МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Санкт-Петербургский национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №3

«Выполнение циклических программ»

по дисциплине «ОСНОВЫ ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ» Вариант № 1453

Выполнил:

Студент группы Р3116

Билошицкий Михаил Владимирович

Преподаватель:

Афанасьев Дмитрий Борисович

Содержание

2
3
∠
5
6
7

Задание

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

Ход работы, содержание отчета и контрольные вопросы описаны в методических указаниях

Введ	ите ном	ер	вариан	та 1453
386:	0396	ı	394:	CEFB
387:	A000	1	395:	0100
388:	E000	1	396:	8386
389:	0200	ĺ	397:	0588
38A:	+ 0200	ĺ	398:	0500
38B:	EEFD	ı	399:	00D2
38C:	AF05	İ	39A:	D390
38D:	EEFA	ĺ		
38E:	4EF7	Ì		
38F:	EEF7	İ		
390:	ABF6	Ĺ		
391:	F301	İ		
392:	4AF6	Ĺ		
393:	8388	ĺ		

Описание работы из методических указаний:

Лабораторная работа №3. Выполнение циклических программ

<u>Цель работы</u> - изучение способов организации циклических программ и исследование порядка функционирования БЭВМ при выполнении циклических программ и обработки одномерных массивов.

<u>Задание</u>. По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

Подготовка к выполнению работы.

Получить у преподавателя номер варианта к лабораторной работе. Изучить способы и средства организации циклических программ с использованием системы команд базовой ЭВМ (приложение В, п.1.7). Восстановить текст заданного варианта программы. Составить описание программы.

Порядок выполнения работы. Получить допуск к лабораторной работе, предъявив преподавателю подготовленные материалы. Получить у преподавателя новые исходные данные. Значения элементов массива из задания используются только для определения функциональности программы! Занести в память базовой ЭВМ заданный вариант программы, новые исходные данные и заполнить таблицу трассировки, выполняя эту программу по командам.

Содержание отчета по работе. Отчет по работе должен быть составлен аналогично лабораторной работе №2, за исключением п. 4 (разработка программы с сокращенным числом команд). Необходимо привести диапазон всех ячеек памяти, где может размещаться массив исходных данных.

Контрольные вопросы:

- 1. Организация одномерных массивов данных в памяти. Организация и обработка массивов с числом измерений, больше чем одно.
- 2. Сравнение значений в БЭВМ. Команды условных и безусловного переходов.
- 3. Организация циклических вычислений. Команда LOOP.
- 4. Режимы адресации БЭВМ.
- 5. Описание адресных команд и команд переходов с различными режимами адресации: наименование, назначение, тип команды и вид адресации. Количество и название машинных циклов, потактовое выполнение команд.
- Количество обращений к памяти команд БЭВМ с различными режимами адресации.
- Где находятся аргументы программы? Где находится результат? Как они представлены?
- Какое максимальное количество элементов данных может поддерживать ваша программа?

Текст исходной программы

Адрес	Код команды	Мнемоника	Комментарии				
386	0396	-	Р – адрес начала массива				
387	A000	-	Х – указатель на считываемый элемент массива				
388	E000	-	Y – счетчик цикла				
389	0200	-	R – результат (кол-во отрицательных элем. в массиве)				
38A	0200	CLA	0 -> АС (Очистка аккумулятора)				
38B	EEFD	ST -3	AC -> (IP-3) (Записываем AC в ячейку по адресу IP - 3)				
38C	AF05	LD #5	0x0005 -> AC (Записываем число 0x0005 в AC)				
38D	EEFA	ST -6	AC -> (IP-6) (Записываем AC в ячейку по адресу IP - 6)				
38E	4EF7	ADD -9	AC + (IP-9) -> AC (Прибавляем значение по адресу IP - 9 к AC)				
38F	EEF7	ST -9	AC -> (IP-9) (Записываем AC в ячейку по адресу IP - 9)				
390	ABF6	LD -(-A)	(IP-A) - 1 > AC (Записываем значение адресу ((IP-A) - 1) в AC)				
391	F301	BPL 01	IP + 1 -> IP если N == 0 (Переход если плюс)				
392	4AF6	ADD (-A)+	AC + (IP-A) + 1 -> AC (Прибавляем значение ((IP-A) + 1) к AC)				
393	8388	LOOP 388	M - 1 > M; Если M <= 0, то IP + 1 -> IP, где M = 388				
394	CEFB	JUMP -5	Безусловный переход в ячейку IP – 5				
395	0100	HLT	Останов – конец программы.				
396	8386	-	M₁ – первый элемент массива				
397	0588	-	М₂ — второй элемент массива				
398	0500	-	М₃ – третий элемент массива				
399	00D2	-	M₄ – четвертый элемент массива				
39A	D390	-	М₅ - пятый элемент массива				

Описание программы

1. Назначение программы и реализуемая ею функция.

Программа подсчитывает количество отрицательных элементов в массиве размером 5.

Реализуемая функция:

$$R = \sum_{i=1}^{5} \begin{cases} 1, M_i < 0 \\ 0, M_i \ge 0 \end{cases}$$

где M_i – элемент массива по индексу і и R – результат.

