Théorème d'irréductibilité de Hilbert

Colas Bardavid

20 janvier 2005 : la galette de Binet

Préliminaires: irréductibilité

Définition 1 Soit k un corps et soit $P \in k[X_1, \ldots, X_n]$ un polynôme à n indéterminées à coefficients dans k; on peut écrire $P = \sum_{\alpha \in \mathbf{N}^n} a_\alpha X_1^{\alpha_1} \cdots X_n^{\alpha_n}$, où la somme est à support fini. On appelle degré total de P et on note $\deg P$ l'entier $\max_{a_\alpha \neq 0} (\alpha_1 + \cdots + \alpha_n)$.

Définition 2 Soit $P \in k[X_1, ..., X_n]$ non constant. On dit que P est irréductible si lorsqu'on décompose P = QR dans $k[X_1, ..., X_n]$, on a forcément $\deg P = 0$ ou $\deg Q = 0$.

1 Introduction

Soit un k un corps.

Soit P(t,X) un polynôme à deux variables; on verra t comme un paramètre et X comme l'indéterminée. On a $P(t,X) \in k[t,X]$ et en particulier $P \in k(t)[X]$, ce qui nous permettra de voir P comme un élément d'une algèbre de polynômes L[X] au-dessus d'un corps.

1.1 Spécialisations et spécialisations acceptables

Soit $t_0 \in k$. Notons $\chi_{t_0}: k[t] \to k$ le morphisme d'évaluation. χ_{t_0} induit un morphisme $\widetilde{\chi_{t_0}}: k[t,X] \to k[X]$ $P(t,X) \mapsto P(t_0,X)$.

Est-ce que $\widetilde{\chi_{t_0}}$ conserve bien les propriétés d'irréductiblité? Par exemple, est-ce que $\widetilde{\chi_{t_0}}$ envoie les irréductibles sur les irréductibles, pour un t_0 bien choisi ou pour tous? (non) De façon inverse, si on se donne un polynôme P irréductible, est-ce qu'il existe un t_0 tel que $\widetilde{\chi_{t_0}}(P)$ est encore irréductible? Dans ce cas, on dira que t_0 est une spécialisation (P-)acceptable. Que peut-on dire sur l'ensemble des spécialisations acceptables?

Dans toute la suite, P est supposé irréductible et on note

$$P = \sum_{k=0}^{N} a_k(t) X^k,$$

où les $a_k(t)$ sont dans k[t] et où $a_N \neq 0$. On supposera pour éviter les trivialités que $N \geq 2$.

1.2 Motivations (historiques)

Hilbert a étudié ce problème dans le but de construire des groupes de Galois.

1.3 Corps hilbertiens

Si k est un corps tel que la spécialisation $\widetilde{\chi_{t_0}}$ conserve bien les propriétés d'irréductibilité, on dit que k est un corps hilbertien. Plus précisément :

Définition 3 Soit k un corps. On dit que k est hilbertien si $\forall r, s, n \in \mathbb{N}^*, \forall g \in k[t_1, \ldots, t_r] \setminus \{0\}, \forall f_1, \ldots, f_n \in k[t_1, \ldots, t_r, X_1, \ldots, X_s] \setminus k[t_1, \ldots, t_r]$ irréductibles, $\exists (t_1^*, \ldots, t_r^*) \in k^r$ tel que $g(t_1^*, \ldots, t_r^*) \neq 0$ et $\forall 0 \leq i \leq n, f_i(t_1^*, \ldots, t_r^*, X_1, \ldots, X_s) \in k[X_1, \ldots, X_s]$ est irréductible.

Remarque : Il est équivalent de demander l'existence d'un r-uplet $(t_1^{\star}, \dots, t_r^{\star})$ ou d'une infinité.

Exemples : \mathbf{R} , \mathbf{Q}_p , \mathbf{C} , \mathbf{F}_{p^n} , tous les corps algébriquement clos ne sont pas des corps hilbertiens.

 \mathbf{Q} , tous les corps de nombres, k(X) pour tout corps k, tous les corps infinis finiment engendrés sont des corps hilbertiens.

1.4 Étude du cas général

Soit $\overline{L} = \overline{k(t)}$ une clôture algébrique de L. On scinde dans \overline{L} le polynôme P:

$$P = a_N(t) \prod_{i=1}^{N} (X - \alpha_i)$$
 où $\forall i, \alpha_i \in \overline{k(t)}$.

