A non-textual approach to modelling expressive speech

Jianzhi Wang

Agenda

- Introduction
- Methodology
- Results
- Discussion

Problem Statement

• Given a context and a Melspectrogram corresponding to monotonous audio, say $(M_t^A)_t$, label, want to produce a Melspectrogram $(\widehat{M}_t^H)_t$ corresponding to expressive audio

Motivation

- See how the Mel spectrogram changes with respect to contexts
 - Monotonous audio provides a form of standardised speech to observe this effect
- The label is a "control knob" for the generated audio
- No textual data during training
 - Inductive bias that humans do not need text to decipher emotions
 - Avoids an alignment problem as well as the multimodality problem

Previous Work

- Audiobox, VALL-E
 - All of these models use some form of textual elements (e.g. natural language prompts, transcripts)
- CycleGAN-VC
 - Focus is on voice-conversion

Vyas et al, 2023; Wang et al, 2023; Kaneko et al, 2017

Data

 $(M_t^A)_t$ $(M_t^H)_t$

Data - Dataset

 $(M_t^A)_t$ $(M_t^H)_t$

- Used EXPRESSO dataset, focused on speaker 4 (female)
- Train-valid-test split: (2000, 450, 453)

```
{'confused': 258,
  'whisper': 258,
  'laughing': 276,
  'essentials': 25,
  'enunciated': 266,
  'singing': 2,
  'emphasis': 136,
  'sad': 257,
  'happy': 259,
  'default': 263}
```


Results - Baseline

• Transcript:

"Someplace quiet where we can recharge our batteries?"

Context: Happy

Results - Baseline

• Transcript:

"And also, Denise, you're not fooling anyone with those curls."

Context: Sad

☐ Transformer encoder model + MSE loss = blurred Melspectrogram → low-quality speech

Architecture Variants

- Adding intermediate CNN layers
 - (+) Adds in inductive bias of locality of spectrogram image features
 - (-) Same blurry Melspectrogram and quality of speech
- MSE + GAN-Loss
 - (-) Combining with MSE loss results in stretching out of spectrogram
- Soft DTW loss
 - (-) Combining with MSE loss results in stretching out of spectrogram
- Duration models
 - (+) An alternative to soft DTW
 - (-) Computationally unfeasible to complete before project deadline

Methodology - SPARC

Data - SPARC

Results - SPARC

• Transcript:

"Someplace quiet where we can recharge our batteries?"

Context: Happy

Results - Baseline

• Transcript:

"And also, Denise, you're not fooling anyone with those curls."

Context: Sad

SPARC-transformer model is capable of producing realistic and expressive waveform

Evaluations

• Type 1:

- Tell evaluator the true label, then with paired $(A_i, \hat{A}_i, label)_i$, randomly show evaluator one followed by the other
- Obtain score of how well the context is expressed
- Rank which one is better

• Type 2:

• Generate \hat{A}_i based on a label in $\{happy, sad, laughing, confused\}$, ask evaluator to infer the label

Evaluation – Samples

Confused

Actual

Prediction

Happy

Actual

Prediction

Laughing

Actual

Prediction

Sad

Actual

Prediction

Unseen

Evaluations – Type 1

Model Predictions vs Ground Truth

SPARC-transformer model predictions still fall short of human-produced expressive speech

Evaluations – Type 2

Confused
Happy
Laughing
Sad
Model does extremely well on generating "sad" audios, much less so for other contexts...

Discussions – Intuitive Explanations

- SPARC features are more standardised as opposed to the energy levels of the Melspectrogram
- Time series problem rather than an image problem
- Forwarding of the SPARC speaker embedding vector
- Involved a pre-trained model, which inevitably involved textual elements (WavLM)

Discussions - Future Directions

- Could SPARC speaker embeddings have encoded some contextual information?
 - Type 2 subjective evaluations support this hypothesis
- The inverse problem of "standardising" speech purging out the expressiveness in an audio to obtain a monotonous speech
- Scaling up training data
- Cleverer ways to deal with alignment problems

Applications

- Producing speech with various emotions
 - Data augmentation, adversarial models
- Removes the need for natural language annotations

Thank you!