

doi: 10.1093/femsec/fiw081

Advance Access Publication Date: 21 April 2016 Minireview

MINIREVIEW

The subzero microbiome: microbial activity in frozen and thawing soils

Mrinalini P. Nikrad¹, Lee J. Kerkhof² and Max M. Häggblom^{1,*}

¹Department of Biochemistry and Microbiology and ²Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA

*Corresponding author: Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, 76 Lipman Drive, New Brunswick, NJ 08901-8525, USA. Tel: +1-848-932-5646; Fax: +1-732-932-8965; E-mail: haggblom@aesop.rutgers.edu

One sentence summary: This review highlights studies that focus on elucidating microbial activity and functions in frozen soils and relating these to microbial responses to climate warming in polar regions.

Editor: Gerard Muyzer

ABSTRACT

Most of the Earth's biosphere is characterized by low temperatures (<5°C) and cold-adapted microorganisms are widespread. These psychrophiles have evolved a complex range of adaptations of all cellular constituents to counteract the potentially deleterious effects of low kinetic energy environments and the freezing of water. Microbial life continues into the subzero temperature range, and this activity contributes to carbon and nitrogen flux in and out of ecosystems, ultimately affecting global processes. Microbial responses to climate warming and, in particular, thawing of frozen soils are not yet well understood, although the threat of microbial contribution to positive feedback of carbon flux is substantial. To date, several studies have examined microbial community dynamics in frozen soils and permafrost due to changing environmental conditions, and some have undertaken the complicated task of characterizing microbial functional groups and how their activity changes with changing conditions, either in situ or by isolating and characterizing macromolecules. With increasing temperature and wetter conditions microbial activity of key microbes and subsequent efflux of greenhouse gases also increase. In this review, we aim to provide an overview of microbial activity in seasonally frozen soils and permafrost. With a more detailed understanding of the microbiological activities in these vulnerable soil ecosystems, we can begin to predict and model future expectations for carbon release and climate change.

Keywords: permafrost; tundra; psychrophiles; subzero activity; climate change; greenhouse gases

INTRODUCTION

'Beware of little expenses. A small leak can sink a great ship'—Benjamin Franklin

Benjamin Franklin may have been discussing economics in this famous quote but it also applies to the role of microbes in greenhouse gas flux. Microbes certainly emit only small amounts of carbon into the atmosphere individually, but the global abundance of microbes that mineralize carbon and nitrogen compounds into greenhouse gases gives them the power to geo-engineer the climate. We are just beginning to under-

stand the roles of microbes in carbon and nitrogen flux in aquatic, ice and soil ecosystems, and while progress is being made, efforts need to be focused on ecosystems most vulnerable to climate change. Permafrost, defined as soils frozen for two or more years, and seasonally frozen soils are particularly vulnerable ecosystems. For example, frozen tundra covers 20% of the Earth's surface and stores approximately 40% of the global soil carbon pool (Schuur et al. 2015). Currently, Arctic and the Antarctic permafrost harbors $\sim\!\!25\%$ of the world's total soil organic material (Tarnocai et al. 2009). Especially susceptible to climate change is the Yedoma region, an expanse of

Figure 1. In frozen soil ecosystems, there are both inactive and active microbial cells. We can determine the composition of the active community by doing incorporation studies. Incorporation of labeled compounds containing carbon and nitrogen can be followed to determine the extent of activity under various conditions, including stages of thaw, decreasing snow cover, increasing nutrients and water content. Although not all inclusive, these are some common environmental conditions we may expect in humic, carbon-rich frozen soils as they are exposed to climate warming. Release of greenhouse gases such as CO2, CH4 and N2O can then be measured from these mesocosms; thicker black arrows indicate increased release of gases under changing conditions. Whether there will be an increase in the release of N2O is not yet well understood and evidence is conflicting regarding these results.

carbon-rich permafrost spanning the Arctic from Siberia to Alaska, an area which harbors approximately 400 gigatonnes of carbon (Khvorostyanov et al. 2008; Strauss et al. 2013). Climate change is predicted to impact microbial communities, which include bacteria, archaea and eukaryotes (in particular fungi), in these frozen soils the most. This warming may lead to changes in microbial metabolic activity and potentially create a positive feedback loop promoting accelerated thawing conditions (Zimov, Schuur and Chapin 2006; Schuur et al. 2008, 2009; Vincent 2010; Koven et al. 2011; Graham et al. 2012). In order to accurately model greenhouse gas release from microbial activity in frozen soils, a multidimensional approach that links microbial community dynamics to mineralization of carbon and nitrogen from ecologically representative subzero temperatures to warmer temperatures is needed. Perhaps then, we can begin to appreciate how small 'leaks' of greenhouse gases from microbial activity could lead to the tipping point for Earth's frozen ecosys-

As with other ecosystems, frozen soils harbor both inactive and active microbial cells and their response to a changing environment will be important to biogeochemical cycling in the near future (Fig. 1). Activity/incorporation studies under controlled conditions offer an attractive approach for determining the composition of the active community. By following the incorporation of labeled compounds containing carbon and nitrogen, we can determine the extent of activity under various physical conditions such as stages of thaw, decreasing snow cover, increasing nutrients and changing liquid water availability. Although not all inclusive, these environmental variables are expected to impact microbial activity in frozen soils as they are increasingly exposed to climate warming. Activity-incorporation studies such as the ones discussed in this review allow for a more bottomup approach, tracking the carbon and nitrogen use through the specific phylotypes of microbes actively responding to changing environmental conditions. It is those microbial groups active in subzero soils and soon-to-be-active members which are the most ecologically relevant types for the question of greenhouse

gas release and the fate of frozen soils susceptible to climate

In this review, we present a wide range of studies that directly examine microbial activity in permafrost and seasonally frozen soils in response to warming and other environmental changes. In particular, we highlight studies that measure soil carbon respiration, RNA-based approaches, exoenzyme activity, microbial growth and substrate incorporation, and summarize how these address the overall question of how microbes contribute to greenhouse gas flux from frozen soils.

DETECTING AND MEASURING SUBZERO ACTIVITY

Although microbial diversity and ecology in permafrost have been summarized in the recent reviews (Steven et al. 2006; Jansson and Tas 2014), research specifically documenting microbial activity and changes in a variety of frozen ecosystems in response to climate warming is still limited. The concept that microbial metabolic activity ceases when soil temperature falls below 0°C is changing with the realization that microbial activity continues through wintertime during the non-growing season (Fahnestock, Jones and Welker 1999; Öquist et al. 2009; Drotz et al. 2010). In fact, microbial activity and specifically the heterotrophic bacterial activity will be the driving force behind carbon remineralization from frozen soils (Graham et al. 2012). Preliminary evidence indicates that cryoturbation contributes to lability and flux of organic carbon by microbes in Arctic permafrost (Ernakovich, Wallenstein and Calderon 2015). Historically, studies of microbial activity in permafrost have focused on cultivating and isolating microorganisms at low temperatures (Vishnivetskaya et al. 2000; Panikov and Sizova 2007; Ayala-del-Rio et al. 2010), establishing growth optima of isolates (Bakermans et al. 2003; Mykytczuk et al. 2013), recording enzyme activity (Wallenstein, McMahon and Schimel 2009; Waldrop et al. 2010), RNA-based measurements involving ribosomal profiling and transcriptomics (Männistö et al. 2013; Coolen and Orsi 2015)

or characterizing changes in microbial community in response to variable conditions (Dedysh et al. 2006; Steven et al. 2008; Pankratov et al. 2011). Low-temperature activity of microbes has also been examined by 14C-substrate respiration (Rivkina et al. 2000; Schimel and Mikan 2005; Steven et al. 2007, 2008), and even stable isotope probing (SIP) at subzero temperatures to detect specific active groups (Tuorto et al. 2014). Table 1 summarizes studies that have measured microbial activity at cold or subzero temperatures in both soils and cultured isolates from soils and other cold environments.

Seasonally frozen soils are even more common than permafrost both in polar and temperate environments and their dynamic nature also has the potential to contribute to greenhouse gas flux. Soils at temperate latitudes freeze seasonally in winter and may undergo multiple freeze-thaw cycles which are known to drastically affect the composition of microbial communities and possibly activity (Schimel and Mikan 2005; Öquist et al. 2009). In mountainous regions, such as the Himalayas and Colorado Rocky Mountains, microbial community composition and respiration fluctuate greatly with increases in temperature and availability of labile carbon in wintertime (Brooks, McKnight and Elder 2005; Stres et al. 2010). In light of the large area of soils that are potentially vulnerable to thawing or warming due to climate change, we must clearly document and predict microbial contribution to carbon and nitrogen cycling. Even in their frozen state a significant amount of greenhouse gas is generated in temperate and polar soils. With climate warming, these vast frozen landscapes are beginning to thaw at the surface, and a thicker active layer may form which is only frozen during winter. The increasing thickness of the active layer in the near future will no doubt have an amplifying effect on the greenhouse gases generated by microbial activity, which makes seasonally frozen soils a good analog for what we might expect from permafrost. Because of their importance in the global carbon cycle while frozen and their vulnerability to thawing in coming years, we must begin to understand how microbes in these soils will contribute to the global carbon feedback.

Hungate (1960) outlined some important questions we must answer in order to conduct a complete ecological analysis of microbial ecology in the rumen, and these same principles can be applied to the microbial ecology of frozen soils. The main issues we must focus on are as follows: (1) What kinds of organisms are present and in what abundance? This involves identification, classification and enumeration. (2) What are their activities? Food and metabolic products must be identified, and habits of growth, reproduction and death known. A complete determination of activities necessitates a complete knowledge of the environment. (3) To what extent are their activities performed? This involves quantitative measurement of the entire complex as well as its individual components. Our review highlights studies that aim to fully understand these aspects of microbial ecology in frozen and thawing soils.

