決定木アルゴリズム

経済学のための機械学習入門

川田恵介

Table of contents

Get started	2
サブグループ分析	3
"伝統的" VS Data adaptive modelling	3
伝統的アプローチ	3
実例: 伝統的アプローチ	3
実例: 伝統的アプローチ	4
伝統的アプローチの問題点	4
Data adaptive アプローチ	4
Squared error	4
Recursive アルゴリズム	5
実例: 停止条件 = 2 回分割	5
Data adaptive アプローチの課題	5
実例: 停止条件: 3 回分割	6
実例: 停止条件: 6 回分割	6
Data adaptive アプローチの課題	7
サンプル分割法	7
例	7
例	7
例	8
例	8
まとめ	8
7 MIRRE	^
予測問題	9
問題設定	9
Population risk minimization	9
Decomposition on Population Risk	9
Decomposition on Reducible term	a

推定問題	10
Empirical Risk	10
Empirical Risk Minimizaiton	10
例: 古典的アプローチ	10
性質	11
大標本性質: 一致性	11
例: Data adaptive アプローチ	11
トレードオフ	11
数值例: 1 回分割	12
数值例: 2回分割	13
数值例: 3回分割	13
数值例: 5 回分割	14
モデルの評価	14
理想の評価	14
性質	14
データ" ランダム" 分割法	15
同一データで評価	15
過剰適合/過学習問題	15
例: 丸暗記モデル	15
直感	16
実例	16
実例: Shallow Tree on Prie	16
実例: Deep Tree on Prie	17
実例: Optimal Tree on Prie	17
実例: Shallow Tree on Period	18
実例: Deep Tree on Period	18
実例: Optimal Tree on Period	19
· · · · · · · · · · · · · · · · · · ·	19

Get started

- アルゴリズム ≃ 推定手法
- 決定木 = 非常に優れた出発点
 - OLS との高い補完性
 - 直感的

サブグループ分析

- "もっとも"よく使われるデータ活用方法
- X 上にサブグループ A_{j} を定義し、予測モデル g(X) を以下のルールで生成

$$g(X_i) = E[Y|X_i \in A_j]$$

"伝統的" VS Data adaptive modelling

- 伝統的アプローチ: 研究者が事前 (データを見る前に) に A_j を定義
- Data adaptive: データが決定
- (注) "Bad practice":研究者がデータ $\{Y,X\}$ を見ながら A_j を決定

伝統的アプローチ

- 1. 研究者が事前に A_j を定義
- 2. 各 A_j について、サンプル平均を計算し、予測モデルを構築

実例: 伝統的アプローチ

実例: 伝統的アプローチ

伝統的アプローチの問題点

- 予測研究においては、サブグループを定義する際の、Practical guide line が限られている
 - 比較・因果研究であれば、研究課題により自動的に決まる部分がある (例: 大卒高卒間賃金格差 = 少なくとも大卒/高卒でグループ分け)
- 予測結果は、グループの定義に決定的な影響を受ける

Data adaptive アプローチ

- 0. 停止条件を設定
- 1. データに適合するように、 A_j を設定
- 2. 各 A について、サンプル平均を計算し、予測モデルを構築
- 課題: データに適合?、具体的には?

Squared error

• "不適合度"を図る代表的指標

$$E[(Y_i - g(X))^2]$$

• 教師付き学習においても人気

Recursive アルゴリズム

- 0. 停止条件 (最大分割回数、最小サンプルサイズなど) を設定
- 1. 2 分割する: データ内二乗誤差を最小化するように一つの変数、閾値を選ぶ
- 2. 1 度目の分割を"所与"として、2 度目の分割を行う
- 3. 停止条件に達するまで、繰り返す

実例: 停止条件 = 2回分割

Data adaptive アプローチの課題

- モデルが停止条件に決定的な影響を受ける
- 停止条件を緩める (最大分割回数を増やす, 最小サンプルサイズを減らす) と巨大な (複雑な) 決定木が 生成される

実例: 停止条件: 3回分割

実例: 停止条件: 6回分割

Data adaptive アプローチの課題

- "停止条件をどのように決める?"
- 異なる条件のもとで、モデルの試作と中間評価を繰り返し、最善の条件を探す
 - 独立して抽出されたデータへの当てはまり
 - 理論的評価指標 (AIC など)
 - データへの当てはまり

サンプル分割法

- 0. 検証する停止条件群を決める
- 1. データをモデル試作用データ (Training データ) と中間評価用データ (Validation データ) にランダム 2 分割 (8:2 など)
- 2. ある停止条件について、Training データ**のみ**を用いて、g(X) を構築
- 3. Validation データに当てはめ、予測値を獲得し、二乗誤差を推定
- 4. 2-3 を繰り返し、最も二乗誤差が小さくなる停止条件を探索

