HW3 (CSCI-C241)

Lillie Donato

30 January 2024

1. Question One

- (a) This proof is not valid, for the reason that in line six, they are not acknowledging what was assumed in the subproof.
- (b) This proof is valid.
- (c) This proof is not valid, because after they do cases they wrote their direct proof incorrectly.
- (d) This proof is valid.
- (e) This proof is valid
- (f) This proof is not valid, for that reason that when using $\vee -Elimination$, you must have a subproof for each case.

2. Question Two

(a) Claim: $(P \land Q) \rightarrow R, P \land S, \neg \neg Q \vdash R$

Goal: F

Want: $P \wedge Q$ (Application)

Pf: Assume $(P \land Q) \rightarrow R, P \land S, \neg \neg Q$.

1. Since we know $\neg \neg Q$, we can conclude Q. (Double Negative)

2. Since we know $P \wedge S$, we can conclude P. $(\wedge - Elimination)$

3. From P and Q, we can conclude $P \wedge Q$. $(\wedge - Introduction)$

4. From $(P \land Q) \rightarrow R, P$ and Q, we can conclude R. $(\rightarrow -Elimination)$

(b) Claim: $P \to \neg Q, \neg Q \vdash \neg \neg P$

This is not a valid argument, as shown in the following truth assignment:

P = false

Q = false

 $P \to \neg Q = true$

 $\neg Q = true$

 $\neg \neg P = false$

(c) Claim: $(A \land B) \to C, B, A \land \neg D \vdash C \land \neg D$

Goal: $\overrightarrow{C} \wedge \neg D$

```
Pf: Assume (A \wedge B) \rightarrow C, B, A \wedge \neg D.
```

- 1. From $A \wedge \neg D$, we can conclude A and $\neg D$. $(\land - Elimination)$
- From A and B, we can conclude $A \wedge B$. $(\land -Introduction)$
- From $A \wedge B$, we can apply $(A \wedge B) \to C$ and conclude C. (Application)
- From A and $\neg D$, we can conclude $A \wedge \neg D$. $(\land -Introduction)$

(d) Claim: $(A \wedge B) \to C, B \vdash (A \wedge \neg D) \to (C \wedge \neg D)$ Goal: $(A \land \neg D) \to (C \land \neg D)$

Pf: Assume $(A \wedge B) \rightarrow C, B$.

- 1. Subproof
- 2. Assume $A \wedge \neg D$.
- 3. From $A \wedge \neg D$, we can conclude A and $\neg D$. $(\land - Elimination)$
- 3. From A and B, we can conclude $A \wedge B$. $(\land -Introduction)$
- 4. From $A \wedge B$, we can apply $(A \wedge B) \rightarrow C$ and conclude C. (Application)
- 5. From $A \wedge \neg D$ we can apply $(A \wedge \neg D) \to (C \wedge \neg D)$ and conclude $C \wedge \neg D$. (Application)
- Under the assumption of $A \wedge \neg D$, we proved C and $\neg D$. (Direct Proof)

(e) Claim:
$$\neg P \to (Q \land R) \vdash (\neg P \land S) \to (R \land S)$$

Goal: $(\neg P \land S) \to (R \land S)$

Pf: Assume $\neg P \rightarrow (Q \land R)$.

- 1. Subproof
- 2. Assume $\neg P \land S$.
- 3. From $\neg P \land S$, we can conclude $\neg P$ and S. $(\land - Elimination)$
- 4. From $\neg P$, we can apply $\neg P \to (Q \land R)$ and conclude $Q \land R$. (Application)
- 5. From $Q \wedge R$, we can conclude R.
- 6. From $\neg P$ and S, we can conclude $\neg P \land S$. $(\land -Introduction)$
- 7. From $Q \wedge R$ we can conclude Q and R.
 - $(\land Elimination)$ From R and S, we can conclude $R \wedge S$. $(\land -Introduction)$
- 8. Under the assumption $\neg P$ and S, we proved $R \wedge S$, therefore $(\neg P \wedge S) \rightarrow (R \wedge S)$. (Direct Proof)

(f) Claim: $X \wedge (X \to (Z \wedge Y)) \vdash X \wedge Y$ Goal: $X \wedge Y$

Pf: Assume $X \wedge (X \rightarrow (Z \wedge Y))$.

