

(19) Országkód:

HU



MAGYAR  
KÖZTÁRSASÁG  
ORSZÁGOS  
TALÁLMÁNYI  
HIVATAL

# SZABADALMI LEÍRÁS

(11) Lajstromszám:

204 418 B

(21) A bejelentés száma: 3702/87  
(22) A bejelentés napja: 1987. 08. 18.  
(30) Elsőbbségi adatok:  
898 063 1986. 08. 19. US

(51) Int. Cl.<sup>5</sup>  
A 23 L 1/236  
C 07 C 229/26

(40) A közzététel napja: 1989. 04. 28.  
(45) A megadás meghirdetésének dátuma a Szabadalmi  
Közlönyben: 1992. 01. 28. SZKV 92/01

(72) Feltalálók:

Barnett, Ronald Edward, Suffern, New York (US)  
Roy, Glenn, Michael, Garverville, New York (US)  
Zanno, Paul Robert, Nanuet, New York (US)

(73) Szabadalmas:

General Foods Corporation, White Plains,  
New York (US)

(54) Eljárás 1-amino-dikarbonsav-észterek és az ezeket tartalmazó  
édesítőszerek előállítására

(57) KIVONAT

A találmány tárgya eljárás olyan (I) általános képletű  
vegyületek és élelmiszeriparilag elfogadható sóik elő-  
állítására, melyeknél

A jelentése hidrogénatom vagy metilcsoport, azon  
feltételel, hogy ha a \*\*-gal jelölt szénatom aszimmet-  
riás azaz királis centrum, akkor a szőbanforgó szén-  
atom körül D konfiguráció alakul ki.

Az eljárást az jellemzi, hogy egy (II) általános kép-

letű karbonsavat vagy karbonsav-származékot vala-  
mely (III) általános képletű aminnal reagáltatnak, az  
adott esetben jelenlevő védőcsoprotokat eltávolítják,  
majd adott esetben az így előállított vegyületeket  
gyógyászatilag elfogadható sókká alakítják.

Az (I) általános képletű vegyületek élelmiszer-  
szerekben és gyógyszerekben édesítőszereként alkalmazhatók.



204 418 B  
HU

A találmány tárgya eljárás új, élelmiszerek édesítésére alkalmas (I) általános képletű vegyületek és élelmiszeripari elfogadható sóik előállítására, ahol a képletben

A jelentése hidrogénatom vagy metilcsoport, azzal a feltétellel, hogy ha a \*\*-gal jelölt szénatomb aszimmetriás, vagyis királys centrum, akkor ezen szénatomb körül D konfiguráció alakul ki.

A találmány szerinti vegyületek az  $\alpha$ -L-aszparagil-D-alanin és az  $\alpha$ -L-aszparagil-metil-alanin  $\beta$ (+)-fenchil-, azaz 1,3,3-trimetil-2-norbornil-észterei.

A találmány tárgya továbbá eljárás az (I) általános képletű vegyületeket megfelelő élelmiszeripari vivőanyaggal együtt tartalmazó édesítőszerek előállítására.

Jelenleg a legszélesebb körben használt édesítőszerek a természetes szénhidrátok. Ezek az anyagok – így például a cukor – elegendők tesznek azon követelményeknek, hogy édes ízűek, viszont bőséges használatuk olyan káros következményekkel jár, mint pl. a nagy kalóriafelvétel és a táplálkozási egyensúly felborulása. Sok esetben ezen édesítőszerekből az élelmiszerekben sokkal nagyobb mennyiséget kell alkalmazni, mitn az gazdasági, táplálkozási vagy egyéb funkcionális megfontolások alapján kívánatos lenne.

A természetes édesítőszerek alkalmazásával járó hátrányok kiküszöbölése céljából jelentős kutatómunkát és költségeket aldoztak mesterséges édesítőszerek – mint például a szacharin, ciklamát, dihidrokálon, aszpartám stb. – előállítására.

Ilyen vegyületek leírása szerepel például a 3,780,189 számú amerikai egyesült államokbeli szabadalmi leírásban, mely a szacharóznál 25–150-szer nagyobb édesítő hatású észtereket említi.

A találmány szerinti eljárással előállított vegyületek édesítő hatása nagyobb a technika állásában ismerteknél.

A találmány szerinti eljárással előállított új vegyületek hatásos édesítőszerek önmagukban vagy más édesítőszerekkel együttesen alkalmazva, valamely, a szervezetbe bevitt anyagban pl. gyógyszerekben vagy élelmiszerekben. A találmány szerinti új vegyületekkel együttesen alkalmazható természetes és/vagy mesterséges édesítőszerek pl. a szacharóz, fruktóz, a kukoricaszirup szárazanyagtartalma, glükóz, xilit, szorbit, mannit, acetosulfam, thaumatin, invertcukor, szacharin, tiofén-szacharin, meta-amino-benzoéssav, ciklamát, klór-szacharóz, dihidrokalkon, hidrogénezett glükóz-szirpuok, aspartám (L-aszparagil-L-fenil-alanin-metil-észter) és más dipeptidek, glicírrizin, steviaszt stb.

