

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(81) International Patent Classification ⁶ :	C12N 9/28, C11D 3/386	A1	(11) International Publication Number: WO 99/19467 (43) International Publication Date: 22 April 1999 (22.04.99)
(21) International Application Number:	PCT/DK98/03444	(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BB, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CI, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TO).	
(22) International Filing Date:	13 October 1998 (13.10.98)		
(30) Priority Data:	1172/97 13 October 1997 (13.10.97)	DK	
(71) Applicant:	NOVO NORDISK A/S [DK/DK]; Novo A/S, DK-2880 Bagsværd (DK).		
(72) Inventors:	SVENDSEN, Allan; Novo Nordisk a/s, Novo A/S, DK-2880 Bagsværd (DK); BORCHERT, Torben; Vodet; Novo Nordisk a/s, Novo A/S, DK-2880 Bagsværd (DK); BISGÅRD-FRANTZEN, Henrik; Novo Nordisk a/s, Novo A/S, DK-2880 Bagsværd (DK).		
(74) Common Representative:	NOVO NORDISK A/S; Corporate Patents, Novo A/S, DK-2880 Bagsværd (DK).		
(54) Title:	α -AMYLASE MUTANTS		
(57) Abstract	<p>The invention relates to a variant of a parent Termamyl-like α-amylase, comprising mutations in two, three, four, five or six regions/positions. The variants have increased thermostability at acidic pH and/or at low Ca²⁺ concentrations (relative to the parent). The invention also relates to a DNA construct comprising a DNA sequence encoding an α-amylase variant of the invention, a recombinant expression vector which carries a DNA construct of the invention, a cell which is transformed with a DNA construct of the invention, the use of an α-amylase variant of the invention for washing and/or dishwashing, textile desizing, starch liquefaction, a detergent additive comprising an α-amylase variant of the invention, a manual or automatic dishwashing detergent composition comprising an α-amylase variant of the invention, a method for generating a variant of a parent Termamyl-like α-amylase, which variant exhibits increased thermostability at acidic pH and/or at low Ca²⁺ concentrations (relative to the parent).</p>		

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Sri Lanka
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	MU	Mauritius	TR	Turkey
BG	Bulgaria	HU	Hungary	MV	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	NZ	New Zealand		
CM	Cameroon	KR	Republic of Korea	PL	Poland		
CN	China	KZ	Republic of Korea	PT	Portugal		
CO	Colombia	KZ	Kazakhstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LA	Liechtenstein	SB	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Title: α -amylase mutants

FIELD OF THE INVENTION

The present invention relates, *inter alia*, to novel variants (mutants) of parent Termamyl-like α -amylases, notably variants exhibiting increased thermostability at acidic pH and/or at low Ca²⁺ concentrations (relative to the parent) which are advantageous with respect to applications of the variants in, industrial starch processing particularly (e.g. starch liquefaction or saccharification).

BACKGROUND OF THE INVENTION

α -Amylases (α -1,4-glucan-4-glucanohydrolases, EC 3.2.1.1) constitute a group of enzymes which catalyze hydrolysis of starch and other linear and branched 1,4-glucosidic oligo- and polysaccharides.

There is a very extensive body of patent and scientific literature relating to this industrially very important class of enzymes. A number of α -amylase such as Termamyl-like α -amylases variants are known from e.g. WO 90/11352, WO 95/10603, WO 95/26397, WO 96/23873 and WO 96/23874.

Among more recent disclosures relating to α -amylases, WO 96/23874 provides three-dimensional, X-ray crystal structural data for a Termamyl-like α -amylase which consists of the 300 N-terminal amino acid residues of the *B. amyloliquefaciens* α -amylase and amino acids 301-483 of the C-terminal end of the *B. licheniformis* α -amylase comprising the amino acid sequence (the latter being available commercially under the tradename Termamyl™), and which is thus closely related to the industrially important *Bacillus* α -amylases (which in the present context are embraced within the meaning of the term "Termamyl-like α -amylases", and which include, *inter alia*, the *B. licheniformis*, *B. amyloliquefaciens* and *B. stearothermophilus* α -amylases). WO 96/23874 further describes methodology for

designing, on the basis of an analysis of the structure of a parent Termamyl-like α -amylase, variants of the parent Termamyl-like α -amylase which exhibit altered properties relative to the parent.

5 WO 95/35382 (Gist Brocades B.V.) concerns amylolytic enzymes derived from *B. licheniformis* with improved properties allowing reduction of the Ca^{2+} concentration under application without a loss of performance of the enzyme. The amylolytic enzyme comprises one or more amino acid changes at positions selected
10 from the group of 104, 128, 187, 188 of the *B. licheniformis* α -amylase sequence.

15 WO 96/23873 (Novo Nordisk) discloses Termamyl-like α -amylase variants which have increased thermostability obtained by pairwise deletion in the region R181*, G182*, T183* and G184* of the sequence shown in SEQ ID NO: 1 herein.

BRIEF DISCLOSURE OF THE INVENTION

The present invention relates to novel α -amylolytic variants (mutants) of a Termamyl-like α -amylase, in particular variants exhibiting increased thermostability (relative to the parent) which are advantageous in connection with the industrial processing of starch (starch liquefaction, saccharification and the like).

25 The inventors have surprisingly found out that in case of combining two, three, four, five or six mutations (will be described below), the thermostability of Termamyl-like α -amylases is increased at acidic pH and/or at low Ca^{2+} concentration in comparison to single mutations, such as the mutation disclosed in WO 96/23873 (Novo Nordisk), i.e. pairwise
30 deletion in the region R181*, G182*, T183* and G184* of the sequence shown in SEQ ID NO: 1 herein.

The invention further relates to DNA constructs encoding variants of the invention, to composition comprising variants of the invention, to methods for preparing variants of the invention, and to the use of variants and compositions of the invention, alone or in combination with other α -amylolytic

enzymes, in various industrial processes, e.g., starch liquefaction.

BRIEF DESCRIPTION OF THE DRAWING

Figure 1 is an alignment of the amino acid sequences of six parent Termamyl-like α -amylases in the context of the invention. The numbers on the Extreme left designate the respective amino acid sequences as follows:

1: SEQ ID NO: 2,

2: Kaoamyl,

3: SEQ ID NO: 1,

4: SEQ ID NO: 5,

5: SEQ ID NO: 4,

6: SEQ ID NO: 3.

DETAILED DISCLOSURE OF THE INVENTION

The Termamyl-like α -amylase

It is well known that a number of α -amylases produced by *Bacillus* spp. are highly homologous on the amino acid level. For instance, the *B. licheniformis* α -amylase comprising the amino acid sequence shown in SEQ ID NO: 4 (commercially available as TermamylTM) has been found to be about 89% homologous with the *B. amyloliquefaciens* α -amylase comprising the amino acid sequence shown in SEQ ID NO: 5 and about 79% homologous with the *B. stearothermophilus* α -amylase comprising the amino acid sequence shown in SEQ ID NO: 3. Further homologous α -amylases include an α -amylase derived from a strain of the *Bacillus* sp. NCIB 12289, NCIB 12512, NCIB 12513 or DSM 9375, all of which are described in detail in WO 95/26397, and the α -amylase described by Tsukamoto et al., Biochemical and Biophysical Research Communications, 151 (1988), pp. 25-31.

Still further homologous α -amylases include the α -amylase produced by the *B. licheniformis* strain described in EP 0252666 (ATCC 27811), and the α -amylases identified in WO 91/00353 and

WO 94/18314. Other commercial Termamyl-like *B. licheniformis* α -amylases are OptithermTM and TakathermTM (available from Solvay), MaxamylTM (available from Gist-brocades/Genencor), Spezym AATM and Spezyme Delta AATM (available from Genencor), and KeistaseTM (available from Daiwa).

Because of the substantial homology found between these α -amylases, they are considered to belong to the same class of α -amylases, namely the class of "Termamyl-like α -amylases".

Accordingly, in the present context, the term "Termamyl-like α -amylase" is intended to indicate an α -amylase which, at the amino acid level, exhibits a substantial homology to TermamylTM, i.e. the *B. licheniformis* α -amylase having the amino acid sequence shown in SEQ ID NO: 4 herein. In other words, a Termamyl-like α -amylase is an α -amylase which has the amino acid sequence shown in SEQ ID NOS: 1, 2, 3, 4, 5, 6, 7 or 8 herein, and the amino acid sequence shown in SEQ ID NO: 1 of WO 95/26397 (the same as the amino acid sequence shown as SEQ ID NO: 7 herein) or in SEQ ID NO: 2 of WO 95/26397 (the same as the amino acid sequence shown as SEQ ID NO: 8 herein) or in Tsukamoto et al., 1988, (which amino acid sequence is shown in SEQ ID NO: 6 herein) or i) which displays at least 60%, preferred at least 70%, more preferred at least 75%, even more preferred at least 80%, especially at least 85%, especially preferred at least 90%, even especially more preferred at least 95% homology with at least one of said amino acid sequences shown in SEQ ID NOS 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 and/or ii) displays immunological cross-reactivity with an antibody raised against at least one of said α -amylases, and/or iii) is encoded by a DNA sequence which hybridizes to the DNA sequences encoding the above-specified α -amylases which are apparent from SEQ ID NOS: 9, 10, 11, or 12 of the present application (which encoding sequences encode the amino acid sequences shown in SEQ ID NOS: 1, 2, 3, 4 and 5 herein, respectively), from SEQ ID NO: 4 of WO 95/26397 (which DNA sequence, together with the stop codon TAA,

is shown in SEQ ID NO: 13 herein and encodes the amino acid sequence shown in SEQ ID NO: 8 herein) and from SEQ ID NO: 5 of WO 95/26397 (shown in SEQ ID NO: 14 herein), respectively.

In connection with property i), the "homology" may be determined by use of any conventional algorithm, preferably by use of the GAP programme from the GCG package version 7.3 (June 1993) using default values for GAP penalties, which is a GAP creation penalty of 3.0 and GAP extension penalty of 0.1, (Genetic Computer Group (1991) Programme Manual for the GCG Package, version 7, 575 Science Drive, Madison, Wisconsin, USA 53711).

A structural alignment between Termamyl and a Termamyl-like α -amylase may be used to identify equivalent/corresponding positions in other Termamyl-like α -amylases. One method of obtaining said structural alignment is to use the Pile Up programme from the GCG package using default values of gap penalties, i.e., a gap creation penalty of 3.0 and gap extension penalty of 0.1. Other structural alignment methods include the hydrophobic cluster analysis (Gaboriaud et al., (1987), FEBS LETTERS 224, pp. 149-155) and reverse threading (Huber, T ; Torda, AE, PROTEIN SCIENCE Vol. 7, No. 1 pp. 142-149 (1998)).

Property ii) of the α -amylase, i.e. the immunological cross reactivity, may be assayed using an antibody raised against, or reactive with, at least one epitope of the relevant Termamyl-like α -amylase. The antibody, which may either be monoclonal or polyclonal, may be produced by methods known in the art, e.g. as described by Hudson et al., Practical Immunology, Third edition (1989), Blackwell Scientific Publications. The immunological cross-reactivity may be determined using assays known in the art, examples of which are Western Blotting or radial immunodiffusion assay, e.g. as described by Hudson et al., 1989. In this respect, immunological cross-reactivity between the α -amylases having the amino acid sequences SEQ ID NOS: 1, 2, 3, 4, 5, 6, 7, or 8 respectively, have been found.

The oligonucleotide probe used in the characterization of the Termamyl-like α -amylase in accordance with property iii) above

may suitably be prepared on the basis of the full or partial nucleotide or amino acid sequence of the α -amylase in question.

Suitable conditions for testing hybridization involve presoaking in 5xSSC and prehybridizing for 1 hour at ~40°C in a solution of 20% formamide, 5xDenhardt's solution, 50mM sodium phosphate, pH 6.8, and 50mg of denatured sonicated calf thymus DNA, followed by hybridization in the same solution supplemented with 100mM ATP for 18 hours at ~40°C, followed by three times washing of the filter in 2xSSC, 0.2% SDS at 40°C for 30 minutes (low stringency), preferred at 50°C (medium stringency), more preferably at 65°C (high stringency), even more preferably at ~75°C (very high stringency). More details about the hybridization method can be found in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor, 1989.

In the present context, "derived from" is intended not only to indicate an α -amylase produced or producible by a strain of the organism in question, but also an α -amylase encoded by a DNA sequence isolated from such strain and produced in a host organism transformed with said DNA sequence. Finally, the term is intended to indicate an α -amylase which is encoded by a DNA sequence of synthetic and/or cDNA origin and which has the identifying characteristics of the α -amylase in question. The term is also intended to indicate that the parent α -amylase may be a variant of a naturally occurring α -amylase, i.e. a variant which is the result of a modification (insertion, substitution, deletion) of one or more amino acid residues of the naturally occurring α -amylase.

Parent hybrid α -amylases

The parent α -amylase may be a hybrid α -amylase, i.e. an α -amylase which comprises a combination of partial amino acid sequences derived from at least two α -amylases.

The parent hybrid α -amylase may be one which on the basis of amino acid homology and/or immunological cross-reactivity and/or

DNA hybridization (as defined above) can be determined to belong to the Termamyl-like α -amylase family. In this case, the hybrid α -amylase is typically composed of at least one part of a Termamyl-like α -amylase and part(s) of one or more other α -amylases selected from Termamyl-like α -amylases or non-Termamyl-like α -amylases of microbial (bacterial or fungal) and/or mammalian origin.

Thus, the parent hybrid α -amylase may comprise a combination of partial amino acid sequences deriving from at least two Termamyl-like α -amylases, or from at least one Termamyl-like and at least one non-Termamyl-like bacterial α -amylase, or from at least one Termamyl-like and at least one fungal α -amylase. The Termamyl-like α -amylase from which a partial amino acid sequence derives may, e.g., be any of those specific Termamyl-like α -amylases referred to herein.

For instance, the parent α -amylase may comprise a C-terminal part of an α -amylase derived from a strain of *B. licheniformis*, and a N-terminal part of an α -amylase derived from a strain of *B. amyloliquefaciens* or from a strain of *B. stearothermophilus*.

For instance, the parent α -amylase may comprise at least 430 amino acid residues of the C-terminal part of the *B. licheniformis* α -amylase, and may, e.g. comprise a) an amino acid segment corresponding to the 37 N-terminal amino acid residues of the *B. amyloliquefaciens* α -amylase having the amino acid sequence shown in SEQ ID NO: 5 and an amino acid segment corresponding to the 445 C-terminal amino acid residues of the *B. licheniformis* α -amylase having the amino acid sequence shown in SEQ ID No. 4, or b) an amino acid segment corresponding to the 66 N-terminal amino acid residues of the *B. stearothermophilus* α -amylase having the amino acid sequence shown in SEQ ID NO: 3 and an amino acid segment corresponding to the 415 C-terminal amino acid residues of the *B. licheniformis* α -amylase having the amino acid sequence shown in SEQ ID NO: 4.

The non-Termamyl-like α -amylase may, e.g., be a fungal α -amylase, a mammalian or a plant α -amylase or a bacterial α -amylase (different from a Termamyl-like α -amylase). Specific examples of such α -amylases include the *Aspergillus oryzae* TAKA α -amylase, the *A. niger* acid α -amylase, the *Bacillus subtilis* α -amylase, the porcine pancreatic α -amylase and a barley α -amylase. All of these α -amylases have elucidated structures which are markedly different from the structure of a typical Termamyl-like α -amylase as referred to herein.

The fungal α -amylases mentioned above, i.e. derived from *A. niger* and *A. oryzae*, are highly homologous on the amino acid level and generally considered to belong to the same family of α -amylases. The fungal α -amylase derived from *Aspergillus oryzae* is commercially available under the tradename Fungamyl™.

Furthermore, when a particular variant of a Termamyl-like α -amylase (variant of the invention) is referred to ~ in a conventional manner ~ by reference to modification (e.g. deletion or substitution) of specific amino acid residues in the amino acid sequence of a specific Termamyl-like α -amylase, it is to be understood that variants of another Termamyl-like α -amylase modified in the equivalent position(s) (as determined from the best possible amino acid sequence alignment between the respective amino acid sequences) are encompassed thereby.

A preferred embodiment of a variant of the invention is one derived from a *B. licheniformis* α -amylase (as parent Termamyl-like α -amylase), e.g. one of those referred to above, such as the *B. licheniformis* α -amylase having the amino acid sequence shown in SEQ ID NO: 4.

30 Construction of variants of the invention

The construction of the variant of interest may be accomplished by cultivating a microorganism comprising a DNA sequence encoding the variant under conditions which are conducive for producing the variant. The variant may then

subsequently be recovered from the resulting culture broth. This is described in detail further below.

Altered properties of variants of the invention

The following discusses the relationship between mutations which may be present in variants of the invention, and desirable alterations in properties (relative to those of a parent, Termamyl-like α -amylase) which may result therefrom.

Increased thermostability at acidic pH and/or at low Ca^{2+} concentration

Mutations of particular relevance in relation to obtaining variants according to the invention having increased thermostability at acidic pH and/or at low Ca^{2+} concentration include mutations at the following positions (relative to *S. licheniformis* α -amylase, SEQ ID NO: 4):

H156, N172, A181, N188, N190, H205, D207, A209, A210, E211, Q264, N265.

In the context of the invention the term "acidic pH" means a pH below 7.0, especially below the pH range, in which industrial starch liquefaction processes are normally performed, which is between pH 5.5 and 6.2.

In the context of the present invention the term "low Calcium concentration" means concentrations below the normal level used in industrial starch liquefaction. Normal concentrations vary depending of the concentration of free Ca^{2+} in the corn. Normally a dosage corresponding to 1mM (40ppm) is added which together with the level in corn gives between 40 and 60ppm free Ca^{2+} .

In the context of the invention the term "high temperatures" means temperatures between 95°C and 160°C, especially the temperature range in which industrial starch liquefaction processes are normally performed, which is between 95°C and 105°C.

The inventors have now found that the thermostability at acidic pH and/or at low Ca^{2+} concentration may be increased even more by combining certain mutations including the above

mentioned mutations and/or I201 with each other.

Said "certain" mutations are the following (relative to *B. licheniformis* α -amylase, SEQ ID NO: 4):
N190, D207, E211, Q264 and I201.

Said mutation may further be combined with deletions in one, preferably two or even three positions as described in WO 96/23873 (i.e. in positions R181, G182, T183, G184 in SEQ ID NO: 1 herein). According to the invention variants of a parent Termamyl-like α -amylase with α -amylase activity comprising mutations in two, three, four, five or six of the above positions are contemplated.

It should be emphasized that not only the Termamyl-like α -amylases mentioned specifically below are contemplated. Also other commercial Termamyl-like α -amylases are contemplated. An unexhaustive list of such α -amylases is the following:

α -amylases produced by the *B. licheniformis* strain described in EP 0252666 (ATCC 27811), and the α -amylases identified in WO 91/00353 and WO 94/18314. Other commercial Termamyl-like *B. licheniformis* α -amylases are Optitherm™ and Takatherm™ (available from Solvay), Maxamyl™ (available from Gist-brocades/Genencor), Spezym AA™ Spezyme Delta AA™ (available from Genencor), and Keistase™ (available from Daiwa).

It may be mentioned here that amino acid residues, respectively, at positions corresponding to N190, I201, D207 and E211, respectively, in SEQ ID NO: 4 constitute amino acid residues which are conserved in numerous Termamyl-like α -amylases. Thus, for example, the corresponding positions of these residues in the amino acid sequences of a number of Termamyl-like α -amylases which have already been mentioned (vide supra) are as follows:

Table 1.

Termamyl-like α -amylase	N	T	D	E	Q

	B. licheniformis (SEQ ID NO: 4)	N190	I201	D207	E211	Q264
	B. amyloliquefaciens (SEQ ID NO: 5)	N190	V201	D207	E211	Q264
	B. stearothermophilus (SEQ ID NO: 3)	N193	I204	E210	E214	---
	Bacillus WO 95/26397 (SEQ ID NO: 2)	N195	V206	E212	E216	---
5	Bacillus WO 95/26397 (SEQ ID NO: 1)	N195	V206	E212	E216	---
	"Bacillus sp. #707" (SEQ ID NO: 6)	N195	I206	E212	E216	---

Mutations of these conserved amino acid residues are very
10 important in relation to improving thermostability at acidic pH
and/or at low calcium concentration, and the following mutations
are of particular interest in this connection (with reference to
the numbering of the *B. licheniformis* amino acid sequence shown
in SEQ ID NO: 4).

