Notebook

vici

December 20, 2013

CONTENTS

Contents

1	Basi	c 3					
	1.1	Header					
2	Math	Maths 4					
	2.1	Gcd & Lcm					
	2.2	PowMod & MulMod					
	2.3	Extgcd					
	2.4	Inverse					
	2.5	Sieve Primes					
	2.6	Phi					
	2.7	The Number of Divisors					
	2.8	The Sum of All Divisors					
	2.9	Miller-Rabin					
	2.10	Pollard-Rho					
	2.11	Find Factors					
	2.12	Place n Balls into m Boxes 6					
3	Grap						
	3.1	Edges					
	3.2	Cut-Vertex and Bridge					
	3.3	BCC					
	3.4	SCC (tarjan)					
	3.5	Floyd					
	3.6	Dijkstra					
	3.7	SPFA 8					
	3.8	Hungary					
	3.9	Prim					
	3.10	ISAP 9					
	3.11	Dinic					
	3.12	MinCostMaxFlow					
	3.13	MinCut(UndirectedGraph)					
4	D-4-	Chron about					
4		Structure 11					
	4.1	UnionSet					
	4.2	FenwickTree					
	4.3	RMQ					
	4.4	RMQ_2D					
	4.5	LCA(online)					
	4.6	HashMap					

	4.7	Tree_Linear	12
	4.8	Matrix	12
	4.9	KD-Tree	
5	Stri	ng	14
	5.1	KMP	14
	5.2	Trie	14
	5.3	Min_Representation	14
	5.4	Manacher	
6	Geo	metry	16
	6.1	Basic	16
	6.2	Point	16
	6.3	Line	
	6.4	Triangle	17
	6.5	Graham	18
	6.6	N Circles cover [1-K] times	18
	6.7	Volume of a Tetrahedron	18
	6.8	Ellipse's Circumference	18
7	App	endix	20
	7.1	Primes	20
	7.2	Other Constants	20
	7.3	C(n,m)	20
	7.4	S(n,m)	
	7.5	F(n,m)	
	7.6	Geometry Formulas 2D	
	7.7	Geometry Formulas 3D	

1 Basic

1.1 Header

```
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <sstream>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <ctime>
#define inf 0x3f3f3f3f
#define Inf Ox3FFFFFFFFFFFFFLL
#define rep(i, n) for (int i = 0; i < (n); ++i)
#define Rep(i, n) for (int i = 1; i <= (n); ++i)
#define clr(x, a) memset(x, (a), sizeof x)
typedef double db;
typedef long long 11;
using namespace std;
int main() {
 return 0;
```

2 Maths

```
2.1 Gcd & Lcm
int gcd(int a, int b) { return b ? gcd(b, a % b) : a;}
int lcm(int a, int b) { return a / gcd(a, b) * b; }
db fgcd(db a, db b) {
 if(b > -eps && b < eps) return a;
 else return fgcd( b, fmod(a, b) );
2.2 PowMod & MulMod
//powMod
11 powMod(11 a, 11 b, 11 c) {
 11 ret = 1 % c:
 for (; b; a = a * a % c, b >>= 1)
   if(b & 1) ret = ret * a % c:
 return ret:
//powMod plus
11 mulMod(11 a, 11 b, 11 c) {
 11 \text{ ret} = 0;
 for (; b; a = (a << 1) % c, b >>= 1)
   if (b & 1) ret = (ret + a) % c;
 return ret:
11 powMod(11 a, 11 b, 11 c) {
 11 ret = 1 % c:
 for (; b; a = mulMod(a, a, c), b >>= 1)
   if (b & 1) ret = mulMod(ret, a, c);
 return ret:
// mulMod plus for a, b, c \leq 2^40
11 mulMod(11 a, 11 b, 11 c) {
 return (((a*(b>>20)%c)<<20) + a*(b&((1<<20)-1)))%c;
}
2.3 Extgcd
11 ext_gcd(l1 a, l1 b, l1 &x, l1 &y) {
 11 t. ret:
 if (!b) {
   x = 1, y = 0;
   return a;
 ret = ext_gcd(b, a \% b, x, y);
 t = x, x = y, y = t - a / b * y;
 return ret;
```

2.4 Inverse

```
// (b / a) % c
```

```
11 inv(11 a, 11 b, 11 c) {
 11 x, y;
 ext_gcd(a, c, x, y);
 return (1LL * x * b % c + c) % c;
//sieve inv
int inv[N]:
void sieve_inv() {
 inv[1] = 1;
 for (int i = 2; i < N; ++i)
   inv[i] = inv[mod % i] * (mod - mod / i) % mod;
2.5 Sieve Primes
//mark[i]: the minimum factor of i (for prime, mark[i] = i)
int pri[N]. mark[N]. cnt:
void sieve() {
 cnt = 0, mark[0] = mark[1] = 1;
 for (int i = 2: i < N: ++i) {</pre>
   if (!mark[i]) pri[cnt++] = mark[i] = i;
   for (int j = 0; pri[j] * i < N; ++j) {</pre>
     mark[i * pri[j]] = pri[j];
     if (!(i % pri[j])) break;
   }
 }
}
2.6 Phi
//phi
int phi(int n) {
 int ret = n;
 for (int i = 2: i * i <= n: i += (i != 2) + 1) {
   if (!(n % i)) {
     ret = ret / i * (i - 1);
     while (n \% i == 0) n /= i;
 }
 if (n > 1) ret = ret / n * (n - 1);
 return ret;
//phi plus (sieve() first & (n < N))</pre>
int phi(int n) {
 int ret = n. t:
 while ((t = mark[n]) != 1) {
   ret = ret / t * (t - 1):
   while (mark[n] == t) n /= mark[n];
 return ret;
//sieve phi
int pri[N], phi[N], cnt;
```

void sieve phi() {

2.7 The Number of Divisors 5

```
cnt = 0, phi[1] = 1;
 for (int i = 2; i < N; ++i) {</pre>
   if (!phi[i]) pri[cnt++] = i, phi[i] = i - 1;
   for (int j = 0; pri[j] * i < N; ++j) {</pre>
     if (!(i % pri[i])) {
       phi[i * pri[j]] = phi[i] * pri[j];
       break:
     } else {
       phi[i * pri[j]] = phi[i] * (pri[j] - 1);
   }
 }
      The Number of Divisors
2.7
//the number of divisors
int d func(int n) {
 int ret = 1. t = 1:
 for (int i = 2; i * i <= n; i += (i != 2) + 1) {
   if (!(n % i)) {
     while (!(n % i)) ++t, n /= i;
     ret *= t, t = 1;
   }
 }
 return n > 1 ? ret << 1 : ret;</pre>
//sieve the number of divisors (O(nlogn))
int nod[N];
void sieve nod() {
 for (int i = 1; i < N; ++i)</pre>
   for (int j = i; j < N; j += i)</pre>
     ++nod[i];
}
//sieve the number of divisors (O(n))
int pri[N], e[N], divs[N], cnt;
void sieve_nod() {
 cnt = 0, divs[0] = divs[1] = 1;
 for (int i = 2; i < N; ++i) {</pre>
   if (!divs[i]) divs[i] = 2, e[i] = 1, pri[cnt++] = i;
   for (int j = 0; i * pri[j] < N; ++j) {</pre>
    int k = i * pri[j];
     if (i % pri[j] == 0) {
       e[k] = e[i] + 1;
       divs[k] = divs[i] / (e[i] + 1) * (e[i] + 2);
       break;
     } else {
       e[k] = 1, divs[k] = divs[i] << 1;</pre>
     }
   }
 }
```

