REGRESSION OF BOSTON HOUSE PRICES

Brownlee Ch. 12

Yifan Jiang

OUTLINE

- > Problem Introduction
- ➤ Network Model & Standardization
- ➤ Topology Tuning (Larger? | Wider?)
- ➤ Experiment results

PROBLEM INTRODUCTION

- ➤ Regression predictive problem
- ➤ Input: Boston suburbs properties (13 variables)
- ➤ Output: Price of houses in suburbs (in 1000s dollars)
- ➤ Goal: Predict the price of a residential area

BOSTON HOUSE PRICE DATASET

CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0.00632	18.00	2.3	10 0	0.5380	6.5750	65.20	4.090	0 1	296.0	15.30	396.90	4.98	24.00
0.02731	0.00	7.0	70 0	0.4690	6.4210	78.90	4.967	1 2	242.0	17.80	396.90	9.14	21.60
0.02729	0.00	7.0	70 0	0.4690	7.1850	61.10	4.967	1 2	242.0	17.80	392.83	4.03	34.70
0.03237	0.00	2.1	80 0	0.4580	6.9980	45.80	6.062	2 3	222.0	18.70	394.63	2.94	33.40
0.06905	0.00	2.1	80 0	0.4580	7.1470	54.20	6.062	2 3	222.0	18.70	396.90	5.33	36.20

Median value of owner-occupied homes in \$1000

Performance evaluated by Mean Square Error (MSE)

NETWORK MODEL

Input (13 variables
representing suburb properties)

Hidden Layer (13 neurons)

STANDARDIZATION

CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0.00632	18.00	2.3	10 0	0.5380	6.5750	65.20	4.090	0 1	296.0	15.30	396.90	4.98	24.00
0.02731	0.00	7.0	70 0	0.4690	6.4210	78.90	4.967	1 2	242.0	17.80	396.90	9.14	21.60
0.02729	0.00	7.0	70 0	0.4690	7.1850	61.10	4.967	1 2	242.0	17.80	392.83	4.03	34.70
0.03237	0.00	2.1	80 0	0.4580	6.9980	45.80	6.062	2 3	222.0	18.70	394.63	2.94	33.40
0.06905	0.00	2.1	80 0	0.4580	7.1470	54.20	6.062	2 3	222.0	18.70	396.90	5.33	36.20

TOPOLOGY TUNING- LARGER

TOPOLOGY TUNING - WIDER

Input (13 variables
representing suburb properties)

Hidden Layer (20 neurons)

What happens here?

O Baseline Std Larger Wider

EXPERIMENT RESULTS

- ➤ activation: Relu
- ➤ epoch: 50
- ➤ mini-batch size: 5
- > cross-validation folds: 10
- ➤ seed: 7

- ➤ activation: Relu
- ➤ epoch: 50 for Baseline & Wider; 100 for Std & Larger
- > mini-batch size: 5
- > cross-validation folds: 10
- ➤ seed: 7

- ➤ activation: Relu
- ➤ epoch: 50 for Baseline & Wider; 100 for Std & Larger
- > mini-batch size: 5
- > cross-validation folds: 10
- > seed: 7

(LARGE)

activation: Relu

➤ epoch: 50, 60, 70, 80

> mini-batch size: 5

> cross-validation folds: 10

➤ seed: 8

(WIDE) activation: Relu

➤ epoch: 50, 100, 150

➤ mini-batch size: 5

> cross-validation folds: 10

➤ seed: 7

Hard to tell which one is better

66

The results demonstrate the importance of **empirical testing** when it comes to developing neural network models

-Brownlee