

1. TEAM "VALUE COUNTS!"

ADAM

ADRIANA

SMITA

2. PROJECT OVERVIEW

1. ORIGINAL DATASET

- ⇒ list of documented shark attacks in media
- ⇒ Lots of missing data, inconsistent naming (activities, injuries), null values

2. OUR POSITION

⇒ Data research for a Travel Insurance Company

Reveal patterns/trends of shark attacks for an actuary team to adapt their pricing/offering based on the risk profile

⇒ OBJECTIVES

- Find the most risky profile within the top 20 countries

3. DATA CLEANING

- ⇒ removing unimportant information
- ⇒ removing NaNs
- ⇒ grouping key columns
- ⇒ date formatting

2. PROJECT OVERVIEW

4. EDA

⇒ Analyzing key data:

- gender
- age groups
- countries
- activities
- injuries

⇒ Methods:

- grouping
- pivot tables
- value counts

5. VISUALIZATION

⇒ plotting charts to visualize the findings

- time series
- pie charts
- bar charts

3. DATA CLEANING

CHALLENGES

- ⇒ planning
- ⇒a lot of missing values
- ⇒ mostly categorical data
- ⇒ date formatting

SOLUTIONS

- ⇒ standardizing format of columns names
- ⇒date formatting
- ⇒ functions to group age, types of activities and injuries
- ⇒ dropping NaNs, removing unnecessary columns

3. DATE FORMATTING

```
sharks_df['date2']=pd.to_datetime(sharks_df['date'], infer_datetime_format=True, format='mixed', errors='coerce')
   sharks_df['date2'].isna().sum()
   sharks_df['date2'].head()
 ✓ 0.0s
                                                                                                                                                Python
/var/folders/2n/0zc5p_q960ggjwt11ytfzc1h0000gp/T/ipykernel_17920/3936586141.py:1: UserWarning: The argument 'infer_datetime_format' is deprecated and
  sharks_df['date2']=pd.to_datetime(sharks_df['date'], infer_datetime_format=True, format='mixed', errors='coerce')
   2024-02-14
   2024-02-04
   2024-01-29
   2024-01-15
   2024-01-09
Name: date2, dtype: datetime64[ns]
```


3. GROUPING

- ⇒ define parts of the body, activities, age groups etc.
 - ⇒ define functions classify cases
- ⇒ apply functions create new columns with groups

```
Shark_Quest.ipynb ● ■ 2.1_self_guided_dates.ipynb ● ■ quest_week2_gro
   Shark_Quest.ipynb >  sharks_df['date2']=pd.to_datetime(sharks_df['date'], infer_
 + Code + Markdown | > Run All S Restart ≡ Clear All Outputs | □ Variab
           def group_inj(x):
               sharks_df['injury']=sharks_df['injury'].astype(str)
               sharks_df['injury']=sharks_df['injury'].str.lower()
               leg = "leg"
               arm = "arm"
               hand = "hand"
               foot = "foot"
               feet = "feet"
               fatal = "fatal"
               ankle = "ankle"
               chest = "chest"
               body = "body"
               head = "head"
               stomach = "stomach"
               thigh = "thigh"
               calf = "calf"
               calves = "calves"
               finger = "finger"
               if leg in x:
                   return "lower limb"
               if chest in x:
                   return "body"
               if stomach in x:
                   return "body"
               if body in x:
                   return "body"
               if ankle in x:
⊗ 7 △ 55 🖗 0 🕏 Live Share
```


3. FILLING EMPTY VALUES

- ⇒ Due to high number of NaNs we were only able to fill in missing values in gender
- ⇒ Most of the cases were men so we replaced missing or wrong values with men

```
# percentages : "M" is 88% !!
      display(df_20['sex'].value_counts(normalize=True))
  \square
      M
                0.874516
               0.124194
                0.000369
                0.000184
               0.000184
      lli
               0.000184
      M \times 2
                0.000184
                0.000184
      Name: sex, dtype: float64
[18] # since "M" is the big majority --> assume than the unformatted values are "M"
      df_{20}[sex'] = df_{20}[sex'].apply(lambda x: "F" if x=="F" else "M")
      df_20['sex'].value_counts()
           5217
            674
      Name: sex, dtype: int64
```


4. EXPLORATORY DATA ANALYSIS

4. EXPLORATORY DATA ANALYSIS

"Jaws" movie was released in 1975 ...

4. EXPLORATORY DATA ANALYSIS

Number of cases / gender

Number of cases / age groups

5. Fatal cases per age and activity (last 10 years)

is_fatal

	activity_group	diving	fishing	kayaking	others	snorkeling	surfing	swimming
	age_groups							
	10-20	3.0	24.0	NaN	81.0	7.0	106.0	43.0
	20-30	10.0	37.0	1.0	36.0	8.0	91.0	26.0
	30-40	10.0	36.0	2.0	32.0	9.0	59.0	20.0
	40-50	10.0	22.0	NaN	26.0	5.0	57.0	23.0
	50-60	9.0	12.0	2.0	19.0	12.0	32.0	23.0
	Above 60	1.0	7.0	1.0	10.0	8.0	11.0	22.0
	Below 10	NaN	2.0	NaN	37.0	4.0	7.0	21.0

5. Most risky profile

13

MOST RISKY PROFILE

⇒ Male

⇒ Age groupe : 10-20 y. old

⇒ Surfing

⇒ in the USA (Florida)

Shark's favorite body parts

6. MAJOR CHALLENGES & NEXT STEPS

MAIN OBSTACLES

- ⇒ Distributing the timing
- ⇒ Having a robust hypothesis
- ⇒ We were confused about what we actually wanted to do = communication

NEXT STEPS

- ⇒ Create the different profiles based on risks
- ⇒ Create weighted average on the main risk factors to set prices for the insurance

7. CONCLUSION AND INSIGHTS

INSIGHTS

- ⇒ Most cases are men surfers in USA,
- ⇒ Top 5 countries with most cases : USA, Australia, South Africa, New Zealand, Mexico
- ⇒ Age group is : Teenagers

2. PROJECT OVERVIEW

ORIGINAL DATASET

SHAPE?

Description de l'activité 1

OF MISSING DATAS

Description de l'activité 2

?????

Description de l'activité 3

OUR POSITION

TRAVEL INSURRANCE

the insurance offers to clients based on the risk profil

HYPOTHESIS

Locations,¹⁸ gender and age are determining to understand risk profil

Relevant columns categories for analysis:

 Gender, Age, Country and State, Activity, Type of injury,

DATA CLEANING

SUPPRESSION??

- Columns?
- Rows?

TECHNICS ???

Description de l'activité 2

METHODS

₽₽\$cription de l'activité 3

Dates

7. UMA: TRAVEL INSURANCE

	INSURANCE
RISK PROFIL	600 PACKAGE
????? VERY HIGH	€ 1250
HIG	€ 50
H MODERA	€ 300
TE LO	500€
W	