STID 1ère année - AJUSTEMENT ET SÉRIES CHRONOLOGIQUES

Feuille de travaux pratiques N° 1

ETUD'+, Centre de formation Et Cours de soutien 11 place de la Tour 641610, Morlaàs

Enseignant-Formateur: H. El-Otmany

A.U.: 2019-2020

1 Traitement des séries chronologiques sous Excel

Il s'agit de déterminer sous Excel, la tendance, les composantes saisonnières et les résidus de la série chronologiques.

Exercice $n^{\circ}1$ On considère la série chronologique Y_t représentant l'effectif de la population des États-Unis de 1780 à 1860 (en millions), voir le tableau.

- 1. Représenter graphiquement la série sans oublier les dates en abscisse. Quelle est l'allure de la courbe obtenue.
- 2. Créer une variable f_t contenant les valeurs de la tendance obtenue par un ajustement linéaire.
- 3. Quel ordre k à choisir pour lisser la série par les moyennes mobiles (MA). Créer une nouvelle variable $MA_k(t)$ contenant ces moyennes.
- 4. Avec le même ordre k, calculer $med_k(t)$ la série de médiane mobiles.
- 5. Représenter sur un même graphique les séries Y_t , f_t , $MA_k(t)$ et $med_k(t)$. Commenter le résultat.
- 6. Calculer et commenter le coefficient de corrélation linéaire.
- 7. Calculer et représenter graphiquement les résidus.
- 8. Si on utilise ces tendances pour faire des prévisions, quelles sont les valeurs obtenues pour chacune des tendances au mois t=21? Interpréter le résultat.

	Date	Temps t	Effectif Y_t
	1900	1	2,78
	1900	2	3,93
	1900	3	5,31
	1900	4	7,24
	1901	5	9,64
	1901	6	12,87
P	1901	7	17,07
	1901	8	23,49
	1902	9	31,44
	1902	10	31,44
	1902	11	31,44
	1902	12	31,44
	1903	13	31,44
	1903	14	31,44
	1903	15	31,44
	1903	16	31,44
	1904	17	31,44
	1904	18	31,44
	1904	19	31,44
	1904	20	31,44

Exercice $n^{\circ}2$ On considère la série chronologique Y_t représentant la quantité de de , voir le tableau.

- 1. Représenter graphiquement la série Y_t en faisant apparaître les trimestres et l'année. Quelle est l'allure de la courbe obtenue.
- 2. Créer une nouvelle colonne f_t contenant les valeurs de la tendance obtenue par un ajus-
- tement linéaire. Représenter graphiquement f_t .
- 3. Calculer dans une nouvelle colonne les différences saisonnières $D_t = Y_t f_t$.
- 4. Créer un tableau à double entrées (trimestre

- en ligne, années en colonne) de D_t .
- 5. Calculer la moyenne de chaque ligne. Vérifier que la moyenne des coefficients obtenue est nulle.
- 6. Reporter ces coefficients dans une nouvelle colonne, intitulée s_t (coefficients saisonniers) du tableau initial.
- 7. Quel ordre k à choisir pour lisser la série par les moyennes mobiles (MA). Créer une nouvelle variable $MA_k(t)$ contenant ces moyennes.
- 8. Avec le même ordre k, calculer $med_k(t)$ la série de médiane mobiles.
- 9. Représenter sur un même graphique les séries $MA_k(t)$ et $med_k(t)$. Commenter le résultat.
- 10. Calculer la série corrigée des variations saisonnières $CVS_t = Y_t S_t$.
- 11. Calculer et commenter le coefficient de corrélation linéaire.
- 12. Calculer et représenter sur un nouveau graphique les résidus ε_t .

13. Si on utilise ces tendances pour faire des prévisions, quelles sont les valeurs obtenues pour chacune des tendances au mois t=21? Interpréter le résultat.

