

#### **General Description**

The AP2115 is CMOS process low dropout linear regulator with enable function, the regulator delivers a guaranteed 1A (min.) continuous load current.

The AP2115 features low power consumption.

The AP2115 is available in 1.2V, 1.8V, 2.5V and 3.3V regulator output, and available in excellent output accuracy  $\pm 1.5\%$ , it is also available in an excellent load regulation and line regulation performance.

The AP2115 is available in standard packages of SOIC-8 and SOT-89-5.

#### **Features**

- Output Voltage Accuracy: ±1.5%
- Output Current: 1A (Min.)
- Fold-back Short Current Protection: 50mA
- Low Dropout Voltage (3.3V): 450mV (Typ.)
   @ I<sub>OUT</sub>=1A
- Stable with 4.7µF Flexible Cap: Ceramic, Tantalum and Aluminum Electrolytic
- Excellent Line Regulation: 0.02%/V (Typ.), 0.1%/V (Max.) @ I<sub>OUT</sub>=30mA
- Excellent Load Regulation: 0.2%/A @  $I_{OUT}=1$  mA to 1A
- Low Quiescent Current: 60μA (1.2V/1.8V/ 2.5V)
- Low Output Noise: 30μV<sub>RMS</sub>
- PSRR: 68dB @ Freq=1kHz (1.2V/1.8V)
- OTSD Protection
- Operation Temperature Range: -40°C to 85°C
- ESD: MM 400V, HBM 4000V

#### **Applications**

- LCD Monitor
- LCD TV
- STB



Figure 1. Package Types of AP2115



# **Pin Configuration**

R5 Package (SOT-89-5)



Figure 2. Pin Configuration of AP2115 (Top View)

## **Pin Descriptions**

| Pin      | No.     | Name  | Function                                                         |
|----------|---------|-------|------------------------------------------------------------------|
| SOT-89-5 | SOIC-8  | Name  | T unction                                                        |
| 1        | 2, 3, 4 | NC/EN | No connection/Chip Enable                                        |
| 2        | 6, 7    | GND   | GND                                                              |
| 3        | 5       | EN/NC | Chip Enable, H – normal work, L – shutdown output/ No Connection |
| 4        | 8       | VIN   | Input Voltage                                                    |
| 5        | 1       | VOUT  | Output Voltage                                                   |



## **Functional Block Diagram**



Figure 3. Functional Block Diagram of AP2115



# **Ordering Information**



| Package  | Temperature<br>Range | Condition  | Part Number       | Marking ID  | Packing<br>Type |
|----------|----------------------|------------|-------------------|-------------|-----------------|
|          |                      | 1.2V       | AP2115M-1.2G1     | 2115M-1.2G1 | Tube            |
|          |                      | 1.2 V      | AP2115M-1.2TRG1   | 2115M-1.2G1 | Tape & Reel     |
|          |                      | 1.8V       | AP2115M-1.8G1     | 2115M-1.8G1 | Tube            |
| SOIC-8   | -40 to 85°C          | 1.0 V      | AP2115M-1.8TRG1   | 2115M-1.8G1 | Tape & Reel     |
| 301C-8   | -40 to 83 C          | 2.5V       | AP2115M-2.5G1     | 2115M-2.5G1 | Tube            |
|          |                      | 2.3 V      | AP2115M-2.5TRG1   | 2115M-2.5G1 | Tape & Reel     |
|          |                      | 3.3V       | AP2115M-3.3G1     | 2115M-3.3G1 | Tube            |
|          |                      |            | AP2115M-3.3TRG1   | 2115M-3.3G1 | Tape & Reel     |
|          |                      | 1.2V (R5)  | AP2115R5-1.2TRG1  | G22G        | Tape & Reel     |
| SOT-89-5 | -40 to 85°C          | 1.8V (R5)  | AP2115R5-1.8TRG1  | G22H        | Tape & Reel     |
| 301-89-3 | -40 to 83 C          | 2.5V (R5)  | AP2115R5-2.5TRG1  | G37H        | Tape & Reel     |
|          |                      | 3.3V (R5)  | AP2115R5-3.3TRG1  | G41H        | Tape & Reel     |
|          |                      | 1.2V (R5A) | AP2115R5A-1.2TRG1 | G27D        | Tape & Reel     |
| SOT-89-5 | -40 to 85°C          | 1.8V (R5A) | AP2115R5A-1.8TRG1 | G27G        | Tape & Reel     |
| 301-09-3 | -40 to 83 C          | 2.5V (R5A) | AP2115R5A-2.5TRG1 | G41F        | Tape & Reel     |
|          |                      | 3.3V (R5A) | AP2115R5A-3.3TRG1 | G41G        | Tape & Reel     |

