This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

国際事務局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類 5

C12N 7/01, 15/31, 15/62, C12P 21/02, C07K 7/10, A61K 39/02 // (C12P 21/02, C12R 1:92)

(11) 国際公開番号

WO 94/23019

A1

(43) 国際公開日

1994年10月13日(13.10.94)

(21)国際出願番号 (22)国際出願日 PCT/JP94/00541

· ·

1994年3月31日(31.03.94)

(30)優先権データ

特額平5/74139 特額平5/245625 1993年3月31日(31.03.93.) JP

1993年9月30日(30.09.93)

(71) 出願人(米国を除くすべての指定国について)

日本ゼォン株式会社(NIPPON ZEON CO., LTD.)(JP/JP) 〒100 東京都千代田区丸の内二丁目6番1号 Tokyo,(JP) 塩野義製薬株式会社(SHIONOGI & CO., LTD.)[JP/JP]

〒541 大阪府大阪市中央区道修町三丁目1番8号 Osaka, (JP)

(72) 発明者; および

(75)発明者/出願人(米国についてのみ)

斉藤修治(SAITO, Shuji)(JP/JP)

〒235 神奈川県横浜市磯子区洋光台3-35-8 Kanagawa, (JP)

大川節子(OHKAWA, Setsuko)(JP/JP)

〒222 神奈川県横浜市港北区篠原西町17-13-203

Kanagawa, (JP)

佐伯早木子(SAEKI, Sakiko)(JP/JP)

〒146 東京都大田区東矢口1-16-8 Tokyo, (JP)

大澤郁朗(OHSAWA, Ikuroh)[JP/JP]

〒161 東京都新宿区中落合3-11-11 Tokyo, (JP)

船戸洋乃(FUNATO, Hirono)[JP/JP]

〒340 埼玉県草加市吉町3-3-7 Saitama, (JP)

入谷好一(IRITANI, Yoshikazu)(JP/JP)

〒612 京都府京都市伏見区梁草大亀谷万帖敷町151番地 Kyoto, (JP)

労山茂美 (AOYAMA, Shigemi) (JP/JP)

〒528 滋賀県甲賀郡水口町貴生川370-13 Shiga. (JP)

高振清人(TAKAHASHI, Kiyohito)[JP/JP]

〒520-30 滋賀県栗太郡栗東町小平井71-21 Shiga, (JP)

(74) 代理人

弁理士 茂村 皓,外(ASAMURA, Kiyoshi et al.) 〒100 東京都千代田区大手町2丁目2番1号 新大手町ビル331

Tokyo, (JP)

(81) 指定国

AU, CA, JP, KR, US, 欧州特許(AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類

国際調査報告書

(54) Title : NOVEL POLYPEPTIDE, DNA CODING FOR SAID POLYPEPTIDE, RECOMBINANT VECTOR CONTAINING SAID DNA, RECOMBINANT VIRUS PREPARED USING SAID VECTOR, AND USE THEREOF

(54) 発明の名称

-新規をポリペプチド、同ポリペプチドをコードするDNA、同DNAを含む組み換えペクター、同組み換えペクターを利用した

組み換えウイルス、およびその利用

(57) Abstract

A polypeptide exhibiting the antigenicity of Mycoplasma gallisepticum, a fused polypeptide comprising the above polypeptide and, connected to the N-terminus thereof, a signal membrane anchor of a type II outer-membrane polypeptide of a virus that infects birds, or a polypeptide capable of reacting with a mycoplasma-immune serum or a mycoplasma-infected serum and exhibiting a substantially pure antigenicity, respectively having amino acid sequences of about 32 kDa, about 40 kDa, or about 70kDa. The expression w ith a recombinant virus of a polypeptide modified to such an extent as to exhibit an antigenicity equivalent to that of any of the above polypeptides. The use of a recombinant virus as a live vaccine.

マイコプラズマ・ガリセプティカムの抗原性を示すポリペプチドのN末端側に、鳥類に感染するウイルスのタイプII外膜ポリペプチドのシグはマンカーが連結している融合ポリペプチド、東質的に純粋な抗原性を示すポリスを頂上でですが、約70年ロラムを領別を有するものなど、あのアミノ酸配列を有するものなど、あいるの免疫原性を示す程度にで知がいたがありませる。こと、おりのを組み換えウイスルの生ワクチンとしての利用。

情報としての用途のみ

PCTに基づいて公開される国際出願のパンフレット第1頁にPCT加盟国を同定するために使用されるコード

AM アルメニア	CZ チェッコ共和国	KP 朝鮮民主主義人民共和国	NZ ニュー·ジーランド
	DE ドイツ	KR 大韓民国	PL ポーランド
AT オーストリア		KZ カザフスタン	PT ポルトガル
AU オーストラリア	DK デンマーク		
BB パルバドス	EE エストニア	Ⅱ リヒテンシュタイン	RO ルーマニア
BE ベルギー	ES スペイン	LK スリランカ	RU ロシア連邦
BF プルキナ・ファソ	Fl フィンランド	LT リトアニア	SD スーダン
BG ブルガリア	FR フランス	LU ルクセンブルグ	SE スウェーデン
BJ ペナン	GA ガボン	LV ラトヴィア	SI スロヴェニア
BR ブラジル	GB イギリス	MC モナコ	SK スロヴァキア共和国
BY ベラルーシ	GE グルジア	MD モルドバ	SN セネガル
CA カナダ	GN ギニア	MG マグガスカル	TD チャード
CF 中央アフリカ共和国	GR ギリシャ	ML マリ	TG トーゴ
CG コンゴー	HU ハンガリー	MN モンゴル	TJ タジキスタン
CH スイス	IE アイルランド	MR モーリタニア	TT トリニダードトバゴ
CI コート・ジボアール	IT イタリー	MW マラウイ	UA ウクライナ
CM カメルーン	JP 日本	NE ニジェール	US 米国
CN 中国	KE ケニア	NL オランダ	UZ ウズベキスタン共和国
CS チェッコスロヴァキア	KG キルギスタン	NO /ルウェー	VN ヴィェトナム

明 細 書

新規なポリペプチド、同ポリペプチドをコードする DNA、同DNAを含む組み換えベクター、同組み換え ベクターを利用した組み換えウイルス、およびその利用

技 術 分 野

本発明は、新規なマイコプラズマ・ガリセプティカムに対して抗原性を示すポリペプチド、同ポリペプチドとシグナル膜アンカーとの融合ポリペプチド、およびマイコプラズマ・ガリセプティカムに対して抗原性を示すポリペプチド、特に宿主細胞膜表面に抗原性を示すペプチドを発現することのできる組み換えアビポックスウイルス、並びにその利用に関する。

背景技術

鶏の産卵率や孵化率の低下の原因のひとつにもなっているマイコプラズマ・ガリセプティカム(Mycoー plasma gallisepticum)に対けて抗原性を示すポリペプチドは、抗マイコプラズマ・ガリセプティカム感染症ワクチンの有効成分として利用できると期待されている。現在のところマイコプラズマ製造してプティカムの抗原タンパク質の遺伝子工学的な造は、大腸菌や酵母を用いた系(特開平2-111795号公報など)が知られているが、一般に、菌を用いる系

でのポリペプチドの製造には、第1に抗原発現量が少ない、第2に宿主由来の発熱性物質が取り除けないなどの問題が指摘されており、いまだ実用に供されていないのが現状である。このため、組み換えウイルスを用いた抗原性を示すポリペプチドの製造や組み換え生ワクチンの研究が進められている。しかし、マイコプラズマ・ガリセプティカムに関しては、該タンパク質をコードするDNAを組み込んだ組み換えウイルスが作製されていない。

このようなタンパク質を発現する組み換えウイルスは、 細胞膜表面に呈示されるタンパク質量がきわめてわずか

だったり、タンパク質が細胞表面に全く呈示されないた めに、高い抗体価を誘導することは期待できない。しか し、このようなタンパク質を、遺伝子工学的に細胞膜表 面に多量に呈示させることができれば高い抗体価を誘導 することができると期待される。そこで本来、膜表面に 呈示しないタンパク質を膜表面に呈示させるための研究 がなされており、例えば、タンパク質を細胞膜表面に分 巡させる機能を有するシグナルタンパク質をコードする DNAと分泌したタンパク質を細胞膜表面から離れない ように保持する機能を有する膜アンカータンパク質をコ ードするDNAとを、それぞれ抗原タンパク質をコード するDNAの5′側と3′側に連結させたハイブリッド DNAを組み込んだ組み換えワクチニアウイルスが宿主 細胞膜表面に抗原タンパク質を呈示させたという報告が なされている (J. Virol. 、64、4776-4 783 (1990) *Mol. Cell. Biol. 6、3191-3199(1986))。しかし、これ らの例では、シグナルをコードするDNAと膜アンカー をコードするDNAとを別々に抗原タンパク質をコード するDNAに連結させてるため、組み換えウイルスの作 製が繁雑となり、実用に適しているとはいい難いもので あった。

発明の開示

本発明者らは、かかる従来技術の下で、高い抗原性を

示すマイコプラズマ由来の抗原性を示すポリペプチド、特に多量に細胞膜表面に呈示されるマイコプラズマ・ガリセプティカムに対して抗原性を示すポリペプチド、同ポリペプチドをコードするDNA、同DNAを組み込んだ組み換えウイルス、同ウイルスを利用したワクチンを提供せんとして種々検討の結果、本発明を完成するに到った。

図面の簡単な説明

第1図は、TM-81のオープンリーディングフレームを含むDNA制限酵素切断点地図を、

第2図は、TTM-INおよびTTM-1Cの構成方法を、

第3図は、pNZ7929-R1の構築方法を、

第4図は、pNZ87Nの構築方法を、

第5図は、pNZ7929-R2の構築方法を、

第6図(A)及び第6図(B)は、

p N Z 2 9 2 9 X M 1 の 構 築 方 法 を 、

第7図はTTM-1ポリペプチドのオープンリーディングフレームを含むDNAの制限酵素切断地点地図を、

第8図はTM-67ポリペプチドのオープンリーディングフレームを含むDNAの制限酵素切断地点地図と合成プライマーのORF上の位置を、

第 9 図 (A) および第 9 図 (B) は p N Z 7 9 2 9 - 6 7 の 構築方法を、

第10図はTM-66ポリペプチドのオープンリーディングフレームを含むDNAの制限酵素切断地点地図と合成プライマーのORF上の位置を、

第11図(A)、第11図(B)および第11図(C)はpTM66の構築方法を、

第12図はpNZ7929-66の構築方法を、

第13図はTM-16ポリペプチド全長をコードする DNAの制限酵素切断点地図を、

第14図はTM-16ポリペプチドのオープンリーディングフレームの制限酵素切断点地図を示す。

発明を実施するための最良の形態

本発明の第1の側面では、 であるボッカルには、 では、イマロンでは、イロースでは ・欠損・挿入、付加されたものをいい、例えば、配列番号1を例にとると、同配列のアミノ酸のアミノ酸配列を有する抗原タンパク質と同等の免疫原性を有し、かつ該ポリペプチドのアミノ酸配列との相同性が70%以上、より好ましくは80%以上、更に好ましくは90%以上のものを指称する。本発明でいう相同性は、DNAシーケンス入力解析システム「DNASIS」(発売元:宝酒造(株))により測定されたものを指標とするものである。

尚、以下本明細書において、配列番号を配列と略称することもある。例えば、配列番号1を配列1と称することもある。

更に本発明で使用される抗原性を示すポリペプチドをコードするDNAとしては、マイコプラズマ・ガリセプティカム免疫血清またはマイコプラズマ・ガリセプティカム感染血清と抗原抗体反応を呈し、マイコプラズマ・ガリセプティカムに由来する抗原性を示すポリペプチド、または同等の抗原性を示す限りにおいて、アミノ酸が欠損・付加・挿入・脱落・置換などの修飾を受けているポリペプチドをコードしているものが挙げられる。

また、本発明の第 2 の側面である組み換えアビポックスウイルスは、マイコプラズマ・ガリセプティカムの抗原性ポリペプチドをコードする D N A (以下、抗原 D N A という)または、タイプ I I 外膜タンパク質のシグナル膜アンカーをコードする D N A にマイコプラズマ

・ガリセプティカムの抗原性を示すポリペプチドをコードするDNAを連結させたハイブリッドDNAを組み込んだ組み換えアビポックスウイルスであり、本来は細胞膜表面に呈示されないマイコプラズマ・ガリセプティカムの抗原性を示すポリペプチドを多量に細胞膜表面に呈示させるためにはハイブリッドDNAを用いるのが好ましい。

本発明で第2の側面に係る発明に使用されるというシグナル膜アンカーとは、鳥類に感染するウイルスのタイプ I I 外膜タンパク質を細胞膜表面に輸送し、輸送され

また、発現した抗原タンパク質の細胞膜への呈示を安定させるためには、シグナル膜アンカーのカルボキシ末端側に親水性のペプチドが存在することが有効であるため、シグナル膜アンカーDNAの下流に親水性ペプチドをコードするDNAが付加していることが好ましい。付加するDNAは、10~50アミノ酸好ましくは20~30アミノ酸分の塩基対である。

本発明に係る抗原タンパク質をコードするDNAの具体例として、第1の側面である4つの配列の他、特開平 1-111795号公報に記載されたDNAやその DNAを含むマイコプラズマ・ガリセプティカムのゲノ ムDNA断片、配列番号14に示される配列からなる約 40キロダルトンの抗原性を示すポリペプチド(以下、 TTM-1′ポリペプチドという)をコードするDNA (以下、TTM-1′という)や、TTM-1′とります。 での下、TTM-1という)などが例示される。このTTM-1という)などが例示されたものである。また、該塩基配列によってもにて開示されたものである。また、該塩基配列によってをデすかである。なりに同等の抗原生を示すかがである。なりにおいて配列の一部が置換・脱落・欠損・挿入・付加等によって修飾されたポリペプチドをコードするDNAであってもよい。

このような D N A の採取源としては、マイコプラズマ・ガリセプティカムに属するものであればよく、その具体例として S 6 株 (A T C C 1 5 3 0 2)、 P G 3 1 株 (A T C C 1 9 6 1 0)などが例示される。

本発明の第2の側面において使用されるハイブリッド DNAは、上記シグナル膜アンカーDNAと抗原性を示すポリペプチドをコードするDNAとが連結されたでのであり、本発明の融合ポリペプチドは、前記ハイブリッドDNAによりコードされるポリペプチドであるポリペプチド分子内にシグナル膜アンカー部分と抗原・ハイブリッドDNAは、常法、例えばシグナル膜アンカイブリッドDNAは、常法、例えばシグナル膜アンカーDNAの3、末端と抗原タンパク質をコードするDNAの3、末端と抗原タンパク質をコードするDNAの

の5、末端とが結合可能な制限酵素切断断片となるよう にし、両者をリガーゼで連結する方法や適当なリンカー を挟んで両DNAをリガーゼで連結する方法などにより 作製される。また、シグナル膜アンカーと抗原性を示す ポリペプチドとがひとつのポリペプチドとして発現する 限りにおいてシグナル膜アンカーDNAと抗原性を示す ポリペプチドをコードするDNAとの間に、例えば、親 水性ペプチドをコードするDNA、他の抗原タンパク質 をコードするDNA、リンカーDNAなどが含まれたも のであっても良い。本発明の融合ポリペプチドは、後述 する組み換えアビポックスウイルスを鶏胎児機維芽細胞 (以下、CEF細胞という)や発育鶏卵しょう尿膜細胞 などの培養細胞にて培養し、クロマトグラフィー、塩析 による沈澱、密度勾配遠心等から任意に選択した方法に より、目的とする抗原性を示すポリペプチドが精製され る。こうして得られた融合ポリペプチドは、後述するよ うにコンポーネントワクチンとして用いることができる。

本発明の組み換えアビポックスウイルスは、アビポックスウイルスの非必須領域に上述のDNA又は、ハイブリッドDNAを組み込んだ組み換えアビポックスカイルスである。本発明の組み換えアビポックスウイルスの構築に対してはよい。即ち、まず、アビポックスカイルスの非必須領域を必要に応じて同非必須領域を必要に応じて同非必須によい。

換えベクターが構築される。

本発明で用いるアビポックスウイルスの非必須領域としては、クエイルポックスウイルスのTK遺伝子領域や特開平1-168279号公報に記載されたDNA断片が挙げられ、好ましくは、前記公報記載の約7.3 K b p の E c o R I 断片、約5.2 K b の H i n d I I I 断片、約5.0 K b p の E c o R I ー H i n d I I I 断片、約4.0 K b p の B a m H I 断片と相同組み換えを起こす領域である。

本発明で用いるベクターとしては、例えば p B R 3 2 2、 p B R 3 2 5、 p B R 3 2 7、 p B R 3 2 8、 p U C 7、 p U C 8、 p U C 9、 p U C 1 9 などのプラスミド、λファージ、M 1 3 ファージなどのファージ、p H C 7 9 (Gene, 1 1, 第 2 9 1 頁, 1 9 8 0 年)などのコスミドが例示される。

本発明で用いられるアビポックスウイルスは、鳥類に感染するウイルスであれば特に限定されない。このようなウイルスの具体例としては、ピジョンポックスルルス、アPVといっクスウイルス、アPVといっクスウイルス、カナリーポックスウイルス、モPVであり、より好ましては、ピジョンポックスウイルス、FPVである。とりけましいアビポックスウイルスの具体例としては、

WO 94/23019 PCT/JP94/00541

ATCC VR-251, ATCC VR-249, ATCC VR-250, ATCC VR-229, ATCC VR-288、西ヶ原株、泗水株、CEVA 株 、 C E V A 株 由 来 の ウ イ ル ス の う ち 鶏 肧 繊 維 芽 細 胞 に 感染したときに大きいプラークを形成するウイルス株な どのごときFPVや、NP株 (鶏胎化鳩痘毒中野系株) などのように鶏痘生ワクチン株として使用されるFPV と近縁のウィルスなどが例示される。これらの株はいず れも市販されているなど、容易に入手することができる。 ついで、前記第一の組み換えベクターの非必須領域内 に上述の抗原DNA、またはハイブリッドDNAを組み 込んだ第二の組み換えベクターを構築する。通常、ハイ ブリッドDNAを用いる場合には、その上流にプロモー ターを組み込む。使用されるプロモーターは、合成・天 然を問わずAPVが保有する転写の系でプロモーターと して有効に機能しうるものなら如何なる塩基配列のもの でも良く、チミジンキナーゼをコードする APV遺伝子のプロモーターなどAPV固有のプロモー ターはもちろんのこと、APV以外のウィルス由来の DNAや真核生物もしくは原核生物由来のDNAであっ ても上記条件を満たす限り当然本発明に使用可能である。 このようなプロモーターの具体例としては、例えば J. Virol., 51, 第662~669頁(198 4年)に例示されるようなワクチニアウイルス(以下、 VVと称すこともある)のプロモーター、具体的には7.

