

Riccardo Carissimi, 962766. Progetto per il corso di Social Media Mining A.A. 2022-23

Il Contesto

Cos'è *Komoot* e per cosa viene usato, quali sono le domande di ricerca e perché è interessante

Cos'è Komoot

Komoot è una piattaforma per pianificare e tenere traccia degli sport all'aperto. Nello specifico è un route planner per il ciclismo, l'hiking e sport affini. Negli anni si è evoluto: tra le funzionalità interessanti è possibile usarlo come navigatore, ma anche come social network per condividere i propri itinerari e progressi col mondo.

Nonostante sia un'azienda senza una sede di lavoro fisica, è stata fondata in **Germania**. Questo dettaglio ritornerà nella nostra analisi.

È il principale competitor di Strava, piattaforma statunitense che fornisce le stesse funzionalità base.

La parte social

Nonostante la user base molto settoriale, i competitor e il focus dell'app sia un altro la parte social è abbastanza **sviluppata**, caratterizzata da follower e followings.

Sulla piattaforma sono presenti circa **30** milioni di utenti¹ tra cui alcuni veri e propri influencer e account istituzionali.

La piattaforma viene molto usata per condividere gli itinerari con la community e per mostrare agli altri utenti i propri successi.

Domande di Ricerca

- 1. Gli utenti della stessa nazione tendono a creare più spesso link tra di loro? E quelli con lo stesso sport preferito? Considerando invece i chilometri percorsi?
- 2. Il numero di chilometri percorsi influisce sulla centralità? Ci stiamo chiedendo se gli utenti che **pubblicano** di più sono anche più centrali.
- 3. C'è una correlazione tra la centralità e la nazionalità degli utenti?
- 4. Quali sono gli sport più diffusi in ogni paese?
- 5. Quali sono i paesi da cui provengono gli utenti? Il fatto che sia una piattaforma tedesca influisce su questo dato?
- 6. Proveremo anche a predire la formazione di nuovi link \rightarrow link prediction

Data Gathering

Come sono stati raccolti tutti i dati necessari per la costruzione della rete e la sua analisi

Un (lento) approccio iniziale

Ho cominciato analizzando la piattaforma alla ricerca di eventuali API. Ho trovato delle API **senza documentazione** (o quasi). Queste API non erano in grado di fornire i dati di cui avevo bisogno riguardo i follower e followings di ogni utente. Tuttavia queste informazioni sono accessibili pubblicamente.

PROBLEMA! Le informazioni vengono caricate dinamicamente e facendo una semplice richiesta HTTP non ottenevo tutti i following.

Mi ero rassegnato a usare **Selenium**, una famosa libreria di *browser automation*. Purtroppo riuscivo ad analizzare meno di 10 utenti al minuto.

Grazie al consiglio di un'amica e con un po' di intuito sono riuscito a sfruttare le chiamate API della pagina web. Sono passato da meno di 10 a circa 200 utenti analizzati al minuto.

Gli attributi degli utenti

Ho pensato di aggiungere delle informazioni per ogni nodo:

- nazionalità → purtroppo il paese di provenienza non è un'informazione fornita né dal sito né dalle API. Tuttavia possiamo ottenere i tour pubblici degli utenti, cioè i percorsi che hanno seguito. Ho estratto la nazionalità di un utente considerando la moda del paese degli ultimi 5 tour.
- sport preferito → con lo stesso approccio ho estrapolato lo sport preferito considerando la moda degli sport degli ultimi 5 tour. Ad ogni tour, infatti, è associato lo sport per cui è stato pensato.
- km percorsi → questa informazione era disponibile nella versione web della piattaforma ma non nelle API. Ho sfruttato le librerie Requests e BeautifulSoup per ottenere questo dato.

L'implementazione iniziale

Purtroppo ottenere queste informazioni era troppo lento. Avessi voluto ottenere gli attributi di tutti i nodi avrei dovuto aspettare più di 50 ore: le risposte alle richieste HTTP erano troppo lente. **Decisamente troppo**!

