

PTO/SB/92 (05-03) Approved for use through 04/30/2003. OMB 0561-0031
Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

action Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Certificate of Mailing under 37 CFR 1.8

I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to:

> Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

on July 3 2003.

Bruce Y. Arnold

Note: Each paper must have its own certificate of mailing, or this certificate must identify each submitted paper.

Attorney Docket No. 25-193

Patent

IN THE U.S. PATENT AND TRADEMARK OFFICE

Applicant:

Kenichi SATO

Serial No.:

10/076,328

Art Unit:

2873

July 3, 2003

Filed:

February 19, 2002

Examiner:

SCHWARTZ

For:

WIDE-ANGLE, SINGLE FOCUS LENS

<u>AMENDMENT</u>

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

Sir:

In response to the Office Action dated May 20, 2003, please enter the below Amendment.

In the claims:

Please cancel claims 3, 5 and 6.

Please amend claims 1 and 4 as follows:

- 1 1. (Amended) A wide-angle, single focus lens comprising four lenses of negative, positive,
- 2 negative, and positive refractive power, in sequential order from the object side, wherein:
- 3 the first lens is concave on the object side;
- 4 the second lens has at least one surface that is aspheric;
- 5 the fourth lens is convex on the image side and has at least one of its surfaces aspheric;
- 6 and
- 7 the following conditions are satisfied
- 8 $-2.0 < f/f_1 < -0.5$
- 9 $0.5 < f/f_2 < 2.0$
- 10 $0.5 < f/f_4 < 2.0$
- 11 where