Soit t_0 tel que que $a_N(t_0) \neq 0$, comme on le supposera souvent. On peut alors étendre χ_{t_0} à $k[t, a_N(t)^{-1}]$. Or les α_i sont entiers au-dessus de $k[t, a_N(t)^{-1}]$. Comme Serge Lang l'explique page 347 dans [Lang], on peut alors prolonger (algébriquement) χ_{t_0} en :

$$\widehat{\chi_{t_0}}: k[t] \left[\frac{1}{a_N(t)} \right] [\alpha_i]_{1 \le i \le n} \to \overline{k}.$$

On notera (attention, ce n'est qu'une notation!) : $\widehat{\chi_{t_0}}(\alpha) = \alpha(t_0)$. En particulier, on a :

$$\widetilde{\chi_{t_0}}(P(t,X)) = P(t_0,X) = \widehat{\chi_{t_0}}\left(a_N(t)\prod_{i=1}^N (X-\alpha_i)\right) = a_N(t_0)(X-\alpha_i(t_0)).$$

Ainsi, si $P(t_0,X) \in k[X]$ est réductible, il existe $\varnothing \subsetneq S \subsetneq \{1,\ldots,n\}$ tel que $\prod_{i \in S} (X - \alpha_i(t_0))$ soit dans k[X] sans que cependant $\prod_{i \in S} (X - \alpha_i)$ ne puisse être dans k(t)[X] puisqu'on a supposé P irréductible. C'est donc qu'il existe $y_S \in k[\alpha_i]_{1 \leq i \leq n}$ tel que d'une part $y_S \notin k(t)$ mais $y_S(t_0) \in k$.

En contraposant, on obtient que $(\forall \varnothing \subsetneq S \subsetneq \{1, \ldots, n\}, y_S(t_0) \notin k) \Rightarrow P(t_0, X)$ irréductible. Une piste possible pour l'étude de la hilbertiannité d'un corps k est donc d'étudier le corps $\overline{k(t)}$.

1.5 Théorèmes de Puiseux (pour la culture)

On dispose en particulier des théorèmes suivants.

Si k est un corps, on note k((X)) le corps des fractions de k[[X]], les séries formelles à coefficients dans k. Tout élément de k((X)) s'écrit $\sum_{k \geq n_0} a_k X^k$ où $n_0 \in \mathbf{Z}$ et $a_k \in k$.

Théorème 4 (Théorème de Puiseux formel) Soit k un corps algébriquement clos de caractéristique nulle. Alors, $\bigcup_{n>1} k((X^{1/n}))$ est une clôture algébrique de k((X)).

Définition 5 On note $\mathbb{C}\{X\}$ et on appelle algèbre des séries formelles convergentes la \mathbb{C} -algèbre des séries formelles dans $\mathbb{C}[[X]]$ qui ont un rayon de convergence non nul. On note $\mathbb{C}\langle X\rangle\subset\mathbb{C}((X))$ son corps des fractions.

Théorème 6 (Théorème de Puiseux analytique 1) $\bigcup_{n\geq 1} \mathbf{C}\langle X^{1/n}\rangle$ est une clôture algébrique de $\mathbf{C}\langle X\rangle$.

Définition 7 Soit r > 0. On note A(r) l'anneau des fonctions définies et continues sur $\{z \in \mathbf{C}/|z| \le r\}$ et holomorphes à l'intérieur de ce domaine.

Théorème 8 (Théorème de Puiseux analytique 2) Soit r > 0. $Soit P \in \mathcal{A}(r)[X]$ unitaire de degré n. Alors, il existe $\rho > 0$, un entier e et n éléments x_1, \ldots, x_n dans $\mathcal{A}(\rho)$ tels que :

$$P(z^e, X) = \prod_{i=1}^{n} (X - x_i(z))$$

1.6 Le théorème d'irréductibilité de Hilbert (1892)

Le but de cet exposé est de démontrer que $\mathbf Q$ est hilbertien. Plus précisément :

Théorème 9 Soit $P(t, X) \in \mathbf{Q}[t, X]$ un polynôme irréductible. Alors :

- a) il y a une infinité de spécialisations $t_0 \in \mathbf{Q}$ P-acceptables.
- b) il y a une infinité de spécialisations $t_0 \in \mathbf{Z}$ P-acceptables et une infinité de spécialisations $t_0 \in \mathcal{P}$ P-acceptables.
- c) l'ensemble $\{t_0 \in \mathbf{Q}/P(t_0, X) \text{ irréductible}\}\$ des spécialisations acceptables est dense dans \mathbf{Q} pour la topologie usuelle, pour toutes les topologies p-adiques et pour la topologie de Zariski.

