Statisin HWI BD = J-BIX = Y = (xi-x)xi $| \cdot \beta| = \frac{2}{5} (x_i - x_i) y_i$ (a) $\frac{1}{5} (x_i - x_i)^2$ $\frac{\partial(b)\overline{\xi(y|i|xi)} = \beta o + \beta_1 x i}{\overline{\xi(xi|yi)} = \frac{1}{\beta_1}yi - \frac{\beta o}{\beta_1} = \frac{1}{\beta_1}xi + \frac{1}{\beta_1}xi}$ $\frac{\partial(b)\overline{\xi(y|i|xi)} = \beta o + \beta_1 x i}{\overline{\xi(xi-x)}} = \frac{1}{\beta_1}xi + \frac{1}{\beta_1}xi$ (c) yes, As can be seen in (b) Qi=Bi (d) See R code (b) math 10 = \$0 + \$1 log(expand) + &
if expand increases by 10%. math10 = Bo + B1 log (1.1 expand) + E = math (0+ 0.1B)

4. (a). $\beta \hat{o} + \beta \hat{i} \hat{a} = \frac{1}{12} (x_i - \bar{x})y_i \hat{a} + y - \beta \hat{i} \hat{x}$ $= y - \beta \hat{i} \hat{x} + \beta \hat{i} \hat{a}$ $= y - \beta \hat{i} (\alpha - \bar{x}) = \frac{y}{n} + \frac{y}{z} (x_i - \bar{x})y_i \hat{a}$ $= y - \beta \hat{i} (\alpha - \bar{x}) = \frac{y}{n} + \frac{y}{z} (x_i - \bar{x})y_i \hat{a}$ (b) var (60+ 816) = var 5 yi (+ 19-x xxi-x) $= \sum_{i=1}^{n} vor(y_i) \left(\frac{1}{n} + \frac{(a-x)(x-x)}{(x-x)^2} \right)^2$ $= \sum_{i=1}^{n} o^2 \left(\frac{1}{n} + \frac{(a-x)(x-x)}{(x-x)^2} \right)^2$ $=\frac{2n}{\sqrt{n^2+\frac{2(\alpha-x)(x-x)}{h^2(x-x)^2}+\frac{(\alpha-x)(x-x)^2}{f^2(x-x)^4}}}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{(\alpha-x)(x-x)^2}{f^2(x-x)^4}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{(\alpha-x)(x-x)^2}{f^2(x-x)^2}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{(\alpha-x)(x-x)^2}{f^2(x-x)^2}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{(\alpha-x)(x-x)^2}{f^2(x-x)^2}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{(\alpha-x)(x-x)^2}{f^2(x-x)^2}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{(\alpha-x)(x-x)^2}{f^2(x-x)^2}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{(\alpha-x)(x-x)^2}{f^2(x-x)^2}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{(\alpha-x)(x-x)^2}{f^2(x-x)^2}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{(\alpha-x)(x-x)^2}{f^2(x-x)^2}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{n}{\sqrt{n^2+2(\alpha-x)}}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{n}{\sqrt{n^2+2(\alpha-x)}}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{n}{\sqrt{n^2+2(\alpha-x)}}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{n}{\sqrt{n^2+2(\alpha-x)}}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{n}{\sqrt{n^2+2(\alpha-x)}}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{n}{\sqrt{n^2+2(\alpha-x)}}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{n}{\sqrt{n^2+2(\alpha-x)}}}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{n}{\sqrt{n^2+2(\alpha-x)}}}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{n}{\sqrt{n^2+2(\alpha-x)}}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{n}{\sqrt{n^2+2(\alpha-x)}}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{n}{\sqrt{n^2+2(\alpha-x)}}}{f^2(x-x)^2}$ (c). let = var(pi+pia) Here $\alpha = \overline{x}$, var($\beta \circ + \beta \circ \alpha$) can acheive its smallest value since $\overline{\sigma}(q-\overline{x}) = 0$. and vor $(\beta \hat{o} + \beta \hat{i} \alpha) = \frac{1}{N} \frac{62}{N}$

