*** Applied Machine Learning Fundamentals *** Regression

Daniel Wehner

SAPSE

August 16, 2019

Agenda August 16, 2019

- 1 Introduction to Regression What is Regression?
 - Least Squares Error Function
- Solutions to Regression

Closed-Form Solutions and Normal Equation Gradient Descent

- 3 Probabilistic Regression
- 4 Basis Function Regression
- **6** Wrap-Up

Summary

Lecture Overview

Self-Test Questions

Recommended Literature and further Reading

Section: Introduction to Regression

Regression

Type of target variable

Continuous

Type of training information

Supervised

Example Availability

Batch learning

Algorithm sketch: Given the training data \mathcal{D} the algorithm derives a function of the type

$$h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \dots + \theta_{m+1} x_m \qquad \mathbf{x} \in \mathbb{R}^m, \theta \in \mathbb{R}^{m+1}$$
 (1)

from the data. θ is the parameter vector containing the coefficients to be estimated by the regression algorithm. Once θ is learned it can be used for prediction.

Example Data Set: Revenues

Revenue y

Marketing Expenses x_1

Find a linear function:

$$h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \dots + \theta_{m+1} x_m$$

• Usually: $x_0 = 1$:

$$\widehat{\mathbf{x}} \in \mathbb{R}^{m+1} = [1 \ \mathbf{x}]^{\mathsf{T}}$$

$$h_{\boldsymbol{\theta}}(\widehat{\mathbf{x}}) = \sum_{j=1}^{m+1} \theta_{j} x_{j} = \boldsymbol{\theta}^{\mathsf{T}} \widehat{\mathbf{x}}$$

$$i\theta(\mathbf{X}) = \sum_{j=0}^{\infty} O_j x_j = \mathbf{0}^{-1} \mathbf{X}$$

Error Function for Regression

• In order to know how good the function fits we need an error function $\mathcal{J}(\boldsymbol{\theta})$:

$$\mathcal{J}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(\widehat{\mathbf{x}}^{(i)}) - y^{(i)})^{2}$$
 (2)

• We want to minimize $\mathcal{J}(\boldsymbol{\theta})$:

$$\min_{\theta} \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(\widehat{\mathbf{x}}^{(i)}) - y^{(i)})^{2}$$

• This is ordinary least squares (OLS)

Introduction to Regression Solutions to Regression Probabilistic Regression Basis Function Regression Wrap-Up

What is Regression? Least Squares Error Function

Error Function Intuition

Section: Solutions to Regression

Closed-Form Solutions

• Usual approach (for two unknowns): Calculate θ_0 and θ_1 according to

sample mean
$$\overline{x}$$

$$\theta_0 = \overline{y} - \theta_2 \overline{x}$$

$$\theta_1 = \frac{\sum_{i=1}^{n} (x^{(i)} - \overline{x}) \cdot (y^{(i)} - \overline{y})}{\sum_{i=1}^{n} (x^{(i)} - \overline{x})^2}$$
(3)

• 'Normal equation' (scales to arbitrary dimensions):

$$\theta = (\widehat{X}^{\mathsf{T}}\widehat{X})^{-1}\widehat{X}^{\mathsf{T}}y$$
Moore-Penrose
pseudo-inverse
(4)

 $\widehat{\boldsymbol{X}}$ is called 'design matrix' or 'regressor matrix'

Design Matrix / Regressor Matrix

• The design matrix $\widehat{\mathbf{X}} \in \mathbb{R}^{n \times (m+1)}$ looks as follows:

$$\widehat{\mathbf{X}} = \begin{pmatrix} 1 & x_1^{(1)} & x_2^{(1)} & \cdots & x_m^{(1)} \\ 1 & x_1^{(2)} & x_2^{(2)} & \cdots & x_m^{(2)} \\ 1 & x_1^{(3)} & x_2^{(3)} & \cdots & x_m^{(3)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(n)} & x_2^{(n)} & \cdots & x_m^{(n)} \end{pmatrix}$$

In the following

$$\widehat{X} \equiv X$$

(5)

• And the $n \times 1$ label vector:

$$\mathbf{y} = (y^{(1)}, y^{(2)}, y^{(3)}, \dots, y^{(n)})^{\mathsf{T}}$$

Derivation of the Normal Equation

- The derivation involves a bit of linear algebra
- Step $\mathbf{0}$: Rewrite $\mathcal{J}(\boldsymbol{\theta})$ in matrix-vector notation:

$$\mathcal{J}(\theta) = \frac{1}{2} (X\theta - y)^{\mathsf{T}} (X\theta - y)$$

$$= ((X\theta)^{\mathsf{T}} - y^{\mathsf{T}}) (X\theta - y)$$

$$= (X\theta)^{\mathsf{T}} X\theta - (X\theta)^{\mathsf{T}} y - y^{\mathsf{T}} (X\theta) + y^{\mathsf{T}} y$$

$$= \theta^{\mathsf{T}} X^{\mathsf{T}} X\theta - 2(X\theta)^{\mathsf{T}} y + y^{\mathsf{T}} y$$

To be continued...