RESPIRATION IN FROZEN SOILS

Perhaps the most common way for measuring aerobic and anaerobic biological activity in frozen soils is by monitoring gas release, such as CO2 for aerobic respiration, and NO2- for anaerobic respiration on nitrate (denitrification). The generation and release of CH₄ from anaerobic methanogenic decomposition has also been measured from frozen soils. Respiration measurements allow for a simple quantification of biological activity and release of greenhouse gases from a variety of frozen soil types ranging from permafrost to cold deserts (see Table 1). For example, in frozen soils from pasture and arable lands in Iceland, aerobic respiration by heterotrophic microbes was measured down to -10° C and as low as -18° C in tundra soils from Greenland (Elberling and Brandt 2003; Guicharnaud, Arnalds and Paton 2010). Respiration increased by orders of magnitude when soil temperature increased just from -1° C to 0° C, as measured by constant CO2 monitoring from conifer forest soils in the Colorado Rocky Mountains (Monson et al. 2006), which highlights the importance of even a slight shift in the physical environment of frozen soils. Similar effects on microbial growth and respiration were measured by CO₂ flux between −3°C and 0°C in both conifer and deciduous forest soils from the Rocky Mountains, and additions of simple organic carbon compounds indicated that respiration below freezing was only limited by carbon in these ecosystems (Brooks, McKnight and Elder 2005). These studies suggest that soil respiration at subzero temperatures is significant and correlates with flux in temperatures.

The level of ecosystem respiration in soils can be influenced by a host of factors, including, but not limited to, soil organic matter content (Michaelson and Ping 2003; Knoblauch et al. 2013), vegetation cover (Elberling 2007; Anderson 2012), water availability (Schimel and Mikan 2005; Öquist et al. 2009; Jefferies et al. 2010; Hicks Pries et al. 2013), snow accumulation or cover (Elberling 2007), temperature (Brooks, McKnight and Elder 2005; Guicharnaud, Arnalds and Paton 2010; Bakermans et al. 2014) and microbial biomass (Anderson 2014). Soil respiration has also been shown to have a linear relationship with heterotrophic bacterial numbers, at least in Alaskan tundra soils (Anderson 2014). Thus, any changes in growth and replication of heterotrophic bacteria are likely to have a significant impact on net respiration efflux from Arctic soils. In frozen soils specifically, temperature and water availability are important factors affecting heterotrophic bacterial activity (Karhu et al. 2014). For example, respiration increased in both pasture and arable subarctic soils as temperature increased from -10°C to 10°C (Guicharnaud, Arnalds and Paton 2010), and aerobic respiration increased in wintertime frozen tundra soils compared to thawed soils (>0.5°C) (Mikan, Schimel and Doyle 2002). Additionally, temperaturedependent respiration rates can differ in soils with high organic carbon content versus soils higher in mineral content, and the relationship between soil organic horizons and temperature needs to be taken into consideration when measuring microbial respiration as changes in these also affect microbial activity (Michaelson and Ping 2003). Water content also contributes to different rates of respiration in soils with high versus low organic carbon content and affects how temperature-dependent respiration proceeds (Michaelson and Ping 2003; Öquist et al. 2009). These results suggest that changes in physical environment of frozen soils can drastically affect respiration and CO2 efflux, and should be measured in addition to respiration in future studies.

The conversion of the large store of organic carbon from tundra and permafrost soils to the atmosphere as CO2 and CH4 is of major concern due to rapid climate warming and the effects of carbon-climate feedback (Schuur et al. 2008; MacDougall, Avis and Weaver 2012). Therefore, many studies have focused on soil respiration occurring under freeze-thaw conditions in order to predict and model current and future carbon flux when frozen soils thaw. Freeze-thaw cycles are likely to become a common occurrence in permafrost soils as these become the active layer as a consequence of climate warming. In fact, numerous studies show a rapid increase in respiration when soils transition from frozen to thawing in Arctic taiga and tundra (Clein and

Table 1. List of studies examining microbial activity in frozen soils and permafrost. Studies are organized by method used to measure activity, and include key results or findings. Many of the studies could be classified under two or more sections of the table because they use multiple methods to measure microbial activity; however, they have been organized according to key results. FT = freeze-thaw.

Soil or isolate	Method for measuring activity	Key result	Reference
	Resp	iration	
Soil and bacterial isolates	Plate counts and CO ₂ respiration	Burst of cell death and respiration after first freeze–thaw (FT), then effect of FT cycling is reduced	Skogland, Lomeland and Goksøyr (1988)
Agricultural soils, Iowa	N-Remineralization measured using N-release	FT treatment released significant nitrogen from soils	DeLuca, Keeney and McCarty (1992)
Tundra soil, Alaska	CO ₂ respiration in frozen soils	Soil warmed from -2° C to 0° C releases more CO ₂ than soil warmed from -5° C to -2° C.	Clein and Schimel (1995)
Tundra soil, Alaska	CO_2 respiration during FT cycles	High respiration during first FT, low respiration in subsequent FT cycles	Schimel and Clein (1996)
Tundra soil, Arctic	CO_2 respiration in winter soils	Wintertime CO ₂ efflux \sim 45 g CO ₂ m ^{-2,} increases current annual CO ₂ efflux estimate by 17%	Fahnestock, Jones and Welker (1999)
Peat bog soil, Siberia	CO_2 respiration at $-16^{\circ}\mathrm{C}$	Steady respiration seen at -16° C, CO $_2$ and CH $_4$ released after thaw occurs	Panikov and Dedysh (2000)
Agricultural and other soils, Germany	N ₂ O emissions at subzero temperature	Agricultural soil released the most N ₂ O	Teepe, Brumme and Beese (2000)
Subarctic heath soil	CO ₂ respiration and biomass during FT	Wintertime CO_2 efflux \sim 25 g CO_2 m ⁻² , which is a significant source of CO_2	Larsen, Jonasson and Michelsen (2002)
Tundra soil, Alaska	Calculated Q10 under various conditions	Q10 gives limited understanding of microbial carbon use at cold temperature	Mikan, Schimel and Doyle (2002)
Tundra soil, Greenland	CO_2 respiration in frozen soils	Respiration measured to -18°C, increased in spring after frozen soil thaws	Elberling and Brandt (2003)
Various soil samples, Alaska	Respiration at −2°C in 88 soil samples	Mineral soil enriched with organic carbon had higher respiration rates than organic soils at subzero temperature range	Michaelson and Ping (2003)
Boreal forest soil, Sweden	Nitrous oxide production in FT	Nitrogen mineralization and N_2O production rates at $-4^{\circ}C$ similar to 15°C	Öquist et al. (2004)
Forest soil, Colorado Rockies	Glucose addition and CO ₂ measured	Respiration measured from 0°C to -3°C indicates microbes are carbon limited at subzero temperatures	Brooks, McKnight and Elder (2005)
Tundra soils, Arctic	$^{14}\mathrm{C}$ substrate and CO_2 respiration	High microbial activity occurred around 0°C during multiple FT cycles	Schimel and Mikan (2005)
Temperate soil	Studying link between respiration and snow cover over many years	Less respiration in years with less winter snow cover. Driven by subzero microbial communities	Monson et al. (2006)
Farm soils, Germany	Transcript PCR for denitrifying functional genes, N ₂ O release	Denitrifying activity is high immediately after thaw begins	Sharma et al. (2006)
Tundra soil, Arctic	CO ₂ respiration in frozen soils	Annual respiration above 100 g C m ⁻² and varied with types of vegetation cover	Elberling (2007)
Boreal forest soil, Sweden	CO_2 production in frozen soils	Respiration by soil microbes in frozen soil depends on water availability	Öquist et al. (2009)
Subarctic soils, Iceland	Respiration, biomass, enzyme activity during FT	Respiration and enzymatic activity were temperature dependent	Guicharnaud, Arnalds and Paton (2010)

Table 1. (Continued).

Soil or isolate	Method for measuring activity	Key result	Reference
Soil cores, Himalayas	Degradation of aromatics and CO_2 respiration	FT cycles select for some microbial communities	Stres et al. (2010)
Tundra soil, Arctic	Autotrophic and heterotrophic respiration	Autotrophic and heterotrophic respiration both increased with permafrost thaw	Hicks Pries, Schuur and Crummer (2013)
Permafrost from Antarctic Dry Valleys	¹⁴ C-Acetate incubations at varying temperatures	CO ₂ release was measured down to -5°C in microcosms of Dry Valley permafrost	Bakermans et al. (2014)
	RNA-	based	
Tundra soils, Canada	RNA/DNA ratio during incubations	RNA/DNA ratio highest when hydrocarbon degradation is highest	Eriksson, Ka and Mohn (2001)
Tundra soils, Siberia	FISH detection of active bacteria	59% of DTAP-labeled microbes detected by FISH	Kobabe, Wagner and Pfeiffer (2004)
Temperate and rock desert soils, Antarctica	Microarray for functional genes in carbon and nitrogen use	Carbon metabolism important in vegetation-poor soils, and nitrogen metabolism important with increased temperatures	Yergeau et al. (2007)
Arctic tundra soils from Finland	DNA and RNA TRFLP analysis	Acidobacteria dominate microbial community in oligotrophic winter soils	Männistö et al. (2013)
Permafrost soils Alaska	Metatranscriptomic analysis	Gene transcripts encoding for enzymes are upregulated with thaw	Coolen and Orsi (2015)
Thermokarst bog soils	Multidimensional meta-omics analysis of microbial processes.	Metagenomics, -transcriptomics and -proteomics data is well correlated with process rates data for dominant microbial processes, such as methanogenesis and nitrogen metabolism.	Hultman et al. (2015)
Arctic peat soils	Metatranscriptomics and metabolic profiling	Warming causes high CH ₄ release and shifts in microbial community. Syntrophic propionate oxidation may be rate-limiting step for CH ₄ production at lower temperatures	Tveit et al. (2015)
Arctic permafrost active layer	DNA and RNA-based analysis	Distinct summer and winter bacterial communities	Schostag et al. (2015)
Permafrost thaw ponds	16S rRNA analysis	Sequences corresponding to methanotrophs were abundant indicating the importance of methane as energy source	Crevecoeur et al. (2015)
Greenland ice sheet supraglacial samples	DNA and RNA-based analyses	Differences between the total and potentially active community of supraglacial environments	Cameron et al. (2016)
	•	e activity	
Coastal island soil, Antarctica	Enzyme activity and nitrogen-processing genes	Freezing has greater effect on fungi and warming has greater effect on bacteria	Yergeau and Kowalchuk (2008)
Tundra soil, Alaska	Enzymatic activity in winter and summer soils	Relatively high enzyme activity in winter	Wallenstein, McMahon and Schimel (2009)

Table 1. (Continued).

