

Vbat 电压采样例程

版本: Rev1.0

日期:2019-06-10

利尔达科技集团股份有限公司

LIERDA SCIENCE & TECHNOLOGY GROUP CO.,LTD

法律声明

若接收浙江利尔达物联网技术有限公司(以下称为"利尔达")的此份文档,即表示您已经同意以下条款。若不同意以下条款,请停止使用本文档。

本文档版权所有浙江利尔达物联网技术有限公司,保留任何未在本文档中明示授予的权利。文档中涉及利尔达的专有信息。未经利尔达事先书面许可,任何单位和个人不得复制、传递、分发、使用和泄漏该文档以及该文档包含的任何图片、表格、数据及其他信息。

本产品符合有关环境保护和人身安全方面的设计要求,产品的存放、使用和弃置应遵照产品手册、相关合同或者相关法律、法规的要求进行。

本公司保留在不预先通知的情况下,对此手册中描述的产品进行修改和改进的权利;同时保留随时修订或收回本手册的权利。

文件修订历史

版本	修订日期	修订日志
1.0	2019-05-06	新建文档

Lierda Science & Technology Group Co., Ital

适用模块型号

序号	模块型号	模块简介
1	NB86-G	全频段版本,20×16×2.2(mm)
2	NB86-G 宽压型	全频段版本,20×16×2.2 (mm)

Lierda Science & Technology Group Co., Ital

安全须知

用户有责任遵循其他国家关于无线通信模块及设备的相关规定和具体的使用环境法规。通过遵循以下安全原则,可确保个人安全并有助于保护产品和工作环境免遭潜在损坏。 我司不承担因客户未能遵循这些规定导致的相关损失。

道路行驶安全第一! 当您开车时,请勿使用手持移动终端设备,除非其有免提功能。请停车,再打电话!

登机前请关闭移动终端设备。移动终端的无线功能在飞机上禁止 开启用以防止对飞机通讯系统的干扰。忽略该提示项可能会导致飞行 安全,甚至触犯法律。

当在医院或健康看护场所,注意是否有移动终端设备使用限制。 RF干扰会导致医疗设备运行失常,因此可能需要关闭移动终端设 备。

移动终端设备并不保障任何情况下都能进行有效连接,例如在移动终端设备没有花费或 SIM 无效。当您在紧急情况下遇见以上情况,请记住使用紧急呼叫,同时保证您的设备开机并且处于信号强度足够的区域。

您的移动终端设备在开机时会接收和发射射频信号,当靠近电视,收音机电脑或者其它电子设备时都会产生射频干扰。

请将移动终端设备远离易燃气体。当您靠近加油站,油库,化工厂或爆炸作业场所,请关闭移动终端设备。在任何有潜在爆炸危险场所操作电子设备都有安全隐患。

目 录

法律	津声明.		2
文件	非修订	历史	3
适用	模块	型号	4
安全	全须知.		5
目:	录		6
写在	E前面.		7
1.	简介	}	8
2.	要点		8
3.	实验	☆条件	8
4.	电气	〔连接	8
5.	实验	金步骤	8
	5.1.	导入工程	_
	5.2.	打开 Demo 示例代码	8
	5.3.	例程详解	9
	ļ	5.3.1. 涉及库函数及对应头文件	9
	į	5.3.2. Vbat 电压采样样例	9
	5.4.	编译及烧写固件	9
	5.5.	结果呈现	10
6.	注意	意事项	10
7.	参考	夸资料	10
8	相美	台文档及术语缩写	10

