

영상 공간 필터링 - 1

- 블러필터

미디어기술콘텐츠학과 강호철

■개념

- 영상에서 원하는 정보는 통과, 나머지는 걸러내는 작업
- 대표적인 필터:잡음 제거,부드러운 성분 제거,...
- 필터(마스크,커널,윈도우,...)와 합성곱 연산

- 필터링 연산
 - 합성곱 연산

$$g(x,y) = m(0,0)f(x-1,y-1) + m(1,0)f(x,y-1) + m(2,0)f(x+1,y-1) + m(0,1)f(x-1,y) + m(1,1)f(x,y) + m(2,1)f(x+1,y) + m(0,2)f(x-1,y+1) + m(1,2)f(x,y+1) + m(2,2)f(x+1,y+1)$$

- 필터링 연산
 - 경계선 처리

BorderTypes 열거형 상수	설명
BORDER_CONSTANT	0 0 0 a b c d e f g h 0 0
BORDER_REPLICATE	a a a b c d e f g h h h
BORDER_REFLECT	c b a a b c d e f g h h g f
BORDER_REFLECT_101	d c b a b c d e f g h g f e
BORDER_REFLECT101	BORDER_REFLECT_101과 같음
BORDER_DEFAULT	BORDER_REFLECT_101과 같음

- 블러 필터
 - 영상을 부드럽게 하는 필터
 - cv2.boxFilter, cv2.blur
 - cv2.GaussianBlur
 - cv2.bilateralFilter
 - cv2.medianBlur

- 블러 필터
 - cv2.boxFilter, cv2.blur
 - (src, ddepth, ksize[, dst[, anchor[, normalize[, borderType]]]]) → dst
 - src: input
 - ddepth: outputimage depth (보통 I, src와 같은 depth)
 - ksize: kernel size
 - anchor: 커널 중심, default: (-1,-1)
 - normalize: flag, 정규화
 - borderType: padding방법

$$K = \alpha \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ & & \dots & & \\ 1 & 1 & 1 & \dots & 1 \end{bmatrix}$$

$$lpha = \left\{ egin{array}{ll} rac{1}{kwxkh} & ext{if } normalize = True \ 1 & ext{else} \end{array}
ight.$$

<u>출처: https://wjddyd66.github.io/opencv/OpenCV(5)/#morphologyex</u>

- 블러 필터
 - cv2.GaussianBlur
 - (src, ksize, sigmaX[, dst[, sigmaY[, borderType]]]) \rightarrow dst
 - src: input
 - ksize: kernel size
 - sigmaX, sigmaY: 가우시안 시그마값

$$G_{\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}} \qquad \qquad G_{\sigma_x \sigma_y}(x, y) = \frac{1}{2\pi\sigma_x \sigma_y} e^{-\frac{x^2}{2\sigma_x^2} + \frac{y^2}{2\sigma_y^2}}$$


```
\mathbf{G} = \begin{pmatrix} 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 0.0002 & 0.0011 & 0.0018 & 0.0011 & 0.0002 & 0.0000 & 0.0000 \\ 0.0000 & 0.0002 & 0.0029 & 0.0131 & 0.0215 & 0.0131 & 0.0029 & 0.0002 & 0.0000 \\ 0.0000 & 0.0011 & 0.0131 & 0.0586 & 0.0965 & 0.0586 & 0.0131 & 0.0011 & 0.0000 \\ 0.0001 & 0.0018 & 0.0215 & 0.0965 & 0.1592 & 0.0965 & 0.0215 & 0.0018 & 0.0001 \\ 0.0000 & 0.0011 & 0.0131 & 0.0586 & 0.0965 & 0.0586 & 0.0131 & 0.0011 & 0.0000 \\ 0.0000 & 0.0001 & 0.0029 & 0.0131 & 0.0215 & 0.0131 & 0.0029 & 0.0002 & 0.0000 \\ 0.0000 & 0.0000 & 0.0002 & 0.0011 & 0.0018 & 0.0011 & 0.0002 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0
```


- 블러 필터
 - cv2.bilateralFilter
 - (src, d, sigmaColor, sigmaSpace[, dst[, borderType]]) \rightarrow dst
 - src: input
 - d: 필터링에 이용될 이웃 픽셀 지름 (실시간 처리는 5, -I 이면 자동 계산)
 - sigmaColor, sigmaSpace : 컬러/좌표 공간 시그마
 - Edge-preserving noise removal filter

$$g_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}} (\|f_{\mathbf{p}} - f_{\mathbf{q}}\|) f_{\mathbf{q}}$$

- 앞 수식에서 f는 입력 영상, g는 출력 영상, 그리고 \mathbf{p} 와 \mathbf{q} 는 픽셀의 좌표를 나타냄
- ullet $f_{\mathbf{p}}$ 와 $f_{\mathbf{q}}$ 는 각각 \mathbf{p} 점과 \mathbf{q} 점에서의 입력 영상 픽셀 값이고, $g_{\mathbf{p}}$ 는 \mathbf{p} 점에서의 출력 영상 픽셀
- $G_{\sigma_{\rm s}}$ 와 $G_{\sigma_{\rm r}}$ 는 각각 표준 편차가 $\sigma_{\rm s}$ 와 $\sigma_{\rm r}$ 인 가우시안 분포 함수임 S는 필터 크기를 나타내고, $W_{
 m p}$ 는 양방향 필터 마스크 합이 1이 되도록 만드는 정규화

- 블러 필터
 - cv2.medianBlur
 - $(src, ksize[, dst]) \rightarrow dst$
 - src: input
 - ksize: kernel size
 - 픽셀의 중앙 값을 취하는 방법

■ 실습

화이트 보드

영상처리 프로그래밍 기초

- Python으로 배우는 OpenCV 프로그래밍
 - 김동근 지음
 - 가메출판사, 2018
- OpenCV4 로 배우는 컴퓨터 비전과 머신러닝
 - 황선규 지음
 - 길벗, 2019

