Федеральное государственное автономное образовательное учреждение высшего образования

Университет ИТМО

Дисциплина: Моделирование

Учебно-исследовательская работа 1 «Обработка результатов измерений»

Вариант 1

Выполнили:

Марков Петр Денисович Кривоносов Егор Дмитриевич

Группа: Р34111

Преподаватель:

Алиев Тауфик Измайлович

2022 г.

Санкт-Петербург

Оглавление

Цель работы	3
Задание	3
Выполнение	5
Пункт 1-2.	5
Таблица 1. Характеристики исходной числовой последовательности	5
Пункт 3.	5
Рисунок 1. График значений исходной числовой последовательности	6
Пункт 4.	6
Таблица 2. Коэффициенты автокорреляции (АК) для исходной числовой последовательности	6
Рисунок 2. Коэффициенты автокорреляции (АК) относительно параметра "Сдвиг ЧП"	6
Пункт 5.	7
Рисунок 3. Гистограмма распределения частот для заданной числовой последовательности	7
Пункт 6-7.	7
Таблица 3. Характеристики случайной числовой последовательности	8
Рисунок 4. Гистограмма распределения частот для случайной числовой последовательности	9
Рисунок 5. Гистограмма распределения частот для случайной и исходной числово последовательности (сравнение)	ой 9
Таблица 4. Коэффициенты автокорреляции для случайной последовательности	9
Вывод	9

Цель работы

Изучение методов обработки и статистического анализа результатов измерений на примере заданной исходной числовой последовательности путем оценки числовых моментов и выявления свойств последовательности (случайности и периодичности на основе корреляционного анализа), а также аппроксимация закона распределения исходной последовательности по двум числовым моментам случайной величины.

Задание

В процессе исследований необходимо выполнить обработку заданной числовой последовательности:

- оценить числовые моменты заданной числовой последовательности:
 - математическое ожидание;
 - о дисперсию;
 - среднеквадратическое отклонение;
 - о коэффициент вариации
- рассчитать доверительные интервалы для оценки математического ожидания с доверительными вероятностями 0,9; 0,95 и 0,99;
- построить график значений для заданной числовой последовательности и определить ее характер, а именно: является эта последовательность возрастающей/убывающей, периодичной (при наличии периодичности оценить по графику длину периода);
- выполнить автокорреляционный анализ и оценить, можно ли заданную числовую последовательность считать случайной;
- построить гистограмму распределения частот для заданной числовой последовательности;
- выполнить аппроксимацию закона распределения заданной случайной последовательности по двум начальным моментам, используя одно из следующих распределений в зависимости от значения коэффициента вариации:
 - о равномерный;
 - о экспоненциальный;
 - нормированный Эрланга k-го порядка или гипоэкспоненциальный с заданным коэффициентом вариации;
 - о гиперэкспоненциальный с заданным коэффициентом вариации;
- сгенерировать последовательность случайных величин в соответствии с полученным законом распределения, сравнить на графике с заданной последовательностью и оценить корреляционную зависимость сгенерированной и заданной последовательности случайных величин.

Результаты проводимых исследований рекомендуется представлять в виде таблиц, графиков (гистограмм).

На основе полученных промежуточных и конечных результатов следует сделать обоснованные выводы об исследуемой числовой последовательности, предложить закон распределения для ее описания и оценить качество аппроксимации этим законом.

Выполнение

Пункт 1-2.

Таблица 1. Характеристики исходной числовой последовательности

			•						
V	Количество случайных величин								
Характеристика	10	50	100	200	300				
Мат.ож.	17.643	22.715	22.773	22.324	22.707				
Дов. инт. (0,9)	±10.395	±7.718	±6.329	±4.418	±3.696				
Дов. инт. (0,95)	ов. инт. (0,95) ±12.401		±7.550	±5.270	±4.410				
Дов. инт. (0,99) ±16.298		±12.101	±9.923	±6.926	±5.796				
Дисперсия	400.283	1103.380	1483.766	1445.819	1518.538				
C.K.O.	20.007	33.217	38.520	38.024	38.968				
К-т вариации	т вариации 1.134 1.4		1.691	1.703	1.716				

Чем больше значений берется в выборке, тем точнее рассчитываются параметры. Значение коэффициента вариации приближено к 2-м.

Пункт 3.

Рисунок 1. График значений исходной числовой последовательности

Изучив график, можно сделать вывод, что исходная последовательность не является периодической, возрастающей или убывающей.

Пункт 4.

