BACCALAURÉAT GÉNÉRAL

Épreuve pratique de l'enseignement de spécialité physique-chimie Évaluation des Compétences Expérimentales

Cette situation d'évaluation fait partie de la banque nationale.

ÉNONCÉ DESTINÉ AU CANDIDAT							
NOM:	Prénom :						
Centre d'examen :	n° d'inscription :						

Cette situation d'évaluation comporte **quatre** pages sur lesquelles le candidat doit consigner ses réponses. Le candidat doit restituer ce document avant de sortir de la salle d'examen.

Le candidat doit agir en autonomie et faire preuve d'initiative tout au long de l'épreuve.

En cas de difficulté, le candidat peut solliciter l'examinateur afin de lui permettre de continuer la tâche.

L'examinateur peut intervenir à tout moment, s'il le juge utile.

L'usage de calculatrice avec mode examen actif est autorisé. L'usage de calculatrice sans mémoire « type collège » est autorisé.

CONTEXTE DE LA SITUATION D'ÉVALUATION

Wilhelm Ostwald (1853–1932) est un chimiste germano-balte qui a activement participé au développement du concept d'acidité en s'intéressant notamment à l'influence de la dilution sur les acides faibles. En 1909, il a reçu le prix Nobel de chimie « en reconnaissance de ses travaux sur la catalyse et pour ses recherches touchant les principes fondamentaux gouvernant l'équilibre chimique et les vitesses de réaction ».

En 1888, il énonça la loi de dilution, dite « loi de dilution d'Ostwald », que l'on peut résumer ainsi : plus un acide faible est dilué dans l'eau, plus sa dissociation augmente.

Le but de cette épreuve est de tester la loi de dilution d'Ostwald et de déterminer la constante d'acidité de l'acide éthanoïque.

INFORMATIONS MISES À DISPOSITION DU CANDIDAT

Loi de dilution d'Ostwald

Selon la loi de dilution d'Ostwald, plus un acide faible est dilué dans l'eau, plus la valeur du coefficient de dissociation α augmente. Par conséquent, le comportement de cet acide faible se rapproche de plus en plus de celui d'un acide fort.

Transformation étudiée

Lorsqu'un acide se dissocie partiellement dans l'eau, on peut introduire le coefficient de dissociation α qui correspond au taux d'acide transformé en base.

On introduit une quantité de matière n_0 d'acide éthanoïque dans un volume V d'eau. On obtient une solution de concentration apportée C en acide éthanoïque. Le tableau d'avancement de la réaction est donné ci-dessous :

	Équation	CH₃CO₂H(aq) +	$H_2O(\ell)$	⇒ CH ₃ CO ₂ ⁻ (aq)	+ H₃O⁺ (aq)				
État	Avancement	Quantités de matière (mol)							
Initial	0	<i>n</i> ₀	Excès	0	0				
Final	Xf	$n_0 - x_f = n_0 \cdot (1 - \alpha)$	Excès	$x_f = n_0 \cdot \alpha$	$x_f = n_0 \cdot \alpha$				

Pour cette réaction, le coefficient de dissociation est
$$\alpha = \frac{x_f}{n_0} = \frac{\left[CH_3CO_2^{-}\right]_f}{C} = \frac{\left[H_3O^{+}\right]_f}{C}$$
.

Conductivité molaire

La conductivité σ d'une solution est une grandeur qui représente la capacité de cette solution à conduire le courant électrique. Elle s'exprime en siemens par mètre (S·m⁻¹).

On peut écrire le coefficient de dissociation α en fonction de la conductivité de la solution et des conductivités molaires ioniques des ions présents, et de la concentration apportée en acide éthanoïque, notée C:

$$\alpha = \frac{\sigma}{10^3 \cdot C \cdot (\lambda_{\text{H}_2\text{O}^+}^0 + \lambda_{\text{CH}_2\text{CO}_2}^0)} = \frac{\sigma}{10^3 \cdot C \cdot B} \qquad \text{avec B} = (\lambda_{\text{H}_3\text{O}^+}^0 + \lambda_{\text{CH}_3\text{CO}_2}^0)$$

La mesure de la conductivité σ permet donc de déterminer la valeur du coefficient de dissociation α .

