Marking key Sample examination Stage 2 Physics

Physics

Section one: Short answer

Question 1(a)

Heat vs. temperature

Description	Mark
Heat is thermal or internal energy being transferred because of a difference in temperature.	1
Temperature is the average kinetic energy of the molecules that a substance is made of.	1

Question 1(b) Effects of heat

Effects of heat	
Description	Mark
No	1
Temperature rise is determined by Q = mc∆T	1
Both m and c differ in this case.	1

Question 2

Kinetic energy

	Description		Mark
E_p on roof = E_k at ground			1
$E_p = mg\Delta h$		•	1
$= (2 \text{ kg})(9.8 \text{ m s}^{-2})(4.5 \text{ m})$			'
$E_k = 88.2 J$.			1

Question 3

Galaxy distance

		Description	Mark
$v = \frac{s}{t}$			1
s = v.t = (3)	x 10 ⁸)(3600 x 24 x 365)	$= 9.46 \times 10^{15} \text{ m}$.	1

Question 4

Lamps in a room

Description	Mark
All will be the correct brightness	1
If one fails, the others keep working.	1

Question 5

Series resistors

Description	Mark	l
	1	

3

Question 6

Nuclear equation

Description	Marks
$B + {}_{0}^{1}n \rightarrow {}_{2}^{4}\alpha + {}_{3}^{11}Li$	1

Question 7

Resistance calculation

Description	Mark
$\frac{1}{R_{T}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$	1
$\frac{1}{R_{T}} = \frac{1}{5} + \frac{1}{2} = \frac{7}{10}$	1
$R_T = \frac{10}{7}\Omega = 1.43 \Omega.$	1

Question 8

Half-life

	Description	Mark
n° of half lives = $\frac{\text{age of Earth}}{\text{half life}}$		1
$\frac{5 \times 10^9}{7 \times 10^8} = \text{about 7 half lives}$		1

Question 9

Geiger counter

Description	Mark
Radiation spreads out from the source	1
Beta radiation is absorbed (attenuated) by air.	1

Question 10(a) Total energy radiated

Description	Mark
Energy radiated remains constant over one year	1
$E = 10^{-9} \times 3600 \times 24 \times 365 = 0.0315 \text{ J}.$	ı

Question 10(b) Absorbed dose

Description Mark absorbed dose = $\frac{\text{energy absorbed}}{\text{energy absorbed}}$ 1 body mass absorbed dose = $\frac{0.031536 \text{ J}}{75 \text{ kg}^{-1}}$ = 4.20 x 10⁻⁴ J kg⁻¹ 1 75 kg

Question 11(a)

Volt definition

Description	Mark
Volt.	1
The potential difference between two points is one volt if one joule of energy is needed to	1
move one coulomb of charge from one point to the other.	'

Question 11(b)

Emf calculation

Description	Mark
$emf = \frac{energy}{charge}$	1
$emf = \frac{15 J}{2.5 C} = 6.00 \text{ volt}$.	1

Question 12(a) Reflective insulation

Description	Mark
Silver surfaces reflect emr well	1
This would insulate against radiant heat such as infrared.	1

Question 12(b)

Batt-type insulation

Description	Mark
Glass is a poor thermal conductor	1
The trapped air is also a poor thermal conductor	1

Question 13(a)

Melting ice

Description		
Must convert mass into kilograms m=0.360 kg		
Q = mL	1	
$Q = (0.36)(3.34 \times 10^5) = 1.20 \times 10^5 J$	1	

Question 13(b)

Energy transfér

	Description	Mark
Into		1

Question 14

Hypothesis test

Description	Mark
B: Weighing the toast before and after it was on the plate.	1

Question 15

Water heaters

Description	Mark
Heat spreads through water by convection	
Convection works best when the heat source is at the base of the convection cell.	1

Question 16 Circuit theory

Description	Mark
(a) Decrease	1
(b) Increase	1
(c) Current	1
(d) Increase	1
(e) Remain the same.	1

Question 17(a) Graphing motion

	Description	Mai	rk
(a) AB		1	
Gradient is steepest.		1	

Question 17(b) Graphing motion

	Description	Mark
(b) Yes		1
Crate accelerates, its speed increases	s, therefore its kinetic energy increases	1