Soil or isolate	Method for measuring activity	Key result	Reference
Arctic permafrost soils and active layer soils	Measured exoenzyme activities in permafrost compared to active layer	ß-Glucosidase, N-acetyl-glucosaminidase, phosphatase and peroxidase activity were lower in permafrost than in active layer, but active layer enzymes	Waldrop et al. (2010)
Holocene permafrost soil	Measured exoenzyme activities in permafrost, in response to thaw	depleted in activity over time Phosphatase and ß-Glucosidase depleted soil surface carbon rapidly in response to thaw, and exoenzymes in deeper layers may aid in breaking down recalcitrant carbon.	Coolen et al. (2011)
Tundra soil, Arctic	Enzymatic response to pH and nutrients	High pH lowered enzyme activity	Stark, Männistö and Eskelinen (2014)
Upland Alaskan boreal forest permafrost	Enzyme activities and metagenomic analysis	Fire affect active layer and permafrost microbial communities	Tas et al. (2014)
Permafrost-affected soil	Hydrolytic and oxidative enzyme activities and microbial community structure	Actinobacteria may assume the role of fungi for degradation of phenolic and complex substrates	Gittel et al. (2014)
Subarctic tundra	Effects of grazing by ungulates on soil microbial activity	ß-Glucosidase activity higher in lightly grazed soil than heavily grazed soils	Stark et al. (2015)
	Isolate gro	wth studies	
Isolate from Siberian permafrost	¹⁴ C-Acetate incorporation into lipids	Activity to -20°C observed after 160-day incubation	Rivkina et al. (2000)
Isolating microbes from permafrost	Isolation protocols	Enrichment cultures and direct isolation from permafrost	Vishnivetskaya et al. (2000)
Isolates from Siberian permafrost	Doubling time of isolates in culture	Isolate grew at -10°C with generation time of 39 days	Bakermans et al. (2003)
Psychrobacter cryopegella from Siberian permafrost	³ H-Adenine DNA/RNA, ³ H-leucine	RNA and DNA synthesis rates as well as growth rate decreased significantly below the critical temperature of 4°C	Bakermans and Nealson (2004)
Carnobacterium pleistocenium from Alaskan permafrost	Optimal growth measurements of isolate	Growth optimum of the isolate was at 23°C. Facultative anaerobe which uses various sugars for carbon	Pikuta et al. (2005)
Isolates from Siberian permafrost	Growth and lipid measurements, as well as stress response to freezing	Decrease in fatty acid chain length in membranes of isolates at -2.5°C compared to 23°C. Long-term freezing did not affect isolates	Ponder et al. (2005)
Clostridium algoriphilum from permafrost brine	Growth and other characterization	Anaerobic growth on xylan. Optimal growth temperature 5°C -6°C	Shcherbakova et al. (2005)
Seven EPS-producing strains from Antarctica	EPS generation and characterization	EPS P-21653 of Pseudomonas arctica is made from galactose and glucose and has cryoprotective properties	Kim and Yim (2007)
Isolates from Alaska cultured below freezing	Fungal and bacterial growth kinetics at low temperatures using ¹⁴ C-ethanol and ¹⁴ CO ₂	Growth of fungi and bacteria, and the incorporation of ¹⁴ C-ethanol was observed down to –17°C	Panikov and Sizova (2007)
Isolating yeasts from Antarctic ice	Subzero growth and ³ H-leucine incorporation of yeast	Growth was measured to -5° C, and 3 H-leucine incorporation was observed from 15 $^{\circ}$ C to -15° C	Amato, Doyle and Christner (2009)

Table 1. (Continued).

Soil or isolate	Method for measuring activity	Key result	Reference
Acidobacterial isolate from peat bog	Substrate addition and FISH growth on various types of amended media	Acidobacterial strains in subdivision I grew at pH 3.5–4.5, and all 26 subdivisions	Pankratov et al. (2008)
Virgibacillus arcticus from Arctic permafrost	Growth on high-salt media from -5° C to 37° C.	grew at low temperature Halophilic isolates grew well from 0°C to 30°C with optimal temperature at 25°C	Niederberger et al. (2009)
Psychrobacter cryohalolentis and P. arcticus growth	DNA synthesis and ³ H-thymidine incorporation after ionizing radiation at –15°C	Protein and DNA synthesis is slow in both strains at low temperature, but still occurring at –15°C after ionizing radiation. P sychrobacter arcticus synthesized DNA faster than P. cryohalolentis	Amato et al. (2010)
sychrobacter arcticus 273–4	Genome sequenced	2.65 Mb genome shows low-temperature adaptation genes	Ayala-del-Rio et al. (2010)
Mucilaginibacter sp. from Arctic undra	Growth and cellular characterization	Three novel species of Mucilaginbacter proposed, growth from 0°C to 33°C	Männistö et al. (2010)
rlanococcus halocryophilus Or1 rom Arctic permafrost	Growth and characterization	New species capable of growth at -10° C to 37° C, optimal growth at 25° C	Mykytczuk, Wilhelm and Whyte (2012)
Planococcus halocryophilus Or1 From Arctic permafrost	Genome, cell physiology and transcriptome compared at –15°C and 25°C growth.	Isolate at -15°C has more saturated lipids in cell membranes, greater protein flexibility and many upregulated genes	Mykytczuk et al. (2013)
Rhodococcus sp. isolate from Antarctic permafrost	Genome of cold-adapted isolate compared to mesophiles	Adaptations may allow for increased enzyme function at subzero temperatures	Goordial et al. (2016)
	Incorporat	ion studies	
Bacterial cells frozen in ice	3 H-Thymidine/-leucine for 100 days at -15° C	Bacteria synthesized DNA and protein at temperature of -15°C, but not at -70°C	Christner (2002)
Microbes in brines/cryopegs	¹⁴ C-Glucose uptake	Glucose uptake by microbes in cryopegs down to -15° C	Gilichinsky et al. (2003)
Tundra soil, Arctic	¹³ C-Glucose and BrDU incorporation	Microbial respiration detected down to -39°C. ¹⁴ C respiration declined steeply with depth	Panikov et al. (2006)
Tundra soil, Canada	¹⁴ CO ₂ respiration using ¹⁴ C-acetic acid or ¹⁴ C-glucose	Activity detected at -15°C using a more sensitive method to detect ¹⁴ C respiration	Steven et al. (2007)
Permafrost and ground ice Pore, Arctic	¹⁴ CO ₂ respiration using ¹⁴ C-acetic acid or ¹⁴ C-glucose	Activity at –15°C. Proteobacteria and Euryarchaeota dominant in permafrost, Actinobacteria and Crenarchaeota dominant in active layer	Steven et al. (2008)
Tundra soil, Arctic	¹³ C-Glucose and BrDU incorporation	Fungi most active for carbon use and DNA synthesis, non-Gram(+) bacteria also active at -2°C	McMahon, Wallenstein and Schimel (2009)
Boreal forest soil	¹³ C-Glucose use by ¹³ C magic-angle spinning NMR	Heterotrophic activity detected at -4° C, but much less at -9° C. Between 9° C and -4° C, the same level of microbial activity is detected	Drotz et al. (2010)

Table 1. (Continued).

Soil or isolate	Method for measuring activity	Key result	Reference
Tundra soil, Alaska	BrDU incorporation plus 16S	TRFs in the active winter	McMahon, Wallenstein and
	RNA T-RFLP	fraction of microbes may be	Schimel (2011)
		the rare types as they are not	
		detected in summer TRFs	
Dry Valleys soil, Antarctica	ATP metabolism	Less ATP activity is detected in	Stomeo et al. (2012)
		frozen soils and with depth	
Permafrost cores, Alaska	Stable isotope probing and	High diversity of bacteria active	Tuorto et al. (2014)
	sequence analysis combined	at -20° C. Greater diversity of	
		TRFs detected at subzero than	
		warmer temperatures	
McMurdo Dry Valley soils	Stable isotope probing with ¹⁸ O water and 16S rRNA sequence	Members of Proteobacteria as part of the active bacterial	Schwartz et al. (2014)
	analysis	population	

Schimel 1995; Schimel and Clein 1996; Sharma et al. 2006), as well as in soils in more temperate climates (DeLuca, Keeney and McCarty 1992). A similar increase in respiration was observed immediately after the first freeze-thawing in bacterial isolates cultured from frozen soils (Skogland, Lomeland and Goksøyr 1988). The sudden spike in respiration during initial thaw may partially be a stress response because the spikes in respiration are less pronounced with subsequent freeze-thaw cycles. More specifically, recent studies indicate that rate of CO₂ respiration is highest around 0°C in soils during the transition from frozen to thaw (Larsen, Jonasson and Michelsen 2002; Elberling and Brandt 2003; Schimel and Mikan 2005). However, this same rapid response in respiration is not observed when soils are warmed from -5° C to -2° C, indicating that the thaw itself and the availability of liquid solute in the substrate may be triggering microbial metabolic activity (Clein and Schimel 1995; Elberling and Brandt 2003).

In a study to improve current estimates of permafrost carbon vulnerability, Knoblauch et al. (2013) demonstrated through multiyear measurements of CO2 and CH4 production (aerobic and anaerobic incubations at a constant temperature of 4° C) that a significant amount of labile organic matter in the permafrost could be readily mineralized after thawing. The main predictor for carbon mineralization in the different permafrost samples was the absolute concentration of organic carbon. Thus, mineralization of organic matter in permafrost deposits may not be a function of age but instead depend on the quality and amount of organic matter formed under different past climatic conditions. In contrast, a study of CH4 flux from the surface of Arctic tundra indicated that the majority of annual CH4 release was during the Fall/Winter months from September to May (Zona et al. 2016). The largest releases correspond with the 'zero curtain' when the groundwater temperature is at the freezing point, but remains in the liquid state. However, these researchers also found instances where significant daily CH4 fluxes were measured during the middle of winter, well beyond the 'zero curtain', particularly at the furthest inland study site (Ivotuk, AK).