	. (12) (12) (13) (13) (13) (13) (13) (13) (13) (13
6.	(a) $\hat{\mathcal{O}} = V = \hat{SIX}$
U	D (b) - E (vi-BIX)
	8Q> = (yi-Bix) (20. X1 = 0.
	=> = (yixi-bixi)=0 => = yixi= = sixi=
	5 1/xi= 31 2 XI
	$\beta \hat{l} = \frac{\sum y_i x_i}{\sum x_i}$
	7.0 (v)57 =
(6).	To show Pi is unbiasel. E(\(\hat{\epsilon}\) = \(\beta\)!
	TIALLY EL ZYIXI
	$\frac{E(\beta X) = E(\frac{1}{2} \times 1)^2}{\sum X_i E(y_i)} = \frac{\sum X_i E(\beta X_i)}{\sum X_i^2} = \frac{\sum X_i X_i X_i}{\sum X_i^2}$
* 7.50	$= \underbrace{\beta_1 \sum_{X}}_{X} = \beta_1$
	thus proved.
	THE POLES
(c)	var(y/x)=02 by assumption.
	$var(\hat{p})=var(\hat{p} x)=0$ by assumption. $var(\hat{p}i)=var(\hat{p}i x)=var(\frac{\sum yixi}{\sum xi^2} x)$
	with a second of the second of
10	$= \frac{\sum X_i \text{ varely i}}{\left(\sum X_i^2\right)^2} = \frac{\sum X_i^2}{\left(\sum X_i^2\right)^2} \cdot 0^2 = \frac{1}{\sum X_i^2} \cdot 0^2$
Anna spin	Also were in
2 2 2 2 2 2 2 2	

 $E(\hat{f}|x) = E(\frac{\Sigma(X-X)Y_1}{\Sigma(X-X)}x)$ 7. (a). E(fo/x) = E(y-fix). = \(\si\)\(\varphi\)\(\frac{1}{\pi}\)\(\ $\frac{E(y_i|x_i) = \beta_0 + \beta_1 X}{E(\beta_i|x)} = \frac{\sum (x_i - x_i)^2}{\sum (x_i - x_i)^2} = \beta_1$ thus $\hat{p_i}$ is unbiased ectimator. $E(\hat{p_o}|x) = E(\frac{1}{n}\Sigma y_i) - \hat{p_i}x$ = TECYID- BIX = = 5 (Bo+BiXi) -BIX = \$ BO + BI. - EXi - BIX = BO+ BI- 1 = Xi - BI- 12 Xi = BO. thus for is unbiased estimator. c)[N(0,25) x1=65 To/0,10) 65 < xi < 70 unifom C-8,8) 10 xi>70 variance of the three intervals are not consistent. The assumption of homoskedasticity suggests that the variance is consistent for all Xis. Thus in this case, the assumption of the moskedasticing is not valud.

stat151a HW1 coding part

1.

(d)

```
pearson<- read.delim("PearsonHeightData.txt")
x=pearson[,1] #father's height
y=pearson[,2]#son's height
slm=lm(y ~x,data=pearson)
plot(x,y,abline(slm))</pre>
```



```
x=pearson[,2] #son's height
y=pearson[,1] #father's height
slm=lm(y ~x,data=pearson)
plot(x,y,abline(slm))
```


2.meap93 data(meap93)

```
meap93=get(load("/Users/xiaoyingliu/Desktop/meap93.RData"))
head(meap93)
##
     lnchprg enroll staff expend salary benefits droprate gradrate math10
## 1
               1862 112.6
                             5765
                                  37498
                                             7420
                                                        2.9
                                                                89.2
                                                                       56.4
## 2
         2.3
              11355 101.2
                             6601
                                   48722
                                            10370
                                                                91.4
                                                                       42.7
                                                        1.3
         2.7
## 3
               7685 114.0
                             6834
                                   44541
                                             7313
                                                        3.5
                                                                91.4
                                                                       43.8
## 4
         3.4
               1148 85.4
                             3586
                                   31566
                                             5989
                                                        3.6
                                                                86.6
                                                                       25.3
               1572
## 5
         3.4
                     96.1
                             3847
                                   29781
                                             5545
                                                        0.0
                                                               100.0
                                                                       15.3
## 6
         3.4
               2496 101.1
                             5070 36801
                                             5895
                                                        2.7
                                                                89.2
                                                                       46.0
##
     scill totcomp ltotcomp lexpend lenroll
                                                 lstaff
                                                            bensal lsalary
## 1
      67.9
             44918 10.71259 8.659560 7.529407 4.723842 0.1978772 10.53204
## 2
      65.3
             59092 10.98685 8.794976 9.337414 4.617099 0.2128402 10.79389
## 3
      54.3
             51854 10.85619 8.829665 8.947025 4.736198 0.1641858 10.70417
## 4
      60.0
             37555 10.53356 8.184793 7.045776 4.447346 0.1897295 10.35984
## 5
      65.8
             35326 10.47237 8.255049 7.360104 4.565389 0.1861925 10.30163
## 6
      60.5
             42696 10.66186 8.531096 7.822445 4.616110 0.1601859 10.51328
typeof (meap93)
## [1] "list"
y=meap93$math10
x=meap93$lnchprg
library(ggplot2)
```

Warning: package 'ggplot2' was built under R version 3.4.4

a) Fit a simple linear regression model for y on x.

