هوش مصنوعی

طراحان: پرهام سازدار، مهدی جمالخواه

مدرسین: **دکتر فدایی و دکتر یعقوبزاده**

مهلت تحویل: سهشنبه ۱۸ دی ۱۴۰۳، ۲۳:۵۵

یادگیری ماشین

سوال اول: درخت تصمیم

یک رستوران تصمیم دارد بررسی کند که با توجه به عوامل موثر، در صورتی که تمام میزها پر باشد، آیا افرادی که به رستوران مراجعه میکنند برای خالی شدن میز صبر میکنند یا خیر.

Example	Input Attributes										Goal
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWai
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_1 = Ye$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2 = N_0$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_3 = Ye$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4 = Ye$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = N_0$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	$y_6 = Y_6$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_7 = N$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_8 = Y\epsilon$
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = N_0$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = N$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11} = N$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12} = Y_6$

جدول ۱-۱: دادگان جمع آوری شده از مراجعان

توضیح ویژگیهای مختلف به صورت زیر است:

Alternate: whether there is a suitable alternative restaurant nearby.

Bar: whether the restaurant has a comfortable bar area to wait in.

Fri/Sat: true on Fridays and Saturdays.

Hungry: whether we are hungry.

Patrons: how many people are in the restaurant (values are None, Some, and Full).

Price: the restaurant's price range (\$, \$\$, \$\$\$).

Raining: whether it is raining outside.

Reservation: whether we made a reservation.

Type: the kind of restaurant (French, Italian, Thai or Burger).

WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

جدول ۱-۲: توضیح ویژگیها

درخت تصمیم مناسب برای پیشبینی اینکه مشتریها صبر میکنند یا خیر را به دست بیاورید. تمامی مراحل انتخاب ویژگی برای درخت تصمیم را بنویسید.

پاسخ:

E(S) = I(6,6) = 1(persies cies Infogain = E(S) = AE = I-AE $AE(Alt) = \frac{6}{12}I(3,3) + \frac{6}{12}I(3,3) = 1 - 6$ AE(Bor) = 6 I(3,3) + 6 I(3,3) = 1 = > gain = 0 AE(Fri) = 5 I(2,3) + 7 I(9,3) = 0,978=>gain = 0,022 AE(Hun) = 7 1(5,2) + 5 1(1,4) = 0,803=12 gain = 0,197 AE(Pat) = 2 I(0,2)+ = I(4,0)+ = I(2,4)=0,459 = gain =0,5+1 AE(Price) = 7 1(3,4)+2 1(2,0) +3 1(1,2)=0,803=pain=0,197 AE(Rain) = 5 I(3,2)+7 I(3,4) =0,978 => gair =0,022 AE(Res) = 5 I (3,2) + 7 I(3,4) = 0,978 = 0,990 = 0,022 AB(Type)= $\frac{2}{12}I(1,1) + \frac{4}{12}I(2,2) + \frac{4}{12}I(2,2) + \frac{2}{12}I(1,1) = 1$ $AE(ESt) = \frac{6}{12}I(4)2) + \frac{2}{12}I(1)1 + \frac{2}{12}I(1)1 + \frac{2}{12}I(0)2) = 0,792$ = rgain = 0,208· peinos vimo con Pat alos VIr penos pennes vien Pat oto i com E(Pat=none) = I(0,2)=0 Pat=full of the Luciesum

E(Pat=Some) = I(4,0)=0 Pat=full of th E(Pat=full) = I(2,4)=0,918 + = E(S)

