2023 CCF 非专业级软件能力认证

CSP-J/S 2023 **第二轮认证**

入门级

时间: 2023 年 10 月 21 日 08:30 ~ 12:00

题目名称	小苹果	公路	一元二次方程	旅游巴士
题目类型	传统型	传统型	传统型	传统型
目录	apple	road	uqe	bus
可执行文件名	apple	road	uqe	bus
输入文件名	apple.in	road.in	uqe.in	bus.in
输出文件名	apple.out	road.out	uqe.out	bus.out
每个测试点时限	1.0 秒	1.0 秒	1.0 秒	1.0 秒
内存限制	512 MiB	512 MiB	512 MiB	512 MiB
测试点数目	10	20	10	20
测试点是否等分	是	是	是	是

提交源程序文件名

对于 C++ 语言 apple.cpp road.cpp uqe.cpp bus.cpp	对于 C++	语言	apple.cpp	road.cpp	uqe.cpp	bus.cpp
---	--------	----	-----------	----------	---------	---------

编译选项

对于 C++ 语言 -02 -std=c	c++14 -static
----------------------	---------------

注意事项(请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须 是 0。
- 3. 提交的程序代码文件的放置位置请参考各省的具体要求。
- 4. 因违反以上三点而出现的错误或问题,申诉时一律不予受理。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6. 选手提交的程序源文件必须不大于 100KB。
- 7. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 8. 全国统一评测时采用的机器配置为: Intel(R) Core(TM) i7-8700K CPU @3.70GHz, 内存 32GB。上述时限以此配置为准。
- 9. 只提供 Linux 格式附加样例文件。
- 10. 评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以此为准。

小苹果 (apple)

【题目描述】

小 Y 的桌子上放着 n 个苹果从左到右排成一列,编号为从 1 到 n。

小苞是小 Y 的好朋友,每天她都会从中拿走一些苹果。

每天在拿的时候,小苞都是从左侧第1个苹果开始、每隔2个苹果拿走1个苹果。随后小苞会将剩下的苹果按原先的顺序重新排成一列。

小苞想知道,多少天能拿完所有的苹果,而编号为n的苹果是在第几天被拿走的?

【输入格式】

从文件 apple.in 中读入数据。

输入的第一行包含一个正整数 n,表示苹果的总数。

【输出格式】

输出到文件 apple.out 中。

输出一行包含两个正整数,两个整数之间由一个空格隔开,分别表示小苞拿走所有苹果所需的天数以及拿走编号为n的苹果是在第几天。

【样例1输入】

1 8

【样例1输出】

1 5 5

【样例1解释】

小苞的桌上一共放了8个苹果。

小苞第一天拿走了编号为1、4、7的苹果。

小苞第二天拿走了编号为 2、6 的苹果。

小苞第三天拿走了编号为3的苹果。

小苞第四天拿走了编号为5的苹果。

小苞第五天拿走了编号为8的苹果。

【样例 2】

见选手目录下的 apple/apple2.in 与 apple/apple2.ans。

【数据范围】

对于所有测试数据有: $1 \le n \le 10^9$ 。

测试点	$n \leq$	特殊性质
$1 \sim 2$	10	无
$3 \sim 5$	10^{3}	无
$6 \sim 7$	10^{6}	有
$8 \sim 9$	10^{6}	无
10	10^{9}	无

特殊性质: 小苞第一天就取走编号为n的苹果。

公路 (road)

【题目描述】

小苞准备开着车沿着公路自驾。

公路上一共有 n 个站点,编号为从 1 到 n。其中站点 i 与站点 i+1 的距离为 v_i 公里。

公路上每个站点都可以加油,编号为i 的站点一升油的价格为 a_i 元,且每个站点只出售整数升的油。

小苞想从站点 1 开车到站点 n,一开始小苞在站点 1 且车的油箱是空的。已知车的油箱足够大,可以装下任意多的油,且每升油可以让车前进 d 公里。问小苞从站点 1 开到站点 n,至少要花多少钱加油?

【输入格式】

从文件 road.in 中读入数据。

输入的第一行包含两个正整数 n 和 d,分别表示公路上站点的数量和车每升油可以前进的距离。

输入的第二行包含 n-1 个正整数 $v_1, v_2 \dots v_{n-1}$, 分别表示站点间的距离。

输入的第二行包含 n 个正整数 $a_1, a_2 \dots a_n$, 分别表示在不同站点加油的价格。

【输出格式】

输出到文件 road.out 中。

输出一行,仅包含一个正整数,表示从站点 1 开到站点 n,小苞至少要花多少钱加油。

【样例1输入】

1 5 4

2 10 10 10 10

3 9 8 9 6 5

【样例1输出】

1 79

【样例1解释】

最优方案下: 小苞在站点 1 买了 3 升油,在站点 2 购买了 5 升油,在站点 4 购买了 2 升油。

【样例 2】

见选手目录下的 road/road2.in 与 road/road2.ans。

【数据范围】

对于所有测试数据保证: $1 \le n \le 10^5$, $1 \le d \le 10^5$, $1 \le v_i \le 10^5$, $1 \le a_i \le 10^5$ 。

