BEST AVAILABLE COPY

Amendments to the Claims

- 1-21. (Cancelled)
- 22. (Withdrawn) A process for producing a compound represented by formula (VI')

wherein Q represents the group (i) as defined in claim 1, R² to R⁵, R³¹, R³², and R⁵² are as defined above, which comprises the steps of:

(1) reacting a compound represented by formula (VII)

$$R^3$$
 R^2
 R^3
 R^4
 R^5
 R^5

wherein R^2 to R^5 and R^{52} are as defined above, with a compound represented by $R^{31}R^{32}C=0$ wherein R^{31} and R^{32} are as defined in claim 1;

(2) reacting the compound prepared in step (1) with a compound represented by R⁷¹-C(=O)-

 R^{72} wherein R^{71} and R^{72} each independently represent a chlorine atom, 4-nitrophenyl, or 1-imidazolyl; and

- (3) reacting the compound prepared in step (2) with a compound represented by R³³OH wherein R³³ is as defined in claim 1.
 - 23. (Withdrawn) A process for preparing a compound represented by formula (VI')

wherein Q represents group (i) as defined in claim 1, R² to R⁵, R³¹, R³², and R⁵² are as defined above, which comprises the steps of:

(1) reacting a compound represented by formula (VII)

$$R^3$$
 R^2
 R^3
 R^4
 R^5
 R^5

wherein R^2 to R^5 and R^{52} are as defined above, with a compound represented by $R^{31}R^{32}C=0$ wherein R^{31} and R^{32} are as defined in claim 1; and

(2) reacting the compound prepared in step (1) with a compound represented by HalCOOR³³

wherein Hal represents a halogen atom and R³³ is as defined in claim 1, in the presence of an alkali metal carbonate and an alkali metal iodide.

24. (Withdrawn) A process for producing a compound represented by formula (VI')

$$R^3$$
 R^4
 R^5
 R^5

wherein Q represents group (i) as defined in claim 1, R^2 to R^5 , R^{31} , R^{32} , and R^{52} are as defined above, which comprises the step of

reacting a compound represented by formula (VII)

wherein R² to R⁵ and R⁵² are as defined above, with a compound represented by formula (IV)

wherein Hal represents a halogen atom, Q represents the group (i) as defined in claim 1, and R³¹ and R³² are as defined above, in the presence of an inorganic base and an alkali metal iodide.

25. (Withdrawn) A process for preparing a compound represented by formula (VIII)

$$R^3$$
 R^4
 R^2
 R^3
 R^4
 R^5
 R^6
 R^6
 R^6
 R^6

wherein R² to R⁵, R⁵², and R⁶¹ are as defined above, which comprises the step of
(a) reacting a compound represented by formula (IX)

$$R^3$$
 R^4
 R^5
 $COOR^{52}$
 (IX)

wherein R² to R⁵ and R⁵² are as defined above,

with a compound represented by formula (X)

$$R^{61}-N_3 \qquad (X)$$

wherein R⁶¹ is as defined above, or

(b) reacting a compound represented by formula (XII)

$$R^3$$
 R^4
 R^5
 M
 (XII)

wherein M represents lithium, magnesium chloride, magnesium bromide, magnesium iodide, zinc bromide, zinc iodide, cadmium bromide, iodide cadmium, or copper and R² to R⁵ are as defined in claim 1,

with a compound represented by formula (XIII)

wherein R⁵² and R⁶¹ are as defined above.

26. (Withdrawn) A process according to claim 25, which further comprises the step of, prior to the reaction of the compound represented by formula (IX) with the compound represented by formula (X) in step (a), dehydrogenating a compound represented by formula (XI)

wherein R² to R⁵ and R⁵² are as defined above, to produce the compound represented by formula (IX).

27. (Withdrawn) A process for producing a compound represented by formula (XV)

wherein R² to R⁵, R⁵², and R⁶¹ are as defined above, which comprises the step of reacting a compound represented by formula (XVI)

$$R^3$$
 R^2
 R^3
 R^2
 R^3
 R^3

wherein R² to R⁵, and R⁵² are as defined above, with a compound represented by formula (X)

$$R^{61}-N_3 \qquad (X)$$

wherein R⁶¹ is as defined in claim 18.

28. (Withdrawn) A process according to claim 27, which further comprises the step of, prior to the reaction of the compound represented by formula (XVI) with the compound represented by formula (X), a compound represented by formula (XVII)

wherein R² to R⁵ and R⁵² are as defined above, is dehydrogenated to produce the compound represented by formula (XVI).

29. (Withdrawn) A compound represented by formula (IXa) or a salt or solvate thereof

wherein R⁴¹, R⁴², and R⁵² are as defined in claim 6, provided that R⁴¹ and/or R⁴² do not represent a hydrogen atom.

30. (Withdrawn) A compound represented by formula (XVIa) or a salt or solvate thereof

wherein R41, R42, R51, and R52 are as defined in claim 6.

31. (Currently amended) A compound represented by formula (II) or a salt or solvate thereof:

wherein R^2 , R^3 , R^4 , and R^5 , which may be the same or different, represent any of the following (a) to (n):

- (a) a hydrogen atom;
- (b) a halogen atom;
- (c) a hydroxyl group optionally protected by acetyl, chloroacetyl, dichloroacetyl, trichloroacetyl, benzoyl, 4-nitrobenzoyl, 3-oxobutyryl, benzyl, diphenylmethyl, triphenylmethyl, 4-methoxybenzyl, 3,4-dimethoxybenzyl, methoxymethyl, methoxyethoxymethyl, benzyloxymethyl, trimethylsilyl, tert-butyldimethylsilyl, triphenysilyl, 2-tetrahydropyranyl, or trimethylsilylethoxymethoxy;
 - (d) formyl;
 - (e) C_{1-12} alkyl which may be substituted by a halogen atom;

- (f) C_{2-12} alkenyl which has one or more carbon-carbon double bonds and may be substituted by
 - (1) a halogen atom,
 - (2) cyano,
 - (3) -COR 9 wherein R 9 represents a hydrogen atom or C₁₋₆ alkyl,
 - (4) $-COOR^{10}$ wherein R^{10} represents a hydrogen atom or C_{1-6} alkyl,
 - (5) $-CONR^{11}R^{12}$ wherein R^{11} and R^{12} , which may be the same or different, represent
 - (i) a hydrogen atom,
 - (ii) C_{1-4} alkyl which may be substituted by amino optionally substituted by C_{1-4} alkyl, phenyl optionally substituted by C_{1-4} alkyl which may be substituted by a saturated fiveto seven-membered heterocyclic ring containing one or two nitrogen atoms (the nitrogen atoms may be substituted by C_{1-4} alkyl), or a saturated or unsaturated fiveto seven-membered heterocyclic ring,
 - (iii) phenyl which may be substituted by carboxyl, or
 - (iv) a saturated or unsaturated five to seven-membered heterocyclic ring,
 - (6) a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C_{1-4} alkyl or may form a bicyclic ring fused with another ring;
 - (g) C_{1-1} alkoxy which may be substituted by
 - (1) a halogen atom,
 - (2) a hydroxyl group,
 - (3) cyano,

- (4) C₁₋₇ cycloalkyl,
- (5) phenyl,
- (6) C_{1-4} alkoxy,
- (7) phenoxy,
- (8) amino which may be substituted by C1., alkyl,
- (9) $-COR^{13}$ wherein R^{13} represents a hydrogen atom, C_{1-6} alkyl, phenyl optionally substituted by halogen or C_{1-6} alkoxy, or phenyl C_{1-6} alkyl,
- (10) $-COOR^{14}$ wherein R^{14} represents a hydrogen atom or C_{1-4} alkyl,
- (11) $-\text{CONR}^{15}\text{R}^{16}$ wherein R¹⁵ and R¹⁶, which may be the same or different, represent a hydrogen atom or C₁₋₆ alkyl which may be substituted by a saturated or unsaturated five- to seven-membered heterocyclic ring, or
- (12) a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C_{1-4} alkyl or phenyl C_{1-4} alkyl;
- (h) $\frac{-C-N-OR^{16a}}{-CH=N-OR^{16a}}$ wherein R^{16a} represents a hydrogen atom, C_{1-6} alkyl, phenyl C_{1-4} alkyl, or phenyl;
- (i) $-(CH_2)_mOR^{17}$ wherein m is an integer of 0 to 4, and R^{17} represents a hydrogen atom, C_{1-6} alkyl, or phenyl C_{1-4} alkyl of which one or more hydrogen atoms on the benzene ring may be substituted by C_{1-4} alkyl;
- (j) -(CH₂)_kCOR¹⁸ wherein k is an integer of 1 to
 4, and R¹⁸ represents a hydrogen atom or C₁₋₄ alkyl;
- (k) (CH₂)_jCOOR¹⁹ wherein j is an integer of 0 to 4, and R'' represents a hydrogen atom or C₁₋₆ alkyl;
- (l) $-(CH_2)_p-NR^{20}R^{21}$ wherein p is an integer of 1 to 4, and R^{20} and R^{21} , which may be the same or different, represent

