呼梯板及内显板通讯协议

版本号: B2.01

上海贝思特控制技术有限公司 2014年1月

一、呼梯板总线协议

1. CAN 总线基本设置

- (1) CAN 波特率为 20K。
- (2) 占空比为 8/14, 即 TSEG1:TSEG2=7:5。
- (3) CAN 总线使用的帧格式为标准帧。
- (4) 每帧包含的数据长度

呼梯板接收:数据长度为8字节(DLC=8);

呼梯板发送:数据长度为8字节(DLC=8)。

(5) 建议总线采样次数为 3 次(SAM=1)。

2.呼梯板接收数据的格式定义

基本信息(标识符: 0x630)

位移 字节	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit0		
0		楼层显示 ASCII 码(高位)								
1			楼层	景显示 ASC	Ⅱ码(低位)				
2		实际楼层位置(最底层为1,往上依次递增)								
3	RUN_M	UP	DN	INS	OL	FULL	DZ_C	BZZ		
4	保留	SEV	ES	保留	OFF_D1	OFF_D	D_M1:	D_M0		
5		保留								
6		保留								
7	保留									

注: 当楼层显示 ASCII 码(高位)为空格('')时,楼层显示 ASCII 码(低位)显示在中间。

RUN_M: 当电梯运行时,该位为1,否则该位为0。

UP: 为1时,表示电梯向上方向运行。

DN: 为1时,表示电梯向下方向运行。

INS: 为1时,电梯处于检修状态。

OL: 为 1 时,表示电梯处于超载状态,呼梯板忽略此位信息,内显板显示超载信息。

FULL: 为1时, 电梯处于满载状态。

DZ_C: 为1时, 电梯处于开门区。

BZZ: 报站钟输出信号。

SEV: 为 1 时, 电梯处于独立服务(VIP)状态, 呼梯板显示 VIP 状态, 内显板忽略此

位信息。

ES: 为 1 时, 电梯处于急停状态。

OFF_D1: 为1时,表示电梯运行到站。

OFF_D: 为1时,关闭呼梯板及内显板显示,为0时打开呼梯板及内显板显示。

D_M1:D_M0: 根据该两位的组合表示各种不同的楼层显示模式:

00 楼层显示模式 1。

01 楼层显示模式 2。

10 楼层显示模式 3。

11 楼层显示模式 4。

注: D_M1 和 D_M0 的作用为通过主控来设置呼梯板楼层显示模式,这种方式只提供呼梯板 4 种显示模式。 允许在实际编写呼梯板程序时可忽略这两位,通过其他方式修改楼层显示模式。

XF: 为1时, 电梯处于消防状态。

前门上呼记忆(标识符: 0x601)

位移 字节	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit0	
0	8楼	7楼	6楼	5 楼	4 楼	3 楼	2 楼	1 楼	
1	16 楼	15 楼	14 楼	13 楼	12 楼	11 楼	10 楼	9 楼	
2	24 楼	23 楼	22 楼	21 楼	20 楼	19 楼	18 楼	17 楼	
3	32 楼	31 楼	30 楼	29 楼	28 楼	27 楼	26 楼	25 楼	
4	40 楼	39 楼	38 楼	37 楼	36 楼	35 楼	34 楼	33 楼	
5	48 楼	47 楼	46 楼	45 楼	44 楼	43 楼	42 楼	41 楼	
6	保留								
7				保	留				

前门下呼记忆(标识符: 0x602)

位移 字节	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit0	
0	8楼	7楼	6楼	5 楼	4 楼	3 楼	2 楼	1楼	
1	16 楼	15 楼	14 楼	13 楼	12 楼	11 楼	10 楼	9 楼	
2	24 楼	23 楼	22 楼	21 楼	20 楼	19 楼	18 楼	17 楼	
3	32 楼	31 楼	30 楼	29 楼	28 楼	27 楼	26 楼	25 楼	
4	40 楼	39 楼	38 楼	37 楼	36 楼	35 楼	34 楼	33 楼	
5	48 楼	47 楼	46 楼	45 楼	44 楼	43 楼	42 楼	41 楼	
6	保留								
7	保留								

后门上呼记忆(标识符: 0x603)

