Logistic Regression

Guowei Wei Department of Mathematics Michigan State University

References:
Duc D. Nguyen's lecture notes
Andrew Ng's notes
Wikipedia

Introduction

Statistical classification: identifying to which of a set of categories a new observation belongs, on the basis of a training set of data.

Introduction

- Classification
- Examples:
 - Matter: Toxic / Not Toxic ?
 - Students: Pass / Fail ?
 - Van Gogh Painting: Real / Fake?
- Labels y ∈ {0,1}. 0: Negative class (Fail),
 1: Positive class (Pass)
- We can have more than two labels y ∈ {0,1,2,3} for DNA (cytosine [C], guanine [G], adenine [A] and thymine [T])

Example

 Performance of group of 20 students spend between 0 and 6 hours studying for an exam

Hours	Pass/Fail
0.5	Fail
0.75	Fail
1.75	Pass
2.25	Pass
•••	•••

Example

Model Representation

Wish to construct a predictor:

$$p_{\mathbf{c}}(\mathbf{x}) = ?$$

- Our labels only has two values 0 and 1
- Predictor always give a real value.
- $0 \le p_{c}(\mathbf{x}) \le 1$
- To get classification, choose a threshold z:

$$p_{\mathbf{c}}(\mathbf{x}) < z \text{ then } y = 0$$

 $p_{\mathbf{c}}(\mathbf{x}) \ge z \text{ then } y = 1$

• With two labels $\{0,1\}$, it is natural to choose z = 0.5

We choose

Sigmoid / Logistic function:

$$p_{\mathbf{c}}(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{c}^T \mathbf{x}}}$$

(Is this model still linear?)

• If dataset has one feature, i.e., $\mathbf{x} = (1, x_1)^T$, then $\mathbf{c} = (c_0, c_1)^T$

- If dataset has n features, i.e., $\mathbf{x} = (1, x_1, ..., x_n)^T$, then $\mathbf{c} = (c_0, c_1, ..., c_n)^T$
- Single-layer perceptron

or

$$p_{\mathbf{c}}(\mathbf{x}) = \frac{1}{1 + e^{-c_0 - c_1 x_1 - c_2 x_2 - \dots - c_n x_n}}$$
$$p_{\mathbf{c}}(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{c}^T \mathbf{x}}}$$

is the probability that y = 1 on input x

 We can also use the polynomial logistic function, e.g.,

$$p_{\mathbf{c}}(\mathbf{x}) = \frac{1}{1 + e^{-c_0 - c_1 x_1 - c_2 x_1^2}}$$
 or more general:

$$p_{\mathbf{c}}(\mathbf{x}) = \frac{1}{1 + e^{-c_0 - c_{11}x_1 - c_{12}x_1^2 + \dots, c_{n1}x_n - c_{n2}x_n^2 + \dots}}$$

- Loss function construction:
 - Linear regression:

$$L(\mathbf{c}) = \sum_{i=1}^{n} (p(x^{(i)}) - y^{(i)})^{2}$$

 We can also use the polynomial logistic function, e.g.,

$$p_{\mathbf{c}}(\mathbf{x}) = \frac{1}{1 + e^{-c_0 - c_1 x_1 - c_2 x_1^2}} \text{ or more general:}$$

$$p_{\mathbf{c}}(\mathbf{x}) = \frac{1}{1 + e^{-c_0 - c_1 x_1 - c_1 x_1^2 + \dots + c_n x_n^2 + \dots + c_n x_n^2 + \dots}}$$

$$p_{\mathbf{c}}(\mathbf{x}) = \frac{1}{1 + e^{-f(\mathbf{c}, \mathbf{X})}}$$

How to determine coefficients?

Loss function construction

- When y = 1, higher $p_c(x)$ is more accurate \Rightarrow smaller lost
- Any function reflects that behavior?

Loss function contruction

Make it nicer

Loss function constrcution

- When y = 0, lower $p_c(x)$ is more accurate \Rightarrow smaller lost
- Any function reflects that behavior?

Loss function construction

So we have

$$L(p_{\mathbf{c}}(\mathbf{x}), y) = \begin{cases} -\log(p_{\mathbf{c}}(\mathbf{x})) & \text{if } y = 1\\ -\log(1 - p_{\mathbf{c}}(\mathbf{x})) & \text{if } y = 0 \end{cases}$$

Combine two goals into one function:

$$L(p_{\mathbf{c}}(\mathbf{x}), y)$$

$$= -y\log(p_{\mathbf{c}}(\mathbf{x})) - (1 - y)\log(1 - p_{\mathbf{c}}(\mathbf{x}))$$

Loss function

Total loss for the whole dataset

$$L(\mathbf{c}) = \frac{1}{m} \sum_{i=1}^{m} \left[-y^{(i)} \log \left(p_{\mathbf{c}}(\mathbf{x}^{(i)}) \right) \right]$$

Resulting Predicted Model

Decision Boundary

 Boundary that separates this class from another ones

We can construct the decision boundary from

optimal predictor

 $\begin{array}{c|c}
\hline
1 + e^{1-x_1-x_2} & \overline{2} \\
\Rightarrow x_1 + x_2 = 1
\end{array}$ **Decision boundary**

Decision Boundary

- Boundary that separates this class from another ones
- We can construct the decision boundary from optimal predictor

Decision Boundary

Decision boundary can be a curve or manifold

$$p_{\mathbf{c}}(\mathbf{x}) = \frac{1}{1 + e^{1 - x_1^2 - x_2^2}}$$

$$p_{\mathbf{c}}(\mathbf{x}) = 0.5$$

$$\frac{1}{1 + e^{1 - x_1^2 - x_2^2}} = \frac{1}{2}$$

$$\Rightarrow x_1^2 + x_2^2 = 1$$

Multi-Class

- Loss function designs for two classes
- What if we have more than 2 classes?
- Examples:
 - Student Performance: A, B, C, D, F
 - Weather prediction: Sunny, Cloudy, Rain, Snow

Multi-Class

- One-vs-all:
 - If we have n classes: $l_1, l_2, ..., l_n$
 - For each class l_i . Consider two labels: l_i and not l_i
 - Train logistic regression classifier for this case to get the probability $p_{\mathbf{c}}^{l_i}(\mathbf{x})$ that $y = l_i$
 - Pick the class l_k that maximizes $\max_k p_{\mathbf{c}}^{l_k}(\mathbf{x})$