

42: Fourth Row, Second Column

Example

The following program utilizes the "double" functions (explained on pages 52-55) to multiply large numbers of any base and obtain an exact decimal answer up to 39 digits long (that is, up to and not including $10^{19} \times 2^{64}$). The double-sized result is placed into registers X (the most significant digits) and Y (the 19 least significant digits).

Since the "double" functions operate internally in binary, it is necessary to perform the extra manipulations below (dividing by 10^{19} , the largest exponent of 10 that can be held in one register) to obtain a meaningful decimal answer.

Keystrokes	Display	
f CLEAR PRGM		Sets program memory to line 000 but does <i>not</i> clear it. (This function
		only clears in Program mode.)
g P/R	000-	Program mode (PRGM annunciator displayed).
g LBL 1	001-43,22, 1	

Keystrokes	Disp	olay	
f SET COMPL UNSGN	002-	42 3	Allows a larger possible answer since there is no sign bit.
g DBL×	003-	43 20	Double-multiplies the contents of the X- and Y-registers.
STO 1	004-	44 1	Stores the most significant digits of the result into R_1 .
$x \nmid y$	005-	34	
STO 2	006-	44 2	Stores the least significant digits of the result into R_2 .
x & y	007-	34	
RCL 0	-800	45 0	Recalls (for the divisor) the largest possible power of 10.
g DBLR	009-	43 9	
RCL 2	010-	45 2	Ninteen least significant digits of product.
RCL 1	011-	45 1	Most significant digits.
RCL 0	012-	45 0	Divisor.
g DBL÷	013-	43 10	
DEC	014-	24	Ensures that the result is expressed in base 10.
g RTN	015-	43 21	

To run the program, set the word size to 64 and store 10^{19} (the largest possible power of 10 in Unsigned mode) into $R_0.$ Then enter the numbers 12345678987654 and 987654321234567 into the X- and Y-registers.

Keystrokes	Display	
g P/R		Returns to Run mode (no PRGM annunciator). Display shows last result.
O f WSIZE DEC		Sets word size 64, the largest possible word size.
f SET COMPL UNSG	N	
10000000 00000000	b. 00000000 C	
0000 STO 0	b. 00000000	Stores 10^{19} in R_0 .
12345678987654		
[ENTER]	78987654 .d	Enters the two numbers to be multiplied.
987654321234567	21234567 .d	
GSB 1	19326320 .d	Executes program
f WINDOW 1	12 d. j	labeled "1"; resulting product is in X- and Y-registers. Most significant word is 1,219,326,320.
x \ y	31035818 .d	Least significant word
f WINDOW 1	12676360 .d.	(19 digits) 0,731,267,
f WINDOW 2	≠ 73 d.	636,031,035,818. Exact answer is 12,193,263,
	Leading zero	200,731,267,636,031,
	suppressed.	$035,818_{10}$.

To repeat the program with different values for the multiplicands, just place those numbers in the X- and Y-registers and press GSB 1. (Flag 4 is set during execution of this program because the DBL+ operation leaves a remainder not equal to zero. However, this is of no significance because the program calculates the remainder in line 009.)

Further Information

Program Labels

Labels in a program (or subroutine) are markers telling the calculator where to begin execution. There are 16 possible labels