|             | _•                        | Linear Legre | erion            |             |                 |
|-------------|---------------------------|--------------|------------------|-------------|-----------------|
|             | •                         | Buinnes      | Problem (        | understand  | lip (Damain     |
|             | -                         |              |                  |             | Expertise)      |
| Machine     |                           |              |                  |             |                 |
| Leaning     | २                         | Data iu      | yeetian/         | Celledian   | > <u></u>       |
| Project-    |                           |              | (8               | aw data)    |                 |
| Pipeline/   | (A)                       | Data (       | understo         | indly —     | > Lows (Records |
| workflow    |                           |              |                  | Column      | (Techires)      |
|             |                           |              |                  |             |                 |
| 85-00% time | \(\frac{\frac{1}{3}}{3}\) | €DA (°       | Fxp(ozner        | on Data     | -Awayeir)       |
|             |                           |              | /                | Statietice) | <u> </u>        |
| Data        | Normaliza                 | tion/        | <u>.</u>         |             | —<br>→outien    |
|             | Stawc                     | majudian     |                  |             | → d eal         |
|             | Minic                     | y values     |                  | العدا       | ry data         |
|             | ,                         | -Impulat     | ia.              | )           | 1)-Lenoue       |
|             |                           |              |                  |             | (2) Focus       |
|             |                           | View         | phielion         | Or _        | what kind       |
|             |                           |              | Conselat         | -<br>-      | Cost            |
|             | Peartor                   |              | heatne           |             | function        |
|             | Selection                 |              |                  |             | 3) To ser       |
|             |                           | <del></del>  | dure<br>Cupueriy | the         | best sprimal    |
|             |                           |              |                  |             | 1/2/40          |





$$\frac{\hat{y} = m_1 x_1 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{conflicions}{max} = 8$$

$$\frac{m_1 x_1 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{conflicions}{max} = 1$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{m_1 x_2 + m_2 x_2 + \dots + m_8 x_8 + c}{c}$$

$$\frac{$$