Non-perturbative computation of Kaons oscillation amplitudes in Lattice QCD with $N_f=2+1$ sea quarks and OBC

Master's Degree in Theoretical Physics

Emanuele Rosi (1812180)

Academic Year 2022/2023

Table of Contents

1 Introduction to K^0 - \overline{K}^0 mixing

- ► Introduction to K^0 - \bar{K}^0 mixing
- Lattice regularizations of QFTs
- Mixing operators on the lattice
- Simulation Program

Kaons oscillations in Standard Model (SM) are mediated by Weak Interacitons.

• Two 1-loop order diagrams

Kaons oscillations in Standard Model (SM) are mediated by Weak Interacitons.

- Two 1-loop order diagrams
- An effective operator arises ($E \ll M_W$):

$$\langle \bar{\mathit{K}}^{0}|\Theta_{1}|\mathit{K}^{0}\rangle \qquad \Theta_{1} = \left[\bar{\mathit{s}}^{a}\gamma_{\mu}(1-\gamma_{5})\mathit{d}^{a}\right] \cdot \left[\bar{\mathit{s}}^{b}\gamma_{\mu}(1-\gamma_{5})\mathit{d}^{b}\right]$$

ullet Perturbative approach (PT) not allowed at energies $\lesssim \Lambda_{
m QCD}$

Vacuum insertion approximation (VIA):

$$\begin{split} \langle \bar{K}^0 | \left[\bar{s}^a \gamma_\mu (1 - \gamma_5) d^a \right] \cdot \left[\bar{s}^b \gamma_\mu (1 - \gamma_5) d^b \right] | K^0 \rangle \approx \\ &\approx \langle \bar{K}^0 | \left[\bar{s}^a \gamma_\mu (1 - \gamma_5) d^a \right] | 0 \rangle \langle 0 | \left[\bar{s}^b \gamma_\mu (1 - \gamma_5) d^b \right] | K^0 \rangle + \\ &\langle \bar{K}^0 | \left[\bar{s}^a \gamma_\mu (1 - \gamma_5) d^b \right] | 0 \rangle \langle 0 | \left[\bar{s}^b \gamma_\mu (1 - \gamma_5) d^a \right] | K^0 \rangle = \frac{8}{3} F_K^2 m_K^2 \end{split}$$

 B_1 parameter (a.k.a. B_K) parametrizes deviation from VIA: $\langle ar{K}^0|\Theta_1|K^0
angle=rac{8}{3}B_1F_K^2m_K^2$

Kaons oscillations

Oscillations BSM

- B_1 parameter (a.k.a. B_K) parametrizes deviation from VIA
- Other operators $\{\Theta_i, \tilde{\Theta}_j\}$ appears in theories beyond the SM (BSM)
- They form a complete set of operators of dimension 6, composed by 4 quarks, closed under renormalization procedure
- New BSM bag parameters:

$$\langle ar{K}^0|\Theta_j^{[+],\mathsf{ren}}(\mu)|K^0
angle = \xi_j \left(rac{m_K^2}{m_s(\mu)+m_d(\mu)}
ight)^2 f_K^2 B_j(\mu) \qquad j\geq 2.$$

• Non perturbative approach \Longrightarrow path integral

Non perturbative computation of bare bag parameters B_i on the lattice

_

Coordinated Lattice Simulations (CLS) gauge configurations with $N_f=2+1$ sea quarks and open boundary conditions (OBC) in time direction

Table of Contents

2 Lattice regularizations of QFTs

- lacktriangle Introduction to $\mathit{K}^{0} ext{-}ar{\mathit{K}}^{0}$ mixing
- ► Lattice regularizations of QFTs
- Mixing operators on the lattice
- Simulation Program

Lattice regularizations of QFTs

2 Lattice regularizations of QFTs

Regularizations ingredients:

- Lattice space Λ of dimension $L \times L \times L \times T$
- Lattice spacing a: $L = a \cdot N_L$, $T = a \cdot N_T$
- Action discretization:

$$S^{\mathsf{lat}}[a; \tilde{\phi}_1, \dots, \tilde{\phi}_{N_{\mathsf{fields}}}] \xrightarrow{a \to 0} S^{\mathsf{cont}}[\phi_1, \dots, \phi_{N_{\mathsf{fields}}}]$$

- Troubles: finite volume effects & lattice spacing effects
- $O(a^n)$ -improvement: $S^{\mathsf{lat}}(a) = S^{\mathsf{cont}} + o(a^n)$

Action regularizations

2 Lattice regularizations of QFTs

Many regularizations have been developed

Gauge actions:

Link variables

$$U_{\mu}(extbf{x}) = \exp\left(i\int_{ extbf{x}}^{ extbf{x}+a\hat{\mu}} extbf{A}_{
u}(\omega)d\omega^{
u}
ight)$$

