Prova Pratica Laboratorio di Calcolo 20-02-2015

Creare un programma, <cognome>_<nome>.c, per valutare il tempo T e il numero N di conteggi per il funzionamento di un rivelatore di radiazioni che tenga conto della probabilità di falsi positivi (cioè di dire che un oggetto è radioattivo mentre non lo è) e falsi negativi (cioè di non individuare che un oggetto è radioattivo).

Supponiamo che un rivelatore in assenza di radiazione emetta un segnale ad una frequenza v_B mentre in presenza di radiazione la frequenza diventi v_S . Si scriva un programma secondo le seguenti istruzioni:

1. Scrivere una funzione *poisson* che restituisca la probabilità poissoniana di osservare N conteggi se se ne attendono μ secondo la formula

$$P(N,\mu) = \mu^N e^{-\mu}/N!$$

Nel calcolo del fattoriale si suggerisce di usare variabili di tipo double per evitare problemi numerici.

2. Scrivere due funzioni *FP* e *FN* con opportuni argomenti per calcolare e restituire la probabilità di falsi positivi (FP) e falsi negativi (FN) definite come:

FP(
$$\mu_B$$
, N_T) = $1 - \sum_{i=0}^{N_T - 1} P(i, \mu_B)$

$$FN(\mu_S, N_T) = \sum_{i=0}^{N_T - 1} P(i, \mu_S)$$

dove μ_B è il numero di conteggi attesi in assenza della radiazione, μ_S è il numero di conteggi attesi in presenza della radiazione, e N_T è il numero di conteggio che vogliamo determinare.

- 3. Scrivere una funzione *trovaTempo* che, dati v_B e v_S , restituisca il tempo *thest* e il conteggio *Nbest* necessari per identificare un segnale con una probabilità di falsi negativi del 5% e di falsi positivi dell'1%. A tal fine la funzione deve:
 - a. estrarre in modo casuale 100000 valori di due variabili casuali, una di tipo *double*, $t \in [0,20]$, ed una di tipo *int*, $N_T \in [1,20]$.
 - b. Per ogni coppia di valori estratti t e N_T calcolare il valore di $Q = (FN(v_St, N_T) 0.05)^2 + (FP(v_Bt, N_T) 0.01)^2$
 - c. Trovare la coppia di valori t = tbest e $N_T = Nbest$ per i quali si ha il valore minimo di Q e restituire questi valori
- 4. Chiedere all'utente il valore delle due frequenze $v_B e v_S$. Ciascun valore deve essere positivo e deve essere soddisfatta la condizione $v_B < v_S$. In caso di errore chiedere di inserire nuovamente i valori ad oltranza.
- 5. Chiamare la funzione *trovaTempo* che restituisce i valori di *tbest* e *Nbest* e stampare sullo schermo questi valori.

Notare che la scelta e la struttura delle funzioni sarà particolarmente oggetto di valutazione.