Sistemas en tiempo discreto

Introducción

Características del control en t. discr.

- La planta es continua pero el regulador trabaja en tiempo discreto.
- •La estabilidad del sistema en tiempo discreto y la aproximación del sistema de tiempo continuo a tiempo discreto dependen del periodo de muestreo T.

Casos típicos de control en tiempo discreto:

- Emulación analógica
- Diseño digital directo

Emulación analógica

Primero se realiza el análisis y la síntesis del regulador en tiempo continuo y luego se usa un proceso de discretización usando el periodo de muestreo T.

- La planta se modela en tiempo continuo
- El regulador se diseña en tiempo continuo usando los métodos conocidos.
- El regulador obtenido del proceso anterior se discretiza usando un período de muestreo T y empleando alguna de las aproximaciones conocidas

Aproximaciones para la discretización de reguladores

- Respuesta invariante (al escalón o al impulso)
- > Transformación bilineal o de Tustin
- ➤ Mapeo de polos y ceros
- > Retenedor de orden cero

Diseño digital directo

La planta en tiempo continuo es discretizada, generalmente por el método del retenedor de orden cero, obteniéndose así una aproximación digital y luego se calcula o sintetiza un compensador digital.

- La planta se modela en tiempo continuo
- La planta es discretizada usando el periodo de muestreo T y un método de aproximación de los antes enumerados.
- El regulador se calcula o sintetiza directamente en tiempo discreto usando cualquiera de los métodos siguientes:

Métodos de diseño digital directo

- ➤ El lugar de las raíces
- > Realimentación de estado
- ➤ Respuesta de frecuencia o gráficas de Bode (a través de una transformación bilineal al plano W)
- Respuesta de orden n con cancelación de polos
- ➤ Dead-Beat

Proceso de la señal de tiempo continuo a tiempo discreto

$$f_{S}(t) = f(t) \cdot \delta_{T}(t)$$

 $f_S(t) = f(t) \sum_{K=0}^{\infty} \delta(t - kT)$

$$\hat{f}(t) = f(kT)$$
 $kT \le t \le (k+1)T$

Discretización de sistemas descritos por ecuaciones diferenciales

Discretización de la ecuación diferencial de primer orden

$$\frac{dy}{dt} + ay(t) = bu(t) \quad ; a, b = cte$$

Se sustituye en la ecuación anterior t = kT para k = 0, 1, 2 ...

y se despeja $\frac{dy}{dt}$ para obtener:

$$\left. \frac{dy}{dt} \right|_{t=kT} = \left(-ay(t) + bu(t) \right)_{t=kT}$$

$$\frac{dy}{dt}\bigg|_{t=kT} = -ay(kT) + bu(kT)$$

Se aproxima la derivada $\frac{dy}{dt}\Big|_{t=KT}$ por el método de Euler para una función y(t) continua.

$$\frac{dy}{dt}\Big|_{t=KT} = \frac{y((k+1)T) - y(kT)}{T}$$

La cual es una buena aproximación si el periodo T es pequeño.

$$\frac{y((k+1)T) - y(kT)}{T} = -ay(kT) + bu(kT)$$

Se multiplica a ambos lados por T y se simplifica el resultado escribiendo únicamente k en lugar de kT:

$$y(kT) = y(k)$$
 y $u(kT) = u(k)$

y se obtiene:

$$y(k+1) = -aT \cdot y(k) + bT \cdot u(k) + y(k)$$

Sustituyendo una vez más $k-1 \rightarrow k$:

$$y(k) = (1-aT)y(k-1) + bT \cdot u(k-1)$$

Ecuación de diferencias correspondiente a la ecuación diferencial de primer orden.

Comportamiento de un sistema discreto de primer orden.

Los valores discretos y(k) = y(kT) de la solución de y(t) pueden ser calculados resolviendo la ecuación de diferencias.

