

ADSORÇÃO DE FENOL E NITROFENÓIS EM SOLUÇÃO AQUOSA USANDO BAGAÇO DA CASCA DE COCO COMO ADSORVENTE

Maria Ionete C. NOGUEIRA (1); Ronaldo F. NASCIMENTO (2); Suzana O. AGUIAR (3); Hugo L. B. BUARQUE (4); Rinaldo S. ARAÚJO (5).

(1) Universidade Federal do Ceará, Departamento de Engenharia Hidráulica e Ambiental – Pós-graduação em Saneamento Ambiental, Campus do Pici – bloco 713, tel: 85 – 3366.9623, e-mail: <u>ionetenogueira@yahoo.com.br</u> (2) Universidade Federal do Ceará, e-mail: <u>ronaldo@ufc.br</u>

- (3) Centro Federal de Educação Tecnológica do Ceará, e-mail: suzanasaint@msn.com
- (4) Centro Federal de Educação Tecnológica do Ceará, e-mail: hbuarque@cefetce.br
- (5) Centro Federal de Educação Tecnológica do Ceará, e-mail: rinaldo@cefetce.br

RESUMO

O fenol e seus derivados fenólicos são utilizados em processos industriais envolvendo a síntese de diversos produtos, constituindo uma classe comum de contaminantes em efluentes industriais. Por se tratar de compostos com boa solubilidade em água, alta reatividade e baixa capacidade de biodegradação, estes compostos estão na lista de poluentes prioritários a serem monitorados no ambiente aquático. Um tratamento alternativo para evitar que os mesmos cheguem a corpos receptores é o processo de adsorção. Neste trabalho estudou-se a eficiência do bagaço de casca de coco na remoção de fenol (F), 2-nitrofenol (2NF) e 4-nitrofenol (4NF) em meio aquoso. Isotermas de equilíbrio nas temperaturas de 28, 40 e 50°C e curvas cinéticas de adsorção a temperatura ambiente, foram obtidas para o bagaço *in natura* (BN) e para o bagaço modificado quimicamente com HCl (BT). A concentração dos compostos fenólicos foi monitorada por cromatografia líquida de alta eficiência. Os dados experimentais mostraram que as capacidades adsortivas (q_{max}) dos bagaços (BT e BN) são semelhantes, diminuindo proporcionalmente com o aumento da temperatura. A ordem de remoção via adsorção é do tipo: 2NF > 4NF > F.

Palavras-chave: compostos fenólicos, adsorção, bagaço da casca de coco

1. INTRODUÇÃO

O fenol e seus derivados nitrados são poluentes nocivos à saúde humana e à vida aquática, além de conferirem odores e sabores desagradáveis à água mesmo em baixas concentrações (AL-ASHEH et al., 2003 e AHMARUZZAMAN et al., 2005).

Estes compostos são lançados no ambiente aquático por indústrias químicas, petroquímicas, farmacêuticas, têxteis, refinarias de petróleo, resinas fenólicas, fertilizantes e ainda são utilizados como intermediários na síntese de pesticidas, inseticidas e plásticos (MOHAMED et al., 2006 e SRIVASTAVA et al., 2006).

A elevada solubilidade dos fenóis em água, aliada à sua alta reatividade e resistência a biodegradação, torna o lançamento destes compostos em corpos d'água receptores um sério problema ambiental (BIELICKA-DASZKIEWICZ et al., 2004).

De acordo com a Agência de Proteção Ambiental a concentração máxima permitida para descarte de fenol em águas superfiais deve ser inferior a 1 mg/L (ERSOZ et al., 2004). No que diz respeito à água para abastecimento público, a União Européia admite uma concentração máxima de 0,5μg/L (ERSOZ et al., 2004 e SATHISHKUMAR et al., 2006). No Brasil, estas concentrações são estabelecidas pela Resolução CONAMA Nº 357, de 17 de março de 2005, que estabelece o valor de 0,5 mg/L como o nível máximo de fenóis totais a ser lançado por qualquer tipo de efluente.