2.8 The Sum of All Divisors

```
int ds func(int n) {
 int ret = 1, t;
 for (int i = 2: i * i <= n: i += (i != 2) + 1) {
   if (!(n % i)) {
     t = i * i, n /= i;
     while (!(n % i)) t *= i, n /= i;
     ret *= (t - 1) / (i - 1);
 return n > 1 ? ret * (n + 1) : ret;
     Miller-Rabin
2.9
bool suspect(ll a, int s, ll d, ll n) {
 11 x = powMod(a, d, n);
 if (x == 1) return true;
 for (int r = 0; r < s; ++r) {
   if (x == n - 1) return true:
   x = mulMod(x, x, n);
 return false:
// {2.7.61.-1} is for n < 4759123141 (2^32)
int const test[] = \{2,3,5,7,11,13,17,19,23,-1\}; // for n < 10^16
bool isPrime(11 n) {
 if (n <= 1 || (n > 2 && n % 2 == 0)) return false:
 11 d = n - 1, s = 0;
 while (d \% 2 == 0) ++s, d /= 2;
 for (int i = 0; test[i] < n && ~test[i]; ++i)</pre>
   if (!suspect(test[i], s, d, n)) return false;
 return true;
2.10 Pollard-Rho
11 pollard_rho(ll n, ll c) {
 11 d, x = rand() \% n, y = x;
 for (11 i = 1, k = 2; ; ++i) {
   x = (mulMod(x, x, n) + c) \% n;
   d = gcd(y - x, n);
   if (d > 1 && d < n) return d;</pre>
   if (x == v) return n:
   if (i == k) y = x, k <<= 1;
 return 0:
2.11 Find Factors
//find factors
int facs[N];
int find_fac(int n) {
 int cnt = 0:
```

for(int i = 2; i * i <= n; i += (i != 2) + 1)

2.12 Place n Balls into m Boxes 6

```
while (!(n % i)) n /= i, facs[cnt++] = i;
    if (n > 1) facs[cnt++] = n;
    return cnt;
}

//find factors plus (sieve() first & (n < N))
int facs[N];
int find_fac(int n) {
    int cnt = 0;
    while (mark[n] != 1)
    facs[cnt++] = mark[n], n /= mark[n];
    return cnt;
}</pre>
```

2.12 Place n Balls into m Boxes

Balls	Boxes	Empty Boxes	Answer
Different	Different	Yes	m^n
Different	Different	No	m!S(n,m)
Different	Same	Yes	$S(n,1) + S(n,2) + \ldots + S(n, \min(n,m))$
Different	Same	No	$S\left(n,m ight)$
Same	Different	Yes	C(n+m-1,n)
Same	Different	No	C(n-1,m-1)
Same	Same	Yes	$F\left(n,m\right)$
Same	Same	No	F(n-m,m)

```
//+ mod if needed
11 C[N][N];
void Cinit() {
 for (int i = 0; i < N; ++i) {</pre>
   C[i][0] = 1;
   for (int j = 1; j <= i; ++j) {</pre>
     C[i][j] = C[i - 1][j] + C[i - 1][j - 1];
   }
 }
}
11 S[N][N]; // Strling2[]
void Sinit() {
 S[0][0] = 1;
 for (int i = 1; i < N; ++i) {</pre>
   S[i][1] = 1;
   for (int j = 2; j <= i; ++j) {
     S[i][j] = S[i - 1][j - 1] + j * S[i - 1][j];
   }
 }
11 F[N][N];
void Finit() {
 for (int i = 0; i < N; ++i) F[i][1] = F[0][i] = 1;</pre>
 for (int i = 1; i < N; ++i) {</pre>
   for (int j = 2; j < N; ++j) {</pre>
     F[i][j] = F[i][j - 1];
```

3 Graph

3.1 Edges

```
int n, m; // |V|, |E|
int p[N], idx;
struct Edge {
  int u, w, next;
} e[M];

inline void addedge(int u, int v, int w) {
  e[idx].u = v;
  e[idx].w = w;
  e[idx].next = p[u];
  p[u] = idx++;
}
inline void init() {
  idx = 0;
  clr(p, Oxff);
}
```

3.2 Cut-Vertex and Bridge

```
//+ DSU/Stack to maintain the size of each component
//* Cut-Vertex: (u) if (sc[u] > 1)
//* Cut-Bridge: (u, v) if (low[v] > dfn[u]) *warning: parallel_edges
struct CutVertex {
 int dfn[N], low[N], sc[N], cnt;
 void dfs(int u, int ori, int pre) {
   dfn[u] = low[u] = ++cnt:
   for (int i = p[u]; ~i; i = e[i].next) {
     int v = e[i].u:
     if (!dfn[v]) {
      dfs(v, ori, i);
      low[u] = min(low[u], low[v]):
      if (low[v] >= dfn[u]) ++sc[u];
     else if ((i ^ 1) != pre) { // ensure (e[(u, v)] ^ e[(v, u)]) == 1
      low[u] = min(low[u], dfn[v]);
   if (u != ori) ++sc[u];
 }
 void solve() {
   cnt = 0, clr(dfn, 0), clr(sc, 0);
   Rep(i, n) if (!dfn[i]) dfs(i, i, -1);
 }
};
```

3.3 BCC


```
// BCC(Edge)
int col[N], cc; // clr(col, 0), cc = 0;
void dfs(int u) {
 if (!col[u]) col[u] = ++cc;
 for (int i = p[u]; ~i; i = e[i].next) {
   int v = e[i].u:
   if (!col[v]) {
    if (cv.low[v] > cv.dfn[u]) col[v] = ++cc;
     else col[v] = col[u];
     dfs(v);
 }
}
// BCC(Vertex)
bool vis[N]; // clr(vis, 0);
int col[M], cc; // clr(col, 0), cc = 0;
void dfs(int u, int pc) {
 vis[u] = 1;
 for (int i = p[u]; ~i; i = e[i].next) {
   if (!col[i]) {
    int v = e[i].u;
     if (cv.low[v] >= cv.dfn[u]) col[i] = col[i ^ 1] = ++cc;
     else col[i] = col[i ^ 1] = pc;
     if (!vis[v]) dfs(v, col[i]);
   }
}
```

