

Fundamentals of ELECTRIC CIRCLES CONTROLL CONTRO

Seventh Edition

Mc Graw Hill

Charles Alexander Matthew Sadiku

Fundamentals of **Electric Circuits**

Charles K. Alexander

Professor Emeritus of Electrical Engineering and Computer Science

Cleveland State University

Matthew N. O. Sadiku

Department of Electrical and Computer Engineering

Prairie View A&M University

FUNDAMENTALS OF ELECTRIC CIRCUITS

Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright © 2021 by McGraw-Hill Education. All rights reserved. Printed in the United States of America. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of McGraw-Hill Education, including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 LWI 24 23 22 21 20

ISBN 978-1-260-57079-3 MHID 1-260-57079-7

Cover Image: NASA, ESA, and M. Livio and The Hubble 20th Anniversary Team (STScI)

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website does not indicate an endorsement by the authors or McGraw-Hill Education, and McGraw-Hill Education does not guarantee the accuracy of the information presented at these sites.

Dedicated to our wives, Kikelomo and Hannah, whose understanding and support have truly made this book possible.

Matthew and Chuck

Contents

Preface xi
Acknowledgments xv
About the Authors xxiii

V V		
PART 1	DC Circuits	2

Chapter 1 Basic Concepts 3

- 1.1 Introduction 4
- 1.2 Systems of Units 5
- 1.3 Charge and Current 6
- 1.4 Voltage 9
- 1.5 Power and Energy 10
- 1.6 Circuit Elements 14
- 1.7 Applications 16
 1.7.1 TV Picture Tube
 1.7.2 Electricity Bills
- 1.8 Problem Solving 19
- 1.9 Summary 22 Review Questions 23
 - Problems 24
 - Comprehensive Problems 26

Chapter 2 Basic Laws 29

- 2.1 Introduction 30
- 2.2 Ohm's Law 30
- 2.3 Nodes, Branches, and Loops 35
- 2.4 Kirchhoff's Laws 37
- 2.5 Series Resistors and Voltage Division 43
- 2.6 Parallel Resistors and Current Division 44
- 2.7 Wye-Delta Transformations 51
- 2.8 Applications 572.8.1 Lighting Systems2.8.2 Design of DC Meters
- 2.9 Summary 63
 Review Questions 64
 Problems 65
 Comprehensive Problems 77

Chapter 3 Methods of Analysis 79

- 3.1 Introduction 80
- 3.2 Nodal Analysis 80
- 3.3 Nodal Analysis with Voltage Sources 86
- 3.4 Mesh Analysis 91
- 3.5 Mesh Analysis with Current Sources 90
- 3.6 Nodal and Mesh Analyses by Inspection 98
- 3.7 Nodal Versus Mesh Analysis 102
- 3.8 Circuit Analysis with PSpice 103
- 3.9 Applications: DC Transistor Circuits 105
- 3.10 Summary 110 Review Questions 111

Problems 112

Comprehensive Problem 124

Chapter 4 Circuit Theorems 125

- 4.1 Introduction 126
- 4.2 Linearity Property 126
- 4.3 Superposition 129
- 4.4 Source Transformation 133
- 4.5 Thevenin's Theorem 137
- 4.6 Norton's Theorem 143
- 4.7 Derivations of Thevenin's and Norton's Theorems 147
- 4.8 Maximum Power Transfer 148
- 4.9 Verifying Circuit Theorems with *PSpice* 150
- 4.10 Applications 153
 - 4.10.1 Source Modeling4.10.2 Resistance Measurement
- 4.10.2 Resistance Measurement
 4.11 Summary 158
 Review Questions 159

