Álgebra Linear para Computação Suzana M. F. de Oliveira

Índice

- Revisão
- Autovalores e autovetores
 - Calculando autovalores
 - Polinômio característico
 - Calculando autovetores
 - Potências de uma matriz
 - Autovalores e invertibilidade
- Resumo
- Bibliografia

- Espaço linha $\mathcal{R}(A^T)$
 - Gerado pelas linhas linearmente independentes de A
- Espaço coluna $\mathcal{R}(A)$
 - Gerado pelas colunas linearmente independentes de A
- Espaço nulo 𝒩(A)
 - Vetores coluna que ao serem multiplicados por A geram o vetor nulo
- Espaço coluna 𝒩(A^T)
 - Vetores linha que ao serem multiplicados por A geram o vetor nulo

- Seja A ∈ ℝ^{m×n}
 - Posto(A) = dim($\Re(A)$) = r
 - Nulidade(A) = dim ($\mathcal{N}(A)$) = n r

• Afirmações equivalentes para $A \in \mathbb{R}^{n \times n}$

- (a) A é invertível.
- (b) $A\mathbf{x} = \mathbf{0}$ tem somente a solução trivial.
- (c) A forma escalonada reduzida por linhas de $A \in I_n$.
- (d) A pode ser expressa como um produto de matrizes elementares.
- (e) $A\mathbf{x} = \mathbf{b}$ é consistente com cada matriz \mathbf{b} de tamanho $n \times 1$.
- (f) $A\mathbf{x} = \mathbf{b}$ tem exatamente uma solução com cada matriz \mathbf{b} de tamanho $n \times 1$.
- (g) $det(A) \neq 0$.
- (h) Os vetores coluna de A são linearmente independentes.
- (i) Os vetores linha de A são linearmente independentes.
- (j) Os vetores coluna de A geram Rⁿ.
- (k) Os vetores linha de A geram R^n .
- (l) Os vetores coluna de A formam uma base de Rⁿ.
- (m) Os vetores linha de A formam uma base de Rⁿ.
- (n) A tem posto n.
- (o) A tem nulidade 0.

- Exemplo prático: Modos de naturais vibração
 - Graus de liberdade de um corpo
 - Número de parâmetros necessários e suficientes para determinar sua posição no espaço

- Exemplo prático: Modos de naturais vibração
 - Graus de liberdade de um corpo
 - Número de parâmetros necessários e suficientes para determinar sua posição no espaço
 - Exemplo: Sistemas com dois graus de liberdade
 - Massa mola

- Exemplo prático: Modos de naturais vibração
 - Graus de liberdade de um corpo
 - Número de parâmetros necessários e suficientes para determinar sua posição no espaço
 - Exemplo: Sistemas com dois graus de liberdade
 - Massa mola
 - Pendulo

Exemplo prático: Modos de naturais vibração

- Viga mista

O modo de vibração vem dos autovetores e a frequência natural vem dos autovalores

a) Modo de vibração referente à primeira frequência natural: f₀₁=2,68Hz

 b) Modo de vibração referente à segunda frequência natural: f₀₂=3,07Hz

c) Modo de vibração referente à terceira frequência natural: f₀₃=12,07Hz

d) Modo de vibração referente à quarta frequência natural: f₀₄=26,63Hz

Figura 7.4 – Iteração total (76 conectores e rigidez a 50% da curva).

- Exemplo prático: Modos de naturais vibração
 - Estrutura aeronáutica

12

• Exemplo prático: Modos de naturais vibração

FONTE: http://www.mdcc.ufc.br/teses/doc_download/182-11-rubens-fernandes-nunes FONTE vídeo: https://www.cs.mcgill.ca/~kry/ . Artigo: Using Natural Vibrations to Guide Control for Locomotion

• Exemplo prático: Modos de naturais vibração

FONTE: http://www.mdcc.ufc.br/teses/doc_download/182-11-rubens-fernandes-nunes FONTE vídeo: https://www.cs.mcgill.ca/~kry/ . Artigo: Using Natural Vibrations to Guide Control for Locomotion

