WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 97/15659
C12N 9/12, G06F 17/50	A1	(43) International Publication Date: 1 May 1997 (01.05.97)
(21) International Application Number: PCT/US (22) International Filing Date: 23 October 1996 (CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
(30) Priority Data: 60/005,808 60/006,069 23 October 1995 (23.10.95) 24 October 1995 (24.10.95)	_	
(71) Applicant: CORNELL RESEARCH FOUNDATIO [US/US]; Suite 105, 20 Thornwood Drive, Ithaca, N (US).		
(72) Inventors: CLARDY, Jon, C.; 616 Cayuga Heigh Ithaca, NY 14850 (US). CHOI, Jungwon; Mokdong-APT, ShinJeong-1-dong, Yang Cheon-g 158-071 (KR).	919-40	,
(74) Agent: BERSTEIN, David, L.; Ariad Pharmaceuticals Landsdowne Street, Cambridge, MA 02139-4234 (5
(54) Title: CRYSTALLINE FRAP COMPLEX		

(57) Abstract

The invention relates to the human protein FRAP, and in particular to the FKBP12-rapamycin binding domain thereof and to the ternary complex formed by the FRB domain, rapamycin and FKBP12. A new crystalline composition comprising the ternary complex, coordinates defining its three dimensional structure in atomic detail, and uses thereof are disclosed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
Fl	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

Crystalline FRAP C mplex

Copyright Notice

5

10

15

20

25

30

35

A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.

Field of the Invention

The invention relates to a complex, in crystalline form, of two proteins, FKBP12 and the FRB domain of FRAP, in association with rapamycin, a small organic molecule to which the proteins bind. The crystalline form of this ternary complex is particularly useful for the determination of the three-dimensional structure of the complex at the atomic level. The three dimensional structure provides information useful for the design of pharmaceutical compositions which inhibit the biological function of proteins such as FRAP which contain an FRB domain, particularly those biological functions mediated by molecular interactions involving rapamycin or other compounds capable of binding to an FRB domain.

Background

Rapamycin (sometimes called sirolimus) was first described in 1975 as an antifungal agent isolated from Streptomyces hygroscopicus (Vezina, 1975; Sehgal, 1975). In 1987, the structurally related compound FK506 (sometimes called tacrolimus) was characterized as a potent immunosuppressive agent (Tanaka, 1987), and shortly thereafter, rapamycin was also shown to have potent immunosuppressive activity. In spite of rapamycin's immunosuppressive activity and structural similarity to FK506, the two compounds suppress the immune response in completely different ways (Schreiber, 1992). FK506 inhibits the T cell receptor (TCR) signal and prevents activation of a resting helper T cell. Rapamycin inhibits the autocrine signaling pathway involving interleukin-2 (IL-2) and the IL-2 receptor (IL-2R). These latter signals commit the cell to a program of cell division by communicating with the components of the cell cycle machinery necessary for DNA replication.

Both FK506 and rapamycin are potentially useful in the treatment of human disease. FK506 has been approved by the FDA for use in treating the rejection of transplanted organs. A similar use has been envisioned for rapamycin, and its demonstrated activity in organ transplantation and autoimmune animal models indicate a high clinical potential. Rapamycin has been shown to have antitumor activity against B16 melanocarcinoma, colon 26 tumor, EM ependymoblastoma, CD8F1 mammary and colon 38 murine tumors (Sehgal, 1993). Rapamycin has also shown immunosuppressive activity in assays to measure prevention of development of autoimmune adjuvant arthritis, experimental allergic encephalomyelitis and autoimmune uveoretinitis in the rat (Sehgal, 1993).

The biological activity and structural novelty of both rapamycin and FK506 led to a search for their cellular target(s), and the target of both compounds was identified as the plentiful cytoplasmic protein FKBP12 (for FK506 binding protein) of 12 kDa molecular mass. Since FK506 and rapamycin bound to the same target (Kd of 0.4 and 0.2 nM, respectively) and affected different pathways, a new function was attributed to the FKBP12-ligand complex. This new function arises from the ability of FKBP12-FK506 and FKBP12-rapamycin complexes, but not the individual components, to bind to and inhibit still other protein targets. The FKBP12-FK506 complex inhibits the phosphatase activity of calcineurin, a crucial component of the TCR pathway. Calcineurin is a serine/threonine phosphatase also called PP2B. The FKBP12-rapamycin complex inhibits the IL-2R signal by binding to a large (289kDa) protein named FRAP in humans (Brown et al, 1994) or RAFT in rats (Sabatini et al, 1994; Chiu et al, 1994).

The structural basis for the tight binding of FK506 and rapamycin by FKBP12 has been investigated by both X-ray diffraction and NMR techniques (Clardy, 1995). In particular, high resolution X-ray structures are available for FKBP12-FK506 (1.4 Å resolution) and FKBP12-rapamycin (1.7 Å resolution) (Van Duyne et al, 1991; Van Duyne et al, 1991a; Van Duyne et al, 1993). These structures reveal, among other things, the fold of FKBP12, the atomic details of the hydrophobic binding pocket, and the details of how FK506 and rapamycin interact with the binding pocket. A structural analysis of the complex formed between FKBP12-FK506-calcineurin is also available (Griffith et al, 1995). That structure reveals how the portion of FK506 not involved in binding FKBP12 interacts with calcineurin and inhibits its phosphatase activity.

The biochemical characterization of FRAP, the target of the FKBP12-rapamycin complex, remains incomplete. The C-terminal domain resembles a phosphatidylinositol (PI) kinase, but to date no PI or protein kinase activity has been convincingly demonstrated. FRAP (RAFT, TOR) are members of a rapidly growing and important family of proteins that have been identified only recently (Zakian, 1995). ATM, TEL1, DNA-PK and MEC1 are some of the recently characterized members of this family of PIK-related kinases. (See e.g., Keith, 1995). ATM (for ataxia telngiectasia mutant) is responsible for a human autosomal hereditary disease characterized by cerebellar degeneration, progressive mental retardation, uneven gait, dilation of blood vessels, immune deficiencies, premature aging and a hundredfold increase in cancer susceptibility (Zakian, 1995). Persons who are heterozygous in ATM are believed to be at elevated risk for cancer. Mutations to TEL1 lead to abnormally short telomeres, and in conjunction with other mutations can lead to sensitivity to X-rays, UV radiation and hydroxyurea. DNA-PK is, as the name suggests, a DNA-dependent protein kinase that recognizes damaged DNA, and human cells without DNA-PK activity are radiation sensitive and repair deficient. MEC1 is required for both S-M and G2-M checkpoint progression as well as for meiotic recombination in yeast. Thus MEC1 is arguably the master checkpoint gene in yeast.

10

15

20

25

30

FRAP is a large protein (2549 amino acid residues), and only a small fraction can be involved in recognizing the FKBP12-rapamycin complex. Fortunately all of these residues are in one domain, and this domain, which is called the FKBP12-rapamycin binding (FRB) domain, is the protein used in this invention. It was identified through tryptic digests of FRAP and independently produced as an 11 kDa soluble protein (Chen *et al.*, 1995)

Unfortunately, until now, three-dimensional structural details of the association of FKBP12-rapamycin with the FRB domain of FRAP have remained completely unknown. In the absence of such three-dimensional structural details, it has been impossible to design compounds based on that structure which would be capable of mimicking rapamycin's binding to the FRB domain. We have now obtained crystals of that ternary complex and have determined its three dimensional structure. With this information, it is now possible for the first time to rationally design compounds capable of binding to an FRB domain and mimicking the pharmacological activity of rapamycin. Such mimics may be used in place of rapamycin as immunosuppressive agents or in other pharmacological applications.

15

20

25

30

35

10

Summary of the Invention

This invention centers on the FRB domain of human FRAP and begins with obtaining crystals of human FKBP12-rapamycin-FRB of sufficient quality to determine the three dimensional (tertiary) structure of the complex by X-ray diffraction methods.

In considering our work, it should be appreciated that obtaining protein crystals in any case is a somewhat unpredictable art, especially in cases in which the practitioner lacks the guidance of prior successes in preparing and/or crystalizing any closely related proteins. Obtaining our first crystals of the ternary complex was therefore itself an unexpected result. In addition, our data represents the first detailed information available on the three dimensional structure of FRAP or of any of the PIK-related kinases and revealed an unpredicted array of surface features.

Our results are useful in a number of applications. As previously mentioned, the atomic details of how the FKBP12-rapamycin complex interacts with the FRB domain is essential for the structure-based design of rapamycin analogs. As noted above, rapamycin has several promising clinical indications, and improved rapamycin analogs would be useful therapeutic agents. This structure can be used as an essential starting point in predicting, via homology modeling, the structures of related proteins which contain homologous FRB domains, including other members of the PIK-related kinase family.

Furthermore, the structure shows—in atomic detail—how a small organic molecule, rapamycin, can be used to hold two proteins, FKBP12 and FRB, in close proximity. As such, this structure contains important lessons for the design of heterodimerizing agents.

Thus, the knowledge obtained concerning the FRB of FRAP can be used to model the tertiary structure of related proteins. By way of example, the structure of renin has been modeled using the tertiary structure of endothiapepsin as a starting point for the derivation.

Model building of cercarial elastase and tophozoite cysteine protease were each built from known serine and cysteine proteases that have less than 35% sequence identity. The resultant models were used to design inhibitors in the low micromolar range. (*Proc. Natl. Acad. Sci.* 1993, 90, 3583). Furthermore, alternative methods of tertiary structure determination that do not rely on X-ray diffraction techniques and thus do not require crystallization of the protein, such as NMR techniques, are simplified if a model of the structure is available for refinement using the additional data gathered by the alternative technique. Thus, knowledge of the tertiary structure of the FRB region of FRAP provides a significant window to the structure of other proteins containing a homologous FRB domain, including the other PIK-related kinases.

Accordingly, one object of this invention is to provide a composition, in crystalline form, comprising a protein containing an FRB domain. The protein may have a bound ligand or may be part of a complex with a second protein molecule and a shared ligand. For instance, the crystalline composition may contain a complex containing a first protein having a peptide sequence derived or selected from that of an FKBP12 protein, *e.g.*, human FKBP12; a second protein having a peptide sequence derived or selected from that of an FRB domain of a PIK-related kinase family member, *e.g.* the FRB domain of human FRAP; and a ligand such as rapamycin which is capable of binding to both proteins to form a ternary complex. Such a crystalline composition may contain one or more heavy atoms, *e.g.*, one or more lead, mercury, gold and/or selenium atoms. Such a heavy atom derivative may be obtained, for example, by expressing a gene encoding the protein of interest under conditions permitting the incorporation of one or more heavy atom labels (*e.g.* as in the incorporation of selenomethionine), reacting the protein with a reagent capable of linking a heavy atom to the protein (*e.g.* trimethyl lead acetate) or soaking a substance containing a heavy atom into the crystals.

Preferred crystalline compositions of this invention are capable of diffracting x-rays to a resolution of better than about 3.5 Å, and more preferably to a resolution of 2.7 Å or better, and are useful for determining the three-dimensional structure of the material. (The smaller the number of angstroms, the better the resolution.)

Crystalline compositions of this invention specifically include those in which the crystals are characterized by the structural coordinates of the FRB protein set forth in the accompanying Appendix I or characterized by coordinates having a root mean square deviation therefrom, with respect to backbone atoms of amino acids listed in Appendix I, of 1.5 Å or less. Furthermore, our crystalline compositions include crystals characterized by the structural coordinates of both the FRB and FKBP12 proteins set forth in Appendix I, optionally including a molecule of rapamycin as defined structurally by the accompanying coordinates therefor.

Structural coordinates of a crystalline composition of this invention may be stored in a machine-readable form on a machine-readable storage medium, e.g. a computer hard drive, diskette, DAT tape, etc., for display as a three-dimensional shape or for other uses involving computer-assisted manipulation of, or computation based on, the structural coordinates or the three-dimensional structures they define. For example, data defining the three dimensional

5

10

15

20

25

30

structure of a composition of this invention or a portion thereof containing an FRB domain-containing protein of the PIK-related kinase family, or portions or structurally similar homologues of such proteins, may be stored in a machine-readable storage medium, and may be displayed as a graphical three-dimensional representation of the protein structure, typically using a computer capable of reading the data from said storage medium and programmed with instructions for creating the representation from such data. This invention thus encompasses a machine, such as a computer, having a memory which contains data representing the structural coordinates of a crystalline composition of this invention, e.g. the coordinates set forth in Appendix I, together with additional optional data and instructions for manipulating such data. Such data may be used for a variety of purposes, such as the elucidation of other related structures and drug discovery.

A first set of such machine readable data may be combined with a second set of machine-readable data using a machine programmed with instructions for using the first data set and the second data set to determine at least a portion of the coordinates corresponding to the second set of machine-readable data. For instance, the first set of data may comprise a Fourier transform of at least a portion of the coordinates for the complex set forth in Appendix I, while the second data set may comprise X-ray diffraction data of a molecule or molecular complex.

More specifically, one of the objects of this invention is to provide three-dimensional structural information on the FRB domain of FRAP, of other members of the PIK-related kinase family which containg homologous FRB domains, and of homologs or variants thereof, preferably in association with a bound ligand or bound ligand:protein complex (such as FKBP12-rapamycin). To that end, we provide for the use of the structural coordinates of a crystalline composition of this invention, or portions thereof, to solve, e.g. by molecular replacement, the three dimensional structure of a crystalline form of another such protein, protein:ligand complex, or protein:ligand:protein complex. Doing so involves obtaining x-ray diffraction data for crystals of the protein or complex for which one wishes to determine the three dimensional structure. Then, one determines the three-dimensional structure of that protein or complex by analyzing the x-ray diffraction data using molecular replacement techniques with reference to the previous structural coordinates. As described in US Patent No. 5,353,236, for instance, molecular replacement uses a molecule having a known structure as a starting point to model the structure of an unknown crystalline sample. This technique is based on the principle that two molecules which have similar structures, orientations and positions in the unit cell diffract similarly. Molecular replacement involves positioning the known structure in the unit cell in the same location and orientation as the unknown structure. Once positioned, the atoms of the known structure in the unit cell are used to calculate the structure factors that would result from a hypothetical diffraction experiment. This involves rotating the known structure in the six dimensions (three angular and three spatial dimensions) until alignment of the known structure with the experimental data is achieved. This approximate structure can be fine-tuned to yield a more accurate and often higher resolution structure using various

5

10

15

20

25

30

refinement techniques. For instance, the resultant model for the structure defined by the experimental data may be subjected to rigid body refinement in which the model is subjected to limited additional rotation in the six dimensions yielding positioning shifts of under about 5%. The refined model may then be further refined using other known refinement methods.

For example, one may use molecular replacement to exploit a set of coordinates such as set forth in Appendix I to determine the structure of a crystalline co-complex of the FRB domain, FKBP12 and a ligand other than rapamycin. Likewise one may use that same approach to determine the three dimensional structure of a complex of FKBP12, rapamycin and a protein containing a modified FRAP FRB domain or an FRB domain from a homolog of FRAP.

Another object of the invention is to provide a method for determining the three-dimensional structure of a protein containing an FRB domain, or a complex of the protein with a ligand therefor, using homology modeling techniques and structural coordinates for a composition of this invention. Homology modeling involves constructing a model of an unknown structure using structural coordinates of one or more related proteins, protein domains and/or subdomains. Homology modeling may be conducted by fitting common or homologous portions of the protein or peptide whose three dimensional structure is to be solved to the three dimensional structure of homologous structural elements. Homology modeling can include rebuilding part or all of a three dimensional structure with replacement of amino acids (or other components) by those of the related structure to be solved. The structural coordinates obtained for the related protein or complex may be stored, displayed, manipulated and otherwise used in like fashion as those for the ternary complex of FKBP12-rapamycin-FRB set forth in Appendix I.

Crystalline compositions of this invention thus provide a starting material, and their three dimensional structure coordinates a point of reference, for use in solving the three-dimensional structure of other proteins containing an FRB domain homologous to that of FRAP, as well as complexes containing such a protein. Sequence similarity may be determined using any conventional similarity matrix. (*See e.g.* Dayhoff,1979; Greer, 1981; and Gonnet, 1992). Proteins containing at least one FRB domain having at least 15% peptide sequence identity or similarity with respect to our FRB, as determined by any of the approaches described above, are considered FRAP homologs for the purpose of this disclosure.

By way of further example, the three dimensional structure defined by the machine readable data for the FRB domain (with or without the FKBP12 component) may be computationally evaluated for its ability to associate with various chemical entities. The term "chemical entity", as used herein, refers to chemical compounds, complexes of at least two chemical compounds, and fragments of such compounds or complexes.

For instance, a first set of machine-readable data defining the 3-D structure of FRAP or a FRAP homolog, or a portion or complex thereof, is combined with a second set of machine-readable data defining the structure of a chemical entity or moiety of interest using a machine programmed with instructions for evaluating the ability of the chemical entity or moiety to

5

10

15

20

25

30

associate with the FRAP or FRAP homolog protein or portion or complex thereof and/or the location and/or orientation of such association. Such methods provide insight into the location, orientation and energetics of association of protein surfaces with such chemical entities.

Chemical entities that are capable of mimicking rapamycin's ability to associate with FRAP or a FRAP homolog should share part or all of rapamycin's pharmacologic activities, e.g. immunosuppressive activity, but may be designed for more convenient or economical preparation, improved pharmacokinetics, reduced side effects, etc. Such chemical entities therefore include potential drug candidates.

The three dimensional structure defined by the data may be displayed in a graphical format permitting visual inspection of the structure, as well as visual inspection of the association of the protein component(s) with rapamycin or other chemical entities.

Alternatively, more quantitative or computational methods may be used. For example, one method of this invention for evaluating the ability of a chemical entity to associate with any of the molecules or molecular complexes set forth herein comprises the steps of: (a) employing computational means to perform a fitting operation between the chemical entity and a binding pocket or other surface feature of the molecule or molecular complex; and (b) analyzing the results of said fitting operation to quantify the association between the chemical entity and the binding pocket.

This invention further provides for the use of the structural coordinates of a crystalline composition of this invention, or portions thereof, to identify reactive amino acids, such as cysteine residues, within the three-dimensional structure, preferably within or adjacent to a ligand binding site; to generate and visualize a molecular surface, such as a water-accessible surface or a surface comprising the space-filling van der Waals surface of all atoms; to calculate and visualize the size and shape of surface features of the protein or complex, e.g., ligand binding pockets; to locate potential H-bond donors and acceptors within the three-dimensional structure, preferably within or adjacent to a ligand binding site; to calculate regions of hydrophobicity and hydrophilicity within the three-dimensional structure, preferably within or adjacent to a ligand binding site; and to calculate and visualize regions on or adjacent to the protein surface of favorable interaction energies with respect to selected functional groups of interest (e.g. amino, hydroxyl, carboxyl, methylene, alkyl, alkenyl, aromatic carbon, aromatic rings, heteroaromatic rings, etc.). One may use the foregoing approaches for characterizing the FRB domain-containing protein and its interactions with moieties of potential ligands to design or select compounds capable of specific covalent attachment to reactive amino acids (e.g., cysteine) and to design or select compounds of complementary characteristics (e.g., size, shape, charge, hydrophobicity/hydrophilicity, ability to participate in hydrogen bonding, etc.) to surface features of the protein, a set of which may be preselected. Using the structural coordinates, one may also predict or calculate the orientation, binding constant or relative affinity of a given ligand to the protein in the complexed state, and use that information to design or select compounds of improved affinity.

5

10

15

20

25

30

In such cases, the structural coordinates of the FRAP or FRAP homolog protein, or portion or complex thereof, are entered in machine readable form into a machine programmed with instructions for carrying out the desired operation and containing any necessary additional data, e.g. data defining structural and/or functional characteristics of a potential ligand or moiety thereof, defining molecular characteristics of the various amino acids, etc.

One method of this invention provides for selecting from a database of chemical structures a compound capable of binding to FRAP or a FRAP homolog. The method starts with structural coordinates of a crystalline composition of the invention, e.g., coordinates defining the three dimensional structure of FRAP or a FRAP homolog or a portion thereof or a complex thereof. Points associated with that three dimensional structure are characterized with respect to the favorability of interactions with one or more functional groups. A database of chemical structures is then searched for candidate compounds containing one or more functional groups disposed for favorable interaction with the protein based on the prior characterization. Compounds having structures which best fit the points of favorable interaction with the three dimensional structure are thus identified.

It is often preferred, although not required, that such searching be conducted with the aid of a computer. In that case a first set of machine-readable data defining the 3D structure of a FRAP or FRAP homolog protein, or a portion or protein-ligand complex thereof, is combined with a second set of machine readable data defining one or more moieties or functional groups of interest, using a machine programmed with instructions for identifying preferred locations for favorable interaction between the functional group(s) and atoms of the protein. A third set of data, i.e. data defining the location(s) of favorable interaction between protein and functional group(s) is so generated. That third set of data is then combined with a fourth set of data defining the 3D structures of one or more chemical entities using a machine programmed with instructions for identifying chemical entities containing functional groups so disposed as to best fit the locations of their respective favorable interaction with the protein.

Compounds having the structures selected or designed by any of the foregoing means may be tested for their ability to bind to FRAP or a FRAP homolog, inhibit the binding of FRAP or a FRAP homolog to a natural or non-natural ligand therefor (e.g. FKBP12-rapamycin, in the case of FRAP), and/or inhibit a biological function mediated by FRAP or the FRAP homolog.

This invention also permits methods for designing a compound capable of binding to a FRAP or FRAP homolog based on the three dimensional structure of bound rapamycin. One such method involves graphically displaying a three-dimensional representation based on coordinates defining the three-dimensional structure of a FRAP or FRAP homolog protein or a portion thereof complexed with a ligand such as the FKBP12:rapamycin complex. Interactions between portions of ligand and protein are characterized in order to identify candidate moieties of the ligand for replacement. One or more portions of the ligand which interact with the protein may be replaced with substitute moieties selected from a knowledge base of one or more candidate substitute moieties, and/or moieties may be added to the ligand to permit additional

5

10

15

20

25

30

interactions with the protein. Compounds first identified by any of the methods described herein are also encompassed by this invention.

Brief Description of the Drawings

5

10

15

20

25

30

35

FIG. 1 depicts a computer system.

FIG. 2 depicts storage media of this invention.

FIG. 3 depicts a ribbon diagram of the three dimensional structure of the FKBP12:rapamycin:FRB domain complex, as defined by the coordinates of Appendix I.

Detailed Description of the Invention

Despite the key role played by the FKBP12:rapamycin:FRAP complex in the IL-2/IL-2R signaling pathway, and despite the growing appreciation of the biological importance of the PIK-related kinase family, nothing was known of the three-dimensional architecture by which the FRB domain of FRAP (or of any FRAP homolog) engages the FKBP12:rapamycin complex required for its biological activity. X-ray crystallographic techniques could in principle address such issues. However, notwithstanding the key biological functions mediated by FRAP, there have been no reports disclosing that suitable crystals had been or could be obtained, let alone reports disclosing any x-ray crystallographic data or other information concerning the three-dimensional structure of any FRB domain. Even in the event that crystals had been obtained, then-available three-dimensional structural data relating to the FKBP12:rapamycin complex would not have been been sufficient for solving the ternary complex structure, at least in part, because the initial electron density maps wouldn't have permitted the chain of FRB to be traced. Even if parts of the chain could have been traced, they would not have refined under least-squares minimization techniques.

Nonetheless, we have succeeded in producing FKBP12 and FRAP FRB proteins, and have obtained crystals of their ternary complex with rapamycin. We have solved the three-dimensional structure of the crystalline complex using x-ray diffraction techniques. In view of our successes as disclosed herein, it can now be said that proteins comprising FRB domains can be produced in stable form, purified, and crystallized, and that their three-dimensional structures can be determined, all using materials and methods such as disclosed herein.

As mentioned elsewhere, FRAP is one of a number of PIK-related kinase family members that contain an FRB domain. PIK-related kinase family members share regions of homology including lipid kinase homologous regions, kinase domains and, in at least a number of cases, FRB domains. The presence and boundaries of homologous regions in a protein sequence can be identified by using a computer alignment program that identifies amino acid sequence homology to a known sequence or domain. For example, the FRB domain (amino acids 2015 - 2114) of FRAP may be used for such analysis, but FRB domains from other proteins such as RAPT or TOR1 or TOR2 can be used as well. The alignment method typically used by such programs is the Needleman-Wunch alignment. See e.g., "A General Method Applicable to the Search for

Similarities in the Amino Acid Sequence of Two Proteins." Needlman, S.B.; Wunch, C.D. J. Mol. Biol. 1970, 48, 443-453.

We expressed the FRAP FRB domain as a glutathione-S-transferase (GST) fusion protein. The cDNA encoding residues 2015 - 2114 from human FRAP (Chen *et al*, 1995) was cloned into a pGEX vector and expressed in E coli, the resulting fusion protein was recovered and cleaved to yield the FRB protein which was then purified, all as described in detail below. FKBP12 protein was similarly obtained using a cDNA encoding residues 1 - 107 from human FKBP12 (Standaert *et al*, 1990, Nature <u>346</u>: 671-674..

Other proteins containing an FRB domain may also be used, including larger FRAP fragments containing the FRB and flanking peptide sequence, including up to the entire FRAP protein. Additionally, FRB proteins can be prepared by analogous means containing homologous FRB regions from other proteins, including RAPT, TOR1, TOR2 or other members of the PIK-related kinase family. It should further be appreciated that other expression systems may be readily employed., including , e.g., materials and methods for expression in E. coli using T7, maltose-binding protein fusion (MBP), with epitope tags (His6, HA, myc, Flag) included or cleaved off. Baculoviral expression may be used, e.g. using pVL1393 or derivatives, for tFRB domain, fused (or not) to epitope tag or fusion partner such as GST. Conventional materials and methods for expression in mammalian, yeast or other cells may also be used.

Rapamycin may be prepared by known methods or may be obtained from commercial sources. Rapamycin analogs such as disclosed, *e.g.*, in Luengo *et al*, 1995, Chemistry & Biology 2(7):471-481, may be used in place of rapamycin, in forming complexes of this invention.

Complex formation, crystallization, X ray diffraction experiments and interpretation of the diffraction data were conducted as described in detail in the Experimental Examples below. The resulting structural coordinates for a crystalline composition comprising FKBP12:rapamycin:FRB of FRAP (one molecule of complex per asymmetric unit) are set forth in Protein Database format in Appendix I. Solving the X-ray crystal structure of the ternary complex allowed us to conduct the first three dimensional characterization of an FRB:ligand complex (viewing FKBP12:rapamycin as the "ligand"). The complex, depicted in schematic form in FIG. 3, involves an elaborate array of contacts between the two protein domains and their mutual small molecule ligand. This work reveals the first structural insights into an FRB domain-containing protein.

Structure of the Ternary Complex

The ternary complex of FKBP12-rapamycin-FRB has overall dimensions of 60 Å x 45 Å x 35 Å with the rapamycin sandwiched between FKBP12 and FRB. The FKBP12 structure is basically the same as in previously reported binary structures, with a five stranded anti parallel β -sheet and a short α -helix. This binary structure was originally determined in the FKBP12-FK506 complex and later in the FKBP12-rapamycin complex (Van Duyne *et al*, 1993). The four helix bundle of FRB does not wrap around the effector site of FKBP12-rapamycin; it

5

10

15

20

25

30

just touches the effector (i.e., FRB-binding) interface of the binary complex with few protein-protein interactions. All of the interactions between rapamycin and FRB are hydrophobic interactions, and protein-protein interactions between FKBP12 and FRB are limited to the 80s loop and one side chain of the 40s loop of FKBP12 (Table 2). The solvent accessible surface areas of FKBP12 and FRB are 5348 Å and 5711 Å , respectively. Since the solvent accessible surface area of the FKBP12-FRB complex (protein only) is 10342 Å , binding results in a very modest 6% reduction of solvent accessible surface area. Two long side chains in the 40s loop (Lys44 and Lys47) and three residues in the 80s loop (Thr85, Gly86 and His87) of FKBP12 appear to make crucial contact in the ternary complex. In the FRB site, two residues at the end of α 1 and the α 1- α 2 loop (Arg2042 and Tyr2038) contact the 80s loop of FKBP12, and two residues in helix α 4 (Tyr2105 and Asp2102) form direct or water-mediated hydrogen bonds to the 40s loop of FKBP12. The loop-loop interaction between 80s loop (FKBP12) and the α 1- α 2 loop (FRB) and the loop-helix interaction between 40s loop (FKBP12) and helix α 4 are the main protein-protein interactions in this ternary complex and thus contribute all of the protein-protein binding force forming the ternary complex.

Structure of FRB domain of FRAP

The FRB domain of the FRAP forms a typical four helix bundle, which is one of the most common structural motifs in globular proteins. The overall dimensions of this domain are 45 Å x 30 Å x 30 Å. All four helices (termed α 1- α 4) are connected with short underhand loops. The longest helix α 3 (residues 2065-2091) has a bend at residue 2074 of 59°. Except for a small bent part of α 3 (residues 1065-2073), all four helices have similar lengths (16-19 residues, about 30 Å in length). The α 2 helix also has a small bend around residues Glu2049, Val2050 and Leu2051 to form a 310-helical turn rather than a normal α -helix. The angle between α 1 and α 2 is 22° and the angle between α 3 and α 4 is 20°. The angles between these pairs are in the range of 40-60°, which indicates that this four helix bundle is close to the 'X' type interhelical

Table 2 Intra-molecular hydrogen bonds and close contacts in the ternary complex

		inter-nelical in	teractions in the FRB dom	nain of FRAP		
					Distance	(Å
His 205	5 (α 2)	NE2	Tyr 2104 (α4)	ОН	2.85	
His 202	β (α1)	NE2	Ser 2112 (C terminal)	Ογ	3.23	
Rapa	mycin	Close contacts of	of rapamycin and FRB dor FRB domain of FR		Distance	(A
-	mycin 50	Close contacts of	• •		Distance	(A
c	-	Close contacts o	FRB domain of FR	LAP		(A

10

15

20

	ı	nteractions of FK	BP12 a	nd FRB domain	of FRAP	
	FKBP12		FRB	domain of	FRAP	Distance (Å)
Lys	47	0	Tyr	2105	ОН	2.56
Thr	85	0γ1	Arg	2042	NH1	3.10
Thr	85	0γ1	Arg	2042	NH2	2.88
Gly	86	0	Arg	2042	NH2	2.79
His	87	Ne2	Tyr	2038	ОН	via H ₂ O 301
His	87	ηδ1	Arg	2042	NH2	via H ₂ O 303
Lys	44	Νζ	Asp	2102	0δ1	via H ₂ O 310

pattern which is the alternating pattern of parallel and perpendicular helix-helix interactions (Harris *et al*, 1994). As usual, most of the hydrophobic and aromatic residues are located in the inter-helical interface and most of the hydrophilic residues are in the outside of the bundle, which is exposed to the solvent. Only two strong hydrogen bonds were found for the interhelical interactions (Table 2) and could be key interactions maintaining the overall conformation of the four helix bundle. Helices $\alpha 1$ and $\alpha 4$, which have an interhelical angle of 44° , form a deep cleft on the molecular surface of this domain. This cleft is surrounded by six aromatic side chains forming the 'aromatic pocket' which has exquisite steric complementary for the rapamycin effector domain binding.

Structure of FKBP12-rapamycin

The structure of FKBP12 in the ternary complex is basically the same as that in the binary complex of FKBP12-rapamycin or FKBP12-FK506. The protein fold and the architecture of the secondary structure are exactly the same as in the binary complex, and the interaction with rapamycin is also the same as that of the binary complex. The overall r.m.s. deviation between the FKBP12 in the ternary complex and that in the FKBP12-rapamycin complex is 1.14 Å (0.49) A for the main chain), and the deviation between FKBP12 in the ternary complex and that in the FKBP12-FK506 complex is 1.11 Å (0.48 Å for the main chain), which implies that binding of FKBP12:rapamycin to the FRAP FRB domain is not accompanied by significant changes in the conformation of the FRB binding site on FKBP12 or of the effector domain of rapamycin. Even the 40s loop and 80s loop regions in the FKBP12, that have direct interaction to the FRB domain, are not significantly different in 3D structure from that seen in the binary complexes. These r.m.s. values were calculated by the rigid-body fitting on the main chain atoms in the FKBP12 using QUANTA. The overlay of FKBP12-FK506 to the ternary complex clearly confirmed the fact that FKBP12-FK506 complex can't bind FRAP as FK506's effector region does not extend enough. The protein-protein interactions by themselves between FKBP12 and FRB are not enough for the formation of a binary complex; rapamycin is essential to mediate the interaction of the two proteins.

5

10

15

20

FKBP12-rapamycin binding to FRAP

While the interactions of rapamycin with FRB are all hydrophobic, rapamycin-FKBP12 interactions employ five hydrogen bonds which are the same found in the binary complex of FKBP12-rapamycin, to govern this interaction. Rapamycin is surrounded by five conserved aromatic residues in FKBP12, which makes the binding pocket for the rapamycin a complete 'aromatic pocket' along with six aromatic residues in FRB domain. Comparing the sequence of these aromatic residues of FRB domain with other FKBP-rapamycin target proteins, these six aromatic residues are all conserved in RAFT (Sabatini et al, 1994), TOR1, and TOR2 (Stan, et al, 1994)—suggesting that these structural results will be applicable to other members of the PIKrelated kinase family. It is expected that binding domains of these other proteins have a similar structure with FRB domain. For the interaction between rapamycin and FRB domain, two major sites on FRB are considered crucial for rapamycin binding. Ser2035, which is also conserved in other FKBP12-rapamycin target proteins, has close contact with C27 and C51 of rapamycin (Table 2). The other site is Thr2098 which has a close contact with C50 of rapamycin. C50 of the rapamycin is at the end of C16 methoxy group, which has been a key target for substituted analogs. All of the hydrophobic interactions between rapamycin and FRB including Ser2035 and Thr2098 can be considered as the main force contributing to complete ternary complex.

Mutational studies

10

15

20

25

30

Ser2035 in FRB has been the major site for the site-directed mutation studies of FRAP (Chen *et al*, 1995). Those studies revealed that the substitution of this residue to other residues larger than alanine abolish binding affinity toward FKBP12-rapamycin. The crystal structure of the ternary complex shows the direct effect of steric hindrance when this position is substituted by longer side chains. It has been suggested that this conserved serine site is a phosphorylation site, and phosphorylation would abrogate binding. By the binding of FKBP12-rapamycin, this serine site, which is open to the solvent when unbound, is protected from phosphorylation and this probably causes the inhibition of the downstream of the signaling pathway.

