Image Transforms

Jayanta Mukhopadhyay
Dept. of Computer Science and Engg.

$f(x,y) = \sum_{j} \sum_{i} \lambda_{ij} b_{ij}(x,y)$

in the analysis.

Image Transform

- Image in continuous form: f(x,y): A 2-D function, where (x,y) in R².
 Let B be a set of basis functions: can be extended in the analysis.
 - $B = \{b_i(x,y) \mid i = ..., -1, 0, 1, 2, 3,\}, b_i(x,y) \text{ in } R \text{ or } C.$
- Let f(x,y) be expanded using B as follows:

$$f(x,y) = \sum_{i} \lambda_{i} b_{i}(x,y)$$
 Coefficients of transform

The **transform** of f w.r.t. B is given by $\{\lambda_i | i = \dots -1,0,1,2,3,\dots\}$.

Indexing may be multidimensional say, λ_{ij} .

Orthogonal Expansion $f(x) = \sum \lambda_i b_i(x)$ and 1-D Transforms

$$f(x) = \sum_{i} \lambda_{i} b_{i}(x)$$

- Inner product: $\langle f, g \rangle = \int f(x)g^*(x)dx$
- Orthogonal expansion: If B satisfies:

$$\langle b_i, b_j \rangle = 0$$
, for $i \neq j$
= c_i Otherwise (for $i = j$), where $c_i > 0$

- Transform coefficients in O.E.: $\lambda_i = \frac{1}{c_i} \langle f, b_i \rangle$ If c_i =1, it becomes orthonormal expansion.

Forward transform
$$\lambda_i = \langle f, b_i \rangle$$

Forward transform $\lambda_i = \langle f, b_i \rangle$ Inverse transform: $f(x) = \int_{i=-\infty}^{\infty} \lambda_i b_i(x) di$

Fourier transform

Complete base
$$B = \{e^{-j\omega x} | -\infty < \omega < \infty\}$$

Unit impulse function

Orthogonality:
$$\int_{-\infty}^{\infty} e^{j\omega x} dx = \begin{cases} 2\pi \delta(x), & for \ \omega = 0 \\ 0, & otherwise. \end{cases}$$

Fourier Transform:
$$\mathcal{F}(f(x)) = \hat{f}(j\omega) = \int_{-\infty}^{\infty} f(x)e^{-j\omega x}dx$$

Inverse Transform:
$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(j\omega) e^{j\omega x} dx$$
 Full reconstruction
$$e^{-j\omega x} = \cos(\omega x) - j\sin(\omega x)$$

$$\hat{f}(j\omega) = \int_{-\infty}^{\infty} f(x)(\cos(\omega x) - j\sin(\omega x)) dx$$

$$C = \{\cos(\omega x) | -\infty < \omega < \infty\} \qquad S = \{\sin(\omega x) | -\infty < \omega < \infty\}$$

Orthogonal → But not complete!

Even and odd functions

$$\cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2}$$
$$\sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

- Even: f(-x)=f(x) for all x.
- Odd: f(-x) = -f(x) for all x. $\rightarrow f(0) = 0$.
- For even f(x): $\int_{-\infty}^{\infty} f(x)(\sin(\omega x)) dx = 0$
- For odd f(x): $\int_{-\infty}^{\infty} f(x)(\cos(\omega x)) dx = 0$

 Full reconstruction possible with cosines (sines) only if it is even (odd).

4

Discrete representation

Discrete representation of a function:

$$f(n) = \{f(nX_0) | n \in \mathbb{Z}\}$$
 Set of integers Sampling interval

- Can be considered as a vector in an infinite dimensional vector space.
- In our context, it is of a finite dimensional space, e.g. $\{f(n), n=0,1,..N-1\}$, or
- $f = [f(0) f(1) \dots f(N-1)]^T$.

Discrete Linear Transform: A general form

- For n-dimensional vector X any linear transform,
 - ullet e.g. $Y_{mx1} = B_{mxn} X_{nx1}$
 - $X_{n \times 1}$: A column vector of dimension n.
 - Y_{mx} : A column vector of dimension m.
 - B_{mxn} : A matrix of dimension mxn.
- Has inverse transform if B is a square matrix and invertible.

