

Республиканская физическая олимпиада 2024 года (III этап)

Теоретический тур

11 класс.

Внимание! Прочтите это в первую очередь!

- 1. Полный комплект состоит из трех заданий. Для вашего удобства вопросы, на которые Вам необходимо ответить, помещены в рамки.
- 2. Каждое задание включает условие задания и Листы ответов. Для решения задач используйте рабочие листы. Часть из них используйте в качестве черновиков. После окончания работы черновые листы перечеркните.

В чистовых рабочих листах приведите решения задач (рисунки, исходные уравнения, математические преобразования, графики, окончательные результаты). Жюри будет проверять чистовые рабочие листы. Кроме того, каждое задание включает Листы ответов. В соответствующие графы Листов ответов занесите

- 3. При оформлении работы каждое задание начинайте с новой страницы. При недостатке бумаги обращайтесь к организаторам!
- 4. Подписывать рабочие листы запрещается.
- 5. В ходе работы можете использовать ручки, карандаши, чертежные принадлежности, инженерный калькулятор.
- 6. Со всеми вопросами, связанными с условиями задач, обращайтесь к организаторам олимпиады.

Пакет заданий содержит:

- титульный лист (1 стр.);
- условия 3 теоретических заданий с Листами ответов (8 стр.).

Задание 11-1. Гармоническая разминка

Справочные данные и параметры рассматриваемых систем: сопротивлением воздуха пренебречь. ускорение свободного падения $g = 9.81 \text{ м/c}^2$, $\pi = 3.14$, при малых $x (x \to 0)$ справедливы приближенные формулы: $(1+x)^{\alpha} \approx 1 + \alpha x$, $\sin x \approx x$, $\cos x \approx 1 - \frac{x^2}{3}$.

1.1 «Разгон Известно. колебаний маятника» что период математического маятника, подвешенного в лифте Л (Рис. 1), движущемся с ускорением $a_1 = 1.5 \text{ м/c}^2$, и в электричке Э, движущейся с некоторым ускорением a_2 , один и тот же. Куда едет лифт? Чему равно ускорение a_2 электрички?

1.2 «Маятник в шахте» Известно, что на горе высотой $h_1 = 1,0$ км маятниковые часы (Рис. 2) начинают отставать на промежуток времени $au = 14 \, {\rm c} \,$ в сутки. На какую глубину h_2 необходимо опустить эти часы в шахту (см. Рис. 2), чтобы они шли также, как и на горе?

1.3 «**Непостоянная планка**» Небольшие шарики массами m_1 и m_2 закреплены на концах лёгкой жесткой тонкой планки длиной l. Планка с шариками покоится на поверхности неподвижного шероховатого горизонтального цилиндра радиусом R (Рис. 3). В положении равновесия планка горизонтальна и перпендикулярна оси цилиндра (на Рис. 3 показан вид со стороны торца цилиндра). Планку, приподнимая один из шариков, поворачивают на

малый угол, так, что она движется по цилиндру без проскальзывания, и отпускают. После этого в системе начинаются колебания, в процессе которых планка движется в плоскости рисунка по поверхности цилиндра также без проскальзывания. Найдите период T малых колебаний планки с шариками.

Лист ответов. Задание 11-1. Гармоническая разминка

1.1 Куда едет лифт?:
Ускорение a_2 электрички:
1.2 Глубина h_2 :
1.3 Формула для периода <i>T</i> малых колебаний планки:

Залание 11-2. Миг невесомости

Рассмотрим механическую систему, образованную из тонкого гладкого проволочного кольца массой M, стоящего на горизонтальной плоскости (Рис. 1), и двух небольших одинаковых бусинок массой m каждая, насаженных на него. Бусинки могут скользить по кольцу без трения.

В начальный момент времени бусинки находятся вблизи верхней точки кольца (см. Рис. 1), а затем их одновременно отпускают без начальной скорости. Далее бусинки симметрично скользят по кольцу без трения, не опрокидывая его, разъезжаются, удаляясь друг от друга, и одновременно съезжаются в нижней точке кольца.

Будем характеризовать положение каждой бусинки на кольце углом α , образуемым текущим радиусом кольца с вертикалью (Рис. 2). Угол α измеряется в радианах (рад) и при скольжении каждой бусинки изменяется в пределах $0 \le \alpha \le \pi$.

Динамометр G, вмонтированный в горизонтальную плоскость под кольцом (см. Рис. 2), измеряет зависимость веса $P(\alpha)$ всей механической системы от угла α при скольжении бусинок по кольцу.

Сопротивлением воздуха при движении бусинок пренебречь. Ускорение свободного падения $g = 9.81 \, \text{m/c}^2$.

Часть 1. Общая теория

В первой части задачи Вам необходимо вывести формулы для расчёта различных физических параметров системы (силы реакции \vec{N} кольца (Рис. 3), её вертикальной проекции N_y , и т.д.) от угла α . $\vec{N}_{y_1\cdots y_n}\vec{N}$

- **1.1** Получите зависимость модуля силы реакции кольца $N(\alpha) = |\vec{N}(\alpha)|$, действующей на бусинку, от угла α .
- **1.2** Найдите угол α_1 при котором сила реакции кольца $N(\alpha)$, становится равной нулю, т.е. бусинка не давит на кольцо.
- **1.3** Разложите силу реакции \vec{N} кольца на вертикальный и горизонтальный компоненты вдоль стандартных (декартовых осей) $\vec{N} = \vec{N}_y + \vec{N}_x$. Найдите зависимость вертикальной проекции $N_v(\alpha)$ силы реакции кольца от угла α .
- **1.4** Введём понятие приведенной вертикальной проекции N_y^* силы реакции кольца, как функции $N_y^*(\alpha) = N_y(\alpha)/mg$. На выданном бланке постройте график зависимости $N_y^*(\alpha)$ в интервале
- $0 \le \alpha \le \pi$ с шагом по углу h = 0.05 рад.
- **1.5** Выделите характерные этапы и точки построенного графика $N_y^*(\alpha)$ и кратко их прокомментируйте с физической точки зрения.