3.4 SCC (tarjan)

```
struct SCC {
  int top, cnt, cc, t;
  int st[N], dfn[N], low[N], col[N]; bool vis[N];
  void tarjan(int u) {
    dfn[u] = low[u] = ++cnt;
    st[++top] = u, vis[u] = 1;
    for (int i = p[u]; ~i; i = e[i].next) {
        int v = e[i].u;
        if (!dfn[v]) {
            tarjan(v);
            low[u] = min(low[u], low[v]);
        }
        else if (vis[v]) low[u] = min(low[u], dfn[v]);
    }
}
```

3.5 Floyd 8

Q[h++] = s, dis[s] = 0;

```
if (dfn[u] == low[u]) {
     do {
      t = st[top--]:
      col[t] = cc;
      vis[t] = 0;
    } while (t != u);
     ++cc;
   }
 }
 void solve() {
   top = cnt = cc = 0;
   clr(vis, 0), clr(col, 0), clr(dfn, 0);
   Rep(i, n) if (!dfn[i]) tarjan(i);
 }
};
3.5
     Floyd
int n, mp[N][N]; // clr(mp, 0x3f); mp[i][i] = 0;
void floyd() {
 rep(k, n) rep(i, n) rep(j, n)
   mp[i][j] = min(mp[i][j], mp[i][k] + mp[k][j]);
     Diikstra
priority_queue<pair<int, int> > Q;
int dis[N]; bool vis[N];
void dijkstra(int s) {
 int u, v, w;
 while (!Q.empty()) Q.pop(); clr(vis, 0), clr(dis, 0x3f);
 Q.push(make_pair(0, s)), dis[s] = 0;
 while (!Q.empty()) {
   pair<int, int> tmp = Q.top(); Q.pop();
   if (vis[u = tmp.second]) continue;
   else vis[u] = true;
   for (int i = p[u]; ~i; i = e[i].next) {
    v = e[i].u, w = e[i].w;
     if (!vis[v] && dis[u] + w < dis[v]) {</pre>
      dis[v] = dis[u] + w;
      Q.push(make_pair(-dis[v], v));
    }
   }
 }
     SPFA
3.7
int dis[N]; bool vis[N];
int Q[N * N];
void spfa(int s) {
 int u, v, w, 1(0), h(0);
 clr(vis, 0), clr(dis, 0x3f);
```

```
while (1 < h) {</pre>
   u = 0[1++]:
   vis[u] = 0;
   for (int i = p[u]; ~i; i = e[i].next) {
    v = e[i].u, w = e[i].w;
    if (dis[u] + w < dis[v]) {</pre>
      dis[v] = dis[u] + w;
      if (!vis[v]) {
        vis[v] = 1;
        Q[h++] = v;
      }
   }
 }
3.8
     Hungary
/* Matching
|Minimum Vertex Cover| = |Maximum Matching|
|Maximum Independent Set| = |V| - |Maximum Matching|
|Minimum Path Cover| = |V| - |Maximum Matching| (Directed Acyclic Graph)
|Minimum Edge Cover| = |V| - |Maximum Matching| / 2 (Undirected Graph)
* warning: isolate vertex */
// O(|V|*|E|)
int n, m; // |V(x)|, |V(y)|
int mp[N][N], matx[N], maty[N]; bool fy[N];
int path(int u) {
 rep(v, m) if (mp[u][v] && !fy[v]) {
   fv[v] = 1;
   if (!~maty[v] || path(maty[v])) {
     matx[u] = v, maty[v] = u;
     return 1;
 }
 return 0;
int hungary() {
 int ret = 0:
 clr(matx, 0xff), clr(maty, 0xff);
 rep(i, n) if (!~matx[i]) {
   clr(fy, 0);
   ret += path(i);
 return ret;
3.9 Prim
int n; // |V|
int mp[N][N], ml[N]; bool vis[N];
```

3.10 ISAP

```
int prim() {
 int ret(0); clr(vis, 0), clr(ml, 0x3f); ml[0] = 0;
 rep(i, n) {
   int id(-1);
   rep(j, n) if (!vis[j] && (!~id || ml[j] < ml[id])) id = j;</pre>
   vis[id] = 1, ret += ml[id];
   rep(j, n) if (!vis[j] && mp[j][id] < ml[j]) ml[j] = mp[j][id];</pre>
 }
 return ret;
3.10 ISAP
//* bfs in the beginning to accelerate (+5%)
int gap[N], lev[N], cur[N], pre[N];
int sap(int s, int t) {
 clr(gap, 0), clr(lev, 0), memcpy(cur, p, sizeof p);
 int u, v, ret(0), step(inf), mi;
 gap[0] = n, u = pre[s] = s;
 while (lev[s] < n) { loop:</pre>
   for (int &i = cur[u]; ~i; i = e[i].next) {
    v = e[i].u:
     if (e[i].c && lev[u] == lev[v] + 1) {
      step = min(step, e[i].c);
      pre[v] = u;
      u = v;
      if (v == t) {
        while (v != s) {
          u = pre[v];
          e[cur[u]].c -= step;
          e[cur[u] ^ 1].c += step;
          v = u;
        }
        ret += step;
        step = inf;
      goto loop;
   }
   mi = n;
   for (int i = p[u]; ~i; i = e[i].next) {
    v = e[i].u;
    if (e[i].c && lev[v] < mi) {</pre>
      mi = lev[v]:
      cur[u] = i;
   }
   if (!--gap[lev[u]]) break;
   ++gap[lev[u] = mi + 1];
   u = pre[u];
 }
 return ret;
```

3.11 Dinic

```
int cur[N], lev[N], Q[N], pre[N], st[N];
bool bfs(int s, int t) {
 clr(lev, Oxff); lev[s] = 0, Q[0] = s;
 for (int l = 0, h = 1, u, v; l < h; ) {
   u = Q[1++]; if (u == t) break;
   for (int i = p[u]; ~i; i = e[i].next) {
    v = e[i].u:
    if (e[i].c > 0 && !~lev[v]) {
      lev[v] = lev[u] + 1;
      Q[h++] = v;
   }
 }
 return lev[t] != -1;
int dfs(int s, int t) {
 int u, v, top = 0, ret = 0, step, pos;
 st[++top] = s;
 while (top) {
   u = st[top]:
   if (u == t) {
    pos = 1:
    Rep(i, top - 1) if (e[pre[i]].c < e[pre[pos]].c) pos = i;
    ret += (step = e[pre[pos]].c);
    Rep(i, top - 1) e[pre[i]].c -= step, e[pre[i] ^ 1].c += step;
    u = st[top = pos]:
   for (int &i = cur[u]; ~i; i = e[i].next) {
    v = e[i].u;
    if (e[i].c && lev[u] < lev[v]) {</pre>
      pre[top] = i, st[++top] = u = v;
      break;
   if (!~cur[u]) lev[u] = -1, --top;
 return ret;
int dinic(int s, int t) {
 int ret = 0, c;
 while (bfs(s, t)) {
   memcpy(cur, p, sizeof p);
   ret += dfs(s, t);
 return ret;
3.12 MinCostMaxFlow
//addedge(u, v, cap, cost);
```

```
//addedge(u, v, cap, cost);
//addedge(v, u, 0, -cost);
//*warning: no Negative-Cycle
```

