<u>강의계획서</u>

1. 과목 기본 정보(Basic Course Information)

교과목명	기초회로 및 논리실습					코드		EC	E20065	
개설년도		20	24		개	설학기			1	
개설학부					이수	구분/영역			/	
대상학년			2			분반			01	
인정전공	컴퓨터	공학(33),/전제	가공학	학(33),/전자공학심]화(60),, 학심)),/컴	퓨터공학	낚(45),/AI·컴퓨터공	
학점구성	+	총학점		이론	실	험/실습	4	설계	기타()	
96T8		3		2		1		0	0	
수업주유형	실험, 실	실습								
선수과목	필수					병수과목		회로이론1, 논리설계		
	권장					0147	되도이는T, 근디글게 		= 1, 드니크게	
주관교수성명						주관교수 En	nail			
담당교수 성명	담	당교수 Email		담당교수 전	담당교수 전화		Office 위치		Office Hour	
김신웅	shinwoong@handong.e du 1372		1372	NTH 406		ì	화6, 목6			
TA성명					TA email	<u> </u>				
강의실						강의시간				

2. 학습목표 및 개요(Course Objectives)

● 학습목표(Course Objective)

번호	학습목표
1	전압, 전류, 전하에 대한 기본적인 이해와 이를 이용한 기초회로를 실습한다.
2	논리게이트를 활용하여 논리회로를 실습하고 간단한 논리시스템을 구현한다.
3	기초 및 논리회로 설계를 위해 필요한 장비의 사용법을 익힌다.
4	Verilog를 활용하여 간단한 논리 회로를 설계하고 이를 FPGA를 활용하여 구현할 수 있다.
5	Python을 활용하여 측정 보드 (EEboard)를 제어하고 데이터를 획득하여 분석할 수 있다.

● 연관 학습성과(Related Learning Outcomes)

역량	학습성과
	조회된 데이터가 없습니다.

● 강의개요(Course Description)

본 교과목은 회로이론1과 논리설계에서 학습하는 내용을 회로로 구현하고 계측기를 이용하여 측정 및 분석하는 실험/실습을 통해 기
초회로와 논리회로의 실무를 학습합니다. 또한 회로의 구현 측정에 사용하는 계측기의 특성과 사용법을 익히며, 계측기의 조작과 측
정 자동화를 위해 필요한 Python 프로그래밍 기법을 학습합니다. 기초전자공학 실험에서는 회로를 동작 시키는 전압, 전하, 전류의
물리량이 실제 논리회로와 저항 콘덴서에서 동작하는 방법을 실습을 통해 실재적인 경험을 제공합니다.

본 강의는 화요일은	이론강의(온라인)	목요일은 실습으로	운영됩니다

3. 과목 운영 및 과제물

● 교재

주교재	서명	수업시간에 실습 관련 자료를 제공함	저자	
	출판사		출판년도	
부교재	서명		저자	
	출판사		출판년도	

기자재		
기자재		

● 평가

평가방법 추가설명

(3) 중간고사 15점 (4) 기말고사 15점

3. 교과목 Pass 조건 -총점이 70점 이상

0 0 1								
출석관리	2. 수업 시작 3. 지각 3회는		는 지각으로 : 처리한다.	처리하며, 15	석 점수를 1점 7 분 이후는 결석.		ł.	
학점산출 평가 도구	출석	중간시험	기말시험	퀴즈	팀프로젝트	개인과제	기타1(기타 1)	기타2(기타 2)
및 비중(%)	10	15	15			60		
Honor Code 준수 및 평가방법 추가설명	1-격과보고서 30절 (매수 토요익 사성까지 제중)							

-모든 실험을 수행하는 경우에 한해서 Pass됨 (결석하더라도, 반드시 빠진 주차의 실험을 완료 해야 함)

● 수업 활동유형

강의	30%	실험	60%	실습	10%
팀프로젝트	%	발표	%	토론	%
기타1()	%	기타2()	%	기타3()	%
총계	100 %				

● 과제 및 프로젝트(Assignments and Projects)

번호	내용
1	

4. 강의 일정 계획(Weekly Schedule)