Remarque : Le premier point du b) entraı̂ne le a) et le c), en faisant des changements de variables judicieux.

2 Démonstration du théorème d'irréductibilité de Hilbert

Rappelons qu'on a fixé $P \in k[t, X]$ irréductible, etc. Maintenant, on fixe $k = \mathbf{Q}$.

2.1 Étude de $\overline{\mathbf{Q}(t)}$

Commençons par une petite

Définition 10 On dit $t_0 \in \mathbf{Q}$ est une valeur régulière si $a_N(t_0) \neq 0$ et si $P(t_0, X) \in \mathbf{Q}[X]$ est à racines simples dans \mathbf{C} .

On montre en utilisant l'irréductibilité de P la

Proposition 11 Toutes les spécialisations $t_0 \in \mathbf{Q}$ sauf un nombre fini d'entre elles sont régulières.

Muni de ces armes, on peut énoncer le :

Théorème 12 (théorème des fonctions implicites analytique) $Soit t_0 \in \mathbf{Q}$ un spécialisation régulière. Alors, il existe N fonctions $x_1(t), \ldots, x_N(t)$ définies autour de t_0 , deux-à-deux distinctes en tout point et analytiques en t_0 telles que :

$$x_i(t) = \sum_{k=0}^{\infty} A_k^{(i)} (t - t_0)^k \text{ avec } A_k^{(i)} \in \mathbf{Q}[x_i(t_0)]$$

$$\forall 1 \le i \le N, \forall |t - t_0| \text{ petit}, P(t, x_i(t)) = 0$$

Donnons une esquisse de preuve de ce théorème.

Démonstration : Par un changement de variable on se ramène au cas où $t_0=0$ et, quitte à soustraire à P une de ses racines, au cas où $P(t_0,0)=0$. Notre polynôme s'écrit alors $P(t,X)=a_{0,1}X+a_{1,0}t+\sum_{i+j\geq 2}a_{i,j}t^iX^j$. La régularité de t_0 nous dit que $a_{0,1}\neq 0$ et donc, quitte à diviser P par $-a_{0,1}$, on peut écrire $P(t,X)=-X+a_{1,0}t+\sum_{i+j\geq 2}a_{i,j}t^iX^j$. Supposons alors que la série formelle $x(t)=\sum_{k=1}^{\infty}B_kt^k$ vérifie P(t,x(t))=0. Cela s'écrit $x(t)=a_{1,0}t+\sum_{i+j\geq 2}a_{i,j}t^ix(t)^j$. Par récurrence, on en déduit que les B_k sont uniquement déterminés par les formules $B_k=p_k(a_{i,j})_{i,j\leq k}$ où p_k est un polynôme à plusieurs variables à coefficients entiers positifs.

Il faut alors montrer que cette série formelle a un rayon de convergence non nul. Soit A plus grand que tous les $|a_{i,j}|$. On considère alors le problème où on a remplacé tous les $a_{i,j}$ par A. On trouve des coefficients B'_k qui sont plus grands que $|B_k|$. Cependant, on sait résoudre explicitement aussi l'équation $x(t) = At + \sum_{i+j\geq 2} At^i x(t)^j$ et la solution est analytique en 0.

On connaît donc la forme locale des $\alpha \in \overline{\mathbf{Q}(t)}$.

2.2 Un changement de variable

Soit T_0 une valeur régulière.

On pose $Q(t,X) = P\left(T_0 + \frac{1}{t},X\right)t^d$ où d est le plus grand des degrés des $a_k(t)$, grâce à quoi $Q(t,X) \in \mathbf{Q}[t,X]$. Ce changement de variable est pertinent dans la mesure où Q(t,X) est encore irréductible et où si t_0 est une spécialisation Q-acceptable, alors $T_0 + \frac{1}{t_0}$ est une spécialisation P-acceptable.