- (1) a hydrogen atom,
- (2) C_{1-6} alkyl which may be substituted by amino optionally substituted by C_{1-6} alkyl,
 - (3) phenyl C₁₋₄ alkyl,
- (4) $-COR^{22}$ wherein R^{22} represents a hydrogen atom or C_{1-4} alkyl which may be substituted by carboxyl, or
- (5) $-SO_2R^{23}$ wherein R^{23} represents C_{1-4} alkyl or phenyl which may be substituted by a halogen atom;
- -(CH₂)_q-CONR²⁴R²⁵ wherein q is an integer of 0 to 4, and R^{24} and R^{25} , which may be the same or different, represent a hydrogen atom, a saturated or unsaturated five- to seven-membered heterocyclic ring, or C1-6 alkyl which may be substituted by a saturated or unsaturated heterocyclic seven-membered fiveform a saturated or alternatively R24 and R25 may unsaturated five- to seven-membered heterocyclic ring together with a nitrogen atom to which they are attached (the heterocyclic ring may further contain at least one oxygen, nitrogen, or sulfur atom, may form a bicyclic ring fused with another ring, or may be substituted by C_{1-4} alkyl); and
- $(n) NR^{26}R^{27}$ wherein R^{26} and R^{27} , which may be the same or different, represent a hydrogen atom or $-COR^{28}$ wherein R^{28} represents a hydrogen atom, C_{1-6} alkyl, or phenyl which may be substituted by C_{1-4} alkyl or C_{1-6} alkoxy optionally substituted by phenyl;

 R^{31} and R^{32} , which may be the same or different, represent a hydrogen atom or C_{1-6} alkyl which may be substituted by a halogen atom; and

Q represents a group selected from the following groups (i) to (iv) or a halogen atom or C_{1-6} alkoxy:

wherein

R¹¹ represents

 C_{1-6} alkyl which may be substituted by C_{1-6} alkoxy optionally substituted by C_{1-6} alkoxy, phenyl optionally substituted by C_{1-6} alkoxy, amino, or nitro, or a saturated or unsaturated five- to seven-membered heterocyclic ring optionally substituted by C_{1-6} alkoxy, amino, or nitro,

phenyl which may be substituted by C_{1-6} alkoxy, amino, or nitro, or

a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by $C_{1-\delta}$ alkoxy, amino, or nitro, or

 R^{33} may form C_{1-4} alkylene together with R^{31} or R^{32} , R^{34} represents

 C_{1-16} alkyl which may be substituted by a halogen atom, carboxyl, phenyl optionally substituted by C_{1-6} alkoxy, amino, or nitro, or a saturated or unsaturated five- to seven-membered heterocyclic ring optionally substituted by C_{1-6} alkoxy, amino, or nitro,

phenyl which may be substituted by $C_{1-\delta}$ alkoxy, amino, or nitro, or

a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C_{1-6} alkoxy, amino, or nitro,

 R^{35} and R^{36} , which may be the same or different, represent a hydrogen atom or C_{1-6} alkyl which may be

substituted by amino optionally substituted by $C_{1-\epsilon}$ alkyl or

R³⁵ and R³⁶ may form a saturated or unsaturated fiveto seven-membered heterocyclic ring together with a nitrogen atom to which they are attached, and

 R^{37} and R^{38} , which may be the same or different, represent C_{1-6} alkyl,

R⁵¹ represents nitro or amino, and

R⁵² represents a hydrogen atom or a protective group for carboxyl selected from the group consisting of methyl, ethyl, tert-butyl, benzyl, 4-methoxybenzyl, diphenylmethyl, 4-nitrobenzyl, tert-butyldimethylsilyl, triphenylsilyl, 2-phenylsulfonylethyl, 2-methoxycarbonylethyl, 2-cyanoethyl, and 2-trimethylsilylethyl,

provided that the group - $CR^{31}R^{32}Q$ does not represent C_{1-6} alkyl substituted by a halogen atom or C_{1-6} alkoxy.

32. (Currently amended) A compound represented by formula (II') or a salt or solvate thereof:

wherein R², R³, R⁴, and R⁵, which may be the same or different, represent any of the following (a) to (n):

- (a) a hydrogen atom;
- (b) a halogen atom;
- (c) a hydroxyl group optionally protected by acetyl, chloroacetyl, dichloroacetyl, trichloroacetyl, benzoyl, 4-nitrobenzoyl, 3-oxobutyryl, benzyl, diphenylmethyl, triphenylmethyl, 4-methoxybenzyl, 3,4-dimethoxybenzyl, methoxymethyl, methoxyethoxymethyl, benzyloxymethyl, trimethylsilyl, tert-butyldimethylsilyl, triphenysilyl, 2-tetrahydropyranyl, or trimethylsilylethoxymethoxy;
 - (d) formyl;
 - (e) C_{1-12} alkyl which may be substituted by a halogen atom;

- (f) C_{2-12} alkenyl which has one or more carbon-carbon double bonds and may be substituted by
 - (1) a halogen atom,
 - (2) cyano,
 - (3) -COR 9 wherein R 9 represents a hydrogen atom or C_{1-6} alkyl,
 - (4) $-COOR^{10}$ wherein R^{10} represents a hydrogen atom or C_{1-6} alkyl,
 - (5) -CONR¹¹R¹² wherein R¹¹ and R¹², which may be the same or different, represent
 - (i) a hydrogen atom,
 - (ii) C_{1-6} alkyl which may be substituted by amino optionally substituted by C_{1-4} alkyl, phenyl optionally substituted by C_{1-4} alkyl which may be substituted by a saturated fiveto seven-membered heterocyclic ring containing one or two nitrogen atoms (the nitrogen atoms may be substituted by C_{1-4} alkyl), or a saturated or unsaturated fiveto seven-membered heterocyclic ring,
 - (iii) phenyl which may be substituted
 by carboxyl, or
 - (iv) a saturated or unsaturated five to seven-membered heterocyclic ring,
 - (6) a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C_{1-1} alkyl or may form a bicyclic ring fused with another ring;
 - (g) C_{1-12} alkoxy which may be substituted by
 - (1) a halogen atom,
 - (2) a hydroxyl group,
 - (3) cyano,

- (4) C₁₋₇ cycloalkyl,
- (5) phenyl,
- (6) C_{1-1} alkoxy,
- (7) phenoxy,
- (8) amino which may be substituted by C1-4 alkyl,
- (9) -COR¹³ wherein R¹³ represents a hydrogen atom, C₁₋₄ alkyl, phenyl optionally substituted by halogen or C₁₋₄ alkoxy, or phenyl C₁₋₄ alkyl,
- (10) $-COOR^{14}$ wherein R^{14} represents a hydrogen atom or C_{1-4} alkyl,
- (11) -CONR¹⁵R¹⁶ wherein R¹⁵ and R¹⁶, which may be the same or different, represent a hydrogen atom or C₁₋₆ alkyl which may be substituted by a saturated or unsaturated five- to seven-membered heterocyclic ring, or
- (12) a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C_{1-1} alkyl or phenyl C_{1-1} alkyl;
- (h) $\frac{-C-N-OR^{16a}}{-CH=N-OR^{16a}}$ wherein R^{16a} represents a hydrogen atom, C_{1-6} alkyl, phenyl C_{1-4} alkyl, or phenyl;
- (i) $-(CH_2)_mOR^{17}$ wherein m is an integer of 0 to 4, and R^{17} represents a hydrogen atom, C_{1-6} alkyl, or phenyl C_{1-6} alkyl of which one or more hydrogen atoms on the benzene ring may be substituted by C_{1-6} alkyl:
- (j) $-(CH_2)_kCOR^{18}$ wherein k is an integer of 1 to 4, and R^{18} represents a hydrogen atom or C_{1-4} alkyl;
- (k) (CH₂)_jCOOR¹⁹ wherein j is an integer of 0 to 4, and R¹⁹ represents a hydrogen atom or C_{i-6} alkyl;
- (l) $-(CH_2)_p-NR^{20}R^{21}$ wherein p is an integer of 1 to 1, and R^{20} and R^{21} , which may be the same or different, represent

