Inverse Problems Classical regularisation theory

Clarice Poon University of Bath

February 6, 2020

Outline

Regularisation Theory

Spectral regularisation

Other parameter choice rules

Iterative regularisation

What is regularisation

We saw that A^{\dagger} is generally unbounded and so, given noisy data f_{δ} such that $\|f_{\delta} - f\| \leqslant \delta$, we cannot expect $A^{\dagger}f_{\delta} \to A^{\dagger}f$ as $\delta \to 0$.

To achieve convergence, replace A^{\dagger} with a family of well-posed (bounded) operators R_{α} with $\alpha=\alpha(\delta,f_{\delta})$ such that $R_{\alpha}f_{\delta}\to A^{\dagger}f$ for all $f\in\mathcal{D}(A^{\dagger})$ and all $f_{\delta}\in\mathcal{V}$ such that $\|f-f_{\delta}\|_{\mathcal{V}}<\delta$ as $\delta\to0$.

Regularisation

Definition 1 (Regularisation)

Let $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$. A family $\{R_{\alpha}\}_{{\alpha}>0}$ of continuous operators is called a regularisation of A^{\dagger} if $R_{\alpha}f \to A^{\dagger}f = u^{\dagger}$ for all $f \in \mathcal{D}(A^{\dagger})$ as ${\alpha} \to 0$.

$$\alpha = 0.1$$

We say that the family $\{R_{\alpha}\}_{\alpha}$ is a linear regularisation of A^{\dagger} if they consist of linear operators.

We cannot expect to do better than this definition, i.e. in general, we cannot expect $R_{\alpha}f$ to converge for $f \notin \mathcal{D}(A^{\dagger})$.

Assume: $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ and let $\{R_{\alpha}\}_{\alpha}$ be a linear regularisation of A^{\dagger} .

Theorem 2

If A^{\dagger} is not continuous, then $\{R_{\alpha}\}_{\alpha}$ cannot be uniformly bounded. In particular, there exists $f \in \mathcal{V}$ such that $\|R_{\alpha}f\| \to \infty$ as $\alpha \to 0$.

Theorem 3

 $\textit{If } \sup\nolimits_{\alpha>0} \left\|\textit{AR}_{\alpha}\right\|_{\mathcal{L}(\mathcal{V},\mathcal{V})} < \infty \textit{, then } \left\|\textit{R}_{\alpha}\textit{f}\right\|_{\mathcal{V}} \rightarrow +\infty \textit{ for all } \textit{f} \not\in \mathcal{D}(\textit{A}^{\dagger}).$

The Banach Steinhaus Theorem

These results are consequences of the Banach Steinhaus theorem:

Theorem 4 (Banach Steinhaus)

Let \mathcal{U},\mathcal{V} be Hilbert spaces and let $\{A_j\}_{j\in\mathbb{N}}\subset\mathcal{L}(\mathcal{U},\mathcal{V})$ be a family of pointwise bounded operators such that $\sup_{j\in\mathbb{N}}\left\|A_ju\right\|_{\mathcal{V}}\leqslant C(u)$ for all $u\in\mathcal{U}$. Then $\sup_{j\in\mathbb{N}}\left\|A_j\right\|_{\mathcal{L}(\mathcal{U},\mathcal{V})}<\infty$.

A corollary of this is that the following are equivalent

- (a) There exists $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ such that $Au = \lim_{i \to \infty} A_i u$ for all $u \in \mathcal{U}$.
- (b) There is a dense subset $\mathcal{X} \subset \mathcal{U}$ such that $\lim_{j \to \infty} A_j u$ exists for all $u \in \mathcal{X}$ and $\sup_{j \in \mathbb{N}} \|A_j\|_{\mathcal{L}(\mathcal{U},\mathcal{V})} < \infty$.

Suppose $\{R_{\alpha}\}$ are linear regularisers. If A^{\dagger} is not continuous, then $\{R_{\alpha}\}_{\alpha}$ cannot be uniformly bounded. In particular, there exists $f \in \mathcal{V}$ such that $\|R_{\alpha}f\| \to \infty$ as $\alpha \to 0$.

Proof of Theorem 2.

- Suppose that {R_{\alpha}}_{\alpha} is uniformly bounded, then since lim_{\alpha→0} R_{\alpha}(u) = A[†] u exists for all u ∈ \mathcal{D}(A[†]) which is dense in \mathcal{V}, we have A[†] ∈ \mathcal{L}(\mathcal{U}, \mathcal{V}), which contradicts the discontinuity of A[†].
- If there does not exist f such that $||R_{\alpha}f||$ is unbounded, then Banach Steinhaus says that $\{R_{\alpha}\}_{\alpha}$ is uniformly bounded in norm. Contradiction.

Suppose $\{R_{\alpha}\}$ are linear regularisers. If $\sup_{\alpha>0}\|AR_{\alpha}\|_{\mathcal{L}(\mathcal{U},\mathcal{V})}<\infty$, then $\|R_{\alpha}f\|_{\mathcal{V}}\to+\infty$ for all $f\not\in\mathcal{D}(A^{\dagger})$.

Proof of Theorem 3.

By Banach Steinhaus, since $\sup_{\alpha>0}\|AR_\alpha\|_{\mathcal{L}(\mathcal{V},\mathcal{V})}<\infty$ and $\mathcal{D}(A^\dagger)$ is dense in \mathcal{V} , there exists $B\in\mathcal{L}(\mathcal{V},\mathcal{V})$ such that $Bg=\lim_{\alpha\to 0}AR_\alpha g$ for all $g\in\mathcal{V}$.

What can we say about B? For any $g \in \mathcal{D}(A^{\dagger})$, $AR_{\alpha}g \to AA^{\dagger}g = P_{\overline{\mathcal{R}}(A)}g = Bg$. So, $B = P_{\overline{\mathcal{R}}(A)}$.

Suppose $\{R_{\alpha}\}$ are linear regularisers. If $\sup_{\alpha>0}\|AR_{\alpha}\|_{\mathcal{L}(\mathcal{U},\mathcal{V})}<\infty$, then $\|R_{\alpha}f\|_{\mathcal{V}}\to+\infty$ for all $f\not\in\mathcal{D}(A^{\dagger})$.

Proof of Theorem 3.

By Banach Steinhaus, since $\sup_{\alpha>0}\|AR_\alpha\|_{\mathcal{L}(\mathcal{V},\mathcal{V})}<\infty$ and $\mathcal{D}(A^\dagger)$ is dense in \mathcal{V} , there exists $B\in\mathcal{L}(\mathcal{V},\mathcal{V})$ such that $Bg=\lim_{\alpha\to 0}AR_\alpha g$ for all $g\in\mathcal{V}$.

What can we say about B? For any $g \in \mathcal{D}(A^{\dagger})$, $AR_{\alpha}g \to AA^{\dagger}g = P_{\overline{\mathcal{R}(A)}}g = Bg$. So, $B = P_{\overline{\mathcal{R}(A)}}$.

Assume that $f \not\in \mathcal{D}(A^{\dagger})$. Define $u_{\alpha} \stackrel{\text{def.}}{=} R_{\alpha}f$. Suppose that $\|u_{\alpha_k}\|_{\mathcal{U}}$ is uniformly bounded, as $\alpha_k \to 0$

Suppose $\{R_{\alpha}\}$ are linear regularisers. If $\sup_{\alpha>0}\|AR_{\alpha}\|_{\mathcal{L}(\mathcal{U},\mathcal{V})}<\infty$, then $\|R_{\alpha}f\|_{\mathcal{V}}\to+\infty$ for all $f\not\in\mathcal{D}(A^{\dagger})$.

Proof of Theorem 3.

By Banach Steinhaus, since $\sup_{\alpha>0}\|AR_\alpha\|_{\mathcal{L}(\mathcal{V},\mathcal{V})}<\infty$ and $\mathcal{D}(A^\dagger)$ is dense in \mathcal{V} , there exists $B\in\mathcal{L}(\mathcal{V},\mathcal{V})$ such that $Bg=\lim_{\alpha\to 0}AR_\alpha g$ for all $g\in\mathcal{V}$.

What can we say about B? For any $g \in \mathcal{D}(A^{\dagger})$, $AR_{\alpha}g \to AA^{\dagger}g = P_{\overline{\mathcal{R}(A)}}g = Bg$. So, $B = P_{\overline{\mathcal{R}(A)}}$.

Assume that $f \notin \mathcal{D}(A^{\dagger})$. Define $u_{\alpha} \stackrel{\text{def.}}{=} R_{\alpha}f$. Suppose that $\|u_{\alpha_k}\|_{\mathcal{U}}$ is uniformly bounded, as $\alpha_k \to 0$

• Since bounded sets in Hilbert spaces are weakly compact, there exists a weakly convergent subsequence $u_{\alpha_{k_n}}$ with weak limit $u \in \mathcal{U}$. Continuous linear operators are weakly continuous, so $Au_{\alpha_{k_n}} \rightharpoonup Au$.

Suppose $\{R_{\alpha}\}$ are linear regularisers. If $\sup_{\alpha>0}\|AR_{\alpha}\|_{\mathcal{L}(\mathcal{U},\mathcal{V})}<\infty$, then $\|R_{\alpha}f\|_{\mathcal{V}}\to+\infty$ for all $f\not\in\mathcal{D}(A^{\dagger})$.

Proof of Theorem 3.

By Banach Steinhaus, since $\sup_{\alpha>0}\|AR_\alpha\|_{\mathcal{L}(\mathcal{V},\mathcal{V})}<\infty$ and $\mathcal{D}(A^\dagger)$ is dense in \mathcal{V} , there exists $B\in\mathcal{L}(\mathcal{V},\mathcal{V})$ such that $Bg=\lim_{\alpha\to 0}AR_\alpha g$ for all $g\in\mathcal{V}$.

What can we say about B? For any $g \in \mathcal{D}(A^{\dagger})$, $AR_{\alpha}g \to AA^{\dagger}g = P_{\overline{\mathcal{R}}(A)}g = Bg$. So, $B = P_{\overline{\mathcal{R}}(A)}$.

Assume that $f \notin \mathcal{D}(A^{\dagger})$. Define $u_{\alpha} \stackrel{\text{def.}}{=} R_{\alpha}f$. Suppose that $\|u_{\alpha_k}\|_{\mathcal{U}}$ is uniformly bounded, as $\alpha_k \to 0$

- Since bounded sets in Hilbert spaces are weakly compact, there exists a weakly convergent subsequence u_{αkn} with weak limit u ∈ U. Continuous linear operators are weakly continuous, so Au_{αkn} → Au.
- By uniqueness of limits, $Bf = P_{\overline{\mathcal{R}(A)}}f = \lim_{n \to \infty} AR_{\alpha_{k_n}}f = Au$.

Suppose $\{R_{\alpha}\}$ are linear regularisers. If $\sup_{\alpha>0}\|AR_{\alpha}\|_{\mathcal{L}(\mathcal{U},\mathcal{V})}<\infty$, then $\|R_{\alpha}f\|_{\mathcal{V}}\to+\infty$ for all $f\not\in\mathcal{D}(A^{\dagger})$.

Proof of Theorem 3.

By Banach Steinhaus, since $\sup_{\alpha>0}\|AR_\alpha\|_{\mathcal{L}(\mathcal{V},\mathcal{V})}<\infty$ and $\mathcal{D}(A^\dagger)$ is dense in \mathcal{V} , there exists $B\in\mathcal{L}(\mathcal{V},\mathcal{V})$ such that $Bg=\lim_{\alpha\to 0}AR_\alpha g$ for all $g\in\mathcal{V}$.

What can we say about B? For any $g \in \mathcal{D}(A^{\dagger})$, $AR_{\alpha}g \to AA^{\dagger}g = P_{\overline{\mathcal{R}}(A)}g = Bg$. So, $B = P_{\overline{\mathcal{R}}(A)}$.