In an effort to determine whether autotrophic or heterotrophic respiration is more susceptible to climate warming in Arctic tundra underlain by permafrost, Hicks Pries, Schuur and Crummer (2013) measured ecosystem level respiration by partitioning autotrophic respiration (incubations of plant structures) and heterotrophic respiration (by microbes in soil incubations) through three consecutive months in each of two summer seasons. Combining $\delta^{13}C$ and $\Delta^{14}C$ measurements of all samples plus field measurements taken between $-1^{\circ}C$ and 0°C, they determined that heterotrophic respiration increased significantly in surface soil as well as in old soil with thawing conditions. Autotrophic respiration ranged from 40% to 70% of ecosystem respiration and was greatest at the height of the growing season, while old soil heterotrophic respiration ranged from 6% to 18% of ecosystem respiration and was greatest where permafrost thaw was deepest. Thus, when the active layer and permafrost are subject to thawing conditions, the ecosystem will experience increased autotrophic and heterotrophic respiration when the surface plant structures become active and fix CO2 into biomass. However, as this new plant biomass is decomposed and transformed into labile carbon, the heterotrophic microbial respiration in the active layer and permafrost will eventually outpace autotrophic carbon fixation activity, making the frozen soil ecosystem into a massive source of CO2 (Schuur et al. 2009).

NITROGEN CYCLING IN DYNAMIC SOILS

With increasing depth of thaw in the active layer above permafrost and in permafrost where oxygen is minimal, the release of nitrous oxide can be measured to extrapolate the activity of nitrogen metabolizing microbes. Of interest is also freeze-thaw in agricultural soils at temperate latitudes, which are rich in fertilizers and provide soil microbes with fixed nitrogen leading to nitrous oxide production in both winter and during crop growth (Harder Nielsen, Bonde and Sørensen 1998; Röver, Heinemeyer and Kaiser 1998). For example, Wertz et al. (2013) observed shifts in some nitrifier and denitrifier communities between frozen and unfrozen conditions and a stimulation of N2O emissions at 1°C possibly through a restriction of N2O reductases and/or accumulation of NO2- at this temperature (Wertz et al. 2013). In addition, bacterial community analysis highlights nitrogen-cycling functional groups as abundant and important players in the active layer of permafrost (Schostag et al. 2015).

In this section, we highlight some studies of nitrous oxide release from both permafrost and other frozen soils under natural conditions as well as fertilized conditions in agricultural soils, which show that nitrous oxide emissions measured from these soils are higher than previously estimated (Elberling, Christiansen and Hansen 2010; Marushchak et al.

2011). For example, rates of nitrous oxide released to the atmosphere from a permafrost core reached up to 34 mg N m⁻² d⁻¹, which is similar to the daily average in tropical forest soils (Elberling, Christiansen and Hansen 2010). High rates of N2O release are not found consistently in soils across the Arctic and evidence indicates 'hot spots' for large amounts of emissions, particularly in cryoturbated soils versus unturbated soils, or soils experiencing frost churning/frost heave (Marushchak et al. 2011; Palmer, Biasi and Horn 2012). For example, palsa peats (circular frost heaves) are strong-to-moderate sources or even temporary sinks for N₂O (Palmer and Horn 2012). The source and sink functions of palsa peat soils for N2O were associated with denitrification, with actinobacterial nitrate reducers and nirS-type and nosZ-harboring proteobacterial denitrifiers playing important roles in the N2O flux. In boreal soils, subzero emissions of N_2O at $-4^{\circ}C$ due to denitrification were as high as emissions at higher temperatures of +10°C and +15°C (Öquist et al. 2004), suggesting that changing temperature alone may not play as important a role in gaseous nitrogen release as it does in carbon respiration. During summer, the nitrogen flux doubled compared with winter rates in a sub-Arctic peat bog in Sweden. This rate change was not attributed to the <1°C warming, but to the release of organic carbon and nitrogen by a seasonal die-off of soil microbes (Weedon et al. 2012). Additionally, the change in the wet and dry dynamics of permafrost and peatland is thought to control nitrous oxide greenhouse gas emissions from frozen soils and peatlands (Marushchak et al. 2011; Schaeffer et al. 2013). For example, thawing by itself did not have a stimulatory effect on nitrous oxide emission from permafrost. Rather, thawing and rewetting combined increased release of this greenhouse gas 15 times above average (Elberling, Christiansen and Hansen 2010). Finally, thermokarst morphology was also shown to interact with landscape characteristics to determine both displacement of organic matter and subsequent carbon and nitrogen cycling (Abbott and Jones 2015).

The release of N₂O from northern latitude soils to the atmosphere depends on type of soil, the initial concentrations of nitrogenous compounds as well as fertilization activity. Agricultural soils are most susceptible to microbial N₂O release under frozen conditions (Katayanagi and Hatano 2012; Miao et al. 2014; Uchida and Clough 2015). For example, a frozen agricultural soil in Germany emitted two times as much N₂O compared to fallow soil, and released up to four times as much N2O compared to forest soil, attributed to availability of nutrients remaining from fertilizer applications (Teepe, Brumme and Beese 2000). Overall, N2O release increases with thaw and availability of nutrients (Alm et al. 1999; Papen and Butterbach-Bahl 1999; Brooks et al. 2011; Risk, Snider and Wagner-Riddle 2013), and we can now begin to model how microbial communities in agricultural soils may affect levels of this potent greenhouse gas during frozen and thawing conditions as this is likely to be a larger N2O contributor than even tundra soils.

GENOMIC APPROACHES AND RNA-BASED STUDIES

The increasing numbers of microbial genomes metagenomes sequenced from frozen environments allow an elucidation of the microbial community and their metabolic potential, while transcriptomic and metatranscriptomic studies provide clues into the active functional groups of microbes within ecosystems. However, due to difficulty in accessing permafrost, few studies have been able to use 'meta-omic'

approaches to gauge microbial communities active in permafrost and frozen soil (Mackelprang et al. 2011; Coolen and Orsi 2015; Hultman et al. 2015; Schostag et al. 2015). More commonly, genomes of bacterial isolates cultured from permafrost and seasonally frozen tundra soils have provided insights into both survival strategies for cold-adapted organisms and a glimpse into metabolic potential and response to environmental changes. Out of several studies addressing genomes of psychrophilic bacteria, which we broadly define as those capable of growth/activity below 1°C, a few examples are discussed below. The genomes of Siberian permafrost isolates, Psychrobacter arcticus 273-4 and P. cryohalolentis, revealed several genes for cold-shock proteins which could enhance translation, as well as mechanisms for increased membrane fluidity common to psychrophilic bacteria (Bakermans et al. 2006; Ayala-del-Rio et al. 2010). The genome of the permafrost bacterium, Planococcus halocryophilus strain Or1, shows several copies of osmolyte uptake genes which may allow for better isozyme exchange to maintain growth under frozen conditions (Mykytczuk et al. 2013). These osmolyte regulation genes were observed to be upregulated in the transcriptome datasets as well (Mykytczuk et al. 2013). Unfortunately, most genomic studies of psychrophilic microbes do not yet have parallel transcriptomic information to elucidate active responses and adaptations to subzero temperatures in freezing soils.

Although isolates provide valuable insight into individual genomic potential and activity under controlled environmental conditions (see Table 1), there is a need for determining the active microbes in situ. One approach would be to directly compare RNA with DNA content of cells to assess the different microbial phylotypes which are active versus being merely present in frozen soils. Evidence to date indicates that RNA and rRNA within a cell increase with increased cell growth (Kerkhof and Kemp 1999), and the use of RNA-based methods to measure microbial activity and growth has been extensively reviewed (Blazewicz et al. 2013). In particular, the ratio of RNA and 16S rRNA copy number can be normalized to DNA and 16S rRNA gene copy number, respectively, for any particular clade of bacteria in order to measure activity, although this approach has not often been utilized in subzero environments. Recently, DNA versus RNA-derived bacterial community profiles of Arctic tundra were compared using terminal restriction fragment length polymorphism (TRFLP) and Acidobacteria were found to be dominant in more oligotrophic, wind-swept soils (Männistö et al. 2013).

Now 'meta-omics' studies are becoming more common in frozen soils and they add another dimension to predict ecosystem level responses of microbial communities to future climate warming (Mackelprang et al. 2011; Chauhan et al. 2014; Tas et al. 2014; Coolen and Orsi 2015; Hultman et al. 2015; Krivushin et al. 2015). A recent study examined transcriptional response of microbial communities in Alaskan permafrost under thawing conditions (Coolen and Orsi 2015). The most transcriptionally active microbial groups under frozen conditions included Gamma- and Betaproteobacteria, as well as Firmicutes, Acidobacteria and Actinobacteria. In thawing permafrost, the transcriptional response of Firmicutes, Bacteroidetes and the archaeal Euryarchaeota increased relative to other groups, suggesting that these groups may have key functional roles when permafrost thaw continues to occur in coming years (Coolen and Orsi 2015). Transcripts of genes encoding for extracellular protein degradation, carbohydrate metabolism and enzymes like hydrolase were also upregulated at several depths in thawed permafrost, indicating the potential for rapid carbon and nitrogen metabolism during Arctic warming (Coolen and Orsi 2015).

The insights from metatranscriptomic surveys can be further refined by a more targeted analysis of gene expression activity, such as in the case of genes involved in methanogenesis. The release of methane, as a highly potent greenhouse gas, from thawing permafrost and frozen soils is a major concern (Koven et al. 2011; Wagner et al. 2013; McCalley et al. 2014). Of particular concern is the steady release of CH4 in frozen bog soils of Siberia even at -16°C and from Arctic active layer soils rich in organic carbon (Panikov and Dedysh 2000; Tveit et al. 2015). Further evidence indicates that both hydrogenotrophic and acetoclastic methanogenesis may be common in thawing permafrosts, and that acetoclastic methanogenesis increases in thawed permafrost (McCalley et al. 2014; Mondav et al. 2014). Both acetoclastic and hydrogenotrophic methanogenesis were shown to increase by two orders of magnitude when temperatures increased from -16°C to 0°C, in both warmer wet Arctic tundra soil and wet polygonal tundra on Herschel Island (Rivkina et al. 2004; Barbier et al. 2012). Barbier et al. (2012) also noted that acetoclastic methanogenesis as measured by the gene expression of methyl coenzyme M reductase subunit A (mcrA) and particulate methane monooxygenase subunit A (pmoA) was more prevalent in deeper tundra layers at 10°C, potentially leading to large movements of organic carbon anaerobically to the atmosphere. In addition, transcripts encoding for mcrA, which catalyzes the last step in methanogenesis, were markedly increased in thawing permafrost along with several other methanogenesis genes (Coolen and Orsi 2015). Similarly, increases in methanogenesis transcripts were observed in warming Arctic peat soils (Tveit et al. 2015). These recent studies, along with many others, provide evidence that the anaerobic production of methane in thawing permafrost will increase as Arctic permafrost turns into an active layer undergoing freeze—thaw. However, additional research remains to be done on methane release from frozen soils at other latitudes, as in Zona et al. (2016).

