GENERATING FUNCTION

PROF. DR. SHAILENDRA BANDEWAR

GENERATING FUNCTION

Let $\{a_n\}_{n=0}^{\infty}$ be any sequence. Then generating function of $\{a_n\}_{n=0}^{\infty}$ is defined as

$$G(x) = \sum_{n=0}^{\infty} a_n x^n$$

POWER SERIES

• $\frac{1}{1-x}$ is the generating function of the sequence 1, 1, 1, 1,

Because
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots$$

• $\frac{1}{1-ax}$ is the generating function of the sequence 1, a, a^2 , a^3 , ...

Because
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots$$

OPERATIONS ON POWER SERIES

Let
$$f(x) = \sum_{k=0}^{\infty} a_k x^k$$
 and $g(x) = \sum_{k=0}^{\infty} b_k x^k$, then

1.
$$f(x) + g(x) = \sum_{k=0}^{\infty} (a_k + b_k) x^k$$

$$2. f(x)g(x) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} a_j b_{k-j}\right) x^k$$

1. If
$$f(x) = \frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} a_n x^n$$
, find a_n

2. If
$$f(x) = \frac{1}{(1-x)^3} = \sum_{n=0}^{\infty} a_n x^n$$
, find a_n

EXTENDED BINOMIAL COEFFICIENT

Let u be nay real number and k be any positive integer, the extended binomial coefficient $\binom{u}{k}$ is defined as

$$\binom{u}{k} = \begin{cases} u(u-1) \dots \frac{u-k+1}{k!} & \text{if } k > 0, \\ 1 & \text{if } k = 0 \end{cases}$$

- I. Find extended binomial coefficient of $\begin{pmatrix} -3 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} \frac{1}{2} \\ 4 \end{pmatrix}$.
- 2. Show that $\binom{-n}{k} = (-1)^k C(n+k-1,k)$.

THE EXTENDED BINOMIAL THEOREM

Let x be a real number with |x| < 1 and u is any real number. Then

$$(1+x)^{u} = \sum_{k=0}^{\infty} {u \choose k} x^{k}$$

- I. Find the generating functions for $(1+x)^{-n}$ and $(1-x)^{-n}$, where n is a positive integer using extended binomial theorem.
- 2. Find the coefficient of x^{10} in the power series of each of these functions.

a.
$$\frac{1}{(1+x)^2}$$

$$b. \frac{1}{(1+2x)^4}$$

EXAMPLE: SOLUTION OF RECURRENCE RELATION USING GENERATING FUNCTION

I. Use generating function to solve the recurrence relation

- a. $a_n = 7a_{n-1}$, where $a_0 = 5$.
- **b.** $a_n = 3a_{n-1} + 4^{n-1}$, where $a_0 = 1$.
- c. $a_n = a_{n-1} + 2a_{n-2} + 2^n$, where $a_0 = 4$ and $a_1 = 12$.
- d. $a_n = 2a_{n-1} + 3a_{n-2} + 4^n + 6$, where $a_0 = 20$ and $a_1 = 60$.

- 1. Find the generating function for the sequence 3, 3, 3, 3, 3, 3, 3.
- 2. Find the generating function for the sequence 1, 4, 16, 64, 256.

Find the closed form for the generating function for each of these sequence

- a. 0, 2, 2,2,2,2,2,2,0,0,0,...
- **b.** 0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,...
- c. $\binom{7}{0}$, $\binom{7}{1}$, $\binom{7}{2}$, ..., $\binom{7}{7}$, 0,0,0, ...
- *d.* 3, −3,3, −3,3, −3, ...
- e. I, I, 0, I, I, I, I, I...

Find the closed form for the generating function for each of these sequence.

- a. $a_n = 4$, for all n = 0,1,2,3,...
- **b.** $a_n = 2^n$, for all n = 0,1,2,3,...
- c. $a_n = 2n + 3$, for all n = 0,1,2,3,...
- **d.** $a_n = \binom{n+4}{n}$, for all n = 0,1,2,3,...

For each of these generating functions, find the closed formula for the sequence it determines.

1.
$$(x^2+1)^3$$

2.
$$\frac{1}{1-2x^2}$$

1.
$$(x^2 + 1)^3$$
 2. $\frac{1}{1-2x^2}$ 3. $\frac{x^2}{(1-x)^3}$

2.
$$\frac{x}{1+x+x^2}$$

3.
$$e^{3x^2} - 1$$
 4. $\frac{1+x^3}{(1+x)^3}$

Find the closed form for the generating function for each of these sequence.

a.
$$a_n = \frac{1}{(n+1)!}$$
, for all $n = 0,1,2,3,...$

b.
$$a_n = \binom{n}{2}$$
, for all $n = 0,1,2,3,...$

c.
$$a_n = {10 \choose n+1}$$
, for all $n = 0,1,2,3,...$

