INSTRUCTIONS:

- 1. Use the provided latex template to write your solutions.
- 2. Submit your solution to Gradescope. Make sure only one of your group members submits. After submitting, make sure to add your group members.

Problem 1 (15 points).

For each pairs of functions below, indicate one of the three: f = O(g), $f = \Omega(g)$, or $f = \Theta(g)$.

1.
$$f(n) = n^{1.01}, g(n) = n^{0.99} \cdot \log n$$

2.
$$f(n) = n, g(n) = n^{0.99} \cdot (\log n)^2$$

3.
$$f(n) = 100 \cdot \log(100 \cdot n^3), g(n) = (\log n)^2$$

4.
$$f(n) = n^2 \cdot \log n^2$$
, $g(n) = n \cdot (\log n)^3$

5.
$$f(n) = n^{2.01} \cdot \log n^3$$
, $g(n) = n^2 \cdot (\log n)^2$

6.
$$f(n) = (\log n)^{\log n}, g(n) = n^2$$

7.
$$f(n) = (\log n)^{\log n}, g(n) = n^{\log \log n}$$

8.
$$f(n) = (n \cdot \log n)^{\log n}, g(n) = n^{(\log n)^2}$$

9.
$$f(n) = n^2 \cdot 2^n$$
, $g(n) = 3^n$

10.
$$f(n) = 2^{n \cdot \log n}, g(n) = 3^n$$

11.
$$f(n) = n!, g(n) = (\log n)^n$$

12.
$$f(n) = n!, g(n) = n^n$$
.

13.
$$f(n) = \log(n!), g(n) = \log n^n$$
.

14.
$$f(n) = \sum_{k=1}^{n} (1/k), g(n) = \log n$$

15.
$$f(n) = \sum_{k=1}^{n} k^2, g(n) = n^2 \cdot \log n$$

Problem 2 (10 points).

Solve each of the following recursions using master theorem.

1.
$$T(n) = 16 \cdot T(n/2) + 100 \cdot n^2$$
.

2.
$$T(n) = 4 \cdot T(n/2) + 1000 \cdot n^2$$
.

3.
$$T(n) = 8 \cdot T(n/2) + 10 \cdot n^{3.5}$$
.

4.
$$T(n) = 2 \cdot T(n/2) + n \cdot \log(n)$$
.

5.
$$T(n) = 8 \cdot T(n/2) + n^{1.5} \cdot \log^2(n)$$
.

Problem 3 (9 points).

Assume you have functions f and g satisfying that f(n) is O(g(n)). For each of the following statements, decide if you think it is true or false and give a proof or counterexample.

- 1. $\ln f(n) = O(\ln g(n))$.
- 2. $2^{f(n)} = O(2^{g(n)})$.
- 3. $f(n)^2 = O(g(n)^2)$.

Problem 4 (10 points).

Consider recursion $T(n) = \Theta(n) + T(a \cdot n) + T(b \cdot n)$, T(1) = 1, $a \ge 0$, $b \ge 0$. Prove the following:

- 1. $T(n) = \Theta(n)$, if a + b < 1.
- 2. $T(n) = \Theta(n \cdot \log n)$, if a + b = 1.

Problem 5 (16 points).

For each pseudo-code below, give the asymptotic running time in Θ notation. You may assume that standard arithmetic operations take $\Theta(1)$ time.

for
$$i := 1$$
 to n do
$$j := i;$$
while $j < n$ do
$$j := j + 5;$$
end
end

for
$$i := 1$$
 to n do

for $j := 4i$ to n do

2.

 $s := s + 2;$
end
end

for
$$i := 1$$
 to n do
$$\begin{vmatrix}
j := n; \\
\text{while } i^5 < j \text{ do} \\
| j := j - 1; \\
\text{end}
\end{vmatrix}$$
end

for
$$i := 1$$
 to n do
$$\begin{aligned}
j &:= 2; \\
\text{while } j < i \text{ do} \\
& | j := j^4; \\
\text{end}
\end{aligned}$$

Problem 6 (10 points).

Design a divide-and-conquer algorithm to calculate x^n (n is a positive integer) in $O(\log n)$ time. You may assume that multiplying any two numbers can be done in $\Theta(1)$ time.

Problem 7 (10 points).

Given two *sorted* arrays A and B of size m and n respectively, design an algorithm to find the median of A and B. Your algorithm should run in $O(\log(m+n))$ time.

Problem 8 (10 points).

Given an array of points $P = [p_1, p_2, \dots, p_n]$ on 2D plane, where point $p_i = (x_i, y_i)$ is given as its x- and y-coordinates, and integer k, $1 \le k \le n$, design an algorithm to find the closest k points to the origin in P. Your algorithm should run in O(n) time.