Machine Learning Methods for Neural Data Analysis

Lecture 11: Unsupervised modeling

Announcements

- Proposals look great!
 - Feedback coming in the next day or two.
 - Next update due Mar 5 (next Friday).

Agenda

Finish decoding and start unsupervised modeling

- "Direct" decoders and structured prediction
- Unit III: Unsupervised models of neural and behavioral data
- Bayesian inference in latent variable models

Decoding movement from neural spike trains

A linear dynamical system (LDS) model

- One of the problems with the basic model (Lab 6 Part 1) is that it treated each time bin as independent.
- Instead, consider the following prior

$$p(X) = p(x_1) \prod_{t=2}^{I} p(x_t \mid x_{t-1})$$

$$= \mathcal{N}(x_1 \mid 0, Q) \prod_{t=2}^{T} \mathcal{N}(x_t \mid Ax_{t-1}, Q)$$

• Parameterized by dynamics matrix $A \in \mathbb{R}^{D \times D}$ and dynamics covariance $Q \in \mathbb{R}^{D \times D}$.

Decoding movement from neural spike trains The posterior distribution

The posterior is given by

$$p(X \mid Y) \propto \left[\mathcal{N}(x_1 \mid 0, Q) \prod_{t=2}^{T} \mathcal{N}(x_t \mid Ax_{t-1}, Q) \right] \left[\prod_{t=1}^{T} \mathcal{N}(y_t \mid Cx_t + d, R) \right]$$

$$= \exp \{\text{"a big quadratic function of } X^{\text{"}} \}$$

$$= \mathcal{N}(\text{vec}(X) \mid \mu, \Sigma)$$

Where $\Sigma = J^{-1}$ and $\mu = J^{-1}h$ with,

$$J = \begin{bmatrix} J_{11} & J_{21}^{\top} \\ J_{21} & J_{22} & J_{32}^{\top} \\ & \ddots & \ddots & \\ & & \ddots & \ddots & \\ & & & J_{T,T-1}^{\top} \end{bmatrix} \qquad h = \begin{bmatrix} h_1 \\ h_2 \\ \vdots \\ h_T \end{bmatrix}$$

• The blocks are given by $J_{tt} = Q^{-1} + A^{\mathsf{T}}Q^{-1}A + C^{\mathsf{T}}R^{-1}C$ (except for J_{11} and J_{TT}), $J_{t,t-1} = -Q^{-1}A$, and $h_t = C^{\mathsf{T}}R^{-1}(y_t - d)$.

Decoding movement from neural spike trains

Poisson observations

- So far we've used a linear, Gaussian encoder for the spikes, even though they are counts!
- Suppose instead,

$$p(Y \mid X) = \prod_{t=1}^{T} \prod_{n=1}^{N} \text{Po} (y_{tn} \mid f(c_n^{\mathsf{T}} x_t + d_n))$$

• The posterior is no longer Gaussian, but it's common to approximate it as one.

Decoding movement from neural spike trains Laplace approximation

Approximate the posterior as

$$p(X \mid Y) \approx \mathcal{N}(\mu, \Sigma)$$

where

$$\mathcal{Z}(X) = -\log p(X, Y)$$

$$\mu = \operatorname{argmin}_{X} \mathcal{Z}(X)$$

$$\Sigma = \left[\left. \nabla^{2} \mathcal{Z}(X) \right|_{X=\mu} \right]^{-1}$$

For GLM encoders, the log joint is concave and μ and Σ can be found efficiently.

