UBC Math Circle 2021 Problem Set 5

1. Let P(x) be a real polynomial such that $P(x) \ge 0$ for all $x \in \mathbb{R}$. Show that there exist real polynomials f(x) and g(x) such that $P(x) = f(x)^2 + g(x)^2$.

Solution: See https://www2.cms.math.ca/Competitions/COMC/examarchive/comc2014-officipdf, C4 part (c).

2. Prove or disprove: for every $k \geq 1$, if \mathbb{N} is coloured with k colours, then there must exist a monochromatic triple $(x, y, z) \in \mathbb{N}^3$ satisfying

$$x + y = 3z.$$

Solution: We can colour \mathbb{N} by elements of $(\mathbb{Z}/5\mathbb{Z})^{\times}$ as follows: for any $n \in \mathbb{N}$, write $n = 5^k m$ where m is coprime to 5, and assign n the colour the residue class of m modulo 5.

Suppose, for a contradiction, that there existed a monochromatic solution to x + y = 3z. Then write $x = 5^i a$ where i is maximal, and $y = 5^j b$, $z = 5^k c$ similarly.

So $5^i a + 5^j b = 3 \cdot 5^k c$, where a, b, c are all congruent modulo 5 to the same nonzero residue. Let $l = \min\{i, j, k\}$.

Then $5^{i-l}a + 5^{j-l}b = 3 \cdot 5^{k-l}c$. This implies that $5^{i-l} + 5^{j-l} \equiv 3 \cdot 5^{k-l} \pmod{5}$ (after inverting by $a \equiv b \equiv c \pmod{5}$). Note at least one of i-l, j-l, k-l is zero. We can simply check over all $2^3-1=7$ possible cases (there are 7 cases since each 5^d for d=i-l, j-l, k-l is congruent to either 0 or 1 modulo 5, depending on whether or not d=0, and at least one of i-l, j-l, k-l is 0) that there is no solution to this congruence equation.

So we've constructed a 4-colouring of \mathbb{N} with no monochromatic solution to x+y=3z.

3. Let five points on a circle be labelled A, B, C, D, E in clockwise order. Assume AE = DE and let P be the intersection of AC and BD. Let Q be the point on the line through A and B such that A is between B and Q and AQ = DP. Similarly, let R be the point on the line through C and D such that D is between C and D and D and D are that D is perpendicular to QR.

Solution: See https://www2.cms.math.ca/Competitions/CMO/archive/sol2018.pdf, 2.

4. Do there exist two weighted dice (with faces numbered from 1 to 6) such that the sum of the dice in a random roll is uniformly distributed in $\{2, 3, \ldots, 12\}$?

Solution: Let X, Y be the random variables associated with the outcomes of the rolls. Given a random variable X attaining only finitely many positive integer values, define the polynomial $\phi_X = \sum_{k=1}^{\infty} P(X = k) x^{k-1}$.

Note then that $\phi_X \phi_Y = \phi_{X+Y}$, after expanding out the product.

Since X attains values only in the set $\{1, \ldots, 6\}$, and since X = 6 must be attainable (in order to have X + Y = 12 be possible), we see that ϕ_X is a polynomial of degree 5. So it must have some real root. Similarly, ϕ_Y must have a real root. Then we cannot have $\phi_X \phi_Y = \phi_{X+Y} = \frac{1}{11} \sum_{k=1}^{11} x^k = \frac{1}{11} x^{\frac{x^{11}-1}{x-1}}$, because all roots of the right hand side are the non-real 11th roots of unity and the root 0 with multiplicity 1, contradicting that the left hand side has at least two real roots (counting with multiplicity).

5. A partition of n is a weakly-sorted list of positive integers $(\lambda_1, \ldots, \lambda_\ell)$ whose sum is n. Prove that the number of partitions of n into distinct parts is equal to the number of partitions of n into odd parts.

Solution: See https://math.stackexchange.com/questions/54961/the-number-of-partition. There is both a solution constructing an explicit bijection, and a solution using generating functions.

6. Let p > 3 be a prime. Show that $x^2 + x + 1 \equiv 0 \pmod{p}$ has a solution iff $p \equiv 1 \pmod{3}$.

Solution: Suppose that $x^2 + x + 1 \equiv 0 \pmod{p}$ has a solution x_0 . Then $x_0^3 \equiv 1 \pmod{p}$ and $x_0 \not\equiv 1 \pmod{p}$. Hence $\operatorname{ord}_p(x_0) = 3$ (or, if you don't like orders, 3 is the least positive integer n such that $x_0^n \equiv 1 \pmod{p}$). Because we know $x_0^{p-1} \equiv 1 \pmod{p}$ by Fermat's little theorem, we must have $3 \mid p - 1$, i.e. $p \equiv 1 \pmod{3}$. Conversely, let $p \equiv 1 \pmod{3}$ be a prime, and let $p \equiv 1 \pmod{p}$ be a primitive root modulo $p \equiv 1 \pmod{2}$. Then $p \equiv 1 \pmod{3}$ satisfies $p \equiv 1 \pmod{p}$ and trivially $p \equiv 1 \pmod{p}$. Hence $p \equiv 1 \pmod{p}$ must be the root of $p \equiv 1 \pmod{p}$.