Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа компьютерных технологий и информационных систем

Отчёт по лабораторной работе № 9

Дисциплина: Автоматизация проектирования дискретных устройств (на английском языке).

Выполнил студент гр. 5130901/10101	(подпись)	_ Д.Л. Симоновский
Руководитель	(подпись)	_ А.П. Антонов
		" <u>07</u> " <u>апреля</u> 2024 г.

Санкт-Петербург 2024

Оглавление

1.	Список иллюстраций:	2		
2.	Алгоритм работы проекта:	3		
3.	Ход работы:	3		
4.	Вывол:	12		

1. Список иллюстраций:

Рис. 1. Схема разрабатываемого устройства	3
Рис. 2. Добавление папки с ІР модулями.	3
Рис. 3. Результат добавления компонентов на схему	3
Рис. 4. Настройка clk	4
Рис. 5. Подключения clk и reset	4
Рис. 6. Подключение данных.	5
Рис. 7. Настройка адресов	5
Рис. 8. Результат	5
Рис. 9. Настройка my_master	6
Рис. 10. Block Symbol разработанного IР модуля	6
Рис. 11. Сигналы elk	
Рис. 12. Сигналы rst	7
Рис. 13. Результат Show System with Platform Designer Interconnect	8
Рис. 14. Schematic.	8
Рис. 15. Добавленные модули к проекту.	9
Рис. 16. RTL Viewer устройства	9
Рис. 17. Результат запуска тестового модуля	10
Рис. 18. RTL Viewer.	
Рис. 19. Signal Tap II	11
Рис. 20. Обновленная настройка my_master.	
Рис. 21. Обновленная настройка адресов в Qsys.	11
,,, 1	12
Рис. 23. Результат запуска в Signal Tap II.	12

2. Алгоритм работы проекта:

Средствами Platform Designer создать структуру проекта, представленную на рисунке ниже:

Рис. 1. Схема разрабатываемого устройства.

3. Ход работы:

Выполним создание проекта со стандартными настройками, после чего добавим в проект IP файлы, предоставленные к данной лабораторной работе:

Рис. 2. Добавление папки с IP модулями.

Добавим компоненты: my_master, my_slave, my_slaveWS. Таким образом, получим следующий результат:

Рис. 3. Результат добавления компонентов на схему.

Настройку CLK модуля:

Clock Source - clk

Рис. 4. Настройка clk.

Далее выполним подключения сигналов clk и reset:

Рис. 5. Подключения clk и reset.

Выполним подключение «шины данных»:

Рис. 6. Подключение данных.

Выполним настройку адресов:

Рис. 7. Настройка адресов.

В итоге результат выглядит следующим образом:

Рис. 8. Результат.

Таже выполним настройку my master:

Рис. 9. Настройка my master.

Посмотрим на получившийся Block Symbol:

Рис. 10. Block Symbol разработанного IP модуля.

Далее посмотрим на сигналы clk и reset, что не возникает никаких дополнительных контроллеров:

Рис. 12. Сигналы rst.

Double-click to expo

Double-click to expo

Double-click to export

Double-click to export [clock]

dout a

dout_b

[clock]

[clock]

[clock]

[clock]

● 0x0000_0000

□ 0x0000_0004

0x0000_0000

0x0000_0007

Выполним команду Show System with Platform Designer Interconnect:

Avalon Memory Mapped Slave

Avalon Memory Mapped Slave

Conduit

my_slaveWS

Clock Input

Reset Input

Conduit

s0 conduit_end_0

□ my_slaveWS

conduit_end_0

clock

reset

s0

✓

Рис. 13. Результат Show System with Platform Designer Interconnect.

Появившийся модуль обеспечивает передачу данных между мастером (32 бит) и слейвом (8 бит).

Посмотрим на соединения настроенных модулей в Schematic:

Pис. 14. Schematic.

Добавим созданные модули в проект:

Рис. 15. Добавленные модули к проекту.

Подключим к проекту файл верхнего уровня и выполним компиляцию

```
1  `timescale 1 ns / 1 ns
2  module lab_PD3_top (
3    input bit clk,
4    input bit reset,
5    output bit [7:0] ledA,
6    output bit [31:0] ledB
7  );
8  lab_PD3 lab3_1_inst (
9    .clk_clk    (clk),
10    .reset_reset_n (reset),
11    .dout_a_export (ledA),
12    .dout_b_export (ledB)
13  );
14  endmodule
```

Посмотрим на RTL Viewer:

Рис. 16. RTL Viewer устройства.

