Inferences in Bayesian Networks — Junction Tree Algorithms

Yuqing Tang

Doctoral Program in Computer Science The Graduate Center City University of New York ytang@cs.gc.cuny.edu

October 20th, 2010

Outline

- Introduction
- 2 Junction Algorithm
- Stochastic Approximation
- 4 Summary

The query

$$P(X|\mathbf{E}) = \frac{P(X,\mathbf{E})}{P(\mathbf{E})}$$

$$= \alpha P(X,\mathbf{E})$$

$$P(X,\mathbf{E}) = \Sigma_{\mathbf{Y}}P(X,\mathbf{Y},\mathbf{E})$$

$$\alpha = \frac{1}{P(\mathbf{E})} = \frac{1}{\Sigma_{X}P(X,\mathbf{E})}$$

- X is the query variable
- E is the set of evidence variables
- Y is the set of hidden variables

Outline

- Introduction
- 2 Junction Algorithm
- Stochastic Approximation
- 4 Summary

An Algebra of Potentials

A potential ϕ is a real-valued function over the domain of finite variables:

$$\phi$$
: Domain(Variables (ϕ)) $o \mathcal{R}^1$

Multiplication over two potentials ϕ_1 and ϕ_2 is defined as

$$\phi = \phi_1 \cdot \phi_2$$

such that

- ϕ : Domain(Variables (ϕ)) $\to \mathcal{R}$
- $Variables(\phi) = Variables(\phi_1) \cup Variables(\phi_2)$
- \bullet $\phi(\mathbf{x}) = \phi_1(\mathbf{x}_1) \cdot \phi_2(\mathbf{x}_2)$ where
 - ▶ $\mathbf{x} \in Domain(Variables(\phi))$ is an value assignment to the variables in $Varaibles(\phi)$
 - $\mathbf{x}_1 \in Domain(Variables(\phi_1))$ is a sub-assignment of \mathbf{x}
 - $ightharpoonup \mathbf{x}_2 \in Domain(Variables(\phi_2))$ is a sub-assignment of \mathbf{x}
- Distributed law: If $X \notin Variables(\phi_1)$, then $\Sigma_X \phi_1 \phi_2 = \phi_1 \Sigma_X \phi_2$.

¹The finite set of variables, $Variables(\phi)$, is also called the domain of ϕ in [Jensen and Nielsen, 2007, Chapter 1].

Intermediate Probability Calculations in Potentials

- ullet Probabilities in potential $P(\mathbf{x}):Domain(\mathbf{x})
 ightarrow [0,1]$
- ullet Conditional probabilities in potential $P(\mathbf{x}|\mathbf{y}): \textit{Domain}(\mathbf{x} \cup \mathbf{y})
 ightarrow [0,1]$
- Multiplying probabilities and conditional probabilities into potentials:

$$\phi = \Pi_i P(\mathbf{X}_i) \cdot \Pi_j P(\mathbf{Z}_j | \mathbf{Y}_j)$$

Note:

- \blacktriangleright The variable set of ϕ is the union of the variable sets of all involved probabilities
- ▶ The resulted value $\phi(\mathbf{x})$ (not a necessary probability) for each assignment $\mathbf{x} \in Domain(Variables(\phi))$ is obtained by multiplying the probabilities for \mathbf{x} 's corresponding sub-assignments defined by the probability functions
- Working on potentials afterwards

A Simple Bayesian Network

Let
$$\phi_1 = P(A_1)$$
, $\phi_2 = P(A_2|A_1)$, $\phi_3 = P(A_3|A_1)$, $\phi_4 = P(A_4|A_2)$, $\phi_5 = P(A_5|A_2, A_3)$ and $\phi_6 = P(A_6|A_3)$.

$$P(\mathcal{U}) = \phi_{1}\phi_{2}\phi_{3}\phi_{4}\phi_{5}$$

$$P(A_{4}) = \Sigma_{A_{1},A_{2},A_{3},A_{5},A_{6}}\phi_{1}\phi_{2}\phi_{3}\phi_{4}\phi_{5}$$

$$= \Sigma_{A_{1}}\phi_{1}(A_{1})\Sigma_{A_{2}}\phi_{2}(A_{2},A_{1})\phi_{4}(A_{4},A_{2})\Sigma_{A_{3}}\phi_{3}(A_{3},A_{1})$$

$$\Sigma_{A_{5}}\phi_{5}(A_{5},A_{2},A_{3})\Sigma_{A_{6}}\phi_{6}(A_{6},A_{3})$$

By the distributed law: If $X \notin Variables(\phi_1)$, then $\Sigma_X \phi_1 \phi_2 = \phi_1 \Sigma_X \phi_2$.

