Module-5 Design of experiments and Reliability

Design of experiments:

A statistical experiment in any field is conducted to verify the truth of a particular hypothesis. Design of experiments may be defined as "the logical construction of the experiment in which the degree uncertainty with which the inference is drawn may be well defined".

Suppose we conduct an agricultural experiment to verify the truth of the claim that a particular fertilizer increases the yield of wheat. Design of experiments is used to control the "extraneous variables" (indirect variables involved. Eg. Fertility of soil in different plots, quantity of seeds used) and to minimize the experimental error so that the results of our experiments could be attributed to the "experimental variables" (direct variables involved. Eg. Quantity of fertilizer used and quantity of the yield) only.

The purpose of experimental design is to obtain maximum information of an experiment with the minimum experimental error, cost and labour.

Terms involved in experimental design:

- **1. Treatments:** Various objects of comparison in a comparative experiment are called treatments. For example, in an agricultural experiment, different fertilizers used, or different types of crops or different methods of cultivation are the treatments.
- 2. Experimental Units: The smallest division of the experimental material to which we apply the treatments and on which we make observations on the experimental variables under the investigation is called experimental unit. In an agricultural experiment, the plot of land is the experimental unit.
- **3. Blocks:** The whole experimental units are subdivided into homogenous subgroups. Such subgroups which are more homogenous among themselves are called blocks.
- **4. Experimental error:** The error due to "extraneous variables" is called Experimental error.

Basic principles of experimental design:

The following three basic principles are adopted when the experiments are designed.

- 1. Randomisation.
- 2. Replication.
- 3. Local control.
- 1. **Randomisation:** Though our desire is to eliminate completely the effect of "extraneous variables" in any experiment, it is not possible. So, we try to control them by Randomisation. For example, in an agricultural experiment, to verify the truth of the claim that a particular fertilizer increases the yield, the selection of plots for experimental groups(plots in which fertilizers are used) and control groups (plots in which fertilizers are not used) is done in a random manner. This will eliminate the unknown bias in the experiment.
- 2. **Replication:** Replication means repetition. In an agricultural experiment, in which the effects of different fertilizers on the yield are studied, each fertilizer is used in more than one experimental plot. To estimate the quantity of experimental error, it is necessary to use each fertilizer for more than one plot so that we can get the precision of the effects of fertilizer.
- 3. **Local control:** To control the effect of "extraneous variables" we use local control which involves "grouping" (combining homogenous set of plots), "blocking" (assigning same number of plots in different blocks) and "balancing" (adjusting grouping and blocking procedure) of experimental units.

Basic Design of experiments:

- 1. Completely Randomised Design (C.R.D)
- 3. Latin Square Design (L.S.D)
- 2. Randomised Block Design (R.B.D)
- 4. 2²-Factorial Design

Completely Randomised Design (C.R.D):

Suppose that there are N plots available & we wish to compare h treatments for an experiment and let the ith treatment be repeated (replicated) n_i times such that $n_1 + n_2 + ... + n_h = N$. The N plots are selected randomly and each given a treatment to get the design which is completely random. This design is used only if plots used are homogenous.

ANALYSIS OF VARIANCE (ANOVA):

There are situations which leads us to tests of hypotheses that involve more than two populations and information's from more than two samples. ANALYSIS OF VARIANCE (ANOVA) is a technique or procedure to test for the significance of the difference between more than two samples. The aim of ANOVA is to find how much total variability is due to each factor and it enables us to test for the significance of the difference among more than two sample means.

Assumptions of ANOVA:

- 1. Each sample is a random sample.
- 2. Each sample is independent of the other.
- 3. The samples are drawn from normal population.
- 4. Variances of the population are equal.

Basic steps of ANOVA:

- 1. Determine one estimate of the population variance from the variance among the sample means.
- 2. Determine a second estimate of the population variance from the variance within the sample.
- 3. Compare these two estimates; if they are approximately equal in value then accept null hypothesis.

Analysis of variance (ANOVA) for one way classification (or) one factor experiments:

Procedure:

Let N-Total number of items in the given data.

K- Number of treatment.

n- Number of samples in each treatment.

STEP 1: Set up Null Hypothesis H₀.

<u>Prepare Table – I using the following steps:</u>

STEP 2: Find Sum of all the items (T) of the sample $T = \sum T_1 + \sum T_2 + \cdots + \sum T_K$

STEP 3: Find Sum of squares of all the items of each treatment $S.S = \sum_1 X_{ij}^2 + \sum_2 X_{ij}^2 + \cdots + \sum_k X_{ij}^2$

STEP 4: Find the Correction Factor (C.F) = $\frac{T^2}{N}$

Table – I (calculations for ANOVA):

		Va	lues			2	
Classes	N	umber		cks	Row total T _i	$\frac{T_i^2}{T_i}$	$S.S = \sum \sum X_{ij}^{2}$
	1	2	•••	n	11	n_i	
1	x ₁₁	<i>x</i> ₁₂		x_{1n}	$T_1 = \sum_1 x_{ij}$	$\frac{{T_1}^2}{n_1}$	$\sum_{1} X_{ij}^{2}$
2	x ₂₁	x ₂₂		x_{2n}	$T_2 = \sum_2 x_{ij}$	$\frac{{T_2}^2}{n_2}$	$\sum_{2} X_{ij}^{2}$
•••							
i	x_{i1}	x_{i2}		x_{in}	$T_i = \sum_i x_{ij}$	$\frac{{T_i}^2}{n_i}$	$\sum_{i} X_{ij}^{2}$
•••			•••		•••		•••
k	x_{k1}	x_{k2}		x_{kn}	$T_k = \sum_k x_{ij}$	$\frac{{T_k}^2}{n_k}$	$\sum_{k} X_{ij}^{2}$
		C.F	$=\frac{T^2}{N}$		Grand total $T = \sum T_i$	$\sum \frac{{T_i}^2}{n_i}$	$\sum \sum {X_{ij}}^2$

STEP 5: Find Total sum of squares (T.S.S) = Sum of squares of all the items - Correction Factor

$$= S.S - \frac{T^2}{N}$$

STEP 6: Find Sum of squares between samples (SSB) = $\frac{{T_1}^2}{n_1} + \frac{{T_1}^2}{n_1} + \dots + \frac{{T_1}^2}{n_1} - \text{C.F}$

STEP 7: Find Mean square between samples (MSB) = $\frac{\text{Sum of squares between samples (SSB)}}{\text{Define samples (SSB)}}$;

STEP 8: Find Sum of squares within samples (SSW) = Total sum of squares (T.S.S) - Sum of squares between samples (SSB)

STEP 9: Find Mean square within samples (MSW) = $\frac{\text{Sum of squares within samples (SSB)}}{\text{Def (Data)}}$:

Prepare Table-II (ANOVA table) as follows:

STEP 10: Table-II (ANOVA Table):

Source of variation	Sum of squares	Degree of freedom	Mean squares	F-Ratio
Between samples	SSB	$v_1 = K - 1$	$MSB = \frac{SSB}{K - 1}$	$F_{C} = \frac{MSB}{MSW}$
Within samples	SSW	$v_2 = N - K$	$MSW = \frac{SSW}{N - K}$	$F_{C} = \frac{MSW}{MSB}$

Where,

SSB = Sum of squares between samples

SSW = Sum of squares within samples

MSB = Mean square between samples

MSW= Mean square within samples

 $F_C = Calculated F - value$

$$= \frac{MSB}{MSW} \text{If MSB} > MSW \text{(or)}$$

$$= \frac{MSW}{MSB} \text{If MSW} > MSB$$

$$=\frac{\text{MSW}}{\text{MSP}}$$
If MSW $> MSB$

- 1. If calculated value F_C > tabulated value F_T at 5% l.o.s for (v_1, v_2) D.f then the null hypothesis H₀ is rejected.
- 2. If calculated value F_C < tabulated value F_T at 5% l.o.s for (v_1, v_2) D.f then the null hypothesis H₀ is accepted.

NOTE:

If the values are larger we can simplify the calculations by shifting the origin. Shifting the origin does not affect the variance of a set of values, so we can take the origin at $x = x_0$ (say).

Problems:

Type-1: Reframe the table by applying the principles of experimental design.

1. A completely randomized design experiment with 10 plots and 3 experiments gave the following result.

Plot No.	1	2	3	4	5	6	7	8	9	10
Treatments	Α	В	С	Α	С	С	Α	В	Α	В
Yield	5	4	3	7	5	1	3	4	1	7

Analyse the result for treatment effects.

Solution:

Let us reframe the table by applying the principles of experimental design.

Tuestuseute		Yield of the plots						
Treatments		Number of Blocks						
K=3	1	2	3	4				
Α	5	7	3	1	4			
В	4	4	7	-	3			
С	3	5	1	-	3			

N-Total number of items in the given data = 10.

- K- Number of Treatments = 3.
- n- Number of samples in each treatment (not equal in this problem).

Null Hypothesis H₀: There is no significant difference among the average yields in the 3 treatments.

Table – I (calculations for ANOVA):

Treatments	Yi	eld of	the pl	ots	Row total	T_i^2	
K=3	Z	umber	of Blo	cks			$\sum X_{ij}^2$
K-3	1	2	3	4	T _i	n_i	
Α	5	7	3	1	16	$\frac{16^2}{4} = 64$	84
В	4	4	7	-	15	$\frac{15^2}{3} = 75$	81
С	3	5	1	-	9	$\frac{9^2}{3} = 27$	35
	C.F	$=\frac{T^2}{N}=$	$\frac{40^2}{10} =$	160	Grand total $T = \sum T_i = 40$	$\sum \frac{{T_i}^2}{n_i} = 166$	$\sum \sum X_{ij}^2 = 200$

Total sum of squares (T.S.S) = Sum of squares of all the items $(\sum \sum X_{ij}^2)$ - Correction Factor(C.F) = 200 - 160 = 40

Sum of squares between samples (SSB) = $\sum \frac{{T_i}^2}{n_i}$ - Correction Factor(C.F) = 166 - 160 = 6

Mean square between samples (MSB) =
$$\frac{\text{Sum of squares between samples (SSB)}}{D.f \rightarrow \text{K}-1} = \frac{6}{3-1} = \frac{6}{2} = 3$$

Sum of squares within samples (SSW) = Total sum of squares (T.S.S) - Sum of squares between samples (SSB)

$$= 40 - 6 = 34$$

Mean square within samples (MSW) = $\frac{\text{Sum of squares within samples (SSW)}}{D.f \rightarrow N-K} = \frac{34}{10-3} = \frac{34}{7} = 4.86$

Table-II (ANOVA table):

Source of variation	Sum of squares	Degree of freedom	Mean squares	F-Ratio
Between samples	SSB = 6	$v_1 = 3 - 1 = 2$	$MSB = \frac{SSB}{K - 1} = 3$	MSW 1.62
Within samples	SSW = 34	$v_2 = 10 - 3 = 7$	$MSW = \frac{SSW}{N - K} = 4.86$	$F_C = \frac{100 \text{ MSB}}{\text{MSB}} = 1.62$

∴ Calculated value of F is 1.62

Tabulated value of F for (7, 2) (MSW > MSB)at 5% l.o.s is 19.35.