例

```
# A tibble: 6 x 3
```

X Y Type

<int> <dbl> <chr>

- 1 9 35.3 Training
- 2 4 -18.8 Training
- 3 7 2.43 Training
- 4 1 -2.89 Training
- 5 2 5.88 Validation
- 6 7 69.1 Validation

例

A tibble: 6 x 5

X Y Type Mean TreeDepth1
<int> <dbl> <chr> <dbl> <chr>

1	9	35.3	Training	4.01	35.3
2	4	-18.8	Training	4.01	-10.8
3	7	2.43	Training	4.01	2.43
4	1	-2.89	Training	4.01	-10.8
5	2	5.88	Validation	4.01	-10.8
6	7	69.1	Validation	4.01	2.43

例

A tibble: 6 x 7

	Х	Y	Туре	Mean	TreeDepth1	MeanMSE	TreeMSE
	<int></int>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	- <dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	9	35.3	Training	4.01	35.3	979	0
2	4	-18.8	Training	4.01	-10.8	520	63
3	7	2.43	Training	4.01	2.43	2	0
4	1	-2.89	Training	4.01	-10.8	48	63
5	2	5.88	Validation	4.01	-10.8	4	280
6	7	69.1	Validation	4.01	2.43	4236	4444

例

• Validate データ

– Mean: 2120

- Tree: 2362

• Training データ

- Mean: 387

- Tree: 32

まとめ

• モデルの複雑さを決めることは難しい

• 背景情報や理論、"現実をよく見て"決める?

- 一般に複雑なので、常により巨大な決定木を支持

• データへの当てはまりで決める?

- 注意しないと、常により巨大な決定木を支持

- データ外も記述できる理論的枠組みを用いて、問題構造を理解する必要がある

予測問題

問題設定

- 母集団 $f_P(Y,X)$ よりランダムに抽出したデータ $\{X_i,Y_i\}_{i=1,..,N}$ を用いて、同じ母集団から**新たに**ランダム抽出する事例を予測するモデル g(X) を構築
- Population risk を減らす

Population risk minimization

$$\min_{g(X) \in \mathbb{G}} E_P[L(Y,g(X))]$$

- ・ G:関数の集合
- L(Y, g(X)) = Loss function (研究者が指定)

- 以下
$$L(Y,g(X)) = (Y-g(X))^2$$
 と定式化

Decomposition on Population Risk

$$E_p[(Y-g(X))^2] = \underbrace{E_p[(Y-E_P[Y|X])^2]}_{Irreducible}$$

$$+\underbrace{E_p[(E_P[Y|X]-g(X))^2]}_{Reducible}$$

- Irreducible: X が決まった時点で、どうしようもない
 - データから観察できない個人差がある以上
- Reducible: (古典的な) 推定問題

Decomposition on Reducible term

$$E_P[Y|X] - g(X)$$

$$= \underbrace{E_P[Y|X] - g_{\infty}(X)}_{Approximation\ Error}$$

$$+\underbrace{g_{\infty}(X)-g(X)}_{Estimation\ Error}$$

• $g_{\infty}(X)$: 無限大のサンプルサイズで推定した予測モデル

推定問題

一般に

$$Y_i = E_P[Y|X_i] + \underbrace{u_i}_{Y_i - E_P[Y|X_i]}$$

- $\{Y_i, X_i\}$ を観察したとしても、 u_i から $E_P[Y|X_i]$ を区別できない
 - Estimation error の源泉
 - 評価にも悪影響

Empirical Risk

- 理想的な推定方法は、Population Risk を直接最小化する
- できないのでどうするか?
 - データ上でのリスクを最小化する

Empirical Risk Minimizaiton

• 実現可能な大体案は、データ上の Risk (Empirical Risk) を最小化する

$$\min_{g(X) \in \mathbb{G}} E[(Y - f(X))^2] := \sum_i (Y_i - f(X_i))^2 / N$$

• OLS (古典的なサブグループ分析も含む) は、© をかなり研究者が制約した元で、Empirical Risk Mimization の解としてパラメタを推定している。

例: 古典的アプローチ

- A_j を事前に設定し、サブサンプル平均としてモデルを推定
- 以下と同値

$$\min_{g(X)} E[(Y_i - g(X_i))^2]$$

$$g(X_i) = \beta_1 \times \underbrace{I(X_i \in A_1)}_{Indicator} + ... + \beta_L \times I(X_i \in A_L)$$

• OLS と同じ!!!