Assume that $f \not\in \mathcal{D}(A^{\dagger})$. Define $u_{\alpha} \stackrel{\text{def.}}{=} R_{\alpha}f$. Suppose that $\|u_{\alpha_k}\|_{\mathcal{U}}$ is uniformly bounded, as $\alpha_k \to 0$

- Since bounded sets in Hilbert spaces are weakly compact, there exists a weakly convergent subsequence u_{αkn} with weak limit u ∈ U. Continuous linear operators are weakly continuous, so Au_{αkn} → Au.
- By uniqueness of limits, $Bf = P_{\overline{\mathcal{R}(A)}}f = \lim_{n \to \infty} AR_{\alpha_{k_n}}f = Au$.
- Since $\mathcal{V} = \overline{\mathcal{R}(A)} \oplus (\overline{\mathcal{R}(A)})^{\perp}$, we can write $f = f_1 + f_2$ where $f_1 \in \overline{\mathcal{R}(A)}$ and $f_2 \in \overline{\mathcal{R}(A)}^{\perp}$. So, $Au = P_{\overline{\mathcal{R}(A)}}f = f_1 \in \mathcal{R}(A)$ and hence, $f \in \mathcal{D}(A^{\dagger})$. Contradiction.

Parameter choice

Want: as $\delta \to 0$, $R_{\alpha}(f_{\delta}) \to A^{\dagger}f$, for all $f \in \mathcal{D}(A^{\dagger})$ and f_{δ} s.t. $\|f - f_{\delta}\| \leqslant \delta$.

Parameter choice

Want: as $\delta \to 0$, $R_{\alpha}(f_{\delta}) \to A^{\dagger}f$, for all $f \in \mathcal{D}(A^{\dagger})$ and f_{δ} s.t. $||f - f_{\delta}|| \leqslant \delta$.

Let $u^{\dagger} = A^{\dagger} f$: approximation error data error $\left\|R_{\alpha}f_{\delta}-u^{\dagger}\right\|_{\mathcal{U}} \leq \left\|R_{\alpha}f_{\delta}-R_{\alpha}f\right\|_{\mathcal{U}} + \left\|R_{\alpha}f-u^{\dagger}\right\|_{\mathcal{U}} \leq \delta \left\|R_{\alpha}\right\|_{\mathcal{L}(\mathcal{V},\mathcal{U})} + \left\|R_{\alpha}f-A^{\dagger}f\right\|_{\mathcal{U}}$ - data error high 🕇 ---- approximation error total error error low. ▶ high regularisation low

- The data error does not stay bounded as $\alpha \to 0$.
- The approximation error vanishes as $\alpha \to 0$.

Parameter choice

Want: as $\delta \to 0$, $R_{\alpha}(f_{\delta}) \to A^{\dagger}f$, for all $f \in \mathcal{D}(A^{\dagger})$ and f_{δ} s.t. $\|f - f_{\delta}\| \leqslant \delta$.

- The data error does not stay bounded as $\alpha \to 0$.
- The approximation error vanishes as $\alpha \to 0$.

The regularisation parameter need to be chosen to balance the two terms!

Parameter choice rules

Definition 5

A function $\alpha: \mathbb{R}_{>0} \times \mathcal{V} \to \mathbb{R}_{>0}$, $(\delta, f_{\delta}) \to \alpha(\delta, f_{\delta})$ is called a parameter choice rule. We distinguish between:

- (a) a priori parameter choice rules which depend only on δ ,
- (b) a posteriori parameter choice rules which depend on both δ and f_{δ} .
- (c) heuristic parameter choice rules which depend on f_{δ} only.

Let $\{R_{\alpha}\}_{\alpha}$ be a regularisation of A^{\dagger} . If for all $f\in\mathcal{D}(A^{\dagger})$, α is a parameter choice rule such that

$$\lim_{\delta \to 0} \sup_{f_{\delta}: \|f - f_{\delta}\| \leqslant \delta} \left\| R_{\alpha} f_{\delta} - A^{\dagger} f \right\|_{\mathcal{U}} = 0 \quad \text{and} \quad \lim_{\delta \to 0} \sup_{f_{\delta}: \|f - f_{\delta}\| \leqslant \delta} \alpha(\delta, f_{\delta}) = 0,$$

then (R_{α}, α) is called a **convergent regularisation**.

Theorem 6 (Existence of convergent a-priori parameter choice rules)

Let $\{R_{\alpha}\}_{\alpha}$ be a regularisation of A^{\dagger} , for $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$. Then, there exists an a-priori parameter choice rule $\alpha = \alpha(\delta)$ such that (R_{α}, α) is a convergent regularisation.

Theorem 6 (Existence of convergent a-priori parameter choice rules)

Let $\{R_{\alpha}\}_{\alpha}$ be a regularisation of A^{\dagger} , for $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$. Then, there exists an a-priori parameter choice rule $\alpha = \alpha(\delta)$ such that (R_{α}, α) is a convergent regularisation.

Proof.

Need to show: $\forall \varepsilon > 0$, $\exists \delta$ such that $\left\| R_{\alpha(\delta)} f_{\delta} - A^{\dagger} f \right\|_{\mathcal{U}} \leqslant \varepsilon$ when $\| f_{\delta} - f \|_{\mathcal{V}} \leqslant \delta$.

Theorem 6 (Existence of convergent a-priori parameter choice rules)

Let $\{R_{\alpha}\}_{\alpha}$ be a regularisation of A^{\dagger} , for $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$. Then, there exists an a-priori parameter choice rule $\alpha = \alpha(\delta)$ such that (R_{α}, α) is a convergent regularisation.

Proof.

Need to show: $\forall \varepsilon > 0$, $\exists \delta$ such that $\left\| R_{\alpha(\delta)} f_{\delta} - A^{\dagger} f \right\|_{\mathcal{U}} \leqslant \varepsilon$ when $\| f_{\delta} - f \|_{\mathcal{V}} \leqslant \delta$.

• Fix $f \in \mathcal{D}(A^{\dagger})$. Since $R_{\alpha}f \to A^{\dagger}f$, there exists a monotone increasing function $\gamma: (0,\infty) \to (0,\infty)$ such that $\lim_{\varepsilon \to 0} \gamma(\varepsilon) = 0$ and $\|R_{\gamma(\varepsilon)}f - A^{\dagger}f\|_{\mathcal{U}} \leqslant \frac{\varepsilon}{2}$.

Theorem 6 (Existence of convergent a-priori parameter choice rules)

Let $\{R_{\alpha}\}_{\alpha}$ be a regularisation of A^{\dagger} , for $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$. Then, there exists an a-priori parameter choice rule $\alpha = \alpha(\delta)$ such that (R_{α}, α) is a convergent regularisation.

Proof.

Need to show: $\forall \varepsilon > 0$, $\exists \delta$ such that $\|R_{\alpha(\delta)}f_{\delta} - A^{\dagger}f\|_{\mathcal{U}} \leqslant \varepsilon$ when $\|f_{\delta} - f\|_{\mathcal{V}} \leqslant \delta$.

- Fix $f \in \mathcal{D}(A^{\dagger})$. Since $R_{\alpha}f \to A^{\dagger}f$, there exists a monotone increasing function $\gamma: (0, \infty) \to (0, \infty)$ such that $\lim_{\varepsilon \to 0} \gamma(\varepsilon) = 0$ and $\|R_{\gamma(\varepsilon)}f A^{\dagger}f\|_{\mathcal{U}} \leqslant \frac{\varepsilon}{2}$.
- For fixed ε , $R_{\gamma(\varepsilon)}$ is continuous. So, there exists $\rho(\varepsilon)>0$ such that $\left\|R_{\gamma(\varepsilon)}f-R_{\gamma(\varepsilon)}g\right\|\leqslant \frac{\varepsilon}{2}$ for all $\|g-f\|\leqslant \rho(\varepsilon)$. WLOG, assume that ρ is a continuous strictly monotone increasing function with $\lim_{\varepsilon\to 0}\rho(\varepsilon)=0$.

Theorem 6 (Existence of convergent a-priori parameter choice rules)

Let $\{R_{\alpha}\}_{\alpha}$ be a regularisation of A^{\dagger} , for $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$. Then, there exists an a-priori parameter choice rule $\alpha = \alpha(\delta)$ such that (R_{α}, α) is a convergent regularisation.

Proof.

Need to show: $\forall \varepsilon > 0$, $\exists \delta$ such that $\|R_{\alpha(\delta)}f_{\delta} - A^{\dagger}f\|_{\mathcal{U}} \leqslant \varepsilon$ when $\|f_{\delta} - f\|_{\mathcal{V}} \leqslant \delta$.

- Fix $f \in \mathcal{D}(A^{\dagger})$. Since $R_{\alpha}f \to A^{\dagger}f$, there exists a monotone increasing function $\gamma: (0, \infty) \to (0, \infty)$ such that $\lim_{\varepsilon \to 0} \gamma(\varepsilon) = 0$ and $\|R_{\gamma(\varepsilon)}f A^{\dagger}f\|_{\mathcal{U}} \leqslant \frac{\varepsilon}{2}$.
- For fixed ε , $R_{\gamma(\varepsilon)}$ is continuous. So, there exists $\rho(\varepsilon)>0$ such that $\left\|R_{\gamma(\varepsilon)}f-R_{\gamma(\varepsilon)}g\right\|\leqslant \frac{\varepsilon}{2}$ for all $\|g-f\|\leqslant \rho(\varepsilon)$. WLOG, assume that ρ is a continuous strictly monotone increasing function with $\lim_{\varepsilon\to 0}\rho(\varepsilon)=0$.
- By the inverse function theorem, there exists ρ^{-1} which is also strictly monotone and continuous on the range of ρ such that $\lim_{\delta \to 0} \rho^{-1}(\delta) = 0$. Continuously extend ρ^{-1} to $(0,\infty)$ and define $\alpha(\delta) \stackrel{\text{def.}}{=} \gamma(\rho^{-1}(\delta))$. Then, $\lim_{\delta \to 0} \alpha(\delta) = 0$.

Theorem 6 (Existence of convergent a-priori parameter choice rules)

Let $\{R_{\alpha}\}_{\alpha}$ be a regularisation of A^{\dagger} , for $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$. Then, there exists an a-priori parameter choice rule $\alpha = \alpha(\delta)$ such that (R_{α}, α) is a convergent regularisation.

Proof.

Need to show: $\forall \varepsilon > 0$, $\exists \delta$ such that $\|R_{\alpha(\delta)}f_{\delta} - A^{\dagger}f\|_{\mathcal{U}} \leqslant \varepsilon$ when $\|f_{\delta} - f\|_{\mathcal{V}} \leqslant \delta$.

- Fix $f \in \mathcal{D}(A^{\dagger})$. Since $R_{\alpha}f \to A^{\dagger}f$, there exists a monotone increasing function $\gamma: (0, \infty) \to (0, \infty)$ such that $\lim_{\varepsilon \to 0} \gamma(\varepsilon) = 0$ and $\|R_{\gamma(\varepsilon)}f A^{\dagger}f\|_{\mathcal{U}} \leqslant \frac{\varepsilon}{2}$.
- For fixed ε , $R_{\gamma(\varepsilon)}$ is continuous. So, there exists $\rho(\varepsilon)>0$ such that $\left\|R_{\gamma(\varepsilon)}f-R_{\gamma(\varepsilon)}g\right\|\leqslant \frac{\varepsilon}{2}$ for all $\|g-f\|\leqslant \rho(\varepsilon)$. WLOG, assume that ρ is a continuous strictly monotone increasing function with $\lim_{\varepsilon\to 0}\rho(\varepsilon)=0$.
- By the inverse function theorem, there exists ρ^{-1} which is also strictly monotone and continuous on the range of ρ such that $\lim_{\delta \to 0} \rho^{-1}(\delta) = 0$. Continuously extend ρ^{-1} to $(0,\infty)$ and define $\alpha(\delta) \stackrel{\text{def}}{=} \gamma(\rho^{-1}(\delta))$. Then, $\lim_{\delta \to 0} \alpha(\delta) = 0$.
- For all $\varepsilon > 0$, there exists $\delta \stackrel{\text{def.}}{=} \rho(\varepsilon)$ such that with $\alpha(\delta) = \gamma(\varepsilon)$,

$$\left\|R_{\alpha(\delta)}f_{\delta}-A^{\dagger}f\right\|_{\mathcal{U}}\leqslant\left\|R_{\alpha(\delta)}f_{\delta}-R_{\alpha(\delta)}f\right\|+\left\|R_{\gamma(\varepsilon)}f-A^{\dagger}f\right\|_{\mathcal{U}}\leqslant\varepsilon,$$

for all f_{δ} with $||f - f_{\delta}|| \leq \delta$.

