International Olympiad in Informatics 2015

26th July - 2nd August 2015

Almaty, Kazakhstan

Day 1

teams

Language: th-TH

ก็ม

ห้องเรียนหนึ่งมีนักเรียนทั้งหมด N คน นักเรียนแต่ละคนมีหมายเลขตั้งแต่ 0 ถึง N-1 ในแต่ละวัน คุณครูประจำชั้นจะมอบหมายโครงงานจำนวนหนึ่งให้นักเรียนในห้อง แต่ละโครงงานจะต้องทำให้ เสร็จภายในวันที่มอบหมายด้วยทีมหนึ่งทีมเท่านั้น โครงงานอาจมีความยากง่ายแตกต่างกัน ใน แต่ละโครงงานคุณครูจะทราบจำนวนของสมาชิกในทีมที่จะทำโครงงานนั้น

นักเรียนแต่ละคนอาจมีความชอบที่จะทำงานในทีมที่จำนวนสมาชิกแตกต่างกัน กล่าวคือนักเรียนคน ที่ i สามารถทำงานในทีมที่มีจำนวนสมาชิกอย่างน้อย A[i] คนแต่ไม่เกิน B[i] คน ในแต่ละวัน นักเรียนคนหนึ่งสามารถถูกมอบหมายให้อยู่ได้เพียงทีมเดียวเท่านั้น แต่นักเรียนบางคนอาจไม่ถูก มอบหมายให้อยู่ทีมใดเลยก็ได้ และแต่ละทีมจะทำเพียงแค่โครงงานเดียวในแต่ละวัน

คุณครูได้เลือกโครงงานทั้งหมดที่จะใช้ใน Q วันถัดไปเรียบร้อยแล้ว สำหรับแต่ละวันให้หาว่าเป็นไป ได้หรือไม่ที่จะมอบหมายนักเรียนให้อยู่ในทีมโดยที่ทุก ๆ โครงงานมีทีมหนึ่งทีมที่ทำโครงงานนั้น

ัตวอย่าง

กำหนดให้มีนักเรียนทั้งหมด N=4 คน และมีทั้งหมด Q=2 วัน เงื่อนไขจำนวนสมาชิกของทีมของ นักเรียนแต่ละคนแสดงดังตารางด้านล่าง

student	0	1	2	3
A	1	2	2	2
В	2	3	3	4

วันที่หนึ่งมีทั้งสิ้น M=2 โครงงาน จำนวนสมาชิกที่ต้องการสำหรับโครงงานทั้งสองคือ K[0]=1 คน และ K[1]=3 คนตามลำดับ ทีมทั้งสองนี้สามารถจัดขึ้นได้โดยให้นักเรียนคนที่ 0 อยู่ในทีมที่มี จำนวนสมาชิก 1 คน และนักเรียนที่เหลือให้อยู่ในทีมที่มีสมาชิก 3 คน

วันที่สองมีทั้งสิ้น M=2 โครงงาน จำนวนสมาชิกที่ต้องการสำหรับโครงงานทั้งสองคือ K[0]=1 คน และ K[1]=1 คนตามลำดับ แต่ในกรณีนี้ไม่สามารถจัดทีมตามต้องการได้เนื่องด้วยมีนักเรียนเพียง คนเดียวเท่านั้นที่สามารถทำงานในทีมที่มีสมาชิก 1 คนได้

งานของคุณ

เมื่อกำหนดให้คุณทราบรายละเอียดของนักเรียนทั้งหมด: N, A, และ B และลำดับของคำถามอีก Q คำถามซึ่งเป็นคำถามของแต่ละวัน แต่ละคำถามประกอบด้วยตัวเลข M แสดงจำนวนโครงงานที่มีใน วันนั้น และลำดับ K ที่มีความยาว M ที่แสดงจำนวนสมาชิกที่เหมาะสมของแต่ละโครงงาน โปรแกรมของคุณต้องตอบว่าเป็นไปได้หรือไม่ที่จะจัดทีมตามที่ต้องการสำหรับแต่ละคำถาม

คุณต้องเขียนฟังก์ชัน init และ can:

- init (N, A, B) เกรดเดอร์จะเรียกเรียกฟังก์ชันนี้เพียงครั้งแรกและครั้งเดียว
 - N: จำนวนนักเรียนทั้งหมด
 - A: อาร์เรย์ความยาว N เมื่อ A[i] แทนจำนวนสมาชิกที่น้อยที่สุดของทีมที่นักเรียนคนที่ *i* สามารถทำงานในทีมนั้นได้
 - B: อาร์เรย์ความยาว N เมื่อ B[i] แทนจำนวนสมาชิกที่มากที่สุดของทีมที่นักเรียนคนที่ *i* สามารถทำงานในทีมนั้นได้
 - ฟังก์ชันนี้ไม่คืนค่า (ไม่มี return value)

คุณสามารถสมมติว่า <code>A[i]</code> \leq <code>B[i]</code> \leq <code>N</code> สำหรับทุกค่า i=0,..., $ext{N-}1$

- lacktriangle can (M, K) หลังจากการเรียก init แล้ว เกรดเดอร์จะเรียกฟังก์ชันนี้ทั้งสิ้น Q ครั้งต่อเนื่อง กัน หนึ่งครั้งสำหรับแต่ละวัน
 - M: จำนวนโครงงานทั้งหมดในวันนี้
 - к: อาร์เรย์ความยาว м ที่ระบุขนาดของทีมที่ต้องการของแต่ละโครงงาน
 - ฟังก์ชันนี้จะคืนค่า 1 ถ้าเป็นไปได้ที่จะจัดทีมทั้งหมดตามต้องการได้ และคืนค่า 0 สำหรับกรณีอื่น
 - คุณสามารถสมมติว่า $1 \leq M \leq N$ และสำหรับแต่ละ i=0,...,M-1 เรามี $1 \leq K[i] \leq N$ หมายเหตุผลรวมของค่าทั้งหมดใน K[i] อาจมีค่าเกิน N

ปัญหาย่อย

ให้ S แทนผลรวมของค่า ${
m M}$ ทั้งหมดที่เกิดขึ้นจากทุกครั้งในการเรียกใช้ฟังก์ชัน ${
m can}\,({
m M},~{
m K})$

ปัญหาย่อย	คะแนน	N	Q	ข้อกำหนดเพิ่มเติม
1	21	$1 \le N \le 100$	$1 \le Q \le 100$	ไม่มี
2	13	$1 \le N \le 100,000$	Q = 1	ไม่มี
3	43	$1 \le N \le 100,000$	$1 \le Q \le 100,000$	$S \le 100,000$
4	23	$1 \le N \le 500,000$	$1 \le Q \le 200,000$	$S \le 200,000$

เกรดเดอร์ตัวอย่าง

เกรดเดอร์ตัวอย่างอ่านค่าข้อมูลนำเข้าตามรูปแบบด้านล่าง:

- บรรทัดที่ **1**: N
- บรรทัดที่ 2, ..., N + 1: A[i] B[i]
- บรรทัดที่ N + 2: Q
- บรรทัดที่ N + 3, ..., N + Q + 2: M K[0] K[1] ... K[M 1]

แต่ละคำถามข้างต้น เกรดเดอร์ตัวอย่างจะพิมพ์ค่าที่ฟังก์ชัน can คืนกลับมา