Tendo em vista a elevada toxicidade do fenol e de seus derivados ao homem e à vida aquática, torna-se imprescindível o tratamento de esgotos industriais que utilizam estes compostos em seus processos químicos. O tratamento do esgoto destas indústrias pode ser feito por processos físico-químicos (adsorção e troca iônica), oxidação química (oxigênio, peróxido de hidrogênio, ozônio, etc.) e degradação biológica aeróbia ou anaeróbia (SRIVASTAVA et al., 2006), além dos processos eletroquímicos, que utilizam como principal reagente o elétron, considerado um reagente limpo e, portanto ambientalmente correto (PANIZZA et al., 2000).

Neste trabalho focamos nossa atenção para a aplicação de processos adsortivos na remoção de fenol, 2-nitrofenol e 4-nitrofenol utilizando como adsorvente o bagaço de casca de coco, principalmente visando baratear o tratamento de esgotos industriais contendo estes compostos e reduzir o impacto ambiental causado pelo descarte inadequado de toneladas de casca de coco no meio ambiente e em aterros sanitários, o que, em termos, contribui para a diminuição do tempo de vida útil dos mesmos.

2. MATERIAIS E MÉTODOS

2.1 Preparação do Adsorvente

Cascas de coco recolhidas na orla marítima da cidade de Fortaleza foram devidamente trituradas em moinho nas instalações da EMBRAPA Agroindústria Tropical, permitindo a obtenção de resíduo celulósico *in natura* com granulometria variando entre 20 e 60 mesh. O bagaço bruto obtido foi tratado com soluções de HNO₃, HCl, H₃PO₄ e NaOH nas concentrações de 0,1 e 1,0M. Em um ensaio típico, 2,0 g de bagaço foram deixadas em contato com 50 mL da solução modificadora sob agitação constante (120 rpm) durante intervalos de tempo de 3, 6, 12 e 24 horas. Em seguida as amostras foram filtradas a vácuo, lavadas com 100mL de água destilada, 70 mL de solução tampão (pH 5,0) e deixadas a secar à temperatura ambiente. A influência da natureza do agente químico para tratamento do bagaço, bem como os tempos ótimos de contato para cada poluente foram determinados através de ensaios de adsorção.

2.2 Ensaios de Adsorção em Batelada

Os ensaios de adsorção foram conduzidos em shaker convencional deixando soluções individuais de cada adsorbato (fenol, 2-nitrofenol e 4-nitrofenol) em contato com bagaço da casca de coco, para determinação da influência das variáveis operacionais: pH, tempo de contato e massa de adsorvente no processo adsortivo.

2.2.1 Cinética de Adsorção

Os estudos de cinética de adsorção foram realizados em shaker deixando-se 30 mL de solução fenólica 20 ppm, pH natural (\cong 6,0) em contato com 0,9g de adsorvente, sob agitação constante de 120 rpm e

temperatura ambiente (28°C). A adsorção foi monitorada durante 24h e em intervalos de tempo préestabelecidos foram retiradas alíquotas de aproximadamente 0,5mL.

2.2.2 Influência da Massa de Adsorvente

Massas de 0,2; 0,3; 0,4 e 0,5g de adsorvente foram adicionadas a erlenmeyers contendo 10 mL de solução fenólica 20 ppm e deixadas em contato sob agitação constante de 120 rpm durante 2h, à temperatura ambiente (28°C).

2.2.3 Influência do pH

Uma massa de 0,3g de bagaço foi deixada em contato com 10 mL de solução fenólica 20ppm durante 2h, sob agitação constante de 120 rpm e à temperatura ambiente (28°C). O pH das soluções fenólicas foi ajustado com HCl e NaOH, para os valores investigados de 2, 4, 6 e 8.

2.2.4 Isotermas de Adsorção

Isotermas de adsorção para o fenol, 2-nitrofenol e 4-nitrofenol foram obtidas contactando-se massas de aproximadamente 0,3g de bagaço com soluções sintéticas dos compostos fenólicos em concentrações de 5 a 80 ppm, nas temperaturas de 28, 40 e 50°C, para um tempo de 2h e agitação de 120 rpm.

