EECS 203: Discrete Mathematics Fall 2023

Discussion 3 Notes

1 Definitions

- Argument:
- Valid Argument/Proof:
- Even:
- Odd:
- Integer:
- Rational Numbers:
- Divisibility:
- Prime Numbers:
- Composite Numbers:
- Proof:
- Types of Proofs:
 - Direct Proof:
 - Proof by Contraposition:
- Disproof:
- Without Loss of Generality (WLOG):
- Unique:

Solution:

• Argument: An argument for a statement S is a sequence of statements ending with S. S is called the **conclusion**. An argument starts with some beginning statements you assume are true, called the **premises**.

- Valid Argument/Proof: An argument is valid if every statement after the premises is implied (\rightarrow) by the some combination of the statements before it. Whenever the premises are true, the conclusion must be true.
- Even: An integer x is even if and only if there exists an integer k such that x = 2k.
- Odd: An integer x is odd if and only if there exists an integer k such that x = 2k+1
- Integer: a positive or negative whole number (including 0)
- Rational Numbers: A number is considered rational iff it can be written as the ratio of two integers: $\frac{p}{q}$.
- Divisibility: n|a means "n divides a", or equivalently, "a is divisible by n", also equivalently

Let n and a be integers. n|a iff $\exists k \ [nk = a]$ where k is an integer

- **Prime Numbers** A prime number is a number greater than 1 whose only factors are 1 and itself.
- Composite Numbers: A composite number is a number which has at least one factor other than 1 and itself (ie not a prime number). Note that 1 is neither prime nor composite.
- **Proof**: A **proof**/argument for a statement S is a sequence of statements ending with S. S is called the **conclusion**. A proof starts with some beginning statements you assume are true, called the **premises**.
- Types of Proofs:
 - **Direct Proof:** Prove that a statement is true without using any more advanced proof techniques (e.g. contrapositive, contradiction, cases).
 - **Direct Proof for** $p \to q$: Prove that if the proposition p is true, then the other proposition q is true "directly". Start by assuming that p is true, then make some deductions and eventually arrive at the conclusion that q must be true.

$$p \to q$$

- **Proof by Contraposition:** Prove that "if p is true, then q is true" by proving that if q is false, then p is false (since these are logically equivalent).

$$\neg q \rightarrow \neg p$$

• **Disproof:** To disprove a statement means to prove the negation of that statement.

Disprove
$$P(x) \equiv \text{Prove } \neg P(x)$$

Note that if the statement you are trying to disprove is a for all statement, all you need to disprove it is a singular counterexample (since $\neg \forall x P(x) \equiv \exists x \neg P(x)$).

- Without loss of generality (WLOG): used when the same argument can be made for multiple cases, and there is some symmetry between variables.
- Unique: (exactly one) If we say something has a unique solution, we mean that there is a solution and that there is no other solution

2 Exercises

1. Odd Proof

Prove or disprove: The sum of an even and an odd integer is always odd.

Solution: We will prove this statement.

Without loss of generality (WLOG), let x be an **arbitrary** even integer and y be an **arbitrary** odd integer. By definition, then, x and y can be written as x = 2n and y = 2m + 1 for some integers n and m. Looking at their sum, we have

$$x + y = 2n + 2m + 1$$
$$= 2(n + m) + 1.$$

Since x + y = 2c + 1, where c is the integer n + m, then by definition, x + y is odd. Therefore, this relation holds for all even x and odd y, and we have proved that the sum of an even and an odd integer is odd.

2. Even Proof

Prove (using a direct proof) that if m + n and n + p are even integers, where m, n, and p are integers, then m + p is even.

Solution: Using a Direct Proof,

- Let m + n and n + p be **arbitrary** even integers, m + n = 2a and n + p = 2b, for some integers a and b.
- m + p = (m + n) + (n + p) 2n = 2a + 2b 2n = 2(a + b n)
- Since a + b n is an integer, let it be k.
- Hence, m + p = 2k = even integer

Therefore, the statement "if m + n and n + p are even integers, where m, n, and p are integers, then m + p is even" holds for all even m + n and n + p.