- (1) a hydrogen atom,
- (2) C_{1-6} alkyl which may be substituted by amino optionally substituted by C_{1-6} alkyl,
 - (3) phenyl C₁₋₄ alkyl,
- (4) $-COR^{22}$ wherein R^{22} represents a hydrogen atom or C_{1-4} alkyl which may be substituted by carboxyl, or
- (5) $-SO_2R^{23}$ wherein R^{23} represents C_{1-4} alkyl or phenyl which may be substituted by a halogen atom;
- (m) -(CH₂)_q-CONR²⁴R²⁵ wherein q is an integer of 0 to 4, and R²⁴ and R²⁵, which may be the same or different, represent a hydrogen atom, a saturated or unsaturated five— to seven—membered heterocyclic ring, or C₁₋₆ alkyl which may be substituted by a saturated or unsaturated five— to seven—membered heterocyclic ring, or alternatively R²⁴ and R²⁵ may form a saturated or unsaturated five— to seven—membered heterocyclic ring together with a nitrogen atom to which they are attached (the heterocyclic ring may further contain at least one oxygen, nitrogen, or sulfur atom, may form a bicyclic ring fused with another ring, or may be substituted by C₁₋₆ alkyl); and
- (n) $-NR^{26}R^{27}$ wherein R^{26} and R^{27} , which may be the same or different, represent a hydrogen atom or $-COR^{28}$ wherein R^{26} represents a hydrogen atom, C_{1-6} alkyl, or phenyl which may be substituted by C_{1-6} alkyl or C_{1-6} alkoxy optionally substituted by phenyl;

 R^{11} and R^{12} , which may be the same or different, represent a hydrogen atom or C_{1-6} alkyl which may be substituted by a halogen atom; and

Q represents a group selected from the following groups (i) to (iv) or a halogen atom or C₁₋₆ alkoxy:

wherein

R" represents

 C_{1-6} alkyl which may be substituted by C_{1-6} alkoxy optionally substituted by C_{1-6} alkoxy, phenyl optionally substituted by C_{1-6} alkoxy, amino, or nitro, or a saturated or unsaturated five- to seven-membered heterocyclic ring optionally substituted by C_{1-6} alkoxy, amino, or nitro,

phenyl which may be substituted by C_{1-6} alkoxy, amino, or nitro, or

a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C_{1-6} alkoxy, amino, or nitro, or

 R^{33} may form C_{1-4} alkylene together with R^{31} or R^{32} , R^{34} represents

 C_{1-16} alkyl which may be substituted by a halogen atom, carboxyl, phenyl optionally substituted by C_{1-6} alkoxy, amino, or nitro, or a saturated or unsaturated five- to seven-membered heterocyclic ring optionally substituted by C_{1-6} alkoxy, amino, or nitro,

phenyl which may be substituted by $C_{1-\delta}$ alkoxy, amino, or nitro, or

a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C_{1-6} alkoxy, amino, or nitro,

 R^{15} and R^{16} , which may be the same or different, represent a hydrogen atom or C_{1-6} alkyl which may be

substituted by amino optionally substituted by $C_{1-\epsilon}$ alkyl or

R¹⁵ and R¹⁶ may form a saturated or unsaturated fiveto seven-membered heterocyclic ring together with a nitrogen atom to which they are attached, and

 R^{17} and R^{16} , which may be the same or different, represent C_{1-6} alkyl,

R⁵¹ represents nitro or amino, and

R⁵² represents a hydrogen atom or a protective group for carboxyl selected from the group consisting of methyl, ethyl, tert-butyl, benzyl, 4-methoxybenzyl, diphenylmethyl, 4-nitrobenzyl, tert-butyldimethylsilyl, triphenylsilyl, 2-phenylsulfonylethyl, 2-methoxycarbonylethyl, 2-cyanoethyl, and 2-trimethylsilylethyl,

provided that the group -CR 31 R 32 Q does not represent C $_{1-6}$ alkyl substituted by a halogen atom or C $_{1-6}$ alkoxy.

33. (Withdrawn) A compound represented by formula (VI) or a salt or solvate thereof:

wherein R^2 , R^3 , R^4 , and R^5 , which may be the same or different, represent any one of the following (a) to (n):

- (a) a hydrogen atom;
- (b) a halogen atom;
- (c) an optionally protected hydroxyl group;
- (d) formyl;
- (e) C_{1-12} alkyl which may be substituted by a halogen atom;

- (f) C_{2-12} alkenyl which has one or more carbon-carbon double bonds and may be substituted by
 - (1) a halogen atom,
 - (2) cyano,
 - (3) -COR 9 wherein R 9 represents a hydrogen atom or C_{1-6} alkyl,
 - (4) $-COOR^{10}$ wherein R^{10} represents a hydrogen atom or C_{1-6} alkyl,
 - (5) $-CONR^{11}R^{12}$ wherein R^{11} and R^{12} , which may be the same or different, represent
 - (i) a hydrogen atom,
 - (ii) C_{1-6} alkyl which may be substituted by amino optionally substituted by C_{1-4} alkyl, phenyl optionally substituted by C_{1-4} alkyl which may be substituted by a saturated fiveto seven-membered heterocyclic ring containing one or two nitrogen atoms (the nitrogen atoms may be substituted by C_{1-4} alkyl), or a saturated or unsaturated fiveto seven-membered heterocyclic ring,
 - (iii) phenyl which may be substituted
 by carboxyl, or
 - (iv) a saturated or unsaturated five to seven-membered heterocyclic ring,
 - (6) a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by $C_{1-\epsilon}$ alkyl or may form a bicyclic ring fused with another ring;
 - (g) C_{1-12} alkoxy which may be substituted by
 - (1) a halogen atom,
 - (2) a hydroxyl group,
 - (3) cyano,

- (4) C, cycloalkyl,
- (5) phenyl,
- (6) C_{1-1} alkoxy,
- (7) phenoxy,
- (8) amino which may be substituted by C_{1-1} alkyl,
- (9) -COR¹³ wherein R¹³ represents a hydrogen atom, C_{1-4} alkyl, phenyl optionally substituted by halogen or C_{1-4} alkoxy, or phenyl C_{1-4} alkyl,
- (10) $-COOR^{14}$ wherein R^{14} represents a hydrogen atom or C_{1-6} alkyl,
- (11) $-\text{CONR}^{15}\text{R}^{16}$ wherein R¹⁵ and R¹⁶, which may be the same or different, represent a hydrogen atom or C₁₋₆ alkyl which may be substituted by a saturated or unsaturated five- to seven-membered heterocyclic ring, or
- (12) a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C_{1-4} alkyl or phenyl C_{1-4} alkyl;
- (h) $-C=N-OR^{16a}$ wherein R^{16a} represents a hydrogen atom, C_{1-6} alkyl, phenyl C_{1-6} alkyl, or phenyl;
- (i) $-(CH_1)mOR^{17}$ wherein m is an integer of 0 to 4, and R^{17} represents a hydrogen atom, C_{1-6} alkyl, or phenyl C_{1-6} alkyl of which one or more hydrogen atoms on the benzene ring may be substituted by C_{1-6} alkyl;
- (j) $-(CH_1)k-COR^{10}$ wherein k is an integer of 1 to 4, and R^{10} represents a hydrogen atom or C_{1-4} alkyl;
- (k) $-(CH_1)j-COOR^{19}$ wherein j is an integer of 0 to 4, and R^{19} represents a hydrogen atom or C_{1-6} alkyl;
- (1) $-(CH_1)p-NR^{20}R^{21}$ wherein p is an integer of 1 to 4, and R^{20} and R^{21} , which may be the same or different, represent

- (1) a hydrogen atom,
- (2) C_{1-6} alkyl which may be substituted by amino optionally substituted by C_{1-6} alkyl,
 - (3) phenyl C₁₋₄ alkyl,
- (4) $-COR^{22}$ wherein R^{22} represents a hydrogen atom or C_{1-4} alkyl which may be substituted by carboxyl, or
- (5) $-SO_2R^{23}$ wherein R^{23} represents C_{1-4} alkyl or phenyl which may be substituted by a halogen atom;
- (m) -(CH₂)q-CONR²⁴R²⁵ wherein q is an integer of 0 to 4, and R²⁴ and R²⁵, which may be the same or different, represent a hydrogen atom, a saturated or unsaturated five- to seven-membered heterocyclic ring, or C₁₋₆ alkyl which may be substituted by a saturated or unsaturated five- to seven-membered heterocyclic ring, or alternatively R²⁴ and R²⁵ may form a saturated or unsaturated five- to seven-membered heterocyclic ring together with a nitrogen atom to which they are attached (the heterocyclic ring may further contain at least one oxygen, nitrogen, or sulfur atom, may form a bicyclic ring fused with another ring, or may be substituted by C₁₋₄ alkyl); and
- (n) $-NR^{26}R^{27}$ wherein R^{26} and R^{27} , which may be the same or different, represent a hydrogen atom or $-COR^{28}$ wherein R^{28} represents a hydrogen atom, C_{1-6} alkyl, or phenyl which may be substituted by C_{1-6} alkyl or C_{1-6} alkoxy optionally substituted by phenyl;

