$\overline{3.1}$

6. (a) Let U and V be subspaces of \mathbb{R}^n . Define the intersection of U and V to be

$$U \cap V = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} \in U \text{ and } \mathbf{x} \in V \}$$

Show that $U \cap V$ is a subspace of \mathbb{R}^n . Give two examples.

We know that $\mathbf{0} \in U$ and $\mathbf{0} \in V$. And so $\mathbf{0} \in U \cap V$. Now if we take any $\mathbf{u}, \mathbf{v} \in U \cap V$ then $\mathbf{u}, \mathbf{v} \in U$ and $\mathbf{u}, \mathbf{v} \in V$ and so $\mathbf{u} + \mathbf{v} \in U$ and $\mathbf{u} + \mathbf{v} \in V$. Thus $\mathbf{u} + \mathbf{v} \in U \cap V$. Similarly $\alpha \mathbf{u} \in U$ and $\alpha \mathbf{u} \in V$ for any $\alpha \in \mathbb{R}$. Thus $\alpha \mathbf{u} \in U \cap V$.

- (b) Is $U \cup V = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} \in U \text{ or } \mathbf{x} \in V \}$ always a subspace of \mathbb{R}^n ? Give a proof or counterexample. Let $V = \{ 3n : \forall n \in \mathbb{Z} \}$ and $U = \{ 2n : \forall n \in \mathbb{Z} \}$. Then $3 \in V$ and $2 \in U$. Therefore $3, 2 \in U \cup V$. But $3 + 2 = 5 \notin V$ and $5 \notin U$. Therefore $5 \notin U \cup V$ and so we have a counterexample.
- 8. Let $\mathbf{v}_1, \dots, \mathbf{v}_k \in \mathbb{R}^n$ and let $\mathbf{v} \in \mathbb{R}^n$. Prove that $\mathrm{Span}(\mathbf{v}_1, \dots, \mathbf{v}_k) = \mathrm{Span}(\mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{v})$ if and only if $\mathbf{v} \in \mathrm{Span}(\mathbf{v}_1, \dots, \mathbf{v}_k)$.

Define $A = \operatorname{Span}(\mathbf{v}_1, \dots, \mathbf{v}_k)$ and $B = \operatorname{Span}(\mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{v})$.

We know that $\mathbf{v} \in B$ and so if we assume that A = B then $\mathbf{v} \in A$ follows immediately. Now lets assume that $\mathbf{v} \in A$. Then for any $\mathbf{x} \in A$ we have $\mathbf{x} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_k \mathbf{v}_k + 0 \mathbf{v} \in B$. Now, because $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_k \mathbf{v}_k$ Then any element $\mathbf{x} \in B$ we have $\mathbf{x} = \beta_1 \mathbf{v}_1 + \dots + \beta_k \mathbf{v}_k + \beta \mathbf{v}$

- 9. Determine the intersection of the subspaces \mathcal{P}_1 and \mathcal{P}_2 in each case:
 - (b) $\mathcal{P}_1 = \operatorname{Span}((1,2,2),(0,1,1)), \mathcal{P}_2 = \operatorname{Span}((2,1,1),(1,0,0))$

$$a \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} - c \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} - d \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 0 \Rightarrow \begin{bmatrix} 1 & 0 & 2 & 1 \\ 2 & 1 & 1 & 0 \\ 2 & 1 & 1 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & -3 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

And so we have two free variables. Which means given any element in \mathcal{P}_1 we can find that element in \mathcal{P}_2 and the other way around. That is $\mathcal{P}_1 = \mathcal{P}_2$

(c) $\mathcal{P}_1 = \operatorname{Span}((1,0,-1),(1,2,3))$, $\mathcal{P}_2 = \{\mathbf{x}: x_1 - x_2 + x_3 = 0\}$ Converting \mathcal{P}_2 to standard form we have $\mathbf{x} = \begin{pmatrix} x_1 \\ x_1 + x_3 \\ x_3 \end{pmatrix}$ or $\mathcal{P}_2 = \operatorname{Span}\{(1,1,0),(0,1,1)\}$. And so we put everything in an array as above

Which gives us one free variable, and so the two planes intersect on a line. We notice that (1,0,-1)=(1,1,0)-(0,1,1) and so since (1,0,-1) is in P_1 and in P_2 so any element in $\mathrm{Span}(1,0,-1)$ is in the intersection, thus we have found our line.

