

MULTIPLE ACCESS SIGNATURES FOR NON-ORTHOGONAL MULTIPLE ACCESS (NOMA) WIRELESS COMMUNICATIONS

Aug 20, 2019

Methods, systems, and devices for wireless communications are described in which multiple access (MA) signatures may be used in non-orthogonal multiple access (NOMA) transmissions to provide differentiation between multiple concurrent NOMA transmission that use common time, frequency, and spatial resources. Systematic extension of the pool size of MA signatures can be obtained by the grouping of UE-specific spreading codes and the application of group-specific scrambling code, where the generation of scrambling code can depend at least on a cell ID and IJE group ID. The MA signature may be based at least

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

may be one of a set of codes associated with a particular scrambling code. The scrambling code may be one of a number of orthogonal or non-orthogonal scrambling codes that are associated with one or more UE parameters.

Skip to: Description · Claims · Patent History · Patent History

Description

CROSS REFERENCE

The present application for patent claims the benefit of U.S. Provisional Patent Application No. 62/725,207 by LEI, et al., entitled "MULTIPLE ACCESS SIGNATURES FOR NON-ORTHOGONAL MULTIPLE ACCESS (NOMA) WIRELESS COMMUNICATIONS," filed Aug. 30, 2018, assigned to the assignee hereof, and expressly incorporated herein.

BACKGROUND

The following relates generally to wireless communications, and more specifically to multiple access signatures for non-orthogonal multiple access (NOMA) wireless communications.

Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power). Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE).

Some wireless communications systems may support multiple access techniques for multiple users by sharing available system resources (e.g., time, frequency, and power). In some cases, non-orthogonal multiple access (NOMA) techniques may outperform orthogonal multiple access (OMA) techniques, and may allow multiple different transmitters to transmit concurrent transmissions over common time, frequency, and spatial resources. NOMA techniques may enable access to more system bandwidth for transmitting devices (e.g., a UE), while simultaneously enabling a greater number of users to communicate on a set of time frequency resources. Enhanced efficiency and reliability of NOMA communications may help to enhance performance of wireless communications systems.

SUMMARY

The described techniques relate to improved methods, systems, devices, and apparatuses that support multiple access signatures for non-orthogonal multiple access (NOMA) wireless communications. In various aspects, multiple access (MA) signatures may be used by a transmitter, such as a user equipment (UE), in a transmission to a receiver, such as a base station. The base station may receive multiple concurrent transmissions from multiple different UEs, and the MA signature applied to each of the multiple concurrent transmissions helps to identify a particular UE of the multiple UEs associated with a received communication. Further, in some cases each UE may have multiple NOMA transmission branches or layers that are available for multiple concurrent NOMA transmissions from a respective UE, and the MA signature may be used to help decoding of such multi-layer NOMA transmissions. Systematic extension of the pool size of MA signatures may be obtained by the grouping of UE-specific spreading codes and the application of group-specific scrambling code, where the generation of scrambling code can in some cases depend at least on a cell ID and UE group ID.

In some cases, data traffic that is to be transmitted by the UE (e.g., in either a RRC_CONNECTED mode or RRC_INACTIVE mode) may apply an MA signature that is

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

scrambling codes that are associated with one or more UE parameters (e.g., transport block size (TBS), BWP index, transmission power control scheme, modulation and coding scheme (MCS), UE buffer size, power head room, or combinations thereof) and applied to a superimposed multi-layer NOMA signal. In some cases, the UE-specific spreading code and the scrambling code may both be applied to a superimposed multi-layer NOMA signal. The UE-specific spreading codes within each set of spreading codes may be orthogonal or non-orthogonal (e.g., based on a level of cross-correlation between spreading codes within the set). In some cases, one or more sets of spreading codes may include a hybrid mix of orthogonal and non-orthogonal spreading codes.

A method of wireless communication at a UE is described. The method may include determining a multiple access signature to be applied to an uplink NOMA communication to a base station, where the multiple access signature is based on a UE-specific spreading code and a scrambling code associated with a first group of UEs, applying the multiple access signature to the uplink NOMA communication, and transmitting the uplink NOMA communication to the base station.

An apparatus for wireless communication at a UE is described. The apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to determine a multiple access signature to be applied to an uplink NOMA communication to a base station, where the multiple access signature is based on a UE-specific spreading code and a scrambling code associated with a first group of UEs, apply the multiple access signature to the uplink NOMA communication, and transmit the uplink NOMA communication to the base station.

Another apparatus for wireless communication at a UE is described. The apparatus may include means for determining a multiple access signature to be applied to an uplink NOMA communication to a base station, where the multiple access signature is based on a UE-specific spreading code and a scrambling code associated with a first group of UEs, applying the multiple access signature to the uplink NOMA communication, and transmitting the uplink NOMA communication to the base station.

A non-transitory computer-readable medium storing code for wireless communication at a UE is described. The code may include instructions executable by a processor to determine

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our <u>Privacy Policy</u>.

the uplink NOMA communication, and transmit the uplink NOMA communication to the base station.

In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the UE-specific spreading code may be one of a set of orthogonal UE-specific spreading codes. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, a cross-correlation between different UE-specific spreading codes of the set of orthogonal UE-specific spreading codes may be below a threshold value. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the UE-specific spreading code may be one of a set of UE-specific spreading codes in which at least a subset of the UE-specific spreading codes of the set of UE-specific spreading codes.

Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving multiple access signature configuration information from the base station that indicates the UE-specific spreading code and the scrambling code associated with the first group of UEs. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the multiple access signature configuration information may be received from the base station in a master information block (MIB), in a SIB, in remaining minimum system information (RMSI), in a group common PDCCH, in RRC signaling, in dynamic DCI associated with the uplink NOMA communication, or any combination thereof.

In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the applying the multiple access signature to the uplink NOMA communication may include operations, features, means, or instructions for applying the multiple access signature to a preamble to be included with the uplink NOMA communication. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the applying the multiple access signature to the uplink NOMA communication may include operations, features, means, or instructions for applying the multiple access signature to PUSCH data to be included with the uplink NOMA communication and applying a demodulation reference signal (DMRS) signature to

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our <u>Privacy Policy</u>.

sequence. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the multiple access signature applied to PUSCH data includes a short spreading code and a group-specific scrambling code, and where the short spreading code may be jointly configured for both the PUSCH data and the base DMRS sequence.

In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, a mapping between the multiple access signature and the DMRS signature may be provided in multiple access signature configuration information provided by the base station. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the applying the multiple access signature to the uplink NOMA communication may include operations, features, means, or instructions for applying the UE-specific spreading code or permutation pattern to each layer of a multi-layer NOMA uplink communication, superimposing each layer of the multi-layer NOMA uplink communication to generate a superimposed NOMA uplink signal and applying the scrambling code to the superimposed NOMA uplink signal. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the applying the multiple access signature to the uplink NOMA communication may include operations, features, means, or instructions for superimposing each of a set of layers of a multi-layer NOMA uplink communication to generate a superimposed NOMA uplink signal, applying the UE-specific spreading code to the superimposed NOMA uplink signal to generate a spread superimposed NOMA uplink signal and applying the scrambling code to the spread superimposed NOMA uplink signal.

In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the UE-specific spreading code may be determined from a set of available spreading codes, the set of available spreading codes corresponding to a spreading factor and a number of distinct spreading codes. Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a set of codebooks that each include a set of UE-specific spreading codes, each of the set of codebooks associated with a different group of UEs of a set of groups of UEs, selecting the first group of UEs from the set of groups of UEs based on one or more of an amount of data to be transmitted in the uplink NOMA communication, a transmission power for the uplink NOMA

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

readable medium described herein may further include operations, features, means, or instructions for selecting the UE-specific spreading code from the first codebook based on a UE identification or an index value assigned to the UE by the base station.

In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of UE-specific spreading codes of each of the set of codebooks include modified chirp sequences (MCPs), computer generated sequences (CGSs), pseudo-random noise (PN) sequences, or combinations thereof. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of UE-specific spreading codes of each of the set of codebooks include orthogonal spreading codes, non-orthogonal spreading codes, or a hybrid of orthogonal spreading codes and non-transitory computer-readable medium described herein, the set of codebooks include two or more codebooks that may be each associated with different numbers of UEs, different spreading factors for associated UE-specific spreading codes, different types of UE-specific spreading codes, or combinations thereof.

A method of wireless communication at a base station is described. The method may include identifying a set of UEs configured for concurrent uplink NOMA communications, transmitting, to the set of UEs, an indication of a multiple access signature to be applied to uplink NOMA communications of each UE of the set of UEs, where the multiple access signature for each UE is based on a UE-specific spreading code and a scrambling code associated with a group of UEs, receiving at least two concurrent uplink NOMA communications from at least two UEs of the set of UEs using a common set of uplink resources, and determining each UE of the set of UEs that transmitted each of the at least two concurrent uplink NOMA communications, based on multiple access signatures that are applied to each of the concurrent uplink NOMA communications.

An apparatus for wireless communication at a base station is described. The apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to identify a set of UEs configured for concurrent uplink NOMA communications, transmit, to the set of UEs, an indication of a multiple access signature to be applied to uplink NOMA communications of each UE of the set of UEs, where the

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

least two concurrent uplink NOMA communications, based on multiple access signatures that are applied to each of the concurrent uplink NOMA communications.

Another apparatus for wireless communication at a base station is described. The apparatus may include means for identifying a set of UEs configured for concurrent uplink NOMA communications, transmitting, to the set of UEs, an indication of a multiple access signature to be applied to uplink NOMA communications of each UE of the set of UEs, where the multiple access signature for each UE is based on a UE-specific spreading code and a scrambling code associated with a group of UEs, receiving at least two concurrent uplink NOMA communications from at least two UEs of the set of UEs using a common set of uplink resources, and determining each UE of the set of UEs that transmitted each of the at least two concurrent uplink NOMA communications, based on multiple access signatures that are applied to each of the concurrent uplink NOMA communications.

A non-transitory computer-readable medium storing code for wireless communication at a base station is described. The code may include instructions executable by a processor to identify a set of UEs configured for concurrent uplink NOMA communications, transmit, to the set of UEs, an indication of a multiple access signature to be applied to uplink NOMA communications of each UE of the set of UEs, where the multiple access signature for each UE is based on a UE-specific spreading code and a scrambling code associated with a group of UEs, receive at least two concurrent uplink NOMA communications from at least two UEs of the set of UEs using a common set of uplink resources, and determine each UE of the set of UEs that transmitted each of the at least two concurrent uplink NOMA communications, based on multiple access signatures that are applied to each of the concurrent uplink NOMA communications.

In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the UE-specific spreading code of each UE of the set of UEs may be one of a set of orthogonal UE-specific spreading codes associated with each of a set of groups of UEs. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, a cross-correlation between different UE-specific spreading codes of the set of orthogonal UE-specific spreading codes may be below a threshold value. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the UE-specific spreading code of each UE of

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

indication of the multiple access signature to be applied to uplink NOMA communications of each UE of the set of UEs may be transmitted in a master information block (MIB), in a SIB, in remaining minimum system information (RMSI), in a group common PDCCH, in RRC signaling to each of the set of UEs, in dynamic DCI signaling to each of the set of UEs, or any combination thereof.

