

Introducción a Modelos Psicométricos Clase 4

La Teoría Clásica de los Tests: Modelo, supuestos y confiabilidad

Iwin Leenen y Ramsés Vázquez-Lira

Facultad de Psicología, UNAM

Programa de Licenciatura y Posgrado en Psicología Semestre 2019–1

Índice

- 1 El modelo clásico aplicado a una persona
- 2 El modelo clásico aplicado a una población de personas

El modelo clásico de la psicometría

Ecuación básica

$$X = T + E$$

Índice

- 1 El modelo clásico aplicado a una persona
 - Conceptos básicos y supuestos
 - Confiabilidad
- 2 El modelo clásico aplicado a una población de personas

Clase 4 — La Teoría Clásica de los Tests: Modelo, supuestos y confiabilidad

El modelo clásico aplicado a una persona

Conceptos básicos y supuestos

Índice

- 1 El modelo clásico aplicado a una persona
 - Conceptos básicos y supuestos
 - Confiabilidad
- 2 El modelo clásico aplicado a una población de personas

El modelo clásico aplicado a una persona

Conceptos básicos y supuestos

La Teoría Clásica de los Tests para una Persona

- Examinar a una sola persona un gran número de veces
- Disponemos para cada aplicación de un examen paralelo
- Cada vez como si fuera su primer examen. Es decir:
 - No hay efectos de memoria
 - No hay efectos de cansancio o aburrimiento
 - No hay efectos de práctica, familiarizarse
 - .
- Registramos cada vez su puntuación observada y la añadimos a una tabla
- Supongamos que conocemos su "puntuación verdadera"

La Teoría Clásica de los Tests para una Persona

- Examinar a una sola persona un gran número de veces
- Disponemos para cada aplicación de un examen paralelo
- Cada vez como si fuera su primer examen. Es decir:
 - No hay efectos de memoria
 - No hay efectos de cansancio o aburrimiento
 - No hay efectos de práctica, familiarizarse
- Registramos cada vez su puntuación observada y la añadimos a una tabla
- Supongamos que conocemos su "puntuación verdadera"

La Teoría Clásica de los Tests para una Persona

- Examinar a una sola persona un gran número de veces
- Disponemos para cada aplicación de un examen paralelo
- Cada vez como si fuera su primer examen. Es decir:
 - No hay efectos de memoria
 - No hay efectos de cansancio o aburrimiento
 - No hay efectos de práctica, familiarizarse
 - ...
- Registramos cada vez su puntuación observada y la añadimos a una tabla
- Supongamos que conocemos su "puntuación verdadera"

Clase 4 — La Teoría Clásica de los Tests: Modelo, supuestos y confiabilidad

El modelo clásico aplicado a una persona

Conceptos básicos y supuestos

La Teoría Clásica de los Tests para una Persona

- Examinar a una sola persona un gran número de veces
- Disponemos para cada aplicación de un examen paralelo
- Cada vez como si fuera su primer examen. Es decir:
 - No hay efectos de memoria
 - No hay efectos de cansancio o aburrimiento
 - No hay efectos de práctica, familiarizarse
 - ...
- Registramos cada vez su puntuación observada y la añadimos a una tabla
- Supongamos que conocemos su "puntuación verdadera"

El modelo clásico aplicado a una persona

Conceptos básicos y supuestos

La Teoría Clásica de los Tests para una Persona

- Examinar a una sola persona un gran número de veces
- Disponemos para cada aplicación de un examen paralelo
- Cada vez como si fuera su primer examen. Es decir:
 - No hay efectos de memoria
 - No hay efectos de cansancio o aburrimiento
 - No hay efectos de práctica, familiarizarse
 - ...
- Registramos cada vez su puntuación observada y la añadimos a una tabla
- Supongamos que conocemos su "puntuación verdadera"

Clase 4 — La Teoría Clásica de los Tests: Modelo, supuestos y confiabilidad

El modelo clásico aplicado a una persona

Conceptos básicos y supuestos

La Teoría Clásica de los Tests para una Persona

- Examinar a una sola persona un gran número de veces
- Disponemos para cada aplicación de un examen paralelo
- Cada vez como si fuera su primer examen. Es decir:
 - No hay efectos de memoria
 - No hay efectos de cansancio o aburrimiento
 - No hay efectos de práctica, familiarizarse
 - ...
- Registramos cada vez su puntuación observada y la añadimos a una tabla
- Supongamos que conocemos su "puntuación verdadera"

$$X_{ih} = T_i + E_{ih}$$

El modelo clásico aplicado a una persona

Conceptos básicos y supuestos

$$X_{ih} = T_i + E_{ih}$$

h	X _{ih}	=	T_i	+	Eih
1	39		37		+2
2	36		37		-1
3	34		37		-3
4	37		37		0
5	38		37		+1
÷	÷		:		÷
∞					