- Exemplo prático: Google
 - A importância de um site é proporcional à importância dos sites que apontam para ele.

$$\begin{cases} x_1 = K(x_2 + x_{14} + x_{541}) \\ x_2 = K(x_1 + x_{23} + x_{541} + x_{1023}) \\ \vdots \\ x_n = K(x_{25} + x_{133}) \end{cases}$$

onde x_i , $1 \le i \le n$, é a importância i-ésimo site e K é a constante de proporcionalidade

- Reescrevendo $_{n}$ $\sum_{j=1}^{n}a_{ij}x_{i}=\frac{1}{K}x_{i}\iff Ax=\frac{1}{K}x.$
- A maior coordenada do autovetor vai ser o site mais importante

- Outros exemplos
 - Grafos
 - Redes (no geral: ferrovias, por exemplo)
 - Cadeia de Markov
 - Processamento de imagens
 - Mecânica quântica
 - Mecânica dos sólidos
 - Estatística

- ...

Em inglês: "eigenvalues" e "eigenvectors"

- Definição:
 - Se A for uma matriz $n \times n$, então um vetor não nulo \mathbf{x} $\in \mathbb{R}^n$ é denominado *autovetor* de A se A \mathbf{x} for um múltiplo escalar de \mathbf{x} , isto é

$$A\mathbf{x} = \lambda \mathbf{x}$$

com algum escalar λ . O escalar λ é denominado autovalor de A, e dizemos que \mathbf{x} é um autovetor associado a λ .

Exceto quando **x** é um autovetor de A Usualmente a imagem de Ax difere de x tanto em magnitude, direção e sentido

- Definição:
 - Se A for uma matriz n×n, então um vetor não nulo x ∈ ℝⁿ é denominado *autovetor* de A se Ax for um múltiplo escalar de x, isto é

 Para a solução

não trivial

$$A\mathbf{x} = \lambda \mathbf{x}$$

com algum escalar λ . O escalar λ é denominado **autovalor** de A, e dizemos que **x** é um **autovetor associado a** λ .

- Exemplo:
 - O vetor \mathbf{x} é um autovetor de A associado ao autovalor $\lambda = 3$

$$\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$

- Exemplo:
 - O vetor \mathbf{x} é um autovetor de A associado ao autovalor $\lambda = 3$

$$\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$

Conferindo:

$$A\mathbf{x} = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} = 3\mathbf{x}$$

 Assim, a multiplicação por A expandiu o vetor x pelo fator 3

- Calculando autovalores
 - A equação $A\mathbf{x} = \lambda \mathbf{x}$ pode ser reescrita como $A\mathbf{x} = \lambda I\mathbf{x}$ ou até como

$$(\lambda I - A)\mathbf{x} = 0$$

- Calculando autovalores
 - A equação $A\mathbf{x} = \lambda \mathbf{x}$ pode ser reescrita como $A\mathbf{x} = \lambda I\mathbf{x}$ ou até como

$$(\lambda I - A)\mathbf{x} = 0$$

- Para que λ seja um autovalor de A, essa equação deve possuir alguma solução x não nula
 - Pelas equivalências, (b) Ax = 0 tem somente a solução trivial.
 (g) det(A) ≠ 0.

isso ocorre se, e somente se, a matriz dos coeficientes λI-A tiver determinante nulo

- Calculando autovalores
 - Teorema:
 - Se A for uma matriz n×n, então λ é um autovalor de A se, e somente se, λ satisfaz a equação

$$\det(\lambda I - A) = 0$$

 Essa equação é denominada de equação característica de A.

