Well-Separated Pair Decomposition

Application: geometric spanners
Construction and size

https://kbuchin.github.io/ruler/

Problem: Connect a set of cities by a new street network.

Problem: Connect a set of cities by a new street network.

1. Idea: Euclidean MST

Problem: Connect a set of cities by a new street network.

1. Idea: Euclidean MST But for any pair (x,y) the graph distance shouldn't be much longer than $\|xy\|$

Problem: Connect a set of cities by a new street network.

- 1. Idea: Euclidean MST But for any pair (x,y) the graph distance shouldn't be much longer than $\|xy\|$
- 2. Idea: complete graph

Problem: Connect a set of cities by a new street network.

- 1. Idea: Euclidean MST But for any pair (x,y) the graph distance shouldn't be much longer than $\|xy\|$
- 2. Idea: complete graph
 The budget for roads only pays for O(n) roads.

Problem: Connect a set of cities by a new street network.

- 1. Idea: Euclidean MST But for any pair (x,y) the graph distance shouldn't be much longer than $\|xy\|$
- 2. Idea: complete graph
 The budget for roads only pays for O(n) roads.
- 3. Idea: sparse t-spanner

O(n) edges

 $detour \leq t \cdot shortest path$

Applications

communication and connectivity in networks

- topology control in wireless networks
- routing in networks
- network analysis

fast, approximate distance computation

- geometric approximation algorithms for diameter etc.
- exact algorithms: closest pair, ...,
 Voronoi diagrams

For a set P of n points in \mathbb{R}^d the Euclidean graph $\mathcal{EG}(P)=(P,\binom{P}{2})$ is the complete, weighted graph with Euclidean distances as edge weights.

For a set P of n points in \mathbb{R}^d the Euclidean graph $\mathcal{EG}(P)=(P,\binom{P}{2})$ is the complete, weighted graph with Euclidean distances as edge weights.

For a set P of n points in \mathbb{R}^d the Euclidean graph $\mathcal{EG}(P)=(P,\binom{P}{2})$ is the complete, weighted graph with Euclidean distances as edge weights.

Since $\mathcal{EG}(P)$ has $\Theta(n^2)$ edges, we want a sparse graph with O(n) edges such that the shortest paths in the graph approximate the edge weights of $\mathcal{EG}(P)$.

For a set P of n points in \mathbb{R}^d the Euclidean graph $\mathcal{EG}(P)=(P,\binom{P}{2})$ is the complete, weighted graph with Euclidean distances as edge weights.

Since $\mathcal{EG}(P)$ has $\Theta(n^2)$ edges, we want a sparse graph with O(n) edges such that the shortest paths in the graph approximate the edge weights of $\mathcal{EG}(P)$.

Definition: A weighted graph G with vertex set P is called t-spanner for P and a stretch factor $t \geq 1$, if for all pairs $x, y \in P$:

$$||xy|| \le \delta_G(x,y) \le t \cdot ||xy||,$$

where $\delta_G(x,y) = \text{length of the shortest } x\text{-to-}y$ path in G.

What is the smallest t for which the following graph is a t-spanner?

A: $\sqrt{2}$

B: 2

 $C: \sqrt{2} + 1$

What is the smallest t for which the following graph is a t-spanner?

A:
$$\sqrt{2}$$

C:
$$\sqrt{2} + 1$$

What is the smallest t for which the following graph is a t-spanner?

A: $\sqrt{2}$

B: 2

How can we compute a t-spanner?

 $C: \sqrt{2} + 1$

Spanner construction paradigms

greedy

- sort point pairs by distance, start with no edges
- if for the next point pair the dilation is >t then add corresponding edge

Spanner construction paradigms

greedy

- sort point pairs by distance, start with no edges
- if for the next point pair the dilation is >t then add corresponding edge

cone-based

• subdivide space around each point into k>6 non-overlapping cones with angle $\phi=2\pi/k$

connect to "closest" point in each cone

$$\frac{1}{k} = 8$$

Spanner construction paradigms

greedy

- sort point pairs by distance, start with no edges
- if for the next point pair the dilation is >t then add corresponding edge

cone-based

- subdivide space around each point into k>6 non-overlapping cones with angle $\phi=2\pi/k$
- connect to "closest" point in each cone

distance approximation

well-separated pair decomposition (next!)

