Principle Component Analysis (PCA)

CSE 4334 / 5334 Data Mining Spring 2019

Won Hwa Kim

(Slides courtesy of Heng Huang at Pittchburg)

Goals for the lecture

you should understand the following concepts

- · Dimensionality Reduction
- · Normalization of data
- Covariance Matrix
- · Maximum Variance Method
- · Measures of Association

Principle Component Analysis (PCA)

- Idea
 - · Given: data points in d-dimensional space
 - Project them onto lower dimension space
 - · Preserve as much information as possible
- E.g.,
 - Find the best planar approximation to 3D data
 - Find the best 12-D approximation to 100000-D data
- In particular, choose projection that minimizes squared error in reconstructing the original data

Vision Application: Face Recognition

- Want to identify specific person, based on facial image
- Robust to...
 - · Facial hair, glasses,
 - Different lighting
- Cannot use all 256x256 given pixels
- Need another option.

Vision Application: Face Recognition

Why do we care

- · Orthonormal basis provides trivial projection
- Given basis $U = \{\mathbf{u}_1, ..., \mathbf{u}_k\}$
- Project any d-dimensional **x** to k values

$$\mathbf{u} \alpha_1 = \mathbf{u}_1^\mathsf{T} \mathbf{x} \quad \alpha_2 = \mathbf{u}_2^\mathsf{T} \mathbf{x} \dots \alpha_k = \mathbf{u}_k^\mathsf{T} \mathbf{x}$$

$$\mathbf{a} = \mathbf{U}^\mathsf{T} \mathbf{x}$$

•
$$\mathbf{x} \approx \sum_{i} \alpha_{i} \mathbf{u}_{i} = \sum_{i} (\mathbf{u}_{i}^{\mathsf{T}} \mathbf{x}) \mathbf{u}_{i}$$
 ["=" if all d values]

Use ``centered" vectors:

$$\mathbf{x}' = \mathbf{x} - \underline{\mathbf{x}}$$
 where $\underline{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{n}$ $\alpha_{i} = \mathbf{u}_{i}^{T} (\mathbf{x} - \underline{\mathbf{x}})$

Minimize reconstruction error

- Assume that data is a set of ND-dimensional vectors $\mathbf{x}^n = \langle x_1^n \dots x_d^n \rangle$
- Represent each in terms of any d orthogonal basis vectors

$$\mathbf{x}^n = \sum_{i=1}^d z_i^n \mathbf{u}_i; \quad \mathbf{u}_i^T \mathbf{u}_j = \delta_{ij}$$

PCA

- Note: $\hat{\mathbf{x}}_{\mathbf{0}}^{\mathbf{n}} = \underline{\mathbf{x}} + \sum_{i=1}^{d} \alpha_{i}^{n} \mathbf{u}_{i} \equiv \mathbf{x}^{\mathbf{n}}$
- So... $\mathbf{x}^n \hat{\mathbf{x}}_k^n = \sum_{i=k+1}^d \alpha_i^n \mathbf{u}_i = \sum_{i=k+1}^d ((\mathbf{x}^n \underline{\mathbf{x}})^T \mathbf{u}_i) \mathbf{u}_i$
- Therefore...

PCA: given k<d. Find { $\mathbf{u}_1, \dots, \mathbf{u}_k$ } that minimizes $E_k = \sum_{n=1}^N \left\| x^n - \hat{x}_k^n \right\|_2^2$ where $\hat{\mathbf{x}}_k^n = \underline{\mathbf{x}} + \sum_{i=1}^k \alpha_i^n \mathbf{u}_i$

$$E_{k} = \sum_{n=1}^{N} \left\| \sum_{i=k+1}^{d} ((\mathbf{x}^{n} - \underline{\mathbf{x}})^{T} \mathbf{u}_{i}) \mathbf{u}_{i} \right\|^{2} = \sum_{n=1}^{N} \sum_{i=k+1}^{d} [(\mathbf{x}^{n} - \underline{\mathbf{x}})^{T} \mathbf{u}_{i}]^{2}$$

$$= \sum_{i=k+1}^{d} \sum_{n=1}^{N} [\mathbf{u}_{i}^{T} ((\mathbf{x}^{n} - \underline{\mathbf{x}})) ((\mathbf{x}^{n} - \underline{\mathbf{x}})^{T} \mathbf{u})]$$

