Elektrostatik

Elektrostatisches Feld

$Q = \oint_{A} \vec{D} \cdot d\vec{A}$	Satz von Gauss	Homogenes Feld: $Q = D \cdot A$	Ladung Q	$[Q] = A \cdot s = C \text{ (Coulomb)}$
$U_{21} = \int_{2}^{1} \vec{E} \cdot d\vec{s}$		Homogenes Feld: $U=E\cdot s$	Spannung U $\left[U \right]$	$]=N\cdot m/A\cdot s=J/C=V$ (Volt)
$D = \varepsilon \cdot E$ $\varepsilon = \varepsilon_0 \cdot \varepsilon_r$ $\varepsilon_0 = 8.854 \cdot 10^{-12}$		$\varepsilon_{rVakuum} = \varepsilon_{rLuft} = 1$ $\varepsilon_{rGlas} \approx 4$ $\varepsilon_{rHartpapier} \approx 4 - 6$	Feldstärke E (Ursache) diel. Flussdichte D (V diel. Leitwert ϵ (Permitt ϵ_r = relative Permittivität	Virkung) $ [D] = A \cdot s/m^2 $

$E = \frac{Q}{4 \cdot \pi \cdot \varepsilon \cdot r^2}$	Q Kugel	Feldstärke E ausserhalb einer Punktladung r = Abstand vom Ladungsschwerpunkt in m
$E = \frac{Q}{2 \cdot \pi \cdot \varepsilon \cdot r \cdot l}$	Q/1	Feldstärke um eine Linienladung $\left[ec{E} ight] = V/m$
$E = \frac{Q}{2 \cdot \varepsilon \cdot A}$		Feldstärke um eine Flächenladung E hängt nicht vom Abstand ab, da Feld konstant! A = Plattenfläche in m² (U hingegen schon)
$E = \frac{Q}{\varepsilon \cdot A} = \frac{U}{s}$ Ausserhalb: $E = 0$	+0	Feldstärke zwischen 2 Flächenladungen E hängt nicht vom Abstand ab, da Feld konstant! (U hingegen schon) entspricht Plattenkondensator

Feldlinien an Grenzflächen

Kapazität (dielektrischer Leitwert)

Felder und Kapazitäten verschiedener geometrischer Anordnungen

Kondensatorschaltungen

Energie im elektrostatischen Feld

Energie im elektrostatischen i eta	
$W_e = C \cdot \int_0^U u \cdot du$	Energie W _e im elektrostatischen Feld
$W_e = \frac{C \cdot U^2}{2} = \frac{Q \cdot U}{2} = \frac{Q^2}{2 \cdot C}$	Vergleiche: Energie, um el. Ladung in fremden E-Feld zu verschieben: $W = Q_{T} * U$ $ [W_e] = W \cdot s = J \text{ (Joule)} $
$w_e = \frac{C \cdot U^2}{2 \cdot V} = \frac{Q \cdot U}{2 \cdot V} = \frac{Q^2}{2 \cdot C \cdot V}$	$W \cdot S$
Homogenes Feld:	Energiedichte \mathbf{w}_{e} $ [w_{e}] = \frac{W \cdot s}{m^{3}} $
$w_e = \frac{D \cdot E}{2} = \frac{\varepsilon \cdot E^2}{2} = \frac{D^2}{2 \cdot \varepsilon} \qquad w_e = \frac{W_e}{V}$	V = Volumen des Feldraumes in m ³
$\Delta W = Q_T \cdot U$	Verschiebungsarbeit ΔW einer Ladung in einem fremden E-Feld Merke: ΔW ≠ im Feld gespeicherte Ladung! Dazu: W _e = U*Q/2

Kräfte im elektrostatischen Feld

$F = Q \cdot E$	Kraft F auf Ladung im E-Feld $[F] = N$ (Newton)
$F = \frac{Q_1 \cdot Q_2}{4\pi \cdot \varepsilon \cdot s^2}$	Kraft zwischen Punktladungen s = Abstand der Ladungen (Ladungsschwerpunkt)
$Q_1 \cdot Q_2$	Kraft zwischen Linienladungen
$F = \frac{Q_1 \cdot Q_2}{2\pi \cdot \varepsilon \cdot s \cdot l}$	s = Abstand der Leiter in m I = Leiterlänge in m $ [F] = N = kg \cdot m/s^2 $

Kraft zwischen Kondensatorplatten

2	Homogenes Feld (Plattenkondensator):	Quelle angeschlossen → Spannung konstant
$F - \frac{U^2 \cdot dC}{dC}$	$F = \frac{U^2 \cdot C}{1 + 2\epsilon \cdot C} = \frac{U^2 \cdot \varepsilon \cdot A}{1 + 2\epsilon \cdot C}$	F nimmt ab, je weiter die Platten von einander entfernt sind.
$1 - \frac{1}{2 \cdot ds}$	$F = \frac{1}{2 \cdot s} = \frac{1}{2 \cdot s^2}$	Formeln gelten auch bei abgehängter Quelle, wenn Plattenabstand nicht verändert wird.
$F = \frac{U^2 \cdot dC}{2 \cdot ds}$	Homogenes Feld (Plattenkondensator):	Quelle abgehängt → Ladung konstant
	$F - \frac{U^2 \cdot C}{Q} - \frac{Q^2}{Q}$	F bleibt konstant (unabhängig vom Plattenabstand)
	$F = \frac{2 \cdot s}{2 \cdot \varepsilon \cdot A} = \frac{2}{2 \cdot \varepsilon \cdot A}$	Formeln gelten auch bei angeschlossener Quelle, wenn Plattenabstand nicht verändert wird.

Strom und Spannung am Kondensator

$i = C \cdot \frac{du}{dt}$	Differentialform i = Strom zum Zeitpunkt t
$u = \frac{1}{C} \int_{0}^{t_f} i \cdot dt + U_0$	Integralform u = Spannung zum Zeitpunkt t U ₀ = Anfangsspannung

Gleichstromlehre

Elektrisches Strömungsfeld

$\vec{E} = dU/d\vec{s}$	Homogenes Feld: $E=U/s$	Elektrische Feldstärke E $[E]=V/m$
$\vec{J} = dI/d\vec{A}$	Homogenes Feld: $J=I/A$	Stromdichte J $[J] = A/m^2$
$\gamma = \vec{J}/\vec{E}$ $\rho = \vec{E}/\vec{J}$	$\gamma_{20 \text{ Kupfer}} = 56$ $\gamma_{20 \text{ Alu}} = 35$	Spezifische Leitfähigkeit γ $\left[\gamma\right] = \frac{S}{m} = \frac{1}{\Omega \cdot m}$
$\rho = 1/\gamma$	$\gamma_{20 \; Silber} = 60$	Spezifischer Widerstand ρ $\left[\rho\right] = \Omega \cdot m$
$\int \vec{J} \cdot d\vec{A}$	Homogenes Feld:	Widerstand R eines Leiters $\llbracket R \rrbracket = \Omega$ (Ohm)
$G = \frac{1}{R} = \frac{I}{U} = \frac{\int_{A} J \cdot dA}{\int_{S} \vec{E} \cdot d\vec{s}}$	$R = \frac{1}{G} = \frac{l}{\gamma \cdot A} = \frac{\rho \cdot l}{A}$	
$G = \frac{2 \cdot \pi \cdot \gamma \cdot l}{\ln(r_a/r_i)}$	ri ra U	Leitwert eines Hohlzylinders $ [G] = S $ $ \gamma = \text{Leitwert des Zwischenraumes} $ $ r_i = \text{Aussenradius des Innenleiters} $ $ r_a = \text{Innenradius des Aussenleiters} $ $ 1 = \text{Länge des Zylinders in m} $

Temperaturabhängigkeit von Widerständen

	Temperaturabiliangigkeit von Widerstanden				
linear	$R_{g} = R_{20} \cdot (1 + \alpha_{20} \cdot \Delta \theta)$ $\Delta R = R_{20} \cdot \alpha_{20} \cdot \Delta \theta$ $\Delta \theta = \theta - 20^{\circ} C$	Formeln betreffen insbesondere die Metalle	Lineare Temperaturabhängigkeit R ₂₀ = Widerstand bei 20°C R ₉ = Widerstand bei ϑ ("Warmwiderstand") m = Steigung der Geraden α_{20} = Temperaturkoeffizient bei 20°C \mathcal{G} = Temperatur in °Celsius	$[\alpha_{20}] = 1/^{\circ}C$ $[\beta] = {^{\circ}C}$	
ır	$R_T = R_N \cdot e^{\alpha \cdot (T - T_N)} \qquad -\frac{P}{\Gamma}$	oder PTC	PTC (positive temperature coefficient) → Kaltleite R _N = Nennwiderstand R _T = Warm/Kaltwiderstand T _N = Nenntemperatur in K oder °C α= Temperaturkoeffizient (ist konstant)	er 0°C = 273,16 K	
nicht linear	$R_T = R_N \cdot e^{b\left(\frac{1}{T} - \frac{1}{T_N}\right)} \qquad -\frac{N}{T_N}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NTC (negative temperature coefficient) → Heissl T = Temperatur in Kelvin b = Materialkonstante	eiter $ \begin{bmatrix} T \end{bmatrix} = K \\ [b] = K $	
	$U = C \cdot I^{\beta}$ $R = C \cdot I^{(\beta-1)}$	U	VDR (voltage dependent resistor) $C = \text{entspricht Spannungsabfall bei 1A}$ $\beta = \text{Materialkonstante } (0.05 - 0.5)$	Keine Einheitenko ntrolle möglich!	