2.3 Monitoramento da Concentração dos Compostos Fenólicos Antes e Após o Tratamento com o Bagaço de Casca de Coco

Em todos os estudos, a concentração residual de composto fenólico foi determinada na amostra final filtrada usando cromatografia líquida de alta eficiência (HPLC Gilson mod. 321, equipado com detector UV-VIS). A separação dos compostos foi realizada em coluna C18 Hichrom 5 nas seguintes condições: sistema isocrático com fase móvel metanol/água (70:30 v/v), λ = 270 nm, Q = 1 mL/min e volume de injeção de 20 μ L.

3. ANÁLISE E INTERPRETAÇÃO DOS DADOS

3.1. Estudos de adsorção

A figura 1 mostra a influência do tratamento químico, tempo de tratamento, pH e massa de adsorvente na remoção de fenol (F), 2-nitrofenol (2NF) e 4-nitrofenol (4NF).

Figura 1 – Influência dos parâmetros experimentais: (a) agente químico modificador, (b) tempo de contato, (c) massa de adsorvente e (d) pH, na remoção F, 2NF e 4NF por bagaço da casca de coco a temperatura ambiente (28°C).

Uma análise simplificada da figura (1a) mostra que o tratamento ácido é o mais indicado para a modificação química do bagaço da casca de coco, permitindo alcançar as maiores remoções. Oportunamente, como as três espécies ácidas utilizadas determinaram valores de remoção percentual aproximados, optou-se por trabalhar com o processo modificado com HCl 1,0M, pois este reagente apresenta menor custo. Por outro lado, o comportamento cinético apresentado na figura (1b) permite constatar que o tempo de contato de 3h é suficiente para produzir um bagaço de melhor qualidade. Quanto à influência da massa de adsorvente na eficiência de adsorção, observamos na figura (1c) que 0,3g de bagaço/10mL de solução fenólica é a relação ótima de adsorvente/solução a ser utilizada nos processos adsortivos. Finalmente, na figura (1d) pode-se constatar que na faixa de valores estudados, o pH pouco influencia a eficiência do tratamento.

A figura 2 mostra as isotermas de adsorção determinadas para o fenol, 2-nitrofenol e 4-nitrofenol nas temperaturas de 28, 40 e 50°C utilizando como adsorvente o bagaço da casca de coco *in natura* e o bagaço da casca de coco modificado quimicamente com HCl 1,0M. O tempo de equilíbrio adotado foi de 2h.

Modelos de Langmuir (equações 1 e 2) e Freundlich (equações 3 e 4) foram aplicados aos dados das isotermas experimentais a fim de permitir a modelagem do fenômeno de adsorção. Os parâmetros de Langmuir, Freundlich e os respectivos coeficientes de correlação (R²) encontrados, estão dispostos na Tabela 1.

A isoterma de Langmuir propõe um mecanismo de adsorção homogênea, assumindo a uniformidade da superfície do adsorvente e os sítios de adsorção energeticamente idênticos. O modelo de Langmuir é representado pela equação 1 ou por sua forma linearizada (Y = A +BX), equação 2:

$$q = \frac{q_{m\acute{a}x} \, bC_{e}}{1 + bC_{a}} \tag{01}$$

$$\frac{1}{q} = \frac{1}{q_{\text{máx}}} + \frac{1}{bq_{\text{máx}} C_e} \tag{02}$$

onde q representa a quantidade adsorvida, C_e a concentração do adsorbato em fase fluida, q_{max} a capacidade ou concentração máxima (ou de saturação) de adsorbato que pode ser retido no adsorvente e b é a constante de Langmuir.

O modelo de Freundlich, por sua vez, assume adsorção heterogênea, onde a energia de distribuição para os sítios de adsorção é essencialmente exponencial, indicando que a adsorção das espécies em solução aumentará com o aumento de sua concentração, em sistemas suficientemente diluídos. O modelo de isoterma de Freundlich é representado pela equação 3 ou por sua forma linearizada (Y = A +BX), equação 4:

$$q = pC_e^{1/n} \tag{03}$$

$$\log q = \log p + 1/n \log C_e \tag{04}$$

onde q (mg/g) é capacidade de adsorção, p e n são constantes de Freundlich e C_e (mg/L) é a concentração de equilíbrio do adsorbato na solução.

