \text{ or } m \text{ is a successor ordinal}\}$. M is an inductive set by propositions [593] and [594], axiom [624], and definition [612]. Now $M \subseteq \mathcal{N} \subseteq M$ by definition [4] and axiom [625]. Thus $M = \mathcal{N}$. Follows by definition [4].

Lemma 619. \mathcal{N} is \in -transitive.

Proof. Let $M = \{m \in \mathcal{N} \mid \text{ for all } n \in m \text{ we have } n \in \mathcal{N}\}$. $\emptyset \in M$. For all $n \in M$ we have $n^+ \in M$ by axiom [624] and definition [168]. Thus M is an inductive set. Now $M \subseteq \mathcal{N} \subseteq M$ by definition [4] and axiom [625]. Hence $\mathcal{N} = M$.

Lemma 620. Every natural number is an ordinal.

Proof. Follows by propositions [173], [573] and [594], axiom [624], lemma [618], and definition [612]. \Box

Lemma 621. \mathcal{N} is an ordinal.

Proof. Follows by lemmas [619] and [620] and proposition [603]. \Box

Lemma 622. \mathcal{N} is a limit ordinal.

Proof. $\emptyset < \mathcal{N}$. If $n \in \mathcal{N}$, then $n^+ \in \mathcal{N}$.

8 Natural numbers

Abbreviation 623. A is an inductive set iff $\emptyset \in A$ and for all $a \in A$ we have $a^+ \in A$.

Axiom 624. \mathcal{N} is an inductive set.

Axiom 625. Let A be an inductive set. Then $\mathcal{N} \subseteq A$.

Abbreviation 626. n is a natural number iff $n \in \mathcal{N}$.

9 Cardinality

Definition 627. X is finite iff there exists a natural number k such that there exists a bijection from k to X.

Abbreviation 628. X is infinite iff X is not finite.

10 Magmas

Struct 629. A magma A is a onesorted structure equipped with

1. mul

such that

1. for all $a, b \in A$ we have $\text{mul}_A(a, b) \in A$.

Abbreviation 630. $a \cdot b = mul(a, b)$.

Abbreviation 631. a is an idempotent element of A iff $a \in A$ and $\text{mul}_A(a, a) = a$.

Definition 632. Idempotent(A) = { $a \in A \mid mul_A(a, a) = a$ }.

Abbreviation 633. *a* commutes with *b* iff $a \cdot b = b \cdot a$.

Definition 634. A is a submagma of B iff A is a magma and B is a magma and $A \subseteq B$ and $\text{mul}_A \subseteq \text{mul}_B$.

Proposition 635. Suppose A is a submagma of B. Suppose B is a submagma of C. Then A is a submagma of C.

Proof. Follows by definition [634] and proposition [11].

Struct 636. A unital magma A is a magma equipped with

1. e

such that

- 1. $e_A \in A$.
- 2. for all $a \in A$ we have $\text{mul}_A(a, e_A) = a$.
- 3. for all $a \in A$ we have $\text{mul}_A(e_A, a) = a$.

Proposition 637. Let A be a unital magma. Then mul(e, e) = e.

Proposition 638. Let A be a unital magma. Let e be a set such that $e \in A$ and for all $x \in A$ we have $\mathsf{mul}(x, e) = x = \mathsf{mul}(e, x)$. Then $e = \mathsf{e}$.

Proof. Follows by items [1] and [3].

Definition 639. (Left orbit) $A \cdot x = \{ \text{mul}_A(a, x) \mid a \in A \}.$

Proposition 640. Let A be a magma. Let $e, f \in A$. Suppose $A \cdot e = A \cdot f$. Let $x \in A$. Then there exists $y \in A$ such that $x \cdot e = y \cdot f$.

Proof. We have $x \cdot e \in A \cdot e$ by definition [639]. Thus $x \cdot e \in A \cdot f$ by assumption. Take $y \in A$ such that $x \cdot e = y \cdot f$ by definition [639].

11 Semigroups

Struct 641. A semigroup A is a magma such that

1. for all a, b, c we have $\operatorname{\mathsf{mul}}_A(a, \operatorname{\mathsf{mul}}_A(b, c)) = \operatorname{\mathsf{mul}}_A(\operatorname{\mathsf{mul}}_A(a, b), c)$.