Primero se calcula la solución homogénea: u(k) = 0 $\forall k$ por recursión:

$$k = 1 y(1) = (1 - aT)y(0)$$

$$k = 2 y(2) = (1 - aT)y(1) = (1 - aT)[(1 - aT)y(0)]$$

$$y(2) = (1 - aT)^{2}y(0)$$

$$k = 3 y(3) = (1 - aT)y(2) = (1 - aT)^{3}y(0)$$

$$y(k) = (1 - aT)^{k}y(0); k = 0, 1, 2 ...$$

Comparación de nuestra aprox. con la solución continua

$$y(t) = e^{-at} y(0)$$
; $t \ge 0$

Sustituyendo t = kT:

$$y(kT) = e^{-akT} y(0)$$
 $k = 0, 1, 2 ...$
 $y(k) = (e^{-aT})^k y(0)$ $k = 0, 1, 2 ...$

Desarrollando e^{-aT} por una serie:

$$e^{-aT} = 1 - \frac{aT}{1!} + \frac{a^2T^2}{2!} - \frac{a^3T^3}{3!} + \dots$$

La solución exacta

Sustituyendo obtenemos

$$y(k) = \left[1 - aT + \frac{a^2T^2}{2!} - \frac{a^3T^3}{3!} + \dots\right]^k y(0); \quad k = 0, 1, 2 \dots$$

Si |aT| <<1 entonces, las potencias de aT serán mucho menores que (1-aT) y por lo tanto se puede aproximar la solución a:

$$y(k) = (1 - aT)^{K} y(0)$$

La cual es una buena aproximación a la solución exacta si |aT| << 1, y coincide con la solución encontrada antes.

Satisfacción de las condiciones

Para cumplir la condición |aT| << 1 hacemos que $T << \left|\frac{1}{a}\right|$ con lo que se puede escoger el periodo de muestreo como:

$$T \le \frac{1}{10} \cdot \left| \frac{1}{a} \right|$$

Donde *a* representa el polo de lazo cerrado

Se puede también utilizar la siguiente recomendación:

$$f_s = \frac{1}{T} \ge 20 \cdot BW$$

Donde BW es el ancho de banda de lazo cerrado del sistema

La solución completa obtenida por recursión, es:

$$y(k) = (1 - aT)^{k} y(0) + \sum_{i=1}^{k} \left[(1 - aT)^{k-i} bT \cdot u(i-1) \right]$$

Sucesión de valores de salida y(kT) con 0 < (1-aT) < 1

Sucesión de valores de salida y(kT) con (1-aT) > 1

Resultados

Se observa que la respuesta natural de y(kT) se amortigua al aumentar el valor de k cuando 0 < (1-aT) < 1 y vemos que la salida crece sin límite al aumentar el valor de k cuando (1-aT) > 1.

De la ecuación de diferencias se puede concluir que el valor (1-aT) es la raíz de la ecuación de diferencias de primer orden. También se puede observar que el valor de esta raíz depende no sólo del coeficiente a de la ecuación diferencial; sino además del periodo de muestreo T.

¿Cómo es la forma de la salida cuando (1-aT) es negativo para los casos en que su magnitud es menor que uno o mayor que uno?

En conclusión, si las magnitudes de las raíces de la ecuación de diferencias son todas menores que 1 el sistema discreto es estable y la estabilidad se ve afectada por el valor escogido para el periodo de muestreo T.

Sistemas de orden superior en el dominio del tiempo discreto

Sistema en tiempo continuo

Sea la ecuación diferencial

$$a_n \frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_1 \frac{dy}{dt} + a_0 y = b_q \frac{d^q u}{dt^q} + b_{q-1} \frac{d^{q-1} u}{dt^{q-1}} + \dots + b_1 \frac{du}{dt} + b_0 u$$

A la cual le corresponde el siguiente modelo SISO en variables de estado:

$$\dot{\mathbf{x}} = \mathbf{A} \cdot \mathbf{x} + \mathbf{B} \cdot u$$
$$y = \mathbf{c}^T \cdot \mathbf{x} + d \cdot u$$

Sistema en tiempo discreto

Sea la ecuación de diferencias

$$a_n y(k-n) + \dots + a_1 y(k-1) + a_0 y(k) = b_q u(k-q) + \dots + b_1 (k-1) + b_0 u(k)$$

A la cual corresponde el modelo SISO en variables de estado

$$\mathbf{x}(k+1) = \mathbf{A}_{\mathbf{d}} \cdot \mathbf{x}(k) + \mathbf{B}_{\mathbf{d}} \cdot u(k)$$
$$y(k) = \mathbf{c}_{d}^{T} \cdot \mathbf{x}(k) + d_{\mathbf{d}} \cdot u(k)$$

Note que de nuevo se ha omitido el periodo T ya que es el mismo para todos los términos.

