

IIoT Fundamentals and Applications Presented by SME Chapter 112

Who Am I?

- My name is <u>Adam Cook</u>.
- Studied Mechanical Engineering at Purdue University West Lafayette.
- Chief Technical Officer of <u>Alliedstrand</u> in Chicago (we also have engineers in Dallas).
- Chair of SME Chapter 112 (Northwest Indiana and Chicagoland). Check out sme112.org.
- I work with embedded systems, robotics, automation systems and industrial software.
- Contact my chapter at hello@sme112.org.

SME Virtual Network Slack

Are you an SME member? Do you want access to Slack? Fill out this short form:

http://bit.ly/2BpjMiE

Part 1 - IloT High-Level Tour and Engineering/Manufacturing Use Cases.

Break

Part 2 – IloT protocols, architectures, communications, IT/OT considerations and security.

- Internet of Things (IoT) is (loosely) a broad term referring to a network of devices (or "things") which can interoperate with the Internet.
- loT is sometimes called Internet of Everything (loE).
- A Thing is a physical object that can communicate via a network.
- Things are decoupled from software applications/services in IoT.

Source: http://bit.ly/2G7VEny

Actuators

Slides: http://bit.ly/2HOb7GE

Systems

Business Applications

ERP CRM

PLM

Control Systems

People

Consumers

Partners

Decision Makers

Employees

Can you think of any commonly-used IoT devices?

Source: http://bit.ly/2otKGih

What is the ROI on this?

Device Network

Source: http://dell.to/2u5mF6t

Probably an IoT Gateway here.

High Latency

Cloud Computing Layer

Elastic compute, big data processing and data warehousing.

Fog Computing Layer IoT Gateway

Mist Computing Layer
Devices, sensors and actuators.

Low Latency

Scale (Data and Network)

IoT has the possibility to scale to millions of devices.

Security/Privacy

Physical assets and IP can be at risk. This is a big one.

Interoperability

Devices and networks need to talk the same "language".

Operational Issues

IoT needs tight IT/OT coordination.

Implementation Commonality

IoT implements are largely made to order – particularly for the cloud services. Cost implications.

Source: http://bit.ly/2GKH6bk

IT and OT Separation

Slides: http://bit.ly/2HOb7GE

December 2015 Ukraine power grid cyberattack

German steel mill cyberattack

 Saudi Aramco and Qatar RasGas cyberattack (2012)

WannaCry ransomware attack

- IIoT stands for Industrial Internet of Things.
- IIoT is sometimes called Industrial Internet.
- IIoT is really a subcategory of IoT. Many of the technologies are the same (but not all) but it focuses on "industrial" use cases.

 The business case for IIoT is increasing efficiency and safety while reducing costs.

- Sometimes will hear that Industry 4.0 and IIoT are the same.
- Technically, they are not.
- Industry 4.0 (Industrie 4.0) is/was a German government program in digitizing manufacturing.
- Industry 4.0 is also called the 4th Industrial Revolution.
- Cyber Physical Systems, IIoT, advanced data analytics and machine learning.

Purdue Enterprise Reference Architecture

Industrial Internet Reference Architecture (IIRA)
 by Industrial Internet Consortium (IIC).

IIoT Reference Models/Architectures

Slides: http://bit.ly/2HOb7GE

Source: http://bit.ly/2zpBpeN

Use Case - Digital Twin

Slides: http://bit.ly/2HOb7GE

Source: http://bit.ly/2pqVZbo

Note: There is something like 20,000 sensors on a jet engine!

Physics-Based 3D Models Models **Sensor Data** Human Knowledge **Historical Data Digital Simulations Data Analytics/Big Data Machine Learning**

Use Case - Smart City/Smart Building

Slides: http://bit.ly/2HOb7GE

Smart phones, smart meters, networks of sensors **and RFIDs.**

Check out UI
Labs' City Tech
iniatives.

Can also be tied to larger "smart cities" effort.

Use Case - Predictive Maintenance

Slides: http://bit.ly/2HOb7GE

Using historical operational data to determine failure windows prior to them occurring.

3ss

Spindle bearing heat and vibration sensors

Machine bed vibration sensors

Coolant filter pressure sensors

Heat sensors on

ball screws

What else can this data be used for?

- Robot-to-robot.
- Factory-to-cloud.
- Factory-to-factory.
- Finished product-tofactory.

- Vehicle-to-cloud.
- Vehicle-to-smart city.

