ELLIPTIC CURVES Example Sheet 3

For the first exercise you need the Hasse-Weil Theorem:

Hasse-Weil Theorem. Let C be a non-singular curve of genus g over \mathbb{F}_p . Then

$$|\#C(\mathbb{F}_p) - (p+1)| \le 2g\sqrt{p}.$$

- 1. Let $g \ge 0$ be a fixed integer. Show that there is a constant P(g)such that if p is prime, $p \geq P(g)$ and C/\mathbb{F}_p is non-singular of genus g, then $C(\mathbb{F}_p) \neq \emptyset$.
- 2. Let a, b be non-zero integers. Consider the curve

$$C: y^2 = ax^{100} + b.$$

Show (with the help of Q1) that there is a constant P_0 (depending on a, b) such that $C(\mathbb{Q}_p) \neq \emptyset$ for all primes $p \geq P_0$.

- 3. Find the torsion subgroups of the following elliptic curves:
 - (i) $Y^2 = X^3 + X + 1$, (ii) $Y^2 = X^3 7$,

 - (iii) $Y^2 = X^3 + 1$, (iv) $Y^2 = X^3 + 4X$, (v) $Y^2 = X^3 X$.