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and green.



#### **Absolute Maximum Ratings (Note 1)**

| Parameter                               | Symbol           | Value      | Unit |
|-----------------------------------------|------------------|------------|------|
| Power Supply Voltage                    | $V_{CC}$         | 6.5        | V    |
| Operating Junction Temperature Range    | $T_{\mathrm{J}}$ | 150        | °C   |
| Storage temperature Range               | $T_{STG}$        | -65 to 150 | °C   |
| Lead Temperature (Soldering,10 Seconds) | $T_{LEAD}$       | 260        | °C   |
| ESD (Machine Model)                     |                  | 400        | V    |
| ESD (Human Body Model)                  |                  | 4000       | V    |

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

#### **Recommended Operating Conditions**

| Parameter                           | Symbol         | Min | Max | Unit |
|-------------------------------------|----------------|-----|-----|------|
| Supply Voltage                      | $V_{IN}$       | 2.5 | 6.0 | V    |
| Ambient Operation Temperature Range | T <sub>A</sub> | -40 | 85  | °C   |



#### **Electrical Characteristics**

#### **AP2115-1.2 Electrical Characteristics (Note 2)**

 $V_{IN}$ =2.5V,  $C_{IN}$ =4.7 $\mu F$  (Ceramic),  $C_{OUT}$ =4.7 $\mu F$  (Ceramic), Typical  $T_A$ =25°C, **Bold** typeface applies over -40°C $\leq T_J \leq 85$ °C ranges, unless otherwise specified (Note 3).

