Лекции № 10-12

Линейные операторы. Основные свойства. Примеры. Норма оператора. Примеры. Функционалы. Теорема Рисса об общем виде функционала на гильбертовом пространстве. Сопряженные операторы. Примеры.

Лекция № 10

• Линейные операторы. Основные свойства. Примеры

В качестве приложений свойств полноты и сепарабельности пространств мы рассмотрели решение операторных уравнений методом последовательных приближений и методом разложения в ряды Фурье. Среди уравнений, решаемых указанными методами, есть функциональные уравнения, дифференциальные уравнения и интегральные уравнения Фредгольма и Вольтерра второго рода.

Важно отметить, что метод последовательных приближений позволяет решать уравнения вида x = Ax со сжимающим (необязательно линейным!) оператором A^k , $k \ge 1$, и сводящиеся к ним уравнения вида x - Ax =: Bx = y.

Теперь переходим к изучению свойств линейных операторов и обратных к ним, позволяющих решать уравнения вида Bx = y с различными операторами B, необязательно сжимающими.

Пусть X и Y — линейные нормированные пространства и A — оператор (однозначное отображение), действующий из X в Y. Записывают это обычно так $A: X \to Y$. В общем случае это означает, что A действует из $D(A) \subseteq X$ в $R(A) \subseteq Y$, где D(A) — область определения, а R(A) — область значения оператора A.

Оператор $A: X \to Y$ называется линейным, если для любых $x,y \in D(A)$ и для любых, в общем случае комплексных чисел α и β , имеет место

равенство

$$A(\alpha x + \beta y) = \alpha Ax + \beta Ay.$$

Примеры. Найдем области определения и проверим линейность следующих операторов A в пространстве C[a,b], т.е. действующих из $D(A)\subseteq C[a,b]$ в $R(A)\subseteq C[a,b]$:

- 1) Ax(t) = f(t)x(t), где f непрерывная на [a,b] функция;
- 2) интегральный оператор: $(Ax)(t) = \int_a^b K(t,s)x(s)ds$, где K(t,s) непрерывная на $[a,b] \times [a,b]$ функция;
 - 3) дифференциальный оператор: $Ax(t) = \frac{dx(t)}{dt}$;
- 4) в гильбертовом пространстве с ортогональным базисом $\{e_k\}$ операторы заданы на базисе

$$A_1e_k = e_{k+1}, \ k = 1, 2, \dots \ A_2e_{k+1} = e_k, \ A_1 = 0, \ k = 1, 2, \dots;$$

5) оператор, заданный матрицей в пространствах $(\mathbb{R}, \|\cdot\|_e)$ и $(\mathbb{R}, \|\cdot\|_{max})$.

Оператор $A: X \to Y$ (необязательно линейный) называется непрерывным в точке $x \in X$, если из сходимости $\rho(x_n, x) \to 0$ следует сходимость $\rho(Ax_n, Ax) \to 0$.

Утверждение 1. Для линейного оператора $A: X \to Y$ непрерывность оператора в нуле эквивалентна непрерывности в любой точке x.

Оператор $A: X \to Y$ (необязательно линейный) называется непрерывным в точке $x \in X$, если из сходимости $\rho(x_n, x) \to 0$ следует сходимость $\rho(Ax_n, Ax) \to 0$.

У17. Докажите это утверждение, используя замену

$$z_n = y_n - x : ||y_n - x|| \to 0 \Leftrightarrow ||z_n|| \to 0.$$

Оператор A (необязательно линейный) называется *ограниченным*, если он ограниченное множество переводит в ограниченное. Для линейного оператора ограниченность оператора означает, что он шар радиуса единица с центром в нуле переводит в некоторый шар с центром в нуле.

Этот факт в нормированных пространствах можно записать следующим образом:

$$\exists M > 0: \ \forall x \in X \ \|Ax\| \le M\|x\|. \tag{1}$$

Оказывается эта оценка является для линейного оператора удобным и часто используемым критерием ограниченности.

Теорема 1. Оператор $A: X \to Y$ является ограниченным тогда и только тогда, когда справедлива оценка (1).

Доказательство.

