EXHIBIT "F"

Molecular Cloning of a Human Prion Protein cDNA

HANS A. KRETZSCHMAR,* LINDA E. STOWRING,* DAVID WESTAWAY,†
WILLIAM H. STUBBLEBINE,† STANLEY B. PRUSINER,†‡
and STEPHEN J. DEARMOND*†

ABSTRACT

Creutzfeldt-Jakob disease (CJD) of humans and scrapie of animals are degenerative, transmissible neurologic diseases caused by prioris. The only known macromelecules within prions are prion proteins (PrP). The cDNA encoding the hamster prion protein (PrP 27-30) has been cloned and sequenced (Oesch et al., 1985). Using that hamster PrP cDNA, we screened a human retina cDNA library and sequenced the cDNA clone with the longest hybridizing insert. This insert was found to contain a long open reading frame (ORF) encoding the human prion protein. Northern transfer analysis showed that a related poly(A) RNA measuring ~2.5 kb is expressed in a variety of human neuroectodermal cell lines. Human PrP differed from hamster PrP at 27 of 253 amino acids and at 98 of 759 ORF nucleotides. Conservation of PrP amino acid sequence between hamster and human is nearly 90%, reflecting similar structural features and shared antigenicity of the two proteins (Bockman et al., 1985). The human PrP sequence contained a presumptive amino-terminal signal peptide of 22 amino acids, two hydrophobic segments of sufficient length to span membranes, and two possible sites for N-glycosylation. The conservation between the hamster and human prion proteins suggests that they may have an important role in cellular metabolism and may explain the similarities between scrapie and CJD.

INTRODUCTION

REUTZFELDT-JAKOB DISEASE (CJD), Gerstmann-Sträussler syndrome (GSS), and kuru in man and scrapie in animals have been grouped together because they are transmissible diseases and have similar histopathologic and clinical features (Hadlow, 1959; Gajdusek, 1977; Masters et al., 1981). Common histological features are spongiform degeneration of central nervous system (CNS) neurons, intense reactive astrocytic gliosis, and emyloid plaque formation (Beck and Daniel, 1979; Kitamoto et al., 1986). The only cell type which appears to be injured directly in these diseases is the CNS neuron and the only cell type which appears to react to the diseases is the astrocyte. Except for transmissibility, none of the clinical or histological features is characteristic of a conventional infectious pathogen such as a virus. No virus has been demonstrated by electron microscopy and none has been isolated by cell culture procedures. In addition, there is no inflammatory or immune response during the course of these diseases (Zlotnik and Stamp, 1961; Beck and Danlel, 1979; Kusper et al., 1982).

Highly purified preparations of the scrapie agent consist primarily of a 27- to 30-kD sialoglycoprotein, which is inseparable from infectivity (Bolton et al., 1982; Prusiner et al., 1982, 1983; McKinley et al., 1983). In contrast to viruses, no nucleic acid has been identified to date in these purified preparations. To distinguish the infectious agents causing CJD, GSS, kuru, and scrapie from viruses, the term "prion" was introduced (Prusiner, 1982). The protein in purified preparations of prions was designated "PrP 27-30" (McKinley et al., 1983).

Following the isolation of a cDNA encoding PrP 27-30 (Oesch et al., 1985), the origin and site of synthesis of the prion protein was established. PrP 27-30 was found to be encoded by a cellular gene in hamsters. The gene product in normal animals is a 33- to 35-kD protein termed "PrP 33-25°. This protein is also present in scrapie-infected hamsters (Meyer et al., 1986); however, an abnormal isoform also appears in the CNS during the course of scrapie which has been termed "PrP 33-35Se" (Oesch et al., 1985; Parry et al., 1986; Meyer et al., 1986). PrP 33-35Se differs from the normal cellular isoform in three ways: First, the concentration of PrP 33-35C does not change with age in

316 KRETZSCHMAR ET AL.

normal or scrapie-infected animals while the concentration of PrP 33-35\(^\sigma\) increases 10-20 times during scrapic infection. Second, the cellular isoform is rapidly digested by proteinase K, whereas the PrP 33-35\(^\sigma\) isoform is only partially digested yielding PrP 27-30. PrP 27-30 was the only form of the prion protein found in highly purified preparations of the scrapie agent because of a proteinase K digestion step in the purification procedure. Third, although both PrP 33-35\(^\cdot\) and PrP 33-35\(^\cdot\) are membrane proteins, upon detergent extraction PrP 33-35\(^\cdot\) is solubilized while PrP 33-35\(^\cdot\) polymerizes into amyloid rods (Meyer et al., 1986).

In situ hybridization with the hamster PrP cDNA encoding PrP 27-30 indicates that the prion protein isoforms are synthesized almost exclusively in CNS neurons since there are 10 to 50 PrP mRNA copies per neuron and less than three copies per cell in glial cells and nonneural cells (Kretzschmar et al., 1936). Recent immunohistochemical studies with a monoclonal artibody specific for the prion protein (Barry and Prusiner, 1986) indicate that both the normal cellular and scrapie isoforms are located in CNS neurons and their processes (S.J. DeArmond, D. DeMott, R.A. Barry, H.A. Kretzschmar, and S.B. Presiner, in preparation). Late in the course of the disease, the scrapie isoform polymerizes into filaments and accumulates in the CNS extracellular space coalescing into arryfold plaques (Bendheim et al., 1984; DeArmond et al., 1985; Kitamoto et al., 1986).

The number of PrP mRNA copies are the same in each nerve cell population throughout the course of scrapie and are not different than in normal animals (Kretzschmar et al., 1986). This is in agreement with Northern blot measurements of PrP mRNA in hamsters (Oesch et al., 1985) and in mice (Chesebro et al., 1985). These findings raised the possibility that PrP 33-35% is generated by post-translational modification.

Multiple experimental observations suggest that the etiologic agents causing CJD, GSS, and kuru are closely related to the prious causing scrapie in animals. First, antibodies raised against hamster PrP 27-30 react with proteinase K-resistant proteins purified from patients with CJD (Bockman et el., 1985). Second, amyloid plaques in CJD and GSS specifically bind antibodies raised against hamster PrP 27-30 (Kitamoto et al., 1986). Third, the hamster PrP cDNA identifies a related single-copy sequence in human genomic DNA (Oesch et al., 1985).