| Parameter                                 | Symbol                                                | Test                                      | Conditions                                                   | Min  | Тур  | Max                         | Unit          |
|-------------------------------------------|-------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------|------|------|-----------------------------|---------------|
| Output Voltage                            | $V_{OUT}$                                             | V <sub>IN</sub> =2.5V, 1mA                | $V_{IN} = 2.5V$ , $1 \text{mA} \le I_{OUT} \le 30 \text{mA}$ |      | 1.2  | V <sub>OUT</sub><br>×101.5% | V             |
| Input Voltage                             | $V_{IN}$                                              |                                           |                                                              |      |      | 6                           | V             |
| Maximum Output Current                    | $I_{OUT(MAX)} \\$                                     | $V_{IN}=2.5V$ , $V_{OUT}$                 | =1.182V to 1.218V                                            | 1    |      |                             | A             |
| Load Regulation                           | $\frac{\triangle V_{OUT}/V_{OUT}}{\triangle I_{OUT}}$ | V <sub>IN</sub> =2.5V, 1mA                | .≤I <sub>OUT</sub> ≤1A                                       |      | 0.2  | 1                           | %/A           |
| Line Regulation                           | $\frac{\triangle V_{OUT}/V_{OUT}}{\triangle V_{IN}}$  | 2.5V≤V <sub>IN</sub> ≤6V, 1               | I <sub>OUT</sub> =30mA                                       | -0.1 | 0.02 | 0.1                         | %/V           |
| Dropout Voltage                           | $V_{DROP}$                                            | I <sub>OUT</sub> =1.0A                    |                                                              |      | 1200 | 1300                        | mV            |
| Quiescent Current                         | $I_Q$                                                 | V <sub>IN</sub> =2.5V, I <sub>OUT</sub> = | =0mA                                                         |      | 60   | 75                          | μΑ            |
| Power Supply Rejection<br>Ratio           | PSRR                                                  | Ripple 1Vp-p<br>V <sub>IN</sub> =2.5V,    | f=100Hz                                                      |      | 68   | dì                          | dB            |
|                                           |                                                       | $I_{OUT}=100\text{mA}$                    | f=1KHz                                                       |      | 68   |                             |               |
| Output Voltage<br>Temperature Coefficient | $\frac{\triangle V_{OUT}/V_{OUT}}{\triangle T}$       | I <sub>OUT</sub> =30mA, T <sub>A</sub>    | A =-40°C to 85°C                                             |      | ±30  |                             | ppm/°C        |
| Short Current Limit                       | $I_{SHORT}$                                           | V <sub>OUT</sub> =0V                      |                                                              |      | 50   |                             | mA            |
| RMS Output Noise                          | $V_{ m NOISE}$                                        | $10$ Hz $\leq f \leq 100$ k               | tHz (No Load)                                                |      | 30   |                             | $\mu V_{RMS}$ |
| V <sub>EN</sub> High Voltage              | $V_{\mathrm{IH}}$                                     | Enable logic hig                          | gh, regulator on                                             | 1.5  |      |                             | <b>V</b>      |
| V <sub>EN</sub> Low Voltage               | $V_{\mathrm{IL}}$                                     | Enable logic lov                          | w, regulator off                                             |      |      | 0.4                         | V             |
| Standby Current                           | $I_{STD}$                                             | V <sub>IN</sub> =3.5V, V <sub>EN</sub>    | in OFF mode                                                  |      | 0.01 | 1.0                         | μΑ            |
| Start-up Time                             | $t_{\mathrm{S}}$                                      | No Load                                   |                                                              |      | 20   |                             | μs            |
| EN Pull Down Resistor                     | $R_{PD}$                                              |                                           |                                                              |      | 3.0  |                             | ΜΩ            |
| V <sub>OUT</sub> Discharge Resistor       | $R_{DCHG}$                                            | Set EN pin at L                           | ow                                                           |      | 60   |                             | Ω             |
| Thermal Shutdown<br>Temperature           | $T_{OTSD}$                                            | -                                         |                                                              |      | 160  |                             | °C            |
| Thermal Shutdown<br>Hysteresis            | T <sub>HYOTSD</sub>                                   |                                           |                                                              |      | 25   |                             | ·°C           |
| The arms of Descriptions                  | 0                                                     | SOIC-8                                    |                                                              |      | 74.6 |                             | 00/337        |
| Thermal Resistance                        | $	heta_{ m JC}$                                       | SOT-89-5                                  |                                                              |      | 47   |                             | °C/W          |

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

Note 3: Production testing at T<sub>A</sub>=25°C. Over temperature specifications guaranteed by design only.



#### **Electrical Characteristics (Continued)**

#### **AP2115-1.8 Electrical Characteristics (Note 2)**

 $V_{IN}$ =2.8V,  $C_{IN}$ =4.7 $\mu$ F (Ceramic),  $C_{OUT}$ =4.7 $\mu$ F (Ceramic), Typical  $T_A$ =25°C, **Bold** typeface applies over -40°C $\leq$ T<sub>J</sub> $\leq$ 85°C ranges, unless otherwise specified (Note 3).

