Logistic Regression 2/2

DSI, jf.omhover, Dec 6, 2016

Logistic Regression 2/2

DSI, jf.omhover, Dec 6, 2016

OBJECTIVES (morning)

- Relate Regression to Classification in the context of supervised learning
- Compare Logistic Regression to Linear Regression
- Define and compute metrics for evaluating classifiers

OBJECTIVES (afternoon)

- Describe the process for computing parameter values in LogReg
- Use the parameters of a LogReg model to compute the class of an obverstion

Using LogReg to predict

Let's suppose we have a LogReg model already...

LogReg in a nutshell

REALITY

MODEL

It (badly) translates as: computes the probability of being in one of the two classes depending on of the side and distance of the plan $h: \mathbb{R} \to [0,1]$

$$h(t) = \frac{1}{1 + e^{-t}}$$

 $p(X) = h(\beta_0 + \beta_1 \cdot x_1 + \dots + + \beta_p \cdot x_p)$

 $h: \mathbb{R} \to [0,1]$

$$h(t) = \frac{1}{1 + e^{-t}}$$

$$p(X) = h(\beta_0 + \beta_1. x_1 + \dots + + \beta_p. x_p)$$

$$h: \mathbb{R} \to [0,1]$$

$$h(t) = \frac{1}{1 + e^{-t}}$$

$$p(X) = h(\beta_0 + \beta_1.x_1 + \dots + + \beta_p.x_p)$$

$$h: \mathbb{R} \to [0,1]$$

$$h(t) = \frac{1}{1 + e^{-t}}$$

$$p(X) = h(\beta_0 + \beta_1. x_1 + \dots + + \beta_p. x_p)$$

$$p(X) = h(\beta_0 + \beta_1. x_1 + \dots + + \beta_p. x_p)$$

$$p(X) = h(\beta_0 + \beta_1.x_1 + \cdots + + \beta_p.x_p)$$

Interpreting coefficients

Making sense of the logistic function

Probs, odds, log-odds, odds-ratio

Probabilities range between 0 and 1.

p(x)

Suppose that seven out of 10 males are admitted to an engineering school while three of 10 females are admitted.

[examples link]

For males: p = 7/10 = .7 1 - p = 1 - .7 = .3

For females: p = 3/10 = .3 1 - p = 1 - .3 = .7

Odds are defined as the ratio of the probability of success and the probability of failure.

$$\frac{p(X)}{1-p(X)}$$

odds(male) = .7/.3 = 2.33333 odds(female) = .3/.7 = .42857

Log-odds are the log of odds

$$log(\frac{p(X)}{1-p(X)})$$

Odds-ratio is comparing two properties in terms of odds.

$$\frac{odds(A)}{odds(B)}$$

$$OR = 2.3333/.42857 = 5.44$$

Thus, for a male, the odds of being admitted are 5.44 times larger than the odds for a female being admitted.

Probs, odds, log-odds, odds-ratio in LogReg

Probabilities range between 0 and 1.

$$p(x) = \frac{e^{\beta^T \cdot x}}{1 + e^{\beta^T \cdot x}}$$

[examples link]

Odds are defined as the ratio of the probability of success and the probability of failure.

$$\frac{p(X)}{1-p(X)} = e^{\beta^T \cdot X}$$

Log-odds are the log of odds

$$log(\frac{p(X)}{1-p(X)}) = \beta^T \cdot x = \beta_0 + \beta_1 \cdot x_1 + \dots + \beta_n \cdot x_n$$

Odds-ratio is comparing two properties in terms of odds.

$$\frac{odds(A)}{odds(B)}$$
 $OR = e^{\beta_i}$

Estimating a LogReg Model

NOW, machine, it's your turn to learn...

