1. 選擇的超參數:神經網路層數 (1、5、10) 及訓練迴圈數 (50、150、200)

	Training	Validation	Best Validation	Test
	accuracy	accuracy	accuracy	accuracy
Original	80.42 %	72.84 %	76.54 %	67.74 %
(# layer = 3, epochs = 100)	00.42 %	72.64 %	70.54 %	67.74 %
# layer = 1	62.96 %	66.67 %	66.67 %	64.52 %
# layer = 5	85.19 %	71.60 %	72.84 %	74.19 %
# layer = 10	80.95 %	67.90 %	79.01 %	61.29 %
epochs = 50	80.42 %	70.37 %	70.37 %	58.06 %
epochs = 150	87.83 %	77.78 %	80.25 %	80.65 %
epochs = 200	88.36 %	81.48 %	81.48 %	70.97 %

表格一

2. 從表格一與圖二三四可以看出,只有1層時準確度都是下降;變為5層時, 訓練及測試準確度上升了5~6%;但增加至10層時驗證及測試準確度又減少 了。由此可知,增加層數有機會讓模型表現更好,但增加過多可能反而使表 現變差。從圖五六七發現增加 epochs 可以讓準確度上升,但並非 epochs 越 多準確度越高。

3. 從表格二中可以看出,大部分實驗的驗證準確度皆低於訓練準確度,表示模型發生過擬合,變得過度依賴訓練集的資料,因此在測試集上表現就沒那麼好。而再看到表格三發現驗證集與測試集的準確度也有些許落差,可能意味著測試集和驗證集中的資料分布不盡相同。

	Training	Validation	Difference
	accuracy	accuracy	
Original	80.42 %	72.84 %	7.58 %
(# layer = 3, epochs = 100)	00.42 //	72.64 //	7.36 //
# layer = 1	62.96 %	66.67 %	-3.71 %
# layer = 5	85.19 %	71.60 %	13.59 %
# layer = 10	80.95 %	67.90 %	13.05 %
epochs = 50	80.42 %	70.37 %	10.05 %
epochs = 150	87.83 %	77.78 %	10.05 %
epochs = 200	88.36 %	81.48 %	6.88 %

表格二

	Validation accuracy	Test accuracy	Difference
Original (# layer = 3, epochs = 100)	72.84 %	67.74 %	-5.10 %
# layer = 1	66.67 %	64.52 %	-2.15 %
# layer = 5	71.60 %	74.19 %	2.59 %
# layer = 10	67.90 %	61.29 %	-6.61 %
epochs = 50	70.37 %	58.06 %	-12.31 %
epochs = 150	77.78 %	80.65 %	2.87 %
epochs = 200	81.48 %	70.97 %	-10.51 %

表格三

4. 進行特徵篩選有幾個常用的方法,像是過濾法(利用皮爾森相關係數或卡方檢定等,選出前 k 個值最高的特徵)、包裝器特徵篩選方法(例如隨機森林、kNN)、嵌入法(例如 L1, L2 正規化),目的是為了減少對預測沒有幫助的特徵避免模型過擬合,同時能夠增加可解釋性。

參考資料:<u>https://zhuanlan.zhihu.com/p/74198735</u>、

https://medium.com/kkproject/%E7%89%B9%E5%BE%B5%E7%AF%A9%E9%81%B8-

%E5%9F%BA%E6%9C%AC%E4%BB%8B%E7%B4%B9-5645dc8cae56

5. 在深度學習的模型中有一些是專門用來處理表格資料,如 TabNet, Wide & Deep Learning, DeepFM 等。以 TabNet 為例,它先是建構一個可以模擬決策樹的神經網路,保留樹模型的優勢(如決策流形為超平面邊界、可解釋性高),再來引進了注意力機制讓模型自己學習特徵之間的關聯性,進而節省在特徵工程上所耗費的時間與人力,並在訓練過程中利用遞歸特徵消除法逐步刪除較不重要的特徵,從而提高模型的性能。

參考資料:https://zhuanlan.zhihu.com/p/152211918、

https://zhuanlan.zhihu.com/p/447814132