

Network Management and Automation

Overview of IPv6

Levi Perigo, Ph.D.
University of Colorado Boulder
Department of Computer Science
Network Engineering

Review

- Discussions
- Lab
 - 11:59:00 p.m.
 - Start Early
- Assignment
- Lectures
 - Ask/Answer Questions
- Overall Course
 - Grades / Outside Class

Why IPv6

- IPv4 address depletion
 - Developing countries
 - Mobile IP
 - IoT
 - Rise in price of v4 addresses (commodity)
 - NAT workarounds
- End-to-end connectivity
- Security

Barriers to IPv6

- Not compatible with IPv4
- IPv6 Security
 - Firewalls
 - Tunneling

 Trained and experienced professionals to support IPv6

- Buy in
 - ISP vs. Business

IPv4 and IPv6 Comparison

Feature	IPv4	IPv6
IP Address Length	32 bits	128 bits
IP Security (IPSec) Header	Optional	On through traffic
Support		
Prioritized Delivery Support	Some	Expanded
Packet Fragmentation	Performed by hosts and	Performed by hosts only
	routers	
Minimum MTU	576 bytes	1280 bytes
Checksum in Packet Header	Yes	No
Options in Packet Header	Yes	No
Link-Layer Address Resolution	ARP (broadcast)	Multicast ND messages
Multicast Membership Protocol	Internet Group Management	Multicast Listener Discovery
	Protocol(IGMP)	(MLD)
Router Discovery	Optional	Required
Uses Broadcast Messages	Yes	No
Configuration	Manual, Dynamic Host	Manual, Automatic, DHCP
	Control Protocol (DHCP)	version 6 (DHCPv6)
Domain Naming System (DNS)	Uses A records	Uses AAAA records
Queries		
DNS Reverse Queries	Uses IN-ADDR.ARPA	Uses IP6.ARPA

Transition Mechanisms

Dual stack

Both stacks can operate independently or in parallel

Tunneling

- ISATAP
- Teredo
- 6to4
- 6over4
- 6rd (IPv6 Rapid Deployment)

Transition

NAT64

IPv6 Deployment Strategies

- Prefix /64
 - Stateless Address Autoconfiguration (SLAAC)
 - Neighbor Discovery (ND)
 - Secure Neighbor Discovery (SeND)
 - DHCPv6

IPv6 Advantages

Increased address space

Streamlined IP header

End-to-end connectivity

Removal of IP broadcasts

Mobile IPv6

Addressing

- •IPv4 32 bits, 2³²
- •IPv6 128 bits, 2¹²⁸

IPv6 Address Syntax

- IPv6 address in binary form
- Divided along 16-bit boundaries

IPv6 Address Syntax

- Each 16-bit block is converted to hexadecimal and delimited with colons
 - Each 16-bit block is called a hextet
 - 2001:0DB8:0000:2F3B:02AA:00FF:FE28:9C5A
- Leading zeroes in any 16-bit hextet can be omitted (or reduced)
 - 2001:0DB8:0000:2F3B:02AA:00FF:FE28:9C5A
 - 2001:DB8:0:2F3B:2AA:FF:FE28:9C5A

Addressing Tricks – Compressing Zeros

- A hextet with all zeros can be reduced to a single zero
 - This is used when the double-colon has already been used
 - 2001:DB8::12:0000:0000:FE becomes 2001:DB8::12:0:0:FE

 Typically, upper vs. lower case doesn't matter

Addressing Tricks – Compressing Zeros

- A <u>single contiguous sequence</u> of 16-bit blocks set to 0 can be compressed to "::" (double-colon)
 - Example:
 - FE80:0:0:0:2AA:FF:FE9A:4CA2 becomes FE80::2AA:FF:FE9A:4CA2
 - FF02:0:0:0:0:0:2 becomes FF02::2
 - FF02:0:0:0:0:0:0 becomes FF02::
 - Double-colon "::" can appear ONLY ONCE in an address
 - Cannot use zero compression (double-colon) to include <u>part</u> of a 16-bit block
 - FF02:30:0:0:0:0:5 does not become FF02:3::5, but FF02:30::5