A találmány szerinti édesítőszereket a szervezetbe beadandó anyagokhoz hozzáadhatjuk önmagukban vagy nem-toxikus hordozóanyagokkal, pl. a fent említett édesítőszerekkel vagy egyéb élelmiszer-adalékanyagokkal, mint pl. savanyítószerek, természetes vagy mesterséges mézgák, sűrítőszerek pl. poliszénhidrátok, dextrinék vagy más szénhidrogén-jellegű élelmiszerek vagy azok származékaik. Tipikus élelmiszerek és gyógyszeri készítmények, melyekben a ta-

lálmány szerinti édesítőszerek alkalmazhatók pl. a szeszesítésű italok, szénsavas italok, keverésre kész italok stb., forrázott ételek (pl. főzelékek, gyümölcsök), mártások, fűszerek, saláta-öntetek, gyümölcslevék, szirupok, édességek, mint pl. fagylalt, pezsgőpor, cukormáz, pálcikákra szűrt ízesített, fagyasztott desszertek, cukorkák, rágógumik, lisztműek, sütőipari termékek, félkész élelmiszerek (pl. kutyaeledel), fogkrém, szájöblítők stb.

5 10 A találmány céljának megvalósítására az itt leírt vegyületeket általában olyan mennyiségben adjuk az élelmiszerhez, hogy a fogyasztásra kerülő termékben 0,0005–2 tömeg% koncentrációban legyenek jelen. Nagyobb mennyiségeket nem célszerű alkalmazni.

15 Az előnyesen alkalmazható mennyiségek az élelmiszer 0,001 tömeg%-ától kb. 1 tömeg%-ig terjednek. A találmány szerinti vegyületek pufferolt és pufferolatlan közegben egyaránt széles pH-tartományban pl. pH – 2 és 10, előnyösen pH – 3 és 7 között fejtik ki hatásukat.

20 Előnyösebben, ha édesítőszereként  $\alpha$ -L-aszparagil-D-alanin- $\beta$ (+)-fenchil-/szert használunk, a szerből az élelmiszerre számítva 0,0005–0,005 tömeg%-nyi mennyiséget alkalmazunk. Ha édesítőszereként  $\alpha$ -L-aszparagil-2-metil-alanin- $\beta$ (+)-fenchil-/észert alkalmazunk, akkor a felhasznált mennyiség a fentinél szélesebb határok között változhat, de a legelőnyösebben az élelmiszerre számítva 0,0005–0,001 tömeg%-nyi lehet.

30 30 Kívánatos, hogy ha a találmány szerinti édesítőszereket önmagukban vagy más édesítőszerekkel együtt alkalmazzuk, az édesítőszerek vagy ezek kombinációjának szacharóz-ekvivalense (cukoregyenértéke) az élelmiszerre vagy gyógyszerre számítva kb. 2 és 40, előnyösebben kb. 3 és 15 tömeg% között legyen.

40 40 Az edésség meghatározására szolgáló ízesítési eljárás egyszerűen a szacharóz-egyenérték meghatározásából áll. Az élelmiszer szacharóz-egyenértéke könnyen meghatározható. Egy adott tömeg%-nyi szacharózzal egyenértékű édesítőszér mennyiségét úgy határozzuk meg, hogy az ismert koncentrációjú kóstolandó oldatokat tartalmazó edénykéket egy tálca helyezzük, és az oldatok edésségét szabványos cukoroldatokéval hasonlítjuk össze.

45 45 A találmány szerinti vegyületek előállítására különböző reakciókat alkalmazhatunk. Az egyik reakciósáma szerint a (IV) általános képletű vegyületek előállítására egy (II) általános képletű vegyületet (védett  $\alpha$ -aszparaginsav) egy (III) általános képletű vegyületet előállítására egy (II) általános képletű vegyületet (védett  $\alpha$ -aszparaginsav) egy (III) általános képletű vegyülettel (amino-észter) kodenzálunk. Ezután a (IV) általános képletű dipeptidből eltávolítjuk az Y és Z védőcsoportot, így megkapjuk az (I) általános képletű vegyületet. A képletekben

50 55 Z jelentése amino-védő csoport,  
Y jelentése karboxil-védő csoport és  
A jelentése a fentiekben megadott.  
E csoportokra sok lehetséges példa található T.W. 60 Green „Protective Groups in Organic Synthesis" (Vé-

dőcsoportok szerves szintézisekben) c. munkájában (John Wiley and Sons, 1981). Z csoportként előnyösen alkalmazható benzil-oxi-karbonil-, Y csoportként pedig benzilcsoport.

