PATENT ABSTRACTS OF JAPAN

(11)Publication number:

01-106456

(43) Date of publication of application: 24.04.1989

(51)Int.CI.

H01L 23/50

H01L 23/28

(21)Application number : **62-263435**

(71)Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22)Date of filing:

19.10.1987

(72)Inventor: KURODA HIROSHI

TAKASE YOSHIHISA

(54) SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE

(57) Abstract:

PURPOSE: To make an electrode terminal not to come off due to external force and thermal strain by providing the end surface of a lead frame substrate with a stair part having more than one step and performing molding with sealing resin in a shape of covering the stair part.

CONSTITUTION: An IC chip 16 is mounted on the other main surface 14 of a die pad 11, and a pad of the IC chip and the other main surface 14 of an electrode terminal 12 are bonded with a wire 17 so as to be continuously molded with sealing resin 18 on the almost level with one main surface 13 by a transfer method so that the electrode terminal and the main surface 13 of the die pad 11 may be exposed. At this time, a stair part 15 provided on a lead frame 20 is also covered with sealing resin 18. Thereby, a reinforcing bar 19 exposed to an end surface of sealing resin 18 is also of the same projection type so as to have very strong structure against coming-off even to external force.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

9日本国特許庁(JP)

四特許 出頭公開

母 公 開 特 許 公 報 (A) 平1-106456

@Int_Cl.4

識別配号

广内整理番号

⑩公開 平成1年(1939)4月24E

H 01 L 23/50

G-7735-5F A-6835-5F

審査請求 未請求 発明の数 1 (全4 頁)

◎発明の名称 半導体集積回路装置

到特 頤 昭62-263435

❷出 ■ 曜62(1987)10月19日

 大阪府門其市大字門其1006番地 大阪府門其市大字門其1006番地

松下電器座業株式会社内松下電器座業株式会社内

⑪出 願 人 松下電器座業株式会社

大阪府門真市大字門真1006番地

砂代 理 人 并理士 中尾 敏男 外1名

. H \$91 **4**0−

1、発明の名称

华媒体集積回路數置

2、 等許請求の範囲

複数の電極網子を有するリードフレームの一主 面の面積が、他の主面より狭く、このリードフレ ームの断面形状は少なくとも1段以上の緊急を持 つ緊急部を有するものであり、半導体集積回路は 他の主面にマウントされ、少なくとも電極端子の 一主面を禁出した形で一主面と径便平均に計止樹 密が脱形されている半導体集積回路接置。

3、発別の詳細な説明

産業上の利用分野

本帯明は半導体集積回路をパッケージした半導 体集積回路装置に関するものである。

従来の技術

ポータブルな情報ファイルとしてのICカード はカードの一部にメモリ、マイタコプロセッサを する演算機能を持っているが、180億格により カード厚みは最大の.84ミリとされており、過然 半準体集該回絡装置は更に輝くしかも厚み精度が 強く要求される。

当初半導体集験回路装置の基板はガラスエボキンを基体とする両面塗板が主流であったが、ガラスエボキン整板ではIOカード用半導体集積回路 装置に要求する原み精度を十分に満足させるもの ではなかった。

そこでガラスエポキン芸板の代りに厚み帰庭がよく学導体集積回路装置の総界の厚み精度も向上させられるリードフレームを拡板とするICカード用半導体集積回路接置が提覧された。このICカード用半導体集積回路接置の構造を第4箇に示し説明する。

複数本の電気器子1とダイバッド2を有するリードフレーム6の上品ダイバッド2にICチップ 3がマウントされ、上記ICチップ3のバッド 5を暴出した形で、しかも上記一主面 5 とほぼ平 坦に対止樹脂 6 がトランスファ 成形法により成形 された標章となっている。

ところが上記電磁源子1の上記一主面 6 社外報に再出し、上記電磁源子1の海い側面を含む片面しか上記討止機能 6 を装験していたい。通常トランスファ成形法で成形する上記封止機能 6 中には成形会裂との離形性をよくするために、離形部が入れられていることから、当然上記電極端子1かられていることがあたとして、上記封止機能 6 と額独する他の主面でを租面化したり、上記電極端子1の一生面 6 の面積を他の主面での散決とする) 密着性の向上を置っている。

発明が解決しようとする問題点

このような半導体集録回路装置に用いるリードフレーム8の厚味は、半導体集積回路装置に総厚の制限があることからO.1 5ミリ以下が通常用いられる。ところが対止樹脂のとリードフレーム8