Decoding movement from neural spike trains Laplace approximation under a Poisson GLM encoder

Derive the Hessian under the Poisson GLM encoder with exponential mean function $f(a) = e^a$:

$$\frac{\partial^2}{\partial x_t \partial x_t} \mathcal{L}(X) = J_{tt} - \sum_{n=1}^{N} \frac{\partial^2}{\partial x_t \partial x_t} \log \operatorname{Po}\left(y_{tn} \mid f(c_n^{\top} x_t + d_n)\right)$$

$$= J_{tt} - \sum_{n=1}^{N} \frac{\partial^2}{\partial x_t \partial x_t} \left[-f(c_n^{\top} x_t + d_n) + y_{tn} \log f(c_n^{\top} x_t + d_n) \right]$$

$$= J_{tt} + \sum_{n=1}^{N} \exp\{c_n^{\top} x_t + d_n\} c_n c_n^{\top}$$

Decoding movement from neural spike trains Structured decoders

- If we're going to make a Gaussian approximation anyway, why not learn more flexible means and covariances?
- Recall the form of the LDS posterior,

$$J_{tt} = Q^{-1} + A^{T}Q^{-1}A + C^{T}R^{-1}C$$

$$J_{t,t-1} = -Q^{-1}A$$

$$h_{t} = C^{T}R^{-1}(y_{t} - d)$$

• Idea: replace these with learned functions of $y_{1:T}$.

Decoding movement from neural spike trains Structured decoders

For example,

$$p(X \mid Y) = \mathcal{N}(\text{vec}(X) \mid \mu, \Sigma)$$
$$\mu = J(Y)^{-1}h(Y)$$
$$\Sigma = J(Y)^{-1}$$

Where

$$J_{tt} = Q^{-1} + A^{T}Q^{-1}A + f(y_{t-\Delta:t+\Delta})$$

$$J_{t,t-1} = -Q^{-1}A$$

$$h_{t} = g(y_{t-\Delta:t+\Delta})$$

Unit III: Unsupervised modeling

Searching for signals to explain neural activity

Searching for signals to explain neural activity

Encoding models: given stimulus (covariates) and response, find mapping.

Searching for signals to explain neural activity

signal mapping neural data

Recent examples: Musall et al (2018), Stringer et al (2018)

Paninski (2004) Truccolo et al (2005) Pillow et al (2008)

Searching for signals to explain neural activity

signal mapping neural data

Toward nonlinear and/or more biophysically plausible mappings.

latent signal

Searching for signals to explain neural activity

mapping neural data

Alternative: try to infer latent signals from the data

Searching for signals to explain neural activity

latent signal mapping mapping neural data

Alternative: try to infer latent signals from the data, subject to constraints.

Latent variable modeling is all about constraints The five D's

- <u>Dimensionality</u>: how many latent clusters, factors, etc.?
- Domain: are the latent variables discrete, continuous, bounded, sparse, etc.?
- Dynamics: how do the latent variables change over time?
- <u>Dependencies</u>: how do the latent variables relate to the observed data?
- <u>Distribution</u>: do we have prior knowledge about the variables' probability?

• We've already seen some examples in Unit 1!

Latent variable modeling is all about constraints

Domain/Dependency/Distribution

	Continuous Linear Gaussian	Discrete (Gen.) Linear Bernoulli/Poisson/etc.	Nonlinear Observation Models
Discrete Markovian Categorical	HMM Rabiner (1989)	HMM Rabiner (1989)	Structured VAE Johnson et al (2016)
Continuous Linear Gaussian	LDS Kalman (1960)	Poisson LDS Smith and Brown (2003), Paninski et al (2010) Macke et al (2011)	Deep PfLDS Archer et al (2015); Gao et al (2016)
Continuous Nonlinear (parametric) Gaussian	NLDS, e.g. Hodgkin-Huxley Ahrens, Huys, Paninski (2006) Huys and Paninski (2009)	NLDS, e.g. Hodgkin-Huxley Meng, Kramer, Eden (2011)	GPSSM, DKF, LFADS, VIND Frigola et al (2013), Krishnan et al (2015), Sussillo et al (2016), Hernandez et al (2018)
Mixed Switching Linear	SLDS Ghahramani and Hinton (1996) Murphy (1998)	Poisson SLDS Petreska et al (2013)	Structured VAE Johnson et al (2016)
Mixed Recurrent Linear	recurrent/augmented SLDS Barber (2006); Pachitariu et al (2014); Linderman et al (2017); Nassar et al (2019)	rSLDS Linderman et al (2017) Nassar et al (2019)	Structured VAE Johnson et al (2016)
Continuous Nonlinear (smoothing) Gaussian	GPFA Yu, Cunningham, et al (2009)	vLGP Zhao and Park (2017)	GPLVM Lawerence (2005), Wu et al (2017)
Continuous Nonlinear (nonparametric) Gaussian	GPSSM, DKF, LFADS, VIND Frigola et al (2013), Krishnan et al (2015), Sussillo et al (2016), Hernandez et al (2018)	GPSSM, DKF, LFADS, VIND Frigola et al (2013), Krishnan et al (2015), Sussillo et al (2016), Hernandez et al (2018)	GPSSM, DKF, LFADS, VIND Frigola et al (2013), Krishnan et al (2015), Sussillo et al (2016), Hernandez et al (2018)