2. Three varieties A, B, C of a crop are tested in a completely randomized design with four replications, the layout being given in the following table. The plot yields in pounds are also indicated. Analyze the experimental yield and state your conclusion.

A(6)	C(5)	A(8)	B(9)
C(8)	A(4)	B(6)	C(9)
B(7)	B(6)	C(10)	A(6)

Solution:

Let us reframe the table by applying the principles of experimental design.

Mariatian		Yield of the plots						
Varieties K=3		Number	of Blocks		n			
K=3	1	2	3	4				
А	6	8	4	6	4			
В	9	6	7	6	4			
С	5	8	9	10	4			

 $[:] F_C < F_T$ Null hypothesis H_0 is accepted.

N-Total number of items in the given data = 12.

K- Number of Varieties = 3.

n- Number of samples in each treatment = 4(equal).

Null Hypothesis H₀: There is no significant difference among the average yields in the 3 treatments.

Table - I (calculations for ANOVA):

Treatments	Yi	eld of	the pl	ots	Dow total	T 2	
Treatments K=3	N	umber	of Blo	cks	Row total	T_i^2	$\sum X_{ij}^2$
K-3	1	2	3	4	T _i	n_i	
Α	6	8	4	6	24	$\frac{24^2}{4} = 144$	152
В	9	6	7	6	28	$\frac{28^2}{4} = 196$	202
С	5	8	9	10	32	$\frac{32^2}{4} = 256$	270
	C.F	$=\frac{T^2}{N}=$	$\frac{84^2}{12} =$	588	Grand total $T = \sum T_i = 84$	$\sum \frac{{T_i}^2}{n_i} = 596$	$\sum \sum X_{ij}^2 = 624$

Total sum of squares (T.S.S) = Sum of squares of all the items ($\sum \sum X_{ij}^2$) - Correction Factor(C.F) = 624 - 588 = 36

Sum of squares between samples (SSB) = $\sum \frac{{T_i}^2}{n_i}$ - Correction Factor(C.F) = 596 - 588 = 8

Mean square between samples (MSB) =
$$\frac{\text{Sum of squares between samples (SSB)}}{D.f \rightarrow \text{K}-1} = \frac{8}{3-1} = \frac{8}{2} = 4$$

Sum of squares within samples (SSW) = Total sum of squares (T.S.S) - Sum of squares between samples (SSB)

$$= 36 - 8 = 28$$

Mean square within samples (MSW) = $\frac{\text{Sum of squares within samples (SSW)}}{D.f \rightarrow N-K} = \frac{28}{12-3} = \frac{28}{9} = 3.11$

Table-II (ANOVA table):

Source of variation	Sum of squares	Degree of freedom	Mean squares	F-Ratio
Between samples	SSB = 8	$v_1 = 3 - 1 = 2$	$MSB = \frac{SSB}{K - 1} = 4$	MSB 1206
Within samples	SSW = 28	$v_2 = 12 - 3 = 9$	$MSW = \frac{SSW}{N - K} = 3.11$	$F_C = \frac{1.286}{MSW} = 1.286$

∴ Calculated value of F is 1.286

Tabulated value of F for (2, 9) at 5% l.o.s is 4.26.

 $: F_C < F_T$ Null hypothesis H_0 is accepted.

Type-2: No reframe required:

3. In order to determine whether there is significant difference in the durability of 3 makes of computers, samples of size 5 are selected from each make and the frequency of repair during 1st year of purchase is observed. The results are as follows:

	I	5	6	8	9	7
Makes	II	8	10	11	12	4
	Ш	7	3	5	4	1

In the view of above data what conclusion can you draw?

Solution:

N-Total number of items in the given data = 15.

K- Number of Makes = 3.

n- Number of samples in each make = 5.

Null Hypothesis H₀: There is no significant difference in the durability of 3 makes of computers. Table – I (calculations for ANOVA):

Makes	ı		er of s (n = 5	ampl)	es	Row total	T_i^2	$\sum x_{ij}^2$	
K=3	1	2	3	4	5	Ti	$\overline{n_i}$	$\triangle^{\Lambda_{ij}}$	
Α	5	6	8	9	7	35	$\frac{35^2}{5} = 245$	255	
В	8	10	11	12	4	45	$\frac{45^2}{5} = 405$	445	
С	7	3	5	4	1	20	$\frac{20^2}{5} = 80$	100	
	C.F	$=\frac{T^2}{N}=$	$=\frac{100^2}{15}$	= 66	6.67	Grand total $T = \sum T_{\rm i} = 100$	$\sum \frac{{T_i}^2}{n_i} = 730$	$\sum \sum X_{ij}^2 = 800$	

Total sum of squares (T.S.S) = Sum of squares of all the items ($\sum \sum X_{ij}^2$) - Correction Factor(C.F) = 800 - 666.67 = 133.33

Sum of squares between samples (SSB) = $\sum \frac{T_i^2}{n_i}$ - Correction Factor(C.F) = 730 - 666.67

Mean square between samples (MSB) =
$$\frac{\text{Sum of squares between samples (SSB)}}{D.f \rightarrow \text{K}-1} = \frac{63.33}{3-1} = \frac{63.33}{2}$$

= 31.67

Sum of squares within samples (SSW) = Total sum of squares (T.S.S) - Sum of squares between samples (SSB)

$$= 133.33 - 63.33 = 70$$
Mean square within samples (MSW) =
$$\frac{\text{Sum of squares within samples (SSW)}}{D.f \rightarrow N - K} = \frac{70}{15 - 3} = \frac{70}{12}$$

$$= 5.83$$

Table-II (ANOVA table):

Source of variation	Sum of squares	Degree of freedom	Mean squares	F-Ratio
Between samples	SSB = 63.33	$v_1 = 3 - 1 = 2$	$MSB = \frac{SSB}{K - 1} = 31.67$	MSB 5.42
Within samples	SSW = 70	$v_2 = 15 - 3 = 12$	$MSW = \frac{SSW}{N - K} = 5.83$	$F_C = \frac{1}{MSW} = 5.43$

∴ Calculated value of F is 5.43

Tabulated value of F for (2, 12) at 5% l.o.s is 3.88.

- $: F_C > F_T$ Null hypothesis H_0 is rejected.
- 4. To test the significance of the variation of the retail prices of a certain commodity in the four principal states A, B, C, D seven shops were chosen at random in each city and the prices observed as follows:

Α	82	79	73	69	69	63	61
В	84	82	80	79	76	68	62
С	88	84	80	68	68	66	66
D	79	77	76	74	72	68	64

Do the data indicate that the prices in the four cities are significantly different? Solution:

N-Total number of items in the given data = 28.

- K- Number of states = 4.
- n- Number of shops in each state= 7.

Null Hypothesis H₀: There is no significant difference among the prices in the 4 states. Shifting the origin does not affect the variance of a set of values, so we take the origin at (say) x = 76 (to make the calculations simple).

Table – I (calculations for ANOVA):

States K=4			Sh	ops(n	ı=7)			Row total T _i	$\frac{{T_i}^2}{n_i}$	$\sum X_{ij} ^2$
K-4	1	2	3	4	5	6	7	•1		
А	6	3	-3	-7	-7	-13	-15	-36	$\frac{(-36)^2}{7} = 185.14$	546
В	8	6	4	3	0	-8	-14	-1	$\frac{(-1)^2}{7} = 0.14$	385
С	12	8	4	-8	-8	-10	-10	-12	$\frac{(-12)^2}{7} = 20.57$	552
D	3	1	0	-2	-4	-8	-12	-22	$\frac{(-22)^2}{7} = 69.14$	238
	$C.F = \frac{T^2}{N} = \frac{(-71)^2}{28} = 180.03$					Grand total $T = \sum_{i=1}^{n} T_{i}$ $= -71$	$\sum_{i=1}^{\infty} \frac{T_i^2}{n_i}$ = 274.99	$\sum \sum_{1721} X_{ij}^2 =$		

Total sum of squares (T.S.S) = Sum of squares of all the items $(\sum \sum X_{ij}^2)$ - Correction Factor(C.F) = 1721 - 180.03 = 1540.97

Sum of squares between samples (SSB) = $\sum \frac{T_i^2}{n_i}$ - Correction Factor(C.F) = 274.99 - 180.03

Mean square between samples (MSB) =
$$\frac{\text{Sum of squares between samples (SSB)}}{D.f \rightarrow \text{K}-1} = \frac{94.96}{4-1} = \frac{94.96}{3}$$

= 31.65

Sum of squares within samples (SSW) = Total sum of squares (T.S.S) - Sum of squares between samples (SSB)

$$= 1540.97 - 94.96 = 1446.01$$

Mean square within samples (MSW) =
$$\frac{\text{Sum of squares within samples (SSW)}}{D.f \rightarrow N-K} = \frac{1446.01}{28-4} = \frac{1446.01}{24}$$
$$= 60.25$$

Table-II (ANOVA table):

Source of variation	Sum of squares	Degree of freedom	Mean squares	F-Ratio
Between samples	SSB = 94.96	$v_1 = 4 - 1 = 3$	$MSB = \frac{SSB}{K - 1} = 31.65$	MSW 1.00
Within samples	SSW = 1446.01	$v_2 = 28 - 4 = 24$	$MSW = \frac{SSW}{N - K} = 60.25$	$F_C = \frac{1}{MSB} = 1.90$

∴ Calculated value of F is 1.90

Tabulated value of F for (24, 3) (MSW > MSB) at 5% l.o.s is 8.64.

- $\because F_C < F_T$ Null hypothesis H_0 is accepted.
- 5. The following are the numbers of mistakes made in 5 successive days of 4 technicians working in photographic laboratory.

Technicians I	Technicians II	Technicians III	Technicians IV
6	14	10	9
14	9	12	12
10	12	7	8
8	10	15	10
11	14	11	11

Test at 1% l.o.s whether the differences among the sample means can be attributed to chance.

Solution:

N-Total number of items in the given data = 20.

K- Number of Technicians = 4.

n- Number of errors of each Technician =5.