Derivación del modelo en tiempo discreto a partir del modelo en tiempo continuo

Con la condición de que la entrada se mantenga constante durante la totalidad del tiempo T:

$$u(t) = u(kT)$$
; para $kT \le t < (k+1)T \quad \forall k \in N$

Se desea encontrar las matrices y vectores \mathbf{A}_d , \mathbf{B}_d , \mathbf{c}_d y d_d (\mathbf{C}_d y \mathbf{D}_d para MIMO)

Se parte de la ecuación de movimiento para el sistema en variables de estado, el cual es evaluado en t = kT.

$$\mathbf{x}(t) = \left[e^{\mathbf{A}t} \mathbf{x}(0) + \int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B} \cdot u(\tau) d\tau \right]_{t=Kt}$$

$$\mathbf{x}(kT) = e^{\mathbf{A}kT}\mathbf{x}(0) + \int_{0}^{kT} e^{\mathbf{A}(kT-\tau)}\mathbf{B} \cdot u(\tau)d\tau$$

para el tiempo (k+1)T se tiene:

$$\mathbf{x}((k+1)T) = e^{\mathbf{A}(k+1)T}\mathbf{x}(0) + \int_{0}^{(k+1)T} e^{\mathbf{A}((k+1)T-\tau)} \mathbf{B} \cdot u(\tau) d\tau$$

si se descompone la parte correspondiente a kT y a T

$$\mathbf{x}((k+1)T) = \mathbf{e}^{\mathbf{A}T}\mathbf{e}^{\mathbf{A}kT}\mathbf{x}(0) + \int_{0}^{kT}\mathbf{e}^{\mathbf{A}((k+1)T-\tau)}\mathbf{B} \cdot u(\tau)d\tau + \int_{0}^{(k+1)T}\mathbf{e}^{\mathbf{A}((k+1)T-\tau)}\mathbf{B} \cdot u(\tau)d\tau$$

Se observa que la parte en paréntesis rectangulares corresponde a x(kT).

$$\mathbf{x}((k+1)T) = \mathbf{e}^{\mathbf{A}T} \left[\mathbf{e}^{\mathbf{A}kT} \mathbf{x}(0) + \int_{0}^{kT} e^{\mathbf{A}(kT-\tau)} \mathbf{B} \cdot u(\tau) d\tau \right] + \int_{0}^{(k+1)T} \mathbf{e}^{\mathbf{A}((k+1)T-\tau)} \mathbf{B} \cdot u(\tau) d\tau$$

Si se aplica la condición de que u(t) es constante durante el intervalo T segundos $kT \le t < (k+1)T$, esto es u(t) = u(kT), entonces se puede sacar a u(t) de la integral.

$$\mathbf{x}((k+1)T) = \mathbf{e}^{\mathbf{A}T} x(kT) + \int_{tT}^{(k+1)T} \mathbf{e}^{\mathbf{A}((k+1)T - \tau)} \mathbf{B} \cdot d\tau \cdot u(kT)$$

Realizando una sustitución de variable en la integral, (k+1)T - $\tau = p$, con $d\tau = -dp$ y cambiando los límites de integración se tiene:

$$\mathbf{x}((k+1)T) = \mathbf{e}^{\mathbf{A}T}\mathbf{x}(kT) - \int_{T}^{0} \mathbf{e}^{\mathbf{A}p}\mathbf{B} \cdot dp \cdot u(kT)$$

