Équations Différentielles Linéaires d'ordre 1 $_{\rm Corrigé}$

\mathbf{D}	ΑRV	O'	UX	T	héc

Novembre 2023

Crédits: Ibrahim pour tout (j'aime pas les EDL)

	Credius .	pour	tout (j		
Exercices.					
Exercice 11	.1	 		 	 2

Exercice 11.1 $[\blacklozenge \Diamond \Diamond]$

Résoudre les équations différentielles ci-dessous

1.
$$y' - 2y = 2 \operatorname{sur} \mathbb{R}$$
 2. $(x^2 + 1)y' + xy = x$ 3. $y' + \tan(x)y = \sin(2x) \operatorname{sur}] - \frac{\pi}{2}, \frac{\pi}{2}[$
4. $y' - \ln(x)y = x^x \operatorname{sur} \mathbb{R}_+^*$ 5. $(1 - x)y' - y = \frac{1}{1 - x} \operatorname{sur}] - \infty, 1[$

1. Solutions de l'équation homogène : $S_0 = \{x \mapsto \lambda e^{2x} \mid \lambda \in \mathbb{R}\}$

Solution particulière, avec y constante : $S_p: x \mapsto -1$.

Ensemble de solutions : $S = \{\lambda e^{2x} - 1 \mid \lambda \in \mathbb{R}\}.$

2. L'équation se réecrit comme $y' + \frac{x}{x^2+1}y = \frac{x}{x^2+1}$.

Solutions de l'équation homogène : $S_0 = \{x \mapsto \frac{\lambda}{\sqrt{x^2+1}} \mid \lambda \in \mathbb{R}\}$

Solution particulière : $S_p: x \mapsto 1$ est solution évidente. Ensemble de solutions : $S = \{x \mapsto \frac{\lambda}{\sqrt{x^2+1}} + 1 \mid \lambda \in \mathbb{R}\}.$

3.Soit $I =]-\frac{\pi}{2}, \frac{\pi}{2}[.$

Solutions de l'équation homogène : $S_0 = \{x \mapsto \lambda \cos x \mid \lambda \in \mathbb{R}\}.$

Solution particulière : Soit $u \in S_0$ et $\lambda : I \to \mathbb{K}$ dérivable sur I. On cherche $z = \lambda' u$.

z est solution
$$\iff \forall x \in I, \ \lambda'(x)\cos(x) = \sin(2x)$$

 $\iff \forall x \in I, \ \lambda'(x) = \frac{\sin(2x)}{\cos(x)} = 2\sin(x)$
 $\iff \lambda = -2\cos$

Ainsi, $z = -2\cos^2$.

Ensemble de solutions : $S = \{x \mapsto \lambda \cos x - 2\cos^2 x \mid \lambda \in \mathbb{R}\}.$