$$X_{ih} = T_i + E_{ih}$$

h	X _{ih}	=	T_i	+	Eih
1	39		37		+2
2	36		37		-1
3	34		37		-3
4	37		37		0
5	38		37		+1
÷	÷		÷		÷
∞					
8	37		37		0

$$X_{ih} = T_i + E_{ih}$$

h	X _{ih}	=	T_i	+	Eih
1	39		37		+2
2	36		37		-1
3	34		37		-3
4	37		37		0
5	38		37		+1
÷	÷		÷		÷
∞					
8	37		37		0
σ^2	3				

$$X_{ih} = T_i + E_{ih}$$

h	X _{ih}	=	T_i	+	Eih
1	39		37		+2
2	36		37		-1
3	34		37		-3
4	37		37		0
5	38		37		+1
÷	÷		÷		÷
∞					
8	37		37		0
σ^2	3		0		3

La Teoría Clásica de los Tests para una Persona

$$X_{ih} = T_i + E_{ih}$$

h	X_{ih}	=	T_i	+	E_{ih}
1	39		37		+2
2	36		37		-1
3	34		37		-3
4	37		37		0
5	38		37		+1
:	:		÷		:
∞					
8	37		37		0
σ^2	3		0		3

$$\quad \bullet \quad \sigma_{T_i}^2 = 0$$

La Teoría Clásica de los Tests para una Persona

$$X_{ih} = T_i + E_{ih}$$

h	X_{ih}	=	T_i	+	E_{ih}
1	39		37		+2
2	36		37		-1
3	34		37		-3
4	37		37		0
5	38		37		+1
÷	÷		:		:
∞					
€	37		37		0
σ^2	3		0		3

Supuestos: $\sigma^2 = 0$

$$\begin{array}{c} \bullet \ \ \sigma_{T_i}^2 = 0 \\ \Longrightarrow \ \ \sigma_{X_i}^2 \ = \end{array}$$

La Teoría Clásica de los Tests para una Persona

$$X_{ih} = T_i + E_{ih}$$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
2 36 37 -1 3 34 37 -3 4 37 37 0 5 38 37 +1 ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴	h	X _{ih}	=	T_i	+	Eih
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	39		37		+2
4 37 37 0 5 38 37 +1 ∴ ∴ ∴ ∴ ∴ ∞ 37 37 0	2	36		37		-1
5 38 37 +1 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ∞ 0	3	34		37		-3
: : : : : :	4	37		37		0
£ 37 37 0	5	38		37		+1
£ 37 37 0	:	÷		÷		÷
	∞					
σ^2 3 0 3		37		37		0
	σ^2	3		0		3

$$\begin{split} \bullet & \ \sigma_{T_i}^2 = 0 \\ \Longrightarrow & \ \sigma_{X_i}^2 \, = \, \sigma_{T_i}^2 + \sigma_{E_i}^2 + 2\sigma_{T_iE_i} \end{split}$$

La Teoría Clásica de los Tests para una Persona

$$X_{ih} = T_i + E_{ih}$$

h	X _{ih}	=	T_i	+	Eih
1	39		37		+2
2	36		37		-1
3	34		37		-3
4	37		37		0
5	38		37		+1
÷	÷		÷		÷
∞					
8	37		37		0
σ^2	3		0		3

$$\begin{array}{ccc}
\bullet & \sigma_{T_i}^2 = 0 \\
\implies & \sigma_{X_i}^2 = \sigma_{E_i}^2
\end{array}$$

La Teoría Clásica de los Tests para una Persona

$$X_{ih} = T_i + E_{ih}$$

h	X _{ih}	=	T_i	+	Eih
1	39		37		+2
2	36		37		-1
3	34		37		-3
4	37		37		0
5	38		37		+1
÷	÷		÷		÷
∞					
8	37		37		0
σ^2	3		0		3

$$\begin{array}{ccc} \bullet & \sigma_{T_i}^2 = 0 \\ \Longrightarrow & \sigma_{X_i}^2 = & \sigma_{E_i}^2 \end{array}$$

•
$$\mathscr{E}(E_i) = 0$$

La Teoría Clásica de los Tests para una Persona

$$X_{ih} = T_i + E_{ih}$$

h	X _{ih}	=	T_i	+	Eih
1	39		37		+2
2	36		37		-1
3	34		37		-3
4	37		37		0
5	38		37		+1
÷	÷		÷		÷
∞					
8	37		37		0
σ^2	3		0		3

$$\begin{array}{ll}
\bullet & \sigma_{T_i}^2 = 0 \\
\implies \sigma_{X_i}^2 = \sigma_{E_i}^2
\end{array}$$

