This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

REMARKS

The Office Action has been carefully reviewed. No claim is allowed. Claims 1, 16, 19, 21, 23, 44, and 55-58 presently appear in this application and define patentable subject matter warranting their allowance. Reconsideration and allowance are hereby respectfully solicited.

Claims 24, 26-34, 45, and 54, directed to pharmaceutical and vaccine compositions for the treatment of cancer, have been rejected under 35 U.S.C. §112, first paragraph, as failing to comply with the enablement requirement. While applicants do not concede to the examiner's position, this rejection is made moot by the cancellation of the rejected claims without prejudice to the filing of a continuation application thereon in order to advance prosecution.

Claims 1, 16, 19-21, 23, 44, and 55-58 have been rejected under 35 U.S.C. §101 because the claimed invention is directed to non-statutory subject matter. Claims 1, 16, 19, 21, 23, 44, and 55-58 are now amended as suggested by the examiner, thereby obviating this rejection.

Claims 1, 19-21, 23, 24, 26-34, 44, 45, 53, 54, and 58 have been rejected under 35 U.S.C. §112, first paragraph, as failing to comply with the written description requirement. The examiner states that the specification at page 38, third paragraph, states that only human Lactadherin (BA-46) was known in the art. The examiner holds however that the specification does not teach the chemical structure(s) of any Lactadherin other than saying that a human Lactadherin (BA-46) sequence is known in the art. It is the examiner's position that any other Lactadherin sequence besides human Lactadherin sequence had not been known in the art before the effective filing date of the instant application.

Appln. No. 09/744,804 Amdt. dated May 17, 2004

Reply to Office Action of February 20, 2004

This rejection is now obviated by the amendment of claims 1, 19, and 58 to recite for "human" Lactadherin (BA-46). The sequence of human Lactadherin is presented in the Larocca et al., Cancer Res. 15:4994-4998 (1991), paper cited in the specification at page 38, lines 22-24, as reference 68, a copy of which is attached hereto. Also attached hereto is a printout from the NCBI database for the accession number 1589428 disclosed in the specification at page 39, line 18 (Table 7). It is clear from this printout that the human Lactadherin (BA-46) sequence was publicly available in a sequence database as of at least November 4, 1996. Accordingly, the human Lactadherin (BA-46) sequence was available in the art at the time the invention was made and the amendments to the claims obviate this rejection.

Reconsideration and withdrawal of this rejection are therefore respectfully requested.

In view of the above, the claims comply with 35 U.S.C. §112 and define patentable subject matter warranting their allowance. Favorable consideration and early allowance are earnestly urged.

Respectfully submitted,

BROWDY AND NEIMARK, P.L.L.C.

Attorneys for Applicant(s)

Вy

ALLEN C. YUN

Registration No. 37,971

ACY:pp 624 Ninth Street, N.W. Washington, D.C. 20001

Telephone No.: (202) 628-5197 Facsimile No.: (202) 737-3528 G:\BN\Y\YEDA\Eisenbach3\PTO\amd OA 2-20-04.doc

A Mr 46,000 Human Milk Fat Globule Protein That Is Highly Expressed in Human Breast Tumors Contains Factor VIII-like Domains1

David Larocca, ² Jerry A. Peterson, Ramon Urrea, Jon Kuniyoshi, Antonio M. Bistrain, and Roberto L. Ceriani John Muir Cancer and Aging Research Institute, Walnut Creek, California 94596

Abstract

The human milk fat globule has proved to be a good source of antigenic material for production of antibodies against surface components of breast epithelial cells. Monoclonal antibodies against one of the major components of the human milk fat globule, which identify a glycoprotein with an apparent molecular weight of 46,000, have been found to be useful for both breast cancer diagnosis and therapy. In order to characterize this M, 46,000 glycoprotein, specific monoclonal antibodies were used to select complementary DNAs from a Agt11 expression library from lactating breast. The largest complementary DNA insert (BA46-1) was 1270 base pairs and encoded 217 amino acids. A single 2.2-kilobase RNA was specifically detected in a variety of carcinoma cell lines, using this complementary DNA probe, and it was overexpressed in some carcinoma lines. The mRNA Livels correlated with the level of expression of the antigen in these cell lines as detected by Western blot analysis. Sequence analysis revealed strong homology of the M, 46,000 glycoprotein with serum factors VIII and V, in the region implicated in phospholipid