In order to study the pathogenesis of human prion diseases further, it was necessary to establish the molecular structure of the human prion protein. We isolated PrP-related clones from a human retina cDNA library (Nathans et al., 1986). A 2.9-kb clone (HaPrPcDNA-1) was completely sequenced and a long open reading frame (ORF) encoding the prion protein was identified. Another 2.4-kb clone (HuPrPcDNA-2) was partially sequenced, and a cloning artefact in the untranslated 5' region of the longer clone was defined. The human prion protein consists of 231 amino acids preceded by a presumptive signal peptide of 22 amino acids. The human prion protein enhibits \$7% hemology with the hamster protein.

MATERIALS AND METHODS

A human retina cDNA library constructed in \(\lambda\)gt10 (Nathans and Hogness, 1983; Huynh et al., 1985) from a total of 25 different individuals was obtained from J. Nathans at Stanford University. The library was screened using a hamster PrP cDNA probe under conditions of reduced stringency (Shank et al., 1978; Oesch et al., 1985). Hybridization was performed at 42°C in 3× SSC, 30% formamide, 0.05 M HEPES pH 7.4, 0.2 mg/ml salmon sperm DNA, 0.15 mg/ml yeast RNA, 0.02% bovine serum albumin, 0.02% polyvinyl pyrrolidone, and 0.02% Ficoll. Filters were washed in 0.1× SSC, 0.1% NaDodSO₄ at 50°C and autoradicgraphed at -70°C using Dupont Cronex intensifying screens and Kodak XAR-5 film.

Phage inserts were excised with Eco RI. The longest insect (~2.9 kb, HuPrPcDNA-1) was propagated in pUC8 (Vieira and Messing, 1982), digested with Eco RI and purified on a 1% agarose gel. It was then shotgun-cloned into M13mp18 (Norvander et al., 1983) using Rsa I. Alu I. Hae III, Fine DII, Pst I, and Sma I digests. Large subclones were cut back with T4 polymerase and religated in M13 as described (Dale et al., 1985). HuPrPcDNA-1 was sequenced mostly on both strands (Fig. 1) using the dideoxy protocol (Sanger et al., 1977; Biggin et al., 1983). A 17-mer oligonucleotide was synthesized on an Applied Biosystems Model 380B DNA Synthesizer and was used as a primer to sequence a gap in the 3' noncoding region (Fig. 1). A smaller insert (~2.4 kb, HuPrPcDNA-2) also was propagated in pUC8. The 5' and 3' ends, as well as the 3' end of the ORF, of this clone were "supercoil" sequenced (Chen and Seeburg, 1985). All sequences were read by two of the authors.

Poly(A)*-enriched RNAs from human cell lines were a gift from Manfred Schwab (G.D. Hooper Foundation, University of California, San Francisco; Schwab et al., 1984) and poly(A)'-enriched RNA from hamster glioma cell line HJC was a gift from D. Butler (University of California, San Francisco). Poly(A) RNA was electrophoresed on 2.2 M formaldehyde, 1% agarose gels, and transferred to nitrocellulose (Thomas, 1980), which then was baked and hybridized with "P-labeled hamster ORF (Westaway and Prusiner, 1986) or full-length human cDNA probes. Approximately 10° cpm of nick-translated probes (Rigby et al., 1977) were added per milliliter of hybridization fluid. Hybridization conditions with the hamster PrP cDNA probe were as described above for screening the cDNA librery in which 30% formamide was used. With the human Pr? cDNA probe, 40% formamide was used.

RESULTS

Previous hybridization (Oesch et al., 1985) and immunochemical studies (Bockman et al., 1985) have implied that the human genome contains a PrP gene. As a prelude to cDNA cloning, we sought a PrP mRNA in human poly-(A) RNA isolated from a number of neuroectodermal cell lines to determine the size of the PrP mRNA, mRNA was

FIG. 1. Sequencing strategy. ORFs are shown as boxes. Bold arrows and wavy line in HuPrP cDNA-1 represent stretches of inverted repear-sequences. Thin arrows denote sequenced M13 subclones. Dark circles symbolize specially synthesized sequencing primers. The 5' and 3' ends as well as the 3' end of the ORF of the HuPrP cDNA-2 were "supercoil" sequenced. A consensus sequence was established by exclusion of incongruent sequences at the 5' ends of HuPrPcDNA-1 and HuPrPcDNA-2 (see also Fig. 3).

electrophoresed on a 1% agarose gel and transferred to nitrocellulose (Thomas, 1980). A hamster PrP cDNA subclone corresonding to the ORF (Westaway and Prusilier, 1986) was radiolabeled and hybridized. A single RNA species of ~2.5 kb was observed in all the human poly(A)*-RNA samples on a Northern transfer (Fig. 2A, lanes 1-5). A hamster glioma cell line poly(A)*-RNA was electrophoresed as a control and exhibited a single species of 2.2 kb (Fig. 2A, lane 6), a size which is in agreement with previous Northern transfers (Oesch et al., 1985).

A human retina cDNA library was screened using a hamster PrP cDNA probe (Oesch et al., 1985), and nine positive clones were identified and selected. Their inserts were excised with Eco RI and analyzed by agarose gel electrophoresis. The PrP-related inserts ranged in size from 1.4 to 2.9 kb. The longest insert, measuring 2.9 kb (HuPrPcDNA-1), was subclosed anto pUC8 (Vieira and

Messing, 1982), purified, and radiolabeled. It was hybridized to aliquots of the same human poly(A)*RNA samples used above. This probe detected transcripts of the same electrophoretic mobility as those detected by the hamster PrP probe (Fig. 2B, lanes 1-5). We attribute the reduced hybridization of the human PrP cDNA with the hamster poly(A)*RNA control (lane 6) to two factors. First, the higher stringency conditions used in this analysis (40% vs. 30% formamide); second, the full-length human cDNA used as a probe includes 1624 cDNA nucleotides of the 3' uniranslated region which is 436 bases longer than the hamster and has only 22% homology with the hamster cDNA based on computer analysis of optimal alignment of stretches of 8 identical nucleotides in both sequences. In contrast, the 720-bp hamster PrP probe fragment is derived maraly from the ORF, which is highly conserved.

