The property of Chain recurrent set on impulsive semidynamical system (Extension of Conley's theory)

Jiye Jung Mathematics, Chungnam university, Daejeon, South Korea

Abstract

In this paper, we extend a well-known result about chain recurrence on compact metric spaces to impulsive dynamical system. Especially we will deal with the theory of Conley(1978) about attractor-repeller decomposition.

1 Impulsive dynamical system

[3] Let X be a metric space and \mathbb{R}_+ be the set of real numbers. The triple (X, π, \mathbb{R}_+) is called a semidynamical system, if the continuous function $\pi: X \times \mathbb{R}_+ \to X$ satisfies the conditions:

(a)
$$\pi(x,0) = x$$
, for all $x \in X$

(b)
$$\pi(\pi(x,t),s) = \pi(x,t+s)$$
, for all $x \in X$ and $t,s \in \mathbb{R}_+$

For fixed $t \in \mathbb{R}_+$, we can define $\pi_t : X \to X$ by $\pi_t(x) = \pi(x,t)$, for $x \in X$. And for fixed $x \in X$, we can also define $\pi_x : \mathbb{R}_+ \to X$ as $\pi_x(t) = \pi(x,t)$, for $t \in \mathbb{R}_+$. Easy to know that π_t is a homeomorphism of X and π_x is a continuous. π_x called the trajectory of x. Let $F(x,t) = \{y : \pi(y,t) = x\}$. We denote the positive orbit of x by $\pi^+(x) = \{\pi(x,t) : t \in \mathbb{R}_+\}$.

[3] An impulsive dynamical system $(X, \tilde{\pi}; M, I)$ consists of a semdynamical system, (X, π) , a non-empty closed subset M of X and a continuous function $I: M \to X$ such that for every $x \in M$, there exists $\epsilon_x > 0$ such that

$$F(x,(0,\epsilon_x)) \cap M = \emptyset$$
 and $\pi(x,(0,\epsilon_x)) \cap M = \emptyset$

Let
$$M^+(x) = \pi^+(x) \cap M \setminus \{x\}, I(x) = x^+.$$

Define $\Phi: X \to (0, +\infty]$

$$\Phi(x) = \begin{cases} s & \pi(x,s) \in M, \pi(x,t) \notin M \text{ for } 0 < t < s \\ +\infty & M^+(x) = \emptyset \end{cases}$$

Existance of s is shown in [Lemma 2.1 [4]].

Given $x \in X$ we define a function $\tilde{\pi}_x : [0, s) \to X$ where $s \in \mathbb{R}_+ \cup \{\infty\}$. This function is called *impulsive trajectory* of x and defined inductively as follows. Set $x = x_0$. If $M^+(x_0) = \emptyset$, then $\tilde{\pi}_x(t) = \pi(x, t)$ for all $t \in \mathbb{R}_+$. If $M^+(x_0) \neq \emptyset$, then there exists a positive $s_0 \in \mathbb{R}_+$ such that $\pi(x_0, s_0) = x_1 \in M$ and $\pi(x_0, t) \notin M$ for $0 < t < s_0$. We define $\tilde{\pi}_x$ on $[0, s_0]$ by

$$\tilde{\pi}_x(t) = \begin{cases} \pi(x,t) & 0 \le t < s_0 \\ x_1^+ & t = s_0 \end{cases}$$

We continue the above process starting at x_1^+ . If $M^+(x_1) = \emptyset$, then $\tilde{\pi}(t) = \pi(x_1^+, t - s_0)$ for $t \ge s_0$. If else, $M + (x_1^+) \ne \emptyset$, shich implies the existence of an $s_1 > 0$ as before, and we define

$$\tilde{\pi}_x(t) = \begin{cases} \pi(x_1^+, t - s_0) & s_0 \le t < s_0 + s_1 \\ x_2^+ & t = s_0 + s_1 \end{cases}$$

where $x_2 = \pi(x_1^+, s_0 + s_1)$. Repeating this process, if $M^+(x_n^+) = \emptyset$ for n process ends after a finite number of steps. If else, $M^+(x_n^+) \neq \emptyset$, b = 1, 2, ..., the process continues indefinitely. However $M^+(x_n^+) \neq \emptyset$ for n, we can get

$$\tilde{\pi}_x(t) = \begin{cases} \pi(x_n^+, t - t_n) & t_n \le t < t_{n+1} \\ x_{n+1}^+ & t = t_{n+1} \end{cases}$$

