MAT 455 Midterm Formula Sheet

Poisson Pdf, μ , σ^2 : $\frac{e^{-\lambda}\lambda^x}{r!}$, λ , λ

Uniform Pdf, μ , σ^2 : $\frac{1}{b-a}$, $\frac{b+a}{2}$, $\frac{(b-a)^2}{12}$ Binomial Pdf, μ , σ^2 : $\binom{n}{x}p^x(1-p)^{n-x}$, np, np(1-p)Geometric Pdf, μ , σ^2 : $(1-p)^{x-1}p$, $\frac{1}{p}$, $\frac{1-p}{p^2}$ Exponential | parameter λ Pdf, μ , σ^2 : $\lambda e^{-\lambda x}$, $1/\lambda$, $1/\lambda^2$ AND Exponential P(X>a): $e^{-a\lambda}$

Normal Pdf: $\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

Bayes' Rule: $P(B|A) = \frac{P(A|B)P(B)}{\sum_{j} P(A|B_{j})P(B_{j})}$ Marginal pmf: $P(X=x) = \sum_{y} P(X,Y)$

Law of Total Probability: $P(A) = \sum P(A|B_i)P(B_i)$

Conditional Exp: $E(Y|X=x) = \sum yP(Y=y|X=x)$ or $E(Y|X=x) = \int yP(Y=y|X=x)dy$

Properties of Conditional Exp:

- 1) E(aY + bZ|X = x) = aE(Y|X = x) + bE(Z|X = x)
- 2) $E(g(Y)|X = x) = \sum g(y)P(Y = y|X = x)$ or $E(g(Y)|X = x) = \int g(y)f_{y|x}(y|x)dy$
- 3) If X and Y are independent, E(Y|X=x)=E(Y)
- 4) If Y is a function of X, Y=g(X), E(Y|X=x)=g(x)

Conditional Expectation of an Event: Let $I_A = 1$, when A occurs, then $E(Y|A) = \frac{E(YI_A)}{P(A)}$

Conditional Dist: $P(Y = y | X = x) = \frac{P(X = x, Y = y)}{P(X = x)}$ or $f_{y|x}(y|x) = \frac{f(x,y)}{f(x)}$, where $f(x) = \int f(x,y) dy$ Conditional Variance: $Var(Y|X = x) = E(Y^2|X = x) - (E(Y|X = x))^2$

Law of Total Expectation: $E(Y) = \sum E(Y|X=x)P(X=x)$ or $E(Y) = \int E(Y|X=x)f_X(x)dx$

Law of Total Variance: Var(Y) = E(Var(Y|X)) + Var(E(Y|X))

Random Sums of Random Variables:

If your random variable has mean, μ_x , and variance, σ_x^2 , and you have a sum of N values where $E(N) = \mu_N$ and $Var(N) = \sigma_N^2$. Then

 $E(T) = \mu_x \mu_N$ and $Var(T) = \sigma_X^2 \mu_N + \sigma_N^2 \mu_X^2$.

Markov Chain: $(P(X_{n+1} = j | X_0 = i_0, ..., X_{n-1} = i_{n-1}, X_n = i) = P(X_{n+1} = j | X_n = i) = (P(X_1 = j | X_0 = i))$

Time-homogeneous. Transition Matrix with non-negative entries and rows sum to 1.

Stochastic Matrix: $P_{ij} \geq 0$ for all i, j. And each row, $i, \sum_{j} P_{ij} = 1$

Graphs: (Weighted w(i,j), Directed): $P_{ij} = \frac{w(i,j)}{w(i)}$

N-Step Transition Matrix:

 P^n is the N step transition matrix of the chain. $P_{ij}^n = P(X_n = j | X_0 = i)$, for all i, j.

Distrib of X_n : $P(X_n = j) = \alpha \mathbb{P}_j^n$: Like the "Marginal Distribution" & Initial Dist α is Row vector **Joint Distribution of** \mathbb{P}^n : For all $0 \geq n_1 \geq n_2 \geq n_3$ and states i_1, i_2, i_3

 $P(X_{n_1} = i_1, X_{n_2} = i_2, X_{n_3} = i_3) = (\alpha P^{n_1})_{i_1} * (P^{n_2-n_1})_{i_1i_2} * (P^{n_3-n_2})_{i_2i_3}$ Can Generalize. Chapman-Kolmogorov Relationship: If $P^{m+n} = P^m P^n$, then $P^{m+n}_{ij} = \sum_k P^m_{ik} P^n_{kj}$ for all i, j.

