Calcul Différentiel III

STEP, MINES ParisTech

23 juillet 2021 (#0495d87)

Question 1 (réponses multiples)	Soit f :	(x_1, x_2)	$(x_2) \in \mathbb{R}^2$	$x_1 \mapsto x_1 x_2$	$\in \mathbb{R}.$	On a
□ A:	_	_				
$H_f($	$(x) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$				

 \square B: Si $h_1 = (h_{11}, h_{12}) \in \mathbb{R}^2$ et $h_2 = (h_{21}, h_{22}) \in \mathbb{R}^2$,

$$d^2 f(x_1, x_2) \cdot h_1 \cdot h_2 = h_{11} h_{22} - h_{21} h_{12}$$

 \square C: Pour tout $x \in \mathbb{R}^2$

$$\nabla f(x+h) = \nabla f(x) + \frac{1}{2} \langle h, H_f(x) \cdot h \rangle + \varepsilon(h) ||h||^2$$

où $\varepsilon(h) \to 0$ quand $h \to 0$.

Question 2 Si $f: \mathbb{R}^n \to \mathbb{R}$ est deux fois différentiable en $x \in U$ et que $df(x) \cdot h \cdot h$ est connu pour tout $h \in \mathbb{R}^n$, peut-on déterminer $df(x) \cdot h_1 \cdot h_2$ pour tout $h_1, h_2 \in \mathbb{R}^n$?

- \square A : oui, \square B : non.
- **Question 3** Si $f: \mathbb{R}^3 \to \mathbb{R}^3$ est deux fois différentiable, combien y'a-t'il au plus de coefficients différents dans le tenseur représentant $d^2f(x)$?
 - \square A: 9,
 - \square B: 18,
 - \square C: 27.

Question 4 (réponses multiples) Soient $f: \mathbb{R}^2 \to \mathbb{R}$ et $a \in \mathbb{R}^2$ tels que $\partial_{12} f(a) = \partial_{21} f(a)$. Alors f est

- \square deux fois continûment différentiable en a,
- \square deux fois différentiable en a,
- \Box différentiable en a,
- \square continue en a.

Question 5 La differentielle a^*f d'ordre 3 d'une fonction $f:U\subset\mathbb{R}^2\to\mathbb{R}^3$
 □ A : associe linéairement à tout vecteur h de R² une application qui associe linéairement à tout vecteur p de R² un vecteur de R³. □ B : associe linéairement à tout point x ∈ U une application qui associe linéairement à tout vecteur h de R² une application qui associe linéairement à tout vecteur h de R² une application qui associe linéairement à tout vecteur k de R² un vecteur de R³. □ C : associe à tout point x ∈ U une application qui associe linéairement à tout vecteur h de R² une application qui associe linéairement à tout vecteur k de R² une application qui associe linéairement à tout vecteur k de R² une application qui associe linéairement à tout vecteur k de R² une application qui associe linéairement à tout vecteur p de R² un vecteur de R³.
Question 6 Si $f: \mathbb{R}^2 \to \mathbb{R}^4$ est trois fois différentiable, quel est le type du tenseur représentant $d^3f(x)$?
$ \Box A: (4, 2, 2, 2), \Box B: (3, 4, 2), \Box C: (4, 2, 1). $
Question 7 (réponses multiples) Si f est k fois différentiable en x ,
□ A : les dérivées partielles d'ordre k de f en x existent, □ B : on a $\partial_{i_ki_1}^k f(x) = d^k f(x) \cdot e_{i_1} \cdot \ldots \cdot e_{i_k}$, □ C : les dérivées partielles de d'ordre k de f en x déterminent $d^k f(x)$ de facon unique.