Introduction

HMFG3 proteins have been the focus of extensive basic, preclinical, and clinical studies because of their importance as immunogens for development of antibodies against surface antigens of breast epithelial cells (1). Antibodies raised against HMFG proteins have been used for developing breast cancer imaging and immunotherapy (2, 3) as well as immunodiagnostics (4) and histopathology (5). The high-molecular-weight breast mucin component of HMFG has been the focus of much attention in this regard; however, the lower-molecular-weight components, in particular the M, 46,000 component, also have shown considerable promise as tumor markers and targets for therapy. Early work using both polyclor il and monoclonal antibodies that specifically bound the M, 46,000 component of HMFG showed the presence of M, 46,000 antigen in the sera of patients with breast tumor metastasis but not in a melanoma patient or in a normal healthy female control (4). Also, the M_r 46,090 component of HMFG has been shown to participate in circulating immune complexes in breast cancer patients (6). An increase in the circulating M, 46,000 antigen was found to be associated with limited tumor burden, but it decreased in advanced disease, presumably due to the formation of immune complexes (6). The importance of the M_r 46,000 antigen for therapy is suggested by preclinical studies that showed that 131]. conjugated anti-M, 46,020 monoclonal antibody, Mc3, effectively inhibited the growth of human tumors in nude mice for

up to 30 days when used alone or in a cocktail of 131 I-labeled anti-HMFG antibodies (3). Recent efforts have focused on characterizing the structure of the genes encoding the breast mucin and smaller HMFG antigens. Several groups have cloned and sequenced the cDNA encoding the high-molecular-weight mucin coraponent of HMFG (7-9). It consists of a highly immunogenic 20-amino acid repeat and flanking unique sequences. There is evidence that the breast mucin forms a complex with the M, 70,000 HMFG component involving disulfide linkages (10). A partial cDNA that encodes an antigenic region of the M_r 70,000 component has recently been characterized (11). This sequence appears to differ from another M, 70,000 component, termed butyrophylin, that is found in milk fat globules from different species and which has recently been cloned and sequenced from cows (12). A Mr 67,000 component from mouse milk fat globule has also been cloned and sequenced (13). The mouse protein is distinct from butyrophylin (12) but shares extensive homology with blood clotting factors VIII and V and contains epidermal growth factor-like repeat sequences. The function of these proteins remains unknown. Here we describe the cDNA cloning and characterization of a potential target antigen and tumor marker for breast cancer treatment and diagnosis, the M, 46,000 component of human milk fat globule. Surprisingly, it appears to represent a truncated version of the mouse M, 67,000 component having the factor VIII-like sequences. The factor VIII homology is in the C1C2 region that is thought to be involved in phospholipid binding. This gene is highly expressed in certain human tumor cell lines, and its protein is found primarily in the detergent-

Materials and Methods

Immunoscreening the Agt11 cDNA Library. A human breast cDNA Library was purchased from Clontech (Palo Alto, CA). The library was prepared from RNA extracted from adult breast tissue excised during mastectomy, during the 8th month of pregnancy, showing well-differ entiated tissue and lactational competence. The oligodeoxythymidineprimed cDNA from this tissue was inserted into the EcoRI site of Agt 11. Plating and screening of the library with MoAbs were done as described previously (11). The library was screened with a cocktail of MoAbs Mc3, Mc8, Mc15, and Mc16 (14), all of which bind the Mr 46,000 component of human milk fat globule.

Biot Analysis. Cell lines were grown to late log phase, and total cell RNA was prepared by the guanidinium/CsCl gradient method (15). RNA was denatured, electrophoresed, and blotted using standard protocols (15) and was bound to nylon (Bindyne) filters using UV irradiation. Single-stranded RNA probes were made in vitro, using SP6 and T7 RNA polymerase according to the manufacturer's instructions (Promega), and labeled by incorporation of [12P]UTP at 800 Ci/mmol (Amersham). Hybridization of RNA probes to RNA blots was carried out at 65°C. The highest-stringency wash was at 70°C (0.1 × standard saline citrate [0.15 M sodium chloride, 0.015 M sodium citrate], 0.1% sodium dodecyl sulfate). Blots were exposed to X-ray film (Kodak X-AR) at -80°C with intensifying screens.

