

MPI Fault Tolerance (User Level Failure Mitigation)

Fault Tolerance Working Group MPI Forum BoF

Wesley Bland wbland@anl.gov

Goal

- Allow wide range of fault tolerance techniques by adding a minimal set of FT functions to the MPI Standard
- Not necessarily designed to be simplest to use, but feature complete
- Is designed to encourage libraries to sit on top of ULFM and provide more user-friendly semantics

What are we trying to solve?

- Failure Notification
- Failure Propagation
- Failure Recovery
 - Point-to-point
 - Wildcard
 - Communicator

How do we propose to solve those issues?

- Failure Notification
 - Error codes
 - New API for getting group of failed processes
- Failure Propagation
 - Local notification
 - New API for notifying other processes
- Failure Recovery
 - Point-to-point
 - Nothing required
 - Wildcard
 - New API to re-enable MPI_ANY_SOURCE
 - Communicator
 - New API to create communicator without failed processes

MPI_REVOKE

- MPI_Comm_revoke(MPI_Comm comm)
 - Disables further (non-local) use of comm
 - Local function
 - Global effect (over comm)
 - Other processes receive MPI_ERR_REVOKED

MPI_SHRINK

- int MPI_Comm_shrink(MPI_Comm comm, MPI_Comm* newcomm)
- Creates a new communicator with all of the processes from the original communicator
 - Excludes failed processes
- Old communicator is still around and usable (if not revoked)

MPI_COMM_AGREE

- MPI_Comm_agree(MPI_Comm comm, int *flag)
 - Performs fault tolerant agreement algorithm over the boolean flag
 - Ignores all failed processes
 - Propagates the MPI_ERR_REVOKED error code if it was called before/during the agreement
 - Meaning that all processes will receive MPI_ERR_REVOKED if it was called early enough rather than getting a correct agreement
 - Useful for determining success/failure of previous operations where agreement is necessary
 - Expensive and should be used sparingly

Recovery with Revoke/Shrink ABFT Example

- ABFT Style application
- Iterations with reductions
- After failure, revoke communicator
 - Remaining processes shrink to form new communicator
- Continue with fewer processes after repairing data
 - Still possible (not hard) to bring in a replacement process
 - Rebuild communicators with the failed process

Implementations

MPICH

- Will be released as part of MPICH 3.2
- Most features available now in MPICH 3.2a2
- www.mpich.org

Open MPI

- Available as a branch developed at The University of Tennessee
- www.fault-tolerance.org

Beyond ULFM

- Reinit (LLNL)
 - Provide model that targets BSP applications
 - MPI rolls back to a safe state (such as MPI_Init)
 - All user communicators are destroyed
 - MPI automatically does everything itself (detection, recovery, notification)
- FA-MPI (Auburn)
 - Try/catch semantics
 - Transactional model
 - Timeouts used for error detection