Load Balancing Unstructured Meshes for Massively Parallel Transport Sweeps in PDT

Tarek Ghaddar Dr. Jean Ragusa

Nuclear Engineering Department Texas A&M University College Station, TX, 77843-3133

I. Introduction

PDT is a massively deterministic transport code that uses the transport sweep technique to solve the discrete ordinates form of the transport equation, shown in Eq. 1:

$$\vec{\Omega}_{m} \cdot \vec{\nabla} \psi_{m,g}^{(l+1)} + \Sigma_{t,g} \psi_{m,g}^{(l+1)} = S_{m,g}^{(l)} + \sum_{g'} \sum_{m'} \omega_{m} \Sigma_{s,g' \to g,m' \to m} \psi_{m'g'}^{(l)}, \tag{1}$$

where the left hand side of the equation represents the loss terms, and the right hand side represents the gain terms. The angular flux is discretized into a set of energy groups g and angular directions m. On the left hand side, $\vec{\Omega}_m \cdot \vec{\nabla}$ is the leakage operator and $\Sigma_{t,g}$ is the collision operator (absorption and outscatter). On the right hand sind, $S_{m,g}$ represents the external source, $\Sigma_{s,g'\to g,m'\to m}$ represents the inscatter operator, and ω_m is a weighting factor for angular direction m.

I.A. The Structured Transport Sweep in PDT

A sweep algorithm is defined by three properties:

- partitioning: dividing the domain among available processors
- aggregation: grouping cells, directions, and energy groups into tasks
- scheduling: choosing which task to execute if more than one is available

If M is the total number of angular directions, G is the total number of energy groups, and N is the total number of cells, then the total fine grain work units is 8MGN. The factor of 8 is present as M directions are swept for all 8 octants of the domain. The finest grain work unit is the calculation of a single direction and energy groups unknowns in a single cell, or $\psi_{m,g}$ for a single cell.

In a regular grid, we have the number of cells in each Cartesian direction: N_x, N_y, N_z . These cells are aggregated into "cellsets". However, in an unstructured mesh, the number of cells cannot be described as such. In PDT specifically we initially subdivide the domain into subsets, which are just rectangular subdomains. Within each subset, an unstructured mesh is created. This creates a pseudo-regular grid. These subsets become the N_x, N_y, N_z equivalent for an unstructured mesh. The spatial aggregation in a PDT unstructured mesh is done by aggregating subsets into cellsets.

If M is the total number of angular directions, G is the total number of energy groups, and N is the total number of cells, then the total fine grain work units is 8MGN. The factor of 8 is present as M directions are swept for all 8 octants of the domain. The finest grain work unit is the calculation of a single direction and energy groups unknowns in a single cell, or $\psi_{m,g}$ for a single cell.

Fine grain work units are aggregated into coarser-grained units called tasks. A few terms are defined that describe how each variable is aggregated.

- $A_x = \frac{N_x}{P_x}$, where N_x is the number of cells in x and P_x is the number of processors in x• $A_y = \frac{N_y}{P_y}$, where N_y is the number of cells in y and P_y is the number of processors in y

- $\bullet N_g = \frac{G}{A_g}$ $\bullet N_m = \frac{M}{A_m}$ $\bullet N_k = \frac{N_z}{P_z A_z}$

It follows that each process owns N_k cell-sets (each of which is A_z planes of $A_x A_y$ cells), $8N_m$ direction-sets, and N_g group-sets for a total of $8N_mN_gN_k$ tasks.

One task contains $A_x A_y A_z$ cells, A_m directions, and A_g groups. Equivalently, a task is the computation of one cellset, one groupset, and one angleset. One task takes a stage to complete. This is particularly important when comparing sweeps to the performance models.