5 KポリペプチドをコードするVV DNAのプロモーター、19KポリペプチドをコードするVV DNAのプロモーター、42KポリペプチドをコードするVV DNAのプロモーター、チミジンキナーゼをコードするVV DNAのプロモーター、28KポリペプチドをコードするVV DNAのプロモーターなどが例示される。また、Mossらの文献(J.Mol.Biol., 210,第749~776頁,第771~784頁,1989年)を参考にした合成プロモーター、

また、組み換えウイルスの検出が容易であるという点からβ-ガラクトシダーゼをコードするDNAなどのマーカーDNAも組み込むことができる。

組み換えアビポックスウイルスの作製は、予めアビポックスウイルスを感染させた動物培養細胞に上記の第二

の組み換えベクターを移入し、ベクターDNAとウイルスゲノムDNAとの間で相同組み換えをおこさせればよい。ここで用いられる動物培養細胞は、アビポックスウイルスが増殖可能なものであれば良く、その具体例としてはCEF細胞や発育鶏卵しょう尿膜細胞などが例示される。

宿主細胞に感染しているウイルスからプラークハイブリダイゼーションなどの方法により目的とする組み換え アビポックスウイルスを単離し、更にプラークアッセイ などにより純化することができる。

上記の方法により構築された本発明の組み換えウイルスは抗マイコプラズマ・ガリセプティカム感染症生ワクチンとして鳥類に接種することができる。

本発明の生ワクチンの調製方法は特に限定での方法によって調製される。本発明の方法によってが異常することのでは、知知を言させ、がえいの方法による。とのでは、地域のの方法による。とのでは、地域のの方法により、この世界を登り、は、ないのとは、は、ないのとは、ないのとは、は、ないのとは、ないのではないのでは、ないいのではないいでは、ないのでは、ないのではないのでは、ないのでは、ないのでは、ないのではないでは、ないのでは、ないのではないいでは、ないのではないでは、ないのでは

できる。本発明の生ワクチンの家禽への投与方法は特に 限定されず、例えば皮膚に引っかき傷をつけて生ワクチ ンを接種する方法、注射により接種する方法、飼料や飲 み水に混合して経口投与する、エアロゾルやスプレーな どにより吸入させる方法などが挙げられる。生ワクチン として使用するには、通常の生ワクチンの使用と同様で よく、例えば、ニワトリ1羽当り10~~10°プラー ク・フォーミング・ユニット (以下、PFUという)程 度を接種する。注射により接種する場合、通常 0.1 m1程度の生理食塩水などの等張溶媒に本発明の組み換 えウイルスを懸濁して用いることができる。本発明の生 ワクチンは、普通の条件下で保存、使用することが可能 である。例えば、本発明の組み換えウイルスを凍結乾燥 すれば、室温(20~22℃)での保存が可能である。 また、ウイルスの懸濁液を−20~−70℃下で凍結さ せ、保存することも可能である。

一方、本発明のコンポネントワクチンは、本発明に係る抗原性を示すポリペプチド、特に融合ポリペプチドを有効成分とするものであり、家禽への投与方法は前記生ワクチンと同様である。投与量は、通常、1羽当り1μg~1mg程度である。

かくして本発明によれば、マイコプラズマ・ガリセプティカム抗原性を示すポリペプチド、同ポリペプチドとシグナル膜アンカーとの融合ポリペプチドが得られ、特に、この融合ポリペプチドは抗マイコプラズマ・ガリセ

プティカム感染症ワクチンとして有用である。また、、該 融合タンパク質をコードするDNAを利用することにポリセプティカム抗原性を示することが引いた。 リペプチドを宿主細胞膜表面に呈示することが換えてビポックスウイルスが得られ、 プラズマ・ガリセプティカム。 は銀み換えアビポックスウイルスが得られ、 である。 ポックスウイルスは、強力な抗マイコプラズマ・ガリ ポックスウイルスは、強力な抗マイコプラズマ・ガリー である。 本発明の新規な抗原性を示すポリペプチントワクチンとして利用できる。

実 施 例

以下本発明を実施例および参考例により説明するが、本発明は勿論これらにより限定されるものではない。 参考例 1

マイコプラズマ・ガリセプティカムが発現しているポ リペプチドDNA TTM-1の取得

(1) マイコプラズマ・ガリセプティカム・ゲノムDNA の調製

マイコプラズマ・ガリセプティカムS6株を100m1のPPLOプロス基礎培地に20%馬血清、5%酵母エキス、1%グルコース、およびpH指示薬としてフェノールレッドを微量加えて調製した液体培地で、37℃3~5日培養した。マイコプラズマ・ガリセプティカムの増殖に従って培養液のpHが下がり、培養液に含ま

れている P H 指示薬の呈色が赤から黄に変化した時点で、培養を終了し、培養液を 8 0 0 0 G、 2 0 分間遠心し、集菌した。さらに菌体を培養液の 1 / 1 0 容量の P B S に懸濁し、再び 1 0 , 0 0 0 r p m × G、 2 0 分間遠心し、集菌した。収集菌体を再び 2 . 7 m 1 の P B S に懸濁し、更に、S D S の最終濃度が 1 %となる様に S D S を、さらに 1 0 μgの R N a s e を加え、 3 7 ℃ 3 0 分間インキュベートし溶菌した。

溶菌液を等容量のフェノールで3回抽出しさらに、エチルエーテルで3回抽出を行なった後エタノール沈澱し、マイコプラズマ・ガリセプティカム・ゲノムDNA200μgを得た。

(2) T M - 1 D N A をプローブにしたマイコプラズマ・ ガリセプティカムのゲノミックサザンハイブリダイ ゼーション

上記(1)で取得したマイコプラズマ・ガリセプティカム D N A 1 μgを X b a I で消化し、0.6%低融点アガロースゲル電気泳動に供した。泳動後ゲルをアルカリ変性液(0.5 M Na O H、1.5 M Na C 1)に10分間浸しD N A を変性させ、中和液(3 M 酢酸ナトリウム P H 5.5)に10分間浸して中和の後6倍S S C 液(0.7 M Na C 1、0.07 M クエン酸ナトリウム、 P H 7.5)中でナイロンメンプレンに転写した。風乾の後80℃で2時間焼き付け、4倍SET(0.6 M Na C 1、0.08 M TrisーHC1、

4 m M E D T A、 p H 7. 8) - 1 0 倍
D e n h a r d t - 0. 1 % S D S - 0. 1 %
N a 4 P 2 O 7 - 5 0 μ g / m 1 変性サケ精子D N A と p U M - 1 (特開平 2 - 1 1 1 7 9 5 号参照)を常法に従い標識したものを加えて、 6 8 ℃ 1 4 時間ハイブリダイゼーションをした。ナイロンメンブレンと X 線フィルムを重ね、オートラジオグラフィーで確認したところ、約3. 4 k b p の断片にハイブリダイズしていることを確認した。

(3) X b a I 消化約3. 4 k p b 断片の p U C - 1 9 へのクローニング及びコロニーハイブリダイゼーション

グラフィーで確認したところ、クローニングされていることが判明し、このプラスミドをpUTTM1と名付けた。

 (4) TTM-1がコードするタンパクTTMG1を、 TGAが翻訳終結コドンとして読まれないように改変(TGA→TGG)したTTM-1′の作製(第2図参照)

同様に、 P U T T M - 1 を E c o R I と E c o R V で消化後、 0 . 8 % 低融点アガロースゲル電気泳動に供し、 T T M - 1 の 3 ′ 末端側を含む 0 . 4 k b p の断片をゲルより回収し、フェノール・クロロホルム処理後エタノ

- ール沈澱により回収し、この断片にM13mp10ファージをEcoRIとEcoRVで開裂させた断片とリガーゼにより連結した。この反応溶液から1.1kbpDNAのクローニングと同様の方法で、TTM-1の0.4kbpDNAを含む組み換えファージTTM-1Cを得た。
- (5) 各組み換えファージから一本鎖DNAの調製上記(4)で得られた二種類の組み換えファージについて、100m1の2×YT培地で37℃で増殖している大腸菌TG1にm.o.i.=0.1になるようにそれぞれ加え、37℃で5時間振盪培養後5000Gで30分で30分離し、大腸菌菌体成分を除いた上清を取得する。この上清に0.2倍量のポリエチレングリコール#6000、2.5M NaC1)を加え4℃で1時間置し、カリウム混合溶液(20%ポリエチレングリコール#6000、2.5M NaC1)を加え4℃で1時間置の沈澱を500μ1のTE緩衝液(10mMTrisをの沈澱を500μ1のTE緩衝液(10mMTrisをつた、1mM EDTA、pH8.0)に溶かし、カ換えファージの単鎖DNAを回収した。
- (6) 人工合成オリゴヌクレオチドをプライマーとする位 置特異的変異体の作製

このようにして得られたDNAには、配列の途中に TGAがある。このTGAは、通常の細胞内では、終止 コドンとして認識されてしまい、これより後ろに付加し ている配列を翻訳しなくなる。そこで、TGA部分をメチオニンとして翻訳するようにコドンNNNの第3番目の塩基に当たる塩基アデニンをグアニンに改変するために、次の2つのオリゴヌクレオチドを合成した。

配列17

3 ′ — TACGTTCTTCCTGGCAAACCTTACCACTACTT — 5 ′ 配列 1 8

3 ' - CTACAAAGAACCTAAATATCA - 5 '

配列 1 7 (配列番号 1 7) のオリゴヌクレオチドは TTM - 1 Nの単鎖

DNAと、配列18のオリゴヌクレオチドはTTM-1 Cの単鎖DNAとアニールさせ、Frits

Ecksteinらの方法 (Nuc. Acid Res. 8749-8764、1985) によって、目的の変

異をおこさせて、得られた組み換えファージを各々

TTM-1N′、TTM-1C′と命名した。得られた TTM-1N′、TTM-1C′ファージDNAをそれ ぞれ制限酵素SacI-EcoRI、

E c o R I - B g 1 IIで切断し、0. 8 %低融点アガロース電気泳動によって1. 1 k b p、0. 4 k b p の断片をアガロースゲルより抽出し、エタノール沈澱で回収した。一方プラスミド p U T T M - 1 も S a c I - B g 1 IIで切断し、4. 8 k b p のベクターを含む断片

を 0 . 8 % 低融点アガロースゲル電気泳動から回収し、 エタノール沈澱で回収した。こうして得られた 3 つの断 片をリガーゼにより連結し、かくして連結した3つの断片を用いてコンピテントな大腸菌TG1株を形質転換し、目的の位置に変異がおきたTTM-1′を持つプラスミドpUTTM-1′を得た。TTM-1′の塩基配列は、SangarらのDideoxy 法(Proc. Natl. Acod. Sci. USA、74、5463(1977))によれば配列番号14に示す通りであった。これは、M. gallisepticumの40キロダルトンのTTM-1ポリペプチドと実質的に同一のものである。

参考例2 挿入用ベクターpNZ1729Rの構築 NP株のEcoRI断片(約7.3kbp)を p U C 1 8 の E c o R I 切断部位 (マルチクローニング 部位の末端)に組み込んでプラスミドpNZ133(約 10.0kbp)を得た。このプラスミドから、 HpaI-SpeI断片(約3.0kbpのNP株由来 断片)を切り出し、クレノー(Klenow)断片によ り平滑末端とした。またpUC18からRcoRI-HindIII 断片(52bpのマルチクローニング部 位)を除き、クレノー断片で平滑末端とした。この2つ の断片をつないで、プラスミドとし、HpaI‐ SpeI断片中のEcoRV部位を除いて、そこに pUC18のEcoRI-HindIII 断片(52bp のマルチクローニング部位)をHindIII リンカー (5'-CAAGCTTG-3')とEcoRIリンカ - (5 ′ - G G A A T T C C - 3 ′) を用いて組み込み、 プラスミドpNZ133SRを構築した。

配列2(配列番号2)と配列3(配列番号3)(17 ベースのFVPプロモーターを含み、1acZのための 翻訳開始コドンが連なっている)をアニーリングして2 本鎖にし、lacZ遺伝子(pMCl871及び pMA001由来、Sirakawa et. al., Gene, 28, 127-132, 1984) とアニー リングした配列4(配列番号4)と配列5(配列番号 5)、配列6(配列番号6)と配列7(配列番号7)、 配列8(配列番号8)と配列9(配列番号9)、配列1 0 (配列番号10)と配列11(配列番号11)とを結 合させ(配列3の5′側末端のAGCの次のTから配列 5 の 3 ′ 側末端の G の前の C までに塩基配列 T T T T T TTTTTTTTTTTGGCATATAAA TAATAAATACAATAATTAATTACGC GTAAAAATTGAAAAACTATTCTAAT TTATTGCACTCで示されるポックスウイルスの 合成プロモーターの改変物を含み、さらにマルチクロー ニング部位及び両方向のポックスウイルス初期転写終結 信号(配列番号12) (Yuen et.al., Proc. Natl. Acad. Sci., USA, 88,6417-6421,1989年)が連なってい る)、EcoRI-HindIII 断片(約3.5kbp) を得た。そのEcoRI-HindIII 断片を、pNZ 133SRに挿入し、プラスミド

p N Z 1 7 2 9 R を完成させた。

実施例1

組み換え用プラスミド p N Z 7 9 2 9 - R 1 の構築 (第 3 図参照)

(1) 合成プロモーターとTTM-1′遺伝子を結合したプラスミドpUTTM1Pの構築

参考例 1 で得たTTM-1′ DNA全長を含むプラスミドpUTTM1′ (WO93/24646公報参照)のうちTTM-1′ タンパク質の開始コドンにあたるATGの上流に制限酵素Dral切断部位をつくるために、まず次のオリゴヌクレオチドを合成した。

配列 1 9

3′ーTATAGAATTAAATTTTACTTATTC-5′つぎに、pUTTM-1′を制限酵素SacIとEcoRIで消化後約2300bpの断片を回収し、M13mp10のSacIとEcoRIで開裂させた断片と連結し組み換えファージTTM-1′を得た。上記オリゴヌクレオチドと単鎖TTM-1′とをアニールさせ、Frits Ecksteinらの方法によって目的の変異をおこさせた。この変異組み換えファージDNAを制限酵素SacIとEcoRIで消化後約2300bpの断片を回収し、再びpUTTM-1′をSacIとEcoRIで消化したベクターを含んだ断片にクローニングし、pUTTM1Dを得た。

合成プロモーターは配列-20と配列-21のDNA

を合成し、アニーリングして末端に制限酵素 Hind III とHinc II 切断部位ができるように作製した。

GAAAAACTATTCTAATTTATTGCACTCGTC -3'
CTTTTTGATAAGATTAAATAACGTGAGCAG -5'
Hinc !!

最後に、pUTTM1Dの制限酵素DraIとBg1 II による消化回収断片1200bpと上記合成プロモーターとpUC18のHindIII, BamHI開裂断片を連結し、約4.0kbpのプラスミドpUTTM1Pを得た。

- (2) pNZ7929R1の構築
- (1) において得られたプラスミド p U T T M 1 P を制限酵素 H i n d I I L と K p n I で消化後、約1300 b p の断片を回収する。次に、参考例2で得た F P V 組み換え用ベクター p N Z 1 7 2 9 R (E P A 0520753号)を制限酵素 H i n d I I L と K p n I で開裂させた。この二つの断片を連結し、目的の組み換え用ベクター p N Z 7 9 2 9 R 1 (約10.3kbp)を得た。
- (3) 組み換えFPV fNZ7929-R11の作製 と純化

単層のCEFに鶏痘生ワクチン株であるNP株を

m. o. i. = 0. 1 で感染した。 3 時間後、これらの細胞をトリプシン処理で剝がし、細胞懸濁液とした。この懸濁液の 2 × 1 0 ⁷ 個の細胞と 1 0 μgの組み換え用プラスミドp N Z 7 9 2 9 - R 1 を混合し、

SalineG (0. 14M NaCl, 0. 5mM KCl, 1. 1mM Na₂ HPO₄, 1. 5mM KH₂ PO₄, 0. 5mM MgCl₂ 6H₂ O

0.011%グルコース)に懸濁し、室温においてジーンパルサー(Bio-Rad社)を用いて

3. 0 k V c m⁻¹, 0. 4 msec, 2 5 ℃の条件下でエレクトロポレーションした。プラスミドを導入した細胞を、その後 3 7 ℃, 7 2 時間培養し、3 回の凍結融解によって細胞を溶解し、組み換えウイルスを含むウイルスを回収した。

回で終了する。この純化されたウイルスを f N Z 7 9 2 9 - R 1 と名付けた。 f N Z 7 9 2 9 - R 1 はドットブロットハイブリダイゼーション、サザンブロットハイブリダイゼーションによって、組み込んだ各 D N A の位置を確認した。

実施例2 70Kタンパク質DNAの取得

(1) マイコプラズマ・ガリセプティカム・ゲノムDNAの調製

上記参考例 1 (1) と同様にしてマイコプラズマ・ガリセプティカム S 6 株を用いて、マイコプラズマ・ガリセプティカム・ゲノム D N A 2 0 0 μgを得た。

- (2) ゲノムDNAライプラリーの作製
- (1)で得たマイコプラズマ・ガリセプティカム・ゲノム DNA40μgに制限酵素A1uIを4ユニット加え、37℃、10分間インキュベートして部分切断した。この部分切断したゲノム DNAを 0.8%低融点アガロースゲル電気泳動に供し、約1.0kbp~4.0kbpの鎖長の DNA断片をゲルより回収し、フェノール処理し、さらにエタノール沈澱により 4μgの A1uI部分切断 DNA断片を得た。

A 1 u I 部分切断 D N A 断片 1 . 2 μg に最終濃度 8 0 μ M になるように S - アデノシル - L - メチオニンを添加し、さらに E c o R I メチラーゼを 2 0 ユニット加えて、 E c o R I 認識配列中のデオキシアデノシン部位をメチル化し、当該配列を E c o R I に対し非感受性と

した。このDNA断片にEcoRIリンカーをリガーゼにより接続し、さらにλgtllDNAのEcoRI切断断片と混合しリガーゼで連結した。この反応溶液を用い、常法(DNA Cloning, VOL 1,

い、常法(DNA Cloning, VOL 1, A Practical Approach Edited by D. M. Glover)に従ってインビトローパッケージング(in vitro packaging)を行ない、さらに大腸菌Y1088株(アマシャム社)に形質導入し、5ープロモー4ークロー3ーインドリルーβーDーガラクトピラノシド0.03%、イソプロピルチオーβーDーガラクトピラノトピラノシド0.03mMを含むLB寒天培地で37℃12時間培養した。形成したプラークのうち、白プラーク数でライブラリーサイズを見積り、10°pfu(プラークフォーミングユニット)のDNAライブラリーを作成した。

(3) ゲノムDNAライブラリーのイムノスクリーニング (2) で作製したDNAライブラリーから得たファージを、プラークが1枚の8cmφプレートに500~1000個生じるように、10mM MgSO、水溶液に懸濁した大腸菌Y1090株(アマシャム社)に加え、15分間吸着させた。さらに45℃に加温したLB軟寒天培地を2.5m1加え、LB寒天培地に重層し、42℃で3~4時間インキュベートした。ナイロンメンブレンフィルターを10mM IPTG水溶液に浸し、風乾し

た後、上記プレートに重層し、さらに 3 7 ℃で 2 ~ 3 時 間インキュベートした。インキュベート後、ナイロンメ ンプレンフィルターをプレートより剝し、TBS(50 mM Tris-HClpH8.0,150mM NaCl)でフィルターを洗浄した。さらにフィルター をスキムミルクを2%含むTBSに30分浸したのち、 TBSで500倍に希釈した抗マイコプラズマ鶏血清で 1 時間処理をした。その後、TBSに15分間浸しフィ ルターを洗浄し、フィルターはさらに界面活性剤 (Tween 20)を0.05%含むTBSに10~ - 1 5 分間浸して洗浄した。この工程を 4 ~ 5 回繰り返し た後、フィルターをニワトリIgGに対するビオチン化 抗体で60分間処理した。二次抗体で処理した後、 Tween 20を0.05%含むPBSで5~6回フ ィルターを洗浄、これをさらにホースラディッシュペル オキシダーゼーアビジンD溶液に浸し、60分間処理し た。処理後、Tween 20を0.05%含むPBS で5~6回フィルターを洗浄し、さらに、pH8.0の 10mMTris-HC1で洗浄後、フィルターを4-クロロナフトール及び過酸化水素水を含むバッファーに 浸した。これら一連の操作によりマイコプラズマ・ガリ セプティカム由来の抗原蛋白を発現しているプラークだ

約 5 × 1 0 ⁴ プラークを上記イムノスクリーニングすることで 5 0 個のポジティブなプラークが得られた。

けが紫色に発色した。

(4) イムノポジティブ組み換えλgtllファージDNAの調製

大陽菌 Y 1 0 9 0 株をアンピシリン5 0 μg/m 1 を 含む L B 培地で 3 7 ℃、 1 2 時間前培養し、培養液を 1 0倍容量の10mM MgSO4含有LB培地に加えた。 次いで(3)で得たイムノスクリーニングでポジティブ となった組み換えλgtllファージをm. o. i. = 0. 05になるように加え、37℃で5~10時間培養 した。大腸菌を溶菌後、8,000rpm、10分間遠 心し、上清を得、この上清に等容量のTMバッファー (50 m M Tris - H C 1 p H 7. 4, 10 m M $MgSO_4$) および 0. 0 1 6 mg/m 1 になるように DNase Iを加え、15分間インキュベートした。 これに 0. 5 Mになるように Na C 1 を、また、 0. 1 g/m1になるようにポリエチレングリコール (PEG 6 0 0 0) を加え、0℃で1 5 分間振盪した。これを1 0,000rpmで10分間遠心して上清を除き、得ら れたペレットを1/100容量のTMバッファーに溶解 し、さらに等容量のクロロホルムを加え激しく攪拌した。 15,000rpmで10分間遠心し組み換えλgt1 1ファージを水層に集め、ファージ液を得た。

上記ファージ液に最終濃度がそれぞれ 0.025 M、 1%、1mg/m1になるようにEDTA、SDS、プロナーゼEを加え、37℃で4時間インキュベートした 後、液をフェノール抽出し、エタノール沈澱でクローン 化抗原 D N A (M - 8 1) を含む λ g t 1 1 ファージ. DNAを得た。

- (5) 組み換えプラスミド(pM-81)の作製
- (4) で得た組み換えλg t 1 1 ファージ D N A を制限 酵素EcoRIで消化後、0.8%低融点アガロースゲ ル電気泳動に供した。入gt11ファージのゲノム DNAのクローニングサイトに組み込まれたマイコプラ ズマ・ガリセプティカムのゲノムDNA断片は約2.8 k b p の鎖長を示した。この D N A 断片をアガロースゲ ルより抽出し、さらにフェノール・クロロホルム(1: 1)で抽出し、エタノール沈澱で回収した。一方、プラ スミドpUC18を同じくEcoRIで消化した後、フ ェノール・クロロホルムで抽出し、エタノール沈澱によ り開裂したpUC18を回収した。次いで5′末端リン 酸をアルカリフォスファターゼ処理により除去し、 p U C 1 8 D N A を再びフェノール・クロロホルム抽出

後、エタノール沈澱によってDNAを回収した。

開 裂 した p UC18とマイコプラズマ・ガリセプティ カム・ゲノム由来の前記EcoR I 消化物 (約0 8 k b p)をリガーゼにより連結し、かくして連結した断 片でコンピテントな大腸菌TG1株を形質転換し、5-プロモー 4 - クロロー 3 - インドリルー 8 - D - ガラク トピラノシド0.003%、イソプロピルチオー8-D - ガラクトピラノシド 0. 0 3 m M 、 4 0 μ g / m 1 ア ンピシリンを含むLB寒天培地で37℃、15時間培養 した。寒天培地上に生育した形質転換大腸菌のうち白コロニーを40μg/mlアンピシリンを含む LB液体培地で37℃、15時間培養し、ビルンボイムとドーリーの方法[Nuc.Acid Res.7 1 513~(1979)]でプラスミドを抽出し、 EcoRIで消化後、0.8%低融点アガロース電気泳動によって、もとのマイコプラズマ・ガリセプティカム・ゲノム由来のEcoRI断片と同じ長さのDNA断片を含む組み換えプラスミドを検出し、これをpM-81と命名した。