3. Disproofs; Two Sides of the Same Coin

- a. **Disprove:** For all real numbers x and y, if they sum to zero, one of them is negative and the other is positive.
- b. **Disprove:** For all nonzero rational numbers x and y, if they are multiplicative inverses, $x \neq y$.

Note: Two numbers are multiplicative inverses if their product is 1.

Solution: With 'for all' disproofs, we need to find a counterexample (some values of x and y that make this statement false).

a. Consider x = 0 and y = 0. x + y = 0, and since 0 is neither negative nor positive, this if-then statement false.

Therefore, it is not true for all real numbers x and y, that if they sum to zero, one of them is negative and the other is positive.

b. Consider x = 1 and y = 1. $x \cdot y = 1$, and x = y, so this if-then statement is false.

Therefore, it is not true for all nonzero rational numbers x and y that if they are multiplicative inverses, $x \neq y$.

4. Quantifier Proofs

For each part, translate the statement into logical connectives and math symbols. Then prove or disprove it.

- a. Each non-zero rational number has a multiplicative inverse (also a rational number) such that their product is 1.
- b. Each non-zero integer has a multiplicative inverse that is also an integer.

Note: Two numbers are multiplicative inverses if their product is 1.

Solution:

a. Let x and y come from the domain of all non-zero rational numbers.

$$\forall x \exists y [xy = 1]$$

Prove:

- Take an arbitrary non-zero rational number x.
- By definition of rational numbers, $x = \frac{p}{q}$ for some integers p and q where $q \neq 0$.
- Since $x \neq 0$, $p \neq 0$.
- Let $y = \frac{q}{p}$. (We can do this since $p \neq 0$)
- \bullet y is a rational number by definition
- Since $q \neq 0$, $y \neq 0$.
- $\bullet \ xy = \frac{p}{q} \cdot \frac{q}{p} = 1$

Thus, for all non-zero rational numbers x there exists an inverse rational number y such that xy = 1.

b. Let x and y come from the domain of non-zero integers.

$$\forall x \exists y [xy = 1]$$

Disprove:

Consider x = 2 (an element of the nonzero integers). Its (only) multiplicative inverse is $\frac{1}{2}$, but $\frac{1}{2}$ is not an integer. Thus, this for all statement is false (since to be true it would need to be true for every nonzero integer).

5. Proof by Contrapositive I

Prove for all real numbers that if $n^2 + 2$ is irrational, then n is irrational using a proof by contrapositive.

Solution: We will prove the contrapositive, that is: If n is rational, then $n^2 + 2$ is rational.

- Assume n is rational. Then we can write it as $n = \frac{a}{b}$ for arbitrary integers a and b, with $b \neq 0$.
- This means $n^2 + 2 = (\frac{a}{b})^2 + 2$. = $\frac{a^2}{b^2} + 2$ = $\frac{a^2 + 2b^2}{b^2}$
- Since the integers are closed on addition and multiplication, we can define $c = a^2 + 2b^2$ and $d = b^2$ (and since $b \neq 0$, $b^2 \neq 0$, and therefore $d \neq 0$).
- Therefore, we can say $n^2 + 2 = \frac{c}{d}$, where c and d are integers, and $d \neq 0$.
- Thus from the definition of a rational number, $n^2 + 2$ is rational.

Therefore, by contrapositive we can say that for all real numbers, if $n^2 + 2$ is irrational, then n is irrational.

6. Proof by Contrapositive II

Prove or disprove the following statement: for any two integers a, b, if their product ab is even then either a is even or b is even.

Solution: We will prove this statement.

Proof by Contraposition:

Let a and b be odd.

Then a = 2k + 1 and b = 2c + 1 for some integers k and c. ab = (2k + 1)(2c + 1) = 4kc + 2k + 2c + 1 = 2(2kc + k + c) + 1

So, ab is odd.

Thus, by contraposition, if ab is even, then a is even or b is even.

Note: this problem can also be solved using a proof by contradiction, which we will talk about next week!