The minimum possible number of stages for given partitioning parameters P_i and A_i is $2N_{\text{fill}} + N_{\text{tasks}}$. N_{fill} is both the minimum number of stages before a sweepfront can reach the center-most processors and the number needed to finish a direction's sweep after the center-most processors have finished. Equations 2, 3, and 4 define N_{fill} , N_{idle} , and N_{tasks} :

$$N_{\text{fill}} = \frac{P_x + \delta_x}{2} - 1 + \frac{P_y + \delta_y}{2} - 1 + N_k \left(\frac{P_z + \delta_z}{2} - 1\right) \tag{2}$$

$$N_{\text{idle}} = 2N_{\text{fill}}$$
 (3)

$$N_{\text{tasks}} = 8N_m N_g N_k \tag{4}$$

where δ_u is 1 for P_u odd, and 0 for P_u even.

Equation 5 approximately defines parallel sweep efficiency. This can be calculated for specific machinery and partitioning parameters by substituting in values calculated using Eqs. 2,3, and 4.

$$\varepsilon = \frac{T_{\text{task}} N_{\text{tasks}}}{[N_{\text{stages}}][T_{\text{task}} + T_{\text{comm}}]}$$

$$= \frac{1}{[1 + \frac{N_{\text{idle}}}{N_{\text{tasks}}}][1 + \frac{T_{\text{comm}}}{T_{\text{task}}}]}$$
(5)

Equations 6 and 7 show how T_{comm} and T_{task} are calculated:

$$T_{\text{comm}} = M_L T_{\text{latency}} + T_{\text{byte}} N_{\text{bytes}}$$
 (6)

$$T_{\text{task}} = A_x A_y A_z A_m A_g T_{\text{grind}} \tag{7}$$

where T_{latency} is the message latency time, T_{byte} is the additional time to send one byte of message, N_{bytes} is the total number of bytes of information that a processor must communicate to its downstream neighbors at each stage, and T_{grind} is the time it takes to compute a single cell, direction, and energy group. M_L is a latency parameter that is used to explore performance as a function of increased or decreased latency. If a high value of M_L is necessary for the model to match computational results, improvements should be made in code implementation.

Figure 1 shows three different partitioning schemes used in transport sweeps.

9	10	11	12	13	14	15	16	44	42	45	46	11	12	11	12	15	16	15	16
9	10	11	12	13	14	15	16	11	12	15	16		10						
9	10	11	12	13	14	15	16	9	40	42	14	11	12	11	12	15	16	15	16
9	10	11	12	13	14	15	16	9	10	13	14	9	10	9	10	13	14	13	14
	2							3	4	7		3				7			
1	2	3	4	5	6	7	8	3	4	′	8	1	2	1	2	5	6	5	6
	2							4	2	5	6	3				7			
1	2	3	4	5	6	7	8	<u>'</u>	2	J	0	1	2	1	2	5	6	5	6

Figure 1. Three different partitioning schemes in 2D, from left to right: hybrid KBA, volumetric non-overloaded, and volumetric overloaded.

The overloaded volumetric partitioning proceeds as follows:

- 1. In a 2D (3D) domain, cellsets are divided into 4 (8) spatial quadrants (octants), with an equal number of cellsets in each SQO (SQO is defined as a spatial quadrant or octant).
- 2. Assign 1/4 of the processors (1/8) in 3D to each SQO.
- 3. Choose the individual overload factors $\omega_x, \omega_y, and \omega_z$ and individual processor counts $P_x, P_y, and P_z$, such that $\omega_x \omega_y \omega_z = \omega_r$ and $P_x P_y P_z = P$, with all P_u even. ω_u is defined as the number of cellsets assigned to each P_u .
- 4. An array of $\omega_x \cdot \omega_y \cdot \omega_z$ "tiles" in each SQO. Each tile is an array of $1/2P_x \cdot 1/2P_y \cdot 1/2P_z$ cellsets. These cellsets are mapped one-to-one to the $1/2P_x \cdot 1/2P_y \cdot 1/2P_z$ procesors assigned to the SQO, using the same mapping in each tile.

Each tile has a logically identical layout of cellsets, and each processor owns exactly one cellset in each tile in its SQO, making each processor responsible for ω_r cellsets.