Received 6/17/91; accepted 7/26/91.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

This work is supported by NIH Grants CA39932, CA42767, and RR05929.
To whom requests for reprints should be addressed, at John Muir Cancer.

and Aging Research Institute, 2055 North Broadway, Walnut Creek, CA 94596. The abbreviations used are: HMFG, human milk fat globule; MoAb, monoclonal antibody; cDNA, complementary DNA.

. DNA Sequencing. Large-scale bacteriophage DNA preparations were made from phage lysates, and the EcoRI-digested cDNA insert was subcloned into pGEM3 (Promega, Madison, WI) according to standard protocols (15). Dideoxynucleotide-based sequencing of the insert in pGEM3 was done with a modified T7 DNA polymerase (Sequenase) directly on the plasmid DNA using T7 or SP6 promoter sequence primers (Promega) according to the manufacturer's protocol (USB, Cleveland, OH). The sequence was confirmed by sequencing both strands of the insert.

Western Blotting. Cell lysates were fractionated into aqueous and detergent-soluble fractions by the method of Bordier (16). This method takes advantage of the fact that Triton X-114 remains in solution at 0°C but separates into phases above 20°C. Briefly, total cell protein was solubilized in 0.5% Triton X-114 in Tris-buffered saline, pH 7.4, at 0°C. The solution temperature was raised to 30°C, and the detergent was pelleted through a sucrose cushion to separate the detergent and aqueous phases. Aliquots of 25 mg (detergent fraction) and 50 mg (aqueous) were loaded onto 4-15% gradient gels for sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The proteins were electrophoresed and blotted electrophoretically. The blot was processed by incubating with 1 µg/ml Mc16 in 10 mm Tris (pH 7.5), 250 mm NaCl. and 0.05% Triton X-100 overnight at room temperature, washing, incubating 3 h with horseradish peroxidase-conjugated goat anti-mouse antibody, and the reactive bands were visualized using diaminobenzi-

Results and Discussion

We selected 15 positive plaques in a screen of about 1×10^6 plaques from a $\lambda gt11$ lactating breast cDNA library. The largest cDNA, BA46-1, was 1270 base pairs long. A series of positive Agt11 clones were used to lysogenize Y1089, and the resulting fusion protein containing induced cell extracts was analyzed by dot blot analysis for reactivity with each of the MoAbs contained in the screening cocktail. We found that Mc8, Mc15, and Mc16 bound to all the positive Agt11 lysogen extracts but not to control Agt11 extract (not shown). Mc3, however, did not bind any of the lysates, indicating that its epitope requires glycosylation or secondary structure or is not present on the isolated cDNA clones or in the library.

Single-stranded RNA probes representing each strand of the BA46-1 cDNA insert were prepared by subcloning into Gem3 and transcribing in vitro with T7 or SP6 polymerase. We analyzed several carcinoma cell lines including 7 breast lines and a lymphoid cell line for BA46-1-specific RNA. As shown in Fig. 1, we detected a single 2.2-kilobase RNA in most

Fig. 2. Western blot analysis of BA46 protein in human cell lines. Samples were fractionated and the blot prepared and processed as described in "Materials were fractionated and the diot prepared and processed as described in invalentals and Methods," Lanes 1, 3, 5, and 7, aqueous fractions of cell lines \\$49, HS578T, ELL-G, and Raji, respectively; Lanes 2, 4, 6, and 8, detergent-soluble fractions of A549, HS578T, ELL-G, and Raji, respectively. The blot was incubated overnight at room temperature with 1 µg/ml Mc16 in 10 mm Tris (pH 7.5), 250 mm

carcinoma cell lines tested when using the antisense strand as a probe. This RNA is also detectable in the remaining carcinoma lines and Raji but at much lower levels requiring longer exposures than shown in Fig. 1. There was considerable variation in the observed expression levels of the 2.2-kilobase RNA that we detected in the carcinoma cell lines. The lung (A549), ovary (SKOV3), and two breast cell lines (Ell-G and HS578T) accumulated much more of this transcript than the other carcinoma cell lines. Overexpression of certain genes, such as Her2/neu (17), in breast and other carcinomas has been correlated with prognosis. It will be of interest to determine whether overexpression of the M, 46,000 protein in carcinomas correlates with outcome of disease.

