Unveiling

Dichotomies in

North American

Gun Violence

through

Multivariate Insights

Multivariate Statistics Final Project

Contents

Торіс	Page No.
Section 1: Introduction	3
Section 2: Data Description	. 4
Section 3: Modeling	7
Section 4: Modeling Results	3
Section 5 : Results from the Lens of an Analyst	12
Section 6 : Conclusion & Future Scope	14
Section 7: Appendix	16
Section 8: Code	21
Section 9: Citations	37

<u>Section 1 - Introduction</u>

Gun violence is a critical societal issue, necessitating a comprehensive understanding of incidents to inform preventive strategies. This study employs a dataset of gun-related incidents to extract valuable insights. Through advanced statistical techniques and visualizations, this analysis aims to

unravel patterns, characteristics, and relationships hidden behind recorded history and extend previous efforts in curating this dataset. The project aims to answer the following key questions —

"What type of crime occurred in each incident?"

"What are the trends of these types of gun violence?"

"What can we, as a society, do about it?"

1.1. Summary of Project

This project delves into the comprehensive analysis of over 260,000 US gun violence incidents from 2013 to 2018, utilizing Kaggle data aggregated from the Gun Violence Archive. Through meticulous feature engineering, the study extracts crucial insights, including lethality based on weapon type, relationships among victims and suspects, and age profiles. The subsequent application of K-Means Clustering and PCA reveals nine distinct clusters, ranging from smaller-scale urban conflicts to organized crime and extreme outlier 'terrorism' events. Yearly trends expose alarming increases in specific clusters, necessitating targeted interventions. The findings advocate for focus areas and conclude with possible model extensions.

1.2. The Goals

Through meticulous feature engineering and clustering, it aims to identify patterns, trends, and clusters, providing insights to guide targeted interventions. The ultimate objective is to contribute to informed decision-making for mitigating the complex factors associated with gun violence in the United States.

<u>Section 2 - Data Description</u>

The Data Description section encompasses the origin of the dataset from Kaggle, feature engineering processes, and initial explorations.

2.1. Data Source:

The data source was taken from Kaggle, titled "Gun Violence Data Comprehensive record of over 260k US gun violence incidents from 2013-2018" The owner aggregate data from Gun Violence Archive (GVA), which is a not-for-profit corporation formed in 2013 to provide free online public access to accurate information about gun-related violence in the United States. While the dataset was comprehensive, it had many important pieces of information hidden in its original features. In the next subsection we discuss the import features engineered from the original dataset.

2.2. Feature Engineering:

The dataset demanded extensive cleansing, slicing, and dicing. The analysis involves preprocessing steps, including the calculation of counts for various aspects such as stolen guns, the number of subjects, victims, and total individuals involved, as well as categorization based on age groups and genders. Engineered features listed below aim to capture essential nuances within the dataset.

2.2.1. Lethality – Weapon of Choice:

First of all, quantity and quality of weapon lethality were extracted by calculating the number of guns by gun type, i.e number of handguns, rifles, and shotguns used in each crime incident. Some portions of guns were stolen guns or unknown build which were captured through the feature 'number of unknown and other' guns. The lethality can give interesting insights, for instance, AK-47, an assault rifle, is highly unlikely to be used in lower-level unorganized crimes.

2.2.2. Victims vs Suspects:

Secondly, number of victims and suspects was calculated which gives us a picture of how organized the crime was. For instance, a crime incident with more than 20 victims could imply mass shooting/professional criminals, or on the other hand, a crime scene with just one victim and one suspect could very likely be a conflict rising from a personal backstory. The chances of it being a random serial shooting is not negated, which is why we use it in complement with the whole dataset.

2.2.3. Kill-Death-Assist:

Thirdly number of injured, killed, unharmed arrested, and unharmed participants was calculated. This information is crucial to understand whether the incident was driven by individuals who have done gun shooting before. For instance, the goal of a low level crime such as theft, is usually not to kill people, therefore cases related to theft and robbery are less like to have any killed people and have more unharmed or injured participants.

2.2.4. Age Profile:

Fourth, participants were classified by age group and the count of each age group was calculated for every crime scene. The age brackets are child, teen, and adult. Shootings involving only 'child' and 'teen' participants as victims possibly implies kidnapping and shooting.

2.2.5. Female Percentage:

Similar to age group, the female percentage of participants was also calculated which gives insight into various types of crimes such as the perpetrator may be specifically targeting women for personal reasons. This could be due to a personal grudge, domestic violence, or other motives related to the victims' gender.

2.2.6. Relationship Status:

Relationship status between the perpetrator and the victims is the final piece of the puzzle and gives clear insight on the driving forces of the perpetrator. To quantify relationships, we have binary value columns for each relationship which were extracted from one of the original columns. For instance, 'Gang vs Gang' clearly tells us about the type of incident, however, the source of truth for these features was not fully complete and thus we don't have information on many cases.

2.3. Feature Selection for Model:

The final selection of features ensured no variables with repeated information were taken. This was done by analyzing the multicollinearity matrix and using PCA to reduce dimensionality. Additionally, variables with no correlation to the crime scene were eliminated, such as the 'source link'. Variable like the 'source-link' are realized after the crime scene takes place and thus offer no valuable insight

in light of the objective of this project. The finale set of features employed for clustering can be seen in Figure-1. After feature engineering, the next step was to find the right model for grouping

crime incidents.

Section 3 - Model Selection & Methodology:

In line with the objective of this project, it was known that we needed to apply a clustering algorithm

to club criminal activities. Three candidate algorithms were tested, such DBScan, K-Median

Clustering, Hierarchical clustering and K-Means clustering. The final model selection was K-Means

Clustering in combination with PCA.

3.1. The decision of 'K':

The optimal number of clusters was determined through careful consideration of the data and

iterative testing. Figure 2A, representing a plot of the total weighted sum of squares vs 'K', in

combination with Figure 2B, representing a plot of gap statistic vs 'K' gives the best k for this

objective in combination with case considerations to be 9.

3.2. Achilles heal to the curse of dimensionality:

PCA was employed to club engineered features of the same type. For instance, we had 8 features

just for the relationship of the participants. It was only natural that some of these categories had

some overlapping information. PCA was employed just among sets of similar variables to to mitigate

the curse of dimensionality.

