8086 MICROPROCESSOR

- It is a 16 bit μp.
- 8086 has a 20 bit address bus, can access upto 2²⁰ memory locations (1 MB).
- It provides 14, 16-bit registers.
- It has multiplexed address and data bus AD0- AD15 and A16 – A19.

- 8086 is designed to operate in two modes, Minimum and Maximum.
- It can prefetch upto 6 instruction bytes from memory and queues them in order to speed up instruction execution.
- It requires +5V power supply.
- 40 pin dual in line package.
- Cloak frequency 5 MHz

Intel 16-bit Registers

K. R Sarath Chandran, Asst Prof/CSE

8086 Architecture

- The 8086 architecture has two parts,
 the Bus Interface Unit (BIU) and the Execution Unit (EU).
- The BIU fetches instructions, reads and writes data, and computes the 20-bit address.
- The EU decodes and executes the instructions using the 16-bit ALU.
- The BIU contains the following registers:
 - **IP the Instruction Pointer**
 - **CS the Code Segment Register**
 - **DS the Data Segment Register**
 - **SS the Stack Segment Register**
 - **ES the Extra Segment Register**

The BIU fetches instructions using the CS and IP, written CS:IP, to generate the 20-bit address. Data is fetched using a segment register (usually the DS) and an effective address (EA) computed by the EU depending on the addressing mode.

The EU contains the following 16-bit registers:

```
AX - the Accumulator
BX - the Base Register
CX - the Count Register
DX - the Data Register
SP - the Stack Pointer \ defaults to stack segment
BP - the Base Pointer /
SI - the Source Index Register
DI - the Destination Register
```

These are referred to as general-purpose registers, although, as seen by their names, they often have a special-purpose use for some instructions.

The AX, BX, CX, and DX registers can be considers as two 8-bit registers, a High byte and a Low byte. This allows byte operations and compatibility with the previous generation of 8-bit processors, the 8080 and 8085. 8085 source code could be translated in 8086 code and assembled. The 8-bit registers are:

```
AX --> AH,AL
BX --> BH,BL
CX --> CH,CL
DX --> DH,DL
R Sarath Chandran, Asst
Prof/CSE
```


8086 Programmer's Model

BIU registers (20 bit adder)

ES
CS
SS
DS
IP

Extra Segment
Code Segment
Stack Segment
Data Segment
Instruction Pointer

EU registers

AX BX

CX

 DX

AH	AL							
ВН	BL							
СН	CL							
DH	DL							
SP								
BP								
SI								
DI								
FLAGS								

Accumulator
Base Register
Count Register
Data Register
Stack Pointer
Base Pointer
Source Index Register
Destination Index Register

8086/88 internal registers 16 bits (2 bytes each)

AX, BX, CX and DX are two bytes wide and each byte can be accessed separately

SP	Stack pointer)
ВР	Base pointer	
SI	Source index	Pointer and index group
Id	Destination index	mack group
IP	Instruction pointer	

These registers are used as memory *pointers*.

Flags will be discussed later

Segment registers are used as base address for a segment in the 1 M byte of memory

The 8086/8088 Microprocessors: Registers

Registers

- Registers are in the CPU and are referred to by specific names
- Data registers
 - Hold data for an operation to be performed
 - There are 4 data registers (AX, BX, CX, DX)
- Address registers
 - Hold the address of an instruction or data element
 - Segment registers (CS, DS, ES, SS)
 - Pointer registers (SP, BP, IP)
 - Index registers (SI, DI)
- Status register
 - Keeps the current status of the processor

Data Registers: AX, BX, CX, DX

- Instructions execute faster if the data is in a register
- AX, BX, CX, DX are the data registers
- Low and High bytes of the data registers can be accessed separately
 - AH, BH, CH, DH are the high bytes
 - AL, BL, CL, and DL are the low bytes
- Data Registers are general purpose registers but they also perform special functions
- AX
 - Accumulator Register
 - Preferred register to use in arithmetic, logic and data transfer instructions

• BX

- Base Register
- Also serves as an address register

• **CX**

- Count register
- Used as a loop counter
- Used in shift and rotate operations

• DX

- Data register
- Used in multiplication and division
- Also used in I/O operations

Pointer and Index Registers

- Contain the offset addresses of memory locations
- Can also be used in arithmetic and other operations
- SP: Stack pointer
 - Used with SS to access the stack segment
- BP: Base Pointer
 - Primarily used to access data on the stack
 - Can be used to access data in other segments
- SI: Source Index register
 - is required for some string operations
 - When string operations are performed, the SI register points to memory locations in the data segment which is addressed by the DS register. Thus, SI is associated with the DS in string operations.