Basis vectors

- $lue{B}$ is the transformation matrix.
- Rows of B are called basis vectors.

$$B = \begin{bmatrix} \boldsymbol{b}_0^{*T} \\ \boldsymbol{b}_1^{*T} \\ \vdots \\ \boldsymbol{b}_n^{*T} \end{bmatrix}$$
dot product or inner product.

Orthogonality condition:

$$< \boldsymbol{b}_{i}^{*T}. \boldsymbol{b}_{j} > = 0 \text{ if } i \neq j$$

= c_{i} , otherwise

Discrete Fourier Transform (DFT)

$$b_{k}(n) = \frac{1}{\sqrt{N}} e^{j2\pi \frac{K}{N}n}, \text{ for } 0 \le n \le N-1, and } 0 \le k \le N-1$$

$$\hat{f}(k) = \sum_{n=0}^{N-1} f(n)e^{-j2\pi \frac{k}{N}n}, for \ 0 \le k \le N-1$$

$$\hat{f}(N+k) = \hat{f}(k)$$

$$k/N: \text{ Normalized frequency}$$

$$f(n) = \frac{1}{N} \sum_{k=0}^{N-1} \hat{f}(k)e^{j2\pi \frac{K}{N}n}, for \ 0 \le n \le N-1$$

A single period

Fundamental frequency: $1/(NX_0)$

$$f(n+N)=f(n)$$

DFT: Fourier series of a periodic function

$$F(k) = \sum_{n=0}^{N-1} f(n)e^{-j2\pi \frac{k}{N}n}$$
, for $0 \le k \le N-1$

$$\begin{bmatrix} F(0) \\ F(1) \\ \vdots \\ F(N-1) \end{bmatrix} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & e^{-j2\pi\frac{1}{N}} & \cdots & e^{-j2\pi\frac{N-1}{N}} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & e^{-j2\pi\frac{N-1}{N}} & \cdots & e^{-j2\pi\frac{(N-1)^2}{N}} \end{bmatrix} \begin{bmatrix} f(0) \\ f(1) \\ \vdots \\ f(N-1) \end{bmatrix}$$

$$\mathcal{F}_N = \left[e^{-j2\pi \frac{k}{N}n} \right]_{0 \le (k,n) \le N-1}$$

$$\boldsymbol{F} = \mathcal{F}_N \boldsymbol{f}$$

$$f = \mathcal{F}_N^{-1} F$$

$$\mathcal{F}_N^{-1} = \mathcal{F}_N^H$$

Generalized Discrete Fourier Transform (GDFT)

$$b_k^{(\alpha,\beta)}(n) = \frac{1}{\sqrt{N}} e^{j2\pi \frac{k+\alpha}{N}(n+\beta)}$$
, for $0 \le n \le N-1$, and $0 \le k \le N-1$

$$\hat{f}_{\alpha,\beta}(k) = \sum_{n=0}^{N-1} f(n)e^{-j2\pi \frac{k+\alpha}{N}(n+\beta)}$$
, for $0 \le k \le N-1$

$$f(n) = \frac{1}{N} \sum_{k=0}^{N-1} \hat{f}_{(\alpha,\beta)}(k) e^{j2\pi \frac{k+\alpha}{N}(n+\beta)}, for \ 0 \le n \le N-1$$

 α =0, β =0: Discrete Fourier Transform (DFT)

 α =0, β =1/2: Odd Time Discrete Fourier Transform (OTDFT)

 $\alpha=1/2$, $\beta=0$: Odd Frequency Discrete Fourier Transform (OFDFT)

 $\alpha=1/2$, $\beta=1/2$: Odd Frequency Odd Time Discrete Fourier Transform (O²DFT)

4

GDFT: Inverse Transforms

Transformation matrix $\mathbf{F}_{\alpha,\beta} = \left[e^{-j2\pi \frac{k+\alpha}{N}(n+\beta)}\right]_{0 \le (k,n) \le N-1}$

