Digital Systems Design and Laboratory [11. Latches and Flip-Flops]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

Spring 2019

Recap: Two Types of Switching Circuits

- ☐ Combinational circuits (memoryless)
 - Outputs depend only on <u>present</u> inputs
- Sequential circuits
 - Outputs depend on both <u>present and past</u> inputs
 - > In general, sequential circuits = combinational circuits + memory

How to Remember the Past?

☐ Feedback

- The output of one of the gates is connected back into the input of another gate in the circuit so as to form a closed loop
- > Example: inverter with feedback
 - Q: How fast does the circuit oscillate?
 - A: Determined by the propagation delay of the inverter

- > Example: a feedback loop with two inverters
 - Two stable states
 - Latch: basic memory unit (store 1 bit)

- **□** Set-Reset Latch
- ☐ Gated D Latch
- ☐ Edge-Triggered D Flip-Flop
- S-R Flip-Flop
- ☐ J-K Flip-Flop
- ☐ T Flip-Flop
- ☐ Flip-Flops with Additional Inputs

Set-Reset (S-R) Latch (1/2)

Set-Reset (S-R) Latch (2/2)

☐ Cross-coupled form

\square S = R = 1 not allowed!

- ➤ Note that the outputs are Q and Q'
- > An oscillation scenario
 - Both S and R: $1 \rightarrow 0$
 - Both P and Q: $0 \rightarrow 1 \rightarrow 0 \rightarrow 1$
 - If the gate delays are equal

Next-State (Characteristic) Equation

Operation

S	R	Q	Q ⁺	
0	0	0	0	Unchanged
0	0	1	1	→ Unchanged
0	1	0	0	Poset to 0
0	1	1	0	Reset to 0
1	0	0	1	Set to 1
1	0	1	1	
1	1	0	Х	Inputs Not
1	1	1	Х	Allowed

Application: Switch Debouncing

- When a mechanical switch is opened or closed, switch contacts tend to vibrate before settling down
- ☐ Debounce with S-R latch
 - When the switch is flipped from a to b...
 - ➤ Work only with a "double throw" switch
 - Double throw: switch between two contacts
 - Single throw: switch between one contact and open

Alternative Form with NAND-Gates

\Box \overline{S} - \overline{R} latch: active-low inputs for S & R

S	R	Q	Q⁺	
1	1	0	0	Linchanged
1	1	1	1	} Unchanged
1	0	0	0	Reset to 0
1	0	1	0	
0	1	0	1	Set to 1
0	1	1	1	
0	0	0	X	Inputs Not
0	0	1	X	Allowed

- ☐ Set-Reset Latch
- ☐ Gated D Latch
- Edge-Triggered D Flip-Flop
- ☐ S-R Flip-Flop
- ☐ J-K Flip-Flop
- ☐ T Flip-Flop
- ☐ Flip-Flops with Additional Inputs

Gated D Latch

- ☐ Set-Reset Latch
- ☐ Gated D Latch
- **☐** Edge-Triggered D Flip-Flop
- S-R Flip-Flop
- ☐ J-K Flip-Flop
- ☐ T Flip-Flop
- ☐ Flip-Flops with Additional Inputs

Edge-Triggered D Flip-Flops (1/2)

- ☐ Output changes are aligned with clock edges
 - ➤ Positive (rising-edge) trigger
 - ➤ Negative (falling-edge) trigger

- ➤ Next-state (characteristic) equation: Q+ = D
- > Timing diagram for a falling-edge triggered D flip-flop

Edge-Triggered D Flip-Flops (2/2)

☐ Construct a <u>rising-edge</u> triggered D flip-flop from 2 gated D latches

☐ Time diagram

Setup Times and Hold Times

☐ Setup time

> The amount of time that D must be stable before the active edge

☐ Hold time

➤ The amount of time that D must hold the same value after the active edge

- ☐ Set-Reset Latch
- ☐ Gated D Latch
- ☐ Edge-Triggered D Flip-Flop
- ☐ S-R Flip-Flop
- ☐ J-K Flip-Flop
- ☐ T Flip-Flop
- ☐ Flip-Flops with Additional Inputs

S-R Flip-Flop

- ☐ Output changes at rising edges
- Construct from 2 latches

Not desired --- should only allow the S and R inputs to change while the clock is high

S	R	Operation
0	0	No state change
0	1	Reset Q to 0 (after active CLK edge)
1	0	Set Q to 1 (after active CLK edge)
1	1	Not allowed

- ☐ Set-Reset Latch
- ☐ Gated D Latch
- ☐ Edge-Triggered D Flip-Flop
- ☐ S-R Flip-Flop
- ☐ J-K Flip-Flop
- ☐ T Flip-Flop
- ☐ Flip-Flops with Additional Inputs

J-K Flip-Flop

☐ Extension of S-R flip-flop

- ☐ Set-Reset Latch
- ☐ Gated D Latch
- ☐ Edge-Triggered D Flip-Flop
- ☐ S-R Flip-Flop
- ☐ J-K Flip-Flop
- ☐ T Flip-Flop
- ☐ Flip-Flops with Additional Inputs

T Flip-Flop

☐ T: toggle

■ Implementations

- ☐ Set-Reset Latch
- ☐ Gated D Latch
- Edge-Triggered D Flip-Flop
- ☐ S-R Flip-Flop
- ☐ J-K Flip-Flop
- ☐ T Flip-Flop
- ☐ Flip-Flops with Additional Inputs

Flip-Flops with Additional Inputs

- ☐ Set a flip-flip to an initial state independent of the clock
 - > Example: asynchronous Clear and Preset

Ck	D	PreN	ClrN	Q ⁺
X	X	0	0	Not Allowed
Χ	X	0	1	1
X	X	1	0	0
\uparrow	0	1	1	0
\uparrow	1	1	1	1
0, 1, \downarrow	X	1	1	Q (Unchange)

- Let a flip-flop hold existing data even though the data input may be changing
 - Gated clock: gate the clock by Clock Enable (CE)

Summary

Туре	Q ⁺	
S-R Latch	S + R'Q	
Gated D Latch	G'Q + GD	
D Flip-Flop	D	
S-R Flip-Flop	S + R'Q	
J-K Flip-Flop	JQ' + K'Q	
T Flip-Flop	TQ' + T'Q	
D-CE Flip-Flop	D(CE) + Q(CE)'	

Q&A

Announcement (0429)

- ☐ Homework 3
 - > Due at noon on May 6
 - > TA provided some detailed explanation on NTU COOL
- ☐ Guest talks next week (Please come!)
 - > 1:20--1:50pm: Synopsys
 - > 2:20--2:40pm: Dean Yao-Wen Chang
 - ➤ May 13: MediaTek, Prof. Hui-Ru Jiang
 - ➤ May 20: Prof. Jie-Hone Jiang