MOLTIPLICATORE BINARIO

Andrea Terenziani – Matr. 128590

Serena Passini - Matr. 136416

L'OPERAZIONE DI MOTIPLICAZIONE

			1	1	0	1	×
				1	0	1	=
			1	1	0	1	+
		0	0	0	0		+
	1	1	0	1			=
1	0	0	0	0	0	1	

COSA VUOL DIRE "MOLTIPLICARE"

$$a \times b = \underbrace{b + \dots + b}_{a \text{ volte}} = \sum_{i=1}^{a} b$$

a : moltiplicando

b : moltiplicatore

 $a \times b$: prodotto

Per il resto della presentazione si assumerà che a e b siano valori binari da n bit

CALCOLARE IL PRODOTTO

- Il prodotto è calcolato come somma progressiva di prodotti parziali.
- Per ottenere il *j*-esimo :
 - I. si moltiplica il moltiplicando per la cifra j-esima del moltiplicatore (partendo da destra)
 - 2. viene shiftato tale valore I posizione più a sinistra del prodotto parziale precedente.
- Il risultato finale è la somma di questi valori

			1	1	0	1	\times
				1	0	1	=
			1	1	0	1	+
		0	0	0	0		+
	1	1	0	1			=
1	Ω	\cap	\cap	\cap	\cap	1	

OSSERVAZIONI

			1	1	0	1	×	
				1	0	1	=	
			1	1	0	1	+	(1101×1)
		0	0	0	0		+	(1101×0)
	1	1	0	1			=	(1101×1)
1	\cap	\cap	\cap	\cap	0	1		

- I. Gli operandi sono *binari*, per cui un prodotto parziale (prima dello shifting) può assumere solo due valori :
 - $moltiplicatore \times 1 = moltiplicatore$
 - $moltiplicatore \times 0 = 0$
- 2. La dimensione (in bit) del prodotto può essere molto maggiore di quella dei due operandi → alto rischio di overflow

IMPLEMENTARE L'OPERAZIONE

I° IMPLEMENTAZIONE

• Componenti:

- Un registro da 2n bit per contenere il moltiplicando (inizialmente nei primi n bit)
- Un registro da 2n bit per contenere la somma dei prodotti parziali inizializzato a 0
- Un registro da *n* bit per contenere il moltiplicatore
- Una ALU da 2n bit per calcolare ogni prodotto parziale e una Control Unit per regolare l'esecuzione

Algoritmo :

- A. Se *l'ultima cifra del Moltiplicatore* è *I*, si aggiunge il Moltiplicando al registro del Prodotto
- B. Si shifta il Moltiplicando a sinistra di I bit
- C. Si shifta il Moltiplicatore a destra di 1 bit
- D. Se non siamo alla n-esima iterazione, ripetiamo dal punto (A)
- Il conteggio delle iterazioni è responsabilità della Control Unit

Cosa possiamo migliorare :

- La somma tra Moltiplicando e Prodotto e i due shifting sono eseguiti ciascuno in un ciclo di clock su "ordine" della Control Unit → le n iterazioni impiegano 3n clock cycles
- Vengono usati 3 registri, che memorizzano complessivamente 5n bit di informazione, ma questa non è la minima memoria necessaria

2° IMPLEMENTAZIONE

• Componenti:

- Un registro da *n* bit per contenere il moltiplicando
- Un registro da 2n bit per contenere sia la somma dei prodotti parziali (nei bit più significativi) che il valore del moltiplicatore (nei bit meno significative), detto "registro PM"
- Una ALU da n bit per calcolare ogni prodotto parziale e una Control Unit per regolare l'esecuzione

Nuovo algoritmo :

- A. Se l'ultima cifra del Registro PM è 1, si aggiunge il Moltiplicando alle n cifre più significative del PM
- B. Si shifta il Registro PM a destra di I bit. Questo "incorpora" sia lo shift a destra del Moltiplicatore che quello a sinistra del Moltiplicando
- C. Se non siamo alla n-esima iterazione, ripetiamo dal punto (A)

REALIZZAZIONE IN LOGISIM

CIRCUITO COMPLETO

BIT EXTENDER

UNITÀ ARITMETICA

ADDER

BIT SHIFTER

SEGNO

UNITÀ DI CONTROLLO

MODALITÀ D'USO

Input:

- Multiplier / Multiplicand (gli operandi)
- Restart (segnale di reset indica se ripetere l'operazione)
- *Clk* (segnale di clock per scandire l'esecuzione)

Output:

- ProdUnsigned (il prodotto considerando gli input come unsigned)
- ProdSigned (il prodotto considerando gli input come signed)

LIMITAZIONI

Prodotti con segno

Questo moltiplicatore può calcolare un prodotto con segno, con valore limitato tra -127 e 127. Avendo input da 8 bit, però, si ha un rischio di overflow

Prodotti senza segno

Se si considerano i due operandi come unsigned da 8 bit, allora il loro prodotto sarà un valore da 16 bit, contenuto all'interno del Registro PM.

1:	101 ₂ ·0	01102	= 01001110) ₂
	1101	0011	00100111	
	1101	0100	00110100	
	1101	0101	01000001	
	1101	0110	01001110	
	1101	0111	01011011	

ALTRI ESEMPI DI MOLTIPLICATORI

1101₂·0110₂ = 01001110₂ 1101 0011 00100111 1101 0100 00110100 1101 0101 01000001 1101 0110 01001110 1101 0111 01011011

MOLTIPLICATORI LOOK-UP TABLE

- Fanno uso di circuiti di memoria dove sono immagazzinati i valori pre-calcolati di tutti i possibili prodotti di due numeri a n bit (unsigned)
- Calcolare il prodotto significa quindi trovare semplicemente il valore associato ai due operandi
- La crescita della dimensione della memoria è <u>esponenziale</u> con il numero di bit n degli operandi.

MOLTIPLICATORI A MATRICE

- Consiste nella generalizzazione a n bit del circuito combinatorio che per la moltiplicazione di due numeri a I bit. (ossia il gate AND).
- Si tratta di una matrice di *n* sommatori a *n* bit. La struttura è regolare quindi semplice da realizzare.
- La performance dipende dai ritardi generati dagli adder, che possono essere mitigate usando adder di tipo CLA (Carry Look-Ahead)

FINE