UNIVERSITY OF TORONTO

Faculty of Arts and Science

DECEMBER EXAMINATIONS 2010 STA 302 H1F / STA 1001 HF

Duration - 3 hours

Aids Allowed: Calculator

LAST NAME:	_FIRST NAME:
STUDENT NUMBER:	

- There are 19 pages including this page.
- The last page is a table of formulae that may be useful. For all questions you can assume that the results on the formula page are known unless the question states otherwise.
- Pages 14 through 18 contain output from SAS that you will need to answer Question 5.
- Total marks: 85

1	2ab	2cd	3	4	5a

5b	5c	5d(i-iii)	5d(iv-vi)	6	7, 8

,	narks) Beside each description, write provides the best match.	e the letter of the term from the list below					
	(I) What to include when the effect of X_1 on Y is different for different values of X_2 .						
(II)	The proportion of variation explained by the regression line.						
(III)	An observed response minus	its estimated mean according to some model.					
(IV)	A measure of how influentia	l a particular observation is.					
(V)	A method for estimating reg	ression coefficients.					
(VI)	A test comparing a model of	interest to the model with only an intercept.					
(VII)	A statistic used to identify I	problems of multicollinearity.					
	A statistic for comparing meables.	odels with different sets of explanatory vari-					
	(IX) Another name for the estimate of σ^2 in regression analysis. (X) A measure of now unusual the x-values are for a particular observation.						
(A)	Analysis of Variance	(N) Least Squares					
(B)	Analysis of Variance F -test	(O) Correlation					
(C)	R-squared	(P) Degrees of freedom					
(D)	Adjusted R-squared	(Q) Cook's Distance					
(E)	t-test	(R) Leverage					
(F)	Residual	(S) Variance Inflation Factor					
(G)	Standardized residual	(T) Residual mean square					
(H)	Fitted value	(U) Mean square of regression					
(I)	Interaction	(V) Residual sum of squares					
(J)	Indicator	(W) Regression sum of squares					
(K)	Explanatory variable	(X) Total sum of squares					
(L)	Response variable	(Y) Variance					
(M)	Outlier	(Z) Extra sum of squares					

- 2. Suppose that we believe that a response variable Y is related to a non-random explanatory variable x by the model $Y_i = \beta x_i + e_i$, i = 1, ..., n. That is, we believe that it is appropriate to use a model that goes through the origin. Assume that the following conditions hold:
 - The errors e_1, \ldots, e_n have expectation 0.
 - The errors have common variance σ^2 .
 - The errors are uncorrelated.
 - (a) (3 marks) Show that the least squares estimator of β is

$$\hat{\beta} = \sum_{i=1}^{n} x_i Y_i / \sum_{i=1}^{n} x_i^2$$

(b) (3 marks) Assuming that the model is correct, show that $\hat{\beta}$ is an unbiased estimator of β .

$({\it Question}\ 2\ {\it continued.})$

(c) (2 marks) Find $Var(\hat{\beta})$.

(d) (2 marks) Suppose that the model $Y_i = \beta x_i + e_i$ is correct, but the model $Y_i = \beta_0 + \beta_1 x_i + e_i$ is used. Show that $\operatorname{Var}(\hat{\beta}_1) > \operatorname{Var}(\hat{\beta})$.

4

3. A multiple linear regression model with dependent variable Y and 3 explanatory variables was fit to 15 observations. The residual sum of squares was found to be 22.0 and it was also found that

$$(\mathbf{X}'\mathbf{X})^{-1} = \begin{bmatrix} 0.5 & 0.3 & 0.2 & 0.6 \\ 0.3 & 6.0 & 0.5 & 0.4 \\ 0.2 & 0.5 & 0.2 & 0.7 \\ 0.6 & 0.4 & 0.7 & 3.0 \end{bmatrix}$$

(a) (1 mark) What degrees of freedom would be used when finding a confidence interval for β_1 ?

(b) (1 mark) What is the estimate of the error variance?

