International Line Iceberg Display

Product Owner Reference

Mr. Cline

US Coast Guard Research and Development Center

Revised 10/18/2018

Team Members

- Owner Mr. Cline
- Advisor Dr. Mraz
- Subject Matter Expert Dr. Kessler
- Subject Matter Expert Mr. Gold
- 2/c Christopher Rosselot
- 2/c Luke Arsenault
- 2/c Hayden Carter
- 2/c Maylis Yepez
- 2/c Thomas Hardy

Product Elevator Pitch Statement

L.I.D takes daily information transmitted from the NAIS
 (North American Ice Service), converts LAT/LONG position of iceberg
 risk boundaries into a usable format of contour lines which then will
 be sent out to mariners to be plotted on commercial navigation
 equipment.

Product Vision Board

Target Customer	Needs	Product	Value
Mr. Cline	Validation of output	The code to run the software	Continual development of software to support the missions of IIP
Public Mariners	Save time and feel safe when navigating by icebergs	Software compatible with AIS/Nav system	Keep local mariners safe, and substantial time saving
NAIS	Quick dissemination of information from NAIS	Software that's ready to publish new data daily	Fewer errors with conversion of daily information

Customer Persona

Profile	Goals	Persona Name
ORCA at CG RnD Center	Demonstrate Practicality	Calvin
Mariners traversing the North Atlantic	Have program to keep them safe	Captain Hook
Organization of people disseminating information on icebergs	Have a software to invert text file into mappable data	Big Brother

Impact Mapping

Goal	Actor	Impact	Deliverable	
	Big Brother	Progress in an ongoing project and success in the subproject	Working Program	
	Calvin		Software with mappable data	
Intaking daily risk contours, converting to AIS payload	Captain Hook	Automoted delivery of information	Display on true navigation systems	
	Capitaine Hook	Automated delivery of information, allowing better	domestic and international	
	CAPT Vann	situational awareness of iceberg risk area	Display on Portable Device (Laptop)	
	Iceberg Chasers		Display on internet	
	Risk Takers	Informed decisions made for risk taking	Density of icebergs within a specific region	
	Casual File Uploaders	Ability to use data in commercial systems (google earth)	File Conversion to kml	
	Climate Change Enthusiasts		Historical data, trends, moving graph, access from internet,	
	Polar Research Fleet	Access to information to bolster research/arguments	display on navigation systems and portable devices	

Activity Diagram

Activity Diagram – Sprint 1

Initial Sprint Efforts to demonstrate ingesting data and producing intermediate decimal data for Bearing/Distance calculations.

Sprint 1

• Date: 300CT19 Sprint: 1-2 Team: LID

	Task	Priority	Est Time	Assigned	Actual Time	Percent Complete
1	Create our own Bulletin	5	1	Maylis Yepez	1	100
2	Use Google Earth to Load A KML file	7	2	Hayden Carter	2	100
3	Bulletin Acquisition	7	3	Christopher Rosselot	3	100
4	Data Parser	10	4	Tom Hardy	6	100
5	KML File Creation	8	4	Hayden Carter	5	100
6	Distance/Bearing Research	6	3	Maylis Yepez	3	80
7	GitHub Operational	9	2	Chris Rosselot	2	100
8	Tv-32 Research	7	3	Luke Arsenault	3	80
9	Integration between 3 classes	10	2	Tom Hardy, Chris Rosselot	2	100
10	Backup KML File	4	2	Luke Arsenault	3	100

Tasks performed to provide Google Earth representation of Iceberg Risk limits.

Sprint 1

Bulletin Image of NAIS website

Transformation to Google Earth

Visual Validation of transformation of coordinates to Google Earth KLM.

LATEST ICEBERG BULLETIN
1. NORTH AMERICAN ICE SERVICE (NAIS)
ICEBERG BULLETIN 050001Z NOV.
2. ICEBERG LIMIT ALONG TRACKLINE JOINING
49-15N 053-30W, 49-15N 051-30W,
54-00N 051-00W, 56-00N 053-00W.
3. ESTIMATED ICEBERG LIMIT ALONG
TRACKLINE JOINING
56-00N 053-00W, 61-00N 059-00W,
62-00N 054-00W, 58-00N 048-00W,
58-00N 040-00W, 64-00N 037-00W,
66-00N 028-00W.
4. WESTERN ICEBERG LIMIT ALONG TRACKLINE
JOINING
51-52N 056-05W, 51-34N 055-55W.
5. SEA ICE LIMIT ALONG TRACKLINES
JOINING:
A. 63-40N 077-00W, 63-55N 074-25W,
62-25N 070-35W, 61-10N 064-30W,
62-00N 064-20W.
B. 60-25N 064-45W, 58-55N 067-35W,
61-20N 069-15W, 62-50N 074-15W,
62-25N 080-35W, 58-30N 079-45W,
55-35N 078-10W, 54-50N 080-15W,
52-10N 079-20W, 51-30N 080-30W.
C. 62-00N 064-20W, 66-55N 060-40W,
68-30N 066-05W, 70-25N 067-10W,
72-10N 069-35W, 73-25N 066-25W.

9. CANCEL THIS MSG 060001Z NOV 19.

Original Iceberg Data Lat – Long format

```
49.25,-53.5 49.25,-51.5 54,-
51 56,-53 56,-53 61,-59 62,-
54 58,-48 58,-40 64,-37 66,-
28 51.866666,-56.083333
51.566666,-55.916666
63.666666,-77 63.916666,-
74.416666 62.416666,-
70.583333 61.166666,-64.5
62,-64.333333 60.416666,-
64.75 58.916666,-67.583333
61.333333,-69.25
62.833333,-74.25
62.416666,-80.583333 58.5,-
79.75 55.583333,-78.166666
54.833333,-80.25
52.166666,-79.333333 51.5,-
80.5 62,-64.333333
66.916666,-60.666666 68.5,-
66.083333 70.416666,-
67.166666 72.166666,-
69.583333 73.416666,-
66.416666
```

Transform to Decimal Coordinates

```
<?xml version="1.0" encoding="utf-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
 <Document id="null">
  <name>MyDoc</name>
  <open>true</open>
  <Style id="thisusedtobelongname">
   <LineStyle>
    <color>501400fa</color>
    <width>10</width>
   </LineStyle>
   <PolyStyle>
    <color>501400fa</color>
   </PolyStyle>
  </Style>
  <Placemark>
   <name>hayden</name>
   <visibility>false</visibility>
   <styleUrl>#thisusedtobelongname</styleUrl>
   <LineString>
    <extrude>true</extrude>
    <tessellate>true</tessellate>
    <altitudeMode>clampToGround</altitudeMode>
    <coordinates>-53.5,49.25
-51.5,49.25
-51,54
-53,56</coordinates>
   </LineString>
                        Google Earth KML
  </Placemark>
                           Line Segment
 </Document>
                          Representation
</kml>
```

Sprint 2