Problems 160 Comprehensive Problems 171

Chapter 5 Operational Amplifiers 173

- 5.1 Introduction 174
- 5.2 Operational Amplifiers 174

vi Contents

Comprehensive Problems 309

		, °	
5.3	Ideal Op Amp 178	Chap	ter 8 Second-Order Circuits 311
5.4	Inverting Amplifier 179	0.7	Laboration 770
5.5	Noninverting Amplifier 181	8.1 8.2	Introduction 312
5.6	Summing Amplifier 183		Finding Initial and Final Values 313 The Source-Free Series
5.7	Difference Amplifier 185	8.3	RLC Circuit 317
5.8	Cascaded Op Amp Circuits 189	8.4	The Source-Free Parallel
5.9	Op Amp Circuit Analysis with <i>PSpice</i> 192	0.4	RLC Circuit 324
5.10	Applications 194	8.5	Step Response of a Series <i>RLC</i>
	5.10.1 Digital-to-Analog Converter	0.5	Circuit 329
	5.10.2 Instrumentation Amplifiers	8.6	Step Response of a Parallel <i>RLC</i>
5.11	Summary 197	0.0	Circuit 334
	Review Questions 199	8.7	General Second-Order Circuits 337
	Problems 200	8.8	Second-Order Op Amp Circuits 342
	Comprehensive Problems 211	8.9	PSpice Analysis of RLC Circuits 344
		8.10	Duality 348
		8.11	Applications 351
		3	8.11.1 Automobile Ignition System
Chap	ter 6 Capacitors and Inductors 213		8.11.2 Smoothing Circuits
6.1	Introduction 214	8.12	Summary 354
6.2	Capacitors 214		Review Questions 355
6.3	Series and Parallel Capacitors 220		Problems 356
6.4	Inductors 224		Comprehensive Problems 365
6.5	Series and Parallel Inductors 228		
6.6	Applications 231		
	6.6.1 Integrator	-^ ^ ^ _	
	6.6.2 Differentiator	PAR1	AC Circuits 366
	_	PART	AC Circuits 366
6.7	6.6.2 Differentiator	PART	AC Circuits 366
6.7	6.6.2 Differentiator6.6.3 Analog Computer	PAR1	
6.7	6.6.2 Differentiator 6.6.3 Analog Computer Summary 238	Chap	ter 9 Sinusoids and Phasors 367
6.7	6.6.2 Differentiator 6.6.3 Analog Computer Summary 238 Review Questions 239	Chap 9.1	ter 9 Sinusoids and Phasors 367 Introduction 368
6.7	6.6.2 Differentiator 6.6.3 Analog Computer Summary 238 Review Questions 239 Problems 240	9.1 9.2	ter 9 Sinusoids and Phasors 367 Introduction 368 Sinusoids 369
6.7	6.6.2 Differentiator 6.6.3 Analog Computer Summary 238 Review Questions 239 Problems 240	9.1 9.2 9.3	ter 9 Sinusoids and Phasors 367 Introduction 368 Sinusoids 369 Phasors 374
	6.6.2 Differentiator 6.6.3 Analog Computer Summary 238 Review Questions 239 Problems 240 Comprehensive Problems 249	9.1 9.2	ter 9 Sinusoids and Phasors 367 Introduction 368 Sinusoids 369 Phasors 374 Phasor Relationships for
6.7	6.6.2 Differentiator 6.6.3 Analog Computer Summary 238 Review Questions 239 Problems 240 Comprehensive Problems 249	9.1 9.2 9.3 9.4	Introduction 368 Sinusoids 369 Phasors 374 Phasor Relationships for Circuit Elements 383
Chap	6.6.2 Differentiator 6.6.3 Analog Computer Summary 238 Review Questions 239 Problems 240 Comprehensive Problems 249 ter 7 First-Order Circuits 251	9.1 9.2 9.3 9.4	Introduction 368 Sinusoids 369 Phasors 374 Phasor Relationships for Circuit Elements 383 Impedance and Admittance 385
Chap 7.1	6.6.2 Differentiator 6.6.3 Analog Computer Summary 238 Review Questions 239 Problems 240 Comprehensive Problems 249 ter 7 First-Order Circuits 251 Introduction 252	9.1 9.2 9.3 9.4	Introduction 368 Sinusoids 369 Phasors 374 Phasor Relationships for Circuit Elements 383
Chap 7.1 7.2	6.6.2 Differentiator 6.6.3 Analog Computer Summary 238 Review Questions 239 Problems 240 Comprehensive Problems 249 ter 7 First-Order Circuits 251 Introduction 252 The Source-Free RC Circuit 253	9.1 9.2 9.3 9.4 9.5 9.6	Introduction 368 Sinusoids 369 Phasors 374 Phasor Relationships for Circuit Elements 383 Impedance and Admittance 385 Kirchhoff's Laws in the Frequency Domain 387
Chap 7.1 7.2 7.3	6.6.2 Differentiator 6.6.3 Analog Computer Summary 238 Review Questions 239 Problems 240 Comprehensive Problems 249 ter 7 First-Order Circuits 251 Introduction 252 The Source-Free RC Circuit 253 The Source-Free RL Circuit 257	9.1 9.2 9.3 9.4	Introduction 368 Sinusoids 369 Phasors 374 Phasor Relationships for Circuit Elements 383 Impedance and Admittance 385 Kirchhoff's Laws in the Frequency Domain 387 Impedance Combinations 388
Chap 7.1 7.2 7.3 7.4	6.6.2 Differentiator 6.6.3 Analog Computer Summary 238 Review Questions 239 Problems 240 Comprehensive Problems 249 ter 7 First-Order Circuits 251 Introduction 252 The Source-Free RC Circuit 253 The Source-Free RL Circuit 257 Singularity Functions 263	9.1 9.2 9.3 9.4 9.5 9.6	Introduction 368 Sinusoids 369 Phasors 374 Phasor Relationships for Circuit Elements 383 Impedance and Admittance 385 Kirchhoff's Laws in the Frequency Domain 387
Chap 7.1 7.2 7.3 7.4 7.5	6.6.2 Differentiator 6.6.3 Analog Computer Summary 238 Review Questions 239 Problems 240 Comprehensive Problems 249 ter 7 First-Order Circuits 251 Introduction 252 The Source-Free RC Circuit 253 The Source-Free RL Circuit 257 Singularity Functions 263 Step Response of an RC Circuit 271	9.1 9.2 9.3 9.4 9.5 9.6	Introduction 368 Sinusoids 369 Phasors 374 Phasor Relationships for Circuit Elements 383 Impedance and Admittance 385 Kirchhoff's Laws in the Frequency Domain 387 Impedance Combinations 388 Applications 394
7.1 7.2 7.3 7.4 7.5 7.6	6.6.2 Differentiator 6.6.3 Analog Computer Summary 238 Review Questions 239 Problems 240 Comprehensive Problems 249 ter 7 First-Order Circuits 251 Introduction 252 The Source-Free RC Circuit 253 The Source-Free RL Circuit 257 Singularity Functions 263 Step Response of an RC Circuit 271 Step Response of an RL Circuit 278	9.1 9.2 9.3 9.4 9.5 9.6	Introduction 368 Sinusoids 369 Phasors 374 Phasor Relationships for Circuit Elements 383 Impedance and Admittance 385 Kirchhoff's Laws in the Frequency Domain 387 Impedance Combinations 388 Applications 394 9.8.1 Phase-Shifters
