シロクマの README11_29 版

行動識別の手順:

ステップ 1: YOLO 認識座標の取得

- YOLOv5s を使用してオブジェクトを検出します
- Train_yolov5/morning_1207/weights/best.pt と
 train_yolov5/morning_smallSample_1129/weights/best.pt
 ↑学習済み重みあります
- 出力されるラベルには5つの値が含まれます:
 - 1. 予測された種類 (class) シロクマの場合は 0 一種類しかないです
 - 2. X 軸中心座標
 - 3. Y軸中心座標
 - 4. 対象の幅
 - 5. 対象の高さ
- Annotation フォルダの中には
 - 1. 元のビデオ
 - 2. 予測背景のフレーム(avg frames)
 - 3. 前処理したフレーム (pre_processing)
 - 4. Annotation ファイル (Annotations)
 - ◆ 使う時の手順:
 - train dataset と test dataset を作ります(split_train_val.py)
 - yolov5に入力できるファイル形式に変換する(xml_to_yolo.py)

ステップ2:移動速度の計算

- 中心座標値を使用して移動速度を計算します
- 現在のフレームの前後 15 フレーム (30 フレーム) の平均値を使用して計算 します
- sample_coordination.py

ステップ3:シロクマの画像抽出

- 検出されたラベルに基づいてホワイトベアの画像を切り取ります。
- 参照スクリプト: sample_image.py。

ステップ4:行動分類

- 分類モデルを使用してホワイトベアの行動を分類します。
- 現在のモデルの精度はそれほど高くないかもしれませんが、docker 環境の テストとして一回実行した方がいいかもしれないです。
- train/train_with_validation.py の 150 行目で、モデルのパスを変更することができます。
- train/models/には学習済みのモデルが保存しています。