

தேசிய வெளிக்கள நிலையம் தொண்டைமானாறு முன்றாம் தவணைப் பரீட்சை - 2024

National Field Work Centre, Thondaimanaru 3rd Term Examination - 2024

இணைந்த கணிதம் **Combined Maths**

Three Hours 10 Min \mathbf{E} A Gr. 12 (2024)

Admission No.						
---------------	--	--	--	--	--	--

Instructions

This question paper consists of two parts; Part A (questions 1-10) and part B (questions 11-17).

Part - A

❖ Answer all questions. Answers should be written in the space provided on the questions paper. If additional space needed, you may use additional answer sheets.

Part - B

- ❖ Answer only 5 questions.
- ❖ After the allocated time hand over the paper to the supervisor with both parts attached together.
- ❖ Only part B of the paper is allowed to be taken out of the Examination Hall.

Co	ombined Ma			₩	
Part	Que. No.	Marks	UCATION	FOR THE	FUTURE
	1		1		
	2				
	3				
	4				
A	5			Combined Matl	hematics A
A .	6		1 <u> </u>	Combined Mat	
	7		1	Combined Matl	hematics B
	8		1 ≻		
	9			Final Marks	
	10				
	11				
	12				
	13				
В	14				
	15		1		
	16		1		
	17		1		
,	Total				

Combined Mathematics A	
Combined Mathematics B	
Final Marks	

				Par	t - A					
Let a , b										
	c + c = 0		- γ, β +	γ are	the roots	s of th	e equation	on p	$x^2 + qx$	x + r =
show that	$\frac{b^2-4ac}{a^2} =$	$=\frac{q^2-4pr}{n^2}.$								
•••••	••••••		•••••	•••••		•••••				•••••
					4			•••••		
			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••		•••••	••••••	
										
Sketch the	otherwi	se, find	all real	values c	of x satis	fying tl	ne inequa			· 1.
Hence or		se, find	all real	values c	of x satis	fying tl	ne inequa			· 1.
Hence or	otherwi	se, find	all real	values c	of x satis	fying tl	ne inequa			• 1.
Hence or	otherwi	se, find	all real	values c	of x satis	fying tl	ne inequa			• 1.
Hence or	otherwi	se, find	all real	values c	of x satis	fying tl	ne inequa			· 1.
Hence or	otherwi	se, find	all real	values c	of x satis	fying tl	ne inequa			. 1.
Hence or	otherwi	se, find	all real	values c	of x satis	fying tl	ne inequa			• 1.
Hence or	otherwi	se, find	all real	values c	of x satis	fying tl	ne inequa			• 1.
Hence or	otherwi	se, find	all real y	values o	of x satis	fying the	ne inequa	UTU	ÎRĒ	
Hence or	otherwi	se, find	all real y	values o	of x satis	fying the	ne inequa	UTU	ÎRĒ	
Hence or	otherwi	se, find	all real y	values o	of x satis	fying the	ne inequa	UTU	ÎRĒ	
Hence or	otherwi	se, find	all real y	values o	of x satis	fying the	ne inequa	UTU	ÎRĒ	
Hence or	otherwi	se, find	all real y	values o	of x satis	fying the	ne inequa	UTU	ÎRĒ	
Hence or	otherwi	se, find	all real y	values of UCA1	of x satis	fying the	ne inequa	UTU	ÎR E	
Hence or	otherwi A CLA	se, find	all real y	values of UCA1	of x satis	fying the	ne inequa	UTU	ÎR E	
Hence or	otherwi A CLA	se, find	all real y	values of UCA1	of x satis	fying the	ne inequa	UTU	ÎR E	
Hence or	otherwi A CLA	se, find	all real y	values of UCA1	of x satis	fying the	ne inequa	UTU	ÎR E	