Although the antibodies used to select the cDNAs were specific to breast, the expression of the 2.2-kilobase RNA and its M, 46,000 protein product occurs in several different carcinoma cell lines. The lack of breast specificity may be due to a deregulation of this gene in carcinomas but not in normal tissue. Alternatively, normal epithelial tissue may express the M, 46,000 protein but process it in a way that blocks the epitopes

M, 46,000 HMFG PROTEIN WITH FACTOR VIII DOMAINS

```
GAT TTC ATC CAT GAT GTT AAT AAA AAA CAC AAG GAG TTT GTG GGT AAC TGG AAC AAG Phe Ile His Asp Val Asn Lys Lys His Lys Glu Phe Val Gly Asn Trp Asn
                       AAC GCG GTG CAT GTC AAC CTG TTT GAG ACC CCT GTG GAG GCT CAG TAC GTG
Asn Ala Val His Val Asn Leu Phe Glu Thr Pro Val Glu Ala Gln Tyr Val
                AGA TTG TAC CCC ACG AGC TGC CAC ACG GCC TGC ACT CTG CGC TTT GAG CTA CTG
Arg Leu Tyr Pro Thr Ser Cys His Thr Ala Cys Thr Leu Arg Phe Glu Leu Leu
               GGC TGT GAG CTG AAC GGA TGC GCC AAT CCC CTG GGC CTG AAG AAT AAC AGC ATC Cly Cys Glu Lau Asn Gly Cys Ala Asn Pro Leu Gly Leu Lys Asn Asn Sec Ile
               CCT GAC AAG CAG ATC ACG GCC TCC AGC AGC TAC AAG ACC TGG GGC TTG CAT CTC
Pro Asp Lys 31n Ile Thr Ala Ser Ser Ser Tyr Lys Thr Trp Gly Leu His Leu
              TTC AGC TGG AAC CCC TCC TAT GCA CGG CTG GAC AAG CAG GGC AAC TTC AAC GCC Phe Ser Trp Asn Pro Ser Tyr Ala Arg Leu Asp Lys Gln Gly Asn Phe Asn Ala
                                                                              300
             TGG GTT GCG GGG AGC TAC GGT AAC GAT CAG TGG CTG CAG GTG GAC CTG GGC TCC
TTP Val Ala Gly Ser Tyr Gly Asn Asp Gln Trp Leu Gln Val Asp Leu Gly Ser
            TCG ANG GAG GTG ACA GGC ATC ATC ACC CAG GGG GCC CGT AAC TIT GGC TCT GTC Ser Lys Glu Val Thr Gly Ile Ile Thr Gln Gly Als Arg Asn Phe Gly Ser Val
            CAG TIT GTG GCA TCC TAC AAG GTT GCC TAC AGT AAT GAC AGT GCG AAC TGG ACT Gln Phe Val Ala Ser Tyr Lys Val Ala Tyr Ser Asn Asp Ser Ala Asn Trp Thr
                                     500
           GAG TAC CAG GAC CCC AGG ACT GGC AGC AGT AAG ATC TTC CCT GGC AAC TGG GAC GLU Tyr Gln Asp Pro Arg Thr Gly Ser Ser Lys Ile Phe Pro Gly Asn Trp Asp
          AAC CAC TCC CAC AAG AAG AAC TTG TTT GAG ACG CCC ATC CTG GCT CGC TAT GTG ASN His Ser His Lys Asn Leu Phe Glu Thr Pro Ile Leu Ala Arg Tyr Val
                  600
          CGC ATC CTG CCT GTA GCC TGG CAC AAC CGC ATC GCC CTG CGC CTG GAG CTG CTG Arg Ile Leu Pro Val Ala Trp His Asn Arg Ile Ala Leu Arg Leu Glu Leu Leu
         GGC TGT TAG TGG CCA CCT GCC ACC CCC AGG TCT TCC TGC TTT CCA TGG GCC CGC
```

Fig. 3. DNA sequence and derived amino acid sequence of BA46-1 cDNA. Underlines, potential N-linked glycosylation sites.

that are exposed in the breast cell version of the protein by, for example, alterations in glycosylation. The high-molecular-weight mucin-like protein of HMFG is also expressed in non-breast carcinomas. For example, alternative processing in the pancreas leads to the exposure of antigenic sites different from those in the breast (18).

