Irreducible modules and the group algebra

Let G be a finite group and $\mathbb{C}G$ be the group algebra of G over \mathbb{C} . Consider $\mathbb{C}G$ as the regular $\mathbb{C}G$ -module. By Theorem 8.7, we can write

$$\mathbb{C}G = U_1 \oplus \ldots \oplus U_r$$

where each U_i is an irreducible $\mathbb{C}G$ -module. We shall show in this chapter that *every* irreducible $\mathbb{C}G$ -module is isomorphic to one of the $\mathbb{C}G$ -modules U_1, \ldots, U_r . As a consequence, there are only finitely many non-isomorphic irreducible $\mathbb{C}G$ -modules (a result which has already been established for abelian groups in Theorem 9.8). Also, in theory, to find all irreducible $\mathbb{C}G$ -modules, it is sufficient to decompose $\mathbb{C}G$ as a direct sum of irreducible $\mathbb{C}G$ -submodules. However, this is not really a practical way of finding the irreducible $\mathbb{C}G$ -modules, unless G is a small group.

Irreducible submodules of CG

We begin with another consequence of Maschke's Theorem.

10.1 Proposition

Let V and W be $\mathbb{C}G$ -modules and let $\vartheta: V \to W$ be a $\mathbb{C}G$ -homomorphism. Then there is a $\mathbb{C}G$ -submodule U of V such that $V = \operatorname{Ker} \vartheta \oplus U$ and $U \cong \operatorname{Im} \vartheta$.

Proof Since Ker ϑ is a $\mathbb{C}G$ -submodule of V by Proposition 7.2, there is by Maschke's Theorem a $\mathbb{C}G$ -submodule U of V such that $V = \text{Ker } \vartheta \oplus U$. Define a function $\overline{\mathfrak{g}} \colon U \to \text{Im } \vartheta$ by

$$u\overline{\vartheta} = u\vartheta \quad (u \in U).$$

We show that \overline{g} is a $\mathbb{C}G$ -isomorphism from U to $\operatorname{Im} \mathfrak{G}$. Clearly \overline{g} is a $\mathbb{C}G$ -homomorphism, since \mathfrak{G} is a $\mathbb{C}G$ -homomorphism. If $u \in \operatorname{Ker} \overline{g}$ then $u \in \operatorname{Ker} \mathfrak{G} \cap U = \{0\}$; hence $\operatorname{Ker} \overline{g} = \{0\}$. Now let $w \in \operatorname{Im} \mathfrak{G}$; so $w = v\mathfrak{G}$ for some $v \in V$. Write v = k + u with $k \in \operatorname{Ker} \mathfrak{G}$, $u \in U$. Then

$$w = \nu \vartheta = k\vartheta + u\vartheta = u\vartheta = u\overline{\vartheta}.$$

Therefore Im $\overline{g} = \text{Im } \theta$. We have now established that $\overline{g} \colon U \to \text{Im } \theta$ is an invertible $\mathbb{C}G$ -homomorphism. Thus $U \cong \text{Im } \theta$, as required.

10.2 Proposition

Let V be a $\mathbb{C}G$ -module, and write

$$V = U_1 \oplus \ldots \oplus U_s$$

a direct sum of irreducible $\mathbb{C}G$ -submodules U_i . If U is any irreducible $\mathbb{C}G$ -submodule of V, then $U \cong U_i$ for some i.

Proof For $u \in U$, we have $u = u_1 + \ldots + u_s$ for unique vectors $u_i \in U_i$ ($1 \le i \le s$). Define π_i : $U \to U_i$ by setting $u\pi_i = u_i$. Choosing i such that $u_i \ne 0$ for some $u \in U$, we have $\pi_i \ne 0$.

Now π_i is a $\mathbb{C}G$ -homomorphism (see Proposition 7.11). As U and U_i are irreducible, and $\pi_i \neq 0$, Schur's Lemma 9.1(1) implies that π_i is a $\mathbb{C}G$ -isomorphism. Therefore $U \cong U_i$.

Of course it can happen that U is an irreducible $\mathbb{C}G$ -submodule of $U_1 \oplus .$. . $\oplus U_s$ (each U_i irreducible) without U being equal to any U_i , as the following example shows.

10.3 Example

Let G be any group and let V be a 2-dimensional $\mathbb{C}G$ -module, with basis v_1 , v_2 , such that vg = v for all $v \in V$ and $g \in G$. Then

$$V=U_1\oplus U_2$$
,

where $U_1 = \operatorname{sp}(v_1)$ and $U_2 = \operatorname{sp}(v_2)$ are irreducible $\mathbb{C}G$ -submodules. However, $U = \operatorname{sp}(v_1 + v_2)$ is an irreducible $\mathbb{C}G$ -submodule which is not equal to U_1 or U_2 .