- 1. From $X \wedge (X \to (Z \wedge Y))$ we can conclude X and $X \to (Z \wedge Y)$
- 2. From X we can apply $X \to (Z \wedge Y)$ and conclude $Z \wedge Y$. (Application)
- 3. From $Z \wedge Y$ we can conclude Y. $(\land - Elimination)$
- 4. From X and Y we can conclude $X \wedge Y$. $(\land -Introduction)$

(g) Claim: $\vdash (X \land (X \to (Z \land Y))) \to (X \land Y)$ Goal: $(X \land (X \to (Z \land Y))) \to (X \land Y)$

2

 $(\land - Elimination)$

Proof.

- $1. \quad Subproof$
- 2. Assume $X \wedge (X \to (Z \wedge Y))$
- 3. From $X \wedge (X \to (Z \wedge Y))$ we can conclude X and $X \to (Z \wedge Y)$
- 4. From X we can apply $X \to (Z \wedge Y)$ and conclude $Z \wedge Y$. (Application)
- 5. From $Z \wedge Y$ we can conclude Y. $(\wedge Elimination)$
- 6. From X and Y we can conclude $X \wedge Y$. $(\wedge Introduction)$
- 7. Under the assumption $X \wedge (X \to (Z \wedge Y))$, we proved $(X \wedge Y)$,

therefore $(X \land (X \rightarrow (Z \land Y))) \rightarrow (X \land Y)$ (Direct Proof)

(h) Claim: $P \lor (Q \land \neg \neg R), P \to R \vdash R$ Goal: R

Pf: Assume $P \lor (Q \land \neg \neg R), P \to R$.

- 1. Case 1: P
- 2. From P, we can apply $P \to R$, and conclude R. (Application)
- 3. Case 2: $Q \land \neg \neg R$
- 4. From $Q \wedge \neg \neg R$, we can conclude $\neg \neg R$. $(\wedge Elimination)$
- 5. From $\neg \neg R$, we can conclude R. (Double Negation)
- 6. In either case of $P \vee (Q \wedge \neg \neg R)$, we proved R, so R is true in general. (Proof By Cases)
- (i) Claim: $C \to (D \lor E), D \to E, \neg \neg C \vdash E \land C$ Goal: $E \land C$

Pf: Assume $C \to (D \lor E), D \to E, \neg \neg C$.

- 1. From $\neg \neg C$, we can conclude C. (Double Negation)
- 2. From C, we can apply $C \to (D \vee E)$, and conclude $D \vee E$. (Application)
- 3. Case 1: *D*
- 4. From D, we can apply $D \to E$, and conclude E. (Application)
- 5. Case 2: E
- 6. We know E.
- 7. In either case of $D \vee E$, we proved E, so E is true in general. (Proof By Cases)
- 8. From E and C, we can conclude $E \wedge C$. $(\wedge -Introduction)$

(j) Claim: $X \to Y \vdash (X \lor Z) \to Y$

Goal: $(X \vee Z) \to Y$

$\frac{\text{Oddi.} (A \lor Z) \land I}{}$					
	X	Y	Z	$X \to Y$	$(X \lor Z) \to Y$
	T	T	T	T	true
	T	T	F	T	true
	T	F	T	F	n/a
	T	F	F	F	n/a
	F	T	T	T	true
	F	T	F	T	true
	\overline{F}	F	T	T	false
	\overline{F}	F	F	T	true

This is not a valid argument, as shown in the following truth assignment:

X = false

Y = false

$$\begin{split} Z &= true \\ X &\to Y = true \\ (X \lor Z) &\to Y = false \end{split}$$

(k) Claim: $J \to K \vdash (J \lor \neg \neg K) \to K$ Goal: $(J \lor \neg \neg K) \to K$

Pf: Assume $J \to K$.

- $1. \quad Subproof$
- 2. Assume $J \vee \neg \neg K$.
- 3. Case 1: J
- 4. From J, we can apply $J \to K$, and conclude K. (Application)
- 5. Case 2: $\neg \neg K$
- 6. From $\neg \neg K$, we can conclude K. (Double Negation)
- 7. In either case of $J \vee \neg \neg K$, we proved K, so K is true in general. (Proof By Cases)
- 8. Under the assumption $J \vee \neg \neg K$, we proved K, so therefore $(J \vee \neg \neg K) \to K$. (Direct Proof)