Constante d'acidité K_A de la réaction étudiée

La constante d'équilibre K_A de la réaction étudiée est

$$K_A = \frac{[CH_3CO_2^-]_{\acute{e}\acute{q}} \cdot [H_3O^+]_{\acute{e}\acute{q}}}{[CH_3CO_2H]_{\acute{e}\acute{q}} \cdot C^0} \text{ avec } C^0 = 1 \text{ mol} \cdot L^{-1}$$

À l'aide des relations précédentes, il est possible de montrer que : $K_A = C \frac{\left(\frac{\sigma}{10^3 \text{C} \cdot \text{B}}\right)^2}{\left(1 - \left(\frac{\sigma}{10^3 \text{C} \cdot \text{B}}\right)\right) \cdot C^0}$

Cela donne :
$$\frac{\sigma^2}{10^6 \cdot C} = -K_A \cdot B \cdot C^0 \cdot \frac{\sigma}{10^3 \cdot C} + K_A \cdot B^2 \cdot C^0$$

Solutions d'acide éthanoïque

Les solutions mises à disposition sont les suivantes :

Solutions	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇
Concentration apportée en acide éthanoïque <i>C</i> (mol·L ⁻¹)	0,050	0,025	0,0125	0,010	0,0050		0,00050

Données utiles

• Conductivités molaires ioniques à dilution infinie à 25°C :

$$\lambda_{H_2O^+}^0 = 35,0 \times 10^{-3} \text{ S} \cdot \text{m}^2 \cdot \text{mol}^{-1} \qquad \qquad \lambda_{CH_3CO_2^-}^0 = 4,1 \times 10^{-3} \text{ S} \cdot \text{m}^2 \cdot \text{mol}^{-1}$$

- 1,0 S/m = 10 mS/cm;
- Valeur tabulée de la constante d'acidité de l'acide éthanoïque à 25° C : $K_A = 1.8 \times 10^{-5}$.

TRAVAIL À EFFECTUER

1. Élaboration de la solution S₆ (10 minutes conseillées)

1.1 Indiquer	la verrerie à	utiliser pour	r préparer	un volume	$V_6 = 10$	00,0 mL d	e la solutio	on S₀ à par	tir d'un	volume
$V_5 = 20.0 \text{ mL}$	de la solutio	n S ₅ .								
.,-		· ·								
								• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •

APPEL FACULTATIF Appeler le professeur en cas de difficulté

- 1.2 Préparer la solution S₆.
- 2. Résultats expérimentaux et loi d'Ostwald (30 minutes conseillées)

Redig le étha	ınoïqı	ie de	la so	lution	1 S ₆ .			•						appor	

APPEL n°1

Appeler le professeur pour lui présenter le protocole ou en cas de difficulté

2.2 Mettre en œuvre le protocole et, à l'aide des fonctionnalités d'un tableur-grapheur, proposer une modélisation de la fonction $\sigma = f(C)$.

Modélisation :

APPEL facultatif

Appeler le professeur en cas de difficulté

À l'aide de la modélisation, compléter le tableau en calculant la valeur du coefficient de dissociation α .

Solutions	S1	S2	S3	S4	S5	S6	S7
Concentration apportée en acide éthanoïque C	0,050	0,025	0,0125	0,010	0,0050		0,00050
(mol·L ⁻¹)							
Conductivité molaire				0,0162	0,0114		0,00336
σ ((S·m ⁻¹)							
Coefficient de		0,026	0,037	0,0415	0,058		0,172
dissociation α							

Les résultats expé	rimentaux sont-ils en accord avec la loi d'Ostwald ? Justifier.	
3. Détermination	de la constante d'acidité de l'acide éthanoïque (20 minutes conseillées)	
Noter les valeurs d	bleur-grapheur, tracer le graphique $\frac{\sigma^2}{10^6 \cdot C}$ = f $(\frac{\sigma}{10^3 \cdot C})$ et effectuer une modélisation u coefficient directeur a et de l'ordonnée à l'origine b obtenus. On ne préciser $b = \dots$	a pas les unités.
3.2 À l'aide (<u>uniqu</u>	<u>ement</u>) des valeurs de a et de b et de l'information mise à disposition relater la valeur de la constante d'acidité K_A de l'acide éthanoïque.	tive à la constante
	APPEL n°2	
W	Appeler le professeur pour lui présenter les résultats ou en cas de difficulté	
3.3 Comparer la va	aleur de la constante d'acidité trouvée à celle de la valeur tabulée à 25°C. Con	nmenter.

Défaire le montage et ranger la paillasse avant de quitter la salle.