 R^{11} and R^{12} , which may be the same or different, represent a hydrogen atom or C_{1-6} alkyl which may be substituted by a halogen atom; and

Q represents a group selected from the following groups (i) to (iv) or a halogen atom or C_{1-6} alkoxy:

wherein

R" represents

 C_{1-6} alkyl which may be substituted by C_{1-6} alkoxy optionally substituted by C_{1-6} alkoxy, phenyl optionally substituted by C_{1-6} alkoxy, amino, or nitro, or a saturated or unsaturated five- to seven-membered heterocyclic ring optionally substituted by C_{1-6} alkoxy, amino, or nitro,

phenyl which may be substituted by $C_{1-\delta}$ alkoxy, amino, or nitro, or

a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C_{1-6} alkoxy, amino, or nitro, or

 R^{33} may form C_{1-4} alkylene together with R^{31} or R^{32} , R^{34} represents

 C_{1-16} alkyl which may be substituted by a halogen atom, carboxyl, phenyl optionally substituted by C_{1-6} alkoxy, amino, or nitro, or a saturated or unsaturated five- to seven-membered heterocyclic ring optionally substituted by C_{1-6} alkoxy, amino, or nitro,

phenyl which may be substituted by $C_{1-\delta}$ alkoxy, amino, or nitro, or

a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C_{1-6} alkoxy, amino, or nitro,

 R^{15} and R^{16} , which may be the same or different, represent a hydrogen atom or C_{1-6} alkyl which may be

substituted by amino optionally substituted by $C_{1-\epsilon}$ alkylor

R¹⁵ and R¹⁶ may form a saturated or unsaturated fiveto seven-membered heterocyclic ring together with a nitrogen atom to which they are attached, and

 R^{37} and R^{38} , which may be the same or different, represent C_{1-6} alkyl,

 R^{52} represents a hydrogen atom or a protective group for carboxyl, provided that the group -CR 31 R 32 Q does not represent C $_{1-6}$ alkyl substituted by a halogen atom or C $_{1-6}$ alkoxy.

34. (Withdrawn) A compound represented by formula (VI') or a salt or solvate thereof:

wherein R^2 , R^3 , R^4 , and R^5 , which may be the same or different, represent any one of the following (a) to (n):

- (a) a hydrogen atom;
- (b) a halogen atom;
- (c) an optionally protected hydroxyl group;
- (d) formyl;
- (e) C_{i-12} alkyl which may be substituted by a halogen atom;

(f) C_{2-12} alkenyl which has one or more carbon-carbon double bonds and may be substituted by

٠. ...

- (1) a halogen atom,
- (2) cyano,
- (3) -COR 9 wherein R 9 represents a hydrogen atom or C_{1-6} alkyl,
- (4) $-COOR^{10}$ wherein R^{10} represents a hydrogen atom or C_{1-6} alkyl,
- (5) $-CONR^{11}R^{12}$ wherein R^{11} and R^{12} , which may be the same or different, represent
 - (i) a hydrogen atom,
 - (ii) C_{1-6} alkyl which may be substituted by amino optionally substituted by C_{1-4} alkyl, phenyl optionally substituted by C_{1-4} alkyl which may be substituted by a saturated fiveto seven-membered heterocyclic ring containing one or two nitrogen atoms (the nitrogen atoms may be substituted by C_{1-4} alkyl), or a saturated or unsaturated fiveto seven-membered heterocyclic ring,
 - (iii) phenyl which may be substituted
 by carboxyl, or
 - (iv) a saturated or unsaturated five to seven-membered heterocyclic ring,
- (6) a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C_{1-1} alkyl or may form a bicyclic ring fused with another ring;
- (g) C₁₋₁₂ alkoxy which may be substituted by
 - (1) a halogen atom,
 - (2) a hydroxyl group,
 - (3) cyano,

- (4) C₁₋₇ cycloalkyl,
- (5) phenyl,
- (6) $C_{1-\epsilon}$ alkoxy,
- (7) phenoxy,
- (8) amino which may be substituted by C_{1-4} alkyl,
- (9) $-COR^{13}$ wherein R^{13} represents a hydrogen atom, C_{1-4} alkyl, phenyl optionally substituted by halogen or C_{1-4} alkoxy, or phenyl C_{1-4} alkyl,
- (10) $-COOR^{14}$ wherein R^{14} represents a hydrogen atom or C_{1-6} alkyl,
- (11) $-\text{CONR}^{15}\text{R}^{16}$ wherein R¹⁵ and R¹⁶, which may be the same or different, represent a hydrogen atom or C₁₋₆ alkyl which may be substituted by a saturated or unsaturated five- to seven-membered heterocyclic ring, or
- (12) a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by $C_{1-\epsilon}$ alkyl or phenyl $C_{1-\epsilon}$ alkyl;
- (h) $-C=N-OR^{16a}$ wherein R^{16a} represents a hydrogen atom, C_{1-6} alkyl, phenyl C_{1-4} alkyl, or phenyl;
- (i) $-(CH_2)mOR^{17}$ wherein m is an integer of 0 to 4, and R^{17} represents a hydrogen atom, C_{1-6} alkyl, or phenyl C_{1-4} alkyl of which one or more hydrogen atoms on the benzene ring may be substituted by C_{1-4} alkyl;
- (j) $-(CH_1)k-COR^{10}$ wherein k is an integer of 1 to 4, and R^{10} represents a hydrogen atom or C_{1-4} alkyl;
- (k) $-(CH_2)j-COOR^{19}$ wherein j is an integer of 0 to 4, and R^{19} represents a hydrogen atom or C_{1-6} alkyl;
- (1) $-(CH_2)p-NR^{20}R^{21}$ wherein p is an integer of 1 to 4, and R^{20} and R^{21} , which may be the same or different, represent

- (1) a hydrogen atom,
- (2) C_{1-4} alkyl which may be substituted by amino optionally substituted by C_{1-4} alkyl,
 - (3) phenyl C₁₋₄ alkyl,
- (4) $-COR^{22}$ wherein R^{22} represents a hydrogen atom or C_{1-4} alkyl which may be substituted by carboxyl, or
- (5) $-SO_1R^{23}$ wherein R^{23} represents C_{1-1} alkyl or phenyl which may be substituted by a halogen atom;
- (m) -(CH₂)q-CONR²⁴R²⁵ wherein q is an integer of 0 to 4, and R²⁴ and R²⁵, which may be the same or different, represent a hydrogen atom, a saturated or unsaturated five- to seven-membered heterocyclic ring, or C₁₋₆ alkyl which may be substituted by a saturated or unsaturated five- to seven-membered heterocyclic ring, or alternatively R²⁴ and R²⁵ may form a saturated or unsaturated five- to seven-membered heterocyclic ring together with a nitrogen atom to which they are attached (the heterocyclic ring may further contain at least one oxygen, nitrogen, or sulfur atom, may form a bicyclic ring fused with another ring, or may be substituted by C₁₋₄ alkyl); and
- (n) $-NR^{26}R^{27}$ wherein R^{26} and R^{27} , which may be the same or different, represent a hydrogen atom or $-COR^{26}$ wherein R^{26} represents a hydrogen atom, C_{1-6} alkyl, or phenyl which may be substituted by C_{1-6} alkyl or C_{1-6} alkoxy optionally substituted by phenyl;

 R^{11} and R^{12} , which may be the same or different, represent a hydrogen atom or C_{1-6} alkyl which may be substituted by a halogen atom; and

Q represents a group selected from the following groups (i) to (iv) or a halogen atom or $C_{1-\delta}$ alkoxy:

wherein

R" represents

 C_{1-6} alkyl which may be substituted by C_{1-6} alkoxy optionally substituted by C_{1-6} alkoxy, phenyl optionally substituted by C_{1-6} alkoxy, amino, or nitro, or a saturated or unsaturated five- to seven-membered heterocyclic ring optionally substituted by C_{1-6} alkoxy, amino, or nitro,

phenyl which may be substituted by C_{1-6} alkoxy, amino, or nitro, or

a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C_{1-6} alkoxy, amino, or nitro, or

 R^{11} may form C_{1-4} alkylene together with R^{11} or R^{12} , R^{14} represents

 C_{1-16} alkyl which may be substituted by a halogen atom, carboxyl, phenyl optionally substituted by C_{1-6} alkoxy, amino, or nitro, or a saturated or unsaturated five- to seven-membered heterocyclic ring optionally substituted by C_{1-6} alkoxy, amino, or nitro,

phenyl which may be substituted by $C_{1-\delta}$ alkoxy, amino, or nitro, or

a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C_{1-6} alkoxy, amino, or nitro,

 R^{35} and R^{36} , which may be the same or different, represent a hydrogen atom or C_{1-6} alkyl which may be

substituted by amino optionally substituted by $C_{1-\epsilon}$ alkyl or

R³⁵ and R³⁶ may form a saturated or unsaturated fiveto seven-membered heterocyclic ring together with a nitrogen atom to which they are attached, and

 R^{17} and R^{16} , which may be the same or different, represent C_{1-6} alkyl,

 R^{52} represents a hydrogen atom or a protective group for carboxyl, provided that the group -CR 31 R 32 Q does not represent $C_{1.6}$ alkyl substituted by a halogen atom or $C_{1.6}$ alkoxy.