•
$$\mathcal{E}(E_i) = 0$$

 $\Longrightarrow \mathcal{E}(X_i) =$

Conceptos básicos y supuestos

 X_{ih}

La Teoría Clásica de los Tests para una Persona

Supuestos:

 $X_{ih} = T_i + E_{ih}$

$$\begin{array}{ll}
\bullet & \sigma_{T_i}^2 = 0 \\
\implies \sigma_{X_i}^2 = \sigma_{F_i}^2
\end{array}$$

•
$$\mathscr{E}(E_i) = 0$$

 $\Longrightarrow \mathscr{E}(X_i) = \mathscr{E}(T_i) + \mathscr{E}(E_i)$

La Teoría Clásica de los Tests para una Persona

$$X_{ih} = T_i + E_{ih}$$

h	X _{ih}	=	T_i	+	Eih
1	39		37		+2
2	36		37		-1
3	34		37		-3
4	37		37		0
5	38		37		+1
÷	÷		÷		÷
∞					
8	37		37		0
σ^2	3		0		3

$$\begin{array}{ccc}
\bullet & \sigma_{T_i}^2 = 0 \\
\implies & \sigma_{X_i}^2 = \sigma_{E_i}^2
\end{array}$$

$$\begin{array}{ccc}
\bullet & \mathscr{E}(E_i) = 0 \\
\implies & \mathscr{E}(X_i) = T_i
\end{array}$$

Clase 4 — La Teoría Clásica de los Tests: Modelo, supuestos y confiabilidad

El modelo clásico aplicado a una persona

Confiabilidad

Índice

- 1 El modelo clásico aplicado a una persona
 - Conceptos básicos y supuestos
 - Confiabilidad
 - El modelo clásico aplicado a una población de personas

La Teoría Clásica de los Tests para una Persona

$$X_{ih} = T_i + E_{ih}$$

h	X _{ih}	=	T _i	+	Eih
1	39		37		+2
2	36		37		-1
3	34		37		-3
4	37		37		0
5	38		37		+1
÷	÷		÷		÷
∞					
8	37		37		0
σ^2	3		0		3

Supuestos:

$$\quad \sigma_{T_i}^2 = 0$$

•
$$\mathscr{E}(E_i) = 0$$

¿Cuál sería una medida de la confiabilidad?

La Teoría Clásica de los Tests para una Persona

$$X_{ih} = T_i + E_{ih}$$

h	X _{ih}	=	T_i	+	Eih
1	39		37		+2
2	36		37		-1
3	34		37		-3
4	37		37		0
5	38		37		+1
÷	÷		÷		÷
∞					
8	37		37		0
σ^2	3		0		3

Supuestos:

•
$$\mathscr{E}(E_i) = 0$$

¿Cuál sería una medida de la confiabilidad?

$$\sigma_{E}^{2}$$

	$X_{ih} = T_i + E_{ih}$						
Persona i							
h	X _{ih}	=	T_i	+	Eih		
1	39		37		+2		
2	36		37		-1		
3	34		37		-3		
4	37		37		0		
5	38		37		+1		
÷	:		:		÷		
∞							
$\frac{-\varepsilon}{\varepsilon}$	37		37		0		
σ^2	3		0		3		

La Teoría Clásica de los Tests

El término E

Generalmente, se pueden considerar tres fuentes del error, que contribuyen al término E:

Factores transitorios: E(trans)

Especificidad: E^(espec)

Factores aleatorios: F(alea

Es decir, se puede descomponer E en tres términos:

$$E = E^{\text{(trans)}} + E^{\text{(espec)}} + E^{\text{(alea}}$$

La Teoría Clásica de los Tests

El término E

Generalmente, se pueden considerar tres fuentes del error, que contribuyen al término E:

- Factores transitorios: E(trans)
- Especificidad: E^(espec)
- Factores aleatorios: E(alea

Es decir, se puede descomponer E en tres términos

$$E = E^{\text{(trans)}} + E^{\text{(espec)}} + E^{\text{(alea)}}$$

La Teoría Clásica de los Tests

El término E

Generalmente, se pueden considerar tres fuentes del error, que contribuyen al término E:

- Factores transitorios: E(trans)
- Especificidad: E^(espec)
- Factores aleatorios: F^(alea)

Es decir, se puede descomponer *E* en tres términos

$$E = E^{\text{(trans)}} + E^{\text{(espec)}} + E^{\text{(alea}}$$

La Teoría Clásica de los Tests

El término E

Generalmente, se pueden considerar tres fuentes del error, que contribuyen al término E:

Factores transitorios: E(trans)