3.13 MinCut(UndirectedGraph)

```
struct SSP {
 int mc, mf;
 int pre[N][2], Q[N], dis[N]; bool vis[N];
 bool spfa(int s, int t) {
   clr(dis, 0x3f), clr(vis, 0); dis[s] = 0, Q[0] = s, vis[s] = 1;
   int u, v, w;
   for (int 1 = 0, h = 1; 1 != h; ) {
    vis[u = Q[1++]] = 0; if (1 == N) 1 = 0;
    for (int i = p[u]; ~i; i = e[i].next) {
      v = e[i].u, w = e[i].f;
      if (e[i].c && dis[u] + w < dis[v]) {</pre>
        dis[v] = dis[u] + w;
        pre[v][0] = u, pre[v][1] = i;
        if (!vis[v]) {
         vis[v] = 1;
          Q[h++] = v; if (h == N) h = 0;
      }
    }
   }
   return dis[t] != inf; // return dis[t] < 0: any flow</pre>
 void solve(int s, int t) {
   mc = mf = 0; int u, step;
   while (spfa(s, t)) {
     step = inf;
    for (u = t; u != s; u = pre[u][0]) {
      step = min(step, e[pre[u][1]].c);
     for (u = t; u != s; u = pre[u][0]) {
      e[pre[u][1]].c -= step;
      e[pre[u][1] ^ 1].c += step;
     mf += step;
     mc += dis[t] * step;
 }
};
       MinCut(UndirectedGraph)
3.13
int v[N], mp[N][N], dis[N]; bool vis[N];
int Stoer_Wagner(int n) { // 0 ~ n-1
 int ret = inf, now, pre;
 rep(i, n) v[i] = i;
 while (n > 1) {
   now = 1, pre = 0;
   Rep(i, n - 1) {
    dis[v[i]] = mp[v[0]][v[i]];
     if (dis[v[i]] > dis[v[now]]) now = i;
   clr(vis, 0), vis[v[0]] = 1;
   Rep(i, n-2) {
```

```
vis[v[now]] = 1, pre = now, now = -1;
Rep(j, n - 1) if (!vis[v[j]]) {
    dis[v[j]] += mp[v[pre]][v[j]];
    if (now == -1 || dis[v[now]] < dis[v[j]]) now = j;
}
ret = min(ret, dis[v[now]]);
rep(i, n) {
    mp[v[pre]][v[i]] += mp[v[now]][v[i]];
    mp[v[i]][v[pre]] = mp[v[pre]][v[i]];
}
v[now] = v[--n];
}
return ret;</pre>
```

4 Data Structure

4.1 UnionSet int fa[N]. v[N]:

```
int Find(int a) {
 if (fa[a] < 0) return a;</pre>
 else {
   int t = fa[a]:
   fa[a] = Find(fa[a]);
   v[a] += v[t]:
   return fa[a];
//addEdge(b, a, c) \rightarrow Union(ra, rb, v[a] - v[b] + c)
void Union(int a, int b, int c = 0) {
 if (fa[a] < fa[b]) {</pre>
   fa[a] += fa[b], fa[b] = a, v[b] += c;
 else {
   fa[b] += fa[a], fa[a] = b, v[a] -= c;
void init() { clr(fa, 0xff), clr(v, 0); }
4.2 FenwickTree
struct FenwickTree {
 11 a[N];
  inline void init() { clr(a, 0); }
 inline int lowbit(int x) { return x & -x: }
  void update(ll p, ll c) {
   while (p < N) {
     a[p] += c;
     p += lowbit(p);
 11 query(11 p) {
   11 \text{ ret} = 0;
   while (p > 0) {
    ret += a[p];
     p -= lowbit(p);
   return ret;
  int get_kth(ll k) {
   int now = 0;
   for(int i = 20; ~i; --i) { // for N ~ 1e6
     now \mid = (1 << i):
     if (now >= N || a[now] >= k)
       now ^= (1 << i);
     else k -= a[now]:
```

```
return now + 1;
}:
      RMQ
4.3
//+ pos if needed
struct RMQ {
 int lg[N], dmx[M][N]; // M = lg[N] + 1
 void init() {
   lg[0] = -1;
   Rep(i, n) {
    lg[i] = lg[i - 1] + !(i & (i - 1));
     dmx[0][i] = a[i]; // the original array
   for (int i = 1; (1 << i) <= n; ++i) {
     for (int j = 1; j + (1 << i) - 1 <= n; ++j) {
      dmx[i][i] = max(dmx[i-1][i], dmx[i-1][i+(1 << i-1)]);
   }
 int get_mx(int a, int b) { // a <= b</pre>
   int k = lg[b - a + 1];
   return max(dmx[k][a], dmx[k][b - (1 << k) + 1]);</pre>
};
4.4 RMQ 2D
int a[N][N], n, m;
struct RMO2D {
 int lg[N], dmx[M][M][N][N];
 void init() {
   lg[0] = -1;
   Rep(i, N-1) lg[i] = lg[i-1] + !(i & (i-1));
   Rep(i, n) Rep(j, m) dmx[0][0][i][j] = a[i][j];
   rep(_i, lg[n] + 1) rep(_j, lg[m] + 1) if (_i || _j) {
     Rep(i, n + 1 - (1 << i)) Rep(j, m + 1 - (1 << j)) {
      if (_i == 0) dmx[_i][_j][i][j] =
        \max(\dim x[i][j-1][i][j], \dim x[i][j-1][i][j+(1 << j-1)]);
       else dmx[_i][_j][i][j] =
        \max(\dim x[_i - 1][_j][i][j], \dim x[_i - 1][_j][i + (1 << _i - 1)][j]);
   }
 int get mx(int x1, int y1, int x2, int y2) {
   int kx = lg[x2 - x1 + 1], ky = lg[y2 - y1 + 1];
   int m1 = dmx[kx][ky][x1][y1];
   int m2 = dmx[kx][ky][x2 - (1 << kx) + 1][y1];
   int m3 = dmx[kx][ky][x1][y2 - (1 << ky) + 1];
   int m4 = dmx[kx][ky][x2 - (1 << kx) + 1][y2 - (1 << ky) + 1];
   return max(max(max(m1, m2), m3), m4);
};
```