Section 4 - Results

The application of PCA and k-means clustering revealed distinct groupings within the gun violence

dataset. Clusters were identified based on shared characteristics, allowing for a more granular

understanding of the incidents. A snapshot of the results can be found in Figure 3 and table -1. The

cluster interpretations are as follows:

Cluster 1: The Urban Turbulence

6

Cluster 1, characterized by 35,588 incidents, appears to encapsulate a series of smaller-scale urban incidents within the United States. The moderate involvement of firearms and lower overall violence levels suggest that these incidents may involve familial disputes or localized conflicts. The prevalence of family-oriented relationships among victims and perpetrators implies that these incidents might be rooted in personal matters within the community.

Cluster 2: The Ruthless Warfare

With a staggering size of 60,564 incidents, Cluster 2 paints a vivid picture of a more extensive and intense set of events. The high involvement of guns and elevated violence levels point toward a possible connection with organized crime or gang-related activities. This cluster might be indicative of larger-scale conflicts, resembling a form of ruthless urban warfare that unfortunately has become a notable feature within certain regions of the United States.

Cluster 3: The Stealthy Offenders

Cluster 3, consisting of 4,084 incidents, suggests a different facet of criminal activity. The high involvement of firearms and moderate violence levels, coupled with a variety of victim-perpetrator relationships, implies a more strategic and planned approach to criminal endeavours. This cluster may represent incidents involving organized groups engaging in activities such as armed robbery, indicating a certain level of sophistication in their operations.

Cluster 4: Definition of Terrorism

Comprising only 217 incidents, Cluster 4 stands out as a set of extreme outliers. The exceptionally high number of guns involved and elevated violence levels suggest incidents that are unique or particularly extreme. These may be indicative of rare but highly impactful events such as mass shootings or terrorist activities, underscoring the need for special attention and analysis.

Cluster 5: The Strained Relationships

Cluster 5, with 8,309 incidents, appears to revolve around conflicts arising from personal relationships. The moderate involvement of firearms and high violence levels hint at the intensity of

disputes among acquaintances and friends. This cluster might mirror the challenges posed by strained personal relationships, escalating to dangerous levels that impact public safety in various communities across the United States.

Cluster 6: The Domestic Disturbance

With 2,904 incidents, Cluster 6 seems to focus on incidents within families. The moderate violence levels and lower number of guns involved suggest a less extreme form of domestic disturbance. This cluster sheds light on the unfortunate reality of familial conflicts that, while impactful, may not escalate to the levels seen in larger-scale urban incidents.

Cluster 7: The Isolated Incident

Cluster 7, comprised of 1,987 incidents, seems to encapsulate relatively isolated events with a moderate level of violence. The low involvement of firearms and the presence of mass shootings in some cases highlight incidents that, while not frequent, pose potential public safety concerns. These isolated incidents may underscore the challenges faced by law enforcement in preventing such occurrences.

Cluster 8: The Tense Workplace

With 2,396 incidents, Cluster 8 suggests incidents occurring within workplace settings, potentially involving workplace conflicts. The moderate involvement of firearms and high violence levels imply that these are not mere disagreements but rather serious altercations within the professional sphere. This cluster underscores the challenges of maintaining a safe working environment and the potential for workplace conflicts to escalate.

Cluster 9: The Teen Turmoil

The largest cluster with 12,242 incidents, Cluster 9 represents events where teenagers play a significant role. The low to moderate involvement of firearms and a moderate level of violence suggest a mix of conflicts within this age group. This cluster reflects the challenges of addressing

teenage turmoil and conflicts, underscoring the need for targeted interventions and support mechanisms to ensure the well-being of the younger population in the United States.

Section 5 - Cluster Trends from the lens of an Analyst

The aftermath of the clustering model was to analyze crucial trends and find learnings to mitigate gun violence.

5.1. Yearly Trends

As seen in Figure-4, the two key clusters which have shown an exponential incline are cluster 1 and cluster 2. Clusters demanding focused effort due to alarming rates of increase: Urban Turbulence (smaller-scale urban conflicts), Ruthless Warfare (high gun involvement in organized crime); and those with moderate rates: Teen Turmoil (conflicts involving teenagers with moderate violence), Strained Relationships (conflicts among acquaintances with guns). Please see Figure 5 showcasing an oversimplified regression to predict the number of cluster 4 'Mass Shooting' activities to occur in 2024.

5.2. What this means for us:

In the contemporary societal landscape, a gigantic wave of discontent has given rise to noteworthy trends, notably an uptick in issues such as gang warfare and an unsettling surge in teenage involvement in gun-related incidents. Within Cluster 1, denoted as Urban Turbulence, localized urban conflicts underscore the imperative for strategic interventions to rectify underlying urban challenges and fortify community safety measures. Concurrently, the manifestation of Ruthless Warfare in Cluster 2, marked by heightened gun engagement within organized crime, underscores the necessity for a comprehensive strategy involving intensified law enforcement, community engagement, and targeted initiatives to dismantle the foundations of organized criminal activities.

In the midst of this societal upheaval, Clusters 9 and 5 reveal moderate escalations in Teen
Turmoil and Strained Relationships, respectively. Addressing these issues requires proactive

measures, including the implementation of youth-centric outreach programs to provide constructive alternatives for teenagers navigating turbulent circumstances. Also, fostering conflict resolution initiatives is paramount in alleviating the repercussions of strained relationships among acquaintances possessing firearms. As we confront these intricate challenges, a holistic approach that encompasses rigorous root cause analysis, community empowerment, and the implementation of comprehensive gun control measures emerges as a collective imperative to foster a safer and more resilient society.

<u>Section 7 - Conclusion & Future Scope:</u>

In conclusion, this comprehensive analysis of gun violence incidents in the United States has successfully utilized advanced statistical techniques, visualizations, and clustering methodologies to extract meaningful insights from a dataset spanning from 2013 to 2018. The identified clusters, ranging from Urban Turbulence and Ruthless Warfare to Teen Turmoil and Strained Relationships, shed light on the diverse nature of gun-related incidents and emphasize the urgent need for targeted interventions. The year-over-year trends underscore the alarming rise in specific clusters, necessitating focused efforts to address escalating issues such as gang warfare, teenage involvement, and conflicts among acquaintances. As society grapples with these challenges, the findings advocate for a multifaceted approach that includes community engagement, strategic law enforcement, youth-centric programs, and comprehensive gun control measures to foster a safer and more resilient societal landscape. This project serves as a foundation for informed decision-making and proactive measures aimed at mitigating the complex factors contributing to gun violence in the United States.