7.1 7.2 7.3 7.4 7.5 7.6 7.7	6.6.2 Differentiator 6.6.3 Analog Computer Summary 238 Review Questions 239 Problems 240 Comprehensive Problems 249 ter 7 First-Order Circuits 251 Introduction 252 The Source-Free RC Circuit 253 The Source-Free RL Circuit 257 Singularity Functions 263 Step Response of an RC Circuit 271 Step Response of an RL Circuit 278 First-Order Op Amp Circuits 282	9.1 9.2 9.3 9.4 9.5 9.6	Introduction 368 Sinusoids 369 Phasors 374 Phasor Relationships for Circuit Elements 383 Impedance and Admittance 385 Kirchhoff's Laws in the Frequency Domain 387 Impedance Combinations 388 Applications 394 9.8.1 Phase-Shifters 9.8.2 AC Bridges
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	6.6.2 Differentiator 6.6.3 Analog Computer Summary 238 Review Questions 239 Problems 240 Comprehensive Problems 249 ter 7 First-Order Circuits 251 Introduction 252 The Source-Free RC Circuit 253 The Source-Free RL Circuit 257 Singularity Functions 263 Step Response of an RC Circuit 271 Step Response of an RL Circuit 278	9.1 9.2 9.3 9.4 9.5 9.6	Introduction 368 Sinusoids 369 Phasors 374 Phasor Relationships for Circuit Elements 383 Impedance and Admittance 385 Kirchhoff's Laws in the Frequency Domain 387 Impedance Combinations 388 Applications 394 9.8.1 Phase-Shifters 9.8.2 AC Bridges Summary 400
7.1 7.2 7.3 7.4 7.5 7.6 7.7	6.6.2 Differentiator 6.6.3 Analog Computer Summary 238 Review Questions 239 Problems 240 Comprehensive Problems 249 Rer 7 First-Order Circuits 251 Introduction 252 The Source-Free RC Circuit 253 The Source-Free RL Circuit 257 Singularity Functions 263 Step Response of an RC Circuit 278 First-Order Op Amp Circuits 282 Transient Analysis with PSpice 287	9.1 9.2 9.3 9.4 9.5 9.6	Introduction 368 Sinusoids 369 Phasors 374 Phasor Relationships for Circuit Elements 383 Impedance and Admittance 385 Kirchhoff's Laws in the Frequency Domain 387 Impedance Combinations 388 Applications 394 9.8.1 Phase-Shifters 9.8.2 AC Bridges Summary 400 Review Questions 401
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	6.6.2 Differentiator 6.6.3 Analog Computer Summary 238 Review Questions 239 Problems 240 Comprehensive Problems 249 ter 7 First-Order Circuits 251 Introduction 252 The Source-Free RC Circuit 253 The Source-Free RL Circuit 257 Singularity Functions 263 Step Response of an RC Circuit 271 Step Response of an RL Circuit 278 First-Order Op Amp Circuits 282 Transient Analysis with PSpice 287 Applications 291	9.1 9.2 9.3 9.4 9.5 9.6	Introduction 368 Sinusoids 369 Phasors 374 Phasor Relationships for Circuit Elements 383 Impedance and Admittance 385 Kirchhoff's Laws in the Frequency Domain 387 Impedance Combinations 388 Applications 394 9.8.1 Phase-Shifters 9.8.2 AC Bridges Summary 400 Review Questions 401 Problems 401
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	6.6.2 Differentiator 6.6.3 Analog Computer Summary 238 Review Questions 239 Problems 240 Comprehensive Problems 249 ter 7 First-Order Circuits 251 Introduction 252 The Source-Free RC Circuit 253 The Source-Free RL Circuit 257 Singularity Functions 263 Step Response of an RC Circuit 271 Step Response of an RL Circuit 278 First-Order Op Amp Circuits 282 Transient Analysis with PSpice 287 Applications 291 7.9.1 Delay Circuits	9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8	Introduction 368 Sinusoids 369 Phasors 374 Phasor Relationships for Circuit Elements 383 Impedance and Admittance 385 Kirchhoff's Laws in the Frequency Domain 387 Impedance Combinations 388 Applications 394 9.8.1 Phase-Shifters 9.8.2 AC Bridges Summary 400 Review Questions 401 Problems 401 Comprehensive Problems 409
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	6.6.2 Differentiator 6.6.3 Analog Computer Summary 238 Review Questions 239 Problems 240 Comprehensive Problems 249 ter 7 First-Order Circuits 251 Introduction 252 The Source-Free RC Circuit 253 The Source-Free RL Circuit 257 Singularity Functions 263 Step Response of an RC Circuit 271 Step Response of an RL Circuit 278 First-Order Op Amp Circuits 282 Transient Analysis with PSpice 287 Applications 291 7.9.1 Delay Circuits 7.9.2 Photoflash Unit	9.1 9.2 9.3 9.4 9.5 9.6	Introduction 368 Sinusoids 369 Phasors 374 Phasor Relationships for Circuit Elements 383 Impedance and Admittance 385 Kirchhoff's Laws in the Frequency Domain 387 Impedance Combinations 388 Applications 394 9.8.1 Phase-Shifters 9.8.2 AC Bridges Summary 400 Review Questions 401 Problems 401 Comprehensive Problems 409
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	6.6.2 Differentiator 6.6.3 Analog Computer Summary 238 Review Questions 239 Problems 240 Comprehensive Problems 249 Let 7 First-Order Circuits 251 Introduction 252 The Source-Free RC Circuit 253 The Source-Free RL Circuit 257 Singularity Functions 263 Step Response of an RC Circuit 271 Step Response of an RL Circuit 278 First-Order Op Amp Circuits 282 Transient Analysis with PSpice 287 Applications 291 7.9.1 Delay Circuits 7.9.2 Photoflash Unit 7.9.3 Relay Circuits	9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8	Introduction 368 Sinusoids 369 Phasors 374 Phasor Relationships for Circuit Elements 383 Impedance and Admittance 385 Kirchhoff's Laws in the Frequency Domain 387 Impedance Combinations 388 Applications 394 9.8.1 Phase-Shifters 9.8.2 AC Bridges Summary 400 Review Questions 401 Problems 401 Comprehensive Problems 409
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	6.6.2 Differentiator 6.6.3 Analog Computer Summary 238 Review Questions 239 Problems 240 Comprehensive Problems 249 ter 7 First-Order Circuits 251 Introduction 252 The Source-Free RC Circuit 253 The Source-Free RL Circuit 257 Singularity Functions 263 Step Response of an RC Circuit 278 First-Order Op Amp Circuits 282 Transient Analysis with PSpice 287 Applications 291 7.9.1 Delay Circuits 7.9.2 Photoflash Unit 7.9.3 Relay Circuits 7.9.4 Automobile Ignition Circuit	9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8	Introduction 368 Sinusoids 369 Phasors 374 Phasor Relationships for Circuit Elements 383 Impedance and Admittance 385 Kirchhoff's Laws in the Frequency Domain 387 Impedance Combinations 388 Applications 394 9.8.1 Phase-Shifters 9.8.2 AC Bridges Summary 400 Review Questions 401 Problems 401 Comprehensive Problems 409