Par ailleurs, on a

$$\forall i \leq N, \forall |t|$$
 suffisamment grand, $Q(t, \alpha_i(t)) = 0$ avec $\forall i, \alpha_i(t) = \sum_{k=0}^{\infty} A_k^{(i)} \left(\frac{1}{t}\right)^k \in \mathbf{C}$

En particulier, miracle de l'algèbre polynômiale, si t_0 est suffisamment grand, on a la factorisation :

$$Q(t_0, X) = \underbrace{t_0^d a_N \left(T_0 + \frac{1}{t_0} \right)}_{=\lambda(t_0) \in \mathbf{Q}} \prod_{i=1}^N \left(X - \underbrace{\alpha_i(t_0)}_{\in \mathbf{C}} \right)$$

Si on trouve des spécialisations Q-acceptables arbitrairement grandes, alors on saura que t_0 est un point adhérent à l'ensemble des spécialisations P-acceptables. En particulier, on en déduira que l'ensemble des spécialisations P-acceptables est dense dans \mathbf{Q} pour la topologie usuelle.

2.3 Le moteur de la preuve

Supposons que $t_0 \in \mathbf{Q}$ est une spéciliasation inacceptable, c'est-à-dire que $Q(t_0, X) \in \mathbf{Q}[X]$ est réductible. Comme $Q(t_0, X)$ se scinde dans \mathbf{C} en $\lambda(t_0) \prod_{i=1}^N (X - \alpha_i(t_0))$, c'est donc forcément qu'il existe deux paquets de racines $\varnothing \subsetneq S \subsetneq \{1, \ldots, n\}$ et $\{1, \ldots, n\} \setminus S$ tels que

$$Q(t_0, X) = \lambda(t_0) \prod_{i \in S} (X - \alpha_i(t_0)) \prod_{i \notin S} (X - \alpha_i(t_0))$$

est une factorisation dans $\mathbf{Q}[X]$ de $Q(t_0, X)$.

Cependant, n'oublions pas que $Q(t,X) \in \mathbf{Q}[t,X]$ est irréductible. En particulier, si on relève la décomposition de $Q(t_0,X)$ en une décomposition

$$Q(t,X) = t^d a_N \left(T_0 + \frac{1}{t} \right) \prod_{i \in S} (X - \alpha_i(t)) \prod_{i \notin S} (X - \alpha_i(t)),$$

on voit qu'un au moins des coefficients de $\prod_{i \in S} (X - \alpha_i(t))$ ou de $\prod_{i \notin S} (X - \alpha_i(t))$, qu'on notera y_S , n'est pas dans $\mathbf{Q}(t)$. Cependant, $y_S(t_0) \in \mathbf{Q}$ puisque la factorisation considérée provient d'une factorisation dans $\mathbf{Q}[X]$.

En contraposant, on obtient que $(\forall \varnothing \subsetneq S \subsetneq \{1, \dots, n\}, y_S(t_0) \notin \mathbf{Q}) \Rightarrow Q(t_0, X)$ irréductible. Dès lors, notre nouveau but est de montrer que si y est l'une des fonctions y_S , alors, $\{t_0 \in \mathbf{Z}/y(t_0) \in \mathbf{Q}\}$ est petit.

2.4 Entièreté

Notons y une des fonctions y_S . Comme y est une somme de produits de α_i , y est algébrique au-dessus de $\mathbf{Q}(t)$. Ainsi, quitte à multiplier y par $R \in \mathbf{Z}[t]$, Ry est entier au-dessus de $\mathbf{Z}[t]$. Si $t_0 \in \mathbf{Z}$ et $y(t_0) \in \mathbf{Q}$ alors, $Ry(t_0) \in \mathbf{Q}$ en même temps que $Ry(t_0)$ est entier au-dessus de \mathbf{Z} . Ainsi, $Ry(t_0) \in \mathbf{Z}$. On note maintenant z = Ry et on cherche à montrer que $\{t_0 \in \mathbf{Z}/z(t_0) \in \mathbf{Q}\} = \{t_0 \in \mathbf{Z}/z(t_0) \in \mathbf{Z}\}$ est petit.

Comme tous les α_i s'expriment comme série entière au voisinage de l'infini, il en est de même de tous les y_S , de y et de z: on peut écrire $z(t) = \sum_{k=0}^{\infty} B_k \left(\frac{1}{t}\right)^k$ pour |t| suffisamment grand, avec les $B_k \in \mathbb{C}$. Par ailleurs, comme les y_S ne sont pas des fractions rationnelles, z n'est pas un polynôme.