 \Rightarrow Поскольку из линейности оператора следует, что A0=0, при x=0 оценка очевидна. Пусть $x\neq 0$. Положим $x'=\frac{x}{\|x\|}$, тогда $\|x'\|=1$ и из ограниченности оператора следует

$$||Ax'|| \le M = M||x'||$$
, r.e. $||A\left(\frac{x}{||x||}\right)|| \le M||x'||$.

По свойству однородности нормы и свойству линейности оператора имеем

$$\left\| A\left(\frac{x}{\|x\|}\right) \right\| = \frac{1}{\|x\|} \|Ax\| = \frac{\|Ax\|}{\|x\|} \le M.$$

Получили $||Ax|| \le M||x||$, т.е. (1).

 \Leftarrow Если верно (1), то для $x \in \overline{S_0^1}$ имеем $||Ax|| \leq M$, т.е. A ограничен. \square

Линейность оператора — это такое сильное условие, что для линейных операторов свойство непрерывности оператора в точке ноль эквивалентно непрерывности оператора в произвольной точке (Утверждение 1). Более того, свойства ограниченности и непрерывности для линейных операторов оказываются эквивалентными.

Теорема 2. Пусть $A: X \to Y$ — линейный оператор и D(A) = X. Оператор является непрерывным, тогда и только тогда, когда он является ограниченным.

Доказательство.

⇒ Пусть оператор является непрерывным. Предположим, что он не является ограниченным, тогда образ единичного шара не является ограниченным множеством. Следовательно, для любого n

$$\forall n \ \exists x_n \in X, \|x_n\| \le 1: \ \|Ax_n\| > n.$$

Возьмем x' = x/n, для него имеем $||x'_n|| = ||x_n||/n \le \frac{1}{n} \to_{n\to\infty} 0$. По непрерывности оператора A отсюда следует, что $Ax'_n \to 0$.

С другой стороны, $||Ax'_n|| = \frac{1}{n} ||Ax_n|| \ge 1$. Полученное противоречие (нет непрерывности) доказывает первую часть теоремы.

← Доказательство получается из оценки (1).

2-е задание: У8-У18 сдать ведущим практику до 14 декабря.

Лекция № 11

Норма оператора. Примеры. Функционалы. Теорема Рисса об общем виде функционала на гильбертовом пространстве

Мы продолжаем изучать свойства пространства L(X,Y) — пространства линейных ограниченных операторов $A:X\to Y$, и их частного случая $A:X\to\mathbb{R}(\mathbb{C})$ — операторов с областью значений на действительной оси \mathbb{R} (или на комплексной плоскости \mathbb{C}), называемых функционалами. Пространство линейных ограниченных функционалов $L(X,\mathbb{R}(\mathbb{C}))$ обозначают X^* и называют пространством, сопряженным к X. Функционалы, в отличие от операторов, обычно обозначают малыми буквами: f(x) (как функции) или $\langle x,f\rangle$. Это обозначение идет от скалярного произведения (см. ниже теорему Рисса).

Для ограниченных операторов, т.е. таких что

$$\exists M > 0: \ \forall x \in X \ \|Ax\| \le M\|x\|, \tag{2}$$

вводится важная характеристика — *норма оператора*, равная нижней грани всех M в оценке (2):

$$||A|| := \inf\{M > 0 : \forall x \in X \ ||Ax|| \le M||x||\}.$$
 (3)

Можно проверить (см.[1]), что для нормы оператора можно дать несколько (эквивалентных) определений:

Теорема 3. Пусть $A \in L(X,Y)$, тогда

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||} = \sup_{||x|| \le 1} ||Ax|| = \sup_{||x|| = 1} ||Ax||.$$

С введенной нормой пространство линейных ограниченных операторов L(X,Y) становится линейным нормированным пространством.

Практически, для нахождения нормы оператора обычно сначала, используя определение нормы через inf, получают оценку нормы сверху, а потом оценку снизу, используя определение нормы через sup. Если оценки сделаны аккуратно, то сравнивая эти оценки, можно получить равенство для нормы.

Примеры

Продемонстрируем этот характерный прием вычисления нормы оператора на примере важных для приложений операторов — оператора умножения на непрерывную функцию f в пространстве C[a,b] и интегрального оператора $A:C[a,b]\to C[a,b]$.

