Задание

за курсова работа по

Производствени технологии 2 (Технологии в електротехниката и електроника)

Студент: Николай Георгиев Синоров

Фак. № 161219049 курс 3ти, група: 55, Специалност: СФ ИМ

ТЕМА: ДА СЕ НАПРАВИ ТЕХНОЛОГИЧЕН АНАЛИЗ НА ЕЛЕКТРОТЕХНИЧЕСКО ИЗДЕЛИЕ

Да се направи технологичен анализ на електротехническото изделие "**Електрическа крушка, компактно луминесцентна 11W/230V, 2500K, цокъл Е27**", дадена на снимките, като се ползва файла с указания за начина на направа и обема на разработката, както и примерната структура на последната страница в заданието.

Снимки на изделието, за което трябва да се направи технологичен анализ:

Специфични изисквания към заданието: Да се разработят и опишат подробно технологиите за производство на детайл / възел от даденото изделие (*това е във връзка с точка 5 от примерната структура*), за това задание това е: **цокъл с резба Е27**.

1. Описание

1.1. Предназначение

Електрическата крушка е осветителен уред, източник на изкуствена светлина, която се излъчва от проводник, нагрят от протичането на електрически ток през него. Електрическата крушка е предназначена за осветление на дадено помещение, в повечето случаи говорим за дома ни.

Луминесцентните лампи имат различни форми и размери. Все попопулярна е компактната луминесцентна лампа. Те включват спомагателната електроника в основата на лампата, което им позволява да се поставят в стандартно гнездо за крушка.

1.2. Характеристика на изделието. Описание на конструкцията

> Основни характеристики:

-номинално напрежение:230V

-размери: Широчина: 4,5см; Височина: 18,8см; Дължина: 4,5см

- Брой пинове: 2

-цокъл: Е27

-мощност: 11W

-маса: 90гр

-осветеност: 600lm; CFL-i

- Цвят на светене: топла бяла светлина

- Енергиен клас: А+

- Цветна температура: 2500К

- Живот: 6 000 – 9 000ч.

Тегло: 0.096 грама

- Гаранция: 2 - 5 години

1.3. Особености за условията за работа. Монтаж на изделието за работа в реални експлоатационни условия.

В класическата схема веригата се затваря от устройство, наречено стартер. Той затваря и прекъсва електрическата верига, като по този начин създава необходимите условия за самоиндукция на високо напрежение (около 1000 V) в дросела, което е необходимо за запалване на лампата. По време на затваряне на веригата, нагревателни електроди в лампата излъчват електрони, подпомагащи йонизацията на газа. Те са едно от слабите места на тези лампи, което често се поврежда.

Дроселът е бобина, навита на магнитопровод с въздушна междина. Той има за цел да осигури високо напрежение за запалване на лампата и след това да ограничи протичащия през нея ток.

Тлеещият разряд в стартера започва при 160 V. Биметалните пластинки се нагряват, огъват се и затварят веригата, изстиват и разкъсват веригата. Това продължава до запалване на лампата. Напрежението при запалена лампа спада до 100 – 130 V и стартерът спира да функционира.

Луминофорът, нанесен от вътрешната страна на луминесцентните тръби, превръща произведената в лампата невидимата за човешкото око ултравиолетова светлина във видима светлина.

Средната продължителност на живот на луминесцентните тръби е 7500 часа и зависи от режима на работа на лампите. Обикновено те имат подълъг живот от лампите тип нажежаема жичка. Луминесцентните лампи са сравнително енергоспестяващи, но светодиодните са по-икономични от тях.

Особеностите за да може една електрическа крушка да работи, са това тя да бъде в изправно състояние, да бъде монтирана правилно, и да протича ток през нея. Да може като се щракне ключа за включване/изключване тя да светне.

При монтаж на електрическата крушка, първото което трябва да намерим, е къде е гнездото за поставяне на крушката, обикновено строителната компания определят къде да се намира това гнездо в дадена стая/помещение. След което взимаме нашата дадена крушка и проверяваме дали съответства с гнездото, понеже има различни цокли по големина. Ако съответсва просто поставяме и въртим крушката

обратно почасовниковата стрелка, и се уверяваме, че е завита до край и е поставена правилно. При включване трябва да светне.

ВНИМАНИЕ! Всички монтажни и ремонти работи се извършват при изключено електрозахранване и САМО от упълномощени за тези цели правоспособни лица!

2. Условия в предприятието, в което се произвежда изделието. Оценка на пазара.

2.1. Произвеждани ли са други аналогични изделия в същото предприятие?