Si además se aplica el signo a la integral invirtiendo los límites de integración se obtiene:

$$\mathbf{x}((k+1)T) = \mathbf{e}^{\mathbf{A}T}\mathbf{x}(kT) + \int_{0}^{T} \mathbf{e}^{\mathbf{A}p} \cdot \mathbf{B} \cdot dp \cdot u(kT)$$

simplificando la escritura haciendo kT = k y sustituyendo la variable p de nuevo por τ tenemos (escrito para un sistema MIMO):

$$\mathbf{x}(k+1) = \mathbf{e}^{\mathbf{A}T}\mathbf{x}(k) + \int_{0}^{T} \mathbf{e}^{\mathbf{A}\tau}\mathbf{B} \cdot d\tau \cdot \mathbf{u}(k)$$

$$\mathbf{y}(k) = \mathbf{C}\mathbf{x}(k) + \mathbf{D} \cdot \mathbf{u}(k)$$

donde

$$\mathbf{A}_d = \mathbf{e}^{\mathbf{A}T}$$

$$\mathbf{B}_{d} = \int_{0}^{T} \mathbf{e}^{\mathbf{A}\tau} \mathbf{B} \cdot d\tau = \mathbf{A}^{-1} \cdot [\mathbf{A}_{d} - \mathbf{I}] \cdot \mathbf{B} ; \text{ si } \mathbf{A} \text{ es NO singular}$$

$$\mathbf{C}_{d} = \mathbf{C} \qquad \mathbf{c}_{d} = \mathbf{c}^{T} \qquad \mathbf{D}_{d} = \mathbf{D} \qquad d_{d} = d$$

Ejemplo 1: Obtener el modelo en tiempo discreto para un sistema escalar de 1^{er} orden

$$\dot{x} = -\frac{1}{T_1}x + \frac{1}{T_1}u; \quad x(0) = 0$$

$$y = k_s x$$

$$x(k+1) = e^{-\frac{T}{T_1}}x(k) + \int_0^T e^{-\frac{1}{T_1}\tau} d\tau \frac{1}{T_1}u(k)$$

$$x(k+1) = e^{-\frac{T}{T_1}}x(k) + \left(-T_1 \cdot e^{-\frac{1}{T_1}\tau}\right)\Big|_0^T \frac{u(k)}{T_1}$$

$$x(k+1) = e^{-\frac{T}{T_1}}x(k) + \left(1 - e^{-\frac{T}{T_1}}\right) \cdot u(k)$$

$$y(k) = k_s \cdot x(k)$$

donde

$$T_{1d} = e^{-\frac{T}{T_1}} < 1$$

$$1-T_{1d} = \left(1-e^{-\frac{T}{T_1}}\right)$$

La ecuación de diferencias se obtiene al multiplicar x(k+1) por k_s .

$$k_s \cdot x(k+1) = k_s \cdot T_{1d} x(k) + k_s \cdot (1 - T_{1d}) \cdot u(k)$$

agrupando se reconoce que $k_s \cdot x(k+1) = y(k+1)$ y $k_s \cdot x(k) = y(k)$ por lo que se escribe

$$y(k+1) = T_{1d} y(k) + k_s \cdot (1 - T_{1d}) \cdot u(k)$$

si se pasan los términos que contienen y(k) a la izquierda

$$y(k+1) - T_{1d} y(k) = k_s \cdot (1 - T_{1d}) \cdot u(k)$$

y sustituyendo la variable k = k - 1 tenemos

$$y(k) - T_{1d} y(k-1) = k_s \cdot (1 - T_{1d}) \cdot u(k-1) ; y(-1) = 0$$

Ejercicio: Compare esta ecuación de diferencias con la ecuación 0 para $a = \frac{1}{T_1} = 5$, $k_S = 1$ y con periodo de muestreo de T = 0.02 y de T = 0.1.

