

MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia

© 2009 – IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização por escrito dos autores e do detentor dos direitos autorais.

CIP-BRASIL. CATALOGAÇÃO-NA-FONTE SINDICATO NACIONAL DOS EDITORES DE LIVROS, RJ

L55m

Leite, Olímpio Rudinin Vissoto.

Matemática elementar II: situações de matemática do ensino médio no dia a dia. / Olímpio Rudinin Vissoto Leite, Marcelo Gorges. - Curitiba, PR: IESDE, 2009.

444 p.

Sequência de: Matemática elementar I

ISBN 978-85-387-0414-0

1. Matemática (Ensino médio). I. Gorges, Marcelo. II. Inteligência Educacional e Sistemas de Ensino. III. Título.

09-3612. CDD: 510

CDU: 51

Capa: IESDE Brasil S.A. Imagem da capa: Júpiter Images/DPI Images

Todos os direitos reservados.

IESDE Brasil S.A.

Al. Dr. Carlos de Carvalho, 1.482. CEP: 80730-200 Batel - Curitiba - PR Ad Maiora Seugar! 0800 708 88 88 - www.iesde.com.br

Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br

Olímpio Rudinin Vissoto Leite

Mestre em Gestão de Negócios pela Universidade Católica de Santos. Graduado em Licenciatura em Matemática pela USP.

Marcelo Gorges

Licenciado em Matemática pela Pontifícia Universidade Católica do Paraná.

Sumário

Números e operações | 11

- Números naturais | 11
- Números inteiros | 14
- Números racionais | 17
 - Números reais | 20
 - Porcentagem | 24
- Fator de aumento | 26
- Fator de redução | 27

Geometria e medidas | 33

- Comprimento e massa | 33
- Área, volume e capacidade | 37
 - Volume e capacidade | 42
- Estimativas e arredondamentos | 46
 - Teorema de Tales | 51
 - Teorema de Pitágoras | 58

Gráficos | 65

Tipos de gráficos | 65

Introdução às funções | 83

- Conceito intuitivo de função | 83
 - Gráfico cartesiano | 85
- Domínio e imagem de uma função | 88
 - Uma nova notação para função | 89

Função afim | 97

Gráfico da função afim | 97
Função linear | 98
Função identidade | 98
Função constante | 99
Coeficientes da função afim | 100
Interseção da reta com eixo x (raiz da função afim) | 101
Equações da reta | 108

Função quadrática | 115

Gráfico de uma função quadrática | 115 Domínio e imagem da função quadrática | 126 Máximo ou mínimo de uma função quadrática | 127

Tópicos complementares de funções | 135

Função definida por várias sentenças | 135 Estudo da variação das funções | 139 Valores extremos de uma função | 141 Estudo do sinal de uma função | 147 Inequação | 149

Funções exponenciais | 155

Potenciação | 155 Propriedades das potências | 156 Notação científica | 157 Função exponencial | 163 Equações exponenciais | 169

Função logarítmica | 175

O que é logaritmo? | 175

Propriedades dos logaritmos | 178

Função logarítmica | 186

Equação logarítmica | 190

A função exponencial de base 'e' e de base $\frac{1}{e}$ | 192

Logaritmo natural | 193

Introdução à trigonometria | 197

As razões trigonométricas | 197

Como calcular o seno, o cosseno e a tangente de um ângulo agudo? | 199

Seno, cosseno e tangente de um ângulo obtuso | 211

Lei dos senos | 219

Lei dos cossenos | 219

Progressão Aritmética (P.A.) | 225

Sequência numérica | 225

Progressão Aritmética (P.A.) | 228

Progressão Geométrica (P.G.) | 241

Progressão Geométrica | 241

Classificação de P.G. | 242

Sistemas lineares | 259

Matrizes | 259

Determinantes | 265

Sistemas lineares | 269

Princípio fundamental da contagem | 279

Princípio fundamental da contagem | 279 Tipos de agrupamentos | 281

Análise combinatória | 287

Fatorial | 287
Permutação simples | 288
Permutação com repetição | 289
Arranjo simples | 292
Combinação simples | 295

