(3) 正态总体的抽样分布

设 (X_1, X_2, \cdots, X_n) 是来自总体 $N(\mu, \sigma^2)$ 的样本 $, \overline{X}$ 与 S^2 分别为样本均值与样本方差,则

①
$$\overline{X} \sim N\left(\overrightarrow{\mu}, \frac{\sigma^2}{n}\right)$$
;② $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$;③ \overline{X} 与 S^2 相互独立.

设 (X_1, X_2, \cdots, X_n) 是来自总体 $N(\mu, \sigma^2)$ 的样本, \overline{X} 与 S^2 分别为样本均值与样本方差,则

$$\frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t (n - 1)$$

设 (X_1,X_2,\cdots,X_{n_1}) 和 (Y_1,Y_2,\cdots,Y_{n_2}) 是分别来自总体 $N(\mu_1,\sigma^2)$ 和 $N(\mu_2,\sigma^2)$ 的样本,且两样本相互独立,

$$\overline{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i, \overline{Y} = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_i, S_{1n_1}^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \overline{X})^2, S_{2n_2}^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \overline{Y})^2$$

$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

其中
$$S_{\Psi}^2 = \frac{(n_1 - 1)S_{1n_1}^2 + (n_2 - 1)S_{2n_2}^2}{n_1 + n_2 - 2}$$
.

设 $(X_1, X_2, \cdots, X_{n_1})$ 和 $(Y_1, Y_2, \cdots, Y_{n_2})$ 是分别来自总体 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$ 的

样本,且两样本相互独立, $S_{1n_1}^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \overline{X})^2, S_{2n_2}^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \overline{Y})^2,$ 则

$$F = \frac{\frac{S_{1n_1}^2}{\sigma_1^2}}{\frac{S_{2n_2}^2}{\sigma_2^2}} = \frac{\sigma_2^2 S_{1n_1}^2}{\sigma_1^2 S_{2n_2}^2} \sim F(n_1 - 1, n_2 - 1)$$

习题 6

- 1. 设总体 X 服从正态分布 $N(\mu,\sigma^2)$, (X_1,X_2,\cdots,X_n) 是来自 X 的样本,试写出 (X_1,X_2,\cdots,X_n) 的概率密度.
- 2. 设总体 X 在区间 [a,b] 上服从均匀分布,(X_1 , X_2 ,…, X_n) 是来自 X 的样本,试写出(X_1 , X_2 ,…, X_n)的概率密度.
 - 3. 设总体 X 具有概率密度

$$f(x) = \begin{cases} 6x(1-x), & 0 < x < 1, \\ 0, & \text{ 其他} \end{cases}$$

- (X_1, X_2, X_3) 是来自 X 的样本,试写出 (X_1, X_2, X_3) 的概率密度.
 - 4. 设总体 X 服从参数为 $\lambda(\lambda>0)$ 的泊松分布, (X_1,X_2,\cdots,X_n) 是来自 X 的样本,试写出 $(X_1,$

 X_1, \dots, X_n)的分布律.

- 5. 为了研究玻璃产品在集装箱运输过程中的损坏情况,现随机抽取 20 个集装箱检查其产品 损坏的件数,记录结果为 1,1,1,1,2,0,0,1,3,1,0,0,2,4,0,3,1,4,0,2.试写出样本频率分布,再写出经验分布函数并画出其图像.
- 6. 下面是 100 个学生身高(单位:cm)的测量情况,试作出学生身高的样本频率直方图,并用直方图估计学生身高在 160 与 175 之间的概率.

身高	[154,158]	(158,162]	(162,166]	(166,170]	(170,174]	(174,178]	(178,182]
学生数	10	14	26	28	12	8	2

7. 设从总体 X 抽得一个容量为 10 的样本,其值为 2.4,4.5,2.0,1.0,1.5,3.4,6.6,5.0,3.5,4.0,试计算样本均值、样本方差、样本标准差、样本二阶中心矩及样本二阶原点矩.

