Prescriptive analytics - hands on session 2

Frans de Ruiter, CQM

Goals this afternoon

After this lecture you can:

Recognize prescriptive analytics problems.

Formulate a portfolio selection model.

Implement a portfolio selection model in python.

Outline

- 11.30 Recap facility location model.
- 12.00 Formulating portfolio selection model.
- 12.30 lunch break
- 13.30 Hands-on: implementing portfolio selection model.
- 14.45 Wrap up and final remarks.
- 15.00 End of session.

Recap: Facility Location

Figure: 37 major European cities as potential distribution centers.

Lessons from game

Some elements that made the game difficult:

• Hard to go from one candidate solution to another (a lot of work to switch).

• Unfathomable number of possibilities. How to systematically try them?

• When do you know you cannot do better than your current solution?

Lessons from game

Some elements that made the game difficult:

• Hard to go from one candidate solution to another (a lot of work to switch).

• Unfathomable number of possibilities. How to systematically try them?

• When do you know you cannot do better than your current solution?

N: number of cities i, j: index of cities

Variables

- x_i Equals 1 if distribution is open at city i, 0 otherwise.
- y_{ij} Pallets shipped from city i to city j.

Parameters

- F_i Facility at city i (if opened) in euros.
- S_i Shipping capacity out of city i in pallets.
- d_i Demand at city i.
- c_{ij} Shipping costs from city i to city j per pallet in euros.

N: number of cities *i*, *j*: index of cities

Variables

- x_i Equals 1 if distribution is open at city i, 0 otherwise.
- y_{ii} Pallets shipped from city i to city j.

Parameters

- F_i Facility at city i (if opened) in euros.
- S_i Shipping capacity out of city i in pallets.
- d_i Demand at city i.
- c_{ij} Shipping costs from city i to city j per pallet in euros.

$$\begin{aligned} & \underset{x,y}{\text{min}} & & \sum_{i=1}^{N} F_i x_i + \sum_{i=1}^{N} \sum_{j=1}^{N} c_{ij} y_{ij} \\ & \text{subject to} & & \sum_{i=1}^{N} y_{ij} = d_i & j = 1, \dots, N \\ & & & \sum_{j=1}^{N} y_{ij} \leq S_i x_i & i = 1, \dots, N \\ & & & y_{ij} \geq 0 & i = 1, \dots, N, \ j = 1, \dots, N \\ & & & x_i \in \{0, 1\} & i = 1, \dots, N. \end{aligned}$$

Switching to jupyter notebook

Switch to present jupyter notebook solution...

Portfolio optimization

We are given data on the daily returns of 100 assets from the last 10 years.

Case

Use optimization to construct the mean-variance portfolio from this data.

Return versus Risk

Average daily returns and (co-)variances calculated from data and plotted.

Efficient Frontier (Markowitz, Noble prize 1990)

All the portfolios on the efficient frontier (in green) dominate all others: there are no portfolios with both *higher return* and *lower variance* (risk).

N: number of assets

Parameters \bar{r}_i : average daily return of asset i

 s_{ij} : (sample) covariance between daily returns of asset i and j

 α : Risk-aversion parameter

Variables x_i : amount of asset i bought

N: number of assets

Parameters \bar{r}_i : average daily return of asset i

 s_{ij} : (sample) covariance between daily returns of asset i and j

 α : Risk-aversion parameter

Variables x_i : amount of asset i bought

$$\max_{x_i} \sum_{i=1}^{N} \bar{r}_i x_i - \alpha \sum_{i=1}^{N} \sum_{j=1}^{N} s_{ij} x_i x_j$$

N: number of assets

Parameters \bar{r}_i : average daily return of asset i

 s_{ii} : (sample) covariance between daily returns of asset i and j

 α : Risk-aversion parameter

Variables x_i : amount of asset i bought

Expected portfolio return

N: number of assets

Parameters \bar{r}_i : average daily return of asset i

 s_{ij} : (sample) covariance between daily returns of asset i and j

 α : Risk-aversion parameter

Variables x_i : amount of asset i bought

Expected portfolio return Risk-aversion parameter

N: number of assets

Parameters \bar{r}_i : average daily return of asset i

 s_{ij} : (sample) covariance between daily returns of asset i and j

 α : Risk-aversion parameter

Variables x_i : amount of asset i bought

Expected portfolio return Risk-aversion parameter Variance of portfolio

N: number of assets

Parameters \bar{r}_i : average daily return of asset i

 s_{ij} : (sample) covariance between daily returns of asset i and j

 α : Risk-aversion parameter

Variables x_i : amount of asset i bought

Expected portfolio return Risk-aversion parameter Variance of portfolio

Task

Implement the Mean-variance portfolio optimization model in Python.

Figure: Excel input data

The jupyter notebook setup and excel files can be found on:

www.fransderuiter.com/JADS.

Conclusions

• Many applications.

• Also some *nonlinear* models can be implemented.

• These models are interpretable.

Interpretable AI

Figure: An example of an optimal decision tree to determine emergency surgery risk.

From Bertsimas, D., Dunn, J., Velmahos, G. C., & Kaafarani, H. M. (2018). Surgical risk is not linear: derivation and validation of a novel, user-friendly, and Machine-learning-based predictive optimal trees in emergency surgery risk (Potter) calculator. **Annals of surgery**, 268(4), 574-583.