Noções de probabilidade | 299

Experimentos aleatórios | 299 Probabilidade | 300 Probabilidade condicional | 306

Matemática Financeira | 313

Porcentagem | 313
Porcentagem de uma quantia | 314
Porcentagem de um número em relação a outro | 314
Aumento | 315
Desconto | 317
Juros | 320

Geometria espacial | 327

Prismas | 327

Paralelepípedo reto-retângulo | 329

Cubo | 330

Pirâmides | 334

Cilindro | 339

Cone | 341

Esfera | 342

Estatística | 345

Notações | 345

Tipos de variáveis | 345

Medidas de tendência central | 346

Medidas de dispersão | 350

Apresentação de dados estatísticos | 353

Frequências | 354

Circunferência trigonométrica | 359

Circunferência trigonométrica | 359

Relações trigonométricas | 363

Progressão Aritmética (P.A.)

Marcelo Gorges

■ Sequência numérica

Sequência numérica é todo conjunto de números reais dispostos numa certa ordem.

Ela pode ser classificada de duas formas, como:

Finita.

Exemplo: (2, 6, 8, 10, 26)

Infinita.

Exemplo: (-5, 1, 4, 10, ...)

A representação matemática de uma sequência, de modo geral, é:

 $(a_1, a_2, a_3, a_4, ..., a_{n-1}, a_n, ...)$, como os índices representam as posições dos elementos temos que $n \in IN^*$, ou seja, $n \in IN^*$ ou seja, $n \in IN^*$.

Em que:

```
a_1 é o primeiro elemento na sequência (lê-se: a índice 1);
```

a₂ é o segundo elemento na sequência (lê-se: a índice 2);

 a_3 é o terceiro elemento na sequencia (lê-se: a índice 3);

a_{n-1} é o elemento que antecede o enésimo termo da sequência.

 a_n é o enésimo elemento na sequência (lê-se: a índice n). O a_n pode representar qualquer termo dentro da sequência, pois a sua posição não está determinada. Devemos lembrar que n sempre será um número pertencente ao conjunto dos números naturais não nulos.

Assim, na sequência (2, 5, 8, 11), temos: $a_1 = 2$, $a_2 = 5$, $a_3 = 8$ e $a_4 = 11$.

Lei de formação de uma sequência

Existem sequências que obedecem a uma certa lei, chamada lei de formação da sequência. Estas sequências podem ser expressas pelo termo geral através de uma fórmula.

Exemplos:

1. A sequência dos números quadráticos é, (1, 4, 9, 16, ...). O termo geral que representa esta sequência é $a_n = n^2$. Determine:

Solução:

 a_3 é o terceiro termo da sequência, isto é, $a_3 = 9$.

b)
$$a_6 - 3 \cdot a_2$$

Solução:

Como $a_n = n^2$, temos que:

$$a_6 = 6^2 = 36$$

$$a_{2} = 4$$

Assim:

$$a_6 - 3 \cdot a_2 = 36 - 3 \cdot 4$$

$$a_6 - 3 \cdot a_2 = 36 - 12$$

$$a_6 - 3 \cdot a_2 = 24$$

2. Escreva os cinco primeiros termos da sequência definida por $a_n = 2n + 3$, com $n \in IN^*$.

Solução:

Para n = 1, temos:
$$a_1 = 2 \cdot 1 + 3 = 2 + 3 = 5$$

Para n = 2, temos: $a_2 = 2 \cdot 2 + 3 = 4 + 3 = 7$
Para n = 3, temos: $a_3 = 2 \cdot 3 + 3 = 6 + 3 = 9$
Para n = 4, temos: $a_4 = 2 \cdot 4 + 3 = 8 + 3 = 11$
Para n = 5, temos: $a_5 = 2 \cdot 5 + 3 = 10 + 3 = 13$

3. Dada a sequência de termo geral, $a_n = 3n - 4$. Calcule a soma dos dois primeiros termos.

Solução:

