Cal State Long Beach

1. Quickie Queries. It is essential you put down reasons for your answers and show your work. 30 points.

Throughout assume $g, h \in G$, an abelian group, and that the order of g is 1000.

- (1) The order of g^{2120} .
- (2) The smallest n such that S_n has an element of the same order as g.
- (3) The number of generators of $\langle g \rangle$.
- (4) The number of subgroups of $\langle q \rangle$.
- (5) The number of subgroups of $\langle g \rangle$ of order 100.
- \bigcirc The number of elements of $\langle g \rangle$ of order 100.
- $\overline{(7)}$ Given that h is of order 2400, the largest possible order of an element in G (as far as you know).
- (8) An element of that largest order (as in (7)).

Solution.

 \bigcirc The order of g^{2120} is

$$\frac{1000}{\gcd(2120, 1000)} = 25.$$

- (2) Since $1000 = 2^3 5^3$, it follows that $n = 2^3 + 5^3 = 133$.
- (3) Let $\varphi(n)$ be the number of positive integers relatively prime to a positive integer n. Then the number of generators of $\langle g \rangle$ is $\varphi(1000) = \varphi(2^35^3) = \varphi(2^3)\varphi(5^3) = 400$.
- (4) The number of subgroups of $\langle g \rangle$ is the number of positive divisors of 1000; since $1000 = 2^3 5^3$, it follows that we have $4 \cdot 4 = 16$ subgroups of $\langle g \rangle$.
- \bigcirc There is 1 subgroup of $\langle g \rangle$ of order 100.
- 6 There are $\varphi(100) = \varphi(2^25^2) = \varphi(2^2)\varphi(5^2) = 40$ elements of $\langle g \rangle$ of order 100.
- 7 The largest possible order of an element as far we know is

$$\frac{1000 \cdot 2400}{\gcd(1000, 2400)} = 12000.$$

- (8) The order of h^{25} is 96 and the order of g^8 is 125. Since gcd(96, 125) = 1, it follows that the order of g^8h^{25} is $96 \cdot 125 = 12000$.
- 2. 15 points. Recall that the centralizer of an element $a \in G$ (a group) is given by

$$C(a) = \{g \in G : ag = ga\}.$$

Do the following:

- (1) Show that $gag^{-1} = hah^{-1}$ if and only if $h^{-1}g \in C(a)$.
- (2) Assume G is finite. Show that $|C(a)| \times \# = |G|$ where # is the number of conjugates of a.

Solution.

(1) Suppose $h^{-1}g \in C(a)$. Then

$$h^{-1}ga = ah^{-1}g$$
 \iff $ga = hah^{-1}g$ \iff $gag^{-1} = hah^{-1}.$

Now suppose $gag^{-1} = hah^{-1}$. Then

$$gag^{-1} = hah^{-1}$$

$$ga = hah^{-1}g$$

$$h^{-1}ga = ah^{-1}g$$

$$h^{-1}g \in C(a).$$

$$\iff$$

(2) **Proof.** Let $a \in G$. We know that

$$|G_a| \cdot |Ga| = |G|,$$

where G_a is the stabilizer of a and Ga is the orbit of a (note that # = |Ga|). It suffices to show that $C(a) = G_a$. Now

$$x \in C(a) \qquad \iff xa = ax \qquad \iff xax^{-1} = a \qquad \iff x \in Ga,$$

so that C(a) = Ga, and we have that $|C(a)| \cdot |Ga| = |G_a| \cdot \# = |G|$.

- 3. Let A be an abelian group with identity e. 15 points.
 - 1 Show that $\{a \in A : a^3 = e\}$ is a subgroup.
 - (2) Find the elements of this subgroup when A is the multiplicative group of nozero elements of \mathbb{Z}_{19} .
 - \bigcirc Give necessary and sufficient conditions on the size of A in order for this subgroup to have other elements besides e, and give reasons.

Solution. Let $G = \{a \in A : a^3 = e\}.$

 \bigcirc G is clearly associative under the operation of A since it is a subset of A, so in order to show that G is a subgroup, we need to show that it contains the e and that it is closed under the operation of A and taking inverses.

Identity. Clearly $e \in G$ since $e^3 = e$.

Closure. Suppose $g, h \in G$. Then since G is abelian, it follows that $(gh)^3 = g^3h^3 = ee = e$, so that $gh \in G$.

Inverse. Suppose $g \in G$. Then it follows that $ggg = g^3 = e$. Now

$$ggg = e \Rightarrow gg = g^{-1} \Rightarrow g = (g^{-1})^2 \Rightarrow e = (g^{-1})^3 \Rightarrow g^{-1} \in G,$$

so that G is closed under taking inverses.

Thus we can conclude that G is a subgroup of A.

