

Internet Archive PDF

Huilin Chang, Yihnew Eshetu, Celeste Lemrow

Faculty Advisor: Professor Alvarado

Client: Internet Archive

Sponsor: Bryan Newbold

Progress Made

- Balanced Data
- Data Pipeline
- Data Feature Engineering
- Models
 - Text Based Models
 - XGBoost
 - Keras
 - SVM
 - Image Based Model
 - Keras (VGG16)

Balanced Data

Added an additional 20k non research papers

Data Pipeline

- Modified our data pipeline to use multiprocessing (40 cores)
- Restructured our images directory to include test and training subfolders

Task	Time using 1 Processor	Time using Multiprocessing
Extract meta and text	6 hours	10 minutes
Convert PDFs to images	3 hours	5 minutes

Data Feature Engineering

- The use of multiprocessing allows for further feature extraction
 - Ability to look for keywords in text
 - English
 - Non-english
 - Translate keywords to the language of the text
 - Process adds 14 minutes to the additionally extraction of meta and text data

- 0.6

- 0.4

- 0.2

- 0.0

-- 0.2

Text Based Models

Model Type	Accuracy
XGBoost	95.39%
Keras	93.89%
SVM	90.40%

XGBoost

- **Grid Search**
 - N Estimators, Learning Rate, Depth
 - 3 k-fold
- F-score: 97.90%
- Accuracy: 95.39%

Best Threshold=0.485, F-Score=0.979

Confusion Matrix for Threshold=0.485

Keras-Tensorflow

- Model Structure
 - Input dimension of 14
 - One hidden layer
 - Adam optimizer
 - Epochs 100
- Accuracy: 93.89%

```
from keras.models import Sequential
from keras.layers import Dense
import tensorflow as tf

model = Sequential()

model.add(Dense(2048, activation='relu', input_shape=(14,)))
model.add(Dense(1024, activation='relu', ))
opt = keras.optimizers.Adam(learning_rate = 0.001)

model.add(Dense(1, activation='sigmoid'))
```

```
Epoch 88/100
41994/41994 [=========================== ] - 168s 4ms/step - loss: 0.1816 - accuracy: 0.9367
Epoch 89/100
Epoch 90/100
41994/41994 [============ ] - 168s 4ms/step - loss: 0.1873 - accuracy: 0.9367
Epoch 91/100
41994/41994 [============= ] - 168s 4ms/step - loss: 0.2435 - accuracy: 0.9367
Epoch 92/100
41994/41994 [============ ] - 170s 4ms/step - loss: 0.3206 - accuracy: 0.9373
Epoch 93/100
41994/41994 [============== ] - 169s 4ms/step - loss: 0.2495 - accuracy: 0.9371
Epoch 94/100
41994/41994 [============= ] - 167s 4ms/step - loss: 0.2976 - accuracy: 0.9367
Epoch 95/100
41994/41994 [============= ] - 166s 4ms/step - loss: 0.3050 - accuracy: 0.9371
20694/41994 [=======>>...........] - ETA: 1:24 - loss: 0.1743 - accuracy: 0.9389
```

Image Based Model

Leveraged an existing Keras application, <u>VGG16</u>, for large scale image classification

Model Type	Accuracy
Keras (VGG16)	90.01%

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 256, 256, 3)]	0
block1_conv1 (Conv2D)	(None, 256, 256, 64)	1792
block1_conv2 (Conv2D)	(None, 256, 256, 64)	36928
block1_pool (MaxPooling2D)	(None, 128, 128, 64)	0
block2_conv1 (Conv2D)	(None, 128, 128, 128)	73856
block2_conv2 (Conv2D)	(None, 128, 128, 128)	147584
block2_pool (MaxPooling2D)	(None, 64, 64, 128)	0
block3_conv1 (Conv2D)	(None, 64, 64, 256)	295168
block3_conv2 (Conv2D)	(None, 64, 64, 256)	590080
block3_conv3 (Conv2D)	(None, 64, 64, 256)	590080
block3_pool (MaxPooling2D)	(None, 32, 32, 256)	0
block4_conv1 (Conv2D)	(None, 32, 32, 512)	1180160
block4_conv2 (Conv2D)	(None, 32, 32, 512)	2359808
block4_conv3 (Conv2D)	(None, 32, 32, 512)	2359808
block4_pool (MaxPooling2D)	(None, 16, 16, 512)	0
block5_conv1 (Conv2D)	(None, 16, 16, 512)	2359808
block5_conv2 (Conv2D)	(None, 16, 16, 512)	2359808
block5_conv3 (Conv2D)	(None, 16, 16, 512)	2359808
block5_pool (MaxPooling2D)	(None, 8, 8, 512)	0

Total params: 14,714,688 Trainable params: 14,714,688 Non-trainable params: 0

Further Work

- Identify possible additional features
- Remove features that are insignificant to the models
- Machine learning model hyperparameter tuning
- Compare the pros and cons of text-based vs image-based models