Математический Анализ - 2

Авторы текущего конспекта:

Жуков Андрей | github Мелисов Тимур | github

Версия от 28.09.2025 16:58

Содержание

1	Kp	атные интегралы. Брусы. Интегрируемые функции по Риману	2
	1.1	Брус. Мера бруса	2
	1.2	Свойства меры бруса в \mathbb{R}^n	2
	1.3	Разбиение бруса. Диаметр множества. Масштаб разбиения	2
	1.4	Интегральная сумма Римана. Интегрируемость по Риману	;
	1.5	Пример константной функции	4
	1.6	Пример неинтегрируемая функция	4
	1.7	Вычисление многомерного интеграла	4
2	Свойства кратных интегралов. Условия интегрирования. Лебегова мера		6
	2.1	Необходимое условие интегрирования	6
	2.2	Свойства интеграла Римана	6
	2.3	Множество меры нуль по Лебегу	7
	2.4	Свойства множества меры нуль по Лебегу	7
3	$ extbf{Tononorus}$ в \mathbb{R}^n		10
	3.1	Критерий замкнутости	11
4	Kомпакты в \mathbb{R}^n		
	4.1	Замкнутый брус — компакт	12
	12	V риторий компектиости	19

1 Кратные интегралы. Брусы. Интегрируемые функции по Риману

1.1 Брус. Мера бруса

Определение. Замкнутый брус (координатный промежуток) в \mathbb{R}^n — множество, описываемое как

$$I = \{x \in \mathbb{R}^n \mid a_i \le x_i \le b_i, i \in \{1, n\}\}\$$

= $[a_1, b_1] \times \ldots \times [a_n, b_n]$

Примечание. $I = \{a_1, b_1\} \times \ldots \times \{a_n, b_n\}$, где $\{a_i, b_i\}$ может быть отрезком, интервалом и т.д.

Пример брусов размерности с 1 по 3

Определение. Мера бруса — его объём:

$$\mu(I) = |I| = \prod_{i=1}^{n} (b_i - a_i)$$

1.2 Свойства меры бруса в \mathbb{R}^n

- 1. Однородность: $\mu(I_{\lambda a,\lambda b}) = \lambda^n \cdot \mu(I_{a,b})$, где $\lambda \geqslant 0$
- 2. **Аддитивность:** Пусть I, I_1, \dots, I_k брусы

Тогда, если $\forall i,j\,I_i,I_j$ не имеют общих внтренних точек, и $\bigcup_{i=1}^{\kappa}I_i=I,$ то

$$|I| = \sum_{i=1}^{k} |I_i|$$

3. Монотонность: Пусть I- брус, покрытый конечной системой брусов, то есть $I\subset \bigcup_{i=1}^k I_i$, тогда

$$|I| < \sum_{i=1}^{k} |I_i|$$

1.3 Разбиение бруса. Диаметр множества. Масштаб разбиения

Определение. I — замкнутый, невырожденный брус и $\bigcup_{i=1}^k I_i = I$, где I_i попарно не имеют общих внутренних точек.

Тогда набор $\mathbb{T} = \{\mathbb{T}\}_{i=1}^k$ называется разбиением бруса I

Определение. Диаметр произвольного ограниченного множества $M\subset\mathbb{R}^n$ будем называть

$$d(M) = \sup_{1 \leqslant i \leqslant k} \|x - y\|$$
, где
$$\|x - y\| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Пример диаметра для разных ограниченных множеств(Для всех трёх он равен d)

Определение. Масштаб разбиения $\mathbb{T}=\{I_i\}_{i=1}^k$ — число $\lambda(\mathbb{T})=\Delta_{\mathbb{T}}=\max_{1\leq i\leq k}d(I_i)$ Определение. Пусть $\forall\ I_i$ выбрана точка $\xi_i\in I_i$. Тогда, набор $\xi=\{\xi_i\}_{i=1}^k$ будем называть отмеченными точками

Определение. Размеченное разбиение — пара (\mathbb{T}, ξ)

