

Modifying Regional Amplification in the AMAP Climate Emulator

University of Toronto Presenter: Victoria Spada Supervisors: Prof. Paul Kushner, Dr. Knut von Salzen

April 2023

- 01 Background
- 02 Motivation

CONTENTS

- 03 RTP Adjustment
- 04 Results & Conclusions

Climate Modelling and Emulators

- Climate models are mathematical representations of Earth's climate system components (atmosphere, land, ocean, ice) used to project surface temperatures
- Climate forcers with a short atmospheric lifetime that exist in trace amounts produce high uncertainties even in ESMs

Comprehensive Models	Climate Emulators
 non-linear model finer spatial resolution (order of 10-100km) resource-intensive long run-time 	 greatly simplified, linearized energy model usually a hemispheric or global resolution less resource-intensive short run-time

Climate Modelling and CMIP

- Coupled Model Intercomparison Project (**CMIP**): an international effort to improve climate models by comparing model simulations to observations and to each other.
- Specifies a range of projected scenarios for socio-economic "storylines" (SSPs) with specific profiles of emissions of greenhouse gases, other pollutants, and land-use change
 - o 5 umbrella narratives for socio-economic development
 - **SSP5-8.5**: fossil fuel development

ARCTIC COUNCIL

The AMAP Climate Emulator

- **AMAP**: Atmospheric Monitoring and Assessment Programme
- Impulse response climate emulator
- Species: CH₄, OC, BC, SO₄, O₃, CO₂
- The emulator outputs mean surface air temperature for **4 regions**:
 - o Arctic: 90°N-60°N
 - o Northern Hemisphere Midlatitudes: 60°N-28°N
 - o Tropics: 28°N-28°S
 - o Southern Hemisphere: 28°S-90°S

Arctic Warming is Underestimated

$$\Delta_{rel} = \frac{1}{5} \sum_{i=1}^{5} \frac{dT_{AMAP_i} - dT_{CMIP6_i}}{(dT_{AMAP_i} + dT_{CMIP6_i})/2} \cdot 100\%$$

$IIP6_i$.	100%
$(P6_i)/2$	100%

CH ₄
OC
504
■ BC
CO ₂

	Region	$oldsymbol{\Delta}_{ ext{rel}}$	
2030	Arctic $-5.0 \pm 31.5\%$		
	Global	20.5 ± 15.7%	
2050	50 Arctic -22.4 ± 2		
	Global	19.3 ± 16.0%	

CMIP6 AMAP

Regional Temperature-Change Potentials

- Regional Temperature-Change Potential (**RTP**) [K]: equilibrated temperature response to a steady forcing.
 - Obtained from GISS-ER
- The RTP for region m of the 4 regions is: $RTP_m = \sum_{l=1}^{\infty} k_{lm} \delta F_{0l}$

$$ECS = \frac{F_{2x}}{\delta F_0} \sum_{m=1}^{4} \sum_{l=1}^{4} k_{lm} \delta F_{0l} z_m = \lambda F_{2x}$$

- From CMIP6, 2.5 < ECS < 4.0 K
- **Underestimated by emulator!** ECS is scaled from 2.7 to 3.7
- Equilibrium Climate Sensitivity (**ECS**): global surface temperature response from doubling Earth's atmospheric CO2 concentration.

Modifying RTP Coefficients

- To increase Arctic warming, k_{lm} for RTP_{Arctic} were adjusted.
- To preserve the ECS, the other coefficients have an area-weighted decrease.

	RTP _{Arctic}	RTP _{NHML}	RTP _{Tropics}	RTP _{SH}
k _{Arctic}	Increase by δ	Area-weighted decrease	Area-weighted decrease	Area-weighted decrease
k _{NHML}		θ∈(28°N-60°N)	θ∈(28°S-28°S)	θ∈(90°S-28°S)
k _{Tropics}				
k _{SH}				

 $\delta \in \{0, 0.1, 0.25, 0.50\}$

Arctic Amplification with tweaked RTPs

- Focusing on SSP5-8.5: the most warming
- The mean SAT anomaly passes between the median value from CMIP6 between δ =0.25 and 0.50

RMA Fitting to represent Regional Amplification

- Minimize the orthogonal distance from the line in both directions
- SH matchup with CMIP6 results lessen as RTP_{Arctic} increases

Conclusions and Other Work

- The RTP coefficients in the AMAP emulator underestimate Arctic warming, and a scaling between δ =0.25 and 0.5 is recommended
 - Impacts on warming for other regions
 - ECS considerations
- Other aspects of emulator evaluation and testing
 - Temperature-methane emissions feedback loop
 - Atmospheric lifetime of methane

THANK YOU

Do you have any questions?

Creating and AMAP and CMIP6 ensemble

AMAP Ensemble (for each SSP)

- 24 emulator realizations
- $ECS = \{2.59, 3.70, 5.00\}$
- aerosol perturbation values (a high and a low value)
 - aerosol/cloud interactions
 - aerosol/radiation interactions
 - aerosol/snow interactions

CMIP6 Ensemble (for each SSP)

- 27 realizations from 27 ESMs included in CMIP6

Arctic Amplification with tweaked RTPs

- Focusing on SSP5-8.5: the most warming
- The mean SAT anomaly passes between the median value from CMIP6 between δ =0.25 and 0.50