(c) (1 mark) What is the estimated variance of the estimator of β_2 ?

4. Consider the multiple regression model

$$Y = X\beta + e$$
, $e \sim N(0, \sigma^2 I)$

(a) (3 marks) Show that $\hat{\mathbf{e}} = (\mathbf{I} - \mathbf{H})\mathbf{e}$.

- (b) (1 mark) Why is E(ee') = Var(e)?
- (c) (4 marks) Show that $\mathbf{I} \mathbf{H}$ is idempotent and symmetric.

(d) (3 marks) Show that $Var(\hat{\mathbf{e}}|\mathbf{X}) = \sigma^2(\mathbf{I} - \mathbf{H})$.

5. The data considered in this question are the same data considered in Assignment 1, taken from a 2007 Wall Street Journal article on the decline of U.S. house prices. The data are indicators of the real-estate market in 28 U.S. cities. The variables considered in this question are:

Response variable:

- PriceChange The percent change in average price of a home from one year ago. Explanatory variables:
- LoansOverdue The percentage of mortgage loans that are 30 days or more overdue.
- InventoryChange The percent change in housing inventory from one year ago. A positive value indicates that more houses are on the market.
- EmployOutlook A character variable that classifies the projected growth in the number of jobs as one of Strong, Average, or Weak. (An observation that had an employment outlook of Very Weak in the original data has been re-classified as Weak.)
- iEmployOutIsWeak An indicator variable that is 1 if EmployOutlook is Weak and 0 otherwise.
- iEmployOutIsAverage An indicator variable that is 1 if EmployOutlook is Average and 0 otherwise.
- iEmpWeak_LoansOD The product of iEmployOutIsWeak and LoansOverdue.
- iEmpAvg_LoansOD The product of iEmployOutIsAverage and LoansOverdue.

On pages 14 through 18 there is SAS output for the analysis of these data. The questions below relate to the SAS output.

- (a) ANALYSIS 1 (page 14) was carried out using only observations having EmployOutlook either Strong or Weak. (That is, cities with Average employment outlook were removed from the data for this analysis only.) The questions in part (a) relate to ANALYSIS 1.
 - i. (2 marks) What is the estimated difference in the mean of percent change in average price of a home between cities with Strong and cities with Weak employment outlook?

ii. (2 marks) Can you conclude that there is a difference in the mean of percent change in average price of a home between cities with Strong and cities with Weak employment outlook? Justify your answer.

(Question 5 continued.)

- (b) ANALYSIS 2 (page 15) was carried out using all of the available data. It is a simple linear regression using LoansOverdue as the explanatory variable. The questions in part (b) relate to ANALYSIS 2.
 - i. (4 marks) Four numbers in the SAS output have been replaced by letters. What are they?

(A) =	
-------	--

$$(B) =$$

$$(C) =$$

$$(D) =$$

ii. (2 marks) R^2 is only 22%. As a consequence, can we conclude that there is not a linear relationship between PriceChange and LoansOverdue? Explain.

iii. (5 marks) On page 15 you are given a plot of the standardized residuals versus the predicted values and a normal quantile plot of the standardized residuals for this analysis. What are you looking for in each plot and what do you conclude?

8

(Question 5 continued.)

- (c) ANALYSIS 3 (page 16) was carried out on all of the available data. It is a multiple regression using LoansOverdue and InventoryChange as explanatory variables. The questions in part (c) relate to ANALYSIS 3.
 - i. (1 mark) Write down the model that is being fit. Do not use matrix form.
 - ii. (3 marks) What do you conclude from the t-tests for the coefficients for LoansOverdue and InventoryChange?

iii. (2 marks) On page 16 there are two added variable plots; the first is for LoansOverdue and the second is for InventoryChange. For the first of these plots, explain what is being plotted.

iv. (2 marks) Explain how the added variable plots are related to your conclusions to the t-tests considered in part ii. (of part (c)).

(Question 5 continued.)

