Mandatory assignment, FunkAn1

Mette Guldfeldt Lorenzen, KU-ID: lpm914 Monday the 14th of December 2020

Problem 1

Let $(X, \|\cdot\|_X)$ and $(X, \|\cdot\|_Y)$ be (non-zero) normed vector spaces over \mathbb{K} , where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

(a) Let $T: X \to Y$ be a linear map. Set $||x||_0 = ||x||_X + ||Tx||_Y$, for all $x \in X$. Show that $||\cdot||_0$ is a norm on X. Show next that the two norms $||\cdot||_X$ and $||\cdot||_0$ are equivalent if and only if T is bounded.

First of all lets show that $\|\cdot\|_0$ is a norm on X. I wanna show that the three properties of def. 1.1 of the lecture notes holds.

• Triangle inequality:

By definition we obtain

$$||x + y||_0 = ||x + y||_X + ||T(x + y)||_Y$$

Furthermore, since T is linear and X, Y are both normed vector spaces we obtain the following

$$||x + y||_X + ||T(x + y)||_Y \le (||x||_X + ||y||_X) + (||Tx||_Y + ||Ty||_Y)$$

$$= ||x||_X + ||Tx||_Y + ||y||_X + ||y||_Y$$

$$= ||x||_0 + ||y||_0$$

Which gives the triangle inequality $||x+y||_0 \le ||x||_0 + ||y||_0$ for $x, y \in X$.

• Scalar multiplication:

$$\|\alpha x\|_{0} = \|\alpha x\|_{X} + \|\alpha T x\|_{Y}$$
$$= |\alpha| \|x\|_{X} + |\alpha| \|T x\|_{Y}$$
$$= |\alpha| \|x\|_{0}$$

• Non-seminorm:

First notice that $||x||_0 = 0 \Leftrightarrow ||x||_X = -||Tx||_Y$. Furthermore observe that $||x||_X \ge 0$ by definition of the norm, why the only solution to the presented equation is that $||Tx||_Y = 0$. However this only holds $\Leftrightarrow x = 0$ since $||\cdot||_Y$ is a well-defined norm. So now we have obtained that $||x||_0 = 0 \Leftrightarrow x = 0$.

This shows that $\|\cdot\|_0$ is a norm on X.

Now lets show that the two norms are equivalent $\Leftrightarrow T$ is bounded.

" \Rightarrow ": Assume that the two norms are equivalent, hence by def. 1.4 this means that there exists $0 < C_1, C_2 < \infty$ s.t.

$$C_1 ||x||_0 \le ||x||_X \le C_2 ||x||_0$$

for $x \in X$. I wish to show that T is bounded, which means that there exist C > 0 s.t.

$$||Tx||_Y \le C||x||_X$$

for all $x \in X$. See that

$$C_1 \|x\|_0 \le \|x\|_X$$

$$C_1(\|x\|_X + \|Tx\|_Y) \le \|x\|_X$$

$$\|x\|_X + \|Tx\|_Y \le \frac{1}{C_1} \|x\|_X$$

Since $0 \le ||x||_X$, $||Tx||_Y < \infty$ (from the inequality), we have shown that $||Tx|| < D||x||_X$ for som D > 0, hence bounded.

"⇐": Observe that

$$||Tx||_Y = ||x||_0 - ||x||_X \le C||x||_X$$
$$||x||_0 \le C||x||_X + ||x||_X$$
$$||x||_0 \le (C+1)||x||_X$$

Now we only need to show that there exists D > 0 s.t. $||x||_X \le D||x||_0$ which gives that the norms are equivalent. See that

$$||x||_X \le ||x||_X + ||Tx||_Y = ||x||_0$$

which shows that $||x||_X \le 1 \cdot ||x||_0$, and since 1 > 0 it is a valid constant, why the desired has been obtained.

(b) Show that any linear map $T: X \to Y$ is bounded, if X is finite dimensional.

By thm. 1.6 we have that any two norms on X are equivalent when X is a finite dimensional vector space. From (a) $\|\cdot\|_0$ and $\|\cdot\|_X$ are equivalent on a linear map T, which implies that T is bounded. But T was an arbitrary map, why all linear maps must be bounded with the assumption that dim $X = n < \infty$.

(c) Suppose that X is infinite dimensional. Show that there exists a linear map $T: X \to Y$, which is not bounded (= not continuous).

