Second Project: 8 Bit Multiplier

Nolan Davenport CE 3320.002 NRD180001

The schematic is too large to fit onto a page and still maintain readability, so I will show a picture of the whole schematic, and then show multiple sections, but zoomed in, so you can see the details.

The colored boxes highlight where the sections have been taken from.

Test File

wire P14;

```
// Verilog test fixture created from schematic
C:\Users\guzzo\Documents\ISE\Multiplier Project\Multiplier.sch - Thu
Apr 30 15:00:23 2020
`timescale 1ns / 1ps
module Multiplier_Multiplier_sch_tb();
// Inputs
     reg A0;
   reg A1;
   reg A2;
   reg A3;
   reg A4;
  reg A5;
  reg A6;
  reg A7;
   reg B0;
  reg B1;
   reg B2;
   reg B3;
  reg B4;
   reg B5;
   reg B6;
   reg B7;
// Output
   wire P0;
   wire P1;
   wire P2;
   wire P3;
   wire P4;
  wire P5;
  wire P6;
   wire P7;
  wire P8;
   wire P9;
   wire P10;
   wire P11;
  wire P12;
   wire P13;
```

```
wire P15;
// Bidirs
// Instantiate the UUT
   Multiplier UUT (
           .A1(A1),
           .A2(A2),
           .A3(A3),
           .A4(A4),
           .A5(A5),
           .A6(A6),
           .A7(A7),
           .A0(A0),
           .B0(B0),
           .P0(P0),
           .B1(B1),
           .P1(P1),
           .B2(B2),
           .P2(P2),
           .B3(B3),
           .B4(B4),
           .P3(P3),
           .P4(P4),
           .B5(B5),
           .P5(P5),
           .B6(B6),
           .P6(P6),
           .B7(B7),
           .P7(P7),
           .P8(P8),
           .P9(P9),
           .P10(P10),
           .P11(P11),
           .P12(P12),
           .P13(P13),
           .P14(P14),
           .P15(P15)
   );
// Initialize Inputs
   `ifdef auto init
       initial begin
```

```
A0 = 0;
       A1 = 0;
       A2 = 0;
       A3 = 0;
       A4 = 0;
       A5 = 0;
       A6 = 0;
       A7 = 0;
       //
       B0 = 0;
       B1 = 0;
       B2 = 0;
       B3 = 0;
       B4 = 0;
       B5 = 0;
       B6 = 0;
       B7 = 0;
`endif
  initial begin
       A0 = 0;
       A1 = 1;
       A2 = 0;
       A3 = 1;
       A4 = 0;
       A5 = 0;
       A6 = 0;
       A7 = 0;
       //1010000
       B0 = 0;
       B1 = 0;
       B2 = 0;
       B3 = 1;
       B4 = 0;
       B5 = 0;
       B6 = 0;
       B7 = 0;
       #50
       A0 = 1;
       A1 = 1;
       A2 = 1;
       A3 = 1;
```

A4 = 0;A5 = 0;

```
A6 = 0;
A7 = 0;
//111111110
B0 = 0;
B1 = 1;
B2 = 0;
B3 = 0;
B4 = 0;
B5 = 1;
B6 = 0;
B7 = 0;
#50
A0 = 0;
A1 = 1;
A2 = 1;
A3 = 0;
A4 = 1;
A5 = 1;
A6 = 0;
A7 = 0;
//1110010110000
B0 = 0;
B1 = 0;
B2 = 0;
B3 = 1;
B4 = 0;
B5 = 0;
B6 = 0;
B7 = 1;
#50
A0 = 0;
A1 = 1;
A2 = 0;
A3 = 1;
A4 = 0;
A5 = 0;
A6 = 1;
A7 = 1;
//1011110010010110
B0 = 1;
B1 = 1;
B2 = 1;
B3 = 1;
```

```
B4 = 0;
B5 = 1;
B6 = 1;
B7 = 1;
end
endmodule
```


For my functionality test, I input 4 different pairs of numbers with products that are ordered from lowest to highest to test the multiplier. Below are the test multiplications that I performed. The interval between each calculation was 50ms.

- 1. 00001010 * 00001000 = 000000000101000
- 2. 00001111 * 00100010 = 0000000011111110
- 3. 00110110 * 10001000 = 0001110010110000
- 4. 11001010 * 11101111 = 1011110010010110

As you can see from the timing diagram, The P values, with **P15** being the MSB and **P0** being the LSB, produced the proper 16 bit product from the given 8 bit **A** and **B** inputs. Being as I put a big range of numbers through the multiplier, with **40** being the lowest product, and **48,278** being the highest product, it is safe to conclude that my completed design for an 8 bit multiplier works properly.