Variable Elimination Order

$$P(A_4) = \sum_{A_1} \phi_1(A_1) \sum_{A_2} \phi_2(A_2, A_1) \phi_4(A_4, A_2) \sum_{A_3} \phi_3(A_3, A_1)$$
$$\sum_{A_5} \phi_5(A_5, A_2, A_3) \sum_{A_6} \phi_6(A_6, A_3) + 2 \sum_{A_5} \phi_6(A_5, A_2, A_3) \sum_{A_6} \phi_6(A_6, A_3) + 2 \sum_{A_6} \phi_6(A_6, A_6, A_6) + 2$$

Yuqing Tang (CUNY - GC, BC)

xpert systems: Lecture

October 20th, 2010

Evidences in Potentials

Let $e \in Domain(X)$ be an evidence on variable X. We can define this evidence as a potential in the following form

$$e: Domain(X) \rightarrow \{0,1\}$$

such that

- e(x) = 1 if x = e, and
- $e(x) = 0 \text{ if } x \neq e.$

Example

Let P(Pollution = high) = 0.6, P(Pollution = low) = 0.4), and the evidence e(Pollution) be high. We will have e(high) = 1, and e(low) = 0. The multiplication of the probability potential and the evidence potential becomes

$$P(Pollution = high) \cdot e(Pollution = high) = P(Pollution = high)$$

 $P(Pollution = low) \cdot e(Pollution = low) = 0$

Variable Elimination Order with Evidences

$$P(A_4) = \sum_{A_1} \phi_1(A_1) \sum_{A_2} \phi_2(A_2, A_1) \phi_4(A_4, A_2) \sum_{A_3} \phi_3(A_3, A_1)$$
$$\sum_{A_5} \phi_5(A_5, A_2, A_3) e_5 \sum_{A_6} \phi_6(A_6, A_3) e_6 \sum_{A_6} \phi_6(A_6, A_3) e_6 \sum_{A_6} \phi_6(A_6, A_3) e_6 \sum_{A_6} \phi_6(A_6, A_6) e_6 \sum_{A$$

Inferences as Variable Eliminations in Potentials

Let $\Phi = \{\phi_1, \dots, \phi_n, e_1, \dots, e_k\}$ be the set of potentials correspond to the CPTs in a Bayesian net and the incoming events, then

$$P(X|e_1,\ldots,e_k) = \alpha \Sigma_{\mathbf{Y}} \phi_1 \phi_2 \ldots \phi_n e_1 \ldots e_k$$

- Looking for an elimination ordering on the hidden variables Y_1, Y_2, \ldots, Y_M so that
 - ▶ the total size of the intermediate potentials' domains $\Sigma_i |Domain(Variables(\phi_i))|$ can be as small as possible,
 - namely, the total number of entries in the intermediate tables is as small as possible
- Compute

$$\Sigma_{\mathbf{Y}}\phi_1\phi_2\dots\phi_ne_1\dots e_k = \Sigma_{Y_1}\Pi\Phi(Y_1\setminus Y_2,\dots,Y_M)\Sigma_{Y_2}\Pi\Phi(Y_2\setminus Y_3,\dots,Y_M)\dots\Sigma_{Y_M}\Pi\Phi(Y_M)$$

where

- $\Phi(Y_i) = \{\phi_i | \phi_i \in \Phi \text{ and } Y_i \in Variables(\phi_i)\}$
- $\Phi(Y_i \setminus Y_{i+1}, \dots, Y_M) = \Phi(Y_i) \setminus \bigcup_{j=i+1}^M \Phi(Y_j)$

