

Record No.: **ZCOER-ACAD/R/16M** Revision: **00** Date:**01/04/2021**

Unit Wise Question Bank

Department: IT Engineering Semester: I Academic Year: 2024-2025

Class: FY BTech Date: 27/12/2024

Course: Basic Electrical and Electronics Engineering

UNIT 5: Transistors and Amplifiers

Q. No.		Quest	ion	Marks	CO	Blooms Le	vel	
1.	configurations.		5 CO 5 (any 5 points)		Analyzing			
	Con	nparison :	1	,	1	1 Mark each po	int	
		Parameter	CB Configuration	CC Config (Emitter Fo		CE Configuration		
	1	Input Terminal	Emitter	Base		Base		
	2	Output Terminal	Collector	Emitter		Collector		
Ans	3	Common Terminal	Base	Collector		Emitter		
	4	Current Gain	Slightly less than 1 (α)	High (β+1)		High (β) (25 to 100)		
	5	Output Terminal	Collector	Emitter		Collector		
	6	Voltage Gain	High	Approxima	tely 1	Moderate to High		
	7	Power Gain	Moderate	High		Very High		
2.		king principle of	ole diagram, explain CE transistor as a	5	CO 5	Applying	5	
	Circ	uit diagram :				2 Ma	ırks	

Record No.: **ZCOER-ACAD/R/16M** Revision: **00** Date:**01/04/2021**

Ans

Working 2 Marks

- 1. A transistor can be used as a switch to turn things on and off by regulating the collector current.
- 2. A transistor has two operating regions:

Saturation region: When the transistor is fully on, transistor will be biased so the maximum amount of the current is applied, which results in the maximum collector current results in the minimum collector emitter voltage drop which cause in depletion layer as a small as possible and maximum current flowing through the transistor so the transistor is switched "Fully ON".

Cut-off region: When the transistor is fully off In the cut-off region of the transistor, it operates under conditions of zero input base current (Ib), zero output collector current (Ic), and maximum collector voltage (Vce). This configuration creates a significant depletion layer, preventing the flow of current through the device and effectively switching it off.

Applications 1 Marks

- 1. Controlling lamps, relays, or motors
- 2. Modifying the speed of a motor

Record No.: **ZCOER-ACAD/R/16M** Revision: **00** Date:**01/04/2021**

3.	With the help of circuit diagram explain CE	5	CO 5	Understanding
	amplifier.			

Circuit diagram: 2 Marks

Explanation 3 Marks

- This is widely used transistor amplifier configuration
- It is NPN BJT with the emitter terminal common to both the input and output.

Ans

- Input applied to the base-emitter junction.
- Output taken from the collector-emitter junction.
- Biasing resistor Rs must ensure that transistor operates in the active region by applying perfect value of base voltage & current (proper biasing)
- Input signal: A weak input signal can be applied to the base of the transistor for amplification purpose
- Base current: A small base current flows.
- Collector current: A much larger current flows through the collector load resistor.
- Voltage output: The current flowing through the collector load resistor produces the voltage output of the amplifier

Record No.: **ZCOER-ACAD/R/16M** Revision: **00** Date:**01/04/2021**

4.	What is an amplifier? Explain with diagram.	5	CO 5	Understanding
----	---	---	------	---------------

Circuit / Block diagram:

2 Marks

Explanation / Definition

1 Mark

An amplifier is an electronic device that increases the amplitude of an input signal, making it stronger without significantly altering its waveform. It is widely used in audio systems, communication devices, and various other electronic applications

Ans

Components of an Amplifier

1 Mark

- Input Signal (small quantity)
- Transistor / Operational Amplifier
- Power Supply
- Load

Types 1 Mark

Voltage amplifier Current amplifier Power amplifier Operational amplifier

Record No.: ZCOER-ACAD/R/16M	Revision: 00	Date: 01/04/2021
-------------------------------------	---------------------	-------------------------

5.	What are the three regions of operation for a	5	CO 5	Understanding
	Bipolar Junction Transistor (BJT)?			

List all regions 1 Mark

- 1. Cut-off region
- 2. Active region
- 3. Saturation region

Explanation all regions Applications

3 Marks 1 Mark

1. Cutoff Region:

Both the base-emitter and base-collector junctions are reverse-biased.

