Horn Formula

B ::= 1 T P

 $A ::= P \mid P \wedge A$ $C ::= A \rightarrow B$

H :: = C | C NH.

Each instance of C is a Horn clouse.

A Horn formula is the conjunction of Horn clauses.

Example.

1. (P, 1 P2 1 -- 1 Pn) → 2

2. $(p \rightarrow q) \land (A \land t \rightarrow T) \land (p \land S \land t \rightarrow \bot)$

3. $P_1 \wedge P_2 \wedge P_3 \rightarrow \neg P_4$ - Not a Horn bormula.

3. $P_1 \wedge P_2 \wedge P_3 \rightarrow P_4$ - Not a Horn formula.

4. $P_1 \wedge P_2 \rightarrow P_3$ - Not a Horn formula.

P= T→P ; 7P=P→L

Note: Horn satisfiability is a P-complete problem.

Claim. if d is a Horn formula, deciding if d is satisfiable can be solved efficiently (linear time)

Procedure - A marking algorithm.

Algorithm.

Input: A Horn formula d.

Output: Decision whether a is satisfiable.

- 1. Mark all occurrence of Tind.
- 2.— while Itere is a conjunct $p_1 \Lambda p_2 \Lambda \Lambda p_k \rightarrow p' \otimes_b \chi$ such that all p_j are marked but p' is not marked.

– mark p!. —end while

- 3. if I is marked then return "Unsatisfiable" else return "Satisfiable"

Algorithm.

Input: A Horn formula d.

Output: Decision whether a is satisfiable.

1. Mark all occurrence of Tind.

2 - while Here is a conjunct PINP21-172 -> P' of a such that all P are marked but P'is not marked.

– mark p! -end while

3. if I is marked then return "Unsatisfiable" else return "Satisfiable"

Termination: if there are a propositions in & then the while loop is executed atmost not times.

Algorithm.

Input: A Horn formula d.

Output: Decision whether a is satisfiable.

1. Mark all occurrence of Tind.

2 — While Here is a conjunct PIAP2A--AP2 -> P' of a such that all P are marked but P'is not marked.

— – mark p^l. —end while

3. if I is marked then return "Unsatisfiable" else return "Satisfiable"

Correctness. By induction on the number of iterations of the while loop, argue that For all v where V = a, for all marked p, V = p.

Base Case: All occurrences of T are marked - nothing else is

Induction Step. Consider He iteration R+1.

3 P, AP2A -- APm -> P' ob L st Pj is marked +j E {1, ...m}.

Consider any vs.+ v = d, By IH, v = P; xi = 21, -- m}

if VFX then VFP, NP2N-NPm→p'. .: VFp'.

Algorithm.

Input: A Hoon formula d.

Output: Decision whether a is satisfiable.

1. Mark all occurrence of Tind.

2 - while Here is a conjunct PINP21-1P2 -> P' of a such that all P are marked but P'is not marked.

— mark p! —end while

3. if I is marked then return "Unsatisfiable" else return "Satisfiable"

Correctness.

- if \bot is marked, then there exists.

P, $\Lambda P_2 \Lambda$ -- $\Lambda P_m \longrightarrow \bot$ where p_j is marked $\forall j$.

VF = bor all & where V=P; Yj.

- if I is not marked, Consider valuation V defined as:
- assign T to all marked propositions
- assign I to all unmarked propositions

Suppose & # X ⇒ 3 B=P, NP2 1-- NPm → p's+ V # B

⇒ $V \models P_j \lor j$ and $V \not\models p'$ (Semantics $\Theta_j \rightarrow 0$). For all P_j , P_j is marked. ⇒ P' is also marked. Since \bot is not marked, P' = T or some proposition. ⇒ $V \models B$. A contradiction.