Question Number	Scheme	Marks
3	$V = \frac{4}{3}\pi r^3 \to \frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2$	M1A1
	$36000\pi = \frac{4}{3}\pi r^3 \qquad \Rightarrow r = 30$	M1A1
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \times \frac{\mathrm{d}r}{\mathrm{d}V} \text{ oe}$	M1
	$\frac{\mathrm{d}r}{\mathrm{d}t} = 60 \times \frac{1}{4\pi \times 30^2} \qquad \Rightarrow \frac{\mathrm{d}r}{\mathrm{d}t} = \frac{1}{60\pi} = 0.0053 \mathrm{cm/s}$	M1A1
		(7)

- Notes for attempting to differentiate the expression for the volume of a sphere. If their M1formula is incorrect allow $V = a\pi r^3$ where a is a constant as a minimum. (see General Guidance for an attempt)
- for a fully correct $\frac{dV}{dr} = 4\pi r^2$ A₁
- for equating the given volume to the correct formula for the volume of a sphere AND M1attempting to find the value for r. Just equating the given volume to the formula is not enough for the award of this mark. They must reach $r = \dots$
- **A**1 r = 30
- for a correct expression of chain rule (any way around) there will be some variations M1 so please check anything unusual.
- for substituting their $\frac{dV}{dr}$, and using the given value of $\frac{dV}{dt}$ to find $\frac{dr}{dt}$. M1
- for a correct value of 0.0053 (cm/s) **A**1 (Units not required)

ALT

- M1for re-arranging the formula for the volume of a sphere to make r the subject An acceptable attempt is $r = \left(\frac{aV}{h}\right)^{\frac{1}{3}}$ where a and b are constants
- for $r = \left(\frac{3V}{4\pi}\right)^{\frac{1}{3}}$ **A**1
- for attempting to differentiate a rearranged formula for the volume of a sphere M1

$$r = \left(\frac{3V}{4\pi}\right)^{\frac{1}{3}} \Rightarrow \frac{\mathrm{d}r}{\mathrm{d}V} = \frac{V^{-\frac{2}{3}}}{3} \left(\frac{3}{4\pi}\right)^{\frac{1}{3}}$$

- for a fully correct $\frac{dr}{dV}$ A1
- M1for a correct expression of chain rule
- for substituting the given V into their differentiated $\frac{dr}{dV}$, using the given $\frac{dV}{dt}$ and M1 using a correct chain rule.
- **A**1 for a correct value of 0.0053 (cm/s)