(6) M-81 DNAをプローブにしたマイコプラズ マ・ガリセプティカムのゲノミックサザンハイブリダ イゼーション

上記(5) で取得したpM81 1 μgをEcoRIとHindIIIで消化し、0.6%低融点アガロースゲル電気泳動に供した。泳動後ゲルをアルカリ変性液(0.5 M NaOH、1.5 M NaC1)に10分間浸しDNAを変性させ、中和液(3 M酢酸ナトリウムpH5.5)に10分間浸して中和の後6倍SSC液(0.7 M NaC1、0.07 Mクエン酸ナトリウム、pH7.5)中でナイロンメンブレンに転写した。風乾の後80℃で2時間焼き付け、4倍SET(0.6 M NaC1、0.08 M Tris-HC1、4 m M EDTA、pH7.8)-10倍Denhardt-0.1% SDS-0.1%Na4 P2 O7-50μg/

m 1 変性サケ精子DNAとpM-81 (このプラスミド内にM-81遺伝子が含まれている)を常法に従い標識したものを加えて、68℃14時間ハイブリダイゼーションをした。ナイロンメンブレンとX線フィルムを重ね、オートラジオグラフィーで確認したところ、M-81はマイコプラズマ・ガリセプティカムの約5.0kbpの断片にハイブリダイズしていることを確認した。

(7) EcoRI、HindIII 消化約5. 0 k b p 断 片のp U C 1 9 へのクローニング及びコロニーハイブ リダイゼーション

このプラスミドをpUM-81と名付けた。

(8) p U M - 8 1 インサートD N A の配列分析

上記(7)で作製したpUM-81内に挿入された約5.0kbpの断片の配列をSangerらのDideoxy法によって解析した。

この断片中に存在するオープンリーディングフレーム (以下ORFという)の制限酵素切断点地図を第1図に 示し、このORFの塩基配列及びそれから推定されるア ・ミノ酸配列を配列番号1に示す。このORFから推定さ れるポリペプチドをTM-81ポリペプチドと命令した。 実施例3

シグナル膜アンカーDNAの下流にTTM-1′タンパク質DNAが連結したハイブリッドDNAを有する組み換えFPVの構築

(1) 合成プロモーターのpUC18へのクローニング (第4図参照)

両端にHindІІ とBamHIの制限酵素切断部位をもつ次のような合成プロモータを合成した。

Hind E

GTAAAAATTGAAAAACTATTCTAATTTATTGCACTCG -3'
CATTTTTAACTTTTTGATAAGATTAAATAACGTGA<u>GCCTAG</u> -5'
Bamhi

この合成 D N A と p U C 1 8 の H i n d I I I , B a m H I 開裂断片と連結し、約 2 . 8 k b p のプラス ミドpUC18Pを得た。

(2) NDVのHNタンパク質をコードする遺伝子と合 成プロモーターの連結(第4図参照)

NDVのHN遺伝子を持つプラスミドXLIII - 10HをSacIで完全消化後、AvaIIで部分消化して約1800bpの断片を0.8%低融点アガロースゲル電気泳動によって回収した。この断片のAvaII側にBamHI切断部位を作るため下記のDNAを合成した。

BamHI AvaII

配列 — 24 5' — GATCCAGCATG — 3'

配列 - 25 3'- GTCGTACCTG-5'

この合成DNAとHNを含む約1800bpのDNA断片と、pUC18PをBamHIおよびSacIで完全消化後、2.0%低融点アガロースゲル電気泳動によって回収した合成プロモーターを含む断片の三断片をリガーゼで連結させて、これら三断片が連結したプラスミドを抽出し、得られた約4.6kbpのプラスミドをpNZ87Nと命名した。

(3) pNZ 7 9 2 9 - R 1 の A 1 u I 切断点の
 E c o R I 切断点への変換(第 3 図および第 5 図参照)
 配列番号 1 4 の 2 7 9 塩基部分の制限酵素 A 1 u I 切断部位を E c o R I 切断部位に変換するために以下のオリゴヌクレオチドを合成した。

配列-26 5'- GGGATTTCGAATTCTATGTCT - 3'p U T T M 1 P を H i n d III, K p n I で消化後約13

00bpの断片を回収し、M13mp10のHind
III. KpnIで開裂させた断片と連結し単鎖組み換えファージを得た。上記オリゴヌクレオチドと単鎖組み換えファージとをアニールさせ、Frits
Eckstein等の方法によって目的の変異をおこさせた。この変異組み換えファージDNAを制限酵素
HindIII. KpnIで消化後約1300bpの断片を回収し、これとpNZ1729Rを制限酵素HindII
I. KpnIで開裂させた断片とをリガーゼにより連結し、pNZ7929-R1のA1uI切断点がEcoR
I切断点へと変換されたプラスミドpNZ7929-R
2(約10.3kbp)を得た。

(4) 組み換えFPV用プラスミドpNZ2929XM1の構築(第6図(A)及び第6図(B)参照)

まず、PNZ87Nを制限酵素Xbalで完全消化し、クレノーフラグメントで切断点を平滑末端にした後EcoRIリンカー(5'ーGGAATTCCー3')を加えてリガーゼで連結した。このプラスミドをEcoRI、HindIIIで消化して約300bpの断片を1.2%低融点アガロースゲル電気泳動によって回収した。次に、PNZ7929R2を制限酵素EcoT22Iで消化し、EcoRIで部分分解し、TTM-1DNAの一部である約550bpの断片を0.8%低融点アガロースゲル電気泳動によって回収し

た。また、pNZ 7 9 2 9 R 1 を制限酵素 E c o T 2 2 I, H i n d III で消化し、約 9. 4 k b p の断片を 0. 8 % 低融点アガロースゲル電気泳動によって回収した。これらの断片をリガーゼにより連結し、上記の三断片が連結したプラスミドを抽出し、得られた約 1 0. 3 5 k b p のプラスミドを p N Z 2 9 2 9 X M 1 と命名した。

(5) 組み換えFPV fNZ2929XM1の作製と 純化

実施例 1 (3) と同様の方法で構築、純化した。この純化されたウイルスを f N Z 2 9 2 9 - X M 1 と名付けた。 f N Z 2 9 2 9 - X M 1 はドットブロットハイブリダイゼーション、サザンブロットハイブリダイゼーションによって、組み込んだ各 D N A の位置を確認した。実施例 4

f N Z 7 9 2 9 - R 1 と f N Z 2 9 2 9 X M 1 感染細胞における T T M - 1 ポリペプチドの発現

f N Z 7 9 2 9 - R 1 と f N Z 2 9 2 9 X M 1 が
T T M - 1 ポリペプチドを感染細胞中で発現することを
調べるために抗マイコプラズマ・ガリセプティカムS 6
株血清を用いた免疫蛍光抗体法を行った。 f N 7 9 2 9
- R 1 および f N Z 2 9 2 9 X M 1 を C E F に感染させ、
3 7 ℃でプラークが出現するまで培養後冷アセトンで固定し、マイコプラズマ・ガリセプティカムS 6 株で免疫した鶏血清(抗S 6)またはマイコプラズマ・ガリセプ

ティカムS 6 株感染鶏血清(S 6 感染)及びTTM-1ポリペプチド免疫鶏血清(抗TTMG-1)を一次抗体として100~1000倍に希釈して反応させた。これらの培養細胞をさらに、蛍光物質(F I T C)を結合分を洗がった。 た抗鶏イムノグロブリンと反応で、 造したのち蛍光励起波長光で顕微鏡観察にしたが、アセトン固定を行わなかった感染細胞(即ち、かけいても同様に反応性を調べた。対照平1-157381)を用い、対照一次抗体としてニュースルス免疫鶏血清(抗NDV)とSPF鶏血清(SPF)を1000倍で用いた。反応性は表1に示した。

表し	組み終えウィ	ルス感染CE	Pの各種抗血清に対する反応性
----	--------	--------	----------------

Edith.A.d.	/~L1 v@cb - '		一次抗体にたいする反応性								
感染/1//X	(7th)固定 の有無)	DTS6	感染\$6	抗TTM-1	拉NDV	SPF					
INZ2929XM	1(アセトン固定)	++	++	++	_	_					
	(未固定)	+	+	+	_	_					
fNZ7929-R1	(アセトン固定)	+	+		_	_					
	(未固定)	±	±	±	_						
fNZ2337	(アセトン固定)	_	-	_	+	_					
	(未固定)	-	_	-	+	_					
NP	(7七)/固定)	~	_	<u> </u>	_	_					
	(未固定)	_		_	_	_					
_	(7比)固定)	-	_	_	_	_					
	(未固定)	_	_	_		_					

++:強く反応 +:反応 士:弱く反応 -:反応しない

この結果から、本発明の組み換えウィルスである f N Z 7 9 2 9 - R 1 および f N Z 2 9 2 9 X M 1 が感染した細胞は、抗S6、S6感染、抗TTM-1に反応する。また、f N Z 7 9 2 9 - R 1 は未固定の完成細胞においても抗S6、S6感染、抗TTMG-1 と反応することがわかった。このことは f N Z 2 9 2 9 X M 1 はTTMG-1 ポリペプチドを感染細胞中で発現しているはかりではなく、感染細胞表面にTTM-1 ポリペプチドを呈示させていることを示している。

実施例5

組み換えFPV接種鶏の抗体誘導能

f N Z 7 9 2 9 - R 1 および f N Z 2 9 2 9 X M 1 を

CEFで37℃,48時間培養後、二回凍結融解を繰り 返し、細胞浮遊液を回収し、ウイルスタイターが10° pfu/mlとなるように調製したのち生後7日のSP F 鶏(Line M, 日本生物科学研究所)の右翼膜に穿刺 用針で10μ1接種した。接種後全鶏発痘を観察し、接 種から2週後に血清を採取した。採取した血清の抗体価 はELISA法で測定した。精製したTTM-1ポリペ プチドを1μg/wellとなるようにバイカーボネートバ ッファーに溶解し、96wellマイクロタイタープレート に吸着させた後、スキムミルクでプロッキングを行って その後の非特異的吸着を防いだ。次に各ウェルに被検血 清の希釈液をのせたのちホースラディッシュパーオキシ ダーゼ結合抗鶏イムノグロブリン抗体 (ウサギ抗体)を 二次抗体としてのせた。充分洗浄したのち、基質として 2, 2′-アジノジエチルーベンズチアゾリンスルフォ ネートを加え、イムノリーダーで405nmの波長光に 対する吸光度で抗体の相対希釈倍率を測定した。なお、 対照一次抗体には、抗TTM-1ポリペプチド鶏血清を 用いた。結果は表2に示す。

表 2 「NZ2929XN1接種鶏のTTM-1ポリペプチドに対する抗体価

接種ウィルス	抗TTM-1 ポリペプチド抗休価(希釈倍率)*	
fNZ2929XM1	256	
fNZ7929-R1	32	
NP	1	
_	1	
抗TTM-1 ポリベプチド	256	

* SPF 鶏血清を1 としたときの希釈倍率

非接種

この結果から、本発明の組み換えウイルスである、 fNZ2929XM1もfNZ2929-R1も共に抗 TTM-1ポリペプチド抗体を誘導でき、鶏痘とマイコ プラズマ・ガリセプティカム感染症に対して効果的に感 染を防御するワクチンとして使用することができること が判った。

実施例6

T M - 6 7 を有する組み換えアビポックスウイルス f N Z 7 9 2 9 - 6 7 の取得

(1) TM-67遺伝子をプローブにしたマイコプラズマ・ガリセプティカムのゲノミックサザンハイブリダイゼーション

参考例(1) で取得したマイコプラズマ・ガリセプティカム D N A 1 μgを X b a I で消化し、0.6%低融点アガロースゲル電気泳動に供した。泳動後ゲルをアルカリ変性液(0.5 M N a O H、1.5 M N a C 1)に10分間浸し D N A を変性させ、中和液(3 M 酢酸ナ

トリウムpH5. 5)に10分間浸して中和の後6倍 SSC液(0.7M NaCl、0.07Mクエン酸ナ トリウム、pH7. 5) 中でナイロンメンブレンに転写 した。風乾の後8.0℃で2時間焼き付け、4倍SET (0.6M NaCl, 0.08M Tris-HCl, 4 m M E D T A 、 p H 7 . 8) - 1 0 倍 Denhard t = 0.1% SDS = 0.1%Na4 P2 O7 - 5 0 µg/m1変性サケ精子DNAと p U M - 1 (特開平 2 - 1 1 1 7 9 5 号参照)を常法に 従い標識したものを加えて、68℃14時間ハイブリダ イゼーションをした。ナイロンメンブレンと X 線フィル ムを重ね、オートラジオグラフィーで確認したところ、 参考例 1(2) で確認された断片とは異なる約 3. 4 k b p の断片にハイブリダイズしていることを確認した。 (2) X b a I 消化約3. 4 k p b 断片の p U C - 1 9 へのクローニング及び配列分析

参考例 1 (1) で取得したマイコプラズマ・ガリセプティカム D N A 4 μgを制限酵素 X b a I で消化後、0.6%低融点アガロースゲル電気泳動後、上記実施例6(1) で確認した約 3.4 k b p の断片を回収した。この断片を、 X b a I 消化によって開裂した p U C − 1 9 とリガーゼによって連結し、コンピテントな大腸菌 T G 1 株を形質転換し、5 − ブロモー4 − クロロー3 − インドリルーβ − D − ガラクトピラノシド 0.0 3%、イソプロピルチオーβ − D − ガラクトピラノシド

0.03 m M、40μg/m1アンピシリンを含むLB 寒天培地で37℃、15時間培養した。この培地上に生育した形質転換大腸菌のうち白コロニーを40μg/m1アンピシリンを含むLB液体培地で37℃、15時間培養し、ビルンボイムとドーリーの方法でプラスミドを抽出し、ΧbaIで消化後0.8%低融点アガロース電気泳動によって、元のMGのXbaI断片と同じ長さを含む組み換えプラスミドを検出し、pUM67と名付けた。

pUM67内に挿入された約3.4kbpの断片をSangerらのDideoxy法によって解析した。この断片中に存在するオープンリーディングフレーム(ORF)の制限酵素地図を第8図に示し、このORFの塩基配列及びアミノ酸酸配列を配列番号27に示す。このORFから推定されるポリペプチドをTM-67と命名した。

(3) TM-67のORFのTGAが翻訳終結コドンとして読まれないように改変(TGA→TGG)した遺伝子を含むプラスミドpTM67の作製(第8図および第9図(A))

TM-67のORFの下流部分にTGAコドンが集中しているので、全てのTGAコドンを含むEcoRI、Pst I断片約1300bpをpUM67から回収し、EcoRIとPst Iで開裂させたpUC19に連結し、PUCT1(4.0kbp)を取得した。次に、PUCT1を鋳型とし、TGAをTGGにポリメラーゼチェー

ンリアクション法(PCR法: Science, <u>230</u>, 1350~1354(1985))にて変換させるため に配列番号28~33に示すPCR法用プライマーDN Aを合成した。

PCR法に使用した配列番号28~33に相当するプライマー1~6は以下の通りである。

- 28 J517--1 5'-GTTTTCCCAGTCACGAC-3' (M13 primer)
- 2 9 J777--2 3'-AACCAACCAACCGCGATCGCTAGTCT-5'

Nhe I

8 0 プライマー-3 5'-TGATTGGGCGCTAGCGATCA-3'

Nhe I

3 1 J777--4 3'-TCCCAACCTTGTTCGAAATACAA-5'

Hind III

3 2 7717-5 5'-TGAAACAAGCTTTATGTTT-3'

Hind II

3 3 7747--6 3'-CAGTATCGACAAAGGAC -5' (M13 RV primer)

P C R 法の常法に従い、プライマー1とプライマー2を用いて600bpの断片、プライマー3とプライマー6を用いて360bp、プライマー5とプライマー6を用いて340bpの断片を増幅後回収した。さらに、600bpの断片をE c o R I と N h e I で消化、360bpの断片をN h e I と H i n d III で消化、340bpの断片をH i n d III と P s t I で消化、それぞれ

0 % 低 融 点 ア ガ ロ ー ス ゲ ル 電 気 泳 動 に 供 し ア ガ ロ ー スから回収した。各断片をクローニングするため、pU C 1 9 及び p U C 1 8 を D r a I で開裂させた後、 x h o I リンカーを挿入したプラスミドp U C 1 9 X、 p U C 1 8 X も取得した。各制限酵素で処理回収した 6 0 0 bpの断片及び360bpの断片と、pUC19XをE coRlとHindIII で開裂させて得られた断片とを リガーゼにより連結し、得られたプラスミドを抽出しこ れをpUC19XL(約3.6kbp)と命名した。H ind III とPst I で消化した340 b p 断片は、p UC18をHindIIIとPst Iで開裂させて得られ た断片とリガーゼにより連結し得られたプラスミドを抽 出し、これをpUC18R(約3kbp)と命名した。 p U C 1 9 X L を H i n d I I l と X h o I で 消化 した 約 2. 5kbpの断片と、pUC18RをHindIIIと SpeIで消化した180bpの断片とpUC18Xを、 X b a I と X h o I で消化した 1 . 1 k b p の断片を、 それぞれアガロースゲル電気泳動に供した後回収し、こ れらをリガーゼで連結し、得られたプラスミドを抽出し、 これをp T M 6 7 (約3. 7 k b p) を取得した。 p N Z 7 9 2 9 - 6 7 の構築(第 9 図 (B))

実施例 1 (1) で得られた p U T T M 1 P を S p e I と K p n I で消化後アガロースゲル電気泳動に供し、
3. 9 k b p の断片を回収した。同様に p T M 6 7 も S p e I と K p n I で消化後アガロース電気泳動に供し、

0.9 k b p の断片を回収、これを前記3.9 k b p 断片とリガーゼにより連結し、得られたプラスミド、p U T M 6 7 (4.8 k b p) を回収した。さらにこのp U T M 6 7 を K p n I 消化後、 H i n d III で部分消化し、アガロースゲル電気泳動に供し、 2.1 k b p の断片を回収し、この断片を p N Z 1 7 2 9 R (参考例2 参照)の H i n d III と K p n I で開裂させて得られた9.0 k b p の断片とリガーゼで連結し、プラスミドp N Z 7 9 2 9 - 6 7 (11.1 k b p) を取得した。

(5) 組み換えアビポックスウィルス

f N Z 7 9 2 9 - 6 7 の作製と純化

上記(4) で得たpNZ 7 9 2 9 - 6 7 を用い実施例 1 (3) と同様の操作を繰り返し、fNZ 7 9 2 9 - 6 7 を 取得した。

実施例7

T M - 6 6 を有する組み換えアビポックスウイルス f N Z 7 9 2 9 - 6 6 の取得

(1) TM-66遺伝子をプローブにしたマイコプラズマ・ガリセプティカムのゲノミックサザンハイブリダイゼーション

参考例 1 (1) で取得したマイコプラズマ・ガリセプティカム D N A 1 μgを X b a I で消化し、 0 . 6 % 低融点アガロースゲル電気泳動に供した。泳動後ゲルをアルカリ変性液(0 . 5 M N a O H 、 1 . 5 M N a C 1)に 1 0 分間浸し D N A を変性させ、中和液(3 M 酢酸ナ

トリウムp H 5 . 5)に1 0 分間浸して中和の後 6 倍 S S C 液 (0 . 7 M N a C 1 、 0 . 0 7 M クエン酸ナトリウム、p H 7 . 5)中でナイロンメンプレンに転写した。風乾の後 8 . 0 ℃で 2 時間焼き付け、 4 倍 S E T (0 . 6 M N a C 1 、 0 . 0 8 M Tris − H C 1 、 4 m M E D T A、p H 7 . 8) − 1 0 倍 D e n h a r d t − 0 . 1 % S D S − 0 . 1 % N a ₄ P ₂ O γ − 5 0 μ g / m 1 変性サケ精子 D N A と p U M − 1 (特開平 2 − 1 1 1 7 9 5 号参照)を常法に従い標識したものを加えて、 6 8 ℃ 1 4 時間ハイブリダイゼーションをした。ナイロンメンプレンと X 線フィルムを重ね、オートラジオグラフィーで確認したところ、約 6 . 3 k b p の断片にハイブリダイズしていることを確認した。

(2) X b a I 消化約 6. 3 k b p 断片の p U C - 1 9
へのクローニング及び配列分析

参考例 1 (1) で取得したマイコプラズマ・ガリセプティカム D N A 4 μ g を制限酵素 X b a I で消化後、0.6%低融点アガロースゲル電気泳動後、上記実施例7(1) で確認した約 6.3 k b p の断片を回収した。この断片を、 X b a I 消化によって開裂した p U C − 1 9 とリガーゼによって連結し、コンピテントな大腸菌TG1株を形質転換し、5 − ブロモー4 − クロロー3 − インドリルーβ − D − ガラクトピラノシド 0.03%、イソプロピルチオーβ − D − ガラクトピラノシド 0.03

m M、40μg/m1アンピシリンを含むLB寒天培地で37℃、15時間培養した。この培地上に生育した白コロニーをナイロンメンブレンに転写し、上記(1)と同様の方法でハイブリダイゼーションを行ない、オートラジオグラフィーで確認したところ、クローニングされていることが判明し、このプラスミドをpUM66(約9kbp)と名付けた。

pUM66内に挿入された約6.3kbpの断片をSangerらのDideoxy法によって解析した。この断片に存在するORFの制限酵素地図を第10図に示し、このORFの塩基配列およびアミノ酸配列を配列番号16に示す。