Especificidad: E^(espec)

Factores aleatorios: E(alea)

Es decir, se puede descomponer *E* en tres términos

$$E = E^{\text{(trans)}} + E^{\text{(espec)}} + E^{\text{(alea)}}$$

La Teoría Clásica de los Tests

El término E

Generalmente, se pueden considerar tres fuentes del error, que contribuyen al término E:

- Factores transitorios: E(trans)
- Especificidad: E^(espec)
- Factores aleatorios: E(alea)

Es decir, se puede descomponer *E* en tres términos:

$$E = E^{\text{(trans)}} + E^{\text{(espec)}} + E^{\text{(alea)}}$$

Índice

- 1 El modelo clásico aplicado a una persona
- 2 El modelo clásico aplicado a una población de personas
 - Conceptos básicos y supuestos
 - Confiabilidad: Definición teórica
 - El error estándar de medición

Clase 4 — La Teoría Clásica de los Tests: Modelo, supuestos y confiabilidad

El modelo clásico aplicado a una población de personas

Conceptos básicos y supuestos

Índice

- 1 El modelo clásico aplicado a una persona
- 2 El modelo clásico aplicado a una población de personas
 - Conceptos básicos y supuestos
 - Confiabilidad: Definición teórica
 - El error estándar de medición

El modelo clásico aplicado a una población de personas

Conceptos básicos y supuestos

La Teoría Clásica de los Tests para una Población de Personas

$$X_i = T_i + E_i$$

Conceptos básicos y supuestos

La Teoría Clásica de los Tests para una Población de Personas

$$X_i = T_i + E_i$$

i	Xi	=	T_i	+	Ei
1	39		37		+2
2	19		24		-5
3	26		29		-3
4	43		41		+2
5	37		37		0
:	:		:		:

Conceptos básicos y supuestos

La Teoría Clásica de los Tests para una Población de Personas

$$X_i = T_i + E_i$$

i	Xi	=	T_i	+	Ei
1	39		37		+2
2	19		24		-5
3	26		29		-3
4	43		41		+2
5	37		37		0
:	:		:		:
			•		•
€	33		33		0

Conceptos básicos y supuestos

La Teoría Clásica de los Tests para una Población de Personas

$$X_i = T_i + E_i$$

i	Xi	=	T_i	+	Ei
1	39		37		+2
2	19		24		-5
3	26		29		-3
4	43		41		+2
5	37		37		0
÷	÷		÷		÷
8	33		33		0
σ^2	30		24		6

Conceptos básicos y supuestos

La Teoría Clásica de los Tests para una Población de Personas

i	Xi	=	T_i	+	Ei
1	39		37		+2
2	19		24		-5
3	26		29		-3
4	43		41		+2
5	37		37		0
:	:		:		÷
8	33		33		0
σ^2	30		24		6

$$X_i = T_i + E_i$$

Conceptos básicos y supuestos

La Teoría Clásica de los Tests para una Población de Personas

i	Xi	=	T_i	+	Ei
1	39		37		+2
2	19		24		-5
3	26		29		-3
4	43		41		+2
5	37		37		0
:	÷		÷		÷
€	33		33		0
σ^2	30		24		6

$$X_i = T_i + E_i$$

$$\mathscr{E}(E) = 0 \Longrightarrow \mathscr{E}(X) =$$

Conceptos básicos y supuestos

La Teoría Clásica de los Tests para una Población de Personas

i	Xi	=	T_i	+	Ei
1	39		37		+2
2	19		24		-5
3	26		29		-3
4	43		41		+2
5	37		37		0
÷	÷		÷		÷
8	33		33		0
σ^2	30		24		6

$$X_i = T_i + E_i$$

•
$$\mathcal{E}(E) = 0$$

 $\Longrightarrow \mathcal{E}(X) = \mathcal{E}(T) + \mathcal{E}(E)$

Conceptos básicos y supuestos

La Teoría Clásica de los Tests para una Población de Personas

i	Xi	=	T_i	+	Ei
1	39		37		+2
2	19		24		-5
3	26		29		-3
4	43		41		+2
5	37		37		0
:	÷		÷		÷
8	33		33		0
σ^2	30		24		6

$$X_i = T_i + E_i$$

Conceptos básicos y supuestos

La Teoría Clásica de los Tests para una Población de Personas

i	X_i	=	T_i	+	E_i
1	39		37		+2
2	19		24		-5
3	26		29		-3
4	43		41		+2
5	37		37		0
÷	÷		:		÷
8	33		33		0
σ^2	30		24		6

$$X_i = T_i + E_i$$

$$\begin{array}{ll}
\bullet \ \mathscr{E}(E) = 0 \\
\implies \mathscr{E}(X) = \mathscr{E}(T)
\end{array}$$