测试点	$n \leq$	特殊性质
$1 \sim 5$	8	无
$6 \sim 10$	10^{3}	无
$11 \sim 13$	10^{5}	A
$\overline{14 \sim 16}$	10^{5}	В
$17 \sim 20$	10^{5}	无

特殊性质 A: 站点 1 的油价最低。

特殊性质 B: 对于所有 $1 \le i < n$, v_i 为 d 的倍数。

一元二次方程(uge)

【题目背景】

众所周知,对一元二次方程 $ax^2 + bx + c = 0, (a \neq 0)$,可以用下述方式求实数解:

- 计算 $\Delta = b^2 4ac$, 则:
 - 1. 若 $\Delta < 0$,则该一元二次方程无实数解;
 - 2. 否则 $\Delta \geq 0$,此时该一元二次方程有两个实数解 $x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a}$;
 - 其中, $\sqrt{\Delta}$ 表示 Δ 的算术平方根, 即使得 $s^2 = \Delta$ 的唯一非负实数 s.
 - 特别的, 当 $\Delta = 0$ 时, 这两个实数解相等; 当 $\Delta > 0$ 时, 这两个实数解互异。

例如:

- $x^2 + x + 1 = 0$ 无实数解,因为 $\Delta = 1^2 4 \times 1 \times 1 = -3 < 0$;
- $x^2 2x + 1 = 0$ 有两相等实数解 $x_{1,2} = 1$;
- $x^2 3x + 2 = 0$ 有两互异实数解 $x_1 = 1, x_2 = 2$;

在题面描述中 a 和 b 的最大公因数使用 gcd(a,b) 表示。例如 12 和 18 的最大公因数是 6,即 gcd(12,18)=6。

【题目描述】

现在给定一个一元二次方程的系数 a,b,c,其中 a,b,c 均为整数且 $a \neq 0$ 。你需要判断一元二次方程 $ax^2 + bx + c = 0$ 是否有实数解,并按要求的格式输出。

在本题中输出有理数 v 时须遵循以下规则:

- 由有理数的定义,存在唯一的两个整数 p 和 q,满足 q>0, $\gcd(p,q)=1$ 且 $v=\frac{p}{q}$ 。
- 若 q = 1, 则输出 {p}; 否则输出 {p}/{q}; 其中 {n} 代表整数 n 的值;
- 例如:
 - 当 v = -0.5 时, p 和 q 的值分别为 -1 和 2, 则应输出 **-1/2**;
 - 当 v=0 时,p 和 q 的值分别为 0 和 1,则应输出 $\boldsymbol{0}$ 。

对于方程的求解,分两种情况讨论:

- 1. 若 $\Delta = b^2 4ac < 0$,则表明方程无实数解,此时你应当输出 NO:
- 2. 否则 $\Delta > 0$,此时方程有两解 (可能相等),记其中**较大者**为 x,则:
 - (1). 若 x 为有理数,则按有理数的格式输出 x。
 - (2). 否则根据上文公式, x 可以被**唯一**表示为 $x = q_1 + q_2\sqrt{r}$ 的形式, 其中:
 - q_1, q_2 为有理数,且 $q_2 > 0$;
 - r 为正整数且 r > 1,且不存在正整数 d > 1 使 $d^2 | r$ (即 r 不应是 d^2 的倍数);

此时:

- 1. 若 $q_1 \neq 0$,则按照有理数的格式输出 q_1 ,并再输出一个加号 +;
- 2. 否则跳过这一步输出;

随后:

- 1. 若 $q_2 = 1$,则输出 $sqrt(\{r\})$;
- 2. 否则若 q_2 为整数,则输出 {q2}*sqrt({r});
- 3. 否则若 $q_3 = \frac{1}{q_2}$ 为整数,则输出 $sqrt(\{r\})/\{q3\};$
- 4. 否则可以证明存在唯一整数 c, d 满足 $c, d > 1, \gcd(c, d) = 1$ 且 $q_2 = \frac{c}{d}$,此时输出 {c}*sqrt({r})/{d};

