Aprendizaje Automático Profundo

Práctica 1

Análisis y Preprocesamiento de Datos

Objetivos

El objetivo de esta práctica es introducir al análisis y preprocesamiento de los datos.

Temas

- Atributos. Identificación, clasificación y análisis.
- Representaciones Gráficas. Diagrama de Barra, de Caja, de Dispersión e Histograma.
- Correlación.
- Normalización y estandarización de Datos.

Lectura

Cap. 4 del Libro Introducción a la Minería de Datos de Hernández Orallo.

Dataset de Novel de Obesidad

El dataset **"Estimation of Obesity Levels Based on Eating Habits and Physical Condition"** reúne información de 2.111 individuos de México, Perú y Colombia. El objetivo es predecir el **nivel de obesidad** de cada persona a partir de hábitos alimenticios, características físicas y estilo de vida.

El conjunto contiene **17 atributos** (16 predictivos y 1 variable objetivo) que abarcan aspectos relacionados con la edad, el peso, la estatura, los antecedentes familiares, el consumo de ciertos alimentos y bebidas, el uso de tecnología, la actividad física y los medios de transporte. El nivel de obesidad está clasificado en siete categorías, que van desde "peso insuficiente" hasta "obesidad tipo III".

Atributo	Descripción
Gender	Género del individuo (Male/Female)
Age	Edad en años
Height	Altura en metros
Weight	Peso en kilogramos
family_history_with_overweight	Si tiene antecedentes familiares de sobrepeso
FAVC	Frecuencia de consumo de alimentos con alto contenido calórico
FCVC	Frecuencia de consumo de vegetales (1 a 3)
NCP	Número de comidas principales al día
CAEC	Consumo de alimentos entre comidas (no, Sometimes, Frequently, Always)
SMOKE	Si fuma o no
CH2O	Consumo de agua diario en litros
SCC	Si controla el consumo de calorías
FAF	Frecuencia de actividad física (horas/semana)
TUE	Tiempo de uso de dispositivos electrónicos (horas/día)
CALC	Consumo de alcohol (no,Sometimes,Frequently,Always)
MTRANS	Medio de transporte principal (Automobile,Bike,Motorbike,Public_Transportation,Walking)
NObesity (Target)	Nivel de obesidad (Insufficient_Weight, Normal_Weight, Overweight_Level_I, Overweight_Level_II, Obesity_Type_I, Obesity_Type_II, Obesity_Type_III)

*Ejercicio 1*Complete la tabla indicando cuántos atributos corresponden a cada del dataset de obesidad.

Tipo de a	Cantidad	
Cuantitativo o	Discreto	
numérico	Continuo	
Cualitativo o	Nominal	
categórico	Ordinal	

Ejercicio 2

Proponga una tarea de clasificación y una tarea de regresión que puedan realizarse a partir de los datos del dataset de obesidad.

Ejercicio 3

Indique qué tipo de información brindan las siguientes representaciones gráficas:

- a) Diagrama de Barras
- b) Histograma
- c) Diagrama de caja
- d) Diagrama de dispersión

Luego, genere al menos un ejemplo de cada representación usando el dataset de obesidad y explique cómo interpretar cada uno.

Ejercicio 4

Complete el siguiente cuadro y dibuje el diagrama de caja del atributo "weight"

Medida	Valor
Mínimo	
Máximo	
Q1	
Q2 o mediana	
Q3	
RIC	
Bigote superior	
Bigote inferior	
Intervalos de valores atípicos leves	
Valores atípicos leves	
Intervalos de valores atípicos extremos	
Valores atípicos extremos	

Ejercicio 5

Los valores del atributo peso ("weight") fueron agrupados según el atributo de antecedente de obesidad familiar ("family_history_with_overweight"). La figura muestra los diagramas de caja correspondientes.

Complete el siguiente cuadro y responda verdadero o falso justificando cada afirmación según los valores obtenidos:

Medida	yes	no
Mínimo		
Máximo		
Q1		
Q2		
Q3		
RIC		
Bigote Inferior		
Bigote Superior		

- a) Al menos el 25% de las personas con antecedentes familiares de obesidad pesan más de 100 kg.
- b) Es atípico que una persona sin antecedentes familiares de obesidad (no) pese más de 115 kg.
- c) La mediana del peso de las personas sin antecedentes familiares (no) es menor que 60 kg.
- d) Todos los valores atípicos para personas con antecedentes familiares de obesidad son leves.

Ejercicio 6

Discretice el atributo del consumo de agua diario en litros ("CH2O") en tres intervalos: Bajo, Medio y Alto. Indique en la tabla los intervalos utilizados y la cantidad respectivas de ejemplos de cada uno al discretizar por rango y por intervalo. Luego, explique porque los ejemplos no quedaron divididos en intervalos con la misma cantidad de valores.

