MATH 364 October 11, 2021

Kevin Evans ID: 11571810

2.6.15 Model, but do not solve. A company has plants P_1 , P_2 , and P_3 which produce sandwiches needed at assembly centers C_1 , C_2 , C_3 , and C_4 . The annual output capacities of the plants and demands at the assembly centers are:

Annual Output of Sandwiches				
P_1	P_2	P_3		
10,500	18,800	13,200		

	Annual Demand of Sandwiches					
	C_1	C_2	C_3	C_4		
7	,700	9,900	12,200	11,100		

The units can be delivered from the plants to the centers either by truck or rail. However, for each route for which units are delivered by rail, there is an annual route lease fee, independent of the number of units shipped through the route. The data follow.

			To Center			
Delivery Cost (\$/unit)	From Plant	By	C_1	C_2	C_3	C_4
	P_1	Truck Rail	60 35	80 62	50 22	30 25
	P_2	Truck Rail	95 75	120 89	65 45	75 55
	P_3	Truck Rail	110 53	98 35	77 32	88 38

		To Center			
	From Plant	C_1	C_2	C_3	C_4
Route Lease Fee (in \$1000)	P_1	165	220	175	150
	P_2	250	200	220	210
	P_3	180	190	200	180

Determine a minimum cost delivery schedule for the next year; that is, for each plant and center, determine how many units are to be shipped from plant to the center by truck, and how many by rail, so that the supplies are not exceeded, demands are met, and total cost is minimized.

Solution. Let's begin by determining the decision variables. We'll need to track how many units are shipped for both by truck and by rail, as well as a binary variable to track if one route uses rail. We'll define

Let $t_{ij} =$ number of units shipped from plant P_i to center C_j by truck, $r_{ij} =$ number of units shipped from plant P_i to center C_j by rail, $b_{ij} = \begin{cases} 1 & \text{if the shipments from } P_i \text{ to } C_j \text{ will be via rail} \\ 0 & \text{otherwise} \end{cases}$

We can now figure out the objective function. For this problem, we'll be minimizing the total cost

Cost
$$z = T \cdot t + R \cdot r + B \cdot b$$
,
where $T = \begin{pmatrix} 60 & 80 & 50 & 30 \\ 95 & 120 & 65 & 75 \\ 110 & 98 & 77 & 88 \end{pmatrix}$,
 $R = \begin{pmatrix} 35 & 62 & 22 & 25 \\ 75 & 89 & 45 & 55 \\ 53 & 35 & 32 & 38 \end{pmatrix}$,
 $B = \begin{pmatrix} 165 & 220 & 175 & 150 \\ 250 & 200 & 220 & 210 \\ 180 & 190 & 200 & 180 \end{pmatrix} \times 1000$.

The constraints will be given by the annual output and demand, where

output of plant
$$i=$$
 amount produced by $P_i=\sum_{j=1}^4 t_{ij}+r_{ij},$ for $i=1,2,3$ demand by center $j=$ amount sent to $C_j=\sum_{i=1}^3 t_{ij}+r_{ij}.$ for $j=1,2,3,4$

We'll also need a constraint to ensure that we can use the rail only when the fee is charged,

$$r_{ij} \leq M \times b_{ij}$$
.

Putting this all together, the integer program becomes

$$\begin{aligned} & \text{min} \quad z = T \cdot t + R \cdot r + B \cdot b \\ & \text{where the matrices } T, R, B \text{ are defined above} \end{aligned}$$
 s.t.
$$P_i = \sum_{j=1}^4 t_{ij} + r_{ij}, & \text{for } i = 1, 2, 3 \\ & C_j = \sum_{i=1}^3 t_{ij} + r_{ij}. & \text{for } j = 1, 2, 3, 4 \\ & r_{ij} \leq M b_{ij} \\ & M \text{ large} \\ & b_{ij} \in \{0, 1\} \\ & t_{ij}, r_{ij} \geq 0 \\ & t_{ij}, r_{ij} \in \mathbb{Z} \end{aligned}$$