| Parameter                                 | Symbol                                                | Test                                              | Min                              | Тур                        | Max  | Unit                         |               |
|-------------------------------------------|-------------------------------------------------------|---------------------------------------------------|----------------------------------|----------------------------|------|------------------------------|---------------|
| Output Voltage                            | $V_{\mathrm{OUT}}$                                    | V <sub>IN</sub> =2.8V, 1mA                        | $\leq I_{OUT} \leq 30 \text{mA}$ | 98.5%<br>×V <sub>OUT</sub> | 1.8  | 101.5%<br>× V <sub>OUT</sub> | V             |
| Maximum Output Current                    | $I_{\text{OUT}(\text{MAX})}$                          | V <sub>IN</sub> =2.8V, V <sub>OUT</sub>           | =1.773V to 1.827V                | 1                          |      |                              | A             |
| Load Regulation                           | $\frac{\triangle V_{OUT}/V_{OUT}}{\triangle I_{OUT}}$ | V <sub>IN</sub> =2.8V, 1mA                        | $\leq I_{OUT} \leq 1A$           |                            | 0.2  | 1                            | %/A           |
| Line Regulation                           | $\frac{\triangle V_{OUT}/V_{OUT}}{\triangle V_{IN}}$  | 2.8V≤V <sub>IN</sub> ≤6V, I <sub>0</sub>          | <sub>OUT</sub> =30mA             | -0.1                       | 0.02 | 0.1                          | %/V           |
| Dropout Voltage                           | $V_{DROP}$                                            | I <sub>OUT</sub> =1.0A                            |                                  |                            | 500  | 750                          | mV            |
| Quiescent Current                         | $I_Q$                                                 | V <sub>IN</sub> =2.8V, I <sub>OUT</sub> =         | 0mA                              |                            | 60   | 75                           | μΑ            |
| Power Supply Rejection<br>Ratio           | DGDD                                                  | Ripple 1Vp-p                                      | f=100Hz                          |                            | 68   |                              |               |
|                                           | PSRR                                                  | V <sub>IN</sub> =2.8V,<br>I <sub>OUT</sub> =100mA | f=1KHz                           |                            | 68   |                              | dB            |
| Output Voltage<br>Temperature Coefficient | $\Delta V_{OUT}/V_{OUT}$<br>$\Delta T$                | I <sub>OUT</sub> =30mA, T <sub>A</sub>            | =-40°C to 85°C                   |                            | ±30  |                              | ppm/°C        |
| Short Current Limit                       | $I_{SHORT}$                                           | V <sub>OUT</sub> =0V                              |                                  |                            | 50   |                              | mA            |
| RMS Output Noise                          | V <sub>NOISE</sub>                                    | $10Hz \le f \le 100kl$                            | Hz (No load)                     |                            | 30   |                              | $\mu V_{RMS}$ |
| V <sub>EN</sub> High Voltage              | $V_{\mathrm{IH}}$                                     | Enable logic hig                                  | h, regulator on                  | 1.5                        |      |                              | 3.7           |
| V <sub>EN</sub> Low Voltage               | $V_{ m IL}$                                           | Enable logic low                                  | , regulator off                  |                            |      | 0.4                          | V             |
| Standby Current                           | $I_{STD}$                                             | V <sub>IN</sub> =3.5V, V <sub>EN</sub> i          | n OFF mode                       |                            | 0.01 | 1.0                          | μΑ            |
| Start-up Time                             | $t_{\rm S}$                                           | No Load                                           |                                  |                            | 20   |                              | μs            |
| EN Pull Down Resistor                     | $R_{PD}$                                              |                                                   |                                  |                            | 3.0  |                              | ΜΩ            |
| V <sub>OUT</sub> Discharge Resistor       | $R_{DCHG}$                                            | Set EN pin at Low                                 |                                  |                            | 60   |                              | Ω             |
| Thermal Shutdown<br>Temperature           | $T_{OTSD}$                                            |                                                   |                                  |                            | 160  |                              | °C            |
| Thermal Shutdown<br>Hysteresis            | T <sub>HYOTSD</sub>                                   |                                                   |                                  |                            | 25   |                              |               |
|                                           | 0                                                     | SOIC-8                                            |                                  |                            | 74.6 |                              | 00/337        |
| Thermal Resistance                        | $	heta_{ m JC}$                                       | SOT-89-5                                          |                                  |                            | 47   |                              | °C/W          |

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

Note 3: Production testing at T<sub>A</sub>=25°C. Over temperature specifications guaranteed by design only.