Kirchhoffsche Gesetze

Pfeilsysteme

Energie und Leistung

	ana		,.ug
P T	I-R	U R	P Ū
4	J	1	$\sqrt{\frac{P}{R}}$
	R	Р	U·I
P I'	U² R	$\frac{\underline{U}^2}{R}$	I²∙R

$P = U \cdot I$		
U^2	Leistung P	$[P] = V \cdot A = W$ (Watt)
$P = \frac{U^2}{R} = I^2 \cdot R$		
$W = P \cdot t$	Energie W	$[W] = W \cdot s = J$ (Joule)
P_{ab}	Wirkungsgrad η	$[\eta] = 1$ (einheitenlos)
$\eta = \frac{P_{ab}}{P_{ab}} \le 1$	P _{auf} = aufgenommene Leistung	
- auf	P _{ab} = abgegebene Leistung	

Spannungs-/ Stromquellen

 U_q = Quellenspannung (ideal) U_0 = Lehrlaufspannung I_k = Kurzschlussstrom

R_i = Innenwiderstand

U_i = Spannungsabfall am R_i

U = Klemmenspannung bei Belastung

$$\begin{split} I &= I_q - I_i &= I_q - U_0 / R_i \\ I_k &= I_q & U_0 = I_q \cdot R_i \\ R_i &= \frac{\Delta U}{\Delta I} = \frac{U_0}{I_q} \end{split}$$

Lineare Stromquelle

 $I_q = Quellenstrom$ $I_k = Kurzschlussstrom$

R_i = Innenwiderstand

U₀ = Lehrlaufspannung

 I_i = Strom durch R_i

I = Klemmenstrom bei Belastung

$$I_q = U_q / R_i$$

$$I_q = I_k$$

Spannungsquelle → Stromquelle

werden!

$$U_q = R_i \cdot I_q$$
$$U_q = U_0$$

Stromquelle → Spannungsquelle

Geht nur, wenn ein Widerstand(snetzwerk) ohne Knoten parallel zur Stromquelle liegt (Innenwiderstand)

Leistungsanpassung

 P_{max} = Leistung am Lastwiderstand bei Anpassung P_{max} = ½ Quellenleistung

Ersatzwiderstand

$R_E = R_1 + R_2 + \ldots + R_n$	Serieschaltung von Widerständen	
$ \frac{1}{R_E} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_n} $ Für 2 parallele Widerstände: $ R_E = R_1 \ R_2 = \frac{R_1 \cdot R_2}{R_1 + R_2} $	Parallelschaltung von Widerständen R _E = Ersatzwiderstand	
R1 a*R1 R3 R1 a*R1 R2 a*R2 R2 a*R2 R2 a*R2	Brückenvereinfachungen Da die Brücke abgeglichen ist, fliesst kein Querstrom ($I_3 = 0$) Abgleichbedingung: $\frac{R_1}{R_2} = \frac{a \cdot R_1}{a \cdot R_2}$	

Ähnlichkeitsregel

$$\frac{I_r}{I_a} = \frac{U_{qr}}{U_{qa}} \hspace{1cm} I_r = I_a \cdot \frac{U_{qr}}{U_{qa}} \hspace{1cm} I_r = \text{Realer Strom} \\ I_a = \text{Angenommener Strom} \\ U_{qr} = \text{Reale Quellenspannung} \\ U_{qa} = \text{Angenommene Quellenspannung}$$

Spannungs- und Stromteiler

$$U_2 = U \cdot \frac{R_2}{R_1 + R_2}$$

$$U_1 \quad R_1$$

$$\frac{U_1}{U_2} = \frac{R_1}{R_2}$$

Spannungsteiler

Gilt nicht bei Belastung!

$$I_{2} = I \cdot \frac{R_{1}}{R_{1} + R_{2}}$$
$$I_{1}/I_{2} = R_{2}/R_{1}$$

Stromteiler

Achtung Indizes!

Stern-Dreieck-Transformation

Dreieck ∆:

R₁₂ = Widerstand von 1 zu 2 R₂₃ = Widerstand von 2 zu 3

 R_{31} = Widerstand von 3 zu 1

Stern Y:

R₁ = Widerstand von 1 zur Mitte R₂ = Widerstand von 2 zur Mitte

R₃ = Widerstand von 3 zur Mitte

Stern - Dreieck

 $Y \rightarrow \Delta$

$$R_{12} = S/R_3$$
 $R_{23} = S/R_1$ $R_{31} = S/R_2$

$$S = R_1 \cdot R_2 + R_2 \cdot R_3 + R_3 \cdot R_1$$

Δ → Y:

 $R_Y = \frac{R_\Delta}{3} \quad | \quad \mathbf{Y} \rightarrow \Delta \qquad R_\Delta = 3 \cdot R_Y$

Dreieck → Stern

$$R_1 = R_{12} \cdot R_{31}/D$$
 $R_2 = R_{23} \cdot R_{12}/D$

$$R_3 = R_{31} \cdot R_{23}/D$$

$$R_3 = R_{31} \cdot R_{23}/D$$
 $D = R_{12} + R_{23} + R_{31}$

wenn alle 3 Widerstände gleich gross:

R_∆ = Widerstand Dreiecksschaltung

R_Y = Widerstand Sternschaltung

Quellenverschiebung

Ideale Spannungsquelle:

- Bei Verschiebung über einen Knoten wird die Quelle vermehrt und in jeden angrenzenden Zweig geschoben
 - → Maschengleichungen werden nicht verändert

R2 R3 R5 Uq_{|(} R1 R4

Ideale Stromquelle:

- · Quelle wird zuerst vermehrt und danach umgehängt
 - → Knotengleichungen werden nicht verändert

R31 R4

Ersatzspannungsquelle

- → liefert Strom und Spannung in einem Netzzweig
- Widerstand, für den Ersatzquelle bestimmt wird, abhängen
- Innenwiderstand der Ersatzquelle:
 - vorhandene Quellen ausschalten
 - Spannungsquellen kurzschliessen
 - Stromquellen unterbrechen
 - Widerstände zusammenfassen → R_i
 - Quellenspannung der Ersatzquelle:
 - I-Quellen in U-Quellen umwandeln
 - Quellen zusammenfassen
 - durch Widerstände in den direkten Klemmenzweigen fliesst kein Strom
 - → weglassen
 - Spannung an den Ausgangsklemmen bestimmen → U₀

Beispiel:

Gesucht:

Ersatzspannungsquelle für R3

Resultat: Ersatzspannungsquelle, mit welcher nun Strom und Spannung in R3 berechnet werden kann

Maschenstrom-Verfahren

- → liefert Ströme in den Verbindungszweigen
- Reale Stromquellen in Spannungsquellen umwandeln
- Baum bilden
 - Ein zusammenhängender Linienzug, der alle Knoten erfasst, aber keinen geschlossenen Umlauf bildet (nicht zwingend ohne Stift abzusetzen)
 - gesuchte Ströme und ideale Stromquellen müssen in Verbindungszweigen (VZ) sein
- · Maschen legen:
 - pro Masche nur ein Verbindungszweig
 - Umlaufsinn gemäss Stromrichtung in VZ
 - ergibt so viele Maschen wie VZ
- Widerstandsmatrix (linke Seite):
 - Hauptdiagonale: Summe der Widerstände der entsprechenden Masche
 - andere Elemente: Widerstände, die den entsprechenden Maschen gemeinsam sind
 - + bei gleicher Maschenumlaufrichtung
 - bei entgegengesetzter Umlaufrichtung (beim jeweiligen Widerstand betrachtet)
 - → Symmetrie der Matrix zur Hauptdiagonalen
- Spannungsmatrix (rechte Seite):
 - Quellenspannungen, die in der entsprechenden Masche erhalten sind
 - + bei Spannungsrichtung entgegen Maschenumlaufsinn
 - bei Spannungsrichtung gleich Maschenumlaufsinn
- Berechnung: $[I] = [R]^{-1} * [U]$

