

Notebook

¿Qué ofrece?

- 1. Descarga de datos
- 2. Coloca las imágenes de los folders en un arreglo
- 3. Permutación
- 4. Visualización de una imagen

Tener presente

Sólo son 18 personajes los que se van a requerir para el entrenamiento

```
# Esta variable contiene un mapeo de número de clase a personaje.
# Utilizamos sólo los 18 personajes del dataset que tienen más imágenes.
MAP_CHARACTERS = {
    0: 'abraham_grampa_simpson', 1: 'apu_nahasapeemapetilon', 2: 'bart_simpson',
    3: 'charles_montgomery_burns', 4: 'chief_wiggum', 5: 'comic_book_guy', 6: 'edna_krabappel',
    7: 'homer_simpson', 8: 'kent_brockman', 9: 'krusty_the_clown', 10: 'lisa_simpson',
    11: 'marge_simpson', 12: 'milhouse_van_houten', 13: 'moe_szyslak',
    14: 'ned_flanders', 15: 'nelson_muntz', 16: 'principal_skinner', 17: 'sideshow_bob'
}
```


Dataset

Núm	Personaje	#Imágenes
00	Abuelo Abraham	913
01	Apu-Grocer	623
02	Bart	1,342
03	Sr. Burns	1,193
04	Poli-Clancey	986
05	Jeff Magazine Store	469
06	Edna Flanders	457
07	Homero	2,246
08	Kent News	498
09	Krusty	1,206
10	Lisa	1,354
11	Marge	1,291
12	Milhouse	1,079
13	Moe Chelas	1,452
14	Ned Flanders	1,454
15	Nelson Buller	358
16	Director Skinner	1,194
17	Bob Patiño	877

Modelo1 3.0

Crear un modelo capaz de llegar, al menos, a un <mark>accuracy del 89%</mark> sobre los datos de test.

Observaciones

- 1. Arquitectura propia
- 2. Emplear técnicas para evitar el overfitting:
 - 1. Capa Dropout
 - 2. Early stopping
 - 3. DataAugmentation
 - 4. Regularización L1 o L2
- 3. Evaluación del modelo con testset

Análisis 2.0 puntos

- Datos a utilizar.
- Resultados
 - Métricas de precision y recall por clase
 - ¿qué clases obtienen mejores o peores resultados?
- Análisis visual de los errores de la red.
 - ¿Qué tipo de imágenes o qué personajes dan más problemas a nuestro modelo?

Desarrollo de modelos

4 puntos

- Cinco modelos
 - · Se puede usar transfer learning
- Comparación
 - Modelo fully connected
 - · Características de cada modelo
 - Profundidad
 - Hiperparámetros
 - Resultados
 - Análisis visual

Criterios 2 y 3

Redacción del análisis

- Sin faltas de ortografía
- Respaldar con:
 - Grafico de distribución de clases (sólo criterio 2)
 - Gráficos de entrenamiento
 - Tablas
 - Matrices de confusión
 - Reportes de métricas

Criterios 2 y 3

Redacción del análisis

- Redacción (afirmaciones):
 - ✓ De acuerdo a la imagen
 - ✓ Con base en los datos de la tabla
 - ✓ Los valores de las métricas indican
- NO USAR:
 - Suposiciones
 - **×** Creencias
 - × Pensamientos

Data augmentation

1.0

Dos casos:

- 1. Se aplica
- 2. No se aplica

Recomendaciones desarrollo

- 1. Tener presente que la información del dataset ya se encuentra en un arreglo
- 2. Sólo un preprocesamiento
- 3. En pruebas iniciales, no entrenar por más de 20 épocas o utilizar EarlyStoping con un valor en patience
- 4. Guardar los modelos para evitar entrenarlos varias veces
- 5. Cargar modelos para hacer pruebas

Recomendaciones para subir a plataforma

Poner el nombre de su grupo/equipo a los archivos que van a subir a la plataforma.

Fecha de entrega

Miércoles 24 de julio de 2024, 23:59

muchas gracias.

