

Your First RecSys

Даниил Потапов

Руководитель группы персонализации и рекомендательных систем MTC BigData

Коллаборативная фильтрация

План

- Основная идея
- SVD
- implicit
 - o kNN методы
 - o iALS
- LightFM
 - WARP

• MTC

Основная идея

Получить векторные представления пользователей и объектов на основе данных об их взаимодействиях.

Функция оценки релевантности для пар (пользователь, объект)

$$f_{ui}: Users \times Items \rightarrow Relevance$$

Вектора получаем за счет фиксирования какой-либо функции оценки и решения задачи оптимизации

$$L(R, \hat{R}) \to min$$

Основная идея

- R матрица взаимодействий
- Р матрица векторов пользователей
- Q матрица векторов объектов
- k размерность векторного представления

Основная идея

Функция оценки
$$\hat{r}_{ui} = \mathbf{p}_u \mathbf{q}_i^T = \sum_d p_{ud} q_{di}$$

$$L = \sum_{u,i \in S} (r_{ui} - \mathbf{p}_u \mathbf{q}_i^T)^2 + \lambda \left(\sum_{u} \|\mathbf{p}_u\|^2 + \sum_{i} \|\mathbf{q}_i\|^2\right)$$

image source

SVD

U, V - ортогональные матрицы

Σ - диагональная (сингулярные числа)

$$A = U \Sigma V^{T} \qquad A \approx U_{k} \Sigma_{k} V_{k}^{T}$$

$$U \in \mathbb{R}^{m \times m} \qquad U_{k} \in \mathbb{R}^{m \times k}$$

$$V \in \mathbb{R}^{n \times n} \qquad V_{k} \in \mathbb{R}^{n \times k}$$

$$\Sigma \in \mathbb{R}^{m \times n} \qquad \Sigma_{k} \in \mathbb{R}^{k \times k}$$

MTC

SVD

$$||A - \hat{R}||_F^2 \to min$$

$$||X||_F^2 = \sum_{i,j} x_{ij}^2$$

Пропущенные значения заполняются или интерпретируются как 0

$$\hat{R} = U_k \Sigma_k V_k^T$$

$$AV_k V_k^T = U \Sigma V^T V_k V_k^T$$

$$AV_k V_k^T = U_k \Sigma_k V_k^T = \hat{R}$$

image source

SVD

Особенности:

- Не так хорошо для предсказания значений (в качестве регрессии)
- Подходит для построения топ-N рекомендаций
 - Для каждого пользователя считаем скалярное произведение со всеми объектами.
 - Выбираем топ объектов по полученным значениям

Много эффективных реализаций на разных языках

- from scipy.sparse.linalg import svds
- from sklearn.utils.extmath import randomized_svd
- from sklearn.decomposition import TruncatedSVD

implicit

Github - https://github.com/benfred/implicit

Docs - https://implicit.readthedocs.io/en/latest/

Основная фишка - построение моделей на основе неявного таргета (implicit datasets).

Доступные модели:

- Item-to-item kNN
- Logistic matrix factorization
- implicit ALS
- Bayesian Personalized Ranking

Основная идея:

- В качестве векторных представлений для пользователей и объектов использовать строки и столбцы из матрицы взаимодействий
- С помощью векторов оцениваем схожесть и на основе нее строим рекомендации
 - Косинусное расстояние
 - Корреляция Пирсона

В implicit доступны три модели и они все Item-ориентированы:

- CosineRecommender
- BM25Recommender
- TFIDFRecommender

Гиперпараметр один для всех - *К*, число соседей. Он влияет на топ, который может выдать модель.

Процесс обучения - поиск *К* ближайших соседей для каждого item и сохранение схожести с ними.

Построение рекомендаций для пользователя:

- Получение топ-К соседей для каждого объекта, с которым пользователь взаимодействовал
- Объединение всех топов в один с суммированием схожести.
- Выдача топ-N самых похожих объектов

Ключевые методы

- fit
 - item_user_matrix разреженная матрица со взаимодействиями
 Важно именно в такой ориентации подать матрицу (matrix.T)
- recommend
 - user_id номер строки, соответствующий пользователю, для которого строим рекомендации
 - user_item_matrix разреженная матрица с нашими взаимодействиями
 - N топ рекомендаций
 - filter_already_liked_items флаг, для исключения уже известных объектов (user_item_matrix)
 - filter_items список столбцов (объектов), которые надо исключить
 - Возвращает список кортежей (tuple) (столбец, схожесть)

