EXHIBIT 22

PROCESS VALIDATION REPORT

DIGOXIN TABLETS, 0.25 mg

1337A

No. 00

4,200,000 TABLETS
BATCHES 4330A, 4336A, and 4
MPR NO. 14602 Revision
Prepared by: This & an way
Date Prepared: /2/2//95
Approved by:
The state of the s
ellen simil
Quality Assurance Director
Date: 1/5/95
Jucce.
(Lan-
Manufacturing Operations Director
Date: 1/3/95
Munie Bills
Regulatory Affairs Director
Date: 1/5/95
Date: _//*/73
Quality Control Director
Quality Control Director
Date: 1/4/45
VP Operations
VP Operations

Date: 1-4-95

PROCESS VALIDATION SUMMARY

PRODUCT DIGOXIN TABLETS, 0.25 mg BATCH 4330A 4336A 4337A

The following comments apply to the three 4,200,000 tablet validation batches produced in this series.

This report includes data through Compression, which is the finished dosage form.

The process used to produce this batch follows exactly that shown in the normal batch record. Copies of the actual batch records are available in the file.

The data supporting the validation of the analytical methods used may be found in the Analytical Method Validation Report issued for this product.

A copy of the protocol to be followed for this project is included.

Evaluation of the data includes calculation of the Process Capability Index, Cp, when appropriate. Cp is a measure of the ability of a process to produce material that is all within the specification range. It verifies that the entire distribution curve for the data collected falls within the allowable limits. The following equation is used.

$$Cp = \frac{(Upper Limit - Lower Limit)}{6 \times St. Dev.}$$

Any value equal to or greater than 1 is acceptable.

AMIDE PHARMACEUTICAL, INC. PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg MPR NO. 14602 - 00

CONCLUSIONS AND OBSERVATIONS

All samples met the established acceptance criteria.

Based on these three batches, the process is considered validated and is acceptable for use.

The data verifies the initial acceptance criteria for all parameters. At this point no revision to any of these ranges will be made.

The final blends showed adequate uniformity for all batches. The resulting Cp value is 4.7, which is more than acceptable.

Content uniformity results are all within the acceptance criteria, and are essentially comparable to the blend results.

Results for both the final blends and content uniformity center around the label amount.

All Dissolution samples for the three batches met the USP requirements. The values for the three batches are comparable, however there is some variability within the individual batches.

The data for each protocol step follows a summary of that step, in the order in which it appears in the protocol.

DIGOXIN TABLETS, 0.25 mg

Process Validation Summary

Batch Size - 4,200,000 Tablets

Test	Initial Limits	Batch	4330A	4336A	4337A	Combined	Final Limite
Final Blend		Average	101.0	101.5	101.4	101.3	
Assay (%)	85.0 - 115.0 %Th. (Ind.)	Std Dev	0.8	1.1	1.3	1.1	85.0 - 115.0 %Th. (Ind.)
		Ср				4.7	
Compression		Average	0.119	0-120	0.120	0.120	
Weight (g)	0.114 - 0.126 g	Std Dev	0.001	0.001	0.002	0.002	0.114 - 0.126 g
		Ср				1.2	
Compression		Average	5.0	5.3	4.9	5-1	
Hardness (KP)	2.0 - 8.0 kp	Std Dev	0.4	0.5	0.4	0.5	2.0 - 8.0 kp
		Ср				2.1	
Compression		Average	3.11	3.13	3.14	3.13	
Thickness (mm)	2.7 - 3.7 mm	Std Dev	0.02	0.02	0.03	0.03	2.7 - 3.7 mm
		С _Ф				6.6	
Compression		Average	0.1	0-1	0.1	0.1	
Friability (%)	NMT: 1.0 %	Std Dev	0.0	0.04	0.1	0.04	NMT: 1.0 %
Compression		Average	2.7	2.8	2.8	2.8	
Disintegration (min)	N/A	Std Dev	0.5	0.8	0.8	0.6	N/A
Compression		Average	100.6	99.8	100.5	100.3	TO THE REPORT OF THE PROPERTY
Content Uniformity (%)	85.0 - 115.0 %	Std Dev	1.4	1.5	1.8	1.6	85.0 - 115.0 %
	RSD NMT: 6.0 %	Сp				3.1	RSD NMT: 6.0 %
Compression		Average	82.0	77.4	81.6	80.3	
Dissolution (%)	NMT: 90% (ind.)	Std Dev	1.9	3.5	2.0	3.3	NMT: 90% (ind.)
15 min.							
Compression		Average	96.1	93.4	96.1	95.2	
Dissolution (%)	NLT: 80% (avg)	Std Dev	2.9	4.0	4.6	4.0	NLT: 80% (avg)
60 min.							

AMIDE PHARMACEUTICAL, INC. PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg MPR NO. 14602 - 00

PROTOCOL STEP - RAW MATERIALS

The raw materials used will be tested, as stated in the protocol, in accordance with approved specifications and methods. In addition, bulk density, tamped density and particle size distribution will be included.

ACCEPTANCE CRITERIA

Parameters normally evaluated will be compared to the current specifications. The density and particle size data will be gathered and used to formulate guidelines when sufficient data is accumulated.

RESULTS - See attached data summary sheets.

CONCLUSIONS AND COMMENTS

All data is acceptable.

Any differences noted do not appear to have any effect on finished product quality.

Particle size determinations were run on two different pieces of equipment. One is a "Ro-Tap" type unit and the other a Micron Air Jet Sieve. For samples run on the "Ro-Tap" the coarser mesh screen is listed first.

PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg

Rau
Material
Usage
Char

3081	3089	3050	3059	3088	3051	3000	0111	3115	Item #	
Silicon Dioxide, NF	Stearic Acid, NF	Lactose Anhydrous, NF	Microctystalline Cellulose, NF	Starch Pregelatinized, NF	Lactose Hydrous Impalpable, NF	Croscarmellose Sodium, NF	Digoxin, USP	Corn Starch, NF	Item Name	
3696	3910	4015	4023	4027	4028-1	4026	3929	4025	P.O. #	Batch # 4330A
3696	3910	40 15	4023	4027	4028-1	4026	3929 & 3929-1			
3696	39 10	40 15	4023	4027	4028-1	4026	3929-1	4025	P.O. #	Batch # 4337A

PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg

Material Comparison

Raw Material Comparison - Corn Starch,

P.O. #	4025
Test Type	Initial
Manufacturer	
Manufacturer Lot #	

PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg

Rau Material Comparison - Digoxin USP (0111)

て出て出口に一件なび	SPECIFICATIONS	RESULTS	RESULTS
DESCRIPTION	Passes Test	Passes	Passes
IDENTIFICATION A	Positive	Passes	рассьс
IDENTIFICATION B	Positive	Passes	Dasses
IDENTIFICATION C	Positive	Passed	Dunnon
LOSS ON DRYING	NMT 1.0%	0.7%	0 x'
RESIDUE ON IGNITION	NMT 0.5%	0.1%	0.1%
RELATED GLYCOSIDES	NMT 3%	\ 3\.\.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
ASSAY	95.0 - 101.0%	98.6%	98.2%
BULK DENSITY		0.23 g/ml	0.21 n/mi
TAP DENSITY		0.36 g/ml	0.33 n/ml
PARTICLE SIZE (US 325) % Retained	% Retained	6.1%	6.8%
PARTICLE SIZE (US 200) % Retained	2. Retained	NIL	N ₁ l

PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg

Rau Material Comparison - Croscarmellose Sodium, NF (3000)

Manufacturer Lot #	Manufacturer	Test Type	P.O. #	
		Initial	4026	

PARTICLE SIZE (US 200)	PARTICLE SIZE (US 325)	TAP DENSITY	BULK DENSITY	MICROBIAL TEST	SETTLING VOLUME	CONTENT OF WATER SOLUBLE MATERIAL	DEGREE OF SUBSTITUTION	SODIUM CHLORIDE & SODIUM STARCH GLYCOLATE	HEAUY METALS	LOSS ON DRYING	DH	IDENTIFICATION C	IDENTIFICATION B	IDENTIFICATION A	DESCRIPTION	PARAMETERS
7 Relained	% Retained			Passes Test	10.0 mL - 30.0 mL	1.0% - 10.0%	0.60 to 0.85	NMT 0.5%	NMT 0.001%	NMT 10.0%	5.0 - 7.0	Positive	Positive	Positive	Passes Test	SPECEFICATIONS
0.9%	5.7%	0.72 g/mL	0.50 g/mL	Passes	22 mL	3.2%	0.69	0.21%	< 0.001%	2.5%	6.5	Passes	Passes	Passes	Passes	RESULTS

CLARITY AND COLOR

Passes Test

Positive Positive Passes Test

Passes Passes

Passes RESULTS

Passes

NMT 1.0%

DENTIFICATION B

OSS ON DRYING

PARAMETERS

SPECIFICATIONS

DESCRIPTION

DENTIFICATION A

BULK DENSITY

ORGANIC VOLATILE

IMPURITIES

Passes Passes Test

est

Passes Test NMT 5 ppm

Passes < 5 ppm

PROTEIN/LIGHT ABSORBING IMPUR.

ACIDITY/ALKALINITY

HEAUY METALS

RESIDUE ON IGNITION

MICROBIAL LIMITS SPECIFIC ROTATION

Sassed

lest

+54.80

õ +55

. 50

+55.3°

Passes

NMT 0.1%

Hydrous: NMT

<u>ن</u>

5

0.03% 5.17

PARTICAL SIZE

SI) SD)

325 200

Retained Retained

83.7%

0.87 g/ml 0.58 g/mL Passes Passes

PARTICAL SIZE

TAP DENSITY

AMIDE PHARMACEUTICAL, INC

PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg

Raw Materaial Comparison - Lactose Hydrous Impalpable NF

(3051)

Manufacturer Lot #	Manufacturer	est Type	P.O. #
		Initial	4028-1

DESCRIPTION PARAMETERS

Passes

RESULTS

IDENTIFICATION

PARTICAL PARTICAL SIZE

312E

SD) SU SU)

325) 200) 100)

% Accumulation % Accumulation

Accumulation

26.6%

0.84 g/ml 0.66 g/mL

BULK DENSITY

TAP DENSITY

RESIDUE ON IGNITION

NMT 0.5%

SULFUR DIOXIDE 9NIZIOIX0 IRON

SUBSTANCES

MICROBIAL LIMITS

Passes Test NMT 14.0%

Passes

Passes

Passes <0.002 . წ Passes

0.2%

NMT: 0.008% Passes Test NMT 0.002% 4.5 - 7.0Positive Passes Test SPECIFICATIONS

OSS ON DRYING

PARTICAL SIZE

AMIDE PHARMACEUTICAL, INC.

PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg

Rau Material Comparison -

Starch Pregelatinized NF (3088)

	ŀ	
	#	Manufacturer Lot
		Manufacturer
Initial		Test Type
4027		P.O. #

DESCRIPTION IDENTIFICATION

Passes Test Positive

Passes Passes

õ

.OSS ON DRYING

ASSAY

STARCH

HEAUY METALS

SUBSTANCES

NMT 5.0% NMT 0.05% NMT 0.16%

0. 10%

(0.001%

Passes Tesi

102.07

Passes 99.7%

PARTICAL SIZE

325) 200)

> 0.34 q/m 0.43 q/m 44.7%

SU) SU)

Retained Retained Retained AP DENSITY

AMIDE PHARMACEUTICAL, INC.

PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg

Material Comparison - M

	Rau
	Material
	Rau Material Comparison
((((((((((,
P.O. # Test Tupe	· Microcrystalline Cellulosė,
	e C
4023 [01112]	ellulosė,
	N N
	(30

Manufacturer Lot #	Manufacturer	Test Tupe	P.O. #	
		Loutial	4023	

PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg

Rau Material Comparison - Lactose Anhydrous, NF

Manufacturer Lot #	Manufacturer	Test Type	P.O. #	AND THE RESERVE OF THE PROPERTY OF THE PROPERT
		Initial	4015	

PARAMETERS	SPECIFICATIONS	RESULTS
DESCRIPTION	Passes Test	Passes
IDENTIFICATION A	Positive	Passes
IDENTIFICATION B	Positive	Sassed
CLARITY AND COLOR OF SOLUTION	Passes Test	Passes
LOSS ON DRYING	NMT 0.5%	0.2%
SPECIFIC ROTATION	Between +54.8° and +55.5°	+55.2°
MICROBIAL LIMITS		Passes
HATER	NMT 1.0%	0.4%
RESIDUE ON IGNITION	NMT 0.1%	0.04%
HEAUY METALS	NMT 5 ppm	< 5 ppm
ACIDITY/ALKALINITY	Passes Test	Passes
PROTEIN AND LIGHT ABSORBING IMPURITIES	NMT 0.25	Passes
ORGANIC VOLATILE IMPURITIES	Passes Test	Passes
BULK DENSITY		0.57 g/m
TAP DENSITY		0.81 g/m
PARTICAL SIZE (US 100)	? Accumulation	13. 1%
Sn)		28.6%
PARTICAL SIZE (US 325)	2 Accumulation	40.5%

PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg

Rau Material Comparison - Stearic Acid,

NF (3089)

Manufacturer Lot	Manufacturer	Test Tupe	P.O.#	
##				
		Ioutial	3910	

PARAMETERS	SPECIFICATIONS	RESULTS
DESCRIPTION	Passes Test	Passes
CONGEALING TEMPERATURE	NLT 54°	55°
RESIDUE ON IGNITION	NMT 0.1%	0.01
HEAUY METALS	NMT 0.001%	<0.001
MINERAL ACID	Passes Test	Passes
NEUTRAL FAT OR PARAFIN	Passes Test	Passes
IODINE VALUE	NMT 4	0.10
ASSAY A	NLT 40.0%	43.4%
ASSAY B	NLT 90.0%	96.4%
ORGANIC VOLATILE IMPURITIES Passes Test	Passes Test	Passes
BULK DENSITY		0.38 g/ml
TAP DENSITY		0.49 g/ml
PARTICAL SIZE (US 325)	🔀 Retained	54.0%
(118, 200.)	N Retained	6.4/

PROCESS VALIDATION DIGOXIN TABLETS, 0.25 mg

Rau Material Comparison - Silicon Dioxide, NF (3081)

Manufacturer Lot #	Test Tupe	P.O. #	
	linitial	3696	

PARAMETERS	SPECIFICATIONS	RESULTS
DESCRIPTION	Passes Test	Passes
IDENTIFICATION	Positive	Passes
PH	4 - 8	16.7
LOSS ON DRYING	NMI 5.0%	14.0%
CHLORIDE	NMT O. IX	\(0.1½
SULFATE	NMT 0.5%	(0.5%
ARSENIC	NMT 3 ppm	(3 ppm
HEAUY METAL	NMT 0.003%	l<0.003%
ASSAY	NLT 99.0%	199.6%
BULK DENSITY		0.10 q/ml
TAP DENSITY		0.13 g/ml
DADTICAL SIZE (HS 325)	/ Detained	2

AMIDE PHARMACEUTICAL, INC. PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg MPR NO. 14602 - 00

PROTOCOL STEP - TEMPERATURE/HUMIDITY READINGS

Temperature and humidity readings will be taken in the production area. These three batches ran in production between 11/17/94 and 12/7/94.

RESULTS - See attached data summary sheets.

CONCLUSIONS AND COMMENTS

The temperature ranged from 62 - 87° F, and the relative humidity from 22 - 58%. This verifies that the product can be produced under normal plant conditions.

TEMPERATURE/HUMIDITY READINGS

PERIOD COVERING DIGOXIN TABLETS, 0.25 mg

BATCH # 4330A, 4336A & 4337A

LOCATION	DATE	TEMP. (Deg. F)	RH (%)	
Near Pr. Rm. #117	18-Nov-94	65	, , , , , ,	58
Near Pr. Rm. #117	19-Nov-94	71		58
Near Pr. Rm. #1	21-Nov-94	69		49
Near Pr. Rm. #117	22-Nov-94	73		
Near Pr. Rm. #117	23-Nov-94	73		39 22
Near Pr. Rm. #117	25-Nov-94	66		31
Near Pr. Rm. #117	26-Nov-94	63		32
Near Pr. Rm. #1	28-Nov-94	64		49
Near Pr. Rm. #117	28-Nov-94	62		46
Near Pr. Rm. #1	29-Nov-94	66	•	38
Near Pr. Rm. #117	29-Nov-94	80		31
Near Pr. Rm. #117	30-Nov-94	75		32
Near Pr. Rm. #117	01-Dec-94	76		22
_ Near Pr. Rm. #117	02-Dec-94	64		37
Near Pr. Rm. #117	03-Dec-94	65		37
Near Pr. Rm. #117	05-Dec-94	78		49
Near Pr. Rm. #117	06-Dec-94	87		37
Near Pr. Rm. #117	07-Dec-94	74		46

AMIDE PHARMACEUTICAL, INC. PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg MPR NO. 14602 - 00

STEP - BLEND UNIFORMITY

Sampling will include each of the three subparts produced in the 10 cu. ft. blender, and the final blend produced in the 56 cu. ft. double cone blender. Utilizing a sampling thief, sample each of the blenders from the positions shown on the attached data summary. Separately analyze, and report, each one for active ingredient content.

The speed of each blender will be monitored both empty and at each stage of blending.

ACCEPTANCE CRITERIA

Final Blend - 85.0 - 115.0 % Th. (Individual)

RESULTS - See the attached data summary.

CONCLUSIONS AND COMMENTS

The results show that each of the subparts were uniformly blended. The final blends for the three batches met all acceptance criteria and appear to be uniformly blended. Results are comparable to those obtained for the subparts.

The bulk and tamped density results are comparable for all three batches.

The speed for the three blenders was observed to be constant throughout production of the three batches. The same speed was obtained both empty and under load. The supporting documentation is attached.

3 Cu. Ft. (32) - 22 rpm 10 Cu. Ft. (35) - 16 rpm 56 Cu. Ft. (22) - 21 rpm

43. 2

PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg

PRE BLEND - Assay (% Label)

Г	_	_	T-	T	_	1		-	1=		· ·	-		~		
ズ びこ	OCC DEV.	Hverage	Bottom Right	Bottom Left	Middle Right	niddie Lenter	MIDDIE Left	RIGHT COLUMN - COD RIGHT	Right Column - lop center	RIGHT CULUMN - TOP LETT	Lett Column - Top Kignt	Lett coronn - lob center			Dart	# CD # #
U. &	0.8	100.3	100.3	100.4	101.8	101.4	100.4	8.001	7 . E.E.	100.3		29.3	100.0		- 00	4330A
1. 1		101.7	101.9	103.1	101.8	102.1	103.6	101.8	101.5	101.0	100.4	9.6	102.2	2	300	4330A
1.5	5	100.6	101.0	98.9	98.7	100.5	102.5	101.8	102.0	102.6	99.4	98.7	100.2	ú	2001	43304
0.7	0.7	99. 1	99.7	99.7	99, 1	100.2	98.9	98.7	99.5	99.3	99.2	98.6	97.6	_	TO COT	43370
1.1	1.1	99.6	99.3	99.6	101.3	98.4	101.2	1.86	98.9	98.7	39.8	99.9	100.7	2	HOCUT	400/0
1.0	1.0	99.7	100.5	98.7	99.8	100.6	99.4	100.8	100.3	99.5	100.7	98.7	97.8	ω	TUJOH	4000
1.0	1.0	100.4	98.8	101.2	101.7	101.6	100.9	100.5	100.8	100.8	100.2	98.8	99.5		433/H	
- :n	1.5	101.0	102.4	101.1	101.9	102.6	102.0	102.4	98.5	98.3	101.1	101.0	100.2	2	433/A	
	1	101	102	104	102	101	101	101	100	101	101	102	001	ယ	433/	

PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg

FINAL BLEND - Assay (% Label)

Batch #	4330A	4336A	4337A
Center - Top	100.3	100.6	101.1
Center - Middle	101.0	101.2	98.9
Center - Bottom	101.5	100.9	100.2
	100.7	100.1	103.8
١.	100.9	102.4	101.1
	99.4	103.0	102.9
Left - Top	101.0	102.4	102.5
Right - Middle	100.9	102.5	100.5
Right - Top	102.1	102.1	101.1
Front - Middle	102.0	100.0	100.9
Front - Top	99.9	100.9	102.0
Rear - Middle	102.2	100.5	101.3
Rear - Top	101.4	102.8	101.9
Average	101.0	101.5	101.4
St Dev.	0.8	1. 1	1.3
RSD	0.8	1.1	1.2

PROCESS VALIDATION

COVINTABLETS 0 23

DIGOXIN TABLETS, 0.25 mg

FINAL BLEND - Density/Particle Size

Density (g/ml)

Partcle Size (% Retained)

40	60	100	200	325	esh Size	Batch #	
nıl	3.7	12.9	30.9	19. b	Bedining	433UH	
ח 1 כ	4.5	12.7	31.7	5	HIGGLE	433UA	
21.	4.1	13.6	31.9	υ 1. ω	Find	1-10	
21	4.2	155	32.4	52.1		4336A	
D1.	3.7	14.5	32.8			4336A	
חור.	4.5	15.1	32.3	52.2	£nd	4336A	
01)	3.9	15.3	33.4	52.4	Begining	4337A	
2	4. 1	14.5	33.7	53	Middle	4337A	
21-1	3.7	14.7	32.4	53.4	End	4337A	

0.00	0.00			**************************************	The state of the s				
유도	∩ 8 5	0.85	0.85	0.85	0.85	0.90	0.90	0.30	Tab
0.00	0.00	4.00					0		
2 72	- 22 - 25	0.60	0.60	C. 6C	 60	0.01	0.01	0.01	acix
			,	2	2 /2	0	0 1-	0 / -	
500	middle	Bedining	FNO	e e e e	Dedillind	כוום	ווייים	DEATHT DO	2 TOWNS
		7		K.	0	J	1110	Roots	7, 20
4337A	4337A	1 4337A	4336A	4336A	7336H	TUSUT	UOCUT	10001	A IIJIPA
				1000	200	2000	40000	40000)

Confidential Subject to Protective Order

B1

PART # 1

BATCH 1: 4330A HPR 1: 14602 REV 1: 00 PATE: 1/18/94

BLEHDER 1: 32

TIME	впенрен в сонтента	Height (kd) Theo: Hylbuly Brendbulk	BLEHDEB I B	PA BY	BA Clibcken
7:45Am	EMPTY. STEP #1.	0-00	22	<u>k</u> (Tl
8:13Am	R.M. FP# 3115+0111+3000¥ STEP#2	16.31	22	Ks	Tl
8:37Av		41-30	-22	Kr	H
				-	

Marmaceutical, Inc.