4.5 LCA(online) 12

```
4.5 LCA(online)
```

```
int dep[N], dp[21][N]; // N ~ 1e6
void dfs(int u, int d, int pre) {
 dep[u] = d, dp[0][u] = pre;
 for (int i = 1; (1 << i) <= d; ++i)
   dp[i][u] = dp[i - 1][dp[i - 1][u]];
 for (int i = p[u]; ~i; i = e[i].next) {
   int v = e[i].u;
   if (v != pre) dfs(v, d + 1, u);
 }
int lca(int a, int b) {
 if (dep[a] < dep[b]) swap(a, b);</pre>
 for (int t = dep[a] - dep[b], step = 0; t; ++step, t >>= 1)
   if (t & 1) a = dp[step][a];
 if (a == b) return a;
 for (int i = 20; ~i; --i)
   if (dp[i][a] != dp[i][b]) a = dp[i][a], b = dp[i][b];
 return dp[0][a];
     HashMap
4.6
struct HashMap {
 int p[M], v[M], f[M], idx; ll a[M]; // ll v[M] if (ll)u
 void init() { idx = 0, clr(p, 0xff); }
 void insert(int u, ll t) { //add
   int x = u \% M;
   for (int i = p[x]; ~i; i = f[i]) {
    if (v[i] == u) {
      a[i] += t;
      return;
    }
   }
   a[idx] = t;
   v[idx] = u, f[idx] = p[x], p[x] = idx++;
};
     Tree Linear
4.7
int L[N], R[N], ;
void dfs(int u, int pre) {
 L[u] = ++ ;
 for (int i = p[u]; ~i; i = e[i].next) {
   if (e[i].u != pre) dfs(e[i].u, u);
 }
 R[u] = _;
```

4.8 Matrix

//*warning: stackoverflow

```
struct Matrix {
 int n; 11 a[N][N];
 Matrix(int _n = 0) {
   n = n;
   clr(a, 0);
 Matrix operator* (Matrix const &t) {
   Matrix r(n);
   rep(i, n) rep(j, n) if (a[i][j]) rep(k, n) {
    r.a[i][k] += a[i][j] * t.a[j][k];
   return r;
 Matrix operator^ (11 m) {
   Matrix r(n); rep(i, n) r.a[i][i] = 1;
   Matrix s(*this):
   for (; m; m >>= 1) {
     if (m \& 1) r = r * s;
     s = s * s:
   }
   return r;
 void pr() {
   rep(i, n) rep(j, n) cout << a[i][j] << (j == n - 1 ? '\n' : '\_i');
} ;
```

4.9 KD-Tree


```
//*warning: coincident points
inline 11 sqr(11 x) { return x * x; }
int k, cur; //k: Dimension
struct Point {
    11 x[M]; //M: max_k
    bool operator < (Point const &t) const {
      return x[cur] < t.x[cur];
    }
} p[N];
struct KD_Tree {
    Point tp[N];
    int sel; 11 ret;
    void build(int 1, int r, int d = 0) {</pre>
```

4.9 KD-Tree 13

```
if (1 >= r) return;
   if (d == k) d = 0;
   int mid = (1 + r) >> 1; cur = d;
/* optimization
 11 x[M][2];
 rep(i, k) x[i][0] = Inf, x[i][1] = -Inf;
 for (int i = 1; i < r; ++i) rep(j, k) {
   x[j][0] = min(x[j][0], p[i].x[j]);
   x[j][1] = max(x[j][1], p[i].x[j]);
 g[mid] = 0;
 for (int i = 1; i < k; ++i) {
   if (x[i][1] - x[i][0] > x[g[mid]][1] - x[g[mid]][0]) {
    g[mid] = i;
 cur = g[mid];
   nth_element(p + 1, p + mid, p + r);
   tp[mid] = p[mid];
   if (1 + 1 == r) return;
   build(1, mid, d + 1);
   build(mid + 1, r, d + 1);
 void query(int 1, int r, Point o, int d = 0) {
   if (1 >= r) return;
   if (d == k) d = 0;
   int mid = (1 + r) >> 1;
   11 t = 0; rep(i, k) t += sqr(o.x[i] - tp[mid].x[i]);
   if (t < ret && t) { // && t (ignore itself)</pre>
    ret = t, sel = mid;
   int 11 = 1, r1 = mid, 12 = mid + 1, r2 = r;
   if (o.x[d] > tp[mid].x[d]) swap(11, 12), swap(r1, r2);
   query(11, r1, o, d + 1);
   if (ret > sqr(o.x[d] - tp[mid].x[d])) {
    query(12, r2, o, d + 1);
   }
 }
} ;
```

5 String

} trie[N*M], root;

int insert(char* s) {

Trie_Node *p = &root;

int j = s[i] - 'a';

for (int i = 0; s[i]; ++i) {

```
5.1 KMP
int fail[N], len;
void buildF(char *p) {
 for (int i = 1, j = fail[0] = -1; i < len; ++i) {</pre>
   while (~j && p[i] != p[j + 1]) j = fail[j];
   fail[i] = j += p[i] == p[j + 1];
 }
int kmp(char *s, char *p) {
 len = strlen(p); buildF(p);
 int ret (0):
 for (int i = 0, j = -1; s[i]; ++i) {
   while (~j && s[i] != p[j + 1]) j = fail[j];
   if (s[i] == p[j + 1]) ++j;
   if (j == len - 1) {
    ++ret:
    j = fail[j];
 }
 return ret;
// all repetends
vector<int> r; //empty
void get_r() {
 int now = len - 1;
 while (~now) {
   r.push_back(len - 1 - fail[now]);
   now = fail[now];
}
5.2 Trie
int const N = 100100; // size
int const M = 32; // length
struct Trie {
 int idx, cnt;
 struct Trie_Node {
   int id;
   Trie_Node *next[26];
   void init() {
    id = -1;
     clr(next, NULL);
```

```
if (p -> next[j] == NULL) {
       trie[idx].init();
       p -> next[j] = &trie[idx++];
     p = p \rightarrow next[j];
   if (p -> id == -1) p -> id = cnt++;
   return p -> id;
 void init() {
   root.init():
   idx = cnt = 0;
 }
};
      Min Representation
int mins(char *s, int n) {
 int i = 0, j = 1, len = 0, x, y;
 while (i < n && j < n && len < n) {
   x = i + len; if (x >= n) x -= n;
   v = i + len; if (y >= n) y -= n;
   if (s[x] == s[y]) ++len;
   else if (s[x] < s[y]) j += len + 1, len = 0;
   else i = j++, len = 0;
 return i;
}
     Manacher
5.4
struct Manacher {
 int p[N<<1], len; char str[N<<1];</pre>
 int id. ret: // maxPalindrome idx. maxPalindrome length
 void func() {
   int mx (0);
   rep(i, len) {
     if (mx > i) p[i] = min(p[id + id - i], mx - i);
     else p[i] = 1;
     for (; str[i + p[i]] == str[i - p[i]]; ++p[i]);
     ret = max(ret, p[i]);
     if (p[i] + i > mx) {
      mx = p[i] + i;
       id = i;
     }
   }
   --ret;
 void cal(char *s) {
   // "aaa" -> "!#a#a#a#"
   len = 0; str[len++] = '!', str[len++] = '#';
   for (int i = 0; s[i]; ++i) {
     str[len++] = s[i]:
     str[len++] = '#';
```

