Multi-Layer High-Q Capacitors

These lines of multilayer capacitors have been developed for High-Q and microwave applications.

- The S-Series (R07S, R14S, R15S) capacitors give an ultrahigh Q performance, and exhibit NP0 temperature characteristics.
- The L-Series (R05L) capacitors give mid-high Q performance, and exhibit NP0 temperature characteristics.
- The E-Series (S42E, S48E, S58E) capacitors give excellent high-Q performance from HF to Microwave frequencies. Typical uses are high voltage, high current applications. These are offered in various terminations styles.
- RoHS compliance is standard for all unleaded parts (see termination options box).
- Automotive versions (AEC-Q200) of R05L, R07S, R14S, R15S, and S42E series are available on request

How to Order

- ¹ Not available for all MLCC Call factory for info.
- ² WVDC Working Voltage DC.
- ³ -Qualification required for automotive application, Not available for all series Call factory for info.

LOW ESR / HIGH-Q CAPACITOR SELECTION CHART

EIA Size					RF Power Applications							
			0201 (R05)	0402	0603	0805	0805	11	11	2525	3838	
Cap. Value		NPO (R05L)	(R07S)	(R14S)	(R15S)	(R15L)	(S42E)		(S48E)	(S58E)		
Capac			(11032)		ļ	ļ.		l		l		
pF	Code				I			1				
0.1	0R1		25/50 V	50/250 V	250 V							
0.2	OR2		25/50 V	50/250 V	250 V	0.501/		500V	1500V			
0.3	0R3		25/50 V	50/250 V	250 V	250 V		500V	1500V			
0.4	0R4 0R5		25/50 V 25/50 V	50/250 V 50/250 V	250 V 250 V	250 V 250 V		500V 500V	1500V 1500V	3600V		
0.6	0R5		25/50 V	50/250 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
0.7	OR7		25/50 V	50/250 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
0.8	OR8		25/50 V	50/250 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
0.9	OR9		25/50 V	50/250 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
1.0	1R0		25/50 V	50/250 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
1.1	1R1		25/50 V	50/250 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
1.2	1R2	Α	25/50 V	50/250 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
1.3	1R3] / `	25/50 V	50/250 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
1.4	1R4	В	25/50 V	50/250 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
1.5	1R5	U	25/50 V	50/250 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
1.6	1R6		25/50 V	50/250 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
1.7	1R7	C	25/50 V	50/250 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
1.8	1R8		25/50 V	50/250 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
1.9	1R9	D	25/50 V	50/250 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
2.0	2R0		25/50 V	50/250 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
2.1	2R1		25/50 V	50/250 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
2.2	2R2 2R4		25/50 V	50/250 V	250 V 250 V	250 V		500V 500V	1500V	3600V	3600V	7200V 7200V
2.7	2R4 2R7		25/50 V 25/50 V	50/250 V 50/250 V	250 V	250 V 250 V		500V	1500V 1500V	3600V 3600V	3600V 3600V	7200V
3.0	3R0		25/50 V	50/250 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
3.3	3R3		25/50 V	50/250 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
3.6	3R6		25/50 V	50/200 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
3.9	3R9		25/50 V	50/200 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
4.3	4R3		25/50 V	50/200 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
4.7	4R7		25/50 V	50/200 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
5.1	5R1	AVV	25/50 V	50/200 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
5.6	5R6	A**	25/50 V	50/200 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
6.2	6R2	В	25/50 V	50/200 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
6.8	6R8	_	25/50 V	50/200 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
7.5	7R5	C	25/50 V	50/200 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
8.2	8R2	D	25/50 V	50/200 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
9.1	9R1		25/50 V	50/200 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
10	100		25/50 V	50/200 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
11	110		25/50 V	50/200 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
12 13	120 130	F	25/50 V 25/50 V	50/200 V 50/200 V	250 V 250 V	250 V 250 V		500V 500V	1500V	3600V 3600V	3600V 3600V	7200V 7200V
15	150		25/50 V 25/50 V	50/200 V 50/200 V	250 V	250 V		500V	1500V 1500V	3600V	3600V	7200V 7200V
16	160	G	25/50 V 25/50 V	50/200 V	250 V	250 V		500V	1500V	3600V	3600V	7200V 7200V
18	180	J	25/50 V	50/200 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
20	200	J	25/50 V	50/200 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
22	220	J	25/50 V	50/200 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
24	240	V	25/50 V	50/200 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
27	270	K	25/50 V	50/200 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
30	300		25/50 V	50 V	250 V	250 V		500V	1500V	3600V	3600V	7200V
33	330		25/50 V	50 V	250 V	250 V		500V	1500V	3600V	3600V	7200V

