

Europäisches
Patentamt

European
Patent Office

Office européen
des brevets

JC907 U.S. PTO
09/691645

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

99811032.4

Der Präsident des Europäischen Patentamts;
Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets
p.o.

I.L.C. HATTEN-HECKMAN

Europäisches
Patentamt

European
Patent Office

Office européen
des brevets

**Blatt 2 der Bescheinigung
Sheet 2 of the certificate
Page 2 de l'attestation**

Anmeldung Nr.:
Application no.: **99811032.4**
Demande n°:

Anmeldetag:
Date of filing:
Date de dépôt: **10/11/99**

Anmelder:
Applicant(s):
Demandeur(s):
Sulzer Chemtech AG
8404 Winterthur
SWITZERLAND

Bezeichnung der Erfindung:
Title of the invention:
Titre de l'invention:
Statischer Mischer mit Präzisionsguss-Elementen

In Anspruch genommene Priorität(en) / Priority(ies) claimed / Priorité(s) revendiquée(s)

Staat: State: Pays:	Tag: Date: Date:	Aktenzeichen: File no. Numéro de dépôt:
---------------------------	------------------------	---

Internationale Patentklassifikation:
International Patent classification:
Classification internationale des brevets:
B01F5/06

Am Anmeldetag benannte Vertragstaaten:
Contracting states designated at date of filing: AT/BE/CH/CY/DE/DK/ES/FI/FR/GB/GR/IE/IT/LI/LU/MC/NL/PT/SE
Etats contractants désignés lors du dépôt:

Bemerkungen:
Remarks:
Remarques:

P.6996 Eh/ph

Sulzer Chemtech AG, CH-8404 Winterthur, Schweiz

5

Statischer Mischer mit Präzisionsguss-Elementen

Die Erfindung betrifft einen statischen Mischer mit Präzisionsguss-Elementen gemäss Oberbegriff von Anspruch 1, ein Gusselement zu einem solchen Mischer und ein Verfahren zur Herstellung des Mischers sowie

10 Verwendungen.

Aus der EP-A 0 646 408 ist ein statischer Mischer bekannt, mit dem sich hochviskose Polymerschmelzen homogenisieren lassen. Dieser Mischer ist als Mischkopf in der Düse einer Spritzgussmaschine oder als Schmelzemischer im Anschluss an die Schnecke eines Extruders

15 verwendbar. Er ist aus Gusselementen und Zwischenelementen zusammengesetzt und er hat eine zylindrische Form. Die Gusselemente enthalten Strukturen, beispielsweise Gitterstrukturen, die einen Mischvorgang in einer durchfliessenden Schmelze bewirken. Die in der EP-A 0 646 408 gezeigten Strukturen sind aus Lagen aufgebaut, die Kanäle enthalten und die 20 parallel zu einer Zentralachse ausgerichtet sind. Bei einer bevorzugten Ausführungsform bilden die Zwischenelemente zusammen mit Teilen der Gusselemente, nämlich mit flanschartigen Verstärkungsringen, einen rohrförmigen Mantel, innerhalb dem eine Mehrzahl von Mischstrukturen 25 hintereinander angeordnet sind. In benachbarten Mischstrukturen sind die Lagen jeweils um einen vorgegebenen Winkel, vorzugsweise um 90°, gegeneinander versetzt. Damit diese Versetzung beim Zusammenbau des statischen Mischers zuverlässig hergestellt wird, sind an den

Verstärkungsringen Nocken angeformt und an den Zwischenelementen in einer zu den Nocken komplementären Weise Aussparungen eingelassen. Bei einem korrekten Zusammenbau fügen sich die Nocken in die entsprechenden Aussparungen ein und sorgen so für eine vorgegebene Ausrichtung der

5 Elemente.

Die Gusselemente lassen sich mittels Präzisionsguss bis auf Toleranzen von 0,1 mm herstellen. Für den Einsatz in Spritzgussmaschinen ist diese Toleranz ungenügend. Es ist in solchen Maschinen aus Dichtheitsgründen eine präzis einzuhaltende Gesamtlänge des statischen Mischers erforderlich.