Theorem 7

Let $\{R_{\alpha}\}_{\alpha}$ be a linear regularisation and α be an a priori parameter choice rule. Then, (R_{α}, α) is a convergent regularisation if and only if

- (a) $\alpha(\delta) \rightarrow 0$ as $\delta \rightarrow 0$.
- (b) $\lim_{\delta \to 0} \delta \|R_{\alpha(\delta)}\| = 0$.

Theorem 7

Let $\{R_{\alpha}\}_{\alpha}$ be a linear regularisation and α be an a priori parameter choice rule. Then, (R_{α}, α) is a convergent regularisation if and only if

- (a) $\alpha(\delta) \to 0$ as $\delta \to 0$.
- (b) $\lim_{\delta \to 0} \delta \|R_{\alpha(\delta)}\| = 0$.

Clearly, if (a) and (b) are satisfied, then for all $\|f_{\delta} - f\| \leq \delta$, $\|R_{\alpha(\delta)}f_{\delta} - A^{\dagger}f\| \leq \delta \|R_{\alpha(\delta)}\| + \|R_{\alpha(\delta)}A - A^{\dagger}f\| \to 0$ as $\delta \to 0$.

Theorem 7

Let $\{R_{\alpha}\}_{\alpha}$ be a linear regularisation and α be an a priori parameter choice rule. Then, (R_{α}, α) is a convergent regularisation if and only if

- (a) $\alpha(\delta) \rightarrow 0$ as $\delta \rightarrow 0$.
- (b) $\lim_{\delta \to 0} \delta \|R_{\alpha(\delta)}\| = 0$.

Clearly, if (a) and (b) are satisfied, then for all $\|f_{\delta} - f\| \leq \delta$, $\|R_{\alpha(\delta)}f_{\delta} - A^{\dagger}f\| \leq \delta \|R_{\alpha(\delta)}\| + \|R_{\alpha(\delta)}A - A^{\dagger}f\| \to 0$ as $\delta \to 0$.

If (R_{α},α) is a convergent regularisation, then (a) holds by definition. Suppose $\lim_{\delta \to 0} \delta \left\| R_{\alpha(\delta)} \right\| \neq 0$.

Theorem 7

Let $\{R_{\alpha}\}_{\alpha}$ be a linear regularisation and α be an a priori parameter choice rule. Then, (R_{α}, α) is a convergent regularisation if and only if

- (a) $\alpha(\delta) \rightarrow 0$ as $\delta \rightarrow 0$.
- (b) $\lim_{\delta \to 0} \delta \|R_{\alpha(\delta)}\| = 0.$

Clearly, if (a) and (b) are satisfied, then for all
$$\|f_{\delta} - f\| \leq \delta$$
, $\|R_{\alpha(\delta)}f_{\delta} - A^{\dagger}f\| \leq \delta \|R_{\alpha(\delta)}\| + \|R_{\alpha(\delta)}A - A^{\dagger}f\| \to 0$ as $\delta \to 0$.

If (R_{α},α) is a convergent regularisation, then (a) holds by definition. Suppose $\lim_{\delta\to 0}\delta\, \|R_{\alpha(\delta)}\| \neq 0$.

This means: taking a sequence $\delta_k \to 0$, for each δ_k , there exists c>0 and f_{δ_k} with $\left\|f_{\delta_k}-f\right\|\leqslant \delta_k$ such that $\left\|R_{\alpha(\delta_k)}(f_{\delta_k}-f)\right\|\geqslant c$.

Theorem 7

Let $\{R_{\alpha}\}_{\alpha}$ be a linear regularisation and α be an a priori parameter choice rule. Then, (R_{α}, α) is a convergent regularisation if and only if

- (a) $\alpha(\delta) \rightarrow 0$ as $\delta \rightarrow 0$.
- (b) $\lim_{\delta \to 0} \delta \|R_{\alpha(\delta)}\| = 0$.

Clearly, if (a) and (b) are satisfied, then for all $\|f_{\delta} - f\| \leq \delta$, $\|R_{\alpha(\delta)}f_{\delta} - A^{\dagger}f\| \leq \delta \|R_{\alpha(\delta)}\| + \|R_{\alpha(\delta)}A - A^{\dagger}f\| \to 0$ as $\delta \to 0$.

If (R_{α}, α) is a convergent regularisation, then (a) holds by definition. Suppose $\lim_{\delta \to 0} \delta \| R_{\alpha(\delta)} \| \neq 0$.

This means: taking a sequence $\delta_k \to 0$, for each δ_k , there exists c>0 and f_{δ_k} with $\left\|f_{\delta_k}-f\right\|\leqslant \delta_k$ such that $\left\|R_{\alpha(\delta_k)}(f_{\delta_k}-f)\right\|\geqslant c$.

So:

$$\left\|R_{\alpha(\delta_k)}f_{\delta_k}-A^{\dagger}f\right\| \geqslant \left\|R_{\alpha(\delta_k)}(f_{\delta_k}-f)\right\| - \left\|R_{\alpha(\delta_k)}-A^{\dagger}f\right\| \geqslant c - \left\|R_{\alpha(\delta_k)}-A^{\dagger}f\right\|.$$

Contradiction, since the LHS converges to 0, and the RHS converges to c.

Outline

Regularisation Theory

Spectral regularisation

Other parameter choice rules

Iterative regularisation

Recall that the spectral representation of A^{\dagger} :

$$A^{\dagger}f = \sum_{j \in \mathbb{N}} \frac{1}{\sigma_j} \langle f, v_j \rangle u_j$$

The source of ill-posedness of A^{\dagger} is that the eigenvalues $1/\sigma_i$ explode as $j \to \infty$.

Spectral regularisation modifies the eigenvalues

$$R_{\alpha}f = \sum_{j \in \mathbb{N}} g_{\alpha}(\sigma_j) \langle f, v_j \rangle u_j$$

where $g_{lpha}:(0,\infty) o(0,\infty)$ such that

- 1. $\lim_{\alpha \to 0} g_{\alpha}(\sigma) = \frac{1}{\sigma}$
- 2. for all $\sigma > 0$, $g_{\alpha}(\sigma) \leqslant C_{\alpha}$.

Theorem 8 (Mild growth of g_{α} will ensures regularisation of A^{\dagger})

Assume that $\sup_{\alpha,\sigma} \sigma g_{\alpha}(\sigma) \leqslant \gamma$ for some $\gamma > 0$.

- Then, $R_{\alpha}f \to A^{\dagger}f$ as $\alpha \to 0$ for all $f \in \mathcal{D}(A^{\dagger})$.
- If moreover, $\alpha=\alpha(\delta)$ is an a-priori parameter choice rule such that $\lim_{\delta\to 0} \delta C_{\alpha(\delta)}=0$, then $(R_{\alpha(\delta)},\alpha(\delta))$ is a convergent regularisation.

Theorem 8 (Mild growth of g_{α} will ensures regularisation of A^{\dagger})

Assume that $\sup_{\alpha,\sigma} \sigma g_{\alpha}(\sigma) \leqslant \gamma$ for some $\gamma > 0$.

- Then, $R_{\alpha}f \to A^{\dagger}f$ as $\alpha \to 0$ for all $f \in \mathcal{D}(A^{\dagger})$.
- If moreover, $\alpha = \alpha(\delta)$ is an a-priori parameter choice rule such that $\lim_{\delta \to 0} \delta C_{\alpha(\delta)} = 0$, then $(R_{\alpha(\delta)}, \alpha(\delta))$ is a convergent regularisation.

From the SVD of A^{\dagger} and definition of R_{α} ,

$$R_{\alpha}f - A^{\dagger}f = \sum_{j=1}^{\infty} \left(g_{\alpha}(\sigma_{j}) - \frac{1}{\sigma_{j}} \right) \langle f, v_{j} \rangle u_{j} = \sum_{j=1}^{\infty} \left(\sigma_{j}g_{\alpha}(\sigma_{j}) - 1 \right) \langle A^{\dagger}f, u_{j} \rangle u_{j}$$

By assumption, $\left|\sigma_{j}g_{\alpha}(\sigma_{j})-1\right|\leqslant1+\gamma.$ So, $\left\|R_{\alpha}f-A^{\dagger}f\right\|\leqslant(1+\gamma)\left\|A^{\dagger}f\right\|<\infty.$

Theorem 8 (Mild growth of g_{α} will ensures regularisation of A^{\dagger})

Assume that $\sup_{\alpha,\sigma} \sigma g_{\alpha}(\sigma) \leqslant \gamma$ for some $\gamma > 0$.

- Then, $R_{\alpha}f \to A^{\dagger}f$ as $\alpha \to 0$ for all $f \in \mathcal{D}(A^{\dagger})$.
- If moreover, $\alpha = \alpha(\delta)$ is an a-priori parameter choice rule such that $\lim_{\delta \to 0} \delta C_{\alpha(\delta)} = 0$, then $(R_{\alpha(\delta)}, \alpha(\delta))$ is a convergent regularisation.

From the SVD of A^{\dagger} and definition of R_{α} ,

$$R_{\alpha}f - A^{\dagger}f = \sum_{j=1}^{\infty} \left(g_{\alpha}(\sigma_{j}) - \frac{1}{\sigma_{j}} \right) \langle f, v_{j} \rangle u_{j} = \sum_{j=1}^{\infty} \left(\sigma_{j}g_{\alpha}(\sigma_{j}) - 1 \right) \langle A^{\dagger}f, u_{j} \rangle u_{j}$$

By assumption, $\left|\sigma_{j}g_{\alpha}(\sigma_{j})-1\right|\leqslant1+\gamma.$ So, $\left\|R_{\alpha}f-A^{\dagger}f\right\|\leqslant(1+\gamma)\left\|A^{\dagger}f\right\|<\infty.$

By the reverse Fatou's lemma

$$\begin{split} \limsup_{\alpha \to 0} \left\| R_{\alpha} f - A^{\dagger} f \right\|^2 & \leqslant \limsup_{\alpha \to 0} \sum_{j} \left(\sigma_{j} g_{\alpha}(\sigma_{j}) - 1 \right)^{2} \left| \langle A^{\dagger} f, \, u_{j} \rangle \right|^2 \\ & \leqslant \sum_{j} \limsup_{\alpha \to 0} \left(\sigma_{j} g_{\alpha}(\sigma_{j}) - 1 \right)^{2} \left| \langle A^{\dagger} f, \, u_{j} \rangle \right|^2 = 0. \end{split}$$

Theorem 8 (Mild growth of g_{α} will ensures regularisation of A^{\dagger})

Assume that $\sup_{\alpha,\sigma} \sigma g_{\alpha}(\sigma) \leqslant \gamma$ for some $\gamma > 0$.

- Then, $R_{\alpha}f \to A^{\dagger}f$ as $\alpha \to 0$ for all $f \in \mathcal{D}(A^{\dagger})$.
- If moreover, $\alpha = \alpha(\delta)$ is an a-priori parameter choice rule such that $\lim_{\delta \to 0} \delta C_{\alpha(\delta)} = 0$, then $(R_{\alpha(\delta)}, \alpha(\delta))$ is a convergent regularisation.

