Prime specification

Shigeo Hattori

November 13, 2019

First revision: November, 2019

bayship.org@gmail.com

https://github.com/bayship-org/mathematics

1 Prerequisite definitions

$GitHub:Minor_of_memBer.pdf$

In the article above, in its first two pages, all prerequisite definitions for this article are given. Especially, the second page of the above article defines that:

- A memBer as a member of a set.
- Deep members y of a memBer x is calcurated the deep number relative to x.
- Two memBers (x, y) are said (x is a minor of y).

2 Notations

Definition 2.1.

```
"And" is also written as " _{and}\wedge ".
```

 $(x \text{ and} \land y)$ is not commutative because y possibly depends on x.

 $(x \circ_{r} \lor y)$ is not commutative because y possibly depends on $\neg x$.

3 Order consistent

Definition 3.1 (Order consistent).

Take $\forall L$ as a logical expression such that (*1 implies *2).

[&]quot;Or" is also written as " $_{or} \lor$ ".

Then L is said order consistent.

- **1.** Take $\forall (f, p, q, r, d)$ such that (*s1 $_{and} \land \dots \quad _{and} \land$ *s3) holds.
- **s1.** L defines (f, d) as a function f and a partial order d.
- **s2.** $\{p,q,r\} \subset \text{domain}(f)$.
- **s3.** In terms of d, p < q < r.
- **2.** In terms of d,

$$f(p) \le f(q) \le f(r) \lor f(r) \le f(q) \le f(p).$$

Consequent context of antecedent context 4

Take $\forall D$ as a definition. Then D is said an antecedent context if: D is independent.

2

6

14

17

18

Take $\forall A$ as an antecedent context.

Take $\forall D$ as a definition. Then D is said a consequent context of A if: (if D is dependent of at most A).

Take $\forall C$ as a consequent context of A.

Take $\forall x$ as a variable of C. Then x is said specified for all instances of A if (

x is specified if you assume that all variables of A are specified).

For example, let A define $\forall n :\in \mathbb{N}$ and C define x := n + 1. Then x is specified for all instances of A because if n had been specified in A then x is specified.

Conjecture 5

Conjecture 5.1 (Conjecture).

Take $\forall (n, X, T, M)$ as the Euclidean space (X, T, M) of n-dimension where X is the space, T is the topology and M is the metric table.

As a remark, for the set of all orthogonal coordinate systems for the space, no absolute member is defined.

Let
$$A := (n, X, T, M)$$
.

Take all
$$(C, x)$$
 such that $(*1_{and} \land *2)$ $=*3$. 21

Then x is a minor of T.

1. C is a consequent context C of A .	23
2. x is a variable of C .	24
3. C is order consistent.	25
6 Examples	26
This section just gives examples of substituting actual values into variables of	27
the main conjecture.	28
	29
Definition 6.1 (Unknot).	30
Refer to the main conjecture for (n, X, T, M) .	31
For the main conjecture, this example substitutes values	32
into (n, x) as $(*0 _{and} \land{and} \land *7)$.	33
0. Let $n := 3$.	34
1. Take $\forall k1$ such that (35
$\operatorname{Space}(k1) \subset X$ and \wedge	36
k1 is said an unknot on (X, T, M)	37
).	38
2. Let $K := \{k \mid ((T, k), (T, k1)) \text{ are isomorphic } \}.$	39
3. Take $\forall k :\in K$.	40
4. $f1(k) := \{d \mid d \text{ is a proper knot diagram of } k\}.$	41
5. $f2(k) := \{r \mid$	42
$\exists d:\in f1(k)$ and \land	43
r is the number of crossings on d	44
}.	45
6. $f(k) :=$ "the maximum number of $f2(k)$.	46
7. $x := \{k \mid f(k) = f(k1)\}.$	47