35. (Withdrawn) A compound represented by formula (VII) or a salt or solvate thereof:

$$R^3$$
 R^2
 R^3
 R^4
 R^5
 R^5

wherein R^2 , R^3 , R^4 , and R^5 , which may be the same or different, represent any one of the following (a) to (n):

- (a) a hydrogen atom;
- (b) a halogen atom;
- (c) an optionally protected hydroxyl group;
- (d) formyl;
- (e) C_{1-12} alkyl which may be substituted by a halogen atom;
- (f) C_{2-12} alkenyl which has one or more carbon-carbon double bonds and may be substituted by
 - (1) a halogen atom,

- (2) cyano,
- (3) $-COR^9$ wherein R^9 represents a hydrogen atom or C_{1-6} alkyl,
- (4) $-COOR^{10}$ wherein R^{10} represents a hydrogen atom or C_{1-6} alkyl,
- (5) -CONR¹¹R¹² wherein R¹¹ and R¹², which may be the same or different, represent
 - (i) a hydrogen atom,
 - (ii) C_{1-6} alkyl which may be substituted by amino optionally substituted by C_{1-4} alkyl, phenyl optionally substituted by C_{1-4} alkyl which may be substituted by a saturated fiveto seven-membered heterocyclic ring containing one or two nitrogen atoms (the nitrogen atoms may be substituted by C_{1-4} alkyl), or a saturated or unsaturated fiveto seven-membered heterocyclic ring,
 - (iii) phenyl which may be substituted
 by carboxyl, or
 - (iv) a saturated or unsaturated five to seven-membered heterocyclic ring,
- (6) a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C₁₋₄ alkyl or may form a bicyclic ring fused with another ring;
- (g) C_{1-12} alkoxy which may be substituted by
 - (1) a halogen atom,
 - (2) a hydroxyl group,
 - (3) cyano,
 - (4) C₁₋₇ cycloalkyl,
 - (5) phenyl,

- (6) C_{1-1} alkoxy,
- (7) phenoxy,
- (8) amino which may be substituted by C_{1-4} alkyl,
- (9) $-COR^{13}$ wherein R^{13} represents a hydrogen atom, C_{1-6} alkyl, phenyl optionally substituted by halogen or C_{1-4} alkoxy, or phenyl C_{1-4} alkyl,
- (10) $-COOR^{14}$ wherein R^{14} represents a hydrogen atom or C_{1-6} alkyl,
- (11) $-\text{CONR}^{15}\text{R}^{16}$ wherein R¹⁵ and R¹⁶, which may be the same or different, represent a hydrogen atom or C₁₋₆ alkyl which may be substituted by a saturated or unsaturated five- to seven-membered heterocyclic ring, or
- (12) a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C_{1-4} alkyl or phenyl C_{1-4} alkyl;
- (h) $-C=N-OR^{16a}$ wherein R^{16a} represents a hydrogen atom, C_{1-6} alkyl, phenyl C_{1-6} alkyl, or phenyl;
- (i) $-(CH_2)mOR^{17}$ wherein m is an integer of 0 to 4, and R^{17} represents a hydrogen atom, C_{1-6} alkyl, or phenyl C_{1-4} alkyl of which one or more hydrogen atoms on the benzene ring may be substituted by C_{1-4} alkyl;
- (j) $-(CH_2)k-COR^{18}$ wherein k is an integer of 1 to 4, and R^{18} represents a hydrogen atom or C_{1-4} alkyl;
- (k) $-(CH_2)j-COOR^{19}$ wherein j is an integer of 0 to 4, and R^{19} represents a hydrogen atom or C_{1-6} alkyl;
- (1) $-(CH_2)p-NR^{20}R^{21}$ wherein p is an integer of 1 to 4, and R^{20} and R^{21} , which may be the same or different, represent
 - (1) a hydrogen atom,

- (2) C_{1-6} alkyl which may be substituted by amino optionally substituted by C_{1-4} alkyl,
 - (3) phenyl C1-4 alkyl,
- (4) $-COR^{22}$ wherein R^{22} represents a hydrogen atom or C_{1-4} alkyl which may be substituted by carboxyl, or
- (5) $-SO_2R^{23}$ wherein R^{23} represents C_{1-4} alkyl or phenyl which may be substituted by a halogen atom;
- (m) -(CH₂)q-CONR²⁴R²⁵ wherein q is an integer of 0 to 4, and R²⁴ and R²⁵, which may be the same or different, represent a hydrogen atom, a saturated or unsaturated five- to seven-membered heterocyclic ring, or C₁₋₆ alkyl which may be substituted by a saturated or unsaturated five- to seven-membered heterocyclic ring, or alternatively R²⁴ and R²⁵ may form a saturated or unsaturated five- to seven-membered heterocyclic ring together with a nitrogen atom to which they are attached (the heterocyclic ring may further contain at least one oxygen, nitrogen, or sulfur atom, may form a bicyclic ring fused with another ring, or may be substituted by C₁₋₄ alkyl); and
- (n) $-NR^{26}R^{27}$ wherein R^{26} and R^{27} , which may be the same or different, represent a hydrogen atom or $-COR^{28}$ wherein R^{28} represents a hydrogen atom, C_{1-6} alkyl, or phenyl which may be substituted by C_{1-4} alkyl or C_{1-6} alkoxy optionally substituted by phenyl; and

R⁵² represents a hydrogen atom or a protective group for carboxyl.

36. (Withdrawn) A compound represented by formula (VIII) or a salt or solvate thereof:

$$R^{3}$$
 R^{4}
 R^{5}
 R^{5}
 R^{61}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{61}

wherein R^2 , R^3 , R^4 , and R^5 , which may be the same or different, represent any one of the following (a) to (n):

- (a) a hydrogen atom;
- (b) a halogen atom;
- (c) an optionally protected hydroxyl group;
- (d) formyl;
- (e) C_{1-12} alkyl which may be substituted by a halogen atom;
- (f) C_{2-12} alkenyl which has one or more carbon-carbon double bonds and may be substituted by
 - (1) a halogen atom,
 - (2) cyano,
 - (3) -COR 9 wherein R 9 represents a hydrogen atom or C_{1-6} alkyl,
 - (4) $-COOR^{10}$ wherein R^{10} represents a hydrogen atom or C_{1-6} alkyl,
 - (5) $-CONR^{11}R^{12}$ wherein R^{11} and R^{12} , which may be the same or different, represent
 - (i) a hydrogen atom,
 - (ii) C_{1-6} alkyl which may be substituted by amino optionally substituted by C_{1-4} alkyl, phenyl optionally substituted by C_{1-4} alkyl which may be substituted by a saturated fiveto seven-membered heterocyclic ring containing one or two nitrogen atoms (the

nitrogen atoms may be substituted by C_{1-4} alkyl), or a saturated or unsaturated fiveto seven-membered heterocyclic ring,

- (iii) phenyl which may be substituted
 by carboxyl, or
- (iv) a saturated or unsaturated five to seven-membered heterocyclic ring,
- (6) a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by $C_{1-\epsilon}$ alkyl or may form a bicyclic ring fused with another ring;
- (g) C₁₋₁₂ alkoxy which may be substituted by
 - (1) a halogen atom,
 - (2) a hydroxyl group,
 - (3) cyano,
 - (4) C₃₋₇ cycloalkyl,
 - (5) phenyl,
 - (6) C_{1-4} alkoxy,
 - (7) phenoxy,
 - (8) amino which may be substituted by $C_{1-\epsilon}$ alkyl,
- (9) $-COR^{13}$ wherein R^{13} represents a hydrogen atom, C_{1-6} alkyl, phenyl optionally substituted by halogen or C_{1-6} alkoxy, or phenyl C_{1-6} alkyl,
- (10) $-COOR^{14}$ wherein R^{14} represents a hydrogen atom or C_{1-6} alkyl,
- (11) $-\text{CONR}^{15}\text{R}^{16}$ wherein R¹⁵ and R¹⁶, which may be the same or different, represent a hydrogen atom or C₁₋₆ alkyl which may be substituted by a saturated or unsaturated five- to seven-membered heterocyclic ring, or