Show that	$\lim_{x\to 0} \frac{1}{x}$	$2\sin x - \sin x$	$\frac{12x}{2-x} = \sqrt{2}$	<u>2</u> .				
	•••••							
Let $a, b >$	o. Show	v that the	e equation	of the r	normal line	to the hyp	perbola $\frac{x^2}{a^2}$	$-\frac{y^2}{b^2} = 1 \text{ a}$
point $P(a$	$\sec \theta$, b	$\tan \theta$) is	$ax \sin \theta$	+by =	$(a^2+b^2)\mathrm{t}$	$\tan \theta$, when	$e 0 < \theta <$	$\frac{\pi}{2}$. If it is §
point $P(a$	$\sec \theta$, b	$\tan \theta$) is	$ax \sin \theta$	+by =	normal line $(a^2 + b^2)$ trough the p	$\tan \theta$, when	$e 0 < \theta <$	$\frac{\pi}{2}$. If it is §
point $P(a)$ that $a = 2$	$\sec \theta$, b	$\tan \theta$) is	ax sin θ	+by = passes th	$(a^2 + b^2)$ trough the p	an θ, wher oint (0, 5),	$e 0 < \theta <$ find the co	$\frac{\pi}{2}$. If it is goodinates of
point $P(a)$ that $a = 2$	$\sec \theta$, b	$\tan \theta$) is	ax sin θ	+by = passes th	$(a^2+b^2)\mathrm{t}$	an θ, wher oint (0, 5),	$e 0 < \theta <$ find the co	$\frac{\pi}{2}$. If it is goodinates of
point $P(a)$ that $a = 2$	$\sec \theta$, b	$\tan \theta$) is	ax sin θ	+by = passes th	$(a^2 + b^2)$ trough the p	an θ, wher oint (0, 5),	$e 0 < \theta <$ find the co	$\frac{\pi}{2}$. If it is goodinates of
point $P(a)$ that $a = 2$	$\sec \theta$, b	$\tan \theta$) is	ax sin θ	+by = passes th	$(a^2 + b^2)$ trough the p	an θ, wher oint (0, 5),	$e 0 < \theta <$ find the co	$\frac{\pi}{2}$. If it is goodinates of
point <i>P</i> (<i>a</i> that <i>a</i> = 2	$\sec \theta$, b	$\tan \theta$) is	ax sin θ	+by = passes th	$(a^2 + b^2)$ trough the p	an θ, wher oint (0, 5),	$e \ 0 < \theta <$ find the co	$\frac{\pi}{2}$. If it is goodinates of
point <i>P</i> (<i>a</i> that <i>a</i> = 2	$\sec \theta$, b	tan θ) is	ax sin θ	+ by = passes th	$(a^2 + b^2)$ trough the p	an θ, wher oint (0, 5),	$e \ 0 < \theta <$ find the co	$\frac{\pi}{2}$. If it is goodinates of $\frac{\pi}{2}$.
point <i>P</i> (<i>a</i> that <i>a</i> = 2	$\sec \theta$, b	tan θ) is	ax sin θ	+ by = passes th	(a ² + b ²) trough the p	an θ, wher oint (0, 5),	$e \ 0 < \theta <$ find the co	$\frac{\pi}{2}$. If it is goodinates of $\frac{\pi}{2}$.
point <i>P</i> (<i>a</i> that <i>a</i> = 2	$\sec \theta$, b	tan θ) is	ax sin θ	+ by = passes th	(a ² + b ²) trough the p	an θ, wher oint (0, 5),	$e \ 0 < \theta <$ find the co	$\frac{\pi}{2}$. If it is goodinates of $\frac{\pi}{2}$.
point <i>P</i> (<i>a</i> that <i>a</i> = 2	$\sec \theta$, b	tan θ) is	ax sin θ	+ by = passes th	(a ² + b ²) trough the p	an θ, wher oint (0, 5),	$e \ 0 < \theta <$ find the co	$\frac{\pi}{2}$. If it is goodinates of $\frac{\pi}{2}$.
point <i>P</i> (<i>a</i> that <i>a</i> = 2	$\sec \theta$, b	tan θ) is	ax sin θ	+ by = passes th	(a ² + b ²) trough the p	an θ, wher oint (0, 5),	$e \ 0 < \theta <$ find the co	$\frac{\pi}{2}$. If it is goodinates of $\frac{\pi}{2}$.
point <i>P</i> (<i>a</i> that <i>a</i> = 2	$\sec \theta$, b	tan θ) is	ax sin θ	+ by = passes th	(a ² + b ²) trough the p	an θ, wher oint (0, 5),	find the co	$\frac{\pi}{2}$. If it is goodinates of $\frac{\pi}{2}$.
point <i>P</i> (<i>a</i> that <i>a</i> = 2	$\sec \theta$, b	tan θ) is	ax sin θ	+ by = passes th	(a ² + b ²) trough the p	an θ, wher oint (0, 5),	$e 0 < \theta <$ find the co	$\frac{\pi}{2}$. If it is goodinates of $\frac{\pi}{2}$.
point <i>P</i> (<i>a</i> that <i>a</i> = 2	$\sec \theta$, b	tan θ) is	ax sin θ	+ by = passes th	(a ² + b ²) trough the p	an θ, wher oint (0, 5),	$e \ 0 < \theta <$ find the co	$\frac{\pi}{2}$. If it is goodinates of $\frac{\pi}{2}$.
point <i>P</i> (<i>a</i> that <i>a</i> = 2	$\sec \theta$, b	tan θ) is	ax sin θ	+ by = passes th	(a ² + b ²) trough the p	an θ, wher oint (0, 5),	$e \ 0 < \theta <$ find the co	$\frac{\pi}{2}$. If it is goodinates of $\frac{\pi}{2}$.
point <i>P</i> (<i>a</i> that <i>a</i> = 2	$\sec \theta$, b	tan θ) is	ax sin θ	+ by = passes th	(a ² + b ²) trough the p	an θ, wher oint (0, 5),	$e \ 0 < \theta <$ find the co	$\frac{\pi}{2}$. If it is goodinates of $\frac{\pi}{2}$.

