Long Short Term Memory (LSTM)

- · Current state of the art
- Allows an RNN to remember things for a long time (like hundreds of time steps)
- Contains a specially designed memory cell, using logistic and linear units with multiplicative interactions
- The memory cell consists of several binary gates that control the information in the cell.
- Learns when to keep and forget the past state

See the link below for a good tutorial on LTSM http://colah.github.io/posts/2015-08-Understanding-LSTMs/

QJ1 Qiang Ji, 3/26/2018

LSTM Example

Assume two LSTM modules at time t=1 and t=2 At t=1

- C_0 and H_0 are initialized to 0.5
- $f_1 = \sigma(W^{hf}H_0 + W^{xh}X_1 + W^f_0)$
- $i_1 = \sigma(W^{hi}H_0 + W^{xi}X_1 + W^i_0)$
- $o_1 = \sigma(W^{ho}H_0 + W^{xo}X_1 + W^o_0)$
- \tilde{C}_1 =tanh(W^{hc}H₀+W^{xc}X₁+W^c₀)
- $\bullet \quad \mathsf{C_1} \text{=} \mathsf{f_1} {\otimes} \mathsf{C_0} {\oplus} \mathsf{i_t} {\otimes} \; \tilde{\mathcal{C}}_1$
- H₁=o₁ ⊗ tanh(C₁)
- y₁=softmax(W^yH₁+W^y₀)

LSTM Example

At t=2

- $f_2 = \sigma(W^{hf}H_1 + W^{xh}X_2 + W^f_0)$
- $i_2 = \sigma(W^{hi}H_1 + W^{xi}X_2 + W_0^i)$
- $o_2 = \sigma(W^{ho}H_1 + W^{xo}X_2 + W^o_0)$
- \tilde{C}_2 =tanh(W^{hc}H₁+W^{xc}X₂+W^c₀)
- $C_2 = f_2 \otimes C_1 \oplus i_2 \otimes \tilde{C}_1$
- $H_2=o_2 \otimes tanh(C_2)$
- $y_2 = softmax(W^yH_2 + W^y_0)$

LSTM Learning

Back propagation can be used to train LSTM.

For each LSTM module

- Compute the gradients for ∇y_t ∇h_t and ∇C_t
- Compute the gradients for weights associated with y, h, and C,
- · Aggregate the weight gradients for all modules over time
- Update the weights using the aggregated gradients

LSTM Learning

Forward propagation

For t=1 to T

- $f_t = \sigma(W^{hf}H_{t-1} + W^{xh}X_t + W^f_0)$
- $i_t = \sigma(W^{hi}H_{t-1} + W^{xi}X_t + W^{i}_0)$
- $o_t = \sigma(W^{ho}H_{t-1} + W^{xo}X_t + W^{o}_0)$
- $\tilde{C}_t = \tanh(W^{hc}H_{t-1} + W^{xc}X_t + W^c_0)$
- $C_t = f_t \otimes C_{t-1} \oplus i_t \otimes \tilde{C}_t$
- H₊=o₊ ⊗ tanh(C₊)
- ŷ_t=softmax(W^yH_t+W^y₀)

LSTM Learning

Backpropagation

• Compute the output gradients

$$\nabla Y_{t} = \frac{\partial \sum_{i=1}^{T} L(\mathbf{Y}_{t}, \hat{\mathbf{Y}}_{t})}{\partial \hat{\mathbf{Y}}}, \nabla H_{t} = \frac{\partial \sum_{i=1}^{T} L(\mathbf{Y}_{t}, \hat{\mathbf{Y}}_{t})}{\partial H_{t}},$$