Knotenpotential-Verfahren

- → liefert Spannung gegenüber dem Bezugsknoten
- Reale Spannungsquellen in Stromquellen umwandeln
- Baum bilden:
 - Bezugsknoten wählen, Baum sternförmig vom Bezugsknoten aus
- Ideale Spannungsquellen in Baumzweige legen
- Alle Knoten ("Sammelschienen") nummerieren
- Leitwertmatrix (linke Seite):
 - Hauptdiagonale: Summé der Leitwerte, die an den entsprechenden Knoten angrenzen
 - andere Elemente: Leitwerte der direkten VZ, die zwischen den beiden entsprechenden Knoten liegen
 - Vorzeichen immer negativ
 - 0, wenn keine direkte Verbindung oder nur ideale Stromguelle
 - → Symmetrie der Matrix zur Hauptdiagonalen
- Strommatrix (rechte Seite):
 - Stromquellen am entsprechenden Knoten
 - + wenn Strom dem Knoten zufliesst
 - wenn Strom vom Knoten wegfliesst
- Berechnung: [U] = [G]⁻¹ * [I]

Magnetismus

Ersatzschaltbild

 Θ = magn. Durchflutung (Ursache; Quellenseite) $[\Theta] = A$ $\begin{bmatrix} V_m \end{bmatrix} = A$ V_m = magn. Durchflutung (Verbraucherseite) $[\Phi] = V \cdot s$ Φ = magnetischer Fluss (Wirkung) $[G_m] = H$ G_m = magnetischer Leitwert

$\Theta = \oint_{s} \vec{H} \cdot d\vec{s} = \sum I \begin{array}{l} \text{Durch-flutungs-gesetz} \\ V_{m} = \int_{s} \vec{H} \bullet d\vec{s} \\ \Phi = \int_{A} \vec{B} \cdot d\vec{A} \\ \Phi = \oint_{A} \vec{B} \cdot d\vec{A} = 0 \text{quellenfrei} \end{array}$	Homogenes Feld: $\Theta = H \cdot s$ $= N \cdot I = \sum I$ $V_m = H \cdot s$ $\Phi = B \cdot A$	magn. Durchflutung Θ (Quellenseite) $\Theta = A$ magn. Durchflutung $V_{\mathbf{m}}$ (Verbraucherseite) $V_{\mathbf{m}} = A$ magn. Fluss Φ $\Phi = V \cdot S = Wb$ (Weber) $\Psi = S$ is a Länge des Feldraumes in Richtung von H
$\vec{H} = dV_m/d\vec{s}$	Homogenes Feld: $H = V_m / s$	magnetische Feldstärke H $ [H] = A/m $ s = Länge des Feldraumes in Richtung der Feldstärke in m
$\vec{B} = d\Phi/d\vec{A}$	Homogenes Feld: $B=\Phi/A$	magn. Flussdichte B $B = V \cdot s/m^2 = T$ (Tesla) A = Fläche 90° zur Flussdichte in m² 1 cm² = 10-4 m²
$B = \mu \cdot H$	$\mu_{r Luft} = \mu_{r Vakuum} = 1$	Permeabilität μ
$\mu = \mu_0 \cdot \mu_r$ $\mu_0 = 4 \cdot \pi \cdot 10^{-7} = 1,2566 \cdot 10^{-6}$	$\mu_{r Eisen} \approx 10^3 - 10^5$	$\mu_0 = \text{magnetische Feldkonstante} \qquad \qquad \mu_0 = 1 / \left(c_0^{-2} \cdot \mathcal{E}_0 \right)$ $\mu_r = \text{relative Permeabilität} \qquad \qquad \left[\mu_r \right] = 1 \text{ (einheitenlos)}$

$G_m = \frac{\Phi}{V_m} = \frac{\int_A \vec{B} \cdot d\vec{A}}{\int_S \vec{H} \cdot d\vec{S}}$	Homogenes Feld: $G_m = \frac{\Phi}{V_m} = \frac{B \cdot A}{H \cdot s} = \frac{\mu \cdot s}{s}$	$\frac{A}{S}$	magn. Leitwert G _m μ = Permeabilität	$egin{bmatrix} igl[G_migr] = V \cdot s igl/A = H \text{ (Henry)} \\ igl[\muigr] = V \cdot s igl/A \cdot m \end{split}$
$v = \frac{B \cdot s}{2 \cdot \pi}$ In auss	sen gleich	leitend Isola- tion	Koaxialkabel G_m = magnetischer Leitwert s = Länge des Leiters in m r_i = Radius des Innenleiters r_a = Radius der Abschirmung	$[G_m] = H$

Materie im Magnetfeld

matorio ini magnotiola			
Paarweise geordnete Elektronen hindern das Magnetfeld → kleinere Flussdichte im Material als aussen	Diamagnetismus	$\mu_r < 1$	Blei, Kupfer, Wasser, Supraleiter
Elementarmagnete werden durch das Magnetfeld ausgerichtet grössere Flussdichte im Material als aussen	Paramagnetismus	$\mu_r > 1$	Aluminium, Platin, Tantal
Tritt nur in Materialien auf, wo die Elementarmagnete in Weiss'schen Bezirken gleich ausgerichtet sind → mehrfach grössere Flussdichte im Material als aussen	Ferromagnetismus	μ _r >> 1	Eisen, Nickel, Kobalt

Gesetz von Biot-Savart

Felder verschiedener geometrischer Anordnungen

Ausserhalb	:
	7

$$H = \frac{I}{2 \cdot \pi \cdot r}$$

$$H = \frac{I}{2 \cdot \pi \cdot r} \qquad H = \frac{I \cdot r}{2 \cdot \pi \cdot r_a^2}$$

Feldstärke eines unendlich langen Leiters

ra = Aussenradius des Leiters

r = Radius des "Standpunktes" P vom Leitermittelpunkt aus in m

Ausserhalb: r ≥ r_a

$$H = \frac{I}{2 \cdot \pi \cdot r_a}$$

$$H = 0$$

$$H = \frac{I}{2 \cdot \pi \cdot r} \cdot \frac{r^2 - r_1^2}{r_a^2 - r_1^2}$$

Feldstärke eines unendlich langen Hohlleiters

ra = Aussenradius des Leiters

r = Radius des "Standpunktes"

$$H = \frac{I \cdot r^2}{2 \cdot (x^2 + r^2)^{\frac{3}{2}}} \qquad H = \frac{I}{2 \cdot r}$$

Falls x = 0:
$$H = \frac{I}{2 \cdot r}$$

Feldstärke einer Leiterschlaufe

H = Feldstärke an einem Punkt P oberhalb des Mittelpunktes der Leiterschlaufe

r = Radius der Leiterschlaufe in m

x = Abstand P zum Kreismittelpunkt in m

[H] = A/m

Näherung: $H = \frac{N \cdot I}{I}$

Formel ist umso genauer, je länger und dünner die

Feldstärke einer Zylinderspule

I = Spulenstrom N = Windungszahl 1 = Länge der Spule in m Feldlinien gehen innerhalb der Spule vom Süd- zum Nordpol

 $ges:\Theta = I \cdot N$

ges: B_I

$$H = \frac{N \cdot I}{s} = \frac{N \cdot I}{2 \cdot \pi \cdot r}$$

Das Feld ist in der Spule "gefangen"

Feldstärke einer Ringspule (Torus)

geg: B∟

geg: Θ

→ Scherungsgerade → Arbeitspunkt im

1. Quadranten der Magnetisierungskurve

 $s = 2 \pi r = mittlerer Umfang des Torus in m$

I = Spulenstrom

N = Windungszahl

r = mittlerer Radius des Torus in m

Magnetische Kreise

$$\begin{array}{|c|c|c|c|}\hline H_L = B_L/\mu_0 & V_{mL} = H_L \cdot l_L & \Phi = B_L \cdot A_L \\ B_E = \Phi/A_E & \xrightarrow{MK} & H_E & V_{mE} = H_E \cdot l \end{array}$$

$$V_{mL} = H_L \cdot l$$

$$\Phi = B_L \cdot A_L$$

$$V_{\scriptscriptstyle mE} = H_{\scriptscriptstyle E} \cdot l_{\scriptscriptstyle E}$$

$$\Theta = V_{mL} + V_{mE1} + ... + V_{mEx}$$

streuungsfrei

Synthese Index L: Luftspalt

I = Länge in m

 B_E^* und H_E^* :

