

1 Allgemeines

 $|x+y| \le |x| + |y|$ Dreiecksungleichung $||x| - |y|| \le |x - y|$ Cauchy-Schwarz-Ungleichung: $|\langle x, y \rangle| \le ||x|| \cdot ||y||$

Arithmetische Summenformel $\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q}$ Geometrische Summenformel

Bernoulli-Ungleichung $(1+a)^n > 1 + na$

 $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ $\binom{n}{0} = \binom{n}{n} = 1$ Binomialkoeffizient

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$ Binomische Formel

Äquivalenz von Masse und Energie $E=mc^2$

Wichtige Zahlen: $\sqrt{2} = 1,41421 \quad e = 2,71828 \quad \pi = 3,14159$ $\sqrt{2}/2 = 1/\sqrt{2} = 0.707$ $\sqrt{3}/2 = 0.866$

Fakultäten $n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$ 0! = 1! = 1

2 Mengen

Eine Zusammenfassung wohlunterschiedener Elemente zu einer Menge explizite Angabe: $A = \{1; 2; 3\}$ Angabe durch Eigenschaft: $A = \{n \in \mathbb{N} \mid 0 < n < 4\}$

2.1 Für alle Mengen A,B,C gilt:

- 1. $\emptyset \subseteq B$
- 2. $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- 3. $(A \cap B) \cap C = A \cap (B \cap C)$ $(A \cup B) \cup C = A \cup (B \cup C)$
- 4. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

 $\mathbb{Q} = \{ \frac{p}{q} \mid p \in \mathbb{Z}; q \in \mathbb{N} \}$

Jede rationale Zahl $\frac{m}{m} \in \mathbb{Q}$ hat eine Dezimaldarstellung.

 $0,25\overline{54} =: a \rightarrow 10000a - 100a = 2554 - 25 \Rightarrow a(9900) =$ $2529 \Rightarrow a = \frac{2529}{9900} = \frac{281}{1100}$

3 Vollständige Induktion

Behauptung: f(n)=g(n) für $n_0\leq n\in\mathbb{N}$ IA: $n = n_0$: Zeige $f(n_0) = g(n_0)$. IV: Annahme f(n) = g(n) gilt für ein festes, aber beliebiges $n \in \mathbb{N}$ IS: $n \to n+1$: Zeige $f(n+1) = f(n) \dots = g(n+1)$

4 Komplexe Zahlen

Eine komplexe Zahl $z=a+b\mathbf{i},\ z\in\mathbb{C},\quad a,b\in\mathbb{R}$ besteht aus einem Realteil $\Re(z)=a$ und einem Imaginärteil $\Im(z)=b$, wobei $\mathbf{i}=\sqrt{-1}$ die imaginäre Einheit ist. Es gilt: $i^2=-1$ $i^4=1$

4.1 Kartesische Koordinaten

Rechenregeln:

$$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)\mathbf{i}$$

$$z_1 \cdot z_2 = (a_1 \cdot a_2 - b_1 \cdot b_2) + (a_1 \cdot b_2 + a_2 \cdot b_1)\mathbf{i}$$

Konjugiertes Element von $z = a + b\mathbf{i}$: $\overline{z} = a - b\mathbf{i} \qquad \overline{e^{ix}} = e^{-ix} \text{ für } x \in \mathbb{R}$ $z\overline{z} = |z|^2 = a^2 + b^2$

Kehrwert: $z^{-1} = \frac{1}{z} = \frac{\overline{z}}{\overline{z}z} = \frac{\overline{z}}{a^2+b^2} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}\mathbf{i}$

4.2 Polarkoordinaten

 $z = a + b\mathbf{i} \neq 0$ in Polarkoordinaten: $z = r(\cos(\varphi) + \mathbf{i}\sin(\varphi)) = r \cdot e^{\mathbf{i}\varphi}$ $r = |z| = \sqrt{a^2 + b^2} \quad \varphi = \arg(z) = \begin{cases} +\arccos\left(\frac{a}{r}\right), & b \ge 0\\ -\arccos\left(\frac{a}{r}\right), & b < 0 \end{cases}$

Multiplikation: $z_1 \cdot z_2 = r_1 \cdot r_2(\cos(\varphi_1 + \varphi_2) + \mathbf{i}\sin(\varphi_1 + \varphi_2))$ Division: $\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\varphi_1 - \varphi_2) + \mathbf{i} \sin(\varphi_1 - \varphi_2))$

n-te Potenz: $z^n = r^n \cdot e^{n\varphi \mathbf{i}} = r^n(\cos(n\varphi) + \mathbf{i}\sin(n\varphi))$ n-te Wurzel: $w_k = \sqrt[n]{z} = \sqrt[n]{r} \left(\cos\left(\frac{\varphi + 2k\pi}{n}\right) + i\sin\left(\frac{\varphi + 2k\pi}{n}\right)\right)$

Logarithmus: $\ln(z) = \ln(r) + \mathbf{i}(\varphi + 2k\pi)$ (Nicht eindeutig!)