- Wilson loops are gauge invariant
- Plaquette, tree level improved Symanzik, Luscher Weisz

Fermion actions:

- ullet Wilson-Dirac action Wilson term $r\in [-1,1]$
- Sheikholeslami-Wohlert term:

$$D_{ ext{xy}}^W\longmapsto D_{ ext{xy}}^W+c_{ ext{SW}}rac{ia}{4}\sigma_{\mu
u}\hat{F}_{\mu
u}(ext{x})\delta_{ ext{xy}}$$

 Osterwalder-Seiler action (twist transformation)

Simulation troubles

2 Lattice regularizations of QFTs

- Gauge configuration exhibit long autocorrelation times as a o 0
- Zero modes of D_{xy}^W make the sea quarks simulation inefficient

Open boundary conditions (OBC) in time direction

$$\begin{split} F_{0i}(\vec{x}, x_4 = 0) &= F_{0i}(\vec{x}, x_4 = T) = 0 & \forall i = 1, 2, 3 \\ P_+\psi(\vec{x}, 0) &= P_-\psi(\vec{x}, T) = 0 \\ \bar{\psi}(\vec{x}, 0)P_- &= \bar{\psi}(\vec{x}, T)P_+ = 0 & P_{\pm} = \frac{1}{2} \left(\mathbb{I} \pm \gamma_5 \right) \end{split}$$

- Restoration of connection of gauge fields space
- IR protection against zero modes

Sea actions

2 Lattice regularizations of QFTs

• Gauge action: Luscher-Weisz action

$$\mathcal{S}_G[U] = rac{1}{g_0^2} \left(rac{5}{3} \sum_{\{P\}} \mathsf{Tr}\left(\mathbb{I} - U_P
ight) - rac{1}{12} \sum_{\{R\}} \mathsf{Tr}\left(\mathbb{I} - U_R
ight)
ight)$$

• Sea quarks: Dirac-Wilson + SW term

$$\mathcal{S}^{\mathsf{sea}}[U,f,ar{f}] = \sum_{q=1}^3 \sum_{\mathbf{x}} ar{f}_q(\mathbf{x}) \left[D^{WD}(r_q) + rac{ia}{4} c_{SW} \sigma_{\mu
u} \hat{F}_{\mu
u} + m_q^{\mathsf{bare}}
ight] f_q(\mathbf{x})$$

Valence actions

2 Lattice regularizations of QFTs

• Valence quarks: Osterwalder-Seiler at Maximal twist + SW term

$$\mathcal{S}^{\mathsf{val}}[U,\psi,ar{\psi}] = a^4 \sum_q \sum_{\mathbf{x}} ar{\psi}_q(\mathbf{x}) \left[D^{WD}(r_q) + rac{ia}{4} c_{\mathit{SW}} \sigma_{\mu
u} \hat{F}_{\mu
u} + m^{\mathsf{cr}} + i \gamma_5 \mu_q^{\mathsf{bare}}
ight] \psi_q(\mathbf{x})$$

- ullet Flavours: d,d',s,s' with $\mu_s=\mu_{s'},\,\mu_d=-\mu_{d'}$ equiv. $r_d=r_s=r_{s'}=-r_{d'}=\pm 1$
- Bosonic ghosts $\{\phi_q, \bar{\phi}_q\}$ to cancel valence quarks determinant

Table of Contents

3 Mixing operators on the lattice

- lacktriangle Introduction to $\mathit{K}^{0} ext{-}ar{\mathit{K}}^{0}$ mixing
- Lattice regularizations of QFTs
- ► Mixing operators on the lattice
- Simulation Program

Why do we need flavor replicas d, d', s, s'? Because of R. Frezzotti & G. Rossi strategy!

A rather long chain of transformations:

Operators
$$\{\Theta_i^{[\pm]}\}$$
 in continuum QCD $\xrightarrow{\mathsf{basis}\,\mathsf{change}}$ Operators $\{Q_i^{[\pm]}\}$ in continuum QCD

$$\xrightarrow{\text{flavour replicas}} \text{ P.E. operators } \{O_{i,[+]}^{\text{phys}}\} \xrightarrow{\text{maximal twist}} \text{ P.E. operators } \{O_{i,[+]}^{\text{tw}}\}$$

Frezzotti & Rossi Strategy

3 Mixing operators on the lattice

Flavour replicas and twist: a simple example

$$\begin{split} \bar{K}^{0'} &= \bar{s}' \gamma_5 d' = \bar{\chi}^3 \gamma_5 \chi^4 \\ \bar{K}^0 &= \bar{s} \gamma_5 d = \bar{\chi}^1 \gamma_5 \chi^2 \end{split} \quad \text{Maximal Twist } \chi^i = e^{i \gamma_5 r_i \frac{\pi}{4}} \psi^i \qquad \bar{K}^{0'} = \bar{\psi}^3 \gamma_5 \psi^4 \\ \bar{K}^0 &= i \bar{\psi}^1 \psi^2 \end{split}$$

Similar transformations act on operators $O_{i[+]}$ and map PE operators in PO ones.