In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the multiple access signature may be applied to a preamble that is included with the uplink NOMA communication In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the multiple access signatures that may be applied to each of the concurrent uplink NOMA communications may be applied to PUSCH data included with the uplink NOMA communication, and where a demodulation reference signal (DMRS) signature may be applied to a DMRS that may be transmitted with the uplink NOMA communication. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the DMRS signature includes an orthogonal cover code (OCC) or quasi-orthogonal cover code and a group scrambling or short spreading code that may be applied to a base DMRS sequence. In some examples of the method, apparatuses, and nontransitory computer-readable medium described herein, a mapping between the multiple access signature and the DMRS signature may be provided in multiple access signature configuration information. In some examples of the method, apparatuses, and nontransitory computer-readable medium described herein, the UE-specific spreading codes of each of the set of UEs may be determined from a set of available spreading codes based on a spreading factor and a number of distinct spreading codes.

Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting information associated with a set of codebooks to each of the set of UEs, where each of the set of codebooks include a set of UE-specific spreading codes, and each of the set of codebooks may be associated with one or more of an amount of data to be transmitted by a UE in an associated uplink NOMA communication, a transmission power of the UE, a spreading factor to be used for the UE-specific spreading codes, or a modulation and coding scheme (MC S) to be used by the UE. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

sequences (MCPs), computer generated sequences (CGSs), pseudo-random noise (PN) sequences, or combinations thereof. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of UE-specific spreading codes of each of the set of codebooks include orthogonal spreading codes, non-orthogonal spreading codes, or a hybrid of orthogonal spreading codes and non-orthogonal spreading codes. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of codebooks include two or more codebooks that may be each associated with different numbers of UEs, different spreading factors for associated UE-specific spreading codes, different types of UE-specific spreading codes, or combinations thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example of a system for wireless communications that supports multiple access signatures for non-orthogonal multiple access (NOMA) wireless communications in accordance with aspects of the present disclosure.

FIG. 2 illustrates an example of a wireless communications system that supports multiple access signatures for NOMA wireless communications in accordance with aspects of the present disclosure.

FIG. 3 illustrates an example of a NOMA transmit chain that supports multiple access signatures for NOMA wireless communications in accordance with aspects of the present disclosure.

FIG. 4 illustrates an example of a NOMA transmit chain that supports multiple access signatures for NOMA wireless communications in accordance with aspects of the present disclosure.

FIG. 5 illustrates an example of a process flow that supports multiple access signatures for NOMA wireless communications in accordance with aspects of the present disclosure.

FIGS. 6 and 7 show block diagrams of devices that support multiple access signatures for NOMA wireless communications in accordance with aspects of the present disclosure.

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

FIG. 9 shows a diagram of a system including a device that supports multiple access signatures for NOMA wireless communications in accordance with aspects of the present disclosure.

FIGS. 10 and 11 show block diagrams of devices that support multiple access signatures for NOMA wireless communications in accordance with aspects of the present disclosure.

FIG. 12 shows a block diagram of a communications manager that supports multiple access signatures for NOMA wireless communications in accordance with aspects of the present disclosure.

FIG. 13 shows a diagram of a system including a device that supports multiple access signatures for NOMA wireless communications in accordance with aspects of the present disclosure.

FIGS. 14 through 20 show flowcharts illustrating methods that support multiple access signatures for NOMA wireless communications in accordance with aspects of the present disclosure.

DETAILED DESCRIPTION

Some wireless communications systems may support multiple access techniques for multiple users by sharing available system resources (e.g., time, frequency, and spatial resources). Such multiple access techniques may include non-orthogonal multiple access (NOMA) techniques that enhance achievable spectral efficiency (SE) in a system and may outperform orthogonal multiple access (OMA) techniques, by allowing multiple different concurrent transmissions over common time, frequency, and spatial resources.

As discussed herein, various techniques support multiple access (MA) signatures for use by a NOMA transmitter, such as a user equipment (UE). A receiver, such as a base station may receive multiple concurrent transmissions from multiple different UEs, and the MA signature applied to each of the multiple concurrent transmissions may help to identify a particular UE from the multiple UEs that had concurrent transmissions to the base station. In some cases, the MA signature may be based at least in part on a UE-specific spreading code and a scrambling code. The UE-specific spreading code may be applied, in some cases,

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our <u>Privacy Policy</u>.

transmission power control scheme, modulation and coding scheme (MCS), UE buffer size, power head room, or combinations thereof) and applied to a superimposed multi-layer NOMA signal. In some cases, the UE-specific spreading code and the scrambling code may both be applied to a superimposed multi-layer NOMA signal. The UE-specific spreading codes within each set of spreading codes may be orthogonal or non-orthogonal (e.g., based on a level of cross-correlation between spreading codes within the set). In some cases, one or more sets of spreading codes may include a hybrid mix of orthogonal and non-orthogonal spreading codes. Spreading and scrambling of NOMA signals may be performed at the symbol level (e.g., rather than at a bit-level), which may allow for enhanced backward compatibility and also for reduced hardware complexity.

A base station or other receiver that receives multiple concurrent NOMA transmissions on common time, frequency, and spatial resources may demodulate and decode such transmissions according to NOMA techniques that enable the recovery of multiple simultaneous transmissions. Such NOMA techniques include, for example, successive interference cancelation (SIC), multi-user decoders (MUDs), resource spread multiple access (RSMA), or combinations thereof. A MUD may use SIC techniques to decode a first, relatively strong, signal from a first transmitter, subtract the first signal from the received signal, decode a second signal from a second transmitter, and so on. RSMA techniques may utilize lower rate channel coding that spreads a transmitted signal across resources. Gains obtained from the channel coding may lead to robust transmissions, and also may be well suited for sporadic transmissions of small non-orthogonal data bursts. For example, RSMA techniques may be beneficial in systems that support machine type communication (MTC), enhanced MTC (eMTC), massive MTC (mMTC) communications, narrowband Internet of Things (NB-IoT) communications, ultra-reliable low latency communications (URLLC), enhanced mobile broadband (eMBB), and the like. In such cases, signals from multiple transmitting devices may be recovered simultaneously, even in the presence of mutual interference.

As described herein, through the use of NOMA techniques, greater power savings, signaling overhead reduction and configuration flexibility may be provided for multiple access by a large number of UEs (e.g., for mMTC systems), while also supporting robust communications with varying channel code rates. Various of the NOMA techniques may use a spreading code in conjunction with a scrambling code and resource element (RE)

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

time resources may be available for NOMA transmissions), which may enhance system efficiency and capacity by reducing overhead associated with scheduling requests and specific grants that may otherwise be communicated between a UE and a base station. Additionally, such reduced signaling may reduce power consumption and latency of a system.

Aspects of the disclosure are initially described in the context of a wireless communications system. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, process flows, system diagrams, and flowcharts that relate to multiple access signatures for NOMA wireless communications.

FIG. 1 illustrates an example of a wireless communications system **100** that supports multiple access signatures for NOMA wireless communications in accordance with aspects of the present disclosure. The wireless communications system **100** includes base stations **105**, UEs **115**, and a core network **130**. In some examples, the wireless communications system **100** may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some cases, wireless communications system **100** may support enhanced broadband communications, ultrareliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices. In some cases, base stations **105** and UEs **115** may communicate using NOMA transmissions in which multiple UEs **115** may concurrently transmit uplink communications to a base station **105** using common time, frequency, and spatial resources.

Base stations **105** may wirelessly communicate with UEs **115** via one or more base station antennas. Base stations **105** described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB), a next-generation Node B or giga-nodeB (either of which may be referred to as a gNB), a Home NodeB, a Home eNodeB, or some other suitable terminology. Wireless communications system **100** may include base stations **105** of different types (e.g., macro or small cell base stations). The UEs **115** described herein may be able to communicate with various types of base stations **105** and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.

Fach hace station 105 may be associated with a narticular geographic coverage area 110 in

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

communications system **100** may include uplink transmissions from a UE **115** to a base station **105**, or downlink transmissions from a base station **105** to a UE **115**. Downlink transmissions may also be called forward link transmissions while uplink transmissions may also be called reverse link transmissions.

The geographic coverage area **110** for a base station **105** may be divided into sectors making up only a portion of the geographic coverage area **110**, and each sector may be associated with a cell. For example, each base station **105** may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof. In some examples, a base station **105** may be movable and therefore provide communication coverage for a moving geographic coverage area **110**. In some examples, different geographic coverage areas **110** associated with different technologies may overlap, and overlapping geographic coverage areas **110** associated with different technologies may be supported by the same base station **105** or by different base stations **105**. The wireless communications system **100** may include, for example, a heterogeneous LTE/LTE-A/LTE-A Pro or NR network in which different types of base stations **105** provide coverage for various geographic coverage areas **110**.

The term "cell" refers to a logical communication entity used for communication with a base station **105** (e.g., over a carrier), and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID), a virtual cell identifier (VCID)) operating via the same or a different carrier. In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC), narrowband Internet-of-Things (NB-IoT), enhanced mobile broadband (eMBB), or others) that may provide access for different types of devices. In some cases, the term "cell" may refer to a portion of a geographic coverage area **110** (e.g., a sector) over which the logical entity operates.

UEs **115** may be dispersed throughout the wireless communications system **100**, and each UE **115** may be stationary or mobile. A UE **115** may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the "device" may also be referred to as a unit, a station, a terminal, or a client. A UE **115** may also be a personal electronic device such as a cellular phone, a personal digital assistant (PDA), a tablet computer, a laptop computer, or a

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication). M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application. Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.

Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously). In some examples half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a power saving "deep sleep" mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications). In some cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions), and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.

In some cases, a UE **115** may also be able to communicate directly with other UEs **115** (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol). One or more of a group of UEs **115** utilizing D2D communications may be within the geographic coverage area **110** of a base station **105**. Other UEs **115** in such a group may be outside the geographic coverage area **110** of a base station **105**, or be otherwise unable to receive transmissions from a base station **105**. In some cases, groups of UEs **115** communicating via D2D communications may utilize a one-to-many (1:M) system in which each UE **115** transmits to every other UE **115** in the group. In some cases, a base station **105** facilitates the scheduling or pre-

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

Base stations **105** may communicate with the core network **130** and with one another. For example, base stations **105** may interface with the core network **130** through backhaul links **132** (e.g., via an S1, N2, N3, or other interface). Base stations **105** may communicate with one another over backhaul links **134** (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations **105**) or indirectly (e.g., via core network **130**).

The core network **130** may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network **130** may be an evolved packet core (EPC), which may include at least one mobility management entity (MME), at least one serving gateway (S-GW), and at least one Packet Data Network (PDN) gateway (P-GW). The MME may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs **115** served by base stations **105** associated with the EPC. User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW. The P-GW may provide IP address allocation as well as other functions. The P-GW may be connected to the network operators IP services. The operators IP services may include access to the Internet, Intranet(s), an IP Multimedia Subsystem (IMS), or a Packet-Switched (PS) Streaming Service.

At least some of the network devices, such as a base station **105**, may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC). Each access network entity may communicate with UEs **115** through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP). In some configurations, various functions of each access network entity or base station **105** may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station **105**).

