7. Trigonometrische Funktionen

Rechtwinklige Dreiecke

Bezeichnungen in rechtwinklingen Dreiecken

Allgemein:

Figure 1: Dreieck

Im Bezug auf die Winkel:

Figure 2: Dreieck

Beobachtung

Figure 3: Dreieck

A_1B_1	B_1C_1	$\frac{B_1C_1}{A_1B_1}$	AB	BC	$rac{BC}{AB}$
8,1	6,2	0,76	12,6	9,7	0,76

In jedem rechtwinklingen Dreieck mit festem Winkel α ist das Verhältnis von Gegenkathete zu α zur Hypothenuse konstant. Dieses Verhältnis ist der Sinus zu dem Winkel α

Analog In jedem rechtwinklingen Dreieck mit festem Winkel α ist das Verhältnis von Ankathete zu α zur Hypothenuse konstant. Dieses Verhältnis ist der Kosinus zu dem Winkel α

Definition: Sinus

Gegeben: – rechtwinkliges Dreieck ABC – Winkel $\alpha,\beta,\gamma=90^\circ$ Der Sinus eines Winkels ist das Verhältnis der Länge der Gegenkathete zur Länge der Hyopthenuse

$$\sin(\alpha) = \frac{\text{Gegenkathete zu } \alpha}{\text{Hypothenuse}}$$

Definition: Sinus

Gegeben: – rechtwinkliges Dreieck ABC – Winkel $\alpha,\beta,\gamma=90^\circ$ Der Sinus eines Winkels ist das Verhältnis der Länge der Gegenkathete zur Länge der Hyopthenuse

$$\sin(\alpha) = \frac{\text{Gegenkathete zu } \alpha}{\text{Hypothenuse}}$$

Definition: Kosinus

Gegeben: - rechtwinkliges Dreieck ABC - Winkel $\alpha,\beta,\gamma=90^\circ$ Der Sinus eines Winkels ist das Verhältnis der Länge der Ankathete zur Länge der Hyopthenuse

$$\cos(\alpha) = \frac{\mathsf{Ankathete} \ \mathsf{zu} \ \alpha}{\mathsf{Hypothenuse}}$$

Definition: Tangens

Gegeben: – rechtwinkliges Dreieck ABC – Winkel $\alpha,\beta,\gamma=90^\circ$ Der Sinus eines Winkels ist das Verhältnis der Länge der Gegenkathete zur Länge der Ankathete

$$\tan(\alpha) = \frac{\mathsf{Gegenkathete} \ \mathsf{zu} \ \alpha}{\mathsf{Ankathete} \ \mathsf{zu} \ \alpha}$$

Sinus, Kosinus und Tangens am Einheitskreis

- Einheitskreis := Kreis um den Ursprung mit Radius 1
- ullet Zu jedem Punkt P auf dem Kreis gibt es ein rechtwinkliges Dreieck
- Länge der Hypothenus ist 1.

Sinus, Kosiunsfunktion und Tangensfunktion im Dreieck

Definition: Sinusfunktion im Dreieck

Gegeben:

-rechtwinkliges Dreieck ABC

Die Abbildung, die jeder Winkelgröße den Sinus zum Winkel im zugehörigen rechtwinkligen Dreieck zuordnet, heißt **Sinusfunktion**

Funktionsgraph der Sinus-Funktion:

 $sin(\alpha)$ in Grad

Definition: Kosinus-Funktion im Dreieck

Gegeben:

-rechtwinkliges Dreieck ABC

Die Abbildung, die jeder Winkelgröße den Kosinus zum Winkel im zugehörigen rechtwinkligen Dreieck zuordnet, heißt **Kosinusfunktion**

Funktionsgraph der Kosinus-Funktion:

Definition: Tangens-Funktion im Dreieck

Gegeben:

rechtwinkliges Dreieck ABC

Die Abbildung, die jeder Winkelgröße den Tangens zum Winkel im zugehörigen rechtwinkligen Dreieck zuordnet, heißt **Tangensfunktion**

Funktionsgraph der Tangens-Funktion:

Figure 6: Einheitskreis

Beobachtung:

- Jedem Winkel kann eindeutig eine Kreisbogenlänge zugeordnet werden.

Folgerung

Damit lässt sich wie folgt auch zu jeder reelen Zahl x ein Wert $\sin(x), \cos(x)$ bzw. $\tan(x)$ zuordnen:

$$\begin{array}{ccc}
\alpha & \rightarrow \sin(\alpha) \\
\downarrow & = \\
x & \rightarrow \sin(x)
\end{array}$$

Funktionsterme

Zuordnung Winkel \rightarrow Bogenlänge

$$g(\alpha) = \left(r \cdot \frac{\pi \cdot \alpha}{180^{\circ}}\right)$$

Zuordnung Bogenlänge (reele Zahl) \rightarrow Sinus

$$f(x) = f(g(\alpha)) = \sin\left(r \cdot \frac{\pi \cdot \alpha}{180^{\circ}}\right) = \sin(x)$$