Consult factory for Non-Standard values.

^{**}A tolerance only available for R07S (0402) and R14S(0603) caps

LOW ESR / HIGH-Q CAPACITOR SELECTION CHART

EIA Size					RF Power Applications								
		0201 (R05)	0402	0603	0805	0805	11	11	2525	38	3838		
Cap. Value		NPO (R05L)	(R07S)	(R14S)	(R15S)	(R15L)	(S42E)		(S48E)	(S58E)			
Capacitance Toler-													
pF	Code	ance										l	
36	360		25/50 V		250 V	250 V		500V	1500V	3600V	3600V	7200V	
39	390	-	25/50 V		250 V	250 V		500V	1500V	3600V	3600V	7200V	
43	430	-	25/50 V		250 V	250 V		500V	1500V	3600V	3600V	7200V	
47	470		25/50 V		250 V	250 V		500V	1500V	3600V	3600V	7200V	
51	510	-	25/50 V		250 V	250 V		500V	1500V	3600V	3600V	7200V	
56	560		25/50 V		250 V	250 V		500V	1500V	3600V	3600V	7200V	
62	620		25/50 V		250 V	250 V		500V	1500V	3600V	3600V	7200V	
68	680		25/50 V		250 V	250 V		500V	1500V	3600V	3600V	7200V	
75	750		25/50 V		250 V	250 V		500V	1500V	3600V	3600V	7200V	
82	820	F	25/50 V		250 V	250 V		500V	1500V	3600V	3600V	7200V	
91	910		25/50 V		250 V	250 V		500V	1500V	3600V	3600V	7200V	
100	101	G	25/50 V		250 V	250 V		500V	1500V	3600V	3600V	7200V	
110	111					250 V		300V	1500V	2500V	3600V	7200V	
120	121					250 V		300V	1000V	2500V	3600V	7200V	
130	131	J				250 V		300V	1000V	2500V	3600V	7200V	
150	151					250 V		300V	1000V	2500V	3600V	7200V	
160	161	K				250 V		300V	1000V	2500V	3600V	7200V	
180	181					250 V		300V	1000V	2500V	3600V	7200V	
200	201					250 V		300V	1000V	2500V	3600V		
220	221					250 V		200V	1000V	2500V	3600V		
240	241						200/500V	200V	600V	2500V	3600V		
270	271						200/500V	200V	600V	2500V	3600V		
300	301						200/500V	200V	600V	1500V	3600V		
330	331						200/500V	200V	600V	1500V	3600V		
360	361						200/500V	200V	600V	1500V	3600V		
390	391						200/500V	200V	500V	1500V	3600V		
430	431						200/500V	200V	500V	1500V	2500V		
470	471						500V	200V	500V	1500V	2500V		
510	511						100V	200V	500V	1000V	2500V		
560	561						100V	200V	500V	1000V	2500V		
620	621						100V	200V	500V	1000V	2500V		
680	681						50V	200V		1000V	2500V		
750	751	Г					50V	200V		1000V	2500V		
820	821	F					50V	200V		1000V	2500V		
910	911	G					50V	200V		1000V	1000V		
1000	102						50V	200V		1000V	1000V		
1200	122						50V			1000V	1000V		
1500	152	J					50V			500V	1000V		
1800	182	17					50V			500V	1000V		
2200	222	K					50V			300V	1000V		
2700	272									300V	500V		
3300	332										500V		
3900	392										500V		
4700	472										500V		
5100	512										500V		
10000	103										300V		

Consult factory for Non-Standard values.

