Ordinary Differential Equations(EMAT102L) (Lecture-10 and 11)

Department of Mathematics Bennett University, India

Outline of the Lecture

We will learn

- Second Order Linear Differential Equation
- Solution of Second Order DE
- Linearly Dependent/Independent Functions
- Wronskian
- Abel's Formula

Second Order Linear Differential Equation

Second Order Linear ODE

The general form of a second order differential equation is

$$a_0(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_2(x)y = F(x), x \in I$$

Here *I* is an interval contained in *R* and the functions $a_0(x)$, $a_1(x)$, $a_2(x)$ and *F* are real valued continuous functions defined on *I* and $a_0(x) \neq 0$.

The above equation is called **homogeneous** if F(x) = 0 for all x otherwise it is called **nonhomogeneous**.

Examples

$$y'' - y = 0$$
 (Linear, Homogeneous)

$$y'' + y' + y = \sin x$$
 (Linear, Nonhomogeneous)

$$y'' + 3xy' + x^3y = e^x$$
 (Linear, Nonhomogeneous)

Solution of a Second Order ODE

Solution of Second Order ODE

Consider the second order ODE

$$a_0(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_2(x)y = F(x), x \in I$$
 (1)

A function y defined on an interval I is called a solution of the second order ODE if

- y is twice differentiable.
- y satisfies equation (1).

Examples

- e^x , e^{-x} are solutions of y'' y = 0.

Second Order Initial Value Problem

Consider the initial value problem (IVP) for a second order linear ODE

$$a_0(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_2(x)y = F(x), \ y(x_0) = c_0, \ y'(x_0) = c_1$$

Existence and Uniqueness Theorem for Second Order IVP

If $a_0(x)$, $a_1(x)$, $a_2(x)$ and F(x) are continuous functions on an interval I where $a_0(x) \neq 0$ and $x_0 \in I$, then the above initial value problem has a **unique solution** y(x) in the interval I.

Note: This is the sufficient condition only.

Second Order Initial Value Problem

Consider the initial value problem (IVP) for a second order Homogeneous linear ODE

$$a_0(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_2(x)y = 0, \ y(x_0) = 0, \ y'(x_0) = 0$$

Existence and Uniqueness Theorem for Second Order IVP

If $a_0(x)$, $a_1(x)$ and $a_2(x)$ are continuous functions on an interval I where $a_0(x) \neq 0$ and $x_0 \in I$, then the above initial value problem has a **unique solution** y(x) = 0 for all x in the interval I.

Note: This is the sufficient condition only.

Basic Theorem on Linear Second Order Homogeneous Differential Equations

Superposition Principle

Consider the second order Homogeneous linear ODE

$$a_0(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_2(x)y = 0$$
 (2)

If y_1, y_2 are two solutions of the linear second order homogeneous differential equation (2), then

$$c_1y_1 + c_2y_2, c_1, c_2 \in \mathbb{R}$$

is also a solution of the above equation. That is, any linear combination of solutions of the homogeneous linear differential equation (2) is also a solution of (2).

Linear Dependent/Independent functions

Linearly Dependent Functions

The functions f(x) and g(x) are said to be **linearly dependent** on an interval I if there exist constants a, b, **not all zero**, such that

$$af(x) + bg(x) = 0$$

for every $x \in I$.

Linearly Independent Functions

The functions f(x) and g(x) are said to be **linearly independent** on an interval I if there exist constants a, b such that

$$af(x) + bg(x) = 0 \ \forall \ x \in I \Rightarrow a = b = 0$$

for every $x \in I$.

Linear Dependent/Independent Functions-Examples

Examples

• The functions x and 2x are linearly dependent on the interval $0 \le x \le 1$. For there exist constants c_1 and c_2 , not both zero, such that

$$c_1x + c_2(2x) = 0$$

for all x on the interval $0 \le x \le 1$. For example, let $c_1 = 2$, $c_2 = -1$.

② The functions $f_1(x) = \sin 2x$ and $f_2(x) = \sin x \cos x$

Linear Dependent/Independent Functions-Examples

Examples

1 The functions x and 2x are linearly dependent on the interval $0 \le x \le 1$. For there exist constants c_1 and c_2 , not both zero, such that

$$c_1x + c_2(2x) = 0$$

for all x on the interval $0 \le x \le 1$. For example, let $c_1 = 2$, $c_2 = -1$.

- **②** The functions $f_1(x) = \sin 2x$ and $f_2(x) = \sin x \cos x$ are linearly dependent on the interval $(-\infty, \infty)$ because $f_1(x)$ is a constant multiple of $f_2(x)$.
- The functions x and x^2 are linearly independent on $0 \le x \le 1$. Since $c_1x + c_2x^2 = 0$ for all x on $0 \le x \le 1$ implies that both $c_1 = 0$ and $c_2 = 0$.
- The functions $f_1(x) = x$ and $f_2(x) = |x|$ are linearly independent on $(-\infty, \infty)$. Neither of the functions is a constant multiple of the other on $(-\infty, \infty)$ but linearly dependent on $(0, \infty)$ and $(-\infty, 0)$.

Wronskian

Definition

The **Wronskian** of two differentiable functions f(x) and g(x) is defined by

$$W(f,g) = W(f,g)(x) = \det \begin{pmatrix} f(x) & g(x) \\ f'(x) & g'(x) \end{pmatrix} = f(x)g'(x) - f'(x)g(x)$$

Some Results on Wronskian

Theorem

Let y_1, y_2 be two solutions of the homogeneous linear Second order DE

$$a_0(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_2(x)y = 0$$
 (1)

on an interval I. Then the set of solutions $\{y_1, y_2\}$ is linearly independent on I if and only if

$$W(y_1,y_2)\neq 0$$

for every x in the interval I.