	reidos - mo blagain (Pat-full cien fers Les
	1 I(0,1)=0,809=>gain=0,109
AE(boz) = 3 I(1,2) +	3 1(1,2)=0,918=rgain=gain=0
$At(Fr_i) = \frac{5}{6}I(2,3) + \frac{1}{6}$	$I(0,1) = 0,809 \Rightarrow gain = 0,109$
AE(Hun)=47(2,2)+	2 1(0,2) = 0,666 = (gain = 0,252)
AE(Price) = 4 7(2,2) +	$\frac{2}{6}I(0,2) = 0,666 = 9ain = 0,252$
$AE(Roin) = \frac{2}{6}I(1,1)$	+ = 1(1,3) = 0,873 - gain = 0,045
$AE(ReS) = \frac{2}{6}I(0,2) = \frac{1}{6}I(0,2) = $	$r = \frac{4}{6} I(2,2) = 6,666 = \sqrt{9} ain = 0,252$
AG(Type) = 1/6 I(0,1)	$+\frac{2}{6}I(1,1)+\frac{2}{6}I(1,1)+\frac{1}{6}I(0,1)=0,666$ = again=0,252
	$+\frac{2}{6}I(1,1)+\frac{2}{6}I(0,2)=0,666$ (regain=0,252)
رای (داهه) دهت اسعاب سای (داهه) دهت اسعاب	5 مِنْرُى مِنْ مِنْ وَمَالْ مِنْ مِنْ الْمِنْ مِنْ مِنْ الْمِرْمِ الْمُنْ مِنْ مِنْ الْمِنْ مِنْ مِنْ
	: (Hum) مِنْ مَوْدِ النَّفَا بِمِن مِنْ مِنْ اللَّهِ اللَّهِ عَلَيْهِ اللَّهِ اللَّهِ اللَّهِ اللَّهِ
	(2)=1 - Q vie E(S)
E(Hun=No)=E(O)	ع)=0) الماله الاس - yed ترویمین میں عوں عموں مت میں عوں عموں مت میں موسوں میں موسوں میں موسوں میں موسوں میں ا
	Larce false

$$AE(Alt) = \frac{4}{7}I(2,2) = 1 \Rightarrow gain = 0$$

$$AE(Boz) = \frac{2}{7}I(1,1) + \frac{2}{7}I(1,1) = 1 \Rightarrow gain = 0$$

$$AE(Fri) = \frac{3}{7}I(2,1) + \frac{1}{7}I(0,1) = 0,688 \Rightarrow gain = 0,812$$

$$AE(Price) = \frac{3}{7}I(2,1) + \frac{1}{7}I(0,1) = 0,688 \Rightarrow gain = 0,812$$

$$AE(Rain) = \frac{1}{7}I(1,0) + \frac{3}{7}I(1,2) = 0,688 \Rightarrow gain = 0,312$$

$$AE(Res) = \frac{1}{7}I(0,1) + \frac{3}{7}I(2,1) = 0,688 \Rightarrow gain = 0,312$$

$$AE(Type) = \frac{2}{7}I(1,1) + \frac{1}{7}I(1,0) + \frac{1}{7}I(0,1) = 0,5 \Rightarrow gain = 0$$

$$AE(Est) = \frac{2}{7}I(1,1) + \frac{2}{7}I(1,1) = 1 \Rightarrow gain = 0$$

شىكە عصبى

سوال اول: Backpropagation Basics

فرض کنید شبکه عصبی با دو لایه مانند زیر داریم:

$$\begin{split} z_1 &= W_1 x^{(i)} + b_1 \\ a_1 &= ReLu(z_1) \\ z_2 &= W_2 a_1 + b_2 \\ y^{(i)} &= \sigma(z_2) \\ L^{(i)} &= y^{(i)} * \log(y^{(i)}) + (1 - y^{(i)}) * \log(1 - y^{(i)}) \\ J &= \frac{-1}{m} \sum_{i=1}^m L^{(i)} \end{split}$$

توجه کنید که $x^{(i)}$ نشان دهنده یک نمونه ورودی با ابعاد z_i است. همچنین z_i برچسب یک نمونه است و به صورت اسکالر میباشد. دیتاست شامل z_i نمونه است. همچنین z_i ابعاد z_i دارد.

