	Jalen Powell 08/19/21
	ELEC 2200
	Hw #2
1	51,0 51/2 = 25 B) (binary)
	25/2 = 12 81 /7 = 1100112
	12/2 = 6 RO
	6/2 = 3 RO 10011100111
	3/2 = 1 81 / 3 3
	1/2 = 0 R1 = 33 Hp (Hex)
2.	Alip
_	A (binary)
	$\frac{1010\ 0001 = 101000012}{7^{12}^{6}2^{5}2^{12}2^{2}2^{2}}$
A	$(1 \cdot 2^7) + (1 \cdot 2^5) + 1$
	128 + 32 + 1 = 1101,0 (decomal)
2	
3.	111111 This is the maximum value
	(binary) of a le digit binary #.
	64 bossiple ages 20 0 7 63
	(decimal)
11	
4.	$0 \times 42 \text{ (binary)}$
	779574 13,2120
	$(1.2^{(4)})+(1.2^{(4)})=$
2	64 + 2 = 66,0 (decimal)

		A C
		9
Bonus	1. 5110 51/8 = 16 R37 638 (octal)	
	618 = 0 KVI	
	2. Alu A 1	
	1010 0001	
	001 010 001	
	1 2 1 1218 (octai)	
	4. 0 x 4 2 4 2	
	0100 0010	
	$001\ 000\ 010$ $1\ 0\ 2 = 102_8(octal)$	
	8	
		- W