Geometric Differential Equations

Stone Fields, Joy Chang, Jacob Linderoth, Amber Loubiere, Ryo Sato

May 31, 2024

Overview

- Introduction
 - Introduction and Motivation
 - Applications
 - Problems
 - Background Information
- 2 Implementation
 - Problem Formulation
 - The Finite Element Method
- Examples and Results

Introduction and Motivation

- Geometric PDEs allow us to generalize differential operators and other important mathematical notions to different ambient spaces
- Geometric PDEs establish are an object that connect analysis, differential equations and geometry together
- Examples:
 - Spectral geometry
 - Differential and Riemannian geometry
 - Study of geometric flows
 - Study of Riemannian submanifolds (curves and surfaces)

Applications

- PDE on manifolds
 - Geometric modeling
 - Computer graphics
 - Surface design is treated as a boundary value problem by the PDE.
 - The boundary conditions imposed around the edges of the surface control the internal shape of the surface.
- Shape optimization
 - To find the optimal shape that minimizes a certain cost functional while satisfying given constraints
 - To find a bounded set Ω that minimizes $F(\Omega)$
 - Examples:
 - Determining the shape of a bridge of a given mass that best supports its load
 - Determining the optimal shape of a wing that minimizes the drag coefficient while preserving its lift

Problems

In this project, we will be taking a look at the following problems:

Problem

Given a smooth, curve $\gamma \subset \mathbb{R}^2$, find $u : \gamma \to \mathbb{R}$ that satisfies

$$\begin{cases} -\Delta_{\gamma} u = f \\ +B.C. \end{cases}$$

where Δ_{γ} is the Laplace-Beltrami operator.

Smooth Curves and its Tangent Vector

We consider a smooth curve $\gamma = \{\varphi(t) : t \in [a, b] \subset \mathbb{R}\}$ parameterized by $\varphi : [a, b] \to \mathbb{R}^2$, where $\varphi'(t) \neq 0$ for all $t \in [a, b]$. A point $\mathbf{x} \in \gamma$ is given by

$$\mathbf{x} = \varphi(t) = \begin{bmatrix} \varphi_1(t) \\ \varphi_2(t) \end{bmatrix}.$$

The tangent vector at a point $\mathbf{x} = \varphi(t)$ is given by the expression

$$arphi'(t) = egin{bmatrix} arphi_1'(t) \ arphi_2'(t) \end{bmatrix}.$$

Definition

Let

$$g(t) = [\varphi'(t)]^{\mathsf{T}} \varphi'(t) = \varphi'_1(t)^2 + \varphi'_2(t)^2$$

be such that

$$\int_{\gamma} 1 = \int_{a}^{b} \sqrt{g(t)} dt.$$

Definition

Given some function $v: \gamma \to \mathbb{R}$ we consider $\hat{v}: [a, b] \to \mathbb{R}$ such that $\hat{v}(t) = v(\varphi(t)) = v(\frac{\mathsf{x}}{\mathsf{x}})$.

Tangential Gradient

Definition

If $\hat{v}:[a,b]\to\mathbb{R}\in C^1(\mathbb{R})$, then we define the tangential gradient of the corresponding v denoted by $\nabla_{\gamma}v(\mathbf{x})$. This $\nabla_{\gamma}v(\mathbf{x})$ abides by the relation

$$\hat{v}'(t) = [\varphi'(t)]^{\mathsf{T}} \nabla_{\gamma} v(\mathbf{x})$$

for all $t \in [a, b]$, $\mathbf{x} = \varphi(t)$.

The tangential gradient ∇_{γ} of a function $v(\mathbf{x})$ can also be rewritten in the following form:

$$abla_{\gamma} v(\mathbf{x}) = \frac{\hat{v}'(t)}{g(t)} \varphi'(t).$$

Laplace-Beltrami Operator

Finally, we define the Laplace-Beltrami operator, which can be thought of as the generalization of the Laplacian to any smooth manifold.

Definition

If γ and $\hat{v}:[a,b]\to\mathbb{R}$ are of class C^2 , then,

$$\Delta_{\gamma} v(\mathbf{x}) = \operatorname{div}_{\gamma}(\nabla_{\gamma} v(\mathbf{x})) = rac{1}{\sqrt{g(t)}} rac{d}{dt} \left(rac{1}{\sqrt{g(t)}} \hat{v}'(t)
ight).$$

 Δ_{γ} is referred to as the Laplace-Beltrami operator.