From the SVD of A^{\dagger} and definition of R_{α} ,

$$R_{\alpha}f - A^{\dagger}f = \sum_{j=1}^{\infty} \left(g_{\alpha}(\sigma_j) - \frac{1}{\sigma_j} \right) \langle f, v_j \rangle u_j = \sum_{j=1}^{\infty} \left(\sigma_j g_{\alpha}(\sigma_j) - 1 \right) \langle A^{\dagger}f, u_j \rangle u_j$$

By assumption, $\left|\sigma_{j}g_{\alpha}(\sigma_{j})-1\right|\leqslant1+\gamma.$ So, $\left\|R_{\alpha}f-A^{\dagger}f\right\|\leqslant(1+\gamma)\left\|A^{\dagger}f\right\|<\infty.$

By the reverse Fatou's lemma

$$\begin{split} \limsup_{\alpha \to 0} \left\| R_{\alpha} f - A^{\dagger} f \right\|^{2} & \leq \limsup_{\alpha \to 0} \sum_{j} \left(\sigma_{j} g_{\alpha}(\sigma_{j}) - 1 \right)^{2} \left| \langle A^{\dagger} f, u_{j} \rangle \right|^{2} \\ & \leq \sum_{j} \limsup_{\alpha \to 0} \left(\sigma_{j} g_{\alpha}(\sigma_{j}) - 1 \right)^{2} \left| \langle A^{\dagger} f, u_{j} \rangle \right|^{2} = 0. \end{split}$$

The claim on convergent regularisation is from Theorem 7 since $\|R_{\alpha(\delta)}\| \leqslant C_{\alpha(\delta)}$.

Truncated singular value decomposition

Truncated SVD: discard all singular values below threshold α :

$$g_{lpha}(\sigma) = egin{cases} \sigma^{-1} & \sigma \geqslant lpha \ 0 & ext{else}. \end{cases}$$

We then have

$$R_{\alpha}f = \sum_{\sigma_{j} \geqslant \alpha} \frac{1}{\sigma_{j}} \langle f, v_{j} \rangle u_{j}$$

This is always well-defined for compact operators (zero is the only accumulation point of singular values).

Truncated singular value decomposition

Truncated SVD: discard all singular values below threshold α :

$$g_{lpha}(\sigma) = egin{cases} \sigma^{-1} & \sigma \geqslant lpha \ 0 & ext{else}. \end{cases}$$

We then have

$$R_{\alpha}f = \sum_{\sigma_{j} \geqslant \alpha} \frac{1}{\sigma_{j}} \langle f, v_{j} \rangle u_{j}$$

This is always well-defined for compact operators (zero is the only accumulation point of singular values).

Is this a convergent regularisation of A^{\dagger} ?

For all $\sigma > 0$, we naturally have $\lim_{\alpha \to 0} g_{\alpha}(\sigma) = \frac{1}{\sigma}$.

We have $\sup_{\sigma,\alpha} \sigma g_{\alpha}(\sigma) = 1$ and $C_{\alpha} = \alpha^{-1}$.

So, the truncated SVD is a convergent regularisation if $\lim_{\delta \to 0} \frac{\delta}{\alpha(\delta)} = 0$.

Truncated singular value decomposition

Truncated SVD: discard all singular values below threshold α :

$$g_{lpha}(\sigma) = egin{cases} \sigma^{-1} & \sigma \geqslant lpha \ 0 & ext{else}. \end{cases}$$

We then have

$$R_{\alpha}f = \sum_{\sigma_{j} \geqslant \alpha} \frac{1}{\sigma_{j}} \langle f, v_{j} \rangle u_{j}$$

This is always well-defined for compact operators (zero is the only accumulation point of singular values).

Is this a convergent regularisation of A^{\dagger} ?

For all $\sigma > 0$, we naturally have $\lim_{\alpha \to 0} g_{\alpha}(\sigma) = \frac{1}{\sigma}$.

We have $\sup_{\sigma,\alpha} \sigma g_{\alpha}(\sigma) = 1$ and $C_{\alpha} = \alpha^{-1}$.

So, the truncated SVD is a convergent regularisation if $\lim_{\delta \to 0} \frac{\delta}{\alpha(\delta)} = 0$.

Disadvantage: requires the knowledge of the singular vectors of A (only finitely many, but this number might be large).

Tikhonov regularisation

The idea is to shift the eigenvalues of A^*A by a constant factor: Let $g_{\alpha}(\sigma)=\frac{\sigma}{\sigma^2+\alpha}$ and the corresponding Tikhonov regularisation is

$$R_{\alpha}f = \sum_{j=1}^{\infty} \frac{\sigma_j}{\sigma_j^2 + \alpha} \langle f, v_j \rangle u_j.$$

Tikhonov regularisation

The idea is to shift the eigenvalues of A^*A by a constant factor: Let $g_{\alpha}(\sigma) = \frac{\sigma}{\sigma^2 + \alpha}$ and the corresponding Tikhonov regularisation is

$$R_{\alpha}f = \sum_{j=1}^{\infty} \frac{\sigma_j}{\sigma_j^2 + \alpha} \langle f, v_j \rangle u_j.$$

Is this a convergent regularisation of A^{\dagger} ?

For all $\sigma>0$, $\lim_{\alpha\to 0}g(\sigma)=\frac{1}{\sigma}$. We again have $\sup_{\alpha,\sigma}\sigma g_{\alpha}\leqslant 1$ and since $0\leqslant (\sigma-\sqrt{\alpha})^2=\sigma^2-2\sigma\sqrt{\alpha}+\alpha$, we get $\sigma^2+\alpha\geqslant 2\sigma\sqrt{\alpha}$ which implies that

$$\frac{\sigma}{\sigma^2 + \alpha} \leqslant \frac{1}{2\sqrt{\alpha}}.$$

So, $g_{\alpha}(\sigma) \leqslant C_{\alpha} = \frac{1}{2\sqrt{\alpha}}$. We have a convergent regularisation if

$$\lim_{\delta \to 0} \delta / \sqrt{\alpha} = 0.$$

Tikhonov regularisation

The idea is to shift the eigenvalues of A^*A by a constant factor: Let $g_{\alpha}(\sigma) = \frac{\sigma}{\sigma^2 + \alpha}$ and the corresponding Tikhonov regularisation is

$$R_{\alpha}f = \sum_{j=1}^{\infty} \frac{\sigma_j}{\sigma_j^2 + \alpha} \langle f, v_j \rangle u_j.$$

This is easy to compute:

Note that σ_j^2 are the eigenvalues of A^*A and $\sigma_j^2+\alpha$ are the eigenvalues of $A^*A+\alpha \mathrm{Id}$. So, for $u_\alpha=R_\alpha f$, we have

$$(A^*A + \alpha \mathrm{Id})u_{\alpha} = \sum_{i=1}^{\infty} \sigma_j \langle f, v_j \rangle u_j = A^*f.$$

So, we just need to invert this (well-posed) linear system. Knowledge of σ_j 's not needed!

Convergence rates

Let's look at the error between $u_{\alpha}=R_{\alpha}f$ and $u_{\alpha}^{\delta}=R_{\alpha}f_{\delta}$, where $f\in\mathcal{D}(A^{\dagger})$ and $f^{\delta}\in\mathcal{V}$ satisfies $\|f-f^{\delta}\|\leqslant\delta$ for some $\delta>0$:

Theorem 9

Assume that $\sup_{\alpha,\sigma} \sigma g_{\alpha}(\sigma) \leqslant \gamma$. Then

$$\left\| A u_\alpha - A u_\alpha^\delta \right\|_{\mathcal{V}} \leqslant \gamma \delta \quad \text{and} \quad \left\| u_\alpha - u_\alpha^\delta \right\|_{\mathcal{U}} \leqslant C_\alpha \delta.$$

Convergence rates

Let's look at the error between $u_{\alpha}=R_{\alpha}f$ and $u_{\alpha}^{\delta}=R_{\alpha}f_{\delta}$, where $f\in\mathcal{D}(A^{\dagger})$ and $f^{\delta}\in\mathcal{V}$ satisfies $\left\|f-f^{\delta}\right\|\leqslant\delta$ for some $\delta>0$:

Theorem 9

Assume that $\sup_{\alpha,\sigma} \sigma g_{\alpha}(\sigma) \leqslant \gamma$. Then

$$\left\|Au_{\alpha}-Au_{\alpha}^{\delta}\right\|_{\mathcal{V}}\leqslant\gamma\delta\quad\text{and}\quad\left\|u_{\alpha}-u_{\alpha}^{\delta}\right\|_{\mathcal{U}}\leqslant\mathcal{C}_{\alpha}\delta.$$

NB: the error on $\|Au_{\alpha} - Au_{\alpha}^{\delta}\|_{\mathcal{V}}$ is linear wrt δ , but since α depends on δ , the error on $\|u_{\alpha} - u_{\alpha}^{\delta}\|_{\mathcal{U}}$ will be slower than $\mathcal{O}(\delta)$.

Convergence rates

Let's look at the error between $u_{\alpha}=R_{\alpha}f$ and $u_{\alpha}^{\delta}=R_{\alpha}f_{\delta}$, where $f\in\mathcal{D}(A^{\dagger})$ and $f^{\delta}\in\mathcal{V}$ satisfies $\|f-f^{\delta}\|\leqslant\delta$ for some $\delta>0$:

Theorem 9

Assume that $\sup_{\alpha,\sigma} \sigma g_{\alpha}(\sigma) \leqslant \gamma$. Then

$$\left\| A u_{\alpha} - A u_{\alpha}^{\delta} \right\|_{\mathcal{V}} \leqslant \gamma \delta \quad \text{and} \quad \left\| u_{\alpha} - u_{\alpha}^{\delta} \right\|_{\mathcal{U}} \leqslant C_{\alpha} \delta.$$

Proof.

$$Au_{\alpha} - Au_{\alpha}^{\delta} = \sum_{j} \sigma_{j} \langle u_{\alpha} - u_{\alpha}^{\delta}, u_{j} \rangle v_{j} = \sum_{j} \sigma_{j} g_{\alpha}(\sigma_{j}) \langle f - f_{\delta}, v_{j} \rangle v_{j}$$

So,
$$\|Au_{\alpha} - Au_{\alpha}^{\delta}\| \leq \sup_{\sigma,\alpha} \sigma g_{\alpha}(\sigma) \|f - f_{\delta}\| \leq \gamma \delta$$
.

Similarly, recall that $|g_{\alpha}(\sigma)| \leq C_{\alpha}$ for all $\sigma > 0$, so

$$u_{\alpha} - u_{\alpha}^{\delta} = \sum_{j} g_{\alpha}(\sigma_{j}) \langle f - f_{\delta}, v_{j} \rangle u_{j}$$

implies $||u_{\alpha} - u_{\alpha}^{\delta}|| \leq C_{\alpha} \delta$.

Source condition

We have bounded the data error, but for the approximation error $\|u^{\dagger} - u_{\alpha}\|$ where $u_{\alpha} = R_{\alpha}f$ and $u^{\dagger} = A^{\dagger}f$, this depends on additional properties of u^{\dagger} :

The source condition: There exists $w \in \mathcal{U}$ and $\mu > 0$ such that $u^{\dagger} = (K^*K)^{\mu}w$. For arbitrary $\mu > 0$, this is interpreted as

$$(A^*A)^{\mu}w = \sum_{j=1}^{\infty} \sigma_j^{2\mu} \langle w, u_j \rangle u_j.$$

Source condition

We have bounded the data error, but for the approximation error $\|u^{\dagger} - u_{\alpha}\|$ where $u_{\alpha} = R_{\alpha}f$ and $u^{\dagger} = A^{\dagger}f$, this depends on additional properties of u^{\dagger} :

The source condition: There exists $w \in \mathcal{U}$ and $\mu > 0$ such that $u^{\dagger} = (K^*K)^{\mu}w$. For arbitrary $\mu > 0$, this is interpreted as

$$(A^*A)^{\mu}w = \sum_{j=1}^{\infty} \sigma_j^{2\mu} \langle w, u_j \rangle u_j.$$

Example (Differentiation): Let $(Au)(y)=\int_0^y u(x)\mathrm{d}x$. For $\mu=1$, the source condition says that

$$u^{\dagger}(x) = \int_{x}^{1} \int_{0}^{y} w(z) \mathrm{d}x \mathrm{d}y$$

i.e. u^{\dagger} is twice differentiable.

