

Bayesian free-knot splines

Mark Blyth

Week's goals

- Make changes to continuations paper
 - Looked at feedback, haven't started making changes yet
- ₭ Fix MSPE downsampling errors
 - Haven't fixed this yet
- Implement and test free-knot splines
 - Learn how it works
 - Code it up
 - Use it to validate splines method

Bayesian free-knot splines

Identified as being a good method for modelling neuron data

How it works

- 1. Assume a spline model fits the data
- 2. Find a distribution over spline models, given the data
- 3. Condition on this distribution with new data, to get posterior estimates

Step 0: problem setup

$$\mathsf{K}$$
 Take some data $Y_i = g(x_i) + \varepsilon$

- $\triangleright \ \varepsilon \sim \mathcal{N}\{0, \sigma^2\}$
- $ightharpoonup \sigma$ unknown
- ▶ g unknown
- Y_i random variables
- ► Then, $Y_i|x_i, \sigma \sim \mathcal{N}\{g(x_i), \sigma^2\}$

 $\normalfont{\normalfont{\mbox{\not}\ensuremath{\mbox{\not}}}} \normalfont{\mbox{Goal:}} \normalfont{\normalfont{\mbox{g from noisy samples}}} (x_i, Y_i)$

This is a very standard problem formulation so far...

Step 1: spline model

- klim Model latent function <math>g as being some piecewise-polynomial function f
- k Tie polynomials together at knot-points ξ_i

$$f(x) = \begin{cases} f_1(x), & x \in [a, \xi_0) \\ f_2(x), & x \in [\xi_0, \xi_1) \\ \dots \\ f_{k+2}(x), & x \in [\xi_k, b] \end{cases}$$
 (1)

- $\not k f_i(x)$ is an $\mathcal{O}(3)$ polynomial passing through $(\xi_{i-1},g(\xi_{i-1})),(\xi_i,g(\xi_i))$
 - ... or allow the polynomials to pass near the knot-points, for smoothing splines

k Calculating the coefficients for each f_i is inconvenient

- k Calculating the coefficients for each f_i is inconvenient
- Nicer approach:

- k Calculating the coefficients for each f_i is inconvenient
- Nicer approach:

$$ightharpoonup$$
 Let $f(x) = \sum_i \beta_i b_i(x)$

- k Calculating the coefficients for each f_i is inconvenient
- Nicer approach:
 - ightharpoonup Let $f(x) = \sum_i \beta_i b_i(x)$
 - Functions b_i form a basis for some spline f(x) with k knots at $\{\xi_0,\dots,\xi_k\}$

- Nicer approach:
 - $\blacktriangleright \text{ Let } f(x) = \sum_i \beta_i b_i(x)$
 - Functions b_i form a basis for some spline f(x) with k knots at $\{\xi_0,\dots,\xi_k\}$
- $\not k$ b_i are found by

- Nicer approach:
 - \blacktriangleright Let $f(x) = \sum_i \beta_i b_i(x)$
 - Functions b_i form a basis for some spline f(x) with k knots at $\{\xi_0,\dots,\xi_k\}$
- $\not k$ b_i are found by
 - Specifying knot locations

- \bigvee Calculating the coefficients for each f_i is inconvenient
- Nicer approach:
 - \blacktriangleright Let $f(x) = \sum_i \beta_i b_i(x)$
 - Functions b_i form a basis for some spline f(x) with k knots at $\{\xi_0,\ldots,\xi_k\}$
- $\not k$ b_i are found by
 - Specifying knot locations
 - ightharpoonup Requiring \mathcal{C}^1 smoothness

- Nicer approach:
 - \blacktriangleright Let $f(x) = \sum_i \beta_i b_i(x)$
 - Functions b_i form a basis for some spline f(x) with k knots at $\{\xi_0,\ldots,\xi_k\}$
- $\not k$ b_i are found by
 - Specifying knot locations
 - ightharpoonup Requiring C^1 smoothness
 - Assuming linearity outside of data range

- \bigvee Calculating the coefficients for each f_i is inconvenient
- Nicer approach:
 - \blacktriangleright Let $f(x) = \sum_i \beta_i b_i(x)$
 - Functions b_i form a basis for some spline f(x) with k knots at $\{\xi_0,\ldots,\xi_k\}$
- $\not k$ b_i are found by
 - Specifying knot locations
 - ightharpoonup Requiring C^1 smoothness
 - Assuming linearity outside of data range
- $\not k$ b_i are called basis splines

- \bigvee Calculating the coefficients for each f_i is inconvenient
- Nicer approach:
 - \blacktriangleright Let $f(x) = \sum_i \beta_i b_i(x)$
 - Functions b_i form a basis for some spline f(x) with k knots at $\{\xi_0,\dots,\xi_k\}$
- $\not k$ b_i are found by
 - Specifying knot locations
 - ightharpoonup Requiring \mathcal{C}^1 smoothness
 - Assuming linearity outside of data range
- k b_i are called basis splines
 - Our model now becomes $Y_i|x_i, \beta, \sigma, \xi \sim \mathcal{N}\{\sum_i \beta_i b_i(x_i), \sigma^2\}$