- Calculando autovalores
 - Exemplo:
 - Explique porque $\lambda = 3$ é um autovalor da matriz usando a equação característica

$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$

Calculando autovalores

- Exemplo:
 - Explique porque λ = 3 é um autovalor da matriz usando a equação característica

$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$

Equação característica (det(λI - A) = 0)

$$\begin{vmatrix} \lambda - 3 & 0 \\ -8 & \lambda + 1 \end{vmatrix} = 0$$

obtendo-se
$$(\lambda - 3)(\lambda + 1) = 0$$

• Autovalores: $\lambda=3$ e $\lambda=-1$

- Polinômio característico
 - Quando o determinante é expandido, resulta em polinômio p(λ) de grau n denominado polinômio característico de A
 - A partir do exemplo anterior onde a matriz A tinha tamanho 2×2, tem-se um polinômio de grau 2

$$p(\lambda) = (\lambda - 3)(\lambda + 1) = \lambda^2 - 2\lambda - 3$$

- Polinômio característico
 - Quando o determinante é expandido, resulta em polinômio p(λ) de grau n denominado polinômio característico de A
 - A partir do exemplo anterior onde a matriz A tinha tamanho 2×2, tem-se um polinômio de grau 2

$$p(\lambda) = (\lambda - 3)(\lambda + 1) = \lambda^2 - 2\lambda - 3$$

Para uma matriz n×n, tem-se

$$p(\lambda) = \lambda^{n} + c_{1}\lambda^{n-1} + \dots + c_{n}$$

Coeficiente = 1

- Polinômio característico
 - Quando o determinante é expandido, resulta em polinômio p(λ) de grau n denominado polinômio característico de A
 - A partir do exemplo anterior onde a matriz A tinha tamanho 2×2, tem-se um polinômio de grau 2

 Teorema

$$p(\lambda) = (\lambda - 3)(\lambda + 1) = \lambda^2 - 2\lambda - 3$$

Para uma matriz n×n, tem-se

$$p(\lambda) = \lambda^{n} + c_1 \lambda^{n-1} + \dots + c_n$$

 Como um polinômio de grau n tem, no máximo, n raízes distintas, segue que a equação

$$\lambda^n + c_1 \lambda^{n-1} + \dots + c_n = 0$$

em, no máximo, n soluções distintas e

Algumas dessas soluções podem ser números complexos

Uma matriz n×n tem, no máximo, n autovalores distintos

fundamental da Álgebra

 Exercício: Encontre o polinômio característico da matriz A $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$$

 Exercício: Encontre o polinômio característico da matriz A [0 1 0]

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$$

Polinômio característico

$$\det(\lambda I - A) = \det\begin{bmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -4 & 17 & \lambda - 8 \end{bmatrix} = \lambda^3 - 8\lambda^2 + 17\lambda - 4$$

Mas como descobrir os valores de λ ?

 Exercício: Encontre o polinômio característico da matriz A

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$$
 Mas como descobrir os valores de λ ?

os valores de λ ?

Polinômio característico

$$\det(\lambda I - A) = \det\begin{bmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -4 & 17 & \lambda - 8 \end{bmatrix} = \lambda^3 - 8\lambda^2 + 17\lambda - 4$$

- Se houverem soluções inteiras, são todas divisores do termo $c_n = -4$
 - ±1, ±2, ±4 → substituindo, temos a solução λ 4
- Dividindo o polinômio $p(\lambda)$ por $(\lambda 4)$, reescrevendo $p(\lambda)$ $(\lambda - 4)(\lambda^2 - 4\lambda + 1) = 0$

 Exercício: Encontre o polinômio característico da matriz A

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$$
 Mas como descobrir os valores de λ ?

os valores de λ ?

Polinômio característico

det
$$(\lambda I - A)$$
 = det $\begin{bmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -4 & 17 & \lambda - 8 \end{bmatrix} = \lambda^3 - 8\lambda^2 + 17\lambda - 4$

• Resolvendo pela formula de Bhaskara, os autovalores são:

$$\lambda = 4$$
, $\lambda = 2 + \sqrt{3}$, e $\lambda = 2 - \sqrt{3}$

Exemplo: Autovalores de uma matriz triangular

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{bmatrix}$$

Exemplo: Autovalores de uma matriz triangular

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{bmatrix}$$

 Como o determinante de uma matriz triangular é o produto das entradas na diagonal principal, então

$$\det(\lambda I - A) = \det\begin{bmatrix} \lambda - a_{11} & -a_{12} & -a_{13} & -a_{14} \\ 0 & \lambda - a_{12} & -a_{23} & -a_{24} \\ 0 & 0 & \lambda - a_{33} & -a_{34} \\ 0 & 0 & \lambda - a_{44} \end{bmatrix}$$
$$= (\lambda - a_{11})(\lambda - a_{22})(\lambda - a_{33})(\lambda - a_{44})$$