10.3 Mesh Analysis 415

vii

		Conte	nts
10.4	Superposition Theorem 419	12.11	Summary 541
10.5	Source Transformation 422		Review Questions 541
10.6	Thevenin and Norton		Problems 542
	Equivalent Circuits 424		Comprehensive Problems 551
10.7	Op Amp AC Circuits 429		•
10.8	AC Analysis Using PSpice 431		
10.9	Applications 435		
	10.9.1 Capacitance Multiplier	CI	M 1: 11 C 1 1
	10.9.2 Oscillators	Chap	ter 13 Magnetically Coupled
10.10	Summary 439		Circuits 553
	Review Questions 439	13.1	Introduction 554
	Problems 441	13.2	Mutual Inductance 555
		13.3	Energy in a Coupled Circuit 562
		13.4	Linear Transformers 565
		13.5	Ideal Transformers 571
Chapt	ter 11 AC Power Analysis 455	13.6	ldeal Autotransformers 579
Chap	Let II Ac Fower Analysis 455	13.7	Three-Phase Transformers 582
11.1	Introduction 456	13.8	PSpice Analysis of Magnetically
11.2	Instantaneous and Average Power 456		Coupled Circuits 584
11.3	Maximum Average Power Transfer 462	13.9	Applications 589
11.4	Effective or RMS Value 465		13.9.1 Transformer as an Isolation Device
11.5	Apparent Power and		13.9.2 Transformer as a Matching Device
	Power Factor 468		13.9.3 Power Distribution
11.6	Complex Power 471	13.10	Summary 595
11.7	Conservation of AC Power 475		Review Questions 596
11.8	Power Factor Correction 479		Problems 597
11.9	Applications 481		Comprehensive Problems 609
	11.9.1 Power Measurement		
	11.9.2 Electricity Consumption Cost		
11.10	Summary 486		
	Review Questions 488 Problems 488	Chap	ter 14 Frequency Response 611
	Comprehensive Problems 498	14.1	Introduction 612
		14.2	Transfer Function 612
		14.3	The Decibel Scale 615
		14.4	Bode Plots 617 Series Resonance 627
Chapt	ter 12 Three-Phase Circuits 501	14.5 14.6	Series Resonance 627 Parallel Resonance 632
12.1	Introduction 502	14.7	Passive Filters 635
12.2	Balanced Three-Phase Voltages 503	14./	14.7.1 Low-Pass Filter
12.3	Balanced Wye-Wye Connection 507		14.7.2 High-Pass Filter
12.4	Balanced Wye-Delta Connection 510		14.7.3 Band-Pass Filter
12.5	Balanced Delta-Delta		14.7.4 Band-Stop Filter
	Connection 512	14.8	Active Filters 640
12.6	Balanced Delta-Wye Connection 514	.4.0	14.8.1 First-Order Low-Pass Filter
12.7	Power in a Balanced System 517		14.8.2 First-Order High-Pass Filter
12.8	Unbalanced Three-Phase		14.8.3 Band-Pass Filter
	Systems 523		14.8.4 Band-Reject (or Notch) Filter
12.9	PSpice for Three-Phase Circuits 527	14.9	Scaling 646
12.10	Applications 532	• • •	14.9.1 Magnitude Scaling
	12.10.1 Three-Phase Power Measurement		14.9.2 Frequency Scaling
	12.10.2 Residential Wiring		14.9.3 Magnitude and Frequency Scaling

viii

Comprehensive Problems 756

	Contents	,	
14.10	Frequency Response Using	Chap	ter 17 The Fourier Series 757
	PSpice 650	17.1	Introduction 758
14.11	Computation Using MATLAB 653	17.1	Trigonometric Fourier Series 759
14.12	Applications 655	17.3	Symmetry Considerations 766
	14.12.1 Radio Receiver	1,10	17.3.1 Even Symmetry
	14.12.2 Touch-Tone Telephone		17.3.2 Odd Symmetry
	14.12.3 Crossover Network		17.3.3 Half-Wave Symmetry
14.13	Summary 661	17.4	Circuit Applications 776
	Review Questions 662	17.5	Average Power and RMS Values 780
	Problems 663	17.6	Exponential Fourier Series 783
	Comprehensive Problems 671	17.7	Fourier Analysis with <i>PSpice</i> 789
			17.7.1 Discrete Fourier Transform
			17.7.2 Fast Fourier Transform
	T - 10: "	17.8	Applications 795
PAR			17.8.1 Spectrum Analyzers
	Analysis 672		17.8.2 Filters
		17.9	Summary 798
Chap	ter 15 Introduction to the Laplace		Review Questions 800
	Transform 673		Problems 800
15.1	Introduction 674		Comprehensive Problems 809
15.1 15.2	Definition of the Laplace		
13.2	Transform 675		
15.3	Properties of the Laplace		
.5.5	Transform 677	Chap	ter 18 Fourier Transform 811
15.4	The Inverse Laplace Transform 688		
	15.4.1 Simple Poles	18.1 18.2	Introduction 812 Definition of the Fourier Transform 812
	15.4.2 Repeated Poles	18.3	Definition of the Fourier Transform 812 Properties of the Fourier
	15.4.3 Complex Poles	10.5	Transform 818
15.5	The Convolution Integral 695	18.4	Circuit Applications 831
15.6	Application to Integrodifferential	18.5	Parseval's Theorem 834
	Equations 703	18.6	Comparing the Fourier and
15.7	Summary 706		Laplace Transforms 837
	Review Questions 706	18.7	Applications 838
	Problems 707		18.7.1 Amplitude Modulation
			18.7.2 Sampling
		18.8	Summary 841
CI	l -a A le re ful i l		Review Questions 842
Cnap	ter 16 Applications of the Laplace		Problems 843
	Transform 713		Comprehensive Problems 849
16.1	Introduction 714		
16.2	Circuit Element Models 715		
16.3	Circuit Analysis 720		
16.4	Transfer Functions 724	Chap	ter 19 Two-Port Networks 851
16.5	State Variables 728		
16.6	Applications 735	19.1	Introduction 852
	16.6.1 Network Stability	19.2	Impedance Parameters 853
	16.6.2 Network Synthesis	19.3	Admittance Parameters 857
16.7	Summary 743	19.4	Hybrid Parameters 860
	Review Questions 744	19.5	Transmission Parameters 865
	Problems 745	19.6	Relationships Between

