

# Chapter 23 Minimum Spanning Trees



- Find a minimum-cost set of edges that connect all vertices of a graph
- Applications
  - Connect "nodes" with a minimum of "wire"
    - Networking
    - · Circuit design





- Find a minimum-cost set of edges that connect all vertices of a graph
- Applications
  - Collect nearby nodes
    - Clustering, taxonomy construction



- Find a minimum-cost set of edges that connect all vertices of a graph
- Applications
  - Approximating graphs





- A <u>tree</u> is an acyclic, undirected, connected graph
- A <u>spanning tree</u> of a graph is a tree containing all vertices from the graph
- A minimum spanning tree is a spanning tree, where the sum of the weights on the tree's edges are minimal





 A minimum spanning tree is a spanning tree, where the sum of the weights on the tree's edges are minimal

- Problem formulation
  - Given an undirected, weighted graph G = (V, E) with weights w(u, v) for each edge  $(u, v) \in E$
  - Find an acyclic subset  $T \subseteq E$  that connects all of the vertices V and minimizes the total weight:

$$w(T) = \sum_{(u,v)\in T} w(u,v)$$

- The minimum spanning tree is (V, T)
  - Minimum spanning tree may be not unique (can be more than one)



- Both Kruskal's and Prim's Algorithms work with undirected graphs
- Both work with weighted and unweighted graphs but are more interesting when edges are weighted
- Both are greedy algorithms that produce optimal solutions

- Solution 1: Kruskal's algorithm
  - Work with edges
  - Two steps:
    - Sort edges by increasing edge weight
    - Select the first | V| 1 edges that do not generate a cycle
  - Walk through:



Solution 1: Kruskal's algorithm



Sort the edges by increasing edge weight

| edge  | $d_v$ |  |
|-------|-------|--|
| (D,E) | 1     |  |
| (D,G) | 2     |  |
| (E,G) | 3     |  |
| (C,D) | 3     |  |
| (G,H) | 3     |  |
| (C,F) | 3     |  |
| (B,C) | 4     |  |

| edge  | $d_v$ |  |
|-------|-------|--|
| (B,E) | 4     |  |
| (B,F) | 4     |  |
| (B,H) | 4     |  |
| (A,H) | 5     |  |
| (D,F) | 6     |  |
| (A,B) | 8     |  |
| (A,F) | 10    |  |
|       |       |  |



Select first |V|-1 edges which do not generate a cycle

| edge  | $d_v$ |   |
|-------|-------|---|
| (D,E) | 1     | V |
| (D,G) | 2     |   |
| (E,G) | 3     |   |
| (C,D) | 3     |   |
| (G,H) | 3     |   |
| (C,F) | 3     |   |
| (B,C) | 4     |   |

| edge  | $d_v$ |  |
|-------|-------|--|
| (B,E) | 4     |  |
| (B,F) | 4     |  |
| (B,H) | 4     |  |
| (A,H) | 5     |  |
| (D,F) | 6     |  |
| (A,B) | 8     |  |
| (A,F) | 10    |  |



Select first |V|-1 edges which do not generate a cycle

| edge  | $d_v$ |   |
|-------|-------|---|
| (D,E) | 1     | √ |
| (D,G) | 2     | √ |
| (E,G) | 3     |   |
| (C,D) | 3     |   |
| (G,H) | 3     |   |
| (C,F) | 3     |   |
| (B,C) | 4     |   |

| $d_v$ |                            |
|-------|----------------------------|
| 4     |                            |
| 4     |                            |
| 4     |                            |
| 5     |                            |
| 6     |                            |
| 8     |                            |
| 10    |                            |
|       | 4<br>4<br>4<br>5<br>6<br>8 |

Solution 1: Kruskal's algorithm



Select first |V|-1 edges which do not generate a cycle

| edge  | $d_v$ |   |
|-------|-------|---|
| (D,E) | 1     | √ |
| (D,G) | 2     | 1 |
| (E,G) | 3     | χ |
| (C,D) | 3     |   |
| (G,H) | 3     |   |
| (C,F) | 3     |   |
| (B,C) | 4     |   |

| edge  | $d_v$ |  |
|-------|-------|--|
| (B,E) | 4     |  |
| (B,F) | 4     |  |
| (B,H) | 4     |  |
| (A,H) | 5     |  |
| (D,F) | 6     |  |
| (A,B) | 8     |  |
| (A,F) | 10    |  |
| (A,B) | 8     |  |