Limiting Distribution: The prob. dist. λ with the property that for all i & j:

- 0) $\lim_{n\to\infty} \mathbb{P}_{i,i}^n = \lambda_i$
- i) $\lim_{n\to\infty} P(X_n = j) = \lambda_j$
- ii) For any initial distribution α : $\lim \alpha \mathbb{P}^n = \lambda$
- iii) $\lim_{n\to\infty} \mathbb{P}^n = \Lambda$, where Λ is a stochastic matrix whose rows are equal to λ .

Stationary Distribution: $\pi \mathbb{P} = \pi$ and $\pi_j = \sum_i \pi_i \mathbb{P}_{ij}$, for all j.

Lemma 3.1: Assume that π is the limiting dist. of a M.C., then π is a stationary dist.

Limit Theorem for Regular Markov Chain: A Markov Chain whose transition matrix, P, is regular has a limiting distribution. Equivalently, there exists a positive stochastic matrix Π , such that $\lim_{n\to\infty} P^n = \Pi$

Random Walk on a Weighted Graph: $\pi_v = \frac{w(v)}{\sum_z w(z)}$ for all vertices v,

where $w(v) = \sum_{z \sim v} w(v, z)$ is the sum of the weights on all edges incident to v.

Random Walk on a Non-weighted Graph: $\pi_v = \frac{deg(v)}{\sum_z deg(z)} = \frac{deg(v)}{2e}$ where e is the number of edges in the graph.

Accessible $\{p_{ij}^n > 0\} \to \text{Communicate } \{\text{Reflexive, Symmetric, Transitive}\}.$

Irreducible MC: Only 1 communication class.

 $T_j = min\{n > 0 : X_n = j\}$ is first passage time to j, $f_j = P(T_j < \infty | X_0 = j)$

Recurrent: State j is recurrent if a MC started in j eventually revisits j, $f_j = 1$.

Transient: State j is transient if $f_j < 1$.

j Recurrent: $\iff \sum_{n=0}^{\infty} P_{jj}^n = \infty;$ j Transient: $\iff \sum_{n=0}^{\infty} P_{jj}^{n=0} < \infty$ All states in a FINITE IRREDUCIBLE MARKOV CHAIN are RECURRENT

Positive Recurrent: $E(T_j|X_0=j)<\infty$ and Null Recurrent: $E(T_j|X_0=j)=\infty$

Lemma: All states in a recurrent class are either null recurrent or positive recurrent

Limit Theorem for Finite Irreducible MCs: Given a finite, irreducible MC, for each state j, let $\mu_j = E(T_j|X_0 = j)$ be the expected return time to j. Then μ_j is finite, and there exists a unique stationary distribution π , such that $\pi_j = \frac{1}{\mu_j}$ and $\pi_j = \lim_{n \to \infty} \frac{1}{n} \sum_{m=0}^{n-1} P_{ij}^m$

You can also find E(Return Time) with First-Step Analysis $e_x = E(T_i|X_0 = x)$ creates a system.

Lemma: A communication class is closed if it consists of all recurrent states. A finite communication class is closed if it consists of all recurrent states.

Period: $d(i) = gcd(n > 0; P_{ij}^n > 0)$ and Aperiodic: d(i) = 1 and $d(i) = \infty$ if no return

Canonical Decomposition: Arrange the matrix into closed & transient classes, P is broken down into mini-irreducible chains.

Ergodic Markov Chains:

A MC is ergodic if it is irreducible, aperiodic, and all states have finite return times (all finite MC's have finite return times).

Given an ergodic MC, then there exists a unique, positive, stationary distribution.

Ergodic Chains and Regular Matrices: The Markov chain is ergodic \iff P is regular

Lemma: If i is an aperiodic state, there exists a pos. integer N such that $P_{ii}^n > 0$ for all $n \ge N$

Absorbing Chains:

State i is an absorbing state if $P_{ii} = 1$. A M.C. is called an absorbing chain if it has at least one absorbing state.

Expected # of Visits to Transient States: $F = (I - Q)^{-1}$. $P = \begin{bmatrix} \frac{Q|R}{0|I} \end{bmatrix} \rightarrow P^n = \begin{bmatrix} \frac{0|(I-Q)^{-1}R}{0|I} \end{bmatrix}$

Absorption Probability: $(FR)_{ij}$ and **Absorption Time:** $(F1)_i$ (sum of the row)

Strong Markov Property:

Let $X_0, X_1,...$ be a MC. Let S be a stopping time. Then, $X_S, X_{S+1},...$ is a MC with transition P. i.e. The chain regenerates itself and starts anew when it reaches S.