05) Let $tan(A + B) = \frac{1}{2}$ and $tan(A - B) = \frac{1}{3}$ for the acute angles A and B.	
Show that $\tan(2B) = \frac{1}{7}$ and $A = \frac{\pi}{8}$.	
06) A particle P is projected vertically upwards with velocity u under the action of gravity from ho	rizontal
ground. At the same moment of projection of P , another particle Q is dropped from a height $\frac{u^2}{3g}$ the particles meet each other at a height $\frac{4u^2}{15g}$ above the horizontal floor, find the time taken	o d
the particles meet each other at a height $\frac{1}{15g}$ above the horizontal floor, find the time taken intersection and find their velocities at that instant.	for the
intersection and that their verocities at that instant.	
	•••••

07) A particle P is projected in a vertical plane from a point O on the horizontal ground with velocity V at an angle β with horizontal. When the particle P is at its maximum height, another particle Q is projected in the vertical plane from point O with velocity u at angle α with horizontal. Both the particles P and Q hit at point A which is along the horizontal through point O, at the same instant. Where $tan\beta = \frac{4}{3}$.

(i) Show that $u = \frac{2V}{5sin\alpha}$

(ii) Show that $\tan \alpha = \frac{1}{3}$

08) A light inextensible string passes above a light, smooth pulley stationed at a higher point as shown in the figure. Particles P and Q of masses M, m (M > m) respectively are attached to its ends and the system is released from rest gently such that the parts of the strings are vertical and taut. If the acceleration of P related to Q is $\frac{2g}{3}$, then find the tension in the string and the value of M in terms of m.