Winkelfunktionen

Sinus-Funktion

- Defintionsmenge: \mathbb{R}
- Wertemenge: $W = \{f(x) | -1 \le f(x) \le 1\}$
- periodisch
- Periode $p=2\pi$
- punktsymmetrisch zum Ursprung

$$\sin(-x) = -\sin(x)$$

• Nullstellen:

$$..., -\pi, 0, \pi, 2\pi, 3\pi, ...$$
 allgemein: $k \cdot \pi$, $k \in \mathbb{Z}$

Maximalstellen:

$$...,-\frac{3}{2}\pi,\frac{\pi}{2},\frac{5}{2}\pi,\frac{9}{2}\pi,...$$
 allgemein: $\frac{\pi}{2}+k\cdot 2\pi$, $k\in\mathbb{Z}$

• Minimalstellen:

$$...,-\frac{5}{2}\pi,-\frac{\pi}{2},\frac{3}{2}\pi,\frac{7}{2}\pi,...$$
 allgemein: $\frac{3}{2}\pi+k\cdot 2\pi$, $k\in\mathbb{Z}$

Kosinus-Funktion

- Defintionsmenge: \mathbb{R}
- Wertemenge: $W = \{f(x) | -1 \le f(x) \le 1\}$
- periosisch
- Periode $p=2\pi$
- achsensymmetrisch zur y-Achse

$$\cos(-x) = \cos(x)$$

• Nullstellen:

$$...,-\frac{\pi}{2},\frac{\pi}{2},\frac{3}{2}\pi,\frac{5}{2}\pi,...$$
 allgemein: $\frac{2k+1}{2}\cdot\pi$, $k\in\mathbb{Z}$

• Maximalstellen:

$$..., -2\pi, 0, 2\pi, 4\pi, ...$$
 allgemein: $2k \cdot \pi$, $k \in \mathbb{Z}$

• Minimalstellen:

$$..., -\pi, \pi, 3\pi, 5\pi, ...$$
 allgemein: $(2k+1)\pi \quad , k \in \mathbb{Z}$

Verschieben der Sinusfunktion entlang der y-Achse

Funktionsgleichung:

$$f(x) = \sin(x) + d$$

Die Mittellinie ist die Gerade y=d

Verschieben der Sinusfunktion entlang der y-Achse

Funktionsgleichung:

$$f(x) = \sin(x) + d$$

Die Mittellinie ist die Gerade y=d

Beipsiel

$$f(x) = \sin(x) - 2$$

Mittellinie: y = -2

Verschieben entlang der x-Achse

Funktionsgleichung:

$$f(x) = \sin(x - c)$$

Man nennt c auch Phase.

Verschieben entlang der x-Achse

Funktionsgleichung:

$$f(x) = \sin(x - c)$$

Man nennt c auch Phase.

Beipsiel

$$f(x) = \sin(x-1)$$

Beobachtung

$$f(x) = \sin(x - 2 \cdot \pi) = \sin(x + 2 \cdot \pi) = \cos(x)$$

Beobachtung

$$f(x) = \sin(x - 2 \cdot \pi) = \sin(x + 2 \cdot \pi) = \cos(x)$$

Strecken / Stauchen

Funktionsgleichung:

$$f(x) = a \cdot \sin(x)$$

|a| nennt man Amplitude (= Ausschlag). Die Amplitude ist immer positiv.

Strecken / Stauchen

Funktionsgleichung:

$$f(x) = a \cdot \sin(x)$$

|a| nennt man Amplitude (= Ausschlag). Die Amplitude ist immer positiv.

Beipsiel

$$f(x) = 3 \cdot \sin(x)$$

Periode verändern

Funktionsgleichung:

$$f(x) = \sin(b \cdot x)$$

Das Verhältnis

$$p = \frac{2\pi}{b}$$

nennt man Periode.

Periode verändern

Funktionsgleichung:

$$f(x) = \sin(b \cdot x)$$

Das Verhältnis

$$p = \frac{2\pi}{b}$$

nennt man Periode.

Beispiel

$$f(x) = \sin(2 \cdot x)$$

Die Periode ist:

$$p = \frac{2\pi}{2} = \pi$$

Beipsiel

$$f(x) = \sin\left(\frac{1}{3} \cdot x\right)$$

Beipsiel

$$f(x) = \sin\left(\frac{1}{3} \cdot x\right)$$

Spiegeln an der x-Achse

Funktionsgleichung:

$$f(x) = -\sin(x) = \sin(-x)$$

Allgemeine Sinus-Funktion

Definition: $a,b,c,d\in\mathbb{R}$ Der Graph der Funktion

$$g(x) = a \cdot \sin(b(x - c)) + d$$

geht aus der Funktion

$$f(x) = \sin(x)$$

hervor, indem - f um |a| in y-Richtung gestreckt wird. Die Amplitude ist: A=|a| - f um Faktor $\frac{1}{b}$ in x-Richtung gestreckt wird. - f um c in x-Richtung und um d in y-Richtung verschoben wird.

Bemerkung

Analoge Aussagen gelten auch für die Kosinus-Funktion.

Der Graph der Kosinus-Funktion geht aus dem Graph der Sinus-Funktion durch Verschiebung in x-Richtung um $-\frac{\pi}{2}$ hervor.