Universidad Técnica Federico Santa María Departamento de Matemática.

Certamen N° 1 MAT-266 Análisis de Regresión

Profesor: Felipe Osorio. 20 de diciembre de 2011

Ayudante: Claudio Henríquez.

1. (25 puntos) Considere el estadístico chi-cuadrado de Pearson, definido por

$$T = \sum_{i=1}^{m} \frac{(nX_i - n\mu_i)^2}{n\mu_i},$$

donde n es un entero positivo, X_1, \ldots, X_m son variables aleatorias, mientras que las constantes no negativas μ_i satisfacen $\mu_1 + \cdots + \mu_m = 1$. Sea $\mathbf{X} = (X_1, \ldots, X_m)^T$, $\boldsymbol{\mu} = (\mu_1, \ldots, \mu_m)^T$ y $\mathbf{\Omega} = \mathbf{D} - \boldsymbol{\mu} \boldsymbol{\mu}^T$, donde $\mathbf{D} = \mathrm{diag}(\mu_1, \ldots, \mu_m)$.

- (a) $\partial \Omega$ es una matriz singular?
- (b) Muestre que si $\sqrt{n}(\boldsymbol{X} \boldsymbol{\mu}) \sim \mathcal{N}_m(\boldsymbol{0}, \boldsymbol{\Omega})$, entonces $T \sim \chi^2_{m-1}$.
- 2. (25 puntos) Considere la transformación $\boldsymbol{Y} = \boldsymbol{W}\boldsymbol{\mu} + \boldsymbol{\epsilon}$ donde $\boldsymbol{W} = \boldsymbol{I}_a \otimes \boldsymbol{1}_n$ y $\boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{0}, \sigma^2 \boldsymbol{I})$. Defina las forma cuadráticas, $q_1 = \boldsymbol{Y}^T \boldsymbol{A}_1 \boldsymbol{Y}$ y $q_2 = \boldsymbol{Y}^T \boldsymbol{A}_2 \boldsymbol{Y}$, con

$$oldsymbol{A}_1 = oldsymbol{I}_a \otimes oldsymbol{C}_n \qquad ext{y} \qquad oldsymbol{A}_2 = oldsymbol{C}_a \otimes rac{1}{n} oldsymbol{J}_n,$$

respectivamente. Aquí $J_k = \mathbf{1}_k \mathbf{1}_k^T$ denota una matriz de unos de orden $k \times k$ y $C_k = I_k - \frac{1}{k} J_k$ es la matriz de centrado de orden k.

- (a) Determine la distribución de q_1 y q_2 .
- (b) Muestre que q_1 y q_2 son mutuamente independientes.

Sugerencia: Recuerde que $(A \otimes B)(C \otimes D) = (AC \otimes BD)$ y $rg(A \otimes B) = rg(A) rg(B)$.

3. (25 puntos) Sea $\overline{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij}$ y $z_{ij} = x_{ij} - \overline{x}_j$, para todo $i = 1, \dots, n; j = 1, \dots, k$ y considere $\mathbf{Z} = (z_{ij}), \, \boldsymbol{\beta}_{(0)} = (\beta_1, \dots, \beta_k)^T$. De este modo, tenemos el modelo centrado dado por:

$$oldsymbol{Y} = \gamma_0 oldsymbol{1} + oldsymbol{Z} oldsymbol{eta}_{(0)} + oldsymbol{\epsilon} = (oldsymbol{1}, oldsymbol{Z}) oldsymbol{eta}_{(0)}^{\gamma_0} + oldsymbol{\epsilon}.$$

Para $E(\epsilon) = \mathbf{0}$ y $Cov(\epsilon) = \sigma^2 \mathbf{I}$, obtenga el estimador mínimos cuadrados de γ_0 y $\boldsymbol{\beta}_{(0)}$. Calcule también la matriz de covarianza de $\hat{\boldsymbol{\theta}} = (\hat{\gamma}_0, \hat{\boldsymbol{\beta}}_{(0)}^T)^T$. ¿Son $\hat{\gamma}_0$ y $\hat{\boldsymbol{\beta}}_{(0)}$ independientes?

4. (25 puntos) Considere el modelo

$$Y_{ij} = \theta_i x_j + \epsilon_{ij}, \qquad i = 1, 2; j = 1, \dots, T,$$

con $\{\epsilon_{ij}\}$ variables aleatorias independientes $\mathcal{N}(0, \sigma^2)$ y $\{x_i\}$ constantes conocidas. Obtenga el estadístico F para probar $H_0: \theta_1 = \theta_2$.