PROCESS	YAL	DATI	IOH DA	TA GUSBT

PA	rt	Ħ	ı
----	----	---	---

PRODUCT HAHE (1): DIGOXIN	tablets ourms	(146)	PART # 1
BATCH 1: 4330A	HPR 1: 14602		PATE: ///8/24
RIEHDER 1. 3C			

ТІМЕ	BLEHDER'S CONTENTS	Heient (kd) LNEO: HYLBBIYF BLENDBBIB	ALBHABATA RPH	ронв Вү	BÅ CHECKED
9:02 Ar	EMPTY.	0-00	16	k8	IS .
9:35Am	RMID# PREBLEND + 3088 + 3059 STEP # 2	<u> -30</u>	16	kr	IP
10:25 Az		163-10	16	kf	Il
	·				

4		

ABOURBS APPLOATION DELY SARES.

PART#9

PRODUCT HAME (1): DIJOXIN Tablets 0.25mg (146)

BATCH 1: 4330 A HPR 1: 14602 REV 1: 00 DATE: 11/18/194

BLEHDER 1: 32

ТІМЕ	BLEHDER'S CONTENTS	Height (kd) Theo: Hytbulyr Brennbbib	ALEHOBRIA HPH	BA	BA CHECKED
11:45Am	EMPTY.	0-00	2.2	<u> </u>	ΙΡ
12:08Pm	STEP #1. R.M. ID#3115+0//1+3000	16-31	22	kp	<u>Il</u>
[2:25 Pm	3TEP# 2	41, 30	22	<u> 1</u> < P	IP .

Landerhaum volksten einemensemmen, b. Anderhaum volksten eine einem e				APPROVED SECTION S. Vidence S. Vidence Section S. Vidence	

Anarmaceutical, Inc.

RROCBOR	_YAl	LAGI	IOH	ATAG	, Bubbt
---------	------	------	-----	------	---------

PART#2.

RODUCT HAME (1): DIGOTIN				
ватен : 4330 А	HPR #:_	14602	REV 11 00	DATE: ///8/94
BLEIDER 1: 35			•	

TIME	BLENDER'S CONTENTS	BLEHDBR'S THEO. HATBRIAL HEIGHT (Kg)	HLENDER I A RPH	DONE BY	BA CHECKED
			16	k P	IP
12:30pm	STEP#	0.00	<u> </u>		
1:08pm	PREBLEND + R.M.ID#3088+3059	111-30	16	Kr	The state of the s
1:26 Pm	STEP # 2 STEP# 1 + 3050	163.10	16	Kr	T.P
/				- Association and the second	
		·			
				_	
				_	
			Andrews and the second		

PD2-046

PART#3

PROCEER VALIDATION DATA SHEET

PRODUCT HAHE (1): DIGOTINI Tablets 0.25mg (141)

BATCH 1: 4330A HPR 1: 14602 REV 1: 00 DATE: 11/18/94

BLENDER 1: 32

TIME	BLENDER'S CONTENTS	HEIGHT (KG) BLENDERIE BLENDERIE	BI ENDER I A RPH	DOHE BY	BA CHECKED
2:32 Bm	EMPTY.	0.00	22	<u>k1</u>	7.P
2:52 Bm	_	16.31	22	Ks	IP
3:11Pm		41-30	22	KY	#
			-	_	
•					
				_L	PD2-046

, harmaceutical, Inc.

PROCESS VALIDATION DATA SHEET

PART#3

PRODUCT HAME (1): DIJOXIN	Tablets 0.25mg	(146)	
DATCH 1: 4330A	HPR 1: 14602	REV 11 00	PATE: 1/18/94
1 PUDED 4. 35			

TIME	BLENDER'S CONTENTS	HEIGHT (KG)	BLENDER I B RPH	ву Вуроп В	BA CHECKED
3:10Pm	Em PTU	0.00	16	ke ke	īľ
3-101m	PART IMIBION				
3:42Pa	STEP#1 PREBLEND + 2.m. JP# 2088+3059	111-30	16	tr	- I
12Pm	STEP # 2	163:10	16	KP	IP.

PD2-046

1 2 0.

Amide Pharmaceutical, Inc.

PRODUCT HAME (1): Disoxin To	(b) cots 0.25 Mg (14)	6)	
	HPR 1: 14602		DATE: 11/21/94
BLENDER 1: 22			

тіме	BLENDER'S CONTENTS	HEIGHT (KG)	BLENDER B	DONE	сивскер Ву
9.35 Am	EMPTY	0.00	21	10.1	J.D
	STEP # PART# 1,+2+3+3089+3081	604.0	_21	κľ	7. D
	PHA 1# 1,7273 7 3001 13001				
		·			·

PROCESS VALIDATION DATA SHEET

PART#

PRODUCT HAME (1): DISOKIN TRUBERS 0257 (146)

BATCH 1: 41336 A HPR 1: 14602 REV 1: 00 DATE: 1125774

BLEHDER 1: 32

ТІМЕ	BLENDER'S CONTENTS	Height (kd)	alender'a RPH	BY BYDOĐ	BA CHECKED
8:10 An	EMPTY R.m. I) # STET* 3115 + 011/ + 3000	0-00	2.2.	k l' L'f	zl zl
9:01 Am	3115 + 011/+ 3000 STET # 2 STET # + 3051	41-30	2 2	<i>‡</i> 8	71
)					
u sa danaan					P02-046

itmaceutical, Inc.

PROCEER VALIDATION DATA SHEET

PARTH /

sweet HAHE III: Digotin Taklets 0.25 mg (146)

TOIL 1: 4336 A HPR 1: 14602 REV 1: 00 DATE: 11/25/94

EHDER 1: 35

TIHE	BLENDER'S CONTENTS	BLEHPBRIA TIIBO. HATBRIAL HEIGHT (Kg)	BLBHDBR ^T B RPH	BA DONE	BA CHECKED
16 12 A	EMPTY.	0-00	16	kſ	IS
:15 Am	STEP# PREBIEND+ R.M. TOH 305K+3059	111:30	16	KP	Tf
1256 Am	STEP#2	163.10	16	ke	H
v - ZuAn					
ф -					PD2:

PART# 2

1

PROCEES VALIDATION DATA SHEET

PRODUCT HAM	E (1):	DIGOXIN	Thelett	0.251	29 (146)
-------------	--------	---------	---------	-------	----------

BATCH 1: 4336A HPR 1: 14602 REV 1: 00 PATE: 11/25/74

BI.EHDER 1: 32

TIME	BLENDER'S CONTENTS	BLENDER! A THEO. HATERIAL HETOHT (Kg)	BLEHDER B	DONE BY	BY Cliecked
11:01 An	Enisty.	0-00	2.2	KB	T.P
11:59 Am	R·m, JP# 3115+0111+3000 STEP#2	16.31	2.2	k 6	Th
12:16 Pm		41.30	2.2.	kr	Il
)					
				<u> </u>	<u> </u>

harmaceutical, inc.

PROCEES VALIDATION DATA SHEET

PART#2

				1 L h	
PRODUCT	HAHE	(1):	DIGOXIN	Tabress	0.25 mg (146)

BATCH 1: 4336 A HPR 1: 14602 REV 1: 00 DATE: 1/125/74

BLEHDER 1: 35

TIME	BLEHDER'S CONTENTS	BLEHDBRIB Tileo. HATERIAL HEIGHT (Kg)	BLENDER B	POHE BÝ	BY
11:05Pm	EMITY.	0-00	16	cP	Il
12:50 Pm	STEP # 1 PREBLEND + 3088+3059		- 16	μr	7-
1:13fm	STEP # 2 STEP # 1 + 3050	163.10	16	kp	<i>H</i>

PROCEER VALIDATION DATA SHEET

PART#3

PRODUCT HAHE (1): Digoxin Table 0.25 mg (146)

BATCH 1: 4336A HPR 1: 14602 REV 1: 00 DATE: 1/145/74

BLEHDER 1: 32

ТІНЕ	BLENDER'S CONTENTS	BLENDER! B THEO: HATERIAL HEIGHT (Kg)	HI.BHPBRIB RPH	poHE BY	BY CHECKED
1:40 An 2:18m	Emfty SIET # R-M-ID # 3115+0111+3000	0.00	2 2_	k8 t1	Il Il
2:16 Pm	STEP # 1 + 305]	41.30	22	Kſ	Fl

Je Pharmaceutical, Inc.

PROCEES VALIDATION DATA SHEET

PART #3

PRODUCT HAHE (1): Dijotin Tablets 0.25mg (146)

BATCH 1: 4336 A HPR 1: 14602 REV 1: 00 DATE: 11125794

BLEIIDER 1: 35

тіне	BLENDER'S CONTENTS	BLEHDBRIB THEO. HATBRIAL HEIGHT (kg)	вренрви в нен	PONE BY	BA CHECKED
1:45 lm	Emp ³ TY	0.08	16	kp	Tl
2:45m	STEP # 2	-30	16	хľ	ə.f
3:10pm	9TET # 1 + 3050	163.10	16	kr	#
<u> </u>					

Amide Pharmaceutical, Inc.

PRODBER VALIDATION DATA SHART

PRODUCT HAHE 111: DIGOXIN TableH 025mg (146)

BATCH 1: 4336 A HPR 1: 14602 RBV 11 00 PATE: 11128/94

BLEIIDER 1: 22

тіне	BLENDER'S CONTENTS	BLENDRI'S THEO. HATERIAL HEIGHT (Kg)		POHE POHE	BY CHECKED
7:40 Am	EmpTy.	0-00	2.1	6.0	Il
	STEP #1. R.M. 70# 3089+3081+ Part # 1,2,3	504.00	21	li-c	R
8:28 Am	3001+3081+ 1,2,2			,	
				_	450-804

Amide Pharmaceutical, Inc.

SART#/

PROGREM VALIDATION DATA BHREAT

PRODUCT HAHE (1): Digoxin Tablets 0.25mg (146)

BATCH 1: 4337A HPR 1: 14602 REV 1: 00 DATE: 1/126/74

BLEIDER 1: 32

	TIHE	BLENDER'S CONTENTS	HEIGHT (KG)	а†ячона.†а Нчя	ронв ру	BY BY
	12:35%	Emily.	0-00	2.2_	<u>k1</u>	
		·				
	1:02 Pm	STEP# R.m. Fall 3115 + 0111+ 3000	16.31	2 2	<u> </u>	Tf
		STEP #2.				0
	1:19/m	STEP # 1 + 305	41.30	22_	k1	邓
					-	
,					- 1	
					-	
					_	
					-	_
					-	
				_	_	
					_	
				_	_	
					_	
					-	
]				1	
						PD2-048

a Pharmaceutical, Inc.

REQUESS VALIDATION DATA SHEST

Part #1

PRODUCT HAHE (1): Dijaxin Tables 0.25 mg (146)

BATCH 1: 4337 A HPR 1: 14602 REV 1: 00 DATE: 11/26/94

BLEIDER 1: 35

TIHE	BLEHDER'S CONTENTS	BLENDER! B Tileo. Haterial Height (kg)	BI.BHDER I B RPH	BA BOHE	BA Cliecked
1:408m	EINPTY.	0.00	16	KP	T.F
	STEP# RMID# 3088 + 3059	//1.30	16	- kr	T.
2: 05 Pm	STEP # 2.		16	p _v .	z.f
2:37 Pm	STEP#1+3050	163.10		-	
				_	
					PD2-046

Amide Pharmaceutical, Inc.

		PATION DATA BHNUT		1 /11	17#2
oduct i	HAHE (1): Digoxin Tublets	0.25mg (146)			
TCH 1:	41337A HPR 11	14602 REV 1	00 1	DATE	1/ 28/90
EHDER	1:_32				
T	BLENDER'S CONTENTS	BLENDER I B	BLENDER I B	DONE	CHECKE
TIME	BURÜNEK B COULTRUIS	HEIGHT (Kg)	RPH	BY	ВУ
		0.00	2.2	KP	IF.
7:36 An	Empty.	0.00	22-	<u> </u>	
8253Am	STEP # 1. P.m. J.D. # 3115 + 0111 + 3000	16-31	77	χſ	Fl°
	STEP # 2	111.2	22	κſ	s f
9:08An	STEP # 1 + 3051	411.30	12	κ,	
				-	-
				_	-
					-
<u></u>				_	
 				_	

harmaceutical, inc.

PROCESS VALIDATION DATA BHOSE

PART#2

RODUCT HAME (1): Dijoxin Tablet 0-25mg (146)

BATCH 1: 4337 A HPR 1: 14602 REV 1: 00 DATE: 1/128/94

BLEHDER 1: 35

TIME	BLENDER'S CONTENTS	BLEHDBRÍB THBO. HÁTBRIÁL HÉIGHT (Kg)	BLENDER 1 B RPH	BA Doug	BA
			1 /	kr	T.
q:30Ar	EMPTY.	0-00	16	<u></u>	
9:52/hz	STEP # R.M. J.D.# PREBLEHD + 8.088+30.59	111:30	16	KP	I.f
10:15	STEP # 2	163-10	16	kľ	H.
77 11/28/14	STEP#1+30.50				
				-	
				_	
				-	
)					
					PD2-048

Amide Pharmaceutical, Inc.

PROCEER VALIDATION DATA SHEET

PRODUCT HAHE (1): Digoxin TableH 0.15mg (146) BATCH 1: 4337A HPR 1: 14602 REV 1: 00 DATE: 1/128/94

BLENDER 1: 32

TIME	BLENDER'S CONTENTS	HETGHT (Kg) HETGHT (Kg)		роне Ву	BA CHECKED
12:05 pm	Empty	0.00	11/2/1940	μP	T.l
12:19Av	STEP # R.m. 7.0.# 3115 + 0111 + 3000	16.31	22	<u>kf</u>	IP_
12:38%	STEP # 1 + 3051	41.30	22	<u>k</u> i	T(
					114 500

ъб Pharmaceutical, Inc.

PROCESS VALIDATION DATA SHEET

PART #3

PRODUCT NAME (1): DIJOXIN TableH 0-25mg (146)

BATCH 1: 1337A HPR 1: 14602 REV 1: 00 DATE: 11/28/94

BLEHDER 1: 35

TIME	BLENDER'S CONTENTS	BLENDER B THEO. HATERIAL HEIGHT (Kg)	BI BHOPR I S RPH	by Dolls	CIIECKEI)
				1.0	- 0
12:58 Rm		0.00	16	kr.	<u>If</u>
1:258m	STEP # RIMIFU# PREBLEHD+ 3088+30.59	///·30	16	kρ	ZIP
1:478	STEP # 2 STEP #1 + 3050	163-10	16	kľ	TP
- management and the second se			-		
				_	
				_	_
l					

Amide Pharmaceutical, Inc.

PROGREE VALIDATION DATA BHENT

PRODUCT HAHR (1) + Digoxin	Tablets 0.25)	79 (146)	
	HPR 11 14602		DATE: 1/129/94
BLEIDER 11 22			

тіне	BLENDER'S CONTENTS	BLEHDER'S THEO. HATERIAL HEIGHT (EG)	ві яфонала Нея	BY DONE	BA C(IECKED
8:30 An	EMPTY.	0.00	21	100	T.l
	STEP # 1		2.1	£1	7-6
9:13 Am	<u> </u>	504.00	21		
				<u>.</u>	
				:	
				1	
	·				
		·			
)					

AMIDE PHARMACEUTICAL, INC. PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg MPR NO. 14602 - 00

PROTOCOL STEP - COMPRESSION

Samples were taken from each side of the press each 30 minutes and were evaluated for the following parameters.

Weight (n = 10)Thickness (n = 5)Hardness (n = 5)

These samples will be arranged chronologically and the batch divided into thirds. Front and rear will be analyzed separately as follows.

Friability 10 g - 1 run Dissolution N = 12 (6 front & 6 rear) Disintegration N = 6

Content uniformity is to be run across the entire batch. One tablet from each sample taken is to be run from the front, and one from the rear. A minimum of 30 is required from each side.

During compression a minimum quantity of tablets will be run at speeds higher and lower than normal. The actual speeds will be selected during production. These tablets will be evaluated for weight and hardness.

During compression minimum quantities of tablets will be run at hardness of 1.0 - 3 KP and greater than 8 KP. An attempt will also be made to run some tablets at the highest possible hardness that can be obtained without capping. These tablets will be evaluated for Dissolution and Friability.

ACCEPTANCE CRITERIA

Weight: 0.114 - 0.126 g Hardness: 2.0 - 8.0 KP Thickness: 2.7 - 3.7 mm Friability: NMT 1.0 %

Dissolution: Meets USP Requirement

Disintegration: N/A (for characterization only)

Content Uniformity: 85.0 - 115.0 % TH, (RSD NMT 6.0 %)

Assay: 90.0 - 105.0 % Label

RESULTS - See attached data summary sheets.

AMIDE PHARMACEUTICAL, INC. PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg MPR NO. 14602 - 00

CONCLUSIONS AND COMMENTS

The samples met all acceptance criteria.

The values for weight, hardness, and thickness for the three batches were comparable to each other and showed no unusual shifts or trends. The overall averages for weight ,hardness and thickness are very close to the midpoints of the preset ranges. Therefore, no revisions to these limits are indicated by the validation data. Results are attached in both tabular and graphical form.

Content Uniformity was within limits for all samples tested, with no significant trends being observed. All values were within 96 - 106 % L. The values obtained were observed to agree favorably with the blend assays. It should be noted that the averages for the blend assays, and the content uniformity results are essentially the label amount.

All Dissolution samples for the three batches met the USP requirements. This statement is true for both USP XXII (60 Min.) and XXIII (15 & 60 Min.). The values for the three batches were comparable.

Friability values were all well within the acceptance criteria, and comparable for the three batches.

Disintegration results were comparable with no unusual shifts or trends. Note that this test was run for characterization only, and therefore no acceptance criteria have been, or will be, established.

Acceptable tablets were produced at the low and high press speed for all three batches. This establishes an allowable range of 18 - 28 rpm.

AMIDE PHARMACEUTICAL, INC. PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg MPR NO. 14602 - 00

BATCH	NORMAL	HIGH	LOW
4330A	22 rpm	26 rpm	18 rpm
4336A	23 rpm	27 rpm	19 rpm
4337A	24 rpm	28 rpm	19 rpm

The high and low hardness portion of the press validation produced acceptable tablets at both ends of the range. Tablets with hardness above the upper limit could not be produced. Therefore the guideline will remain at 2.0 - 8.0 KP. The values for friability are listed below. Those for dissolution are attached.

FRIABILITY (%)

BATCH LOW KP FRONT REAR	4330A 0.1 0.1	4336A 0.2 0.1	4337A 0.2 0.1
HIGH KP FRONT	0.1	0.1	0.1
REAR	0.1	0.1	0.2

The results for the overall composites are attached. These are also all within the acceptance criteria, and are essentially comparable to those obtained for the individual samples.

PROCESS VALIDATION

DIGOXIN TABLETS, 0.26 mg - Beich # 4330A

Compression Neight (g) - Front

F	T -	·	7	r							,			
11/22/91	1:25 PM	0.119	0,120	3	1 110	1 2		7	8	. 9	10	PAST SON		RS0
		-		0.119	0.118	0. 121	0.119	0.120	0.120	0. 120	0. 121	0. 20	0.001	0.8
11/22/91	2:40 PM	0.120	0.116	0.117	0.112	0.117	0.12	0. 118	0. [18	D. 116	0.118	0.117	0.001	1.0
11/27/91	3:10 Pf	0.118	0.121	0.112	0.118	0.118	0.113	0.118	0,118	0.113	0.119	0.119	0.001	0.9
11/23/94	8:10 M	0.118	0.118	0.117	0.117	0.115	0.10	0.116	0,118	0.117	0, 119	0.117	0.001	1.0
11/23/91	9:10 M1	0.117	0.112	0.116	0.112	0.118	0.118	0. 118	0.117	0.115	0.117	0.112	0.001	0.8
11/23/91	10:10 M	0.110	0. 120	0. 117	D. 119	0.119	0.119	0.117	0.117	0. [19	0.118	0.119	0.001	0.9
11/23/91	11:25 M	0.119	0.119	0.119	0.117	0.119	0, 119	0.120	0.119	0. [18	0.119	0.119	0.001	0.7
11/23/31	12:25 PM	0.117	0.120	0.117	0.119	0.119	0.118	0.116	0.118	0.117	0.119	0.118	0.001	1.0
11/23/91	1:25 PM	0.118	0.119	0.119	0, 121	0.118	0.118	0.113	0.120	0. 119	0, 120	0.119	0.001	0.9
11/23/91	2:35 PH	0.120	0.119	0.118	0. 118	0.119	0.120	0. 118	0.10	0.120	0.120	0.119	0.001	0.9
11/23/91	3:35 PH	0.118	0.120	8. [19	0. 120	0.118	0.119	0.119	0.117	0.117	0.118	0, 119	0.001	0.9
11/25/91	7135 M	0. 120	9.120	0.119	0.112	0.121	0, 120	0.119	0. [3]	9.117	0.120	0, 119	0.001	1.3
11/25/91	8:35 M	0.121	0.119	0. 20	0. 120	0.119	0.119	0.119	0.120	0. 120	0.119	0.120	0.001	0.7
11/25/91	9:10 M	0, 120	0.120	0, 119	D. 18	0. 122	0.120	0. 120	0, 120	0.119	0.121	0, 120	0.001	0.9
11/25/91	10:40 At	0. [2]	0. 20	0.118	0, 119	0.118	0.119	0. (18	0. 122	0.119	0.120	0.119	0.001	1.1
11/25/91	11:10 M	0.119	0. [18]	0.116	0.119	0. 170	0.117	0. 122	0.119	0.119	0.119	0.119	0.002	1.1
11/25/91	12:45 PM	0.116	Q. 120	0.121	0.120	0.117	0.119	0. [19	0.119	0. 119	0, 120	0.119	0.001	1.3
11/25/4	1:15 PM	0.119	0. [19	0. 120	0. 120	0.118	0.121	0. 119	0.120	0.118	0.120	0.119	0.001	0.3
11/26/91	9:00 M	0.118	0.119	0. 120	0.120	9.121	0.118	0. 121	0.120	0,120	0, 121	0.120	0.001	0.9
11/26/91	9:00 AH	0. 120	0.118	0.120	0. 119	0. 120	0.119	0. 120	0.113	0, 119	0.119	0.119	0.001	0.7
11/26/91	10:00 M	9.119	0, 131	9.119	Q. \$18	0, 118	0.119	0.119	0,118	0.120	0.119	0.119	0.001	0.8
11/26/21	ILITO MI	0.118	0, 119	0.120	0.120	0.118	0.119	0.119	0.119	0.120	0, 119	0.119	0.001	0.7
11/26/91	12:10 PM	0.119	8. 118	0, 120	0.119	0.118	0. 120	0.120	0.118	0, 121	0. 120	0. 119	0.001	0.9
11/26/31	1:10 PM	0.120	0.119	0.121	0. 120	0.119	0. 121	0.119	0.120	0, 120	0.121	0. 120	0.001	0.7
11/26/91	2110 PM	0.118	0.120	0.119	0, 119	0. [18	0.119	0.119	0.119	0, 120	0.118	0.119	0.001	0.2
11/29/91	9:05 M	0. 120	0.120	0, 121	0.118	0.121	0. 120	0. 121	0.119	0. 121	0. 121	0.120	0.001	0.9
11/28/91	9:05 M	0.119	0, 120	0.118	0, 120	0. 120	0.116	0.120	0.116	0.121	0.119	0.119	0.002	1.5
11/28/91	10:05 M	0.117	0.116	0.116	0.119	0.119	0.119	0.115	0.117	0.120	0. 19	0.118	0.002	1,1
11/28/31	11:05 M	0.121	0,118	0.119	0.119	0.119	0, 121	0.120	0.119	0, 120	0, 119	D. 120	0.001	0.8
11/28/91	12:10 PM	0.118	0.117	0.119	0. [18	0. [17	0. 121	0.121	0.120	0.120	0. 121	0.119	0.002	1.1
11/28/91	1:05 Pf	0.119	0. 120	0. 121	0.113	0.120	D. 119	0. 120	0.118	0.122	0, 119	D. 120	0.001	1.0
11/28/31	2:05 PH	0.121	0, 120	0, 119	0, 119	0, 120	0,118	0.119	0, 120	0.122	0.118	0.120	0.001	1.1
11/28/31	3:05 PM	0.118	0.116	0.122	0.171	0.117	0. 122	0. 119	0, 120	0. 121	0.12	0.119	0.002	1.9
11/28/21	1:05 PH	0.123	0.122	0.121	0.119	0.121	0, 122	0, 123	0.122	0.121	0.121	0.122	0.001	1.0
11/28/91	5:05 PM	0.119	0.118	0.117	0, 118	0, 119	0, 116	0.118	0.117	0, 117	0.117	0.118	0.001	0.9
11/29/94	10:25 MI	0.119	0.119	0.119	0.117	0, 120	0, 119	0.117	0.119	0. 120	0, 120	0.119	0.001	0.9
				اختتند	المتناخف	اشتنند						7:117	3.001	U. 3

