EXAMENUL DE BACALAUREAT – 2010 Probă scrisă la MATEMATICĂ – Proba E c)

Varianta 6

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare.

- Toate subiectele sunt obligatorii. Timpul efectiv de lucru este de 3 ore. Se acordă 10 puncte din oficiu.
- La toate subiectele se cer rezolvări complete.

SUBIECTUL I

(30 de puncte)

- 1. Determinați numărul submulțimilor mulțimii $A = \{1, 3, 5, 7, 9\}$, care au două elemente. 5p
- **2.** Determinați $m \in \mathbb{R} \setminus \left\{ \frac{1}{3} \right\}$ pentru care funcția $f : \mathbb{R} \to \mathbb{R}$, f(x) = (3m-1)x + 2 este crescătoare pe \mathbb{R} .
- 3. Arătați că $x_1x_2 5(x_1 + x_2) = -10$, unde x_1, x_2 sunt soluțiile ecuației $ax^2 (2a+1)x + 5 = 0$, $a \in \mathbb{R}^*$. 5p
- **4.** Rezolvați în mulțimea numerelor reale ecuația $\log_2 \frac{3x-2}{x+2} = 1$.
- **5.** Determinați vectorul de poziție al centrului de greutate al triunghiului ABC știind că $\overrightarrow{r_A} = 3 \cdot \overrightarrow{i} 2 \cdot \overrightarrow{j}$, $\overrightarrow{r_R} = -5 \cdot \overrightarrow{i} + 4 \cdot \overrightarrow{j}, \overrightarrow{r_C} = 8 \cdot \overrightarrow{i} + 7 \cdot \overrightarrow{j}$
- **6.** Scrieți ecuația dreptei care trece prin punctul A(4,3) și are panta $m = \text{tg}45^{\circ}$.

SUBIECTUL al II-lea (30 de puncte)

Pe multimea numerelor reale se definesc legile de compoziție x * y = x + y + 2 și $x \circ y = xy - 2x - 2y + m$,

- a) Arătați că legea "*" este asociativă pe mulțimea numerelor reale. 5p
- 5p **b)** Determinați $m \in \mathbb{R}$ pentru care $11 \circ 1 = 0$.
- 5p c) Rezolvați în mulțimea numerelor reale ecuația $(x-1) \circ 4 = (3*3) + m$.
- **d)** Determinați $m \in \mathbb{R}$ pentru care legea " \circ " admite elementul neutru e = 3. 5p
- e) Pentru m=6 determinați elementele $x \in \mathbb{R}$ ale căror simetrice, în raport cu legea " \circ ", verifică relația 5p $x' = \frac{3}{2} - x$.
- f) Arătați că numerele reale a = x * x, b = a * x, c = b * x sunt termeni consecutivi ai unei progresii aritmetice pentru oricare $x \in \mathbb{R}$.

SUBIECTUL al III-lea (30 de puncte)

$$\text{Se consideră matricele: } A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}, \ I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ O_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ \text{$\vec{\mathsf{yi}}$ } C = I_3 + A \, .$$

- a) Calculați $\det(C) + \det(A)$. 5p
- **b)** Calculați C^{-1} , unde C^{-1} este inversa matricei C. 5p
- c) Calculați $M = C \cdot (C 2A + A^2) I_3$. 5p
- **d)** Arătați că $\det(I_3 + xA) = 1$, pentru orice $x \in \mathbb{R}$.
- e) Arătați că matricea $C + C^t$ este inversabilă, unde C^t este transpusa matricei C.
- f) Calculați A^{2010} .