- (2) We want the elements a of \mathbb{Z}_{19} such that $a^3 = 1$. By computation we find that the subgroup of A that satisfies this condition is $\{1,7,13\}$.
- (3) If $a^3 = e$, then the order of a divides 3 so that the order of a is 1 or 3. So we want the order of a to be 3. Thus we must require that 3 divides |A|, so that by Cauchy's Theorem, an element of order 3 will be in G.
- 4. On a Group. Consider $G_3 = \left\{ \begin{pmatrix} 1 & m \\ 0 & s \end{pmatrix} : m \in \mathbb{Z}_8, s \in \{1,3\} \right\}$. Do (1) through (6). **20 points.**
 - \bigcirc Show G_3 is a subgroup of $GL(2,\mathbb{Z}_8)$ and find its order.
 - (2) Find the order of $h = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, and its centralizer, C(h).
 - \bigcirc Find all the conjugates of h.
 - 4 Show that regardless of what m is, the centralizer of $g_m = \begin{pmatrix} 1 & m \\ 0 & 3 \end{pmatrix}$, $C(g_m)$, has four elements.
 - \bigcirc Find the center of G_3 , Z(G). **Hint.** You basically already have.
 - \bigcirc Decide how many elements of each order there are in G_3 .

Solution.

(1) We have that $|G_3| = 8 \cdot 2 = 16$. To show that G_3 is a subgroup of $GL(2, \mathbb{Z}_8)$, we need only show that G_3 has an identity and that it is closed under multiplication since it is finite. Notice that G_3 is associative under multiplication since \mathbb{Z}_8 is associative under multiplication.

Identity. If we let m=0 and s=1, we shall see that G_3 contains the identity.

Closure. Let $\begin{pmatrix} 1 & m \\ 0 & s \end{pmatrix}$, $\begin{pmatrix} 1 & n \\ 0 & t \end{pmatrix} \in G_3$. Then we have that

$$\begin{pmatrix} 1 & m \\ 0 & s \end{pmatrix} \begin{pmatrix} 1 & n \\ 0 & t \end{pmatrix} = \begin{pmatrix} 1 & n+mt \\ 0 & st \end{pmatrix} \in G_3$$

because $\{1,3\}$ and \mathbb{Z}_8 are both closed under multiplication. Thus G_3 is closed under multiplication. Hence G_3 is a subgroup of $GL(2,\mathbb{Z}_8)$.

② **Order of** h. Since $h^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$, it follows that the order of h is 8.

Centralizer of h. Let $\begin{pmatrix} 1 & m \\ 0 & s \end{pmatrix} \in C(h)$. Then it follows that

$$\begin{pmatrix} 1 & m \\ 0 & s \end{pmatrix} h = \begin{pmatrix} 1 & 1+m \\ 0 & s \end{pmatrix} = \begin{pmatrix} 1 & s+m \\ 0 & s \end{pmatrix} = h \begin{pmatrix} 1 & m \\ 0 & s \end{pmatrix},$$

so that 1 + m = s + m. That is, s = 1. Thus

$$C(h) = \left\{ \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix} : m \in \mathbb{Z}_8 \right\}.$$

- ③ The set of conjugates of h is $\{ghg^{-1}: g \in G_3\}$. So So let $g = \begin{pmatrix} 1 & m \\ 0 & s \end{pmatrix} \in G_3$. Then we have that $ghg^{-1} = \begin{pmatrix} 1 & s^{-1} \\ 0 & 1 \end{pmatrix}$, so that the conjugates of h are $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$.
- 4 **Proof.** Let $m \in \mathbb{Z}_8$ and $g_m) = \begin{pmatrix} 1 & m \\ 0 & 3 \end{pmatrix}$. We want to show that $|C(g_m)| = 4$. Let $\begin{pmatrix} 1 & n \\ 0 & t \end{pmatrix} \in C(g_m)$. Then it follows that

$$\begin{pmatrix} 1 & n \\ 0 & t \end{pmatrix} g_m = \begin{pmatrix} 1 & m+3n \\ 0 & s \end{pmatrix} = \begin{pmatrix} 1 & mt+n \\ 0 & s \end{pmatrix} = g_m \begin{pmatrix} 1 & n \\ 0 & t \end{pmatrix},$$

so that m + 3n = mt + n; that is, m + 2n = mt.

Case 1. t = 1. Then we have that m + 2n = m so that 2n = 0; that is $n \in \{0, 4\}$. Case 2. t = 3. Then we have that m + 2n = 3m so that 2m = 2n. Notice that since $m \in \mathbb{Z}_8$, then $2m \in \{0, 2, 4, 6\}$. For each value of 2m, the equation 2m = 2n has exactly two solutions for n and they are

2m	n		
0	$\{0, 4\}$		
2	$\{1, 5\}$		
4	$\{2, 6\}$		
6	${3, 7}$		

Thus for each value of t, n has exactly two values, so that there are 4 matrices in $C(g_m)$.