Обучение модели

```
cosine_model = CosineRecommender(K=10)
cosine_model.fit(train_mat.T) #
```

100% 59599/59599 [00:02<00:00, 22803.72it/s]

Построение рекомендаций для одного пользователя

```
recs = cosine_model.recommend(row_id, train_mat, N=top_N, filter_already_liked_items=True)
recs = pd.DataFrame(recs, columns=['col_id', 'similarity'])
recs
```

	col_id	similarity	
0	4341	0.297014	
1	7353	0.220847 0.215622	
	36593		
3	3802	0.188025	
4	51215	0.145095 0.128586 0.102340 0.101929 0.100504	
5	49085		
6	37852		
7	7873		
8	46769		
9	56270	0.100504	

Также есть метод similar_items, который выдает топ похожих объектов

- item_id объект (номер столбца), для которого хотим получить похожие
- N запрашиваемый топ

get_similar_books('пикник на обочине', model)

	col_id	similarity	item_id	title
0	23397	1.000000	235407	пикник на обочине
1	8237	0.081634	208935	понедельник начинается в субботу
2	13604	0.075878	86572	град обреченный
3	46038	0.053919	85633	жук в муравейнике
4	9537	0.048289	128823	обитаемый остров
5	11830	0.046667	85653	волны гасят ветер
6	23062	0.043113	138608	сталкер
7	40889	0.038316	287365	большой прикол. анекдоты 31-2016
8	39976	0.035602	94631	трудно быть богом
9	1992	0.031722	35265	записки юного врача

Функция ошибки
$$L = \sum_{u,i} c_{ui} (r_{ui} - p_u q_i^T)^2 + \lambda \big(\sum_u \|p_u\|^2 + \sum_i \|q_i\|^2 \big)$$

 C_{ui} - степень уверенности (не меньше 1)

 r_{ui} - 1/0, факт взаимодействия

$$L = \sum_{u,i} c_{ui} (r_{ui} - p_u q_i^T)^2 + \lambda \left(\sum_u ||p_u||^2 + \sum_i ||q_i||^2 \right)$$
$$L = ||C * (R - PQ^T)||_F^2 + \lambda (||P||_F^2 + ||Q||_F^2)$$

Идея ALS в следующем: фиксируем одну из матриц и оптимизируем другую

$$\frac{\partial L}{\partial p_u} = 0 \Rightarrow p_u = (Q^T Q + Q^T (C^u - I) Q + \lambda I)^{-1} Q^T C^u r_u$$

$$\frac{\partial L}{\partial q_i} = 0 \Rightarrow q_i = (P^T P + P^T (C^i - I) P + \lambda I)^{-1} P^T C^i r_i$$

implicit - переход от предсказания значений к предсказанию релевантности, учитывая веса

ALS - метод оптимизации, в котором мы поочередно фиксируем одну матрицу и делаем оптимизационный шаг по другой

Функционал класса идентичен тому, что мы рассматривали у kNN.

Входная матрица интерпретируется как матрица весов C_{ui}

Итоговые предсказания (значения) интерпретации не имеют, они должны использоваться только для ранжирования

Ключевые гиперпараметры

- *factors* размерность вектора
 - обычно в районе 16 256
 - при использовании GPU должны быть вида 32*N
- *iterations* кол-во итераций (1 итерация проход по Р и Q)
 - 0 10 200
- regularization регуляризация
 - 0.00001 1
- use_gpu
- random_state

fit метод при повторном вызове делает еще iterations на основе уже имеющихся векторов

Также в этой модели появляется возможность сделать предсказания для пользователей, которых не было при обучении, но для которых известны несколько взаимодействий.

Это делается через параметр *recalculate_user* в методе recommend. С этим флагом вектор пользователя будет пересчитан на основе матрицы векторов объектов ровно как при обучении самого iALS

$$p_u = (Q^T Q + Q^T (C^u - I) Q + \lambda I)^{-1} Q^T C^u r_u$$

LightFM

Github - https://github.com/lyst/lightfm

Docs - https://making.lyst.com/lightfm/docs/home.html

Основная фишка - построение векторов для фичей пользователя и объекта.

