Раздел II

Случайные величины

17.09.24

Опр. 1. Случайная величина (СВ) - величина, которая может принимать все из своих возможных значений в зависимости от элементарных исходов испытания СВ обозначаются заглавными буквами, а их значения - соответствующими маленькими буквами:

$$X, Y, X \dots x, y, z \tag{1}$$

Случайные величины:

- **дискретные** (ДСВ) возможные значения изолированы друг от друга (отдельные, конкретные значения, например число, выпавшее при броске игральной кости)
- **непрерывные** (HCB) целиком заполняют собой определенный участок числовой прямой
 - **Опр. 2.** Строгое определение: СВ X называется непрерывной, если для нее существует функция y = f(x) такая, что:

$$\forall x \in \mathbb{R} : \int_{-\infty}^{x} f(t)dt = F(x)$$
 (2)

Пример.

$$f(x) = 0$$
 при $x < 0, a \sin x$ при $0 \le x \le \pi, 0$ при $x > \pi$ (3)

$$a - ? F(x) - ? P(\frac{\pi}{3} < x < \frac{3\pi}{2}) - ?$$

$$\int_{-\infty}^{+\infty} f(x)dx = 1 \implies$$

$$\int_{-\infty}^{0} 0dx + \int_{0}^{\pi} a \sin x dx + \int_{\pi}^{+\infty} 0dx =$$

$$-a \cos x|_{0}^{\pi} = -a(-1) - (-a) = 2a = 1 \implies$$

$$a = \frac{1}{2}$$

$$(4)$$

Пример. Ошибка при взвешивания вещества - это НСВ, кол-во ошибок - это ДСВ.

Опр. 3. Закон распределения - соотношение между всевозможными значениями *CB* и их вероятностями

24.09.24

1 Закон распределения ДСВ

Пример. В ящике 2 белых, 8 черных шаров. Одновременно достают 3. X - число белых среди них.

1.1 Ряд распределения

$$x_0 = 0;$$
 $m_1 =$
 $x_1 = 1;$ $m_2 =$
 $x_2 = 2;$ $m_3 =$

$$x_i$$
 01 2
 p_i $\frac{56}{120} \frac{56}{120}$ $\frac{8}{120}$

1.2 Многоугольник распределения

1.3 Функция распределения

вероятность того, что X примет определенное значение относительно x.

$$F(x) = P(X < x) \tag{6}$$

Пример.

$$F(-1) = P(X < -1) \tag{7}$$

Свойство 1.3.1. Функция распределения везде определена: $D(F) = (-\infty; +\infty)$

Свойство 1.3.2. Область значений совпадает с областью значений вероятности: E(F) = [0;1]

Свойство 1.3.3.
$$\lim_{x \to -\infty} F(x) = 0$$
 $\lim_{x \to +\infty} F(x) = 1$

Свойство 1.3.4. Функция распределения неубывающая

Свойство 1.3.5. Имеет разрывы I рода в точках $x = x_i$ и величина разрыва равна p_i (разрывы отсчитываются от предыдущего уровня, а не от y = 0)

Свойство 1.3.6. $P(a \le x < b) = F(b) - F(a)$

Proof.

$$A.x < a$$
 $B.x < b$ $C.a \le x < b$ $A+C=B,$ а также A,C несовместны
$$P(A+C)=P(A)+P(C)$$
 (8)

$$P(A) + P(C) = P(B) \implies P(C) = P(B) - P(A) =$$

$$P(x < b) - P(x < a) = F(b) - F(a)$$

2 Закон распределения НСВ

$$P(x=x_i) = 0. (9)$$

A - невозможное $\implies P(A) = 0$.

NB:. не работает в обратную сторону!

Свойство 2.0.1.

$$F(X) = P(X < x) \tag{10}$$

01.10.24

3 Числовые характеристики случайной величины

Опр. 4. *Математическое ожидание* $(M(x); E(x); M\xi)$ - среднее по вероятности значение случайной величины. Для ДСВ:

$$M(x) = \frac{\sum x_i p_i}{\sum p_i} = \sum_{i=1}^{n} x_i p_i$$
 (11)

Физический смысл: бр бр бррр

Переход к формуле мат. ожидания для НСВ: $x_i \to x; p_i \to f(x)dx; \sum_{i=1}^n \to \int_{-\infty}^{+\infty}$

$$M(x) = \int_{-\infty}^{+\infty} x f(x) dx \tag{12}$$

 ${\it геом.}$ смысл: coomветсвует абсциссе центра тяжести графика фигуры, образованной графиком f(x)

Опр. 5. *Мода* m_o - наиболее возможное значение случайной величины

Опр. 6. Медиана m_e - такое значение, что вероятность того, что

$$P(x < m_e) = P(x > m_e) = \frac{1}{2}$$
(13)

геом. смысл: точка, которая делит площадь под графиком плотности пополам.

NB:. Если распределение дискретное и не симметричное, то за m_e принимают такое значение CB, что сумма вероятностей до него и после него минимально отличаются друг от друга.

