FACT 2. Let X be a pseudocompact space. Let $\tau > \omega$ be a regular cardinal and denote by $T(\tau)$ the space of all ordinal numbers less than τ . Then, $X \times T(\tau)$ is pseudocompact.

Proof. Let $f: X \times T(\tau) : \mathbf{R}$ be continuous.

For each $x \in X$, f is bounded on $\{x\} \times T(\tau)$ by Lemma 1. There exists $\kappa_x < \tau$ such that f is constant on $\{x\} \times [\kappa_x, \tau)$. As $cf(\tau) > \omega$, $\{\kappa_x : x \in X\}$ has sup, say $\beta = \sup_{x \in X} \{\kappa_x : x \in X\}$. Now, $f[X \times [0, \kappa+1]]$ is bounded because $X \times [0, \kappa+1]$ is pseudocompact by FACT

For $\alpha \geq \beta$, $f(x, \alpha) = f(x, \beta)$. Thus, $f[X \times [\beta, \tau)] = f[X \times \{\beta\}] \subseteq f[X \times [0, \beta + 1]]$ which is bounded.

Hence, $f[X \times T(\tau)]$ is bounded.

Lemma 1 For each $x \in X$, f is bounded on $\{x\} \times T(\tau)$.

Proof. Define $g: T(\tau) \to \mathbf{R}$ as

$$g(\gamma) = f(x', \gamma)$$

for all $\gamma \in T(\tau)$.

If f is unbounded, then there exists an $x' \in X$ such that $f[\{x'\} \times T(\tau)]$ is unbounded in **R**. Thus, g is unbounded as well. We will define $\{\alpha_i, i < \omega\} \subseteq T(\tau)$ by induction:

Step 1. Since g is unbounded, we can find $\alpha_1 \in T(\tau)$ such that $g(\alpha_1) \geq 1$.

Step N. Since $[0, \alpha_{n-1}]$ is compact in $T(\tau)$ and g is continuous, $g[[0, \alpha_{n-1}]]$ must be bounded in **R**. But since g is unbounded, $g[(\alpha_{n-1}, \tau)]$ must be unbounded in **R**. So there exists $\alpha_n \in (\alpha_{n-1}, \tau)$ such that $g(\alpha_n) \geq n$.

Having defined $\alpha_i \in T(\tau)$ for all $i < \omega$, let $\beta = \sup\{\alpha_i : i < \omega\}$. Such β exists in $T(\tau)$ because $cf(\tau) > \omega$. As g is continuous, we have

$$g(\beta) = \lim_{i < \omega} g(\alpha_i)$$

. This can't happen because the sequence $\{g(\alpha_i): i<\omega\}$ diverges to infinity. Thus, for each $x\in X$, f must be bounded on $\{x\}\times T(\tau)$.

Lemma 2. If the function g is as defined in Lemma 1, then g is constant on $[\kappa, \tau)$ for some $\kappa < \tau$.

By our Lemma 3 below, $[\alpha, \tau)$ is countable compact for all $\alpha < \tau$. This is because if $A = \{x_1, x_2, ...\}$ is a countably infinite subset of $[\alpha, \tau)$, then let

 $\beta = \sup\{x_1, x_2, \ldots\}$. This β exists because $cf(\tau) > \omega$. So A has an accumulation point, namely β .

Since g is continuous, $g[[\alpha, \tau)]$ is countably compact. In metric spaces, countably compact is equivalent to compact because metric spaces are Lindelöff. Hence, $g[\alpha, \tau)$ is compact for all $\alpha < \tau$. Thus, there exists $p \in \bigcap_{\alpha < \tau} f[\alpha, \tau)$. Suppose that there exists $q \in \bigcap_{\alpha < \tau} g[\alpha, \tau)$ also.

. There exists $\alpha_0 \in [0,\tau)$ such that $g(\alpha_0) = p$. Then there exists $\alpha_1 \in [\alpha_0 + 1, \tau)$ such that $g(\alpha_1) = q$. Then there exists $\alpha_2 \in [\alpha_1 + 1, \tau)$ such that $g(\alpha_2) = p$. We continue this process by induction. We have now:

$$p = g(\alpha_0) = g(\alpha_2) = g(\alpha_4 = \cdots$$
$$q = g(\alpha_1) = g(\alpha_3) = g(\alpha_5 = \cdots$$

Let $\beta = \sup\{\alpha_n : n < \omega\}$, which exists because $cf(\tau) > \omega$. By continuity of $g, g(\beta) = \lim_{n < \omega} g(\alpha_n)$. Thus, p = qq.

