Spatial Modeling

Covid Mortality in South America

Miguel Calvo Valente, 203129

Nelson Alejandro Gil Vargas, 203058

Valeria Roberts Trujillo,173120

Descripción del problema

Objetivos

Datos

La base de datos contiene 611 datos y 36 variables. Las variables más interesantes para nuestro análisis son:

- Country
- Fatalities
- Continent
- Geometry
- Population
- Net Migration
- Death Rate

Análisis Exploratorio de Datos

Country	Y = Fatalities	E = Expected Covid Deaths	X = Net Migration
Argentina	25	15.1	0.61
Bolivia	0	3.38	-1.32
Brazil	139	58	-0.03
Chile	10	4.69	0
Colombia	13	12.2	-0.31
Ecuador	62	2.87	-8.58
Guyana	2	0.318	-2.07
Paraguay	6	1.46	-0.08
Perú	25	8.82	-1.05
Uruguay	0	1.55	-0.32
Venezuela	2	6.33	-0.04

Modelado e implementación

- n.iter = 10000
 - n.chains = 3
- n.burnin = 1000
 - n.thin = 1

Modelo intrínseco: ICAR

$$Y_{i} \sim Po(E_{i}\lambda_{i})$$

$$log(\lambda_{i}) = \beta_{1} + \beta_{2}X_{i} + \theta_{i} + \phi_{i}$$

Pruebas

Y = Y/c, c =1, 10, 100, 1000, 10000
Y' = log(Y+1), E' = log(E+1)

$$log(Y+1) \sim N(log(\lambda) + log(E+1), \sigma_{v}^{2})$$

Modelo CAR propio

$$Y_i \sim Po(E_i \lambda_i)$$

$$\log(\lambda_i) = \beta_1 + \beta_2 X_i + \theta_i + \phi_i$$

ρ: parámetro adicional que controla la dependencia entre vecinos

P

ρ: parámetro adicional que controla la dependencia entre vecinos

$$\rho \in (1/\lambda_{(1)}, 1/\lambda_{(n)})$$

Pruebas:

- ρ al 70%
- ρ al 80%
- ρ al 90%

Pruebas

$$Y = Y/c, c = 1000$$

$$Y' = log(Y+1), E' = log(E+1)$$

$$log(Y+1) \sim N(log(\lambda) + log(E+1), \sigma_{y}^{2})$$

Modelo Jerárquico

$$Y_i \sim Po(E_i \lambda_i)$$

$$\log(\lambda_i) = \beta_1 + \beta_2 X_i + \theta_i$$

Resultados

Modelo Y, E

	Modelo	DIC
1	CAR Proper $\rho = 90$	-1438
2	CAR Proper ρ 90 xsc	-393.1
3	CAR Proper ρ 90 nox	-197.5
4	CAR Proper ρ 80	-3.508
5	CAR Normal Normal	19.63
6	CAR Proper Normal ρ 70	21.07
7	CAR Proper Normal ρ 90	27.09
8	CAR Proper Normal ρ 80	27.51
9	CAR Proper ρ 70	39.64
10	Hierarchical	65.24

Modelo Y' = log(Y+1), E' = log(E+1)

	Modelo	DIC
1	CAR Proper ρ	90 27.69
2	CAR Normal	30.29
3	CAR Proper ρ	70 35.21
4	Hierarchical	35.57
5	CAR Proper ρ	90 nox 35.99
6	CAR Proper ρ	80 36.85
7	CAR Proper ρ	90 xsc 37.55

CAR proper con ρ al 90% Y, E

Maps suavizados

Efecto Migración

	Media	2.5~%	97.5~%	Probabilidad de no significancia
β_1	0.492	-1.379	2.537	0.251
eta_2	-0.239	-0.566	0.127	0.087

Al aumentar la proporción de migración neta en una misma región en 10 puntos porcentuales, entonces el riesgo disminuye en un 2.4%

Efecto Individual + Espacial

Predicciones

CAR proper con ρ al 90% Y' = log(Y+1), E' = log(E+1)

Maps suavizado

Efecto Migración

	Media	2.5~%	97.5 %	Probabilidad de no significancia
β_1	-0.225	-1.208	0.676	0.299
eta_2	-0.134	-0.339	0.083	0.101

Al aumentar la proporción de migración neta en una misma región en 10 puntos porcentuales, entonces el riesgo disminuye en un 1.3%

Efecto Individual + Espacial

Predicciones

Conclusiones

Referencias

- Thomas, A., Best, N., Lunn, D., Arnold, R., & Spiegelhalter, D. (2004).
 GeoBugs user manual. Cambridge: Medical Research Council Biostatistics
 Unit.
- 2. CSSE at Johns Hopkins University, (2022). CSSE Covid 19 Dataset.
- 3. MARCUSINTHESKY, (2020). COVID-19: Global Spatial Regression Model.
- 4. Kaggle, (2020). COVID19 Global Forecasting.
- 5. Fernando Lasso, (2018). Countries of the World.
- 6. Nieto-Barajas, L. E., (2022). Regresión Avanzada. Modelos Espaciales. ITAM. http://allman.rhon.itam.mx/~Inieto/index_archivos/NotasRA7.pdf

Gracias