# **Dual Monostable Multivibrator**

The MC14528B is a dual, retriggerable, resettable monostable multivibrator. It may be triggered from either edge of an input pulse, and produces an output pulse over a wide range of widths, the duration of which is determined by the external timing components,  $C_X$  and  $R_X$ .

- Separate Reset Available
- Diode Protection on All Inputs
- Triggerable from Leading or Trailing Edge Pulse
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low–power TTL Loads or One Low–power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-Pin Replacement with the MC14538B



| Symbol                             | Parameter                                            | Value                         | Unit |  |  |
|------------------------------------|------------------------------------------------------|-------------------------------|------|--|--|
| V <sub>DD</sub>                    | DC Supply Voltage Range                              | -0.5 to +18.0                 | V    |  |  |
| V <sub>in</sub> , V <sub>out</sub> | Input or Output Voltage Range<br>(DC or Transient)   | -0.5 to V <sub>DD</sub> + 0.5 | V    |  |  |
| I <sub>in</sub> , I <sub>out</sub> | Input or Output Current<br>(DC or Transient) per Pin | ±10                           | mA   |  |  |
| P <sub>D</sub>                     | Power Dissipation,<br>per Package (Note 3.)          | 500                           | mW   |  |  |
| T <sub>A</sub>                     | Ambient Temperature Range                            | -55 to +125                   | °C   |  |  |
| T <sub>stg</sub>                   | Storage Temperature Range                            | -65 to +150                   | °C   |  |  |
| TL                                 | Lead Temperature<br>(8–Second Soldering)             | 260                           | °C   |  |  |

- Maximum Ratings are those values beyond which damage to the device may occur.
- Temperature Derating: Plastic "P and D/DW" Packages: – 7.0 mW/°C From 65°C To 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation,  $V_{in}$  and  $V_{out}$  should be constrained to the range  $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$ .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either  $V_{SS}$  or  $V_{DD}$ ). Unused outputs must be left open.



# ON Semiconductor

http://onsemi.com

## MARKING DIAGRAMS



PDIP-16 P SUFFIX CASE 648





SOIC-16 D SUFFIX CASE 751B





SOEIAJ-16 F SUFFIX CASE 966



A = Assembly Location
WL or L = Wafer Lot

YY or Y = Year WW or W = Work Week

#### ORDERING INFORMATION

| Device      | Package   | Shipping         |
|-------------|-----------|------------------|
| MC14528BCP  | PDIP-16   | 2000/Box         |
| MC14528BD   | SOIC-16   | 48/Rail          |
| MC14528BDR2 | SOIC-16   | 2500/Tape & Reel |
| MC14528BF   | SOEIAJ-16 | See Note 1.      |
| MC14528BFEL | SOEIAJ-16 | See Note 1.      |

 For ordering information on the EIAJ version of the SOIC packages, please contact your local ON Semiconductor representative.

# **PIN ASSIGNMENT**



# **BLOCK DIAGRAM**





V<sub>DD</sub> = PIN 16 V<sub>SS</sub> = PIN 1, PIN 8, PIN 15

 $R_X$  AND  $C_X$  ARE EXTERNAL COMPONENTS

# **ONE-SHOT SELECTION GUIDE**



\*LIMITED OPERATING VOLTAGE (2-6 V)

