BESIII Oxford Group Meeting

Martin Tat

Oxford LHCb

15th April 2021

Introduction

- $D \rightarrow K^+K^-\pi^+\pi^-$ analysis
- Previously: Fit to ΔE and $m_{\rm BC}$ to get $KK\pi\pi$ ST yield
 - Issue: Strange ΔE shape
- Current progress:
 - ullet Found possible explanation for ΔE shape
 - Looked at K_SKK background, found asymmetric veto range

MC samples

MC sample	Events (10^6)	Luminosity scale (2010/2011)
$D^0 \bar{D^0}$	74	21.8/21.8
D^+D^-	29	10.9/10.8
qā	122	7.8/7.3
ψ (2 S) γ	34	10.8/10.1
$J/\psi\gamma$	22	10.8/10.1
au au	60	10.8/10.1
non- $Dar{D}$	10	10.8/10.1

 \bullet Did not run over \emph{ee} and $\mu\mu$ MC

Previous ΔE fit in data vs MC

Problem: Why is there a broad + narrow peak?

Broad peak from combinatorial background

(a) ΔE , inclusive MC combinatorial background

(b) ΔE , signal MC combinatorial background

- Sharp peak/kink near $\Delta E = 0$ in combinatorial background
- No particular component that causes this

Comparison with $K\pi\pi\pi$ combinatorial background

(a) ΔE from $K\pi\pi\pi$ single tag, inclusive $D^0\bar{D^0}$ MC

(b) ΔE from $K\pi\pi\pi$ combinatorial background, inclusive $D^0\bar{D^0}$ MC

- See a similar sharp peak/kink for $K\pi\pi\pi$
- Not noticeble under the large signal

Possible explanation for ΔE shape

- Had a closer look at all single tag ΔE distributions:
 - Larger peak in modes with high track multiplicity
 - See a similar, but smaller peak in all 3-body modes
 - No peak for 2-body modes
- Bias in ΔE because of selection:
 - ullet DTagTool: For events with multiple candidates, pick candidates with smallest ΔE
 - For events with many track combinations, this will favour background near $\Delta E = 0$.

Thought experiment to explain the peak

- ullet Consider a uniform combinatorial background in ΔE
- Generate N random numbers between -0.1 and 0.1
- Pick number closest to $\Delta E = 0$
- Resulting ΔE distribution has a peak/kink at $\Delta E = 0$

How to deal with this?

- ullet Peak at ΔE seems to be caused by the selection itself, can't remove with cuts
- Instead, modify PDF shape
 - Before: $f(x) = 1 + ax + bx^2$
 - Change to: Two independent polynomials on either side
 - $f(x) = 1 + a_1x + b_1x^2$, $\Delta E < 0$
 - $f(x) = 1 + a_2x + b_2x^2$, $\Delta E > 0$

New ΔE fit in data vs MC

Previous ΔE fit in data vs MC

K_SKK peaking background

- Generated a signal MC sample of K_SKK , reconstructed as $KK\pi\pi$
- Applied flight significance cut at 2
- Out of 200000 generated events, 6883 events made it through this selection (3%)

K_SKK peaking background

Figure 7: $\pi\pi$ invariant mass in K_SKK peaking background

• A veto at 477 MeV $< m(\pi\pi) <$ 507 MeV removes 85% of the remaining background

$KK\pi\pi$ single tag components

Figure 8: $KK\pi\pi$ single tag m_{BC} components

$KK\pi\pi$ single tag components

Figure 9: $KK\pi\pi$ single tag m_{BC} components

$\overline{KK\pi\pi}$ single tag components

Figure 10: $KK\pi\pi$ single tag m_{BC} components

- K_SKK background is very small
- Combinatorial background lower in data
- ullet Signal larger in data, possibly because branching fraction is lower in decay card (15%)

Next steps

- Run same studies on other modes
- Start with DT yields, check with expectation from amplitude model