The transistor is "off," with negligible current flow between the collector and emitter.

Application: Used in digital circuits to represent a logic "0" or **open switch**.

2. Active Region:

Ans

The base-emitter junction is forward-biased, and the base-collector junction is reverse-biased.

The transistor operates as an amplifier, with a linear relationship between the input (base current) and the output (collector current).

Application: Used in analog circuits., Amplifier

3. Saturation Region:

Both the base-emitter and base-collector junctions are forward-biased.

The transistor is "on," with maximum current flowing between the collector and emitter, limited only by external circuitry.

Application: Used in digital circuits as a **closed switch** representing logic "1."

Each region has distinct characteristics and applications, making BJTs very useful components in electronic circuits

Record No.: **ZCOER-ACAD/R/16M** Revision: **00** Date:**01/04/2021**

6.	What are the differences between NPN and	5	CO 5	Analyzing
	PNP transistors?	(any 5		
		points)		

Comparison:

1 Mark each point

	Parameter	NPN	PNP
1	Symbol	Collector	Collector
		Base Emitter	Base Emitter
2	Material	N-type emitter, P-type base, N-type	P-type emitter, N-type base, P-type
	Structure	collector	collector
3	Direction		
	of Current	Current flows from collector to emitter (conventional flow)	Current flows from emitter to collect (conventional flow)
4	Biasing	Base-Emitter junction: Forward-	Base-Emitter junction: Forward-
	for	biased; Collector-Base junction:	biased; Collector-Base junction:
	Operation	Reverse-biased	Reverse-biased
5	Majority		
	Carriers	Electrons	Holes
6	Base		
	Current		
	Flow	Enters the base	Leaves the base

Record No.: **ZCOER-ACAD/R/16M** Revision: **00** Date:**01/04/2021**

7	7.	Explain construction of NPN transistor.	5	CO 5	Understanding

Diagram 2 Marks

Explanation 3 Marks

Ans

- 1. Emitter (E): Highly doped n-type region, Emits electrons into the base.
- 2. Base (B): Thin, lightly doped p-type region, Facilitates the flow of electrons from the emitter to the collector.
- 3. Collector (C): Moderately doped n-type region, Collects electrons from the emitter via the base, physically larger than the emitter to handle more heat and current.
- It works based on the movement of charge carriers (electrons and holes)
- The NPN transistor has three terminals: emitter, base, and collector. The emitter-base junction
 and the collector-base junction are formed by connecting two diodes back to back. The
 emitter-base diode is between the emitter and base terminals, and the collector-base diode is
 between the collector and base terminals.
- When a small voltage is applied to the base, electrons move through the base region and complete the circuit, allowing current to pass through the transistor. This turns the transistor from a current blocker to an open circuit

Record No.: **ZCOER-ACAD/R/16M** Revision: **00** Date:**01/04/2021**

8.	A transistor has α =0.99, If it is connected in CE mode, what would be the change in collector current for a change of 10 μ A in base current?	5	CO 5	Applying
Ans	Given data : α =0.99 Δ Ib = 10 μ A Calculate Δ Ic ? Solution : CE mode Gain - β , β = α /1- α = 99 β = Δ Ic/ Δ Ib so Δ Ic = 99*10 μ A = 0.99 mA			2 Marks 1 Marks 2 Marks
9.	Draw and explain the output characteristics of a BJT in CE configuration.	5	CO 5	Understanding
Ans	Common Emitter O Saturation region 40 30 AV _{CE} 10 2 4 Collector Collector	Active region $I = 160$ $\downarrow \qquad \qquad 17$ $\downarrow \qquad \qquad 17$ $\downarrow \qquad \qquad 17$ $\downarrow \qquad \qquad \downarrow \qquad \qquad 18$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$	on —	2 Marks Cut-of region

Record No.: **ZCOER-ACAD/R/16M** Revision: **00** Date:**01/04/2021**

Explanation 3 Marks

Output characteristics

 The output characteristics of a BJT in a common emitter (CE) configuration is the relationship between the collector current (I_C) and the collector-emitter voltage (V_{CE}) at a constant base current (Ib)

Plot the collector current (Ic) on the Y-axis and the collector-emitter voltage (V_{CE}) on the X-axis. Keep the base current (Ib) constant.