Domains for the Variable Elimination

Domain Graphs

A domain graph $G(\Phi)$ for a set of potentials $\Phi=\{\phi_1,\ldots,\phi_n\}$ is an undirected graph such that

- Nodes are variables of the potentials
- There is a link between each pair of variables of the same potential $\phi_i \in \Phi$

A BN can be converted into a domain graph by inserting a moral link between every pair of nodes with a common child

Elimination Variables in Domain Graphs

Given a domain graph $G = \langle V, E \rangle$

- To eliminate a variable Y_i , we need to work on all the potentials ϕ_j s with Y_i in its variable set, denoted by $\phi_j \in \Phi(Y_i)$
- After eliminate Y_i , we obtain a new potential $\phi_i' = \sum_{Y_i} \Pi \Phi(Y_i)$ with all Y_i 's neighbors $nb(Y_i)$ in its variable set
- ullet Correspondingly we transform G into G' where
 - we remove Y_i and edges that involve in Y_i , and
 - we connect every pair of variables in $neb(Y_i)$

Perfect Eliminations

- A perfect elimination sequence is a variable order in which no new edges will be added to the domain graph during the elimination process
 - New edges that are added during the elimination process are called fill-ins
 - e.g. $A_5, A_6, A_3, A_1, A_2, A_4$, as well as $A_1, A_5, A_6, A_3, A_2, A_4$, and $A_6, A_1, A_3, A_5, A_2, A_4$ are all perfect elimination sequences

Triangulated Graphs

- A domain graph that has a perfect elimination is called a triangulated graph
- The domain set of an elimination sequence is the set of domains of potentials produced during the elimination in which potentials that are subsets of other potentials are removed
- All perfect elimination sequences produce the same domain set, namely the set of cliques of the domain graph
 - ▶ A set of nodes is complete if all nodes are pairwise linked
 - ► A complete set is a clique if it is not a subset of another complete set (a maximal complete set)

Simplicial nodes

- Nodes with a complete neighbor set are called simplicial nodes
 - ▶ let $fa(X) = \{X\} \cup nb(X)$ be the family of X
 - ightharpoonup X is a simpolicial node iff fa(X) is a clique
- Elimination as domain graph transformation: If G is a triangulated graph, and X is a simplicial node in G, then eliminating X from G (removing all the edges connecting to X as well) results in a new triangulated graph G'.

Triangulation - Example

- Heuristics: Eliminate a node X with minimum number of family states, ie. sz(fa(X))
 - ▶ recall that $fa(X) = \{X\} \cup nb(X)$
 - ightharpoonup sz(V) = |Domain(V)|
 - $sz({V_1,...,V_n}) = \Pi_i sz(V_i)$
- Let A, B, C, H, I, J have 2 states, D have 4 states, E have 5 states, F have 6 states, G have 7 states. Assume we have removed A, C, H, I, J already, then sz(fa(B)) = 40, sz(fa(D)) = 48, sz(fa(E)) = 70, sz(fa(F)) = 168 and sz(fa(G)) = 210.

Triangulation – Example (cont.)

- A, C, H, I, J can be eliminiated without introducing new edges (fill-ins)
- B has the smallest family state size so choose B to eliminate, we add edge (D, E).
- Update size: sz(fa(D)) = 120 and sz(fa(E)) = 140.
- Choose D, we add (E, F)
- Now the graph is triangulated, we can eliminate the nodes without adding new edges: e.g. E, F, G in order

Triangulation Algorithm

Given a graph G

- For each node $X \in G$
 - ▶ If there is simplicial node X in G, eliminate X
- Compute the family size of each node G, select a node X with minimum family size and eliminate X
- ullet If there are no nodes left in G then terminate; otherwise go to step 1

Join Tree

(a) A join tree; (b) not a join tree.

Definition

Let $\mathcal{G} \subseteq 2^G$ be the set of cliques from an undirected graph G, and let the cliques of \mathcal{G} be organized in a tree T. Then T is a join tree if for any pair of nodes $V, W \in T$, all nodes on the path between V and W contain the intersection $V \cap W$.