Where $\pi(x_n^+, s_n) = x_{n+1}$, $I(x_{n+1}) = x_{n+1}^+$, $t_n = \sum_{i=0}^{n-1} s_i$

Let $(X, \tilde{\pi}; M, I)$ be an impulsive semidynamical system. If $x \in X$, then

- (a) $\tilde{\pi}(x,0) = x$
- (b) $\tilde{\pi}(\tilde{\pi}(x,t),s) = \tilde{\pi}(x,t+s)$, with $t,s \in [0,T(x))$ such that $t+s \in [0,T(x))$

Definition 1.1 ([2], Definition 3.1.) Let (X, π) be a semidynamical system. Any closed set $S \subset X$ containing $x \in X$ is called a section or a λ -section through x, with $\lambda > 0$, if there exists a closed set $L \subset X$ such that

- (a) $F(L,\lambda) = S$
- (b) $F(L, [0, 2\lambda])$ is neighbourhood of x
- (c) $F(L,\mu) \cap F(L,\nu) = \emptyset$, for $0 \le \mu < \nu \le 2\lambda$.

The set $F(L, [0, 2\lambda])$ is called a tube or λ tube and the set L is called a bar. Any tube $F(L, [0, 2\lambda])$ given by a section S through $x \in X$ such that $S \subseteq M \cap F(L, [0, 2\lambda])$ is called TC-tube on x. We say that a point $x \in M$ fulfills the Tube Condition, shortly TC, if there exists a TC-tube $F(L, [0, 2\lambda])$ through x. Also we define $F(L, [0, 2\lambda])$ given by a section S through $x \in X$ such that $S = M \cap F(L, [0, 2\lambda])$ is called STC-tube on x. We say that a point $x \in M$ fulfills the Strong Tube Condition, shortly STC, if there exists a STC-tube $F(L, [0, 2\lambda])$ through x.

Theorem 1.2 ([2], Theorem 3.4.) If in an impulsive system $(X, \tilde{\pi}; M, I)$ given by a semidynamical system (X, π) each point contained in the impulse set M satisfies TC, then Φ is upper semicontinuous.

Theorem 1.3 ([2], Theorem 2.7.) Assume that $(X, \tilde{\pi}; M, I)$ is an impulsive system given by a dynamical system (X, π) . Then for any $x \notin M$ the function Φ is lower semicontinuous at x.

Proof) Let $x \notin M$ and $\Phi(x) = c \in (0, +\infty)$. The function Φ is lower semicontinuous at x if and only if for any sequence $x_n \to x$ with $\Phi(x_n) \to t$ we have $t \geq c$. Suppose to the contrary that there exists a sequence $p_n \to x$ with $\Phi(p_n) \to t < c$. For n large enough we have $p_n \notin M$ as M is closed. Thus $\pi(\Phi(p_n), p_n) \in M = \overline{M}$. On the other hand, $\pi(\Phi(p_n), p_n) \to \pi(t, x)$, so $\pi(t, x) \in M$, which means that $c = \Phi(x) \leq t < c$ and contradiction. So proof finished. \square

Theorem 1.4 ([2], Theorem 3.8.) Assume that $(X, \tilde{\pi}; M, I)$ is an impulsive system given by a semidynamical system (X, π) and no start point of the system belongs to M. Then:

- (1) if each element of M satisfies TC then Φ is continuous at x if and only if $x \notin M$,
- (2) Φ is not lower semicontinuous at x if and only if $x \in M$,
- (3) if each element of M satisfies STC then $\Phi|_M$ is lower semicontinuous.

2 Attractor on Impulsive dynamical system

Let $\phi: X \times \mathbb{R} \to X$ be a flow of compact metric space X.