Relationships of inverse transforms

$$F_{0,0}^{-1} = \frac{1}{N} F_{0,0}^{H} = \frac{1}{N} F_{0,0}^{*}$$

$$F_{\frac{1}{2},0}^{-1} = \frac{1}{N} F_{\frac{1}{2},0}^{H} = \frac{1}{N} F_{0,\frac{1}{2}}^{*}$$

$$F_{0,\frac{1}{2}}^{-1} = \frac{1}{N} F_{0,\frac{1}{2}}^{H} = \frac{1}{N} F_{\frac{1}{2},0}^{*}$$

$$F_{\frac{1}{2},\frac{1}{2}}^{-1} = \frac{1}{N} F_{\frac{1}{2},\frac{1}{2}}^{H} = \frac{1}{N} F_{\frac{1}{2},\frac{1}{2}}^{*}$$

Symmetric / Antisymmetric extension of a finite sequence

Discrete Cosine / Sine Transforms $\alpha(p) = \begin{cases} \sqrt{\frac{1}{2}} & p = 0 \text{ or } N \\ 1 & \text{otherwise} \end{cases}$

$$\alpha(p) = \begin{cases} \sqrt{\frac{1}{2}} & p = 0 \text{ or } N \\ 1 & \text{Otherwise} \end{cases}$$

Types of symmetric / antisymmetric extensions at the two ends of a sequence and a type of GDFT→ DCTs / DSTs

Type-I Even DCT

$$C_{1e}(x(n)) = X_{Ie}(k) = \sqrt{\frac{2}{N}} \alpha^2(k) \sum_{n=0}^{N} x(n) \cos\left(\frac{2\pi kn}{2N}\right), 0 \le k \le N$$

Discrete Cosine / Sine Transforms $\alpha(p) = \begin{cases} \sqrt{\frac{1}{2}} & p = 0 \text{ or } N \\ 1 & Otherwise \end{cases}$

$$\alpha(p) = \begin{cases} \sqrt{\frac{1}{2}} & p = 0 \text{ or } N \\ 1 & Otherwise \end{cases}$$

$$F_{0,1/2}$$

Type-2 Even DCT

$$C_{2e}(x(n)) = X_{IIe}(k) = \sqrt{\frac{2}{N}} \alpha(k) \sum_{n=0}^{N-1} x(n) \cos\left(\frac{2\pi k(n+\frac{1}{2})}{2N}\right), 0 \le k \le N-1$$

Type-1 Even DST

$$S_{1e}(x(n)) = X_{SIe}(k) = \sqrt{\frac{2}{N}} \sum_{n=0}^{N} x(n) \sin\left(\frac{2\pi kn}{2N}\right), 1 \le k \le N-1$$

Discrete Cosine / $\alpha(p) = \begin{cases} \frac{1}{2} & p = 0 \text{ or } N \\ 1 & \text{Otherwise} \end{cases}$

$$\alpha(p) = \begin{cases} \sqrt{\frac{1}{2}} & p = 0 \text{ or } N \\ 1 & Otherwise \end{cases}$$

$$jF_{0,1/2}$$

Type-2 Even DST

$$S_{2e}\big(x(n)\big) = X_{sIIe}(k) = \sqrt{\frac{2}{N}}\alpha(k) \sum_{n=0}^{N-1} x(n) \sin\left(\frac{2\pi k(n+\frac{1}{2})}{2N}\right), 1 \le k \le N-1$$

There exist 16 different types of DCTs and DSTs. Type-II Even DCT is used in signal, image, and video compression.

