Ramba: High-performance Distributed Arrays in Python

Babu Pillai, Todd A. Anderson, Tim Mattson

Overview

- First, a selective review of the history of numerical processing in Python along with computational trends that continue to drive innovation today.
- Second, a comparison of where Python stands versus the standard performance solution of C/MPI.
- Third, an introduction to our new distributed array system for Python called Ramba.

History of Python Numerical Processing

- Python created in 1991, with support for collections of numbers.
- Since then, data set sizes have grown and multicore/cloud revolutions have accelerated the desire for improved multithread/multinode performance.
- Different approaches to performance have been tried:
 - Library-based API with C implementation
 - Numeric package introduced in 1995 trying to improve performance of Python numerical processing.
 - NumPy package introduced in 2006 that supersedes Numeric.
 - JIT compilation
 - Numba introduced 2012 and auto-parallelization added in 2017.
 - Multiprocessing and distributed execution
 - Multiprocessing package.
 - Mpi4py introduced 2009.
 - Dask introduced 2015.
 - HeAT introduced 2020.

Python Numerics

- Python has interesting standard numeric support:
 - Arbitrarily large integers
 - Floating point is similar to IEEE
 - Standard arbitrary precision library
- Very convenient, powerful, but not a perfect match to underlying processor datatypes
- Numerical vectors, arrays, matrices based on List type
 - Internally an array implementation, but not typed each element can be an arbitrary Python object
- Loop iteration over lists (or arrays) is quite slow

NumPy – Efficient numerical arrays

- Standard package
- Adds a typed array, internally represented like C or Fortran arrays
- Standard integer, floating point, complex data types
- De facto standard way of representing numerical arrays in Python – everyone uses / builds on this (e.g., PyTorch, OpenCV, etc.)

NumPy key features

- Vector-style operations on whole arrays, map operations, reductions
 - Avoid Python iteration loops
- Powerful indexing, slicing, view generation
 - Efficiently perform operations on parts of arrays, e.g. conditional on value, etc., while writing in vector style rather than explicit loop iteration
- Efficient internal implementation of arithmetic, matrix operations
 - Written using C or based on external libraries (e.g. Intel MKL as in the Intel Python distribution)

NumPy vs Python numerics

- Take a simple example:
 - Pure Python:

```
for i in range(len(A)):
A[i] += B[i] + s*C[i]
```

NumPy vector-style:

$$A += B + s*C$$

Some speed comparisons (64-bit floats, time in seconds)

	1M	10M	100M	1B
Python	0.178	1.78	17.9	Don't bother
NumPy	0.003	0.061	0.618	7.0

NumPy limitations

- Most operations are still single-threaded (few exceptions like matmul)
- Mapping functions still runs slow Python code
- Vector style avoids explicit loop iteration, but can hurt performance:
 - Each vector operation completes before starting next multiple cacheinefficient traversals of large arrays
 - Large temporary arrays are materialized
- Fancy indexing, operations on views can greatly increase overheads

Just-in-Time Compilation with Numba

- Numba = NumPy + Mamba (one of the fastest snakes in the world)
- Most of Python not very amenable to compilation
 - Main problems: weak typing of function arguments, untyped container classes, arbitrary introspection and changing of classes, methods on the fly
 - However, most uses of NumPy have consistent typing, don't typically deal with Python objects
- Key idea: Selectively apply JIT compilation techniques to programmer-selected functions; Reduce to LLVM compiler, then generate and run native binary code

Numba example

Same example as before:

```
@numba.njit
def my_func(A, B, C, s):
    for i in range(len(A)):
        A[i] += B[i] +s*C[i]
```

- We just need to add the decorator (@numba.njit) to mark functions that should be compiled
- Note: since this will be compiled, we don't need to worry about slow iteration in Python; we can write explicit loops, though vector-style code will work as well

Performance

- Function is transformed into "Dispatcher" object
- First call to will be very slow dispatcher will compile the function based on argument types provided
- Subsequent calls will (with same types) will run cached binary

	1M	10M	100M	1B
Python	0.178	1.78	17.9	Don't bother
NumPy	0.003	0.061	0.618	7.0
Numba	0.0013	0.022	0.211	2.15

Exploiting multicore CPUs

- Up to now, still used just a single core
- Numba has Parallel Accelerator component that parallelizes execution across cores
 - Parallel vector-style operations
 - Explicit parallel-for construct
- Parallel example:

```
@numba.njit(parallel=True)
def my_func(A, B, C, s):
    for i in numba.prange(len(A)):
        A[i] += B[i] +s*C[i]
```

Parallel Execution on Multiple Cores

Gains from parallel execution:

