Data Mining

데이터 시각화 (Visualization) 과제

2021년 3월 18일

과제

실제 데이터로 시각화를 해보자.

10 Visualizations Every Data Scientist Should Know

- 1. 히스토그램 (Histograms)
- 2. 막대/파이 차트 (Bar/Pie charts)
- 3. 산점도/직선 그래프 (Scatter/Line plots)
- 4. 시계열 그래프 (Time series plots)
- 5. 관계 맵 (Relationship maps)
- 6. 히트 맵 (Heat maps)
- 7. 지도 (Geo Maps)
- 8. 3D 그래프 (3-D Plots)
- 9. 고차원 그래프 (Higher-Dimensional Plots)
- 10. 단어 클라우드 (Word clouds)

과제 범위

https://www.datasciencecentral.com/profiles/blogs/10-visualizations-every-data-scientist-should-know

1. 히스토그램 (Histograms)

문제 1 히스토그램 (Histograms)

지능형 온도 조절 장치의 할인액

• 수치형 데이터의 분포를 확인하기에 유용

데이터 읽기

import matplotlib.pyplot as plt import pandas as pd

dataset_path = "data/thermostat_rebates_by_zip_1000.csv" dataset = pd.read_csv(dataset_path)

dataset.tail()

	zip-code	rebate-usd	lat	Ing	median-household-income	mean-household-income	population
995	40385	100	37.758499	-84.132959	43280	51428	3131
996	72433	100	36.030397	-91.049037	31934	36651	3067
997	90014	67	34.043478	-118.251931	13832	30121	7005
998	8021	90	39.807377	-75.002697	55858	63779	45515
999	68067	100	42.152506	-96.471658	39062	51461	1397

rebate_usd 컬럼으로 히스토그램을 그려본다.

컬럼 데이터 확인

```
rebate = dataset["rebate-usd"]
rebate
    88
0
    88
   100
   100
    100
995 100
996 100
997
     67
998 90
999 100
Name: rebate-usd, Length: 1000, dtype: int64
```

6

컬럼 데이터 확인

2. 막대/파이 차트 (Bar/Pie charts)

문제 2 막대/파이 차트 (Bar/Pie charts)

환자의 혈압을 HIGH, NORMAL, LOW로 구분한 챠트

- 명목형 데이터를 확인할 때 유용
- 단, 카테고리가 많으면 시각화에 방해가 되므로 Top N을 뽑아서 시각화 한다. 파이 차트는 파이의 크기가 잘 구분이 되지 않으므로 주의할 것

데이터 읽기

```
dataset_path = "data/drugs_data.csv"
dataset = pd.read_csv(dataset_path)
```

dataset.tail()

	Age	Sex	BP	Cholesterol	NA_to_K	Drug
195	56	F	LOW	HIGH	11.566830	drugC
196	16	М	LOW	HIGH	12.006286	drugC
197	52	М	NORMAL	HIGH	9.894478	drugX
198	23	М	NORMAL	NORMAL	14.019550	drugX
199	40	F	LOW	NORMAL	11.348969	drugX

BP 컬럼으로 막대/파이 차트를 그려본다.

데이터 읽기

```
BP = dataset["BP"].value_counts()
BP
```

HIGH 77 LOW 64 NORMAL 59

Name: BP, dtype: int64

힌트: BP의 키는 BP.keys()로 값은 BP로 가져올 수 있음

3. 산점도/직선 그래프 (Scatter/Line plots)

문제 3 산점도/직선 그래프 (Scatter/Line plots)

집 값과 평방 피트 간의 관계

Square Feet vs House Price (in Millons)

• 두 변수의 관계를 확인할 때 유용

© 2021 SeongJin Yoon. All Rights Reserved.

13

데이터 읽기

```
dataset_path = "data/square-feet_and_house-price.csv"
dataset = pd.read_csv(dataset_path)
```

dataset.tail()

	square-feet	house-price
70	14000.0	8.678987
71	14200.0	6.636067
72	14400.0	8.787156
73	14600.0	9.358178
74	14800.0	7.071544

4. 시계열 그래프 (Time series plot)

문제 4 시계열 그래프 (Time series plot)

2015년에서 2017년 사이에 테슬라 주식 일일 마감 가

• 시간에 따라 변수가 변화하는 트렌드를 분석하기 위한 용도

데이터 읽기

dataset_path = "data/tesla_stock.csv"
dataset = pd.read_csv(dataset_path)

dataset.tail()

	Date	Open	High	Low	Close	Volume
749	2015-01-08	212.81	213.7999	210.0100	210.615	3442509.0
750	2015-01-07	213.35	214.7800	209.7800	210.950	2968390.0
751	2015-01-06	210.06	214.2000	204.2100	211.280	6261936.0
752	2015-01-05	214.55	216.5000	207.1626	210.090	5368477.0
753	2015-01-02	222.87	223.2500	213.2600	219.310	4764443.0

날짜로 정렬

sorted_dataset = dataset.sort_values(by='Date')
sorted_dataset.tail()

	Date	Open	High	Low	Close	Volume
4	2017-12-22	329.51	330.9214	324.82	325.20	4186131.0
3	2017-12-26	323.83	323.9400	316.58	317.29	4321909.0
2	2017-12-27	316.00	317.6800	310.75	311.64	4645441.0
1	2017-12-28	311.75	315.8200	309.54	315.36	4294689.0
0	2017-12-29	316.18	316.4100	310.00	311.35	3727621.0

© 2021 SeongJin Yoon. All Rights Reserved.