- (d) ANALYSIS 4 (page 17) was carried out on all of the available data. It is a multiple regression using LoansOverdue, iEmployOutIsWeak, and iEmployOutisAverage as explanatory variables. ANALYSIS 5 (page 18) uses the same data and explanatory variables as ANALYSIS 4, but includes the additional explanatory variables iEmpWeak_LoansOD and iEmpAvg_LoansOD. The questions in part (d) relate to ANALYSES 4 and 5.
 - i. (2 marks) Explain the purpose of including the explanatory variables that are in the model in ANALYSIS 5 but are not in the model in ANALYSIS 4.

ii. (4 marks) Carry out one statistical test to determine whether both of the extra terms in the model of ANALYSIS 5 (that are not in the model of ANALYSIS 4) should be excluded from the model. (You have not been given any tables for probability distributions. However, you should be able to make a conclusion without tables based on what you know about the relevant probability distribution.)

iii. (2 marks) R^2 is higher in ANALYSIS 5 than ANALYSIS 4, while adjusted R^2 is higher in ANALYSIS 4 than ANALYSIS 5. Explain, in practical terms, why this happened.

(Question 5 part (d) continued.)

iv. (2 marks) For ANALYSIS 4, what do you conclude from the analysis of variance F-test? Is your conclusion consistent with the t-tests for the coefficients of the explanatory variables? Why or why not?

v. (3 marks) For ANALYSIS 5, what do you conclude from the t-test for the coefficient of LoansOverdue? Does this conclusion contradict the t-test for the coefficient of LoansOverdue in ANALYSIS 4? Why or why not?

vi. (2 marks) Explain how the Variance Inflation Factors given in ANALYSIS 5 support your answer to part v. (of part (d)).

6.	(a)	(4 marks) For each scenario, sketch a scatterplot that shows the given situation.
		i. A simple linear regression that includes a point with high leverage and low
		influence.
		ii. A simple linear regression that includes a point with high leverage and high
		influence.
	(b)	(2 marks) A regression is carried out and a point is identified as having high
		leverage and low influence. Why should you be concerned about the presence of that point?

7. (4 marks) Suppose that a simple linear regression model has been fit to n observations. Suppose that the distribution of the explanatory variable appears to be normal, while the distribution of the response variable is highly right-skewed. A plot of the residuals versus the explanatory variable produces a pattern with a parabolic shape with increasing variance. It is suggested that we should consider carrying out a regression using a quadratic model, that is, a model of the form $Y = \beta_0 + \beta_1 x + \beta_2 x^2 + e$. Is this suggestion appropriate? Why or why not?

8. (3 marks) A multiple linear regression model was fit in order to examine the effects of gestational period $(X_1$, measured in days) and litter size (X_2) on brain weight (Y, measured in g) after controlling for body size $(X_3,$ measured in kg). The fitted regression was

$$\widehat{\log(Y)} = 0.85 + 0.42 \log(X_1) - 0.31 \log(X_2) + 0.58 \log(X_3).$$

Explain carefully how to interpret the coefficient estimated by 0.42 in practical terms.

ANALYSIS 1:

Analysis on Data using only Cities with Employment Outlook that is either Strong or Weak

The REG Procedure Dependent Variable: PriceChange

Number of	${\tt Observations}$	Read 1	١5
Number of	Observations	Used	9
Number of	Observations	with Missing Values	6

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	70.81339	70.81339	3.97	0.0867
Error	7	125.01550	17.85936		
Corrected Total	8	195.82889			
Root M	ISE	4.22603	R-Square	0.3616	
Depend	lent Mean	-2.01111	Adj R-Sq	0.2704	
Coeff	Var	-210.13425			

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	1.12500	2.11302	0.53	0.6109
iEmployOutIsWeak	1	-5.64500	2.83491	-1.99	0.0867

ANALYSIS 2:

Simple Linear Regression with ${\tt LoansOverdue}$ as the Predictor Variable

The REG Procedure Dependent Variable: PriceChange

Number	of	Observations	Read			28
Number	of	Observations	Used			19
Number	of	Observations	with	Missing	Values	9

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	94.14588	(A)	4.75	(B)
Error	17	(C)	19.82795		
Corrected Total	18	431.22105			
Root MSE	1	4.45286	R-Square	0.2183	
Depender	ıt Mean	-2.93158	Adj R-Sq	0.1723	
Coeff Va	ır	-151.89285			

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	4.90522	3.73874	1.31	0.2070
LoansOverdue	1	-2.21642	1.01716	(D)	0.0437

SLR with Loans Overdue

SLR with Loans Overdue

(SAS output for Question 5 continued.)

