CHAPTER 5-Confidence Regions

Ne quantify the difference between an extimator T and D giving an interval estimate [L(x) R(x)]

Confidence interval.

$$X \sim p_{\theta}(x)$$
 $\theta \in \mathbb{R}$

a confidence interval for & is

a map

$$X \mapsto [L(x), R(x)]$$

such that

$$P_{\theta}(L(x) \leq \theta \leq R(x)) \gtrsim C$$

where Cis said the confidence level (usually 0.90, 0.95, 0,99)

- that has a high probability of Containing θ .
- The important point is that, given $ANY \theta$, we have a fixed coverage probability of θ .
- · After the data are observed the CI is just a mon-stochastic in-terval

Example Let
$$X \sim N(\theta, 1)$$

then $[X - 1.96, X + 1.96]$
 $N'S$ a CI for θ at level 0.95
Proof: $P_{\theta}(X - 1.96 \le \theta \le X + 1.96) = P_{\theta}(-1.96 \le \theta - X \le 1.96) = P_{\theta}(-1.96 \le X - \theta \ge -1.96)$
 $= P_{\theta}(-1.96 \le X - \theta \le 1.96)$

$$P_{\theta} \left(-1.96 \leq Z \leq 1.96\right)$$
with
$$Z \sim N(0,1)$$

$$= \Phi(1.96) - \Phi(-1.96) = 0.95$$

Suppose that we get X = 10. Then the realized CI is 10.96 $\pm 1.96 = 11.96$

But wa can't interpret as: we have the 95% chance ef having 8.04 (0) (11.96.

ASO is FIXED whiting

Po(8.04 5 D 5 11.96).

Oloes not have any sense

Confidence region at lever C for 8

is a stochastic subset G_{x} of G

$$P_{\theta} (G_X \ni \theta) > c$$

for all $\theta \in \mathbb{A}$.

EXAMPLE 5.2 $(X_1 - X_n) \sim N(\mu, \sigma^2)$ with σ^2 Known

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{m}} \sim N(0,1)$$

Let $C = 1-\alpha$

d/2 1 - x 2/2

\$ 4- a/2

$$P\left(-\xi_{1-\alpha/2} \in Z \leq \xi_{1-\alpha/2}\right) = 1-\alpha$$

$$P\left(\bar{X} - \frac{\sigma}{\sqrt{m}} \xi_{1-\alpha/2} \leq \mu \leq \bar{X} + \frac{\sigma}{\sqrt{m}} \xi_{1-\alpha/2}\right) = 1-\alpha$$

5.3 Pivots

$$Z = \frac{\overline{X} - \mu}{\sigma / \overline{v_n}}$$
 is said to be a pivot.

because
$$P_{\mu}$$
 ($a \leq \frac{\bar{x} - \mu}{6/\sqrt{m}} \leq 6$)

is Known and does not depend on p.

Note that the pivot is a function of the data X and of the unknown parameter. $\theta = \mu$.

The confidence interval is obtained by inverting the pivot

Example 5.4 $(x_1 - X_m) \sim N(\mu, \sigma^2)$ with σ^2 unknown.

is a pivot because

$$P\left(a \in \frac{\overline{X} - \mu}{S_{\times}/\sqrt{m}} \leq b\right) = P\left(a \leq t_{m-1} \leq b\right)$$

is known and does not depend on the parameter $\theta = (\mu_1 \sigma^2)$.

Using this we find a confidence interval

$$P_{\mu,\sigma}\left(-t_{m-1,1-\alpha/2} \leq \frac{\overline{X}-\mu}{S_{\times}/\sqrt{m}} \leq t_{m-1,1-\alpha/2}\right) = 1-\alpha$$

So we get the CI:

$$\left[\begin{array}{cccc} \overline{X} - \frac{S_{X}}{V_{m}} t_{m-1,1-\alpha/2} j & \overline{X} + \frac{S_{X}}{V_{n}} t_{m-1,1-\alpha/2} \end{array}\right]$$

· the interval is wider than the interval

$$\overline{X} \pm \frac{\sigma}{\sqrt{m}} \xi_{1-\alpha/2}$$

- The length of the CI is rendom.
- o the difference between the intervals disappears for n -> 00.

· Nou symmetric CI con be constructed from

$$\left[\overline{X} - \frac{Sx}{\sqrt{m}} t_{m-1,1-\sigma}; \overline{X} - \frac{Sx}{\sqrt{m}} t_{m-1,\beta}\right]$$

with $\beta + \gamma = \alpha$.

the shortest CI is obtained for $\beta = \gamma = \alpha/2$.