Exemplo: Autovalores de uma matriz triangular

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{bmatrix}$$

Equação característica

$$(\lambda - a_{11})(\lambda - a_{22})(\lambda - a_{33})(\lambda - a_{44}) = 0$$

– Autovalores:

$$\lambda = a_{11}, \quad \lambda = a_{22}, \quad \lambda = a_{33}, \quad \lambda = a_{44}$$

Valores da diagonal principal

 Teorema: Se A for uma matriz n×n triangular (superior, inferior, ou diagonal), então os autovalores de A são as entradas na diagonal principal de A

- Teorema: Se A for uma matriz n×n triangular (superior, inferior, ou diagonal), então os autovalores de A são as entradas na diagonal principal de A
 - Exercício: Autovalores de uma matiz triangular

$$A = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -1 & \frac{2}{3} & 0 \\ 5 & -8 & -\frac{1}{4} \end{bmatrix}$$

- Teorema: Se A for uma matriz n×n triangular (superior, inferior, ou diagonal), então os autovalores de A são as entradas na diagonal principal de A
 - Exercício: Autovalores de uma matiz triangular

$$A = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -1 & \frac{2}{3} & 0 \\ 5 & -8 & -\frac{1}{4} \end{bmatrix}$$

- Autovalores:

$$\lambda = \frac{1}{2}$$
, $\lambda = \frac{2}{3}e \lambda = -\frac{1}{4}$

Se A for uma matriz n×n, então são equivalentes:

- (a) λ é um autovalor de A.
- (b) O sistema $(\lambda I A)\mathbf{x} = \mathbf{0}$ de equações tem soluções não triviais.
- (c) Existe algum vetor não nulo \mathbf{x} tal que $A\mathbf{x} = \lambda \mathbf{x}$.
- (d) λ é uma solução da equação característica $det(\lambda I A) = 0$.

- Calculando autovetores
 - Os autovetores associados a um autovalor λ de uma matriz A são os vetores não nulos que satisfazem a equação

$$(\lambda I - A)\mathbf{x} = \mathbf{0}$$

- Calculando autovetores
 - Os autovetores associados a um autovalor λ de uma matriz A são os vetores não nulos que satisfazem a equação

$$(\lambda I - A)\mathbf{x} = \mathbf{0}$$

 Diz-se que esse espaço nulo é o autoespaço de A associado a

É o espaço solução do sistema homogêneo

- Calculando autovetores
 - Exemplo: Encontre as bases dos autoespaços

$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$

• Equação característica $(\lambda - 3)(\lambda + 1) = 0$

Dois autoespaços

- Autovalores: $\lambda = 3 e \lambda = -1$
- Por definição, $\mathbf{x} = [\mathbf{x}_1, \ \mathbf{x}_2]^{\mathsf{T}}$ é um autovetor associado ao autovalor $\lambda = 3$ se, e somente se, \mathbf{x} é uma solução não trivial de $(\lambda \mathbf{I} \mathbf{A})\mathbf{x} = 0$

$$\begin{bmatrix} \lambda - 3 & 0 \\ -8 & \lambda + 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

- Calculando autovetores
 - Exemplo: Encontre as bases dos autoespaços

$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$

• Substituindo no sistema $\lambda = 3$

$$\begin{bmatrix} 0 & 0 \\ -8 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Notar que a matriz do novo sistema, é necessariamente singular

- Calculando autovetores
 - Exemplo: Encontre as bases dos autoespaços

$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$

• Substituindo no sistema $\lambda = 3$

$$\begin{bmatrix} 0 & 0 \\ -8 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Notar que a matriz do novo sistema, é necessariamente singular