このORFから推定されるポリペプチドをTM-66 と名付けた。

 (3) TM-66をコードするORFのTGAが翻訳終 止コドンとして読まれないように改変 (TGA→TGG)したpTM66の作製 (第10図および第11図 (A)~(C))

TM-66000RFのTGAコドンをTGGコドンに 改変するにあたって、TM-67と同様ポリメラーゼチェーンリアクション法(PCR法:Science、2 30、1350 1354(1985))を用いて変換 した。変換用に合成したPCR法用PNAプライマーを 配列番号34~43に示す。

PCR法を使用した配列番号34~43に相当するプ

ライマー1~10は以下の通りである。

プライマーー1 5'-CAGGAAACAGCTATGAC-3'(M13 RV primer)

プライマー-2 3'-GTTCTTCCTGGCAAACTTTA-5'

Ava II

プライマー-3 5'-AAGAA GGACCGTTTGGAATG-3'

Ava II

プライマー-4 5'-GTTTTCCCAGTCACGAC-3' (M13 primer)

プライマー-5 3' -CAAAGTACCTAAATATCGAATTCACCT-5'

Afl II

プライマー-6 5' -ATAGCTTAAGTGGAACAAACACG-3'

Afl II

プライマー-7 3'-GGAACCAGATCTTGTTTCCC-5'

Xba I

プライマー-8 5'-GG<u>TCTAGA</u>ACAAAGGGATTGGACA-3'

Xba I

プライマー9 3'-CTACCTACCATGGTGATGAT-5'

Kpn I

プライマー-10 5'-GAT<u>GGTACC</u>ACTACTATTTCATGGACA-3'
Kpn I

p U M 6 6 を B g 1 II と S p e I で消化し、約1. 2 k b p の断片を 0. 5 %低融点アガロースから回収し、B a m H I と X b a I で開裂させた p U C 1 9 にリガー

ぜによって連結し、 p U C T 2 (3.9 k b p) を取得した。 次に p U C T 2を鋳型とし、プライマー1とプライマー2を用い P C R 法の常法に従い約620bpの断片、プライマー3とプライマー4を用い約550bpの断片を増幅後、回収した。さらに、約620bpの断片をH i n d III と A v a IIで消化、550bpの断片をA v a IIとB a m H I で消化し、これら断片とH i n d III と B a m H I で開裂させた p U C 19とそれぞれリガーゼで連結し得られたプラスミドを抽出し、 p U C 19ー1 (3.9 k b p) と命名した。

ガーゼにより連結し、TM-66のORFの5′側2ヶ 所のTGAコドンが、TGGに変更された断片を含むプ ラスミドpUC19Lを取得した。

TM66のORFの3′側2ケ所のTGAコドン をTGGに偏向するため、まずpUM66をEcoRI とRvuIIで消化し約1720bpの断片を0.6%低 融点アガローズゲールから回収し、pUC19をEco RIとHincIIで開裂させたpUC19と連結させ、 プラスミドpUCT3(約4. 4Кbp)を取得した。 PUcT3を鋳型にプライマー4とプライマー7を用い、 PCR法の常法に従い約820bpの断片を、また、プ ライマー8とプライマー1を用い約900bpの断片を PCR法の常法に従いそれぞれ増幅後回収した。この8 20bpの断片を、EcoRIとXbalで消化し、こ の消化物にXbalをHindIII で消化した上記約 9 0 0 b p の断片とH i n d III とE c o R I で開裂した p U C 1 9 とをリガーゼで連結させてプラスミドp U C T 4 (約4. 4 k b p) を取得した。次にp U C T - 4 を鋳型として、プライマー4とプライマー9を用いPC R法の常法に従い約880bpの断片を、pUCT3を 鋳型としてプライマー1とプライマー10をPCR法の 常法に従い約850bpの断片を増幅後それぞれ回収し た。この880bpの断片をEcoRIとKpnIで消 化し、HindIII とKpn I で消化した上記 8 5 0 b pの断片と、EcoRIとHindIII で開裂させたp

UC19とリガーゼによって連結させ、プラスミド pUC19Rを取得した。

TM66のORFのTGAコドンがすべてTGGに変更になったプラスミドを得るため、pUM66をMluIとPvuIIで消化後、約4.8kbpの断片を0.6%低融点アガロースゲルから回収し、この断片をpUC19RをMluIとPstIで消化した約1.0kbpの断片とリガーゼによって連結させ得られてプラスミドを回収した。さらに、このプラスミドを EcoT22IとNheIで消化した約5.2kbpの断片とpUC19LをEcoT22IとNheIで消化して得た約640bpの断片とをリガーゼにより連結し、TM-66のORF中のTGAコドンが、すべてTGGに変換されたORF全長を含むプラスミドを取得しこれをpTM66(約5.8kbp)と命名した。

(4) pNZ7929-66の作製(第12図)

p T M 6 6 を P s t I で消化後、S s p I で部分消化し、約2. 4 k b p の断片を回収し、参考例の合成プロモーターのH i n d III、H i n c II消化断片と、H i n d III と P s t I で開裂させた p U C 1 8 の三断片をリガーゼによって連結し、p U T M 6 6 P (約5. 2 k b p)を取得した。次に p U T M 6 6 P をH i n d III と B a m H I で消化して、その消化物を用いて低融点アガロースゲルより回収した断片(約2.5 k b p)を H i n d III と B a m H I で開裂させた

p N Z 1 7 2 9 R とリガーゼによって連結し、目的のプラスミド p N Z 7 9 2 9 - 6 6 (約 1 1 . 5 k b p) を取得した。

(5) f N Z 7 9 2 9 - 6 6 の作製と純化

上記(4) で得た p N Z 7 9 2 6 - 6 6 を用い実施例 1 (3) と同様に操作を繰り返し、f N Z 7 9 2 9 - 6 6 を取得した。

実施例8

実施例9

表 3 組み換えウイルス感染CEFの各種抗血清に対する反応性

一次抗体

感染ウイルス	抗S6	感染S6	SPF
f N Z 7 9 2 9 - 6 7	+++	+++	_
f NZ7929 - 66	+++	+++	-
f N Z 2 9 2 9 X M 1	++	++	-
NΡ	-	-	-

+++ : 全面に強く反応 ++ :強く反応 + : 反応 - 反応しない

この結果から、本発明の組み換えウイルスであるf N Z 7 9 2 9 - 6 6 、 f N Z 7 9 2 9 - 6 6 、 及び f N Z 2 9 2 9 X M 1 が感染した細胞のみに反応する抗 S 6 、 S 6 感染と反応することが判った。

組み換えFPV接種鶏の誘導抗体の生育阻止活性

f N Z 7 9 2 9 − 6 7 及び f N Z 7 9 2 9 − 6 6 をそれぞれ C E F で 3 7 ℃, 4 8 時間培養後、二回凍結融解を繰り返し、細胞浮遊液を回収し、ウイルスタイターが 1 0 ° p f u / m 1 となるように調製したのち生後 7 日の S P F 鶏(Line M, 日本生物科学研究所)の右翼膜

に穿刺用針で10μ1接種した。接種後全鶏発痘を観察し、接種から2週後に血清を採取した。

一方、マイコプラズマ・ガリセプティカムS6株を PPLO液体培地(変法Chanockの培地)に10 % 植菌し37℃で3日間培養したあと、0.45μmの メンブレンフィルターを通して凝集菌体を取り除いたろ 液を、菌体数が10°CFU/mlになるようにPPLO 液体培地で希釈し、活性測定用菌液とした。

この菌液を滅菌したポリプロピレン製のチューブに 4 00μ1分注し、標準鶏血清、TMG-1免疫血清(特開平2-111795号)、各種血清をそれぞれ100 μ1加えて、37℃で2~5日間培養することにより生 育阻止試験を行なった。

培養 0、1、2、3、4日目に各マイコプラズマ・ガリセプティカム(以下MGと称す)生育阻止試験培養液から各 1 0 μ 1 を採取し、PPLO寒天培地に広げ37℃で7日間培養し、出現したコロニー数で対応する培養液中の菌数を演えきした。その3日目の菌数測定の結果を表 4 に示す。

表 4

試 料	3日目の菌数
SPF鶏血清 抗TTMG-1 鶏血清 fNZ2929XM I 接種鶏血清 fNZ7929-67接種鶏血清 fNZ7929-66接種鶏血清	1. 3×10 ⁸ 1. 8×10 ⁵ 4. 5×10 ⁵ 2. 8×10 ⁴ 3. 2×10 ⁴

添加した試料がSPF鶏血清または馬血清を加えた培地の培養液では、MGの増殖速度に差はなく、培養3日目で菌数は飽和に達した。fNZ7929-67、fNZ7929-66接種血清を添加した培養液ではfNZ2929XM1はもちろん抗TTMG-1鶏血清のようにMGの生育を阻害する抗体を誘導する抗原を免疫した場合以上に効果的にMGの増殖を抑制している。ことから、TM67ポリペプチド、TM66ポリペプチドは、TTMG-1以上にMGの生育を抑制できる抗体を誘導できる抗原であることを示している。

実施例10

マイコプラズマ・ガリセプティカムが発現しているポ リペプチドDNATM-16の取得

(1) マイコプラズマ・ガリセプティカム・ゲノムD

NAの調製

マイコプラズマ・ガリセプティカムS 6 株を100mlのPPLOプロス基礎培地に20%馬血薬とでフロス基礎培地に20%馬血薬とでファルレッドを微量加えて調りた液体培地でプラズマ・ガリカムをである。マイコプラズマ・ガリを微量が下がり、ないるPHが下がまたで、クロローのPHが下がら、20分間に従って整を接入ののででは、ないのでは、1000mにでは、1000mmにでは、1000mmにいる。10000mmにいる。1000mmにいる。1000mmにいる。1000mmにいる。1000mmにいる。1000mmにいる。1000mmにいる。1000mmにいる。1000mmにいる。1000mmにいる。1000mmにいる。1000mmにいる。1000mmにいる。1000mmにいる。1000mmにいる。1000mmにいる。1000mmにいる。1000mmにいる。1000mmにいる。10000mmにいる。1000mmにはいる。1000mmにいる。1000mmにいる。1000mmにいる。1000mmにいる。1000mmにいる。1000mmにいる。1000mmにいる。1000mmにはいる。1000mmにはいる。1000mmにはいる。1000mmにはいる。1000mmにはいる。1000mmにはいる。1000mmにはいる。1000mmにはいる。1000mmにはいる。1000mmにはいる。1000mmにはいる。1000mmにはいる。1000mmにはいる。10000mmにはいる。10000mmにはいる。10000mmにはいる。10000mmにはいる。10000mmにはいる。10000mmにはいる。10000mmにはいる。10000mmにはいる。10000mmにはいる。10000mmにはいる。10000mmにはいる。100000mmにはいる。100000mmにはいる。1000000mm

溶菌液を等容量のフェノールで3回抽出しさらに、エ チルエーテルで3回抽出を行なった後エタノール沈殿し、 マイコプラズマ・ガリセプティカム・ゲノムDNA20 0μgを得た。

(2) M-16DNAをプロープにしたマイコプラズマ・ガリセプティカムのゲノミックサザンハイブリダイゼーション

上記(1)で取得したマイコプラズマ・ガリセプティカム D N A 1 μgを X b a I で消化し、0.6%低融点アガロースゲル電気泳動に供した。泳動後ゲルをアルカリ変性液(0.5 M N a O H、1.5 M N a C 1)

に10分間浸しDNAを変性させ、中和液(3M酢酸ナ トリウムp H 5. 5) に 1 0 分間浸して中和の後 6 倍 S SC液(0.7M NaCl、0.07Mクエン酸ナト リウム、 p H 7. 5) 中でナイロンメンブレンに転写し た。風乾の後80℃で2時間焼き付け、4倍SET (0.6M NaC1, 0.08M Tris-HC1, 4 m M E D T A 、 p H 7 . 8) - 1 0 倍 Denhardt-0.1% SDS-0.1% Na4 P₂ O₇ - 5 0 μg/m 1 変性サケ精子DNAと p U M - 1 6 (このプラスミド内に M - 1 6 遺伝子が含 まれている;特開平2-111795号参照)を常法に 従い標識したものを加えて、68℃14時間ハイブリダ イゼーションをした。ナイロンメンプレンとX線フィル ムを重ね、オートラジオグラフィーで確認したところ、 約5.5 k b p の断片にハイブリダイズしていることを 確認した。

(3) X b a 1 消化約5. 5 k p b 断片の p U C - 19へのクローニング及びコロニーハイブリダイゼーション

上記(1)で取得したマイコプラズマ・ガリセプティカムDNA4μgを制限酵素Xbalで消化後、0.6%低融点アガロースゲル電気泳動後、約5.5kpbの断片を回収した。この断片を、Xbal消化によって開裂したpUC-19とリガーゼによって連結し、コンピテントな大腸菌TG1株を形質転換し、5ープロモー4

(4) PUM-16インサートDNAの配列分析上記(3)で作製したPUM-16内に挿入された約5.5kbpの断片の配列をSangerらのDideoxy法(Proc. Natl. Acad. Sci. USA.、74、5463(1977)によって解析した。

この断片の制限酵素切断点地図を第13図に示す。また、この断片中に存在するオープンリーディングフレームの制限酵素切断点地図を第14図に示し、このORFの塩基配列及びそれから推定されるアミノ酸配列を配列番号15に示す。このORFから推定されるポリペプチドをTM-16ポリペプチドと命名した。

尚、以下にこの発明に使用する配列を配列リステングとして記述するが、原則としてプライマーに使用した配列は3′側から表記した。ただし、明細書本文中で5′側から表記したプライマーは、そのまま5′側より表記

している。

配列リステング

- (1) 一般情報
 - (i) 出願人:米国

中斉大塩入青高佐大船野藤川野谷山橋伯澤戸克修節芳好茂清早郁洋彦治子彦一美人木郎乃

米国以外の指定国 日本ゼオン株式会社 塩野義製薬株式会社

- (ii)発明の名称:新規なポリペプチド、同ポリペプ チドをコードするDNA、同DNAを含む組み換えベク ター、同組み換えベクターを利用した組み換えウイルス、 およびその利用
 - (iii)配列の数: 43
- (2) 配列番号1についての情報 (i)配列の特性

		(A	ノ関	こタリ	OJ I	₹ ट	: 2	368	}								
		(B) 酉	已列	の酉	<u>n</u>	: 7	7 3	ノ i	酸							
	•	(C)鲜	りの	数		: -	二本	鎖								
		(D)) h	ポ	P 3	ž —	: 1	复鎖	状								
		(E)) 两点	וכל	ກ ¥າ	鱼類	. г) N	٨								
		•															
		(x :	i)配	」列	のま	表示	: 酉	已列	番号	号	1						
GTC	TGGG	GTT	GGTT	TGAT	CA G	CGAA	AATA	A AC	CCGA	TTTA	TT A	CTTA	CTG	AACT	TTAT	AT 6	30
			TAAT													AA 12	20
GΛΛ	۸۸۸۸	CAT	TTT 'A	MGT	TT 6	TTAG	TTTA	T TA	GGTA	TICT	770	GTT	GTA	ATG	TTA	17	6
														Met	Leu		
GCA	GCT	CCT	' AGT	TOT	• лст	TYCA	CCA	ССТ	, VCV	CCA	A CYT		440			•	
			Ser														4
		อ		.,.		•••	10		• • • • • • • • • • • • • • • • • • • •			15		1110	GIU		
CCA	AAA	CCA	ACT	CCA	AAC	CCT	GAA	CCA	AAA	CCA	GAT			CCA	AAC	27	2
Pro	Lys	Pro	Thr	Pro	Åsn	Pro	Glu	Pro	Lys	Pro	Asp	Pro	Met	Pro	Asn		
	20					25	i				30						
			GGT													32	0
	Pro	Ser	Gly	Gly	Asn	Met	Asn	Gly	Gly	Asn	Thr	Asn	Pro	Ser	Asp		
35	~				40					45					50		
			ATG													36	8
GIY	GIII	ыу	Met		ASII	ліа	ΛΙα	Ala		Glu	Leu	Λla	Λsp		Lys		
GCT	CCT	ТТА	ACT	55 ACT	TTC	ΔΤΤ	ΔΔΤ	CCT	60	۸۲	CCA	A A T	OTT	65	770 A		_
			Thr													41	b
			70					75	0,0	****	Mid	71311	80	Ala	361		
TAT	GAA	GAC	TAT	GCT	AAG	ATC	AAA		GAA	TTA	ACA	TCA		ТАТ	GAA	46	.1
			Tyr													40	•
		85					90					95		-,-			
ACA	GCT	AAA	GCA	GTT	TCA	GCT	ΛΑΛ	лст	GGT	GCA	ΛСТ	СТА	ΛΛΤ	GAG	GTT	512	2
Thr	Ala	Lys	Ala	Val	Ser	Ala	Lys	Thr	Gly	Ala	Thr	Leu	Asn	Glu	Val		
	100					105					110					•	

AA.	GAL	i GC/	N AAA	ACI	ACA	TTA	GAT	. CCI	GC1	` ATT	l' Aaa	AA/	I GC	r gci	CACT	. 560
Ası	Gle	ı Ala	Lys	Thr	Thr	Leu	Asp	Ala	Ala	He	e Lys	Lys	s Ala	a Ala	Ser	
115	5				120)				125	5				130	
GC1	C AAC	AAT	GAT	TIT	ÇAT	GCA	CAG	CAC	GGG	TCA	A CTA	GTC	GA/	A GCA	TAT	608
Ala	Lys	Asn	Asp	Phe	Asp	Ala	Gln	His	Gly	Ser	Leu	Val	Glu	ı Ala	Tyr	•
				135					140)				145	;	
AAC	AAT	CTA	AAA	GAA	ACG	TTA	٨٨٨	GAA	GAA	AAA	ACT	` AAT	` T T/	GAT	TCT	656
Asn	Asn	Leu	Lys	Glu	Thr	Leu	Lys	Glu	Glu	Lys	Thr	Asn	Lei	ı Asp	Ser	
			150)				155					160)		
CTI	GCA	AAC	GAA	AAT	TAT	GCA	GCA	ATC	AGA	ACT	· AAT	СТТ	' AA1	AGT	TTA	70 4
Leu	Ala	Asn	Glu	Asn	Туг	Ala	Ala	He	Arg	Thr	Asn	Leu	Asn	Ser	Leu	
		165	,				170					175	;			
TAT	GAA	AAA	GCC	AAT	ACT	ATT	GTT	ACA	GCT	ACT	TTA	GAC	CCT	GCT	ACT	7 52
Туг	Glu	Lys	Ala	Asn	Thr	He	Val	Thr	Ala	Thr	Leu	Asp	Pro	Ala	Thr	
	180	•				185					190					
GGA	AAT	ATT	CCT	GAA	GTT	ATG	AGT	GTA	ACA	CAA	GCT	AAT	CAA	GAT	ATT	800
Gly	Asn	He	Pro	Glu	Val	Met	Ser	Val	Thr	Gln	Ala	Asn	Gln	Asp	He	
195					200					205					210	
ACT	AAT	GCA	ACT	TCA	AGA	CTA	ATA	GCT	TGA	AAA	CAA	AAT	GCT	GAT	AAT	848
Thr	Asn	Ala	Thr	Ser	۸rg	Leu	He	Ala	Trp	Lys	Gln	Asn	Ala	Asp	Asn	
				215					220					225		
ITA	GCT	AAC	AGT	TTT	ATC	AAA	CAG	TCT	TTA	GTT	AAA	AAT	AAT	TTG	ACT	896
Leu	Ala	Asn	Ser	Phe	He	Lys	GIn	Ser	Leu	Val	Lys	Asn	Asn	Leu	Thr	
			230					235					240			
AGA	GTT	GAT	GTA	GCA	AAT	ΛAT	CAG	GAG	CAA	CCA	GCA	AAT	TAC	AGT	TTT	944
Arg	Val	Asp	Val	Ala	Asn	Asn	GIn	Glu	Gln	Pro	Ala	Asn	Tyr	Ser	Phe	
		245				,	250					255				
TT	GGT	TTT	AGT	CTT	AAT	GTT	GAT	ACT	CCT	AAC	TGA	AAT	TTT	CCG	CAA	992
la l	Gly	Phe	Ser	Val	Asn	Val	Asp	Thr	Pro	Asn	Trp	Asn	Phe	Ala	Gin	
	260					265					270					