TOTAL OUTPUT PULSE WIDTH RANGE RECOMMENDED PULSE WIDTH RANGE X

# **ELECTRICAL CHARACTERISTICS** (Voltages Referenced to V<sub>SS</sub>)

|                                                                                                                                              |                       |                 | $V_{DD}$               | - 5                               | 5°C                     |                                             | 25°C                                                                          |                                               | 125                               | 5°C                  |      |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|------------------------|-----------------------------------|-------------------------|---------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------|----------------------|------|
| Characteristic                                                                                                                               |                       | Symbol          | Vdc                    | Min                               | Max                     | Min                                         | Тур (4.)                                                                      | Max                                           | Min                               | Max                  | Unit |
| Output Voltage<br>V <sub>in</sub> = V <sub>DD</sub> or 0                                                                                     | "0" Level             | V <sub>OL</sub> | 5.0<br>10<br>15        | _<br>_<br>_                       | 0.05<br>0.05<br>0.05    | _<br>_<br>_                                 | 0<br>0<br>0                                                                   | 0.05<br>0.05<br>0.05                          | _<br>_<br>_                       | 0.05<br>0.05<br>0.05 | Vdc  |
| $V_{in} = 0$ or $V_{DD}$                                                                                                                     | "1" Level             | V <sub>OH</sub> | 5.0<br>10<br>15        | 4.95<br>9.95<br>14.95             | _<br>_<br>_             | 4.95<br>9.95<br>14.95                       | 5.0<br>10<br>15                                                               | _<br>_<br>_                                   | 4.95<br>9.95<br>14.95             | _<br>_<br>_          | Vdc  |
| Input Voltage $(V_O = 4.5 \text{ or } 0.5 \text{ Vdc})$ $(V_O = 9.0 \text{ or } 1.0 \text{ Vdc})$ $(V_O = 13.5 \text{ or } 1.5 \text{ Vdc})$ | "0" Level             | V <sub>IL</sub> | 5.0<br>10<br>15        | _<br>_<br>_                       | 1.5<br>3.0<br>4.0       | _<br>_<br>_                                 | 2.25<br>4.50<br>6.75                                                          | 1.5<br>3.0<br>4.0                             |                                   | 1.5<br>3.0<br>4.0    | Vdc  |
| $(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$<br>$(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$<br>$(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$         | "1" Level             | V <sub>IH</sub> | 5.0<br>10<br>15        | 3.5<br>7.0<br>11                  | _<br>_<br>_             | 3.5<br>7.0<br>11                            | 2.75<br>5.50<br>8.25                                                          | _                                             | 3.5<br>7.0<br>11                  | =                    | Vdc  |
| Output Drive Current $(V_{OH} = 2.5 \text{ Vdc})$ $(V_{OH} = 4.6 \text{ Vdc})$ $(V_{OH} = 9.5 \text{ Vdc})$ $(V_{OH} = 13.5 \text{ Vdc})$    | Source                | I <sub>OH</sub> | 5.0<br>5.0<br>10<br>15 | - 1.2<br>- 0.64<br>- 1.6<br>- 4.2 | _<br>_<br>_<br>_        | - 1.0<br>- 0.51<br>- 1.3<br>- 3.4           | - 1.7<br>- 0.88<br>- 2.25<br>- 8.8                                            | _<br>_<br>_<br>_                              | - 0.7<br>- 0.36<br>- 0.9<br>- 2.4 | _<br>_<br>_<br>_     | mAdc |
| $(V_{OL} = 0.4 \text{ Vdc})$<br>$(V_{OL} = 0.5 \text{ Vdc})$<br>$(V_{OL} = 1.5 \text{ Vdc})$                                                 | Sink                  | I <sub>OL</sub> | 5.0<br>10<br>15        | 0.64<br>1.6<br>4.2                | _<br>_<br>_             | 0.51<br>1.3<br>3.4                          | 0.88<br>2.25<br>8.8                                                           | _<br>_<br>_                                   | 0.36<br>0.9<br>2.4                | _<br>_<br>_          | mAdc |
| Input Current                                                                                                                                |                       | I <sub>in</sub> | 15                     | _                                 | ± 0.1                   | _                                           | ±0.00001                                                                      | ± 0.1                                         | _                                 | ± 1.0                | μAdc |
| Input Capacitance (V <sub>in</sub> = 0)                                                                                                      |                       | C <sub>in</sub> | _                      | _                                 | _                       | _                                           | 5.0                                                                           | 7.5                                           | _                                 | _                    | pF   |
| Quiescent Current<br>(Per Package)                                                                                                           |                       | I <sub>DD</sub> | 5.0<br>10<br>15        | _<br>_<br>_                       | 5.0<br>10<br>20         | _<br>_<br>_                                 | 0.005<br>0.010<br>0.015                                                       | 5.0<br>10<br>20                               | _<br>_<br>_                       | 150<br>300<br>600    | μAdc |
| Total Supply Current at an external load Capacitan and at external timing capacitance (C <sub>X</sub> ), use th formula — <sup>(5.)</sup>    | ice (C <sub>L</sub> ) | I <sub>T</sub>  | _                      | wher                              | e: I <sub>T</sub> in μΑ | R <sub>X</sub> C <sub>3</sub><br>(per circu | $C_L + 0.36C_X$ , $(V_{DD}^{-2})^2 f$ ] x iit), $C_L$ and $C_L$ in kHz is inp | : 10 <sup>–3</sup><br>C <sub>X</sub> in pF, R | X in mego                         | ohms,                | μAdc |