Опр. 7. **Дисперсия** D(x) - степень отклонения значений СВ от мат. ожидания. Или: степень разброса значений СВ относительно мат. ожидания.

$$D(x) = M((x - M(x))^{2})$$
(14)

Для ДСВ:

$$D(x) = \sum_{i=1}^{n} (x_i - M(x))^2 p_i$$
(15)

$$(x - M(x))^{2} = x^{2} - 2xM(x) + (M(x))^{2}$$

$$M(x^{2} - 2xM(x) + (M(x))^{2}) = M(x^{2}) - 2M(x)M(x) + (M(x))^{2} =$$

$$M(x^{2}) - 2(M(x))^{2} + (M(x))^{2} =$$

$$M(x^{2}) - (M(x))^{2}$$
(16)

Для НСВ:

$$D(x) = \int_{-\infty}^{+\infty} (x_i - M(x))^2 f(x) dx$$
 (17)

Пример.

$$x_i =: 0; 1; 2$$

$$p_i =: \frac{7}{15}; \frac{7}{15}; \frac{1}{15}$$
(18)

для ДСВ:

$$M(x)=0\cdot rac{7}{15}+1\cdot rac{7}{15}+2\cdot rac{1}{15}=rac{9}{15}$$
 $m_o=0\land m_o=1$ (две моды) $m_e=1$

(19)

$$D(x) = 0^{2} \cdot \frac{7}{15} + 1^{2} \cdot \frac{7}{15} + 2^{2} \cdot \frac{1}{15} - \frac{9^{2}}{15}$$

$$= \frac{7}{15} + \frac{4}{15} - \frac{81}{225}$$

$$= \frac{28}{75}$$

для НСВ:

$$f(x) = \begin{cases} 0, x < 0 \\ \frac{1}{2}\sin x; 0 \le x \ge \pi \\ 0, x > \pi \end{cases}$$

$$M(x) = \frac{\pi}{2}$$

$$\begin{split} P(x < m_e) &= \frac{1}{2} \text{ ясно, что } m_e \in [0; \pi] \\ P(x < m_e) &= \int_{-\infty}^{m_e} f(x) dx = \int_{-\infty}^0 0 dx + \int_0^{m_e} \frac{1}{2} \sin x dx = \frac{1}{2} \\ &\Longrightarrow \int_0^{m_e} \frac{1}{2} \sin x dx = \frac{1}{2} \dots \\ \dots &= \frac{\pi}{2} \end{split}$$

$$D(x) = \int_{-\infty}^{+\infty} x^2 f(x) dx - (M(x))^2$$

$$= \int_0^{\pi} x^2 \frac{1}{2} \sin x dx - \frac{\pi^2}{2}$$

$$= \frac{1}{2} \int_0^{\pi} x^2 \sin x dx - \frac{\pi^2}{2}$$

$$= \dots -$$

Опр. 8. Среднеквадратическое отклонение (СКО) $\sigma(x)$

$$\sigma(x) = \sqrt{D(x)} \tag{21}$$

$$[M(x)] = [m_o] = [m_e] = [x]$$

 $[D(x)] = [x^2]$ (22)
 $[\sigma(x)] = [x]$

имеет ту же размерность, что и мат. ожидание

3.1 Основные свойства мат. ожиданияM(x)

Свойство 3.1.1. M(C) = C

Свойство 3.1.2. $M(x \cdot C) = C \cdot M(x)$

Proof.

Свойство 3.1.3. M(x + -y) = M(x) + -M(y)

Proof.

Свойство 3.1.4. если x, y независимы: $M(x \cdot y) = M(x) \cdot M(y)$

3.2 Основные свойства дисперсии D(x)

Свойство 3.2.1. D(C) = 0

Свойство 3.2.2. $D(s \cdot C) = C^2 D(x)$

Proof.

$$D(x \cdot C)$$
= $M((xC - M(xC)))^2$
= $M((xC - CM(x)))^2$
= $M(C^2(x - M(x))^2)$
= $C^2M((x - M(x)))^2$
= $C^2D(x)$ (23)

Свойство 3.2.3. если x,y независимы: D(x+-y) = D(x) + -D(y)

3.3 Понятие о начальных и центральных теоретических моментах

Опр. 9. Начальный момент порядка к

$$u_k = M(x^k) = \begin{cases} \sum_{i=1}^n x_i p_i \text{ для ДСВ} \\ \int_{-\infty}^{+\infty} x^k f(x) dx \text{ для НСВ} \end{cases}$$
 (24)

Опр. 10. Центральный момент порядка к

$$\mu_k = M((x - M(x))^k) = \begin{cases} \sum_{i=1}^n (x_i - M(x))^k \text{ для ДСВ} \\ \int_{-\infty}^{+\infty} (x - M(x))^k f(x) dx \text{ для НСВ} \end{cases}$$
 (25)

Пример.

$$\mu_2 = D(x) = \nu_2 - (\nu_1)^2$$

$$D(x) = \sum_{i=1}^n x_i p_i - (M(x))^2 = \nu_2 - (\nu_1)^2$$
(26)

Опр. 11. Коэффициент асимментрии - характеризует меру скошенности распределения

$$A = \frac{\mu_3}{\sigma^3} \tag{27}$$

Опр. 12. Коэффициент эксцесса - степень "пологости". $E_k > 0$ - "заостренное", $E_k < 0$ - "пологое"

$$E_k = \frac{\mu_4}{\sigma^4} - 3 \tag{28}$$

4 Основные законы распределения случайных величин

4.1 Дискретные

Опр. 13. Равномерное - все вероятности одинаковы

$$p_i = \frac{1}{n} \tag{29}$$

при этом

$$M(x) = \frac{n+1}{2}$$

$$D(x) = \frac{n^2 - 1}{12}$$
(30)

Пример. бросание игральной кости