Wireless communications system **100** may operate using one or more frequency bands, typically in the range of 300 MHz to 300 GHz. Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length. UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs **115** located

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

Wireless communications system **100** may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band. The SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that can tolerate interference from other users.

Wireless communications system **100** may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz), also known as the millimeter band. In some examples, wireless communications system **100** may support millimeter wave (mmW) communications between UEs **115** and base stations **105**, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE **115**. However, the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.

In some cases, wireless communications system **100** may utilize both licensed and unlicensed radio frequency spectrum bands. For example, wireless communications system **100** may employ License Assisted Access (LAA), LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz ISM band. When operating in unlicensed radio frequency spectrum bands, wireless devices such as base stations **105** and UEs **115** may employ listen-before-talk (LBT) procedures to ensure a frequency channel is clear before transmitting data. In some cases, operations in unlicensed bands may be based on a CA configuration in conjunction with CCs operating in a licensed band (e.g., LAA). Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these. Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD), time division duplexing (TDD), or a combination of both.

In some examples, base station **105** or UE **115** may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. For example,

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream, and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams. Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.

Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation).

In some cases, the antennas of a base station **105** or UE **115** may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some cases, antennas or antenna arrays associated with a base station **105** may be located in diverse geographic locations. A base station **105** may have an antenna array with a number of rows and

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

In some cases, wireless communications system **100** may be a packet-based network that operate according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may in some cases perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use hybrid automatic repeat request (HARD) to provide retransmission at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE **115** and a base station **105** or core network **130** supporting radio bearers for user plane data. At the Physical (PHY) layer, transport channels may be mapped to physical channels.

In some cases, UEs **115** and base stations **105** may support retransmissions of data to increase the likelihood that data is received successfully. HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link **125**. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC)), forward error correction (FEC), and retransmission (e.g., automatic repeat request (ARQ)). HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions). In some cases, a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.

Time intervals in LTE or NR may be expressed in multiples of a basic time unit, which may, for example, refer to a sampling period of T_s =1/30,720,000 seconds. Time intervals of a communications resource may be organized according to radio frames each having a duration of 10 milliseconds (ms), where the frame period may be expressed as T_f =307,200 T_s . The radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023. Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms. A subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period). Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods. In some cases, a

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs).

In some wireless communications systems, a slot may further be divided into multiple mini-slots containing one or more symbols. In some instances, a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling. Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example. Further, some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE **115** and a base station **105**.

The term "carrier" refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125. For example, a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology. Each physical layer channel may carry user data, control information, or other signaling. A carrier may be associated with a pre-defined frequency channel (e.g., an E-UTRA absolute radio frequency channel number (EARFCN)), and may be positioned according to a channel raster for discovery by UEs 115. Carriers may be downlink or uplink (e.g., in an FDD mode), or be configured to carry downlink and uplink communications (e.g., in a TDD mode). In some examples, signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques such as OFDM or DFT-s-OFDM).

The organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-A Pro, NR, etc.). For example, communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data. A carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc.) and control signaling that coordinates operation for the carrier. In some examples (e.g., in a carrier aggregation configuration), a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.

Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

region or common search space and one or more UE-specific control regions or UE-specific search spaces).

A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a "system bandwidth" of the carrier or the wireless communications system **100**. For example, the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz). In some examples, each served UE **115** may be configured for operating over portions or all of the carrier bandwidth. In other examples, some UEs **115** may be configured for operation using a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., "in-band" deployment of a narrowband protocol type).

In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme). Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. In MIMO systems, a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers), and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.

Devices of the wireless communications system **100** (e.g., base stations **105** or UEs **115**) may have a hardware configuration that supports communications over a particular carrier bandwidth, or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system **100** may include base stations **105** and/or UEs **115** that can support simultaneous communications via carriers associated with more than one different carrier bandwidth.

In some cases, one or more UEs 115 may be configured for NOMA transmissions, and may be configured with multiple NOMA transmission layers that are available for one or more concurrent NOMA transmissions. In some cases, such UEs 115 may apply a MA signature.

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

and coding scheme (MCS), UE buffer size, or combinations thereof). Such a UE **115** may determine a scrambling code for a NOMA transmission, and then the UE-specific spreading code may be one of the set of spreading codes associated with the scrambling code.

A base station **105** may receive multiple concurrent transmissions from multiple different UEs **115**, and use the MA signature applied to each of the multiple concurrent transmissions in to help identify a particular UE **115** of the multiple UEs **115** that had concurrent transmissions to the base station **105**. The UE-specific spreading code may be applied, in some cases, to each layer of a multi-layer NOMA transmission. In some cases, the UE-specific spreading code and the scrambling code may both be applied to a superimposed multi-layer NOMA signal. The UE-specific spreading codes within each set of spreading codes may be orthogonal or non-orthogonal (e.g., based on a level of cross-correlation between spreading codes within the set). In some cases, one or more sets of spreading codes may include a hybrid mix of orthogonal and non-orthogonal spreading codes.

FIG. 2 illustrates an example of a wireless communications system **200** that supports multiple access signatures for NOMA wireless communications in accordance with aspects of the present disclosure. In some examples, wireless communications system **200** may implement aspects of wireless communications system **100**. In the example of FIG. 2, the wireless communications system **200** may include base station **105**-a, which may be an example of a base station **105** of FIG. 1. The wireless communications system **200** may also include first UE **115**-a and second UE **115**-b, which may each be examples of a UE **115** of FIG. 1, that are located within coverage area **110**-a of base station **105**-a.

The UEs 115 may be configured for NOMA transmissions that may use one or more NOMA transmission branches (e.g., according to multi-layer (ML) RSMA transmission techniques). For example, UEs 115 may receive NOMA configuration information 205, via downlink carriers 210 and may transmit concurrent NOMA uplink transmissions 215 using common NOMA uplink resources via uplink carriers 220. In some cases, NOMA uplink transmissions 215 may allow the UEs 115 to autonomously transmit uplink transmissions in the absence of a specific grant of uplink resources to the UE 115 (i.e., in grant-free transmissions). Such grant-free uplink transmissions may significantly reduce

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

bytes or less), and thus the downlink grants consume a relatively large amount of network resources relative to the uplink data transmissions. Further, as the number of UEs 115 in a system increase (e.g., in some IoT deployments numerous UEs 115 may be present in a coverage area of base station 105-a) and relatively small amounts of data are transmitted in uplink transmissions, the overhead of downlink control information (DCI) that provides grants for the uplink traffic may also increase. Thus, NOMA techniques may allow concurrent transmissions from UEs 115, and may allow the UEs 115 to transmit NOMA uplink transmissions 215 in the absence of an uplink grant, and may thus increase network efficiency. Further, spectral efficiency may be further increased by using multiple NOMA transmission branches, and various techniques provided herein may allow a UE 115 to apply a MA signature to a NOMA transmission to enhance reliability and increase the likelihood of successful decoding of the NOMA transmission at the base station 105-a.

In some cases, each of the UEs **115** may transmit concurrent uplink transmissions via the same uplink resources that are each based on a MA signature. NOMA processing may be performed in each of the UEs **115** to apply the MA signature, which may include spreading and scrambling of multiple symbols of NOMA data, and mapping of symbols to REs for wireless transmission. In some cases, MA signatures used by each UE **115** may have desired cross-correlation properties that provide for enhanced differentiation of transmissions from different UEs **115** at the base station **105**-a. In some cases, physical uplink shared channel (PUSCH) data transmissions may have MA signatures that are jointly represented by a symbol-level short spreading code and a group/cell specific scrambling code.

Further, in some cases, demodulation reference signal (DMRS) transmissions may have MA signatures that are jointly represented by an orthogonal cover code (OCC) sequence (or quasi-orthogonal cover code) applied to a base DMRS sequence which may have a cyclic shift, and group/cell specific scrambling code. In some cases, mapping rules may be provided for UE grouping between DMRS and PUSCH MA signatures, where different UE group may be mapped to, for example, different TBSs, different spreading factors, different transmission powers, different MCSs, different buffer states, or combinations thereof. For example, UEs 115 having a TBS within a certain range may be mapped to a first group-specific scrambling code, which may have a set of associated UE-specific spreading codes. A UE 115 may determine the scrambling code for use in a NOMA uplink transmission, and

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

based on a cross-correlation of spreading codes within the set being below a threshold value), non-orthogonal, or a hybrid of orthogonal and non-orthogonal short spreading codes.

The base station **105**-*a* may receive such NOMA transmissions, may demap the received transmissions to determine the transmissions of each NOMA transmission layer, and may then demodulate and decode each of the NOMA transmission layers based at least in part on the MA signature applied to each NOMA transmission.

FIG. 3 illustrates an example of a NOMA transmit chain **300** that supports multiple access signatures for NOMA wireless communications in accordance with aspects of the present disclosure. In some examples, NOMA transmit chain **300** may implement aspects of wireless communications system **100** or **200**. In the example NOMA transmit chain **300** of FIG. 3, the UE may use multi-branch NOMA processing (i.e., M>1). In such cases, PUSCH/PUCCH data **305** may be provided to a transmit chain at the UE, which may perform initial transmit processing. The transmit chain may include a transport block (TB) segmentation and cyclic redundancy check (CRC) component **310**, an encoder **315** (e.g., low density parity check (LDPC) encoder), rate matching component **320**, bit scrambling component **325**, and modulation component **330** (e.g., a BPSK, pi/2 BPSK, QPSK, OQPSK, 16QAM modulation component).

The output from the initial transmit processing, in this example, is provided to a NOMA processing portion **335** of the UE transmit chain **300**. The NOMA processing portion **335** may include a demultiplexer **340**, which may demultiplex the modulated data into M separate transmission streams, with each transmission stream provided to a separate NOMA branches or layers for processing. In the example of FIG. 3, each NOMA layer may include a spreading component **345**, and a gain component **350**. The outputs of each of the branches may be superimposed at summing component **360**. In some cases, transform precoding component **365** may perform transform precoding on the output of the scrambling component **360**, and a RE mapping component **370** may map the precoded symbols, as well as DMRS symbols from a DMRS component **375**, to REs for uplink transmission and output a NOMA baseband waveform **380**.

In some cases, different NOMA transmission branches may apply a different spreading

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

distinguish ML-RSMA transmissions from multiple UEs using the same resources, such as by NOMA techniques. As discussed herein, a UE-specific spreading sequence may be applied, jointly with a scrambling sequence that is applied at scrambling component **360**, to jointly provide a MA signature for an uplink NOMA transmission.

In some cases, scrambling component **360** may apply a scrambling sequence to each symbol for transmission. Such a scrambling sequence may be a particular scrambling code that is applied to each symbol for transmission such that a receiving device (e.g., a base station) may distinguish ML-RSMA transmissions from the multiple NOMA transmitters. The gain components **350** may apply different gain factors $\{g_1, \ldots, g_M\}$ to each branch of the multi-branch NOMA processing.

In some cases, a UE may be configured with a mapping that may provide UE-specific spreading sequences and scrambling sequences that may depend on one or more parameters, such as a layer index, a number of layers, an identification of the UE, a UE Group identification, a spreading factor applied to the layer, a cell ID of the serving base station, slot index of a transmission, a symbol index, different TBSs, different spreading factors, different transmission powers, different MCSs, different buffer states, or combinations thereof. In some cases, the UE may determine the scrambling code and the UE-specific spreading code to be applied based on the one or more parameters, and the receiving base station may use the same parameters to differentiate different MA signatures and to decode the NOMA transmissions.

