My notes on cryptography

Omid Bodaghi

March 1, 2025

Contents

1	l 1	CZDI	T
		SZDL	Lemma
		1.1.1	Zero Polynomial
		1.1.2	Equality of Polynomial Functions
		1.1.3	Equality of Polynomial Functions

iv CONTENTS

Part I Prerequisites

Chapter 1

Polynomial Functions

Definition 1.1. A polynomial function f of degree d is a function of the form

$$f(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_d x^d,$$

where $c_d \neq 0$. Each term $c_i x^i$ is called a monomial.

A polynomial function

$$f(X) \in \mathbb{F}^{(\leq d)}[X]$$

is said to be of degree at most d, where the coefficients are taken from the finite field \mathbb{F} .

In such a polynomial, all arithmetic operations—such as addition and multiplication—are performed in \mathbb{F} . For example, to compute the expression $c_0 + c_2 x^2$, one first computes $x^2 = x \cdot x$ in \mathbb{F} , then multiplies by c_2 , and finally adds c_0 , with each operation carried out in \mathbb{F}_p .

Remark 1.1. Polynomials that have no roots in the real numbers may possess roots in a finite field, and conversely, polynomials that have real roots may have no roots in a finite field [Rar25].

Definition 1.2. A multivariate polynomial function $f(X_1, X_2, ..., X_n)$ is a polynomial function in more than one variable. A polynomial function in a single variable is called *univariate*.

In a multivariate polynomial function with ℓ variables, each term(monomial) has the form

$$c\,X_1^{d_1}X_2^{d_2}\cdots X_\ell^{d_\ell},$$

and its degree is given by $d_1 + d_2 + \cdots + d_\ell$. The *total degree* of the polynomial is the maximum degree among all its monomials. Multivariate polynomial functions over a filed \mathbb{F} are commonly denoted either as $f(x_1, x_2, \dots, x_\ell)$, with each $x_i \in \mathbb{F}$, or as f(x) where $x \in \mathbb{F}^\ell$.

1.1 SZDL Lemma

Definition 1.3. In a polynomial function f(X), an element x is called a root (or zero) of f if

$$f(x) = 0.$$

Theorem 1.1. Let $f(X) \in \mathbb{F}^{(\leq d)}[X]$ be a polynomial of degree at most d over the finite field \mathbb{F} . Then f(X) has at most d distinct roots.

Proof. This an informal proof. Assume for the sake of contradiction that f(X) has d+1 distinct roots, say $x_1, x_2, \ldots, x_{d+1}$. Then f(X) is divisible by

$$(X-x_1)(X-x_2)\cdots(X-x_{d+1}),$$

which is a polynomial of degree d+1. This contradicts the assumption that f(X) is of degree at most d. Hence, f(X) cannot have more than d distinct roots.

Lemma 1.2. Schwartz-Zippel Lemma: Let $f(X_1, X_2, ..., X_\ell) \in \mathbb{F}[X_1, X_2, ..., X_\ell]$ be a nonzero multivariate polynomial with total degree d. If the variables $x_1, x_2, ..., x_\ell$ are chosen uniformly at random from \mathbb{F} , then

$$\Pr\Big[f(x_1, x_2, \dots, x_\ell) = 0\Big] \le \frac{d}{|\mathbb{F}|},$$

where $|\mathbb{F}|$ denotes the size of the field.

The univariate case follows by setting $\ell = 1$.

1.1.1 Zero Polynomial

Consider a nonzero ℓ -variate polynomial function f of total degree d over \mathbb{F}_p . For a randomly chosen point $r \in \mathbb{F}_p^{\ell}$, we have

$$\Pr[f(r) = 0] \le \frac{d}{|\mathbb{F}_p|}.$$

For example, if \mathbb{F}_p is such that $|\mathbb{F}_p| \approx 2^{256}$ and the total degree is 2^{20} , then by Lemma 1.2,

$$\Pr[f(r) = 0] \le \frac{2^{20}}{2^{256}} = \frac{1}{2^{236}},$$

which is an exceedingly small probability.

Consequently, if for a random r we find that f(r) = 0, we can conclude—with overwhelming probability— that f is the zero polynomial. Although there is a slight chance of error, it is negligible in practice.

1.1.2 Equality of Polynomial Functions

Consider two multivariate polynomial functions f(X) and g(X), each having total degree at most d. By the Schwartz-Zippel Lemma, if a randomly chosen point r satisfies f(r) = g(r), then with high probability f(X) and g(X) are identical. To see this, define

$$h(X) = f(X) - g(X).$$

Then h(X) has degree at most d, and if f(r) = g(r), we have h(r) = 0. Since a nonzero polynomial of degree at most d vanishes with probability at most $d/|\mathbb{F}|$, it follows that with high probability h must be the zero polynomial. Hence, f(X) = g(X).

References

[Rar25] RareSkills. Finite Fields. Accessed: 2025-03-01. 2025. URL: https://www.rareskills.io/post/finite-fields.

Part II Zero Knowledge Proofs