Accepting edge (E,G) would create a cycle

Solution 1: Kruskal's algorithm



Select first |V|-1 edges which do not generate a cycle

| edge  | $d_v$ |   |
|-------|-------|---|
| (D,E) | 1     | √ |
| (D,G) | 2     | √ |
| (E,G) | 3     | χ |
| (C,D) | 3     | √ |
| (G,H) | 3     |   |
| (C,F) | 3     |   |
| (B,C) | 4     |   |

| edge  | $d_v$ |  |
|-------|-------|--|
| (B,E) | 4     |  |
| (B,F) | 4     |  |
| (B,H) | 4     |  |
| (A,H) | 5     |  |
| (D,F) | 6     |  |
| (A,B) | 8     |  |
| (A,F) | 10    |  |
|       |       |  |



Select first |V|-1 edges which do not generate a cycle

| edge  | $d_v$ |          |
|-------|-------|----------|
| (D,E) | 1     | <b>V</b> |
| (D,G) | 2     | V        |
| (E,G) | 3     | х        |
| (C,D) | 3     | √        |
| (G,H) | 3     | √        |
| (C,F) | 3     |          |
| (B,C) | 4     |          |

| edge  | $d_v$ |  |
|-------|-------|--|
| (B,E) | 4     |  |
| (B,F) | 4     |  |
| (B,H) | 4     |  |
| (A,H) | 5     |  |
| (D,F) | 6     |  |
| (A,B) | 8     |  |
| (A,F) | 10    |  |



Select first |V|-1 edges which do not generate a cycle

| edge  | $d_v$ |   |
|-------|-------|---|
| (D,E) | 1     | V |
| (D,G) | 2     | √ |
| (E,G) | 3     | χ |
| (C,D) | 3     | V |
| (G,H) | 3     | √ |
| (C,F) | 3     | V |
| (B,C) | 4     |   |

| edge  | $d_v$ |  |
|-------|-------|--|
| (B,E) | 4     |  |
| (B,F) | 4     |  |
| (B,H) | 4     |  |
| (A,H) | 5     |  |
| (D,F) | 6     |  |
| (A,B) | 8     |  |
| (A,F) | 10    |  |



Select first |V|-1 edges which do not generate a cycle

| edge  | $d_v$ |   |
|-------|-------|---|
| (D,E) | 1     | V |
| (D,G) | 2     | 1 |
| (E,G) | 3     | X |
| (C,D) | 3     | V |
| (G,H) | 3     | V |
| (C,F) | 3     | V |
| (B,C) | 4     | V |

| edge  | $d_v$ |  |
|-------|-------|--|
| (B,E) | 4     |  |
| (B,F) | 4     |  |
| (B,H) | 4     |  |
| (A,H) | 5     |  |
| (D,F) | 6     |  |
| (A,B) | 8     |  |
| (A,F) | 10    |  |



Select first |V|-1 edges which do not generate a cycle

| edge  | $d_v$ |          |
|-------|-------|----------|
| (D,E) | 1     | √        |
| (D,G) | 2     | V        |
| (E,G) | 3     | χ        |
| (C,D) | 3     | V        |
| (G,H) | 3     | V        |
| (C,F) | 3     | V        |
| (B,C) | 4     | <b>√</b> |

| edge  | $d_v$ |   |
|-------|-------|---|
| (B,E) | 4     | χ |
| (B,F) | 4     |   |
| (B,H) | 4     |   |
| (A,H) | 5     |   |
| (D,F) | 6     |   |
| (A,B) | 8     |   |
| (A,F) | 10    |   |



Select first |V|-1 edges which do not generate a cycle

| edge  | $d_v$ |   |
|-------|-------|---|
| (D,E) | 1     | V |
| (D,G) | 2     | V |
| (E,G) | 3     | χ |
| (C,D) | 3     | V |
| (G,H) | 3     | √ |
| (C,F) | 3     | V |
| (B,C) | 4     | V |

| edge  | $d_v$ |   |
|-------|-------|---|
| (B,E) | 4     | χ |
| (B,F) | 4     | χ |
| (B,H) | 4     |   |
| (A,H) | 5     |   |
| (D,F) | 6     |   |
| (A,B) | 8     |   |
| (A,F) | 10    |   |



