

THE STATISTICAL SOMMELIER An Introduction to Linear Regression

15.071 – The Analytics Edge

Bordeaux Wine

- Large differences in price and quality between years, although wine is produced in a similar way
- Meant to be aged, so hard to tell if wine will be good when it is on the market
- Expert tasters predict which ones will be good
- Can analytics be used to come up with a different system for judging wine?

Predicting the Quality of Wine

March 1990 - Orley
 Ashenfelter, a
 Princeton economics
 professor, claims he
 can predict wine
 quality without
 tasting the wine

Building a Model

- · Ashenfelter used a method called linear regression
 - Predicts an outcome variable, or dependent variable
 - Predicts using a set of independent variables
- Dependent variable: typical price in 1990-1991 wine auctions (approximates quality)
- Independent variables:
 - Age older wines are more expensive
 - Weather
 - Average Growing Season Temperature
 - · Harvest Rain
 - Winter Rain

The Data (1952 - 1978)

15.071x – The Statistical Sommelier: An Introduction to Linear Regression

The Expert's Reaction

Robert Parker, the world's most influential wine expert:

"Ashenfelter is an absolute total sham"

"rather like a movie critic who never goes to see the movie but tells you how good it is based on the actors and the director"

One-Variable Linear Regression

The Regression Model

One-variable regression model

$$y^i = \beta_0 + \beta_1 x^i + \epsilon^i$$

 y^i = dependent variable (wine price) for the ith observation

 x^{i} = independent variable (temperature) for the ith observation

 ϵ^i = error term for the ith observation

 β_0 = intercept coefficient

 β_1 = regression coefficient for the independent variable

 The best model (choice of coefficients) has the smallest error terms

Selecting the Best Model

Selecting the Best Model


```
SSE = 10.15

SSE = 6.03

SSE = 5.73
```

Other Error Measures

- SSE can be hard to interpret
 - Depends on N
 - Units are hard to understand
- Root-Mean-Square Error (RMSE)

$$RMSE = \sqrt{\frac{SSE}{N}}$$

· Normalized by N, units of dependent variable

- Compares the best model to a "baseline" model
- The baseline model does not use any variables
 - Predicts same outcome (price) regardless of the independent variable (temperature)

Interpreting R²

$$R^2 = 1 - \frac{SSE}{SST} \qquad \begin{array}{c} \textbf{0} \leq \textbf{SSE} \leq \textbf{SST} \\ \textbf{0} \leq \textbf{SST} \end{array}$$

- R² captures value added from using a model
 - $R^2 = 0$ means no improvement over baseline
 - $R^2 = 1$ means a perfect predictive model
- Unitless and universally interpretable
 - Can still be hard to compare between problems
 - Good models for easy problems will have $R^2 \approx 1$
 - Good models for hard problems can still have $R^2 \approx 0$

Available Independent Variables

- So far, we have only used the Average Growing Season Temperature to predict wine prices
- Many different independent variables could be used
 - Average Growing Season Temperature
 - Harvest Rain
 - Winter Rain
 - Age of Wine (in 1990)
 - Population of France

Multiple Linear Regression

- Using each variable on its own:
 - $R^2 = 0.44$ using Average Growing Season Temperature
 - $R^2 = 0.32$ using Harvest Rain
 - $R^2 = 0.22$ using France Population
 - $R^2 = 0.20$ using Age
 - $R^2 = 0.02$ using Winter Rain
- Multiple linear regression allows us to use all of these variables to improve our predictive ability

The Regression Model

Multiple linear regression model with k variables

$$y^{i} = \beta_{0} + \beta_{1}x_{1}^{i} + \beta_{2}x_{2}^{i} + \ldots + \beta_{k}x_{k}^{i} + \epsilon^{i}$$

 y^{i} = dependent variable (wine price) for the ith observation

 $x_j^i = j^{th}$ independent variable for the ith observation

 ϵ^i = error term for the ith observation

 β_0 = intercept coefficient

 β_j = regression coefficient for the jth independent variable

Best model coefficients selected to minimize SSE

Adding Variables

Variables	\mathbb{R}^2
Average Growing Season Temperature (AGST)	0.44
AGST, Harvest Rain	0.71
AGST, Harvest Rain, Age	0.79
AGST, Harvest Rain, Age, Winter Rain	0.83
AGST, Harvest Rain, Age, Winter Rain, Population	0.83

- Adding more variables can improve the model
- · Diminishing returns as more variables are added

Selecting Variables

- Not all available variables should be used
 - Each new variable requires more data
 - Causes *overfitting:* high R² on data used to create model, but bad performance on unseen data
- We will see later how to appropriately choose variables to remove

Understanding the Model and Coefficients

```
Estimate
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
(Intercept)
                    -4.504e-01
                                1.019e+01
                                           -0.044 0.965202
AvgGrowingSeasonTemp
                     6.012e-01 1.030e-01
                                            5.836 1.27e-05
HarvestRain
                     -3.958e-03 8.751e-04 -4.523 0.000233
                     5.847e-04 7.900e-02 0.007 0.994172
WinterRain
                     1.043e-03 5.310e-04
                                            1.963 0.064416 .
FrancePopulation
                    -4.953e-05 1.667e-04
                                           -0.297 0.769578
Signif. codes:
                       0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Correlation

A measure of the linear relationship between variables

- +1 = perfect positive linear relationship
- 0 = no linear relationship
- -1 = perfect negative linear relationship

Examples of Correlation

Examples of Correlation

Examples of Correlation

Predictive Ability

- Our wine model had a value of $R^2 = 0.83$
- Tells us our accuracy on the data that we used to build the model

out-of-sample

- But how well does the model perform on new data?
 - Bordeaux wine buyers profit from being able to predict the quality of a wine years before it matures

Out-of-Sample R²

Variables]	Model R ²	Test R ²	
Avg Growing Season Temp (AGST)		0.44	0.79	
AGST, Harvest Rain		0.71	-0.08	*
AGST, Harvest Rain, Age		0.79	0.53	
AGST, Harvest Rain, Age, Winter Rain		0.83	0.79	
AGST, Harvest Rain, Age, Winter Rain, Population	1	0.83	0.76	

- Better model R² does not necessarily mean better test set R²
- Need more data to be conclusive
- Out-of-sample R² can be negative!

The Results

Parker:

• 1986 is "very good to sometimes exceptional"

Ashenfelter:

- 1986 is mediocre
- 1989 will be "the wine of the century" and 1990 will be even better!
- In wine auctions,
 - 1989 sold for more than twice the price of 1986
 - 1990 sold for even higher prices!
- Later, Ashenfelter predicted 2000 and 2003 would be great
- Parker has stated that "2000 is the greatest vintage Bordeaux has ever produced"

The Analytics Edge

- A linear regression model with only a few variables can predict wine prices well
- In many cases, outperforms wine experts' opinions
- A quantitative approach to a traditionally qualitative problem