Statistische Auswertung einer Messreihe von n Messdaten x₁, ..., x_n

Messergebnis $x = \overline{x} \pm v(x)$ \overline{x} Mittelwert, v(x) Vertrauensgrenze

Es ist
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

der arithmetische Mittelwert.

MATLAB: mean([...])

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$
 Standardabweichung der Messreihe,

MATLAB : **std(**[...])

Maß für die Streuung der Einzelwerte x_i um den Mittelwert x

$$s_{\overline{x}} = \frac{s}{\sqrt{n}} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$
 Standardabweichung des Mittelwertes \overline{x}

$$v(x) = t \frac{s}{\sqrt{n}} = t \cdot s_{\overline{x}}$$

 $v(x) = t \frac{s}{\sqrt{n}} = t \cdot s_{\overline{x}}$ Vertrauensgrenze oder Messunsicherheit

t hängt ab von n und vom Vertrauensniveau γ. Im Vertrauensbereich $x \pm v(x)$ wird der unbekannte wahre Wert von x mit der Wahrscheinlichkeit γ vermutet.

Tabelle für t:

Werte für den Zahlenfaktor (Parameter) t in Abhängigkeit von der Anzahl n der Messwerte und dem gewählten Vertrauensniveau γ

n	Vertrauensniveauγ				
	68.3%	90%	95%	99%	
6	1.11	2.02	2.57	4.03	
8	1.08	1.90	2.37	3.50	
10	1.06	1.83	2.26	3.25	
15	1.04	1.77	2.14	2.98	$\mid \rangle$ t
20	1.03	1.73	2.09	2.86	
50	1.01	1.68	2.01	2.68	
100	1.00	1.66	1.98	2.63]]

Beispiel: Widerstandsmessung

i	R_i / Ω	$R_i - \overline{R} / \Omega$	$(R_i - \overline{R})^2 / \Omega^2$
1	198	-2	4
2	199	-1	1
3	203	3	9
4	200	0	0
5	202	2	4
6	198	-2	4
7	201	1	1
8	197	-3	9
9	203	3	9
10	199	-1	1
		1	

$$\overline{R} = 200.0 \,\Omega, \ \ s_{\overline{R}} = \sqrt{\frac{1}{10 \cdot 9} \cdot 42} = 0.69 \,\Omega$$
Für $\gamma = 95\%$: $R = (200.0 \pm 1.6) \,\Omega$

Für
$$\gamma = 95\%$$
: R = (200.0 ± 1.6) Ω

Fehlerfortpflanzung:

$$y= f(x), \quad x = x_0 \pm \Delta x$$

$$v = f(x_0) \pm |\Delta v|$$

$$y = f(x_0) \pm |\Delta y|, \qquad |\Delta y| \approx |f'(x_0) \Delta x|$$

$$z=f(x,y), \ x=x_0\pm \Delta x, \ y=y_0\pm \Delta y, \quad z=$$

$$z = f(x_0, y_0) \pm |\Delta f_{\text{max}}|$$

$$z = f(x,y), \quad x = x_0 \pm \Delta x, \quad y = y_0 \pm \Delta y, \qquad z = f(x_0,y_0) \pm |\Delta f_{max}|, \\ |\Delta f_{max}| \approx \left| \frac{\partial f}{\partial x}(x_0,y_0) \cdot \Delta x \right| + \left| \frac{\partial f}{\partial y}(x_0,y_0) \cdot \Delta y \right|$$

Speziell für
$$\mathbf{z} = \mathbf{K} \mathbf{x}^{\alpha} \mathbf{y}^{\beta}$$
 gilt für d. relativen Fehler: $\left| \frac{\Delta f_{\text{max}}}{f(x_0, y_0)} \right| = \left| \alpha \frac{\Delta x}{x_0} \right| + \left| \beta \frac{\Delta y}{y_0} \right|$,

$$\left| \frac{\Delta f_{\text{max}}}{f(x_0, y_0)} \right| = \left| \alpha \frac{\Delta x}{x_0} \right| + \left| \beta \frac{\Delta y}{y_0} \right|$$

Für die Fehlerabschätzung bei der Ausgleichsgeraden gilt

$$s_{y} = \sqrt{\frac{\sum_{i=1}^{n} \left[y_{i} - (\lambda_{1}x_{i} + \lambda_{2}) \right]^{2}}{n-2}} \; , \quad s_{\lambda_{1}} = s_{y} \cdot \sqrt{\frac{n}{n \sum x_{i}^{2} - \left(\sum x_{i}\right)^{2}}} \; , \quad s_{\lambda_{2}} = s_{y} \cdot \sqrt{\frac{\sum x_{i}^{2}}{n \sum x_{i}^{2} - \left(\sum x_{i}\right)^{2}}}$$