Null Hypothesis H₀: There is no significant difference in the mean errors committed by the 4 Technicians.

Shifting the origin does not affect the variance of a set of values, so we take the origin at (say) x = 10 (to make the calculations simple).

Table - I (calculations for ANOVA):

Technician	E	rrors	s (n =	5day	rs)	Row total	$\frac{{T_i}^2}{n_i}$	$\sum X_{ij}^2$
K=4	1	2	3	4	5	T_{i}		
I	-4	4	0	-2	1	-1	$\frac{(-1)^2}{5}$ $= 0.2$	37
П	4	-1	2	0	4	9	$\frac{(9)^2}{5} = 16.2$	37
III	0	2	-3	5	1	5	$\frac{(5)^2}{5} = 5$ $\frac{(0)^2}{5} = 0$	39
IV	-1	2	-2	0	1	0	$\frac{(0)^2}{5} = 0$	10
	$C.F = \frac{T^2}{N} = \frac{(13)^2}{20} = 8.45$				8.45	Grand total $T = \sum_{i=1}^{n} T_{i}$ = 13	$\sum_{i=1}^{\infty} \frac{T_i^2}{n_i}$ = 21.4	$\sum_{i=123}^{123} X_{ij}^{2}$

Total sum of squares (T.S.S) = Sum of squares of all the items ($\sum \sum X_{ij}^2$) - Correction Factor(C.F) = 123-8.45=114.55

Sum of squares between samples (SSB) = $\sum \frac{{T_i}^2}{n_i}$ - Correction Factor(C.F) = 21.4 - 8.45

Mean square between samples (MSB) =
$$\frac{\text{Sum of squares between samples (SSB)}}{D.f \rightarrow \text{K}-1} = \frac{12.95}{4-1} = \frac{12.95}{3}$$
$$= 4.32$$

Sum of squares within samples (SSW) = Total sum of squares (T.S.S) - Sum of squares between samples (SSB)

$$= 114.55 - 12.95 = 101.6$$
Mean square within samples (MSW) = $\frac{\text{Sum of squares within samples (SSW)}}{D.f \rightarrow N-K} = \frac{101.6}{20-4} = \frac{101.6}{16}$

$$= 6.35$$

Table-II (ANOVA table):

Source of variation	Sum of squares	Degree of freedom	Mean squares	F-Ratio
Between samples	SSB = 12.95	$v_1 = 4 - 1 = 3$	$MSB = \frac{SSB}{K - 1} = 4.32$	MSW
Within samples	SSW = 101.6	$v_2 = 20 - 4 = 16$	$MSW = \frac{SSW}{N - K} = 6.35$	$F_{C} = \frac{1.47}{MSB} = 1.47$

[∴] Calculated value of F is 1.47

Tabulated value of F for (16, 3) (MSW > MSB) at 1% l.o.s is 5.29.

HOME WORK:

1. There are 3 typists working in an office. The times (in minutes) they spend for the tea break in addition to the allowed lunch break are observed and noted below:

A:	25	18	30	32	35	37	19	•	-	-
B:	24	22	26	28	30	32	28	26	-	-
C:	28	20	27	19	29	35	30	23	27	32

Can the difference in average times that the 3 typists spend for the tea break be attributed to chance variation. (F_T at 5% l.o.s D.f (22, 2) is 19.45) ANS: $F_C = 11.62$

2. Three different machines are used for a production. On the basis of outputs, set up one-way ANOVA table and test whether the machines are equally effective.

	outputs	
Machine I	Machine II	Machine III
10	9	20
15	7	16
11	5	10
10	6	14

Given that the value of F at 5% l.o.s for (2, 9) d.f is 4.26.

ANS: $F_C = 5.95$

Two Way Classifications:

Randomised block design (R.B.D):

This design may be defined as one in which the experimental material is divided into blocks or groups in such a way that the units in each block are homogenous. The treatments are assigned at random to the units in each block. The layout of a R.B.D using three varieties of wheat in four blocks is given below.

Blocks								
I II III IV								
W ₂	W_1	W ₃	W ₂					
W_1	W ₃	W_2	W_1					
W ₃	W ₂	W_1	W ₃					

Here W's represent the random assignment of these varieties in each block. If the varieties represent a single criterian of classification that data can be recorded in a table shown below:

Varieties								
Blocks	W_1	W_2	W ₃					
I	x_{11}	X 12	X 13					
II	X 21	X 22	X 23					
III	X 31	X 32	X 33					
IV	X 41	X 42	X 43					

 $[\]because F_C < F_T$ Null hypothesis H_0 is accepted.

Where x's denote observed data obtained from various blocks using different varieties of wheat. The ANOVA procedure for this design is the nearly same as discussed in one way classification.

ANOVA – Table:

Source of variation	Sum of squares	Degree of freedom	Mean squares	F-Ratio
Column	SSC	$v_1 = c - 1$	$MSC = \frac{SSC}{c - 1}$	_E _ MSC
treatments	330	$v_1 = c - 1$	$MSC = \frac{1}{c-1}$	$F_{\rm C} = \frac{1}{\rm MSE}$
Row	SSR	1 - m 1	$MSR = \frac{SSR}{r - 1}$	MSR
treatments	SSK	$v_2 = r - 1$	$MSR = \frac{1}{r-1}$	$F_{R} = \frac{1}{MSE}$
Error (or)	SSE	(n-1)(a-1)	SSE _	
Residual	335	(r-1)(c-1)	$MSE = \frac{33E}{(r-1)(c-1)}$	

Where,

SSC = Sum of squares between blocks (columns)

SSR = Sum of squares between varieties (rows)

MSC = Mean square between blocks (columns)

MSR = Mean square between varieties (rows)

SSE = Residual Sum of squares = T.S.S - (S.S.C + S.S.R)

MSE = Mean square error MSE = $\frac{\text{SSE}}{(r-1)(c-1)}$

Advantages of R.B.D:

- 1. This design is more efficient than C.R.D.
- 2. It is more accurate than C.R.D because it reduces experimental error.
- 3. It is more flexible. Any number of treatments and any number of replications may be used.
- 4. The analysis of design is simple, easily adaptable.

Disadvantages:

- 1. If the number of treatments is very large, then the size of the blocks will increase and this may introduce heterogeneity within blocks.
- 2. If the interactions are large, the experiment may yield misleading results.

Problems:

1. Three varieties A, B, C of a crop are tested in a randomized block design with four replications. The plot yields in pounds are as follows.

A(6)	C(5)	A(8)	B(9)
C(8)	A(4)	B(6)	C(9)
B(7)	B(6)	C(10)	A(6)

Solution:

Let us reframe the table by applying the principles of experimental design.

Variation					
Varieties K=3		Total			
K=3	1	2	3	4	
Α	6	8	4	6	24(R ₁)
В	9	6	7	6	28(R ₂)
С	5	8	9	10	32(R ₃)
Total	21(C ₁)	15(C ₂)	24(C ₃)	24(C ₄)	84(T)

N -Total number of items in the given data = 12.

- c Number of columns = 4.
- r Number of rows = 3.

Null Hypothesis H₀₁: There is no significant difference between Yields (columns) and H₀₂: There is no significant difference between Varieties (rows)

Table – I (calculations for ANOVA):

Treatments	ments Yield of the plots					R_j^2	∇v^2
K=3		Number	of Blocks		total		$\sum X_{ij}^2$
K-3	1	2	3	4	R_{j}	n_{j}	j
Α	6	8	4	6	24	$\frac{24^2}{4} = 144$	152
В	9	6	7	6	28	$\frac{28^2}{4} = 196$	202
С	5	8	9	10	32	$\frac{32^2}{4} = 256$	270
Column total <i>C_i</i>	21	15	24	24	Grand total G = 84	$\sum \frac{R_j^2}{n_j}$ = 596	*
$\frac{{C_i}^2}{n_i}$	$\frac{21^2}{3} = 147$	$\frac{15^2}{3} = 75$	$\frac{24^2}{3}$ $= 192$	$\frac{24^2}{3}$ $= 192$	$\sum \frac{{C_j}^2}{n_i} = 606$	$C.F = \frac{G^2}{N} = \frac{84^2}{12} = 588$	*
$\sum_{i} X_{ij}^{2}$	142	164	146	172	*	*	$\sum_{=624} X_{ij}^2$

Total sum of squares (T.S.S) = Sum of squares of all the items $(\sum \sum X_{ij}^2)$ - Correction Factor(C.F) =624 - 588 = 36

Sum of squares between columns (SSC) = $\sum \frac{C_i^2}{n_i}$ - Correction Factor (C.F) = 606 - 588 = 18Mean square between columns (MSC) = $\frac{\text{Sum of squares between samples (SSC)}}{D.f \rightarrow c-1} = \frac{18}{4-1} = \frac{18}{3} = 6$

Sum of squares between rows (SSR) = $\sum \frac{R_j^2}{n_j}$ - Correction Factor (C.F) = 596 - 588 = 8

Mean square between rows (MSR) = $\frac{\text{Sum of squares within samples (SSR)}}{D.f \rightarrow r-1} = \frac{8}{3-1} = \frac{8}{2} = 4$

SSE = Residual Sum of squares = T.S.S - (S.S.C + S.S.R) = 36 - (18+8) = 36 - 26 = 10

MSE = Mean square error MSE = $\frac{\text{SSE}}{(r-1)(c-1)} = \frac{10}{(3-1)(4-1)} = \frac{10}{(2)(3)} = \frac{10}{6} = 1.667$

Table-II (ANOVA table):

Source of variation	Sum of squares	Degree of freedom	Mean squares	F-Ratio
Column treatments	SSC = 18	$v_1 = 4 - 1 = 3$	$MSC = \frac{SSC}{c - 1} = 6$	$F_{C} = \frac{MSC}{MSE} = 3.6$
Row treatments	SSR = 8	$v_2 = 3 - 1 = 2$	$MSR = \frac{SSR}{r - 1} = 4$	$F_{R} = \frac{MSR}{MSE} = 2.4$
Error (or) Residual	SSE = 10	(r-1)(c-1) = 6	MSE = $\frac{\text{SSE}}{(r-1)(c-1)}$ = 1.667	*

Conclusion:

(i) For Yields:

Tabulated value of F for (3, 6) at 5% l.o.s is 4.76.

Calculated value of F is $F_C = 3.6$

 $: F_C < F_T$ Null hypothesis H_{01} is accepted.

(ii) For Varieties:

Tabulated value of F for (2, 6) at 5% l.o.s is 5.14.

Calculated value of F is $F_R = 2.4$

 $: F_R < F_T$ Null hypothesis H_{02} is accepted.