We initially investigated the presence of BA46 in various

human tumor cell lines by Western blot analysis of total cell protein. However, the amount of BA46 present was marginally within the limits of our detection. We therefore fractionated the cells into detergent-soluble and aqueous fractions using Triton X-114, as described by Bordier (16). By this method, attegral membrane proteins are partitioned into the Triton X-114 phase. The Western blot shown in Fig 2 shows that the

	BA46 FAB FA5	FIHDVNKKHKEFVGNWNKNAVHVNLFETPVEAQYVRLYPTSCHTACTLRF YRGNSTGTLMVFFGNVDSSGIKHNIFNPPIIARYIRLHPTHYSIRSTIRM FKGNSTRNVMYFNGNSDASTIKFNQFDPPIVARYIRISPTRAYNRPTLRI	50 50 50
	BA46		30
	FA8	ELLGCELNGCANPLGLKNNS I PDYOTTA COOL	
	FA5	ELLGCELNGCANPLGLKNNSIPDKQITASSSYKTWGLHLFSWNPSYARLD ELMGCDLNSCSMPLGMESKAISDAQITASSYFTNM-FATWSPSKARLH ELQGCEVNGCSTPLGMENGKIENKOITASSFWSW-MCDU-WSPSKARLH	100
	147	SLAUGUEVNGCCCMDZ Areman	
		** **. * * * * * *	97
46-1			98
inal	BA46	AUGNINAWVACQVCNDALL	
VIII,	FAB	LOGRSNAWDPOURDERS LOGRSNAWD LOVEL LOGRSNAWD LOG	
ntel-	FA5	LQGRSNAWRPQVNNPKEWLQVDLGSSKEVTGIITQGARNFGSVQFVASYK AQGRVNAWQAKANNNKQWLEIDLLKIKKITAIITGGVKSLLTSMYVKEPL	150
con-		** *** **** **** *** *** *** *** *** *	147
		AQGRVNAWQAKANNNKQWLEIDLLKIKKITAIITQGCKSLLTSMYVKEFL	148
	BA46	Vavorence	
	FA8	VAYSNDSANWTEYQDPRTGSSKIFPGNWDNHSHKKNLFETPILARYVRIL	
	FA5	ISSSQDGHQWTLF-FQNGKV-KVFQGNQDSFTPVVNSLDPPLLTRYLRIH IHYSEQGVEWKPYRLKSSMVDKIFEGNTMYKCHUNDETTRYLRIH	200
	5	ANIDEUGVEWEDVDT PROGRAMME TO THE AF VINDLOPDI I MOVEMBER	195
		IHYSEQGVEWKPYRLKSSMVDKIFEGNTNTKGHVKNFFNPPIISRFIRVI	
	BA46		198
		FVAWMNRIAT.DT.PT.T.CO	
	FA8	PQSWVHQIALRMEVLGCEAQDLY 218	
	FA5	PKTWNOSTAL PROPERTY 218	
		PKTWNQSITLRLELFGCDIY 218	

Fig. 4. Comparison of the derived BA46-1 amino acid sequence with the COOH-terminal sequence of human serum factors V and VIII, using the Clustal program of PCGene (Intelligenetics, Palo Alto, CA). , perfectly conserved; , well conserved.

BA46 is detected only in the detergent-soluble fraction and that it is detected in those cell lines that overexpress the BA46 mRNA relative to Raji and other cell lines tested (not shown). Thus, there was a good correlation between mRNA synthesis and BA46 prot_in accumulation in these cell lines.