Часть 2. Работа с графиком

Во второй части задачи Вам предстоит самое сложное — применить формулы, выведенные в первой части задачи, для «расшифровки» графика, полученного с использованием встроенного динамометра G

11 класс. Теоретический тур. Вариант I.

(см. Рис. 2) при движении бусинок.

На графике (Рис. 4) представлена зависимость приведенного веса $P^*(\alpha) = P(\alpha)/m_0 g$ всей механической системы от угла α в некотором диапазоне, где постоянная $m_0 = 10$ г . При этом шкала делений по оси абсцисс отсутствует.

- **2.1** Используя данные графика (см. Рис. 4), найдите массы бусинки m и кольца M.
- **2.2** Вычислите максимальный вес P_{max} системы в процессе движения бусинок. При каком значении угла α_5 он достигается?
- 2.3 Восстановите численные значения по оси абсцисс.

Лист ответов. Задание 11-2. Миг невесомости

1.1 Зависимость модуля силы реакции кольца $N(\alpha) = \vec{N}(\alpha) $:
1.2 Угол α ₁ :
1.3 Зависимость вертикальной проекции $N_y(\alpha)$:
1.3 Зависимость вертикальной проскции $N_y(a)$.
1.4 См. график на бланке в конце Листа ответов
1.5 Характерные этапы и точки построенного графика $N_y^*(\alpha)$ и их краткий комментарий:

2.1	Массы бусинки т:
	Масса кольца М:

2.3 Восстановленные численные значения по оси абсцисс:

График зависимости $N_y^*(\alpha)$ (п. 1.4)

Задание 11-3. Прогрессивная электростатика

В современной физике широко распространены различные векторные методы решения прикладных задач. Наглядность и простота векторной алгебры, векторных диаграмм позволяют эффектно и эффективно справляться с задачами различной степени сложности.

В качестве примера рассмотрим электростатическую систему из n одинаковых маленьких положительно заряженных шариков, расположенных в вакууме в вершинах правильного n – угольника (Puc. 1).

Расстояние от центра 0 правильного многоугольника до любой из его вершин равно R.

Угол α между соседними радиусами, проведенными из точки 0 к любым соседним вершинами правильного n – угольника, обозначим через α (см. Рис. 1).

Величины электрических зарядов (q_i) шариков занумеруем по часовой стрелке в том же порядке, что и шарики $(q_1; q_2; q_3; ...; q_{n-1}; q_n)$ (см. Рис. 1).

Далее будем рассматривать различные варианты прогрессий, которые образуют электрические заряды (q_i) шариков и напряженности \vec{E}_i электростатических полей, создаваемых ими в центре 0 правильного многоугольника.

Справочные данные и параметры рассматриваемой системы: электрическая постоянная $\varepsilon_0 = 8,85 \cdot 10^{-12} \ \Phi/\text{m}$, $R = 1,52 \ \text{m}$, $q_0 = 151 \ \text{нКл}$, $\pi = 3,14$.

Часть 1. Арифметическая электростатика

1.1 Пусть в вершинах правильного n — угольника находятся одинаковые заряды q_0 , т.е. все

 $q_i = q_0$. Методом «мысленного поворота» найдите напряженность \vec{E}_1 электростатического поля, создаваемого всеми зарядами, в центре 0 правильного многоугольника.

1.2 Пусть теперь электрические заряды шариков $(q_1; q_2; q_3; ...; q_{n-1}; q_n)$ образуют арифметическую прогрессию с первым членом $a_1 = q_1 = q_0$ и разностью $d = q_0$ (Рис. 2). Получите формулу для напряженности \vec{E}_2 электростатического поля, создаваемого всеми зарядами, в центре O правильного многоугольника.

1.3 Вычислите \vec{E}_2 для правильного многоугольника, у которого вектор \vec{E}_2 «нацелен» на третью вершину, в которой находится заряд $3q_0$.

Часть 2. Геометрическая электростатика

В этой части задачи величины электрических зарядов $(q_1; q_2; q_3; ...; q_{n-1}; q_n)$ вершинах правильного n — угольника образуют геометрическую прогрессию (Рис. 3) с первым членом $b_1 = q_1 = q_0$ и знаменателем q=2 .

- **2.1** Найдите напряженность \vec{E}_0 электростатического поля, создаваемого первым (наименьшим) зарядом $q_1=q_0$ в центре 0 правильного многоугольника.
- **2.2** Выведите формулу для напряженности \vec{E}_3 электростатического поля, создаваемого всеми зарядами, в центре 0 правильного многоугольника.

2.3 Вычислите	$ec{E}_3$ для правильного	многоугольника, у	которого вектор	\vec{E}_3	перпендикулярен
вектору \vec{E}_0 .					

Лист ответов. Задание 11-3. Прогрессивная электростатика

лист ответов. Задание 11-3. Прогрессивная электростатика
1.1 Напряженность \vec{E}_1 :
1.2 Формула для напряженности \vec{E}_2 :
1.3 \vec{E}_2 для правильного многоугольника, у которого вектор \vec{E}_2 «нацелен» на третью вершину:
$oldsymbol{2.1}$ Напряженность $ec{E}_0$:
2.2 Напряженность \vec{E}_3 :
${f 2.3}$ ${f \vec{E}}_3$ для правильного многоугольника, у которого вектор ${f \vec{E}}_3$ перпендикулярен вектору ${f \vec{E}}_0$:

11 класс. Теоретический тур. Вариант I.