Sources of Irreproducibility in Machine Learning: A Review

Selina Cheng

Authors

Odd Erik Gundersen, Norwegian University of Science and Technology, Trondheim, Norway (same first author as Paper 7)

Kevin Coakley, Norwegian University of Science and Technology, Trondheim, Norway, San Diego Supercomputer Center, California, USA

Christine Kirkpatrick, San Diego Supercomputer Center, California, USA

Overview

Problem: Unreliable results in ML studies because of non-reproducibility

Goal: Identify and categorize root causes of irreproducibility in ML

Methods

- Literature Review
- Taxonomy of issues
 - Study design factors
 - Algorithmic factors
 - Implementation factors
 - Observation factors
 - Evaluation factors
 - Documentation factors

HARKing, p-fishing

Random weight initialization

Ancillary software, compiler settings

Dataset bias, data preparation

Error estimation, selective reporting

Readability, data, code, implementation

Experimental Design

- Review process
 - Impact of methodology decisions on reproducibility
- Case studies
 - Different experiment types should prioritize different sources of irreproducibility

Results

- Top Causes
 - Lack of code sharing
 - Failure to control for randomness
 - Non-standard evaluation metrics (for comparison)
- Recommendations
 - Documentation
 - Standardization
 - Validation

Key Takeaways

To ensure sustainable progress in ML research, controlling for reproducibility is critical.

Confirmatory Hypotheses vs Hypothesis Generating

- Confirmatory hypotheses
 - Should discuss controlling as many as possible
- Hypotheses generating
 - Can relax study design and observation factors
 - Lightly consider implementation and evaluation factors
 - Prioritize algorithmic (when relevant) and documentation factors