

Bockchain

Privacy and Security

https://youtu.be/SxWWeB5luSE

https://youtu.be/_6SQNu6ZUAs

Pros and Cons

- Pros
 - Data integrity
 - Decentralizing
 - → All user have the same data
- Cons
 - Security
 - Privacy

Privacy Invasion

- Public ledger (Bitcoin, Ethereum)
 - Opened database
 - Transaction
 - Pseudonymity
 - Address
 - → Usage Analysis
- Private ledger (Hyperledger)
 - Permissioned database
 - Real-name system

Can't be preserved

Why Privacy?

- GDPR (General Data Protection Regulation)
 - Privacy policy in EU
 - Trends

- Blockchain Application
 - Diverse use case

Use case

- 1. CCTV cooperation
- 2 Peer review system
- 3. Emission trading scheme

	CCTVA	CCTVB	CCTVC
Traffic Accident	Yes	Yes	Yes
Violence	Nb	Nb	Yes

Data

Expectation

- 1. Reliability
- 2 Scalability
- 3. Privacy

Use case

- 1. CCTV cooperation
- 2 Peer review system
- 3. Emission trading scheme

Use case

- 1. CCTV cooperation
- 2 Peer review system
- 3. Emission trading scheme

Expectation

- 1. Reliability
- 2 Scalability
- 3. Privacy

How to Preserve?

• Add something to existing blockchain

- Create new blockchain
 - Zero-knowledge

UTXO (Unspent transaction output)

Method

1. UTXO

2 Mixing

3. Ring signature

4. Zeroknowledge

Mixing

Method

1. UTXO

2 Mxing

3. Ring signature

4. Zeroknowledge

Method

- 1. UTXO
- 2 Mixing
- 3. Ring signature
- 4. Zeroknowledge

Ring signature

Method

1. UTXO

2 Mxing

3. Ring signature

4. Zeroknowledge

Zero-knowledge

Bitcoin Tx

Wallet A sent 3 BTC to wallet B on May 5th

Zcash Tx

Wallet X sent X ZEC to wallet X on May 5th

. . .

. . .

Zero-Knowledge Proof (ZKP)

ZKP Family

- ZK-SNARKs
 - Succint Non-interactive Argument Knowledge

- ZK-STARKs
 - Succint Transparant ARgument Knowledge

ZK-SNARKs Overview

• Computation → Arithmetic Circuit → Quadratic Arithmetic Program

$$(C_1 \cdot C_2) \cdot (C_1 + C_3) = 7$$

$$L := \sum_{1}^{5} C_{i} \cdot L_{i},$$

$$R := \sum_{1}^{5} C_{i} \cdot R_{i},$$

$$O := \sum_{1}^{5} C_{i} \cdot O_{i}$$

- Prove it
 - With Pinocchio Protocol (Evaluation)
 - With Pairing in Elliptic Curve Cryptosystem (Hding Evaluation)

ZK-STARKs Intro

- SNARKs Assumption
 - ECC Pairing
 - → Vulnerable from Quantum Algorithms
- STARKs Assumption
 - Merkle Tree
 - → Safe from Quantum Algorithms
 - → Increase Size of Proof (hundreds of byte to hundreds of kilobyte)

Merkle Tree

• SHA-256 (Hash function)

• One way, Fixed output size

Validation

Merkle Tree Structure

ZK-STARKs

- Suppose P(x)
 - $0 \le P(x) \le 9$
 - $1 \le x \le 1,000,000$
- How to prove it?
 - *Try* 1,000,000 *times*
 - Randomly sample n points
 - Construct C(x), where C(P(x)) = 0
 - $C(P(x)) = (X-1)(X-2) \dots (X-1000000) * D(x) = Z(x) * D(x)s$
 - Then we prove it

ZK-STARKs

- Communication between prover and verifier
 - First (prover)
 - evaluation P(x) and D(x) on $1\sim1,000,000,000$
 - make a merkle tree and send it
 - Second (verifier)
 - *Choose random* 16 *points*
 - *Require branches*
 - Third (prover)
 - Provide branches
 - Fourth (verifier)
 - Check the merkle root
 - Check C(P(x)) = Z(x) * D(x)

Privacy Communication

- Covert Communication
 - Hding relationship between two party
 - Hding when communication is started
- Covert Channel in Blockchain
 - Condition
 - Accessibility
 - Immutability
 - Reliability

Covert Communication on Blockchain (BLOCCE)

• Encrypt Message

Start Indicator

Concatenate

- Example
 - λ is 1011

Address 01001 sent 3 BTC to wallet 00001 on May 5th Address 00000 sent 3 BTC to wallet 10101 on June 6th Address 00111 sent 3 BTC to wallet 00001 on June 10th Address 10011 sent 3 BTC to wallet 10101 on July 5th $\rightarrow E(m) from\ here$ Address 00011 sent 3 BTC to wallet 00001 on July 11th Address 00001 sent 3 BTC to wallet 00001 on July 21th

Security Proof

Using history of Alice's payment

→ Indistinguishibility