Section 8 - Appendices

8.1 Figures

Fig 1 - Correlation Plot of features finally selected for clustering analysis

Fig 2A – Within Sum of Squares vs cluster choice 'k'

Fig 2B - Gap Statistic vs cluster choice 'k'

Fig 3 – Visual Representation of Clusters with respect to Eigen Vectors

Cluster 1: Urban Turbulence, smaller-scale urban conflicts.

Cluster 2: Ruthless Warfare, high gun involvement in organized crime.

Cluster 3: Stealthy Offenders, strategic criminal activities with firearms.

Cluster 4: Extreme Outliers, rare incidents with exceptionally high gun use.

Cluster 5: Strained Relationships, conflicts among acquaintances with guns.

Cluster 6: Domestic Disturbance, incidents within families.

Cluster 7: Isolated Incident, infrequent events with moderate violence.

Cluster 8: Tense Workplace, conflicts in professional settings with guns.

Cluster 9: Teen Turmoil, conflicts involving teenagers with moderate violence.

Clusters showing alarming rates of increase:

- Cluster 1: Urban Turbulence, smaller-scale urban conflicts.
- Cluster 2: Ruthless Warfare, high gun involvement in organized crime.

Clusters showing moderate rates of increase:

- Cluster 9: Teen Turmoil, conflicts involving teenagers with moderate violence.
- Cluster 5: Strained Relationships, conflicts among acquaintances with guns.

Fig 5. The next terrorist attack prediction through the oversimplified model extension

The X axis represents year and Y axis represents cases of cluster 4, classified as a terrorist or mass shooting. According to this simplified regression, the prediction for 2024 is

which is in common sense too high of a prediction, but this figure serves as a resource for future projects which can be extended from the clustering work done in this project to help governments prepare for what is to come.

Table 1The table represents the mean of features for each cluster except the first row which represents the size of the cluster, or in other words the number of instances.

Cluster Profiles 1 2 3 4 5 6 7 8 9 35,588 60,564 4,084 217 8,309 2,904 1,987 2,396 12,242 size mean n killed 0.06 0.16 0.01 0.18 0.23 0.57 0.32 mean_n_injured 1.22 0.01 0.21 0.01 0.22 0.68 0.85 0.80 0.48 mean_n_guns_involved 1.04 1.32 2.27 54.37 2.06 1.22 1.10 1.36 1.09 mean_stolen_count 1.04 1.32 2.27 54.37 2.06 1.22 1.10 1.36 1.09 mean_n_handguns 0.09 0.33 0.45 10.47 0.61 0.35 0.26 0.35 0.22 mean_n_rifle 0.01 0.03 0.19 5.85 0.06 0.02 0.03 0.03 0.02 mean_n_shotgun 0 0 1.18 1.25 0.01 0.02 0.04 0.04 0 0.44 36.79 1.38 0.84 0.77 0.94 mean_n_other 0.94 0.95 0.84 1.11 1.71 2.82 1.70 0.87 2.06 mean_subject_count 0.55 0.72 0.84 mean_victim_count 0.40 0.04 0.46 1.01 1.20 0.321.59 1.18 1.06 1.75 1.51 1.76 3.27 2.71 2.45 3.24 1.89 mean_total_count 1.03 0.21 0.01 0.22 0.68 0.85 0.80 mean_injured_count 1.22 0.01 0.48 $0.16 \ 0.01 \ 0.19 \ 0.23 \ 0.57 \ 0.32$ mean killed count 0.06 0.29 0.58 mean_unharmed_arrested_count 0.12 0.39 0.74 1.23 2.39 0.49 0.33 1.46 0.39 mean_unharmed_count 0.42 0.64 1.03 1.46 2.72 1.65 0.92 1.90 0.73 mean_adult_count 1.32 0.86 1.31 1.49 2.74 2.11 1.03 0.71 1.68 80.0 0.05 0.06 0.05 0.13 0.15 0.12 2.42 0.07 mean_teen_count mean_child_count 0 0 0 0 0 0 1.20 0.01 0 0.01 mean relation family 0.01 0.04 0.01 0 0 0.20 0.03 0.06 0 0 0 mean relation random victims 0 0 0 0 0 0 mean_relation_aquaintance 0.01 0 0.01 0 0.01 0 0.01 0 0.01 mean_relation_significant_others 0 0.01 0 0 0.03 0 0 0.020.15 mean_relation_armed_robbery 0 0 0 0 0 1 0 0.01 0 0 0 0 0 0.01 0 0 0 0 mean_relation_gang mean_relation_mass_shooting 0 0 0 0 0 0 0 0 0 mean_relation_knows_victims 0 0 0 0 0 0 0 0 0 mean relation co worker 0 0 0 0 0 0 0 0 0 mean relation neighbor 0 0 0.02 0.01 0 0 0 0 0.01

