Universidade Paulista - UNIP

Giovane Guilherme de Menezes

VISÃO COMPUTACIONAL PARA AUXÍLIO DE TOMADA DE DECISÕES NO TRÂNSITO

Limeira 2022

Universidade Paulista - UNIP

Giovane Guilherme de Menezes

VISÃO COMPUTACIONAL PARA AUXÍLIO DE TOMADA DE DECISÕES NO TRÂNSITO

Trabalho de conclusão de curso apresentado à banca examinadora da Faculdade UNIP, como requisito parcial à obtenção do Bacharelado em ciência da computação sob a orientação do professor Me. Sergio Eduardo Nunes e Me. Amaury André.

Limeira 2022

Giovane Guilherme de Menezes

VISÃO COMPUTACIONAL PARA AUXÍLIO DE TOMADA DE DECISÕES NO TRÂNSITO

Trabalho de conclusão de curso apresentado à banca examinadora da Faculdade UNIP, como requisito parcial à obtenção do Bacharelado em ciência da Computação sob a orientação do professor Me. Sergio Eduardo Nunes e Me. Amaury André.

Aprovada em XX de XXXXX de 2022.

Prof. Dr. Nome completo Prof. Me. Nome completo

BANCA EXAMINADORA

Prof. Esp. Nome completo

DEDICATÓRIA

Dedico este trabalho aos meus colegas...

"Se queremos progredir na vida, não devemos repetir a história, mas fazer uma nova".

(Mahatma Gandhi)

RESUMO

Texto em parágrafo único, no máximo 500 palavras...

Palavra-Chave: até cinco palavras, separadas por ponto-e-vírgula.

_					
	Δ	v	t		
	C	\wedge	L		ì

Key Words: ...

LISTA DE FIGURAS

LISTA DE QUADROS

LISTA DE ABREVIATURAS

INTRODUÇÃO	12
1.1 Objetivo	12
1.2 Justificativa	12
1.3 Metodologia	12
2. PRIMEIRO NÍNEL	13
2.1 Segundo Nível	13
2.1.1 Terceiro nível	13
CONCLUSÃO	14
REFERÊNCIAS BIBLIOGRÁFICAS	15

1. INTRODUÇÃO

A Visão Computacional é um campo da Inteligência Artificial onde se utilizam algoritmos ligados a imagens pré-definidas por uma base de dados para fazer comparações e detectar uma característica específica das imagens para reconhecer objetos ou figuras em um determinado ambiente.

Em 1982, Ballard e Brown descreveram em sua obra *Computer Vision* que a Visão Computacional é a capacidade de programar os computadores para enxergarem o ambiente ao seu redor e extraírem informações dos objetos através de imagens, permitindo assim processar dados sobre esses objetos.

Um exemplo de aplicação que se pode ser considerada uma visão computacional seria o reconhecimento facial que é amplamente utilizado hoje em dia nos smartphones. Através da câmera, o aparelho celular faz a verificação das características do rosto da pessoa com as informações.

No meio automotivo, o caso mais famoso de utilização da visão computacional é o sistema de piloto automático presente nos carros elétricos da Tesla. O programa semiautônomo dos carros Tesla utiliza múltiplos sensores colocados ao redor do veículo para ajudar o carro a interpretar o ambiente à sua volta e auxiliá-lo a tomar as melhores decisões quando estiver trafegando por rodovias.

1.1 Objetivo

O objetivo desse trabalho é auxiliar o motorista durante a condução do veículo pelas ruas, visando sempre a sua segurança e a das pessoas à sua volta. Um exemplo de possível aplicação na prática do algoritmo seria o travamento do carro caso o motorista tentasse avançar em um sinal vermelho que o aplicativo pôde identificar, evitando assim uma infração de trânsito ou um possível acidente.

1.2 Justificativa

Carros autônomos estão começando a se tornarem um objeto de desejo de muitas empresas especializadas em transporte com o avanço da Visão

Computacional, porém é difícil se firmar nesse mercado devido aos riscos de acidentes em locais mais movimentados ou em condições precárias para se dirigir.

Por tais motivos, a função do desenvolvimento desse Software visa auxiliar a identificação de situações no trânsito para auxiliar o motorista a realizar uma condução mais segura no seu dia a dia.

1.3 Metodologia

Para realização dos testes de reconhecimento foram utilizadas imagens estáticas de sinalizações de trânsito para os testes iniciais, assim como uma câmera para simular a leitura das sinalizações em tempo real. A programação do algoritmo foi baseada nas bibliotecas de código aberto *OpenCV* e *PyTorch* para a realização do projeto aplicados na linguagem de programação de alto nível Python. Através destas bibliotecas será possível definir todas as sinalizações de trânsito que a câmara deverá reconhecer em tempo real.

A escolha da utilização do *PyTorch* se deve a sua carga de trabalho ser mais bem distribuída em diferentes tipos de GPUs, fazendo com que a resposta seja melhor em relação ao *TensorFlow* que também poderia ser utilizado para o desenvolvimento do script. Além de ser muito utilizado na construção de Redes Neurais Convolucionais (CNN) e em classificação de imagens.

2. PRIMEIRO NÍNEL

Texto...

Figura 01 – Interação de Valores na Distribuição Normal no GeoGebra

Fonte: Elaborado pelo autor, print software GeoGebra.

2.1 Segundo Nível

Texto...

2.1.1 Terceiro nível

Texto...

Quadro 01 – Tipos de Distribuição Estatística

Distribuições Contínuas	Distribuições Discretas		
Normal	Poisson		
Uniforme	Uniforme discreta		
Triangular	****		
Exponencial	****		

Weibull	****
---------	------

Fonte: Adaptado Filho (2001, p. 173)

3. REDES CONVERGENTES

Jhfjdsjhfjhsdjhfkjhsjkdhfkjhskjhdkjfhjshjfhj jhjsdhkjfhjkshdkjhfkjhjkdh jdhsjfhkjshjdhfjhsjkhkjfhjh jdhfjhjks hjdhkjhsjh sjhdfjhsjhdjh...

CONCLUSÃO

O trabalho permitiu...

REFERÊNCIAS BIBLIOGRÁFICAS

COUTO, Leandro Nogueira. **Sistema para localização robótica de veículos autônomos baseado em visão computacional por pontos de referência**. 2012. Dissertação (Mestrado em Ciências de Computação e Matemática Computacional) - Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, 2012. doi:10.11606/D.55.2012.tde-04092012-110014. Acesso em 20 de maio de 2022.

KLASER, Rafael Luiz. **Navegação de veículos autônomos em ambientes externos não estruturados baseada em visão computacional**. 2014. Dissertação (Mestrado em Ciências de Computação e Matemática Computacional) - Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, 2014. doi:10.11606/D.55.2014.tde-22092014-095209. Acesso em 01 de junho de 2022.

BARELLI, Felipe. Introdução à Visão Computacional: Uma abordagem prática com *Python e OpenCV*. Casa do Código, 2018.

BALLARD, D.H.; BROWN, C.M.: *Computer Vision*. Prentice Hall, 1982.