Matrix form of Type-II DCT

$$\alpha(p) = \begin{cases} \sqrt{\frac{1}{2}} & p = 0 \text{ or } N \\ 1 & Otherwise \end{cases}$$

Matrix form:
N-point DCT
$$C_N = \left[\sqrt{\frac{2}{N}} \alpha(k) \cos(\frac{\pi k(2n+1)}{2N}) \right]_{0 \le (k,n) \le N-1}$$

$$X=C_Nx$$

 Each row is either symmetric (even row) or antisymmetric (odd row).

$$C_N(k, N-1-n) = \begin{cases} C_N(k, n) & \text{for } k \text{ even} \\ -C_N(k, n) & \text{for } k \text{ odd} \end{cases}$$
$$C_N^{-1} = C_N^T$$

Convolution Multiplication Property (CMP)

CMP for Fourier Transform

$$\widehat{f \circledast h}(k) = \widehat{f}(k)\widehat{h}(k)$$

Linear convolution

CMP for DFT holds for circular convolution.

$$f(n)$$
 \longrightarrow $h(n)$ \longrightarrow $\sum_{m=-\infty}^{\infty} f(m) h(n-m)$

- Periodic convolution: Convolution between two finite sequences with periodic extension.
- It is defined if both have the same period, providing a periodic sequence with the same period.

Circular Convolution

ar Convolution
$$f \circledast h(n) = \sum_{m=0}^{N-1} f(m) h(n-m)$$

$$\sum_{m=0}^{N} f(m) h(n-m) + \sum_{m=n+1}^{N-1} f(m) h(n-m+N)$$

Antiperiodic extension and skew-circular convolution

- Antiperiodic function with an antiperiod N,
 - if f(x+N) = -f(x).
- An antiperiodic function of antiperiod N
 - lacksquare a periodic function of period 2N.
- Skew-circular convolution: convolution between two antiperiodic extended sequences of the same antiperiod. $f \odot h(n) = \sum_{n=0}^{N-1} f(n) h(n-m)$

$$\sum_{m=0}^{n} f(m) h(n-m) - \sum_{m=n+1}^{N-1} f(m) h(n-m+N)$$

$u(n) = x(n) \circledast h(n)$

$$w(n) = x(n) \odot h(n)$$

CMPs for DCTs

$$C_{1e}(u(n)) = \sqrt{2N}C_{1e}(x(n))C_{1e}(h(n))$$

$$C_{2e}\big(u(n)\big) = \sqrt{2N}C_{2e}(x(n))C_{1e}(h(n))$$

$$C_{3e}(w(n)) = \sqrt{2N}C_{3e}(x(n))C_{3e}(h(n))$$

$$f(x,y) = \sum_{i} \sum_{j} \lambda_{ij} b_{ij}(x,y)$$

2-D Transforms

■ Easily extendable if basis functions are separable, i.e. $B=\{b_{ij}(x,y)=g_i(x).g_j(y)\}.$

They could be from two different sets, say b(x,y)=g(x).h(y).

1-D basis function

- *B*: Orthogonal if $G=\{g_i(x), i=1,2,...\}$ is orthogonal.
- B: Orthogonal and complete if G is so.
- Reuse of 1-D transform computation.

$$\lambda_{ij} = \sum_{i} g_j^*(y) \left(\sum_{i} f(x, y) g_i^*(x) \right)$$

2D Discrete Transform

$$Y_{mxn} = B_{mxm} X_{mxn} B_{nxn}^{T}$$

- Use of separability:
 - Transform columns.
 - Transform rows.
- Input: $X_{m \times n}$ 1-D Transform Matrix: B
- Transform columns: $[Y_1]_{m \times n} = B_{m \times m} X_{m \times n}$
- Transform rows: $Y_{mxn} = [B_{nxn}Y_1^T]^T$ $= Y_1B_{nxn}^T$ $= B_{mxm}X_{mxn}B_{nxn}^T$

1

Image Transform: DFT

Image: f(m,n), of size $M \times N$

$$F(k,l) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n)e^{-j2\pi \frac{km}{M}} e^{-j2\pi \frac{ln}{N}}$$

$$= \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n)e^{-j2\pi \frac{km}{M}} e^{-j2\pi \frac{ln}{N}}$$

$$f(m,n) = \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} F(k,l) e^{j2\pi \frac{km}{M}} e^{j2\pi \frac{ln}{N}}$$