AGA	\ AA	4 GT	r TG	G GC	C TC	Γ GAA	/ AV,	L VC.	T CC	r TT/	۱ GC	۸ VC	r ac	A CC	A GC1	Γ -1040
۸r٤	y Lys	s Va	l Tri	pΛla	a Sei	r Glu	ı Ası	n Thi	r Pro	c Lei	ı Ala	1 Th	r Th	r Pr	o Ala	ı
275	5				280)				285	5				290)
GAA	GA1	C GCA	A AC	A CA	A CAA	GCT	. GC	A TC	CTTA	A ACA	A GAT	CT	r tc	A TG	A ATO	1088
Glu	ı Ası	Λla	a Thi	r Gli	a Gln	ı Ala	Ala	a Sei	r Lei	a Thr	- Asp	Val	Se	r Tr	p Ile	
				295	5				300)				30	5	
TAT	AC1	TTA	AA1	r GG1	CCI	GAA	GC1	AAA 1	A TAC	ACA	TTA	AGC	TT	r cg	TAC	1136
Tyr	Ser	Leu	ı Vsi	Gly	/ Ala	Glu	Ala	Lys	Туг	Thr	Leu	Ser	· Pho	e Arg	g Tyr	
			310)				315	5				320)		
TTT	GGA	GCT	GA/	AAA	ACA	GCT	TAC	TTA	TAT	TTC	CCT	TAT	` AA/	A TT	GTT	1184
Phe	Gly	Ala	Glu	Lys	Thr	Ala	Tyr	Leu	Tyr	Phe	Pro	Tyr	Lys	Lei	ı Val	
		325	•				330)				335	j			
AAA	ACT	AGT	GAT	` AAT	CTT	CCT	TTA	CAA	TAT	AAG	TTA	AAT	GGT	GGT	GAT	1232
Lys	Thr	Ser	Asp	Asn	Val	Gly	Leu	Gln	Tyr	Lys	Leu	Asn	Gly	Gly	Asp	
	340					345					35 0					
ACT	AAA	CAA	ATT	AAC	TTT	GTA	CAA	ACT	CCA	GCT	TCT	GGT	TCA	AGT	GAT	1280
Thr	Lys	Gln	He	Asn	Phe	Val	Gln	Thr	Pro	Ala	Ser	Gly	Ser	Ser	Asp	
3 55					360					365					370	
GTT	GCT	GCT	AAT	GAA	GAA	GAA	ACT	ATG	GCT	AGT	CCT	GCT	GAA	ATG	CAG	1328
Val	Ala	Ala	Asn	Glu	Glu	Glu	Thr	Met	Ala	Ser	Pro	Ala	Glu	Met	Gin	
				375					3 80					385		
TCA	GCA	CCA	ACT	GTT	Asp	Asp	He	Lys	He	Ala	Lys	Val	Ala	Leu	Ser	1376
						GAT										
			390					395					400			
AAT	CTA	AAA	TTC	AAT	TCA	AAC	ACA	ATT	GAA	TTT	AGT	GTC	ССТ	ACA	GGT	1424
						Asn										
		405					410					415			•	
AA	GCA	GCT	CCT	ATG	ATT	GGA .	AAT	ATG	TAT	TTA	ACT	TCA	TCT	AAT	TCG	1472
						Gly										
	420					425					430		-			

GW	GI	ΓΑΛ	T AA	Α ΑΛ	C AA	A AT	T TA	T GA	T GA	т ст	TT K	oo o	C AA	C AG	C TT	T 1520
Głu	Va	l As	n Ly	s As	n Ly	s II	е Ту	r As	p As	p Le	u Ph	e GI	y As	n Se	r Ph	e
435	•				44	0				44	5				450	0
ΛΛT	' ΛΛ'	ΓGΛ	Λ ΑΛ	T AA	r cc	A AC	C GO	G GT	T AC	T GT	T GA	C CT	Λ TT	ΆΛΛ	A GG	r 1568
Asn	Ası	n Gl	u Ası	n Ası	n Pr	o Thi	r Ala	a Va	l Th	r Va	l As	p Le	u Le	u Ly	s Gly	y
				455	5				46	0				46	5	
TAT	AGT	CT	r GC	r GCT	r ag	T TAC	AG	T AT	A TA	r GT	T CG	C CA	A TT	C AA	T GAT	1616
Tyr	Ser	Le	u Ala	a Ala	s Sc	r Tyr	- Se	r IId	е Туі	r Va	I Ar	g Gli	n Ph	e Ası	n Asp)
			470)				47	5				480	0		
TTA	AAT	` AT	CA/	AA1	GGC	CACT	GAT	r ato	G GC/	A AG/	1 TC	r cg/	A AC	4 GT/	A TAC	1664
Leu	Asn	H	e Glr	Asr	Gly	Thr	. Ası	Met	t Ala	Arg	g Sei	r Arg	g Thi	r Val	l Tyr	
		485					490					495				
						AGT										
			' Leu	lle	Gly	Ser	Asn	Ala	Ser	Arg	s Ser	· He	Arg	g Asr	Leu	l
	500					505					510					
						CCT										
	Asn	Val	Arg	Thr		Pro	Asn	Thr	Val	Ser	Thr	Asn	Arg	Thr	Phe	
515	4004				520					525					530	
						CCA										1808
inr	116	lyr	vai		Ala	Pro	Lys	Ser	Gly	Asp	Tyr	Tyr	Leu	Ser	Gly	
#00 r				535					540					545		
TCG 1																1856
Ser '	lyr	Leu		Asn	GIn	Asn	Arg	Asn	He	Lys	Phe	Leu	Asn	Ser	Ser	
ጥርጥ (~ A Tr	040	550	4 CVD	4.0m			555					560			
TCT (1904
Ser A			Ihr	Ser	Ser			Leu	Thr	Leu	Asn	Val	Lys	Ala	Gln	
404		565 TO 4	040				570					575				
ACA A																1952
Thr A		Trp	Glu	Thr	Leu	Gly	Asn	Phe	Asp	Thr	Ser	Asn	Asn	Thr	Asn	
5	80					58 5					5 90					

ATT GTT ACT AAT AGT GGA TCA AGC ACA ACA ACA GGC CGG ACT TTA AAT	-2000
He Val Thr Asn Ser Gly Ser Ser Thr Thr Thr Gly Arg Thr Leu Asn	
595 600 605 610	
TTA AAA CAA GGA TTA AAC AAA ATT GTT ATC AGT GGA GTA GGT AAT GGT	2048
Leu Lys Gin Gly Leu Asn Lys Ile Val Ile Ser Gly Val Gly Asn Gly	•
615 620 625	
AAT ACT CCT TTC ATA GGT AAC TTA ACA TTT ACT TTG ATG GAT AAA ACA	2096
Asn Thr Pro Phe Ile Gly Asn Leu Thr Phe Thr Leu Met Asp Lys Thr	
630 635 640	
GCT AGT CCT GTA GTT GAT GAC ACT ATT TTA GAA GGA TCT ATA GAA GCT	2144
Ala Ser Pro Val Val Asp Asp Thr IIc Leu Glu Gly Ser IIe Glu Ala	W1 11
645 650 655	
GCT TCA AAA TAA AAAATTATGT TTTTTTAAAT CTTTTTTCAA GGATCATGTT	0100
Gly Ser Lys ***	2196
660	
TCTGTTTAAA CGCTAAGTTA GTTAGATAAT AAAATAAAAG TTATTTGTTT TACTCCATGT	2256
AATATGGCAT GAAATCTGAA TCAAACTTCA GATTTCATGT TITTTTTATT AAGGAAGCAA	2316
ATATGAGATA CTAGCAGCCT TTTGTCTACT ATACTTATGA TCGAACTAGA TCT	2369

- (2) 配列番号2についての情報
- (i)配列の特性
 - (A) 配列の長さ: 48
 - (B) 配列の型 : 核酸
 - (C) 鎖の数 : 1 本鎖
 - (D) トポロジー: 直鎖状
 - (E) 配列の種類: 他の核酸 合成 DNA
- (xi) 配列の表示: 配列番号 2

48

(2)	配列	一番	号	3	15	\neg	LY	7	σ	傏	李岱
-----	----	----	---	---	----	--------	----	---	----------	---	----

- (i)配列の特性
 - (A) 配列の長さ: 48
 - (B) 配列の型 : 核酸
 - (C) 鎖の数 : 1 本鎖
 - (D) トポロジー: 直鎖状
 - (E) 配列の種類: 他の核酸 合成 DNA
- (xi) 配列の表示: 配列番号 3

GATCTTCCAT TTTAGGATCT ATATTATTTT TTCAACGATC CGAGCTCG

- (2) 配列番号4についての情報
 - (i)配列の特性
 - (A) 配列の長さ: 55
 - (B) 配列の型 : 核酸
 - (C)鎖の数: 1本鎖
 - (D) トポロジー: 直鎖状
 - (E) 配列の種類: 他の核酸 合成 DNA
 - (xi) 配列の表示: 配列番号 4

AGCTTTTTTT TTTTGGCATAT AAATAATAAA TACAATAATT AATTA 55

- (2) 配列番号5についての情報
- (i)配列の特性
 - (A) 配列の長さ: 55
 - (B) 配列の型 : 核酸

(C) 鎖の数 : 1 本鎖

(D) トポロジー: 直鎖状

(E) 配列の種類: 他の核酸 合成 DNA

(xi) 配列の表示: 配列番号 5

CGCGTAATTA ATTATTGTAT TTATTATTTA TATGCCAAAA AAAAAAAAA AAAAA 55

- (2) 配列番号 6 についての情報
- (i)配列の特性
 - (A) 配列の長さ: 40
- · (B) 配列の型 : 核酸
 - (C) 鎖の数 : 1 本鎖
 - (D) トポロジー: 直鎖状
 - (E) 配列の種類: 他の核酸 合成 DNA
- (xi) 配列の表示: 配列番号 6

CGCGTAAAAA TTGAAAAACT ATTCTAATTT ATTGCACTCG 40

- (2) 配列番号7についての情報
- (i)配列の特性
 - (A) 配列の長さ: 40
 - (B) 配列の型 : 核酸
 - (C) 鎖の数 : 1 本鎖
 - (D) トポロジー: 直鎖状
 - (E) 配列の種類: 他の核酸 合成 DNA
- (xi) 配列の表示: 配列番号 7

40

GATCCGAGTG CAATAAATTA GAATAGTTTT TCAATTTTTA

- (2) 配列番号8についての情報
- (i)配列の特性
 - (A) 配列の長さ: 42
 - (B) 配列の型 : 核酸
 - (C) 鎖の数 : 1 本鎖
 - (D) トポロジー: 直鎖状
 - (E) 配列の種類: 他の核酸 合成 DNA
- (Xi)配列の表示:配列番号 8

GATCCCCGGG CGAGCTCGCT AGCGGGCCCG CATGCGGTAC CG 42

- (2) 配列番号 9 についての情報
- (i)配列の特性
 - (A) 配列の長さ: 42
 - (B) 配列の型 : 核酸
 - (C) 鎖の数 : 1 本鎖
 - (D) トポロジー: 直鎖状
 - (E) 配列の種類: 他の核酸 合成 DNA
- (xi) 配列の表示: 配列番号 9

TCGACGGATC CGCATGCGGG CCCGCTAGCG AGCTCGCCCG GG 42

- (2) 配列番号10についての情報
- (i)配列の特性
 - (A) 配列の長さ: 39

35

(B) 配列の型 : 核酸

(C) 鎖の数 : 1 本鎖

(D) トポロジー: 直鎖状

(E) 配列の種類:他の核酸 合成 DNA

(xi) 配列の表示: 配列番号 10

TCGACCCGGT ACATTTTTAT AAAAATGTAC CCGGGGATC 39

(2) 配列番号11についての情報

(i)配列の特性

(A) 配列の長さ: 35

(B) 配列の型 : 核酸

(C)鎖の数: 1本鎖

(D) トポロジー: 直鎖状

(E) 配列の種類: 他の核酸 合成DNA

(xi) 配列の表示: 配列番号 11

GATCCCCGGG TACATTTTTA TAAAAATGTA CCGGG

(2) 配列番号12についての情報

(i)配列の特性

(A) 配列の長さ: 14

(B) 配列の型 : 核酸

(C)鎖の数: 1本鎖

(D) トポロジー: 直鎖状

(E) 配列の種類: 他の核酸 合成DNA

(xi) 配列の表示: 配列番号 12

ATT:	TT	TAT	`A A	A	AA	T															14
(2)	配	列	番	号	1	3	に	つ	しい	て	σ	情	報							
(i)	配	列	の	特	性															
	(A	()	配	列	の	長	3	:	66	3											
	(B	()	配	列	の	型		:	ア	ï	J	酸	?								
	(0	()	鎖	の	数			:		本	鎖										
	(D)	ŀ	ポ	D	ジ	_	:	直	鎖	状										
	(E)	配	列	の	種	類	:	D	N	Α										
(Хi)	配	列	の :	表	示	:	配	列	番	号	•	1	3						
ATC	GCG	AT	C (CTA	CT	T '	TTA	A(CA	GTA	G	ГG	ACC	TTA	A GO	CC	ATC	TCT	GCA	GCC	48
lle.	Ala	[]	e l	Leu	Le	u l	Leu	Tł	ır	Val	Va	ıl	Thr	Lei	ı Al	a	lle	Ser	Ala	Ala	
					,	5							10						15		
GCC	CTT	GC	A 7	TAT	AGʻ	T A	ATG														66
Ala l	Leu	Al	a 1	yr	Se	r M	le t														
				20																	

- (2) 配列番号14についての情報
 - (i)配列の特性
 - (A) 配列の長さ: 1387
 - (B) 配列の型 : アミノ酸
 - (C) 鎖の数 : 二本鎖
 - (D) トポロジー: 直鎖状
 - (E) 配列の種類: DNA
 - (xi) 配列の表示: 配列番号 14

AAAAACATCA GATTGTTAAT CTGATATCTT TGCTTAAAAA AACACAAAAT CTTCTAACAA	01
AATCCTAAAT AAATAAGCCG TTAAATTAAC TAAAAAATTA AAAAAATGGT TTTTCTTATC	
AACCAAAATT CTCTAGTAAT AAACGCTTAT TTATTTTTAT TTTTAGTCAT CTTTTAAGAT	120
ATAAATATAT CITAATATTC T ATG AAT AAG AAA AGA ATC ATC TTA AAG ACT	180
Met Asn Lys Lys Arg Ile Ile Leu Lys Thr	231
_	•
5 10	
ATT AGT TTG TTA GGT ACA ACA TCC TTT CTT AGC ATT GGG ATT TCT AGC	279
lle Ser Leu Leu Gly Thr Thr Ser Phe Leu Ser Ile Gly Ile Ser Ser	219
15 20 25	
TCT ATG TCT ATT ACT AAA AAA GAC GCA AAC CCA AAT AAT GGC CAA ACC	375
Cys Met Ser lie Thr Lys Lys Asp Ala Asn Pro Asn Asn Gly Gin Thr	313
30 35 40	
CAA TTA CAA GCA GCG CGA ATG GAG TTA ACT GAT CTA ATC AAT GCT AAA	327
Gin Leu Gin Ala Ala Arg Met Giu Leu Thr Asp Leu lle Asn Ala Lys	
45 50 55	
GCA AGG ACA TTA GCT TCA CTA CAA GAC TAT GCT AAG ATT GAA GCT AGT	423
Ala Arg Thr Leu Ala Ser Leu Gin Asp Tyr Ala Lys Ilc Giu Ala Ser	
60 65 70	
TTA TCA TCT GCT TAT AGT GAA GCT GAA ACA GTT AAC AAT AAC CTT AAT	471
Leu Scr Scr Ala Tyr Ser Glu Ala Glu Thr Val Asn Asn Asn Leu Asn	
75 80 85 90	
COA 404 CT	
GCA ACA CTA GAA CAA CTA AAA ATG GCT AAA ACT AAT TTA GAA TCA GCC	519
Ala Thr Leu Glu Gln Leu Lys Met Ala Lys Thr Asn Leu Glu Ser Ala	
95 100 105	
ATC AAC CAA COT AAT ACC CAT	
ATC AAC CAA GCT AAT ACG GAT AAA ACG ACT TTT GAT AAT GAA CAT CCA	567
lle Asn Gln Ala Asn Thr Asp Lys Thr Thr Phe Asp Asn Glu His Pro	
110 115 120	

ΤΛΛ	' TTA	GTT	, GVV	GCA	TAC	AAA	GCA	CTA	۸۸۸	VCC	ACT	TTA	GA/	CAA	CCT	615
Asn	Leu	Va I	Glu	Ala	Tyr	Lys	Ala	Leu	Lys	Thr	Thr	Leu	Glu	Gln	Arg	
		125	,				130	1				135	,			
GCT	ACT	AAC	CTT	GΛA	GCT	TTA	GCT	TCA	ACT	CCT	TAT '	AAT	CAC	ATT	CGT	663
Ala	Thr	Asn	i.cu	Glu	Gly	Leu	Ala	Ser	Thr	Λla	Туг	Λsn	Gln	He	Arg	•
	140)				145					150					
AAT	AAT	TTA	GTG	GAT	CTA	TAC	AAT	AAT	GCT	AGT	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	TTA	ATA	ACT	AAA	711
Λsn	Asn	Leu	Val	Asp	Leu	Туг	Asn	Asn	Ala	Ser	Ser	Leu	He	Thr	Lys	
155					160					165					170	
					AAT											759
Thr	Leu	Asp	Pro	Leu	Asn	Gly	Gly	Met	Leu	Leu	Asp	Ser	Asn	Glu	He	
				175	;				180)				185	•	
ACT	ACA	CTT	' AAT	ccc	AAT	ATT	AAT	AAT	ACG	TTA	TCA	ACT	ATI	· AAT	GAA	807
Thr	Thr	Val	Asn	Arg	Asn	lle	Asn	Asn	Thr	Leu	Ser	Thr	lle	Asn	Glu	
			190	l				195					200)		
CAA	AAG	ACT	AAT	CCT	GAT	GCA	TTA	TCT	AAT	AGT	TIT	ATT	AAA	AAA	GTG	855
Gin	Lys	Thr	Asn	Ala	Λsp	Λla	Leu	Ser	Asn	Scr	Phe	lle	Lys	Lys	Val	
		205					210					215				
					CAA											903
lle	Gln	Λsn	Asn	Glu	Gln	Ser	Phe	Val	Gly	Thr	Phe	Thr	Asn	Ala	Asn	
	220					225					230					
					TAC											951
	GIn	Pro	Ser	Asn	Tyr	Ser	Phe	Val	Ala	Phe	Ser	Ala	Asp	Val	Thr	
235					240					245					250	
		–	_		_											
					TAT											999
Pro	Val	Asn	Tyr	Lys	Tyr	Ala	Arg	Arg	Thr	Val	Xaa	Asn	Gly	Asp	Glu	
				255					260					265		

ľVι	1 11/	A 61	I GAZ	1 66/	A TAU	; VAV	\ GCA	CT/	\ AAA	A ACC	CAC	r tta	\ GA	\ CA/	CGT	615
Ası	ı Le	u Va	l Glu	ı Ala	а Туі	r Lys	s Ala	Lei	Lys	s Thu	r Thi	r Le u	Gle	ı Gir	Arg	
		12	5				130)				135	;			
GCT	r act	r aag	CT1	GAA	GG1	TT/	CT	TCA	ACT	CC1	TAT	TAA 1	CAC	AT1	CGT	663 .
															Arg	
	140)				145	5				150)				
AA1	Γ ΑΑ 1	r tt	A GTG	G/1	CT/	TAC	TAA C	· AAT	GCT	' AGT	r agi	TTA	ATA	ACT	AAA	711
Ası	ısv ı	ı Lei	ı Val	Asp	Leu	ı Tyr	Asn	Asn	Ala	Ser	Ser	Leu	He	Thr	Lys	
155					160					165					170	
ACA	CTA	GA1	CCA	CTA	ΛΑΤ	, CCC	GGA	ATG	CTT	TTA	GAT	TCT	AAT	GAG	ATT	759
Thr	Leu	Asp	Pro	Leu	Asn	Gly	Gly	Met	Leu	Leu	Asp	Ser	Asn	Glu	He	•
				175					180					185		
ACT	, AC	CTT	TAA 1	CCC	AAT	` ATT	' AAT	AAT	ACG	TTA	TCA	ACT	ATT	` AAT	GAA	807
			Asn													
			190					195					200			
CAA	AAG	ACT	` ААТ	GCT	GAT	GCA	ТТА	тст	ААТ	AGT	TTT	ATT	AAA	AAA	GTG	855
			AAT Asn													855
			Asn													855
Gln	Lys	Thr 205	Asn	Ala	Vsb	Λla	Leu 210	Ser	Asn	Ser	Phe	i le 215	Lys	Lys	Val	855
GIn	Lys	Thr 205 AAT	Asn AAT	Ala GAA	Asp CAA	Λ1a AGT	Leu 210 TTT	Ser GTA	Asn GGG	Ser ACT	Phe	lle 215 ACA	Lys AAC	Lys GCT	Va I AAT	8 55 9 03
GIn	Lys	Thr 205 AAT	Asn	Ala GAA	Asp CAA	Λ1a AGT	Leu 210 TTT	Ser GTA	Asn GGG	Ser ACT	Phe	lle 215 ACA	Lys AAC	Lys GCT	Va I AAT	
GIn	Lys	Thr 205 AAT	Asn AAT	Ala GAA	Asp CAA	Λ1a AGT	Leu 210 TTT	Ser GTA	Asn GGG	Ser ACT	Phe	lle 215 ACA	Lys AAC	Lys GCT	Va I AAT	
ATT Ile	CAA Gln 220	Thr 205 AAT Asn	ASIN AAT ASIN	Ala GAA Glu	Asp CAA Gln	AGT Ser 225	Leu 210 TTT Phe	Ser GTA Val	Asn GGG Gly	Ser ACT Thr	TTT Phe 230	11e 215 ACA Thr	Lys AAC Asn	CCT Ala	Val AAT Asn	
ATT IIe	CAA GIn 220 CAA	AAT Asn	AAT Asn TCA	Ala GAA Glu AAC	CAA Gln TAC	AGT Ser 225 AGT	Leu 210 TTT Phe	Ser GTA Val	Asn GGG Gly GCT	Ser ACT Thr	TTT Phe 230	11e 215 ACA Thr	AAC Asn GAT	CCT Ala	Va I AAT ASN	
ATT IIe	CAA GIn 220 CAA	AAT Asn	ASIN AAT ASIN	Ala GAA Glu AAC	CAA Gln TAC	AGT Ser 225 AGT	Leu 210 TTT Phe	Ser GTA Val	Asn GGG Gly GCT	Ser ACT Thr	TTT Phe 230	11e 215 ACA Thr	AAC Asn GAT	CCT Ala	Va I AAT ASN	903
ATT IIe	CAA GIn 220 CAA	AAT Asn	AAT Asn TCA	GAA Glu AAC Asn	CAA Gln TAC	AGT Ser 225 AGT	Leu 210 TTT Phe	Ser GTA Val	Asn GGG Gly GCT Ala	Ser ACT Thr	TTT Phe 230	11e 215 ACA Thr	AAC Asn GAT	CCT Ala GTA Val	Va I AAT ASN	903
ATT He GTT Val 235	CAA GIn 220 CAA GIn	AAT Asn CCT Pro	AAT Asn TCA Ser	GAA Glu AAC Asn	CAA Gln TAC Tyr 240	AGT Ser 225 AGT Ser	Leu 210 TTT Phe TTT Phe	Ser GTA Val GTT Val	GGG Gly GCT Ala	Ser ACT Thr TTT Phe 245	TTT Phe 230 AGT Ser	11e 215 ACA Thr GCT Ala	AAC Asn GAT Asp	CCT Ala GTA Val	AAT ASN ACA Thr 250	903
ATT He GTT Val 235	CAA GIn 220 CAA GIn	AAT Asn CCT Pro	AAT Asn TCA	GAA Glu AAC Asn	CAA Gln TAC Tyr 240	AGT Ser 225 AGT Ser	Leu 210 TTT Phe TTT Phe	Ser GTA Val GTT Val	GGG Gly GCT Ala	Ser ACT Thr TTT Phe 245	TTT Phe 230 AGT Ser	11e 215 ACA Thr GCT Ala	AAC Asn GAT Asp	CCT Ala GTA Val	AAT ASN ACA Thr 250	903
ATT IIe GTT Val 235	CAA GIn 220 CAA GIn	AAT Asn CCT Pro	AAT Asn TCA Ser	GAA Glu AAC Asn	CAA Gln TAC Tyr 240	AGT Ser 225 AGT Ser	Leu 210 TTT Phe TTT Phe	Ser GTA Val GTT Val	Asn GGG Gly GCT Ala	Ser ACT Thr TTT Phe 245	Phe TTT Phe 230 AGT Ser	ACA Thr GCT Ala	AAC ASN GAT ASP	CCT Ala GTA Val	AAT ASI ACA Thr 250	903 951