Date	Temps t	Effectif Y_t
1987	1	37.7
1987	2	67.8
1987	3	76
1987	4	67
1988	5	53
1988	6	85
1988	7	92
1988	8	81.3
1989	9	70.6
1989	10	85
1989	11	108.9
1989	12	99
1990	12	89
1990	14	120.5
1990	15	126
1990	16	117

Exercice n°3 Dans un hypermarché, on souhaite étudier l'évolution mensuelle des ventes de produits alimentaires durant l'année 2019. Le tableau ci-dessous présente les résultats de cette enquête.

t	1	2	3	4	5	6	7	8	9	10
Ventes Y_t	1380	1392	1400	1200	1250	1112	1030	900	1500	1380

- 1. Représenter graphiquement la série. Quelle est l'allure de la courbe obtenue.
- 2. Déterminer et représenter graphiquement la droite de régression sur le même graphique.
- 3. Calculer et représenter graphiquement les résidus.
- 4. Calculer et commenter le coefficient de corrélation linéaire.
- 5. Que donnera la représentation graphique de $ln(y_t)$.
- 6. Calculer et commenter le coefficient de corrélation linéaire de la nouvelle série.
- 7. Calculer et représenter graphiquement les résidus.
- 8. Déterminer et représenter graphiquement cette nouvelle série. En déduire un ajustement de la série y_t par une fonction de t (indication : utiliser la fonction exponentielle).
- 9. Représenter cette fonction sur le premier graphique.
- 10. Si on utilise ces tendances pour faire des prévisions, quelles sont les valeurs obtenues pour chacune des tendances au mois t=12? Interpréter le résultat.

Exercice n°4 On souhaite connaître le nombre de bouteilles de Chateau Haut Brion vendues par un négociant en vin au fil des trimestres de 2011 à 2013, voir le tableau.

Trimestre t	mars	juin	sept.	dec.
2011	18	19	23	11
2012	17	20	21	10
2013	21	22	28	15

- 1. Déterminer le trend par : (i) moindres carrés (ii) moyennes échelonnées (iii) moyennes mobiles d'ordre trois (iv) moyennes mobiles d'ordre quatre.
- 2. Dans chaque cas, représentez les données et le trend obtenu sur un même graphique.
- 3. Déterminer les écarts saisonniers.
- 4. Déterminer les coefficients saisonniers ajustés sous un modèle additif.
- 5. Déterminer la série des ventes corrigées des variations saisonnières.
- 6. Calculer la valeur des résidus.

2 Traitement des séries chronologiques sous R (facultatif)

On reprend les exercices ci-dessous et on utilise le logiciel R pour déterminer la tendance, les composantes saisonnières et les résidus de la série chronologiques.

Exercice n°5 On souhaite connaître le nombre de bouteilles de Chateau Haut Brion vendues par un négociant en vin au fil des trimestres de 2011 à 2013, voir le tableau. Les données du tableau peuvent être enregistrées dans un data frame, par la commande prédéfinie de logiciel R, grâce à :

```
> datafile < -data.frame(annee = c(rep(2011,4), rep(2012,4), rep(2013,4)), trimestre = c(1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4), vente = c(18, 19, 23, 11, 17, 20, 21, 10, 21, 22, 28, 15)); attach(datafile)
```

Trimestre t	mars	juin	sept.	dec.
2011	18	19	23	11
2012	17	20	21	10
2013	21	22	28	15

- 1. A quelle méthode a correspondent les données de trend estimées par $lm(vente \sim seq(from = 1, to = 12))$ \$fitted.values
- 2. Déterminer le trend par : (i) moyennes échelonnées (ii) moyennes mobiles d'ordre trois (iii) moyennes mobiles d'ordre quatre.
- 3. Déterminer les écarts saisonniers.
- 4. Déterminer les coefficients saisonniers ajustés sous un modèle additif.
- 5. Déterminer la série des ventes corrigées des variations saisonnières.
- 6. Calculer la valeur des résidus.