

Hardware: Discovery stm32f4, SoC Stm32f40vg

Reference: RM0090 reference manual (DM00031020.pdf)

Contact: Mustapha.hamdi@insat.rnu.tn

Institut national des sciences appliquées et de technologie

General-purpose I/Os (GPIO)

GPIO electronic schematic:

RM0090 reference manual, chapter 6.3, page 270, Fig 13

General-purpose I/Os (GPIO)

Each general-purpose I/O port has four 32-bit configuration registers (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR and GPIOx_PUPDR), two 32-bit data registers (GPIOx_IDR and GPIOx_ODR), a 32-bit set/reset register (GPIOx_BSRR), a 32-bit locking register (GPIOx_LCKR) and two 32-bit alternate function selection register (GPIOx_AFRH and GPIOx_AFRL).

GPIO modes:

Input (reset state)
General purpose output mode
Alternate function mode
Analog mode

GPIO Used Registers: SoC stm32f407vg

RM0090 Reference manual (DM00031020.pdf), General-purpose I/Os (GPIO) page 269

Peripheral clock enable register

Port mode register

Port output type register

Output speed register

Port output data register

AHB1ENR 32bits

MODER 32bits

Typer 32bits

OSPEEDER 32bits

IDR/ODR 16 bits

GPIOx

RCC AHB1 peripheral clock register (RCC_AHB1ENR) 6.3.10

Address offset: 0x30

Reset value: 0x0010 0000

Access: no wait state, word, half-word and byte access.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reser- ved	OTGH S ULPIE N	OTGH SEN	ETHM ACPTP EN	ETHM ACRXE N	ETHM ACTXE N	ETHMA CEN	Res.	DMA2D EN	DMA2E N	DMA1E N	CCMDAT ARAMEN	Res.	BKPSR AMEN	Rese	erved
ı	rw	rw	rw	rw	rw	rw		rw	rw	rw			rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		CRCE N	Res.	GPIOK EN	GPIOJ EN	GPIOIE N	GPIOH EN	GPIOG EN	GPIOFE N	GPIOEEN	GPIOD EN	GPIOC EN	GPIO BEN	GPIO AEN
			rw		rw	rw	rw	rw	rw	rw	rw	r	rw	rw	rw

DM00031020.pdf Page 180

Enable GPIO D (1 << 3);

8.4.1 GPIO port mode register (GPIOx_MODER) (x = A..I/J/K)

Address offset: 0x00

Reset values:

32 bits register

- 0xA800 0000 for port A Each pin requires two bits for mode configuration
- 0x0000 0280 for port B
- 0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MODER	R15[1:0]	MODER	R14[1:0]	MODER	R13[1:0]	MODER	R12[1:0]	MODE	R11[1:0]	MODE	R10[1:0]	MODE	R9[1:0]	MODE	R8[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	. 5	4	3	2	1	0
MODE	R7[1:0]	MODE	R6[1:0]	MODE	R5[1:0]	MODE	R4[1:0]	MODE	R3[1:0]	MODE	R2[1:0]	MODE	R1[1:0]	MODE	R0[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	M	w	rw	rw	rw	rw
				•									•		

Bits 2y:2y+1 **MODERy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O direction mode.

00: Input (reset state)

01: General purpose output mode

10: Alternate function mode

11: Analog mode

Pin 2: output mode

 $(1 << 2^*2) = (010000)_2$

DM00031020.pdf Page 283

Case study: GPIOD, pin 15 as output, output frequency: 50 MHz, Output 15:1

RCC->AHB1ENR = (1<<3);

|=(1<<3)

Mode output, GPIOD->MODER |=(1<<2*15)

|=(1<<2*15)

Freq=50MHz, GPIOD->OSPEEDER

|=(2<<2*15)

Pin 15=1, GPIOD->ODER

|=(1<<15)

pin15

pin0

GPIOD

Case study: GPIOD, pin 14 and 15 as output, Output:1

$$RCC->AHB1ENR = (1<<3);$$

output mode

?

?

?

Pin15,14

pin0

GPIOD

Case study

$$RCC->AHB1ENR = (1<<3);$$

Mode output

Pin15,14

pin0

GPIOD

Low Layer Code:

By using Keil MDK,

Getting Started:

https://www.keil.com/product/brochures/uv4.pdf

Environnement Configuration:

Manage Run-Time Environment

oftware Component	Sel.	Variant	Version	Description
- 💠 Board Support		STM32F429I-Discov V	1.0.0	STMicroelectronics STM32F429I-Discovery Kit
··◆ CMSIS				Cortex Microcontroller Software Interface Components
✓ CORE	~		4.3.0	CMSIS-CORE for Cortex-M, SC000, and SC300
Ø DSP			1.4.6	CMSIS-DSP Library for Cortex-M, SC000, and SC300
⊕ RTOS (API)			1.0	CMSIS-RTOS API for Cortex-M, SC000, and SC300
CMSIS Driver				Unified Device Drivers compliant to CMSIS-Driver Specifications
				ARM Compiler Software Extensions
Device				Startup, System Setup
Startup	V		2.1.0	System Startup for STMicroelectronics STM32F4 Series
⊕ ❖ STM32Cube Framework (API)			1.0.0	STM32Cube Framework
⊕ 💠 STM32Cube HAL				STM32F4xx Hardware Abstraction Layer (HAL) Drivers
🛶 File System		MDK-Pro	6.6.0	File Access on various storage devices
Graphics		MDK-Pro	5.30.0	User Interface on graphical LCD displays
Graphics Display				Display Interface including configuration for emWIN
		lwIP ~	1.4.1	Network IwIP Bundle
→ Oryx Embedded Middlware		Oryx Embedded Mi	1.5.1	Middleware package(CycloneTCP, CycloneSSL and CycloneCrypto
→ S USB		MDK-Pro	6.6.10	USB Communication with various device classes
		wolfSSL	3.0.0	wolfSSL: SSL/TLS and Crypt Library

Debug and target configuration:

Program STM32F4 with stlink, then you should see led red and blue on because because our onboard **leds** are connected to GpioD 14 and 15