Well-Separated Pair Decomposition

Definition
Compressed Quadtrees

Well-Separated Pairs

Definition: A pair of disjoint point sets A and B in \mathbb{R}^d is called s-well separated for an s>0, if A and B both can be covered by a ball of radius r and the distance between the balls is at least sr.

Well-Separated Pairs

Definition: A pair of disjoint point sets A and B in \mathbb{R}^d is called s-well separated for an s>0, if A and B both can be covered by a ball of radius r and the distance between the balls is at least sr.

Well-Separated Pairs

Definition: A pair of disjoint point sets A and B in \mathbb{R}^d is called s-well separated for an s>0, if A and B both can be covered by a ball of radius r and the distance between the balls is at least sr.

Observation:

- s-well separated $\Rightarrow s'$ -well separated for all $s' \leq s$
- singletons $\{a\}$ and $\{b\}$ are s-well separated for all s>0

Well-Separated Pair Decomposition

For a well-separated pair $\{A,B\}$ the distance between all point pairs in $A\otimes B:=\{\{a,b\}\mid a\in A,b\in B,a\neq b\}$ is similar.

Goal: $o(n^2)$ -data structure that approximates all $\binom{n}{2}$ pairwise distances of a point set $P = \{p_1, \dots, p_n\}$.

Well-Separated Pair Decomposition

For a well-separated pair $\{A,B\}$ the distance between all point pairs in $A\otimes B:=\{\{a,b\}\mid a\in A,b\in B,a\neq b\}$ is similar.

Goal: $o(n^2)$ -data structure that approximates all $\binom{n}{2}$ pairwise distances of a point set $P = \{p_1, \dots, p_n\}$.

Definition: For a set of points P and s>0 an s-well separated pair decomposition (s-WSPD) is a set of pairs $\{\{A_1,B_1\},\ldots,\{A_m,B_m\}\}$ with

- $A_i, B_i \subset P$ for all i
- $A_i \cap B_i = \emptyset$ for all i
- $\bigcup_{i=1}^m A_i \otimes B_i = P \otimes P$
- $\{A_i, B_i\}$ s-well separated for all i

Example

28 pairs of points

Example

28 pairs of points

12 s-well separated pairs

Example

28 pairs of points

12 *s*-well separated pairs

WSPD of size $O(n^2)$ is trivial. What is the 'size'? Can we get size O(n)?

What size does a 2-WSPD on the following point set have at least?

A: 3

B: 4

C: 5

D: 6

What size does a 2-WSPD on the following point set have at least?

A: 3

B: 4

C: 5

D: 6

C: 5

D: 6

Reminder: quadtrees

Definition: A quadtree is a rooted tree, in which every interior node has 4 children. Every node corresponds to a square, and the squares of children are the quadrants of the parent's square.

Compressed quadtrees

Definition: A compressed quadtree is a quadtree in which paths of non-separating inner nodes are compressed to an edge.

Theorem 2: A compressed quadtree for n points in \mathbb{R}^d for fixed d has size O(n) and can be computed in $O(n \log n)$ time.

(without proof)

Representative and Level

Definition: For every node u of a quadtree $\mathcal{T}(P)$ let $P_u = \sigma_u \cap P$, where σ_u is the square corresponding to u.

Representative and Level

Definition: For every node u of a quadtree $\mathcal{T}(P)$ let $P_u = \sigma_u \cap P$, where σ_u is the square corresponding to u.

For every leaf u define the representative

$$\operatorname{rep}(u) = \begin{cases} p & \text{if } P_u = \{p\} \text{ (u is leaf)} \\ \varnothing & \text{otherwise.} \end{cases}$$

Representative and Level

Definition: For every node u of a quadtree $\mathcal{T}(P)$ let $P_u = \sigma_u \cap P$, where σ_u is the square corresponding to u.