15 Pair-wise amino acid deletions at positions corresponding to
R179-G182 in SEQ ID NO: 5 corresponding to a gap in Seq ID NO:
4, when aligned with a numerous Termamyl-like α -amylases. Thus,
for example, the corresponding positions of these residues in
the amino acid sequences of a number of Termamyl-like α -amylases
20 which have already been mentioned (vide supra) are as follows:

Table 2.

	Termamyl-like α -amylase	Pair wise amino acid deletions among
25		
	B. amyloliquefaciens (SEQ ID No:5)	R176, G177, E178, G179
	B. stearothermophilus (SEQ ID No.3)	R179, G180, I181, G182
	Bacillus WO 95/26397 (SEQ ID No.2)	R181, G182, T183, G184
	Bacillus WO 95/26397 (SEQ ID No.1)	R181, G182, D183, G184
30	"Bacillus sp. #707" (SEQ ID No.6)	E181, G182, M183, G184

When using SEQ ID NO: 1 to SEQ ID NO: 6 as the backbone
(i.e. as the parent Termamyl-like α -amylase) two, three, four,
35 five or six mutations may according to the invention be made in
the following regions/positions to increase the thermostability
at acidic pH and/or at low Ca^{2+} concentrations (relative to the
parent):

(relative to Seq ID NO: 1 herein):

- 1: R181*, G182*, T183*, G184*
- 2: N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 3: V206A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y;
- 4: E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 5: E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 6: K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
- (relative to SEQ ID NO: 2 herein):
- 1: R181*, G182*, D183*, G184*
- 2: N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 3: V206A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y;
- 4: E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 5: E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 6: K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
- (Relative to SEQ ID NO: 3 herein):
- 1: R179*, G180, I181*, G182*
- 2: N193A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 3: L204A, R, D, N, C, E, Q, G, H, I, K, M, F, P, S, T, W, Y, V;
- 4: E210A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 5: E214A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 6: S267A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, T, W, Y, V
- Relative to SEQ ID NO: 4 herein):
- 1: Q178*, G179*
- 2: N190A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 3: I201A, R, D, N, C, E, Q, G, H, L, K, M, F, P, S, T, W, Y, V;
- 4: D207A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 5: E211A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 6: Q264A, R, D, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- (relative to SEQ ID NO: 5 herein):
- 1: R176*, G177*, E178, G179*
- 2: N190A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 3: V201A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y;
- 4: D207A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 5: E211A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 6: Q264A, R, D, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- (relative to SEQ ID NO: 6 herein):
- 1: R181*, G182*, H183*, G184*
- 2: N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;

3: I206A, R, D, N, C, E, Q, G, H, L, K, M, F, P, S, T, W, Y, V;
 4: E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 5: E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 6: K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V.

5 Contemplated according to the present invention is combining three, four, five or six mutation.

Specific double mutations for backbone SEQ ID NO: 1 to SEQ ID NO: 6 are listed in the following.

10 Using SEQ ID NO: 1 as the backbone the following double mutations resulting in the desired effect are contemplated according to the invention:

-R181*/G182*/N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -G182*/T183*/N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -T183*/G184*/N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 15 -R181*/G182*/V206A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -G182*/T183*/V206A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -T183*/G184*/V206A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -R181*/G182*/E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -G182*/T183*/E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 20 -T183*/G184*/E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -R181*/G182*/E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -G182*/T183*/E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -T183*/G184*/E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -R181*/G182*/K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
 25 -G182*/T183*/K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
 -T183*/G184*/K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
 -N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 /V206A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 30 /E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 /E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 /K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
 35 -V206A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y
 /E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -V206A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y
 /E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;

- V206A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y
/K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
- E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
/E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 5 E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
/K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
- E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
/K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;

Using SEQ ID NO: 2 as the backbone the following double mutations resulting in the desired effect are contemplated according to the invention:

- R181*/G182*/N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- G182*/D183*/N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- D183*/G184*/N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 15 -R181*/G182*/V206A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y;
-G182*/T183*/V206A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y;
-T183*/G184*/V206A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y;
-R181*/G182*/E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
-G182*/T183*/E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 20 -T183*/G184*/E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
-R181*/G182*/E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
-G182*/T183*/E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
-T183*/G184*/E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
-R181*/G182*/K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
- 25 -G182*/T183*/K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
-T183*/G184*/K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
-N195 A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
/V206A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y;
-N195 A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
- 30 /E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
-N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
/E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
-N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
/K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
- 35 -V206A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y
/E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
-V206 A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y

/E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -V206A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y
 /K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
 -E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 5 /E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 /K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
 -E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 /K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;

10 Using SEQ ID NO. 3 as the backbone the following double mutations resulting in the desired effect are contemplated according to the invention:

-R179*/G180*/N193A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -G180*/I181*/N193A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 15 -I181*/G182*/N193A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -R179*/G180*/L204A, R, D, N, C, E, Q, G, H, I, K, M, F, P, S, T, W, Y, V;
 -G180*/I181*/L204A, R, D, N, C, E, Q, G, H, I, K, M, F, P, S, T, W, Y, V;
 -I181*/G182*/L204A, R, D, N, C, E, Q, G, H, I, K, M, F, P, S, T, W, Y, V;
 -R179*/G180*/E210A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 20 -G180*/I181*/E210A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -I181*/G182*/E210A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -R179*/G180*/E214A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -G180*/I181*/E214A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -I181*/G182*/E214A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 25 -R179*/G180*/S267A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, T, W, Y, V;
 -G180*/I181*/S267A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, T, W, Y, V;
 -I181*/G182*/S267A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, T, W, Y, V;
 -N193A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 /L204A, R, D, N, C, E, Q, G, H, I, K, M, F, P, S, T, W, Y, V;
 30 -N193A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 /E210A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -N193A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 /E214A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -N193A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 35 /S267A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, T, W, Y, V;
 -L204A, R, D, N, C, E, Q, G, H, I, K, M, F, P, S, T, W, Y, V
 /E210A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;

-L204A, R, D, N, C, E, Q, G, H, I, K, M, F, P, S, T, W, Y, V
 /E214A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -L204A, R, D, N, C, E, Q, G, H, I, K, M, F, P, S, T, W, Y, V
 /S267A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, T, W, Y, V;
 5 -E210A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 /E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -E210A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 /S267A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, T, W, Y, V;
 -E214A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 10 /S267A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, T, W, Y, V;

Using SEQ ID NO. 4 as the backbone the following double mutations resulting in the desired effect are contemplated according to the invention:

-Q178*/G179*/N190A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 15 -Q178*/G179*/I201A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -Q178*/G179*/D207A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -Q178*/G179*/E211A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -R179*/G180*/Q264A, R, D, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -N190/I201A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 20 -N190/D207A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -N190/E211A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -N190/Q264A, R, D, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -I201/D207A, R, N, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -I201/E211A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 25 -I201/Q264A, R, D, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -D207/E211A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -D207/Q264A, R, D, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -E211/Q264A, R, D, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V;

Using SEQ ID NO: 5 as the backbone the following double mutations resulting in the desired effect are contemplated according to the invention:

-R176*/G177*/N190A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -G177*/E178*/N190A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -E178*/G179*/N190A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 35 -R176*/G177*/V201A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -G176*/E178*/V201A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -E178*/G179*/V201A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;

-R176*/G177*/D207A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -G177*/E178*/D207A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -E178*/G179*/D207A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -R176*/G177*/E211A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 5 -G177*/E178*/E211A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -E178*/G179*/E211A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -R176*/G177*/Q264A, R, D, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -G177*/E178*/Q264A, R, D, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -E178*/G179*/Q264A, R, D, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 10 -N190A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 /V201A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y;
 -N190A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 /D207A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -N190A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 15 /E211A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -N190A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 /Q264A, R, D, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -V201A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y
 /D207A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 20 -V201A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y
 /E211A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -V201A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y
 /Q264A, R, D, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -D207A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 25 /E211A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -D207A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 /Q264A, R, D, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -E211A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 /Q264A, R, D, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V.

30 Using SEQ ID NO: 6 as the backbone the following double mutations resulting in the desired effect are contemplated according to the invention:

-R181*/G182*/N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -G182*/H183*/N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 35 -H183*/G184*/N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -R181*/G182*/I206A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -G182*/H183*/I206A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;

-H183*/G184*/I206A, R, D, N, C, E, Q, G, H, L, K, M, F, P, S, T, W, Y, V;
 -R181*/G182*/E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -G182*/H183*/E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -H183*/G184*/E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 5 -R181*/G182*/E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -G182*/H183*/E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -H183*/G184*/E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -R181*/G182*/K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
 -G182*/H183*/K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
 10 -H183*/G184*/K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
 -N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 /I206A, R, D, N, C, E, Q, G, H, L, K, M, F, P, S, T, W, Y, V;
 -N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 /E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 15 -N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 /E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 /K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
 -I206A, R, D, N, C, E, Q, G, H, L, K, M, F, P, S, T, W, Y, V
 20 /E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -I206A, R, D, N, C, E, Q, G, H, L, K, M, F, P, S, T, W, Y, V
 /E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -I206A, R, D, N, C, E, Q, G, H, L, K, M, F, P, S, T, W, Y, V
 /K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
 25 -E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 /E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
 -E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 /K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
 -E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V
 30 /K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;

All Termamyl-like α -amylase defined above may suitably be used as backbone for preparing variants of the invention.

However, in a preferred embodiment the variant comprises the following mutations: N190F/Q264S in SEQ ID NO: 4 or in corresponding positions in another parent Termamyl-like α -amylases.

In another embodiment the variant of the invention comprises

the following mutations: I181*/G182*/N193F in SEQ ID NO: 3 (TVB146) or in corresponding positions in another parent Termamyl-like α -amylases. Said variant may further comprise a substitution in position E214Q.

In a preferred embodiment of the invention the parent Termamyl-like α -amylase is a hybrid α -amylase of SEQ ID NO: 4 and SEQ ID NO: 5. Specifically, the parent hybrid Termamyl-like α -amylase may be a hybrid alpha-amylase comprising the 445 C-terminal amino acid residues of the *B. licheniformis* α -amylase shown in SEQ ID NO: 4 and the 37 N-terminal amino acid residues of the α -amylase derived from *B. amyloliquefaciens* shown in SEQ ID NO: 5, which may suitably further have the following mutations: H156Y+A181T+N190F+A209V+Q264S (using the numbering in SEQ ID NO: 4). The latter mentioned hybrid is used in the examples below and is referred to as LE174.

General mutations in variants of the invention

It may be preferred that a variant of the invention comprises one or more modifications in addition to those outlined above. Thus, it may be advantageous that one or more proline residues present in the part of the α -amylase variant which is modified is/are replaced with a non-proline residue which may be any of the possible, naturally occurring non-proline residues, and which preferably is an alanine, glycine, serine, threonine, valine or leucine.

Analogously, it may be preferred that one or more cysteine residues present among the amino acid residues with which the parent α -amylase is modified is/are replaced with a non-cysteine residue such as serine, alanine, threonine, glycine, valine or leucine.

Furthermore, a variant of the invention may - either as the only modification or in combination with any of the above outlined modifications - be modified so that one or more Asp and/or Glu present in an amino acid fragment corresponding to the amino acid fragment 185-209 of SEQ ID NO: 4 is replaced by an Asn and/or Gln, respectively. Also of interest is the

replacement, in the Termamyl-like α -amylase, of one or more of the Lys residues present in an amino acid fragment corresponding to the amino acid fragment 185-209 of SEQ ID NO: 4 by an Arg.

It will be understood that the present invention encompasses variants incorporating two or more of the above outlined modifications.

Furthermore, it may be advantageous to introduce point-mutations in any of the variants described herein.

10 Methods for preparing α -amylase variants

Several methods for introducing mutations into genes are known in the art. After a brief discussion of the cloning of α -amylase-encoding DNA sequences, methods for generating mutations at specific sites within the α -amylase-encoding sequence will be discussed.

Cloning a DNA sequence encoding an α -amylase

The DNA sequence encoding a parent α -amylase may be isolated from any cell or microorganism producing the α -amylase in question, using various methods well known in the art. First, a genomic DNA and/or cDNA library should be constructed using chromosomal DNA or messenger RNA from the organism that produces the α -amylase to be studied. Then, if the amino acid sequence of the α -amylase is known, homologous, labelled oligonucleotide probes may be synthesized and used to identify α -amylase-encoding clones from a genomic library prepared from the organism in question. Alternatively, a labelled oligonucleotide probe containing sequences homologous to a known α -amylase gene could be used as a probe to identify α -amylase-encoding clones, using hybridization and washing conditions of lower stringency.

Yet another method for identifying α -amylase-encoding clones would involve inserting fragments of genomic DNA into an expression vector, such as a plasmid, transforming α -amylase-negative bacteria with the resulting genomic DNA library, and

then plating the transformed bacteria onto agar containing a substrate for α -amylase, thereby allowing clones expressing the α -amylase to be identified.

Alternatively, the DNA sequence encoding the enzyme may be prepared synthetically by established standard methods, e.g. the phosphoroamidite method described by S.L. Beaucage and M.H. Caruthers (1981) or the method described by Matthes et al. (1984). In the phosphoroamidite method, oligonucleotides are synthesized, e.g. in an automatic DNA synthesizer, purified, annealed, ligated and cloned in appropriate vectors.

Finally, the DNA sequence may be of mixed genomic and synthetic origin, mixed synthetic and cDNA origin or mixed genomic and cDNA origin, prepared by ligating fragments of synthetic, genomic or cDNA origin (as appropriate, the fragments corresponding to various parts of the entire DNA sequence), in accordance with standard techniques. The DNA sequence may also be prepared by polymerase chain reaction (PCR) using specific primers, for instance as described in US 4,683,202 or R.K. Saiki et al. (1988).

20

Site-directed mutagenesis

Once an α -amylase-encoding DNA sequence has been isolated, and desirable sites for mutation identified, mutations may be introduced using synthetic oligonucleotides. These oligonucleotides contain nucleotide sequences flanking the desired mutation sites; mutant nucleotides are inserted during oligonucleotide synthesis. In a specific method, a single-stranded gap of DNA, bridging the α -amylase-encoding sequence, is created in a vector carrying the α -amylase gene. Then the synthetic nucleotide, bearing the desired mutation, is annealed to a homologous portion of the single-stranded DNA. The remaining gap is then filled in with DNA polymerase I (Klenow fragment) and the construct is ligated using T4 ligase. A specific example of this method is described in Morinaga et al. (1984). US 4,760,025 discloses the introduction of oligonucleotides encoding multiple

mutations by performing minor alterations of the cassette. However, an even greater variety of mutations can be introduced at any one time by the Morinaga method, because a multitude of oligonucleotides, of various lengths, can be introduced.

- 5 Another method for introducing mutations into α -amylase-encoding DNA sequences is described in Nelson and Long (1989). It involves the 3-step generation of a PCR fragment containing the desired mutation introduced by using a chemically synthesized DNA strand as one of the primers in the PCR reactions.
10 From the PCR-generated fragment, a DNA fragment carrying the mutation may be isolated by cleavage with restriction endonucleases and reinserted into an expression plasmid.

Random Mutagenesis

- 15 Random mutagenesis is suitably performed either as localised or region-specific random mutagenesis in at least three parts of the gene translating to the amino acid sequence shown in question, or within the whole gene.

- 20 The random mutagenesis of a DNA sequence encoding a parent α -amylase may be conveniently performed by use of any method known in the art.

- In relation to the above, a further aspect of the present invention relates to a method for generating a variant of a
25 parent α -amylase, e.g. wherein the variant exhibits altered or increased thermal stability relative to the parent, the method comprising:

- (a) subjecting a DNA sequence encoding the parent α -amylase to random mutagenesis,
30 (b) expressing the mutated DNA sequence obtained in step (a) in a host cell, and
(c) screening for host cells expressing an α -amylase variant which has an altered property (i.e. thermal stability) relative to the parent α -amylase.

Step (a) of the above method of the invention is preferably performed using doped primers.

For instance, the random mutagenesis may be performed by use of a suitable physical or chemical mutagenizing agent, by use of a suitable oligonucleotide, or by subjecting the DNA sequence to PCR generated mutagenesis. Furthermore, the random mutagenesis may be performed by use of any combination of these mutagenizing agents. The mutagenizing agent may, e.g., be one which induces transitions, transversions, inversions, scrambling, deletions, and/or insertions.

Examples of a physical or chemical mutagenizing agent suitable for the present purpose include ultraviolet (UV) ir-radiation, hydroxylamine, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), O-methyl hydroxylamine, nitrous acid, ethyl methane sulphonate (EMS), sodium bisulphite, formic acid, and nucleotide analogues. When such agents are used, the mutagenesis is typically performed by incubating the DNA sequence encoding the parent enzyme to be mutagenized in the presence of the mutagenizing agent of choice under suitable conditions for the mutagenesis to take place, and selecting for mutated DNA having the desired properties.

When the mutagenesis is performed by the use of an oligonucleotide, the oligonucleotide may be doped or spiked with the three non-parent nucleotides during the synthesis of the oligonucleotide at the positions which are to be changed. The doping or spiking may be done so that codons for unwanted amino acids are avoided. The doped or spiked oligonucleotide can be incorporated into the DNA encoding the α -amylase enzyme by any published technique, using e.g. PCR, LCR or any DNA polymerase and ligase as deemed appropriate.

Preferably, the doping is carried out using "constant random doping", in which the percentage of wild-type and mutation in each position is predefined. Furthermore, the doping may be directed toward a preference for the introduction of certain nucleotides, and thereby a preference for the introduction of one or more specific amino acid residues. The doping may be made, e.g., so as to allow for the introduction of 90% wild type and 10% mutations in each position. An additional consideration in the choice of a doping scheme is based on genetic as well as protein-structural constraints. The doping scheme may be made by using the DOPE program which, *inter alia*, ensures that introduction of stop codons is avoided.

When PCR-generated mutagenesis is used, either a chemically treated or non-treated gene encoding a parent α -amylase is subjected to PCR under conditions that increase the misincorporation of nucleotides (Deshler 1992; Leung et al., Technique, Vol.1, 1989, pp. 11-15).

A mutator strain of *E. coli* (Fowler et al., Molec. Gen. Genet., 133, 1974, pp. 179-191), *S. cerevisiae* or any other microbial organism may be used for the random mutagenesis of the DNA encoding the α -amylase by, e.g., transforming a plasmid containing the parent glycosylase into the mutator strain, growing the mutator strain with the plasmid and isolating the mutated plasmid from the mutator strain. The mutated plasmid may be subsequently transformed into the expression organism.

The DNA sequence to be mutagenized may be conveniently present in a genomic or cDNA library prepared from an organism expressing the parent α -amylase. Alternatively, the DNA sequence may be present on a suitable vector such as a plasmid or a bacteriophage, which as such may be incubated with or otherwise exposed to the mutagenising agent. The DNA to be mutagenized may also be present in a host cell either by being integrated in the genome of said cell or by being present on a vector harboured in the cell. Finally, the DNA to be mutagenized may be in isolated form. It will be understood that the DNA sequence to be subjected to random mutagenesis is preferably a cDNA or a genomic DNA sequence.

In some cases it may be convenient to amplify the mutated DNA sequence prior to performing the expression step b) or the screening step c). Such amplification may be performed in accordance with methods known in the art, the presently preferred method being PCR-generated amplification using oligonucleotide primers prepared on the basis of the DNA or amino acid sequence of the parent enzyme.

Subsequent to the incubation with or exposure to the mutagenising agent, the mutated DNA is expressed by culturing a suitable host cell carrying the DNA sequence under conditions allowing expression to take place. The host cell used for this purpose may be one which has been transformed with the mutated DNA sequence, optionally present on a vector, or one which was carried the DNA sequence encoding the parent enzyme during the mutagenesis treatment. Examples of suitable host cells are the following: gram positive bacteria such as *Bacillus subtilis*, *Bacillus licheniformis*, *Bacillus lentus*, *Bacillus brevis*, *Bacillus stearothermophilus*, *Bacillus alkalophilus*, *Bacillus amyloliquefaciens*, *Bacillus coagulans*, *Bacillus circulans*, *Bacillus laetus*, *Bacillus megaterium*, *Bacillus thuringiensis*, *Streptomyces lividans* or *Streptomyces murinus*; and gram-negative bacteria such as *E. coli*.