<sup>4.</sup> Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

5. The formulas given are for the typical characteristics only at 25 °C.

# SWITCHING CHARACTERISTICS (8.) $(C_L = 50 \text{ pF}, T_A = 25^{\circ}C)$

| Characteristic                                                                                                                                                                                                                                                                              | Symbol                                 | C <sub>X</sub><br>pF | $\mathbf{R}_{\mathbf{X}}$ $\mathbf{k}\Omega$ | V <sub>DD</sub><br>Vdc | Min             | Typ <sup>(9.)</sup> | Max               | Unit |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------|----------------------------------------------|------------------------|-----------------|---------------------|-------------------|------|
| Output Rise and Fall Time $t_{TLH}, t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns}$ $t_{TLH}, t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns}$ $t_{TLH}, t_{THL} = (0.55 \text{ ns/pF}) C_L + 9.5 \text{ ns}$                                                                       | t <sub>TLH</sub> ,<br>t <sub>THL</sub> | _                    | _                                            | 5.0<br>10<br>15        | _<br>_<br>_     | 100<br>50<br>40     | 200<br>100<br>80  | ns   |
| Turn–Off, Turn–On Delay Time — A or B to Q or $\overline{Q}$ t <sub>PLH</sub> , t <sub>PHL</sub> = (1.7 ns/pF) C <sub>L</sub> + 240 ns t <sub>PLH</sub> , t <sub>PHL</sub> = (0.66 ns/pF) C <sub>L</sub> + 87 ns t <sub>PLH</sub> , t <sub>PHL</sub> = (0.5 ns/pF) C <sub>L</sub> + 65 ns   | t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | 15                   | 5.0                                          | 5.0<br>10<br>15        |                 | 325<br>120<br>90    | 650<br>240<br>180 | ns   |
| Turn–Off, Turn–On Delay Time — A or B to Q or $\overline{Q}$ t <sub>PLH</sub> , t <sub>PHL</sub> = (1.7 ns/pF) C <sub>L</sub> + 620 ns t <sub>PLH</sub> , t <sub>PHL</sub> = (0.66 ns/pF) C <sub>L</sub> + 257 ns t <sub>PLH</sub> , t <sub>PHL</sub> = (0.5 ns/pF) C <sub>L</sub> + 185 ns | t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | 1000                 | 10                                           | 5.0<br>10<br>15        | _<br>_<br>_     | 705<br>290<br>210   | _<br>_<br>_       | ns   |
| Input Pulse Width — A or B                                                                                                                                                                                                                                                                  | t <sub>WH</sub>                        | 15                   | 5.0                                          | 5.0<br>10<br>15        | 150<br>75<br>55 | 70<br>30<br>30      | _<br>_<br>_       | ns   |
|                                                                                                                                                                                                                                                                                             | t <sub>WL</sub>                        | 1000                 | 10                                           | 5.0<br>10<br>15        | _<br>_<br>_     | 70<br>30<br>30      | _<br>_<br>_       | ns   |
| Output Pulse Width — Q or $\overline{Q}$<br>(For $C_X < 0.01 \mu\text{F}$ use graph for appropriate $V_{DD}$ level.)                                                                                                                                                                        | t <sub>W</sub>                         | 15                   | 5.0                                          | 5.0<br>10<br>15        | _<br>_<br>_     | 550<br>350<br>300   | _<br>_<br>_       | ns   |
| Output Pulse Width — Q or $\overline{Q}$<br>(For $C_X > 0.01 \mu F$ use formula:<br>$t_W = 0.2 R_X C_X Ln [V_{DD} - V_{SS}])^{(6.)}$                                                                                                                                                        | t <sub>W</sub>                         | 10,000               | 10                                           | 5.0<br>10<br>15        | 15<br>10<br>15  | 30<br>50<br>55      | 45<br>90<br>95    | μs   |
| Pulse Width Match between Circuits in the same package                                                                                                                                                                                                                                      | t1 – t2                                | 10,000               | 10                                           | 5.0<br>10<br>15        | _<br>_<br>_     | 6.0<br>8.0<br>8.0   | 25<br>35<br>35    | %    |
| Reset Propagation Delay — Reset to Q or Q                                                                                                                                                                                                                                                   | t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | 15                   | 5.0                                          | 5.0<br>10<br>15        | _<br>_<br>_     | 325<br>90<br>60     | 600<br>225<br>170 | ns   |
|                                                                                                                                                                                                                                                                                             |                                        | 1000                 | 10                                           | 5.0<br>10<br>15        | _<br>_<br>_     | 1000<br>300<br>250  | _<br>_<br>_       | ns   |
| Retrigger Time                                                                                                                                                                                                                                                                              | t <sub>rr</sub>                        | 15                   | 5.0                                          | 5.0<br>10<br>15        | 0<br>0<br>0     | _<br>_<br>_         | _<br>_<br>_       | ns   |
|                                                                                                                                                                                                                                                                                             |                                        | 1000                 | 10                                           | 5.0<br>10<br>15        | 0<br>0<br>0     | _<br>_<br>_         | _<br>_<br>_       | ns   |
| External Timing Resistance                                                                                                                                                                                                                                                                  | R <sub>X</sub>                         | <u> </u>             | _                                            | _                      | 5.0             | _                   | 1000              | kΩ   |
| External Timing Capacitance                                                                                                                                                                                                                                                                 | C <sub>X</sub>                         | <u> </u>             | — — No Limits <sup>(7.)</sup>                |                        | μF              |                     |                   |      |

