한 번에 끝내는 블록체인 개발 A to Z

Chapter 2

블록체인 Wallet 개발하기

Chapter 2

블록체인 Wallet 개발하기

Wallet 구조

지갑 주소 생성하기

지갑 주소 생성하기

ECDSA : 타원곡선 알고리즘

• secp256k1: 타원곡선을 만들기 위한 상수 표준

• Keccak-256: 해시함수

Private Key (256 bits):

'0xdc47ca238ffb638cf76658fb02a351bc7c1c6b bb32fa40db9bb43fee47c9dfbd'

ECDSA secp256k1

Public Key (x,y point – 512 bits - Two 32-bit integers):

'b9f5d91099422bcfa991abe2866f3dc39bba8da 50c52b77179eca74ecdaefd06cebbb2987f223c e8d1585d899999948b969b0039e3c36f14b297 3cf20ed96330'

> Keccak-256 ' (first 40 bytes - 160 bits)

Ethereum address:

'0x39532829E35c3238cd0bc1613F7e586Cb106 46CC'

니모닉 코드

- 지갑을 쉽게 복구하기 위한 단어
- 니모닉!= 프라이빗 키
- 시드 만들기가 중요한 것

비밀 백업 구문 확인

각 구문을 선택하여 구문이 올바른지 확인하세요.

boil	brass	chicken	during
magic	now	random	ready
shift	shine	tiny	upon

엔트로피에서 니모닉코드까지

니모닉에서 시드까지

HD 지갑

• 계층 결정적 지갑

HD 지갑

Mnemonic Code Converter

https://iancoleman.io/bip39