Solução geral

$$x_1 = \frac{1}{2}t, \quad x_2 = t \qquad \qquad \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}t \\ t \end{bmatrix} = t \begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix}$$

• Base do autoespaço associado a $\lambda = 3$

Exercício: Calcule o autoespaço para λ = -1

$$\begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix}$$

- Calculando autovetores
 - Exemplo: Encontre as bases dos autoespaços

$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$

• Substituindo no sistema $\lambda = 3$

$$\begin{bmatrix} 0 & 0 \\ -8 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Notar que a matriz do novo sistema, é necessariamente singular

Solução geral

$$x_1 = \frac{1}{2}t, \quad x_2 = t \qquad \qquad \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}t \\ t \end{bmatrix} = t \begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix}$$

• Base do autoespaço associado a $\lambda = 3$

$$\begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix}$$

- Calculando autovetores
 - Exemplo/Exercício: Encontre as bases dos autoespaços de A

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

- Calculando autovetores
 - Exemplo/Exercício: Encontre as bases dos autoespaços de A

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

Equação característica

$$\lambda^3 - 5\lambda^2 + 8\lambda - 4 = 0 \implies (\lambda - 1)(\lambda - 2)^2 = 0$$

• Autovalores: $\lambda = 1 e \lambda = 2$

Ache os autoespaços

- Calculando autovetores
 - Exemplo/Exercício: Encontre as bases dos autoespaços de A

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

• Autoespaços relacionados com o autovalor: $\lambda = 2$

$$\begin{bmatrix} \lambda & 0 & 2 \\ -1 & \lambda - 2 & -1 \\ -1 & 0 & \lambda - 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & 0 & 2 \\ -1 & 0 & -1 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} -s \\ t \\ s \end{bmatrix} = \begin{bmatrix} -s \\ 0 \\ s \end{bmatrix} + \begin{bmatrix} 0 \\ t \\ 0 \end{bmatrix} = s \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

48

- Calculando autovetores
 - Exemplo/Exercício: Encontre as bases dos autoespaços de A

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

• Autoespaços relacionados com o autovalor: $\lambda = 1$

$$\begin{bmatrix} \lambda & 0 & 2 \\ -1 & \lambda - 2 & -1 \\ -1 & 0 & \lambda - 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 2 \\ -1 & -1 & -1 \\ -1 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{x} = s \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

- Potências de uma matriz
 - Uma vez conseguindo os autovalores e autovetores de uma matriz, é possível conseguir as potências inteiras positivas de A

$$A^{2}\mathbf{x} = A(A\mathbf{x}) = A(\lambda\mathbf{x}) = \lambda(A\mathbf{x}) = \lambda(\lambda\mathbf{x}) = \lambda^{2}\mathbf{x}$$

• Mostrando que λ^2 é um auto valor de A^2 e que \mathbf{x} é o autovetor associado

- Potências de uma matriz
 - Teorema: Se k for um inteiro positivo, λ um autovalor de uma matriz A e x um autovetor associado, então λ^k é um autovalor de A^k e x é um autovetor associado

- Potências de uma matriz
 - Exercício: Ache os autovalores e vetores de A⁷

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix} \quad \lambda = 2 \longrightarrow \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \quad e \quad \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad \lambda = 1 \longrightarrow \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

- Potências de uma matriz
 - Exercício: Ache os autovalores e vetores de A⁷

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix} \quad \lambda = 2 \longrightarrow \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \quad e \quad \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad \lambda = 1 \longrightarrow \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

•
$$\lambda = 2^7 = 128$$
 \longrightarrow $\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ e $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

•
$$\lambda = 1^7 = 1$$
 \longrightarrow $\begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$

Teorema:

– Uma matriz quadrada A é invertível se, e somente se, λ =0 não é um autovalor de A

Teorema:

– Uma matriz quadrada A é invertível se, e somente se, λ =0 não é um autovalor de A

Demonstração

 Suponha que A seja uma matriz n×n e observe primeiro que λ=0 é uma solução da equação característica

$$\lambda^n + c_1 \lambda^{n-1} + \dots + c_n = 0$$

se, e somente se, o termo constante c_n for zero.

