cles, so as to account for noncircular clusters. It turns out these are two essential components of a different type of clustering model, Gaussian mixture models.

Generalizing E–M: Gaussian Mixture Models

A Gaussian mixture model (GMM) attempts to find a mixture of multidimensional Gaussian probability distributions that best model any input dataset. In the simplest case, GMMs can be used for finding clusters in the same manner as k-means (Figure 5-127):

```
In[7]: from sklearn.mixture import GMM
    gmm = GMM(n_components=4).fit(X)
    labels = gmm.predict(X)
    plt.scatter(X[:, 0], X[:, 1], c=labels, s=40, cmap='viridis');
```


Figure 5-127. Gaussian mixture model labels for the data

But because GMM contains a probabilistic model under the hood, it is also possible to find probabilistic cluster assignments—in Scikit-Learn we do this using the predict_proba method. This returns a matrix of size [n_samples, n_clusters] that measures the probability that any point belongs to the given cluster:

We can visualize this uncertainty by, for example, making the size of each point proportional to the certainty of its prediction; looking at Figure 5-128, we can see that it

is precisely the points at the boundaries between clusters that reflect this uncertainty of cluster assignment:

```
In[9]: size = 50 * probs.max(1) ** 2 # square emphasizes differences
    plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', s=size);
```


Figure 5-128. GMM probablistic labels: probabilities are shown by the size of points

Under the hood, a Gaussian mixture model is very similar to k-means: it uses an expectation–maximization approach that qualitatively does the following:

- 1. Choose starting guesses for the location and shape
- 2. Repeat until converged:
 - a. *E-step*: for each point, find weights encoding the probability of membership in each cluster
 - b. *M-step*: for each cluster, update its location, normalization, and shape based on *all* data points, making use of the weights

The result of this is that each cluster is associated not with a hard-edged sphere, but with a smooth Gaussian model. Just as in the k-means expectation–maximization approach, this algorithm can sometimes miss the globally optimal solution, and thus in practice multiple random initializations are used.

Let's create a function that will help us visualize the locations and shapes of the GMM clusters by drawing ellipses based on the gmm output:

```
In[10]:
from matplotlib.patches import Ellipse

def draw_ellipse(position, covariance, ax=None, **kwargs):
    """Draw an ellipse with a given position and covariance"""
```

```
ax = ax or plt.gca()
    # Convert covariance to principal axes
    if covariance.shape == (2, 2):
        U, s, Vt = np.linalg.svd(covariance)
        angle = np.degrees(np.arctan2(U[1, 0], U[0, 0]))
        width, height = 2 * np.sqrt(s)
    else:
        angle = 0
        width, height = 2 * np.sqrt(covariance)
    # Draw the ellipse
    for nsig in range(1, 4):
        ax.add_patch(Ellipse(position, nsig * width, nsig * height,
                             angle, **kwargs))
def plot_gmm(gmm, X, label=True, ax=None):
    ax = ax or plt.gca()
    labels = gmm.fit(X).predict(X)
    if label:
        ax.scatter(X[:, 0], X[:, 1], c=labels, s=40, cmap='viridis', zorder=2)
    else:
        ax.scatter(X[:, 0], X[:, 1], s=40, zorder=2)
    ax.axis('equal')
    w_factor = 0.2 / gmm.weights_.max()
    for pos, covar, w in zip(gmm.means_, gmm.covars_, gmm.weights_):
        draw_ellipse(pos, covar, alpha=w * w_factor)
```

With this in place, we can take a look at what the four-component GMM gives us for our initial data (Figure 5-129):

```
In[11]: gmm = GMM(n_components=4, random_state=42)
        plot_gmm(gmm, X)
```


Figure 5-129. Representation of the four-component GMM in the presence of circular clusters

Similarly, we can use the GMM approach to fit our stretched dataset; allowing for a full covariance, the model will fit even very oblong, stretched-out clusters (Figure 5-130):

In[12]: gmm = GMM(n_components=4, covariance_type='full', random_state=42) plot_gmm(gmm, X_stretched)

Figure 5-130. Representation of the four-component GMM in the presence of noncircular clusters

This makes clear that GMMs address the two main practical issues with k-means encountered before.

Choosing the covariance type

If you look at the details of the preceding fits, you will see that the covariance_type option was set differently within each. This hyperparameter controls the degrees of freedom in the shape of each cluster; it is essential to set this carefully for any given problem. The default is covariance_type="diag", which means that the size of the cluster along each dimension can be set independently, with the resulting ellipse constrained to align with the axes. A slightly simpler and faster model is covariance_type="spherical", which constrains the shape of the cluster such that all dimensions are equal. The resulting clustering will have similar characteristics to that of k-means, though it is not entirely equivalent. A more complicated and computationally expensive model (especially as the number of dimensions grows) is to use covariance_type="full", which allows each cluster to be modeled as an ellipse with arbitrary orientation.

We can see a visual representation of these three choices for a single cluster within Figure 5-131:

Figure 5-131. Visualization of GMM covariance types

GMM as Density Estimation

Though GMM is often categorized as a clustering algorithm, fundamentally it is an algorithm for *density estimation*. That is to say, the result of a GMM fit to some data is technically not a clustering model, but a generative probabilistic model describing the distribution of the data.

As an example, consider some data generated from Scikit-Learn's make_moons function (visualized in Figure 5-132), which we saw in "In Depth: k-Means Clustering" on page 462:

```
In[13]: from sklearn.datasets import make_moons
   Xmoon, ymoon = make_moons(200, noise=.05, random_state=0)
   plt.scatter(Xmoon[:, 0], Xmoon[:, 1]);
```