Coepression Height (g) - Rear

Date	T1=0	1	2	9	1 4	5	1 6	7		9	10		St Dov.	1 500
11/22/91	1:25 PM	0.119	0, 120	0, 118	0.119	0, 119	0.118	0.120	0.119	0.119	0, 119	0.119	0.001	R90
11/22/91	2;40 P1	0.118	0.118	0.119	0.118	0.119	0.117	D. 119	6.120	0, 119	0, 119	0.119	0.001	0.7
11/22/91	3:10 PM	0.121	0, 120	0, 121	0.119	0.120	0, 121	0. 120	0.120	0.121	0. 121	0.120	0.001	0.6
11/23/91	9:10 AH	0.117	0, 120	0.120	0.118	0.116	0.113	0.116	0. 120	0.118	0.118	0.118	0.002	1.3
11/23/91	9:10 M	0.111	0.119	0.112	0.117	0.119	0.117	0.117	0.116	0.119	0.119	0,117	0.002	1.1
11/23/91	10:10 M	0.120	0, 119	0.119	0.118	0.121	0.119	0.119	0.119	0. 118	0.119	0.119	0.001	0.7
11/23/91	11:25 M	0.120	0.119	0.118	0.119	0.119	0.118	0.119	0.12	0.121	0.121	0.119	0.001	1 1:11
11/23/91	12:25 PH	0.119	0.119	0.120	0.118	0. 120	0.119	0.119	0, 119	0.118	0.119	0,119	0.001	0.6
11/23/91	1:25 Pf	0.121	0.120	0. 120	0. 121	0.119	0.120	0. 121	0. 120	0. 121	0.121	0, 120	0.001	0.6
11/23/91	2:35 PH	0.118	0. [19	0.119	0.118	0. 120	0.119	9. 18	0.113	0.119	0.118	0.119	0.001	0.6
11/23/41	3136 PH	0.119	0.119	0.119	0.119	0.118	0.121	0, 120	D. 118	0.117	0.121	0, 119	0.001	1.2
11/25/91	2:35 M	0.119	0. 120	0.12	0.17	0.118	0.117	0.117	0.119	0.118	D. 118	0.118	0.001	0.9
11/25/41	8:35 AT	0.118	0, 119	9.121	0.117	0.119	0.118	D. [17	0, 118	0.116	0.119	0.118	0.001	1.2
11/25/91	9:10 M	0,119	0. 120	0.120	0.119	0.119	0.119	0.118	0.117	0.119	0.112	0.119	0.001	0.9
11/25/91	10:10 AT	0.121	0. 121	0.118	0, 119	0.118	0.120	0.119	0.118	0.122	0. 119	0.120	0.001	1.2
11/25/91	11:10 M	0.118	0.118	0.120	0.117	0, 118	0.118	0.120	0.118	0.121	0.118	0.119	0.001	1.1
11/25/31	12:45 PH	0.120	0, 120	0.119	0.120	0.120	0.119	0.118	0.119	0.119	0.120	0.119	0.001	0.6
11/25/31	1:15 PM	0.118	0.118	0. 120	0, 120	0.118	0. 120	0.119	0. 118	0.118	0.119	0.119	0.001	0.8
11/26/31	8:00 M	0, 119	0.118	0.121	0.120	0.118	0.119	0.120	0. 110	0.119	0.120	0.119	0.001	0.9
11/26/91	9:00 M1	0. 121	0.118	0.120	0.119	0.120	0. 121	0.119	0. [19	0.120	0.121	0.120	0.001	0.9
11/26/21	10:00 61	0.120	0.118	0.119	0.120	0.118	0.121	0.120	0.118	0.121	0.119	0.119	0.001	1.0
11/26/91	11:10 M	0.119	0, 120	0.119	0.119	0.120	0.121	0.119	0.120	0,120	0.119	0.120	0.001	0.7
11/26/91	13,10 P1	0.120	0, 120	0.119	0.120	0.121	0.131	0.119	0.121	0.119	D. 121	0.120	0.001	0.7
11/26/21	1:10.01	0.120	0.119	0.119	0.121	0.118	0, 120	0.119	0.122	0.119	0, 120	0.120	0.001	1.0
11/26/91	2140 PM	0.120	0, 120	0.119	8. 121	0.118	0. 119	0, 121	0.118	0.120	0. 121	0.120	0.001	1.0
11/28/91	8:05 An	0. 120	0.120	0.121	0, 120	0.118	0. 120	0.118	0.119	0.119	0. 119	0. 119	0.001	0.8
11/29/31	9:05 Art	0.119	0.118	0.113	0.112	0.118	0.116	0.119	0.118	0.112	0.118	0.118	0.001	0.8
11/28/91	10:05 At	0.117	0.117	0. [18	0.116	0.119	0.118	0.119	0.116	0.118	0.119	0.118	0.001	1.0
11/28/91	11:05 M	0.116	0.117	0.117	0.118	0.118	0,119	0.117	0, 119	0.119	0.119	0.118	0.001	0.9
11/28/31	12:10 PM	0.118	0.117	0.120	0.116	0.112	0.119	0.118	0.119	0.117	0. 120	0.118	0.001	1.1
11/28/31	1:05 91	0.116	0.117	0.112	0.110	9.119	0. 18	0. 12	0.119	9.119	0. [19	0. 118	9,001	0.9
11/20/91	2:05 PH	0.119	D. 119	0. 120	0.117	0.119	0. [17	0.122	0.121	0.119	0.118	0. 119	0.002	1.3
11/38/24	3:05 PH	0.119	0.116	0.119	0. [22]	0. 120	0.116	0.117	0.118	0.119	0.118	0.118	0.002	1.5
11/29/91	1:05 PI	0.10	0.119	0.118	0. 120	0.110	0. [19	0. 119	0.119	0. 120	0. [19	0.119	0.001	0.8
11/28/31	5:05 PM	0.121	0.121	0.120	0.120	0.121	0.121	0.120	0. 120	0.120	0. 119	0. 120	0.001	0.6
11/29/91	10:25 M	0.120	6. 122	0.119	0.120	0. 122	0.119	0.120	0.121	0.119	0. 121	D. 120	0.001	1.0

PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg - Baich # 4336 A

Compression Height (g) - Front

Date	Tine	ī	2	3	4	6	6	7	8	9	10	10	le: a	
11/29/94	2:15 PH	0.120	0.121	0, 122	0. 122	0.120	0. 121	0, 121	0. 121	0.119		Average		RSO
11/29/91	3:15 PH	0. 122	0.121	0.121	0. 119	0. 120	0.121	0. 120	0.121	0, 122	0. 131	0. 121	0.001	0.8
11/29/91	4:45 PH	0. 120	0.120	0.119	0.120	0. 120	0. 121	0, 122	0.121	0. 121	0.120	0.121	0.001	0.8
11/29/94	5:45 PH	0.120	0.123	0. 121	0.123	0.122	0, 122	0. 122	0, 122	0.121	0. 120	0. 121	0.001	1.0
11/29/94	6:45 PH	0.121	0.119	0.119	0.120	0, 120	0.119	0, 120	0. 122	0. 121	0.120	0. 122	0.001	0.9
11/29/94	7:55 PH	0.119	0, 120	0.119	0.118	0.118	0.119	0. 121	0, 120	0. 119	0.118	0. 119	0.001	0.8
11/29/91	8:55 At1	0.119	0.121	0. 121	0.117	0.120	0. [19	0. 122	0.118	0.119	0. 121	0. 120	0.001	₽.₽
11/30/94	8:00 At	0.121	0, 122	0.121	0, 121	0.120	0.119	0.119	0, 121	0. 121	0. 121	0.121	0.007	1.3
11/30/94	9:00 AH	0.120	0.123	0. 120	0.123	0. 124	0. 172	0. 121	0.120	0. 120	0. 120	0. 121	0.002	0,8
11/30/94	10:00 AH	0.120	0. 121	0.120	0.119	0.119	0.121	0.119	0.119	0.118	0.122	0.121	0.001	1.3
11/30/94	11:00 At1	0.120	0. 121	0. 121	0.121	0. 121	0.119	0. 120	0. 121	0.119	0. 120	0.120	0.001	0.7
11/30/94	12:00 PH	0.120	0, 122	0.120	0, 123	0. 121	0. 122	0. 121	0.120	0. 22	0.120	0.121	0.001	
11/30/94	1:00 PH	0.118	0.118	0.119	0.119	0. 120	0.117	0.118	0. 120	0.119	0.120	0.119	0.001	0.9
11/30/94	2:00 PH	0.118	0, 119	0. 121	0.119	0. 121	0. (22	0.119	0, 120	0. 120	0.119	0. 120	0.001	0.8
11/30/94	3:00 Pf	0.119	0. 120	0.118	0.119	0.120	0. 120	0.119	0.121	0.119	0.113	D. 119	0.001	1.0
11/30/94	1:00 PH	0. 120	0. 121	0.119	0.119	0.119	0.120	0.119	0, 121	0.119	0.118	0.120	0.001	0.7
11/30/94	5:00 PH	0.120	0. 118	D. 119	0.119	0.120	0, 119	0. 120	0. 121	0.119	0.118	0. 119	0.001	<u> </u>
11/30/94	6:00 PM	0.118	0. 119	0. 119	0, 120	0.120	0. 120	0. 119	0. 121	0, 120	0.119	0, 120	0.001	0.8
11/30/94	7:00 PH	0. 122	0. 118	0. 122	0.120	0.118	0. 122	0, 120	0.119	0.118	0.119	0, 120	0.002	1.4
11/30/94	B:00 Ph	0. [21	0. 119	D. 119	0.120	0.121	0.118	0.120	0.119	0.119	0. 120	0.120	0.001	0.8
11/30/94	9:00 PH	0.118	0.121	0. 120	0.121	0.118	0.120	0.119	0, 120	0.121	0, 120	0.120	0.001	0.9
12/1/91	7:50 AH	0.120	0. 119	0.120	0.119	0. 121	0.120	0. 121	0.119	0.120	0. 121	0.120	0.001	0.3
12/1/91	8:50 AM	0.120	0.123	0.118	0.120	0, 121	0.120	0. 121	0.119	0.120	0. 121	0.120	0.001	1.1
17/1/91	9:50 Att	0.119	0.121	0.120	0.118	0.119	0.119	0. 121	0.121	0, 120	0.119	0.120	0.001	0.9
12/1/91	10:50 Art	0.112	0.122	0.119	0.120	0.118	0.118	0.120	0.120	0, 120	0.117	0.119	0.002	1.3
12/1/94	11150 811	0.131	0. 120	0. [20]	0.120	0,116	0.119	0.119	0, 121	0.118	0.120	0, 119	0.002	1.3
12/1/91	13:50 PM	0.121	D. 122	0, 120	0.112	0.122	0,119	0. 23	0.120	0, 172	0.121	0. [2]	0.002	1.5
12/1/94	1:45 PH	0.120	0.117	0.117	0.119	0.120	0.119	0. [20]	0.119	0.119	D. 119	0. 119	0.001	0.9
12/1/94	2115 Pt	0, 118	D. 116	0.119	0.118	0.118	0.119	0.118	0.118	0.118	0. 120	0.118	0.001	0.9
12/1/94	1:10 Pf1	0.119	0.119	0.121	0, 121	0.119	0.120	0.121	0. 122	0.119	0.120	0.120	0.001	0.9
12/1/94	5: 10 PH	0.121	0.120	0.120	0.122	0.120	0.121	0.120	0.119	0, 123	0.119	0.121	0.001	1.1
12/1/91	61 ID PH	0. 120	0.123	0. 122	0, 120	D. 120	0. 121	0.120	0. 121	0.122	0. 121	0.121	0.001	0.9
12/1/91	7125 Ptl	0. 119	D. 118	0. 120	0. 120	0.121	0. 123	0.120	0. 121	0.119	0.120		0.001	1.1
12/1/91	8:25 Pf	D. 123 0. 121	0. 122	0.120	D. 121	D. 123	0. 120	0. 122	0.122	0.122	0, 120		0.001	1.0
14/1/31	3120 MI	0.12[]	U. 177	u. IAI	0.119	0.120	0.121	0.120	0.120	0, 122	0. 121	D. 121	0.001	0.8

Compression Height (g) - Rear

Date	Tipe	1	2	3	1 +	5	6	7	8	9	10	Average	Ct Day	RSD I
11/29/94	2:45 Pf	0.119	0. [20	0. 121	0.117	0.119	0. [2]	0.122	0, 120	0, 120	0, 120	0, 120	0.001	1 1 1 1
11/29/94	3:45 PM	0.120	0.120	D. 121	0.120	0. 120	0. 123	0.121	0, 122	0.122	0. 121	0, 121	0.001	0.9
11/29/94	1:45 PM	0.122	0. (21	0. 121	0.122	D. 121	0. 122	0.119	0.120	0.123	0, 122	0. 121	0.001	1.0
11/29/94	5145 PM	0. 121	0. 122	D. 124	0.122	0.123	0. 122	0.123	0.120	0. 121	0. 123	0.122	0.001	1.0
11/29/91	6145 PH	0.120	0.118	0, 119	0.118	0.119	0. 120	0.118	0.118	0. 121	0.118	0.119	0.001	0.9
11/29/94	7:55 Pt	0. 20	0, 121	0.119	0.119	0, 127	0.113	0.120	Q. 121	0. 121	D. 121	0.120	0.001	0.9
11/29/94	BIZE WI	0. 123	0.119	0.121	0.120	0.118	0. 120	0.119	0.123	0.118	D. 119	0, 120	0.002	1.5
11/30/94	8100 W	0. 120	0.121	0.120	0.120	0.123	0, 121	0.122	0. 120	0.118	0. 122	0. 121	0.001	1.2
11/30/91	9:00 AT	0.120	0. 122	0.120	0, 119	0.122	0. [23	0.120	0. 121	0.123	0.120	0. [2]	0.001	1.2
11/30/94	10:00 At	Q. 119	0.118	0.121	0.119	0.121	0.118	0.119	0.120	0, 122	0. 172	0.120	0.002	1.3
11/30/94	11100 HJ	0, 119	0. 119	0.119	0.119	0.120	0.120	0.119	0, 120	0.119	0, 120	0. 119	0.001	0.6
11/30/91	12:00 PH	0.119	0.119	0.120	0, 120	0.121	0.119	0.120	0. 123	0.119	0. [19	0. 120	0.001	1.1
11/30/91	1:00 PH	D. 120	0, 120	0.120	0.118	0.119	0.118	0.118	0.119	0.120	0.120	0. 119	0.001	0.8
11/30/91	2:00 PH	0. 120	0.119	0.118	0.120	0.119	0.119	0.118	0. 121	0. 121	0.119	0.119	0.001	0.9
11/30/94	3:00 PM	0. [20]	0. 120	0.120	0.121	0.119	0, 119	0. 121	0.122	0. [19]	0. 120	0. 120	0.001	1.1
11/30/91	1:00 Pf	0.119	0.118	0.118	0.119	0.120	0.119	0.118	0.118	0, 120	0, 118	0, 119	0.001	0.7
11/30/91	5:00 Pf1	0.120	0.119	0.121	0.119	0.121	0.119	0.118	0.118	0.119	0.118	0.119	0.001	1.0
11/30/94	6:00 PM	0. 121	0, 120	D. 119	0, 119	0.121	0.119	0.120	0. 119	0. 121	0. [19	0. 120	0.001	0.8
11/30/91	7:00 Pri	0, 118	0.119	0. 120	0. 120	0.121	0.118	0.118	0, 118	0.120	0.119	0.119	0.001	0.9
11/30/94	8100 PM	0.119	D. 120	0.116	0.119	0.119	0.121	0.118	0.118	0, 119	0.120	0.119	0.001	0.9
11/30/94	9:00 PM	0.118	0.119	0.119	0.131	0.119	0.121	0.119	0.119	0, 121	0. 120	0.120	0.001	0.9
12/1/94	2120 HI	D. 131	0.124	0.121	0.120	0.121	9.173	0.122	0.120	0.127	0. 120	0.121	0.001	1.0
13/1/94	8120 H	0, 121	0. 121	0.119	0.119	0.119	0.120	0.118	0,119	0. 120	0. 120	0. 120	0.001	0.8
12/1/94	9150 AT	0,116	0.119	0, 122	D. 120	0.116	0, 120	D. 121	0,117	0.117	0, 119	0,119	0.002	1.8
12/1/94	10120 W	0, 120	0.119	0,119	9. 120	0.119	0.118	0. 120	0. (20	0.118	0.120	0.119	0.001	0.8
12/1/94	11100 HI	0.119	D. 119	0. 118	0, [2]	0.121	0.119	0.120	0.118	0.122	0.119	0. 120	0.001	1.1
12/1/94	12:50 PH	0. 20	Q. 121	0.117	0.121	0, 121	0. 123	0, 119	0. [23]	0, 122	0.119	0.121	0.002	1.6
12/1/94	1:45 Pf1	D. 120	D. 119	0.118	0.117	0.121	0.120	0.119	0.118	0.120	0, 122	0. [19	0.002	1.3
12/1/91	2:15 P1	0. 121	0.170	D. 124	0.119	0.118	0. 122	0.117	0. 122	0.131	0.120	0. 120	0.002	1.7
	1110 PM	0.120		0. 120	0. 122	0.171	0, 119	0,119	0. 120	0. 121	D. 120	0. 120	0.001	0.8
12/1/94	6:10 PM	0.118		0.119	D. 120	0. 120	0. 120	0.119	0.119	0. 120	0.121	0.120	0.001	0.8
12/1/91	61 10 PM	0. 120		D. 120	0. 122	0.122	0.119		0, 119	0.119	0.120	0.120	0.001	1.3
12/1/91	7125 PI	0.120		0.120	0.116	0.112	D. 121		0.131	0. 120	0.120	0.119	0.002	1.1
12/1/94	8:25 PH			0.120	0. 120		D. 121		0. 120	0.122	0.117	0. 120	0.001	1.1
12/1/94	9:25 PH	0.121	0.120	0.120	D. 119 j	0.119	0.120	0.118	0.120	0.121	0.120	0.120	0.001	0.8

PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg - Balch & 4337 A

Compression Height (g) - Front

Date	Time	1	1	3	1	1 8	7	7		1 3	10		191 Dov.	R50 1
12/2/91	10:00 M	0.121	0. 130	0.120	0.119	0, 120	0, 122	0, 121	0.120	0.119	0.120	0.120	0.001	
12/2/91	11:00 M1	0.118	0.119	0. 121	0.120	0, 119	0.120	0, 120	0.119	0.119	0, 120	0. 120	0.001	0.9
12/2/91	12:00 Pfi	0.117	0.117	0, 115	0, 119	0.115	0, 115	0.116	0.116	0.118	0.112	0.117	0.001	0.7
12/2/91	1:03 Pf	0.120	0.120	0.121	0, 121	0.123	0.122	0, 122	0.122	0. 120	0, 121	0.121	0.001	0.9
12/2/91	1:25 PH	0.119	0.120	0.125	0, 120	0. 120	0.119	0.119	0, 120	0, 121	0, 120	0.120	0.002	1.5
12/2/94	2:05 PH	0.118	0.119	0.119	0.119	0.118	0, 120	0.119	0. 120	0.121	0, 120	0.119	0.001	0.9
12/2/91	3:40 PH	0.116	0.113	0.116	0.115	0. 116	0.114	0.115	0. [15	0.114	0.116	0.115	0.001	0.9
12/2/91	3:10 PM	0.110	0.117	9.115	0.113	0.116	0.114	0.119	0.111	0.115	9.114	0, 115	0.002	2.1
12/3/91	Z:20 MI	0.119	0.119	0, 120	0, 120	0, 120	D. 121	0.121	0.119	0.120	0.121	0, 120	0.001	0.7
12/3/91	8:20 M1	0.120	0.113	0.121	0. [19	D. 122	0.119	0. 121	0. 121	0. [18	0.118	0. 120	0.001	1.2
12/3/91	9:20 Art	0.118	0. [20]	D. 119	0.120	0.119	0. 110	0.119	0. 120	0. 121	0.118	0.119	0.001	0.9
12/3/91	10:20 At	0.119	0, 120	0. 122	0. 119	0.120	0.119	0.120	0. 121	0.119	0.115	0,120	0.001	0.9
12/3/91	11:35 M	0. 120	0.121	0, 120	0. 120	0, 121	0, 121	0. 122	0.120	0.120	0, 120	0.121	0.001	0.6
12/3/91	12:35 Pf	0.119	0.120	0.121	0.122	0.121	0.122	0, 120	0.118	0.120	0.122	0.121	0.001	1.11
12/3/91	1;35 PH	0. 122	0, 121	0. 23	0. 121	0. 122	0. 122	0. [20]	0. 121	0. 121	9, 122	0.122	0.001	0.7
12/3/91	2:35 PH	0.120	0. 120	0.122	6. 121	0. [20]	0.117	0. [21	0. [20	0.119	0.121	0. 20	0.001	1.1
12/5/31	7:55 M	0.119	0, 120	0.120	0. 121	0. 20	0, 119	0.119	0. 119	0.122	0, 120	0, 120	0.001	0.8
12/5/91	8:55 M	0. 120	0. 121	0, 120	0. 122	9, 120	0. 20	0, 120	0.119	0. 121	0.122	0, 121	0.001	0.8
12/5/91	9:55 M	0. 123	0.120	0. 123	0.119	0. 119	0.120	0. 22	0. 120	0. 123	0.120	0, 121	0.002	1.9
13/2/31	11:00 61	0.119	0.113	0.120	0.119	0.119	0.121	0.118	0.119	0,119	0, 120	0.119	0.001	0.8
13/5/34	11:50 M	0. 122	0.119	0.170	9, 121	0. 120	8. 120	0.121	0. [27	p. 120	0, 121	0. 121	0.001	0.8
12/5/91	12:50 Pri	0. 120	0, 120	0.131	0, 120	0. 122	0. 120	0. 121	0.118	0.121	0.120	0. 120	0.001	0.9
12.5.91	1:50 PH	0.121	0, 127	0. 122	0, 131	0. 123	0. 121	0.121	0.121	0.121	0. 121	0.121	0.001	9.6
12/5/91	2:50 Ph	0.120	0.121	0. 121	0.119	0. 120	0, 121	0.118	0. 121	0.119	0. 19	0, 120	0.001	0.9
12/5/91	3:50 PH	0.119	0.120	0.119	0. 120	0.120	0.120	0.121	0.121	0.119	0. 121	0, 120	6.001	0.7
12/5/91	1:50 Pt	0.119	0.118	0.120	0.119	0.120	0.121	0.120	0.119	0.120	0.120	0.120	0.001	0.7
12/5/91	5:90 PH	0, 120	0.119	0.119	0.118	0. 120	0.119	0.120	0, 120	0.118	0.119	0.119	0.001	0.7
12/6/91	7:50 MI	0. 120	0, 120	0.120	0.119	0.119	0. 120	0.119	0.110	0.121	0.119	0, 120	0.001	0.7
12/6/94	9:35 AH	0. 122	0.121	0.119	0. 121	0.117	0.120	0.121	0.119	0.119	0.121	0, 120	0.001	1.2
12/6/91	10:35 M	0.119	0.120	0.121	0. 121	0.120	0.118	0. 120	0. 121	0, 119	0.120	0.120	0.001	0.9
12/6/91	11:35 AH 12:35 PH	0.120	0.122	0.120	0.121	0.120	0.120	0.121	0.119	0.120	0.121	0, 120	0.001	0.2
12/6/91	1:40 PM	0. 122	0.121	0, 123	9.120	0. 122	0.121	0.120	0.121	0.120	0.121	0, 121	0.001	0.7
12/6/91	2140 PM	0. 121	0, 120	0, 121	0, 118	0. 121	0,120	0, 120	0. 122	0. 121	0. 20	0, 121	0.001	1.0
12/6/91	3:35 PH	0. 121	0, 121	0.118	0. 122	9-118	9.110	0.122	0.117	0. 122	0, 120	0.120	0.002	1.6
12/7/91	7:50 M	0. 121	0. 121	0. 121		0. 121	0. 120	0.120	0.121	0.119	0.119	0. 120	0.001	0.9
12/7/91	8:50 AN	0.113	0. 120		0. 122	0. 122	0.122	0, 121	0, 121	0, 121	0.123	0, 122	0.001	0.6
12/2/91	9:50 At	0. 121	0.120	0.120	0, 120	0.118	0.121	9. 121	0.120	0.120	0.120	0.120	0.001	0.7
12/7/91	11:35 M	0.118	0. 118	0.119	0.119	0.118	0.119	0.121	0. 121	0.115	0.119	0. 120	0.002	1.4
10///01	11122 111	V. 110 1	4. 110	V. 118	0.113 [0.118	0.10	0.119	0.117	0.115	0. 120	0. 118	0.001	1.2

Compression Neight (g) - Roar

0219	I IIme	LI	1 2	1 3	1 1	5	1 6	7	Я	1 9	1 10	Anran	St Dev.	RS0
12/2/91	10:00 M	9.119	0,117	0. 119	0. 18	ρ. 119	0.120	0.118	0.119	0, 120	0, 119	0. 119	0.001	0.8
12/2/91	11:00 M	0.118	0.119	0.119	0.120	0. [19	0.121	0.119	0.118	0.120	0, 121	0.119	0.001	1.0
12/2/91	12:00 PH	0.118	0. 115	0.116	0.118	0.117	0.119	0.119	0.118	0.117	0.116	0.119	0.001	1.1
12/2/31	1:00 PM	0. 124	0.129	0.121	0.120	3.124	0. 121	0.123	0. 25	0.122	0, 122	0, 123	0.003	2.0
12/2/91	1:00 PH	0.121	0.120	0.122	0, 123	0, 122	0.125	0. 124	0.125	0.122	0.126	0, 123	0.002	1.6
12/2/31	1:25 Pf	0.121	0.120	0, 122	0. 120	0.121	0. 121	0.120	0. 120	0.119	0.122	0, 121	0.001	0.0
12/2/91	2:05 PH	0.121	0.121	0.119	0, 121	0.121	9.120	0.122	0, 118	0. 19	0, 118	0.120	0.002	1.9
12/2/91	3:10 Pf1	0, 116	0.120	0.111	0. 119	0.111	8.115	0.116	0.117	0.111	0.115	0.116	0.002	1.8
12/3/31	7:20 At	0.119	0. 122	0. 123	0.121	0.120	0.120	0.118	0, 123	6, 122	0.120	0. 121	0.002	1.5
12/3/31	8:20 M	0.120	0.123	0.121	0. 22	0.121	0.120	0.121	0.119	0.120	0. 122	0. 121	0.002	1.3
12/3/31	9:20 61	0,120	0.122	0, 120	0.120	0.121	0, 120	0.123	0.119	0,123	0, 120	0, 121	0.001	1.2
12/3/4	10:20 M	0.123	0.119	0.121	0, 123	0, 20	0.119	0. 122	0.120	0, 121	0, 120	0.121	0,002	1.4
12/1/41	11:35 M	0.120	0.119	0. 123	0.119	9.119	9, 119	0.122	0.122	0.120	0.119	0.120	0.002	1.9
12/3/34	12:35 PH	0.119	0.120	0. 121	D. 121	0.121	0.122	0. 122	0.120	0.123	0.118	0.121	0.001	1.2
12/3/91	1:35 91	0.119	0.121	0. 120	0. 20	0, 120	0. 121	0, 122	0.119	0.119	0. 120	0. 120	0.001	1.0
12/3/31	2:35 71	0.121	0.119	0. 121	B. 120	0.120	0. 120	0.119	0.120	0.120	0.119	0, 120	0.001	0.6
12/5/21	2:55 MI	0.120	0.119	0.122	0.121	0, 123	0.120	0.121	0.119	0, 120	0.117	0, 120	0.002	1.1
12/5/91	9:50 M	0. 22	0.122	0.120	0.121	0.120	0.120	0. [2]	0. 121	0. 122	0. 120	0.121	0.001	0.7
12/5/31	9:55 M	0. 2	0.120	0.120	0. [17]	0.119	0.120	0. 128	0.119	0.119	0.120	0, 120	0.001	0.9
17/5/91	11:00 M	0. 121	0. 121	0. 120	0, 119	0.121	0, 20	0.120	0, 120	0.119	0.120	0, 120	0.001	0.6
17.5.44	11:50 AV	0.119	0.121	0.120	0. 120	0.120	0. 123	0. [20]	0, 121	9.121	0.121	0. 121	0.001	0.7
12/5/21	12:50 Pft	0.122	0.120	0.122	0.121	0, 120	0.118	0.121	0, 120	0.121	0.120	0. 121	0.001	1.0
12/5/34	1:50 PM	0.121	0.120	0.121	0. 121	Q. 119	0.121	0.119	0.121	0.121	0.118	0. 120	0.001	0.9
13/2/34	3150 PM	0.120	0. 20	0. 121	0, 20	0. 121	0. 121	0.171	0.121	0.119	0.121	9. 121	0.001	0.6
17.5.91	3:50 PH	0,120	0.131	0.117	0.120	0.120	0.131	0.123	D. 121	0.122	0. 121	0.121	0.002	1.3
12/5/91	1150 [7]	0.131	9.131	0. 120	0, 120	0, 120	0, 123	0.120	0.121	0.121	0.131	0. 121	0.001	4.8
13/5/91	5130 PH	0.120	0.112	0, 120	0.118	0.120	0.120	0. 120	0. 20	0.120	0. 120	0.120	9.001	0.9
12/4/31	5120 W	0.122	0, 120	0.121	0.120	0.121	0.120	0.120	0.121	0.120	0.121	0.121	0.001	0.6
12/6/94	5:32 W	0.119	9, 120	0.119	0, 120	0,120	0.118	0, 120	0.120	0.117	0, 120	0.119	0.001	0.9
12/6/91	10:35 VI	0.110	0.110	0. 120	0.131	0. 120	0.115	9.115	0.118	0.120	0.118	0.119	0.002	1.1
	11:35 M	0.131	0. 120	0.118	0, 119	0. 121	0, 118	0.119	0. 120	0.119	0.118	0.119	0.001	1.0
12/6/91	12:35 PM	0. 123	0. [23]	0, 119	0. 121	0.120	0.119	0.119	0.123	0.117	0. 120	0. 120	0.002	1.6
13/6/94	1:10 PM	0.119	0.121	0.120	0, 121	0. 122	0.121	0,119	0.121	0.120	0. 123	0. 121	0.001	1.0
12/6/91	2:10 P1	0.120	0.171	0.113	0 15T	0. 121	0.121	0.118	0.120	0.121	0.118	0.120	0.001	1.0
12/2/91	9:35 Pt	0. 122	0. 121	0. 120	0. 121	0.118	0. 121	0.121	0. [23]	0.119	0.118	0.121	0.002	1.7
12/7/94	2:50 M	0. 119	0. 122	0. 120	0. 121	0, 12	0.121	0.120	0. 121	0, 121	0.119	0. 121	0.001	0.8
	8:50 M1	0.120	0.121	0.120	0. 120	0.121	0.120	0.121	0.121	0.119	0.118	0.120	0.001	0.8
12,7,91	9:50 M	0.112		0.119	0. 120	0.120	0.113	0. 119	0.119	0. 121	0.118	0.119	0.001	1.0
L WYGH I	11:35 M)	0.127	9.112	0.119	0.119	0.123	0.121.1	0, 120	0.120	0.120	0.119	0.120	0.007	1.1

PROCESS VALIDATION

DIGOXIN TABLETS, 0.26 mg - Balah # 43304

Compression - Hardness (lip) - Front

0219	Time	1	2	3	1	5	(trerace	St Day,	R90
11/22/31	1:25 PM	5.3	5.2	5.9	5.1	5.7	5.6	0.2	1.1
11/27/91	2:40 PH	1.7	5.1	1.3	1.9	5.0	1.8	0.3	6.6
11/27/21	3:10 Pil	1.6	5.0	5.1	1.8	1.8	1.9	0.2	1.0
11/23/91	8:10 M	1.7	5.1	1.7	5,0	1,1	1.8	0.3	5.8
11/23/91	9:10 M	1.B	5.3	1.8	1.1	1.9	1.8	0.9	6,6
11/23/91	10:10 M	5.0	5.0	5.6	5.3	5.0	5, 2	0.3	5.2
11/23/91	(1:25 MI	5. 1	5.1	5.2	5.1	4,9	5.2	0.2	1.1
11/23/91	12:25 PM	1.1	5.7	5,7	5.3	5.1	5.3	0.5	10.1
11/23/91	1:25 PM	5.1	5.3	5.1	5.5	5.5	5.3	0.2	3.8
11/23/91	2:35 PM	5.8	5.1	5.7	1.9	5.6	5.5	0.1	6.5
11/23/91	3:35 PH	5.0	5.1	5.5	5. 1	5.1	5.2	0.2	1.2
11/25/91	7:35 MI	5.1	1.5	1.3	1.5	1.9	1.7	0.3	7.1
11/25/91	8:35 Pt	5.9	1.6	5.1	5.1	5.2	5.2	0.5	9.0
11/25/21	9:10 M	1.7	5.0	5.1	1,7	5,3	5.0	0.3	6.5
11/25/91	10:10 M	5.3	1.9	1.5	6.0	1,9	5.1	0.6	11.1
11/25/31	11140 WI	1.2	5.9	5.3	5.0	6.6	5.2	0.3	6.6
11/25/91	12:15 PI	5.0	5.9	5.6	5.8	5.1	5.5	0.4	7.5
11/25/91	1:15 PT	5.9	5.7	5.6	5.1	6.6	6.6	0.1	2.6
11/26/31	8:00 M	5.1	5.0	1.3	1.6	1.7	1.9	0.2	1.3
11/26/91	9:00 MI	5.3	5.2	5.8	5.2	5.0	5.3	0.3	5.7
11/26/94	10:00 M	5.0	5.0	1.3	5.1	1.8	1,8	0.3	6.6
11/26/91	11:10 M	5.2	1.9	5.2	5.3	5.1	5.1	0.2	3.0
11/26/91	12:40 PH	1.9	1.7	1.5	1.5	1.9	1.7	0.2	1.3
11/26/91	1140 PT	5.9	1.9	1.7	1.8	1.3	5.0	0.5	9.7
11/26/21	2:10 Pt	5.0	1.4	5.0	1.7	1.7	1,8	0.2	3.9
11/28/41	8:05 MI	1.1	1.3	1.1	1.7	1.5	1.5	0.2	9.1
11/28/91	9:05 M	1.3	1.3	1.2	1.1	1.1	1.2	0.1	2.7
11/28/91	10:05 M	1.8	1.1	1.3	1.3	1.8	1.5	0.3	5.7
11/28/91	11:05 M	5.1	1.7	5.1	1.7	5,2	5.0	0.2	1.9
11/28/91	12:10 PH	1.7	1.6	1.6	1.5	5.1	1.8	0.1	7.7
11/29/91	1:00 PI	5.1	5.2	5.1	5.2	5.1	5,1	0.1	1.1
11/28/91	2:05 PH	5.2	5.2	5.2	1.9	5.0	5.1	0.1	2.B
11/28/91	3:05 PM	5.1	5.8	1.3	5,1	1.9	5.2	0.1	7.3
11/28/41	1:05 PM	5.0	5.1	1.9	5.1	5.3	5.2	0.3	1.5
11/29/91	5:05 PH	1.9	5.0	5.6	5.3	1.7	5.1	0.1	6.3
11/13/31	10:25 M	1.8	4.5	1.5	1.0	1.2	1.6	0.3	5.5

Compression - Hardness (kp) - Rear

Date	1100		2	3	1	5	Average	St Dev.	RSD
11/22/91	1125 PM	5.6	5.7	5.1	5.6	5.7	5.6	0.1	2.3
11/22/91	2:10 PH	5.8	5. t	5.5	5.1	1.6	5.3	0.5	B. 6
11/22/94	3:10 PH	5.4	5.9	5.2	5.8	5,8	5.6	0.3	5.1
11/23/91	8110 M	1.9	1.9	1.8	1.1	5.1	1.9	0.1	7.1
11/23/31	9110 88	5.0	5.1	5.1	1.6	1.1	1.6	0.3	6.6
11/23/94	10:10 AM	5.7	5.6	5.5	5.6	5.3	5.5	0.2	2.7
11/23/91	11:25 M	6.0	5.3	1.9	5.1	5.4	5.1	0.1	7.3
11/23/31	12:25 PH	5.6	5.4	5.2	5.0	5.6	5.5	0.3	5,1
11/23/31	1:25 Pf	5.9	5.1	5.6	5.1	5.7	5.5	0.1	6.6
11/23/31	2:35 PH	5.0	5.5	5.7	5.5	5.3	5.1	0.3	1.9
11/13/4	3135 PH	6.7	1.0	5.4	5.0	4.1	5.4	0.5	5.7
11/25/91	7:35 Hi	1.1	1.5	1.1	1.2	1.3	4.3	0.2	3.7
11/75/91	8135 PM	1.9	1,9	5,0	5.3	1.7	8.0	0.2	1.1
11/75/91	9:10 M	5.1	1.9	1.6	5.3	5.0	5.0	0.3	6.4
11/25/91	10:10 M	5.2	5.1	1.9	1.8	1.6	5.0	0.3	6.1
11/25/94	11:10 M	5.1	5.2	1.9	5.2	5.3	5.1	0.2	9.0
11/75/91	12:45 Pm	5.7	5.1	5.2	5.6	1.9	5.3	0.3	6.1
11/25/91	1:15 Ph	5.4	5.5	5.3	5.7	5.7	5.5	0.2	3.2
11/26/31	8:00 M1	1.1	1.6	1.6	1.8	1.5	1.6	0.1	3.2
11/26/31	\$:00 M	1.2	5.2	5.1	5.2	5.2	5.0	0.1	8.8
11/26/94	10;00 M	1.8	5.5	1.0	5.1	5.3	5.2	0.3	6.5
11/24/91	11:10 M	5.0	5.0	5.1	5.2	5.3	5.1	0.1	2.5
11/26/41	13:10 Pt	5.2	5.1	5.1	5.7	5.1	5.1	0.7	1.3
11/26/91	1:40 Pi	5.9	5.8	5.0	5.1	5.6	5.1	0.3	5.6
11/26/31	2110 Pf	5.1	1.9	5.0	5.1	1.9	5.0	0.1	2.0
11/18/91	8:05 M	1,7	1.3	1.0	3.7	3.9	1.11	0.1	9.3
11/28/31	9:05 M	1.2	1.5	1.6	1.1	1.1	1.1	0.1	3. 5
11/28/31	10:05 M	1.7	1.7	1.5	1.8	1.1	1.6	0.2	3.6
11/28/94	11:05 M	5.1	1.9	1.8	5.)	5.1	5.11	0.2	1.5
11/28/91	12:10 PH	5.1	5.3	1.7	1.5	1.7	1.9	0.3	6.8
11/28/91	1:05 91	4.3	1.9	1.5	5.0	5.0	1.7	0.3	6.8
11/29/91	2,05 PH	5.2	1.3	5.2	1.9	1.5	1.8	0.1	0.5
11/28/31	3:05 PM	5.1	1.9	5.5	5.0	1.8	5.1	0.9	6.3
11/28/41	1:05 21	5.2	1.9	1.9	1,9	5.1	5.1	0.2	1.5
11/28/91	5:05 PM	1.6	5.1	5.3	5.2	5.3	6.1	0.3	6.1
11/29/91	10:25 AH	1.3	6.0	9.1	8.1	5.2	1.9	0.6	10.0

PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg - Batch # 4908A

Conpression - Hardness (kp) - Front

Date	Tine		2	3	+	5	Average	SI Dev.	RSD
11/29/94	2115 P1	5.7	5. 4	6.9	5.0	6.0	5.6	0.1	7.3
11/29/94	3:45 PH	5.9	5. 1	5.1	6.2	5.5	5.6	0.4	7.7
11/29/91	1115 PH	5.9	5, 8	5.8	6.3	6.0	6.0	0.2	3.5
11/29/91	5:45 PM	6.3	6.4	6.0	6.0	5.7	6,1	0.3	1.6
11/29/94	6115 PM	5.5	6. [6.9	5.5	5.7	5.7	0.3	1.5
11/29/91	7:55 PH	5,6	5.5	5.0	5.3	5.3	5.3	0.2	1.3
11/29/94	8:55 AM	6.0	5.+	6.3	5.4	5.1	5.6	0.5	8.7
11/30/91	8:00 AM	5.2	5. 1	5.2	5.0	5,4	5.2	0.2	3. 2
11/30/9	9:00 Att	5.6	5.3	4.8	1.6	5.3	5.1	0.4	8.0
11/30/94	10:00 AH	1.6	5.1	5.2	5. 1	+.9	5.0	0.3	6.1
11/30/91	11:00 A1	5.3	5.5	5.7	1.5	5. 2	5.2	0.5	8.7
11/30/94	12:00 PH	5. l	5.5	5.4	5. 1	5.5	5.3	0.2	3,9
11/30/94	1:00 PH	4.8	4.9	4.6	4.7	5.3	1.9	0.3	5,6
11/30/94	2:00 PH	5.7	4,9	5.5	5.0	6.3	5.3	0.3	6.3
11/30/91	3:00 PN	5.3	1,7	1.9	4.8	4.9	4.9	0.2	1.6
11/30/91	1:00 P1	5.6	4.7	5.6	5.1	5.2	5.2	0.4	7.2
11/30/94	5:00 PM	1.8	5.3	1.6	5.4	1.9	5.0	0.3	6.8
11/30/91	6:00 PH	1.8	4.7	5.9	5.3	6.1	5.1	0.4	8.5
11/30/94	7100 PH	5.0	5.5	1.6	5.6	5.2	5.2	0.1	7.8
11/30/91	8:00 P1	5.1	5.0	5.1	5.7	1.7	5.1	0.+	7.1
11/30/94	9:00 PH	5.3	1.5	5.5	5.2	5.0	5.1	0.3	6.7
12/1/91	7:50 AM	1.8	4.3	4.3	1.7	4.9	1.6	0.3	6.1
12/1/91	8:50 At	5.0	1.8	5.0	1.7	1.3	1.8	0.3	6.1
12/1/91	9:50 m	1.8	4.1	1.2	1.7	1.1	1.1	0.3	6.9
12/1/91	10:50 At 1	1.6	5.1	4.9	1.6	1.1	1.7	0.4	8.1
12/1/91	11150 AM	f.9	4.6	6.7	1.6	4.7	4.9	0.5	9.5
13/1/94	131EO PH	5.2	5.0	6.0	5,3	5.1	5.2	0.2	3.5
12/1/94	1145 PT	1,5	5,0	1.5	1,8	4,8	1.7	0.2	4.6
12/1/94	2:15 PT	1.1	1.6	4.8	5,0	1.6	4.7	0.2	4.9
13/1/94	1110 PT	5.6	5.6	1.8	5.1	1.8	5.2	0.4	7.8
12/1/94	5:10 PH	5.6	4.5	5.3	6.0	5.4	5.4	0.6	10.3
12/1/94	6:10 PH	5.8	5.3	5.7	5.2	5.0	5.4	0.3	6.3
12/1/94	7125 PH	5.5	5.0	5.3	5.5	5.5	5, 4	0.2	4.1
12/1/91	8125 PH	6.6	5.6	5.7	4.9	5.1	5.1	0.1	6.5
12/1/91	9:25 Ph	5.0	5.3	5.0	5.1	5.7	5, 3	0.3	5.6