The optimal scheduling algorithm rules are as follows:

- 1. If $i \le X$, then tasks with $\Omega_x > 0$ have priority, while for i > X, tasks with $\Omega_x < 0$ have priority.
- 2. If multiple ready tasks have the same sign on Ω_x , apply rule 1 to j, Y, Ω_y .
- 3. If multiple ready tasks have the same sign on Ω_x and Ω_y , apply rule 1 to k, Z, Ω_z .
- 4. If multiple tasks are ready in the same octant, then priority goes to the cellset for which the priority

octant has greatest downstream depth.

- 5. If multiple ready tasks are in the same octant and have the same downstream depth of graph in x, then priority goes to the cellset for which the priority octant has greatest downstream depth of graph in y.
- 6. If multiple ready tasks are in the same octant and have the same downstream depth of graph in x and y, then priority goes to the cellset for which priority octant has greatest depth of graph in z.

This ensures that each SQO orders the octants: the one it can start right away (A), three that have one sign difference from A(B,C, and D), three that have two sign differences $(\bar{D},\bar{C},\bar{B})$, and one in opposition to its primary (\bar{A}) .

There are three constraints in order to achieve the optimal stage count. In these constraints, $M = \omega_g \omega_m / 8$, which is the number of tasks per octant per cellset.

- 1. $M \ge 2(Z-1)$
- 2. $\omega_z M \ge 2(Y-1)$
- 3. If $\omega_x > 1$, then $\omega_v \omega_z M \ge X$

These conditions ensure there are no idle time in a variety of situations. At large processor counts, the product $\omega_m \omega_g$ must be large. This means that a weak scaling series refined only in space, but only coarsely refined in angle and energy, will eventually fail the constraints.

The optimal efficiency formula changes slightly from the KBA and hybrid KBA partitioning method in order to account for the overload factors. The only change is in the $\frac{N_{idle}}{N_{lasks}}$ term, as shown in Eq. 8.

$$\varepsilon_{opt} = \frac{1}{\left[1 + \frac{P_x + P_y + P_z - 6}{\omega_g \omega_m \omega_r}\right] \left[1 + \frac{T_{\text{comm}}}{T_{\text{task}}}\right]}$$
(8)

The Unstructured Transport Sweep

While PDT has scaled well out to 750,000 cores, similar levels of parallel scaling have not been achieved using unstructured sweeps yet. As described by Pautz ??, a new list scheduling algorithm has been constructed for modest levels of parallelism (up to 126 processors).

There are three requirements for a sweep scheduling algorithm to have. First, the algorithm should have low complexity, since millions of individual tasks are swept over in a typical problem. Second, the algorithm should schedule on a set of processors that is small in comparison to the number of tasks in the sweep graph. Last, the algorithm should distribute work in the spatial dimension only, so that there is no need to communicate during the calculation of the scattering source.

Here is the pseudocode for the algorithm:

Assign priorities to every cell-angle pair

Place all initially ready tasks in priority queue

While (uncompleted tasks)

For i=1,maxCellsPerStep

Perform task at top of priority queue

Place new on-processor tasks in queue

Send new partition boundary data

Receive new partition boundary data

Place new tasks in queue

An important part of the algorithm above is the assigning priorities to tasks. Specialized prioritization heuristics generate partition boundary data as rapidly as possible in order to minimize the processor idle time.

Nearly linear speedups were obtained on up to 126 processors. Further work is being done for scaling to thousands of processors.

I.A.1 Cycle Detection

A cycle is a loop in a directed graph. These occur commonly in unstructred meshes. The problem with cycles is that they can cause hang time in the problem, as a processor will wait for a message that might will never come. This means that the computation for one or more elements will never be completed. The solution to this is to "break" any cycles that exist by removing an edge of the task dependence graph (TDG). Old flux information is used on a particular element face in the domain. Most of the time, the edge removed is oriented obliquely with respect to the radiation direction.