Con el modelo estático cuando $u(k) = \overline{u}$, constante, se encuentra que no hay cambios en el estado x por lo que:

$$x(k+1) = x(k)$$

sustituyendo

$$x(k) = T_{1d}x(k) + (1 - T_{1d}) \cdot \overline{u}$$

resulta

$$x(k) = \overline{u}$$

por lo que

$$y(k) = k_s \overline{u}$$

Ejemplo 2: Convertir a tiempo discreto el siguiente modelo (SISO) de segundo orden

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 1 \\ 0 & -\frac{k_f}{M} \end{bmatrix} \cdot \mathbf{x}(t) + \begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix} \cdot u(t)$$
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \mathbf{x}(t)$$

Donde x_1 es la posición, x_2 es la velocidad y u(t) es la fuerza de manejo o de frenado aplicada a un carro. Calculamos las matrices discretizadas \mathbf{A}_d y \mathbf{B}_d para este sistema; para lo cual es necesario primero calcular la matriz de transición de estados $\mathbf{e}^{\mathbf{A}t}$ para la matriz \mathbf{A} dada; para ello usamos la definición $\mathbf{\Phi}(t) = \mathbf{e}^{\mathbf{A}t} = L^{-1} \{ \Phi(s) \}$

$$\mathbf{\Phi}(s) = (s\mathbf{I} - \mathbf{A})^{-1} = \begin{bmatrix} s & -1 \\ 0 & s + \frac{k_f}{M} \end{bmatrix}^{-1} = \frac{1}{s\left(s + \frac{k_f}{M}\right)} \begin{bmatrix} s + \frac{k_f}{M} & 1 \\ 0 & s \end{bmatrix}$$

Así

$$\mathbf{e}^{\mathbf{A}t} = \begin{bmatrix} 1 & \frac{M}{k_f} \begin{bmatrix} 1 - e^{\left(-\frac{k_f t}{M}\right)} \end{bmatrix} \\ 0 & e^{\left(-\frac{k_f t}{M}\right)} \end{bmatrix}$$

Entonces, sustituyendo t = T

$$\mathbf{A}_{d} = \mathbf{e}^{\mathbf{A}T} = \begin{bmatrix} 1 & \frac{M}{k_{f}} \begin{bmatrix} 1 - e^{\left(-\frac{k_{f}T}{M}\right)} \end{bmatrix} \\ 0 & e^{\left(-\frac{k_{f}T}{M}\right)} \end{bmatrix}$$

$$\mathbf{B}_{d} = \int_{0}^{T} \mathbf{e}^{\mathbf{A}\tau} \mathbf{B} \cdot d\tau = \begin{bmatrix} \int_{0}^{T} \frac{1}{k_{f}} \left[1 - e^{\left(-\frac{k_{f}}{M}\tau\right)} \right] d\tau \\ \int_{0}^{T} \frac{1}{M} e^{\left(-\frac{k_{f}}{M}\tau\right)} d\tau \end{bmatrix} = \begin{bmatrix} \frac{T}{k_{f}} - \frac{M}{k_{f}^{2}} \left[1 - e^{\left(-\frac{k_{f}}{M}T\right)} \right] \\ \frac{1}{k_{f}} \left[1 - e^{\left(-\frac{k_{f}}{M}T\right)} \right] \end{bmatrix}$$

Nótese que ya que la matriz \mathbf{A} original en tiempo continuo es singular, y se ha realizado el proceso de encontrar la matriz \mathbf{B}_d resolviendo directamente la integral.

Solución numérica

Si M = 1, $k_f = 0.1$ y T = 0.1 entonces las matrices en tiempo discreto son:

$$\mathbf{A}_d = \begin{bmatrix} 1 & 0.0995 \\ 0 & 0.9900 \end{bmatrix}, \qquad \mathbf{B}_d = \begin{bmatrix} 0.0050 \\ 0.0995 \end{bmatrix}$$

El modelo en variables de estado para el sistema en tiempo discreto es:

$$\begin{bmatrix} x_1(0.1(k+1)) \\ x_2(0.1(k+1)) \end{bmatrix} = \begin{bmatrix} 1 & 0.0995 \\ 0 & 0.9900 \end{bmatrix} \cdot \begin{bmatrix} x_1(0.1k) \\ x_2(0.1k) \end{bmatrix} + \begin{bmatrix} 0.0050 \\ 0.0995 \end{bmatrix} \cdot u(0.1k)$$

$$y(0.1k) = \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1(0.1k) \\ x_2(0.1k) \end{bmatrix}$$