Select first |V|-1 edges which do not generate a cycle

| edge  | $d_v$ |   |
|-------|-------|---|
| (D,E) | 1     | V |
| (D,G) | 2     | V |
| (E,G) | 3     | χ |
| (C,D) | 3     | V |
| (G,H) | 3     | V |
| (C,F) | 3     | V |
| (B,C) | 4     | V |

| , |
|---|
| , |
| , |
|   |
|   |
|   |
|   |
|   |



Select first |V|-1 edges which do not generate a cycle

| edge  | $d_v$ |          |
|-------|-------|----------|
| (D,E) | 1     | <b>V</b> |
| (D,G) | 2     | 1        |
| (E,G) | 3     | X        |
| (C,D) | 3     | 1        |
| (G,H) | 3     | 1        |
| (C,F) | 3     | 1        |
| (B,C) | 4     | <b>v</b> |

| edge  | $d_v$ |   |
|-------|-------|---|
| (B,E) | 4     | χ |
| (B,F) | 4     | χ |
| (B,H) | 4     | χ |
| (A,H) | 5     | 1 |
| (D,F) | 6     |   |
| (A,B) | 8     |   |
| (A,F) | 10    |   |
|       |       |   |

Solution 1: Kruskal's algorithm



Select first |V|-1 edges which do not generate a cycle

| edge  | $d_v$ |   |
|-------|-------|---|
| (D,E) | 1     | V |
| (D,G) | 2     | √ |
| (E,G) | 3     | χ |
| (C,D) | 3     | V |
| (G,H) | 3     | √ |
| (C,F) | 3     | √ |
| (B,C) | 4     | V |

| edge  | $d_v$ |   |
|-------|-------|---|
| (B,E) | 4     | χ |
| (B,F) | 4     | χ |
| (B,H) | 4     | χ |
| (A,H) | 5     | √ |
| (D,F) | 6     |   |
| (A,B) | 8     |   |
| (A,F) | 10    |   |

**Done** 

Total Cost = 21

- Solution 2: Prim's algorithm
  - Work with nodes (instead of edges)
  - Two steps
    - Select node with minimum distance
    - Update distances of adjacent, unselected nodes

- Walk through:





Solution 2: Prim's algorithm



**K**: whether in the tree

 $d_{v}$ : distance to the tree

 $p_{\nu}$ : closest node that is in the tree

#### Initialize array

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A | F | 8     | _       |
| В | F | 8     | _       |
| C | F | 8     | _       |
| D | F | 8     |         |
| E | F | 8     | _       |
| F | F | 8     |         |
| G | F | 8     | _       |
| Н | F | 8     | _       |

Solution 2: Prim's algorithm



Start with any node, say D

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A |   |       |         |
| В |   |       |         |
| C |   |       |         |
| D | T | 0     | _       |
| E |   |       |         |
| F |   |       |         |
| G |   |       |         |
| Н |   |       |         |

Solution 2: Prim's algorithm



Update distances of adjacent, unselected nodes

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A |   |       |         |
| В |   |       |         |
| C |   | 3     | D       |
| D | Т | 0     |         |
| E |   | 25    | D       |
| F |   | 18    | D       |
| G |   | 2     | D       |
| Н |   |       |         |

Solution 2: Prim's algorithm



# Select node with minimum distance

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A |   |       |         |
| В |   |       |         |
| C |   | 3     | D       |
| D | T | 0     |         |
| E |   | 25    | D       |
| F |   | 18    | D       |
| G | T | 2     | D       |
| Н |   |       |         |

Solution 2: Prim's algorithm



Update distances of adjacent, unselected nodes

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A |   |       |         |
| В |   |       |         |
| C |   | 3     | D       |
| D | Т | 0     | _       |
| E |   | 7     | G       |
| F |   | 18    | D       |
| G | Т | 2     | D       |
| Н |   | 3     | G       |

Solution 2: Prim's algorithm



# Select node with minimum distance

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A |   |       |         |
| В |   |       |         |
| C | T | 3     | D       |
| D | T | 0     |         |
| E |   | 7     | G       |
| F |   | 18    | D       |
| G | Т | 2     | D       |
| Н |   | 3     | G       |