- 10 Aufgabe der Erfindung ist es, den statischen Mischer der genannten Ausführungsform so weiterzubilden, dass eine vorgegebene Gesamtlänge des Mischers, wie sie beispielsweise in Spritzgussmaschinen erforderlich ist, präzis herstellbar ist. Diese Aufgabe wird durch den im Anspruch 1 definierten statischen Mischer gelöst.
- 15 Der statische Mischer enthält Präzisionsguss-Elemente, die entlang einer Zentralachse angeordnet sind und die an ihrem Umfang jeweils einen über den ganzen Umfang sich erstreckenden Verstärkungsbereich aufweisen. Diese Gusselemente sind mit Zwischenelementen zu einem zylindrischen Körper zusammengesetzt. Stossstellen zwischen den Elementen bilden
- 20 Flächen, die quer zur Zentralachse stehen. Für jedes isolierte Gusselement sind bei einem Rotieren um dessen Zentralachse die Stossstellen zu einer Nachbearbeitung für Bearbeitungswerkzeuge zugänglich - insbesondere zu einem Abschleifen oder Abdrehen. Aufgrund der Nachbearbeitung lässt sich eine vorgegebene Gesamtlänge des Mischers in Richtung der Zentralachse
- 25 präzis ausbilden.

Bei den bekannten Gusselementen wird eine notwendige Nachbearbeitung wegen den Nocken an den Verstärkungsringen verunmöglicht. Bei den Zwischenelementen ist eine Nachbearbeitung nicht erforderlich, da diese sich aus einem Rohr durch spanbildende Verfahren in eine vorgegebene Form

30 bringen lassen, wobei die notwendige Präzision herstellbar ist.

Die abhängigen Ansprüche 2 bis 4 betreffen vorteilhafte Ausführungsformen des erfindungsgemässen Mischers. Das Gusselement dieses Mischers ist jeweils Gegenstand der Ansprüche 5 bis 8. Anspruch 9 bezieht sich auf ein Verfahren zur Herstellung des erfindungsgemässen Mischers und Anspruch

5 10 betrifft Verwendungen des Mischers.

Nachfolgend wird die Erfindung anhand der Zeichnungen erläutert. Es zeigen:

Fig. 1 eine erste Ausführungsform des erfindungsgemässen Gusselementes, das einen Verstärkungsring aufweist,

Fig. 2 ein Ende eines zum Gusselement der Fig. 1 passenden Zwischenelements,

Fig. 3 einen abgewickelten Umfang des genannten Verstärkungsrings und eine entsprechende Abwicklung des Zwischenelements,

Fig. 4 ein Schrägbild, das ausschnittsweise einen erfindungsgemässen Mischer darstellt,

15 Fig. 5 einen Längsschnitt durch eine Düse, die einen Mischkopf enthält,

Fig. 6 eine perspektivische Darstellung des Endbereichs der ersten Ausführungsform des erfindungsgemässen Mischers,

Fig. 7, 8 Abwicklungen wie in Fig. 3 für eine zweite bzw. dritte Ausführungsform und

20 Fig. 9, 10 Abwicklungen der Verstärkungsringe von zwei weiteren Ausführungsformen.

Ein Gusselement 1 gemäss Fig. 1 lässt sich durch einen Präzisionsguss herstellen, bei dem eine Gussform mittels einem Wachskörper, Aufbringen einer keramischen Hülle auf den Wachskörper, anschliessendes Entfernen 25 des Wachses und Brennen der keramischen Hülle gebildet wird. Für die Passgenauigkeit, die erreichbar ist, ergibt sich durch dieses Gussverfahren eine Toleranz von rund 0,1 mm. Das Gusselement 1 wird in der Regel aus

einer metallischen Legierung gegossen. Mit anderen Gussverfahren können auch Gusselemente 1 aus keramischem Material oder Kunststoff hergestellt werden. Ein Gitterwerk 3 - nämlich die Mischerstruktur 3 - und ein Verstärkungsring 4 bilden das Gusselement 1 in Form eines monolithischen