The mutated DNA sequence may further comprise a DNA sequence encoding functions permitting expression of the mutated DNA sequence.

Localized random mutagenesis

The random mutagenesis may be advantageously localized to a part of the parent α -amylase in question. This may, e.g., be advantageous when certain regions of the enzyme have been identified to be of particular importance for a given property of the enzyme, and when modified are expected to result in a variant having improved properties. Such regions may normally be identified when the tertiary structure of the parent enzyme has been elucidated and related to the function of the enzyme.

The localized, or region-specific, random mutagenesis is conveniently performed by use of PCR generated mutagenesis techniques as described above or any other suitable technique known in the art. Alternatively, the DNA sequence encoding the 5 part of the DNA sequence to be modified may be isolated, e.g., by insertion into a suitable vector, and said part may be subsequently subjected to mutagenesis by use of any of the mutagenesis methods discussed above.

10 Alternative methods of providing α -amylase variants

Alternative methods for providing variants of the invention include gene shuffling method known in the art including the methods e.g. described in WO 95/22625 (from Affymax Technologies N.V.) and WO 96/00343 (from Novo Nordisk A/S).

15

Expression of α -amylase variants

According to the invention, a DNA sequence encoding the variant produced by methods described above, or by any alternative methods known in the art, can be expressed, in enzyme form, 20 using an expression vector which typically includes control sequences encoding a promoter, operator, ribosome binding site, translation initiation signal, and, optionally, a repressor gene or various activator genes.

The recombinant expression vector carrying the DNA sequence 25 encoding an α -amylase variant of the invention may be any vector which may conveniently be subjected to recombinant DNA procedures, and the choice of vector will often depend on the host cell into which it is to be introduced. Thus, the vector may be an autonomously replicating vector, i.e. a vector which 30 exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g. a plasmid, a bacteriophage or an extrachromosomal element, minichromosome or an artificial chromosome. Alternatively, the vector may be one which, when introduced into a host cell, is integrated into the 35 host cell genome and replicated together with the chromosome(s) into which it has been integrated.

In the vector, the DNA sequence should be operably connected

to a suitable promoter sequence. The promoter may be any DNA sequence which shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins either homologous or heterologous to the host cell. Examples of 5 suitable promoters for directing the transcription of the DNA sequence encoding an α -amylase variant of the invention, especially in a bacterial host, are the promoter of the lac operon of *E.coli*, the *Streptomyces coelicolor* agarase gene *dagA* promoters, the promoters of the *Bacillus licheniformis* α -amylase 10 gene (*amyL*), the promoters of the *Bacillus stearothermophilus* maltogenic amylase gene (*amyM*), the promoters of the *Bacillus amyloliquefaciens* α -amylase (*amyQ*), the promoters of the *Bacillus subtilis* *xylA* and *xylB* genes etc. For transcription in a fungal host, examples of useful promoters are those derived from 15 the gene encoding *A. oryzae* TAKA amylase, *Rhizomucor miehei* aspartic proteinase, *A. niger* neutral α -amylase, *A. niger* acid stable α -amylase, *A. niger* glucoamylase, *Rhizomucor miehei* lipase, *A. oryzae* alkaline protease, *A. oryzae* triose phosphate isomerase or *A. nidulans* acetamidase.

20 The expression vector of the invention may also comprise a suitable transcription terminator and, in eukaryotes, polyadenylation sequences operably connected to the DNA sequence encoding the α -amylase variant of the invention. Termination and polyadenylation sequences may suitably be derived from the same 25 sources as the promoter.

The vector may further comprise a DNA sequence enabling the vector to replicate in the host cell in question. Examples of such sequences are the origins of replication of plasmids pUC19, pACYC177, pUB110, pSE194, pAMBl and pIJ702.

30 The vector may also comprise a selectable marker, e.g. a gene the product of which complements a defect in the host cell, such as the *dal* genes from *B. subtilis* or *B. licheniformis*, or one which confers antibiotic resistance such as ampicillin, kanamycin, chloramphenicol or tetracyclin resistance. Furthermore, the vector may comprise *Aspergillus* selection markers 35 such as *amdS*, *argB*, *niaD* and *sc*, a marker giving rise to

hygromycin resistance, or the selection may be accomplished by co-transformation, e.g. as described in WO 91/17243.

While intracellular expression may be advantageous in some respects, e.g. when using certain bacteria as host cells, it is generally preferred that the expression is extracellular. In general, the *Bacillus* α -amylases mentioned herein comprise a preregion permitting secretion of the expressed protease into the culture medium. If desirable, this preregion may be replaced by a different preregion or signal sequence, conveniently accomplished by substitution of the DNA sequences encoding the respective preregions.

The procedures used to ligate the DNA construct of the invention encoding an α -amylase variant, the promoter, terminator and other elements, respectively, and to insert them into suitable vectors containing the information necessary for replication, are well known to persons skilled in the art (cf., for instance, Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor, 1989).

The cell of the invention, either comprising a DNA construct or an expression vector of the invention as defined above, is advantageously used as a host cell in the recombinant production of an α -amylase variant of the invention. The cell may be transformed with the DNA construct of the invention encoding the variant, conveniently by integrating the DNA construct (in one or more copies) in the host chromosome. This integration is generally considered to be an advantage as the DNA sequence is more likely to be stably maintained in the cell. Integration of the DNA constructs into the host chromosome may be performed according to conventional methods, e.g. by homologous or heterologous recombination. Alternatively, the cell may be transformed with an expression vector as described above in connection with the different types of host cells.

The cell of the invention may be a cell of a higher organism such as a mammal or an insect, but is preferably a microbial cell, e.g. a bacterial or a fungal (including yeast) cell.

Examples of suitable bacteria are grampositive bacteria such as *Bacillus subtilis*, *Bacillus licheniformis*, *Bacillus lentus*,

Bacillus brevis, Bacillus stearothermophilus, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus coagulans, Bacillus circulans, Bacillus laetus, Bacillus megaterium, Bacillus thuringiensis, or Streptomyces lividans or Streptomyces murinus, 5 or gramnegative bacteria such as E.coli. The transformation of the bacteria may, for instance, be effected by protoplast transformation or by using competent cells in a manner known per se.

The yeast organism may favourably be selected from a species of *Saccharomyces* or *Schizosaccharomyces*, e.g. *Saccharomyces cerevisiae*. The filamentous fungus may advantageously belong to a species of *Aspergillus*, e.g. *Aspergillus oryzae* or *Aspergillus niger*. Fungal cells may be transformed by a process involving protoplast formation and transformation of the protoplasts followed by regeneration of the cell wall in a manner known per se. 15 A suitable procedure for transformation of *Aspergillus* host cells is described in EP 238 023.

In yet a further aspect, the present invention relates to a method of producing an α -amylase variant of the invention, which method comprises cultivating a host cell as described above 20 under conditions conducive to the production of the variant and recovering the variant from the cells and/or culture medium.

The medium used to cultivate the cells may be any conventional medium suitable for growing the host cell in question and obtaining expression of the α -amylase variant of the invention. 25 Suitable media are available from commercial suppliers or may be prepared according to published recipes (e.g. as described in catalogues of the American Type Culture Collection).

The α -amylase variant secreted from the host cells may conveniently be recovered from the culture medium by well-known 30 procedures, including separating the cells from the medium by centrifugation or filtration, and precipitating proteinaceous components of the medium by means of a salt such as ammonium sulphate, followed by the use of chromatographic procedures such as ion exchange chromatography, affinity chromatography, or the like. 35

Industrial applications

The α -amylase variants of this invention possesses valuable properties allowing for a variety of industrial applications. In particular, enzyme variants of the invention are applicable as a component in washing, dishwashing and hard-surface cleaning detergent compositions. Numerous variants are particularly useful in the production of sweeteners and ethanol from starch, and/or for textile desizing. Conditions for conventional starch-conversion processes, including starch liquefaction and/or saccharification processes, are described in, e.g., US 3,912,590 and in EP patent publications Nos. 252 730 and 63 909.

Production of sweeteners from starch:

A "traditional" process for conversion of starch to fructose syrups normally consists of three consecutive enzymatic processes, viz. a liquefaction process followed by a saccharification process and an isomerization process. During the liquefaction process, starch is degraded to dextrins by an α -amylase (e.g. TermamylTM) at pH values between 5.5 and 6.2 and at temperatures of 95-160°C for a period of approx. 2 hours. In order to ensure an optimal enzyme stability under these conditions, 1 mM of calcium is added (40 ppm free calcium ions).

After the liquefaction process the dextrins are converted into dextrose by addition of a glucoamylase (e.g. AMGTM) and a debranching enzyme, such as an isoamylase or a pullulanase (e.g. PromozymeTM). Before this step the pH is reduced to a value below 4.5, maintaining the high temperature (above 95°C), and the liquefying α -amylase activity is denatured. The temperature is lowered to 60°C, and glucoamylase and debranching enzymes are added. The saccharification process proceeds for 24-72 hours.

After the saccharification process the pH is increased to a value in the range of 6-8, preferably pH 7.5, and the calcium is removed by ion exchange. The dextrose syrup is then converted into high fructose syrup using, e.g., an immobilized glucoisomerase (such as SweetzymeTM).

At least 1 enzymatic improvements of this process could be envisaged. Reduction of the calcium dependency of the liquefying α -amylase. Addition of free calcium is required to

ensure adequately high stability of the α -amylase, but free calcium strongly inhibits the activity of the glucoseisomerase and needs to be removed, by means of an expensive unit operation, to an extent which reduces the level of free calcium to below 3-5 ppm. Cost savings could be obtained if such an operation could be avoided and the liquefaction process could be performed without addition of free calcium ions.

To achieve that, a less calcium-dependent Termamyl-like α -amylase which is stable and highly active at low concentrations of free calcium (< 40 ppm) is required. Such a Termamyl-like α -amylase should have a pH optimum at a pH in the range of 4.5-6.5, preferably in the range of 4.5-5.5.

Detergent compositions

As mentioned above, variants of the invention may suitably be incorporated in detergent compositions. Increased thermostability at low calcium concentrations would be very beneficial for amylase performance in detergents, i.e. the alkaline region. Reference is made, for example, to WO 96/23874 and WO 97/07202 for further details concerning relevant ingredients of detergent compositions (such as laundry or dishwashing detergents), appropriate methods of formulating the variants in such detergent compositions, and for examples of relevant types of detergent compositions.

Detergent compositions comprising a variant of the invention may additionally comprise one or more other enzymes, such as a lipase, cutinase, protease, cellulase, peroxidase or laccase, and/or another α -amylase.

α -amylase variants of the invention may be incorporated in detergents at conventionally employed concentrations. It is at present contemplated that a variant of the invention may be incorporated in an amount corresponding to 0.00001-1 mg (calculated as pure, active enzyme protein) of α -amylase per liter of wash/dishwash liquor using conventional dosing levels of detergent.

The invention also relates to a composition comprising

a mixture of one or more variants of the invention derived from (as the parent Termamyl-like α -amylase) the *B. stearothermophilus* α -amylase having the sequence shown in SEQ ID NO: 3 and a Termamyl-like alpha-amylase derived from the *B. licheniformis* α -amylase having the sequence shown in SEQ ID NO: 4.

Further, the invention also relates to a composition comprising a mixture of one or more variants according the invention derived from (as the parent Termamyl-like α -amylase) the *B. stearothermophilus* α -amylase having the sequence shown in SEQ ID NO: 3 and a hybrid alpha-amylase comprising a part of the *B. amyloliquefaciens* α -amylase shown in SEQ ID NO: 5 and a part of the *B. licheniformis* α -amylase shown in SEQ ID NO: 4. The latter mentioned hybrid Termamyl-like α -amylase comprises the 445 C-terminal amino acid residues of the *B. licheniformis* α -amylase shown in SEQ ID NO: 4 and the 37 N-terminal amino acid residues of the α -amylase derived from *B. amyloliquefaciens* shown in SEQ ID NO: 5. Said latter mentioned hybrid α -amylase may suitably comprise the following mutations: H156Y+A181T+N190F+A209V+Q264S (using the numbering in SEQ ID NO: 4). In the examples below said hybrid parent Termamyl-like α -amylase, is used in combination with variants of the invention, which variants may be used in compositions of the invention.

In a specific embodiment of the invention the composition comprises a mixture of TVB146 and LE174, e.g., in a ratio of 2:1 to 1:2, such as 1:1.

A α -amylase variant of the invention or a composition of the invention may in an aspect of the invention be used for washing and/or dishwashing; for textile desizing or for starch liquefaction.

MATERIALS AND METHODS

Enzymes:

BSG alpha-amylase: *B. stearothermophilus* alpha-amylase depicted in SEQ ID NO: 3.

TVB146 alpha-amylase variant: *B. stearothermophilus* alpha-amylase variant depicted in SEQ ID NO: 3 with the following mutations: with the deletion in positions I181-G182 + N193F.

LE174 hybrid alpha-amylase variant:

LE174 is a hybrid Termamyl-like alpha-amylase being identical to the Termamyl sequence, i.e., the *Bacillus licheniformis* α -amylase shown in SEQ ID NO: 4, except that the N-terminal 35 amino acid residues (of the mature protein) has been replaced by the N-terminal 33 residues of BAN (mature protein), i.e., the *Bacillus amyloliquefaciens* alpha-amylase shown in SEQ ID NO: 5, which further have following mutations:

H156Y+A181T+N190F+A209V+Q264S (using the numbering in SEQ ID NO: 4). LE174 was constructed by SOE-PCR (Higuchi et al. 1988, Nucleic Acids Research 16:7351).

Fermentation and purification of α -amylase variants

A *B. subtilis* strain harbouring the relevant expression plasmid is streaked on a LB-agar plate with 10 μ g/ml kanamycin from -80°C stock, and grown overnight at 37°C.

The colonies are transferred to 100 ml BPX media supplemented with 10 μ g/ml kanamycin in a 500 ml shaking flask.

Composition of BPX medium:

Potato starch	100	g/l
Barley flour	50	g/l
BAN 5000 SKB	0.1	g/l
Sodium caseinate	10	g/l
Soy Bean Meal	20	g/l
Na ₂ HPO ₄ , 12 H ₂ O	9	g/l
Pluronic™	0.1	g/l

The culture is shaken at 37°C at 270 rpm for 5 days.

Cells and cell debris are removed from the fermentation broth by centrifugation at 4500 rpm in 20-25 minutes. Afterwards the supernatant is filtered to obtain a completely clear solution.

- 5 The filtrate is concentrated and washed on a UF-filter (10000 cut off membrane) and the buffer is changed to 20mM Acetate pH 5.5. The UF-filtrate is applied on a S-sepharose F.F. and elution is carried out by step elution with 0.2M NaCl in the same buffer. The eluate is dialysed against 10mM Tris, pH 9.0 and applied on a 16 Q-sepharose F.F. and eluted with a linear gradient from 0-0.3M NaCl over 6 column volumes. The fractions which contain the activity (measured by the Phadebas assay) are pooled, pH was adjusted to pH 7.5 and remaining color was removed by a treatment with 0.5% w/vol. active coal in 5 minutes.

15

Activity determination - (KNU)

One Kilo alpha-amylase Unit (1 KNU) is the amount of enzyme which breaks down 5.26 g starch (Merck, Amylum Solubile, Erg. B 6, 20 Batch 9947275) per hour in Novo Nordisk's standard method for determination of alpha-amylase based upon the following condition:

Substrate	soluble starch
-----------	----------------

25 Calcium content in solvent 0.0043 M

Reaction time 7-20 minutes

Temperature 37°C

pH 5.6

30 Detailed description of Novo Nordisk's analytical method (AF 9) is available on request.

BS-amylase Activity Determination - KNU(S)**1. Application Field**

This method is used to determine α -amylase activity in 5 fermentation and recovery samples and formulated and granulated products.

2. Principle

BS-amylase breaks down the substrate (4,6-ethyldene(G₁)-p-nitrophenyl(G₁)- α ,D-maltoheptaoside (written as ethyldene-G₁-PNP) into, among other things, G₂-PNP and G₃-PNP, where G denoted 10 glucose and PNP p-nitrophenol.

G₂-PNP and G₃-PNP are broken down by α -glucosidase, which is added in excess, into glucose and the yellow-coloured p-nitrophenol.

15 The colour reaction is monitored in situ and the change in absorbance over time calculated as an expression of the spread of the reaction and thus of the activity of the enzyme. See the Boehringer Mannheim 1442 309 guidelines for further details.

20 2.1 Reaction conditions

Reaction:

Temperature : 37°C

pH : 7.1

Pre-incubation time: 2 minutes

25 Detection:

Wavelength : 405 nm

Measurement time 3 minutes

3. Definition of Units

30 Bacillus stearothermophilus alpha-amylase (BS-amylase) activity is determined relative to a standard of declared activity and stated in Kilo Novo Units (Stearothermophilus) or KNU(S).

4. Specificity and Sensitivity

35 Limit of determination: approx. 0.4 KNU(s)/g

5. Apparatus

Cobas Fara analyser

Diluted (e.g. Hamilton Microlab 1000)

Analytical balance (e.g. Mettler AE 100)

5 Stirrer plates**6. Reagents/Substrates**

A ready-made kit is used in this analysis to determine α -amylase activity. Note that the reagents specified for the substrate and α -glucosidase are not used as described in the Boehringer Mannheim guidelines. However, the designations "buffer", "glass 1", "glass 1a" and "Glass 2" are those referred to in those guidelines.

6.1. Substrate

4,6-ethylidene (G_7) -p-nitrophenyl (G_1) - α ,D-maltoheptaoside (written as ethylidene- G_7 -PNP) e.g. Boehringer Mannheim 1442 309

6.2 α -glucosidase help reagent

α -glucosidase, e.g. Boehringer Mannheim 1442 309

6.3 BRIJ 35 solution

BRIJ 35 (30% W/V Sigma 430 AG-6) 1000 mL

Demineralized water up to 2,000 mL

6.4 Stabiliser

Brij 35 solution 33 mL

CaCl₂*2H₂O (Merck 2382) 882 g

Demineralized Water up to 2,000 mL

7. Samples and Standards**7.1 Standard curve**

Example: Preparation of BS-amylase standard curve

The relevant standard is diluted to 0.60 KNU(s)/mL as follows. A calculated quantity of standard is weighed out and added to 200 mL volumetric flask, which is filled to around the 2/3 mark with demineralized water. Stabiliser corresponding to 1% of the volume of the flask is added and the flask is filled to the mark with demineralized water.

5 A Hamilton Microlab 1000 is used to produce the dilutions shown below. Demineralized water with 1% stabiliser is used as the diluent.

10

Dilution No.	Enzyme stock solution	1% stabiliser	KNU(s)/mL
1	20µL	580µL	0.02
2	30µL	570µL	0.03
3	40µL	560µL	0.04
4	50µL	550µL	0.05
5	60µL	540µL	0.06

7.2 Level control

A Novo Nordisk A/S BS amylase level control is included in all runs using the Cobas Fara. The control is diluted with 1% stabiliser so that the final dilution is within the range of the standard curve. All weights and dilutions are noted on the worklist.

7.3 Sample solutions

20 Single determination

Fermentation samples (not final samples) from production, all fermentation samples from pilot plants and storage stability samples are weighed out and analyzed once only.

Double determination over 1 run:

25 Process samples, final fermentation samples from production, samples from GLP studies and R&D samples are weighed out and analyzed twice.

Double determinations over 2 runs:

Finished product samples are weighed out and analyzed twice over two separate runs.

Maximum concentration of samples in powder form: 5%

Test samples are diluted with demineralized water with 1% stabiliser to approx. 0.037 KNU(S)/mL on the basis of their expected activity. The final dilution is made direct into the sample cup.

8. Procedure

10 8.1 Cobas Menu Program

- The Cobas Menu Program is used to suggest the weight/dilutions of samples and level control to be used.
- The samples are entered into the program with a unique identification code and a worklist is printed out.
- 15 ■ The samples and control are weighed out and diluted as stated on the worklist with hand-written weight data is inserted into the BS-amylase analysis logbook
- The results are computered automatically by the Cobas Fara as described in item 9 and printed out along with the standard curve.
- 20 ■ Worklists and results printouts are inserted into the BS-amylase analysis logbook.