0

0

0

0.01

0

0

0.04

0.01

mean relation friends

0.01

Section 7 - Code

```
#==============================#
# Libraries
# libary
#install.packages("cluster")
#install.packages("factoextra")
# Load necessary libraries
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
      filter, lag
## The following objects are masked from 'package:base':
##
      intersect, setdiff, setequal, union
##
library(factoextra)
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://g
oo.gl/ve3WBa
library(purrr)
library(ggplot2)
library(reshape2)
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary St
atistics Tables.
   R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
library(cluster)
library(factoextra)
library(cluster)
library(dplyr)
library(stargazer)
library(ggplot2)
library(ggfortify)
```

```
# read and set project filters
file path <- "/Users/arham/Downloads/02. MVS/Final Project/Dataset 1 — Gun vi
olence.csv"
gun <- read.csv(file_path)</pre>
gun <- subset(gun, n_guns_involved != 0) # filter to gun incidents ,i.e., n_g</pre>
uns involved >1
# filter to relevant columns
gun <- gun[, c("incident_id", "date", "state", "city_or_county", "latitude",</pre>
"longitude", "n_killed", "n_injured", "congressional_district", "gun_stolen",
"gun_type", "incident_characteristics",
            "n_guns_involved", "notes", "participant_age",
            "participant_age_group", "participant_gender",
            "participant_relationship", "participant_status", "participant_
type")]
#### Prelimary filter to columns which are not repeated or non-redundant
gun <- na.omit(gun)</pre>
# read and set project filters
#-----#
##======= 1. Stolen Guns
# count number of occurences of stolen of gun stolen and record in new column
(a cell has values like :0::Unknown||1::Unknown )
gun$stolen count <- sapply(gun$gun stolen, function(x) length(strsplit(x, spl</pre>
it = "\\|\\|")[[1]]))
# remove qun stolen column
gun <- gun[, !(names(gun) %in% "gun_stolen")]</pre>
##======= 2. qun types
# First, convert all the text in the "qun_type" column to lowercase
gun$gun type <- tolower(gun$gun type)</pre>
# Count the number of occurrences of specific keywords in the "qun type" colu
mn, split using "||"
gun$n_handguns <- sapply(gun$gun_type, function(x) length(grep("handgun", str</pre>
split(x, split = "\\|\\|")[[1]])))
gun$n_auto <- sapply(gun$gun_type, function(x) length(grep("auto", strsplit(x)</pre>
, split = "\\|\\|")[[1]])))
```

```
gun$n_mm <- sapply(gun$gun_type, function(x) length(grep("mm", strsplit(x, sp</pre>
lit = "\\|\\|")[[1]])))
gun$n_spl <- sapply(gun$gun_type, function(x) length(grep("spl", strsplit(x,</pre>
split = "\\|\\|")[[1]])))
gun$n_mag <- sapply(gun$gun_type, function(x) length(grep("mag", strsplit(x,</pre>
split = "\\|\\|")[[1]])))
# Sum up counts and remove unnecessary columns
gun$n_handguns <- gun$n_handguns + gun$n_auto + gun$n_mm + gun$n_spl + gun$n_</pre>
gun <- gun[, !(names(gun) %in% c("n_auto", "n_mm", "n_spl", "n_mag", "n_win")</pre>
)]
# Count occurrences of 'win' and 'rifle', adjust counts, sum them up, and rem
ove unnecessary columns
gun$n_win <- sapply(gun$gun_type, function(x) length(grep("win", strsplit(x,</pre>
split = "\\|\\|")[[1]])))
gun$n_rifle <- sapply(gun$gun_type, function(x) length(grep("rifle", strsplit</pre>
(x, split = "\\|\\|")[[1]])))
gun$n_rifle <- gun$n_rifle + gun$n_win</pre>
gun <- gun[, !(names(gun) %in% c("n_win"))]</pre>
# Count occurrences of 'gauge' and 'shotgun', adjust counts, sum them up, and
remove unnecessary columns
gun$n_gauge <- sapply(gun$gun_type, function(x) length(grep("gauge", strsplit</pre>
(x, split = "\\|\\|")[[1]]))
gun$n_shotgun <- sapply(gun$gun_type, function(x) length(grep("shotgun", strs</pre>
plit(x, split = "\\|\\|")[[1]])))
gun$n_shotgun <- gun$n_shotgun + gun$n_gauge</pre>
gun <- gun[, !(names(gun) %in% c("n_gauge"))]</pre>
# Count the number of occurrences of "||", add 1 to it, and subtract counts o
f shotguns, rifles, and handguns
gun$n_other <- sapply(gun$gun_type, function(x) sum(gregexpr("\\|\\|", x)[[1]</pre>
] > 0))
gun$n_other <- gun$n_other - gun$n_shotgun - gun$n_rifle - gun$n_handguns + 1</pre>
# remove qun type column
gun <- gun[, !(names(gun) %in% "gun_type")]</pre>
ple involved
# count number of Subject-Suspect, Victim, and Total people involved
gun$subject_count <- sapply(gun$participant_type, function(x) length(grep("Su</pre>
bject-Suspect", strsplit(x, split = "\\|\\|")[[1]])))
gun$victim_count <- sapply(gun$participant_type, function(x) length(grep("Vic</pre>
tim", strsplit(x, split = "\\|\\|")[[1]])))
gun$total_count <- sapply(gun$participant_type, function(x) length(strsplit(x)</pre>
, split = "\\|\\|")[[1]]))
#remove participant_type column
gun <- gun[, !(names(gun) %in% "participant_type")]</pre>
```

```
d, and unharmed
# from participant_status column count number of Injured, Killed, and 'Unharm
ed, Arrested', and 'Unharmed'
gun$injured count <- sapply(gun$participant status, function(x) length(grep("</pre>
Injured", strsplit(x, split = "\\|\\|")[[1]])))
gun$killed_count <- sapply(gun$participant_status, function(x) length(grep("K</pre>
illed", strsplit(x, split = "\\|\\|")[[1]])))
gun$unharmed_arrested_count <- sapply(gun$participant_status, function(x) len</pre>
gth(grep("Unharmed, Arrested", strsplit(x, split = "\\|\\|")[[1]])))