#### **Electrical Characteristics (Continued)**

#### **AP2115-2.5 Electrical Characteristics (Note 2)**

 $V_{IN}$ =3.5V,  $C_{IN}$ =4.7 $\mu$ F (Ceramic),  $C_{OUT}$ =4.7 $\mu$ F (Ceramic), Typical  $T_A$ =25°C, **Bold** typeface applies over -40°C $\leq$ T $_J$  $\leq$ 85°C ranges, unless otherwise specified (Note 3).

| Parameter                                 | Symbol                                                | Test Con                                                              | Min                                                      | Тур                        | Max  | Unit                        |               |
|-------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------|----------------------------|------|-----------------------------|---------------|
| Output Voltage                            | $V_{\mathrm{OUT}}$                                    | V <sub>IN</sub> =3.5V, 1mA ≤                                          | $I_{OUT} \le 30 mA$                                      | 98.5%<br>×V <sub>OUT</sub> | 2.5  | 101.5%<br>×V <sub>OUT</sub> | V             |
| Maximum Output Current                    | I <sub>OUT(MAX)</sub>                                 | V <sub>IN</sub> =3.5V, V <sub>OUT</sub> =2                            | 2.463V to 2.537V                                         | 1                          |      |                             | A             |
| Load Regulation                           | $\frac{\triangle V_{OUT}/V_{OUT}}{\triangle I_{OUT}}$ | $V_{OUT}$ =2.5V, $V_{IN}$ =V<br>1mA $\leq$ I <sub>OUT</sub> $\leq$ 1A | V <sub>OUT</sub> +1V                                     |                            | 0.2  | 1                           | %/A           |
| Line Regulation                           | $\frac{\triangle V_{OUT}/V_{OUT}}{\triangle V_{IN}}$  | 3.5V≤V <sub>IN</sub> ≤6V, I <sub>OU</sub>                             | <sub>T</sub> =30mA                                       | -0.1                       | 0.02 | 0.1                         | %/V           |
| Dropout Voltage                           | $V_{DROP}$                                            | $I_{OUT} = 1 A$                                                       |                                                          |                            | 450  | 750                         | mV            |
| Quiescent Current                         | $I_Q$                                                 | $V_{IN}=3.5V, I_{OUT}=0I_{I}$                                         | mA                                                       |                            | 60   | 80                          | μΑ            |
| Standby Current                           | I <sub>STD</sub>                                      | $V_{IN}=3.5V$ , $V_{EN}$ in                                           | OFF mode                                                 |                            | 0.01 | 1.0                         | μА            |
| Power Supply Rejection                    | DCDD                                                  | Ripple 1Vp-p                                                          | f=100Hz                                                  |                            | 65   |                             | ID            |
| Ratio                                     | PSRR                                                  | V <sub>IN</sub> =3.5V,<br>I <sub>OUT</sub> =100mA                     | V <sub>IN</sub> =3.5V,<br>I <sub>OUT</sub> =100mA f=1KHz |                            | 65   |                             | dB            |
| Output Voltage<br>Temperature Coefficient | $\frac{\triangle V_{OUT}/V_{OUT}}{\triangle T}$       | I <sub>OUT</sub> =30mA                                                |                                                          |                            | ±30  |                             | ppm/°C        |
| Short Current Limit                       | $I_{SHORT}$                                           | V <sub>OUT</sub> =0V                                                  | V <sub>OUT</sub> =0V                                     |                            | 50   |                             | mA            |
| RMS Output Noise                          | $V_{NOISE}$                                           | $10$ Hz $\leq f \leq 100$ kHz                                         |                                                          |                            | 30   |                             | $\mu V_{RMS}$ |
| V <sub>EN</sub> High Voltage              | $V_{\mathrm{IH}}$                                     | Enable logic high,                                                    | regulator on                                             | 1.5                        |      |                             | **            |
| V <sub>EN</sub> Low Voltage               | $V_{\mathrm{IL}}$                                     | Enable logic low, 1                                                   | regulator off                                            |                            |      | 0.4                         | V             |
| Start-up Time                             | $t_{\mathrm{S}}$                                      | No Load                                                               |                                                          |                            | 20   |                             | μs            |
| EN Pull Down Resistor                     | $R_{PD}$                                              |                                                                       |                                                          |                            | 3.0  |                             | ΜΩ            |
| V <sub>OUT</sub> Discharge Resistor       | $R_{DCHG}$                                            | Set EN pin at Low                                                     |                                                          |                            | 60   |                             | Ω             |
| Thermal Shutdown Temperature              | $T_{OTSD}$                                            | -                                                                     |                                                          |                            | 160  |                             | °C            |
| Thermal Shutdown<br>Hysteresis            | $T_{HYOTSD}$                                          |                                                                       |                                                          |                            | 25   |                             |               |
|                                           | 0                                                     | SOIC-8                                                                |                                                          |                            | 74.6 |                             | 0C/W          |
| Thermal Resistance                        | $	heta_{ m JC}$                                       | SOT-89-5                                                              |                                                          |                            | 47   |                             | °C/W          |