8.2 Cobas Fara set-up

- 25 ■ The samples are placed in the sample rack
- The five standards are placed in the calibration rack at position 1 to 5 (strongest standard at position 5), and control placed in the same rack at position 10.
- The substrate is transferred to a 30 mL reagent container and placed in that reagent rack at position 2 (holder 1).
- 30 ■ The α -glucosidase help reagent is transferred to a 50 mL reagent container and placed in the reagent rack at position 2 (holder C)

35 8.3 Cobas Fara analysis

The main principles of the analysis are as follows:

20 μ L sample and 10 μ L rinse-water are pipetted into the cuvette along with 250 μ L α -glucosidase help reagent. The cuvette rotates for 10 seconds and the reagents are thrown out into the horizontal cuvettes. 25 μ L substrate and 20 μ L rinse-water are pipetted off. After a 1 second wait to ensure that the temperature is 37°C, the cuvette rotates again and the substrate is mixed into the horizontal cuvettes. Absorbance is measured for the first time after 120 seconds and then every 5 seconds.

Absorbance is measured a total of 37 times for each sample.

9. Calculations

The activity of the samples is calculated relative to Novo Nordisk A/S standard.

The standard curve is plotted by the analyzer. The curve is to be gently curved, rising steadily to an absorbance of around 0.25 for standard no. 5.

The activity of the samples in KNU(S)/mL is read off the standard curve by the analyzer.

The final calculations to allow for the weights/dilutions used employ the following formula:

$$\text{Activity in KNU(S)/g} = S \times V \times F/W$$

S= analysis result read off (KNU(S)/mL)

V= volume of volumetric flask used in mL

F= dilution factor for second dilution

W= weight of enzyme sample in g

9.2 Calculation of mean values

Results are stated with 3 significant digits. However, for sample activity < 10 KNU(S)/g, only 2 significant digits are given.

The following rules apply on calculation of mean values:

1. Data which deviates more than 2 standard deviations from the mean value is not included in the calculation.

2. Single and double determination over one run:

The mean value is calculated on basis of results lying within the standard curve's activity area.

3. Double determinations over two runs: All values are included in the mean value. Outliers are omitted.

10. Accuracy and Precision

5 The coefficient of variation is 2.9% based on retrospective validation of analysis results for a number of finished products and the level control.

Assay for α -Amylase Activity

10 α -Amylase activity is determined by a method employing Phadebas® tablets as substrate. Phadebas tablets (Phadebas® Amylase Test, supplied by Pharmacia Diagnostic) contain a cross-linked insoluble blue-coloured starch polymer which has been mixed with bovine serum albumin and a buffer substance and 15 tabletted.

For every single measurement one tablet is suspended in a tube containing 5 ml 50 mM Britton-Robinson buffer (50 mM acetic acid, 50 mM phosphoric acid, 50 mM boric acid, 0.1 mM CaCl_2 , pH adjusted to the value of interest with NaOH). The test is 20 performed in a water bath at the temperature of interest. The α -amylase to be tested is diluted in x ml of 50 mM Britton-Robinson buffer. 1 ml of this α -amylase solution is added to the 5 ml 50 mM Britton-Robinson buffer. The starch is hydrolysed by the α -amylase giving soluble blue fragments. The absorbance of 25 the resulting blue solution, measured spectrophotometrically at 620 nm, is a function of the α -amylase activity.

It is important that the measured 620 nm absorbance after 10 or 15 minutes of incubation (testing time) is in the range of 30 0.2 to 2.0 absorbance units at 620 nm. In this absorbance range there is linearity between activity and absorbance (Lambert-Beer law). The dilution of the enzyme must therefore be adjusted to fit this criterion. Under a specified set of conditions (temp., pH, reaction time, buffer conditions) 1 mg of a given α -amylase will hydrolyse a certain amount of substrate and a blue colour 35 will be produced. The colour intensity is measured at 620 nm. The measured absorbance is directly proportional to the specific

activity (activity/mg of pure α -amylase protein) of the α -amylase in question under the given set of conditions.

EXAMPLES

EXAMPLE 1

Construction of variants of BSG α -amylase (SEQ ID NO: 3)

5 The gene encoding BSG, amyS, is located in plasmid pPL1117. This plasmid contains also the gene conferring resistance towards kanamycin and an origin of replication, both obtained from plasmid pUB110 (Gryczan, T.J. et al (1978) J.Bact. 134:318-329).

10 The DNA sequence of the mature part of amyS is shown as SEQ ID NO: 11 and the amino acid sequence of the mature protein is shown as SEQ ID NO: 3.

15 BSG variant TVB145, which contains a deletion of 6 nucleotides corresponding to amino acids I181-G182 in the mature protein, is constructed as follows:

Polymerase Chain Reaction (PCR) is utilized to amplify the part of the amyS gene (from plasmid pPL1117), located between DNA primers BSG1 (SEQ ID NO: 15) and BSGM2 (SEQ ID NO: 18). BSG1 is identical to a part of the amyS gene whereas BSGM2 20 contains the 6 bp nucleotide deletion. A standard PCR reaction is carried out: 94°C for 5 minutes, 25 cycles of (94°C for 45 seconds, 50°C for 45 seconds, 72°C for 90 seconds), 72°C for 7 minutes using the Pwo polymerase under conditions as recommended by the manufacturer, Boehringer Mannheim GmbH.

25 The resulting approximately 550 bp amplified band was used as a megaprimer (Barik, S and Galinski, MS (1991); Biotechniques 10: 489-490) together with primer BSG3 in a second PCR with pPL1117 as template resulting in a DNA fragment of approximately 1080 bp.

30 This DNA fragment is digested with restriction endonucleases Acc65I and SalI and the resulting approximately 550 bp fragment is ligated into plasmid pPL1117 digested with the same enzymes and transformed into the protease- and amylase-deleted *Bacillus subtilis* strain SMA273 (described in 35 WO92/11357 and WO95/10603).

Kanamycin resistant and starch degrading transformants were analysed for the presence of the desired mutations (restriction

digest to verify the introduction of a HindIII site in the gene). The DNA sequence between restriction sites Acc65I and SalI was verified by DNA sequencing to ensure the presence of only the desired mutations.

5 BSG variant TVB146 which contains the same 6 nucleotide deletion as TVB145 and an additional substitution of asparagine 193 for a phenylalanine, N193F, was constructed in a similar way as TVB145 utilizing primer BSGM3 (SEQ ID NO: 19) in the first PCR.

10 BSG variant TVB161, containing the deletion of I181-G182, N193F, and L204F, is constructed in a similar way as the two previous variants except that the template for the PCR reactions is plasmid pTVB146 (pPL1117 containing the TVB146-mutations within amyS and the mutagenic oligonucleotide for the 15 first PCR is BSGM3).

BSG variant TVB162, containing the deletion of I181-G182, N193F, and E210H, is constructed in a similar way as TVB161 except that the mutagenic oligonucleotide is BSGM4 (SEQ ID NO: 20).

20 BSG variant TVB163, containing the deletion of I181-G182, N193F, and E214Q, is constructed in a similar way as TVB161 except that the mutagenic oligonucleotide is BSGM5 (SEQ ID NO: 21).

The above constructed BSG variants were then fermented and 25 purified as described above in the "Material and Methods" section.

EXAMPLE 2

Measurement of the calcium- and pH-dependent stability

30 Normally, the industrial liquefaction process runs using pH 6.0-6.2 as liquefaction pH and an addition of 40 ppm free calcium in order to improve the stability at 95°C-105°C. Some of the herein proposed substitutions have been made in order to improve the stability at

- 35 1. lower pH than pH 6.2 and/or
2. at free calcium levels lower than 40 ppm free calcium.

Two different methods have been used to measure the improvements in stability obtained by the different

substitutions in the α -amylase from *B. stearothermophilus*:

Method 1. One assay which measures the stability at reduced pH, pH 5.0, in the presence of 5 ppm free calcium.

10 μ g of the variant were incubated under the
5 following conditions: A 0.1 M acetate solution, pH
adjusted to pH 5.0, containing 5ppm calcium and 5% w/w
common corn starch (free of calcium). Incubation was
made in a water bath at 95°C for 30 minutes.

Method 2. One assay which measure the stability in the
10 absence of free calcium and where the pH is maintained at pH
6.0. This assay measures the decrease in calcium sensitivity:
10 μ g of the variant were incubated under the following
conditions: A 0.1 M acetate solution, pH adjusted to
pH 6.0, containing 5% w/w common corn starch (free of
15 calcium). Incubation was made in a water bath at 95°C
for 30 minutes.

Stability determination

All the stability trials 1, 2 have been made using
20 the same set up. The method was:

The enzyme was incubated under the relevant conditions (1-4).
Samples were taken at 0, 5, 10, 15 and 30 minutes and diluted
25 times (same dilution for all taken samples) in assay buffer
25 (0.1M 50mM Britton buffer pH 7.3) and the activity was
measured using the Phadebas assay (Pharmacia) under standard
conditions pH 7.3, 37°C.

The activity measured before incubation (0 minutes) was
used as reference (100%). The decline in percent was calculated
as a function of the incubation time. The table shows the
30 residual activity after 30 minutes of incubation.

Stability method 1. / Low pH stability improvement

MINUTES OF INCUBATION	WT. SEQ. ID: NO: 3 AMYLASE (BSG)	SEQ. ID NO: 3 VARIANT WITH DELETION IN POS. I181-G182 (TVB145)	SEQ. ID NO: 3 VARIANT WITH DELETION IN POS. I181-G182 + N193F (TVB146)	SEQ. ID NO: 3 VARIANT WITH DELETION IN POS. I181-G182 + N193F + E214Q (TVB163)
0	100	100	100	100
5	29	71	83	77
10	9	62	77	70
15	3	50	72	67
30	1	33	62	60

3 Stability method 1. / Low pH stability improvement

The temperature describet in method 1 has been reduced from 95°C to 70°C since the amylases mentioned for SEQ ID NO: 1 and 2 have a lower thermostability than the one for SEQ ID NO: 3.

MINUTES OF INCUBATION	WT. SEQ. ID: NO: 2 AMYLASE	SEQ. ID NO: 2 VARIANT WITH DELETION IN POS. D183-G184	SEQ. ID NO: 1 AMYLASE	SEQ. ID NO: 1 VARIANT WITH DELETION IN POS. T183-G184
0	100	100	100	100
5	73	92	41	76
10	59	88	19	69
15	48	91	11	62
30	28	92	3	59

Stability method 2. / Low calcium sensitivity

MINUTES OF INCUBATION	WT. SEQ ID NO: 3 AMYLASE (BSG)	SEQ ID NO: 3 VARIANT WITH DELETION IN POS. I181-G182 (TVB145)	SEQ ID NO: 3 VARIANT WITH DELETION IN POS. I181-G182 (TVB146)	SEQ ID NO: 3 VARIANT WITH DELETION IN POS. I181-G182 (TVB163)
0	100	100	100	100
5	60	62	81	82
10	42	76	89	83
15	31	77	81	79
30	15	67	78	79

Specific activity determination.

The specific activity was determined using the Phadebas assay (Pharmacia) as activity/mg enzyme. The activity was determined using the α -amylase assay described in the Materials and Methods section herein.

The specific activity of the parent enzyme and a single and a double mutation was determined to:

BSG: SEQ ID NO:3 (Parent enzyme) 20000 NU/mg

TVB145: SEQ ID NO:3 with the deletion in positions

I181-G182: (Single mutation) 34600 NU/mg

15

TVB146: SEQ ID NO:3 with the deletion in positions

I181-G182 + N193F: (Double mutation)

36600 NU/mg

TVB163: SEQ ID NO:3 with the deletion in positions

20 I181-G182+N193F+E214Q: (Triple mutation) 36300 NU/mg

EXAMPLE 3

Pilot plant jet cook and liquefaction with alpha-amylase

variant TVB146

Pilot plant liquefaction experiments were run in the mini-jet system using a dosage of 50 NU (S)/g DS at pH 5.5 with 5 ppm added Ca⁺⁺, to compare the performance of formulated BSG alpha-amylase variant TVB146 (SEQ ID NO: 3 with deletion in positions

I181~G182 + N193F) with that of parent BSG alpha-amylase (SEQ ID NO: 3). The reaction was monitored by measuring the DE increase (Neocuproine method) as a function of time.

Corn starch slurries were prepared by suspending 11.8 kg Cerestar C*Pharm GL 03406 (89 % starch) in deionized water and making up to 30 kg. The pH was adjusted to 5.5 at ambient temperature, after the addition of 0.55 g CaCl₂. 2H₂O.

The following enzymes were used:

TVB146	108 KNU(S)/g, 146 KNU(SM9)/g
BSG amylase	101 KNU(S)/g, 98 KNU(SM9)/g

An amount of enzyme corresponding to 50 NU (SM9)/g DS was added, and the conductivity adjusted to 300mS using NaCl. The standard conditions were as follows:

Substrate concentration	35 % w/w (initial)
	31.6-31.9 % w/w (final)
Temperature	105°C, 5 min (Primary liquefaction)
	95°C, 90 min (Secondary liquefaction)
pH (initial)	5.5

After jetting, the liquefied starch was collected and transported in sealed thermos-flasks from the pilot plant to the laboratory, where secondary liquefaction was continued at 95 °C.

10 ml samples were taken at 15 minute intervals from 15-90 minutes. 2 drops of 1 N HCl were added to inactivate the enzyme. From these samples, 0.3-0.1 g (according to the expected DE) were weighed out and diluted to 100 ml. Reducing sugars were then determined according to the Neocuproine method (Determination of reducing sugar with improved precision).

Dygert, Li, Florida and Thomas (1965). Anal. Biochem 13, 368) and DE values determined. The development of DE as a function of time is given in the following table:

TIME (min.)	TVB146	BSG
	DE (neocuproine)	
15	2.80	2.32
30	4.86	3.36
45	6.58	4.98
60	8.17	6.00
75	9.91	7.40
90	11.23	8.03

As can be seen the alpha-amylase variant TVB146 performed significantly better under industrially relevant application conditions at low levels of calcium than the parent BSG alpha-amylase.

EXAMPLE 4

Jet Cook and Liquefaction with a combination of alpha-amylase variants (TVB146 and LE174)

Jet cook and liquefaction using a combination of the alpha-amylase variants, TVB146 and LE174 (ratio 1:1) were carried out at the following conditions:

Substrate A.E. Staley food grade powdered corn starch (100lbs)

D.S. 35% using DI Water

Free Ca²⁺ 2.7ppm at pH 5.3 (none added, from the starch only)

Initial pH 5.3

Dose AF9 units (AF9 is available on request) for each enzyme variant was 28 NU/g starch db for a total dose of 56 NU/g

Temperature in primary liquefaction 105°C

Hold time in primary liquefaction 5 minutes

Temperature in secondary liquefaction 95°C

At 15 minutes into secondary liquefaction 1.5 gms of hydrolyzate was added to a tared one liter volumetric containing 500cc of DI water and 1 ml of one normal HCl and the exact wt. added was recorded. This was repeated at 15 minute intervals out to 90 minutes with an additional point at 127

minutes. These were diluted to one liter and determined for dextrose equivalence via Neocuproine method as described by Dygert, Li, Florida and Thomas. Determination of reducing sugar with improved precision (1965). Anal. Biochem 13, 368.

5

The results were as follows:

Time	DE
15	3.2
30	4.8
45	6.3
60	7.8
75	9.4
90	10.4
127	13.1

10

REFERENCES CITED

Klein, C., et al., *Biochemistry* 1992, 31, 8740-8746.

5 Mizuno, R., et al., *J. Mol. Biol.* (1993) 234, 1282-1283.

Chang, C., et al., *J. Mol. Biol.* (1993) 229, 235-236.

Larson, S.B., *J. Mol. Biol.* (1994) 235, 1560-1584.

10 Lawson, C.L., *J. Mol. Biol.* (1994) 236, 590-600.

Qian, M., et al., *J. Mol. Biol.* (1993) 231, 785-799.

15 Brady, R.L., et al., *Acta Crystallogr. sect. B*, 47, 527-535.

Swift, R.J., et al., *Acta Crystallogr. sect. B*, 47, 535-544.

A. Kadziola, Ph.D. Thesis: "An alpha-amylase from Barley and its
20 Complex with a Substrate Analogue Inhibitor Studied by X-ray
Crystallography", Department of Chemistry University of
Copenhagen 1993.

MacGregor, E.A., *Food Hydrocolloids*, 1987, Vol.1, No. 5-6.

25 B. Diderichsen and L. Christiansen, Cloning of a maltogenic α -amylase from *Bacillus stearothermophilus*, *FEMS Microbiol. letters*: 56: pp. 53-60 (1988).

30 Hudson et al., *Practical Immunology*, Third edition (1989),
Blackwell Scientific Publications.

Sambrook et al., *Molecular Cloning: A Laboratory Manual*, 2nd Ed., Cold Spring Harbor, 1989.

35 S.L. Beaucage and M.H. Caruthers, *Tetrahedron Letters* 22, 1981,
pp. 1859-1869

Matthes et al., The EMBO J. 3, 1984, pp. 801-805.

R.K. Saiki et al., Science 239, 1988, pp. 487-491.

5

Morinaga et al., (1984, Biotechnology 2:646-639)

Nelson and Long, Analytical Biochemistry 180, 1989, pp. 147-153

10 Hunkapiller et al., 1984, Nature 310:105-111

R. Higuchi, B. Krummel, and R.K. Saiki (1988). A general method
of *in vitro* preparation and specific mutagenesis of DNA frag-
ments: study of protein and DNA interactions. Nucl. Acids Res.
15 16:7351-7367.

Dubnau et al., 1971, J. Mol. Biol. 56, pp. 209-221.

Gryczan et al., 1978, J. Bacteriol. 134, pp. 318-329.

20 S.D. Erlich, 1977, Proc. Natl. Acad. Sci. 74, pp. 1680-1682.

Boel et al., 1990, Biochemistry 29, pp. 6244-6249.

CLAIMS

- i. A variant of a parent Termamyl-like α -amylase with α -amylase activity comprising mutations in two, three, four, five or six s of the following regions/positions or in corresponding positions in other parent Termamyl-like α -amylases:
- (relative to SEQ ID NO: 1):
- 1: R181*, G182*, T183*, G184*
- 2: N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 10 3: V206A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y;
- 4: E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 5: E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 6: K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
- (relative to SEQ ID NO: 2):
- 18 1: R181*, G182*, D183*, G184*
- 2: N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 3: V206A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y;
- 4: E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 5: E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 20 6: K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;
- (Relative to SEQ ID NO: 3):
- 1: R179*, G180, I181*, G182*
- 2: N193A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 3: L204A, R, D, N, C, E, Q, G, H, I, K, M, F, P, S, T, W, Y, V;
- 25 4: E210A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 5: E214A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 6: S267A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, T, W, Y, V
- Relative to SEQ ID NO: 4):
- 1: N190A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 30 2: I201A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 3: D207A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 4: E211A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 5: Q264A, R, D, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- (relative to SEQ ID NO: 5):
- 35 1: R176*, G177*, E178, G179*
- 2: N190A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
- 3: V201A, R, D, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y,

4: D207A, R, N, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
5: E211A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
6: Q264A, R, D, N, C, E, G, H, I, L, K, M, F, P, S, T, W, Y, V;
(relative to SEQ ID NO: 6):

5 1: R181*, G182*, H183*, G184*
2: N195A, R, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
3: I206A, R, D, N, C, E, Q, G, H, L, K, M, F, P, S, T, W, Y, V;
4: E212A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
5: E216A, R, D, N, C, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V;
10 6: K269A, R, D, N, C, E, Q, G, H, I, L, M, F, P, S, T, W, Y, V;

2. The variant according to claim 1, comprising the following mutations: N190F/Q264S in SEQ ID NO: 4 or in corresponding positions in another parent α -amylase.

15 3. The variant according to claim 1, comprising the following mutations: I181*/G182*/N193F in SEQ ID NO: 3 or in corresponding positions in another parent Termamyl like α -amylase.

20 4. The variant according to claim 3, further comprising a substitution in position E214Q in SEQ ID NO: 3 or in a corresponding position in another parent Termamyl like α -amylase.

25 5. The variant according to any of claims 1 to 4, wherein the parent α -amylase is a hybrid α -amylase of SEQ ID NO: 4 and SEQ ID NO: 5.

