Single Cycle CPU Design

Here we have a single cycle CPU diagram. Answer the following questions:

- 1. Name each component.
- 2. Name each datapath stage and explain its functionality.

Stage	Functionality						

- 3. Provide data inputs and control signals to the next PC logic.
- 4. Implement the next PC logic.

Clocking Methodology

- The input signal to each state element must stabilize before each rising edge.
- Critical path: Longest delay path between state elements in the circuit.
- $t_{clk} \ge t_{clk-to-q} + t_{CL} + t_{setup}$, where t_{CL} is the critical path in the combinational logic.
- If we place registers in the critical path, we can shorten the period by reducing the amount of logic between registers.
- $t_{hold} \le t_{clk-to-q} + t_{min}$ where t_{min} is the shortest path through the combinational logic.

Single Cycle CPU Performance Analysis

The delays of circuit elements are given as follows:

Element	Register clk-to-q	Register Setup	MUX	ALU	Mem Read	Mem Write	RegFile Read	RegFile Setup
Parameter	t _{clk-to-q}	t _{setup}	t _{mux}	t _{ALU}	t _{MEMread}	t _{MEMwrite}	t _{RFread}	T _{RFsetup}
Delay(ps)	30	20	25	200	250	200	150	20

- 1. Give an instruction that exercises the critical path.
- 2. What is the critical path in the single cycle CPU?
- 3. What are the minimum clock cycle, t_{clk} , and the maximum clock frequency, f_{clk} ? Assume the $t_{clk-to-q} > hold$ time.
- 4. What is the maximum hold time? Assume the time for an adder is $t_{ADD} = 100 \text{ ps}$.

Synchronous Logic

1. Fill out the timing diagrams for the circuits below:

