1 Vasicek

1.1 Cadre du modèle de Merton

Une entreprise contracte un emprunt de maturité T=1 et de nominal B. La valeur de l'entreprise est modélisée par un mouvement Brownien géométrique : $A_t=A_0\exp\left(\left(\mu-\frac{\sigma^2}{2}\right)t+\sigma W_t\right)$.

Elle fait défaut si $A_T < B$, ou A_t est sa valeur à l'instant t.

$$d\acute{e}faut \iff A_t = A_0 \ exp\left(\left(\mu - \frac{\sigma^2}{2}\right) + \sigma W_1\right) < B$$

$$\iff W_1 < \frac{\ln\frac{B}{A_0} - \left(\mu - \frac{\sigma^2}{2}\right)}{\sigma} = s$$

Avec $W_1 \stackrel{d}{=} \mathcal{N}(0,1)$ donc la probabilité de défaut d'un loan est : $p = \mathcal{N}(s)$

On considère un porte feuille de n loan de même maturité T et nominal B corrélé avec le coef ρ cad :

$$\begin{cases} A_{i,t} = A_0 \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_{i,t}\right) \\ W_{i,t} = \sqrt{\rho}f_t + \sqrt{1 - \rho}\epsilon_{i,t} \end{cases}$$

On simplifie
$$W_{i,1} = \sqrt{\rho}f + \sqrt{1-\rho}\epsilon_i$$
 avec
$$\begin{cases} f: systemic \ factor \ \stackrel{d}{=} \mathcal{N}(0,1) \\ \epsilon_i: idiosyncratic/specific \ factor \ \stackrel{d}{=} \mathcal{N}(0,1) \\ f \perp \epsilon_1 \perp \cdots \perp \epsilon_n \end{cases}$$

On note L_i le défaut du loan $i: L_i = 1_{\{W_{i,1} < s\}} \stackrel{d}{=} \mathcal{B}(p)$ avec $p = \mathcal{N}(s) \Rightarrow s = \mathcal{N}^{-1}(p)$

On note $L = \frac{1}{n} \sum_{i=1}^{n} L_i$: Il s'agit de la proportion de loans tombés en défaut.

1.2 Loi de Vasicek asymptotique

La probabilité de défaut conditionnelle d'un des loans est donnée de la façon suivante : $\{L_i = 1 | f\} \Longleftrightarrow \{W_{i,1} < s | f\} \Longleftrightarrow \{\sqrt{\rho}f + \sqrt{1-\rho}\epsilon_i < s | f\} \Longleftrightarrow \{\epsilon_i < \frac{s-\sqrt{\rho}f}{\sqrt{1-\rho}} | f\}$

donc
$$\mathbb{P}(L_i = 1|f) = \mathbb{P}(\epsilon_i < \frac{s - \sqrt{\rho}f}{\sqrt{1-\rho}}|f) = \mathcal{N}(\frac{\mathcal{N}^{-1}(p) - \sqrt{\rho}f}{\sqrt{1-\rho}}) = p(f)$$

$$\begin{cases} A \ priori : \mathbb{P}(L_i = 1) = p \\ A \ posteriori : \mathbb{P}(L_i = 1|f) = p(f) = \mathcal{N}(\frac{\mathcal{N}^{-1}(p) - \sqrt{\rho}f}{\sqrt{1-\rho}}) \end{cases}$$

Remarque: Sachant que les ϵ_i sont 2 à 2 \perp , on remarque que si on conditionne les L_i à f alors les L_i sont 2 à 2 \perp , en effet, f devient deterministe.

Ainsi, $\{L = \frac{k}{n}|f\} = \left\{\frac{1}{n}\sum_{i=1}^{n}L_i = \frac{k}{n}|f\right\} = \left\{\sum_{i=1}^{n}L_i = k|f\right\}$ Les $L_i|f$ sont indépendants et suivent une bernouilli $\mathcal{B}(p(f))$ donc on peut approximer la loi de L par une loi binomiale.

et
$$\mathbb{P}(L = \frac{k}{n}|f) = \mathbb{P}(\sum_{i=1}^{n} L_i = k|f) = \binom{n}{k} p(f)^k (1 - p(f))^{n-k}.$$

D'après la loi des grands nombres :
$$L = \frac{1}{n} \sum_{i=1}^{n} L_i \underset{n \to \infty}{\longrightarrow} p(f)$$

Pour n assez grand, on peut approximer la loi de L par celle de p(f), finalement, la loi de L est donnée par :

$$\mathbb{P}(L \leq x) = \mathbb{P}(p(f) \leq x) = \mathbb{P}(\mathcal{N}\left(\frac{\mathcal{N}^{-1}(p) - \sqrt{\rho}f}{\sqrt{1-\rho}}\right) \leq x) = \mathbb{P}\left(\frac{\mathcal{N}^{-1}(p) - \sqrt{\rho}f}{\sqrt{1-\rho}} \leq \mathcal{N}^{-1}(x)\right)$$

$$= \mathbb{P}\left(-f < \frac{\sqrt{1-\rho}\mathcal{N}^{-1}(x) - \mathcal{N}^{-1}(p)}{\sqrt{\rho}}\right) = \mathcal{N}\left(\frac{\sqrt{1-\rho}\mathcal{N}^{-1}(x) - \mathcal{N}^{-1}(p)}{\sqrt{\rho}}\right)$$

En conclusion :
$$\boxed{ \mathbb{P}(L \leq x) = \mathcal{N}\left(\frac{\sqrt{1-\rho}\mathcal{N}^{-1}(x)-\mathcal{N}^{-1}(p)}{\sqrt{\rho}}\right) } : \underline{\text{Loi de Vasicek}(p,\rho)}$$

$$\begin{cases} L : \textit{suit une loi de Vasicek de parametre p et } \rho \\ p(f) = \mathcal{N}\left(\frac{\mathcal{N}^{-1}(p)-\sqrt{\rho}f}{\sqrt{1-\rho}}\right) : \textit{suit une loi de Vasicek de parametre p et } \rho \\ A\textit{vec comme support de loi} \ [0,1] \ , p \in [0,1], \ \rho \in [0,1] \end{cases}$$

1.3 Vasicek : esperance, variance et estimation

<u>Attention</u>: Dans la suite, L_i désigne la réalisation d'une proportion de perte (suivant la loi de Vasicek) et non pas $L_i = 1_{\{W_{i,1} < s\}}$

Esperance et variance:

$$\begin{cases} \mathbb{E}[L] = \mathbb{E}[\mathbb{P}(\underbrace{\sqrt{\rho}f + \sqrt{1-\rho}\epsilon_i}_{\mathcal{N}(0,1)} \leq \mathcal{N}^{-1}(p)|f)] = \mathbb{E}[\mathcal{N}(\mathcal{N}^{-1}(p))] = p \\ \mathbb{E}[L^2] = \mathbb{E}[\mathbb{P}\left(Y_1 \leq \mathcal{N}^{-1}(p), Y_2 \leq \mathcal{N}^{-1}(p)\right)] = \mathbb{P}\left(Y_1 \leq \mathcal{N}^{-1}(p), Y_2 \leq \mathcal{N}^{-1}(p)\right) \\ Y_1 \stackrel{d}{=} Y_2 \stackrel{d}{=} \mathcal{N}(0,1) \end{cases}$$

Donc:

$$\left\{ \begin{array}{l} \mathbb{E}[L] = p \\ \mathbb{V}[L] = \mathbb{P}\left(Y_1 \leq \mathcal{N}^{-1}(p), Y_2 \leq \mathcal{N}^{-1}(p)\right) - p^2 \end{array} \right.$$

Méthode des moments :

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} L_i$$

$$\hat{\rho} \text{ est solution de } \mathbb{E}[L^2] = \mathbb{P}\left(Y_1 \leq \mathcal{N}^{-1}(p), Y_2 \leq \mathcal{N}^{-1}(p)\right)$$

Estimateur indirect des moments:

Sachant que
$$L \stackrel{d}{=} p(f) = \mathcal{N}\left(\frac{\mathcal{N}^{-1}(p) - \sqrt{\rho}f}{\sqrt{1-\rho}}\right) \stackrel{d}{=} Vasicek(p,\rho)$$

Alors $\mathcal{N}^{-1}(L) \stackrel{d}{=} \frac{\mathcal{N}^{-1}(p) - \sqrt{\rho}f}{\sqrt{1-\rho}}$
or $f \stackrel{d}{=} \mathcal{N}(0,1) \Rightarrow \frac{\mathcal{N}^{-1}(p) - \sqrt{\rho}f}{\sqrt{1-\rho}} \stackrel{d}{=} \mathcal{N}\left(\frac{\mathcal{N}^{-1}(p)}{\sqrt{1-\rho}}, \frac{\rho}{1-\rho}\right)$
ainsi, si $L \stackrel{d}{=} Vasicek(p,\rho) \Rightarrow \mathcal{N}^{-1}(L) \stackrel{d}{=} \mathcal{N}\left(\frac{\mathcal{N}^{-1}(p)}{\sqrt{1-\rho}}, \frac{\rho}{1-\rho}\right)$

En posant,
$$\begin{cases} \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \mathcal{N}^{-1}(L_{i}) & (1) \\ \hat{\sigma^{2}} = \frac{1}{n} \sum_{i=1}^{n} \mathcal{N}^{-1}(L_{i})^{2} - \hat{\mu}^{2} & (2) \end{cases} \text{ avec } \begin{cases} \mathbb{E}[\mathcal{N}^{-1}(L)] = \frac{\mathcal{N}^{-1}(p)}{\sqrt{1-\rho}} \\ \mathbb{V}[\mathcal{N}^{-1}(L)] = \frac{\rho}{1-\rho} & (4) \end{cases}$$

$$(2) \text{ et } (4) \Longrightarrow \sigma^{2} = \frac{\rho}{1-\rho} \Longrightarrow \frac{\sigma^{2}}{1-\sigma^{2}} = \rho$$

$$\text{donc } \left[\hat{\rho} = \frac{\hat{\sigma}^{2}}{1+\hat{\sigma}^{2}}\right] \text{ avec } \hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} \mathcal{N}^{-1}(L_{i})^{2} - \hat{\mu}^{2}$$

$$(1) \text{ et } (3) \Longrightarrow \hat{\mu} = \frac{\mathcal{N}^{-1}(\hat{p})}{\sqrt{1-\hat{\rho}}} \Longrightarrow \hat{\mu} = \frac{\mathcal{N}^{-1}(\hat{p})}{\sqrt{1-\frac{\hat{\sigma}^{2}}{1+\hat{\sigma}^{2}}}} = \mathcal{N}^{-1}(\hat{p})\sqrt{1+\hat{\sigma}^{2}}$$

$$\text{donc } \frac{\hat{\mu}}{\sqrt{1+\hat{\sigma}^{2}}} = \mathcal{N}^{-1}(\hat{p})$$
Finalement,
$$\hat{p} = \mathcal{N} \left(\frac{\hat{\mu}}{\sqrt{1+\hat{\sigma}^{2}}}\right)$$

Il s'agit aussi des estimateur par log vraissemblance (MLE) étant donné que les estimateurs MLE d'une loi gaussienne sont les mêmes que celles par moment.

Fonction de densité de la loi Vasicek :

$$f_L(x, p, \rho) = \sqrt{\frac{1-\rho}{\rho}} exp\left[\frac{-1}{2\rho}(\sqrt{1-\rho}\mathcal{N}^{-1}(x) - \mathcal{N}^{-1}(p))^2 + \frac{1}{2}(\mathcal{N}^{-1}(x))^2\right]$$