6. The variant according to claim 5, wherein the parent hybrid
30 α -amylase is a hybrid alpha-amylase comprising the 445 C-terminal amino acid residues of the *B. licheniformis* α -amylase shown in SEQ ID NO: 4 and the 37 N-terminal amino acid residues of the α -amylase derived from *B. amyloliquefaciens* shown in SEQ ID NO: 5.

35 7. The variant according to claim 6, wherein the parent hybrid

Termamyl-like α -amylase further has the following mutations:
H156Y+A161T+N190F+A209V+Q264S (using the numbering in SEQ ID NO: 4).

5 8. The variant according to claim 1, exhibiting increased stability at acidic pH and/or low Ca^{2+} concentration:

9. A DNA construct comprising a DNA sequence encoding an α -amylase variant according to any one of claims 1 to 8.

10 10. A recombinant expression vector which carries a DNA construct according to claim 9.

11. A cell which is transformed with a DNA construct according to claim 9 or a vector according to claim 10.

12. A cell according to claim 11, which is a microorganism.

13. A cell according to claim 12, which is a bacterium or a 20 fungus.

14. The cell according to claim 13, which is a grampositive bacterium such as *Bacillus subtilis*, *Bacillus licheniformis*, *Bacillus lentus*, *Bacillus brevis*, *Bacillus stearothermophilus*, 25 *Bacillus alkalophilus*, *Bacillus amyloliquefaciens*, *Bacillus coagulans*, *Bacillus circulans*, *Bacillus laetus* or *Bacillus thuringiensis*.

15. A detergent additive comprising an α -amylase variant according to any one of claims 1 to 8, optionally in the form of a non-dusting granulate, stabilised liquid or protected enzyme. 30

16. A detergent additive according to claim 15 which contains 0.02-200 mg of enzyme protein/g of the additive.

35 17. A detergent additive according to claims 15 or 16, which additionally comprises another enzyme such as a protease, a

lipase, a peroxidase, another amylolytic enzyme and/or a cellulase.

18. A detergent composition comprising an α -amylase variant according to any of claims 1 to 8.

19. The detergent composition according to claim 18 which additionally comprises another enzyme such as a protease, a lipase, a peroxidase, another amylolytic enzyme and/or a cellulase.

10

20. A manual or automatic dishwashing detergent composition comprising an α -amylase variant according to any one of claims 1 to 8.

15

21. A dishwashing detergent composition according to claim 20 which additionally comprises another enzyme such as a protease, a lipase, a peroxidase, another amylolytic enzyme and/or a cellulase.

20

22. A manual or automatic laundry washing composition comprising an α -amylase variant according to any one of claims 1 to 8.

25

23. A laundry washing composition according to claim 22, which additionally comprises another enzyme such as a protease, a lipase, a peroxidase, an amylolytic enzyme and/or a cellulase.

24. A composition comprising:

(i) a mixture of the α -amylase from *B. licheniformis* having the sequence shown in SEQ ID NO: 4 with one or more variants according to any of claims 1 to 8 derived from (as the parent Termamyl-like α -amylase) the *B. stearothermophilus* α -amylase having the sequence shown in SEQ ID NO: 3; or

(ii) a mixture of the α -amylase from *B. stearothermophilus* having the sequence shown in SEQ ID NO: 3 with one or more variants according to any of claims 1 to 8 derived from one or more other parent Termamyl-like α -amylases; or

(iii) a mixture of one or more variants according any of claim 1 to 8 derived from (as the parent Termamyl-like α -amylase) the *B. stearothermophilus* α -amylase having the sequence shown in SEQ ID NO: 3 with one or more variants according to the invention derived from one or more other parent Termamyl-like α -amylases.

25. A composition comprising:

a mixture of one or more variants according any of claims 1 to 8 derived from (as the parent Termamyl-like α -amylase) the *B. stearothermophilus* α -amylase having the sequence shown in SEQ ID NO: 3 and a Termamyl-like alpha-amylase derived from the *B. licheniformis* α -amylase having the sequence shown in SEQ ID NO: 4.

15 26. The composition comprising:

a mixture of one or more variants according any of claims 1 to 8 derived from (as the parent Termamyl-like α -amylase) the *B. stearothermophilus* α -amylase having the sequence shown in SEQ ID NO: 3 and a hybrid alpha-amylase comprising a part of the *B. amyloliquefaciens* α -amylase shown in SEQ ID NO: 5 and a part of the *B. licheniformis* α -amylase shown in SEQ ID NO: 4.

27. The composition according to claim 26, wherein the hybrid α -amylase is a hybrid alpha-amylase comprising the 445 C-terminal amino acid residues of the *B. licheniformis* α -amylase shown in SEQ ID NO: 4 and the 37 N-terminal amino acid residues of the α -amylase derived from *B. amyloliquefaciens* shown in SEQ ID NO: 5.

28. The composition according to claim 27, wherein the hybrid α -amylase further has the following mutations:

H156Y+A181T+N190F+A209V+Q264S (using the numbering in SEQ ID NO: 4).

29. The composition according to claims 26, comprising a mixture

of TVB146 and LE174.

30. Use of an α -amylase variant according to any of claims 1 to 8 or a composition according to any of claims 24 to 29 for washing and/or dishwashing.

31. Use of an α -amylase variant according to any of claims 1 to 8 or a composition according to any of claims 24 to 29 for textile desizing.

32. Use of an α -amylase variant according to any of claims 1 to 8 or a composition according to any of claims 24 to 29 for starch liquefaction.

33. A method for generating a variant of a parent Termamyl-like α -amylase, which variant exhibits increased stability at low pH and at low calcium concentration relative to the parent, the method comprising:

(a) subjecting a DNA sequence encoding the parent Termamyl-like α -amylase to random mutagenesis,

(b) expressing the mutated DNA sequence obtained in step (a) in a host cell, and

(c) screening for host cells expressing a mutated α -amylase which has increased stability at low pH and low calcium concentration relative to the parent α -amylase.

1 HINGTNGTMN QYFEWHL PND GHHWNRL RDD ASNLLRN RG IT AWWIPPAWK G 2 . NGTNGTMN QYFEWYL PND GHHWNRLRS ASNLLKD KG IS AWWIPPAWK G 3 HINGTNGTMN QYFEWYL PND GHHWNRL RDD AANLKS KG IT AWWIPPAWK G 4 . . . VNGTLM QYFEWYT PND GQHWRKLOND AEHLS DIG IT AWWIPPAWK G 5 . ANLNGTLM QYFEWYMPND GQHWRRLQND SAYLAEHG IT AWWIPPAWK G 6 . AAPENGTMN QYFEWYL PDD GTLWTKVANE ANNLLSLG IT ALWLPPAYKG	50	
1 TSQNDVCGYA YDLYDLGEEN QKGTVRTKY G TRSOL ESAIH ALKNNGVQVY 2 ASQNDVCGYA YDLYDLGEEN QKGTIRRTKYG TRNQLQA AVN ALKSNGI QVY 3 TSQNDVCGYA YDLYDLGEEN QKGTVRTKY G TRNQLQA AVT SLKNNNGI QVY 4 LSQS DNGYGP YDLYDLGEFQ QKGTVRTKY G TKSELQDA IG SLHSRNVQVY 5 TSQADVCGYA YDLYDLGEFH QKGTVRTKY G TKGELOSAIK SLHSRDINVY 6 TSRSDVCGYV YDLYDLGEFN QKGTVRTKY G TKAQYLOQAIQ AAHAAGM QVY	100	100
51	101	150
1 GDVVMMNKGG ADATENVLAV EVNPNNRQE ISG DYTIEAW TKFDEPG RGN 2 GDVVMMNKGG ADATEMVR AVNPNMRQE VSGEYTI EAW TKFDEPG RGN 3 GDVVMMNKGG ADGETIVNAV EVNRSNRQE TSGEYIA EAW TKFDEPG RGN 4 GDVVMMNKAG ADATEDVTAV EVNPANRQE TSEYEQIKAW TDFEPGRGN 5 GDVVVINNKGG ADATEDVTAV EVDPADRN RV ISGEHLIKAW THFEPGRGS 6 ADVVFDHKGG ADGETEWYDAV EVNPSDRNQE ISGTYQIQAW TKFDEPG RGN		
151	151	200
1 TYSDEKWRWY HFDGV DWDQ S RQE QWRIYKF RGDGCKA WDE VDSEN GNY DY 2 TYSNEKWRWY HFDGV DWDQ S RKL NWRIYKF RGDGCKGW DWE VDTENG NY DY 3 NISSEKWRWY HFDGT DWDQ S RQLQRIYKF RGTGKAW DWE VDTENG NY DY 4 TYSDEKWHWY HFDGA DWDES RKL SRIYKF RGECKA WDE VSSEN GNY DY 5 TYSDEKWHWY HFDGT DWDES RKL NRIYKF QCKA WDE VSSEN GNY DY 6 TYSSEKWRWY HFDGV DWDES RKL SRIYKF RGIGKAW DWE VDTENG NY DY		

2/3

1	2	3	4	5	6	10	201	251	301	351	400
LMYADVDMDH	PEVNVNLRKW	GEWYTNTLNL	DGFRLDAVKH	IKYSETRDWL			250				
LMYADLDMDH	PEVNVELRNW	GWYTNTLNL	DGFRLDAVKH	IKYSETRDWL							
LMYADYDMDH	PEVTHELRNW	GWYTNTLNL	DGFRLDAVKH	IKYSETRDWL							
LMYADVDYDH	PDVVAETKRW	GIWYANELSL	DGFRLDAAKH	IKFSELRDWV							
LMYADIYDH	PDVAAEIKRW	GTWYANELQL	DGFRLDAVKH	IKFSELRDWV							
LMYADOLDMDH	PEVVTELKWW	GWYVNTTNI	DGFRLDAVKH	IKYSETRDWL							
							251	300	350	400	
							THVRNATSGKE	MEAVAEFWKLN	DIGALENYLN	KTNWNHSVFD	VPLHYNLYNA
							THVRNTTGKP	MFAVAETWKLN	DLGAIENYLN	KTNWNHSVFD	VPLHYNLYNA
							QAVROATSGKE	MFTAEXWON	NACKLENYLN	KTSENQSVFD	VPLHNLOAA
							NHVRERKTGKE	MFTVAEYWN	DIGALENYLN	KTNENHSVFD	VPLHYQFHAA
							SYVRSQTGKP	LFTVGEYWSY	DINKLNIVIT	KTDGTMLED	APLHNKEYTA
							15	20	25	30	35
							1	2	3	4	5
							THVRNATSGKE	MEAVAEFWKLN	OIFNGTVVOR	HPMHAVTFVD	NHDSQPCESL
							THVRNTTGKP	MFAVAETWKLN	HPMHAVTFVD	HPMHAVTFVD	HDSQPEAL
							QAVROATSGKE	MFTAEXWON	HPTTHAVTFVD	HPTTHAVTFVD	HDSQPEAL
							NHVRERKTGKE	MFTVAEYWN	HPEKAHTVE	HNDTOPCOSL	HSTVOTTFKP
							SYVRSQTGKP	LFTVGEYWSY	HPLKSVTFVD	HNDTOPCOSL	HSTVOTTFKP

Fig. 1

Figure 1 (continued)

3/3

Fig. 1

Figure 1 (continued)

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT:

- (A) NAME: NOVO NORDISK A/S
- (B) STREET: Novo Allé
- (C) CITY: DK-2880 Bagsværd
- (E) COUNTRY: Denmark
- (F) POSTAL CODE (ZIP): DK-2880
- (G) TELEPHONE: +45 44 44 88 88
- (H) TELEFAX: +45 44 49 32 56

(iii) TITLE OF INVENTION: AMYLASE VARIANTS

(iv) NUMBER OF SEQUENCES: 21

(v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (RPO)

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 485 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

Sis	His	Asn	Gly	Thr	Asn	Gly	Thr	Met	Met	Gln	Tyr	Phe	Glu	Ile	Trp	Tyr
1																18

Leu	Pro	Asn	Asp	Gly	Asn	His	Trp	Asn	Arg	Leu	Arg	Asp	Asp	Ala	Aia
20															30

Asn	Ieu	Lys	Ser	Lys	Gly	Ile	Thr	Ala	Val	Trp	Ile	Pro	Pro	Ala	Trp
35															45

Lys	Gly	Thr	Ser	Gln	Asn	Asp	Val	Gly	Tyr	Gly	Ala	Tyr	Asp	Leu	Tyr
50															60

Asp	Ieu	Gly	Glu	Phe	Asn	Gln	Lys	Gly	Thr	Val	Arg	Thr	Lys	Tyr	Gly
65															80

Thr	Arg	Asn	Gln	Ieu	Gly	Ala	Ala	Val	Thr	Ser	Ieu	Lys	Asn	Asn	Gly
85															95

Ile	Gln	Val	Tyr	Gly	Asp	Val	Val	Met	Asn	His	Ieu	Lys	Gly	Ala	Asp
100															110

Gly	Thr	Gly	Ile	Val	Asn	Ala	Val	Glu	Val	Asn	Arg	Ser	Asn	Arg	Asn
115															125

Gln	Gly	Thr	Ser	Gly	Gly	Tyr	Ala	Ile	Gly	Ala	Trp	Thr	Lys	Phe	Asp
130															140

	Phe Pro Gly Arg Gly Asn Asn His Ser Ser	Phe Lys Trp Arg Trp Tyr		
145	150	155	160	
5	His Phe Asp Gly Thr Asp Trp Asp Gln Ser Arg Gln Leu Gln Asn Lys			
	165	170	175	
	Ile Tyr Lys Phe Arg Gly Thr Gly Lys Ala Trp Asp Trp Gln Val Asp			
	180	185	190	
10	Thr Glu Asn Gly Asn Tyr Asp Tyr Leu Met Tyr Ala Asp Val Asp Met			
	195	200	205	
15	Asp His Pro Glu Val Ile His Glu Leu Arg Asn Trp Gly Val Trp Tyr			
	210	215	220	
	Thr Asn Thr Leu Asn Leu Asp Gly Phe Arg Ile Asp Ala Val Lys His			
	225	230	235	240
20	Ile Lys Tyr Ser Phe Thr Arg Asp Trp Leu Thr His Val Arg Asn Thr			
	245	250	255	
	Thr Gly Lys Pro Met Phe Ala Val Ala Glu Phe Trp Lys Asn Asp Leu			
	260	265	270	
25	Gly Ala Ile Glu Asn Tyr Leu Asn Lys Thr Ser Trp Asn His Ser Val			
	275	280	285	
30	Phe Asp Val Pro Leu His Tyr Asn Leu Tyr Asn Ala Ser Asn Ser Gly			
	290	295	300	
	Gly Tyr Tyr Asp Met Arg Asn Ile Leu Asn Gly Ser Val Val Gln Lys			
	305	310	315	320
35	Sis Pro Thr His Ala Val Thr Phe Val Asp Asn His Asp Ser Gln Pro			
	325	330	335	
	Gly Glu Ala Leu Glu Ser Phe Val Gln Gln Trp Phe Lys Pro Leu Ala			
	340	345	350	
40	Tyr Ala Leu Val Leu Thr Arg Glu Gln Gly Tyr Pro Ser Val Phe Tyr			
	355	360	365	
	Gly Asp Tyr Tyr Gly Ile Pro Thr His Gly Val Pro Ala Met Lys Ser			
	370	375	380	
45	Lys Ile Asp Pro Leu Leu Gln Ala Arg Gln Thr Phe Ala Tyr Gly Thr			
	385	390	395	400
50	Gln His Asp Tyr Phe Asp His His Asp Ile Ile Gly Trp Thr Arg Glu			
	405	410	415	
	Gly Asn Ser Ser His Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asp			
	420	425	430	
55	Gly Pro Gly Gly Asn Lys Trp Met Tyr Val Gly Lys Asn Lys Ala Gly			

438	440	449
-----	-----	-----

Gin Val Trp Arg Asp Ile Thr Gly Asn Arg Thr Gly Thr Val Thr Ile	450	455
---	-----	-----

Asn Ala Asp Gly Trp Gly Asn Phe Ser Val Asn GLY Gly Ser Val Ser	460	465
---	-----	-----

Val Trp Val Lys Gin	470	485
---------------------	-----	-----

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 488 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(iii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

His His Asn Gly Thr Asn Gly Thr Met Met Gln Tyr Phe Glu Trp His	1	5	10
---	---	---	----

15

Leu Pro Asn Asp Gly Asn His Trp Asn Arg Leu Arg Asp Asp Ala Ser	20	25	30
---	----	----	----

20

Asn Leu Arg Asn Arg Gly Ile Thr Ala Ile Trp Ile Pro Pro Ala Trp	35	40	45
---	----	----	----

Lys Gly Thr Ser Gln Asn Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr	50	55	60
---	----	----	----

Asp Ieu Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly	65	70	75
---	----	----	----

35

Thr Arg Ser Gln Ieu Glu Ser Ala Ile His Ala Leu Lys Asn Asn Gly	85	90	95
---	----	----	----

Val Gln Val Tyr Gly Asp Val Val Met Asn His Lys Gly Gly Ala Asp	100	105	110
---	-----	-----	-----

40

Ala Thr Glu Asn Val Leu Ala Val Glu Val Asn Pro Asn Asn Arg Asn	115	120	125
---	-----	-----	-----

Gln Glu Ile Ser Gly Asp Tyr Thr Ile Glu Ala Trp Thr Lys Phe Asp	130	135	140
---	-----	-----	-----

45

Phe Pro Gly Arg Gly Asn Thr Tyr Ser Asp Phe Lys Trp Arg Trp Tyr	145	150	155
---	-----	-----	-----

50

His Phe Asp Gly Val Asp Trp Asp Gln Ser Arg Gln Phe Gln Asn Arg	165	170	175
---	-----	-----	-----

Ile Tyr Lys Phe Arg Gly Asp Gly Lys Ala Trp Asp Trp Glu Val Asp	180	185	190
---	-----	-----	-----

55

Ser Glu Asn Gly Asn Tyr Asp Tyr Leu Met Tyr Ala Asp Val Asp Met
 195 200 205

5 Asp His Pro Glu Val Val Asn Glu Leu Arg Arg Trp Gly Glu Trp Tyr
 210 215 220

Thr Asn Thr Leu Asn Leu Asp Gly Phe Arg Ile Asp Ala Val Lys His
 225 230 235 240

10 Ile Lys Tyr Ser Phe Thr Arg Asp Trp Leu Thr His Val Arg Asn Ala
 245 250 255

15 Thr Gly Lys Glu Met Phe Ala Val Ala Glu Phe Trp Lys Asn Asp Leu
 260 265 270

Gly Ala Leu Glu Asn Tyr Leu Asn Lys Thr Asn Trp Asn His Ser Val
 275 280 285

20 Phe Asp Val Pro Leu His Tyr Asn Leu Tyr Asn Ala Ser Asn Ser Gly
 290 295 300

Gly Asn Tyr Asp Met Ala Lys Leu Leu Asn Gly Thr Val Val Gln Lys
 305 310 315 320

25 His Pro Met His Ala Val Thr Phe Val Asp Asn His Asp Ser Gln Pro
 325 330 335

30 Gly Glu Ser Leu Gln Ser Phe Val Gln Glu Trp Phe Lys Pro Leu Ala
 340 345 350

Tyr Ala Leu Ile Leu Thr Arg Glu Gln Gly Tyr Pro Ser Val Phe Tyr
 355 360 365

35 Gly Asp Tyr Tyr Gly Ile Pro Thr His Ser Val Pro Ala Met Lys Ala
 370 375 380

Lys Ile Asp Pro Ile Leu Glu Ala Arg Gln Asn Phe Ala Tyr Gly Thr
 385 390 395 400

40 Gln His Asp Tyr Phe Asp His His Asn Ile Ile Gly Trp Thr Arg Glu
 405 410 415

45 Gly Asn Thr Thr His Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asp
 420 425 430

Gly Pro Gly Gly Glu Lys Trp Met Tyr Val Gly Gln Asn Lys Ala Gly
 435 440 445

50 Gln Val Trp His Asp Ile Thr Gly Asn Lys Pro Gly Thr Val Thr Ile
 450 455 460

Asn Ala Asp Gly Trp Ala Asn Phe Ser Val Asn Gly Gly Ser Val Ser
 465 470 475 480

55

Ile Trp Val Lys Arg
485

(2) INFORMATION FOR SEQ ID NO: 3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 514 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

Ala	Ala	Pro	Phe	Asn	Gly	Thr	Met	Met	Gln	Tyr	Phe	Glu	Trp	Tyr	Leu
1.															15.