В качестве векторных представлений самих пользователей и объектов берется сумма векторов их фичей

LightFM

Модель одна, с разными loss:

- Logistic
- Bayesian Personalized Ranking
- Weighted Approximate-Rank Pairwise
- k-os WARP

Обучается с помощью SGD. Доступны две вариации:

- adagrad
- adadelta

LightFM Dataset

lightfm.data.Dataset - класс, помогающий собрать разреженные матрицы в нужном виде.

Что требуется на вход (fit, fit_partial):

- users ID пользователей
- items ID объектов
- user features имена фичей пользователей
- item_features имена фичей объектов

По умолчанию включено построение индикаторных фичей пользователей и объектов.

• MTC

LightFM Dataset

build_interactions - построение матрицы взаимодействий на основе итератора на список кортежей одного из следующих видов:

- (user_id, item_id)
- (user_id, item_id, weight)

build_user_features/build_item_features - построение матрицы фичей на основе итератора на список кортежей одного из следующих видов:

- (user_id, [user_feature_name1, user_feature_name2, ...])
- (user_id, {user_feature_name1: weight})

LightFM Dataset

image source

LightFM WARP

Основная идея - переход от проверки качества предсказания значения к предсказанию качества ранжирования.

Достигается это путем сэмплирования негативных примеров и построения функции ошибки на основе соотношения предсказанных значений.

Алгоритм обучения:

- 1. Берем пользователя *и*
- 2. Выбираем для него объект *i*, с которым он взаимодействовал
- 3. Выбираем случайный объект *j*, с которым он не взаимодействовал
- 4. Считаем скалярные произведения p = (u, i) и n = (u, j)
- 5. Сравниваем *р* и *п*
 - а. Если p > n, то переходим на шаг 2 (или шаг 1)
 - b. Иначе считаем ошибку, правим веса и возвращаемся на шаг 3.

Кол-во сэмплирований - гиперпараметр *max_sampled*.

• MTC

LightFM WARP

Pos, Neg - множества позитивных и негативных примеров

$$L_u = \sum_{i \in Pos} L(rank(u, i))$$

I - индикаторная функция

 $\langle \, , \rangle$ - скалярное произведение

b - смещения (глобальное, по user, по item)

$$rank(u,i) = \sum_{j \notin Pos} I(f(u,i) \ge f(u,j))$$

$$f(u,i) = b_q + b_u + b_i + \langle p_u, q_i \rangle$$

$$L(rank(u,i)) = \sum_{i \notin Pos} log(\lfloor \frac{|Neg|}{Sampled} \rfloor) |1 - \langle p_u, q_i \rangle + \langle p_u, q_j \rangle|_{+}$$

Sampled - сколько раз нам пришлось сэмплировать негативный пример, чтобы найти такой, для которого скалярное произведение будет больше, чем скалярное произведение с позитивным примером

 $|\cdot|_+$ - Hinge loss (max(0, x))

LightFM Model

Ключевые гиперпараметры

- no_components размерность вектора
- learning_rate "шаг" при обучении в SGD
- user_alpha/item_alpha регуляризация по векторам пользователей и объектов
- random state

Есть loss-зависимые параметры, например для WARP:

• max_sampled - максимальное количество сэмплирований негативных примеров для одной позитивной пары (пользователь, объект). Увелечение приводит к росту качества, но замедлению обучения

LightFM Model

```
lfm_model = LightFM(no_components=64, learning_rate=0.05, loss='warp', max_sampled=5, random_st
ate=23)
```

```
num_epochs = 15
for _ in tqdm(range(num_epochs), total=num_epochs):
    Ifm_model.fit_partial(
        train_mat,
        user_features=train_user_features,
        item_features=train_items_features,
        num_threads=4
)
```


LightFM Model

В отличии от implicit, построение предсказаний в lightfm находится в более сыром виде.

Имеющийся метод model.predict ожидает на вход пары (пользователь, объект) и возвращает массив предсказаний по ним. Никакой дополнительной фильтрации.

Алгоритм построения предсказаний для одного пользователя следующий:

- Получить оценку для всех объектов
 - model.predict
 - user_vector * item_embeddings_matrix
- Получить индексы самых больших скоров
 - np.argpartition(scores, -np.arange(N))[-N:]
- Перевести индекс в наши item_id

Попрактиковаться самим можно здесь:

https://www.kaggle.com/sharthz23/implicit-lightfm

Вопросы можно задавать как на самом kaggle, так и в

▼ Telegram чате курса

sharthZ23