Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figur E -1750.000 -2000.000 -2250.000 Radiell fart m/s -2500.000 -2750.000 -3000.000 -3250.000 -3500.000 1000 ò 2000 3000 4000 5000 6000 Tidspunkt for observasjon (timer)

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

Luminositeten øker med en faktor 2.30e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

 $\operatorname{STJERNE}$ A) massen til stjerna er 8 solmasser og den fusjonerer hydrogen i kjernen

STJERNE B) det finnes hovedsaklig helium men også noe karbon i stjernas kjerne

STJERNE C) stjerna fusjonerer helium i kjernen

STJERNE D) Stjerna har en overflatetemperatur på 10000K. Radiusen er betydelig mindre enn solas radius

STJERNE E) massen til stjerna er 5 solmasser og den fusjonerer hydrogen i kjernen

Filen 1H.png

Bølgelgende (nm)

Figure 8: Figur fra filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 3.234e+06 kg/m3̂ og temperatur 24 millioner K.

Kjernen i stjerne B har massetet
thet 7.949e+06 kg/m3 og temperatur 34 millioner K.

Kjernen i stjerne C har massetet
thet 2.411e+06 kg/m3̂ og temperatur 17 millioner K.

Kjernen i stjerne D har massetet
thet 3.953e+06 kg/m3̂ og temperatur 29 millioner K.

Kjernen i stjerne E har massetet
thet 7.804e+06 kg/m3̂ og temperatur 19 millioner K.

Filen 1K/1K.txt

Påstand 1: denne har den minste tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 2: den absolutte størrelseklassen (magnitude) med blått filter er betydelig mindre enn den absolutte størrelseklassen i rødt filter

Påstand 3: den absolutte størrelseklassen (magnitude) med blått filter er betydelig større enn den absolutte størrelseklassen i rødt filter

Påstand 4: denne stjerna er lengst vekk

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen~1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L_Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Figur D tilsynelatende størrelseklasse 21.85

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L-Figure-E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet $3.044\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 25.42 millioner K.

Kjernen i stjerne B har massetet
thet 1.100e+05 kg/m3̂ og temperatur 23.81 millioner K.

Kjernen i stjerne C har massetet
thet 2.026e+05 kg/m $\hat{3}$ og temperatur 29.38

millioner K.

Kjernen i stjerne D har massetet
thet 2.364e+05 kg/m3̂ og temperatur 17.82 millioner K.

Kjernen i stjerne E har massetet
thet 3.956e+05 kg/m3̂ og temperatur 19.67 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen~1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

Observasjon er gjort 19.09 dager etter første observasjon.

0.93

0.88

0.88

0.73

0.68

0.3018

0.3028

0.3038

0.3048

0.3058

0.3068

0.3078

0.3088

Bølgelengde (nm) minus 656nm

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_Figur_3_.png$

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 1.15 buesekunder i løpet av et millisekund.

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Bodø som ligger i en avstand av 1000 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 96.61700 km/t.

Filen 3E.txt

Tog1 veier 58900.00000 kg og tog2 veier 104500.00000 kg.

Filen 4A.png

14.90 14.80
14.70
14.60
14.50
14.30
14.20 -

7.5

10.0

Observasjonstid (dager)

15.0

12.5

17.5

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

14.10

0.0

Hastigheten til Helium-partikkelen i x-retning er 498 km/s.

5.0

2.5

Filen 4E.txt

Massen til gassklumpene er 8200000.00 kg.

Hastigheten til G1 i x-retning er 37800.00 km/s.

Hastigheten til G2 i x-retning er 45120.00 km/s.

Filen 4G.txt

Massen til stjerna er 49.45 solmasser og radien er 2.10 solradier.