Assume the source condition and $\sigma^{2\mu} |\sigma g_{\alpha}(\sigma) - 1| \leqslant \omega_{\mu}(\alpha)$ for all $\sigma > 0$.

Then

$$\left\| R_{\alpha} f - A^{\dagger} f \right\|^{2} \leqslant \sum_{j} \left| \sigma_{j} g_{\alpha}(\sigma_{j}) - 1 \right|^{2} \underbrace{\left| \left\langle u^{\dagger}, u_{j} \right\rangle \right|^{2}}_{\sigma_{j}^{4\mu} \left| \left\langle w, u_{j} \right\rangle \right|^{2}}$$

Assume the source condition and $\sigma^{2\mu} |\sigma g_{\alpha}(\sigma) - 1| \leqslant \omega_{\mu}(\alpha)$ for all $\sigma > 0$.

Then

$$\left\|R_{\alpha}f - A^{\dagger}f\right\|^{2} \leqslant \sum_{j} \left|\sigma_{j}g_{\alpha}(\sigma_{j}) - 1\right|^{2} \underbrace{\left|\left\langle u^{\dagger}, u_{j}\right\rangle\right|^{2}}_{\sigma_{j}^{4\mu}\left|\left\langle w, u_{j}\right\rangle\right|^{2}}$$

So,
$$\|u_{\alpha} - u^{\dagger}\| \leqslant \omega_{\mu}(\alpha) \|w\|$$
 and

$$\|u_{\alpha}^{\delta}-u^{\dagger}\| \leqslant \omega_{\mu}(\alpha)\|w\| + C_{\alpha}\delta.$$

Assume the source condition and $\sigma^{2\mu} |\sigma g_{\alpha}(\sigma) - 1| \leqslant \omega_{\mu}(\alpha)$ for all $\sigma > 0$.

Then

$$\left\|R_{\alpha}f - A^{\dagger}f\right\|^{2} \leqslant \sum_{j} \left|\sigma_{j}g_{\alpha}(\sigma_{j}) - 1\right|^{2} \frac{\left|\left\langle u^{\dagger}, u_{j}\right\rangle\right|^{2}}{\sigma_{j}^{4\mu}\left|\left\langle w, u_{j}\right\rangle\right|^{2}}$$

So, $\|u_{\alpha} - u^{\dagger}\| \leqslant \omega_{\mu}(\alpha) \|w\|$ and

$$\|u_{\alpha}^{\delta}-u^{\dagger}\| \leqslant \omega_{\mu}(\alpha)\|w\|+C_{\alpha}\delta.$$

Example of Truncated SVD.

Recall
$$C_{\alpha}=1/\alpha$$
 and $g_{\alpha}(\sigma)=0$ for all $\sigma<\alpha$ and $g_{\alpha}(\sigma)=1/\sigma$ for $\sigma\geqslant\alpha$. So,
$$\sigma^{2\mu}\left|\sigma g_{\alpha}(\sigma)-1\right|\leqslant\alpha^{2\mu}.$$

Let
$$\omega_{\mu}(\alpha) = \alpha^{2\mu}$$
. To minimise $\alpha^{2\mu} \|w\| + \delta/\alpha$, choose $\alpha = \left(\frac{\delta}{2\mu \|w\|}\right)^{1/(2\mu+1)}$

This yields $\|u_{\alpha}^{\delta} - u^{\dagger}\| \leqslant \delta^{\frac{2\mu}{2\mu+1}}$.

Assume the source condition and $\sigma^{2\mu} |\sigma g_{\alpha}(\sigma) - 1| \leqslant \omega_{\mu}(\alpha)$ for all $\sigma > 0$.

Then

$$\left\|R_{\alpha}f - A^{\dagger}f\right\|^{2} \leqslant \sum_{j} \left|\sigma_{j}g_{\alpha}(\sigma_{j}) - 1\right|^{2} \underbrace{\left|\left\langle u^{\dagger}, u_{j} \right\rangle\right|^{2}}_{\sigma_{j}^{4\mu}\left|\left\langle w, u_{j} \right\rangle\right|^{2}}$$

So, $\|u_{\alpha} - u^{\dagger}\| \leqslant \omega_{\mu}(\alpha) \|w\|$ and

$$\|u_{\alpha}^{\delta}-u^{\dagger}\| \leqslant \omega_{\mu}(\alpha)\|w\| + C_{\alpha}\delta.$$

Example of Truncated SVD.

Recall $C_{\alpha}=1/\alpha$ and $g_{\alpha}(\sigma)=0$ for all $\sigma<\alpha$ and $g_{\alpha}(\sigma)=1/\sigma$ for $\sigma\geqslant\alpha$. So, $\sigma^{2\mu}\left|\sigma g_{\alpha}(\sigma)-1\right|\leqslant\alpha^{2\mu}.$

Let
$$\omega_{\mu}(\alpha) = \alpha^{2\mu}$$
. To minimise $\alpha^{2\mu} \|w\| + \delta/\alpha$, choose $\alpha = \left(\frac{\delta}{2\mu \|w\|}\right)^{1/(2\mu+1)}$

This yields $\|u_{\alpha}^{\delta} - u^{\dagger}\| \leqslant \delta^{\frac{2\mu}{2\mu+1}}$.

Whatever the choice of μ , the convergence rate is always slower than $\mathcal{O}(\delta)$. One can show that this rate is optimal.

Outline

Regularisation Theory

Spectral regularisation

Other parameter choice rules

Iterative regularisation

We may want a parameter choice rule which takes the approximate data f_{δ} into account. One way of approaching this is via the Morozov's discrepancy principle:

Definition 10

Let $u_{\alpha} = R_{\alpha} f_{\delta}$ with $\alpha(\delta, f_{\delta})$ chosen as follows:

$$\alpha(\delta, f_{\delta}) = \sup \{\alpha > 0 ; \|Au_{\alpha(\delta, f_{\delta})} - f_{\delta}\| \leqslant \eta \delta \}$$

where $\eta>1$. Then, $u_{\alpha(\delta,f_{\delta})}$ is said to satisfy Morozov's discrepancy principle.

We may want a parameter choice rule which takes the approximate data f_{δ} into account. One way of approaching this is via the Morozov's discrepancy principle:

Definition 10

Let $u_{\alpha} = R_{\alpha} f_{\delta}$ with $\alpha(\delta, f_{\delta})$ chosen as follows:

$$\alpha(\delta, f_{\delta}) = \sup \left\{ \alpha > 0 ; \|Au_{\alpha(\delta, f_{\delta})} - f_{\delta}\| \leqslant \eta \delta \right\}$$

where $\eta > 1$. Then, $u_{\alpha(\delta, f_{\delta})}$ is said to satisfy Morozov's discrepancy principle.

 It can be shown that the a-posteriori parameter choice rule indeed yields a convergent regularisation method.

We may want a parameter choice rule which takes the approximate data f_{δ} into account. One way of approaching this is via the Morozov's discrepancy principle:

Definition 10

Let $u_{\alpha} = R_{\alpha} f_{\delta}$ with $\alpha(\delta, f_{\delta})$ chosen as follows:

$$\alpha(\delta, f_{\delta}) = \sup \left\{ \alpha > 0 \; ; \; \left\| Au_{\alpha(\delta, f_{\delta})} - f_{\delta} \right\| \leqslant \eta \delta \right\}$$

where $\eta > 1$. Then, $u_{\alpha(\delta, f_{\delta})}$ is said to satisfy Morozov's discrepancy principle.

- It can be shown that the a-posteriori parameter choice rule indeed yields a convergent regularisation method.
- Given $f \in \mathcal{D}(A^{\dagger})$ and $f_{\delta} \in \mathcal{V}$ such that $\|f_{\delta} f\| \leq \delta$, let u^{\dagger} be the minimal norm solution to data f and define $\mu \stackrel{\text{def.}}{=} \|Au^{\dagger} f\|$. Then,

$$\|Au^{\dagger} - f_{\delta}\| \le \|Au^{\dagger} - f\| + \|f_{\delta} - f\| \le \mu + \delta.$$

It may be hard to estimate μ in practice, but if $\mathcal{R}(A)$ is dense in \mathcal{V} , then $\mu = 0$.

We may want a parameter choice rule which takes the approximate data f_{δ} into account. One way of approaching this is via the Morozov's discrepancy principle:

Definition 10

Let $u_{\alpha} = R_{\alpha} f_{\delta}$ with $\alpha(\delta, f_{\delta})$ chosen as follows:

$$\alpha(\delta, f_{\delta}) = \sup \{\alpha > 0 ; \|Au_{\alpha(\delta, f_{\delta})} - f_{\delta}\| \leqslant \eta \delta \}$$

where $\eta > 1$. Then, $u_{\alpha(\delta, f_{\delta})}$ is said to satisfy Morozov's discrepancy principle.

- It can be shown that the a-posteriori parameter choice rule indeed yields a convergent regularisation method.
- Given $f \in \mathcal{D}(A^{\dagger})$ and $f_{\delta} \in \mathcal{V}$ such that $\|f_{\delta} f\| \leq \delta$, let u^{\dagger} be the minimal norm solution to data f and define $\mu \stackrel{\text{def.}}{=} \|Au^{\dagger} f\|$. Then,

$$\|Au^{\dagger} - f_{\delta}\| \le \|Au^{\dagger} - f\| + \|f_{\delta} - f\| \le \mu + \delta.$$

It may be hard to estimate μ in practice, but if $\mathcal{R}(A)$ is dense in \mathcal{V} , then $\mu = 0$.

• In practice, pick a null sequence $\{\alpha_j\}_j$ and iteratively compute $u_{\alpha_j} \stackrel{\text{def.}}{=} R_{\alpha_j} f_{\delta}$ for $j=1,\ldots,j^*$, until $u_{\alpha_{j^*}}$ satisfies Morozov's discrepancy principle.

Estimating δ can be hard in practice. One might try to define a rule based on only f_{δ} .

Estimating δ can be hard in practice. One might try to define a rule based on only f_{δ} .

Heuristic rules yield convergent regularisation only for well-posed problems:

Theorem 11 (The Bakushinskii veto)

Let $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ and $\{R_{\alpha}\}_{\alpha}$ be a regularisation for A^{\dagger} . Let $\alpha = \alpha(f_{\delta})$ be such that (R_{α}, α) is a convergent regularisaton. Then, A^{\dagger} is continuous from $\mathcal{V} \to \mathcal{U}$.

Estimating δ can be hard in practice. One might try to define a rule based on only f_{δ} .

Heuristic rules yield convergent regularisation only for well-posed problems:

Theorem 11 (The Bakushinskii veto)

Let $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ and $\{R_{\alpha}\}_{\alpha}$ be a regularisation for A^{\dagger} . Let $\alpha = \alpha(f_{\delta})$ be such that (R_{α}, α) is a convergent regularisaton. Then, A^{\dagger} is continuous from $\mathcal{V} \to \mathcal{U}$.

If we have a convergent regularisation, then

$$\lim_{\delta \to 0} \sup \left\{ \left\| R_{\alpha(f_{\delta})} f_{\delta} - A^{\dagger} f \right\| \; ; \; f \in \mathcal{D}(A^{\dagger}), \; \|f_{\delta} - f\| \leqslant \delta \right\} = 0$$

i.e. $R_{\alpha(f)}f = A^{\dagger}f$ for all $f \in \mathcal{D}(A^{\dagger})$.

Estimating δ can be hard in practice. One might try to define a rule based on only f_{δ} .

Heuristic rules yield convergent regularisation only for well-posed problems:

Theorem 11 (The Bakushinskii veto)

Let $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$ and $\{R_{\alpha}\}_{\alpha}$ be a regularisation for A^{\dagger} . Let $\alpha = \alpha(f_{\delta})$ be such that (R_{α}, α) is a convergent regularisaton. Then, A^{\dagger} is continuous from $\mathcal{V} \to \mathcal{U}$.