8. (1) 从总体 X 中抽取容量为 n 的样本,其观测值的频数分布为

x *	\bar{x}_1^*	x_2^*	***	x_{l}^{*}
m_i	m_{1}	m_2	***	m_{j}

 $(m_1+m_2+\cdots+m_l=n)$,试写出计算样本均值 \overline{X} 和样本方差 S^2 的公式;

(2) 从总体 X 中抽取一个样本,其观测值的频数分布为

x_i^*	1	3	6	26
m_{i}	8	40	10	2

求样本均值、样本方差及样本标准差.

- 9. 样本均值和样本方差的简化计算如下:设来自总体 X 的样本 (X_1,X_2,\cdots,X_n) 的样本均值和样本方差分别为 \overline{X} 和 S_X^2 ,作变换 $Y_i = \frac{X_i a}{c}$,得样本 (Y_1,Y_2,\cdots,Y_n) ,它的样本均值和样本方差记为 \overline{Y} 和 S_Y^2 .
 - (1) 试证: $\overline{X} = a + c\overline{Y}$, $S_X^2 = c^2 S_Y^2$;
 - (2) 如果总体 X 的均值 $E(X) = \mu$ 和方差 $D(X) = \sigma^2$ 存在,试求 $E(\overline{Y})$ 和 $E(S_v^2)$.
- 10. 从总体 $X \sim N(9,9)$ 中分别抽取容量为 50 的两组样本,求两组样本均值之差的绝对值小于 0. 6 的概率.
- 11. (X_1, X_2, \dots, X_n) 是来自总体 X 的样本,设总体 X 的分布分别为(1) 二项分布 B(m, p); (2) 参数为 λ 的泊松分布 $P(\lambda)$; (3) 区间[a,b]上的均匀分布; (4) 参数为 λ 的指数分布; (5) 正态分布 $N(\mu, \sigma^2)$,试求 $E(\bar{X})$, $D(\bar{X})$, $E(S^2)$.
- 12. 设 \overline{X}_n 和 S_n^2 为样本 (X_1, X_2, \cdots, X_n) 的样本均值和样本方差,增加一次抽样得 X_{n+1} ,记样本 $(X_1, X_2, \cdots, X_n, X_{n+1})$ 的样本均值和样本方差为 \overline{X}_{n+1} 和 S_{n+1}^2 ,求证:
 - (1) $\sum_{i=1}^{n} (X_i a)^2 = \sum_{i=1}^{n} (X_i \overline{X}_n)^2 + n(\overline{X}_n a)^2$ 对任何常数 a 都成立;
 - $(2) \ \overline{X}_{n+1} = \overline{X}_n + \frac{1}{n+1} (X_{n+1} \overline{X}_n) , S_{n+1}^2 = \frac{n-1}{n} S_n^2 + \frac{1}{n+1} (X_{n+1} \overline{X}_n)^2.$
- 13. 样本 (X_1, X_2, \cdots, X_n) 的样本均值和样本方差分别记为 \bar{X}_n 和 S_x^2 ,样本 (Y_1, Y_2, \cdots, Y_m) 的样本均值和样本方差分别记为 \bar{Y}_m 和 S_y^2 ,现将两个样本合并在一起,以 $\bar{Z}_{n,m}$ 和 S_z^2 记合并后样本的样

本均值和样本方差,试证:

$$\overline{Z}_{n+m} = \frac{n\overline{X}_n + m\overline{Y}_m}{n+m}$$

$$S_Z^2 = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n+m-1} + \frac{nm}{(n+m)(n+m-1)}(\overline{X}_n - \overline{Y}_m)^2$$

14 若从总体中抽取容量为 13 的样本值: -2.1,3.2,0,-0.1,1.2,-4,2.22,2.01,1.2,-0.1, 3. 21, -2. 1, 0. 试写出这个样本值的顺序统计量、样本 $\frac{2}{2}$ 分位数及样本极差.