(5) The center of G_3 is the set of elements of G_3 that commute with all the elements of G_3 . Notice that if an element is in the center of G_3 , then it must be in the

centralizer of all elements of G_3 . By (4), we know that

$$h^8 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $h^4 = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$

are the only elements in $\bigcap_{m \in \mathbb{Z}_8} C(g_m)$ (the intersection of the centralizers of matrices of the form $\begin{pmatrix} 1 & m \\ 0 & 3 \end{pmatrix}$). Since the remaining matrices (matrices of the form $\begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix}$) are all powers of h, it follows that h^8 and h^4 also commute with them. Thus the center of G_3 consists of h^8 and h^4 .

(6)

Matrix		
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	1	
$\begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 4 \\ 0 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 6 \\ 0 & 3 \end{pmatrix}$	2	
	4	
$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 5 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 7 \\ 0 & 1 \end{pmatrix}$	8	

- 5. On the Same Group. Let G_3 be the group from the previous exercise. Let it act on the set X of vectors of size 2: $\begin{pmatrix} x \\ y \end{pmatrix}$ with entries in \mathbb{Z}_8 . Do the following: **25 points.**
 - 1 Count the number of fixed points of $\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$.
 - (2) Count the number of fixed points of $\begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$.
 - (3) Count the number of fixed points of $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
 - (4) Finish filling the table below with the number of fixed points below each of the respective matrices:

($\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$	$ \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} $	$ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} $	$ \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} $	$ \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} $	$\begin{pmatrix} 1 & 5 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 6 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 7 \\ 0 & 1 \end{pmatrix}$
	16	32	8	16	8	8	16	8
	$\begin{pmatrix} 1 & 1 \\ 0 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 \\ 0 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 4 \\ 0 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 5 \\ 0 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 6 \\ 0 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 7 \\ 0 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$	$ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $
	8	8	16	8	16	8	16	64

- (5) Use Burnside's Lemma to count the number of orbits.
- 6 Find the stabilizer of $\binom{1}{0}$, and use it to find the size of its orbit.

- (7) Find the stabilizer of $\binom{1}{4}$, and use it to find the size of its orbit.
- (8) Find the stabilizer of $\binom{2}{2}$, and use it to find the size of its orbit.

Solution.

1 We want to find all $x, y \in \mathbb{Z}_8$ such that

$$\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}.$$

From the above, we shall get

$$\begin{pmatrix} x + 2y \\ 3y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix},$$

so that x + 2y = x and 2y = 0. These equations both simplify to 2y = 0; thus $y \in \{0, 4\}$. So we have 8 choices for x and 2 choices for y for a total of 16 choices.

The number of fixed points of $\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$ is 32.

(2) We want to find all $x, y \in \mathbb{Z}_8$ such that

$$\begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}.$$

From the above, we shall get

$$\begin{pmatrix} x+4y \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix},$$

so that x + 4y = x. That is 4y = 0, so that $y \in \{0, 2, 4, 6\}$. So we have 8 choices for x and 4 choices for y for a total of 32 choices. The number of fixed points of $\begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$ is thus 32.

- (3) Proceed as in (1) and (2) above to get x + y = x, so that y = 0; so we have 8 choices for x and 1 choices for y for a total of 8 choices. The number of fixed points of $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is thus 8.
- (4) The table has been filled above.
- (5) According to Burnside's Lemma, the number of orbits is

$$\frac{16+32+8+16+8+8+16+8+16+8+16+8+16+64}{16}=16.$$

(6) Let
$$X_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
. We want to find all $\begin{pmatrix} 1 & m \\ 0 & s \end{pmatrix} \in G_3$ such that
$$\begin{pmatrix} 1 & m \\ 0 & s \end{pmatrix} X_1 = X_1.$$

From the above equation, we shall get $X_1 = X_1$, so that all of G_3 stabilizes X_1 . That is, $|\text{Stabilizer}(X_1)| = |G_3|$. Recall that

$$|Stabilizer(X_1)| \cdot |Orbit(X_1)| = |G_3|.$$

Thus $|\operatorname{Orbit}(X_1)| = 1$.

