General formulation:

$$min_{x \in \mathcal{X}}$$
 $f(x)$ objective function $s.\ t.$ $g_i(x) = 0, \quad 1 \le i \le q;$ equality constraints $h_i(x) \le 0, \quad q+1 \le i \le m$ inequality constraints

A solution is (in)feasible if it does (not) satisfy the constraints

The goal: find a feasible solution minimizing the objective f

目的: 找到满足约束的可行解

介绍经典的处理约束的方式,还对设计算法有帮助,从理论指导算法设计

一、常见约束处理策略

1. penalty function

把约束转化没

要确保转后的最优解不变

应用示例--MST

$$\arg\min_{x\in\{0,1\}^m} \sum_{i=1}^m w_i x_i \quad s.\,t.\,\,c(x) = 1$$
 Constraint violation degree
$$\min_{x\in\{0,1\}^m} \sum_{i=1}^m w_i x_i \quad s.\,t.\,\,c(x) = 1$$
 Original objective function
$$\min_{x\in\{0,1\}^m} \sum_{i=1}^m w_i x_i \quad s.\,t.\,\,c(x) = 1$$

2. Stochastic ranking

给罚函数引入随机性

φ(x)罚函数penalty:整体约束违反程度

λ因为很难设, 所以随机来设

 λ 小时取决定作用的是f, 否则是 ϕ

Consider two solutions x_1 and x_2 satisfying

$$f(x_1) < f(x_2) \text{ and } \phi(x_1) > \phi(x_2)$$
• λ is small: the comparison is based on the objective function

$$\lambda < \frac{f(x_2) - f(x_1)}{\phi(x_1) - \phi(x_2)} \Rightarrow f(x_1) + \lambda \phi(x_1) < f(x_2) + \lambda \phi(x_2)$$

• λ is large: the comparison is based on the penalty function

$$\lambda > \frac{f(x_2) - f(x_1)}{\phi(x_1) - \phi(x_2)} = f(x_1) + \lambda \phi(x_1) > f(x_2) + \lambda \phi(x_2)$$

The value of λ determines whether the comparison is based on the objective function or the penalty function

冒泡排序

3. Repair functions

repair infeasible solutions to feasible

4. Restricting search to the feasible region

把搜索限定到可行区域里, 生成新的可行解

5. Decoder functions

和repair类似,以解码方式进行修复

区别: repair不做变换,遇到不可行的就修复成可行的,只在子空间上搜索 decode解码后一定是可行解,可以得到的种群更完善

二、约束转化成二目标问题

Bi-objective reformulation

(1+1)-EA for MST

GSEMO: Given a pseudo-Boolean function vector **f**:

- 1. $x = \text{randomly selected from } \{0,1\}^n$.
- 2. $P \coloneqq \{x\}.$
- 3. Repeat until some termination criterion is met
- Choose x from P uniformly at random.
- 5. x' := flip each bit of x with probability 1/n.
- if $\not\exists z \in P$ such that z < x'6.
- $P:=(P-\{z\in P\mid x'\leqslant z\})\cup\{x'\}.$ 7.

随机抽一个解,变异看看有没有更好

MST by MOEAs

$$\arg\min_{\pmb{x}\in\{0,1\}^m} \sum_{i=1}^m w_i x_i \quad s.\,t.\ \ c(\pmb{x})=1$$
 Bi-objective reformulation $\min\ (c(\pmb{x}),\, \sum_{i:x_i=1}w_i)$

Theorem. [Neumann & Wegener, Nature Computing'05] The expected running time of the GSEMO solving the MST problem is $O(mn (n + \log w_{max}))$.

Penalty functions: $O(m^2(\log n + \log w_{max}))$

Bi-objective reformulation: $O(mn(n + \log w_{max}))$

Bi-objective reformulation is better for dense graphs, e.g., $m \in \Theta(n^2)$

proof

Problem	Penalty functions	Bi-objective reformulation
Set cover	exponential	$O(mn(\log c_{max} + \log n))$ [Friedrich et al., ECJ'10]
Minimum cut	exponential	$O(Fm(\log c_{max} + \log n))$ [Neumann et al., Algorithmica'11]
Minimum label spanning tree	$\Omega(ku^k)$	$O(k^2 \log k)$ [Lai et al., TEC'14]
Minimum cost coverage	exponential	$O(Nn(\log n + \log w_{max} + N))$ [Qian et al., IJCAI'15]

Better

对比其他np-hard问题,也发现二目标转化后比罚函数法时间节省不少

转化例子

1. transform the original constrained optimization problem into a bi-objective optimization problem

- 2. employ a multi-objective EA to solve the transformed problem constraint violation degree = 0
- 3. output the feasible solution from the generated non-dominated solution set

三、应用--子集选择

应用很广

Subset selection is to select a subset of size *k* from a total set of *n* items for optimizing some objective function

Formally stated: given all items $V = \{v_1, ..., v_n\}$, an objective function $f: 2^V \to \mathbb{R}$ and a budget k, to find a subset $X \subseteq V$ such that $\max_{X \subseteq V} f(X)$ s.t. $|X| \le k$.

- 挑的准则,不一定是啥: f
- 挑的个数上限: k

sparse regression

目标: 预测MSE小

影响力最大化Influence maximization

每条边表示一个用户对另一个用户的影响力

文本摘要Document summarization

传感器放置Sensor placement

在可选位置中选可监测信息量最大的组合

四、POSS算法

先转化为2目标转化(不完全等价)

POSS algorithm [Qian, Yu and Zhou, NIPS'15]

把全0放到种群中

每轮迭代随机从种群选一个, 变异一下

理论保证: 没见过的数据集也不会太坏

Theorem 1. For subset selection with monotone objective functions, POSS using $E[T] \le 2ek^2n$ finds a solution X with $|X| \le k$ and

$$f(X) \ge (1 - e^{-\gamma}) \cdot \text{OPT}.$$

已被证实这是最好的界