gun$unharmed count <- sapply(gun$participant status, function(x) length(grep(</pre>
"Unharmed", strsplit(x, split = "\\\\\\")[[1]])))
# from participant age group count number of Adult 18+ and Teen 12-17, child
gun$adult_count <- sapply(gun$participant_age_group, function(x) length(grep(</pre>
gun$teen count <- sapply(gun$participant age group, function(x) length(grep("</pre>
Teen 12-17", strsplit(x, split = "\\\\\\")[[1]])))
gun$child_count <- sapply(gun$participant_age_group, function(x) length(grep(</pre>
"Child 0-11", strsplit(x, split = "\\\\\")[[1]])))
# remove participant age group column
gun <- gun[, !(names(gun) %in% "participant_age_group")]</pre>
##======= 5. gender ratio
calculate_female_percentage <- function(participant_gender) {</pre>
 total_participants <- length(genders)</pre>
 female_count <- sum(grep1("Female", genders))</pre>
 if (total participants > 0) {
   return((female_count / total_participants) * 100)
 } else {
   return(NA)
 }
}
##======== 6. relations between participants
gun$participant relationship <- tolower(gun$participant relationship)</pre>
# Family
# Random victims
# Aquaintance
# Significant Others
# Armed Robbery
# Gana
# Mass Shooting
# Knows victims
```

```
# Co-worker
# Neighbor
# Friends
# Home Invasion
# Does Not Know Victim
# New column relation family = if family is present in participant relations
hip column, then 1 else 0
gun <- gun %>% mutate(relation_family = ifelse(grepl("family", participant_re
lationship, ignore.case = TRUE), 1, 0))
# New column relation random victims = if random victims is present in parti
cipant relationship column, then 1 else 0
gun <- gun %>% mutate(relation random victims = ifelse(grep1("random victims"
, participant_relationship, ignore.case = TRUE), 1, 0))
# New column relation_aquaintance = if aquaintance is present in participant
relationship column, then 1 else 0
gun <- gun %>% mutate(relation aquaintance = ifelse(grepl("aquaintance", part
icipant relationship, ignore.case = TRUE), 1, 0))
# New column relation_significant_others = if significant others is present
in participant_relationship column, then 1 else 0
gun <- gun %>% mutate(relation significant others = ifelse(grepl("significant
others", participant_relationship, ignore.case = TRUE), 1, 0))
# New column relation_armed_robbery = if armed robbery is present in partici
pant relationship column, then 1 else 0
gun <- gun %>% mutate(relation_armed_robbery = ifelse(grepl("armed robbery",
participant_relationship, ignore.case = TRUE), 1, 0))
# New column relation gang = if gang is present in participant relationship
column, then 1 else 0
gun <- gun %>% mutate(relation_gang = ifelse(grepl("gang", participant_relati
onship, ignore.case = TRUE), 1, 0))
# New column relation_mass_shooting = if mass shooting is present in partici
pant_relationship column, then 1 else 0
gun <- gun %>% mutate(relation mass shooting = ifelse(grep1("mass shooting",
participant relationship, ignore.case = TRUE), 1, 0))
# New column relation_knows_victims = if knows victims is present in partici
pant relationship column, then 1 else 0
gun <- gun %>% mutate(relation knows victims = ifelse(grepl("knows victims",
participant_relationship, ignore.case = TRUE), 1, 0))
# New column relation_co_worker = if co-worker is present in participant_rel
ationship column, then 1 else 0
gun <- gun %>% mutate(relation_co_worker = ifelse(grepl("co-worker", particip"))
ant relationship, ignore.case = TRUE), 1, 0))
# New column relation_neighbor = if neighbor is present in participant relat
ionship column, then 1 else 0
gun <- gun %>% mutate(relation neighbor = ifelse(grep1("neighbor", participan
t relationship, ignore.case = TRUE), 1, 0))
# New column relation_friends = if friends is present in participant_relatio
nship column, then 1 else 0
gun <- gun %>% mutate(relation_friends = ifelse(grepl("friends", participant_
relationship, ignore.case = TRUE), 1, 0))
```

```
# New column relation home invasion = if home invasion is present in partici
pant relationship column, then 1 else 0
gun <- gun %>% mutate(relation_home_invasion = ifelse(grepl("home invasion",
participant relationship, ignore.case = TRUE), 1, 0))
# New column relation does not know victim = if does not know victim is pres
ent in participant_relationship column, then 1 else 0
gun <- gun %>% mutate(relation does not know victim = ifelse(grep1("does not
know victim", participant_relationship, ignore.case = TRUE), 1, 0))
# remove participant relationship column
gun <- gun[, !(names(gun) %in% "participant_relationship")]</pre>
# More Feature Engineering
# Apply the function to create a new column for female percentage
gun <- gun %>%
 mutate(female percentage = sapply(participant gender, calculate female perc
entage))
# remove participant status column
gun <- gun[, !(names(gun) %in% "participant status")]</pre>
# save as gun_preprocessed_v1.csv
write.csv(gun, file = "gun preprocessed vF.csv", row.names = FALSE)
#gun <- read.csv("gun_preprocessed vF.csv")</pre>
tempo = gun
selected columns <- c(</pre>
 "child count",
 "relation family",
 "relation random victims",
 "relation aquaintance",
 "relation significant others",
 "relation armed robbery",
 "relation gang",
 "relation_mass_shooting",
 "relation knows victims",
