Chapter 1

Gene expression responses to interactive stressors of diet quality and viral infection in *Apis mellifera*

1.1 Introduction

Commerically managed honeybees have undergone unusually large declines in the United States and parts of Europe over the past decade (vanEngelsdorp et al. 2009, Kulhanek et al. 2017, Laurent et al. 2016), with annual mortality rates exceeding what beekeepers consider sustainable (Caron and Sagili 2011, Bond et al. 2014). More than 70 percent of major global food crops (including fruits, vegatables, and nuts) at least benefit from pollination, and yearly insect pollination services are valued wordwide at \$175 billion (Gallai et al. 2009). As honeybees are largely considered to be the leading pollinator of numerous crops, their marked loss has considerable implications regarding agricultural sustainability (Klein et al. 2007).

Honeybee declines have been associated with several factors, including pesticide use, parasites, pathogens, habitat loss, and poor nutrition (Potts et al. 2010, Spivak et al. 2011). Many researchers agree that these environmental stressors have an interactive influence on the large-scale loss of honeybees (Goulson et al. 2015).

interacting

CHAPTER 1. GENE EXPRESSION RESPONSES TO INTERACTIVE STRESSORS 2 OF DIET QUALITY AND VIRAL INFECTION IN APIS MELLIFERA

- 1.2 Methods
- 1.3 Results
- 1.4 Discussion

Bibliography

- J. Bond, K. Plattner, and K. Hunt. Fruit and Tree Nuts Outlook: Economic Insight U.S. Pollination- Services Market. USDA. Economic Research Service Situation and Outlook FTS-357SA, 2014.
- D. Caron and R. Sagili. Honey bee colony mortality in the Pacific Northwest: Winter 2009/2010. Am Bee J, 151:73–76, 2011.
- N. Gallai, J-M. Salles, J. Settele, and B.B. Vaissière. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. *Ecol. Econ.*, 68:810–821, 2009.
- D. Goulson, E. Nicholls, C. Botías, and E.L. Rotheray. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. *Science*, 347:1255957, 2015.
- A-M. Klein, B.E. Vaissière, J.H. Cane, I. Steffan-Dewenter, S.A. Cunningham, C. Kremen, and T. Tscharntke. Importance of pollinators in changing landscapes for world crops. *Proc Biol Sci*, 274:303–313, 2007.
- K. Kulhanek, N. Steinhauer, K. Rennich, D.M. Caron, R.R. Sagili, J.S. Pettis, J.D. Ellis, M.E. Wilson, J.T. Wilkes, D.R. Tarpy, R. Rose, K. Lee, J. Rangel, and D. van Engelsdorp. A national survey of managed honey bee 2014–2015 annual colony losses in the USA. *Journal of Apicultural Research*, 56:328–340, 2017.
- M. Laurent, P. Hendrikx, M. Ribiere-Chabert, and M-P. Chauzat. A pan-European epidemiological study on honeybee colony losses 2012–2014. *Epilobee*, 2013:44, 2016.
- S.G. Potts, J.C. Biesmeijer, C. Kremen, P. Neumann, O. Schweiger, and W.E. Kunin. . Global pollinator declines: trends, impacts and drivers, 25:345–353, 2010.
- M. Spivak, E. Mader, M. Vaughan, and N.H. Euliss. The Plight of the Bees. *Environ Sci Technol*, 45:34–38, 2011.

4 BIBLIOGRAPHY

D. van Engelsdorp, J.D. Evans, C. Saegerman, C. Mullin, E. Haubruge, B.K. Nguyen,
M. Frazier, J. Frazier, D. Cox-Foster, Y. Chen, R. Underwood, D.R. Tarpy, and J.S.
Pettis. Colony collapse disorder: A descriptive study. *PLoS One*, 4:e6481, 2009.