CIPACOUNT TO CTEPECHETINE

UT CHILL CITALIER

MMMaojemaparcom

обучение по математика, физика, български и английски език, компютър

а: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

адрес: гр.София, ж.к. Надежда, бл. 335

Съдържание:

§ 1. Права и равнина	. 3
§ 2. Взаимни положения	. 3
2.1. Две прави в пространството	. 3
2.1.1. Успоредни прави	
2.1.2. Ъгъл между кръстосани прави	. 3
2.1.3. Перпендикулярни прави	
2.2. Права и равнина в пространството	
2.2.1. Успоредни	
2.2.2. Перпендикулярни	
2.3. Две равнини в пространството	
2.3.1. Успоредност	
2.3.2. Перпендикулярност	
	F
§ 3. Проектиране и ъгли в пространството	
3.1. Успоредно проектиране	. 5
3.2. Ортогонално проектиране и наклонена	. 5
3.3. Разстояния в пространството	. 6
3.4. Ъгли в пространството	6
§ 4. Ръбести тела	8
4.1. Сечения на многостен с равнина	
4.2. Призма и паралелепипед	8
4.2.1. Видове призми	8
4.2.2. Призма и сфера	
4.2.3. Лице на повърхнината и обем	
4.3. Видове пирамиди	
4.3.1. Пирамида. Правилна пирамида	
4.3.2. Лице на повърхнина и обем на пирамида	
4.3.3. Вписана и описана сфера	
4.3.4. Тетраедър	
r	

4.3.5. Пресечена пирамида14
§ 5. Валчести (Ротационни) тела15
 5.1. Сечения на валчесто тяло с равнина
5.2. Видове валчести тела
5.2.1. Цилиндър
5.2.2. Конус
5.2.3. Кръгов пресечен конус
5.3. Сфера и валчесто тяло
§ 6. Сфера и кълбо
9.77 16.6
§ 7. Кабинетна проекция
§ 8. Построения
8.1. Права минаваща през точка и пресичаща кръстосани прави18
8.2. Ос-отсечка на кръстосани прави
8.3. Кабинетна проекция на правоъгълна четириъгълна призма 18
8.4. Кабинетна проекция на правилна четириъгълна пирамида 18
8.5. Кабинетна проекция на правилна триъгълна пирамида19
8.6. Кабинетна проекция на правилна шестоъгълна пирамида19
8.7. Сечение на многостен с равнина
•

обучение по математика, физика, български и английски език, компютър

🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

Права и равнина

- 1. Равнина Три точки А, В,С, които не лежат на една права, определят една равнина α.
- 2. Точно една равнина минава през:
 - права и точка, не лежаща на правата.
 - две пресичащи се прави.
 - две успоредни прави.

адрес: гр.София, ж.к. Надежда, бл. 335

Взаимни положения

А) Две прави в пространството

- 3. Успоредни когато лежат в една равнина и нямат обща точка.
- Пресичащи се когато лежат в една равнина и имат една обща точка.
- 5. Кръстосани когато през тях не минава нито една равнина.

I. Успоредни прави

- 6. Ако една от две успоредни прави пресича равнина, то и другата права пресича равнината (Фиг. 1)
- 7. Ако две пресичащи се равнини α и β (Фиг. 2) минават съответно през успоредните прави а и b, то пресечницата им С е успоредна на аиb.
- 8. Aко a || b и b || с ,то a || с (Фиг. 3).

Фиг. 2

C

Фиг. 3

II. Ъгъл между кръстосани прави

- 9. Ъгъл между кръстосаните прави Нека а и b са кръстосани прави (Фиг. 4) и нека а || а₁ и b || b_1 , като a_1 и b_1 се пресичат, то ъгъл ϕ между правите a_1 и b_1 се нарича ъгъл между кръстосаните прави a и b.
- 10. Ъгълът Ф (Фиг. 5) между кръстосаните прави а и b не зависи от избора на пресекателните прави a_1 и b_1 .

- 11. Трансквезала на кръстосани прави Всяка права, която пресича две кръстосани прави.
- 12. Ос на две кръстосани прави Права, която пресича всяка от кръстосаните прави и е перпендикулярна на всяка от тях (на Фиг.6 правата д е ос на кръстосаните прави АВ и CD).
 - 12.1. Две кръстосани прави имат точно ед-
- 13. Ос-отсечка на две кръстосани прави Отсечка с краища – пресечните точки на двете кръстосани прави с тяхната ос (на Фиг. 6 отсечката MN е ос отсечка на кръстосаните прави AB и CD).
 - 13.1. Дължината на оста-отсечка на две кръстосани прави е най-късото разстояние между тях.

Бележка:

Най-късото разстояние между две прави е разстоянието от едната права до равнината, която минава през другата права и е успоредна на първата.

III. Перпендикулярни прави

- 14. Две прави са перпендикулярни, ако:
 - ъгълът между тях е прав (при пресекателни прави);
 - са успоредни съответно на две пресичащи се перпендикулярни прави (при кръстосани прави).
 - 14.1. Ако две прави, например АВ и А₁В₁ от Фиг. 27, лежат в една равнина и са перпендикулярни на трета права, например: СD от Фиг. 27, която може и да е извън тази равнина, то правите са успоредни, т.е. $AB \parallel A_1B_1$.

обучение по математика, физика, български и английски език, компютър

🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

Б) Права и равнина в пространството

I. Успоредни

- 15. Права и равнина, които нямат обща точка се наричат успоредни.
- 16. Ако правата b е успоредна на някоя права a от дадена равнина α , то b $\parallel \alpha$ (Фиг. 2) и обратно: Ако b $\parallel \alpha$, то в равнина α има права успоредна на дадената
 - 16.1. Ако b || α, то b е успоредна и на пресечницата c на тази равнина с всяка равнина (например β), която минава през b (Фиг. 2).
- 17. Ако една права е успоредна едновременно на две пресичащи се равнини, то тя е успоредна и на пресечницата им (Фиг. 2).

II. Перпендикулярни

18. Права и равнина са перпендикулярни, ако правата е перпендикулярна на всички прави в равнината и обратно.

адрес: гр.София, ж.к. Надежда, бл. 335

- Ако права а е перпендикулярна на две пресичащи се прави b и c от една равнина α, то правата а е перпендикулярна на равнината α (Фиг. 7 а).
 - 19.1. Ако права а е перпендикулярна на равнина α , то права $b \parallel a$, също е перпендикулярна на α .
- 20. Симетрична (симетрална) равнина на отсечка Равнина, която минава през средата и е перпендикулярна на отсечката (Фиг. 7 б).
 - 20.1. Всяка точка от симетричната равнина е равноотдалечена от краищата на отсечката.

В) Две равнини в пространството

I. Успоредност

- 21. Ако две пресичащи се прави от една равнина са съответно успоредни на две пресичащи се прави от друга равнина, то двете равнини са успоредни.
- 22. Пресечниците на две успоредни равнини α и β с трета равнина γ са успоредни помежду си (Фиг. 8).
- 23. Две успоредни равнини α и β (Фиг. 8), отсичат от две успоредни прави c и d равни отсечки (AD = BC).
- 24. Ако две пресичащи се в точка О прави d и g са пресечени с две успоредни равнини α и β съответно в точките C и B, E и F, то $\frac{EO}{OF} = \frac{CO}{OB}$ (Фиг. 8).

II. Перпендикулярност

- 25. Две равнини са перпендикулярни, ако едната от тях съдържа права, перпендикулярна на другата равнина (Фиг. 10).
- 26. Ако две пресекателни равнини α и β (Фиг. 9) са перпендикулярни на трета равнина γ, то и пресечницата им а е перпендикулярна на γ (и обратното).
- 27. Ако две равнини са перпендикулярни на една и съща права, то те са успоредни помежду си (и обратното).
- 28. Ако две равнини α и β (Фиг. 10) са перпендикулярни, то всяка права а, която лежи в едната от тях и е перпендикулярна на пресечницата им b, е перпендикулярна и на другата равнина (и обратно).

4 стр.