A (II) és (III) általános képletű vegyületeket a peptidkémiában hagyományosan alkalmazott módszerekkel reagáltatjuk egymással. Az egyik ilyen módszer kondenzálószereként diciklohexil-karbodiimidet (DCC) alkalmaz. A DCC-s módszert alkalmazhatjuk egyéb adalékokkal, pl. 4-dimetil-amino-piridinnel, réz(II)-ionnal vagy ezek nélkül. A DCC-s kondenzáló általában szabahőmérsékleten, különböző, a reagensekkel szemben inert oldószerben. Így pl. oldószerként használhatunk N,N-dimetil-formamidot, 1,2-diklór-etánt, metilén-kloridot, toluvit stb. A reakciót előnyösen inert atmoszférában, pl. argon- vagy nitrogéngázban hajtjuk végre. A reakció a reagensektől függően 2-24 óra alatt játszódik le.

A találmány szerinti (I) általános képletű vegyületek további ismert módszerekkel is előállíthatók. Az alábbiak e módszerek illusztrálására szolgálnak. Például a 3,786,039, a 3,833,533, a 3,879,372 és a 3,933,781 számú amerikai egyesült államokbeli szabadalmi leírásokban ismertetik az N-terminálisán védett aszparaginsav-anhidrideknek aminosav-szárma-zékokkal végbemenő reakcióját. Ezek a védett aszparaginsav-anhidridek a fenti szabadalmi leírásokban ismertetett módon reagáltathatók a (III) általános képletű vegyületekkel a kívánt termékek előállítására.

A 3,786,039. számú amerikai egyesült államokbeli szabadalmi leírásban leírtak szerint a (III) általános képletű vegyületeket valamely inert oldószerben közvetlenül reagáltatjuk olyan L-aszparaginsav-anhidriddel, melynek aminocsoportja formil-, karbo-benzil-oxi- vagy p-metoxi-karbo-benzil-oxi-csoporttal védett. A kondenzáló után a védőcsoport eltávolításával megkapjuk az (I) általános képletű vegyületet. Az N-acil-aszparaginsav-anhidrideket előnyösen olyan szerves oldószerben reagáltatjuk 1-2 móllyi (III) általános képletű vegyüettel, mely mindenkorral szemben inert. Alkalmas (de nem kizártlagosan alkalmazható) oldószer: etil-acetát, metil-propionát, tetrahidrofurán, dioxán, etil-éter, N,N-dimetil-formamid és benzol. A reakciót 0 és 30 °C közötti hőmérsékleten végezzük. A kondenzáció után az N-acil-csoportot ismert módon végrehajtott katalitikus hidrogénezéssel, vagy hidrogén-bromiddal vagy sósavval távolítjuk el. Az amerikai egyesült államokbeli 3,879,372 számú szabadalmi leírás szerint ez a kondenzációs reakció vizes közegben is végrehajtható pH = 4 és 12 között, -10 és 50 °C közötti hőmérsékleten.

A kívánt vegyületek szintetizálásának egy másik módszere az, hogy a (III) általános képletű vegyületeket olyan alkalmas aszparaginsav-szárma-zékokkal reagáltatjuk, melyekben az amino- és a  $\beta$ -karboxi-csoportokhoz védőcsoport kapcsolódik, az  $\alpha$ -karboxi-csoportot pedig valamelyen reakcióképes észtercsoporttá alakítottuk át. Az aminocsoport védőcsoportja lehet pl. benzil-oxi-karbonil-csoport, a  $\beta$ -karboxi-cso-

porté valamelyen benzil-észter, a reakcióképes észtercsoport pedig lehet pl. p-nitro-fenil-csoport, de ezeken kívül számos más védő- és funkciós csoportot is alkalmazhatunk. Az így kapott (IV) általános képletű termékekből a 3,475,403 számú amerikai egyesült államokbeli szabadalmi leírás szerint eltávolíthatjuk a védőcsoportokat, hogy megkapjuk a kívánt (I) általános képletű vegyületeket.

Egy alternatív eljárás a kívánt vegyületet L-aszparaginsav-tiokarboxiandhidriddel reagáltatunk Vinick és Jung módszere szerint (Tet.lett. 23, 1315-18/1982). Egy további kapcsolási módszert íj le T. Myazawa (Tet. Lett. 25 771/1984).