If we have a convergent regularisation, then

$$\lim_{\delta \to 0} \sup \left\{ \left\| R_{\alpha(f_{\delta})} f_{\delta} - A^{\dagger} f \right\| \; ; \; f \in \mathcal{D}(A^{\dagger}), \; \|f_{\delta} - f\| \leqslant \delta \right\} = 0$$

i.e. $R_{\alpha(f)}f = A^{\dagger}f$ for all $f \in \mathcal{D}(A^{\dagger})$.

Taking any sequence $f_j \in \mathcal{D}(A^\dagger)$ which converges to $f \in \mathcal{D}(A^\dagger)$, $\lim_{j \to \infty} A^\dagger f_j = \lim_{j \to \infty} R_{\alpha(f_j)} f_j = A^\dagger f$. Therefore, A^\dagger is continuous on $\mathcal{D}(A^\dagger)$. Since $\mathcal{D}(A^\dagger)$ is dense in \mathcal{V} , there exists a continuous extension of A^\dagger on \mathcal{V} .

Despite this negative result of Bakushinskii, heuristic rules are still employed in practices because

- This only applies to infinite dimensional operators.
- This is an asymptotic and a worst-case result. For fixed noise levels or restricted noise values, heuristic rules can still give good performance.

Hanke-Raus rule. Choose $\alpha(f^{\delta})$ as

$$\alpha(f^{\delta}) \stackrel{\mathrm{def.}}{=} \operatorname{argmin}_{\alpha} \frac{1}{\sqrt{\alpha}} \left\| A u_{\alpha}^{\delta} - f^{\delta} \right\|_{\mathcal{V}}.$$

Despite this negative result of Bakushinskii, heuristic rules are still employed in practices because

- This only applies to infinite dimensional operators.
- This is an asymptotic and a worst-case result. For fixed noise levels or restricted noise values, heuristic rules can still give good performance.

Hanke-Raus rule. Choose $\alpha(f^{\delta})$ as

$$\alpha(f^\delta) \stackrel{\text{\tiny def.}}{=} \operatorname{argmin}_\alpha \frac{1}{\sqrt{\alpha}} \left\| A u_\alpha^\delta - f^\delta \right\|_{\mathcal{V}}.$$

What's with the $\alpha^{-\frac{1}{2}}$?

Despite this negative result of Bakushinskii, heuristic rules are still employed in practices because

- This only applies to infinite dimensional operators.
- This is an asymptotic and a worst-case result. For fixed noise levels or restricted noise values, heuristic rules can still give good performance.

Hanke-Raus rule. Choose $\alpha(f^{\delta})$ as

$$lpha(f^{\delta}) \stackrel{ ext{def.}}{=} \operatorname{argmin}_{lpha} \left\| A u_{lpha}^{\delta} - f^{\delta}
ight\|_{\mathcal{V}}.$$

What's with the $\alpha^{-\frac{1}{2}}$?

Recall that $||Au_{\alpha} - Au_{\alpha}^{\delta}|| \leq \gamma \delta$ where $\gamma \geq \sup_{\alpha, \sigma} \sigma g_{\alpha}(\sigma)$. We also have

$$\left\|Au^{\dagger} - Au_{\alpha}\right\|^{2} = \sum_{j} \left|g_{\alpha}(\sigma_{j})\sigma_{j} - 1\right|^{2} \sigma_{j}^{2} \left|\langle u^{\dagger}, u_{j} \rangle\right|^{2} \leqslant \alpha^{2} \left\|u^{\dagger}\right\|^{2}$$

for both truncated SVD and Tikhonov regularisation (check this!).

Despite this negative result of Bakushinskii, heuristic rules are still employed in practices because

- This only applies to infinite dimensional operators.
- This is an asymptotic and a worst-case result. For fixed noise levels or restricted noise values, heuristic rules can still give good performance.

Hanke-Raus rule. Choose $\alpha(f^{\delta})$ as

$$\alpha(f^\delta) \stackrel{\text{\tiny def.}}{=} \operatorname{argmin}_\alpha \frac{1}{\sqrt{\alpha}} \left\| A u_\alpha^\delta - f^\delta \right\|_{\mathcal{V}}.$$

What's with the $\alpha^{-\frac{1}{2}}$?

Recall that $||Au_{\alpha} - Au_{\alpha}^{\delta}|| \leq \gamma \delta$ where $\gamma \geqslant \sup_{\alpha,\sigma} \sigma g_{\alpha}(\sigma)$. We also have

$$\left\|Au^{\dagger} - Au_{\alpha}\right\|^{2} = \sum_{j} \left|g_{\alpha}(\sigma_{j})\sigma_{j} - 1\right|^{2} \sigma_{j}^{2} \left|\langle u^{\dagger}, u_{j}\rangle\right|^{2} \leqslant \alpha^{2} \left\|u^{\dagger}\right\|^{2}$$

for both truncated SVD and Tikhonov regularisation (check this!).

So,
$$\|Au^{\dagger} - Au_{\alpha}^{\delta}\| \lesssim \alpha + \delta$$
.

The optimal choice is $\alpha \sim \delta$. Note that $\delta = \operatorname{argmin}_{\alpha} \frac{(\alpha + \delta)}{\sqrt{\alpha}}$.

To motivate the L-Curve, recall our error bounds with $\gamma = \sup_{\alpha,\sigma} g_{\alpha}(\sigma)$.

•
$$\|Au_{\alpha}^{\delta} - Au^{\dagger}\| \le \sqrt{\sum_{j} |g_{\alpha}(\sigma_{j})\sigma_{j} - 1|^{2} \sigma_{j}^{2} |\langle u^{\dagger}, u_{j} \rangle|^{2}} + \gamma \delta$$

$$\bullet \ \left\| u_{\alpha}^{\delta} - u^{\dagger} \right\| \leqslant \sqrt{\sum_{j} \left| g_{\alpha}(\sigma_{j}) \sigma_{j} - 1 \right|^{2} \left| \langle u^{\dagger}, \ u_{j} \rangle \right|^{2}} + \textcolor{red}{C_{\alpha} \delta}.$$

To motivate the L-Curve, recall our error bounds with $\gamma = \sup_{\alpha,\sigma} g_{\alpha}(\sigma)$.

•
$$\|Au_{\alpha}^{\delta} - Au^{\dagger}\| \le \sqrt{\sum_{j} |g_{\alpha}(\sigma_{j})\sigma_{j} - 1|^{2} \sigma_{j}^{2} |\langle u^{\dagger}, u_{j} \rangle|^{2}} + \gamma \delta$$

$$\bullet \ \left\| u_{\alpha}^{\delta} - u^{\dagger} \right\| \leqslant \sqrt{\sum_{j} \left| g_{\alpha}(\sigma_{j}) \sigma_{j} - 1 \right|^{2} \left| \langle u^{\dagger}, \ u_{j} \rangle \right|^{2}} + \textcolor{red}{C_{\alpha} \delta}.$$

As we decrease α , the data error increases, so $\|u_{\alpha}^{\delta}\|$ grows, but $\|Au_{\alpha}^{\delta}-Au^{\dagger}\|$ remains roughly constant.

To motivate the L-Curve, recall our error bounds with $\gamma = \sup_{\alpha,\sigma} g_{\alpha}(\sigma)$.

•
$$\|Au_{\alpha}^{\delta} - Au^{\dagger}\| \le \sqrt{\sum_{j} |g_{\alpha}(\sigma_{j})\sigma_{j} - 1|^{2} \sigma_{j}^{2} |\langle u^{\dagger}, u_{j} \rangle|^{2}} + \gamma \delta$$

$$\bullet \ \left\| u_{\alpha}^{\delta} - u^{\dagger} \right\| \leqslant \sqrt{\sum_{j} \left| g_{\alpha}(\sigma_{j}) \sigma_{j} - 1 \right|^{2} \left| \langle u^{\dagger}, \ u_{j} \rangle \right|^{2}} + \textcolor{red}{C_{\alpha} \delta}.$$

As we decrease α , the data error increases, so $\|u_{\alpha}^{\delta}\|$ grows, but $\|Au_{\alpha}^{\delta} - Au^{\dagger}\|$ remains roughly constant.

As we increase α , the approximation error grows, but $\|u_{\alpha}\|$ remains roughly constant.

To motivate the L-Curve, recall our error bounds with $\gamma = \sup_{\alpha,\sigma} g_{\alpha}(\sigma)$.

•
$$\|Au_{\alpha}^{\delta} - Au^{\dagger}\| \le \sqrt{\sum_{j} |g_{\alpha}(\sigma_{j})\sigma_{j} - 1|^{2} \sigma_{j}^{2} |\langle u^{\dagger}, u_{j} \rangle|^{2}} + \gamma \delta$$

•
$$\|u_{\alpha}^{\delta} - u^{\dagger}\| \leq \sqrt{\sum_{j} |g_{\alpha}(\sigma_{j})\sigma_{j} - 1|^{2} |\langle u^{\dagger}, u_{j} \rangle|^{2}} + C_{\alpha}\delta.$$

As we decrease α , the data error increases, so $\|u_{\alpha}^{\delta}\|$ grows, but $\|Au_{\alpha}^{\delta}-Au^{\dagger}\|$ remains roughly constant.

As we increase α , the approximation error grows, but $\|u_{\alpha}\|$ remains roughly constant.

Plotting $\log \|Au_{\alpha} - f_{\delta}\|$ against $\log(\|u_{\alpha}\|)$ for varying α gives an L-curve.

L-Curve. Choose
$$\alpha(f^{\delta}) = \operatorname{argmin}_{\alpha>0} \|u_{\alpha}\|_{\mathcal{U}} \|Au_{\alpha} - f^{\delta}\|_{\mathcal{V}}.$$

Idea: withhold parts of f, and choose α such that we can predict this withheld data.

Idea: withhold parts of f, and choose α such that we can predict this withheld data.

Cross Validation: Let $A \in \mathbb{R}^{m \times n}$ and let $A^{(i)}$ be the matrix A with ith row removed, and $f^{(i)}$ be the vector with the ith entry removed. Let $u_{\alpha}^{(i)}$ be the regularised solution to $A^{(i)}u = f^{(i)}$.

Idea: withhold parts of f, and choose α such that we can predict this withheld data.

Cross Validation: Let $A \in \mathbb{R}^{m \times n}$ and let $A^{(i)}$ be the matrix A with ith row removed, and $f^{(i)}$ be the vector with the ith entry removed. Let $u_{\alpha}^{(i)}$ be the regularised solution to $A^{(i)}u = f^{(i)}$.

$$lpha_* = \operatorname{argmin}_lpha \frac{1}{m} \sum_{i=1}^m \left(A(i,:) u_lpha^{(i)} - f_i
ight)^2$$

Idea: withhold parts of f, and choose α such that we can predict this withheld data.

Cross Validation: Let $A \in \mathbb{R}^{m \times n}$ and let $A^{(i)}$ be the matrix A with ith row removed, and $f^{(i)}$ be the vector with the ith entry removed. Let $u_{\alpha}^{(i)}$ be the regularised solution to $A^{(i)}u = f^{(i)}$.

$$\alpha_* = \operatorname{argmin}_{\alpha} \frac{1}{m} \sum_{i=1}^{m} \left(A(i,:) u_{\alpha}^{(i)} - f_i \right)^2$$

For Tikhonov regularisation, this is the same as

$$\alpha_* = \operatorname{argmin}_{\alpha} \frac{1}{m} \sum_{i=1}^{m} \left(\frac{A(i,:)u_{\alpha} - f_i}{1 - h_{ii}} \right)^2$$

where h_{ii} are diagonal elements of $A(A^{\top}A + \alpha \mathrm{Id})^{-1}A^{\top}$.

Idea: withhold parts of f, and choose α such that we can predict this withheld data.

