Week 08: Dask DS-GA 1004: Big Data Detailed Notes for Final Exams

Introduction to Dask

Dask is an open-source Python library for parallel computing. Designed to scale from single machines to clusters, it integrates with the Python scientific stack (NumPy, Pandas, Scikit-Learn) and supports out-of-core computation.

Key Features

- **Delayed Computation**: Builds task graphs for lazy evaluation (similar to Spark RDDs).
- Collections: Provides distributed versions of common data structures:
 - **Bags**: Unstructured data (parallel Python lists).
 - **DataFrames**: Tabular data (Pandas-like, partitioned).
 - Arrays: N-dimensional arrays (NumPy-like, chunked).
- Out-of-Core Processing: Handles datasets larger than RAM by chunking data.

Comparison of Big Data Frameworks

Method	Strengths	Weaknesses
Collections of Files	Flexible, unstructured	No built-in parallelism
Relational Databases	SQL interface, struc-	Complex parallelism
	tured	
Map-Reduce + HDFS	Parallel, scalable	Restricted to map/re-
		duce
Spark	Mature, SQL/-	Poor Python integra-
	DataFrames, cluster-	tion, rigid data model
	ready	
Dask	Python-native, out-of-	Less mature, requires
	core, flexible	manual optimization

Dask vs. Spark

Similarities

- Lazy evaluation via task graphs.
- Distributed DataFrames and collections.
- Fault tolerance through lineage.

Differences

Aspect	Dask	Spark
Language	Python-centric	JVM-based (Scala/Java)
Data Model	Prioritizes arrays (NumPy)	Prioritizes tabular (SQL)
Scaling	Single-machine out-of-core +	Cluster-first
	clusters	
Ecosystem	SciPy stack (sklearn, Py-	Hadoop ecosystem (HDFS,
	Torch)	YARN)

Dask Collections

Bags

- Unordered collections of Python objects (analogous to Spark RDDs).
- Operations: map, filter, foldby.
- Example:

```
import dask.bag as db
b = db.from_sequence(range(5))
c = b.map(lambda x: x**2)
c.compute() # [0, 1, 4, 9, 16]
```

• Optimization Tip: Avoid groupby (high shuffle); use foldby for associative/commutative operations.

DataFrames

• Partitioned Pandas DataFrames. Read from CSV/Parquet:

```
import dask.dataframe as dd
df = dd.read_csv('s3://bucket/*.csv')
df.groupby('column').mean().compute()
```

- Partition Management:
 - Repartition after filtering to avoid empty partitions.
 - Use repartition() and persist() for balanced workloads.

Arrays

• Chunked NumPy arrays for large datasets:

```
import dask.array as da
x = da.from_array(np.random.randn(2000, 6000), chunks
=(1000, 1000))
```

• Supports most NumPy operations (e.g., slicing, reductions).

Schedulers and Execution

- Single Machine:
 - Threads: Shared memory, lightweight.
 - Processes: Avoid GIL, true parallelism.
- Clusters: Deploy on YARN, Kubernetes, or HPC systems (e.g., Greene).

Case Study: Machine Listening Evaluation

- **Problem**: Evaluate 20,000 model outputs across 10 models and 2,000 audio files.
- Solution with Dask:
 - 1. Store outputs as {model_id}/{recording_id}.txt.
 - 2. Use delayed functions for parallel scoring:

```
from dask import delayed
@delayed
def evaluate(file):
    # Load data, compute metrics
    return metrics
results = [evaluate(f) for f in glob('*/*.txt')]
df = dd.from_delayed(results).compute()
```

- 3. Convert to DataFrame and save as Parquet.
- Why Dask?: Embarrassingly parallel, minimal code changes.

Best Practices

- Minimize Shuffling: Use combiners (foldby) and avoid wide dependencies.
- Chunk Sizing: Balance chunk size (too small → overhead; too large → memory issues).

• Cluster vs. Single Machine: Use clusters only when data exceeds single-node resources.

Alternatives to Dask

- Polars: Rust-based parallel DataFrame library (columnar, multi-threaded).
- Modin: Distributed Pandas replacement.

Exam Tips

- Understand when to use Dask vs. Spark (Python integration vs. mature ecosystem).
- Know how Dask handles out-of-core computation (chunking + task graphs).
- Be able to contrast Bags, DataFrames, and Arrays.