Derivation of the Normal Equation (Ctd.)

• Step Θ : Calculate the derivative of $\mathcal{J}(\boldsymbol{\theta})$ and set it to zero:

$$\nabla_{\boldsymbol{\theta}} \mathcal{J}(\boldsymbol{\theta}) = 2 \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} \boldsymbol{\theta} - 2 \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y} \stackrel{!}{=} \boldsymbol{0}$$
$$\Leftrightarrow \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} \boldsymbol{\theta} = \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

• If $X^{T}X$ is invertible, we can multiply both sides by $(X^{T}X)^{-1}$:

Normal equation:

$$\boldsymbol{\theta} = (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y}$$

Problems with Matrix Inversion?

- What if $(X^{T}X)^{-1}$ does not exist?
- Problems and solutions:
 - 1 Linearly dependent (redundant) features or design matrix does not have full rank? (E. g. size in m² and size in feet²)
 - ⇒ Delete correlated features
 - 2 Too many features (m > n)?
 - ⇒ Delete features (e.g. using PCA) / add training examples
 - 3 Other numerical instabilities?
 - ⇒ Add a regularization term (later)
 - 4 Computationally too expensive?
 - ⇒ Use gradient descent

Gradient Descent

• We want to minimize a smooth function $\mathcal{J}: \mathbb{R}^{m+1} \to \mathbb{R}$:

$$\min_{oldsymbol{ heta} \in \mathbb{R}^{m+1}} \mathcal{J}(oldsymbol{ heta})$$

Update the parameters iteratively:

$$\boldsymbol{\theta}^{(t+1)} \longleftarrow \boldsymbol{\theta}^{(t)} - \alpha \nabla_{\boldsymbol{\theta}} \mathcal{J}(\boldsymbol{\theta}^{(t)}) \tag{6}$$

• where $\alpha > 0$ (learning rate) and $\nabla_{\theta} \mathcal{J}(\theta)$ is the gradient of $\mathcal{J}(\theta)$ w.r.t. θ :

$$abla_{m{ heta}} \mathcal{J}(m{ heta}) = \left(rac{\partial \mathcal{J}(m{ heta})}{\partial m{ heta}_0}, rac{\partial \mathcal{J}(m{ heta})}{\partial m{ heta}_1}, \ldots, rac{\partial \mathcal{J}(m{ heta})}{\partial m{ heta}_{m+1}}
ight)^{\mathsf{T}}$$

Data Input Space vs. Hypothesis Space

Data input space

Hypothesis space \mathcal{H}

Data Input Space vs. Hypothesis Space (Ctd.)

- Data input space
 - Determined by the *m* attributes of the data set x_1, x_2, \ldots, x_m
 - Often high-dimensional
- Hypothesis space ${\mathcal H}$
 - Determined by the number of parameters of the model
 - Each point in the hypothesis space corresponds to a specific assignment of model parameters
 - The error function gives information about how good this assignment is
 - ullet Gradient descent is applied in the hypothesis space ${\mathcal H}$

Visualization of Gradient Descent in 3 Dimensions

Versions of Gradient Descent

- Assume some training data \mathfrak{D} : $\{x^{(i)}, y^{(i)}\}_{i=1}^n$
- Squared error for a **single** example: $\ell(y_{pred}, y_{true}) = (y_{pred} y_{true})^2$
- Our objective is to minimize the **total** error:

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^{m+1}} \mathcal{J}(\boldsymbol{\theta}) = \min_{\boldsymbol{\theta} \in \mathbb{R}^{m+1}} \sum_{i=1}^{n} \ell(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}), \boldsymbol{y}^{(i)})$$

- Three versions of gradient descent:
 - 1 Batch gradient descent
 - 2 Stochastic gradient descent
 - 3 Mini-batch gradient descent

Versions of Gradient Descent (Ctd.)

• Batch gradient descent: Compute gradient based on ALL data points

$$\boldsymbol{\theta}^{(t+1)} \longleftarrow \boldsymbol{\theta}^{(t)} - \alpha \sum_{i=1}^{n} \nabla \ell(h_{\boldsymbol{\theta}^{(t)}}(\boldsymbol{x}^{(i)}), \boldsymbol{y}^{(i)})$$
 (7)

- Stochastic gradient descent: Compute gradient based on a <u>SINGLE</u> data point (pick training example randomly and not sequentially!)
- For $i \in \{1, ..., n\}$ do:

$$\boldsymbol{\theta}^{(t+1)} \longleftarrow \boldsymbol{\theta}^{(t)} - \alpha \nabla \ell(h_{\boldsymbol{\theta}^{(t)}}(\boldsymbol{x}^{(i)}), \boldsymbol{y}^{(i)}) \tag{8}$$