Pro	Asp	Asp	Gly	Thr	Leu	Trp	Thr	Lys	Val	Ala	Asn	Glu	Ala	Asn	Asn
20															35

Leu	Ser	Ser	Leu	Gly	Ile	Thr	Ala	Leu	Trp	Leu	Pro	Pro	Ala	Tyr	Lys
25															45

Gly	Thr	Ser	Arg	Ser	Asp	Val	Gly	Tyr	Gly	Val	Tyr	Asp	Leu	Tyr	Asp
50															60

Leu	Gly	Glu	Phe	Asn	Gln	Lys	Gly	Ala	Val	Arg	Thr	Lys	Tyr	Gly	Thr
65															80

Lys	Ala	Gln	Tyr	Leu	Gln	Ala	Ile	Gln	Ala	Ala	Nis	Ala	Ala	Gly	Met
85															95

Gln	Val	Tyr	Ala	Asp	Val	Val	Phe	Asp	Gly	Lys	Gly	Ala	Asp	Gly	
100															110

Thr	Gly	Trp	Val	Asp	Ala	Val	Glu	Val	Asn	Pro	Ser	Asp	Arg	Asn	Gln
115															125

Glu	Ile	Ser	Gly	Thr	Tyr	Gln	Ile	Gln	Ala	Trp	Thr	Lys	Phe	Asp	Phe
130															140

Pro	Gly	Arg	Gly	Asn	Thr	Tyr	Ser	Ser	The	Lys	Trp	Arg	Trp	Tyr	His
145															160

Phe	Asp	Gly	Val	Asp	Trp	Asp	Glu	Ser	Arg	Lys	Leu	Ser	Arg	Ile	Tyr
165															175

Lys	Phe	Arg	Gly	Ile	Gly	Lys	Ala	Trp	Asp	Trp	Glu	Val	Asp	Thr	Glu
180															190

Asn	Gly	Asn	Tyr	Asp	Tyr	Leu	Met	Tyr	Ala	Asp	Leu	Asp	Met	Asp	His
195															205

Pro	Glu	Val	Val	Thr	Glu	Leu	Lys	Ser	Trp	Gly	Lys	Trp	Tyr	Val	Asn
210															220

Thr	Thr	Asn	Ile	Asp	Gly	Phe	Arg	Leu	Asp	Ala	Val	Lys	His	Ile	Lys
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

225	230	235	240
Phe Ser Phe Phe Pro Asp Trp Leu Ser Asp Val Asp Arg Ser Gln Thr Gly			
245		250	255
Lys Pro Leu Phe Thr Val Gly Glu Tyr Trp Ser Tyr Asp Ile Asn Lys			
260	265	270	
Leu His Asn Tyr Ile Met Lys Thr Asn Gly Thr Met Ser Leu Phe Asp			
275	280	285	
Ala Pro Leu His Asn Lys Phe Tyr Thr Ala Ser Lys Ser Gly Gly Thr			
290	295	300	
Phe Asp Met Arg Thr Leu Met Thr Asn Thr Leu Met Lys Asp Gln Pro			
305	310	315	320
Thr Leu Ala Val Thr Phe Val Asp Asp His Asp Thr Glu Pro Gly Gln			
325	330	335	
Ala Leu Gln Ser Trp Val Asp Pro Trp Phe Lys Pro Leu Ala Tyr Ala			
340	345	350	
Phe Ile Leu Thr Arg Gln Glu Gly Tyr Pro Cys Val Phe Tyr Gly Asp			
355	360	365	
Tyr Tyr Gly Ile Pro Gln Tyr Asn Ile Pro Ser Leu Lys Ser Lys Ile			
370	375	380	
Asp Pro Leu Leu Ile Ala Arg Arg Asp Tyr Ala Tyr Gly Thr Gln His			
385	390	395	400
Asp Tyr Leu Asp His Ser Asp Ile Ile Gly Trp Thr Arg Glu Gly Val			
405	410	415	
Thr Gln Lys Pro Gly Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly Pro			
420	425	430	
Gly Gly Ser Lys Trp Met Tyr Val Gly Lys Gln His Ala Gly Lys Val			
435	440	445	
Phe Tyr Asp Leu Thr Gly Asn Arg Ser Asp Thr Val Thr Ile Asn Ser			
450	455	460	
Asp Gly Trp Gly Glu Phe Lys Val Asn Gly Gly Ser Val Ser Val Trp			
465	470	475	480
Val Pro Arg Lys Thr Thr Val Ser Thr Ile Ala Trp Ser Ile Thr Thr			
485	490	495	
Arg Pro Trp Thr Asp Gln Phe Val Arg Trp Thr Glu Pro Arg Leu Val			
500	505	510	
Ala Trp			

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 483 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

5	Ala Asn Leu Asn Gly Thr Leu Met Gln Tyr Phe Glu Trp Tyr Met Pro			
	1	5	10	15
10	Asn Asp Gly Gln His Trp Arg Arg Leu Gln Asn Asp Ser Ala Tyr Leu			
	15	20	25	30
15	Ala Glu His Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Tyr Lys Gly			
	35	40	45	
20	Thr Ser Gln Ala Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr Asp Leu			
	50	55	60	
25	Gly Glu Phe His Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys			
	65	70	75	80
30	Gly Glu Leu Gln Ser Ala Ile Lys Ser Leu His Ser Arg Asp Ile Asn			
	85	90	95	
35	Val Tyr Gly Asp Val Val Ile Asn His Lys Gly Gly Ala Asp Ala Thr			
	100	105	110	
40	Glu Asp Val Thr Ala Val Glu Val Asp Pro Ala Asp Arg Asn Arg Val			
	115	120	125	
45	Ile Ser Gly Glu His Leu Ile Lys Ala Trp Thr His Phe His Phe Pro			
	130	135	140	
50	Gly Arg Gly Ser Thr Tyr Ser Asp Phe Lys Trp His Trp Tyr His Phe			
	145	150	155	160
55	Asp Gly Thr Asp Trp Asp Glu Ser Arg Lys Leu Asn Arg Ile Tyr Lys			
	165	170	175	
60	Phe Gln Gly Lys Ala Trp Asp Trp Glu Val Ser Asn Glu Asn Gly Asn			
	180	185	190	
65	Tyr Asp Tyr Leu Met Tyr Ala Asp Ile Asp Tyr Asp His Pro Asp Val			
	195	200	205	
70	Ala Ala Glu Ile Lys Arg Trp Gly Thr Trp Tyr Ala Asn Glu Leu Gln			
	210	215	220	
75	Leu Asp Gly Phe Arg Leu Asp Ala Val Lys His Ile Lys Phe Ser Phe			
	225	230	235	240

Leu Arg Asp Trp Val Asn His Val Arg Glu Lys Thr Gly Lys Glu Met
 245 250 255

Phe Thr Val Ala Glu Tyr Trp Gln Asn Asp Ieu Gly Ala Leu Glu Asn
 5 260 265 270

Tyr Leu Asn Lys Thr Asn Phe Asn His Ser Val Phe Asp Val Pro Leu
 275 280 285

His Tyr Gln Phe His Ala Ala Ser Thr Gln Gly Gly Tyr Asp Met
 10 290 295 300

Arg Lys Leu Leu Asn Gly Thr Val Val Ser Lys His Pro Leu Lys Ser
 15 305 310 315 320

Val Thr Phe Val Asp Asn His Asp Thr Gln Pro Gly Gln Ser Leu Glu
 325 330 335

Ser Thr Val Gln Thr Trp Phe Lys Pro Leu Ala Tyr Ala Phe Ile Leu
 20 340 345 350

Thr Arg Glu Ser Gly Tyr Pro Gln Val Phe Tyr Gly Asp Met Tyr Gly
 355 360 365

Thr Lys Gly Asp Ser Gln Arg Glc Ile Pro Ala Leu Lys His Ile
 25 370 375 380

Glu Pro Ile Leu Lys Ala Arg Lys Gln Tyr Ala Tyr Gly Ala Gln His
 30 385 390 395 400

Asp Tyr Phe Asp His His Asp Ile Val Gly Trp Thr Arg Glu Gly Asp
 405 410 415

Ser Ser Val Ala Asn Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly Pro
 35 420 425 430

Gly Gly Ala Lys Arg Met Tyr Val Gly Arg Gln Asn Ala Gly Glu Thr
 435 440 445

Trp His Asp Ile Thr Gly Asn Arg Ser Glu Pro Val Val Ile Asn Ser
 40 450 455 460

Glu Gly Trp Gly Glu Phe His Val Asn Gly Gly Ser Val Ser Ile Tyr
 465 470 475 480

Val Gln Arg
 45

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 480 amino acids
- (B) TYPE: amino acid
- (C) STRANGEDOMNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

50

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Val Asn Gly Thr Leu Met Gln Tyr Phe Glu Trp Tyr Thr Pro Asn Asp
 1 5 10 15

Gly Gln His Trp Lys Arg Leu Gln Asn Asp Ala Glu His Leu Ser Asp
 20 25 30

Ile Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Tyr Lys Gly Leu Ser
 35 40 45

Gln Ser Asp Asn Gly Tyr Gly Pro Tyr Asp Leu Tyr Asp Leu Gly Glu
 50 55 60

Phe Gln Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys Ser Glu
 65 70 75 80

Leu Gln Asp Ala Ile Gly Ser Leu His Ser Arg Asn Val Gln Val Tyr
 85 90 95

Gly Asp Val Val Leu Asn His Lys Ala Gly Ala Asp Ala Thr Glu Asp
 100 105 110

Val Thr Ala Val Gln Val Asn Pro Ala Asn Arg Asn Gln Glu Thr Ser
 115 120 125

Glu Glu Tyr Gln Ile Lys Ala Trp Thr Asp Phe Arg Phe Pro Gly Arg
 130 135 140

Gly Asn Thr Tyr Ser Asp Phe Lys Trp His Trp Tyr His Phe Asp Gly
 145 150 155 160

Ala Asp Trp Asp Glu Ser Arg Lys Ile Ser Arg Ile Phe Lys Phe Arg
 165 170 175

Gly Glu Gly Lys Ala Trp Asp Trp Glu Val Ser Ser Glu/Asn Gly Asn
 180 185 190

Tyr Asp Tyr Leu Met Tyr Ala Asp Val Asp Tyr Asp His Pro Asp Val
 195 200 205

Val Ala Glu Thr Lys Lys Trp Gly Ile Trp Tyr Ala Asn Glu Leu Ser
 210 215 220

Leu Asp Gly Phe Arg Ile Asp Ala Ala Lys His Ile Lys Phe Ser Phe
 225 230 235 240

Leu Arg Asp Trp Val Gln Ala Val Arg Gln Ala Thr Gly Lys Gln Met
 245 250 255

Phe Thr Val Ala Glu Tyr Trp Gln Asn Asn Ala Gly Lys Leu Glu Asn
 260 265 270

Tyr Leu Asn Lys Thr Ser Phe Asn Gln Ser Val Phe Asp Val Pro Leu
 275 280 285

	His Phe Asn Leu Gln Ala Ala Ser Ser Gln Gly Gly Gly Tyr Asp Met		
	290	295	300
5	Arg Arg Leu Leu Asp Gly Thr Val Val Ser Arg His Pro Glu Lys Ala		
	305	310	315
	Val Thr Phe Val Glu Asn His Asp Thr Gln Pro Gly Glu Ser Leu Glu		
	325	330	335
10	Ser Thr Val Gln Thr Trp Phe Lys Pro Leu Ala Tyr Ala Phe Ile Leu		
	340	345	350
15	Thr Arg Glu Ser Gly Tyr Pro Gln Val Phe Tyr Gly Asp Met Tyr Gly		
	355	360	365
	Thr Lys Gly Thr Ser Pro Lys Glu Ile Pro Ser Leu Lys Asp Asn Ile		
	370	375	380
20	Glu Pro Ile Leu Lys Ala Arg Lys Glu Tyr Ala Tyr Gly Pro Gln His		
	385	390	395
	Asp Tyr Ile Asp His Pro Asp Val Ile Gly Trp Thr Arg Glu Gly Asp		
	405	410	415
25	Ser Ser Ala Ala Lys Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly Pro		
	420	425	430
	Gly Gly Ser Lys Arg Met Tyr Ala Gly Leu Lys Asn Ala Gly Glu Thr		
30	435	440	445
	Trp Tyr Asp Ile Thr Gly Asn Arg Ser Asp Thr Val Lys Ile Gly Ser		
	450	455	460
35	Asp Gly Trp Gly Glu Phe His Val Asn Asp Gly Ser Val Ser Ile Tyr		
	465	470	475
	480		

40 (2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 485 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) MOLECULE TYPE: peptide

(xii) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

	Sis His Asn Gly Thr Asn Gly Thr Met Met Gln Tyr Phe Glu Trp Tyr		
50	1	5	10
	15		

	Leu Pro Asn Asp Gly Asn His Trp Asn Arg Leu Asn Ser Asp Ala Ser		
	20	25	30

24

	Asn	Ile	Lys	Ser	Lys	Gly	Ile	Thr	Ala	Val	Trp	Ile	Pro	Pro	Ala	Trp
	35															45
5	Lys	Gly	Ala	Ser	Gln	Asn	Asp	Val	Gly	Tyr	Gly	Ala	Tyr	Asp	Leu	Tyr
	50															60
10	Asp	Leu	Gly	Glu	Phe	Asn	Gln	Lys	Gly	Thr	Val	Arg	Thr	Lys	Tyr	Gly
	65															80
15	Thr	Arg	Ser	Gln	Ile	Gln	Ala	Ala	Val	Thr	Ser	Leu	Lys	Asn	Asn	Gly
																95
20	Ile	Gln	Val	Tyr	Gly	Asp	Val	Val	Met	Asn	His	Lys	Gly	Gly	Ala	Asp
																110
25	Ala	Thr	Glu	Met	Val	Arg	Ala	Val	Glu	Val	Asn	Pro	Asn	Asn	Arg	Asn
																125
30	Gln	Glu	Val	Thr	Gly	Glu	Tyr	Thr	Ile	Gln	Ala	Trp	Thr	Arg	Phe	Asp
																140
35	Phe	Pro	Gly	Arg	Gly	Asn	Thr	His	Ser	Ser	Phe	Lys	Trp	Arg	Trp	Tyr
																160
40	His	Phe	Asp	Gly	Val	Asp	Trp	Asp	Gln	Ser	Arg	Arg	Leu	Asn	Asn	Arg
																175
45	Ile	Tyr	Lys	Phe	Arg	Gly	His	Gly	Lys	Ala	Trp	Asp	Trp	Gly	Val	Asp
																190
50	Thr	Glu	Asn	Gly	Asn	Tyr	Asp	Tyr	Leu	Met	Tyr	Ala	Asp	Ile	Asp	Met
																205
55	Asp	His	Pro	Gly	Val	Val	Asn	Glu	Leu	Arg	Asn	Trp	Gly	Val	Trp	Tyr
																220
60	Thr	Asn	Thr	Leu	Gly	Leu	Asp	Gly	Phe	Arg	Ile	Asp	Ala	Val	Lys	His
																240
65	Ile	Lys	Tyr	Ser	Phe	Thr	Arg	Asp	Trp	Ile	Asn	His	Val	Arg	Ser	Ala
																255
70	Thr	Gly	Lys	Asn	Met	Phe	Ala	Val	Ala	Glu	Phe	Trp	Lys	Asn	Asp	Leu
																270
75	Gly	Ala	Ile	Glu	Asn	Tyr	Leu	Gln	Lys	Thr	Asn	Trp	Asn	His	Ser	Val
																285
80	Phe	Asp	Val	Pro	Leu	His	Tyr	Asn	Leu	Tyr	Asn	Ala	Ser	Lys	Ser	Gly
																300
85	Gly	Asn	Tyr	Asp	Met	Arg	Asn	Ile	Phe	Asn	Gly	Thr	Val	Val	Gln	Arg
																320
90	Sis	Pro	Ser	Mis	Ala	Val	Thr	Phe	Val	Asp	Asn	His	Asp	Ser	Gln	Pro

12

326	330	335
-----	-----	-----

Glu Glu Ala Leu Glu Ser Phe Val Glu Glu Trp Phe Lys Pro Leu Ala 340	345	350
--	-----	-----

5

Tyr Ala Leu Thr Leu Thr Arg Glu Gin Gly Tyr Pro Ser Val Phe Tyr 355	360	365
--	-----	-----

10

Gly Asp Tyr Tyr Gly Ile Pro Thr His Gly Val Pro Ala Met Arg Ser 370	375	380
--	-----	-----

Lys Ile Asp Pro Ile Leu Glu Ala Arg Gin Lys Tyr Ala Tyr Gly Lys 385	390	395
--	-----	-----

Gln Asn Asp Tyr Leu Asp His His Asn Ile Ile Gly Trp Thr Arg Gln 405	410	415
--	-----	-----

Gly Asn Thr Ala His Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asp 420	425	430
--	-----	-----

20

Gly Ala Gly Gly Ser Lys Trp Met Phe Val Gly Arg Asn Lys Ala Gly 435	440	445
--	-----	-----

Gln Val Trp Ser Asp Ile Thr Gly Asn Arg Thr Gly Thr Val Thr Ile 450	455	460
--	-----	-----

25

Asn Ala Asp Gly Trp Gly Asn Phe Ser Val Asn Gly Gly Ser Val Ser 465	470	475
--	-----	-----

480

30

Ile Trp Val Asn Lys 485

(2) INFORMATION FOR SEQ ID NO: 7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 485 amino acids
- (B) TYPE: amino acid
- (C) STRANDBNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

His His Asn Gly Thr Asn Gly Thr Met Met Gln Tyr Phe Glu Trp Tyr 1	5	10
--	---	----

15

45

Leu Pro Asn Asp Gly Asn His Trp Asn Arg Leu Arg Asp Asp Ala Ala 20	25	30
---	----	----

50

Asn Leu Lys Ser Lys Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Trp 35	40	45
---	----	----

55

Lys Gly Thr Ser Gin Asn Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr 50	55	60
---	----	----

60

Asp Leu Gly Glu Phe Asn Gin Lys Gly Thr Val Arg Thr Lys Tyr Gly 65	70	75
---	----	----

80

Thr Arg Asn Gln Leu Glu Ala Ala Val Thr Ser Leu Lys Asn Asn Gly
 85 90 95

5 Ile Gin Val Tyr Gly Asp Val Val Met Asn His Lys Gly Gly Ala Asp
 100 105 110

Gly Thr Glu Ile Val Asn Ala Val Glu Val Asn Arg Ser Asn Arg Asn
 115 120 125

10 Gin Glu Thr Ser Gly Glu Tyr Ala Ile Glu Ala Trp Thr Lys Phe Asp
 130 135 140

Phe Pro Gly Arg Gly Asn Asn His Ser Ser Phe Lys Trp Arg Trp Tyr
 145 150 155 160

His Phe Asp Gly Thr Asp Trp Asp Gin Ser Arg Glu Leu Gin Asn Lys
 165 170 175

20 Ile Tyr Lys Phe Arg Gly Thx Gly Lys Ala Trp Asp Trp Glu Val Asp
 180 185 190

Thr Glu Asn Gly Asn Tyr Asp Tyr Leu Met Tyr Ala Asp Val Asp Met
 195 200 205

25 Asp His Pro Glu Val Ile His Glu Leu Arg Asn Trp Gly Val Trp Tyr
 210 215 220

Thr Asn Thr Leu Asn Leu Asp Gly Phe Arg Ile Asp Ala Val Lys His
 225 230 235 240

Ile Lys Tyr Ser Phe Thr Arg Asp Trp Leu Thr His Val Arg Asn Thr
 245 250 255

30 Thr Gly Lys Pro Met Phe Ala Val Ala Glu Phe Trp Lys Asn Asp Leu
 260 265 270

Gly Ala Ile Glu Asn Tyr Leu Asn Lys Thr Ser Trp Asn His Ser Val
 275 280 285

35 Phe Asp Val Pro Leu His Tyr Asn Leu Tyr Asn Ala Ser Asn Ser Gly
 290 295 300

Gly Tyr Tyr Asp Met Arg Asn Ile Leu Asn Gly Ser Val Val Gln Lys
 305 310 315 320

His Pro Thr His Ala Val Thr Phe Val Asp Asn His Asp Ser Gln Pro
 325 330 335

40 Gly Glu Ala Leu Gln Ser Phe Val Gln Gln Trp Phe Lys Pro Leu Ala
 340 345 350

Tyr Ala Leu Val Leu Thr Arg Glu Gin Gly Tyr Pro Ser Val Phe Tyr
 365 365 365

Gly Asp Tyr Tyr Gly Ile Pro Thr His Gly Val Pro Ala Met Lys Ser
 370 375 380

5 Lys Ile Asp Pro Leu Leu Gln Ala Arg Gln Thr Phe Ala Tyr Gly Thr
 385 390 395 400

Gln His Asp Tyr Phe Asp His His Asp Ile Ile Gly Trp Thr Arg Glu
 405 410 415

10 Gly Asn Ser Ser His Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asp
 420 425 430

Gly Pro Gly Gly Asn Lys Trp Met Tyr Val Gly Lys Asn Lys Ala GLy
 435 440 445

15 Gln Val Trp Arg Asp Ile Thr Gly Asn Arg Thr Gly Thr Val Thr Ile
 450 455 460

20 Asn Ala Asp Gly Trp Gly Asn Phe Ser Val Asn Gly Gly Ser Val Ser
 465 470 475 480

Val Trp Val Lys Gln
 485

25 (2) INFORMATION FOR SEQ ID NO: 8:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 485 amino acids
 (B) TYPE: amino acid

