* What is the chance that one will see at least five consecutive heads (a "success run of length 5") somewhere in a sequence of 50 tosses of a fair coin? What are the chances of encountering such a run if there are 100 tosses?

- * What is the chance that one will see at least five consecutive heads (a "success run of length 5") somewhere in a sequence of 50 tosses of a fair coin? What are the chances of encountering such a run if there are 100 tosses?
- * Some notation:

- * What is the chance that one will see at least five consecutive heads (a "success run of length 5") somewhere in a sequence of 50 tosses of a fair coin? What are the chances of encountering such a run if there are 100 tosses?
- * Some notation:
 - * n := number of tosses.

- * What is the chance that one will see at least five consecutive heads (a "success run of length 5") somewhere in a sequence of 50 tosses of a fair coin? What are the chances of encountering such a run if there are 100 tosses?
- * Some notation:
 - * n := number of tosses.
 - * r := length of success run.

- * What is the chance that one will see at least five consecutive heads (a "success run of length 5") somewhere in a sequence of 50 tosses of a fair coin? What are the chances of encountering such a run if there are 100 tosses?
- * Some notation:
 - * n := number of tosses.
 - * r := length of success run.
 - * $s_n(r)$:= probability that *at least one* success run of length r occurs on or before the nth trial.

•	What is the chance that one will see at least five consecutive
	heads (a "success run of length 5") somewhere in a sequence of
	50 tosses of a fair coin? What are the chances of encountering
	such a run if there are 100 tosses?

- * Some notation:
 - n := number of tosses.
 - * r := length of success run.
 - * $s_n(r) := probability that at least one success run of length r occurs on or before the nth trial.$

r	s ₅₀ (r)	s ₁₀₀ (r)
2	1.00	1.00
3	0.98	1.00
4	0.83	0.97
5	0.55	0.81
6	0.31	0.55
7	0.17	0.32
8	0.08	0.17
9	0.04	0.09
10	0.02	0.04

* What is the chance that one will see at least five consecutive heads (a "success run of length 5") somewhere in a sequence of 50 tosses of a fair coin? What are the chances of encountering such a run if there are 100 tosses?

Some notation:

- * n := number of tosses.
- * r := length of success run.
- * $s_n(r)$:= probability that at least one success run of length r occurs on or before the nth trial.

r	s ₅₀ (r)	s ₁₀₀ (r)
2	1.00	1.00
3	0.98	1.00
4	0.83	0.97
5	0.55	0.81
6	0.31	0.55
7	0.17	0.32
8	0.08	0.17
9	0.04	0.09
10	0.02	0.04

The chance of observing a success run or a failure run or both of length 5 in 100 tosses of a fair coin exceeds 97%.