In some cases, the NOMA baseband waveform **380** may have an inverse fast Fourier transform (IFFT) performed on the frequency domain signals to generate a time domain waveform, such as a NOMA CP/DFT-s-OFDM waveform for uplink transmission. The UE may transmit the waveform via power amplifiers and antennas to a base station using the frequency and time resources identified for the uplink transmission of the uplink data. A base station receiving NOMA uplink transmission may decode each of the NOMA transmission branches in accordance with NOMA techniques, such as SIC.

In some cases, as indicated above, a scrambling code may be determined based on a UE grouping, and spreading codes may be determined based on the scrambling code grouping. In some examples, grouping may be based on modified chirp sequences (MCPs), computer generated sequences (CCSs), or pseudo random noise (PN) sequences. For example, a set

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

$$S_n \triangleq [s_n(1)s_n(2) \dots s_n(K)]; 1 \le n \le N, N > K \ge 2.$$

One example of closed-form construction for each s_n using a MCP would be:

$$sn$$
 (k) = Δ 1 K exp (j π ((k+n)2N)) w (k); $1 \le k \le K$, $1 \le n \le N$

where w(k) is a perfect sequence of period K, that is $\Sigma_{k=1}^{K} W(k) W^{*}(k+1) = K\delta(l)$. In such examples, the spreading code generated is a Welch Bound equality (WBE) set, which achieves the Welch bound equality on sum squared correlations for arbitrary K and N satisfying N>K≥2. In other cases, CGSs or PN sequences can be used for the set of sequences of a number of groups. In some cases, where relatively low cross-correlation is desired, the N spreading codes can be partitioned into M groups, and each group has N/M orthogonal entries. In other cases, where relatively higher cross-correlation is acceptable, the N spreading codes can be partitioned into M groups, and each group has N/M nonorthogonal entries. In some cases, a base station may configure a codebook that indicates the scrambling sequence for each of the M groups of UEs and the spreading codes associated with each of the groups, and may provide an indication of the codebook to one or more UEs (e.g., via a system information block (SIB), synchronization signal block (SSB), master information block (MIB), remaining minimum system information (RMSI), radio resource control (RRC) signaling, dynamic downlink control information (DCI), other broadcast transmission, or combinations thereof). In some cases, one or more codebooks may be preconfigured at the UEs and base station.

In cases that use orthogonal spreading codes for UE grouping, the MCP, CGS or PN sequences can be used to construct orthogonal spreading codes in UE grouping, a codebook (e.g., derived using MCP) is denoted by (N, K), where K is the spreading factor, and N is the size of codebook. In some cases, a large N can be selected to configure the MA signatures of N UEs. For example, if $N \ge KM$, then at least K groups of orthogonal spreading codes can be systematically constructed by MCP, in which:

$$\text{Group}_{\mathbf{x}} = \{S_{\mathbf{x}}, S_{\mathbf{x}+\mathbf{K}'}, \dots, S_{\mathbf{x}+(\mathbf{M}-\mathbf{1})^*\mathbf{K}'}\}, \text{ where } x = 1, 2, \dots, K \text{ and } K' \geq K.$$

cookies. To understand more about how we use cookies,

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of

please see our Privacy Policy.

may be applied to DMRS/preamble and PUSCH data transmissions, and similar or different orthogonal or quasi-orthogonal spreading codes can be applied to both DMRS/preamble and PUSCH transmissions to systematically extend the pool size of MA signatures.

In cases that may use non-orthogonal spreading codes within UE groupings, such MCP, CGS or PN sequences may also be used to construct a set of non-orthogonal spreading codes. Such non-orthogonal spreading codes may allow more UE groups or more UEs within a group, and in some cases may be used when a relatively large number of UEs are configured for NOMA transmissions. For example, for a MCP generated set of spreading codes where N≥KM, then at least K groups of non-orthogonal spreading codes can be formed, in which:

$$-\text{Group}_{x} = \{S_{x}, S_{x+K'}, \dots, S_{x+(M-1)*K'}\}\$$
, where $x = 1, 2, \dots, K$ and $K' \ge K$.

In some cases, the M spreading codes within $Group_x$ are non-orthogonal, which can be assigned to the M UEs within UE $Group_x$. In some cases, group-specific scrambling or power multiplexing may be applied in conjunction with M spreading codes to the M UEs within a same group. Similarly as indicated above, UE groupings may be applied to both DMRS/preamble and PUSCH transmissions, and similar or different non-orthogonal spreading codes can be applied to both DMRS/preamble and PUSCH transmissions to systematically extend the pool size of MA signatures.

In some further examples, hybrid UE groupings may be configured, in which a hybrid use of orthogonal and non-orthogonal spreading codes may be included in a hybrid UE grouping. In such cases, a number of UEs in each group may be different, a spreading factor in each group may be different, or combinations thereof. Further, in some cases, a hybrid use of different types of spreading sequences (e.g., MCP, CGS or PN sequences) may be used, which may be applied to both DMRS/preamble and PUSCH transmissions.

FIG. 4 illustrates another example of a NOMA transmit chain **400** that supports multiple access signatures for NOMA wireless communications in accordance with aspects of the present disclosure. In some examples, NOMA transmit chain **400** may implement aspects of wireless communications system **100** or **200**. In the example NOMA transmit chain

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

chain may include a transport block (TB) segmentation and cyclic redundancy check (CRC) component **410**, an encoder **415** (e.g., low density parity check (LDPC) encoder), rate matching component **420**, bit scrambling component **425**, and modulation component **430** (e.g., a BPSK, pi/2 BPSK, QPSK, OQPSK, 16QAM modulation component).

The output from the initial transmit processing, in this example, is provided to a NOMA processing portion **435** of the UE transmit chain **400**. The NOMA processing portion **435** may include a demultiplexer **440**, which may demultiplex the modulated data into M separate transmission streams, with each transmission stream provided to a separate NOMA branches or layers for processing. In the example of FIG. 4, each NOMA layer may include a gain component **445**. The outputs of each of the branches may be superimposed at summing component **450** to generate a combined signal that may be precoded at transform precoding component **455**, spread at spreading component **460**, and scrambled at scrambling component **465**. In some cases, a RE mapping component **470** may map the spread and scrambled symbols, as well as DMRS symbols from a DMRS component **475**, to REs for uplink transmission and output a NOMA baseband waveform **480**.

Similarly as discussed with respect to FIG. 3, the spreading component **460** may spread an incoming symbol across multiple symbols, such as by repeating symbols, for transmission according to a spreading sequence. In some cases, a spreading sequence may further be unique to the UE, such that a receiving device (e.g., a base station) may distinguish ML-RSMA transmissions from multiple UEs using the same resources, such as by NOMA techniques. As discussed herein, a UE-specific spreading sequence may be applied, jointly with a scrambling sequence that is applied at scrambling component **465**, to jointly provide a MA signature for an uplink NOMA transmission.

FIG. 5 illustrates an example of a process flow **500** that supports multiple access signatures for NOMA wireless communications in accordance with aspects of the present disclosure. In some examples, process flow **500** may implement aspects of wireless communications system **100** or **200**. Process flow **500** includes UE **115**-*b* and base station **105**-*b*, which may be respective examples of a UE **115** and a base station **105** as described herein.

The base station **105**-*b* in this example, at **505**, may determine a NOMA configuration for uplink NOMA transmissions from a number of UFs. The NOMA configuration may

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

preambles based on the number of NOMA transmission branches, a BWP for NOMA preamble transmission based on the number of NOMA transmission branches, or any combinations thereof. The NOMA configuration NOMA may be based on various parameters, such as a number of UEs that may potentially transmit NOMA uplink transmissions, SE, reliability, or latency requirements of the UEs, resources available for NOMA transmissions, capabilities of UEs that are served by the base station **105**-*b*, and the like.

In some cases, the NOMA configuration information may include MA signature configuration information. For example, the NOMA configuration may include an indication of a number of codebooks that may be used to determine a MA signature for uplink NOMA transmissions. For example, the codebooks may provide a number of sets of UE-specific spreading codes that may be associated with a scrambling code that is to be applied to an uplink NOMA transmission. In some cases, a number of different sets of spreading codes may be provided for UE groupings associated with different scrambling codes. In some cases, the UE groupings may be based on one or more parameters of the UE 115-b, such as, for example, a TBS, MCS, transmission power, UE buffer size, or combinations thereof. The base station 105-b may transmit NOMA configuration information 510 to the UE 115-b. In some cases, the NOMA configuration information 510 may be provided to the UE 115-b via semi-static signaling (e.g., RRC signaling), via other signaling (e.g., via group PDCCH, SIB, MIB, RMSI, or SSB), via dynamic DCI, or combinations thereof.

At **515**, the UE **115**-*b* may identify a UE group associated with one or more NOMA transmissions. As discussed herein, the UE group may be determined based on one or more parameters of the UE **115**-*b*, such as, for example, a TBS, MCS, transmission power, UE buffer size, distance of the UE **115**-*b* from the base station **105**-*b*, or combinations thereof. In some cases, each UE group may be associated with a different scrambling code that may be used to generate a MA sequence for an uplink NOMA transmission.

At **520**, the UE **115**-*b* may identify a scrambling code based on the UE group. In some cases, the UE group, as discussed above, may be determined based on one or more parameters of the UE **115**-*b*, such as, for example, a TBS, MCS, transmission power control scheme, UE buffer size, power headroom, distance of the UE **115**-*b* from the base station

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

of orthogonal or non-orthogonal spreading codes, and the UE **115**-*b* may identify one of the scrambling codes for an uplink NOMA transmission.

At **525**, the UE **115**-*b* may identify a spreading code. As discussed above, the spreading code may be a UE-specific spreading code that may be applied to each layer of a multi-layer transmission or that may be applied following symbols of multiple layers being superimposed. In some cases, the spreading code may be determined from a set of available spreading codes that are associated with the identified scrambling code. The set of spreading codes may be a set on orthogonal or non-orthogonal spreading codes.

At **530**, the UE **115**-*b* may generate a NOMA transmission. The NOMA transmission may be generated, in some examples, based on a MA signature that is applied at the symbollevel to a NOMA signal jointly by applying the spreading code and scrambling code. In some cases, the NOMA transmission may be generated by mapping the spread and scrambled NOMA signal (e.g., PUCCH/PUSCH data), and a reference signal (e.g., DMRS) to uplink transmission resources. The UE **115**-*b* may then transmit the NOMA transmission **535** to the base station **105**-*b*.

At **540**, the base station **105**-*b* may receive the NOMA transmission from the UE **115**-*b*, as well as concurrent NOMA transmissions from one or more other UEs that are transmitted using common time, frequency, and spatial resources. The base station **105**-*b*, in some cases, may identify one or more different NOMA transmissions based at least in part on the MA sequence that is applied to each NOMA transmission.

At **545**, the base station **105**-*b* may decode the uplink NOMA transmissions based at least in part on the MA signature associated with the UE **115**-*b*. In some cases, the base station **105**-*b* may perform NOMA demodulation and decoding based on SIC/MUD using NOMA decoding techniques.