Since X is infinite dimensional we choose to take a Hamel basis B_X for X defined as $B_X := \{b_i : i \in I\}$ for some index I. Assume without loss of generality that $I \supseteq \mathbb{N}$. Now lets define a linear map $T : X \to Y$ and show that this is not bounded. Let every $b \in X$ be normalized s.t. we can set

$$T\left(\frac{b_i}{\|b_i\|}\right) = i \cdot y$$

for $y \in Y$ with $y \neq 0$ as a fixed element and $i \in \mathbb{N}$. Set $T\left(\frac{b_i}{\|b_i\|}\right) = 0$ if $i \notin \mathbb{N}$. This is a well-defined and linear map (by its construction) since $\left\{\frac{b_i}{\|b_i\|}\right\}$ is a linear independent

subset of X (it is contained in our Hamel basis).

Furthermore

$$\left\{\frac{b_i}{\|b_i\|}\right\} \subseteq \{b \in X : \|b\| \le 1\} := N$$

and

$$\sup_{x \in N} ||Tb|| \ge i||y|| > 0$$

for each $i \in I \supseteq \mathbb{N}$. This shows that T is not bounded.

(d) Suppose again that X is infinite dimensional. Argue that there exist a norm $\|\cdot\|_0$ on X, which is *not* equivalent to the given norm $\|\cdot\|_X$, and which satisfies $\|x\|_X \leq \|x\|_0$, for all $x \in X$. Conclude that $(X, \|\cdot\|_0)$ is not complete if $(X, \|\cdot\|_X)$ is a Banach space.

X is again infinite dimensional. Then by (c) we know that T is not bounded, and then by (a) we can derive that the two norms $\|\cdot\|_0$ and $\|\cdot\|_X$ on X are *not* equivalent. Lets set $\|x\|_0 = \|x\|_X + \|Tx\|_Y$ which, by removing the positive norm $\|Tx\|_Y$, gives the desired inequality:

$$||x||_X \le ||x||_0$$

 $\forall x \in X.$

Now, using the result found in problem 1 from HW3, we can conclude that since the norms are *not* equivalent, then X is not complete wrt both norms.

Now lets assume that $(X, \|\cdot\|_X)$ is a Banach space, hence complete, then $(X, \|\cdot\|_0)$ cannot be complete, or else this would imply that the norms were equivalent.

(e) Give an example of a vector space X equipped with two inequivalent norms $\|\cdot\|$ and $\|\cdot\|'$ satisfying $\|x\|' \leq \|x\|$, for all $x \in X$, such that $(X, \|\cdot\|)$ is complete, while $(X, \|\cdot\|')$ is not.

Take $(\ell_1(\mathbb{N}))$ with the $\|\cdot\|_1$ -norm and $\|\cdot\|_{\infty}$ -norm. From the lecture notes $(\ell_p(\mathbb{N}), \|\cdot\|_p)$ is complete for $1 \leq p < \infty$, which gives us that $(\ell_1(\mathbb{N}), \|\cdot\|_1)$ is complete.

Take an arbitrary sequence $x = (x_1, x_2, ..., x_n) \in \ell_1(\mathbb{N})$. Then

$$||x||_1 = \sum_{i=1}^n |x_i| \ge |x_1 + x_2 + \dots + x_n| \ge \max_{i \in 1,\dots,n} \{|x_i|\} = ||x||_{\infty}$$

which shows that $\|\cdot\|_{\infty} \leq \|\cdot\|_{1}$.

Now lets show that the norms are inequivalent. Take the sequence $(z_n)_{n\in\mathbb{N}} = (z_1, z_2, ..., z_k, 0, 0, ...)$ where $z_i = 1$ for $i \leq k$, but then $||z_n||_1 = k$ while $||z_n||_{\infty} = 1$. Thus there cannot exist C s.t. $k \leq C \cdot 1$, because we can always pick a bigger k, hence the norms are *not* equivalent.

Now all we need to show is that $(\ell_1(\mathbb{N}), \|\cdot\|)$ is not complete. Lets take the sequence of sequences $((y_n)(k))_{n\in\mathbb{N}} = \frac{1}{k}$ for $1 \leq k \leq n$ and $(y_n)(k) = 0$ for k > n. Then

 $y_n(k) \in \ell_1$ for all n and each k, as they all have finite sum with the $\|\cdot\|_1$ -norm. Let $y(k) = \frac{1}{k}$ for all $k \in \mathbb{N}$, and notice that

$$||y_n(k) - y(k)||_{\infty} = \sup\{|y_n(k) - y(k)|\} = |\frac{1}{n+1}| \to 0 \text{ for } n \to \infty$$

So it is Cauchy sequence wrt $\|\cdot\|_{\infty}$ -norm. But $y(k) \notin \ell_1$ since $\sum_{n=1}^{\infty} \left|\frac{1}{n+1}\right| \to \infty$ for $n \to \infty$, hence it is not complete.