Anmerkung: Addition in kartesische Koordinaten umrechnen(leichter)!

5 Funktionen

Eine Funktion f ist eine Abbildung, die jedem Element x einer Definitionsmenge D genau ein Element y einer Wertemenge W zuordnet. $f: D \to W, x \mapsto f(x) := y$

Injektiv: $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ Surjektiv: $\forall y \in W \exists x \in D : f(x) = y$ (Alle Werte aus W werden angenommen.)

Bijektiv: (Eineindeutig): f ist injektiv und surjektiv $\Rightarrow f$ umkehrbar. Ableitung der Umkehrfunktion

f stetig, streng monoton, an x_0 diff'bar und $y_0 = f(x_0)$ $\Rightarrow (f^{-1})(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$

5.1 Symmetrie einer Funktion f

Achsensymmetrie (gerade Funktion): f(-x) = f(x)**Punktsymmetrie** (ungerade Funktion): f(-x) = -f(x)

Regeln für gerade Funktion g und ungerade Funktion u: $u_1 \pm u_2 = u_3$ $g_1 \pm g_2 = g_3$ $g_1 \cdot g_2 = g_3$ $u_1 \cdot u_2 = g_3$ $u_1 \cdot g_1 = u_3$

5.2 Kurvendiskussion von $f: I = [a, b] \rightarrow \mathbb{R}$

Kandidaten für Extrema (lokal, global)

- 1. Randpunkte von I
- 2. Punkte in denen f nicht diffbar ist
- 3. Stationäre Punkte (f'(x) = 0) aus (a, b)

Lokales Maximum

wenn x_0 stationärer Punkt ($f'(x_0) = 0$) und

- $f''(x_0) < 0$ oder
- $f'(x) > 0, x \in (x_0 \varepsilon, x_0)$ $f'(x) < 0, x \in (x_0, x_0 + \varepsilon)$

wenn x_0 stationärer Punkt ($f'(x_0) = 0$) und

- $f''(x_0) > 0$ oder
- $f'(x) < 0, x \in (x_0 \varepsilon, x_0)$ $f'(x) > 0, x \in (x_0, x_0 + \varepsilon)$

Monotonie

 $f'(x) \stackrel{\geq}{\underset{(>)}{=}} 0 \rightarrow f$ (streng) Monoton steigend, $x \in (a,b)$ $f'(x) \leq 0 \rightarrow f$ (streng) Monoton fallend, $x \in (a, b)$

$$f''(x) \overset{\geq}{\underset{(>)}{\geq}} 0 \rightarrow f \text{ (strikt) konvex, } x \in (a,b)$$

 $f''(x) \leq 0 \rightarrow f$ (strikt) konkav, $x \in (a, b)$

 $f''(x_0) = 0$ und $f'''(x_0) \neq 0 \rightarrow x_0$ Wendepunkt $f''(x_0) = 0$ und Vorzeichenwechseln an $x_0 \to x_0$ Wendepunkt

5.3 Asymptoten von f

Horizontal: $c=\lim_{x\to\pm\infty}f(x)$ Vertikal: \exists Nullstelle a des Nenners : $\lim_{x\to a^\pm}f(x)=\pm\infty$ Polynomasymptote P(x): $f(x):=\frac{A(x)}{Q(x)}=P(x)+\frac{B(x)}{Q(x)}$

5.4 Wichtige Sätze für stetige Fkt. $f:[a,b]\to\mathbb{R}, x\mapsto f(x)$

Zwischenwertsatz: $\forall y \in [f(a), f(b)] \exists x \in [a, b] : f(x) = y$ Satz von Rolle: Falls f auf (a,b) diffbar (keine Sprünge oder Knicke), und f(a) = f(b), dann $\exists x_0 \in (a, b) : f'(x_0) = 0$ Mittelwertsatz: Falls f auf (a,b) diffbar, dann $\exists x_0 \in (a,b) : f'(x_0) =$ $\underline{f(b)\!-\!f(a)}$

Regel von L'Hospital:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \left[\frac{0}{0} \right] \operatorname{oder} \left[\frac{\infty}{\infty} \right] \Rightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

5.5 Polynome $P(x) \in \mathbb{R}[x]_n$

 $P(x) = \sum_{i=0}^{n} a_i x^i = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ Lösungen für $ax^2 + bx + c = 0$

Mitternachtsformel:

$x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x_1 + x_2 = -\frac{b}{a}$ $x_1 x_2 = \frac{c}{a}$

5.6 Trigonometrische Funktionen

$$f(t) = A \cdot \cos(\omega t + \varphi_0) = A \cdot \sin(\omega t + \frac{\pi}{2} + \varphi_0)$$
$$\sin(-x) = -\sin(x) \qquad \cos(-x) = \cos(x)$$

$$\sin^2 x + \cos^2 x = 1 \qquad \tan x = \frac{\sin x}{\cos x}$$

$$e^{ix} = \cos(x) + i\sin(x)$$

$$e^{-ix} = \cos(x) - i\sin(x)$$

$$\sin(x) = \frac{1}{2i} \left(e^{ix} - e^{-ix} \right) \qquad \cos(x) = \frac{1}{2} \left(e^{ix} + e^{-ix} \right)$$

$$\sinh(x) = \frac{1}{2}(e^x - e^{-x})$$
 $\cosh(x) = \frac{1}{2}(e^x + e^{-x})$

5.7 Additionstheoreme

$$\cos\left(x - \frac{\pi}{2}\right) = \sin x$$
 $\sin\left(x + \frac{\pi}{2}\right) = \cos x$

$$\sin(x + y) = \sin x \cos y + \cos x \sin y$$
$$\sin(2x) = 2\sin(x)\cos(x)$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1$$

5.8 Potenzen/Logarithmus

$$\ln(u^r) = r \ln u$$

6 Folgen

Eine Folge ist eine Abbildung $a: \mathbb{N}_0 \to \mathbb{R}, \ n \mapsto a(n) =: a_n$ explizite Folge: (a_n) mit $a_n = a(n)$ rekursive Folge: (a_n) mit $a_{n+1} = f(a_n)$; $Startwert \ a_0$ gegeben

6.1 Monotonie

Im Wesentlichen gibt es 3 Methoden zum Nachweis der Monotonie Für (streng) monoton fallend gilt:

- 1. $a_{n+1} a_n \leq 0$
- 3. Vollständige Induktion: $\forall n \in \mathbb{N} : a_{n+1} \leq a_n$

6.2 Konvergenz

 (a_n) ist konvergent mit Grenzwert a, falls: $\forall \epsilon > 0 \ \exists N \in \mathbb{N}_0$: $|a_n - a| < \epsilon \ \forall n > N$

Eine Folge konvergiert gegen eine Zahl $a: (a_n) \stackrel{n \to \infty}{\longrightarrow} a$

Es gilt:

- Ist die Folge (a_n) konvergent, so ist ihr Grenzwert eindeutig
- Ist (a_n) konvergent, so ist (a_n) beschränkt
- Ist (a_n) unbeschränkt, so ist (a_n) divergent.
- Das Monotoniekriterium: Ist (a_n) beschränkt und monoton, so konvergiert (a_n) .
- Das Cauchy-Kriterium: Eine Folge (an) konvergiert genau dann,

$$\forall \epsilon > 0 \,\exists \, N \in \mathbb{N}_0 : |a_n - a_m| < \epsilon \,\forall n, m > N$$

Regeln für konvergente Folgen $(a_n) \stackrel{n \to \infty}{\longrightarrow} a$ und $(b_n) \stackrel{n \to \infty}{\longrightarrow} b$: $(a_n + b_n) \xrightarrow{n \to \infty} a + b \quad (a_n b_n) \xrightarrow{n \to \infty} ab \quad \left(\frac{a_n}{b_n}\right) \xrightarrow{n \to \infty} \frac{a}{b}$ $(\lambda a_n) \stackrel{n \to \infty}{\longrightarrow} \lambda a$ $(\sqrt{a_n}) \stackrel{n \to \infty}{\longrightarrow} \sqrt{a}$ $(|a_n|) \stackrel{n \to \infty}{\longrightarrow} |a|$

Grenzwert bestimmen:

- · Wurzeln: Erweitern mit binomischer Formel.
- Gebrochen-rationale Funktion $\frac{P(x)}{Q(x)}$: im Zähler und Nenner jeweils die höchste Potenz von x ausklammern.
- Rekursive Folgen: $a_{n+1} = f(a_n)$: Zuerst Fixpunkte berechnen (a = f(a)). Wenn die Folge konvergiert, dann gegen einen Fixpunkt. Monotonie und Beschränktheit (z.B. per Induktion) garantieren Konvergenz, sind aber nicht notwendig. Alternierende Konvergenz ist möglich. Anfangswerte können helfen, das Verhalten abzuschätzen.