FIG. 6 shows a block diagram **600** of a device **605** that supports multiple access signatures for NOMA wireless communications in accordance with aspects of the present disclosure. The device **605** may be an example of aspects of a UE **115** as described herein. The device **605** may include a receiver **610**, a communications manager **615**, and a transmitter **620**. The device **605** may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses).

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

communications, etc.). Information may be passed on to other components of the device **605**. The receiver **610** may be an example of aspects of the transceiver **920** described with reference to FIG. 9. The receiver **610** may utilize a single antenna or a set of antennas.

The communications manager **615** may determine a MA signature to be applied to an uplink NOMA communication to a base station, where the MA signature is based on a UE-specific spreading code and a scrambling code associated with a first group of UEs, apply the MA signature to the uplink NOMA communication, and transmit the uplink NOMA communication to the base station. The communications manager **615** may be an example of aspects of the communications manager **910** described herein.

The communications manager **615**, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager **615**, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC), a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.

The communications manager **615**, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager **615**, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager **615**, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.

The transmitter **620** may transmit signals generated by other components of the device **605**. In some examples, the transmitter **620** may be collocated with a receiver **610** in a transceiver module. For example, the transmitter **620** may be an example of aspects of the transceiver **020** described with reference to FIG. 0. The transmitter **620** may utilize a

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

The device **705** may be an example of aspects of a device **605**, or a UE **115** as described herein. The device **705** may include a receiver **710**, a communications manager **715**, and a transmitter **735**. The device **705** may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses).

The receiver **710** may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to multiple access signatures for NOMA wireless communications, etc.). Information may be passed on to other components of the device **705**. The receiver **710** may be an example of aspects of the transceiver **920** described with reference to FIG. 9. The receiver **710** may utilize a single antenna or a set of antennas.

The communications manager **715** may be an example of aspects of the communications manager **615** as described herein. The communications manager **715** may include a MA signature component **720**, a NOMA signature manager **725**, and a NOMA transmission manager **730**. The communications manager **715** may be an example of aspects of the communications manager **910** described herein.

The MA signature component **720** may determine a MA signature to be applied to an uplink NOMA communication to a base station, where the MA signature is based on a UE-specific spreading code and a scrambling code associated with a first group of UEs. The NOMA signature manager **725** may apply the multiple access signature to the uplink NOMA communication. The NOMA transmission manager **730** may transmit the uplink NOMA communication to the base station.

The transmitter **735** may transmit signals generated by other components of the device **705**. In some examples, the transmitter **735** may be collocated with a receiver **710** in a transceiver module. For example, the transmitter **735** may be an example of aspects of the transceiver **920** described with reference to FIG. 9. The transmitter **735** may utilize a single antenna or a set of antennas.

FIG. 8 shows a block diagram **800** of a communications manager **805** that supports multiple access signatures for NOMA wireless communications in accordance with aspects of the present disclosure. The communications manager **805** may be an example of aspects of a communications manager **615**, a communications manager **715**, or a communications

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses).

The MA signature component **810** may determine a MA signature to be applied to an uplink NOMA communication to a base station, where the MA signature is based on a UE-specific spreading code and a scrambling code associated with a first group of UEs. In some examples, the MA signature component **810** may receive MA signature configuration information from the base station that indicates the UE-specific spreading code and the scrambling code associated with the first group of UEs. In some examples, the MA signature component **810** may apply the MA signature to PUSCH data to be included with the uplink NOMA communication.

In some examples, the MA signature component 810 may identify a set of codebooks that each include a set of UE-specific spreading codes, each of the set of codebooks associated with a different group of UEs of a set of groups of UEs. In some examples, the MA signature component **810** may select the first group of UEs from the set of groups of UEs based on one or more of an amount of data to be transmitted in the uplink NOMA communication, a transmission power for the uplink NOMA communication, a spreading factor to be used for the UE-specific spreading codes, or a modulation and coding scheme (MCS) to be used for the uplink NOMA communication. In some examples, the MA signature component 810 may select the UE-specific spreading code from the first codebook based on a UE identification or an index value assigned to the UE by the base station. In some cases, the MA signature configuration information is received from the base station in a master information block (MIB), in a SIB, in remaining minimum system information (RMSI), in a group common PDCCH, in RRC signaling, in dynamic DCI associated with the uplink NOMA communication, or any combination thereof. In some cases, the MA signature applied to PUSCH data includes a short spreading code and a group-specific scrambling code, and where the short spreading code is jointly configured for both the PUSCH data and the base DMRS sequence.

The NOMA signature manager **815** may apply the MA signature to the uplink NOMA communication. The NOMA transmission manager **820** may transmit the uplink NOMA communication to the base station.

The spreading component &2 = may apply the IIF_specific spreading code or permutation

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

codes, in which a cross-correlation between different UE-specific spreading codes of the set of orthogonal UE-specific spreading codes is below a threshold value. In some cases, the UE-specific spreading code is one of a set of UE-specific spreading codes in which at least a subset of the UE-specific spreading codes are non-orthogonal to other UE-specific spreading codes of the set of UE-specific spreading codes. In some cases, the UE-specific spreading code is determined from a set of available spreading codes, the set of available spreading codes corresponding to a spreading factor and a number of distinct spreading codes.

In some cases, the UE-specific spreading code is determined using a closed form expression in which each of a set of available spreading codes can be determined based on a spreading factor and a number of distinct spreading codes. In some cases, the set of UE-specific spreading codes of each of the set of codebooks include modified chirp sequences (MCPs), computer generated sequences (CGSs), pseudo-random noise (PN) sequences, or combinations thereof. In some cases, the set of UE-specific spreading codes of each of the set of codebooks include orthogonal spreading codes, non-orthogonal spreading codes, or a hybrid of orthogonal spreading codes and non-orthogonal spreading codes.

The DMRS component **830** may apply a demodulation reference signal (DMRS) signature to a DMRS to be included with the uplink NOMA communication. In some cases, the DMRS signature includes an orthogonal cover code (OCC) or quasi-orthogonal cover code and a group scrambling or short spreading code that are applied to a base DMRS sequence.

The mapping component **835** may provide a mapping between spreading codes, scrambling codes, and UE groups. In some cases, a mapping between the MA signature and the DMRS signature is provided in MA signature configuration information provided by the base station. In some cases, a set of codebooks include two or more codebooks that are each associated with different numbers of UEs, different spreading factors for associated UE-specific spreading codes, different types of UE-specific spreading codes, or combinations thereof.

The summing component **840** may superimpose each layer of the multi-layer NOMA uplink communication to generate a superimposed NOMA uplink signal. In some examples, the summing component **840** may superimpose each of a set of layers of a multi-layer NOMA uplink communication to generate a superimposed NOMA uplink

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our <u>Privacy Policy</u>.

scrambling code to the spread superimposed NOMA uplink signal.

FIG. 9 shows a diagram of a system **900** including a device **905** that supports MA signatures for NOMA wireless communications in accordance with aspects of the present disclosure. The device **905** may be an example of or include the components of device **605**, device **705**, or a UE **115** as described herein. The device **905** may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager **910**, an I/O controller **915**, a transceiver **920**, an antenna **925**, memory **930**, and a processor **940**. These components may be in electronic communication via one or more buses (e.g., bus **945**).

The communications manager **910** may determine a MA signature to be applied to an uplink NOMA communication to a base station, where the MA signature is based on a UE-specific spreading code and a scrambling code associated with a first group of UEs, apply the MA signature to the uplink NOMA communication, and transmit the uplink NOMA communication to the base station.

The I/O controller **915** may manage input and output signals for the device **905**. The I/O controller **915** may also manage peripherals not integrated into the device **905**. In some cases, the I/O controller **915** may represent a physical connection or port to an external peripheral. In some cases, the I/O controller **915** may utilize an operating system such as iOS®, ANDROID®, MS-DOS®, MS-WINDOWS®, OS/2®, UNIX®, LINUX®, or another known operating system. In other cases, the I/O controller **915** may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller **915** may be implemented as part of a processor. In some cases, a user may interact with the device **905** via the I/O controller **915** or via hardware components controlled by the I/O controller **915**.

The transceiver **920** may communicate bi-directionally, via one or more antennas, wired, or wireless links as discussed herein. For example, the transceiver **920** may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver **920** may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

The memory **930** may include RAM and ROM. The memory **930** may store computer-readable, computer-executable code **935** including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory **930** may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.

The processor **940** may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof). In some cases, the processor **940** may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor **940**. The processor **940** may be configured to execute computer-readable instructions stored in a memory (e.g., the memory **930**) to cause the device **905** to perform various functions (e.g., functions or tasks supporting MA signatures for NOMA wireless communications).

The code **935** may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code **935** may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code **935** may not be directly executable by the processor **940** but may cause a computer (e.g., when compiled and executed) to perform functions described herein.

FIG. 10 shows a block diagram **1000** of a device **1005** that supports MA signatures for NOMA wireless communications in accordance with aspects of the present disclosure. The device **1005** may be an example of aspects of a base station **105** as described herein. The device **1005** may include a receiver **1010**, a communications manager **1015**, and a transmitter **1020**. The device **1005** may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses).

The receiver **1010** may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to MA signatures for NOMA wireless communications, etc.). Information may be passed on to other components of the device **1005**. The receiver **1010** may be an example of aspects of the transceiver **1220** described with reference to

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

to be applied to uplink NOMA communications of each UE of the set of UEs, where the MA signature for each UE is based on a UE-specific spreading code and a scrambling code associated with a group of UEs, receive at least two concurrent uplink NOMA communications from at least two UEs of the set of UEs using a common set of uplink resources, and determine each UE of the set of UEs that transmitted each of the at least two concurrent uplink NOMA communications, based on MA signatures that are applied to each of the concurrent uplink NOMA communications. The communications manager 1015 may be an example of aspects of the communications manager 1310 described herein.

The communications manager **1015**, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager **1015**, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC), a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.

The communications manager **1015**, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager **1015**, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager **1015**, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.

The transmitter **1020** may transmit signals generated by other components of the device **1005**. In some examples, the transmitter **1020** may be collocated with a receiver **1010** in a transceiver module. For example, the transmitter **1020** may be an example of aspects of the transceiver **1320** described with reference to FIG. 13. The transmitter **1020** may utilize

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

described herein. The device **1105** may include a receiver **1110**, a communications manager **1115**, and a transmitter **1135**. The device **1105** may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses).

The receiver **1110** may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to MA signatures for NOMA wireless communications, etc.). Information may be passed on to other components of the device **1105**. The receiver **1110** may be an example of aspects of the transceiver **1320** described with reference to FIG. 13. The receiver **1110** may utilize a single antenna or a set of antennas.

The communications manager **1115** may be an example of aspects of the communications manager **1015** as described herein. The communications manager **1115** may include a NOMA transmission manager **1120**, a MA signature component **1125**, and a NOMA reception manager **1130**. The communications manager **1115** may be an example of aspects of the communications manager **1310** described herein.