(C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

35 His His Asn Gly Thr Asn Gly Thr Met Met Gln Tyr Phe Glu Trp His
 1 5 10 15

Leu Pro Asn Asp Gly Asn His Trp Asn Arg Leu Arg Asp Asp Ala Ser
 20 25 30

40 Asn Leu Arg Asn Arg Gly Ile Thr Ala Ile Trp Ile Pro Pro Ala Trp
 35 40 45

45 Lys Gly Thr Ser Gln Asn Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr
 50 55 60

Asp Leu Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly
 65 70 75 80

50 Thr Arg Ser Gln Leu Glu Ser Ala Ile His Ala Leu Lys Asn Asn Gly
 85 90 95

55 Val Gln Val Tyr Gly Asp Val Val Met Asn His Lys Gly Gly Ala Asp
 100 105 110

Ala Thr Glu Asn Val Leu Ala Val Glu Val Asn Pro Asn Asn Arg Asn

	115	120	125
	Gln Glu Ile Ser Gly Asp Tyr Thr Ile Glu Ala Trp Thr Lys Phe Asp		
5	130	135	140
	Phe Pro Gly Arg Gly Asn Thr Tyr Ser Asp Phe Lys Trp Arg Trp Tyr		
10	145	150	155
	His Phe Asp Gly Val Asp Trp Asp Gln Ser Arg Gln Phe Gln Asn Arg		
15	165	170	175
	Ile Tyr Lys Phe Arg Gly Asp Gly Lys Ala Trp Asp Trp Glu Val Asp		
20	180	185	190
	Ser Glu Asn Gly Asn Tyr Asp Tyr Leu Met Tyr Ala Asp Val Asp Met		
25	195	200	205
	Asp His Pro Glu Val Val Asn Glu Leu Arg Arg Trp Gly Glu Trp Tyr		
30	210	215	220
	Thr Asn Thr Leu Asn Leu Asp Gly Phe Arg Ile Asp Ala Val Lys His		
35	225	230	235
	Ile Lys Tyr Ser Phe Thr Arg Asp Trp Leu Thr His Val Arg Asn Ala		
40	245	250	255
	Thr Gly Lys Glu Met Phe Ala Val Ala Glu Phe Trp Lys Asn Asp Leu		
45	260	265	270
	Gly Ala Leu Glu Asn Tyr Leu Asn Lys Thr Asn Trp Asp His Ser Val		
50	275	280	285
	Phe Asp Val Pro Leu His Tyr Asn Leu Tyr Asn Ala Ser Asn Ser Gly		
55	290	295	300
	Gly Asn Tyr Asp Met Ala Lys Leu Leu Asn Gly Thr Val Val Gln Lys		
60	305	310	315
	His Pro Met His Ala Val Thr Phe Val Asp Asn His Asp Ser Gln Pro		
65	325	330	335
	Gly Glu Ser Leu Glu Ser Phe Val Gln Glu Trp Phe Lys Pro Leu Ala		
70	340	345	350
	Tyr Ala Leu Ile Leu Thr Arg Glu Gln Gly Tyr Pro Ser Val Phe Tyr		
75	355	360	365
	Gly Asp Tyr Tyr Gly Ile Pro Thr His Ser Val Pro Ala Met Lys Ala		
80	370	375	380
	Lys Ile Asp Pro Ile Leu Glu Ala Arg Gln Asn Phe Ala Tyr Gly Thr		
85	385	390	395
	Gln His Asp Tyr Phe Asp His His Asn Ile Ile Gly Trp Thr Arg Gln		
90	405	410	415

Gly Asn Thr Thr His Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asp
 420 425 430

5 Gly Pro Gly Gly Glu Lys Trp Met Tyr Val Gly Glu Asn Lys Ala Gly
 435 440 445

Gln Val Trp His Asp Ile Thr Gly Asn Lys Pro Gly Thr Val Thr Ile
 450 455 460

10 Asn Ala Asp Gly Trp Ala Asn Phe Ser Val Asn Gly Gly Ser Val Ser
 465 470 475 480

Ile Trp Val Lys Arg
 15 485

(2) INFORMATION FOR SEQ ID NO: 9:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1455 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

25 CATCATATAATG GAAACAAATGG TACTATGATG CAATATTTCG AATGGTATTG GCGCAAATGAC 60

GGGAATCATT CGAACACAGCTT CACCCGATGAC GCACGCTAATC TAAAGAGTAA AGGGATAACA 120

30 CCTGTATGGA TCCCACCTGC ATCGAAGGGG ACTTCCCAGA ATGATGTAGG TTATGGASCC 180

TATGATTTAT ATGATCTTGG AGACTTTAAC CAGAAGGGCA CGCTTCGGTAC AAAATATGGA 240

ACACGCAACC AGCTACAGGC TCCCGTGACCC TCTTTAAAAA ATAACGGCAT TCAGGTATAT 300

35 CCTGATGTGG TCGATGAATCA TAAAGGTGGA GCAGATGGTA CGGAAATTGT AAATCCGGTA 360

GAAGTGAATC GGAGCAACCG AAACCCAGGAA ACCTCAGGAG AGTATGCCAT AGAACCCCTGC 420

40 ACRAAAGTTTG ATTTCCTGG AACACCCAAAT AACCATTCG CCTTTAAGTG GCGCTGGTAT 480

CATTTTGATG GGACAGATTG GGATCAGTCG CGCCAGCTTC AAAACAAAAT ATATAAATTG 540

45 AGGGCAACAG GCAAGGGCTG CGACTCGGAA GTCGATACAG AGAATGGCAA CTATGACTAT 600

CTTATGTATG CAGACGTGGA TATGGATCAC CCAGAACTAA TACATGAACT TAGAAACTGG 660

GGAGTGTGGT ATACGAATAC ACTGAAACCTT GATGCAATTG GAATAGATGC AGTGAACAT 720

50 ATAAAATATA GCTTTACCGAC AGATGGCTT ACACATGTCC GAAACACCAC AGGTAAACCA 780

AIGTTTGCAG TGGCTGAGTT TTGGAAAART GACCTTGCTG CAATTGAAAA CTATTGAAAT 840

55 AAAACAAACTT GCAATCACTC CCTGTTGAT GTTCCCTCTCC ACTATAATTG GTACATGCA 900

TCTAATAGCG	GTGGTTATTAA	TGATATGAGA	AATATTTAA	ATGGTTCTGT	GGTGCRAAAA	960	
CATCCAACAC	ATCCCGTTAC	TTTTGTTGAT	AACCAGTATT	CTCAGCCCCG	CGAACCATTC	1020	
5	GAATCCTTTC	PTCARCAATG	CTTTAACCCA	CTTGATATG	CATTGGTTCT	GACAAGGGAA	1080
	CAAGGTTATC	CTTCCGTTATT	TTATGGGGAT	TACTACGGTA	TCCCAACCCA	TGGTGTTCG	1140
10	GCTATGAAAT	CTAAATAGA	CCCTCTTCCTG	CAGGCACGTC	AAACTTTGCG	CTATGGTACG	1200
	CAGCATGATT	ACTTTGATCA	TCATGATAATT	ATCGGTTGGA	CAAGACAGGG	AAATAGCTCC	1260
	CATCCAATT	CAGGCCCTTGC	CACCATTATG	TCAGATGGTC	CAGGTGGTAA	CAAATGGATG	1320
15	TATGTGGGGA	AAAATAAAGC	GGGACAAGTT	TGGAGAGATA	TTACCGGAAA	TACCAACGCC	1380
	ACCGTCACAA	TTAATGCGAA	CGGATGGGGT	AATTTCCTCG	TTAATGGAGG	GTCCCGTTCC	1440
20	GTTTGGGTGA	ACCCAA					1455

(2) INFORMATION FOR SEQ ID NO: 10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1455 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

30	CATCATATA	GGACAAATGG	GACGATGATG	CAATACTTTG	AATGGCACCT	GCCTAATGAT	60
	GGAAATCACT	GCATAGATT	AAGAGATGAT	CTAGTAATC	TAAGAATTAAG	ACGTATAACCC	120
35	GCTATTTGGA	TTCCCGCTGC	CTGGAAAGGG	ACTTCGCAA	ATGATGTGGC	CTATGGAGCC	180
	TATGATCTTT	ATGATTTAGG	CGAATTTAAT	CRAAAGGGGA	CGGTCGTCAC	TAAGTATGGG	240
	ACACGCTACTC	ATTCGGACTC	TGCCATCCAT	GCTTAAAGA	ATAATGGCT	TCAAGTTTAT	300
40	GGGGATGTAG	TGATGACCA	TAAAGGGAGGA	GCTGATGCTA	CAGAAAACGT	TCTTCTGTGC	360
	GAGGTGAATC	CAATAAACCG	GAATCAAGAA	ATATCTGGG	ACTACACAAT	TGAGCCTTGC	420
45	ACTAACTTTG	ATTTTCCAGG	GAGGGTAAT	ACATACTCAG	ACTTTAAATG	GGGTTGGTAT	480
	CATTTGATG	GTGTAGATTG	GGATCAATCA	CGACAATTCC	AAATCGTAT	CTACAAATTG	540
	CGAGGTGATG	CTAAGCCATG	GGATTCGGAA	GTAGATTCCG	AAAATGAA	TTATGATTAT	600
50	TTAATGTATG	CAGATGAGA	TATGGATCAT	CCGGAGGTAG	TAATGAGCT	TAGAAGATGG	660
	GGAGAATGGT	ATACAATAC	ATTAATCTT	CATGATTAA	GGATGGATGC	GGTGAAGGAT	720
55	ATTRAATATA	GCTTACACG	TGATTGGTTG	ACCCATGAA	GAAACGCCAAC	GGGAAAGGAA	780

ATGTTTGCTG TTGCTGAATT TTGGAAAAAT GATTTAGGTG CCTTGGAGAA CTATTTAAT	840
AAAACAAACT GCAATCATTC TGTCTTTGAT GTCCCCCTTC ATTAAATCTT TTATAACCGG	900
5 TCAAATAGTG GAGGCAACTA TGACATGCCA AAACCTCTTA ATGGAACGCT TGTTCAAAAG	960
CATCCAATGC ATGCCGTAAC TTTTGTCGAT AATCACCATT CTCACCTCG GGAATCATTA	1020
10 GAATCATTTG TACAAGAATG GTTTAACCUA CTTGCCTATG CGCTTATTT AACAAAGAGAA	1080
CAAGGCTATC CCTCTGTCCTT CTATGTCAC TACTATGGAA TTCCAAACACA TAGTGTCCCC	1140
GCRAATGAAAG CCAAGATTGA TCCAATCTTA GAGCCGGCGTC AAAATTTGCC ATATGGAACA	1200
15 CAACATGATT ATTTGACCA TCATRATATA ATCGGATGGA CACCTGAAGG AAATACCACG	1260
CATCCCATT CAGGACTTGC GACTATCATE TCGGATGGGC CAGGCGGAGA GAAATGGATG	1320
20 TACGGTAGGGC AAAATAAAGC AGGTCAAGTT TGGCATGACA TAACTGGAAA TAAACCAGGA	1380
ACAGTTACGA TCANTGCAGA TGGATGGCT AATTTTCAG TAAATGGAGG ATCTGTTCC	1440
ATTTCGGTGA AACGA	1455

25

(2) INFORMATION FOR SEQ ID NO: 11:

(1) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1848 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i.i) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

35 GCGGCCACCGT TTAACGCCRC CATGATGCGAG TATTTGAAT GGTACTTCGC GGATGATGGC	60
ACGTTATGGA CCAAAGTGGC CAATGAAGCC ARCAACTTAT CCAGCCCTGG CATCACCGCT	120
40 CTTTGGCTGC CGCCCGCTTA CAAAGGAACA AGCCCGAGCG ACGTAGGCTA CGGAGTATAAC	180
GACTTGTATG ACCTCGGGCA ATTCAATCAA AAAGGGACCG TCCGCACAAA ATACGGAAACA	240
AAAGCTCAAT ATCTTCAGGC CATTCAAGCC GCGCACGGCG CTGGAAATGCA AGTGTACGCC	300
45 GATGTCGTGT TCGACCATAA AGCCGGCGCT GACGCCACCG AATGGGTGGA CCCCCGTGAA	360
GTCAATGCGT CGAACCGCAA CCAAGAAATC TCGGGCACGT ATCAAATCCA AGCATGGACG	420
50 AAATTTGATT TTCCCCGGCG GGGCAACACCC TACTCCAGCT TTAAGTGGCG CTGGTACCAT	480
TTTGACGCGC TTGATTCGCA CGAAAGCCGA AAATGAAACCC GCATTTACAA ATTCGGCGGC	540
ATCGGCAAAG CGTGGGATTG GGAAGTAGAC ACGGAAAACG GAAACTATGA CTACTTAATG	600
55 TATGCCGACG TTGATATGGA TCATCCGAA GTGCGCACCG AGCTGAAAAA CTGGGGGAAA	660

	TGGTATGTCA ACACAAACGAA CATTGATCGG TTCCGGCTTG ATGCCGTCAA GCATATTAAG	720
5	TTCAGTTTT TTCCGTGATTG GTTGTGCTAT GTGCCGTCTC AGACTGGCAA GCGCGTATTT	780
	ACCGTCGGGC AATATTGGAG CTATGACATC AACAAAGTTGC ACATAATTACAT TACGAAAACA	840
	GACGGAACGA TGTCTTTGTT TGATGCCCG TTACACAAACA AATTTTATAC CGCTTCCAAA	900
10	TCAGGGGGCG CATTGATAT GCGCACGTTA ATGACCAATA CTCTCATGAA AGATCAACCG	960
	ACATTGGCCG TCACCTTCGT TGATAATCAT GACACCGAAC CGCGCCAAGC GCTGCCAGTCA	1020
15	TGGCTCGACC CATGGTTCAA ACCGGTGCCT TACGCCCTTA TTCTTACCTG GCAGGAAGGA	1080
	TACCGTGGC TCTTTTATCG TGACTTATTAT GGCAATTCCAC AATATAACAT TCTTCGCTG	1140
	AAAACCAAAA TCGATCCGCT CCTCATCCCG CGCAGGGATT ATGCCTTACGG AACGCAACAT	1200
20	GATTATCTG ATCACTCGA CATCATCGG TGACACAAGGG AACGGGGCAC TGAAARACCA	1260
	GGATCCGGAC TGGCCGCACT GATCACCGAT GGGCCGGGAG GAGGAAATG GATGTAAGTT	1320
	GGCAAACAAAC ACGCTGGAAA AGTGTCTAT GACCTTACCG GCAACCGGAG TGACACCGTC	1380
25	ACCATCAACA GTGATGGATG GGGGAAATTC AAAGTCAATG CGCGTTGGT TTGGGTTTGC	1440
	CTTCCTAGAA AAACGACCGT TTCTACCATC GCTCGGGCGA TCACAAACCCG ACCGTGGACT	1500
30	CGTGAATTG TCCGTTGGAC CGAACCAACGG TTGGTGGCAT CCCCTTGA	1548

(2) INFORMATION FOR SEQ ID NO: 12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1920 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 421..1872

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

45	CGGRAGATTG GAAGTACAAA AATAAGCAAA AGATTGTCAA TCATGTCAAG AGCCATGGGG	60
	GAGACGGAAA AATCGTCCTA ATGCACCGTA TTTATGCAAC GTTCCGAGAT GCTGCTGAG	120
	AGATTATTAA AAACGCTGAAA GCAAAAGCCT ATCAATTGGT AACTGTATCT CAGCTTGAAG	180
50	AAGTGAAGAA CGAGACACCC TATTGAATAA ATGACTAGAA CGCCCATATC CGCGCTTTTC	240
	TTTGGAAGA AAATATAGGG AAAATGGTAC TTGTAAAAA TTGGAAATAT TTATACAACA	300
55	TCATATGTTT CACATTGAAA GGGGAGGAGA ATCATGAAAC AACAAAACG GCTTACCCC	360

	CGATTCGCTCA CGCGTGTATT TGGCGTCATC TTCTTGCTGC CTCATTGTGC AGCAGCGGCC	420
5	GCA AAT CTT AAT CGG ACG CTG ATG CAG TAT TTT GAA TGG TAC ATG CCC	468
	AAT GAC GGC CAA CAT TGG AGG CGT TTG CAA AAG GAC TCG GCA TAT TTG	516
	GCT GAA CAC GGT ATT ACT CCC GTC TGG ATT CCC CCG GCA TAT AAG GCA	564
10	ACG AGC CAA CGG GAT GTG GGC TAC GGT CCT TAC GAC CTT TAT GAT TTA	612
	GGG GAG TTT CAT CAA AAA CGG ACG GTT CGG ACA AAG TAC GGC ACA AAA	660
15	GCA GAG CTG CAA TCT GCG ATC AAA AGT CTT CAT TCC CGC GAC ATT AAC	708
	GTT TAC CGG GAT GTG GTC ATC AAC CAC AAA GGC GGC GCT GAT CGG ACC	756
	GAA GAT GTA ACG CGG GTT GAA GTC GAT CCC GCT GAC CGC AAC CGC GTA	804
20	ATT TCA CGA GAA CAC CTA ATT AAA GCC TGG ACA CAT TTT CAT TTT CGG	852
	GGG CGG GGC AGC ACA TAC AGC GAT TTT AAA TGG CAT TGG TAC CAT TTT	900
	GAC GGA ACC GAT TGG GAC GAG TCC CGA AAG CTG AAG CGC ATC TAT AAG	948
25	TTT CAA CGA AAG GCT TGG GAT TGG GAA CTT TCC AAT GAA AAC CGC AAC	996
	TAT GAT TAT TTG ATG TAT CGC GAC ATC GAT TAT GAC CAT CCT GAT GTC	1044
30	GCA GCA GAA ATT AAG AGA TGG GGC ACT TGG TAT GCG AAT GAA CTG CAA	1092
	TTG GAC GGT TTC CGT CTT GAT GCT GTC AAA CAC ATT AAA TTT TCT TTT	1140
35	TTG CGG GAT TGG GTT AAT CAT GTC AGG GAA AAA ACG GGG AAG GAA ATG	1188
	TTT ACG GTC GCT GAA TAT TGG CGG AAT GAC TTG GGC GCG CTG GAA AAC	1236
	TAT TTG AAC AAA ACA AAT TTT AAT CAT TCA GTG TTT GAC GTG CGG CTT	1284
40	CAT TAT CAG TTC CAT GCT GCA TCG ACA CAG GGA GGC GGC TAT GAT ATG	1332
	AGG AAA TTG CTG AAC GGT ACG GTC GTT TCC AAG CAT CGG TTG AAA TCG	1380
45	GTT ACA TTT GTC GAT AAC CTT GAT ACA CAG CGG GGG CAA TCG CTT GAG	1428
	TCG ACT GTC CAA ACA TGG TTT AAG CGG CTT CCT TAC GCT TTT ATT CTC	1476
	ACA AGG GAA TCT GGA TAC CCT CAG GTT TTC TAC GGG GAT ATG TAC CGG	1524
50	ACG AAA CGA GAC TCC CAG CGC GAA ATT CCT CGG TTG AAA CAC AAA ATT	1572
	GAA CGG ATC TTA AAA CGG AGA AAA CAG TAT CGG TAC GGA GCA CAG CAT	1620
55	GAT TAT TTC GAC CAC CAT GAC ATT GTC GGC TGG ACA AGG GAA CGC GAC	1668