Problem 2

Let $1 \leq p < \infty$ be fixed, and consider the subspace M of the Banach space $(\ell_p(\mathbb{N}), \|\cdot\|_p)$, considered as a vector space over \mathbb{C} , given by

$$M = \{(a, b, 0, 0, ...) : a, b \in \mathbb{C}$$

Let $f: M \to \mathbb{C}$ be given by f(a, b, 0, 0, 0, ...) = a + b, for all $a, b \in \mathbb{C}$.

(a) Show that f is bounded on $(M, \|\cdot\|_p)$ and compute $\|f\|$.

First of all lets show that f is bounded on $(M, \|\cdot\|_p)$. Let $x = (x_1, x_2, 0, 0, ...) \in M$. As $\frac{1}{p} + \frac{1}{\frac{p}{p-1}} = 1$ (with $q = \frac{p}{p-1}$) we obtain by Hölders inequality and the triangle inequality:

$$|fx| = |x_1 + x_2| \le |x_1| + |x_2|$$

$$= \sum_{i=1}^{2} |x_i \cdot 1|$$

$$\le \left(\sum_{i=1}^{2} |x_i|^{\frac{1}{p}}\right) \left(\sum_{i=1}^{2} |1|^{\frac{p}{p-1}}\right)^{1-\frac{1}{p}}$$

$$= \left(\sum_{i=1}^{2} |x_i|^{\frac{1}{p}}\right) \cdot 2^{1-\frac{1}{p}}$$

$$= ||x||_p \cdot 2^{1-\frac{1}{p}}$$

Where I have used that $\frac{1}{q} = \frac{1}{\frac{p}{p-1}} = 1 - \frac{1}{p}$. So this shows that f is bounded on $(M, \|\cdot\|_p)$.

Now lets compute ||f||.

We have just shown that for every $1 \le p < \infty$ we have that $|fx| \le 2^{1-\frac{1}{p}} ||x||_p$ so

$$2^{1-\frac{1}{p}} \in \{C > 0 : |fx| \le C||x||_p\}$$

hence

$$||f|| = \inf\{C > 0 : |fx| \le C||x||_p\} \le 2^{1-\frac{1}{p}}$$

Now lets construct a sequence $z \in M$ st. $||z||_p = 1$. Let $z = (\frac{1}{2\frac{1}{n}}, \frac{1}{2\frac{1}{n}}, 0, 0, ...)$ and see that

$$||z||_p = \left(\left|\frac{1}{2\frac{1}{p}}\right|^p + \left|\frac{1}{2\frac{1}{p}}\right|^p\right)^{\frac{1}{p}} = \left(\frac{1}{2} + \frac{1}{2}\right)^{\frac{1}{p}} = 1$$

And since

$$|fz| = \left|\frac{1}{2\frac{1}{p}} + \frac{1}{2\frac{1}{p}}\right| = 2\frac{1}{2^{\frac{1}{p}}} = 2^{1-\frac{1}{p}}$$

Then $2^{1-\frac{1}{p}} \in \{|fx| : ||x||_p = 1\}$ and it then follows that

$$2^{1-\frac{1}{p}} \le \sup\{|fx| : ||x||_p = 1\} = ||f||$$

And we can conclude that $||f|| = 2^{1-\frac{1}{p}}$.

(b) Show that if $i , then there is a unique linear functional F on <math>\ell_p(\mathbb{N})$ extending f and satisfying ||F|| = ||f||.

Since f comes from a Banach space it is linear, and it is also bounded, hence continuous, why it follows that $f \in M^*$, so by cor. 2.6 in the lecture notes there exist $F \in (\ell_p(\mathbb{N}))^*$ st. $F|_{M} = f$ and ||F|| = ||f||.