Characteristics are shown with different values.

Cut off, Active and saturation regions of a transistor are different regions as shown in diagrams.

10. Draw and explain the input characteristics of a BJT in CE configuration.

5 CO 5 Understanding

Diagram 2 Marks

Common Emitter Input Characteristics

Ans

Explanation 3 Marks

- Input characteristics
- The input characteristics of a bipolar junction transistor (BJT) in a common emitter (CE)

Record No.: **ZCOER-ACAD/R/16M** Revision: 00 Date:01/04/2021 configuration are the variation of the base current (I_B) with the base-emitter voltage (V_{BE}). Plot the base current (I_B) on the Y-axis and the base-emitter voltage (V_{BE}) on the X-axis. Keep the collector-emitter voltage (V_{CE}) constant Characteristics are shown with different values. The input characteristic curve is similar to the forward-bias characteristic of a diode because the base-emitter junction is a PN junction. Derive the relation between α (common base 5 CO 5 **Applying** 11. current gain) and β (common emitter current gain) for a BJT. Ic, Ib, Ie Ic is the collector current. Ie is the emitter current. Ib is the base current. As we know that $\beta = \alpha / (1 - \alpha)$ $\alpha = \beta / \beta + 1$ $\alpha = Ic / Ie$, $\beta = Ic / Ib$ Ie = Ib + Ic. (1) Divide eq (1) by Ic, we get $1/\alpha = (1/\beta) + 1$ (2) $1/\alpha = (\beta + 1)/\beta$ Ans Hence $\alpha = \beta / (\beta + 1)$ proved (3) from eq. (2) $(1/\alpha) - 1 = 1/\beta$ $(1 - \alpha) / \alpha = 1 / \beta$ $\alpha / (1-\alpha) = \beta$ Hence $\beta = \alpha / (1-\alpha)$ proved (3)

Record No.: **ZCOER-ACAD/R/16M** Revision: **00** Date:**01/04/2021**

12.	Explain const	ruction of FET.	5	CO 5	Understanding
	Diagram				2 Marks
		P Channel JFET	N	Channel J	FET
		Drain p-type Source	Gate ●	Drain n-type Source	Drain
		Source		• !	Source

Construction 3 Marks

Ans

Field-Effect Transistor (FET): It is a semiconductor device that controls current flow through an electric field.

Main types of FETs:

Junction Field-Effect Transistors (JFETs)

Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs).

Junction Field-Effect Transistor (JFET - N Channel) Construction

A JFET has three terminals: **Source** (**S**), **Drain** (**D**), and **Gate** (**G**). It is constructed using **n-type** semiconductor material, forming a channel for current flow between two P-Type materials.

Two P-type materials connected together to form a Gate terminal. Two p-type regions are diffused into the n-type material, creating a pn-junction. The ends of the n-type bar are connected to the Source and Drain terminal (Channel has two terminals. One terminal is Drain and other is Source.)

Gate material is highly doped compared to channel.

Record No.: **ZCOER-ACAD/R/16M** Revision: **00** Date:**01/04/2021**

Gate (G): This terminal controls the flow of current between the source and drain by creating an electric field

Source (S): This is the terminal through which carriers (electrons or holes) enter the FET.

Drain (D): This is the terminal through which carriers leave the FET.

13.	Compare FET and BJT.	5	CO 5	Analyzing
		(any 5		
		points)		

Comparison:

1 Mark each point

	Parameter	FET	BJT	
1	Symbol	N Channel JFET P Channel JFET	PNP NPN	
2 Type		JFET, MOSFET	NPN, PNP	
3	Controlling	Voltage-controlled device	Current-controlled device	
	(Device types)			
4	Terminals	Gate, Source, Drain	Base , Emitter, Collector	
5	Configurations	Common Source	Common Emitter	
		Common Gate	Common Base	
		Common Drain	Common Collector	
6	Controlling	Gate (G) controls the current flow	Base (B) controls the current flow	
	Terminal	between Drain (D) and Source (S)	between Collector (C) and Emitte	
			(E).	