The congruent pattern of hybridization to human poly-

FIG. 2. RNA transfer analysis. Lane 1: Human melanoma RPMI-7951; lane 2: human melanoma HT-144; lane 3: human neuroblastoma Kelly; lane 4: human neuroblastoma NMB; lane 5: human retinoblastoma Y79; lane 6: hamster glioma HJC. Five n...Gograms o. polyadenylated RNA were analyzed in each lane. A radiolabeled Hind III digest of phage \(\lambda\) was used as size-marker. A. Hybridization with a hamster PrP cDNA subclone corresponding to the ORF (Westaway and Prusiner, 1986) (30% formamide). B. Hybridization using the entire human PrP cDNA clone (40% formamide).

(A)*RNA obtained with both the hamster and human probes establishes the authenticity of the human 2.9-kb insert (HuPrPcDNA-1). Furthermore, we conclude that PrP poly(A)*RNA is expressed in a variety of human neuroectodermal cell lines.

The 2.9-kb insert (HuPtPcDNA-1) was then shotguncloned into M13mp18 and sequenced using the dideoxy protocol (Sanger et al., 1977; Biggin et al., 1984) (Figs. 1 and 3). Computer analysis (Contad and Mount, 1982) revealed that the first 407 nucleotides of this clone contained the exact complement of a stretch of 400 nucleotides further downstream (nucleotides 651-1050 in Fig. 3). Similar rearrangements in cDNAs have been described previously and models have been proposed to explain their appearance (Fields and Winter, 1981; Volckaart et al., 1981). Specifically, this sequence rearrangement (Fig. 4) could have arisen during first-strand synthesis through a folding back of the first cDNA strand on itself and use of further downstream sequences as a template for 5' extension. After unfolding of this loop (via denaturation) and formation of a hairpin-loop at the new 5' end, second-strand synthesis would then have proceeded in the usual way. To delineate the 5' untranslated region of the human PrP mRNA, the 5' end of a 2.4-kb clone (HuPrPcDNA-2) was sequenced. Close to the 5' end, this clone contained a short inverted repeat corresponding to nucleotides 18-26 in Fig. 3. This repeat might represent an artefact cimilar to HaPrPcDNA 1. A consensus cDNA sequence was established by excluding incongruent sequences at the 5' ends of the HuPrPeDNA-! and HuPrPeDNA-2 (Figs. 1, 5, and 4). The total length of

the consensus cDNA sequence is 2432 nucleotides, in good agreement with the mRNA size estimated from Northern blot analysis (2.5 kb).

Close to the 5' end of the consensus sequence there are two ATG codons beginning at nucleotides 50 and 71. The nucleotide sequence surrounding the first ATG codon (ATTATGG) is consistent with the consensus sequence (ANNATGG) for eukaryotic initiation sites (Kozak, 1983). The sequence surrounding the ATG codon beginning at nucleotide 71 (TGGATGC) deviates from this consensus pattern. Thus, we conclude that the most likely site for initiation of translation is the ATG codon beginning at nucleotide 50. Following the putative initiation codon is a long ORF of 759 bases.

The 3' noncoding region consists of 1624 nucleotides which includes numerous in-frame termination signals and 17 A residues at the 3' end. Two possible polyadenylation signals are found at positions 2356 (TATAAA) and 2392 (ATTAAA). Both are variants of the consensus sequence AATAAA (Proudfoot and Brownlee, 1976) which have been described previously for the hepatitis-B surface antigen gene (TATAAA; Simonsen and Levinson, 1983) and the chick α -actin gene (ATTAAA; Fornwald *et al.*, 1982), respectively. The ATTAAA at position 2392 precedes the polyadenylation tract by 18 nucleotides and most likely represents the polyadenylation signal.

The Fuman PrP, predicted from this cDNA sequence, consists of 253 amino acids with a molecular weight of 27,663,67 prior to post-translational modification. The amino terminus displays a segment of 22 residues that are typical of signal peptides (von Heijne, 1985). These include a hydrophobic core (MLVLFV) and a small uncharged residue (C) at the putative signal sequence cleavage site; we predict that the mature protein commences at the lysine residue at nucleotide 116, and prior to post-translational modification has a molecular weight of 25,239 daltons.

DISCUSSION

Two cDNA clones encoding the human prion protein were isolated from a human retina cDNA library. A consensus nucleotide sequence was derived from these two clours. A comparison with the hamster cDNA (Oesch et al., 1985) shows 87.1% homology in the ORF. The 3' non-coaling region of the human cDNA is 436 nucleotides longer than the corresponding hamster sequence, and the degree of homology within this region is considerably lower (22%) than in the ORF (Fig. 5).

The predicted amino acid sequence of the human PrP protein was aligned with the hamster PrP sequence in Fig. 6 (Ocsch et al., 1985; K. Basler, B. Oesch, M. Scott, D. West, way, M. Wälchli, D.F. Groth, M.P. McKinley, S.B. Prusiner, and C. Weissmann, submitted). The protein sequence s differ in length by one amino acid (253 in human vs. 253 in homsters). In addition, 26 amino acid residues differ between the hamster and the human sequences. This sequence divergence (10.7%) is paralleled by 98 out of 759 (12.7%) variation in the nucleotide sequence. Fourteen of these are mis natches in the first position, 14 are mis-