Transformation of a triangulated graph into a join tree I

- ullet Establish an elimination sequence for the nodes in G and add fill-ins to G if neccessary (e.g. according to a triangulation algorithm)
- $\mathbf{2} \quad i \leftarrow \mathbf{0}$
- **③** For each node $X \in G$, if X is a simplicial node then fa(X) is a clique
 - ▶ Remove nodes $Y_{x,1}, ... Y_{x,K}$ from fa(X) with $nb(Y_{x,k}) \subseteq fa(X)$,

Transformation of a triangulated graph into a join tree II

- ▶ $i \leftarrow i + K$ (i is the number nodes removed so far)
- ▶ Construct a clique $V_i \leftarrow fa(X)$
- ▶ Construct a separator $S_i \leftarrow \{Y_{x,1}, \dots Y_{x,K}\}$
- ▶ Connect V_i and S_i in the join tree T

- \odot For each separator S_i
 - ▶ Select a V_i such that j > i and $S_i \subset V_i$
 - ▶ Connect S_i to V_i in the joint tree T

Return to The Simple Bayesian Network

Let $\phi_1 = P(A_1)$, $\phi_2 = P(A_2|A_1)$, $\phi_3 = P(A_3|A_1)$, $\phi_4 = P(A_4|A_2)$, $\phi_5 = P(A_5|A_2,A_3)$ and $\phi_6 = P(A_6|A_3)$.

Junction tree

Definition

Let Φ be a set of potentials with a triangulated domain graph G. A junction tree for Φ is a join tree for G with the following addition:

- Each potential $\phi \in \Phi$ is attached to a clique containing $Variables(\phi)$
- Each link has the appropriate separator attached
- Each separator contains two mailboxes, one for each direction: $\pi\downarrow$ and $\lambda\uparrow$

Junction tree – full propagation

Now we can apply the poly-tree message-passing algorithm:

$$\downarrow \psi^{1} = \Sigma_{A_{1},A_{2}}\phi_{1}\phi_{2}\phi_{3} //\text{project to } A_{3}$$

$$\uparrow \psi_{1} = \Sigma_{A_{6}}\phi_{6} //\text{project to } A_{3}$$

$$\downarrow \psi^{2} = \Sigma_{A_{1}}\phi_{1}\phi_{2}\phi_{3} //\text{project to } A_{2}, A_{3}$$

$$\uparrow \psi_{2} = \Sigma_{A_{5}}\phi_{5} //\text{project to } A_{2}, A_{3}$$

$$\downarrow \psi^{4} = \Sigma_{A_{1},A_{3}}\phi_{1}\phi_{2}\phi_{3} //\text{project to } A_{2}$$

$$\uparrow \psi_{4} = \Sigma_{A_{4}}\phi_{4} //\text{project to } A_{2}$$

Outline

- Introduction
- 2 Junction Algorithm
- Stochastic Approximation
- 4 Summary

Probabilistic logical sampling

Query
$$P(X|\mathbf{E} = \mathbf{e})$$

- **①** Choose a topological order X_1, \ldots, X_N of the variables
- ② Initialize $Count(X_i) \leftarrow 0$ for each X_i in order
- \odot Loop until a given number M of samples are obtained
 - For i = 1 to N
 - * Choose a value x_i for X_i randomly w.r.t $P(X_i = x_i | Parents(X_i) = \pi)$ where π is a value vector consistent with the values chosen
 - ▶ If $x_1, ..., x_n$ is consistent with **e**, $Count(X_i = x_i) \leftarrow Count(X_i = x_i) + 1$
- **1** Return $P(X = x | E = \mathbf{e}) \approx \frac{Count(X = x)}{\sum_{v \in Domain(X)} Count(X = v)}$

Some notes about probabilistic logical sampling

- A topological order satisfies that for any variables X_i and X_j in the order, if there is a path between X_i and X_j in the BN then i < j
- Choose a value x_k for X_i randomly
 - Generate a random number $\beta \in [0,1]$
 - ▶ If $\sum_{j=0,...k-1} P(X_i = v_j | X_1,...,X_{i-1}) \le \beta < \sum_{j=1,...k} P(X_i = v_j | Parents(X_i) = \pi)$, then $X_i = v_k$ is chosen $(P(X_i = v_0 | Parents(X_i) = \pi))$ is set to 0)