A kiindulási (III) általános képletű vegyületeket a szakmában ismert módszerekkel állítjuk elő, pl. a szakkos észterezési eljárásokkal oly módon, hogy a szabad savat vagy származékát – pl. észterét vagy anhidridjét – észterezési körülmenyek között, pl. ásványi savak (sósav vagy kénsav) vagy szerves savak, pl. p-toluolszulfónsav jelenlétében a megfelelő alkohollal reagáltatjuk. A reakcióhőmérséklet -70 °C-tól a visszafolyási hőmérsékletig terjedhet. A reakciót olyan oldószerben hajtjuk végre, mely mindenkorral reagenst oldja, és ugyanakkor mindenkorral szemben inert. Az oldószer lehet metilén-klorid, dietil-éter, dimetil-szulfoxid, N,N-dimetil-formamid stb.

Ami a védőcsoportoknak a (IV) általános képletű vegyületekből és a (III) általános képletű, védett aminocsoportot tartalmazó kiindulási anyagokból történő eltávolítását illeti, a technika állásában egy sor ilyen módszer ismeretes, s ezek a védőcsoport természetétől függően előnyösen alkalmazhatók. Ilyen eljárás például a szénen megkötött palládiummal végzett katalitikus hidrogénezés vagy az 1,4-ciklohexadiénnel végzett transzfer hidrogénezés. A reakciót általában szabahőmérsékleten hajtjuk végre, de végezhetjük 5 és 65 °C közötti hőmérsékleten is. A reakciót általában valamely alkalmas oldószer jelenlétében hajtjuk végre, mely lehet pl. víz, metanol, etanol, dioxán, tetrahidrofurán, ecetsav, t-butil-alkohol, izopropanol vagy ezek keveréke. A reakciót rendszerint  $4.2 \times 10^4$  Pa hidrogényomás alatt hajtjuk végre, de végezhetjük az  $1.7 \times 10^4$  és  $2.1 \times 10^5$  Pa közötti teljes nyomástartományban. A reakció kvantitatív lefutásához 1-24 óra szükséges.

A fenti szintézisek bármelyikében a kívánt terméket előnyösen kristályosítással nyerhetjük ki a reakciókeverékből. Más esetben használhatunk e célra normál vagy fordított fázisú kromatografiát, továbbá folyadék/folyadék extrakciót (kioldást) vagy egyéb ismert módszereket. A termékeket átkristályosítással tisztíthatjuk.

A kívánt (I) általános képletű vegyületeket rendszerint szabad sav alakjában kapjuk meg, de kinyerhetjük azokat fiziológiaiag elfogadható sóik, mint pl. hidrokloridok, foszfátok vagy hidrofoszfátok alakjában, vagy pedig alkáli-fém-sóik, pl. nátrium-, kálium-, lítium- vagy alkáli-félfém-, pl. kalcium- vagy magnézium-, valamint alumínium-, cink-, stb. sóik alakjában.

Az (I) általános képletű szabad peptidszármazékokat a szokásos módszerekkel alakítjuk át fiziológiailag elfogadható sókká, pl. úgy, hogy az (I) általános képletű vegyületet valamely ásványi savval, alkálfém-hidroxiddal, alkálfém-oxiddal vagy -karbonáttal vagy más, bonyolultabb szerkezetű vegyülettel reagáltatjuk.

Ezen fiziológiailag elfogadható sók ugyancsak használhatók édesítőszereként, oldhatóságuk és stabilitásuk rendszerint nagyobb, mint a szabad vegyületeké.

A találmány szerinti, aszimmetriás szénatomot tartalmazó vegyületek előfordulhatnak racem vagy optikailag aktív alakban.

Az (I) általános képletű vegyületek előállításakor az L,L-diasztereomer – habár önmagában nem édes – összekerévelhet az L,D sztereozímerrel. Az L,L és az L,D sztereozíomer keverékére édesítő hatású, de nem annyira édes, mint a tiszta L,D sztereozíomer.

Az alábbi példák a találmány illusztrálására szolgálnak. A példákban az érzékszervi értékelést egy szakértői bizottság végezte, melynek tagjai a példa szerinti vegyületek ismert tömegkoncentrációjú vizes oldatait szacharóz standard oldatokkal hasonlították össze. A vizsgálati eredmények szerint a találmány szerinti eljárással előállított vegyületek édesítő hatása 900–5900-szor nagyobb a szacharózénál, ami azt jelenti, hogy ezek a vegyületek az aszpartámnál 5–23-szor édesebbek.

Cb2 jelentése a példákban benzil-oxi-karbonil-csoport.