										.51										Ü										90	,		
•	00	c sc	c sc	G AG	C TT	c ree	e te	י ככי	T CA	C GAC	COA	GGC) AG/	CCA	177	C AT	т АТ! Тен	GC 7 / :	G AAG	CTI	T GGG	C TGC y Cy:	TG:	ATV	s cro	GT Va	т ст 1 <i>І</i> -е	C TT	r crc	GCC	ACA	TGG	AGT
~					120										٠5	n	-								190	} ''	U						
Lei	G1:	C C∏ y Le: 0	u Cy	s Ly	G AAC S Lys	G CGC	Pro	G AAG	s oc	f C/SA Cly	GGA Gly	Trp	Asn Asn	Thr	GG/	9 606 7 61 ₃	C ACC	C CC	a TAC	Pro		, 51	G GGG	Ser	CCT Pro	GG	4 GG 7 G1	C AAG	CGC	TAC	CCA Pro	CCT	CAG Gin
210										240										270		9									50		
GG1	r GG:	r GGG	C TG	G GGG	G CAC	CCT	י הבי	1000	e con	. ecc	nc-	cer																		300			
Cly	, Cl	y Gly	y Tr	p G1	7 Gln 330	60	His	Gly	Gly	Gly	Trp	Gly	Gln	Pro	His 350	70	Gly	61 ₁	c tag	Gly	Gla	Fro	CAT His	GET	GGT Gly	GC(G1 ₃ 8(, Tri	G GGA P Gly	CAG Gln	Pro	CAT His	GGT Gly	GCT Gly
TGC Trp	GC1 G1y 90	CAV 7 Glr)	GG/	A GGS y Gly	GCC	ACC Thr	CA:	AGT Ser	CAC Glm	TCC	AAC Asn	AAG Lys	ecc Pro	AGT Ser	AAC Lys	CCA Pro	AAA Lys	FC0 Thi	C AAC	atg Het	Lys	nis	ATG	GCT Ala		GCT Ala	GC/	A GCA 3 Ala	GCT Ala	GGG Gly	GCA Ala	GTG Val	GTG Val
420										4 :0										486	110									510	120		
Gly	CT1	GCC	GGC G1y	TAC Tyr	ATG MET	CTG Leu	GGA G1 y	AGT Ser	GCC Ala	A TG	AGC Ser	AGG Arg	ece Pro	ATC 11e	ATA Ile		TTC Phy	GGC G1y	AGT Ser	GAC Asp	TAT Tyr	GAG Glu	GAC Asp	CGT Arg	TAC	TAT Tyr	CST	GAA	AAC Asn		CAC	CCT	TAC
					540	130									570										600	150	,					9	.,.
AAC Asn	CAA G) n	GTG	TAC	TAC	AGG	ccc	ATG	GAS	GAG	TAC	AGC	AAC	CAG	AAC	AAC	TTT	GTG	CAC	GAC	TGC	GTC	/AT	ATC	ACA		AAG	CAC	CAC	NCC.	CTC.	800	1.51	100
1131	160	, 41	. , , ,	191	Arg	Pro	Met	Asp	610	Туз	Ser 170	Asn	Gln	A.3.D	ana	Phe	Val	H, s	-Asp	Cys	741 160	Asn	He	Thr	Ile	Lys	Gln	His	Thr	Val	Thr 190	Thr	Thr 1
630										6.60										690										720			
AAG Lys	GGG Gly	GAG Glu	AAC Asn	TTC Phe	ACC Thr	GAG Glu 200	ACC Thir	GAC Asp	GTT Val	AAG Lys	ATC MET	atc het	GAG G³u	CGC Arg	GTG Val	GTT Val	GAG G1u	CAG G]n	ATG HET	TGT Cys	ATC Ile	ACC Thr	CAG Gln	TAC Tyr	GAG Glu	AGG Arg	GAA Glu	TCT Ser			TAT	TAC (CAG A
					150										760	219									810	220					•	-,-	
GGA Gly	TCG Ser	AGC Ser	ATG MET	GTC Val	Crc	TTC Pho	TCC	TCT	CCA	CCT	GYPG .	AINC I	ci c	כיזע .	ATC	тст	TTC	crc	170	TTC	CTG	ATA	CTG			GGA	AGG	TCT	TCC ·	י יוניוי		-AC (ጉለም ሮ
840	230				200		561	Je (246	He	Leu	Leu	Hę	Ser	Phe	Leu	•••		Len 250	He	1 5	Gly 253								٠	-A1 C
TCT	AAT	CTT	TTT	CCA	GCT .	TGA (GGG i	AGG (CA C	'ሮሞ ሰ	ica d	one d	7=-7-	*****	• • • •	,-	GTG :	one one									,	30			
					oeo)										90		., (1., 1	J 14.	616	ici (CAC -	icr :	PFC :		TCT C	TT.	TGT	ccc (GGA 1	rag g	CT A	MT C	AA T
CCT	TGG	CAC	TGA	TGG	GCA (ere (JAA /	NAC J	ATA (SAG 1	AG A	CC T	GA L	AT 6	ĊT :	oor (AA.	icc -	cae i	TT	SAT T	rga e	om c			AC (cc ·	TTG (TA A	TG C	CA G	ec c	AC TA
1020									1	CF:C									::	30									11	40			
AAG 1	rat i	AAC .	AGI:	AAA '	TAn (CCA 1	ric (ire i	AA7	orig (AC T	'/A T	T. 1	rrg c	AC	TIA (arc e	.w.	CAG (er o	SAG (CT A	AA A	CA A	AT C	TC /	NGA .	ACA C	тс т	ĠA A	АТ А	сс т	TT GO
TGG A	YTA (ccr (ene i		170 Ст. т	rra e		~~~		*/*** C					.00									12	230								
TGG /						ch c	Num t	~ 1 >		3C; 1. 230	AG T	AT A	CT A	⊿? G	CC +	CTA 7	CT T	'AG			TT C	AT A	GC T	ат т	TA G	AG A	TA 1	er i	CC A	TT T	TA A	ga a	M CC
GAC A	AC A	TT	rct (SCC A	GG T	TT G	TT A	igg A	kas a	CA C	AT G	AT A	ርዮ ፑ	AT T	CA A	LAA A	AA T	cc n	13 a dat		יי יאי	ሞል ር	CT C	men c	cc	· -			13	50			
				13	080									14								1R U	C	14		16 (AG (CT C	AG C	CC GC	T GO	GA GO	A TG
GCT C	T G 1	GT 0	TA C	CCG A	ĠA A	ст с	GG G	TG A	TG T	T T	AC T	יר ביו	CA C	AG TA	At c	cc c	TA C.	AC A	IGC A	GC IV	or r	CA A	CA A			T A	TT G	TC A	CA AC	- A (**)	NG AA	.c c=	e ac
1470									15	00									15:	0.0									154				
CTA G	AG G	AC A	TA 1	MC A	CA G	TG A	AC A	PA A	CT G	TA A	A TA	T AT	ng A/	AA GO	E T	TC TY	go gi	ic r	TG A	NA TO	CA AZ	AT G	אר דין	G GA	AA TG	ig TV	sc c	CT T	G AC	G CA	A CC	T CC	C AT
TTA G	AT G	TT T	AA A	15 ag a		PA TO	ים ב	× .	~	77 - 00				16.										169	50								
TTA G								4.3 6.	un 1 171	re ei	rr re	7. 1.1	'A AF	IC TA	TA	GC TY	AA T	'A A			PC AZ	VA AG	T A	A TI	ro ec	T	EF A	GA CA	C TG	A AG	G CA	A AT	c rec
TTT G	rc c	AT T	TA C	er c	S⇒ AA	ic ch	ni 4.8	YT GA			C AT	A CA	G GA	d AC	C 10	en ac	מי מי	se ei	174 An Ad										177	0			
				18	06									183					or NO	. AC	ic at	CAT	C AT	а са 186		T GA	T G	PA AT	T AA	A AA	A TG	G TC/	CTC
TGC AA	A GA	VA A/	AG A	AC TO	C TT	'G CA	רין די	ত ক	T A2	T TO	T GY	: TC	A TA	A TÎ	c m	AA A	A AC	C AC	CA AC	T AG	s re	A AG	T 110.	A TA	G TT	rcz	G TA	A TT	s cc	T T-1-1	P GAI	. Tra	
10,0									153	0									195	O.													
AAT AG	G GA	ig Ac	JA A1	PC 174 201	A AA A	A AT	A TC	T TA	G GT	T GC	A GAS	CA(: AC	AA '	r at	G AT	7 G2	r TI	YG AÀI	s tree	G AAJ	A AAC	G AA	TŢ	tot	TA	A TG	T TAJ	TTA	AAG	TAA	AAT	TAT
TCC CT	G AA	ттс	тт			G TC	k cc	T AG	C Ac.	à ጥልፕ	e . nem y	(DV2)		2040										2070	9								
TCC CT									213)	. 011				. 10	L AA	(G)	Y A'U	7' AT3 2160		r ne	3 CAC	. Jaial	GTC	AGT	ATY	TA				TAT	ATC	TAT
ATA AM	A TA	T AT	A ተተ	G CA	T AGO	ACA	<i>GI.</i> 0	TT	l GG/	\ 6 17	176	MT	AGN	. GCA	GT:	r aac	ATC	16	ZIGU TOA 4	GTYC	TAS	. TOC	ATT		- Terper	7~7			2190				
				2.2										2250										2280									
GTG GGA	AA(cc	r TT	T GC	TOG	TCC	TTA	. GGC	TT.	CA	TGT	CCA	CAR3	и́т	CG	শত	ATC	TH	CAA	TCC	AA.	GIG	GAC	ACC	ATT	AAC	AGC	יים איני	TTG	AAA	TAT	GC.	707
									2340										2370														
ACT TTA	TAT	L Jelel	CT	TAT /	. 17!G	TAA	TT	TUC	ATG	TTO	MG	TTT	tg!	TAT'	ATA	AAA	AAA	1.00	TAR	ATG	TTT	AAT	ATC	TGA	CTC	AAA	TTA	AAC	GÁG	CGA	AGA	TGA	GCA
CCA AAA	AAA		AAA		32																												