Solving linear Regression using Gradient Descent

- ullet Randomly initialize $oldsymbol{ heta}$
- ullet To minimize the error, keep changing $oldsymbol{ heta}$ according to:

$$\boldsymbol{\theta}^{(t+1)} \longleftarrow \boldsymbol{\theta}^{(t)} - \alpha \nabla_{\boldsymbol{\theta}} \mathcal{J}(\boldsymbol{\theta}^{(t)}) \tag{9}$$

• We need to calculate $\nabla_{\theta_i} \mathcal{J}(\boldsymbol{\theta}^{(t)})$: (based on a single example)

$$\nabla_{\theta_{j}} \mathcal{J}(\boldsymbol{\theta}^{(t)}) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\boldsymbol{\theta}}(\boldsymbol{x}) - y)^{2} = 2 \cdot \frac{1}{2} (h_{\boldsymbol{\theta}}(\boldsymbol{x}) - y) \cdot \frac{\partial}{\partial \theta_{j}} (h_{\boldsymbol{\theta}}(\boldsymbol{x}) - y)$$

$$= (h_{\boldsymbol{\theta}}(\boldsymbol{x}) - y) \cdot \frac{\partial}{\partial \theta_{j}} (\theta_{0} x_{0} + \dots + \theta_{m+1} x_{m+1} - y) = \boxed{(h_{\boldsymbol{\theta}}(\boldsymbol{x}) - y) x_{j}}$$

Solving the introductory Example

- $\theta_0 \approx 7.4218$
- $\theta_1 \approx 2.9827$
- $\mathcal{J}(\boldsymbol{\theta}) \approx 446.9584$
- $h_{\theta}(\mathbf{x}) = 7.4218 + 2.9827 \cdot x_1$
- $R = h_{\theta}(2.7) = 15.4750$

Disadvantage of Gradient Descent

Section: Probabilistic Regression

Probabilistic Regression

 Assumption 1: The target function values are generated by adding noise the true function's estimate:

$$y = f(\mathbf{x}, \boldsymbol{\theta}) + \epsilon \tag{10}$$

• Assumption 2: The noise is a Gaussian random variable:

$$\epsilon \sim \mathcal{N}(0, \beta^{-1}) \tag{11}$$

$$p(y|\mathbf{x}, \boldsymbol{\theta}, \boldsymbol{\beta}) = \mathcal{N}(y|f(\mathbf{x}, \boldsymbol{\theta}), \boldsymbol{\beta}^{-1})$$
(12)

• y is now a random variable!

Probabilistic Regression (Ctd.)

Maximum Likelihood Regression

- Given: A labeled set of training data points $\{(x^{(i)}, y^{(i)})\}_{i=1}^n$
- Conditional likelihood (assuming the data is i. i. d.):

$$p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\beta}) = \prod_{i=1}^{n} \mathcal{N}(\mathbf{y}^{(i)}|f(\mathbf{x}^{(i)}), \boldsymbol{\beta}^{-1})$$
(13)

$$= \prod_{i=1}^{n} \mathcal{N}(\mathbf{y}^{(i)}|\boldsymbol{\theta}^{\mathsf{T}}\mathbf{x}^{(i)}, \boldsymbol{\beta}^{-1})$$
 (14)

• Maximize the likelihood w.r.t. θ and β

Maximum Likelihood Regression (Ctd.)

Simplify using the log-likelihood:

$$\log p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\beta}) = \sum_{i=1}^{n} \log \mathcal{N}(\mathbf{y}^{(i)}|\boldsymbol{\theta}^{\mathsf{T}}\mathbf{x}^{(i)}, \boldsymbol{\beta}^{-1})$$
(15)

$$= \sum_{i=1}^{n} \left[\log \left(\frac{\sqrt{\beta}}{\sqrt{2\pi}} \right) - \frac{\beta}{2} (y^{(i)} - \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}^{(i)})^{2} \right]$$
 (16)

$$= \frac{n}{2} \log \beta - \frac{n}{2} \log(2\pi) - \frac{\beta}{2} \sum_{i=1}^{n} (y^{(i)} - \theta^{\mathsf{T}} \mathbf{x}^{(i)})^{2}$$
 (17)

Section: Basis Function Regression

Introduction to Regression Solutions to Regression Probabilistic Regression Basis Function Regression Wrap-Up Introduction to Regression Solutions to Regression Probabilistic Regression Basis Function Regression Wrap-Up

Summary Lecture Overview Self-Test Questions Recommended Literature and further Readin

Summary

Lecture Overview

Unit I: Machine Learning Introduction

Introduction to Regression Solutions to Regression Probabilistic Regression Basis Function Regression Wrap-Up

Summary Lecture Overview Self-Test Questions Recommended Literature and further Readin

Self-Test Questions

Recommended Literature and further Reading

Thank you very much for the attention!

Topic: *** Applied Machine Learning Fundamentals *** Regression

Date: August 16, 2019

Contact:

Daniel Wehner (D062271)

SAPSE

daniel.wehner@sap.com

Do you have any questions?