Notations

$$X = \begin{bmatrix} 1 & x_{1,1} & \cdots & x_{1,p-1} \\ 1 & x_{2,1} & \cdots & x_{2,p-1} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n,1} & \cdots & x_{n,p-1} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = y$$

$$p(x_i) = \frac{e^{\beta^T x_i}}{1 + e^{\beta^T x_i}}$$

x_i, y_i			
	1		
	0		
	0		
	1		
	1		
	1		
	0		
	1		

	$p(x_i)$
1	0.95
0	0.21
1	0.55
0	0.43
1	0.77
0	0.44
0	0.15
1	0.81

Let's suppose we have
$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_{p-1} \end{bmatrix}$$
 which gives us $p(x_i) = \frac{e^{\beta^T x_i}}{1 + e^{\beta^T x_i}}$

which gives us
$$p(x_i) = \frac{e^{\beta^T x_i}}{1 + e^{\beta^T x_i}}$$

x_i, y_i			
	1		
	0		
	0		
	1		
	1		
	1		
	0		
	1		

$p(x_i)$				
1	0.95			
0	0.21			
1	0.55			
0	0.43			
1	0.77			
0	0.44			
0	0.15			
1	0.81			

Let's suppose we have
$$\beta = \begin{bmatrix} \rho_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_{p-1} \end{bmatrix}$$
 which gives us $p(x_i) = \frac{e^{\beta^T x_i}}{1 + e^{\beta^T x_i}}$

What is the "likelihood" of our dataset to have be drawn out of that probability?

x_i, y_i			
	1		
	0		
	0		
	1		
	1		
	1		
	0		
	1		

	$p(x_i)$
1	0.95
0	0.21
1	0.55
0	0.43
1	0.77
0	0.44
0	0.15
1	0.81

et's suppose we have
$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_{p-1} \end{bmatrix}$$

Let's suppose we have
$$\beta = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \end{bmatrix}$$
 which gives us $p(x_i) = \frac{e^{\beta^T x_i}}{1 + e^{\beta^T x_i}}$

What is the "likelihood" of our dataset to have be drawn out of that probability?

Let's first do that for each observation

$$y_i = 1 \implies p(x_i)$$

$$y_i = 0 \implies 1 - p(x_i)$$

	$p(x_i)$
1	0.95
0	0.21
1	0.55
0	0.43
1	0.77
0	0.44
0	0.15
1	0.81

Let's suppose we have
$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_{p-1} \end{bmatrix}$$
 which gives us $p(x_i) = \frac{e^{\beta^T x_i}}{1 + e^{\beta^T x_i}}$

which gives us
$$p(x_i) = \frac{e^{\beta^T x_i}}{1 + e^{\beta^T x_i}}$$

What is the "likelihood" of our dataset to have be drawn out of that probability?

Let's first do that for each observation

$$y_i = 1 \implies p(x_i)$$

$$y_i = 1 \implies p(x_i)$$

 $y_i = 0 \implies 1 - p(x_i)$

Let's do that for the whole dataset

$$L(\beta) = \prod_{i:y_i=1} p(x_i) * \prod_{i:y_i=0} (1 - p(x_i))$$

x_i, y_i			
	1		
	0		
	0		
	1		
	1		
	1		
	0		
	1		

	$p(x_i)$
1	0.95
0	0.21
1	0.55
0	0.43
1	0.77
0	0.44
0	0.15
1	0.81

Let's suppose we have $\beta=\begin{bmatrix} eta_0 \\ eta_1 \\ eta_2 \\ \vdots \\ eta_{p-1} \end{bmatrix}$ which gives us $p(x_i)=rac{e^{eta^Tx_i}}{1+e^{eta^Tx_i}}$

$$L(\beta) = \prod_{i:y_i=1} p(x_i) * \prod_{i:y_i=0} (1 - p(x_i))$$
 Can

Can we find the maximum of that likelihood?

x_i, y_i			
	1		
	0		
	0		
	1		
	1		
	1		
	0		
	1		

	$p(x_i)$
1	0.95
0	0.21
1	0.55
0	0.43
1	0.77
0	0.44
0	0.15
1	0.81

Let's suppose we have
$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_{p-1} \end{bmatrix}$$