$$ho_{ET}=0$$

Conceptos básicos y supuestos

La Teoría Clásica de los Tests para una Población de Personas

i	Xi	=	T_i	+	Ei
1	39		37		+2
2	19		24		-5
3	26		29		-3
4	43		41		+2
5	37		37		0
÷	÷		÷		÷
8	33		33		0
σ^2	30		24		6

$$X_i = T_i + E_i$$

$$\mathscr{E}(E) = 0 \Longrightarrow \mathscr{E}(X) = \mathscr{E}(T)$$

$$\begin{array}{c} \bullet \ \, \rho_{ET} = 0 \\ \Longrightarrow \ \, \sigma_{\!X}^2 = \end{array}$$

Conceptos básicos y supuestos

La Teoría Clásica de los Tests para una Población de Personas

i	Xi	=	T_i	+	Ei
1	39		37		+2
2	19		24		-5
3	26		29		-3
4	43		41		+2
5	37		37		0
÷	÷		:		:
8	33		33		0
σ^2	30		24		6

$$X_i = T_i + E_i$$

$$\mathscr{E}(E) = 0 \Longrightarrow \mathscr{E}(X) = \mathscr{E}(T)$$

$$\begin{array}{c} \bullet \;\; \rho_{ET} = 0 \\ \Longrightarrow \;\; \sigma_X^2 \; = \; \sigma_T^2 + \sigma_E^2 \; + 2\sigma_{TE} \end{array}$$

Conceptos básicos y supuestos

La Teoría Clásica de los Tests para una Población de Personas

i	Xi	=	T_i	+	Ei
1	39		37		+2
2	19		24		-5
3	26		29		-3
4	43		41		+2
5	37		37		0
÷	÷		÷		÷
€	33		33		0
σ^2	30		24		6

$$X_i = T_i + E_i$$

$$\begin{array}{ll}
\bullet \ \mathscr{E}(E) = 0 \\
\implies \mathscr{E}(X) = \mathscr{E}(T)
\end{array}$$

$$\begin{array}{ll} \bullet & \rho_{ET} = 0 \\ \Longrightarrow & \sigma_X^2 = \sigma_T^2 + \sigma_E^2 \end{array}$$

Conceptos básicos y supuestos

La Teoría Clásica de los Tests para una Población de Personas

i	X_i	=	T_i	+	E_i
1	39		37		+2
2	19		24		-5
3	26		29		-3
4	43		41		+2
5	37		37		0
÷	÷		:		:
8	33		33		0
σ^2	30		24		6

$$X_i = T_i + E_i$$

Supuestos:

$$\mathscr{E}(E) = 0 \Longrightarrow \mathscr{E}(X) = \mathscr{E}(T)$$

$$\begin{array}{ll} \bullet & \rho_{ET} = 0 \\ \Longrightarrow & \sigma_X^2 = \sigma_T^2 + \sigma_E^2 \end{array}$$

 $\begin{array}{l} \bullet \; \; \rho_{EW} = 0 \\ \text{para cualquier variable } \textit{W} \; \text{que no} \\ \text{incluye} \; \textit{E} \end{array}$

Conceptos básicos y supuestos

La Teoría Clásica de los Tests para una Población de Personas

i	Xi	=	T_i	+	Ei
1	39		37		+2
2	19		24		-5
3	26		29		-3
4	43		41		+2
5	37		37		0
:	÷		÷		÷
8	33		33		0
σ^2	30		24		6

$$X_i = T_i + E_i$$

Supuestos:

•
$$\mathcal{E}(E) = 0$$

 $\Longrightarrow \mathcal{E}(X) = \mathcal{E}(T)$

$$\begin{array}{l} \bullet \;\; \rho_{ET} = 0 \\ \Longrightarrow \;\; \sigma_X^2 \, = \, \sigma_T^2 + \sigma_E^2 \end{array}$$

 $\begin{array}{l} \bullet \; \rho_{EW} = 0 \\ \text{para cualquier variable } W \; \text{que no} \\ \text{incluye} \; E \end{array}$

Nota: Es difícil explorar la plausibilidad de los supuestos

Clase 4 — La Teoría Clásica de los Tests: Modelo, supuestos y confiabilidad

El modelo clásico aplicado a una población de personas

Confiabilidad: Definición teórica

Índice

- 1 El modelo clásico aplicado a una persona
- 2 El modelo clásico aplicado a una población de personas
 - Conceptos básicos y supuestos
 - Confiabilidad: Definición teórica
 - El error estándar de medición

