Autómatas de Pila III (pushdown automata)

Alan Reyes-Figueroa Teoría de la Computación

(Aula 19) 16.octubre.2023

Equivalencia de PDAs y CFGs Conversion of CFG to PDA Conversion of PDA to CFG

Overview

- Cuando hablamos de propiedades de cerradura de lenguajes regulares, fue muy útil saltar entre las representaciones *regexp* y los DFA.
- Similarlmente, para las CFGs y los PDAs, ambos son útiles para mostrar propiedades relacionadas con los lenguajes libres del contexto.

Overview

- Además, los PDAs, siendo "algorítmicos," son más fáciles de usar cuando argumentamos que un lenguajes debe ser CFL.
- ◆Ejemplo: Es más fácil ver cómo un PDA puede reconocer paréntesis balanceados; (no tan fácil en CFG).
- Debemos mostrar que, en realidad, CFG's y PDA's son equivalentes.

Convirtiendo una CFG a PDA

- \bullet Sea L = L(G).
- Construimos un autómata de pila P tal que L(P) = L.
- P tiene:
 - Un estado q.
 - Símbolos input = terminales de G.
 - Símbolos stack = todos los símbolos de G.
 - Símbolo stack inicial = símbolo inicial de G.

Intuición acerca de P

- Dado el input w, P pasará por una derivación leftmost de w desde el símbolo inicial S.
- ◆ Dado que P no puede saber cuál es esta derivación, ni siquiera cuál es el final de w, utiliza el no determinismo para "adivinar" la producción a utilizar en cada paso.

Intuición acerca de P

- En cada paso, P representa una forma sentencial izquierda LSF (left-sentential form) (paso de una derivación leftmost).
- •Si el stack de P es α , y P ha consumido una parte x de su input, entonces P representa la forma left-sentential $x\alpha$.
- Cuando el stack sea vacío, el input consumido es una cadena en L(G).

Función de Transición de P

- 1. $\delta(q, a, a) = (q, \epsilon)$. (Reglas *Tipo 1*)
 - Este paso no cambia el LSF representado, sino que "mueve" la responsabilidad de a de la pila a la entrada consumida.
- 2. Si A $\rightarrow \alpha$ es una producción de G, luego $\delta(q, \epsilon, A)$ contiene (q, α) . (Reglas *Tipo 2*)
 - Adivinar una producción para A y representar el siguiente LSF en la derivación.

Prueba L(P) = L(G)

- Debemos mostrar que

 (q, wx, S) +* (q, x, α)
 para cualquier x, si y solo si, S ⇒*_{lm} wα.
- ◆ Parte 1: "solo si" es una inducción sobre el número de pasos realizados por P.
- Base: 0 pasos.
 - ▶ Entonces $\alpha = S$, $w = \epsilon$, $y S ⇒*_{lm} S$ es una producción válida.

Inducción (parte ←)

- Considere n movimientos de P:
 (q, wx, S) ⊦* (q, x, α)
 y asuma que la hipótesis de inducción para secuencias de n-1 movimientos.
- Hay dos casos, dependiendo de si el ultimo movimiento usó una regla de del Tipo 1 o Tipo 2.

Uso de una regla Tipo 1

 La secuencia de movimientos debe ser de la forma

$$(q, yax, S) + * (q, ax, a\alpha) + (q, x, \alpha),$$

donde ya = w.

- ◆ Usando la hipótesis de inducción, aplciada a los primeros n-1 pasos, se tiene S ⇒*_{Im} yaα.
- ◆ Como ya = w, tenems entonces S \Rightarrow *_{Im} wα.

Uso de una regla Tipo 2

 La secuencia de movimientos debe ser de la forma

$$(q, wx, S) \vdash^* (q, x, A\beta) \vdash (q, x, \gamma\beta),$$

donde A -> γ es una producción y $\alpha = \gamma\beta$.

- ◆ Usando la hipótesis de inducción aplicada a los primeros n-1 pasos, tenemos S ⇒*_{Im} wAβ.
- ♦ Luego, S ⇒ $*_{lm}$ w $\gamma\beta$ = w α .