Figura 2 – Isotermas de adsorção para os sistemas: compostos fenólicos-adsorventes celulósicos nas temperaturas de 28, 40 e 50 °C.

Os gráficos apresentados na figura 2 mostram comportamento semelhante para as isotermas obtidas com o bagaço *in natura* e com o bagaço modificado quimicamente nas faixas de concentração e temperaturas investigados. Para todos os compostos fenólicos foi observada uma diminuição na capacidade de adsorção

com o aumento da temperatura, indicando a natureza isotérmica dos processos adsortivos desenvolvidos (CHERN et al., 2002). Em todas as temperaturas estudadas o processo adsortivo dos compostos fenólicos sobre a biomassa celulósica mostrou-se mais eficiente para o 2-nitrofenol, seguindo-se do 4-nitrofenol, e em menores quantidades pelo fenol. Comportamento similar é observado para a cinética do processo à temperatura ambiente (figura 3).

Tabela 1 - Constantes de Langmuir e Freundlich para a adsorção de fenol (F), 2-nitrofenol (2NF) e 4-nitrofenol (4NF) sobre bagaço de casca de coco *in natura* (BN) e bagaço modificado quimicamente com solução de HCl 1M (BT).

T (°C)	Amostra	Langmuir			Freundlich		
		$q_{m\acute{a}x}$	b	\mathbb{R}^2	1/n	р	R ²
28	F-BT	0,663	0,0209	0,8914	0,9322	0,013	0,9625
	F – BN	0,603	0,0214	0,9055	0,9358	0,012	0,9653
	2NF – BT	1,5293	0,0264	0,9782	0,7904	0,048	0,9792
	2NF – BN	1,2888	0,0291	0,9492	0,8200	0,041	0,9752
	4NF – BT	1,2903	0,0213	0,9629	0,8611	0,030	0,9713
	4NF – BN	1,0488	0,0229	0,9430	0,8839	0,024	0,9757
40	F-BT	0,525	0,0159	0,9160	0,9472	0,0077	0,9640
	F – BN	0,378	0,0198	0,9194	0,8917	0,0075	0,9705
	2NF – BT	0,919	0,0271	0,9827	0,7332	0,0333	0,9797
	2NF – BN	0,917	0,0209	0,9819	0,7966	0,0235	0,9866
	4NF – BT	0,849	0,0194	0,9796	0,8522	0,0183	0,9917
	4NF – BN	0,636	0,0241	0,9581	0,8414	0,0165	0,9880
50	F - BT	0,399	0,0179	0,9470	0,881	0,0075	0,9824
	F - BN	0,247	0,0274	0,8555	0,861	0,0067	0,9576
	2NF – BT	0,608	0,0348	0,9399	0,770	0,0236	0,9750
	2NF – BN	0,455	0,0545	0,8719	0,719	0,0261	0,9635
	4NF – BT	0,440	0,0337	0,8160	0,864	0,0140	0,9435
	4NF – BN	0,391	0,0372	0,7981	0,839	0,0141	0,9354

A análise dos parâmetros apresentado na tabela 1 para as isotermas de adsorção sugerem que as mesmas são melhor descritas pelo modelo de Freundlich com coeficientes de correlação (R²) variando entre 0,93 e 0,99, o que concorda com a natureza heterogênea da superfície celulósica adsorvente. Para o modelo de Freundlich, os valores de *p* e 1/*n* mostram que a biomassa celulósica apresenta maior afinidade de adsorção para o 2-nitrofenol, seguido pelo 4-nitrofenol e por último pelo fenol. O mecanismo de adsorção neste pode ser atribuído às interações eletrostáticas entre os grupos estruturais reativos das moléculas fenólicas (OH, NO₂ e duplas ligações) e as espécies protonadas da superfície celulósica, as quais se acentuam na presença do H⁺ decorrente do tratamento ácido (LASZLO et al., 2005). A maior adsorção da molécula orto-substituída frente à estrutura para-substituída está provavelmente relacionada aos menores impedimentos estéricos apresentados para esta configuração.

