Prova scritta di Logica Matematica 24 giugno 2013

Cognome Nome Matricola

Scrivete **subito** il vostro nome, cognome e numero di matricola, e tenete il tesserino universitario sul banco. Svolgete gli esercizi direttamente sul testo a penna. Dovete consegnare solo il foglio del testo: nessun foglio di brutta.

Per ogni esercizio è indicato il relativo punteggio. Nella prima parte se la riposta è corretta, il punteggio viene aggiunto al totale, mentre se la risposta è errata il punteggio viene sottratto (l'assenza di risposta non influisce sul punteggio totale). Per superare l'esame bisogna raggiungere 18 punti, di cui almeno 5 relativi alla prima parte.

PRIMA PARTE

Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta.

Barrate la lisposta che literiore colletta. Itoli devote giastineare la li	ровии.	
1. Se F è valida allora $\neg F \models G$ per ogni formula G.	$\mathbf{V} \mathbf{F} $	1pt
2. Ogni formula proposizionale è logicamente equivalente		
ad una disgiunzione di congiunzioni di letterali.	$\mathbf{V} \mid \mathbf{F}$	1pt
3. Se Γ è un insieme di Hintikka di formule proposizionali tale che		
$\neg (p \lor q \to r) \in \Gamma \in \neg q \in \Gamma$, allora $\neg p \in \Gamma$.	$\mathbf{V} \mathbf{F}$	1pt
4. Se $\Gamma \triangleright F \vee G$ e $\Gamma, F \triangleright H$ allora $\Gamma \triangleright H$.	$\mathbf{V} \mathbf{F}$	1pt
5. Sia I l'interpretazione con $D^I = \{0, 1, 2, 3\}, f^I(0) = 1, f^I(1) = 1, f^I(1) = 1$		
$f^{I}(3) = 2, p^{I} = \{0, 2\}, e^{I} = \{(0, 0), (0, 2), (0, 3), (1, 1), (2, 1), (2, 3), (1, 1), (2, 1$	(3,2).	
Allora $I \models \forall x (\neg p(x) \lor p(f(x)) \lor \exists y (p(f(y)) \land r(f(x), y))).$	$\mathbf{V} \mathbf{F}$	1pt
6. se x non è libera in G allora $\forall x F \to G \equiv \forall x (F \to G)$.	$\mathbf{V} \mathbf{F}$	1pt
7. Se F è un enunciato di \mathcal{L} , $I \models F$ e $J \models \neg F$ allora $I \not\equiv_{\mathcal{L}} J$.	$\mathbf{V} \mathbf{F}$	1pt
8. $\neg \exists x (p(x) \land \forall y r(x, y))$ è una α, β, γ o δ -formula?	$\beta \gamma \delta$	1pt
9. Un tableau per una formula predicativa insoddisfacibile		
che non sia sistematico può essere aperto.	$\mathbf{V} \mathbf{F}$	1pt
SECONDA PARTE		

10. Sul retro del foglio dimostrate l'insoddisfacibilità dell'insieme di enunciati $\{\exists x(p(x) \land \neg q(x)), \forall x(p(x) \rightarrow \forall y \ r(x,y)), \forall x(q(x) \lor \neg r(x,c))\}$

11. Sia $\mathcal{L} = \{c, f, p\}$ il linguaggio con c simbolo di costante, f di funzione unario e p di relazione unario. Considerate le interpretazioni per \mathcal{L} :

$$D^{I} = \mathbb{N}, \quad c^{I} = 7, \quad f^{I}(n) = n+3, \quad p^{I} = \{ n : n \text{ è pari } \};$$

$$D^{J} = \{ 0, 1, 2, 3 \}, \quad c^{J} = ?, \quad f^{J}(0) = 3, f^{J}(1) = 0, f^{J}(2) = 1, f^{J}(3) = 2, \quad p^{J} = \{ 0, 2 \}.$$

Sul retro del foglio definite c^J in modo che esista un omomorfismo forte suriettivo di I in J e definite questo omomorfismo. Che conclusione possiamo trarre sul rapporto tra I e J?