Microbial genes involved in nitrogen and carbon processing also shift in relation to climate change. Sharma et al. (2006) demonstrated a sharp increase in gene expression for periplasmic and cytochrome nitrate reductase genes (napA and nirS, respectively) immediately after thawing in farm and grasslands soils. This upregulation of nitrogen-processing genes was strongest after the initial thaw, suggesting that denitrifying bacteria responded rapidly to warming conditions in frozen soils (Sharma et al. 2006). Although the use of DNA and RNA microarrays has been limited for quantifying gene or transcript expression changes, microarrays can elucidate the response of microbial communities to carbon availability and other changes in physical environment. In a microarray analysis examining over 10 000 genes in 150 functional groups, Yergeau et al. (2007) found that the expression of cellulose degradation genes was correlated with temperature in Antarctic soils lacking vegetation cover. A functional gene array using cDNA prepared from mRNA of frozen soil microbial communities could provide deeper insight into the functional networks active in various environmental conditions.

Fluorescence in situ hybridization (FISH) has also been used in order to measure bacterial activity and is extensively reviewed (Amann and Fuchs 2008). While more of a microscopybased method than an RNA-based method to measure activity, FISH probes do bind to 16S rRNA and thus the more ribosomes within a cell, the larger the FISH signal, which allows us to estimate activity (Poulsen, Ballard and Stahl 1993; Odaa et al. 2000). For example, in the coastal waters of the West Antarctic Peninsula where seawater temperature fluctuates between 3°C in summer and −1.7°C in winter, summer FISH signal of two Gammaproteobacteria groups were larger than in the fall season (Nikrad, Cottrell and Kirchman 2014). In contrast to subzero ocean ecosystems, the complex structure of frozen soils hampers microscopic analyses with FISH. At least one study detected 59% of microbial cells in the upper layer of tundra soil in Siberia by using FISH, although detection decreased with depth, which suggests higher microbial activity in tundra surface (Kobabe, Wagner and Pfeiffer 2004). In general, RNA and rRNA content can elucidate microbial activity in frozen soils, and can do so at the resolution of microbial phylotypes, or targeted functional genes.

SUBZERO GROWTH AND ACTIVITY **OF ISOLATES**

Due to logistical difficulties related to directly studying microbes in frozen environments in situ, many studies have focused on isolating and culturing psychrophilic strains to study their activity under controlled conditions (see Table 1). Some guidelines exist for isolating microbes from frozen soils (Vishnivetskaya et al. 2000); however, it remains a difficult task to culture psychrophilic microbes from soils under in situ frozen conditions in order to then study their psychrophilic metabolism and enzyme activity (Bakermans et al. 2003). The optimal growth temperatures of microbes isolated from frozen soils are typically not in fact subzero; however, if they are capable of growth in frozen soils and permafrost then they are relevant to the question of carbon and nitrogen flux from these ecosystems. Genomes of psychrophilic microbes show adaptations necessary for growth at low temperatures, such as a reduced fraction of saturated fatty acids for increased membrane flexibility, DNA repair mechanisms and increased protein flexibility by reduced use of acidic amino acids (Ayala-del-Rio et al. 2010). These adaptations to cold temperatures allow bacteria to synthesize proteins and other macromolecules, as well as grow and divide at subzero temperatures without ice damage within the cells. For example, isolates from Siberian permafrost underwent significant morphological changes at -10°C compared to cultures grown at 4°C, including reduction in cell size, centralization of DNA and appearance of intracellular membrane inclusions (Bakermans et al. 2003). Growth of the psychrophile Pl. halocryophilus was reported down to -25° C, although the optimal temperature for this strain is -16°C based on genome analysis of cold-adapted strategies (Mykytczuk et al. 2013). Rhodococcus sp. JG3 is a novel isolate from the McMurdo Dry Valleys of Antarctica which can grow down to -5°C and has multiple stress and cold response adaptations in its genome, which are found in many psychrophiles (Goordial et al. 2016). Thus, it is likely that microbial strains isolated from permafrost and frozen soils are adapted to growth at low temperatures and are similar in genetic makeup to psychrophiles isolated from other frozen environments (Raval et al. 2013; De Maayer et al. 2014).

Winter can also be the peak time for release of extracellular materials, such as hydrolytic enzymes in Arctic tundra soils (Wallenstein, McMahon and Schimel 2009). Many psychrophilic bacterial strains also exude extracellular polysaccharides (EPS) under cold conditions, such as Pseudoalteromonas arctica and the aptly named Mucilaginibacter genus (Kim and Yim 2007; Pankratov et al. 2007; Männistö et al. 2010; Jiang et al. 2012). This ability to produce cryoprotective EPS demonstrates use of carbon compounds, active metabolism and protein catalysis at

temperatures below freezing. Generation of EPS may also play a big part in the flux of carbon through cold ecosystems because it requires a large intake of organic carbon by each cell, which is then excreted, providing labile organic carbon as a food source for enhanced respiration by other heterotrophic microbes (Junge et al. 2006). Estimating growth activity of EPS-generating microbes in general could allow us to model the process of how carbon can be recycled within a cold soil ecosystem (Deming, Krembs and Eicken 2011; Boetius et al. 2015).

The documenting of differential activity by microbes under various subzero conditions is important for extrapolating how certain functional groups of microbes may contribute to biogeochemical cycling in permafrost and seasonally frozen soils. For example, determining the activity response of isolated methanogenic archaea is particularly critical when attempting to predict future greenhouse gas release (Dedysh et al. 1998; Mc-Calley et al. 2014). While a few studies have examined stress response of methanogens to extreme environmental conditions (Schirmack, Alawi and Wagner 2015), only recently has the activity of methanogenic isolates been examined under predicted climate change conditions in order to elucidate how methanogenesis might contribute to positive carbon feedback (Dedysh 2011). Several methanogenic archaea have already been isolated from permafrost (Krivushin et al. 2010; Shcherbakova et al. 2011; Wagner et al. 2013) and optimal growth temperatures of these archaea is much higher than what they experience in frozen soils. Thus, overall methane production by these archaea will likely increase as permafrost thaws and ecosystems begin warming. Recent studies are examining the response of methanogenic archaea to warmer and wetter conditions in frozen soils (Wagner et al. 2007; Barbier et al. 2012; McCalley et al. 2014; Tveit et al. 2015). For example in Lena Delta permafrost, methane gas was generated by cold-adapted archaea up to a depth of 4 m, suggesting that this functional group plays a large role in the climate feedback loop (Wagner et al. 2007). Methanogens are likely to be a main driver of greenhouse gas release from tundra and understanding their activity in frozen systems is paramount.

ENZYME ACTIVITY IN FROZEN SOILS

Microbial growth in both culture and soil conditions can be measured by the production and activity of enzymes. In particular, the bioprocessing of organic carbon requires the production of catabolic enzymes, including glucosidases, cellulases, hydrolases, phosphatases and numerous others. While the number of studies examining microbial activity even in frozen ecosystems is too great to summarize in this section, we highlight a few here in direct relation to carbon processing in changing permafrost and tundra (see Table 1). One group of the most commonly examined enzymes in frozen soils is glucosidases, which are involved in the breakdown of glucose. In warming environmental conditions such as thawing, glucosidase activity increased dramatically, suggesting an availability of simple organic carbon immediately after warming in Holocene permafrost soil (Coolen et al. 2011). ß-Glucosidase activity was also higher in the active layer of Arctic tundra than in the permafrost below, along with phosphatase and N-acetyl glucosaminidase activity (Waldrop et al. 2010). Bacteria also seemed to increase the production of oxidative enzymes such as peroxidases in permafrostaffected topsoils, while deeper in wet fen soils enzymes associated with anaerobic fermentation were more common (Gittel et al. 2014). With Arctic permafrost poised to transform into active layer with climate warming, activity of these enzymes is

likely to substantially increase and rates of carbon breakdown can be more easily measured through exoenzyme activity.

Carbon availability affects enzymatic activity in frozen soils, and carbon can become available by more factors than warming and thawing conditions. For example, a recent study conducted in Arctic tundra soils showed the increased activity of enzymes involved in carbon breakdown after fertilization of the soils with nitrogen and phosphorous, which suggests that increasing agricultural activity in the Arctic is likely to have a significant impact on labile soil carbon (Koyama et al. 2013). As an added affect, an increase in the availability in labile organic carbon and subsequent and breakdown of this carbon by abundant microorganisms may actually 'kick start' the breakdown of more recalcitrant soil organic carbon as well (Coolen et al. 2011). In addition to increases in nitrogen availability, factors such as soil pH can also affect the activity of enzymes such as ß-Glucosidase, with higher pH limiting enzyme activity overall (Stark, Männistö and Eskelinen 2014). Some links also exist between enzyme activity in the subarctic tundra due to the effect of light and heavy grazing by ungulates on the surface vegetation cover (Stark et al. 2015), which stresses the importance of examining enzyme activity under conditions beyond warming and thawing soils.

INCORPORATION STUDIES

Some of the most informative methods for measuring active growth/assimilation by microbes in soils, as well as other ecosystems, are incorporation studies using isotopically labeled carbon and nitrogen compounds. However, incorporation studies for microbial activity in situ are not easy to conduct, often requiring long incubation times from months to years as well as long processing and analysis times. Evidence for incorporation of isotopic labels and 5-bromo-3-deoxyuridine (BrdU) into macromolecules has been demonstrated in cold ecosystems such as snow (Carpenter, Lin and Capone 2000), ice (Christner 2002) and saline ice formations and sea ice brine (Junge, Eicken and Deming 2004; Junge et al. 2006). Few studies have examined microbial assimilation of labeled compounds in frozen soils (Table 1), which are more common environments globally than snow or ice but which do present some interesting experimental challenges, as frozen soils do not homogenize easily and thawing can occur (McMahon, Wallenstein and Schimel 2009; Drotz et al. 2010; Schwartz et al. 2014; Tuorto et al. 2014).