5 Körpers. Das Gitterwerk 3 setzt sich aus in Lagen 32 angeordneten Stegen 31 zusammen. Die Lagen 32 sind parallel zu einer Zentralachse 10 orientiert. Die Stege 31 benachbarter Lagen 32 kreuzen sich und schliessen bezüglich der Richtung der Zentralachse 10 einen einheitlichen Winkel von 45° ein. Dieser Winkel kann auch einen Wert zwischen 10 und 70° haben. Der

10 flanschartige Ring 4 ist ein Verstärkungsbereich, der sich über den ganzen Umfang des Gusselementes 1 erstreckt.

Der statische Mischer ist aus einer Mehrzahl von Gusselementen 1 und Zwischenelementen 2, siehe Fig. 2, zusammengesetzt, die entlang der Zentralachse 10 angeordnet sind und die so einen zylindrischen Körper

15 bilden. Die Mischerstrukturen 3 werden so ausgebildet, dass im zusammengebauten Mischer die Enden 30a und 30b benachbarter Gusselemente 1 sich nicht berühren. Die Elemente 1 und 2 stehen an Stossstellen in Kontakt, die durch ringförmige Flächen 40a, 40b des Verstärkungsrings 4 und ringförmige Flächen 20a, 20b (siehe Fig. 3) des

20 Zwischenelements 2 gebildet sind. Diese Flächen 40a, 40b und 20a, 20b bilden die einzigen Stossstellen. In Fig. 3 sind ein abgewickelter Umfang des Verstärkungsrings 4 und eine entsprechende Abwicklung des Zwischenelements 2 dargestellt. Pfeile 420 deuten an, wie der Ring 4 auf das Zwischenelement 2 aufsetzbar ist. Die seitlichen Linien 400 und 400' bzw. 200

25 und 200' sind Schnittlinien, an denen jeweils der Umfang sich schliesst (Winkel 0° und 360°).

Der Verstärkungsring 4 weist an der Fläche 40a segmentförmige Ausnehmungen 41, 41' und an der Fläche 40b gleich geformte Ausnehmungen 42, 42' auf, die komplementär zu vorstehenden Teilen 21, 21'

30 bzw. 22, 22' des Zwischenelements 2 sind. Die Ausnehmungen 41, 41', 42, 42' bilden zwei Paare, wobei die Ausnehmungen der Paare 41, 41' bzw. 42, 42' jeweils diametral zueinander angeordnet sind und die beiden Paare um 90° gegeneinander versetzt angeordnet sind. Die entsprechenden Erhebungen 21, 21', 22, 22' des Zwischenelements 2 sind so angeordnet,

dass jeweils zwei der Erhebungen 21 und 22 bzw. 21' und 22' in Richtung der Zentralachse 10 fluchtend hintereinander folgen. Durch diese Anordnungen ergibt sich eine Versetzung der Gitterstrukturen 3 zwischen zwei benachbarten Gusselementen 1 um 90°.

- 5 Das Schrägbild in Fig. 4 zeigt einen Ausschnitt aus einem erfindungsgemässen Mischer. Die Mischerstruktur 3 ist mit zwei sich kreuzenden Durchmessern angedeutet. Die Gusselemente 1 und Zwischenelemente 2 können durch einen längsgeschlitzten Zylinder 5 (Schlitz 50) aus einem federelastischen Blech zusammengehalten sein.
- 10 Die Stossstellen zwischen den Elementen 1 und 2 stehen quer zur Zentralachse 10. Die durch Flächen 40a, 40b des Gusselement 1 gegebenen Stossstellen sind zu einer Nachbearbeitung für Bearbeitungswerzeuge zugänglich, wenn das isolierte Gusselement um seine Zentralachse 10 rotiert wird. Es kann mittels Abschleifens oder
- 15 Abdrehens nachbearbeitet werden. Aufgrund der Nachbearbeitung kann eine vorgegebene Gesamtlänge L des Mischer 3 in Richtung der Zentralachse 10 präzis ausgebildet werden, so dass der Mischer beispielsweise in eine Düse 6, wie in Fig. 5 abgebildet, exakt hineinpasst. Der Mischer ist in einem Hohlraum 60 einer Düsenkapsel 61 unter Anpressen mit einem Bauteil 62 dicht eingesetzt.
- 20

An den Enden hat der Mischer anstelle von Zwischenstücken 2 geeignet abgewandelte Endstücke 2'. Fig. 6 illustriert mit einer perspektivischen Darstellung den Mischerendbereich mit dem Endstück 2'.

