1

Assignment 1

Dishank Jain - AI20BTECH11011

Download all python codes from

https://github.com/Dishank422/AI1103-Probability -and-random-variables/blob/main/ Assignment 1/codes

and latex-tikz codes from

https://github.com/Dishank422/AI1103-Probability -and-random-variables/blob/main/ Assignment 1/main.tex

1 Problem(prob. misc. 6.11)

Given that the events A and B are such that $Pr(A) = \frac{1}{2}$, $Pr(A + B) = \frac{3}{5}$ and Pr(B) = p. Find p if they are

- i) mutually exclusive
- ii) independent

2 Solution

i) Since the events are mutually exclusive, by definition

$$Pr(AB) = 0$$
 (2.0.1)

$$\implies$$
 Pr $(A + B) =$ Pr $(A) +$ Pr (B) $(2.0.2)$

On substituting the values of Pr(A), Pr(B) and Pr(A + B) in (2.0.2), we get

$$\frac{3}{5} = \frac{1}{2} + p \tag{2.0.3}$$

$$\implies p = \frac{1}{10} \tag{2.0.4}$$

ii) Since the events are independent

$$Pr(AB) = Pr(A) Pr(B)$$
 (2.0.5)

We know

$$Pr(A + B) = Pr(A) + Pr(B) - Pr(AB)$$
(2.0.6)

$$\Rightarrow \Pr(A + B) = \Pr(A) + \Pr(B) - \Pr(A) \Pr(B)$$
(2.0.7)

On substituting the values of Pr(A), Pr(B) and Pr(A + B) in (2.0.7), we get

$$\frac{3}{5} = \frac{1}{2} + p - \frac{1}{2}p \tag{2.0.8}$$

$$\implies p = \frac{1}{5} \tag{2.0.9}$$