	1M	10M	100M	1B
Python	0.178	1.78	17.9	Don't bother
NumPy	0.003	0.061	0.618	7.0
Numba	0.0013	0.022	0.211	2.15
Numba-parallel	0.0003	0.006	0.046	0.43

- Only 4x improvement on a 20 core/40 thread machine?
 - > This simple example is memory bandwidth bound

Numba limitations

- Works well for NumPy arrays, but does not work with Python objects
- No per-thread control / coordination
 - Only have an implicit barrier at end of parallel for sections
 - No thread-to-thread signaling primitives; can't make your own (no "volatile" variables)
 - No NUMA-awareness for multi-socket machines
- Tricky to differentiate compile-time and dynamic values
 - E.g., array dimension length, list length are dynamic; number of dimension, tuple size are compile-time values
- Limited to single node (can scale up, but not scale out)

Dask

- DaskArray implements the NumPy API on top of the Dask distributed (or multiprocessing) tasking system.
- Arrays are broken up into chunks.
- Operations are represented on these chunks in the task graph.
- Uses NumPy internally for operations on each chunk.
- Scales to large clusters
- https://examples.dask.org/array.html

HeAT

- Distributed NumPy-like arrays with MPI.
- SPMD programming model.
- Local arrays implemented with PyTorch tensors for CPU or GPU execution.
- https://github.com/helmholtz-analytics/heat

Overview

- First, a selective review of the history of numerical processing in Python along with computational trends that continue to drive innovation today.
- Second, a comparison of where Python stands versus the standard performance solution of C+MPI.
- Third, an introduction to our new distributed array system for Python called Ramba.

Python compared to C / MPI

- As seen in this graph, the performance gap between C/MPI and various Python alternatives is still quite large.
- This gap gets larger as we go from single-node (as in the graph) to multi-node systems.
- Programmer productivity in some of the Python distributed systems not that much better than C/MPI.

Why such a large gap?

- Some systems fail to efficiently utilize multiple cores or multiple nodes.
- Some systems still use slow Python code internally.
- Some systems fail to fuse consecutive operations, causing applications to become memory bound.
- Some systems divide work into chunks and then have large scheduling or data movement overheads.

Overview

- First, a selective review of the history of numerical processing in Python along with computational trends that continue to drive innovation today.
- Second, a comparison of where Python stands versus the standard performance solution of C+MPI.
- Third, an introduction to our new distributed array system for Python called Ramba.

Ramba Idea

- Can we combine good single node efficiency with a Python distributed systems package to get efficient scale-up and scaleout while largely maintaining the programmer productivity of the NumPy API?
- Idea:
 - Combine Numba for its best-in-class Python single-node efficiency...
 - ...with Ray or MPI4Py for distribution.

Ramba Programming Methodology

- Introduce a distributed array data structure
 - Looks like a NumPy array, but is sharded across a set of nodes
- Preserve NumPy-like operations, API:
 - Basic per-element arithmetic operations
 - Simple reductions
 - Array slicing / views [but limited fancy indexing or strided view support]
- Now, can write NumPy vector-style code, and have it execute in a distributed context
- Also, provide "skeletons" that represent common computation and communication patterns (e.g., map, reduce, cumulative)

How Ramba works

- Ramba starts a set of actors on each node these are the Ramba remote workers
- Ramba array class ("ndarray") provides a set of methods that mimic the NumPy API
 - Ndarray construction triggers an array shard to be constructed on each remote worker; shards are NumPy arrays
 - Ndarray operations, e.g., __add__(), trigger corresponding local NumPy operations on the remote worker shards
 - Indexing/slicing an Ndarray triggers construction of a new Ndarray object, which refers to (portions of) the original shards; Thus, provide in-place views like in NumPy
- Operations on remote workers use Numba-JIT functions where possible

Ramba examples

A=ramba.zeros((100,100))

Create 50x50 array on each worker; init to 0

Create array size 25 on each worker; init to 1

• B[20:60] += 4

Temporary ndarray refers to parts of arrays on subset of workers; execute in-place add of 4

Lazy Evaluation

- Ndarray operations do not immediately trigger execution on remote workers
- Instead, the operations are added to a graph of pending operations (i.e., a DAG)
- Main thread continues to additional operations which may also be added to the DAG
- Accessing individual element of an array or I/O operations cause Ramba to determine which operations in the DAG must be run to generate the needed output
- Subsets of those operations which do the same amount of work per neighbor and have no data dependence conflicts are fused together, for cache efficiency, and Numba-JIT-compiled for native code performance
- Ramba does pattern matching on the operations in the DAG to replace a series of inefficient operations with a more efficient one