18

5. 판다스 (Pandas)

판다스 (Pandas)

데이터 구조를 분석하기 위한 라이브러리

- 테이블 구조의 데이터를 인덱스를 통해 다루는 방식
- 다양한 파일 I/O : CSV, **텍스트 파일**, Excel, SQL DB, HDF5 등
- 데이터 객체 연산 시 **인덱스 결합 방식**으로 처리
- 유연한 데이터 구조 변환 및 통계 요약
- 대량 데이터의 **슬라이싱**, **인덱싱**, **부분집합** 처리
- **용이한 컬럼 추가** 방식
- Group by 엔진으로 데이터의 요약 및 변환
- 고성능으로 데이터셋을 **결합** (Merge and Joining)
- 계층적 인덱싱 (Hierarchical axis indexing)
- 시계열 기능 : 날짜 범위 생성 및 빈도 변환, 이동 통계량, 날짜 이동 및 지연, 다른 시간 간격을 갖는 시계열 결합
- 주요 코드 부분이 Cython 또는 C로 작성되어 성능이 최적화 됨

20

테이블 형태의 자료 구조

데이터 프레임(DataFrame)은 테이블 형태의 데이터를 표현하며 '시리즈(Series)의 시리즈 ' 구조이다.

열 시리즈 열 인덱스 MPG Cylinders Displacement Horsepower Weight Acceleration Model Year Origin 393 27.0 2790.0 82 4 140.0 86.0 15.6 394 44.0 97.0 52.0 2130.0 24.6 82 4 행 시리즈 → 395 32.0 2295.0 135.0 84.0 11.6 82 4 396 28.0 4 120.0 2625.0 18.6 82 79.0 397 31.0 4 119.0 82.0 2720.0 19.4 82

dataframe = {'MPG' : {...}, 'Cylinders' : {....}, ..., 'Weight' " {...}, ...}

- **시리즈** (Series): (인덱스, 값) 구조로 되어 있는 데이터 구조 (딕셔너리와 유사)
- 데이터 프레임 (DataFrame) : 열의 시리즈로 구성된 데이터 구조, 열마다 데이터 타입이 다를 수 있음

21

행 인덱스

컬럼 이름/타입 확인

dataset.columns

```
Index(['MPG', 'Cylinders', 'Displacement', 'Horsepower', 'Weight', 'Acceleration', 'Model Year', 'Origin'], dtype='object') 컬럼 이름의 데이터 타입
```

dataset.dtypes

MPG
Cylinders
Displacement
Horsepower
Weight
Acceleration
Model Year
Origin
Int64
Int64
Int64
Int64
Int64
Int64
Int64

dtype: object

컬럼 이름으로 조회

<u>컬럼 이름으로 조회</u>

dataset['MPG']

0 18.0 1 15.0 2 18.0 3 16.0 4 17.0 ... 393 27.0 394 44.0 395 32.0 396 28.0 397 31.0

Name: MPG, Length: 398, dtype: float64

여러 컬럼 조회 칼럼 이름을 리스트로 명시

23

dataset[['MPG', 'Weight']]

	MPG	Weight
1	18.0	3504.0
2	15.0	3693.0
3	18.0	3436.0
4	16.0	3433.0
•••	•••	
393	27.0	2790.0
394	44.0	2130.0
395	32.0	2295.0
396	28.0	2625.0
397	31.0	2720.0

398 rows × 2 columns

슬라이싱

dataset[1:3]										
	MPG	Cylinders	Displacement	Horsepower	Weight	Acceleration	Model Year	Origin		
1	15.0	8	350.0	165.0	3693.0	11.5	70	1		
2	18.0	8	318.0	150.0	3436.0	11.0	70	1		

컬럼 조건 검색

여러 조건으로 행 선택

dataset['Origin']==2) & (dataset['Horsepower']>70)].head(4)

		MPG	Cylinders	Displacement	Horsepower	Weight	Acceleration	Model Year	Origin
2	20	25.0	4	110.0	87.0	2672.0	17.5	70	2
2	21	24.0	4	107.0	90.0	2430.0	14.5	70	2
2	22	25.0	4	104.0	95.0	2375.0	17.5	70	2
2	23	26.0	4	121.0	113.0	2234.0	12.5	70	2

- 차량 제조국이 Europe이고 마력이 70이상인 차량 선택
- head()는 default로 처음 5개 항목을 반환, tail()은 default로 마지막 5개 항목을 반환

25

Thank you!

