

4646B-04 FUNDAMENTOS DE SISTEMAS DIGITAIS

Laboratório Circuitos Combinacionais

Prof. Fernando Gehm Moraes

Baixar a aplicação

https://github.com/logisim-evolution/logisim-evolution/releases/tag/v3.9.0

https://github.com/logisim-evolution/logisim-evolution/releases/download/v3.9.0/logisim-evolution-3.9.0-all.jar

Tela Inicial

PARTE I

FA: FULL ADDER

Primeiro módulo: **FA**

$$C_o = A.B + B.C_i + A.C_i$$

$$S = A \oplus B \oplus C_i$$

Clicar em + e definir o nome FA

INSERIR PORTAS LOGICAS

Em destaque a seleção da or para 3 entradas

Primeiro módulo: **FA**

$$C_o = A.B + B.C_i + A.C_i$$

$$S = A \oplus B \oplus C_{i}$$

FIOS

Desenhe três fios verticais para A, B, C
Lige as portas – dica: faça os fios por partes
Use para "parar" o fio

Complete as ligações

Remova os fios desnecessários (opcional)

Primeiro módulo: **FA**

$$C_o = A.B + B.C_i + A.C_i$$

$$S = A \oplus B \oplus C_i$$

Pinos de entrada e saída

Insira os pinos para A/B/C e Co/S

Duplo clique nos pinos para nomeá-los Terminar as conexõees (opcional) Remover fios sobrando

Primeiro módulo: FA

$$C_o = A.B + B.C_i + A.C_i$$

$$S = A \oplus B \oplus C_i$$

Testando <u></u>

No exemplo temos

1 + 1+ 1

S= 1

Co =1

Testar o circuito de acordo com a tabela verdade

Α	В	Ci	S	C _o
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

PARTE II

Soma4: Somador de 4 bits

Clicar em + e definir o nome Soma4

Com o Soma4 selecionado, clicar no FA e depois na área de trabalho, posicionando 4 FA

Divisores (Splitters)

Divisores (*Splitters***)** permitem que você pegue um valor de múltiplos bits e o divida em partes menores ou combine vários valores de um ou mais bits em um único valor. Aqui, dividimos o número binário de 4 bits **1100** em **11** e **00**, invertendo suas posições e combinando-os com **0** para criar o número final de 5 bits: **00110**.

Divisores (Splitters)

Clique em um divisor (*splitter*) (usando a ferramenta *Selecionar*) para ver seus atributos na barra lateral (canto inferior esquerdo). Você pode configurar atributos como o <u>número de ramificações</u> do divisor e a <u>quantidade de bits em cada uma delas</u>. Para o circuito anterior, os atributos dos divisores esquerdo e direito são os seguintes:

Properties	State				
Selection: Splitter					
VHDL		Verilog			
Facing		East			
Fan Out	2	2			
Bit Width In	4				
Appearance	C	entered			
Spacing	2				
Bit 0		0 (Top)			
Bit 1		0 (Top)			
Bit 2		(Bottom)			
Bit 3		(Bottom)			

Properties State					
Selection: Splitter					
VHDL		Verilog			
Facing		West			
Fan Out		3			
Bit Width In		5			
Appearance		Centered			
Spacing		2			
Bit 0		0 (Top)			
Bit 1		2 (Bottom)			
Bit 2		2 (Bottom)			
Bit 3		1			
Bit 4		L			

Divisores (Splitters)

Observe que há um atributo chamado **Orientação** (*Facing*). Você pode usá-lo para **girar o divisor**. No exemplo acima, o divisor à direita está orientado para o **Oeste**, enquanto o divisor à esquerda está orientado para o **Leste**.

Se você notar um **fio de erro em laranja**, isso significa que a **largura de bits de entrada** não corresponde à **largura de bits de saída**. Certifique-se de que, ao conectar dois componentes com um fio, você ajuste corretamente a largura de bits no menu desse componente.

Insira dois spliters (entra *n* fios e depois separa o *n* fios)

- observar a configuração destacada

Insira um *splitter* para a soma e ligar os sinais A/B/S

Inseria os pinos Cin / A / B / S / Cout como abaixo.

Conecte os Co nos C (Cin) como destacado

(atenção aos sinais de 4 bits)

Concluir o somador inserindo 3 "hex digit Display", sem ponto decimal, conectando-os em A / B/ S

Testando

AND 4 bits

Criar um módulo AND de 4 bits como abaixo, nomeando-o AAND4

PARTE IV

OR 4 bits

Criar um módulo OR de 4 bits como abaixo, nomeando-o OOR4

"TOP"

▼ [™] Wiring

J. Splitter

D. Pin

Probe

Tunnel

Pull Resistor

Conductive Conductive

Took

POR
1 · Constant

수 Power + Ground

Duplo clique na "main" - a qual deve estar vazia

Power: valor lógico '1' Ground: valor lógico '0'

Montar o diagrama abaixo, com: OOR4, AAND4, 2x Soma4

Concluindo, com um multiplexador