Primeiro devemos determinar a, e a,

$$a_1 = 3.1 - 4 = 3 - 4 = -1$$

 $a_2 = 3.2 - 4 = 6 - 4 = 2$

Então, a soma dos dois primeiros termos é:

$$a_1 + a_2 = -1 + 2 = 1$$

Exercícios

1. Dada a sequência (6, 4, 3, 0, −1, −5). calcule:

a)
$$a_5 + 4 \cdot a_3$$

b)
$$a_1 - 2 \cdot a_6 - 3 \cdot a_2$$

2. Dada a sequência de termo geral, $a_n = 2n - 1$. Determine a soma dos cinco primeiros termos.

- 3. Dada a sequência de termo geral, $a_n = \frac{1+3n}{2n-1}$. Calcule:
 - a) $a_2 + a_5$

b) Verifique se 2 é termo da sequência e, em caso afirmativo, indique a sua posição.

Progressão Aritmética (P.A.)

Em uma Progressão Aritmética (P.A.), a partir do segundo termo, cada termo é igual ao anterior, acrescido de uma mesma constante denominada de razão.

A representação, que já vimos na definição de sequência, é a mesma:

Onde, a razão (r) é a diferença entre o termo com o seu termo anterior, a partir do segundo termo, isto é:

$$r = a_2 - a_1 = a_3 - a_2 = ...$$

Exemplo:

Qual a razão da P.A. de sequência:

$$r = a_3 - a_1 = 5 - 2 = 3$$

b)
$$(7, 2, -3, -8,...)$$

$$r = a_3 - a_2 = -3 - 2 = -5$$

Expressão do termo geral de uma P.A.

Qualquer termo de uma P.A. pode ser obtido, em função do primeiro termo e da razão, pela fórmula do termo geral:

$$a_n = a_1 + (n - 1) \cdot r$$

Em que:

a é o termo geral;

a, é o primeiro termo;

n é o número de termos da P.A. até a_n;

r é a razão da P.A.

Exemplos:

1. Encontrar o termo geral da P.A. (3, 9,...)

Solução:

$$a_1 = 3$$

$$r = 9 - 3 = 6$$

Como:

$$a_n = a_1 + (n - 1) \cdot r$$

Substituindo os termos conhecidos:

$$a_n = 3 + (n - 1).6$$

$$a_n = 3 + 6n - 6$$

 $a_n = 6n - 3$, este é o termo geral.

2. Qual é o décimo quinto termo da P.A. (2, 6, ...)

Solução:

$$a_1 = 2$$

$$r = 6 - 2 = 4$$

Assim, como:

$$a_n = a_1 + (n - 1) \cdot r$$

Substituindo os termos conhecidos:

$$a_{n} = 2 + (n - 1).4$$

$$a_n = 2 + 4n - 4$$

 $a_n = 4n - 2$, este é o termo geral.

Portanto, o décimo quinto termo será:

$$a_{15} = 4.15 - 2$$

$$a_{15} = 60 - 2$$

$$a_{15} = 58$$

3. Marta fez depósitos mensais em sua caderneta de poupança. No primeiro mês depositou R\$40,00; no segundo R\$50,00; no terceiro R\$60,00, e assim por diante. O último depósito foi de R\$520,00. Quantos meses se passaram, a partir do primeiro depósito?

Solução:

$$a_1 = 40$$

$$r = 50 - 40 = 10$$

$$a_n = 520$$

Como:

$$a_n = a_1 + (n - 1) \cdot r$$

Substituindo os termos conhecidos temos:

$$520 = 40 + (n - 1) \cdot 10$$

$$480 = 10n - 10$$

$$490 = 10n$$

$$n = 49$$

Portanto, a partir do primeiro depósito passaram-se 49 meses.

4. Determine o número de termos da P.A. (– 5, – 2, 1,...,82)

Solução:

$$a_1 = -5$$

 $r = -2 - (-5) = -2 + 5 = 3$
 $a_2 = 82$

Assim, como:

$$a_n = a_1 + (n - 1) \cdot r$$

Substituindo os termos conhecidos:

$$82 = -5 + (n - 1) \cdot 3$$

 $82 = -5 + 3n - 3$
 $82 = -8 + 3n$
 $82 + 8 = 3n$

$$90 = 3n$$

$$n = 30$$

Portanto a P.A. tem 30 termos.