1). Ax(t) = f(t)x(t). Имеем оценку сверху:

$$\|Ax\| = \max_{t \in [a,b]} |f(t)||x(t)| \leq \max_{t \in [a,b]} |f(t)| \max_{t \in [a,b]} |x(t)| = M\|x\|, \ M = \max_{t \in [a,b]} |f(t)|.$$

Отсюда, по определению нормы следует, что $||A|| \leq M$. С другой стороны, возьмем $x_0(t) \equiv 1$, тогда $Ax_0(t) = f(t)$. Отсюда следует оценка снизу

$$||A|| = \sup_{||x|| \le 1} ||Ax|| \ge \max_{t \in [a,b]} |f(t)|,$$

следовательно, ||A|| = M.

2).
$$Ax(t) = \int_a^b K(t,s)x(s)ds$$
, где $K(t,s) \in C([a,b] \times [a,b])$.

Имеем оценку сверху

$$||Ax|| = \max_{t \in [a,b]} \left| \int_a^b K(t,s)x(s)ds \right| \le \max_{s \in [a,b]} |x(s)| \max_{t \in [a,b]} \int_a^b |K(t,s)|ds = M||x||,$$

где

$$M = \max_{t \in [a,b]} \int_{a}^{b} |K(t,s)| ds = \int_{a}^{b} |K(t_{0},s)| ds,$$

 t_0 — точка, в которой достигается максимум интеграла от модуля функции K.

Чтобы получить оценку снизу и показать, что M и есть норма A, возьмем последовательность непрерывных функций x_n с нормами, равными единице, такую, что интегралы $\int_a^b K(t_0,s)x_n(s)ds$ сходятся к интегралу $\int_a^b |K(t_0,s)|ds$. Отсюда по теореме 1 получим оценку снизу и, следовательно, равенство $\|A\| = M$.

У18. Как частный случай интегрального оператора из примера 2), найдите норму функционала

$$\langle x, f \rangle = \int_{a}^{b} K(s)x(s)ds,$$

заданного 1) на C[a,b], 2) на L[a,b].

Рассмотрим важные для приложений интегральные операторы — оператор преобразования Фурье, прямого:

$$\mathcal{F}[f](\alpha) = \int_{\mathbb{R}} e^{-i(\alpha, y)} f(y) dy = \widehat{f}(\alpha),$$

обратного:

$$\mathcal{F}^{-1}[f](\alpha) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i(\alpha,y)} f(y) dy$$

и оператор свертки:

$$Af(x) := \int_{\mathbb{R}} f(y)g(x-y)dy = f * g(x) = g * f(x) = \int_{\mathbb{R}} g(y)f(x-y)dy = Ag(x).$$

Нетрудно проверить, что операторы преобразования Фурье и оператор свертки (с ограниченной g) являются ограниченными в пространстве $L(\mathbb{R})$.

У19. Найти нормы операторов преобразования Фурье и оператора свертки (с ограниченной g), действующих в пространстве $L(\mathbb{R})$.

Кроме того, важным свойством обладает оператор преобразования Фурье от производной: если $f', f'' \in L(\mathbb{R})$, то имеют место равенства:

$$\mathcal{F}[f'](\alpha) = i\alpha \mathcal{F}[f](\alpha).$$

$$\mathcal{F}[f''](\alpha) = -\alpha^2 \mathcal{F}[f](\alpha).$$

Формулы получаются интегрированием по частям. Проверьте!

Покажем использование свойств операторов преобразования Фурье для решения дифференциальных уравнений в частных производных на примере задачи Коши для уравнения теплопроводности:

$$\frac{\partial u(t,x)}{\partial t} = a^2 \frac{\partial^2 u(t,x)}{\partial x^2}, \quad t \ge 0, \ x \in \mathbb{R}, \quad u(0) = f(x).$$

Применим к этой задаче оператор преобразования Фурье по переменной x, считая переменную t параметром, получим:

$$\frac{d\,\widehat{u}(t,\alpha)}{dt} = -(a\alpha)^2\,\widehat{u}(t,\alpha), \quad t \ge 0, \ \alpha \in \mathbb{R}, \quad \widehat{u}(0,\alpha) = \widehat{f}(\alpha).$$