For rapamycin, C16 has been the main site for substitution in published structure-activity studies (Luengo *et al*, 1995). The studies of C16 analogs of rapamycin showed that the bulky group substitutions on this position have lower affinity for the FKBP12 binding and lower activity. However some analogs with different stereochemistry or different groups showed retained activity and affinity to FKBP12. Such C-16 substituted analogs could be of therapeutic use.

35 Applications of the invention

This invention encompasses crystalline compositions containing FRAP or a FRAP homolog protein or portion thereof having a region characterized by structural coordinates of the FRB domain set forth in Appendix I, or by coordinates having a root mean square deviation

therefrom of less than about 1.5 Å, preferably less than about 1 Å, and even more preferably less than about 0.5 Å, with respect to backbone atoms of amino acid residues listed there.

As practitioners in this art will appreciate, various computational analyses may be used to determine the degree of similarity between the three dimensional structure of a given protein (or a portion or complex thereof) and FRAP or a FRAP homolog protein or portion (e.g. the FRB domain) or complex thereof such as are described herein. Such analyses may be carried out with commercially available software applications, such as the Molecular Similarity application of QUANTA (Molecular Simulations Inc., Waltham, MA) version 3.3, and as described in the accompanying User's Guide, Volume 3 pgs. 134 - 135.

The Molecular Similarity application permits comparisons between different structures, different conformations of the same structure, and different parts of the same structure. The procedure used in Molecular Similarity to compare structures is divided into four steps: (1) load the structures to be compared; (2) define the atom equivalences in these structures; (3) perform a fitting operation; and (4) analyze the results.

Each structure is identified by a name. One structure is identified as the target (i.e., the fixed structure); all remaining structures are working structures (i.e., moving structures). Since atom equivalency within QUANTA is defined by user input, for the purpose of this invention we define equivalent atoms as protein backbone atoms (N, $C\alpha$, C and O) for all conserved residues between the two structures being compared and consider only rigid fitting operations.

When a rigid fitting method is used, the working structure is translated and rotated to obtain an optimum fit with the target structure. The fitting operation uses a least squares fitting algorithm that computes the optimum translation and rotation to be applied to the moving structure, such that the root mean square difference of the fit over the specified pairs of equivalent atom is an absolute minimum. This number, given in angstroms, is reported by OUANTA.

For the purpose of this invention, any set of structural coordinates of a FRAP or FRAP homolog protein, portion of a FRAP or FRAP homolog protein or molecular complex thereof that has a root mean square deviation of conserved residue backbone atoms (N, C α , C, O) of less than 1.5Å when superimposed—using backbone atoms—on the relevant structural coordinates of a protein or complex of this invention, *e.g.* the coordinates listed in Appendix I, are considered identical. More preferably, the root mean square deviation is less than 1.0Å. Most preferably, the root mean square deviation is less than 0.5Å.

The term "root mean square deviation" means the square root of the arithmetic mean of the squares of the deviations from the mean. It is a way to express the deviation or variation from a trend or object. For purposes of this invention, the "root mean square deviation" defines the variation in the backbone of a protein from the backbone of a protein of this invention, such as the FRB of FRAP, as defined by the structural coordinates of Appendix I and described herein.

5

10

15

20

25

30

The term "least squares" refers to a method based on the principle that the best estimate of a value is that in which the sum of the squares of the deviations of observed values is a minimum.

In order to use the structural coordinates generated for a crystalline substance of this invention, *e.g.* the structural coordinates of the FRB of FRAP set forth in Appendix I, it is often necessary or desirable to display them as, or convert them to, a three-dimensional shape, or to otherwise manipulate them. This is typically accomplished by the use of commercially available software such as a program which is capable of generating three-dimensional graphical representations of molecules or portions thereof from a set of structural coordinates.

By way of illustration, a non-exclusive list of computer programs for viewing or otherwise manipulating protein structures include the following:

Midas (Univ. of California, San Francisco)

MidasPlus (Univ. of Cal., San Francisco)

MOIL (Univeristy of Illinois)

Yummie (Yale University)

Sybyl (Tripos, Inc.)

5

10

Insight/Discover (Biosym Technologies)

MacroModel (Columbia University)

Quanta (Molecular Simulations, Inc.)

Cerius (Molecular Simulations, Inc.)

Alchemy (Tripos, Inc.)

LabVision (Tripos, Inc.)

Rasmol (Glaxo Research and Development)

Ribbon (University of Alabama)

NAOMI (Oxford University)

Explorer Eyechem (Silicon Graphics, Inc.)

Univision (Cray Research)

Molscript (Uppsala University)

Chem-3D (Cambridge Scientific)

Chain (Baylor College of Medicine)

O (Uppsala University)

GRASP (Columbia University)

X-Plor

(Molecular Simulations, Inc.; Yale Univ.)

Spartan (Wavefunction, Inc.)

Catalyst (Molecular Simulations, Inc.)

Molcadd (Tripos, Inc.)

VMD (Univ.of Illinois/Beckman Institute)

Sculpt (Interactive Simulations, Inc.)

Procheck (Brookhaven Nat'l Laboratory)

DGEOM (QCPE)

RE_VIEW (Brunel University)

Modeller (Birbeck Col., Univ. of London)

Xmol (Minnesota Supercomputing Center)

Protein Expert (Cambridge Scientific)

HyperChem (Hypercube)

MD Display (University of Washington)

PKB

(Nat'l Center for Biotech. Info., NIH)

ChemX (Chemical Design, Ltd.)

Cameleon (Oxford Molecular, Inc.)

Iditis (Oxford Molecular, Inc.)

For storage, transfer and use with such programs of structural coordinates for a crystalline substance of this invention, a machine-readable storage medium is provided comprising a data storage material encoded with machine readable data which, when using a machine programmed with instructions for using said data, e.g. a computer loaded with one or more programs of the sort identified above, is capable of displaying a graphical three-

dimensional representation of any of the molecules or molecular complexes described herein. Machine-readable storage media comprising a data storage material include conventional computer hard drives, floppy disks, DAT tape, CD-ROM, and other magnetic, magneto-optical, optical, floptical and other media which may be adapted for use with a computer.

Even more preferred is a machine-readable data storage medium that is capable of displaying a graphical three-dimensional representation of a molecule or molecular complex that is defined by the structural coordinates of a complex, FRB-containing protein component thereof, or portion thereof, comprising structural coordinates of an FRB domain such as the FRAP FRB coordinates set forth in our attached Appendix I ± a root mean square deviation from the conserved backbone atoms of the amino acids thereof of not more than 1.5 Å. An illustrative embodiment of this aspect of the invention is a conventional 3.5" diskette, DAT tape or hard drive encoded with a data set, preferably in PDB format, comprising the coordinates of our Appendix I. FIG. 3 illustrates a print-out of a graphical three-dimensional representation of such a complex.

In another embodiment, the machine-readable data storage medium comprises a data storage material encoded with a first set of machine readable data which comprises the Fourier transform of the structural coordinates set forth in Appendix I (or again, a derivative thereof), and which, when using a machine programmed with instructions for using said data, can be combined with a second set of machine readable data comprising the X-ray diffraction pattern of a molecule or molecular complex to determine at least a portion of the structural coordinates corresponding to the second set of machine readable data.

FIG. 1 illustrates one version of these embodiments. The depicted system includes a computer <u>A</u> comprising a central processing unit ("CPU"), a working memory which may be, e.g., RAM (random-access memory) or "core" memory, mass storage memory (such as one or more disk drives or CD-ROM drives), one or more cathode-ray tube ("CRT") display terminals, one or more keyboards, one or more input lines (IP), and one or more output lines (OP), all of which are interconnected by a conventional bidirectional system bus.

Input hardware \underline{B} , coupled to computer \underline{A} by input lines, may be implemented in a variety of ways. Machine-readable data of this invention may be inputted via the use of a modem or modems connected by a telephone line or dedicated data line \underline{L} . Alternatively or additionally, the input hardware may comprise CD-ROM drives or disk drives \underline{D} . In conjunction with the CRT display terminal, a keyboard may also be used as an input device.

Output hardware, coupled to computer Δ by output lines, may similarly be implemented by conventional devices. By way of example, output hardware may include a CRT display terminal for displaying a graphical representation of a protein of this invention (or portion thereof) using a program such as QUANTA as described herein. Output hardware might also include a printer, so that hard copy output may be produced, or a disk drive, to store system output for later use.

5

10

15

20

25

30

In operation, the CPU coordinates the use of the various input and output devices, coordinates data accesses from mass storage and accesses to and from working memory, and determines the sequence of data processing steps. A number of programs may be used to process the machine-readable data of this invention. Examples of such programs are discussed in reference to the computational methods of drug discovery as described herein. Specific references to components of the hardware system of FIG. 1 are included as appropriate throughout the following description of the data storage medium.

FIG. 2A shows a cross section of a magnetic data storage medium 100 which can be encoded with a machine-readable data that can be carried out by a system such as a system of FIG. 1. Medium 100 can be a conventional floppy diskette or hard disk, having a suitable substrate 101, which may be conventional, and a suitable coating 102, which may be conventional, on one or both sides, containing magnetic domains (not visible) whose polarity or orientation can be altered magnetically. Medium 100 may also have an opening (not shown) for receiving the spindle of a disk drive or other data storage device 24.

The magnetic domains of coating 102 of medium 100 are polarized or oriented so as to encode in a manner which may be conventional, machine readable data such as that described herein, for execution by a system such as a system of FIG. 1.

FIG. 2B shows a cross section of an optically-readable data storage medium 110 which also can be encoded with such machine-readable data, or set of instructions, which can be carried out by a system such as a system of FIG. 1. Medium 110 can be a conventional compact disk read only memory (CD-ROM) or a rewritable medium such as a magneto-optical disk which is optically readable and magneto-optically writable. Medium 100 preferably has a suitable substrate 111, which may be conventional, and a suitable coating 112, which may be conventional, usually of one side of substrate 111.

In the case of CD-ROM, coating 112 is reflective and is impressed with a plurality of pits 113 to encode the machine-readable data. The arrangement of pits is read by reflecting laser light off the surface of coating 112. A protective coating 114, which preferably is substantially transparent, is provided on top of coating 112.

In the case of a magneto-optical disk, coating 112 has no pits 113, but has a plurality of magnetic domains whose polarity or orientation can be changed magnetically when heated above a certain temperature, as by a laser (not shown). The orientation of the domains can be read by measuring the polarization of laser light reflected from coating 112. The arrangement of the domains encodes the data as described above.

35 Use of Structure in Drug Discovery

The availability of the three-dimensional structure of the ternary complex of FKBP12:rapamycin:FRB of FRAP makes structure-based drug discovery approaches possible. Structure-based approaches include *de Novo* molecular design, computer-aided optimization of

10

15

20

25

lead molecules, and computer-based selection of candidate drug structures based on structural

Rapamycin mimetics may be developed from the bound conformation of rapamycin by design, by searching databases for replacements of one or more structural segments of rapamycin, or by enhancement of existing ligand-protein interactions (i.e., by replacing a component moiety of a ligand with a substitute moiety capable of greater interaction with the target protein, whether through accessible protein contact points or by extrusion of otherwise sequestered waters). Knowledge of the bound conformation of a ligand can suggest avenues for conformational restriction and replacement of atoms and/or bonds of rapamycin. A less biased approach involves computer algorithms for searching databases of three dimensional structures to identify replacements for one or more portions of the ligand. By this method, one can generate compounds for which the bioactive conformation is heavily populated, i.e., compounds which are based on particularly biologically relevant conformations of the ligand. Algorithms for this purpose are implemented in programs such as Cast-3D (Chemical Abstracts Service), 3DB Unity (Tripos, Inc.), Quest-3D (Cambridge Crystallographic Data Center), and MACCS/ISIS-3D (Molecular Design Limited). These geometric searches can be augmented by steric searching, in which the size and shape requirements of the binding site are used to weed out hits that have prohibitive dimensions. Programs that may be used to synchronize the geometric and steric requirements in a search applied to the FRB of FRAP include CAVEAT (P. Bartlett, University of California, Berkeley), HOOK (MSI), ALADDIN (Daylight Software) and DOCK (I.D. Kuntz, University of California, San Francisco; see e.g. http://www.cmpharm.ucsf.edu/kuntz-/kuntz.html and references cited therein). All of these searching protocols may be used in conjunction with existing corporate databases, the Cambridge Structural Database, or available chemical databases from chemical suppliers.

25

30

35

5

10

15

20

Characterization of Compounds

Compounds designed, selected and/or optimized by methods described above may be evaluated for binding activity with respect to proteins containing one or more FRB domains using various approaches, a number of which are well known in the art. For instance, compounds may be evaluated for activity as competitive inhibitors of the binding of a natural ligand for the FRB, e.g. FKBP12:rapamycin in the case of the FRAP FRB. Competitive inhibition may be determined using any of the numerous available technologies known in the art.

Such compounds may be further evaluated for activity in inhibiting cellular or other biological events mediated by a pathway involving the interaction of interest using a suitable cell-based assay or an animal model. Cell-based assays and animal models suitable for evaluating inhibitory activity of a compound with respect to a wide variety of cellular and other biological events are known in the art. New assays and models are regularly developed and reported in the scientific literature.

For example, compounds which mimic the binding of rapamycin or FKBP12:rapamycin with respect to FRAP may be evaluated for biological activity in the mouse spelocyte mitogenesis assay or the high-flux yeast-based assay of Luengo *et al*, *supra*. A battery of *in vivo* models may be used to profile the breadth of the compound's immunosuppressive (or other) activity and compare the profile to those of positive controls such as rapamycin itself. Comparisons may also be made to other currently accepted immunosuppressive compounds, *e.g.* cyclophosphamide, and leflunomide. Initial *in vivo* screening models include: Delayed type hypersensitivity testing, Allogeneic skin transplantation, and Popliteal lymph node hyperplasia. Compounds demonstrating optimal profiles in the above models are advanced into more sophisticated models designed to confirm immunosuppressive activity in specific therapeutic areas including: Rheumatoid arthritis, Transplantation, Graft vs. host disease, and Asthma.

By way of further illustration, compounds may be evaluated in relevant conventional *in vitro* and *in vivo* assays for inhibition of the initiation, maintenance or spread of cancerous growth. See *e.g.*, Ishii *et al.*, J. Antibiot. XLII:1877-1878 (1989) (*in vitro* evaluation of cytotoxic/antitumor activity); Sun *et al*, US Patent 5,206,249 (issued 27 April 1993)(*in vitro* evaluation of growth inhibitory activity on cultured leukemia cells); and Sun *et al*, *supra* (xenograft models using various human tumor cell lines xenografted into mice, as well as various transgenic animal models).

Single and multiple (e.g., 5 to 7 days) dose investigative toxicology studies are typically performed in the efficacy test species using the intended route of administration for the efficacy study. These investigative toxicology studies are performed to identify maximum tolerated dose, subjective bioavailability from the intraperitoneal or oral routes of administration, and estimation of an initial safety margin. Initial bioavailability and pharmacokinetics (blood clearance) of the compounds may be determined, with standard cold or radioactive assay methods, to assist in defining appropriate dosing regimens for the compounds in the animal models.

Pharmaceutical Compositions and Uses of rapamycin mimetics and other FRAP-binding compounds

Compounds which bind to an FRB domain may be used as biological reagents in binding assays as described herein for functional classification of members of the PIK-related kinase family, particularly newly discovered proteins, based on ligand specificity.

Moreover, compounds identified as described above can be used for their immunosuppressive or other pharmacologic activity in place of rapamycin.

A compound selected or identified in accordance with this invention can be formulated into a pharmaceutical composition containing a pharmaceutically acceptable carrier and/or other excipient(s) using conventional materials and means. Such a composition can be administered as an immunosuppresant, for example, to an animal, either human or non-human. Administration of such composition may be by any conventional route (parenteral, oral, inhalation, and the like) using appropriate formulations as are well known in this art. The

5

10

15

20

25

30

compound can be employed in admixture with conventional excipients, i.e., pharmaceutically acceptable organic or inorganic carrier substances suitable for parenteral administration.

Pharmaceutical applications

5

10

15

20

25

30

35

By virtue of its capacity to mimic the interaction of rapamycin with FRAP, a compound identified as described herein may be used in pharmaceutical compositions and methods for treatment or prevention of various diseases and disorders in a mammal in need thereof.

Mammals include rodents such as mice, rats and guinea pigs as well as dogs, cats, horses, cattle, sheep, non-human primates and humans.

The preferred method of such treatment or prevention is by administering to a mammal an effective amount of the compound to prevent, alleviate or cure said disease or disorder. Such effective amounts can be readily determined by evaluating the compounds of this invention in conventional assays well-known in the art, including assays described herein.

Therapeutic/Prophylactic Administration & Pharmaceutical Compositions

The invention provides methods of treating, preventing and/or alleviating the symptoms and/or severity of an untoward immune response or other disease or disorder referred to above by administration to a subject of a in an amount effective therefor. The subject will be an animal, including but not limited to animals such as cows, pigs, chickens, etc., and is preferably a mammal, and most preferably human.

Various delivery systems are known and can be used to administer the compound, e.g., encapsulation in liposomes, microparticles, microcapsules, etc. One mode of delivery of interest is via pulmonary administration, as detailed more fully infra. Other methods of introduction include but are not limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural and oral routes. The compound may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local. For treatment or prophylaxis of nasal, bronchial or pulmonary conditions, preferred routes of administration are oral, nasal or via a bronchial aerosol or nebulizer.

In specific embodiments, it may thus be desirable to administer the compound locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, by injection, by means of a catheter, by means of a suppository, or by means of a skin patch or implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers.

This invention also provides pharmaceutical compositions. Such compositions comprise a therapeutically (or prophylactically) effective amount of the compound, and a pharmaceutically acceptable carrier or excipient. Such a carrier includes but is not limited to

saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The carrier and composition can be sterile. The formulation should suit the mode of administration.

The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. The composition can be a liquid solution, suspension, emulsion, tablet, pill, capsule, sustained release formulation, or powder. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc.

In a specific embodiment, the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to human beings. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic to ease pain at the side of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.

Administration to an individual of an effective amount of the compound can also be accomplished topically by administering the compound(s) directly to the affected area of the skin of the individual. For this purpose, the compound is administered or applied in a composition including a pharmacologically acceptable topical carrier, such as a gel, an ointment, a lotion, or a cream, which includes, without limitation, such carriers as water, glycerol, alcohol, propylene glycol, fatty alcohols, triglycerides, fatty acid esters, or mineral oils.

Other topical carriers include liquid petroleum, isopropyl palmitate, polyethylene glycol, ethanol (95%), polyoxyethylene monolaurate (5%) in water, or sodium lauryl sulfate (5%) in water. Other materials such as anti-oxidants, humectants, viscosity stabilizers, and similar agents may be added as necessary.

In addition, in certain instances, it is expected that the compound may be disposed within devices placed upon, in, or under the skin. Such devices include patches, implants, and injections which release the compound into the skin, by either passive or active release mechanisms.

Materials and methods for producing the various formulations are well known in the art [see e.g. US Patent Nos. 5,182,293 and 4,837,311 (tablets, capsules and other oral formulations as well as intravenous formulations)].

The effective dose of the compound will typically be in the range of about 0.01 to about 50 mg/kgs, preferably about 0.1 to about 10 mg/kg of mammalian body weight, administered

5

10

15

20

25

in single or multiple doses. Generally, the compound may be administered to patients in need of such treatment in a daily dose range of about 1 to about 2000 mg per patient.

The amount of the compound which will be effective in the treatment or prevention of a particular disorder or condition will depend on the nature of the disorder or condition, and can be determined by standard clinical techniques. In addition, in vitro or in vivo assays may optionally be employed to help identify optimal dosage ranges. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems. The precise dosage level of the compound, as the active component(s), should be determined as in the case of all pharmaceutical treatments, by the attending physician or other health care provider and will depend upon well known factors, including route of administration, and the age, body weight, sex and general health of the individual; the nature, severity and clinical stage of the disease; and the use (or not) of concomitant therapies.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceutical or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

Pulmonary Administration

5

10

15

20

25

30

35

In one embodiment of this invention, the compound is administered by pulmonary administration, *e.g.* via aerosolization. This route of administration may be particularly useful for treatment or prophylaxis of bronchial or pulmonary infection or tumors.

Pulmonary administration can be accomplished, for example, using any of various delivery devices known in the art (see e.g., Newman, S.P., 1984, in Aerosols and the Lung, Clarke and Davia (eds.), Butterworths, London, England, pp. 197-224; PCT Publication No. WO 92/16192 dated October 1, 1992; PCT Publication No. WO 91/08760 dated June 27, 1991; NTIS Patent Application 7-504-047 filed April 3, 1990 by Roosdorp and Crystal), including but not limited to nebulizers, metered dose inhalers, and powder inhalers. Various delivery devices are commercially available and can be employed, e.g., Ultravent nebulizer (Mallinckrodt, Inc., St. Louis, Missouri); Acorn II nebulizer (Marquest Medical Products, Englewood, Colorado), Ventolin metered dose inhaler (Glaxo Inc., Research Triangle Park, North Carolina); Spinhaler powder inhaler (Fisons Corp., Bedford, Massachusetts) or Turbohaler (Astra). Such devices typically entail the use of formulations suitable for dispensing from such a device, in which a propellant material may be present.

Ultrasonic nebulizers tend to be more efficient than jet nebulizers in producing an aerosol of respirable size from a liquid (Smith and Spino, "Pharmacokinetics of Drugs in Cystic Fibrosis," Consensus Conference, Clinical Outcomes for Evaluation of New CF Therapies, Rockville, Maryland, December 10-11, 1992, Cystic Fibrosis Foundation).

A nebulizer may be used to produce aerosol particles, or any of various physiologically acceptable inert gases may be used as an aerosolizing agent. Other components such as physiologically acceptable surfactants (e.g., glycerides), excipients (e.g., lactose), carriers, and diluents may also be included.

This invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are intended to fall within the the scope of the appended claims.

Various patents, patent applications and publications are cited herein, the disclosures of which are incorporated by reference in their entireties.

Experimental Examples

5

10

15

20

25

30

35

I. Protein Preparation

cDNAs encoding human FKBP12 (Standaert *et al*, 1990) and the 12-kDa FRAP fragment containing the FRB domain (Chen *et al*, 1995) (FRAP12) were subcloned into pGEX-2T (Pharmacia) for the expression of GST-FKBP12 and GST-FRAP12 fusion proteins in *E.coli* strain BL21. Typically, a 2-liter culture was grown to OD600~0.6 at 30 °C and induced with 0.3 mM IPTG at room temperature for 6 hours. Purification and thrombin cleavage of the fusion proteins were performed according to standard procedures (manual from Pharmacia). After removal of free GST, the samples containing FKBP12 or FRAP12 were concentrated to ~10 mL in a 50 mL stir-cell ultraconcentrator (Amicon) with a 3-kDa cutoff filter, and fractionated on a Sephacryl S-100 column (2.5 cm x 85 cm) equilibrated in 10 mM phosphate buffer (pH 7.4) containing 136 mM NaCl, 3 mM KCl, 1 mM DTT. Fractions containing pure FKBP12 or FRAP12 (>95% purity judged by SDS-PAGE) were combined and concentrated to ~10 mg/mL using a stir-cell ultraconcentrator. The concentrated samples were stored in the same phosphate buffer at 4 °C.

II. Crystallization & Structure Determination Crystallization

Recombinant human FKBP12 purified from *E. coli* was used at 10 mg/mL in 10 mM tris-HCl pH 8.0. Rapamycin was dissolved in methanol and mixed with FKBP12 in a 2:1 molar ratio. The mixture was lightly vortexed and stored overnight at 4°C to insure complete complex formation. Purified 12-kDa FRB domain of FRAP at 10 mg/mL in 50 mM tris-HCl pH 8.0 was added to this mixture in a 1:1 (FKBP12-rapamycin complex:FRB domain) molar ratio. This mixture was also lightly vortexed and let sit overnight at 4°C to insure complete complex formation. Crystallization conditions were screened using the hanging drop method, and rectangular rod-shaped crystals were obtained using: 20% PEG 8000, 10% MPD and 10 mM tris-HCl at pH 8.5. For the hanging drop method, drops of 4µL containing 2µL of complex solution and 2µL of reservoir solution were equilibrated against 0.5 mL of the reservoir solution.

Micro-seeding techniques were used to prepare additional crystals. The initial crystals were crushed and diluted to prepare a seed solution that was added to newly prepared drops. After two weeks, a shower of tiny crystals was obtained. Macro-seeding techniques were then applied to get large crystals suitable for X-ray diffraction. A tiny but well-formed crystal was picked and used as a crystallization seed. After two to three weeks, rectangular rod-shaped crystals with a maximum size of $0.3 \times 0.2 \times 0.1 \text{ mm}^3$ were obtained, and these crystals were suitable for data collection. The Hg-derivative crystal was obtained by soaking the native crystal in 2 mM HgCl₂ solution overnight. All of the crystallization experiments were done at 4° C.

10

15

20

5

Data Collection

All data sets were collected at room temperature on a San Diego multiwire area detector system mounted on a Rigaku RU-200 rotating anode X-ray source operating at 50 kV and 150mA. The detector was positioned at a 20-value of -30° with a 544 mm detector-crystal distance for the high resolution data and 12° with a 506 mm detector-crystal distance for the low resolution data. The data collection was performed using an ω-scan with an increment of 0.10° for each frame and 40 second exposure time per frame. Crystals belong to the orthorhombic space group P212121 with unit-cell dimension of a=44.63, b=52.14, c=102.53 Å and one FKBP12-rapamycin-FRB complex in the asymmetric unit. Hg-derivative crystal data were collected under the same conditions. For the native data set, the measured intensity data were processed using SCALEPACK (Otwinski *et al*, 1992) giving 6920 unique reflections out of 43447 measured reflections to 2.7 Å resolution (98.5% data coverage) with R_{Sym} of 7.1%. For the Hg-derivative data set, the number of unique reflection was 6884 out of 42681 measured reflections to 2.7 Å (98.0% data coverage), with R_{Sym} of 7.1%.

25

30

35

Structure determination

The crystal structure of the ternary complex was solved using the molecular replacement (MR) method combined with the single isomorphous replacement with anomalous scattering (SIRAS) method. Initial phases were obtained from the molecular replacement search using the FKBP12-rapamycin complex structure as a search model. The cross rotation search revealed a clear peak at Θ_1 =10.8°, Θ_2 =70.0°, Θ_3 =309.4° with height/r.m.s. ratio of 12.9 and the translation search also showed a clear peak at x=0.000, y=0.230, z=0.417 with height/r.m.s. ratio of 10.5. Rigid body refinement resulted in an R factor of 0.449 (10-2.7 Å). All molecular replacement calculations used the X-PLOR program (Brunger, 1990). However, the resulting difference electron density map was noisy and hard to interpret. In order to improve the map quality, an Hg derivative crystal was obtained. These data were compared with the native data to give an Rdiff of 12.7%. Two heavy atom sites were found from the difference Patterson map and were refined using the program PHASES (Furey *et al*,1990). One Hg is bound to Cys22 of FKBP12 with full occupancy - the same Hg site seen in the FKBP12-FK506 complex.

The other heavy atom site is in the middle of FRB domain where it is bound to Cys2085 of FRAP with an occupancy factor of 0.6. Both Patterson-deduced heavy atom positions were validated in the Fo-Fc difference map using Fo of the heavy atom derivative and Fc from the molecular replacement solution. Anomalous dispersion measurements were included in this data set and 16 cycles of a solvent flattening procedure were applied, resulting in a phasing power of 2.76 and mean figure of merit of 0.840. All of these calculations were performed using the program PHASES. The electron density map was calculated using the combined phase from the SIRAS and the molecular replacement solution, which clearly showed four helix bundle architecture of FRB domain of FRAP.

10

15

20

25

Model Building and refinement

The FKBP12-rapamycin part was well defined in the initial electron density map; only minor changes in the backbone of 30s loop and some side chains were enough to fit the model of FKBP12-rapamycin structure to this electron density map. For the FRB domain part, most of a polyalanine chain could be traced for the helix regions in the initial map. After several cycles of the positional refinement using X-PLOR, loop regions could be traced and the amino acid sequence could be assigned. The program CHAIN (Sack, 1988) was used for the model fitting and building the ternary complex. A total of 95 residues were built for the FRB domain of FRAP; three residues in the N-terminal and two residues in the C-terminal of FRB domain had no electron density and were not included. Positional refinement was followed by simulated annealing (slow cooling from 3000K to 300K in 25 K steps, 0.0005 ps per step and 50 total steps were used in the simulation at each temperature) and restrained B-factor refinement. All refinements were done using the X-PLOR package. Solvent molecules were assigned during the iterative positional and B-factor refinement procedure, if they appeared at the 3.5 σ level of Fo-Fc map, showed good hydrogen bonding geometry and had a low B-factor (less than 50 $Å^2$). The current structure includes 202 amino acids (107 for FKBP12 and 95 for FRB domain), one rapamycin, and 23 water molecules. The final R factor is 19.3% with an Rfree of 29.9%. The free R-factor is calculated with 10% of the data that were selected at the beginning of the analysis. Crystallographic statistics are summarized in Table 1.

30

35

Quality of the coordinates

The final coordinates have good geometry and r.m.s. deviations from the ideality are 0.008 Å for bond lengths and 1.5° for bond angles. Examined by the program PROCHECK (Laskowski, 1993), the current 2.7 Å resolution structure shows that the main-chain and side-chain geometrical parameters are better than expected at this resolution with an overall G-factor of 0.0. Ramachandran plots of ϕ , ψ , angles showed that 86% of the nonglycine and nonproline residues are in energetically most favored regions. The average temperature factors for total atoms and main-chain atoms are 17.0 and 14.7 Å² respectively. The r.m.s. variation

in the B-factor of bonded atoms is 2.5 Å^2 . The Luzzati plot (Luzzati, 1952) indicates that the average coordinate error of this complex structure is between 0.25 and 0.30 Å.

Those structural coordinates are set forth in Protein Databank format in Appendix I, below. Such data may be transferred to any desired medium, and formatted as desired, for the practitioner's computer.

This invention encompasses those coordinates as well as any translation or rotation or the like thereof which maintains the internal coordinates, i.e., which maintains their intrinsic, internal relationship. Those skilled in the art will appreciate that the coordinates may be subjected to other transformations including, e.g. molecular mechanics calculations such as dynamic simulation, minimization, etc. This invention further encompasses the use of coordinates of the FRB of FRAP, of the ternary complex, or of the corresponding region of FRAP homologs, and in particular, the coordinates set forth in Appendix I, in conducting such transformations (or more extensive transformations such as the generation of alternative conformations), as well as the products of such transformations (i.e., derivatives of the coordinates).

Table 1 Crystallographic statistics of the ternary complex
FKBP12-rapamycin-FRB domain of FRAP

Data Set	Resolution (Å)	Data coll No. of refle Measured	ection statis ctions Unique	Da	ata overage(%)	R _{sym} (%)*		
Native	2.7	43447	6920	98	8.5	7.1		
HgCl ₂	2.7	42681	6884	98	8.0	7.1		
Molecular replacement results								
Rotation fund	ction Θ_1	=10.82° Θ ₂ =	$\Theta_2 = 70.00^{\circ}$ $\Theta_3 = 309$		° Height/r.m	s.=12.9σ		
Translation :	Translation function x=0		y=0.230 z=0.417		Height/r.m	s.=10.5 o		
		Heavy atom d	ata statistics	(SIRAS)				
Sites	^R diff	(%) [†]	Phasin	g power 🗘	Mean figure-	-of-merit		
2	12.7		2.76		0.840			
Refinement statistics								
Resolution (Å)	Reflections Nu (with $ F >3\sigma$) at	mber of R-f	actor	Rfree (%)	R.M.S. dev Bond lengt (Å)	iation hs Bond angles (°)		

^{*}R_{Sym}= $\sum |$ I-<I> $|/\sum$ I, where I is the observed intensity and <I> is the average intensity from multiple measurement.

29.9

0.008

1.48

19.3

1727

20

8-2.7

6206

5

10

 $^{^{\}dagger}R_{\mbox{diff}}=\sum |F_{\mbox{PH}}-F_{\mbox{p}}|$ / $\sum F_{\mbox{PH}}$, where $F_{\mbox{p}}$ and $F_{\mbox{PH}}$ are the amplitudes of native and derivative structure factors, respectively.

 $^{^\}lozenge Phasing \ power=r.m.s.(F_H/\epsilon),$ where F_H is heavy-atom structure factor amplitude and ϵ is residual lack of closure error.

III. Assays

5

10

15

20

25

30

35

Compounds which bind to the FRB of FRAP may be evaluated using materials and methods useful for testing the biological or pharmacological activity of rapamycin analogs. See *e.g.* Luengo *et al*, 1995. In addition, the following animal models may be used for further evaluation of such compounds:

(a) DELAYED TYPE HYPERSENSITIVITY

Mouse abdomens are painted with sensitizing chemicals (sensitization) such as dinitroflourobenzene or oxazalone. Seven days later the ears of sensitized mice are painted (challenge) with a lower concentration of the compound. Antigen processing and presentation, T lymphocyte activation, leukocyte infiltration, humoral mediator release, increased microvascular permeability, and plasma exudation all result from challenge of sensitized mice and lead to edema formation. Edema presents as a two- to three- fold increase in ear thickness within twenty-four hours.

The test compounds or standards can be applied (topical or parenteral) at various times before or after the sensitization or challenge phases. Increased ear thickness is prevented by several compounds including immunosuppressive agents and steroids. This model is a primary model for contact dermatitis.

(b) ALLOGENEIC SKIN TRANSPLANTATION

An allogeneic skin transplant model is used to identify immunosuppressive activity of test compounds. In this model, donor mouse thoracic skin (Balb/c) is surgically grafted onto the thorax of recipient mice (C57bl/6). Host rejection of the graft is evidenced by erythema, drying out, and retraction of donor skin. The mean graft survival time is 10 to 11 days, with 80% of the grafts being rejected by 12 days. Active novel immunosuppressive compounds, like existing immunosuppressive compounds, will prolong graft survival.