The NOMA transmission manager **1120** may identify a set of UEs configured for concurrent uplink NOMA communications. The MA signature component **1125** may transmit, to the set of UEs, an indication of a MA signature to be applied to uplink NOMA communications of each UE of the set of UEs, where the MA signature for each UE is based on a UE-specific spreading code and a scrambling code associated with a group of UEs and determine each UE of the set of UEs that transmitted each of the at least two concurrent uplink NOMA communications, based on MA signatures that are applied to each of the concurrent uplink NOMA communications. The NOMA reception manager **1130** may receive at least two concurrent uplink NOMA communications from at least two UEs of the set of UEs using a common set of uplink resources.

The transmitter **1135** may transmit signals generated by other components of the device **1105**. In some examples, the transmitter **1135** may be collocated with a receiver **1110** in a transceiver module. For example, the transmitter **1135** may be an example of aspects of the transceiver **1320** described with reference to FIG. 13. The transmitter **1135** may utilize a single antenna or a set of antennas.

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

manager **1310** described herein. The communications manager **1205** may include a NOMA transmission manager **1210**, a MA signature component **1215**, a NOMA reception manager **1220**, a spreading component **1225**, a DMRS component **1230**, a mapping component **1235**, and a configuration manager **1240**. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses).

The NOMA transmission manager **1210** may identify a set of UEs configured for concurrent uplink NOMA communications. In some cases, the set of UEs may be identified based on a UE class, a UE category, or an indication of the UE that NOMA data is to be transmitted, for example.

The MA signature component 1215 may transmit, to the set of UEs, an indication of a MA signature to be applied to uplink NOMA communications of each UE of the set of UEs, where the MA signature for each UE is based on a UE-specific spreading code and a scrambling code associated with a group of UEs. In some examples, the MA signature component 1215 may determine each UE of the set of UEs that transmitted each of the at least two concurrent uplink NOMA communications, based on MA signatures that are applied to each of the concurrent uplink NOMA communications. In some cases, the indication of the MA signature to be applied to uplink NOMA communications of each UE of the set of UEs is transmitted in a master information block (MIB), in a SIB, in remaining minimum system information (RMSI), in a group common PDCCH, in RRC signaling to each of the set of UEs, in dynamic DCI signaling to each of the set of UEs, or any combination thereof. In some cases, the MA signatures that are applied to each of the concurrent uplink NOMA communications are applied to PUSCH data included with the uplink NOMA communication, and where a demodulation reference signal (DMRS) signature is applied to a DMRS that is transmitted with the uplink NOMA communication.

The NOMA reception manager **1220** may receive at least two concurrent uplink NOMA communications from at least two UEs of the set of UEs using a common set of uplink resources.

The spreading component **1225** may identify spreading codes for NOMA transmissions, and may provide an indication of spreading codes (e.g., via a codebook indication). In some cases, the UE-specific spreading code of each UE of the set of UEs is one of a set of groups of UEs. In

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

other UE-specific spreading codes of the set of UE-specific spreading codes. In some cases, the UE-specific spreading codes of each of the set of UEs is determined from a set of available spreading codes based on a spreading factor and a number of distinct spreading codes. In some cases, the UE-specific spreading codes of each of the set of UEs is determined using a closed form expression in which each of a set of available spreading codes can be determined based on a spreading factor and a number of distinct spreading codes.

The DMRS component **1230** may receive a DMRS associated with a NOMA transmission. In some cases, a DMRS signature includes an orthogonal cover code (OCC) or quasi-orthogonal cover code and a group scrambling or short spreading code that are applied to a base DMRS sequence.

The mapping component **1235** may provide scrambling code, spreading code, and UE group mapping information. In some cases, a mapping between the MA signature and the DMRS signature is provided in MA signature configuration information.

The configuration manager **1240** may transmit information associated with a set of codebooks to each of the set of UEs, where each of the set of codebooks include a set of UEspecific spreading codes, and each of the set of codebooks are associated with one or more of an amount of data to be transmitted by a UE in an associated uplink NOMA communication, a transmission power of the UE, a spreading factor to be used for the UEspecific spreading codes, or a modulation and coding scheme (MCS) to be used by the UE. In some cases, the UE-specific spreading code of each of the set of codebooks is based on a UE identification or an index value assigned to the UE. In some cases, the set of UEspecific spreading codes of each of the set of codebooks include modified chirp sequences (MCPs), computer generated sequences (CGSs), pseudo-random noise (PN) sequences, or combinations thereof. In some cases, the set of UE-specific spreading codes of each of the set of codebooks include orthogonal spreading codes, non-orthogonal spreading codes, or a hybrid of orthogonal spreading codes and non-orthogonal spreading codes. In some cases, the set of codebooks include two or more codebooks that are each associated with different numbers of UEs, different spreading factors for associated UE-specific spreading codes, different types of UE-specific spreading codes, or combinations thereof.

FIG. 12 shows a diagram of a system 1200 including a device 1205 that supports MA

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

components for transmitting and receiving communications, including a communications manager **1310**, a network communications manager **1315**, a transceiver **1320**, an antenna **1325**, memory **1330**, a processor **1340**, and an inter-station communications manager **1345**. These components may be in electronic communication via one or more buses (e.g., bus **1350**).

The communications manager **1310** may identify a set of UEs configured for concurrent uplink NOMA communications, transmit, to the set of UEs, an indication of a MA signature to be applied to uplink NOMA communications of each UE of the set of UEs, where the MA signature for each UE is based on a UE-specific spreading code and a scrambling code associated with a group of UEs, receive at least two concurrent uplink NOMA communications from at least two UEs of the set of UEs using a common set of uplink resources, and determine each UE of the set of UEs that transmitted each of the at least two concurrent uplink NOMA communications, based on MA signatures that are applied to each of the concurrent uplink NOMA communications.

The network communications manager **1315** may manage communications with the core network (e.g., via one or more wired backhaul links). For example, the network communications manager **1315** may manage the transfer of data communications for client devices, such as one or more UEs **115**.

The transceiver **1320** may communicate bi-directionally, via one or more antennas, wired, or wireless links as discussed herein. For example, the transceiver **1320** may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver **1320** may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.

In some cases, the wireless device may include a single antenna **1325**. However, in some cases the device may have more than one antenna **1325**, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.

The memory **1330** may include RAM, ROM, or a combination thereof. The memory **1330** may store computer-readable code **1335** including instructions that, when executed by a processor (e.g., the processor **1340**) cause the device to perform various functions

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

The processor **1340** may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof). In some cases, the processor **1340** may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor **1340**. The processor **1340** may be configured to execute computer-readable instructions stored in a memory (e.g., the memory **1330**) to cause the device to perform various functions (e.g., functions or tasks supporting MA signatures for NOMA wireless communications).

The inter-station communications manager **1345** may manage communications with other base station **105**, and may include a controller or scheduler for controlling communications with UEs **115** in cooperation with other base stations **105**. For example, the inter-station communications manager **1345** may coordinate scheduling for transmissions to UEs **115** for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager **1345** may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations **105**.

The code **1335** may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code **1335** may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code **1335** may not be directly executable by the processor **1340** but may cause a computer (e.g., when compiled and executed) to perform functions described herein.

FIG. 14 shows a flowchart illustrating a method **1400** that supports MA signatures for NOMA wireless communications in accordance with aspects of the present disclosure. The operations of method **1400** may be implemented by a UE **115** or its components as described herein. For example, the operations of method **1400** may be performed by a communications manager as described with reference to FIGS. 6 through 9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions discussed herein. Additionally or alternatively, a UE may perform aspects of the functions discussed herein using special-purpose hardware.

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

aspects of the operations of **1405** may be performed by a MA signature component as described with reference to FIGS. 6 through 9. In some cases, the UE-specific spreading code is one of a set of orthogonal UE-specific spreading codes, in which a cross-correlation between different UE-specific spreading codes is below a threshold value. In some cases, the UE-specific spreading code is one of a set of UE-specific spreading codes in which at least a subset of the UE-specific spreading codes are non-orthogonal to other UE-specific spreading codes.

At 1410, the UE may apply the MA signature to the uplink NOMA communication. The operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a NOMA signature manager as described with reference to FIGS. 6 through 9. In some cases, the UE may apply the MA signature to PUSCH data to be included with the uplink NOMA communication. In some cases, the UE may apply a demodulation reference signal (DMRS) signature to a DMRS to be included with the uplink NOMA communication, where the DMRS signature may include an orthogonal cover code (OCC) or quasi-orthogonal cover code and a group scrambling or short spreading code that are applied to a base DMRS sequence. In some cases, the MA signature applied to PUSCH data includes a short spreading code and a group-specific scrambling code, and where the short spreading code is jointly configured for both the PUSCH data and the base DMRS sequence. In some cases, a mapping between the MA signature and the DMRS signature is provided in MA signature configuration information provided by the base station.

At **1415**, the UE may transmit the uplink NOMA communication to the base station. The operations of **1455** may be performed according to the methods described herein. In some examples, aspects of the operations of **1455** may be performed by a NOMA transmission manager as described with reference to FIGS. 6 through 9. In some cases, the uplink NOMA communication may use common time, frequency, and spatial resources as concurrent uplink NOMA communications of one or more other UEs.

FIG. 15 shows a flowchart illustrating a method **1500** that supports MA signatures for NOMA wireless communications in accordance with aspects of the present disclosure. The operations of method **1500** may be implemented by a UE **115** or its components as described herein. For example, the operations of method **1500** may be performed by a

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

At **1505**, the UE may receive MA signature configuration information from the base station that indicates the UE-specific spreading code and the scrambling code associated with the first group of UEs. The operations of **1505** may be performed according to the methods described herein. In some examples, aspects of the operations of **1505** may be performed by a MA signature component as described with reference to FIGS. 6 through 9. In some cases, the MA signature configuration information is received from the base station in a master information block (MIB), in a SIB, in remaining minimum system information (RMSI), in a group common PDCCH, in RRC signaling, in dynamic DCI associated with the uplink NOMA communication, or any combination thereof.

At **1510**, the UE may determine a MA signature to be applied to an uplink NOMA communication to a base station, where the MA signature is based on a UE-specific spreading code and a scrambling code associated with a first group of UEs. The operations of **1510** may be performed according to the methods described herein. In some examples, aspects of the operations of **1510** may be performed by a MA signature component as described with reference to FIGS. 6 through 9. In some cases, the MA signature may be jointly represented by a symbol-level short spreading code and a group specific scrambling code.

At **1515**, the UE may apply the MA signature to the uplink NOMA communication. The operations of **1515** may be performed according to the methods described herein. In some examples, aspects of the operations of **1515** may be performed by a NOMA signature manager as described with reference to FIGS. 6 through 9. The MA signature may be applied, for example, by applying the symbol-level short spreading code and a group specific scrambling code to a NOMA signal on an symbol-by-symbol basis.

At **1520**, the UE may transmit the uplink NOMA communication to the base station. The operations of **1520** may be performed according to the methods described herein. In some examples, aspects of the operations of **1520** may be performed by a NOMA transmission manager as described with reference to FIGS. 6 through 9.