Решаем это линейное обыкновенное ДУ, получаем

$$\widehat{u}(t,\alpha) = e^{-t(a\alpha)^2} \, \widehat{f}(\alpha).$$

Применяя обратное преобразование Фурье и используя еще одно свойство преобразования Фурье (прямого и обратного):

npeoбразование Фурье от <math>npoизведения равно свертке <math>npeoбразований Фурье, получаем решение в виде свертки — знаменитую формулу Пуассона:

$$u(t,x) = \frac{1}{2a\sqrt{\pi t}} \int_{\mathbb{R}} e^{-\frac{(x-y)^2}{4a^2t}} f(y) dy.$$

Проверим, что преобразование Фурье от свертки равно произведению преобразований Фурье:

$$\mathcal{F}[f * g](\alpha) = \int_{\mathbb{R}} e^{-i(\alpha, y)} dy \int_{\mathbb{R}} f(x)g(y - x) dx$$
$$= \int_{\mathbb{R}} e^{-i(\alpha, y - x)} g(y - x) dy \int_{\mathbb{R}} e^{-i(\alpha, x)} f(x) dx = \mathcal{F}[g](\alpha) \cdot \mathcal{F}[f](\alpha).$$

Как можно видеть из приведенных здесь и в предыдущей лекции примеров, существует множество разнообразных линейных ограниченных операторов, действующих из X в Y. В общем случае их нельзя записать в общей форме для заданной пары X и Y.

Оказывается для функционалов из X^* для многих конкретных пространств X это сделать можно. Самый знаменитый и часто используемый из таких результатов — это теорема Рисса об общем виде функционала на гильбертовом пространстве.

Теорема Рисса. Пусть H — гильбертово пространство (комплексное или вещественное), тогда для любого $f \in H^*$ существует единственный элемент $y \in H$, такой что $\langle x, f \rangle = (x, y)$. При этом ||f|| = ||y||.

Доказательство. Рассмотрим ядро функционала Kerf — множество всех таких элементов z, что $\langle z,f\rangle=0$. Проверьте, что Kerf — это подпространство в H. Если Kerf=H, то доказательство тривиально: в качестве $y\in H$ можно взять ноль.

Если $Kerf \neq H$, то $H = Kerf \oplus Kerf^{\perp}$. Следовательно, существует ненулевой элемент $z \in Kerf^{\perp}$. Будем считать, что $\langle z, f \rangle = 1$, иначе вместо z возьмем $z_0 = z/\langle z, f \rangle$. Пусть x — произвольный элемент из H, тогда

$$\langle x - \langle x, f \rangle z, f \rangle = \langle x, f \rangle - \langle x, f \rangle = 0,$$

следовательно, $x-\langle x,f\rangle z\in Kerf$ и поскольку $z\in Kerf^{\perp}$, имеем

$$(x - \langle x, f \rangle z, z) = (x, z) - \langle x, f \rangle ||z||^2 = 0.$$

Отсюда получаем требуемое равенство

$$\langle x, f \rangle = (x, z/||z||^2) =: (x, y).$$

Проверим, что ||f|| = ||y||. По неравенству Коши-Буняковского

$$|\langle x, f \rangle| = |(x, y)| \le ||x|| ||y|| \implies ||f|| \le ||y||$$

по определению нормы f. Опять же по неравенству Коши-Буняковского

$$|\langle y, f \rangle| = |(y, y)| = ||y||^2 \le ||f|| ||y||,$$

откуда $||y|| \le ||f||$ и, следовательно, ||f|| = ||y||.

Единственность доказывается от противного. Докажите.

Таким образом, в теореме Рисса доказано, что пространство H изоморфно и изометрично пространству H^* . Условно этот факт часто записывают как равенство: $H=H^*$. Эти множества, конечно, разной природы, но с точки важных свойств ЛНП они тождественны.

У20. Используя теорему Рисса, привести примеры линейных непрерывных функционалов на следующих пространствах

- 1) на l_2 ,
- 2) на $L_2[a,b]$,
- 3) на $L_2(\mathbb{R})$,
- 4) на $L_2^f(\mathbb{R})$ с весом $f(x) = e^{-x^2}$.

При исследовании свойств операторов важное значение имеет поведение сопряженных к ним операторов.

Лекция № 12

Сопряженные операторы. Примеры.

