國立清華大學試卷

	記				分
1		2			
3		4			
5		6			
7		8			
9		10			
11		12			
13		14			
15		16		~	
17		18			
19		20		82	
總	分		U	V	7

所	系_	道工.	A June
科	目_	栈率	
學	號_	104062229	H ₁
姓	名_	毛型宣	2.4
口	Ħ	3/22	

一种是一个一个一个

(a)
$$\frac{4! \times 4! \times 2}{8!}$$

$$C_{20}^{(0)+20-1} = C_{20}^{29} \times$$

3'(a)
$$P(E_{\lambda}) = \frac{(7-1)!}{7!} = \frac{6!}{7!} = \frac{1}{7} \times$$

(b)
$$P(E_{\lambda}E_{\bar{J}}) = \frac{(9-2)!}{7!} = \frac{5!}{7!} = \frac{1}{42} \times \frac{1}{42}$$

(c)
$$P(E_{1} \cup E_{2} \cup w \cup E_{7}) = \frac{6!}{7!} \times 1 - C_{2}^{7} \times \frac{5!}{7!} + C_{3}^{7} \times \frac{4!}{7!} - C_{4}^{7} \times \frac{3!}{7!} + C_{5}^{7} \times \frac{5!}{7!} - C_{6}^{7} \times \frac{1!}{7!} + C_{7}^{7} \times \frac{0!}{7!} = C_{6}^{7} \times \frac{1!}{7!} + C_{7}^{7} \times \frac{1!}{7!} = C_{6}^{7} \times \frac{1!}{7!} + C_{7}^{7} \times \frac{0!}{7!} = C_{6}^{7} \times \frac{1!}{7!} = C_{7}^{7} \times \frac{0!}{7!} = C$$

(a)
$$0.2 \times 0.06 + 0.35 \times 0.04 + 0.43 \times 0.02$$

$$= 0.012 + 0.014 + 0.009$$

$$= 0.035 \times 1$$

$$\frac{0.35 \times 0.04}{0.035} = 0.4 \times$$

which he had so that some

as ye Et, and h der, Dayloss, "my he for

- a) a sum of 5 occurs in the first roll: $\frac{4}{6\times6} = \frac{4}{36} = \frac{1}{9}$
 - a sum of 7 occurs in the first roll: $\frac{6}{6\times6} = \frac{1}{6}$
- (b) Let E be the event a sum of 5 occurs before a sum of 7.
 - F be the event a sum of 5 occurs in the first roll,
 - G be the event a sum of 7 occurs in the first roll,
 - O be the event that the sum is not 5 or 7 in the first roll
 - P(E) = P(E|E) P(F) + P(E|G) P(G) + P(E|O) P(O)

$$P(E) = 1 \cdot \frac{4}{36} + 0 \cdot \frac{6}{36} + P(E10) \frac{26}{36}$$

$$P(E) = \frac{1}{9} + P(E) \cdot \frac{26}{36}$$

$$P(E) = \frac{1}{9} \times \frac{3b}{10} = \frac{2}{5} \times \frac{3b}{5} =$$

6. (a)
Let
$$x \in (U_{-}^n, E_i)'$$

in the any element x elil Ei), x e DEic, and for any element y e DEic, y elil Ei), then, (DEi) = DEic &

```
(b)
P(E_{1} \sqcup E_{2} \sqcup \dots \sqcup E_{n})
= 1 - P((E_{1} \sqcup E_{2} \sqcup E_{n})^{c})
= 1 - P(E_{1} \cap E_{2} \cap E_{3} \cap \dots \cap E_{n}) \quad (by De Morgan's first Law)
because \{E_{1}, E_{2}, \dots, E_{n}\} is independent.
\{E_{1}^{c}, E_{2}^{c}, E_{3}^{c}, \dots, E_{n}^{c}\} \text{ is independent.}
then
P(E_{1}^{c} \cap E_{2}^{c} \cap \dots \cap E_{n}^{c}) = P(E_{1}^{c}) P(E_{2}^{c}) \dots P(E_{n}^{c})
= (1 - P(E_{1}))(1 - P(E_{2})) \dots (1 - P(E_{n}))
= \prod_{k=1}^{n} (1 - P(E_{k}))
```

7.
$$(a_1a_2a_4a_6)$$
 is closed) +)($a_1a_3a_5a_6$) is closed) - $(a_1a_2a_3a_4a_5a_6)$ is closed)
$$= p^4 + p^4 - p^6$$

$$= 2p^4 - p^6$$