MATH10101, optional exercises on proofs in elementary number theory. Will not be discussed in the supervisions

- **Opt15.** Let a, b, c be integers. Prove that if $c \mid a$ and $c \nmid b$, then $c \nmid (a + b)$.
- **Opt16.** Prove that the relation | (divides) on \mathbb{Z} is transitive.
- **Opt17.** Let $a \equiv b \mod m$ and let $n \mid m$. Prove that $a \equiv b \mod n$.
- **Opt18.** Let a, b, c be integers, $a \mid c, b \mid c, \gcd(a, b) = 1$. Prove that $ab \mid c$.
- **Opt19.** Let a be an integer, p, q be primes, $p \neq q$. Prove: $(p \mid a) \land (q \mid a) \implies pq \mid a$.
- **Opt20.** Let the relation \sim on \mathbb{Z} be defined by $a \sim b$ iff $5 \mid 9a^2 + b^2$.
- a) Prove that \sim is an equivalence relation.
- b) Show that the equivalence class of 0 is the set of all integers divisible by 5.
- c) Work out all the other equivalence classes induced by the relation \sim .
- **Opt21.** Let the relation \sim on the set \mathbb{Z}_n be defined as follows: $[a]_n \sim [b]_n$ iff $\exists [x]_n \in \mathbb{Z}_n^*$, $[b]_n = [x]_n [a]_n$.
- a) Use the properties of \mathbb{Z}_n^* , prove that \sim is an equivalence relation on \mathbb{Z}_n .
- b) Put n=14. Find the equivalence classes induced on the set \mathbb{Z}_{14} by the relation \sim .
- **Opt22.** Let a, b be integers. Prove that the following two statements about a and b are equivalent:
 - (1) a and b are not coprime;
 - (2) there exists a prime p such that $p \mid a$ and $p \mid b$.
- **Opt23.** Let $[0]_4$, $[1]_4$, $[2]_4$, $[3]_4$ be the congruence classes of the integers modulo 4; explain why there is only one prime in the set $[0]_4 \cup [2]_4 \subseteq \mathbb{Z}$ and show that $x,y \in [1]_4$ implies $xy \in [1]_4$. By considering integers of the form 4P-1, deduce that $[3]_4$ contains infinitely many primes.
- **Opt24.** Prove that if $n \in \mathbb{N}$ and $n \geq 3$, then $\phi(n)$ is even. Here ϕ is Euler's phi-function.
- **Opt25.** Prove Fermat's Little Theorem using Euler's theorem and properties of Euler's phifunction.