By problem 5 in HW1, we know if $\frac{1}{p} + \frac{1}{q} = 1$ then we obtain $(\ell_p(\mathbb{N}))^* \cong \ell_q(\mathbb{N})$ for 1 . This means that the map maintains the norm. We can now set <math>F(x) = $\sum_{n=1}^{\infty} x_n y_n$ for $y := (y_n)_{n \geq 1} \in \ell_q(\mathbb{N})$ and $x := (x_n)_{n \geq 1} \in \ell_p(\mathbb{N})$. By our previous calculations we know that $2^{\frac{1}{q}} = 2^{1-\frac{1}{p}} = ||f|| = ||F||$, and since F is

represented by $y \in \ell_q(\mathbb{N})$ we must have that $||y||_q = 2^{\frac{1}{q}}$.

See that $F|_{M}(x) = f(x) = x_1 + x_2$ so $y = (1, 1, y_3, y_4, ...)$ and we furthermore get that

$$||y||_q = \left(\sum_{i=1}^{\infty} |y_i|^q\right)^{\frac{1}{q}} = (|1|^1 + |1|^q + |y_3|^q + \dots)^{\frac{1}{q}} = ||F|| = 2^{\frac{1}{q}}$$

so for $||y||_q = ||F||$ to be valid due to the criteria of isometry this forces $y_3, y_4, \dots = 0$, and we may conclude that y = (1, 1, 0, 0, ...).

Now lets assume that $F' \in (\ell_p(\mathbb{N}))^*$ is another linear functional st. $F'|_M = f$ and ||F'|| = ||f||. But then we would be able to use same argument as before, since our $y = (1, 1, y_3, y_4, ...)$ was for arbitrary $y_3, y_4, ...$, and get $F'|_M(x) = x_1 + x_2$. Hence $F(x) = x_1 + x_2 = x_1 + x_2 = x_2 = x_1 + x_2 = x_2$ F'(x) which shows that a linear functional extending f and satisfying ||F|| = ||f|| is unique.

(c) Show that if p=1, then there are infinitely many linear functional F on $\ell_1(\mathbb{N})$ extending f and satisfying ||F|| = ||f||.

Let p=1, define $F_i:\ell_1(\mathbb{N})\to\mathbb{K}$ and let it be given by $(x_1,x_2,x_3,...)\mapsto x_1+x_2+x_i$ for i > 2. This is clearly a linear functional on $\ell_1(\mathbb{N})$ and furthermore an extension on $\ell_1(\mathbb{N})$ since $F_i|_{M}(x) = x_1 + x_2 = f(x)$, for $x \in M$.

Since F_i extends f we must have that

$$||F_i|| \ge ||f|| = 2^{1 - \frac{1}{1}} = 1$$

Now see that

$$||F_i||_1 = \sup\{|F_i x| : ||x||_1 = 1\}$$

$$= \sup\{|x_1 + x_2 + x_i| : ||x||_1 = 1\}$$

$$\leq \sup\{|x_1| + |x_2| + |x_i| : ||x||_1 = 1\}$$

$$\leq 1$$

which follows by definition of $\|\cdot\|_1$.

Now we have that $||F_i|| = 1 = ||f||$. So F_i is a linear functional extending f, and since we can define this for any i > 2, there is infinitely many linear functionals on $\ell_1(\mathbb{N})$ extending f and satisfying ||F|| = ||f||.

Problem 3

Let X be an infinite dimensional normed vector space over \mathbb{K} , where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

(a) Let $n \geq 1$ be an integer. Show that no linear map $F: X \to \mathbb{K}^n$ is injective.

I wanna show this by contradiction, so lets assume that the linear map $F: X \to \mathbb{K}^n$ is injective.

Let $x_1, ..., x_{n+1} \in X$ be linear independent and $F(x_1), ..., F(x_{n+1})$ be linear dependent. Then there exists scalars $\alpha_1, ..., \alpha_{n+1}$ where at least one of them is non-zero s.t.

$$\alpha_1 F(x_1) + \dots + \alpha_{n+1} F(x_{n+1}) = 0$$

But by linearity we obtain that

$$\alpha_1 F(x_1) + \dots + \alpha_{n+1} F(x_{n+1}) = F(\alpha_1 x_1 + \dots + \alpha_{n+1} x_{n+1}) = 0$$

And since F is injective it follows that

$$\alpha_1 x_1 + \dots + \alpha_{n+1} x_{n+1} = 0$$

However all $x_1, ..., x_{n+1}$ was linear independent why it must follow that all the scalars are zero, which is a contradiction, hence no linar map $F: X \to \mathbb{K}^n$ is injective.