6.3 Wichtige Regeln

$$a_n = q^n \xrightarrow{n \to \infty} \begin{cases} 0 & |q| < 1 \\ 1 & q = 1 \\ \pm \infty & q < -1 \\ + \infty & q > 1 \end{cases}$$

$$a_n = \frac{1}{n^k} \to 0 \quad \forall k \ge 1$$

$$a_n = \left(1 + \frac{c}{n}\right)^n \to e^c$$

$$a_n = n\left(c^{\frac{1}{n}} - 1\right) = \ln c$$

$$a_n = \frac{n^2}{2^n} \to 0 \qquad (2^n \ge n^2 \quad \forall n \ge 4)$$

⁰ 6.4 Limes Inferior und Superior

 $_0$ Der Limes superior einer Folge $x_n \subset \mathbb{R}$ ist der größte Grenzwert konvergenter Teilfolgen x_{n_k} der Folge x_n .

Der Limes inferior einer Folge $x_n \subset \mathbb{R}$ der kleinste Grenzwert konvergenter Teilfolgen x_{n_k} der Folge x_n .

7 Reihen

$$\sum_{n=1}^{\infty}\frac{1}{n}=\infty \\ \sum_{n=0}^{\infty}q^n=\frac{1}{1-q} \\ \text{ falls } |q|<1$$
 Harmonische Reihe

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} = \begin{cases} \text{konvergent}, & \alpha > 1\\ \text{divergent}, & \alpha \leq 1 \end{cases}$$

7.1 Konvergenzkriterien

Die Reihe $\sum_{n=0}^{\infty} a_n$ divergiert, falls $a_n \not\to 0$. **Minorantenkriterium**: Es sei $a_n \ge b_n \ge 0$ für alle $n \ge n_0$ und die Reihe $\sum_{n=n_0}^{\infty} b_n$ divergiert. Dann divergiert auch $\sum_{n=n_0}^{\infty} a_n$. Die Reihe über b_n heißt divergente Minorante.

Alternierende Reihen: Die Reihe $\sum_{n=0}^{\infty} (-1)^n a_n$ konvergiert, wenn

 (a_n) eine monoton fallende Nullfolge ist (Leibniz-Kriterium).

Majorantenkriterium: Es sei $0 \le a_n \le b_n$ für alle $n \ge n_0$ und $\sum_{n=n_0}^{\infty} b_n$ konvergiert. Dann konvergiert auch $\sum_{n=n_0}^{\infty} a_n$. Die Reihe über b_n heißt konvergente Majorante.

- Absolute Konvergenz: $(\sum_{n=0}^{\infty}|a_n|$ konvergiert), falls: 1. Majorantenkriterium: Falls eine konvergente Reihe $\sum_{n=n_0}^{\infty}b_n$ mit $b_n \geq 0$ existiert, sodass $|a_n| \leq b_n$ für alle $n \geq n_0$, dann ist $\sum_{n=n_0}^{\infty} a_n$ absolut konvergent.
- 2. Quotienten- und Wurzelkriterium: (BETRAG nicht vergessen!)

$$\rho := \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \quad \text{oder} \quad \rho := \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

Falls dieser Grenzwert ρ existiert, gilt:

Jede absolut konvergente Reihe $(\sum_{n=0}^\infty |a_n|)$ ist konvergent $(\sum_{n=0}^\infty a_n)$

8 Potenzreihen

$$f(x) = \sum_{n=0}^{\infty} a_n \cdot (x - c)^n$$

8.1 Konvergenzradius

$$\begin{split} R &= \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \frac{1}{n \to \infty} \sqrt[n]{|a_n|} \\ R &= \liminf_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}} \end{split}$$

$$f(x) \begin{cases} \text{konvergiert absolut, falls} & |x-c| < R \\ \text{divergiert, falls} & |x-c| > R \\ \text{keine Aussage möglich, falls} & |x-c| = R \end{cases}$$

Bei reellen Reihen gilt:

- $\Rightarrow f(x)$ konvergiert im offenen Intervall I = (c R, c + R) \Rightarrow Bei x = c - R und x = c + R muss die Konvergenz zusätzlich überprüft werden.
- Substitution bei $f(x) = \sum_{n=0}^{\infty} a_n \cdot x^{\lambda n}$ $w = r^{\lambda} \rightarrow r = w^{\frac{1}{\lambda}} \rightarrow R = (R_{\cdots})^{\frac{1}{\lambda}}$

8.2 Wichtige Potenzreihen

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^{n}$$

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}$$

$$\sin(z) = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n+1}}{(2n+1)!} = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\cos(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} = \frac{e^{iz} + e^{-iz}}{2}$$

9 Ableitung und Integral

f diffbar in x_0 , falls f in x_0 stetig und $\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \; = \;$

Man beachte, dass h o 0 den links- und rechtsseitigen Grenzwert zusammenfasst, d.h. beide müssen existieren und übereinstimmen.