El comportamiento de los sistemas de orden superior en tiempo discreto

Sea el sistema SISO en variables de estado en tiempo discreto con $\mathbf{x}(0) = \mathbf{x}_0$.

$$\mathbf{x}(k+1) = \mathbf{A}_d \cdot \mathbf{x}(k) + \mathbf{B}_d \cdot u(k)$$
$$y(k) = \mathbf{C}_d \cdot x(k) + \mathbf{D}_d \cdot u(k)$$

Se evalúa para valores de k desde 0 en adelante

$$k = 0 \quad \mathbf{x}(1) = \mathbf{A}_d \cdot \mathbf{x}(0) + \mathbf{B}_d \cdot u(0)$$

$$k = 1 \quad \mathbf{x}(2) = \mathbf{A}_d \cdot \mathbf{x}(1) + \mathbf{B}_d \cdot u(1) = \mathbf{A}_d^2 \cdot \mathbf{x}(0) + \mathbf{A}_d \mathbf{B}_d \cdot u(0) + \mathbf{B}_d \cdot u(1)$$

$$k = 2 \quad \mathbf{x}(3) = \mathbf{A}_d \cdot \mathbf{x}(2) + \mathbf{B}_d \cdot u(2) = \mathbf{A}_d^3 \cdot \mathbf{x}(0) + \mathbf{A}_d^2 \mathbf{B}_d \cdot u(0) + \mathbf{A}_d \mathbf{B}_d \cdot u(1) + \mathbf{B}_d \cdot u(2)$$

:

$$\mathbf{x}(k) = \mathbf{A}_d^{k} \cdot \mathbf{x}(0) + \mathbf{A}_d^{k-1} \mathbf{B}_d \cdot u(0) + \dots + \mathbf{A}_d \mathbf{B}_d \cdot u(k-2) + \mathbf{B}_d \cdot u(k-1)$$

$$\mathbf{x}(k) = \mathbf{A}_d^{k} \cdot \mathbf{x}(0) + \sum_{i=0}^{k-1} \mathbf{A}_d^{k-j-1} \mathbf{B}_d \cdot u(j)$$

donde

 $\Phi(k) = \mathbf{A}_d^{\ k}$: Matriz de transición de estados discreta por lo que

$$y(k) = \mathbf{c}^T \cdot \mathbf{\Phi}(k) \cdot \mathbf{x}(0) + \sum_{i=0}^{k-1} c^T \cdot \mathbf{\Phi}(k-j-1) \cdot \mathbf{B}_d \cdot u(j) + d \cdot u(k)$$

Conclusión

Tenemos que la respuesta total está formada por la respuesta homogénea y la respuesta forzada.

Respuesta homogénea: $\mathbf{c}^T \cdot \mathbf{\Phi}(k) \cdot \mathbf{x}(0)$

Respuesta forzada: $\sum_{j=0}^{k-1} \mathbf{c}^T \cdot \mathbf{\Phi}(k-j-1) \cdot \mathbf{B}_d \cdot u(j) + d \cdot u(k)$

Representación de sistemas en t. discr. en el dominio de la frecuencia

Propiedades de la transformada Z

Linealidad

$$Z\{a \cdot u(k) + b \cdot v(k)\} = Z\{a \cdot u(k)\} + Z\{b \cdot v(k)\}$$

Si

$$U(z) = Z\{u(k)\}\ V(z) = Z\{v(k)\}$$

entonces:

$$Z\{a \cdot u(k) + b \cdot v(k)\} = a \cdot U(z) + b \cdot V(z)$$

Desplazamiento a la derecha en el tiempo

$$x(k) \leftrightarrow X(z)$$

$$x(k-1) \leftrightarrow z^{-1}X(z) + x(-1)$$

$$x(k-2) \leftrightarrow z^{-2}X(z) + x(-2) + z^{-1}x(-1)$$

$$\vdots$$

$$x(k-q) \leftrightarrow z^{-q}X(z) + x(-q) + z^{-1}x(-q+1) + z^{-2}x(-q+2) + \dots + z^{-q}x(-1)$$
Si $x(k) = 0 \ \forall \ k = -1, -2, -3, \dots -q$
entonces:

 $x(k-q) \leftrightarrow z^{-q}X(z)$

Desplazamiento a la izquierda en el tiempo

$$x(k) \leftrightarrow X(z)$$

$$x(k+1) \leftrightarrow z \cdot X(z) - x(0) \cdot z$$

$$x(k+2) \leftrightarrow z^{2}X(z) - x(0) \cdot z^{2} - x(1) \cdot z$$

$$\vdots$$

$$x(k+q) \leftrightarrow z^{q}X(z) - x(0)z^{q} - x(1) \cdot z^{q-1} - \dots - x(q-1) \cdot z$$

Teorema del valor inicial

$$x(0) = \lim_{z \to \infty} X(z)$$

$$x(1) = \lim_{z \to \infty} [z \cdot X(z) - z \cdot x(0)]$$

$$\vdots$$

$$x(q) = \lim_{z \to \infty} \left[z^q X(z) - z^q x(0) - z^{q-1} x(1) - \dots - z \cdot x(q-1) \right]$$

Teorema del valor final

$$\lim_{k \to \infty} x(k) = \lim_{z \to 1} (z - 1)X(z)$$

Relación entre la transformada Z y la transformada de Laplace

$$z = e^{sT}$$

Función tr. del modelo en variables de estado en tiempo discreto (MIMO)

$$\mathbf{x}(k+1) = \mathbf{A}_d \cdot \mathbf{x}(k) + \mathbf{B}_d \cdot \mathbf{u}(k)$$
$$\mathbf{y}(k) = \mathbf{C}_d \cdot \mathbf{x}(k) + \mathbf{D}_d \cdot \mathbf{u}(k)$$

Transformando a Z con las condiciones iniciales iguales a cero, $\mathbf{x}(0) = 0$

$$z \cdot \mathbf{X}(z) = \mathbf{A}_d \cdot \mathbf{X}(z) + \mathbf{B}_d \cdot \mathbf{U}(z)$$

$$\mathbf{Y}(z) = \mathbf{C}_d \cdot \mathbf{X}(z) + \mathbf{D}_d \cdot \mathbf{U}(z)$$

Agrupando

$$z \cdot \mathbf{X}(z) - \mathbf{A}_d \cdot \mathbf{X}(z) = \mathbf{B}_d \cdot \mathbf{U}(z)$$

$$(z \cdot \mathbf{I} - \mathbf{A}_d) \mathbf{X}(z) = \mathbf{B}_d \cdot \mathbf{U}(z)$$

Premultiplicando por $(z \cdot \mathbf{I} - \mathbf{A}_d)^{-1}$

$$\mathbf{X}(z) = (z \cdot \mathbf{I} - \mathbf{A}_d)^{-1} \mathbf{B}_d \cdot \mathbf{U}(z)$$

Sustituyendo $\mathbf{X}(z)$ en la ecuación para $\mathbf{Y}(z)$.

$$\mathbf{Y}(z) = \mathbf{C}_d \cdot (z \cdot \mathbf{I} - \mathbf{A}_d)^{-1} \mathbf{B}_d \cdot \mathbf{U}(z) + \mathbf{D}_d \cdot \mathbf{U}(z)$$

Agrupando

$$\mathbf{Y}(z) = \left[\mathbf{C}_d \cdot \left(z \cdot \mathbf{I} - \mathbf{A}_d \right)^{-1} \mathbf{B}_d + \mathbf{D}_d \right] \cdot \mathbf{U}(z)$$

y finalmente se obtiene la función de transferencia G(z).

$$\mathbf{G}(z) = \frac{\mathbf{Y}(z)}{\mathbf{U}(z)} = \mathbf{C}_d \cdot (z \cdot \mathbf{I} - \mathbf{A}_d)^{-1} \mathbf{B}_d + \mathbf{D}_d$$