Estatística Não Paramétrica

Mann-Whitney U-test

Luiz Fernando Coelho Passos 27 de Setembro de 2019

Páginas 62 a 66

```
library(knitr)

Method = rep(1:2, each = 7)
Score = c(38, 39, 40, 41, 48, 50, 53, 10, 12, 14, 17, 18, 20, 102)

kable(data.frame(Method, Score))
```

Method	Score
1	38
1	39
1	40
1	41
1	48
1	50
1	53
2	10
2	12
2	14
2	17
2	18
2	20
2	102

Nossas hipóteses são:

 ${\cal H}_0$: Os métodos 1 e 2 são equivalentes.

 ${\cal H}_1$: Os métodos 1 e 2 não são equivalentes.

Realizaremos o teste de Wilcoxon-Mann-Whitney (Mann-Whitney U-test):

```
wilcox.test(Score~Method)
```

```
##
## Wilcoxon rank sum test
##
## data: Score by Method
## W = 42, p-value = 0.02622
## alternative hypothesis: true location shift is not equal to 0
```

O p-valor obtido foi 0.02622. Logo, com base num nível de significância de 5%, rejeitamos H_0 , ou seja, há evidências de que os métodos 1 e 2 não são equivalentes.

Exercício questão 1 pág 74

```
Method = rep(c("One-on-one", "Small group"), each = 10)
gain_score = c(16, 13, 16, 16, 13, 9, 12, 12, 20, 17, 11, 2, 10, 4, 9, 8, 5, 6, 4, 16)
kable(data.frame(Method, "Gain Score" = gain_score))
```

3.5 .1 .1	
Method	Gain.Score
One-on-one	16
One-on-one	13
One-on-one	16
One-on-one	16
One-on-one	13
One-on-one	9
One-on-one	12
One-on-one	12
One-on-one	20
One-on-one	17
Small group	11
Small group	2
Small group	10
Small group	4
Small group	9
Small group	8
Small group	5
Small group	6
Small group	4
Small group	16

Nossas hipóteses são:

 H_0 : Os métodos One-on-one e Small group são equivalentes.

 H_1 : Os métodos One-on-one e Small group não são equivalentes.

Realizaremos o teste de Wilcoxon-Mann-Whitney (Mann-Whitney U-test):

```
wilcox.test(gain_score~Method)
```

```
## Warning in wilcox.test.default(x = c(16, 13, 16, 16, 13, 9, 12, 12, 20, :
## cannot compute exact p-value with ties

##
## Wilcoxon rank sum test with continuity correction
##
## data: gain_score by Method
## W = 91, p-value = 0.002086
## alternative hypothesis: true location shift is not equal to 0
```

O p-valor obtido foi 0.002086. Logo, com base num nível de significância de 5%, rejeitamos H_0 , ou seja, há evidências de que os métodos One-on-one e Small group não são equivalentes.

Encontrando a soma dos ranks para os 2 métodos:

Método One-on-one

```
sum(rank(gain_score)[ 1:10])
```

[1] 146

Método Small group

```
sum(rank(gain_score)[11:20])
```

[1] 64

Encontrando o valor W para os 2 métodos:

Método One-on-one

```
sum(rank(gain_score)[ 1:10]) - 10*11/2
```

[1] 91

Método Small group

```
sum(rank(gain_score)[11:20]) - 10*11/2
```

[1] 9

Assim, temos que a soma dos ranks do método One-on-one é maior que a soma dos ranks do método Small group. Portanto, podemos afirmar que o método One-on-one foi melhor para o ensino da leitura.