Интегральная сумма Римана. Интегрируемость по Риману

Пусть I — невырожденный, замкнутый брус, функция $f:I \to \mathbb{R}$ определена на I**Определение.** Интегральная сумма Римана функции f на (\mathbb{T},ξ) — величина

$$\sigma(f, \mathbb{T}, \xi) := \sum_{i=1}^{k} f(\xi_i) \cdot |I_i|$$

Определение. Функция f интегрируема (по Риману) на замкнутом брусе I $(f:I\to\mathbb{R}),$ если

$$\exists A \in \mathbb{R} : \forall \varepsilon > 0 \, \exists \delta > 0 : \forall (\mathbb{T}, \xi) : \Delta_{\mathbb{T}} < \delta :$$

$$|\sigma(f, \mathbb{T}, \xi)| - A| < \varepsilon$$

Тогда

$$A = \int_{I} f(x) dx = \int \dots \int_{I} f(x_1, \dots, x_n) dx_1 \dots dx_n$$

Обозначение: $f \in \mathcal{R}(I)$

Пример интегрирования в \mathbb{R}^2 по определению

1.5 Пример константной функции

Пусть у нас есть функция f = const

$$\forall (\mathbb{T}, \xi) : \ \sigma(f, \mathbb{T}, \xi) = \sum_{i=1}^{k} \operatorname{const} \cdot |I_{i}|$$
$$= \operatorname{const} \cdot |I| \Longrightarrow \int_{I} f(x) dx = \operatorname{const} \cdot |I|$$

1.6 Пример неинтегрируемая функция

Имеется брус $I = [0,1]^n,$ а также определена функция, такая что

$$f = \begin{cases} 1, & \forall i = \overline{1, \dots, n} \ x_i \in \mathbb{Q} \\ 0, & \text{иначе} \end{cases}$$

Доказательство. $\forall \mathbb{T}$ можно выбрать $\xi_i \in \mathbb{Q}$, тогда для такой пары $(\mathbb{T}, \overline{\xi})$:

$$\sigma(f, \mathbb{T}, \overline{\xi}) = \sum_{i=1}^{k} 1 \cdot |I_i| = |I| = 1$$

В то же время, $\forall \mathbb{T}$ можно выбрать $\xi_i \notin \mathbb{Q}$, тогда для такой пары $(\mathbb{T}, \hat{\xi})$:

$$\sigma(f, \mathbb{T}, \hat{\xi}) = \sum_{i=1}^{k} 0 \cdot |I_i| = 0 \Longrightarrow f \notin \mathcal{R}(I)$$

1.7 Вычисление многомерного интеграла

Вычислите интеграл

$$\iint\limits_{\substack{0\leqslant x\leqslant 1\\0\leqslant y\leqslant 1}} xy\mathrm{d}x\mathrm{d}y$$

рассматривая его как представление интегральной суммы при сеточном разбиении квадрата

$$I = [0, 1] \times [0, 1]$$

на ячейки — квадраты со сторонами, длины которых равны $\frac{1}{n}$, выбирая в качестве точек ξ_i нижние правые вершины ячеек

Имеется функция f = xy, $|I| = \frac{1}{n^2}$

$$\sigma(f,\mathbb{T},\xi) = \sum_{i=1}^n \sum_{j=0}^{n-1} \frac{i}{n} \cdot \frac{j}{n} \cdot \frac{1}{n^2} \quad = \frac{1}{n^4} \sum_{i=1}^n \sum_{j=0}^{n-1} i \cdot j = \frac{1}{n^4} \sum_{i=1}^n i \sum_{j=0}^{n-1} j \quad = \frac{n(n-1)}{n^4} \sum_{i=1}^n i = \frac{n^2(n+1)(n-1)}{4n^4} \sum_{i=1}^n i = \frac{n^2(n+1$$

Заметим, что
$$\lim_{n\to\infty}\frac{n^2(n+1)(n-1)}{4n^4}=\frac{1}{4}$$

Рисунок того как мы выбираем в примере точки на разбиение

2 Свойства кратных интегралов. Условия интегрирования. Лебегова мера

2.1 Необходимое условие интегрирования.

Теорема. Пусть I — замкнутый брус.

$$f \in \mathcal{R}(I) \implies f$$
 ограничена на I

Доказательство. От противного.

