Lecture 5 Finite State Machines

References: H. Gomaa, Chapter 10 - Software Modeling and Design, Cambridge University Press, February 2011

1

Finite State Machines and Statecharts

- Many software systems are state-dependent
 - Action depends not only on input event
 - Also depends on state of system
- Finite State Machine
 - Fixed number of states
 - Only in one state at a time
- Statechart
 - Graphical representation of finite state machine
 - States are rounded boxes
 - Transitions are arcs
- Statechart relates states, events and actions

States

- State
 - A recognizable situation
 - Exists over an interval of time
 - E.g.,

Δ

Events

- Event
 - A discrete signal that happens at a point in time
 - E.g., PIN entered
 - Conceptually has no duration
 - Duration very short compared to time in state
 - Causes change of state
 - Referred to as state transition
 - E.g., from
 - Waiting for PIN

to

- Validating PIN

_

- State transition label
 - Event [Condition]
- Condition is a Boolean function
 - Conditions are optional on statecharts
 - Condition is true for finite period of time
- When event arrives, condition must be *true* for state transition to occur.
- If condition is false, state transition does not occur

Events and Conditions

Actions

- State transition label
 - Event / action(s)
 - $\ Event \ [condition] \ / \ action(s)$
- Action
 - Executed as a result of state transition
 - Executes instantaneously at state transition
 - Terminates itself
 - Is optional

Figure 10.8 Example of alternative state transitions and actions

- From Validating PIN
 - Three possible events
 - Valid PIN
 - Invalid PIN
 - Third Invalid PIN
 - Each event causes
 - Transition to different state
 - · Different actions

13

Entry and Exit Actions

- Entry action
 - If same action is executed on every transition into state
 - Use entry action
 - Label inside state box
 - -Entry / action
 - Instead of action on every transition into state
 - E.g., Start Cooking

Entry and Exit Actions

- Exit action
 - If same action is executed on every transition out of state
 - Use exit action
 - Label inside state box
 - -Exit / action
 - Instead of action on every transition out of state
 - E.g., Stop Cooking

Hierarchical Statecharts

- Disadvantages of flat statecharts
 - Complex state machines get very cluttered
 - Limited capability for managing complexity
- Hierarchical statecharts
 - Based on Harel Statecharts
 - Notation for hierarchical decomposition of state machines
 - Composite state decomposed into substates
 - Default entry states
 - Transition out of composite state corresponds to transition out of every substate

Hierarchical Statecharts

- Sequential decomposition
 - When object is in composite state
 - It is in one and only one of substates
 - Transition into composite state
 - Must be to one and only one of substates
- Aggregation of state transitions
 - If same event causes transition out of every substate
 - Then aggregate into transition out of composite state

Guidelines on Statecharts

- State name must be passive not active
 - Represents time period when something
 - is happening, e.g., Waiting for PIN
 - Identifiable situation, e.g., Idle, Initial
- State names must be unique
- Must be able to exit from every state
- Flat statechart
 - Statechart is only in one state at a time
- · Hierarchical statechart
 - sequential decomposition
 - Statechart is only in one substate at a time

23

Guidelines on Statecharts

- Event is the cause of the state transition
 - Event happens at a moment in time
 - Event name indicates something has just happened
 - e.g., Card Inserted, Door Closed
- Action is the result of the state transition
 - Action is a command, e.g., Dispense Cash, Start Cooking
 - Action executes instantaneously
 - Activity executes throughout a given state

Guidelines on Statecharts

- More than one action possible with a state transition
 - No sequential dependency between actions
- Condition is a Boolean value
 - Event [Condition]
 - State transition only occurs if
 - Event happens & Condition is True
 - Condition is True over some interval of time
- · Actions and conditions are optional

Developing Statechart from Use Case

- Start with Main Sequence through use case
 - Consider sequence of interactions between actor and system
- Consider sequence of external events
 - Input event from external environment
 - Causes state transition to new state
 - Action may result from state transition
- If statechart participates in more than one use case
 - One partial statechart for each use case

27

Use case name: Validate PIN.

Summary: System validates customer PIN. Example of Inclusion Use Case (Page 374)

Actor: ATM Customer.

Precondition: ATM is idle, displaying a "Welcome" message.

Description of main sequence:

- 1. Customer inserts the ATM card into the card reader.
- 2. If system recognizes the card, it reads the card number.
- 3. System prompts customer for PIN.
- 4. Customer enters PIN.
- 5. System checks the card's expiration date and whether the card has been reported as lost or
- 6. If card is valid, system then checks whether the user-entered PIN matches the card PIN maintained by the system.
- 7. If PIN numbers match, system checks what accounts are accessible with the ATM card.
- 8. System displays customer accounts and prompts customer for transaction type: withdrawal, query, or transfer.

29

Consider Main Sequence of Validate PIN use case Figure 10.14 Statechart for ATM Control

Developing Statechart from Use Case (continued)

- Consider alternative sequences of use case
 - Could result in additional states on statechart
 - Could result in additional state transitions
- Initially depict on flat statechart
- Examples
 - Develop alternative sequences on statecharts for
 - Validate PIN
 - Withdraw Funds

31

Example of Inclusion Use Case (Page 374)

Alternatives

- Step 2: If the system does not recognize the card, the system ejects the card.
- Step 5: If the system determines that the card date has expired, the system confiscates the card.
- Step 5: If the system determines that the card has been reported lost or stolen, the system confiscates the card.
- Step 7: If the customer entered PIN does not match the PIN number for this card, the system reprompts for the PIN.
- Step 7: If the customer enters the incorrect PIN three times, the system confiscates the card
- Steps 48: If the customer enters Cancel, the system cancels the transaction and ejects the card.

Nonfunctional requirements:

- a)Security requirement: System shall encrypt ATM card number and PIN.
- b)Performance requirement: System shall respond to actor inputs within 5 seconds.

Postcondition: Customer PIN has been validated.

Example of Base Use Case Page 374-375

Use Case Name: Withdraw Funds

Summary: Customer withdraws a specific amount of funds from a valid bank account.

Actor: ATM Customer

Dependency: Include Validate PIN use case.

Precondition: ATM is idle, displaying a Welcome message.

Description of main sequence:

- 1. Include Validate PIN use case.
- 2. Customer selects Withdrawal, enters the amount, and selects the account number.
- System checks whether customer has enough funds in the account and whether the daily limit will not be exceeded.
- 4. If all checks are successful, system authorizes dispensing of cash.
- 5. System dispenses the cash amount.
- 6. System prints a receipt showing transaction number, transaction type, amount withdrawn, and account balance.
- 7. System ejects card.
- 8. System displays Welcome message.

Example of Base Use Case Page 374-375

Alternatives:

Step 3: If the system determines the account number is invalid, then it displays an error message and ejects the card

Step 3: If the system determines there are insufficient funds in the customer's account, then it displays an apology and ejects the card.

Step 3: If the system determines the maximum allowable daily withdrawal amount has been exceeded, it displays an apology and ejects the card.

Step 4: If the ATM is out of funds, the system displays an apology, ejects the card, and shuts down the ATM.

Postcondition: Customer funds have been withdrawn.

Developing Statechart from Use Case (continued)

- Develop integrated statechart
 - Integrate partial statecharts to form complete statechart
 - Find common states on partial statecharts
- Example
 - Integrate statecharts for
 - Validate PIN
 - Withdraw Funds

Developing Statechart from Use Case (continued)

- Develop hierarchical statechart
 - States aggregated to form composite state
 - Event causing transition from several states
 - Create composite state with one transition out of composite state
 - Instead of many transitions out of substates