Cross Validation: Let $A \in \mathbb{R}^{m \times n}$ and let $A^{(i)}$ be the matrix A with ith row removed, and $f^{(i)}$ be the vector with the ith entry removed. Let $u_{\alpha}^{(i)}$ be the regularised solution to $A^{(i)}u = f^{(i)}$.

$$\alpha_* = \operatorname{argmin}_{\alpha} \frac{1}{m} \sum_{i=1}^{m} \left(A(i,:) u_{\alpha}^{(i)} - f_i \right)^2$$

For Tikhonov regularisation, this is the same as

$$\alpha_* = \operatorname{argmin}_{\alpha} \frac{1}{m} \sum_{i=1}^{m} \left(\frac{A(i,:)u_{\alpha} - f_i}{1 - h_{ii}} \right)^2$$

where h_{ii} are diagonal elements of $A(A^{\top}A + \alpha \mathrm{Id})^{-1}A^{\top}$.

Generalised Cross Validation: h_{ii} depends on the way you order the rows of A. To remove this dependence, take the average of h_{ii} 's:

tr
$$(A(A^{\top}A + \alpha \mathrm{Id})^{-1}A^{\top}) = \sum_{i=1}^{n} \lambda_i$$
 where $\lambda_i = \frac{\sigma_i^2}{\sigma_i^2 + \alpha}$.

$$\alpha_* = \operatorname{argmin}_{\alpha} \frac{\|Au_{\alpha} - f\|^2}{\left(m - \sum_{i=1}^{n} \lambda_i\right)^2}$$

Outline

Regularisation Theory

Spectral regularisation

Other parameter choice rules

Iterative regularisation

Landweber iteration

Let us consider computing a least squares solution via gradient descent on

$$F(u) = \frac{1}{2} ||Au - f||_{\mathcal{V}}^{2}.$$

We have $\nabla F(u) = A^*(Au - f)$, and gradient descent on F is known as:

The Landweber iterations

$$u^{k+1} = (\operatorname{Id} - \tau A^* A) u^k + \tau A^* f$$
$$u^0 = 0$$

Landweber iteration

Let us consider computing a least squares solution via gradient descent on

$$F(u) = \frac{1}{2} ||Au - f||_{\mathcal{V}}^{2}.$$

We have $\nabla F(u) = A^*(Au - f)$, and gradient descent on F is known as:

The Landweber iterations

$$u^{k+1} = (\operatorname{Id} - \tau A^* A) u^k + \tau A^* f$$
$$u^0 = 0$$

We don't want to compute $A^{\dagger}f$ if $f \notin \mathcal{D}(A^{\dagger})$, we will see that k corresponds to a regularisation parameter and stopping early is a form of regularisation!

Landweber iteration: Choosing the stepsize

Lemma 4.1

Let
$$\tau \in (0, \frac{2}{\|Au^k})$$
. Then, $\|Au^{k+1} - f\|_{\mathcal{V}} \leqslant \|Au^k - f\|_{\mathcal{V}}$, with equality only if $A^*(Au^k - f) = 0$.

Landweber iteration: Choosing the stepsize

Lemma 4.1

Let $\tau \in (0, \frac{2}{\|Au^k})$. Then, $\|Au^{k+1} - f\|_{\mathcal{V}} \le \|Au^k - f\|_{\mathcal{V}}$, with equality only if $A^*(Au^k - f) = 0$.

$$\begin{aligned} \left\| Au^{k+1} - f \right\|^2 &= \left\| A(\operatorname{Id} - \tau A^* A)u^k + \tau AA^* f - f \right\|^2 \\ &= \left\| Au^k - f - \tau AA^* Au^k + \tau AA^* f \right\|^2 \\ &= \left\| Au^k - f \right\|^2 + \tau^2 \left\| AA^* (Au^k - f) \right\|^2 - 2\tau \langle A^* (Au^k - f), A^* (Au^k - f) \rangle \\ &\leq \left\| Au^k - f \right\|^2 + (\tau^2 \|A\|^2 - 2\tau) \left\| A^* (Au^k - f) \right\|^2 \end{aligned}$$

with equality only if $A^*(Au^k - f) = 0$ since $(\tau^2 \|A\|^2 - 2\tau)$ is negative by our choice of τ .

Landweber iteration is a form of spectral regularisation

By induction we have

$$u^k = au \sum_{\ell=0}^{k-1} (\operatorname{Id} - au A^* A)^\ell A^* f \stackrel{\text{def.}}{=} R_k f.$$

Landweber iteration is a form of spectral regularisation

By induction we have

$$u^k = \tau \sum_{\ell=0}^{\kappa-1} (\operatorname{Id} - \tau A^* A)^{\ell} A^* f \stackrel{\text{def.}}{=} R_k f.$$

Since $A^*f = \sum_{i=1}^{\infty} \sigma_i \langle f, v_j \rangle u_j$, we have

$$R_k f = \tau \sum_{j=1}^{\infty} \sum_{\ell=0}^{k-1} \sigma_j \langle f, v_j \rangle (\operatorname{Id} - \tau A^* A)^{\ell} u_j$$

$$= \tau \sum_{j=1}^{\infty} \sigma_j \langle f, v_j \rangle \sum_{\ell=0}^{k-1} (1 - \tau \sigma_j^2)^{\ell} u_j = \sum_{j=1}^{\infty} \frac{1 - (1 - \tau \sigma_j^2)^k}{\sigma_j} \langle f, v_j \rangle u_j.$$

Landweber iteration is a form of spectral regularisation

By induction we have

$$u^{k} = \tau \sum_{\ell=0}^{k-1} (\operatorname{Id} - \tau A^{*} A)^{\ell} A^{*} f \stackrel{\text{def.}}{=} R_{k} f.$$

Since $A^*f = \sum_{i=1}^{\infty} \sigma_j \langle f, v_j \rangle u_j$, we have

$$R_k f = \tau \sum_{j=1}^{\infty} \sum_{\ell=0}^{k-1} \sigma_j \langle f, v_j \rangle (\operatorname{Id} - \tau A^* A)^{\ell} u_j$$

$$= \tau \sum_{j=1}^{\infty} \sigma_j \langle f, v_j \rangle \sum_{\ell=0}^{k-1} (1 - \tau \sigma_j^2)^{\ell} u_j = \sum_{j=1}^{\infty} \frac{1 - (1 - \tau \sigma_j^2)^k}{\sigma_j} \langle f, v_j \rangle u_j.$$

Let
$$au\in(0,rac{2}{\|A\|^2})$$
 and $g_k(\sigma)\stackrel{\mathrm{def.}}{=}rac{1-(1- au\sigma^2)^k}{\sigma}$. Then
$$R_kf=\sum_{i=1}^\infty g_k(\sigma)\langle f,\ v_j\rangle u_j.$$

Regularisation: Note that $\left|1- au\sigma_{j}\right|<1$ for $au\in(0,2/\left\|A\right\|^{2})$, so

$$g_k(\sigma) \stackrel{ ext{def.}}{=} rac{1 - (1 - au \sigma^2)^k}{\sigma}
ightarrow rac{1}{\sigma}, \quad ext{ as } k
ightarrow \infty.$$

Since $\sigma g_k(\sigma) \leqslant 2$ uniformly, we have a regularisation.

Regularisation: Note that $\left|1- au\sigma_{j}\right|<1$ for $au\in(0,2/\left\|A\right\|^{2})$, so

$$g_k(\sigma) \stackrel{\text{def.}}{=} \frac{1 - (1 - \tau \sigma^2)^k}{\sigma} o \frac{1}{\sigma}, \quad \text{ as } k o \infty.$$

Since $\sigma g_k(\sigma) \leq 2$ uniformly, we have a regularisation.

Note that R_k is a linear regulariser and

$$AR_k f = \sum_{j=1}^{\infty} \left(1 - \left(1 - \tau \sigma_j^2 \right)^k \right) \langle f, v_j \rangle v_j \implies \|AR_k\|_{\mathcal{L}(\mathcal{V}, \mathcal{V})} \leqslant 2,$$

so we have $||R_k f|| \to +\infty$ for all $f \notin \mathcal{D}(A^{\dagger})$.

Regularisation: Note that $\left|1-\tau\sigma_{j}\right|<1$ for $\tau\in(0,2/\left\|A\right\|^{2})$, so

$$g_k(\sigma) \stackrel{\text{def.}}{=} \frac{1 - (1 - \tau \sigma^2)^k}{\sigma} o \frac{1}{\sigma}, \quad \text{ as } k o \infty.$$

Since $\sigma g_k(\sigma) \leq 2$ uniformly, we have a regularisation.

Note that R_k is a linear regulariser and

$$AR_k f = \sum_{j=1}^{\infty} \left(1 - \left(1 - \tau \sigma_j^2 \right)^k \right) \langle f, v_j \rangle v_j \implies \|AR_k\|_{\mathcal{L}(\mathcal{V}, \mathcal{V})} \leqslant 2,$$

so we have $||R_k f|| \to +\infty$ for all $f \notin \mathcal{D}(A^{\dagger})$.

How to choose k to ensure convergence?

Regularisation: Note that $\left|1-\tau\sigma_{j}\right|<1$ for $\tau\in(0,2/\left\|A\right\|^{2})$, so

$$g_k(\sigma) \stackrel{\text{def.}}{=} \frac{1 - (1 - \tau \sigma^2)^k}{\sigma} o \frac{1}{\sigma}, \quad \text{ as } k o \infty.$$

Since $\sigma g_k(\sigma) \leq 2$ uniformly, we have a regularisation.

Note that R_k is a linear regulariser and

$$AR_k f = \sum_{j=1}^{\infty} \left(1 - \left(1 - \tau \sigma_j^2 \right)^k \right) \langle f, v_j \rangle v_j \implies \|AR_k\|_{\mathcal{L}(\mathcal{V}, \mathcal{V})} \leqslant 2,$$

so we have $||R_k f|| \to +\infty$ for all $f \notin \mathcal{D}(A^{\dagger})$.

How to choose k to ensure convergence?

Recall that we need $g_k(\sigma) \leqslant C_k$ and $\lim_{\delta \to 0} \delta C_k = 0$. From applying $e^{-x} \geqslant 1 - x$ twice, we have

$$g_k(\sigma) \leqslant \frac{1 - e^{-\tau \sigma^2 k}}{\sigma} \leqslant \frac{\tau \sigma^2 k}{\sigma} = \tau k \sigma \leqslant ||A|| k \tau,$$

we need a stopping criteria of $k_*(\delta)$ such that $\lim_{\delta \to 0} k_*(\delta)\delta = 0$.

To summarise:

Lemma 4.2

Let $\tau \in (0, 2/\|A\|^2)$.

- (i) Let $f \in \mathcal{D}(A^{\dagger})$ and $u^{\dagger} = A^{\dagger}f$, then $||u^k u^{\dagger}|| \to 0$.
- (ii) If $f \notin \mathcal{D}(A^{\dagger})$, then $||u^k|| \to \infty$.
- (iii) If $\lim_{\delta \to 0} k_*(\delta) \delta = 0$, then $\|u^{k_*(\delta)} u^{\dagger}\| \to 0$ as $\delta \to 0$, when doing Landweber iteration on f_{δ} such that $\|f_{\delta} f\| \le \delta$ and $f \in \mathcal{D}(A^{\dagger})$.

Interpret $\alpha \stackrel{\text{def.}}{=} 1/k$, then

$$u_{\alpha} = R_{\alpha}f = \sum_{j=1}^{\infty} \left(1 - \left(1 - \tau \sigma_j^2\right)^{1/\alpha}\right) \frac{1}{\sigma_j} \langle f, v_j \rangle u_j$$

Theorem 12

Let $\tau \in (0,2/\|A\|^2)$. Assume that there exists $w \in \mathcal{V}$ such that $u^{\dagger} \stackrel{\text{def.}}{=} A^{\dagger} f = A^* w$. Then,

(i) letting $f = Au^{\dagger}$,

$$\left\| u^k - u^\dagger \right\|_{\mathcal{U}} = \mathcal{O}\left(\frac{1}{\sqrt{k}}\right) = \mathcal{O}(\sqrt{\alpha})$$

(ii) letting $f=Au^{\dagger}$ and $f^{\delta}\in\mathcal{V}$ such that $\left\|f^{\delta}-f\right\|\leqslant\delta$,

$$\left\| u_{\delta}^{k} - u^{\dagger} \right\|_{\mathcal{U}} \leqslant \sqrt{\tau k} \delta + \frac{\|w\|}{\sqrt{\tau (2k-1)}}$$

Note the trade-off between approximation and data error. We need to stop early!

