Example 15.

(a) If $f(x) = x^3 - x$, find a formula for f'(x).

(b) Illustrate this formula by comparing the graphs of f and f'.

SOLUTION

(a) When using Equation 2 to compute a derivative, we must remember that the variable

is h and that x is temporarily regarded as a constant during the calculation of the limit.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\left[(x+h)^3 - (x+h) \right] - \left[x^3 - x \right]}{h}$$

$$= \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x - h - x^3 + x}{h}$$

$$= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3 - h}{h}$$

$$= \lim_{h \to 0} (3x^2 + 3xh + h^2 - 1) = 3x^2 - 1$$

(b) We use a calculator to graph f and f' in Figure 3. Notice that f'(x) = 0 when f has horizontal tangents and f'(x) is positive when the tangents have positive slope. So these graphs serve as a check on our work in part (a).

Example 16. If $f(x) = \sqrt{x}$, find the derivative of f. State the domain of f'.

SOLUTION

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

$$= \lim_{h \to 0} \left(\frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}\right) \qquad \text{(Rationalize the numerator.)}$$

$$= \lim_{h \to 0} \frac{(x+h) - x}{h(\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{h}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{\sqrt{x} + \sqrt{x}} = \frac{1}{2\sqrt{x}}$$

We see that f'(x) exists if x > 0, so the domain of f' is $(0, \infty)$. This is slightly smaller than the domain of f, which is $[0, \infty)$.

Example 17.

Find
$$f'$$
 if $f(x) = \frac{1-x}{2+x}$.

SOLUTION

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{1 - (x+h)}{2 + (x+h)} - \frac{1 - x}{2 + x}}{h}$$

$$= \lim_{h \to 0} \frac{(1 - x - h)(2 + x) - (1 - x)(2 + x + h)}{h(2 + x + h)(2 + x)}$$

$$= \lim_{h \to 0} \frac{(2 - x - 2h - x^2 - xh) - (2 - x + h - x^2 - xh)}{h(2 + x + h)(2 + x)}$$

$$= \lim_{h \to 0} \frac{-3h}{h(2 + x + h)(2 + x)}$$

$$= \lim_{h \to 0} \frac{-3}{(2 + x + h)(2 + x)} = -\frac{3}{(2 + x)^2}$$

Example 18. Show that If f is differentiable at a, then f is continuous at a.

PROOF To prove that f is continuous at a, we have to show that $\lim_{x\to a} f(x) = f(a)$. We will do this by showing that the difference f(x) - f(a) approaches 0.

The given information is that f is differentiable at a, that is,

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

exists (see Equation 2.7.5). To connect the given and the unknown, we divide and multiply f(x) - f(a) by x - a (which we can do when $x \ne a$):

$$f(x) - f(a) = \frac{f(x) - f(a)}{x - a}(x - a)$$

Thus, using Limit Law 4, we can write

$$\lim_{x \to a} [f(x) - f(a)] = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} (x - a)$$

$$= \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot \lim_{x \to a} (x - a)$$

$$= f'(a) \cdot 0 = 0$$

To use what we have just proved, we start with f(x) and add and subtract f(a):

$$\lim_{x \to a} f(x) = \lim_{x \to a} \left[f(a) + (f(x) - f(a)) \right]$$

$$= \lim_{x \to a} f(a) + \lim_{x \to a} \left[f(x) - f(a) \right]$$

$$= f(a) + 0 = f(a)$$

Therefore f is continuous at a.