ANALYSIS 3:

Multiple Regression with LoansOverdue and InventoryChange as Explanatory Variables

The REG Procedure
Dependent Variable: PriceChange

Number	of	${\tt Observations}$	Read			28
Number	of	Observations	Used			18
Number	of	Observations	with	Missing	Values	10

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	2	118.98895	59.49448	3.91	0.0429
Error	15	228.02716	15.20181		
Corrected Total	17	347.01611			
Root M	SE	3.89895	R-Square	0.3429	
Depend	ent Mean	-3.42778	Adj R-Sq	0.2553	
Coeff	Var	-113 7/1570			

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	2.65873	3.62085	0.73	0.4741
LoansOverdue	1	-2.02190	0.91033	-2.22	0.0422
InventoryChange	1	0.07833	0.06494	1.21	0.2464

ANALYSIS 4:

 ${\bf Multiple\ Regression\ with\ LoansOverdue,\ iEmployOutIsWeak,\ and\ iEmployOutIsAverage}$

T	he	REG	Proc	edure
Dependent	Va	riab	ole:	PriceChange

Number of Observations Read	28	
Number of Observations Used	19	
Number of Observations with Missing	Values 9	

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	3	193.41312	64.47104	4.07	0.0267
Error	15	237.80794	15.85386		
Corrected Total	18	431.22105			
Root M	SE	3.98169	R-Square	0.4485	
Depende	ent Mean	-2.93158	Adj R-Sq	0.3382	
Coeff V	Var	-135.82070			

Parameter Estimates

	Parameter	Standard		
DF	Estimate	Error	t Value	Pr > t
1	9.87078	3.89616	2.53	0.0229
1	-6.12724	2.67738	-2.29	0.0370
1	-5.26246	2.36003	-2.23	0.0415
1	-2.38142	0.91194	-2.61	0.0196
	DF 1 1 1	1 9.87078 1 -6.12724 1 -5.26246	DF Estimate Error 1 9.87078 3.89616 1 -6.12724 2.67738 1 -5.26246 2.36003	DF Estimate Error t Value 1 9.87078 3.89616 2.53 1 -6.12724 2.67738 -2.29 1 -5.26246 2.36003 -2.23

ANALYSIS 5:

 $\label{thm:multiple Regression} \begin{tabular}{ll} Multiple Regression with LoansOverdue, iEmployOutIsWeak, iEmployOutIsAverage, iEmpWeak_LoansOD and iEmpAvg_LoansOD \end{tabular}$

The	REG	Prod	cedure
Dependent V	/arial	ble:	PriceChange

Number of Observations Read	28	
Number of Observations Used	19	
Number of Observations with Missing	Values 9	

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	5	203.98640	40.79728	2.33	0.1014
Error	13	227.23465	17.47959		
Corrected Total	18	431.22105			
Root	MSE	4.18086	R-Square	0.4730	
Depe	endent Mean	-2.93158	Adj R-Sq	0.2704	
Coef	f Var	-142.61461			

Parameter Estimates

		Parameter	Standard			Variance
Variable	DF	Estimate	Error	t Value	Pr > t	Inflation
Intercept	1	11.68757	7.24891	1.61	0.1309	0
${\tt iEmployOutIsWeak}$	1	-1.73422	12.69454	-0.14	0.8934	33.96623
${\tt iEmployOutIsAverage}$	1	-8.81329	8.48728	-1.04	0.3180	19.52066
Loans0verdue	1	-2.87613	1.88998	-1.52	0.1520	3.91633
iEmpWeak_LoansOD	1	-1.29487	3.50733	-0.37	0.7179	32.62860
iEmpAvg_LoansOD	1	0.98817	2.23799	0.44	0.6661	20.24662