5.4 Manacher 15

```
}
str[len] = 0;
ret = 0;
func();
}
};
```

6 Geometry

6.1 Basic

```
db const pi = 3.141592653589793;
db const eps = 1e-10;
db const dnf = 1e+10;
inline int sgn(db x) { return (x > eps) - (x < -eps); }</pre>
inline db sqr(db x) { return x * x; }
inline db rtoa(db x) { return x * pi / 180.; }
inline db ator(db x) { return x * 180. / pi; }
6.2 Point
struct Point {
 db x. v:
 Point (db x = 0., db y = 0.): x(x), y(y) {}
 void in() {
   scanf("%lf", &x, &y);
 void out() { //+ eps to avoid -0.000
   friend Point operator+ (Point const &a, Point const &b) {
   return Point(a.x + b.x, a.y + b.y);
 friend Point operator- (Point const &a. Point const &b) {
   return Point(a.x - b.x, a.y - b.y);
 friend Point operator* (Point const &a, db const &b) {
   return Point(a.x * b, a.y * b);
 friend Point operator/ (Point const &a, db const &b) {
   return Point(a.x / b, a.v / b);
 // det
 friend db operator^ (Point const &a, Point const &b) {
   return a.x * b.y - a.y * b.x;
 friend db operator* (Point const &a, Point const &b) {
   return a.x * b.x + a.y * b.y;
 friend bool operator == (Point const &a, Point const &b) {
   return !sgn(a.x - b.x) && !sgn(a.y - b.y);
 friend bool operator!= (Point const &a, Point const &b) {
   return sgn(a.x - b.x) \mid\mid sgn(a.y - b.y);
 friend bool operator< (Point const &a, Point const &b) {
   int ca = sgn(a.x - b.x), cb = sgn(a.y - b.y);
   return !ca ? !~cb : !~ca ;
```

```
// rotate (anti-clockwise)
friend Point operator& (Point const &a, db const &b) {
 return Point(a.x * cos(b) - a.y * sin(b),
                  a.x * sin(b) + a.y * cos(b));
// rotate (clockwise)
friend Point operator% (Point const &a, db const &b) {
 return Point(a.x * cos(b) + a.y * sin(b),
                 -a.x * sin(b) + a.y * cos(b));
Point &operator+= (Point const &b) {
 x += b.x, y += b.y;
 return *this:
Point & operator -= (Point const &b) {
 x = b.x, y = b.y;
 return *this;
Point &operator*= (db const &b) {
 x *= b, y *= b;
 return *this:
Point &operator/= (db const &b) {
 x /= b, y /= b;
 return *this;
// rotate (anti-clockwise)
Point &operator&= (db const &b) {
     x = x * cos(b) - y * sin(b), y = t * sin(b) + y * cos(b);
 return *this:
// rotate (clockwise)
Point &operator%= (db const &b) {
     x = x * cos(b) + y * sin(b), y = -t * sin(b) + y * cos(b);
 return *this:
Point stz() {
 return *this / len();
db len() {
 return sqrt(sqr(x) + sqr(y));
db lens() {
 return sqr(x) + sqr(y);
db ang() {
 return atan2(y, x);
db ang2(Point b) {
```

6.3 Line 17

```
return acos((*this * b) / len() / b.len());
}:
// collinearity
bool collinear(Point a, Point b, Point c) {
    return !sgn((b - a) ^ (c - a));
}
6.3 Line
struct Line {
     Point a, b;
     Line () {}
     Line (Point a, Point b) : a(a), b(b) {}
     void in() {
          \operatorname{scanf}(\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{lf}_{\sqcup}\frak{l
     void out() {
          printf("%.31f<sub>\\\\</sub>",.31f<sub>\\\\\\</sub>", a.x, a.y, b.x, b.y);
      db len() {
           return (a - b).len();
      bool parallel(Line const &t) {
           return !sgn((b - a) ^ (t.b - t.a));
      bool vertical(Line const &t) {
           return !sgn((b - a) * (t.b - t.a));
      bool intersect_seg(Line const &t) {
           db A = (b - a) \hat{t.b - t.a};
          db B = (b - a) ^ (b - t.a):
           db C = (t.b - t.a) ^ (b - a);
           db D = (t.b - t.a) ^ (t.b - a);
           if (!sgn(A)) {
               return sgn(B) ? 0 : sgn((t.a - a) * (t.a - b)) <= 0
                                                                             || sgn((t.b - a) * (t.b - b)) <= 0
                                                                             || sgn((a - t.a) * (a - t.b)) <= 0;
          }
           else return sgn(B / A) >= 0
                                                                                                                                //t-
                                            && sgn(B / A - 1) \le 0 //t +
                                            && sgn(D / C) >= 0
                                                                                                                                //s-
                                            && sgn(D / C - 1) \le 0; //s+
     }
     bool dot online(Point const &p) {
           return !sgn((a - p) ^ (b - p)) && !sgn((p - a) * (p - b));
      bool dot inline(Point const &p) {
           return dot_online(p) && p != a && p != b;
```

```
Point intersect(Line const &t) { // check parallel first
   db A = (a - t.a) \hat{(t.b - t.a)}, B = (b - t.a) \hat{(t.b - t.a)};
   return (b * A - a * B) / (A - B):
 Point proj(Point const &p) {
   return (b - a) * ((b - a) * (p - a)) / (b - a).lens() + a;
 db dis_ptoseg(Point const &p) {
   if (sgn((p-a) \hat{(b-a)}) < 0) return (p-a).len();
   else if (sgn((p - b) ^ (a - b)) < 0) return (p - b).len();
   else return fabs((a - p) ^ (b - p)) / len();
 }
 db dis_ptoline(Point const &p) {
   return fabs((a - p) ^ (b - p)) / len();
 Line move(db const &d) {
   Point p = (b - a).stz() & (0.5 * pi);
   return Line(a + p * d, b + p * d);
};
6.4 Triangle
struct Triangle {
 Point a. b. c:
 Triangle() { }
 Triangle(Point a, Point b, Point c): a(a), b(b), c(c) { }
 db area() { return 0.5 * fabs((b - a) ^ (c - a)); }
 // Mass Center
 Point mass() {
   return (a + b + c) / 3.;
 // Circum_Center
 Point circum() {
   db = b.x - a.x, b1 = b.y - a.y, c1 = .5 * (sqr(a1) + sqr(b1));
   db = c.x - a.x, b2 = c.y - a.y, c2 = .5 * (sqr(a2) + sqr(b2));
   db d = a1 * b2 - a2 * b1;
   return Point(a.x + (c1*b2 - c2*b1) / d, a.y + (a1*c2 - a2*c1) / d);
 // Ortho_Center
 Point ortho() {
   return mass() * 3.0 - circum() * 2.0;
 // Inner Center
 Point inner() {
   db la = (b - c).len(), lb = (c - a).len(), lc = (a - b).len();
   return Point((la*a.x + lb*b.x + lc*c.x), (la*a.y + lb*b.y + lc*c.y))
            / (la + lb + lc);
 }
} ;
```

