FITBIT ANALYSIS

VIVIAN WU

PROBLEM

- Consumers use Fitbit to track physical activity and sleep
- Data is stored and accessible
 - Users can export their own data on Fitbit's website
- How is the tracked information used, if at all?
 - Numbers on a spreadsheet are meaningless without interpretation

SOLUTION

- Tracy
 - Fitbit consumer
 - Group exercise instructor
 - Home health aide
- Provide stats and visualizations of the data
 - Provides insight on Tracy's fitness & sleeping habits
 - Helps gauge what habits should be maintained or changed

THE DATA

- Extract up to 31 days of data at a time
- Body, activity, sleep, food data
- CSV or XLSX file option
 - Each category of data is saved in a separate sheet (within the same Excel file)

THE DATA

Each XLSX file '2018-10.xls'

- · "Foods"
 - Date
 - Calories In
- "Activities"
 - Dates
 - Calories Burned
 - Steps
 - Distance
 - Floors
 - Minutes Sedentary
 - Minutes Lightly Active
 - Minutes Fairly Active
 - Minutes Very Active
 - Activity Calories

- · "Sleep"
 - Start Time
 - End Time
 - Minutes Asleep
 - Minutes Awake
 - Number of Awakenings
 - Time in Bed
 - Minutes REM Sleep
 - Minutes Light Sleep
 - Minutes Deep Sleep
- "Food Log 20181001"
 - One for each day

THE DATA

The ideal dataset:

Fitbit's activity & sleep data:

	Α	В	C	D	E
1	Date	Calories Burned	Steps	Distance	Floors
2	2018-10-01	3,196	23,666	8.58	35
3	2018-10-02	2,434	13,287	4.66	11
4	2018-10-03	3,699	30,983	13.28	31
5	2018-10-04	2,471	14,381	4.85	21
6	2018-10-05	2,269	13,086	4.55	20
7	2018-10-06	3,209	31,461	16.35	25
8	2018-10-07	2,277	10,872	3.99	10
9	2018-10-08	3,278	25,599	9.6	1 4
10	2018-10-09	2,235	13,519	5.26	22

	Α	В	С
1	Start Time	End Time	Minutes Asleep
2	2018-10-30 10:15PM	2018-10-31 6:43AM	447
3	2018-10-29 10:00PM	2018-10-30 6:49AM	467
4	2018-10-28 9:55PM	2018-10-29 6:48AM	489
5	2018-10-27 10:29PM	2018-10-28 6:40AM	444
6	2018-10-26 10:25PM	2018-10-27 7:27AM	484
7	2018-10-25 9:24PM	2018-10-26 4:59AM	412
8	2018-10-24 10:12PM	2018-10-25 6:12AM	436
9	2018-10-23 11:24PM	2018-10-24 6:33AM	383
10	2018-10-22 9:04PM	2018-10-23 5:28AM	454

THE DATA (PROBLEM)

Fitbit displays food data in a "labeled" table format: A Meal Food Calories Breakfast 130 English Muffin, 100% Whole Wheat 102 Grapefruit 184 Egg, Chicken, Fried Pre-Cooked Sliced Bacon 79 American Cheese Morning Snack 10 Vanilla Waffle 160 121 Banana 12 13 Daily Totals Calories 826 Fat 33 g Fiber 10 g Carbs 101 g 909 mg Sodium Protein 29 g Water 0 fl oz

Also includes random table with nutrition info at bottom of file

THE DATA (PROBLEM)

- Food data unusable in the given format
 - Need to transform
- One sheet for each day's food log
 - Each XLSX file contains
 30+ sheets
 - Not all sheets contain the same kind of data
 - Need to determine how to to correctly extract data to the appropriate dataframe

Food dataframe

- Matched food to meal
- Added 'Date'
 - 'Food Log 20151109'
- Added 'Weekday'

	A	В	C
1	Meal	Food	Calories
2	Breakfast		
3		English Muffin, 100% Whole Wheat	130
4		Grapefruit	102
5 E		Egg, Chicken, Fried	184
E		Pre-Cooked Sliced Bacon	50
7		American Cheese	79
7 8 9 10			
9	Morning Snack		
0		Vanilla Waffle	7160
		Banana	121
Z			
13			
14			
.5	Daily Totals		
16	,	Calories	826
7		Fat	33 g
8		Fiber	10 g
9		Carbs	101 g
			909 mg
			29 g

0 fl oz

food.head()

	Meal	Food	Calories	Date	Weekday
0	Breakfast	American Cheese	61	2015-11-09	Monday
1	Breakfast	Bagel thins, Everything	110	2015-11-09	Monday
2	Breakfast	Egg, Chicken, Fried	184	2015-11-09	Monday
3	Breakfast	Ham Steak, Traditional	30	2015-11-09	Monday
4	Morning Snack	Dark Chocolate Dreams	170	2015-11-09	Monday

Macros dataframe

- Pivoted original table
- Added 'Date' as index
 - 'Food Log 20151109'
- Added 'Weekday'