性質

- ・ 一般に $Y_i = E_P[Y_i|X_i \in A_j] + \underbrace{u_i}_{Y_i E_P[\widecheck{Y}_i|X_i \in A_j]}$
 - $-\ u_i$ の分布 = データによって異なる
 - 誤差が存在しない/誤差とそれ以外を区別できるのであれば、巨大な決定木が最善
- 経済学の応用では"常に"個人差が残る(Xは不十分)
 - -「細かくサブグループを作ることで u_i を消去する」を"諦める"

大標本性質: 一致性

• IID なので、

$$\lim_{n \to \infty} \sum_{i \mid X_i \in A_j} \frac{Y_i}{N_{A_j}} = E_P[Y_i | X_i \in A_j] + \underbrace{\sum_{i \mid X_i \in A_j} \frac{u_i}{N_{A_j}}}_{\to 0}$$

• N_{A_j} が小さいと、 u_i の (データ上での) 分布の影響を強く受ける

例: Data adaptive アプローチ

- A_i 内のサブグループ平均として予測値を推定
 - EmpiricalRisk 最小化
- 上記を所与として、 A_j も EmpiricalRisk を最小化するように決定

トレードオフ

- A_j を細かくすれば、
- $\bullet \ E_{\infty}[Y_i|X_i\in A_j]\to E_P[Y|X_i]$
 - Approximation error の縮小
- $E_{\infty}[Y_i|X_i\in A_i]$ と $g(X_i)$ のギャップ拡大

- Estimation error の拡大
- データ依存

数值例: 1回分割

数値例: 2回分割

数值例: 3回分割

数值例: 5回分割

モデルの評価

• 観察できない個人差 u_i の存在のために、Empirical Risk は**使えない**

理想の評価

- 新しく独立した事例を大量にサンプルし、モデルを評価
- 予測問題: "新しい" 事例について予測したいので、新しいデータで評価するのは自然
- 母平均関数への Fitting: 最善の予測モデル = 母平均との二乗誤差最小化なので、予測にうまくいくモデル = 母平均をよりよく捉えるモデル

- !? ← 後述

性質

• ランダムサンプリングであれば、 u_i は独立無相関

$$E_P[(Y_i-g(X_i))^2] = E_P[(E_P[Y|X] + \underbrace{u_i - g(X_i)}_{Independent})^2]$$

$$=E_{P}[(E_{P}[Y|X]-g(X_{i}))^{2}]+E[u_{i}^{2}]$$

• 完璧なモデルでも、 $E_P[(Y_i - g(X_i))^2] = E[u_i^2] > 0$

データ"ランダム"分割法

- ランダムに分割すれば、母集団から"独立に抽出された"と見做せる二つのデータを作り出せる
- 理想的な評価法を近似: 無限大のデータで評価できているわけではないが、
 - $-u_i$ の分布が独立しているデータで評価できている

同一データで評価

$$E[(Y_i - g(X_i))^2] = E[(E_P[Y|X] + \underbrace{u_i - g(X_i)}_{Dependent})^2]$$

- u_i の影響を**強く受けた** (Estimation error が大きい) 予測モデル の方が高評価されてしまう!!!
 - **過剰適合** を悪用すれば、"完璧" にデータに合うモデルができる

過剰適合/過学習問題

- Empirical Risk Minimization を突き進めると、Estimation error が爆発し、 $E_P[Y|X]$ からかけ離れた モデルが生成されてしまう
 - 過剰にデータに適合した (学びすぎた) モデル

例: 丸暗記モデル

- Learning by memorization
- 「最も X の値が近い事例を予測値とする」
 - 極めて深い決定木で生成可能
- Xの組み合わせが十分に多いと、1事例しかないサブグループを生成できる
 - $-g(X_i) = Y_i$ であり、データに完璧に適合する
 - 一般に予測性能は極めて悪い

直感

- $Y_i = E_P[Y|X_i]$ であれば問題ないが、
 - 多くの応用で、観察できない要因による上振れ・下振れが生じる
- 例: 一卵性の双子
 - 大数の法則を用いた、観察できない要因の影響緩和が必須
- 丸暗記が有効なケース: 観察不可能な要因の影響を排除しているケース
 - パソコンの挙動理解? 判決予測?

実例

• 取引年,取引,価格を予測するモデルを、最大2回、30回分割するRecursive アルゴリズムで構築

実例: Shallow Tree on Prie

実例: Deep Tree on Prie

実例: Optimal Tree on Prie

Optimal tree created for the model Size

実例: Shallow Tree on Period

実例: Deep Tree on Period

実例: Optimal Tree on Period

評価

	nr	${\tt task_id}$	learner_id	${\tt resampling_id}$	iters	regr.rsq
1:	1	Price	DeepTree	holdout	1	0.69722453
2:	2	Price	${\tt ShallowTree}$	holdout	1	0.56028579
3:	3	Price	Optimized Tree	holdout	1	0.78750222
4:	4	Period	DeepTree	holdout	1	-0.23105951
5:	5	Period	ShallowTree	holdout	1	0.01200626
6:	6	Period	Optimized Tree	holdout	1	0.07184169

Hidden columns: resample_result