- DI: Destination Index register
 - is also required for some string operations.
 - When string operations are performed, the DI register points to memory locations in the data segment which is addressed by the ES register. Thus, DI is associated with the ES in string operations.
- The SI and the DI registers may also be used to access data stored in arrays

Segment Registers - CS, DS, SS and ES

- Are Address registers
- Store the memory addresses of instructions and data
- Memory Organization
 - Each byte in memory has a 20 bit address starting with 0 to 2^{20} -1 or 1 meg of addressable memory
 - Addresses are expressed as 5 hex digits from 00000 FFFFF
 - Problem: But 20 bit addresses are TOO BIG to fit in 16 bit registers!
 - Solution: Memory Segment
 - Block of 64K (65,536) consecutive memory bytes
 - A segment number is a 16 bit number
 - Segment numbers range from 0000 to FFFF
 - Within a segment, a particular memory location is specified with an offset
 - An offset also ranges from 0000 to FFFF

8086 Microprocessor

	Common Signals					
Name	Function	Тура				
AD15-AD0	Address/Data Bus	Bidirectional, 3-State				
A19/56- A16/S3	Address/Status	Output, 3-State				
BHE/S7	Bus High Enable/ Status	Output, 3-State				
MN/MX	Minimum/Maximum Mode Control	Input				
RD	Read Control	Output, 3-State				
TEST	Wait On Test Control	Input				
READY	Wait State Control	Input				
RESET	System Reset	Input				
NMI	Non-Maskable Interrupt Request	Input				
INTR	Interrupt Request	Input				
CLK	System Clock	Input				
Vcc	+5V	Input				
GND	Ground					
Minimu	m Mode Signals (MN/	MX = V _{CC})				
Name	Function	Туре				
HOLD	Hold Request	Input				
HLDA	Hold Acknowledge	Output				
WR	Write Control	Output, 3-State				
M/ĪO	Memory/IO Control	Output, 3-State				
DT/R	Data Transmit/ Receive	Output, 3-State				
DEN	Data Enable	Output, 3-State				
ALE	Address Latch Enable	Output				
INTA	Interrupt Acknowledge	Output				
Maximu	m Mode Signals (MN/	MX = GND)				
Name	Function	Type				
RO/GT1, 0	Request/Grant Bus Access Control	Bidirections				
LOCK	Bus Priority Lock Control	Output, 3-State				
S2-S0	Bus Cycle Status	Output, 3 State				
QS1, QS0	Instruction Queue Status	Output				

MAXIMUM MODE PIN FUNCTIONS (e.g. LOCK) ARE SHOWN IN PARENTHESES

K. R Sarath Chandran, Asst Prof/CSE

Flags

6 are status flags

3 are control flag

K. R Sarath Chandran, Asst Prof/CSE

Flag Register

- Conditional flags:
 - They are set according to some results of arithmetic operation. You do not need to alter the value yourself.
- Control flags:
 - Used to control some operations of the MPU. These flags are to be set
 by you in order to achieve some specific purposes.

Flag					0	D	I	Т	S	Z		А		Р		С
Bit no.	15	14	13	12	11	1 0	9	8	7	6	5	4	3	2	1	0

• CF (carry) Contains carry from leftmost bit following arithmetic, also contains last bit from a shift or rotate operation.

Flag Register

- OF (overflow) Indicates overflow of the leftmost bit during arithmetic.
- DF (direction) Indicates left or right for moving or comparing string data.
- IF (interrupt) Indicates whether external interrupts are being processed or ignored.
- TF (trap) Permits operation of the processor in single step mode.

- SF (sign) Contains the resulting sign of an arithmetic operation (1=negative)
- ZF (zero) Indicates when the result of arithmetic or a comparison is zero. (1=yes)
- AF (auxiliary carry) Contains carry out of bit 3 into bit 4 for specialized arithmetic.
- PF (parity) Indicates the number of 1 bits that result from an operation.