Compute weight gradients

$$\begin{aligned} & \operatorname{Given} \nabla Y_{t}, \nabla W^{s} = \frac{\partial \tilde{Y}_{t}}{\partial W^{s}} \nabla Y_{t}, \nabla W_{0}^{s} = \frac{\partial \tilde{Y}_{t}}{\partial W^{s}} \nabla Y_{t} \\ & \operatorname{Given} \nabla H_{t}, \nabla O_{t} = \frac{\partial H_{t}}{\partial O_{t}} \nabla H_{t}, \nabla C_{t} = \frac{\partial H_{t}}{\partial C_{t}} \nabla H_{t} \\ & \operatorname{Given} \nabla O_{t}, \nabla W^{ba} = \frac{\partial O_{t}}{\partial W^{ba}} \nabla O_{t}, \nabla W^{ab} = \frac{\partial O_{t}}{\partial W^{ab}} \nabla O_{t}, \nabla W^{a} = \frac{\partial O_{t}}{\partial W^{a}} \nabla O_{t}, \nabla W^{a} = \frac{\partial O_{t}}{\partial C_{t}} \nabla C_{t}, \nabla C_{t} = \frac{\partial C_{t}}{\partial C_{t}} \nabla C_{t} \\ & \operatorname{Given} \nabla f_{t}, \nabla W^{a} = \frac{\partial f_{t}}{\partial W^{a}} \nabla f_$$

LSTM Learning

Weight updating

• Aggregate the gradients over time

$$\nabla W = \sum_{t=1}^{T} \nabla W_{t}$$

• Update the gradients through gradient descnet

$$W(k) = W(k-1) - \eta \nabla W$$

Variants of RNNs

· Bi-directional RNN

Variants of RNNs • Deep RNN (Shallow) (Deep)

LSTM Applications

- Sequence to sequence translation
- Image captioning
- Video to sentence
- Binary addition
- Cursive handwriting recognition

Sequence-to-sequence language translation

Use one LSTM to read the input sequence $(\mathbf{x}_{\iota\iota}\ldots,\mathbf{x}_{\tau})$, one time step at a time, and output another sequence $(\mathbf{y}_{\iota\iota}\ldots,\mathbf{y}_{\tau})$

The model reads an input sentence "ABC" and produces "WXYZ" as the output sentence.

The model stops making predictions after outputting the end-of-sentence token.

Sutskever, Vinyals, and Le NIPS 2014

Sequence-to-sequence language translation

LSTM can correctly translate very long sentences

Type	Sentence
Our model	Ulrich UNK, membre du conseil d'administration du constructeur automobile Audi , affirme qu'il s' agit d'une pratique courante depuis des années pour que les téléphones portables puissent être collectés avant les réunions du conseil d'administration afin qu'ils ne soient pas utilisés comme appareils d'écoute à distance.
Truth	Utrich Hackenberg, membre du conseil d'administration du constructeur automobile Audi, déclare que la collecte des téléphones portables avant les réunions du conseil, afin qu'ils ne puissent pas être utilisés comme appareils d'écoute à distance, est une pratique courante depuis des années.
Our model	"Les téléphones cellulaires , qui sont vraiment une question , non seulement parce qu' ils pourraient potentiellement causer des interférences avec les appareils de navigation , mais nous savons , selon la FCC , qu' ils pourraient interférer avec les tours de téléphone cellulaire lorsqu' ils sont dans l' air ", dit UNK .
Truth	"Les téléphones portables sont véritablement un problème , non seulement parce qu'ils pourraient éventuellement créer des interférences avec les instruments de navigation , mais parce que nous savons , d'après la FCC , qu'ils pourraient perturber les antennes-relais de téléphonie mobile s'ils sont utilisés à bord ", a déclarê Rosenker.
Our model	Avec la crémation, il y a un "sentiment de violence contre le corps d' un être cher ", qui sera "réduit à une pile de cendres "en très peu de temps au lieu d' un processus de décomposition " qui accompagnera les étapes du deuil ".
Truth	Il y a , avec la crémation , "une violence faite au corps aimé", qui va être "réduit à un tas de cendres "en rès peu de temps , et non après un processus de décomposition , qui "accompagnerait les phases du deuil".

Generate image caption

- Use a CNN as an image encoder and transform it to a fixed-length vector
- Input as a sequence of image patches
- It then uses a RNN to generate the target sequence

Vinyals et al. arXiv 2014

Translate videos to sentences

Each frame is modeled as CNN pre-trained on ImageNet
The meaning state and sequence of words is modeled by a RNN
pre-trained on images with associated with sentence captions

Reading cursive handwriting

- This is a natural task for an RNN.
- The input is a sequence of (x,y,p) coordinates of the tip of the pen, where p indicates whether the pen is up or down.
- The output is a sequence of characters.
- Graves & Schmidhuber (2009) showed that RNNs with LSTM are currently the best systems for reading cursive writing.
 - They used a sequence of small images as input rather than pen coordinates.

Slide from Geoffrey Hinton

