

Introdução a Engenharia de Computação

Sistemas Digitais

Prof. Anderson Luiz Fernandes Perez

Universidade Federal de Santa Catarina Centro de Ciências, Tecnologias e Saúde (CTS) Departamento de Computação

Email: anderson.perez@ufsc.br

Conteúdo

- Introdução
- Sistemas de Numeração
- Eletrônica Digital

 Os circuitos digitais utilizam pulsos de eletricidade enquanto que os circuitos analógicos utilizam fluxos de eletricidade que podem ter corrente e tensão continuamente variáveis.

1 1 0 0 0 0 11111 000

- Os valores expressos na eletrônica digital são 1 e
 0, que por exemplo, podem indicar, 5V e 0V.
- Esse valores são chamados de bit (Binary Digit).
- Um conjunto de 8 bits forma um byte.
- Além do byte existem outras unidades como:
 - KB (Kilo byte)
 - MB (Mega byte)
 - GB (Giga byte)
 - TB (Tera byte)

- Conversão Binária
 - Para converter um valor em decimal (base 10) para binário,
 basta fazer divisões sucessivas por 2.
 - Exemplo:
 - Valor 5₁₀

- Conversão Binária
 - Para converter um valor em binário (base 2) para decimal, basta multiplicar o número pela potência de sua respectiva posição (da direita para a esquerda).
 - Exemplo:
 - Valor 11111011101₂
 - $1 \times 2^{0} + 0 \times 2^{1} + 1 \times 2^{2} + 1 \times 2^{3} + 1 \times 2^{4} + 0 \times 2^{5} + 1 \times 2^{6} + 1 \times 2^{7} + 1 \times 2^{8} + 1 \times 2^{9} + 1 \times 2^{10} =$
 - 1 + 0 + 4 + 8 + 16 + 0 + 64 + 128 + 256 + 512 + 1024 = 2013
 - O número 11111011101₂ em decimal é: 2013

- Portas lógicas
 - São circuitos eletrônicos com uma ou mais entradas que geram apenas uma única saída.
 - As portas lógicas utilizadas na eletrônica digital são:
 - E
 - OU
 - Não
 - OU Exclusivo
 - Não E
 - Não OU
 - Não OU Exclusivo

- Portas lógicas
 - Porta E (AND)
 - A saída tem valor lógico 1 se e somente se todas as entradas tiverem valor lógico 1.
 - Tabela verdade:

Entrada 1	Entrada 2	Saída
0	0	0
0	1	0
1	0	0
1	1	1

- Portas lógicas
 - Porta OU (OR)
 - A saída tem valor lógico 1 se uma das entradas ou ambas tiver valor lógico 1.
 - Tabela verdade:

Entrada 1	Entrada 2	Saída
0	0	0
0	1	1
1	0	1
1	1	1

- Portas lógicas
 - Porta NÃO (NOT)
 - A saída tem valor lógico 1 se a entrada tiver valor lógico
 O e valor lógico 0 se a entrada tiver valor lógico 1.
 - Tabela verdade:

Entrada 1	Saída
0	1
1	0

- Portas lógicas
 - Porta OU Exclusivo (XOR)
 - A saída tem valor lógico 1 se e somente se uma das entradas tiver valor lógico 1.
 - Tabela verdade:

Entrada 1	Entrada 2	Saída
0	0	0
0	1	1
1	0	1
1	1	0

- Portas lógicas
 - Porta E NEGADO (NAND)
 - A saída é a negação do resultado da operação AND.
 - Tabela verdade:

Entrada 1	Entrada 2	Entrada 1 AND Entrada 2	NAND
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

- Portas lógicas
 - Porta OU NEGADO (NOR)
 - A saída é a negação do resultado da operação OR.
 - Tabela verdade:

Entrada 1	Entrada 2	Entrada 1 OR Entrada 2	NOR
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Símbolo:

- Portas lógicas
 - Porta OU Exclusivo NEGADO (XNOR)
 - A saída é a negação do resultado da operação XOR.
 - Tabela verdade:

Entrada 1	Entrada 2	Entrada 1 XOR Entrada 2	XNOR
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

Símbolo:

- Circuitos Integrados que Implementam Portas Lógicas
 - Porta AND

• CI 7408

- Circuitos Integrados que Implementam Portas Lógicas
 - Porta OR
 - CI 7432

- Circuitos Integrados que Implementam Portas Lógicas
 - Porta NOT
 - CI 7404

- Circuitos Integrados que Implementam Portas Lógicas
 - Porta XOR
 - CI 7486

- Circuitos Integrados que Implementam Portas Lógicas
 - Porta NAND
 - CI 7400

- Circuitos Integrados que Implementam Portas Lógicas
 - Porta NOR
 - CI 7402

- Circuitos Integrados que Implementam Portas Lógicas
 - Porta XNOR
 - CI 7266

- Circuitos Integrados que Implementam Portas Lógicas
 - Exemplo: porta lógica AND

- Circuitos Integrados que Implementam Portas Lógicas
 - Exemplo: porta lógica AND

- Circuitos Integrados que Implementam Portas Lógicas
 - Exemplo: porta lógica NAND

- Circuitos Integrados que Implementam Portas Lógicas
 - Exemplo: porta lógica NAND

- Circuitos Integrados que Implementam Portas Lógicas
 - Exemplo: porta lógica XOR

- Circuitos Integrados que Implementam Portas Lógicas
 - Exemplo: porta lógica XOR