$$= \sum_{i=k+1}^{d} \mathbf{u}_{i}^{T} ((\mathbf{x}^{n} - \underline{\mathbf{x}})) ((\mathbf{x}^{n} - \underline{\mathbf{x}})^{T} \mathbf{u})$$

$$\sum_{i=k+1}^{d} ((\mathbf{x}^{n} - \underline{\mathbf{x}})^{T} ((\mathbf{x}^{n} - \underline{\mathbf{x}})^{T} \mathbf{u})^{T}$$

$$\sum_{i=k+1}^{d} ((\mathbf{x}^{n} - \underline{\mathbf{x}})^{T} ((\mathbf{x}^{n} - \underline{\mathbf{x}})^{T} \mathbf{u})^{T}$$

Matrix Decomposition

Eigendecomposition

- Matrix decomposition of a square matrix $A \in \mathbb{R}^{n \times n}$
- Pairs of eigenvalues and eigenvectors (λ, χ)
- Often called as diagonalization

$$A = UDU^{-1}$$

where U is a matrix composed of eigenvectors χ , D is diagonal matrix with non-degenerate eigenvalues λ .

$$\bullet \ A^2 = UD^2U^{-1}$$

$$\bullet \ A^n = UD^nU^{-1}$$

•
$$A^{-1} = UD^{-1}U^{-1}$$

Matrix Decomposition

Singular-value Decomposition

- Singular value decomposition (SVD) is a factorization of a matrix
- Generalization of eigendecomposition of a matrix
- Given a matrix $A \in \mathbb{R}^{m \times n}$,

$$A = UDV^*$$

where $U \in \mathbb{R}^{m \times m}$ is a unitary matrix (i.e., $UU^* = I$), $D \in \mathbb{R}^{m \times n}$ is retangular diagonal matrix with non-negative real entries, and $V \in \mathbb{R}^{n \times m}$ is also a unitary matrix.

- ullet U: left singular vector, V: right singular vector
- Diagonals of D, σ, are the singular values

PCA

- Goal
 - Minimize u^T∑u
 - Subject to $\mathbf{u}^{\mathsf{T}}\mathbf{u} = 1$
- Use Lagrange Multipliers to minimize

$$f(\mathbf{u}) = \mathbf{u}^{\mathsf{T}} \sum \mathbf{u} - \lambda [\mathbf{u}^{\mathsf{T}} \mathbf{u} - 1]$$

- Set its derivative to 0: $\sum \mathbf{u} \lambda \mathbf{u} = 0$
- Definition of eigenvalue λ and eigenvector ${f u}$!
- $\sum \mathbf{u}_i = \lambda_i \mathbf{u}_i$ Eigenvalue Eigenvector

- If multiple vectors u;
 - · Minimize the sum of independent terms
 - · Each is eigen value/vector

PCA

 $\bullet \quad \text{Minimize} \ E_k = \sum_{i=k+1}^d \mathbf{u}_i^\mathsf{T} \ \Sigma \ \mathbf{u}_i$

$$\rightarrow \Sigma \mathbf{u}_i = \lambda_i \mathbf{u}_i$$

Eigenvalue Eigenvector

$$\Rightarrow E_k = \sum_{i=k+1}^d \mathbf{u}_i^\mathsf{T} \; \Sigma \mathbf{u}_i = \sum_{i=k+1}^d \mathbf{u}_i^\mathsf{T} \; \lambda_i \, \mathbf{u}_i$$
$$= \sum_{i=k+1}^d \lambda_i \; \mathbf{u}_i^\mathsf{T} \, \mathbf{u}_i = \sum_{i=k+1}^d \lambda_i$$

• Therefore, to minimize E_k , take the smallest eigenvalues $\{\lambda_i\}$

PCA

PCA algorithm(X, k): top k eigenvalues/eigenvectors

% $X = d \times N$ data matrix,

% ... each data point $x^n = \text{column vector}$

•
$$\underline{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{n}$$

- A ← subtract mean <u>x</u> from each column vector xⁿ in X
- $\Sigma \leftarrow A A^T$... covariance matrix of A
- { λ_i , \mathbf{u}_i } $_{i=1..d}$ = eigenvectors/eigenvalues of Σ ... $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_d$
- Return { λ_i, **u**_i }_{i=1..k}
 % top k principle components