#### 1. példa

$\alpha$ - aszparagil-2-metil-alanin- $\beta$ (+)-fenchil/-észter

1 mól N-benzil-oxi-karbonil-amino-izovajsavat (Chemical Dynamics Inc.) 0 °C-on, argon-atmoszférában 50 ml díklór-etánban oldunk, majd hozzáadunk 0,5 mól-ekvivalens piridint és 1 mól-ekv.  $\beta$ (+)-fenchil-alkoholt 10 ml díklór-etánban oldva. Végül szilárd anyag alakjában 1,1 mól-ekv. diciklohexil-karbodimidet adunk hozzá, 5 napon át szobahőmérsékleten keverjük, majd a karbamidot leszűrjük, és a szűrletet 5 ml petróléterrel hígítjuk. Az oldatot ismételt szűrésel tisztítjuk, majd nagy vákuumos forgó vákuumbepárlóban paszta sűrűségűre pároljuk. A terméket szilikagél oszlopon petróléter és etil-acetát 15:1 arányú elegyével kromatografáljuk, így fehér, kristályos anyagot kapunk. NMR (CDCl<sub>3</sub>): δ 0,90 (s,3H), 1,05 (s,3H), 1,10 (s, 3H), 1,20-1,80 (m,7H), 1,60 (s,6H), 4,20 (s,1H), 5,10 (s,2H), 5,55 (s,1H), 7,40 (s,5H).  $[\alpha]^{25}_D = -11,65$  (MeOH), O.p.: 83–85 °C. A fenti módon kapott észterből a védőcsoportot a szokásos módon – szénen megkötött – eltávolítjuk, így a szabad aminocsoportot tartalmazó észtert kvantitatív kihozataltal kapjuk meg.

Az amint azonnal feloldjuk dimetil-formamidban, és réz(II)-kloridos eljárással aszparaginsav prekurzorra alakítjuk át, így 90%-os hozammal kapjuk az N-cbz- $\alpha$ -L-aszparaginsav- $\beta$ -benzilészter- $\alpha$ -2-metil-

alanin- $\beta$ (+)-fenchil/-észtert.

NMR (CDCl<sub>3</sub>): δ 0,90 (d,3H), 1,05 (s,3H), 1,10 (s,3H), 1,20-1,80 (m,7H), 1,6 (d,6H), 2,7-3,15 (m,2H), 4,1-4,2 (m,1H), 4,20 (s,1H), 4,60 (s,1H), 5,10 (s,4H), 5,60 (d,1H), 5,90 (d,1H), 5,90 (d,1H), 7,40 (s,10H).

A termékből a védőcsoportot hidrogénezéssel eltávolítjuk, majd Rp C<sub>18</sub> oszlopkromatográfiával, elűensként metanol és víz 85:15 arányú elegyét alkalmazva tisztítjuk.

10  $[\alpha]^{25}_D = -3,30$ .

A kapott vegyülettel végzett édesség-meghatározás eredményei az 1. táblázaton láthatók.

A táblázatban a  $^+$ -gal jelölt szám azt jelenti, hogy a szóbanforgó vegyület az 1. oszlopból megadott koncentrációban hányszor édesebb a szacharóznál.

#### 1. táblázat

|    | Koncentráció<br>(tömeg%) | Szacharóz-<br>ekvivalens<br>% | A szacharóz-<br>viszonyított<br>édesség <sup>+</sup> |
|----|--------------------------|-------------------------------|------------------------------------------------------|
| 20 | 0,00750                  | 8,5                           | 1133                                                 |
|    | 0,00375                  | 6,0                           | 1600                                                 |
|    | 0,00185                  | 5,7                           | 3100                                                 |
|    | 0,00692                  | 3,5                           | 3800                                                 |
|    | 0,0025                   | 6,0                           | 2400                                                 |
|    | 0,0025                   | 4,3                           | 1733                                                 |
| 25 | 0,0025                   | 4,25                          | 1700                                                 |
|    | 0,005                    | 7,37                          | 1475                                                 |
|    | 0,005                    | 7,0                           | 1400                                                 |
|    | 0,005                    | 6,0                           | 1200                                                 |
|    | 0,01                     | 9,25                          | 925                                                  |
| 30 | 0,01                     | 9,0                           | 900                                                  |
|    | 0,005                    | 7,0                           | 1400                                                 |
|    | 0,005                    | 6,0                           | 1200                                                 |
|    | 0,005                    | 6,0                           | 1200                                                 |
|    | 0,01                     | 9,25                          | 925                                                  |
| 35 | 0,01                     | 9,0                           | 900                                                  |
|    | 0,005                    | 7,0                           | 1400                                                 |
|    | 0,005                    | 6,0                           | 1200                                                 |
|    | 0,005                    | 6,0                           | 1200                                                 |
|    | 0,01                     | 9,25                          | 925                                                  |