写在前面

- 本 OpenCPU 例程基于 Lierda NB86-G EVK 设计,集成 NB86-G 模组(基于海思 Boudica 150 Hi2115 芯片方案), EVK 集成多种传感器:
 - ▶ 温湿度
 - ▶ 光强度
 - ▶ 加速度
 - > GPS
- 支持两种 NB-IoT 应用的开发方式:
 - ▶ 传统方式: 传感器+MCU+NB86-G 模组,即 MCU 作为应用载体,同时控制传感器采集 状态并通过 NB86-G 模组收发数据
 - ▶ OpenCPU: 传感器+NB86-G 模组, NB86-G 模组同时作为应用软件及通信能力的载体,模组直接控制传感器采样,并将采集到的数据经过应用处理后与云端联动
- OpenCPU 开发方式相对于传统方式具有诸多优势
 - ▶ 降低 BOM 成本,不再需要 MCU
 - ▶ 降低功耗
 - ▶ 提高终端安全性
 - ▶ 提高集成度,对小尺寸终端设计有很大帮助
 - ▶ 模组内的应用可直接通过模组 FOTA 能力进行差分升级,方便后期维护
- 相关资料
 - ▶ NB86-G EVK 资料获取请移步: [NB86 EVK 相关资料集]
 - ➤ NB86-G EVK 获取请移步: [NB86 EVK]
 - ▶ LiteOS 入门操作指南请移步[LiteOS 内核教程]

1. 简介

本例程使用 Lierda OpenCPU 库函数实现 Vbat 电压采样例程,例程对应目录如下:

- **Project XX**
 - src
 - lib
 - Demo

2. 要点

Vbat 电压采样接口函数常规用法

3. 实验条件

- J. 模组 硬件: Lierda NB86 EVK/NB86-G 模组
- 软件: USB 转串口驱动
- 集成开发环境: Eclipse

4. 电气连接

对 NB 模组 Vbat 电压采样由内部 ADC 总线完成。

5.1.

将 ProjectLedFlashing 文件夹导入 eclipse,导入方法详见《Lierda NB-IoT 模组 OpenCPU DemoCode 说明文档》

打开 Demo 示例代码

打开 Demo 文件夹下示例代码如图 5-1:

图 5-1 示例代码目录

5.3. 例程详解

5.3.1. 涉及库函数及对应头文件

● Vbat 采样相关库函数

头文件: #include "lierdaADC.h"

库函数: LIERDA_ADC_RET lierdaADCInit(void);//ADC 初始化

AIO FUNC RET lierdaAIOCalibrateADC(void);//电压校准

AIO_FUNC_RET lierdaAIOTempVolt(int16 *temp,uint32 *voltage);//Vbat 电压

5.3.2 Vbat 电压采样样例

- 对 Vbat 采样进行初始化配置,详见例程代码中 void VbatSampInit(void)函数。
- 对 Vbat 电压进行采样,详见例程代码中 void VbatSampTest(void)函数。

5.4. 编译及烧写固件

编译成功后,烧写固件,编译和烧写过程详见《Lierda NB-IoT 模组 OpenCPU DemoCode 说明文档》

5.5. 结果呈现

烧写完毕,打开串口助手,选择 AT 串口,波特率为 9600,可看到如下结果:

Apps A...... [10:34:33.468]收←◆Verified [10:34:33.637]收←◆ REBOOT_CAUSE_APPLICATION_AT Lierda OK

NB86 EVK开发板例程----Vbat脚电压采样例程

利尔达科技集团<www.lierda.com>

LSD Science@Technology Co., Ltd

杭州市余杭区文一西路1326号利尔达科技园

物联网开发者社区《http://bbs.lierda.com》

[10:34:35.200]收←◆ Vbat脚电压为: 3332 mV [10:34:40.226]以b←◆

[10:34:40.226]收←◆ Vbat脚电压为: 3306 mV

6. 注意事项

● 使用 Vbat 电压采样前需对 ADC 进行初始化和校准。

7. 参考资料

技术论坛	OpenCPU 资料	NB86 EVK 资料
物联网开发者社区	OpenCPU 基本资料集	NB86 EVK 基本资料集

8. 相关文档及术语缩写

以下相关文档提供了文档的名称,版本请以最新发布的为准。

表格 1 相关文档

序号	文档名称		注释
----	------	--	----

[1]	NB86-G硬件应用手册
[2]	Lierda NB Module V150_AT CommandSet_B300SP5
[3]	Lierda NB86-EVK测试终端固件烧写教程
[4]	Lierda NB-IoT模组API使用文档
[5]	Lierda NB-IoT模组DEMO说明文档
[6]	Lierda NB-IoT模组V150 OpenCPU开发环境搭建指南
reiga	Eience & Technology Group

技术支持: nbiot_support@lierda.com