Confiabilidad: Definición teórica

La Teoría Clásica de los Tests para una Población de Personas

El Coeficiente de Confiabilidad

Mostramos que:

$$\sigma_X^2 \ = \ \sigma_T^2 + \sigma_E^2$$

Definición de la confiabilidad

$$\rho_{XX'} = \frac{\sigma_T^2}{\sigma_X^2}$$

Confiabilidad: Definición teórica

La Teoría Clásica de los Tests para una Población de Personas

El Coeficiente de Confiabilidad

Mostramos que:

$$\sigma_X^2 = \sigma_T^2 + \sigma_E^2$$

Definición de la confiabilidad:

$$ho_{XX'} = rac{\sigma_T^2}{\sigma_X^2}$$

Confiabilidad: Definición teórica

La Teoría Clásica de los Tests para una Población de Personas

El Coeficiente de Confiabilidad

Mostramos que:

$$\sigma_X^2 = \sigma_T^2 + \sigma_E^2$$

Definición de la confiabilidad:

$$\rho_{XX'} = \frac{\sigma_T^2}{\sigma_X^2}$$

La Teoría Clásica de los Tests para una Población de Personas

El Coeficiente de Confiabilidad

Mostramos que:

$$\sigma_X^2 = \sigma_T^2 + \sigma_E^2$$

Definición de la confiabilidad:

$$\rho_{XX'} = \frac{\sigma_T^2}{\sigma_X^2}$$

$$\rho_{XX'} =$$

La Teoría Clásica de los Tests para una Población de Personas

El Coeficiente de Confiabilidad

Mostramos que:

$$\sigma_X^2 = \sigma_T^2 + \sigma_E^2$$

Definición de la confiabilidad:

$$\rho_{XX'} = \frac{\sigma_T^2}{\sigma_X^2}$$

$$\rho_{XX'} = \frac{\sigma_X^2 - \sigma_E^2}{\sigma_X^2}$$

La Teoría Clásica de los Tests para una Población de Personas

El Coeficiente de Confiabilidad

Mostramos que:

$$\sigma_X^2 = \sigma_T^2 + \sigma_E^2$$

Definición de la confiabilidad:

$$\rho_{XX'} \; = \; \frac{\sigma_T^2}{\sigma_X^2}$$

$$\rho_{XX'} = \frac{\sigma_X^2}{\sigma_X^2} - \frac{\sigma_E^2}{\sigma_X^2}$$

La Teoría Clásica de los Tests para una Población de Personas

El Coeficiente de Confiabilidad

Mostramos que:

$$\sigma_X^2 = \sigma_T^2 + \sigma_E^2$$

Definición de la confiabilidad:

$$\rho_{XX'} \; = \; \frac{\sigma_T^2}{\sigma_X^2}$$

$$\rho_{XX'} = 1 - \frac{\sigma_E^2}{\sigma_X^2}$$

Confiabilidad: Definición teórica

La Teoría Clásica de los Tests para una Población de Personas

Interpretación del Coeficiente de Confiabilidad

- Siempre se cumple: $0 \leqslant \rho_{XX'} \leqslant 1$
- $ho_{XX'}$ indica cuánto de las diferencias entre las calificaciones observadas en el test reflejan diferencias verdaderas.
- $ho_{\chi\chi'}=0 \implies$ Todas las diferencias observadas se deben a factores no sistemáticos
- $\rho_{XX'} = 1$ \implies Todas las diferencias observadas son diferencias sistemáticas.
 - Para todas las personas, la puntuación observada coincide con la verdadera.

Confiabilidad: Definición teórica

La Teoría Clásica de los Tests para una Población de Personas

Interpretación del Coeficiente de Confiabilidad

- Siempre se cumple: $0 \leqslant \rho_{XX'} \leqslant 1$
- $ho_{\chi\chi'}$ indica cuánto de las diferencias entre las calificaciones observadas en el test reflejan diferencias verdaderas.
- $ho_{\chi\chi'}=0 \implies$ Todas las diferencias observadas se deben a factores no sistemáticos
- ullet $ho_{\chi\chi'}=1$ \Longrightarrow Todas las diferencias observadas son diferencias sistemáticas
 - Para todas las personas, la puntuación observada coincide con la verdadera.

Confiabilidad: Definición teórica

La Teoría Clásica de los Tests para una Población de Personas

Interpretación del Coeficiente de Confiabilidad

- Siempre se cumple: $0 \leqslant \rho_{XX'} \leqslant 1$
- $ho_{\chi\chi'}$ indica cuánto de las diferencias entre las calificaciones observadas en el test reflejan diferencias verdaderas.
- \bullet $\rho_{XX'} = 1 \implies$ Todas las diferencias observadas son diferencias sistemáticas
 - Para todas las personas, la puntuación observada coincide con la verdadera.