- (12) a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C_{1-4} alkyl or phenyl C_{1-4} alkyl;
- (h) $-C=N-OR^{16a}$ wherein R^{16a} represents a hydrogen atom, C_{1-6} alkyl, phenyl C_{1-4} alkyl, or phenyl;
- (i) $-(CH_2)mOR^{17}$ wherein m is an integer of 0 to 4, and R^{17} represents a hydrogen atom, C_{1-6} alkyl, or phenyl C_{1-4} alkyl of which one or more hydrogen atoms on the benzene ring may be substituted by C_{1-4} alkyl;
- (j) $-(CH_2)k-COR^{18}$ wherein k is an integer of 1 to 4, and R^{18} represents a hydrogen atom or C_{1-4} alkyl;
- (k) $-(CH_2)j-COOR^{19}$ wherein j is an integer of 0 to 4, and R^{19} represents a hydrogen atom or C_{1-6} alkyl;
- (1) $-(CH_2)p-NR^{20}R^{21}$ wherein p is an integer of 1 to 4, and R^{20} and R^{21} , which may be the same or different, represent
 - (1) a hydrogen atom,
 - (2) C_{1-6} alkyl which may be substituted by amino optionally substituted by C_{1-6} alkyl,
 - (3) phenyl C₁₋₄ alkyl,
 - (4) $-COR^{22}$ wherein R^{22} represents a hydrogen atom or C_{1-1} alkyl which may be substituted by carboxyl, or
 - (5) $-SO_2R^{23}$ wherein R^{23} represents C_{1-4} alkyl or phenyl which may be substituted by a halogen atom;
- (m) $-(CH_2)q-CONR^{24}R^{25}$ wherein q is an integer of 0 to 4, and R^{24} and R^{25} , which may be the same or different, represent a hydrogen atom, a saturated or unsaturated

five- to seven-membered heterocyclic ring, or C_{1-6} alkyl which may be substituted by a saturated or unsaturated five- to seven-membered heterocyclic ring, or alternatively R^{24} and R^{25} may form a saturated or unsaturated five- to seven-membered heterocyclic ring together with a nitrogen atom to which they are attached (the heterocyclic ring may further contain at least one oxygen, nitrogen, or sulfur atom, may form a bicyclic ring fused with another ring, or may be substituted by C_{1-4} alkyl); and

(n) $-NR^{26}R^{27}$ wherein R^{26} and R^{27} , which may be the same or different, represent a hydrogen atom or $-COR^{26}$ wherein R^{28} represents a hydrogen atom, C_{1-6} alkyl, or phenyl which may be substituted by C_{1-4} alkyl or C_{1-6} alkoxy optionally substituted by phenyl;

 R^{52} represents a hydrogen atom or a protective group for carboxyl; and R^{61} represents a protective group for triazole.

Claim 37 (Currently amended) A process for preparing a compound represented by formula (IIa')

$$R^3$$
 R^2
 R^3
 R^4
 R^5
 R^5
 R^5
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3

wherein

R², R³, R⁴, and R⁵, which may be the same or different, represent any one of the following (a) to (n):

- (a) hydrogen atom;
- (b) halogen atom;
- (c) a hydroxyl group optionally protected by acetyl, chloroacetyl, dichloroacetyl, trichloroacetyl, benzoyl, 4-nitrobenzoyl, 3-oxobutyryl, benzyl, diphenylmethyl, triphenylmethyl, 4-methoxybenzyl, 3,4-dimethoxybenzyl, methoxymethyl, methoxymethyl, benzyloxymethyl, trimethylsilyl, tertbutyldimethylsilyl, triphenysilyl, 2-tetrahydropyranyl, or trimethylsilylethoxymethoxy;
 - (d) formyl;
 - (e) C₁₋₁₂ alkyl which may be substituted by a halogen atom;
- (f) C_{2-12} alkenyl which has one or more carbon-carbon double bonds and may be substituted by
 - (1) a halogen atom,
 - (2) cyano,
 - (3) -COR9 wherein R9 represents a hydrogen atom or C1-6 alkyl,
 - (4) -COOR 10 wherein R^{10} represents a hydrogen atom or C_{1-6} alkyl,
 - (5) -CONR¹¹R¹² wherein R¹¹ and R¹², which may be the same or different, represent

- (i) a hydrogen atom,
- (ii) C₁₋₆ alkyl which may be substituted by amino optionally substituted by C₁₋₄ alkyl, phenyl optionally substituted by C₁₋₄ alkyl which may be substituted by a saturated five- to seven-membered heterocyclic ring containing one or two nitrogen atoms (the nitrogen atoms may be substituted by C₁₋₄ alkyl), or a saturated or unsaturated five- to seven-membered heterocyclic ring,
 - (iii) phenyl which may be substituted by carboxyl, or
- (iv) a saturated or unsaturated five to seven-membered heterocyclic ring,
- (6) a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C₁₋₄ alkyl or may form a bicyclic ring fused with another ring;
- (g) C₁₋₁₂ alkoxy which may be substituted by
 - (1) a halogen atom,
 - (2) a hydroxyl group,
 - (3) cyano,
 - (4) C₃₋₇ cycloalkyl,
 - (5) phenyl,
 - (6) C₁₋₄ alkoxy,
 - (7) phenoxy,
 - (8) amino which may be substituted by C₁₋₄ alkyl,
- (9) -COR¹³ wherein R¹³ represents a hydrogen atom, C_{1-6} alkyl, phenyl optionally substituted by halogen or C_{1-4} alkoxy, or phenyl C_{1-4} alkyl,
- (10) -COOR 14 wherein R 14 represents a hydrogen atom or C $_{1-6}$ alkyl,
- (11) -CONR¹⁵R¹⁶ wherein R¹⁵ and R¹⁶, which may be the same or different, represent a hydrogen atom or C₁₋₆ alkyl which may be substituted by a saturated or unsaturated five- to seven-membered

heterocyclic ring, or

- (12) a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C₁₋₄ alkyl or phenyl C₁₋₄ alkyl;
- (h) -C=N-OR¹⁶-wherein R¹⁶-CH=N-OR^{16a} wherein R^{16a} represents a hydrogen atom, C_{1-6} alkyl, phenyl C_{1-4} alkyl, or phenyl;
 - (i) $-(CH_2)_mOR^{17}$ wherein m is an integer of 0 to 4, and R^{17} represents a hydrogen atom, C_{1-6} alkyl, or phenyl C_{1-4} alkyl of which one or more hydrogen atoms on the benzene ring may be substituted by C_{1-4} alkyl;
 - (j) -(CH₂)_k-COR¹⁸ wherein k is an integer of 1 to 4, and R¹⁸ represents a hydrogen atom or $C_{1.4}$ alkyl;
 - (k) -(CH₂)_j-COOR¹⁹ wherein j is an integer of 0 to 4, and R¹⁹ represents a hydrogen atom or C_{1-6} alkyl;
 - (1) -(CH₂)_p-NR²⁰R²¹ wherein p is an integer of 1 to 4, and R²⁰ and R²¹, which may be the same or different, represent
 - (1) a hydrogen atom,
 - (2) C_{1-6} alkyl which may be substituted by amino optionally substituted by C_{1-4} alkyl,
 - (3) phenyl C₁₋₄ alkyl,
 - (4) - COR^{22} wherein R^{22} represents a hydrogen atom or C_{1-4} alkyl which may be substituted by carboxyl, or
 - (5) $-SO_2R^{23}$ wherein R^{23} represents C_{1-4} alkyl or phenyl which may be substituted by a halogen atom;
 - (m) - $(CH_2)_q$ - $CONR^{24}R^{25}$ wherein q is an integer of 0 to 4, and R^{24} and R^{25} , which may be the same or different, represent a hydrogen atom, a saturated or unsaturated five- to seven-membered heterocyclic ring, or C_{1-6} alkyl which may be substituted by a saturated or unsaturated five- to seven-membered heterocyclic ring, or alternatively R^{24} and R^{25} may form a saturated or unsaturated five- to seven-membered heterocyclic ring together with a nitrogen atom to which they are attached (the heterocyclic ring may further contain at least one oxygen,

nitrogen, or sulfur atom, may form a bicyclic ring fused with another ring, or may be substituted by C_{1-4} alkyl); and