Lazy Evaluation Example

- A = B + s*C
- Ramba lazy ops:
 - All are fused into single loop
 - Temp arrays not materialized
 - Single call to workers, single traversal of arrays
 - Generated Code:

- Standard Controller-Worker:
 - Do s*C, store in tmp1
 - Do B+tmp1, store in tmp2
 - Do A+=tmp2
 - 3 separate remote worker fan outs
 - Extra storage for temporaries

```
@numba.njit(parallel=True)
def ramba_deferred_ops_func_6079497222952596368(ramba_tmp_var_00002,ramba_tmp_var_00004,ramba_tmp_var_00005,ramba_tmp_var_00001):
    for index in numba.pndindex(ramba_tmp_var_00002.shape):
        ramba_tmp_var_00000 = ramba_tmp_var_00001 * ramba_tmp_var_00002[index]
        ramba_tmp_var_00003 = ramba_tmp_var_00004[index] + ramba_tmp_var_00000
        ramba_tmp_var_00005[index] += ramba_tmp_var_00003
```

Lazy Partitioning

- Part of lazy evaluation is that partitioning (i.e., sharding) decisions are also delayed.
- Ramba has mechanism for operations to describe partitioning constraints on their input arrays that enable performant execution, for example:
 - Some input should not be partitioned along a certain axis.
 - Two or more input arrays should have the same partitioning along a given axis.
- At DAG execution time, Ramba determines the partitioning of the arrays to be created such that they satisfy these constraints, if possible.
- Ramba's automatic partitioning can be overloaded with a programmer specified partitioning at array creation time.

Controller-Worker vs. SPMD model

- Ramba by default uses the Controller-Worker model
 - Main Python thread is the controller
 - Each ndarray operation adds to the DAG
 - Fusion during lazy evaluation reduces the Fan-out, Fan-in for remote execution of operations
- Single Program, Multiple Data (SPMD) model
 - Ramba will soon support SPMD natively.
 - Dominant model for HPC; Native model for MPI programs
 - Program binary executes on each node, running on its own shard of data
 - Each runs independently until explicit synchronization or communications
 - Can be much more efficient / performant than Controller-Worker

More Complex Example: stencil

- Apply stencil operation on large 2D arrays
- Value computed at A_{i,j} depends on neighbor values
- Canonical distributed implementation:
 - Shard in two dimensions, share boundary data
 - Iterations of communication, computation phases

Stencil Example Code

Write code like we have one big local array (NumPy vector-style)

- All operations fuse into single function
- Shifted slices incur communications all automated

Stencil Performance

Blackscholes Performance

Dask

Heat

■ Ramba

Ramba Skeletons

- Ramba skeletons capture computation and communication patterns.
- Skeletons take one or more functions as input that are applied to points in an index space or define how to combine sub-results from different Ramba workers.
- The skeletons also take at least one array argument but up to any number of additional arrays or scalars.
- Supported patterns: map, reduce, stencil, cumulative, "spmd".
- Function passed to spmd skeleton can request the portion of an input array that is resident on the current Ramba worker.
- Skeletons may also be part of the DAG of operations and the functions to execute the skeleton on each worker are Numbacompiled.

Ramba Groupby

- Ramba supports groupby functionality similar to xarray.
- A grouped array, named RambaGroupby, is formed by invoking the ndarray.groupby() method.
- This method takes the dimension to group on and a 1D array equal in length to the size of that dimension and whose contents map that point in that dimension to a group number.
- RambaGroupby supports mean, sum, prod, min, max, var, std as well as the usual numeric binary operations, add, sub, mul, etc.
- Implemented using map and reduce skeletons.

Challenges and Limitations

- NumPy API is very large only a fraction covered now
- Optimal distribution varies with algorithm/operation; hard to guess in advance the best approach
- Some operations (e.g., reshape) not practical in distributed case
- Explicit looping through arrays will be horribly slow
- System only "sees" sequence of array operations, not actual source; hard to reason about intent, scope of variables, etc.
- Keeping overheads down is hard communications, calculating which remotes need to exchange data, compiling deferred operations, etc. all add to overheads

Ramba Availability

- Available publicaly on Git Hub: https://github.com/Python-for-HPC/ramba
- Open Source, BSD-style license
- Please try it and contribute!

References

- Ray https://ray.io/
- Numba https://numba.pydata.org/
- Ramba https://github.com/Python-for-HPC/ramba
- Parallel Research Kernels https://github.com/ParRes/Kernels
- Dask https://dask.org/
- NumS https://github.com/nums-project/nums