Hypervisor Extension for a RISC-V Processor

J. Gauchola¹, J. Costa¹, E. Morancho¹, R. Canal¹, X. Carril², M. Doblas², B. Otero¹, M. A. Pajuelo¹, E. Rodríguez¹, J. Salamero² and J. Verdú¹

jaume.gauchola@estudiantat.upc.edu

¹ Universitat Politècnica de Catalunya – Barcelona TECH, ² Barcelona Supercomputing Center

Abstract

Data centers and cloud environments require efficient virtualization. We present the modifications done on the Lagarto core to add an initial implementation of the RISC-V Hypervisor extension:

- Add new privilege levels (VU, VS, HS).
- Modify trap handling mechanism.
- Add two-stage virtual memory address translation.

	Guest apps	Guest apps
OS applications	Guest OS	Guest OS
Host OS	VMM	
Physical machine		

New Privilege Levels

The hypervisor extension adds several control and status registers to control and manage the new modes, among other features. These new execution modes are **Hypervisor**, **Virtual Supervisor**, and **Virtual User**.

Trap Handling

When a trap is triggered, it is handled in machine mode by default. However, it can be delegated to a less privileged mode. The new execution modes require the **trap delegation** mechanism to be modified and **new exceptions** to be added from virtualized environments.

Bibliography

[1] RISC-V Fundation. *RISC-V Privileged Architecture, version 20210915-Public-Review-draftn*. Available Online at : https://github.com/riscv/riscv-privileged-20210915-public-review.

[2] Neiel I. Leyva-Santes et al. *Lagarto I RISC-V Multi-core: Research Challenges to Build and Integrate a Network-on-Chip.* In: Supercomputing. Springer, 2019, pp. 237–248.isbn: 978-3-030-38043-4.

[3] Bruno Sá et al. *CVA6 RISC-V Virtualization: Architecture, Microarchitecture, and Design Space Exploration*. 2023. arXiv: 2302.02969 [cs.AR].

Memory Address Translation

Address translation in RISC-V relies on memory paging. Sv39 supports three page sizes (4 KiB, 2 MiB and 1 GiB). All address translations require traversing a **3-level tree** of page tables structure. The **Page Table Walker** (PTW) is responsible for this traversal and stores the result in the **Translation Look-aside Buffer (TLB)** to enable faster translations in the future.

When virtualization is enabled, a **second translation stage (G-stage)** is required to translate all virtualized physical addresses (from **VS-stage**) from the virtualized environment to real physical addresses in the host.

Conclusion

Multiple modules such as the memory management unit, privilege levels, and trap handling are modified to implement a first approach of hypervisor extension in a RISC-V processor. The knowledge gained is used to implement hypervisor extensions for other projects like Vitamin-V.

This work is partially supported by the DRAC (IU16-011591), the HORIZON Vitamin-V (101093062) and the Computación de Altas Prestaciones VIII (PID2019-107255GB) projects.