Problem Formulation

Strong Form: Find $u: \gamma \to \mathbb{R}$ that satisfies

$$\begin{cases} -\Delta_{\gamma} u = f & \text{on } \gamma \\ u(\varphi(a)) = \alpha \text{ and } u(\varphi(b)) = \beta \end{cases}$$

.

Weak Form: Find $u \in H^1(\gamma)$ that satisfies

$$\begin{cases} \int_{\gamma} \nabla_{\gamma} u \cdot \nabla_{\gamma} v = \int_{\gamma} f v \\ u(\varphi(a)) = \alpha \text{ and } u(\varphi(b)) = \beta \end{cases}$$

for all $v \in H_0^1(\gamma)$.

The Finite Element Method

Figure: The Curve γ Compared with the Approximate Curve Γ

We have a parameterization of γ that produces a discrete curve we call Γ . This parameterization is given by $\varphi_{\Gamma}:[a,b]\to\mathbb{R}^2$ which is a piecewise affine parameter. φ_{Γ} is expressed by the following:

$$\varphi_{\Gamma}(t) = \mathbf{x}_{i-1} + \frac{t - t_{i-1}}{t_i - t_{i-1}} (\mathbf{x}_i - \mathbf{x}_{i-1}).$$

The Finite Element Method (contd.)

We define the hat function as

$$\phi_i(\mathbf{x}) = \begin{cases} \frac{||\mathbf{x} - \mathbf{x}_{i-1}||}{||\mathbf{x}_i - \mathbf{x}_{i-1}||} & \text{if } \mathbf{x} \in K_i \\ \frac{||\mathbf{x} - \mathbf{x}_i||}{||\mathbf{x}_{i+1} - \mathbf{x}_i||} & \text{if } \mathbf{x} \in K_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

where $\phi_i \in V_N = \{ v \in C^1(\Gamma) : v | \kappa_i \circ \varphi_{\kappa_i} \in \mathbb{P}_1 \, \forall \kappa_i \}$. Recall from last Friday

$$V_N = \operatorname{span}(\phi_0, \dots, \phi_N)$$

Constructing Our Linear System

Recall that

$$\int_{\gamma} \nabla_{\gamma} u \cdot \nabla_{\gamma} v = \int_{\gamma} f v$$

for every $v \in H_0^1$. Discretize such that

$$u_h(x) = \sum_{i=0}^N u_i \phi_i(x)$$

where $u_h \in V_N$.

Then

$$\sum_{j=0}^{N} u_j \int_{\Gamma} \nabla_{\Gamma} \phi_i \cdot \nabla_{\Gamma} \phi_j = \int_{\Gamma} f_{\Gamma} \phi_i$$

where $v_h = \phi_j$ for $j = 0, 1, \dots, N$.

Constructing Our Linear System (contd.)

On
$$\Gamma$$
, $a_{i,j} = \int_{\Gamma} \nabla_{\Gamma} \phi_i \cdot \nabla_{\Gamma} \phi_j$.
$$a_{i,i-1} = \frac{-1}{\|\mathbf{x}_i - \mathbf{x}_{i-1}\|}$$
$$a_{i,i} = \frac{1}{\|\mathbf{x}_i - \mathbf{x}_{i-1}\|} + \frac{1}{\|\mathbf{x}_{i+1} - \mathbf{x}_i\|}$$
$$a_{i,i+1} = \frac{-1}{\|\mathbf{x}_i - \mathbf{x}_{i-1}\|}$$

Constructing Our Linear System (contd.)

To approximate f,

$$f_i = \int_{\Gamma} f_{\Gamma} \phi_i = \int_{K_i} f_{\Gamma} \phi_i + \int_{K_{i+1}} f_{\Gamma} \phi_i$$

For K_i ,

$$\int_{\mathcal{K}_i} f_{\Gamma} \phi_i = \int_0^1 f_{\Gamma} (\varphi(\mathbf{x}_{i-1} + t(\mathbf{x}_i - \mathbf{x}_{i-1}))) t \|\mathbf{x}_i - \mathbf{x}_{i-1}\| dt$$

.

For K_{i+1} ,

$$\int_{K_{i+1}} f_{\Gamma} \phi_i = \int_0^1 f_{\Gamma} (\varphi(\mathbf{x}_i + t(\mathbf{x}_{i+1} - \mathbf{x}_i))) (1 - t) \|\mathbf{x}_{i+1} - \mathbf{x}_i\| dt$$

.