FIG. 16 shows a flowchart illustrating a method **1600** that supports MA signatures for NOMA wireless communications in accordance with aspects of the present disclosure. The operations of method **1600** may be implemented by a UE **115** or its components as described herein. For example, the operations of method **1600** may be performed by a

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

At **1605**, the UE may determine a MA signature to be applied to an uplink NOMA communication to a base station, where the MA signature is based on a UE-specific spreading code and a scrambling code associated with a first group of UEs. The operations of **1605** may be performed according to the methods described herein. In some examples, aspects of the operations of **1605** may be performed by a MA signature component as described with reference to FIGS. 6 through 9.

At **1610**, the UE may apply the UE-specific spreading code or permutation pattern to each layer of a multi-layer NOMA uplink communication. The operations of **1610** may be performed according to the methods described herein. In some examples, aspects of the operations of **1610** may be performed by a NOMA signature manager as described with reference to FIGS. 6 through 9.

At **1615**, the UE may superimpose each layer of the multi-layer NOMA uplink communication to generate a superimposed NOMA uplink signal. The operations of **1615** may be performed according to the methods described herein. In some examples, aspects of the operations of **1615** may be performed by a summing component as described with reference to FIGS. 6 through 9. The multiple layers may be superimposed by summing multiple concurrent portions of a NOMA signal, for example.

At **1620**, the UE may apply the scrambling code to the superimposed NOMA uplink signal. The operations of **1620** may be performed according to the methods described herein. In some examples, aspects of the operations of **1620** may be performed by a scrambling component as described with reference to FIGS. 6 through 9.

At **1625**, the UE may transmit the uplink NOMA communication to the base station. The operations of **1625** may be performed according to the methods described herein. In some examples, aspects of the operations of **1625** may be performed by a NOMA transmission manager as described with reference to FIGS. 6 through 9.

FIG. 17 shows a flowchart illustrating a method **1700** that supports MA signatures for NOMA wireless communications in accordance with aspects of the present disclosure. The operations of method **1700** may be implemented by a UE **115** or its components as described herein. For example, the operations of method **1700** may be performed by a communications manager as described with reference to FIGS. 6 through 9. In some

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

At **1705**, the UE may determine a MA signature to be applied to an uplink NOMA communication to a base station, where the MA signature is based on a UE-specific spreading code and a scrambling code associated with a first group of UEs. The operations of **1705** may be performed according to the methods described herein. In some examples, aspects of the operations of **1705** may be performed by a MA signature component as described with reference to FIGS. 6 through 9.

At **1710**, the UE may superimpose each of a set of layers of a multi-layer NOMA uplink communication to generate a superimposed NOMA uplink signal. The operations of **1710** may be performed according to the methods described herein. In some examples, aspects of the operations of **1715** may be performed by a summing component as described with reference to FIGS. 6 through 9. The multiple layers may be superimposed by summing multiple concurrent portions of a NOMA signal, for example.

At **1715**, the UE may apply the UE-specific spreading code to the superimposed NOMA uplink signal to generate a spread superimposed NOMA uplink signal. The operations of **1715** may be performed according to the methods described herein. In some examples, aspects of the operations of **1715** may be performed by a spreading component as described with reference to FIGS. 6 through 9.

At **1720**, the UE may apply the scrambling code to the spread superimposed NOMA uplink signal. The operations of **1720** may be performed according to the methods described herein. In some examples, aspects of the operations of **1720** may be performed by a scrambling component as described with reference to FIGS. 6 through 9.

At **1725**, the UE may transmit the uplink NOMA communication to the base station. The operations of **1725** may be performed according to the methods described herein. In some examples, aspects of the operations of **1725** may be performed by a NOMA transmission manager as described with reference to FIGS. 6 through 9.

FIG. 18 shows a flowchart illustrating a method **1800** that supports MA signatures for NOMA wireless communications in accordance with aspects of the present disclosure. The operations of method **1800** may be implemented by a UE **115** or its components as described herein. For example, the operations of method **1800** may be performed by a communications manager as described with reference to FIGS. 6 through 9. In some

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

At **1805**, the UE may identify a set of codebooks that each include a set of UE-specific spreading codes, each of the set of codebooks associated with a different group of UEs of a set of groups of UEs. The operations of **1805** may be performed according to the methods described herein. In some examples, aspects of the operations of **1805** may be performed by a MA signature component as described with reference to FIGS. 6 through 9.

At **1810**, the UE may select the first group of UEs from the set of groups of UEs based on one or more of an amount of data to be transmitted in the uplink NOMA communication, a transmission power for the uplink NOMA communication, a spreading factor to be used for the UE-specific spreading codes, or a modulation and coding scheme (MCS) to be used for the uplink NOMA communication. The operations of **1810** may be performed according to the methods described herein. In some examples, aspects of the operations of **1810** may be performed by a MA signature component as described with reference to FIGS. 6 through 9.

At **1815**, the UE may select a first codebook of the set of codebooks that is associated with the first group of UEs. The operations of **1815** may be performed according to the methods described herein. In some examples, aspects of the operations of **1815** may be performed by a MA signature component as described with reference to FIGS. 6 through 9.

At **1820**, the UE may select the UE-specific spreading code from the first codebook based on a UE identification or an index value assigned to the UE by the base station. The operations of **1820** may be performed according to the methods described herein. In some examples, aspects of the operations of **1820** may be performed by a MA signature component as described with reference to FIGS. 6 through 9. In some cases, the set of UE-specific spreading codes of each of the set of codebooks include modified chirp sequences (MCPs), computer generated sequences (CGSs), pseudo-random noise (PN) sequences, or combinations thereof.

At **1825**, the UE may determine a scrambling code associated with a first group of UEs. The operations of **1825** may be performed according to the methods described herein. In some examples, aspects of the operations of **1825** may be performed by a MA signature component as described with reference to FIGS. 6 through 9. In some cases, the scrambling code may be determined based on the selected first group of UEs. In some cases, a codebook may be used to determine the scrambling code for the first group of UEs.

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

performed by a NOMA signature manager as described with reference to FIGS. 6 through 9.

At **1835**, the UE may transmit the uplink NOMA communication to the base station. The operations of **1835** may be performed according to the methods described herein. In some examples, aspects of the operations of **1835** may be performed by a NOMA transmission manager as described with reference to FIGS. 6 through 9.

FIG. 19 shows a flowchart illustrating a method **1900** that supports MA signatures for NOMA wireless communications in accordance with aspects of the present disclosure. The operations of method **1900** may be implemented by a base station **105** or its components as described herein. For example, the operations of method **1900** may be performed by a communications manager as described with reference to FIGS. 10 through 13. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions discussed herein. Additionally or alternatively, a base station may perform aspects of the functions discussed herein using special-purpose hardware.

At **1905**, the base station may identify a set of UEs configured for concurrent uplink NOMA communications. The operations of **1905** may be performed according to the methods described herein. In some examples, aspects of the operations of **1905** may be performed by a NOMA transmission manager as described with reference to FIGS. 10 through **13**. In some cases, the set of UEs may be identified based on a UE class, a UE category, or an indication of the UE that NOMA data is to be transmitted, for example.

At **1910**, the base station may transmit, to the set of UEs, an indication of a MA signature to be applied to uplink NOMA communications of each UE of the set of UEs, where the MA signature for each UE is based on a UE-specific spreading code and a scrambling code associated with a group of UEs. The operations of **1910** may be performed according to the methods described herein. In some examples, aspects of the operations of **1910** may be performed by a MA signature component as described with reference to FIGS. 10 through 13. In some cases, the UE-specific spreading code of each UE of the set of UEs is one of a set of orthogonal UE-specific spreading codes associated with each of a set of groups of UEs, in which a cross-correlation between different UE-specific spreading codes of the set of orthogonal UE-specific spreading codes is below a threshold value. In some cases, the

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

transmitted in a master information block (MIB), in a SIB, in remaining minimum system information (RMSI), in a group common PDCCH, in RRC signaling to each of the set of UEs, in dynamic DCI signaling to each of the set of UEs, or any combination thereof. In some cases, the MA signatures that are applied to each of the concurrent uplink NOMA communications are applied to PUSCH data included with the uplink NOMA communication, and where a demodulation reference signal (DMRS) signature is applied to a DMRS that is transmitted with the uplink NOMA communication.

At **1915**, the base station may receive at least two concurrent uplink NOMA communications from at least two UEs of the set of UEs using a common set of uplink resources. The operations of **1915** may be performed according to the methods described herein. In some examples, aspects of the operations of **1915** may be performed by a NOMA reception manager as described with reference to FIGS. 10 through 13.

At **1920**, the base station may determine each UE of the set of UEs that transmitted each of the at least two concurrent uplink NOMA communications, based on MA signatures that are applied to each of the concurrent uplink NOMA communications. The operations of **1920** may be performed according to the methods described herein. In some examples, aspects of the operations of **1920** may be performed by a MA signature component as described with reference to FIGS. 10 through 13. In some cases, the base station may use a MUD and SIC to decode each concurrent uplink NOMA communications, and use a MA signature of each uplink NOMA communication to determine a UE that is associated with the communication.

FIG. 20 shows a flowchart illustrating a method **2000** that supports MA signatures for NOMA wireless communications in accordance with aspects of the present disclosure. The operations of method **2000** may be implemented by a base station **105** or its components as described herein. For example, the operations of method **2000** may be performed by a communications manager as described with reference to FIGS. 10 through 13. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions discussed herein. Additionally or alternatively, a base station may perform aspects of the functions discussed herein using special-purpose hardware.

At 2005 the base station may identify a set of ITEs configured for concurrent unlink

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

through 13. In some cases, the set of UEs may be identified based on a UE class, a UE category, or an indication of the UE that NOMA data is to be transmitted, for example.

At **2010**, the base station may transmit, to the set of UEs, an indication of a MA signature to be applied to uplink NOMA communications of each UE of the set of UEs, where the MA signature for each UE is based on a UE-specific spreading code and a scrambling code associated with a group of UEs. The operations of **2010** may be performed according to the methods described herein. In some examples, aspects of the operations of **2010** may be performed by a MA signature component as described with reference to FIGS. 10 through 13. In some cases, the indication of the MA signature to be applied to uplink NOMA communications of each UE of the set of UEs is transmitted in a master information block (MIB), in a SIB, in remaining minimum system information (RMSI), in a group common PDCCH, in RRC signaling to each of the set of UEs, in dynamic DCI signaling to each of the set of UEs, or any combination thereof. In some cases, the MA signatures that are applied to each of the concurrent uplink NOMA communications are applied to PUSCH data included with the uplink NOMA communication, and where a demodulation reference signal (DMRS) signature is applied to a DMRS that is transmitted with the uplink NOMA communication.

At **2015**, the base station may transmit information associated with a set of codebooks to each of the set of UEs, where each of the set of codebooks include a set of UE-specific spreading codes, and each of the set of codebooks are associated with one or more of an amount of data to be transmitted by a UE in an associated uplink NOMA communication, a transmission power of the UE, a spreading factor to be used for the UE-specific spreading codes, or a modulation and coding scheme (MCS) to be used by the UE. The operations of **2015** may be performed according to the methods described herein. In some examples, aspects of the operations of **2015** may be performed by a configuration manager as described with reference to FIGS. 10 through 13. In some cases, the base station may the set of UE-specific spreading codes of each of the set of codebooks include modified chirp sequences (MCPs), computer generated sequences (CGSs), pseudo-random noise (PN) sequences, or combinations thereof.