Logical sampling example I

- Choose the order M, S, B, C, H
- P(M = T) = 0.2, a random number greater than 0.2 is generated, then F is chosen

Logical sampling example II

- Next, generate another two random numbers (assume they are less than P(S = T | M = F) and P(B = T | M = F) respectively), so we choose S = T and B = T
- In a similar way, we choose C = F and H = T randomly
- Suppose we want to compute P(M|H=T), the above case will be counted into Count(M=F,H=T) but not count to Count(M=T,H=T).

Likelihood Weighting

In probabilistic logical sampling, the number of samples consistent with the incoming evidences will be very small if their probability is small. We can use likelihood weighting:

Query

$$P(X|\mathbf{E}=\mathbf{e})$$

- **①** Choose a topological order X_1, \ldots, X_N of the variables
- ② Initialize $Count(X_i) \leftarrow 0$ for each X_i in order
- \odot Loop until a given number M of samples are obtained
 - \triangleright $w \leftarrow 1$
 - For *i* = 1 to *N*
 - * If $X_i \notin \mathbf{E}$, choose a value x_i for X_i randomly w.r.t $P(X_i = x_i | Parents(X_i) = \pi)$ where π is a value vector consistent with the values chosen
 - ★ If $X_i \in \mathbf{E}$, $w \leftarrow w \cdot P(X_i = e_i | Parents(X_i) = \pi)$
 - ★ $Count(X_i = x_i) \leftarrow Count(X_i = x_i) + w$
- **1** Return $P(X = x | E = \mathbf{e}) \approx \frac{Count(X = x)}{\sum_{v \in Domain(X)} Count(X = v)}$

Likelihood weighting example I

Assume the query is P(C = T|B = T)

- Choose the order M, S, B, C, H
- P(M = T) = 0.2, a random number greater than 0.2 is generated, then F is chosen

Likelihood weighting example II

- Next, we choose a value for S randomly according to P(S = T | M = F) = 0.2; suppose S = T is chosen
- Since P(B = T | M = T) = 0.05, we set the likelihood weight $w \leftarrow 0.05$
- Then, assume we choose C = T and H = T randomly
- In this case, Count(C = T) is increased by 0.05

The idea behind likelihood weighting

$$P(X = x, \mathbf{E} = \mathbf{e}) =$$

 $\Sigma_{Y \notin \{X\} \cup \mathbf{E}} \Pi_{X \notin \mathbf{E}} P(X|Parents(X) = \pi) \Pi_{X \in \mathbf{E}} P(X|Parents(X) = \pi)$

- The random sample step corresponds to $\Pi_{X \notin E} P(X|Parents(X) = \pi)$,
- The weighting step corresponds to $\Pi_{X \in \mathbf{E}} P(X|Parents(X) = \pi)$
- The counting step corresponds to the marginalization

Outline

- Introduction
- 2 Junction Algorithm
- Stochastic Approximation
- 4 Summary

Summary

 Probabilistic inference: compute the probability distribution for query variables, given evidence variables

$P(X|\mathbf{E})$

- BN Inference is very flexible: can enter evidence about any node and update beliefs in any other nodes.
- The speed of inference in practice depends on the structure of the network: how many loops; numbers of parents; location of evidence and query nodes.
- Inference methods
 - Exact inference by enumeration
 - Polytree message passing
 - Junction-tree algorithms for general BNs
 - Approximation inference with stochastic simulation

Acknowledgments

Lecture 6 is composed the instructor's own understanding of the subject, and materials from [Korb and Nicholson, 2003, Chapter 3] and [Jensen and Nielsen, 2007, Chapter 4] with the instructor's own interpretations. The instructor takes full responsibility of any mistakes in the slides.

References I

Finn V. Jensen and Thomas D. Nielsen. Bayesian Networks and Decision Graphs. Springer Publishing Company, Incorporated, 2007.

K. Korb and A. E. Nicholson. Bayesian Artificial Intelligence. Chapman & Hall /CRC, 2003.