AGC TCG GTT GCA AAT TCA CGT TTG CGG GCA TTA ATA ACA GAC GGA CCC	1716
GGT CGG GCA AAG CGA ATG TAT GTC GGC CGG CAA AAC GGC GGT GAG ACA	1764
5 TCG CAT GAC ATT ACC GCA AAC CGT TCG GAG CGG GTT GTC ATC AAT TCG	1812
GAA GGC TCG GGA GAG TTT CAC GTA AAC GGC CGG TCG GTT TCA ATT TAT	1860
10 GTT CAA AGA TAG AAGAGCAGAG AGGACGGATT TCGTGAACGA AATCCGTTT	1912
TTTATTT	1920

(2) INFORMATION FOR SEQ ID NO: 12:

15 (i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 2084 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
20 (ii) MOLECULE TYPE: DNA (genomic)	
(ix) FEATURE:	
(A) NAME/KEY: CDS	
(B) LOCATION: 343..1794	
25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
CCCCGGACA TACGAAAAGA CTGGCTGAAA ACATTGAGCC TTTGATGACT GATGATTTGG	60
CTGAAGGAGT GGATCGATTG TTTGAGAAAA CAGGAAGACC ATAAAAATAC CTTGCTPGTC	120
30 ATCAGACAGG GTATTTTTA TGCTGTCAG ACTGTCGGCT GTGTAAAAAT AAGGAATAAA	180
GGGGGGCTGT TATTATTTA CTGATATGTA AATATATATT TGTATAAGAA AATGAGAGGG	240
35 AGAGGAAACA TGATTCAAAA ACCAAACCGG ACAGTTTGGT TCAGACTTGT CCTTATGTGC	300
ACGCTGTAT TTGTCAGTTT GCGGATTACA AAAACATCAG CC GTA AAT GGC ACG	354
CTG ATG CAG TAT TTT GAA TCG TAT ACG CCG AAC GAC GGC CAG CAT TGG	402
40 AAA CGA TTG CAG AAT GAT GCG GAA CAT TTA TCG GAT ATC GGA ATC ACT	450
GCC GTC TCG ATT CCT CCC GCA TAC AAA GGA TTG AGC CAA TCC GAT AAC	498
GGA TAC GGA CCT TAT GAT TTG TAT GAT TTA GGA GAA TTC CAG CAA AAA	546
45 GGG ACG GTC AGA ACC AAA TAC GGC ACA AAA TCA GAG CTT CAA GAT GCG	594
ATC GGC TCA CTG CAT TCC CGG AAC GTC CAA GTA TAC GGA GAT GTG GTT	642
50 TTG AAT CAT AAG GCT GGT GCT GAT GCA ACA GAA GAT GTA ACT GCC GTC	690
GAA GTC AAT CCG GCG AAT AGA AAT CAG GAA ACT TCG GAG GAA TAT CAA	738
ATC AAA CGG TCG ACG GAT TTT CGT TTT CGG GGC CGT GGA AAC ACG TAC	786
55	

	AGT GAT TTT AAA TCG CAT TGG TAT CAT TTC GAC GGA GCG GAC TGG GAT	834
	GAA TCC CGG AAG ATC AGC CGC ATC TTT AAG TTT CGT CGG GAA GGA AAA	882
5	GCG TGG GAT TCG GAA GTA TCA ACT GAA AAC GGC AAC TAT GAC TAT TTA	930
	ATG TAT CCT GAT GTT GAC TAC GAC CAC CCT GAT GTC GTG GCA GAG ACA	978
10	AAA AAA TCG CGT ATC TGG TAT GCG AAT GAA CTG TCA TTA GAC GGC TTC	1026
	CGT ATT GAT GCC GGC AAA CAT ATT AAA TTT TCA TTT CTG CGT GAT TGG	1074
	GTT CAG GCG GTC AGA CAG CGG ACG GGA AAA GAA ATG TTT ACC GTT GCG	1122
15	GAG TAT TGG CAG AAT AAT GCG GGG AAA CTC GAA AAC TAC TTG AAT AAA	1170
	ACA AGC TTT AAT CAA TCC CTG TTT GAT GTT CGG CTT CAT TTC AAT TTA	1216
20	CAG GCG GCT TCC TCA CAA GGA GGC GGA TAT GAT ATG AGC CCT TTG CTG	1266
	GAC GGT ACC GTT GTG TCC AGG CTT CGG GAA AAG GCG GTT ACA TTT GTT	1314
	GAA AAT CAT GAC ACA CAG CGG GGA CAG TCA TTG GAA TCG ACA GTC CAA	1362
25	ACT TGG TTT AMA CGG CTT GCA TAC GGC TTT ATT TTG ACA AGA GAA TCC	1410
	GGT TAT CCT CAG GTG TTC TAT GGG GAT ATG TAC CGG ACA AAA GGG ACA	1458
30	TGG CCA AAG GAA ATT CCC TCA CTG AAA GAT AAT ATA GAG CGG ATT TTA	1506
	AAA GCG CGT AAG GAG TAC GCA TAC GGG CCC CAG CAC GAT TAT ATT GAC	1554
	CAC CGG GAT GTG ATC GGA TGG ACG AGG GAA GGT GAC AGC TCC GGC GGC	1602
35	AAA TCA CGT TTG GGC GCT TTA ATC ACG GAC GGA CCC GAC GGA TCA AAG	1650
	CGG ATG TAT CCC GGC CTG AAA AAT GGC GGC GAG ACA TGG TAT GAC ATA	1698
40	ACG GGC AAC CCT TCA GAT ACT GTA AAA ATC GGA TCT GAC GGC TGG GGA	1746
	GAG TTT CAT GTA AAC GAT GGG TCC GTC TCC ATT TAT GTT CAG AAA TAA	1794
	GGTAATAAAA AAACACCTCC AAGCTGACTG CGGGGTATCAG CTTGGAGGGTG CGTTTATTTT	1854
45	TTCAAGCCGTA TGACAAAGGTC GGCATCAGGT GTGACAAATA CGGTATGCTG GCTGTCTCATAG	1914
	GTGACAAATC CGGGTTTGGC GCGGTTTGGC TTTTCACAT GTCGTGATTTC TGTATTAATCA	1974
50	ACAGGGCACGG AGCCCCGAAATC TTTGGCCTTG GAAAAATAAG CGGUGATGTT AGCTGCTTCC	2034
	AATATGGATT GTTCATCGGG ATCGCTGTT TTAATCACAA CGTGGGATCC	2084

(2) INFORMATION FOR SEQ ID NO: 13:

55 (1) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1455 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

5 (ii) MOLECULE TYPE: DNA (genomic)
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

CATCATAATG	GAACAAATGG	TACTATGATG	CAATATTTGC	AATGGTATTG	CCCAAATGAC	60
10 GCGAACATCATT	GGAACAGGTT	GAGGGATGAC	GCAGCTRACT	TAAAGAGTAA	ACGGATAACA	120
GCTGTATGGA	TCCCACCTGC	ATGGAAGGGG	ACTTUCAGA	ATGATGTAGG	TTATGGAGCC	180
15 TATGATTATAT	ATGATCTTGG	AGAGTTAAC	CAGAAGGGCA	CGGTTGTCAC	AAAATATGCA	240
ACACGCCAACC	AGCTACAGGC	TCCCGTGACC	TCTTTAARAA	ATAACGGCAT	TCAGGTATAT	300
20 CGTGATGTCG	TCATGAAATCA	TAAGGGTGG	GCACATCGTA	CGAAATTCT	AAATCCGGTA	360
GAAGTGAATC	GGAGCAACCG	AAACCGGGAA	ACCTCAGGAG	AGTATCCAAT	AGAACGCTGG	420
25 ACAAAAGTTG	ATTTTCTGG	AACAGGAAAT	AACCAATTCCA	GCTTTAAGTG	CGCGCTGGTAT	480
CATTTGATG	GGACAGATTG	GGATCACTCA	CGCCAGCTTC	AAAACAAAAT	ATATAAAATTG	540
AGGGGAACAG	CCAAGCCCTG	CGACTGGGAA	GTGCGATACAG	AGAATGCCAA	CTATGACTAT	600
30 CTTATGTATG	CGACACGTGG	TATGGATCAC	CCAGAAGTAA	TACATGAAC	TAGAAACTGG	660
GGAGTGTGGT	ATACGAATAC	ACTGAACCTT	GATGGATTG	GAATAGATCC	ACTGAAACAT	720
ATAAAAATATA	GCTTTACGAG	AGATTGGCTT	ACACATGTGC	GTAACACCAAC	AGCTAAACCA	780
35 ATGTTTGCAG	TGGCTGAGTT	TTGGAAAAAT	GACCTTGCTG	CAATTGAAAA	CTATTTGAAT	840
AAAACAAAGTT	CGAAATCACTC	GCTGTTTGAT	GTTCCCTCTCC	ACTATAATTG	CTACAAATGCA	900
TCTAAATAGCG	GTCGTTTATTA	TGATATGAGA	AATATTTAA	ATGGTTCTGT	GGTCAAAAAA	960
40 CATCCAACAC	ATGCCGTTAC	TTTTCTTGT	AACCATGATT	CTCAGCCCCG	GGAAAGCATTG	1020
GAATCCTTTG	TTCAACAAATG	GTTTAAACCA	CTTGCATATG	CATGGTTCT	CACAAACGGAA	1080
CAAGCTTATC	CTTCGGTATT	TTATGGGGAT	TACTACGGTA	TCCCAACCCA	TGGTGTTOCG	1140
45 GCTATGAAAT	CTAAATAGA	CCCTCTCTG	CAGGCACGTC	AAACTTTGCG	CTATGGTACG	1200
CAGCATGATT	ACTTTGATCA	TCATGATATT	ATCGGTTGG	CAAGAGAGGG	AAATAGCTCC	1260
50 CATCCAATT	CAGGCCTTGC	CACCATATG	TCAGATGTC	CACCTGCTAA	CAAATGGATG	1320
TATGTGGGGA	AAAATAAAGC	GGGACAAGTT	TGGAGAGATA	TTACCGGAAA	TAGGAGAGGC	1380
55 ACCGTCACAA	TTAATGCCAGA	CGGATGGCGT	AATTTCTCTG	TTAATGGAGG	GTCCGTTGG	1440

GT	TTGGGTGA	AGCAA	1455
----	----------	-------	------

(2) INFORMATION FOR SEQ ID NO: 14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1455 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(iii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

CATCATAATG	GGACAAATGG	GACCGATGATG	CAATACTTTG	AATGGCACTT	GCCTAATGAT	60
------------	------------	-------------	------------	------------	------------	----

GGGAATCACT	GGAAATAGATT	AAGAGATGAT	GCTACTTAATC	TAAGAAATAG	ACGTTATAACC	120
------------	-------------	------------	-------------	------------	-------------	-----

GCTATTTGGA	TTCCGGCTTC	CTGGAAAGGG	ACTTCGCRAA	ATGATGTCGG	GTATGGAGCC	180
------------	------------	------------	------------	------------	------------	-----

TATGATCTT	ATGATTTAGG	GGAAATTAAAT	CAAAAGGGGA	CGGTTGCTAC	TAAGTATGGG	240
-----------	------------	-------------	------------	------------	------------	-----

ACACGTAGTC	AATTGGACTC	TGCCATCCAT	GCTTTAAAGA	ATAATGGCCT	TCAAGTTTAT	300
------------	------------	------------	------------	------------	------------	-----

GGGGATOTAG	TGATGAACCA	TAAGGGAGGA	GCTGATGCTA	CAGAAAACGT	TCTTGCTGTC	360
------------	------------	------------	------------	------------	------------	-----

GAGGTGAATC	CAATAAACCG	GAATCARGAA	ATATCTGGG	ACTACACAAT	TGAGGCTTGG	420
------------	------------	------------	-----------	------------	------------	-----

ACTAAGTTG	ATTTTCCAGG	GAGGGCTAAT	ACATACTCAG	ACTTTAAATG	CCGTTGCTAT	480
-----------	------------	------------	------------	------------	------------	-----

CATTTGATG	CTGTAGATTG	GGATCAATCA	CGACAATTCC	AAAATGCTAT	CTACAAAATTC	540
-----------	------------	------------	------------	------------	-------------	-----

CGAGGTGATG	CTAAGGCATG	GGATTGGAA	GTAGATTGG	AAAATGGAAA	TTATGATTAT	600
------------	------------	-----------	-----------	------------	------------	-----

TTAATGTATG	CACATGTAGA	TATGGATCAT	CGGGAGGTAG	TTAATGAGCT	TAGAAGATGG	660
------------	------------	------------	------------	------------	------------	-----

GGAGAATGGT	ATACAARTAC	ATTAATCTT	GATGGATTTA	GGATGATGC	GGTGAAGCAT	720
------------	------------	-----------	------------	-----------	------------	-----

ATTAATATA	GCTTTACACG	TGATTCGTTG	ACCCATGAA	GAACCCAAAC	GGCAAAAGAA	780
-----------	------------	------------	-----------	------------	------------	-----

ATGTTTGCTG	TTGCTGAAATT	TTGGAAAAAT	GATTTAGGTG	CCTTGGAGAA	CTATTTAAAT	840
------------	-------------	------------	------------	------------	------------	-----

AAAACAAACT	GGAAATCATTC	TGTCTTTGAT	CTCCCCCTTC	ATTATAATCT	TTATAACGGG	900
------------	-------------	------------	------------	------------	------------	-----

TCAAATAGTC	GAGGCAACTA	TGACATGCCA	AAACTTCTTA	ATGGAACGCT	TGTTCAAAAG	960
------------	------------	------------	------------	------------	------------	-----

CATCCAATGC	ATGCCGTAAC	TTTGTTGGAT	AATCAGGATT	CTCAACCTGG	CGAATCATTA	1020
------------	------------	------------	------------	------------	------------	------

GAATCATTTG	TACARGAATC	GTGAAAGCCA	CTTGGTTATG	CGCTTATTTT	AAACAGAGAA	1080
------------	------------	------------	------------	------------	------------	------

CAAGGCTATC	CCTCTGCTTT	CTATGGTAC	TACTATGGAA	TTCCAACACA	TACTGTCCCA	1140
------------	------------	-----------	------------	------------	------------	------

GCAATGAAAG	CCAGGATTGA	TCCAATCTTA	GAGGCCGCTC	AAAATTTGCG	ATATGGAACA	1200
------------	------------	------------	------------	------------	------------	------

CAACATGATT	ATTTGACCA	TCATAATATA	ATCGGATGGA	CACGTGAAGG	AAATACCAAG	1260
------------	-----------	------------	------------	------------	------------	------

CATGCCAATT	CAGGACTTGC	GACTATCATG	TCGGATGGCC	CAAGGGGAGA	GAATGGATC	1320
------------	------------	------------	------------	------------	-----------	------

TACGTAGGGC AAAATAAAGC AGGTCAAGTT TGGCATGACA TAACTGGAAA TAAACCACGA	1380
ACACTTACGA TCATGCCGAA TGGATGGCTT AATTTTCAG TAAATGGAGG ATCTCTTTCC	1440
5 ATTTGGGTGA AACGA	1455

(2) INFORMATION FOR SEQ ID NO: 15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 13 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

- (A) DESCRIPTION: /desc = "Primer BSG1"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

CCATGATGCA GTATTTTGAA TCG

13

20

(2) INFORMATION FOR SEQ ID NO: 16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 12 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

- (A) DESCRIPTION: /desc = "Primer BSG3"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

25

GTCACCATAA AAGACGCCACG GG

12

30 (2) INFORMATION FOR SEQ ID NO: 17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 70 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

35 (ii) MOLECULE TYPE: other nucleic acid

- (A) DESCRIPTION: /desc = "Primer BSGM1"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

40

GTCATAGTTT CGGAATTCCG TGTCTACTTC CCAATCCCAA TCCCCAAGCTT
45 TCCCCCGCGAA TTTGTAAATG

70

(2) INFORMATION FOR SEQ ID NO: 18:

- 5 (1) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 41 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
10 (ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "Primer BSGM2"
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

15 CTACTTCCCA ATCCAAAGCT TTGGCGGCCGA ATTTCGTAAAT G

41

- 15 (2) INFORMATION FOR SEQ ID NO: 19:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 26 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
20 (ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "Primer BSGM3"
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

25 CGATGATCCA TGTCAAAGTCG GCATAC

26

- 26 (2) INFORMATION FOR SEQ ID NO: 20:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 25 base pairs
(B) TYPE: nucleic acid
30 (C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "Primer BSGM4"
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

35 CTCGGTCACC ACGTGGGGAT GATCC

25

- 40 (2) INFORMATION FOR SEQ ID NO: 21:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
45 (ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "Primer BSGM5"
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

CCAGTTTTTC AGCTGGGTCA CGAC

24

INTERNATIONAL SEARCH REPORT

International application No.

PCT/DK 98/00444

A. CLASSIFICATION OF SUBJECT MATTER

IPC6: C12N 9/28, C11D 3/386

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC6: C12N, C11D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI, PAJ, BIOSIS, CA

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P, X	WO 9741213 A1 (NOVO NORDISK A/S), 6 November 1997 (06.11.97), page 15, line 23 ~ page 17, line 4 --	1-33
X	WO 9623873 A1 (NOVO NORDISK A/S), 8 August 1996 (08.08.96), page 21 ~ page 38; page 75 ~ page 77 --	1-33
X	WO 9510603 A1 (NOVO NORDISK A/S), 20 April 1995 (20.04.95), page 18, line 1 ~ page 20, line 14 --	1-33
A	WO 9535382 A2 (GIST-BROCADES B.V.), 28 December 1995 (28.12.95), page 3, line 20 ~ line 26, claims --	1-33

 Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "Z" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
20 January 1999	125 -01- 1999
Name and mailing address of the ISA/ Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Facsimile No. + 46 8 666 02 86	Authorized officer Yvonne Siösteen Telephong No. + 46 8 782 25 00

INTERNATIONAL SEARCH REPORT

International application No.

PCT/DK 98/00444

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 9100353 A2 (GIST-BROCADES N.V.), 10 January 1991 (10.01.91) *** -----	1-33

INTERNATIONAL SEARCH REPORT

International application No.

PCT/DK 98/00444

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(3)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

The claimed inventions relates to variants of a parent Termamyl-like alpha-amylase. A large number of combinations of mutations are suggested, which give increased thermostability at acid pH and/or low Ca²⁺ concentrations.

Several different combinations of mutations of α-amylases giving more thermostable enzymes are well-known in the art, see search report. As no common theory for all the mutations are suggested in the present application no "special technical feature" that makes a contribution to the prior art, as demanded in PCT rule 13.2 has been found. Although the application claims a large number of inventions all of them have been searched.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effect justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

01/12/98

PCT/DK 98/00444

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO	9741213	A1	06/11/97	AU 2692897 A	19/11/97
WO	9623873	A1	08/08/96	AU 4483396 A BR 9607735 A CA 2211405 A CN 1172500 A EP 0815208 A	21/08/96 14/07/98 08/08/96 04/02/98 07/01/98
WO	9510603	A1	20/04/95	AU 7807494 A BR 9407767 A CA 2173329 A CN 1134725 A EP 0722490 A FI 961524 A JP 9503916 T US 5753460 A US 5801043 A	04/05/95 18/03/97 20/04/95 30/10/96 24/07/96 30/05/96 22/04/97 19/05/98 01/09/98
WO	9535382	A2	28/12/95	AU 685638 B AU 2524795 A EP 0772684 A	22/01/98 15/01/96 14/05/97
WO	9100353	A2	10/01/91	AT 166922 T AU 638263 B AU 5953890 A BG 61081 B CA 2030554 A CN 1050220 A DE 69032360 D EP 0410498 A,B SE 0410498 T3 ES 2117625 T FI 910907 D JP 4500756 T PT 94560 A,B US 5364782 A	15/06/98 24/06/93 17/01/91 31/10/96 30/12/90 27/03/91 00/00/00 30/01/91 16/08/98 00/00/00 13/02/92 08/02/91 15/11/94