5. Determinar o número de múltiplos de 3 compreendidos entre 20 e 481.

Solução:

Os múltiplos de 3 compreendidos entre 20 e 481 formam a seguinte sequência:

$$a_1 = 21$$

r = 3 (múltiplos de 3), é constante, portanto esta sequência é uma P.A.

$$a_{n} = 480$$

Como:

$$a_n = a_1 + (n - 1) \cdot r$$

Substituindo os termos conhecidos:

$$480 = 21 + (n - 1) . 3$$

$$480 = 21 + 3n - 3$$

 $480 = 18 + 3n$

$$480 - 18 = 3n$$

$$462 = 3n$$

$$n = 154$$

Portanto o número de múltiplos de 3 compreendidos entre 20 e 481 é 154.

Interpolação aritmética

Interpolar (ou inserir) k meios aritméticos entre dois extremos a e b, nesta ordem, significa determinar a P.A. de k + 2 termos onde a é o primeiro termo e b é o último termo.

Exemplo:

Interpole 4 meios aritméticos entre 12 e 47.

Solução:

Interpolar 4 meios aritméticos entre 12 e 47 é formar uma P.A. de 6 termos, em que:

$$a_1 = 12$$

$$a_{n} = 47$$

$$n = 6$$

Ou seja:

Como:

$$a_n = a_1 + (n - 1) \cdot r$$

Substituindo os termos conhecidos:

$$47 = 12 + (6 - 1) \cdot r$$

$$47 = 12 + 5r$$

$$47 - 12 = 5r$$

$$35 = 5r$$

$$r = 7$$

Portanto a P.A. será (12, 19, 26, 33, 40, 47).

Exercícios

4. Qual a razão da P.A. de sequência:

5. Qual o termo geral da P.A. (– 10, – 6,...)?

6. Encontre o termo geral da P.A. (62, 46,...).

7.	Qual c	o décimo	termo	da P.A	. (3.	12)?

8. Em uma P.A. de razão 4, o primeiro termo é 8. Qual é a posição do termo igual a 92?

9. Encontre o primeiro termo de uma P.A., sabendo que a razão é −2 e o décimo terceiro termo é −15.

- **10.** Sabendo que os termos (15, 20, ..., 435), estão em P.A.
 - a) Qual é o quadragésimo termo desta P.A.?

b) Calcule o número de termos desta P.A.

11. Quantos números múltiplos de 7 estão compreendidos entre 30 e 199?

12. Quantos meios aritméticos devemos inserir entre 8 e 89 de modo que a sequência obtida tenha razão 3?

13. A desvalorização de um carro que hoje custa R\$30.000,00 é de R\$1.300,00 a cada ano de uso. Desta maneira, qual será seu preço após quatro anos de uso?

Fórmula da soma dos n primeiros termos de uma P.A.

Podemos obter a soma dos n primeiros termos de uma P.A. $(a_1, a_2, a_3, a_4, ..., a_{n-1}, a_n, ...)$, através da fórmula:

$$S_n = \frac{(a_1 + a_n) \cdot n}{2}$$

Em que:

S_n é a soma dos n primeiros termos;

a₁ é o primeiro termo;

a é o enésimo termo;

n é o número de termos na P.A. até a_n .

Exemplos:

1. Determine a soma dos múltiplos de 2, compreendidos entre 3 e 101.

Solução:

Para o problema em questão, devemos considerar a P.A.:

(4, 6, 8, 10, 12,..., 100), em que,

$$r = 2$$

 $a_1 = 4$
 $a_n = 100$
Como, $a_n = a_1 + (n - 1)$. r , então:
 $100 = 4 + (n - 1)$. 2
 $100 = 4 + 2n - 2$
 $100 = 2 + 2n$
 $100 - 2 = 2n$
 $98 = 2n$
 $n = 49$
Sendo, $S_n = \frac{(a_1 + a_n) \cdot n}{2}$, então:
 $S_{49} = \frac{(4 + 100) \cdot 49}{2} = \frac{104 \cdot 49}{2} = \frac{5096}{2}$
 $S_{49} = 2548$

Portanto, a soma de todos os termos múltiplos de 2 entre 3 e 101 é 2 548.

