数字表改装·数据处理与分析

唐延宇 PB22030853 2023 年 10 月 24 日

1 数据记录与处理

1.1 数字表的改装

本实验中,对于万用表改装时使用的电路图如图1所示,参数表如表1所示:

组装表量程	200 mV	2 V	20 V	200 V	2000 V
分压比	1	0.1	0.01	0.001	0.0001
$R_1/\mathrm{k}\Omega$	0	90	99	99.9	99.99
$R_2/\mathrm{k}\Omega$	100	10	1	0.1	0.01

表 1: 多量程数字电压表制作——参数表

根据实验讲义中给出的电阻箱各挡位允许通过的最大电流, 可如下计算其可测最大电压: 实验中固定组装后表内阻 $R_g=100\,\mathrm{k}\Omega$, 每个量程均用到了电阻箱 "×10 000 Ω " 挡位, 故电路最大电流 $I_m=0.007\,\mathrm{A}$, 则据欧姆定律, 有: 最大可测电压 $U_m=I_m\cdot R_g=0.007\times 10\times 10^5\,\mathrm{V}=7\times 10^4\,\mathrm{V}$. 而组装表最大量程为 2000 V, 故各个量程的最大可测电压即为其量程.

图 1: 多量程数字电压表——电路图

2 数据记录与处理

图 2: 系统误差分析——电路图

1.2 系统误差分析

分析电压表系统误差的电路图如图2所示,参数记录表如表2所示.

表 2: 系统误差分析——数据表

$R_{\rm o1} = R_{\rm o2}/\Omega$	$U_{\rm o1}/{ m V}$	$U_{\rm s1}/{ m V}$	$\frac{R_{\rm g}}{R_{\rm o1} R_{\rm o2}}$	$\frac{U_{\rm s1} - U_{\rm o1}}{U_{\rm s1}}$
100	2.198	2.195	2000	-0.00137
500	2.245	2.252	400	0.00311
1K	2.247	2.257	200	0.00443
1.6K	2.242	2.259	125	0.00753
2K	2.238	2.258	100	0.00886
5K	2.208	2.261	40	0.0234
10K	2.156	2.262	20	0.04686
20K	2.059	2.261	10	0.08934
40K	1.887	2.259	5	0.1647
60K	1.742	2.257	$\frac{10}{3}$	0.2282
80K	1.616	2.255	2.5	0.2834
100K	1.385	2.103	2	0.3414
1M	0.367	2.111	0.2	0.8261
2M	0.203	2.033	0.1	0.9001

使用 Origin 软件绘制 $\frac{U_{\rm s1}-U_{\rm o1}}{U_{\rm s1}}-\frac{R_{\rm g}}{R_{\rm o1}||R_{\rm o2}}$ 曲线图, 结果如图3所示. 从图中可以看出, 测量结果与理论分析 $(\frac{U_{\rm s1}-U_{\rm o1}}{U_{\rm s1}}=\frac{1}{1+\frac{R_{\rm g}}{R_{\rm o1}||R_{\rm o2}}})$ 大致符合. 据

图 3:
$$\frac{U_{\rm sl} - U_{\rm ol}}{U_{\rm sl}} - \frac{R_{\rm g}}{R_{\rm ol}||R_{\rm o2}}$$
 曲线

图和数据表分析可知, 若要相对误差小于 1%, 应有 $\frac{R_g}{R_{o1}||R_{o2}} \ge 100$, 这与理论分析得到的结果一致.

由以上的分析可知, $R_g = 100 \, \mathrm{k}\Omega$ 适合于待测电路中电阻相对较小的情形, 也即需要从测量端看过去电路中的总电阻低于 $1 \, \mathrm{k}\Omega$. 实验数据也表明, 当电路中电阻较大, 以至于和改装表内阻处于同一量级时, 相对误差将超过 20%, 这属于比较不可接受的误差.

1.3 电压校准曲线的绘制

测绘电压表校准曲线的电路图如图4所示,参数表如表3所示:

利用 Origin 绘制的电压校准曲线 ($\Delta U - U_o$ 曲线) 如图5所示. 由图可知, 除零电压时改装表有一定读数外, 改装表示数始终相对标准表偏小, 且随所测电压增加, 偏离程度逐渐增大.

2 思考题

1. 在组装表电路中, 万用表与一内阻为 100 kΩ 的电阻进行了并联, 因此带来了改装表内阻远小于万用表内阻. 对于低电压测量, 选择三位半万用表更好, 因为其内阻更大, 相比改装表更加可以视为理想电表.

图 4: 电压表校准曲线绘制——电路图

表 3: 电压表校准曲线绘制——参数记录表

待测电压/V	R_1/Ω	R_2/Ω	U_o/V	U_{s}/V
0	0	200	0.0001	0
0.2	20	180	0.2030	0.2034
0.4	40	160	0.4063	0.4067
0.6	60	120	0.6093	0.6099
0.8	80	120	0.8162	0.8173
1.0	100	100	1.0194	1.0218
1.2	120	80	1.2209	1.2231
1.4	140	60	1.4233	1.4259
1.6	160	40	1.6303	1.6334
1.8	180	20	1.7564	1.7599
2.0	200	0	1.9538	1.9576

图 5: 2V 量程电压表校准曲线

2. 不能. 若要满足要求, 应有:

$$\begin{split} &\frac{R_g}{R_S} \geqslant 100 \\ &\Rightarrow R_g \geqslant 100 \, \mathrm{M}\Omega \end{split} \tag{1}$$

即组装表内阻应至少为 100 MΩ.

3. 有. 在进行系统误差分析时, 可以发现电路中等效总电阻较大时, 标准表读数与之前的数据存在明显差异. 而电路分压情况、电源电动势等参数并未改变, 因此标准表读数理论上不应随等效总电阻值的改变而产生较大改变. 分析可知, 产生此现象的原因是, 当电路中等效总电阻达到 100 kΩ 或更大之后, 其数值可与标准表内阻比拟, 导致标准表不可当作理想电表对待, 而应计入其内阻的影响.