R<sub>X</sub> is in Ohms, C<sub>X</sub> is in farads, V<sub>DD</sub> and V<sub>SS</sub> in volts, PW<sub>out</sub> in seconds.
 If C<sub>X</sub> > 15 μF, Use Discharge Protection Diode D<sub>X</sub>, per Fig. 9.
 The formulas given are for the typical characteristics only at 25°C.
 Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

## **FUNCTION TABLE**

|        | Inputs                | Outputs       |             |                    |
|--------|-----------------------|---------------|-------------|--------------------|
| Reset  | Α                     | В             | Q           | Q                  |
| H<br>H |                       | H ~           | <u>Г</u>    | 고                  |
| H<br>H | _/_ \_<br>H           |               |             | iggered<br>iggered |
| H<br>H | L, H, <i>⁻</i> ∟<br>L | H<br>L, H, -/ | ı           | iggered<br>iggered |
|        | X                     | X             | L<br>Not Tr | H<br>iggered       |



V<sub>DD</sub>
0 16

A Q V<sub>OL</sub>

B

RESET Q OPEN

8 V<sub>SS</sub>

Figure 1. Output Source Current Test Circuit

Figure 2. Output Sink Current Test Circuit



Figure 3. Power Dissipation Test Circuit and Waveforms



#### INPUT CONNECTIONS

| Characteristics                                               | Reset           | Α               | В               |
|---------------------------------------------------------------|-----------------|-----------------|-----------------|
| $t_{\text{PLH}},t_{\text{PHL}},t_{\text{TLH}},t_{\text{THL}}$ | V <sub>DD</sub> | PG1             | V <sub>DD</sub> |
| $t_{\rm PLH},t_{\rm PHL},t_{\rm TLH},t_{\rm THL}$ $t_{\rm W}$ | V <sub>DD</sub> | V <sub>SS</sub> | PG2             |
| $t_{PLH(R)}, t_{PHL(R)}, t_{W}$                               | PG3             | PG1             | PG2             |

\* Includes capacitance of probes, wiring, and fixture parasitic.

NOTE: AC test waveforms for PG1, PG2, and PG3 on next page.