Фиг. 9

обучение по математика, физика, български и английски език, компютър

電: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

адрес: гр.София, ж.к. Надежда, бл. 335

Проектиране и ъгли в пространството

А) Успоредно проектиране

Нека са дадени равнината α и правата I, която я пресича (Фиг. 11). През произволна точка A от пространството построяваме:

- Единствената права g успоредна на l и минаваща през α;
- Пробода A_1 , на правата $g \ c \ \alpha$.
 - 29. Проектиращо направление Правата I определя проектиращото направление, т.е. всяка права успоредна на I, заедно с I, се нарича направление на правата I.
 - 30. Проектираща равнина Равнината а, върху която се проектира точката.
 - 31. Проекционна права Правата g успоредна на проектиращото направление и минаваща през точката .A.
 - 32. Успоредно проектиране Изображението, при което на всяка точка A се съпоставя нейната проекция (изображение) A_1 върху равнината α по дадено направление.
 - 33. Успоредна проекция образът на фигурата при успоредната проекция.
 - 34. Свойства на успоредната проекция:
 - 34.1. Успоредната проекция на права g, която не е от проектиращото направление l е права върху равнината α (Фиг. 12).

- 34.2. Успоредната проекция на права n, която е от проектиращото направление l е точка пободната точка (Фиг. 12).
- 34.3. Всяка права от проекционната равнина съвпада с проекцията си.
- 34.4. Всяка права успоредна на проекционната равнина съвпада с проекцията си.
- 34.5. Две успоредни прави, които не принадлежат на проекционното направление I, са успоредни прави.
- 34.6. Отношението на две отсечки от една права (или успоредни на права), които не са от проекционното направление е равно на отношението на успоредните им проекции, т.е. $\frac{AB}{CD} = \frac{A_1}{C_1} \frac{B_1}{D_1}$ (Фиг. 13).

34.8. Нека правите a и b са успоредни на проекционната равнина α, то ъгълът, определен от тях е равен на ъгъла, определен от проекциите им.

Б) Ортогонално проектиране и наклонена

35. Ортогонално проектиране – Успоредно проектиране, при което проекционното направление е перпендикулярно на проекционната равнина.

Бележка:

Всички свойства на успоредното проектиране се запазват и при ортогоналното проектиране.

- 36. Теорема за трите перпендикуляра Една права a от дадена равнина α е перпендикулярна на права b, която е наклонена на α , тогава и само тогава, когато е перпендикулярна на ортогоналната \acute{u} проекция b_1 , т.е. $a\perp b \Leftrightarrow a\perp b_1$ (Фиг. 14).
- 37. Перпендикуляр и наклонена Нека точка A е извън равнината α, то отсечката свързваща A с ортогоналната и проекция в α, се нарича перпендикуляр A от към α. Отсечките свързващи A с други точки от α, се наричат наклонени към α.

Например: Височината на пирамида с връх S е перпендикулярът от S към основата, а околните и ръбове – наклонени към равнината на основата.

37.1. При дадена равнина α и точка A ∉ α, перпендикулярът от A към α е по-малък от наклонената, т.е. AA₁ < AB (Фиг. 15).

37.2. Ако AA_1 и AB са перпендикуляр и наклонена от A към α , то $AB^2 = A{A_1}^2 + A_1B^2$ (Фиг.15).

37.3. Ако две наклонени (АВ и АС) свързват една и съща точка А с ранината α (Фиг. 15), то:

Фиг. 15

37.3.1 Наклонените са равни тогава и само тогава, когато са равни проекциите им в равнината α;

37.3.2 По-голяма наклонена има по-голяма проекция в равнината α;

Тема: "Справочник по стереометрия"

5 стр.

обучение по математика, физика, български и английски език, компютър

☎: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

- 37.3.3 Наклонените са равни точно тогава, когато сключват равни ъгли ($\langle \phi \rangle = \langle \delta \rangle$) с проекциите си в равнината α ;
- 37.3.4 По-голяма наклонена сключва по-малък ъгъл с проекцията си в равнината α , т.е. AB > AC, ако $\ll \phi < \ll \delta$.

В) Разстояния в пространството

38. Разстояние от точка до права – Разстоянието от точка А до правата а е най-малкото измежду разстоянията от А до всички точки от правата а.

Правило за намиране на разстояние между точка и права:

1. Построяваме равнина съдържаща точката и правата;

адрес: гр.София, ж.к. Надежда, бл. 335

- 2. Намираме най-малкото разстояние от точката до правата в равнината.
 - 39. Разстояние от точка до равнина То е равно на дължината на перпендикуляра, спуснат от точката до равнината.
 - 40. Разстояние между равнина и успоредна на нея права Това е разстоянието от правата до нейната ортогонална проекция в равнината. Това разстояние е най-малкото между точките от правата и равнината.
 - 41. Разстояние между успоредни равнини Това е разстоянието от произволна точка от едната равнина до другата равнина. Това разстояние е равно на разстоянието между точката от едната равнина и проекцията и в другата равнина.
 - и проекцията и в другата равнина. 42. Разстояние между кръстосани прави:
 - 42.1. Ако две прави са кръстосани, през едната минава точно една равнина, успоредна на другата. Разстоянието между кръстосаните прави е равно на разстоянието (дължината на перпендикуляра) от едната права до успоредната и равнина, минаваща през другата права.
 - 42.2. Разстоянието между кръстосаните прави е дължината на тяхната ос-отсечка.
 - 42.3. Ако две прави са кръстосани, съществува една двойка, успоредни равнини, които ги съдържа. Разстоянието между правите е равно на разстоянието между равнините.

Г) Ъгли в пространството

- 43. Ъгъл между две прави Ъгълът ϕ между пресичащи се успоредни прави на дадените (Фиг.16 а).
- 44. Нека \prec BAC лежи в равнината α . Ако права AA₁ (Фиг. 16 б)) минава през върха A на \prec BAC и сключва равни ъгли с раменете му \prec A₁AC = \prec A₁AB, то проекцията AO на правата върху равнината α на ъгъла съвпада с ъглополовящата на \prec BAC. (виж 1)
- 45. Ъгъл между права и равнина Ъгълът между правата и ортогоналната и проекция в равнината.
 - 45.1. От всички ъгли, които една права сключва с правите от дадена равнина, най-малък е ъгълът, който тя образува с ортогоналната си проекция.
- 46. Ъгъл между две равнини:
 - 46.1. Двустенен ъгъл Фигурата ∢ (λ, μ) образувана от две полуравнини λ и μ с общ контур. (Фиг. 17). Общия контур се нарича ръб, а полуравнините стени на ъгъла.
 - 46.1.1 Линеен ъгъл на двустенен ъгъл Ако от произволна точка О
 - от ръба на двустенен ъгъл издигнем перпендикуляри On и Om съответно в стените λ и µ, то получения ъгъл ∢ (mOn) се нарича линеен ъгъл на двустенния (Фиг. 17), т.е. линеен ъгъл е ъгъл, който се получава от пресичането на двустенен ъгъл с равнина перпендикулярна на ръба му. Всички линейни ъгли на един двустенен ъгъл, са равни.
 - 46.1.2 Две пресекателни равнини са перпендикулярни, ако те образуват равни лвустенни ъгли.
 - 46.1.3 Ъгъл между две пресекателни равнини, които не са перпендикулярни, се нарича по-малкият от двустенните ъгли образувани от равнините.

Фиг. 17

Фиг. 18

обучение по математика, физика, български и английски език, компютър

🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

46.1.4 Ъглополовяща на двустенен ъгъл – Полуравнината б, която минава през пресечницата на две полуравнини λ и μ и сключва

> с тях равни остри двустенни ъгли (Фиг. 18).

адрес: гр.София, ж.к. Надежда, бл. 335

46.1.4.1 Всяка точка от ъглополовяшата на двустенен ъгъл е равноотдалечена от стените на

ъгъл.

двустенния

- 46.1.5 Връзка между лица на многоъгълник и проекцията му върху равнината – Нека две равнини α и β образуват двустенен ъгъл Ф (Фиг. 19). За лицето S на многоъгълник от едната равнина и лицето S₁ на проекцията на този многоъгълник върху другата равнина е в сила равенството $S_1 = S \cos \phi \, (\Phi \mu \Gamma, 19)$.
- 46.2. Тристенен ъгъл Фигурата, която се получава, ако през дадена точка O, наречена връх прекараме три равнини $\lambda = (OAC)$, $\mu = (OAB)$ и $\rho =$ (OBC), като всяка две от тях се пресичат в една права (Фиг. 20). Точката O се нарича връх, лъчите OA^{\rightarrow} , OB^{\rightarrow} и OC^{\rightarrow} – ръбове, ъглите $\alpha = \langle AOC, \beta = \langle AOB \$ и $\gamma = \langle BOC -$ ръбни ъгли, двустенните ъг-

ли
$$\beta_1 = \ll (\lambda, \mu), \gamma_1 = \ll (\lambda, \rho)$$
 и $\alpha_1 = \ll (\mu, \rho)$ – двустенни ъгли на тристенния ъгъл.