9.1 Ableitungsregeln:

Linearität:
$$(\lambda f + \mu g)'(x) = \lambda f'(x) + \mu g'(x) \quad \forall \lambda, \mu \in \mathbb{R}$$
 Produktregel: $(f \cdot g)' = f'g + fg'$ Quotientenregel $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$ Kettenregel: $(f(g(x)))' = f'(g(x))g'(x)$ Potenzreihe: $f:]c - R, c + R[\rightarrow \mathbb{R}, f(x) = \sum_{n=0}^{\infty} a_n(x-c)^n \rightarrow f'(x) = \sum_{n=0}^{\infty} na_n(x-c)^{n-1}$ Tangentengleichung: $g: f(x) = f'(x) = f'(x)$

9.2 Newton-Verfahren:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 mit Startwert x_0

9.3 Integrationsmethoden:

- Anstarren + Göttliche Eingebung
- Partielle Integration: $\int uv' dx = uv \int u'v dx$
- Substitution: $\int f(\underline{g(x)}) \underbrace{g'(x) dx}_{dt} = \int f(t) dt$
- Logarithmische Integration: $\int \frac{g'(x)}{g(x)} dx = \ln |g(x)|$
- Integration von Potenzreihen: $f(x)=\sum_{k=0}^\infty a_k(x-a)^k$ Stammfunktion: $F(x)=\sum_{k=0}^\infty \frac{a_k}{k+1}(x-a)^{k+1}$
- Brechstange: $t = \tan(\frac{x}{2})$ $dx = \frac{2}{1+t^2}dt$ $\sin(x) \to \frac{2t}{1+t^2}$ $\cos(x) \to \frac{1-t^2}{1+t^2}$

9.4 Integrationsregeln

$$\int_a^b f(x) dx = F(b) - F(a)$$
$$\int (\lambda f(x) + \mu g(x)) dx = \lambda \int f(x) dx + \mu \int g(x) dx$$

	ı	1
F(x)	f(x)	f'(x)
$\frac{1}{q+1}x^{q+1}$	x^q	qx^{q-1}
$\frac{q+1}{2\sqrt{ax^3}}$	_	a
3	\sqrt{ax}	$\overline{2\sqrt{ax}}$
$x \ln(ax) - x$	$\ln(ax)$	$\frac{1}{x}$
e^x	e^x	e^x
$\frac{a^x}{\ln(a)}$	a^x	$a^x \ln(a)$
$-\cos(x)$	sin(x)	$\cos(x)$
$\sin(x)$	$\cos(x)$	$-\sin(x)$
$-\ln \cos(x) $	tan(x)	$\frac{1}{\cos^2(x)}$
$\ln \sin(x) $	$\cot(x)$	$\frac{-1}{\sin^2(x)}$
$x \arcsin(x) + \sqrt{1 - x^2}$	arcsin(x)	$\frac{1}{\sqrt{1-x^2}}$
$x \arccos(x) - \sqrt{1 - x^2}$	arccos(x)	$-\frac{1}{\sqrt{1-x^2}}$
$x \arctan(x) - \frac{1}{2} \ln \left 1 + x^2 \right $	arctan(x)	$\frac{1}{1+x^2}$
$x \operatorname{arccot}(x) + \frac{1}{2} \ln \left 1 + x^2 \right $	$\operatorname{arccot}(x)$	$-\frac{1}{1+x^2}$
$x \operatorname{arsinh}(x) - \sqrt{x^2 + 1}$	arsinh(x)	$\frac{1}{\sqrt{x^2+1}}$
$x \operatorname{arcosh}(x) - \sqrt{x^2 - 1}$	$\operatorname{arcosh}(x)$	$\frac{1}{\sqrt{x^2 - 1}}$
$\frac{1}{2}\ln(1-x^2) + x\operatorname{artanh}(x)$	artanh(x)	$\frac{1}{1-x^2}$
$\sinh(x)$	$\cosh(x)$	$\sinh(x)$
$\cosh(x)$	sinh(x)	$\cosh(x)$

9.5 Rotationskörper

Volumen:
$$V=\pi\int_a^bf(x)^2\mathrm{d}x$$

Oberfläche: $O=2\pi\int_a^bf(x)\sqrt{1+f'(x)^2}\mathrm{d}x$

9.6 Uneigentliche Integrale

$$\smallint_{\mathrm{ok}}^{\mathrm{b\"{o}se}} f(x) \mathrm{d}x = \lim_{b \to \mathrm{b\"{o}se}} \smallint_{\mathrm{ok}}^{b} f(x) \mathrm{d}x$$