1. $f \in \mathcal{R}(I) \implies \exists A \in \mathbb{R}$, такая что $\forall \varepsilon > 0$, а значит для $\varepsilon = 1$ тоже:

$$\exists \delta>0\colon \forall (\mathbb{T},\xi):\Delta_{\mathbb{T}}\leqslant \delta$$
 верно $|\sigma(f,\mathbb{T},\xi)-A|<1$

Отсюда

$$A-1 < \sigma < A+1 \implies \sigma$$
 ограничена

2. С другой стороны, так как предположили, что f — неограничена на I

$$\forall \, \mathbb{T} = \{I_i\}_{i=1}^k \quad \exists i_0 \colon f$$
 неограничена на I_{i_0}

Тогда рассмотрим интегральную сумму

$$\sigma(f, \mathbb{T}, \xi) = \sum_{i \neq i_0} f(\xi_i) \cdot |I_i| + f(\xi_{i_0}) \cdot |I_{i_0}|$$

Выбором подходящего ξ_{i_0} можно сделать $f(\xi_{i_0})$ сколь угодно большой $\implies \sigma$ будет не ограничена - противоречние Из противоречния пунктов 1 и 2 следует, что

$$f \in \mathcal{R}(I) \implies f$$
 ограничена на I

2.2 Свойства интеграла Римана

1. Линейность.

$$f, g \in \mathcal{R}(I) \implies (\alpha f + \beta g) \in \mathcal{R}(I) \ \forall \alpha, \beta \in \mathbb{R}$$

И верно, что:

$$\int_{I} (\alpha f + \beta g) dx = \alpha \int_{I} f dx + \beta \int_{I} g dx$$

Доказательство.

$$f \in \mathcal{R}(I) : \exists A_f, \text{что} \quad \forall \varepsilon > 0 \,\exists \delta_1 > 0 \,\, \forall (\mathbb{T}, \xi) : \, \Delta_{\mathbb{T}} < \delta_1 \quad \text{ верно} \, \left| \sigma(f, \mathbb{T}, \xi) - \int_I f \, \mathrm{d}x \right| =: |\sigma_f - A_f| < \frac{\varepsilon}{|\alpha| + |\beta| + 1}$$

$$g \in \mathcal{R}(I) : \exists A_g, \text{что} \quad \forall \varepsilon > 0 \,\exists \delta_2 > 0 \,\, \forall (\mathbb{T}, \xi) : \, \Delta_{\mathbb{T}} < \delta_2 \quad \text{ верно} \, \left| \sigma(g, \mathbb{T}, \xi) - \int_I g \, \mathrm{d}x \right| =: |\sigma_g - A_g| < \frac{\varepsilon}{|\alpha| + |\beta| + 1}$$

Тогда $\forall (\mathbb{T}, \xi) : \Delta_{\mathbb{T}} < min(\delta_f, \delta_g) = \delta :$

$$|\sigma(\alpha f + \beta g, \mathbb{T}, \xi) - \alpha A_f + \beta A_g| = \left| \sum (\alpha f(\xi_i) + \beta g(\xi_i)) \cdot |I_i| - \alpha A_f - \beta A_g \right| \le$$

$$\le |\alpha| \cdot |\sigma_f - A_f| + |\beta| \cdot |\sigma_g - A_g| < (|\alpha| + |\beta|) \frac{\varepsilon}{|\alpha| + |\beta| + 1} < \varepsilon$$

Монотонность

$$f,g \in \mathcal{R}(I); \ f \leqslant g$$
 на $I \implies \int_I f \mathrm{d}x \leqslant \int_I g \mathrm{d}x$

Доказательство.

$$f \in \mathcal{R}(I) \implies \exists A_f \in \mathbb{R} \colon \forall \, \varepsilon > 0 \,\, \exists \delta : \forall (\mathbb{T}, \xi) : \Delta_{\mathbb{T}} < \delta, \,\, \text{выполняется} \,\, |\sigma_f - A_f| < \varepsilon$$

Аналогично для $g \in \mathcal{R}(I)$, тогда:

$$\begin{cases} A_f - \varepsilon < \sigma_1 < A_f + \varepsilon \\ A_g - \varepsilon < \sigma_2 < A_g + \varepsilon \\ \sigma_f \leqslant \sigma_g \end{cases}$$

Отсюда

$$A_f - \varepsilon < \sigma_f \leqslant \sigma_g < A_g + \varepsilon \implies A_f - \varepsilon < A_g + \varepsilon \implies A_f < A_g + 2\varepsilon \qquad \forall \varepsilon > 0$$

Оценка интеграла (сверху)

$$f \in \mathcal{R}(I) \implies \left| \int_{I} f dx \right| \leqslant \sup_{I} |f| |I|$$