(b) Let $n \ge 1$ be an integer and let $f_1, f_2, ..., f_n \in X^*$. Show that

$$\bigcap_{j=1}^{n} \ker(f_j) \neq \{0\}.$$

Lets consider the map $F: X \to \mathbb{K}^n$ defined by $F(x) = (f_1(x), f_2(x), ..., f_n(x))$ for $x \in X$. F is linear since it is defined only by linear functions, and we may conclude from (a) that F is not injective. This shows that $\ker(F) \neq \{0\}$, hence

$$\ker((f_1(x), f_2(x), ..., f_n(x)) \neq 0$$

which shows that there exists $x \neq 0$ s.t.

$$F(x) = (f_1(x), f_2(x), ..., f_n(x)) = 0 \Leftrightarrow f_1(x), f_2(x), ..., f_n(x) = 0$$

And therefore we obtain

$$0 \neq \ker(F) = \bigcap_{j=1}^n \ker(f_j)$$

(c) Let $x_1, x_2, ..., x_n \in X$. Show that there exists $y \in X$ such that ||y|| = 1 and $||y - x_j|| \ge ||x_j||$ for all j = 1, 2, ..., n.

Choose $0 \neq z \in \bigcap_{j=1}^n \ker(f_j)$. Define $y = \frac{z}{\|z\|}$ and see that we get by linearity:

$$f_j(y) = f_j\left(\frac{z}{\|z\|}\right) = \frac{1}{\|z\|}f_j(z)$$

for all j. But since $z \in \bigcap_{j=1}^n \ker(f_j)$ we obtain that $f_j(z) = 0$ why

$$f_j(y) = \frac{1}{\|z\|} f_j(z) = 0$$

which implies that $y \in \bigcap_{j=1}^n \ker(f_j)$. Observe that

$$||y|| = ||\frac{z}{||z||}|| = \frac{||z||}{||z||} = 1$$

Now lets take $y \in \bigcap_{j=1}^n \ker(f_j)$ where ||y|| = 1. Notice that $||f_j|| = 1$, from lecture notes 2.7(b), since $f_j \in X^*$ and X is a normed vector space. This shows that

$$||y - x_j|| = f_j \cdot ||y - x_j||$$

$$\geq ||f_j(y - x_j)||$$

$$= |f_j(y - x_j)|$$

$$= |f_j(y) - f_j(x_j)|$$

$$= |0 - ||x_j|||$$

$$= ||x_i||$$

Where we have used the definition of the operator norm, linearity of f_j , 2.7(b) from the lecture notes and that $y \in \bigcap_{j=1}^n \ker(f_j)$.

(d) Show that one cannot cover the unit sphere $S = \{x \in X : ||x|| = 1\}$ with a finite family of closed balls in X such that none of the balls contains 0.

We wanna show that $S \nsubseteq \bigcup_{i=1}^n B_i$, where B_i are closed balls.

Lets take $x \in S$ and show that $x \notin \bigcup_{i=1}^n B_i$. More specific lets take $x \in \bigcap_{j=1}^n \ker(f_j) \cap S \subseteq S$. For x to be in B_i for all $i \geq 1$, B_i being convex, then by Hahn-Banach thm. $\operatorname{Re}(f_j(x)) \geq 1$ must hold. First of all lets show that B_i is convex.

For B_i to be convex we must have that $\alpha x + (1 - \alpha)y \in B_i$, $\forall x, y \in B_i$ and for all

 $0 \le \alpha \le 1$. This holds if $\|\alpha x + (1 - \alpha)y - p\| \le r$, p being the center of the ball and r the radius. Lets show this

$$\|\alpha x + (1 - \alpha)y - p\| = \|\alpha x - \alpha p + (1 - \alpha)y - p + \alpha p\|$$

$$= \|\alpha (x - p) + (1 - \alpha)y - p(1 + \alpha)\|$$

$$\leq \|\alpha (x - p)\| + \|(1 - \alpha)(y - p)\|$$

$$= |\alpha|\|x - p\| + |1 - \alpha|\|y - p\|$$

$$\leq \alpha r + (1 - \alpha)r$$

$$= r$$

Hence B_i is convex.

