# 19) Mean Reversion on Futures

Vitor Kamada

December 2018

### Reference

Tables, Graphics, and Figures from

https://www.quantopian.com/lectures

Lecture 53 Mean Reversion on Futures

#### Random Walk

$$P_t = \mu + P_{t-1} + \epsilon_t$$

$$r_t = P_t - P_{t-1} = \mu + \epsilon_t$$

```
import numpy as np
import pandas as pd
import statsmodels.api as sm
from statsmodels.tsa.stattools import coint, adfuller
```

import matplotlib.pyplot as plt
from quantopian.research.experimental import continuous\_future, history

### Soybean Crush

```
soy meal mult = symbols('SMF17').multiplier
soy oil mult = symbols('BOF17').multiplier
soybean mult = symbols('SYF17').multiplier
sm future = continuous future('SM', offset=0,
            roll='calendar', adjustment='mul')
sm price = history(sm future,
         'price','2014-01-01', '2017-01-01','daily')
bo future = continuous future('BO',
         offset=0, roll='calendar', adjustment='mul')
bo price = history(bo future,
     'price', '2014-01-01', '2017-01-01', 'daily')
sm price.plot()
bo price.multiply(soy oil mult//soy meal mult).plot()
plt.vlabel('Price')
plt.legend(['Soybean Meal', 'Soybean Oil']);
```

## Soybean Meal vs Soybean Oil



### **Augmented Dickey-Fuller Test**

```
print 'p-value: ', coint(sm price, bo price)[1]
p-value:
         0.228842012164
sm future = continuous future('SM', offset=1, roll='calendar', adjustment='mul')
sm price = history(sm future, 'price', '2014-01-01', '2017-01-01', 'daily')
bo future = continuous future('BO', offset=1, roll='calendar', adjustment='mul')
bo price = history(bo future, 'price', '2014-01-01', '2017-01-01', 'daily')
sy future = continuous future('SY', offset=0, roll='calendar', adjustment='mul')
sy price = history(sy future, 'price', '2014-01-01', '2017-01-01', 'daily')
crush = sy price - (sm price + bo price)
crush.plot()
plt.ylabel('Crush Spread');
```

print 'p-value for stationarity: ', adfuller(crush)[1]

p-value for stationarity: 0.0253387237046

### **Crush Spread**



## **Examples of Economically-Linked Futures**

## Profitability of Oil Refining

**3:2:1 Crack Spread**: Buy three crude oil, sell two gasoline, Sell one heating oil

## **Fattening Feeder Cattle**

**8:4:3 Cattle Crush**: Buy 8 October live-cattle, Sell 4 May feeder cattle, Sell 3 July corn

### Potential relationships between Futures and Stocks

- Crude oil futures and oil stocks
- Gold futures and gold mining stocks
- Crude oil futures and airline stocks
- Currency futures and exporters
- Interest rate futures and utilities
- Interest rate futures and Real Estate Investment Trusts (REITs)
- Corn futures and agricultural processing companies

### **Futures and Stocks**

```
ty future = continuous future('TY', offset=0, roll='calendar',
                              adjustment='mul')
ty prices = history(ty future, 'price', '2009-01-01', '2017-01-01', 'daily')
ty prices.name = ty future.root symbol
equities = symbols(['EQR', 'SPY'])
equity prices = get pricing(equities, fields='price',
                            start date='2009-01-01', end date='2017-01-01')
equity prices.columns = map(lambda x: x.symbol, equity prices.columns)
data = pd.concat([ty prices, equity prices], axis=1)
data = data.dropna()
data.plot()
plt.legend();
print 'Cointegration test p-value: ', coint(data['TY'], data['EQR'])[1]
Cointegration test p-value: 0.0299261276671
```

### **EQR (REIT)** and **Ten-Year Interest Rate Futures**



### **Crude Oil Futures and Oil Company Stocks**

data['futures lag diff'] = data['futures ret'].shift(1)

