Лабораторная работа №7 "Множества Жюлиа и Мандельброта"

Цели: Изучить процесс построения алгебраических фракталов и результаты их визуализации.

Залание:

- 1. В среде программы FractInt рассмотреть классическую формулу $z(n+1)=z(n)^2+c$ (mandel). Увеличить масштаб, с помощью правой клавиши мыши изучить вид соответствующих множеств Жюлиа. В отчете привести пример связного множества Жюлиа, Канторовой пыли.
- 2. В качестве параметров формулы mandel задать:
 - для группы 08-406: Real Perturbation of Z(0) = 0.05*n
 - для группы 08-407: Imaginary Perturbation of Z(0) = 0.05*n
 - для группы 08-408: Real Perturbation of Z(0) и Imaginary Perturbation of Z(0) = 0.05*n где n порядковый номер по списку.
- 3. Подобрать для формулы удобный вид с помощью клавиш позиционирования <PgUp> и <PgDown>, клавиш палитры <+> и <->; привести изображение в отчете.
- 4. Рассчитать неподвижную траекторию, привести пример точки, для которой последовательность будет ограничена.

Аппаратное обеспечение:

Процессор: AMD Ryzen 5 3550H Видеокарта: NVIDIA GTX 1650

ОЗУ: 8 Гб

Программное обеспечение:

FractInt

Ход выполнения лабораторной работы:

Этап 1 – Построение классического множества Мандельброта.

В программе FractInt строится классическая формула $z(n+1)=z(n)^2+c$ (формула mandel строится по умолчанию), при z0=0.

Связное множество Жулиа (для с, принадлежащей множеству Мандельброта).

Несвязное множество Жулиа (для с, принадлежащей множеству Мандельброта).

Этап 2 – **Построение нестандартного множества Мандельброта.** Множество строится точно так же за исключением того факта, что в качестве z_0 берется ненулевое комплексное число. А именно, в моем случае, $z_0=0.4+0.4i$. В результате построения получаем следующее:

Этап 3 – Расчет неподвижной траектории.

Произведем расчет неподвижной траектории для множества Мандельброта с $z_0 = 0.4 + 0.4i$. Это означает, что должно выполняться равенство $z_{n+1} = z_n$.

Пусть
$$z_n = a + ib$$
, $c = c_1 + ic_2$.
 $a + ib = (a + ib)(a + ib) + c_1 + ic_2 = a^2 - b^2 + c_1 + i(2ab + c_2)$

Отсюда следует, что

$$\begin{cases}
 a = a^2 - b^2 + c_1 \\
 b = 2ab + c_2
\end{cases}$$

Подставим в систему исходное значение z_0 и вычислим z_1 :

$$\begin{cases} 0.4 = 0.4^2 - 0.4^2 + c_1 \\ 0.4 = 0.32 + c_2 \end{cases} \Longrightarrow c = 0.4 + 0.08i$$

Теперь рассмотрим любую точку, для которой последовательность будет ограничена. Для этого возьмем точку, принадлежащую множеству Мандельброта, например, c = 0.1 - 0.2i и запустим для нее итерационный процесс. Рассмотрим 30 итераций, на каждом шаге вычисляя модуль числа:

	Re	Im	Abs
z_0	0.4000000	0.4000000	0.5656854
z_0	0.1000000	0.5200000	0.5295281
z_1	-0.1604000	0.3040000	0.3437210
z_2	0.0333122	0.1024768	0.1077553
z_3	0.0906082	0.2068274	0.2258040
z_4	0.0654323	0.2374805	0.2463298
z_5	0.0478844	0.2310778	0.2359870
z_6	0.0488960	0.2221300	0.2274479
z_7	0.0530491	0.2217225	0.2279804
z_8	0.0536533	0.2235243	0.2298735
z_9	0.0529155	0.2239856	0.2301513
z_10	0.0526305	0.2237046	0.2298124
z_11	0.0527262	0.2235474	0.2296813
z_12	0.0528066	0.2235736	0.2297253
z_13	0.0528034	0.2236123	0.2297622
z_14	0.0527857	0.2236150	0.2297607
z_15	0.0527827	0.2236074	0.2297526
z_16	0.0527858	0.2236052	0.2297512
z_17	0.0527871	0.2236063	0.2297526
z_18	0.0527867	0.2236070	0.2297532
z_19	0.0527863	0.2236069	0.2297530
z_20	0.0527863	0.2236068	0.2297529
z_21	0.0527864	0.2236068	0.2297529
z_22	0.0527864	0.2236068	0.2297529
z_23	0.0527864	0.2236068	0.2297529
z_24	0.0527864	0.2236068	0.2297529
z_25	0.0527864	0.2236068	0.2297529
z_26	0.0527864	0.2236068	0.2297529
z_27	0.0527864	0.2236068	0.2297529
z_28	0.0527864	0.2236068	0.2297529

z_29 0.0527864 0.2236068 0.2297529

Видно, что начиная с некоторой итерации координаты точки изменяются совсем незначительно, т.е. входят в окрестность одной и той же величины – предела последовательности. Это значит, что последовательность ограничена.