В предприятието се произвеждат и други разновидности на ел. Крушки, като те биват с различни характеристики най-вече.

Продуктите на NVC са един от най-модерните и висококачествени на световния пазар и имат широка гама осветителни тела. Компанията произвежда осветително оборудване за почти всяка цел: офис осветление, осветление за наводнения, тела за домашно осветление. Произвеждат се също технически и помощни продукти, а именно кабелни системи и осветителни управления.

2.2. Оценка на производствената листа на предприятието и на възможностите за използване на взаимствани детайли.

Производствената листа се диференцира на следните основни групи:

- Външни осветителни тела Лампи за таван
- Индустриално осветление LED крушки
- Осветление за трасета

2.3.Съпоставка на изделието с аналогични изделия , предлагани на пазара

Използването на голям брой взаимствани елементи в разглежданото изделие е предпоставка за ниските му производствени разходи и високата му експлоатационна надеждност.

Съчетанието на тези предимства с техническите му характеристики е предпоставка за търсенето и утвърждаването му на пазара. Определената цена на крушката е 4лв. За основен недостатък може да се приеме консумацията на енергия, която е с 15% по-висока. Намаляването на цената би повишило конкурентноспособността и на пазара, където се предлагат крушки с по-лош дизайн, но с по-добри технически показатели

3. Конструкция

Елементите, които изграждат изделието, спецификацията на възлите и детайлите и групирането им като взаимствани, нормализирани, стандартизирани и оригинални е показано.

В колоната "Забележка" се прави групиране на базови детайли, подвъзли и възли от гледната точка на монтажния процес.

3.1. Декомпозиране на изделието и спецификация на детайлите и възлите. Групирането им по взаимствани, нормализирани, стандартизирани и оригинални. Базови детайли, възли, подвъзли.

Nº	Наименование	Вид	Брой	Забележка
1	Цокъл Е27	Нормализиран	1	Детайл
2	Корпус	Оригинален	1	Детайл
3	Печатна платка	Оригинален	1	Детайл
4	Стъклен балон	Оригинален	1	Детайл
5	Кондензатор	Стандартен	2	Елемент
6	Проводници	Оригинален	2	Възел
7	Филмови Кондензатори	Стандартен	4	Елемент
8	Транзистори	Стандартен	2	Елемент
9	Индуктивен елемент	Стандартен	1	Елемент
10	Бобина	Стандартен	1	Елемент

Общ брой на детайлите в изделието: N = 16бр.

От тях :

Стандартни: N_c = 10бр.

- Нормализирани N_н = 1бр.

- Взаимствани N_в = 2бр
- Оригинални N₀ = 3бр

4. Обща оценка на използваните технологии и съоръжения за производството на отделните детайли

Технологиите и съоръженията, използвани за производството на отделните детайли, се избират в зависимост от типа на производството — единично, серийно или масово. Разглежданото изделие се произвежда серийно, което е типично за производството на осветителни тела. От техногочина гледна точка серийното производство се харектеризира със следните най-важни особености:

- използване на универсални и специални съоръжения и инструменти;
- използване на полуавтоматични и автоматични линии;
- средна квалификация на основните работници;
- средна продължителност на производствения цикъл;
- голяма продължителност на подготовката за производство;
- тясна номенклатура на изделията

тясна номенклатура на материалите

4.1. Групиране на детайлите по вид на основните технологични процеси за изработка – валцувани, шприцовани, пресувани, изработени чрез технологии на стружкоотделяне, други технологии. Алтернативни решения. Охрана на труда, пожароопасност, възможности за рециклиране на материалите, екологически проблеми.

В зависимост от основните технологични процеси за изработка, детайлите се групират на базата на съответните изходни материали за тяхното получаване. Това е показано в таблицата по долу.

Детайл	Изходен материал	Основен технологичен процес	Алтернативно решение
Цокъл E27	Алуминий	Щанцоване	-
Корпус	Термопластична пластмаса	Шприцоване	-
Печатна платка	Диелектрик	Фрезоване с CNC машина	-
Стъклен балон	Стъкло	Топло огъване	-

Използваните основни технологични процеси за изработване на изделието са щанцоване, шприцоване, фрезоване с CNC машина и . Тъй като при част от тях се работи при високи температури, налягания, значителен шум и вибрации, опасни за здравето разтвори е необходимо строго спазване на изискванията по техника на безопасността и противопожарните норми, използване на необходимите обезопасени машини, съоражения и лични предпазни средства.

Получаваните отпадъци от производството в помалката си част са подходящи за рециклиране. Предвид обема на производството е необходимо да се обърне внимание на правилното и своевременно събиране и обработване на получаваните отпадъци, за да се избегне замърсяване на околната среда.