CCT TCA AGT AGA ATT CTT GCA AAC ACG AAT AGT ATC ACA GAT GTT TCT	.1047
Pro Ser Ser Arg IIe Leu Ala Asn Thr Asn Ser IIe Thr Asp Val Ser	٠
270 275 280	
·	•
Xaa ATT TAT AGT TTA GCT GGA ACA AAC ACG AAG TAC CAA TTT AGT TTT	1095
NNN lle Tyr Scr Leu Ala Gly Thr Asn Thr Lys Tyr Gln Phe Ser Phe	
285 290 295	
AGC AAC TAT GGT CCA TCA ACT GGT TAT TTA TAT TTC CCT TAT AAG TTG	1143
Ser Asn Tyr Gly Pro Ser Thr Gly Tyr Leu Tyr Phe Pro Tyr Lys Leu	
300 305 310	
GTT AAA GCA GCT GAT GCT AAT AAC GTT GGA TTA CAA TAC AAA TTA AAT	1191
Val Lys Ala Asp Ala Asp Asn Asn Val Gly Leu Gln Tyr Lys Leu Asn	
315 320 325 330	
AAT GGA AAT GTT CAA CAA GTT GAG TTT GCC ACT TCA ACT AGT GCA AAT	1239
Asn Gly Asn Val Gln Gln Val Glu Phe Ala Thr Ser Thr Ser Ala Asn	
335 340 345	
AAT ACT ACA COT AAT COA ACT CAC (VAC TITIC ATC ACC TITIC ATC	1007
AAT ACT ACA GCT AAT CCA ACT CAG CAG TTG ATG AGA TTA AAG TTG CTA	1287
Asn Thr Thr Ala Asn Pro Thr Gln Gln Leu Met Arg Leu Lys Leu Leu	
350 355 360	
AAA TCG TTT TAT CAG GTT TAA GATTTGGCCA AAACACAATC GAATTAAGTG	1338
Lys Ser Phe Tyr Gln Val ***	1000
365	
TTCCAACGGG TCAACGAAAT ATGAATAAAG TTGCGCCAAT GATTGGCAA	1387
1100.1.00.2 Total and the state of the state	2001

- (2) 配列番号15についての情報
 - (i)配列の特性
 - (A) 配列の長さ: 1945
 - (B) 配列の型 : アミノ酸

(C) 鎖の数 : 二本鎖

		(D))	ポ	ロジ	· —	:	I鎖	状						٠	
		(E)	配	列(の種	類	: D	N	Α							
	. (x i)	配	列	の表	示	: 齊	三列	番号]	1 :	5				
CGT	ACGT	TTT	AATG	GCTA	TT G	GGCT	CTTA	т тт	TATT	GTCA	GGA	TTGC	AC T	AACA	GCAGT	T 60
ATA	GCAA	GC C	CAAT	TAAC	T CA	GTAG	AAGT	TAC	AGAG	ATG	ATG	AAT	GGT	CAA	GAA	114
										Met	Met	Asn	Gly	Gin 5	Glu	
GTC	ACA	ΛCA	ACT	ΑΑΛ	ΛAG	ATT	AGT	ACG	TTT	CCC	TTC	TTA	ATC	_	ATG	162
Val	Thr	Thr	Thr	Lys	Lys	He	Ser	Thr	Phe	Ala	Phe	Leu	He	Asn	Met	
			1 0					1 5					2 0			
			TAC													210
Leu	Pro	Asn 25	Tyr	Gln	Leu	Ser	Thr	Leu	Gly	Tyr	Leu	Gln 35	He	Thr	Ala	
CCT	CCT		GGA	CTT	CTA.	CTA		A 7	~TA	ፖ ሞል	(TT		TYPA	cco	CO 4	~~
			Gly													258
,,,,	4 0	7114	Oly	DCG	141	4 5	Giy	H	AGI	Leu	5 0	AIA	Leu	GIY	AIA	
ACA	TTC	TTT	GTT	AAA	ACT	AGA	CCT	AAA	ACA	ААТ		ATG	СТТ	CCT	GCA	306
			Val													500
5 5					6 0					6 5					7 0	
CTT	CAA	GAT	CCT	GAA	GAA	GAA	GAA	CTC	GCA	CAA	GAA	GAA	СЛА	GCT	GAA	354
Leu	Gin	Asp	Ala	Glu	Giu	Glu	Glu	Val	Ala	Gln	Glu	Glu	Gln	Ala	Glu	
C44	A A 77	Catello	C4.4	7 5	407	004			8 0					8 5		
			GAA													402
uiu	ASII	Vai	Glu 9 0	Val	1111	FIO	ш	9 5	GIN	AIA	GIU	vaı	Lys		Glu	
CAA	ТТА	АТТ	GGC	ACA	CAA	ТТА	GTA	ACA	ACT	САТ	СТА	ССТ			CAA	450
			Gly												_	400
		105					1 1 0			1107	,,,	1 1 !		11011	OIII	
GCT	GCA	GGT	ACT	GAA	CAA	GTT	GAA	GGT	GAT	TTA	TTA	ССТ	CCT	AGT	CAA	498
Ala					Gin		Glu		Asp							-

CAA	CCA	ACG	GAA	ATG	CGT	CCA	GCT	CCT	TCA	CCA	ATG	GGT	AGT	CCT	AAG	546
Gln 135	Pro	Thr	Glu	Met	Arg 140	Pro	Ala	Pro	Ser	Pro 145	Met	Gly	Ser	Рго	Lys 150	
TTA	TTA	CCT	CCA	AAC	CAA	GCT	GGT	CAT	CCA	CAA	CAC	GGA	CCA	CCT	CCG	594
Leu	Leu	Gly	Pro	Asn 155	Gln	Ala	Gly	llis	Pro 160	Gln	His	Gly	Pro	Arg 165	Pro	
ATG	AAT	CCT	CAT	CCA	CCT	CAA	CCA	CGT	CCT	CAA	CAA	GCT	CCC	CCA	CGT	642
Met	Asn	Ala	His 170	Pro	Gly	Gln	Pro	Arg 175	Pro	GIn	Gln	Ala	Gly 180	Pro	Arg	
CCA	ATG	GGA	CCT	GCT	GGA	TCT	AAC	CAA	CCA	AGA	CCC	ATG	CCA	AAT	CCT	690
Pro	Met	Gly 185	Ala	Gly	Gly	Ser	Asn 190	Gln	Pro	Arg	Pro	Met 195	Pro	Asn	Gly	
CCA	CAA	AAC	CAA	CAA	CCT	CCA	AGA	CCA	ATG	AAC	CCT	CAA	GGC	AAT	CCT	738
Pro	Gin 200	Asn	Gln	Gln	Gly	Pro 205	Агд	Pro	Met	Asn	Pro 210	Gln	Gly	Asn	Pro	
CGT	CCT	GGA	CCA	GCT	CCC	CCA	CGA	CCT	AAC	GGC	CCA	CAA	AAT	TCT	CAA	786
Arg 215	Pro	Gly	Pro	Ala	Gly 220	Pro	Arg	Pro	Asn	Gly 225	Pro	Gln	Asn	Ser	Gln 230	
CCA	CCT	CCT	СЛЛ	CCA	GCT	GCC	CCA	CGT	CCA	ATG	GGA	GCT	GGT	AGA	TCT	834
Pro	Arg	Pro	Gln	Pro 235	Ala	Gly	Pro	Arg	Pro 240	Met	Gly	Ala	Gly	Arg 245	Ser	
VVC	CAA	CCV	۸G۸	CCA	ATG	CCA	AAT	GGT	CCA	CAA	AAC	CAA	САА	GGT	CCA	882
Asn	Gln	Pro	Arg 250	Pro	Met	Pro	Asn	Gly 255	Pro	Gin	Asn	Gln	Gln 260	Gly	Pro	
AGA	CCA	ATG	AAC	CCT	СЛА	GGC	AAT	CCT	CGT	CCT	CAA	CCA	GCT	GGT	GTC	930
Arg		Me t 265	Asn	Pro	Gln	Gly	Asn 270	Pro	Arg	Pro	Gln	Pro 275	Ala	Gly	Val	
AGA	CCT	AAC	AGC	CCA	CAA	GCT	AAC	CAG	CCA	GGA	CCA	CGT	CCA	ACG	CCA	978
Arg	Pro 280	Asn	Ser	Pro	Gln	Ala 285	Asn	Gin	Pro	Gly	Pro 290	Arg	Pro	Thr	Pro	

ANT ANT CCT CAA GGA CCA CGG CCA ATG GGT CCA AGA CCA AAT GGA GGA .	1026
Asn Asn Pro Gln Gly Pro Arg Pro Met Gly Pro Arg Pro Asn Gly Gly 300 305 310	
CCA AAC CGA GCT TAATTAACCA ATAGATTAGC TCTAAATTTG AAAACAGTTC	1078
Pro Asn Arg Ala	•
ATITCCTAGA AAATGAACTG TTTTTTTAT TATTTGTAAG TAAATTTATT AATCAACCGC	1138
TIGTTTIGIT GAATAAAGAT AGATCACAAC ATCITCTIGA TITACATCIT TAATTIGCAT	1198
ATTATTGATC ATTAAAGGGA TCTTCATGAT CTGATACATC TTGTTATTCT CATAATCAAG	1258
ATAATTAAGA TGTGAAGCAC TAAAAGCAAA TAGCTCTTGT TCAGATTGGA TTAGTTCTTT	1318
AGCATTATTT AAGAACGACT GATCATCACT CAGTAATAAT AAGATCTGAT TCAAGTTTTT	1378
GATATCAGTT GCTACTTCTT GATTTAACAT CAATGTTTCA TAGCGTGATA ATAAGGATTT	1438
AAAACGCTGA ATGATTGATG TCGTTGCACT TTTCTCATCG TTGGTTTCAA CGTATTGAAA	1498
AGTGTTCATT AAGTTAATGT ATTCTTGCTG GTATTTCTTA TTAATCTGAT CAGGGTTATC	1558
TGAATAGATT AAGATGTTCT TATTAGTTTG ATCAACAATA ACCATCGTTG CTTTCATTAA	1618
AGCTCAGTAA GTAAATAGTT TTTCAATCTT ATGCTTTAAT AAAAACGGGA TGATATTCTT	1678
ATGTAGGTTA AACTTATTAA AAATAAGTTT TGCAATCTGG TTGACTAGTT TATGATCAAC	1738
CTGGTTGATA GTTAATTTCT TAAGCATAAG AAGATTTTAA AATATTTAAA AAAACTATTG	
·	1798
CTGATATGTT AAAATAGTTA AGGTATAAAA ATAATAAATT AAATATGGCT CGTAGAGATG	1858
ATCTAACCGG GCTTGGTCCT TTAGCAGGAA ATAATCGTTC TCATGCTTTA AACATTACCA	1918
AGCGTCGTTG AAACTTAAAC CTACAAA	1945

(2) 配列番号 1 6 についての情報

(i)配列の特性

(A) 配列の長さ: 1935

·(B) 配列の型 : アミノ酸

(D) トポロジー: 直鎖状

(E)	丽	列	の	糆	粨	•	D	N	Α
\ L /	ш	7.1	~	734	かい しょうしょう マン・ロー・ファン・ロー・ファン・ロー・ファン・コー・ファン・コー・ファン・コー・ファン・ロー・Drune・	•	$\boldsymbol{\mathcal{L}}$	7.4	4 1

(xi)	配列	のえ	長示	: 酉	列	番	묵	1	6

TTT/	ATTT	ITA 1	MTT	rggt/	AA A 1	rctt	MATT	A AT	ATAA/	ATAT	ATT	ГТАА?	rat '	_	ATG Met	56
AAT	AAA	AAA	AGA	ATC	ATC	TTA	AAG	ACT	ATT	AGC	TTG	TTA	CCT	ACA	ACA	104
Asn	Lys	Lys	Arg	He	lle	Leu	Lys	Thr	lle	Ser	Leu	Leu	Gly	Thr	Thr	
			5					10					15			
TCC	TTT	CTT	ACT	ATT	CCC	ATT	TCT	AGC	TCT	ATG	TCT	ATT	ACT	AAA	AAA	152
Ser	Phe	Leu	Ser	lle	Gly	He	Ser	Ser	Cys	Met	Ser	He	Thr	Lys	Lys	
		20					25					30				
GAT	GCA	AVC	CCV	ΛΛT	AAT	GGC	CAA	ACC	CAA	TTA	GAA	GCA	GCG	CGA	ATG	200
Asp	Ala	Asn	Pro	Asn	Asn	Gly	Gln	Thr	Gln	Leu	Glu	Ala	Ala	Arg	Met	
	35					40					45					
GAG	TTA	ACA	GAT	CTA	ATC	AAT	GCT	AAA	GCG	ATG	ACA	TTA	GCT	TCA	CTA	248
Glu	Leu	Thr	Asp	Leu	He	Asn	Ala	Lys	Ala	Met	Thr	Leu	Ala	Ser	Leu	
50					55					60					65	
CAA	GAC	TAT	GCC	AAG	ATT	GΛA	GCT	AGT	TTA	TCA	TCT	GCT	TAT	AGT	GAA	296
Gln	Asp	Туг	Ala	Lys	He	Glu	Ala	Ser	Leu	Ser	Scr	Ala	Tyr	Ser	Glu	
				70					75					80		
GCT	GAA	ΛCA	CTT	AAC	AAT	AAC	CTT	AAT	GCA	ΛCA	TTA	GΛA	CAA	CTA	AAA	344
Ala	Glu	Thr	Val	Asn	Asn	Asn	Leu	Asn	Ala	Thr	Leu	Glu	Gin	Leu	Lys	
			85					90					95			
ATG	CCT	AAA	ACT	AAT	TTA	GAA	TCA	CCC	ATC	AAC	CAA	GCT	AAT	ACG	GAT	392
Met	Ala	Lys	Thr	Asn	Leu	Glu	Ser	Ala	He	Asn	Gln	Ala	Asn	Thr	Asp	
		100					105					110				
AAA	ACG	ACT	TTT	GAT	AAT	GAA	CAC	CCA	AAT	TTA	GTT	GAA	GCA	TAC	AAA	440
Lys	Thr	Thr	Phe	Λsp	Asn	Glu	His	Pro	Asn	Leu	Val	Glu	Ala	Туг	Lys	
	115					120					125					
GCA	CTA	AAA	ACC	ACT	TTA	GAA	CAA	CGT	GCT	ACT	AAC	CTT	GAA	GGT	TTG	488

Ala	a Le	u Ly	's Th	r Th	r Le	u GI	u Gl	n Ar	g Ala	a Th	r As	n Le	u GI	u GI	y L	eu ·
130)				13	5				140	0				1	45
TC/	TC	A AC	T GC	T TA	T AA	T CA	A AT	r cc	C AA	r aa	r tt	A GT	C GA	т ст	A T	AC 536
Ser	- Se	r Th	r Al	а Ту	r As	n Gl	n H	e Ar	g Ası	n Ası	n Le	u Va	l As	p Le	u Ty	yr
				.15	0				159	5				16	0	•
AAT	` AA	A GC	T AG	T AG	r tt	A ATA	A ACT	r aa	A AC/	CT/	A GA'	r cc	A CT	A AA	T GO	GG 584
Λsn	Lys	s Ala	a Se	r Sei	r Lei	u He	e Thi	Ly	s Thi	- Lei	ı Ası	P Pro	o Le	u As	n Gi	ly
			16	5				170	O				17	5		
GGA	VCC	CI.	T TT	A GAT	r TC	raa 1	C GAC	AT	r act	` ACA	GC7	AA 1	Γ ΑΑ	G AA'	ΓΑΊ	TT 632
Gly	Thr	Le	u Le	u Ası	Se ₁	r Asr	Glu	H	e Thr	Thr	Ala	Ası	ı Lys	s Ası	n II	e
		180	0				185	5				190)			
AAT	TAA	, VC	G TT/	A TCA	ACT	TTA 7	TAA	G/V	A CAA	AAG	AC1	* AA1	r GC1	Γ GA	r GC	A 680
				ı Ser												
	195					200					205					
TTA	GCT	^ ^	r agt	TTT	` ATT	• AAA	GAA	GTG	ATT	CAA	AAT	TAA '	` AAA	CAA	A AG	T 728
				Phe												
210					215					220					22	_
TTT	GTA	GGA	ATG	TTT	ACA	AAC	ACT	AAT	GTT	CAA	CCT	TCA	AAC	TAT	· AG	T 776
				Phe												
				230					235		•			240		,
TTT	GTT	GCT	TIT	VCL	GCT	CAT	GTA	ACA	CCT	CTT	AAT	TAT	AAA			A 824
				Ser												
			245					250				-,-	255	-7-		•
4GA	AGA	ACG	GTT	TGA	ΛΛΤ	GGT	GAT	GAA	CCT	TCA	AGT	AGA		СТТ	GCA	872
				Trp												
		260					265					270			,,,,,	•
AC .	ACC	AAT	AGT	ATT	ACT			TCA	TGA	АТТ	ፐልፐ		тта	ፕ ዮፓ	CCA	
				He												
	275					280	-		F		285	JU1		OGI	ury	
CA A	AAC .	ACG	AAA	TAC			AGT	TTT	AGC			CCT	CCA	TCA	Δሮፕ	069
						- '					-1.10	3 01		LUN	UNI	968