10.4 Definitions

- (1) If V is a $\mathbb{C}G$ -module and U is an irreducible $\mathbb{C}G$ -module, then we say that U is a *composition factor* of V if V has a $\mathbb{C}G$ -submodule which is isomorphic to U.
- (2) Two $\mathbb{C}G$ -modules V and W are said to have a *common composition factor* if there is an irreducible $\mathbb{C}G$ -module which is a composition factor of both V and W.

We now come to the main result of the chapter, which shows that every irreducible $\mathbb{C}G$ -module is a composition factor of the regular $\mathbb{C}G$ -module.

10.5 Theorem

Regard $\mathbb{C}G$ as the regular $\mathbb{C}G$ -module, and write

$$\mathbb{C}G = U_1 \oplus \ldots \oplus U_r$$

a direct sum of irreducible $\mathbb{C}G$ -submodules. Then every irreducible $\mathbb{C}G$ -module is isomorphic to one of the $\mathbb{C}G$ -modules U_i .

Proof Let W be an irreducible $\mathbb{C}G$ -module, and choose a non-zero vector $w \in W$. Observe that $\{wr: r \in \mathbb{C}G\}$ is a $\mathbb{C}G$ -submodule of W; since W is irreducible, it follows that

$$(10.6) W = \{wr: r \in \mathbb{C}G\}.$$

Now define θ : $\mathbb{C}G \to W$ by

$$r\theta = wr \quad (r \in \mathbb{C}G).$$

Clearly θ is a linear transformation, and Im $\theta = W$ by (10.6). Moreover, θ is a $\mathbb{C}G$ -homomorphism, since for $r, s \in \mathbb{C}G$,

$$(rs)\vartheta = w(rs) = (wr)s = (r\vartheta)s.$$

By Proposition 10.1, there is a $\mathbb{C}G$ -submodule U of $\mathbb{C}G$ such that

$$\mathbb{C}G = U \oplus \operatorname{Ker} \vartheta$$
 and $U \cong \operatorname{Im} \vartheta = W$.

As W is irreducible, so is U. By Proposition 10.2 we have $U \cong U_i$ for some i; then $W \cong U_i$, and the result is proved.

Theorem 10.5 shows that there is a finite set of irreducible $\mathbb{C}G$ -modules such that every irreducible $\mathbb{C}G$ -module is isomorphic to one of them. We record this fact in the following corollary.

10.7 Corollary

If G is a finite group, then there are only finitely many non-isomorphic irreducible ΓG -modules.

According to Theorem 10.5, to find all the irreducible $\mathbb{C}G$ -modules we need only decompose the regular $\mathbb{C}G$ -module as a direct sum of irreducible $\mathbb{C}G$ -submodules. We now do this for a couple of examples; however, this is not a practical method for studying $\mathbb{C}G$ -modules in general.

10.8 Examples

(1) Let $G = C_3 = \langle a: a^3 = 1 \rangle$, and write $\omega = e^{2\pi i/3}$. Define $v_0, v_1, v_2 \in \mathbb{C}G$ by

$$v_0 = 1 + a + a^2,$$

 $v_1 = 1 + \omega^2 a + \omega a^2,$
 $v_2 = 1 + \omega a + \omega^2 a^2.$

and let $U_i = \operatorname{sp}(v_i)$ for i = 0, 1, 2. Then $v_1 a = a + \omega^2 a^2 + \omega 1 = \omega v_1$, and similarly

$$v_i a = \omega^i v_i$$
 for $i = 0, 1, 2$.

Hence U_i is a $\mathbb{C}G$ -submodule of $\mathbb{C}G$ for i = 0, 1, 2.

It is easy to check that v_0 , v_1 , v_2 is a basis of $\mathbb{C}G$, and hence

$$\mathbb{C}G=U_0\oplus U_1\oplus U_2,$$

a direct sum of irreducible $\mathbb{C}G$ -submodules U_i . By Theorem 10.5, every irreducible $\mathbb{C}G$ -module is isomorphic to U_0 , U_1 or U_2 . The irreducible representation of G corresponding to U_i is the representation ρ_{ω^i} of Example 9.9(1).

(2) Let $G = D_6 = \langle a, b : a^3 = b^2 = 1, b^{-1}ab = a^{-1} \rangle$. We decompose $\mathbb{C}G$ as a direct sum of irreducible $\mathbb{C}G$ -submodules. Let $\omega = e^{2\pi i/3}$ and define

$$v_0 = 1 + a + a^2$$
, $w_0 = bv_0$ $(= b + ba + ba^2)$,
 $v_1 = 1 + \omega^2 a + \omega a^2$, $w_1 = bv_1$,
 $v_2 = 1 + \omega a + \omega^2 a^2$, $w_2 = bv_2$.