2. Determine uma P.A. de três termos, sabendo que a soma de três termos consecutivos é 15 e o seu produto é 80.

Podemos representar os três termos da P.A. da seguinte maneira:

$$(x - r, x, x + r)$$
, isto significa que,
 $a_1 = x - r$
 $a_2 = x$
 $a_3 = x + r$

Desta forma, temos:

$$\begin{cases} (x-r) + x + (x+r) = 15 \\ (x-r) \cdot x \cdot (x+r) = 80 \end{cases}$$
$$\begin{cases} 3x = 15 \\ x \cdot (x^2 - r^2) = 80 \end{cases}$$

Da 1.ª equação temos que x = 5.

Substituindo x por 5, na segunda equação, temos:

$$5.(5^2-r^2)=80$$

$$5.(25-r^2)=80$$

$$125 - 5r^2 = 80$$

$$5r^2 = 45$$

$$r^2 = 9$$

$$r = \pm 3$$

Assim,

Para x = 5 e r = 3, temos a seguinte P.A. (2, 5, 8);

Para x = 5 e r = -3, temos a seguinte P.A. (8, 5, 2).

Exercícios

14. Calcular a soma dos 25 primeiros termos da P.A. (1, 7, 13, 19, ...).

15.	Os dois primeiros termos de uma sequência são 4 e 9. Calcule a soma dos 30
	primeiros termos, sabendo que se trata de uma Progressão Aritmética.

16. Ao se efetuar a soma dos 40 primeiros termos da P.A. (102, 106, 110, 114, ...), por distração não foram somados o 20.º e 30.º termos. Qual foi a soma encontrada?

17. Um anfiteatro possui suas poltronas dispostas no formato de um triângulo, da seguinte maneira, uma poltrona na primeira fila, duas na segunda, três na terceira, e assim por diante. Formando assim um triângulo com 171 poltronas. Qual é o número de fileiras do auditório?

- **18.** Uma agência de publicidade foi contratada para desenvolver um plano de divulgação de um novo produto. No 1.º dia de divulgação, 200 pessoas tomaram conhecimento do produto; no 2.º dia, 400 pessoas; no 3.º dia, 600 pessoas e assim por diante. Responda:
 - a) Em qual dia espera-se que a ação de divulgação atinja 1 600 pessoas por dia?

b) Devido ao sucesso da divulgação do novo produto, a empresa resolveu montar um banco de dados para cadastrar seus novos clientes. A meta é cadastrar sempre 50 clientes a mais que no dia anterior. Se, ao final de 10 dias, foram cadastrados 2 500 clientes no total, quantos cadastros foram realizados no 5.º dia?

Gabarito

Progressão Aritmética (P.A.)

a)
$$-1 + 4 \cdot 3 = -1 + 12 = 11$$

b)
$$6-2.(-5)-3.4=6+10-12=4$$

2.
$$a_1 = 2 \cdot 1 - 1 = 1$$

$$a_2 = 2 \cdot 2 - 1 = 3$$

$$a_3 = 2.3 - 1 = 5$$

$$a_4 = 2.4 - 1 = 7$$

$$a_{r} = 2.5 - 1 = 9$$

Soma =
$$1 + 3 + 5 + 7 + 9 = 25$$

a)
$$a_2 = \frac{1+3.2}{2.2-1} = \frac{7}{3}$$

$$a_5 = \frac{1+3.5}{2.5-1} = \frac{16}{9}$$

$$a_2 + a_5 = \frac{7}{3} + \frac{16}{9} = \frac{21 + 16}{9} = \frac{37}{9}$$

b)
$$2 = \frac{1+3n}{2n-1}$$

$$2.(2n-1)=1+3n$$

$$4n - 2 = 1 + 3n$$

$$4n - 3n = 1 + 2$$

$$n = 3$$

Resposta: 2 é o termo da sequência e é o 3.º termo, ou seja, $a_3 = 2$.