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

Note 3: Production testing at T<sub>A</sub>=25°C. Over temperature specifications guaranteed by design only.



#### **Electrical Characteristics (Continued)**

#### **AP2115-3.3 Electrical Characteristics (Note 2)**

 $V_{IN}$ =4.3V,  $C_{IN}$ =4.7 $\mu$ F (Ceramic),  $C_{OUT}$ =4.7 $\mu$ F (Ceramic), Typical  $T_A$ =25°C, **Bold** typeface applies over -40°C $\leq$ T<sub>J</sub> $\leq$ 85°C ranges, unless otherwise specified (Note 3).

| Parameter                                 | Symbol                                                | Test                                      | Min                        | Тур  | Max                         | Unit |               |
|-------------------------------------------|-------------------------------------------------------|-------------------------------------------|----------------------------|------|-----------------------------|------|---------------|
| Output Voltage                            | $V_{\mathrm{OUT}}$                                    | V <sub>IN</sub> =4.3V, 1mA                | 98.5%<br>×V <sub>OUT</sub> | 3.3  | 101.5%<br>×V <sub>OUT</sub> | V    |               |
| Maximum Output Current                    | I <sub>OUT(MAX)</sub>                                 | V <sub>IN</sub> =4.3V, V <sub>OUT</sub>   | =3.25V to 3.35V            | 1    |                             |      | A             |
| Load Regulation                           | $\frac{\triangle V_{OUT}/V_{OUT}}{\triangle I_{OUT}}$ | V <sub>IN</sub> =4.3V, 1mA                | $\leq I_{OUT} \leq 1A$     |      | 0.2                         | 1    | %/A           |
| Line Regulation                           | $\frac{\triangle V_{OUT}/V_{OUT}}{\triangle V_{IN}}$  | 4.3V≤V <sub>IN</sub> ≤6V, I               | OUT=30mA                   | -0.1 | 0.02                        | 0.1  | %/V           |
| Dropout Voltage                           | $V_{ m DROP}$                                         | I <sub>OUT</sub> =1A                      |                            |      | 450                         | 750  | mV            |
| Quiescent Current                         | $I_Q$                                                 | V <sub>IN</sub> =4.3V, I <sub>OUT</sub> = | =0mA                       |      | 65                          | 90   | μА            |
| Power Supply Rejection                    | PSRR                                                  | Ripple 1Vp-p<br>V <sub>IN</sub> =4.3V,    | f=100Hz                    |      | 65                          |      | dB            |
| Ratio                                     | FSKK                                                  | $I_{OUT}$ =100mA                          | f=1KHz                     |      | 65                          |      | ub            |
| Output Voltage<br>Temperature Coefficient | $\frac{\triangle V_{OUT}/V_{OUT}}{\triangle T}$       | I <sub>OUT</sub> =30mA                    | •                          |      | ±30                         |      | ppm/°C        |
| Short Current Limit                       | $I_{SHORT}$                                           | V <sub>OUT</sub> =0V                      |                            |      | 50                          |      | mA            |
| RMS Output Noise                          | V <sub>NOISE</sub>                                    | $10$ Hz $\leq$ f $\leq$ 100kHz (No load)  |                            |      | 30                          |      | $\mu V_{RMS}$ |
| V <sub>EN</sub> High Voltage              | $V_{ m IH}$                                           | Enable logic hig                          | gh, regulator on           | 1.5  |                             |      | V             |
| V <sub>EN</sub> Low Voltage               | $V_{\mathrm{IL}}$                                     | Enable logic lov                          | v, regulator off           |      |                             | 0.4  | V             |
