Algèbre linéaire Chapitre 5

Definition 0.1

Soient V, W des \mathbb{R} -espaces vectoriels de dimension finie et $T: V \to W$ une application linéaire de V dans W. Soient également $\mathscr{B}_V = (v_1, \ldots, v_n)$ et $\mathscr{B}_W = (w_1, \ldots, w_m)$ des bases ordonnées de V et W respectivement. La matrice de T par rapport aux bases \mathscr{B}_V et \mathscr{B}_W est la matrice $[T]_{\mathscr{B}_W\mathscr{B}_V} \in M_{m \times n}(\mathbb{R})$ dont la i-ème colonne $(1 \le i \le m)$ est donnée par

$$[T(v_i)]_{\mathscr{B}_W}$$
.

Autrement dit, si $T(v_i) = a_{1i}w_1 + \cdots + a_{mi}w_m$ pour $1 \le i \le m$, alors

$$[T]_{\mathscr{B}_W\mathscr{B}_V} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

Proposition 0.2 (La propriété la plus importante)

Soient V, W des \mathbb{R} -espaces vectoriels de dimension finie et $T: V \to W$ une application linéaire de V dans W. Soient également $\mathscr{B}_V = (v_1, \ldots, v_n)$ et $\mathscr{B}_W = (w_1, \ldots, w_m)$ des bases ordonnées de V et W respectivement. Alors

$$[T(v)]_{\mathscr{B}_W} = [T]_{\mathscr{B}_W \mathscr{B}_V} [v]_{\mathscr{B}_V},$$

ceci pour tout $v \in V$.

Definition 0.3

Soient V, W des \mathbb{R} -espaces vectoriels de dimension finie et $T: V \to W$ une application linéaire de V dans W. Soient également $\mathscr{B}_V = (v_1, \ldots, v_n)$ et $\mathscr{B}_W = (w_1, \ldots, w_m)$ des bases ordonnées de V et W respectivement. On désigne par $\mathcal{L}(V, W)$ l'ensemble des applications linéaires de V dans W et on définit l'application

$$\begin{array}{cccc} \theta: & \mathcal{L} & & \to & M_{m \times n}(\mathbb{R}) \\ & T & & \mapsto & [T]_{\mathscr{B}_W \mathscr{B}_V} \end{array}.$$

Lemma 0.4

Soient V, W des \mathbb{R} -espaces vectoriels de dimension finie et $T: V \to W$ une application linéaire de V dans W. Soient également $\mathscr{B}_V = (v_1, \ldots, v_n)$ et $\mathscr{B}_W = (w_1, \ldots, w_m)$ des bases ordonnées de V et W respectivement. Alors $\mathcal{L}(V, W)$ est un espace vectoriel et l'application $\theta: \mathcal{L}(V, W) \to M_{m \times n}(\mathbb{R})$ est une application linéaire bijective. En particulier, on a dim $\mathcal{L}(V, W) = mn$.

Proposition 0.5

Soient $A, B \in M_{m \times n}(\mathbb{R})$ et supposons que AX = BX pour tout $X \in M_{n \times 1}(\mathbb{R})$. Alors A = B.

Proposition 0.6

Soient U, V, W trois \mathbb{R} -espaces vectoriels de dimension finie et $\mathscr{B}_U, \mathscr{B}_V, \mathscr{B}_W$ des bases de U, V et W respectivement. Soient également $T: U \to V$ et $S: V \to W$ deux applications linéaires. Alors

$$[S \circ T]_{\mathscr{B}_{W}\mathscr{B}_{U}} = [S]_{\mathscr{B}_{W}\mathscr{B}_{V}}[T]_{\mathscr{B}_{V}\mathscr{B}_{U}}.$$

Proposition 0.7

Soient V, W deux \mathbb{R} -espaces vectoriels de dimension $n \in \mathbb{N}$, \mathscr{B}_V , \mathscr{B}_W des bases de V, W respectivement, et $T \in \mathcal{L}(V, W)$. Alors T est bijective si et seulement si $[T]_{\mathscr{B}_W\mathscr{B}_V}$ est une matrice inversible.

Theorem 0.8

Soit $A \in M_{m \times n}(\mathbb{R})$ une matrice de taille $m \times n$ à coefficients réels. Alors le rang-colonne de A est égal au rang-ligne de A.

Proposition 0.9

Soient $A \in M_{m \times n}(\mathbb{R})$ et \hat{A} une matrice échelonnée ligne-équivalente à A. Si les pivots de \hat{A} se situent dans les colonnes i_1, \ldots, i_t de \hat{A} , alors les colonnes C_{i_1}, \ldots, C_{i_t} de A forment une base de l'espace-colonnes de A.

Definition 0.10

Soit V un \mathbb{R} -espace vectoriel. Alors toute application linéaire $T \in \mathcal{L}(V, V)$ est appelée une transformation linéaire, ou un opérateur linéaire. Aussi, si V est de dimension finie et \mathscr{B} est une base ordonnée de V, alors on écrit $[T]_{\mathscr{B}}$ pour désigner la matrice de T par rapport à la base \mathscr{B} .

Definition 0.11

Soient V un \mathbb{R} -espace vectoriel de dimension finie $n \in \mathbb{N}$ et \mathscr{B}, \mathscr{C} deux bases ordonnées de V. Alors la matrice de passage entre les bases \mathscr{B} et \mathscr{C} est la matrice $[id_V]_{\mathscr{CB}}$, où $id_V: V \to V$ est l'application définie par T(v) = v pour tout $v \in V$.

Lemma 0.12

Soient V un \mathbb{R} -espace vectoriel de dimension finie $n \in \mathbb{N}$ et \mathscr{B}, \mathscr{C} deux bases ordonnées de V. Aussi, posons $P = [id_V]_{\mathscr{CB}}$. Alors les deux affirmations suivantes sont vérifiées.

- 1. $P[v]_{\mathscr{B}} = [v]_{\mathscr{C}}$.
- 2. $P^{-1}[T]_{\mathscr{C}}P = [T]_{\mathscr{B}}.$

Definition 0.13

Soient $A_1, A_2 \in M_{n \times n}(\mathbb{R})$ deux matrices de taille $n \times n$ à coefficients réels. On dit que A_1 est semblable à A_2 (ou que A_1 et A_2 sont semblables) s'il existe une matrice inversible $P \in M_{n \times n}(\mathbb{R})$ telle que $P^{-1}A_1P = A_2$.

Proposition 0.14

Si $A_1, A_2 \in M_{n \times n}(\mathbb{R})$ sont deux matrices semblables, alors rang $A_1 = \operatorname{rang} A_2$. Aussi, A_1 est inversible si et seulement si A_2 est inversible.

Lemma 0.15

Soient V, W deux \mathbb{R} -espaces vectoriels de dimension finie et $T: V \to W$ un application linéaire. Aussi, considérons deux bases ordonnées $\mathscr{B}_V, \mathscr{B}'_V$ de V ainsi que deux bases ordonnées $\mathscr{B}_W, \mathscr{B}'_W$ de W. Alors

$$[T]_{\mathscr{B}_W'\mathscr{B}_V'}=[id_W]_{\mathscr{B}_W'\mathscr{B}_W}[T]_{\mathscr{B}_W\mathscr{B}_V}[id_V]_{\mathscr{B}_V\mathscr{B}_V'}.$$