- Impulsive semidynamical system $(X, \tilde{\pi}; M, I)$ is expansive if $\forall \epsilon > 0$, $\exists \delta > 0$ s.t. if $x, y \in X$ satisfy $d(\tilde{\pi}_t(x), \tilde{\pi}_{s(t)}(y)) < \delta \ \forall t \in \mathbb{R}$ for $x, y \in X$ and a continuous map $s : \mathbb{R} \to \mathbb{R}$ with s(0) = 0, then $y \in F(x, (0, \epsilon)) \cup \tilde{\pi}(x, [0, \epsilon))$
- given $\delta, a > 0$ real numbers, a finite (δ, a) -pseudo orbit is a pair of sequences $(\{x_i\},_0^k, \{t_i\}_0^{k-1})$ so that $t_i \geq a$ and $d(\tilde{\pi}_{t_n}(x_n), x_{n+1}) < \delta$ for $k \in \mathbb{N}$. An infinite (δ, a) -pseudo orbit is a pair of doubly infinite sequences $(\{x_i\},_{-\infty}^{\infty}, \{t_i\}_{-\infty}^{\infty})$ so that $t_i \geq a$ and $d(\tilde{\pi}_{t_n}(x_n), x_{n+1}) < \delta$ for all $i \in \mathbb{Z}$.
- A finite(infinite) (δ, a) -pseudo orbit $(\{x_n\}, \{t_n\})$ is ϵ traced by the orbit $(\tilde{\pi}_t(z))$ if ther exists an increasing homeomorphis $\alpha : \mathbb{R} \to \mathbb{R}$ with $\alpha(0) = 0$ such that

$$d(\tilde{\pi}_{\alpha(t)}(z), \tilde{\pi}_{t-\sum_{i=0}^{n-1} t_i}(x_n)) < \epsilon \text{ whenever } t \ge 0, \sum_{i=0}^{n-1} t_i \le t < \sum_{i=0}^{n} t_i \text{ } n = 0, 1, 2, \dots$$

• Impulsive semidynamical system $(X, \tilde{\pi}; M, I)$ is said to have the *pseudo orbit tracing* property, POTP, if for all $\epsilon > 0$ there exists $\delta > 0$ such that every $(\delta, 1)$ -pseudo-orbit is ϵ -traced by an orbit of $\tilde{\pi}$.

- Impulsive dynamical system $(X, \tilde{\pi}; M, I)$ is said to be topologically stable if for any $\epsilon > 0$ there is $\delta > 0$ such that for every other Impulsive dynamical system (X, ψ, M, I) with $d(\tilde{\phi}_t, \tilde{\psi}_{s(t)}) < \delta$ for all $t \in [0, 1]$, for some continuous map s from [0, 1] to itself. there exists $h: X \to X$ continuous such that $d(h, id) < \epsilon$ and $h(orbit\ of\ \tilde{\psi}) \subset orbit\ of\ \tilde{\phi}$.
- Let \mathcal{T} be a family of subset from X. An impulsive semidynamical system $(X, \pi; M, I)$ is called \mathcal{T} dissipative if there exist a bounded set $A \subset X \setminus M$ such that for every $\epsilon > 0$ and $\in \mathcal{T}$ there exist $l(\epsilon, V) > 0$ such that $\tilde{\pi}(V, t) \subset B(A, \epsilon)$ for all $t \geq l(\epsilon, V)$. The minimal set of A which satisfies above condition called an attractor for the family \mathcal{T} .
- Let $(X, \tilde{\pi}; M, I)$ is \mathcal{T} dissipative and A is an attractor for the family \mathcal{T} . $U = \tilde{\pi}_{[t,\infty)}(\bigcup_{V \in \mathbb{T}} V)$ is called a preattractor if U is a neighborhood of A and there is T > 0 such that $\overline{\tilde{\pi}_{[T,\infty)}(U)} \subset U$.
- Given a subset $U \subset X$ we define the impulsive ω limit of U as the set

$$\tilde{\omega}(U) = \bigcup_{t \ge 0} \overline{O_t^+(U)}$$

Proposition 2.1 We have $\tilde{\omega}(U) = \{x \in X | \text{ there exist wequences} \{x_n\}_{n \in \mathbb{N}} \subset \mathbb{R}_+$ with $t_n \to \infty$ such that $\tilde{\pi}_{t_n}(x_n) \to x$ as $n \to \infty\}$ and $\tilde{\omega}(U)$ is closed for every subset $U \subset X$

Proof) [1] Lemma $3.2.\square$

Proposition 2.2 Let $(X, \tilde{\pi}; M, I)$ is \mathcal{T} - dissipative and set A is an attractor for the family \mathcal{T} and U is a preattroactor for the family \mathcal{T} . Then $\overline{A} = \bigcap_{t>0} \tilde{\pi}_{[t,\infty)}(U)$