Majoranten-Kriterium: $|f(x)| \leq g(x) = \frac{1}{x^{\alpha}}$

$$\int\limits_{1}^{\infty} \frac{1}{x^{\alpha}} \, \mathrm{d}x \left\{ \begin{matrix} \frac{1}{\alpha-1}, & \alpha > 1 \\ \infty, & \alpha \leq 1 \end{matrix} \right. \qquad \int\limits_{0}^{1} \frac{1}{x^{\alpha}} \, \mathrm{d}x \left\{ \begin{matrix} \frac{1}{\alpha-1}, & \alpha < 1 \\ \infty, & \alpha \geq 1 \end{matrix} \right.$$

$$\begin{aligned} \mathsf{CHW} & \int\limits_{-\infty}^{\infty} f(x) \mathrm{d}x = \lim\limits_{b \to \infty} \int\limits_{-b}^{b} f(x) \mathrm{d}x \\ \mathsf{CHW} & \int\limits_{a}^{b} f(x) \mathrm{d}x = \lim\limits_{\varepsilon \to 0^{+}} \left(\int\limits_{a}^{c-\varepsilon} f(x) \mathrm{d}x + \int\limits_{c+\varepsilon}^{b} f(x) \mathrm{d}x \right) \end{aligned}$$

9.7 Laplace-Transformation von $f:[0,\infty[o\mathbb{R},\ t\mapsto f(t)]$

$$\mathcal{L}\ f(t) = F(s) = \int\limits_0^\infty e^{-st} f(t)\ \mathrm{d}t = \lim_{b \to \infty} \int\limits_0^b e^{-st} f(t)\ \mathrm{d}t$$

9.8 Integration rationaler Funktionen

Gegeben:
$$\int \frac{A(x)}{Q(x)} dx$$
 $A(x), Q(x) \in \mathbb{R}[x]$

1. Falls
$$\deg A(x) \geq \deg Q(x) \Rightarrow \mathsf{Polynomdivision}$$
:
$$\frac{A(x)}{Q(x)} = P(x) + \frac{B(x)}{Q(x)} \; \mathsf{mit} \; \deg B(x) < \deg Q(x)$$

- 2. Faktorisiere Q(x) in unzerlegbare Polynome
- 3. Partialbruchzerlegung:

$$\frac{B(x)}{Q(x)} = \frac{\dots}{(x-a_n)} + \dots + \frac{\dots}{\dots}$$

- 4. Berechnung von A, B, C, \ldots
 - mit Hauptnenner multiplizieren
 - passende x-Werte einsetzen (Nullstellen)
 - ggf. Klammern ausmultiplizieren und Koeffizientenvergleich
- 5. Integriere die Summanden mit bekannten Stammfunktionen

$$\min \ \lambda \ = \ x^2 + px + q, \quad \beta \ = \ 4q - p^2 \quad \text{und} \ p^2 \ < \ 4q!$$

$$\int \frac{1}{(x-a)^m} \, \mathrm{d}x \begin{cases} \ln |x-a| \,, & m=1 \\ \\ \frac{-1}{(m-1)(x-a)^{m-1}} & m \geq 2 \end{cases}$$

$$\int \frac{1}{(\lambda)^m} dx \begin{cases} \frac{2}{\sqrt{\beta}} \arctan \frac{2x+p}{\sqrt{\beta}}, & m=1\\ \\ \frac{2x+p}{(m-1)(\beta)(\lambda)^{m-1}} + \frac{2(2m-3)}{(m-1)(\beta)} \int \frac{dx}{(\lambda)^{m-1}}, & m \ge 2 \end{cases}$$

$$\int \frac{Bx+C}{(\lambda)^m} dx \begin{cases} \frac{B}{2} \ln(\lambda) + (C - \frac{Bp}{2}) \int \frac{dx}{\lambda}, & m = 1 \\ \frac{-B}{2(m-1)(\lambda)^{m-1}} + (C - \frac{Bp}{2}) \int \frac{dx}{(\lambda)^{m-1}}, & m \geq 2 \end{cases}$$

Häufige Integrale nach Partialbruchzerlegung

$$\int \frac{1}{x} dx = \ln|x| \qquad \int \frac{1}{x^2} dx = -\frac{1}{x}$$

$$\int \frac{1}{a+x} dx = \ln|a+x| \qquad \int \frac{1}{(a+x)^2} dx = -\frac{1}{a+x}$$

$$\int \frac{1}{a-x} dx = -\ln|a-x| \qquad \int \frac{1}{(a-x)^2} dx = \frac{1}{a-x}$$