Parameters 870

Contents ix

Appendix A Simultaneous Equations and Matrix Inversion A

Appendix B Complex Numbers A-9

Appendix C Mathematical Formulas A-16

Appendix D Answers to Odd-Numbered Problems A-21

Selected Bibliography B-1 Index I-1

Preface

In keeping with our focus on space for the covers for our book, we have chosen a picture from the NASA Hubble Space Telescope for the seventh edition. The reason for this is that like any satellite, many electrical circuits play critical roles in their functionality.

Conceived in the 1940s as the Large Space Telescope, the Hubble Space Telescope became the most significant development in astronomy! Why was it needed? No matter how big and accurate a terrestrial telescope could be made, it would always be severely limited because of the earth's atmosphere. Building a telescope to operate above the atmosphere would open up the things that could be seen to essentially the whole universe. Finally, we can see deeper into space than ever before. After decades of research and planning, the Hubble Space Telescope was finally launched into space on April 24, 1990.

This incredible telescope has expanded the field of astronomy and our knowledge of the universe well beyond our very limited knowledge prior to its launch. It led to determining the age of the universe, a much better understanding of our own solar system, as well as our being able to peer into the deepest recesses of the universe.

Our cover is a Hubble picture of the "Pillars of Creation!" It is a picture taken deep within the galaxy and is of the Carina Nebula. Rising from the wall of the nebula, dust and towers of cool hydrogen mix to create this beautiful and dramatic image!

For more about Hubble, go to NASA's website: www.nasa.gov/.

Features

A course in circuit analysis is perhaps the first exposure students have to electrical engineering. This is also a place where we can enhance some of the skills that they will later need as they learn how to design. An important part of this book is our 121 design a problem problems. These problems were developed to enhance skills that are an important part of the design process. We know it is not possible to fully develop a student's design skills in a fundamental course like circuits. To fully develop design skills a student needs a design experience normally reserved for their senior year. This does not mean that some of those skills cannot be developed and exercised in a circuits course. The text already included open-ended questions that help students use creativity, which is an important part of learning how to design. We already have some questions that are open-ended but we desired to add much more into our text in this important area and have developed an approach to do just that. When we develop problems for the student to solve our goal is that in solving the problem the student learns more about the theory and the problem solving process. Why not have the students design problems like we do? That is exactly what we do in each chapter. Within the normal problem set, we have a set of problems where we ask the student to design a problem to **xii** Preface

help other students better understand an important concept. This has two very important results. The first will be a better understanding of the basic theory and the second will be the enhancement of some of the student's basic design skills. We are making effective use of the principle of learning by teaching. Essentially we all learn better when we teach a subject. Designing effective problems is a key part of the teaching process. Students should also be encouraged to develop problems, when appropriate, which have nice numbers and do not necessarily overemphasize complicated mathematical manipulations.

A very important advantage to our textbook, we have a total of 2,481 Examples, Practice Problems, Review Questions, and End-of-Chapter Problems! Answers are provided for all practice problems and the odd numbered end-of-chapter problems.

The main objective of the seventh edition of this book remains the same as the previous editions—to present circuit analysis in a manner that is clearer, more interesting, and easier to understand than other circuit textbooks, and to assist the student in beginning to see the "fun" in engineering. This objective is achieved in the following ways:

• Chapter Openers and Summaries

Each chapter opens with a discussion about how to enhance skills which contribute to successful problem solving as well as successful careers or a career-oriented talk on a subdiscipline of electrical engineering. This is followed by an introduction that links the chapter with the previous chapters and states the chapter objectives. The chapter ends with a summary of key points and formulas.

· Learning Objectives

Each chapter has learning objectives that reflect what we believe are the most important items to learn from that chapter. These should help you focus more carefully on what you should be learning.

· Problem-Solving Methodology

Chapter 1 introduces a six-step method for solving circuit problems which is used consistently throughout the book and media supplements to promote best-practice problem-solving procedures.

• Student-Friendly Writing Style

All principles are presented in a lucid, logical, step-by-step manner. As much as possible, we avoid wordiness and giving too much detail that could hide concepts and impede overall understanding of the material.

Boxed Formulas and Key Terms

Important formulas are boxed as a means of helping students sort out what is essential from what is not. Also, to ensure that students clearly understand the key elements of the subject matter, key terms are defined and highlighted.

Margin Notes

Marginal notes are used as a pedagogical aid. They serve multiple uses such as hints, cross-references, more exposition, warnings, reminders not to make some particular common mistakes, and problem-solving insights.