- Ausser der oben beschriebenen ersten Ausführungsform sind weitere
- 25 Möglichkeiten zur Realisierung des erfindungsgemässen Mischer 3 denkbar. Einzelne der vorstehenden Teile der Zwischenelemente 2 können separate Teile sein, die in Ausnehmungen des Zwischenelements 2 eingefügt sind. Ein Beispiel ist in Fig. 7 gezeigt. Ausnehmungen 43 und 44 im Verstärkungsring 4 sind als kreisförmige Sacklöcher ausgebildet. Entsprechende Erhebungen 23 des Zwischenelements 2 sind zylindrische Bolzen 23, die in Ausnehmungen 25 eingefügt sind. Pro Stossstelle kann auch jeweils nur ein Bolzen 23 mit entsprechenden Ausnehmungen 25 und 44 oder 43 vorgesehen sein.
- 30

Bei dem in Fig. 8 gezeigten Ausführungsbeispiel ist der Verstärkungsbereich 4 ein Ring, der durch zwei den Ring 4 kreuzende Stege 45 erweitert ist. Der Verstärkungsbereich 4 hat überall die gleiche Dicke, die auch für zwei Wandstücke 26 des Zwischenelements 2 vorgesehen ist. Diese Wandstücke 5 26 füllen die Lücken zwischen den Stegen 45 aus, wobei ein gewisses Spiel vorgesehen ist. Sie bilden gleichzeitig eine Verzahnung zwischen benachbarten Gussstücken 1 aus. Die Wandstücke 26 sind über einen Blechring 27 miteinander verbunden und bilden so das Zwischenelement 2. Durch die strichpunktierten Linien 30a' und 30b' sind die Lagen der beiden 10 Ende 30a und 30b der Mischerstruktur 3 angegeben. Im zusammengesetzten Mischer bilden die Flächen 40a' und 40b' eine Stossstelle zwischen benachbarten Gusselementen 1. Es liegen keine längenbestimmenden Stossstellen zwischen den Gusselementen 1 und Zwischenelementen 2 vor. Bei diesem Ausführungsbeispiel wird die winkelartige Versetzung 15 benachbarter Mischerstrukturen 3 nicht durch die Verstärkung 4 bewirkt. Es müssen daher zwei verschiedene Gusselemente 1 vorgesehen sein, die sich durch eine unterschiedliche Orientierung der Mischerstrukturen 3 gegenüber der Anordnung der Stege 45 unterscheiden.

Beim Ausführungsbeispiel gemäss Fig. 9 ist das Zwischenelement 2 (nicht 20 dargestellt) ähnlich wie beim ersten Ausführungsbeispiel ausgebildet. Stossstellen sind wieder durch Flächen 40a' und 40b' des Verstärkungsbereichs 4 und entsprechende Flächen des Zwischenelements 2 gebildet.

Beim Ausführungsbeispiel gemäss Fig. 10 ist der Verstärkungsbereich 4 25 wieder ringförmig und Ausnehmungen sind durch trapezförmige Nuten 48 gebildet.