(c) POPLITEAL LYMPH NODE HYPERPLASIA

This model directly assesses T lymphocyte proliferation *in vivo*. Spleen cells, obtained from Balb/c mice, are isolated and administered into the foot pads of C3H mice. Within four days, the popliteal lymph nodes can be removed from the recipient mice and weighed. Other hematological assessments including FACS scanning for T lymphocyte subpopulations may also be performed. Active compounds, like existing immunosuppressive compounds, will inhibit the increase in node mass.

(d) RHEUMATOID ARTHRITIS

Several models are available for assessment of anti-arthritic activity, including adjuvant-induced, carageenan-induced, and collagen-induced arthritis in rats and/or mice. Paw pads are injected with one of these agents. Paws increase in volume, and measurements are made between 20 and 30 days later. The ability of test compounds to prevent the induction of paw swelling is tested with daily treatment for 12 consecutive days following the injection of inducing agent. The ability for the test compounds to reverse the progression of the paw swelling is tested by administration of the compound for 12 consecutive days beginning on the

twelfth day following the injection of inducing agent. Paw swelling measurements are made by water displacement plethysmography. Histology is also an appropriate endpoint for these studies. The MRL/lpr-mouse model, described above, is required for the rheumatoid arthritis indication. This model is a spontaneous autoimmune model that develops rheumatoid arthritis resembling the human condition, including the presence of circulating rheumatoid factor, pannus formation, and bone and cartilage erosion.

(e) SYSTEMIC LUPUS ERYTHEMATOSUS

5

10

15

20

25

30

35

Systemic lupus erythematosus is another autoimmune disease with several animal models. Several murine strains develop spontaneous SLE. One such strain is MRL/lpr-mice. These mice, over time (20 to 30 weeks) develop auto-antibodies against dsDNA, nuclear antigens, and renal basement membrane. This leads to complement fixation and immune complex formation. Damage to the kidney becomes apparent with the onset of proteinuria. Many of the other physiologic, hematologic, and immunologic aberrations described below for the CGVHD model are present. Immunosuppressive compounds such as cyclosporin, cyclophosphamide, and leflunomide can prevent and reverse the course of disease in this model. Interestingly, these mice also develop pathologies akin to rheumatoid arthritis.

The murine chronic graft versus host disease model (CGVHD, described below) is a model of SLE that contains many of the clinical features of SLE. Activity in this model has been shown to be predictive of activity in the more clinically relevant SLE models.

(f) TRANSPLANTATION

Allograft transplantation (skin graft) assay is often used as an initial test of immunosuppressive activity. While this model is useful as a screen, it may be supplemented with assays based on animal transplant models involving transplantation of internal organ (heart, liver, kidney, bone marrow) with use of "clinically acceptable" physiologic endpoints to assess graft survival. Efficacy of test compounds in only a very limited number of these rodent models is required. Following observation of activity in a rodent model, the test compounds are typically tested in further animal models (e.g., canine, porcine or non-human primate). Active compounds decrease acute and chronic rejection and prolong transplant survival.

(2) GRAFT VS. HOST DISEASE

Chronic GVHD (CGVHD) can be used to model CD4+-dependent humoral immunity. It is induced in BDF1 mice (which are progeny of DBA/2 male x C57BL/6 female matings) by administering to them isolated spleen:lymph node cells from DBA/2 mice. This results in: a) disregulation and stimulation of CD4+ T lymphocyte (Ly1+; murine marker) activity due to incompatibilities at MHC II molecules, and b) abnormal T-B lymphocyte cooperation. The resulting pathological state, in many ways, mimics systemic lupus erythematosus (SLE). Several measurable endpoints develop within 14 days; including, circulating anti-host IgG and IgE antibodies, altered T and B lymphocyte proliferation activity measured *in vitro*, complement utilization, hemagglutination, slow progressive wasting, dermal aberrations, splenomegaly, lymphoid hyperplasia, and proteinuria. Only a few of these endpoints need to be measured.

Active compounds are are those which limit T lymphocyte disregulation and abrogate changes in these variables. Many steroids (e.g., prednisolone), cyclosporine, FK-506, cyclophosphamide, and leflunomide are all active in this model and can be used as positive controls.

The acute GVHD model (AGVHD) is also produced in BDF1 mice. In this case, isolated spleen:lymph node cells from C57BL/6 mice are administered. This results in disregulation and stimulation of CD8+ T lymphocytes due to incompatibilities in the MHC I molecules. Elevated cytokine levels and donor clonal expansion occurs. Ultimately, donor cytotoxic T lymphocytes and NK cells rapidly reject host tissue and cause relatively rapid death of the recipient. The progression of AGVHD in this model is assessed by measurement of hematologic abnormalities (including T cell number and type), cytokine elevations (TNF, IL-1, IL-2, and/or IL-4), low body weight, hypoγglobulinemia, circulating hematologic characteristics indicative of aplastic anemia (granulocytopenia, thrombocytopenia), ex vivo NK or CTL activity, and host survival. Active compounds are those which abrogate changes in the variables, and prolong survival over 4 to 6 weeks.

15 (h) ASTHMA

10

20

25

30

35

Asthma offers another opportunity for safe immunosuppressive therapy. Atopic asthmatics have antibody mediated hypersensitivity and the often occurring late phase reaction is likened to a DTH response. Asthma has only recently been defined as an inflammatory disease (1992). Since then, several publications from prominent asthmatologists demonstrate the presence of activated CD4⁺ and CD8⁺ T lymphocytes in bronchoalveolar lavage fluid and blood of atopic asthmatics. The ratios of these cells changes in asthmatic conditions. Furthermore, several of the T cell associated cytokines (IL-1, IL-2, IL-4, IL-5, and TNF) are all implicated in clinical and experimental asthma. Inflammatory events in asthma are now considered to be T lymphocyte driven. Initial clinical trials with inhaled cyclosporin suggest that local immunosuppression can ameliorate airway hyperreactivity - the underlying defect in asthma.

The guinea pig model of antigen-induced pulmonary aberrations is used as a model for asthma. These animals are actively sensitized to ovalbumin to generate high circulating titers of anti-ovalbumin antibody with seroconversion to the IgE class, as is the case with atopic asthmatics. Aerosol challenge of sensitized guinea pigs results in measurable eosinophil rich pulmonary infiltrates (approximately a 16-fold increase in eosinophils), pulmonary edema, and mucous plugging of the small airways; all culminating in the expression of the underlying defect in asthma- airway hyperreactivity (approximately a 3 to 4-fold increase in reactivity). Acute bronchoconstriction is obviously present and points the aforementioned presence of the pathophysiologic sequelae. Active compounds are those which lessen or abrogate such symptoms.

The above description is meant to illustrate, rather than limit the scope of the invention. Given the foregoing description, numerous variations in the materials or methods employed in performing the invention will be obvious to one skilled in the art. Any such obvious variation is

to be considered within the scope of the invention. Full references to literature cited above (by reference to author and year) are provided below:

References

5 Brown, E. J., Albers, M. W., Shin, T. B., Ichickawa, K., Keith, C. T., Lane, W. S. & Schreiber, S. L. Nature 369, 756-758 (1994).

Brunger, A. T. X-PLOR Version 3.1 Manual (Yale Univ. Press, New Haven, CT, 1992)

Chen, J., Zheng, X.-F., Brown, E. J. & Schreiber, S. L. Proc. Natl. Acad. Sci. USA 92, 4947-4951 (1995).

10 Chiu, M. I., Katz, H & Berlin, V. Proc. Natl. Acad. Sci. USA 91, 12574-12578 (1994).

Clardy, J. . Proc. Natl. Acad. Sci. USA 92, 56-61 (1995).

Dayhoff, M.O.; Schwartz, R.M.; Orcutt, B.C., Atlas of Protein Sequence and Structure, 5, Suppl. 3,345 (1979)

Furey, W. and Swaminathan, S. American Crystallographic Association Mtg. Abstr. Ser. 2 18, 73 (1990)

Gonnet, G.H., Cohen, M.A., Benner, S.A. Science, 256, 1443 (1992)

Greer, J., J. Mol. Biol., 153, 1027 (1981)

Griffith, J. P., Kim, J. L., Kim, E. E., Sintchak, M. D., Thomson, J. A., Fitzgibbon, M. J., Fleming, M. A., Caron, P. R., Hsiao, K. & Navia, M. A. Cell 82, 507-522 (1995).

20 Harris, N. L., Presnell, S. R., and Cohen, F. E. J. Mol. Biol. 236, 1356-1368 (1994)

Keith & Schreiber, 1995, Science 270:50-51.

Laskowski, R. A. J. Appl. Cryst. 26, 283-291 (1993)

Luengo, J. I., Yamashita, D. S., Dunnington, D., Konialian Beck, A., Rozamus, L. W., Yen, H., Bossard, M. J., Levy, M. A., Hand, A., Newman-Tarr, T., Badger, A., Faucette, L., Johnson, R.
K., D'Alessio, K., Porter, T., Shu, A. Y., Heys, R., Choi, J., Kongsaeree, P., Clardy, J., and Holt, D. A. Chemistry & Biology 2, 471-481 (1995).

Luzzati, P. V. Acta Cryst. 5, 802-810 (1952)

Otwinski, Z. *The SCALEPACK Manual* (Howard Hughes Medical Institute, Yale Univ., New Haven, CT, 1992).

Sabatini, D. M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S. H. Cell 78, 35-43 (1994).

Sack, J. S. J. Mol. Graphics 6, 224-225 (1988)

Schreiber, S. L. Cell 70, 365-368 (1992).

5 Sehgal, S. N., Baker, H. & Vezina, C. J. Antibiot. 6, 727-732 (1975).

Sehgal, S. N. Ann. N.Y. Acad. Sci. 696, 1-8 (1993).

Stan, R., McLaughlin, M. M., Cafferkey, R., Johnson, R. K., Rosenberg, M., and Livi, G. P. J. Biol. Chem. 269, 32027-32030 (1994)

Standaert, R. F., Galat, A., Verdine, G. L. & Schreiber, S. L. Nature 346, 671-674 (1990)

10 Tanaka, H., Kuroda, A., Marusawa, H., Hatanaka, H., Kino, T., Goto, T. &

Hashimoto, M. J. Amer. Chem. Soc. 109, 5031-5033 (1987).

VanDuyne, G. D., Standaert, R. F., Schreiber, S. L. & Clardy, J. Science 251, 839-842 (1991).

VanDuyne, G. D., Standaert, R. F., Schreiber, S. L. & Clardy, J. J. Am. Chem. Soc. 113, 7433-7434 (1991a).

15 Van Duyne, G. D., Standaert, R. F., Karplus, A., Schreiber, S. L. & Clardy, J. J. Mol. Biol. 229, 105-124 (1993).

Vezina, C., Kudelski, A. & Sehgal, S. N. J. Antibiot. 28, 721-726 (1975). Zakian, V. A. Cell 82, 685-687 (1995)

Appendix I

	MOTA	1	С	GLY	1	4.588	25.968	49.843	1.00 12.34	FKBP
	MOTA	2	0	GLY	1	3.587	26.690	49.931	1.00 3.24	FKBP
5	ATOM	3	HTl	GLY	1	5.460	28.281	50.881	0.00 0.00	FKBP
	ATOM	4	HT2	GLY	1	5.463	28.482	49.221	0.00 0.00	FKBP
	ATOM	5	N	GLY	1	5.987	28.058	50.014	1.00 24.95	FKBP
	ATOM	6	HT3	GLY	1	6.961	28.429	50.048	0.00 0.00	FKBP
	ATOM	7	CA	GLY	1	5.986	26.568	49.849	1.00 14.30	FKBP
10	ATOM	8	N	VAL	2	4.539	24.648	49.684	1.00 9.85	FKBP
	ATOM	9	Н	VAL	2	5.366	24.143	49.539	0.00 0.00	FKBP
	ATOM	10	CA	VAL	2	3.311	23.862	49.748	1.00 11.89	FKBP
	ATOM	11	СВ	VAL	2	2.889	23.360	48.318	1.00 9.17	FKBP
	ATOM	12	CG1	VAL	2	4.114	23.006	47.492	1.00 14.93	FKBP
15	ATOM	13	CG2	VAL	2	1.975	22.155	48.411	1.00 2.00	FKBP
	ATOM	14	С	VAL	2	3.549	22.668	50.692	1.00 15.67	FKBP
	ATOM	15	0	VAL	2	4.576	21.989	50.605	1.00 16.61	FKBP
	ATOM	16	N	GLN	3	2.643	22.482	51.646	1.00 17.91	FKBP
	ATOM	17	Н	GLN	3	1.852	23.045	51.649	0.00 0.00	FKBP
20	ATOM	18	CA	GLN	3	2.789	21.445	52.664	1.00 20.42	FKBP
	MOTA	19	СВ	GLN	3	2.600	22.065	54.056	1.00 26.51	FKBP
	ATOM	20	CG	GLN	3	2.416	21.064	55.181	1.00 34.77	FKBP
	MOTA	21	æ	GLN	3	3.718	20.451	55.660	1.00 41.28	FKBP
	MOTA	22	OE1	GLN	3	4.754	20.581	55.015	1.00 44.41	FKBP
25	MOTA	23	NE2	GLN	3	3.665	19.760	56.792	1.00 42.31	FKBP
	MOTA	24	HE21	GLN	3	2.812	19.651	57.241	0.00 0.00	FKBP
	MOTA	25	HE22	GLN	3	4.510	19.373	57.085	0.00 0.00	FKBP
	MOTA	26	С	GLN	3	1.817	20.280	52.454	1.00 17.06	FKBP
	MOTA	27	0	GLN	3	0.608	20.466	52.367	1.00 17.79	FKBP
30	MOTA	28	N	VAL	4	2.363	19.082	52.313	1.00 14.50	FKBP
	MOTA	29	H	VAL	4	3.336	19.008	52.381	0.00 0.00	FKBP
	MOTA	30	CA	VAL	4	1.540	17.890	52.127	1.00 13.12	FKBP
	MOTA	31	CB	VAL	4	2.054	17.030	50.930	1.00 10.68	FKBP
	MOTA	32	CG1	VAL	4	0.924	16.172	50.364	1.00 7.51	FKBP
35	MOTA	33	CG2	VAL	4	2.630	17.930	49.842	1.00 9.85	FKBP
	MOTA	34	С	VAL	4	1.544	17.037	53.401	1.00 12.15	FKBP
	MOTA	35	0	VAL	4	2.600	16.705	53.947	1.00 15.65	FKBP
	MOTA	36	N	GLU	5	0.363	16.733	53.914	1.00 6.97	FKBP
	ATOM	37	H	GLU	5	-0.430	17.182	53.551	0.00 0.00	FKBP

	WO 97/1565	59							PCT/US96/16953	
	ATOM	38	CA	GLU	5	0.275	15.856	55.071	1.00 5.19	FKBP
	ATOM	39	СВ	GLU	5	-0.096	16.664	56.308	1.00 8.81	FKBP
	ATOM	40	Œ	GLU	5	0.621	17.998	56.389	1.00 13.30	FKBP
	ATOM	41	Э	GLU	5	0.346	18.726	57.674	1.00 15.76	FKBP
5	ATOM	42	OE1	GIN	5	1.188	18.629	58.586	1.00 22.97	FKBP
	ATOM	43	OE2	GIN .	5	-0.710	19.385	57.778	1.00 22.20	FKBP
	ATOM	44	С	GIU	5	-0.743	14.752	54.848	1.00 3.46	FKBP
	ATOM	45	0	GLU	5	-1.937	15.023	54.745	1.00 4.04	FKBP
	ATOM	46	N	THR	6	-0.271	13.511	54.805	1.00 2.00	FKBP
10	ATOM	47	Н	THR	6	0.666	13.372	55.050	0.00 0.00	FKBP
	ATOM	48	CA	THR	6	-1.125	12.365	54.508	1.00 5.26	FKBP
	ATOM	49	СВ	THR	6	-0.337	11.045	54.575	1.00 3.67	FKBP
	ATOM	50	OG1	THR	6	0.881	11.178	53.836	1.00 13.50	FKBP
	ATOM	51	HG1	THR	6	1.493	10.508	54.158	0.00 0.00	FKBP
15	ATOM	52	CG2	THR	6	-1.132	9.919	53.972	1.00 2.01	FKBP
	ATOM	53	С	THR	6	-2.355	12.240	55.415	1.00 9.57	FKBP
	MOTA	54	0	THR	6	-2.281	12.454	56.629	1.00 15.36	FKBP
	MOTA	55	N	ΠE	7	-3.509	12.099	54.772	1.00 8.03	FKBP
	MOTA	56	Н	ILE	7	-3.506	12.334	53.824	0.00 0.00	FKBP
20	MOTA	57	CA	ILE	7	-4.755	11.709	55.423	1.00 7.62	FKBP
	MOTA	58	CB	ILE	7	-5.965	12.465	54.799	1.00 5.96	FKBP
	ATOM	59	CG2	ILE	7	-7 [.] 275	11.841	55.244	1.00 2.71	FKBP
	MOTA	60	CG1	ILE	7	-5.918	13.947	55.170	1.00 2.00	FKBP
	ATOM	61	CD1	ILE	7	-7.008	14.764	54.527	1.00 2.01	FKBP
25	ATOM	62	С	ILE	7	-4.979	10.199	55.249	1.00 11.96	FKBP
	MOTA	63	0	ILE	7	-5.686	9.576	56.034	1.00 17.57	FKBP
	ATOM	64	N	SER	8	-4.469	9.648	54.151	1.00 12.78	FKBP
	MOTA	65	H	SER	8	-4.039	10.240	53.499	0.00 0.00	FKBP
	MOTA	66	CA	SER	8	-4.629	8.226	53.842	1.00 12.24	FKBP
30	ATOM	67	CB	SER	8	-6.079	7.930	53.450	1.00 6.63	FKBP
	MOTA	68	Œ	SER	8	-6.236	6.581	53.064	1.00 12.33	FKBP
	MOTA	69	HG	SER	8	-7.179	6.384	53.022	0.00 0.00	FKBP
	ATOM	70	С	SER	8	-3.685	7.798	52.707	1.00 19.11	FKBP
	ATOM	71	0	SER	8	-3.607	8.454	51.664	1.00 17.14	FKBP
35	MOTA	72	N	PRO	9	-2.830	6.798	52.965	1.00 23.27	FKBP
	MOTA	73	Œ	PRO	9	-2.665	6.076	54.238	1.00 22.82	FKBP
	MOTA	74	CA	PRO	9	-1.706	6.548	52.055	1.00 25.68	FKBP
	MOTA	75	СВ	PRO	9	-0.709	5.793	52.932	1.00 25.08	FKBP
	MOTA	76	CG	PRO	9	-1.572	5.093	53.920	1.00 26.18	FKBP

	ATOM	77	С	PRO	9	-2.056	5.766	50.778	1.00 28.63	FKBP
	ATOM	78	0	PRO	9	-3.034	5.014	50.737	1.00 30.17	FKBP
	MOTA	79	N	GLY	10	-1.272	5.988	49.728	1.00 28.78	FKBP
	MOTA	80	Н	GLY	10	-0.602	6.696	49.796	0.00 0.00	FKBP
5	ATOM	81	CA	GLY	10	-1.373	5.168	48.531	1.00 32.81	FKBP
	MOTA	82	С	GLY	10	-0.241	4.154	48.412	1.00 34.72	FKBP
	ATOM	83	0	GLY	10	0.479	3.916	49.386	1.00 37.49	FKBP
	MOTA	84	N	ASP	11	-0.018	3.626	47.208	1.00 30.71	FKBP
	ATOM	85	H	ASP	11	-0.664	3.846	46.504	0.00 0.00	FKBP
10	ATOM	86	CA	ASP	11	0.992	2.585	47.006	1.00 28.23	FKBP
	ATOM	87	CB	ASP	11	0.767	1.862	45.675	1.00 23.26	FKBP
	ATOM	88	CG	ASP	11	0.713	2.804	44.493	1.00 21.83	FKBP
	MOTA	89	OD1	ASP	11	1.591	3.686	44.377	1.00 13.66	FKBP
	ATOM	90	OD2	ASP	11	-0.204	2.635	43.659	1.00 23.38	FKBP
15	MOTA	91	С	ASP	11	2.438	3.073	47.085	1.00 29.86	FKBP
	MOTA	92	0	ASP	11	3.364	2.273	47.190	1.00 31.65	FKBP
	MOTA	93	N.	GLY	12	2.637	4.372	46.898	1.00 31.53	FKBP
	ATCM	94	Н	GLY	12	1.858	4.932	46.696	0.00 0.00	FKBP
	ATOM	95	CA	GLY	12	3.958	4.948	47.081	1.00 34.79	FKBP
20	MOTA	96	С	GLY	12	4.976	4.585	46.015	1.00 37.89	FKBP
	MOTA	97	0	GLY	12	6.183	4.621	46.262	1.00 38.20	FKBP
	MOTA	98	N	ARG	13	4.488	4.222	44.833	1.00 40.35	FKBP
	MOTA	99	H	ARG	13	3.572	3.918	44.840	0.00 0.00	FKBP
	MOTA	100	CA	ARG	13	5.357	4.030	43.667	1.00 43.98	FKBP
25	MOTA	101	СВ	ARG	13	5 .75 6	2.552	43.526	1.00 48.12	FKBP
	MOTA	102	CG	ARG	13	4.624	1.555	43.724	1.00 56.08	FKBP
	MOTA	103	Œ	ARG	13	5.130		44.418		FKBP
	MOTA	104	NE	ARG	13	4.963	0.361	45.870	1.00 70.55	FKBP
	MOTA	105	HE	ARG	13	5.508	1.005	46.370	0.00 0.00	FKBP
30	MOTA	106	CZ	ARG	13	4.154	-0.435	46.567	1.00 73.54	FKBP
	MOTA	107		ARG	13	4.023		47.877	1.00 74.82	FKBP
	MOTA		HH11		13	4.540	0.450	48.341	0.00 0.00	FKBP
	MOTA		HH12		13	3.414	-0.864	48.399	0.00 0.00	FKBP
	MOTA	110		ARG	13	3.490	-1.415	45.961	1.00 75.14	FKBP
35	ATOM		HH21		13	3.595	-1.557	44.977	0.00 0.00	FKBP
	ATOM		HH22		13	2.873	-2.001	46.485	0.00 0.00	FKBP
	ATOM	113		ARG	13	4.720	4.537	42.369	1.00 40.88	FKBP
	ATOM	114	0	ARG	13	5.414	4.995	41.459	1.00 41.05	FKBP
	ATOM	115	N	THR	14	3.392	4.531	42.328	1.00 36.51	FKBP

PCT/US96/16953 WO 97/15659 MOTA 116 Н THR 14 2.944 3.906 42.915 0.00 0.00 FKBP MOTA 117 THR 14 CA 2.654 5.085 41.199 1.00 31.82 **FKBP** ATOM 14 118 Œ THR 1.296 4.362 41.010 1.00 34.22 FKBP MOTA 119 OG1 THR 14 1.477 2.945 41.172 1.00 31.38 FKBP 5 MOTA 120 HG1 THR 14 0.659 2.484 40.952 0.00 0.00 **FKBP** ATOM 121 CG2 THR 14 0.722 4.651 39.621 1.00 29.70 FKBP MOTA 122 C THR 14 2.416 6.589 41.356 1.00 28.19 FKBP MOTA 123 0 THR 14 1.373 7.023 41.846 1.00 25.30 FKBP MOTA 124 PHE 15 N 3.430 7.364 41.000 1.00 27.12 FKBP 10 MOTA 125 Η PHE 15 4.257 6.922 40.707 0.00 0.00 FKBP MOTA 126 CA PHE 15 3.354 8.822 40.970 1.00 30.73 FKBP MOTA 127 Œ PHE 15 4.725 9.405 41.330 1.00 30.56 **FKBP** MOTA 128 Œ PHE 15 5.202 9.018 42.701 1.00 31.81 **FKBP ATOM** 129 CD1 PHE 15 5.046 9.885 43.775 1.00 31.26 FKBP 15 MOTA 130 CD2 PHE 15 5.732 7.756 42.936 1.00 31.84 FKBP **ATOM** CE1 PHE 131 15 5.400 9.499 45.062 1.00 28.40 FKBP MOTA 132 CE2 PHE 15 6.089 7.363 44.218 1.00 31.05 FKBP MOTA 133 CZ 15 8.237 PHE 5.919 45.283 1.00 31.16 **FKBP** C MOTA 134 PHE 15 2.902 1.00 34.59 9.358 39.596 FKBP 20 MOTA 135 0 PHE 15 3.176 8.739 38.557 1.00 32.29 FKBP MOTA 136 N PRO 16 2.232 10.532 39.571 1.00 35.21 **FKBP MOTA** 137 8 PRO 16 2.068 11.493 40.671 1.00 32.43 FKBP MOTA 138 CA PRO 16 1.814 11.122 38.296 1.00 36.14 FKBP MOTA 139 CB PRO 16 0.852 12.243 38.710 1.00 33.90 FKBP 25 MOTA 140 Œ 16 PRO 0.905 12.310 40.215 1.00 34.16 **FKBP MOTA** 141 С 16 1.00 38.59 PRO 2.998 11.672 37.512 **FKBP** MOTA 142 16 3.580 12.683 0 PRO 37.895 1.00 40.62 **FKBP** MOTA 143 17 N LYS 3.408 10.958 36.467 1.00 44.97 **FKBP ATOM** 144 Η LYS 17 3.044 10.054 36.366 0.00 0.00 **FKBP** 30 MOTA 145 CA LYS 17 4.463 11.441 35.572 1.00 49.95 **FKBP** MOTA 146 CB LYS 17 4.856 10.356 34.563 1.00 53.22 **FKBP** MOTA 147 α LYS 17 5.973 9.427 35.030 1.00 61.47 FKBP MOTA 148 \Box LYS 17 5.425 8.075 35.497 1.00 69.15 FKBP MOTA 149 Œ LYS 17 6.545 7.050 35.721 1.00 73.13 FKBP 35 150 MOTA NZ LYS 17 6.050 5.706 36.174 1.00 72.77 **FKBP** MOTA 151 HZ1 LYS 17 5.395 5.316 35.466 0.00 0.00 FKBP MOTA 152 HZ2 LYS 0.00 17 5.550 5.803 37.081 0.00 FKBP **ATOM** 153 HZ3 LYS 17 6.857 5.061 36.292 0.00 0.00 FKBP MOTA C 17 154 LYS 4.031 12:703 34.823 1.00 50.23 FKBP

		-								
	MOTA	155	0	LYS	17	2.882	12.813	34.389	1.00 51.36	FKBP
	MOTA	156	N	ARG	18	4.938	13.672	34.718	1.00 48.43	FKBP
	ATOM	157	Н	ARG	18	5.782	13.553	35.190	0.00 0.00	FKBP
	ATOM	158	CA	ARG	18	4.666	14.908	33.986	1.00 46.13	FKBP
5	ATOM	159	СВ	ARG	18	5. 96 8	15.671	33.732	1.00 47.22	FKBP
	ATOM	160	Œ	ARG	18	5.755	17.034	33.092	1.00 53.52	FKBP
	MOTA	161	æ	ARG	18	7.030	17.572	32.467	1.00 60.93	FKBP
	ATOM	162	NE	ARG	18	8.005	18.008	33.466	1.00 68.56	FKBP
	ATOM	163	HE	ARG	18	8.698	17.375	33.748	0.00 0.00	FKBP
10	ATOM	164	CZ	ARG	18	7.995	19.201	34.054	1.00 71.82	FKBP
	ATOM	165	NH1	ARG	18	8.954	19.528	34.910	1.00 73.41	FKBP
	ATOM	166	HH11	ARG	18	9.674	18.876	35.143	0.00 0.00	FKBP
	ATOM	167	HH12	ARG	18	8.923	20.425	35.358	0.00 0.00	FKBP
	ATOM	168	NH2	ARG	18	7.000	20.052	33.826	1.00 74.07	FKBP
15	ATOM	169	HH21	ARG	18	6.256	19.798	33.207	0.00 0.00	FKBP
	ATOM	170	HH22	ARG	18	6.994	20.950	34.267	0.00 0.00	FKBP
	ATOM	171	С	ARG	18	3.965	14.637	32.652	1.00 44.43	FKBP
	ATOM	172	0	ARG	18	4.440	13.832	31.844	1.00 44.85	FKBP
	ATOM	173	N	GLY	19	2.775	15.209	32.491	1.00 41.63	FKBP
20	ATOM	174	H	GLY	19	2.437	15.781	33.210	0.00 0.00	FKBP
	ATOM	175	CA	GLY	19	2.037	15.058	31.246	1.00 36.64	FKBP
	ATOM	176	С	GLY	19	0.878	14.072	31.281	1.00 33.71	FKBP
	MOTA	177	0	GLY	19	0.242	13.821	30.256	1.00 31.30	FKBP
	ATOM	178	N	GLN	20	0.603	13.509	32.454	1.00 31.51	FKBP
25	MOTA	179	Н	GTN	20	1.278	13.579	33.162	0.00 0.00	FKBP
	MOTA	180	CA	GLN	20	-0.571	12.655	32.647	1.00 27.89	FKBP
	MOTA	181	CB	GLN	20	-0.290	11.586	33.702	1.00 27.47	FKBP
	ATOM	182	α	GLN	20	0.907	10.723	33.416	1.00 29.05	FKBP
	ATOM	183	æ	GLN	20	0.945	9.516	34.305	1.00 28.73	FKBP
30	ATOM	184	OE1	GLN	20	1.852	9.355	35.112	1.00 29.95	FKBP
	MOTA	185	NE2	GLN	20	-0.064	8.672	34.191	1.00 29.76	FKBP
	ATOM	186	HE21	GLN	20	-0.781	8.854	33.542	0.00 0.00	FKBP
	ATOM	187	HE22	GLN	20	-0.025	7.895	34.776	0.00 0.00	FKBP
	MOTA	188	С	GLN	20	-1.784	13.458	33.096	1.00 26.36	FKBP
35	MOTA	189	0	GLN	20	-1.641	14.558	33.652	1.00 23.69	FKBP
	MOTA	190	N	THR	21	-2.957	12.836	32.994	1.00 23.74	FKBP
	MOTA	191	Н	THR	21	-2.993	11.964	32.525	0.00 0.00	FKBP
	MOTA	192	CA	THR	21	-4.185	13.406	33.551	1.00 19.78	FKBP
	MOTA	193	СВ	THR	21	-5.398	13137	32.648	1.00 18.09	FKBP

	WO 97/156	559							PCT/US96/16953	
	MOTA	194	OG1	THR	21	-5.103	13.576	31.319	1.00 25.65	FKBP
	MOTA	195	HG1	THR	21	-4.667	12.831	30.862	0.00 0.00	FKBP
	MOTA	196	CG2	THR	21	-6.624	13.882	33.159	1.00 15.30	FKBP
	ATOM	197	С	THR	21	-4.502	12.869	34.945	1.00 19.51	FKBP
5	ATOM	198	0	THR	21	-4.895	11.707	35.112	1.00 21.36	FKBP
	ATOM	199	N	CYS	22	-4.390	13.744	35.939	1.00 15.33	FKBP
	ATOM	200	Н	CYS	22	-4.044	14.636	35.726	0.00 0.00	FKBP
	MOTA	201	CA	CYS	22	-4.794	13.421	37.302	1.00 7.92	FKBP
	A TO M	202	CB	CYS	22	-4.056	14.322	38.281	1.00 4.88	FKBP
10	MOTA	203	<i>S</i> G	CYS	22	-2.300	14.464	37.959	1.00 9.58	FKBP
	ATOM	204	С	CYS	22	-6.301	13.589	37.492	1.00 7.02	FKBP
	ATOM	205	0	CYS	22	-6.840	14.676	37.284	1.00 8.66	FKBP
	ATOM	206	N	VAL	23	-6.991	12.485	37.760	1.00 4.33	FKBP
	MOTA	207	Н	VAL	23	-6.547	11.617	37.634	0.00 0.00	FKBP
15	MOTA	208	CA	VAL	23	-8.371	12.542	38.232	1.00 6.31	FKBP
	ATOM	209	CB	VAL	23	-9.180	11.314	37.743	1.00 3.87	FKBP
	ATOM	210	CG1	VAL	23	-10.658	11.483	38.043	1.00 2.00	FKBP
	ATOM	211	CG2	VAL	23	-8.972	11.121	36.264	1.00 5.84	FKBP
	ATOM	212	С	VAL	23	-8.353	12.579	39.770	1.00 11.82	FKBP
20	MOTA	213	0	VAL	23	-7.678	11.765	40.416	1.00 17.38	FKBP
	MOTA	214	N	VAL	24	-8.946	13.622	40.342	1.00 10.13	FKBP
	ATOM	215	Н	VAL	24	-9.395	14.274	39.762	0.00 0.00	FKBP
	ATOM	216	CA	VAL	24	-8.896	13.840	41.782	1.00 5.89	FKBP
	ATOM	217	CB	VAL	24	-7.806	14.883	42.170	1.00 3.59	FKBP
25	MOTA	218	CG1	VAL	24	-6.481	14.535	41.524	1.00 2.00	FKBP
	MOTA	219	CG2	VAL	24	-8.238	16.276	41.784	1.00 2.66	FKBP
	MOTA	220	С	VAL	24	-10.237	14.309	42.333	1.00 7.13	FKBP
	MOTA	221	0	VAL	24	-11.078	14.804	41.583	1.00 8.15	FKBP
	MOTA	222	N	HIS	25	-10.481	14.041	43.617	1.00 8.15	FKBP
30	MOTA	223	H	HIS	25	-9.837	13.454	44.074	0.00 0.00	FKBP
	MOTA	224	CA	HIS	25	-11.588	14.671	44.346	1.00 5.84	FKBP
	MOTA	225	CB	HIS	25	-12.462	13.611	45.015	1.00 2.00	FKBP
	MOTA	226	CG	HIS	25	-13.789	13.412	44.351	1.00 2.00	FKBP
	MOTA	227	CD2	HIS	25	-14.625	12.348	44.335	1.00 2.01	FKBP
35	MOTA	228		HIS	25	-14.420	14.398	43.625	1.00 6.75	FKBP
	ATOM	229		HIS	25	-13.990	15.194	43.216	0.00 0.00	FKBP
	MOTA	230		HIS	25	-15.591	13.959	43.204	1.00 2.00	FKBP
	MOTA	231		HIS	25	-15.738		43.619	1.00 2.00	FKBP
	MOTA	232	HE2	HIS	25	-16.532	12.146	43.449	0.00 0.00	FKBP