 "relation_co_worker",
 "relation neighbor",
```

```
"relation friends".
  "relation_home_invasion",
  "relation_does_not_know_victim"
)
gun_pca_result <- prcomp(gun[, selected_columns])</pre>
principal components <- as.data.frame(gun pca result$x[, 1:2])</pre>
names(principal_components) <- c("relation_PC1", "relation_PC2")</pre>
gun <- cbind(gun[, -which(names(gun) %in% selected_columns)], principal_compo</pre>
nents)
gun <- gun[, !(names(gun) %in% selected columns)]</pre>
gun <- gun[, !(names(gun) %in% c("participant_age", "congressional_district",</pre>
"state", "city_or_county", "latitude", "longitude"))]
illed_count', 'n_guns_involved')
X <- gun[, !(names(gun) %in% exclude_columns)]</pre>
names(gun)
    [1] "incident id"
                                   "date"
## [3] "n killed"
                                   "n injured"
## [5] "incident_characteristics" "n_guns_involved"
## [7] "notes"
                                   "participant_gender"
## [9] "stolen count"
                                   "n_handguns"
## [11] "n_rifle"
                                   "n shotgun"
## [13] "n_other"
                                   "subject_count"
## [15] "victim_count"
                                   "total_count"
## [17] "injured count"
                                   "killed count"
## [19] "unharmed_arrested_count"
                                   "unharmed count"
## [21] "adult count"
                                   "teen count"
## [23] "female_percentage"
                                   "relation PC1"
## [25] "relation_PC2"
#rename n other to n stolen unkown
names(X)[names(X) == 'n_other'] <- 'n_stolen_unknown'</pre>
# X[is.infinite(X)] <- 0
X[is.na(X)] \leftarrow 0
OG <-X
X <- scale(X)</pre>
X <- as.data.frame(X)</pre>
W <- X
Z <- X
```

```
######## correlation
library(corrplot)

## corrplot 0.92 loaded

corr <- cor(X)
corrplot(corr, method = "shade")</pre>
```



```
# ===========#
## K Means Clustering
# ============ What should be the k?

## support 1
set.seed(123) # for reproducibility
sample_indices <- sample(nrow(W), 1000) # adjust the size as needed
subset_W <- W[sample_indices, ]
par(pty = "m")
fviz_nbclust(subset W, pam, method = "wss")</pre>
```



```
## support 2
#calculate gap statistic based on number of clusters
##gap_stat <- clusGap(subset_W,</pre>
                     \#FUN = pam,
                    #K.max = 10, #max clusters to consider
                     #B = 50) #total bootstrapped iterations
###plot number of clusters vs. gap statistic
##viz_gap_stat(gap_stat)
\# k = 9
#====== apply k means for 9 clusters
set.seed(123)
kmeans_W <- kmeans(W, centers = 9, nstart = 25)</pre>
kmeans_W$cluster <- as.factor(kmeans_W$cluster)</pre>
# add cluster column to W
W$cluster <- as.factor(kmeans_W$cluster)</pre>
OG$cluster <- as.factor(kmeans_W$cluster)</pre>
```

```
summary by cluster <- OG %>%
 group by(cluster) %>%
 summarise(
  size = n(),
  mean n killed = round(mean(n killed),2),
  mean n injured = round(mean(n injured),2),
  mean n handguns = round(mean(n handguns),2),
  mean n rifle = round(mean(n rifle),2),
  mean n shotgun = round(mean(n shotgun),2),
  mean n stolen unknown = round(mean(n stolen unknown),2),
  mean subject count = round(mean(subject count),2),
  mean unharmed arrested count = round(mean(unharmed arrested count),2),
  mean teen count = round(mean(teen count),2),
  mean_female_percentage = round(mean(female_percentage),2),
  mean_relation_PC1 = round(mean(as.numeric(relation_PC1)),2),
  mean relation PC2 = round(mean(as.numeric(relation PC2)),2)
 )
summary by cluster = data.frame(summary by cluster)
summary_by_cluster = t(summary_by_cluster)
colnames(summary_by_cluster) <- summary_by_cluster[1, ]</pre>
summary by cluster <- summary by cluster[-1, ]
stargazer(summary_by_cluster, title = "Cluster Profiles",type = "html", digit
s = 2
##
## <caption><strong>Cluster Profiles</strong
></caption>
## 
1234td><
56
## 
size35588605644084
>217830929041987239612242</t
d>
## mean n killed0.060.29</t
td>0.58
## mean n injured1.220.01</
/td>0.48
## mean n handguns0.090.33
/td>0.4510.470.610.350.260.3
50.22
## mean n rifle0.010.03</td
>0.195.850.060.020.030.03
```

```
d>0.02
## mean n shotgun0.000.00</
td>1.181.250.010.020.040.04
/td>>0.00
## mean n stolen unknown0.94<td
>0.950.4436.791.380.840.77<
td>0.940.84
## mean_subject_count0.550.
721.111.712.821.700.87
.060.84
## mean unharmed arrested count0.12<
/td>0.390.741.232.390.490.43
1.460.39
## mean_teen_count0.080.05
/td>0.060.050.130.150.122.42
0.07
d>0.217.954.7111.927.8924.68
>9.76
## mean_relation_PC1-0.02-0
.02-0.01-1.17
-0.010.00
## mean_relation_PC20.020.0
20.030.020.020.020.97-0.08>td>>
0.01>0.04
## </ta
ble>
# pca on W excluding cluster column
pca <- prcomp(W[, -ncol(W)], scale = TRUE)</pre>
# autoplot(pca, data = W[, -1], colour = 'cluster', loadings = TRUE, loadings
.label = TRUE) +
 theme minimal() +
  theme(legend.position = 'bottom') +
  agtitle("PCA Colored by Cluster")
# autoplot clusters
autoplot(pca, data = W[, -1], colour = 'cluster', loadings = TRUE, loadings.la
bel = TRUE, loadings.color = 'grey', loadings.label.color = 'navyblue') +
 theme minimal() +
 theme(legend.position = 'bottom') +
ggtitle("Visual Representation of Clusters with respect to eigen vectors")
```