IPv6 Prefixes

- A <u>prefix</u> expresses a route, address space, or address range
- IPv6 uses address prefix-length notation
 - Similar to IPv4 CIDR notation
 - 192.168.10.0 /24
- Examples
 - 2001:DB8:0:2F3B::/64 for a subnet prefix
 - 2001:DB8:3F::/48 for a route prefix

Types of IPv6 Addresses

Unicast

- Address of a single network interface
- Delivery to single, specific interface

Multicast

- Address of a set of interfaces
- Delivery to all interfaces in the set, that joined the mcast group

Anycast

- Address of a group of interfaces
- Delivery to just one of the member interfaces (typically, nearest host)

No more broadcast addresses

Replaced with Neighbor Discovery (ND) and "all-nodes" (FF02::1) link-local multicast group

IPv6 Addresses - Scope

- The IPv6 "scope" specifies which part of the network the address is valid
- Unicast and Anycast addresses in IPv6 have the following scopes (for multicast addresses, the scope is built into the address structure):
 - Link-local The scope is the local link
 - Nodes on the same subnet
 - Unique local (Site-local (deprecated)) The scope is the organization
 - · Private site addressing
 - Only allowed by routers that specifically allow it (i.e. have a route)
 - Rarely used in industry
 - Global The scope is global
 - IPv6 Internet addresses
 - AKA "Public" addresses

IPv6 Addresses - Unicast

- General Unicast Address or Global Addresses (GUA)
 - Similar to "public" IPv4 address
- Local-use addresses
 - Link-local addresses
 - FE80::/10
 - **–** (1111111010)
- Unique Local Addresses (ULA)
 - FC00::/7
 - Similar to IPv4 "private" addresses
 - Not popular in industry
- Special Addresses
 - Teredo Tunneling 2001::/32
 - Documentation 2001:DB8::/32

IPv6 Addresses - Multicast

- Critical part of IPv6 Network Operation
- Well-known IPv6 multicast addresses (FF02 = MCAST on local link scope)
 - FF02::1 -> All nodes on local network segment
 - FF02::2 -> All routers on local network segment
 - FF02::5 -> OSPFv3 Routers <-> 224.0.0.5
 - FF02::6 -> OSPFv3 DR <-> 224.0.0.6
 - FF02::9 -> RIPng Routers <-> 224.0.0.9
 - FF02::A -> EIGRP Routers <-> 224.0.0.10
 - FF02::1:2 -> DHCP Servers/ relay Agents <-> 224.0.0.12
- Solicited-node Multicast Address (SNMA)
 - FF02::1:FF:xx:xxxx
 - Allow link-layer address resolution via ND
 - Similar to ARP in IPv4

IPv6 Addresses - Anycast

Routed to nearest interface configured

 Same unicast address assigned to multiple interfaces of different nodes

 Used to virtually replicate important network resources (DNS, Web servers, WAPs, etc.) to provide load balancing

IPv4 and IPv6 Addresses

IPv4 Addresses	IPv6 Addresses
Internet address classes	N/A
Multicast addresses (224.0.0.0/4)	IPv6 multicast addresses (FF00::/8)
Broadcast Addresses	Not supported
Unspecified address is 0.0.0.0	Unspecified address is ::
Loopback address is 127.0.0.1	Loopback address is ::1
Public IP addresses are used	Global unicast addresses are used
Private IP addresses are used	Unique-local addresses are used (FC00::/7 prefix)
APIPA addresses are used	Link-local addresses are used (FE80::/10 prefix)
Addresses expressed in dotted decimal notation	Addresses expressed in colon hexadecimal format
Subnet masks or prefix lengths are used	Only prefix lengths are used

IPv6 Challenges

IPv6 awareness

- Measuring adoption
- Security

Security Tools

Questions?