	ATOM	233	С	HIS	25	-11.013	15.611	45.409	1.00	5.86	FKBP
	MOTA	234	0	HIS	25	-10.085	15.233	46.125	1.00	8.08	FKBP
	MOTA	235	N	TYR	26	-11.456	16.867	45.414	1.00	2.00	FKBP
	MOTA	236	Н	TYR	26	-12.071	17.155	44.712	0.00	0.00	FKBP
5	MOTA	237	CA	TYR	26	-10.956	17.840	46.389	1.00	2.00	FKBP
	MOTA	238	СВ	TYR	26	-9.950	18.827	45.770	1.00	3.39	FKBP
	MOTA	239	Œ	TYR	26	-10.570	19.839	44.824	1.00	8.68	FKBP
	MOTA	240	CD1	TYR	26	-11.017	21.080	45.279	1.00	7.15	FKBP
	MOTA	241	CE1	TYR	26	-11.725	21.939	44.434	1.00 1	1.31	FKBP
10	MOTA	242	CD2	TYR	26	-10.831	19.497	43.495	1.00 1	1.88	FKBP
	MOTA	243	CE2	TYR	26	-11.536	20.342	42.651	1.00	8.71	FKBP
	MOTA	244	CZ	TYR	26	-11.982	21.551	43.122	1.00	9.36	FKBP
	MOTA	245	OH	TYR	26	-12.704	22.348	42.274	1.00	9.02	FKBP
	MOTA	246	HH	TYR	26	-12.792	21.935	41.411	0.00	0.00	FKBP
15	MOTA	247	C	TYR	26	-12.057	18.638	47.045	1.00	2.60	FKBP
	MOTA	248	0	TYR	26	-13.162	18.746	46.515	1.00	2.96	FKBP
	MOTA	249	N	THR	27	-11.778	19.056	48.276	1.00	8.98	FKBP
	MOTA	250	Н	THR	27	-11.030	18.611	48.735	0.00	0.00	FKBP
	MOTA	251	CA	THR	27	-12.469	20.164	48.924	1.00	3.70	FKBP
20	MOTA	252	CB	THR	27	-13.138	19.737	50.219	1.00	3.82	FKBP
	MOTA	253	∞ 1	THR	27	-13.987	18.606	49.972	1.00	5.37	FKBP
	MOTA	254	HG1	THR	27	-13.409	17.851	49.785	0.00	0.00	FKBP
	MOTA	255	CG2	THR	27	-13.957	20.891	50.779	1.00	2.73	FKBP
	MOTA	256	С	THR	27	-11.436	21.213	49.273	1.00	2.00	FKBP
25	MOTA	257	0	THR	27	-10.365	20.891	49.784	1.00	2.00	FKBP
	ATOM	258	N	GLY	28	-11.664	22.419	48.779	1.00	5.64	FKBP
	ATOM	259	Н	GLY	28	-12.274	22.498	48.038	0.00	0.00	FKBP
	MOTA	260	CA	GLY	28	-10.813	23.538	49.128	1.00	8.04	FKBP
	MOTA	261	С	GLY	28	-11.438	24.437	50.175	1.00	8.15	FKBP
30	MOTA	262	0	GTA	28	-12.646	24.729	50.131	1.00	9.73	FKBP
	MOTA	263	N	MET	29	-10.619	24.887	51.117	1.00	4.38	FKBP
	MOTA	264	Н	MET	29	-9.683	24.601	51.122	0.00	0.00	FKBP
	MOTA	265	CA	MET	29	-11.091	25.812	52.138	1.00	6.14	FKBP
	MOTA	266	СВ	MET	29	-11.512	25.047	53.404	1.00 1	1.72	FKBP
35	MOTA	267	œ	MET	29	-10.445	24.128	53.999	1.00 1	4.88	FKBP
	MOTA	268	SD	MET	29	-11.065	22.500	54.510	1.00	7.90	FKBP
	MOTA	269	Œ	MET	29	-12.824	22.854	54.721	1.00	5.60	FKBP
	ATOM	270	С	MET	29	-10.033	26.845	52.477	1.00	6.50	FKBP
	MOTA	271	0	MET	29	-8.847	26.630	52.242	1.00	5.89	FKBP

			-							
V	VO 97/1565	9							PCT/US96/16953	
	MOTA	272	N	LEU	30	-10.477	28.013	52.923	1.00 11.28	FKBP
	MOTA	273	Н	LEU	30	-11.444	28.168	52.902	0.00 0.00	FKBP
	MOTA	274	CA	LEU	30	-9.561	29.028	53.443	1.00 14.74	FKBP
	MOTA	275	СВ	LEU	30	-10.281	30.379	53.572	1.00 12.99	FKBP
5	MOTA	276	Œ	LEU	30	-10.887	30.967	52.292	1.00 10.36	FKBP
	MOTA	277	CD1	LEU	30	-12.064	31.842	52.668	1.00 12.99	FKBP
	ATOM	278	CD2	LEU	30	-9.848	31.761	51.510	1.00 3.34	FKBP
	MOTA	279	С	LEU	30	-9.042	28.573	54.805	1.00 14.12	FKBP
	MOTA	280	0	LEU	30	-9.664	27.732	55.453	1.00 16.16	FKBP
10	MOTA	281	N	GLU	31	-7.944	29.169	55.262	1.00 14.66	FKBP
	MOTA	282	H	GLU	31	-7.506	29.828	54.682	0.00 0.00	FKBP
	MOTA	283	CA	GLU	31	-7.266	28.722	56.483	1.00 17.28	FKBP
	ATOM	284	CB	GLU	31	-6.294	29.799	56.962	1.00 14.61	FKBP
	ATOM	285	CG	GLU	31	-5.818	29.586	58.382	1.00 22.25	FKBP
15	ATOM	286	æ	GLU	31	-4.510	30.284	58.698	1.00 26.77	FKBP
	MOTA	287	OE1	GLU	31	-4.245	31.362	58.107	1.00 21.74	FKBP
	MOTA	288	OE2	GLU	31	-3.774	29.762	59.576	1.00 23.08	FKBP
	ATOM	289	С	GLU	31	-8.187	28.313	57.642	1.00 18.96	FKBP
	ATOM	290	0	GLU	31	-8.008	27.258	58.262	1.00 18.93	FKBP
20	ATOM	291	N	ASP	32	-9.238	29.090	57.855	1.00 17.34	FKBP
	MOTA	292	Н	ASP	32	-9.405	29.814	57.223	0.00 0.00	FKBP
	ATOM	293	CA	ASP	32	-10.116	28.866	58.996	1.00 19.84	FKBP
	ATOM	294	СВ	ASP	32	-10.894	30.142	59.308	1.00 27.98	FKBP
	MOTA	295	CG	ASP	32	-11.601	30.704	58.090	1.00 34.72	FKBP
25	ATOM	296	OD1	ASP	32	-12.727	30.254	57.801	1.00 32.49	FKBP
	ATOM	297	OD2	ASP	32	-11.023	31.588	57.415	1.00 43.34	FKBP
	MOTA	298	С	ASP	32	-11.096	27.713	58.816	1.00 18.08	FKBP
	MOTA	299	0	ASP	32	-11.986	27.541	59.638	1.00 17.85	FKBP
	ATOM	300	N	GLY	33	-10.994	26.998	57.697	1.00 18.90	FKBP
30	ATOM	301	H	GLY	33	-10.204	27.111	57.137	0.00 0.00	FKBP
	MOTA	302	CA	GLY	33	-11.909	25.896	57.417	1.00 14.65	FKBP
	MOTA	303	С	GLY	33	-13.146	26.270	56.616	1.00 10.95	FKBP
	MOTA	304	0	GLY	33	-14.020	25.437	56.370	1.00 11.28	FKBP
	MOTA	305	N	LYS	34	-13.235	27.536	56.230	1.00 5.53	FKBP
35	MOTA	306	H	LYS	34	-12.565	28.159	56.564	0.00 0.00	FKBP
	ATOM	307	CA	LYS	34	-14.320	27.999	55.379	1.00 7.65	FKBP
	MOTA	308	СВ	LYS	34	-14.270	29.521	55.255	1.00 15.91	FKBP
	MOTA	309	œ	LYS	34	-15.468	30.131	54.554	1.00 23.47	FKBP
	MOTA	310	æ	LYS	34	-15.360	31.646	54.513	1.00 34.71	FKBP

w	O 97/15659	•							PCT/US96/16953	
	ATOM	311	Œ	LYS	34	-15.213	32.245	55.918	1.00 38.38	FKBP
	ATOM	312	NZ	LYS	34	-13.805	32.635	56.227	1.00 41.83	FKBP
	MOTA	313	HZ1	LYS	34	-13.475	33.324	55.520	0.00 0.00	FKBP
	ATOM	314	HZ2	LYS	34	-13.196	31.792	56.185	0.00 0.00	FKBP
5	MOTA	315	HZ3	LYS	34	-13.749	33.055	57.176	0.00 0.00	FKBP
	ATOM	316	С	LYS	34	-14.222	27.369	53.991	1.00 7.56	FKBP
	MOTA	317	0	LYS	34	-13.290	27.653	53.232	1.00 3.26	FKBP
	MOTA	318	N	LYS	35	-15.067	26.371	53.757	1.00 8.73	FKBP
	ATOM	319	Н	LYS	35	-15.554	26.012	54.530	0.00 0.00	FKBP
10	ATOM	320	CA	LYS	35	-15.178	25.719	52.459	1.00 8.15	FKBP
	MOTA	321	СВ	LYS	35	-16.269	24.657	52.511	1.00 2.40	FKBP
	ATOM	322	CG	LYS	35	-16.379	23.854	51.249	1.00 7.41	FKBP
	ATOM	323	$^{\circ}$	LYS	35	-17.142	22.573	51.484	1.00 11.33	FKBP
	MOTA	324	Œ	LYS	35	-18.637	22.803	51.464	1.00 15.67	FKBP
15	MOTA	325	NZ	LYS	35	-19.352	21.501	51.304	1.00 20.77	FKBP
	MOTA	326	HZ1	LYS	3 5	-19.180	20.892	52.129	0.00 0.00	FKBP
	MOTA	327	HZ2	LYS	35	-19.004	21.025	50.450	0.00 0.00	FKBP
	MOTA	328	HZ3	LYS	35	-20.373	21.681	51.212	0.00 0.00	FKBP
	MOTA	329	С	LYS	35	-15.520	26.736	51.378	1.00 13.32	FKBP
20	MOTA	330	0	LYS	35	-16.387	27.596	51.587	1.00 16.59	FKBP
	MOTA	331	N	PHE	36	-14.796	26.690	50.257	1.00 12.19	FKBP
	MOTA	332	H	PHE	36	-13.981	26.149	50.278	0.00 0.00	FKBP
	MOTA	333	CA	PHE	36	-15.167	27.504	49.098	1.00 8.93	FKBP
	ATOM	334	CB	PHE	36	-14.077	28.541	48.753	1.00 4.86	FKBP
25	MOTA	335	Œ	PHE	36	-12.728	27.959	48.415	1.00 3.36	FKBP
	MOTA	336	CD1	PHE	36	-11.660	28.108	49.295	1.00 4.33	FKBP
	MOTA	337	CD2	PHE	36	-12.470	27.442	47.151	1.00 7.57	FKBP
	ATOM	338	CE1	PHE	36	-10.350	27.758	48.916	1.00 5.11	FKBP
	ATOM	339	CE2	PHE	36	-11.167	27.092	46.766	1.00 5.95	FKBP
30	ATOM	340	CZ	PHE	36	-10.110	27.250	47.648	1.00 2.00	FKBP
	ATOM	341	С	PHE	36	-15.553	26.696	47.861	1.00 11.24	FKBP
	ATOM	342	0	PHE	36	-16.499	27.050	47.152	1.00 9.15	FKBP
	MOTA	343	N	ASP	37	-14.972	25.507	47.738	1.00 11.21	FKBP
	MOTA	344	H	ASP	37	-14.365	25.202	48.445	0.00 0.00	FKBP
35	MOTA	345	CA	ASP	37	-15.201	24.672	46.568	1.00 8.81	FKBP
	MOTA	346	CB	ASP	37	-14.340	25.220	45.416	1.00 12.70	FKBP
	MOTA	347	CG	ASP	37	-14.583	24.518	44.091	1.00 11.57	FKBP
	MOTA	348		ASP	37	-15.679	23.968	43.855	1.00 7.88	FKBP
	ATOM	349	OD2	ASP	37	-13.665	24.565	43.254	1.00 15.66	FKBP

PCT/US96/16953 WO 97/15659 ASP 37 -14.87423.199 46.864 1.00 2.00 FKBP MOTA 350 C 47.545 1.00 2.01 FKBP ASP 37 -13.90522.904 MOTA 351 0 46.450 1.00 2.52 352 SER 38 -15.751 22.291 **FKBP** MOTA N 0.00 22.613 46.095 0.00 353 SER 38 -16.607FKBP MOTA Η 2.33 354 CA SER 38 -15.461 20.850 46.493 1.00 **FKBP** 5 MOTA 20.223 -15.95447.800 1.00 12.19 **FKBP** SER 38 355 Œ MOTA 18.804 356 ∞ SER 38 -15.979 47.722 1.00 9.54 FKBP MOTA -15.613 18.490 48.571 0.00 0.00 357 HG SER 38 **FKBP** MOTA 45.349 358 C SER 38 -16.10820.110 1.00 2.00 FKBP MOTA 38 -17.31320.210 45.168 1.00 2.31 **FKBP** 359 0 SER 10 MOTA 39 -15.33919.252 44.684 1.00 2.00 **FKBP** MOTA 360 N SER 44.967 -14.39719.223 0.00 0.00 MOTA 361 Η SER 39 FKBP MOTA 362 CA SER 39 -15.84018.414 43.584 1.00 3.72 FKBP 42.825 1.00 3.50 363 SER 39 -14.68217.758 FKBP MOTA CB 15 MOTA 364 ∞ SER 39 -13.86116.976 43.683 1.00 3.28 **FKBP** 39 -14.19517.054 44.589 0.00 0.00 **FKBP** 365 MOTA HG SER 1.00 **MOTA** 366 C SER 39 -16.762 17.317 44.088 9.63 FKBP 39 -17.54716.751 43.324 1.00 6.74 FKBP MOTA 367 0 SER 45.376 40 -16.62416.994 1.00 13.48 FKBP MOTA 368 Ν ARG 45.944 0.00 0.00 40 -16.02717.536 FKBP 20 **ATOM** 369 Η ARG -17.44115.972 46.025 1.00 12.15 **FKBP** MOTA 370 CA ARG 40 -16.800 15.538 47.345 1.00 4.43 **FKBP** ARG 40 371 Œ MOTA -15.385 15.003 47.220 1.00 2.00 FKBP **MOTA** 372 CG ARG 40 -14.97814.243 48.484 1.00 3.29 FKBP 373 ARG 40 **MOTA** \oplus -13.546 13.940 48.561 1.00 4.66 40 FKBP 25 MOTA 374 NE ARG -12.92414.683 48.660 0.00 0.00 **FKBP** 375 ΗE ARG 40 ATOM 40 -13.031 12.714 48.497 1.00 2.00 FKBP **MOTA** 376 CZARG 48.631 377 NH1 ARG 40 -11.72712.527 1.00 2.00 **FKBP** MOTA 13.308 48.782 0.00 0.00 378 HH11 ARG 40 -11.112FKBP MOTA 48.585 30 **ATOM** 379 HH12 ARG 40 -11.37411.597 0.00 0.00 **FKBP** -13.81211.673 48.262 1.00 2.00 **FKBP** NH2 ARG 40 ATOM 380 48.128 0.00 MOTA 381 HH21 ARG 40 -14.79411.785 0.00 FKBP 48.214 -13.41710.752 0.00 0.00 **FKBP** 382 HH22 ARG 40 MOTA -18.88316.433 46.270 1.00 17.11 **FKBP** MOTA 383 C ARG 40 46.350 1.00 17.06 -19.79815.612 FKBP 35 MOTA 384 0 ARG 40 -19.08517.746 46.370 1.00 20.79 **FKBP** MOTA 385 Ν ASP 41 18.340 46.438 0.00 0.00 Η ASP 41 -18.307FKBP MOTA 386 ASP 41 -20.43518.315 46.454 1.00 26.68 FKBP MOTA 387 CA ASP 41 -20.375 19.784 46.879 1.00 26.55 FKBP CB MOTA 388

	************	,									
	ATOM	389	Œ	ASP	41	-19.641	19.993	48.195	1.00	34.97	FKBP
	ATOM	390	OD1	ASP	41	-19.251	19.001	48.852	1.00	38.14	FKBP
	ATOM	391	OD2	ASP	41	-19.426	21.167	48.559	1.00	36.52	FKBP
	ATOM	392	С	ASP	41	-21.187	18.206	45.124	1.00	30.48	FKBP
5	ATOM	393	0	ASP	41	-22.416	18.085	45.106	1.00	31.53	FKBP
	MOTA	394	N	ARG	42	-20.447	18.307	44.018	1.00	31.99	FKBP
٠	MOTA	395	Н	ARG	42	-19.519	18.595	44.120	0.00	0.00	FKBP
	ATOM	396	CA	ARG	42	-21.006	18.124	42.676	1.00	26.25	FKBP
	MOTA	397	СВ	ARG	42	-20.168	18.865	41.625	1.00	22.17	FKBP
10	MOTA	398	CC	ARG	42	-19.815	20.302	41.976	1.00	26.16	FKBP
	MOTA	399	Œ	ARG	42	-18.697	20.840	41.089	1.00	29.95	FKBP
	MOTA	4 00	NE	ARG	42	-17.703	19.814	40.769	1.00	40.62	FKBP
	MOTA	401	HE	ARG	42	-17.911	18.869	40.922	0.00	0.00	FKBP
	MOTA	402	CZ	ARG	42	-16.491	20.058	40.273	1.00	44.80	FKBP
15	MOTA	403	NH1	ARG	42	-15.684	19.045	39.978	1.00	43.55	FKBP
	MOTA	404	HH11	ARG	42	-16.002	18.108	40.125	0.00	0.00	FKBP
	MOTA	405	HH12	ARG	42	-14.773	19.213	39.600	0.00	0.00	FKBP
	MOTA	406	NH2	ARG	4 2	-16.070	21.306	40.089	1.00	47.04	FKBP
	MOTA	407	HH21	ARG	4 2	-16.655	22.080	40.328	0.00	0.00	FKBP
20	MOTA	408	HH22	ARG	4 2	-15.156	21.465	39.719	0.00	0.00	FKBP
	ATOM	409	С	ARG	4 2	-21.051	16.642	42.320	1.00	25.62	FKBP
	MOTA	410	0	ARG	42	-21.679	16.252	41.338	1.00	29.04	FKBP
	MOTA	411	N	ASN	43	-20.302	15.832	43.064	1.00	20.94	FKBP
	MOTA	412	Н	ASIN	43	-19.786	16.217	43.793	0.00	0.00	FKBP
25	ATOM	413	CA	ASIN	43	-20.290	14.392	42.840	1.00	21.52	FKBP
	ATOM	414	СВ	ASN	43	-21.724	13.852	42.869	1.00	23.52	FKBP
	ATOM	415	CG	ASN	43	-21.808	12.455	43.431	1.00	28.90	FKBP
	ATOM	416	OD1	ASN	4 3	-20.789	11.802	43.662	1.00	28.67	FKBP
	ATOM	417	ND2	ASN	43	-23.025	1 1.987	43.662	1.00	33.33	FKBP
30	MOTA	418	HD21	ASN	4 3	-23.786	12.557	43.466	0.00	0.00	FKBP
	MOTA	419	HD22	ASN	43	-23.041	11.094	44.043	0.00	0.00	FKBP
	MOTA	420	С	ASN	4 3	-19.628	14.078	41.498	1.00	20.93	FKBP
	MOTA	421	0	ASN	43	-20.087	13.228	40.740	1.00	21.51	FKBP
	MOTA	422	N	LYS	44	-18.475	14.696	41.275	1.00	20.83	FKBP
35	MOTA	423	H	LYS	44	-18.152	15.288	41.984	0.00	0.00	FKBP
	MOTA	424	CA	LYS	44	-17.874	14.757	39.947	1.00	19.75	FKBP
	MOTA	425	СВ	LYS	44	-18.554	15.879	39.148	1.00	24.43	FKBP
	MOTA	426	Œ	LYS	44	-18.478	15.755	37.638	1.00	23.61	FKBP
	MOTA	427	æ	LYS	44	-18.796	17.084	36.965	1.00	29.64	FKBP

	WO 97/156	659							PCT/US96/16953	
	ATOM	428	Œ	LYS	44	-20.212	17.565	37.282	1.00 34.29	FKBP
	MOTA	429	NZ	LYS	44	-20.543	18.848	36.583	1.00 38.07	FKBP
	MOTA	430	HZ1	LYS	44	-20.497	18.697	35.555	0.00 0.00	FKBP
	ATOM	431	HZ2	LYS	44	-19.853	19.580	36.854	0.00 0.00	FKBP
5	MOTA	432	HZ3	LYS	44	-21.496	19.168	36.846	0.00 0.00	FKBP
	ATOM	433	С	LYS	44	-16.361	15.014	40.049	1.00 17.91	FKBP
	ATOM	434	0	LYS	44	-15.928	16.029	40.596	1.00 21.43	FKBP
	ATOM	435	N	PRO	4 5	-15.545	14.014	39.695	1.00 16.30	FKBP
	MOTA	436	Œ	PRO	45	-15.909	12.612	39.438	1.00 17.34	FKBP
10	MOTA	437	CA	PRO	45	-14.093	14.182	39.830	1.00 17.48	FKBP
	MOTA	438	СВ	PRO	45	-13.539	12.779	39.557	1.00 14.90	FKBP
	MOTA	439	CG	PRO	45	-14.679	11.871	39.886	1.00 19.40	FKBP
	MOTA	440	С	PRO	4 5	-13.496	15.228	38.887	1.00 15.55	FKBP
	ATOM	441	0	PRO	45	-13.942	15.399	37.753	1.00 17.90	FKBP
15	MOTA	442	N	PHE	46	-12.501	15.942	39.389	1.00 11.92	FKBP
	MOTA	44 3	H	PHE	46	-12.151	15.695	40.268	0.00 0.00	FKBP
	MOTA	444	CA	PHE	46	-11.825	16.989	38.637	1.00 10.26	FKBP
	ATOM	445	СВ	PHE	46	-11.346	18.068	39.615	1.00 7.26	FKBP
	MOTA	446	CG	PHE	4 6	-10.549	19. 1 65	38.980	1.00 2.00	FKBP
20	MOTA	447	CD1	PHE	46	-9.192	19.284	39.246	1.00 2.00	FKBP
	MOTA	448	CD2	PHE	46	-11.180	20.149	38.222	1.00 2.00	FKBP
	MOTA	449	CE1	PHE	46	-8.472	20.369	38.779	1.00 2.30	FKBP
	MOTA	4 50	CE2	PHE	46	-10.475	21.243	37.749	1.00 2.00	FKBP
	MOTA	451	CZ	PHE	46	-9.117	21.357	38.030	1.00 5.96	FKBP
25	MOTA	4 52	С	PHE	46	-10.644	16.371	37.898	1.00 10.45	FKBP
	MOTA	453	0	PHE	46	-9.984	15.479	38.421	1.00 16.71	FKBP
	MOTA	454	N	LYS	47	-10.421	16.782	36.655	1.00 9.72	FKBP
	ATOM	455	Н	LYS	47	-11.004	17. 4 58	36.253	0.00 0.00	FKBP
	MOTA	456	CA	LYS	4 7	-9.293	16.255	35.893	1.00 4.83	FKBP
30	MOTA	457	CB	LYS	47	-9.7 7 0	15.421	34.700	1.00 5.22	FKBP
	ATOM	458	CG	LYS	47	-10.510	14.147	35.058	1.00 8.65	FKBP
	MOTA	459	æ	LYS	47	-11.587	13.853	34.032	1.00 11.93	FKBP
	ATOM	4 60	Œ	LYS	4 7	-11.326	12.543	33.312	1.00 10.86	FKBP
	MOTA	461	NZ	LYS	47	-11.608	11.397	34.216	1.00 15.06	FKBP
35	MOTA	462	HZ1	LYS	47	-12.594	11.462	34.542	0.00 0.00	FKBP
	MOTA	463		LYS	47	-10.981	11.442	35.042	0.00 0.00	FKBP
	MOTA	464	HZ3	LYS	47	-11.471	10.498	33.712	0.00 0.00	FKBP
	MOTA	465	С	LYS	47	-8.435	17.389	35.395	1.00 2.00	FKBP
	MOTA	466	0	LYS	47	-8.943	18.449	35.061	1.00 2.00	FKBP

	ATOM	467	N	PHE	48	-7.125	17.205	35.472	1.00	2.00	FKBP
	ATOM	468	H	PHE	48	-6.799	16.438	35.994	0.00	0.00	FKBP
	MOTA	469	CA	PHE	48	-6.191	18.157	34.896	1.00	6.26	FKBP
	ATOM	470	СВ	PHE	48	-5.964	19.323	35.875	1.00	2.45	FKBP
5	MOTA	471	Œ	PHE	48	-4.948	19.036	36.942	1.00	4.20	FKBP
	MOTA	472	CD1	PHE	48	-5.254	18.188	38.005	1.00	2.00	FKBP
	MOTA	473	CD2	PHE	48	-3.650	19.548	36.837	1.00	2.00	FKBP
	MOTA	474	CE1	PHE	48	-4.282	17.837	38.936	1.00	2.00	FKBP
	MOTA	475	CE2	PHE	48	-2.664	19.200	37.769	1.00	2.59	FKBP
10	MOTA	476	CZ	PHE	48	-2.983	18.340	38.817	1.00	2.53	FKBP
	MOTA	477	С	PHE	48	-4.866	17.469	34.538	1.00	10.81	FKBP
	MOTA	478	0	PHE	48	-4.480	16.476	35.159	1.00	16.65	FKBP
	MOTA	479	N	MET	49	-4.181	17.984	33.526	1.00	13.39	FKBP
	MOTA	480	Н	MET	49	-4.543	18.774	33.084	0.00	0.00	FKBP
15	MOTA	481	CA	MET	49	-2.892	17.437	33.113	1.00	16.66	FKBP
	ATOM	482	СВ	MET	49	-2.690	17.663	31.614	1.00	22.76	FKBP
	ATOM	483	œ	MET	4 9	-1.538	16.885	31.016	1.00	32.61	FKBP
	MOTA	484	SD	MET	4 9	-0.985	17.585	29.454	1.00	46.48	FKBP
	MOTA	485	Œ	MET	49	-0.812	16.105	28.435	1.00	45.16	FKBP
20	MOTA	486	С	MET	4 9	-1.768	18.109	33.898	1.00	16.05	FKBP
	MOTA	487	0	MET	49	-1.749	19.332	34.046	1.00	17.38	FKBP
	MOTA	488	N	LEU	50	-0.852	17.314	34.433	1.00	16.03	FKBP
	MOTA	489	Н	LEU	50	-0.925	16.348	34.258	0.00	0.00	FKBP
	MOTA	49 0	CA	LEU	50	0.166	17.848	35.336	1.00	16.25	FKBP
25	ATOM	491	СВ	LEU	50	0.587	16.777	36.350	1.00	16.08	FKBP
	ATOM	492	Œ	LEU	50	1.737	17.151	37.290	1.00	15.77	FKBP
	MOTA	4 93	CD1	LEU	50	1.189	17.731	38.587	1.00	17.22	FKBP
	ATOM	494	CD2	LEU	50	2.591	15.923	37.561	1.00	17.09	FKBP
	ATOM	495	С	LEU	50	1.398	18.380	34.606	1.00	18.27	FKBP
30	ATOM	496	0	LEU	50	2.130	17.629	33.962	1.00	17.62	FKBP
	MOTA	497	N	GLY	51	1.659	19.671	34.773	1.00	24.68	FKBP
	MOTA	498	Н	GLY	51	1.071	20.196	35.347	0.00	0.00	FKBP
	MOTA	499	· CA	GLY	51	2.832	20.281	34.163	1.00	28.29	FKBP
	ATOM	500	С	GLY	51	2.511	21.451	33.246	1.00	30.06	FKBP
35	MOTA	501	0	GLY	51	3.312	22.367	33.092	1.00	31.10	FKBP
	ATOM	502	N	LYS	52	1.283	21.482	32.739	1.00	31.85	FKBP
	MOTA	503	Н	LYS	52	0.651	20.805	33.051	0.00	0.00	FKBP
	MOTA	504	CA	LYS	52	0.883	22.452	31.724	1.00	30.54	FKBP
	MOTA	505	CB	LYS	52	-0.281	21.887	30.899	1.00	33.91	FKBP

PCT/US96/16953 WO 97/15659 MOTA 506 α LYS 52 -0.11020.427 30.479 1.00 38.74 FKBP MOTA 507 Θ LYS 52 1.015 20.263 29.458 1.00 44.12 **FKBP MOTA** 508 Œ LYS 52 1.708 18.913 29.584 1.00 44.68 FKBP ATOM 509 NZ LYS 52 2.954 18.849 28.767 1.00 46.84 FKBP 5 HZ1 LYS 52 MOTA 510 3.632 19.546 29.134 0.00 0.00 FKBP **MOTA** 511 HZ2 LYS 52 2.732 19.066 27.773 0.00 0.00 FKBP 512 MOTA HZ3 LYS 52 3.361 17.895 28.831 0.00 0.00 FKBP 513 C MOTA LYS 52 0.475 23.795 32.323 1.00 27.06 FKBP **MOTA** 514 0 LYS 52 -0.34924.498 31.741 1.00 30.79 **FKBP** 10 MOTA 515 Ν GLN 53 1.025 24.130 33.490 1.00 21.58 **FKBP** MOTA 516 Η GLN 53 1.847 23.671 33.747 0.00 0.00 **FKBP** 517 **MOTA** CA GLN 53 0.572 25.282 34.279 1.00 18.83 FKBP 518 CB GLN **MDTA** 53 1.219 26.571 33.768 1.00 25.35 **FKBP** 519 **MOTA** Œ GLN 53 2.599 26.848 34.333 1.00 34.50 FKBP 15 MOTA 520 Θ GLN 53 3.585 25.737 34.025 1.00 42.12 FKBP MOTA 521 OE1 GLN 53 3.854 25.432 32.865 1.00 46.61 FKBP MOTA 522 NE2 GLN 53 4.096 25.098 35.067 1.00 46.53 FKBP MOTA 523 HE21 GLN 53 3.837 25.352 35.970 0.00 0.00 **FKBP** MOTA 524 HE22 GLN 53 4.723 24.391 34.821 0.00 0.00 FKBP 20 MOTA 525 C GLN 53 -0.950 25.457 34.313 1.00 15.57 FKBP MOTA 526 53 0 GLN -1.45626.570 34.380 1.00 17.17 **FKBP** MOTA 527 N GLU 54 -1.672 24.344 34.338 1.00 12.00 **FKBP** 528 MOTA GLU 54 -1.188 Η 23.505 34.304 0.00 0.00 FKBP MOTA 529 CA GLU 54 -3.12624.378 34.306 1.00 6.49 FKBP 25 **MOTA** 530 CB GLU 54 -3.666 23.022 33.878 1.00 6.66 **FKBP** MOTA 531 α GLU 54 -4.29623.020 32.516 1.00 4.63 FKBP GLU 1.00 11.57 MOTA 532 \oplus 54 -4.41421.628 31.960 FKBP MOTA 533 OE1 GLU -3.54354 21.242 31.157 1.00 18.19 **FKBP** MOTA 534 OE2 GLU 54 -5.33920.896 32.368 1.00 10.83 FKBP 30 MOTA 535 С GLU -3.74154 24.762 35.642 1.00 5.69 **FKBP** MOTA 536 GLU -4.8730 54 25.238 35.696 1.00 4.44 FKBP MOTA 537 Ν VAL 55 -3.035 24.444 36.722 1.00 4.70 **FKBP** MOTA VAL 538 Η 55 -2.14224.084 36.580 0.00 0.00 **FKBP** VAL MOTA 539 CA 55 -3.513 24.731 38.071 1.00 6.95 FKBP 35 MOTA 540 Œ VAL 55 -3.77423.446 38.849 1.00 3.43 **FKBP** CG1 VAL MOTA 541 55 -4.99522.759 38.309 1.00 9.22 FKBP MOTA 542 CG2 VAL 55 -2.57322.538 38.761 1.00 2.21 FKBP C 55 **MOTA** 543 VAL -2.50025.559 38.849 1.00 9.75 FKBP MOTA 544 0 VAL 55 -1.36925.737 38.408 1.00 9.34 FKBP