- . ابعاد b_1, b_1, b_1, W_2, b_2 را بنویسید
- . نتیجه $\delta_1/\partial y$ را بدست آورید و آن را با $\partial J/\partial y$ نتیجه •
- . نتیجه $\delta_{\gamma}^{(i)}$ را بدست آورید و آن را با $\partial y^{(i)}/\partial z_{\gamma}$ نشان دهید. •
- . نتیجه δ_3 را بدست آورید و آن را با و $\partial z_2/\partial a_1$ نشان دهید. •
- دهید. و آن را با δ_a نشان دهید. δ_a نشان دهید. •
- . نتیجه $\delta_{_{5}}$ نشان دهید و آن را با $\delta_{_{5}}$ نشان دهید.
- . نتیجه $\partial J/\partial W_1$ را با استفاده از نتایج قبلی بدست آورید.

یادآوری: در محاسبات ماتریسی، مشتق به صورت زیر تعریف تعریف میشود:

مشتق بردار نسبت به بردار

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_d \end{bmatrix} = f \begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \end{pmatrix} \quad \Rightarrow \quad \frac{\partial y}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \cdots & \frac{\partial y_d}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_d}{\partial x_2} \\ \vdots & \ddots & \ddots & \ddots \\ \frac{\partial y_1}{\partial x_m} & \frac{\partial y_2}{\partial x_m} & \cdots & \frac{\partial y_d}{\partial x_m} \end{bmatrix}$$

• مشتق بردار نسبت به ماتریس

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_d \end{bmatrix} = f \begin{pmatrix} \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{21} & \dots & x_{2n} \\ & \ddots & \ddots & \ddots & \\ x_{m1} & x_{m1} & \dots & x_{mn} \end{bmatrix} \end{pmatrix} \quad \Rightarrow \quad \frac{\partial y_1}{\partial X} = \begin{bmatrix} \frac{\partial y_1}{\partial x_{11}} & \frac{\partial y_1}{\partial x_{12}} & \dots & \frac{\partial y_1}{\partial x_{1n}} \\ \frac{\partial y_1}{\partial x_{21}} & \frac{\partial y_1}{\partial x_{22}} & \dots & \frac{\partial y_1}{\partial x_{2n}} \\ & \ddots & \ddots & \ddots & \\ \frac{\partial y_1}{\partial x_{m1}} & \frac{\partial y_1}{\partial x_{m2}} & \dots & \frac{\partial y_1}{\partial x_{mn}} \end{bmatrix}$$

همچنین در مشتق بردارها نیز قانون زنجیرهای (chain rule) برقرار است: (دقت کنید که ابتدا مشتق بیرونی نوشته میشود و بعد مشتق درونی. اگر برعکس نوشته شود، اشتباه است؛ زیرا در ضرب ماتریسها قانون جابهجایی برقرار نیست)

•

•
$$\frac{\partial J}{\partial y^{(i)}} = \frac{-1}{m} \left(\frac{y^{(i)}}{y^{(i)}} - \frac{1 - y^{(i)}}{1 - y^{(i)}} \right) = \delta_1$$

$$\bullet \quad \frac{\partial y^{\wedge (i)}}{\partial z_2} = (1 - \sigma(z_2))\sigma(z_2) = \delta_2$$

$$\bullet \quad \frac{\partial z_2}{\partial a_1} = W_2^T = \delta_3$$

$$\bullet \quad \frac{\partial a_1}{\partial z_1} = \begin{bmatrix} I(z_{1,1} > 0) & 0 & \dots & 0 \\ 0 & I(z_{1,2} > 0) & \dots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \dots & I(z_{1,D_1} > 0) \end{bmatrix} = \delta_4$$

$$\bullet \quad \frac{\partial z_1}{\partial W_{1,ij}} = [0 \quad \cdots \quad 0 \quad x_j \quad 0 \quad \cdots \quad 0]$$

$$\bullet \quad \frac{\partial J}{\partial W_1} = \delta_1 \delta_2 \delta_3 \delta_4 \delta_5$$

سوال دوم: Forward & Backward

عبارت ریاضی $\frac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$ را در نظر بگیرید که در شکل زیر گراف محاسباتی آن نشان داده شده است. بالای هر یال مقدار Forward و پایین آن مقدار Backward که همان مشتق نسبت به متغیر ورودی یال است نشان داده شده است. بعضی از این مقادیر با علامت (?) جایگذاری شده است. در پاسختان همین گراف را رسم کنید و مقادیر مجهول را با مقدار درست آنها جایگذاری کنید. روابط ریاضیای که در محاسبه این مقادیر استفاده میکنید نیز بنویسید.