Доказательство. По необходимому условию для интегрируемости функции (см. ниже)

$$f \in \mathcal{R}(I) \implies f$$
 Ограничена на
$$I$$

$$\implies -\sup_{I} |f| \leqslant f \leqslant \sup_{I} |f|$$

Тогда,

$$\begin{split} -\int_{I} \sup |f| \mathrm{d}x &\leqslant \int_{I} f \mathrm{d}x &\leqslant \int_{I} \sup |f| dx \\ -\sup_{I} |f| |I| &\leqslant \int_{I} f \mathrm{d}x &\leqslant \sup_{I} |f| |I| \end{split}$$

2.3 Множество меры нуль по Лебегу

Определение. Множество $M \subset \mathbb{R}^n$ будем называть **множеством меры 0 по Лебегу**, если $\forall \varepsilon > 0$ существует не более чем счетный набор (замкнутых) брусов $\{I_i\}$ и выполняются:

•
$$M \subset \bigcup_i I_i$$

•
$$\sum_{i} |I_i| < \varepsilon \quad \forall \varepsilon > 0$$

Пример: $a \in \mathbb{R}$ — точка.

$$I=[a-rac{arepsilon}{3},a+rac{arepsilon}{3}]\implies |I|=rac{2arepsilon}{3}0 \implies a$$
 — множество меры нуль по Лебегу

2.4 Свойства множества меры нуль по Лебегу

1. Если в определении $\{I_i\}$ заменить на открытые брусы, то определение останется верным.

Доказательство. Пусть $\{I_i\}$ — открытые брусы, тогда $\forall \varepsilon>0$ \exists не более чем счетный набор $\{I_i\}$: $M\subset\bigcup_i I_i$ и $\sum |I_i|<\varepsilon$

Пусть $\{\bar{I}_i\}$ — открытые брусы + границы = замкнутые брусы I_i , причём объем "добавленных" плоскостей будет нулевой, так как объем бруса n-1 размерности, будет нулевым для объема бруса размерности n

$$M\subset \bigcup_i I_i\subset \bigcup_i ar{I}_i,$$
 при этом $|I_i|=|ar{I}_i|$

Если

$$\forall \varepsilon \; \exists \{I_i\} : M \subset \bigcup_i I_i : \sum_i |I_i| < \varepsilon$$

то

$$\forall \varepsilon \; \exists \{\bar{I}_i\} : M \subset \bigcup_i \bar{I}_i : \sum_i |\bar{I}_i| < \varepsilon$$

Докажем в обратную сторону. Мы хотим увеличить замкнутый брус в два раза и увеличенный брус взять открытым.

Пусть $\{I_i\}$ — набор замкнутых брусов

$$I_i = [a_i^1, b_i^1] \times \ldots \times [a_i^n, b_i^n], \quad V_i = \sum_i |I_i| < \frac{\varepsilon}{2^n}$$

Так как $\left(\frac{a_i^k}{2},\frac{b_i^k}{2}\right)$ — центр i-го бруса в k-ом измерении, увеличить изначальный брус в два раза по этому измерению можно сдвинувшись от центра не на половину, а на целую сторону, то есть на $b_i^k-a_i^k$

Таким образом:

$$\tilde{I}_{i} = \left(\frac{a_{i}^{1} + b_{i}^{1}}{2} - (b_{i}^{1} - a_{i}^{1}); \frac{a_{i}^{1} + b_{i}^{1}}{2} + (b_{i}^{1} - a_{i}^{1})\right) \times \dots \times \left(\frac{a_{i}^{n} + b_{i}^{n}}{2} - (b_{i}^{n} - a_{i}^{n}); \frac{a_{i}^{n} + b_{i}^{n}}{2} + (b_{i}^{n} - a_{i}^{n})\right)$$

$$\implies V_{2} = \sum_{i} |\tilde{I}_{i}| = 2^{n} \cdot V_{1} < \varepsilon$$

Если $M\subset\mathbb{R}^n$ - множество меры нуль по Лебегу, то из $L\subset M\implies L$ - множество меры нуль по Лебегу

Доказательство. Докажем по транзитивности

$$\forall \, arepsilon \, > 0, \, \, \exists$$
 не более чем счетный набор $\{I_i\}: L \subset M \subset \bigcup_i I_i \implies L \subset \bigcup_i I_i$