	Rango			Intervalo			
	Bajo Medio Alto Bajo Medio Alto						
Intervalos							
Cantidad de Valores							

Dataset Titanic

El dataset del Titanic, es un conjunto de datos clásico utilizado para tareas de clasificación binaria. Se basa en información histórica de los pasajeros del RMS Titanic, que se hundió en 1912 tras chocar con un iceberg. El objetivo principal es predecir si un pasajero sobrevivió o no, basado en características como su clase social, edad, género y otros factores socioeconómicos.

El RMS Titanic se hundió el 15 de abril de 1912 durante su viaje inaugural. De las aproximadamente 2,224 personas a bordo, más de 1,500 murieron, convirtiendo este evento en uno de los naufragios más mortíferos en tiempos de paz.

Atributo	Descripción				
Passengerld	Identificador único del pasajero				
Survived	Variable objetivo: Indica si el pasajero sobrevivió (1) o no (0)				
Pclass	Clase del ticket (proxy de estatus socioeconómico)				
Name	Nombre completo del pasajero, incluyendo títulos (ej. Mr., Mrs.)				
Sex	Género del pasajero (male, female)				
Age	Edad en años (puede ser fraccional para niños)				
SibSp	Número de hermanos/esposos a bordo				

Parch	Número de padres/hijos a bordo			
Ticket	Número del ticket			
Fare	Tarifa pagada por el ticket			
Cabin	Número de cabina (muchos faltantes)			
Embarked	Puerto de embarque (C, Q, S)			

Ejercicio 7

Realice las siguientes tareas para preparar el dataset para que pueda ser utilizado para entrenar modelos de redes neuronales.

- a) Visualice las primeras 5 filas y el resumen estadístico.
- b) Identifique los atributos (columnas) con valores nulos y su porcentaje.
- c) Analizar los valores faltantes y discutir cuales serían las alternativas posibles para tratarlos.
- d) Los nombres de los pasajeros van acompañados de títulos que pueden ser importantes para la interpretación de los datos o para completar información faltante:
 - i. Extrae el título (como Mr, Miss, Mrs, Master, etc.) del nombre de cada pasajero y crea una nueva columna llamada **Title**.
 - ii. Unifica los valores para que queden Mr, Miss (Mlle, Ms), Mrs (Mme), Master, Others (resto).
 - iii. Computa las edades faltantes utilizando la edad promedio por categoría.
- e) Complete los valores faltantes utilizando las estrategias planteadas en los puntos anteriores.
- f) Cree un nuevo atributo **FamilySize** que contabiliza los integrantes de familia a partir de los atributos **SibSp** (hermanos y esposo) y **Parch** (padres e hijos). No olvidar contar a la persona.
- g) Numerice los atributos categóricos: Sex, Embarked, y Title.
- h) Discuta y responda ¿Por qué one-hot encoding podría ser preferible a label encoding para el atributo **Pclass**?
- i) Visualiza distribuciones: Histograma de **Age**, gráfico de barras para **Survived** por **Sex** y **Pclass.**

Ejercicio 8

Calcule la correlación lineal entre los atributos "Fare" (Tarifa) y "PClass" (clase del ticket). Indique la intensidad de la correlación (no hay correlación/débil/fuerte) y el tipo (positiva/negativa). Explique el significado del valor de correlación obtenido.

	Fare/PClass	PClass
Valor		
Intensidad		
Tipo		
Significado		

Ejercicio 9

Realice un análisis sobre los valores de los atributos del dataset automobile.csv. Para cada atributo que no pueda ser procesado directamente, indique que problema tiene (valores nulos o vacíos, valores categóricos, valores atípicos o outliers, etc.) y como solucionarlo.

Ejercicio 10

Dada la siguiente tabla con mediciones de 2 características correspondientes a mediciones de altura y peso de personas:

Altura	1.65	1.81	1.70	1.62	1.74	1.70	1.80	1.73	1.68
Peso	75	86	82	78	77	87	90	83	80

a) Aplique las siguientes normalizaciones y grafíquelas con un diagrama de caja:

$$\text{MinMax: } \frac{x_i - min(x)}{max(x) - min(x)}$$

Standard:
$$\frac{x_i - media(x)}{stddev(x)}$$

Robust:
$$\frac{x_i - Q1(x)}{Q3(x) - Q1(x)}$$

- b) Agregue la siguiente medición (2.20, 120) y repita el punto a)
- c) Compare los diagramas de caja entre las normalizaciones de los puntos a) y b) y comente las diferencias.