上述表示中 $\{n\}$ 代表整数 n 的值,详见样例。

如果方程有实数解,则按要求的格式输出两个实数解中的较大者。否则若方程没有实数解,则输出 NO。

【输入格式】

从文件 uqe.in 中读入数据。

输入的第一行包含两个正整数 T, M,分别表示方程数和系数绝对值的上界;接下来 T 行,每行包含三个整数 a, b, c。

【输出格式】

输出到文件 uge.out 中。

输出 T 行,每行包含一个字符串,表示对应询问的答案,格式如题面所述。 每行输出的字符串中间不应包含任何空格。

【样例1输入】

```
1 9 1000
2 1 -1 0
3 -1 -1 -1
4 1 -2 1
5 1 5 4
6 4 4 1
7 1 0 -432
8 1 -3 1
9 2 -4 1
10 1 7 1
```

【样例1输出】

```
1 1
2 NO
3 1
4 -1
5 -1/2
6 12*sqrt(3)
7 3/2+sqrt(5)/2
8 1+sqrt(2)/2
9 -7/2+3*sqrt(5)/2
```

【样例 2】

见选手目录下的 *uqe/uqe2.in* 与 *uqe/uqe2.ans*。

【数据范围】

对于所有测试数据有: $1 \le T \le 5000$, $1 \le M \le 10^3$, $|a|, |b|, |c| \le M$, $a \ne 0$.

测试点编号	$M \leq$	特殊性质 A	特殊性质 B	特殊性质 C
1	1	是	是	是
2	20	否		否
3		是	否	是
4				
5	10^{3}		是	是
6		 否	上 	否
7,8		П	否	是
9, 10				否

其中:

- 特殊性质 A: 保证 b = 0;
- 特殊性质 B: 保证 c = 0;
- 特殊性质 C: 如果方程有解,那么方程的两个解都是整数。

旅游巴士 (bus)

【题目描述】

小 Z 打算在国庆假期期间搭乘旅游巴士去一处他向往已久的景点旅游。

旅游景点的地图共有 n 处地点,在这些地点之间连有 m 条道路。其中 1 号地点为景区入口,n 号地点为景区出口。我们把一天当中景区开门营业的时间记为 0 时刻,则从 0 时刻起,每间隔 k 单位时间便有一辆旅游巴士到达景区入口,同时有一辆旅游巴士从景区出口驶离景区。

所有道路均只能**单向通行**。对于每条道路,游客步行通过的用时均为恰好 1 单位时间。

小 Z 希望乘坐旅游巴士到达景区入口,并沿着自己选择的任意路径走到景区出口,再乘坐旅游巴士离开,这意味着他到达和离开景区的时间都必须是 k 的非负整数倍。由于节假日客流众多,小 Z 在坐旅游巴士离开景区前只想一直沿着景区道路移动,而不想在任何地点(包括景区入口和出口)或者道路上逗留。

出发前,小 Z 忽然得知:景区采取了限制客流的方法,对于每条道路均设置了一个"开放时间" a_i ,游客只有**不早于** a_i **时刻**才能通过这条道路。

请你帮助小Z设计一个旅游方案,使得他乘坐旅游巴士离开景区的时间尽量地早。

【输入格式】

从文件 bus.in 中读入数据。

输入的第一行包含 3 个正整数 n, m, k,表示旅游景点的地点数、道路数,以及旅游巴士的发车间隔。

输入的接下来 m 行,每行包含 3 个非负整数 u_i, v_i, a_i ,表示第 i 条道路从地点 u_i 出发,到达地点 v_i ,道路的"开放时间"为 a_i 。

【输出格式】

输出到文件 bus.out 中。

输出一行,仅包含一个整数,表示小 Z 最早乘坐旅游巴士离开景区的时刻。如果不存在符合要求的旅游方案,输出 -1。

【样例1输入】

```
      1
      5
      5
      3

      2
      1
      2
      0

      3
      2
      5
      1

      4
      1
      3
      0
```

5 3 4 3

6 4 5 1

【样例1输出】

1 6

【样例1解释】

图 1: 样例 1 示例

小 Z 可以在 3 时刻到达景区入口,沿 $1 \rightarrow 3 \rightarrow 4 \rightarrow 5$ 的顺序走到景区出口,并在 6 时刻离开。

【样例 2】

见选手目录下的 bus/bus2.in 与 bus/bus2.ans。

【数据范围】

对于所有测试数据有: $2 \le n \le 10^4$, $1 \le m \le 2 \times 10^4$, $1 \le k \le 100$, $1 \le u_i, v_i \le n$, $0 \le a_i \le 10^6$ 。

测试点编号	$n \leq$	$m \leq$	$k \leq$	特殊性质
$1 \sim 2$	10	10 15	100	$a_i = 0$
$3 \sim 5$				无
$6 \sim 7$	10^{4}	10^4 2×10^4	1	$a_i = 0$
8 ~ 10				无
$11 \sim 13$			100	$a_i = 0$
$14 \sim 15$				$u_i < v_i$
$16 \sim 20$				无