Department of Mathematics Indian Institute of Technology, Delhi MTL 122: Real and Complex Analysis Course Information

Name	Email
Aparajita Dasgupta (Instructor)	adasgupta@maths.iitd.ac.in
Abhilash Tushir (Teaching Assistant)	maz198077@iitd.ac.in
Mrigank Raman (Teaching Assistant)	mt1170736@iitd.ac.in
Santosh Kumar Nayak (Teaching Assistant)	maz188451@maths.iitd.ac.in

Course contents:

Real Analysis:

Metric spaces: Definition and examples. Open, closed and bounded sets. Interior, closure and boundary. Convergence and completeness. Continuity and uniform continuity. Connectedness, compactness and separability. Heine-Borel theorem. Pointwise and uniform convergence of real-valued functions. Equicontinuity, Ascoli-Arzela theorem

Complex Analysis:

Limits, continuity and differentiability of functions of a complex variable. Analytic functions, the Cauchy-Riemann equations. Definition of contour integrals, Cauchy's integral formula and derivatives of analytic functions. Morera's and Liouville's theorems. Maximum modulus principle. Taylor and Laurent series. Isolated singular points and residues. Cauchy's residue theorem and applications.

Reference Books

- 1. Metric Spaces, O'Searcoid, Mícheál
- 2. Elementary Analysis: The Theory of Calculus, Springer, K. A Ross
- 3. Victor Bryant, Metric spaces: iteration and application, Cambridge, 1985
- 4. Complex Analysis, Elias M. Stein and Rami Shakarchi.
- 5. Complex Variables and Applications, James Brown and Ruel Churchill

Information about the class:

- **1. Lectures:** Weekly 3 hours of online lectures. Every week's lectures will be uploaded on the Impartus MTL122 page (Friday around 6-7pm). We will also upload the relevant tutorial problems and practice problems on the same page.
- **2. Online Tutorial sessions:** As per institute schedule, we will conduct the tutorial sessions in live.
- **3.** We will use piazza for all our class discussion. Please don't forget to join: Enroll for the same using the link: <u>piazza.com/iit_delhi/spring2021/mtl122</u>

Access Code: mtl122

Department of Mathematics Indian Institute of Technology, Delhi MTL 122: Real and Complex Analysis Course Information

Grading Policy:

There will be one minor examination of 30%, one major examination of 40%, and two quizzes (out of three quizzes best two will be considered) which carry the remaining 30% (15% each). For audit pass you need to score at least 35%.

Exam	Date	
Quiz 1	28 th Feb 2021	Metric spaces: Definition and examples. Open,
		closed and bounded sets.
		Interior, closure and
		boundary. Convergence and completeness.
Minor 1	According to institute schedule	Metric spaces: Definition
Will lot 1	7.000raing to institute seriedate	and examples. Open,
		closed and bounded sets.
		Interior, closure and
		boundary. Convergence and
		completeness. Continuity
		and uniform continuity.
		Connectedness,
		compactness and
		separability. Heine-Borel theorem.
Quiz 2	11 th April 2021	Pointwise and uniform
Quiz Z	11 Αριίι 2021	convergence of real-valued
		functions. Limits, continuity
		and differentiability of
		functions of a complex
		variable. Analytic functions,
		the Cauchy-Riemann
		equations. Definition of
		contour integrals, Cauchy's
0 : 0	and M. Cood	integral formula
Quiz 3	2 nd May 2021	derivatives of analytic
		functions. Morera's and Liouville's theorems.
		Maximum modulus
		principle. Taylor and
		Laurent series. Isolated
		singular points and residues
Major	According to institute schedule	Complete syllabus