پاسخ:

$$f(x) = \frac{1}{x} \rightarrow \frac{df}{dx} = \frac{-1}{x^2}$$

$$f_c(x) = c + x \rightarrow \frac{df}{dx} = 1$$

$$f(x) = e^x \rightarrow \frac{df}{dx} = e^x$$

$$f_a(x) = ax \rightarrow \frac{df}{dx} = a$$

سوال سوم: CNN

به سوالات زیر در حد یک یا دو خط پاسخ کوتاه دهید.

الف) فرض کنید برداری به طول N دارید و قصد دارید یک لایهی کانولوشن یک بعدی روی آن اعمال کنید. حاصل اعمال یک لایه کانولوشن را از طریق رابطهی:

$$z = w * x \rightarrow Z_i = \sum_{j=0}^{K-1} w_j x_{i+j}$$

بدست میآوریم که K اندازه فیلتر را نشان میدهد. فرض کنید به سمت راست بردار K اندازه فیلتر را نشان میدهد. فرض کنید به سمت راست بردار و اندازه فیلتر را نشان مقدار $\frac{\partial Loss}{\partial Z_i}$ را برای تمامی مقادیر i بدانیم، رابطه محاسبه مقدر به عنوان Padding اضافه میکنیم. اگر مقدار $\frac{\partial Loss}{\partial W_j}$ را به طور دقیق بر حسب آن پیدا کنید. نشان دهید که این رابطه برای پیدا کردن $\frac{\partial Loss}{\partial W_j}$ عملا معادل اعمال یک فیلتر کانولوشن است.

ب) مرتبهی تعداد عملیات محاسباتی لازم برای یک لایهی کانولوشن با اندازهی کرنل k imes k و گام s، به ازای یک ورودی به عرض w و ارتفاع k که دارای v کانال است بنویسید.

ج) یک بلوک CNN به صورت زیر را در نظر بگیرید:

3x3 Conv (stride 2) - 2x2 Pool (stride 2) - 3x3 Conv (stride 2) - 2x2 Pool (stride 2)

حال receptive field یک پیکسل خروجی این بلوک را بدست آورید.

پاسخ:

الف)

$$\frac{\partial Loss}{\partial w_{j}} = \sum_{i=0}^{N-1-j} \frac{\partial Loss}{\partial z_{i}} x_{i+j}$$

این رابطه دقیقا شبیه رابطه کانولوشن است که در سوال داده شده است. با این تفاوت که فیلتر در این رابطه گرادیان loss نسبت به خروجی است.

ب)

- k^2c :هزینه هر ضربداخلی فیلتر در عکس
- $(\frac{w-k}{s}+1)(\frac{h-k}{s}+1)$ تعداد ضرب داخلیها: (
 - $(\frac{w-k}{s}+1)(\frac{h-k}{s}+1)k^2c$ هزينه کل: •

ج)

receptive field را ابتدا در یک بعد بدست میآوریم؛ یک پیکسل را در لایه آخر در نظر بگیرید این receptive field یک مربع 2 × 2 است. حال این مربع نتیجه یک مربع در لایه قبل با ضلع pooling یک مربع 10 × 10 است که از 2(2-1)+3=5 میباشد. دوباره این پنجره نتیجه pooling یک مربع 10 × 10 است که از یک مربع با ضلع 21 = 3 + (1 - 2) از لایه قبلی بدست آمده است. در نتیجه receptive field برابر 21 × 21 میباشد.