Example 1: $u(\mathbf{x}) = \sin(2\pi x_1)$

- ullet Let our curve $\gamma:=\{arphi(t)\ |\ t\in[0,1]\}$ be parametrized by $arphi(t)=egin{bmatrix}t\\t\end{bmatrix}$
- We let our solution to the differential equation (with Dirichlet boundary conditions)

$$\begin{cases} -\Delta_{\gamma} u = 2\pi^2 \sin(2\pi x_1) & \text{on } \gamma \\ u(\varphi(0)) = 0 & \text{and} \quad u(\varphi(1)) = 0 \end{cases}$$

be $u: \gamma \to \mathbb{R}$ with analytical solution $u(x_1, x_2) = \sin(2\pi x_1)$

Defining the L^2 error

Definition (L^2 error)

Let $u: \gamma \to \mathbb{R}$ be our analytic solution, $u_h: \Gamma \to \mathbb{R}$ our finite element approximation, and $P: \Gamma \to \gamma$ be the lifting of points from our discrete "curve" to our continuous curve.

$$L^2$$
 error := $||u \circ P - u_h||_{L^2(\Gamma)}$

• **Implementation**: We implemented the above formula by computing the error-squared. We essentially reduced it to the sum of line integrals:

$$(L^{2} \text{ error})^{2} = \|u \circ P - u_{h}\|_{L^{2}(\Gamma)}^{2} = \int_{\Gamma} (u \circ P - u_{h})^{2}$$
$$(L^{2} \text{ error})^{2} = \sum_{i=1}^{N} \int_{K_{i}} (u \circ P - u_{h})^{2}$$

• where K_i is the line segment in \mathbb{R}^2 connecting \mathbf{x}_{i-1} and \mathbf{x}_{i-1}

Rate of Convergence of the L^2 Error (Example 1)

- Reconsider our example 1, $u(x_1, x_2) = \sin(2\pi x_1)$
- We empirically demonstrate that the L^2 error converges with order $\mathcal{O}(h^2) = \mathcal{O}(N^{-2})$ where h is the mesh size:

Figure: L^2 error for $u(\mathbf{x}) = \sin(2\pi x_1)$

Defining the H^1 error

Generally speaking, the H^1 norm of any $f \in H^1$ is defined as:

$$||f||_{H^1(\Omega)} := ||f||_{L^2(\Omega)} + ||\nabla f||_{L^2(\Omega)}$$

For our purposes,

Definition (H^1 error)

Let $u:\gamma\to\mathbb{R}$ be the analytic solution to our differential equation $-\Delta_{\gamma}u=f$ with Dirichlet boundary conditions, $u_h:\Gamma\to\mathbb{R}$ our finite element approximation,

$$\|u\circ P-u_h\|_{H^1(\Gamma)}:=\|u\circ P-u_h\|_{L^2(\Gamma)}+\|\nabla_\gamma u\circ P-\nabla_\Gamma u_h\|_{L^2(\Gamma)}$$

H^1 error in Example 1: $u(\mathbf{x}) = \sin(2\pi x_1)$

We observe the H^1 error converges with order $\mathcal{O}(h) = \mathcal{O}(N^{-1})$:

Figure: H^1 error

Example 2: $u(\mathbf{x}) = \sin(2\pi x_1) + \sin(2\pi x_2)$

- Let $\gamma:=\{arphi(t) \mid t\in[0,1]\}$ be parametrized by $arphi(t)=egin{bmatrix}t\\t\end{bmatrix}$.
- $u(x_1, x_2) : \gamma \to \mathbb{R}$ solves

$$\begin{cases} -\Delta_{\gamma} u = 2\pi^2 \sin(2\pi x_1) + 2\pi^2 \sin(2\pi x_2) & \text{on } \gamma \\ u(\varphi(0)) = 0 & \text{and} \quad u(\varphi(1)) = 0 \end{cases}$$

where $u(x_1, x_2) = \sin(2\pi x_1) + \sin(2\pi x_2)$.

Example 2: $u(\mathbf{x}) = \sin(2\pi x_1) + \sin(2\pi x_2)$

Figure: The approximate solution of the PDE on $\varphi(t) = (t, t)$.

L² Error

• The rate of convergence is approximately $\mathcal{O}(h^2)$, similar to the previous example.

Figure: The rate of convergence of the L^2 error

H¹ Error

• The rate of convergence is approximately $\mathcal{O}(h^1)$, again similar to the previous example.