- 46.2.1 За ръбните ъгли на всеки тристенен ъгъл имаме неравенството $\alpha + \beta + \gamma < 360^{\circ}$.
- 46.2.2 Сборът на всеки два ръбни ъгли е по-голям от третия ръбен ъгъл, т.е. $\alpha + \beta > \gamma$.

46.2.3 Теорема за трите косинуса – Нека едното рамо на ъгъл у = ∢АОВ лежи в равнината λ (или е успоредно на нея), а другото рамо АО е наклонено спрямо същата равнина (Фиг. 21), като

ортогоналната му проекция е A_1O . Тогава $\cos \gamma = \cos \alpha \cos \beta$. където $\alpha = \langle BOA_1, \beta = \langle AOA_1, \rangle$

46.2.3.1 Следствие: Ако едното рамо на даден остър ъгъл у е успоредно или лежи на дадена равнина λ (фиг. 21), а другото му рамо пробожда тази равнината, то за проекцията в на ъгъла у върху равнината е изпълнено неравенството $\alpha < \gamma$ (виж 29).

46.2.4 Нека да имаме тристенният ъгъл при върха А₁ на правилна пъгълна пирамида (Фиг. 22) и нека да имаме следните означения: α – Равните ръбни ъгли между околния ръб A₁S и основните ръбове A_1A_n и A_1A_2 ; ϵ — Двустенния ъгъл между две съседни околни стени; ω – Между два съседни околни ръба; φ – между околен ръб и основата; θ – Равните двустенни ъгли при основните ръбове (между основата и околната стена). Тогава са изпълнени равенствата (виж 2).

(1): $\cos \theta = \cot \alpha \cot \frac{180^{\circ}}{n}$; (2): $\sin \alpha \sin \frac{\varepsilon}{2} = \cos \frac{180^{\circ}}{n}$; (3): $\cos \frac{\varepsilon}{2} = \sin \theta \sin \frac{180^{\circ}}{n}$

(4): $\sin \varphi = \cot \frac{\varepsilon}{2} \cot \frac{180^{\circ}}{n}$; (5): $\cos \alpha = \cos \varphi \sin \frac{180^{\circ}}{n}$; (6): $\tan \varphi = \tan \theta \cos \frac{180^{\circ}}{n}$;

(7): $\cos \theta = \operatorname{tg} \frac{\omega}{2} \operatorname{cotg} \frac{180^{\circ}}{n}$; (8): $\cos \frac{\omega}{2} \sin \frac{\varepsilon}{2} = \cos \frac{180^{\circ}}{n}$; (9): $\sin \frac{\omega}{2} = \cos \phi \sin \frac{180^{\circ}}{n}$;

(10): $\omega + 2\alpha = 180^{\circ}$.

Тема: "Справочник по стереометрия"

7 стр.

🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

46.2.5 Първа косиносова теорема за тристенен ъгъл – Косинусите на двустенните ъгли на тристенен ъгъл се изразяват чрез ръбните му ъгли чрез формулите (Фиг. 20):

 $\cos \gamma_1 = \cos \beta - \cos \alpha \cos \gamma$; $\cos \beta_1 = \cos \gamma - \cos \alpha \cos \beta$; $\cos \alpha_1 = \cos \alpha - \cos \gamma \cos \beta$. $\sin \beta \sin \alpha$

> 46.2.6 Втора косинусова теорема за тристенен ъгъл – Косинусите на ръбните ъгли на тристенен ъгъл се изразяват чрез двустенните му ъгли чрез формулите (Фиг. 20):

 $\cos \gamma = \cos \beta_1 + \cos \alpha_1 \cos \gamma_1 : \cos \beta = \cos \gamma_1 + \cos \alpha_1 \cos \beta_1 : \cos \alpha = \cos \alpha_1 + \cos \gamma_1 \cos \beta_1$ $\sin \alpha_1 \sin \gamma_1$ $\sin \beta_1 \sin \alpha_1$

> 46.2.7 Първа синусова теорема за тристенен ъгъл – Синусите на двустенните ъгли на тристенен ъгъл се изразяват чрез ръбните му ъгли чрез формулите (Фиг. 20):

 $\sin \gamma_1 = \sin \beta_1 = \sin \alpha_1 = \sqrt{1 - (\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma) + 2\cos \alpha \cos \beta \cos \gamma}$ $\sin \beta \quad \sin \gamma \quad \sin \alpha$ $\sin \alpha \sin \beta \sin \gamma$

> 46.2.8 Втора синусова теорема за тристенен ъгъл – Синусите на ръбните ъгли на тристенен ъгъл се изразяват чрез двустенните му ъгли чрез формулите (Фиг. 20):

 $\sin \beta = \sin \gamma = \sin \alpha = \sqrt{1 - (\cos^2 \alpha_1 + \cos^2 \beta_1 + \cos^2 \gamma_1) - 2\cos \alpha_1 \cos \beta_1 \cos \gamma_1}$ $\frac{1}{\sin \gamma_1} = \frac{1}{\sin \beta_1} = \frac{1}{\sin \alpha_1}$

46.2.9 Херонова формула
(1): $1 - (\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma) + 2 \cos \alpha \cos \beta \cos \gamma = 4 \sin \frac{\alpha + \beta + \gamma}{2} \sin \frac{-\alpha + \beta + \gamma}{2} \sin \frac{\alpha - \beta + \gamma}{2} \sin \frac{\alpha + \beta - \gamma}{2}$.

(2): $-1 + \cos^2 \alpha_1 + \cos^2 \beta_1 + \cos^2 \gamma_1 + 2 \cos \alpha_1 \cos \beta_1 \cos \gamma_1 =$ $4\sin\frac{\alpha_1+\beta_1+\gamma_1}{2}\sin\frac{-\alpha_1+\beta_1+\gamma_1}{2}\sin\frac{\alpha_1-\beta_1+\gamma_1}{2}\sin\frac{\alpha_1+\beta_1-\gamma_1}{2}.$

Ръбести тела

А) Сечения на многостен с равнина

- 47. Диагонално сечение Сечение на ръбесто тяло с равнината, която минава през два несъседни околни ръба (Фиг. 23. а).
- 48. Успоредно сечение Сечение на ръбесто тяло с равнината, успоредна на основата (за Призма – Фиг. 23. б, за Пирамида – Фиг. 27).

49. Перпендикулярно сечение – Сечение на призма с равнина, перпендикулярна на околните ръбова на призмата (Фиг. 23 в)).

Б) Призма и паралелепипед

I. Видове призми

- 50. Призма Тяло ограничено от два еднакви п ъгълника лежащи в успоредни равнини, а останалите му стени са успоредници.
 - 50.1. Височина Всеки перпендикуляр издигнат от точка в равнината на едната основа, към равнината на другата основа.
 - 50.2. Права призма Призма, на която околните повърхнини са перпендикулярни на равнината на основата, т.е. околните стени са правоъгълници. Всеки околен ръб съвпада с височината на правата призма.
 - 50.3. Правилна призма Права призма с основа правилен многоъгълник.
 - 50.4. Паралелепипед Призма, на която основите са успоредници.
 - 50.5. Правоъгълен паралелепипед Права призма, на която всички стени са правоъгълници.
 - 50.6. Свойства на правоъгълен паралелепипед:
 - 50.6.1 Четирите му диагонала са равни.
 - 50.6.2 Диагоналите му се пресичат в една точка и се разполовяват от
 - 50.6.3 За всеки диагонал е в сила равенството $d^2 = a^2 + b^2 + c^2$, където а, b и с са измеренията на паралелепипеда, а d – диагонала му.
 - 50.7. Куб
 - 50.7.1 Призма, на която всички стени и основи са квадрати.
 - 50.7.2 За диагонал на куб е в сила равенството $d^2 = 3a^2$ или $d = a\sqrt{3}$, където а е страната на куба

обучение по математика, физика, български и английски език, компютър

☎: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

II. Призма и сфера

адрес: гр.София, ж.к. Надежда, бл. 335

- Призма вписана в сфера Сферата минава през всички върхове на призмата.
 - 51.1. Призма може да се <u>впише</u> в сфера, когато тя е права и около основата и може да се <u>опише</u> окръжност, като ортогоналната проекция на центъра на сферата съвпада с центъра на описаната в основата окръжност.
 - 51.2. Всяка правилна призма или всяка права триъгълна призма може да се впише в сфера.
 - 51.3. За куб имаме $r = \frac{a}{2}$; $R = \frac{\sqrt{3}}{2}a$, където \mathbf{r} радиуса на вписаната сфера,
 - R радиуса на описаната сфера, а страната на куба.
- 52. Призма описана около сфера Всяка стена на призмата е допирателна до сферата.
 - 52.1. В права призма може да се впише сфера тогава и само тогава, когато в основата на призмата може да се впише окръжност, като височината на призмата е равна на диаметъра на тази окръжност.
- 53. Ако призма с пълна повърхнина S_1 и обем V е <u>описана</u> около сфера с радиус R, то $R = \frac{3V}{S_1}$.