Solution 2: Prim's algorithm



Update distances of adjacent, unselected nodes

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A |   |       |         |
| В |   | 4     | C       |
| C | Т | 3     | D       |
| D | T | 0     |         |
| E |   | 7     | G       |
| F |   | 3     | C       |
| G | Т | 2     | D       |
| Н |   | 3     | G       |

Solution 2: Prim's algorithm



# Select node with minimum distance

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A |   |       |         |
| В |   | 4     | C       |
| C | Т | 3     | D       |
| D | Т | 0     | _       |
| E |   | 7     | G       |
| F | T | 3     | С       |
| G | Т | 2     | D       |
| Н |   | 3     | G       |

Solution 2: Prim's algorithm



Update distances of adjacent, unselected nodes

|   | K | $d_v$ | $p_v$ |
|---|---|-------|-------|
| A |   | 10    | F     |
| В |   | 4     | C     |
| C | Т | 3     | D     |
| D | T | 0     | 1     |
| E |   | 2     | F     |
| F | T | 3     | С     |
| G | Т | 2     | D     |
| Н |   | 3     | G     |

Solution 2: Prim's algorithm



# Select node with minimum distance

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A |   | 10    | F       |
| В |   | 4     | C       |
| C | T | 3     | D       |
| D | T | 0     |         |
| E | T | 2     | F       |
| F | T | 3     | С       |
| G | T | 2     | D       |
| Н |   | 3     | G       |

Solution 2: Prim's algorithm



Update distances of adjacent, unselected nodes

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A |   | 10    | F       |
| В |   | 4     | С       |
| C | Т | 3     | D       |
| D | T | 0     |         |
| E | T | 2     | F       |
| F | T | 3     | С       |
| G | Т | 2     | D       |
| Н |   | 3     | G       |

Table entries unchanged

Solution 2: Prim's algorithm



# Select node with minimum distance

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A |   | 10    | F       |
| В |   | 4     | C       |
| C | T | 3     | D       |
| D | T | 0     | _       |
| E | T | 2     | F       |
| F | T | 3     | C       |
| G | T | 2     | D       |
| Н | T | 3     | G       |

Solution 2: Prim's algorithm



Update distances of adjacent, unselected nodes

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A |   | 4     | Н       |
| В |   | 4     | C       |
| C | T | 3     | D       |
| D | T | 0     | 1       |
| E | T | 2     | F       |
| F | T | 3     | С       |
| G | T | 2     | D       |
| Н | T | 3     | G       |

Solution 2: Prim's algorithm



## Select node with minimum distance

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A | T | 4     | Н       |
| В |   | 4     | C       |
| C | Т | 3     | D       |
| D | T | 0     |         |
| E | T | 2     | F       |
| F | T | 3     | C       |
| G | T | 2     | D       |
| Н | T | 3     | G       |

Solution 2: Prim's algorithm



Update distances of adjacent, unselected nodes

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A | T | 4     | Н       |
| В |   | 4     | С       |
| C | Т | 3     | D       |
| D | Т | 0     |         |
| E | T | 2     | F       |
| F | T | 3     | С       |
| G | Т | 2     | D       |
| Н | Т | 3     | G       |

Table entries unchanged

Solution 2: Prim's algorithm



# Select node with minimum distance

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A | T | 4     | Н       |
| В | T | 4     | C       |
| C | Т | 3     | D       |
| D | T | 0     |         |
| E | T | 2     | F       |
| F | T | 3     | С       |
| G | T | 2     | D       |
| Н | Т | 3     | G       |



Solution 2: Prim's algorithm



Cost of Minimum
Spanning Tree = 21

|   | K | $d_v$ | $p_{v}$ |
|---|---|-------|---------|
| A | T | 4     | Н       |
| В | T | 4     | C       |
| C | Т | 3     | D       |
| D | T | 0     |         |
| E | T | 2     | F       |
| F | T | 3     | C       |
| G | Т | 2     | D       |
| Н | T | 3     | G       |

Done

#### Runtime

- When using binary heaps, the runtime of the Kruskal's algorithm is  $O(E \lg V)$
- When using binary heaps, the runtime of the Prim's algorithm is  $O(E \lg V)$  When using the Fibonacci heaps, the runtime of the Prim's algorithm becomes:  $O(E + V \lg V)$
- So, when an undirected graph is dense (i.e., |V| is much small than |E|), the Prim's algorithm is more efficient