Motivating Example: summarizing videos with behavioral states

Frame 0

Motivating Example: summarizing videos with behavioral states

Formulating as a probabilistic model

- Variables: Let,
 - $y_t \in \mathbb{R}^P$ denote the (vectorized) image at time t.
 - $z_t \in \{1,...,K\}$ denote the discrete latent state (aka behavioral "syllable") at time t.
- Model: Assume each time frame is independent and,

$$z_{t} \sim \text{Cat}(\pi)$$

$$y_{t} \mid z_{t} \sim \mathcal{N}(d_{z_{t}}, R_{z_{t}})$$

- Parameters: Let $\Theta = \pi$, $\{d_k, R_k\}_{k=1}^K$ denote the parameters,
 - $\pi \in \Delta_K$ is the prior probability of each state
 - $(d_k, R_k) \in \mathbb{R}^P \times \mathbb{R}^{P \times P}$ are the conditional mean and variance of images for discrete state $z_t = k$.

Bayesian inference in latent variable models MAP Estimation

• In Unit 1 we used maximum a posteriori (MAP) estimation to find,

$$z^*, \Theta^* = \arg\max_{z,\Theta} \log p(y, z, \Theta)$$

- This gave us a **point estimate** of the latent variables z and parameters Θ .
- Point estimates can lead to an overly optimistic view of the model.
- Specifically, MAP estimation found the best assignment, which may not reflect the average performance under the prior $p(z, \Theta)$.

Bayesian inference in latent variable models Integrating over the latent variables

- A more Bayesian approach is to integrate over the latent variables.
- First, learn a point estimate of the parameters,

$$\Theta^* = \arg \max_{\Theta} \log p(y, \Theta)$$

where
$$p(y, \Theta) = \int p(y, z, \Theta) dz = \mathbb{E}_{p(z, \Theta)}[p(y \mid z, \Theta)]$$
 is the marginal likelihood.

• Then, infer the posterior distribution over latent variables given observed data and parameters,

$$p(z \mid y, \Theta) = \frac{p(y \mid z, \Theta) p(z \mid \Theta) p(\Theta)}{p(y, \Theta)}$$

• (A "fully Bayesian" approach would integrate over both z and Θ .)

Bayesian inference in latent variable models

Maximizing the marginal likelihood

- How to learn the parameters?
- First idea: gradient ascent,

$$\nabla_{\Theta} \log p(y, \Theta) = \frac{\nabla_{\Theta} p(y, \Theta)}{p(y, \Theta)} = \frac{\int \nabla_{\Theta} p(y, z, \Theta) dz}{\int p(y, z, \Theta) dz}$$

- Sometimes, these integrals are available in closed form.
 - For example, when z is discrete the integrals become sums.
- Can we do better?