Now, since $\{p\} = \bigcap_{\alpha < \tau} f[\alpha, \tau)$, For all $n < \omega$, there exists α_n such that $g[[\alpha_n, \tau)] \subseteq (p - \frac{1}{n}, p + \frac{1}{n})$. Let $\kappa = \sup_{n < \omega} \alpha_n$. So, we have $g[[\kappa, \tau)] \subseteq \bigcap_{n < \omega} (p - \frac{1}{n}, p + \frac{1}{n}) = \{p\}$.

Lemma 3For every Hausdorff spaces X, the following statements are equivalent:

- 1. The space X is countably compact.
- 2. For every decreasing sequence $F_1 \supset F_2 \supset \cdots$ of non-empty closed subsets of X, the intersection $\bigcap_{i=1}^{\infty} F_i$ is non-empty.
- 3. Every countably infinite subset of X has an accumulation point.

Proof.

 $1 \Rightarrow 2$: Let $F_1 \supset F_2 \supset \cdots$ be non-empty closed subsets of X. If $\bigcup_{i=1}^{\infty} F_i = \emptyset$, then $X \backslash F_i : 1 \leq i \leq \infty$ would be an countable open cover of X, so there is a finite subcover $\{X \backslash F_i' : 1 \leq i \leq n\} \subseteq \{X \backslash F_i : 1 \leq i \leq \infty\}$ such that $\bigcup \{X \backslash F_i' : 1 \leq i \leq n\} = X$. Now, because the F_i 's are decreasing, WLOG, $F_1' \supset F_2' \supset \cdots \supset F_n'$. So, $\bigcup \{X \backslash F_i' : 1 \leq i \leq n\} = X \backslash F_n'$. Contradiction.

 $2\Rightarrow 1$: By way of contradiction, suppose that X is not countably compact. Let $\{U_i\tau(X): 1\leq i\leq\infty\}$ be a countable cover of X that does not yield an open subcover. For each $1\leq n\leq\infty$, define $F_n=X\setminus\bigcup\{U_i: 1\leq i\leq n\}$. For each $n,\,F_n$ is non-empty because if it is, then $\{U_i\tau(X): 1\leq i\leq n\}$ would be a finite subcover, which contradicts that X is not countably compact. Thus, we have $F_1\supset F_2\supset\cdots$ and each F_n is a non-empty closed subset of X.

Now, by our assumption, the intersection $\bigcap_{i=1}^{\infty} F_i$ is non-empty. So there exists some $x \in \bigcap_{i=1}^{\infty} F_i$. So $x \in F_i$ for all $1 \le i \le \infty$. That means $x \notin U_i$ for all $1 \le i \le \infty$, contradicting that $\{U_i : 1 \le i \le \infty\}$ is a cover of X.

 $1 \Rightarrow 3$: By way of contradiction, suppose we have a countably infinite subset $\{x_i \in X : 1 \le i \le \infty\}$ with no accumulation point. Then every point in $\{x_i \in X : 1 \le i \le \infty\}$ is an isolated point. So $\{\{x_i\} \in \tau(X) : 1 \le i \le \infty\}$ is an countable open cover that yields no finite subcover, contradicting that X is countably compact.

 $3\Rightarrow 1$ By way of contradiction, suppose that $\{U_i\tau(X):1\leq i\leq\infty\}$ is a countable cover of X which does not yield an open subcover. Then, by the equivalent of 1 and 2, there exists a decreasing sequence $F_1\supset F_2\cdots$ of nonempty closed subsets of X such that $\bigcup_{i=1}^\infty F_i=\emptyset$. We define the set $A=\{x_1,x_2,\ldots\}$ such that $x_i\in F_i$ for each $1\leq i\leq\infty$. If A is finite, then by pigeon-hole principle, there must be some $x_j\in A$ such that x_j belongs to infinitely many F_i 's, and since F_i 's are decreasing, x_j' would have to be in all F_i 's. Contradicting $\bigcap_{i=1}^\infty F_i=\emptyset$. Hence, A is an infinite set. By our assumption, A has an accumulation point. However, for every $x\in X$, there exists an i such that $x\notin F_i$. Now, $U=X\setminus F_i$ is an open set that contains x, and U does not contain an point of the set $\{x_i,x_{i+1},x_{i+2}...\}$. Now, $V=\{x\}\cup X\setminus \{x_1,x_2,...,x_{i-1}\}$ is an open set that contains x. Hence, we have $x\in (U\cap V)\in \tau(X)$ and $(U\cap V)\cap A=\{x\}$. Thus x is an isolated point with repect to A. Since x was arbitrary, we get that A has no accumulation point, contradiction. Lemma 3 is proved.