Proof) If $x \in A$ then for given $n \in \mathbb{N}$ there exist $l_n \in [0, \infty)$] such that if $t \geq l_n$ then $\tilde{\pi}_t(U) \subset B(A, 1/n)$. If we define $t_n = 1/n$ and pick $x_n \in \tilde{\pi}_{l_n}(U)$. Then $A \subset \tilde{\omega}(U)$. Since $\tilde{\omega}(U)$ is closed set, $\overline{A} \subset \tilde{\omega}(U)$. Now suppose that $x \in A \subset \tilde{\omega}(U)$ but $x \notin \overline{A}$. Define $\epsilon = d(\overline{A}, x)$. Then $x \in A \subset \tilde{\omega}(U) \subset \overline{\tilde{\pi}_{[t,\infty)}(\bigcup_{V \in \mathbb{T}} V)} \subset \overline{B(A, \epsilon/2)} \subset \overline{B(\overline{A}, \epsilon)} \subset \{x\}^c$. This is contradiction. Hence $\tilde{\omega}(U) \subset \overline{A}$.

Proposition 2.3 Let $(X, \tilde{\pi}; M, I)$ is \mathcal{T} - dissipative and U is a preattroactor for the family \mathcal{T} . Then there is a $T \in \mathbb{R}_+$ such that if $t \geq T$ then $\overline{\tilde{\pi}_{[T,\infty)}(U)} \subset U$.

• Let $F(x,t) = \{y : \pi(y,t) = x\}, U = \bigcup_{V \in \mathcal{T}} O^+(V)$. We define the set $O^-(U)$ such that

$$O^{-}(U) = \bigcup_{t \ge 0} F(U, t)$$

• the set \mathbb{T} denoted by the set of all family \mathcal{T} that $U = \bigcup_{V \in \mathcal{T}} O^+(V)$ is a preattractor determines A. Define B(A), the basin of A, such that

$$B(A) = \bigcup_{T \in \mathbb{T}} O^{-}(U)$$

- Given a map $\epsilon \in \mathcal{P}$ and a positive constant T, a finite sequence $(x_0, t_0), (x_1, t_1), \ldots, (x_n, t_n)$ in $X \times (0, \infty)$ is called an (ϵ, T) chain for $\tilde{\pi}$ if $d(\tilde{\pi}(x_i), x_{i+1}) < B(\tilde{\pi}(x_i), \epsilon(\tilde{\pi}(x_i))), i = 0, 1, \ldots, n-1$. As above, n is the length of the chain and the chain is said to go from x_0 to x_n .
- A point p is chain recurrent of for each choice of T > 0 and $\epsilon \in \mathcal{P}$ there is an (ϵ, T) -chain of length at least 1 from p to p. The chain recurrent set of $\tilde{\pi}$ is denoted $\mathcal{CR}(\tilde{\pi})$

3 Main theorem

Lemma 3.1 If K, L are disjoint closed subsets of X, then there is a positive, continuous function ϵ sith the property that $B_{\epsilon(x)}(x) \cap L = \emptyset$

Lemma 3.2 Suppose that (X,d) and (Y,ρ) are metric spaces and that $g: X \to Y$ and $\epsilon: Y \to (0,\infty)$ are continuous. Then there is a continuous map $\delta: X \to (0,\infty)$ such that $\rho(g(x),g(y)) < \epsilon(g(x))$ whenever $d(x,y) < \delta(x)$.

Lemma 3.3 If $p \in X \setminus M$ is chain recurrent for $\tilde{\pi}$ and $\tau \geq 0$, then $\tilde{\pi}_{\tau}(p)$ is also chain recurrent for $\tilde{\pi}$.