Visual Representation of Clusters with respect to eiger


```
# # autoplot clusters
# autoplot(pca, data = W[, -1], colour = 'cluster', loadings = TRUE, loadings . label = TRUE, loadings.color = 'black', loadings.label.color = 'black') +
    theme_minimal() +
    theme(legend.position = 'bottom') +
#
    ggtitle("PCA Colored by Cluster")
#
# #autoplot(pca, data = W[, -1], loadings = TRUE, loadings.label = TRUE) +
  theme_minimal() +
    theme(legend.position = 'bottom') +
#
    gqtitle("Crime Scene Incident Split")
# add cluster names to OG by incident id
tempo$cluster_kmeans <- W$cluster</pre>
guns_f = tempo
centroid_col_list <- c(</pre>
  "n_killed",
  "n injured",
  "n guns involved",
  "stolen_count",
```

```
"n handguns",
  "n_rifle",
  "n_shotgun",
  "n_other",
  "subject count",
  "victim_count",
  "total_count",
  "injured_count",
  "killed_count",
  "unharmed arrested count",
  "unharmed count",
  "adult count",
  "teen count",
  "child_count",
  "relation_family",
  "relation_random_victims",
  "relation_aquaintance",
  "relation significant others",
  "relation armed robbery",
  "relation_gang",
  "relation_mass_shooting",
  "relation_knows_victims",
  "relation co worker",
  "relation neighbor",
  "relation friends",
  "relation_home_invasion",
  "relation does not know victim",
  "female percentage",
  "cluster kmeans")
# filter guns_f to only columns in centroid_col_list
guns_f1 <- guns_f[, centroid_col_list]</pre>
guns f1[is.na(guns f1)] <- 0
# convert all columns to numeric
guns_f1 <- sapply(guns_f1, as.numeric)</pre>
guns f1 = data.frame(guns f1)
summary_by_cluster_f1 <- guns_f1 %>% group_by(cluster_kmeans) %>% summarise(
  size = n(),
  mean_n_killed = round(mean(n_killed), 2),
  mean n injured = round(mean(n injured), 2),
  mean n guns involved = round(mean(n guns involved), 2),
  mean stolen count = round(mean(stolen count), 2),
  mean_n_handguns = round(mean(n_handguns), 2),
  mean n rifle = round(mean(n rifle), 2),
  mean_n_shotgun = round(mean(n_shotgun), 2),
  mean n other = round(mean(n other), 2),
```

```
mean subject count = round(mean(subject count), 2),
 mean victim count = round(mean(victim count), 2),
 mean_total_count = round(mean(total_count), 2),
 mean injured count = round(mean(injured count), 2),
 mean killed count = round(mean(killed count), 2),
 mean unharmed arrested count = round(mean(unharmed arrested count), 2),
 mean unharmed count = round(mean(unharmed_count), 2),
 mean adult count = round(mean(adult count), 2),
 mean teen count = round(mean(teen count), 2),
 mean child count = round(mean(child count), 2),
 mean relation family = round(mean(relation family), 2),
 mean relation random victims = round(mean(relation random victims), 2),
 mean relation aquaintance = round(mean(relation aquaintance), 2),
 mean relation significant others = round(mean(relation significant others),
2),
 mean relation armed robbery = round(mean(relation armed robbery), 2),
 mean relation gang = round(mean(relation gang), 2),
 mean relation mass shooting = round(mean(relation mass shooting), 2),
 mean relation knows victims = round(mean(relation knows victims), 2),
 mean_relation_co_worker = round(mean(relation_co_worker), 2),
 mean relation neighbor = round(mean(relation_neighbor), 2),
 mean_relation_friends = round(mean(relation_friends), 2),
 mean relation home invasion = round(mean(relation home invasion), 2)
summary_by_cluster_f1 = t(summary_by_cluster_f1)
colnames(summary by cluster f1) <- summary by cluster f1[1, ]</pre>
summary by cluster f1 <- summary by cluster f1[-1, ]
summary_by_cluster_f1 <- summary_by_cluster_f1[-nrow(summary_by_cluster_f1),</pre>
summary_by_cluster_f1 <- round(summary_by_cluster_f1, 2)</pre>
# stargazer summary by cluster f1
stargazer(summary by cluster f1, title = "Cluster Profiles",type = "text",col
umn.sep.width = "5pt", digits = 2)
##
## Cluster Profiles
7
##
                                     1
                                           2
                                                        4
                                                              5
8
## size
                                  35,588 60,564 4,084 217 8,309 2,904 1,9
87 2,396 12,242
## mean n killed
                                          0.29 0.16 0.01 0.18 0.23 0.5
                                    0.06
7 0.32
         0.58
## mean n injured
                                    1.22
                                          0.01 0.21 0.01 0.22 0.68 0.8
5 0.80 0.48
```