B = Flussdichte

 ⊕ = Durchflutung V_m = Durchflutung

Analyse

 $\Phi = Fluss$

Index E: Eisen A = Querschnitt in m²

$$\Theta = V_{mL} + V_{mE1} + \dots + V_{mEx}$$

$$\Phi_L = B_L \cdot A_L = \Phi_E = B_E \cdot A_E$$

streuungsfrei; $B_{E(H_E)} = \frac{\mu_0 \cdot A_L}{A_E \cdot l_L} \cdot (\Theta - H_E \cdot l_E)$

Eisenguerschnitt

überall gleich

$$\begin{split} B_L &= B_E \cdot A_E \big/ A_L \\ \text{Scherungsgerade: Von B}_{\text{E}^{\star}} \text{ nach H}_{\text{E}^{\star}} \end{split}$$

Für
$$H_E = 0$$
:

Für H_E = 0:
$$B_E^{*} = \mu_0 \cdot A_L / A_E \cdot l_L$$

Für B_E = 0:
$$H_E^*$$

Für B_E = 0: $H_E^* = \Theta/l_E$ $A_E = A_L \cdot \cos \alpha$

$$l_{I} = s \cdot \cos \alpha$$

$$B_{E(H_E)} = \frac{\mu_0 \cdot (\Theta - H_E \cdot l_E)}{\cos \alpha \cdot l_L}$$

Analyse bei schrägem Luftspalt:

H = Feldstärke

A_L = Fläche des Luftspaltes in m²

 $1 \text{ cm}^2 = 10^{-4} \text{ m}^2$

 $[\Theta] = A$

 $[V_m] = A$

 $[\Phi] = V \cdot s$

[H] = A/m

 A_E = Eisenguerschnitt

1₁ = Luftspalt-Länge in m

 α = Öffnungswinkel

$\frac{B_L = B_E \cdot \cos \alpha}{H_L \cdot l_L = -H_D \cdot l_D}$

$$B_I \cdot A_I = B_D \cdot A_D$$

$$B_{D(H_D)} = -H_D \cdot \mu_0 \cdot \frac{A_L \cdot l_D}{A_D \cdot l_L} \qquad \text{H$_L$ und H_D sind einander entgegengesetzt gerichtet}$$

Annahme¹ Eisenjoch ideal; streuungsfrei

Magnetischer Kreis mit Dauermagnet

 $B_{D(H_D)}$ \rightarrow Scherungsgerade \rightarrow Arbeitspunkt im 2. Quadranten der Magnetisierungskurve

H_D = magn. Feldstärke des Dauermagneten

I_D = Länge des Dauermagneten

Induktion

Falls Feld in Bewegung:

$$\vec{E}_i = \vec{B} \times \vec{v}_F$$

$$E_i = B \cdot v \cdot \sin \alpha$$

$$u_q = \int_{s} E_i \cdot d\vec{s}$$

$$u_a = B \cdot v \cdot l$$

Bedingung:

Der Leiter liegt auf \vec{E}_i

Falls Leiter in Bewegung:

$$\vec{E}_i = \vec{v}_L \times \vec{B}$$

Pluspol dort, wo \vec{E} hinzeigt

Die Induktivität ist die Fähigkeit, mit einem bestimmten Strom I einen gewissen magnetischen Fluss Φ zu erzeugen.

Bewegungsinduktion (Generator)

E_i = Induziertes Feld

$$[E] = V/m$$

 $[B] = T$

 $[\Phi] = V \cdot s$

[B] = T

V_F = Bewegungsgeschwindigkeit des Feldes in m/s

V_L = Bewegungsgeschwindigkeit des Leiters

u_q = Quellenspannung

I = Länge des Leiters in m

α = Winkel zwischen B und v

(Generatorregel)

Lenzsche Regel:

Der durch die Induktionsspannung hervorgerufene Strom ist so gerichtet, dass er der Ursache der Induktion entgegenwirkt.

Bei einem Leiter:

$$u_i = \int_s \vec{E}_i \cdot d\vec{s} = -\frac{d\Phi}{dt}$$
 Indu

Leiterschleife im Eisenjoch-Luftspalt:

$$U_{i} = \frac{d\Phi}{dt} = \frac{dB \cdot A}{dt} = \frac{dB \cdot b \cdot s}{dt}$$

Nur die von der Leiterschleife eingeschlossene und von B durchflutete Fläche zählt!

Bei mehreren Leitern:

Ruheinduktion (Transformator)

 E_i = Induziertes Feld

u_i = Induzierte Spannung

N = Windungszahl

 $d\Phi$ = magnetische Flussänderung

ΔB = magnetische Flussdichtenänderung

dt = Zeitänderung in s

Selbstinduktion

$$u_L = L \cdot \frac{di}{dt}$$

Für nicht konstantes µ:

$$u_L = L \cdot \frac{di}{dt} \qquad L_d =$$

$$L_d = N^2 \cdot \frac{\mu_d \cdot A}{s} \quad \text{mit} \quad \mu_d = \frac{dB}{dH}$$

RLeitung=0

Für konstantes µ:

$$L = N^2 \cdot G_m$$

$$L = N^2 \cdot \mu \cdot A/s$$

$$L = \frac{N \cdot \Phi}{I} = \frac{N \cdot B \cdot A}{I}$$

- Vereinfachungen:
- R_{Cu} = 0Magnetfeld homogen

Selbstinduktion

u_L = Induzierte Spannung an Spule

L = Induktivität

 $[L] = V \cdot s/A = H$ (Henry)

L_d = Differentielle Induktivität

μ_d = Differentielle relative Permeabilität

(Steigung der Magnetisierungskurve)

 $[\mu_d] = V \cdot s/A \cdot m$

s = Länge der Feldlinien in m

A = Querschnittsfläche der Spule in m²

G_m = magnetischer Leitwert des Feldraumes

 $[G_m] = H$

N = Windungszahl der Spule

Selbstinduktivität einer Kreisringspule

$$L = N^2 \cdot \frac{\mu \cdot d^2}{4 \cdot D}$$

Bedingung: µ konstant!

Selbstinduktivität einer langen Zylinderspule

$$L = N^2 \cdot \frac{\mu \cdot \pi \cdot d^2}{4 \cdot s}$$

Bedingung: µ konstant!

$$\frac{1}{L} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \dots + \frac{1}{L_n}$$

Serieschaltung von Induktivitäten

Parallelschaltung von Induktivitäten

Gegeninduktion

$$L_{21} = \frac{\Phi_{21} \cdot N_2}{I_1} = \frac{\Psi_{m21}}{I_1}$$

$$L_{12} = \frac{\Phi_{12} \cdot N_1}{I_2} = \frac{\Psi_{m12}}{I_2}$$

$$L_{21} = L_{12}$$

$$L_{12} > 0:$$

$$L_{12} < 0:$$

$$L_{12} < 0:$$

Gegeninduktivität zweier Induktivitäten

 L_{12} = Gegeninduktivität zwischen L_1 und L_2

[L] = H

 Φ_{12} = Fluss durch Spule 1 verursacht durch Spule 2, wenn Spule 1 ausgeschaltet

 $[\Phi] = V \cdot s$

 $L_{12} > 0$: Gleichsinnige Kopplung (Induktivitäten unterstützen sich)

L₁₂ < 0: Gegensinnige Kopplung (z.B. Trafo)

Ψ = verketteter Fluss $\Psi = \Phi \cdot N = L \cdot I$

 $[\Psi] = V \cdot s$

$\begin{array}{ c c c c }\hline L_{21}=L_{12}=N_1\cdot N_2\cdot G_m & G_m \text{ konstant}\\ L_{21}=L_{12}=\sqrt{L_1\cdot L_2} & ideal: & kein Streufluss} \end{array}$	Gegeninduktivität eines Trafos
$\begin{aligned} L_{21} &= L_{12} = N_1 \cdot N_2 \cdot G_m \cdot k \\ L_{21} &= L_{12} = \sqrt{L_1 \cdot L_2} \cdot k \end{aligned} \qquad \text{real}$	G_{m} = Magnetischer Leitwert des Feldraumes $\left[G_{_{m}}\right]$ = H \mathbf{k} = Kopplungsfaktor \mathbf{k} \leq
$u_1 = i_1 \cdot R_1 + L_1 \cdot \frac{di_1}{dt} + L_{12} \cdot \frac{di_2}{dt}$	R= Kupferwiderstand Index 1: Primärseite
$u_2 = i_2 \cdot R_2 + L_{21} \cdot \frac{di_1}{dt} + L_2 \cdot \frac{di_2}{dt}$	Index 2: Sekundärseite L ₁₂ = Gegeninduktion
Wenn $i_2 = 0$ und R_1 vernachlässigt: Wenn $k = 1$:	
$u_1/L_1 = u_2/L_{12}$ $(= di_1/dt)$ $u_1/u_2 = N_1/N_2$	
Gleichsinnige Kopplung: $L_{12} > 0$	Serieschaltung von gekoppelten Spulen
$L_E = L_1 + L_2 + 2 \cdot L_{12}$ Gegensinnige Kopplung: L ₁₂ < 0	$L_{E} = \text{Ersatzinduktivität}$ $[L] = F$