Corpression - Hardness (Ip) - Rear

Date	Tipe	1	2	3	1	Б	Average	St Dev.	RSD
11/29/91	2145 PM	5.6	5. 1	5, [5.3	5.2	5.3	0.2	3.6
11/29/94	3:45 PM	5.8	6.0	6.3	5.8	5.9	6.D	0.2	3.5
11/29/94	1115 P1	5.1	6.1	6.0	5.8	6.1	6.1	0.2	3.6
11/29/94	5115 PM	6.0	5.6	6.1	6.5	5.8	5.9	0. †	6.1
11/29/91	6:15 P1	5.8	5.0	5.0	4.8	4.8	5.1	0.1	8.2
11/29/91	7155 PT	5.9	5.4	5.6	5.8	5.2	5.6	0.3	5. 1
11/29/94	8155 AM	5.0	5.5	5,9	5,3	6.4	5.6	0.5	9.7
11/30/91	8:00 AH	5.0	5,5	5.7	4.8	5.1	5.2	0.4	7.1
11/30/94	9:00 A11	5.9	4.9	6.3	5.5	5.7	5.7	0.5	9. 1
11/30/94	10:00 AH	5.6	5.5	1.8	5.0	6.7	5.3	0.1	7.4
11/30/94	11100 Ht	1.9	5, 2	5.2	5.1	4.6	5.0	0.3	5.1
11/30/94	12100 PH	5.8	5.0	5, 5	5,6	5.4	5.5	0.3	5,4
11/30/91	1100 PH	5.2	Б. 1	5,7	5.2	5.0	5.2	0.3	5.2
11/30/94	3:00 Pt	5,5	5.7	5.0	5.5	6.1	5.6	0.1	7.1
11/30/91	3:00 Pt	5.5	5,0	5. ♦	5.3	5. 4	5.3	0.2	3.6
11/30/91	4:00 PH	5.9	5.7	5.4	5.3	5.0	5.5	0.4	6.1
11/30/91	5:00 Ph	5.3	1.7	5.2	1.8	5.8	5.2	0.1	B. 5
11/30/94	6:00 PH	5.2	5.5	5.6	1.9	5.5	5.+	0.3	5.7
11/30/94	7:00 PH	5.1	5.6	5.1	5.1	5.6	5.1	0.2	3.0
11/30/94	8:00 PH	5.6	4.9	5.0	5.2	4.7	5.1	0.3	6.7
11/30/94	9:00 PH	1.9	5.1	5.8	5.4	5.7	5.4	0. †	7.1
12/1/91	7150 AH	5.1	5.0	5.2	5.0	4.6	5.0	0, 2	1.6
12/1/94	8150 AT	4.9	5.2	1.8	4.9	4.8	4.9	0.2	3.3
12/1/94	9:50 A11	5.7	4.0	4.7	5.0	4.9	4.7	0.+	8.4
12/1/94	10:50 AM	5.2	5.5	4.1	1.7	5. 1	6.0	0.5	9.+
12/1/91	11150 At	5.2	5.5	5.4	4.8	5.1	5.2	0.3	6.3
12/1/91	12:50 PH	4.7	5.0	5.8	5.2	6.0	5.3	0.6	10.2
12/1/94	1115 PT	5.5	5.6	1.7	5.4	5.0	5.2	0.4	7.2
12/1/94	2145 PH	5.5	5. 1	5.5	5.3	5.6	5.5	0.1	2.1
12/1/94	1110 PM	5.6	8.6	5.1	5.4	6.1	5.6	0.3	5.1
17/1/94	61 10 PM	5.5	5.9	5.4	6.2	6.1	5.9	0.4	7.4
12/1/94	6119 PM	5.1	5.7	5.7	5.0	5.9	5.7	0.2	3.3
12/1/94	7125 PH	5.5	5.7	5.2	6.3	5.5	5,+	0.2	3.6
12/1/91	8:25 P1	6.6	5.5	5.8	5.3	5.5	5.5	0.2	3.2
12/1/94	9:25 PM	6.7	5.6	5.1	5.6	5.9	5.6	0.3	5.3

PROCESS VALIDATION

DIGOXIN TABLETS, 0.26 mg - Belch # 4331A

Compression - Hardness (kp) - Front

Date	1180	1	2	3	1	5	Average	91 Dev.	930
12/2/31	10:00 M	5.2	5.1	5.2	5.1	1.7	5.2	0.3	5.5
12/2/31	11:00 At	1.6	1,8	1.5	5.2	1.9	1.9	0.2	1,1
12/2/91	12:00 PH	1.2	1.6	1.2	1.3	1.2	1.3	0,2	1.0
12/2/91	1:00 PM	1.8	5.4	5.2	1.6	5.3	5.1	0.9	6.8
12/2/31	2:05 Pft	5.0	5.0	1,6	1.6	1.5	1.2	0.2	5.1
12/2/31	3:10 PM	1.3	1.3	1.3	1.1	1.2	1.3	9.1	1.6
12/3/34	7:20 M	1.6	1.6	1.3	1.5	1.5	1.5	0.1	2.7
12/3/91	8:20 M1	1.9	5.1	1.1	1.9	1.5	1.8	0.3	6.2
12/3/91	9:20 M	1.5	5.1	1.3	1.1	1.8	1.6	0.1	9.7
12/3/91	10:20 An	1.6	1.9	1.8	5.2	1.1	4.8	0.3	6.3
12/3/91	11:35 M	5.0	5.0	1.6	5.0	1.8	1.9	0.2	3.7
12/3/91	12:35 PM	5.0	1.7	5.0	1.6	5.0	1.9	0.2	1.0
12/3/91	1:35 PM	1.5	1.7	5.6	1.7	4.9	1.9	0.1	8.7
12/3/91	2135 Pf	1.9	5.0	1.9	1.7	5.0	1.9	0.1	2.5
17/5/41	7155 M	9.9	3.9	1.2	1.1	3.9	1.0	0.1	3.5
12/5/91	8:55 M	1.3	1.3	3.7	1.3	1.3	1.2	0.3	6.1
12/5/91	9:55 M	1.2	1.7	1.1	1.0	1.6	1.1	0.3	7.7
12/5/91	11:00 M	1.3	1.6	4.2	1.5	1.2	1.1	0.2	1.2
12/5/41	11:50 m	1.7	1.5	1.6	1.5	1.8	1.6	0.1	2.8
12/5/94	12:50 PH	5.1	1.6	4.8	1.7	1.5	1.7	0.2	1.9
12/5/91	1:50 011	1.8	5.5	6.2	5.6	5.3	5.5	0.5	9.9
13-2-24	2:50 Ph	5.3	1.2	5.2	1.2	1.1	1.9	0.1	7.8
12/5/41	3:50 PH	1.9	5.1	1.8	1.8	1.2	1.9	0.3	5.6
12/5/91	1:50 Pf	1.0	1.9	1.8	1.8	1.3	1.7	Q. 3	6.0
12/5/31	5:30 Pf	1.5	1.7	1.9	1.3	5.1	1.9	0.3	6.1
12/6/91	7:50 M	1.3	1.1	3.9	1.5	1.5	1.3	0.2	5.8
12/6/94	9:30 M	1.7	1.6	1.3	1.1	1.9	1.6	0.2	5.2
12/6/91	10:35 M	1.3	1.2	1,3	1.7	1.7	1.1	0.2	5.1
12/6/91	11:35 W	1.8	5.0	1.6	1.7	1.9	4.8	0.2	9.3
12/6/91	12:95 PM	5.1	5.2	5.1	5.1	5.0	5.2	0.2	3.1
12/4/91	1:10 P1	5.5	1.8	5.0	5.5	5.5	5.3	0.3	6.1
15/6/94	2:10 PH	5.0	5.5	5.1	5.2	5.0	5.2	0.3	1.1
12/6/91	3;35 PH	5.1	5.1	1.1	1.9	5.0	5.0	0.1	7.1
12/7/91	Z:50 M1	1.5	5.0	1.8	1.2	5.1	1.0	0.2	5.0
12/7/91	8:50 M1	5.0	6.0	1.9	1.8	1.6	1.9	0.2	3.1
12/7/91	9:50 M	5.3	5.0	1.0	5.0	1.3	5.0	0.2	3.7
12/7/91	11:35 M		1.2	11	1.5	3.9	1.2	0.2	5.7

Compression - Hardness (kp) - Rear

Date	T1200		3	3	1	5	Average	9t Dev.	P\$0
12/2/91	10:00 M	1.5	5.5	1.5	1.3		1.8	0.5	10.2
13/2/91	11:00 M	1.7	5.9	5.3	1.3	5.1	5.2	0.5	8.9
12/2/91	12:00 PH	5.1	1.8	1.7	1.6	1.8	4.8	0.2	3.9
12/2/41	1:00 PM	5.9	5.8	1.9	5.0	5.3	5.1	0.5	9.5
17/2/41	2:05 PM	1.9	5.1	5.6	1.9	1.9	5.1	0.9	6.0
12/2/21	3;10 PH	1.1	1.3	1.1	1.1	1.5	1.3	0.2	3.5
12/3/91	7:20 M	1.5	5.2	5,1	1.6	5.5	5.0	0.1	8.1
12/3/91	8:20 M	5.0	5.1	5.3	5.4	5.5	5.1	0.2	1.3
12/3/91	9:20 M	5.0	5.2	5.1	5.5	5.6	5.3	0.2	1.5
12/3/91	10:20 M	5.2	5,2	5.3	5.2	5.5	5.3	0.1	2.5
12/3/91	11:35 M	1.0	5.6	5.2	1.7	5.0	5.0	0.3	6.1
12/3/91	12:35 PH	1.9	5.1	5.9	5.6	5.2	5.4	0.1	7.1
12/3/94	1:35 PM	1.6	5. 1	5.5	6.1	1.8	5.2	0.6	11.1
12/3/91	2:35 PM	5.5	1.9	5.3	1.8	1.3	5.0	0.5	9.1
12.5.31	7:55 M	1.0	1.2	1.3	1.3	3.9	1.1	0.2	1.1
12/5/91	9:55 At	1.5	1.6	5.2	5.1	5.3	5.0	0.1	0.1
12/5/91	9:55 AM	1.7	1.6	4.9	5.3	1.5	1.9	0.3	5.5
12/5/91	11:00 M	5.0	5.0	5.2	1.3	5.2	1.9	0.1	7.5
12/5/31	11:50 M	5.6	1.9	1.7	5.4	4.7	5.1	0.4	8.2
12/5/91	12:50 PM	5.1	5.4	5.2	5.0	5.0	5.11	0.2	3.3
17/5/91	1:50 PM	1.6	5.8	1.7	6.0	1.7	5.2	0.7	13.2
12/5/51	2:50 Pf	5.3	5,2	5.0	5.2	1.9	5.1	9.2	3.2
17/5/91	3:50 PM	5.6	1.8	1.5	5.5	5.2	5.1	0.5	9.1
12/5/91	1:50 Pft	5.6	5.8	5.6	5.2	5.0	5.1	0.3	6.0
12/5/91	5:30 Ph	5.2	5.1	5,3	5.5	5,1	5.2	0.2	3.2
12/6/94	7:50 M	1.5	1.8	5.2	1.9	5.0	5.0	0.2	3.1
12/4/31	9:35 AH	1.8	1.6	5.3	1.7	1.7	1.8	0.3	5.8
12/6/91	10:35 MI	5.0	1.3	5.1	5.1	5.3	5.0	0.1	7.8
12/6/91	11:35 M	1.8	5.3	1.7	1.5	1.7	1.8	0.3	6.2
12/6/91	12:35 Pf1	5.6	1.8	5.2	5.2	1.9	5.1	0.3	6.1
12/6/91	1:40 Pt	5.3	8.9	5,3	5.9	5.6	5.5	0.3	1.5
12/6/91	2:40 PH	6.3	5.7	5.5	5.3	5.1	5.1	0.2	1.2
12/4/91	3:35 Pri	1.9	5.9	6.11	5.7	5.8	5.7	0.5	8.1
17/7/91	7:50 M	1.1	5.3	5.11	1.8	5.1	1.9	0.1	7.1
12/7/91	8:50 M	5.3	1.7	5.0	5.2	5.3	5.1	0.3	5.0
12/7/94	9:50 M	5.5	5.1	1.9	5.2	5.1	5.2	0.2	1.2
12/7/94	11:35 M	5.1	5.0	5.2	5.0	1.5	5.0	0.3	5.1

AMIDE PHARMAGEUTICAL, HIG.

PROCESS VALIDATION

DIROXIN TABLETS, 0.25 mg . Balch # 4330A

Compression - Thickness (mm) - Front

Da16	Ting		2	1	1	. 5	₩81.906	St Doy.	RS0
11/22/91	1125 PM	3. 12	3. 13	3. 3	3. 12	3. 11	3. 12	0.01	0.3
11/22/91	2:10 PH	3.08	3. 10	3, 10	3. [1	3.09	9.10	0.01	0.1
11/22/31	3:10 PH	9.12	3, 10	3, 10	3.11	3, 11	3, 11	10.0	0.3
11/23/91	8:10 M	1.09	3.09	3. 10	3.09	3. 10	9.09	0.01	0.2
11/23/91	9:10 M	3.09	\$.08	3.08	3. 10	3.09	3.09	0.01	0.3
11/23/91	10:10 M	3, 12	3. 10	3. 10	3.12	3.09	3.11	0.01	0.1
11/23/91	11:25 M	3.12	3.13	3.11	3. 10	3, 12	3.12	0.01	0.1
11/23/31	12:25 Pf	3.11	3.09	3.10	3.09	3.08	3.09	0.01	0.1
11/23/91	1175 PI	1.10	3.11	3,09	3.03	3. [4]	3, 10	9.91	0.1
11/3/4	2;35 Pf	3.08	3.09	3. [1	3.09	3.09	3.09	0.01	0.1
11/23/31	3:35 PH	3.10	3, 10	3.09	3.08	3.07	3.09	0.01	0.1
11/25/31	7:35 M	3, 12	3.12	3.16	3. 12	3. 1	3. j3	0.02	0.6
11/25/41	8:95 M1	3.11	3, 10	9. 3	3. []	3, 12	3.11	0.01	0.1
11/25/41	\$140 M	3. 13	3. 13	3. 12	3. [3	3. [2	3, 13	0.01	0.2
11/25/91	10:40 M	9. 17	3.11	3. 19	3. 10	9. [5	9.13	9.02	0.6
11/25/21	11:10 11	3.10	2.13	3.09	3.11	3. 10	3, 10	0.01	9.1
11/25/91	12;45 PM	3, 13	3. 12	3. 13	3. 10	3.08	3.11	0.02	0.7
11/75/91	1:45 PM	1.11	9.10	9. 13	3.11	3. 12	3.11	0.01	0.1
11/26/91	8:00 M	3. 13	2. 15	3. 11	3.11	3. 2	3, 12	0.02	0.5
11/26/91	8:00 M	3. 12	3.10	3. 13	3. [1]	3,11	3.11	0.01	0.1
11/26/51	10:00 M	3, 12	3.11	3. 12	3, 11	3. 12	9, 12	0.01	0.2
11/26/91	11:10 M	3. 12	3. [1]	3.11	3. 13	3. 12	3, 12	0.01	0.3
11/25/91	12:10 Pf1	3. 12	3. 10	3. 10	3.11	3. 12	3.11	0.01	0.3
11/26/91	1:10 Pf	3. 13	3.10	3. 12	3.11	3. 3	3, 12	0.02	0.5
11/26/91	2:40 PM	3. 10	3. [3	3.09	3. 10	3. [0]	9.10	0.02	0.5
11/28/94	8:05 M	3. 12	3.11	9.16	3.16	7.11	3.11	0.02	0.5
11/28/91	9:05 AH	3.11	3. 15	3, 13	3.09	3.14	9.13	0.02	0.7
11/28/91	10:05 At	3. 10	3. 10	3.08	3, 12	3.11	3.10	0.01	0.1
11/29/91	11:05 M	2.11	3, 12	3.13	3, 15	3, 12	3, 13	0.02	0.5
11/28/91	12:10 PM	3. 12	3.09	3.12	3.08	3.09	3. 10	0.02	0.6
11/28/91	1:05 Pf	3, 12	3.11	9.12	3.11	3, 12	3. 2	0.01	0.2
11/28/21	2:05 Pft	2.11	3, 13	3.11	3, 12	3.12	3, 12	0.01	0.3
11/18/41	3:05 PH	3, 12	3.07	3,12	3.11	3.07	3.10	0.03	0.8
11/29/91	1:05 PH	3, 15	3. 13	9.11	3, 15	3. [5	3.11	0.01	0.9
11/19/41	5:05 PH	3.08	3.09	3.08	3.10	3.09	3.09	0.01	0.3
11/29/91	10:25 AN	3, 10	3. 12	3, 12	3. 10	3.11	3.11	0.01	0.3

Compression - Thickness (mm) - Rear

ı	Date	Time	1	2	3	1	5	Average	St Dev.	R80
1	11/11/91	1:33 P1	3. 12	3.11	3.12	3.10	3, [1	3.11	0.01	0,3
1	11/22/91	2110 PH	3, 12	3.15	9, 13	3. 12	3.10	3.12	0.02	D. 6
1	11/22/31	3:10 PM	3. 13	9. 13	3.14	3. 12	3.11	3.19	0.01	0.3
1	11/23/94	8:10 M	3, 13	3.11	9.11	3.13	3.10	3.12	0.01	0.1
	11/33/31	9:10 M	3.10	3.10	3.07	3.09	3.11	3.09	0.07	0.5
1	11/23/91	10:10 M	3. 13	3.09	3. 12	3.12	2.11	3.11	0.02	0.5
	11/22/99	II:25 M	3.12	3.09	3. 12	3.11	3.10	3.11	0.01	0.1
ı	11/23/91	12:25 PM	3.10	3.11	3.12	3, 10	3.11	3.11	0.01	0.3
1	11/23/91	1:25 PM	3.09	3.13	3. 10	3.11	3, 10	3.11	0.02	0.5
ł	11/23/91	2:35 Pt	3.09	3.09	3. 10	3,09	3.07	3.08	0.01	0.1
ł	11/23/21	9:36 PM	3. 10	3.11	3.09	3.09	3.10	3.10	0.01	0.3
ł	11/25/91	7:35 M1	3.11	3.11	3. 12	3.09	3.11	3.11	0.01	0.1
1	11/25/91	8;35 M	3.09	3.11	3. 11	3.12	3. 12	3, 12	0.02	0.6
1	11/25/91	9:10 M	3. 10	3.08	3, 13	3. 10	3.10	3, 10	0.02	0.6
ļ	11/25/91	10:10 At	2.11	2. 13	3. 3	3. 10	3, 11	3. 12	0.01	0.4
ļ	11/25/91	11:10 M	3, 10	3. [0	3.10	3, 13	3.19	3. 12	0.03	1.1
١	11/25/91	12:15 PH	3, 12	3.09	3.11	3. 10	3. 10	3. 10	0.01	0.1
Ì	11/5/4	1:15 PM	3, 10	3.09	3.10	3. 12	3. 12	3.11	0.01	0.1
1	11/28/31	8:00 M	3.11	3. 10	3, 15	3. 13	3. [1]	3. 12	0.02	0.6
1	11/26/94	9:00 M	3.09	3.11	3. 12	3. [3	3, 12	3.12	0.02	0.6
ļ	11/26/21	10:00 Att	3.12	2.11	3, 12	2, 10	3.12	3, 12	0.01	0.1
ı	11/26/91	11:10 M	3, 10	3.09	3.12	3. [3]	3.11	3.11	0.02	0.6
ı	11/26/91	12:10 Pri	3. 13	3, 13	3.12	3,11	9, 12	3.12	0.01	0.3
1	11/25/51	1:10 P1	3, 13	3, 12	3.11	3.12	3, 13	3, 12	0.01	0.3
ı	11/26/91	2:10 91	3.10	3.09	3,10	1.12	3.10	3.10	0.61	0.1
ı	11/28/94	8:05 M	3.11	3.11	3.15	3. 1	9. 13	9.11	0.01	0.2
ı	11/28/21	9:05 M	1.12	3.11	3.10	3, 10	3, 10	3.11	0.01	0.3
ı	11/28/91	10:05 M	3. 10	3. 10	3.11	3. 10	9. 12	2.11	0.01	0.3
ı	11/28/91	11:05 AH	3.10	3.12	3.09	2.11	3.10	3. [0]	0.01	0.5
1	11/28/91	12:10 PM	3.08	3, 10	9.09	3. 10	3.11	3.10	0.01	0.1
L	11/29/91	1:05 PM	3.07	3.04	3. 14	3.08	3.06	3.08	0.03	1.1
L	11/28/91	2:05 Pf	3.09	3.09	9, 13	9, 11	3.10	3.10	0.02	0.5
L	11/28/91	3:05 PM	3.09	2.11	3.09	3.08	3.08	3.09	0.01	0.1
L	11/28/91	1:05 PM	9. 12	3.11	9. 12	3.10	3. []	2.11	0.01	0.3
	11/18/31	5:05 PH	3.11	2.11	9.11	3. 12	3.12	2.11	0.01	0.2
L	11/29/91	10:25 At	3. 14	3. [3]	3. 15	3. 15	3. 13	9.11	0.01	0.3