Figure: The rate of convergence of the H^1 error

Neumann Conditions

Also consider the case where we're given mixed boundary conditions. Given $\underline{u}: \gamma \to \mathbb{R}$, $f: \gamma \to \mathbb{R}$, with the parametrization of γ defined as $\varphi: [a,b] \to \mathbb{R}^2$

$$\begin{cases} \Delta_{\gamma} u = f & \text{on } \gamma \\ u(\varphi(a)) = \alpha & \text{and} & \nabla_{\gamma} u(\varphi(b)) \cdot \tau(b) = \beta \end{cases}$$

where $au(t) := rac{1}{\|arphi'(t)\|} arphi'(t)$

Problem (Weak Form (Neumann boundary condition))

The weak form is given by

$$egin{aligned} \int_{\gamma}-(\Delta_{\gamma}u)v&=\int_{\gamma}
abla_{\gamma}u\cdot
abla_{\gamma}v-\left[rac{1}{\sqrt{g(t)}}\hat{u}'(t)\hat{v}(t)
ight]_{t=a}^{t=b}\ &\int_{\gamma}
abla_{\gamma}u\cdot
abla_{\gamma}v&=\int_{\gamma}\mathit{fv}+rac{1}{\sqrt{g(b)}}\hat{u}'(b)\hat{v}(b) \end{aligned}$$

Implementation of Neumann condition

We amend our matrix formulation to accommodate the Neumann boundary condition:

$$\begin{aligned} a_{N,N} &= \frac{1}{\|\mathbf{x}_N - \mathbf{x}_{N-1}\|} \\ a_{N,N-1} &= -\frac{1}{\|\mathbf{x}_N - \mathbf{x}_{N-1}\|} \\ f_N &= \beta + \int_{\Gamma} f_{\Gamma} \phi_N \end{aligned}$$

Example 3: Neumann conditions

- ullet $\gamma:=\{arphi(t)\,|\,t\in[0,1]\}$ is parametrized by $arphi(t)=egin{bmatrix}t\\t+0.2*\sin(2\pi t)\end{bmatrix}$
- $u(x_1, x_2) : \gamma \to \mathbb{R}$ solves

$$egin{cases} -\Delta_{\gamma} u = 1 & ext{on } \gamma \ u(arphi(0)) = 1 & ext{and }
abla_{\gamma} u(arphi(1)) \cdot au(1) = 1 \end{cases}$$

Example 3: Neumann conditions

Figure: The approximate solution of the PDE on $\varphi(t)=(t,t+0.2*\sin(2\pi t))$ with boundary conditions $u(\varphi(0))=1$ and $\nabla_{\gamma}u(\varphi(1))=1$.

Example 4: Closed Curve (Circle)

•
$$\gamma:=\{arphi(t)\mid t\in[0,1]\}$$
 is parametrized by $arphi(t)=\begin{vmatrix}\cos(2\pi t)\\\sin(2\pi t)\end{vmatrix}$

• $u(x_1, x_2) : \gamma \to \mathbb{R}$ solves

$$-\Delta_{\gamma}u = f(x_1, x_2)$$
 on γ

where

$$f(x_1, x_2) = \begin{cases} 1 & \text{if } x_2 \ge 0 \\ -1 & \text{if } x_2 < 0 \end{cases}$$

Example 4: Closed Curve (Circle)

There are infinitely many solutions up to a constant without the boundary. So, impose

$$\int_{\Gamma} u = 0.$$

As a result,

$$\int_{\Gamma} f = 0.$$

Discretize such that

$$\int_{\Gamma} u_h = 0.$$

Then $\int_{\Gamma} \sum_{i=0}^{N} u_i \phi_i = \sum_{i=0}^{N} u_i \int_{\Gamma} \phi_i = 0$. Thus,

$$\begin{bmatrix} \int_{\Gamma} \phi_0 & \int_{\Gamma} \phi_2 & \cdots & \int_{\Gamma} \phi_N \end{bmatrix} \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_N \end{bmatrix}.$$

Example 4: Closed Curve (Circle) (contd.)

Suppose the 1st row is $\int_{\Gamma} \mathbf{u} = 0$. Then

$$F_0 = 0$$

since $\int_{\Gamma} u_h = 0$ in row 1. But, we cannot neglect the 1st node:

$$a_{N,N} = \frac{1}{\|\mathbf{x}_N - \mathbf{x}_{N-1}\|}$$

$$a_{N,N-1} = -\frac{1}{\|\mathbf{x}_N - \mathbf{x}_{N-1}\|}$$

Example 4: Closed Curve (Circle) (contd.)

Figure: The approximate solution for the PDE on a closed curve $\varphi(t) = (\cos(2\pi t), \sin(2\pi t))$.