III. Лице на повърхнината и обем

- 54. Лице на околната повърхнина S Сборът от лицата на околните стени. Формулата е S = P I, където I е дължината на околният ръб, а P периметъра на перпендикулярното сечение на призмата (ако имаме права призма P е периметъра на основата).
- 55. Лице на пълна повърхнина S_1 Сборът от лицата на околната повърхнина и основите, S_1 = S + 2B, където B е лицето на основата.
- 56. Обем V = B h, където h е височината на призмата.

В) Видове пирамиди

I. Пирамида. Правилна пирамида

57. Пирамида – Тяло, на което една от стените е многоъгълник, а останалите стени са триъгълници с общ връх.

- 57.1. Височина Отсечката съединяваща върха на пирамидата с проекцията му върху равнината на основата. Положението на петата на височината върху равнината на основата се определя от следните свойства на пирамидата:
- 57.2. Всички околни ръбове са равни тогава и само тогава, когато около основата на пирамидата може да се <u>опише</u> окръжност и петата на височината съвпада с центъра на тази окръжност.

- 57.3. Два или повече околни ръба са равни тогава и само тогава, когато петата на височината лежи на пресечната точка на симетралите на съответните отсечки (виж 3):
 - Ако околните ръбове са съседни, т.е. AS = BS от Фиг. 24 а), то $\tau.O \in S_{AB}$;
 - Ако околните ръбове не са съседни, т.е. AS = CS от Фиг. 24 б), то точка О лежи на симетралата на диагонала АС свързващ съответните върхове на основата;
 - Ако имаме три равни околни ръба, т.е. AS = CS = DS от Φ иг.24в), то $T.O \in S_{AC} \cap S_{CD}$.
- 57.4. Две околни стени сключват равни ъгли с равнината на основата тогава и само тогава, когато петата на височината е равноотдалечена от съответните основни ръбове (на Фиг. 22, ако OK = OM, то \ll (SKO) = \ll (SMO)).
 - 57.4.1 Ако две съседни околни стени, например: на Фиг. 22, стените (A_nA_1S) и (A_1A_2S) , сключват равни ъгли с <u>равнината</u> на основата, точката О лежи или на вътрешните ъглополовящи или на външните ъглополовящи при върха A_1 на основата.

обучение по математика, физика, български и английски език, компютър

☎: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

адрес: гр.София, ж.к. Надежда, бл. 335

Бележка:

За ъгъл между околна стена и равнината на основата се разглеждат два случая – Когато:

- ъгълът е между околната стена и "вътрешната" част от основата, т.е. самата основа;
- ъгълът е между околна стена и "външната" част от основата.
 - 57.5. Всички околни стени сключват равни ъгли с <u>основата</u> тогава и само тогава, когато в основата може да се впише окръжност и петата на височината съвпада с центъра на тази окръжност.

Бележка:

Ако три околни стени сключват равни ъгли с <u>равнината</u> на основата, т. О не се определя еднозначно. Еднозначно определяне положението на т. О е, ако трите околни стени сключват равни ъгли с <u>основата</u> на пирамидата.

- 57.6. Околен ръб AS и основен ръб AB, излизащи от един и същи връх A на пирамидата, са перпендикулярни тогава и само тогава, когато петата О лежи на правата през A, перпендикулярна на AB.
- 57.7. Кръстосаните околен ръб AS и основен ръб BC на пирамида са перпендикулярни тогава и само тогава, когато петата О лежи върху перпендикуляра, спуснат от A към BC.
- 57.8. Петата О на височината на пирамида съвпада с центъра на вписаната в основата окръжност, ако е изпълнено едно от твърденията (виж 4):
 - всички околни стени сключват равни двустенни ъгли с основата;
 - височините на всички околни стени са равни (при правилна пирамида);
 - проекциите на височините на всички околни стени върху основата са равни (равни на радиуса г на вписаната в основата окръжност);
 - всички околни стени сключват равни ъгли с височината на пирамидата.
 - 57.8.1 В този случай са в сила формулите: $h = r tg \phi$; $B = S cos \phi$, където h височината на пирамидата, r радиуса на вписаната в основата окръжност; ϕ двустенния ъгъл между околната стена и основата; B лицето на основата; S лицето на околната повърхнина на пирамидата.

- 57.9. Петата O на височината на пирамида съвпада с центъра на описаната около основата окръжност, ако е изпълнено едно от твърденията (виж 5):
 - всички околни ръбове са равни;
 - всички околни ръбове сключват равни ъгли с основата;
 - всички околни ръбове сключват равни ъгли с височината на пирамидата;
 - проекциите на всички околни ръбове върху основата са равни (равни на радиуса R на описаната около основата окръжност).
 - 57.9.1 В този случай е в сила формулата: h = R tg φ, където h височината на пирамидата, R радиуса на описаната около основата окръжност; φ ъгълът между околен ръб и основата на пирамидата.
- 58. Правилна пирамида Пирамида, на която основата е правилен многоъгълник, а околните стени са еднакви равнобедрени триъгълници.
 - 58.1. Височина Върха на правилната пирамида се проектира ортогонално в центъра на равнината на основата (виж 37.3.1). Тогава отсечката, която съединява върха с центъра на основата е височината h на пирамидата.
 - 58.2. Апотема Височината на коя да е околна стена, прекарана към съответния основен ръб. Всички апотеми на пирамидата са равни.
 - 58.3. Апотема на основата (на Фиг. 22 OM) Проекцията на дадена апотема върху основата е апотема на основата, т.е. височина на съответния триъгълник на основата.
 - 58.4. Всички околни ръбове са равни и образуват с <u>равнината</u> на основата равни ъгли;
 - 58.5. Двустенният ъгъл между околната стена и основата има линеен ъгъл $≪SMO (Фиг. 22), защото SM и OM (апотема на основата) са височини в равнобедрените <math>
 \Delta A_1 A_2 S$ и $\Delta A_1 A_2 O$.
 - 58.6. Всички околни стени образуват равни двустенни ъгли с равнината на основата, защото $\Delta KOS \cong \Delta MOS$ (Фиг. 22).
 - 58.7. За радиуса на <u>описаната</u> около всяка правилна пирамида сфера е в сила формулата (65.3), а за радиуса на <u>вписана</u> в правилна пирамида сфера е в сила формулата (63.3).
 - 58.8. В правилна п-ъгълна пирамида, за дадените ъгли са в сила равенствата (46. 2. 4).

II. Лице на повърхнина и обем на пирамида

- 59. Лице на околна повърхнина S
 - 59.1. Правилна n ъгълна пирамида: $S = \frac{na}{2}k = \frac{Pk}{2}$, където k апотемата,
 - а дължината на основния ръб, n броя на страните на основата, P периметъра на основата.
 - 59.2. Неправилна пирамида Сбора от лицата на околните стени.
- 60. Лице на пълна повърхнина S₁
 - 60.1. На правилна n ъгълна пирамида: $S_1 = S + B$, където B лицето на основата.
 - 60.2. На неправилна пирамида лицето на пълната повърхнина S_1 е равно на сборът от лицата на всички стени (околни и основа).
- 61. Обем V.
 - 61.1. Правилна пирамида: $V = \frac{1}{3}Bh$, където h е височината на пирамидата.
 - 61.2. Неправилна пирамида по същата формула.