#### 2. Példa

$\alpha$ -L-aszparagil-D-alanin- $\beta$ (+)-fenchil/-észter A  
/ lépés: oxo- $\beta$ (+)-fenchol (1,3,3-trimetil-2-norbornanol) előállítása

40 72,65 g alumínium-izopropoxidot 300 ml frissen desztillált izopropil-alkoholban szuszpenzióhoz cseppenként hozzáadunk 27,1 g R-(–)-fenchont (1,3,3-trimetil-2-norbornanon) 50 ml izopropanolban oldva. A reakció 6 napon át folytatódott, ekkor megállapítottuk, hogy a ketonnak több mint 50%-a redukálódott. Kapszuláris kromatográfiával (Supelcowax 10) azt is megállapítottuk, hogy a fenchol exo/endo aránya 3:1. Lehűlés után a keveréket leszűrjük, és díklór-metánnal alaposan átmossuk. A csapadékot 100 ml 5%-os sósav-oldatban oldjuk, és 50 ml díklór-metánnal extraháljuk. Az összeöntött díklór-metános oldatot 50 ml 5%-os sósav-oldattal, 50 ml telített nátrium-hidrogénkarbonát-oldattal és 50 ml vízzel mosunk, majd magnézium-szulfáton száritjuk. Szűrés és az oldószer eltávolítása után 23,44 g olajat kapunk, mely 40% visszamaradt fenchont 60%  $\alpha$  és  $\beta$  fenchol izomert tartalmaz.

55 12 g (0,78 mól)  $\alpha$ - és  $\beta$ -fenchol, 11,9 ml (1,1 mól-ekv.) trietyl-amin és 15,9 g (1,1 mól-ekv.) p-nitro-ben-

zoil-klorid keverékét 500 ml vízmentes díklór-metánban 24 órán át visszafolyási hőmérsékleten forraljuk. A  $\beta$ - és  $\alpha$ -észter keverékét szilikagélen gyorskromatográfiával, hexán és etil-acetát 40:1 arányú keverékének alkalmazásával választjuk el, így 6,0 g exo-fenchil-p-nitrobenzoátot izolálhatunk (benzolban  $[\alpha]^{25}_{D} = -17,1^{\circ}$ . A nitrobenzoát észter bázisos hidrolízisével (metil-alkoholban oldott nátrium-hidroxid feleslegével visszafolyós hűtő alatt forralva) 3 g fenchont kapunk, melyben a  $\beta$  és az  $\alpha$ -komponens aránya 9:1.

$\beta$ -(+)-fenchol  $[\alpha]^{25}_{D} = +23,4^{\circ}$  (tiszt).

NMR:  $\delta$  0,95-1,8 (16H, m,  $\text{CH}_2$ ,  $\text{CH}_3$ )

3,0 ppm (1H, s,  $\text{CH}-\text{O}$ ).

b/ lépés: *N*-cbz-D-alanin- $\beta$ (+)-fenchil-észter előállítása

1,3 g  $\beta$ -(+)-fencholt 20 ml vízmentes díklór-metánban oldunk, majd keverés közben hozzáadunk 1,9 g (0,0084 mól) N-cbz-D-alanint, és az oldatot 0 °C-ra lehűtjük. Ezután 0,113 g p-dimétil-amino-piridint és 1,91 g diciklohexil-karbodiimidet adunk hozzá, majd 24 óra elteltével a reakciót leállítjuk, és a keveréket leszűrjük. Az oldószeret elpárologtatjuk, az olajszerrü maradékot dietil-éterben oldjuk, 25 ml 5%-os sósav-oldattal, 25 ml telített nátrium-hidrogén-karbonát-oldattal és 25 ml vízzel mossuk, majd magnézium-szulfáton szárítjuk. Leszűrés és az oldószer elpárologtatása után a terméket szilikagéles kromatográfiával tisztítva, 1,86 g N-cbz-alanin- $\beta$ -(+)-fenchil-észtert kapunk;  $[\alpha]^{25}_{D} = 3,86^{\circ}$ .

NMR:  $\delta$  0,8-1 ppm (19H, m,  $\text{CH}_2$ ,  $\text{CH}_3$ ); 4,2 ppm (1H, s,  $\text{CH}-\text{O}$ ); 4,4 ppm (1H, m,  $\text{CH}-\text{C}$ ); 5,1 ppm (2H,  $\text{CH}_2\text{-Ph}$ ); 5,4 ppm (1H, d  $\text{NH}$ ); 7,4 ppm (5H, s, Ph).

