Teoría Bayesiana

Julián Jiménez-Cárdenas¹

¹Universidad Nacional de Colombia, Bogotá.

juojimenezca@unal.edu.co

- Preliminares
 - Espacio de Probabilidad
 - Probabilidad Condicional e Independencia de Eventos

2 Referencias

σ -álgebra l

Definición (Experimento Aleatorio)

Un experimento se dice aleatorio si su resultado no se puede determinar de antemano.

Definición (Espacio de Muestra)

El conjunto Ω de todos los posibles resultados de un experimento aleatorio se llama espacio de muestra. Un elemento $\omega \in \Omega$ se llama resultado o muestra. Ω se dice discreto si es finito o contable.

σ -álgebra II

Definición (σ -álgebra)

Tome $\Omega \neq \emptyset$. Una colección \Im de subconjuntos de Ω se llama σ -álgebra sobre Ω si:

- $\mathbf{0} \ \Omega \in \mathfrak{F}$,
- 2 Si $A \in \Im$, entonces $A^c \in \Im$ y,
- **3** Si $A_1, A_2, \dots \in \Im$, entonces $\bigcup_{i=1}^{\infty} A_i \in \Im$.

Los elementos de 3 se llaman eventos.

Teorema

 $Si \Omega \neq \emptyset \ y \ \Im_1, \Im_2, \dots \ son \ \sigma-\'algebras \ sobre \ \Omega, \ entonces \ \bigcap_{i=1}^{\infty} \Im_i \ es \ una \ \sigma-\'algebra \ sobre \ \Omega.$

σ -álgebra III

Demostración.

Como $\Omega \in \Im_j$, para $j=1,2,\ldots$, $\Omega \in \bigcap_{j=1}^{\infty} \Im_j$. Si $A \in \bigcap_{j=1}^{\infty} \Im_j$, $A \in \Im_j$, para $j=1,2,\ldots$, de modo que $A^c \in \Im_j$, y $A^c \in \bigcap_{j=1}^{\infty} \Im_j$. Por último, si

$$A_1, A_2, \dots \in \bigcap_{j=1}^{\infty} \Im_j,$$

para todo $j=1,2,\ldots$, $A_1,A_2,\cdots\in\Im_j$, de modo que

$$\bigcup_{i=1}^{\infty} A_i \in \Im_j \ \mathsf{y} \ \bigcup_{i=1}^{\infty} A_i \in \bigcap_{j=1}^{\infty} \Im_j.$$

σ -álgebra IV

Definición (σ -álgebra generada)

Tome $\Omega \neq \emptyset$ y \mathcal{A} como una colección de subconjuntos de Ω . Si $\mathcal{M} := \{\Im: \Im \text{ es una } \sigma - \text{álgebra sobre } \Omega \text{ que contiene a } \mathcal{A}\},$

$$\sigma(\mathcal{A}) := \bigcap_{\Im \in \mathcal{M}} \Im$$

es la σ -álgebra más pequeña sobre Ω que contiene a \mathcal{A} . Esta σ -álgebra se conoce como σ -álgebra generada por \mathcal{A} .

Definición (Espacio de medida)

Tome $\Omega \neq \emptyset$ y sea \Im una σ -álgebra sobre Ω . La pareja (Ω, \Im) se llama espacio de medida.

σ -álgebra V

 \emptyset es el evento imposible. Ω es el evento seguro y $\{\omega\}$, con $\omega \in \Omega$ es un evento simple. Decimos que el evento A ocurre después de llevar a cabo el experimento aleatorio si se obtiene un resultado en A, esto es, A ocurre si el resultado es algún $\omega \in A$.

- **1** El evento $A \cup B$ ocurre si y sólo si A ocurre, B pasa, o ambos ocurren.
- ② El evento $A \cap B$ ocurre si y sólo si A y B ocurren a la vez.
- **1** El evento A^c ocurre si y sólo si A no ocurre.
- El evento A B ocurre si y sólo si A ocurre pero B no ocurre.

Definición (Eventos mutuamente excluyentes)

Dos eventos A y B se dicen mutuamente excluyentes si $A \cap B = \emptyset$.

