Guía de Taller 1: Mundo del Wumpus (Simplificado)

Comparación de estrategias de búsqueda: BFS, DFS y A*

Contexto

Trabajaremos con una versión *simplificada* del Mundo del Wumpus sobre una grilla pequeña. El agente conoce el mapa (no hay percepciones ni incertidumbre) y su objetivo es llegar al **oro** (**G**) desde su **posición inicial** (**A**), evitando **pozos** (**P**). Usaremos este escenario para comparar las estrategias **BFS**, **DFS** y **A*** (Manhattan).

Objetivos de aprendizaje

- Modelar un problema de **búsqueda** (estados, acciones, transición, objetivo, costo).
- Implementar y comparar BFS, DFS y A* (sin incertidumbre).
- Medir nodos expandidos, longitud/costo y discutir optimalidad/eficiencia.

Escenario

Grilla 4×4 (ejemplo ilustrativo; el docente presentará el mapa a usar en clase):

Convenciones: A=Agente (inicio), G=Oro (meta), P=Pozo (obstáculo), .=libre. Movimientos: 4 direcciones (N, S, E, O). Costo uniforme: 1 por paso.

Esoecificaciones

- 1. **Modelamiento** (usar el *starter* en Python de abajo, sin modificar la firma de funciones).
- 2. Implementar por separado:
 - 2.1. BFS (cola FIFO). Debe retornar camino, orden de expansión.
 - 2.2. **DFS** (pila LIFO). Debe retornar camino, orden de expansión.
 - 2.3. A* con Manhattan. Debe retornar camino, orden de expansión.
- 3. Medir y comparar: costo del camino (nº pasos), nodos expandidos, y optimalidad.
- 4. **Reflexionar**: ¿Por qué A* expande menos nodos que BFS en este dominio? ¿Cuándo DFS falla en optimalidad?

Starter: Modelamiento en Python (sin búsquedas)

No implementen aquí BFS/DFS/A*. Sólo modelamiento (estados, acciones, transición, reconstrucción de caminos) que será usado por sus algoritmos en archivos o celdas aparte.

Listing 1: Modelamiento del Mundo del Wumpus (simplificado)

```
# --- Mundo del Wumpus simplificado: modelamiento base ---
from collections import deque
import heapq

# Grilla 4x4 de ejemplo (el docente puede cambiarla en clase)
grid = [
    [".","P",".","G"],
    [".",".","P","."],
    [".",".",".","."]
]

ROWS, COLS = len(grid), len(grid[0])

# Estado inicial (A) y objetivo (G)
```

```
def find(symbol):
    for r in range(ROWS):
        for c in range(COLS):
            if grid[r][c] == symbol:
                return (r, c)
    return None
INI = find("A")
GOAL = find("G")
# Movimientos vlidos: 4 direcciones (N,S,E,O)
DIRS4 = [(1,0),(-1,0),(0,1),(0,-1)]
def in_bounds(r, c):
    return 0 <= r < ROWS and 0 <= c < COLS
def passable(r, c):
    # No se puede pasar por pozos
    return grid[r][c] != "P"
def neighbors(r, c):
    """Acciones aplicables: movimiento a celdas adyacentes libres."""
    for dr, dc in DIRS4:
        nr, nc = r + dr, c + dc
        if in_bounds(nr, nc) and passable(nr, nc):
            yield (nr, nc)
def manhattan(a, b):
    """Heurstica para A*: distancia Manhattan (admisible en 4-dir, costo=1)."""
    (r1, c1), (r2, c2) = a, b
    return abs(r1 - r2) + abs(c1 - c2)
def reconstruct(parent, goal):
    """Reconstruye la ruta desde el inicio hasta 'goal' usando el diccionario '
   parent'."""
   path = []
    cur = goal
    while cur is not None:
        path.append(cur)
        cur = parent.get(cur)
    return path[::-1]
# --- Puntos de integracin (implementar en otro archivo o debajo):
# def bfs(start=INI, goal=GOAL): ...
# def dfs(start=INI, goal=GOAL): ...
# def astar(start=INI, goal=GOAL): ...
```

Guía de experimentación

- Usar el mismo mapa para las tres estrategias.
- BFS: reportar camino (lista de coordenadas), costo (len(camino)-1), nodos expandidos.
- DFS: idem. Notar si el camino es más largo (no óptimo) y cuántos nodos expande.
- A*: idem. Verificar misma solución óptima que BFS, pero con menos nodos expandidos.

Entregables

- 1. Código de **BFS**, **DFS**, \mathbf{A}^* (cada uno en función separada), reutilizando el *modelamiento*.
- 2. Resultados: camino y costo para cada algoritmo; # de nodos expandidos.
- 3. Breve discusión técnica: optimalidad (BFS/A*), eficiencia (A* vs BFS), limitaciones de DFS.
- 4. Presentación grupal sobre el resultado final y los puntos antes mencionados (grupos max 3 integrantes)

Rúbrica de evaluación (100%)

Criterio	Puntaje	Indicadores
Modelamiento correcto (estados, acciones,	25%	Define INI/GOAL; vecinos
transición, heurística)		válidos; Manhattan correcta;
		código limpio.
BFS (correctitud y reporte)	20%	Encuentra solución si existe;
		camino y costo; orden/nodos
		expandidos.
DFS (correctitud y reporte)	15 %	Implementación funcional;
		reconoce falta de optimali-
		dad; reporte de métricas.
A* (correctitud, heurística, métricas)	25%	Usa Manhattan; devuelve ca-
		mino óptimo; expande menos
		nodos que BFS.
Análisis y comparación	10 %	Discusión clara sobre op-
		timalidad/eficiencia; conclu-
		siones justificadas.
Presentación (claridad, comentarios, orga-	5%	Código comentado; resulta-
nización 10 min maximo)		dos ordenados; buena redac-
,		ción.
Presentación (claridad, comentarios, orga-		nodos que BFS. Discusión clara sobre optimalidad/eficiencia; conclusiones justificadas. Código comentado; resultados ordenados; buena redac-

Notas

- Mantener **costo uniforme** (=1 por paso) para que BFS sea óptimo y la comparación con A* sea justa.
- La heurística Manhattan es **admisible y consistente** en 4 direcciones con costo uniforme.
- No hay percepciones ni incertidumbre: el mapa es totalmente observable y estático.