6.5 Graham 18

6.5 Graham

int n; Point p[N], ans[N];

bool xmult(Point a, Point b, Point c) {

return $sgn((b - a) ^ (c - a)) \le 0$;

```
int Graham() {
 int now = 1, top; sort(p, p + n); p[n] = p[0];
 rep(i, 3) {
   if (n == i) return i;
   ans[i] = p[i];
 for (int i = 2; i < n; ++i) {</pre>
   while (now && xmult(ans[now - 1], ans[now], p[i])) --now;
   ans[++now] = p[i];
 top = now, ans[++now] = p[n - 2];
 for (int i = n - 3; ~i; --i) {
   while (now != top && xmult(ans[now - 1], ans[now], p[i])) --now;
   ans[++now] = p[i];
 ans[now] = ans[0];
 return now;
     N Circles cover [1-K] times
int n; Point p[N]; db r[N];
struct CIRUT {
 pair<db, int> e[N << 1]:
 db ans[N]; int cnt;
 inline int rlt(int a, int b) {
   db d = (p[a] - p[b]).len();
   int s1 = sgn(d - r[a] + r[b]), s2 = sgn(d - r[b] + r[a]);
   if (s1 < 0 || !s1 && (d > eps || a > b)) return 0;
   if (s2 < 0 || !s2 && (d > eps || a < b)) return 1;
   return d < r[a] + r[b] - eps ? 2 : 3;
 inline db areaArc(Point o, db r, db ang1, db ang2) {
   Point a(o.x + r * cos(ang1), o.y + r * sin(ang1));
   Point b(o.x + r * cos(ang2), o.y + r * sin(ang2));
   db dif = ang2 - ang1;
   return 0.5 * ((a ^ b) + (dif - sin(dif)) * r * r);
 void cal() {
   rep(i, n + 1) ans[i] = 0.;
   db last; Point x, y;
   rep(i, n) if (r[i] > eps) {
    int acc = 0; cnt = 0;
     e[cnt++] = make_pair(-pi, 1);
     e[cnt++] = make_pair(pi, -1);
     rep(j, n) if (i != j \&\& r[j] > eps) {
```

```
int rel = rlt(i, j);
       if (rel == 1) {
        e[cnt++] = make_pair(-pi, 1);
        e[cnt++] = make_pair(pi, -1);
       else if (rel == 2) {
        db center = atan2(p[j].y - p[i].y, p[j].x - p[i].x);
        db ds = (p[i] - p[j]).lens();
        db ang = acos((sqr(r[i]) - sqr(r[j]) + ds)
                /(2.0 * r[i] * sqrt(ds)));
        db angX = center + ang, angY = center - ang;
        if (angX > pi) angX -= 2.0 * pi;
        if (angY < -pi) angY += 2.0 * pi;
        if (angX < angY) ++acc;</pre>
        e[cnt++] = make_pair(angX, -1);
        e[cnt++] = make_pair(angY, 1);
      }
     sort(e, e + cnt): last = -pi:
     rep(j, cnt) {
      db tmp = areaArc(p[i], r[i], last, e[j].first);
      ans[acc] += tmp:
      ans[acc - 1] -= tmp;
      acc += e[j].second;
      last = e[j].first;
   }
 }
};
      Volume of a Tetrahedron
//AB, AC, AD, BC, CD, BD.
db calc(db a, db b, db c, db r, db p, db q) {
 a *= a, b *= b, c *= c, r *= r, p *= p, q *= q;
 db P1 = a * p * (-a + b + c - p + q + r);
 db P2 = b * q * (a - b + c + p - q + r);
 db P3 = c * r * (a + b - c + p + q - r);
 db P = a * b * r + a * c * q + b * c * p + p * q * r;
 return sqrt((P1 + P2 + P3 - P)) / 12.;
6.8 Ellipse's Circumference
db ellcir(db a, db b) {
 if (a < b) swap(a, b);
 db e2 = 1.0 - b * b / a / a, e = e2;
 db ret = 1.0, x = 1.0, y = 2.0, t = 0.25;
 rep(i, 10000) {
   ret -= t * e;
   t = t * x * (x + 2.0) / (y + 2.0) / (y + 2.0);
   x += 2.0, y += 2.0, e *= e2;
```

return 2.0 * pi * a * ret;

6.8 Ellipse's Circumference

}

7 Appendix

7.1 Primes

n	Value
	2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73
	79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157
	163 167 173 179 181 191 193 197 199 211 223 227 229 233 239
	241 251 257 263 269 271 277 281 283 293 307 311 313 317 331
	337 347 349 353 359 367 373 379 383 389 397 401 409 419 421
<= 1000	431 433 439 443 449 457 461 463 467 479 487 491 499 503 509
	521 523 541 547 557 563 569 571 577 587 593 599 601 607 613
	617 619 631 641 643 647 653 659 661 673 677 683 691 701 709
	719 727 733 739 743 751 757 761 769 773 787 797 809 811 821
	823 827 829 839 853 857 859 863 877 881 883 887 907 911 919
	929 937 941 947 953 967 971 977 983 991 997
	9973 99991 999983 9999991 9999989 999999937 9999999967
large	9999999977 99999999999 999999999991 99999999
	999999999999 9999999999999 999999999999

7.2 Other Constants

Name	Symbol	Value
Pi	π	3.14159265358979323846
Base of Natural Logarithms	e	2.71828182845904523536
Eulers Constant	γ	0.57721566490153286061
Golden Mean	ϕ	1.61803398874989484820
Square Root of 2	$\sqrt{2}$	1.41421356237309504880
Square Root of 3	$\sqrt{3}$	1.73205080756887729353

7.3 C(n,m)

n	Value		
- 11	value		
0	1		
1	1 1		
1 2 3	1 2 1		
3	1 3 3 1		
4	1 4 6 4 1		
5	1 5 10 10 5 1		
6	1 6 15 20 15 6 1		
7	4		
	1 8 28 56 70 56 28 8 1		
9	1 9 36 84 126 126 84 36 9 1		
10	1 10 45 120 210 252 210 120 45 10 1		