Dimostrate che I e J non sono elementarmente equivalenti nella logica con uguaglianza (cioè nel linguaggio ottenuto aggiungendo = a \mathcal{L}).

- 12. Sia $\{b, c, v, m, s, u, a\}$ un linguaggio dove b, c e v sono simboli di costante, m e s simboli di relazione unari, e u e a simboli di relazione binari. Interpretando b come "Bruno", c come "chitarra", v come "viola", m(x) come "x è un musicista", s(x) come "x è uno strumento", u(x,y) come "x suona y", a(x,y) come "x ama y", traducete le seguenti frasi, utilizzando lo spazio sotto ognuna di esse:
 - (i) Bruno è un musicista che suona la viola e ama la chitarra;

3pt

- (ii) chi non è musicista non ama nessuno strumento, oppure li ama tutti. 3pt
- 13. Mostrate che

$$F \lor (\neg G \to H), \neg G \land (K \to \neg F) \rhd \neg K \lor H.$$

Usate solo le regole della deduzione naturale proposizionale, comprese le quattro regole derivate. (Utilizzate il retro del foglio)

14. Usando il metodo dei tableaux stabilite che

5pt

$$\forall x (p(x) \to \forall y \, r(x,y)) \land (p(a) \lor p(b)) \to \exists z \, r(z,z)$$

è valida. (Utilizzate il retro del foglio)

15. Usando l'algoritmo di Fitting e utilizzando lo spazio qui sotto, mettete in forma normale disgiuntiva la formula

$$(p \to q \vee \neg r) \vee \neg (s \to \neg t) \to u \wedge (v \to \neg w).$$

Soluzioni

- 1. V perché nessuna interpretazione soddisfa $\neg F$.
- 2. V attraverso la trasformazione in forma normale disgiuntiva.
- **3.** F se $\neg (p \lor q \to r) \in \Gamma$ allora in particolare $p \lor q \in \Gamma$. Dato che $q \in \Gamma$ è impossibile perché $\neg q \in \Gamma$, deve essere $p \in \Gamma$ e quindi certamente $\neg p \notin \Gamma$.
- **4.** F per poter applicare la regola ($\vee e$) abbiamo bisogno anche di $\Gamma, G \rhd H$. Se $\Gamma = \emptyset$ e F, G e H sono rispettivamente p, $\neg p$ e $p \vee q$ si ottiene un controesempio.
- **5.** F si ha $I, \sigma[x/0] \nvDash \neg p(x) \lor p(f(x)) \lor \exists y (p(f(y)) \land r(f(x), y)).$
- **6. F** il Lemma 7.50 delle dispense asserisce che se x non è libera in G si ha $\forall x \ F \to G \equiv \exists x (F \to G)$ e non $\forall x \ F \to G \equiv \forall x (F \to G)$.
- 7. V per la definizione di elementare equivalenza (definizione 9.1 delle dispense).
- **8.** γ
- 9. V si vedano l'esempio 10.15 e la nota 10.16 delle dispense.
- 10. Dobbiamo mostrare che nessuna interpretazione I soddisfa tutti e tre gli enunciati, che indichiamo con F, G e H. Per dimostrarlo supponiamo per assurdo che I sia un'interpretazione che soddisfa i tre enunciati.

Dato che $I \models F$ esiste $d_0 \in D^I$ tale che $I, \sigma[x/d_0] \models p(x) \land \neg q(x)$, ovvero $d_0 \in P^I$ e $d_0 \notin q^I$.

Dato che $I \models G$ abbiamo $I, \sigma[x/d_0] \models \forall x(p(x) \to \forall y \, r(x, y))$ abbiamo che $I, \sigma[x/d_0] \models p(x) \to \forall y \, r(x, y)$ e quindi $I, \sigma[x/d_0, y/c^I] \models r(x, y)$, cioè $(d_0, c^I) \in r^I$.

D'altra parte, dato che $I \models H$ abbiamo $I, \sigma[x/d_0] \models q(x) \vee \neg r(x, c)$, che implica che $d_0 \in q^I$ oppure $(d_0, c^I) \notin r^I$. Questo è impossibile e abbiamo raggiunto la contraddizione desiderata.

