8ª Lista de Cálculo Diferencial e Integral I - 2021-1

1. Utilize a Regra da cadeia para derivar as seguintes funções:

a.
$$y = \tan\left(\frac{x+1}{2}\right)$$

b.
$$y = \sqrt{1 + 2 \tan x}$$

c.
$$y = \sqrt{\tan\left(\frac{x}{2}\right)}$$

d.
$$y = \text{sen}(\sqrt{1+x^2})$$

$$e. \ y = \sqrt{1 + \tan\left(x + \frac{1}{x}\right)}$$

$$f. \ y = \cos^2\left(\frac{1-\sqrt{x}}{1+\sqrt{x}}\right)$$

g.
$$f(x) = \cos(\sin(\cos(1-x^2)))$$

h.
$$f(x) = \tan^3(\sin^2(4ax + b))$$

i.
$$g(x) = \text{sen}(x^2 + \text{sen}(x^2 + \text{sen}(x^2)))$$

j.
$$f(x) = \operatorname{sen}((x+1)^2(x+2))$$

- **2.** Seja $f(x) = \frac{x}{x^2 4}$, determine $(f^{-1})'(3/5)$. Considere $D(f) = [0, \infty) \{2\}$.
- 3. Determine as derivadas das funções trigonométricas inversas.
- 4. Determine as seguintes derivadas:

a.
$$f'''(x)$$
 para $f(x) = 7x^3 - 6x^5$

b.
$$f''(x)$$
 para $f(x) = \frac{x}{1+x}$

c.
$$\frac{d^2y}{dx^2}$$
 para $y=x^2-\frac{1}{x^2}$

d.
$$\frac{d^4y}{dx^4}$$
 para $y = ax^4$

e.
$$\frac{d^3y}{dx^3}$$
 para $y=(1+2x)^3$

f.
$$\frac{d^3y}{dx^3}$$
 para $y=(1+5x)^2$

$$g. \frac{d^2}{dx^2} \left(\frac{1-x}{1+x} \right)$$

h.
$$\frac{d^2}{dx^2} \left(x^3 + \frac{1}{x^3} \right)$$

i.
$$\frac{d^2}{dx^2} \left(\frac{ax+b}{cx+d} \right)$$

j.
$$\frac{d}{dx} \left[x \frac{d}{dx} (1+x^2) \right]$$

k.
$$\frac{d}{dx} \left[x \frac{d^2}{dx^2} \left(\frac{1}{1+x} \right) \right]$$

$$1. \frac{d^2}{dx^2} \left(\frac{ax^2 - b}{cx^2 - d} \right)$$

$$\mathsf{m.} \ \frac{d^{100}}{dx^{100}}(x^9 - 20x^7 + x^5 + 1)$$

n.
$$\frac{d^5}{dx^5}(x^5+c^5)$$

o.
$$f'''(x)$$
 para $f(x) = \frac{x^3}{3} + \frac{x^2}{2} + \frac{x}{1} + 1$

p.
$$f'''(x)$$
 para $f(x) = (7x^2 - x)^{-1}$

q.
$$\frac{d^2}{dx^2} \left[\left(\frac{6-x}{x^2-1} \right)^2 \right]$$

r.
$$\frac{d^4}{dx^4}[(1-x)^4]$$

s.
$$\frac{d^n y}{dx^n}$$
 para $y = (1+x)^n$

t.
$$\frac{d^n y}{dx^n}$$
 para $y = \frac{1}{x+1}$

- **5.** Mostre que a derivada de ordem n da função $y = e^{ax}$ é dada por $y^{(n)} = a^n e^{ax}$.
- **6.** Seja $f(x) = e^{-\frac{1}{2}x}$, $x \in [0, 1/4]$. Calcule $(f^{-1})''(e^{-\frac{1}{8}})$.
- **7.** Encontre dy/dx, usando derivação implícita.

a.
$$x^2 + y^2 - 4x + 10y - 20 = 0$$

b.
$$x^2 + xy - 3y^2 - 2x + 6y = 0$$

c.
$$(x^2 + y^2)^2 = x^2y$$

d.
$$y^2(1-x) = x^3$$

e.
$$(y-2)^2(x^2+y^2)=y^2$$

f.
$$x^{2/3} + y^{2/3} = 1$$

q.
$$x^{1/2} + y^{1/2} = 9$$

$$h. \ \sqrt{xy} = x - 2y$$

i. sen
$$x + 2\cos 2y = 1$$

$$j. (\sin \pi x + \cos \pi y)^2 = 2$$

k. sen
$$x = x(1 + \tan y)$$

$$1. \cot y = x - y$$

$$\mathbf{m}. \ y = \operatorname{sen}(xy)$$

n.
$$x = \sec \frac{1}{y}$$

8. Use derivação implícita para encontrar dy/dx e calcule a derivada no ponto indicado.

a.
$$xy = 4$$
, $P = (-4, -1)$

d.
$$(x+y)^3 = x^3 + y^3$$
, $(-1,1)$

b.
$$x^2 - y^3 = 0$$
, $(1, 1)$

e.
$$tan(x + y) = x$$
, $(0,0)$

c.
$$y^2 = \frac{x^2 - 4}{x^2 + 4}$$
, $(0, -1)$

f.
$$x \cos y = 1$$
, $(2, \frac{\pi}{3})$

9. Calcule dy/dx de maneira implícita e determine o intervalo da forma -a < y < a ou 0 < y < a, onde y seja uma função diferenciável.

$$a. \ \tan y = x$$

$$b. \cos y = x$$

- **10.** Use derivação implícita para encontrar a equação da reta tangente à elipse $\frac{x^2}{2} + \frac{y^2}{8} = 1$ no ponto (1,2). Verifique que a equação da reta tangente à elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ no ponto (x_0,y_0) é $\frac{x_0x}{a^2} + \frac{y_0y}{b^2} = 1$.
- 11. Em cada caso: (i) derive y em relação a x, (ii) derive x e y em relação a t.

- a. $2x^2 3x^4 = 0$
- b. $x^2 3xy^2 + y^3 = 10$
- $\mathbf{c.} \ \cos \pi y 3 \sin \pi x = 1$
 - $d. 4 \sin x \cos y = 1$