1.	Определете магнитната индукция на полето, създадено от безкраен праволинеен проводник, по който протича електричен ток с големина $I=10~\mathrm{A}$, в точка, намираща се на разстояние $5~\mathrm{cm}$ от проводника.		
2.	Праволинеен проводник с дължина 20 сm , по който протича ток с големина 5 mA , се намира в магнитно поле с индукция $B = 2$ T. Посоката на тока в проводника сключва ъгъл 30° с посоката на \vec{B} . Да се определи големината на силата на Ампер, която действа върху проводника.		
3.	3. Циркулацията на вектора на магнитната индукция по затворен контур, обхващащ правоъгълна токова рамка, по който тече ток с големина 10 mA , разположена перпендикулярно на равнината на контура е:		
	a) 0 T.m; b) 10 T.m; c) 20 T.m; d) 100 T.m.		
4.	4. Определете големината на магнитната сила, която действа върху електрон, движещ се със скорост и		
$=10^5$ m/s в магнитно поле с индукция $B=2$ T под ъгъл 30° спрямо посоката на магнитната индукция.			
5.	5. Формулирайте закона на Фарадей за електромагнитната индукция, като дефинирате участващите в него величини.		
6.	Определете самоиндуцираното напрежение в проводящ токов контур с индуктивност 5 mH , ако за време 2 s токът нараства от 0 A до 3 A , и енергията на създаденото магнитно поле около проводника.		
7.	Пресметнете честотата на пружинно махало, в което масата на тялото е 100 g, а коефициентът на еластичност на пружината е 9.10 ⁻³ N/m		

9. Дайте определение за дължина на вълната и формулирайте връзката ѝ със скоростта на

10. Определете периода и вълновото число на плоска хармонична вълна, ако уравнението ѝ е

12. Ъгълът между равнините на поляризация на поляризатор и анализатор е 45°. Колко е отношението

13. Абсолютно черно тяло е нагрято до температура 127°C. Определете интегралната излъчвателна

15. Каква е дължината на вълната на дьо Бройл за топче с маса $m = 3.31.10^{-6}$ kg, движещо се със скорост

17. Неопределеността на координатата на електрон е $\Delta x = 10^{-8}$ m. Минималната неопределеност на

18. Електрон преминава от състояние в атома с енергия **–3,53.10**⁻¹⁹ **J** в състояние с енергия **–6,84.10**⁻¹⁹ **J**.

19. Тяло с маса m = 20 g извършва незатихващи хармонични трептения по закона $x(t) = A \sin 2\pi t$. Определете отклонението и скоростта на тялото в момента t = 1/12 s и пълната енергия на трептене

20. Изведете условието за положението на интерференчните минимуми в опита на Юнг. (4 точки)

c) 2.10⁻³⁰ m.

c) 1.10^5 km/s.

на интензитетите I_1 на попадналата върху поляризатора светлина и I_2 – след анализатора?

16. Запишете условието за нормировка на вълновата функция и пояснете физическият му смисъл.

b) коефициентът на затихване е минимален;

d) 1.10⁻²⁶ m.

(4 точки)

d) не се обменя енергия с околната среда.

8. Резонансната честота на едно принудено трептение е честотата, при която:

11. Формулирайте законите за отражение и пречупване на светлината.

b) 3,31.10⁻⁴ m.

b) 73 km/s.

Намерете дължината на вълната на излъчения фотон.

а) собствената честота е максимална:

разпространение на вълната.

 $y(x,t) = 4\sin(10\pi(t-x)).$

способност на тялото.

 $v = 10^2 \text{ m/s}?$ a) $2.10^{-8} \text{ m}.$

a) 7.10^{-5} m/s.

с) амплитудата на трептенето е максимална;

14. Формулирайте законите за външния фотоефект.

скоростта му Δv_r по това направление е:

на тялото, ако амплитудата A = 2 cm.

Електрична константа $\varepsilon_0 = 8,85.10^{-12}$ F/m Магнитна константа $\mu_0 = 4\pi.10^{-7}$ H/m Маса на електрона в покой $m_e = 9,1.10^{-31}$ kg Маса на протона в покой $m_p = 1,6.10^{-27}$ kg Константа на Планк $h = 6.62.10^{-34}$ J.s

Скорост на светлината във вакуум $c = 3.10^8$ m/s Елементарен електричен заряд $e = 1,6.10^{-19}$ С Константа на Вин $b = 2,9.10^{-3}$ m.K Константа на Стефан–Болцман $\sigma = 5,7.10^{-8}$ W/(m².K⁴)

Указания за попълване на изпитния тест

Максималният брой точки за въпросите от №1 до №18 е 2.

Въпроси с избираем отговор.

Ако въпросът е за разпознаване на закон, формула или дефиниция, за получаване на 2 точки се изисква само отбелязване на верния отговор.

Ако въпросът е с изчисления, за получаване на 2 точки се изисква отбелязване на верния отговор и решение. При липса на решение точки не се дават. При неточности в решението се дава 1 точка.

Въпроси със свободен отговор.

При въпроси от дефиниции, формулировки и закони 2 точки се дават за пълен отговор. Пълният отговор включва словесна формулировка, запис на съответното уравнение, поясняване на физичните величини, влизащи в него, като и привеждане на съответните мерни единици там, където е необходимо.

До 1 точка се отнема, ако:

отговорът е непълен;

има малки неточности във формулировките.

При въпроси с приложения в числени примери 2 точки се дават при пълно решение, получен числен резултат и приведени мерни единици. При въпроси, решавани на две стъпки (с използване на два закона), за вярно решение само на едната стъпка се дава 1 точка. 0,5 точки се отнемат, ако:

не са записани правилно мерните единици;

има правилно буквено решение, но има грешки в изчисленията.

Максималният брой точки за въпроси №19 и №20 е 4.

При въпроси от изводи на основни физични зависимости 4 точки се дават при пълен извод в рамките на предаденото по време на лекции. Ако изводът не е направен докрай, точки се дават пропорционално на изпълнената част. За правилно записани изходни уравнения или за направо записан краен резултат се дава 1 точка.

При въпроси с решаване на кратка задача 4 точки се дават при пълно решение, получен числен резултат и привеждане на съответните мерни единици. При липса на пълно решение по 1 точка се дава за:

правилно записани изходни уравнения;

вярно решение на всяка стъпка от задачата.

До 1 точка се отнема, ако:

не са записани правилно мерните единици;

има грешки в изчисленията.

Минималните точки, необходими за съответната оценка на изпитния тест, са:

Среден 3.00	17 т.
Добър 4.00	26 т.
Мн. добър 5.00	33 т.
Отличен 6.00	39 т.