(n) -NR²⁶R²⁷ wherein R²⁶ and R²⁷, which may be the same or different, represent a hydrogen atom or -COR²⁸ wherein R²⁸ represents a hydrogen atom, C_{1-6} alkyl, or phenyl which may be substituted by C_{1-4} alkyl or C_{1-6} alkoxy optionally substituted by phenyl;

 R^{31} and R^{32} , which may be the same or different, represent a hydrogen atom or C_{1-6} alkyl which may be substituted by a halogen atom;

R⁵² represents a hydrogen atom or a protective group for carboxyl selected from the group consisting of methyl, ethyl, tert-butyl, benzyl, 4-methoxybenzyl, diphenylmethyl, 4-nitrobenzyl, tert-butyldimethylsilyl, triphenylsilyl, 2-phenylsulfonylethyl, 2-methoxycarbonylethyl, 2-cyanoethyl, and 2-trimethylsilylethyl, and

Q represents

wherein

R³³ represents

 C_{1-6} alkyl which may be substituted by C_{1-6} alkoxy optionally substituted by C_{1-6} alkoxy, phenyl optionally substituted by C_{1-6} alkoxy, amino, or nitro, or a saturated or unsaturated five- to seven-membered heterocyclic ring optionally substituted by C_{1-6} alkoxy, amino, or nitro,

phenyl which may be substituted by C_{1-6} alkoxy, amino, or nitro, or a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C_{1-6} alkoxy, amino, or nitro, or

 R^{33} may form C_{1-4} alkylene together with R^{31} or R^{32} ,

which comprises:

(1) reacting a compound represented by formula (V)

$$R^3$$
 R^2
 N^{O_2}
 $COOR52$
 N
 N
 N
 N
 N
 N

wherein R² to R⁵ and R⁵² are as defined above,

with a compound represented by R³¹R³²C=O wherein R³¹ and R³² are as defined above;

- (2) reacting the compound prepared in (1) with a compound represented by R^{71} - $C(=0)-R^{72}$ wherein R^{71} and R^{72} each independently represent a chlorine atom, 4-nitrophenyl, or 1-imidazolyl; and
- (3) reacting the compound prepared in (2) with a compound represented by $R^{33}OH$ wherein R^{33} is as defined above.

Claim 38 (Currently amended) A process for preparing a compound represented by formula (IIa')

wherein

R², R³, R⁴, and R⁵, which may be the same or different, represent any one of the following (a) to (n):

- (a) hydrogen atom;
- (b) halogen atom;

- (c) a hydroxyl group optionally protected by acetyl, chloroacetyl, dichloroacetyl, trichloroacetyl, benzoyl, 4-nitrobenzoyl, 3-oxobutyryl, benzyl, diphenylmethyl, triphenylmethyl, 4-methoxybenzyl, 3,4-dimethoxybenzyl, methoxymethyl, methoxyethoxymethyl, benzyloxymethyl, trimethylsilyl, tertbutyldimethylsilyl, triphenysilyl, 2-tetrahydropyranyl, or trimethylsilylethoxymethoxy;
 - (d) formyl;
 - (e) C₁₋₁₂ alkyl which may be substituted by a halogen atom;
- (f) C_{2-12} alkenyl which has one or more carbon-carbon double bonds and may be substituted by
 - (1) a halogen atom,
 - (2) cyano,
 - (3) -COR9 wherein R9 represents a hydrogen atom or C1-6 alkyl,
 - (4) -COOR 10 wherein R 10 represents a hydrogen atom or C $_{1-6}$ alkyl,
 - (5) -CONR 11 R 12 wherein R 11 and R 12 , which may be the same or different, represent
 - (i) a hydrogen atom,
 - (ii) C₁₋₆ alkyl which may be substituted by amino optionally substituted by C₁₋₄ alkyl, phenyl optionally substituted by C₁₋₄ alkyl which may be substituted by a saturated five- to seven-membered heterocyclic ring containing one or two nitrogen atoms (the nitrogen atoms may be substituted by C₁₋₄ alkyl), or a saturated or unsaturated five- to seven-membered heterocyclic ring,
 - (iii) phenyl which may be substituted by carboxyl, or
 - (iv) a saturated or unsaturated five to seven-membered heterocyclic ring,
 - (6) a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C₁₋₄ alkyl or may form a bicyclic ring fused with another ring;

- (g) C₁₋₁₂ alkoxy which may be substituted by
 - (1) a halogen atom,
 - (2) a hydroxyl group,
 - (3) cyano,
 - (4) C₃₋₇ cycloalkyl,
 - (5) phenyl,
 - (6) C₁₋₄ alkoxy,
 - (7) phenoxy,
 - (8) amino which may be substituted by C₁₋₄ alkyl,
- (9) -COR¹³ wherein R¹³ represents a hydrogen atom, C_{1-6} alkyl, phenyl optionally substituted by halogen or C_{1-4} alkoxy, or phenyl C_{1-4} alkyl,
- (10) -COOR 14 wherein R 14 represents a hydrogen atom or C $_{1-6}$ alkyl,
- (11) -CONR¹⁵R¹⁶ wherein R¹⁵ and R¹⁶, which may be the same or different, represent a hydrogen atom or C₁₋₆ alkyl which may be substituted by a saturated or unsaturated five- to seven-membered heterocyclic ring, or
- (12) a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C_{1-4} alkyl or phenyl C_{1-4} alkyl;
- (h) -C=N-OR¹⁶-wherein R¹⁶-CH=N-OR^{16a} wherein R^{16a} represents a hydrogen atom, C_{1-6} alkyl, phenyl C_{1-4} alkyl, or phenyl;
 - (i) $-(CH_2)_mOR^{17}$ wherein m is an integer of 0 to 4, and R^{17} represents a hydrogen atom, C_{1-6} alkyl, or phenyl C_{1-4} alkyl of which one or more hydrogen atoms on the benzene ring may be substituted by C_{1-4} alkyl;
 - (j) -(CH₂)_k-COR¹⁸ wherein k is an integer of 1 to 4, and R¹⁸ represents a hydrogen atom or $C_{1.4}$ alkyl;
 - (k) -(CH₂)_j-COOR¹⁹ wherein j is an integer of 0 to 4, and R^{19} represents a hydrogen atom or C_{1-6} alkyl;

- (1) -(CH₂)_p-NR²⁰R²¹ wherein p is an integer of 1 to 4, and R²⁰ and R²¹, which may be the same or different, represent
 - (1) a hydrogen atom,
 - (2) C_{1-6} alkyl which may be substituted by amino optionally substituted by C_{1-4} alkyl,
 - (3) phenyl C₁₋₄ alkyl,
 - (4) - COR^{22} wherein R^{22} represents a hydrogen atom or C_{1-4} alkyl which may be substituted by carboxyl, or
 - (5) $-SO_2R^{23}$ wherein R^{23} represents C_{1-4} alkyl or phenyl which may be substituted by a halogen atom;
- (m) -(CH₂)_q-CONR²⁴R²⁵ wherein q is an integer of 0 to 4, and R²⁴ and R²⁵, which may be the same or different, represent a hydrogen atom, a saturated or unsaturated five- to seven-membered heterocyclic ring, or C_{1-6} alkyl which may be substituted by a saturated or unsaturated five- to seven-membered heterocyclic ring, or alternatively R²⁴ and R²⁵ may form a saturated or unsaturated five- to seven-membered heterocyclic ring together with a nitrogen atom to which they are attached (the heterocyclic ring may further contain at least one oxygen, nitrogen, or sulfur atom, may form a bicyclic ring fused with another ring, or may be substituted by C_{1-4} alkyl); and
- (n) -NR²⁶R²⁷ wherein R²⁶ and R²⁷, which may be the same or different, represent a hydrogen atom or -COR²⁸ wherein R²⁸ represents a hydrogen atom, C_{1-6} alkyl, or phenyl which may be substituted by C_{1-4} alkyl or C_{1-6} alkoxy optionally substituted by phenyl;

 R^{31} and R^{32} , which may be the same or different, represent a hydrogen atom or C_{1-6} alkyl which may be substituted by a halogen atom;

R⁵² represents a hydrogen atom or a protective group for carboxyl selected from the group consisting of methyl, ethyl, tert-butyl, benzyl, 4-methoxybenzyl, diphenylmethyl, 4-nitrobenzyl, tert-butyldimethylsilyl, triphenylsilyl, 2-phenylsulfonylethyl, 2-methoxycarbonylethyl, 2-cyanoethyl, and 2-trimethylsilylethyl, and

Q represents

wherein

R³³ represents

 C_{1-6} alkyl which may be substituted by C_{1-6} alkoxy optionally substituted by C_{1-6} alkoxy, phenyl optionally substituted by C_{1-6} alkoxy, amino, or nitro, or a saturated or unsaturated five- to seven-membered heterocyclic ring optionally substituted by C_{1-6} alkoxy, amino, or nitro,

phenyl which may be substituted by C_{1-6} alkoxy, amino, or nitro, or a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C_{1-6} alkoxy, amino, or nitro, or

 R^{33} may form C_{1-4} alkylene together with R^{31} or R^{32} , which comprises:

(1) reacting a compound represented by formula (V)

wherein R^2 to R^5 and R^{52} are as defined above, with a compound represented by $R^{31}R^{32}C=0$ wherein R^{31} and R^{32} are as defined above; and

(2) reacting the compound prepared in (1) with a compound represented by HalCOOR³³ wherein Hal represents a halogen atom and R³³ is as defined above, in the presence of an alkali metal carbonate and an alkali metal iodide.