HHEGES VALERSHIP

DIGOXIN TABLETS, 0.25 mg - Batch # 4338A

Compression - Thickness (mm) - Front

Date	Tine	1	2	3	1	5	Average	St Dev.	RSB
11/29/94	2:45 Pf1	3. 13	3. 12	3. 12	3. (3	3, 12	3, 17	0.01	0.2
11/29/91	3:45 Pt1	3, 13	3. 15	3. 13	3.14	3.13	3, 14	0.01	0.3
11/29/94	1:15 PH	3.16	3, 13	3.12	3.13	3, 13	3, 13	0.02	0.5
11/29/91	5:45 PH	3.14	3.15	3. 13	3. 15	3.11	3.14	0.01	0.3
11/29/91	6115 PM	3.13	3.16	3.09	3, 12	3.11	3.12	0.03	0.8
11/29/91	7:55 PH	3.11	3.11	3.10	3.13	3. 10	3, []	0.01	0.4
11/29/91	8:55 Ph	3. 11	3. 14	3.10	3.10	3, 13	3. 12	0.02	0.6
11/30/91	8:00 AH	3. 12	3.16	3.13	3. 15	3.12	3. 15	0.02	0.7
11/30/91	9:00 A11	3. [6]	3.14	3. 15	3.16	3.16	3. 15	0.01	0.3
11/30/91	10:00 AT	3. 15	3.14	3, 13	3.12	3. 13	3. 13	0.01	0.4
11/30/91	11:00 AT	3. [5	3. 16	3. 11	3.13	3.11	3. 14	0.02	0.6
11/30/94	12:00 PH	3.16	3. 15	3. 16	3, 17	3. 17	3. 16	0.01	0.3
11/30/91	1:00 PM	3.11	3. 6	3. 14	3, 12	3.12	3. 13	0.02	0.6
11/30/94	2:00 PH	3.11	3. [5]	3. 12	3. 16	3.11	3.14	0.01	0.5
11/30/94	3:00 Pt1	3.13	3, 13	3. 14	3. [5]	3. 15	3.14	0.01	0, 1
11/30/91	1:00 91	3. 12	3. 13	3. 15	3. 10	3. 14	3. 13	0.02	0.6
11/30/91	5:00 PH	3.11	3.12	3.13	3. 15	3.13	3. 13	0.01	0.+
11/30/91	6:00 PH	3.13	3, 15	3, 16	3.14	3.11	3.11	0.02	0.6
11/30/91	7:00 PH	3. 13	3. [6	3. 15	3.11	3, 13	3.14	0.01	0.4
11/30/91	8:00 PH	3.13	3.15	3. 16	3. 15	3.15	3. 15	0.01	0.3
11/30/91	9:00 PM	3.14	3.16	3. 12	3, 14	3. 15	3.14	0.01	0.5
12/1/91	7:50 AH	3. 15	3. 15	3. 16	3. 16	3.16	3.16	0.01	0.2
12/1/91	B:50 At	3, 16	3.16	3, 15	3.16	3.16	3, 16	0,00	0.1
12/1/91	9:50 At	3, 15	3.16	3.16	3.11	3.11	3, 15	0.01	0.3
12/1/91	10:50 AT	3.13	3.15	3.17	3, 13	3, 15	3, 15	0.02	0.5
12/1/94	11:50 M	3, 13	3.11	3.11	3. 3	3, 16	3.11	0.01	0.1
12/1/94	12:50 P1	3, 13	3. 17	3.17	3. 15	3. 15	3.15	0.02	0.6
12/1/94	1145 PT	3, 15	3.13	3. 13	3, 12	3. 14	3. [3	0.01	0.4
12/1/91	2:15 P1	3. [3]	3.12	3, 13	3.11	3.10	3.12	0.02	0.6
12/1/94	11 10 PH	3. 15	3.15	3, 16	3.15	3.16	3.15	0.01	0.2
12/1/91	5: 10 PH	3.11	3. 15	3.16	3, 18	3. 19	3. 16	0.02	0.7
12/1/94	6:10 Pt	3. 6	3. 17	3.15	3.11	3.17	3, 16	0.01	0.4
12/1/94	7:25 PH	3, 16	3. 16	3. 15	3, 17	3.18	3.16	0.01	0.4
12/1/94	8:25 Pf	3.17	3.16	3, 15	3.15	3.17	3. 16	0.01	0.3
12/1/91	9:25 PM	3. 15	3. 15	3. 16	3. 13	3, 16	3, 15	0.01	0.4

Compression - Thickness (nm) - Rear

Date	Tine		2	3	+	5	Average	St Dev.	RSO
11/29/94		3. 3	3.14	3.11	3. 13	3, 13	3. 13	0.01	0.1
11/29/94		3, 15	3.14	3, 14	3.14	3. 15	3, 14	0.01	D. 2
11/29/91		3. [6]	3.16	3. 13	3. [1	3.14	3, 15	0.01	0.4
11/29/91		3, 15	3.17	3.16	3. 15	3.17	3.16	0.01	0.3
11/29/91		3.11	3. 12	3. 10	3.11	3. 13	3.11	0.01	0.1
11/29/91		3.11	3. 13	3. 13	3.14	3. 13	3.13	0.01	0.+
11/29/94	8:55 PH	3, 12	3, [1]	3. 13	3.10	3.16	3. 12	0.02	0.7
11/30/91	9:00 AM	3.14	3. 13	3. 15	3. 15	3.14	3. [1	0.01	0.3
11/30/94		3. 13	3. 16	3, 15	3. 15	3.16	3, 15	0.01	0.+
11/30/94	10:00 AH	3. 12	3. 13	3. 10	3.11	3, 14	3. 12	0.02	0.5
11/30/94	11:00 AM	3.11	3. 10	3. 12	3.11	3, 13	3.11	0.01	0.4
11/30/94	12:00 Pt	3.11	3. 13	3.11	3.12	3.11	3, 12	0.01	0.3
11/30/91	1:00 PH	3,07	3. 15	3, 12	3.09	3.12	3.11	0.03	1.0
11/30/91	2:00 PH	3, 11	3.13	3. 15	3. 13	3.14	3.11	0,01	0.3
11/30/94	3:00 Pf	3. 3	3.11	3. 10	3, 13	3.14	3.12	0.02	0.5
11/30/91	1:00 Pf1	3.10	3.11	3, 12	3.11	3, 12	3.11	0.01	0.3
11/30/91	5:00 Pt	3, 13	3.11	3.13	3, 12	3.11	3, 12	10.0	0.3
11/30/94	6:00 PH	3.14	3.11	3.13	3. 12	3.11	3, 12	0.01	0.1
11/30/91	7:00 PH	3. 12	3.11	3.12	3, 13	3.14	3. 13	0.01	0.3
11/30/91	8:00 PM	3. 12	3, 13	3. 10	3.11	3. 12	3. 12	0.01	0.4
11/30/94	9:00 P1	3.11	3. 15	3.12	3, [5]	3.14	3. 14	0.01	0.4
12/1/94	7:50 Att	3.11	3.14	3.16	3.13	3. 13	3, 14	0.01	0.4
12/1/94	8:60 AM	3.14	3.13	3. 13	3. 13	3.12	3. 13	0,01	0.2
12/1/91	9:50 AM	3.11	3.09	3. 10	3. 12	3. 10	3, 10	0.01	0.4
12/1/91	10:50 At	3.12	3.13	3, 13	3, 12	3.11	3. 12	0.01	D. 3
12/1/91	11:50 At	3.12	3.14	3. 12	3.13	3.11	3.12	0.01	0.4
12/1/91	12:50 PM	3.11	3.16	3. 15	3.15	3, 15	3. 11	0.02	0.6
12/1/91	1:15 PH	3.11	3. 15	3.14	3, 12	3.12	3, 13	0.01	0.4
12/1/91	2:15 Pt	3, 13	3. [3]	3, 14	3.12	3.11	3. [3]	0.01	0.4
12/1/94	1:10 PH	3. 2	3. 4	3. 3	3.11	3. [3	3, 13	0.01	0.3
12/1/94	5:10 PH	3.12	3.11	3. 12	3.11	3.12	3. 12	0.01	0.2
12/1/91	6110 PM	3. 15	3. [3]	3. 12	3, 12	3.13	3. 13	0.01	0.4
12/1/91	7:25 PM	3. 15	3.12	3.12	3. 12	3.13	3. 13	0.01	0.1
12/1/91	8:25 Pf1	3. []	3. 15	3.12	3. 13	3.12	3. 13	0.02	0.5
12/1/91	9:25 PH	3, 13	3. 13	3.11	3.11	3.14	3, 12	0.01	0.1

PROCESS VALIDATION

BINGRIM FRIELET & O. 24 Mg (BAIGH V 4391 A

Compression - Thickness (mm) - Front

Date	1100		2	3	1	5	Average	St Dov.	PS0
12/2/94	10:00 M	3.11	3,11	3.12	3.11	3. 10	3.11	0.01	0,2
12/2/91	11:00 61	3.16	3, 13	3. 15	3, 11	3, 11	3.11	0.02	0.6
12/2/91	12:00 PM	3. 12	3.11	3. 12	3.10	3. 11	3, 11	0.01	0.3
12/2/91	1:00 PH	3.17	3. 19	3.17	3. 15	3, 19	3.17	0.01	0.5
12/2/91	2:05 PH	3.11	3, 15	3, 15	3, 15	3.15	3, 15	0.00	0.1
12/2/91	3:40 PM	3.09	3.06	3.06	3.07	3.10	3.08	0.02	0.6
12/3/94	7:20 M	2. 19	3.20	9.20	3.19	3, 18	9. 19	0.01	0.3
12/3/91	8:20 M1	3.12	3.12	3,20	3, 19	3, 18	3, 18	0.01	3.1
12/3/91	9:20 MI	3.12	3. 17	3.17	3. 15	3. 16	3.16	0.01	0.3
12/3/94	10:20 M1	3.14	3. 17	3.16	3.16	3.17	3.16	0.01	0.1
12/3/31	11:35 M	3. 19	3. 18	3, 18	3. 19	3.17	3. 18	0.01	0.2
12/3/91	12:35 Pf1	3. 19	3. 18	9. 17	3. 16	3.16	3, 17	0.01	0.1
12/3/91	1:35 Pf1	1.12	3. 16	3. 19	3.18	3, 16	3.12	0.01	0.1
12/3/91	2:35 PH	1, 18	3. 16	3. 16	3.16	3.19	3.16	0.01	0.1
17/5/91	7:55 M	3.17	9.19	3.18	3.20	9.16	3.19	0.01	0.5
13/5/91	8:55 M	3.18	3, 17	1.17	3.19	9, 19	3. 18	0.01	0.3
12/5/91	9:55 M	3.18	3.12	9.16	3.18	9.19	3.18	0.01	0.1
12/5/94	11:00 AM	3.17	3.16	3.14	3. 15	3. 18	9, 16	0.02	0.5
12/5/31	11:50 M	3.15	9.16	3. 16	3.15	3. 15	9. 15	0.01	0.2
12.5.31	12:50 PM	3.16	3. 15	3, 15	9, 17	3. 15	9, 16	0.01	0.3
12/5/91	1:50 PH	3.13	3, 15	3. (3	3.16	3. 13	3.11	0.01	0.5
12/5/91	2:50 PH	3.11	3, 15	3, 13	3. 13	3, 11	3.11	0.01	0.3
12/5/91	3:50 PM	3. 15	3. 15	3.11	3.15	3. 16	3. 15	0.01	0.2
13/5/91	1:50 PM	3.15	9.15	3.11	9. 15	9. [3	3.11	0.01	0.3
12/5/31	5:30 Pf	2.11	3. 15	3.12	3.11	3.15	3, 15	0.01	0.1
12/4/31	7:50 M	1.17	3. [5]	9. 13	3.11	9.13	2.11	0.01	0.9
12/6/91	3132 W	7.13	3.15	3.11	3.15	9. 5	3.11	0.01	0.3
12/6/31	10:35 AT	111	3.11	3.11	3.13	3.12	2.13	0.01	0.3
12/6/91	11:35 M	3.15	3. 11	3.11	9.16	3.14	3. [5	0.01	0.9
12/6/91	17:35 PM	3.13	3. 15	3. 13	3.11	3. 13	9, 13	0.01	. 0.5
12/4/31	1:10 Pf	3.12	3.11	3.11	3.11	3.11	1.13	0.01	0.5
12/6/91	2:10 Pf	3.12	3.12	3. 13	3, 13	3.11	3. 12	0.01	0.3
12/6/91	9:35 PN	3.13	9.13	3, 13	3.15	3. 13	3.13	0.01	0.3
12/2/21	7:50 At	2.15	3.15	3.11	2.13	3, 15	3.11	0.01	0.3
12/7/91	0:50 M	3.13	3.12	3.12	3.14	3.12	3, 13	0.01	0.3
12/7/91	9:50 M1	3.12	3. 12	3. 3	3. [3]	3. 11	3.13	9.01	0.3
12-7-91	11:35 M	-3.11.1	3.09	3.13	3, 13	3, 13	3, 12	0.02	0.6

Compression - Thickness (mm) - Rear

Date	Timo		2	3	1	5	Average	St Day.	290
12/2/91	10:00 At	3.13	3.11	3, 10	3.10	3.11	3.12	0.02	0.6
12/2/31	11:03 AT	3.12	3.11	3.11	3. 13	3.11	3.12	0.01	0.1
12/2/31	12:00 PH	3.11	3.11	3, 13	3. 10	3.10	3.11	0.01	0.1
12/2/91	1:00 PM	3.15	3. 18	3.11	3. 19	3.16	3.16	0.02	0,7
12/2/91	2:05 PH	3. 12	3. 12	3.11	3. 12	3.16	3. 13	0.02	0.6
12/2/91	9:10 PH	3.10	3.07	3.08	3.08	3.08	3.09	0.01	0.1
12/3/91	7120 M	3.11	3.18	3, 17	3. 19	3.16	3. 17	0.02	0.6
12/3/91	8:20 AH	3, 17	3.12	3.20	3.19	3.17	3, 18	0.01	0.4
12/3/91	9:20 M	3.15	3,17	3, 16	3.16	3.18	9.16	0.01	0.4
12/3/91	10:20 At	3.11	3, 15	3.16	3. 19	3.11	3. [1	0.01	0.1
12/3/91	11:35 M	3.15	3, 18	3.17	3. 16	3, 13	3. 16	0.02	0.6
12/3/41	12:35 PM	3.11	3, 15	3. 15	3. 15	3.16	3. 14	0.02	0.6
12/3/91	1:35 Pf	3, 15	3, 16	3, 12	3, 13	3. 12	9. 11	0.02	0.6
12/3/91	2:35 PH	2.11	3, 13	3, 13	9. 13	9. 12	9. 13	0.01	0.2
12/5/4	7:55 M	3.17	3.17	3. 15	3.14	3, 13	3.16	0.02	0.5
12/5/91	8:55 M	3.11	3.16	2.12	3, 15	3, 15	3, 15	0.01	0.1
12/5/34	9:55 M	3.10	3.12	3.11	3. 12	3, 10	3.12	0.02	0.5
12/5/91	11:00 AH	3. 15	3.11	3.17	9. 15	3. [6	3. 15	0.01	0.1
12/5/31	11:50 M	3.15	3.12	3.11	3. 12	3, 11	3, 13	0.01	0.1
12/5/91	12:50 PH	3, 15	3. 15	3. 13	3. (3	3, 12	3.11	9.01	0.1
12/5/91	1:50 PM	3.15	3, 14	3, 18	3. 15	3.11	3. 15	0.03	0. B
12/5/91	2:50 Pf	3.13	3.16	3, 13	3, 11	3, 12	3, 13	0.02	0.6
12/5/91	3:50 PH	3. 11	3. 15	3, 13	3. 15	3. 13	3.11	0.01	0.3
12/5/91	1:50 PH	9. 1	3. 11	3. 12	3. 16	3.13	3.15	0.01	0.5
12/5/91	5:30 Pt	3.11	3, 12	2, 11	3, 13	3.15	3, 13	0.02	0.5
17/6/91	7:50 M1	3.13	3. 13	3. 12	3. 13	3.11	3. 13	0.01	0.2
12/6/91	9:35 M1	3. [0	3. 10	. 3.12	3. 13	3.10	3.11	0.01	0.5
12/6/91	10:35 A1	3.12	3, 12	3.06	3.09	3, 12	3, 10	0.03	0.9
12/6/34	11:35 M	3.12	3. 10	3. 10	9.11	3.12	3.11	0.01	0.3
12/6/94	12:35 PH	3. 0	3.11	3.11	3, 11	3. [3	3.11	0.01	0.1
12/6/91	1:40 PM	3, 16	2, 13	3, 12	3, 12	3.11	3, 13	0.02	0.6
12/6/91	2;40 Pf	3.11	3.11	3. 10	3.11	3. 13	3. 1	0.01	
12/6/91	3;35 PH	3.11	3. 15	3. 15	3, 11	3.09	3.13	0.03	0.1
12/7/91	7:50 MI	3. [3]	3. 12	3, 11	3. 11	3.11	3. 13	0.01	
12/7/91	8:50 NI	3.11	2.13	3. 12	3.11	3. 13	3. 13	0.01	0.1
12/7/91	9:50 MI	3.12	3. 12	3. 13	9. 12	3.10	3. 12	0.01	0.1
12/7/91	11:35 M1	3.12	3, 17	3. 13	3. 10	3. 15	3, 13		
12:17	11122 111 1				3. 10 1	J. 13	3. 13	0.03	0.9

PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg

Compression - Friability (%)

Batch #	4330A	4330A	4336A	433KB	43376	43370
			10000		- 2001	1337 11
510e	Front	Rear	Front	Rear	Front	Dear
1st Third	0.1	0.1	- d	-	-	0 0
PAIGL POC		-			, ,	7:0
	-	1.1	7.0	0.1		0.
inal Third	0.1	0.1	· ·	0	-	0 0
Average	0.1	0.1	0.1			3.0
St Dev.	0.0	0.0	0.1			7:0
RSD	0.0	0.0	43.3			24 7
	The state of the s	The state of the s		0.0	0	0

PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg

Compression - Disintergration (min.)

12221
Rear
1.1
(,)
(,,)
. ~
v
21.7

PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg

Compression - Content Uniformity (%)

Batch #	4330A	4330A	4336A	4336A	4337A	4337A
Side	Front	Rear	Front	Rear	Front	Rear
1	101.7	99.8	102.7	98.5	98.9	103.1
2	100.4	99.9	102.8	98.9	98.6	100.5
3	98.2	99.9	100.8	99.0	97.9	102.2
4	99.8	103.1	104.4	99.0	100.1	99.5
5	100.5	99.9	100.4	100.1	99.3	102.9
6	102.1	101.5	101.3	98.7	102.1	98.4
7	101.1	99.1	99.0	97.7	99.7	99.8
8	100.2	100.5	101.2	99.0	101.3	100.5
9	103.6	100.0	101.4	99. <i>7</i>	100.9	101.3
10	100.8	98.8	99.7	105.4	99.2	97.4
11	100.8	99.8	101.7	98.0	99.9	98.1
12	100.8	98.3	101.0	98.7	102.3	98.3
13	102.3	97.7	99.6	98.4	101.9	97.2
14	101.6	99.0	99.1	99.9	101.2	97.4
15	101,2	101.0	100.9	98.7	100.4	96.8
16	99.9	101.3	101.2	100.5	101.0	98.0
. 17	101.0	99.8	100.9	98.5	98.6	99.9
18	102.7	101.3	99.4	98.0	98.9	101.1
19	102.0	99.0	101.4	99.3	99.9	100.3
20	103.1	99.0	101.1	100.0	100.1	100.4
21	100.8	101.4	100.2	98.8	99.6	101.0
22	103.9	100.3	97.2	99.1	100.1	100.8
23	99.5	98.8	98.7	97.2	99.6	97.0
24	99.3	101.2	98.6	97.8	99.2	98.6
25	97.7	100.4 101.5	99.5	99.0	101.1	104.5
26	100.5		98.8	100.4	101.9	102.5
27	102.8	101.4	100.0	98.2	99.3	99.9
28	103.2	100.2	99.1	100.1	101.6	105.2
29	100.9	100.9	101.0	100.0	100.8	102.8
30	100.8	100.9	101.0	99.3	100.6	101.3
31	99.7	101.6	100.0	99.6	101.6	103.4
32	97.8	100.6	100.3	99.4	101.2	102.3
33	98.4	100.9	98.9	98.1	100.6	101.8
34	102.4	101.7	98.7	97.7	101.1	100.9
35	100.8	99.9	100.6	100.2	100.0	103.0
36	100.2	100.8			99.0	104.5
37					99.7	102.4
Average	100.9	100.3	100.4	99.2	100.2	100.7
Dev.	1.6	1.1	1.4	1.4	1.1	2.3
RSD	1.5	1.1	1.4	1.4	1.1	2.3

PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg

Compression - Dissolution (%) - 15 min.

Batch #	4330A	4330A	4330A	4336A	4336A	4336A	4337A	4337A	4337A
Sample	ist Third	2nd Third	Final Third	1st Third		·	1st Third		Final Third
1	78.9	81.5	81.0	75.3	78.8	82.7	84.0	83, 4	82.3
2	84.8	84.4	81.0	73.2	77.7	81.1	84.5	83.6	84.D
3	81.1	82.3	80.5	73.7	79.6	79.2	81.2	83. D	82.2
4	81.5	79.9	81.7	71.6	76.9	79.5	83.4	83.2	78,5
5	84.9	81.6	83.6	73.7	77.4	79.8	79.6	82.1	78.3
6 -	82.9	81.8	81.8	71.3	77.3	81.2	82.3	82.4	80.3
7	77.2	79.5	81.6	73.6	73.8	78.4	79.9	83.4	78.9
- 8	84.1	77.8	83.8	74.3	77.5	80.0	81.4	83.7	78.3
9	84.9	81.3	81.9	73.5	80.0	82.1	82.5	82.8	78.1
10	84.1	80.8	81.7	73.1	80.8	80.3	79.9	83.0	80.1
11	81.7	82.4	84.9	72.7	79.3	83.2	81.0	84.2	78.2
12	B3.4	82.5	82.8	73.2	80.8	81.2	80.5	82.5	79.7
Average	82.5	81.3	82.2	73.3	78.3	80.7	81.7	83.1	79.9
St Dev.	2.5	1.7	1.3	1.1	2.0	1.5	1.7	0.6	2,0
RSD	3.0	2.1	1.6	1.5	2.5	1.8	2.0	0.7	2.5

Compression - Dissolution (%) - 60 min.