11. Suppose V and W are orthogonal subspaces of \mathbb{R}^n , i.e., $\mathbf{v} \cdot \mathbf{w} = 0$ for every $\mathbf{v} \in V$ and every $\mathbf{w} \in W$. Prove that $V \cap W = \{\mathbf{0}\}$.

Start by assuming there exists some element $\mathbf{u} \in V \cap W$ such that $\mathbf{u} \neq \mathbf{0}$. Then because $\mathbf{u} \in V$ and $\mathbf{u} \in W$ we know that $\mathbf{u} \cdot \mathbf{u} = \mathbf{0}$. And of course $\mathbf{u} \cdot \mathbf{u} = ||\mathbf{u}||^2$. But $\mathbf{u} \neq 0$ and so $||\mathbf{u}||^2 > 0$ and $\mathbf{u} \cdot \mathbf{u} \neq 0$ which leaves us with a contradiction. We must assume then that the intersection of these sets contains only $\mathbf{0}$.

15. Let A be an $m \times n$ matrix. Let $V \subset \mathbb{R}^n$ and $W \subset \mathbb{R}^m$ be subspaces.

- (a) Show that $E = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} \in W \}$ is a subspace of \mathbb{R}^n . Of course $A\mathbf{0} = \mathbf{0} \in W$. Let us choose $\mathbf{x}, \mathbf{y} \in E$. Then we have $A\mathbf{x} \in W$ and $A\mathbf{y} \in W$ and so $A\mathbf{x} + A\mathbf{y} \in W$. But $A\mathbf{x} + A\mathbf{y} = A(\mathbf{x} + \mathbf{y})$ and so $\mathbf{x} + \mathbf{y} \in E$. And if $A\mathbf{x} \in W$ then $\alpha A\mathbf{x} \in W$ for any $\alpha \in \mathbb{R}$. So because $\alpha A\mathbf{x} = A(\alpha \mathbf{x})$ then we have $\alpha \mathbf{x} \in E$. And so E is a subspace.
- (b) Show that $F = \{ \mathbf{y} \in \mathbb{R}^m : \mathbf{y} = A\mathbf{x} \text{ for some } \mathbf{x} \in V \}$ is a subspace of \mathbb{R}^m Observe that $\mathbf{0} = A\mathbf{0}$ and $\mathbf{0} \in V$. And so $\mathbf{0} \in F$. Now, let us take $\mathbf{u}, \mathbf{v} \in F$. Then $\mathbf{u} = A\mathbf{x}_1$ and $\mathbf{v} = A\mathbf{x}_2$ where $\mathbf{x}_1, \mathbf{x}_2 \in V$. Now $\mathbf{u} + \mathbf{v} = A\mathbf{x}_1 + A\mathbf{x}_2 = A(\mathbf{x}_1 + \mathbf{x}_2)$. But $\mathbf{x}_1 + \mathbf{x}_2 \in V$ and so $\mathbf{u} + \mathbf{v} \in F$. And if we choose $\alpha \in \mathbb{R}$ then $\alpha \mathbf{u} = \alpha A\mathbf{x} = A(\alpha \mathbf{x})$ for some $\mathbf{x} \in V$. And since $\mathbf{x} \in V$ then $\alpha \mathbf{x} \in V$ and so $\alpha \mathbf{u} \in F$. Thus F is a subspace.
- 16. Suppose A is a symmetric $n \times n$ matrix. Let $V \subset \mathbb{R}^n$ be a subspace with the property that $A\mathbf{x} \in V$ for every $\mathbf{x} \in V$. Show that $A\mathbf{y} \in V^{\perp}$ for all $\mathbf{y} \in V^{\perp}$
 - We choose some $\mathbf{y} \in V^{\perp}$ and $\mathbf{x} \in V$. Then $\mathbf{x} \cdot \mathbf{y} = \mathbf{0}$. Now if $\mathbf{x}A\mathbf{y} = \mathbf{0}$ then $A\mathbf{y} \in V^{\perp}$. Of course $\mathbf{x}A\mathbf{y} = A^T\mathbf{x}^T\mathbf{y} = (A\mathbf{x})\mathbf{y}$. But $A\mathbf{x} \in V$ and so $(A\mathbf{x})\mathbf{y} = 0$ therefore $A\mathbf{y} \in V^{\perp}$