學號:R06942077 系級:電信碩一姓名:洪健鈞

1. (1%)請比較有無 normalize(rating)的差別。並說明如何 normalize.

在 latent dimension 為 240 的情況下:

無 normalize 的 public score 為 1.18984, private score 為 1.18677

有 normalize 的 public score 為 0.88111, private score 為 0.87868

我 normalize rating 的方式為減掉平均值(mean),在除以標準差(std)

Normalized_rating = (rating- mean) / std

2. (1%)比較不同的 latent dimension 的結果。

在無 normalize 的情況下

Dimension 120 public score 為 0.87820, private score 為 0.87834 Dimension 240 public score 為 0.88104, private score 為 0.87966 Dimension 480 public score 為 0.89013, private score 為 0.88911

Dimension 較低, 預測結果較準確。

3. (1%)比較有無 bias 的結果。

有加 bias 項的情況(latent dimension=120), public score 為 0.87820, private score 為 0.87834

然而沒加 bias 項, public score 為 1.19992, private score 為 1.19835 每個人可能都會有自己評分的傾向,像是傾向於把每部電影都評得很高分或者很低分; 同理, movie 也會有這個現象, 所以加入 bias 來修正使用者造成的偏差, 可以使 model 更為準確。

4. (1%)請試著用 DNN 來解決這個問題,並且說明實做的方法(方法不限)。並比較 MF 和 NN 的結果,討論結果的差異。

			irl@irl: ~/hw5		×
File Edit View Search Terminal	Help				
initial model 6040 3952					
Layer (type)	Output Shape	Param #	Connected to		- 1
input_1 (InputLayer)	(None, 1)	0			- 1
input_2 (InputLayer)	(None, 1)	0			- 1
embedding_1 (Embedding)	(None, 1, 240)	1449600	input_1[0][0]		- 1
embedding_2 (Embedding)	(None, 1, 240)	948480	input_2[0][0]		- 1
flatten_1 (Flatten)	(None, 240)	0	embedding_1[0][0]		- 1
flatten_2 (Flatten)	(None, 240)	0	embedding_2[0][0]		- 1
concatenate_1 (Concatenate)	(None, 480)	0	flatten_1[0][0] flatten_2[0][0]		
dropout_1 (Dropout)	(None, 480)	0	concatenate_1[0][0]		- 1
dense_1 (Dense)	(None, 240)	115440	dropout_1[0][0]		- 1
dropout_2 (Dropout)	(None, 240)	0	dense_1[0][0]		- 1
dense_2 (Dense)	(None, 1)	241	dropout_2[0][0]		- 1
Total params: 2,513,761 Trainable params: 2,513,761 Non-trainable params: 0					
el	· >.] - E	ETA: 0s - los	s: 0.7116Epoch 00001: val_loss improv ep - loss: 0.7116 - val_loss: 0.6657	red from inf to 0.66566, saving model to dnnbes	t_mod

我的 DNN model 架構如圖所示, 將 user embedding 以及 movie embedding concatenate 在一起, 然後加入 dropout 防止 overfitting, 再經由 DNN 得出 rating。 Latent dimension 設 240, dropout rate 設 0.3, 跑 30 個 epoch。並設定 earlystop。 準確率為: public score= 0.85358, private score= 0.85676 通過 strong baseline. MF 使用內積來變成純量, NN 則是用 dense。

這個 model 出來的準確率也比已經 normalized 過的 MF model 還高。

			irl@irl: ~/hw5	×
File Edit View Search Terminal	l Help			
status, run_metadata) KeyboardInterrupt trl@trl:-/hw\$S python3 hw5mf. Using TensorFlow backend. 2017-12-22 21:23:24.650527: I mpiled to use: SSE4.1 SSE4.2 inttlal model 6040 3952	tensorflow/core/pla	tform/cpu_fea	ture_guard.cc:137] Your CPU suppor	ts instructions that this TensorFlow binary was not co
Layer (type)	Output Shape	Param #	Connected to	
input_1 (InputLayer)	(None, 1)	0		==
input_2 (InputLayer)	(None, 1)	0		
embedding_1 (Embedding)	(None, 1, 120)	724800	input_1[0][0]	
embedding_2 (Embedding)	(None, 1, 120)	474240	input_2[0][0]	
flatten_1 (Flatten)	(None, 120)	0	embedding_1[0][0]	
flatten_2 (Flatten)	(None, 120)	0	embedding_2[0][0]	
embedding_3 (Embedding)	(None, 1, 1)	6040	input_1[0][0]	
embedding_4 (Embedding)	(None, 1, 1)	3952	input_2[0][0]	
dot_1 (Dot)	(None, 1)	0	flatten_1[0][0] flatten_2[0][0]	
flatten_3 (Flatten)	(None, 1)	0	embedding_3[0][0]	
flatten_4 (Flatten)	(None, 1)	0	embedding_4[0][0]	_
add_1 (Add)	(None, 1)	0	dot_1[0][0] flatten_3[0][0] flatten 4[0][0]	

上圖為我的 MF model

5. (1%)請試著將 movie 的 embedding 用 tsne 降維後,將 movie category 當作 label 來作圖。:

Label1: Drama, Musical

Label2: Thriller, Horror, Crime, Film-Noir Label3: Adventure, Animation, Children

Label4: Others

6. (BONUS)(1%)試著使用除了 rating 以外的 feature, 並說明你的作法和結果, 結果好壞不會影響評分。

Latent dimension 設定為 480, 跑 30 個 epoch, 切 0.1 的 validation set, dropout rate 設定為 0.3, 多加入使用者資訊 "性別",及"年齡",總共使用 4 個 embedding, concatenate 在一起訓練。並用 relu 及 linear activation。 Optimizer 用 adamax。結果 public score 為 0.85445 private 為 0.85771

Aa "" 🖸 🗅 🕞 sort