PCA

Reconstructed data using only first eigenvector (k=1)

PCA and SVD

• Compute the principal components by SVD of X:

$$\frac{X = U\Sigma V^{T}}{XX^{T} = U\Sigma V^{T} (U\Sigma V^{T})^{T}} =$$

$$= U\Sigma V^{T} V\Sigma^{T} U^{T} = U\tilde{\Sigma}^{2} U^{T}$$

- Thus, the left singular vectors of X are the principal components!
- Sort them by the size of the singular values of X

PCA for image compression

d=1

d=2

d=4

d=8

d=16

d=32

d=64

d=100

Original Image

Eigenface

- Example dataset: image of faces
 - Famous Eigenface approchaes
 [Turh & Pentland], [Sirovich & Kirby]
- Each face a is
 - 256x256 values (luminance at location)
 - a in ℝ²⁵⁶×²⁵⁶ as a vector
- Form $A = [a_1, ..., a_m]$
- Compute $\Sigma = AA^T$
- Problem: ∑ is Hugggggggeeeee! 64k x 64k

Computational complexity

- · Suppose m instances, each of size d
 - Eigenfaces: m=500 faces, each of size d = 64k
- Given a d x d covariance matrix \sum , we can compute
 - all d eigenvalues / eigenvectors in O(d^3)
 - First k eigenvalues / eigenvectors in O(kd^2)
- But if d=64k, still very expensive

Clever workaround

- Note that m << 64k
- Use L=A^TA instead of Σ=AA^T
- If \mathbf{v} is a eigenvector of \mathbf{L} , then $\mathbf{A}\mathbf{v}$ is an eigenvector of $\mathbf{\Sigma}$

Proof:
$$\mathbf{L} \mathbf{v} = \gamma \mathbf{v}$$

 $\mathbf{A}^{T} \mathbf{A} \mathbf{v} = \gamma \mathbf{v}$
 $\mathbf{A} (\mathbf{A}^{T} \mathbf{A} \mathbf{v}) = \mathbf{A} (\gamma \mathbf{v}) = \gamma \mathbf{A} \mathbf{v}$
 $(\mathbf{A} \mathbf{A}^{T}) \mathbf{A} \mathbf{v} = \gamma (\mathbf{A} \mathbf{v})$
 $\mathbf{\Sigma} (\mathbf{A} \mathbf{v}) = \gamma (\mathbf{A} \mathbf{v})$

Dimensionality reduction

More effective method: represent each face as a linear combination of eigenfaces (# features = 20)

We can represent a face using all of the pixels in a given image (# features = # pixels)

Dimensionality reduction example

represent each face as a linear combination of eigenfaces

$$\mathbf{x}^{(1)} = \alpha_1^{(1)} \times \mathbf{a} + \alpha_2^{(1)} \times \mathbf{a} + \mathbf{a} + \alpha_{20}^{(1)} \times \mathbf{a}$$
$$\mathbf{x}^{(1)} = \langle \alpha_1^{(1)}, \alpha_2^{(1)}, \mathbf{a}, \alpha_{20}^{(1)} \rangle$$

$$\mathbf{x}^{(2)} = \alpha_1^{(2)} \times \mathbf{1} + \alpha_2^{(2)} \times \mathbf{1} + \mathbf{1} + \alpha_{20}^{(2)} \times \mathbf{1}$$
$$\mathbf{x}^{(2)} = \left\langle \alpha_1^{(2)}, \ \alpha_2^{(2)}, \ \mathbf{1} \ , \ \alpha_{20}^{(2)} \right\rangle$$

of features is now 20 instead of # of pixels in images

Fisher Linear Discriminant

· Which one of these bases show greater separation when projected?

Comments...

- PCA performs dimensionality reduction via linear projection of the high dimensional data into a lower di mensional subspace.
- It accommodates the maximum variance in the data.
- The first principal component has the largest possible variance, the second principal component has the next largest and so on.
- The principal components are the eigenvectors of the co-variance matrix and hence also orthogonal.
- A disadvantage of PCA is that the transformed data loses semantics present in the original features.