2. The yield of four strains of a particular variety of wheat was planted in five randomized blocks in Kgs per plot is given below.

Studing	Blocks								
Strains	1	2	3	4	5				
Α	32	34	34	35	36				
В	33	33	36	37	34				
С	30	35	35	32	35				
D	29	22	30	28	28				

Test for difference between blocks and difference between strains.

Solution:

N -Total number of items in the given data = 20.

c - Number of columns = 5.

r - Number of rows = 4.

Null Hypothesis H₀₁: There is no significant difference between Blocks (columns) and H₀₂: There is no significant difference between Strains (rows)

Shifting the origin does not affect the variance of a set of values, so we subtract (say) x = 30 from each value (to make the calculations simple).

Table - I (calculations for ANOVA):

Strains K=4			Blocks			Row total	$\frac{{R_j}^2}{n_j}$	$\sum X_{ij}^2$
N-4	1	2	3	4	5	R_{j}		j
Α	2	4	4	5	6	21	$\frac{21^2}{5} = 88.2$	97
В	3	3	6	7	4	23	$\frac{21^2}{5} = 88.2$ $\frac{23^2}{5} = 105.8$	119
С	0	5	5	2	5	17	$\frac{17^2}{5} = 57.8$	79
D	-1	-8	0	-2	-2	-13	$\frac{(-13)^2}{5}$	73
Column total <i>C_i</i>	4	4	15	12	13	Grand total G = 48	$\sum \frac{R_j^2}{n_j}$ = 285.6	*
$\frac{{C_i}^2}{n_i}$	$\frac{4^2}{4} = 4$	$\frac{4^2}{4} = 4$	$\frac{15^2}{4} = 56.25$	$\frac{12^2}{4}$ $= 36$	$\frac{13^2}{4} = 42.25$	$\sum \frac{{C_j}^2}{n_i} = 142.5$	$C.F = \frac{G^2}{N} = \frac{48^2}{20}$ $= 115.2$	*
$\sum_{i} X_{ij}^{2}$	14	114	77	82	81	*	*	$\sum_{=368} X_{ij}^2$

Total sum of squares (T.S.S) = Sum of squares of all the items $(\sum \sum X_{ij}^2)$ - Correction Factor(C.F) = 368-115.2=252.8

Sum of squares between columns (SSC) = $\sum \frac{C_i^2}{n_i}$ - Correction Factor (C.F) = 142.5 - 115.2 = 27.3Mean square between columns (MSC) = $\frac{\text{Sum of squares between samples (SSC)}}{D.f \rightarrow c-1} = \frac{27.3}{5-1} = \frac{27.3}{4} = 6.825$

Sum of squares between rows (SSR) = $\sum \frac{R_j^2}{n_j}$ - Correction Factor (C.F) = 285.6 - 115.2 = 170.4

Mean square between rows (MSR) = $\frac{\text{Sum of squares within samples (SSR)}}{D.f \rightarrow r-1} = \frac{170.4}{4-1} = \frac{170.4}{3} = 56.8$

SSE = Residual Sum of squares = TSS - (S.S.C + S.S.R) = 252.8 - (27.3+170.4) = 368 - 197.7 = 55.1

MSE = Mean square error MSE = $\frac{SSE}{(r-1)(c-1)} = \frac{55.1}{(4-1)(5-1)} = \frac{55.1}{(3)(4)} = \frac{55.1}{12} = 4.59$

Table-II (ANOVA table):

Source of variation	Sum of squares	Degree of freedom	Mean squares	F-Ratio
Column	SSC = 27.3	$v_1 = 5 - 1 = 4$	$MSC = \frac{SSC}{c - 1} = 6.825$	$F_{C} = \frac{MSC}{MSE} = 1.486$
treatments	000 2710		c-1	MSE = 1.100
Row	SSR = 170.4	$v_2 = 4 - 1 = 3$	$MSR = \frac{SSR}{r - 1} = 56.8$	$F_{R} = \frac{MSR}{MSE} = 12.37$
treatments	3311 - 170.4	$v_2 = 4 - 1 = 3$	$\frac{MSK - \frac{1}{r - 1}}{r - 1}$	$\Gamma_{R} - \frac{\Gamma_{R}}{MSE} - 12.37$
Error (or) Residual	SSE = 55.1	(r-1)(c-1) = 12	MSE = $\frac{\text{SSE}}{(r-1)(c-1)}$ = 4.59	*

Conclusion:

(i) For Blocks:

Tabulated value of F for (4, 12) at 5% l.o.s is 5.91.

Calculated value of F is $F_C = 1.486$

 $: F_C < F_T$ Null hypothesis H_{01} is accepted.

(ii) For Strains:

Tabulated value of F for (3, 12) at 5% l.o.s is 8.74.

Calculated value of F is $F_R = 12.37$

 $: F_R > F_T$ Null hypothesis H_{02} is rejected.

3. The following data represent the number of units of production per day turned out by four randomly chosen operators using three milling machines.

Onovotovo	Machines					
Operators	ΜI	MII	M III			
1	150	151	156			
2	147	159	155			
3	141	146	153			
4	154	152	159			

Perform analysis of variance and test hypothesis

- (a) That the machines are not significantly different.
- (b) That the operators are not significantly different at 5% level.

Solution:

N -Total number of items in the given data = 12.

c - Number of columns = 3.

r - Number of rows = 4.

Null Hypothesis Ho1: There is no significant difference between Machines (columns) and

 H_{02} : There is no significant difference between Operators (rows)

Shifting the origin does not affect the variance of a set of values, so we subtract (say) x = 150 from each value (to make the calculations simple).

Table – I (calculations for ANOVA):

Operators			Row total	$\frac{{R_j}^2}{n_j}$	$\sum X_{ij}^2$	
K=4	ΜI	MII	MIII	R_{j}		j
1	0	1	6	7	$\frac{7^2}{3} = 16.33$	37
2	-3	9	5	11	$\frac{7^2}{3} = 16.33$ $\frac{11^2}{3} = 40.33$	115
3	-9	-4	3	-10	$\frac{(-10)^2}{3} = 33.33$	106
4	4	2	9	15	$\frac{15^2}{3} = 75$	101
Column total C_i	-8	8	23	Grand total G = 23	$\frac{15^2}{3} = 75$ $\sum \frac{R_j^2}{n_j}$ $= 164.99$	*
$\frac{{C_i}^2}{n_i}$	$\frac{(-8)^2}{4}$ $= 16$	$\frac{8^2}{4} = 16$	$\frac{23^2}{4} = 132.25$	$\sum \frac{{C_j}^2}{n_i}$ = 164.25	$C.F = \frac{G^2}{N} = \frac{23^2}{12}$ $= 44.08$	*
$\sum_{i} X_{ij}^{2}$	106	102	151	*	*	$\sum_{=359} X_{ij}^2$

Total sum of squares (T.S.S) = Sum of squares of all the items $(\sum \sum X_{ij}^2)$ - Correction Factor(C.F) = 359 - 44.08 = 314.92

Sum of squares between columns (SSC) = $\sum \frac{C_i^2}{n_i}$ - Correction Factor (C.F) = 164.25 - 44.08

Mean square between columns (MSC) =
$$\frac{\text{Sum of squares between samples (SSC)}}{D.f \rightarrow c-1} = \frac{120.17}{3-1} = \frac{120.17}{2}$$

= 60 .085

Sum of squares between rows (SSR) = $\sum \frac{R_j^2}{n_i}$ - Correction Factor (C.F) = 164.99 - 44.08

$$= 120.91$$

$$= 120.91$$
Mean square between rows (MSR) =
$$\frac{\text{Sum of squares within samples (SSR)}}{D.f \rightarrow r-1} = \frac{120.91}{4-1} = \frac{120.91}{3} = 40.30$$
SSE = Residual Sum of squares = TSS = (SSC + SSR) = 214.92 = (120.17+120.91)

SSE = Residual Sum of squares = TSS - (SSC + SSR) = 314.92 - (120.17+120.91)

$$= 314.92 - 361.25 = 73.84$$

Table-II (ANOVA table):

Source of variation	Sum of squares	Degree of freedom	Mean squares	F-Ratio	
Column	SSC =	$v_1 = 4 - 1 = 3$	$MSC = \frac{SSC}{c - 1} = 60.085$	$F_{C} = \frac{MSC}{MSE} = 4.88$	
treatments	120.17	$v_1 - 4 - 1 - 3$	$MSC = \frac{1}{c-1} = 60.085$	$F_C = \frac{1}{MSE} = 4.88$	
Row	SSR =		$MSR = \frac{SSR}{r - 1} = 40.30$	MSR	
treatments	120.91	$v_2 = 3 - 1 = 2$	$MSR = \frac{1}{r-1} = 40.30$	$F_R = \frac{1}{MSE} = 3.27$	
Error (or) Residual	SSE = 73.84	(r-1)(c-1) = 6	MSE = $\frac{\text{SSE}}{(r-1)(c-1)}$ = 12.31	*	

Conclusion:

(i) For Machines:

Tabulated value of F for (3, 6) at 5% l.o.s is 4.76. Calculated value of F is $F_C = 4.88$

 $: F_C > F_T$ Null hypothesis H_{01} is rejected.

(ii) For Operators:

Tabulated value of F for (2, 6) at 5% l.o.s is 5.14.

Calculated value of F is $F_R = 3.27$

 $\because F_R < F_T$ Null hypothesis H₀₂ is accepted.

4. Five doctors each test treatments for a certain disease and observe the number of days each take to recover. The results are as follows: (recovery time in days)

Doctor	Treatments								
Doctor	1	2	3	4	5				
Α	10	14	23	19	20				
В	11	15	24	17	21				
С	9	12	20	16	19				
D	8	13	17	17	20				
E	12	15	19	15	22				

Discuss the difference between (a) doctors and (b) treatments

Solution:

N -Total number of items in the given data = 25.

c - Number of columns = 5.

r - Number of rows = 5.

Null Hypothesis H₀₁: There is no significant difference between Treatments (columns) and H₀₂: There is no significant difference between Doctors (rows)

Shifting the origin does not affect the variance of a set of values, so we subtract (say) x = 16 from each value (to make the calculations simple).

