	Experiment No.: 05
Aim:	To study the Gate Level Analysis of Half Subtractor and Full Subtractor.
Objective:	To study the output characteristics half-subtractor and full-subtractor and stimulate it using LTSPICE software.
Theory:	Half-Subtractor

A conventional Half-subtractor circuit is a combinational circuit that can be used to subtract one binary digit from another to produce a Difference output and a Borrow output. Functionally, the half subtractor consists of a 2 input XOR Gate, an INVERTER and a 2 input AND gate. The Borrow output here specifies whether a "1" has been borrowed to perform the subtraction.

The Boolean expression for the two output variables are given by the equations.

Difference = A'B+AB'

Borrow = A'B

A	В	Bout	Diff	Comment
0	0	0	0	0-0=0,No borrow
0	1	1	1	0-1=-1,borrow 2, so:2-1=1
1	0	1	0	1-0=1, No borrow
1	1	0	0	1-1=0, No borrow

Full-Subtractor

A 1- Bit full Subtractor is a combinational circuit that performs a subtraction between two binary bits and "1" may have been borrowed by a lower significant stage. This circuit has three inputs and two outputs. Let the three inputs be A, B and Bin and Borrow and Difference are two outputs of the 1-bit Subtractor and denoted by Bout and Diff respectively.

A	В	Bin	Bout	Diff	Comment
0	0	0	0	0	0-0-0=0, No borrow
0	0	1	1	1	0-0-1=-1, borrow 2,so:2-1=1
0	1	0	0	1	1-0-0=1, No borrow
0	1	1	0	0	1-0-1=0, No borrow
1	0	0	1	1	0-1-1=-1,(bin=1),borrow2,so:2-1=1
1	0	1	1	0	0-1-1=-2,borrow 2,so:2-2=0
1	1	0	0	0	1-1-1=0,No borrow
1	1	1	1	1	1-1-1=-1,borrow 2,so:2-1=1

The Boolean expression for the two output variables are given by the equations.

Differences = $A \times B \times B$

Borrow = A'B+A'Bin+BBin

CMOS VLSI Design Lab Manual

Schematic:

1) Half_Subtractor

2) Full_Subtractor

CMOS VLSI Design Lab Manual 1) Half_Subtractor Waveforms **Waveforms:** √ lab_05_209 km lab_05_209 1.2 0.87 0.47 0.07 1.67 1.27 0.87 0.4 0.07 V(difference) 2.0V-0.97 -0.2V 2.00 0.97 -0.2V 0μs 160µs activat 180µs 80µs 100μs 140µs 20μs 60µs 120μs 2) Full_Subtractor Waveforms 0.87 1.60 1.2V 0.87 0.4 1.67 1.2V 0.87 0.4V 0.07 V(difference) 0.97 V(borrow) 80µs Result / Thus we successfully studied output characteristics of Half Subtractor and Full Subtractor **Conclusion** and simulated in LTSPICE software. Roll No.: 209 Marks out of 10 Signature: **Batch:** C1 8^{th} / Electronics and M. L. Keote Sem/Br: Name of Lecturer: telecommunications Department of Electronics & Telecommunication Engineering Page 2

CMOS VLSI Design Lab Manual	
Department of Electronics & Telecommunication Engineering	Page 3