FIG. 3. Nucleotide sequence of the human PrP cDNA (consensus sequence) and the deduced amino acid sequence. Due to a compression, T in position 1965 is ambiguous.

FIG. 4. Consensus sequence of HuPrPcDNA. A consensus sequence was established by exclusion of incongruent sequences at the 5' ends of HuPrPcDNA-1 and HuPrPcDNA-2. Nucleotides in bold letters represent the ends of a presumed cloning artefact. This presumptive artefact corresponds to the reverse complement of nucleotides 651-1050 in Fig. 3. Underlined nucleotides in HuPrPcDNA-2 and the consensus sequence might represent a similar artefact. A comparison of HuPrPcDNA-2 and the consensus sequence with the 5' untranslated region of the hamster shows that 24 of 33 nucleotides immediately preceding the first ATG codon (shown at the right margin) are identical. These are indicated by asterisks. The entire ORF of HuPrPcDNA-2 has been sequenced and was found to be identical with the ORF of HuPrPcDNA-1. In the 5' untranslated region, the nucleotides GCAG are absent in HuPrPcDNA-2 and are represented by dots.

FIG. 5. Comparison of the nucleotide sequences of the human and hamster (Oesch et al., 1985; K. Basier, B. Oesch, M. Scott. D. Westaway, M. Wälchli, D.F. Groth, M.P. McKinley, S.B. Prusiner, and C. Weissmann, submitted) PrP cDNA sequences. Stretches of eight identical nucleotides in both sequences appear as short bars.

matches in the second codon position, and 70 are mismatches in the third codon position. Fifty-eight of these mismatches are silent changes. Seven of the amino acid differences occur among the 22 residues of the putative signal sequence (Fig. 5), which is not surprising, since signal peptide sequence variation is well documented (Sabatini et al., 1982; von Heijne, 1983). When the signal peptide is excluded, the hamster and human PrP proteins exhibit 91.34% (211 out of 231) amino acid sequence homology, with most of this divergence occurring within the carboxyterminal half of the molecule. Eighteen of the 27 amino acid substitutions are conservative; only nine amino acid substitutions are nonconservative (Table 1). The degree of sequence conservation between harrster and human PrP is consistent with filter hybridization experiments which reveal that rat, sheep, goat, nematode, Drosophila, and possibly yeast harbor candidate P1P gene sequences (Westaway and Prusiner, 1986). Conservation extends to the chromosomal location of the prior protein gene which has been assigned to chromosome 20 in humans and the corresponding homologous chromosome 2 in mice (Sparks et al., 1986). This broad spectrum of phylogenetic conservation suggests that PrP molecules have an important function in cellular metabolism.

