07-22-2021- shift-1

1

EE24BTECH11006 - Arnav Mahishi

1) Let L be the line of intersection of planes $r \cdot (i - j + 2k) = 2$ and $r \cdot (2i + j - k) = 2$. If $P(\alpha, \beta, \gamma)$ is the foot of perpendicular on L from the point (1, 2, 0), then the value

2) Let S_n denote the sum of the first n terms of an arithmetic progression. If $S_{10} = 530$,

c) 143

d) 134

of $35(\alpha + \beta + \gamma)$ is equal to

b) 119

a) 101

$S_5 = 140$, then	$1 S_{20} - S_6$ is equal to	:		
a) 1862	b) 1842	c) 1852	d) 1872	
3) Let $f: \mathbb{R} \to \mathbb{R}$	R be defined as			
	$f(x) = \begin{cases} -3x \\ 3x \end{cases}$	$\frac{4}{3}x^3 + 2x^2 + 3 \text{if } x > xe^x \qquad \qquad \text{if } x \le xe^x $	0 0	
Then f is an i	increasing function in	the interval.		
a) $\left(-\frac{1}{2}, 2\right)$	b) (0,2)	c) $\left(-1, \frac{3}{2}\right)$	d) $(-3, -1)$	
4) Let $y = y(x)$ $(1 + y \cos 2x) \cos 2x$	x) be the solution $\csc^2 x dx$, with $y(\pi/4)$	of the differential eq = 0. Then, the value of	uation $\csc^2 x dy + 2dx$ of $(y(0) + 1)^2$ is equal to	ε = to:
a) $e^{\frac{1}{2}}$	b) $e^{-\frac{1}{2}}$	c) e^{-1}	d) <i>e</i>	
recorded in 2×			shown on these dice I matrices have all diffe	
a) $\frac{45}{162}$	b) $\frac{23}{81}$	c) $\frac{22}{81}$	d) $\frac{43}{162}$	
6) Let a vector \overrightarrow{a} is perpendi $\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right] + \left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right]$	\overrightarrow{d} be coplanar with scular to $\overrightarrow{d} = 3\hat{i} + 2$ $\overrightarrow{d} \overrightarrow{b} \overrightarrow{d} + [\overrightarrow{d} \overrightarrow{c} \overrightarrow{d}]$	vectors $\overrightarrow{b} = 2\hat{i} + \hat{j} + \hat{j} + 6\hat{k}$, and $ \mathbf{a} = 10$. is equal to :	$-\hat{k}$ and $\overrightarrow{c} = \hat{i} - \hat{j} + \hat{k}$ Then a possible value	દે. If e of
a) -42	b) -40	c) -29	d) -38	
7) If	$\int_{0}^{100\pi}$	$\frac{\sin^2 x}{e^{\frac{x}{\pi} - \left[\frac{x}{\pi}\right]}} dx = \frac{\alpha \pi^3}{1 + 4\pi^2}$		

where [x] is the greatest integer less than or equal to x, then the value of α is:

a) $200(1 - e^{-1})$	b) 100(1 – <i>e</i>)	c) $50(e-1)$	d) $150(e^{-1} - 1)$
	\overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be such f the following is no		$\times \overrightarrow{c} = \overrightarrow{a}$ and $ \overrightarrow{a} = 2$.
a) $\overrightarrow{a} \times \left((\overrightarrow{b} + \overrightarrow{c}) \times \overrightarrow{b} \right)$ b) Projection of \overrightarrow{a}	$(\overrightarrow{b} - \overrightarrow{c}) = 0$ on $(\overrightarrow{b} \times \overrightarrow{c})$ is 2	c) $\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right] + \left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right] + \left[$	$\overrightarrow{c} \overrightarrow{a} \overrightarrow{b} = 8$ $\overrightarrow{c} = 51$
9) The values of λ and	μ such that the sy	stem of equations	

$$x + y + z = 6,$$

$$3x + 5y + 5z = 26,$$

$$x + 2y + \lambda z = \mu$$

b) $\lambda = 3, \mu \neq 10$ c) $\lambda \neq 2, \mu = 10$ d) $\lambda = 2, \mu \neq 10$

has no solution, are:

a) $\lambda = 3, \mu = 5$

10) If the shortest distance between the straight lines
$$3(x-1) = 6(y-2) = 2(z-1)$$
 and $4(x-2) = 2(y-\lambda) = (z-3)$, $\lambda \in \mathbb{R}$ is $\frac{1}{\sqrt{38}}$ then the integral value of λ is equal to:

- a) 3 b) 2 c) 5 d) -1
- 11) Which of the following Boolean expressions is not a tautology?
 - a) $(p \Rightarrow q) \lor (\neg q \Rightarrow p)$ c) $(p \Rightarrow \neg q) \lor (\neg q \Rightarrow p)$ b) $(q \Rightarrow p) \lor (\neg q \Rightarrow p)$ d) $(\neg p \Rightarrow q) \lor (\neg q \Rightarrow p)$
- 12) Let $A = [a_{ij}]$ be a real matrix of order 3×3, such that $a_{i1} + a_{i2} + a_{i3} = 1$, for i = 1, 2, 3. Then, the sum of all the entries of the matrix A^3 is equal to:
 - a) 2 c) 3 d) 9 b) 1
- 13) Let [x] denote the greatest integer less than or equal to x. Then, the values of $x \in \mathbb{R}$ satisfying the equation $[e^x] + 2 + [e^x + 1] - 3 = 0$ lie in the interval:
 - a) $[0, \frac{1}{a}]$ b) $[\log_e 2, \log_e 3)$ c) [1, e)d) $[0, \log_e 2]$
- 14) Let the circle $S: 36x^2 + 36y^2 108x + 120y + C = 0$ be such that it neither intersects nor touches the co-ordinate axes. If the point of intersection of the lines, x - 2y = 4and 2x - y = 5 lies inside the circle S, then:

- a) $\frac{25}{9} < C < \frac{13}{3}$ b) 100 < C < 165 c) 81 < C < 156 d) 100 < C < 156

- 15) Let *n* denote the number of solutions of the equation $z^2 + 3z = 0$, where *z* is a complex number. Then the value of $\sum_{k=0}^{\infty} \frac{1}{n^k}$ is equal to:
 - a) 1

- b) $\frac{4}{3}$
- c) $\frac{3}{2}$

d) 2