DIELECTRIC CHARACTERISTICS

NPO

TEMPERATURE COEFFICIENT: 0 ± 30 ppm /°C, -55 to 125°C

QUALITY FACTOR / DF: Q>1,000 @ 1KHz (C>1,000pF), Typical 10,000 (C<1,000 pF)

INSULATION RESISTANCE: >100 GΩ @ 25°C,WVDC1;

125°C IR is 10% of 25°C rating

TEST PARAMETERS: 1MHz \pm 50kHz, 1.0 \pm 0.2VRMS for capacitance values \leq 1,000pF

1kHZ ±50Hz, 1.0±0.2VRMS for capacitance values > 1,000pF

DIELECTRIC STRENGTH: $500 \text{ V} \le 2.5 \text{ X WVDC}^{1} \text{ Min., } 25^{\circ}\text{C, } 50 \text{ mA max}$

> $1000 \text{ V} \le 1.5 \text{ X WVDC}^{1} \text{ Min., } 25^{\circ}\text{C., } 50 \text{ mA max}$ > 1500 = 1.2 X WVDC1 Min., 25°C, 50 mA max

AVAILABLE CAPACITANCE:

Size 0201: 0.2 - 100 pF Size 1111: 0.2 - 1000 pF Size 0402: 0.2 - 33 pF Size 2525: 1.0 - 2700 pF Size 0603: 0.2 - 100 pF Size 3838: 1.0 - 5100 pF

Size 0805: 0.3 - 220 pF

RESISTANCE TO

STEADY STATE:

MECHANICAL & ENVIRONMENTAL CHARACTERISTICS

SPECIFICATION TEST PARAMETERS

SOLDERABILITY: Solder coverage ≥ 90% of metalized areas Preheat chip to 120°-150°C for 60 sec., dip terminals in rosin flux

No termination degradation then dip in Sn62 solder @ 240°±5°C for 5±1 sec

No mechanical damage Preheat device to 80°-100°C for 60 sec. SOLDERING HEAT: Capacitance change: ±2.5% or 0.25pF followed by 150°-180°C for 60 sec.

Q>500 I.R. >10 G Ohms Dip in 260°±5°C solder for 10±1 sec. DWV2: 2.5 x WVDC1 Measure after 24±2 hour cooling period

TERMINAL Termination should not pull off. Linear pull force³ exerted on axial leads soldered to each terminal. ADHESION: Ceramic should remain undamaged.

PCB DEFLECTION: No mechanical damage. Glass epoxy PCB: 2 mm deflection

Capacitance change: 5% or 0.5pF whichever is greater.

LIFE TEST: MIL-STD-202, Method 108I Applied voltage: 200% of WVDC¹ for capacitors rated at 500 volts DC or less.

No mechanical damage 100% of WVDC¹ for capacitors rated at 1250 volts DC or less.

Temperature: 125°±3°C

Capacitance change: ±3.0% or 0.3 pF Q>500 I.R. >1 G Ohms Test time: 1000+48-0 hours

DWV²: 2.5 x WVDC¹

THERMAL CYCLE: No mechanical damage. 5 cycles of: 30±3 minutes @ -55°+0/-3°C, Capacitance change: ±2.5% or 0.25pF 2-3 min. @ 25°C, 30±3 min. @ +125°+3/-0°C,

Q>2000 I.R. >10 G Ohms 2-3 min. @ 25°C

DWV2: 2.5 x WVDC1 Measure after 24±2 hour cooling period

No mechanical damage. Relative humidity: 90-95% HUMIDITY.