| Standby Current                           | $I_{STD}$                                             | V <sub>IN</sub> =3.5V, V <sub>EN</sub> i  | n OFF mode                 |      | 0.01                        | 1.0  | μА            |
| Start-up Time                             | $t_{\mathrm{S}}$                                      | No Load                                   |                            |      | 20                          |      | μs            |
| EN Pull Down Resistor                     | $R_{PD}$                                              |                                           |                            |      | 3.0                         |      | ΜΩ            |
| V <sub>OUT</sub> Discharge Resistor       | R <sub>DCHG</sub>                                     | Set EN pin at Lo                          | ow                         |      | 60                          |      | Ω             |
| Thermal Shutdown Temperature              | $T_{OTSD}$                                            |                                           |                            |      | 160                         |      | °C            |
| Thermal Shutdown<br>Hysteresis            | $T_{HYOTSD}$                                          |                                           |                            |      | 25                          |      |               |
| Thermal Resistance                        | 0                                                     | SOIC-8                                    |                            |      | 74.6                        |      | 00/11/        |
| i normai resistance                       | θυς                                                   | SOT-89-5                                  |                            |      | 47                          |      | °C/W          |

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

Note 3: Production testing at T<sub>A</sub>=25°C. Over temperature specifications guaranteed by design only.



#### **Typical Performance Characteristics**





Figure 4. Ground Current vs. Output Current

Figure 5. Ground Current vs. Output Current





Figure 6. Quiescent Current vs. Temperature

Figure 7. Quiescent Current vs. Temperature







Figure 8. Quiescent Current vs. Input Voltage

Figure 9. Quiescent Current vs. Input Voltage





Figure 10. Output Voltage vs. Temperature

Figure 11. Output Voltage vs. Temperature







Figure 12. Output Voltage vs. Input Voltage

Figure 13. Output Voltage vs. Input Voltage





Figure 14. Output Voltage vs. Output Current

Figure 15. Output Voltage vs. Output Current







Figure 16. Output Voltage vs. Output Current

Figure 17. Output Voltage vs. Output Current





Figure 18. Maximum Output Current vs. Input Voltage

Figure 19. Maximum Output Current vs. Input Voltage







Figure 20. Dropout Voltage vs. Output Current

Figure 21. Output Short Current vs. Temperature







Figure 23. PSRR vs. Frequency





Figure 24. PSRR vs. Frequency

Figure 25. Load Transient



# **Typical Application**



Figure 26. AP2115 Typical Application



#### **Mechanical Dimensions**

SOIC-8 Unit: mm(inch)



Note: Eject hole, oriented hole and mold mark is optional.



#### **Mechanical Dimensions (Continued)**

SOT-89-5 Unit: mm(inch)









#### **BCD Semiconductor Manufacturing Limited**

http://www.bcdsemi.com

#### IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

#### MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

#### REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

#### - Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

#### **Taiwan Office**

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

#### USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788