Gaia and its data

Introduction, November 17th 2014

Gaia is a new astrometry mission (heir of Hipparcos)

Main mission characteristics

- Spacecraft orbiting around L2 point, stabilized by spinning with telescope windows located perpendicular to rotation axis
- Precession of axis optimized to maximize sky coverage during its 5 year mission
 - On average, each object will be observed 70 times, but there is some dispersion (xx min & xx max)

Resulting catalogue

- $\sim 10^9$ stars, complete to G = 20
- Parallax accuracy from 7 μas at G = 10 to 600 μas at G = 20
- Other object classes
 - \circ 10⁶-10⁷ galaxies
 - 5 10⁵ quasars
 - 2.5 10⁵ solar system objects
 - o 500 BDs, 2 10⁵ WDs
 - 1.5 10⁴ exoplanets
 - 0 ...
- White light broad band photometry
- Low resolution spectro-photometry (BP, RP)
- Narrow band spectroscopy for RVS measurements

Data from sources is acquired as they drift over the instrument

Video

Data management structure

Photometry data (simulated)

Classification and parameter estimation

Table 1. Apsis modules

Acronym	name	
DSC	Discrete Source Classifier	
ESP	Extended Stellar Parametrizer:	
-CS	ESP – Cool Stars	
-ELS	ESP – Emission Line Stars	
-HS	ESP – Hot Stars	
-UCD	ESP – Ultra Cool Dwarfs	
FLAME	Final Luminosity Age and Mass Estimator	
GSP-Phot	Generalized Stellar Parametrizer – Photometry	
GSP-Spec	Generalized Stellar Parametrizer – Spectroscopy	
MSC	Multiple Star Classifier	
OA	Outlier Analysis	
OCA	Object Clustering Algorithm	
QSOC	Quasar Classifier	
TGE	Total Galactic Extinction	
UGC	Unresolved Galaxy Classifier	

Fig. 5. Component modules in Apsis and their interdependency. The module names are defined in Table 1. The arrows indicate a dependency on the output of the preceding module. The coloured bars underneath each module indicate which data it uses. Most of the modules additionally use the photometry and some also the Galactic coordinates.

Algorithms used

Module	Classification	Parameter estimation
DSC	SVM	-
GSP-Phot	-	SVM (Priam), Newt-Raph (Ilium), Bayesian MC (Aeneas)
GSP-Spec	-	Mult regression (Matisse), K-D tree (Degas), Gauss-Newt (Gaugin)
ESP MSC	ELS: NN, K-N, IGA UCD: Cuts -	HS: Simplex UCD: K-N, Gaussian process, Bayesian Inf. CS: Chi-square SVM
FLAME	-	Chi-square, Bayesian
QSOC	SVM	Extremely randomnized tree
UGC	SVM	-
OA	Self-organizing Map	-
OCA	НМАС	-