Figura 3 – Curva cinética para a adsorção dos compostos fenólicos utilizando como adsorventes: (a) bagaço de casca de coco *in natura* e (b) bagaço de casca de modificado quimicamente com HCl 1,0M à temperatura de 28°C.

Particularmente, na figura 3 observa-se que a cinética do processo de remoção dos compostos fenólicos utilizando bagaço tratado com HCl 1,0M é muito semelhante à obtida quando se usa o bagaço *in natura*. Em ambos os casos o processo de remoção é mais favorável para o 2-nitrofenol, o qual apresenta maior capacidade de adsorção. As remoções máximas alcançadas para as soluções fenólicas tratadas com bagaço modificado quimicamente com HCl 1,0M e bagaço *in natura* foram de aproximadamente 21% e 19% para o fenol, 35% e 32% para o 4-nitrofenol e 44% e 39% para o 2NF, respectivamente. De forma conveniente a figura 3 permite ainda observar que o equilíbrio de adsorção para todos os compostos é atingido em aproximadamente 2h.

4. CONCLUSÕES

Os resultados obtidos mostram a boa capacidade adsortiva do bagaço da casca de coco na remoção dos compostos fenólicos em meio aquoso, principalmente para os derivados nitro-substituídos. A capacidade de adsorção é pouco influenciada pela variação de pH, e, em geral, para todas as espécies estudadas, a eficiência de remoção diminui proporcionalmente com o aumento da temperatura (processo exotérmico). Os resultados de adsorção para os materiais *in natura* e quimicamente modificados são semelhantes, embora se verifique uma remoção levemente superior para a espécie quimicamente ativada por tratamento ácido.

REFERÊNCIAS

AHMARUZZAMAN, M.; SHARMA, D. K. Adsorption of phenols from wastewater. Journal of Colloid and Interface Science. 287 14-24, 2005.

AL-ASHEH, S.; BANAT, F.; ABU-AITAH, L. Adsorption of phenol using different types of activated bentonites. Separation and Purification Technology. 33 1-10, 2003.

BIELICKA-DASZKIEWICZ, K.; DEBICKA, M.; VOELKEL, A. Comparison of three derivatization ways in the separation of phenol and hydroquinone from water samples. Journal of Chromatography A. 1052 233-236, 2004.

CHERN, J.; CHIEN, Y. Adsorption of nitrophenol onto activated carbon: isotherms and breakthrough curves. Water Research. 36 647-655, 2002.

ERSÖZ, A.; DENIZLI, A.; SENER, İ.; ATILIR, A.; DILTEMIZ, S.; SAY, R. Removal of phenolic compounds sith nitrophenol-impinted polymer based on π - π and hydrogen-bonding interactions. Separation and Purification Technology. 38 173-179, 2004.

LÁSZLÓ, K. Adsorption from aqueous phenol and aniline solutions on activated carbons with different surface chemistry. Colloids and Surfaces. 256 32-39, 2005.

MOHAMED, F. S.; KHATER, W.A.; MOSTAFA, M.R. Characterization and phenols sorptive properties of carbons activated by sulphuric acid. Chemical Engineering Journal. 116 47-52, 2006.

PANIZZA, M.; BOCCA, C.; CERISOLA, G. Electrochemical treatment of wastewater containing polyaromatic organic pollutants. Wat. Res. 34 2601-2605, 2000.

SATHISHKUMAR, M.; BINUPRIYA, A. R.; KAVITHA, D.; YUN, S. E. **Kinetic and isothermal studies on liquid-phase adsorption or 2,4-dichlorophenol by palm pith carbon**. Bioresource Technology. 98 866-873, 2007.

SRIVASTAVA, V. C.; SWAMY, M. M.; MALL, I. D.; PRASAD, B.; MISHRA, I. M. Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics. Colloids and Surfaces A: Physicochem. Eng. 272 89-104, 2006.

AGRADECIMENTOS

À FUNCAP (Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico) pelo auxílio financeiro (bolsa) fornecido durante a execução do trabalho.