9.9 Paratialbruchzerlegung

$$\frac{B(x)}{Q(x)} = \frac{\dots}{(x - x_0)} + \dots + \frac{\dots}{\dots}$$

- *n*-fache reelle Nullstelle x_0 : $\frac{A}{x-x_0} + \frac{B}{(x-x_0)^2} + \dots$
- *n*-fache komplexe Nullstelle: $\frac{Ax+B}{x^2+nx+a} + \frac{Ax+B}{(x^2+nx+a)^2}$

Berechnung von A, B, C, \ldots

- Nullstellen in x einsetzen (Terme fallen weg)
- Ausmultiplizieren und Koeffizientenvergleich

10 Taylor-Entwicklung

Man approximiert eine m-mal diffbare Funktion $f:I=[a,b]
ightarrow \mathbb{R}$ in $x_0 \in I$ mit dem m-ten Taylorpolynom:

$$T_m(x_0; x) = \sum_{i=0}^m \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i$$

Taylor-Entw. von Polynomen/Potenzreihen sind die Funktionen selbst Für $m \to \infty$: Taylorreihe

Konvergenzradius:
$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}$$

10.1 Das Restglied - die Taylorformel

Für (m+1)-mal stetig diffbare Funktionen gilt $\forall x \in I$: $R_{m+1}(x) := f(x) - T_{m,f,x_0}(x) =$ $= \frac{1}{m!} \int_{x_0}^{x} (x-t)^m f^{(m+1)}(t) dt \quad \text{(Integral darst.)}$ $=\frac{f^{(m+1)}(\xi)}{(m+1)!}(x-x_0)^{m+1} \quad \xi \in [x,x_0] \text{ (Lagrange)}$ Fehlerabschätzung: Wähle ξ und x so, dass $R_{m+1}(x)$ maximal wird.

11 Landau-Notation

$$\begin{array}{l} \bullet \ f(x) = o(g(x)) \ \text{für } x \to a \Leftrightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = 0 \\ \bullet \ f(x) = \ O(g(x)) \ \text{für } x \to a \Leftrightarrow |f(x)| \le \ C|g(x)| \ \text{für } \\ x \in (a - \epsilon, a + \epsilon) \ \text{u. } C > 0 \\ \text{oder } 0 \le \limsup_{x \to a} \left| \frac{f(x)}{g(x)} \right| < \infty \end{array}$$

Bei Taylor-Entwicklung:

 •
$$R_{m+1,f,x_0}(h) = f(x_0+h) - T_{m,f,x_0}(h) = o(h^m)$$
 f muss m-mal differenzierbar sein

•
$$R_{m+1,f,x_0}(h)=f(x_0+h)-T_{m,f,x_0}(h)=O(h^{m+1})$$
 f muss $(m+1)$ -mal differenzierbar sein

11.1 Rechenregeln

•
$$f = O(f)$$

•
$$f = o(g) \Rightarrow f = O(g)$$

•
$$f_1 = o(g)$$
 u. $f_2 = o(g)$ \Rightarrow $f_1 + f_2 = o(g)$

•
$$f_1 = O(g)$$
 u. $f_2 = O(g)$ \Rightarrow $f_1 + f_2 = O(g)$

•
$$f_1 = O(g)$$
 u. $f_2 = O(g)$ \Rightarrow $f_1 \cdot f_2 = O(g_1 \cdot g_2)$
• $f_1 = O(g)$ u. $f_2 = o(g)$ \Rightarrow $f_1 \cdot f_2 = o(g_1 \cdot g_2)$

•
$$f_1 = O(g)$$
 u. $f_2 = o(g)$ \Rightarrow $f_1 \cdot f_2 = o(g_1 \cdot g_2)$

11.2 Elementarfunktionen

• Exponentialfunktion

$$e^x = \sum_{k=0}^{m} \frac{x^k}{k!} + O(x^{m+1})$$

• Exponential funktion
$$e^{x} = \sum_{k=0}^{m} \frac{x^{k}}{k!} + O(x^{m+1})$$
• Trigonometrische Funktionen
$$\sin x = \sum_{k=0}^{m} (-1)^{k} \frac{x^{2k+1}}{(2k+1)!} + O(x^{2m+3})$$

$$\cos x = \sum_{k=0}^{m} (-1)^{k} \frac{x^{2k}}{(2k)!} + O(x^{2m+2})$$

$$\begin{array}{l} \bullet \quad \text{Logarithmus funktion} \\ \ln{(1+x)} = \sum\limits_{k=1}^m \frac{(-1)^{k+1}}{k} x^k + O(x^{m+1}) \end{array}$$

12 Kurven

Eine Kurve ist ein eindimensionales Obiekt.

$$ec{\gamma}:[a,b] o\mathbb{R}^n, t\mapsto egin{pmatrix} \gamma_1(t) \ dots \ \gamma_n(t) \end{pmatrix}$$
 (Funktionenvektor)