Achievements:

Specific regularization of the valence quarks in order to obtain:

- O(a)-improved mixing amplitudes w/o the need for W.A.
- Absence of wrong chirality mixing between $\{O_i^{[+]}\}$ and $\{O_i^{[-]}\}$
- Blocks like renormalization matrix $[Z_{ij}]$ for parity odd operators

Asymptotic behaviours

3 Mixing operators on the lattice

Two and three points correlators:

$$\begin{split} &C_{i}(x_{4},y_{4},z_{4}) = \sum_{\vec{x},\vec{y},\vec{z}} \langle \Omega | T \left\{ \bar{K}^{0'}(x) O_{i[+]}(y) \bar{K}^{0}(z) \right\} | \Omega \rangle \\ &G_{34}(x_{4},y_{4}) = \sum_{\vec{x},\vec{y}} \langle \Omega | T \left\{ \bar{K}^{0'}(x) K^{0'}(y) \right\} | \Omega \rangle \\ &G_{12}(x_{4},y_{4}) = \sum_{\vec{x},\vec{y}} \langle \Omega | T \left\{ \bar{K}^{0}(x) K^{0}(y) \right\} | \Omega \rangle \\ &X_{34}(x_{4},y_{4}) = \sum_{\vec{x},\vec{y}} \langle \Omega | T \left\{ \bar{A}'_{4}(x) K^{0'}(y) \right\} | \Omega \rangle \\ &X_{12}(x_{4},y_{4}) = \sum_{\vec{x},\vec{y}} \langle \Omega | T \left\{ \bar{A}_{4}(x) K^{0}(y) \right\} | \Omega \rangle \end{split}$$

Asymptotic behaviours

3 Mixing operators on the lattice

Asymptotic behaviours for $x_4 \gg y_4 \gg z_4$:

$$\begin{split} &C_{i}(x_{4},\gamma_{4},z_{4}) \approx \sum_{\vec{\gamma}} \langle \Omega | \bar{K}^{0'} | \bar{K}^{0'} \rangle \langle \bar{K}^{0'} | O_{i[+]} | K^{0} \rangle \langle K^{0} | \bar{K}^{0} | \Omega \rangle e^{-m_{K'}(x_{4}-\gamma_{4})-m_{K}(\gamma_{4}-z_{4})} \\ &G_{34}(x_{4},\gamma_{4}) \approx \sum_{\vec{\gamma}} \langle \Omega | \bar{K}^{0'} | \bar{K}^{0'} \rangle \langle \bar{K}^{0'} | K^{0'} | \Omega \rangle e^{-m_{K'}(x_{4}-\gamma_{4})} \\ &G_{12}(x_{4},\gamma_{4}) \approx \sum_{\vec{\gamma}} \langle \Omega | \bar{K}^{0} | \bar{K}^{0} \rangle \langle \bar{K}^{0} | K^{0} | \Omega \rangle e^{-m_{K}(x_{4}-\gamma_{4})} \\ &X_{34}(x_{4},\gamma_{4}) \approx \sum_{\vec{\gamma}} \langle \Omega | \bar{A}_{4}' | \bar{K}^{0'} \rangle \langle \bar{K}^{0'} | K^{0'} | \Omega \rangle e^{-m_{K'}(x_{4}-\gamma_{4})} \\ &X_{12}(x_{4},\gamma_{4}) \approx \sum_{\vec{\gamma}} \langle \Omega | \bar{A}_{4} | \bar{K}^{0} \rangle \langle \bar{K}^{0} | K^{0} | \Omega \rangle e^{-m_{K}(x_{4}-\gamma_{4})} \end{split}$$

Asymptotic behaviours

3 Mixing operators on the lattice

Bag parameters are recovered in continuum limit $a \to 0$ for $x_4 \gg y_4 \gg z_4$:

 \Rightarrow Need for 2 and 3 points correlation functions computation

Table of Contents

4 Simulation Program

- lacktriangle Introduction to $\mathit{K}^{0} ext{-}ar{\mathit{K}}^{0}$ mixing
- Lattice regularizations of QFTs
- Mixing operators on the lattice
- ► Simulation Program

Noise spinors method

4 Simulation Program

Mesonic sources in x_4 and z_4 are simulated through noise spinors $\eta^{(x_4)}$ and $\eta^{(z_4)}$:

