SUPERVISED LEARNING

- · BLAS-VARIANCE TRADEOFF
- · OVERFITTING AND MODEL FLEXIBILITY
- · NO FREE LUNCH
- · CURSE OF DIMENSION ALITY

EXPECTED PREDICTION ERROR

OF PREDICTING
$$Y = f(X) + \xi$$

WITH $\hat{f}(X)$ WHEN $X = X$

$$ext{EPE}\left(Y,\hat{f}\left(x
ight)
ight) = \mathbb{E}_{Y|X,\mathcal{D}}\left[\left(Y-\hat{f}\left(X
ight)
ight)^{2} \mid X=x
ight] = \underbrace{\mathbb{E}_{\mathcal{D}}\left[\left(f(x)-\hat{f}\left(x
ight)
ight)^{2}
ight]}_{ ext{reducible error}} + \underbrace{\mathbb{V}_{Y|X}\left[Y\mid X=x
ight]}_{ ext{irreducible error}}$$

BIAS AND VARIANCE

INSERT JOKE HERE

LOW

HIGH VARIANCE

Low BIAS

HIGH BIAS

MEAN SQUARED ERROR

$$MSE(f(x), \hat{f}(x)) = BIAS^{2}(\hat{f}(x)) + VAR(\hat{f}(x))$$

BIAS VARIANCE TRADEOFF

AS BIAS), VAR

BUT NOT THE SAME RATE

MODEL FLEXIBILITY

MODELS THAT ARE MORE "WIGGLY"

ARE MORE FLEXIBLE.

THESE MODELS ARE "VARIABLE."

NO METHOD WILL PERFORM BEST ON
ALL POSSIBLE DATASETS.

NO FREE LUNCH

CURSE OF DIMEN SIDNALITY

HAVE NO "CLOSE" NEIGH BUNS.