По условию нам дано, что для $M\subset\bigcup_i I_i$ верно $\sum_i |I_i|<\varepsilon$, и тоже самое выполнено и для $L\subset\bigcup_i I_i$, тогда L по определнию является множеством меры нуль по Лебегу

He более чем счетное объединение множеств меры нуль по Лебегу, тоже является множеством меры нуль по Лебегу

Доказательство. пусть $M=\bigcup_i^\infty M_k$ - объединение не более чем счетного числа множеств $\forall k\ M_k$ - множество меры нуль по Лебегу $\implies \forall k,\ \forall\, \varepsilon>0\ \exists \{I_i\}_{i=1}^\infty$ по определению множества меры нуль для них верно

•
$$M_k \subset \bigcup_{i=1}^{\infty} I_i^{k-1}$$

$$\bullet \ \sum_{i} |I_{i}| < \varepsilon_{k} \quad \ \forall \, \varepsilon_{k} > 0$$

 $^{^{1}}I_{i}^{k}$ - это i-ый для $M_{k},$ а не степень

Отсюда получаем $M=\bigcup_i^\infty M_k\subset \bigcup_i^\infty I_i^k$ и $\sum_{k=1}^\infty \sum_{i=1}^\infty |I_i^k|<\sum_{k=1}^\infty \varepsilon_k$ - если теперь взять $\varepsilon_k=rac{\varepsilon}{2^k},$ то мы получим

$$\sum_{k=1}^{\infty} \varepsilon_k = \sum_{k=1}^{\infty} \frac{\varepsilon}{2^k} < \varepsilon$$

$\mathbf{3}$ Топология в \mathbb{R}^n

Определение. Пусть имеется $M \subset \mathbb{R}^n$. Точку $x_0 \in M$ будем называть *внутренней* точкой M, если

$$\exists \varepsilon > 0 : B_{\varepsilon}(x_0) \subset M$$

Определение. Точку $x_0 \in M$ будем называть *внешней* точкой M, если

$$\exists \varepsilon > 0 : B_{\varepsilon}(x_0) \subset (\mathbb{R}^n \setminus M)$$

Пример. M = [0; 1). тогда

$$\left\{ egin{array}{lll} x=0.5 & - ext{внутренняя} \ x=0 & - ext{ не внутренняя} \ x=2 & - ext{внешняя} \ \end{array}
ight.$$

Определение. Точку $x_0 \in \mathbb{R}^n$ будем называть *граничной* точкой M, если

$$\forall \varepsilon > 0 : (B_{\varepsilon}(x_0) \cap M) \neq \emptyset \wedge B_{\varepsilon}(x_0) \cap (\mathbb{R}^n \setminus M) \neq \emptyset$$

Обозначение. ∂M — множетсво всех граничных точек M

Синие точки - пример внутренних точек Φ иолетовые - пример внешних $\text{Красные пример граничных} (\text{в данном случае пример } \partial M)$

Пример. $M = [0; 1) \Longrightarrow x = 0; 1$ — граничные

Определение. Точку $x_0 \in M$ будем называть *изолированной* точкой M, если

$$\exists \, \varepsilon > 0 : \overset{\circ}{B_{\varepsilon}} (x_0) \cap M = \varnothing$$

Пример. $M=[0;1]\cup\{3\}\Longrightarrow x=3$ — изолированная

Определение. Точку $x_0 \in \mathbb{R}^n$ будем называть npedenьной точкой M, если

$$\forall \, \varepsilon > 0 : \overset{\circ}{B_{\varepsilon}} (x_0) \cap M \neq \varnothing$$

Примечание. Из определения следует, что изолированные точки не являются предельными

Определение. Точку $x_0 \in \mathbb{R}^n$ будем называть точкой прикосновения M, если

$$\forall \varepsilon > 0 : B_{\varepsilon}(x_0) \cap M \neq \emptyset$$

Примечание. Точки прикосновения = изолированные точки \oplus предельные точки

Пример точек

Красные - изолированные. Зелёные - предельные

Синие точки - точки прикосновения

Определение. Множество всех точек прикосновения M называется замыканием M и обозначается как \overline{M}

Пример. $M=(0;1)\cup(1;2]\Longrightarrow\overline{M}=[0;2]$

Пример. $M = \{x \in [0;1] : x \in \mathbb{Q}\} \Longrightarrow \overline{M} = [0;1]$