C/ lépés: D-alanin- $\beta$ (+)-fenchil-észter előállítása

Az 1,86 g N-cbz-D-alanin- $\beta$ -(+)-fenchil-észtert 50 ml metanolban oldjuk, és 0,1 g 5%-os, szénen megkötött palládium jelenlétében Paar bombában hidrogénezzük. 2 óra múlva a reakció befejeződik, ekkor a reakcióelegyet Celiten leszűrjük, metanollal mossuk, bepároljuk, és a kikristályosodott maradékot díklór-metánban feldoljuk.

D/ lépés: *N*-cbz- $\beta$ -benzil-L-aszparagil-D-alanin- $\beta$ (+)-fenchil-észter előállítása

A 0,0035 mól D-alanin-észtert tartalmazó díklór-metános oldathoz ekvimoláris mennyiségű (1,27 g)  $\beta$ -benzil-N-cbz-L-aszparaginsavat és 0,526 g réz(II)-kloridot adunk. A réz(II)-klorid feloldása után 0,81 g diciklohexil-karbodiimidet adunk hozzá. 24 óra múlva a reakció befejeződik, a karbamidot leszűrjük és az oldószeret elpárologtatjuk. A sárga olajat 25 ml dietil-éterben oldjuk, 25 ml 5%-os sósav-oldattal, 25 ml telített nátrium-hidrogén-karbonát-oldattal és 25 ml vízzel mossuk. Az éteres réteget magnézium-szulfáton szárítjuk és bepároljuk, így 0,95 g terméket kapunk.

NMR:  $\delta$  0,85-1,80 (19H, m,  $\text{CH}_2$ ,  $\text{CH}_3$ ); 4,2 ppm (1H, s,  $\text{CH}-\text{O}$ ); 4,5-4,7 ppm (2H, m,  $\text{N}-\text{CH}-\text{C}$ ); 5,1 ppm (4H, s,  $\text{OCH}_2\text{-Ph}$ ); 5,95 ppm (1H, d,  $\text{NH}$ ); 7,05 ppm (1H, d,  $\text{NH}$ ); 7,4 ppm (10H, s, Ph).

E/ lépés:  $\alpha$ -L-aszparagil-D-alanin- $\beta$ (+)-fenchil-észter előállítása

5 [math>[\alpha]^{25}\_{D} = 0,867^{\circ}. 0,95 g védett dipeptidet 50 ml metanolban oldunk, és hozzáadunk 0,1 g 10%-os csontszenes palládiumot, majd 2 órán át hidrogénezzük. Az oldatot leszűrve és szárazra párolva 0,194 g szilárd anyagot kapunk;  $[\alpha]^{25}_{D} = 0,867^{\circ}$ .

A terméket fordított fázisú, nagynyomású folyadékromatográfiával (metanol 85%-os vizes oldatával) tisztítjuk, így 75 mg L-aszparagil-D-alanin- $\beta$ (+)-fenchil-észtert kapunk.

10 NMR:  $\delta$  0,8-1,8 (19H, m,  $\text{CH}_2$ ,  $\text{CH}_3$ ); 2,3-2,4 ppm (2H, m,  $\text{N}-\text{CH}$ ); 8,8 ppm (1H, s,  $\text{NH}-\text{C}$ ).

A vegyületek édesességének meghatározásakor a 2. táblázaton látható eredményeket kaptuk.

A találmány szerinti eljárással előállított vegyületek édesebbek és stabilabbak a technika állásában ismert vegyületeknél.

### 2. táblázat

| Koncentráció<br>(tömeg%) | Szacharóz-<br>ekvivalens<br>% | A szacharóz-<br>viszonyított<br>édesesség <sup>+</sup> |
|--------------------------|-------------------------------|--------------------------------------------------------|
| 20 0,0012                | 0,6                           | 5000                                                   |
| 0,00024                  | 1,42                          | 5900                                                   |
| 25 0,00047               | 2,28                          | 4900                                                   |
| 0,0092                   | 4,7                           | 5100                                                   |
| 0,00185                  | 6,5                           | 3500                                                   |
| 0,0025                   | 6,3                           | 2400                                                   |
| 0,00375                  | 8,6                           | 2300                                                   |
| 30 0,005                 | 9,3                           | 1860                                                   |
| 0,005                    | 10,0                          | 2000                                                   |
| 0,0075                   | 9,0                           | 1200                                                   |
| 0,01                     | 11,0                          | 1100                                                   |

35 \*ez a szám azt jelenti, hogy a szóbanforgó vegyület az 1. oszlopból megadott koncentrációban hányszor édesebb a szacharóznál