Error bounds

Let $f = Au^{\dagger}$. Recall that

$$u^{\dagger} - u^{k} = u^{\dagger} - \tau \sum_{i=0}^{k-1} (\operatorname{Id} - \tau A^{*}A)^{j} A^{*} A u^{\dagger}.$$

One can check that $\sum_{j=0}^{k-1} (\operatorname{Id} - \tau A^* A)^j A^* A = A^* A \sum_{j=0}^{k-1} (\operatorname{Id} - \tau A^* A)^j$ and show by induction that

$$\operatorname{Id} - (\operatorname{Id} - \tau A^* A)^k = \tau A^* A \sum_{j=0}^{k-1} (\operatorname{Id} - \tau A^* A)^j$$

Therefore, $u^{\dagger} - u^k = (\operatorname{Id} - \tau A^* A)^k u^{\dagger}$.

Let $f = Au^{\dagger}$. Recall that

$$u^\dagger - u^k = u^\dagger - \tau \sum_{i=0}^{k-1} (\operatorname{Id} - \tau A^* A)^j A^* A u^\dagger.$$

One can check that $\sum_{j=0}^{k-1} (\operatorname{Id} - \tau A^* A)^j A^* A = A^* A \sum_{j=0}^{k-1} (\operatorname{Id} - \tau A^* A)^j$ and show by induction that

$$\mathrm{Id} - (\mathrm{Id} - \tau A^* A)^k = \tau A^* A \sum_{j=0}^{k-1} (\mathrm{Id} - \tau A^* A)^j$$

Therefore, $u^{\dagger} - u^k = (\operatorname{Id} - \tau A^* A)^k u^{\dagger}$.

For (i), using the source condition that $u^{\dagger} = A^* w$, we have

$$\langle u^{\dagger} - u^{k}, u_{j} \rangle = \langle A^{*}w, (1 - \tau \sigma_{j}^{2})^{k}u_{j} \rangle = (1 - \tau \sigma_{j}^{2})^{k}\sigma_{j}\langle w, v_{j} \rangle.$$

Therefore,

$$\left\|u^{\dagger}-u^{k}\right\|\leqslant \|w\|\max_{\sigma}(1-\tau\sigma^{2})^{k}\sigma\leqslant \|w\|\left((1-\tau\sigma^{2})^{k}\sigma\right)\leqslant \frac{\|w\|}{\sqrt{(2k+1)\tau}}$$

where the maximum is achieved at $\tau \sigma^2 = 1/(2k+1)$.

Error bounds

For (ii), recall that
$$u_k = R_k(f) \stackrel{\text{def}}{=} \tau \sum_{j=0}^{k-1} (\operatorname{Id} - \tau A^* A)^j A^* f$$
 and $\operatorname{Id} - (\operatorname{Id} - \tau A^* A)^k = \tau A^* A \sum_{\ell=0}^{k-1} (\operatorname{Id} - \tau A^* A)^\ell$. So, $u_k - u_k^\delta = R_k(f - f_\delta)$. Now,
$$\|R_k\|^2 = \|R_k R_k^*\| = \tau^2 \left\| \sum_{j=0}^{k-1} (\operatorname{Id} - \tau A^* A)^j A^* A \sum_{\ell=0}^{k-1} (\operatorname{Id} - \tau A^* A)^\ell \right\|$$

$$= \tau \left\| \sum_{j=0}^{k-1} (\operatorname{Id} - \tau A^* A)^j \left(\operatorname{Id} - (\operatorname{Id} - \tau A^* A)^k \right) \right\|$$

$$\leqslant \tau \left\| \sum_{j=0}^{k-1} (\operatorname{Id} - \tau A^* A)^j \right\| \leqslant k\tau.$$

Therefore,

$$\left\|u_k-u_k^{\delta}\right\|\leqslant\sqrt{k\tau}\left\|f-f_{\delta}\right\|\leqslant\sqrt{k\tau}\delta.$$

Given noisy data $\|f - f_{\delta}\| \le \delta$, consider Mozorov's discrepancy principle as a stopping criteria: Stop when

$$\left\|Au_{\delta}^{k}-f_{\delta}
ight\|\leqslant\eta\delta,\quad ext{where}\quad \eta>1.$$

Lemma 4.3

Let $au\in(0,\frac{2}{\|A\|})$. Then, for all $k\leqslant k^*$ and $f=Au^\dagger$ and $\left\|f^\delta-f\right\|\leqslant\delta$, we have

$$\left\| u_{\delta}^{k+1} - u^{\dagger} \right\| \leqslant \left\| u_{\delta}^{k} - u^{\dagger} \right\|_{\mathcal{U}}$$

where k^* is chosen in accordance to the discrepancy principle with $\eta = \frac{2}{2-\tau \|K\|^2} > 1$. Equality is attained only for $\delta = 0$ and $A^*(Au_\delta^k - f_\delta) = 0$.

i.e. We move closer to u^\dagger as long as the discrepancy principle is violated. One can in fact show that $\left\|u_\delta^{k^*}-u^\dagger\right\|=\mathcal{O}(\delta^{1/2})$ under the source condition of $u^\dagger=A^*w$.

Assume that $\left\|Au_{\delta}^{k}-f_{\delta}\right\|>\eta\delta.$

Assume that $||Au_{\delta}^{k} - f_{\delta}|| > \eta \delta$.

Plug in the definition $u_{\delta}^{k+1} = u_{\delta}^k - \tau A^* A u_{\delta}^k + \tau A^* f_{\delta}$ and rearrange:

$$\begin{aligned} \left\| u_{\delta}^{k+1} - u^{\dagger} \right\|^{2} - \left\| u_{\delta}^{k} - u^{\dagger} \right\|^{2} &= \left\| u_{\delta}^{k} - \tau A^{*} A u_{\delta}^{k} + \tau A^{*} f_{\delta} - u^{\dagger} \right\|^{2} - \left\| u_{\delta}^{k} - u^{\dagger} \right\|^{2} \\ &= \left\| -\tau A^{*} A u_{\delta}^{k} + \tau A^{*} f_{\delta} \right\|^{2} + 2 \langle -\tau A^{*} A u_{\delta}^{k} + \tau A^{*} f_{\delta}, \ u_{\delta}^{k} - u^{\dagger} \rangle \\ &= \left\| -\tau A^{*} A u_{\delta}^{k} + \tau A^{*} f_{\delta} \right\|^{2} + 2 \tau \langle -A u_{\delta}^{k} + f_{\delta}, A u_{\delta}^{k} - A u^{\dagger} \rangle \end{aligned}$$

Assume that $||Au_{\delta}^{k} - f_{\delta}|| > \eta \delta$.

Plug in the definition $u_{\delta}^{k+1} = u_{\delta}^k - \tau A^* A u_{\delta}^k + \tau A^* f_{\delta}$ and rearrange:

$$\begin{aligned} \left\| u_{\delta}^{k+1} - u^{\dagger} \right\|^{2} - \left\| u_{\delta}^{k} - u^{\dagger} \right\|^{2} &= \left\| u_{\delta}^{k} - \tau A^{*} A u_{\delta}^{k} + \tau A^{*} f_{\delta} - u^{\dagger} \right\|^{2} - \left\| u_{\delta}^{k} - u^{\dagger} \right\|^{2} \\ &= \left\| -\tau A^{*} A u_{\delta}^{k} + \tau A^{*} f_{\delta} \right\|^{2} + 2 \langle -\tau A^{*} A u_{\delta}^{k} + \tau A^{*} f_{\delta}, \ u_{\delta}^{k} - u^{\dagger} \rangle \\ &= \left\| -\tau A^{*} A u_{\delta}^{k} + \tau A^{*} f_{\delta} \right\|^{2} + 2 \tau \langle -A u_{\delta}^{k} + f_{\delta}, A u_{\delta}^{k} - A u^{\dagger} \rangle \end{aligned}$$

Note that

- $\left\|-\tau A^*Au_{\delta}^k+\tau A^*f_{\delta}\right\|^2\leqslant \tau^2\left\|A\right\|^2\left\|Au_{\delta}^k-f_{\delta}\right\|^2$
- $2\tau\langle -Au_{\delta}^{k} + f_{\delta}, Au_{\delta}^{k} f \rangle = -2\tau \|Au_{\delta}^{k} + f_{\delta}\|^{2} + 2\tau\langle -Au_{\delta}^{k} + f_{\delta}, f_{\delta} f \rangle$

Assume that $\|Au_{\delta}^{k} - f_{\delta}\| > \eta \delta$.

Plug in the definition $u_{\delta}^{k+1} = u_{\delta}^k - \tau A^* A u_{\delta}^k + \tau A^* f_{\delta}$ and rearrange:

$$\begin{aligned} \left\| u_{\delta}^{k+1} - u^{\dagger} \right\|^{2} - \left\| u_{\delta}^{k} - u^{\dagger} \right\|^{2} &= \left\| u_{\delta}^{k} - \tau A^{*} A u_{\delta}^{k} + \tau A^{*} f_{\delta} - u^{\dagger} \right\|^{2} - \left\| u_{\delta}^{k} - u^{\dagger} \right\|^{2} \\ &= \left\| -\tau A^{*} A u_{\delta}^{k} + \tau A^{*} f_{\delta} \right\|^{2} + 2 \langle -\tau A^{*} A u_{\delta}^{k} + \tau A^{*} f_{\delta}, \ u_{\delta}^{k} - u^{\dagger} \rangle \\ &= \left\| -\tau A^{*} A u_{\delta}^{k} + \tau A^{*} f_{\delta} \right\|^{2} + 2 \tau \langle -A u_{\delta}^{k} + f_{\delta}, A u_{\delta}^{k} - A u^{\dagger} \rangle \end{aligned}$$

Note that

- $\left\|-\tau A^*Au_{\delta}^k+\tau A^*f_{\delta}\right\|^2\leqslant \tau^2\left\|A\right\|^2\left\|Au_{\delta}^k-f_{\delta}\right\|^2$
- $2\tau\langle -Au_{\delta}^{k} + f_{\delta}, Au_{\delta}^{k} f \rangle = -2\tau \|Au_{\delta}^{k} + f_{\delta}\|^{2} + 2\tau\langle -Au_{\delta}^{k} + f_{\delta}, f_{\delta} f \rangle$

Therefore, unless $A^*(Au_\delta^k - A^*f_\delta) = 0$,

$$\begin{aligned} \left\| u_{\delta}^{k+1} - u^{\dagger} \right\|^{2} - \left\| u_{\delta}^{k} - u^{\dagger} \right\|^{2} \\ & \leq \tau^{2} \|A\|^{2} \left\| Au_{\delta}^{k} - f_{\delta} \right\|^{2} - 2\tau \left\| Au_{\delta}^{k} + f_{\delta} \right\|^{2} + 2\tau\delta \left\| -Au_{\delta}^{k} + f_{\delta} \right\| \\ & = \tau \left\| Au_{\delta}^{k} - f_{\delta} \right\| \left((\tau \|A\|^{2} - 2) \left\| Au_{\delta}^{k} - f_{\delta} \right\| + 2\delta \right) \\ & < \tau \left\| Au_{\delta}^{k} - f_{\delta} \right\| \left((\tau \|A\|^{2} - 2) \eta\delta + 2\delta \right) < 0 \end{aligned}$$

Summary

- We defined the notion of convergent regularisations: there is a trade-off between data error and approximation error, so parameters need to be chosen carefully.
- We looked at various forms of spectral (linear) regularisation
- Tikhonov and Landweber iteration are special forms of spectral regularisation which do not require explicit knowledge of the spectrum.
- Convergence rates were obtained under source conditions.