Facciamolo multithread

```
from threading import Thread, Lock
    from time import sleep
    procs = []
    lock = Lock()
    threads = 40
    nodes = g.nodes()
    step = int(len(nodes)/threads)
    for i in range(threads-1):
10
         print(f"Thread Started - Range [{i*step}-{(i+1)*step}]")
11
         p = Thread(target=bounded_infos, args=(lock, g,i*step, (i+1)*step, nodes))
12
         procs.append(p)
        p.start()
14
```


Analisi della rete

Vediamo le proprietà fondamentali della rete, la centralità e rispondiamo alle domande che ci siamo posti

Proprietà fondamentali della rete

Order: 74139

Size: 1113417

Density: 0.2025×10^{-3}

Reciprocity: 0.4497

Weakly connected components: 1

Strongly connected components: 283

Largest strong connected component: 73571

Average clustering: 0.0272

Average local clustering: 0.2665

Ulteriori informazioni sul grado

In-degree:

Grado medio:

Standard deviation: 67.15731144375731

Median:

Min:

Max:

15.017966252579614

3.0

6512

Out-degree:

Grado medio:

Standard deviation:

Median:

Min:

Max:

15.017966252579614

60.01526038966208

4.0

6531

Utenti più centrali

In-degree centrality	Out-degree centrality	Eigenvector centrality	
Komoot	Pasquale Albano	Komoot	
Orbit360	Thomas	Bea	
Adventurer Nic	Steffen	Carsten	
Xavier Farràs	Michael Hofmann	Söhni	
Katherine Moore	Adventurer Nic	Ewa und Christof	

Utenti per nazionalità e sport

Correlazione tra nazionalità e sport

Correlazione tra centralità e nazione

Nazione	Correlazione correlazione punto biseriale		
Germania	0.0561		
Montenegro	0.0325		
Kenya =	0.0321		
Costa d'Avorio	0.0177		
Austria	0.0173		

Nazione	Correlazione correlazione punto biseriale		
Belgio 🗾	-0.0037		
Norvegia 🔀	-0.0038		
Polonia	-0.0058		
Regno Unito	-0.0224		
Sconosciuta 🐷	-0.0833		

Altre risposte

Correlazione tra centralità e km percorsi:

0.1834

La correlazione c'è ma non è così importante quanto è ragionevole pensare. Per essere *popolari* sulla piattaforma non basta pubblicare tanti itinerari.

Assortatività

 sulla nazionalità 	0.3928
 sullo sport preferito 	0.1953
sui km percorsi	0.0178
 sul grado del nodo 	-0.0985

Analisi della rete italiana

Analizziamo brevemente alcune informazioni interessanti sulla sottorete composta dagli utenti italiani

Informazioni sulla sottorete

Order: 4286

Size: 35676

Density: 0.1942×10^{-2}

Diametro: 8

Grado medio: 8.3238

Standard deviation: 29.7475

Median: 2.0

Min: 0

Max: 543

In-degree centrality

Omar Di Felice

Gravel Club

Elena Martinello

Niccolò Varanini

Cento Canesio

Pearson correlation

Link prediction

Sfruttiamo le conoscenze di machine learning per provare a predire i link tra nodi

Costruzione del dataset

Ho cominciato creando il dataset. L'ho poi diviso nella **feature matrix** e nel **vettore delle label.**

Ho poi diviso il dataset in training e testing (adottando una politica del 30%) ed effettuato lo scaling delle feature.

Ho addestrato due modelli: uno basato su **Logistic Regression** e uno su **Random Forest**.

	jacca rd	rai	aai	pref	same_co untry	same_ sport	km_ diff
0			37.08 6708	148 914 6	0	0	180 84
1		0.00 4735	0.313 497	184 17	1	0	180 84
•••	•••	•••	•••			•••	
196 88	0.00	0.00	0.000	5	0	0	0
196 89		0.00	0.000	24	0	0	821 2

Logistic regression

Accuracy: 0.8895

Recall: 0.8094

Precision: 0.9655

F1 Score: 0.8806

Random forest

Accuracy: 0.9250

Recall: 0.9297

Precision: 0.9220

F1 Score: 0.9259

Sviluppi Futuri

Come può ancora evolvere questo progetto?

Sviluppi futuri

- 1. Si potrebbero analizzare altri dati riguardanti il tour, come il tipo di superficie, o il dislivello. Queste informazioni potrebbero portare ad analisi più puntuali
- 2. Si può entrare più in dettaglio sulla zona geografica dell'utente, fino ad arrivare al livello di regioni o singoli comuni. Questo potrebbe portare a classificatori molto più accurati per la link prediction
- 3. Si può analizzare il numero di tour a cui due amici hanno preso parte insieme
- 4. Potrebbe essere interessante analizzare la correlazione tra la centralità e la distanza geografica dei propri tour: un utente che viaggia molto e crea itinerari in giro per il mondo è più seguito?

Grazie!

Riccardo Carissimi, 962766. Progetto per il corso di Social Media Mining A.A. 2022-23

Tema delle slide ispirato al progetto analogo di Margherita Pindaro. <u>Link al progetto.</u>