Фиг. 25

III. Вписана и описана сфера

- 62. Вписана в пирамида сфера k (Фиг. 25)— В пирамида може да се впише сфера тогава и само тогава, когато са изпълнени някои от твърденията:
 - 62.1. Всички стени на пирамидата са допирателни до сферата;
 - 62.2. <u>Ъглополовящите равнини</u> на всички двустенни ъгли се пресичат в една точка. Това условие е трудно проверяемо затова се използва следното условие "Ъглополовящите равнини на всички двустенни ъгли при основните ръбове се пресичат в една точка"
 - 62.3. Ако двустенните ъгли при основните ръбове на пирамидата са равни.
- 63. Ако в пирамида може да се впише сфера, то са изпълнени някои от твърденията:
 - Всички околни стени сключват равни двустенни ъгли с основата;
 - Проекциите на височините на всички околни стени върху равнината на основата са равни;
 - Височините на всички околни стени са равни;
 - <u>Бглополовящите равнини</u> на всички двустенни ъгли между две съседни околни стени минават през височината на пирамидата;
 - Всички околни стени сключват равни ъгли с височината на пирамидата:
 - В основата на пирамидата може да се впише окръжност и нейния център съвпада с проекцията на върха на пирамидата върху равнината на основата;
 - В пирамидата може да се впише прав кръгов конус.
 - В сила е формулата 57.8.1.
 - 63.1. Сфера може да се впише във всяка:
 - Триъгълна пирамида (тетраедър);
 - Правилна пирамида.
 - 63.2. Центърът О на вписаната в правилна пирамидата сфера (Фиг. 25) лежи на пресечната точка на височината НD на пирамидата и ъглополовящата равнина на ъгъла между околна стена и основата, т.е. ъглополовящата ОК на линейният ∢НКD, защото DК – апотема на пирамидата.
 - 63.3. Радиус r = OH = OL (Фиг. 25) на вписана сфера 63.3.1 в произволен многостен $_r = \frac{3V}{c}$, където S_1 е пълна повърх-

нина на многостена, V – обема:

обучение по математика, физика, български и английски език, компютър

☎: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

63.3.2 в правилна триъгълна пирамида – $r = \frac{\sqrt{3}}{6} atg \frac{\Theta}{2}$, където а –

дължината на основен ръб, θ – ъгълът между околна стена и равнината на основата.

- 64. Описана около пирамида сфера (Фиг. 26) Около пирамида може да се опише сфера, ако са изпълнени някои от твърденията:
 - 64.1. Всичките ръбове (околни и основни) на пирамидата са хорди на сферата, т.е. сферата минава през всички върхове на пирамидата.

адрес: гр.София, ж.к. Надежда, бл. 335

- 64.2. Симетралните равнини на околните ръбове се пресичат в една точка (т. О на Фиг. 26) лежаща на права перпендикулярна на равнината на основата (виж 30).
- 64.3. Около основата може да се опише окръжност (k_1 на Фиг. 26).
- 65. Ако около пирамида може да се опише сфера, то са изпълнени някой от твърденията:
 - Всички околни ръбове са равни;
 - Всички околни ръбове сключват равни ъгли с равнината на основата;
 - Проекциите на всички околни ръбове върху равнината на основата са равни:
 - Симетралните равнини на всички околни ръбове минават през височината:
 - Околните ръбове сключват равни ъгли с височината;
 - Около основата на пирамидата може да се опише окръжност, центърът, на която съвпада с проекцията на върха на пирамидата върху равнината на основата (петата на височината);
 - Около пирамидата може да се опише прав кръгов конус;
 - В сила е формула <u>57.9.1</u>.
 - 65.1. Сфера може да се опише около:
 - Всяка триъгълна пирамида (тетраедър);
 - Правилна пирамида.
 - 65.2. Център О (Фиг. 26) на описаната сфера около:

Фиг. 26

- 65.2.1 Произволна пирамида: 65.2.1.1 Равнината на вся
 - 65.2.1.1 Равнината на всяка стена на пирамидата пресича описаната сфера в окръжност, описана около съответната стена. Перпендикулярите, издигнати от центровете на тези окръжности се пресичат в центъра на описаната сфера.
 - 65.2.1.2 Центърът на сферата лежи на пресечната точка на перпендикуляра издигнат от центъра на описаната около основата окръжност и <u>симетралната равнина</u> на кой да е околен ръб (Фиг. 26).
- 65.2.2 Правилна пирамида или неправилна пирамида на която петата на височината е център на описаната около основата окръжност Центърът на описаната сфера лежи в точката на пресичане на височината на пирамидата (или нейното продължение) и симетралната равнина на околен ръб.
- 65.3. За радиуса R на описана сфера около правилна триъгълна пирамида е изпълнено $R = \frac{l^2}{2H}$, където I дължината на околен ръб, H височината на пирамидата.

IV. Тетраедър

- 66. Определение Всяка триъгълна пирамида. За тетраедъра ABCD на Фиг. 27 да имаме означенията:
- Проекцията на върха върху основата (петата на височината) – точка Н.
- околни ръбове AD = a, BD = b, CD = c;
- основни ръбове $AB = c_0$, $BC = a_0$, $AC = b_0$.
- ръбни ъгли на тристенния ъгъл при върха D – ∢BDC = α, ∢CDA = β,
 ∢ADB = γ.
- двустенните ъгли на тристенния
 ъгъл при върха D ∢(ABD, ACD) =
 α₁; ∢(ABD, BCD) = β₁; ∢(BCD, ACD) = γ₁.

Фиг. 27

адрес: гр.София, ж.к. Надежда, бл. 335

☎: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

- двустенните ъгли при основата на тетраедъра \ll (ABC, BCD) = α_0 ; \ll (ABC, ABD) = β_0 ; \ll (ABC, ABD) = γ_0 .
- Лицата на околните стени и основата $-S_{BCD} = S_1$, $S_{ACD} = S_2$, $S_{ABD} = S_3$, $S_{ABC} = B$. 66.1. Косинусова теорема $-B^2 = S_1^2 + S_2^2 + S_3^2 2S_1S_2\cos \gamma_1 2S_1S_3\cos \beta_1 2S_2S_3\cos \alpha_1$ (виж 6).
 - 66.2. Синусова теорема –

$$\frac{a \ a_0}{\sin \alpha_1 \sin \alpha_0} = \frac{b \ b_0}{\sin \beta \sin \beta_0} = \frac{c \ c_0}{\sin \gamma \sin \gamma_0} = \frac{4 S_1 \ S_2 \ S_3 \ B}{9 V^2}$$
, където V е обема на тетраедъра (виж 7).

- 66.3. Обем:
 - 66.3.1 По формула (61.1)
 - 66.3.2 $V = \frac{1}{3} a b c \sqrt{\sin \delta \sin (\delta \alpha) \sin (\delta \beta) \sin (\delta \gamma)}$, където $\delta = \frac{\alpha + \beta + \gamma}{2}$;
 - 66.3.3 Формула на Сервие: $V = \frac{1}{6} m n d \sin \varphi$, където m и n са два срещуположни ръба (кръстосани ръба), $d = \frac{0 \text{ ста-отсечка}}{0 \text{ ста-отсечка}}$ на тези ръбове, т.е. най-малкото разстояние между ръбовете, $\phi = \frac{1}{6} m n d \sin \varphi$, където m и n са два
 - 66.3.4 $V = \frac{1}{3} AB.S_{MCD}$, където AB и CD са кръстосани ръбове, S_{MCD} лицето на сечението, перпендикулярно на AB и минаващо през CD (Фиг. 6).
 - през CD (Фиг. 6). 66.3.5 $V = \frac{1}{6} ab c \sqrt{1 - (\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma - 2\cos \alpha \cos \beta \cos \gamma)}$
 - 66.3.6 $V = \frac{2}{3} \frac{S_1 S_2}{l} \sin \alpha$, където S_1 и S_2 са лицата на две съседни стени, ϕ двустенният ъгъл между тях, I дължината на общият им ръб (виж 10).
- 66.4. Равнина минаваща през средите на два срещуположни ръба (кръстосани ръба) на тетраедър, го разделя на два многостена с равни обеми (виж 11).
- 66.5. Описана и вписана сфера Около всеки тетраедър може да се опише сфера или във всеки тетраедър може да се впише сфера, като за радиусите на описаната R и на вписаната г сфера е изпълнено неравен-