2.5 L'essence (arithmétique) qui fait tourner le moteur

Lemme 13 Soient $t_0 < t_2 < \cdots < t_m \in \mathbf{R}$ et $f \in \mathcal{C}^m([t_0, t_m], \mathbf{R})$. Alors, il existe $t_0 < t^* < t_m$ tel que

$$\frac{f^{(m)}(t^{\star})}{m!} = \begin{vmatrix} 1 & t_0 & t_0^2 & \cdots & t_0^{m-1} & f(t_0) \\ 1 & t_1 & t_1^2 & \cdots & t_1^{m-1} & f(t_1) \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 1 & t_m & t_m^2 & \cdots & t_m^{m-1} & f(t_m) \end{vmatrix} \cdot \underbrace{\begin{vmatrix} 1 & t_0 & t_0^2 & \cdots & t_0^{m-1} & t_0^m \\ 1 & t_1 & t_1^2 & \cdots & t_1^{m-1} & t_1^m \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 1 & t_m & t_m^2 & \cdots & t_m^{m-1} & t_m^m \end{vmatrix}^{-1}}_{V_-}$$

Démonstration : C'est plus ou moins le théorème de Rolle.■

On distingue alors deux cas : si $\{t_0 \in \mathbf{Z}/z(t_0) \in \mathbf{Z}\}$ est un ensemble fini, en particulier, $\psi(N) = \#\{t_0 \in \mathbf{Z}, |t_0| \leq N/z(t_0) \in \mathbf{Z}\} \in \mathcal{O}(N^{1-\varepsilon})$ pour un certain $\varepsilon > 0$. D'autre part, si $\{t_0 \in \mathbf{Z}/z(t_0) \in \mathbf{Z}\}$ est un ensemble infini, alors les B_k de l'écriture $z(t) = \sum_{k=0}^{\infty} B_k \left(\frac{1}{t}\right)^k$ sont forcément tous réels (sinon, la partie imaginaire de z(t) est équivalente à c/t^{k_0} pour un certain k_0 au voisinage de l'infini et est donc non nulle à partir d'un certain rang, ce qui empêche z d'avoir une infinité de valeurs réelles en des points entiers).

Par ailleurs, comme z n'est pas un polynôme, en la dérivant un nombre suffisant (disons m) de fois, on tue tous les monômes t^k où $k \geq 0$. Alors, $z^{(m)}(t) \sim_{t \to \infty} \frac{p}{t^q}$ et donc, pour $t \geq A$, $0 < |z^m(t)| < \frac{2|p|}{t^q}$. On peut alors appliquer le lemme à la fonction z et aux entiers $t_0 < t_1 < \dots < t_m$ tous plus grands que A et tels que $z(t_i) \in \mathbf{Z}$.

La non nullité de $z^{(m)}(t^*)$ entraı̂ne que les matrices qui interviennent dans le lemme, qui sont à coefficients entiers, sont de module plus grand que 1. On a

$$\frac{1}{V_m} \le \left| \frac{z^{(m)}(t^\star)}{m!} \right| < \frac{2|p|}{t_0^q}.$$

Or, $V_m = \prod_{0 \le i < j \le m} (t_j - t_i) < (t_m - t_0)^{\frac{m(m+1)}{2}}$. Donc : $(t_m - t_0)^{-\frac{m(m+1)}{2}} < \frac{1}{V_m} \le \left|\frac{z^{(m)}(t^\star)}{m!}\right| < \frac{2|p|}{t_0^q}$. Donc, $\exists \lambda > 0/t_m - t_0 > t_0^\lambda$, ce qui signifie que les t_i sont de plus en plus écartés. On va en déduire que $\psi(N)$ est un $\mathcal{O}(N^{1-\varepsilon})$.