- 2. Область представления и область допустимых значений исходных данных и результата.
 - а. Область представления
 - 1. $M_1, M_2, M_3, M_4, M_5, Y$ знаковое, целые 16-ти разрядные числа.
 - 2. R беззнаковое, целое, 16-ти разрядное число.
 - 3. Р, Х беззнаковые, целые 11-ти разрядные числа.
 - b. Область допустимых значений (ОДЗ).

$$\begin{aligned} -2^{15} \leq & M_0, \, M_1, \, M_2, \, M_3, \, M_4 \leq 2^{15} - 1 \\ & \left[\begin{array}{c} 0 \leq P \leq 380_{16} \\ 396_{16} \leq P \leq 7FA_{16} \end{array} \right] \end{aligned}$$

3. Расположение в памяти ЭВМ программы, исходных данных и результатов.

Название	Адрес	Описание					
Р	386	Адрес начала массива					
R	389	Результат					
M_1	P+0	Первый элемент массива					
M_2	P+1	Второй элемент массива					
M_3	P+2	Третий элемент массива					
M_4	P+3	Четвертый элемент массива					
M ₅	P+4	Пятый элемент массива					

4. Адреса первой и последней выполняемой команд программы.

Адрес первой команды: 38A. Адрес последней команды: 395.

Таблица трассировки

Данные:

 $P = 512 = 0200_{16}$ $M_1 = 27194 = 6A3A_{16}$ $M_2 = 20698 = 50DA_{16}$ $M_3 = -11795 = D1ED_{16}$ $M_4 = -13554 = CB0E$ $M_5 = -12614 = CEBA_{16}$

	Зыполняемая команда Содержимое регистров процессора после выполнения команды						Ячейка, содержимое которой изменилось после выполнения					
Адрес	Код	ΙP	CR	AR	DR	SP	BR	AC	PS	NZVC	Адрес	Новый код
38B	EEFD	38B	0000	000	0000	000	0000	0000	004	0100	-	-
38B	EEFD	38C	EEFD	389	0000	000	FFFD	0000	004	0100	389	0000
38C	AF05	38D	AF05	38C	0005	000	0005	0005	000	0000	-	-
38D	EEFA	38E	EEFA	388	0005	000	FFFA	0005	000	0000	388	0005
38E	4EF7	38F	4EF7	386	0200	000	FFF7	0205	000	0000	-	-
38F	EEF7	390	EEF7	387	0205	000	FFF7	0205	000	0000	387	0205
390	ABF6	391	ABF6	204	CEBA	000	FFF6	CEBA	008	1000	387	0204
391	F301	392	F301	391	F301	000	0391	CEBA	008	1000	-	-
392	4AF6	393	4AF6	000	0000	000	FFF6	CEBA	008	1000	389	0001
393	8388	394	8388	388	0004	000	0003	CEBA	008	1000	388	0004
394	CEFB	390	CEFB	394	0390	000	FFFB	CEBA	008	1000	-	-
390	ABF6	391	ABF6	203	CB0E	000	FFF6	CB0E	008	1000	387	0203
391	F301	392	F301	391	F301	000	0391	CB0E	008	1000	-	-
392	4AF6	393	4AF6	001	0000	000	FFF6	CB0E	008	1000	389	0002
393	8388	394	8388	388	0003	000	0002	CB0E	008	1000	388	0003
394	CEFB	390	CEFB	394	0390	000	FFFB	CB0E	008	1000	-	-
390	ABF6	391	ABF6	202	D1ED	000	FFF6	D1ED	008	1000	387	0202
391	F301	392	F301	391	F301	000	0391	D1ED	008	1000	-	-
392	4AF6	393	4AF6	002	0000	000	FFF6	D1ED	008	1000	389	0003
393	8388	394	8388	388	0002	000	0001	D1ED	008	1000	388	0002
394	CEFB	390	CEFB	394	0390	000	FFFB	D1ED	008	1000	-	-
390	ABF6	391	ABF6	201	50DA	000	FFF6	50DA	000	0000	387	0201
391	F301	393	F301	391	F301	000	0001	50DA	000	0000	-	-
393	8388	394	8388	388	0001	000	0000	50DA	000	0000	388	0001
394	CEFB	390	CEFB	394	0390	000	FFFB	50DA	000	0000	-	-
390	ABF6	391	ABF6	200	6A3A	000	FFF6	6A3A	000	0000	387	0200
391	F301	393	F301	391	F301	000	0001	6A3A	000	0000	-	-
393	8388	395	8388	388	0000	000	FFFF	6A3A	000	0000	388	0000
395	0100	396	0100	395	0100	000	0395	6A3A	000	0000	-	-

Вывод

Во время выполнения лабораторной работы я научился определять функцию, вычисляемую циклической программой, рассчитывать область представления и область допустимых значений исходных данных и результата, узнал на практике как работать с циклами и массивами в БЭВМ и попрактиковался составлять таблицу трассировки. Полученные знания мне пригодятся в будущем для моей профессиональной деятельности и дальнейшего обучения.