The generator starts to iterate between 1 and the total number of days days required to simulate. Within the iterator initialized the patient list ($list_patients$) and assigns the number of patients (pat_day) to be schedule on the current day d. This number is randomly generated in a range from 0 to the maximum number ($total_pat$) entered as parameter.

Then begin iterating from 1 to the number newly generated pat_day . It initializes the new patient $new_patient$, together with the optimal day begin to start the treatment, this number varies between 1 and gap, to this is added the day d. Subsequently determines the type of patient based on the odds $(p_eme, p_pal, p_rad$. Where $p_eme + p_pal + p_rad = 1$), where as applicable, will be assigned the number of treatments (treatments). Additionally, we calculate the last day were could begin the treatment $(begin + [last_eme, last_pal, last_rad])$. After calculate the number of interruptions (interruption) it can have on treatment, if do not want to have interruptions, just set $prob_int = 0$. Depending on the category determined for the patient, the machine is assigned, by means of odds $(machines_eme, machines_pal, machines_rad)$ entered.

Finally, assign the values to the new patient $(new_patient)$ which is inserted into the list $list_patients[d]$ on the corresponding day, which is organized by category.

Parameter	Description
days	Number of days to simulate
$total_pat$	Maximum number of patients that can be scheduled in a single day
p_eme	Percentage of emergency patients to simulate
p_pal	Percentage of palliative patients to simulate
p_rad	Percentage of radical patients to simulate
$prob_int_i$	Maximum percentage of all sessions assigned to the patient that may have interruptions in the
time	Machine time available per day
$time_session$	Duration of treatment in patients
$first_time$	Additional time to treatment in the first session
$delay_eme$	Extra delay at the beginning where may begin the treatment for emergency patients
$delay_pal$	Extra delay at the beginning where may begin the treatment for palliative patients
$delay_rad$	Extra delay at the beginning where may begin the treatment for radical patients
$groups_eme$	Number of types of treatments that the patient categorized emergency may have
$groups_pal$	Number of types of treatments that the patient categorized paliative may have
$groups_rad$	Number of types of treatments that the patient categorized radical may have
ses_eme	Vector that contain the number of treatments for the type of treatment needed for the patients
ses_pal	Vector that contain the number of treatments for the type of treatment needed for the patients
ses_rad	Vector that contain the number of treatments for the type of treatment needed for the patients
$prob_ses_eme$	Vector that contain the probability of occurrence of the differents types of treatments for the p
$prob_ses_pal$	Vector that contain the probability of occurrence of the differents types of treatments for the p
$prob_ses_rad$	Vector that contain the probability of occurrence of the differents types of treatments for the p
n_mach	Number of types of machines available
$machines_eme$	Vector that contain the probability of being assigned for a type of machine for the patients cate
$machines_pal$	Vector that contain the probability of being assigned for a type of machine for the patients cate
$machines_rad$	Vector that contain the probability of being assigned for a type of machine for the patients cate

Algorithm 1 Generator

1: **procedure** GENERATOR

Input: days, total_pat, prob_int, time, p_eme, p_pal, p_rad groups_eme, delay_eme, delay_pal, delay_rad groups_pal, groups_rad, ses_eme, ses_pal, ses_rad, prob_ses_eme, prob_ses_pal, prob_ses_rad, n_mach, machines_eme, machines_pal, machines_rad

```
for d := 1 do days
 2:
            list\_patients \leftarrow NULL
 3:
            pat\_day \leftarrow random(0, total\_pat)
 4:
            for p := 1 do pat_day
 5:
                begin \leftarrow d + random(1, gap)
 6:
 7:
                r \leftarrow random(0,1)
                if r \leq p_eme then
 8:
                    type \leftarrow 1
 9:
                    treatments \leftarrow sessions\_pat(r, groups\_eme, ses\_eme, prob\_ses\_eme)
10:
                    end \leftarrow begin + delay\_eme
11:
                else if p \leq p\_eme + p\_pal then
12:
                    type \leftarrow 2
13:
                    treatments \leftarrow sessions\_pat(r, groups\_pal, ses\_pal, prob\_ses\_pal)
14:
                    end \leftarrow begin + delay\_pal
15:
16:
                else
                    type \leftarrow 3
17:
                    treatments \leftarrow sessions\_pat(r, groups\_rad, ses\_rad, prob\_ses\_rad)
18:
                    end \leftarrow begin + delay\_rad
19:
                end if
20:
                interruption \leftarrow random(0, prob\_int * treatments)
21:
22:
                machine \leftarrow 0
                r \leftarrow random(0,1)
23:
                if type = 1 then
24:
                    machine \leftarrow set\_machine(r, n\_mach, machines\_eme)
25:
                else if type = 2 then
26:
27:
                    machine \leftarrow set\_machine(r, n\_mach, machines\_pal)
                else if type = 3 then
28:
                    machine \leftarrow set\_machine(r, n\_mach, machines\_rad)
29:
                end if
30:
31:
                new\_patient \leftarrow type, begin, end, interruption, treatments, machine, time\_session, first\_time
32:
                list\_patients[d] \leftarrow new\_patient
33:
                order\_patients\_category(list\_patients[d])
34:
35:
            return days, n_mach, list_patients, time
36:
        end for
37:
38: end procedure
```