EECS151: Introduction to Digital Design and ICs

Lecture 14 – Gate Delays

Bora Nikolić

September 30, 2021, EETimes - ASML plans to introduce new extreme ultraviolet (EUV) lithography equipment that will extend the longevity of Moore's Law for at least ten years, according to executives at the world's only supplier of the tools, which are crucial for the world's most advanced silicon.

Starting in the first half of 2023, the company plans to offer customers equipment that takes EUV numerical aperture (NA) higher to 0.55 NA from the existing 0.33 NA. The company believes that the new equipment will help chip makers reach process nodes well beyond the current threshold (2nm) for at least another 10 years, according to ASML vice president Teun van Gogh, in an interview with EE Times.

EETimes

Nikolić Fall 2021

Review

- CMOS allows for convenient switch level abstraction
- CMOS pull-up and pull-down networks are complementary
 - Graph models for CMOS gates
- Transistor sizing affects gate performance

CMOS Sizing

3 Berkeley 6 6 6 6 NC SA

EECS151 L13 DELAY
Nikolić Fall 2021

Transistor Sizing

Impact of Wp/Wn on VTC

- In the past, Wp > Wn (see Rabaey, 2^{nd} ed)
- In modern processes (finFET), Wp = Wn

 Weak dependence on Wp/Wn

Wp/Wn

CMOS Delay

5 Berkeley © © © © BY NC SA

EECS151 L13 DELAY
Nikolić Fall 2021

Capacitances

 V_{DD}

- C_{in} is largely set by the gate cap
 - ~WL
 - $2xW = 2xC_{in}$
 - It is non-linear, but we will ignore that

- C_p is largely set by the drain cap
 - ~W (drain area/perimeter)
 - $2xW = 2xC_p$

$$\mathsf{C}_\mathsf{p} = \gamma \mathsf{C}_\mathsf{in}$$

Gate Sizing

• Doubling the gate size (by doubling Ws):

- Doubles C_{in}
- Halves equivalent gate resistance

• Doubles C_p

• How to time this?

• Each gate has an R_{eq} and drives C_{in} of the next gate

High-to-low

$$t_{p,HL} = (ln2)\tau = 0.7 Req_{,n}(C_p + C_L)$$

$$\tau = Req_{,n}(C_p + C_L)$$

$$t_{p,LH} = (ln2)\tau = 0.7 Req_{,p}(C_p + C_L)$$

Equivalent Resistances

- Transistor I_{DS}-V_{DS} trajectory
- Averaging produces R_{ea}

 \cap

Equivalent Resistances

Transistor I_{DS}-V_{DS} trajectory

 \cap

Averaging produces R_{ea}

 I_{DS}

$$R_{eq} = (R_{eq,start} + R_{eq,mid})/2$$

Optimal P/N Sizing

Increasing Wp:

- Reduces R_p, increases C_{in,p}
- Reduces t_{p,LH}
- Increases t_{p,HL}

Optimum

- Wp/Wn = 2 in older technologies, with velocity saturation (like 130nm)
- Wp/Wn = 1.6 in technologies with strained silicon (e.g. 28nm)
- Wp/Wn = 1 in finFET technologies

Impact of Rise/Fall times

ullet Impacts the I_{DS} - V_{DS} trajectory

Nikolić Fall 2021 14 Berk

Impact of Rise/Fall times

ullet Impacts the I_{DS} - V_{DS} trajectory

Impact of Supply Voltage

• Lowering VDD, slows down the circuit

Nikolić Fall 2021 16 Berke

Quiz: Inverter Delay

• If we double the load capacitance, assuming the default Vout shown in blue, which of the following waveforms shows the new Vout?

Sizing CMOS Gates

Berkeley © \$0

BY NC SA

EECS151 L13 DELAY
Nikolić Fall 2021

Sizing for equal output resistance

- In velocity-saturated devices Ion of a stack is 2/3 (not a half) of two devices
 - So the correct upsizing factor is 1.5 (not 2)
- We will use 2, as it makes calculations easier

Other Gates, NOR2, NAND3

Stack Ordering

Critical path goes on top of stack

Nikolić Fall 2021

Administrivia

- Homework 5 due this week
- Lab 6 (last) this week
- Projects start next week

- There is still time to apply for undergrad scholarships in SoC design!
- Have you thought about doing undergrad research?