Logistics & IoT Tracking Systems

Source: http://bit.ly/2HPC64z

- Favor incremental steps to IIoT adoption over large projects.
- IIoT is not magic. It is most useful when finding that 'last mile" of efficiency.
- Having the IT and OT personnel and expertise is critical.
- Security needs to be budgeted in and enforced enterprisewise. In a lot of ways, the attack surface is larger in IIoT.
- Beware of legacy equipment challenges.
- Careful! It can transform your enterprise (hopefully, for the better).

Next up. We take a deeper technical dive into IoT/IIoT.

6LoWPAN: http://bit.ly/2GQSJ0E

IoT Stack Overview

Slides: http://bit.ly/2HOb7GE

Layers based on the OSI Model

Common protocols and standards used in IoT systems

Layers based on the OSI Model

Source: http://bit.ly/2G8zbHa

Theoretically, you can pick and choose technologies from each layer independently from one another.

We will work up this way.

ENDEAVOUR

IoT Stack Overview + Some More Industrial

Slides: http://bit.ly/2HOb7GE

Source: http://bit.ly/2G8zbHa

 Contains embedded systems and sensors, but, more importantly, the standards which will connect to the Internet.

Ethernet

GSM, 3G, LTE, 4G, 5G

WiFi (802.11b, g, n)

LPWAN

- WLAN Wireless Local Area Network (WiFi)
- WWAN Wireless Wide Area Network (Cellular)
- LPWAN Low-Power Wide Area Network
- LPWANs are great for:
 - Filling gaps between WLAN and WWAN.
 - Devices that need great battery life.
 - Transmission distance over 15 km.
 - Capable of outdoor use.
 - Low-cost.

Why LPWAN?

- Internet is here.
- Provides a connection between networks and a connection between physical layers (to each other or to cloud services).
- Unique identifier called an IP Address is here.

IPv4

RPL

Network Layer – IPv4 vs. IPv6

Slides: http://bit.ly/2HOb7GE

The Internet Protocol (IP) is the method or protocol by which data is sent from one computer to another on the Internet. Each computer (known as a host) on the Internet has at least one IP address that uniquely identifies it from all other computers on the Internet.*

IPv6 Advantages:

- Larger address space.
- Better built-in security.
- Harmonizes IoT datalink layer.

	Internet Protocol version 4 (IPv4)	Internet Protocol version 6 (IPv6)
Deployed	1981	1999
Address Size	32-bit number	128-bit number
Address Format	Dotted Decimal Notation: 192.149.252.76	Hexadecimal Notation: 3FFE:F200:0234:AB00: 0123:4567:8901:ABCD
Prefix Notation	192.149.0.0/24	3FFE:F200:0234::/48
Number of Addresses	$2^{32} = \sim 4,294,967,296$	$2^{128} = \sim 340,282,366,$ 920,938,463,463,374, 607,431,768,211,456

Source: http://bit.ly/2IATz21

IPv6 creates a common network layer for these technologies.

Source: http://bit.ly/2GLxey5

- TCP and UDP are here.
- Data stream handling.
- TCP Transmission Control Protocol
- UDP User Datagram Protocol
- UDP is popular for loT use. TCP is popular for IIoT. These are not hard rules.

Source: http://bit.ly/2FNTfPz

TCP	UDP	
Reliable—monitors message transmission, tracks data transfer to ensure receipt of all packets	Unreliable—no concept of acknowledgment, retransmission, or timeout –	
Ordered—buffering provisions to ensure correct order of data packets	Not ordered—data arrives in order of receipt	
Heavyweight—dedicated connection, provisions for speed and congestion control	Lightweight—no dedicated end-to-end connection, no congestion control	
Streaming	Datagram oriented	
Heavy overhead	Light overhead	
Lower speed	Higher speed	

Source: http://bit.ly/2DHqwG4

- Contains value-added applications, communications protocols and interface methods for a network.
- Does not really say anything about data formats used.
 It is common for large sensor networks to be involved in unstructured data transfer.

MTConnect

OPC-UA

 HTTP

MQTT

Source: http://bit.ly/2GLXCrG

Source: http://bit.ly/2FW4iSO

HTML

HTTP

Web

TLS

TCP

IPv6

Messages

MQTT

IoT TLS

TCP

6LoWPAN

Source: http://bit.ly/2G4QMjh

We will dive down to the code level with these technologies:

Want to learn more about

Check out sme.org

Questions?

Ask in the Live Chat or Slack or check the feedback link in the description!