The amino-terminal portion of the human prion protein contains two short repeats of GG(N/S)RYP beginning at amino acids 34 and 45 (Fig. 6). These are followed by five long repeats of P(H/Q)GGG(-/G)WGQ beginning at amino acid 51. Conservation of these repetitive motifs between the human and hamster PrP gene is perfect except for one substitution at residue 56 (Fig. 6). The high degree of conservation of these repeats suggests that they are important for the function of the cellular PrP isoform. However, they do not appear to be required for the transmission of scrapie since they are lost when the hamster scrapie prion protein isoform (PrP 33-35Sc) is digested in vitro with proteinase K generating PrP 27-30. Proteinase K digests the hamster scrapie prion protein between residues 130 and 131, since the amino terminus of PrP 27-30 is the glycine at residue 131 (Prusiner et al., 1984; Oesch et al., 1985) (Fig 6).

The predicted structure of the human and hamster prion proteins is consistent with their suspected role in the pathogenesis of prion diseases. In these diseases, the nerve cell membrane appears to be the primary target since the characteristic ultrastructural feature is dilatation of neurites in the grey matter in association with focal necrosis and splitting of the neuronal cell membrane (Chou et al., 1980). The predicted amino acid sequence suggests that prion proteins are membrane-bound since they contain two highly hydrophobi: regions capable of spanning the membrane (Oesch et al., 1985). The first, from amino acid 112 to 134, is long enough to span the unit membrane in a helical configuration and has two positively charged residues at its amino end which could anchor it to the membrane surface. The second is at the carboxy terminus of the protein and has the petential o anchor this end of the protein in the membrane Studies of the transmembrane orientation of the prion proteins are in progress (B. Hay, R. Barry, I. Lieberburg, S.B. Prusiner, and V. Lingappa, in preparation; J.F. Bazán, R.J. Fletterick, M.P. McKinley, and S.B. Prusiner, in preparation). Hypothetically, the accumulation of abnormal amounts of the proteinase-resistant prion protein

FIG. 6. Comparison of the human PrP sequence (Hu) with the hamster (Ha) (Oesch et al., 1985; Basler et al., submitted) and the mouse equivalents (Mo) (Chesebro et al., 1985). Identical amino acids are not shown. Only amino acid replacements are presented. Unknown parts of the mouse sequence are represented by dots.

in neuronal cell membranes might lead to spongiform degeneration of neurons. Indeed, immunohistochemical studies in the hamster have shown increased concentrations of the scrapie prion protein specifically in grey matter areas undergoing spongiform degeneration (S.J. DeArmond, D. DeMott, R.A. Barry, H.A. Kretzschmar, and S.B. Prusiner, in preparation).

The propensity of the scrapie prion protein to polymerize into filaments which form amyloid plaques during scrapie (DeArmond et al., 1985) and of antigenically related proteins to form into amyloid plaques in CJD and GSS, has been established by peroxidase immunohistochemistry with anti-PrP 27-30 antiserum (Kitamoto et al., 1986). In addition, purified PrP 27-30 forms into rod-like structures in vitro which are morphologically similar to the structures formed by proteins purified from other amyloids (Prusiner et al., 1983). The prion protein rods also have the histochemical characteristics of amyloid, that is, they bind Congo Red dye which displays green birefringence in polarized light (Prusiner et al., 1983). It is of interest that the hamster and human prion proteins have potential amphipathic helical regions similar to amyloid protein A that occurs in systemic amyloidosis secondary to chronic diseases such as tuberculosis. The amphipathic region of amyloid A protein can assume an α -helical configuration with an apolar face and a polar face, the latter containing charged amino acid residues (Segrest et al., 1976; Linke, 1981). The prion proteins contain two potentially amphipathic regions between the two hydrophobic transmembrane segments (J.F. Bazán, R.J. Fletterlok, M.P. McKinley, and S.B.

Prusiner, in preparation). Amphipathic sequences are also characteristic of apolipoproteins (Segrest et al., 1974) which, by analogy, suggests that the prion protein could bind to the polar ends of membrane phospholipids.

Knowledge of the human PrP cDNA sequence will allow construction of synthetic peptides in regions apparently unique to man. Monospecific antisera raised against these peptides should distinguish human from rodent PrP molecules. Such reagents will be useful in testing models of prion replication. For example, mice are experimental hosts for both scrapie and CJD prions. It will be interesting to examine whether prions obtained after passage through mice exhibit human- or rodent-specific PrP determinants. In addition, human monospecific antisera may offer advantages over the present heterologous antisera for analysis and Jiagnosis of human transmissible encephalopathies.

Considerable evidence is accumulating which shows that the scrapic, CJD, and GSS prion proteins are abnormal isoforms of neuronal membrane proteins encoded by a cellular gene and that the formation of those proteins is a central pathogenic event in prion diseases. This hypothesis is consistent with current knowledge about these diseases including observations showing that 10% of CJD cases are familial and GSS cases are dominantly inherited. These diseases, therefore, appear to be primary degenerative disorders of neurons caused by the accumulation of the abnormal prion protein isoform. The unique feature of these diseases is that the prion protein is also a major constituent of prions.

322

TABLE 1. NUCLEOTIDE MISMATCHES AND PREDICTED AMINO ACID REPLACEMENTS Between Human and Hamster cDNAs

Mismatch codon position	Amino acid position	Amino acid human-hamster	Polarity human-hamster
1	5	G-S	0 - 0
	8	M-L	③ - ⑤
	155	H-N	⊕ - ○
	166	M-V	⊕ - ⊕
	168	E-Q	Θ - Ο
	219	E-Q	Θ-Ο
1 + 2	232	M-A	Ø - ©
1 + 3	19	1V	છ - ⊕
	203	V-T	- O
	229	G-R	O - 0
1 + 2 + 3	56	G-T	0 - 0
	*	D	Θ
	227	Q-G	0 - 0
2	6	C-Y	o - c
	17	S-T	0 - 0
	97	14-2	0 - 0
	143	8-N	0 - 0
	170	ŝ-N	0 - 0
	215	1-T	® - €
	220	R-K	⊕ - ⊕
2 + 3	10	V-A	0 - 0
	15	T-M	O - 🐠
	145	Y-W	O - 😵
3	138	I-M	@ - 😥
	139	1-M	● - ●
	205	M-I	0 - 0
	251	1-M	© - ©

 $^{{\}tt a}\,\Theta,$ Positively charged; $\Theta,$ regatively charged; O, polar, uncharged; $\odot,$ hydrophobic;

ACKNOWLEDGMENTS

The authors thank Dr. M.P. McKinley for his help with the Northern transfer, Dr. M. Schwab and D. Butler for their gifts of human and hamster RNA samples, Drs. M.R.D. Scott, V. Lingappa, and F. Bazan for invaluable advice, as well as L. Gallagher for manuscript preparation and D. Groth for oligonucleotide synthesis. Interpretation of protein structures was largely the result of discussions with Mr. J.F. Bazán and Dr. R. Fletterick, Collaborative studies leading to the work presented here with Drs. L.E. Hood, C. Weissmann, D.T. Kingsbury, and their colleagues are very gratefully acknowledged. This work was supported by research grants from the John Douglas French Foundation for Alzheimer's Disease, the Research Evaluation and Allocation Committee of the University of

California (Beoletto and Gump), and the National Institutes of Health (NS22786, AG02132, and NS14069), as well as by gifts from R.J. Reynolds Industries, Inc., Sherman Fairchild Foundation, and Joseph and Stephanie Koret Foundation.