Bayesian inference in latent variable models Lower bound the marginal likelihood

Next idea: lower bound the marginal likelihood with a more tractable form,

$$\log p(y, \Theta) = \log \int p(y, z, \Theta) dz$$

Bayesian inference in latent variable models

Lower bound the marginal likelihood

• Next idea: lower bound the marginal likelihood with a more tractable form,

$$\begin{split} \log p(y,\Theta) &= \log \int p(y,z,\Theta) \, \mathrm{d}z \\ &= \log \int \frac{q(z)}{q(z)} p(y,z,\Theta) \, \mathrm{d}z \qquad \qquad \text{for any distribution } q(z) \\ &= \log \mathbb{E}_{q(z)} \left[\frac{p(y,z,\Theta)}{q(z)} \right] \\ &\geq \mathbb{E}_{q(z)} \left[\log p(y,z,\Theta) - \log q(z) \right] \qquad \text{by Jensen's inequality} \\ &\triangleq \mathscr{L}[q,\Theta] \end{split}$$

• \mathscr{L} is called the **evidence lower bound** or the **ELBO** for short.

Bayesian inference in latent variable modelsCoordinate ascent on the ELBO

Update the parameters,

$$\Theta \leftarrow \arg \max_{\Theta} \mathcal{L}[q, \Theta] = \arg \max_{\Theta} \mathbb{E}_{q(z)}[\log p(y, z, \Theta)]$$

Update the distribution on latent variables,

$$\begin{aligned} q &\leftarrow \arg\max_{q} \mathcal{L}[q, \Theta] \\ &= \arg\max_{q} \mathbb{E}_{q(z)} \left[\frac{\log p(y, z, \Theta)}{q(z)} \right] \\ &= \arg\min_{q} \mathrm{KL} \left(q(z) \, \| \, p(z \mid y, \Theta) \right) \\ &= p(z \mid y, \Theta) \end{aligned}$$

Bayesian inference in latent variable models

The Expectation-Maximization (EM) algorithm

• M-step: Maximize the expected log probability

$$\Theta \leftarrow = \arg \max_{\Theta} \mathbb{E}_{q(z)}[\log p(y, z, \Theta)]$$

• E-step: Update the posterior over latent variables

$$q \leftarrow p(z \mid y, \Theta)$$

• After each E-step, the **ELBO** is tight:

$$\mathcal{L}[p(z \mid y, \Theta), \Theta] = \mathbb{E}_{p(z|y,\Theta)} \left[\log \frac{p(y, z, \Theta)}{p(z \mid y, \Theta)} \right]$$
$$= \mathbb{E}_{p(z|y,\Theta)} \left[\log p(y, \Theta) \right]$$
$$= \log p(y, \Theta)$$

EM converges to local optima of the marginal distribution.

Bayesian inference in latent variable models EM for the Gaussian mixture model

Recall the model,

$$z_t \sim \text{Cat}(\pi)$$
$$y_t \mid z_t \sim \mathcal{N}(d_{z_t}, R_{z_t})$$

with parameters $\Theta = \pi$, $\{d_k, R_k\}_{k=1}^K$

• **E-step**: Update the posterior over latent variables,

$$q(z_t = k) \leftarrow p(z_t = k \mid y_t, \Theta) \propto \frac{\pi_k \mathcal{N}(y_T \mid d_k, R_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(y_t \mid d_j, R_j)}$$

• M-step: Update the parameters. Let $N_k = \sum_{t=1}^T q(z_t = k)$, then

$$\pi_k \leftarrow \frac{N_k}{T}$$

$$d_k \leftarrow \frac{1}{N_k} \sum_{t=1}^{T} q(z_t = k) y_t$$

$$R_k \leftarrow \frac{1}{N_k} \sum_{t=1}^{T} q(z_t = k) (y_t - d_k) (y_t - d_k)^{\top}$$

Conclusion

- Unsupervised models, specifically latent variable models, seek simple underlying variables to explain neural or behavioral data.
- LVMs are all about constraints.
- MAP estimation, which we used in Unit 1, yielded a point estimate, but can be over-optimistic.
- EM maximizes the marginal likelihood by coordinate ascent on the latent variable posterior and the parameters.