Energie und Leistung im Magnetfeld

$W_m = L \cdot \int_0^I i \cdot di = rac{L \cdot I^2}{2}$ Hängt nicht von μ ab!	Energie
Bei konstantem μ :	Energiedichte
$w_m = \frac{dW_m}{dV} = \frac{H \cdot B}{2} = \frac{\mu \cdot H^2}{2} = \frac{B^2}{2 \cdot \mu}$	w_m = Energiedichte in der Spule $\left[w_m\right] = \frac{W \cdot s}{m^3}$
Bei nicht konstantem µ:	H = magnetische Feldstärke $[H] = A/m$ $B =$ magnetische Flussdichte $[B] = T$
$w_m = \int_0^B H \cdot dB$ $ ightharpoonup$ Fläche der Magnetisierungskurve	B = magnetische Flussdichte $B = T$
$dW = \Theta \cdot d\Phi$	Leistung
$p_m = \frac{dW_m}{dt} = \frac{\Theta \cdot d\Phi}{dt} \qquad p_m = p_{el}$	P_m = magnetische Leistung p_{el} = elektrische Leistung

Kräfte im Magnetfeld

Wechselstromlehre

Mittelwerte periodischer Grössen

$\overline{u} = \frac{1}{-1} \cdot \int_{0}^{t_1 + T} u \cdot dt$	$\cdot dt$ Reine Wechselgrösse:	Gleichwert \overline{u}	Arithmetischer Mittelwert Chemische Wirkung
$T \int_{t_1}^{t_1}$	$\overline{u} = 0$	t ₁ = Anfangszeitpunkt T = Dauer des betracht	teten Abschnittes

$$U = \sqrt{\frac{1}{T} \int_{t_1}^{t_1 + T} u^2 \cdot dt}$$

 $U = \sqrt{\frac{1}{T} \int_{t_{-}}^{t_{1}+T} u^{2} \cdot dt}$ Root Mean Square (RMS):

Zuerst Signal quadrieren, dann den arithmetischen Mittelwert hilden denn die Wirzel einer General in Mittel wert bilden, dann die Wurzel ziehen

Periodische Funktion mit verschieden Abschnitten:

$$U = \sqrt{\left(U_1^2 \cdot \Delta t_1 + U_2^2 \cdot \Delta t_2 + \ldots\right) \cdot 1/T}$$

Effektivwert eines Dreiecksignals

Effektivwert eines Sinussignals

Effektivwert U / Ueff

Quadratischer Mittelwert

Eine Gleichspannung der Grösse U würde in einem ohmschen Widerstand dieselbe Energie in Wärme umsetzen wie die Wechselspannung mit dem Effektivwert Ueff.

U = Effektivwert der gesamten Funktion

 U_1 = Effektivwert des 1. Abschnittes mit der Zeitdauer Δt_1

Effektivwert eines Rechtecks

Bedingung: $U = \hat{u}$ positive = |negative| Spitze Das Tastverhältnis ist egal

$$U = \frac{\hat{u}}{\sqrt{2}} \qquad \qquad \hat{u} = \text{Amplitude} \qquad \qquad U = \frac{\hat{u}}{\sqrt{3}} \qquad \begin{array}{l} \text{Bedingung:} \\ \text{Die Signalform ist egal} \\ \text{Die Gleichanteil} \\ \text{Die Gleichanteil} \\ \text{Die Grundschwing} \\ \text{Die Grundsch$$

Geometrische Summe der $U=\sqrt{U_{DC}^2+U_{eff\ AC}^2}$ Geometrische Summe der überlagerten Gleichspannung und des reinen AC-Effektivwertes

Effektivwert von Mischgrössen

U₁ = Grundschwingung (1. Oberwelle)

 $U_2 = 2$. Oberwelle

 U_{DC} = Gleichspannungsanteil (konstant)

U_{eff AC} = Effektivwert des Wechselspannungsanteil

$$\overline{|u|} = \frac{1}{T} \int_{t_1}^{t_1+T} |u| \cdot dt$$
Zuerst Signal gleichrichten, dann den arithmetischen Mittelwert bilden

Gleichrichtwert |u|

Arithmetischer Mittelwert des Betrags

$$k_{s} = \frac{Scheitelwert}{Effektivwert} = \frac{\hat{i}}{I} = \frac{\hat{u}}{U}$$

$$F = \frac{Effektivwert}{Gleichrichtwert} = \frac{I}{|\bar{i}|} = \frac{U}{|\bar{u}|}$$

Verhältniszahlen

k_s = Scheitelfaktor

F = Formfaktor

 $[k_s] = 1$

Sinusförmige Grössen

$u = \hat{u} \cdot \sin(\omega \cdot t + \varphi_u) \text{oder} u = \hat{u} \cdot \cos(\omega \cdot t + \varphi_u)$	$ u = Momentanwert $ $ \hat{u} = Amplitude $ $ \omega t + \phi_u = Phasenwinkel $
$\omega = 2\pi \cdot f$	φ _u = Nullphasenwinkel im Bogenmass
$\omega = 2\pi/T$	ω = Kreisfrequenz $[\omega] = s^{-1}$ (nicht Hertz!)
f = 1/T	f = Frequenz $[f] = s^{-1} = Hz$ (Hertz)
	T = Periodendauer in s
$\overline{u} = 0$ $U = \hat{u}/\sqrt{2}$ $ \overline{u} = \hat{u} \cdot 2/\pi$	\overline{u} = Gleichwert / arithmetischer Mittelwert
$ u-0 $ $ u-0 $ $ u-u\cdot 2/\pi$	U = Effektivwert
π	u = Gleichrichtwert
$k_s = \sqrt{2} \qquad F = \frac{\pi}{2 \cdot \sqrt{2}} = 1.111$	$k_s = $ Scheitelfaktor
$Z \cdot \sqrt{Z}$	F = Formfaktor

Netzwerkelemente

$u_R = R \cdot i_R$	Widerstand R I _R = Strom durch den Widerstand	
\bigcup_{R}	u _R =Strom durch den Widerstand	٤
$\int_{C} du_{C}$	Kapazität C	alfor
$i_{C} = C \cdot \frac{du_{C}}{dt}$ $u_{C} = \left(\frac{1}{C} \cdot \int i_{C} \cdot dt\right) + U_{C}(0)$ Ic	$\begin{array}{l} i_c = Strom \ durch \ die \ Kapazit \"{a}t \\ u_c = Spannung \ \ddot{u}ber \ der \ Kapazit \"{a}t \\ U_c(0) = Anfangsspannung \\ Der \ Strom \ eilt \ der \ Spannung \ um \ 90° \ vor \\ (gilt \ nur \ bei \ sinus f\"{o}rmigen \ Signalen) \end{array}$	Allgemein gültig, unabhängig von der Signalform
$\int_{-L}^{L} di_L$	Induktivität L	All
$u_{L} = L \cdot \frac{di_{L}}{dt}$ $i_{L} = \left(\frac{1}{L} \cdot \int u_{L} \cdot dt\right) + I_{L}(0)$	i _L = Strom durch die Induktivität u _L = Spannung über der Induktivität I _c (0) = Anfangsstrom Der Strom eilt der Spannung um 90° nach	unabh
	(gilt nur bei sinusförmigen Signalen)	

	_
$\varphi_{z} = \varphi_{u} - \varphi_{i}$	φ _Z = Phasenwinkel der Impedanz
$\varphi_Z = \varphi_u = \varphi_i$	$\phi_Y = Phasenwinkel der Admittanz$
$\varphi_{Y} = \varphi_{i} - \varphi_{u}$	$\varphi_U = Phasenwinkel der Spannung$
· · · · · · · · · · · · · · · · · · ·	φ_{l} = Phasenwinkel des Stromes

Analyse im Zeitbereich gilt nur für sinusförmige Grössen!