	MOTA	545	N	ILE	56	-2.887	26.026	40.031	1.00	12.04	FKBP
	MOTA	546	Н	ILE	56	-3.799	25.844	40.322	0.00	0.00	FKBP
	MOTA	547	CA	ILE	56	-1.964	26.785	40.869	1.00	10.94	FKBP
	ATOM	548	СВ	ILE	56	-2.674	27.365	42.123	1.00	9.38	FKBP
5	MOTA	549	CG2	ILE	56	-3.665	28.449	41.701	1.00	9.44	FKBP
	MOTA	550	CG1	ILE	56	-3.377	26.263	42.920	1.00	4.02	FKBP
	MOTA	551	CD1	ILE	56	-4.003	26.756	44.206	1.00	2.00	FKBP
	MOTA	552	C	ILE	56	-0.734	25.962	41.286	1.00	12.55	FKBP
	MOTA	553	0	ILE	56	-0.759	24.729	41.270	1.00	15.13	FKBP
10	MOTA	554	N	ARG	57	0.353	26.651	41.615	1.00	10.58	FKBP
	MOTA	555	H	ARG	57	0.284	27.627	41.637	0.00	0.00	FKBP
	ATOM	556	CA	ARG	57	1.648	26.013	41.850	1.00	12.39	FKBP
	ATOM	557	CB	ARG	57	2.707	27.091	42.058	1.00	13.28	FKBP
	MOTA	558	CG	ARG	57	4.115	26.573	42.013	1.00	16.07	FKBP
15	ATOM	559	æ	ARG	57	5.090	27.708	42.068	1.00	18.63	FKBP
	MOTA	560	NE	ARG	57	6.447	27.196	42.189	1.00	29.56	FKBP
	MOTA	561	HE	ARG	57	6.567	26.228	42.278	0.00	0.00	FKBP
	MOTA	562	CZ	ARG	57	7.535	27.957	42.208	1.00	29.74	FKBP
	MOTA	563	NH1	ARG	57	8.728	27.390	42.332	1.00	34.84	FKBP
20	MOTA	564	HH11	ARG	57	8.794	26.398	42.443	0.00	0.00	FKBP
	MOTA	565	HH12	ARG	57	9.551	27.954	42.380	0.00	0.00	FKBP
	MOTA	566	NH2	ARG	57	7.430	29.277	42.124	1.00	24.22	FKBP
	MOTA	567	HH21	ARG	57	6.534	29.712	42.038	0.00	0.00	FKBP
	MOTA	568	HH22	ARG	57	8.258	29.836	42.149	0.00	0.00	FKBP
25	MOTA	569	С	ARG	57	1.700	25.006	43.014	1.00	15.27	FKBP
	MOTA	570	0	ARG	57	2.321	23.946	42.901	1.00	16.77	FKBP
	MOTA	571	N	GLY	58	1.084	25.349	44.142	1.00	13.48	FKBP
	MOTA	572	Н	GLY	58	0.719	26.253	44.227	0.00	0.00	FKBP
	MOTA	573	CA	GLY	58	0.973	24.402	45.240	1.00	12.25	FKBP
30	MOTA	574	С	GLY	58	0.326	23.080	44.849	1.00	9.23	FKBP
	MOTA	575	0	GLY	58	0.633	22.043	45.438	1.00	8.04	FKBP
	MOTA	576	N	TRP	59	-0.567	23.124	43.856	1.00	6.52	FKBP
	MOTA	577	Н	TRP	59	-0.838	24.004	43.525	0.00	0.00	FKBP
	MOTA	578	CA	TRP	59	-1.177	21.927	43.269	1.00	2.00	FKBP
35	MOTA	579	CB	TRP	59	-2.399	22.294	42.443	1.00	2.00	FKBP
	MOTA	580	Œ	TRP	59	-3.672	22.138	43.172	1.00	2.87	FKBP
	MOTA	581	CD2	TRP	59	-4.707	21.189	42.889	1.00	4.49	FKBP
	MOTA	582	CE2	TRP	59	-5.725	21.386	43.843	1.00	5.98	FKBP
	ATOM	583	Œ3	TRP	59	-4.874	20.193	41.921	1.00	2.00	FKBP
										2.00	

	WO 97/15	659							PCT/US96/169	53
	MOTA	584	CDI	TRP	59	-4.093	22.857	44.252	1.00 2.00	FKBP
	MOTA	585	NE1	TRP	59	-5.327	22.413	44.659	1.00 4.48	FKBP
	MOTA	586	HE1	TRP	59	-5.830	22.768	45.422	0.00 0.00	FKBP
	MOTA	587	CZ2	TRP	59	-6.897	20.615	43.859	1.00 7.28	FKBP
5	ATOM	588	CZ3	TRP	59	-6.043	19.433	41.939	1.00 4.10	FKBP
	ATOM	589	CH2	TRP	59	-7.033	19.648	42.900	1.00 2.01	FKBP
	ATOM	590	С	TRP	59	-0.215	21.196	42.365	1.00 3.20	FKBP
	MOTA	591	0	TRP	59	-0.186	19.969	42.345	1.00 9.79	FKBP
	MOTA	592	N	GLU	60	0.507	21.955	41.550	1.00 3.19	FKBP
10	MOTA	593	Н	GLU	60	0.323	22.919	41.539	0.00 0.00	FKBP
	MOTA	594	CA	GLU	60	1.484	21.388	40.636	1.00 5.73	FKBP
	MOTA	595	СВ	GLU	60	2.142	22.502	39.819	1.00 10.18	FKBP
	MOTA	596	Œ	GLU	60	2.585	22.086	38.415	1.00 13.55	FKBP
	MOTA	597	æ	GLU	60	1.463	22.147	37.398	1.00 16.71	FKBP
15	MOTA	598	OE1	GLU	60	1.649	22.793	36.348	1.00 22.45	FKBP
	MOTA	599	OE2	GLU	60	0.393	21.551	37.640	1.00 19.83	FKBP
	ATOM	600	С	GLU	60	2.538	20.587	41.395	1.00 8.89	FKBP
	ATOM	601	0	GLU	60	2.703	19.395	41.150	1.00 14.67	FKBP
	MOTA	602	N	GLU	61	3.116	21.189	42.428	1.00 11.93	FKBP
20	ATOM	603	Н	GLU	61	2.859	22.117	42.606	0.00 0.00	FKBP
	MOTA	604	CA	GLU	61	4.123	20.510	43.249	1.00 15.22	FKBP
	MOTA	605	CB	GLU	61	5.053	21.533	43.916	1.00 18.18	FKBP
	MOTA	606	Œ	GLU	61	5.177	22.868	43.171	1.00 28.20	FKBP
	MOTA	607	B	GLU	61	6.615	23.314	42.926	1.00 31.43	FKBP
25	MOTA	608	OE1	ŒW	61	7.478	23.101	43.807	1.00 35.07	FKBP
	MOTA	609	OE2	GLU	61	6.865	23.933	41.867	1.00 34.62	FKBP
	ATOM	610	С	GLU	61	3.519	19.581	44.315	1.00 14.96	FKBP
	ATOM	611	0	GLU	61	4.101	18.558	44.663	1.00 21.59	FKBP
	MOTA	612	N	GLY	62	2.355	19.938	44.840	1.00 16.29	FKBP
30	ATOM	613	H	GLY	62	1.970	20.809	44.617	0.00 0.00	FKBP
	ATOM	614	CA	GLY	62	1.687	19.077	45.801	1.00 12.82	FKBP
	ATOM	615	С	GLY	62	1.281	17.734	45.219	1.00 12.55	FKBP
	MOTA	616	0	GLY	62	1.782	16.697	45.639	1.00 12.58	FKBP
	ATOM	617	N	VAL	63	0.438	17.764	44.190	1.00 12.60	FKBP
35	ATOM	618		VAL	63	0.172	18.639	43.830	0.00 0.00	FKBP
	ATOM	619		VAL	63	-0.092	16.550	43.570	1.00 12.62	FKBP
	ATOM	620		VAL	63	-1.164	16.899	42.511	1.00 7.73	FKBP
	ATOM	621	CG1		63	-1.788	15.628	41.954	1.00 7.25	FKBP
	MOTA	622	CG2	VAL	63	-2.234	17.780	43.122	1.00 3.26	FKBP

	MOTA	623	С	VAL	63	0.996	15.674	42.921	1.00 15.97	FKBP
	MOTA	624	0	VAL	63	0.927	14.446	42.958	1.00 18.69	FKBP
	ATOM	625	N	ALA	64	2.048	16.305	42.416	1.00 15.67	FKBP
	ATOM	626	Н	ALA	64	2.009	17.279	42.315	0.00 0.00	FKBP
. 5	ATOM	627	CA	ALA	64	3.196	15.570	41.905	1.00 14.59	FKBP
	ATOM	628	СВ	ALA	64	4.201	16.542	41.338	1.00 13.86	FKBP
	ATOM	629	С	ALA	64	3.856	14.687	42.976	1.00 16.87	FKBP
	ATOM	630	0	ALA	64	4.548	13.726	42.656	1.00 19.52	FKBP
	ATOM	631	N	GLN	65	3.657	15.026	44.245	1.00 16.81	FKBP
10	ATOM	632	H	GLN	65	3.161	15.844	44.449	0.00 0.00	FKBP
	ATOM	633	CA	GLN	65	4.202	14.233	45.353	1.00 14.57	FKBP
	ATOM	634	CB	GLN	65	4.359	15.097	46.606	1.00 15.78	FKBP
	ATOM	635	CG	GLN	65	5.473	16.118	46.542	1.00 27.03	FKBP
	ATOM	636	æ	GLN	65	5.524	16.996	47.782	1.00 35.69	FKBP
15	ATOM	637	OE1	GIN	65	5.543	16.500	48.910	1.00 39.86	FKBP
	MOTA	638	NE2	GLN	65	5.516	18.307	47.580	1.00 36.82	FKBP
	ATOM	639	HE21	GLN	65	5.428	18.638	46.667	0.00 0.00	FKBP
	MOTA	640	HE22	GLN	65	5.596	18.845	48.387	0.00 0.00	FKBP
	MOTA	641	С	GLN	65	3.325	13.037	45.706	1.00 11.92	FKBP
20	MOTA	642	0	GLN	65	3.694	12.226	46.553	1.00 12.99	FKBP
	MOTA	643	N	MET	66	2.094	13.034	45.210	1.00 8.83	FKBP
	MOTA	644	Н	MET	66	1.872	13.655	44.491	0.00 0.00	FKBP
	ATOM	645	CA	MET	66	1.119	12.044	45.646	1.00 9.40	FKBP
	ATOM	646	СВ	MET	66	-0.286	12.651	45 .616	1.00 5.56	FKBP
25	ATOM	647	CG	MET	66	-0.487	13.766	46.628	1.00 3.07	FKBP
	ATOM	64 8	SD	MET	66	-2.084	14.610	46.495	1.00 12.38	FKBP
	ATOM	649	Œ	MET	66	-3.186	13.301	46.911	1.00 12.15	FKBP
	ATOM	650	С	MET	66	1.186	10.788	44.774	1.00 13.38	FKBP
	ATOM	651	0	MET	66	1.705	10.831	43.660	1.00 16.22	FKBP
30	ATOM	652	N	SER	67	0.832	9.643	45.346	1.00 13.44	FKBP
	ATOM	653	H	SER	67	0.710	9.638	46.319	0.00 0.00	FKBP
	ATOM	654	CA	SER	67	0.727	8.409	44.565	1.00 11.42	FKBP
	ATOM	655	CB	SER	67	1.649	7.317	45.134	1.00 7.60	FKBP
	ATOM	656	∞	SER	67	1.250	6.897	46.427	1.00 7.91	FKBP
35	ATOM	657	HG	SER	67	1.986	7.045	47.038	0.00 0.00	FKBP
	ATOM	658	С	SER	67	-0.721	7.926	44.518	1.00 12.45	FKBP
	ATOM	659	0	SER	67	-1.556	8.364	45.309	1.00 14.85	FKBP
	MOTA	660	N	VAL	68	-1.055	7.115	43.523	1.00 12.38	FKBP
	ATOM	661	Н	VAL	68	-0.361	6.855	42.883	0.00 0.00	FKBP

	WO 97/15	659							PCT/US96/16953	
•	ATOM	662	CA	VAL	68	-2.457	6.756	43.314	1.00 10.06	FKBP
	ATOM	663	СВ	VAL	68	-2.647	5.854	42.067	1.00 5.10	FKBP
	ATOM	664	CG1	VAL	68	-4.130	5.630	41.800	1.00 5.86	FKBP
	MOTA	665	CG2	VAL	68	-2.010	6.489	40.874	1.00 2.65	FKBP
5	MOTA	666	С	VAL	68	-3.080	6.069	44.532	1.00 9.51	FKBP
	MOTA	667	0	VAL	68	-2.603	5.033	44.999	1.00 13.72	FKBP
	MOTA	668	N	GLY	69	-4.190	6.630	44.992	1.00 7.92	FKBP
	MOTA	669	Н	GLY	69	-4.587	7.362	44.469	0.00 0.00	FKBP
	MOTA	670	CA	GLY	69	-4.872	6.114	46.162	1.00 8.54	FKBP
10	ATOM	671	С	GLY	69	-4.755	7.061	47.344	1.00 7.63	FKBP
	ATOM	672	0	GLY	69	-5.649	7.132	48.185	1.00 12.92	FKBP
	ATOM	673	N	GLN	70	-3.694	7.859	47.354	1.00 3.17	FKBP
	ATOM	674	Н	GLN	70	-3.135	7.917	46.548	0.00 0.00	FKBP
	MOTA	675	CA	GLN	70	-3.357	8.660	48.515	1.00 2.00	FKBP
15	MOTA	676	СВ	GLN	70	-1.927	9.161	48.395	1.00 2.57	FKBP
	MOTA	677	CG	GLN	70	-1.483	10.064	49.524	1.00 10.26	FKBP
	ATOM	678	В	GLN	70	-0.066	10.555	49.331	1.00 10.61	FKBP
	ATOM	679	OE1	GLN	70	0.673	10.028	48.505	1.00 18.69	FKBP
	MOTA	680	NE2	GLN	70	0.310	11.586	50.067	1.00 11.45	FKBP
20	MOTA	681	HE21	GLN	70	-0.298	11.997	50.702	0.00 0.00	FKBP
	MOTA	682	HE22	GIN	70	1.237	11.850	49.896	0.00 0.00	FKBP
	MOTA	683	С	GLN	70	-4.299	9.830	48.671	1.00 2.00	FKBP
	MOTA	684	0	GLN	70	-4.749	10.400	47.691	1.00 3.88	FKBP
	MOTA	685	N	ARG	71	-4.711	10.082	49.904	1.00 5.36	FKBP
25	ATOM	686	Н	ARG	71	-4.639	9.362	50.543	0.00 0.00	FKBP
	ATOM	687	CA	ARG	71	-5. 4 86	11.274	50.246	1.00 5.53	FKBP
	MOTA	688		ARG	71	-6.753	10.873	50.997	1.00 2.00	FKBP
	MOTA	689		ARG	71	-7.697	12.010	51.228	1.00 2.00	FKBP
	MOTA	690		ARG	71	-9.066	11.504	51.639	1.00 3.25	FKBP
30	MOTA	691		ARG	71	-9.812	12.542	52.347	1.00 8.85	FKBP
	ATOM	692		ARG	71	-9.309	13.289	52.735	0.00 0.00	FKBP
	ATOM	693		ARG	71	-11.134	12.564	52.475	1.00 18.29	FKBP
	ATOM	694	NH1		71	-11.708	13.525	53.183	1.00 25.79	FKBP
25	ATOM		HH11		71	-11.149	14.237	53.609	0.00 0.00	FKBP
35	MOTA		HH12		71	-12.702	13.542	53.282	0.00 0.00	FKBP
	MOTA	697	NH2		71	-11.888	11.640	51.890	1.00 23.05	FKBP
	ATOM		HH21		71	-11.460	10.906	51.361	0.00 0.00	FKBP
	ATOM		HH22		71	-12.879	11.654	52.011	0.00 0.00	FKBP
	MOTA	700	С	ARG	71	-4.650	12.208	51.114	1.00 3.03	FKBP

	•										
	MOTA	701	0	ARG	71	-4.006	11.764	52.060	1.00	4.39	FKBP
	MOTA	702	N	ALA	72	-4.628	13.489	50.774	1.00	2.46	FKBP
	MOTA	703	Н	ALA	72	-5.218	13.805	50.054	0.00	0.00	FKBP
	MOTA	704	CA	ALA	72	-3.725	14.428	51.425	1.00	2.00	FKBP
5	MOTA	705	CB	ALA	72	-2.456	14.557	50.636	1.00	2.00	FKBP
	ATOM	706	С	ALA	72	-4.326	15.803	51.654	1.00	4.21	FKBP
	MOTA	707	0	ALA	72	-5.376	16.145	51.119	1.00	10.57	FKBP
	MOTA	708	N	LYS	73	-3.766	16.490	52.632	1.00	8.68	FKBP
	MOTA	709	H	LYS	73	-3.101	16.042	53.199	0.00	0.00	FKBP
10	ATOM	710	CA	LYS	73	-4.121	17.861	52.917	1.00	4.13	FKBP
	ATOM	711	СВ	LYS	73	-4.387	18.018	54.410	1.00	6.40	FKBP
	ATOM	712	Œ	LYS	73	-4.104	19.408	54.956	1.00	13.82	FKBP
	ATOM	713	æ	LYS	73	-4.807	19.628	56.287	1.00	15.85	FKBP
	MOTA	714	Œ	LYS	73	-4.136	20.729	57.086	1.00	18.32	FKBP
15	ATOM	715	NZ	LYS	73	-5.033	21.240	58.148	1.00	22.33	FKBP
	ATOM	716	HZ1	LYS	73	-5.238	20.469	58.817	0.00	0.00	FKBP
	ATOM	717	HZ2	LYS	73	-5.920	21.583	57.728	0.00	0.00	FKBP
	ATOM	718	HZ3	LYS	73	-4.569	22.019	58.657	0.00	0.00	FKBP
	ATOM	719	С	LYS	73	-2.943	18.713	52.488	1.00	4.72	FKBP
20	ATOM	720	0	LYS	73	-1.794	18.396	52.814	1.00	6.20	FKBP
	MOTA	721	N	LEU	74	-3.212	19.628	51.566	1.00	6.47	FKBP
	MOTA	722	Н	LEU	74	-4.064	19.565	51.121	0.00	0.00	FKBP
	ATOM	723	CA	LEU	74	-2.218	20.582	51.082	1.00	8.06	FKBP
	ATOM	724	CB	LEU	74	-2.303	20.706	49.560	1.00	12.85	FKBP
25	MOTA	725	Œ	LEU	74	-1.440	19.791	48.695	1.00	11.86	FKBP
	MOTA	726	CD1	LEU	74	-1.789	18.330	48.947	1.00	11.50	FKBP
	MOTA	727	CD2	LEU	74	-1.663	20.157	47.241	1.00	12.57	FKBP
	ATOM	728	С	LEU	74	-2.403	21.962	51.695	1.00	8.90	FKBP
	MOTA	729	0	LEU	74	-3.449	22.600	51.515	1.00	14.56	FKBP
30	MOTA	730	N	THR	75	-1.385	22.431	52.405	1.00	7.32	FKBP
	ATOM	731	H	THR	75	-0.717	21.784	52.717	0.00	0.00	FKBP
	ATOM	732	CA	THR	75	-1.383	23.796	52.913	1.00	6.76	FKBP
	ATOM	733	CB	THR	75	-0.905	23.830	54.397	1.00	6.87	FKBP
	MOTA	734	∞ 1	THR	75	-1.957	23.327	55.227	1.00	2.01	FKBP
35	MOTA	735	HG1	THR	75	-2.720	23.901	55.117	0.00	0.00	FKBP
	MOTA	736	CG2	THR	75	-0.556	25.238	54.861	1.00	3.73	FKBP
	MOTA	737	С	THR	75	-0.513	24.654	52.000	1.00	6.27	FKBP
	ATOM	738	0	THR	75	0.683	24.416	51.846	1.00	5.48	FKBP
	MOTA	739	N	ILE	76	-1.180	25.508	51.234	1.00	10.43	FKBP

	WO 97/156	59							PCT/US96/16953	
	MOTA	740	Н	ILE	76	-2.141	25.633	51.388	0.00 0.00	FKBP
	MOTA	741	CA	ΠE	76	-0.542	26.284	50.167	1.00 11.16	FKBP
	MOTA	742	СВ	ILE	76	-1.326	26.090	48.830	1.00 6.31	FKBP
	ATOM	743	CG2	ILE	76	-0.653	26.827	47.719	1.00 9.44	FKBP
5	ATOM	744	CG1	ΠE	76	-1.388	24.601	48.459	1.00 5.62	FKBP
	ATOM	745	CD1	ILE	76	-2.630	24.205	47.691	1.00 2.00	FKBP
	ATOM	746	С	ILE	76	-0.454	27.788	50.522	1.00 12.21	FKBP
	MOTA	747	0	ILE	76	-1.476	28.460	50.752	1.00 13.89	FKBP
	ATOM	748	N	SER	77	0.768	28.287	50.692	1.00 10.50	FKBP
10	ATOM	749	Н	SER	77	1.535	27.692	50.566	0.00 0.00	FKBP
	ATOM	750	CA	SER	77	0.947	29.700	51.009	1.00 11.73	FKBP
	ATOM	751	CB	SER	77	2.354	29.978	51.571	1.00 11.33	FKBP
	ATOM	752	Œ	SER	77	3.405	29.669	50.667	1.00 18.57	FKBP
	ATOM	753	HG	SER	77	4.140	30.103	51.109	0.00 0.00	FKBP
15	ATOM	754	С	SER	7 7	0.681	30.566	49.790	1.00 12.45	FKBP
	ATOM	755	0	SER	77	0.922	30.149	48.662	1.00 15.48	FKBP
	ATOM	756	N	PRO	78	0.151	31.778	49.998	1.00 14.32	FKBP
	ATOM	757	$^{\circ}$	PRO	78	0.192	32.544	51.251	1.00 18.10	FKBP
	MOTA	758	CA	PRO	78	-0.362	32.607	48.906	1.00 14.95	FKBP
20	ATOM	759	СВ	PRO	78	-0.594	33.957	49.573	1.00 15.74	FKBP
	ATOM	760	Œ	PRO	78	0.309	33.944	50.759	1.00 15.85	FKBP
	MOTA	761	С	PRO	78	0.574	32.728	47.710	1.00 15.21	FKBP
	ATOM	762	0	PRO	78	0.109	32.790	46.576	1.00 20.63	FKBP
	ATOM	763	N	ASP	79	1.882	32.698	47.956	1.00 13.60	FKBP
25	MOTA	764	Н	ASP	79	2.162	32.697	48.889	0.00 0.00	FKBP
	MOTA	765	CA	ASP	79	2.877	32.679	46.874	1.00 19.42	FKBP
	MOTA	766	СВ	ASP	79	4.305	32.510	47.424	1.00 28.97	FKBP
	MOTA	767		ASP	79	4.599	33.401	48.629	1.00 37.43	FKBP
	MOTA	768		ASP	79	5.657	33.195	49.270	1.00 39.71	FKBP
30	MOTA	769	OD2	ASP	79	3.792	34.306	48.939	1.00 45.91	FKBP
	ATOM	770	С	ASP	79	2.616	31.548	45.877	1.00 17.87	FKBP
	MOTA	771	0	ASP	79	2.547	31.777	44.676	1.00 20.31	FKBP
	MOTA	772	N	TYR	80	2.442	30.335	46.392	1.00 15.45	FKBP
	ATOM	773	H	TYR	80	2.347	30.254	47.356	0.00 0.00	FKBP
35	MOTA	774	CA	TYR	80	2.142	29.178	45.557	1.00 12.31	FKBP
	ATOM	775	СВ	TYR	80	2.611	27.897	46.234	1.00 10.17	FKBP
	ATOM	776	C.C.	TYR	80	4.082	27.626	46.070	1.00 9.13	FKBP
	ATOM	77 7		TYR	80	5.022	28.600	46.373	1.00 5.08	FKBP
	ATOM	778	CE1	TYR	80	6.373	28.303	46.419	1.00 6.16	FKBP

WO 97/15659 PCT/US96/16953

ATOM 779 CD2 TYR 80 4.536 26.347 45.781 1.00 12.62

	MOTA	779	CD2	TYR	80	4.536	26.347	45.781	1.00	12.62	FKBP
	ATOM	780	CE2	TYR	80	5.889	26.037	45.827	1.00	15.72	FKBP
	MOTA	781	CZ	TYR	80	6.801	27.021	46.159	1.00	13.97	FKBP
	ATOM	782	OH	TYR	80	8.124	26.683	46.343	1.00	19.55	FKBP
5	MOTA	783	HH	TYR	80	8.729	27.408	46.126	0.00	0.00	FKBP
	MOTA	784	С	TYR	80	0.657	29.033	45.227	1.00	9.68	FKBP
	ATOM	785	0	TYR	80	0.194	27.936	44.907	1.00	9.28	FKBP
	MOTA	786	N	ALA	81	-0.104	30.115	45.344	1.00	9.06	FKBP
	MOTA	787	Н	ALA	81	0.347	31.010	45.423	0.00	0.00	FKBP
10	ATOM	788	CA	ALA	81	-1.536	30.071	45.028	1.00	8.94	FKBP
	MOTA	789	CB	ALA	81	-2.362	29.899	46.312	1.00	10.95	FKBP
	ATOM	790	С	ALA	81	-1.973	31.342	44.290	1.00	11.59	FKBP
	ATOM	791	0	ALA	81	-1.507	31.630	43.192	1.00	14.63	FKBP
	ATOM	792	N	TYR	82	-2.886	32.106	44.874	1.00	13.59	FKBP
15	MOTA	793	Н	TYR	82	-3.142	32.049	45.838	0.00	0.00	FKBP
	ATOM	794	CA	TYR	82	-3.462	33.239	44.147	1.00	15.87	FKBP
	MOTA	795	CB	TYR	82	-4.9 82	33.249	44.324	1.00	15.49	FKBP
	MOTA	796	Œ	TYR	82	-5.676	32.084	43.658	1.00	19.64	FKBP
	MOTA	797	CD1	TYR	82	-6.283	31.091	44.415	1.00	18.02	FKBP
20	MOTA	798	CE1	TYR	82	-6.918	30.013	43.804	1.00	16.50	FKBP
	ATOM	799	CD2	TYR	82	-5.724	31.975	42.262	1.00	19.36	FKBP
	ATOM	800	CE2	TYR	82	-6.357	30.904	41.648	1.00	12.44	FKBP
	MOTA	801	CZ	TYR	82	-6.946	29.930	42.425	1.00	12.60	FKBP
	MOTA	802	OH	TYR	82	-7.546	28.871	41.800	1.00	12.06	FKBP
25	ATOM	803	HH	TYR	82	-7.818	28.255	42.478	0.00	0.00	FKBP
	MOTA	804	С	TYR	82	-2.869	34.591	44.552	1.00	15.70	FKBP
	MOTA	805	0	TYR	82	-3.388	35.646	44.183	1.00	15.54	FKBP
	MOTA	806	N	GLY	83	-1.763	34.539	45.288	1.00	17.13	FKBP
	MOTA	807	H	GLY	83	-1.475	33.662	45.571	0.00	0.00	FKBP
30	MOTA	808	CA	GLY	83	-0.972	35.719	45.566	1.00	15.64	FKBP
	MOTA	809	С	GLY	83	-1.681	36.878	46.233	1.00	20.32	FKBP
	MOTA	810	0	GLY	83	-2.708	36.728	46.910	1.00	23.74	FKBP
	MOTA	811	N	ALA	84	-1.099	38.055	46.055	1.00	19.06	FKBP
	MOTA	812	H	ALA	84	-0.306	38.078	45.480	0.00	0.00	FKBP
35	MOTA	813	CA	ALA	84	-1.639	39.270	46.628	1.00	15.70	FKBP
	MOTA	814	CB	ALA	84	-0.640	40.394	46.455	1.00	19.93	FKBP
	MOTA	815	С	ALA	84	-2.965	39.637	45.982	1.00	13.85	FKBP
	MOTA	816	0	ALA	84	-3.823	40.230	46.618	1.00	14.46	FKBP
	MOTA	817	N	THR	85	-3.131	39.247	44.726	1.00	17.88	FKBP

	WO 97/15	659							PCT	~/US96/16	953
	MOTA	818	Н	THR	85	-2.470	38.659	44.303	0.00	0.00	FKBP
	ATOM	819	CA	THR	85	-4.308	39.623	43.934	1.00	24.03	FKBP
	MOTA	820	СВ	THR	85	-4.036	39.482	42.419	1.00	21.29	FKBP
	MOTA	821	Œ1	THR	85	-3.482	38.185	42.150	1.00	28.80	FKBP
5	ATOM	822	HG1	THR	85	-4.132	37.483	42.316	0.00	0.00	FKBP
	MOTA	823	CG2	THR	85	-3.054	40.541	41.956	1.00	16.23	FKBP
	MOTA	824	С	THR	85	-5.537	38.787	44.254	1.00	24.35	FKBP
	MOTA	825	0	THR	85	-6.660	39.189	43.954	1.00	27.70	FKBP
	MOTA	826	N	GLY	86	-5.304	37.579	44.761	1.00	25.09	FKBP
10	ATOM	827	Н	GLY	86	-4.382	37.292	44.914	0.00	0.00	FKBP
	ATOM	828	CA	GLY	86	-6.388	36.655	45.020	1.00	19.79	FKBP
	ATOM	829	С	GLY	86	-7.151	36.310	43.759	1.00	21.57	FKBP
	MOTA	830	0	GLY	86	-6.589	36.200	42.659	1.00	18.32	FKBP
	ATOM	831	N	HIS	87	-8.454	36.149	43.930	1.00	21.72	FKBP
15	ATOM	832	H	HIS	87	-8.780	36.318	44.827	0.00	0.00	FKBP
	MOTA	833	CA	HIS	87	-9.355	35.858	42.828	1.00	24.25	FKBP
	MOTA	834	CB	HIS	87	-9.432	34.350	42.568	1.00	25.61	FKBP
	MOTA	835	Œ	HIS	87	-10.134	33.994	41.292	1.00	29.60	FKBP
	MOTA	836	CD2	HIS	87	-11.360	33.466	41.064	1.00	27.65	FKBP
20	MOTA	837	ND1	HIS	87	-9.564	34.185	40.050	1.00	31.39	FKBP
	MOTA	838	HD1	HIS	87	-8.690	34.592	39.843	0.00	0.00	FKBP
	MOTA	839	CE1	HIS	87	-10.405	33.783	39.115	1.00	32.76	FKBP
	MOTA	840	NE2	HIS	87	-11.503	33.347	39.703	1.00	30.12	FKBP
	MOTA	841	HE2	HIS	87	-12.329	33.167	39.202	0.00	0.00	FKBP
25	MOTA	842	С	HIS	87	-10.727	36.387	43.212	1.00	22.13	FKBP
	MOTA	843	0	HIS	87	-11.356	35.891	44.152	1.00	27.18	FKBP
	MOTA	844	N	PRO	88	-11.105	37.531	42.639	1.00	19.63	FKBP
	MOTA	845	Ө	PRO	88	-10.357	38.290	41.620	1.00	20.36	FKBP
	MOTA	846	CA	PRO	88	-11.989	38.403	43.410	1.00	18.79	FKBP
30	MOTA	847	СВ	PRO	88	-11.946	39.707	42.626	1.00	18.51	FKBP
	MOTA	848	CG	PRO	88	-10.550	39.713	42.059		16.30	FKBP
	ATOM	849	С	PRO	88	-13.399	37.848	43.580		18.22	FKBP
	ATOM	850	0	PRO	88	-13.974	37.286	42.650		21.77	FKBP
	ATOM	851	N	GLY	89	-13.851	37.819	44.828		15.16	FKBP
35	ATOM	852	H	GLY	89	-13.303	38.201	45.539	0.00	0.00	FKBP
	MOTA	853	CA	GLY	89	-15.160	37.271	45.120		12.28	FKBP
	MOTA	854	С	GLY	89	-15.116	35.891	45.749		13.88	FKBP
	ATOM	855	0	GLY	89	-16.142	35.385	46.211		13.05	FKBP
	MOTA	856	N	ΠE	90	-13.932	35.289	45.812	1.00	12.11	FKBP

	WO 97/130.	,,							101.0000.1000	
	MOTA	857	Н	ILE	90	-13.164	35.742	45.410	0.00 0.00	FKBP
	ATOM	858	CA	ILE	90	-13.831	33.928	46.328	1.00 17.75	FKBP
	ATOM	859	СВ	ΠE	90	-13.950	32.875	45.177	1.00 23.54	FKBP
	MOTA	860	CG2	ILE	90	-13.063	33.252	44.007	1.00 24.28	FKBP
5	ATOM	861	CG1	ILE	90	-13.590	31.478	45.688	1.00 28.28	FKBP
	MOTA	862	CD1	ILE	90	-14.036	30.361	44.764	1.00 34.25	FKBP
	ATOM	863	С	ILE	90	-12.577	33.670	47.150	1.00 14.47	FKBP
	MOTA	864	0	ILE	90	-12.663	33.134	48.247	1.00 15.69	FKBP
	ATOM	865	N	ΠE	91	-11.416	34.013	46.600	1.00 12.99	FKBP
10	ATOM	866	Н	ILE	91	-11.413	34.380	45.696	0.00 0.00	FKBP
	ATOM	867	CA	ΠE	91	-10.150	33.915	47.328	1.00 9.92	FKBP
	ATOM	868	CB	ILE	91	-9.091	33.085	46.559	1.00 6.38	FKBP
	MOTA	869	CG2	ILE	91	-7.873	32.881	47.428	1.00 2.00	FKBP
	MOTA	870	CG1	ILE	91	-9.681	31.762	46.041	1.00 4.55	FKBP
15	ATOM	871	CD1	ПE	91	-10.163	30.821	47.084	1.00 3.68	FKBP
	ATOM	872	С	ILE	91	-9.584	35.324	47.520	1.00 15.34	FKBP
	ATOM	873	0	ILE	91	-9.285	36.025	46.539	1.00 13.98	FKBP
	MOTA	874	N	PRO	92	-9.520	35.797	48.781	1.00 17.29	FKBP
	MOTA	875	Э	PRO	92	-9 .964	35.110	50.011	1.00 14.17	FKBP
20	MOTA	876	CA	PRO	92	-9.007	37.143	49.062	1.00 12.40	FKBP
	MOTA	877	СВ	PRO	92	-9.421	37.381	50.514	1.00 10.67	FKBP
	MOTA	878	Œ	PRO	92	-9.477	36.019	51.107	1.00 11.96	FKBP
	MOTA	879	С	PRO	92	-7.492	37.264	48.855	1.00 14.30	FKBP
	MOTA	880	0	PRO	92	-6.815	36.290	48.516	1.00 17.48	FKBP
25	ATOM	881	N	PRO	93	-6.966	38.493	48.923	1.00 15.65	FKBP
	MOTA	882	æ	PRO	93	-7.700	39.762	48.785	1.00 18.15	FKBP
	MOTA	883	CA	PRO	93	-5.518	38.704	48.833	1.00 16.50	FKBP
	MOTA	884	СВ	PRO	93	-5.380	40.217	48.941	1.00 17.10	FKBP
	MOTA	885	CG	PRO	93	-6.629	40.717	48.308	1.00 22.16	FKBP
30	MOTA	886	С	PRO	93	-4.743	37.999	49.933	1.00 16.97	FKBP
	MOTA	887	0	PRO	93	-5.160	37.971	51.090	1.00 20.11	FKBP
	MOTA	888	N	HIS	94	-3.609	37.424	49.563	1.00 15.46	FKBP
	MOTA	889	Н	HIS	94	-3.476	37.286	48.598	0.00 0.00	FKBP
	MOTA	890	CA	HIS	94	-2.701	36.830	50.538	1.00 14.40	FKBP
35	MOTA	891	CB	HIS	94	-2.366	37.855	51.608	1.00 12.10	FKBP
	MOTA	892	Œ	HIS	94	-1.762	39.103	51.061	1.00 15.95	FKBP
	MOTA	893	CD2	HIS	94	-2.313	40.308	50.781	1.00 16.10	FKBP
	MOTA	894	ND1	HIS	94	-0.455	39.165	50.621	1.00 16.58	FKBP
	ATOM	895	HD1	HIS	94	0.241	38.484	50.761	0.00 0.00	FKBP