For every leaf u define the representative

$$\operatorname{rep}(u) = \begin{cases} p & \text{if } P_u = \{p\} \text{ (u is leaf)} \\ \varnothing & \text{otherwise.} \end{cases}$$

For every inner node v set rep(v) = rep(u) of a non-empty child u of v.

Representative and Level

Definition: For every node u of a quadtree $\mathcal{T}(P)$ let $P_u = \sigma_u \cap P$, where σ_u is the square corresponding to u.

For every leaf u define the representative

$$\operatorname{rep}(u) = \begin{cases} p & \text{if } P_u = \{p\} \text{ (u is leaf)} \\ \varnothing & \text{otherwise.} \end{cases}$$

For every inner node \boldsymbol{v} set

rep(v) = rep(u) of a non-empty child u of v.

Definition: For every inner node u of a quadtree $\mathcal{T}(P)$ let level(u) be the level of u in the corresponding uncompressed quadtree. For leaves u, level $(u) := \infty$

Representative and Level

Definition: For every node u of a quadtree $\mathcal{T}(P)$ let $P_u = \sigma_u \cap P$, where σ_u is the square corresponding to u.

Definition: For every inner node u of a quadtree $\mathcal{T}(P)$ let level(u) be the level of u in the corresponding uncompressed quadtree. For leaves u, level $(u) := \infty$

Representative and Level

Definition: For every node u of a quadtree $\mathcal{T}(P)$ let $P_u = \sigma_u \cap P$, where σ_u is the square corresponding to u.

For every leaf u define the representative

$$\operatorname{rep}(u) = \begin{cases} p & \text{if } P_u = \{p\} \text{ (u is leaf)} \\ \varnothing & \text{otherwise.} \end{cases}$$

For every inner node \boldsymbol{v} set

rep(v) = rep(u) of a non-empty child u of v.

next: using quadtree to compute WSPD

Well-Separated Pair Decomposition

Construction

 $\mathsf{wsPairs}(u,v,\mathcal{T},s)$

Input: quadtree nodes u, v, quadtree $\mathcal{T}, s > 0$

- 1: if $rep(u) = \emptyset$ or $rep(v) = \emptyset$ or leaves u = v then return \emptyset
- 2: else if P_u and P_v s-well separated then return $\{\{u,v\}\}$
- 3: **else**
- 4: **if** level(u) > level(v) **then** exchange u and v
- 5: $(u_1, \ldots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}$
- 6: return $\bigcup_{i=1}^m \text{wsPairs}(u_i, v, \mathcal{T}, s)$

$\circ a$	b°_{c}	
		ullet d
		$e_{_{ullet}}$

 $\mathsf{wsPairs}(u,v,\mathcal{T},s)$

Input: quadtree nodes u, v, quadtree \mathcal{T} , s > 0

- 1: if $rep(u) = \emptyset$ or $rep(v) = \emptyset$ or leaves u = v then return \emptyset
- 2: else if P_u and P_v s-well separated then return $\{\{u,v\}\}$
- 3: **else**
- 4: **if** level(u) > level(v) **then** exchange u and v
- 5: $(u_1, \ldots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}$
- 6: return $\bigcup_{i=1}^m \text{wsPairs}(u_i, v, \mathcal{T}, s)$

 $\mathsf{wsPairs}(u,v,\mathcal{T},s)$

Input: quadtree nodes u, v, quadtree \mathcal{T} , s > 0

- 1: if $rep(u) = \emptyset$ or $rep(v) = \emptyset$ or leaves u = v then return \emptyset
- 2: else if P_u and P_v s-well separated then return $\{\{u,v\}\}$
- 3: **else**
- 4: **if** level(u) > level(v) **then** exchange u and v
- 5: $(u_1, \ldots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}$
- 6: return $\bigcup_{i=1}^m \text{wsPairs}(u_i, v, \mathcal{T}, s)$