Choose a nice number of knots k

- Choose a nice number of knots k
- k Choose a uniformly spaced knot-set ξ

- $\norm{\ensuremath{\not{k}}}$ Choose a nice number of knots k
- $m{\&}$ Choose a uniformly spaced knot-set ξ
- & Guess σ

- Choose a nice number of knots k
- $m{\&}$ Choose a uniformly spaced knot-set ξ
- K Guess σ
- \checkmark Find a MLE for β

- Choose a nice number of knots k
- k Choose a uniformly spaced knot-set ξ
- κ Guess σ
- $\norm{\ensuremath{\cancel{k}}}$ Find a MLE for β

Downside: bad choices for any of these parameters will give bad results:

★ Too few knots = underparameterised = can't capture shape of data

- Choose a nice number of knots k
- k Choose a uniformly spaced knot-set ξ
- \swarrow Guess σ
- $\norm{\ensuremath{\cancel{k}}}$ Find a MLE for β

- Too few knots = underparameterised = can't capture shape of data
- Too many knots = overparameterised = overfit data and capture noise

- Choose a nice number of knots k
- k Choose a uniformly spaced knot-set ξ
- \swarrow Guess σ
- \checkmark Find a MLE for β

- Too few knots = underparameterised = can't capture shape of data
- Too many knots = overparameterised = overfit data and capture noise

- Choose a nice number of knots k
- k Choose a uniformly spaced knot-set ξ
- \swarrow Guess σ
- $\norm{\ensuremath{\cancel{k}}}$ Find a MLE for β

- ★ Too few knots = underparameterised = can't capture shape of data
- Too many knots = overparameterised = overfit data and capture noise
- Bad knot positioning = function can't adapt to changing rates
- We How can we infer these from the data?

k Specify a prior belief $\pi_k(k)$ for the numer of knots we have

Joint probability: $p(k,\xi,\beta,\sigma,y)=p(y|\beta,\sigma)\pi_{\sigma}(\sigma)\pi_{\beta}(\beta|\sigma,\xi,k)\pi_{\xi}(\xi|k)\pi_{k}(k)$ We can evaluate all of this!

bristol.ac.uk

- k Specify a prior belief $\pi_k(k)$ for the numer of knots we have
 - ▶ Eg. discrete uniform on $[k_{min}, k_{max}]$

Joint probability: $p(k, \xi, \beta, \sigma, y) = p(y|\beta, \sigma)\pi_{\sigma}(\sigma)\pi_{\beta}(\beta|\sigma, \xi, k)\pi_{\xi}(\xi|k)\pi_{k}(k)$ We can evaluate all of this!

bristol.ac.uk

- \bigvee Specify a prior belief $\pi_k(k)$ for the numer of knots we have
 - ▶ Eg. discrete uniform on $[k_{min}, k_{max}]$
- $\mbox{\ensuremath{\&}}$ Specify a prior belief $\pi_\xi(\xi|k)$ on the knot positions $\xi,$ for any given number of knots

Joint probability: $p(k, \xi, \beta, \sigma, y) = p(y|\beta, \sigma)\pi_{\sigma}(\sigma)\pi_{\beta}(\beta|\sigma, \xi, k)\pi_{\xi}(\xi|k)\pi_{k}(k)$ We can evaluate all of this!

bristol.ac.uk

- k Specify a prior belief $\pi_k(k)$ for the numer of knots we have
 - ▶ Eg. discrete uniform on $[k_{min}, k_{max}]$
- $\mbox{\ensuremath{\&}}$ Specify a prior belief $\pi_\xi(\xi|k)$ on the knot positions $\xi,$ for any given number of knots
 - Eg. uniform on range of data

Joint probability: $p(k, \xi, \beta, \sigma, y) = p(y|\beta, \sigma)\pi_{\sigma}(\sigma)\pi_{\beta}(\beta|\sigma, \xi, k)\pi_{\xi}(\xi|k)\pi_{k}(k)$ We can evaluate all of this!

- k Specify a prior belief $\pi_k(k)$ for the numer of knots we have
 - ▶ Eg. discrete uniform on $[k_{min}, k_{max}]$
- Kee Specify a prior belief $\pi_{\xi}(\xi|k)$ on the knot positions ξ , for any given number of knots
 - Eg. uniform on range of data
- $\normalfont{\mbox{$\not$\sc E}}$ Specify a prior belief $\pi_{\sigma}(\sigma)$ on the noise level

Joint probability: $p(k, \xi, \beta, \sigma, y) = p(y|\beta, \sigma)\pi_{\sigma}(\sigma)\pi_{\beta}(\beta|\sigma, \xi, k)\pi_{\xi}(\xi|k)\pi_{k}(k)$ We can evaluate all of this!

- k Specify a prior belief $\pi_k(k)$ for the numer of knots we have
 - ▶ Eg. discrete uniform on $[k_{min}, k_{max}]$
- Kee Specify a prior belief $\pi_{\xi}(\xi|k)$ on the knot positions ξ , for any given number of knots
 - Eg. uniform on range of data
- \mathscr{K} Specify a prior belief $\pi_{\sigma}(\sigma)$ on the noise level

Joint probability: $p(k, \xi, \beta, \sigma, y) = p(y|\beta, \sigma)\pi_{\sigma}(\sigma)\pi_{\beta}(\beta|\sigma, \xi, k)\pi_{\xi}(\xi|k)\pi_{k}(k)$ We can evaluate all of this!