Протестируем проект, используя следующий тестовый файл:

```
intimescale 1 ns / 1 ns
module tb_lab_PD3_top ();
bit clk;
bit reset;
bit[7:0] ledA;
bit[31:0] ledB;

always #50 clk = ~ clk;

initial
begin
clk = 1'b0;
reset = 1'b0;
#200;
reset = 1'b1;
#1000;
stop;
stop;
end

lab_PD3_top Lab3_top_inst (.*);
end

amount of the product o
```

Результат запуска приведен ниже:

Рис. 17. Результат запуска тестового модуля.

Как мы видим, разработанное устройство соответствует ожиданиям: данные успешно передаются как слейву с 8 битами, так и с 32 битами.

Для тестирования на плате создадим следующий модуль, который позволяет изменять rst, используя SP unit:

Получим следующий RTL Viewer:

Puc. 18. RTL Viewer.

Запустим Signal Tap II и переключим rst из 0 в 1. Результат запуска приведен ниже:

log: Trig (9 2024/04/03 14:42:21 (0:0:3.8 elapsed) #1	click to insert time bar											
Type Alias	Name	-1 (γ 1	2	3	4	ş	6	7	8		1ρ	11,
*	lab_PD3_top:Lab3_top_inst[reset												_
a	⊕ lab_PD3_top:Lab3_top_inst[ledA[70]		00h		441	331	22h	\sim		11h			
\(\bar{\approx} \)	⊕ lab_PD3_top:Lab3_top_inst[ledB[31_0]		0000000h							X	0000E	0000EEEEh	
*	∃ab_PD3_top:Lab3_top_inst lab_PD3:lab3_1_inst my_master:my_master avm_m0_address[31_0]		000000FFh	Х		00000000h		(000000FF	h) 0000	00000004h		000000FFh	
	lab_PD3_top:lab3_top_inst lab_PD3:lab3_1_inst my_master:my_master avm_m0_write										Ъ		
*	# lab_PD3_top:Lab3_top_inst lab_PD3:lab3_1_inst my_master:my_master avm_m0_writedata[310]		000000FFh	Х	X 11223344h				FFh 0000EEEEh		\sim	000000FFh	
*	lab_PD3_top:Lab3_top_inst[lab_PD3:lab3_1_inst[my_master:my_master avm_m0_waitrequest												
\	■ lab_PD3_top:Lab3_top_inst lab_PD3:lab3_1_inst my_master:my_master fsm_MM Baltimater	init	SM del1	X	Wr1D			del2	wr2D		\sim	ended	
\(\bar{\rightarrow}{\rightarrow} \)	⊞-lab_PD3_top:Lab3_top_inst lab_PD3:lab3_1_inst my_slave:my_slave avs_s0_writedata[7_0]		FFh	44h	44h X 33h X 22h X		11h	FFh	h EEh		X	FFh	_
*	lab_PD3_top:Lab3_top_inst[lab_PD3:lab3_1_inst[my_slave:my_slave avs_s0_waitrequest												
*	lab_PD3_top:Lab3_top_inst lab_PD3:lab3_1_inst my_slave:my_slave avs_s0_write												
	⊞ lab_PD3_top:Lab3_top_inst lab_PD3:lab3_1_inst my_slave:my_slave coe_s0_Dout[7_0]		00h		441		X22h	\rightarrow	11h	11h		_	
\(\rightarrow	lab_PD3_top:Lab3_top_inst lab_PD3:lab3_1_inst my_slaveWS:my_slavews avs_s0_writedata[310]		000000FFh	X	X 11223344h			X000000FF		0EEEEh	\sim	000000FFh	_
*	# lab_PD3_top:Lab3_top_inst[lab_PD3:lab3_1_inst[my_slaveWS:my_slavews coe_s0_Dout[310]			0000000h X							0000E	EEEh	
*	lab_PD3_top:Lab3_top_inst lab_PD3:lab3_1_inst my_slaveWS:my_slavews avs_s0_waitrequest												
*	lab_PD3_top:Lab3_top_inst lab_PD3:lab3_1_inst my_slaveWS:my_slavews avs_s0_write												

Рис. 19. Signal Tap II.

Как мы видим, результат совпадает с тестами и ожиданиями, что сведительствует о корректности выполненной работы.

Поменяем адрес и данные второго слейва в соответствии с вариантом:

🚣 my_master - my_master

Рис. 20. Обновленная настройка my master.

Рис. 21. Обновленная настройка адресов в Qsys.

Запустим тестовый файл:

Рис. 22. Запуск тестового файла.