 $\mathsf{wsPairs}(u,v,\mathcal{T},s)$

Input: quadtree nodes u, v, quadtree \mathcal{T} , s > 0

- 1: if $rep(u) = \emptyset$ or $rep(v) = \emptyset$ or leaves u = v then return \emptyset
- 2: else if P_u and P_v s-well separated then return $\{\{u,v\}\}$
- 3: **else**
- 4: **if** level(u) > level(v) **then** exchange u and v
- 5: $(u_1, \ldots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}$
- 6: return $\bigcup_{i=1}^m \text{wsPairs}(u_i, v, \mathcal{T}, s)$

 $\mathsf{wsPairs}(u,v,\mathcal{T},s)$

Input: quadtree nodes u, v, quadtree \mathcal{T} , s > 0

- 1: if $rep(u) = \emptyset$ or $rep(v) = \emptyset$ or leaves u = v then return \emptyset
- 2: else if P_u and P_v s-well separated then return $\{\{u,v\}\}$
- 3: **else**
- 4: **if** level(u) > level(v) **then** exchange u and v
- 5: $(u_1, \ldots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}$
- 6: return $\bigcup_{i=1}^m \text{wsPairs}(u_i, v, \mathcal{T}, s)$

 $\mathsf{wsPairs}(u,v,\mathcal{T},s)$

Input: quadtree nodes u, v, quadtree \mathcal{T} , s > 0

- 1: if $rep(u) = \emptyset$ or $rep(v) = \emptyset$ or leaves u = v then return \emptyset
- 2: else if P_u and P_v s-well separated then return $\{\{u,v\}\}$
- 3: **else**
- 4: **if** level(u) > level(v) **then** exchange u and v
- 5: $(u_1, \ldots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}$
- 6: return $\bigcup_{i=1}^m \text{wsPairs}(u_i, v, \mathcal{T}, s)$

 $\mathsf{wsPairs}(u,v,\mathcal{T},s)$

Input: quadtree nodes u, v, quadtree \mathcal{T} , s > 0

- 1: if $rep(u) = \emptyset$ or $rep(v) = \emptyset$ or leaves u = v then return \emptyset
- 2: else if P_u and P_v s-well separated then return $\{\{u,v\}\}$
- 3: **else**
- 4: **if** level(u) > level(v) **then** exchange u and v
- 5: $(u_1, \ldots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}$
- 6: return $\bigcup_{i=1}^m \text{wsPairs}(u_i, v, \mathcal{T}, s)$

 $\mathsf{wsPairs}(u,v,\mathcal{T},s)$

Input: quadtree nodes u, v, quadtree $\mathcal{T}, s > 0$

- 1: if $rep(u) = \emptyset$ or $rep(v) = \emptyset$ or leaves u = v then return \emptyset
- 2: else if P_u and P_v s-well separated then return $\{\{u,v\}\}$
- 3: **else**
- 4: **if** level(u) > level(v) **then** exchange u and v
- 5: $(u_1, \ldots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}$
- 6: return $\bigcup_{i=1}^m \text{wsPairs}(u_i, v, \mathcal{T}, s)$


```
\mathsf{wsPairs}(u,v,\mathcal{T},s)
```

Input: quadtree recircles around σ_u and σ_v (or radius 0 for point in a leaf), increase radius of smaller circle, check distance $\geq sr$ in O(1) time

- 1: if $\operatorname{rep}(u) = \varnothing$ or $\operatorname{rep}(v) = \varnothing$ or leaves u = v then return \varnothing
- 2: else if P_u and P_v s-well separated then return $\{\{u,v\}\}$
- 3: **else**
- 4: **if** level(u) > level(v) **then** exchange u and v
- 5: $(u_1, \ldots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}$
- 6: return $\bigcup_{i=1}^m \text{wsPairs}(u_i, v, \mathcal{T}, s)$


```
\mathsf{wsPairs}(u,v,\mathcal{T},s)
```

Input: quadtree recircles around σ_u and σ_v (or radius 0 for point in a leaf), increase radius of smaller circle, check distance $\geq sr$ in O(1) time