Claim 39 (Currently amended) A process for preparing a compound represented by formula (IIa')

$$R^3$$
 R^2
 NO_2
 N
 N
 Q
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3

wherein

R², R³, R⁴, and R⁵, which may be the same or different, represent any one of the following (a) to (n):

- (a) hydrogen atom;
- (b) halogen atom;
- (c) a hydroxyl group optionally protected by acetyl, chloroacetyl, dichloroacetyl, trichloroacetyl, benzoyl, 4-nitrobenzoyl, 3-oxobutyryl, benzyl, diphenylmethyl, triphenylmethyl, 4-methoxybenzyl, 3,4-dimethoxybenzyl, methoxymethyl, methoxymethyl, benzyloxymethyl, trimethylsilyl, tertbutyldimethylsilyl, triphenysilyl, 2-tetrahydropyranyl, or trimethylsilylethoxymethoxy;
 - (d) formyl;
 - (e) C₁₋₁₂ alkyl which may be substituted by a halogen atom;
- (f) C_{2-12} alkenyl which has one or more carbon-carbon double bonds and may be substituted by
 - (1) a halogen atom,
 - (2) cyano,
 - (3) -COR9 wherein R9 represents a hydrogen atom or C1-6 alkyl,
 - (4) -COOR 10 wherein R^{10} represents a hydrogen atom or $C_{1\text{-}6}$ alkyl,
 - (5) -CONR¹¹R¹² wherein R¹¹ and R¹², which may be the same or

different, represent

- (i) a hydrogen atom,
- (ii) C_{1-6} alkyl which may be substituted by amino optionally substituted by C_{1-4} alkyl, phenyl optionally substituted by C_{1-4} alkyl which may be substituted by a saturated five- to seven-membered heterocyclic ring containing one or two nitrogen atoms (the nitrogen atoms may be substituted by C_{1-4} alkyl), or a saturated or unsaturated five- to seven-membered heterocyclic ring,
 - (iii) phenyl which may be substituted by carboxyl, or
- (iv) a saturated or unsaturated five to seven-membered heterocyclic ring,
- (6) a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C₁₋₄ alkyl or may form a bicyclic ring fused with another ring;
- (g) C₁₋₁₂ alkoxy which may be substituted by
 - (1) a halogen atom,
 - (2) a hydroxyl group,
 - (3) cyano,
 - (4) C₃₋₇ cycloalkyl,
 - (5) phenyl,
 - (6) C₁₋₄ alkoxy,
 - (7) phenoxy,
 - (8) amino which may be substituted by C₁₋₄ alkyl,
- (9) -COR¹³ wherein R¹³ represents a hydrogen atom, C_{1-6} alkyl, phenyl optionally substituted by halogen or C_{1-4} alkoxy, or phenyl C_{1-4} alkyl,
- (10) -COOR 14 wherein R 14 represents a hydrogen atom or C $_{1-6}$ alkyl,
- (11) -CONR¹⁵R¹⁶ wherein R¹⁵ and R¹⁶, which may be the same or different, represent a hydrogen atom or C_{1-6} alkyl which may be

substituted by a saturated or unsaturated five- to seven-membered heterocyclic ring, or

- (12) a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C_{1-4} alkyl or phenyl C_{1-4} alkyl;
- (h) $\frac{\text{C-N-OR}^{16}}{\text{wherein R}^{16}}$ wherein $\frac{\text{R}^{16a}}{\text{cH=N-OR}^{16a}}$ represents a hydrogen atom, C_{1-6} alkyl, phenyl C_{1-4} alkyl, or phenyl;
 - (i) $-(CH_2)_mOR^{17}$ wherein m is an integer of 0 to 4, and R^{17} represents a hydrogen atom, C_{1-6} alkyl, or phenyl C_{1-4} alkyl of which one or more hydrogen atoms on the benzene ring may be substituted by C_{1-4} alkyl;
 - (j) -(CH₂)_k-COR¹⁸ wherein k is an integer of 1 to 4, and R¹⁸ represents a hydrogen atom or $C_{1.4}$ alkyl;
 - (k) -(CH₂)_j-COOR¹⁹ wherein j is an integer of 0 to 4, and R¹⁹ represents a hydrogen atom or C_{1-6} alkyl;
 - (I) -(CH₂)_p-NR²⁰R²¹ wherein p is an integer of 1 to 4, and R²⁰ and R²¹, which may be the same or different, represent
 - (1) a hydrogen atom,
 - (2) C_{1-6} alkyl which may be substituted by amino optionally substituted by C_{1-4} alkyl,
 - (3) phenyl C₁₋₄ alkyl,
 - (4) - COR^{22} wherein R^{22} represents a hydrogen atom or C_{1-4} alkyl which may be substituted by carboxyl, or
 - (5) $-SO_2R^{23}$ wherein R^{23} represents $C_{1.4}$ alkyl or phenyl which may be substituted by a halogen atom;
 - (m) -(CH₂)_q-CONR²⁴R²⁵ wherein q is an integer of 0 to 4, and R²⁴ and R²⁵, which may be the same or different, represent a hydrogen atom, a saturated or unsaturated five- to seven-membered heterocyclic ring, or C_{1-6} alkyl which may be substituted by a saturated or unsaturated five- to seven-membered heterocyclic ring, or alternatively R²⁴ and R²⁵ may form a saturated or unsaturated five- to seven-membered heterocyclic ring together with a nitrogen atom to which they

are attached (the heterocyclic ring may further contain at least one oxygen, nitrogen, or sulfur atom, may form a bicyclic ring fused with another ring, or may be substituted by C₁₋₄ alkyl); and

(n) -NR²⁶R²⁷ wherein R²⁶ and R²⁷, which may be the same or different, represent a hydrogen atom or -COR²⁸ wherein R²⁸ represents a hydrogen atom, C_{1-6} alkyl, or phenyl which may be substituted by C_{1-4} alkyl or C_{1-6} alkoxy optionally substituted by phenyl;

 R^{31} and R^{32} , which may be the same or different, represent a hydrogen atom or C_{1-6} alkyl which may be substituted by a halogen atom;

R⁵² represents a hydrogen atom or a protective group for carboxyl selected from the group consisting of methyl, ethyl, tert-butyl, benzyl, 4-methoxybenzyl, diphenylmethyl, 4-nitrobenzyl, tert-butyldimethylsilyl, triphenylsilyl, 2-phenylsulfonylethyl, 2-methoxycarbonylethyl, 2-cyanoethyl, and 2-trimethylsilylethyl, and

Q represents

wherein

R³³ represents

 C_{1-6} alkyl which may be substituted by C_{1-6} alkoxy optionally substituted by C_{1-6} alkoxy, phenyl optionally substituted by C_{1-6} alkoxy, amino, or nitro, or a saturated or unsaturated five- to seven-membered heterocyclic ring optionally substituted by C_{1-6} alkoxy, amino, or nitro,

phenyl which may be substituted by C_{1-6} alkoxy, amino, or nitro, or a saturated or unsaturated five- to seven-membered heterocyclic ring which may be substituted by C_{1-6} alkoxy, amino, or nitro, or

 R^{33} may form C_{1-4} alkylene together with R^{31} or R^{32} , which comprises: reacting a compound represented by formula (V)

wherein R² to R⁵ and R⁵² are as defined above, with a compound represented by formula (IV)

wherein Hal represents a halogen atom, and Q, R³¹ and R³² are as defined above, in the presence of an inorganic base and an alkali metal iodide.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.