DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING, NITK - Surathkal

CS204: Data Structures and Algorithms Lab

LAB - 3

28th September 2021

Instructions:

- 1. Implement the following exercise using C.
- 2. Read inputs from a file and also print the outputs to a file.
- 3. You are required to complete this exercise by the next lab.
- 4. Submit all the programs in a single .zip file.

Exercise:

- 1/2 Write a program for memory mapping a 2D array into a 1D array using:
 - a. Row-major order
 - b. Column-major order

Sample Input:	Sample Output:
1 2 3	Row-major: 1 2 3 4 5 6 7 8 9
4 5 6	Column-major: 1 4 7 2 5 8 3 6 9
7 8 9	

- Write a program for memory mapping lower and upper triangular 2D arrays into 1D arrays using
 - a. Row-major order
 - b. Column-major order

Sample Input (upper triangular):	Sample Output:
1 2 3	Row-major order: 1 2 3 4 5 6
0 4 5	Column-major order: 1 2 4 3 5 6
006	

- 2. Write a program for memory mapping a sparse 2D array into a 1D array using (row index, column index, value).
- Write a program for memory mapping a symmetric 2D array into a 1D array using:
 - a. Row-major order
 - b. Column-major order

 Sample Input:
 Sample Output:

 1 2 3
 Row-major: 1 2 3 5 6 9

 2 5 6
 1 2 5 3 6 9

 3 6 9
 Column-major: 1 2 5 3 6 9

123569

- Write a program for memory mapping a tridiagonal 2D array into a 1D array using.
 - a. Row-major order
 - b. Column-major order
 - c. Diagonal-wise

Sample Input (upper triangular):	Sample Output:
1200	Row-major order: 1 2 3 4 5 6 7 8 9 1
3 4 5 0	Column-major order: 1 3 2 4 6 5 7 9 8 1
0678	Diagonal-wise: 3 6 9 1 4 7 1 2 5 8
0091	

- 6. Write a recursive program to solve the tower of Hanoi problem where we have three rods (A, B, C) and n disks. The disks are of different sizes and placed on the rod A in ascending order of their size, i.e. the smaller ones are placed over the larger ones. The objective is to move all the disks from A to C (using rod B in the process), obeying the following rules:
 - 1. Only one disk can be moved at a time.
 - 2. Each move consists of taking the upper disk from one of the rods and placing it on top of another rod i.e. a disk can only be moved if it is the uppermost disk on a rod.
 - 3. No disk may be placed on top of a smaller disk.

Write a program to solve the eight queens problem where we have to place eight chess queens on an 8×8 chessboard so that no two queens attack each other. i.e., no two queens can share the same row, column, or diagonal.

Sample Input: Sample output:

N = 4 0, 1, 0, 0

0, 0, 0, 1

1, 0, 0, 0

0, 0, 1, 0

8. Write a program to count all possible ways of selecting R different objects from N given objects (where R<=N). Note that order of the selected objects does not matter.

Sample Input: Sample Output for

N = 10 45

R = 2