REFERENCES

BARRY, R.A., and PRUSINER, S.B. (1986). Monoclonal antibodies to the cellular and scrapie prion protein. J. Infect. Dis. (in press).

BARRY, R.A., KENT, S.B.H., McKINLEY, M.P., MEYER, R.K., DEARMOND, S.J., HGOD, L.E., and PRUSINER, S.B. (1986). Scrapie and cellular prion proteins share polypeptide epitor is. J. Infect. Dis. 153, \$48-854.

^{*,} no equivalent in human cDNA.

- BECK, E., and DANIEL, P.M. (1979). Kuru and Creutzfeldt-Jakob disease: neuropathological lesions and their significance. In Slow Transmissible Diseases of the Nervous System, 1, S.B. Prusiner and W.J. Hadlow, Eds. (Academic Press: New York) pp. 253-270.
- BENDHEIM, P.E., BARRY, R.A., DEARMOND, S.J., STITES, D.P., and PRUSINER, S.B. (1984). Antibodies to a scrapie prion protein. Nature 310, 418-421.
- BIGGIN, M.D., GIBSON, T.J., and HONG, G.F. (1983). Buffer gradient gels and ⁴⁸S label as an aid to rapid DNA sequence determination. Proc. Natl. Acad. Sci. USA 80, 3963-3965.
- BOCKMAN, J.M., KINGSBURY, D.T., McKINLEY, M.P., BENDHEIM, P.E., and PRUSINER, S.B. (1985). Creutzfeldt-Jakob disease prion proteins in human brains. N. Engl. J. Med. 312, 73-78.
- BOLTON, D.C., McKINLEY, M.P., and PRUSINER, S.B. (1982). Identification of a protein that purifies with the scrapic prion. Science 218, 1209-1311.
- CHEN, E.Y., and SEEBURG, P.H. (1985). Supercoil sequencing: A fast and simple method for sequencing plasmid DNA. DNA 4, 165-170.
- CHESEBRO, B., RACE, R., WEHRLY, K., NISHIO, J., BLOOM, M., LECHNER, D., BERGSTROM, S., ROBBINS, K., MAYER, L., KEITH, J.M., GARON, C., and HAASE, A. (1985). Identification of scrapie prion protein-specific mRNA in scrapie-infected and uninfected brain. Nature 315, 331-333.
- CHOU, S.M., PAYNE, W.N., GIBES, C.J., and GAJDUSEK, D.C. (1980). Transmission and scanning electron microscopy of spongiform change in Creutzfeldt-Jakob disease. Brain 103, 885-904.
- CONRAD, B., and MOUNT, D.W. (1982). Microcomputer programs for DNA sequence analysis. Nucleic Acids Res. 10, 31-38.
- DALE, R.M.K., McCLURE, B.A., and HOUCHINS, J.P. (1985). A rapid single-stranded cloning strategy for producing a sequential series of overlapping clones for use in DNA sequencing: Application to sequencing the core mitrochondria 18S rDNA. Plasmid 13, 31-40.
- DEARMOND, S.J., McKINLEY, M.P., BARRY, R.A., BRAUNFELD, M.B., McCOLLOCH, J.R., and PRUSINER, S.B. (1985). Identification of prion amyloic filaments in scrapic-infected brain, Cell 41, 221-235.
- FIELDS, S., and WINTER, G. (1981). Nucleotide-sequence hererogeneity and sequence rearrangements in influenza virus cDNA. Gene 15, 207-214.
- FORNWALD, J.A., KUNCIO, G., PENG, L. and ORDAHL, C.P. (1982). The complete nucleotide sequence of the chick α-actin gene and its evolutionary relationship to the actin gene family. Nucleic Acids Res. 40, 3861-3875.
- GAJDUSEK, D.C. (1977). Unconventional viruses and the origin and disappearance of kuru. Science 197, 943-960.
- HADLOW, W.J. (1959). Screpic and kuru. Lancet ii, 289-290.
 HUYNH, T., YOUNG, R. and DAVIS, R.W. (1985). Constructing and screening cDNA libraries in λgt10 and λgt11. In DNA Cloning—A Practical Approach, 1. D. Glover, Eu. (IRL Press: Oxford and Washington, D.C.) pp. 49-78.
- KASPER, K.C., STITES, D.P., HOWMAN, K.A., PANITCH, H., and PRUSINER, S.B. (1982). Immunological studies of scrapic infection. J. Neuroimmunol. 3, 187-201.
- KITAMOTO, T., TATEISHI, J., TASHIMA, T., TAKESHITA, I., BARRY, R.A., DEARMOND, S.J., and PRUSINER, S.B. (1986). Amyloid plaques in Creutzfeldt-Jakob disease stain with prion protein antibodies. Ann. Neurol. (in press).
- KOZAK, M. (1983). Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol. Rev. 47, 1-45.