- 1: if $\operatorname{rep}(u) = \varnothing$ or $\operatorname{rep}(v) = \varnothing$ or leaves u = v then return \varnothing
- 2: else if P_u and P_v s-well separated then return $\{\{u,v\}\}$
- 3: **else**
- 4: **if** level(u) > level(v) **then** exchange u and v
- 5: $(u_1, \dots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}$ 6: $\text{return } \bigcup_{i=1}^m \text{wsPairs}(u_i, v, \mathcal{T}, s)$ $\{\{b, c\}, \{d\}\}\}$


```
\mathsf{wsPairs}(u,v,\mathcal{T},s)
```

Input: quadtree nodes u, v, quadtree \mathcal{T} , s > 0

- 1: if $rep(u) = \emptyset$ or $rep(v) = \emptyset$ or leaves u = v then return \emptyset
- 2: else if P_u and P_v s-well separated then return $\{\{u,v\}\}$
- 3: **else**
- 4: **if** level(u) > level(v) **then** exchange u and v
- 5: $(u_1, \ldots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}$
- 6: return $\bigcup_{i=1}^m \text{wsPairs}(u_i, v, \mathcal{T}, s)$

$\{\{b,c\},\{d\}\}$	
$\{\{a\}, \{d\}\}$	

 $\mathsf{wsPairs}(u,v,\mathcal{T},s)$

Input: quadtree nodes u, v, quadtree $\mathcal{T}, s > 0$

- 1: if $rep(u) = \emptyset$ or $rep(v) = \emptyset$ or leaves u = v then return \emptyset
- 2: else if P_u and P_v s-well separated then return $\{\{u,v\}\}$
- 3: **else**
- 4: **if** level(u) > level(v) **then** exchange u and v
- 5: $(u_1, \ldots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}$
- 6: return $\bigcup_{i=1}^m \text{wsPairs}(u_i, v, \mathcal{T}, s)$

lacksquare	b°_{c}	
		${}^{ullet} d$
		e_{\circ}

$$\{\{b,c\},\{d\}\} \\ \{\{a\},\{d\}\} \\ \{\{b,c\},\{e\}\} \\ \{\{d\},\{e\}\} \\ \{\{a\},\{b\}\} \\ \{\{a\},\{c\}\} \\ \{\{b\},\{c\}\} \\ \{a\},\{e\}\}$$

```
WSPAIRS(u, v, \mathcal{T}, s)
Input: quadtree nodes u, v, quadtree \mathcal{T}, s > 0
Output: WSPD for P_u \otimes P_v
 1: if rep(u) = \emptyset or rep(v) = \emptyset or leaves u = v then return \emptyset
 2: else if P_u and P_v s-well separated then return \{\{u,v\}\}
 3: else
       if level(u) > level(v) then exchange u and v
 5: (u_1, \ldots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}
    return \bigcup_{i=1}^m wsPairs(u_i, v, \mathcal{T}, s)
```

- initial call wsPairs (u_0,u_0,\mathcal{T},s)
- avoid duplicate wsPAIRS $(u_i, u_j, \mathcal{T}, s)$ and wsPAIRS $(u_j, u_i, \mathcal{T}, s)$
- pairs of leaves are s-well separated o algorithm terminates
- output are pairs of quadtree nodes

Quiz

Is the size of the *s*-WSPD constructed minimal?

A: Yes, because the s-WSPD is unique.

B: Yes, because all s-WSPDs have the same size.

C: No, not necessarily.

Quiz

Is the size of the s-WSPD constructed minimal?

A: Yes, because the s-WSPD is unique.

B: Yes, because all s-WSPDs have the same size.

C: No, not necessarily.

Quiz

Is the size of the s-WSPD constructed minimal?

A: Yes, because the s-WSPD is unique.

B: Yes, because all s-WSPDs have the same size.

C: No, not necessarily.

Question: How many pairs are generated by the algorithm?

Well-Separated Pair Decomposition

Complexity

Theorem: For a point set P in \mathbb{R}^d and $s \ge 1$ we can construct an s-WSPD with $O(s^d n)$ pairs in time $O(n \log n + s^d n)$.

Theorem: For a point set P in \mathbb{R}^d and $s \geq 1$ we can construct an s-WSPD with $O(s^d n)$ pairs in time $O(n \log n + s^d n)$.