In order to study macromolecule synthesis by microbial isolates, incorporation of ¹³C-, ¹⁴C- or ³H-labeled substrates is commonly used. Using ³H-thymidine incorporation, both P. cryohalolentis and P. arcticus were shown to synthesize DNA at -15° C; however, the rate of synthesis by P. arcticus was up to 10-fold faster than P. cryohalolentis (Amato et al. 2010). Similarly, a strain of yeast isolated from Antarctica ice incorporated ³H-leucine down to -15°C, indicating active metabolisms at subzero temperatures (Amato, Doyle and Christner 2009). Incorporation of 3 H-leucine and 3 H-thymidine was measured at 4° C and 10° C in soil from the Antarctic continent, with incorporation into heterotrophic bacteria occurring within a few hours of labeled substrate addition (Tibbles and Harris 1996). The bacterial growth rate in a forest and an agricultural soil from Sweden increased steadily with incubation temperatures from 0°C to 30°C as measured using thymidine incorporation, and fungi also incorporated labeled acetate in a similar trend (Pietikäinen, Pettersson and Bååth 2005). Both these studies used incubation temperatures above freezing, and microbial incorporation activity at these warmer temperatures provides a useful analog about

the potential activity of microbes in soils with climate warming. However, a comparison to subzero temperatures would provide a more complete picture for the predictions of microbial roles in climate change, especially knowledge of which functional groups are most abundant and active now and in the near future.

In Siberian permafrost cores, Rivkina et al. (2000) measured bacterial incorporation of 14 C-labeled sodium acetate over a 550day period at temperatures ranging from −20°C to 5°C. Total incorporation of radiolabeled substrates increased at higher temperatures, but was measurable down to −10°C. However, very little incorporation was observed at -15°C and -20°C and a doubling time for bacteria of 20 days at −10°C and 160 days at -20°C was estimated (Rivkina et al. 2000). Measuring incorporation of ¹⁴C-labeled compounds is a quantitative method of examining microbial community activity as a whole, although it does not by itself provide information about the types of microbes that are active. McMahon, Wallenstein and Schimel (2009) tested changes in the structure of the active microbial community growing in frozen Arctic soils by using both ¹³C-glucose and BrDU incorporation. Gram-negative bacteria in Arctic tundra surface soils incorporated more ¹³C-glucose into their lipids than Gram positives, as assessed by phospholipid fatty acid analysis. Incorporation of ¹³C-glucose into lipids indicates synthesis of new membranes down to -2° C, suggesting that growth activity of microbes in the Arctic continues through winter time. In the same study, fungi were found to be more active than bacteria. Overall BrdU incorporation, however, indicated that microbial DNA synthesis was also occurring in early and late winter (McMahon, Wallenstein and Schimel 2009). Similarly, when tracer amounts of substrate were added to measure DNA synthesis via BrdU incorporation in Arctic tundra, the microbial community shifted towards a greater diversity of phylotypes in the active fraction as measured by TRFLP and 16S rRNA sequence analysis. This increase in the diversity of active microbes was reported in soil microcosms incubated with multiple substrates at a wintertime temperature of -2°C and thawing temperature of 4°C (McMahon, Wallenstein and Schimel 2011). One of the main obstacles for conducting incorporation studies in frozen soils is homogenizing the labeled compounds into the frozen soil without heating or thawing the soil. Most studies have achieved this homogenization through various combinations of hammering, grinding and blending.

Recently, an SIP incorporation study found differences in the microbial community active at various subzero temperatures when microcosms of Alaskan permafrost soil were incubated with ¹³C-acetate (Tuorto et al. 2014). After 6-month incubations, 152 OTUs were identified in the active fraction of permafrost microcosms (representing 80% of all OTUs detected) which could incorporate 13C-acetate into their genomic DNA between 0° C and -20° C. Interestingly, while some OTUs showed active genome replication at all temperatures, a few only assimilated acetate within a narrow temperature range, suggesting adaptation to a narrow niche. Combining SIP with phylogenetic analysis of a clone library, Tuorto et al. (2014) were able to identify the active bacterial groups, namely Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes and Proteobacteria at the lowest temperatures, including -9°C and -12°C. Overall, a greater diversity of OTUs was active at the lower temperature incubations than at 0°C (Tuorto et al. 2014). In this way, SIP plus 16S rRNA gene sequencing provides data about the microbial community structure and function in potentially any type of frozen soil, including information on active genome replication, substrate preference and identity of the metabolically active microbial groups.

CONCLUSIONS AND OUTLOOK

Bulk measurements of microbial activity are an efficient way to understand the roles of microbes at the ecosystem level, but there are limitations. Respiration measures the release of carbon from soil as a greenhouse gas flux, which is important information for climate modeling. However, respiration measurements alone do not provide information on the identity of the specific microbes that are active in metabolism in frozen soils, and do not also necessarily indicate active microbial growth and replication. Furthermore, release of CO2 from frozen soils could be the result of a release in trapped CO₂, or caused by basal microbial metabolism of bacteria, archaea and fungi. While knowing fine-scale microbial community structure may not be important in understanding overall ecosystem function, community structure can explain process differences in intraseasonal variation and in experimental microcosms (Graham et al. 2014; Bier et al. 2015). Examining gene expression changes of microbes in frozen soils via metatranscriptomics and more targeted gene analysis enables an understanding of their response under various physical conditions. While 'meta-omics' studies provide clues to the active metabolic processes of microbial cells in subzero soils, the knowledge gleaned from these studies is still limited by poorly annotated or unannotated genes in the available databases. Microbial function and growth can be examined by more direct methods such as enzyme activity measurements and substrate incorporation.

The landscape of frozen ecosystems is changing rapidly. Unfortunately, our knowledge of microbial activity in frozen soils is advancing slower than the environmental change that is occurring. The studies discussed in this review provide examples of microbial activity measurements using multiple techniques, all of which provide valuable information towards understanding and predicting the role of microbes in a changing climate. Ecosystem level measurements, such as respiration of carbon dioxide, methane and nitrous oxide, and metagenomic and meta-transcriptomic approaches, provide a reference framework from which we can build hypotheses and expectations for more targeted studies. These broad approaches address ecosystem level carbon flux which makes sense on the global scale of modeling climate warming in the short term. However, in order to better predict and then project how soil microbial ecosystems will respond to environmental changes in the near and far future, fitting in more pieces of the puzzle is imperative. Some important gaps that we have yet to fill include (1) characterizing both the functional composition of microbial communities and how they respond to changing physical environment as a whole, (2) understanding how soil organic matter assimilation and cell growth will affect organic carbon flux into biomass and (3) because current heterotrophic bacterial enzyme activity in frozen soils is likely limited by low temperatures, how does nutrient availability affect microbial functional groups and their enzyme activity.

ACKNOWLEDGEMENTS

The authors would like to thank the Institute of Earth, Ocean, and Atmospheric Sciences at Rutgers University and the New Jersey Agricultural Experiment Station for funding support.

Conflict of interest. None declared.

REFERENCES

- Abbott BW, Jones JB. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Global Change Biol 2015;21:4570-87.
- Alm J, Saarnio S, Nykänen H et al. Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands. Biogeochemistry 1999;44:163-86.
- Amann R, Fuchs BM. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 2008;6:339-48.
- Amato P, Doyle S, Christner BC. Macromolecular synthesis by yeasts under frozen conditions. Environ Microbiol 2009; 11:589-96.
- Amato P, Doyle SM, Battista JR et al. Implications of subzero metabolic activity on long-term microbial survival in terrestrial and extraterrestrial permafrost. Astrobiology 2010; **10**:789-98.
- Anderson OR. The fate of organic sources of carbon in moss-rich tundra soil microbial communities: a laboratory experimental study. J Eukaryot Microbiol 2012;59:564-70.
- Anderson OR. Bacterial and heterotrophic nanoflagellate densities and C-biomass estimates along an Alaskan tundra transect with prediction of respiratory CO2 efflux. J Eukaryot Microbiol 2014;61:11-6.
- Ayala-del-Rio HL, Chain PS, Grzymski JJ et al. The genome sequence of Psychrobacter arcticus 273-4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl Environ Microb 2010;76:2304-12.
- Bakermans C, Ayala-del-Rio HL, Ponder MA et al. Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. Int J Syst Evol Micr 2006; **56**:1285–91.
- Bakermans C, Nealson KH. Relationship of critical temperature to macromolecular synthesis and growth yield in Psychrobacter cryopeaella. J Bacteriol 2004:186:2340-5.
- Bakermans C, Skidmore ML, Douglas S et al. Molecular characterization of bacteria from permafrost of the Taylor Valley, Antarctica. FEMS Microbiol Ecol 2014;89:331-46.
- Bakermans C, Tsapin AI, Souza-Egipsy V et al. Reproduction and metabolism at-10 degrees C of bacteria isolated from Siberian permafrost. Environ Microbiol 2003;5:321-6.
- Barbier BA, Dziduch I, Liebner S et al. Methane-cycling communities in a permafrost-affected soil on Herschel Island, Western Canadian Arctic: active layer profiling of mcrA and pmoA genes. FEMS Microbiol Ecol 2012;82:287-302.
- Bier RL, Bernhardt ES, Boot CM et al. Linking microbial community structure and microbial processes: an empirical and conceptual overview. FEMS Microbiol Ecol 2015;91, DOI:10.1093/femsec/fiv113.
- Blazewicz SJ, Barnard RL, Daly RA et al. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J 2013;7:2061-8.
- Boetius A, Anesio AM, Deming JW et al. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 2015;13:677-90.
- Brooks PD, Grogan P, Templer PH et al. Carbon and nitrogen cycling in snow-covered environments. Geography Compass 2011;5:682-99.
- Brooks PD, McKnight D, Elder K. Carbon limitation of soil respiration under winter snowpacks: potential feedbacks between growing season and winter carbon fluxes. Global Change Biol 2005;11:231-8.

