Computer Architecture ELE 475 / COS 475 Slide Deck 4: Superscalar 1

David Wentzlaff
Department of Electrical Engineering
Princeton University

Types of Data Hazards

Consider executing a sequence of

$$r_k \leftarrow r_i \text{ op } r_j$$
 type of instructions

Data-dependence

$$r_3 \leftarrow r_1 \text{ op } r_2$$

 $r_5 \leftarrow r_3 \text{ op } r_4$

 $r_3 \leftarrow r_1 \text{ op } r_2$ Read-after-Write $r_5 \leftarrow r_3 \text{ op } r_4$ (RAW) hazard

Anti-dependence

$$r_3 \leftarrow r_1 \text{ op } r_2$$

 $r_1 \leftarrow r_4 \text{ op } r_5$

 $r_3 \leftarrow r_1 \text{ op } r_2$ Write-after-Read $r_1 \leftarrow r_4 \text{ op } r_5$ (WAR) hazard

Output-dependence

$$r_3 \leftarrow r_1 \text{ op } r_2$$
 Write-after-Write $r_3 \leftarrow r_6 \text{ op } r_7$ (WAW) hazard

Introduction to Superscalar Processor

- Processors studied so far are fundamentally limited to CPI >= 1
- Superscalar processors enable CPI < 1 (IPC > 1)
 by executing multiple instructions in parallel
- Can have both in-order and out-of-order superscalar processors. We will start with inorder.

Baseline 2-Way In-Order Superscalar Processor

Pipe A: Integer Ops., Branches

Pipe B: Integer Ops., Memory

Baseline 2-Way In-Order Superscalar Processor

Pipe A: Integer Ops., Branches

Pipe B: Integer Ops., Memory

Baseline 2-Way In-Order Superscalar Processor

Baseline 2-Way In-Order Superscalar

Pipe A: Integer Ops., Branches

Pipe B: Integer Ops., Memory

Issue Logic Pipeline Diagrams

Dual Issue Data Hazards

```
No Bypassing:
ADDIU R1,R1,1 F
                      A0 A1 W
ADDIU R3,R4,1 F D B0
                         B1 W
ADDIU R5, R6, 1
                         A0 A1 W
                      D
                      D D
ADDIU R7, R5, 1
                            D
                                  A0 A1 W
Full Bypassing:
ADDIU R1,R1,1
                      A0 A1 W
ADDIU R3,R4,1 F
                   D B0
                         B1 W
ADDIU R5, R6, 1
                         A0 A1 W
ADDIU R7, R5, 1
                            A0 A1 W
```

Dual Issue Data Hazards

WAR Hazard Possible?

Fetch Logic and Alignment

Сус	Addr Instr					
0	0x000 OpA	0x000	0	0	1	1
0	0x004 OpB		_	_		
1	0x008 OpC	•••				
1	0x00C J 0x100					
•••		0x100	2	2		
2	0x100 OpD					
2	0x104 J 0x204	•••				
•••						
3	0x204 OpE	0x200		3	3	
3	0x208 J 0x30C					
•••		•••				
4	0x30C OpF	0x300				4
4	0x310 OpG	0,300				4
5	0x314 OpH	0x310	4	5		

Fetching across cache Lines is very hard. May need extra ports

Fetch Logic and Alignment

```
Cyc Addr Instr
   0x000 OpA
                             Ideal, No Alignment Constraints
0
   0x004 OpB
0
   0x008 OpC
                            OpA F D A0 A1 W
                            OpB F D B0 B1 W
   0x00C J 0x100
                             OpC F D B0 B1 W
                                   F D A0 A1 W
2
   0x100 OpD
   0x104 J 0x204
                                         D B0 B1 W
                             OpD
                                       F D A0 A1 W
                             OpE
                                               B0 B1 W
3
   0x204 OpE
   0x208 J 0x30C
                                            D A0 A1 W
                             OpF
                                               D A0 A1 W
•••
                             OpG
                                               D B0 B1 W
4
   0x30C OpF
   0x310 OpG
                                                F
                             OpH
                                                  D
                                                     A0 A1 W
4
   0x314 OpH
```

With Alignment Constraints

Сус	Addr Instr					
;	0x000 OpA	0x000	0	0	1	1
;	0x004 OpB					
;	0x008 OpC	•••				
?	0x00C J 0x100					
•••		0x100	2	2		
;	0x100 OpD					
;	0x104 J 0x204	•••				
	0x204 OpE	0x200	3	3	4	4
?	0x208 J 0x30C					
•	CAZOG S CASOC	•••				
?	0x30C OpF	0x300			С	5
;	0x310 OpG	UXSUU			3	5
;	0x314 OpH	0x310	6	6		
					I	

With Alignment Constraints

```
Cyc Addr Instr
                    F D A0 A1 W
1
    0x000 OpA
1
    0x004 OpB
                          B0 B1 W
    0x008 OpC
                              B0 B1 W
    0x00C J 0x100
                             A0 A1 W
3
    0x100 OpD
                          F
                             D B0 B1 W
3
    0x104 J 0x204
                             D A0 A1 W
                              F
4
   0x200 ?
    0x204 OpE
                              F
                                 D A0 A1 W
4
5
    0x208 J 0x30C
                                       A0 A1 W
5
   0x20C ?
                                 F
   0x308 ?
6
                                    F
6
    0x30C OpF
                                       D A0 A1 W
                                       F
    0x310 OpG
                                             A0 A1 W
    0x314 OpH
                                          D
                                             B0 B1 W
```

Precise Exceptions and Superscalars

 Similar to tracking program order for data dependencies, we need to track order for exceptions

```
LW F D B0 B1 W
SYSCALL F D A0 A1 W
```

LW is in B pipeline, but commits first in logical order!

Breaking Decode and Issue Stage

- Bypass Network can become very complex
- Can motivate breaking Decode and Issue Stage

D = Decode, Possibly resolve structural Hazards

I = Register file read, Bypassing, Issue/Steer Instructions to proper unit

Superscalars Multiply Branch Cost

```
BEQZ
         D I
                A0 A1 W
      F
          D I
OpA
                 B0
OpB
             D
OpC
             D
OpD
OpE
             F
                 D
OpF
OpG
OpH
                              A0 A1 W
OpI
                              B0
                                  B1
```

Acknowledgements

- These slides contain material developed and copyright by:
 - Arvind (MIT)
 - Krste Asanovic (MIT/UCB)
 - Joel Emer (Intel/MIT)
 - James Hoe (CMU)
 - John Kubiatowicz (UCB)
 - David Patterson (UCB)
 - Christopher Batten (Cornell)
- MIT material derived from course 6.823
- UCB material derived from course CS252 & CS152
- Cornell material derived from course ECE 4750

Copyright © 2013 David Wentzlaff