Proof sketch:

Assumptions: $s \geq 1$, QT uncompressed.

Count the non-terminal calls.

Theorem: For a point set P in \mathbb{R}^d and $s \ge 1$ we can construct an s-WSPD with $O(s^d n)$ pairs in time $O(n \log n + s^d n)$.

Proof sketch:

Assumptions: $s \geq 1$, QT uncompressed.

Count the non-terminal calls.

 $\mathsf{wsPairs}(u, v, \mathcal{T}, s)$

Input: quadtree nodes u, v, quadtree $\mathcal{T}, s > 0$

Output: WSPD for $P_u \otimes P_v$

1: if $rep(u) = \emptyset$ or $rep(v) = \emptyset$ or leaves u = v then return \emptyset

2: else if P_u and P_v s-well separated then return $\{\{u,v\}\}$

3: **else**

4: if level(u) > level(v) then exchange u and v

5: $(u_1, \ldots, u_m) \leftarrow \text{children of } u \text{ in } \mathcal{T}$

6: return $\bigcup_{i=1}^m \text{wsPairs}(u_i, v, \mathcal{T}, s)$

Theorem: For a point set P in \mathbb{R}^d and $s \ge 1$ we can construct an s-WSPD with $O(s^d n)$ pairs in time $O(n \log n + s^d n)$.

Proof sketch:

Assumptions: $s \geq 1$, QT uncompressed.

Count the non-terminal calls.

Charging argument: charge non-term. call to the non-split square.

claim: $O(s^d)$ charges to each square

Theorem: For a point set P in \mathbb{R}^d and $s \geq 1$ we can construct an s-WSPD with $O(s^d n)$ pairs in time $O(n \log n + s^d n)$.

Proof sketch:

Assumptions: $s \geq 1$, QT uncompressed.

Count the non-terminal calls.

Charging argument: charge non-term. call to the non-split square.

claim: $O(s^d)$ charges to each square

Consider call (u, v) with v smaller of side length x.

Theorem: For a point set P in \mathbb{R}^d and $s \ge 1$ we can construct an s-WSPD with $O(s^d n)$ pairs in time $O(n \log n + s^d n)$.

Proof sketch:

Assumptions: $s \geq 1$, QT uncompressed.

Count the non-terminal calls.

Charging argument: charge non-term. call to the non-split square.

claim: $O(s^d)$ charges to each square

Consider call (u, v) with v smaller of side length x.

u,v are not separated,

u is at most factor 2 larger than v

 \Rightarrow distance between the balls

$$\leq s \max(r_u, r_v) \leq 2sr_v = sx\sqrt{d}$$

⇒ distance between their centers

$$\leq (1/2 + 1 + s)x\sqrt{d} \leq 3sx\sqrt{d} =: R_v$$

packing lemma: only $O(s^d)$ such squares.

Lemma: Let B be a ball of radius r in \mathbb{R}^d and X a set of pairwise disjoint quadtree cells with side length $\geq x$, that intersect B. Then $|X| \leq (1 + \lceil 2r/x \rceil)^d$.

Lemma: Let B be a ball of radius r in \mathbb{R}^d and X a set of pairwise disjoint quadtree cells with side length $\geq x$, that intersect B. Then $|X| \leq (1 + \lceil 2r/x \rceil)^d$.

Proof:

Lemma: Let B be a ball of radius r in \mathbb{R}^d and X a set of pairwise disjoint quadtree cells with side length $\geq x$, that intersect B. Then

$$|X| \le (1 + \lceil 2r/x \rceil)^d.$$

Proof:

Lemma: Let B be a ball of radius r in \mathbb{R}^d and X a set of pairwise disjoint quadtree cells with side length $\geq x$, that intersect B. Then $|X| \leq (1 + \lceil 2r/x \rceil)^d$.

Proof:

in every dimension at most $1+\lceil 2r/x \rceil$ squares can intersect the ball

Well-Separated Pair Decomposition

Application: t-spanner

t-spanner

For a set P of n points in \mathbb{R}^d the Euclidean graph $\mathcal{EG}(P)=(P,\binom{P}{2})$ is the complete, weighted graph with Euclidean distances as edge weights.