		4 22				4 00	
<pre>## mean_n_guns_involved 0 1.36 1.09</pre>	1.04	1.32	2.27	54.37	2.06	1.22	1.1
## mean_stolen_count	1.04	1.32	2.27	54.37	2.06	1.22	1.1
0 1.36 1.09							
## mean_n_handguns	0.09	0.33	0.45	10.47	0.61	0.35	0.2
6 0.35 0.22	0 01	0 02	0 10	г ог	0.00	0 02	0 0
## mean_n_rifle 3 0.03 0.02	0.01	0.03	0.19	5.85	0.06	0.02	0.0
## mean_n_shotgun	0	0	1.18	1.25	0.01	0.02	0.0
4 0.04 0							
## mean_n_other	0.94	0.95	0.44	36.79	1.38	0.84	0.7
7 0.94 0.84	0 55	0.70	1 11	1 71	2 02	1 70	0 0
<pre>## mean_subject_count 7 2.06 0.84</pre>	0.55	0.72	1.11	1./1	2.82	1.70	0.8
## mean_victim_count	1.20	0.32	0.40	0.04	0.46	1.01	1.5
9 1.18 1.06							
## mean_total_count	1.75	1.03	1.51	1.76	3.27	2.71	2.4
5 3.24 1.89	4 00	0.01		0.01			
<pre>## mean_injured_count 5 0.80 0.48</pre>	1.22	0.01	0.21	0.01	0.22	0.68	0.8
## mean_killed_count	0.06	0.29	0.16	0.01	0.19	0.23	0.5
7 0.32 0.58							
## mean_unharmed_arrested_count	0.12	0.39	0.74	1.23	2.39	0.49	0.3
3 1.46 0.39			4 00				
<pre>## mean_unharmed_count 2 1.90 0.73</pre>	0.42	0.64	1.03	1.46	2.72	1.65	0.9
## mean_adult_count	1.32	0.86	1.31	1.49	2.74	2.11	1.0
3 0.71 1.68			_,,	_,	_,,,		_,,
## mean_teen_count	0.08	0.05	0.06	0.05	0.13	0.15	0.1
2 2.42 0.07							
## mean_child_count	0	0	0	0	0	0	1.2
<pre>0 0.01 0 ## mean_relation_family</pre>	0.01	a a1	0.04	0.01	0	0	0.2
0 0.03 0.06	0.01	0.01	0.04	0.01	O	O	0.2
## mean_relation_random_victims	0	0	0	0	0	0	0
0 0							
## mean_relation_aquaintance	0.01	0	0.01	0	0.01	0	0
<pre>0.01 0.01 ## mean_relation_significant_others</pre>	0	0	0.03	0	0	0	0.0
2 0.01 0.15	O	O	0.05	0	0	O	0.0
## mean_relation_armed_robbery	0	0	0	0	0	1	0
0.01 0							
## mean_relation_gang	0	0	0	0	0.01	0	0
0 0	0	0	0	0	0	0	0
<pre>## mean_relation_mass_shooting 0 0</pre>							
<pre>## mean_relation_knows_victims 0 0</pre>	0	0	0	0	0	0	0
## mean_relation_co_worker	0	0	0	0	0	0	0
0 0							

```
## mean relation neighbor
                                                   0.02 0.01
0
     0.01
## mean_relation_friends
                                                   0.01
                                              0
                                                           0
                                                                 0
                                                                            0.0
1 0.04 0.01
## -----
# save tempo to csv
#write.csv(tempo, file = "Final_Clustering.csv", row.names = FALSE)
# # read tempo
# tempo <- read.csv("Final_Clustering.csv")</pre>
guns clusters = tempo
# replace blank with 0
guns_clusters[is.na(guns_clusters)] <- 0</pre>
## Section 5 - Appendix and the lens of an analyst
## 1 cluster Centroids
cols = list(names(guns clusters))
View(cols)
centroid_col_list <- c(</pre>
  "n killed",
  "n injured",
  "n_guns_involved",
  "stolen_count",
  "n_handguns",
  "n rifle",
  "n shotgun",
  "n_other",
  "subject_count",
  "victim_count",
  "total_count",
  "injured_count",
  "killed_count",
  "unharmed_arrested_count",
  "unharmed_count",
  "adult count",
  "teen count",
  "child count",
  "relation_family",
  "relation_random_victims",
  "relation_aquaintance",
  "relation significant others",
  "relation armed robbery",
  "relation gang",
  "relation mass shooting",
```

```
"relation knows victims",
  "relation co worker",
  "relation_neighbor",
  "relation_friends",
  "relation home invasion",
  "relation_does_not_know_victim",
  "female_percentage",
  "cluster kmeans")
guns_clusters_subset = guns_clusters[, centroid_col_list]
View(guns_clusters_subset)
# show column data types
sapply(guns_clusters_subset, class)
##
                         n killed
                                                        n injured
                        "integer"
##
                                                        "integer"
##
                  n_guns_involved
                                                     stolen_count
                        "integer"
##
                                                        "integer"
##
                       n_handguns
                                                           n_rifle
                        "integer"
##
                                                         "integer"
##
                        n shotgun
                                                           n other
                        "integer"
                                                        "numeric"
##
##
                    subject_count
                                                     victim count
##
                        "integer"
                                                         "integer"
##
                      total count
                                                    injured count
##
                         "integer"
                                                        "integer"
##
                     killed count
                                         unharmed arrested count
##
                         "integer"
                                                         "integer"
##
                   unharmed_count
                                                      adult_count
                        "integer"
##
                                                        "integer"
##
                       teen count
                                                      child count
##
                         "integer"
                                                         "integer"
##
                  relation family
                                          relation random victims
                                                         "numeric"
##
                         "numeric"
##
            relation_aquaintance
                                     relation_significant_others
                         "numeric"
                                                        "numeric"
##
##
          relation_armed_robbery
                                                    relation_gang
                         "numeric"
##
                                                        "numeric"
##
          relation_mass_shooting
                                           relation_knows_victims
##
                        "numeric"
                                                        "numeric"
##
               relation_co_worker
                                                relation neighbor
##
                         "numeric"
                                                         "numeric"
##
                 relation_friends
                                           relation_home_invasion
                         "numeric"
                                                         "numeric"
   relation_does_not_know_victim
##
                                                female_percentage
##
                         "numeric"
                                                         "numeric"
##
                   cluster kmeans
                         "factor"
##
```

```
# convert all columns to numeric
guns clusters subset <- sapply(guns clusters subset, as.numeric)</pre>
guns_clusters_subset = data.frame(guns_clusters_subset)
#create median table with cluster kmeans in columns, and all rest variables i
n rows
median_table = aggregate(guns_clusters_subset, list(guns_clusters_subset$clus
ter_kmeans), mean)
#Transpose table(median table)
median table = t(median table)
View(median table)
# use cluster_kmeans as column names
colnames(median_table) <- median_table[1,]</pre>
# remove first row
median_table <- median_table[-1,]</pre>
# remove last row
median table <- median table[-nrow(median table),]</pre>
# remove killed_count row
median table <- median table[-which(rownames(median table) == "killed count")</pre>
# Round the median table to 2 decimal places
rounded median table <- round(median table, 2)</pre>
##########
library(tidyr)
##
## Attaching package: 'tidyr'
## The following object is masked from 'package:reshape2':
##
##
       smiths
library(tidyverse)
## — Attaching core tidyverse packages —
                                                                 tidyverse 2.
0.0 -

√ stringr

## √ forcats 1.0.0
                                       1.5.0
## ✓ lubridate 1.9.3
                          √ tibble
                                       3.2.1
## √ readr
               2.1.4
## — Conflicts —

    tidyverse conflict

s() —
## X dplyr::filter() masks stats::filter()
## X dplyr::lag() masks stats::lag()
```

```
## i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all
conflicts to become errors
# convert date to date format
guns_f$date <- as.Date(guns_f$date)</pre>
# create a new column year-month column
guns_f$year_month <- format(guns_f$date, "%Y-%m")</pre>
# Create a table of the number of incidents per cluster per year-month
incidents_per_cluster_per_year_month <- guns_f %>%
 group_by(cluster_kmeans, year_month) %>%
 summarise(n = n())
## `summarise()` has grouped output by 'cluster_kmeans'. You can override usi
## the `.groups` argument.
print(incidents_per_cluster_per_year_month)
## # A tibble: 499 × 3
              cluster kmeans [9]
## # Groups:
     cluster kmeans year month
##
     <fct>
                    <chr>>
                              <int>
## 11
                    2013-01
                                  4
## 2 1
                    2013-03
                                  2
## 3 1
                    2013-04
                                  1
                                  7
## 4 1
                    2013-05
## 5 1
                    2013-06
                                  3
## 6 1
                    2013-07
                                  6
## 7 1
                                  4
                    2013-08
## 8 1
                    2013-09
                                  6
## 9 1
                    2013-10
                                  3
## 10 1
                    2013-11
                                  3
## # i 489 more rows
library(tidyverse)
df_pivoted <- incidents_per_cluster_per_year_month %>%
 pivot wider(names from = cluster kmeans, values from = n)
# If you want to fill missing values with 0
df pivoted[is.na(df pivoted)] <- 0</pre>
# Print the pivoted data frame
print(df pivoted)
## # A tibble: 63 × 10
                `1`
                       `2` `3` `4` `5`
                                             `6` `7`
     year month
##
                ##
     <chr>>
## 1 2013-01
                      0 1 0 0 0 1
```

```
## 2 2013-03
                      2
                                   1
                                               1
                      1
                                                                   1
                                                                         1
##
   3 2013-04
                            0
                                   1
                                         0
                                               1
                                                      0
                                                            2
##
   4 2013-05
                      7
                            1
                                   0
                                         0
                                               0
                                                      1
                                                            1
                                                                   1
                                                                         2
##
   5 2013-06
                      3
                            0
                                   0
                                         0
                                               1
                                                      0
                                                            0
                                                                   3
                                                                         1
                            2
##
   6 2013-07
                      6
                                   0
                                         0
                                               0
                                                      0
                                                            0
                                                                   2
                                                                         2
##
   7 2013-08
                      4
                            2
                                   1
                                         0
                                               0
                                                      0
                                                            1
                                                                   0
                                                                         3
                                                                         2
                            0
                                                      0
                                                            1
                                                                   1
##
   8 2013-09
                      6
                                   0
                                         0
                                               0
                            1
                                                                         1
                      3
                                                      0
                                                                   0
## 9 2013-10
                                   1
                                         0
                                               0
                      3
                            0
                                                      0
                                                            0
                                                                   0
                                                                         2
## 10 2013-11
                                   0
## # i 53 more rows
df_pivoted = data.frame(df_pivoted)
```

Section 8 - Citations

1. https://www.kaggle.com/datasets/jameslko/gun-violence-data

Thank You