V	VO 97/1565	9							PCT/US96/16953	
	ATOM	896	CE1	HIS	94	-0.230	40.351	50.086	1.00 20.16	FKBP
	ATOM	897	NE2	HIS	94	-1.342	41.063	50.171	1.00 21.63	FKBP
	ATOM	898	HE2	HIS	94	-1.470	41.979	49.833	0.00 0.00	FKBP
	MOTA	899	С	HIS	94	-3.176	35.531	51.202	1.00 13.30	FKBP
5	MOTA	900	0	HIS	94	-2.380	34.843	51.836	1.00 16.61	FKBP
	MOTA	901	N	ALA	95	-4.403	35.112	50.915	1.00 6.56	FKBP
	ATOM	902	Н	ALA	95	-4.911	35.568	50.215	0.00 0.00	FKBP
	MOTA	903	CA	ALA	95	-4.982	33.954	51.576	1.00 7.81	FKBP
	MOTA	904	СВ	ALA	95	-6.365	33.676	51.026	1.00 2.72	FKBP
10	MOTA	905	С	ALA	95	-4.132	32.683	51.516	1.00 10.01	FKBP
	ATOM	906	0	ALA	95	-3.691	32.260	50.456	1.00 10.42	FKBP
	ATOM	907	N	THR	96	-3.801	32.165	52.691	1.00 12.98	FKBP
	ATOM	908	Н	THR	96	-3.847	32.758	53.468	0.00 0.00	FKBP
	ATOM	909	CA	THR	96	-3.319	30.797	52.831	1.00 12.92	FKBP
15	MOTA	910	CВ	THR	96	-2.740	30.568	54.254	1.00 9.93	FKBP
	ATOM	911	∞ 1	THR	96	-1.655	31.480	54.472	1.00 11.98	FKBP
	MOTA	912	HG1	THR	96	-1.236	31.644	53.620	0.00 0.00	FKBP
	MOTA	913	CG2	THR	96	-2.240	29.139	54.430	1.00 3.68	FKBP
	ATOM	914	С	THR	96	-4.501	29.852	52.600	1.00 14.35	FKBP
20	MOTA	915	0	THR	96	-5.569	30.025	53.212	1.00 14.86	FKBP
	ATOM	916	N	LEU	97	-4.349	28.937	51.642	1.00 8.43	FKBP
	ATOM	917	H	LEU	97	-3.495	28.902	51.157	0.00 0.00	FKBP
	ATOM	918	CA	LEU	97	-5.406	27.976	51.332	1.00 3.80	FKBP
	ATOM	919	СВ	LEU	97	-5.672	27.930	49.826	1.00 3.61	FKBP
25	MOTA	920	Œ	LEU	97	-5.948	29.193	49.011	1.00 6.56	FKBP
	MOTA	921	CD1	LEU	97	-5.831	28.841	47.534	1.00 2.62	FKBP
	ATOM	922	CD2	LEU	97	-7.326	29.758	49.318	1.00 6.52	FKBP
	MOTA	923	С	LEU	97	-5.083	26.557	51.814	1.00 5.71	FKBP
	MOTA	924	0	LEU	97	-3.926	26.123	51.815	1.00 7.74	FKBP
30	ATOM	925	N	VAL	98	-6.121	25.814	52.167	1.00 2.33	FKBP
	MOTA	926	Н	VAL	98	-7.012	26.221	52.183	0.00 0.00	FKBP
	MOTA	927	CA	VAL	98	-5.968	24.407	52.476	1.00 3.09	FKBP
	MOTA	928	CB	VAL	98	-6.461	24.079	53.900	1.00 4.96	FKBP
	MOTA	929		VAL	98	-6.144	22.638	54.230	1.00 2.00	FKBP
35	ATOM	930		VAL	98	-5.824	25.011	54.917	1.00 2.00	FKBP
	ATOM	931	С	VAL	98	-6.801	23.602	51.491	1.00 7.78	FKBP
	ATOM	932	0	VAL	98	-8.012	23.836	51.346	1.00 8.13	FKBP
	ATOM	933	N	PHE	99	-6.166	22.622	50.853	1.00 7.58	FKBP
	MOTA	934	Н	PHE	99	-5.202	22.540	50.970	0.00 0.00	FKBP

	************	007									
	ATOM	935	CA	PHE	99	-6.877	21.677	49.996	1.00	6.62	FKBP
	ATOM	936	СВ	PHE	99	-6.303	21.728	48.578	1.00	2.00	FKBP
	MOTA	937	Œ	PHE	99	-6.824	22.873	47.763	1.00	4.66	FKBP
	ATOM	938	CD1	PHE	99	-6.115	24.070	47.687	1.00	4.09	FKBP
5	ATOM	939	CD2	PHE	99	-8.069	22.787	47.138	1.00	2.68	FKBP
	ATOM	940	Œ1	PHE	99	-6.638	25.166	47.008	1.00	2.00	FKBP
	ATOM	941	CE2	PHE	99	-8.598	23.874	46.462	1.00	2.00	FKBP
	MOTA	942	CZ	PHE	99	-7.879	25.068	46.399	1.00	2.00	FKBP
	ATOM	943	С	PHE	99	-6.849	20.239	50.519	1.00	5.20	FKBP
10	ATOM	944	0	PHE	99	-5.796	19.718	50.860	1.00	5.24	FKBP
	ATOM	945	N	ASP	100	-8.014	19.613	50.627	1.00	3.90	FKBP
	ATOM	946	Н	ASP	100	-8.834	20.147	50.593	0.00	0.00	FKBP
	ATOM	947	CA	ASP	100	-8.070	18.167	50.830	1.00	7.59	FKBP
	ATOM	948	СВ	ASP	100	-9.205	17.817	51.804	1.00	6.95	FKBP
15	ATOM	949	CG	ASP	100	-9.424	16.310	51.966	1.00	7.89	FKBP
	ATOM	950	OD1	ASP	100	-8.564	15.494	51.568	1.00	14.35	FKBP
	ATOM	951	OD2	ASP	100	-10.480	15.937	52.511	1.00	12.55	FKBP
	MOTA	952	С	ASP	100	-8.280	17.463	49.482	1.00	9.31	FKBP
	ATOM	953	0	ASP	100	-9.379	17.490	48.934	1.00	10.21	FKBP
20	ATOM	954	N	VAL	101	-7.232	16.832	48.954	1.00	9.09	FKBP
	ATOM	955	H	VAL	101	-6.416	16.741	49.499	0.00	0.00	FKBP
	ATOM	956	CA	VAL	101	-7.306	16.202	47.633	1.00	11.24	FKBP
	MOTA	957	CB	VAL	101	-6.417	16.956	46.557	1.00	7.24	FKBP
	MOTA	958	CG1	VAL	101	-6.122	18.380	47.014	1.00	5.62	FKBP
25	MOTA	959	CG2	VAL	101	-5.118	16.208	46.278	1.00	3.42	FKBP
	ATOM	960	C	VAL	101	-6.957	14.711	47.652	1.00	12.17	FKBP
	MOTA	961	0	VAL	101	-5.962	14.296	48.251	1.00	12.83	FKBP
	MOTA	962	N	GLU	102	-7.796	13.913	47.001	1.00	11.69	FKBP
	MOTA	963	Н	GLU	102	-8.591	14.307	46.611	0.00	0.00	FKBP
30	MOTA	964	CA	GLU	102	-7.527	12.490	46.813	1.00	14.51	FKBP
	MOTA	965	СВ	GLU	102	-8.697	11.660	47.356	1.00	12.86	FKBP
	MOTA	966	CG	GLU	102	-8.562	10.171	47.074	1.00	18.32	FKBP
	MOTA	967	æ	GLU	102	-9.681	9.340	47.666	1.00	20.79	FKBP
	MOTA	968	OE1	GLU	102	-10.840	9.811	47.715	1.00	26.66	FKBP
35	MOTA	969	OE2	GIN	102	-9.402	8.187	48.052	1.00	23.60	FKBP
	MOTA	970	С	GLU	102	-7.266	12.132	45.336	1.00	13.17	FKBP
	MOTA	971	0	GLU	102	-8.100	12.392	44.465	1.00	15.41	FKBP
	MOTA	972	N	LEU	103	-6.147	11.465	45.079	1.00	9.34	FKBP
	MOTA	973	H	LEU	103	-5.600	11178	45.846	0.00	0.00	FKBP

	WO 97/1	5659							PCT/US96/16953	
	ATOM	974	CA	LEU	103	-5.763	11.096	43.722	1.00 13.72	FKBP
	ATOM	975	СВ	LEU	103	-4.226	11.024	43.593	1.00 6.09	FKBP
	MOTA	976	œ	LEU	103	-3.643	10.842	42.180	1.00 4.19	FKBP
	MOTA	977	CD1	LEU	103	-4.309	11.807	41.220	1.00 8.95	FKBP
5	ATOM	978	CD2	LEU	103	-2.149	11.088	42.180	1.00 3.73	FKBP
	ATOM	979	С	LEU	103	-6.404	9.767	43.302	1.00 15.75	FKBP
	ATOM	980	0	LEU	103	-5.838	8.698	43.511	1.00 16.07	FKBP
	MOTA	981	N	LEU	104	-7.579	9.856	42.685	1.00 18.31	FKBP
	MOTA	982	Н	LEU	104	-7.915	10.758	42.502	0.00 0.00	FKBP
10	ATOM	983	CA	LEU	104	-8.342	8.680	42.257	1.00 16.33	FKBP
	ATOM	984	CB	LEU	104	-9.664	9.120	41.633	1.00 14.17	FKBP
	MOTA	985	\propto	LEU	104	-10.547	10.017	42.500	1.00 14.18	FKBP
	ATOM	986	CD1	LEU	104	-11.838	10.345	41.772	1.00 13.42	FKBP
	MOTA	987	CD2	LEU	104	-10.843	9.307	43.804	1.00 14.17	FKBP
15	MOTA	988	С	LEU	104	-7.594	7.786	41.266	1.00 18.03	FKBP
	MOTA	989	0	LEU	104	-7.390	6.599	41.516	1.00 18.22	FKBP
	MOTA	990	N	LYS	105	-7.196	8.360	40.134	1.00 20.74	FKBP
	MOTA	991	Н	LYS	105	-7.343	9.323	40.023	0.00 0.00	FKBP
	MOTA	992	CA	LYS	105	-6.510	7.603	39.086	1.00 20.67	FKBP
20	MOTA	993	CB	LYS	105	-7.529	6.806	38.263	1.00 24.07	FKBP
	ATOM	994	Œ	LYS	105	-8.765	7.605	37.853	1.00 27.58	FKBP
	ATOM	995	Э	LYS	105	-9.733	6.771	37.027	1.00 30.34	FKBP
	ATOM	996	Œ	LYS	105	-10.994	7.557	36.684	1.00 34.49	FKBP
	MOTA	997	NZ	LYS	105	-11.853	7.826	37.876	1.00 35.90	FKBP
25	MOTA	998	HZ1	LYS	105	-11.317	8.378	38.576	0.00 0.00	FKBP
	MOTA	99 9	HZ2	LYS	105	-12.151	6.928	38.306	0.00 0.00	FKBP
	MOTA	1000	HZ3	LYS	105	-12.690	8.371	37.584	0.00 0.00	FKBP
	MOTA	1001	С	LYS	105	-5.692	8.497	38.154	1.00 19.89	FKBP
	MOTA	1002	0	LYS	105	-5 .94 8	9.696	38.038	1.00 21.43	FKBP
30	MOTA	1003	N	LEU	106	-4.664	7.927	37.545	1.00 22.51	FKBP
	MOTA	1004	H	LEU	106	-4.392	7.031	37.820	0.00 0.00	FKBP
	MOTA	1005	CA	LEU	106	-4.015	8.575	36.411	1.00 24.63	FKBP
	MOTA	1006	СВ	LEU	106	-2.500	8.385	36.469	1.00 20.64	FKBP
	MOTA	1007	œ	LEU	106	-1.709	9.334	37.369	1.00 25.07	FKBP
35	MOTA	1008		LEU	106	-2.201	10.771	37.213	1.00 26.33	FKBP
	ATOM	1009		LEU	106	-1.853	8.891	38.791	1.00 25.85	FKBP
	ATOM	1010	C	LEU	106	-4.544	8.044	35.076	1.00 27.28	FKBP FKBP
	ATOM	1011	0	LEU	106	-4.969	6.887	34.978	1.00 30.28	
	MOTA	1012	N	GLU	107	-4.660	8.946	34.108	1.00 28.70	FKBP

	***************************************	3037									
	ATOM	1013	Н	GLU	107	-4.585	9.896	34.325	0.00	0.00	FKBP
	MOTA	1014	CA	GLU	107	-4.910	8.585	32.718	1.00	28.85	FKBP
	MOTA	1015	СВ	GLU	107	-6.410	8.650	32.415	1.00	24.83	FKBP
	MOTA	1016	CG	GLU	107	-7.125	9.812	33.068	1.00	28.14	FKBP
5	MOTA	1017	æ	GLU	107	-8.428	10.140	32.379	1.00	33.36	FKBP
	MOTA	1018	OE1	GLU	107	-9.439	9.461	32.672	1.00	26.99	FKBP
	MOTA	1019	OE2	GLU	107	-8.433	11.070	31.534	1.00	36.01	FKBP
	MOTA	1020	С	GLU	107	-4.122	9.520	31.789	1.00	32.85	FKBP
	MOTA	1021	0	GLU	107	-2.875	9.520	31.888	1.00	37.58	FKBP
10	MOTA	1022	OT	GLU	107	-4.739	10.301	31.034	1.00	39.52	FKBP
	MOTA	1023	01	RAPX	108	-7.715	26.739	39.504	1.00	6.16	RAPX
	MOTA	1024	C1	RAPX	108	-6.816	26.014	40.365	1.00	5.94	RAPX
	MOTA	1025	02	RAPX	108	-5.659	25.863	39.953	1.00	4.69	RAPX
	MOTA	1026	C2	RAPX	108	-7.234	25.472	41.742	1.00	2.10	RAPX
15	MOTA	1027	C3	RAPX	108	-6.748	24.038	41.963	1.00	2.00	RAPX
	MOTA	1028	C4	RAPX	108	-7.531	22.968	41.204	1.00	2.86	RAPX
	MOTA	1029	C5	RAPX	108	-9.027	23.085	41.430	1.00	2.00	RAPX
	MOTA	1030	C6	RAPX	108	-9.492	24.485	41.139	1.00	2.08	RAPX
	MOTA	1031	N7	RAPX	108	-8.685	25.389	41.985	1.00	3.45	RAPX
20	MOTA	1032	C8	RAPX	108	-9.287	26.223	42.852	1.00	2.80	RAPX
	MOTA	1033	03	RAPX	108	-8 .65 3	27.066	43.484	1.00	4.16	RAPX
	MOTA	1034	C9	RAPX	108	-10.645	26.309	43.120	1.00	3.33	RAPX
	MOTA	1035	04	RAPX	108	-11.026	25.607	44.055	1.00	2.89	RAPX
	ATOM	1036	C10	RAPX	108	-11.647	27.189	42.361	1.00	7.35	RAPX
25	MOTA	1037	C11	RAPX	108	-11.102	28.623	42.177	1.00	5.50	RAPX
	MOTA	1038	C12	RAPX	108	-12.102	29.453	41.362	1.00	2.25	RAPX
	MOTA	1039	C13	RAPX	108	-12.661	28.755	40.117	1.00	3.81	RAPX
	ATOM	1040	C14	RAPX	108	-12.744	27.225	40.197	1.00	5.55	RAPX
	MOTA	1041	05	RAPX	108	-11.749	26.675	41.029	1.00	5.80	RAPX
30	MOTA	1042	06	RAPX	108	-12.815	27.195	43.206	1.00	7.04	RAPX
	MOTA	1043	C43	RAPX	108	-10.856	29.287	43.527		10.83	RAPX
	MOTA	1044		RAPX	108	-12.476	26.558	38.844	1.00	6.36	RAPX
	MOTA	1045	C16	RAPX	108	-13.491	26.688	37.700	1.00	7.22	RAPX
	MOTA	1046	07	RAPX	108	-14.764	26.288	38.070	1.00	6.77	RAPX
35	MOTA	1047		RAPX	108	-15.819	26.946	37.457	1.00	2.69	RAPX
	MOTA	1048	C17	RAPX	108	-13.020	25.794	36.553	1.00	7.17	RAPX
	MOTA	1049	C44	RAPX	108	-12.882	24.304	36.817	1.00	5.39	RAPX
	MOTA	1050	C18	RAPX	108	-12.702	26.344	35.400		12.19	RAPX
	ATOM	1051	C19	RAPX	108	-12.183	25.694	34.165	1.00	14.38	RAPX

	WO 97/15	659							PC1	/US96/16953	3
	MOTA	1052	C20	RAPX	108	-12.264	26.351	33.003	1.00	13.32	RAPX
	ATOM	1053		RAPX	108	-11.719	25.829	31.760	1.00	10.57	RAPX
	MOTA	1054	C22	RAPX	108	-10.967	26.472	30.890	1.00	7.17	RAPX
	ATOM	1055	C23	RAPX	108	-10.527	25.696	29.671	1.00	3.85	RAPX
5	ATOM	1056	C45	RAPX	108	-11.166	26.303	28.459	1.00	2.00	RAPX
	MOTA	1057	C24	RAPX	108	-9.009	25.760	29.546	1.00	5.00	RAPX
	MOTA	1058	C25	RAPX	108	-8.217	25.354	30.783	1.00	6.28	RAPX
	ATOM	1059	C46	RAPX	108	-8.066	23.836	30.825	1.00	4.71	RAPX
	ATOM	1060	C26	RAPX	108	-6.853	26.023	30.751	1.00	9.09	RAPX
10	MOTA	1061	08	RAPX	108	-5.913	25.475	30.185	1.00	17.77	RAPX
	ATOM	1062	C27	RAPX	108	-6.684	27.414	31.356	1.00	14.08	RAPX
	ATOM	1063	09	RAPX	108	-5.514	27.884	30.789	1.00	14.20	RAPX
	ATOM	1064	C51	RAPX	108	-5.711	28.919	29.903	1.00	21.98	RAPX
	MOTA	1065	C28	RAPX	108	-6.426	27.335	32.858	1.00	13.28	RAPX
15	ATOM	1066	010	RAPX	108	-5.394	26.369	33.097	1.00	17.10	RAPX
	MOTA	1067	C29	RAPX	108	-7.657	26.973	33.703	1.00	7.79	RAPX
	MOTA	1068	C47	RAPX	108	-8.663	28.083	33.806	1.00	2.00	RAPX
	MOTA	1069	C30	RAPX	108	-7.814	25.804	34.281	1.00	5.36	RAPX
	MOTA	1070	C31	RAPX	108	-8.914	25.353	35.171	1.00	5.26	RAPX
20	MOTA	1071	C48	RAPX	108	-9.109	23.870	34.864	1.00	3.40	RAPX
	MOTA	1072	C32	RAPX	108	-8.560	25.557	36.644	1.00	8.61	RAPX
	MOTA	1073	011	RAPX	108	-8.235	24.591	37.334	1.00	12.38	RAPX
	ATOM	1074	C33	RAPX	108	-8.639	26.961	37.262	1.00	6.28	RAPX
	ATOM	1075	C34	RAPX	108	-7 .45 5	27.273	38.205	1.00	7.20	RAPX
25	ATOM	1076	C35	RAPX	108	-7.353	28.808	38.512	1.00	4.56	RAPX
	ATOM	1077	C49	RAPX	108	-8.736	29.425	38.657	1.00	2.00	RAPX
	MOTA	1078	C36	RAPX	108	-6.618	29.542	37.393	1.00	6.95	RAPX
	ATOM	1079		RAPX	108	-5.242	29.057	36.926		11.47	RAPX
	MOTA	1080		RAPX	108	-4.839	29.836	35.667	1.00	9.55	RAPX
30	ATOM	1081		RAPX	108	-3.488	29.508	35.015		14.00	RAPX
	ATOM	1082		RAPX	108	-3.117	30.527	34.126		21.91	RAPX
	ATOM	1083		RAPX	108	-4.002	31.014	33.140		21.11	RAPX
	ATOM	1084		RAPX	108	-2.354	29.491	36.072		15.37	RAPX
	ATOM	1085		RAPX	108	-1.167	28.920	35.507	1.00	6.26	RAPX
35	ATOM	1086		RAPX	108	-2.766	28.682	37.309		13.80	RAPX
	ATOM	1087		RAPX	108	-4.078	29.130	37.914	1.00	9.01	RAPX
	ATOM	1088		RAPX	108	-12.593	27.124	44.143	0.00	0.00	RAPX
	ATOM	1089		RAPX	108	-4.969	26.537	33.948	0.00	0.00	RAPX
	MOTA	1090	H13	RAPX	108	-0.427	29.516	35.649	0.00	0.00	RAPX

	*****	000									
	ATOM	1091	CB	ARG	2018	-17.032	35.522	6.831	1.00	40.78	FRAP
	ATOM	1092	CG	ARG	2018	-18.205	36.058	7.690	1.00	39.26	FRAP
	MOTA	1093	Ð	ARG	2018	-18.451	35.201	8.947	1.00	39.90	FRAP
	MOTA	1094	NE	ARG	2018	-17.238	35.062	9.755	1.00	40.36	FRAP
5	ATOM	1095	HE	ARG	2018	-16.986	35.810	10.336	0.00	0.00	FRAP
	MOTA	1096	CZ	ARG	2018	-16.466	33.977	9.783	1.00	36.06	FRAP
	ATOM	1097	NH1	ARG	2018	-15.238	34.057	10.282	1.00	33.73	FRAP
	MOTA	1098	HH11	ARG	2018	-14.887	34.922	10.634	0.00	0.00	FRAP
	MOTA	1099	HH12	ARG	2018	-14.676	33.233	10.320	0.00	0.00	FRAP
10	MOTA	1100	NH2	ARG	2018	-16.931	32.806	9.364	1.00	32.42	FRAP
	MOTA	1101	HH21	ARG	2018	-17.868	32.729	9.020	0.00	0.00	FRAP
	MOTA	1102	HH22	ARG	2018	-16.342	31.999	9.380	0.00	0.00	FRAP
	MOTA	1103	С	ARG	2018	-14.580	34.887	6.780	1.00	38.22	FRAP
	MOTA	1104	0	ARG	2018	-13.857	35.228	5.840	1.00	36.64	FRAP
15	MOTA	1 1 05	HT1	ARG	2018	-15.235	37.392	6.027	0.00	0.00	FRAP
	MOTA	1106	HT2	ARG	2018	-14.365	37.551	7.457	0.00	0.00	FRAP
	MOTA	1107	N	ARG	2018	-15.291	37.286	7.064	1.00	42.10	FRAP
	MOTA	1108	HT3	ARG	2018	-16.030	37.925	7.426	0.00	0.00	FRAP
	MOTA	1109	CA	ARG	2018	-15.622	35.859	7.359	1.00	39.30	FRAP
20	MOTA	1110	N	VAL	2019	-14.474	33.705	7.388	1.00	36.94	FRAP
	MOTA	1111	Н	VAL	2019	-15.146	33.399	8.027	0.00	0.00	FRAP
	MOTA	1112	CA	VAL	2019	-13.432	32.725	7.052	1.00	30.21	FRAP
	ATOM	1113	СВ	VAL	2019	-12.157	32.939	7.942	1.00	32.18	FRAP
	ATOM	1114	CG1	VAL	2019	-12.536	32.966	9.417	1.00	26.50	FRAP
25	ATOM	1115	CG2	VAL	2019	-11.107	31.853	7.679	1.00	32.10	FRAP
	MOTA	1116	С	VAL	2019	-13.973	31.314	7.273	1.00	24.65	FRAP
	MOTA	1117	0	VAL	2019	-14.934	31.123	8.016	1.00	24.40	FRAP
	MOTA	1118	N	ALA	2020	-13.355	30.329	6.635	1.00	22.00	FRAP
	MOTA	1119	Н	ALA	2020	-12.627	30.546	6.016	0.00	0.00	FRAP
30	MOTA	1120	CA	ALA	2020	-13.693	28.930	6.883	1.00	22.59	FRAP
	MOTA	1121	CB	ALA	2020	-13.356	28.087	5.664	1.00	21.75	FRAP
	MOTA	1122	С	ALA	2020	-13.000	28.354	8.125	1.00	22.82	FRAP
	MOTA	1123	0	ALA	2020	-11.764	28.295	8.199	1.00	19.38	FRAP
	ATOM	1124	N	ILE	2021	-13.805	27.988	9.118	1.00	20.69	FRAP
35	ATOM	1125	Н	ΠE	2021	-14.741	28.270	9.101	0.00	0.00	FRAP
	MOTA	1126	CA	ILE	2021	-13.312	27.233	10.266	1.00	18.46	FRAP
	MOTA	1127	CB	ILE	2021	-12.730	28.173	11.358	1.00	22.76	FRAP
	MOTA	1128	CG2	ILE	2021	-13.769	29.208	11.775	1.00	25.54	FRAP
	MOTA	1129	CG1	ΠE	2021	-12.249	27.351	12.562	1.00	25.06	FRAP

	WO 97	/15659							P	CT/US96/	16953
	MOTA	1130	CDI	I ILE	2021	-11.140	28.005	13.366	1.00	25.45	FRAP
	MOTA	1131	С	ILE	2021	-14.413	26.367	10.876	1.00	15.19	FRAP
	MOTA	1132	0	ILE	2021	-15.580	26.750	10.885	1.00	15.20	FRAP
	MOTA	1133	N	LEU	2022	-14.051	25.164	11.303	1.00	12.39	FRAP
5	MOTA	1134	Н	LEU	2022	-13.191	24.841	10.981	0.00	0.00	FRAP
	MOTA	1135	CA	LEU	2022	-14.967	24.324	12.072	1.00	10.94	FRAP
	ATOM	1136	СВ	LEU	2022	-14.339	22.958	12.314	1.00	4.40	FRAP
	MOTA	1137	CG	LEU	2022	-14.001	22.196	11.041	1.00	3.20	FRAP
	ATOM	1138	CD1	LEU	2022	-13.224	20.961	11.400	1.00	2.00	FRAP
10	ATOM	1139	CD2	LEU	2022	-15.279	21.845	10.295	1.00	2.00	FRAP
	ATOM	1140	С	LEU	2022	-15.347	24.946	13.414	1.00	11.66	FRAP
	MOTA	1141	0	LEU	2022	-14.489	25.468	14.134	1.00	11.57	FRAP
	MOTA	1142	N	TRP	2023	-16.628	24.838	13.766	1.00	11.70	FRAP
	MOTA	1143	Н	TRP	2023	-17.279	24.666	13.058	0.00	0.00	FRAP
15	MOTA	1144	CA	TRP	2023	-17.128	25.262	15.079	1.00	13.42	FRAP
	MOTA	1145	CB	TRP	2023	-18.624	24.943	15.19 2	1.00	6.83	FRAP
	ATOM	1146	Œ	TRP	2023	-19.499	25.971	14.562	1.00	2.00	FRAP
	ATOM	1147	CD2	TRP	2023	-20.927	26.075	14.671	1.00	2.00	FRAP
	ATOM	1148	CE2	TRP	2023	-21.309	27.257	14.015	1.00	2.00	FRAP
20	ATOM	1149	CE3	TRP	2023	-21.917	25.288	15.267	1.00	2.00	FRAP
	ATOM	1150	CD1	TRP	2023	-19.093	27.063	13.854	1.00	2.00	FRAP
	ATOM	1151	NE1	TRP	2023	-20.169	27.839	13.525	1.00	2.00	FRAP
	ATOM	1152	HE1	TRP	2023	-20.112	28.705	13.064	0.00	0.00	FRAP
	MOTA	1153	CZ2	TRP	2023	-22.640	27.672	13.937	1.00	2.00	FRAP
25	MOTA	1154	CZ3	TRP	2023	-23.241	25.706	15.188	1.00	2.00	FRAP
	MOTA	1155	CH2	TRP	2023	-23.585	26.881	14.528	1.00	2.00	FRAP
	MOTA	1156	C	TRP	2023	-16.359	24.603	16.230	1.00	14.99	FRAP
	MOTA	1157	0	TRP	2023	-16.174				20.57	FRAP
	ATOM	1158	N	HIS	2024	-15.921		15.999	1.00	17.48	FRAP
30	MOTA	1159	H	HIS	2024	-16.377		15.254		0.00	FRAP
	MOTA	1160	CA	HIS	2024	-14.969			1.00	19.39	FRAP
	MOTA	1161		HIS	2024	-14.560		16.234	1.00	25.50	FRAP
	MOTA	1162		HIS	2024	-15.693			1.00	33.39	FRAP
	MOTA	1163	CD2		2024	-16.181		14.293		33.72	FRAP
35	MOTA	1164	ND1		2024	-16.571		16.233		41.22	FRAP
	MOTA	1165	HD1		2024	-16.490		17.152		0.00	FRAP
	ATOM	1166	CE1		2024	-17.559		15.429	1.00		FRAP
	ATOM	1167		HIS				14.248	1.00		FRAP
	ATOM	1168	HE2	HIS	2024	-17.975	19.937	13.490	0.00	0.00	FRAP

	MOTA	1169	С	HIS	2024	-13.728	23.558	17.158	1.00	19.84	FRAP
	ATOM	1170	0	HIS	2024	-13.541	24.012	18.280	1.00	22.62	FRAP
	ATOM	1171	N	GLU	2025	-12.963	23.906	16.127	1.00	20.21	FRAP
	MOTA	1172	Н	GLU	2025	-13.279	23.712	15.223	0.00	0.00	FRAP
5	MOTA	1173	CA	GLU	2025	-11.732	24.686	16.318	1.00	20.43	FRAP
	MOTA	1174	CB	GLU	2025	-10.969	24.846	14.994	1.00	27.02	FRAP
	MOTA	1175	CG	GLU	2025	-10.961	23.614	14.089	1.00	41.60	FRAP
	MOTA	1176	B	GLU	2025	-10.550	23.937	12.652	1.00	47.27	FRAP
	MOTA	1177	OE1	ŒIJ	2025	-9.330	23.903	12.369	1.00	54.42	FRAP
10	MOTA	1178	OE2	ŒIJ	2025	-11.440	24.219	11.810	1.00	37.45	FRAP
	MOTA	1179	С	GLU	2025	-12.037	26.074	16.875	1.00	17.30	FRAP
	MOTA	1180	0	GLU	2025	-11.268	26.641	17.651	1.00	15.80	FRAP
	MOTA	1181	N	MET	2026	-13.159	26.625	16.444	1.00	15.93	FRAP
	MOTA	1182	H	MET	2026	-13.715	26.119	15.820	0.00	0.00	FRAP
15	MOTA	1183	CA	MET	2026	-13.552	27.971	16.816	1.00	18.01	FRAP
	MOTA	1184	CB	MET	2026	-14.806	28.354	16.021	1.00	21.46	FRAP
	MOTA	1185	CG	MET	2026	-15.619	29.490	16.603	1.00	28.72	FRAP
	MOTA	1186	SD	MET	2026	-16.931	30.032	15.505	1.00	34.40	FRAP
	MOTA	1187	Œ	MET	2026	-15.938	30.642	14.095	1.00	36.70	FRAP
20	MOTA	1188	С	MET	2026	-13.805	28.060	18.325	1.00	18.72	FRAP
	MOTA	1189	0	MET	2026	-13.257	28.927	19.012	1.00	18.88	FRAP
	MOTA	1190	N	TRP	2027	-14.553	27.092	18.845	1.00	18.28	FRAP
	MOTA	1191	Н	TRP	2027	-14.929	26.414	18.243	0.00	0.00	FRAP
	MOTA	1192	CA	TRP	2027	-14.890	27.047	20.263	1.00	16.52	FRAP
25	MOTA	1193	СВ	TRP	2027	-16.087	26.129	20.481	1.00	14.68	FRAP
	MOTA	1194	CG	TRP	2027	-17.381	26.861	20.453	1.00	16.26	FRAP
	ATOM	1195	CD2	TRP	2027	-17.870	27.760	21.450	1.00	16.49	FRAP
	MOTA	1196	CE2	TRP	2027	-19.120	28.239	21.003	1.00	15.26	FRAP
	MOTA	1197	CE3	TRP	2027	-17.373	28.214	22.681	1.00	18.70	FRAP
30	MOTA	1198	CD1	TRP	2027	-18.322	26.831	19.466	1.00	16.17	FRAP
	MOTA	1199	NE1	TRP	2027	-19.370	27.656	19.789	1.00	13.89	FRAP
	MOTA	1200	HE1	TRP	2027	-20.150	27.816	19.215	0.00	0.00	FRAP
	MOTA	1201	CZ2	TRP	2027	-19.886	29.142	21.745	1.00	17.88	FRAP
	ATOM	1202	CZ3	TRP	2027	-18.133	29.114	23.421	1.00	17.25	FRAP
35	MOTA	1203	CH2	TRP	2027	-19.376	29.565	22.950	1.00	21.47	FRAP
	MOTA	1204	С	TRP	2027	-13.736	26.609	21.159	1.00	15.61	FRAP
	MOTA	1205	0	TRP	2027	-13.561	27.129	22.254	1.00	18.72	FRAP
	MOTA	1206	N	HIS	2028	-12.906	25.702	20.665	1.00	11.04	FRAP
	MOTA	1207	Н	HIS	2028	-13.152	25.290	19.807	0.00	0.00	FRAP