- ството $R \ge 3r$. Равенството се получава, когато тетраедъра е правилен (виж 12).
- 67. Медиана на тетраедър Отсечката, която съединява връх на тетраедъра с медицентъра на срещуположната му стена.
- 68. Медицентър на тетраедър Четирите медиани на тетраедъра се пресичат в една точка наречена медицентър, която ги дели в отношение 3 : 1, считано от съответния връх (виж 13 и Зад. 25 от Пирамиди).
- 69. Бимедиана Отсечка, съединяваща средите на два срещуположни ръба (кръстосани ръба) на тетраедъра, т.е. бимедианата е ос-отсечката MN на кръстосаните прави AB и CD (фиг. 6).
 - 69.1. Трите бимедиани се пресичат в една точка, която ги разполовява. Тази точка съвпада с медицентъра на тетраедъра (виж 14).
- 70. Височина Всяка отсечка, единият край, на която е негов връх, а другият и край е проекцията на този връх върху срещуположната му стена. Тетраедъра има четири височини. Точката в която се пресичат четирите му височини се нарича ортоцентър на тетраедъра.
- 71. Ортоцентричен тетраедър
 - 71.1. Тетраедър е ортоцентричен тогава и само тогава, когато е изпълнено едно от следните твърдения:
 - 71.1.1 Две негови двойки срещуположни ръба (кръстосани ръба) са взаимно перпендикулярни (виж 15).
 - 71.1.2 Един от върховете му се проектира ортогонално върху равнината на срещуположното му стена (виж 16).
 - 71.1.3 Сборът от квадратите на два срещуположни ръба (кръстосани ръба) е постоянен (виж 17).
 - 71.1.4 Дължините на ръбовете му от един връх има следната пропорция $\frac{a}{\cos \alpha} = \frac{b}{\cos \beta} = \frac{c}{\cos \gamma}$ (виж 18).
 - 71.1.5 Перпендикулярите към стените му, прекарани през медицентровете им, се пресичат (виж 19).
 - 71.2. Ако един тетраедър е ортоцентричен, то са в сила някой от твърденията:
 - 71.2.1 Трите му бимедиани са равни (виж 20).
 - 71.2.2 Медицентърът му разполовява отсечката свързваща ортоцентъра му с центъра на описаната около него сфера (виж 21).
 - 71.2.3 Изпълнено е равенството $OH^2 = 4R^2 3I^2$, където O е центъра на описаната сфера, H ортоцентърът, R радиуса на описаната сфера, I бимедианата (виж 22).

адрес: гр.София, ж.к. Надежда, бл. 335

🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

- 71.2.4 Изпълнено е равенството $HA^2 + HB^2 + HC^2 + HD^2 = 4R^2$, където Н е ортоцентърът, а R – радиуса на описаната сфера (виж
- 72. Правоъгълен тетраедър Тетраедър, на който трите ръбни ъгли при един от върховете му са прави, **например:** за Фиг. 27 $\alpha = \beta = \gamma = 90^{\circ}$ (виж 24).
 - 72.1. Ако $\alpha = \beta = \gamma = 90^{\circ}$, то и $\alpha_1 = \beta_1 = \gamma_1 = 90^{\circ}$, (Фиг. 27) и обратно.
 - 72.2. Основата (ДАВС от Фиг. 27) е остроъгълен триъгълник.
 - 72.3. Петата на височината на правоъгълния тетраедър съвпада с ортоцентъра на основата.
 - 72.4. Всеки от околните ръбове е перпендикулярен на срещуположната стена.
 - 72.5. Правоъгълния тетраедър е аналог на правоъгълния триъгълник в равнината, затова околните стени се наричат катети, а основата - хипотенуза на правоъгълния тетраедър.
 - 72.6. Аналогичните формули на формула Γ . Φ . (17) е $S_1^2 = B S_1$, $S_2^2 = B$ S_2 , $S_3^2 = B S_3$, където S_1 , S_2 , S_3 са лицата на ортогоналните проекции на околните стени върху <u>равнината</u> на основата. 72.7. Питагорова теорема в пространството – $B^2 = S_1^2 + S_2^2 + S_3^2$ (озна-
 - ченията са от Фиг. 27).
 - 72.8. За височина h на правоъгълен тетраедър е в сила равенството $\frac{1}{h^2} = \frac{1}{a^2} + \frac{1}{h^2} + \frac{1}{c^2}$ (означенията са от Фиг. 27).
 - 72.9. За двустенните ъгли α_0 , β_0 , γ_0 (означенията са от Фиг. 27) е в сила равенството $\cos^2 \alpha_0 + \cos^2 \beta_0 + \cos^2 \gamma_0 = 1$ (виж 25).
 - 72.10.Обем $V = \frac{1}{3} abc \sqrt{\cos \alpha \cos \beta \cos \gamma} = \frac{1}{3} \sqrt{2S_1 S_2 S_3} = \frac{1}{6} abc$ (означенията са от Фиг. 27).
- 73. Правилен тетраедър Всичките му четири стени са еднакви равностранни триъгълници.
 - 73.1. Всичките основни и околни ръбове са равни.
 - 73.2. Всеки ръбен ъгъл при кой да е от върховете е равен на 60° .
 - 73.3. Срещуположните ръбове (основен и околен) са перпендикулярни, т.е. правилна триъгълна пирамида е ортоцентричен тетраедър.
 - 73.4. Сборът от разстоянията от произволна вътрешна точка на тетраедъра до четирите му стени е равен на височината на тетраедъра (виж 26).
 - 73.5. Четирите височини са равни.
 - 73.6. Четирите медиани са равни.
 - 73.7. Ортоцентърът, медицентърът, центровете на описаната и вписаната сфера съвпадат.

73.8. В сила са формулите

$$h=rac{\sqrt{6}}{3}\,a\,;\,d=rac{\sqrt{2}}{2}\,a\,;\,r=rac{\sqrt{6}}{12}\,a\,;\,R=rac{\sqrt{6}}{4}\,a\,;\,V=rac{\sqrt{2}}{12}\,a^3$$
, където а е ръбът

на правилния тетраедър, h – височината, d– най-късото разстояние между два срещуположни ръба (бимедиана), г – радиуса на вписаната сфера, R – радиуса на описаната сфера, V – обема (виж 27 и Зад. 26 от Пирамили).

V. Пресечена пирамида

- 74. Свойства на успоредните сечения (виж 28)
 - 74.1. Всяко успоредно сечение на пирамида е многоъгълник подобен на

74.2.
$$\frac{\mathbf{B}_1}{B} = \left(\frac{h_1}{h}\right)^2 = \left(\frac{A_1D}{AD}\right)^2 = \left(\frac{B_1D}{BD}\right)^2 = \left(\frac{A_1B_1}{AB}\right)^2 = \dots$$
, където В и В₁ са ли-

цата на основата и успоредното сечение, $h_1 = DH_1$, h = DH (Фиг. 27).

74.3.
$$\frac{V_1}{V} = \left(\frac{B_1}{B}\right)^{\frac{3}{2}} = \left(\frac{h_1}{h}\right)^3 = \dots$$
, където V е обемът на пирамидата ABCD, а

 V_{1} – обемът на пирамидата $A_{1}B_{1}C_{1}D$ (Фиг. 27).

- 75. Пресечена пирамила Многостен, върховете, на който са върхове на основата на пирамидата и на нейно успоредно сечение.
 - 75.1. Всяка околна стена е трапец.
 - 75.2. Височина Всеки перпендикуляр от точка в равнината на едната основа към равнината на другата основа.
 - 75.3. Околна повърхнина S Сбора от лицата на околните стени.
 - 75.4. Пълна повърхнина $S_1 = S + B + B_1$, където B и B_1 са лицата на долната и горната основа.
 - 75.5. Обем $V = \frac{H}{3} (B + B_1 + \sqrt{B B_1})$, където H е височината на пресечената
- 76. Правилна пресечена пирамида Пресечена пирамида получена от правилна пирамида. Тя има:
 - 76.1. Равни ръбове на долната и горната основа;
 - 76.2. Равни околни ръбове.
 - 76.3. Всички околни стени и диагонални сечения са равнобедрени трапеци.

обучение по математика, физика, български и английски език, компютър

☎: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

- 76.4. Апотема k височината на всяка околна стена. За апотемата имаме равенството $k^2 = H^2 + (r r_1)^2$, където H е височината на пресечената пирамида; r и r_1 радиуса на вписаната окръжност в долната и горната основа.
- 76.5. Околна повърхнина $S = \frac{P + P_1}{2} k$, където P и P₁ са периметрите на долната и горната основа, k апотема.
- 76.6. Обем същата формула, както обем на пресечена пирамида.
- 76.7. За дължината на околен ръб I имаме следните формули: $I^2 = H^2 + (R$

$$-R_1)^2$$
; $l^2 = k^2 + \left(\frac{b-b_1}{3}\right)^2$, където H е височина, k – апотема, b и b₁ –

дължината на страните на долната и горната основа, R и R_1 – радиусите на описаната окръжност около долната и горната основа.

- 76.8. В правилна пресечена триъгълна пирамида:
 - 76.8.1 Може да се впише сфера;
 - 76.8.2 Съществува сфера която се допира до всички ръбове на пирамидата.

Валчести (Ротационни) тела

А) Сечения на валчесто тяло с равнина

- 77. Осно сечение Сечение на валчесто тяло с равнина, която минава през оста на тялото (Фиг. 28).
- 78. Успоредно сечение Сечение на валчесто тяло с равнина, която е успоредна на основата на тялото (Фиг. 29).