なる。この状態でカード化しカードの携帯中あるいは使用中に何らかの異物が切断面にできたパリ、あるいは電視端子自体にひっかかり電極端子をはがしてしまり可能性がある。とのように置極端子がはがれたり、変形するとICカードとしての機能が全く失なわれることになる。

本発明は上記問題点を鍛み、外的な力、熱ひず み等に対しても電極媚子がはがれて使用不能にな らないようなリードフレームの構造を提供するも のである。

問題点を解決するための季段

そして上記問題点を解決する本発明の技術的手段は、リードフレームの一主面の面膜を他の主面より終くし断面形状を凸型として一主面とほぼ平坦に封止樹脂を放影し、リードフレームの端面を 所定の距離、厚さでほぼ全辺にわたって対止樹脂 で獲りように構成したものである。

作用

アの雄型により世権機子の政府会辺が對止樹脂

の他の主面でとの密着性を強化するために、リー ドフレーム8の斯園をテーパ加工し、わずかに封 止樹脂もでリードフレーム8を覆り形としている が、リードフレーム8の厚味がの15ミリと非常 に夢いため、 封止歯盾8 でリードフレーム8の婦 **函を一個覆う形とした場合でもせいぜい厚味分の** O. 15 ミリ程度 しか娶うことができず、姥面にチ ーパをつけても封止樹脂6に対するりードフレー 48の密着強度を描るしく向上させるととはでき なかった。また前にる遊べたが封止樹脂の比似粒 杉剤が入っているため、リードフレーム8との格 着性が思く、例えば熱衝撃試験を行った時に発生 する熱的ひずみによりリードフレームのが引れる 可能性も生じてくる。更にトランスファ威形袋り ードフレームなの補強パーを封止樹脂6の幅面に 沿ってほぼ平坦に金型にて切断して毎月の半導体 **集映画路装置にするわけであるが、抽動パーの切** 断面社金型で切断する際、わずかなバリが発生す るととと、完全に対止樹脂もの端面と平坦にする ことは不可能で、わずかに初新聞が突き出る形と

からの力が加わらず、また熱衝撃以験等による熱 ひずみに対しても電極端子が刻れることがないた め信頼性の高い半導体集績回路襲置を作ることが 可能となる。

奖施例

以下本発明の一実施例について図面を用いたがら説明する。第2回を、bは本発明に用いたリードフレームの構造を示す。第2回をは上面図と、第2回bはよーがをみた断面図である。ダイバット11を数本の電極端子12で構成されてわり、上記ダイバット11を図が上記を描れる部分のリードフレーム20の断面は他の主をがなり、少なくとも対止対別で覆われる部分のかられている。ちをみにリードフレーム20の断面がのようによりの対応によりの場合上記を差面16の対応がいる。なたかまりたい。以上はダイバッド11が複数なたかまわたい。以上はダイバッド11が複数なたかまわたい。以上はダイバッド11が複数なたかまわたい。以上はダイバッド11が複数なたかまわたい。以上はダイバッド11が複数なたかまわたい。以上はダイバッド11が複数な

る解恋のリードフレームである。このリードフレーム20の作製方法は一貫部例として、まずプレス級でストレートにパンチンタした後続いて別の会型を用い何じくプレス級でよりリードフレーム 30の端距のみをプレスし所定の量だけ改差紀18を作った。他の方法としてエッチングによる方法でも同様の改差部15を作ることは可能である。以上の既明はICチップを塔赦するダイバッド11を有するリードフレーム20であるが、ダイバッド11の無い電極網予13のみのリードフレームでもかまわない。

以上述べた設付きリードフレーム20を用いた 単等体無機団路装置の製造プロセスを第3図ュー でに示す。これは第2回のAー Nの斯面を扱わす ものである。メイバッド110他の主面14に 10チップ16をマウントし、上記1Cチップ18 のバッド(国示せず)と上記電を端子120他の 主面14をワイヤ1で装続し(第3回を)、統 いてトランスファ威形法にて上記電を端子12、 及びダイバッド11の一主面18を舞出させるご

のではなく、バンプを利用したフリップナップボンディング方式でもかまわない。また同時にリードフレーム20の他の主面側をニッチング、サンドブラストメッキ法等で程面化処理が難とされていても良い。更にダイバッド11が無くIOチップ10が電磁端子12にかかるようなリードンレーム20を用いる場合はIOチップ10をマウントするダイボンド微量は絶縁他であることはいうまでもない。

