Response to Final Office Action mailed on January 16, 2008

Page 2

IN THE CLAIMS

The following listing of the claims is provided in accordance with 37 C.F.R. 1.121:

- 1. (currently amended) A method for forming a plurality of discrete flow directors on a component comprising a wall having at least one film-cooling hole extending through the wall and defining an exit site, wherein at least one of the <u>discrete</u> flow directors is associated with <u>each</u> respective one of the at least one film cooling hole and wherein each of the flow directors comprises a three-dimensional projection disposed external to the cooling hole and having limited dimensions in three directions, said method comprising depositing at least one layer on the wall of the component, wherein said deposition includes shaping the at least one layer in accordance with a predetermined shape to form each of the flow directors that extends outwards from the wall of the component and through hot gas flow path to direct a coolant flowing from the film-cooling hole toward a hot surface of the wall, wherein the flow director does not extend over the exit site.
- 2. (original) The method of Claim 1, wherein said deposition comprises depositing a plurality of layers on the wall of the component and shaping the layers in accordance with the predetermined shape to form the flow director.
- 3. (previously presented) The method of Claim 1, wherein the wall has a cold surface and a hot surface, wherein the at least one film-cooling hole extends through the wall for flowing a coolant from the cold surface to the hot surface, and wherein said deposition comprises depositing the at least one layer on the hot surface of the wall.

Response to Final Office Action mailed on January 16, 2008

Page 3

- 4. (original) The method of Claim 3, wherein the flow director comprises a flow modifier adapted to direct the coolant flowing from the film-cooling hole and out of the exit site toward the hot surface of the wall.
- 5. (original) The method of Claim 3, wherein the flow director comprises a ridge extending along at least a portion of the exit site and further extending to a position downstream of the exit site.
- 6. (original) The method of Claim 1, wherein said deposition comprises: delivering a mixture through a nozzle onto the wall to form the layer, the mixture comprising a powder dispersed in a liquid medium.
- 7. (original) The method of Claim 6, further comprising heating the layer.
- 8. (original) The method of Claim 6, wherein said deposition further comprises displacing the nozzle relative to the wall to form the at least one layer in accordance with the predetermined shape.
- 9. (original) The method of Claim 8, wherein said deposition further comprises controlling said movement of the nozzle relative to the wall to form the at least one layer in accordance with the predetermine shape.
- 10. (original) The method of Claim 1, wherein said deposition is performed a plurality of times at a respective plurality of positions on the wall of the component to form a plurality of flow directors on the wall of the component.
- 11. (original) The method of Claim 1, wherein the at least one layer comprises a metal.

Response to Final Office Action mailed on January 16, 2008

Page 4

- 12. (original) The method of Claim 1, wherein the at least one layer comprises a ceramic.
- 13. (original) The method of Claim 1, wherein the at least one layer comprises a material selected from the group consisting of metals, ceramics and combinations thereof.
- 14. (original) The method of Claim 1, wherein the component and a second component define a secondary cooling slot for receiving and guiding a secondary coolant flow, and wherein the flow director is adapted to enhance the secondary coolant flow along at least one of the component and the second components within the secondary coolant slot.
- 15. (original) The method of Claim 1, wherein said deposition is performed using a process selected from the group consisting of chemical vapor deposition, ion plasma deposition, electron beam physical vapor deposition, electroplating and combinations thereof.
- 16. (original) The method of Claim 15, wherein said deposition further comprises at least one masking step.
- 17. (currently amended) A method for forming a plurality of discrete flow directors on a turbine component comprising a wall having a cold surface and a hot surface, wherein at least one film-cooling hole extends through the wall for flowing a coolant from the cold surface to the hot surface, the film-cooling hole defining an exit site in the hot surface of the wall, wherein at least one of the <u>discrete</u> flow directors is associated with <u>each respective one</u> of the at least one film cooling hole and wherein each

Response to Final Office Action mailed on January 16, 2008

Page 5

of the flow directors comprises a three-dimensional projection disposed external to the cooling hole and having limited dimensions in three directions, said method comprising:

depositing at least one layer on the wall of the component, wherein said deposition includes shaping the at least one layer in accordance with a predetermined shape to form each of the flow directors that extends outwards from the wall of the component and through hot gas flow path to direct the coolant flowing from the film-cooling hole toward the hot surface of the wall, wherein the flow director does not extend over the exit site.

- 18. (original) The method of Claim 17, wherein said deposition comprises depositing a plurality of layers on the wall of the component and shaping the layers in accordance with the predetermined shape to form the flow director.
- 19. (original) The method of Claim 17, wherein the flow director comprises a flow modifier adapted to direct the coolant flowing from the film-cooling hole and out of the exit site toward the hot surface of the wall.
- 20. (original) The method of Claim 17, wherein the flow director comprises a ridge extending along at least a portion of the exit site and further extending to a position downstream of the exit site.
- 21. (original) The method of Claim 17, wherein said deposition comprises:

delivering a mixture through a nozzle onto the wall to form the layer, the mixture comprising a powder dispersed in a liquid medium;

displacing the nozzle relative to the wall to form the at least one layer in accordance with the predetermined shape; and

controlling said movement of the nozzle relative to the wall to form the at least one layer in accordance with the predetermine shape.

Response to Final Office Action mailed on January 16, 2008

Page 6

- 22. (original) The method of Claim 21, further comprising heating the layer.
- 23. (original) The method of Claim 17, wherein said deposition is performed a plurality of times at a respective plurality of positions on the wall of the component to form a plurality of flow directors on the wall of the component.
- 24. (previously presented) The method of Claim 1, wherein forming the flow director comprises forming the flow director on a hot gas path surface of the component.
 - 25. (previously canceled)
 - 26. (previously canceled)
- 27. (previously presented) The method of Claim 1, wherein the flow director is rounded, or polygonal, or triangular, or combinations thereof.
 - 28. (previously canceled)