Análise Exploratória de Dados.

Unidade I

O que é AED?

A análise exploratória de dados (AED) referese ao processo de realizar investigações inicias nos dados, utilizando um conjunto de técnicas estatísticas e representações gráficas, cujo objetivo é detectar anomalias, testar hipóteses, compreender as relações entre as variáveis e verificar suposições, maximizando a compreensão do conjunto de dados.

Benefícios da AED

- Entender melhor os padrões nos dados.
- Detectar outliers ou eventos anômalos.
- Testar hipóteses.
- Identificar informações importantes nos dados.
- Revelar relações entre as variáveis do conjunto de dados.
- Determinar a melhor forma de manipular fontes de dados.
- Determinar as técnicas mais apropriadas aos dados.

Ferramentas para AED

- Descrição estatística dos dados.
- Visualização univariada de cada atributo do conjunto de dados.
- Visualização bivariada, permitindo avaliar a relação entre cada atributo do conjunto de dados.
- Visualizações multivariadas, permitindo mapear e entender as interações entre diferentes atributos.
- Técnicas de agrupamento e redução de dimensionalidade.

Ferramentas da AED

https://devopedia.org/exploratory-data-analysis

Ferramentas de AED

- Softwares utilizados
 - Python: Uma linguagem de programação interpretada e orientada a objetos com semântica dinâmica.
 - R: Uma linguagem de programação de código aberto e ambiente de software livre para computação estatística e gráficos suportados pela R Foundation for Statistical Computing.

- 1. Análise descritiva das variáveis.
- 2. Ajuste dos tipos das variáveis para que sejam consistentes.
- 3. Detecção e tratamento de dados ausentes.
- 4. Identificação e tratamento de outliers.
- 5. Análise numérica e gráfica das relações entre as variáveis, identificando o grau de correlação entre elas.

Tipos de Dados

- Variável categórica:
 - Possuem o formato de string ou texto.
 - Ex.:Datas, Gênero, etc.
 - Podem ser divididas em:
 - Variáveis nominais:
 - São valores que não têm ordem entre si, ou seja, nenhum valor é maior que o outro.
 - · Ex.: Gêneros, clima, país, etc.
 - Variáveis ordinarias:
 - Podem ser organizadas em alguma ordem em relação umas às outras.
 - Ex.: Classificação em uma competição, nível de escolaridade, etc.

Tipos de Dados

- Variáveis numéricas:
 - Possuem valores numéricos que podem ser medidos.
 - Ex.: Idade, valor do estoque, peso, altura, etc.
 - Pode ser divididos em:
 - Variáveis contínuas:
 - Possuem valores infinitos.
 - Ex.: Altura, peso, comprimento, distância, etc.
 - Varáveis discretas:
 - Possuem valores finitos.
 - · Ex.: Número de medalhas, número de diplomas, etc.

https://www.anaconda.com/

○ Anaconda3 2023.03-1 (64-bit) Setup — □ ×			\times	
O ANACONDA.	Installation Complete Setup was completed successfully.			
Completed				
Show details				
Anaconda, Inc. —————	< Back	Next >	Cano	rol
	< DaCK	ivext >	Cano	.ei

Bibliotecas

- Numpy
- Matplotlib
- Seaborn
- Pandas

Importando dados

CSV

- import pandas as pd
- emprego_df = pd.read_csv('emprego.csv', delimiter=',')
- emprego_df
- emprego_df = pd.read_csv('emprego.csv', delimiter=',',
 index_col=0)

XLS

- import pandas as pd
- professores_df =
 pd.read_excel('..|disciplina_AED|dados.xlsx')
- professores_df =
 pd.read_excel('..|disciplina_AED|dados.xlsx',
 index_col=0)

Visualizando dados

- É importante verificar as colunas e os tipos de dados.
- professores_df.columns
- professores_df.info()
- professores_df.head()
- professores_df.tail()
- professores_df['name']
- professores_df['genero'].unique()

Dados ausentes

- Algumas causas para dados ausentes.
 - Informações não preenchidas devido a questões de privacidade.
 - Falhas no processo de coleta de dados.
 - · Perdas de dados no processo de transferência.
- Podem existir muitas outras razões para dados ausentes.