The nucleotide and deduced amino acid sequences of BA46-1 cDNA are shown in Fig. 3. The partial sequence is 217 amino acids long, having a theoretical molecular weight of 25,000, representing the COOH terminus of the complete protein. There are 4 potential sites for N-linked glycosylation. The sequence is asparagine and leucine rich. A comparison of the nucleotide sequence to the EMBL database using FSTNSCAN (PCGENE) revealed extended homology with human serum factor V, VIII, and protein C. The deduced protein sequence, however, shares identity only with factors V and VIII (see Fig. 4) but not with protein C since the homology at the nucleotide level is in an intervening sequence of protein C. There is 43% identity of BA46 with factor V and 38% with factor VIII. The regions of factors V and VIII shown in Fig. 4 share 47% identity (19). The mouse Mr 67,000 protein MFG-E8 (13) COOH terminus is 60% identical to the BA46 partial sequence pre-

Analysis of the deduced amino acid sequence of the M, 46,000 protein is consistent with that of a glycosylated protein. The function of this protein is unknown. The homology with clotting factors is in the C1, C2 region of the light chain of factor VIII. Arai et al. (20) have shown that human antibodies (from hemophiliacs treated with factor VIII) that bind this region of the light chain inhibit factor VIII by preventing the interaction of factor VIII with phospholipid. Since this region has been implicated in phospholipid binding it is likely that it serves a similar role in the M, 46,000 glycoprotein. The appearance of a shared domain in otherwise different proteins might be due to exon shuffling. The COOH terminus could serve as a novel "anchor" sequence for the M, 46,000 glycoprotein. Alternatively, it could be involved in the assembly of the mucin complex at the plasma membrane surface.

We find that BA46 is partitioned almost exclusively in the detergent-soluble fraction. However, there is no transmembrane domain in this sequence. Therefore, either this protein is anchored by an NH₂-terminal signal sequence, or the anchoring or association with membrane is via some alternative means like its association with phospholipid. Many apical proteins are

shuttled to the membrane surface via covalent linkages to phospholipid. However, in this case the association may be a weaker noncovalent binding as suggested by the similarity of BA46 with the phospholipid binding domain of factor VIII. An association via disulfide linkages to other integral membrane proteins (perhaps the mucin or BA70) cannot be ruled out. There are 5 cysteines in the deduced amino acid sequence we have obtained from cDNA cloning and sequencing.

In addition to studying the structure of the M, 46,000 protein, the full-length cloning and expression of the cloned M, 46,000 protein gene in bacterial and eukaryotic cells will be useful for assessing function such as phospholipid binding, for further studies of circulating human epithelial antigen in cancer patients, and for developing improved antibodies for targeting therapeutics and for tumor imaging.

References

- Ceriani, R. L., Peterson, J. A., Lee, J. Y., Moncada, R., and Blank, F. W. Characterization of cell surface antigens of human mammary epithelial cells with monoclonal antibodies prepared against human milk fat globule. Somatic Cell Genet., 9: 415-427, 1983.
- Ceriani, R. L., Blank, E. W., and Peterson, J. A. Experimental immunotherapy of human breast carcinomas implanted in nude mice with a mixture of monoclonal antibodies against human milk fat globule components. Cancer Res. 47: 532-540. 1987.
- 3. Ceriani, R. L., and Blank, E. W. Experimental therapy of human breast tumors with ¹³I-labeled monoctonal antibodies prepared against the human milk fat globule. Cancer Res., 48: 4664-4672, 1988.
- Ceriani, R. L., Sasaki, M., Sussman, H., Wara, W. M., and Blank, E. W. Circulating human mammary epithelial antigens in breast cancer. Proc. Natl. Acad. Sci. USA, 79: 5420-5424, 1982.
- Ceriani, R. L., Hill, D. L., Osvaldo, L., Kandell, C., and Blank, E. W. Immunohistocliemical studies in breast cancer using monoclonal antibodies against breast epithelial cell components and with lectins. In: J. Russo (ed.), Immunocytochemistry in Tumor Diagnosis, pp. 233–263. Boston, MA: Martinus Nijhoff Publications, 1985.
- Salinas, F. A., Wee, K. H., and Ceriani, R. L. Significance of breast carcinoma-associated antigens as a monitor of tumor burden: characterization by monocional antibodies. Cancer Res., 47: 907-913, 1987.
- Gendler, S. J., Lancaster, C. A., Taylor-Papadimitriou, J., Duhig, T., Peat, N., Burchell, J., Pemberton, L., Lalani, E. N., and Wilson, D. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J. Biol. Chem., 265: 15286-15293, 1990.
- Wreschner, D. H., Hareuveni, M., Tsarfaty, I., Smorodinsky, N., Horev, J., Zaretsky, J., Kotkes, P., Weiss, M., Lathe, R., Dion, A., and Keydar, I. Human epithelial tumor antigen eDNA sequences. Eur. J. Biochem., 189: 463-473, 1990.
- Ligtenberg, M. J. L., Vos, H. L., Gennissen, A. M. C., and Hilkens, J. Episialin, a carcinoma-associated mucin, is generated by a polymorphic gene encoding splice variants with alternative amino termini. J. Biol. Chem., 265: 5573-5578, 1990.