Preface xiii

Worked Examples

Thoroughly worked examples are liberally given at the end of every section. The examples are regarded as a part of the text and are clearly explained without asking the reader to fill in missing steps. Thoroughly worked examples give students a good understanding of the solution process and the confidence to solve problems themselves. Some of the problems are solved in two or three different ways to facilitate a substantial comprehension of the subject material as well as a comparison of different approaches.

• Practice Problems

To give students practice opportunity, each illustrative example is immediately followed by a practice problem with the answer. The student can follow the example step-by-step to aid in the solution of the practice problem without flipping pages or looking at the end of the book for answers. The practice problem is also intended to test a student's understanding of the preceding example. It will reinforce their grasp of the material before the student can move on to the next section. Complete solutions to the practice problems are available to students on the website.

• Application Sections

The last section in each chapter is devoted to practical application aspects of the concepts covered in the chapter. The material covered in the chapter is applied to at least one or two practical problems or devices. This helps students see how the concepts are applied to real-life situations.

Review Questions

Ten review questions in the form of multiple-choice objective items are provided at the end of each chapter with answers. The review questions are intended to cover the little "tricks" that the examples and end-of-chapter problems may not cover. They serve as a self test device and help students determine how well they have mastered the chapter.

Computer Tools

In recognition of the requirements by ABET[®] on integrating computer tools, the use of *PSpice*, *Multisim*, *MATLAB*, and developing design skills are encouraged in a student-friendly manner. *PSpice* is covered early on in the text so that students can become familiar and use it throughout the text. Tutorials on all of these are available on Connect. *MATLAB* is also introduced early in the book.

Design a Problem Problems

Design a problem problems are meant to help the student develop skills that will be needed in the design process.

· Historical Tidbits

Historical sketches throughout the text provide profiles of important pioneers and events relevant to the study of electrical engineering.

Early Op Amp Discussion

The operational amplifier (op amp) as a basic element is introduced early in the text.

xiv Preface

• Fourier and Laplace Transforms Coverage

To ease the transition between the circuit course and signals and systems courses, Fourier and Laplace transforms are covered lucidly and thoroughly. The chapters are developed in a manner that the interested instructor can go from solutions of first-order circuits to Chapter 15. This then allows a very natural progression from Laplace to Fourier to AC.

• Extended Examples

Examples worked in detail according to the six-step problem solving method provide a road map for students to solve problems in a consistent fashion. At least one example in each chapter is developed in this manner.

• EC 2000 Chapter Openers

Based on ABET's skill-based CRITERION 3, these chapter openers are devoted to discussions as to how students can acquire the skills that will lead to a significantly enhanced career as an engineer. Because these skills are so very important to the student while still in college as well after graduation, we use the heading, "Enhancing your Skills and your Career."

• Homework Problems

There are 580 new or revised end-of-chapter problems and changed practice problems which will provide students with plenty of practice as well as reinforce key concepts. We continue to try to make the problems as practical as possible.

• Homework Problem Icons

Icons are used to highlight problems that relate to engineering design as well as problems that can be solved using *PSpice*, *Multisim*, or *MATLAB*.

Organization

This book was written for a two-semester or three-quarter course in linear circuit analysis. The book may also be used for a one-semester course by a proper selection of chapters and sections by the instructor. It is broadly divided into three parts.

- Part 1, consisting of Chapters 1 to 8, is devoted to dc circuits. It
 covers the fundamental laws and theorems, circuits techniques, and
 passive and active elements.
- Part 2, which contains Chapter 9 to 14, deals with ac circuits. It introduces phasors, sinusoidal steady-state analysis, ac power, rms values, three-phase systems, and frequency response.
- Part 3, consisting of Chapters 15 to 19, are devoted to advanced techniques for network analysis. It provides students with a solid introduction to the Laplace transform, Fourier series, Fourier transform, and two-port network analysis.

The material in the three parts is more than sufficient for a two-semester course, so the instructor must select which chapters or

Preface

sections to cover. Sections marked with the dagger sign (†) may be skipped, explained briefly, or assigned as homework. They can be omitted without loss of continuity. Each chapter has plenty of problems grouped according to the sections of the related material and diverse enough that the instructor can choose some as examples and assign some as homework. As stated earlier, we are using three icons with this edition.

denotes problems that either require *PSpice* in the solution process, where the circuit complexity is such that *PSpice* or *Multisim* would make the solution process easier, and where *PSpice* or *Multisim* makes a good check to see if the problem has been solved correctly.

denotes problems where *MATLAB* is required in the solution process, where *MATLAB* makes sense because of the problem makeup and its complexity, and where *MATLAB* makes a good check to see if the problem has been solved correctly.

identifies problems that help the student develop skills that are needed for engineering design. (*) identifies more difficult problems.

Comprehensive problems follow the end-of-chapter problems. They are mostly applications problems that require skills learned from that particular chapter.

Prerequisites

As with most introductory circuit courses, the main prerequisites, for a course using this textbook, are physics and calculus. Although familiarity with complex numbers is helpful in the later part of the book, it is not required. A very important asset of this text is that ALL the mathematical equations and fundamentals of physics needed by the student, are included in the text.

Acknowledgments

We would like to express our appreciation for the loving support we have received from our wives (Hannah and Kikelomo), daughters (Christina, Tamara, Jennifer, Motunrayo, Ann, and Joyce), son (Baixi), and our extended family members. We sincerely appreciate the invaluable help given us by Richard Rarick in helping us make a significantly more relevant book.

At McGraw-Hill, we would like to thank the following editorial and production staff: Suzy Bainbridge, executive brand manager; Tina Bower, product developer; Shannon O'Donnell, marketing manager; and Jason Stauter, content project manager.