Batch #	4330A	433DA	433DA	4336A	4336A	4336A	4337A	4337A	4337A
Sample	1st Third	2nd Third	Final Third	1st Third	2nd Third	Final Third	ist Third	2nd Third	
11	90.0	94.4	96.6	89.5	89.8	92.4	104.7	94.7	91.4
2	94.2	94.1	96.7	93.2	90.7	97.5	98.1	99.1	94.9
3	94.8	94.9	100.7	91.8	93.2	94.8	93.6	100.9	93.7
4	95.6	94.5	99. 1	89.7	89.3	99.9	94.9	98.6	92.1
5	97.2	95.3	97.2	91.2	92.0	98.5	93.5	100.7	92.6
6	95.9	94.8	102.0	88.5	96. 1	107.5	92.2	100.0	90.1
7	94.4	96.1	98.7	89.6	87.2	95.6	101.6	101.3	90.4
8	96.1	95.2	95.5	90.4	89.5	93,8	96.1	99.5	88.8
9	97.4	98.7	89.4	91.9	97.9	94.7	102.8	99.7	89.7
10	96.6	93.6	102.5	91.9	93.2	97.0	98.6	99. 1	92.5
11	94.5	93.0	93. 1	92.9	90.9	96.6	95.2	102.5	89.6
12	97.2	99.0	101.7	96.1	92.3	96.3	96.5	100.3	88.1
Average	95.3	95.3	97.8	91.4	91.8	97.1	97.3	99.7	91.2
St Dev.	2.0	1.8	3.9	2.1	3.D	3.9	4.0	1.9	2. 1
RSD	2.1	1.9	4.0	2.3	3.3	4.0	4.1	1.9	2.3

DIGOXIN TABLETS, 0.25 mg - BATCH 4330A 60 Min. Dissolution - Final Third

DIGOXIN TABLETS, 0.25 mg - BATCH 4337A

PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg

Compression - Composite Dissolution (%)

RSD	St Dev.	Average	12	11	10	മ	ထ	7	6	IJ	4-	ω	2	1	Time	Batch #	
2. 1	1.7	79.8	79.7	82.2	82.4	78. 5	78.0	77.7	80. 1	77.9	79.8	81.9	80.1	78.7	15 min.	4330A	
1.7	1.5	92.5	93.7	92.0	96.7	92.0	92.1	92.0	93.2	91.9	91.6	91.0	92.0	91.2	60 mın.	4330A	
1.0	0.8	80.9	80.3	80.8	80.8	80.3	82.1	79.1	81.0	80.7	81.5	82.0	81.3	81.3	15 mın.	4336A	
2.1	2.0	94.1	93.3	94.8	96.5	91.7	92.7	93.9	93.0	93.9	95.7	97.9	94.7	91.1	60 mın.	4336A	
7.0	5.2	73.9	70.5	65.1	75.7	78.6	75.4	73.2	63.8	80.0	75.2	75.6	73.6	79.8	15 mın.	4337A	
	2.9	92.2	93.3	90.5	91.9	91.7	92.5	89.8	98.1	97.5	89.1	90.4	89.4	91.8	60 mın.	4337A	

DIGOXIN TABLETS, 0.25 mg - BATCH 4330A Composite Dissolution - 15 Min.

DIGOXIN TABLETS, 0.25 mg - BATCH 4330A

DIGOXIN TABLETS, 0.25 mg - BATCH 4336A

Composite Dissolution - 60 Min.

70 72174 76 78 80 82 84 86 88 90 92 94 96 98 10 02 04 08 08 10 12 14 71 73 75 77 79 81 83 85 87 89 91 93 95 97 9910 110 3 0 3 0 7 0 9 1 11 3 15

DIGOXIN TABLETS, 0.25 mg - BATCH 4337A

DIGOXIN TABLETS, 0.25 mg - BATCH 4337A

PROCESS VALIDATION

DIGOXIN TABLETS, 0.25 mg

High/Low kp - Dissolution (%) - 15 min.

_	1	_	-	-	-				_		
								81.0			
4337A	2.7.2	Front	80.6	82.3	79.3	- Va	0000	0.00	80.7	5 -	0 -
								74.7			
								80.7			
ł	ì	1	1				1	81.4			1
4336A	Lou Kn	Front	82.4	82.1	80.9	83.1	81.2	83.1	82.1	0.9	
4336A	High kp	Rear	81.1	77.6	82.0	78.7	80.7	81.1	80.2	1.7	2.1
4336A			82.6	81.3	79.5	78.8	80.7	82.7	80.8	1.6	2.0
4330A	Lou kp	Rear	81.3	78.6	76.9	79.1	77.5	79.8	78.9	1.6	
4330A	Lou kp	Front	80.0	78.3	80.6	78.3	80.5	79.3	79.5	1.0	1.3
4330A	High kp	Rear	80.0	80.2	79.6	79.3	76.7	79.0	79. 1	1.3	1.6
4330A	High kp	Front	78.4	81.2	82.8	83.6	83.4	77.9	81.2	2.5	3.1
Batch #	Sample	Side	-	2	3	4	ಬ	9	Average	St Dev.	RSD

High/Lou kp - Dissolution (%) - 60 min.

4337A	- 2001	Dear	07 7	. 00	0.00	33.0	37.75	28.6	90. G	3/.0
43378	2 2 2	Front	¥ 06	100.5	22.00	04.7	7.10	0,00	05.1	33.7
4337A	7 20 2	Rear	94.2	93.0	وي وي م	94.7	04.0	04.0	0000	0.00
4337A	1 -	7			i		1	93 1		1
4336A								95.3		
4336A	Lou Kn	Front	94.2	96.9	101.5	95.9	97 7	94 7	96.8	
4336A	High kp	Rear	96.0	96.1	96.4	98.7	98.0	95.2	96.7	
4336A	High kp	Front	92.8	93.2	94.6	94.3	95.0	95.4	94.2	-
4330A	Lou kp	Rear	98.7	91.6	91.1	90.5	80.8	92.2	92.5	- 0
4330A	Lou kp	Front	88.3	90.2	89.4	91.3	83.6	88. 1	88.5	2 2
4330A	High kp	Rear	89.6	89.7	88.5	89.7	93.2	92.6	90.6	σ
4330A	High kp	Front	98.6	89.7	95.2	93.9	91.0	89.7	91.4	26
Batch #	Sample	Side		2	3	4	ಬ	9	Average	C+ Dov

DIGOXIN TABLETS, 0.25 mg - BATCH 4330A

DIGOXIN TABLETS, 0.25 mg - BATCH 4330A 15 Min. Dissolution - Low kp

Confidential Subject to Protective Order

DIGOXIN TABLETS, 0.25 mg - BATCH 4330A 40 Min. Dissolution - High kp

DIGOXIN TABLETS, 0.25 mg - BATCH 4330A

DIGOXIN TABLETS, 0.25 mg - BATCH 4336A

X Dissolved

DIGOXIN TABLETS, 0.25 mg - BATCH 4337A 16 Min. Dissolution - High kp

DIGOXIN TABLETS, 0.25 mg - BATCH 4337A

DIGOXIN TABLETS, 0.25 mg - BATCH 4337A 60 Min, Dissolution - High kp

DIGOXIN TABLETS, 0.25 mg - BATCH 4337A

COMPRESSION DEPARTMENT

PROCESS VALIDATION

PRODUCT	NAME:_	Digoxir	Tublects	0.25	3374	(146)	
,							

BATCH #: 4330 A

TABLET PRESS ID 1: 66

	Limit	Time
High KP	above 8.0/cf	8.04 Am
Low KP	1-0-3.0 /68	8.40 AM
Maximum KP	Nut Possible	
Regular Speed	22 RPM	

	RPM	Time
High Speed	26	9.20 Am
Low Speed	18	9.58 Am

Done By: MS	Date: //- 29-94

comments: Adher Handress Tablet not por	1*in. 21 21 20 20 20 19 19 20 20 5*in. 120 21 19 12 21	Time Weight of Each Tablet(mg)	Front Exit Chute	* Composite Weight of 10 Tablets	5 min. 1109 3.07 3.06 3.08 7-1 6-7 7-1	1.4th. 1.2/0 3.08 3.05 3.09 6.6 7.0 7.5	Time Weight Thickness Hardness (g) mm KP	Front Exit Chute		Target Weight (1 Tablet) : 120.0 mg Target Weight (10 Tablets) : 1.200 g Weight Range (10 Tablets) : 1.176 - 1.	Tablet Press Id: 66 Hardness Tester	Prod Id: 146 Prod Name: Digoxin Tablets	Amide Pharmaceutical, Inc.
panou. Table	/20 /23 /22 119				3	35	Init			.224 g	r Id: 25/	0.25 mg	Process Validation
Maria erun	1 ×ta.	Time			5 #in.	1 ±15.	Time		High KD	Thic	Thic		li datio m
air Waper	120 119 1	Weight		·	1.209	1.211	Weight (g)		KP: A	Thickness Limits Hardness Limits	Thickness Gauge	Batch	
ナンシン	121 120 120	ght of Each	Rear Exit		307 3.08 3.06	3.06 3.07 3.08	Thicknes	Rear Exit	Above 8.0	its : 2.7	ge Id: <u>846</u>	#: 4380A	
176-98	12) 122 121	n Tablet(mg)	Chute		6 7.3 7.0 6.8	18 7.0 61 6.7	Hardness KP	Chute	0	- 3.7		Date: /	Page
1/14/94	1/ 9 /21				35	35	Init			車 11/17/97 シ	scale Id: 235	11.29.94	Of .

1 tin. 118 118 118 121 118		Time Weight of Each	Front Exit	* composite Weight of 10 Tablets	HT 1707	8.39 Am 1.192 3.32 3.33 3.32	Time Weight Thickness	Front Exit	Target Weight (1 Tablet) Target Weight (10 Tablets) Weight Range (10 Tablets)	Tablet Press Id: 66 Ha	Prod Id: 146 Prod Name: Digoxin Tablets	Amide Pharmaceutical, Inc.
1/2 61/11/21	110 120 1/0 121 1/0	h Tablet(mg)	Chute) - - - -	3 2 2 2 2 3 2 5 8 4	2 20 1.9 1.9 04	Hardness Init KP	Chute	: 120.0 mg : 1.200 g : 1.176 - 1.224 g	Hardness Tester Id: 25	COMPRESSION DATA SHEET	Process Validation
	1 4177.	Time				1 1/2 17.	Time		Thi	, Thi	DATA SH	ulidation
118 120	_	.₩e.		Ì	7.000	1.199	Weight (g)		Thickness Limits Hardness Limits	Thickness Gauge	EET Batch	·
Weight of Each :	of Each		Rear Exit C	i C	3.34 3.34 3.33	9.32 3.34 3.35	Thicknes	Rear Exit C	s : 2.7	ige Id: 646	#: 4380A	
120 119 121		Tablet(mg)	Chute		1.7 1.9 1.8	8.1 6.1 8.1	Hardness Kr	Chute	8.0 時()	Scale Id:	Date:	Page _
	1/9 /2				3	3	Init		0 ://:	n. Lu	11-29	유 1

	5 声声		Time		* 8	9:23 9:23	1.0 2.4 0.1 0.1	Time	Ĭ		Meight	Target	Tablet	Prod	
			₹ ———		Composite Weight of	7	Ha						et Press	Id:	
	116 723				e Wei	.195	1.20	⊯eight [*] (g)			ີ ໌		ss Id:	146	
	11/7		Weight	ጟ	ght o	3.11	0 3-15		۴ı		O Tak	(1 Tak	: 66	Prod	
) 1	it of	Front :		11 3.14	91651	Thickness	Front 1		Tablets)	(1 Tablet)	6	Name:	•
		/ / 2	Each	Exit -	10 Tablets	1 3.12	714	ness	Exit o		<u> </u>		На		
		130 11		Chute	ets	43	84	Ħа:	Chute		1.176	: 120.0	Hardness	Digoxin !	
	120 119		Tablet(mg)			3.9 5.0	4-7 4-3	Hardness KP			Įu		rester	Tablets	
	I	2 2	~				50. E				1.224		cer Id:	ts 0.25	COM
,	114	13.3				3	22	Init			Q		1: 25	525 mg	COMPRESSION
	h			 				·		7			F		ON D
	5 * in.	1 *#fn.	Time			S Ato.	1 win.	Time		Thigh-speed	Har	Thi	Thi.		OMPRESSION DATA SHEET
		7//					- 19	Weight (g)		eed	Hardness	Thickness	Thickness	Ваз	
	I	119 120	Weight			97 3	w.) _F ,	ы	B	Limits	Limits	Gauge	Batch #:	
		8110	nt of	Rear I		3.15 3.11	3-09 303	n de	Rear I	RPB		bi	Hd:		
	/22	7 - 95	Bach	Exit 0		1 3-13	3.3.57	Thicknes	Excit 0	26	: 2.0	: 2:7	646	4330A	
		118	Table	Chute		4.3	3.7	E	Chute		8.0	- 3.7	•		
		121 120	Each Tablet(mg)			42	4.1	Hardness KP			Э	7	scale Id: 🔌	Date:	
	2 120	0 119				72	4.4 3	 					e id:	1	
	1119	1/17				Ž	\vec{z}	Hit					2	1-29-94	•

Target Weight Prod Target Tablet Amide Pharmaceutical, Inc. 5 410. 1 Hin. 4:57 xin. 0.0 Time ¥. Time Composite Weight of Hd: 3 Weight (1 Tablet)
Weight (10 Tablets)
Ramge (10 Tablets) Press Id: Weight (g) 1961 209 206 120 Weight Prod Name: 66 3.12 زبن Front Thickness Front Exit દ્ર 10 Tablets 0 H 3.15 Exit Each 3 3.14 Digoxin Tablets 0.25 Hardness Tester Id: Chute Chute Tablet(mg) 7.5 5.5 120.0 1.200 1.176 Hardness KP 7 カカ oo T 1/4 5-0 1.224 g COMPRESSION DATA SHEET Process Validation Init 3 3 7.4 25 Min. × Time ¥ ; I ow Speed Time Hardness Limits Thickness Gauge Id: Thickness Limits Weight* 1.209 208 Weight 3-13 3-14 Rear Exit Chute RPM 18 Thicknes 9 4330A EXit B Each 943 ر بي 13.14 2.0 Chute Tablet 8.4 ŧ ŧ Hardness KP 1/0 119 1:4 (pg) Ş Ħ ή Id: 11-29.99 29 Init Z 2 120

Comments

COMPRESSION DEPARTMENT

PROCESS VALIDATION

			1 /		
PRODUCT	HAME:	Digoxin	lablets	0.25 mg	•
	-				

BATCH #: 4336 A

TABLET PRESS ID 1: 66

	Limit	Time
IIIgh KP	above 8.0 Kp	2.55 Pm
Low KP	1.0-3.0 Kp.	3.15 fm
Maximum KP	Not Possible	
Regular Speed	2.3	

	RPM	Time
II.lgh Speed	27 RPm	3.35 Pm
Low Speed	19	4.00 pm

Done By:	P.IC	Date:	12-1-94

									-	
					Aspert .		wat pows be	handran m	Hybai	Comments:
				·						
120 119	119 119 118 113	1	1116 122 1	5 Min.	120) [18]	8 120 12	119 120 11	120 121 12	5 #in.
118 115	119 121 120 1	119 120 119 1	120 120	1 Min.	7	9 120 117	120 119 119	121 118 119 1	118 121 13	1 xis.
	Tablet(mg)	of Each	Weight	Time	:		Tablet(mg)	of Each	Weight	Time
	Chute	Rear Exit Ch					Chute	Front Exit C		
							rs.	of 10 Tablets	ite Weight	* Composite
3	6.2 6.7 62	3.10 3.10 3.08	1.199	5 Min.	<u> </u>	6.1 M.M.	9 6.9 33	3.10 3.09 310	1.198	
Ja 14.	€ 4 €°4 €°	3.12 3.10 3.11	1.201	1 Min.	<u>l`</u> _	B. 7 3. N.	6.2 6.5 6	308 3.10 310		2.55 F
Init	Hardness KP	Thicknes mm	Weight*	Time	l it	s Init	Hardness KP	Thickness	Weight*	Time
	Chute	Rear Exit Ch					Chute	Front Exit C		
	RPT 122	o eć	P Abore	tigh Kp	+					
المعاجدان	- 3.7 目 - 三字下	Limits : 2.7	Thickness Limit	Thic		J.224 g	120.0 mg 1.200 g 1.176 —	Tablet) Tablets) Tablets)	Weight (1 T Weight (10 Range (10 T	Target F Target F Weight I
d: 251	scale Id: 251	uge Id: 646	Thickness Gauge	Thic	25/	Tester Id:	Hardness Te	G G Ha	Press Id:	Tablet 1
2 1 94	Date: 12 1 04	#: 4336A	Batch		5 mg	ats 0.25	Digoxin Tablets	Prod Name: Dig	146	Prod Id:
9	Page of		On n	idati ba.M	Process Val	ET O		al, Inc.	Amide Pharmaceutical,	Ami de P

Comments:	5 Min. 120 119 118 117 121 120 1	1 Min. 120 119 120 117 11 9 118	Time Weight of Each Tabl	Front Exit Chute	* Composite Weight of 10 Tablets	5-Min. 1,194 334337335 1.9		Time Weight Thickness Ha	Front Exit Chute		Target Weight (1 Tablet) : 120 Target Weight (10 Tablets) : 1.2 Weight Range (10 Tablets) : 1.2	Tablet Press Id: 66 Hardness	Prod Id: 146 Prod Name: Digoxin	Amide Pharmaceutical, Inc.
	20 114 121 115 5 Kin.	121 117 [28]18 1 Hin.	Tablet(mg) Time), 7 2,2 M,M, 5 Min.	1.7 1.9 M.M. 1 Min.	Hardness Init Time		105760	120.0 mg Thic 1.200 g 1.176 — 1.224 g Hard	Tester Id: 25/	Tablets 0.25 mg	Process Validation COMPRESSION Large SHEE
	118 (20 (18 117) 119 117 120 (21 115 121	119 121 119 117 120 118 121 119 120	Weight of Each Tablet(mg)	Rear Exit Chute		1.199 336337 337 17 2.0 19 MM.	1.197 3.35 3.36 3.38 1.9 1.8 1.8 M.M.	Weight Thicknes Hardness Init	Rear Exit Chute)-0 - 3+0 RPM - 23	Thickness Limits : 2.7 - 3.7 mm Hardness Limits : -2.0 - 8.0 RF (1) (1) (28.7)	Thickness Gauge Id: 646 Scale Id: 235	Batch #: 4336A Date: 12/8/94	

20 119 120 120 121 109 122 111 119	119 119 120	1 Hin. 5 Min.	1118 115 115 117 119 114 118	1 Min. 120 116 119 113
ht of Each Tablet(mg)	Weight	Time	ht of Each Tablet(mg)	Time Weight
Rear Exit Chute			Front Exit Chute	ъ
			of 10 Tablets	* Composite Weight
3.K 3.18 3.18 5.4 5.5 5.5 KB	1. 194 3	5 Hin.	3-20 3-18 3-12 8-2 4-25-2 61	5 th. 1.184 3
3.14 3.14 3.20 5.6 5.1 5.0 KG	1. 184 2.	1 Hin.	3-15 3-15 3-21 4-6 4-2 4-4 168	7111
Thicknes Hardness Init	Weight*	Time	Thickness Hardness Init	Time Weight (g)
Rear Exit Chute	Ħ		Front Exit Chute	hai
NJ RPI	,	High Speed		
: 2.0 + 8.0 KP	Hardness Limits	Hard	: 1.176	Range (10 1
tts : 2.7 - 3.7 mm	Thickness Limits	Thic	Tablet) : 120.0 mg	Target Weight (1 Ta Target Weight (10 T
se Id: Suc Scale Id: 235	Thickness Gauge	1	66 Hardness Tester Id: 25/	Tablet Press Id:
#: 4886A Date: 12/1/94	Batch #:		Prod Name: Digoxin Tablets 0.25 mg	Prod Id: 146 Proc
Page of		Validation	Process COMPRESS	Amide Pharmaceutical, Inc.