発明の効果

本発明の半導体集積圏路装置はリードフレーム 基版の端面に1段以上の食業器を設け、食差部を 限り形で耐止樹脂にて成形しているため、外的な 力にも電極端子は剥れたくく、熱質事試験等の熱 ひずみに対しても、電極端子ははがれないことか ち、信頼性の高いものを得ることが可能とたる。

4、図面の簡単を説明

第1回は本苑明の学導体集後国路接置の一英雄 毎にかけるなどは二級へが十年1日回 ****

とく、上記一主面13と低校平組に計止樹脂18 で成形する(第3回り)。この時リードフレーム 20に設けられた段芒部15も上記封止樹脂18 で獲われる形となる。更に会型を用いて上記封止 樹脂18の鋸菌に沿って補強パー18を切断して 個片の単導体集務団路振聞とする(第3回に)。 以上のべた半導体集積頭路便量の電極端子部の拡 大図を第1図に示す。との第1図によれば電極端 子12の一主団と對正視腺18は降度平坦に成形 されており、封止衡弱1日に趨変した健極婚子12 の一部は、露出している一主面より広がっている 構造となっている。このことは、電磁箱子12の 端函に形成されている設善部15を完全に封止機 脂り8が覆っているととになり、封止樹脂18の **端頭に舞出している舗強パー196同様の凸辺で** あることから外的な力に対しても非常に別れに強 い経進となっている。

以上述べてきた実施例の中でIGデップ16の バッドと電極端子12の接続にワイヤ11を用い ているが、ワイヤーボンディング法に設定するも

上面図と断面図、第3図a~c杜本発明の半導件 集積回路設度の製造フェーを示す断面図、第4図 は従来のリードフレームを用いた半導体集積回路 装置の構造を示す断面図である。

12……電域端子、13……一生菌、14……他の主団、16…… 安差郡、16……ICチップ、17……ワイヤ、18……対止樹脂、19……補助パー、20……リードフレーム。

代理人の氏名 弁団士 中 尾 敏 男 低か1名

(19) JAPANESE PATENT OFFICE (JP)

(12) Official Gazette for Unexamined Patent Applications (A)

(11) Japanese Unexamined Patent Application (Kokai) No. 1[1989]-106,456

(43) Disclosure Date: 24 April 1989

(51) Int.Cl.⁴ Ident. Symbols Internal Office Nos.

H 01 L 23/50 G-7735-5F 23/28 A-6835-5F

Request for Examination: Not yet requested

Number of Inventions: 1 (Total of 4 pages)

(54) Title of the Invention: Semiconductor Integrated Circuit Device

(21) Application No.: 62[1987]-263,435

(22) Application Date: 19 October 1987

(72) Inventor: Hiroshi Kuroda

c/o Matsushita Electric Ind. Co., Ltd.

1006 Oaza Kadoma, Kadoma-shi, Osaka-fu

(72) Inventor: Yoshihisa Takase

c/o Matsushita Electric Ind. Co., Ltd.

1006 Oaza Kadoma, Kadoma-shi, Osaka-fu

(71) Applicant: Matsushita Electric Ind. Co., Ltd.

1006 Oaza Kadoma, Kadoma-shi, Osaka-fu

(74) Agent: Toshio Nakao, Patent Attorney, And 1 Other

SPECIFICATION

Title of the Invention
 Semiconductor Integrated Circuit Device

2. Claim

A semiconductor integrated circuit device in which the area of the main surface of the lead frame, which has several electrode terminals, is narrower than the other main surface, the cross-sectional shape of the lead frame has stair components having at least one or more steps, the semiconductor integrated circuit is mounted on the other main surface, and a sealing resin that is essentially even with the main surface is formed in a shape in which at least the main surfaces of the electrode terminals are exposed.

3. Detailed Description of the Invention

Field of Industrial Use

This invention relates to a semiconductor integrated surface device in which the semi-conductor integrated circuit is packaged.

Prior Art

A semiconductor integrated circuit device having a memory and a microprocessor is embedded in a part of an IC card, which serves as a portable information file. The card has the operational functions of reading and deleting. However, in accordance with ISO standards, the maximum thickness of the cards is 0.84 mm. Naturally, there is a demand for the semiconductor integrated circuits to be thinner, for greater precision of thickness and for greater strength.

Initially, the main trend is for the board of a semiconductor integrated circuit device to be a two-surface board having glass epoxy as the base substance. However, with a glass epoxy base substance, the precision of thickness required of semiconductor integrated circuit devices for IC cards could not be sufficiently satisfied.