Property of separability

$$\mathbf{F} = \mathcal{F}_{m} \mathbf{f} \mathcal{F}_{N}^{T}$$
 $F(k, l) = \sum_{m=0}^{M-1} e^{-j2\pi \frac{km}{M}} \sum_{n=0}^{N-1} f(m, n) e^{-j2\pi \frac{ln}{N}}$

4

DFT Examples:

Magnitude

Phase

Magnitudes and phases are shown by bringing them into displayable range, and shifting the origin at the center of image.

$$\alpha(p) = \begin{cases} \sqrt{\frac{1}{2}} & p = 0 \text{ or } N \\ 1 & Otherwise \end{cases}$$

Type-I:

$$X_{le}(k,l) = \frac{2}{N}\alpha^{2}(k)\alpha^{2}(l)\sum_{m=0}^{M} \sum_{n=0}^{N} x(m,n)\cos\left(\frac{\pi km}{M}\right)\cos\left(\frac{\pi kn}{N}\right),$$

$$0 \le k \le M, \ 0 \le l \le N$$

Type-II

$$X_{IIe}(k,l) = \frac{2}{N}\alpha(k)\alpha(l)\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} x(m,n)\cos\left(\frac{\pi k(2m+1)}{2M}\right)\cos\left(\frac{\pi k(2n+1)}{2N}\right),$$

$$0 \le k \le M-1, \ 0 \le l \le N-1$$

Matrix Representation:

$$X = C_M \mathbf{x} C_N^T$$

Input image

Discrete Cosine Transform

There are 16 different types of DCTs and DSTs.

Wavelets

- Functions to have ideally finite support in both its original domain (say, time or space) and also in the transform domain (i.e., the frequency domain).
 - No such function exists truly satisfying it.
 - Attempts to match these properties as far as possible.
- Acts as basis functions.
- Good localization property in both domain.

4

A few examples

An interesting function

- Same form in time and frequency domain
 - Gaussian
- Analogy from Heisenberg's uncertainty principle

Variance of t weighted by $g^2(t)$. Similarly for f. For any function it holds !!

$$g(t) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{t^2}{2\sigma^2}}$$

$$G(\omega) = e^{-\frac{\omega^2 \sigma^2}{2}}$$

Designing wavelet: An intuitive approach

- Time limited signal:
 - Square pulse
- Band limited signal:
- Wavelet to satisfy both?
 - Multiply them!!

•

Gabor wavelet (1-D)

$$g(t) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{t^2}{2\sigma^2}}$$

$$e^{j2\pi ft}$$

Real part

Imaginary part

Shannon wavelet

$$h(t) = 2B \frac{\sin(2\pi Bt)}{2\pi Bt} = 2B \operatorname{sinc}(2Bt)$$

Haar Wavelet

$$\psi(t) = \begin{cases} 1, & 0 \le t < \frac{1}{2} \\ -1 & \frac{1}{2} < t \le 1 \\ 0 & Otherwise \end{cases}$$

Family of wavelets

Translate and dilate a mother wavelet

Continuous wavelet transform

Forward transform

From 1-D representation to 2-D representation. $W(s,\tau) = \int f(t) \frac{1}{\sqrt{s}} \psi^* \left(\frac{t-\tau}{s}\right) dt$

Inverse transform:

$$f(t) = \frac{1}{C_{\psi}} \int_{0}^{\infty} \int_{0}^{\infty} W(s, \tau) \frac{1}{\sqrt{s}} \psi\left(\frac{t - \tau}{s}\right) d\tau \frac{ds}{s^{2}}$$

where $C_{\psi} = \int_{-\infty}^{\infty} \frac{\left|\hat{\psi}(\omega)\right|^2}{\left|\omega\right|} d\omega$

How correlated at that instance with the wavelet fn.

Reveals structure of function at multiple resolution.

Multiresolution representation

Gaussian Pyramid

Approximation

Gaussian Pyramid: Wavelet analysis

Obtained by convolution with G(x,y) and downsampling at successive stages.