- ullet \mathcal{C}^0 -Kurve: Positionsstetigkeit (lückenlose Kurve)
- C¹-Kurve: Tangentialstetigkeit (stetig diffbar)
- C²-Kurve: Krümmungsstetigkeit (2 mal stetig diffbar)
- regulär, falls $\forall t \in [a,b] : \dot{\gamma}(t) \neq \vec{0}$ (Keine Knicke)

Besondere Punkte von Kurven:

- Singulär, falls $\dot{\gamma}(t) = \vec{0}$ (Knick)
- ullet Doppelpunkt, falls $\exists t_1, t_2: t_1
 eq t_2 \ \land \ \gamma(t_1) = \gamma(t_2)$
- Horizontaler Tangentenpunkt, falls $\dot{\gamma}_1(t) \neq 0 \land \dot{\gamma}_2(t) = 0$
- Vertikaler Tangentenpunkt, falls $\dot{\gamma}_1(t) = 0 \land \dot{\gamma}_2(t) \neq 0$

Bogenlänge einer Kurve: $L(\gamma) = \int_a^b \|\dot{\gamma}(t)\| dt$

Umparametrisierung γ nach Bogenlänge $(\tilde{\gamma})$:

- ullet Bogenlängenfunktion: $s(t) = \int\limits_{-\infty}^{t} \|\dot{\gamma}(au)\| \,\mathrm{d} au$ $s: [a,b] \to [0,L(\gamma)], t \mapsto \overset{a}{s}(t)$
- $\tilde{\gamma}(t) = \gamma(s^{-1}(t))$ $\|\tilde{\gamma}(t)\| = 1 \forall t$

Tangenteneineitsvektor an
$$\gamma(t):T(t)=\frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$$
 Krümmung von $\gamma\colon\kappa(t)=\left\|\frac{\mathrm{d}^2\gamma}{\mathrm{d}s^2}\right\|=\frac{\|\dot{T}(t)\|}{s'(t)}$

Vereinfachung im \mathbb{R}^2 $\gamma:[a,b] o \mathbb{R}^2, t \mapsto ig(x(t),y(t)ig)$

$$L(\gamma) = \int_a^b \sqrt{\dot{x}^2 + \dot{y}^2} \, dt \qquad \qquad \tilde{\kappa}(t) = \frac{\dot{x}\ddot{y} - \ddot{x}\dot{y}}{\left(\dot{x}^2 + \dot{y}^2\right)^{\frac{3}{2}}}$$

Wenn γ nach der Bogenlänge umparametrisiert, gilt

$$\tilde{\kappa}(t) = \dot{x}\ddot{y} - \ddot{x}\dot{y}$$

13 Skalarfelder

Ein Skalarfeld ordnet jedem Vektor eines Vektorraums einen skalaren Wert f: $D\subseteq\mathbb{R}^n\to\mathbb{R}, (x_1,\ldots,x_n)\mapsto f(x_1,\ldots,x_n)$ Teilmengen von \mathbb{R}^n : $D=[a_1,b_1]\times\ldots\times[a_n,b_n]$ Offene Kugelmenge vom Radius r: $B_r(x_0)$ Topologische Begriffe für $D \subseteq \mathbb{R}^n$

- Das Komplement D^C von $D: D^C := \mathbb{R}^n \setminus D$
- Die Menge D heißt offen, falls $D = \overset{\circ}{D}$
- Randpunkt $x_0 \in \mathbb{R}^n$ des Rands ∂D von D, falls $\forall \varepsilon > 0$: $B_{\varepsilon}(x_0) \cap D \neq \emptyset \wedge B_{\varepsilon}(x_0) \cap D^C \neq \emptyset \Rightarrow \partial D = \partial D^C$
- Abschluß \overline{D} von D: $\overline{D} = D \cup \partial D$
- ullet Die Menge D ist abgeschlossen, falls $\partial D \subseteq D$
- beschränkt, falls $\exists \mu \in \mathbb{R} \forall x \in D : ||x|| < \mu$
- kompakt, falls D abgeschlossen und beschränkt ist

Es gilt: Ist $D \subseteq \mathbb{R}^n$ offen, so ist D^C abgeschlossen \mathbb{R} und \emptyset sind offen und abgeschlossen.

Revision History

- v1.0 (06.02.2015): Erstellung
- v1.1 (23.07.2017): Diverse Fehler korrigiert (u.a. 145, 144, 143, 138, 152)
- v1.2 (12.01.2018): Kleine Korrektur 9.8 Integration rationale Funktionen, Häufige Integrale nach Partialbruchzerlegung