#Compute lagged futures returns

data = data[2:].dropna()

```
cl future = continuous future('CL', offset=0, roll='calendar', adjustment='mul')
cl prices = history(cl future, 'price', '2007-01-01', '2017-04-06', 'daily')
cl prices.name = cl future.root symbol
equities = symbols(['XOM', 'SPY'])
equity prices = get pricing(equities, fields='price', start date='2007-01-01',
                           end date='2017-04-06')
equity prices.columns = map(lambda x: x.symbol, equity prices.columns)
data = pd.concat([cl prices, equity prices],axis=1)
data = data.dropna()
data['stock ret'] = np.log(data['XOM']).diff()
data['spy ret'] = np.log(data['SPY']).diff()
data['futures ret'] = np.log(data['CL']).diff()
# Compute excess returns in excess of SPY
data['stock excess'] = data['stock ret'] - data['spy ret']
```

### **Data Table**

|                           | CL    | хом   | SPY    | stock_ret | futures_ret | spy_ret   | stock_excess | futures_lag | futures_lag_diff |
|---------------------------|-------|-------|--------|-----------|-------------|-----------|--------------|-------------|------------------|
| 2017-03-31 00:00:00+00:00 | 50.85 | 82.00 | 235.72 | -0.020281 | 0.010279    | -0.002331 | -0.017950    | 0.014610    | 0.014610         |
| 2017-04-03 00:00:00+00:00 | 50.25 | 82.08 | 235.37 | 0.000975  | -0.011870   | -0.001486 | 0.002461     | 0.010279    | 0.010279         |
| 2017-04-04 00:00:00+00:00 | 51.13 | 82.35 | 235.50 | 0.003284  | 0.017361    | 0.000552  | 0.002732     | -0.011870   | -0.011870        |
| 2017-04-05 00:00:00+00:00 | 50.82 | 82.53 | 234.77 | 0.002183  | -0.006081   | -0.003105 | 0.005288     | 0.017361    | 0.017361         |
| 2017-04-06 00:00:00+00:00 | 51.74 | 83.02 | 235.39 | 0.005920  | 0.017941    | 0.002637  | 0.003282     | -0.006081   | -0.006081        |

### **Contemporaneous and Lagged Correlation**

```
contemp_corr = data['stock_excess'].shift(1).corr(data['futures_lag_diff'])
#Compute correlation of excess stock returns with lagged futures returns
lagged_corr = data['stock_excess'].corr(data['futures_lag_diff'])
print 'Contemporaneous correlation: ', contemp_corr
print 'Lagged correlation: ', lagged_corr
Contemporaneous correlation: 0.257312975324
```

```
Contemporaneous correlation: 0.257312975324
Lagged correlation: -0.0519203748947
```

### **OLS** Result

| Model:              | OLS              | Adj. R-squared:     | 0.002       |  |
|---------------------|------------------|---------------------|-------------|--|
| Dependent Variable: | stock_excess     | AIC:                | -16587.6204 |  |
| Date:               | 2017-04-25 18:21 | BIC:                | -16575.9124 |  |
| No. Observations:   | 2576             | Log-Likelihood:     | 8295.8      |  |
| Df Model:           | 1                | F-statistic:        | 6.958       |  |
| Df Residuals:       | 2574             | Prob (F-statistic): | 0.00840     |  |
| R-squared:          | 0.003            | Scale:              | 9.3463e-05  |  |

|                  | Coef.   | Std.Err. | t       | P> t   | [0.025  | 0.975]  |
|------------------|---------|----------|---------|--------|---------|---------|
| const            | -0.0001 | 0.0002   | -0.6881 | 0.4914 | -0.0005 | 0.0002  |
| futures_lag_diff | -0.0216 | 0.0082   | -2.6377 | 0.0084 | -0.0377 | -0.0055 |

### **Futures Lag Diff and Stock Excess**

data['futures\_lag\_diff'].plot(alpha=0.50, legend=True)
data['stock\_excess'].plot(alpha=0.50, legend=True);