2.6 Fin de la démonstration

On pose $\alpha = \frac{1}{1+\lambda}$. Comptons les t_i entiers compris entre 0 et N tels que $z(t_i) \in \mathbf{Z}$. D'abord, dans $[0, N^{\alpha}[$, il y en a au plus N^{α} . Ensuite, dans $[N^{\alpha}, N]$, si $N^{\alpha} > A$ et si

on classe les $\{t_i\}_{0 \leq i \leq M}$ par ordre croissant, on a $t_{i+m} - t_i > t_i^{\lambda} > N^{\alpha \lambda}$. On fait la division euclidienne M = km + r de M et on écrit :

$$N > N - N^{\alpha} \ge t_M - t_0$$

$$= t_{km+r} - t_{km} + (t_{km} - t_{(k-1)m}) + (t_{(k-1)m} - t_{(k-2)m}) + \dots + (t_m - t_0)$$

$$\ge kN^{\alpha\lambda} + t_{km+r} - t_{km} \ge (k+1)N^{\alpha\lambda}.$$

Le nombre de t_i dans l'intervalle, km+r+1, peut donc être majoré par $(k+1)m \le mN^{1-\alpha\lambda} = mN^{\alpha}$.

Finalement, en mettant bout à bout les majorations et en faisant le même travail pour les t_i négatifs, on obtient que $\psi(N)$ est un $\mathcal{O}(N^{1-\varepsilon})$.

De même, $\#\{t_0 \in \mathbf{Z}, |t_0| \leq N/\exists S, y_S(t_0) \in \mathbf{Q}\} = \#\bigcup_S \{t_0 \in \mathbf{Z}, |t_0| \leq N/y_S(t_0) \in \mathbf{Q}\}$ est un $\mathcal{O}(N^{1-\varepsilon'})$. Donc le complémentaire de cet ensemble dans $\mathbf{Z} \cap [-N, N]$ a un cardinal plus grand que $N - N^{1-\varepsilon''}$ au voisinage de $+\infty$. On en conclut qu'il y a une infinité de spécialisations t_0 Q-acceptables, ce qui achève la preuve du fait que les spécialisations acceptables sont denses pour la norme usuelle.

Remarque : En fait, la même démonstration prouve que pour une famille finie de polynômes $P_i \in \mathbf{Q}[t,X]$ irréductibles, il y a une infinité dense de spécialisations acceptables pour tous les P_i en même temps. Il suffit, au lieu d'étudier les fonctions y_S d'un polynôme, d'étudier en même temps toutes les fonctions y_S de tous les P_i .

2.7 Généralisation dans $\mathbf{Q}[t_1,\ldots,t_r,X_1,\ldots,X_s]$

Nous nous contenterons de présenter la transformation de Kronecker qui permet (voir [Hadlock]) de faire cette généralisation.

Soit k un corps; on note $\mathcal{P}(k, n, d)$ l'ensemble $\{f \in k[X_1, \dots, X_n]/\forall i, \deg_{X_i} f < d\}$ et $\mathcal{Q}(k, n, d)$ l'ensemble $\{f \in k[Y]/\deg f \leq d^n - 1\}$. Alors,

$$\mathcal{P}(k,n,d) \to \mathcal{Q}(k,n,d)$$

$$f(X_1,\ldots,X_n) \mapsto \hat{f} = f\left(Y,Y^d,Y^{d^2},\ldots,Y^{d^{n-1}}\right),$$

appelée transformation de Kronecker, est une bijection qui vérifie $\forall f,g \in \mathcal{P}(k,n,d), \widehat{fg} = \widehat{fg}$.

Grâce à cette transformation, on peut transposer un problème de réductibilité dans $k[X_1, \ldots, X_n]$ en un problème dans k[Y].

Proposition 14 (Critère de Kronecker) Soit $f \in \mathcal{P}(k, n, d)$. Alors, f est irréductible si et seulement si, pour toute factorisation $\hat{f} = GH$ avec $\hat{g} = G$ et $\hat{h} = H$, on a $gh \notin \mathcal{P}(k, n, d)$.

Références

[Lang] Serge Lang, Algebra, troisième édition révisée, Springer.

Pour la preuve du théorème de Hilbert

[Hadlock] C. R. Hadlock, Field Theory and its classical problems, Carus Mathematical Monographs, Mathematical Association of America, 1978, chapitre 4.

Pour les résultats sur les corps hilbertiens

[1] Schinzel, Polynomials with special regard to reductibity.

Pour les théorèmes de Puiseux

- [2] Jean-Marie Arnaudiès, Séries entières, séries de Puiseux, séries de Fourier et compléments sur les fonctions presque périodiques, Ellipses, 1999.
- [3] Antoine Chambert-Loir, Algèbre corporelle, disponible sur Internet.