4.2. Монтаж – анализ на технологиите на сглобяване. Технологична схема на монтажа. Контролни операции.

Серийното производство на изделието изисква използването на специализирани работни места, по възможност автоматизиране на процесите на сглобяване, или най-малко да се използват специализирани инструменти и съоражения за монтаж. След определени монтажни операции е необходимо да бъдат извършвани контролни операции за проверка на годността и изправността на междинните елементи, възли, блокове и други.

Технологичната схема на монтажа е показана на фигурата по долу. Означенията на сглобяваните елементи са съгласно Табл.1. Съответните монтажни и контролни операции са както следва:

- ▶ M1 Монтаж на компонентите в стъкления балон.
- ▶ M2 Спояване на печатната платка към компонентите на стъкления балон.
- ▶ М3 Спояване на филмовите кондензатори и транзисторите към печатната платка.
- ▶ М4 Спояване на индуктивния елемент и бобината на печатната платка.
- ▶ M5 Поставяне на кондензатор и проводници.
- ▶ M6 Затваряне на корпуса на крушката.
- К1 Проверка на работоспособността на готовата печатна платка.
- ➤ К2 Проверка на работата на готовото изделие съгласно съответната документация.

Легенда:

4.3. Количествени показатели за конструкцията

Коефициент на нормализация:

Определя се чрез отношението на броя на нормализираните към общия брой детайли.

$$K_{H} = 1/16 = 0.0625 \ \underline{Koeфициент на стандартизация:}$$

Определя се чрез отношението на броя на стандартизираните към общия брой детайли.

$$K_c = 10/16 = 0,625$$

Коефициент на взаимстване:

Определя се чрез отношението на броя на взаимстваните към общия брой детайли.

$$K_{\rm g} = 2/16 = 0.125$$

Коефициент на приемственост:

Определя се чрез отношението на сумата от броя на нормализираните, стандартните, и взаимстваните детайли към общия брой детайли.

$$K_{np} = 13/16 = 0.8125$$

Получените високи стойности на количествените показатели за конструкцията са показател за ниски производствени разходи, поради използване на голям брой стандартни и същевременно малък брой оригинални детайли. Тези фактори са предпоставка за високо качество и надеждност, и ниска пазарна цена на разглежданото изделие.

5. Технологичен анализ на детайл (подвъзел, възел)

5.1. Изходен материал

Изходният материал за изработване на детайла е с термореактивна електроизолационна пластмаса (бакелит) в прахообразна форма и състояние на резол. Цокълът е основа на лампата с винтова резба (предложена още от Едисон) и има за задача да свърже лампата с източника на електрически ток и да поддържа другите ѝ съставни части.

5.2. Базова технология. Принадлежност на детайла към съответната група от технологична гледна точка, коефициент на използване на материала, възможност за рециклиране на отпадъците.

Базовата технология за изработването на детайла е горещото пресуване. То се извършва в пресформи, монтирани в походящи преси. Изходният материал под формата на преспрах се поставя в предварително загрята пресформа и се пресува с определено налягане, което се поддържа определено време.

5.3. Допълнителни технологични операции

При правилно дозиране на изходния материал и спазване на технологичните параметри, допълнителни технологични операции не са необходими!

5.4. Качествена оценка на енергоемкостта

Вземайки предвид, че машините, съоръженията, оборудването и екипировката в предприятието са сравнително нови, себестойността на всеки произведен детайл е сведена до минимум. Работейки с качествени суровини и материали считаме, че енергоемкостта е на добро ниво, сравнявайки предприятието с други конкурентни такива.

5.5. Алтернативни технологични решения

Процесът на горещо пресуване на термореактивни пластмаси протича с отделяне на газове, което усложнява самия технологичен процес — пресформата трябва да се отвори няколко пъти за отделянето им. Изисква се над пресите да има аспирационна уредба, тъй като отделяните газове замърсяват атмосферата в работното помещение. Използването на подходящи, но значително по-скъпи термопластични пластмаси би позволило

да се използва по-високо производителен и възможност за рециклиране на отпадъците метод – шприцоване.

5.6. Контролни операции

Полученият след пресуването детайл трябва да бъде подложен на следните по-важни контролни операции:

- > Визуален контрол за качество на получените форми и повърхности
- > Контрол на основните геометрични размери.

6. Използвана литература

- 1. Ръководство за курсова работа по Производствени технологии II (Технологии в електротехниката и електрониката) – К. Хинов.
- 2. <u>https://nvcua.com/</u> Информация и технология за осветителни тела на NVC.