This text has benefited greatly from the many outstanding individuals who have offered suggestions for improvements in both the

xvi Preface

text as well as the various problems. In particular, we thank Nicholas Reeder, Professor of Electronics Engineering Technology, Sinclair Community College, Dayton, Ohio, and Douglas De Boer, Professor of Engineering, Dordt College, Sioux Center, Iowa, for their detailed and careful corrections and suggestions for clarification which have contributed to making this a better edition. In addition, the following have made important contributions to this textbook (in alphabetical order):

Zekeriya Aliyazicioglu, California State Polytechnic University— Pomona

Rajan Chandra, California State Polytechnic University—Pomona
Mohammad Haider, University of Alabama—Birmingham
John Heathcote, Reedley College
Peter LoPresti, University of Tulsa
Robert Norwood, John Brown University
Aaron Ohta, University of Hawaii—Manoa
Salomon Oldak, California State Polytechnic University—Pomona
Hesham Shaalan, U.S. Merchant Marine Academy
Surendra Singh, University of Tulsa

Finally, we sincerely appreciate the feedback received from instructors and students who used the previous editions. We want this to continue, so please keep sending us e-mails or direct them to the publisher. We can be reached at <u>c.alexander@ieee.org</u> for Charles Alexander and <u>sadiku@ieee.org</u> for Matthew Sadiku.

C. K. Alexander and M. N. O. Sadiku

Supplements

Instructor and Student Resources

Available on Connect are a number of additional instructor and student resources to accompany the text. These include complete solutions for all practice and end-of-chapter problems, solutions in *PSpice* and *Multisim* problems, lecture PowerPoints®, and text image files.

Problem Solving Made *Almost* **Easy**, a companion workbook to *Fundamentals of Electric Circuits*, is available for students who wish to practice their problem-solving techniques. The workbook can be found at mhhe.com/alexander7e and contains a discussion of problem-solving strategies and 150 additional problems with complete solutions provided.

McGraw-Hill Create®

Craft your teaching resources to match the way you teach! With McGraw-Hill Create, http://create.mheducation.com, you can easily rearrange chapters, combine material from other content sources, and quickly upload content you have written like your course syllabus or teaching notes. Find the content you need in Create by searching through thousands of leading McGraw-Hill textbooks. Arrange your book to fit your teaching style. Create even allows you to personalize

Preface xvii

your book's appearance by selecting the cover and adding your name, school, and course information. Order a Create book and you'll receive a complimentary print review copy in three to five business days or a complimentary electronic review copy (eComp) via e-mail in minutes. Go to http://create.mheducation.com today and register to experience how McGraw-Hill Create empowers you to teach *your* students *your* way.

Affordability & Outcomes = Academic Freedom!

You deserve choice, flexibility and control. You know what's best for your students and selecting the course materials that will help them succeed should be in your hands.

Thats why providing you with a wide range of options that lower costs and drive better outcomes is our highest priority.

Students—study more efficiently, retain more and achieve better outcomes. Instructors—focus on what you love—teaching.

They'll thank you for it.

Study resources in Connect help your students be better prepared in less time. You can transform your class time from dull definitions to dynamic discussion. Hear from your peers about the benefits of Connect at www.mheducation.com/highered/connect/smartbook

Laptop: McGraw-Hill Education

Make it simple, make it affordable.

Connect makes it easy with seamless integration using any of the major Learning Management Systems—Blackboard®, Canvas, and D2L, among others—to let you organize your course in one convenient location. Give your students access to digital materials at a discount with our inclusive access program. Ask your McGraw-Hill representative for more information.

Learning for everyone.

McGraw-Hill works directly with Accessibility Services Departments and faculty to meet the learning needs of all students. Please contact your Accessibility Services office and ask them to email accessibility@mheducation.com, or visit www.mheducation.com/about/accessibility.html for more information.

Learn more at: www.mheducation.com/realvalue

Rent It

Affordable print and digital rental options through our partnerships with leading textbook distributors including Amazon, Barnes & Noble, Chegg, Follett, and more.

Go Digital

A full and flexible range of affordable digital solutions ranging from Connect, ALEKS, inclusive access, mobile apps, OER and more.

Get Print

Students who purchase digital materials can get a loose-leaf print version at a significantly reduced rate to meet their individual preferences and budget.

A Note to the Student

This may be your first course in electrical engineering. Although electrical engineering is an exciting and challenging discipline, the course may intimidate you. This book was written to prevent that. A good textbook and a good professor are an advantage—but you are the one who does the learning. If you keep the following ideas in mind, you will do very well in this course.

- This course is the foundation on which most other courses in the electrical engineering curriculum rest. For this reason, put in as much effort as you can. Study the course regularly.
- Problem solving is an essential part of the learning process. Solve
 as many problems as you can. Begin by solving the practice problem following each example, and then proceed to the end-of-chapter
 problems. The best way to learn is to solve a lot of problems. An
 asterisk in front of a problem indicates a challenging problem.
- Spice and Multisim, computer circuit analysis programs, are used throughout the textbook. PSpice, the personal computer version of Spice, is the popular standard circuit analysis program at most universities. PSpice for Windows and Multisim are described on our website. Make an effort to learn PSpice and/or Multisim, because you can check any circuit problem with them and be sure you are handing in a correct problem solution.
- *MATLAB* is another software that is very useful in circuit analysis and other courses you will be taking. A brief tutorial on *MATLAB* can be found on our website. The best way to learn *MATLAB* is to start working with it once you know a few commands.
- Each chapter ends with a section on how the material covered in the chapter can be applied to real-life situations. The concepts in this section may be new and advanced to you. No doubt, you will learn more of the details in other courses. We are mainly interested in gaining a general familiarity with these ideas.
- Attempt the review questions at the end of each chapter. They will help you discover some "tricks" not revealed in class or in the textbook.
- Clearly a lot of effort has gone into making the technical details
 in this book easy to understand. It also contains all the mathematics and physics necessary to understand the theory and will be very
 useful in your other engineering courses. However, we have also
 focused on creating a reference for you to use both in school as
 well as when working in industry or seeking a graduate degree.