Espacio de probabilidad I

Definición (Frecuencia relativa)

Para cada evento A, el número $f_r(A) := \frac{n(A)}{n}$ se llama la frecuencia relativa de A, donde n(A) indica el número de veces que ocurre A en n repeticiones del experimento aleatorio.

Cuando $n \to \infty$, se puede hablar de la probabilidad de que ocurra el evento A, normalizada de 0 a 1. La formalización de este concepto se encuentra en la idea del espacio de probabilidad.

Espacio de probabilidad II

Definición (Espacio de probabilidad)

Tome (Ω, \Im) como un espacio de medida. Una función real P sobre \Im que satisface las siguientes condiciones:

- **1** $P(A) \ge 0$ para todo $A \in \Im$ (no negativa),
- $P(\Omega) = 1$ (normalizada) y,
- **3** si A_1, A_2, \ldots son eventos mutuamente excluyentes en \Im , esto es, si

$$A_i \cap A_j = \emptyset$$
 para todo $i \neq j$, entonces

$$P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P(A_{i}),$$

se llama medida de probabilidad sobre (Ω, \Im) . La tripleta (Ω, \Im, P) se llama espacio de probabilidad.

Espacio de probabilidad III

Teorema

Si (Ω, \Im, P) es un espacio de probabilidad, entonces

- ② Si $A, B \in \Im$ y $A \cap B = \emptyset$, entonces $P(A \cup B) = P(A) + P(B)$.
- **3** Para todo $A \in \Im$, $P(A^c) = 1 P(A)$.
- **③** Si $A \subseteq B$, entonces $P(A) \le P(B)$ y P(B-A) = P(B) P(A). En particular, $P(A) \le 1$ para todo $A \in \Im$.
- **⑤** Para todo $A, B \in \Im$, $P(A \cup B) = P(A) + P(B) P(A \cap B)$.

Espacio de probabilidad IV

Teorema

1 Tome $\{A_n\}_n$ ⊆ \Im como una sucesión creciente, esto es, A_n ⊆ A_{n+1} , $\forall n \in \mathbb{N}$; entonces

$$P\left(\lim_{m\to\infty}A_n\right)=\lim_{n\to\infty}P(A_n),\ donde\ \lim_{n\to\infty}A_n:=\bigcup_{i=1}^\infty A_i.$$

② Tome $\{A_n\}_n \subseteq \Im$ como una sucesión decreciente, esto es, $A_n \supseteq A_{n+1}, \forall n \in \mathbb{N}$; entonces

$$P\left(\lim_{m\to\infty}A_n\right)=\lim_{n\to\infty}P(A_n),\ donde\ \lim_{n\to\infty}A_n:=\bigcap_{i=1}^\infty A_i.$$

Espacio de probabilidad V

Demostración.

- $1 = P(\Omega \cup \emptyset \cup \emptyset \cup \cdots) = P(\Omega) + P(\emptyset) + P(\emptyset) + \cdots = 1 + P(\emptyset) + \cdots \implies P(\emptyset) = 0.$
- $P(A \cup B) = P(A \cup B \cup \emptyset \cup \emptyset \cup \cdots) = P(A) + P(B).$
- $P(A) + P(A^c) = P(A \cup A^c) = P(\Omega) = 1 \implies P(A^c) = 1 P(A).$
- **③** Si $A \subseteq B$, $B = A \cup (B A)$, de modo que P(B) = P(A) + P(B A). Como $P \ge 0$, $P(B) \ge P(A)$ y P(B A) = P(B) P(A). Si B = Ω, $P(A) \le 1$.
- **⑤** Use el hecho de que $A \cup B = [A (A \cap B)] \cup [B (A \cap B)] \cup [A \cap B].$

Espacio de probabilidad VI

Demostración.