Accordingly, a semiconductor integrated circuit device for IC cards was proposed in which a lead frame of which the precision of thickness was good and of which the thickness precision of the total thickness of the semiconductor integrated circuit device was improved was used as the board in place of a glass epoxy board. Figure 4 shows and illustrates the structure of this semiconductor integrated circuit device for IC cards.

The IC chip 3 is mounted on the die pad 2 of the lead frame 8, which has several electrode terminals 1 and the aforementioned die pad 2, the pad (not shown in the figure) of the aforementioned IC chip 3 and the aforementioned electrode terminals 1 are connected by the wires 4 and a structure is formed in a configuration in which at least the main surfaces 5 of the aforementioned electrode terminals 1 are exposed and in which the sealing resin 6 is formed by transfer molding essentially even with the aforementioned main surfaces 5.

However, the main surfaces 5 of the aforementioned electrode terminals 1 are exposed to the outside and only one surface, including the thin side faces of the aforementioned electrode terminals, is in contact with the aforementioned sealing resin 6. Because a release agent is usually introduced into the aforementioned sealing resin 6, which is formed by the transfer molding method,

in order to improve release from the mold, there is naturally poor adhesion between the aforementioned electrode terminals 1 and the aforementioned sealing resin 6. A method for solving this problem is to coarsen the other main surface 7 that is in contact with the aforementioned sealing resin 6 and make the area of main surface 5 of the aforementioned electrode terminals 1 narrower than the area of the other main surface 7 (by tapering the edge to give a trapezoid shape) in order to improve adhesion.

Problems the Invention Is Intended to Solve

Because the thickness of the lead frame 8 used in semiconductor integrated circuit devices is limited in this way by the total thickness of the semiconductor integrated circuit device, it is ordinarily 0.15 mm or less.

However, in order to strengthen the adhesion between the sealing resin 6 and the other main surface 7 of the lead frame 8, the cross section of the lead frame 8 is tapered to a shape in which the lead frame 8 is very slightly covered by the sealing resin 6. Because the thickness of the lead frame 8 of 0.15 mm is extremely thin, even when there is a configuration in which the tip surface of the lead frame is partially covered, it can at most be covered only on an order of thickness of 0.15 mm, and, even when the tip surface is tapered, the adhesive strength of the lead frame 8 to the sealing resin 6 cannot be markedly improved. Further, as discussed previously, because a release agent is introduced into the sealing resin 6, there is poor adhesion to the lead frame 8. For example, there is the possibility that the lead frame will peel due to the thermal strain that occurs when thermal impact tests are performed. Moreover, after transfer molding, the

reinforcing bar of the lead frame 8 is cut in the mold so that it is essentially even along the tip surface of the sealing resin 6 to make a semiconductor integrated circuit device with individual sides. However, when the cut surface of the reinforcing bar is cut in the mold, very slight variations occur and it is not possible to make it completely even with the tip end of the sealing resin 6, for which reason the cut surface assumes a configuration in which it protrudes very slightly. In this state, there is the possibility that the electrode terminals will be peeled off as a result of being caught up in various structures formed by foreign objects in the cut surface during cutting of the card or during transport or use of the card or by peeling of the electrode terminal itself. When the electrode terminals are peeled off or deformed in this way, the function as an IC card is completely lost.

In view of the aforementioned problems, this invention provides a structure of a lead frame such that the electrode terminals are not peeled off and become useless, even in the presence of external force and thermal strain.

Means for Solving the Problems

The technological means whereby the aforementioned problems are solved is a structure such that the area of one main surface of the lead frame is made narrower than the other main surface, the cross-sectional shape involves a projection, the sealing resin is formed essentially even with one main surface and the end surface of the lead frame is covered by the sealing resin along almost the entire edge at a specified distance and thickness.

Action

Because almost the entire edges of the electrode terminals are covered by sealing resin due to this structure, no external force that peels the electrode terminals arises and the electrode terminals are not peeled off even in the presence of thermal strain due to impact tests, for which reasons a semiconductor integrated circuit device of high reliability can be made.