As in (1) above, $v_i a = \omega^i v_i$ for i = 0, 1, 2, and so sp (v_i) and sp (w_i) are \mathbb{C} $\langle a \rangle$ -modules. Next, note that

$$v_0b = w_0, \quad w_0b = v_0,$$

 $v_1b = w_2, \quad w_1b = v_2,$
 $v_2b = w_1, \quad w_2b = v_1.$

Therefore, sp (v_0, w_0) , sp (v_1, w_2) and sp (v_2, w_1) are $\mathbb{C}\langle b \rangle$ -modules, and hence are $\mathbb{C}G$ -submodules of $\mathbb{C}G$. By the argument in Example 5.5(2), the $\mathbb{C}G$ -submodules $U_3 = \text{sp }(v_1, w_2)$ and $U_4 = \text{sp }(v_2, w_1)$ are irreducible.

However, $\operatorname{sp}(v_0, w_0)$ is reducible, as $U_1 = \operatorname{sp}(v_0 + w_0)$ and $U_2 = \operatorname{sp}(v_0 - w_0)$ are $\mathbb{C}G$ -submodules.

Now v_0 , v_1 , v_2 , w_0 , w_1 , w_2 is a basis of $\mathbb{C}G$, and hence

$$\mathbb{C}G = U_1 \oplus U_2 \oplus U_3 \oplus U_4,$$

a direct sum of irreducible $\mathbb{C}G$ -submodules. Note that U_1 is the trivial $\mathbb{C}G$ module, and U_1 is not isomorphic to U_2 , the other 1-dimensional U_i . But U_3 $\cong U_4$ (there is a $\mathbb{C}G$ -isomorphism sending $v_1 \to w_1, w_2 \to v_2$).

We conclude from Theorem 10.5 that there are exactly three non-isomorphic irreducible $\mathbb{C}G$ -modules, namely U_1 , U_2 and U_3 . Correspondingly, every irreducible representation of D_6 over \mathbb{C} is equivalent to precisely one of the following:

$$\rho_1: a \to (1), b \to (1);$$

$$\rho_2: a \to (1), b \to (-1);$$

$$\rho_3: a \to \begin{pmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{pmatrix}, b \to \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Summary of Chapter 10

- 1. Every irreducible $\mathbb{C}G$ -module occurs as a composition factor of the regular $\mathbb{C}G$ -module.
- 2. There are only finitely many non-isomorphic irreducible $\mathbb{C}G$ -modules.

Exercises for Chapter 10

- 1. Let G be a finite group. Find a $\mathbb{C}G$ -submodule of $\mathbb{C}G$ which is isomorphic to the trivial $\mathbb{C}G$ -module. Is there only one such $\mathbb{C}G$ -submodule?
- 2. Let $G = C_4$. Express $\mathbb{C}G$ as a direct sum of irreducible $\mathbb{C}G$ -submodules. (Hint: copy the method of Example 10.8(1).)

3. Let $G = D_8 = \langle a, b : a^4 = b^2 = 1, b^{-1}ab = a^{-1} \rangle$. Find a 1-dimensional $\mathbb{C}G$ -submodule, sp (u_1) say, of $\mathbb{C}G$ such that

$$u_1 a = u_1, u_1 b = -u_1.$$

Find also 1-dimensional $\mathbb{C}G$ -submodules, sp (u_2) and sp (u_3) , such that

$$u_2a = -u_2$$
, $u_2b = u_2$, and $u_3a = -u_3$, $u_3b = -u_3$.

- 4. Use the method of Example 10.8(2) to find all the irreducible representations of D_8 over \mathbb{C} .
- 5. Suppose that V is a non-zero $\mathbb{C}G$ -module such that $V = U_1 \oplus U_2$, where U_1 and U_2 are isomorphic $\mathbb{C}G$ -modules. Show that there is a $\mathbb{C}G$ -submodule U of V which is not equal to U_1 or U_2 , but is isomorphic to both of them.
- 6. Let $G = Q_8 = \langle a, b : a^4 = 1, b^2 = a^2, b^{-1}ab = a^{-1} \rangle$, and let V be the $\mathbb{C}G$ -module given in Example 4.5(2). Thus V has basis v_1, v_2 and

$$v_1 a = i v_1,$$
 $v_1 b = v_2,$ $v_2 a = -i v_2,$ $v_2 b = -v_1.$

Show that V is irreducible, and find a $\mathbb{C}G$ -submodule of $\mathbb{C}G$ which is isomorphic to V.