11. Poniamo $c^J = 3$ e definiamo $\varphi : D^I \to D^J$ decretando che $\varphi(n)$ sia il resto della divisione di n per 4. Allora φ è un omomorfismo forte susriettivo e quindi I e J sono elementarmente equivalenti rispetto a \mathcal{L} .

Per mostrare che l'elementare equivalenza non vale nella logica con uguaglianza basta indicare un enunciato del linguaggio con uguaglianza vero in I e falso in J (o viceversa): $\exists x \forall y \ x \neq f(y)$ va bene.

- **12.** (i) $m(b) \wedge u(b, v) \wedge a(b, c)$;
 - (ii) $\forall x (\neg m(x) \rightarrow \forall y (s(y) \rightarrow \neg a(x,y)) \lor \forall y (s(y) \rightarrow a(x,y))).$
- 13. Ecco una deduzione naturale che mostra quanto richiesto:

$$\underbrace{ \begin{bmatrix} [K]^1 & \frac{\neg G \wedge (K \to \neg F)}{K \to \neg F} \\ \hline -F & \frac{\neg G \wedge (K \to \neg F)}{-F} \\ \hline \frac{\bot}{\neg K} & \frac{\neg G \wedge (K \to \neg F)}{-F} \\ \hline F \vee (\neg G \to H) & \frac{\neg G \wedge (K \to \neg F)}{\neg K \vee H} \\ \hline \end{bmatrix} }_{\neg K \vee H}$$

14. Sviluppiamo un tableau con la negazione della formula alla radice. Indichiamo con F la formula di partenza e con G e H le γ -formule $\forall x(p(x) \rightarrow \forall y \, r(x,y))$ e $\neg \exists z \, r(z,z)$. In ogni passaggio sottolineiamo la formula su cui agiamo. Il tableau inizia nel seguente modo:

Per ragioni di spazio sviluppiamo solo il ramo di sinistra (quello di destra è analogo, con b al posto di a), indicando con K la formula $p(a) \to \forall y \, r(a, y)$.

$$G, p(a), \neg r(a, a), H$$

$$G, \underline{K}, p(a), \neg r(a, a), H$$

$$G, \forall y \ r(a, y), p(a), \neg r(a, a), H$$

$$G, \forall y \ r(a, y), r(a, a), p(a), \neg r(a, a), H$$

$$G, \forall y \ r(a, y), r(a, a), p(a), \neg r(a, a), H$$

Il tableau è chiuso e quindi F è valida.

15.

$$\begin{split} & \left[\left\langle \left(p \to q \vee \neg r \right) \vee \neg \left(s \to \neg t \right) \to u \wedge \left(v \to \neg w \right) \right\rangle \right] \\ & \left[\left\langle \neg \left(\left(p \to q \vee \neg r \right) \vee \neg \left(s \to \neg t \right) \right) \right\rangle, \left\langle u \wedge \left(v \to \neg w \right) \right\rangle \right] \\ & \left[\left\langle \neg \left(p \to q \vee \neg r \right), s \to \neg t \right\rangle, \left\langle u, v \to \neg w \right\rangle \right] \\ & \left[\left\langle p, \neg \left(q \vee \neg r \right), s \to \neg t \right\rangle, \left\langle u, \neg v \right\rangle, \left\langle u, \neg w \right\rangle \right] \\ & \left[\left\langle p, \neg q, r, s \to \neg t \right\rangle, \left\langle u, \neg v \right\rangle, \left\langle u, \neg w \right\rangle \right] \\ & \left[\left\langle p, \neg q, r, \neg s \right\rangle, \left\langle p, \neg q, r, \neg t \right\rangle, \left\langle u, \neg v \right\rangle, \left\langle u, \neg w \right\rangle \right] \end{split}$$

La formula in forma normale disgiuntiva ottenuta è

$$(p \wedge \neg q \wedge r \wedge \neg s) \vee (p \wedge \neg q \wedge r \wedge \neg t) \vee (u \wedge \neg v) \vee (u \wedge \neg w).$$