Algorithms for for finding cycles are called *cycle detection* algorithms. This must be done efficiently in parallel, both because the task dependence graph is distributed, and because the finite element grid may be deforming every timestep and changing the associated TDG.

Cycle detection utilizes two operations: trim and mark. Trimming identifies and discards elements which are not in cycles. At the beginning of cycle detection, graphs are trimmied in the downwind direction, then the remaining graphs are trimmed in the upwind direction. A pivot vertex is then selected in each graph. Graph vertices are then marked as upwind, downwind, or unmarked. Then, if any vertices are both upwind and downwind, the cycle is these vertices plus the pivot vertex. An edge is removed between 2 cycle vertices, and 4 new graphs are created: a new cycle, the upwind vertices without the cycle, the downwind vertices without the cycle, and a set of unmarked vertices. This recursively continues until all cycles are eliminated.

II. Motivation and Proposed Method for Load Balancing in PDT

When discussing the parallel scaling of transport sweeps, a load balanced problem is of great importance. A load balanced problem has an equal number of degrees of freedom per processor. Load balancing is important in order to minimize idle time for all processors by equally distributing (as much as possible) the work each processor has to do. For the purposes of unstructured meshes in PDT, we are looking to "balance" the number of cells. Ideally, each processor will be responsible for an equal number of cells.

When using the unstructured meshing capability in PDT, the input geometry is described by a Planar Straight Line Graph (PSLG). This is a list of vertices and the straight line segments connecting them. The mesh generator being used is the Triangle Mesh Generator ??, so the PSLG input is described by a Triangle .poly file. In order to parallelize the sweep, the user determines how many "subsets", he/she would like to subdivide the PSLG into. A series of cut planes in *x* and *y* are laid over the PSLG, creating an overlaid regular Cartesian grid. Each convex, orthogonal unit created by the grid is termed a "subset". Subsets then become the base structured unit when calculating our parallel efficiency. Subsets are created and meshed in parallel. Within each subset lies an unstructured triangular meshed. Discontinuities along the boundary are fixed by "stitching" across hanging nodes, creating degenerate polygons along subset boundaries. Because PDT's spatial discretization employs Piece-wise Linear Discontinuous (PWLD) finite element basis functions, there is no problem solving on degenerate polygons.

If the number of cells in each subset can be reasonably balanced, then the problem is effectively load balanced. The Load Balance algorithm described on the next page details how the subsets will be load balanced. In summary, the procedure of the algorithm involves moving the initially user specified *x* and *y* cut planes, re-meshing, and iterating until a reasonably load balanced problem is obtained.

```
I, J subsets specified by user
Mesh all subsets
N_{tot} = total number of triangles
N_{ij} = number of triangles in subset ij
f = \max_{ij} (N_{ij}) / \frac{N_{tot}}{I \cdot J}
{//Check if all subsets meet the tolerance}
if f < tol_{subset} then
   DONE with load balancing
else
   f_I = \max_i [\sum_j N_{ij}] / \frac{N_{tot}}{I}
  f_J = \max_j [\sum_i N_{ij}] / \frac{N_{tot}}{J}

if f_I > \text{tol}_{\text{row}} then
      Redistribute(X_i)
   end if
   if f_J > \text{tol}_{\text{col}} then
      Redistribute(Y_i)
   end if
   if redistribution occured then
      REMESH and repeat algorithm
   end if
end if
if There is still a discrepancy amongst subsets then
   Move cutplane segments on the subset level and remesh (may require changes to scheduling algorithm)
end if
```

III. Preliminary Results

Unstructured meshing capability has been placed in PDT, Figure coming to showcase it (probably C5G7 reactor mesh).

IV. Goals and Proposed Plan

IV.A. Completed Work

• Unstructured meshing capability in PDT.

IV.B. Planned Work

• Implement load balancing algorithm for unstructured meshes in PDT.

IV.C. Possibly achieved tasks

• Propose a scaling study for unstructured meshes in PDT, similar to the infamous Zerr problem.