Proof) Given $\epsilon \in \mathcal{P}$ and T > 0, define $T' = T + \tau$. Let $c = \epsilon(\tilde{\pi}_{\tau}(p))/2$ and choose a small neighborhood N of $\tilde{\pi}_{\tau}(p)$ with the property that if $y \in N$ then $\epsilon(y) > c$ and $d(y, \tilde{\pi}_{\tau}(p)) < c$. Let $\eta_n(x) = \min\{\epsilon(x), \frac{1}{n}\}$. Then there is a (η_n, T') -chain (x_i, t_i') , $0 \le i \le k_n$ which start and end at p. For convenience, denote $\tilde{\pi}_{t_{k_{n-1}}}(x_{k_{n-1}}) = x^n$. Then $x^n \to p$ as $n \to \infty$. Since $p \in X \setminus M$, $\tau \ge 0$ by [1] Corollary 3.9, there is a sequence $\{\epsilon_n\}$ such that $\epsilon_n \ge 0$, $\epsilon_n \to 0$ as $n \to \infty$ and $\tilde{\pi}_{\tau+\epsilon_n}(x^n) \to \tilde{\pi}_{\tau}(p)$. So there is $K \in \mathbb{N}$ such that if $K \le n$ then $\tilde{\pi}_{\tau+\epsilon_n}(x^n) = \tilde{\pi}_{t_{n-1}'+\tau+\epsilon_n}(x_{n-1}) \in N$. So we pick (η_K, T') -chain $(x_j, t_j'), 0 \le j \le k$ and define (ϵ, T) -chain (y_j, t_j) as follows. Let $y_0 = y_k = \tilde{\pi}_{\tau}(p)$, $t_0 = t_0' - \tau$, and $t_{k-1} = t_{k-1}' + \tau + \epsilon_n$. Otherwise let $y_j = x_j$ and $t_j = t_j'$. Clearly, each $t_j \ge T$ and $\tilde{\pi}_{t_0}(y_0) = \tilde{\pi}_{t_0'-\tau}(\tilde{\pi}_{\tau}(p)) = \tilde{\pi}_{t_0'}(p)$ and $\tilde{\pi}_{t_j}(y_j) = \tilde{\pi}_{t_j'}(x_j)$ for $j = 1, \ldots, k-1$. So we have

$$d(\tilde{\pi}_{t_j}(y_j), y_{j+1}) = d(\tilde{\pi}_{t'_j}(x_j), x_{j+1}) < \epsilon(\tilde{\pi}_{t'_j}(y_j)).$$

And the choice of K ensures that $\tilde{\pi}_{t'_{k-1}+\tau+\epsilon_n}(x_{k-1}) = \tilde{\pi}_{t_{k-1}}(y_{k-1}) \in N$. So we obtain $\epsilon(\tilde{\pi}_{t_{k-1}}(y_{k-1})) > c$ and $d(\tilde{\pi}_{t_{k-1}}(y_{k-1}), \tilde{\pi}_{\tau}(p)) < c$. Then we get that

$$d(\tilde{\pi}_{\tau}(p),\tilde{\pi}_{t_{k-1}}(y_{k-1})) < c < \epsilon(\tilde{\pi}_{t_{k-1}}(y_{k-1})).$$

Hence (y_j, t_j) is an (ϵ, T) - chain. \square

Proposition 3.4 Let $(X, \tilde{\pi}; M, I)$ is \mathcal{T} - dissipative and set A is an attractor for the family \mathcal{T} . Let the set U is a neighborhood of A preattroactor for the family \mathcal{T} . If p is chain recurrent point of $\tilde{\pi}$ that is contained in $O^-(U)$, then $p \in A$.

Proof) First consider the special case where pinU.

Proof) First consider the special case where $\underline{p} \in U$. Since U is a preattractor, there is a time T' with $\overline{\tilde{\pi}_{[T',\infty)}(U)} \subset U$. Take ϵ satisfying $\overline{\tilde{\pi}_{[T',\infty)}(U)} \subset B(A,\epsilon)$

Choose a function $\delta \in P$ with the property that if $x \in U$ and $t \geq T'$, then the $\delta(x)$ ball centered at $\tilde{\pi}_t(x)$ is disjoint from $B(A, \epsilon)^c$. WLOG we can assume that δ is bounded above by 1.Take $T = \max\{\sum_{i=0}^{n-1} s_i, T'\}$. Suppose that $t \geq T$, (δ, t) - chain $(p_i, t_i), p_0 = p = p_n$ is starts at a point of U. Then $p_0 \in U$, $\tilde{\pi}_{t_0}(p_0) \in \tilde{\pi}_{[T',\infty)}(U)$, $d(\tilde{\pi}_{T_0}(p_0), p_1) < \delta(\tilde{\pi}_{T_0}(x_0)) \leq 1$, $p_1 \in B(\tilde{\pi}_{T_0}(x_0), \delta(\tilde{\pi}_{T_0}(x_0))) \in U$, $\tilde{\pi}_{T_1}(x_1) \in \tilde{\pi}_{[t,\infty)}(U)$. By induction we can show that p, the end point of the chain, is in U and within 1 of $\tilde{\pi}_{[t,\infty)}(U)$. Using the same argument with δ replaced by δ/k , (k = 2, 3, ...) shows that $d(p, \tilde{\pi}_{[t,\infty)}(U)) \leq 1/k$ and so $p \in \overline{\tilde{\pi}_{[t,\infty)}(U)}$. This inclusion holds for all large t, we conclude that $p \in \overline{A}$.

