# Problem Set - 19 Jan 2024

#### **PROBLEM 1** (2012 AMC 12B #2)

A circle of radius 5 is inscribed in a rectangle as shown. The ratio of the length of the rectangle to its width is 2:1. What is the area of the rectangle?



- **(A)** 50
- **(B)** 100
- (C) 125
- **(D)** 150
- **(E)** 200

#### **PROBLEM 2** (2019 AMC 10A #21)

A sphere with center O has radius 6. A triangle with sides of length 15, 15, and 24 is situated in space so that each of its sides is tangent to the sphere. What is the distance between O and the plane determined by the triangle?

- **(A)**  $2\sqrt{3}$
- **(B)** 4
- **(C)**  $3\sqrt{2}$
- **(D)**  $2\sqrt{5}$
- **(E)** 5

### PROBLEM 3 (2018 AIME II #7)

Triangle ABC has side lengths AB=9,  $BC=5\sqrt{3}$ , and AC=12. Points  $A=P_0,P_1,P_2,...,P_{2450}=B$  are on segment  $\overline{AB}$  with  $P_k$  between  $P_{k-1}$  and  $P_{k+1}$  for k=1,2,...,2449, and points  $A=Q_0,Q_1,Q_2,...,Q_{2450}=C$  are on segment  $\overline{AC}$  with  $Q_k$  between  $Q_{k-1}$  and  $Q_{k+1}$  for k=1,2,...,2449. Furthermore, each segment  $\overline{P_kQ_k}$ , k=1,2,...,2449, is parallel to  $\overline{BC}$ . The segments cut the triangle into 2450 regions, consisting of 2449 trapezoids and 1 triangle. Each of the 2450 regions has the same area. Find the number of segments  $\overline{P_kQ_k}$ , k=1,2,...,2450, that have rational length.

### PROBLEM 4 (2011 AMC 12A #24)

Consider all quadrilaterals ABCD such that AB = 14, BC = 9, CD = 7, and DA = 12. What is the radius of the largest possible circle that fits inside or on the boundary of such a quadrilateral?

- **(A)**  $\sqrt{15}$
- **(B)**  $\sqrt{21}$
- **(C)**  $2\sqrt{6}$
- **(D)** 5
- **(E)**  $2\sqrt{7}$

## **PROBLEM 5** (2010 USAMO #3)

The 2010 positive numbers  $a_1,a_2,\ldots,a_{2010}$  satisfy the inequality  $a_ia_j\leq i+j$  for all distinct indices i, j. Determine, with proof, the largest possible value of the product  $a_1a_2\cdots a_{2010}$ .

Using content from the AoPS Wiki | amctrivial.com