Б) Видове валчести тела

I. Цилиндър

- 79. Кръгов цилиндър Нека да имаме два еднакви кръга k (O, r) и k_1 (O₁, r_1) в успоредни равнини. Тялото получено от всички възможни отсечки съединяващи k и k_1 се нарича кръгов цилиндър (Фиг. 28). Кръговете k и k_1 се наричат основи на цилиндъра, OO_1 ос, I образуваща.
 - 79.1. Височина h Перпендикулярът MM₁ издигнат от произволна точка на едната основа към равнината на другата основа (Фиг. 28).

- 79.2. Връзка между височина и образуваща $\sin \varphi = \frac{h}{l}$, където φ е ъгълът между образуващата и основата (Фиг. 28).
- 79.3. Свойства:
 - 79.3.1 Всички образуващи са успоредни помежду си.
 - 79.3.2 <u>Успоредното сечение</u> е кръг еднакъв на основата.
 - 79.3.3 Всяко <u>осно сечение</u> е успоредник.
 - 79.3.4 Във всеки кръгов цилиндър може да се впише призма.
 - 79.3.5 Около всеки кръгов цилиндър може да се опише призма.
- 79.4. Лице на околна повърхнина

$$S=2\pi\,r\,l=rac{2\pi\,r\,h}{\sin\,arphi}$$
 , където I е образу-

Фиг. 28

ващата, h – височина, r – радиуса на основата, ϕ – ъгълът между образуващата и равнината на основата.

- 79.5. Лице на повърхнината $S_1 = S + 2B = 2\pi r (I + r)$.
- 79.6. Обем V = B $h = \pi r^2 h = \pi r^2 l \sin \phi$.
- 80. Прав кръгов цилиндър Кръгов цилиндър, на който оста OO_1 е перпендикулярна на основата.
 - 80.1. Височина Тя съвпада с оста OO_1 (или образуващата), т.е. $h = l = OO_1$.
 - 80.2. Свойства:
 - 80.2.1 Всички осни селения на прав кръгов цилиндър са еднакви правоъгълници.
 - 80.2.2 Всяко осно сечение се дели от височината OO_1 на два еднакви правоъгълника.
 - 80.2.3 Във всеки прав кръгов цилиндър може да се впише права или правилна призма.
 - 80.2.4 Около всеки прав кръгов цилиндър може да се опише права или правилна призма.
 - 80.3. Лице на околна повърхнина $S = 2\pi rh$.
 - 80.4. Лице на повърхнината $S_1 = S + 2B = 2\pi r (h + r)$.
 - 80.5. Обем $V = B h = \pi r^2 h$.
- 81. Равностранен прав кръгов цилиндър Прав кръгов цилиндър, на който <u>осното сечение</u> е квадрат.

обучение по математика, физика, български и английски език, компютър

🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

адрес: гр.София, ж.к. Надежда, бл. 335

- 81.1. Височина h = I = 2r.
- 81.2. Свойства:
 - 81.2.1 В равностранния цилиндър може да се впише сфера или куб.
 - 81.2.2 Около равностранен цилиндър може да се опише сфера или куб.
- 81.3. Лице на околна повърхнина $S = 2\pi h^2$.
- 81.4. Лице на повърхнината $S_1 = S + 2B = 6\pi r^2 = \frac{3}{2}\pi h^2$.
- 81.5. Oбем $V = Bh = 2\pi r^3 = \frac{1}{2\pi} \pi h^3$.

II. Конус

- 82. Кръгов конус Нека да имаме кръг k (O, r) и точка Q не принадлежаща на равнината на кръга. Тялото образувано от всички възможни отсечки, свързващи т. Q с окръжността се нарича кръгов конус (Фиг. 29). Той има:
- Основа кръга k (O, r).
- Връх точката Q.
- Ос правата QO.
- Образуваща I отсечката свързваща върха с точка от окръжността.
 - 82.1. Височина h Перпендикуляра QH от върха на конуса Q до равнината на основата.
 - 82.2. Свойства Във всеки кръгов конус може да се впише или опише пирамида.
 - 83. Прав кръгов конус Конус, на който оста му е перпендикулярна на основата, т.е. QO = h. 83.1. Свойства:
 - 83.1.1 Осните сечения на прав кръгов конус са еднакви равнобедрени триъгълници. Всеки от тези триъгълници се дели от височината му QO на
 - два еднакви правоъгълни триъгълника.
 - 83.1.2 Успоредно сечение на кръгов конус е кръг (Фиг. 29). Ако с В₁ и В отбележим лицето на сечението и лицето на основата на конуса, а с $h_1 = QH_1$ и h - pascтоянието на сечението до върха на конуса и височината на ко-

нуса, то имаме
$$\frac{B_1}{B} = \left(\frac{h_1}{h}\right)^2 = \left(\frac{r_1}{r}\right)^2$$
, където r_1 и r_1 радиусите на сечението и на основата на конуса.

- 83.1.3 Във всеки прав кръгов конус може да се впише правилна пирамида.
- 83.1.4 Около всеки прав кръгов конус може да се опише правилна пирамида.
- 83.2. Лице на околна повърхнина $S = \pi rl$.
- 83.3. Лице на повърхнината $S_1 = S + B = \pi r (I + r)$.
- 83.4. Обем $V = \frac{1}{2}Bh = \frac{1}{2}\pi r^2h$.

III. Кръгов пресечен конус

- 84. Определение Тяло, което е част от кръгов конус, заключена между основата му и едно негово успоредно сечение (на Фиг. 29 пресечения кръгов конус е ABB₁A₁).
- 85. Осно сечение Осното сечение на кръгов пресечен конус е трапец, а всички осни сечения на прав кръгов конус са еднакви равнобедрени трапеци, всеки от който се разделя от оста на конуса на два еднакви правоъгълни трапеца.
- 86. Лице на околна повърхнина $S = \pi I (r + r_1)$, където I е образуваща, r и r_1 радиусите на основите му.
- 87. Лице на повърхнината $S_1 = S + B + B_1 = \pi I (r + r_1) + \pi r^2 + \pi r_1^2$..където В и В₁ са лицата на основите му.
- 88. Of $V = \frac{h}{3} (B + B_1 + \sqrt{BB_1}) = \frac{\pi h}{3} (r^2 + r_1^2 + r r_1)$.
- 89. В кръгов пресечен конус може да се впише сфера тогава и само тогава, когато височината му е средно геометрично на диаметъра на горната и долната му основа.

В) Сфера и валчесто тяло

- 90. Прав кръгов цилиндър вписан в сфера Ако окръжностите на основите му са сечения на сферата.
 - 90.1. Достатъчно условие Около осното сечение на прав кръгов цилиндър да може да се опише окръжност.
 - 90.2. Около всеки прав кръгов цилиндър може да се опише сфера, защото осното му сечение е правоъгълник.

обучение по математика, физика, български и английски език, компютър

🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

адрес: гр.София, ж.к. Надежда, бл. 335

- 91. Прав кръгов конус вписан в сфера Ако сферата минава през върха на конуса, а окръжността на основата му е селение на сферата.
 - 91.1. Достатъчно условие Около осното сечение на прав кръгов конус да може да се опише окръжност.
 - 91.2. Около всеки прав кръгов конус може да се опише сфера, защото осното му сечение е триъгълник.
- 92. Прав кръгов цилиндър описан около сфера Ако цилиндъра се допира до равнините на основите му, а допирните и точки с околната му повърхнина са голямата окръжност на сферата, която лежи в равнина перпендикулярна на основата му.
 - 92.1. В цилиндър може да се впише сфера тогава и само тогава, когато в осното му сечение може да се впише окръжност..
 - 92.2. Необходимото и достатъчно условие в цилиндър да се впише сфера е височината на цилиндъра да е равна на диаметъра на основата му.
- 93. Прав кръгов конус описан около сфера Ако осното сечение на конуса е описано около голямата окръжност на сферата.
 - 93.1. Във всеки прав кръгов конус може да се впише сфера, защото осното му сечение е триъгълник, а във всеки триъгълник може да се впише окръжност.

Сфера и кълбо

- 94. Сфера Множеството от точки в пространството, които се намират на дадено разстояние R от дадена точка O.
 - Център на сферата точката О.
 - Радиус на сферата разстоянието R.
 - Хорда отсечка, краищата на които принадлежат на сферата.
 - Секуща права, която пресича сферата в две точки.
 - Допирателна правата, която има със сферата точно една обща точка.
 - Диаметър хорда, която минава през центъра и.
 - 94.1. Лице на сфера с радиус $r \in S = 4\pi r^2$.
 - 94.2. Лицата на две сфери се отнасят както квадратите на радиусите, т.е.

$$\frac{S_1}{S_2} = \frac{r_1^2}{r_2^2}$$

95. Кълбо – Множеството от точките на една сфера и всичките и вътрешни точки. Центърът О и радиуса R на сферата се наричат съответно център и радиус на кълбото.

