Math Diagnostic Test

Econ 103

Name: _____

Score: _____/50

Instructions: You will have 25 minutes to complete this test. As this is merely a diagnostic test, your score will not be factored into your course grade.

- 1. Evaluate each of the following expressions.
 - (a) 1 point 5!

(a) _____

(b) 2 points $\frac{100!}{98!}$

(b) _____

(c) 2 points $\binom{5}{3}$

(c) _____

- 2. True or False?
 - (a) 2 points $\sum_{i=1}^{n} (x_i/n) = (\sum_{i=1}^{n} x_i)/n$

(a) _____

(b) 2 points $\sum_{k=1}^{n} x_k z_k = z_k \sum_{k=1}^{n} x_k$

(b) _____

(c) 2 points $\sum_{k=1}^{m} x_k y_k = (\sum_{k=1}^{m} x_k)(\sum_{k=1}^{m} y_k)$

(c) _____

(d) 2 points $(\sum_{i=1}^{n} x_i)(\sum_{j=1}^{m} y_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i y_j$

(d) _____

(e) 2 points $\sum_{i=1}^{n} x_i / (\sum_{i=1}^{n} z_i) = \sum_{i=1}^{n} (x_i / z_i)$

(e) _____

3. 5 points Suppose that -c < (a-x)/b < c where b > 0. Find a lower bound L and an upper bound U such that L < x < U.

- 4. Let $f(a) = (x a)^2 + (y a)^2$ where x and y are constants.
 - (a) 5 points What value of a minimizes f(a)?

(b) 5 points How can you be sure this is a minimum rather than a maximum?

- 5. Imagine a rectangle whose base is the x-axis and whose bottom left corner is the origin (0,0). Suppose its area is 1 and the length of its base is 3. The area of this rectangle can be expressed as the definite integral of a function f(x) from a to b.
 - (a) $\boxed{3 \text{ points}}$ What is the function f?
 - (b) 2 points What are the limits of integration (a, b)?

6. 5 points Solve
$$\int_0^2 cx^2 dx = 1$$
 for c. Your answer should not involve x .

7. 5 points Let
$$z = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$
. Evalulate $\partial z/\partial b$.

8. 5 points Let
$$F(x) = \int_a^x f(t) dt$$
. Express the derivative $F'(x)$ in terms of f .