7.3 Naïve Bayes Classifier

- ✓ Based on Bayes' theorem
- ✓ Statistical classifier
- ✓ Supervised learning
- ✓ Performance comparable to that of decision trees and neural networks
- ✓ High accuracy and speed when applied to large datasets
- ✓ Naïve: effect of one attribute is independent of the effect of other attributes (very simplified assumption)

❖ Basic ideas and major steps

- 1) Each data sample is represented by a feature vector, $V = (v_1, v_2, ..., v_n)$, where n is the number of attributes.
- 2) Classifier predicts that unknown sample, $X = (x_1, x_2, ..., x_n)$ belongs to one of m classes, C_i with highest posterior probability $P(C_i \mid X) > P(C_i \mid X), 1 \le j \le m \& j \ne i.$ [Maximum posterior probability]

- 3) Posterior probabilitis are computed using Bayes' theorem as follows: $P(C_i \mid X) = (P(X \mid C_i) \times P(C_i)) / P(X)$
- 4) P(X) is constant for all classes, so, $P(X \mid C_i) \times P(C_i)$ needs to be maximized.
- 5) If classes are equally likely, P(C_i) can also be dropped.
- 6) We take, $P(C_i) = S_i / S$, where S_i no. of samples of class C_i , S total no. of samples.
- 7) Discarding attribute dependence, $P(X \mid C_i) = \prod_{k=1:n} P(x_k \mid C_i)$.
- 8) For categorical attribute A_k , $P(x_k \mid C_i) = S_{ik} / S_i$, where S_i no. of samples of class C_i and S_{ik} those from S_i with attribute value x_k .
- 9) For continuous A_k , Gaussian distribution is typically assumed: $P(x_k \mid C_i) = g(x_k, \mu_{Ci}, \sigma_{Ci}) \text{ [Gaussian normal density function for } A_k, \text{ while } \mu_{Ci} \text{ mean and } \sigma_{Ci} \text{ standard deviation of samples with } x_k \text{ of class } C_i \text{]}$

Example: We take the same training dataset as for decision tree learning.

ID	Age	Income	Student	Credit	Decision/
				Rating	Class/ Label
1	≤ 30	high	no	fair	negative
2	≤ 3 0	high	no	excellent	negative
3	3140	high	no	fair	positive
4	> 40	medium	no	fair	positive
5	> 40	low	yes	fair	positive
6	> 40	low	yes	excellent	negative
7	3140	low	yes	excellent	positive
8	≤ 30	medium	no	fair	negative
9	≤ 30	low	yes	fair	positive
10	> 40	medium	yes	fair	positive
11	≤ 30	medium	yes	excellent	positive
12	3140	medium	no	excellent	positive
13	3140	high	yes	fair	positive
14	> 40	medium	no	excellent	negative

C₁: 'Buys a computer' / 'positive
 C₂: 'Does not buy a computer' / 'negative'.

Wunknown sample:
X = (age = 22, income =
'medium', student =
'yes', credit_rating =
'fair')

 \triangleright We now compute P(X | C_i), for i = 1, 2 as follows:

P(age = '<=30' |
$$C_1$$
) = 2/9 = 0.222
P(age = '<=30' | C_2) = 3/5 = 0.600

.

> Check that,

$$P(X \mid C_1) = 0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044$$

 $P(X \mid C_2) = 0.600 \times 0.400 \times 0.200 \times 0.400 = 0.019$

- Arr Also, $P(C_1) = 9/14 = 0.643$; $P(C_2) = 5/14 = 0.352$.
- Thus we have, $P(X | C_1) P(C_1) = 0.044 \times 0.643 = 0.028$ $P(X | C_2) P(C_2) = 0.019 \times 0.357 = 0.007$
- > That is, prediction for sample X is the same to that with decision tree:

