

Introduction

Background

At present, Pre-training model plays an key role in many neural language processing tasks. However, Transformer, and its variant model BERT, limit the effective deployment of the model to limited resource setting.

- ◆The compression of large nature pre-training language model has been an essential problem in NLP research.
- ◆ There are some compression methods only study the compression of embedding layers and some methods can not be integrated into the model after compressing.

Research Questions

- ◆ To linearly represent a self-attention by a group of basic vectors
- ◆ To compress multi-head attention in Transformer
- ◆ After compressing, it can be directly integrated into the encoder and decoder framework of Transformer

Our Methods

Basic Ideas

- **□** Low-rank decomposition
- □ Parameters sharing
 - ◆ Using Tucker decomposition formulation is to construct Single-block attention
 - ◆ Using Block-term decomposition + Parameters sharing formulation is to construct multi-head mechanisms(Multi-linear attention)

A Tensorized Transformer For Language Modeling

Tensoried Transformer

■ Single-block Attention by Tucker Decomposition $Atten_{TD}(\mathcal{G}; Q, K, V) = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{m=1}^{M} \mathcal{G}_{i,j,m} Q_i \circ K_j \circ V_m$

■ Multi-linear Attention by Block-term Decomposition $MultiLinear(G; Q, K, V) = SplitConcat\left(\frac{1}{h} \cdot (T_1 + \dots T_h)\right)W^O$ $where T_j = Atten_{TD}(G_j; QW^q, KW^k, VW^v)$

Figure: (a) is the Single-block attention using Tucker decomposition, (b) is the Multi-linear attention based on Block-term tensor decomposition.

Main Theorem

Let e_1, \dots, e_n be basis vectors from the vector S. Assume that Q, K, V can be linearly represented by this set of basis vector. The output of the attention function can be represented by a linear combination of the set of these basis vectors.

$$Attention(Q, K, V) = (e_1, \dots, e_n)M$$

where $M \in \mathbb{R}^{N \times d}$ is a coefficient matrix, and d is a dimension of these matrices.

Conclusion

- Providing a novel self-attention method, namely Multi-linear attention.
- □ Combining two compression ideas, parameters sharing and low-rank decomposition.
- ☐ Achieving higher compression ratio and better experimental results in language modeling

Xindian Ma¹, Peng Zhang^{1*}, Shuai Zhang ¹, Nan Duan ², Yuexian Hou ¹, Dawei Song³, Ming Zhou ²

1 Tianjin University, China 2 Microsoft Research Asia, China 3 Beijing Institute of Technology, China

Related Corollary

Single-block attention can reconstruct the self attention function by the summing over the tensor according to the second index.

$$Attention(Q, K, V)_{i,m} = \sum_{j=1}^{N} Atten_{TD}(G; Q, K, V)_{i,j,m}$$

$$\downarrow^{k} \Rightarrow \qquad \downarrow^{k} \Rightarrow \qquad \downarrow^{k} \downarrow^$$

Experimental Results

Model	PTB			WikiText-103		
	Params	Val PPL	Test PPL	Params	Val PPL	Test PPL
LSTM+augmented loss [15]	24M	75.7	48.7		_	48.7
Variational RHN [41]	23M	67.9	65.4	_	_	45.2
4-layer QRNN [21]	_	_	_	151M	_	33.0
AWD-LSTM-MoS [37]	22M	58.08	55.97		29.0	29.2
Transformer+adaptive input [1]	24M	59.1	57	247M	19.8	20.5
Transformer-XL-Base [7]	24M	56.72	54.52	151M	23.1	24.0
Transformer-XL-Large [7]	_	_	_	257M	_	18.3
Transformer-XL+TT [18]	18 M	57.9*	55.4*	130M	23.61*	25.70*
Sparse Transformer [28]	14M	74.0*	73.1*	174M	38.98*	40.23*
Tensorized Transformer core-1	12M	60.5	57.9	85.3M	22.7	20.9
on Tensorized Transformer core-2	12M	54.25	49.8	85 3M	19 7	180

 Model
 Params
 Test PPL

 RNN-1024+9 Gram [4]
 20B
 51.3

 LSTM-2018-512 [17]
 0.83B
 43.7

 GCNN-14 bottleneck [8]
 31.9

 LSTM-8192-1024+CNN Input [17]
 1.04B
 30.0

 High-Budget MoE [32]
 5B
 28.0

 LSTM+Mos [37]
 113M
 37.10

 Transformer+adaptive input [1]
 0.46B
 23.7

 Transformer-XL Base [7]
 0.46B
 23.5

 Transformer-XL Large [7]
 0.8B
 21.8

 Tensorized Transformer core-1
 0.16B
 20.5

Tensorized Transformer core-2

- Our method is mainly experimented on three language model datasets, PTB, WikiText-103, and One-Billion, respectively. The lower the PPL, the better the model is.
- Our methods achieve a more better results with fewer parameters.

- Main References

- [1] Ashish et al., Attention is all you need. NeurIPS, 2017.
- [2] Zihang et al., Transformer-xl: Attentive language models beyond a fixed-length context, 2019.
- [3] Valentin et al, Tensorized embedding layers for efficient model compression, 2019.