	Α	В	C
1	Meal	Food	Calories
2	Breakfast		
3		English Muffin, 100% Whole Wheat	130
4		Grapefruit	102
5		Egg, Chicken, Fried	184
6		Pre-Cooked Sliced Bacon	50
7		American Cheese	79
8			
9	Morning Snack		
10		Vanilla Waffle	1 60
11		Banana	121
12			
13			
14			_
17	Daily Totals		
16		Calories	826
17		Fat	33 g
18		Fiber	10 g
19		Carbs	101 g
17 16 17 18 19 20 21		Sodium	909 mg
2 L		Protein	29 g
72		Water	0 fl oz

macros.nead()								
	Calories (g)	Carbs (g)	Fat (g)	Fiber (g)	Protein (g)	Sodium (mg)	Water (fl oz)	Weekday
Date								
2015-11-09	715	72	34	8	35	943	0	Monday
2015-11-11	797	74	39	4	37	1064	0	Wednesday
2015-11-12	1049	108	45	11	53	1216	0	Thursday
2015-11-30	90	20	0	1	1	2	0	Monday
2015 12 02	240	20	6	2	17	152	0	Wedneeday

- Replaced outliers with mean value of respective column
- Converted string to numeric value
- Remove missing values
 - When 'Steps' is 0

activities.head()										
	Calories Burned	Steps	Distance	Floors	Minutes Sedentary	Minutes Lightly Active	Minutes Fairly Active	Minutes Very Active	Activity Calories	Weekday
Date										
2015-10- 21	2150.000000	14061.0	5.71	17.0	531.452381	324.060524	0.0	0.0	1588.812105	Wednesday
2015-10- 22	2274.000000	13617.0	5.46	12.0	596.000000	300.000000	17.0	69.0	1344.000000	Thursday
2015-10- 23	2174.000000	16530.0	6.57	20.0	639.000000	361.000000	15.0	35.0	1275.000000	Friday
2015-10- 24	2161.000000	14710.0	5.88	11.0	550.000000	278.000000	36.0	52.0	1227.000000	Saturday
2015-10- 25	2479.197832	5077.0	2.02	8.0	869.000000	324.060524	9.0	14.0	1588.812105	Sunday

- Sleep dataframe includes nap as well
- Derived a 'Daily Sleep' dataframe from original 'Sleep' dataframe

sleep.head() Start Time Minutes Asleep Minutes Awake Number of Awakenings Time in Bed Date o 2015-10-22 00:00:00 2015-10-22 05:07:00 292 15 307 2015-10-21 2015-10-22 1 2015-10-22 21:29:00 2015-10-23 04:17:00 401 7 2 2015-10-23 21:47:00 2015-10-24 06:43:00 514 22 536 2015-10-23 2015-10-24 23:24:00 2015-10-25 07:16:00 daily sleep.head() 4 2015-10-24 14:40:00 2015-10-24 16:05:00 Minutes Asleep Minutes Awake Number of Awakenings Time in Bed Weekday Date 459.233849 15.0 496.392175 Wednesday 2015-10-21 7.0 408.000000 2015-10-22 401.000000 Thursday 22.0 536.000000 2015-10-23 514.000000 Friday 539.000000 18.0 557.000000 2015-10-24 Saturday 2015-10-26 532.000000 33.0 2.0 565.000000 Monday

Overall average calories burned (aggregated by month)

- A general upward trend in amount of calories Tracy burns from October 2015 until November 2018
- Age is not stopping Tracy from staying active

Overall average amount of sleep Tracy gets

- Unsteady trend
- Huge drop from May 2017 to August 2017
 - A general upward trend afterwards recovery of sleep time

Comparing average minutes per activity level (by week)

Most physically active during the weekdays, with exception of Saturday

Tracy's restlessness

- Space between represents Minutes Awake
- Since 2017, having more trouble staying asleep

INFERENTIAL STATS

Minutes Very Active vs Calories Burned

Relatively strong, positive correlation

INFERENTIAL STATS

Does Tracy load up on carbs on her workout intensive days?

scipy_r, scipy_p = stats.pearsonr(dfl['Activity Calories'], dfl['Carbs (g)'])
print("Scipy's correlation coefficient:", scipy_r)
print("Scipy's p-value:", scipy_p)
Null hypothesis:

Scipy's correlation coefficient: 0.301696397595359 Scipy's p-value: 9.62446731823555e-07 There is no correlation between Tracy's activity level and carb intake

- Weak, but nonetheless positive correlation
- p-value suggests rejection of null hypothesis

MACHINE LEARNING

Through an outside source, heart rate data was also retrieved

	Time	Heart Rate	Date	Time_of_Day
0	00:00:00	57	2017-02-22	Morning
1	00:01:00	55	2017-02-22	Morning
2	00:02:00	50	2017-02-22	Morning
3	00:03:00	51	2017-02-22	Morning
4	00:04:00	51	2017-02-22	Morning
5	00:05:00	51	2017-02-22	Morning
6	00:06:00	52	2017-02-22	Morning
7	00:07:00	51	2017-02-22	Morning
8	00:08:00	51	2017-02-22	Morning
9	00:09:00	51	2017-02-22	Morning
10	00:10:00	52	2017-02-22	Morning