Tome la sucesión

$$\mathcal{C}_1=\mathcal{A}_1,\,\mathcal{C}_2=\mathcal{A}_2-\mathcal{A}_1,\ldots,\,\mathcal{C}_r=\mathcal{A}_r-\mathcal{A}_{r-1},\ldots$$
 Es claro que

$$\bigcup_{i=1}^{\infty} C_i = \bigcup_{i=1}^{\infty} A_i.$$

Más aún, como $C_i \cap C_j = \emptyset \ \forall i \neq j$, se sigue que

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = P\left(\bigcup_{n=1}^{\infty} C_n\right) = \sum_{n=1}^{\infty} P(C_n) = \lim_{n \to \infty} \sum_{k=1}^{n} P(C_k)$$

$$=\lim_{n\to\infty}P\left(\bigcup_{k=1}^nC_k\right)=\lim_{n\to\infty}P\left(A_n\right).$$

1 Tome la sucesión $\{B_n = A_n^c\}_n$ y aplique el resultado anterior.

Notas I

Aplicando el teorema anterior de forma inductiva, para algunos eventos $A_1, A_2, \ldots, A_n \in \Im$:

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{i_1 < i_2} P(A_{i_1} \cap A_{i_2}) + \dots + (-1)^{r+1} \sum_{i_1 < i_2 < \dots < i_r} P(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_r}) + \dots + (-1)^{n+1} P(A_1 \cap A_2 \cap \dots \cap A_n).$$

Tome (Ω, \Im, P) como un espacio de probabilidad con Ω finito o contable y $\Im = \mathbb{P}(\Omega)$. Tome $\emptyset \neq A \in \Im$. Es claro que

$$A = \bigcup_{\omega \in A} \{\omega\}$$
, de modo que

Notas II

$$P(A) = \sum_{\omega \in A} P(\omega)$$
, donde $P(\omega) := P(\{\omega\})$.

Así, P queda completamente definido por $p_j := P(\omega_j)$, donde $\omega_j \in \Omega$. El vector $|\Omega|$ -dimensional $p := (p_1, p_2, \dots)$ satisface las siguientes condiciones:

- $p_j \geq 0$ y
- $\bullet \ \sum_{j=1}^{\infty} p_j = 1.$

Un vector que satisface las anteriores condiciones se llama **vector de probabilidad**.

Introducción

Tome B como un evento cuya opción de ocurrir debe ser medida bajo la suposición de que otro evento A fue observado. Si el experimento se repite n veces bajo las mismas circunstancias, entonces la frecuencia relativa de B bajo la condición A se define como

$$f_r(B|A) := \frac{n(A \cap B)}{n(A)} = \frac{\frac{n(A \cap B)}{n}}{\frac{n(A)}{n}} = \frac{f_r(A \cap B)}{f_r(A)}, \text{ si } n(A) > 0.$$

Esto motiva la siguiente definición

Probabilidad Condicional I

Definición (Probabilidad condicional)

Tome (Ω, \Im, P) como un espacio de probabilidad. Si $A, B \in \Im$, con P(A) > 0, entonces la probabilidad del evento B bajo la condición A se define como sigue

$$P(B|A) := \frac{P(A \cap B)}{P(A)}$$

El siguiente teorema provee algunas propiedades de la probabilidad condicional.

Probabilidad Condicional II

Teorema (Medida de probabilidad condicional)

Tome (Ω, \Im, P) como un espacio de probabilidad y $A \in \Im$, con P(A) > 0. Entonces:

- $P(\cdot|A)$ es una medida de probabilidad sobre Ω centrada en A, esto es, P(A|A) = 1.
- ② Si $A \cap B = \emptyset$, entonces P(B|A) = 0.
- **3** $P(B \cap C|A) = P(B|A \cap C)P(C|A)$ si $P(A \cap C) > 0$.
- **3** Si $A_1, A_2, ..., A_n \in \Im$, con $P(A_1 \cap A_2 \cap \cdots \cap A_{n-1}) > 0$, entonces

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \cdots$$
$$P(A_n|A_1 \cap A_2 \cap \cdots \cap A_{n-1}).$$

Probabilidad Condicional III

Demostración.

