

Andreas Karrenbauer

Summer 2024

Assignments for Optimization

Assignment Sheet 1 Due: Wednesday, 24 April 2024

The following students have contributed to the solution of this sheet:

Student 1: Xxxxxxxxxx Yyyyyyyyyy x@y.z

Student 2: Aaaaaaaaaa Bbbbbb a@b.c

The cut-off time for submitting this homework 13:00 CEST (using Overleaf).

Exercise	1	2	3	4	\sum
Points					
(self-assessment)					
Check					
(at random)					

Definition 1 (Convex set) Let S be a set of points in an Euclidean space. S is convex if for any two points $x, y \in S$ and any $t \in (0,1)$ it holds that $tx + (1-t)y \in S$.

Definition 2 (Convex hull) Let $S := \{x_1, \ldots, x_n\}$ be a set of points in an Euclidean space. We define $conv(S) := \{\sum_{i=1}^n \lambda_i x_i : \sum_{i=1}^n \lambda_i = 1, \lambda_i \geq 0 \ \forall i \in [n]\}$ as the convex hull of S.

Exercise 1 (10 points) Prove the following statements:

- a) A polyhedron is convex. (2 points)
- b) Let $x_1, \ldots, x_n \in \mathbb{R}^n$. Show that $conv(\{x_1, \ldots, x_n\})$ is convex. (2 points)
- c) The intersection of a finite number of convex sets is convex. (3 points)
- d) Let $P := \{x \in \mathbb{R}^n : Ax \leq b\}$ be a polyhedron and $(\pi, \pi_0) \in \mathbb{Z}^n \times \mathbb{Z}$. We define the polyhedra

$$P_L := P \cap \{x \in \mathbb{R}^n : \pi^T x \le \pi_0\}, P_R := P \cap \{x \in \mathbb{R}^n : \pi^T x \ge \pi_0 + 1\}$$

Show that $P \cap \mathbb{Z}^n = (P_L \cup P_R) \cap \mathbb{Z}^n$. (3 points)

Exercise 2 (10 points) Let $A' \in \mathbb{Z}^{m' \times n}$, $b' \in \mathbb{Z}^{m'}$, $P := \{x \in \mathbb{R}^n : A'x \leq b'\}$. The Integer Feasibility problem is to decide if $P \cap \mathbb{Z}^n \neq \emptyset$. Show that Integer Feasibility is NP-hard using the following scheme.

- a) Think of a reduction from any NP-hard problem that you prefer (e.g., 3-SAT, Vertex Cover, Independent Set). (6 points)
- b) Show that this reduction is polynomial. (4 points)

Exercise 3 (10 points) Consider the following problems and model them as ILPs.

- a) Given a set of elements $U := [m] := \{1, \ldots, m\}$, a set $S = \{S_1, \ldots, S_n\}$ of n subsets of U (i.e. $S_i \subseteq U$ for $i \in [n]$), and a positive integer k. Find a subset $\{S_{i_1}, \ldots, S_{i_j}\} \subset S$ with at most k members (that is, $j \leq k$) such that the union of the selected subsets has maximum size (that is, $\bigcup_{k \in [j]} S_{i_k}$ is maximized). (5 points)
- b) Given an undirected graph G = (V, E), find the largest subset $Q \subseteq V$ such that $\{u, v\} \in E$ for all distinct $u, v \in Q$. (5 points)

Exercise 4 (10 points) Consider the following optimization problem in \mathbb{R}^2 .

$$\begin{array}{lll} \text{maximize} & x_1 + x_2 \\ \text{subject to} & -x_1 + 2x_2 & \leq 3 \\ & 3x_1 + 4x_2 & \leq 22 \\ & -x_1 - 3x_2 & \leq -3 \\ & x_1, x_2 & \geq 0 \\ & x_1, x_2 & \text{integer} \end{array}$$

- a) Draw the polyhedron of the integer linear program. (4 points)
- b) Solve the problem with the minimum number of calls to an integer feasibility oracle. (6 points)