M, 46,000 HMFG PROTEIN WITH FACTOR VIII DOMAINS

- 10. Duye, A. K., and Ceriani, R. L. Human milk fat globule membrane derived mucin is a disulfide-linked heteromer. Biochem. Biophys. Res Commun., 165: 1305-1311, 1989.
- Larocca, D., Peterson, J. A., Walkup, G., Urrea, R., and Ceriani, R. L. Cloning and sequencing of a complementary DNA encoding a M, 70,000 human breast epithelial mucin-associated antigen. Cancer Res., 50: 5925-
- 12. Jack, L. J., and Mather, I. H. Cloning and analysis of cDNA encoding bovine butyrophilin, an apical glycoprotein expressed in mammary tissue and se-creted in association with the milk-fat globule membrane during lactation. J.
- Biol. Chem., 265: 14481-14486, 1990.

 13. Stubbs, J. D., Lekutis, C., Singer, K. L., Bui, A., Yuzuki, D., Srinivasan, U., and Parry, G. cDNA cloning of a mouse mammary epithelial cell surface protein reveals the existence of epidermal growth factor-like domains linked to factor VIII-like sequences. Proc. Natl. Acad. Sci. USA, 87: 8417-8421,
- Peterson, J. A., Zava, D. T., Duwe, A. K., Blank, E. W., Battifora, H., and Ceriani, R. L. Biochemical and histological characterization of antigens preferentially expressed on the surface and cytoplasm of breast carcinoma

- cells identified by monoclonal antibodies against the human milk fat globule. Hybridoma, 9: 221-235, 1990.
- 15. Sambrook, J., Fitsch, E., and Maniatis, T. Molecular Cloning: A Laboratory
- Sambrook, J., Filsen, E., and Maniatts, I. Molecular Cioning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1989.
 Bordier, C. Phase separation of integral membrane proteins in Triton X-114 solution. J. Biol. Chem., 256: 1604-1607, 1981.
- 17. Slamon, D. J., Godolphin, W., Jones, L. A., Holt, J. A., Wong, S. G., Keith, D. E., Levin, W. J., Stuart, S. G., Udove, J., Ullrich, A., and Press, M. F. D. E. Levill, W. J., Shall, G. G., October in human breast and ovarian cancer. Science (Washington DC), 244: 707-712, 1989.
- 18. Lan, M. S., Hollingsworth, M. A., and Metzgar, R. S. Polypeptide core of a human pancreatic tumor mucin antigen. Cancer Res., 50: 2997-3001, 1990.
- human pancreatic tumor mucin antigen. Cancer Res., 50: 2997-3001, 1990. Kane, W. H., and Davie, E. W. Cloning of a cDNA coding for human factor V, a blood coagulation factor homologous to factor VIII and ceruloplasmin. Proc. Natl. Acad. Sci. USA, 83: 6800-6804, 1986. Arai, M., Scandella, D., and Hoyer, L. W. Molecular basis of factor VIII inhibition by human antibodies. Antibodies that bind to the factor VIII light chain research the intersection of factor VIII with phospholicid. I Clin Invest.
- chain prevent the interaction of factor VIII with phospholipid. J. Clin. Invest.,

Disclaimer | Write to the Help Desk NCBI | NLM | NIH

May 12 2004 07:05:19