Prueba (parte \Rightarrow)

◆ También debemos mostrar que si $S \Rightarrow^*_{lm} w\alpha$, entonces $(q, wx, S) \vdash^* (q, x, α)$.

- Hacemos una inducción sobre el número de pasos en la derivación leftmost.
- ◆ Las ideas son similares a la parte ←.

Prueba - Final

- ♦ Ahora que tenemos (q, wx, S) \vdash * (q, x, α), para cualqueir x, si y solo si, S ⇒*_{lm} wα.
- \bullet En particular, hagamos $x = \alpha = \epsilon$.
- ◆ Entonces, $(q, w, S) + * (q, \epsilon, \epsilon)$, si y solo si, $S \Rightarrow *_{lm} w$.
- ◆ Esto quiere decir que, w ∈ L(P), si y solo si, w ∈ L(G).

Convertir de PDA a CFG

- Ahora, supongamos que L = L(P).
- Construirmos una CFG G tal que L = L(G).
- ◆ Intuición: G tendrá variables que generan exactamente las entradas que hacen que P tenga el efecto de quitar un símbolo de pila X mientras pasa del estado p al q.
 - P nunca cae por debajo de esta X mientras hace este movimiento.

Variables de G

- Las variables de G son de la forma [pXq].
- ◆ Esta variable genera todas y sólo aquellas cadenas w, tales que (p, w, X) +* (q, ∈, ∈).
- Además, añadimos un símbolo inicial S, del cual hablaremos luego.

- Cada producción para [pXq] viene de un movimiento del autómata P en el estado p con símbolo de stack X.
- ♦ Caso simple: $\delta(p, a, X)$ contiene (q, ϵ) .
- ◆ Entonces la producción es [pXq] → a.
 - Deserve que *a* puede ser símbolo input ó ε.
- Aquí, [pXq] genera a, ya que leer a es una manera de extraer X del stack e ir de p a q.

- Segundo caso: δ(p, a, X) contiene (r, Y) para algún estado r y símbolo Y.
- ◆ G tiene una producción [pXq] → a[rYq].
 - Podemos borrar X del stack e ir de p hacia q al leer a (entrando en el estado r y reemplazando la X por Y) y luego leer alguna w que extrae P del stack y va de r a q borrando del stack la Y.
- ◆ Nota: $[pXq] \Rightarrow * aw$, siempre que $[rYq] \Rightarrow * w$.

- Tercer caso: δ(p, a, X) contiene (r, YZ), para algún estado r y símbolos Y y Z.
- ♦ G tiene una producción $[pXq] \rightarrow a[rYs][sZq]$.
- Ahora, P reemplaza X por YZ en el stack.
- Para lograr el efecto de borrar la X en el stack, P debe borrar Y, yendo del estado r a otro estado s, y luego borrar la Z, yendo de s al estado q.

Ejemplo de la acción de P

- Concluimos la prueba del tercer caso :
- Ya que no conocemos es estado s, debemos generar una colección de producciones:

$$[pXq] \rightarrow a[rYs][sZq]$$
 para todos los estados s.

• [pXq] ⇒* awx, siempre que [rYs] ⇒* w and [sZq] ⇒* x.

- Caso general:
- Suponga que δ(p, a, X) contiene a (r, Y₁...Y_k),
 para algún estado r y símbolos Y₁, Y₂, ... Y_k,
 con k > 3.
- ◆ Generamos la colección de producciones [pXq] \rightarrow a[rY₁s₁][s₁Y₂s₂]...[s_{k-2}Y_{k-1}s_{k-1}][s_{k-1}Y_kq]

Fin de la prueba

- ◆ Podemos mostrar que (q_0, w, Z_0) ⊦*(p, ε, ε)si y sólo si, $[q_0Z_0p]$ ⇒* w.
 - (La prueba se resume a dos inducciones.)
- El estado p puede ser cualquiera.
- ♦ Así, agregamos a G otra variable nueva S, el símbolo inicial, y añadimos producciones $S \rightarrow [q_0Z_0p]$, para cada estado p.