7 tilaly 00 lill	LOILDOI GIGII	giit mar rai oima	oronningo Oroccon.		
u →		<u> </u>			
I = U/R		$I = \omega \cdot C \cdot U$		$I = U/(\omega \cdot L)$	
$arphi_i = arphi_u$		$\varphi_i = \varphi_u + \pi/2$		$\varphi_i = \varphi_u - \pi/2$	
$Z_R = R$	$Y_R = G$	$Z_C = X_C$ $Z_C = \frac{1}{\omega \cdot C}$	$Y_C = B_C$ $Y_C = \omega \cdot C$	$Z_L = X_L$ $Z_L = \omega \cdot L$	$Y_L = B_L$ $Y_L = \frac{1}{\omega \cdot L}$
$\varphi_Z = 0$	$\varphi_{Y}=0$	$\varphi_Z = -\pi/2$	$\varphi_{\scriptscriptstyle Y} = +\pi/2$	$\varphi_Z = +\pi/2$	$\varphi_{\scriptscriptstyle Y} = -\pi/2$

$Z = \sqrt{R^2 + X^2}$	$\tan \varphi_Z = X/R$	Serieschaltung von Wirk- und Blindwiderstand
$Y = \sqrt{G^2 + B^2}$	$\tan \varphi_{\scriptscriptstyle Y} = B/G$	Parallelschaltung von Wirk- und Blindwiderstand

Leistung / Energie

$S = U \cdot I$		Leistung	
$P = U \cdot I \cdot \cos \varphi_Z$	Schemeistung dunt siels tung	S = Scheinleistung	[S] = VA
$Q = U \cdot I \cdot \sin \varphi_{z}$	s in	P = Wirkleistung	[P] = W
	SCANT D Q D	Q = Blindleistung	[Q] = var
$S = \sqrt{P^2 + Q^2}$	Wieldoistung B	$\lambda = \cos \varphi_Z = \text{Wirkleistungsfaktor}$	
$\lambda = P/S = \cos \varphi_Z$	Wirkleistung m		
T_p	W_{-} 1 T_{ϱ}	Energie / Wirkleistung	
$W_{T_p} = \int p(t) \cdot dt$	$P = \frac{W_{T_p}}{T} = \frac{1}{T} \int_{T}^{T_p} u(t) \cdot i(t) \cdot dt$	W_{Tp} = Energie $[W]$	$=W\cdot s=J$
0	$T_p = T_{p=0}$	P = Wirkleistung	[P] = W
$p(t) = u(t) \cdot i(t)$	Gilt unabhängig von der Signalform	T _P = Periodendauer der Leistung	[T] = s

Analyse im Frequenzbereich gilt nur für sinusförmige Grössen!

7 illuly oo iiii i Toquoli 20	girt ital tal olitaol		
$\underline{U} = U \cdot e^{j \cdot \varphi_u}$	$\underline{U} = U \angle \varphi_u$	Komplexe Spannung \underline{U}	
$\underline{I} = I \cdot e^{j \cdot \varphi_i}$	$\underline{I} = I \angle \varphi_i$	Komplexer Strom \underline{I}	
$\underline{Z} = \text{Re}(\underline{Z}) + \text{Im}(\underline{Z}) =$	R + jX	Komplexe Impedanz \underline{Z}	
$\tan \varphi_Z = \frac{\operatorname{Im}(\underline{Z})}{\operatorname{Re}(\underline{Z})} = \frac{X}{R}$		Z = Scheinwiderstand / Impedanz R = Wirkwiderstand X = Blindwiderstand / Reaktanz	$\begin{bmatrix} Z \end{bmatrix} = \Omega$ $\begin{bmatrix} R \end{bmatrix} = \Omega$ $\begin{bmatrix} X \end{bmatrix} = \Omega$
$\underline{Y} = 1/\underline{Z} = \text{Re}(\underline{Y}) + \text{Im}(\underline{Y})$	$(\underline{Y}) = G + jB$	Komplexe Admittanz \underline{Y}	
Im(Y) R		Y = 1/Z = Scheinleitwert / Admittanz	$[Y] = 1/\Omega = S$
$\tan \varphi_Y = \frac{\operatorname{Im}(\underline{Y})}{\operatorname{Re}(Y)} = \frac{B}{G}$	$\varphi_{\scriptscriptstyle Y} = -\varphi_{\scriptscriptstyle Z}$	G = 1/R = Wirkleitwert	[G] = S (Siemens)
$\operatorname{Re}(\underline{Y})$ G		B = 1/X = Blindleitwert	[B] = S

<u>u</u>	→	<u></u>	—	<u>u</u>	→
$\underline{Z}_R = R$	$\underline{\underline{Y}}_R = G$	$\underline{Z}_C = jX_C$ $\underline{Z}_C = \frac{1}{j \cdot \omega \cdot C}$	$\underline{Y}_C = jB_C$ $\underline{Y}_C = j\omega \cdot C$	$\underline{Z}_L = jX_L$ $\underline{Z}_L = j\omega \cdot L$	$\underline{\underline{Y}}_{L} = jB_{L}$ $\underline{\underline{Y}}_{L} = \frac{1}{j \cdot \omega \cdot L}$
$Z_R = R$ $\varphi_Z = 0$	$Y_R = G$ $\varphi_Y = 0$	$X_C = -\frac{1}{\omega \cdot C}$ $\varphi_Z = -\pi/2$	$B_C = \omega \cdot C$ $\varphi_Y = \pi / 2$	$X_L = \omega \cdot L$ $\varphi_Z = \pi / 2$	$B_L = -\frac{1}{\omega \cdot L}$ $\varphi_Y = -\pi/2$
Z_R	Y_R Re	$ \stackrel{\text{Im}}{\longrightarrow} \stackrel{\text{Re}}{\longrightarrow} $	$ \uparrow^{\text{Im}} \underline{\underline{Y}_C} \text{Re} $		$ \begin{array}{c} \text{Im} & \text{Re} \\ \underline{Y}_C \end{array} $

Anwendungen

$\underline{Z} = \underline{Z}_1 + \underline{Z}_2 + \underline{Z}_3 + \underline{Z}_4 + \underline{Z}_5 + Z$	$\dots = (R_1 + R_2 + \dots) +$	$j \cdot (X_1 + X_2 +)$	Serieschaltung von Impedanzen	
$\underline{Y} = \underline{Y}_1 + \underline{Y}_2 + .$	$. = (G_1 + G_2 +) +$	$j \cdot (B_1 + B_2 +)$	Parallelschaltung von Admittanzen	
$R_{S} = \frac{G_{P}}{ \underline{Y} ^{2}}$ $X_{S} = -\frac{B_{P}}{ \underline{Y} ^{2}}$	G _p B _p ••• Gilt nur bei gleic	Rs NS NS	Umwandlung Parallelschaltung → Serieschaltung R _S = 1/G _p = Wirkwiderstand der Serieschaltung X _S = 1/B _p = Blindwiderstand der Serieschaltung Y = 1/Z = Admittanz der ganzen Schaltung	$[R] = \Omega$ $[X] = \Omega$ $[Y] = S$
$G_{P} = \frac{R_{S}}{\left \underline{Z}\right ^{2}}$ $B_{P} = -\frac{X_{S}}{\left \underline{Z}\right ^{2}}$	Rs Xs Gilt nur bei gleic	G _P B _P	Umwandlung Serieschaltung → Parallelschaltung G _p = 1/ R _S = Wirkwiderstand der Serieschaltung B _p = 1/ X _S = Blindwiderstand der Serieschaltung Z = 1/ Y = Impedanz der ganzen Schaltung	$[G] = S$ $[B] = S$ $[Z] = \Omega$
$\underline{U}_m = \underline{U} \cdot \frac{\underline{Z}_m}{\sum \underline{Z}}$	$\underline{U}_2 = \underline{U}$ $\underline{\underline{U}_1}$	le Impedanzen: $ \frac{Z_2}{Z_1 + Z_2} = \frac{Z_1}{Z_2} $	Spannungsteiler Gilt nicht bei Belastung!	
$\underline{I}_m = \underline{I} \cdot \frac{\underline{Y}_m}{\sum \underline{Y}}$	$\underline{I}_2 = \underline{I}$	ele Admittanzen: $ \cdot \frac{\underline{Y}_2}{\underline{Y}_1 + \underline{Y}_2} $ $ = \underline{Y}_1 / \underline{Y}_2 $	I II 12 Stromteiler	

