

An end-to-end framework for event detection in social media

Nguyen Thanh Tam, Daniel Gatica-Perez CSM, June 2016

Event Detection

Event Detection: identification of items and observations that do not conform to an expected patterns or other observations.

Different types of events:

Natural disasters

Social activities

Incidents

Event Detection in Social Media

Social Media: a lot of human texts, pictures, videos

Applications of event detection:

- Predict future outcomes
- Understand a known event
- Early warning (e.g. Twitter user is faster than a BBC reporter)

Stock price vs. tweet sentiment

Top 10 topics in US 2012 election

instant reporter

Framework for Social Media

Limitations:

- Human text has different syntactic/semantic elements (sentiment, term, topic, entity)
 - → need text mining techniques
- Events are often hidden or interpreted in different ways (#followers, #burst keywords, anomalies in spatial-temporal dimensions)
 - → need event detection techniques

→ **Goal:** develop an end-to-end framework for event detection in social media

Scope:

- Target user: social media researchers for further analyses ("social good")
- Data: Tweets from Guanajuato, a touristy city in central Mexico, collected as part of the SenseCityVity project at EPFL [1]
- Focuses: Data analysis, machine learning, visualization

Outline

- 1. Preliminary Data Statistics
- 2. Analytical Pipeline
 - 2.1 Data Preparation
 - 2.2 Syntactical Analysis
 - 2.3 Semantic Analysis
 - 2.4 Event Detection
- 3. Potential Analyses

1. Preliminary Data Statistics

Tweet Count (~6K/day) 09/04/2014 -> 05/06/2014

Geographic Distribution

Language Distribution (en = 7.7%, es = 78.52%, total=334836)

2. Analytical Pipeline

2.1. Data Preparation

Tokenization: use regular expression to segment the text into tokens

- Emoticons: eyes [:=;], nose [oO\-]?, mouth [D\)\]\(\]/\\OpP]
- HTML tags: <[^>]+>
- @-mentions: (?:@[\w_]+)
- #hashtags: (?:\#+[\w_]+[\w\'_\-]*[\w_]+)
- #numbers: (?:(?:\d+,?)+(?:\.?\d+)?)
- #words with and ': (?:[a-z][a-z'\-_]+[a-z])
- #other words: (?:[\w_]+)
- #anything else: (?:\S)

Filtering: filter or construct important terms from tokens

- stop words (NLTK English corpus), punctuation, special phrases ('rt', 'via')
- n-grams (NLTK library): keep phrases of 2,3, etc. words
- hashtag_only: keep only hashtag

terms = terms_nolink(terms_stop(terms_only(tokens)))

Data Preparation: Example

Input

@KunderaQuotes you're my favorite writer ♥□

Everything that kills me makes me feel alive http://t.co/ifdqOkCPou

My queen looks incredible, love her more than anything #katyperry #iheartradio @ Reality http://t.co/jrxEiHxMOa

Output

you're my favorite writer

Everything kills makes feel alive

My queen looks incredible love anything

2.2. Syntactical Analysis

Top 20-terms (love, follow, like)

Top-10 hashtags (#WWAT, #Boxing, #Endomondo)

(#birthday, #katyperry)
(#friends, #selfie)
(#mexico, #sanmigueldeallende)

Co-occurrence

2.3. Semantic analysis: topic (Latent Dirichlet Allocation)

Input: tweets (bags of terms) + tf/idf (term frequency)

Output: 'clusters' of **co-occurring** words

Limitations:

- Sensitive to parameter K (#topics) → Hierarchical topic models [4] (non-parametric)
- Sensitive to short text → Twitter-LDA [5,6] (assumption: each tweet has 1 topic)

Topic modeling: user interface

Topic distance: Jensen-Shannon divergence with multidimensional downscale to 2 [10]

Semantic analysis: sentiment

Polarity (semantic orientation): user opinion in the text (positive, neutral, negative)

- Simple unsupervised method: co-occurrences with pre-defined positive/negative words (English lexicon [2])
- Supervised method: Python NLTK, Stanford classifiers

Term	Polarity
birthday	80.34
goodness	53.35
photograph	0
forecast	0
cigarettes	-40.39
bitch	-114.36

Polarity	#Documents
positive	1894
negative	8279
neutral	15617

2.4. Event Detection

Event: different definitions

- Time-based: burst period of #topics
 - Manual observation
 - Automatic techniques [3]: moving average, box-and-whisker

Local Global event event

#Topics per tweet

Interactive UI

- Choose different algorithms
- Click and observe important tweets of that event

Moving Average

Box And Whisker

Event Detection (cont'd)

Event: different definitions

- Time-based: burst period of #topics
- Location-based: areas with high-density of #topics (tentative)
 - Step 1: Gridded topic counts (count unique tweets of given topic in an area using Twitter coordinates)
 - Step 2: Locate high-density areas

Conclusions

Take-home messages:

- An end-to-end and unified framework for event detection in social media (Twitter)
- https://github.com/tamlhp/csm

Limitations:

- Only a prototype
- English only (7.7% of Guanajuato data)

Future Work

- 1. Streaming version for Twitter API (online topic modeling [7], online event detection [8])
- 2. Complex event processing:
 - Aggregate small events into a complex event → more understanding
 - Techniques: formulation, abstraction, matching [9]

Output of our framework

References

- [1] http://www.idiap.ch/project/sensecityvity/
- [2] https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon
- [3] http://videolectures.net/icwsm2011 lee detection/
- [4] http://www.cse.ust.hk/~lzhang/teach/6931a/slides/3.HTM.pdf
- [5] http://users.cecs.anu.edu.au/~ssanner/Papers/sigir13.pdf
- [6] Zhao, Wayne Xin, et al. "Comparing twitter and traditional media using topic models." *European Conference on Information Retrieval*. Springer Berlin Heidelberg, 2011.
- [7] Wang, Yu, Eugene Agichtein, and Michele Benzi. "TM-LDA: efficient online modeling of latent topic transitions in social media." *Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining*. ACM, 2012.
- [8] Abdelhaq, Hamed, Christian Sengstock, and Michael Gertz. "Eventweet: Online localized event detection from twitter." *Proceedings of the VLDB Endowment* 6.12 (2013): 1326-1329.
- [9] Cameron, Mark A., et al. "Emergency situation awareness from twitter for crisis management." *Proceedings of the 21st International Conference on World Wide Web*. ACM, 2012.
- [10] https://cran.r-project.org/web/packages/LDAvis/vignettes/details.pdf

Demos

python -m SimpleHTTPServer 8889

http://localhost:8889/test.en.term freq.html

http://localhost:8889/test.en.count.time_chart.html

http://localhost:8889/test.en.topic.time_chart.html

http://localhost:8889/test.en.term freq.html

http://localhost:8889/test.count.time chart.html

http://localhost:8889/test.en.geo.html

http://localhost:8889/topics.html

THANK YOU