Since $\mathcal{EG}(P)$ has $\Theta(n^2)$ edges, we want a sparse graph with O(n) edges such that the shortest paths in the graph approximate the edge weights of $\mathcal{EG}(P)$.

t-spanner

For a set P of n points in \mathbb{R}^d the Euclidean graph $\mathcal{EG}(P)=(P,\binom{P}{2})$ is the complete, weighted graph with Euclidean distances as edge weights.

Since $\mathcal{EG}(P)$ has $\Theta(n^2)$ edges, we want a sparse graph with O(n) edges such that the shortest paths in the graph approximate the edge weights of $\mathcal{EG}(P)$.

Definition: A weighted graph G with vertex set P is called t-spanner for P and a stretch factor $t \geq 1$, if for all pairs $x, y \in P$:

$$||xy|| \le \delta_G(x,y) \le t \cdot ||xy||,$$

where $\delta_G(x,y) = \text{length of the shortest } x\text{-to-}y$ path in G.

WSPD and t-Spanner

Definition: For n points P in \mathbb{R}^d and a WSPD W of P define the graph G=(P,E) with $E=\{\{x,y\}\mid \{u,v\}\in W \text{ and } \operatorname{rep}(u)=x,\operatorname{rep}(v)=y\}.$

WSPD and t-Spanner

Definition: For n points P in \mathbb{R}^d and a WSPD W of P define the graph G=(P,E) with $E=\{\{x,y\}\mid \{u,v\}\in W \text{ and } \operatorname{rep}(u)=x,\operatorname{rep}(v)=y\}.$

Reminder: every pair $\{u,v\}\in W$ corresponds to two quadtree nodes u and v. From each quadtree node a representative is selected in the following way. For leaf u define as representative

$$\operatorname{rep}(u) = \begin{cases} p & \text{if } P_u = \{p\} \text{ (u is leaf)} \\ \varnothing & \text{otherwise.} \end{cases}$$

For an inner node v set $\operatorname{rep}(v) = \operatorname{rep}(u)$ for a non-empty child u of v.

Definition: For n points P in \mathbb{R}^d and a WSPD W of P define the graph G=(P,E) with $E=\{\{x,y\}\mid \{u,v\}\in W \text{ and } \operatorname{rep}(u)=x,\operatorname{rep}(v)=y\}.$

Definition: For n points P in \mathbb{R}^d and a WSPD W of P define the graph G=(P,E) with $E=\{\{x,y\}\mid \{u,v\}\in W \text{ and } \operatorname{rep}(u)=x,\operatorname{rep}(v)=y\}.$

Lemma: If W is an s-WSPD for $s=4\cdot \frac{t+1}{t-1}$, then G is a t-spanner for P with $O(s^dn)$ edges.

Definition: For n points P in \mathbb{R}^d and a WSPD W of P define the graph G=(P,E) with $E=\{\{x,y\}\mid \{u,v\}\in W \text{ and } \operatorname{rep}(u)=x,\operatorname{rep}(v)=y\}.$

Lemma: If W is an s-WSPD for $s=4\cdot \frac{t+1}{t-1}$, then G is a t-spanner for P with $O(s^dn)$ edges.

Proof: induction on distances

Definition: For n points P in \mathbb{R}^d and a WSPD W of P define the graph G=(P,E) with $E=\{\{x,y\}\mid \{u,v\}\in W \text{ and } \operatorname{rep}(u)=x,\operatorname{rep}(v)=y\}.$

Lemma: If W is an s-WSPD for $s=4\cdot \frac{t+1}{t-1}$, then G is a t-spanner for P with

 $O(s^d n)$ edges.

Proof: induction on distances

Definition: For n points P in \mathbb{R}^d and a WSPD W of P define the graph G=(P,E) with $E=\{\{x,y\}\mid \{u,v\}\in W \text{ and } \operatorname{rep}(u)=x,\operatorname{rep}(v)=y\}.$

Lemma: If W is an s-WSPD for $s=4\cdot \frac{t+1}{t-1}$, then G is a t-spanner for P with $O(s^dn)$ edges.