a)
$$r = -11 - (-18) = -11 + 18 = 7$$

b)
$$r = -10 - (-2) = -10 + 2 = -8$$

c)
$$r = 2 - (-4) = 2 + 4 = 6$$

5.
$$a_1 = -10 \text{ e } a_2 = -6$$

$$r = -6 - (-10) = 4$$

Assim, como:

$$a_n = a_1 + (n - 1) \cdot r$$

$$a_n = -10 + (n-1).4$$

$$a_n = -10 + 4n - 4$$

$$a_{1} = 4n - 14$$

6.
$$a_1 = 62 e a_2 = 46$$

$$r = 42 - 62 = -16$$

Assim, como:

$$a_n = a_1 + (n - 1) \cdot r$$

$$a_n = 62 + (n - 1). (-16)$$

$$a_{1} = 62 - 16n + 16$$

$$a_n = -16n + 78$$

7.
$$a_1 = 3$$
; $a_2 = 12$ e $n = 10$

$$r = 12 - 3 = 9$$

Assim, como:

$$a_n = a_1 + (n - 1) \cdot r$$

$$a_{10} = 3 + (10 - 1) \cdot 9$$

$$a_{10} = 3 + 9.9$$

$$a_{10} = 84$$

$$a_1 = 8$$
; $a_2 = 92$ e r = 4

Assim, como:

$$a_n = a_1 + (n - 1) \cdot r$$

$$92 = 8 + (n - 1) \cdot 4$$

$$92 = 8 + 4n - 4$$

$$92 = 4 + 4n$$

$$92 - 4 = 4n$$

$$88 = 4n$$

$$n = 22$$

9.
$$a_{13} = -15; r = -2 e n = 13$$

Assim, como:

$$a_n = a_1 + (n - 1) \cdot r$$

$$-15 = a_1 + (13 - 1) \cdot (-2)$$

$$-15 = a_1 + 12 \cdot (-2)$$

$$-15 = a_1 - 24$$

$$a_1 = 24 - 15$$

$$a_1 = 9$$

10.

a)
$$a_1 = 15$$
; $a_2 = 20$ e $n = 40$

$$r = 20 - 15 = 5$$

como:

$$a_n = a_1 + (n - 1) \cdot r$$

$$a_{40} = 15 + (40 - 1).5$$

$$a_{40} = 15 + 39.5$$

$$a_{40} = 210$$

b)
$$a_1 = 15$$
; $a_2 = 20$; $a_n = 435$

Assim, como:

$$a_n = a_1 + (n - 1) \cdot r$$

$$435 = 15 + (n - 1).5$$

$$435 = 15 + 5n - 5$$

$$435 = 10 + 5n$$

$$435 - 10 = 5n$$

$$425 = 5n$$

$$n = 85$$

$$a_1 = 35$$
; $a_2 = 196$ e $r = 7$

Assim, como:

$$a_n = a_1 + (n - 1) \cdot r$$

$$196 = 35 + (n - 1).7$$

$$196 = 35 + 7n - 7$$

$$196 = 28 + 7n$$

$$196 - 28 = 7n$$

$$168 = 7n$$

$$n = 24$$

12.
$$a_1 = 8$$
; $a_n = 89$ e $r = 3$

Assim, como:

$$a_n = a_1 + (n - 1) \cdot r$$

$$89 = 8 + (n - 1) . 3$$

$$89 = 8 + 3n - 3$$

$$89 = 5 + 3n$$

$$89 - 5 = 3n$$

$$84 = 3n$$

n = 28. Logo a P.A. tem 28 termos, portanto o número de meios aritméticos é k = 28 - 2 = 26.