7 Similarly let
$$X_2 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$
. We want to find all $\begin{pmatrix} 1 & m \\ 0 & s \end{pmatrix} \in G_3$ such that

$$\begin{pmatrix} 1 & m \\ 0 & s \end{pmatrix} X_2 = X_2.$$

From the above equation, we shall get

$$\begin{pmatrix} 1+4m\\4s \end{pmatrix} = \begin{pmatrix} 1\\4 \end{pmatrix},$$

so that all 4m=0 and 4s=4. Thus $m\in\{0,2,4,6\}$ and $s\in\{1,3\}$. Thus $|\mathrm{Stabilizer}(X_2)|=8$. Since

$$|\operatorname{Stabilizer}(X_2)| \cdot |\operatorname{Orbit}(X_2)| = |G_3|,$$

it follows that $|\operatorname{Orbit}(X_2)| = 2$.

(8) Similarly let
$$X_3 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
. We want to find all $\begin{pmatrix} 1 & m \\ 0 & s \end{pmatrix} \in G_3$ such that

$$\begin{pmatrix} 1 & m \\ 0 & s \end{pmatrix} X_3 = X_3.$$

From the above equation, we shall get

$$\begin{pmatrix} 2+2m\\2s \end{pmatrix} = \begin{pmatrix} 2\\2 \end{pmatrix},$$

so that all 2m=0 and 2s=2. Thus $m\in\{0,4\}$ and s=1. Thus $|\mathrm{Stabilizer}(X_3)|=2$. Since

$$|Stabilizer(X_3)| \cdot |Orbit(X_3)| = |G_3|,$$

it follows that $|\operatorname{Orbit}(X_3)| = 8$.

6. **True or False.** Consider the veracity or falsehood of each of the following statements, and argue as well as you can for those that you believe are true while providing a counterexample for those that you believe are false. There is partial credit for just the correct answer. **20 points**

- (1) Every abelian group of order 525 has an element of order 21.
- (2) The permutation (123)(2465)(5674)(12578)(456312).
- (4) A subgroup of a cyclic group is cyclic.
- (5) It is possible for an infinite group to have subgroups of finite index.
- (6) Any group of order 12 has an element of order 6.
- (7) Every group of order 1001 has an element of order 7.
- (8) Every field is an integral domain.
- (9) Let G and H be groups. Let $f: G \to H$ be a homomorphism onto H. If G is abelian, then so is H.
- (10) Let G and H be groups. Let $f: G \to H$ be a homomorphism onto H. If H is abelian, then so is G.

Solution.

1 True.

Proof. Let G be an abelian group of order 525. Because the primes 3 and 7 both divide |G|, it follows by Cauchy's Theorem that G has an element h of order 3 and an element g of order 7. Since 3 and 7 are relatively prime and since G is abelian, it must have an element of order $3 \cdot 7 = 21$.

(2) False because the sign of the permutation is

 $sign(123) \cdot sign(2465) \cdot sign(5674) \cdot sign(12578) \cdot sign(456312) = 1 \cdot -1 \cdot -1 \cdot 1 \cdot -1 = -1.$

(3) True.

Proof. First observe that the determinant of a matrix in S is 0 if and only it is the zero matrix. Also we know that S is a commutative ring. Now let $A_1, A_2 \in S$. Suppose $A_1A_2 = \mathbf{0}$. Then we must have that

$$0 = \det(\mathbf{0}) = \det(A_1 A_2) = \det(A_1) \det(A_2),$$

so that $det(A_1) = 0$ or $det(A_2) = 0$. That is $A_1 = \mathbf{0}$ or $A_2 = \mathbf{0}$, so that S is an integral domain.

- 4 True. Let $G = \langle g \rangle$ be a cyclic group and let H be a subgroup of G. Then H is also cyclic since it is generated by h^r where r is the smallest positive integer such that $h^r \in H$.
- $\boxed{5}$ True. Although $\mathbb Z$ is infinite, its subgroup, $60\mathbb Z$, has index 60.
- 6 False because A_4 has order 12 but it has no element of order 6 (since A_4 doesn't even have a subgroup of order 6).

(7) True.

Proof. Let G be a group of order 1001. Since 7 is prime and since 7 divides 1001, it follows at once by Cauchy's Theorem that G has an element of order 7.

(8) True.

Proof. Let F be a field. Suppose for some $a, b \in F$, with $a \neq 0$, we have ab = 0. Since F is a field and since a is nonzero, it follows that a^{-1} exists. Thus we have that $0 = ab = a^{-1}(ab) = (a^{-1}a)b = b$, so that F is an integral domain. \square

(9) True.

Proof. Let $x, y \in H$. Then since f is onto, there exist $a, b \in G$ such that f(a) = x and f(b) = y. Thus

$$xy = f(a)f(b) = f(ab) = f(ba) = f(b)f(a) = yx,$$

so that H is also abelian.

(10) False.

Counterexample. Consider $f: S_6 \to \{e\}$. This map is onto and $\{e\}$ is trivially abelian. Also f is a homomorphism, but S_6 is not abelian.