'Date' and 'Time_of_Day' were added via data wrangling

MACHINE LEARNING

Supervised learning: Predicting calories burned by taking sum of heart rates per day

hr_daily_sum.head()				
	Heart Rate	Calories Burned		
Date				
2017-02-22	96265	2474.0		
2017-02-23	100505	2963.0		
2017-02-24	93022	2449.0		
2017-02-25	94511	2649.0		
2017-02-26	93240	2640.0		

Chose Linear Regression & Random Forest Regressor models

70% of data used to train model – remaining 30% left to test model's performance

PREDICTING CALORIES BURNED BY TAKING SUM OF HEART RATES PER DAY

Results:

LINEAR REGRESSION

Mean absolute error: 234.7799212462273

Mean error: 297.1541601692999

Cross validation results: [0.33977675 0.45372836 0.53440749 0.52467865 0.04831244]

RANDOM FOREST REGRESSOR

Mean absolute error: 231.14511290322582

Mean error: 303.53668597908666

Cross validation results: [-0.2258274 0.3819131 0.41860917 0.51159263 0.22444065]

Linear Regression model yields an average prediction error of 234-297 calories

Random Forest Regressor model yields an average prediction error of 231-303 calories

MACHINE LEARNING

Include time of day (morning, afternoon, evening) and take average heart rate

	(Heart Rate, Afternoon)	(Heart Rate, Evening)	(Heart Rate, Morning)	Calories Burned
Date				
2017-02-22	67.763889	63.197222	69.084388	2474.0
2017-02-23	78.405556	58.660167	72.344633	2963.0
2017-02-24	70.273239	61.425714	69.206538	2449.0
2017-02-25	71.941341	60.113889	69.388807	2649.0
2017-02-26	69.534483	60.157233	69.322222	2640.0

PREDICTING CALORIES BURNED BY AVERAGE HEART RATES BY TIME OF DAY

Can we create a model with better predictive performance?

Both models produce smaller predictive errors, especially the Random Forest Regressor model

MACHINE LEARNING

Unsupervised Learning

- No labeled data
- Uncover patterns in data

Chosen method: K-Means Clustering

Group similar data points together an discover underlying patterns

K-MEANS CLUSTERING

Choosing K (number of clusters/groups) to optimize clustering results

How are these clusters formed?

- By activities? Sleep? Heart rate?
- Analyze data to find patterns

UNSUPERVISED LEARNING

CLUSTER 1:	CLUSTER 2:	CLUSTER 0:
Monday 51	Thursday 63	Sunday 72
Wednesday 46	Tuesday 62	Friday 35
Saturday 22	Friday 36	Saturday 30
Tuesday 14	Saturday 34	Thursday 15
Friday 7	Wednesday 34	Tuesday 12
Thursday 6	Monday 30	Wednesday 7
Sunday 2	Sunday 13	Monday 5
Name: Weekday, dtype: int64	Name: Weekday, dtype: int64	Name: Weekday, dtype: int64

- Through investigation, 'Weekday' seems to be most deterministic of how clusters are formed
 - Cluster 0: Sunday's
 - Cluster 1: Monday's and Wednesday's
 - Cluster 2: Tuesday's and Thursday's

...something comes to mind

The top two days of week of each cluster seem to have something in common

MINUTES SEDENTARY

Cluster 0: 536.8065476190476

Cluster 1: 355.454545454544

Cluster 2: 454.8181818181818

MINUTES LIGHTLY ACTIVE

Cluster 0: 291.50119590211057

Cluster 1: 338.4547474303572

Cluster 2: 343.1639898506828

MINUTES FAIRLY ACTIVE

Cluster 0: 21.869318181818183

Cluster 1: 40.34820186039698

Cluster 2: 34.39059261916149

MINUTES VERY ACTIVE

Cluster 0: 40.26136363636363

Cluster 1: 114.07935984765253

Cluster 2: 81.99275665550773

- Cluster 0 has highest mean under
 Minutes Sedentary category
- Cluster 1 has highest mean under Minutes Very Active category
- Cluster 2 has a slightly higher mean under Minutes Lightly Active category

So it seems the **clusters** are formed by the **days of the week**, which in turn says a lot about **how active** Tracy is on those days

CONCLUSION

Recommendations

- With evidence of increasing restless nights, Tracy should seek ways to obtain better, uninterrupted sleep
- There is some evidence of a positive correlation between carb intake and activeness. Tracy should consider fueling her body with carbs to have a more productive workout session.

Next steps

- Using heart rate data to perform predictions on sleep patterns
 - Can heart rate be used to predict sleep stage?
- Creating more features based on existing data to detect more patterns in activities and/or sleep
 - Split data by season