THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics MATH1510 Calculus for Engineers (Fall 2021) Coursework 2

Nam	e: CHAN CHO KIT	_ Student No.:	(1551)75546
Class	s: MATH (50 10 G	_	
	I acknowledge that I am aware of Unive in academic work, and of the disciplina ble to breaches of such policy and reg http://www.cuhk.edu.hk/policy/academ	ary guidelines a gulations, as con	nd procedures applica-
	Signature	_ کر Date	-9-20M
		•	· · · · · · · ·

General Guidelines for Coursework Submission.

- Please go to the class indicated by your registered course code via the CUSIS system.
 Failure to comply will result in a 2-point deduction of the final score.
- Please write your answers using a black or blue pen, NOT any other color or a pencil.
- Points will only be awarded for answers with sufficient justifications.
- All questions in Part A along with some selected questions in Part B will be graded. Question(s) labeled with * are more challenging.

For internal use only:

								1
1	7	5a)	ţq.		, A		
2	v	5b	L	12	· 42 _ 6			
3	2	5c				l.		
4	2					W. A		- 9-1
		4				Total	10	/ 10

Part A

- 1. Without using L'Hôpital's rule, evaluate the following limits. Furthermore, if the limit does not exist but diverges to $\pm \infty$, please indicate so and determine the correct sign.
 - (a) $\lim_{x \to 9} \frac{x-9}{\sqrt{x}-3}$
 - (b) $\lim_{x \to -\infty} \frac{|x+1|}{x-3}$
 - (a) $\lim_{x\to 9} \frac{(\sqrt{x-3})(\sqrt{x+3})}{\sqrt{x-3}}$
 - = 343
 - = 6
- (6) (in $\frac{1+\frac{1}{x}}{1-\frac{3}{x}}$

 - = //

2. Let
$$f(x) = \frac{|x^2 - 3x + 2|}{x - 2}$$

Evaluate the following limits. Furthermore, if the limit does not exist but diverges to $\pm \infty$, please indicate so and determine the correct sign.

- (a) $\lim_{x \to 2^-} f(x)$
- (b) $\lim_{x \to 2^+} f(x)$
- (c) $\lim_{x\to 2} f(x)$

$$f(x) = \begin{cases} \frac{x^{2}-3x+2}{x-2}, & \text{if } x > 2. \text{ ov } x \leq 1. \\ \frac{-cx^{2}-3x+2}{x-2}, & \text{if } (< x < 2. \end{cases}$$

(a)
$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \frac{-(x^{2}-3x+2)}{x-2}$$

(6)
$$\lim_{x \to 2^+} f(x) = \lim_{x \to 1^+} \frac{x^2 - 3x + 2}{x - 2}$$

= $\lim_{x \to 2^+} \frac{(x - 2)(x - 1)}{x - 2}$

$$\frac{1}{(c)} \lim_{x \to -\infty} f(x) = \frac{2 - 2^{-2k}}{1 + 2^{-2k}}$$

$$=\frac{2}{1}$$

4

Part B

3. Let
$$f(x) = \frac{2^{x+1} - 2^{-x}}{2^x + 2^{-x}}$$

Without using L'Hôpital's rule, evaluate the following limits. Furthermore, if the limit does not exist but diverges to $\pm \infty$, please indicate so and determine the correct sign.

(a)
$$\lim_{x\to 0} f(x)$$

(b)
$$\lim_{x \to \infty} f(x)$$
 $\lim_{x \to -\infty} f(x)$

(a)
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{2^{x+2}}{2^{x+1}} + 1$$

$$= \lim_{x \to 0} \frac{4(2^x) - 1}{2(2^x) + 1}$$

(b)
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{2 - 2^{-2x}}{1 + 2^{-2x}}$$

$$=\frac{2}{1}$$

$$=\frac{2}{2}$$

4. Let
$$f(x) = \frac{x^{1510} + x^{1509} + \dots + x^{1020}}{1510x^{1510} + 1509x^{1509} + \dots + 1020x^{1020}}$$
.

Without using L'Hôpital's rule, evaluate the following limits. Furthermore, if the limit does not exist but diverges to $\pm \infty$, please indicate so and determine the correct sign.

- (a) $\lim_{x\to 0} f(x)$
- (b) $\lim_{x \to \infty} f(x)$

(a)
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{\chi^{490} + \chi^{489} + ... + 1}{|510^{26} + 90| + |50| + |50| + |50|}$$

1 多人的人生产的人的人们

(6)
$$\lim_{\chi \to \infty} f(\chi) = \lim_{\chi \to \infty} \frac{1 + \frac{1}{\chi} + \dots + \frac{1}{\chi^{490}}}{1510 + \frac{1}{\chi} + \dots + \frac{1}{\chi^{490}}}$$

CAN AND AND

and duy, they they we

5. Without using L'Hôpital's rule, evaluate the following limits. Furthermore, if the limit does not exist but diverges to $\pm \infty$, please indicate so and determine the correct sign.

(a)
$$\lim_{x \to -\infty} \frac{\sqrt{4x^2 + x}}{2x + 1}$$

$$\lim_{x \to 0^+} x \sin\left(\frac{1}{\sqrt{x}}\right)$$

(c)
$$\lim_{n \to \infty} \frac{\sin n + 2\cos n}{n}$$

(a)
$$\lim_{x \to -\infty} \frac{\sqrt{4x^2+1x}}{2x+1} = \lim_{x \to -\infty} \frac{\sqrt{4+\frac{1}{x}}}{2+\frac{1}{x}}$$

$$-\chi \leq \chi \sin(\sqrt{\chi}) \leq \chi$$
 for $\chi \neq 0$.

At & We have
$$(M (-x)) = 0$$

$$& \lim_{x\to 0^+} (x) =$$

We have
$$-3 \leq \sinh + 2\cos n \leq 3$$

$$\frac{-3}{n} \leq \frac{\sinh + 2\cos n}{n} \leq \frac{3}{n}$$

$$\lim_{N\to\infty}\frac{-3}{N}=0 \quad \text{while } \lim_{N\to\infty}\frac{3}{N}=D$$

$$\lim_{N\to\infty}\left(-\frac{3}{N}\right)=\lim_{N\to\infty}\left(\frac{3}{N}\right)$$