Proposition 0.1. $\forall n \in \mathbb{N}$, il existe une bijection T de $S_n(321)$ sur Cat(n).

<u>Démonstration</u>: Soit $\pi \in S_n(321)$ tel que $\pi_i = n$. Soit $\pi^{(1)}$ la permutation obtenue à partir de π par le procédé suivant :

- . si $\pi_n = n 1$, alors $\pi^{(1)} = \pi_1 \cdots \pi_{i-1} (n-1) \pi_{i+1} \cdots \pi_{n-1}$

. si $\pi_n \neq n-1$, alors $\pi^{(1)} = \pi_1 \cdots \pi_{i-1} \pi_{i+1} \cdots \pi_n$ Dans les deux cas $\pi^{(1)} \in S_{n-1}(321)$. On va montrer par récurrence sur n que T est une bijection. Pour n=1, on a $S_1(321) = \{1\}$, $Cat(1) = \{1\}$. On pose T(1)=1 et $T^{-1}(1) = 1$. Alors T est bi-

Pour n=2, on a $S_2(321) = \{12, 21\}, Cat(2) = \{11, 12\}.$

- . Pour $\pi=$ 12, on a $\pi^{(1)}=$ 1. Posons $T(\pi^{(1)})=c^{(1)}=$ 1 et $T(\pi)=c^{(1)}i=$ 12 où $\pi_i = 2 = \pi_2$. Ainsi $T(\pi) \in Cat(2)$
- . Pour $\pi = 21$, on a $\pi^{(1)} = 1$. Posons $T(\pi^{(1)}) = c^{(1)} = 1$ et $T(\pi) = c^{(1)}i = 11$ où $\pi_i = 2 = \pi_1$. Ainsi $T(\pi) \in Cat(2)$

Dans les deux cas, T est une application injective. $\forall p \leq n-1$, supposons que T est une application injective de $S_p(321)$ dans Cat(p) tel que :

 $\forall \pi \in S_p(321)$, il existe $c^{(1)} \in Cat(p-1)$ tel que $c^{(1)} = T(\pi^{(1)})$ où $\pi^{(1)}$ obtenue à partir de π , et $T(\pi) = T(\pi^{(1)})i = c^{(1)}i = c \in Cat(p)$ où $\pi_i = p$. Et montrons que pour p = n, T est encore injective. Dans toute la suite, on convient que $\pi^{(j)}$ est une permutation obtenue à partir de $\pi^{(j-1)}$ par la transformation précèdente avec $\pi^{(0)} = \pi$

Soit $\pi = \pi_1 \cdots \pi_i \cdots \pi_n \in S_n(321)$ tel que $\pi_i = n$.

- . Si $\pi_n \neq n-1$, alors il existe $c^{(1)} \in Cat(n-1)$ tel que $T(\pi^{(1)}) = c^{(1)}$.
 - De plus, il existe k < i tel que $\pi_k = n 1$. Donc $c^{(1)} = c^{(2)}k = T(\pi^{(2)})k$.
 - On a $c^{(1)}i = T(\pi^{(2)})ki = T(\pi) \in Cat(n)$
- . Si $\pi = n 1$, alors il existe $c^{(1)} \in Cat(n 1)$ tel que $T(\pi^{(1)}) = c^{(1)} = c^{(2)}i = T(\pi^{(2)})i$ car $\pi_i^{(1)} = n - 1.$
 - On a $c^{(1)}i = T(\pi^{(2)})ii = T(\pi) \in Cat(n)$

Exemple : Soit $\pi = 213 \in S_3(321)$, $\pi^{(1)} = 21$, et $T(\pi^{(1)}) = c^{(1)} = 11$.

On a $c = c^{(1)}3 = T(\pi) \in Cat(3)$.

Bref, $\forall n \in \mathbb{N}^*$, l'application T de $S_n(321)$ dans Cat(n) définit précèdement est injective

Enfin, nous allons montrer par récurrence sur n que l'application T est surjective. Dans ce cas nous allons d'abord construit T^{-1} .

Pour n = 2, $Cat(2) = \{11, 12\}$.

Prenons c = 11. Soit $c^{(1)} = 1$ obtenu à partir de c en supprimant la dernière lettre et $\pi^{(1)} = T^{-1}(c^{(1)}) = 1 \in S_1(321)$. π est obtenue à partir de $\pi^{(1)}$ en remplaçant n-1 par n et en ajoutant n-1 à la dernière place si $c_n = c_{n-1}$.

Ou π est obtenue en insérant n après la $(c_n - 1)^{-\text{ème}}$ lettre de $\pi^{(1)}$ si $c_{n-1} < c_n$. Dans les deux cas $\pi \in S_n(321)$ si $\pi^{(1)} \in S_{n-1}(321)$. Donc, dans notre cas, on a $\pi = 21 = T^{-1}(c) \in S_2(321)$

Prenons ensuite c = 12. On a $c^{(1)} = 1$ et $\pi^{(1)} = T^{-1}(c^{(1)}) = 1 \in S_1(321)$. Comme $c_1 < c_2$, alors $\pi = 12 = T^{-1}(c) \in S_2(321)$. Donc, T est surjective.

En utilisant les deux constructions précèdentes, T est bijective pour n = 2.