Table – I (calculations for ANOVA):

Doctors K=5		7	reatment:	s		Row total	$\frac{{R_j}^2}{n_j}$	$\sum X_{ij}^2$
K-3	1	2	3	4	5	R_{j}	n_{j}	j
Α	-6	-2	7	3	4	6	$\frac{6^2}{5} = 7.2$	114
В	-5	-1	8	1	5	8	$\frac{8^2}{5} = 12.8$	116
С	-7	-4	4	0	3	-4	$\frac{-4^2}{5} = 3.2$	90
D	-8	-3	1	1	4	-5	$\frac{6^2}{5} = 7.2$ $\frac{8^2}{5} = 12.8$ $\frac{-4^2}{5} = 3.2$ $\frac{(-5)^2}{5} = 5$ $\frac{3^2}{5} = 1.8$	91
E	-4	-1	3	-1	6	3	$\frac{3^2}{5} = 1.8$	63
Column total C_i	-30	-11	23	4	22	Grand total G = 8	$\sum \frac{R_j^2}{n_j} = 30$	*
$\frac{{C_i}^2}{n_i}$	$\frac{(-30)^2}{5} = 180$	$\frac{(-11)^2}{5} = 24.2$	$\frac{23^2}{5} = 105.8$	$\frac{4^2}{5}$ $= 3.2$	$\frac{22^2}{5} = 96.8$	$\sum \frac{{C_j}^2}{n_i} = 410$	$C.F = \frac{G^2}{N} = \frac{8^2}{25} = 2.56$	*
$\sum_{i} X_{ij}^{2}$	190	31	139	12	102	*	*	$\sum_{i=474} \sum_{i=474} X_{ij}^2$

Total sum of squares (T.S.S) = Sum of squares of all the items ($\sum \sum X_{ij}^2$) - Correction Factor(C.F) = 474 - 2.56 = 471.44

Sum of squares between columns (SSC) = $\sum \frac{{C_i}^2}{n_i}$ - Correction Factor (C.F) = 410 - 2.56 = 407.44Mean square between columns (MSC) = $\frac{\text{Sum of squares between samples (SSC)}}{D.f \rightarrow c-1} = \frac{407.44}{5-1} = \frac{407.44}{4}$ =101.86

Sum of squares between rows (SSR) = $\sum \frac{R_j^2}{n_j}$ - Correction Factor (C.F) = 30 - 2.56 = 27.44

Mean square between rows (MSR) = $\frac{\text{Sum of squares within samples (SSR)}}{D.f \rightarrow r-1} = \frac{27.44}{5-1} = \frac{170.4}{4} = 6.86$

SSE = Residual Sum of squares = TSS - (SSC + SSR) = 471.44 - (407.44+27.44)

$$=471.44 - 197.7 = 36.56$$

MSE = Mean square error MSE =
$$\frac{\text{SSE}}{(r-1)(c-1)} = \frac{36.56}{(5-1)(5-1)} = \frac{36.56}{(4)(4)} = \frac{36.56}{16} = 2.285$$

Table-II (ANOVA table):

Source of variation	Sum of squares	Degree of freedom	Mean squares	F-Ratio
Column	SSC =	$v_1 = 5 - 1 = 4$	$MSC = \frac{SSC}{c - 1} = 101.86$	$F_C = \frac{MSC}{MSE} = 44.58$
treatments	407.44	$v_1 - 3 - 1 - 4$	$MSC = \frac{1}{c-1} = 101.86$	$F_C = \frac{1}{MSE} = 44.58$
Row	SSR =	1 /	SSR (OC	I IVISK I
treatments	27.44	$v_2 = 5 - 1 = 4$	$MSR = \frac{SSR}{r - 1} = 6.86$	$F_{R} = \frac{1374}{MSE} = 3.00$
Error (or) Residual	SSE = 36.56	(r-1)(c-1) = 16	MSE = $\frac{\text{SSE}}{(r-1)(c-1)}$ = 2.285	*

Conclusion:

(i) For Treatments:

Tabulated value of F for (4, 16) at 5% l.o.s is 3.01.

Calculated value of F is $F_C = 44.58$

 $\because F_C > F_T$ Null hypothesis H_{01} is rejected.

(ii) For Doctors:

Tabulated value of F for (4, 16) at 5% l.o.s is 3.01.

Calculated value of F is $F_R = 3.00$

 $: F_R < F_T$ Null hypothesis H_{02} is accepted.

5. A company appoints 4 salesman A, B, C, D & observes their sales in 3 seasons: summer, winter, monsoon. The figures (in lakhs) are given in the following table.

Season	Salesmen				
	Α	В	С	D	
Summer	45	40	38	37	
Winter	43	41	45	38	
Monsoon	39	39	41	41	

Carry out an analysis of variance.

Solution:

N -Total number of items in the given data = 12.

c - Number of columns = 4.

r - Number of rows = 3.

Null Hypothesis H₀₁: There is no significant difference between Salesmen (columns) and

H₀₂: There is no significant difference between Seasons (rows)

Shifting the origin does not affect the variance of a set of values, so we subtract (say) x = 40 from each value (to make the calculations simple).

Table – I (calculations for ANOVA):

Season		Sales	smen		Row total	$\frac{{R_j}^2}{n_j}$	$\sum X_{ij}^2$
K=3	Α	В	С	D	R_{j}		j
Summer	5	0	-2	-3	0	$\frac{0^2}{4} = 0$	38
Winter	3	1	5	-2	7	$\frac{7^2}{4}$ = 12.25	39
Monsoon	-1	-1	1	1	0	$\frac{0^2}{4} = 0$	4
Column total C_i	7	0	4	-4	Grand total G = 7	$\sum_{j=1}^{\infty} \frac{R_j^2}{n_j}$ = 12.25	*
$\frac{{C_i}^2}{n_i}$	$\frac{7^2}{3}$ = 16.33	$\frac{0^2}{3} = 0$	$\frac{4^2}{3}$ $= 5.33$	$\frac{(-4)^2}{3} = 5.33$	$\sum \frac{{C_j}^2}{n_i}$ = 26.99	$C.F = \frac{G^2}{N} = \frac{7^2}{12} = 4.08$	*
$\sum_{i} X_{ij}^{2}$	35	2	30	14	*	*	$\sum_{i=81}^{81} X_{ij}^2$

Total sum of squares (T.S.S) = Sum of squares of all the items $(\sum \sum X_{ij}^2)$ - Correction Factor(C.F) =81 - 4.08 = 76.92

Sum of squares between columns (SSC) = $\sum \frac{C_i^2}{n_i}$ - Correction Factor (C.F) = 26.99 - 4.08 = 22.91 Mean square between columns (MSC) = $\frac{\text{Sum of squares between samples (SSC)}}{D.f \rightarrow c-1} = \frac{22.91}{4-1} = \frac{22.91}{3} = 7.64$

Sum of squares between rows (SSR) = $\sum \frac{R_j^2}{n_j}$ - Correction Factor (C.F) = 12.25 - 4.08 = 8.17

Mean square between rows (MSR) = $\frac{\text{Sum of squares within samples (SSR)}}{D.f \rightarrow r-1} = \frac{8.17}{3-1} = \frac{8.17}{2} = 4.085$

SSE = Residual Sum of squares = T.S.S - (S.S.C + S.S.R) = 76.92 - (22.91 + 8.17) = 76.92 - 31.08

MSE = Mean square error MSE = $\frac{\text{SSE}}{(r-1)(c-1)} = \frac{45.84}{(3-1)(4-1)} = \frac{45.84}{(2)(3)} = \frac{45.84}{6} = 7.64$

Table-II (ANOVA table):

Source of variation	Sum of squares	Degree of freedom	Mean squares	F-Ratio	
Column	SSC =	$v_1 = 4 - 1 = 3$	$MSC = \frac{SSC}{c - 1} = 7.64$	E _ MSC _ 1	
treatments	22.91	-	$MSC = \frac{1}{c-1} = 7.64$	$F_C = \frac{1}{MSE} = 1$	
Row	SSR =8.17	$v_2 = 3 - 1 = 2$	$MSR = \frac{SSR}{r - 1} = 4.085$	$F_{R} = \frac{MSE}{MSR} = 1.87$	
treatments	33N -0.17	$v_2 - 3 - 1 - 2$	$MSR = \frac{1}{r-1} = 4.085$	$F_{R} = \frac{132}{MSR} = 1.87$	
Error (or) Residual	SSE = 10	(r-1)(c-1)=6	$MSE = \frac{SSE}{(r-1)(c-1)}$ $= 7.64$	*	

Conclusion:

(i) For Salesmen:

Tabulated value of F for (3, 6) at 5% l.o.s is 4.76. Calculated value of F is $F_C = 1$

 $: F_C < F_T$ Null hypothesis H_{01} is accepted.

(ii) For Seasons:

Tabulated value of F for (2, 6) at 5% l.o.s is 5.14.

Calculated value of F is $F_R = 1.87$

 $: F_R < F_T$ Null hypothesis H_{02} is accepted.

HOME WORK:

1. Four varieties A, B, C, D of a fertilizer are tested in a RBD with four replications. The plot yields in pounds are as follows.

A(12)	D(20)	C(16)	B(10)
D(18)	A(14)	B(11)	C(14)
B(12)	C(15)	D(19)	A(13)
C(16)	B(11)	A(15)	D(20)

Analyze the experimental yield. (A.U APR'06) (ANS: $F_C = 1.74$, $F_{T0.05,(9.3)} = 8.82$

$$F_R = 41.51, F_{T0.05,(3,9)} = 3.86$$
)

2. Four varieties A, B, C, D of a fertilizer are tested in a RBD with four replications. The plot yields in pounds are as follows.

B(90)	E(80)	C(134)	A(112)	D(92)
E(85)	D(84)	B(70)	C(141)	A(82)
C(110)	A(90)	D(87)	B(84)	E(69)
A(81)	C(125)	E(85)	D(76)	B(72)
D(82)	B(60)	A(94)	E(85)	C(88)

Carry out an analysis of variance, what inference can you draw from the data given.

(ANS:
$$F_C = 1.742$$
, $F_{T0.05,(4,16)} = 3.01$

(A.U JUN'06)

$$F_R = 10.542, F_{T0.05,(4,16)} = 3.01$$
)

3. The following data represent the number of units of production per day turned out by 5 different workers using 4 different types of machines.

Workers	Machine type				
	Α	В	С	D	
1	44	38	47	36	
2	46	40	52	43	
3	34	36	44	32	
4	43	38	46	33	
5	38	42	49	39	

- (a) Test whether the mean production is the same for the different machine types.
- (b) Test whether the 5 men differ with mean productivity.

(ANS:
$$F_C = 18.38$$
, $F_{T0.05,(3,12)} = 3.49$
 $F_R = 6.574$, $F_{T0.05,(2,12)} = 3.26$)

4. A tea company appoints 4 salesman A, B, C, D & observes their sales in 3 seasons: summer, winter, monsoon. The figures (in lakhs) are given in the following table.