15. 设总体 X 服从参数为 $\lambda(\lambda>0)$ 的泊松分布, (X_1,X_2,\cdots,X_n) 是来自该总体的样本, 试求样 本均值 X 的分布律.

16. 设总体 X 服从参数为 α,λ 的 Γ 分布, (X_1,X_2,\cdots,X_n) 是来自此总体的样本,试求样本均值 X的概率密度.

17. 设 (X_1, X_2, \dots, X_n) 是来自正态总体 $N(\mu, \sigma^2)$ 的样本,求 $Y = \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \mu)^2$ 的概率分布.

18. 设 (X_1, X_2, \dots, X_n) 是来自标准正态总体 N(0, 1) 的样本,求统计量 $Y = \frac{1}{m} \left(\sum_{i=1}^{m} X_i\right)^2$ + $\frac{1}{n-m} \left(\sum_{i=1}^{n} X_{i}\right)^{2}$ 的抽样分布.

19. 设 $(X_1, X_2, \dots, X_{10})$ 是来自正态总体 $N(\mu, \sigma^2)$ 的样本, S^2 是样本方差,求(1) $P\left\{0.3<\frac{S^2}{\sigma^2}<\frac{S^2}{\sigma^2}\right\}$

2.114 $\}$; (2) $D(S^2)$.

20. 设 (X_1, X_2, \dots, X_n) 是来自正态总体 $N(0, \sigma^2)$ 的样本,求统计量(1) $Y_1 = \frac{1}{n} \left(\sum_{i=1}^n X_i\right)^2$;

(2) $Y_2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2$ 的概率密度.

2y. 已知随机变量 $X \sim t(n)$,求证 $X^2 \sim F(1,n)$. 22. 设 $(X_1, X_2, \cdots, X_n, X_{n+1}, \cdots, X_{n+m})$ 是来自正态总体 $N(0, \sigma^2)$ 的样本,试求下列统计量的概率 分布:

$$(1) Y_1 = \frac{\sqrt{m} \sum_{i=1}^n X_i}{\sqrt{n} \sqrt{\sum_{i=n+1}^{n+m} X_i^2}}; (2) Y_2 = \frac{m \sum_{i=1}^n X_i^2}{n \sum_{i=n+1}^{n+m} X_i^2}.$$

23. 设 $(X_1, X_2, \dots, X_n, X_{n+1})$ 是来自正态总体 $N(\mu, \sigma^2)$ 的样本, $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i, S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - X_i)$

 $(X)^2$, 试求统计量

$$Y = \frac{X_{n+1} - \overline{X}}{S} \sqrt{\frac{n}{n+1}}$$

的抽样分布.

24. 设 $(X_1, X_2, \cdots, X_{n_1})$ 和 $(Y_1, Y_2, \cdots, Y_{n_2})$ 是分别来自总体 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$ 的两个独立 样本,试证明

$$F = \frac{n_2 \sigma_2^2 \sum_{i=1}^{n_1} (X_i - \mu_1)^2}{n_1 \sigma_1^2 \sum_{i=1}^{n_2} (Y_i - \mu_2)^2}$$

服从自由度为 (n_1,n_2) 的 F 分布.

25. 设总体 X 服从参数为 λ 的指数分布, (X_1,X_2,\cdots,X_n) 是来自总体 X 的样本,试证明 $Y=2\lambda\sum_{i=1}^nX_i$ 服从自由度为 2n 的 X^2 分布.

26. 设 (X_1,X_2) 是来自总体 $X \sim N(0,\sigma^2)$ 的样本,求统计量 $Y = \left(\frac{X_1 + X_2}{X_1 - X_2}\right)^2$ 的概率分布.

27. 设 (X_1, X_2, \cdots, X_n) 为来自总体 U(0,1)的样本,试证明 $Y = -2\sum_{i=1}^n \ln(X_i)$ 服从自由度为 2n 的 X^2 分布.

自测题 6

习题 6 参考答案

