Niveau: 3APIC

Semestre 1

Année scolaire: 2024/2025

Exercice 1

Soit ABC un triangle tel que : $AC = \sqrt{52}$ cm; BH = 9 cm et HC = 4 cm.

- 1. Calculer AH.
- 2. Calculer AB.
- 3. Montrer que ABC est un triangle rectangle.

Exercice 2

Soit ABCD un trapèze rectangle tel que : $AB=4\,\mathrm{cm};\,AD=3\,\mathrm{cm};\,DC=7\,\mathrm{cm};\,BC=2\sqrt{6}\,\mathrm{cm}.$

- 1. Calculer BD.
- 2. Montrer que BCD est un triangle rectangle.
- 3. Calculer: $\cos \hat{B}$; $\sin \hat{B}$; $\tan \hat{B}$.
- 4. Soit H le projeté orthogonal du point A sur la droite (BD). Calculer : AH et DH.

Exercice 3

Soit ABC un triangle tel que : AB = 2, $AC = \sqrt{3}$ et $BC = \sqrt{7}$.

- 1. Montrer que ABC est un triangle rectangle en A
- 2. Calculer $\cos \widehat{B}$, $\sin \widehat{B}$ et $\tan \widehat{B}$
- 3. Soit I le milieu de [AB] et H sa projeté orthogonal sur la droite (BC)
 - (a) Calculer ${\cal IC}$
 - (b) Calculer IH

Exercice 4

Soit \widehat{x} un angle aigu tel que : $\cos(x) = \frac{2}{5}$

- 1. (a) Calculer sin(x)
 - (b) Calculer tan(x)
- $\text{2. Calculer } A = 2cos^217^\circ + 1 + 2sin^217^\circ \text{ ; } \quad B = 3sin^210^\circ + \sqrt{5}cos^220^\circ + 3sin^280^\circ \sqrt{5}cos^220^\circ tan50^\circ \times tan40^\circ$
- 3. Montrer que : $\frac{(cosx + sinx)^2 1}{1 cos^2x} = \frac{2}{tanx}$

Exercice 5

ABC est un triangle rectangle en B tel que $AB = \sqrt{3}$ et AC = 2.

- 1. Calculer BC
- 2. H est un point du segment [AC] tel que $AH=\frac{3}{2}$ et $BH=\frac{\sqrt{3}}{2}$. Montrer que le triangle ABH est rectangle en H.

1

3. Calculer les rapports trigonométriques de \widehat{ACB} puis déduire les rapports trigonométriques de \widehat{BAC} .

4. β la mesure d'un angle aigu tel que $\cos(\beta)=\frac{2}{3}$. Calculer $\sin(\beta)$ et $\tan(\beta)$.

5. Montrer que $\sqrt{2(1-\cos(\beta))} \times \sqrt{8(1+\cos(\beta))} = 4\sin(\beta)$

6. Montrer que : $\cos(17^\circ) - \tan(73^\circ)(\tan(17^\circ) + \cos(73^\circ)) = -1$

Exercice 6

ABC est un triangle défini par ces côtés : $AC=2\sqrt{3}$, AB=2 cm et BC=4 cm

1. Montrer que le triangle ABC est un triangle rectangle en A.

2. Calculer $\tan(\widehat{ACB})$ et déduire $\tan(\widehat{ABC})$

3. β la mesure d'un angle aigu tel que $\cos(\beta) = \frac{2}{3}$. Calculer $\sin(\beta)$ et $\tan(\beta)$.

4. Montrer que $\sin(\beta)\sqrt{(1-\cos(\beta))} \times \sqrt{(1+\cos(\beta))} + \cos^2(\beta) = 1$.

5. Montrer que : $\cos(17^\circ) - \tan(73^\circ)(\tan(17^\circ) + \cos(73^\circ)) = -1$.