Caractérisation des intervalles de $\mathbb R$

I est un intervalle de \mathbb{R} si et seulement si $\forall (\alpha, \beta) \in I^2, \ \forall x \in \mathbb{R}, \ (\alpha \leqslant x \leqslant \beta \Rightarrow x \in I)$

 \Rightarrow On suppose que I est un intervalle, soit un ensemble de la forme

$$\varnothing$$
, $[a,b]$, $]a,b[$, $[a,b[$, $]a,b]$, $[a,+\infty[$, $]a,+\infty[$, $]-\infty,a[$, $]-\infty,a[$, $]$

On a 10 cas à traiter... Le cas $I = \emptyset$ est trivial, comme le cas $I = \mathbb{R}$.

- Cas
$$I = [a, b]$$
: si $(\alpha, \beta) \in I^2$ et $\alpha \leq \beta$, alors $\forall x \in [\alpha, \beta]$, on a

$$a \leqslant \alpha \leqslant x \leqslant \beta \leqslant b$$
, donc $x \in [a, b] = I$ CQFD.

- Cas
$$I=]a,+\infty[$$
: si $(\alpha,\beta)\in I^2$ et $\alpha\leqslant\beta$, alors $\forall x\in[\alpha,\beta]$, on a

$$a < \alpha \le x \le \beta$$
, donc $x \in [a, +\infty) = I$ CQFD.

Les 6 autres cas se traitent de la même manière.

 \leftarrow On suppose que I non vide vérifie : $\forall (\alpha, \beta) \in I^2, \forall x \in \mathbb{R}, (\alpha \leqslant x \leqslant \beta \Rightarrow x \in I)$

- 1^{er} cas : I est borné. On pose $a = \inf I$ et $b = \sup I$.
 - * Il est clair que $I \subset [a, b]$
 - * Inversement si $x \in [a, b]$, alors x n'est pas majorant de I et n'est pas minorant de I, donc

$$\exists x_1 \in I / x_1 < x \quad \text{et} \quad \exists x_2 \in I / x < x_2$$

Mais alors $x \in [x_1, x_2]$ donc par hypothèse $x \in I$, ce qui montre que $[a, b] \subset I$.

Par conséquent,

si
$$a \in I$$
 et $b \in I$, on a $I = [a, b]$
si $a \in I$ et $b \notin I$, on a $I = [a, b[$
si $a \notin I$ et $b \in I$, on a $I = [a, b]$
si $a \notin I$ et $b \notin I$, on a $I = [a, b[$

- $2^{\text{ème}}$ cas : I est minoré et non majoré. On pose $a = \inf I$
 - $* \quad \text{Il est clair que } I \subset [a, +\infty[$
 - * Inversement si $x \in [a, +\infty[$, alors x n'est pas minorant de I, et n'est pas majorant de I donc

$$\exists x_1 \in I / x_1 < x \quad \text{et} \quad \exists x_2 \in I / x < x_2$$

Mais alors $x \in [x_1, x_2]$ donc par hypothèse $x \in I$, ce qui montre que $[a, +\infty] \subset I$.

Par conséquent,

si
$$a \in I$$
 on a $I = [a, +\infty[$
si $a \notin I$ on a $I = [a, +\infty[$

- $3^{\text{ème}}$ cas: I est majoré et non minoré: on montre de même que $I =]-\infty, a]$ ou $I =]-\infty, a[$
- $4^{\text{ème}} \text{ cas}$: I n'est ni majoré ni minoré : on montre de même que $I = \mathbb{R}$.

Au total I est bien un intervalle.