Report the estimates of

```
slm1=lm(y ~x,data=meap93)
beta0=summary(slm1)$coefficient[1,1]
beta1=summary(slm1)$coefficient[2,1]
beta0_se=summary(slm1)$coefficient[1,2]
beta1_se=summary(slm1)$coefficient[2,2]
beta1
## [1] -0.3188643
beta0
## [1] 32.14271
beta0_se
## [1] 0.9975824
beta1_se
## [1] 0.03483933
```

b) We would expect the lunch program to have a positive effect on student perfor- mance. Does your model support such a positive relationship?

no,negative relationship. Since beta1 is negative which is not of our expectation. I am assuming that all the explanatory varibles might have some dependency with each other. For example, the lunch program might affect the droprate, and droprate might affect the math10 performance. Overall, lunch program has a negative effect on student performance of math10.

3.

```
head (meap93)
##
    lnchprg enroll staff expend salary benefits droprate gradrate math10
## 1
                                                  2.9
        1.4
            1862 112.6 5765 37498
                                        7420
                                                         89.2
                                                                56.4
## 2
        2.3 11355 101.2
                          6601 48722
                                        10370
                                                  1.3
                                                         91.4
                                                                42.7
## 3
        2.7
            7685 114.0
                          6834 44541
                                        7313
                                                  3.5
                                                         91.4
                                                                43.8
## 4
        3.4
            1148 85.4
                                         5989
                                                  3.6
                                                         86.6
                                                                25.3
                         3586 31566
        3.4 1572 96.1
                         3847 29781
                                         5545
                                                  0.0
                                                         100.0
                                                                15.3
## 6
        3.4
             2496 101.1
                         5070 36801
                                         5895
                                                  2.7
                                                         89.2
                                                                46.0
## sci11 totcomp ltotcomp lexpend lenroll lstaff bensal lsalary
```

```
## 1 67.9 44918 10.71259 8.659560 7.529407 4.723842 0.1978772 10.53204 ## 2 65.3 59092 10.98685 8.794976 9.337414 4.617099 0.2128402 10.79389 ## 3 54.3 51854 10.85619 8.829665 8.947025 4.736198 0.1641858 10.70417 ## 4 60.0 37555 10.53356 8.184793 7.045776 4.447346 0.1897295 10.35984 ## 5 65.8 35326 10.47237 8.255049 7.360104 4.565389 0.1861925 10.30163 ## 6 60.5 42696 10.66186 8.531096 7.822445 4.616110 0.1601859 10.51328
```

```
y=meap93$math10
x=meap93$expend
ggplot(data=meap93,aes(y,x))+geom_point()
```


(a)Does the additional dollar have same effect, or it has a diminishing effect?

beta1 seems really small, from the scatter plot, we can conclude that even if x is very large, y tends not to exceed a certain value, and there is no obvious linear relationship shown from the scatter plot. To conclude, expand has a diminishing effect rather than the same positive linear effect on math10 passing rate.

(c)

```
y=meap93$math10
x=log(meap93$expend)
slm3=lm(y ~x,data=meap93)
beta1=summary(slm3)$coefficient[2,1]
beta0_se=summary(slm3)$coefficient[1,2]
beta1_se=summary(slm3)$coefficient[2,2]
beta1
## [1] 11.1644
beta0
## [1] -69.34116
beta0_se
## [1] 26.53013
beta1_se
## [1] 3.169011
```

(d)

as shown in (b), beta1/10 is the percentage point increase in math10 if spending increases by 10 percent.

(e)fitted value of math10 might be bigger than 100, why is that not a concern in this dataset?

```
max(meap93$math10)
## [1] 66.7
```

in order for the math10 value greater than 100, the student might need to spend a huge amount, which is not possible. Thus,it is not much of a worry in the math10 ~log(expend) model.

5.

