

Graphics Systems and Interaction

Normal Call	2023-02-01
NoName	
Assessment duration: 45 minutes Value of each question: marked with brackets	
Multiple choice questions: each wrong answer deducts 1/3 of the question's value	

Part I 10%

- a. [3.3] The visualization, on the screen of a common computer, of a SVG (Scalable Vector Graphics) image
 - i. Is only possible with systems equipped with a graphics processing unit (GPU)
 - ii. Requires sophisticated pattern recognition techniques
 - iii. Requires a rasterization operation
 - iv. None of the above
- b. **[3.3]** Given two different points P and Q and the affine combination $R = \alpha P + (1 \alpha)Q$, what value should be assigned to α so that point R gets positioned two times closer to P than to Q?

- i. $\alpha = -0.33$
- ii. $\alpha = 0.33$
- iii. $\alpha = 1 0.33$
- iv. None of the above
- c. [3.3] When using a perspective projection
 - i. The viewing volume has the shape of a parallelepiped
 - ii. The viewing volume has the shape of a pyramid trunk
 - iii. The apparent size of objects being displayed decreases with decreasing the distance from the camera
 - iv. None of the above

- d. [3.3] Which of the following polygon mesh coding technique avoids drawing each edge twice?
 - i. Explicit
 - ii. Pointers to a vertex list
 - iii. Pointers to an edge list
 - iv. None of the above
- e. [3.3] Knowledge of the normal vector is not necessary to compute
 - i. Ambient lighting component
 - ii. Diffuse lighting component
 - iii. Specular lighting component
 - iv. None of the above
- f. [3.3] A texture mapping function
 - Returns, for each point of the texture space, the corresponding point of the object's surface
 - ii. Describes the shape used to wrap the object
 - iii. May be based on the parametric description of the object's surface
 - iv. All the above

Graphics Systems and Interaction

Norr	mal Call				2	023-02-01
No.	Nan	ne				
g.	Part II 20%					
a.		u want to map the tea wn in Figure 2. Enter				
		Figure 1	v3	Figure 2	v2	
			v0		 v1	
	v0:,	v1:				
	v2:,	v3:				
b.		tube made of a pink r L.0). What are the prinade.	•	· · · · · · · · · · · · · · · · · · ·		_
	R =	G =		B =		
c.	[1.4] An <i>Object3L</i>	and a <i>Group</i> are diff	ferent mainly l	because <i>Group</i>		
	i. Allows sub	-obiects				
		to embed meshes				
		e easier to understar				
	iv. Allows you	to integrate materia	ls			
d.	[1.4] In an <i>Orthog</i>	graphicCamera, the fo	ar option is us	eful		
	ii. To avoid di	the field-of-view (for rawing objects that a lling the scene resolu shadows	re too distant	from the camera		

- e. **[1.4]** Library *lil-gui* allows you to easily
 - i. Change object properties
 - ii. Inform users of changes in object properties
 - iii. Group object properties in folders
 - iv. All the above

Graphics Systems and Interaction

Nor	mal Call 2023-02-02
No.	Name
•	v.
f.	[1.4] Specifying the vertices of 3D solid faces always with the same winding (clockwise – CW – o counterclockwise – CCW – when viewed from the outside) allows you
	i. To speed up renderingii. To group faces easilyiii. To map textures easilyiv. To use indices in vertex identification
g.	[1.4] In order to get shadows in a 3D scene you must enable them
	i. In lightsii. In materials and rendereriii. In lights, meshes and rendereriv. In lights, materials and renderer
h.	[1.4] An Environment Map is particularly useful for simulating
	i. Shadowsii. Lightingiii. Reflectionsiv. Physics
i.	[1.4] In order to quickly implement an user-controlled viewing system you can use
	i. OrbitControlsii. CameraControlsiii. ViewControlsiv. GUIControls
j.	[1.4] A RayCaster is very useful in three.js to allow users to
	i. Get more realistic renderingsii. Change the lighting in the sceneiii. Show information related to 3D objectsiv. Interact with 3D objects in the scene
k.	[1.4] A RoughnessMap allows you to
	 i. Adjust the height of vertices in a mesh ii. Adjust the position (x, y) of vertices in a mesh iii. Define more or less smooth/diffuse areas iv. Define more or less transparent/opaque areas

- I. [1.4] Materials' fog property is useful for the following scenario
 - i. To simulate fog in a forest background
 - ii. When you want to define variable fog densities
 - iii. To adjust the influence of lighting on fog
 - iv. To represent a fog-free room with a foggy exterior view