Определение. Множество $M \subset \mathbb{R}^n$ называется $\mathit{открытым}$, если все его точки внутренние

Определение. Множество $M\subset R^n$ называется замкнутым, если $\mathbb{R}^n\setminus M$ — открыто

Пример.
$$\begin{cases} (0;1) & -\text{ открыто в } \mathbb{R} \\ [0;1] & -\text{ замкнуто, т.к. } (-\infty;0) \cup (1;+\infty) \text{ открыто в } \mathbb{R} \\ [0;1) & -\text{ ни открыто, ни замкнуто в } \mathbb{R} \end{cases}$$

Определение. Множество $K \subset \mathbb{R}^n$ называется *компактом*, если из \forall его покрытия открытыми множествами можно выделить конечное подпокрытие

Примечание. Если хотя бы для какого-то покрытия это не выполняется, то K — не компакт

Пример. Пусть
$$M=(0,1)$$
 покроем $\left\{A_n=\left(0;1-\frac{1}{n}\right)\right\}_{n=1}^\infty$ При $n\to\infty$ $M\subset\bigcup_{n=1}^\infty A_n$, но \forall фиксированного $N\colon M\not\subset\bigcup_{n=1}^\infty\Longrightarrow$ не компакт Определение. Множество $M\subset\mathbb{R}^n$ — называется *ограниченным*, если

$$\exists x_0 \in \mathbb{R}^n$$
 и $\exists r > 0$, такой что $M \subset B_r(x_0)$

3.1 Критерий замкнутости

Теорема. M — замкнуто $\Longleftrightarrow M$ содержит **все** свои предельные точки

Доказательство. Докажем необходимость и достаточность

- 1. (Heoбxoдимость) Докажем \Longrightarrow от противного
 - Пусть x_0 предельная для M и $x_0 \notin M$. Тогда, $\forall \, \varepsilon > 0 \, \stackrel{\circ}{B_{\varepsilon}} (x_0) \cap M \neq \varnothing$ и $x_0 \in \mathbb{R}^n$
 - По условию M замкнуто, то есть $\mathbb{R}^n \setminus M$ открыто \Longrightarrow все его точки внутренние и $\exists r > 0$:

$$B_r(x_0)\subset \mathbb{R}^n\setminus M\Longrightarrow \stackrel{\circ}{B_r(x_0)}\subset \mathbb{R}^n\setminus M$$
 и $\stackrel{\circ}{B_r}(x_0)\cap M=\varnothing$

Пришли к противоречию $\Longrightarrow M$ содержит все свои предельные точки

2. (Достаточность) Докажем \Leftarrow

Пусть y_0 — не является предельной для M, то есть $y_0 \in \mathbb{R}^n \setminus M \Longrightarrow \exists r > 0$:

$$\begin{cases} \overset{\circ}{B_r}(y_0) \cap M = \varnothing \\ y_0 \in \mathbb{R}^n \setminus M \end{cases} \Longrightarrow B_r(y_0) \subset \mathbb{R}^n \setminus M$$

 $\Longrightarrow \mathbb{R}^n \backslash M$ — открытое и состоит из всех точек, не являющихся предельными $\Longrightarrow M$ — замкнуто по определению

$oldsymbol{4}$ Компакты в \mathbb{R}^n

4.1 Замкнутый брус — компакт

Теорема. Пусть $I \subset \mathbb{R}^n$ — замкнутый брус $\Longrightarrow I$ — компакт

Доказательство. Пойдем от противного

Пусть $I = [a_1; b_1] \times \ldots \times [a_n; b_n]$

- 1. Положим, что I не компакт. Значит, существует его покрытие $\{A_{\alpha}\}$ открытые множества, такие что $I \subset \{A_{\alpha}\}$, не допускающее выделения конечного подклорытия
- 2. Поделим каждую сторону пополам. Тогда, $\exists I_1$, такой что не допускает конечного подпокрытия. Иначе, I компакт
- 3. Аналогично, повторим процесс и получим систему вложенных брусов:

$$I \supset I_1 \supset I_2 \supset \dots$$

То есть на каждой стороне возникает последовательность вложенных отрезков, которые стягиваются в точку $a = (a_1, \dots, a_n)$

Последовательность вложенных брусов в \mathbb{R}^2 : на каждом шаге выбираем квадрат, что по предположению нельзя покрыть(выделен цветом) и делим его на 4 части. В итоге стягиваются в точку.