(a)

```
library(datasets)
a=anscombe
head(a)
##
     x1 x2 x3 x4
                   у1
                        y2
                               уЗ
                            7.46 6.58
  1 10 10 10
               8 8.04 9.14
                            6.77 5.76
        8
           8
               8 6.95 8.14
## 3 13 13 13
               8 7.58 8.74 12.74 7.71
     9
        9
           9
               8 8.81 8.77
                            7.11 8.84
## 5 11 11 11
               8 8.33 9.26 7.81 8.47
               8 9.96 8.10 8.84 7.04
## 6 14 14 14
par(mfrow=c(2,2))
plot(a$x1,a$y1, main=paste("Dataset One"),abline(lm(y1 ~x1,data=a)))
plot(a$x2,a$y2, main=paste("Dataset Two"),abline(lm(y2 ~x2,data=a)))
plot(a$x3,a$y3, main=paste("Dataset Three"),abline(lm(y3 ~x3,data=a)))
plot(a$x4,a$y4, main=paste("Dataset Four"),abline(lm(y4 ~x4,data=a)))
                  Dataset One
                                                                Dataset Two
     7
                                                   တ
                                              a$y2
a$y1
    \infty
                                                   2
    9
                  0
               6
                     8
                           10
                                                             6
                                                                   8
                                                                         10
                                                                               12
          4
                                12
                                      14
                                                                                     14
                      a$x1
                                                                     a$x2
                 Dataset Three
                                                                Dataset Four
                                              a$y4
               6
                     8
                           10
                                12
                                      14
                                                             10
                                                                  12
                                                                       14
                                                                             16
                                                                                  18
```

a\$x4

a\$x3

from the scatter plot and the linear model, the linear models do make sense on dataset1, and 3. However, in dataset4, all the x values are too close to each other, and thus it is unreasonable to generate a linear model based on such dataset. In dataset2, from the scatter plot, it seems that (x,y) follows quadratic function which is obviously not linear.

(b)predict y when x is 10.Does it make sense?

```
slm2=lm(y2 ~x2,data=a)
slm3=lm(y3 ~x3,data=a)
slm4=lm(y4 ~x4,data=a)

y1=summary(slm1)$coefficient[1,1]+summary(slm1)$coefficient[2,1]*10
y2=summary(slm2)$coefficient[1,1]+summary(slm2)$coefficient[2,1]*10
y3=summary(slm3)$coefficient[1,1]+summary(slm3)$coefficient[2,1]*10
y4=summary(slm4)$coefficient[1,1]+summary(slm4)$coefficient[2,1]*10
y1

## [1] 28.95407
y2

## [1] 8.000909
y3

## [1] 7.999727
y4

## [1] 8.000818
```

it does not make sense for dataset 4 and dataset 2. The y value corresponding to x=10 is far from the value predicted obviously. It does make sense for dataset 1 and dataset 3.

7.

(b)

```
n=100
beta0=32
beta1=0.5
x=seq(59,76,length.out=100)
M=10000
y1=c()
y2=c()
```

```
y3=c()
beta_matrix=matrix(0,nrow=0,ncol=4)
```

generate one trial y data

```
one_trial=function(x){
for(i in x){
  if(i<=65){
  y1=c(y1,rnorm(1,beta0+beta1*i,5))
  if((i>65)&&(i<=70)){</pre>
  y2=c(y2,10*rt(n=1,df=3)+beta0+beta1*i)
  if(i>70){
  y3=c(y3,(runif(1,min=-8,max=8)+beta1*i+beta0))
  y=c(y1,y2,y3)
  slm=lm(y ~x)
  beta0_hat=summary(slm)$coefficient[1,1]
  beta1_hat=summary(slm)$coefficient[2,1]
  \#slm=lm(y \sim x)
  #summary(slm)$coefficient[1,2]
  se_beta0=summary(slm)$coefficient[1,2]
  se_beta1=summary(slm)$coefficient[2,2]
  beta_vector=c(beta0_hat,beta1_hat,se_beta0,se_beta1)
  return(beta_vector)
for(i in 1:M){
  beta_matrix=rbind(beta_matrix,one_trial(x))
beta0_bias=mean(beta_matrix[,1])-beta0
beta1_bias=mean(beta_matrix[,2])-beta1
beta0_bias
```

```
## [1] -0.006666817
beta1_bias
```

[1] -7.307511e-05

Both estimates are close enough to 0, which indicates that the bias is close to zero(unbiasedness is proved)

(d)

```
sd_betaOhat=sd(beta_matrix[,1])
sd_beta1hat=sd(beta_matrix[,2])
se_beta0=beta_matrix[,3]
se_beta1=beta_matrix[,4]
hist(se_beta0,breaks=1000,xlim=c(0,50))
abline(v=sd_betaOhat,col="red")
abline(v=sd_betaOhat,col="red")
```

Histogram of se_beta0


```
hist(se_beta1,breaks=1000,xlim=c(0,1))
abline(v=sd_beta1hat,col="red")
```

Histogram of se_beta1

the se reported by R is not reliable when homoskedasticity is violated. Because in the assumptions of our linear model, we assume that the noise would have same variance. In this case, the noise follows different distribution and have different variance.