Practical Training on GraphPad Prism for Statistical Testing

Jingwen Gu (jingwen.gu@nih.gov)

Biostatistician

Bioinformatics and Computational Biosciences Branch (BCBB)

Office of Cyber Infrastructure and Computational Biology (OCICB)

Outline

Dependent variable is Continuous

- Unpaired t-test vs paired t-test vs Mann-Whitney test
- One-way ANOVA vs Repeated measures one-way ANOVA vs Kruskal-Wallis and Friedman tests
 - Multiple comparison

T-test and related nonparametric - Overall

T tests, and related nonparametric tests compare **two sets** of measurements (data expressed using an interval or ratio scale).

- Paired or not paired?
- Parametric or nonparametric?
- Equal standard deviation or not?

Checklist: <u>unpaired t-test</u>, <u>paired t-test</u>, <u>Mann-Whitney test</u> Kolmogorov-Smirnov test, Wilcoxon matched pairs test...

Unpaired or paired?

Treatment A			Treatment B					
ID	preA	postA	ΔΑ	_	ID	preB	postB	ΔΒ
1	63	77	14		11	81	101	20
2	69	88	19		12	87	103	16
3	76	90	14		13	77	107	30
4	78	95	17		14	80	114	34
5	80	96	16		15	76	116	40
6	89	96	7		16	86	116	30
7	90	102	12		17	98	116	18
8	92	104	12		18	87	120	33
9	103	110	7		19	105	120	15
10	112	115	3		20	69	127	58

ID: individual identification, preA, preB: before the treatment A or B, postA, postB: after the treatment A or B, ΔA , ΔB : difference between before and after the treatment A or B.

 If we want to compare ΔA and ΔB, is this unpaired or paired experimental design?

Unpaired.

Example Source

Unpaired and paired? Cont

Treatment A			Treatment B					
ID	preA	postA	ΔΑ		ID	preB	postB	ΔΒ
1	63	77	14		1	73	103	30
2	69	88	19		2	74	104	30
3	76	90	14		3	76	107	31
4	78	95	17		4	84	108	24
5	80	96	16	wash out	5	84	110	26
6	89	96	7		6	86	110	24
7	90	102	12		7	92	113	21
8	92	104	12		8	95	114	19
9	103	110	7		9	103	118	15
10	112	115	3		10	115	120	5

ID: individual identification, preA, preB: before the treatment A or B, postA, postB: after the treatment A or B, Δ A, Δ B: difference between before and after the treatment A or B.

• If we want to compare ΔA and ΔB , is this unpaired or paired experimental design?

Paired.

[Read more] Experimental design: unpaired or paired

Parametric or nonparametric?

If the data in both groups follow Gaussian distribution: use parametric test.

Parametric test:

The **unpaired t test** compares the means of two **unmatched** groups, assuming that the values follow a Gaussian distribution.

The **paired t test** compares the means of two **matched** groups, assuming that the distribution of the before-after differences follows a Gaussian distribution.

Parametric or nonparametric? Cont

If the data does not follow Gaussian distribution?

- 1. Data transformation
- 2. Use t-test anyway, given that t-test is robust when sample size is large.
- 3. Use nonparametric test.

The Mann-Whitney and the Kolmogorov-Smirnov compares the distributions of two unmatched groups. [Nonparametric]

The Wilcoxon matched pairs test compares two paired groups. [Nonparametric]

Nonparametric tests does not require Gaussian but have less power. Deciding when to use a nonparametric test is not straightforward.

[Read more] Assume Gaussian distribution? Choose test?

Let's practice in Prism

- Use sample data provided by Prism for hands on
- Perform unpaired, paired t-test and related nonparametric tests.

Interpreting result:

<u>Unpaired t-test</u>, <u>paired t-test</u>, <u>Mann-Whitney test</u>, <u>Kolmogorov-Smirnov test</u>, <u>Wilcoxon matched pair test</u>.

One-way ANOVA and related nonparametric test

One-way ANOVA and related nonparametric test compare three or more sets of measurements (data expressed using an interval or ratio scale).

- Paired or not paired (Matching/Repeat Measure)?
- Parametric or nonparametric?
- Equal standard deviation or not? Sphericity?

Checklist: <u>ordinary one-way ANOVA</u>, <u>RM one-way ANOVA</u>, <u>Kruskal-Wallis test</u>, <u>Friedman test</u>...

Unpaired or paired?

A study is designed to test whether there is a difference in mean daily calcium intake in adults with normal bone density, adults with osteopenia (a low bone density which may lead to osteoporosis) and adults with osteoporosis.

Normal Bone Density	Osteopenia	Osteoporosis
1200	1000	890
1000	1100	650
980	700	1100
900	800	900
750	500	400
800	700	350

Unpaired

Example Source

Unpaired or paired? Cont

The four columns represent four sequential treatments. Each row represents a different subject (or a different set of matched data).

12		Group A	Group B	Group C	Group D
		Control	Treatment 1	Treatment 2	Treatment 3
	0	Υ	Υ	Υ	Υ
1	GS	54	43	78	111
2	JM	23	34	37	41
3	НМ	45	65	99	78
4	DR	31	33	36	35
5	PS	15	25	30	26

Paired (Repeat Measures)

Example source: Prism 8

Ordinary one-way ANOVA and related nonparametric test

^{*} Deciding when to use a nonparametric test is not straightforward.

Repeated Measure One-way ANOVA and related nonparametric test

Read more: 12

** Under this experimental design, if there is missing values, mixed effects model will be performed instead of ANOVA. Result only meaningful if the values are missing for random reasons.

Multiple Comparison

Prism provide an option of doing multiple comparison option when customizing your ANOVA analysis. It is usually noted as a post doc test in ANOVA, but however they could be performed independently.

[**Definition**] Multiple comparisons arises when a statistical analysis involves multiple simultaneous statistical tests, each of which has a potential to produce a "discovery."

[Methods] Multiple comparisons corrected by statistical hypothesis testing; controlling the false discovery rate, don't correct. If using a familywise definition of alpha, the significance level doesn't apply to each comparison, but rather to the entire family of comparisons. In general, this makes it harder to reach significance.

Read more: Methods

Let's practice in Prism

- Use bone density and calcium intake data to perform ordinary one-way ANOVA
- Use the sample data provided by Prism to perform RM one-way ANOVA

Interpreting result:

Ordinary one-way ANOVA, RM one-way ANOVA, mixed model one-way, Kruskal-Wallis test, Friedman test.

Challenging question

Exercise Intervention data: A 6-month exercise-training intervention where six subjects had their fitness level measured on three occasions: pre-, 3 months, and post-intervention. Their data is shown below along with some initial calculations:

Subjects	Pre-	3 Months	6 Months
1	45	50	55
2	42	42	45
3	36	41	43
4	39	35	40
5	51	55	59
6	44	49	56

Questions:

- 1) Is there any difference in fitness level on these three occasions?
- 2) If differences exist, compare group differences in 3 months intervention and 6 months intervention with the pre- group.