Figure 4. AC Test Circuit



Figure 5. AC Test Waveforms



Figure 6. Pulse Width versus C<sub>X</sub>

# **TYPICAL APPLICATIONS**





Figure 7. Retriggerable Monostables Circuitry



Figure 9. Use of a Diode to Limit Power Down Current Surge





Figure 8. Non–Retriggerable Monostables Circuitry



Figure 10. Connection of Unused Sections

# **PACKAGE DIMENSIONS**



- NOTES:
  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  2. CONTROLLING DIMENSION: INCH.
  3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
  4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
  5. ROUNDED CORNERS OPTIONAL.

|     | INC   | HES   | MILLIN   | IETERS |
|-----|-------|-------|----------|--------|
| DIM | MIN   | MAX   | MIN      | MAX    |
| Α   | 0.740 | 0.770 | 18.80    | 19.55  |
| В   | 0.250 | 0.270 | 6.35     | 6.85   |
| С   | 0.145 | 0.175 | 3.69     | 4.44   |
| D   | 0.015 | 0.021 | 0.39     | 0.53   |
| F   | 0.040 | 0.70  | 1.02     | 1.77   |
| G   | 0.100 | BSC   | 2.54 BSC |        |
| Н   | 0.050 | BSC   | 1.27 BSC |        |
| J   | 0.008 | 0.015 | 0.21     | 0.38   |
| K   | 0.110 | 0.130 | 2.80     | 3.30   |
| L   | 0.295 | 0.305 | 7.50     | 7.74   |
| M   | 0°    | 10 °  | 0°       | 10 °   |
| S   | 0.020 | 0.040 | 0.51     | 1.01   |

# **PACKAGE DIMENSIONS**



- NOTES:

  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  2. CONTROLLING DIMENSION: MILLIMETER.
  3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
  4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
  5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

|     | MILLIN | METERS | INC       | HES   |
|-----|--------|--------|-----------|-------|
| DIM | MIN    | MAX    | MIN       | MAX   |
| Α   | 9.80   | 10.00  | 0.386     | 0.393 |
| В   | 3.80   | 4.00   | 0.150     | 0.157 |
| С   | 1.35   | 1.75   | 0.054     | 0.068 |
| D   | 0.35   | 0.49   | 0.014     | 0.019 |
| F   | 0.40   | 1.25   | 0.016     | 0.049 |
| G   | 1.27   | BSC    | 0.050 BSC |       |
| J   | 0.19   | 0.25   | 0.008     | 0.009 |
| K   | 0.10   | 0.25   | 0.004     | 0.009 |
| М   | 0°     | 7°     | 0°        | 7°    |
| Р   | 5.80   | 6.20   | 0.229     | 0.244 |
| R   | 0.25   | 0.50   | 0.010     | 0.019 |

## **PACKAGE DIMENSIONS**

#### SOEIAJ-16 **F SUFFIX** PLASTIC EIAJ SOIC PACKAGE CASE 966-01 **ISSUE O**







#### NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
- DIMENSIONING AND TOLERANGING PER AND Y14.5M, 1982.
   CONTROLLING DIMENSION: MILLIMETER.
   DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (2014) DED SIDE.
- OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
  4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
  5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

|                | MILLIN | IETERS | INC   | HES   |
|----------------|--------|--------|-------|-------|
| DIM            | MIN    | MAX    | MIN   | MAX   |
| Α              |        | 2.05   |       | 0.081 |
| A <sub>1</sub> | 0.05   | 0.20   | 0.002 | 0.008 |
| b              | 0.35   | 0.50   | 0.014 | 0.020 |
| С              | 0.18   | 0.27   | 0.007 | 0.011 |
| D              | 9.90   | 10.50  | 0.390 | 0.413 |
| Ε              | 5.10   | 5.45   | 0.201 | 0.215 |
| е              | 1.27   | BSC    | 0.050 | BSC   |
| HE             | 7.40   | 8.20   | 0.291 | 0.323 |
| L              | 0.50   | 0.85   | 0.020 | 0.033 |
| LE             | 1.10   | 1.50   | 0.043 | 0.059 |
| M              | 0 °    | 10 °   | 0 °   | 10 °  |
| $Q_1$          | 0.70   | 0.90   | 0.028 | 0.035 |
| Z              |        | 0.78   |       | 0.031 |

# **Notes**

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affliliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

#### **PUBLICATION ORDERING INFORMATION**

#### NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

**Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

**German Phone**: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

**English Phone**: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS\*: 00-800-4422-3781

\*Available from Germany, France, Italy, England, Ireland

#### CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

**Phone**: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549

**Phone**: 81–3–5740–2745 **Email**: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.