位移 字节	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit0	
0	8楼	7楼	6楼	5 楼	4 楼	3 楼	2 楼	1楼	
1	16 楼	15 楼	14 楼	13 楼	12 楼	11 楼	10 楼	9 楼	
2	24 楼	23 楼	22 楼	21 楼	20 楼	19 楼	18 楼	17 楼	
3	32 楼	31 楼	30 楼	29 楼	28 楼	27 楼	26 楼	25 楼	
4	40 楼	39 楼	38 楼	37 楼	36 楼	35 楼	34 楼	33 楼	
5	48 楼	47 楼	46 楼	45 楼	44 楼	43 楼	42 楼	41 楼	
6	保留								
7	保留								

后门下呼记忆(标识符: 0x604)

	() () () () ()								
位移 字节	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit0	
0	8楼	7楼	6楼	5 楼	4 楼	3 楼	2 楼	1楼	
1	16 楼	15 楼	14 楼	13 楼	12 楼	11 楼	10 楼	9 楼	
2	24 楼	23 楼	22 楼	21 楼	20 楼	19 楼	18 楼	17 楼	
3	32 楼	31 楼	30 楼	29 楼	28 楼	27 楼	26 楼	25 楼	
4	40 楼	39 楼	38 楼	37 楼	36 楼	35 楼	34 楼	33 楼	
5	48 楼	47 楼	46 楼	45 楼	44 楼	43 楼	42 楼	41 楼	
6	保留								
7				保	留				

无障碍上呼记忆(标识符: 0x605)

位移 字节	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit0	
0	8 楼	7楼	6 楼	5 楼	4 楼	3 楼	2 楼	1 楼	
1	16 楼	15 楼	14 楼	13 楼	12 楼	11 楼	10 楼	9 楼	
2	24 楼	23 楼	22 楼	21 楼	20 楼	19 楼	18 楼	17 楼	
3	32 楼	31 楼	30 楼	29 楼	28 楼	27 楼	26 楼	25 楼	
4	40 楼	39 楼	38 楼	37 楼	36 楼	35 楼	34 楼	33 楼	
5	48 楼	47 楼	46 楼	45 楼	44 楼	43 楼	42 楼	41 楼	
6	保留								
7	保留								

无障碍下呼记忆(标识符: 0x606)

位移 字节	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit0
0	8楼	7楼	6 楼	5 楼	4 楼	3 楼	2 楼	1楼
1	16 楼	15 楼	14 楼	13 楼	12 楼	11 楼	10 楼	9 楼
2	24 楼	23 楼	22 楼	21 楼	20 楼	19 楼	18 楼	17 楼
3	32 楼	31 楼	30 楼	29 楼	28 楼	27 楼	26 楼	25 楼

4	40 楼	39 楼	38 楼	37 楼	36 楼	35 楼	34 楼	33 楼		
5	48 楼	47 楼	46 楼	45 楼	44 楼	43 楼	42 楼	41 楼		
6		保留								
7		保留								

3.呼梯板发送数据的格式定义

呼梯板发送数据的标识符由呼梯板设置的楼层决定,呼梯板的楼层设置范围为 1~48。前门呼梯板发送数据的标识符范围为 0x100~0x12F, 0x100 对应 1 楼, 0x12F 对应 48 楼; 后门呼梯板发送数据的标识符范围为 0x180~0x1AF, 0x180 对应 1 楼, 0x1AF 对应 48 楼; 无障碍呼梯板发送数据的标识符范围为 0x200~0x22F, 0x200 对应 1 楼, 0x22F 对应 48 楼。各数据的具体格式如下:

前门呼梯板发送的数据(标识符: 0x100~0x12F)

位移 字节	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit0		
0				保留				UP		
1				保留				DN		
2		保留 ST								
3				保	留					
4				保	留					
5		保留								
6		保留								
7		保留								

UP: 为1时,表示有上呼信号,该位变化时发送一次该数据包。

DN: 为1时,表示有下呼信号,该位变化时发送一次该数据包。

ST: 为1时,表示有锁梯信号,该位变化时发送一次该数据包。

XF: 为1时,表示有消防信号,该位变化时发送一次该数据包。

注:

- 1. UP、DN、ST、XF中至少有1位持续为1时,每2秒发送一次该数据包。
- 2. 若上呼或下呼按钮持续按下时间超过60s,则认为按钮卡死,清除对应按钮的信号位。