Определение 1. Пусть A — линейный ограниченный оператор в нормированных пространствах: $A \in L(X,Y)$. Тогда сопряженный оператор $A^* \in L(Y^*,X^*)$ определяется следующим равенством

$$\langle Ax,f\rangle = \langle x,A^*f\rangle, \quad x\in X,\ f\in Y^*.$$

Разберемся с этим определением и покажем, что такой оператор A^* действительно существует, что $A^* \in L(Y^*, X^*)$ и более того, $\|A\| = \|A^*\|$. Для этого определим функционал φ на пространстве X:

$$\varphi(x) = \langle x, \varphi \rangle := \langle Ax, f \rangle.$$

Проверьте, что функционал φ определен на всем X и что он линеен (благодаря линейности A и f).

Теперь проверим, что функционал φ ограничен. Имеем

$$|\langle x, \varphi \rangle| = |\langle Ax, f \rangle| \le ||f|| ||Ax|| \le ||f|| ||A|| ||x||.$$
 (4)

Отсюда следует, что на элементах $f \in Y^*$ равенство

$$\langle x, \varphi \rangle = \langle Ax, f \rangle = \langle x, A^*f \rangle$$

задает линейный ограниченный оператор A^* : $A^*f := \varphi$.

Проверим, что $||A^*|| = ||A||$. Из оценки (1) следует, что

$$||A^*f|| \le ||A||||f|| \Rightarrow ||A^*|| \le ||A||.$$

Чтобы доказать неравенство в другую сторону, сформулируем часто используемое следствие из **теоремы Хана-Банаха о возможности** продолжения с сохранением нормы функционала, заданного на линейном многообразии $L \subset X$, на все ЛНП X.

Следствие из теоремы Хана-Банаха. Пусть $A \in L(X,Y)$, тогда для каждого x_0 , такого что $Ax_0 \neq 0$, существует функционал $f_0 \in Y^*$, такой что $||f_0|| = 1$ и $\langle Ax_0, f_0 \rangle = ||Ax_0||$.

Из этого следствия имеем

$$||Ax_0|| = |\langle Ax_0, f_0 \rangle| = |\langle x_0, A^*f_0 \rangle| \le ||A^*|| ||f_0|| ||x_0|| = ||A^*|| ||x_0||.$$

Отсюда $||A|| \le ||A^*||$. Значит $||A^*|| = ||A||$.

Чтобы на практике пользоваться определением сопряженного оператора для построения сопряженного оператора A^* к конкретному оператору A, надо начать с того, что построить $\langle Ax, f \rangle$ а потом *перекомпоновать это* выражение так, чтобы получилось действие некоторого функционала на x: $\langle x, A^*f \rangle$.

У21. 1). Используя смену порядка суммирования, построить оператор, сопряженный к матричному оператору A, действующему из гильбертова пространства E^n в E^m :

$$Ax = y : x = \{x_1, x_1, \dots, x_n\}, y = \{y_1, y_1, \dots, y_m\},\$$

$$y_k = \sum_{j=1}^n a_{kj} x_j, \ k = 1, \dots, m.$$

2). Используя смену порядка интегрирования, построить оператор, сопряженный к интегральному оператору с непрерывным ядром:

$$Ax(t) = \int_{a}^{b} K(t,s)x(s)ds, \ A: L_{2}[a,b] \to L_{2}[a,b].$$

Определение 2. Если для операторов $A \in L(X,Y)$ и $A^* \in L(Y^*,X^*)$ выполняется условие $A = A^*$ и, следовательно, $X = Y^*, Y = X^*$, то такой оператор называется *самосопряженным*. Обычно самосопряженные операторы рассматривают в гильбертовых пространствах H. Оператор $A \in L(H)$ называется *эрмитово самосопряженным*, если выполняется равенство (Ax,y) = (x,Ay) для любых $x,y \in H$.

Укажите условия, при которых заданные матричный и интегральный операторы являются самосопряженными.

References

- [1] Треногин С.В. Функциональный анализ М.: Наука, 1983, 384 с.
- [2] Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. М.: ФИЗМАТЛИТ, 2012. 572 с.
- [3] *Люстерник Л.А., Соболев В.И.* Краткий курс функционального анализа. Изд. Лань. 2009. 271 с.