### 3. példa

Az 1. példa szerinti  $\alpha$ -L-aszparagil-2-metil-alanin- $\beta$ (+)-fenchil-észter, a 2. példa szerinti  $\alpha$ -L-aszparagil-D-alanin- $\beta$ (+)-fenchil-észter és aszpartám (L-aszparagil-L-fenil-alanin-metilészter) stabilitását vizsgáltuk pH = 3, 5 ill. 7-es pufferoldatban, 50, 75 ill. 100 °C-os hőmérsékleten. Az alábbi eredményt kaptuk:

Az élettartam fele, órákban  
100 °C-on

|           | pH 3 | pH 5 | pH 7 |
|-----------|------|------|------|
| 1. Példa  | 8,4  | 33   | 65   |
| 2. Példa  | 3,9  | 14   | 10   |
| Aszpartám | 5,3  | 5,3  |      |

55 Az élettartam fele, napokban  
75 °C-on

|           | pH 3 | pH 5 |
|-----------|------|------|
| 1. Példa  | 3,0  | 15   |
| 2. Példa  | 1,3  | 5,1  |
| Aszpartám | 0,9  | 1,1  |

*Az élettartam fele, napokban  
50 °C-on*

|          | pH 3 | pH 5 |
|----------|------|------|
| 1. Példa | 64   | 150  |
| 2. Példa | 22   | 131  |

A 3, 5 ill. 7 pH-értékű puffer-oldatokban az 1. és 2. példa szerint édesítőszerek kiválo stabilitást mutatnak. Az 1. és 2. példa szerinti vegyületek a vizsgálathoz használt puffer-oldatokban stabilabbnak bizonyultak az aszpartámnál, kivéve a pH-jú oldatot 10 °C-on, melyben az aszpartám az 1. és 2. példa szerinti vegyületek közé eső stabilitást mutatott. Az 1. példa szerinti vegyület stabilabb a 2. példa szerintinél. 75 és 100 °C-on, 3 és 5 pH-jú oldatokban az 1. példa szerinti vegyület fél élettartma 2-3-szor hosszabb, mint a 2. példa szerinti vegyületé. pH = 5-ös oldatban 50 °C-on az 1. példa szerinti vegyület fél élettartama 1,1-2,9-szer hosszabb, mint a 2. példa szerinti vegyületé.

**SZABADALMI IGÉNYPONTOK**

1. Eljárás (I) általános képletű vegyületek előállítására – ahol A jelentése hidrogénatom vagy metilcsoport, azzal feltétellel, hogy ha a \*\*-gal jelölt szénatom aszimmetriás, azaz királis centrum, akkor a szóbanforgó szénatom körül D konfiguráció alakul ki – azzal jellemzve, hogy egy (II) általános képletű karbonsavat

vagy karbonsav-származékot – ahol Z jelentése hidrogénatom vagy aminovédő csoport, Y jelentése hidrogénatom vagy karboxidvédő csoport – egy (III) általános képletű vegyüettel – ahol A jelentése a fenti – kondenzálunk, az adott esetben jelenlevő védőcsoportokat eltávolítjuk, majd a kapott vegyületet kívánt esetben gyógyászatilag elfogadható sóvá alakítjuk.

5 2. Az 1. igénypont szerinti eljárás  $\alpha$ -L-aszparagil-D-alanin-[ $\beta$ (+)-1,3,3-trimetil-2-norbornil-észter előállítására, azzal jellemzve, hogy a megfelelő kiindulási anyagokat reagáltatjuk.

10 3. Az 1. igénypont szerinti eljárás  $\alpha$ -L-aszparagil-2-metil-alanin-[ $\beta$ (+)-1,3,3-trimetil-2-norbornil-észter előállítására, azzal jellemzve, hogy a megfelelő kiindulási anyagokat reagáltatjuk.

15 4. Eljárás édesítőszerek előállítására, azzal jellemzve, hogy egy megfelelő élelmiszeripari vivőanyagot és adott esetben adalékanyagokat az 1. igénypont szerinti eljárással előállított  $\alpha$ -L-aszparagil-2-metil-alanin-[ $\beta$ (+)-1,3,3-trimetil-2-norbornil-észter édesítőszereként hatásos mennyiségevel összekeverünk.

20 5. Eljárás édesítőszerek előállítására, azzal jellemzve, hogy egy megfelelő élelmiszeripari vivőanyagot és adott esetben adalékanyagokat az 1. igénypont szerinti eljárással előállított  $\alpha$ -L-aszparagil-D-alanin-[ $\beta$ (+)-1,3,3-trimetil-2-norbornil-észter édesítőszereként hatásos mennyiségevel összekeverünk.

HU 204418 B  
Int.Cl.5: A 23 L 1/236



A reakcióvázlat



**This Page is Inserted by IFW Indexing and Scanning  
Operations and is not part of the Official Record**

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** \_\_\_\_\_

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.**