Back to our x, since $x \in \bigcap_{j=1}^n \ker(f_j)$ we know that $f_j(x) = 0$ why $\operatorname{Re}(f_j(x)) = 0$, which is not larger or equal to 1 which shows that $x \notin B_i$ for all i. This shows that

$$\bigcap_{j=1}^{n} \ker(f_j) \cap B_i = \emptyset \Rightarrow \bigcap_{j=1}^{n} \ker(f_j) \cap B_i \cap S = \emptyset$$

And we have obtained that $x \notin \bigcup_{i=1}^n B_i$ as wanted.

(e) Show that S is non-compact and deduce further that the closed unit ball in X is non-compact.

I wanna show this by contradiction, so lets assume that S is compact. Lets take an arbitrary $x \in S$ and consider the open ball

$$B_x = \{ v \in X \mid ||x - v|| < \frac{1}{2} \}$$

Notice that $B_x \subseteq \bigcup_{x \in S} B_x$.

So if we look at $x \in S$ then it follows that $||x - x|| = 0 < \frac{1}{2}$, why $x \in B_x$, hence $S \subseteq \bigcup_{x \in S} B_x$.

It now follows that $\{B_x\}_{x\in S}$ is an open cover of S, and by definition of compactness it follows that every open cover of S has a finite subcover, lets call it $\{B_{x_i}\}_{x\in S}$ for $1 \leq i \leq n$. Now notice that $B_{x_i} \subseteq \overline{B_{x_i}}$ for i=1,...,n why it follows that $S \subseteq \bigcup_{x_i \in S} \overline{B_{x_i}}$. Furthermore we know that the closure of a open ball is a closed ball, and since ||x-0|| = ||x|| = 1 which is larger than $\frac{1}{2}$ we also know that $0 \notin \overline{B_{x_i}}$ for all $x_i \in S$.

We have now shown that there exists a finite family of closed balls covering S, where $0 \notin \overline{B_{x_i}}$. This is a contradiction by (d), why S is non-compact.

We have that $S \subseteq B$, with B being the closed unit ball. We just showed that S is non-compact, why B is also, since a closed subset of a compact space is compact hence a closed subset of a non-compact space is non-compact.

Problem 4

Let $L_1([0,1],m)$ and $L_3([0,1],m)$ be the Lebesgue spaces on [0,1]. Recall from HW2 that $L_3([0,1],m) \subsetneq L_1([0,1],m)$. For $n \geq 1$, define

$$E_n := \left\{ f \in L_1([0,1], m) : \int_{[0,1]} |f|^3 dm \le n \right\}.$$

(a) Given $n \ge 1$, is the set $E_n \subset L_1([0,1],m)$ absorbing? Justify.

In order to talk about absorbing the set has to be convex, so lets show this. We already used it once in problem 3, but lets refresh it. For E_n to be convex $\alpha f + (1 - \alpha)g \in E_n \ \forall f, g \in E_n$ and for all $0 \le \alpha \le 1$ must hold. In this case this means that we have to show that

$$\int_{[0,1]} |\alpha f + (1 - \alpha)g|^3 dm \le n$$

By Minkowskis inequality we obtain

$$\left(\int_{[0,1]} |\alpha f + (1-\alpha)g|^3 dm\right)^{\frac{1}{3}} \leq \left(\int_{[0,1]} |\alpha f|^3 dm\right)^{\frac{1}{3}} + \left(\int_{[0,1]} |(1-\alpha)g|^3 dm\right)^{\frac{1}{3}}
= \left(\int_{[0,1]} \alpha |f|^3 dm\right)^{\frac{1}{3}} + \left(\int_{[0,1]} (1-\alpha)|g|^3 dm\right)^{\frac{1}{3}}
= \alpha \left(\int_{[0,1]} |f|^3 dm\right)^{\frac{1}{3}} + (1-\alpha) \left(\int_{[0,1]} |g|^3 dm\right)^{\frac{1}{3}}
\leq \alpha n^{\frac{1}{3}} + (1-\alpha) n^{\frac{1}{3}}
= n^{\frac{1}{3}}$$

Which shows that E_n is convex. Now lets return to justify if E_n is absorbing. To be absorbing the following must hold

$$\forall f \in L_1([0,1],m) \exists t > 0 : t^{-1}f \in E_n$$

Our claim is that E_n isn't absorbing, lets proof this. Let $f(t) = t^{-\frac{1}{3}}$, see that

$$||f||_1 = \int_{[0,1]} |f| dm = \int_0^1 x^{-\frac{1}{3}} dx$$
$$= \frac{3}{2}$$

This is obviously finite and since f(t) is measurable we obtain that $f \in L_1([0,1], m)$. Now take t > 0 and see that

$$\int_{[0,1]} |f|^3 dm = \int_0^1 \frac{1}{x} dx \approx \infty$$

This shows that $f \notin L_3([0,1],m)$, why there doesn't exists t > 0 st. $t^{-1}f \in E_n$. This furthermore shows that $\int_{[0,1]} |t^{-1}f|^3 dm \approx \infty$ why E_n is not absorbing.