При этом,
$$\exists a = \bigcap_{i=1}^{\infty} I_i$$

$$4. \ a \in I \Longrightarrow a \in \bigcup A_{\alpha} \Longrightarrow \exists \alpha_0 : a \in \underbrace{A_{\alpha_0}}_{\text{открытое}} \Longrightarrow \exists \, \varepsilon > 0 : B_{\varepsilon}(a) \subset A_{\alpha_0}$$

5. Из построения получили, что $I\supset I_1\supset\ldots\supset a\Longrightarrow \exists N: \forall n>N\ I_n\subset B_\varepsilon(a)\subset A_{\alpha_0}$

Получается, что $\forall n > N$ I_n покрывается одним лишь A_{α_0} из системы $\{A_{\alpha}\}$

Получаем противоречие тому, что любое I_n не допускает конечного подпокрытия, а у нас получилось, что $I_n \in A_{\alpha_0} \forall n > N \Longrightarrow I$ – компакт

Примечание. Любое ограниченное множество можно вписать в замкнутый брус. Потому что можно вокруг него описать шарик, который точно можно вписать в брус

4.2 Критерий компактности

Теорема. $K \subset \mathbb{R}^n$. K — компакт \iff K замкнуто и ограниченно

Доказательство. Докажем необходимость ()

• Ограниченность. K — компакт $\Longrightarrow \forall \{A_{\alpha}\}_{\alpha \in \mathbb{N}}$ — можно выделить конечное подпокрытие \Longrightarrow \Longrightarrow Пусть $\{A_{\alpha}\}=\{B_n(0)\}_{n=1}^{\infty} \Longrightarrow \exists N \in \mathbb{N}: \forall n > N \ K \subset \bigcup_{n=1}^{N} B_n(0)$ и так как $B_n(0)$ — вложены шары \Longrightarrow $K \subset B_N(0) \Longrightarrow$ по определению K — ограничено

Пример покрытия K вокруг точки 0 с помощью шаров

• Замкнутость. Пойдем от противного. K — компакт, тогда возьмем $\{B_{\frac{\delta(x)}{2}}(0)\}_{x\in K}$ — покрытие открытыми шарами, где $\delta(x)=\rho(x,x_0)$. x_0 — предельная точка, которая $\notin K$ (или же $\in \mathbb{R}^n\setminus K$)

Так как
$$K$$
 — компакт, $\exists x_1,\dots,x_s:K\subset \bigcup_{i=1}^s B_{\frac{\delta(x_i)}{2}}(x_i)$

Пусть $\delta = \min_{1 \leqslant i \leqslant s} \delta(x_i)$, тогда

$$B_{\frac{\delta}{2}}(x_0) \cap \bigcup_{i=1}^{s} B_{\frac{\delta(x_i)}{2}}(x_i) = \varnothing \Longrightarrow B_{\frac{\delta}{2}}(x_0) \subset \mathbb{R}^n \setminus K$$
$$\Longrightarrow \mathring{B}_{\frac{\delta}{2}}(x_0) \cap K = \varnothing$$

Значит, x_0 не является предельной точкой K, что противоречит нашему предположению

Пример как мы строим $B_{\frac{\delta}{2}}$ вокруг точки $x_0.$

Синие точки - середины отрезков на которых они лежат

Доказательство. Докажем достаточность

K — замкнуто и ограничено $\Longrightarrow \exists r>0: B_r(0)\supset K\Longrightarrow \exists I$ — замкнутый брус, такой что

$$K \subset I$$
 и $I = [-r; r]^n$

Пусть $\{A_{\alpha}\}_{{\alpha}\in\mathbb{N}}$ — произвольное покрытие открытыми множествами для K. Тогда, $I\subset\{A_{\alpha}\}\cup\underbrace{\{\mathbb{R}^n\setminus K\}}_{\text{открыто}}$. Так как I — компакт, то \exists конечное подпокрытие

$$\{A_{\alpha_i}\}_{i=1}^m \cup \{\mathbb{R}^n \setminus K\} \supset I \supset K$$
— покрытие для I

Значит, $K\subset \{A_{\alpha_i}\}_{i=1}^m$ — конечное и $\{A_{\alpha}\}$ — произвольное, тогда K — компакт по определению

Строим замкнутый брус вокруг точки 0, пользуясь существованием конечного покрытия покрываем наш компакт K