\mathcal{U} -Bootstrap percolation

Leo Davy Martin Gjorgjevski Alexandre Pak

ENS Lyon M2 Advanced Mathematics

March 2022

Update rules

- An update rule is a finite set $X \subseteq \mathbb{Z}^2 \{0\}$
- An update family is a finite collection of update rules $\mathscr{U} = \{X \subseteq \mathbb{Z}^2 \{0\}\}$

 ${\mathcal U}$ -Bootstrap percolation initialized at A refers to the following process:

- $A_0 = A$
- $A_{t+1} = A_t \cup \{x \in \mathbb{Z}^2 : x + X \subseteq A_t \text{ for some } X \in \mathcal{U}\}$

- The set A is known as the set of initially infected sites
- The closure of A is defined as $[A] = \bigcup_{t \geq 0} A_t$
- The initialization is random i.e. each site (vertex) in \mathbb{Z}^2 is infected with probability p independently from the other vertices
- The process is monotone i.e. if a site gets infected, it stays infected forever
- After the initialization, the process is deterministic in the sense that a site will get infected if and only if there is some rule X in W such that x + X is infected

Examples

Figure: Oriented site, rules U_1 and U_2 for spiral model

- r-Neighbour models for r=1,2,3,4
- Oriented site W = {(-1,1), (1,1)}
- Spiral $\mathscr{U} = \{U_1, U_2, U_3, U_4\}$, where $U_1 = \{(1, -1), (1, 0), (1, 1), (0, 1)\}$ $U_2 = \{(1, -1), (1, 0), (-1, -1), (0, -1)\}$ $U_3 = -U_1, U_4 = -U_2$
- Directed triangular bootstrap percolation

Stable directions, basic properties

For a vector $u \in \mathbb{S}^1$, we define $\mathbb{H}_u = \{x \in \mathbb{Z}^2 | < x, u > < 0\}$.

Definition

Given an update family \mathscr{U} , a direction $u \in \mathbb{S}^1$ is

- stable if $[\mathbb{H}_u] = \mathbb{H}_u$. The set of stable directions is denoted by $\mathscr{S} = \mathscr{S} U$
- strongly stable if $u \in int \mathscr{S}$
- unstable if it is not stable
- Dichotomy $[\mathbb{H}_u] \in {\mathbb{H}_u, \mathbb{Z}^2}$
- $\mathscr{S} \subseteq \mathbb{S}^1$ is a set of stable directions for some update familit \mathscr{U} if and only if it can be expressed as a union of closed intervals with rational endpoints¹ in \mathbb{S}^1

¹A direction $u \in \mathbb{S}^1$ is said to be rational if there is a point in the grid $\mathbb{Z}^2 \cap \{\lambda u | \lambda \in \mathbb{R}\}$ 1

Classification of \mathcal{U} -Bootstrap percolation

 \mathscr{U} -bootstrap percolation update families exhibit different properties based on their stable sets. Let \mathscr{U} be an update family with a set of stable directions \mathscr{S}

- If there is a open semicircle C such that $\mathscr{S} \cap C = \emptyset$ then \mathscr{U} is said to be **supercritical**
- If every open semicircle C intersects \mathscr{S} , but there is an open semicircle C_0 that doesn't intersect $int\mathscr{S}$ then \mathscr{U} is said to be **critical**
- If every open semicircle C intersects intS then W is said to be critical

Supercritical and critical families

Infection time of the origin

The infection time of 0 is defined as $\tau_p = \inf\{t \in \mathbb{N} : 0 \in A_t\}$, given that $A_0 = A$ is sampled according to a Bernoulli p distribution

- For supercritical families, $\tau_p = p^{-\Theta(1)}$ as $p \to 0$ with high probability
- For critical families, $\tau_p = \exp(p^{-\Theta(1)})$ as $p \to 0$ with high probability

Corollary: For supercritical and critical families, $p_c=\inf\{p>0|P_p([A]=\mathbb{Z}^2)=1\}=0$ i.e. for any p>0 we have percolation.

However, for subcritical families the situation is different.

d_{μ}^{θ} measures directions that are difficult to infect

Critical densities with conic boundary conditions

For $u \in \mathbb{S}^1$ and $\theta \in [-\pi, \pi]$

$$d_u^{ heta} := \inf \left\{ q \in [0,1], \sum_n n \mathbb{P}_q (0 \not\in [(A \cup V_{u,u+ heta}) \cap B_n]) < \infty
ight\}$$

Morally, the critical probability with infection of $V_{u,u+\theta} = \mathbb{H}_u \cap \mathbb{H}_{u+\theta}$.