At **2020**, the base station may receive at least two concurrent uplink NOMA communications from at least two UEs of the set of UEs using a common set of uplink

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

At **2025**, the base station may determine each UE of the set of UEs that transmitted each of the at least two concurrent uplink NOMA communications, based on MA signatures that are applied to each of the concurrent uplink NOMA communications. The operations of **2025** may be performed according to the methods described herein. In some examples, aspects of the operations of **2025** may be performed by a MA signature component as described with reference to FIGS. 10 through 13. In some cases, the base station may use a MUD and SIC to decode each concurrent uplink NOMA communications, and use a MA signature of each uplink NOMA communication to determine a UE that is associated with the communication.

It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.

Techniques described herein may be used for various wireless communications systems such as code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), and other systems. A CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA), etc. CDMA2000 covers IS-2000, IS-95, and IS-856 standards. IS-2000 Releases may be commonly referred to as CDMA2000 1×, 1×, etc. IS-856 (TIA-856) is commonly referred to as CDMA2000 1×EV-DO, High Rate Packet Data (HRPD), etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. A TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM).

An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB), Evolved UTRA (E-UTRA), Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS). LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization named "3rd Generation Partnership Project" (3GPP). CDMA2000 and UMB are described in

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.

A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs 115 with service subscriptions with the network provider. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed, etc.) frequency bands as macro cells. Small cells may include pico cells, femto cells, and micro cells according to various examples. A pico cell, for example, may cover a small geographic area and may allow unrestricted access by UEs 115 with service subscriptions with the network provider. A femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs 115 having an association with the femto cell (e.g., UEs 115 in a closed subscriber group (CSG), UEs 115 for users in the home, and the like). An eNB for a macro cell may be referred to as a macro eNB. An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB. An eNB may support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.

The wireless communications system **100** or systems described herein may support synchronous or asynchronous operation. For synchronous operation, the base stations **105** may have similar frame timing, and transmissions from different base stations **105** may be approximately aligned in time. For asynchronous operation, the base stations **105** may have different frame timing, and transmissions from different base stations **105** may not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.

Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.

The various illustrative blocks and modules described in connection with the disclosure

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration).

The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.

Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM), read-only memory (ROM), electrically erasable programmable read only memory (EEPROM), flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a generalpurpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include CD, laser disc, optical disc,

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

As used herein, including in the claims, "or" as used in a list of items (e.g., a list of items prefaced by a phrase such as "at least one of" or "one or more of") indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C). Also, as used herein, the phrase "based on" shall not be construed as a reference to a closed set of conditions. For example, an exemplary step that is described as "based on condition A" may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase "based on" shall be construed in the same manner as the phrase "based at least in part on."

In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.

The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term "exemplary" used herein means "serving as an example, instance, or illustration," and not "preferred" or "advantageous over other examples." The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.

The description herein is provided to enable a person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

_ _

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

determining a multiple access signature to be applied to an uplink non-orthogonal multiple access (NOMA) communication to a base station, wherein the multiple access signature is based at least in part on a UE-specific spreading code and a scrambling code associated with a first group of UEs;

applying the multiple access signature to the uplink NOMA communication; and transmitting the uplink NOMA communication to the base station.

2. The method of claim 1, wherein the applying the multiple access signature to the uplink NOMA communication comprises:

applying the multiple access signature to a preamble to be included with the uplink NOMA communication.

3. The method of claim 1, wherein the applying the multiple access signature to the uplink NOMA communication comprises:

applying a demodulation reference signal (DMRS) signature to a DMRS to be included with the uplink NOMA communication.

- 4. The method of claim 3, wherein the DMRS signature comprises an orthogonal cover code (OCC) or quasi-orthogonal cover code and a group scrambling or short spreading code that are applied to a base DMRS sequence.
- 5. The method of claim 3, wherein a mapping between the multiple access signature and the DMRS signature is provided in multiple access signature configuration information provided by the base station.
- 6. The method of claim 1, further comprising:

receiving multiple access signature configuration information from the base station that indicates the UE-specific spreading code and the scrambling code associated with the first group of UEs.

7. The method of claim 6, wherein the multiple access signature configuration information is received from the base station in a master information block (MIB), in a system

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

- 8. The method of claim 1, wherein the UE-specific spreading code is one of a plurality of orthogonal UE-specific spreading codes.
- 9. The method of claim 1, wherein the UE-specific spreading code is one of a plurality of UE-specific spreading codes in which at least a subset of the UE-specific spreading codes are non-orthogonal to other UE-specific spreading codes of the plurality of UE-specific spreading codes.
- 10. The method of claim 1, wherein the applying the multiple access signature to the uplink NOMA communication comprises:

applying the UE-specific spreading code or permutation pattern to each layer of a multi-layer NOMA uplink communication;

superimposing each layer of the multi-layer NOMA uplink communication to generate a superimposed NOMA uplink signal; and

applying the scrambling code to the superimposed NOMA uplink signal.

11. The method of claim 1, wherein the applying the multiple access signature to the uplink NOMA communication comprises:

superimposing each of a plurality of layers of a multi-layer NOMA uplink communication to generate a superimposed NOMA uplink signal;

applying the UE-specific spreading code to the superimposed NOMA uplink signal to generate a spread superimposed NOMA uplink signal; and

applying the scrambling code to the spread superimposed NOMA uplink signal.

12. The method of claim 1, further comprising:

identifying a plurality of codebooks that each include a plurality of UE-specific spreading codes, each of the plurality of codebooks associated with a different group of UEs of a plurality of groups of UEs;

selecting the first group of UEs from the plurality of groups of UEs based at least in

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our <u>Privacy Policy</u>.

selecting a first codebook of the plurality of codebooks that is associated with the first group of UEs.

13. The method of claim 12, further comprising:

selecting the UE-specific spreading code from the first codebook based at least in part on a UE identification or an index value assigned to the UE by the base station.

14. A method for wireless communication at a base station, comprising:

identifying a plurality of user equipments (UEs) configured for concurrent uplink non-orthogonal multiple access (NOMA) communications;

transmitting, to the plurality of UEs, an indication of a multiple access signature to be applied to uplink NOMA communications of each UE of the plurality of UEs, wherein the multiple access signature for each UE is based at least in part on a UE-specific spreading code and a scrambling code associated with a group of UEs;

receiving at least two concurrent uplink NOMA communications from at least two UEs of the plurality of UEs using a common set of uplink resources; and

determining each UE of the plurality of UEs that transmitted each of the at least two concurrent uplink NOMA communications, based at least in part on multiple access signatures that are applied to each of the concurrent uplink NOMA communications.

- 15. The method of claim 14, wherein the multiple access signature is applied to a preamble that is included with the uplink NOMA communication.
- 16. The method of claim 14, wherein a demodulation reference signal (DMRS) signature is applied to a DMRS that is transmitted with the uplink NOMA communication.
- 17. The method of claim 16, wherein the DMRS signature comprises an orthogonal cover code (OCC) or quasi-orthogonal cover code and a group scrambling or short spreading code that is applied to a base DMRS sequence.
- 18. The method of claim 14, wherein a mapping between the multiple access signature and the DMRS signature is provided in multiple access signature configuration information.

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

minimum system information (RMSI), in a group common PDCCH, in radio resource control (RRC) signaling to each of the plurality of UEs, in dynamic downlink control information (DCI) signaling to each of the plurality of UEs, or any combination thereof.

20. The method of claim 14, wherein the UE-specific spreading code of each UE of the plurality of UEs is one of a plurality of orthogonal UE-specific spreading codes associated with each of a plurality of groups of UEs.

21. The method of claim 14, wherein the UE-specific spreading code of each UE of the plurality of UEs is one of a plurality of UE-specific spreading codes in which at least a subset of the UE-specific spreading codes are non-orthogonal to other UE-specific spreading codes of the plurality of UE-specific spreading codes.

22. The method of claim 14, further comprising:

transmitting information associated with a plurality of codebooks to each of the plurality of UEs, wherein each of the plurality of codebooks include a plurality of UE-specific spreading codes, and each of the plurality of codebooks are associated with one or more of an amount of data to be transmitted by a UE in an associated uplink NOMA communication, a transmission power of the UE, a spreading factor to be used for the UE-specific spreading codes, or a modulation and coding scheme (MCS) to be used by the UE.

23. An apparatus for wireless communication at a user equipment (UE), comprising:

a processor,

memory in electronic communication with the processor; and

instructions stored in the memory and executable by the processor to cause the apparatus to: determine a multiple access signature to be applied to an uplink non-orthogonal multiple access (NOMA) communication to a base station, wherein the multiple access signature is based at least in part on a UE-specific spreading code and a scrambling code associated with a first group of UEs; apply the multiple access signature to the uplink NOMA communication; and transmit the uplink NOMA communication to the base station.

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

apply the multiple access signature to a preamble to be included with the uplink NOMA communication.

25. The apparatus of claim 23, wherein the instructions are further executable by the processor to cause the apparatus to:

apply a demodulation reference signal (DMRS) signature to a DMRS to be included with the uplink NOMA communication.

26. The apparatus of claim 25, wherein the DMRS signature comprises an orthogonal cover code (OCC) or quasi-orthogonal cover code and a group scrambling or short spreading code that are applied to a base DMRS sequence.

27. An apparatus for wireless communication at a base station, comprising:

a processor,

memory in electronic communication with the processor; and

instructions stored in the memory and executable by the processor to cause the apparatus to: identify a plurality of user equipments (UEs) configured for concurrent uplink non-orthogonal multiple access (NOMA) communications; transmit, to the plurality of UEs, an indication of a multiple access signature to be applied to uplink NOMA communications of each UE of the plurality of UEs, wherein the multiple access signature for each UE is based at least in part on a UE-specific spreading code and a scrambling code associated with a group of UEs; receive at least two concurrent uplink NOMA communications from at least two UEs of the plurality of UEs using a common set of uplink resources; and determine each UE of the plurality of UEs that transmitted each of the at least two concurrent uplink NOMA communications, based at least in part on multiple access signatures that are applied to each of the concurrent uplink NOMA communications.

28. The apparatus of claim 27, wherein the multiple access signature is applied to a preamble that is included with the uplink NOMA communication.

29. The apparatus of claim 27, wherein a demodulation reference signal (DMRS) signature

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.

Patent History

Publication number: 20200077402

Type: Application **Filed**: Aug 20, 2019

Publication Date: Mar 5, 2020 **Patent Grant number**: 11089598

Inventors: Jing Lei (San Diego, CA), Gabi Sarkis (San Diego, CA), Joseph Binamira

Soriaga (San Diego, CA), Wanshi Chen (San Diego, CA), Seyong Park (San Diego, CA), Ying

Wang (San Diego, CA), Naga Bhushan (San Diego, CA)

Application Number: 16/546,140

Classifications

International Classification: H04W 72/04 (20060101); H04L 5/10 (20060101); H04L 5/00 (20060101); H04W 76/27 (20060101); H04L 1/00 (20060101);

We use cookies to improve the experience of our website. By continuing to use our website, you consent to the use of cookies. To understand more about how we use cookies, please see our Privacy Policy.