- Cameron KA, Stibal M, Zarsky JD et al. Supraglacial bacterial community structures vary across the Greenland ice sheet. FEMS Microbiol Ecol 2016;92, DOI:10.1093/femsec/fiv164.
- Carpenter EJ, Lin S, Capone DG. Bacterial activity in South Pole snow. Appl Environ Microb 2000;66:4514-7.
- Chauhan A, Layton AC, Vishnivetskaya TA et al. Metagenomes from thawing low-soil-organic-carbon mineral cryosols and permafrost of the Canadian High Arctic. Genome Announc 2014;2:e01217-14.
- Christner BC. Incorporation of DNA and protein precursors into macromolecules by bacteria at -15°C. Appl Environ Microb 2002;68:6435-8.
- Clein JS, Schimel JP. Microbial activity of tundra and taiga soils at sub-zero temperatures. Soil Biol Biochem 1995;27:1231-4.
- Coolen MJ, van de Giessen J, Zhu EY et al. Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw. Environ Microbiol 2011;13:2299-314.
- Coolen MJL, Orsi WD. The transcriptional response of microbial communities in thawing Alaskan permafrost soils. Front Microbiol 2015;6:197.
- Crevecoeur S, Vincent WF, Comte J et al. Bacterial community structure across environmental gradients in permafrost thaw ponds: methanotroph-rich ecosystems. Front Microbiol 2015;**6**:192.
- De Maayer P, Anderson D, Cary C et al. Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 2014;15:508-17.
- Dedysh SN. Cultivating uncultured bacteria from Northern wetlands: knowledge gained and remaining gaps. Front Microbiol
- Dedysh SN, Panikov NS, Liesack W et al. Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands. Science 1998;282:281-4.
- Dedysh SN, Pankratov TA, Belova SE et al. Phylogenetic analysis and in situ identification of bacteria community composition in an acidic Sphagnum peat bog. Appl Environ Microb 2006;72:2110-7.
- DeLuca TH, Keeney DR, McCarty GW. Effect of freeze-thaw events on mineralization of soil nitrogen. Biol Fert Soils 1992;14:116-20.
- Deming JW, Krembs C, Eicken H. Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. P Natl Acad Sci USA 2011;108:3653-8.
- Drotz SH, Sparrman T, Nilsson MB et al. Both catabolic and anabolic heterotrophic microbial activity proceed in frozen soils. P Natl Acad Sci USA 2010;107:21046-51.
- Elberling B. Annual soil CO2 effluxes in the high arctic: the role of snow thickness and vegetation type. Soil Biol Biochem 2007:39:646-54.
- Elberling B, Brandt KK. Uncoupling of microbial CO₂ production and release in frozen soil and its implications for field studies of arctic C cycling. Soil Biol Biochem 2003;35:263-72.
- Elberling B, Christiansen HH, Hansen BU. High nitrous oxide production from thawing permafrost. Nat Geosci 2010; **3**:332-5.
- Eriksson M, Ka J-O, Mohn WW. Effects of low temperature and freeze-thaw cycles on hydrocarbon biodegradation in Arctic tundra soil. Appl Environ Microbiol 2001;67:5107-12.
- Ernakovich JG, Wallenstein MD, Calderon FJ. Chemical indicators of cryoturbation and microbial processing throughout an Alaskan permafrost soil depth profile. Soil Sci Soc Am J 2015;79:783-93.

- Fahnestock JT, Jones MH, Welker JM. Wintertime CO2 efflux from arctic soils: Implications for annual carbon budgets. Global Biogeochem Cycles 1999;13:775-9.
- Gilichinsky D, Rivkina E, Shcherbakova V et al. Supercooled water brines within permafrost-an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology 2003;3:331-41.
- Gittel A, Barta J, Lacmanova I et al. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland. Front Microbiol 2014;5:541.
- Goordial J, Raymond-Bouchard I, Zolotarov Y et al. Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica. FEMS Microbiol Ecol 2016;92, DOI:10.1093/femsec/fiv154.
- Graham DE, Wallenstein MD, Vishnivetskaya TA et al. Microbes in thawing permafrost: the unknown variable in the climate change equation. ISME J 2012;6:709-12.
- Graham EB, Wieder WR, Leff JW et al. Do we need to understand microbial communities to predict ecosystem function? A comparison of statistical models of nitrogen cycling processes. Soil Biol Biochem 2014;68:279-82.
- Guicharnaud R, Arnalds O, Paton GI. Short term changes of microbial processes in Icelandic soils to increasing temperatures. Biogeosciences 2010;7:671-82.
- Harder Nielsen T, Bonde TA, Sørensen J. Significance of microbial urea turnover in N cycling of three Danish agricultural soils. FEMS Microbiol Ecol 1998;25:147-57.
- Hicks Pries CE, Schuur EAG, Crummer KG. Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using δ 13C and Δ 14C. Glob Change Biol 2013;19:649-61.
- Hicks Pries CE, Schuur EAG, Vogel JG et al. Moisture drives surface decomposition in thawing tundra. J Geophys Res: Biogeosci 2013;118:1133-43.
- Hultman J, Waldrop MP, Mackelprang R et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 2015;521:208-12.
- Hungate RE. I. Microbial ecology of the rumen. Bacteriol Rev 1960;24:353-64.
- Jansson JK, Tas N. The microbial ecology of permafrost. Nat Rev Microbiol 2014;12:414-25.
- Jefferies RL, Walker NA, Edwards KA et al. Is the decline of soil microbial biomass in late winter coupled to changes in the physical state of cold soils? Soil Biol Biochem 2010;42:129-35.
- Jiang F, Dai J, Wang Y et al. Mucilaginibacter soli sp nov., isolated from Arctic tundra soil. Int J Syst Evol Micr 2012;62:1630-5.
- Junge K, Eicken H, Deming JW. Bacterial activity at-2 to-20 degrees C in Arctic wintertime sea ice. Appl Environ Microbiol 2004:70:550-7.
- Junge K, Eicken H, Swanson BD et al. Bacterial incorporation of leucine into protein down to −20°C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology 2006;52:417-29.
- Karhu K, Auffret MD, Dungait JAJ et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 2014;513:81-4.
- Katayanagi N, Hatano R. N2O emissions during the freezing and thawing periods from six fields in a livestock farm, southern Hokkaido, Japan. Soil Sci Plant Nutr 2012;58:261-71.
- Kerkhof L, Kemp P. Small ribosomal RNA content in marine Proteobacteria during non-steady-state growth. FEMS Microbiol Ecol 1999;30:253-60.

- Khvorostyanov DV, Krinner G, Ciais P et al. Vulnerability of permafrost carbon to global warming. Part I: model description and role of heat generated by organic matter decomposition. Tellus B 2008;60:250-64.
- Kim SJ, Yim JH. Cryoprotective properties of exopolysaccharide (P-21653) produced by the Antarctic bacterium, Pseudoalteromonas arctica KOPRI 21653. J Microbiol 2007;45:510-4.
- Knoblauch C, Beer C, Sosnin A et al. Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Global Change Biol 2013; 19:1160-72.
- Kobabe S, Wagner D, Pfeiffer E-M. Characterisation of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridization. FEMS Microbiol Ecol 2004;50:13-23.
- Koven CD, Ringeval B, Friedlingstein P et al. Permafrost carbonclimate feedbacks accelerate global warming. P Natl Acad Sci USA 2011;108:14769-74.
- Koyama A, Wallenstein MD, Simpson RT et al. Carbon-degrading enzyme activities stimulated by increased nutrient availability in Arctic Tundra Soils. PLoS One 2013;8:e77212.
- Krivushin K, Kondrashov F, Shmakova L et al. Two metagenomes from late pleistocene northeast siberian permafrost. Genome Announc 2015;3:e01380-14.
- Krivushin KV, Shcherbakova VA, Petrovskaya LE et al. Methanobacterium veterum sp. nov., from ancient Siberian permafrost. Int J Syst Evol Micr 2010;60:455-9.
- Larsen KS, Jonasson S, Michelsen A. Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types. Appl Soil Ecol 2002;21:187-95.
- McCalley CK, Woodcroft BJ, Hodgkins SB et al. Methane dynamics regulated by microbial community response to permafrost thaw. Nature 2014;514:478-81.
- MacDougall AH, Avis CA, Weaver AJ. Significant contribution to climate warming from the permafrost carbon feedback. Nat Geosci 2012;5:719-21.
- Mackelprang R, Waldrop MP, DeAngelis KM et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 2011;480:368-71.
- McMahon SK, Wallenstein MD, Schimel JP. Microbial growth in Arctic tundra soil at -2° C. Environ Microbiol Rep 2009;1:162–6.
- McMahon SK, Wallenstein MD, Schimel JP. A cross-seasonal comparison of active and total bacterial community composition in Arctic tundra soil using bromodeoxyuridine labeling. Soil Biol Biochem 2011;43:287-95.
- Männistö MK, Kurhela E, Tiirola M et al. Acidobacteria dominate the active bacterial communities of Arctic tundra with widely divergent winter-time snow accumulation and soil temperatures. FEMS Microbiol Ecol 2013;84:47-59.
- Männistö MK, Tiirola M, McConnell J et al. Mucilaginibacter frigoritolerans sp. nov., Mucilaginibacter lappiensis sp. nov. and Mucilaginibacter mallensis sp. nov., isolated from soil and lichen samples. Int J Syst Evol Micr 2010;60:2849-56.
- Marushchak ME, Pitkämäki A, Koponen H et al. Hot spots for nitrous oxide emissions found in different types of permafrost peatlands. Global Change Biol 2011;17:2601-14.
- Miao S, Qiao Y, Han X et al. Frozen cropland soil in northeast China as source of N2O and CO2 emissions. PLoS One 2014;9:e115761.
- Michaelson GJ, Ping CL. Soil organic carbon and CO₂ respiration at subzero temperature in soils of Arctic Alaska. J Geophys Res-Atmos 2003;108:8164.
- Mikan CJ, Schimel JP, Doyle AP. Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biol Biochem 2002;34:1785-95.