			•	, 0	
Season		Season's			
	Α	В	С	D	Total
Summer	36	36	21	35	128
Winter	28	29	31	32	120
Monsoon	26	28	29	29	112
Salesmen's Total	90	93	81	96	360

- (i) Do the salesmen significantly differ in performance?
- (ii) Is there significant difference between seasons?

(ANS:
$$F_C = 1.619$$
, $F_{T0.05,(6,3)} = 8.94$
 $F_R = 1.417$, $F_{T0.05,(6,2)} = 19.35$)

5. To study the performance of three detergents and three different water temperature, the following "whiteness" readings were obtained:

Water temperature	Detergent A	Detergent B	Detergent C
Cold water	57	55	67
Warm water	49	52	68
Hot water	54	46	58

Perform a two way analysis of variance, using 5% l.o.s.

(ANS:
$$F_C = 9.86$$
, $F_{T0.05,(2,4)} = 6.94$
 $F_R = 2.38$, $F_{T0.05,(2,4)} = 6.94$)

Latin square design:

A Latin square is a square arrangement of m-rows and m-columns such that each symbol appears once in each row and column. For example,

E	Α	С	В	D
В	С	E	D	Α
Α	В	D	E	С
D	E	Α	С	В
С	D	В	Α	E

Α	В	С	D	E
В	E	Α	С	D
С	D	В	E	Α
D	С	E	Α	В
Е	Α	D	В	С

Suppose there are three factors i.e., two types of feed each of five different strengths to be tried on 25 animals of five different litters (young's of some animals) five for each litter. We name the litters as A, B, C, D, E and set the animals in such a manner as to form a Latin square containing five rows and columns so that animal of each litter appears once in each row and each column. Each of the five rows is related with one of the strengths of the first feed say F_1 and each column with one of the five strengths of second feed say F_2 . Thus a possible arrangement can be

	Second feed F ₂					
	*	1	2	3	4	5
First	1	Α	В	С	D	Е
feed	2	В	Е	Α	С	D
F ₁	3	С	D	В	E	Α
	4	D	С	E	Α	В
	5	E	Α	D	В	С

The observation x_{ij} in the ith row and jth column may be the gain in weight of the animal in the position. The Latin square arrangement design would eliminate the effect of the litters and one feed to observe the effect of other feed.

The above arrangement is called Latin square arrangement.

NOTE:

- 1. If there are n rows and n columns then the order of the Latin square is n.
- 2. If the first row and first column has alphabets in alphabetical order, then it is called standard square.
- 3. Latin square design is very useful in controlling two sources of variation and at the same time reduces the number of treatment combinations.
- 4. The assumption made in Latin square design is that interactions between treatments and row and column groupings are non-existent.

Advantages:

- 1. Latin square arrangement design controls more of the variation than the CRBD with a two way stratification.
- 2. The analysis is simple.
- 3. Even with missing data the analysis remains relatively simple.

Randomized block design (RBD) & Latin square design (LSD) comparison:

RBD	LSD			
1. The RBD is superior to LSD in many	1. The LSD can be applied only in special			
ways.	occasions.			
2. RBD can be applied for square or	2. LSD can be applied only for square			
rectangular field.	field.			

3.	RBD is available for wide range of	3. LSD is suitable when the number of
	treatments (2 to 24)	treatments is 5 to 10.
4.	RBD controls the effect of only one	4. LSD controls the effect of two
	extraneous variable.	extraneous variables.
5.	In RBD, there is no restrictions on the	5. In LSD, The number of replications of
	number of replications and number of	each treatment is equal to the number
	treatments.	of treatments.
6.	The ANOVA is more flexible in RBD.	6. The ANOVA is not more flexible in LSD.
7.	In RBD there are no restrictions for	7. In LSD, for a comparison of a smaller
	comparison of replications &	number of treatments, the number of
	treatments.	replications is inadequate while for a
		large number of treatments, the
		number has to be unduly increased.

The ANOVA procedure for this design is the nearly same as discussed in Two way classification.

ANOVA – Table:

Source of variation	Sum of squares	Degree of freedom	Mean squares	F-Ratio
Columns	SSC	n-1	$MSC = \frac{SSC}{n-1}$	$F_{C} = \frac{MSC}{MSE}$
Rows	SSR	n-1	$MSR = \frac{SSR}{n-1}$	$F_{R} = \frac{MSR}{MSE}$
Treatments	SST	n-1	$MST = \frac{SST}{n-1}$	$F_{T} = \frac{MST}{MSE}$
Error (or) Residual	SSE	(n-1)(n-2)	$MSE = \frac{SSE}{(n-1)(n-2)}$	*

Where,

SSC = Sum of squares between columns

SSR = Sum of squares between rows

SST = Sum of squares between rows

MSC = Mean square between treatments

MSR = Mean square between rows

MST = Mean square between treatments

SSE = Residual Sum of squares = T.S.S - (S.S.C + S.S.R+S.S.T)

MSE = Mean square error MSE = $\frac{\text{SSE}}{(n-1)(n-2)}$

Problems:

1. Analyze the following results of a Latin square experiments:

	1	2	3	4
1	A(12)	D(20)	C(16)	B(10)
2	D(18)	A(14)	B(11)	C(14)
3	B(12)	C(15)	D(19)	A(13)
4	C(16)	B(11)	A(15)	D(20)

The letter A, B, C, D denotes the treatments and the figures in brackets denote the observations

Solution:

N -Total number of items in the given data = 16.

c - Number of columns = 4.

r - Number of rows = 4.

Null Hypothesis H_{01}: There is no significant difference between **columns.**

 H_{02} : There is no significant difference between rows and

H₀₃: There is no significant difference between treatments.

Shifting the origin does not affect the variance of a set of values, so we subtract (say) x = 15from each value (to make the calculations simple).

Table – I (calculations for ANOVA):

Rows		Colu	ımns		Row total	R_j^2	$\sum_{i} X_{ij}^{2}$
K=4	C ₁	C ₂	C ₃	C ₄	R_{j}	\boldsymbol{n}	j
R ₁	A(-3)	D(5)	C(1)	B(-5)	-2	$\frac{(-2)^2}{4} = 1$	60
R ₂	D(3)	A(-1)	B(-4)	C(-1)	-3	$\frac{(-2)^2}{4} = 1$ $\frac{(-3)^2}{4}$ $= 2.25$ $\frac{(-1)^2}{4}$	27
R ₃	B(-3)	C(0)	D(4)	A(-2)	-1	$\frac{(-1)^2}{4} = 0.25$	29
R ₄	C(1)	B(-4)	A(0)	D(5)	2	$\frac{2^2}{4} = 1$	42
Column total <i>C_i</i>	-2	0	1	-3	Grand total G = -4	$\sum_{i=1}^{\infty} \frac{R_j^2}{n}$	*
$\frac{{C_i}^2}{n}$	$\frac{(-2)^2}{4} = 1$	$\frac{0^2}{4} = 0$	$\frac{1^2}{4} = 0.25$	$\frac{(-3)^2}{4} = 2.25$	$\sum \frac{{C_j}^2}{n} = 3.5$		*
$\sum_{i} X_{ij}^{2}$	28	42	33	55	*	*	$\sum_{i=158} X_{ij}^2$

Table - II (To find SST):

Alababata	x_{ij} (N	/lain entries o	order)			
Alphabets (in order)	1	2	3	4	Row total T_i	$\frac{T_i^2}{n=4}$
Α	-3	-1	0	-2	-6	9
В	-3	-4	-4	-5	16	64
С	1	0	1	-1	1	0.25
D	3	5	4	5	17	72.25
						$\sum \frac{{T_i}^2}{4} = 145.5$

Total sum of squares (T.S.S) = Sum of squares of all the items $(\sum \sum {X_{ij}}^2)$ - Correction Factor(C.F) =158 - 1 = 157

Mean square between columns (MSC) =
$$\frac{\text{Sum of squares between samples (SSC)}}{D.f \rightarrow n-1} = \frac{2.5}{4-1} = \frac{2.5}{3} = 0.833$$

Mean square between rows (MSR) =
$$\frac{\text{Sum of squares within samples (SSR)}}{D.f \rightarrow n-1} = \frac{3.5}{4-1} = \frac{3.5}{3} = 1.167$$

Sum of squares between columns (SSC) =
$$\sum \frac{C_i^2}{n}$$
 - Correction Factor (C.F) = 3.5 - 1 = 2.5
Mean square between columns (MSC) = $\frac{\text{Sum of squares between samples (SSC)}}{D.f \rightarrow n-1} = \frac{2.5}{4-1} = \frac{2.5}{3} = 0.833$
Sum of squares between rows (SSR) = $\sum \frac{R_j^2}{n}$ - Correction Factor (C.F) = 4.5 - 1 = 3.5
Mean square between rows (MSR) = $\frac{\text{Sum of squares within samples (SSR)}}{D.f \rightarrow n-1} = \frac{3.5}{4-1} = \frac{3.5}{3} = 1.167$
Sum of squares between columns (SST) = $\sum \frac{T_i^2}{n}$ - Correction Factor (C.F) = 145.5 - 1 = 144.5
Mean square between columns (MST) = $\frac{\text{Sum of squares between samples (SST)}}{D.f \rightarrow n-1} = \frac{144.5}{4-1} = \frac{144.5}{3} = 48.167$

SSE = Residual Sum of squares = T.S.S - (SSC + SSR+SST) = 157 - (2.5+3.5+144.5)

$$= 157 - 150.5 = 6.5.$$

MSE = Mean square error MSE =
$$\frac{\text{SSE}}{(n-1)(n-2)} = \frac{6.5}{(4-1)(4-2)} = \frac{6.5}{(3)(2)} = \frac{6.5}{6} = 1.08$$

Table-III (ANOVA table):

Source of variation	Sum of squares	Degree of freedom	Mean squares	F-Ratio
Columns	SSC = 2.5	n - 1 = 3	$MSC = \frac{SSC}{n-1} = 0.87$	$F_{C} = \frac{MSE}{MSC} = 1.24$
Rows	SSR = 3.5	n-1=3	$MSR = \frac{SSR}{n-1} = 1.167$	$F_{R} = \frac{MSR}{MSE} = 1.081$
Treatments	SST = 144.5	n-1=3	$MST = \frac{SST}{n-1} = 48.17$	$F_{T} = \frac{MST}{MSE} = 44.60$
Error (or) Residual	SSE = 6.5	(n-1)(n-2) $= 6$	$MSE = \frac{SSE}{(n-1)(n-2)} = 1.08$	*

Conclusion:

(i) For Columns:

Tabulated value of F for (6, 3) at 5% l.o.s is 8.94.