				•••••
				•••••
				•••••
•••••				•••••
••••••	•••••			•••••
moothly at a point smooth peg such	t on horizontal floor as that $AC = l$ and the ro	ngth $4l$ and weight W is shown in the figure. Point d is in equilibrium making the reaction given by peg or	C lies on	
smoothly at a point a smooth peg such 50° with horizonta	t on horizontal floor as that $AC = l$ and the roal. At equilibrium, find t	shown in the figure. Point I is in equilibrium making	C lies on	S C
smoothly at a point smooth peg such 50° with horizonta	t on horizontal floor as that $AC = l$ and the roal. At equilibrium, find t	shown in the figure. Point d is in equilibrium making ne reaction given by peg or	C lies on	\ c
smoothly at a point a smooth peg such 50° with horizonta and the reaction at	t on horizontal floor as that $AC = l$ and the roal. At equilibrium, find the hinge $AA \subseteq ED$	shown in the figure. Point d is in equilibrium making ne reaction given by peg or	C lies on angle n rod and THE FUTUE	' //
smoothly at a point as mooth peg such 50° with horizonta and the reaction at	t on horizontal floor as that $AC = l$ and the roal. At equilibrium, find the hinge $AA \subseteq ED$	shown in the figure. Point d is in equilibrium making the reaction given by peg of the control o	C lies on angle n rod and THE FUTUE	' //
smoothly at a point a smooth peg such 50° with horizonta and the reaction at	t on horizontal floor as that $AC = l$ and the roal. At equilibrium, find the hinge $AA \subseteq ED$	shown in the figure. Point d is in equilibrium making the reaction given by peg of the control o	C lies on angle n rod and THE FUTUE	' //
smoothly at a point a smooth peg such 50° with horizonta and the reaction at	t on horizontal floor as that $AC = l$ and the roal. At equilibrium, find the hinge $AA = l$	shown in the figure. Point d is in equilibrium making the reaction given by peg of the control o	C lies on an angle n rod and THE FUTUE	
smoothly at a point a smooth peg such 50° with horizonta and the reaction at	t on horizontal floor as that $AC = l$ and the roal. At equilibrium, find the hinge $AA = l$	shown in the figure. Point d is in equilibrium making the reaction given by peg of the control o	C lies on an angle n rod and THE FUTUE	
smoothly at a point a smooth peg such 50° with horizonta and the reaction at	t on horizontal floor as that $AC = l$ and the roal. At equilibrium, find the hinge $AA = l$	shown in the figure. Point d is in equilibrium making the reaction given by peg of the control o	C lies on an angle n rod and THE FUTUE	
smoothly at a point a smooth peg such 50° with horizonta and the reaction at	t on horizontal floor as that $AC = l$ and the roal. At equilibrium, find the hinge $AA = l$	shown in the figure. Point d is in equilibrium making the reaction given by peg of the control o	C lies on an angle n rod and THE FUTUE	
smoothly at a point a smooth peg such 50° with horizonta and the reaction at	t on horizontal floor as that $AC = l$ and the roal. At equilibrium, find the hinge $AA = l$	shown in the figure. Point d is in equilibrium making the reaction given by peg of the control o	C lies on an angle n rod and THE FUTUE	
smoothly at a point a smooth peg such 50° with horizonta find the reaction at	t on horizontal floor as that $AC = l$ and the roal. At equilibrium, find the hinge $AA \subseteq ED$	shown in the figure. Point d is in equilibrium making the reaction given by peg of the control o	C lies on an angle on rod and THE FUTUE	
smoothly at a point a smooth peg such 50° with horizonta and the reaction at	t on horizontal floor as that $AC = l$ and the roal. At equilibrium, find the hinge $AA \subseteq ED$	shown in the figure. Point d is in equilibrium making the reaction given by peg of the state of	C lies on an angle on rod and THE FUTUE	
smoothly at a point a smooth peg such 50° with horizonta and the reaction at	t on horizontal floor as that $AC = l$ and the roal. At equilibrium, find the hinge $AA \subseteq ED$	shown in the figure. Point d is in equilibrium making the reaction given by peg of the state of	C lies on an angle on rod and THE FUTUE	
smoothly at a point a smooth peg such 50° with horizonta and the reaction at	t on horizontal floor as that $AC = l$ and the roal. At equilibrium, find the hinge $AA \subseteq ED$	shown in the figure. Point d is in equilibrium making the reaction given by peg of the state of	C lies on an angle on rod and THE FUTUE	
smoothly at a point a smooth peg such 50° with horizonta and the reaction at	t on horizontal floor as that $AC = l$ and the roal. At equilibrium, find the hinge $AA \subseteq ED$	shown in the figure. Point d is in equilibrium making the reaction given by peg of the state of	C lies on an angle on rod and THE FUTUE	
smoothly at a point a smooth peg such 50° with horizonta and the reaction at	t on horizontal floor as that $AC = l$ and the roal. At equilibrium, find the hinge $AA \subseteq ED$	shown in the figure. Point d is in equilibrium making the reaction given by peg of the state of	C lies on an angle on rod and THE FUTUE	