주차	날짜	강의주제 및 범위	과제 결과물 및 평가
1	2024-03-05 2024-03-07	강의) 기본적인 물리량과 단위, Prefix소개 실습) EEboard 사용법 (전용 SW사용)	보고서 없음
2	2024-03-12 2024-03-14	강의) 저항 및 옴의 법칙 실습) EEboard 및 DMM 장비를 이용해 옴의 법칙 실습	예비보고서 및 결과보고서
3	2024-03-19 2024-03-21	강의) Logic gate 속성 실습) 기본 논리게이트	예비보고서 및 결과보고서
4	2024-03-26 2024-03-28	강의) 직렬, 병렬, 직렬-병렬 회로 이해 실습) EEboard 및 DMM 장비를 이용해 KVL, KCL 법칙 확인	예비보고서 및 결과보고서
5	2024-04-02 2024-04-04	강의) TinkerCad / Combination Logic / K-map 최적화 실습) K-map 최적화 실험	보고서 없음
6	2024-04-09 2024-04-11	강의) Combination Logic 시스템 설계 이론 실습) Vending Machine 실험	예비보고서 및 결과보고서
7	2024-04-16 2024-04-18	강의) 파형의 이해 및 함수발생기/오실로스코프 이해 실습) 함수발생기/오실로스코프 실험	예비보고서 및 결과보고서
8	2024-04-23 2024-04-25	중간고사	
9	2024-04-30 2024-05-02	강의) Python을 이용한 EEBoard 제어 실습) 전압 source 제어하여 회로 네트워크 측정	보고서 없음
10	2024-05-07 2024-05-09	강의) 전력 전달 이론 실습) 최대 전력 전달 조건 실험 (Python)	예비보고서 및 결과보고서
11	2024-05-14 2024-05-16	강의) 등가 회로 및 중첩 이론 실습) 등가 회로 및 중첩 이론 실험	예비보고서 및 결과보고서
12	2024-05-21 2024-05-23	강의) RC회로 이론 실습) RC회로 실험	예비보고서 및 결과보고서

주차	날짜	강의주제 및 범위	과제 결과물 및 평가
13	2024-05-28 2024-05-30	강의) Latch / Flip Flop 이론 실습) Latch / Flip Flop 실험	예비보고서 및 결과보고서
14	2024-06-04 2024-06-06	강의) Veriolog 이론 실습) 4-bit adder 설계	보고서 없음
15	2024-06-11 2024-06-13	강의) Stop watch 설계 실습) Stop watch 설계 (FPGA 동작 구현)	예비보고서 및 결과보고서
16	2024-06-18 2024-06-20	기말고사	

5. 공지사항/부가정보

● 본 과목의 수강신청을 위한 주요 공지사항(Notice)

가. 수업진행방식(대면/비대면) Course Progress(contact/untact/Hybrid)

- (1) 화요일 비대면 동영상 수업자료
- (2) 목요일 대면 실험/실습 수업

나. 기타 etc

● 전공별 부가 정보(Additional Information)

번호	내용

6. 과목 세부 정보

V	온라인 콘텐츠 강의활용 수업여부 - 온라인 콘텐츠 강의활용 비율 40 %
	창업관련 교과목 여부
	현장과 연계한 과목여부 - 캡스톤
	현장과 연계한 과목여부 - 키스톤
	현장과 연계한 과목여부 - 코너스톤
	문제해결력 프로젝트 수업 여부

- 온라인 콘텐츠 활용 콘텐츠 선택 (복수개 선택 가능함)

V	Hudcc(우리대학 강의녹화 서비스)
	타대학 및 타기관 협력하여 개발된 온라인 강좌 활용
	MOOC 활용
	OCW 활용
	그 외 온라인콘텐츠 활용

7. 장애학생을 위한 강의 및 평가 안내

● 장애학생의 장애유형과 정도를 고려하여 강의, 과제 및 평가를 실시

예)강의 :

- 강의파일 제공, 강의대필도우미 제공.
- 치료 및 입원 등으로 출석이 어려운 경우 증명서류 제출 시 출석으로 간주.

과제 및 평가

- 시험대필도우미, 필요 시 수화 설명 등