PCT/US96/16953 WO 97/15659 MOTA 1208 CA HIS 2028 -11.73525.275 21.412 1.00 10.15 FRAP **ATOM** 1209 CB HIS 2028 -10.92024.282 20.604 1.00 9.23 FRAP MOTA 1210 Œ HIS 2028 -9.821 23.642 21.389 1.00 10.39 FRAP MOTA 1211 CD2 HIS 2028 -9.786 22.484 22.091 1.00 8.51 FRAP 5 **MOTA** 1212 ND1 HIS 2028 -8.575 24.215 21.529 1.00 13.26 FRAP MOTA 1213 HD1 HIS 2028 -8.284 25.084 21.180 0.00 0.00 FRAP MOTA 1214 CE1 HIS 2028 -7.81423.433 22.276 1.00 15.69 FRAP MOTA 1215 NE2 HIS 2028 -8.527 22.629 22.377 1.00 18.29 FRAP MOTA 1216 HE2 HIS 2028 21.579 -8.22123.119 0.00 0.00 FRAP MOTA 1217 C 2028 10 HIS -10.82726.424 21.805 1.00 10.27 FRAP **ATOM** 1218 2028 0 HIS -10.40126.519 22.941 1.00 10.19 FRAP MOTA 1219 N GLU 2029 -10.36027.167 20.817 1.00 19.72 FRAP **MOTA** 1220 Н GLU 2029 -10.688 27.017 19.900 0.00 0.00 FRAP MOTA 1221 GLU 2029 CA -9.43328.257 21.093 1.00 27.56 FRAP 15 MOTA 1222 CB GLU 2029 -8.601 28.592 19.843 1.00 34.06 FRAP MOTA 1223 GLU 2029 Œ -9.401 28.822 18.565 1.00 44.39 FRAP MOTA 1224 \oplus GLU 2029 -8.554 28.678 17.307 1.00 50.63 FRAP **ATOM** 1225 OE1 GLU 2029 -8.624 29.570 16.429 1.00 54.55 FRAP MOTA -7.828 1226 OE2 GLU 2029 27.664 17.191 1.00 51.32 FRAP 20 MOTA C 1227 GLU 2029 -10.133 29.508 21.642 1.00 27.45 FRAP **ATOM** 1228 -9.533 1.00 29.68 0 GLU 2029 30.277 22.392 FRAP **ATOM** 1229 GLY 2030 N -11.43329.634 21.380 1.00 25.66 FRAP **ATOM** 1230 Η **GLY** 2030 -11.84329.093 20.670 0.00 0.00 FRAP MOTA 1231 CA GLY 2030 -12.21430.696 21.997 1.00 21.35 FRAP 25 C MOTA 1232 GLY 2030 -12.30730.538 23.504 1.00 16.02 FRAP MOTA 1233 0 GLY 2030 -11.837 31.390 24.257 1.00 17.01 FRAP MOTA 1234 LEU 2031 -12.76729.368 23.932 N 1.00 11.25 FRAP MOTA 1235 Η LEU 2031 -13.130 28.749 23.264 0.00 0.00 FRAP MOTA 1236 CA LEU 2031 -12.80529.012 25.341 1.00 6.54 FRAP Œ 30 MOTA 1237 LEU 2031 -13.38227.612 25.511 1.00 2.00 FRAP MOTA 1238 α 25.192 2.25 LEU 2031 -14.86927.475 1.00 FRAP MOTA 1239 CD1 LEU 2031 -15.34726.079 25.568 1.00 2.00 FRAP MOTA 1240 CD2 LEU 2031 -15.65628.530 25.936 1.00 2.00 FRAP **ATOM** 1241 C LEU 2031 -11.44129.088 26.024 1.00 10.09 FRAP 35 MOTA 1242 0 LEU 2031 -11.337 29.538 27.168 1.00 16.95 FRAP MOTA 1243 N GLU 2032 -10.38628.657 25.348 1.00 8.34 FRAP **ATOM** 1244 Η GLU 2032 -10.522 28.216 24.483 0.00 0.00 FRAP

28.756

27.986

25.957

25.146

1.00 12.37

1.00 16.26

FRAP

FRAP

-9.068

-8.028

ATOM

MOTA

1245

1246

CA

Œ

GLU

GLU

2032

2032

	MOTA	1247	CG	GLU	2032	-6.692	27.831	25.861	1.00 23.62	FRAP
	MOTA	1248	Ф	GLU	2032	-5.792	26.772	25.235	1.00 30.03	FRAP
	MOTA	1249	OE1	GLU	2032	-4.617	27.092	24.948	1.00 31.98	FRAP
	MOTA	1250	OE2	ŒIJ	2032	-6.241	25.611	25.078	1.00 32.01	FRAP
5	MOTA	1251	C	GLU	2032	-8.629	30.210	26.154	1.00 12.81	FRAP
	MOTA	1252	0	GLU	2032	-8.263	30.588	27.261	1.00 21.81	FRAP
	MOTA	1253	N	GLU	2033	-8.837	31.053	25.147	1.00 11.47	FRAP
	MOTA	1254	H	GLU	2033	-9.243	30.710	24.323	0.00 0.00	FRAP
	MOTA	1255	CA	GLU	2033	-8.462	32.473	25.225	1.00 12.69	FRAP
10	MOTA	1256	СВ	GLU	2033	-8.631	33.140	23.854	1.00 19.44	FRAP
	MOTA	1257	CG	GLU	2033	-7.834	34.437	23.650	1.00 30.82	FRAP
	MOTA	1258	B	GLU	2033	-8.155	35.152	22.319	1.00 42.12	FRAP
	ATOM	1259	OE1	GLU	2033	- 7. 79 3	36.346	22.186	1.00 44.44	FRAP
	MOTA	1260	OE2	GLU	2033	-8.759	34.530	21.408	1.00 39.63	FRAP
15	MOTA	1261	С	GLU	2033	-9.308	33.226	26.254	1.00 10.31	FRAP
	MOTA	1262	0	GTN	2033	-8.808	34.068	26.994	1.00 6.92	FRAP
	MOTA	1263	N	ALA	2034	-10.600	32.933	26.275	1.00 6.18	FRAP
	MOTA	1264	Н	ALA	2034	-10.945	32.334	25.587	0.00 0.00	FRAP
	MOTA	1265	CA	ALA	2034	-11.509	33.572	27.205	1.00 2.76	FRAP
20	MOTA	1266	СВ	ALA	2034	-12.920	33.101	26.943	1.00 2.50	FRAP
	MOTA	1267	С	ALA	2034	-11.101	33.257	28.641	1.00 6.07	FRAP
	ATOM	1268	0	ALA	2034	-10.907	34.157	29.453	1.00 11.33	FRAP
	MOTA	1269	N •	SER	2035	-10.811	31. 9 88	28.903	1.00 8.47	FRAP
	ATOM	1270	Н	SER	2035	-10.871	31.330	28.175	0.00 0.00	FRAP
25	MOTA	1271	CA	SER	2035	-10.482	31.543	30.250	1.00 4.56	FRAP
	MOTA	1272	СВ	SER	2035	-10.357	30.016	30.294	1.00 2.00	FRAP
	MOTA	1273	Œ	SER	2035	-9.012	29.595	30.200	1.00 7.26	FRAP
	MOTA	1274	HG	SER	2035	-8.700	29.696	29.288	0.00 0.00	FRAP
	MOTA	1275	С	SER	2035	-9.201	32.193	30.749	1.00 5.40	FRAP
30	MOTA	1276	0	SER	2035	-9.171	32.734	31.846	1.00 11.51	FRAP
	MOTA	1277	N	ARG	2036	-8.195	32.265	29.886	1.00 3.96	FRAP
	MOTA	1278	H	ARG	2036	-8.314	31.862	28.998	0.00 0.00	FRAP
	MOTA	1279	CA	ARG	2036	-6.934	32.909	30.233	1.00 6.68	FRAP
	MOTA	1280	СВ	ARG	2036	-5.959	32.792	29.065	1.00 7.24	FRAP
35	ATOM	1281	CG	ARG	2036	-4.695	33.631	29.210	1.00 17.54	FRAP
	MOTA	1282	æ	ARG	2036	-4.229	34.185	27.860	1.00 17.93	FRAP
	MOTA	1283	NE	ARG	2036	-3.637	35.515	27.997	1.00 18.57	FRAP
	MOTA	1284	HE	ARG	2036	-2.897	35.626	28.628	0.00 0.00	FRAP
	MOTA	1285	CZ	ARG	2036	-4.055	36.595	27.344	1.00 20.32	FRAP

	MOTA	1286	NH1	ARG	2036	-3.456	37.762	27.540	1.00	24.32	FRAP
	MOTA	1287	HH11	ARG	2036	-2.689	37.827	28.180	0.00	0.00	FRAP
	MOTA	1288	HH12	ARG	2036	-3.766	38.572	27.045	0.00	0.00	FRAP
	MOTA	1289	NH2	ARG	2036	-5.080	36.518	26.505	1.00	20.76	FRAP
5	MOTA	1290	HH21	ARG	2036	-5.564	35.653	26.375	0.00	0.00	FRAP
	MOTA	1291	HH22	ARG	2036	-5.391	37.341	26.030	0.00	0.00	FRAP
	MOTA	1292	С	ARG	2036	-7.110	34.382	30.624	1.00	9.31	FRAP
	ATOM	1293	0	ARG	2036	-6.463	34.872	31.548	1.00	12.91	FRAP
	MOTA	1294	N	LEU	2037	-8.041	35.057	29.964	1.00	10.78	FRAP
10	MOTA	1295	H	LEU	2037	-8.541	34.590	29.261	0.00	0.00	FRAP
	MOTA	1296	CA	LEU	2037	-8.309	36.466	30.214	1.00	8.83	FRAP
	MOTA	1297	CB	LEU	2037	-9.163	37.034	29.084	1.00	9.75	FRAP
	ATOM	1298	CG	LEU	2037	-8.302	37.375	27.873	1.00	8.95	FRAP
	MOTA	1299	CD1	LEU	2037	-9.130	37.388	26.613	1.00	11.32	FRAP
15	MOTA	1300	CD2	LEU	2037	-7.624	38.713	28.110	1.00	7.83	FRAP
	MOTA	1301	С	LEU	2037	-9.004	36.692	31.543	1.00	12.66	FRAP
	MOTA	1302	0	LEU	2037	-8.626	37.583	32.295	1.00	17.85	FRAP
	MOTA	1303	N	TYR	2038	-10.020	35.886	31.832	1.00	11.90	FRAP
	MOTA	1304	Н	TYR	2038	-10.327	35.266	31.130	0.00	0.00	FRAP
20	MOTA	1305	CA	TYR	2038	-10.693	35.930	33.132	1.00	11.68	FRAP
	ATOM	1306	СВ	TYR	2038	-12.006	35.138	33.071	1.00	9.29	FRAP
	ATOM	1307	Œ	TYR	2038	-12.761	35.090	34.375	1.00	12.17	FRAP
	MOTA	1308	CD1	TYR	2038	-12.942	36.239	35.143	1.00	10.58	FRAP
	MOTA	1309	CE1	TYR	2038	-13.555	36.181	36.391	1.00	17.63	FRAP
25	MOTA	1310	CD2	TYR	2038	-13.230	33.880	34.884	1.00	17.46	FRAP
	MOTA	1311	CE2		2038	-13.850	33.810	36.131	1.00	17.47	FRAP
	MOTA	1312	CZ	TYR	2038	-14.006	34.962	36.880	1.00	18.99	FRAP
	MOTA	1313	OH	TYR	2038	-14.596	34.893	38.123	1.00	22.39	FRAP
	MOTA	1314	HH	TYR	2038	-15.321	34.267	38.078	0.00	0.00	FRAP
30	MOTA	1315	С	TYR	2038	_. -9.811	35.403	34.277	1.00	13.86	FRAP
	MOTA	1316	0	TYR	2038	-9.408	36.164	35.158	1.00	17.65	FRAP
	MOTA	1317	N	PHE	2039	-9.481	34.113	34.235	1.00	13.85	FRAP
	MOTA	1318	Н	PHE	2039	-9.764	33.595	33.452	0.00	0.00	FRAP
	MOTA	1319	CA	PHE	2039	-8.717	33.455	35.299	1.00	10.83	FRAP
35	MOTA	1320	CB	PHE	2039	-8.665	31.950	35.054	1.00	2.58	FRAP
	MOTA	1321	CG	PHE	2039	-9.988	31.281	35.235	1.00	6.64	FRAP
	MOTA	1322	CD1		2039	-10.540	31.147	36.510	1.00	4.84	FRAP
	ATOM	1323	CD2	PHE	2039	-10.745	30.902	34.131	1.00	2.79	FRAP
	MOTA	1324	CE1	PHE	2039	-11.828	30.656	36.680	1.00	5.26	FRAP

	MOTA	1325	CE2	PHE	2039	-12.039	30.408	34.292	1.00	2.18	FRAP
	MOTA	1326	CZ	PHE	2039	-12.581	30.287	35.563	1.00	4.94	FRAP
	ATOM	1327	С	PHE	2039	-7.306	33.980	35.460	1.00	14.37	FRAP
	MOTA	1328	0	PHE	2039	-6.861	34.248	36.579	1.00	15.23	FRAP
5	MOTA	1329	N	GLY	2040	-6.619	34.155	34.336	1.00	17.70	FRAP
	MOTA	1330	H	GLY	2040	-7.060	34.013	33.471	0.00	0.00	FRAP
	MOTA	1331	CA	GLY	2040	-5.221	34.544	34.369	1.00	19.07	FRAP
	MOTA	1332	С	GLY	2040	-4.954	36.026	34.561	1.00	19.43	FRAP
	MOTA	1333	0	GLY	2040	-3.957	36.384	35.180	1.00	24.65	FRAP
10	MOTA	1334	N	GLU	2041	-5.815	36.881	34.012	1.00	17.18	FRAP
	MOTA	1335	H	GLU	2041	-6.555	36.502	33.494	0.00	0.00	FRAP
	MOTA	1336	CA	GLU	2041	-5.590	38.328	34.019	1.00	16.74	FRAP
	MOTA	1337	CB	GLU	2041	-5.476	38.867	32.589	1.00	21.26	FRAP
	MOTA	1338	CG	GLU	2041	-5.030	37.856	31.544	1.00	34.57	FRAP
15	ATOM	1339	æ	GLU	2041	-3.792	38.302	30.785	1.00	39.88	FRAP
	MOTA	1340	OE1	GLU	2041	-3.772	39.459	30.303	1.00	41.61	FRAP
	MOTA	1341	OE2	$\mathbf{G}\mathbf{M}$	2041	-2.844	37.489	30.664	1.00	43.16	FRAP
	ATOM	1342	С	GLU	2041	-6.689	39.108	34.733	1.00	16.00	FRAP
	ATOM	1343	0	GTN	2041	-6.754	40.330	34.629	1.00	16.19	FRAP
20	ATOM	1344	N	ARG	2042	-7.626	38.392	35.340	1.00	16.54	FRAP
	ATOM	1345	H	ARG	2042	-7.540	37.419	35.364	0.00	0.00	FRAP
	MOTA	1346	CA	ARG	2042	-8.785	39.011	35.974	1.00	17.30	FRAP
	ATOM	1347	CB	ARG	2042	-8.389	39.691	37.283	1.00	21.74	FRAP
	MOTA	1348	Œ	ARG	2042	-8.704	38.869	38.515	1.00	29.43	FRAP
25	MOTA	1349	Ө	ARG	2042	-7.650	37.815	38.736	1.00	31.60	FRAP
	MOTA	1350	NE	ARG	2042	-6.318	38.396	38.627	1.00	34.93	FRAP
	MOTA	1351	ΗE	ARG	2042	-6.148	39.074	37.940	0.00	0.00	FRAP
	MOTA	1352	CZ	ARG	2042	-5.273	38.026	39.358	1.00	41 .93	FRAP
	MOTA	1353	NH1	ARG	2042	-4.097	38.606	39.146	1.00	43.89	FRAP
30	MOTA	1354	HH11	ARG	2042	-4.011	39.312	38.444	0.00	0.00	FRAP
	MOTA	1355	HH12	ARG	2042	-3.309	38.359	39.710	0.00	0.00	FRAP
	MOTA	1356	NH2	ARG	2042	-5.398	37.089	40.296	1.00	42.95	FRAP
	MOTA	1357	HH21	ARG	2042	-6.289	36.673	40.485	0.00	0.00	FRAP
	MOTA	1358	HH22	ARG	2042	-4.609	36.857	40.865	0.00	0.00	FRAP
35	MOTA	1359	С	ARG	2042	-9.485	40.015	35.074	1.00	15.46	FRAP
	ATOM	1360	0	ARG	2042	-10.031	41.009	35.550	1.00	17.81	FRAP
	MOTA	1361	N	ASN	2043	-9.560	39.689	33.789	1.00	13.57	FRAP
	MOTA	1362	H	ASN	2043	-9.152	38.845	33.525	0.00	0.00	FRAP
	ATOM	1363	CA	ASN	2043	-10.219	40.545	32.805	1.00	12.63	FRAP

	WO 97/1	5659							PC	CT/US96/	16953
	ATOM	1364	СВ	ASN	2043	-9 <i>.</i> 322	40.702	31.567	1.00	9.40	FRAP
	ATOM	1365	œ	ASN	2043	-9.673	41.928	30.734		13.89	FRAP
	ATOM	1366		ASN	2043	-10.778	42.457	30.805		13.79	FRAP
	ATOM	1367		ASN	2043	-8.725	42.382	29.941		19.98	FRAP
5	ATOM	1368			2043	-7.861	41.929	29.933	0.00	0.00	FRAP
Ū	MOTA	1369			2043	-8.951	43.171	29.415	0.00	0.00	FRAP
	MOTA	1370	С	ASN	2043	-11.589	39.985	32.399		11.08	FRAP
	MOTA	1371	0	ASN	2043	-11.704	39.254	31.410		15.73	FRAP
	ATOM	1372	N	VAL	2044	-12.622	40.329	33.164	1.00	7.83	FRAP
10	ATOM	1373	Н	VAL	2044	-12.407	40.817	33.986	0.00	0.00	FRAP
	ATOM	1374	CA	VAL	2044	-13.996	39.930	32.841	1.00	8.89	FRAP
	ATOM	1375	СВ	VAL	2044	-14.942	40.079	34.049	1.00	4.93	FRAP
	ATOM	1376	CG1	VAL	2044	-16.254	39.343	33.783	1.00	2.00	FRAP
	ATOM	1377	CG2	VAL	2044	-14.280	39.541	35.300	1.00	6.55	FRAP
15	ATOM	1378	С	VAL	2044	-14.599	40.724	31.680	1.00	12.31	FRAP
	ATOM	1379	0	VAL	2044	-15.607	40.328	31.111	1.00	16.97	FRAP
	MOTA	1380	N	LYS	2045	-14.013	41.873	31.366	1.00	15.26	FRAP
	MOTA	1381	Н	LYS	2045	-13.326	42.230	31.961	0.00	0.00	FRAP
	MOTA	1382	CA	LYS	2045	-14.387	42.614	30.158	1.00	18.66	FRAP
20	ATOM	1383	СВ	LYS	2045	-13.791	44.027	30.205	1.00	20.39	FRAP
	ATOM	1384	CG	LYS	2045	-13.868	44.787	28.894	1.00	27.87	FRAP
	MOTA	1385	æ	LYS	2045	-12.848	45.913	28.846	1.00	36.04	FRAP
	ATOM	1386	Œ	LYS	2045	-13.013	46.763	27.592	1.00	39.79	FRAP
	MOTA	1387	NZ	LYS	2045	-12.203	48.015	27.646	1.00	42.34	FRAP
25	ATOM	1388	HZ1	LYS	2045	-11.194	47.773	27.696	0.00	0.00	FRAP
	MOTA	1389	HZ2	LYS	2045	-12.477	48.555	28.491	0.00	0.00	FRAP
	MOTA	1390	HZ3	LYS	2045	-12.387	48.579	26.791	0.00	0.00	FRAP
	ATOM	1391	С	LYS	2045	-13.912	41.880	28.890	1.00	15.74	FRAP
	MOTA	1392	0	LYS	2045	-14.697	41.616	27.982	1.00	15.10	FRAP
30	MOTA	1393	N	GLY	2046	-12.640	41.493	28.885	1.00	13.71	FRAP
	MOTA	1394	H	GLY	2046	-12.091	41.759	29.647	0.00	0.00	FRAP
	MOTA	1395	CA	GLY	2046	-12.063	40.767	27.768		11.16	FRAP
	MOTA	1396	С	GLY	2046	-12.716	39.427	27.486		11.68	FRAP
	MOTA	1397	0	GLY	2046	-13.079	39.138	26.350		12.25	FRAP
35	ATOM	1398	N	MET	2047	-12.944	38.632	28.522		14.02	FRAP
	MOTA	1399	H	MET	2047	-12.639	38.911	29.412	0.00	0.00	FRAP
	MOTA	1400	CA	MET	2047	-13.555	37.327	28.317		12.90	FRAP
	MOTA	1401	СВ	MET	2047	-13.571	36.520	29.625	1.00	9.26	FRAP
	MOTA	1402	$^{\infty}$	MET	2047	-14.762	36.725	30.521	1.00	6.02	FRAP

	MOTA	1403	SD	MET	2047	-15.175	35.189	31.335	1.00 6.46	FRAP
	MOTA	1404	Œ	MET	2047	-16.865	35.461	31.714	1.00 4.80	FRAP
	MOTA	1405	С	MET	2047	-14.954	37.413	27.691	1.00 14.99	FRAP
	ATOM	1406	0	MET	2047	-15.275	36.624	26.816	1.00 20.34	FRAP
5	MOTA	1407	N	PHE	2048	-15.710	38.465	28.001	1.00 13.61	FRAP
	MOTA	1408	Н	PHE	2048	-15.410	39.078	28.703	0.00 0.00	FRAP
	ATOM	1409	CA	PHE	2048	-16.992	38.707	27.324	1.00 12.00	FRAP
	MOTA	1410	CB	PHE	2048	-17.754	39.849	28.012	1.00 15.37	FRAP
	MOTA	1411	CG	PHE	2048	-18.356	39.479	29.357	1.00 19.64	FRAP
10	MOTA	1412	CD1	PHE	2048	-18.849	38.201	29.600	1.00 20.36	FRAP
	MOTA	1413	CD2	PHE	2048	-18.506	40.442	30.352	1.00 17.04	FRAP
	MOTA	1414	CE1	PHE	2048	-19.481	37.901	30.806	1.00 12.14	FRAP
	ATOM	1415	CE2	PHE	2048	-19.137	40.138	31.552	1.00 7.86	FRAP
	MOTA	1416	CZ	PHE	2048	-19.623	38.875	31.774	1.00 2.66	FRAP
15	MOTA	1417	С	PHE	2048	-16.785	39.054	25.839	1.00 11.47	FRAP
	ATOM	1418	0	PHE	2048	-17.540	38.619	24.968	1.00 9.57	FRAP
	ATOM	1419	N	GLU	2049	-15.754	39.843	25.558	1.00 10.97	FRAP
	MOTA	1420	Н	GLU	2049	-15.274	40.244	26.315	0.00 0.00	FRAP
	MOTA	1421	CA	GTN	2049	-15.368	40.161	24.189	1.00 12.08	FRAP
20	ATOM	1422	CB	ŒIJ	2049	-14.144	41.090	24.187	1.00 18.49	FRAP
	MOTA	1423	Œ	GIU	2049	-14.432	42.512	24.700	1.00 28.61	FRAP
	MOTA	1424	\Box	ŒIJ	2049	-13.244	43.464	24.566	1.00 32.92	FRAP
	MOTA	1425	OE1	GLU	2049	-13.006	44.240	25.521	1.00 34.23	FRAP
	MOTA	1426	OE2	GLU	2049	-12.598	43.492	23.489	1.00 32.94	FRAP
25	MOTA	1427	С	GLU	2049	-15.072	38.890	23.387	1.00 10.88	FRAP
	MOTA	1428	0	GLU	2049	-15.771	38.579	22.427	1.00 12.08	FRAP
	ATOM	1429	N	VAL	2050	-14.120	38.096	23.862	1.00 10.17	FRAP
	ATOM	1430	H	VAL	2050	-13.667	38.388	24.675	0.00 0.00	FRAP
	MOTA	1431	CA	VAL	2050	-13.800	36.807	23.247	1.00 10.01	FRAP
30	MOTA	1432	CB	VAL	2050	-12.318	36.446	23.457	1.00 6.62	FRAP
	MOTA	1433	CG1	VAL	2050	-11.942	36.639	24.901	1.00 11.08	FRAP
	MOTA	1434	CG2	VAL	2050	-12.039	35.006	22.995	1.00 11.04	FRAP
	MOTA	1435	С	VAL	2050	-14.693	35.680	23.781	1.00 14.92	FRAP
	MOTA	1436	0	VAL	2050	-14.244	34.799	24.529	1.00 20.63	FRAP
35	MOTA	1437	N	LEU	2051	-15.981	35.775	23.454	1.00 12.19	FRAP
	MOTA	1438	H	LEU	2051	-16.263	36.655	23.111	0.00 0.00	FRAP
	MOTA	1439	CA	LEU	2051	-16.971	34.764	23.816	1.00 9.54	FRAP
	MOTA	1440	СВ	LEU	2051	-17.122	34.686	25.336	1.00 8.37	FRAP
	MOTA	1441	∞	LEU	2051	-17.216	33.329	26.046	1.00 8.86	FRAP

PCT/US96/16953 WO 97/15659 ATOM 1442 CD1 LEU 2051 -16.110 32.395 25.592 1.00 5.79 FRAP **ATOM** 1443 CD2 LEU 2051 -17.118 33.550 27.538 1.00 2.00 FRAP MOTA C 1444 LEU 2051 -18.31035.117 23.188 1.00 10.79 FRAP MOTA 1445 0 LEU 2051 -19.05234.237 22.752 1.00 14.03 FRAP 5 MOTA 1446 GLU 2052 Ν -18.562 36.413 23.042 1.00 11.63 FRAP MOTA 1447 GLU 2052 -17.932Η 37.078 23.408 0.00 0.00 FRAP **ATOM** 1448 GLU 2052 CA -19.83736.897 22.525 1.00 13.53 FRAP 1449 Œ GLU 2052 -19.980ATOM 38.399 22.792 1.00 18.53 FRAP MOTA 1450 α GLU 2052 -21.39638.835 23.103 1.00 29.17 FRAP 10 MOTA 1451 Θ GLU 2052 -21.53040.343 23.220 1.00 34.41 FRAP MOTA 1452 OE1 GLU 2052 -22.567 40.884 22.772 1.00 39.61 FRAP MOTA 1453 OE2 GLU 2052 -20.605 40.987 23.766 1.00 36.83 FRAP MOTA 1454 C GLU 2052 -20.059 36.587 21.044 1.00 9.88 FRAP MOTA 1455 0 GLU 2052 -21.045 35.948 20.693 1.00 11.10 FRAP 15 **MOTA** 1456 N PRO 2053 -19.085 36.922 20.175 9.83 1.00 FRAP **ATOM** 1457 PRO 2053 Θ -18.10438.004 20.386 1.00 7.70 FRAP MOTA 1458 CA PRO 2053 -18.97836.374 18.814 1.00 9.97 FRAP MOTA 1459 Œ PRO 2053 -17.53736.674 18.444 1.00 12.18 FRAP MOTA 1460 CG PRO 2053 -17.265 37.981 19.139 1.00 11.41 FRAP 20 MOTA 1461 С PRO 2053 -19.301 34.882 18.639 1.00 11.69 FRAP MOTA 1462 0 PRO 2053 -20.15734.520 17.837 1.00 15.54 FRAP MOTA 1463 N LEU 2054 -18.58834.021 19.362 1.00 12.26 FRAP **ATOM** 1464 Η LEU 2054 -17.89434.386 19.944 0.00 0.00 FRAP MOTA 1465 LEU 2054 CA -18.81332.574 19.304 1.00 7.01 FRAP 25 MOTA 1466 Œ LEU 2054 -17.89731.859 20.296 1.00 2.00 FRAP **MOTA** 1467 Œ LEU 2054 -16.43132.303 20.307 1.00 2.00 FRAP MOTA 1468 CD1 LEU 2054 -15.60331.503 21.299 1.00 2.00 FRAP MOTA 1469 CD2 LEU 2054 -15.87332.146 18.921 1.00 12.00 FRAP MOTA 1470 C LEU 2054 -20.26732.247 19.621 1.00 6.82 FRAP 30 ATOM 1471 0 LEU 2054 -20.928 31.510 18.895 7.84 1.00 FRAP MOTA 1472 HIS 2055 N -20.805 32.908 20.632 1.00 4.28 FRAP MOTA 1473 Н HIS 2055 -20.24133.532 21.142 0.00 0.00 FRAP MOTA 1474 HIS 2055 CA -22.20532.716 20.965 1.00 5.58 FRAP MOTA 1475 Œ HIS 2055 -22.533 33.366 22.310 1.00 5.95 FRAP 35 MOTA 1476 $^{\circ}$ HIS 2055 -22.23732.495 23.491 1.00 2.00 FRAP MOTA 1477 CD2 HIS 2055 -21.136 32.399 24.270 1.00 2.00 FRAP MOTA 1478 ND1 HIS 2055 -23.118 31.542 23.952 1.00 2.00 FRAP ATOM 1479 HD1 HIS 2055 -24.025 31.364 23.581 0.00 0.00 FRAP MOTA 1480 CE1 HIS 2055 30.891 -22.56924.960 1.00 2.00 FRAP

	MOTA	1481	NE2	HIS	2055	-21.362	31.384	25.166	1.00 3.10	FRAP
	MOTA	1482	HE2	HIS	2055	-20.608	30.877	25.532	0.00 0.00	FRAP
	MOTA	1483	С	HIS	2055	-23.118	33.276	19.884	1.00 8.31	FRAP
	MOTA	1484	0	ĦЗ	2055	-24.215	32.765	19.667	1.00 14.91	FRAP
5	ATOM	1485	N	ALA	2056	-22.644	34.290	19.170	1.00 10.33	FRAP
	ATOM	1486	Н	ALA	2056	-21.767	34.651	19.397	0.00 0.00	FRAP
	MOTA	1487	CA	ALA	2056	-23.442	34.935	18.130	1.00 10.51	FRAP
	MOTA	1488	СВ	ALA	2056	-22.729	36.161	17.619	1.00 9.92	FRAP
	ATOM	1489	С	ALA	2056	-23.731	33.985	16.974	1.00 14.24	FRAP
10	MOTA	1490	0	ALA	2056	-24.885	33.829	16.556	1.00 17.21	FRAP
	MOTA	1491	N	MET	2057	-22.680	33.340	16.476	1.00 11.79	FRAP
	MOTA	1492	H	MET	2057	-21.792	33.596	16.814	0.00 0.00	FRAP
	ATOM	1493	CA	MET	2057	-22.810	32.294	15.469	1.00 15.13	FRAP
	MOTA	1494	CB	MET	2057	-21.452	31.642	15.231	1.00 17.94	FRAP
15	MOTA	1495	CG	MET	2057	-20.692	32.266	14.087	1.00 27.92	FRAP
	ATOM	1496	SD	MET	2057	-18.979	31.767	14.037	1.00 39.79	FRAP
	MOTA	1497	Œ	MET	2057	-18.164	33.353	14.482	1.00 41.99	FRAP
	MOTA	1498	С	MET	2057	-23.842	31.222	15.834	1.00 17.76	FRAP
	MOTA	1499	0	MET	2057	-24.808	31.000	15.100	1.00 16.63	FRAP
20	MOTA	1500	N	MET	2058	-23.679	30.615	17.005	1.00 20.22	FRAP
	MOTA	1501	H	MET	2058	-22.898	30.870	17.543	0.00 0.00	FRAP
	MOTA	1502	CA	MET	2058	-24.617	29.603	17.489	1.00 21.71	FRAP
	MOTA	1503	CB	MET	2058	-24.359	29.323	18.969	1.00 20.36	FRAP
	MOTA	1504	CG	MET	2058	-22.991	28.760	19.256	1.00 15.47	FRAP
25	MOTA	1505	SD	MET	2058	-22.714	27.281	18.302	1.00 20.16	FRAP
	MOTA	1506	Œ	MET	2058	-23.353	26.049	19.380	1.00 12.03	FRAP
	MOTA	1507	С	MET	2058	-26.074	30.032	17.295	1.00 25.10	FRAP
	MOTA	1508	0	MET	2058	-26.865	29.330	16.659	1.00 28.18	FRAP
	MOTA	1509	N	GLU	2059	-26.375	31.246	17.742	1.00 25.58	FRAP
30	MOTA	1510	H	GTN	2059	-25.654	31.794	18.125	0.00 0.00	FRAP
	MOTA	1511	CA	GLU	2059	-27.725	31.798	17.694	1.00 26.53	FRAP
	ATOM	1512	СВ	GIN	2059	-27.759	33.099	18.504	1.00 26.67	FRAP
	ATOM	1513	CG	GLU	2059	-29.007	33.941	18.330	1.00 28.36	FRAP
	ATOM	1514	æ	GLU	2059	-28.701	35.344	17.828	1.00 34.40	FRAP
35	MOTA	1515	OE1	GLU	2059	-27.515	35.648	17.560	1.00 37.80	FRAP
	ATOM	1516	OE2	GLU	2059	-29.653	36.146	17.699	1.00 36.02	FRAP
	ATOM	1517	C	GLU	2059	-28.224	32.039	16.261	1.00 24.75	FRAP
	MOTA	1518	0	GLU	2059	-29.425	32.148	16.022	1.00 24.66	FRAP
	MOTA	1519	N	ARG	2060	-27.303	32.057	15.307	1.00 23.58	FRAP