Phasenbedingungen

· maconiboanigango	• •		
$\operatorname{Im}(A/B) = 0$	und	$\operatorname{Im}(B/A) = 0$	Keine Phasenverschiebung zwischen <u>A</u> und <u>B</u>
$\operatorname{Re}(\underline{A}/\underline{B}) > 0$	und	$\operatorname{Re}(\underline{B}/\underline{A}) > 0$	\Rightarrow <u>A</u> und <u>B</u> sind in Phase $\phi_A = \phi_A \Rightarrow \phi_{AB} = 0$ <u>A</u> und <u>B</u> können Spannungen und / oder Ströme sein
$\operatorname{Re}(\underline{A}/\underline{B}) = 0$	und	$\operatorname{Re}(\underline{B}/\underline{A}) = 0$	Phasenverschiebung von 90° zwischen A und B
$\operatorname{Im}(\underline{A}/\underline{B}) > 0$	und	$\operatorname{Im}(\underline{B}/\underline{A}) < 0$	→ <u>A</u> eilt <u>B</u> um 90° vor
$\underline{A}/\underline{B} = \text{Re} + j \text{ Im}$	oder	$\underline{B}/\underline{A} = \text{Re} + j \text{ Im}$	Beliebige Phasenverschiebung zw. A und B
$\tan \varphi = \text{Im/Re}$	odei	$\tan(-\varphi) = \text{Im/Re}$	→ A eilt B vor
Re = Im			Spezialfall: 45° Phasenverschiebung

Komplexe Leistung

$\underline{S} = P + jQ = S \angle \varphi_Z$	Im S	Komplexe Scheinleistung \underline{S} $[S] = VA$	in!
$S = \sqrt{P^2 + Q^2}$	Wz P Re	\underline{I}^* = konjugiert komplexer Strom ϕ_Z = Phasenwinkel der Impedanz	Grösse
$\underline{S} = \underline{U} \cdot \underline{I}^*$ $\underline{S} = U^2 / \underline{Z}^*$ $S = I^2 \cdot Z$	$\underline{S} = U^2 \cdot \underline{Y}^*$ $\underline{S} = I^2 / \underline{Y}$	U= Betrag der komplexen Spannung (Effektivwert!) I = Betrag des komplexen Stromes (Effektivwert!) $\underline{Z}^* = \text{konjugiert komplexe Impedanz}$ $\underline{Y}^* = \text{konjugiert komplexe Admittanz}$	für sinusförmige
Falls U die Quellenspannung ist $P = U \cdot \operatorname{Re}\left(\underline{I}\right)$	(die Phasenlage vorgibt): $Q = U \cdot \operatorname{Im}\left(\underline{I}\right)$		Gilt nur fü

Leistungsanpassung

Blindstromkompensation

Frequenzgang

$\underline{\underline{H}}(\omega) = \underline{\underline{\underline{U}}}_{2}$	Frequenzgang $\underline{\underline{H}}(\omega)$ $\underline{\underline{U}}_1$ = komplexe Eingangsspannung $\underline{\underline{U}}_2$ = komplexe Ausgangsspannung	
$\left \underline{\underline{H}}(\omega)\right = \frac{\underline{U}_2}{\underline{U}_1} \qquad \qquad \left \underline{\underline{H}}(\omega)\right = 20 \cdot \log \left(\underline{U}_2/\underline{U}_1\right)$	$ \begin{array}{c c} \textbf{Amplitudengang} & H(\omega) \\ n \ dB & U_1 = \text{Betrag der komplexen Eingangsspannung} \\ U_2 = \text{Betrag der komplexen Ausgangsspannung} \\ \end{array} $	
$\varphi(\omega) = (\varphi_2 - \varphi_1)$ $\varphi(\omega) = \arctan(\operatorname{Im}(\underline{H})/\operatorname{Re}(\underline{H}))$	Phasengang $\varphi(\omega)$ φ_1 = Winkel der komplexen Eingangsspannung φ_2 = Winkel der komplexen Ausgangsspannung	

Tiefpass

Amplitudengang

Phasengang

$$\varphi(\omega) = -\arctan(\omega/\omega_C)$$

$$\underline{U_2} \text{ eilt nach}$$

$$\varphi_0^{-1} \qquad 0 \qquad \log(\omega/\omega_c)$$

$$-45^{\circ}$$
Durchlass- Sperrbereich

Durchlassbereich: $\omega < \omega_C$ Übergang: $\omega = \omega_C$ Sperrbereich: $\omega > \omega_C$

 $\omega_{\text{C}} = Grenz frequenz$ bei $H_{(\omega)} = -3 \text{dB} = 1/\sqrt{2}$

RC-Tiefpass

$$\frac{H(\omega)}{1+j\cdot\omega\cdot R\cdot C} = \frac{1}{1+j\cdot\omega\cdot R\cdot C}$$

$$|\underline{H}(\omega)| = \frac{1}{\sqrt{1+(\omega\cdot R\cdot C)^2}}$$

$$\varphi(\omega) = -\arctan(\omega\cdot R\cdot C)$$

$$\omega_c = \frac{1}{R\cdot C} \quad dabei \ gilt: \quad |X_c| = R$$

RL-Tiefpass

$$\varphi(\omega) = -\arctan(\omega \cdot L/R)$$

$$\omega_c = \frac{R}{L}$$
 dabei gilt: $|X_L| = R$

Hochpass

Amplitudengang

Phasengang

Durchlassbereich: $\omega > \omega_C$ Übergang: $\omega = \omega_C$ Sperrbereich: $\omega < \omega_C$

 $\omega_{C}=Grenz frequenz$ bei $H_{(\omega)}=-3dB=1/\sqrt{2}$

RC-Hochpass

RL-Hochpass

$$\underline{H}(\omega) = \frac{1}{1 - j \cdot \frac{R}{\omega \cdot L}}$$

$$|\underline{H}(\omega)| = \frac{1}{\sqrt{1 + \left(\frac{R}{\omega \cdot L}\right)^2}}$$

$$\psi(\omega) = \arctan\left(\frac{R}{\omega \cdot L}\right)$$

$$\omega_c = \frac{R}{L} \quad dabei \quad gilt: \quad |X_L| = R$$

Schwingkreise

Frequenzabhängigkeit von I und U				
Seriekreis an idealer Spa	nnungsquelle	Parallelkreis an idealer Stromquelle		
$I(\Omega) = I_0 \cdot \frac{1}{\sqrt{1 + Q^2 \cdot (\Omega - 1/\Omega)^2}} \qquad \frac{\Omega = \omega/\omega_0}{\text{(bezogene Grösse)}}$		$U(\Omega) = U_0 \cdot \frac{1}{\sqrt{1 + Q^2 \cdot (\Omega - 1/\Omega)^2}}$		
$I_0 = U_q / R \qquad \qquad I_{C_{o,u}} = I_0 / \sqrt{2}$		$U_{C_{o,u}} = U_0 / \sqrt{2}$	$U_0 = I_q/G$	
$U_R(\Omega) = U_q \cdot \frac{1}{\sqrt{1 + Q^2 \cdot (\Omega - 1/\Omega)^2}}$		$I_{G}(\Omega) = I_{q} \cdot \frac{1}{\sqrt{1 + Q^{2} \cdot (\Omega - 1/\Omega)^{2}}}$		
$U_L(\Omega) = \frac{U_q \cdot Q \cdot \Omega}{\sqrt{1 + Q^2 \cdot (\Omega - 1/\Omega)^2}}$	$\Omega_{L_{\max}} = \frac{1}{\sqrt{1 - \frac{1}{2 \cdot Q^2}}}$	$\Omega_{C_{\text{max}}} = \frac{1}{\sqrt{1 - \frac{1}{2 \cdot Q^2}}}$	$I_{C}(\Omega) = \frac{I_{q} \cdot Q \cdot \Omega}{\sqrt{1 + Q^{2} \cdot (\Omega - 1/\Omega)^{2}}}$	
$U_{C}(\Omega) = \frac{U_{q} \cdot Q}{\Omega \cdot \sqrt{1 + Q^{2} \cdot (\Omega - 1/\Omega)^{2}}}$		$\Omega_{L_{ m max}} = \sqrt{1 - rac{1}{2 \cdot Q^2}}$ or auf, wenn Q $\geq 1/\sqrt{2}$	$U_{L}(\Omega) = \frac{I_{q} \cdot Q}{\Omega \cdot \sqrt{1 + Q^{2} \cdot (\Omega - 1/\Omega)^{2}}}$	

Drehstrom

Sternschaltung

$$\underline{U}_{1N} = U_S \angle 0^{\circ}$$

$$\underline{U}_{2N} = U_S \angle -120^{\circ}$$

$$\underline{U}_{3N} = U_S \angle 120^{\circ}$$

$$\begin{split} \underline{U}_{12} &= \sqrt{3} \cdot U_S \angle 30^{\circ} \\ \underline{U}_{23} &= \sqrt{3} \cdot U_S \angle -90^{\circ} \\ \underline{U}_{31} &= \sqrt{3} \cdot U_S \angle 150^{\circ} \end{split}$$