Calculated value of F is $F_C = 1.24$

 $\because F_C < F_{Tab}$ Null hypothesis H_{01} is accepted.

(ii) For Rows:

Tabulated value of F for (3, 6) at 5% l.o.s is 4.76.

Calculated value of F is $F_R = 1.081$

 $: F_R < F_{Tab}$ Null hypothesis H_{02} is accepted.

(iii) For Treatments:

Tabulated value of F for (3, 6) at 5% l.o.s is 4.76.

Calculated value of F is $F_T = 44.60$

 $: F_T > F_{Tab}$ Null hypothesis H_{03} is rejected.

2. An agricultural experiment was conducted on Latin square to investigate the yield per acre of five different varieties of wheat when subjected to treatment of two types of fertilizers A and B each of five different strengths. The results are set out in a Latin square below in which letters corresponds to varieties, columns are treated with different strengths of fertilizers B.

A16	B10	C11	D9	E9
E10	C9	A14	B12	D11
B15	D8	E8	C10	A18
D12	E6	B13	A13	C12
C13	A11	D10	E7	B14

Discuss the yield variations w. r. t each of the factors.

Solution:

N -Total number of items in the given data = 20.

c - Number of columns = 5.

r - Number of rows = 5.

Null Hypothesis H₀₁: There is no significant difference between columns.

H₀₂: There is no significant difference between rows and

H₀₃: There is no significant difference between treatments.

Shifting the origin does not affect the variance of a set of values, so we subtract (say) x = 11 from each value (to make the calculations simple).

Table – I (calculations for ANOVA):

Rows		(Columns			Row total	$\frac{{R_j}^2}{n}$	$\sum_{j} X_{ij}^{2}$
K=4	C ₁	C ₂	C ₃	C ₄	C ₅	R_{j}	n	j
R ₁	A(5)	B(-1)	C(0)	D(-2)	E(-2)	0	$\frac{(0)^2}{5}$ $= 0$ $\frac{(1)^2}{5}$	34
R ₂	E(-1)	C(-2)	A(3)	B(1)	D(0)	1	$\frac{(1)^2}{5}$ $= 0.20$	15
R ₃	B(4)	D(-3)	E(-3)	C(-1)	A(7)	4		84
R ₄	D(1)	E(-5)	B(2)	A(2)	C(1)	1	$\frac{1^2}{5} = 0.20$	35
R ₅	C(2)	A(0)	D(-1)	E(-4)	B(3)	0	$\frac{0^2}{5} = 0$	30
Column total C_i	11	-11	1	-4	9	Grand total G = 6	$\sum \frac{R_j^2}{n} = 3.6$	*
$\frac{{C_i}^2}{n}$	$\frac{(11)^2}{5} = 24.2$	$\frac{(-11)^2}{5} = 24.2$	$\frac{1^2}{5}$ = 0.20	$\frac{(-4)^2}{5} = 3.2$	$\frac{(9)^2}{5} = 16.2$	$\sum_{j=1}^{\infty} \frac{C_j^2}{n}$	C.F = $\frac{G^2}{N} = \frac{(6)^2}{25} = 1.44$	*
$\sum_{i} X_{ij}^{2}$	47	39	23	26	63	*	*	$\sum_{i=198}^{198} X_{ij}^2$

Table – II (To find SST):

Alphabets	x_{ij} (Main entries of table – I in order)						
(in order)	1	2	3	4	5	Row total T_i	$\frac{{T_i}^2}{n=5}$
Α	5	0	3	2	7	17	57.8
В	4	-1	2	1	3	9	16.2
С	2	-2	0	-1	1	0	0
D	1	-3	-1	-2	0	-5	5
E	-1	-5	-3	-4	-2	-15	45
							$\sum \frac{T_i^2}{5} = 124$

Total sum of squares (T.S.S) = Sum of squares of all the items $(\sum \sum {X_{ij}}^2)$ - Correction Factor(C.F) = 198-1.44=196.56

Sum of squares between columns (SSC) = $\sum \frac{C_i^2}{n}$ - Correction Factor (C.F) = 68 - 1.44 = 66.56Mean square between columns (MSC) = $\frac{\text{Sum of squares between samples (SSC)}}{D.f \rightarrow n-1} = \frac{66.56}{5-1} = \frac{66.56}{4}$ =16.64

Sum of squares between rows (SSR) = $\sum \frac{R_j^2}{n}$ - Correction Factor (C.F) = 3.6 - 1.44 = 2.16Mean square between rows (MSR) = $\frac{\text{Sum of squares within samples (SSR)}}{D.f \rightarrow n-1} = \frac{2.16}{5-1} = \frac{2.16}{4} = 0.54$ Sum of squares between columns (SST) = $\sum \frac{T_i^2}{n}$ - Correction Factor (C.F) = 124 - 1.44 = 122.56

$$\text{Mean square between columns (MST)} = \frac{\text{Sum of squares between samples (SST)}}{D.f \rightarrow n-1} = \frac{122.56}{5-1} = \frac{122.56}{4} \\ = 30.64$$

$$\text{SSE = Residual Sum of squares = T.S.S - (SSC + SSR+SST) = 196.56 - (2.16+66.56+122.56) } \\ = 196.56 - 191.28 = 5.28.$$

$$\text{MSE = Mean square error } \text{MSE} = \frac{\text{SSE}}{(n-1)(n-2)} = \frac{5.28}{(5-1)(5-2)} = \frac{5.28}{(4)(3)} = \frac{5.28}{12} = 0.44$$

Table-III (ANOVA table):

Source of variation	Sum of squares	Degree of freedom	Mean squares	F-Ratio
Columns	SSC = 66.56	n-1 = 4	$MSC = \frac{SSC}{n-1} = 16.64$	$F_{C} = \frac{MSC}{MSE} = 37.81$
Rows	SSR = 2.16	n-1 = 4	$MSR = \frac{SSR}{n-1} = 0.54$	$F_{R} = \frac{MSR}{MSE} = 1.227$
Treatments	SST = 122.56	n - 1 = 4	$MST = \frac{SST}{n-1} = 30.64$	$F_{T} = \frac{MST}{MSE} = 69.64$
Error (or) Residual	SSE = 5.28	(n-1)(n-2) $= 12$	$MSE = \frac{SSE}{(n-1)(n-2)} = 0.44$	*

Conclusion:

(i) For Columns:

Tabulated value of F for (4, 12) at 5% l.o.s is 3.26. Calculated value of F is $F_{\rm C}=37.81$

 $\because F_C > F_{Tab}$ Null hypothesis H_{01} is rejected.

(ii) For Rows:

Tabulated value of F for (4, 12) at 5% l.o.s is 3.26. Calculated value of F is $F_{\rm R}=1.227$

 $: F_R < F_{Tab}$ Null hypothesis H_{02} is accepted.

(iii) For Treatments:

Tabulated value of F for (4, 12) at 5% l.o.s is 3.26. Calculated value of F is $F_T=69.64$

 $: F_T > F_{Tab}$ Null hypothesis H_{03} is rejected.

HOME WORK:

1. Five varieties of paddy A, B, C, D, E are tried. The plan, the varieties shown in each plot and yields obtained in kg are given in the following table.

В	E	С	Α	D
95	85	139	117	97
E	D	В	С	Α
90	89	75	146	87
С	Α	D	В	E
116	95	92	89	74
Α	С	E	D	В
85	130	90	81	77
D	В	Α	E	С
87	65	99	89	93

Test whether there is a significant difference between rows and columns at 5% l.o.s. (ANS: F_{Tab} for (4, 12) at 5% l.o.s is 3.26 ($F_{C}=1.374, F_{R}=1.528, F_{T}=7.276$)

2. Five varieties of wheat A, B, C, D and E were studied. The plan, the varieties shown in each plot and yields obtained in kg are given in the following table.

Carry out an ANOVA. What inference can you draw from the given data.

A90	E80	C134	A112	D92
E85	D84	E70	C141	A82
C110	A90	D87	B84	E69
A81	C125	E85	D76	B72
D82	B60	A94	E85	C88

(ANS: F_{Tab} for (4, 12) at 5% l.o.s is 3.26 ($F_C = 2.46, F_R = 2.64, F_T = 14.90$)

22-Factorial Design:

In the 2^2 -Factorial Design we will have 2 factors each at two levels (0, 1) (say). Then there are 2×2 i.e., 4 treatment combinations in all. This 2^2 -Factorial Design can be performed in the form of **CRD**, **RBD**, **LSD**. By Yate's notation "**K**" and "**P**" denote the 2 factors under study and 'k' and 'p' denote one of the 2 levels of each corresponding factors and this is called second level. The first level of "**K**" and "**P**" is generally expressed by the absence of the corresponding letter in the treatment combinations.

The four treatment combinations are,

 $k_0 p_0(or) 1$ – Factors "K" and "P" both at first level.

 $k_0p_0(or)$ 1 – "K" at second level and "P" at first level.

 $k_0p_0(or)1$ – "K" at first level and "P" at second level

 $k_0p_0(or)1$ – Factors "K" and "P" both at second level.

The above 4 treatment combinations can be compared by laying out the experiment in 4×4 Latin square design and ANOVA can be carried out with 4-1 degrees of freedom associated with the treatment effects. Our aim in the factorial experiment is to carry out separate tests for the main effects **K**, **P** and also the interaction **KP**, Splitting the **treatment S.S with D.f** into three orthogonal components, each with 1 D.f and each associated with the main effects **K** and **P** or the interaction **KP**.

NOTE:

1.
$$[K] = [kp] - [p] + [k] - [1]$$

2.
$$[P] = [kp] + [p] - [k] - [1]$$

3.
$$[KP] = [kp] - [p] - [k] + [1]$$

4. sum of square due to main effect
$$K \to S_K = \frac{[K]^2}{4r}$$
; $r - no.$ of rows.

5. sum of square due to main effect
$$P \to S_P = \frac{[P]^2}{4r}$$

6. sum of square due to interaction effect of
$$KP \to S_{KP} = \frac{[KP]^2}{4r}$$

each with D.f = 1.

Where, [1], [K], [P], [KP] denote the total yields of r – units (plots) receiving treatments 1, k, p, kp.

