PROJECT DOCUMENTATION

GLOBAL MALNUTRITION ANALYSIS (1983 – 2018)

1. Introduction

a. Project overviews

This project analyzes global malnutrition data in children under five years using two datasets: a time-series dataset (1983–2018) and a country-wise average summary. The objective is to extract actionable insights into malnutrition indicators, highlight trends over the years and across income classification, and provide a basis for data-driven policies.

b. Objectives

- To analyze malnutrition indicators (Stunting, Wasting, Underweight, Overweight) globally.
- To identify trends across income classifications and years.
- To create an interactive Power BI dashboard for comparative analysis.

2. Project Initialization and Planning Phase

2.1. Define Problem Statement

Malnutrition continues to be a major global challenge affecting millions of children, especially in lowand middle-income countries. The goal is to analyze and compare child malnutrition trends globally using historical (multi-year) data. The aim is to understand how factors like income classification relate to malnutrition indicators (e.g. underweight, stunting, wasting, etc), and to highlight at-risk populations, and guide data-driven interventions.

2.2. Project Proposal (Proposed Solution)

Building an interactive Power BI dashboard that visualizes global malnutrition trends, segmented by income classification, country and time, enabling stakeholders to make informed decisions.

2.3. Initial Project Planning

• Data Source: secondary datasets from Kaggle

https://www.kaggle.com/datasets/ruchi798/malnutrition-across-the-globe?select=malnutrition-estimates.csv

- Tools: Power BI (for pre-processing and visualization)
- Timeline: 10 days (Data Collection: 2 days, Data Preparation: 2 Days, Data Visualization: 3 Days, Report Design & Testing: 2 Days, Testing and Reporting: 2 Days, Project documentation & Demonstration:1 day).

3. Data Collection and Pre-processing Phase

- 3.1. Data Collection Plan and Raw Data Sources Identified
 - Dataset 1: malnutrition-estimates.csv (year-wise data)
 - Dataset 2: country-wise-average.csv (summary stats)
- 3.2. Data Quality Report
 - Missing values in some columns (handled via cleaning).
 - Income classification labels were mapped to readable names (as Income Category)
 - Transforming the numerical datasets for consistency.
- 3.3. Data Exploration and Pre-processing
 - Removed irrelevant columns (e.g., Notes, Unnamed indices).
 - Renamed a Column to "ID"
 - Added 'Income Category' derived from the classification labels.
 - Converted the columns to their appropriate data type
 - Reduced the number of decimal points to 2 for easy understanding and consistency across the dataset.

4. Data Visualization

4.1. Framing Business Questions

- Which countries have the highest malnutrition rates?
- How does malnutrition differ across income groups?
- Are there visible trends over time in malnutrition indicators?

4.2. Developing Visualizations

- Line charts for year-wise trends.
- Bar charts for top/bottom countries in key metrics.
- Stacked charts for income group and year wise comparisons.

5. Dashboard

5.1. Dashboard Design File

6. Report

6.1. Story Design File

7. Performance Testing

7.1 Utilization of Data filters

• Filters by Year, Country, Income Category.

7.2 No of Calculation Field

• 6 calculated measures: Global Averages for each malnutrition indicator; Underweight, Overweight, Stunting, Severe wasting, Wasting, and U5 Populations.

7.3 No of Visualization

• Total: 13 (Cards: 6, Stacked column Charts: 1, Area Charts: 1, Line Charts: 1, Doughnut Chart: 1, Slicers: 3)

8. Conclusion/Observation

- Malnutrition remains significantly higher in low-income countries.
- Bangladesh, India, Mali, Niger, Sri Lanka are the top 5 countries with the highest underweight population.
- The year 1992 recorded the highest average values for stunting and underweight.
- Stunting and underweight trends show gradual improvement over the years.
- Data-driven dashboards are effective tools in identifying at risk areas.

9. Future Scope

- Segment analysis by gender, urban/rural regions.
- Implement predictive models for malnutrition trend forecasting.
- Integrate real-time WHO/UNICEF datastreamsfor updates.