- The summand decays slowly in n when it is hard to infect the origin using only infections at distance less than n. So, when it is hard to infect 0, d_u^{θ} is large².
- When $\theta \sim \pm \pi$, few sites are infected, so it is easy for the origin not to be infected, the summand can be large. Hence, d_{μ}^{θ} decreases when $\theta \to 0$
- $d_u^{\pm} := \lim_{\theta \to 0^{\pm}} d_u^{\theta}$ can be large when a small number of infections is not enough to infect the origin, even with a

Theorem

For any \mathcal{U} -bootstrap percolation model, its critical probability

$$\tilde{q}_c = \inf\{q \in [0,1], \sum_n n \mathbb{P}_q (0 \not\in [A \cap B_n]) < \infty\}$$

is equal to the maximal value of its critical density function

$$\textit{d}_{\textit{u}} = \max_{0^{\pm}} \inf \{ \textit{q} \in [0,1], \sum_{\textit{n}} \textit{n} \mathbb{P}_{\textit{q}} (0 \not\in [(\textit{A} \cup \textit{V}_{\textit{u},\textit{u}+0^{\pm}}) \cap \textit{B}_{\textit{n}}] < \infty \}$$

for u in any semicircle C, i.e.,

$$ilde{q}_c = \inf_{C \in \mathcal{C}} \sup_{u \in C} d_u.$$

Let's denote $E_{u,\theta} = \{0 \not\in [(A \cup V_{u,u+\theta}) \cap B_n]\}$. Then,

$$E_{u,\pm\pi} = \{0 \not\in [A \cap B_n]\} \supset E_{u,\theta}$$

which gives that the following holds for any u

$$\tilde{q}_c \geq \sup_{\theta} \sup_{u} d_u^{\theta} \geq \limsup_{\theta \to 0} \sup_{u} d_u^{\theta} = \sup_{u} d_u.$$

The theorem states that all those quantities are equal.

Meaning of the theorem

The difficulty of the model is as hard as its most difficult direction. In this direction, infecting a half plane doesn't affect the infection of the origin.

Proving sup $d_u \geq \tilde{q}_c$

The goal is to show, that for any $q' > \sup d_u$ it holds that

$$\sum_{n} n \mathbb{P}_{q'}(0 \not\in [A \cap B_n]) < \infty.$$

The idea is to show that, at q', the origin is infected most of the time.

2-step percolation : $q' = \sup d_u + \varepsilon$

- **1** Infect sites with probability ε to find some structures
- Infecting new sites with probability q allows structures to grow

Some details on the proof

- The structures that grow are droplets, with sides $(u_i)_{i=1}^n$ depending on $\sup d_u$.
- In the second percolation, droplets of size L grow into droplets of size $\geq (1 + \delta)L$, for some $\delta > 0$.
- The proof can be done in any semi-circle, so we can get $\tilde{q}_c = \inf_{C \in \mathcal{C}} \sup_{u \in C} d_u$
- The proof contains that $\forall q > \sup d_u$, there exists a constant c(q) > 0 such that

$$\theta_n(q) \leq e^{-c(q)n}$$

Applying the theorem

Theorem

For any update rules U,

$$q_c \leq \tilde{q}_c = \sup_{u \in \mathbb{S}^1} d_u = \inf_{C \in \mathcal{C}} \sup_{u \in C} d_u.$$

In particular, if \mathcal{U} is not subcritical, then $\tilde{q}_c = q_c = 0$

So, having knowledge on $u \mapsto d_u$ allows to upper bound q_c ...

Proposition: (It's harder for submodels to infect)

For any sub-collection of rules $\mathcal{U}' \subset \mathcal{U}$

$$q_c(\mathcal{U}) \leq \tilde{q}_c(\mathcal{U}) \leq \inf_{C} \sup_{u \in C} d_u(\mathcal{U}')$$

... and it is not even necessary to know the critical density for the whole set of rules to get such bounds.

First level bound

DTBP: Directed Triangular Bootstrap Percolation

Let $\mathcal{U}' = \{(-1,-1),(0,1)\}$, one of the rules of DTBP, then

$$q_c(\mathit{DTBP}) \leq ilde{q}_c(\mathit{DTBP}) \leq \inf_{\mathcal{C} \in \mathcal{C}} \sup_{u \in \mathcal{C}} d_u(\mathcal{U}').$$

Applying a general formula for one rule families (using OP) gives $q_c(DTBP) \le 0.245...^a$

^aPrevious known bound was 0.312

Second level bound

However, knowing one rule subfamilies is not enough.

Spiral

For spiral, it is possible to compute d_u for all pairs of rules, such that the difficulty on pairs is the same as the difficulty of some Bidirectional OP:

$$q_c(Spiral) \leq \tilde{q}_c(Spiral) \leq 1 - p_c^{OP}$$
.

And the result is tight.