Question 18 Write and balance a nuclear equation

$$^{238}_{92}$$
U + $^{1}_{0}$ n $\rightarrow ^{239}_{94}$ Pu + 2^{0}_{-1} β

	Description		Mark
Neutron included on left			1
Betas shown as products on right.		•	1

Question 19 Density of water

		Description	Mark
C: 277 K			1

Section two: Problem-solving

Question 20(a)

Maximum height

Description	Mark
At max height, v = 0	1
If direction of u (upwards) is positive, then g (downwards) is negative	1
$v^2 = u^2 + 2gs$	1
$s = \frac{v^2 - u^2}{2g} = \frac{0 - 10.24}{2(-9.8)} = \frac{10.24}{19.6} = 0.522 \text{m} \text{ above Geraldine's hand}.$	1

Question 20(b)

Final velocity

	Description	Mark
$v^2 = u^2 + 2gs$		1
Since $s = 0$, $v^2 = u^2$ Thus, final velocity	= 3.20 m s ⁻¹ downwards.	1

Question 20(c)

Momentum explained

	Description	Mark
Momentum is th	e product of an object's mass and its velocity.	1

Question 20(d)

Momentum calculation

	Description	Mark
p = mv.		1
$p = (2.2 \text{ kg})(3.2 \text{ m s}^{-1})$		1
Momentum = 7.04 kg m s^{-1} .		1
Direction is upwards.		1

Question 21(a)

Power output

Description	Mark
P = VI	1
P = (250)(4.2) = 1050W	1

Question 21(b)

Energy transferred

Description	Mark
Must convert time taken = 10 minutes = 600 seconds	1
$P = \frac{\Delta E}{t}$	1
$\Delta E = Pt$	1
$E = (1050)(600) = 6.30x10^5 J$	1

Question 21(c)

Temperature rise

Description	Mark
$Q = mc\Delta T$	1
$\Delta T = \frac{Q}{mc}$	1
$\Delta T = \frac{6.3 \times 10^5}{(2)(4180)} = 75.4^{\circ}C$	1

Question 22(a)

Velocity from graph

	Description	Mark
12 m s ⁻¹ .		1

Question 22(b)

Acceleration from graph

	Description	Mark
gradient = $\frac{\text{rise}}{\text{run}}$		1
gradient = $\frac{10-0}{3-0}$ = 3.3		1
Acceleration is 3.3 m s ⁻² .		1

Question 22(c)

Displacement from graph

Displacement nom graph	
Description	n Mar k
displacement from 0 to 4s = area of triangle = $\frac{1}{2}$ (1 = (0.5)(4)(12) m = 24 m	base x height)
displacement from 4 to 10s = area of rectangle = $(4)(12)$ m = 48 m	base x height)
Total displacement = displacement (0 to 4s) + dis Total displacement = 24 m + 48 m = 72 m.	placement (4 to 8s)

Question 22(d) Direction of travel

		Description	Mark
No.			1

Question 23(a)

Bequerel

	Description	Mark
1.03 x 10 ¹⁵ Bq		1

Question 23(b)(i)

Mass defect

Description	Mark
Difference between the mass of a nucleus and the masses of its components.	1

Question 23(b)(ii)

Binding energy

Description	Mark
Energy released when the components of a nucleus come together; OR energy needed	1
to break up a nucleus into its components.	

Question 23(b)(iii)

Relationship between mass defect and binding energy

	Description	Mark
Binding ener together	gy is the potential energy decrease when the parts of a nucleus come	1
Energy and	mass are equivalent through the relationship $\Delta E = (\Delta m)c^2$	1
Mass therefo	ore decreases when the potential energy of a nucleus decreases.	1

Question 23(c)

Decay releases energy

Description	Mark
Mass LHS = 31.973 907 u	1
Mass RHS = 31.972 071 + 0.000 549 u = 31.972 620 u	1
Mass LHS > mass RHS	1
The 'lost' mass is replaced by energy.	1

Question 24(a) Weight of lift

Description	Mark
$F_{w} = mg$	1
weight = $(2000 \text{ kg})(9.8 \text{ m s}^{-2}) = 19.6 \text{ kN}$.	1

Question 24(b)