 Assim, é suficiente provar que A é invertível se, e somente se, c_n≠0.

- Teorema:
 - Uma matriz quadrada A é invertível se, e somente se, λ =0 não é um autovalor de A
- Demonstração
 - Porém

$$\det(\lambda I - A) = \lambda^n + c_1 \lambda^{n-1} + \dots + c_n$$

com isso, tomando $\lambda=0$,

$$\det(-A) = c_n \quad \text{ou} \quad (-1)^n \det(A) = c_n$$

 Assim det(A)=0 se, e somente se, c_n=0 e isso, por sua vez, implica que A é invertível se, e só se, c_n≠0

- Autovalores e invertibilidade
 - Exemplo: A matriz A, de auto valores $\lambda = 1$ e $\lambda = 2$ é invertivel?

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

- Autovalores e invertibilidade
 - Exemplo: A matriz A, de auto valores $\lambda = 1$ e $\lambda = 2$ é invertível?

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

- Sim, A é invertível
 - Polinômio característico tem o $c_n = -4$ sendo diferente de 0

$$\lambda^3 - 5\lambda^2 + 8\lambda - 4 = 0$$

• Afirmações equivalentes para $A \in \mathbb{R}^{n \times n}$

- (a) A é invertível.
- (b) $A\mathbf{x} = \mathbf{0}$ tem somente a solução trivial.
- (c) A forma escalonada reduzida por linhas de $A \in I_n$.
- (d) A pode ser expressa como um produto de matrizes elementares.
- (e) $A\mathbf{x} = \mathbf{b}$ é consistente com cada matriz \mathbf{b} de tamanho $n \times 1$.
- (f) $A\mathbf{x} = \mathbf{b}$ tem exatamente uma solução com cada matriz \mathbf{b} de tamanho $n \times 1$.
- (g) $\det(A) \neq 0$.
- (h) Os vetores coluna de A são linearmente independentes.
- (i) Os vetores linha de A são linearmente independentes.
- (j) Os vetores coluna de A geram Rⁿ.
- (k) Os vetores linha de A geram Rⁿ.
- Os vetores coluna de A formam uma base de Rⁿ.
- (m) Os vetores linha de A formam uma base de Rⁿ.
- (n) A tem posto n.
- (o) A tem nulidade 0.

- (p) O complemento ortogonal do espaço nulo de A é R.
- (q) O complemento ortogonal do espaço linha de $A \in \{0\}$.
- (r) A imagem de $T_A \in R^n$.
- (s) I_A é um operador injetor.
- (t) $\lambda = 0$ não é um autovalor de A.

Resumo

Autovalores e autovetores

$$A\mathbf{x} = \lambda \mathbf{x}$$

Equação característica

$$\det(\lambda I - A) = 0$$

- Polinômio característico
 - É possível descobrir os autovalores achando as raízes

$$p(\lambda) = \lambda^{n} + c_1 \lambda^{n-1} + \dots + c_n$$

- Autoespaço
 - É possível descobrir o autovetor associado a um autovalor λ descobrindo a base do espaço nulo da matriz dos coeficientes atualizada

$$(\lambda I - A)\mathbf{x} = \mathbf{0}$$

Resumo

- Exercícios de fixação:
 - Anton seção 5.1
 - 1-5
 - 12-13

Resumo

- Próxima aula:
 - Diagonalização

$$P = \begin{bmatrix} V_1 & V_2 & \dots & V_n \end{bmatrix} \quad e \quad D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_n \end{bmatrix}$$

$$D = P^{-1}AP,$$

Bibliografia

Bibliografia

- Bibliografia básica:
 - ANTON, Howard; RORRES, Chris. Álgebra Linear com Aplicações. 10 ed. Porto Alegre: Bookman, 2012.
 - Seção 5.1
 - DE ARAUJO, Thelmo. **Álgebra Linear: Teoria e Aplicações**. Rio de Janeiro: SBM, 2014.
 - Seção 5.2