Theorem

The Wronskian $W(y_1, y_2)$ of two solutions y_1, y_2 of (1) is either identically zero or never zero on the interval.

Example

Example

Show that the solutions $\sin x$ and $\cos x$ of y'' + y = 0 are linearly independent.

Solution: Here $W(\sin x, \cos x)$ =

$$\det\begin{pmatrix} \sin x & \cos x \\ \cos x & -\sin x \end{pmatrix} = -\sin^2 x - \cos^2 x = -1 \neq 0$$

for all real x. Thus $W(\sin x, \cos x) \neq 0$ for all real x.

So, we conclude that $\sin x$ and $\cos x$ are linearly independent solutions of the given differential equation on every real interval.

Some Results on Wronskian

Result 1.

If y_1 and y_2 have a common zero at point x_0 in the interval [a, b], then y_1 and y_2 are linearly dependent.

Solution: Since y_1 and y_2 have common zero at $x_0 \in [a,b]$,

$$\Rightarrow y_1(x_0) = y_2(x_0) = 0$$

So,

$$W(y_1, y_2)(x_0) = \det \begin{pmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{pmatrix} = 0$$

$$\Rightarrow W(y_1, y_2)(x_0) = 0$$
 for some point $x_0 \in [a, b]$.

 \Rightarrow y_1 and y_2 are linearly dependent.

Note: Here y_1 and y_2 are the solutions of the same differential equation.

Results on Wronskian(cont.)

Result 2.

If y_1 and y_2 have a relative maxima or minima at some common point $x_0 \in [a, b]$, then y_1 and y_2 are linearly dependent.

Solution: Since y_1 and y_2 have a relative maxima or minima at some common point $x_0 \in [a, b]$,

$$\Rightarrow y_1'(x_0) = y_2'(x_0) = 0$$

So,

$$W(y_1, y_2)(x_0) = \det \begin{pmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{pmatrix} = 0$$

$$\Rightarrow W(y_1, y_2)(x_0) = 0$$
 for some point $x_0 \in [a, b]$.

 \Rightarrow y_1 and y_2 are linearly dependent.

Note: Here y_1 and y_2 are the solutions of the same differential equation.

Fundamental set of solutions

Definition

If $\{y_1, y_2\}$ are two linearly independent solutions of the homogeneous linear second order DE

$$a_0(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$
(3)

where $a_0(x) \neq 0$, $a_i(x)$, i = 1, 2 are continuous functions on an interval I, then the set $\{y_1, y_2\}$ is said to be the **fundamental set of solutions** on the interval I.

Theorem

There exists a fundamental set of solutions(Linearly independent solutions) for the homogeneous linear second order DE (3) on an interval I.

General Solution of homogeneous linear second order DE

Theorem

Let $\{y_1, y_2\}$ be a fundamental set of solutions for the homogeneous linear second order DE (3) on an interval I. Then the general solution of the equation (3) on the interval I is

$$y(x) = c_1 y_1(x) + c_2 y_2(x)$$

where c_1, c_2 are arbitrary constants.

Note:

- For a homogeneous linear second order ODE, if we know two linearly independent solutions, then every solution can be obtained with the linear combination of these two linearly independent solutions.
- That is, if y_1 , y_2 are two linearly independent solutions of the homogeneous linear second order DE, then the general solution y(x) can be written as the linear combination of these solutions. i.e,

$$y(x) = c_1 y_1(x) + c_2 y_2(x).$$

where c_1 and c_2 are arbitrary constants.

General solution of a Homogeneous DE

Example

• The functions $y_1(x) = e^{3x}$ and $y_2(x) = e^{-3x}$ are both solutions of the homogeneous linear equation y'' - 9y = 0 on the interval $(-\infty, \infty)$.

General solution of a Homogeneous DE

Example

- The functions $y_1(x) = e^{3x}$ and $y_2(x) = e^{-3x}$ are both solutions of the homogeneous linear equation y'' - 9y = 0 on the interval $(-\infty, \infty)$.
 - Here Wronskian $W(e^{3x}, e^{-3x}) = -6 \neq 0$ for every $x \in (-\infty, \infty)$.
 - So the solutions y_1, y_2 are linearly independent on $(-\infty, \infty)$.

 - Hence we can conclude that {y₁, y₂} is a fundamental set of solutions.
 Therefore y(x) = c₁e^{3x} + c₂e^{-3x} is the general solution of the equation on (-∞, ∞).

Abel's Theorem

Abel's Theorem

If y_1 and y_2 are solutions of the DE

$$a_0(x)y'' + a_1(x)y' + a_2(x)y = 0$$

where $a_0(x) \neq 0$, $a_i(x)$, i = 1, 2 are continuous functions on an open interval I, then the Wronskian $W(y_1, y_2)(x)$ is given by

$$W(y_1, y_2)(x) = c \exp \left[-\int \frac{a_1(x)}{a_0(x)} dx \right],$$

where c is a certain constant that depends on y_1 and y_2 , but not on x.

Further, $W(y_1, y_2)(x)$ is either zero for all $x \in I$ (if c = 0) or else is never zero in I (if $c \neq 0$).

Problem

Problem

Let y_1 and y_2 be two linearly independent solutions of

$$y'' + (\sin x)y = 0 \text{ in } [0, 1]$$

Let $g(x) = W(y_1, y_2)$, then show that g'(x) = 0.

Solution: Here $a_0(x) = 1$, $a_1(x) = 0$, $a_2(x) = \sin x$.

Therefore, by Abel's formula,

$$g(x) = W(y_1, y_2) = c \exp\left[-\int \frac{a_1(x)}{a_0(x)} dx\right] = ce^0 = c.$$

$$\Rightarrow g'(x) = 0.$$