12 Regular semigroups

Struct 642. A regular semigroup A is a semigroup such that

1. for all a there exists $b \in A$ such that $\operatorname{\mathsf{mul}}_A(a,\operatorname{\mathsf{mul}}_A(b,a)) = a$.

13 Inverse semigroups

Struct 643. An inverse semigroup A is a regular semigroup such that

1. for all $a, b \in \mathsf{Idempotent}(A)$ we have $\mathsf{mul}_A(a, b) = \mathsf{mul}_A(b, a)$.

Proposition 644. Suppose A is an inverse semigroup. Then A is a semigroup.

Proposition 645. Suppose A is an inverse semigroup. Then A is a regular semigroup.

Proposition 646. Let A be an inverse semigroup. Let $e, f \in \mathsf{Idempotent}(A)$. Suppose for all $x \in A$ there exists $y \in A$ such that $x \cdot e = y \cdot f$. Suppose for all $x \in A$ there exists $y \in A$ such that $x \cdot f = y \cdot e$. Then e = f.

Proof. Take $x, y \in A$ such that $e = x \cdot f$ and $f = y \cdot e$ by definition [632].

```
e = x \cdot f

= x \cdot (f \cdot f) [by definition [632]]

= (x \cdot f) \cdot f [by item [1] and proposition [644]]

= e \cdot f

= f \cdot e [by commutativity of idempotent elements]

= (y \cdot e) \cdot e

= y \cdot (e \cdot e) [by item [1] and proposition [644]]

= y \cdot e [by definition [632]]

= f
```

Abbreviation 647. R is an order iff R is an antisymmetric quasiorder.

Abbreviation 648. R is an order on A iff R is an antisymmetric quasiorder on A.

Abbreviation 649. R is a strict order iff R is transitive and asymmetric.

Struct 650. An ordered set X is a quasiordered set such that

1. \leq_X is antisymmetric.
Definition 651. StrictOrderFromOrder $(R) = \{w \in R \mid \operatorname{fst} w \neq \operatorname{snd} w\}.$
Definition 652. OrderFromStrictOrder $_A(R) = R \cup \mathrm{id}_A$.
Proposition 653. $(a,b) \in StrictOrderFromOrder(R) \text{ iff } (a,b) \in R \text{ and } a \neq b.$
<i>Proof.</i> Follows by definition [651] and axioms [138] and [139]. \Box
Proposition 654. OrderFromStrictOrder $_A(R)$ is reflexive on A .
Proposition 655. Suppose $(a,b) \in R$. Then $(a,b) \in OrderFromStrictOrder_A(R)$.
$Proof. \ \ R \subseteq OrderFromStrictOrder_A(R). \ \ \Box$
Proposition 656. Suppose $(a,b) \in OrderFromStrictOrder_A(R)$. Then $(a,b) \in R$ or $a=b$.
<i>Proof.</i> Follows by definitions [381] and [652], axiom [56], and propositions [31] and [653]. \Box
Proposition 657. $(a,b) \in OrderFromStrictOrder_A(R) \text{ iff } (a,b) \in R \text{ or } a=b \in A.$
Proposition 658. Suppose R is an order. Then $StrictOrderFromOrder(R)$ is a strict order.
${\it Proof.} \ {\sf StrictOrderFromOrder}(R) \ {\sf is \ asymmetric.} \ {\sf StrictOrderFromOrder}(R) \ {\sf is \ transitive.} \ \Box$
Proposition 659. Suppose R is a strict order. Suppose R is a binary relation on A . Then $OrderFromStrictOrder_A(R)$ is an order on A .
<i>Proof.</i> OrderFromStrictOrder $_A(R)$ is antisymmetric. OrderFromStrictOrder $_A(R)$ is transitive by definition [411] and proposition [657]. OrderFromStrictOrder $_A(R)$ is reflexive on A .
Proposition 660. \subseteq_A is antisymmetric.
<i>Proof.</i> Follows by definitions [394] and [405], axiom [133], and proposition [8]. \Box
Proposition 661. \subseteq_A is an order on A .
<i>Proof.</i> \subseteq_A is a quasiorder on A by proposition [427]. \subseteq_A is antisymmetric by proposition [660].
Struct 662. A meet semilattice X is a partial order equipped with
1. □
such that
1. for all $x, y \in X$ we have $\sqcap_X(x, y) \in X$.

