

변수 할당 ^{오른쪽 값을 왼쪽 변수에 저장}		
a = 3	a에 3 저장	
a=b=c=0	a,b,c에 0 저장	
a+=3	a=a+3	
a=None	undefined	
del a	a 변수 삭제	

기분	기본 자료형				
int	72	정수형			
float	실수형				
bool	True False	논리형			
str	"Hi" 'Sohi'	문자형			

자료형() () 안 값을 해당 자료형으로 변환			
int("15") 15			
int(15.5)	15		
float("3.2")	3.2		
str(5)	"5"		

type(expression) () 안 값의 자료형 알아냄			
type(5) Int			
type(15.5)	float		
type(True)	bool		
type("15")	str		

print () 안에 있는 데이터를 출력, sep=" "(item separator), end="\n"(end of print)		
print("hello")	hello	
print("hi","sohi")	hi sohi	
print("a"+"b")	ab	
print("a", end=",") print("b")	a,b	
print("a","b","c",sep=":")	a:b:c	

input input() : 데이터가 문자(str)로 입력됨 input('메시지') : 사용자에게 메시지 보여줌		
a=input()	사랑	
a=input("좋아하는 음식")	김치	
a=input("숫자입력") b=input("숫자입력") print(a+b)	4 2 42	

비교연산자		
< 작다		
<= 작거나 같다		
== 같다		
>= 크거나 같다		
> 크다		
!=(or<>) 다르다		

변수명 규칙	영문, 숫자, _ 사용 대소문자 구분됨 특수문자,키워드 사용안됨 숫자로 시작할 수 없음
-----------	---

산술연산자			
3+1	4	덧셈	
3-1	2	뺄셈	
3*2	6	곱셈	
3**2	9	거듭제곱	
3/2 1.5		나눗셈	
3//2	1	몫	
3%2 1		나머지	

논리연산자			
and 모두 True면 True			
or 하나라도 True 🖰 True			
not	True면 False로 변경 False면 True로 변경		

if 조건식A: 코드1 elif 조건식B: 코드2 else: 코드3

while 조건식: 반복할 코드

for 조건식 in 시퀀스: 반복할 코드

range()

range([start,] stop[, step]) : start부터 stop-1까지 step만큼 증가하는 범위

for x in range(5) :
 print(x)

0~4까지 범위의 숫자를 하나씩 꺼낸 후 반복할 코드 실행

for x in [0,1,2,3,4] : print(x)

0~4까지 출력

진한 자류형

ᆸᆸᅦ╨ᆼ				
리스트	list	[4,2, 'x']	동일한 목적을 갖는 유사한 항목들의 묶음 서로 다른 형인 경우도 허용함	
튜플	tuple	(4,2)	원소를 변경할 수 없는 리스트	
문자열	str	'Hello'	문자가 모인 문자열	
사전	dict {"key" : "value"}	{a=3, b=4, k="v"}	사전과 비슷한 형식의 자료형 원소는 한 쌍의 key:value로 표현	
집합	set {"key1", "key2"}	{1,9,3,0}	수학에서의 집합, 원소들 간에 순서가 없으며, 중복 을 허용하지 않음	

	a[0]	a[1]	a[2]	a[3]	a[4]
--	------	------	------	------	------

а	10	20	30	40	50

a[-5] a[-4] a[-3] a[-2] a[-1]

인덱싱

리스트[인덱스] : 리스트 요소에 접근할 때 인덱스 록 지정하다

a[3]	40			
a[-1]	50			

슬라이싱

리스트[시작인덱스:끝인덱스:증감] : 시작인덱스~끝인덱스-1 요소값을 가져온다.

시작인넥스~끝인넥스-1 요소값을 가져온다.					
a[0:3]	[10, 20, 30]				
a[:]	[10, 20, 30, 40, 50]				
a[::-2]	[50, 30, 10]				

문자열 함수

s = 'A B C' print(s.split())	['A', 'B', 'C']
date = '1907-10-01' split_date = date.split('-') print(split_date[1])	10

lst=[]

for n in range(1,31):

if(n%9==0):

lst.append('짝짝짝')

elif(n%6==0):

lst.append('짝짝')

elif(n%3==0):

lst.append('짝')

else :

print(lst)

lst.append(n)

[1, 2, '짝', 4, 5, '짝짝', 7, 8, '짝짝짝', 10, 11, '짝짝', 13, 14, ' 짝', 16, 17, '짝짝짝', 19, 20, '짝', 22, 23, ' 짝짝', 25, 26, '짝짝 짝', 28, 29, '짝짝']

txt 파일

open() 함수 : 파일을 여는 함수 close() 함수 : 파일을 닫는 함수 read() 함수 : 전체 내용 읽어오기 encoding : UTF-8 / CP949 / EUC-KR

f = open('data.txt', encoding='utf8')
print(f.read())
f.close()

csv 파일

csv.reader(csvfile) : csvfile에서 읽기 csv.writer(csvfile) : csvfile에 쓰기

import csv
f = open('data.csv')
data = csv.reader(f)
for row in data :
 print(row)
f.close()

csv 파일 사용 예

import csv import datetime

파일 내용 읽어오기 file_name="2015univ.csv" file = open(file_name,'r',encoding='utf8') csv_file = csv.reader(file)

제목을 저장한다. header = next(csv_file) # 데이터를 리스트로 저장한다. data = list(csv_file)

파일을 닫는다. file.close()

제목 출력하기 print(header) # 데이터 리스트 출력하기 for row in data : print(row)

? python™ matplotlib sohi edit 2018.08.

plot함수

. 값을 서로 연결해서 라인 형태의 그래프를 그리는 함수

import matplotlib.pyplot as plt data = [1,2,3,4] plt.plot(data) plt.show() #그래프 보여주기

제목 표시 plt.title('title')

폰트 지정 plt.rc('font', family='Malgun Gothic')

범례 표시 plt.plot([4,3,2,1], label = 'type B') plt.legend()

범례 위치 지정

Location String: best / upper right / upper left / lower left / lower right / right / center left / center right / lower center / upper center / center plt.legend(loc='upper right')

파일 저장 plt.savefig('data.png')

그래프 크기 설정 plt.figure(figsize = (4,2), dpi = 150)

다양한 그래프

import matplotlib.pyplot as plt
선(line)
plt.plot([1,2,3,4])
막대(bar)
plt.bar([1,2,3],[10,20,30])
히스토그램(histogram)
plt.hist([1,1,2,4,5,7,8,9], bins=9)
상자 수염 그림(boxplot)
plt.boxplot([2,7,10,9,5,4,6,8])
산포도 (scatter)
plt.scatter([10,30,20,25,40],[25,38,47,29,38])
원 그래프(pie)
plt.pie([10,30,25,40])

간단한 그래프 사용 예

import matplotlib.pyplot as plt
plt.figure(figsize = (4,2), dpi = 150) # 그래프 크기 및 해상도 조절
plt.rc('font',family='Malgun Gothic') # 한글 폰트설정
plt.plot([1, 2, 3, 4], label = 'type A')
plt.plot([4, 3, 2, 1], label = 'type B')
plt.title('제목') # 제목 넣기
plt.xlim(0,3) # x축 값 범위 : 0~3
plt.ylim(1,4) # y축 값 범위 : 1~4
plt.xticks(range(4),['가','나','다','라']) # x축 내용
plt.yticks(range(5)) # y축 내용
plt.ylabel('x축') # x축 레이블
plt.ylabel('y축') # y축 레이블
plt.legend() # 범례
plt.savefig('data.png') # 파일 저장
plt.show() # 그래프 보여주기