(b) Show that E_n has empty interior in $L_1([0,1],m)$, for all $n \ge 1$.

I wanna show this by contradiction, so lets assume that $\operatorname{Int}(E_n) \neq \emptyset \ \forall n \geq 1$. Then it follows that there exists $f \in \operatorname{Int}(E_n)$. Furthermore we have an open ball

$$B(f,\epsilon) := \{ g \in L_1([0,1], m) : ||f - g||_1 < \epsilon \} \subseteq E_n$$

for $\epsilon > 0$. For $0 \neq g \in L_1([0,1], m)$ we have that

$$||f - (f + \frac{\epsilon}{2||g||_1}g||_1 = ||f - f - \frac{\epsilon}{2||g||_1}g||_1$$

$$= || - \frac{\epsilon}{2||g||_1}g||_1$$

$$= | - \frac{\epsilon}{2||g||_1}|||g||_1$$

$$= \frac{\epsilon}{2||g||_1}||g||_1$$

$$= \frac{\epsilon}{2} < \epsilon$$

This shows that $k := f + \frac{\epsilon}{2\|g\|_1} g \in B(f, \epsilon)$ by how we defined the ball. Now see that since $k \in B(f, \epsilon) \subseteq E_n$ it follows that $k \in L_3([0, 1], m)$. Furthermore, since $f \in E_n$ it also follows that $f \in L_3([0, 1], m)$. Notice that $g = (k - f) \frac{2\|g\|_1}{\epsilon}$ why we can conclude that $g \in L_3([0, 1], m)$ which shows that $L_1([0, 1], m) \subseteq L_3([0, 1], m)$ which is a contradiction since we have from HW2 that $L_3([0, 1], m) \subseteq L_1([0, 1], m)$. We have now obtained that $Int(E_n) = \emptyset$ why E_n has empty interior in $L_1([0, 1], m)$ for all $n \ge 1$.

(c) Show that E_n is closed in $L_1([0,1],m)$, for all $n \geq 1$.

To show that E_n is closed in $L_1([0,1],m)$ we wanna show that for a sequence $(f_k)_{k\in\mathbb{N}}\subseteq E_n$ it also holds that the limit of the sequence is in E_n . Lets proof this.

Take a sequence $(f_k)_{k\in\mathbb{N}}\subseteq E_n$ where $||f_k-f||\to 0$ and $f\in L_1([0,1],m)$. From Bolzano-weierstrass we have that there is a subsequence $(f_{n_k})_{n_k\in\mathbb{N}}$ which converges pointwise. This shows, together with Fatou's lemma, that

$$||f||_{3}^{3} = \int_{[0,1]} |f|^{3} dm \le \lim_{n_{k} \to \infty} \inf \int_{[0,1]} |f_{n_{k}}|^{3} dm$$

$$\le \lim_{n_{k} \to \infty} \inf n$$

$$= n$$

This shows that $f \in E_n$, and since f was the limit of the sequence we have obtained the desired.

(d) Conclude from (b) and (c) that $L_3([0,1],m)$ is of first category in $L_1([0,1],m)$.

By def. 3.12(ii) in the lecture notes $L_3([0,1],m)$ is of first category in $L_1([0,1],m)$ if there exists a sequence $(E_n)_{n\geq 1}$ of nowhere dense sets st. $L_3([0,1],m) = \bigcup_{n=1}^{\infty} E_n$.

First lets show that $(E_n)_{n\geq 1} \ \forall n\geq 1$ is a set that is nowhere dense. By def. 3.12(i) in the lecture notes a subset is nowhere dense if $\operatorname{Int}(\overline{E_n})=\emptyset$, for $n\geq 1$.

From (b) we know that $\operatorname{Int}(E_n) = \emptyset$ and from (c) that E_n is closed $\forall n \geq 1$, why $E_n = \overline{E_n}$. This gives us that

$$\operatorname{Int}(E_n) = \operatorname{Int}(\overline{E_n}) = \emptyset$$

Which shows that $(E_n)_{n\geq 1}$ is nowhere dense.

