Does $\sum_{n=1}^{\infty} \frac{1}{n^2}$ diverge, converge absolutely, or converge conditionally?

Solution 1

The function $f(x) = \frac{1}{x^2}$ is continuous, positive, and decreasing on $[1, \infty)$. Now,

$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2}} dx = \lim_{t \to \infty} \left(\frac{-1}{t} - \frac{-1}{1} \right) = 1.$$

Since the integral $\int_1^\infty \frac{1}{x^2} dx$ converges, the series $\sum_{n=1}^\infty \frac{1}{n^2}$ converges by the Integral Test.

Since $\sum |a_n| = \sum a_n$, the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges absolutely.

Solution 2

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \text{ is a p-series with } p=2. \text{ Since } p>1, \text{ the series } \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ converges by the p-series Test.}$$

Since $\sum |a_n| = \sum a_n$, the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges absolutely.