Этап 4

Результаты проекта

Беличева Д. М., Демидова Е. А., Самигуллин Э. А., Смирнов-Мальцев Е. Д.

Содержание

1	Цель работы	4	
2	Задачи	5	
3	Теоретическое введение 3.1 Модель хищник-жертва	6 6 7	
4	Аналитическое исследование модели 4.1 Стационарное состояние системы	9 9	
5	Построение и анализ графиков	11	
6	Выводы	15	
Сп	писок литературы		

Список иллюстраций

5.1	График зависимости жертв от хищников	11
5.2	3D-график зависимости жертв от хищников	12
5.3	Зависимость видов от времени	12
5.4	Стационарное состояние системы	13
5.5	График при отсутствии хищников	14
5.6	График при отсутствии жертв	14

1 Цель работы

Исследование модели Лотки-Вольтерра.

2 Задачи

- Провести аналитическое исследование модели хищник-жертва.
- Построить график зависимости числа хищниов от числа жертв
- Построить графики зависимости числа видов от времени
- Найти стационарное состояние системы.

3 Теоретическое введение

3.1 Модель хищник-жертва

Модель "Хищник-жертва" основывается на следующих предположениях [1]:

- 1. Численность популяции жертв x и хищников y зависят только от времени (модель не учитывает пространственное распределение популяции на занимаемой территории)
- 2. В отсутствии взаимодействия численность видов изменяется по модели Мальтуса (экспоненциальный рост с постоянным темпом), при этом число жертв увеличивается, а число хищников падает
- 3. Естественная смертность жертвы и естественная рождаемость хищника считаются несущественными
- 4. Эффект насыщения численности обеих популяций не учитывается
- 5. Скорость роста численности жертв уменьшается пропорционально численности хищников

$$\begin{cases} \dot{x} = \alpha x - \beta xy \\ \dot{y} = -\gamma y + \delta xy \end{cases}$$

В этой модели x – число жертв, y - число хищников. Коэффициент α описывает скорость естественного прироста числа жертв в отсутствие хищников, γ -

естественное вымирание хищников, лишенных пищи в виде жертв. Вероятность взаимодействия жертвы и хищника считается пропорциональной как количеству жертв, так и числу самих хищников. Каждый акт взаимодействия уменьшает популяцию жертв, но способствует увеличению популяции хищников (члены $-\beta xy$ и δxy в правой части уравнения).

3.2 Программные средства

В Octave системы дифферециальных уравнений можно решать следующими методами[2]:

ode23(@f, interval, X0, options), ode45(@f, interval, X0, options) — функции решений обыкновенных нежёстких дифференциальных уравнений (или систем) методом Рунге-Кутты 2-3-го и 4-5-го порядка точности соответственно.

Функции решают систему дифференциальных уравнений, автоматически подбирая шаг для достижения необходимой точности. Входными параметрами этих функций являются:

- f вектор-функция для вычисления правой части дифференциального уравнения или системы;
- interval массив из двух чисел, определяющий интервал интегрирования дифференциального уравнения или системы;
- ХО вектор начальных условий системы дифференциальных систем;
- option параметры управления ходом решения дифференциального уравнения или системы.

При решении дифференциальных уравнений необходимо определить следующие параметры:

- RelTol относительная точность решения, значение по умолчанию 10-3;
- AbsTol абсолютная точность решения, значение по умолчанию 10-3;

- InitialStep начальное значение шага изменения независимой переменной, значение по умолчанию 0.025;
- MaxStep максимальное значение шага изменения независимой переменной, значение по умолчанию 0.025.

Все функции возвращают:

- массив Т координат узлов сетки, в которых ищется решение;
- матрицу X, i-й столбец которой является значением вектор-функции решения в узле Ti.

4 Аналитическое исследование модели

4.1 Стационарное состояние системы

Найдём стационарное состояние системы. Для этого приравняем её правые части к нулю.

$$\begin{cases} \alpha x - \beta xy = 0 \\ -\gamma y + \delta xy = 0 \end{cases}$$

Из полученной системы получаем, что стационарное состояние системы будет в точке $x_0=\frac{\gamma}{\delta}, y_0=\frac{\alpha}{\beta}$. Если начальные значения задать в стационарном состоянии $x(0)=x_0, y(0)=y_0$, то в любой момент времени численность популяций изменяться не будет. При малом отклонении от положения равновесия численности как хищника, так и жертвы с течением времени не возвращаются к равновесным значениям, а совершают периодические колебания вокруг стационарной точки.

4.2 Ситуация отсутствия одного из видов

Из системы сразу следует, что если жертв нет (x = 0), то хищники будут вымирать экспоненциально с неким начальным коэффициентом (γ согласно уравнению).

$$\dot{y} = -\gamma y$$

$$y=Ce^{-\gamma t}, C\in R$$

Схожую ситуацию получаем при полном отсутствии хищников (у = 0):

$$\dot{x} = -\alpha x,$$

$$x = Ce^{\alpha t}, C \in R$$

Рост жертв получается экспоненциальным с некой заранее заданной константой (lpha).

5 Построение и анализ графиков

Был построен фазовый портрет системы при разных начальных условиях, из графика видно, что решения представляют собой замкнутые траектории расположенные вокруг стационарной точки(рис. 5.1).

Рис. 5.1: График зависимости жертв от хищников

На 3D графике видно, что решение модели хищник-жертва при стационарном состоянии системы не меняется во времени, а при произвольном начальном условии представляет собой спираль(рис. 5.2).

Рис. 5.2: 3D-график зависимости жертв от хищников

При начальном условии x_0 = 1\$, $y_0=21$ график зависимости жертв и хищников от времени выглядит следующим образом(рис. 5.3):

Рис. 5.3: Зависимость видов от времени

При начальном условии $x_0=4$, $y_0=25$ видно, что система находится в стационарном состоянии, число хищников и жертв не меняется во времени(рис. 5.4).

Рис. 5.4: Стационарное состояние системы

При начальном условии x_0 = 5\$, $y_0=0$ график жертв экспоненциально растёт(рис. 5.5).

Рис. 5.5: График при отсутствии хищников

При начальном условии x_0 = 0\$, $y_0=15$ график хищников экспоненциально падает(рис. 5.6).

Рис. 5.6: График при отсутствии жертв

6 Выводы

В результате работы:

- Проведено аналитическое исследование модели хищник-жертва.
- Построен график зависимости числа хищниов от числа жертв
- Построены графики зависимости числа видов от времени
- Найдено стационарное состояние системы.

Список литературы

- 1. Вольтерра В. Математическая теория борьбы за существование. Наука, 1976. 354 с.
- 2. GNU Octave Documentation [Электронный ресурс]. Free Software Foundation, 2023. URL: https://docs.octave.org/v4.2.0/Matlab_002dcompatible-solvers.ht ml.