- Two sets of N_n spinors randomly generated
- The sums $\sum_{\vec{x}}$ and $\sum_{\vec{z}}$ automatically implied when calculating the average over η s
- Computational advantage
- Different Wick contractions are obtained by multiplying propagators from sources with Dirac matrices

Noise spinors method

4 Simulation Program

Two types of diagrams:

Two types of noise spinors contractions:

$$G_{d} = \sum_{\vec{y}} \left\langle \left\langle \left(\gamma_{5} \xi_{1,A}^{(3,-)}(y) \right)^{\dagger} \Gamma_{B} \zeta_{1}^{(4,+)}(y) \cdot \left(\gamma_{5} \xi_{C,2}^{(1,-)}(y) \right)^{\dagger} \Gamma_{D} \zeta_{2}^{(2,+)}(y) \right\rangle^{\mathsf{noise}} \right\rangle^{\mathsf{sea}}$$

$$G_c = -\sum_{\vec{\gamma}} \left\langle \left\langle \left(\gamma_5 \xi_{1,A}^{(3,-)}(\gamma) \right)^\dagger \Gamma_D \zeta_2^{(2,+)}(\gamma) \cdot \left(\gamma_5 \xi_{C,2}^{(1,-)}(\gamma) \right)^\dagger \Gamma_B \zeta_1^{(4,+)}(\gamma) \right\rangle^{\mathsf{noise}} \right\rangle^{\mathsf{sea}}$$

Tests:

- Gauge invariance test
- Gauge invariance + investigation about N_n
- Test on Tree level improved Symanzik action, quenched approximation
- Test on Plaquette gauge action, quenched approximation

Gauge transformed propagators:

$$\left(S^{(f)}(y,x)[\Omega U\Omega^{\dagger}]\right)_{\beta,\alpha}^{b,a} = \Omega(y)^{b,c} \left(S^{(f)}(y,x)[U]\right)_{\beta,\alpha}^{c,d} \Omega^{\dagger}(x)^{d,a}$$

- ullet Equation tested in three points integrated correlators $\mathcal{C}_{i,[+]}$
- Link variables $U_{\mu}(x)$ are randomly generated and then transformed
- ullet Pointlike sources instead of random spinors η

Test #2: Gauge invariance and investigation about N_n

- Equation tested in three points integrated correlators C_{i,[+]}
- Link variables $U_{\mu}(x)$ are randomly generated and then transformed
- Use of random spinors η
- Different number of N_n were tested. Estimator:

$$\varepsilon(N_n) = \frac{1}{N_T - 2} \sum_{\gamma_4} \left(\frac{|\mathcal{C}(\gamma_4) - \tilde{\mathcal{C}}(\gamma_4)|}{\mathcal{C}(\gamma_4) + \tilde{\mathcal{C}}(\gamma_4)} \right)$$

Test #3: tree level improved Symanzik

4 Simulation Program

54 Gauge configurations - tree level improved Symanzik action 16x16x16x32 lattice, $\beta=6.0$, OBCs, unphysical parameters.

$$G_{12}(x_4, y_4), G_{34}(x_4, y_4)$$

$$C_{i[+]}(14a, \gamma_4, a)$$

 $M \neq M_{\rm crit} \Rightarrow$ not maximal twist.

Test #4: Plaquette gauge action

4 Simulation Program

37 Gauge configurations - plaquette gauge action 16x16x16x32 lattice, $\beta=6.0$, OBCs, maximal twist achieved

$$C_{i[+]}(14a, \gamma_4, a)$$

$$\mathcal{R}_i(14a, \gamma_4, a) = \Lambda_{ij} rac{\mathcal{C}_{i[+]}(14a, \gamma_4, a)}{\mathcal{C}_{1[+]}(14a, \gamma_4, a)}$$

- tests on faithful Gauge configurations with known parameters ($M_{
 m crit}, c_{SW}, \mu_i s$)
- ullet runs over the $N_f=2+1$ CLS sea ensembles (many values of a)
- data analysis
- continuum limit extrapolation of B_i and R_i
- renormalization procedure

Bibliography

- 1. C.R. Allton et al. "B-parameters for ΔS = 2 supersymmetric operators". In: Physics Letters B 453.1-2 (Apr. 1999), pp. 30-39
- 2. R Frezzotti and G.C Rossi. "Chirally improving Wilson fermions II. Four- quark operators". In: Journal of High Energy Physics 2004.10 (Oct. 2004)
- 3. Martin Luscher and Stefan Schaefer. "Lattice QCD with open boundary con- ditions and twisted-mass reweighting". In: Computer Physics Communications 184.3 (Mar. 2013)
- V. Bertone et al. "Kaon mixing beyond the SM from Nf = 2 tmQCD and model independent constraints from the UTA". In: Journal of High Energy Physics 2013.3 (Mar. 2013)

Thank you for listening!