Exemple:

- . $c = 113, c^{(1)} = 11$ et $T^{-1}(c^{(1)}) = \pi^{(1)} = 21$. Comme $c_2 < c_2$, alors $\pi = 213 = T^{-1}(c) \in S_3(321)$
- . $c = 111, c^{(1)} = 11$ et $T^{-1}(c^{(1)}) = \pi^{(1)} = 21$. Comme $c_2 = c_2$, alors $\pi = 312 = T^{-1}(c) \in S_3(321)$

Dans toute la suite, on convient que :

si $c = c_1 \cdots c_n$, on pose $c^{(j)} = c_1 \cdots c_{n-j} \in Cat(n-j)$ où $c^{(j)}$ est obtenue à partir de $c^{(j-1)}$ en supprimant la dernière lettre et $c^{(0)} = c$.

Supposons que, $\forall p \leq n-1$, l'application T de $S_p(321)$ sur Cat(p) définit par les procédés précèdent est bijective. Et nous allons montrer que c'est aussi vrai pour p=n.

Soit $c \in Cat(n)$ tel que $c_n = i$. Par hypothèse, $\exists ! \pi^{(1)} \in S_{n-1}(321)$ tel que $T^{-1}(c^{(1)}) = \pi^{(1)}$. Il existe $k \le n-1$ tel que $\pi_k^{(1)} = n-1$.

- existe $k \leq n-1$ ter que $\pi_k = n-1$. . Si $c_n = c_{n-1}$, on a $\pi = \pi_1^{(1)} \cdots \pi_{k-1}^{(1)}(n) \pi_{k+1}^{(1)} \cdots \pi_{n-1}^{(1)}(n-1) \in S_n(321)$. Si $c_n > c_{n-1}$, on a d'abord k < i car $T(\pi^{(1)}) = c^{(1)} = c^{(2)}k$ c'est à dire $c_{n-1} = k$. Alors $\pi = \pi_1^{(1)} \cdots \pi_{k-1}^{(1)}(n-1) \pi_{k+1}^{(1)} \cdots \pi_{i-1}^{(1)}(n) \pi_{i+1}^{(1)} \cdots \pi_n^{(1)} \in S_n(321)$ Pour conclure, $\forall n \in \mathbb{N}^*$, l'application T de $S_n(321)$ sur Cat(n) définit précèdement est bijective.

Soit maintenant $\pi \in S_n(321)$ tel que $T(\pi) = c \in Cat(n)$.

Proposition 0.2. On a:

(i).
$$\pi_i = i \iff (c_i = i \text{ et } c_{i+1} = i+1)$$

(ii). $\pi_i = n \iff (c_n = n)$

Preuve:

- (i). Supposons que $\pi_i = i$. On a : $\forall k < i, \pi_k < \pi_i$ et $\exists l, l > i$ tel que $\pi_l = i + 1$. Par construction de T, on a : $\pi^{(n-i-1)} = \pi_1 \cdots \pi_i \pi_l = \pi_1^{(n-i-1)} \cdots \pi_i^{(n-i-1)} \pi_{i+1}^{(n-i-1)}$ et c = 1 $c^{(n-i-1)}c_{i+2}\cdots c_n$ où $c^{(n-i-1)} = T(\pi^{(n-i-1)})$ Soit $\pi^{(n-i)}$ obtenue à partir de $\pi^{(n-i-1)}$ tel que $T(\pi^{(n-i)}) = c^{(n-i)} \in Cat(i)$. Comme $\pi_{i+1}^{(n-i-1)} = i+1$, alors $c^{(n-i-1)} = c^{(n-i)}(i+1)$. De plus, $\pi_i^{(n-i)} = i$, alors, on a $c_i^{(n-i)} = i$. Ainsi $c_i = i$ et $c_{i+1} = i+1$. Supposons mainte que $c_i = i$ et $c_{i+1} = i + 1$. Posons $c_1 \cdots c_i = c^{(n-i)}$. On a $T^{-1}(c^{(n-i)}) = \pi^{n-i} \in S_i(321)$ Comme $c_{i-1} < c_i$, alors $\pi_i^{(n-i)} = i$. De plus $c_i < c_{i+1}$, soit $\pi^{(n-i-1)}$ la permutation obtenue $\pi^{(n-i)}$ tel que $\pi^{(n-i-1)} = \pi^{(n-i)}(i+1) \in S_{i+1}(321)$. Or $\forall p \geq i+2, c_{i+1} \leq c_p$. D'où, $\forall p \geq i+2, \exists l_p \geq i+1 \text{ tel que}$ $\pi^{(n-p)} = T^{-1}(c^{(n-p)}) = \pi_1^{(n-p)} \cdots \pi_i^{(n-p)} \pi_{i+1}^{(n-p)} \cdots \pi_{l_p-1}^{(n-p)} \pi_{l_p}^{(n-p)} \pi_{l_p+1}^{(n-p)} \cdots \pi_p^{(n-p)}$ où $\pi_{l_p}^{(n-p)} = i+1$ et $\pi_1^{(n-p)} \cdots \pi_i^{(n-p)} = \pi^{(n-i)}$. Ainsi, $\pi_i = i$
- (ii). Supposons $\pi_n = n$. On a $\pi^{(1)} = \pi_1 \cdots \pi_{n-1} \in S_{n-1}(321)$ et $T(\pi^{(1)}) = c^{(1)} \in Cat(n-1)$. D'où, $T(\pi) = c = c^{(1)}n$. Ainsi $c_n = n$. Supposons maintenant que $c_n = n$. On a : $c^{(1)} = c_1 \cdots c_{n-1} \in Cat(n-1)$. Il existe $\pi^{(1)} \in S_{n-1}(321)$ tel que $T^{-1}(c^1) = \pi^{(1)}$. Comme $c_{n-1} < c_n$, alors $\pi = \pi^{(1)}n$. Ainsi $\pi_n = n$