G	ly AT Sn	Tyr	Leu GGA	Tyr TTA	Phe 310								GCT	GAT	GCT	305 AGT	1016
G	ly AT Sn	Tyr	Leu GGA	Tyr TTA	Phe 310	Pro							GCT	GAT	GCT	AGT	1016
	AT sn	GTT	GGA	TTA	310	•	Туг	Lys	Leu	Val	Ive						
A	sn										Lys	Ala	Ala	Asp	Ala	Ser	
A	sn				CAA	ጥለር				315					32 0		
		Val	Gly			IAC	AAA	CTA	AAT	AAT	GGA	AAT	GTT	CAA	CCA	GTT	1064
A	AG			Leu	Gin	Tyr	Lys	Leu	Λsn	Asn	Gly	Asn	Val	Gln	Pro	Val	
	AG			325					330					335			
G		TTT	CCC	ACT	TCA	ΛCT	AGC	GCA	AAT	AAT	ACT	ACA	GCT	AAT	CCA	ACT	1112
G	lu	Phe	Ala	Thr	Ser	Thr	Ser	Ala	Asn	Asn	Thr	Thr	Ala	Asn	Pro	Thr	
			340					345					3 50				
C	CA	GCA	CTT	GAT	GAG	ATT	AAA	GTT	GCT	AAA	ATC	GTT	TTA	TCA	GCT	TTA	1160
P	ro	Ala	Val	Asp	Glu	lle	Lys	Val	Ala	Lys	He	Val	Leu	Ser	Gly	Leu	
		355					360					365					
A	GA	TTT	GGC	CAA	AAC	ACA	ATC	GAA	TTA	AGT	GTT	CCA	ACG	CCT	GAA	AGA	1208
A	rg	Phe	Gly	Gln	Asn	Thr	He	Glu	Leu	Ser	Vai	Pro	Thr	Gly	Glu	Arg	
3	70					375					380					385	•
٨	۸Т	ATG	AAT	AAA	GTT	GCC	CCA	ATG	ATT	GGT	AAT	ATG	TAT	ATT	ACT	TCA	1256
A:	sn	Met	Λsn	Lys	Val	Ala	Pro	Met	lle	Gly	Asn	Met	Tyr	He	Thr	Ser	
					390					395					400		
T	CT	ААТ	GCT	GAA	GCA	AAT	AAA	AAG	CAA	AT.T	TAC	GAT	AGT	ATT	TTT	GGA	1304
S	er	Asn	Ala	Glu	۸la	Asn	Lys	Lys	Gln	lle	Tyr	Asp	Ser	[le	Phe	Gly	
				405					410					415			
A	AC	ACT	TCA	TCA	CAA	ACT	GCT	AGC	CAA	ACA	TCT	GTT	AGT	GTT	GAT	CTA	1352
À	sn	Thr	Ser	Ser	Gin	Thr	۸la	Ser	Gln	Thr	Ser	Val	Ser	Val	Asp	Leu	
			420					425					430				
T	ГΑ	AAA	GGA	TAT	AGT	CTT	GCA	ACT	AGT	TCA	AGA	ACA	TAT	ATT	CGT	CAA	1400
Le	eu	Lys	Gly	Туг	Ser	Leu	Ala	Thr	Ser	Ser	Arg	Thr	Tyr	Ile	Arg	Gln	
		435					440					445					
T	П	ACT	CCT	TTA	ACA	GAT	AAT	GGC	GTA	CAA	ΛCC	TCT	GAC	CCA	GTT	TAT	1448

Phe	Thr	Gly	Leu	Thr	Asp	Asn	Gly	Val	Gln	Thr	Ser	Asp	Pro	Val	Tyr .	
4 50					455					460					465	
TľA	ATT	GCT	TTG	ATT	GGT	GGT	CCT	CAG	GAT	CGT	ACA	CTT	GCA	ACT	GGT	1496
Leu	He	Gly	Leu	He	Giy	Gly	Arg	Gin	Asp	Arg	Thr	Val	Ala	Thr	Gly	
				470					475					480		•
ACA	ACG	AAT	ATT	CAA	ΑΛT	TCT	CCT	GΛT	GΤΛ	GAT	ΑΛΤ	GAT	ΛΛT	AGA	ACA	1544
Thr	Thr	Asn	He	Gln	Asn	Ser	Pro	Asp	Val	Asp	Asn	Asp	Asn	Arg	Thr	
			485					490					495			
TTC	ACA	ΛΤΛ	TAT	GTA	ΛΑТ	GCA	CCV	ATA	AAC	GGG	AAC	TAT	CAC	ATA	AGT	1592
Phe	Thr	lle	Tyr	Val	Asn	Ala	Pro	He	Asn	Gly	Asn	Tyr	llis	He	Ser	
		50 0					505					510				
GGT	GCC	TAT	TTA	CAA	GGA	ACG	CCT	ACA	GCA	AGA	AGT	CTG	AAA	TTC	TCA	1640
Gly	Ala	Туг	Leu	Gln	Gly	Thr	Arg	Thr	Ala	Arg	Ser	Leu	Lys	Phe	Ser	
	515				•	520					525					
TCC	CCT	ACA	AGT	CCC	ΛGT	AAT	AAT	GAA	GTT	ΛCA	GTC	CTT	CCT	TTA	GAA	1688
Ser	Gly	Thr	Ser	Gly	Ser	Asn	Asn	Glu	Val	Thr	Val	Leu	Gly	Leu	Glu	
530					535					540					545	
CAA	VCC	GAT	TGA	ACA	ATA	TTA	GGT	CAC	TIT	GAT	ACA	AAG	ATG	GAT	GCT	1736
Gln	Arg	Asp	Trp	Thr	lle	Leu	Gly	llis	Phe	Asp	Thr	Lys	Met	Asp	Gly	
				550					555					560		
		ACT														1784
Thr	Thr	Thr		Ser	Trp	Thr	Asn		Ala	Ser	Lys	Arg		Leu	Thr	
			565					570					575			
		AAA						•								1832
Leu	Asn	Lys	Gly	Leu	Asn	Lys		lle	Vai	Ser	Gly	Gly	Thr	Gln	Asp	
		580					585					590				
AAC	ACA	AAT	GCT	CCA	TTT	ATC	GGT	AAC	TTA	ACA	TIT	ACT	CTC	CAT	CTA	1880
Asn	Thr	Asn	Ala	Pro	Phe	lle	Gly	Asn	Leu	Thr	Phe	Thr	Leu	His	Leu	
	595					600					605					
ACG	TAGA	AAACI	TC 1	TATT	CAAC	GC TO	TCA	ATCTO	G CAC	CAACO	CAGT	TAA	\AAT/	AGA 1	rg	1935
Thr																
610																

(2)	配列	番号	17に	ついての情報 .	
	(i)甄	三列の4	恃 性		
	(A)	配列(の長さ	: 32	
	(B)	配列。	の型 :	: 核酸	
	(C)	鎖の数	X :	: 一本鎖	
	(D)	トポロ	コジー:	:直鎖状	
	(E)	配列の	の種類:	: 他の核酸 合成DNA	
	(x i)	配列の	の表示:	:	
TACGT	TCTT	сстббс	AAACCI	TTACCACTACTT	32
(2)	配列	番号:	1 8 12 -	ついての情報	
	(i)配	列の中	寺 性		
	(A)	配列の	0長さ:	: 21	
	(B)	配列の	り型 :	:核酸	
	(C)	鎖の数	汝 :	: 一本鎖	
	(D)	トポロ	コジー :	:直鎖状	
	(E)	配列の	D 種 類:	: 他の核酸 合成DNA	
	(xi)	配列の) 表示:	:	
CTACA	AAGAA	CCTAA	ATATCA	A	21
(2)	配列	番号 1	9 にっ	ついての情報	
	(i)配	列の特	持性		
	(A)	配列の) 長さ:	: 24	

(B) 配列の型 : 核酸

(C) 鎖の数: 一本鎖

	(D)	ト	ポ		ジ	_	:	直	鎖	状										
	(E)	配	列	の	種	類	:	他	の	核酸	合	成	D	N A	4					
	(xi)	配	列	の	表	示	:													
TATA	GAATTA	AA	ŢŢ	ŤΊ	`A C	TT	ΑΊ	TC	;										.24	
														•						
(2)	配列	番	号	2	0	に	つ	Ļì	て	の情報										•
	(i)配	列	の	特	性															
	(A)	配	列	の	長	さ	:	97	•											
	(B)	配	列	の	型		:	核	酸											
	(C)	鎖	の	数			:	_	本	鎖										
	(D)	٢	ポ		ジ		:	直	鎖	状		-								
	(E)	配	列	の	種	類	:	他	の	核酸	合	成	D	N A	A					
	(xi)	配	列	の	表	示	:			:										
AGCTT	TTTTT T	TT:	rtt	TT:	ГT	TTI	'GG	CAI	TAT	' AAATAA'	[AA]	A T	AC?	ATA	ATT	A	ATT	ACG	CGT	60
AAAAA	TTGAA A	AA(CTA	TT	CT	ľAA	TT	ATI	rgc	ACTCGTO	2				•					97
(2)	配列	番	号	2	1	に	つ	い	て	の情報										
	(i)配	列	の	特	性	٠														
	(A)	配	列	の	長	さ	:	93												
	(D)			_	~~~															

- (2)
 - (B) 配列の型 : 核酸
 - (C) 鎖の数 : 一本鎖
 - (D) トポロジー: 直鎖状
 - (E) 配列の種類: 他の核酸 合成DNA
 - (xi) 配列の表示:

AAAAAAAAA AAAAAAAAAC CGTATATTTA TTATTTATGT TATTAATTAA TGCGCATTTT 60

TAACTTTTTG ATAAGATTAA ATAACGTGAG CAG	93
·	
(2) 配列番号22についての情報	
(i)配列の特性	
(A) 配列の長さ: 95	
(B) 配列の型 : 核酸	
(C) 鎖の数 : 一本鎖	
(D) トポロジー: 直鎖状	
(E) 配列の種類: 他の核酸 合成DNA	
(xi) 配列の表示:	
AGCTTTTTTT TTTTGGCATAT AAATAATAAA TACAATAATT AATTACGCGT	60
AAAAATTGAA AAACTATTCT AATTTATTGC ACTCG	95
(2) 配列番号23についての情報	
(i)配列の特性	
(A) 配列の長さ: 96	
(B) 配列の型 : 核酸	
(C) 鎖の数 : 一本鎖	
(D) トポロジー: 直鎖状	
(E) 配列の種類:他の核酸 合成DNA	
(xi) 配列の表示:	
TTAACTTTT CATAACATTA AATAACCTCA COCTAC	60
	96

(2)		配列	番	号	2	4	に	つ	い	て	の	情	報										
	(i) 配	列	の	特	性																	
		(A)	配	列	の	長	さ	:	1 1														
		(B)	配	列	の	型		:	核	酸													
		(C)	鎖	の	数			:	_	本	鎖												
		(D)	ト	ポ	U	ジ	_	:	直	鎖	状												
		(E)	配	列	の	種	類	:	他	の	核	酸		合	戍	D	N	Α	١				
	(xi)																					
GATC	CA	GCAT	`G																			1	l
(2)		配列	番	号	2	5	に	つ	い	て	の	情	報										
	(i)配	列	の	特	性																	
		(A)	配	列	の	長	さ	:	10				•										
		(B)	配	列	の	型		:	核	酸													
		(C)	鎖	の	数			:	_	本	鎖												
		(D)	ト	ポ	D	ジ	_	:	直	鎖	状												
		(E)	配	列	の	種	類	:	他	の	核	酸		合	成	D	N	Α	L				
	(xi)	配	列	の	表	示	:															
GTCGT	ΓΑ	CCTG	;													•				-		1 ()
(2)		配列	番	号	2	6	に	っ	ļì	て	の	情	報										
	(i) 配	列	の	特	性																	
		(A)	配	列	の	長	さ	:	21														

(B) 配列の型 : 核酸

:一本鎖

(C) 鎖の数

- (D) トポロジー: 直鎖状
- (E) 配列の種類: 他の核酸 合成 DNA
- (xi) 配列の表示:

GGGATTTCGAATTCTATGTCT

21

- (2) 配列番号27についての情報
 - (i)配列の特性
 - (A) 配列の長さ: 2346
 - (B) 配列の型 : アミノ酸
 - (C)鎖の数: 二本鎖
 - (D) トポロジー: 直鎖状
 - (E) 配列の種類: DNA
 - (xi) 配列の表示: 配列番号27

AAA	AACA	TCA	GATT	GTTA	AT C	TGAT	'AT¢'	TT TG	CTTA	AAAA	AAC	CACAA	AAT	CTTC	TAACAA	60
AAT	CCTA	AAT	AAAT	AAGC	CG 1	TAAA	TTA	AC TA	AAAA	ATTA	AAA	FAAA	CCT	TTT	CTTATC	120
AAC	CAAA	TTA	CTCT	AGTA	AT A	AACG	CTT	TT TA	ATTT	TTAT	TIT	TAGI	CAT	CTT	TAAGAT	180
ATA	AAT A	TAT	CTTA	ATAT	TC I	` ATG	AA7	r aag	AAA	AGA	ATC	ATC	TTA	AAC	ACT	231
				•		Met	Ası	Lys	Lys	Arg	He	lle	Leu	ı Lys	Thr	•
										5					10	
ATT	AGT	TTG	TTA	CCT	ACA	ACA	TCC	TTT	CTT	AGC	ATT	GGG	TTA	TC1	AGC	<i>2</i> 79
He	Ser	Leu	Leu	Gly	Thr	Thr	Ser	Phe	Leu	Ser	He	Gly	He	Ser	Ser	
				15					20					25	•	
TGT	ATG	TCT	ATT	ACT	AAA	AAA	GAC	GCA	AAC	CCA	AAT	AAT	GGC	CAA	ACC	327
Cys	Met	Ser	lle	Thr	Lys	Lys	Asp	Ala	Asn	Pro	Asn	Asn	Gly	Gln	Thr	
			30					35					40	1		
CAA	TTA	CAA	GCA	GCG	CGA	ATG	GAG	TTA	ACT	GAT	CTA	ATC	AAT	GCT	AAA	375
Gln	Leu	Gln	Ala	Ala	Arg	Met	Glu	Leu	Thr	Asp	Leu	Ile	Asn	Ala	Lys	
		45	•				50					55				
GCA	AGG	ACA	TTA	GCT	TCA	CTA	CAA	GAC	TAT	GCT	AAG	ATT	GAA	GCT	AGT	423
Ala	Arg	Thr	Leu	Λla	Ser	Leu	Gln	Asp	Tyr	Ala	Lys	lle	Glu	Ala	Ser	
	60					65					70					
TTA	TCA	TCT	GCT	TAT	AGT	GAA	GCT	GAA	ACA	GTT	AAC	AAT	AAC	CTT	AAT	471
Leu	Ser	Ser	Ala	Туг	Ser	Glu	Ala	Glu	Thr	Val	Asn	Asn	Asn	Leu	Asn	
7 5					80					85					90	
GCA	ACA	CTA	GAA	CAA	CTA	AAA	ATG	CCT	AAA	ACT	AAT	TTA	GAA	TCA	GCC	519
Ala	Thr	Leu	Glu	GIn	Leu	Lys	Met	Ala	Lys	Thr	Asn	Leu	Glu	Ser	Ala	
				95					100					105		
ATC	AAC	CAA	GCT	AAT	ACG	GAT	AAA	ACG	ACT	TTT	GAT	AAT	GAA	CAT	CCA	567
He	Asn	Gln	Ala	Asn	Thr	Asp	Lys	Thr	Thr	Phe	Asp	Asn	Glu	His	Pro	
			110					115					120			
AAT	TTA	GTT	GAA	GCA	TAC	AAA	GCA	CTA	AAA	ACC	ACT	TTA	GAA	CAA	CGT	615

Λsn	Leu	Val	Glu	Ala	Tyr	Lys	۸la	Leu	Lys	Thr	Thr	Leu	Glu	Gln	Arg	•
		125					130					135				
GCT	ACT	AAC	CTT	GAA	GCT	TTA	CCT	TCA	ACT	GCT	TAT	AAT	CAG	ATT	CGT	663
Ala	Thr	Asn	Leu	Glu	Gly	Leu	Ala	Ser	Thr	Ala	Туг	Asn	Gln	lle	Arg	
	140			•		145					150					•
ΛΛT	AAT	TTA	GTG	GAT	СТЛ	TAC	AAT	ΑΛT	GCT	AGT	AGT	TTA	ATA	ACT	AAA	711
Asn	Asn	Leu	Val	Asp	Leu	Туг	Asn	Asn	Ala	Ser	Ser	Leu	lle	Thr	Lys	
155					160					165					170	
ACA	CTA	GAT	CCA	CTA	AAT	GCG	GGA	ATG	CTT	TTA	GAT	TCT	AAT	GAG	ATT	7 59
Thr	Leu	Λsp	Pro	Leu	Asn	Gly	Gly	Met	Leu	Leu	Asp	Ser	Asn	Glu	He	
				175					180					185		
ACT	ACA	GTT	AAT	CGG	AAT	ATT	AAT	AAT	ACG	TTA	TCA	ACT	ATT	AAT	GAA	807
Thr	Thr	Val	Asn	Arg	Asn	Ile	Asn	Asn	Thr	Leu	Ser	Thr	He	Asn	Glu	
			190					195					200			
CAA	AAG	ACT	AAT	CCT	GAT	GCA	TTA	TCT	AAT	AGT	TTT	ATT	AAA	AAA	GTG	85 5
Gln	Lys	Thr	Asn	Ala	Asp	Ala	Leu	Ser	Asn	Ser	Phe	He	Lys	Lys	Val	
•		205					210					215				
ATT	CAA	AAT	AAT	GAA	CAA	AGT	TTT	GTA	GGG	ACT	TTT	VCV	AAC	GCT	AAT	903
He	Gln	Asn	Asn	Glu	Gln	Ser	Phe	Val	Gly	Thr	Phe	Thr	Asn	Ala	Asn	
	220					225					230					
GTT	CAA	CCT	TCA	AAC	TAC	AGT	TTT	GTT	GCT	TTT	AGT	GCT	GAT	GTA	ACA	951
Val	Gln	Pro	Ser	Asn	Tyr	Ser	Phe	Val	Ala	Phe	Ser	Ala	Asp	Val	Thr	
235					240					245					250	
CCC	GTC	AAT	TAT	AAA	TAT	GCA	AGA	AGG	ACC	GTT	TGG	AAT	GCT	GAT	GAA	999
Pro	Val	Asn	Tyr	Lys	Tyr	Ala	Arg	Arg	Пıг	Val	Trp	Asn	Gly	Asp	Glu	
				255					260					265		
CCT	TCA	AGT	AGA	ATT	CTT	GCA	AAC	ACG	AAT	AGT	ATC	ACA	GAT	GTT	TCT	1047
Рго	Ser	Ser	Arg	He	Leu	Ala	Asn	Thr	Asn	Ser	lle	Thr	Asp	Val	Ser	
			270					275					280	•		
TGG	ATT	TAT	AGT	TTA	GCT	GGA	ACA	AAC	ACG	AAG	TAC	CAA	TTT	AGT	TTT	1095

Tr	110	e Ty	r Sc	r Le	u Ala	a GI	y Tiu	r Ası	n Th	r Ly:	s Ty	r Gli	n Ph	e Se	r Ph	ne .
		285	5				290	0				29	5			
AGC	: AA(TAT	r GG	L CC	A TC	A AC	ር ነርን	TA'	r tt	A TA	r tr	C CC1	r ta	T AA	G TI	C 1143
Ser	Ası	1 Туі	GI	y Pro	o Şei	r Thi	r GI3	у Туі	r Lei	и Туі	r Ph	е Рго	о Ту	r Ly	s Le	eu
	300)				305	5				310	0				•
GIT	` AA/	GC/	A GCT	CA7	r GC1	FAA 1	C AAC	GT	r GGA	A TTA	A CA	A TAC	AA C	A TT	A AA	T 1191
Val	Lys	: Ala	Λla	a Asp	Ala	a Asr) Asr	ı Val	GIS	/ Lei	ı Glı	Ty:	Ly:	s Le	u As	n
315					320					325					33	
AAT	GGA	TAA A	GT	CAA	CA/	GTT	GAG	TT	CCC	C ACT	TC/	A ACT	C AG	r GC/	A AA	T 1239
Asn	Gly	Asn	Val	Gin	Glr	ı Val	Glu	Phe	λla	Thr	. Sei	Thr	· Sei	- Ala	a Asi	מ
				335	5				340)				345	5	
AAT	ACT	' ACA	GCI	TAA	CCA	ACT	CCA	GCA	CTI	GAT	GAC	ATT	` AAA	GT	r GC	T 1287
Asn	Thr	Thr	Ala	Asn	Pro	Thr	Pro	Ala	Val	Asp	Glu	lle	Lys	Val	l Ala	a
	•		350)				355	;				360)		
AAA	ATC	GTT	TTA	TCA	GGT	' TTA	AGA	TTI	. GCC	CAA	AAC	: ACA	ATC	GAA	TT/	A 1335
Lys	He	Val	Leu	Ser	Gly	Leu	Arg	Phe	Gly	Gln	Asn	Thr	Ile	Glu	ı Lei	u
		365					370					375				
AGT	GTT	CCA	ACG	GGT	GAA	GGA	AAT	ATG	AAT	AAA	GTT	GCG	CCA	ATG	AT	Γ 1383
												Ala				
	3 80					385					390					
GGC	AAC	ATT	TAT	CTT	AGC	TCA	AAT	GAA	AAT	AAT	GCT	GAT	AAG	ATC	TAC	1431
Gly	Asn	He	Tyr	Leu	Ser	Ser	Asn	Glu	Asn	Asn	Ala	Asp	Lys	He	Tyr	•
395					400					405					410	
AAT	GAT	ATC	TTT	GGT	AAC	ACA	ATC	AAC	CAA	CAG	AAT	AAT	GCT	ATT	TCT	1479
Asn	Asp	lle	Phe	Gly	Asn	Thr	lle	Asn	Gln	Gln	Asn	Asn	Ala	lle	Ser	
				415					420					425		
GTA	ATG	GTT	AAT	ATG	GTT	GAG	GGA	TAT	AAT	TTA	GCT	AGT	AGT	TAT	TCT	1527
												Ser				
			430					435					440			
CCA	GCA	TAT	AAA	CCA	ATT	AAT	GTT	TCC	ACT	GGT	GCT	GGT	CAA	АСТ	CAA	1575