• It is very tempting to sell your book after you have completed your classroom experience; however, our advice to you is *DO NOT SELL YOUR ENGINEERING BOOKS!* Books have always been expensive; however, the cost of this book is virtually the same as I paid for my circuits text back in the early 60s in terms of real dollars. In fact, it is actually cheaper. In addition, engineering books of the past are nowhere near as complete as what is available now.

When I was a student, I did not sell any of my engineering textbooks and was very glad I did not! I found that I needed most of them throughout my career.

A short review on finding determinants is covered in Appendix A, complex numbers in Appendix B, and mathematical formulas in Appendix C. Answers to odd-numbered problems are given in Appendix D.

Have fun!

C. K. A. and M. N. O. S.

About the Authors

Charles K. Alexander Professor Emeritus of Electrical Engineering and Computer Science in the Washkewicz College of Engineering, Cleveland State University, Cleveland, Ohio. He was a Professor of Electrical Engineering and Computer Science at Cleveland State University from 2002 until 2018. He was the director of The Center for Research in Electronics and Aerospace Technology (CREATE) from 2004 until 2018. From 2002 until 2006 he was Dean of the Fenn College of Engineering. He has held the position of dean of engineering at Cleveland State University, California State University, Northridge, and Temple University (acting dean for six years). He has held the position of department chair at Temple University and Tennessee Technological University. He has held the position of Stocker Visiting Professor (an endowed chair) at Ohio University. He has held faculty status at all of the before mentioned named universities.

He has secured funding for the establishment of two centers of research, one in power and energy at Tennessee Technological University and another in sensor systems at Cleveland State University. He has been the director of three additional research centers at Temple and at Ohio University. He has obtained research funding of approximately \$100 million (in today's dollars). He has served as a consultant to twenty-three private and governmental organizations, including the Air Force and the Navy.

He received the honorary Dr. Eng. from Ohio Northern University (2009), the Ph.D. (1971) and M.S.E.E. (1967) from Ohio University and the B.S.E.E. (1965) from Ohio Northern University.

He has authored many publications, including a workbook and a videotape lecture series, and is coauthor of *Fundamentals of Electric Circuits* (now in the seventh edition), *Engineering Skills for Career Success, Problem Solving Made* ALMOST *Easy*, the fifth edition of the *Standard Handbook of Electronic Engineering*, and *Applied Circuit Analysis*, all with McGraw-Hill. He has authored or coauthored 30 books counting separate editions and foreign translations and he has made more than 500 paper, professional, and technical presentations. This circuits textbook was ranked number one or number two worldwide recently.

Dr. Alexander is a Life Fellow of the IEEE and served as its international president and CEO in 1997. In addition, he has held several leadership positions within IEEE during his more than fifty years of service as a volunteer. This includes serving 1991 to 1999 on the IEEE Board of Directors.

He has received several local, regional, national, and international awards for teaching, research, and service, including an honorary Doctor of Engineering degree, Fellow of the IEEE, the IEEE-USA Jim Watson Student Professional Awareness Achievement Award, the IEEE Undergraduate Teaching Award, the Distinguished Professor Award, the

Charles K. Alexander

About the Authors

Distinguished Engineering Education Achievement Award, the Distinguished Engineering Education Leadership Award, the IEEE Centennial Medal, and IEEE/RAB Innovation Award.

Matthew N. O. Sadiku

Matthew N. O. Sadiku received his B.Sc. degree in 1978 from Ahmadu Bello University, Zaria, Nigeria and his M.Sc. and Ph.D. degrees from Tennessee Technological University, Cookeville, TN, in 1982 and 1984, respectively. From 1984 to 1988, he was an assistant professor at Florida Atlantic University, Boca Raton, FL, where he did graduate work in computer science. From 1988 to 2000, he was at Temple University, Philadelphia, PA, where he became a full professor. From 2000 to 2002, he was with Lucent/Avaya, Holmdel, NJ, as a system engineer and with Boeing Satellite Systems, Los Angeles, CA, as a senior scientist. He is presently a professor of electrical and computer engineering at Prairie View A&M University, Prairie View, TX.

He is the author of over 660 professional papers and over 80 books including "Elements of Electromagnetics" (Oxford University Press, 7th ed., 2018), Fundamentals of Electric Circuits (McGraw-Hill, now in 7th edition, with C. Alexander), Computational Electromagnetics with MATLAB (CRC, 4th ed., 2019), and Principles of Modern Communication Systems (Cambridge University Press, 2017, with S. O. Agbo). In addition to the engineering books, he has written Christian books including Secrets of Successful Marriages, How to Discover God's Will for Your Life, and commentaries on all the books of the New Testament Bible. Some of his books have been translated into French, Korean, Chinese (and Chinese Long Form in Taiwan), Italian, Portuguese, and Spanish.

He was the recipient of the 2000 McGraw-Hill/Jacob Millman Award for outstanding contributions in the field of electrical engineering. He was also the recipient of Regents Professor award for 2012–2013 by the Texas A&M University System. He is a registered professional engineer and a fellow of the Institute of Electrical and Electronics Engineers (IEEE) "for contributions to computational electromagnetics and engineering education." He was the IEEE Region 2 Student Activities Committee Chairman. He was an associate editor for IEEE Transactions on Education. He is also a member of Association for Computing Machinery (ACM) and American Society of Engineering Education (ASEE). His current research interests are in the areas of computational electromagnetics, computer networks, and engineering education. His works can be found in his autobiography, My Life and Work (Trafford Publishing, 2017) or his website: www.matthew-sadiku.com. He currently resides with his wife Kikelomo in Hockley, TX. He can be reached via email at sadiku@ieee.org.

Fundamentals of **Electric Circuits**