Anirudha Behera

abehera1@hawk.iit.edu • Chicago, IL 60608 • +1 (312) 539-8691 • linkedin.com/in/abehera1/ • anirudhabehera.site

EDUCATION

Illinois Institute of Technology, Chicago, USA

12/2023

Master of Science in Electrical Engineering, GPA 3.53/4.0

Relevant Coursework: Introduction to VLSI, CAD Techniques for VLSI Design, High-Performance VLSI/IC Systems, Digital SoC Design, Computer Organization and Design, RF Integrated Circuit Design

Gandhi Institute For Technology, Bhubaneswar, India

07/2018

Bachelor of Technology in Electrical Engineering, GPA: 8.1/10

Department Rank 1 (5th to 8th Semester), Recipient of the Best Live Major Project Team Award in 2018

SKILLS

Scripting/Programming Skills: TCL, Shell Scripting, Python, VHDL, Verilog, HTML5, CSS3

EDA Tools: Synopsys (IC Compiler II, Design Compiler, Prime Time, Star RC, IC Validator, Hspice, Formality), Cadence (Virtuoso, Encounter), MG/Siemens (Calibre, ModelSim), Xilinx Vivado, CACTI, WATCH, Redhawk, Linux/Unix

WORK EXPERIENCE

Research Assistant, Design Automation LAB, IIT, Chicago, USA

08/2023 - 12/2023

- Advisor: Dr. Ken Choi, Professor, ECE Department, IIT Chicago.
- Implemented RTL to GDSII flow for 14nm and 28nm TSMC technology nodes on block-level JBI processor using Synopsys tools.
- Used TCL scripting to design and automate methodology for each stage of Physical Design flow.
- Developed a novel methodology by combining Floorplan and Power plan in one stage for optimizing runtime and QOR.
- Research Article: Precision Methodology: Transforming VLSI Physical Design with Tailored Floorplan and Power Plan Strategies.

Physical Design Engineer, Chipedge Technology, Remote

10/2022 - 07/2023

- Led end-to-end Physical design phases, Logic Synthesis, Floorplan, Placement, Clock Tree Synthesis (CTS), Routing and Optimization. monitored Quality of Results (QOR) against Power, Performance, and Area (PPA).
- Analyzed Timing constraints and resolved STA violations through holistic strategies for designs with up to 5 million standard cell instances and over 80 macros across 14nm, 22nm, 28nm, 32nm TSMC nodes.
- Ensured design integrity during Sign-off by extracting parasitic elements (.spef) and progressively resolving DRC, LVS, EM/IR, and LEC issues.
- Employed ECO cycles and extensive manual debugging techniques for successful GDSII tape-out.
- Utilizing Unix Shell and TCL scripting across Physical Design methodology from RTL to GDSII.

ACADEMIC PROJECTS

OpenSPARC T1 Block Level design from RTL to GDSII using 14nm and 28nm TSMC nodes | DC | ICC2 01/2023

- Used 75% core-area utilization and density sweeps to understand the congestion and routability behavior.
- Optimized design using insertion and size cell techniques to eliminate DRV's like Caps and Trans.

Standard Cell-Based 32-bit Pipelined CPU Design with Modified New ALU Architecture (RTL to GDSII) 11/2022

- Implemented 5 different CPU models with ASIC flow for slack time optimization.
- Executed Synthesis, PNR, and Opt then recorded optimized slack time, power, area and Obtained GDSII Layout.
- Utilized CSeA, CLA, CRA and CSA adders and comparator-CLA mix designs and compared their performance.

CAD Tool Design for Static Timing Analysis by using TCL/Tk and C Programming | Tclsh

11/2022

- Designed C code to calculate the required time, arrival time, and slack time from the given input vectors and optimized the code to save the output file separately.
- Designed a Static Timing Analysis CAD tool GUI using TCL/Tk, which can take set of inputs from the user and optimize the given input vector using implemented C code and display the output results on the GUI interface.

Multimedia Mobile Processor Configuration for Ultra-low Power Design | WATCH | CACTI | ModelSim 04/2023

- System-Level: Coded Graph-based slack analysis in C. Optimized with Loop unrolling and catch technique. WATCH and CACTI tools were used. Achieved 85.68% power reduction.
- RTL-Level: Applied ACG, CCG, OCCG, LECG, ECG, hybrid techniques on MMP. Achieved max 109.75% power reduction. Used Formality, Model Sim, Power Compiler (DC) tools.

LEADERSHIP: Secretary General at Eta Kappa Nu Delta Chapter HKN-IEEE Government, IIT-ECE Dept.

01/2023