- 2. for all $x, y \in X$ we have $\sqcap_X(x, y) \leq_X x, y$.
- 3. for all $a, x, y \in X$ such that $a \leq_X x, y$ we have $a \leq_X \sqcap_X (x, y)$.

Proposition 663. Let X be a meet semilattice. Then $\sqcap(x,x)=x$.

Proof.
$$\sqcap(x,x) \leq x$$
. $x \leq_X x, x$. Thus $x \leq_X \sqcap(x,x)$.

14 Topological spaces

Struct 664. A topological space X is a onesorted structure equipped with

1. O

such that

- 1. \mathcal{O}_X is a family of subsets of X.
- 2. $\emptyset \in \mathcal{O}_X$.
- 3. $X \in \mathcal{O}_X$.
- 4. For all $A, B \in \mathcal{O}_X$ we have $A \cap B \in \mathcal{O}_X$.
- 5. For all $F \subseteq \mathcal{O}_X$ we have $\bigcup F \in \mathcal{O}_X$.

Axiom 665. For all A, B we have $\bigcup \{A, B\} = A \cup B$.

Abbreviation 666. U is open iff $U \in \mathcal{O}$.

Abbreviation 667. U is open in X iff $U \in \mathcal{O}_X$.

Proposition 668. Let X be a topological space. Suppose A, B are open. Then $A \cup B$ is open.

Proof.
$$\{A, B\} \subseteq \mathcal{O}$$
. $\bigcup \{A, B\}$ is open. $\bigcup \{A, B\} = A \cup B$.

Definition 669. (Interiors) $Int_X A = \{U \in \mathcal{O}_X \mid U \subseteq A\}.$

Definition 670. (Interior) $int_X A = \bigcup Int_X A$.

Proposition 671. (Interior) Suppose $U \in \mathcal{O}_X$ and $a \in U \subseteq A$. Then $a \in \text{int}_X A$.

$$Proof. \ U \in Int_X A.$$

Proposition 672. (Interior) Suppose $a \in \operatorname{int}_X A$. Then there exists $U \in \mathcal{O}_X$ such that $a \in U \subseteq A$.

Proof. Take $U \in \operatorname{Int}_X A$ such that $a \in U$.

Proposition 673. (Interior) $a \in \operatorname{int}_X A$ iff there exists $U \in \mathcal{O}_X$ such that $a \in U \subseteq A$.

Proof. Follows by propositions [671] and [672]. **Proposition 674.** Let X be a topological space. Suppose U is open in X. Then $\operatorname{int}_X U = U$. *Proof.* $U \in Int_X U$. Follows by definition [4] and propositions [3] and [673]. **Proposition 675.** Let X be a topological space. Then $int_X A$ is open. *Proof.* Int_X $A \subseteq \mathcal{O}_X$. **Proposition 676.** Then $int_X A \subseteq A$. **Proposition 677.** Let X be a topological space. Suppose $U \subseteq A \subseteq X$. Suppose U is open. Then $U \subseteq \operatorname{int}_X A$. **Proposition 678.** Let X be a topological space. Suppose $int_X A = A$. Then A is open. Corollary 679. Let X be a topological space. Then $int_X A = A$ iff A is open in X. **Proposition 680.** Let X be a topological space. $int_X X = X$. *Proof.* $X \in \mathcal{O}_X$. $X \subseteq X$ by proposition [7]. Thus $X \in \operatorname{Int}_X X$ by definition [669]. Follows by set extensionality. 14.1 Closed sets **Definition 681.** A is closed in X iff $X \setminus A$ is open in X. **Abbreviation 682.** A is clopen in X iff A is open in X and closed in X. **Proposition 683.** Let X be a topological space. Then \emptyset is closed in X. Proof. $X \setminus \emptyset = X$. **Proposition 684.** Let X be a topological space. Then \emptyset is closed in X. Proof. $X \setminus X = \emptyset$. **Definition 685.** (Closed sets) $C_X = \{A \in Pow(X) \mid A \text{ is closed in } X\}.$ **Proposition 686.** Let X be a topological space. Let $U \in \mathcal{O}_X$. Then $X \setminus U \in \mathcal{C}_X$. *Proof.* $X \setminus U \in Pow(X)$. $U \subseteq X$ by item [1]. Hence $X \setminus (X \setminus U) = U$ by proposition [113]. $X \setminus U$ is closed in X. П **Definition 687.** (Closed covers) $Cl_X A = \{D \in Pow(X) \mid A \subseteq D \text{ and } D \text{ is closed in } X\}.$ **Definition 688.** (Closure) $\operatorname{cl}_X A = \bigcap \operatorname{Cl}_X A$.