13.
$$a_1 = 30\ 000 - 1\ 300 = 28\ 700;\ n = 4\ e$$
 $r = -1\ 300$

Assim, como:

$$a_n = a_1 + (n - 1) \cdot r$$

$$a_4 = 28700 + (4 - 1) \cdot (-1300)$$

$$a_1 = 28700 - 3900$$

$$a_1 = 24800$$

Portanto o carro estará custando, R\$24.800,00

14.
$$a_1 = 1 e a_2 = 7$$

 $r = 7 - 1 = 6$

$$a_n = a_1 + (n - 1) \cdot r$$

$$a_{25} = 1 + (25 - 1).6$$

$$a_{25} = 1 + 24.6$$

$$a_{25} = 145$$

$$S_{25} = \frac{(a_1 + a_{25}) \cdot n}{2}$$

$$S_{25} = \frac{(1+145).25}{2}$$

$$S_{25} = \frac{146.25}{2}$$

$$S_{25} = 1825$$

15.
$$a_1 = 4 e a_2 = 9$$

 $r = 9 - 4 = 5$

Assim, como:

$$a_n = a_1 + (n - 1) \cdot r$$

$$a_{30} = 4 + (30 - 1) \cdot 5$$

$$a_{30} = 149$$

Logo:

$$S_{30} = \frac{(a_1 + a_{30}) \cdot n}{2}$$

$$S_{30} = \frac{(4+149) \cdot 30}{2}$$

$$S_{30} = \frac{153.30}{2}$$

$$S_{30} = 2.295$$

16.
$$a_1 = 102 \text{ e } a_2 = 106$$

 $r = 106 - 102 = 4$

Assim, como:

$$a_n = a_1 + (n - 1) \cdot r$$

$$a_{20} = 102 + (20 - 1) \cdot 4 = 178$$

$$a_{30} = 102 + (30 - 1) \cdot 4 = 218$$

$$a_{40} = 102 + (40 - 1) \cdot 4 = 258$$

Logo:
$$S_{40} = \frac{(a_1 + a_{40}) \cdot n}{2}$$

$$S_{40} = \frac{(102 + 258) \cdot 40}{2}$$

$$S_{40} = \frac{360.40}{2}$$

$$S_{40} = 7200$$

Desta forma:

$$S_{40} - A_{20} - A_{30} = 7200 - 178 - 218 = 6804$$

Resposta: 6 804

17.
$$a_1 = 1$$
; $a_2 = 2$ e $a_3 = 3$

Assim, como:

$$a_n = a_1 + (n - 1) \cdot r$$

$$S_n = \frac{(a_1 + a_n) \cdot n}{2}$$

$$S_n = \frac{(a_1 + a_n) \cdot n}{2}$$

$$S_n = \frac{[a_1 + a_1 + (n-1).r].n}{2}$$

$$171 = \frac{[1+1+(n-1).1].n}{2}$$

$$171 = \frac{[1+1+n-1] \cdot n}{2}$$

$$171 = \frac{[n+1] \cdot n}{2}$$

$$171.2 = n^2 + n$$

$$n^2 + n - 342 = 0$$

$$n_1 = 18$$

$$n_{2} = -19$$

Desconsiderando o valor negativo, pois o resultado deve ser um número positivo, que representa o número de fileiras do anfiteatro, desta forma o resultado será 18 fileiras que totalizaram um total de 171 poltronas.

18.

a)
$$a_n = a_1 + (n-1) r$$

 $1 600 = 200 + (n-1) . 200$
 $1 400 = 200n - 200$

	1 600 = 200n	
	$n = \frac{1600}{200}$	
	200	
	n = 8	
	No 8.º dia.	
b)	$S_n = \frac{(a_1 + a_n) \cdot n}{2}$	
	Como os cadastros diários até o	
	10.º dia somam 2 500, temos:	
	,	
	$S_{10} = \frac{(a_1 + a_{10}) \cdot 10}{2}$	
	$2500 = \frac{(a_1 + a_1 + 9 \cdot r) \cdot 10}{2}$	
	_	
	$2500 = \frac{(a_1 + a_1 + 9.50).10}{2}$	
	$5000 = 20a_1 + 4500$	
	$a_1 = 25$	
	Portanto foram cadastrados 25 novos clientes no primeiro dia.	
	Devemos agora determinar o nú-	
	mero de clientes cadastrados no	-
	5.º dia. Assim:	
	$a_n = a_1 + (n-1) \cdot r$	
	$a_5 = 25 + (4 - 1) \cdot 50$	
	$a_5 = 225$	
	Logo foram cadastrados 225 clien-	-
	tes no quinto dia.	
	_	