Dynamic Bottleneck Optimization for 2-Vertex and Strong Connectivity

Presented By –
Shefali Jain
(201011037)

- Problem Statement-
 - -On a complete weighted graph that changes dynamically by edge weight updates, we consider the problem of maintaining efficiently a minimum value b(bottleneck), such that the set of edges with weights less than b induces a strongly connected graph (in the directed case) on the same vertex set.
 - -algorithm also re-evaluate b.
- Strong Connectivity –

A graph is strongly connected if for every ordered pair u, v there is a directed path from u to v and v to u.

- This algorithm is a lazy dynamic version of static algorithm.
- Here we assume a complete weighted directed graph $\mathbf{K_n}$ with edge weight $w(a) \geq 0$
- For each edge a = (u,v), t(a) = tail vertexh(a) = head vertex
- For a vertex subset S let $\delta(S) = \{a \in Kn \mid h(a) \in S, t(\not\in S)\}$ (exactly the "in" cut-set of S).
- A contraction operation applies to a directed cycle of vertices and replaces the cycle by a single vertex (called the contraction vertex)

b-str connect algorithm

- $1. H \leftarrow \emptyset$;
- 2. while K_n is not a single vertex do:
 - (a) pick a vertex \mathbf{v} with $\delta(\mathbf{v}) \cap \mathbf{H} = \mathbf{\emptyset}$ and $\delta(\mathbf{v}) \neq \mathbf{\emptyset}$;
 - (b) let $a^*\leftarrow \operatorname{argmin}_{a\epsilon \delta(v)} w(a)$ and insert a^* in H
 - (c) if a directed cycle has occurred, contract the cycle into a single vertex.
- 3. return max $_{a \in H} w(a)$

Example-

increase(a, w'(a)) -

- if a ε H and w'(a) > b do:
 - 1.invalidate part of H relevant to a
 - 2. update w(a) to w'(a)
 - 3. update data structures
 - 4. execute b-str connect

decrease(a, w'(a)) -

if w'(a) \leq b and a replaces a' ϵ H do:

- 1. invalidate part of H relevant to a
- 2. update w(a) to w (a)
- 3. update data structures
- 4. execute b-str connect

Correctness proof -

Proof by contradiction-

Let us assume that there is an edge a in H which weight is greater then b.

this condition is occurred only when i increase weight of any edge which is belongs to H, but after execute b-str connect algorithm my bottleneck value is updated to weight value of this edge(bottleneck b = $\max_{a \in H} w(a)$), so this condition is never happened.

• Complexity – $O(n^2)$