Proposition 689. Let X be a topological space. Then $\operatorname{cl}_X \emptyset = \emptyset$.

Proof. $\emptyset \in \mathsf{Cl}_X \emptyset$.

Proposition 690. Let X be a topological space. Then $\operatorname{cl}_X X = X$.

Proof. For all $D \in \mathsf{Cl}_X X$ we have X = D by axiom [200], definition [687], and proposition [8]. Now $X \in \mathsf{Cl}_X X$. Thus $\mathsf{Cl}_X X = \{X\}$ by proposition [39]. Follows by proposition [54] and definition [688].

Proposition 691. $\operatorname{cl}_X A \cap (X \setminus \operatorname{int}_X A) = \operatorname{cl}_X (X \setminus A)$.

Proof. Omitted. \Box

Definition 692. (Frontier) $\operatorname{fr}_X A = \operatorname{cl}_X A \setminus \operatorname{int}_X A$.

Proposition 693. $\operatorname{fr}_X A = \operatorname{cl}_X A \cap \operatorname{cl}_X (X \setminus A).$

Proof. Omitted. \Box

Proposition 694. Let X be a topological space. Then $fr_X \emptyset = \emptyset$.

Proof. Follows by set extensionality.

Proposition 695. Let X be a topological space. Then $fr_X X = \emptyset$.

Proof. $\operatorname{fr}_X X = X \setminus X$ by definition [692] and propositions [680] and [690]. Follows by proposition [111].

Definition 696. $N_X x = \{U \in \mathcal{O}_X \mid x \in U\}.$

14.2 Topological basis

Abbreviation 697. C covers X iff for all $x \in X$ there exists $U \in C$ such that $x \in U$.

Proposition 698. Suppose C covers X. Then $X \subseteq \bigcup C$.

Proposition 699. Suppose $X \subseteq \bigcup C$. Then C covers X.

Abbreviation 700. B is a topological prebasis for X iff $\bigcup B = X$.

Proposition 701. B is a topological prebasis for X iff B is a family of subsets of X and B covers X.

Proof. If B is a family of subsets of X and B covers X, then $\bigcup B = X$ by propositions [8], [45] and [698]. If $\bigcup B = X$, then B is a family of subsets of X and B covers X by propositions [7], [698] and [699].

Definition 702. B is a topological basis for X iff B is a topological prebasis for X and for all U, V, x such that $U, V \in B$ and $x \in U, V$ there exists $W \in B$ such that $x \in W \subseteq U, V$.

14.3 Disconnections

Definition 703. Disconnections $X = \{p \in \text{Bipartitions } X \mid \text{fst } p, \text{snd } p \in \mathcal{O}_X\}.$

Abbreviation 704. D is a disconnection of X iff $D \in \mathsf{Disconnections}\, X$.

Definition 705. X is disconnected iff there exist $U, V \in \mathcal{O}_X$ such that X is partitioned by U and V.

Proposition 706. Let X be a topological space. Suppose X is disconnected. Then there exists a disconnection of X.

Proof. Take $U, V \in \mathcal{O}_X$ such that X is partitioned by U and V by definition [705]. Then (U, V) is a bipartition of X. Thus (U, V) is a disconnection of X by definition [703] and propositions [143] and [150].

Proposition 707. Let X be a topological space. Let D be a disconnection of X. Then X is disconnected.

Proof. fst D, snd $D \in \mathcal{O}_X$. X is partitioned by fst D and snd D.

Abbreviation 708. X is connected iff X is not disconnected.