Tension when moving at constant speed

	Description	Mark
19.6 kN.		1

Question 24(c)

Free body diagram—moving

Description	Mark
Upward force.	1
Downward force.	1
Same size (19.6 kN).	1

Question 25(a)

Resistance of hot lamp

Description	Mark
$P = \frac{V^2}{R}$	1
$R = \frac{V^2}{P} = \frac{240^2}{60}$	1
$R = 960 \Omega$.	1

Question 25(b)

Resistance of cold lamp

Description	Mark
$R_{cold} = \frac{R_{hot}}{10} = \frac{(answer from 21a)}{10} = 96 \Omega.$	1

Question 25(c)

Ohmic vs non-ohmic conductors

Description	Mark
Resistance is constant in ohmic conductors.	1
Resistance changes with current (or temperature) in non-ohmic conductors.	1

Question 25(d)

Lamps

	Description	Mark
No.		1

Question 25(e)

Measuring resistance

Section three: Comprehension section

Question 26(a)

Variables

Description	Mark
They measured: thinking time or braking distance	1
They controlled: [any two of] type of vehicle, daylight, condition of road, stimulus.	2

Question 26(b)

Experimental design

Description	Mark
(i) This would reduce the uncertainty in their measurements	1
(ii) By averaging out human errors by any one driver.	1

Question 26(c)

Error reduction

Description	Mark
Having trials for each driver at each speed reduces possible errors/uncertainties	1
By allowing for people applying the brakes differently at different speeds (and so biasing the data).	1

Question 26(d)(i)

Line of best fit

Question 26(d)(ii)

Thinking distance and initial speed

Description	Mark
Thinking distance increases regularly as the initial speed increases.	1

Question 26(d)(iii) Thinking distance from graph

Question 26(e) Conclusion

Description	Mark
The distance required to stop increases as the initial speed increases.	1
The stopping distance increases faster than the initial speed increases.	1
There would probably be fewer accidents if people drove more slowly.	1

Physics Stage 2 exam

		2A		2B					
	Working in	Motion and	Nuclear	Working in	Heating and	Electrical			
	physics	forces	physics	physics	cooling	fundamentals			
SECT									
Α									
1					Dpt 5, 7				
2		Dpt 7, 8							
3		Dpt 2							
4						Dpt 6			
5						Dpt 5, 9			
6			Dpt 4						
7						Dpt 9			
8			Dpt 6			-			
9			Dpt 3						
10			Dpt 6						
11						Dpt 2, 4			
12					Dpt 9				
13					Dpt 8				
14				X					
15			-		Dpt 6, 9				
16						Dpt 6, 8, 9, 13			
17		Dpt 3				• • •			
18		•	Dpt 1						
19	Х								
SECT									
В									
20		Dpt 1, 2, 6							
21		Dpt 9	V	X	Dpt 7				
22	Х								
23			Dpt 6, 7						
24		Dpt 1, 4, 5							
25				X		Dpt 5, 6, 7			
SECT						•			
C 26									
	X								
overall									
	X	units		Х	units				

Sample physics exam stage 2 design brief fit analysis

(2008/18610)

		section 1	section 1 marks	section 2	section 2 marks	section 3	section 3 marks	overall marks	total marks	total %	total allowed
20– 25%	Working in Physics	14, 19	2	22a, 22b, 22c, 22d, 25e	12	26a, 26b, 26c, 26d, 26e	14	2	30	24.6	20–25%
20– 25%	Motion and forces	2, 3, 17	9	20a, 20b, 20c, 20d, 21b, 24a, 24b, 24c	21		0		30	24.6	20–25%
15-20%	Nuclear physics	6, 8, 9, 10, 18	10	23a, 23b, 23c	10		0		20	16.4	15-20%
15– 20%	Heating and cooling	1, 12, 13, 15	15	21c	3		0		18	14.8	15–20%
20– 25%	Electrical fundamentals	4, 5, 7, 11, 16	15	21a, 25a, 25b, 25c, 25d	9		0		24	19.7	20–25%
	totals	19 items	51	6 items	55	1 item	14	2	122	100.1	
	total %		41.8		45.1		11.5	1.6			
	total allowed	15-20 items	35-45%	5-7 items	45-55%	1-2 items	5-15%				