- 95.1. Обемът на кълбо с радиус R е $V = \frac{4}{7} \pi R^3$.
- 95.2. Обемите на две кълба се отнасят както кубовете на съответните им радиуси, т.е. $\frac{V_1}{V_2} = \frac{R_1^3}{R^3}$.
- 95.3. Обем на многостен описан около кълбо $V = \frac{1}{2} r S_1$, където г е радиусът на вписаното кълбо, V – обемът на многостена, S_1 – лицето на повърхнината на многостена.
- 96. Взаимно положение на сфера и равнина
 - 96.1. Допирателна равнина на сферата Равнината, която има една обща точка със сферата. Тази обща точка се нарича допирна точка.
 - 96.2. Сечение между равнина и сфера Ако разстоянието d от центъра О на сферата до равнина λ е по-малко от радиуса R на сферата, то сечението между равнината и сферата е окръжност в равнината λ с център O_1 - ортогоналната проекция O на върху λ и радиус $r_1 = \sqrt{R^2 - d^2}$.
 - 96.3. Голяма окръжност на сфера Сечение на сфера с равнина, която минава през центъра и.

Кабинетна проекция

- 97. Дескриптивна геометрия Равнината има две измерения, а пространството – три измерения. Точното представяне на тримерни обекти върху чертеж с две измерения (равнината на листа) е предмет на изучаване от дескриптивната геометрия. При нея се използва успоредното проектиране.
- 98. Кабинетна проекция Метод за изобразяване на правоъгълен паралелепипед, правилна призма и правилна пирамида. В кабинетната проекция се избира три взаимно перпендикулярни оси х, у и z. Правите ъгли между тези оси се изобразяват като $\angle x0z = 90^{\circ}$, $\angle x0y = \angle y0z = 45^{\circ}$ (Фиг. 30).

адрес: гр.София, ж.к. Надежда, бл. 335 **23**: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

Построения

А) Права минаваща през точка и пресичаща кръстосани прави:

Нека са дадени кръстосаните прави а и b и точката О, нележаща на правите (Фиг. 31). Построяването на права q, която минава през точката и пресичаща кръстосаните прави, се извършва по следния начин:

- Построяваме равнината α, която съдържа една от кръстосаните прави а и точката О – такава равнина съществува;
- 2) Намираме прободната точка M на другата от кръстосаните прави b с равнината α такава точка винаги съществува, ако b и α не са успоредни;

- Построяваме права q, която е единствено определена от точките О и М;
- 4) Тази права q = OM лежи в равнината α и ако не е успоредна на a, я пресича в точка L;
- 5) Правата q е търсената права.

Б) Ос-отсечка на кръстосани прави

Нека са дадени две кръстосани прави а и b (Фиг. 32). Построяваме:

- 1) през произволна точка $A \in b$ права $a' \parallel a;$
- 2) през правите b и а' равнината α;
- 3) на произволна точка Р∈ а проекцията Р₁ върху α;
- 4) в равнината α , през точка P_1 правата $a_1 \parallel a'$;
- 5) в равнината α точката $M=b\cap a_1;$
- 6) през точка M права g || PP₁;
- 7) точка $N = g \cap a$;
- 8) правата MN е ос-отсечка на правите а и b (защото MN \perp а и MN \perp b)

Фиг. 32

В) Кабинетна проекция на правоъгълна четириъгълна призма

- 1) На оста x нанасяме точка $O \equiv A$ и с плътна линия нанасяме отсечката AB с истинските \dot{u} размери.
- 2) На оста у от точка $O \equiv A$ с прекъсната линия нанасяме отсечката AD с размери $AD = \frac{1}{2}AB$.
- 3) На оста z от точка $O \equiv A$ с плътна линия нанасяме отсечката AA_1 с истинските \dot{u} размери.
- 4) Построяваме съответните успоредни прави и получаваме призмата $ABCDA_1B_1C_1D_1$ (Фиг. 33).

Г) Кабинетна проекция на правилна четириъгълна пирамида

- На оста х нанасяме точка О ≡ А и с плътна линия нанасяме отсечката АВ с истинските и́ размери (Фиг.34).
- 2) На оста у от точка О ≡ A с прекъсната линия нанасяме отсечката

$$AD = \frac{1}{2}AB$$

- 3) Построяваме BC || AD, CD || AB и диагоналите на основата AC и BD, кълето O₁ = AC ∩ BD.
- 4) От точка O_1 успоредно на оста z с прекъсната линия издигаме височината на пирамидата $h = SO_1$.
- 5) Съединяваме съответните точки и получаваме пирамидата ABCDS.

Д) Кабинетна проекция на правилна триъгълна пирамида

- 1) На оста х нанасяме точка О \equiv N (Фиг. 35) и с прекъсната линия начертаваме отсечката $NC = \frac{1}{2}b$, където AB = BC = AC = b, а в обратна посока отсечката $NA = \frac{1}{2}b$.
- 2) На оста у от точка О \equiv N с прекъсната линия нанасяме отсечката $NB = \frac{\sqrt{3}}{2}b$ с половината от размера си (в случая Δ ABC е равностранен и затова $h = NB = \frac{\sqrt{3}}{2}b$). Така получаваме основата на равностранния Δ ABC.
- В равностранния ∆АВС начертаваме медианите АМ и СL. Пресечната им точка означаваме с О₁ (петата на височината на пирамидата).
- 4) От точка O_1 издигаме перпендикуляр $O_1S \parallel z$ с истинските му размери (това са размерите на височината на пирамидата).
- 5) Свързваме съответните околни ръбове AS = BS = CS
 = I и апотемата SM
 (която е перпендикулярна на BC защото SM е височина в ΔВСS).
- 6) За да начертаем вписаната в основа-

- та на пирамидата окръжност намираме средите на AO_1 , BO_1 , CO_1 и съединяваме получените точки с точките L, M, N и получаваме елипсата на вписаната окръжност.
- 7) За да начертаем описаната около основата на пирамидата окръжност намираме симетричните точки на точка O₁ спрямо точките L, M, N и ги съединяваме с върховете. Получаваме елипсата на описаната окръжност (Фиг. 33).

E) Кабинетна проекция на правилна шестоъгълна пирамида

- 1) На оста x нанасяме точка O \equiv N и с прекъсната линия начертаваме отсечката $ND = \frac{1}{2}b$, където AB = BC = CD = DE = EF = b, а в обратна посока отсечката $NE = \frac{1}{2}b$.
- 2) На оста у от точка $O \equiv N$ с прекъсната линия нанасяме отсечката $NO_1 = O_1 P = \frac{\sqrt{3}}{2} r$, където r е радиуса на вписаната в основата на пирамидата окръжност, с половината от истинския размер.
- 3) През точка O_1 построяваме права FC перпендикулярна на ED, нанасяме отсечката O_1 F = b и в обратна посока отсечката O_1 C = b с истинския им размер.
- 4) През точка O_1 построяваме правата AB перпендикулярна на ED, нанасяме отсечката $PB = \frac{1}{2}b$ и в обратна посока отсечката $PA = \frac{1}{2}b$ с истинският им размер.
- 5) През точка O_1 построяваме права успоредна на оста z и нанасяме отсечката O_1M с истинският размер на височината на пирамидата.
- 6) Свързваме точките и получаваме съответните околни ръбове, които са равни. Получаваме пирамидата ABCDEFS.
- 7) За да начертаем вписаната в основата на пирамидата окръжност съединяваме средите на основните ръбове на пирамидата. Получената елипса е вписаната окръжност.
- 8) За да начертаем описаната около основата окръжност съединяваме върховете F, A, B, и C на основата с плътна линия, а върховете F, E, D, и C на основата с прекъсната линия. Получената елипса е описаната около основата на пирамидата окръжност.

обучение по математика, физика, български и английски език, компютър

адрес: гр.София, ж.к. Надежда, бл. 335 🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solemabg.com; E-mail: solema@gbg.bg

Ж) Сечение на многостен с равнина

99. Метод на пресечниците — За построяване на сечение на многостен с равнина се използва метода на пресечниците. При него построяваме пресечниците на сечението с всяка от равнините на стените на многостена. Пресечниците са прави и затова е достатъчно да намерим две точки от тях или условия, които ги определят (условие за успоредност, перпендикулярност и др.).

Учебен център "СОЛЕМА" У W W 20 lemaba 20 m