Module: C7082 Techniques in Machine Learning and Al

Student: A T Chamberlain, student number 223945

Associated GitHub: TomChamberlain61/Assessment-submission

# The use of the Tensorflow Lite and TensorFlow Convoluted Neural Network models to classify up to four cattle feed types from small jpeg images.

## **Project Objectives**

- 1. Determine if an adequately accuracy convoluted Neural Network could be developed from a small (n~1000 images) database such as that likely to be collected in the agricultural sector.
- 2. Use the TensorFlow and tensorFlow Lite models to develop suitable CNN.
- 3. Experience the full run of the project from collecting and curating suitable images to fine tuning of the final CNN.
- 4. Determine is a suitable TensorFlow Lite model could be developed that could be deployed through a simple microprocessor for deployment as an IoT device.

### **Images**

Small jpeg files of feed stuffs taken from about 400mm focal distance on a simple digital camera. Four classes of feeds considered: Grass silage (GS), Maize silage (MS), Straw and total mixed ration (TMR). Sample images are shown below.

### **NOTE**

The main branch in the Github Repo contains this readme file

Files required for each experiment (Expt01 – Expt05) are in branches within the Repo.



# **Summary of results**

| CNN results |         |               | Prediction accuracy on test data set |                |               |                            |                                      |                      |                 |                                            |
|-------------|---------|---------------|--------------------------------------|----------------|---------------|----------------------------|--------------------------------------|----------------------|-----------------|--------------------------------------------|
|             | Classes | Training size | Naïve<br>assumption                  | Initial<br>CNN | Augmented CNN | Fast<br>feature<br>extract | Feature extraction with augmentation | Fine<br>tuned<br>CNN | CNN model used  | Comments                                   |
| Expt01, PoC | 2       | 303           | 50.0%                                | 100%           | n/a           | n/a                        | n/a                                  | n/a                  | TensorFlow Lite | Only training and validation - no test set |
| Expt02      | 2       | 213           | 53.0%                                | 80.0%          | 88.9%         | 89.0%                      | 97.8%                                | 97.8%                | TensorFlow full | 5 farms, poor stratification               |
| Expt02b     | 2       | 291           | 55.0%                                | 68.4%          | 88.4%         | 88.4%                      | 100.0%                               | 100.0%               | TensorFlow full | 7 farms, improved stratification           |
| Expt03      | 3       | 439           | 33.0%                                | 62.4%          | 83.2%         | 90.6%                      | 100.0%                               | 100.0%               | TensorFlow full | 7 farms, improved stratification           |
| Expt04      | 4       | 578           | 28.0%                                | 48.4%          | 87.0%         | 87.0%                      | 97.9%                                | 97.4%                | TensorFlow full | 7 farms, improved stratification           |
| Expt05      | 4       | 771           | 25%                                  | 99.50%         | n/a           | n/a                        | n/a                                  | n/a                  | TensorFlow Lite | Only training and validation - no test set |

NOTE: these percentage accuracies will vary due to random nature of models.