COMPRESSION DEPARTMENT PROCESS VALIDATION

PRODUCT HAME: Digoxin Tablets 0.25 on

BATCH #: 4337 A

TABLET PRESS ID 1: 66

	Limit	Time
IIIgh KP	above 8.0 /cP	9.57 Am
Low RP	1.0 - 3.0 lep	10.28 A 877
- Maximum KP	Not Possible	
Regular Speed	. 24	

	RPM	Time
High Speed	28	10.58 Am
Low Speed	11	11.25 Am

Done By:	P-Ic	Date:	12-7-94	
	1 1			

Tablet Press Id: Prod Id: 146 Ami de 10.00 5 Min. 1 Min. X. Hin. Time Composite Time Tespest F F Pharmaceutical, Weight Weight (1 Tablet)
Weight (10 Tablets)
Range (10 Tablets) Weight* 19 1.198 Weight hish hardvess 28 7/8 120 Weight Prod Name: 7 = 8 NO 30.8 66 3.09 3.08 3.05 Front Front Thickness 멹 120 727 O H 10 20.07 Hac. 426 Exit Exit Chute こり Each 119 Tablets 3.10 Digoxin Tablets 0.25 mg Hardness Tester efs 1119 120 Chute Tablet <u>۔</u> ئ S 120.0 1.176 Hardness 120 2 120 6. Бщ) apone 121 119 l d H <u>ه</u> 4-9 1.224 120 = 80 ò COMPRESSION DATA SHEET 8.70 Process Validation ? ∩ Init 7 8 q 5 1351 HIGHER ハないとられ B 1 Min. Min. Time Min. Hardness Limits Thickness Gauge Thickness 46 (521 σ Weight* <u>_</u> 1.194 561.1 'n, 20 7 Limits Weight -empresos Above -120 3:11 Rear Rear Id: Thicknes 119 0 f 3.12 3.09 w 4337A Exit EXit ď, ō Each 848 0 C 121: 3.0) O 2.7 Chute Chute Tablet 118 1121 15:4 0) Ö Hardness RP 8.0 pm w 11/23/94 PO31 3,5 . S Page of 6.0 (関 120 5 6.3 0.0 000 なエ = 8 122118 KK 7 Init 235 ç

5 Min. 120 117 121 122 120 121 120 118 119 5 Min. 120 121 120 118	120 119 1122 118 119 120 120 1 Hin. 122 118 119	Time Weight of Each Tablet(mg) Time Weight of	Front Exit Chute Rear	* Composite Weight of 10 Tablets	1 Min. 1.191 3.32 3.36 3.34 1.1 1.4 1.3 Me 1 Min. 1.190 3.313 10.31 Am 1.197 3.41 3.33 3.46 1.2 1.3 1.5 PIC 5 Min. 1.192 3.36 3	ime Weight* Thickness Hardness Init Time Weight* (g) mm KP (g)	Front Exit Chute Rear	LOWKP 1.0-3.0	Target Weight (1 Tablet) : 120.0 mg Target Weight (10 Tablets) : 1.200 g Weight Range (10 Tablets) : 1.176 - 1.224 g Hardness Limits	Tablet Press Id: 66 Hardness Tester Id: 251 Thickness Gauge Id:	Prod Id: 146 Prod Name: Digoxin Tablets 0.25 mg Batch #: 4
118 121 120 120 119 118 122	120	of Each Tablet(mg)	Rear Exit Chute		3.31 3.39 3.34 1.5 1.5 1.5 1.7 F.K	Thicknes Hardness Init	Rear Exit Chute	o ROM-NA	: 2.7 - 3.7 mm : 2.0 - 8.0 mm \(\tau \) ///23/9	d: 646 scale Id: 235	4337A Date: 12-7-9

Comments:

Amide Pharma	Amide Pharmaceutical, Inc. Process Validation COMPRESSION DATA SH Prod Id: 146 Prod Name: Digoxin Tablets 0.25 mg	Lidati	SHEET Batch	#: 4837A	Page Date:	of 1
Tablet Pr	r Id:	_ Thic		ye Id: <u>64</u> (Scale Id: 23	1: 23
Target We Target We Weight Ra	Weight (1 Tablet) : 120.0 mg Weight (10 Tablets) : 1.200 g Range (10 Tablets) : 1.176 - 1.224 g	Thicknes Hardness How Speed	Thickness Limits Hardness Limits	its : 2.7	- 3.7 III	
	Front Exit Chute			Rear Exit Ch	Chute	
Time	Weight Thickness Hardness Init	Time	Weight*	Thicknes	Hardness KP	Tait
1 Min. 1 Min. 11.01 Am 5 Min.	1.206 3.16 3.12 3.18 4.1 4.4 4.0 P.1C	1 Min.	1.222	3.15 3.16 3.18	4.4 S.3 S.1 4.4 S.5 S.2	P.K
* Composi	Composite Weight of 10 Tablets					·
Time	Front Exit Chute Weight of Each Tablet(mg)	Time	Re Weight	ar Exit (Chute Tablet(mg)	
1 Hin.	119 124 119 126 125 119 117 125 120 119	1 Min.	123 126 1	119 124 121	121 125 118 121 123	13 120
5 Kin.	121 122 120 121 126 124 115 117 122 120	5 Kin.	122 123 1	118 126 120 1	122 117 122	119 121

Comments:

	Comments:
Min. 122 120 120 121 119 120 121 122	5 Min. 1/20 1/20 1/21 1/20 1/21 1/22 1/20 1/20
1 Min. 122 122 121 120 118 121 123 121	1 1/9 1/20 1/20 1/21 1/19 1/20
Time Weight of Each Tablet(mg)	Time Weight of Each Tablet(mg)
Rear Exit Chute	Front Exit Chute
	Composite Weight of 10 Tablets
Hin. 1.210 3.12 3.16 3.15 5.1 5.5 4.8	5 Min. 1. 706 3.14 3.16 3.15 4.9 4.6 4.4 616
Min. 1.208 3.13 3.173.12 5.2 4.6 5.5	1.208 3.16 3.15 3.16 4.5 4.74.8 8.1C
Time Weight* Thicknes Hardness	weight* Thickness Hardness Init
Rear Exit Chute	Front Exit Chute
Low Speed 19 RPM	
Thickness Limits : 2.7 - 3.7 mm Hardness Limits : 2.0 - 8.0 KP	<pre>Target Weight (1 Tablet) : 120.0 mg Target Weight (10 Tablets) : 1.200 g Weight Range (10 Tablets) : 1.176 - 1.224 g</pre>
Thickness Gauge Id: 646 Scale Id:	Tablet Press Id: 66 Hardness Tester Id: 251
Batch #: 4887A Date:	Prod Id: 146 Prod Name: Digoxin Tablets 0.25 mg
Page Page	Amide Pharmaceutical, Inc. COMPRESSION DATA SH

Page 1 of 2

LABORATORY TEST REFORT FINISHED DRUG PRODUCT

	FINIBIAD BROG EROBOOK	
probuct! bidexin tablets o	ı zis md	
specificAtion! Usp	ti	olitkob #: <u>4330A</u>
chemist! P.k/AT volume	1: 321-04/11A12+AUE 1: 151	/31 DATE: 12/1/94
SAMPLE STAGE! Overall	326.61 10U	Daled 11/29/94
<u> </u>		
។ ខំ ទំ។	kesult	LiMit
DESCRIPTION: Colot:	White	MHTFF
profile:	Round Bisected Tablets	Round Bisected Tablets
other: bebossed	"A 146" on bisected side of the tablet	"A 146" om bisected side of the tablet
thickNess: (duideline)	3.1mm	3.0 min to 4.0 mm
WEIGHT VARIATION:	114.6 mg	± 10% Theo. Wt (120 mg) 108.0 mg - 132.0 mg
FRIABILITY!	0.1 1.	HAT 1.0 \$
ibbNtificAtioN: (A)	the retention time of the major beeks in the chromobinan of anoil to broads to standard for founding.	The retention time of the major peak in the chromatogram of Assay prepration corresponds to standard prepration.
Assay: bigoxin, 0.25 mg	100.4.1	g0.0% to 105.0%
uniformity of boshes	1) 101.4 \$ 6) 103.1 \$	85.0% to 115.0%
untra: (confent unlfarmity)	21/102.0 \$ 11/101.8	APPROVED
	11/103.1 1 11/99.51	and the second s
	41/102:1 \$ 81/100.6 \$	ku
	5) 100.3 \$ 10) 101.0 \$	12/1/4~
	AVI 101.57 HBBI 1.21	ksd: NMr 6.0%
M constits	PREPARED BY MINERL	Relet DATE: 11/1/11

6t13-146c

APPROVED BY SINGULAR Tad DATE: 11/1

() boes not comply

hade 2 of 2

LABORATORS TEST REPORT FINISHED DRUG PRODUCT

PRODUCT! bluoxin tablets, 0,25 mg	
specificAtioN: Usp	colitrol #: 4330A
CHEHIBT! K.A. VOLUHE #1 326.01	PAGE #1 164 DATE: 12111 014
SAMPLE STAGE! Overall composite	
Shire BE STRUE. OV Court (MT/) 1991C	or data.

test	' hësult	biHit
bissolution! Media: 500mb 0:in Nci Appar: 1, Ppm! 120 Temp! 37°C 1 0.5°C Time: 50 minutes	15 minutes! 1) 78.7	(Note - The specified tolerances are for a dissolved, and are not to be interpreted as ovalues.) Nut so to the interpreted as ovalues. Nut so the interpreted as of the interpreted are of bigorial dissolved in the interpreted and ho individual tablet has less than 75 of the interpreted in interpreted in individual tablet, the amount dissolved in its minutes is not more than 90% for each individual tablet. (In its belief amount) APPROVED
W complies	PREPARED BY! MILEUL	Exter DATE: 11/1911
() boes Not comply	VERHORER RATE ZITS LOUI	1 - 12 6 toxtes ullian

ac13-146d

Page 1 of 2

MABORATORY TEST REPORT FIRISHED DRUG PRODUCT

PRODUCT: bigoxin Tablets t):25 mg	
specificAtton: usb	<u> </u>	ontrol #: 4336 A
CHEMIST: 17 PK VOLUME	#:318-02/321-64 PAGE #: 41/3	168 DATE: 12/3/74
sample stage: Oferall (
	1	
TEST	RESULT	LIMIT
DESCRIPTION: Color!	While	White
Profile:	knund Riscelal Tables	Round Bisected Tablets
Other: Debossed	" A 116 on his coted side	"A 146" on bisected side of the tablet
THICKNESS: (Guideline)	3.1mm	3.0 mm to 4.0 mm
WEIGHT VARIATION:	119.8 mg	± 10% Theo: wt (120 mg) 108:0 mg - 132.0 mg
FRIABILITY!	0.1%	NMT 1.0 %
identification! (a)	Thereting in Home of the modern beak Inithe Chrome Whom of Frond 15 Preparalia Chromatala Chromatala	The retention time of the major peak in the chromatogram of Assay prepration corresponds to standard prepration.
AssAy: bigoxin, 0.25 Mg	100.3./,	90.0% to 105.0%
uniforMity of boshes units:	1) 99.4 \$ 6) 99.9 \$	85.0% to 115.0%
(Content Uniformity)	21/103.7 \$ 71/10/12 \$	
APPROVIDED IN JAMES I	3) 99.6 \$ 8) 99.7 \$ 4) 99.7 \$ 9) 99.6 \$ 5) 102.1 \$ 10) 99.3 \$ AV: 100.4 RED: 1.5 %	RSD: NAT 6.0%
() COMPLIES	PREPARED BY! Milegh	

0613-146c

) boes not comply

Page 2 of 2

LABORATORY TEST REFORT FINISHED DRUG PRODUCT

PRODUCT: plgoxin Tablets,		1,001
specification: usp		ONTROL #: 4336 A
chemist: PA volume	#: 332-00 PAGE #: 130	DATE: 1215174
SAMPLE STAGE: OVENELL C	ompositi dtd: 12/2/14	
	RESULT	LiMit
TEST .		
bissolution: Media: 500mb 0.1N Hc1	15 minutes:	(Note - The specified tolerances are for \$
	11 81.3 \$ 71 79.1 \$	dissolved, and are not to be interpreted as Q
Appar: 1, rpm: 120	2) 81.3 \$ 8) 82-1 \$	values: NLT 80% of the
Temp: 37°C ± 0.5°C	3) 820 \$ 9) 803 \$	to of Digoxin dissolved in 60 minutes for the
rime: 60 minutes	4) 81.5 \$ 10) 80.9 \$	averagë of 12 tablets tësted and no individual tablet nas less than 75%
	5) 90-7 \$ 11) 80-1 \$	of the LC of Digoxin dissolved in 60 minutes.
	6) 81-6 \$ 12) 80.1 \$	if the amount of Digoxin
	Average! &b. 9 }	dissolved in 50 minutes is more than 95% for any individual Tablet, the
		amount dissolved in 15 minutes is not more than
	60 Minutes!	long for each individual
	1) 9/1 \$ 71 93.9 \$	Tablet. (LC: Labeled amount)
	2) 94.7 \$ 8) 72-7 \$	
	3) 97.7 \$ 9) 91.7 \$	The state of the s
	4) 95.7 \$ 10) 96.5 \$	ANTROVED
	51 93.1 \$ 111 94.8 \$	in a
	61 93.0 \$ 121 95.1 \$	B1/35 DATE 12.59
	Average: 94.1 \$	
	mananan ave Nilie U.	Bule DATE: III OU

dc13-146d

11/11

() boes not comply

Page 1 of 2

LABORATORY TEST REPORT FINIBLED DRUG PRODUCT

PRODUCT: <u>bigoxin rabiets 0.25 md</u>	
	4337 A
SPECIFICATION: USP	CONTROL #:
1/P12	18194
CHEMIST: MC /P.K VOLUME #: 306.02/311.04 PAGE #: 84	4 281 DATE! 12 9 94
BAMPLE BTAGE: Overall Composite of the Sample	
BAMPLE STAGE! Overall Composite of the Sample	- Dated 12/8/94
Other Ba Carros.	

hample stage! Overall	Composite city sample	Daled 1218194
TEST	RESULT	LiMir
DESCRIPTION: Color:	alile	White
profile:	doing Bracoled tablets	Round Blsected Tablets
other: bebossed	"A146" on bosseled p side of the labeled	"À 146" on bisected side of the tablet
THICKNESS: (Guldellne)	3.1 mmi	3.0 mm to 4.0 mm
WEIGHT VÄRIATION!	120.1 mg	± 10% THEO: wt (120 mg) 108.0 mg - 132.0 mg
friåbitity:	0.14.	NMT 1.0 %
identification: (A)	-the retention lime at- -the major peak in the Chrimaters in chairy PEP. Corresponds to Std. Prejolation.	the retention time of the major peak in the chromatogram of Assay prepration corresponds to standard prepration.
AbsAY: bigoxin, 0.25 mg	160.1.1.	90.0% to 105.0%
UNIFORMITY OF DOSAGE UNITS!	1) 1024 \$ 6) 988 \$	85.0% to 115.0%
(Content Uniformity) APPROVED	4) 98.7 \$ 10) 101.3 \$ 1) 98.7 \$ 10) 101.3 \$ 1) 98.6 \$ 10) 101.3 \$	
(V) COMPLIES	PREPARED BY: Milesh (Edel DATES 11/1/11
() bobs Not comply		THE PORTER 11/1 WA
		bris-166c

Page 2 of 2

taboratory test report finished baud product

PRODUCT: bigoxin Tablets, 0:25 mg	
SPECIFICATION: USP	control #: 4337 A
CHEMIST: K.A. VOLUME #: 326-01	PAGE #: 177 DATE: 12/9/94
SAMPLE STAGE: Overall computit	1 the burch sarte: R18194

shapte styge! O neval	composite of the line	h 20140: R18194
TEST	RESULT	LIMIT
TEST DISSOLUTION: Media: 500mt 0.1N Nc1 Appar: 1, rpm: 120 Temp: 37°C ± 0.5°C Time: 60 minutes AFPROVED	15 minutes! 1) 74.8	(Note - The specified tolerances are for & dissolved; and are not to be interpreted as Q values.) NiT 80% of the ic of Digoxin dissolved in 60 minutes for the average of 12 tablets tested and no individual tablet has less than 75% of the ic of Digoxin dissolved in 60 minutes. If the amount of Digoxin dissolved in 50 minutes is more than 95% for any individual Tablet, the amount dissolved in 15 minutes is not more than 90% for each individual Tablet. (LC: Labeled amount)
M COMPLIBE	PREPARED BY: Milesti	Pole DATE: 11/1/74
() рова нод соньтя	APPROVED BY: Suzjacia	A-Paled DATE: IIIIah

ac13-146d

PROTOCIL No. 002

AHIDE PHARMACEUTICAL, INC.

PROCESS VALIDATION PROTOCOL

DIGOXIN TABLETS 0.25 mg BBA. 00 MPR NO. 14602

	BATCH SIZE: 4,200,000 TABLETS
PREPARED BY:	Dennine B. D
	Regulatory Affairs Director
DATE:	11/15/94
APPROVED BY;	
· .	Asheh G. N.3 &
	Manufacturing Operations Director
DATE;	11-16-94
	seren en
	Quality Assurance Director
DATE:	11/17/94
. ·	Swalth Patet Quality Control Director
DATE:	11/16/an
Management	April G Nizila
	Vice President Operations
DATE:	11-16-94.

PROCESS VALIDATION PROTOCOL - DIGOXIN TABLETS 0.25 mg MPR NO. 14602 REV.00

PURPOSE;

This document provides the procedure to be followed to validate the manufacturing process for Digoxin Tablets 0.25 mg. It applies to the next three consecutive batches to be produced.

SCOPE:

This protocol is designed to be prospective in nature.

The guidelines presented here include all steps of the manufacturing process which may have an impact on product quality. They are as follows:

Raw Materials Blending Compression

Details of the process will be found in the completed copies of the Manufacturing Batch Records which are available in the file. A summary of the process is found on the attached flow chart. The major equipment used will be documented and monitored as described in the appropriate section below.

Temperature and humidity will be monitored in the production area on a daily basis.

2% excess of Digoxin is added in the finished product to compensate for production losses.

This product is manufactured by making three parts of the blend upto pre-lubrication stage in Blender #35. This is similar to the Digoxin 0.125 mg tablet strength which was previously validated. These parts will be combined and lubricated in blender #36. This will enable us to manufacture a larger batch. The blend for all the parts in Blender #35 will be sampled and tested along with the final blend in Blender #36.

The data gathered during the course of this study will be evaluated and any adjustments to the predetermined specifications or guidelines will be made as warranted based on the results of the three validation batches.

PROCESS VALIDATION PROTOCOL - DIGOXIN TABLETS 0.25 mg MPR NO. 14602 REV.00

PROCEDURE:

RAW HATERIALS

All raw materials used in a validation batch will be certified to meet all current Amide specifications for that item. These will specifically include particle size profile, bulk density, and tamped density.

Certification may be accomplished through direct testing by Amide, or an approved contract laboratory, or through a manufacturers Certificate of Analysis.

Digoxin, USP will be tested by Amide, or an approved contract laboratory for the complete monograph. This will include bulk density, tamped density, and particle size testing.

The excipients will be tested by Amide, or an approved contract laboratory, for those parameters required for expired stock retesting. In addition, particle size, bulk and tamped density will be run on all ingredients. The other results may be taken from the manufacturers COA.

In addition to the actual results, the name of the manufacturer, and the manufacturers lot number should be included in the report.

If more than one lot of a raw material is used in the production of the three batches the data should be evaluated to determine if any differences are detectable.

The acceptance criteria will be the specification limits for those tests listed in the Specification document.

BLENDING UNIFORMITY

The first preblend will be produced in the 3 cu.ft. Twin Shell Blender, (#32). The speed will be monitored and documented both empty and during blending.

The blend in this step will be subjected to further processing, no sampling will be taken at this point.

The second blend will be produced in the 10 Cu Ft. Twin Shell Blender, (#35). The speed will be monitored and documented both empty and during blending.

PROCESS VALIDATION PROTOCOL - DIGOXIN TABLETS 0.25 mg MPR NO. 14602 REV.00

The sampling plan for this blend is designed to evaluate overall blend uniformity, and those points in the blender where uniformity is most difficult to achieve. This is done to assure that complete blending is done since the next step is only lubrication. Samples are to be taken from the points shown below using only the 36 inch (small chamber) single port thief. The sample drawn should be about 350 mg which is three times the single dosage unit, and should be submitted to the laboratory in "Butter Paper."

SAMPLING POINTS

- 1. Left Column Top left 7. Middle - Left
- 2. Left Column Top Center 8. Middle - Center
- 3. Left Column Top Right 9. Middle - Right 10. Bottom - Left
- 4. Right Column Top left
- 5. Right Column Top Center 11. Bottom - Right
- 6. Right Column Top Right

The samples are to be analyzed individually, without being ground, for Digoxin. No composite samples are to be prepared. The sample weight used for analysis should approximate 116.5 mg, which is the amount of this blend which would be present in one unit of the tablet.

Acceptance criteria is 85.0 - 115.0 % Th for the individual data points. This product has a 2% overage to compensate for the production losses.

The final blend will be produced in the 56 Cu Ft. Double Cone Blender, PK, 21 rpm. (#22). The speed will be monitored and recorded.

PROCESS VALIDATION PROTOCOL - DIGOXIN TABLETS 0.25 mg MPR No. 14602 REV.00

The sampling plan for the final blend is designed to evaluate overall blend uniformity, and those points in the blender where uniformity is most difficult to achieve. Samples about 360 mg are to be taken from the points shown below using only the 72 inch (small chamber) single port thief. This is required to approximate as close as possible to three times the dosage unit.

Three samples of about 150 g will be taken with the help of a stainless steel their large chamber from the top center, middle center and bottom center of the blender. These sample will be tested for physical characterization which includes; bulk and tap density and particle size analysis. This data is for characterization only and these parameters will not be used to monitor routine production. Therefore, acceptance criteria will not be established.

SAMPLING POINTS

1. CENTER - Top
2. CENTER - Middle
3. CENTER - Middle
4. LEFT - Slope
5. RIGHT - Slope
6. LEFT - Middle
7. RIGHT - Middle
8. RIGHT - Middle
9. RIGHT - Top
10. FRONT - Middle
11. FRONT - Top
12. REAR - Middle
13. REAR - Top

7. LEFT - Top
Note - On the diagram below points 12 and 13 are directly behind 10 and 11.

The samples are to be analyzed individually, without being ground, for Digoxin. No composite samples are to be prepared. The sample weight used for analysis should approximate 120.0 mg, which is the amount of this blend which would be present in one unit of the tablet.

Acceptance criteria is 85.0 - 115.0 % Th for the individual data points. This product has a 2% overage to compensate for the production losses.

PROCESS VALIDATION PROTOCOL - DIGOXIN TABLETS 0.25 mg MPR NO. 14602 REV.00

COMPRESSION

Compression will be accomplished using the stokes 45 station tablet press. The speed will be determined and documented during the validation study.

During compression samples will be collected every hour by QA. These samples will be evaluated for individual tablet weight, thickness, and hardness. This will be 10 tablets for weight, and five each for thickness and hardness. Front and rear samples will be tested separately and will not be composited for any test in this section unless specifically stated.

The hourly samples should be arranged chronologically and the batch divided into thirds. Each third should be evaluated as described below for all tests except content uniformity. The samples for each test should be prepared by selecting, as close as possible, an equal number of tablets from each hourly sample. If selecting one tablet per hour results in a greater number of tablets than the test requires the distribution should be as even as possible.

TEST N
Friability 10 g - 1 Run
Disintegration 6
Dissolution 12 (6 front & 6 rear)

Content Uniformity testing is to be run across the entire batch. One tablet per hourly sample is to be run with a minimum of 30 tablets being required. The tablets selected for testing should be weighed prior to testing and their identity maintained. If compression runs for less than 30 hours, the additional tablets should be selected as evenly distributed as possible throughout the batch.

A portion of the blend will be run at hardness of 1.0 - 3.0 KP and above 8.0 KP. This will determine the effect of hardness on friability and dissolution.

Minimum quantities sufficient to equilibrate the press will be run at both lower and higher speeds. The actual ranges will be determined during production. Samples will be evaluated for hardness and weight.

Data analysis will consist of Average and Standard Deviation, with comparison both within and across the three batches. The data collected within each batch will also be evaluated for any possible trends.

PROCESS VALIDATION PROTOCOL - DIGOXIN TABLETS 0.25 mg MPR NO. 14602 REV.00

An overall composite sample will be prepared from all the hourly samples. This data will provide the basis for product release and will also be the initial data for stability.

Acceptance criteria will be as follows:

Target Weight (1 tablet): Target Weight (10 tablets): Weight Range (1 tablet): 120.0 mg 1.200 g 0.114 - 0.126 g2.7 - 3.7 mm Thickness: 2.0 - 8.0 KP Hardness: NMT 18 Friability Meets requirements. Identification Content Uniformity 85.0% - 115.0% (RSD NMT 6.0%) Dissolution Meets USP Requirement. 90.0 - 105.0% Assay

BATCH FLOW CHART FOR DIGOXIN TABLETS 0.25 mg BATCH BIZE: 4,200,000 TABLETS MPR # 14602, REV # 00