U_S = Stern-/ Strangspannung $U_S = U_{1N} = U_{2N} = U_{3N}$ $U_S = U_\Delta / \sqrt{3}$

$$\underline{Z}_1 = \underline{Z}_2 = \underline{Z}_3 = \underline{Z} = Z \angle \varphi$$

$$\underline{I}_N = \underline{I}_1 + \underline{I}_2 + \underline{I}_3 = 0$$

$$\underline{S} = P + jQ = 3 \cdot U_S \cdot I_S \angle \varphi$$

$$P = 3 \cdot U_S \cdot I_S \cdot \cos \varphi$$

$$Q = 3 \cdot U_S \cdot I_S \cdot \sin \varphi$$

$$L_3 \longrightarrow I_3$$

$$L_3 \longrightarrow I_3$$

Symmetrische Belastung

 I_S = Stern-/ Strangstrom = I_1 = I_2 = I_3

 φ = Phasenwinkel der Impedanz

(Phasenverschiebung zwischen U und I)

 I_N = Neutralleiterstrom

$$\underline{U}_{1K} = \underline{U}_{1N} - \underline{U}_{KN}
\underline{U}_{2K} = \underline{U}_{2N} - \underline{U}_{KN}
U_{NN} = U_{NN} - U_{NN}$$

$$\underline{U}_{\mathit{KN}} = \frac{\underline{Y}_1 \cdot \underline{U}_{1N} + \underline{Y}_2 \cdot \underline{U}_{2N} + \underline{Y}_3 \cdot \underline{U}_{3N}}{\underline{Y}_1 + \underline{Y}_2 + \underline{Y}_3}$$

$$\underline{I}_{N} = \underline{I}_{1} + \underline{I}_{2} + \underline{I}_{3} \neq 0$$

$$\underline{S} = \underline{U}_{1N} \cdot \underline{I}_{1}^{*} + \underline{U}_{2N} \cdot \underline{I}_{2}^{*} + \underline{U}_{3N} \cdot \underline{I}_{3}^{*}$$

ohne Impedanz im Neutralleiter

leiter (Bild)

Unsymmetrische Belastung im Vierleitersystem

Dreieckschaltung

$$\underline{U}_{12} = U_{\Delta} \angle 30^{\circ}$$

$$\underline{U}_{23} = U_{\Delta} \angle -90^{\circ}$$

$$U_{31} = U_{\Delta} \angle 150^{\circ}$$

 U_{Δ} = Aussenleiter-/ Dreieckspannung (Betrag!)= U_{12} = U_{23} = U_{31}

 $I = \sqrt{3} \cdot I_{\Lambda}$

$$\frac{3 \Rightarrow \qquad \qquad }{\underline{S} = 3 \cdot U_{\Delta} \cdot I_{\Delta} \angle \varphi}$$

$$\underline{S} = \sqrt{3} \cdot U_{\Delta} \cdot I \angle \varphi$$

Symmetrische Belastung

 I_{Δ} = Dreieck-/ Strangstrom = I_{12} = I_{23} = I_{31} I = Aussenleiterstrom

 $\underline{S} = \underline{U}_{13} \cdot \underline{I}_{1}^{*} + \underline{U}_{23} \cdot \underline{I}_{2}^{*}$ $\underline{S} = \underline{U}_{12} \cdot \underline{I}_1^* + \underline{U}_{32} \cdot \underline{I}_3^*$ $S = U_{21} \cdot I_2^* + U_{31} \cdot I_3^*$

Unsymmetrische Belastung

Siehe Kapitel Gleichstromlehre jedoch alles komplex rechnen Ausnahme: Umwandlung funktioniert nicht, wenn Neutralleiter angeschlossen und Strom führt

Stern-Dreieck-Umwandlung

Ausgleichsvorgänge

Zustandsgrössen

I pestimmt ling nicht sprunghatt angern kann i dei Napazilal. \mathbf{u}_{c} \mathcal{L}_{t} i dei induktivitäl. \mathbf{u}_{c}	Grösse, die den Inhalt den Energiespeichers bestimmt und nicht sprunghaft ändern kann	Zustandsgrösse der Kapazität: u _c	$i_C = C \cdot \frac{du_C}{dt}$	Zustandsgrösse der Induktivität: i	$u_L = L \cdot \frac{di_L}{dt}$
---	---	---	---------------------------------	---------------------------------------	---------------------------------

Lösungsstrategie für Ausgleichsvorgänge	mit einem Speicher
Einschränkung: Im Netzwerk befinden sich nur Gleichspannungs-/ Gleichstromquellen.	Beispiel Bei t = 0 schliesst der Schalter, zuvor ist der Zustand stationär
Vorgehen	$\begin{array}{c c} & & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$
1. Analyse Welches ist die Zustandsgrösse?	Zustandgrösse: i∟
2. Zustand vor Schaltzeitpunkt: t = 0.	Zustand ist noch stationär: $i_L(0) = \frac{U_q}{R_L + R_P} = 4 \ mA \qquad \qquad \frac{u_L(0) = 0}{\left(di_L / dt = 0 \right)}$
3. Zustand nach dem Ausgleichsvorgang: $t = \infty$ Schaltung ist wieder stationär (in der Praxis: $t \ge 5\tau$)	Zustand ist wieder stationär: $i_L(\infty) = \frac{U_q}{R_L} = 12 \ \textit{mA} \qquad \qquad u_L(\infty) = 0$ (Schalter geschlossen)
4. Zustand unmittelbar nach dem Schalten: t = 0. Die Zustandsgrösse ist gleich wie bei t =0.	(Schalter geschlossen) $ \begin{aligned} i_L(0_+) &= i_L(0) = 4 \ \textit{mA} \\ u_L(0_+) &= U_q - u_{R_L} = U_q - R_L \cdot i_L(0_+) = 8 \ \textit{V} \end{aligned} $
5. math. Beschreibung des Ausgleichsvorgang Lösung der DGL: abklingende e-Funktion → y(t) = K • e ^{-t/τ} y(t) = eingeschwungener + flüchtiger Vorgang y(t) = Endwert + (Startwert – Endwert) • e ^{-t/τ}	$\begin{split} i_L(t) &= \text{Endwert} + (\text{Startwert} - \text{Endwert}) \bullet e^{-t/\tau} = 12 + (4 - 12) \bullet e^{-t/\tau} \\ &= 12 + 8 \bullet e^{-t/\tau} \text{mA} \\ u_L(t) &= \text{Endwert} + (\text{Startwert} - \text{Endwert}) \bullet e^{-t/\tau} = 0 + (8 - 0) \bullet e^{-t/\tau} \\ &= 8 \bullet e^{-t/\tau} \text{V} \end{split}$
6. Bestimmung der Zeitkonstanten τ • Aus der DGL: $\tau = \frac{Koeffizient \ der \ Ableitung}{Koeffizient \ der \ Stammfunktion}$	$\tau = L \cdot \frac{i_L(\infty) - i_L(0_+)}{u_I(0_+)} = 2.4 \cdot \frac{(12 - 4) \cdot 10^{-3}}{8} = 2.4 \text{ ms}$ oder $\tau = L/R_L = 2.4/10^{-3} = 2.4 \text{ ms}$
• Aus der Anfangssteigung der Zustandsgrösse bei $t = 0_+$: > für die Kapazität: $\tau = C \cdot \frac{u_C(\infty) - u_C(0_+)}{i_C(0_+)}$ > für die Induktvität: $\tau = L \cdot \frac{i_L(\infty) - i_L(0_+)}{u_I(0_+)}$ • aus den Formeln	$i_{L}(t) \text{ in mA}$ 12 $i_{L}(t) = 12 + 8 \cdot e^{-t/\tau} \text{ mA}$ 0 2.4 4.8 7.2 9.6 12
 aus den Formen für die Kapazität: τ = R · C für die Induktivität: τ = L/R Bestimmung von R: Betrachten des Netzwerks von der Kapazität / Induktivität aus (entspricht U-/ I-Quelle). Berechnung von R, indem die anderen U-Quellen des Netzwerks kurzgeschlossen und I-Quellen unterbrochen werden. 	$u_{L}(t) \text{ in V}$ $u_{L}(t) = 8 \bullet e^{-t/\tau} \lor s$ $t \text{ in ms}$ $0 2.4 4.8 7.2 9.6 12$