Таблица 2. Коэффициенты автокорреляции (АК) для исходной числовой последовательности

Сдвиг ЧП	1	2	3	4	5	6	7	8	9	10
К-т АК	-0.0194	-0.0144	-0.1001	-0.0838	-0.0202	0.0285	0.0501	-0.0728	0.0667	0.0095

Рисунок 2. Коэффициенты автокорреляции (АК) относительно параметра "Сдвиг ЧП"

Последовательность можно считать случайной так как данные коэффициенты указывают на то, что между числами не было выявлено зависимости, нет тенденции и периодичности.

Пункт 5.

Рисунок 3. Гистограмма распределения частот для заданной числовой последовательности

По гистограмме (рис. 3) мы можем видеть, что большая часть значений располагается в промежутке от 0 до 25, ещё часть располагается до 100 и наименьшая часть значений располагается в диапазоне больше.

Пункт 6-7.

Для данной по варианту выборки коэффициент вариации больше единицы. Следовательно, для аппроксимации будем использовать гиперэкспоненциальное распределение. Значения математического ожидания (22.707) и дисперсии (1518.538) были определены ранее.

$$\begin{split} q &\leq \frac{2}{1+v^2} \approx \, 0.\,5067 \\ q &= \, 0.\,15 \\ t_1 &= \, t \, \times \left[1 \, + \sqrt{\frac{1-q}{2q} {\left(v^2 \, - \, 1 \right)}} \right] = \, 76.\,01391 \\ t_2 &= \, t \, \times \left[1 \, - \sqrt{\frac{q}{2(1-q)} {\left(v^2 \, - \, 1 \right)}} \right] = \, 13.\,3004, \, \mathrm{гдe} \, t \, \, - \, \, \mathrm{математическое} \, \mathrm{ожиданиe} \end{split}$$

После этого были сгенерированы случайные числа с помощью встроенной функции Google Sheets, =RANDARRAY (301,1). И уже на основе выше полученных параметров получена числовая последовательность.

Таблица 3. Характеристики случайной числовой последовательности

Характеристика	Количество случайных величин								
	10	50	100	200	300				
Мат.ож.	37.382	23.797	22.466	23.887	22.750				
Дов. инт. (0,9)	±24.736	±7.521	±6.128	±4.730	±3.630				
Дов. инт. (0,95) ±29.508		±8.972	±8.972 ±7.310		±4.330				
Дов. инт. (0,99)	±38.783	±11.792	±9.608	±7.417	±5.691				
Дисперсия	2266.630	1047.814	1391.076	1657.845	1464.035				
C.K.O.	47.609	32.370	37.297	40.717	38.263				
К-т вариации	1.274	1.360	1.660	1.705	1.682				

Математическое ожидание отличается от математического ожидания исходной выборки на величину, не превосходящую доверительные интервалы. Это говорит о том, что аппроксимация выполнена качественно.

Рисунок 4. Гистограмма распределения частот для случайной числовой последовательности

Рисунок 5. Гистограмма распределения частот для случайной и исходной числовой последовательности (сравнение)

При сравнении полученных гистограмм видно, что полученная нами последовательность практически идентична исходной. Тем самым, мы доказали, что выбранная нами аппроксимация подходит.

Таблица 4. Коэффициенты автокорреляции для случайной последовательности

Сдвиг ЧП	1	2	3	4	5	6	7	8	9	10
К-т АК	-0.1178	-0.0117	-0.1194	0.0530	-0.1294	0.0406	-0.0383	0.0308	-0.0667	0.0593

Коэффициент автокорреляции интервалов от 1 до 10 приближены к нулю, следовательно, можно сказать, что выборка случайна.

$$r = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \times \sqrt{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}} \approx 0.978$$

Для сгенерированной и полученной последовательности мы рассчитали корреляционную зависимость. Как мы видим $1 \ge |r| \ge 0.8$, тем самым мы доказали, что зависимость тесная и выбранный нами метод аппроксимации подходит.

Вывод

В рамках лабораторной работы была дана числовая последовательность, для которой мы определили математическое ожидание, дисперсию и другие параметры. Далее мы проанализировали построенную гистограмму, по которой не было выявлено возрастания, убывания или периодичности последовательности. Исследуемую последовательность можно назвать случайной исходя из автокорреляционного анализа. Затем мы вычислили параметры аппроксимирующего закона и по ним сгенерировали новую последовательность. Коэффициент вариации первой и второй последовательности приближен к двум, Коэффициент автокорреляции первой и второй последовательности варьируется около нуля, исходя из этого можно сказать то, что выборка случайна. Математическое ожидание и дисперсия отличаются, но отличие не выходит за пределы доверительных интервалов.