Minimizing Logic Delay

Berkeley © © © © DI NC SA

EECS151 L13 DELAY Nikolić Fall 2021 23

- $t_p = R_{eq}(C_p + C_l) = Req(Cin/\gamma + C_l)$
 - $\gamma = 1$ (closer to 1.2 in recent processes)

•
$$t_p = R_{eq}C_{in}(1+C_L/C_{in}) = \tau_{INV}(1+f)$$

- Propagation delay is proportional to fanout
- Normalized Delay = 1 + f

$$\mathsf{Fanout} = \mathsf{f} = \mathsf{C}_\mathsf{L}/\mathsf{C}_\mathsf{in}$$

$$t_p = \tau_{INV}(1+f)$$

Generalizing to Arbitrary Gates

- Delay has two components: d = f + p
- f: effort delay = gh (a.k.a. stage effort)
 - Again has two components
- g: logical effort
 - Measures relative ability of gate to deliver current
 - g = 1 for inverter
- h: electrical effort = C_{out} / C_{in}
 - Ratio of output to input capacitance
 - Sometimes called fanout
- p: parasitic delay
 - Represents delay of gate driving no load
 - Set by internal parasitic capacitance

- Parasitic p is the ratio of intrinsic capacitance to an inverter
 - p(inverter) =
- Logical Effort g is the ratio of input capacitance to an inverter
 - g(inverter) =
- Electrical Effort h is the ratio of the load capacitance to the input capacitance
 - h(inverter) =
- Delay = p + f = p + g * h = 1 + f

NAND2 Gate

Logical Effort of NAND2 Gate

$$R_{eq} = 1$$

 $R_{eq} = 1$

- In velocity-saturated devices Ion of a stack is 2/3 (not a half) of two devices
 - So the correct upsizing factor is 1.5 (not 2)
- We will use 2, as it makes calculations easier

NOR2 Gate

$$R_{eq} = 1$$

Example: Inverter Chain

Logical Effort:

Electrical Effort:

Parasitic Delay:

Stage Delay:

Total Delay: $d_{total} =$

Example: Inverter Chain

Logical Effort: g = 1

Electrical Effort: h = 1

Parasitic Delay: p = 1

Stage Delay: d = 2

Total Delay: $d_{total} = 2*N$

Example: FO4 Inverter

• Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: g =

Electrical Effort: h =

Parasitic Delay: p =

Stage Delay: d =

Example: FO4 Inverter

• Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort:

h = 4**Electrical Effort:**

Parasitic Delay: p = 1

d = 5Stage Delay:

Multi-stage Logic Networks

- Logical effort generalizes to multistage networks
- Path Logical Effort

$$G = \prod g_i$$

Path Electrical Effort

$$H = \frac{C_{\text{out-path}}}{C_{\text{in-path}}}$$

• Path Effort

$$F = \prod f_i = \prod g_i h_i$$

Branching Effect

$$b = \frac{C_{\text{on path}} + C_{\text{off path}}}{C_{\text{on path}}}$$

$$B = \prod b_i$$

$$G = 1$$

$$H = 90 / 5 = 18$$

$$GH = 18$$

$$h_1 = (15 + 15) / 5 = 6$$

$$h_2 = 90 / 15 = 6$$

$$B = 2$$

$$F = g_1g_2h_1h_2 = 36 = BGH$$

Designing Fast Circuits

$$D = \sum d_i = D_F + P$$

Delay is smallest when each stage bears same effort

$$\hat{f} = g_i h_i = F^{\frac{1}{N}}$$

Thus minimum delay of N stage path is

$$D = NF^{\frac{1}{N}} + P$$

- This is a key result of logical effort
 - Find fastest possible delay
 - Doesn't require calculating gate sizes

Example: Best Number of Stages

- How many stages should a path use?
 - Minimizing number of stages is not always fastest
- Example: drive 64-bit datapath with unit inverter

$$D = NF^{1/N} + P$$
$$= N(64)^{1/N} + N$$

Example: Best Number of Stages

- How many stages should a path use?
 - Minimizing number of stages is not always fastest
- Example: drive 64-bit datapath with unit inverter

$$D = NF^{1/N} + P$$
$$= N(64)^{1/N} + N$$

Best Stage Effort

- How many stages should a path use?
 - To drive given capacitance

- Define best stage effort
- Neglecting parasitics (p_{inv} = $^{\circ}$, $\overline{w}e^{F_{\text{find}}}$ ρ = e = 2.718
- For $p_{inv} = 1$, solve numerically for $\rho = 3.59$
- Choose 4 less stages, less energy

Logical Efforts Method

$$F = GBH$$

$$N = \log_4 F$$

$$D = NF^{\frac{1}{N}} + P$$

$$\hat{f} = F^{\frac{1}{N}}$$

$$C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$$

Summary

- Delay is a linear function of R and C
- Delay optimization is critical to improve the frequency of the circuit.
- The dimensions of a transistor affect its capacitance and resistance.
- We use RC delay model to describe the delay of a circuit.
- Two delay components:
 - Parasitic delay (p)
 - Effort delay (F)
 - Logical effort (g): intrinsic complexity of the gate
 - Electrical effort (h): load capacitance dependent

Berkeley 6

EECS151 L13 DELAY
Nikolić Fall 2021