7. M = mean yield of the four treatment combinations then, $M = \frac{1}{4}(a+1)(b+1)$

8. Table-II (ANOVA table):

Source of variation	Degree of freedom	Sum of squares	Mean squares	F-Ratio
k	1	S_K	$MS_K = \frac{S_K}{D.f}$	$F_{C} = \frac{MS_{K}}{MSE}$
p	1	S_P	$MS_P = \frac{S_P}{D.f}$	$F_{R} = \frac{MS_{P}}{MSE}$
kp	1	S_{KP}	$MS_{KP} = \frac{S_{KP}}{D. f}$	$F_{KP} = \frac{MS_{KP}}{MSE}$
Error	N-c-r+1	SSE	$MSE = \frac{SSE}{D.f}$	*

Problems:

1. An experiment was planned to study the effect of sulphate of potash & super phosphate on the yield of potatoes. All the combinations of 2 levels of super phosphate (0 cent (p_0) & 0 cent (p_1) / acre) were studied of potash (0 cent (k_0) and 0 cent (k_1) / acre) were studied in a randomized block design with 4 replications for each. The (1 / 70) yields $(l_b$ per plot = $(\frac{1}{70})$ acre) obtained are given in the following table. Analyze the data & give your conclusions at 1% level

Block	Yields (l₀ per plot)					
ļ	(1)	k	p	kp		
	23	25	22	38		
II	p	(1)	k	kp		
	40	26	36	38		
III	(1)	k	kp	p		
	29	20	30	20		
IV	kp	k	p	(1)		
	34	31	24	28		

Solution:

We re-arrange the given data in a new table as given below for computations of the SS due to treatments and blocks.

Treatment	Total yields - Blocks					
Combination	I	II	III	IV		
(1)	23	26	29	28		
\boldsymbol{k}	25	36	20	31		
p	22	40	20	24		
kp	38	38	30	34		

Solution: N -Total number of items in the given data = 16.

c - Number of columns = 4; r - Number of rows = 4.

Null Hypothesis H_0: The data is homogenous w. r. t blocks and treatments.

Shifting the origin does not affect the variance of a set of values, so we subtract (say) x = 29 from each value (to make the calculations simple).

Table – I (calculations for ANOVA):

Table I (calce		JI AITOVA	/ -				
Treatment Combination		Total yiel	ds - Blocks	i	Row total	$\frac{{R_j}^2}{n}$	$\sum {X_{ij}}^2$
Combination	ı	II	III	IV	R_{j}		j
(1)	-6	-3	0	-1	-10[1]	$\frac{(-10)^2}{4} = 25$	46
k	-4	7	-9	2	-4 [k]	$\frac{4}{(-4)^2} = 4$	150
р	-7	11	-9	-5	-10[p]	$\frac{(-10)^2}{4} = 25$	276
kp	9	9	1	5	24[kp]	$\frac{(-24)^2}{4} = 144$	188
Column total C_i	-8	24	-17	1	Grand total G = 0	$\sum_{i=198}^{\frac{R_{i}^{2}}{n}}$	*
$\frac{{C_i}^2}{n}$	$\frac{(-8)^2}{4}$ $= 16$	$\frac{(24)^2}{4} = 144$	$\frac{(-17)^2}{4} = 72.25$	$\frac{(1)^2}{4} = 0.25$	$\sum \frac{{C_j}^2}{n}$ = 232.5		*
$\sum_{i} X_{ij}^{2}$	182	260	163	55	*	*	$\sum_{=660}^{} X_{ij}^2$

Total sum of squares (T.S.S) = Sum of squares of all the items $(\sum \sum X_{ij}^2)$ - Correction Factor(C.F) =660-0=660Sum of squares between columns (SSC) = $\sum_{i=0}^{\infty} \frac{c_i^2}{n_i}$ - Correction Factor (C.F) = 232.5 - 0 = 232.5

Sum of squares between rows (SSR) = $\sum \frac{R_j^2}{n_i}$ - Correction Factor (C.F) = 198 - 0 = 198

SSE = Residual Sum of squares = TSS - (S.S.C + S.S.R) = 660 - (232.5 + 198) = 660 - 430.5 = 229.5

$$[K] = [kp] - [p] + [k] - [1] = 24 - (-10) + (-4) + 10 = 40$$

$$[P] = [kp] + [p] - [k] - [1] = 24 - 10 - (-4) - (-10) = 28$$

$$[KP] = [kp] - [p] - [k] + [1] = 24 - (-4) - (-10) + (-10) = 28$$

sum of square due to main effect $K \to S_K = \frac{[K]^2}{4r} = \frac{[40]^2}{4 \times 4} = \frac{1600}{16} = 100$; r - no. of rows. sum of square due to main effect $P \to S_P = \frac{[P]^2}{4r} = \frac{[28]^2}{4 \times 4} = \frac{784}{16} = 49$ sum of square due to interaction effect of $KP \to S_{KP} = \frac{[KP]^2}{4r} = \frac{[28]^2}{4 \times 4} = \frac{784}{16} = 49$

each with D.f = 1.

Table-II (ANOVA table):

Source of variation	Degree of freedom	Sum of squares	Mean squares	F-Ratio
k	1	S_K = 100	$MS_K = \frac{S_K}{D.f} = 100$	$F_K = \frac{MS_K}{MSE} = 3.92$
p	1	$S_P = 49$	$MS_P = \frac{S_P}{D.f} = 49$	$F_P = \frac{MS_P}{MSE} = 1.92$
kp	1	$S_{KP} = 49$	$MS_{KP} = \frac{S_{KP}}{D.f} = 49$	$F_{KP} = \frac{MS_{KP}}{MSE}$ $= 1.92$
Error	N - c - r + 1 = 16 - 4 - 4 + 1 = 9	SSE = 229.5	$MSE = \frac{SSE}{D.f}$ $= \frac{229.5}{9} = 25.5$	*

Conclusion:

F_{Tab} for (1, 9) at 1% l.o.s is 10.56.

Since $F_{Calc} < F_{Tab}$ in all three cases H_0 is accepted. i.e., there are no significant effects present in the experiment due to different treatments.

2. Find out the main effects and interaction in the following 22- Factorial experiment and write down the analysis of variance table at 1% l.o.s.

Treatment	Total yields - Blocks					
Combination	I	II	III			
(1)	12	19	10			
k	15	20	16			
p	24	16	17			
kp	24	17	29			

N -Total number of items in the given data = 12.

c - Number of columns = 3.

r - Number of rows = 4.

Null Hypothesis H₀: The data is homogenous w. r. t blocks and treatments (ie., There is no significant difference between blocks and treatments).

Shifting the origin does not affect the variance of a set of values, so we subtract (say) x = 20from each value (to make the calculations simple).

Table – I (calculations for ANOVA):

Treatment Combination	Tota	l yields - Blo	ocks	Row total R_j	$\frac{R_j^2}{n}$	$\sum_{j} X_{ij}^{2}$
Combination	I	II	III		***	
(1)	-8	-1	-10	-19[1]	$\frac{(-19)^2}{3} = 120.33$	165
k	-5	0	-4	-9 [k]	$= 120.33$ $\frac{(-9)^2}{3} = 27$	41
p	4	-4	-3	-3[p]	$\frac{3}{(-3)^2} = 3$	41
kp	4	-3	9	10[kp]	$\frac{(10)^2}{3} = 33.33$	106
Column total C_i	-5	-18	-8	Grand total G = -21	$\sum \frac{R_j^2}{n}$ = 183.66	*
$\frac{{C_i}^2}{n}$	$\frac{(-5)^2}{4} = 6.25$	$\frac{(-18)^2}{4} = 81$	$\frac{(-8)^2}{4}$ $= 16$	$\sum_{j=1}^{\infty} \frac{C_j^2}{n}$ = 103.25	$C.F = \frac{G^2}{N} = \frac{(-21)^2}{12} = 36.75$	*
$\sum_{i} X_{ij}^{2}$	121	26	206	*	*	$\sum_{i=353} X_{ij}^2$

Total sum of squares (T.S.S) = Sum of squares of all the items $(\sum \sum X_{ij}^2)$ - Correction Factor(C.F) = 353 - 36.75 = 316.25

Sum of squares between columns (SSC) = $\sum \frac{{c_i}^2}{n_i}$ - Correction Factor (C.F) = 103.25 - 36.75

Sum of squares between rows (SSR) = $\sum \frac{R_j^2}{n_j}$ - Correction Factor (C.F) = 183.66 - 36.75

SSE = Residual Sum of squares = TSS – (S.S.C + S.S.R) = 316.25 - (66.5+146.91)= 316.25 - 213.41 = 102.84

$$[K] = [kp] - [p] + [k] - [1] = 10 - (-3) + (-9) - (-19) = 23$$

$$[P] = [kp] + [p] - [k] - [1] = 10 + (-3) - (-9) - (-19) = 35$$

$$[KP] = [kp] - [p] - [k] + [1] = 10 - (-9) - (-3) + (-19) = 3$$

sum of square due to main effect $K \to S_K = \frac{[K]^2}{4r} = \frac{[23]^2}{4 \times 3} = \frac{529}{12} = 44.08$; r – no. of rows.

sum of square due to main effect $P \rightarrow S_P = \frac{[P]^2}{4r} = \frac{[35]^2}{4 \times 3} = \frac{1225}{12} = 102.08$

sum of square due to interaction effect of $KP \rightarrow S_{KP} = \frac{[KP]^2}{4r} = \frac{[3]^2}{4 \times 3} = \frac{9}{12} = 0.75$

Table-II (ANOVA table):

Source of variation	Degree of freedom	Sum of squares	Mean squares	F-Ratio
k	1	$S_K = 44.08$	$MS_K = \frac{S_K}{D.f} = 44.08$	$F_K = \frac{MS_K}{MSE} = 2.57$
p	1	$S_P = 102.08$	$MS_P = \frac{S_P}{D.f} = 102.08$	$F_P = \frac{MS_P}{MSE} = 5.96$
kp	1	$S_{KP} = 0.75$	$MS_{KP} = \frac{S_{KP}}{D. f} = 0.75$	$F_{KP} = \frac{MS_{KP}}{MSE}$ $= 22.85$

Error	N - c - r + 1 = 12 - 3 - 4 + 1 = 6	SSE = 102.33	$MSE = \frac{SSE}{D.f} = \frac{102.33}{6} = 17.14$	*
-------	------------------------------------	-----------------	--	---

Conclusion:

 F_{Tab} for (1, 6) at 1% l.o.s is 13.75.

- (i) $F_K = 2.57 \, \text{Since} \, F_{Calc} < F_{Tab} \, \text{H}_0$ is accepted. i.e., the mean effect of **K** is not significant.
- (ii) $F_P = 5.96 \mbox{ Since } F_{Calc} < F_{Tab} \mbox{ H}_0 \mbox{ is accepted. i.e., the mean effect of } \textbf{P} \mbox{ is not significant.}$
- (iii) $F_{KP}=22.85$ Since $F_{Calc} > F_{Tab}$ H₀ is rejected. i.e., the mean effect of interaction **KP** is significant at 1% l.o.s.