- Mondav R, Woodcroft BJ, Kim E-H et al. Discovery of a novel methanogen prevalent in thawing permafrost. Nat Commun 2014;5:3212.
- Monson RK, Lipson DL, Burns SP et al. Winter forest soil respiration controlled by climate and microbial community composition. Nature 2006;439:711-4.
- Mykytczuk NC, Wilhelm RC, Whyte LG. Planococcus halocryophilus sp. nov., an extreme sub-zero species from high Arctic permafrost. Int J Syst Evol Microbiol 2012;62:1937-44.
- Mykytczuk NCS, Foote SJ, Omelon CR et al. Bacterial growth at -15°C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J 2013;7:1211-26.
- Niederberger TD, Steven B, Charvet S et al. Virgibacillus arcticus sp. nov., a moderately halophilic, endospore-forming bacterium from permafrost in the Canadian high Arctic. Int J Syst Evol Microbiol 2009;59:2219-25.
- Nikrad MP, Cottrell MT, Kirchman DL. Growth activity of gammaproteobacterial subgroups in waters off the west Antarctic Peninsula in summer and fall. Environ Microbiol 2014;16:1513-23.
- Odaa Y, Slagmana S, Meijerb WG et al. Influence of growth rate and starvation on fluorescent in situ hybridization of Rhodopseudomonas palustris. FEMS Microbiol Ecol 2000; **32**:205-13.
- Öquist MG, Nilsson M, Sörensson F et al. Nitrous oxide production in a forest soil at low temperatures—processes and environmental controls FEMS Microbiol Ecol 2004;49:371-8.
- Öquist MG, Sparrman T, Klemedtsson L et al. Water availability controls microbial temperature responses in frozen soil CO2 production. Global Change Biol 2009;15:2715-22.
- Palmer K, Biasi C, Horn MA. Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra. ISME J 2012;6:1058-77.
- Palmer K, Horn MA. Actinobacterial nitrate reducers and proteobacterial denitrifiers are abundant in N2O-metabolizing palsa peat. Appl Environ Microb 2012;78:5584-96
- Panikov NS, Dedysh SN. Cold season CH4 and CO2 emission from boreal peat bogs (West Siberia): Winter fluxes and thaw activation dynamics. Global Biogeochem Cycles 2000; 14:1071-80.
- Panikov NS, Flanagan PW, Oechel WC et al. Microbial activity in soils frozen to below -39°C. Soil Biol Biochem 2006;38:785-94.
- Panikov NS, Sizova MV. Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to -35° C. FEMS Microbiol Ecol 2007;**59**:500–12.
- Pankratov TA, Ivanova AO, Dedysh SN et al. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environ Microbiol 2011; **13**:1800-14.
- Pankratov TA, Serkebaeva YM, Kulichevskaya IS et al. Substrateinduced growth and isolation of Acidobacteria from acidic Sphagnum peat. ISME J 2008;2:551-60.
- Pankratov TA, Tindall BJ, Liesack W et al. Mucliaginibacter paludis gen. nov., sp nov and Mucilaginibacter gracilis sp nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Micr 2007;57:2349-54.
- Papen H, Butterbach-Bahl K. A 3-year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany: 1. N₂O emissions. J Geophys Res- Atmos 1999;104:18487-503.
- Pietikäinen J, Pettersson M, Bååth E. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol Ecol 2005;52:49-58.

- Pikuta EV, Marsic D, Bej A et al. Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the Fox Tunnel in Alaska. Int J Syst Evol Microbiol 2005;55:473-8.
- Ponder MA, Gilmour SJ, Bergholz PW et al. Characterization of potential stress responses in ancient Siberian permafrost psychroactive bacteria. FEMS Microbiol Ecol 2005;53:103-15.
- Poulsen LK, Ballard G, Stahl DA. Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl Environ Microb 1993;59:1354-60.
- Raval CS, Markna JH, Ambasana L et al. Psychrophiles: cold adaptation. Res Rev: J Life Sci 2013;3:15-20.
- Risk N, Snider D, Wagner-Riddle C. Mechanisms leading to enhanced soil nitrous oxide fluxes induced by freeze-thaw cycles. Canadian J Soil Sci 2013;93:401-14.
- Rivkina E, Laurinavichius K, McGrath J et al. Microbial life in permafrost. Adv Space Res 2004;33:1215-21.
- Rivkina EM, Friedmann EI, McKay CP et al. Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microb 2000;66:3230-3.
- Röver M, Heinemeyer O, Kaiser E-A. Microbial induced nitrous oxide emissions from an arable soil during winter. Soil Biol Biochem 1998;30:1859-65.
- Schaeffer SM, Sharp E, Schimel JP et al. Soil-plant N processes in a High Arctic ecosystem, NW Greenland are altered by longterm experimental warming and higher rainfall. Glob Chang Biol 2013;19:3529-39.
- Schimel JP, Clein JS. Microbial response to freeze-thaw cycles in tundra and taiga soils. Soil Biol Biochem 1996;28:1061-6.
- Schimel JP, Mikan C. Changing microbial substrate use in Arctic tundra soils through a freeze-thaw cycle. Soil Biol Biochem 2005;37:1411-8.
- Schirmack J, Alawi M, Wagner D. Influence of Martian regolith analogs on the activity and growth of methanogenic archaea, with special regard to long-term desiccation. Front Microbiol 2015;6:210.
- Schostag M, Stibal M, Jacobsen CS et al. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses. Front Microbiol 2015;6:399.
- Schuur EAG, Bockheim J, Canadell JG et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 2008;58:701-14.
- Schuur EAG, McGuire AD, Schadel C et al. Climate change and the permafrost carbon feedback. Nature 2015;520:171-9.
- Schuur EAG, Vogel JG, Crummer KG et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 2009:459:556-9.
- Schwartz E, Van Horn DJ, Buelow HN et al. Characterization of growing bacterial populations in McMurdo Dry Valley soils through stable isotope probing with ¹⁸O-water. FEMS Microbiol Ecol 2014;89:415-25.
- Sharma S, Szele Z, Schilling R et al. Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil. Appl Environ Microb 2006;72:2148-54.
- Shcherbakova V, Rivkina E, Pecheritsyna S et al. Methanobacterium arcticum sp. nov., a methanogenic archaeon from Holocene Arctic permafrost. Int J Syst Evol Micr 2011;61:144-7.
- Shcherbakova VA, Chuvilskaya NA, Rivkina EM et al. Novel psychrophilic anaerobic spore-forming bacterium from the overcooled water brine in permafrost: description Clostridium algoriphilum sp. nov. Extremophiles 2005;9:239-46.

- Skogland T, Lomeland S, Goksøyr J. Respiratory burst after freezing and thawing of soil: experiments with soil bacteria. Soil Biol Biochem 1988;20:851-6.
- Stark S, Männistö M, Eskelinen A. Nutrient availability and pH jointly constrain microbial extracellular enzyme activities in nutrient-poor tundra soils. Plant Soil 2014;383:373-85.
- Stark S, Männistö MK, Ganzert L et al. Grazing intensity in subarctic tundra affects the temperature adaptation of soil microbial communities. Soil Biol Biochem 2015;84:147-57.
- Steven B, Leveille R, Pollard WH et al. Microbial ecology and biodiversity in permafrost. Extremophiles 2006;10:259-67.
- Steven B, Niederberger TD, Bottos EM et al. Development of a sensitive radiorespiration method for detecting microbial activity at subzero temperatures. J Microbiol Meth 2007;71: 275-80.
- Steven B, Pollard WH, Greer CW et al. Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. Environ Microbiol 2008;10:3388-403.
- Stomeo F, Makhalanyane TP, Valverde A et al. Abiotic factors influence microbial diversity in permanently cold soil horizons of a maritime-associated Antarctic Dry Valley. FEMS Microbiol Ecol 2012;82:326-40.
- Strauss J, Schirrmeister L, Grosse G et al. The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska. Geophys Res Lett 2013;40:6165-70.
- Stres B, Philippot L, Faganeli J et al. Frequent freeze-thaw cycles yield diminished yet resistant and responsive microbial communities in two temperate soils: a laboratory experiment volume. FEMS Microbiol Ecol 2010;74:323-35.
- Tarnocai C, Canadell JG, Schuur EAG et al. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem Cycles 2009;23:GB2023.
- Tas N, Prestat E, McFarland JW et al. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J 2014;8:1904-19.
- Teepe R, Brumme R, Beese F. Nitrous oxide emissions from frozen soils under agricultural, fallow and forest land. Soil Biol Biochem 2000;32:1807-10.
- Tibbles BJ, Harris JM. Use of radiolabeled thymidine and leucine to estimate bacterial production in soils from continental Antarctica. Appl Environ Microb 1996;62:694-701.
- Tuorto SJ, Darias P, McGuinness LR et al. Bacterial genome replication at subzero temperatures in permafrost. ISME J 2014;8:139-49.
- Tveit AT, Urich T, Frenzel P et al. Metabolic and trophic interactions modulate methane production by Arctic peat

- microbiota in response to warming. P Natl Acad Sci USA 2015;112:E2507-16.
- Uchida Y, Clough TJ. Nitrous oxide emissions from pastures during wet and cold seasons. Grassland Sci 2015;61:61-74.
- Vincent WF. Microbial ecosystem responses to rapid climate change in the Arctic. ISME J 2010;4:1087-90.
- Vishnivetskaya T, Kathariou S, McGrath J et al. Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4:165-73.
- Wagner D, Gattinger A, Embacher A et al. Methanogenic activity and biomass in Holocene permafrost deposits of the Lena Delta, Siberian Arctic and its implication for the global methane budget. Global Change Biol 2007; 13:1089-99.
- Wagner D, Schirmack J, Ganzert L et al. Methanosarcina soligelidi sp. nov., a desiccation- and freeze-thaw-resistant methanogenic archaeon from a Siberian permafrost-affected soil. Int J Syst Evol Micr 2013;63:2986-91.
- Waldrop MP, Wickland KP, White Iii R et al. Molecular investigations into a globally important carbon pool: permafrostprotected carbon in Alaskan soils. Global Change Biol 2010;16:2543-54.
- Wallenstein MD, McMahon SK, Schimel JP. Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils. Global Change Biol 2009;15:1631-9.
- Weedon JT, Kowalchuk GA, Aerts R et al. Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure. Global Change Biol 2012;18:138-50.
- Wertz S, Goyer C, Zebarth BJ et al. Effects of temperatures near the freezing point on N2O emissions, denitrification and on the abundance and structure of nitrifying and denitrifying soil communities. FEMS Microbiol Ecol 2013;83:242-54.
- Yergeau E, Kang S, He Z et al. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. ISME J 2007;1:163-79.
- Yergeau E, Kowalchuk GA. Responses of Antarctic soil microbial communities and associated functions to temperature and freeze-thaw cycle frequency. Environ Microbiol 2008; **10**:2223-35.
- Zimov SA, Schuur EAG, Chapin FS. Permafrost and the global carbon budget. Science 2006;312:1612-3.
- Zona D, Gioli B, Commane R et al. Cold season emissions dominate the Arctic tundra methane budget. P Natl Acad Sci USA 2016;113:40-5.