NEAT and HyperNEAT

Michal Pospěch & Daniel Crha March 19, 2019

Faculty of Mathematics and Physics, Charles University

Neuroevolution

Fixed Topology Evolution

- Searching the space of connection weights
- · Topology is given, does not change during evolution

Evolving Topology

- · Technical challenges:
 - good representation
 - not removing non-optimized network to early
 - minimisation of networks without need for a complexity function
- TWEANNs Topology and Weight Evolving Artificial Neural Networks

NEAT

NEAT

- NeuroEvolution of Augmenting Topologies
- Stanley and Miikkulainen, 2002
- · solves all the issues aforementioned issues

Encoding and Mutation

- linear representations of network connectivity
 - 2 types of genes (nodes and connections)
 - · innovation number
 - node
- · 3 types of mutation
 - connection weight mutation
 - · new node
 - new connection

Historical Markings and Crossover

- innovation number
 - new gene via mutation → global innovation number++
 - used to line-up genomes during crossover
- crossover
 - · matching genes randomly
 - · all disjoint and excess genes

Crossover

Speciation

- protection of innovation
- population is divided into species based on compatibility history

$$\delta = \frac{c_1 E}{N} + \frac{c_2 D}{N} + c_3 \overline{W}$$

and compatibility threshold δ_t

 each population is assigned number of offsprings based on sum of its adjusted fitnesses

$$f'_{i} = \frac{f_{i}}{\sum_{j=1}^{n} sh(\delta(i.j))}$$

HyperNEAT

HyperNEAT

some text here some some text here