Capacitance change: ±5.0% or 0.50pF max. Temperature: 40°±2°C

Q>300 I.R. ≥ 1 G-Ohm Test time: 500 +12/-0 Hours DWV2: 2.5 x WVDC1 Measure after 24±2 hour cooling period

HUMIDITY, Applied voltage: 1.5 VDC, 50 mA max. No mechanical damage. LOW VOLTAGE:

Capacitance change: ±5.0% or 0.50pF max. Relative humidity: 85±2% Temperature: 40°±2°C

Q>300 I.R. = 1 G-Ohm min. Test time: 240 +12/-0 Hours

Measure after 24±2 hour cooling period DWV2: 2.5 x WVDC1

VIBRATION: No mechanical damage. Capacitance change: ±2.5% or 0.25pF Cycle performed for 2 hours in each of three perpendicular directions

Q>1000 I.R. ≥ 10 G-Ohm Frequency range 10Hz to 55 Hz to 10 Hz traversed DWV2: 2.5 x WVDC1 in 1 minute. Harmonic motion amplitude: 1.5mm

¹ - WVDC - Working Voltage DC.

² - DWV - Dielectric Withstanding Voltage.

 3 - 0402 \geq 2.0lbs, 0603 \geq 4.0lbs (min). AEC-Q200: Qualification required for automotive application - Not available for all series - Call factory for info.

^{*}ON REQUEST, WE CAN EXTEND THE HIGHEST TEMPERATURE TO +150° C FOR ANY OF OUR HIGH-Q SERIES

MECHANICAL CHARACTERISTICS

Size	Units	Length	Width	Thickness	End Band	
EIA 0201	In	.024 ±.001	.012 ±.001	.012 ±.001	.008 Max.	
Metric (0603)	mm	(0.60 ±0.03)	(0.30 ±0.03)	(0.30 ±0.03)	(0.20 Max.)	
EIA 0402	In	.040 ±.004	.020 ±.004	.020 ±.004	.010 ±.006	
Metric (1005)	mm	(1.02 ±0.1)	(0.51 ±0.1)	(0.51 ±0.1)	(0.25 ±.15)	
EIA 0603	In	.062 ±.006	.032 ±.006	.030 +.005/003	.014 ±.006	
Metric (1608)	mm	(1.57 ±0.15)	(0.81 ±0.15)	(0.76 +.1308)	(0.35 ±.15)	
EIA 0805	In	.080 ±.008	.050 ±.008	.040 ±.006	.020 ±.010	
Metric (2012)	mm	(2.03 ±0.20)	(1.27 ±0.20)	(1.02 ±.15)	(0.50 ±.25)	

HORIZONTAL AND VERTICLE ORIENTED CAPACITORS

Horizontal Electrode Orientation

Vertical Electrode Orientation

APPLICATIONS & FEATURES

Size: EIA 0201, 0805, 1111

Performance: SRF's up to 20 GHz, Ultra High Q, Tight tolerance, Ultralow ESR

Termination: Ni/Au, Ni/Sn, Ni/SnPb

Applications: High Frequency Wireless Communications, Portable Wireless Products, Battery Powered

Products

RoHS Compliant

BENIFITS OF USING ORIENTED CAPACITORS

- Consistent Orientation Improved repeatability of production circuits.
- Consistent Orientation More consistent filter performance.
- Vertical Orientation The elimination of parallel frequencies.
- Vertical Orinetation Lower inductance for a given capacitor.
- Horizontal Orientation Lower coupling between adjacent capacitors.

E-SERIES TERMINATIONS AND LEADS

CHIP DIMENSIONS

Terminatio	Size	Units	L	Tol	W	Tol	Т	E/B	Tol
	C42E	In	0.110	+.020010	0.110	+/015	0.102 Max.	0.015 Typ.	+/- 0.008
V, T, U, 0	S42E	mm	2.79	+0.51 -0.25	2.79	+/- 0.38	2.59 Max.	0.38 Typ.	+/- 0.20
T, U, C	CAOE	In	0.230	+.025010	0.250	+/015	0.150 Max.	0.025 Typ.	
., 0, 0	S48E	mm	5.84	+0.63 -0.25	6.35	+/- 0.38	3.81 Max.	0.63 Typ.	
T, U, C	CEOE	In	0.380	+.015010	0.380	+/010	0.170 Max.	0.025 Typ.	
1,0,0	S58E	mm	9.65	+0.38 -0.25	9.65	+/- 0.25	4.32 Max.	0.63 Typ.	