Как мы видим, данные действительно обновились в соответствии с вариантом.

Проверим результат в Signal Tap II:

log: Trig @	a) 2024/04/03 15:00:34 (0:0:3.1 elapsed) #1	click to insert time bar															
Type Alias	Name	-1 9 1 2 3 4 5 6							7	8 9	1,0	1,1	12	1,3			
4	lab_PD3_top:Lab3_top_inst reset																
\(\sigma	■ lab_PD3_top:Lab3_top_inst ledA[70]	00h X 44h X 33h X 22h X										11h					
_	☐ lab_PD3_top:Lab3_top_inst[ledB[310]	0000000h									00000012h						
\[\begin{align*} 	□ lab_PD3_top:Lab3_top_inst lab_PD3:lab3_1_inst my_master:my_master avm_m0_address[310]		000000Fh 00000048h					X 0000	0090hX		000000FFh						
	lab_PD3_top:Lab3_top_inst lab_PD3:lab3_1_inst my_master:my_master avm_m0_write																
_	□ lab_PD3_top:Lab3_top_inst lab_PD3:lab3_1_inst my_master:my_master avm_m0_writedata[310]		d00000FFh X				11223344h			00000012h		X		000000FF			
	lab_PD3_top:Lab3_top_inst lab_PD3:lab3_1_inst my_master:my_master avm_m0_waitrequest																
*	∃ lab_PD3_top:Lab3_top_inst lab_PD3:lab3_1_inst my_master:my_master fsm_MM	ir	itSM	del1_	Х		wr1D		del2	X w	r2DX			ended			
*	□ lab_PD3_top:Lab3_top_inst lab_PD3:lab3_1_inst my_slave:my_slave avs_s0_writedata[70]		FFI		X 44h X 33h X 22h X 11h X F				FFh	X 1	2hX			FFh			
	lab_PD3_top:Lab3_top_inst lab_PD3:lab3_1_inst my_slave:my_slave avs_s0_waitrequest		1														
*	lab_PD3_top:Lab3_top_inst lab_PD3:lab3_1_inst my_slave:my_slave avs_s0_write		1														
\(\bar{\rightarrow}{\rightarrow} \)	■ lab_PD3_top:Lab3_top_inst lab_PD3:lab3_1_inst my_slave:my_slave coe_s0_Dout[70] The lab_PD3_top:Lab3_top_inst lab_PD3:lab3_1_inst my_slave:my_slave coe_s0_Dout[70]		00h X 44h X 33h X 22h X						\supset	11h					_		
\(\sigma	□ lab_PD3_top:Lab3_top_inst lab_PD3:lab3_1_inst my_slaveWS:my_slavews avs_s0_writedata[310]		000000)FFh	\sim	- 11	1223344h		X	0000	0012hX			000000FF	0		
	□ lab_PD3_top:Lab3_top_inst lab_PD3:lab3_1_inst my_slaveWS:my_slavews coe_s0_Dout[310]		0000000h							Х	00000012h						
4	lab_PD3_top:Lab3_top_inst lab_PD3:lab3_1_inst my_slaveWS:my_slavews avs_s0_waitrequest		1														
*	lab PD3 top:Lab3 top inst[lab PD3:lab3 1 inst[my slaveWS:my slavews]avs s0 write		-														

Рис. 23. Результат запуска в Signal Tap II.

Как мы видим, результат совпадает с тестами и ожиданиями, что сведительствует о корректности выполненной работы.

4. Вывод:

В ходе выполнения лабораторной работы была создана структура проекта с использованием Platform Designer. Этот инструмент предоставляет графический интерфейс для интеграции и настройки IP-блоков, что упрощает и ускоряет процесс разработки в сравнении с ручным написанием кода.

Преимущества Platform Designer включают в себя:

- 1. Ускорение разработки: Платформа предлагает готовые IP-блоки, которые могут быть легко интегрированы в проект, сокращая время разработки.
- 2. Упрощение процесса: Использование графического интерфейса позволяет избежать сложностей в написании и отладке кода, особенно для начинающих разработчиков.
- 3. Модульность и повторное использование: IP-блоки могут быть использованы в разных проектах, что способствует повторному использованию кода и упрощает поддержку проектов.
- 4. Визуализация системы: Платформа предоставляет графическое представление структуры проекта, что облегчает понимание и анализ системы.

Таким образом, использование Platform Designer обеспечивает эффективное управление проектом, ускоряет его разработку и повышает его надежность за счет готовых компонентов и удобного интерфейса.