Let's suppose we have
$$\beta = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \end{bmatrix}$$
 which gives us $p(x_i) = \frac{e^{\beta^T x_i}}{1 + e^{\beta^T x_i}}$

$$L(\beta) = \prod_{i:y_i=1} p(x_i) * \prod_{i:y_i=0} (1 - p(x_i))$$

Can we find the maximum of that likelihood?

$$LogL(\beta) = \sum_{i:y_i=1} log(p(x_i)) + \sum_{i:y_i=0} log(1 - p(x_i))$$

$$LogL(\beta) = \sum_{i} y_{i}. log(p(x_{i})) + (1 - y_{i}). log(1 - p(x_{i}))$$

$$LogL(\beta) = \sum_{i} y_{i}.\beta^{T} x_{i} - log(1 + e^{\beta^{T} x_{i}})$$

x_i ,	y_i		$p(x_i)$
	1	1	0.95
	0	0	0.21
	0	1	0.55
	1	0	0.43
	1	1	0.77
	1	0	0.44
	0	0	0.15
	1	1	0.81

$p(x_i)$	
1	0.95
0	0.21
1	0.55
0	0.43
1	0.77
0	0.44
0	0.15
1	0.81

Let's suppose we have
$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_{p-1} \end{bmatrix}$$
 which gives us $p(x_i) = \frac{e^{\beta^T x_i}}{1 + e^{\beta^T x_i}}$

which gives us
$$p(x_i) = \frac{e^{\beta^T x_i}}{1 + e^{\beta^T x_i}}$$

$$L(\beta) = \prod_{i:y_i=1} p(x_i) * \prod_{i:y_i=0} (1 - p(x_i))$$
 Can we find the maximum of that likelihood ?

$$LogL(\beta) = \sum_{i:y_i=1} log(p(x_i)) + \sum_{i:y_i=0} log(1 - p(x_i))$$

$$LogL(\beta) = \sum_{i} y_{i}. log(p(x_{i})) + (1 - y_{i}). log(1 - p(x_{i}))$$

$$LogL(\beta) = \sum_{i} y_{i}. \beta^{T} x_{i} - log(1 + e^{\beta^{T} x_{i}})$$

that we can differentiate...

$$\frac{\partial LL(\beta)}{\partial \beta} = \sum_{i} x_{i}. (y_{i} - p(x_{i}; \beta))$$

$$x_i, y_i$$
 $p(x_i)$
... 1
1 0.95
0 0.21
... 0
1 0.55
... 1
0 0.43
... 1
1 0.77
... 1
0 0.44
... 0
0 0.15
... 1 0.81

Let's suppose we have
$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_{p-1} \end{bmatrix}$$
 which gives us $p(x_i) = \frac{e^{\beta^T x_i}}{1 + e^{\beta^T x_i}}$

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_{p-1} \end{bmatrix}$$

 $L(\beta) = \prod_{i:v_i=1} p(x_i) * \prod_{i:v_i=0} (1 - p(x_i))$ Can we find the maximum

of that likelihood?

$$LogL(\beta) = \sum_{i:y_i=1} log(p(x_i)) + \sum_{i:y_i=0} log(1 - p(x_i))$$

$$LogL(\beta) = \sum_{i} y_{i}. log(p(x_{i})) + (1 - y_{i}). log(1 - p(x_{i}))$$

$$LogL(\beta) = \sum_{i} y_{i}. \beta^{T} x_{i} - log(1 + e^{\beta^{T} x_{i}})$$

$$\frac{\partial LL(\beta)}{\partial \beta} = \sum_{i} x_{i}. (y_{i} - p(x_{i}; \beta))$$

Logistic Regression 2/2

DSI, jf.omhover, Dec 6, 2016

