Homework 13 of Introduction to Analysis (I), Honor Class

AM15 黃琦翔 111652028

December 8, 2023

1. First, we want to check there are at most $\frac{n(n+1)}{2}$ points for $x \in [0,1]$ for which $f(x) > \frac{1}{n}$. For $f(x) > \frac{1}{n}$, that means x is a rational number $\frac{p}{q}$ and q < n. Thus, we have $x = \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \cdots$. The number of x is less than $\frac{n(n+1)}{2}$.

Then, we want to proof for any $\varepsilon > 0$, we have a partition P s.t. $|U(f,P) - L(f,p)| < \varepsilon$.

Then, for any $\varepsilon > 0$, we take P is partition of [0,1] which norms are $\frac{2}{n(n+1)}$. Since

$$\begin{aligned} |U(f,P)-L(f,P)| &= U(f,P) \\ &< n \cdot \frac{2}{n(n+1)} \\ &= \frac{2}{n+1} \end{aligned}$$

, for any $\varepsilon > 0$, we can find n s.t. $U(f, P) < \varepsilon$. Thus, f is integrable.

2. Since f is bounded, we can find $M \in \mathbb{R}$ s.t. |f(x)| < M for all $x \in [a,b]$. Suppose there are n points of discontinuity of f on [a,b].

Thus, for any $\varepsilon > 0$, we take $\delta = \frac{\varepsilon}{4nM}$. Then, suppose the set of points of discontinuity is $\{y_i \mid i \in \mathbb{N}, i \leq n\}$. Take partition $P = \{x_1 = y_1 - \varepsilon, \ x_2 = y_1 + \varepsilon, \ x_3 = y_2 - \varepsilon, \ \cdots\}$ is finite. Then, for f is continuous on $[a,x_1]$, $[x_2,x_3]$, $[x_4,x_5]$, \cdots , we only need to check other intervals P' are Reimann integrable. $|U(f,P')-L(f,P')| \leq 2U(f,P') \leq 2 \cdot n \cdot (2\delta) \cdot M = 4nM \cdot \frac{\varepsilon}{4nM} = \varepsilon$. Thus, $f \in R([a,b])$.

3.
$$f^{(n)}(x) = (\prod_{k=0}^{n-1} m - k)(1+x)^{m-n}$$