CS2105 Introduction to Computer Networks

Lecture 11 Physical Layer

5 November 2018

PREVIOUS LECTURE

Local Area Network

- Every adapter (NIC) has a unique MAC address
 - Permanent; 48-bits; Hardware-assigned

- ARP is used to discover MAC addresses of other nodes
 - Must be in the same subnet

• Ethernet: CSMA/CD with binary (exponential) back-off

Switch: self-learns the topology of a subnet

Learning Outcomes

After this class, you are expected to know:

- different methods of digital transmission
 - NRZ, RZ, Manchester, and DM
- different methods of analog transmission
 - Frequency, Amplitude, and Phase modulation
 - QAM and constellation diagram
 - Frequency domain and signal multiplexing
- bandwidth and theoretical capacity of a medium
 - Nyquist's and Shannon's formula

Application

Transport

Network

Link

Physical

You are here

Lecture 11 Roadmap

- 1. Introduction to Signal
- 2. Digital Transmission
- 3. Analog Transmission

Signals

- Physical layer moves data in the form of electro-magnetic signals across transmission (physical) medium
 - In computers, data is encoded as 0s and 1s
- Os and 1s can be transmitted as either analog or digital signal
 - Analog signal is continuous: <u>infinitely many levels</u>
 - Wi-Fi
 - Digital signal is discrete: <u>limited defined values</u>
 - Ethernet; USB

Lecture 11 Roadmap

- 1. Introduction to Signal
- 2. Digital Transmission
- 3. Analog Transmission

Digital Signal

Properties:

- Voltage determines the value of digital signal
 - Encode 0s and 1s with different voltages
 - Unipolar: uses voltage on only one side
 - Polar: uses two levels (-1,1)
 - Bipolar: uses three levels (-1,0,1)

Unipolar Scheme

Non-Return to Zero (NRZ)

All signal levels are on one side

Polar Scheme

Non-Return to Zero-Level (NRZ-L)

• Bit 0: -V voltage

•Bit 1: +V voltage

Non-Return to Zero-Invert (NRZ-I)

• Bit 0: no inversion

• Bit 1: inversion

Bit-Slip

Suppose you have a sequence of 0s or 1s

Bipolar Scheme

Return-to-Zero (RZ)

Voltage returns to zero in the middle

- Drawbacks:
 - 3 levels of voltage
 - Higher bandwidth required

Self-Clocking Scheme

Manchester

- •Bit 0:
- •Bit 1:

Differential Manchester

- Bit 0: inversion
- Bit 1: no inversion

Susceptible to polarity flips

Detecting transition easier

Summary of Digital Encoding

- Unipolar NRZ
- NRZ-L
- NRZ-I
- RZ
- Manchester
- Differential Manchester

Lecture 11 Roadmap

- 1. Introduction to Signal
- 2. Digital Transmission
- 3. Analog Transmission

Analog Signal

The most basic analog signal is a sine wave

Analog Signal

- Analog signal can be composed into composite signal
 - Composite signal can also be decomposed to multiple sine waves
 - Useful to visualize a composite signal in frequency domain instead of time domain

Jean-Baptiste Joseph Fourier

Fourier Transform

http://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/

Bandwidth

- A signal can be decomposed into different frequency
 - It has minimum and maximum frequency
 - The difference is bandwidth of the signal
- A transmission channel only allows certain frequency to pass
 - It has minimum and maximum frequency
 - The difference is bandwidth of the medium

Bandwidth

- Baseband Channel
 - Very low frequencies, near 0

- Bandpass Channel
 - Only allows frequencies between a range

 How does a channel bandwidth relate to bit-rate?

Nyquist Bit-Rate Formula

- Assumption:
 - Ideal noise-less channel
- Theoretical maximum bit-rate is

$$2B \times \log_2 L$$

Where

- B is the channel bandwidth
- L is the number of signal levels

Nyquist Bit-Rate Formula

Example

- Manchester coding
 - 2 signal levels
- Noiseless 1 MHz channel
- Theoretical maximum data rate

$$2B \times \log_2 L = 2 \times 10^6 \times \log_2 2 = 2 \times 10^6$$

• 2 Mbps

Signal-to-Noise Ratio

- A transmission channel introduces noise that distorts signal
 - SNR is the measure of the strength of signal over noise

Shannon Channel Capacity

- Assumption:
 - Noisy channel (but SNR is known)
- Theoretical maximum bit-rate is

$$B \times \log_2(1 + SNR)$$

Example:

- A phone line with channel bandwidth of 3,000 Hz
- Signal-to-noise ratio of 3,162
- Capacity of the channel is 34,881 bps

Analog Transmission

Analog Encoding

- Recap: $A \sin(2\pi f t + \varphi)$
 - We can change A, f, and φ to encode 0s and 1s

- Amplitude Shift Keying (ASK)
 - Changes the peak amplitude (A)
- Frequency Shift Keying (FSK)
 - Changes the frequency (f)
- Phase Shift Keying (PSK)
 - Changes the phase (φ)

Amplitude Shift Keying (ASK)

Use different amplitude for 0s and 1s

- Bit 1: $1 \times \sin(2\pi f t + \varphi) = \sin(2\pi f t + \varphi)$
- Bit 0: $0 \times \sin(2\pi f t + \varphi) = 0$

- Drawback:
 - Susceptible to noise and attenuation

Time

Frequency Shift Keying (ASK)

Use different frequency for 0s and 1s

- Bit 1: $A \sin(2\pi f_1 t + \varphi)$
- Bit 0: $\mathbf{B} \sin(2\pi f_0 t + \boldsymbol{\varphi})$

Amplitude & phase constant

- Drawback:
 - Limited by bandwidth

Phase Shift Keying (PSK)

Use different phase for 0s and 1s

• Bit 1: $A \sin(2\pi f_1 t + \pi)$

• Bit 0: **B** $\sin(2\pi f_2 t + 0)$

Time

Constellation Diagram

QPSK

- Can we transmit faster?
 - Phase shift to represent more bits
 - QPSK: 4 possible phases

Phase	Values represent	
00	11	
90 ⁰	01	
180 ⁰	00	
270°	10	

• Every signal encode 2-bits of data

8-PSK

- Can we transmit even faster?
 - Phase shift to represent more bits
 - 8-PSK: 8 possible phases

Phase	Values represent	Phase	Values represent
00	110	180°	000
45°	010	225 ⁰	100
90°	011	270°	101
135 ⁰	001	315 ⁰	111

• Every signal encode 3-bits of data

QAM

Quadrature Amplitude Modulation

- Can we transmit even faster?
 - Combines ASK and PSK
 - Many combinations are possible
- A signal unit in a 2^k -QAM scheme is a combination of amplitude and phase that represents k bits
 - Baud rate (Bd) is the number of signal units per second
 - Bit rate is the number of bits per second

QAM

QAM

• Pros and Cons?

Real World Application

- Singapore TV broadcast uses DVB-T
 - QPSK, 16-QAM, or 64-QAM
- 802.11a/b/g/n
 - QPSK, 16-QAM, or 64-QAM
- 802.11ac
 - 256-QAM
- Ethernet, RFID, and NFC
 - Manchester Coding
- USB
 - NRZ-I

Summary

- Analog vs Digital Signals
- Digital Encoding
 - Unipolar: NRZ
 - Polar: NRZ-I, NRZ-L
 - Bipolar: RZ
 - Self-Clocking: Manchester, Differential Manchester
- Analog Encoding
 - Composite Signals
 - Bandwidth
 - ASK, FSK, PSK, QAM, and more
 - Constellation Diagram