Lecture Notes

2301107 Calculus I for Engineering Section 4

First Semester, Academic Year 2024

Chapter 6 Applications of Integration

Paisan Nakmahachalasint

Department of Mathematics and Computer Science Faculty of Science, Chulalongkorn University

Chapter 6 Applications of Integration

6.1	Areas Between Curves	1
	Area Between Curves: Integrating With Respect to x	1
	Area Between Curves: Integrating With Respect to y	4
6.2	Volumes	5
	Find Volume Using Cross-Sectional Area	5
	Volumes of Solids of Revolution	
6.3	Volumes by Cylindrical Shells	12
	Disks and Washers versus Cylindrical Shells	15
8.1	Arc Length	17

6.1 Areas Between Curves

Area Between Curves: Integrating With Respect to x

The area A of the region bounded by the curves y = f(x), y = g(x), and the lines x = a, x = b, where f and g are continuous and $af(x) \ge g(x)$ for all $x \in [a, b]$, is given by

$$A = \int_{a}^{b} (f(x) - g(x)) dx$$

The area between the curves y = f(x) and y = g(x)and between x = a and x = b is given by

$$A = \int_{a}^{b} |f(x) - g(x)| dx$$

Example 1 Find the area of the region bounded by the curves $y = x^2$ and $y = 2x - x^2$.

Example 2 Find the area of the region bounded by the curve $y = 2\sqrt{x}$ where $0 \le x \le 1$, and the lines x = 2y and x + y = 3.

Area Between Curves: Integrating With Respect to y

Example 3

Find the area enclosed by the line y = x - 1 and the parabola $y^2 = x + 1$.

6.2 Volumes

Find Volume Using Cross-Sectional Area

Let S be a solid that lies between x = a and x = b. If the cross-sectional area of S in the plane P_x , through x and perpendicular to the x-axis, is A(x), where A is a continuous function, then the volume of S is given by

$$V = \int_{a}^{b} A(x) \, dx$$

Example 4 Show that a sphere of radius r has the volume of $\frac{4}{3}\pi r^3$.

Example 5 Find the volume of a solid with a circular base of radius r and the parallel cross sections perpendicular to the base are equilateral triangles.

Example 6 Show that a circular cone whose base is a circle of radius r and height is h has the volume of $\frac{1}{3}\pi r^2 h$.

Volumes of Solids of Revolution

If we revolve a region about a line, we obtain a solid of revolution. The cross sections perpendicular to the axis of rotation are circles (disks) or circular rings (washers).

Area of Disks:

$$A(x) = \pi(\text{radius})^2 = \pi(f(x))^2$$

$$\therefore V = \int_{-b}^{b} A(x) \, dx$$

Area of Washers:

$$A(y) = \pi \left((\text{outer radius})^2 - (\text{inner radius})^2 \right)$$
$$= \pi \left(\left(g(y) - k \right)^2 - \left(f(y) - k \right)^2 \right)$$

$$\therefore V = \int_a^b A(y) \, dy$$

This method of find the volumes of solids of revolution is called the method of disks and washers.

Example 7 Find the volume of the solid obtained by rotating the region R enclosed by the curve $y = x^2$, where $0 \le x \le 1$.

1. About the x-axis.

2. About the y-axis.

Example 8

is rotated about the line y = 1. Find the volume of the resulting solid.

 $y = 2x^2 - x^3$

6.3 Volumes by Cylindrical Shells

The region R is enclosed by the curves $y = 2x^2 - x^3$ and the x-axis.

Consider the problem of finding the volume of the solid obtained by rotating the region R about the y-axis.

Another method called the method of cylindrical shells allows us to find the volume easily by considering a cylindrical shell which encircle the axis of revolution.

The area of the cylindrical shell can be found from

area of cylindrical shell =
$$(circumference) \times (height)$$

which can then be integrated to yield the volume of the solid.

 x_1

Example 9 Find the volume of the solid obtained by rotating about the y-axis the region R bounded by the curves $y = 2x^2 - x^3$ and y = 0.

Example 10 Use cylindrical shells to find the volume of the solid obtained by rotating about the line x = -1 the region R enclosed by the curves y = x and $y = x^2$.

Disks and Washers versus Cylindrical Shells

Disks and Washers when rotated about the line $x = x_0$

$$A(y) = \pi \left[(\text{outer radius})^2 - (\text{inner radius})^2 \right]$$
$$= \pi \left[\left(f_2(y) - x_0 \right)^2 - \left(f_1(y) - x_0 \right)^2 \right]$$

$$V = \int_{y_1}^{y_2} A(y) \, dy \quad \text{integrate along the axis of revolution}$$

Cylindrical Shells when rotated about the line $x = x_0$

area of cylindrical shell

$$A(x) = (\text{circumference}) \times (\text{height})$$
$$= 2\pi(x - x_0)(q_2(x) - q_1(x))$$

$$V = \int_{x_1}^{x_2} A(x) dx$$
 integrate perpendicular to the axis of revolution

Disks and Washers when rotated about the line $y = y_0$

area of washer

$$A(x) = \pi \left[(\text{outer radius})^2 - (\text{inner radius})^2 \right]$$
$$= \pi \left[\left(f_2(x) - y_0 \right)^2 - \left(f_1(x) - y_0 \right)^2 \right]$$

$$V = \int_{x_1}^{x_2} A(x) dx$$
 integrate along the axis of revolution

Cylindrical Shells when rotated about the line $y = y_0$

area of cylindrical shells

$$A(y) = (\text{circumference}) \times (\text{height})$$
$$= 2\pi (y - y_0) (g_2(y) - g_1(y))$$

$$V = \int_{y_1}^{y_2} A(y) dy \quad \text{integrate perpendicular to the axis of revolution}$$

8.1 Arc Length

Consider the problem of finding the arc length of a curve y = f(x) when $a \le x \le b$. Divide the interval [a, b] into n subintervals with endpoints P_0, P_1, \ldots, P_n and equal width $\Delta x = \frac{1}{n}(b-a)$.

The length of the segment $P_{i-1}P_i$ is

$$P_{i-1}P_i = \sqrt{(\Delta x)^2 + (y_i - y_{i-1})^2}$$
$$= \sqrt{1 + \left(\frac{\Delta y_i}{\Delta x}\right)^2} \Delta x.$$

Define the length L of the curve as

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} (P_{i-1}P_i).$$

Theorem 1 (The Arc Length Formula)

If f' is continuous on [a,b], then the length of the curve $y=f(x), \ a \le x \le b$, is

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \ dx$$

Example 11 Find the length of the arc of the curve $y^2 = x^3$ between the points (1,1) and (4,8).

Example 12

Find the length of the astroid $x^{2/3} + y^{2/3} = 1$.

