Deploying predictive models with the Actor framework

Brian Gawalt Upwork, Inc. bgawalt@upwork.com

October 19, 2015

Abstract

The majority of data science and machine learning tutorials focus on generating models: assembling a dataset; splitting the data into training, validation, and testing subsets; building the model; and demonstrating its generalizability. But when it's time to repeat the analogous steps when using the model in production, issues of high latency or low throughput can arise. To an end user, the cost of too much time spent featurizing raw data and evaluating a model over features can wind up erasing any gains a smarter prediction can offer.

Exposing concurrency in these model-usage steps, and then capitalizing on that concurrency, can improve throughput. This paper describes how the Actor framework can be used to bring a predictive model to a real-time setting. Two case-study examples are described: a simple text classifier (with accompanying code), and a live deployment built for the freelancing platform Upwork.

1 The practice of machine learning

Imagine a firm has brought a specialist in machine learning onto a new project. The firm wants a product which can provide a quality prediction about some regular event happening in the course of the firm's business. The specialist is handed a pile of relevant historical data, and asked: Among the new customers seen for the first time today, who's likeliest to be a big spender? Or: of all the credit card transactions processed in the last hour, which are likeliest to be fraudulent? Or: when a customer enters a query into our website's Search tool, what results should we be returning?

The specialist starts with the first of two phases of their project. They have to identify a model that can be expected to fit predictions over both the historical data and in a way that will generalize to new data. The familiar version of the steps involved in supervised learning:

- 1. Identify raw source data, and break it down into distinct observations of the pattern you're trying to learn and predict.
- 2. For each raw observation, produce a *p*-dimensional vector of features and a scalar label.
- 3. Split this collection into disjoint training, validation, and testing sets.
- 4. For each candidate model (and/or each hyperparameter value of the model/models), fit model parameters to the training vectors and labels, and evaluate the goodness of fit by performing prediction of the validation labels given the validation vectors
- 5. Select the model whose validation-set predictions came closest to the mark. Use it to then make predictions over the test set. Report this test set performance to vouch for the predictive model you've generated and selected.

Note that this first phase doesn't carry an explicit component of *time urgency*. All else equal, a typical specialist will prefer that the full sequence complete in six hours, and six minutes is better still. But if it takes six days instead, nothing *fundamental* to this first phase has been threatened. The task – finding a model that generates acceptably accurate predictions on new data – is accomplished.

The second phase is to actually put the model's capabilities to use. Given new events and observation that need scoring by the model – is this new customer likely to be a big spender? is this credit card legitimate? – the above featurization and scoring routines need to be run. And in this real-world deployment, it's likely that there are also some strict constraints on how long it takes this sequence to run. All predictions go stale, and some use cases need to act on a prediction within milliseconds of the event itself.

There are some cases where these latency constraints aren't binding. The exact same featurization and scoring routines used to generate and validate the model can be re-run fast enough on new data to produce useful predictions. But this paper focuses on the cases where timeliness requirements exclude the use of the same software developed in the first phase as the backbone of the second phase. What can a lone machine learning specialist do to retool their sequence to run in a production environment?

1.1 Moving to production

If the original software, used to generate and validate the predictive model, is suffering from too-low throughput in producing new predictions, one path forward could be to incorporate more concurrent processing. The three steps to prediction (gathering raw materials, featurizing those materials into vectors, scoring the vectors) can transition from a serial sequence to a pipeline.

Figure 1 demonstrates a modification of the scoring task flow, producing predictions of N events in a sequential and a concurrent pattern. This pipeline

offers a few advantages. Scores are produced with less delay after the raw material gathering (useful in case the information in that material is at risk of going stale or out of date).

Figure 1: (a) The scoring procedure performed serially. (b) The individual tasks for each event to be scored performed in a concurrent pipeline.

Most importantly, this redesign provides a clear path forward to speed-up in completing all N scoring tasks. If a system can genuinely perform the concurrent tasks in parallel, as a multicore system might, one can easily picture adding "clones" of this pipeline simultaneously processing more and more partitions of the N events.

1.2 Complexity costs

It can be difficult to put together, from scratch, a high-performance concurrent computing system. It's easy to fall into traps of false sharing, deadlocking, and other difficulties. It's not impossible, but it's definitely tricky and time-consuming, and building a new concurrent system for a single project might fail a cost-to-benefits ratio test.

Fortunately, lots of great work has produced platforms to take this plan to a truly wide scale implementation. Apache Storm, Apache Spark (esp. Spark Streaming), and Twitter's Heron all try to distribute this kind of event-driven computing across multiple machines to ensure the highest possible throughput.

Unfortunately, they're complicated systems. Familiarizing oneself with the API, and managing the underlying infrastructure, requires considerably more expertise above and beyond that of our original model in Figure 1(a). If spreading the load over multiple machines is the only way to meet the required service level of the prediction system, this additional complexity will have to be met with additional resources: maybe the firm will have to start allocating more engineers in addition to more hardware, to what originally was a project of just the single machine learning specialist.

This paper is here to specifically recommend a midpoint between a fromscratch concurrent framework and the mega-scale offerings. The Actor framework offers a simple way to reason through concurrent problems, while still being flexible enough to accommodate a variety of approaches to any one problem. The ease

From here, this paper presents a case study where an Actor framework was key to bringing a predictive model to production. It interleaves this story with a summary of what an Actor framework entails, as well as a description of the Actor implementation in the Scala library Akka. It concludes with a reiteration of the advantages (and disadvantages) the Actor framework offers and a discussion of why comfort with Actors can help machine learning specialists with their work and careers.

2 Case Study: Predicting worker availability at Upwork

tk tk