

Department of Information Engineering and Computer Science

Master's Degree in Artificial Intelligence Systems

Evolutionary Image Vectorization

Academic year 2020/2021

Matteo Destro

What is Vectorization?

Vectorization: conversion of **raster graphics** into **vector graphics**:

- **Raster graphics**: matrix of pixels, each with a color value
- **Vector graphics**: set of points connected by lines or curves

Advantages of vector graphics:

- Reduced file size
- Rescaling without any quality loss
- Can be easily edited and converted to raster graphics

Solutions

Two approaches explored:

- Genetic Algorithm: evolve a set of colored polygons trying to recreate the target image
- Particle Swarm Optimization: move a set of particles trying to reconstruct the most relevant contours

Genetic Algorithm

Evolve a set of polygons to reconstruct the target image:

- **Individuals**: composed by *n* polygons, each with:
 - v vertices
 - RGB color
 - alpha value (transparency)
- **Fitness**: *minimize* sum of squared residuals w.r.t. target image

$$f(x) = \frac{1}{WHC} \sum_{i=0}^{W} \sum_{j=0}^{H} \sum_{c=0}^{C} (x_{ijc} - I_{ijc})^2$$

- Initial population:
 - random vertices (avoid large polygons)
 - o random RGB color in [0, 255]
 - o random alpha value in [20, 220]

Polygons of an individual drawn over a black canvas

Genetic Algorithm

- **Parent selection**: roulette-wheel, rank-based, truncated rank-based or tournament selection
- **Crossover**: one point, uniform or arithmetic
- **Mutation**: Gaussian mutation, using either:
 - 3 step-sizes for vertices coordinates, color channels and alpha value
 - Evolution Strategies with (2*#vertex + #channels + 1)
 self-adaptive mutation step-sizes
- **Replacement strategy**: (μ, λ) , $(\mu + \lambda)$ or crowding replacement

Polygons of an individual drawn over a black canvas

Crowding Replacement

Diversity preservation mechanism. For each offspring:

- 1. Sample **random pool** of individuals from current population
- 2. Take the individual in the pool **closer** to the offspring
- 3. **Replace** that individual with the offspring if the offspring fitness is better

Particle Swarm Optimization

Move a set of particles trying to reconstruct the most relevant **contours** of the target image (*edge detection*):

- **Particles**: represented by three values:
 - o x, y coordinates
 - \circ θ rotation angle
- **Neighborhood**: *distance-based* or *list-based* (*ring* or *star*)
- Velocity update: standard, Fully-informed or Comprehensive Learning

Particle Swarm Optimization

- **Fitness**: maximize particle's gradient w.r.t. position and rotation: $f(x) = \left| \sum_{p_R \in R(x)} I(p_R) \sum_{p_L \in L(x)} I(p_L) \right|$
- **Velocity clamping**: avoid large velocity values
- Separation rule: maintain a minimum distance between particles: $v_i = v_i \sum_{p \in S_{d_{\min}}; \ p \neq i} (x_p. \text{center} x_i. \text{center})$

Experiments

Different combinations of hyper-parameters tested for both approaches:

• **GA**: 360 runs, 1000 generations

• **PSO**: 230 runs, 100 iterations

Note: for GA, only polygons with 3 vertices were used in the experiments, since an higher number of vertices did not bring any significant improvement.

Results: Genetic Algorithm

Genetic Algorithm approach:

pop.	num.	selection	replacement	crossover	self	best	avg	std
size	poly		3900		adaptive	fitness (%)	fitness	fitness
100	50	truncated(0.1)	(μ,λ)	uniform	False	422 (93%)	414.70	83.20
100	100	truncated(0.2)	crowding(2)	uniform	False	447 (93%)	425.61	49.51
100	200	tournament(10)	$(\mu + \lambda)$	uniform	False	455 (93%)	444.95	37.28
100	200	roulette-wheel	crowding(5)	uniform	False	458 (93%)	431.60	93.18
100	200	tournament(10)	(μ,λ)	uniform	True	513 (92%)	471.44	85.33
100	200	truncated(0.1)	crowding(5)	one-point	False	516 (92%)	509.82	18.51
50	100	truncated(0.1)	$(\mu + \lambda)$	uniform	True	517 (92%)	496.20	94.65
50	200	roulette-wheel	crowding(2)	uniform	False	524 (92%)	520.34	16.34
100	100	truncated(0.2)	(μ,λ)	one-point	False	524 (92%)	517.76	17.41
50	100	roulette-wheel	$(\mu + \lambda)$	uniform	False	526 (92%)	519.46	16.36

Results: Genetic Algorithm

Results: Particle Swarm Optimization

Particle Swarm Optimization approach:

swarm	segment	velocity	neigh.	neigh.	$(\mathrm{w},\phi_1,\phi_2)$	$oldsymbol{d}_{ ext{min}}$	$oldsymbol{v}_{max}$	best	avg	std
size	size	update	topology	size				fitness	fitness	fitness
1000	10	standard	distance	5	(0.1, 1.7, 1.2)	2	50	67.94	66.57	3.75
500	20	standard	star	5	(0.1, 1.7, 1.2)	2	20	65.83	62.87	8.66
500	10	standard	star	5	(0.1, 1.7, 1.2)	2	50	62.21	62.14	0.19
1000	10	standard	star	3	(0.1, 1.7, 1.2)	2	50	57.29	54.86	9.04
1000	20	FIPS	star	3	(0.7, 1.5, 1.5)	2	50	44.65	42.12	8.73
1000	20	standard	distance	3	(0.1, 1.7, 1.2)	2	50	42.70	40.92	7.28
500	20	FIPS	distance	5	(0.1, 1.7, 1.2)	2	50	41.87	37.13	9.79
500	10	CLPSO	ring	5	(0.1, 1.7, 1.2)	2	20	32.49	31.11	3.19
1000	20	standard	ring	5	(0.1, 1.7, 1.2)	10	20	22.35	19.83	8.98
500	10	CLPSO	star	5	(0.1, 1.7, 1.2)	2	50	21.92	20.70	3.74

Results: Particle Swarm Optimization

Video Vectorization

The same algorithms can be easily applied to **videos**:

- Optimize over the first frame for 1000 generations
- For the following frames:
 - Start from the previous frame solution
 - Optimize for 100 generations
 - Move to the next frame
 - Repeat

Video Vectorization Results

Department of Information Engineering and Computer Science

Master's Degree in Artificial Intelligence Systems

Thank you

Matteo Destro

Evolutionary Image Vectorization