Now I wanna show that $L_3([0,1],m) = \bigcup_{n=1}^{\infty} E_n$. Observe that

$$\bigcup_{n=1}^{\infty} E_n = \bigcup_{n=1}^{\infty} \{ f \in L_1([0,1], m) : \int_{[0,1]} |f|^3 dm \le n \}
= \{ f \in L_1([0,1], m) : \int_{[0,1]} |f|^3 dm \le \infty \}
= \{ f \in L_1([0,1], m) : f \in L_3([0,1], m) \}
= L_3([0,1], m)$$

Where I have used from HW2 that $L_3([0,1], m) \subsetneq L_1([0,1], m)$.

Problem 5

Let H be an infinite dimensional separable Hilbert space with associated norm $\|\cdot\|$, let $(x_n)_{n\geq 1}$ be a sequence in H, and let $x\in H$.

(a) Suppose that $x_n \to x$ in norm, as $n \to \infty$. Does it follow that $||x_n|| \to ||x||$, as $n \to \infty$?

Yes, it follows. Notice that

$$||x|| = ||x - x_n + x_n|| \le ||x - x_n|| + ||x_n||$$

and similarly

$$||x_n|| = ||x_n - x + x|| < ||x_n - x|| + ||x||$$

Gathering these we obtain the reverse triangle inequality

$$|||x|| - ||x_n||| < ||x - x_n||$$

Now let $\epsilon > 0$. Since $x_n \to x$ in norm, there exist $N \in \mathbb{N}$ s.t.

$$n > N \Rightarrow |||x|| - ||x_n||| < ||x - x_n|| < \epsilon$$

Which proves that $||x_n|| \Rightarrow ||x||$ as $n \to \infty$.

(b) Suppose that $x_n \to x$ weakly, as $n \to \infty$. Does it follow that $||x_n|| \to ||x||$, as $n \to \infty$?

No, it doesn't follow. Let $H = \ell_2(\mathbb{N})$ and let $x_n = (e_n)_{n \geq 1}$ be the usual orthonormal basis of H. We can look at this basis since H is separable. See that

$$\langle e_n, e_m \rangle = \delta_{mn}$$

where $\delta_{mn} = 1$ if m = n and 0 otherwise.

The claim is that $e_n \to 0$ weakly but that $||e_n|| \to ||0|| = 0$ doesn't hold. Lets proof this. For $x \in H$ we have

$$\sum_{n} |\langle e_n, x \rangle|^2 \le ||x||^2 \text{ (Bessel's inequality)}$$

Therefore we get that

$$|\langle e_n, x \rangle|^2 \to \langle 0, x \rangle = 0$$

which holds since the series above converges, since $||x||^2 < \infty$, why its corresponding sequence must go to zero, and we obtain

$$\langle e_n, x \rangle \to \langle 0, x \rangle$$

hence by HW4 problem 2(a) we obtain that $e_n \to 0$ weakly. We can use this since a Hilbert space is a Banach space and a net is said to be a more generalized case of a sequence. Furthermore the f presented in HW4 can by the top of page 13 in the lecture notes be seen as the inner product why we obtain $e_n \to 0$ weakly $\Leftrightarrow \langle e_n, a \rangle \to \langle 0, a \rangle$.

Now see that $||e_n|| = 1$ for every n, and since ||0|| = 0 and $||e_n||$ doesn't converge we obtain that $||e_n|| \to 0$ isn't true.

(c) Suppose that $||x_n|| \le 1$, for all $n \ge 1$, and that $x_n \to x$ weakly, as $n \to \infty$. Is it true that $||x|| \le 1$?

Yes, it is true. A property of weak convergence is that the norm is (sequentially) weakly lower-semicontinuous, which means that $||x|| \leq \lim_{n\to\infty} \inf ||x_n||$. Lets proof this.

See that since $x_n \to x$ weakly it follows that

$$||x|| = \langle x, x \rangle = \lim_{n \to \infty} \langle x, x_n \rangle$$

and

$$\langle x, x_n \rangle \le ||x_n||$$

why it follows that

$$\lim_{n\to\infty} \langle x, x_n \rangle \le \lim_{n\to\infty} \inf ||x_n||$$

So this shows $||x|| \le \lim_{n\to\infty} \inf ||x_n||$ hence that $||x|| \le 1$.