Identificando dados ausentes

- professores_df
- len(professores_df)
- professores_df.info()
- professores_df.isna()
- professores_df.notna()
- professores_df.isnull()
- professores_df.isnull().sum()
- professores_df.describe()
- Valores NaN são considerados float pelo Pandas.
- Dados ausentes no formato datetime são denominados NaT.

- Diferentes formas para tratar dados ausentes
 - Ignorar linhas com valores ausentes
 - Algumas vezes a quantidade de linhas com dados ausentes pode ser menor do que 1-5%.
 - Um método é remover linhas contendo a maioria das colunas sem preenchimento.
 - Devemos ter cuidado para não remover a maior parte do conjunto de dados.
 - Remover muitas linhas pode reduzir a qualidade para modelos de Aprendizado de Máquina.

- Diferentes formas para tratar dados ausentes
 - Preenchimento de dados ausentes.
 - Um forma é o preenchimento com um valor genérico ou inferir a partir do conjunto de dados.
 - · Não é sempre possível inferir o valor a ser preenchido.

Idade	Localização do assento
65	Inferior
70	Inferior
15	Superior
24	Meio
72	?????

- Diferentes formas para tratar dados ausentes
 - Preenchimento de dados ausentes.
 - Outra forma de preenchimento é utilizar medidas de tendência central (média, mediana, moda, etc.).
 - É importante tomar cuidado para que eles não alterem os padrões gerais nos dados (a média é afetada por outliers).
 - O valor a ser utilizado no preenchimento pode ser escolhido com base nos valores de outros atributos.

Gênero	Peso (kg)
M	70
F	55
M	65
F	??
F	60
M	??
F	52
F	53
M	85
M	75
M	??
F	68

Média de Peso por Gênero: M: 73.75 F: 57.6

Preenchendo valores ausentes

Gênero	Peso (kg)
M	70
F	55
M	65
F	57.6
F	60
M	73.75
F	52
F	53
M	85
M	75
M	73.75
F	68

- Removendo linhas com dados ausentes
 - import pandas as pd
 - o professores2_df = pd.read_excel('dados_2.xlsx', index_col=0)
 - professores2_df
 - professores2_df_no_missing = professores2_df.dropna()
 - professores2_df_no_missing
 - · Não devemos remover a maioria das linhas.

- Removendo linhas com a maioria das colunas com dados ausentes
 - import pandas as pd
 - o professores2_df = pd.read_excel('dados_2.xlsx', index_col=0)
 - professores2_df
 - professores2_df_limiar_missing = professores2_df.dropna(thresh=5)
 - professores2_df_limiar_missing
 - O parâmetro thresh indica mínimo de colunas preenchidas para manter o registro.

- Removendo colunas com um percentual elevado de dados ausentes
 - professores2_df_percentual_columns_missing = professores2_df.dropna(axis=1, thresh=int(0.6*len(professores2_df)))
 - professores2_df_percentual_columns_missing
 - Remove colunas com mais de 60% (0.6) de dados ausentes
 - O parâmetro axis de deve ter valor 0 para remover linhas ou 1 para remover colunas.

- Preenchimento de dados ausentes com valores genéricos.
 - professores2_df_generic_no_missing = professores2_df.fillna(-1)
 - professores2_df_generic_no_missing

- Preenchimento de dados ausentes com valores das linhas adjacentes.
 - Utiliza o próximo valor não nulo.
 - professores2_df_next_value = professores2_df.bfill()
 - Utiliza um valor anterior não nulo.
 - professores2_df_forward_value = professores2_df.ffill()

- Preenchimento de dados ausentes com valores de tendências centrais.
 - idade_media = professores2_df['idade'].mean()
 - altura_media = professores2_df['altura'].mean()
 - print("Idade Média:", idade_media, " Altura Média:", altura_media)
 - dados_preenchimento = {'idade': idade_media, 'altura': altura_media} # Dicionário
 - dados_preenchimento
 - professores2_df_central_tendency=professores2_df
 .fillna(value=dados_preenchimento)

- Preenchimento de dados ausentes baseado em condições.
 - professores2_df_peso_genero =
 professores2_df[['genero', 'peso']]
 - professores2_df_peso_genero.groupby("genero").tra nsform(lambda x: x.fillna(x.mean()))
 - professores2_df[['genero','peso']] = professores2_df_peso_genero

- https://pandas.pydata.org/pandasdocs/stable/user_guide/missing_data.html
- Atividade: Efetuar o tratamento de dados ausentes de um conjunto de dados.

