Nobre Singer: Mixed Model Residuals

Usually one assumes

- $b_i \sim N_q(0, G)i = 1, ..., m$
- $e_i \sim N_{n_i}(0, \sigma_i)$
- b_i and e_i independent
- G and σ_i are $(q \times q)$ and $(n_i \times n_i)$ positive denite matrices with elements expressed as functions of a vector of covariance parameters θ not functionally related to β
- If $\sigma_i = I_{n_i}\sigma^2$: homoskedastic conditional independence model

$$\left[egin{array}{c} oldsymbol{b} \ oldsymbol{e} \end{array}
ight]\sim\mathcal{N}_{qm+n}$$

$$Q = V^{-1} - V^{-1}X(X^TV^{-1}X)^{-1}$$

Sensitivity and residual analysis of the underlying assumptions constitute important tools for evaluating the fit of any model to given data.

Generalized Leverage