Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).
- A. Fie L o listă numerică și următoarea definiție de predicat PROLOG având modelul de flux (i, o):

f([],0). $f([H|T],S):-\underline{f(T,S1)}$,S1>=2,!,S is S1+H. $f([_|T],S):-\underline{f(T,S1)}$,S is S1+1.

Rescrieți această definiție pentru a evita apelul recursiv **f(T,S)** în ambele clauze. Nu redefiniți predicatul. Justificați răspunsul.

P	Dându oo o lietă malinia v	continând atât atausi	novici cât di naccome color	co coro lin nuocina l'ICD	coro ex construitore - listy
В.	Dându-se o listă neliniară liniară formată doar din a element o singură dată, în 3 (B 1 (A D 5) C C (F)) 8 1:	ncei atomi nenumerici can n ordine inversă față de or	re apar de un număr pa dinea în care elementele	ar de ori în lista inițială. R apar în lista inițială. De e x	ezultatul va conține fiecare cemplu , pentru lista (F A 2
		() // = = = = =	(, , , , , , , , , , , , , , , , , , ,	, . _,	,

C. Să se scrie un program PROLOG care generează lista aranjamentelor de **k** elemente dintr-o listă de numere întregi, pentru care produsul elementelor e mai mic decât o valoare **V** dată. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru lista [1, 2, 3], $\mathbf{k}=2$ și $\mathbf{V}=7 \Rightarrow [[1,2],[2,1],[1,3],[3,1],[2,3],[3,2]]$ (nu neapărat în această ordine)

D. Se consideră o listă neliniară. Să se scrie o funcţie LISP care să aibă ca rezultat lista iniţială din care au fost eliminate toate apariţiile unui element e. Se va folosi o funcţie MAP.
<u>Exemplu</u>

a) dacă lista este (1 (2 A (3 A)) (A)) şi e este A => (1 (2 (3))) NIL)
b) dacă lista este (1 (2 (3))) şi e este A => (1 (2 (3)))