- ✓ 为啥这么火呢?
 - ❷ NLP领域大哥大级别,一统天下好多年了
 - ♂ CV界新秀,开场即巅峰;满级大号直接上场
 - ∅ 新一代backbone,可直接套用在各项下游任务中
 - ♂ 分类,分割,检测各项任务均刷榜;

♂ 17年NLP大爆发, 20年轰动CV圈 (明星是怎么练成的)

2017.6 | Transformer

Solely based on attention mechanism, the Transformer is proposed and shows great performance on NLP tasks.

2020.5 | GPT-3

A huge transformer with 170B parameters, takes a big step towards general NLP model.

2020.7 | iGPT

The transformer model for NLP can also be used for image pretraining.

2020.12 | IPT

The first transformer model for low-level vision by combining multi-tasks.

2018.10 | BERT

Pre-training transformer models begin to be dominated in the field of NLP.

2020.5 | DERT

A simple yet effective framework for high-level vision by viewing object detection as a direct set prediction problem.

2020.10 | VIT

Pure transformer architectures work well for visual recognition.

✓ 回忆一下咋干活的来着

∅ 就是重新组合各大输入向量,得到更完美的特征

✓ 视觉中的Attention

❤ 整体架构分析

Transformer Encoder Lx MLP Norm Multi-Head Attention Norm Embedded Patches

- ✓ CNN最大的问题是什么?
 - ❷ 格局,眼界;这两词往上一整,就把这页PPT显得高的上了!
 - ♂ CNN中的格局和眼界是什么?不就是感受野嘛!
 - ❷ 想要获得大的感受野(全局的信息)就必须堆叠很多层卷积
 - Ø 这问题就来了,不断卷积+池化的操作感觉有点麻烦还不一定好

- ✓ transformer的格局
 - ❷ 根本不需要堆叠,直接就可以获得全局信息
 - ❷ CNN就像一个穷秀才考状元; transformer直接当驸马爷了
 - ❷ 但是驸马爷也不是好当的,银子(训练数据)得到位才行
 - ∅ 纯transformer结构已经在CV界起义了, CNN是否会沦陷?

❤ 公式介绍

∅ 输入patch (P*P*C) 经过全连接E得到(P*P*D)

❷ N+1表示额外找一个patch表示分类特征,位置编码也同理

∅ 输出矩阵维度与输入矩阵维度一致,重复多层即可

$$\mathbf{z}'_{\ell} = \text{MSA}(\text{LN}(\mathbf{z}_{\ell-1})) + \mathbf{z}_{\ell-1}, \qquad \ell = 1...L$$
 (2)

$$\mathbf{z}_{\ell} = \text{MLP}(\text{LN}(\mathbf{z'}_{\ell})) + \mathbf{z'}_{\ell}, \qquad \ell = 1...L$$
 (3)

$$\mathbf{y} = \mathrm{LN}(\mathbf{z}_L^0)$$

(4)

- ✅ 格局有多大呢?
 - **❷** 可以对比CNN来感受野

 - ❷ 可能5层就顶CNN30层了
 - ② 全局信息丰富,更好理解整个图像

✓ 位置编码

♂ 结论:编码有用,但是怎么编码影响不大,干脆用简单的得了

❷ 2D (分别计算行和列的编码,然后求和)的效果还不如1D的每一层都加共享的位置编码也没啥太大用

Pos. Emb.	Default/Stem	Every Layer	Every Layer-Shared
No Pos. Emb.	0.61382	N/A	N/A
1-D Pos. Emb.	0.64206	0.63964	0.64292
2-D Pos. Emb.	0.64001	0.64046	0.64022
Rel. Pos. Emb.	0.64032	N/A	N/A

❤ 效果分析 (/14表示patch的边长是多少)

name	Epochs	ImageNet	ImageNet ReaL	CIFAR-10	CIFAR-100	Pets	Flowers	exaFLOPs	
ViT-B/32	7	80.73	86.27	98.61	90.49	93.40	99.27	55	
ViT-B/32 ViT-B/16	7	84.15	88 85	99.00	91.87	95.80	99.56	224	
ViT-L/32	7	84.37	88.28	99.19	92.52	95.83	99.45	196	
ViT-L/16	7	86.30	89.43	99.38	93.46	96.81	99.66	783	
ViT-L/16	14	87.12	89.99	99.38	94.04	97.11	99.56	1567	
ViT-H/14	14	88.08	90.36	99.50	94.71	97.11	99.71	4262	
ResNet50x1	7	77.54	84.56	97.67	86.07	91.11	94.26	50	
ResNet50x2	7	82.12	87.94	98.29	89.20	93.43	97.02	199	
ResNet101x1	7	80.67	87.07	98.48	89.17	94.08	95.95	96	
ResNet152x1	7	81.88	87.96	98.82	90.22	94.17	96.94	141	
ResNet152x2	7	84.97	89.69	99.06	92.05	95.37	98.62	563	
ResNet152x2	14	85.56	89.89	99.24	91.92	95.75	98.75	1126	
ResNet200x3	14	87.22	90.15	99.34	93.53	96.32	99.04	3306	
R50x1+ViT-B/32	7	84.90	89.15	99.01	92.24	95.75	99.46	106	
R50x1+ViT-B/16	7	85.58	89.65	99.14	92.63	96.65	99.40	274	
R50x1+ViT-L/32	7	85.68	89.04	99.24	92.93	96.97	99.43	246	
R50x1+ViT-L/16	7	86.60	89.72	99.18	93.64	97.03	99.40	859	
R50x1+ViT-L/16	14	87.12	89.76	99.31	93.89	97.36	99.11	1668	

✓ TNT: Transformer in Transformer

❷ VIT中只针对pathch进行建模,忽略了其中更小的细节

✓ TNT的基础组成

Ø 内部transformer:

₫ 重组成多个超像素 (4个像素点)

把重组的序列继续做transformer

✓ TNT的序列构建

∅ 内部序列构建:

∅ 重构内部序列

- ❷ 组合后的序列继续transformer

- ✓ TNT的基本计算
 - Ø 内部transformer重组成新的向量:

 - ∅ 内部组合后的向量与patch编码大小相同

✓ TNT位置编码实验

∅ 内外兼修,都加编码效果最好

Model	Patch position encoding	Pixel position encoding	Top-1 (%)
\triangle	×	×	80.5
TNT-S	✓ ∨	X	80.8
	X	/	80.7
	✓		81.3

✓ TNT的PatchEmbedding的可视化

∅ 特征更鲜明,分布更多样性

(a) Feature maps in Block-1/6/12.

(b) T-SNE of Block-12.