Obtained by convolution with DOG(x,y) and downsampling at Wavelet successive stages.

Filtering and transformation equivalent!!

Haar Wavelet transform

Scaling function

Wavelet function

$$\varphi(t) = \begin{cases} 1, & 0 \le t \le 1 \\ 0 & Otherwise \end{cases} \qquad \psi(t) = \begin{cases} 1, & 0 \le t < \frac{1}{2} \\ -1 & \frac{1}{2} < t \le 1 \\ 0 & Otherwise \end{cases}$$

Family of translated and dilated functions from the both forms the basis.

Discrete wavelet transform (DWT)

- Translated only at discrete grid points.
 - $k=0, \pm 1, \pm 2, \ldots$
 - Finite sequence: A finite number of basis functions.
- Scaled by powers of 2: 2^{j} , j=0,1,...
 - Downsampling takes care of dilation of wavelets and allows to use the same function at that level.
- Family of scaling and wavelet functions:

$$\varphi_{j,k}(n) = 2^{-\frac{j}{2}} \varphi(2^{-j}n - k), j = 0,1,..., k = 0,1,..., M$$

$$\psi_{j,k}(n) = 2^{\frac{-j}{2}} \psi(2^{-j}n - k), j = 0,1,..., k = 0,1,..., M$$

$$M \le N \text{ (length of sequence)}$$

Haar wavelets in discrete grid

• N=8
$$\varphi(n) = \frac{1}{\sqrt{2}}(1,1,0,0,0,0,0,0,0)$$
$$\psi(n) = \frac{1}{\sqrt{2}}(1,-1,0,0,0,0,0,0,0)$$

Transformation matrix:
$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \end{bmatrix}$$

Courtesy: "Image and video processing in the compressed domain", J. Mukhopadhyay, CRC Press, 2011.

DWT

- Translated only at discrete grid points.
- Scaled by powers of 2: 2^j , j=0,1,...
 - Downsampling takes care of dilation of wavelets and allows to use the same function at that level.
 - Filtering by the filter of same impulse response.

Filtering banks.

Analysis h(n) $x_a(n)$ y(n) y(n)Synthesis $x_a(n)$ y(n) y(n)Details

Dyadic decomposition

- At each level sample size is halved
 - Equivalent of scaling by 2.
- Total number of samples remain the same.

Typical wavelet filters

Daubechies 9/7 filters

	Analysis Filter Bank		Synthesis Filter Bank	
n	h(n)	g(n-1)	h′(n)	g'(n+1)
0	0.603	1.115	1.115	0.603
<u>+</u> 1	0.267	-0.591	0.591	-0.267
<u>+</u> 2	-0.078	-0.058	-0.058	-0.078
<u>+</u> 3	-0.017	0.091	-0.091	0.017
<u>+</u> 4	0.027			0.027

Le Gall 5/3 filters

	Analysis Filter Bank		Synthesis Filter Bank	
n	h(n)	g(n-1)	h′(n)	g'(n+1)
0	6/8	1	1	6/8
<u>+</u> 1	2/8	-1/2	1/2	-2/8
<u>+</u> 2	-1/8			-1/8

Courtesy: "Image and video processing in the compressed domain", J. Mukhopadhyay, CRC Press, 2011.

2-D DWT

- Separable filters.
- Transform rows, then transform columns.

Applications:

- Compression
- Denoising
- Feature representation
- Image fusion

By 5/3 Analysis filters

Summary

- Alternative representation provides other insights of structure of images.
 - low frequency and high frequency components.
- May become useful for providing more compact representation.
 - A few transform coefficients.
 - Selective quantization of components, considering their effect on our perception.
 - Image compression.
- Sometimes convenient for processing.
 - Filtering, enhancement,

Summary

- Wavelets represent the scale of features in an image, as well as their positions.
 - Time-scale, Space-Scale representation
- Fast computation of forward and inverse transform
- Provides multiresolution representation.
 - Enables progressive and scalable processing
- Lossy and lossless reconstruction possible.
- useful for a number of applications including image compression.
 - JPEG2000