P.6996 Eh/ph

Patentansprüche

5 1. Statischer Mischer mit Präzisionsguss-Elementen (1), die entlang einer Zentralachse (10) angeordnet sind und die an ihrem Umfang jeweils einen über den ganzen Umfang sich erstreckenden Verstärkungsbereich (4) aufweisen, wobei diese Gusselemente (1) mit Zwischenelementen (2) zu einem zylindrischen Körper zusammengesetzt sind und wobei Stossstellen zwischen den Elementen (1, 2) Flächen (40a, 40b, 20a, 20b) bilden, die quer zur Zentralachse stehen, dadurch gekennzeichnet, dass für jedes isolierte Gusselement bei einem Rotieren um dessen Zentralachse die Stossstellen zu einer Nachbearbeitung für Bearbeitungswerzeuge zugänglich sind - insbesondere zu einem Abschleifen oder Abdrehen - und dass aufgrund der Nachbearbeitung eine vorgegebene Gesamtlänge (L) des Mischers in Richtung der Zentralachse präzis ausgebildet ist.

10 2. Statischer Mischer nach Anspruch 1, dadurch gekennzeichnet, dass die Verstärkungsbereiche (4) der Gusselemente (1) jeweils ringförmig sind und jeder dieser Ringe Ausnehmungen (41, 41', 42, 42') aufweist, die komplementär zu vorstehenden Teilen (21, 21', 22, 22'; 23) der Zwischenelemente (2) sind.

15 3. Statischer Mischer nach Anspruch 2, dadurch gekennzeichnet, dass zumindest einzelne der vorstehenden Teile (23) der Zwischenelemente (2) separate Teile sind, die in Ausnehmungen (25) der Zwischenelemente eingefügt sind.

20 4. Statischer Mischer nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass alle Elemente (1, 2, 2') durch einen

längsgeschlitzten Zylinder (5) aus einem federelastischen Blech zusammengehalten sind.

5. Gusselement zu einem statischen Mischer gemäss einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es durch ein Präzisionsguss- oder Spritzgussverfahren hergestellt ist und ein Gitterwerk (3) von in Lagen angeordneten Stegen (31) umfasst, wobei die Lagen parallel zur Zentralachse (10) orientiert sind, die Stege benachbarter Lagen sich kreuzen und bezüglich der Richtung der Zentralachse Winkel zwischen 10 und 70°, vorzugsweise einen einheitlichen Winkel von rund 45° einschliessen.
- 10
6. Gusselement nach Anspruch 5, dadurch gekennzeichnet, dass es aus einer metallischen Legierung, aus keramischem Material oder aus Kunststoff hergestellt ist.
- 15
7. Gusselement nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass das Gitterwerk (3) der Stege (31) von einem flanschartigen, mitgegossenen Ring (4) verstärkt ist, der zwei ringförmige, quer zur Zentralachse (10) liegende und als Stossstellen zu Zwischenelementen (2) vorgesehene Oberflächen (40a, 40b) aufweist.
- 20
8. Gusselement nach Anspruch 7, dadurch gekennzeichnet, dass am äusseren Rand des Rings (4) zwei Paare segmentförmige Ausnehmungen (41, 41', 42, 42') vorgesehen sind, wobei die Ausnehmungen eines Paars jeweils diametral zueinander angeordnet sind und die beiden Paare um 90° gegeneinander versetzt angeordnet sind.
- 25
9. Verfahren zur Herstellung eines statischen Mischers gemäss einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass Gusselemente (1) durch ein Präzisionsguss- oder Spritzgussverfahren hergestellt werden, dass Zwischenelemente (2) aus einem Rohr durch spanbildende Verfahren in eine vorgegebene Form gebracht werden und dass Stossstellen (40a, 40b) der Gusselemente so nachbearbeitet werden,
- 30

- 9 -

dass der aus den Elementen (1, 2) zusammengesetzte Mischer eine vorgeschriebene Gesamtlänge (L) präzis annimmt.

10. Verwendung eines statischen Mischers gemäss einem der Ansprüche 1 bis 4 in Spritzgussmaschinen oder Extrusionsanlagen, insbesondere in der Düse (6) einer Spritzgussmaschine, in einem Heisskanal oder Verteilersystem einer Spritzwerkgruppe, in einem Verteilersystemen vor Werkzeugen einer Blasformanlage oder im Anschluss an die Schnecke eines Extruders.

5