- KRETZSCHMAR, H.A., PRUSINER, S.B., STOWRING, L.E., and DEARMOND, S.J. (1986). Scrapie prion proteins are synthesized in neurons. Am. J. Pathol. 122, 1-5.
- LINKE, R.P. (1981). Amphipathic properties of the low molecular weight component of serum amyloid-A protein shown by charge-shift electrophoresis. Biochim. Biophys. Acta 668, 388-396.
- Mckinley, M.P., Bolton, D.C., and Prusiner, S.B. (1983). A protease-resistant protein is a structural component of the scrapie prion. Cell 35, 57-62.
- MASTERS, C.L., GAJDUSEK, D.C., and GIBBS, C.J., JR. (1981). Creutzfeldt-Jakob disease virus isolations from the Gerstmann-Sträussler syndrome. Brain 104, 559-588.
- MEYER, R.K., McKINLEY, M.P., BOWMAN, K.A., BARRY, R.A., and PRUSINER, S.B. (1986). Separation and properties of cellular and scrapic prion proteins. Proc. Natl. Acad. Sci. USA 83, 2310-2314.
- NATHANS, J., and HOGNESS, D.S. (1983). Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine thodopsin. Cell 34, 807-814.
- MATHANS, J., THOMAS, D., and HOGNESS, D.S. (1986). Molecular genetics of human color vision: the genes encoding blue, green and red pigments. Science 232, 193-202.
- NORRANDER, J., KEMPE, T., and MESSING, J. (1983). Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26, 101-106.
- OESCH, B., WESTAWAY, D., WÄLCHLI, M., McKINLEY, M.P., KENT, S.B.H., AEBERSOLD, R., BARRY, R.A., TEMPST, P., TEPLOW, D.B., HOOD, L.E., PRUSINER, S.B., and WEISSMANN, C. (1985). A cellular gene encodes scrapic PrP 27-30 protein. Cell 40, 735-746.
- PROUDFOOT, N.J., and BROWNLEE, G.G. (1976). 3' Non-coding region sequences in eukaryotic messenger RNA. Nature 263, 211-214.
- PRUSINER, S.B. (1982). Novel proteinaceous infectious particles cause scrapie. Science 216, 136-144.
- PRUSINER, S.B., BOLTON, D.C., GROTH, D.F., BOWMAN, K.A., COCHRAN, S.P., and McKINLEY, M.P. (1982). Further purification and characterization of scrapie prions. Biochemistry 21, 6942-6950.
- PRUSINER, S.B., GROTH, D.F., BOLTON, D.C., KENT, S.B., and HOOD, L.E. (1984). Purification and structural studies of a major scrapic prion protein. Cell 38, 127-134.
- PRUSINER, S.B., McKINLEY, M.P., BOWMAN, K.A., BOL-TON, D.C., BENDHEIM, P.E., GROTH, D.F., and GLEN-NER, G.G. (1983). Scrapie prions aggregate to form amyloidlike a refringent rods. Cell 35, 349-358.
- RIGBY, § W.J., DIECKMANN, M., RHODES, C., and BERG, P. (1977). Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. §13, 237-251.
- SABATINI, D.D., KREIBACH, G., MORIMOTO, T., and ADESNIK, M. (1982). Mechanisms for the incorporation of proteins in membranes and organelles. J. Cell Biol. 92, 1-22.
- SANGER, T., NICKLEN, S., and COULSON, A.R. (1977). DNA sequencing with chain-termination inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463-5467.
- SCHWAR, M., FELISON, J., BUSCH, M., ROSEMAN, W., VAR'sfuls, H.E., and BISHOP, J.M. (1984). Enhanced expression of the human gene N-myc consequent to amplification of DFA may contribute to malignant progression of neuroblastonia P. of Natl. Acad. Sci. USA 81, 4940-4944.
- SEGREST, J.P., JACKSON, R.L., MORRISETT, J.D., and GOTTO, A.M., JR. (1974). A molecular theory of lipid-protein interactions in the plasma lipoproteins. FEBS Lett. 38, 247-253.

324

SEGREST, J.P., POWNALL, H.J., JACKSON, R.L., GLEN-NER, G.G., and POLLOCK, P.S. (1976). Amyloid A: Amphipathic helixes and lipid binding. Biochemistry 15, 3187-3191.

SHANK, P.R., HUGHES, S.H., KUNG, H.-J., MAJORS, J.E., QUINTRELL, N., GUNTAKA, R.V., BISHOP, J.M., and VARMUS, H.E. (1978). Mapping integrates avian sarcoma virus DNA: Termini of linear DNA bear 300 nucleotides present once or twice in two species of circular DNA. Ceil 15, 1383-1395.

SIMONSEN, C.C., and LEVINSON, A.D. (1983). Analysis of processing and polyadenylation signals of the hepatitis B virus surface antigen gene by using simian virus 40-hepatitis-B virus chimeric plasmids. Mol. Cell Biol. 3, 2250-2258.

SPARKES, R.S., SIMON, M., COHN, V.H., FOURNIER, R.E.K., LEM, J., KLISAE, J. HEINZMANN, C., BLATT, C., LUCERO, M., MOHANDAS, T., DEARMOND, S.J., WESTAWAY, D.A., PRUSINER, S.B., and WEINER, L.P. (1986). Assignment of the human and mouse prion protein gene to homologous chromosomes. Proc. Natl. Acad. Sci. USA (in press).

THOMAS, P.S. (1980) Hybridination of denatured RNA and small DNA fragments to nitrocellulose, Proc. Natl. Acad. Sci. USA 77, 5201–5205.

VIEIRA, J., and MESSING, J. (1982). The pUC plasmids an M13

mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19, 259-268.

VOLCKAERT, G., TAVERNIER, J., DERYNCK, R., DEVOS, R., and FIERS, W. (1981). Molecular mechanisms of nucleotide rearrangements in cDNA clones of human fibroblast interferon in RNA. Gene 15, 215-223.

von HEIJNE, G. (1983). Patterns of amino acids near signal-sequence cleavage sites. Eur. J. Biochem. 133, 17-21.

von HEIJNE, G. (1985). Signal sequences. The limits of variation.
J. Moi. Biol. 184, 99-105.

WESTAWAY, D., and PRUSINER, S.B. (1986). Conservation of the cellular gene encoding the scrapic prion protein. Nucleic Acids Res. 14, 2035-2044.

ZLCTNJX, I., and STAMP, J.L. (1961). Scrapie disease of sheep. World Neurol. 2, 895-907.

Address reprint requests to:
Dr. Stephen J. DeArmond
Department of Pathology, HSW-501
University of California
San Francisco, CA 94143

Received for publication April 1, 1986, and in revised form May 9, 1986