La Teoría Clásica de los Tests para una Población de Personas

Interpretación del Coeficiente de Confiabilidad

- Siempre se cumple: $0 \leqslant \rho_{XX'} \leqslant 1$
- $ho_{\chi\chi'}$ indica cuánto de las diferencias entre las calificaciones observadas en el test reflejan diferencias verdaderas.
- $\rho_{\chi\chi'}=0$ \implies Todas las diferencias observadas se deben a factores no sistemáticos
- $\rho_{XX'} = 1$ \implies Todas las diferencias observadas son diferencias sistemáticas.
 - Para todas las personas, la puntuación observada coincide con la verdadera.

La Teoría Clásica de los Tests para una Población de Personas

Interpretación del Coeficiente de Confiabilidad

- Siempre se cumple: $0 \leqslant \rho_{XX'} \leqslant 1$
- $ho_{\chi\chi'}$ indica cuánto de las diferencias entre las calificaciones observadas en el test reflejan diferencias verdaderas.
- $ho_{\chi\chi'}=1$ \Longrightarrow Todas las diferencias observadas son diferencias sistemáticas. \Longrightarrow Para todas las personas, la puntuación observada coincide con la verdadera.

La Teoría Clásica de los Tests para una Población de Personas

Interpretación del Coeficiente de Confiabilidad

- Siempre se cumple: $0 \leqslant \rho_{XX'} \leqslant 1$
- $ho_{\chi\chi'}$ indica cuánto de las diferencias entre las calificaciones observadas en el test reflejan diferencias verdaderas.
- $\rho_{\chi\chi'}=0$ \implies Todas las diferencias observadas se deben a factores no sistemáticos
- $ho_{\chi\chi'}=1$ \Longrightarrow Todas las diferencias observadas son diferencias sistemáticas. \Longrightarrow Para todas las personas, la puntuación observada coincide con la verdadera. Es decir, X=T

Confiabilidad: Definición teórica

La Teoría Clásica de los Tests para una Población de Personas

Otra forma para interpretar el coeficiente de confiabilidad

Propiedad

$$\rho_{XT} = \frac{\sigma_{XT}}{\sigma_X \sigma_T} \\
= \frac{\sigma_{T+E,T}}{\sigma_X \sigma_T} \\
= \frac{\sigma_{T,T} + \sigma_{E,T}}{\sigma_X \sigma_T} \\
= \frac{\sigma_T^2}{\sigma_X \sigma_T} \\
= \frac{\sigma_T^2}{\sigma_X} \\
= \sqrt{\rho_{XX'}}$$

Confiabilidad: Definición teórica

La Teoría Clásica de los Tests para una Población de Personas

Otra forma para interpretar el coeficiente de confiabilidad

Propiedad

$$\rho_{XT} = \frac{\sigma_{XT}}{\sigma_X \sigma_T} \\
= \frac{\sigma_{T+E,T}}{\sigma_X \sigma_T} \\
= \frac{\sigma_{T,T} + \sigma_{E,T}}{\sigma_X \sigma_T} \\
= \frac{\sigma_T^2}{\sigma_X \sigma_T} \\
= \frac{\sigma_T^2}{\sigma_X} \\
= \sqrt{\rho_{XX'}}$$

Confiabilidad: Definición teórica

La Teoría Clásica de los Tests para una Población de Personas

Otra forma para interpretar el coeficiente de confiabilidad

Propiedad

$$\rho_{XT} = \frac{\sigma_{XT}}{\sigma_X \sigma_T} \\
= \frac{\sigma_{T+E,T}}{\sigma_X \sigma_T} \\
= \frac{\sigma_{T,T} + \sigma_{E,T}}{\sigma_X \sigma_T} \\
= \frac{\sigma_T^2}{\sigma_X \sigma_T} \\
= \frac{\sigma_T^2}{\sigma_X} \\
= \sqrt{\rho_{XX}}$$