7.4 S(n,m)

```
/* Stirling number of the second kind:
  The number of ways to partition a set of
  n objects into k non-empty subsets
  S[i][1] = 1;
  S[i][j] = S[i - 1][j - 1] + j * S[i - 1][j];
*/
```

n	Value			
1	1			
2	1 1			
3	1 3 1			
4	1761			
5	1 15 25 10 1			
6	1 31 90 65 15 1			
7	1 63 301 350 140 21 1			
8	1 127 966 1701 1050 266 28 1			
9	1 255 3025 7770 6951 2646 462 36 1			
10	1 511 9330 34105 42525 22827 5880 750 45 1			

7.5 F(n,m)

```
/* Euler's table:
   Number of partitions of n into at most m parts.
   F[i][1] = F[0][i] = 1;
   F[i][j] = F[i][j - 1] + (i >= j) ? F[i - j][j] : 0;
*/
```

n	Value		
1	1		
2 3	1 2		
3	1 2 3		
4	1 3 4 5		
5	1 3 5 6 7		
6	1 4 7 9 10 11		
7	1 4 8 11 13 14 15		
8	1 5 10 15 18 20 21 22		
9	1 5 12 18 23 26 28 29 30		
10	1 6 14 23 30 35 38 40 41 42		

7.6 Geometry Formulas 2D 21

7.6 Geometry Formulas 2D

Shape	Property	Formula		
-	Semi-perimeter	$p = 0.5 \left(a + b + c \right)$		
İ	-	S = 0.5aH		
	Area	$S = ab \sin C$		
		$S = \sqrt{p(p-a)(p-b)(p-c)}$		
		$S = rac{\mathbf{a}bc}{4R}$		
	Midline	$M_a = 0.5\sqrt{2(b^2 + c^2) - a^2}$		
		$M_a = 0.5\sqrt{b^2 + c^2 + 2bccos(A)}$		
	Bisector	$T_a = \frac{\sqrt{bc((b+c)^2 - a^2)}}{b+c}$ $T_a = \frac{2bc \cos(0.5A)}{b+c}$		
Triangle	Disector	$T_a = \frac{b+c}{T_a}$ $T_a = \frac{2bc\cos(0.5A)}{b+c}$		
İ		$H_a = bsin(C)$		
	Height	$H_a = csin(B)$		
		$H_a = \sqrt{b^2 - \left(\frac{a^2 + b^2 - c^2}{2a}\right)^2}$ $r = \frac{S}{a}$		
İ		$r = \frac{S}{n}$		
		$r = \arcsin \frac{B}{2} \sin \frac{C}{2} \sin \left(\frac{B+C}{2} \right)$		
	Radius(Inscribed Circle)	$r = 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$		
		$r = 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$ $r = \sqrt{\frac{(p-a)(p-b)(p-c)}{p}}$		
		$r = p \tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}$		
İ	Radius(Circumcircle)	$r = p \tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}$ $R = \frac{abc}{4S} = \frac{a}{2\sin A} = \frac{b}{2\sin B} = \frac{c}{2\sin C}$		
	D_1 , D_2 : Diagonal			
	A : Angle of D_1 and D_2	$a^2 + b^2 + c^2 + d^2 = D_1^2 + D_2^2 + 4M^2$		
Quadrilateral	M: Dist of two Midpoints			
	Area	$S = 0.5D_1D_2\sin A$		
	For Concyclic	$ac + bd = D_1D_2$		
		$S = \sqrt{(p-a)(p-b)(p-c)(p-d)}$ $A = \frac{2\pi}{n}$ $C = \frac{(n-2)\pi}{n}$		
	Central Angle	$A = \frac{2\pi}{n}$		
	Interior Angle	$C = \frac{(n-2)\pi}{n}$		
N-gon	Side Length	$a = 2\sqrt{R^2 - r^2} = 2R\sin\frac{A}{r} = 2r\tan\frac{A}{r}$		
	Area	$S = 0.5nar = nr^2 \tan \frac{A}{2} = nR^2 \sin \frac{A}{2} = \frac{na^2}{4 \tan \frac{A}{2}}$		
	Arc	l = rA		
İ	Chord ①	$a = 2\sqrt{2hr - h^2} = 2r\sin\frac{A}{2}$		
Circle	Height of Bow-Shaped	$h=r-\sqrt{r^2-rac{a^2}{4}}=r\left(1-\cosrac{A}{2} ight)=0.5$ arctan $rac{A}{4}$		
	Area of the Fan-Shaped	$S_1 = 0.5rl = 0.5r^2A$		
	Area of the Bow-Shaped	$S_2 = 0.5 (rl - a (r - h)) = 0.5r^2 (A - \sin A)$		

7.7 Geometry Formulas 3D

Shape	Property	Formula
Prism	Volume	p = 0.5 (a + b + c)
	Curved Surface Area	S = hp
	Total Surface Area	T = S + 2A
Pyramid	Volume	$V = \frac{Ah}{3}$
	Curved Surface Area	S = 0.5lp
base	Total Surface Area	T = S + A
Frustum	Volume	$V = \frac{1}{3} \left(A_1 + A_2 + \sqrt{A_1 A_2} \right) h$
	Curved Surface Area	$S = 0.5 (p_1 + p_2) l$
	Total Surface Area	$T = S + A_1 + A_2$
Cylinder	Volume	$V = \pi r^2 h$
	Curved Surface Area	$S = 2\pi r h$
	Total Surface Area	$T = 2\pi r \left(h + r \right)$
Cone	Generating Line	$l = \sqrt{h^2 + r^2}$
	Volume	$V = \frac{1}{3}\pi r^2 h$
1 /_\`\	Curved Surface Area	$S = \pi r l$
1	Total Surface Area	$T = \pi r \left(l + r \right)$
Truncated Cone	Generating Line	$l = \sqrt{h^2 + (r_1 - r_2)^2}$
R ₂	Volume	$V = \frac{1}{3}\pi h \left(r_1^2 + r_2^2 + r_1 r_2\right)$
+\s	Curved Surface Area	$S = \pi \left(r_1 + r_2 \right) l$
' <u>K</u> ,	Total Surface Area	$T = \pi r_1 (l + r_1) + \pi r_2 (l + r_2)$
Sphere	Volume	$V = \frac{4}{3}\pi r^3$
	Total Surface Area	$T = 4\pi r^2$
Spherical Segment	Volume	$V = \frac{1}{6}\pi h \left(3 \left(r_1^2 + r_2^2 \right) + h^2 \right)$
2,	Curved Surface Area	$S = 2\pi r h$
21,	Total Surface Area	$T = \pi \left(2rh + r_1^2 + r_2^2 \right)$
Sphere Sector	Volume	$V = \frac{2}{3}\pi r^2 h$
	Total Surface Area	$T = \pi r \left(2h + r_0 \right)$