For all E-Series Models:

OPERATING TEMP.: -55 to +150°C INSULATION RESISTANCE: >10G Ω @ 25°C TEMPERATURE COEFFICIENT: 0 \pm 30ppm /°C, -55 to 125°C

DISSIPATION FACTOR (TYP.): < 0.05% @ 1 MHz

Drawings not to scale

Lead	Size	LL(min)	Х	Tol	е	e-Tol		
	CADE	0.25	0.093	+/-0.005	0.004	+/- 0.002		
	S42E	6.40	2.36	+/- 0.13	0.102	+/- 0.051		
1	S48E	0.394	0.217	+/- 0.02	0.009	- 0.0019/+ 0.0031		
'	340E	10.0	5.5	+/- 0.50	0.220	- 0.050/+ 0.080		
	S58E	0.748	0.35	+/- 0.02	0.010	- 0.0019/+ 0.0039		
	330E	19.00	8.90	+/- 0.50	0.250	- 0.050/+ 0.100		
	S42E	0.25	0.093	+/-0.005	0.004	+/- 0.002		
		6.40	2.36	+/- 0.13	0.102	+/- 0.051		
2	S48E	0.394	0.217	+/- 0.02	0.009	- 0.0019/+ 0.0031		
2		10.00	5.50	+/- 0.50	0.220	- 0.050/+ 0.080		
	S58E	0.748	0.35	+/- 0.02	0.010	- 0.0019/+ 0.0039		
	SOCE	19.00	8.90	+/- 0.50	0.25	- 0.050/+ 0.100		
	S42E	0.25						
3	342E	6.40	0.020in (0.511) diameter wire					
	S48E	0.394						
	340E	10.00		0.020111 (0	i i / Ulaii	ietei wiie		
	S58E	0.748						
	SOCE	19.00						

Lead	Size	LL(min)	Χ	Tol	е	e-Tol			
	CADE	0.352	0.093	+/-0.005	0.004	+/- 0.002			
	S42E	8.90	2.36	+/- 0.13	0.102	+/- 0.051			
1	CAOE	0.501	0.217	+/- 0.02	0.009	- 0.0019/+ 0.0031			
4	S48E	12.70	5.50	+/- 0.50	0.220	- 0.050/+ 0.080			
	S58E	0.886	0.35	+/- 0.02	0.010	- 0.0019/+ 0.0039			
		22.50	8.90	+/- 0.50	0.25	- 0.050/+ 0.100			
	S42E	0.25							
	342E	6.40							
_	CAOE	0.394	0.020in (0.511) diameter wire						
5	S48E	10.00							
	S58E	0.748							
	SORE	19.00							

RF CHARACTERISTICS - 0201 R05L SERIES More data at: https://jtisoft.johansontechnology.com

The Series Resonant Frequency is highly dependent on the substrate, pad dimensions, and measurement method. The above chart is for reference only.

RF CHARACTERISTICS - 0402 R07S SERIES More data at: https://jtisoft.johansontechnology.com

RF CHARACTERISTICS 0402 R07S SERIES More data at: https://jtisoft.johansontechnology.com

RF CHARACTERISTICS 0603 R14S SERIES More data at: https://jtisoft.johansontechnology.com

RF CHARACTERISITCS - 0805 R15S SERIES More data at: https://jtisoft.johansontechnology.com

The Series Resonant Frequency is highly dependent on the substrate, pad dimensions, and measurement method. The above chart is for reference only.

Effective capacitance value: 0805/R15S

RF CHARACTERISTICS - 1111 S24E SERIES More data at: https://jtisoft.johansontechnology.com

RF CHARACTERISTICS - 2525 S48E SERIES More data at: https://jtisoft.johansontechnology.com

RF CHARACTERISTICS - 3838 S58E SERIES

The Series Resonant Frequency is highly dependent on the substrate, pad dimensions, and measurement method. The above chart is for reference only.