Examples

We shall now describe an example of this invention making use of the figures. Figures 2a and b show the structure of the lead frame that is used in this invention. Figure 2a is an upper surface view and Figure 2b is a cross-sectional view seen through A-A'. It is comprised of the die pad 11 and the multiple electrode terminals 12. The area of the one main surface 13 that is exposed on the outer side of the aforementioned die pad 11 and of the aforementioned electrode terminals 12 is narrower than that of the other main surface 14 and the protruding stair components 15 are established in the cross section of at least the part of the lead frame 20 that is covered by the sealing resin. In this connection, when the thickness of lead frame 20 is 0.15 mm, W [the width] of the aforementioned stair components 15 is set to 0.5 mm and D [the depth] is set to 0.1 mm. The cross-sectional shape of the aforementioned component may be not only a stair of one step but may also be formed as several steps. What is described above is a lead frame of a structure in which the die pad 11 is connected to at least one of the several electrode terminals 12. The following is an example of the method of manufacture of this lead frame 20. First, it is pressed flat with a pressing machine, after which only the end surface of the lead

frame 20 is similarly pressed by a pressing machine using a separate mold, with the stair components 15 being made in a specified amount. Similar stair components 15 can also be made by the etching method as another method. What is described above is a lead frame 20 having the die pad 11 for mounting the IC chip. However, it may also be a lead frame consisting only of the electrode terminals 12 without the die pad 11.

Figures 3a through c show the process of manufacture of a semiconductor integrated circuit device in which the stepped lead frame 20 as described above is used. They show the cross section through A - A' in Figure 2. The IC chip 16 is mounted on the other main surface 14 of the die pad 11. The pad (not shown in the figure) of the aforementioned IC chip 16 and the other main surface 14 of the aforementioned electrode terminals 12 are connected by the wires 17 (Figure 3a). Next, as the aforementioned electrode terminals 12 and the other main surface of the die pad 11 are exposed by the transfer molding method, the structure is formed with the sealing resin 18 essentially even with the aforementioned main surface 13 (Figure 3b). At this time, the stair components 15 that are established in the lead frame 20 assume a configuration in which they are also covered by the sealing resin 18. Further, the reinforcing bar 19 is cut along the end surface of the aforementioned sealing resin 18 using a mold, and an individual semiconductor integrated circuit device is formed (Figure 3c). Figure 1 shows an enlarged view of the electrode terminal components of the semiconductor integrated circuit device described above. As indicated in Figure 1, they are constructed so that one main surface of the electrode terminals 12 is

formed essentially even with the sealing resin 18 and that the portion of the electrode terminals that is embedded in the sealing resin 18 is wider than the one main surface that is exposed. This results in the sealing resin 18 completely covering the stair components 15 that are formed on the tip surface of the electrode terminals 12. Because the reinforcing bar that is exposed on the tip surface of the reinforcing resin 18 is of a similar protruding shape, a structure is formed that is extremely strong even in the presence of external force.

In the example described above, the wires 17 are used for connection of the pad of the IC chip 16 and the electrode terminals 12. However, this is not limited to the wire bonding method and the flip-chip bonding method using a bump may also be used. At the same time, the other main surface of the lead frame 20 may be subjected to a roughening treatment by etching or the sand blast plating method. Further, when a lead frame is used in which the IC chip 16 is attached to the electrode terminals 12 without a die pad 11, the die pad resin with which the IC chip is mounted may be insulating.

Effect of the Invention

Because the semiconductor integrated circuit device of this invention is formed by establishing one or more stair or stepped components on the tip surface of the lead frame board and with sealing resin in a configuration that covers these stepped components, the electrode terminals are not readily peeled off in the presence of external force. Because the electrode terminals are not peeled off even in the face of thermal strain such as during thermal impact tests, a product of high reliability can be obtained.

4. Brief Explanation of the Figures

Figure 1 is an enlarged oblique view of an example of the semiconductor integrated circuit device of this invention, Figures 2a and b are an upper surface view and a cross-sectional view that show the structure of the lead frame that is used in this invention, Figures 3a through c are cross-sectional views that show the manufacturing steps of the semiconductor integrated circuit of this invention and Figure 4 is a cross-sectional view that shows the structure of a semiconductor integrated circuit device in which a conventional lead frame is used.

12 – electrode terminal; 13 – one main surface; 14- the other main surface; 15 – stair component; 16 – IC chip; 17 – wire; 18 – sealing resin; 19 – reinforcing bar; 20 – lead frame.

Name of Agent: Toshio Nakao, Patent Attorney, And 1 Other

Figure 1

- 12 electrode terminal
- 13 one main surface
- 15 stair component
- 18 sealing resin
- 19 reinforcing bar

Figure 2

- a [top figure]
- b [bottom figure]
- 11 die pad
- 12 electrode terminal
- 13 one main surface
- 14 other main surface

15 – stair component

Figure 3

а

11 - die pad

12 - electrode terminal

13 - one main surface

14 - other main surface

15 - stair component

16 - IC chip

17 - wire

h

18 - sealing resin

19 - reinforcing bar

Figure 4

