

Mitochondria segmentation in EM data with Napari-Empanada

Marie Held, PhD Image Analyst

Segmentation of Electron microscopy images

- Electron microscopy images stained with heavy metals
- Grey scale images containing dozens of organelles & subcellular structures

YES

Highly integrated understanding re. biological function

BUT

Major image analysis challenge!

 Specific identification of different organelle types in electron microscopy is based on some combination of the electron density, contrast, shape, and relative location of each structure

Empanada

- 1. Purpose: provide essential nutrients, energy for bodily functions, and support for growth, repair, and overall health
- 2. **Key Feature**: type of baked or fried turnover consisting of pastry and filling, common in Spain, other Southern European countries, North African countries, Latin American countries, and the Philippines.

3. Dataset:

Napari-Empanada

- Purpose: Empanada-napari plugin democratizes deep learning image segmentation for electron microscopy (EM) researchers
- 2. Key Feature: Comes pre-loaded with MitoNet, a pretrained specialist machine learning model for mitochondria instance segmentation in EM images.

3. Dataset:

- Pre-trained on ~1.5 million unlabeled cellular EM images.
- Fine-tuned on ~135,000 labeled mitochondrial instances.

Napari-Empanada Background

1. Documentation:

https://empanada.readthedocs.io/en/latest/getting_started/install.html

2. MitoNet publication:

https://www.sciencedirect.com/science/article/pii/S2405471 22200494X

Installation

- Install Anaconda Navigator
- 2. Install Napari

```
conda update -n base conda
conda create -n empanada-ws-env python=3.9
conda activate empanada-ws-env
conda install -c conda-forge napari pyqt
```

3. Install Empanada-napari plugin Note: do NOT install plugin through Napari GUI

pip install empanada-napari

Usage - Case 1

CC CELL IMAGING

- 1. Demo Dataset: https://mitoem.grand-challenge.org/MitoEM/
 - ~ 26 GB → tiny crop
- 2. 3D Inference:
 - Segmentation Confidence Thr: 0.50
 - Centre Confidence Thr: 0.10
 - Centres Min Distance: 3

- Demo Dataset 2: Cell Gatan 3View Serial Block Face Cell
- 2. Load data
- 3. Scale data as voxels are anisotropic:

```
viewer.layers[Image name'].scale = [5, 1, 1]
```

- 4. 3D Inference:
 - Segmentation Confidence Thr: 0.35
 - Centre Confidence Thr: 0.75
 - Centres Min Distance: 5

- Segmentation is ok but room for improvement
- → Pick fine tuning patches
 - # Patches for annotation: 1
 - Patch size (px) = 224
 - Delete initial dataset and labels
 - Use 2D inference for a "head start"
 - Get initial segmentation for "clean up"
 - Tick [Output to layer]
 - On third slice of flip book
 - Run 2D inference → segmentations output to labels layer

- Paint and erase labels on third slice only
 - Duplicate labels layer (if required)
 - Make edits on original labels layer
 - Select label using dropper [4]
 - Erase [1], draw[2], fill [3] as required
 - See documentation for merging, splitting of labels
 - Save training patches and labels

- Fine tune model ideally on GPU leveraging hardware
 - Training directory: annotated images
 - Finetunable layers:
 - None: Select this option if the model did fairly well during the initial inference on your data.
 - Stages 1 4: Select between these options depending on how well the model did on the initial inference.
 - All: Select this option if the model did not perform well on your data. This option will take more time but could offer better results depending on your specific task.

Summary

- Plugin designed to simplify the application of deep learning models for electron microscopy (EM) image segmentation.
- suited for researchers aiming to perform instance segmentation of mitochondria, using pre-trained model MitoNet
- Ideal for large-scale vEM data sets
- Leverage pre-trained deep learning models without coding experience
- Fine tune pre-trained models to custom model

MHELDB@LIVERPOOL.AC.UK

HTTP://CCI.LIV.AC.UK