In the general case we have a chain recurrent point p. There is t_1 such that $\tilde{\pi}_{t_1}(p) \in U$ for $t \geq t_1$. Since $\tilde{\pi}_{t_1}(p) \in U$ is also chain recurrent point, $\tilde{\pi}_{t_1}(p) \in \overline{A}$. Take $\epsilon = d(A, U^c)$, l > 0 such that $\tilde{\pi}_t(U) \subset B(A, \epsilon/2) \subset X \setminus U$ for all $t \geq l$. Let $T = max\{t_1, l\}$. If we suppose that $p \in X \setminus \overline{A}$ then any $(T, \epsilon/2)$ - chain from p to p can not be exist. \square

Proposition 3.5 Suppose that q is not chain recurrent for $\tilde{\pi}$. Then there is a family \mathcal{T} such that $q \in O^-(U) - A$ where U and A is a preattractor and an attractor for the family \mathcal{T} , respectively.

Proof) Select T > 0 and a function $\epsilon \in \mathcal{P}$ with the property that no (ϵ, T) -chain beginning at q can end at q. Define

$$U = \{x \in X | \text{there is an}(\epsilon, T) - \text{chain beginning at q and ending at } x\}$$

U is open follows from the strict inequality $d(\tilde{\pi}_{t_j}(x_j), x_{j+1}) < \epsilon(\tilde{\pi}_{t_j}(x_j))$ in the definition of an (ϵ, T) -chain. Show that t > T, $\overline{\tilde{\pi}_{[t,\infty)}(U)} \subset U$. Let $\gamma \in \overline{\tilde{\pi}_t(U)}$ and $\gamma' \in B(\gamma, \epsilon) \cap \overline{\tilde{\pi}_t(U)}$. For $\gamma'' \in B(\gamma, \epsilon)$, $\{F(\gamma, t)\}, \gamma'' \mid t\}$ is a (ϵ, T) - chain from $F(\gamma, t)$ to γ'' . Using the transitivity it follows that $\gamma'' \in U$ and $\overline{\tilde{\pi}_{[t,\infty)}(U)} \subset U$. Define $\mathcal{T} = \{U\}$ and A be a attractor for the family \mathcal{T} . Then $A \subset U$ by above fact. Suppose that $p \in \overline{A}$. For given $\delta > 0$ there is t > 0 such that $B(p, \delta) \cap \tilde{\pi}_t(U) \neq \emptyset$. If $t \geq T$ then $\tilde{\pi}_t(p) \in U$. So $B(p, \epsilon) \cap U \neq \emptyset$. Since $p \notin U$ then $p \in U'$. This is contrary to $A \subset U$. \square

Theorem 3.6 If (X, d) is a compact metric space and $(X, \tilde{\pi}, M, I)$ is an impulsive dynamical system, then $CR(\tilde{\pi})$ is the complement of the union of the sets B(A) - A as A caries over the collection of attractors of $\tilde{\pi}$:

$$X - \mathcal{CR}(\tilde{\pi}) = \bigcup [B(A) - A]$$

Proof) It is directly gained by Proposition 3.5, [5], and [6]. \square

References

- [1] E.M. Bonotto, M.C. Bortolan, A.N. Carvalho, and R. Czaja, *Global attractors for impulsive dynamical systems-a precompact approach*, J. Differential Equations, **259** (2015), no. 7, 2602—2625.
- [2] K. Ciesielski, On semicontinuity in impulsive dynamical systems, Bull. Pol. Acad. Sci. Math., **52** (2004), no. 1, 71–80.
- [3] Saroop K. Kaul, On impulsive semidynamical systems II. Recursive properties. Non-linear Anal., 16 (1991), no. 7-8, 635-645.
- [4] E.M. Bonotto and M. Federson, Topological conjugation and asymptotic stability in impulsive semidynamical systems, J. Math. Anal. Appl., 326 (2007), no. 2, 869–881.
- [5] Hurley, M. Chain Recurrence, Semiflows, and Gradients, J. Differential Equations, 195 (1995), no. 3, 437–456.
- [6] Conley, C. Isolated invariant Sets and the Morse Index, AMS, Providence.