Pro	ΛJa	Tyr	Lys	Pro	116	e Asr	ı Val	Sei	Thi	· G13	y Gly	y Gly	/ Glr	1 Th	r Gin	•
		445	5				450)				455	5			
CCA	TAT	TAT '	CT/	TTA A	GC1	TGA	TTO	GGC	CCT	r AG1	r GA7	CAC	G AAC	cc	r aga	1623
Pro	Tyr	Tyr	Val	He	Gly	Trp	Leu	Gly	/ Ala	ı Sei	- Ası	Glr	a Asr) Pro	Arg	
	460)				465	;				470)				
AAC	GCT	CIG	GGA	ACC	AAC	OTA :	AAC	GTA	CAA	A AGA	GT	CCA	GCA	AC/	AAT	1671
Asn	Ala	Val	Gly	Thr	Asn	Met	Asn	Val	Gln	Arg	y Val	Pro	Ala	Thu	- Asn	
475					480)				485	5				490	
AGC	AAC	CAA	GGC	GGA	TAT	GCT	' AGA	TAT	GTC	TCI	TT	TAT	CT1	` AAT	CCT	1719
Ser	Asn	Gln	Gly	Gly	Tyr	Ala	Arg	Tyr	Val	Ser	Phe	Tyr	Val	Asn	Ala	
				495	1				50 0)				505	5	
CCA	CAA	GCT	CCT	TCA	TAT	TAT	ATT	AGT	. CCI	· AAC	TAT	` ΑΛΤ	AGT	TTA	ACA	1767
Pro	Gln	Ala	Gly	Ser	Tyr	Tyr	He	Ser	Gly	Asn	Tyr	Asn	Ser	Leu	Thr	
			510	1				515	;				520	1		
GCT	AGA	GGT	CTA	GCT	CTG	TCT	ACT	GAG	AAA	ACA	TTT	ACA	ACC	AAT	GTG	1815
Ala	Arg	Gly	Leu	Ala	Val	Ser	Thr	Glu	Lys	Thr	Phe	Thr	Thr	Asn	Val	
		525					53 0					535				
ATC	AAG	ATC	ACT	CAC	TTA	CAA	GTA	ATT	AAT	GCC	ACT	AAT	AGA	ATC	TTA	1863
He	Lys	He	Thr	His	Leu	Gln	Val	He	Asn	Ala	Thr	Asn	Arg	lle	Leu	
	5 40					545					550					
ACC	TTT	GAT	ACT	AAA	ACA	AAA	AGA	GGA	ACT	GAT	AGT	AAT	AAC	GGT	AAT	1911
Thr	Phe	Asp	Thr	Lys	Thr	Lys	Arg	Gly	Thr	Asp	Ser	Asn	Asn	Gly	Asn	
555					560					5 65					57 0	
ATT	ACA	TTA	GAA	GCA	AAC	AAA	GAC	ACA	ATA	ACA	TTA	ACT	AAG	GGT	TGA	1959
He	Thr	Leu	Glu	Ala	Asn	Lys	Asp	Thr	He	Thr	Leu	Thr	Lys	Gly	Trp	
				575					580					585		
AAC	AAA	CTT	TAT	CTT.	TCA	GGT	AAT	AAT	AAT	GAC	AGT	GTA	CCT	ATT	GCT	2007
						Gly										
			590					595					600			
AAT	CTT	ACT	TIT	ACA	TTA	ATG	CCA	CCA	CAA	ACT	AAT	TCA	TAAT	TAAC	AT	2056

				•
Asn Leu Tr	or Phe Thr I	eu Met Pro F	ro Gln Thr Asn Ser	
60) 5	610	615	
ATATTAAACA	TACCCATTTA	GATAATCTAA	ATGGGTATCT TTTTTATTGA AA/	TGGCGCA 2116
TGATGAAATC	AAAGTTAAGT	TCACTAGTGC	TTTGATAAAT TAGATCAGCT TTA	GAANNAT 2176
CTTCACTACT	GCCATGGGTA	ATGACAACAG	CTTTCATTTT GNCTGCTTCG ATO	GCTTTCA 2236
ATCCTGAGAT	CGCATCTTCA	AACCCAATAN	CTINATCATT GCTGATATCT AAG	TCTTCTN 2296
CAGCTTTAAG	ATAGATATCA	GCTNCTGGTT	TACCTTGGTT AATCTCACTT	2346
(2) 配	列番号2	8 につい	ての惨却	
	配列の特		THE THE	
(A)配列の	長さ: 17		
(B)配列の	型 : 核酮	愛	
(C)鎖の数	: - 2	左鎖	
(D)トポロ	ジー: 直針	貴 状	
(E)配列の	種類:他の	D核酸 合成 DNA	
(x i)配列の	表示:配列	引番号28	
GTTTTCCC	AGTCACGA	C		17
				• •
(2) 配:	列番号 2	9 について	この情報	
	配列の特質			
(A))配列の:	長さ: 27		
		型 : 核酸	•	
		: 一本		
		・・・ エジー: 直鎖		
			核酸 合成DNA	
(11)	日にかりのる	支示: 配列	奋亏29	*

AACC	AACCAA	A C C	CG	A 1	00	G C 1	` A C	TC	T										27
(2)	配列	番	号	3	0	に	つ	しい	て	の	情	報							
	(i)配	列	の	特	性														
	(A)	配	列	の	長	さ	:	20)										
	(B)	配	列	の	型		:	核	酸										
	(C)	鎖	の	数			:		本	鎖									
	(D)	ト	ポ		ジ	_	:	直	鎖	状									
	(E)	配	列	の	種	類	:	他	の	核	酸		合。	成	D	N	F	A	
	(xi)	配	列	の	表	示	:	配	列	番	号	3	0						
TGAT	TGGGCG	CT	A G	CG	A T	'C A													20
(2)	配列	番	号	3	1	に	つ	い	て	の	情	報							
	(i)配	列	の	特	性														
	(A)	配	列	の	長	さ	:	23											
	(B)	配	列	の	型		:	核	酸										
	(0)	鎖	の	数			:		本	鎖									
٠.	(D)	۲	ポ		ジ	_	:	直	鎖	状									
	(E)	配	列	の	種	類	:	他	の	核	酸		合丿	哎 .	D	N	A	1	
	(:)	两	БII	σ	主	ѫ	•	配	列	番	号	3	1						
	(xi)		クリ	כט	1	/],	•			_			•						
TCCCA	AACCTT									_			•						23
TCCCA										_			•						23
		GT	TC	G A	A A	ΤA	C A	A					•						23

(A) 配列の長さ: 19

19

(B) 配列	の	型	:	核酸
--------	---	---	---	----

(C)鎖の数: 一本鎖

(D) トポロジー: 直鎖状

(E) 配列の種類: 他の核酸 DNA

(xi) 配列の表示: 配列番号32

TGAAACAAGCTTTATGTTT

配列番号33についての情報 (2)

(i)配列の特性

(A) 配列の長さ: 17

(B) 配列の型 : 核酸

(C)鎖の数: 一本鎖

(D) トポロジー: 直鎖状

(E) 配列の種類: 他の核酸 DNA

(xi) 配列の表示: 配列番号 3 3

CAGTATCGACAAAGGAC

17

(2)配列番号34についての情報

(i)配列の特性

(A) 配列の長さ: 17

(B) 配列の型 : 核酸

(C) 鎖の数: 一本鎖

(D) トポロジー: 直鎖状

(E) 配列の種類: 他の核酸 合成 DNA

(xi) 配列の表示: 配列番号 3 4

C	A	G	G	A	A	A	C	A	G	C	Т	A	T	G	A	ſ	۰
•		•	v				v		•	₩.		,,		v	,,	•	,

17

- (2) 配列番号35についての情報
 - (i)配列の特性
 - (A) 配列の長さ: 20
 - (B) 配列の型 : 核酸
 - (C)鎖の数: 一本鎖
 - (D) トポロジー: 直鎖状
 - (E) 配列の種類: 他の核酸 合成DNA
 - (xi) 配列の表示: 配列番号 3 5

GTTCTTCCTGGCAAACTTTA

20

- (2) 配列番号36についての情報
 - (i)配列の特性
 - (A) 配列の長さ: 20
 - (B) 配列の型 : 核酸
 - (C)鎖の数: 一本鎖
 - (D) トポロジー: 直鎖状
 - (E) 配列の種類: 他の核酸 合成 DNA
 - (xi) 配列の表示: 配列番号36

AAGAAGGACCGTTTGGAATG

20

- (2) 配列番号37についての情報
 - (i)配列の特性
 - (A) 配列の長さ: 17

(B)	配	列	の	型	:	核	砂
(2)		/ 4		_	•	12	FUL

- (C)鎖の数: 一本鎖
 - (D) トポロジー: 直鎖状
 - (E) 配列の種類: 他の核酸 合成 DNA
 - (xi) 配列の表示: 配列番号 3 7

GTTTTCCCAGTCACGAC

17

(2) 配列番号38についての情報

- (i)配列の特性
 - (A) 配列の長さ: 27
 - (B) 配列の型 : 核酸
 - (C) 鎖の数 : 一本鎖
 - (D) トポロジー: 直鎖状
- (E) 配列の種類:他の核酸 合成DNA
- (xi) 配列の表示: 配列番号38

CAAAGTACCTAAATATCGAATTCACCT

27

(2) 配列番号39についての情報

- (i)配列の特性
 - (A) 配列の長さ: 23
 - (B) 配列の型 : 核酸
 - (C)鎖の数: 一本鎖
 - (D) トポロジー: 直鎖状
 - (E) 配列の種類: 他の核酸 合成DNA
- (xi) 配列の表示: 配列番号39

ATAGCTTAAGTGGAACAAACACG	23
(2) 配列番号 4 0 についての情報	
(i)配列の特性	•
(A) 配列の長さ: 20	
(B) 配列の型 : 核酸	
(C)鎖の数 : 一本鎖	
(D) トポロジー: 直鎖状	
(E) 配列の種類:他の核酸 合成DN	A
(xi) 配列の表示: 配列番号 4 0	
GGAACCAGATCTTGTTTCCC	20
(2) 配列番号41についての情報	
(i)配列の特性	
(A) 配列の長さ: 21	
(B) 配列の型 : 核酸	
(C) 鎖の数 : 一本鎖	
(D) トポロジー: 直鎖状	
(E) 配列の種類: 他の核酸 合成DN』	A
(xi) 配列の表示: 配列番号 4 1	
GGTCTAGAACAAAGGGATTGGACA	21
	21
(2) 配列番号42についての情報	
(i)配列の特性	

(A) 配列の長さ: 20

(B)	200		TE II		核	X .
(R)	PQ1-1 /21	II (/)	75:リ	•	T-5%	74 <i>5</i> 5
\ U /	יע טע	·	=	•	12	HΧ

- (C) 鎖の数 : 一本鎖
- (D) トポロジー: 直鎖状
- (E) 配列の種類: 他の核酸 合成DNA
- (xi) 配列の表示: 配列番号 4 2

CTACCTACCATGGTGATGAT

20

(2) 配列番号 4 3 についての情報

- (i)配列の特性
 - (A) 配列の長さ: 27
 - (B) 配列の型 : 核酸
 - (C)鎖の数: 一本鎖
 - (D) トポロジー: 直鎖状
 - (E) 配列の種類: 他の核酸 合成DNA
- (xi) 配列の表示: 配列番号 4 3

GATGGTACCACTACTATTTCATGGACA

27

WO 94/23019 PCT/JP94/00541

請求の範囲

- マイコプラズマ・ガリセプティカムの抗原性を 示すポリペプチドをコードするDNAを組み込んだ組み 換えアビポックスウイルス。
- 2. マイコプラズマ・ガリセプティカムの抗原性を示すポリペプチドをコードする DNA の末端側に、更に鳥類に感染するウイルスのタイプ II 外膜タンパク質のシグナル膜アンカーをコードする DNA を組み込んだ請求項 1 記載の組み換えアビポックスウイルス。
- シグナル膜アンカーをコードするDNAがニューカッスル病ウイルスのヘマグルチニン・ノイラミニダーゼのシグナル膜アンカーをコードするDNAである請求項2記載の組み換えアビポックスウイルス。
- 4. 組み込んだ抗原性を示すポリペプチドをコードするDNAがマイコプラズマ・ガリセプティカム感染血清に反応しうる実質的に純粋な抗原性を示すポリペプチトでコードするDNAであって、その塩基配列が配列1、配列14、配列15、配列16または配列27に示されたものである請求項1,2または3に記載の組み換えアビポックスウイルス。
- 5. DNAが配列14または配列15に記載の塩基配列またはそれと実質的に同一の機能を持つ塩基配列を有するものである請求項1または2記載の組み換えアビ

ポックスウイルス。

NA.

- 6. 請求項1,2,3,4または5記載の組み換え アビポックスウイルスを有効成分とした抗家禽マイコプ ラズマ・ガリセプティカム感染症用組み換え生ワクチン。
- 7. マイコプラズマ・ガリセプティカム免疫血清またはマイコプラズマ・ガリセプティカム感染血清に反応しうる実質的に純粋な抗原タンパク質であって、第1図に示される制限酵素切断点地図を有するマイコプラズマ・ガリセプティカム由来の遺伝子がコードする抗原タンパク質、またはそれと同等の免疫性を示す限りにおいて修飾されていてもよい抗原タンパク質。
- 8. 請求項7記載の抗原タンパク質をコードする遺伝子。
- 9. マイコプラズマ免疫血清またはマイコプラズマ 感染血清に反応しうる実質的に純粋な抗原タンパク質で あって、第7図に示される制限酵素切断点地図を有する マイコプラズマ・ガリセプティカム由来の遺伝子がコー ドする抗原タンパク質、またはそれと同等の免疫性を示 す限りにおいて修飾されていてもよい抗原タンパク質。 10. 請求項 9 記載の抗原タンパク質をコードする D
- 1 1. マイコプラズマ・ガリセプティカム免疫血清またはマイコプラズマ・ガリセプティカム感染血清に反応しうる実質的に純粋な抗原タンパク質であって、第8図に示される制限酵素切断点地図を有するマイコプラズマ

DNA.

- ・ガリセプティカム由来の遺伝子がコードする抗原タンパク質、またはそれと同等の免疫性を示す限りにおいて 修飾されていてもよい抗原タンパク質。
- 12. 請求項11記載の抗原タンパク質をコードする遺伝子。
- 13. マイコプラズマ免疫血清またはマイコプラズマ感染血清に反応しうる実質的に純粋な抗原タンパク質であって、第10図に示される制限酵素切断点地図を有するマイコプラズマ・ガリセプティカム由来の遺伝子がコードする抗原タンパク質、またはそれと同等の免疫性を示す限りにおいて修飾されていてもよい抗原タンパク質。14. 請求項13記載の抗原タンパク質をコードする
- 15. マイコプラズマ・ガリセプティカムの抗原性を示すポリペプチドの5′ー末端側に鳥類に感染するウイルスのタイプ I I 外膜タンパク質のシグナル膜アンカーが連結していることを特徴とする融合タンパク質。
- 16. シグナル膜アンカーがニューカッスル病ウイルスのヘマグルチニン・ノイラミニダーゼのシグナル膜アンカーである請求項11記載の融合タンパク質。
- 17. 請求項15記載の融合タンパク質をコードする ハイブリッドDNA。
- 18. 請求項7, 9, 11, 13, 15または16に記載のタンパク質を有効成分とするコンポネントワクチン。

1/18

FIG. 1

(TM-81の制限酵素切断点地図)

E: EcoRI, Pv: PvuII, Sp: SpaI, H: Hind III Hc: Hinc II, G: Bg! II WO 94/23019 PCT/JP94/00541

2/18

F I G. 2

E : EcoRI

V : EcoRV

G : Bg!II

Sac : SacI

X : XbaI

Ss : SspI

Sp: SpeI

* 変異をかけるヌクレオチドの位置

F I G. 3

4/18

F I G. 4

7777777 合成プロモーター IXXXXI HN遠伝子

F I G. 5

FIG. 6(A)

TTM1遺伝子
の 合成プロモーター
FPV由来DNA
lacZ遺伝子
MN遺伝子

FIG. 6(B)

F 16. 8

TM-67 ORFの制限酵素切断点地図と合成プライマーのORF上の位置

E:EcoRI,G:Bg⊄II,Ssp:SspI,Hp:HpaI, V:EcoRV,Sp:SpeI,ET:EcoT22I

FIG. 9(B)

F | G. | O TM-66 ORFの制限酵素切断点地図と合成プライマーのORF上の位置

E:EcoRI, G:Bg@II, Ssp:SspI, Hp:HpaI, X:XbaI N:NheI, Sp:SpeI,ET:EcoT22I, M:M@uI, Pv:PvuII

F I G. II (C)

F I G. 12

Hc:Hinc I.Pv:Pvu I.Ps:Pst I.G:Bg(I

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP94/00541

A. CLASSIFICATION OF SUBJECT MATTER Int. C1 ⁵ C12N7/01, C12N15/31, C12N15/62, C12P21/02, C07K7/10, A61K39/02//(C12P21/02, C12R1:92)					
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED					
Minimum documentation searched (classification system followed by classification symbols)					
Int. Cl ⁵ Cl2N7/01, Cl2N15/31, Cl2N15/62, Cl2P21/02, C07K7/10, A61K39/02					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)					
CAS ONLINE, BIOSIS PRE VIEWS					
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category* Citation of document, with	Citation of document, with indication, where appropriate, of the relevant passages			Relevant to claim No.	
July 3, 1989 (0:	JP, A, 1-168279 (Nippon Zeon Co., Ltd.), July 3, 1989 (03. 07. 89) & EP, A, 284416 & AU, A, 8813766			1-7, 9, 11, 13, 15-16, 18	
Shionogi & Co.,	JP, A, 2-111795 (Nippon Zeon Co., Ltd., Shionogi & Co., Ltd.), April 24, 1990 (24. 04. 90), (Family: none)				
No. 2, (1990), we membrane insert deletion mutant neuraminidase g	Molecular and Cellular Biology, volumne 10, No. 2, (1990), Wilson C. et al.: "Abenant membrane insertion of a cytoplasmic tail deletion mutant of the hemagglutinin-neuraminidase glycoprotein of newcastle disease virus", see P. 449-457			2-7, 9, 11, 13, 15-18	
Shionogi & Co., December 9, 199	WO, A, 9324646 (Nippon Zeon Co., Ltd., Shionogi & Co., Ltd.), December 9, 1993 (09. 12. 93) & AU, A, 9340903			1-6, 15, 17-18	
Further documents are listed in the continuation of Box C.					
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "T" later document published after the international filing date or priorit date and not in conflict with the application but cited to understand the principle or theory underlying the invention					
"B" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other					
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "O" document referring to an oral disclosure, use, exhibition or other means "Y" document of particular relevance; the claimed invention cannot to considered to involve an inventive step when the document combined with one or more other such documents, such combination being obvious to a person skilled in the art					
"P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family					
Date of the actual completion of the international search Date f mailing of the international search report					
June 20, 1994 (20. 0	6. 94)	July 12,	1994 (12.	07. 94)	
Name and mailing address of the ISA/	Authorized officer				
Japanese Patent Offic					
Facsimile No.		T lephone No.			

国際調査報告 国際出版 号 PCT/JP 94/00541 発明の属する分野の分類(国際特許分類(IPC)) C12N7/01, C12N15/31, C12N15/62, C12P21/02 C07K7/10, A61K39/02// (C12P21/02, C12R1:92) Int. CL B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. C4 C12N7/01, C12N15/31, C12N15/62, C12P21/02, C07K7/10, A61K39/02 最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CAS ONLINE, BIOSIS PRE VIEWS C. 関連すると認められる文献 関連する 引用文献の 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 カテゴリー* JP, A, 1-168279(日本ゼオン株式会社). Y 1-7.9.113. 7月. 1989(03. 07. 89) 13.15-16. 18 &EP.A.284416 & AU, A, 8813766 JP,A,2-111795(日本ゼオン株式会社, 塩野義製薬 Y 1-3,6-18 株式会社). 24. 4月、1990(24. 04. 90)(ファミリーなし) ▼ C棚の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。 「丁」国際出版日又は優先日後に公表された文献であって出願と * 引用文献のカテゴリー 矛盾するものではなく、発明の原理又は理論の理解のため 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」先行文献ではあるが、国際出願日以後に公表されたもの に引用するもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日 「X」特に関連のある文献であって、当該文献のみで発明の新規 性又は進歩性がないと考えられるもの 若しくは他の特別な理由を確立するために引用する文献 「Y」特に関連のある文献であって、当該文献と他の1以上の文 (理由を付す) 献との、当業者にとって自明である組合せによって進歩性 「〇」口頭による開示、使用、展示等に含及する文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願の日 がないと考えられるもの の後に公表された文献 「&」同一パテントファミリー文献 12.07.94 国際調査報告の発送日 国際調査を完了した日 20, 06, 94

国際調査を完了した日 20.06.94 名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3448

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 貯水の範囲の番号
Y	M 1 cular and Cellular Bi 1 gy, volume 10, Na 2, (1990), Wilson C. et al.: "Abenant membrane insertion of a cytoplasmic tail deletion mutant of the hemagglutinin-neuraminidase glycoprotein of newcastle disease virus", see p. 449-457	2-7,9,11 13,15-18
Y	WO,A,9324646(日本ゼオン株式会社。塩野袋製薬株式会社), 9.12月、1993(09、12、93) &AU,A,9340903	1-6,15, 17-18