后门呼梯板发送的数据(标识符: 0x180~0x1AF)

位移 字节	bit 7	bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1								
0				保留				UP		
1				保留				DN		
2		保留 ST								
3				保	留					
4				保	留					
5		保留								
6		保留								
7		保留								

UP: 为1时,表示有上呼信号,该位变化时发送一次该数据包。

DN: 为1时,表示有下呼信号,该位变化时发送一次该数据包。

ST: 为1时,表示有锁梯信号,该位变化时发送一次该数据包。

XF: 为1时,表示有消防信号,该位变化时发送一次该数据包。

注:

- 1. UP、DN、ST、XF中至少有1位持续为1时,每2秒发送一次该数据包。
- 2. 若上呼或下呼按钮持续按下时间超过 60s,则认为按钮卡死,清除对应按钮的信号位。

无障碍呼梯板发送的数据(标识符: 0x200~0x22F)

位移 字节	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit0		
0				保留				UP		
1				保留				DN		
2		保留 ST								
3				保	留					
4				保	留					
5		保留								
6		保留								
7		保留								

UP: 为1时,表示有上呼信号,该位变化时发送一次该数据包。

DN: 为1时,表示有下呼信号,该位变化时发送一次该数据包。

ST: 为1时,表示有锁梯信号,该位变化时发送一次该数据包。

XF: 为1时,表示有消防信号,该位变化时发送一次该数据包。

注:

- 1. UP、DN、ST、XF中至少有1位持续为1时,每2秒发送一次该数据包。
- 2. 若上呼或下呼按钮持续按下时间超过 60s,则认为按钮卡死,清除对应按钮的信号位。

二、轿内显示板总线协议

1.CAN 基本设置

- (1) CAN 波特率为 20K。
- (2) 占空比为 8/14,即 TSEG1:TSEG2=7:5。
- (3) CAN 总线使用的帧格式为标准帧。
- (4) 每帧包含的数据长度

内显板接收:数据长度为8字节(DLC=8);

内显板发送:不发送数据。

- (5) 接收数据帧的标识符为 0x600。
- (6) 建议总线采样次数为 3 次(SAM=1)。

2.内显板接收数据的格式定义

基本信息(标识符: 0x630)

位移 字节	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit0		
0			楼原	忌显示 ASC	Ⅱ 码(高位)				
1			楼原	忌显示 ASC	Ⅱ码(低位)				
2		实际楼层位置(最底层为1,往上依次递增)								
3	RUN_M	UP	DN	INS	OL	FULL	DZ_C	BZZ		
4	保留	SEV	ES	保留	OFF_D1	OFF_D	D_M1:	D_M0		
5		保留								
6	保留									
7		保留								

注: 当楼层显示 ASCII 码(高位)为空格('')时,楼层显示 ASCII 码(低位)显示在中间。

RUN_M: 当电梯运行时,该位为1,否则该位为0。

UP: 为1时,表示电梯向上方向运行。

DN: 为 1 时,表示电梯向下方向运行。

INS: 为1时,电梯处于检修状态。

OL: 为 1 时,表示电梯处于超载状态,呼梯板忽略此位信息,内显板显示超载信息。

FULL: 为 1 时, 电梯处于满载状态。

DZ_C: 为 1 时, 电梯处于开门区。

BZZ: 报站钟输出信号。

SEV: 为 1 时, 电梯处于独立服务(VIP)状态, 呼梯板显示 VIP 状态, 内显板忽略此位信息。

ES: 为 1 时, 电梯处于急停状态。

OFF D1: 为1时,表示电梯运行到站。

OFF D: 为1时,关闭呼梯板及内显板显示,为0时打开呼梯板及内显板显示。

D_M1:D_M0: 根据该两位的组合表示各种不同的楼层显示模式:

00 楼层显示模式 1。

01 楼层显示模式 2。

10 楼层显示模式 3。

11 楼层显示模式 4。

注: D_M1 和 D_M0 的作用为通过主控来设置呼梯板楼层显示模式,这种方式只提供呼梯板 4 种显示模式。

允许在实际编写呼梯板程序时可忽略这两位,通过其他方式修改楼层显示模式。

XF: 为1时,电梯处于消防状态。

上海贝思特控制技术有限公司

地址: 上海市浦东新区航头镇大麦湾工业园区航启路1号

网址: www.shbst.com