- Las tres propiedades de una medida de probabilidad deben ser verificadas.
 - Claramente, $P(B|A) \ge 0$ para todo $B \in \Im$.
 - **2** $P(\Omega|A) = \frac{P(\Omega \cap A)}{P(A)} = \frac{P(A)}{P(A)} = 1$. También se tiene que P(A|A) = 1.
 - $\begin{tabular}{ll} \textbf{3} & Tome $A_1,A_2,\cdots \in \Im$ una sucesión de conjuntos disyuntos. \\ & Entonces \end{tabular}$

$$P\left(\bigcup_{i=1}^{\infty} A_i | A\right) = \frac{P\left(A \cap \bigcup_{i=1}^{\infty} A_i\right)}{P(A)} = \frac{P\left(\bigcup_{i=1}^{\infty} A \cap A_i\right)}{P(A)}$$
$$= \sum_{i=1}^{\infty} \frac{P(A \cap A_i)}{P(A)} = \sum_{i=1}^{\infty} P(A_i | A).$$

Probabilidad Condicional IV

Demostración.

- 2 Si $A \cap B = \emptyset$, $P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{P(\emptyset)}{P(A)} = 0$.
- $P(B \cap C|A) = \frac{P(A \cap B \cap C)}{P(A)} = \frac{P(B \cap C \cap A)}{P(A \cap C)} \frac{P(C \cap A)}{P(A)} = P(B|A \cap C)P(C|A).$

Los siguientes resultados son vitales para aplicaciones posteriores.

Probabilidad Condicional V

Teorema (Teorema de probabilidad total)

Tome A_1, A_2, \ldots como una partición finita o contable de Ω , esto es, $A_i \cap A_j = \emptyset, \forall i \neq j \ y \bigcup_{i=1}^{\infty} A_i = \Omega$, tal que $P(A_i) > 0$, para todo $A_i \in \Im$. Entonces, para todo $B \in \Im$:

$$P(B) = \sum_{i} P(B|A_i)P(A_i).$$

Probabilidad Condicional VI

Demostración.

Observe que

$$B = B \cap \Omega = B \cap \left(\bigcup_{i=1}^{\infty} A_i\right) = \bigcup_{i=1}^{\infty} B \cap A_i,$$

de modo que

$$P(B) = P\left(\bigcup_{i=1}^{\infty} B \cap A_i\right) = \sum_{i=1}^{\infty} P(B \cap A_i) = \sum_{i=1}^{\infty} P(B|A_i)P(A_i).$$

Probabilidad Condicional VII

Como corolario del teorema anterior, se obtiene un resultado conocido como regla de Bayes, que constituye la base para la teoría Bayesiana.

Corolario (Regla de Bayes)

Tome A_1, A_2, \ldots como una partición finita o contable de Ω con $P(A_i) > 0$, para todo i; entonces, para todo $B \in \Im$ con P(B) > 0:

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{\sum_i P(B|A_i)P(A_i)}, \forall i.$$

Probabilidad Condicional VIII

Demostración.

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(A_i)P(B|A_i)}{P(B)} = \frac{P(A_i)P(B|A_i)}{\sum_j P(B|A_j)P(A_j)}.$$

Con la partición $A_1 = A$, $A_2 = A^c$ se obtiene la forma usual de la regla de Bayes.

Definición (Distribuciones a priori y a posteriori)

Tome A_1, A_2, \ldots como una partición finita o contable de Ω , con $P(A_i) > 0$, para todo i. Si P(B) > 0, con $B \in \Im$, entonces $\{P(A_n)\}_n$ se llama distribución a priori (antes de que B ocurra), y $\{P(A_n|B)\}_n$ se llama distribución a posteriori (después de que B ocurra).

Probabilidad Condicional IX

Algunas veces, la ocurrencia de un evento B no afecta la probabilidad de un evento A, es decir,

$$P(A|B) = P(A).$$

En este caso, se dice que el evento A es independiente del evento B. Esto motiva la siguiente definición.

Definición (Eventos independientes)

Dos eventos A y B se dicen independientes si y sólo si

$$P(A \cap B) = P(A)P(B).$$

Si esta condición no se tiene, se dice que los eventos son dependientes.

Referencias

Arunachalam V. Dharmaraja S. Blanco, L. Introduction to Probability and Stochastic Processes with Applications.

Wiley, 2012.