Bayesian approach

- We want to know where to put the knots
- k Bayesian approach: find the posterior knot distribution $p(k,\xi|y)$

$$p(k,\xi|y) = \frac{p(k,\xi,y)}{p(y)},$$
(2)

$$p(k,\xi,y) = \int \int p(k,\xi,\beta,\sigma,y) d\beta d\sigma$$
 (3)

$$= \int \int p(y|\beta,\sigma)\pi_{\sigma}(\sigma)\pi_{\beta}(\beta|\sigma,\xi,k)\pi_{\xi}(\xi|k)\pi_{k}(k)\mathrm{d}\sigma\mathrm{d}\beta \tag{4}$$

Bayesian approach

Putting it together, we get

$$p(k,\xi|y) = \frac{\int \int p(y|\beta,\sigma)\pi_{\sigma}(\sigma)\pi_{\beta}(\beta|\sigma,\xi,k)\pi_{\xi}(\xi|k)\pi_{k}(k)\mathrm{d}\sigma\mathrm{d}\beta}{p(y)}$$
(5)

$$= \frac{\int \int p(y|\beta,\sigma)\pi_{\sigma}(\sigma)\pi_{\beta}(\beta|\sigma,\xi,k)\pi_{\xi}(\xi|k)\pi_{k}(k)\mathrm{d}\sigma\mathrm{d}\beta}{\sum_{k}\int \int \int p(k,\xi,\beta,\sigma,y)\mathrm{d}\xi\mathrm{d}\beta\mathrm{d}\sigma}$$
(6)

... which is analytically intractable

MCMC sampling

Bayesian inference gives posteriors of form

$$posterior = \frac{likelihood \times prior}{Normalising constant}$$

- The normalising constant is regularly analytically intractable
- Markov-chain Monte carlo methods allow us to sample from the posterior distribution anyway

MCMC sets up a Markov chain whose stationary distribution is equal to the posterior distribution:

Generate a random state from a proposal distribution

- Generate a random state from a proposal distribution
- Accept it with some probability

- Generate a random state from a proposal distribution
- Accept it with some probability
- Reject it with some probability

- Generate a random state from a proposal distribution
- Accept it with some probability
- Reject it with some probability
- On acceptance, change the current state to the accepted state; else, remain at current state

- Generate a random state from a proposal distribution
- Accept it with some probability
- Reject it with some probability
- On acceptance, change the current state to the accepted state; else, remain at current state
- Acceptance and rejection probabilities are chosen such that the distribution of accepted states matches that of the prior

- Generate a random state from a proposal distribution
- Accept it with some probability
- Reject it with some probability
- On acceptance, change the current state to the accepted state; else, remain at current state
- Acceptance and rejection probabilities are chosen such that the distribution of accepted states matches that of the prior
- Doesn't require us to calculate the normalising constant!

Reversible-jump MCMC

- $\normalfont{\normalfont{\mbox{\notk$}}}$ States are the model configuration (k,ξ)
- These are of many different dimensions
- To sample from a posterior with varying dimension, we use reversible-jump MCMC
 - Jump up and down in dimension, probabilistically
 - Do so in such a way that the posterior is accurate both within and across dimensions

Model inference

- We Using RJMCMC, we can sample from the posterior $p(k, \xi|y)$, even though the dimensionality of ξ is not fixed
- \bigvee We can use samples $k, \xi | y$ to condition on new data (x^*, y^*)
 - $p(y^*|x^*, x, y) = p(y^*|k, \xi, x^*)p(k, \xi|y)$
- We predict new points without ever actually setting up a splines model
 - Find a probability distribution over candidate splines models
 - Weight each spline model's output according to its probability

My results

- Three different MCMC actions can be taken
 - Add a new knot
 - Relocate a knot
 - Delete a knot
- Each action has a proposal probability (how likely are we to take this action?)
- Each step has an acceptance probability (how likely are we to accept this action?)
- ★ The BARS paper does a rather bad job of explaining these!
 In my implementation, probabilities are sometimes coming back negative, making it crash

Results

Results can't be trusted!

BARS and GPR

- BARS maintains a distribution over splines
- GPR maintains a distribution over arbitrarily many functions
- Both methods refine the distribution with Bayesian methods
- ∠ BARS probabilistically finds the most informative knot point configuration
 - Finds set of spline-points that tell us the most about the data
 - Sparse GPR probabilistically finds the most informative inducing points distribution
- Tenuous link to optimal experiment design?

Next steps

- 1. Redraft paper
- 2. Get BARS to work
 - Useful as it's the most promising method for a conference abstract
 - Either get my implementation working, or adapt C code to my needs
- 3. Fix MSPEs
 - Should be quick and easy
- 4. (Re)validate all the models I'm playing with
- 5. Put results into a conference abstract