

Computer Architecture and Logic Design (CALD) Lecture 15

Dr. Sorath Hansrajani

Assistant Professor

Department of Software Engineering

Bahria University Karachi Campus

Email: sorathhansrajani.bukc@bahria.edu.pk

State Reduction and Assignment

These slides were assembled by Mustafa Kemal Uyguroğlu, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these slides for your own academic purposes, provided that you include proper attribution.

State Reduction and Assignment

- State Reduction
- Reductions on the number of flipflops and the number of gates.
 - A reduction in the number of states may result in a reduction in the number of flip-flops.
 - An example state diagram showing in Fig. 5.25.

Fig. 5.25 State diagram

State Reduction

State: a a b c d e f f g f g a Input: 0 1 0 1 0 1 1 0 1 0 0

Output: 0 0 0 0 0 1 1 0 1 0 0

- Only the input-output sequences are important.
- Two circuits are equivalent
 - Have identical outputs for all input sequences;
 - The number of states is not important.

Fig. 5.25 State diagram

■ Equivalent states

- Two states are said to be equivalent
 - For each member of the set of inputs, they give exactly the same output and send the circuit to the same state or to an equivalent state.
 - One of them can be removed.

Table 5.6 *State Table*

Present State	Next State		Output	
	x = 0	x = 1	x = 0	<i>x</i> = 1
а	а	b	0	0
b	c	d	0	0
c	a	d	0	0
d	e	f	O	1
e	а	f	0	1
f	g	f	0	1
g	a	f	0	1

■ Reducing the state table

- e = g (remove g);
- d = f (remove f);

Table 5.7 *Reducing the State Table*

	Next State		Output	
Present State	x = 0	x = 1	x = 0	x = 1
а	а	b	0	0
b	c	d	0	0
c	а	d	0	0
d	e	f	0	1
e	а	f	0	1
f	e	f	0	1

The reduced finite state machine

Table 5.8 *Reduced State Table*

Present State	Next State Outp		out	
	x = 0	x = 1	x = 0	x = 1
\overline{a}	а	b	0	0
b	c	d	0	0
c	а	d	0	0
d	e	d	0	1
e	a	d	0	1

State: a a b c d e d d e d e a Input: 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 0 0

- The checking of each pair of states for possible equivalence can be done systematically using Implication Table.
- The unused states are treated as don't-care condition ⇒ fewer combinational gates.

Table 5.8 *Reduced State Table*

Present State	Next State		Output	
	x = 0	x = 1	x = 0	x = 1
а	а	b	0	0
b	c	d	0	0
c	а	d	0	0
d	e	d	0	1
e	а	d	0	1

Fig. 5.26 Reduced State diagram

State Assignment

- State Assignment
- To minimize the cost of the combinational circuits.
 - Three possible binary state assignments. (m states need n-bits, where $2^n > m$)

Table 5.9 *Three Possible Binary State Assignments*

State	Assignment 1, Binary	Assignment 2, Gray Code	Assignment 3, One-Hot
a	000	000	00001
b	001	001	00010
c	010	011	00100
d	011	010	01000
e	100	110	10000

- Any binary number assignment is satisfactory as long as each state is assigned a unique number.
- Use binary assignment 1.

Table 5.10 *Reduced State Table with Binary Assignment 1*

	Next State		Output		
Present State	x = 0	x = 1	x = 0	x = 1	
000	000	001	0	0	
001	010	011	0	0	
010	000	011	0	0	
011	100	011	0	1	
100	000	011	0	1	