Confiabilidad: Definición teórica

La Teoría Clásica de los Tests para una Población de Personas

Otra forma para interpretar el coeficiente de confiabilidad

Propiedad

$$\rho_{XT} = \frac{\sigma_{XT}}{\sigma_X \sigma_T}$$

$$= \frac{\sigma_{T+E,T}}{\sigma_X \sigma_T}$$

$$= \frac{\sigma_{T,T} + \sigma_{E,T}}{\sigma_X \sigma_T}$$

$$= \frac{\sigma_T^2}{\sigma_X \sigma_T}$$

$$= \frac{\sigma_T^2}{\sigma_X}$$

$$= \sqrt{\rho_{XX'}}$$

Confiabilidad: Definición teórica

La Teoría Clásica de los Tests para una Población de Personas

Otra forma para interpretar el coeficiente de confiabilidad

Propiedad

$$\rho_{XT} = \frac{\sigma_{XT}}{\sigma_X \sigma_T}$$

$$= \frac{\sigma_{T+E,T}}{\sigma_X \sigma_T}$$

$$= \frac{\sigma_{T,T} + \sigma_{E,T}}{\sigma_X \sigma_T}$$

$$= \frac{\sigma_T^2}{\sigma_X \sigma_T}$$

$$= \frac{\sigma_T^2}{\sigma_X}$$

$$= \sqrt{\rho_{XX}}$$

Confiabilidad: Definición teórica

La Teoría Clásica de los Tests para una Población de Personas

Otra forma para interpretar el coeficiente de confiabilidad

Propiedad

$$\rho_{XT} = \frac{\sigma_{XT}}{\sigma_X \sigma_T}$$

$$= \frac{\sigma_{T+E,T}}{\sigma_X \sigma_T}$$

$$= \frac{\sigma_{T,T} + \sigma_{E,T}}{\sigma_X \sigma_T}$$

$$= \frac{\sigma_T^2}{\sigma_X \sigma_T}$$

$$= \frac{\sigma_T^2}{\sigma_X}$$

$$= \sqrt{\rho_{XX'}}$$

Clase 4 — La Teoría Clásica de los Tests: Modelo, supuestos y confiabilidad

El modelo clásico aplicado a una población de personas

El error estándar de medición

Índice

- 1 El modelo clásico aplicado a una persona
- 2 El modelo clásico aplicado a una población de personas
 - Conceptos básicos y supuestos
 - Confiabilidad: Definición teórica
 - El error estándar de medición

Clase 4 — La Teoría Clásica de los Tests: Modelo, supuestos y confiabilidad

El modelo clásico aplicado a una población de personas

El error estándar de medición

La Teoría Clásica de los Tests para una Población de Personas

El Error Estándar de Medición

Definición

El error estándar de medición se define como la raiz cuadrada de la varianza del error:

$$\sigma_{E} = \sqrt{\sigma_{E}^{2}}.$$

El error estándar de medición

La Teoría Clásica de los Tests para una Población de Personas

Relación entre el error estándar de medición y la confiabilidad

Relación entre σ_E y $\rho_{XX'}$

$$\rho_{XX'} = 1 - \frac{\sigma_E^2}{\sigma_X^2}$$

$$\Rightarrow \frac{\sigma_E^2}{\sigma_X^2} = 1 - \rho_{XX'}$$

$$\Rightarrow \sigma_E^2 = \sigma_X^2 (1 - \rho_{XX'})$$

$$\Rightarrow \sigma_E = \sigma_X \sqrt{1 - \rho_{XX}}$$

El error estándar de medición

La Teoría Clásica de los Tests para una Población de Personas

Relación entre el error estándar de medición y la confiabilidad

Relación entre σ_E y $\rho_{XX'}$

$$\rho_{XX'} = 1 - \frac{\sigma_E^2}{\sigma_X^2}$$

$$\Rightarrow \frac{\sigma_E^2}{\sigma_X^2} = 1 - \rho_{XX'}$$

$$\Rightarrow \sigma_E^2 = \sigma_X^2 (1 - \rho_{XX'})$$

$$\Rightarrow \sigma_E = \sigma_X \sqrt{1 - \rho_{XX'}}$$

El error estándar de medición

La Teoría Clásica de los Tests para una Población de Personas

Relación entre el error estándar de medición y la confiabilidad

Relación entre σ_E y $\rho_{XX'}$

$$\rho_{XX'} = 1 - \frac{\sigma_E^2}{\sigma_X^2}$$

$$\Rightarrow \qquad \frac{\sigma_E^2}{\sigma_X^2} = 1 - \rho_{XX'}$$

$$\Rightarrow \qquad \sigma_E^2 = \sigma_X^2 (1 - \rho_{XX'})$$

$$\Rightarrow \qquad \sigma_E = \sigma_X \sqrt{1 - \rho_{XX'}}$$

El error estándar de medición

La Teoría Clásica de los Tests para una Población de Personas

Relación entre el error estándar de medición y la confiabilidad

Relación entre σ_E y $\rho_{XX'}$

$$\rho_{XX'} = 1 - \frac{\sigma_E^2}{\sigma_X^2}$$

$$\Rightarrow \frac{\sigma_E^2}{\sigma_X^2} = 1 - \rho_{XX'}$$

$$\Rightarrow \sigma_E^2 = \sigma_X^2 (1 - \rho_{XX'})$$

$$\Rightarrow \sigma_E = \sigma_X \sqrt{1 - \rho_{XX'}}$$