Simple regression formulae

$$b_{1} = \frac{\sum (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum (x_{i} - \overline{x})^{2}}$$

$$= \frac{\sum (x_{i} - \overline{x})^{2}}{\sum (x_{i} - \overline{x})^{2}}$$

$$Var(\hat{\beta}_{1}|X) = \frac{\sigma^{2}}{\sum (x_{i} - \overline{x})^{2}}$$

$$Var(\hat{\beta}_{0}|X) = \sigma^{2} \left(\frac{1}{n} + \frac{\overline{x}^{2}}{\sum (x_{i} - \overline{x})^{2}}\right)$$

$$SST = \sum (y_{i} - \overline{y})^{2}$$

$$RSS = \sum (y_{i} - \hat{y}_{i})^{2}$$

$$SSReg = b_{1}^{2} \sum (x_{i} - \overline{x})^{2} = \sum (\hat{y}_{i} - \overline{y})^{2}$$

$$Var(\hat{y}|X = x^{*}) = \sigma^{2} \left(\frac{1}{n} + \frac{(x^{*} - \overline{x})^{2}}{\sum (x_{i} - \overline{x})^{2}}\right)$$

$$Var(Y - \hat{y}|X = x^{*}) = \sigma^{2} \left(1 + \frac{1}{n} + \frac{(x^{*} - \overline{x})^{2}}{\sum (x_{i} - \overline{x})^{2}}\right)$$

$$r = \frac{\sum (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sqrt{\sum (x_{i} - \overline{x})^{2}} \sum (y_{i} - \overline{y})^{2}}$$

$$SXX = \sum (x_{i} - \overline{x})^{2} = \sum x_{i}^{2} - n\overline{x}^{2}$$

$$h_{ij} = \frac{1}{n} + \frac{(x_{i} - \overline{x})(x_{j} - \overline{x})}{SXX} \left(h_{ii} > \frac{4}{n}\right)$$

$$DFBETAS_{ik} = \frac{b_{k} - b_{k(i)}}{s.e.(b_{k})} \left(> 1 \text{ or } \frac{2}{\sqrt{n}}\right)$$

$$DFFITS_{i} = \frac{\hat{y}_{i} - \hat{y}_{i(i)}}{s.e.(\hat{y}_{i})} \left(> 1 \text{ or } 2\sqrt{\frac{2}{n}}\right)$$

Regression in matrix terms

$$Var(\mathbf{Y}) = E[(\mathbf{Y} - E\mathbf{Y})(\mathbf{Y} - E\mathbf{Y})']$$

$$= E(\mathbf{Y}\mathbf{Y}') - (E\mathbf{Y})(E\mathbf{Y})'$$

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

$$\mathbf{Var}(\hat{\boldsymbol{\beta}}|\mathbf{X}) = \sigma^{2}(\mathbf{X}'\mathbf{X})^{-1}$$

$$\hat{\mathbf{Y}} = \mathbf{X}\mathbf{b} = \mathbf{H}\mathbf{Y}$$

$$\hat{\mathbf{e}} = \mathbf{Y} - \hat{\mathbf{Y}} = (\mathbf{I} - \mathbf{H})\mathbf{Y}$$

$$\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$$

$$SSReg = \mathbf{Y}'(\mathbf{H} - \frac{1}{n}\mathbf{J})\mathbf{Y}$$

$$RSS = \mathbf{Y}'(\mathbf{I} - \mathbf{H})\mathbf{Y}$$

$$SST = \mathbf{Y}'(\mathbf{I} - \frac{1}{n}\mathbf{J})\mathbf{Y}$$

$$VIF_{j} = \frac{1}{1 - R_{j}^{2}}$$