Question: How large does s need to be if $t=1+\varepsilon$

A: 4

B: $O(1/\varepsilon)$

C: $O(1/\varepsilon^d)$

Definition: For n points P in \mathbb{R}^d and a WSPD W of P define the graph G=(P,E) with $E=\{\{x,y\}\mid \{u,v\}\in W \text{ and } \operatorname{rep}(u)=x,\operatorname{rep}(v)=y\}.$

Lemma: If W is an s-WSPD for $s=4\cdot \frac{t+1}{t-1}$, then G is a t-spanner for P with $O(s^dn)$ edges.

Question: How large does s need to be if $t=1+\varepsilon$

A: 4

B: $O(1/\varepsilon)$

 $\mathbf{C}:O(1/arepsilon^d)$

Summary

Theorem: For a set P of n points in \mathbb{R}^d and an $\varepsilon \in (0,1]$ a $(1+\varepsilon)$ -spanner for P with $O(n/\varepsilon^d)$ edges can be computed in $O(n\log n + n/\varepsilon^d)$ time.

Summary

Theorem: For a set P of n points in \mathbb{R}^d and an $\varepsilon \in (0,1]$ a $(1+\varepsilon)$ -spanner for P with $O(n/\varepsilon^d)$ edges can be computed in $O(n\log n + n/\varepsilon^d)$ time.

Proof: For $t=(1+\varepsilon)$ it holds with $s=4\cdot\frac{t+1}{t-1}$

$$O(s^d n) = O\left(\left(4 \cdot \frac{2+\varepsilon}{\varepsilon}\right)^d n\right) \subseteq O\left(\left(\frac{12}{\varepsilon}\right)^d n\right) = 0$$

Summary

Theorem: For a set P of n points in \mathbb{R}^d and an $\varepsilon \in (0,1]$ a $(1+\varepsilon)$ -spanner for P with $O(n/\varepsilon^d)$ edges can be computed in $O(n\log n + n/\varepsilon^d)$ time.

Proof: For $t=(1+\varepsilon)$ it holds with $s=4\cdot\frac{t+1}{t-1}$

$$O(s^d n) = O\left(\left(4 \cdot \frac{2+\varepsilon}{\varepsilon}\right)^d n\right) \subseteq O\left(\left(\frac{12}{\varepsilon}\right)^d n\right) = 0$$

$$\begin{array}{c} P \\ \downarrow \\ \text{compressed quadtree} \\ \downarrow \\ \text{WSPD} \\ \downarrow \\ (1+\varepsilon)\text{-spanner} \end{array} \qquad \begin{array}{c} O(n\log n) \\ O(n/\varepsilon^d) \\ O(n/\varepsilon^d) \\ O(n/\varepsilon^d) \\ \end{array}$$

Discussion

Applications of the WSPD?

WSPD is always useful, when we don't need the $\Theta(n^2)$ exact distances, but approximate distances are enough

Discussion

Applications of the WSPD?

WSPD is always useful, when we don't need the $\Theta(n^2)$ exact distances, but approximate distances are enough

Can't we compute exact solutions in the same time?

Often in \mathbb{R}^2 yes, but not in \mathbb{R}^d for d>2 (EMST, diameter). EMST, Voronoi diagrams, . . . can be computed in O(n) time from quadtress/WSPDs

Discussion

Applications of the WSPD?

WSPD is always useful, when we don't need the $\Theta(n^2)$ exact distances, but approximate distances are enough

Can't we compute exact solutions in the same time?

Often in \mathbb{R}^2 yes, but not in \mathbb{R}^d for d>2 (EMST, diameter). EMST, Voronoi diagrams, . . . can be computed in O(n) time from quadtress/WSPDs

Fun fact

Constructing the greedy spanner naturally uses $\Omega(n^2)$ space, but resulting from a previous project of this course, we know how to compute the greedy spanner in near-quadratic time using linear space (partially using WSPD) [Alewijnse et al. 2014]