	WO 9'	7/15659							PCT/US96/	169 5 3
	MOTA	1520	н	ARG	2060	-26.365	31.985	15.562	0.00 0.00	FRAP
	ATOM	1521	. CA	ARG	2060	-27.660	32.296	13.914	1.00 27.89	FRAP
	ATOM	1522	CB	ARG	2060	-26.547	33.091	13.224	1.00 31.68	FRAP
	MOTA	1523	Œ	ARG	2060	-26.338	34.497	13.808	1.00 33.63	FRAP
5	ATOM	1524	CD	ARG	2060	-27.275	35.527	13.173	1.00 36.15	FRAP
	ATOM	1525	NE	ARG	2060	-28.381	35.927	14.046	1.00 35.55	FRAP
	MOTA	1526	HE	ARG	2060	-28.189	36.558	14.770	0.00 0.00	FRAP
	ATOM	1527	CZ	ARG	2060	-29.635	35.492	13.924	1.00 37.00	FRAP
	MOTA	1528	NH1	ARG	2060	-30.590	35.982	14.704	1.00 38.84	FRAP
10	MOTA	1529	HH11	ARG	2060	-30.376	36.677	15.389	0.00 0.00	FRAP
	MOTA	1530	HH12	ARG	2060	-31.526	35.646	14.601	0.00 0.00	FRAP
	MOTA	1531	NH2	ARG	2060	-29.933	34.533	13.057	1.00 33.57	FRAP
	ATOM	1532	HH21	ARG	2060	-29.220	34.125	12.486	0.00 0.00	FRAP
	ATOM	1533	HH22	ARG	2060	-30.874	34.210	12.967	0.00 0.00	FRAP
15	MOTA	1534	С	ARG	2060	-27.992	31.021	13.117	1.00 26.90	FRAP
	MOTA	1535	0	ARG	2060	-28.925	31.013	12.317	1.00 26.30	FRAP
	MOTA	1536	N	GLY	2061	-27.246	29.945	13.351	1.00 27.44	FRAP
	ATOM	1537	Н	GLY	2061	-26.500	30.030	13.976	0.00 0.00	FRAP
	MOTA	1538	CA	GLY	2061	-27.597	28.662	12.758	1.00 23.84	FRAP
20	MOTA	1539	С	GLY	2061	-26.442	27.751	12.361	1.00 25.08	FRAP
	MOTA	1540	0	GLY	2061	-25.500	28.198	11.690	1.00 29.79	FRAP
	MOTA	1541	N	PRO	2062	-26.516	26.448	12.695	1.00 21.10	FRAP
	ATOM	1542	B	PRO	2062	-27.590	25.836	13.489	1.00 18.97	FRAP
	MOTA	1543	CA	PRO	2062	-25.740	25.433	11.976	1.00 19.45	FRAP
25	ATOM	1544	CB	PRO	2062	-26.204	24.110	12.585	1.00 14.25	FRAP
	MOTA	1545	CG	PRO	2062	-27.072	24.467	13.734	1.00 14.98	FRAP
	MOTA	1546	С	PRO	2062	-26.051	25.463	10.487	1.00 21.95	FRAP
	ATOM	1547	0	PRO	2062	-27.208	25.349	10.085	1.00 26.38	FRAP
	ATOM	1548	N	GLN	2063	-25.048	25.729	9.670	1.00 21.33	FRAP
30	MOTA	1549	H	GLN	2063	-24.240	26.065	10.056	0.00 0.00	FRAP
	MOTA	1550	CA	GLN	2063	-25.258	25.668	8.224	1.00 22.88	FRAP
	ATOM	1551	СВ	GLN	2063	-24.384	26.700	7.510	1.00 25.75	FRAP
	ATOM	1552		GLN	2063	-25.131	27.922	7.002	1.00 30.23	FRAP
25	ATOM	1553		GLN	2063	-24.186	29.035	6.545	1.00 37.47	FRAP
35	ATOM	1554		GLN	2063	-23.139	28.776	5.945	1.00 42.91	FRAP
	ATOM	1555		GLN	2063	-24.556	30.280	6.822	1.00 34.40	FRAP
	ATOM		HE21		2063	-25.396	30.488	7.270	0.00 0.00	FRAP
	MOTA		HE22		2063	-23.899	30.917	6.484	0.00 0.00	FRAP
	MOTA	1558	Ċ.	GIN	2063	-24.930	24.278	7.701	1.00 19.53	FRAP

	MOTA	1559	0	GLN	2063	-25.781	23.568	7.181	1.00	22.10	FRAP
	MOTA	1560	N	THR	2064	-23.685	23.880	7.897	1.00	16.77	FRAP
	MOTA	1561	Н	THR	2064	-23.114	24.477	8.406	0.00	0.00	FRAP
	MOTA	1562	CA	THR	2064	-23.220	22.593	7.423	1.00	17.61	FRAP
5	MOTA	1563	CB	THR	2064	-21.689	22.551	7.414	1.00	18.02	FRAP
	MOTA	1564	∞ 1	THR	2064	-21.213	22.465	8.763	1.00	16.37	FRAP
	MOTA	1565	HG1	THR	2064	-21.145	21.529	8.956	0.00	0.00	FRAP
	MOTA	1566	CG2	THR	2064	-21.128	23.812	6.763	1.00	19.18	FRAP
	MOTA	1567	С	THR	2064	-23.743	21.471	8.322	1.00	17.50	FRAP
10	MOTA	1568	0	THR	2064	-24.272	21.725	9.402	1.00	19.82	FRAP
	MOTA	1569	N	LEU	2065	-23.481	20.231	7.922	1.00	17.20	FRAP
	MOTA	1570	Н	LEU	2065	-23.146	20.079	7.018	0.00	0.00	FRAP
	MOTA	1571	CA	LEU	2065	-23.813	19.063	8.731	1.00	13.79	FRAP
	MOTA	1572	CB	LEU	2065	-23.667	17.808	7.879	1.00	17.73	FRAP
15	MOTA	1573	CG	LEU	2065	-24.909	16.954	7.614	1.00	18.83	FRAP
	MOTA	1574	CD1	LEU	2065	-26.158	17.819	7.466	1.00	19.10	FRAP
	MOTA	1575	CD2	LEU	2065	-24.658	16.129	6.365	1.00	14.71	FRAP
	MOTA	1576	С	LEU	2065	-22.940	18.949	9.988	1.00	13.22	FRAP
	MOTA	1577	0	LEU	2065	-23.445	18.670	11.070	1.00	12.57	FRAP
20	MOTA	1578	N	LYS	2066	-21.649	19.264	9.848	1.00	9.29	FRAP
	MOTA	1579	H	LYS	2066	-21.297	19.271	8.935	0.00	0.00	FRAP
	MOTA	1580	CA	LYS	2066	-20.707	19.308	10.976	1.00	8.13	FRAP
	MOTA	1581	СВ	LYS	2066	-19.297	19.636	10.475	1.00	2.00	FRAP
	MOTA	1582	CG	LYS	2066	-18.442	18.438	10.157	1.00	2.00	FRAP
25	MOTA	1583	\Box	LYS	2066	-17.028	18.870	9.846	1.00	2.00	FRAP
	MOTA	1584	Œ	LYS	2066	-16.122	17.672	9.553	1.00	9.62	FRAP
	MOTA	1585	NZ	LYS	2066	-16.549	16.861	8.378	1.00	5.28	FRAP
	MOTA	1586	HZ1	LYS	2066	-16.491	17.449	7.520	0.00	0.00	FRAP
	MOTA	1587	HZ2	LYS	2066	-17.527	16.533	8.514	0.00	0.00	FRAP
30	MOTA	1588	HZ3	LYS	2066	-15.912	16.043	8.283	0.00	0.00	FRAP
	MOTA	1589	С	LYS	2066	-21.072	20.317	12.070	1.00	11.53	FRAP
	MOTA	1590	0	LYS	2066	-20.704	20.148	13.226	1.00	16.33	FRAP
	MOTA	1591	N	GLU	2067	-21.548	21.479	11.646	1.00	14.92	FRAP
	MOTA	1592	Н	GLU	2067	-21.556	21.672	10.692	0.00	0.00	FRAP
35	ATCM	1593	CA	GLU	2067	-21.998	22.508	12.569	1.00	15.78	FRAP
	ATCM	1594	СВ	am	2067	-22.143	23.842	11.835	1.00	22.50	FRAP
	MOTA	1595	∞	GLU	2067	-20.877	24.292	11.105	1.00	25.09	FRAP
	MOTA	1596	Ð	GLU	2067	-21.032	25.619	10.365	1.00	25.97	FRAP
	MOTA	1597	OE1	GLU	2067	-22.161	26.174	10.309	1.00	16.81	FRAP

	WO 97	7/15659							PCT/US96/	16953
	ATOM	1598	OE2	giu	2067	-20.002	26.108	9.844	1.00 26.65	FRAP
	ATOM	1599	С	ŒIJ	2067	-23.336	22.108	13.173	1.00 19.42	FRAP
	MOTA	1600	0	GLU	2067	-23.693	22.562	14.260	1.00 22.50	FRAP
	MOTA	1601	N	THR	2068	-24.096	21.300	12.435	1.00 19.36	FRAP
5	MOTA	1602	Н	THR	2068	-23.847	21.150	11.501	0.00 0.00	FRAP
	ATOM	1603	CA	THR	2068	-25.345	20.731	12.940	1.00 18.73	FRAP
	ATOM	1604	СВ	THR	2068	-26.140	20.025	11.809	1.00 14.88	FRAP
	ATOM	1605	Œ1	THR	2068	-26.656	21.013	10.912	1.00 16.48	FRAP
	MOTA	1606	HG1	THR	2068	-25.961	21.423	10.376	0.00 0.00	FRAP
10	MOTA	1607	CG2	THR	2068	-27.317	19.239	12.370	1.00 13.69	FRAP
	ATOM	1608	С	THR	2068	-25.120	19.751	14.100	1.00 20.11	FRAP
	MOTA	1609	0	THR	2068	-25.625	19.971	15.204	1.00 24.18	FRAP
	MOTA	1610	N	SER	2069	-24.303	18.724	13.879	1.00 15.42	FRAP
	MOTA	1611	H	SER	2069	-23.872	18.626	13.000	0.00 0.00	FRAP
15	MOTA	1612	CA	SER	2069	-24.066	17.701	14.898	1.00 11.92	FRAP
	MOTA	161 3	CB	SER	2069	-23.234	16.555	14.315	1.00 3.97	FRAP
	MOTA	1614	∞	SER	2069	-21.951	16.993	13.917	1.00 2.00	FRAP
	MOTA	1615	HG	SER	2069	-21.427	16.200	13.756	0.00 0.00	FRAP
	ATOM	1616	С	SER	2069	-23.404	18.243	16.180	1.00 14.81	FRAP
20	MOTA	1617	0	SER	2069	-23.865	17.962	17.295	1.00 17.69	FRAP
	ATOM	1618	N	PHE	2070	-22.371	19.070	16.018	1.00 12.68	FRAP
	ATOM	1619	Н	PHE	2070	-21:960	19.083	15.126	0.00 0.00	FRAP
	ATOM	1620	CA	PHE	2070	-21.786	19.831	17.132	1.00 6.20	FRAP
	MOTA	1621	СВ	PHE	2070	-20.732	20.811	16.607	1.00 5.44	FRAP
25	MOTA	1622	CC	PHE	2070	-20.154	21.726	17.656	1.00 2.00	FRAP
	MOTA	1623	CD1	PHE	2070	-18.861	21.521	18.130	1.00 2.00	FRAP
	MOTA	1624	CD2	PHE	2070	-20.857	22.848	18.092	1.00 2.00	FRAP
	MOTA	1625		PHE	2070	-18.272	22.419	19.016	1.00 2.00	FRAP
	MOTA	1626	CE2	PHE	2070	-20.283	23.748	18.980	1.00 2.00	FRAP
30	MOTA	1627	CZ	PHE	2070	-18.985	23.534	19.441	1.00 2.00	FRAP
	MOTA	1628	С	PHE	2070	-22.856	20.601	17.888	1.00 2.60	FRAP
	MOTA	1629	0	PHE	2070	-22.752	20.790	19.082	1.00 7.27	FRAP
	ATOM	1630	N	ASN	2071	-23.836	21.135	17.182	1.00 2.01	FRAP
	ATOM	1631	H	ASN	2071	-23.831	21.076	16.202	0.00 0.00	FRAP
35	MOTA	1632		ASN	2071	-24.876	21.880	17.851	1.00 2.00	FRAP
	MOTA	1633		ASN	2071	-25.689	22.675	16.841	1.00 7.02	FRAP
	ATOM	1634		ASN	2071	-26.604	23.677	17.501	1.00 8.30	FRAP
	ATOM	1635	OD1		2071	-27.805	23.463	17.602	1.00 11.66	FRAP
	MOTA	1636	ND2	ASN	2071	-26.035	24.766	17.987	1.00 12.66	FRAP

	ATOM	1637	HD21	ASN	2071	-25.081	24.904	17.878	0.00 0.	00 FRAP
	MOTA	1638	HD22	ASN	2071	-26.665	25.370	18.419	0.00 0.	00 FRAP
	MOTA	1639	С	ASN	2071	-25.784	20.959	18.646	1.00 4.	16 FRAP
	MOTA	1640	0	ASN	2071	-26.258	21.328	19.711	1.00 10.	87 FRAP
5	MOTA	1641	N	GLN	2072	-25.998	19.747	18.143	1.00 8.	02 FRAP
	MOTA	1642	H	GLN	2072	-25.642	19.564	17.247	0.00 0.	00 FRAP
	MOTA	1643	CA	GLN	2072	-26.801	18.741	18.845	1.00 8.	00 FRAP
	MOTA	1644	СВ	GLN	2072	-27.061	17.554	17.934	1.00 2.	00 FRAP
	MOTA	1645	CG	GLN	2072	-28.010	17.884	16.798	1.00 6.	79 FRAP
10	ATOM	1646	Θ	GLN	2072	-27.941	16.881	15.665	1.00 8.	96 FRAP
	MOTA	1647	OE1	GLN	2072	-27.006	16.088	15.570	1.00 4.	92 FRAP
	MOTA	1648	NE2	GLN	2072	-28.940	16.908	14.798	1.00 6.	99 FRAP
	MOTA	1649	HE21	GLN	2072	-29.659	17.557	14.919	0.00 0.	00 FRAP
	MOTA	1650	HE22	GLN	2072	-28.875	16.258	14.072	0.00 0.	00 FRAP
15	MOTA	1651	С	GLN	2072	-26.101	18.262	20.103	1.00 12.	51 FRAP
	MOTA	1652	0	GLN	2072	-26.693	18.224	21.178	1.00 19.	60 FRAP
	MOTA	1653	N	ALA	2073	-24.795	18.054	19.978	1.00 14.	16 FRAP
	MOTA	1654	Н	ALA	2073	-24.426	18.142	19.081	0.00 0.	00 FRAP
	MOTA	1655	CA	ALA	2073	-23.940	17.625	21.077	1.00 14.	24 FRAP
20	MOTA	1656	CB	ALA	2073	-22.583	17.223	20.518	1.00 15.	34 FRAP
	MOTA	1657	С	ALA	2073	-23.756	18.666	22.196	1.00 15.	13 FRAP
	MOTA	1658	0	ALA	2073	-24,013	18.383	23.369	1.00 18.	26 FRAP
	MOTA	1659	N	TYR	2074	-23.228	19.834	21.832	1.00 12.	69 FRAP
•	MOTA	1660	Н	TYR	2074	-23.091	19.988	20.874	0.00 0.	00 FRAP
25	MOTA	1661	CA	TYR	2074	-22.791	20.842	22.796	1.00 8.	11 FRAP
	ATOM	1662	Œ	TYR	2074	-21.330	21.206	22.547	1.00 3.	13 FRAP
	MOTA	1663	CG	TYR	2074	-20.444	20.034	22.216	1.00 8.	31 FRAP
	MOTA	1664	CD1	TYR	2074	-19.990	19.839	20.918	1.00 10.	92 FRAP
	ATOM	1665	CE1	TYR	2074	-19.160	18.772	20.591	1.00 12.	41 FRAP
30	MOTA	1666	CD2	TYR	2074	-20.045	19.124	23.197	1.00 11.	16 FRAP
	MOTA	1667	CE2	TYR	2074	-19.205	18.050	22.882	1.00 12.	75 FRAP
	MOTA	1668	CZ	TYR	2074	-18.771	17.886	21.569	1.00 12.	54 FRAP
	MOTA	1669	OH	TYR	2074	-17.960	16.836	21.215	1.00 21.	64 FRAP
	MOTA	1670	HH	TYR	2074	-17.868	16.773	20.266	0.00 0.	00 FRAP
35	MOTA	1671	С	TYR	2074	-23.618	22.128	22.804	1.00 8.	66 FRAP
	MOTA	1672	0	TYR	2074	-23.291		23.509	1.00 9.	77 FRAP
	MOTA	1673	N	GLY	2075	-24.714	22.153	22.063	1.00 10.	37 FRAP
	MOTA	1674	H	GLY	2075	-24.997	21.355	21.565		00 FRAP
	MOTA	1675	CA	GLY	2075	-25.478	23.380	21.946	1.00 12.	34 FRAP

	WO 97/	15659							P	CT/US96	/16953
	ATOM	1676	С	GLY	2075	-26.130	23.796	23.246	1.00	17.07	FRAP
	ATOM	1677	0	GLY	2075	-26.010	24.946	23.660	1.00	24.52	FRAP
	ATOM	1678	N	ARG	2076	-26.770	22.843	23.921	1.00	19.49	FRAP
	ATOM	1679	Н	ARG	2076	-26.782	21.950	23.516	0.00	0.00	FRAP
5	ATOM	1680	CA	ARG	2076	-27 . 47 6	23.089	25.187	1.00	16.21	FRAP
	MOTA	1681	СВ	ARG	2076	-28.162	21.794	25.651	1.00	17.61	FRAP
	MOTA	1682	Œ	ARG	2076	-28.703	21.826	27.072	1.00	25.98	FRAP
	ATOM	1683	В	ARG	2076	-29.913	20.929	27.228	1.00	33.40	FRAP
	MOTA	1684	NE	ARG	2076	-31.135	21.578	26.754	1.00	44.19	FRAP
10	MOTA	1685	HE	ARG	2076	-31.060	22.233	26.029	0.00	0.00	FRAP
	MOTA	1686	CZ	ARG	2076	-32.351	21.341	27.241	1.00	50.69	FRAP
	MOTA	1687	NH1	ARG	2076	-33.396	22.014	26.769	1.00	53.46	FRAP
	MOTA	1688	HH11	ARG	2076	-33.274	22.698	26.051	0.00	0.00	FRAP
	MOTA	1689	HH1 2	ARG	2076	-34.308	21.839	27.144	0.00	0.00	FRAP
15	MOTA	1690	NH2	ARG	2076	-32.532	20.415	28.180	1.00	51.70	FRAP
	MOTA	1691	HH21	ARG	2076	-31.750	19.895	28.525	0.00	0.00	FRAP
	MOTA	1692	HH22	ARG	2076	-33.446	20.249	28.551	0.00	0.00	FRAP
	MOTA	1693	С	ARG	2076	-26.574	23.640	26.305	1.00	11.79	FRAP
	MOTA	1694	0	ARG	2076	-26.861	24.680	26.885	1.00	11.52	FRAP
20	MOTA	1695	N	ASP	2077	-25.490	22.936	26.604	1.00	8.15	FRAP
	MOTA	1696	Н	ASP	2077	-25.346	22.086	26.144	0.00	0.00	FRAP
	ATOM	1697	CA	ASP	2077	-24.526	23.394	27.594	1.00	6.48	FRAP
	MOTA	1698	СВ	ASP	2077	-23.332	22.448	27.637	1.00	5.61	FRAP
	MOTA	1699	CG	ASP	2077	-23.615	21.196	28.425	1.00	10.00	FRAP
25	MOTA	1700	OD1	ASP	2077	-24.726	21.096	28. 99 9	1.00	9.97	FRAP
	MOTA	1701	OD2	ASP	2077	-22.724	20.317	28.479	1.00	12.06	FRAP
	MOTA	1702	С	ASP	2077	-24.035	24.809	27.331	1.00	8.55	FRAP
	MOTA	1703	0	ASP	2077	-24.126	25.669	28.201		13.05	FRAP
	MOTA	1704	N	LEU	2078	-23.544	25.058	26.123	1.00	6.49	FRAP
30	MOTA	1705	H	LEU	2078	-23.477	24.330	25.469	0.00	0.00	FRAP
	MOTA	1706	CA	LEU	2078	-23.064	26.386	25.752	1.00	4.74	FRAP
	MOTA	1707	CB	LEU	2078	-22.495	26.364	24.333	1.00	3.18	FRAP
	MOTA	1708	CG	LEU	2078	-21.161	25.653	24.084	1.00	2.91	FRAP
	MOTA	1709		LEU	2078	-20.928	25.574	22.593	1.00	2.37	FRAP
35	MOTA	1710		LEU	2078	-20.010	26.387	24.764	1.00	2.00	FRAP
	MOTA	1711	С	LEU	2078	-24.146	27.466	25.862	1.00	4.72	FRAP
	MOTA	1712	0	LEU	2078	-23.847	28.626	26.118	1.00	2.64	FRAP
	MOTA	1713	И	MET	2079	-25.401	27.091	25.651	1.00	7.76	FRAP
	MOTA	1714	H	MET	2079	-25.579	26.181	25.326	0.00	0.00	FRAP

	***************************************	13037							101/00/00	
	MOTA	1715	CA	MET	2079	-26.507	28.022	25.850	1.00 14.65	FRAP
	MOTA	1716	CB	MET	2079	-27.803	27.434	25.295	1.00 18.67	FRAP
	MOTA	1717	CG	MET	2079	-28.999	28.367	25.363	1.00 25.96	FRAP
	MOTA	1718	SD	MET	2079	-29.718	28.677	23.724	1.00 40.57	FRAP
5	MOTA	1719	Œ	MET	2079	-30.358	27.004	23.294	1.00 36.64	FRAP
	MOTA	1720	С	MET	2079	-26.686	28.344	27.330	1.00 17.59	FRAP
	MOTA	1721	0	MET	2079	-26.714	29.505	27.716	1.00 21.68	FRAP
	MOTA	1722	N	ŒIJ	2080	-26.769	27.308	28.158	1.00 18.54	FRAP
	MOTA	1723	H	GLU	2080	-26.733	26.408	27.770	0.00 0.00	FRAP
10	MOTA	1724	CA	GLU	2080	-26.928	27.477	29.599	1.00 18.17	FRAP
	MOTA	1725	СВ	GLU	2080	-27.006	26.111	30.286	1.00 24.46	FRAP
	MOTA	1726	Œ	GLU	2080	-27.581	26.144	31.708	1.00 33.04	FRAP
	MOTA	1727	B	GT U	2080	-27.199	24.914	32.530	1.00 37.28	FRAP
	MOTA	1728	OE1	GLU	2080	-26.827	25.080	33.714	1.00 39.48	FRAP
15	MOTA	1729	OE2	GTU	2080	-27.253	23.783	31.991	1.00 40.40	FRAP
	MOTA	1730	С	GLU	2080	-25.773	28.284	30.191	1.00 16.44	FRAP
	MOTA	1731	0	GLU	2080	-25.995	29.230	30.940	1.00 17.68	FRAP
	MOTA	1732	N	ALA	2081	-24.555	27.981	29.756	1.00 15.30	FRAP
	MOTA	1733	H	ALA	2081	-24.449	27.180	29.211	0.00 0.00	FRAP
20	MOTA	1734	CA	ALA	2081	-23.375	28.743	30.149	1.00 12.75	FRAP
	MOTA	1735	СВ	ALA	2081	-22.163	28.263	29.373	1.00 8.47	FRAP
	MOTA	1736	С	ALA	2081	-23.591	30.233	29.912	1.00 14.17	FRAP
•	MOTA	1737	0	ALA	2081	-23.284	31.057	30.767	1.00 17.02	FRAP
	MOTA	1738	N	GIN	2082	-24.253	30.560	28.809	1.00 16.91	FRAP
25	MOTA	1739	H	GLN	2082	-24.566	29.833	28.233	0.00 0.00	FRAP
	MOTA	1740	CA	GLN	2082	-24.557	31.948	28.477	1.00 18.00	FRAP
	MOTA	1741	CB	GLN	2082	-25.085	32.032	27.048	1.00 22.74	FRAP
	MOTA	1742	CG	GLN	2082	-25.879	33.280	26.739	1.00 26.79	FRAP
	MOTA	1743	8	GLN	2082	-26.176	33.408	25.268	1.00 31.68	FRAP
30	MOTA	1744	OE1	GLN	2082	-25.360	33.930	24.509	1.00 29.64	FRAP
	MOTA	1745	NE2	GLN	2082	-27.299	32.846	24.838	1.00 31.52	FRAP
	MOTA	1746	HE21	GLN	2082	-27.890	32.386	25.460	0.00 0.00	FRAP
	MOTA	1747	HE22	GLN	2082	-27.467	32.967	23.886	0.00 0.00	FRAP
	MOTA	1748	С	GLN	2082	-25.558	32.584	29.439	1.00 17.54	FRAP
35	MOTA	1749	0	GLN	2082	-25.442	33.759	29.768	1.00 19.50	FRAP
	MOTA	1750	N	GLU	2083	-26.551	31.819	29.875	1.00 18.34	FRAP
	MOTA	1751	Н	GTN	2083	-26.603	30.892	29.552	0.00 0.00	FRAP
	MOTA	1752	CA	GLU	2083	-27.523	32.342	30.826	1.00 19.36	FRAP
	MOTA	1753	СВ	ŒW	2083	-28.680	31.362	31.021	1.00 26.08	FRAP

PCT/US96/16953 WO 97/15659 2083 -29.80231.897 31.915 1.00 40.13 MOTA 1754 CG GLU FRAP -30.388GLU 2083 33.226 31.428 1.00 46.90 FRAP MOTA 1755 Θ 2083 34.207 MOTA 1756 OE1 GLU -30.39232.209 1.00 48.07 FRAP OE2 GLU 2083 -30.87833.280 30.279 1.00 52.86 MOTA 1757 FRAP 2083 -26.86332.651 1.00 13.37 5 MOTA 1758 C GLU 32.166 FRAP 2083 -27.10233.701 32.747 MOTA 1759 0 GLU 1.00 17.15 FRAP 2084 -25.915 **ATOM** 1760 N TRP 31.817 32.563 1.00 6.62 FRAP **ATOM** 1761 Η TRP 2084 -25.769 30.992 32.047 0.00 0.00 FRAP 2084 -25.13932.069 1.00 **ATOM** 1762 CA TRP 33.761 3.33 FRAP 2084 -24.19010 MOTA 1763 CB TRP 30.914 34.037 1.00 5.07 FRAP **ATOM** 1764 α TRP 2084 -24.87929.734 34.575 1.00 6.00 FRAP **MOTA** 1765 CD2 TRP 2084 -25.606 29.664 35.801 1.00 10.76 FRAP MOTA 1766 CE2 TRP 2084 -26.292 28.433 35.807 1.00 14.65 FRAP 2084 -25.765ATOM 1767 CE3 TRP 30.533 36.887 1.00 9.81 FRAP CD1 TRP 33.924 15 MOTA 1768 2084 -25.11028.564 1.00 10.88 FRAP MOTA 1769 NE1 TRP 2084 -25.97227.781 34.646 1.00 17.13 FRAP 26.972 2084 -26.397 MOTA 1770 HE1 TRP 34.309 0.00 0.00 FRAP 1.00 14.61 **ATOM** 1771 CZ2 TRP 2084 -27.12928.050 36.853 FRAP -26.5971.00 11.54 MOTA 1772 CZ3 TRP 2084 30.156 37.923 FRAP 1.00 16.36 20 ATOM 1773 CH2 TRP 2084 -27.27228.924 37.899 FRAP 2084 -24.34833.355 33.677 1.00 4.82 FRAP MOTA 1774 С TRP 2084 -24.24034.076 1.00 10.80 MOTA 1775 0 TRP 34.665 FRAP MOTA 1776 N CYS 2085 -23.76033.625 32.514 1.00 7.15 FRAP MOTA 1777 Н CYS 2085 -23.72532.895 31.856 0.00 0.00 FRAP 2085 -23.062 34.894 32.274 1.00 7.94 FRAP 25 MOTA 1778 CA CYS 2085 -22.32934.868 30.935 1.00 2.21 FRAP MOTA 1779 CB CYS 34.024 -20.74830.993 1.00 14.42 FRAP 2085 MOTA 1780 SG CYS 36.070 MOTA 1781 C CYS 2085 -24.03032,284 1.00 11.28 FRAP 2085 -23.71837.138 32.813 1.00 13.68 FRAP MOTA 1782 0 CYS 1783 ARG 2086 -25.21435.864 31.718 1.00 10.58 FRAP 30 MOTA N 2086 -25.38235.014 31.259 0.00 0.00 MOTA 1784 Η ARG FRAP 1.00 11.82 ARG 2086 -26.25036.878 31.749 FRAP MOTA 1785 CA 2086 -27.47636.405 30.970 1.00 16.71 FRAP MOTA 1786 Œ ARG 1787 ARG 2086 -27.27936,429 29.458 1.00 22.27 FRAP MOTA CG 2086 -28.160 35.398 28.768 1.00 36.61 FRAP 1788 ARG 35 **ATOM** \oplus 2086 -29.30035.986 28.060 1.00 45.02 FRAP ATOM 1789 ΝE ARG 2086 -29.553 36.906 0.00 FRAP 1790 **ARG** 28.280 0.00 ATOM ΗE 2086 35.357 1.00 49.39 FRAP 1791 ARG -30.00327.118 ATOM CZ1792 NH1 ARG 2086 -31.021 35.971 26.523 1.00 48.26 FRAP ATOM

	ATOM	1793	HH11	ARG	2086	-31.246	36.916	26.762	0.00 0.00	FRAP
	ATOM	1794	HH12	ARG	2086	-31.538	35.499	25.809	0.00 0.00	FRAP
	MOTA	1795	NH2	ARG	2086	-29.673	34.120	26.747	1.00 49.75	FRAP
	MOTA	1796	HH21	ARG	2086	-28.913	33.645	27.190	0.00 0.00	FRAP
5	MOTA	1797	HH22	ARG	2086	-30.218	33.649	26.053	0.00 0.00	FRAP
	MOTA	1798	С	ARG	2086	-26.618	37.180	33.193	1.00 11.93	FRAP
	MOTA	1799	0	ARG	2086	-26.536	38.325	33.629	1.00 14.05	FRAP
	ATOM	1800	N	LYS	2087	-26.792	36.120	33 .9 76	1.00 14.39	FRAP
	ATOM	1801	Н	LYS	2087	-26.697	35.240	33.583	0.00 0.00	FRAP
10	ATOM	1802	CA	LYS	2087	-27.104	36.240	35.401	1.00 11.99	FRAP
	ATOM	1803	CB	LYS	2087	-27.217	34.858	36.040	1.00 12.74	FRAP
	ATOM	1804	œ	LYS	2087	-28.510	34.139	35 <i>.</i> 778	1.00 13.98	FRAP
	MOTA	1805	æ	LYS	2087	-28.412	32.700	36.270	1.00 17.19	FRAP
	MOTA	1806	Œ	LYS	2087	-29.760	31.998	36.220	1.00 26.67	FRAP
15	MOTA	1807	NZ	LYS	2087	-29.640	30.517	36.341	1.00 33.46	FRAP
	MOTA	1808	HZ1	LYS	2087	-29.184	30.284	37.245	0.00 0.00	FRAP
	MOTA	1809	HZ2	LYS	2087	-29.051	30.158	35.561	0.00 0.00	FRAP
	MOTA	1810	HZ3	LYS	2087	-30.581	30.076	36.301	0.00 0.00	FRAP
	MOTA	1811	С	LYS	2087	-26.038	37.041	36.144	1.00 9.73	FRAP
20	MOTA	1812	0	LYS	2087	-26.356	37.859	37.000	1.00 12.76	FRAP
	MOTA	1813	N	TYR	2088	-24.771	36.803	35.821	1.00 7.02	FRAP
	MOTA	1814	H	TYR	2088	-24.578	36.057	35.209	0.00 0.00	FRAP
	MOTA	1815	CA	TYR	2088	-23.693	37.592	36.407	1.00 12.48	FRAP
	MOTA	1816	CB	TYR	2088	-22.327	37.135	35.892	1.00 9.00	FRAP
25	MOTA	1817	CG	TYR	2088	-21.194	38.013	36.386	1.00 11.53	FRAP
	ATOM	1818	CD1	TYR	2088	-20.780	37.953	37.712	1.00 13.53	FRAP
	MOTA	1819	CE1	TYR	2088	-19.817	38.822	38.205	1.00 13.24	FRAP
	MOTA	1820	CD2	TYR	2088	-20.603	38.967	35.553	1.00 9.73	FRAP
	MOTA	1821	CE2	TYR	2088	-19.631	39.835	36.032	1.00 8.20	FRAP
30	ATOM	1822	CZ	TYR	2088	-19.248	39.758	37.364	1.00 14.19	FRAP
	ATOM	1823	OH	TYR	2088	-18.308	40.621	37.881	1.00 21.06	FRAP
	ATOM	1824	HH	TYR	2088	-17.982	41.148	37.148	0.00 0.00	FRAP
	ATOM	1825	С	TYR	2088	-23.872	39.079	36.109	1.00 15.40	FRAP
	MOTA	1826	0	TYR	2088	-23.750	39.921	37.000	1.00 21.76	FRAP
35	ATOM	1827	N	MET	2089	-24.238	39.383	34.870	1.00 14.77	FRAP
	MOTA	1828	Н	MET	2089	-24.371	38.652	34.223	0.00 0.00	FRAP
	MOTA	1829	CA	MET	2089	-24.442	40.757	3 4.4 46	1.00 13.39	FRAP
	MOTA	1830	СВ	MET	2089	-24.813	40.789	32.962	1.00 11.91	FRAP
	MOTA	1831	CG	MET	2089	-23.637	40.488	32.049	1.00 11.63	FRAP

	WO 97	/15659							F	CT/US96	5/16953
	MOTA	1832	SD	MET	2089	-24.124	40.080	30.365	1.00	13.84	FRAP
	ATOM	1833	Œ	MET	2089	-22.620	39.331	29.759	1.00	2.00	FRAP
	ATOM	1834	С	MET	2089	-25.500	41.475	35.272	1.00	11.34	FRAP
	ATOM	1835	0	MET	2089	-25.392	42.669	35.511	1.00	16.85	FRAP
5	ATOM	1836	N	LYS	2090	-26.475	40.728	35.775	1.00	13.58	FRAP
	ATOM	1837	Н	LYS	2090	-26.475	39.771	35.559	0.00	0.00	FRAP
	MOTA	1838	CA	LYS	2090	-27.591	41.322	36.506	1.00	17.01	FRAP
	ATOM	1839	СВ	LYS	2090	-28.886	40.552	36.209	1.00	17.48	FRAP
	MOTA	1840	œ	LYS	2090	-29.218	39.436	37.207	1.00	30.54	FRAP
10	MOTA	1841	æ	LYS	2090	-30.240	39.892	38.254	1.00	39.03	FRAP
	ATOM	1842	Œ	LYS	2090	-30.140	39.078	39.545	1.00	40.52	FRAP
	ATOM	1843	NZ	LYS	2090	-30.477	39.893	40.756	1.00	38.43	FRAP
	MOTA	1844	HZ1	LYS	2090	-31.451	40.248	40.672	0.00	0.00	FRAP
	ATOM	1845	HZ2	LYS	2090	-29.826	40.700	40.829	0.00	0.00	FRAP
15	ATOM	1846	HZ3	LYS	2090	-30.396	39.308	41.612	0.00	0.00	FRAP
	ATOM	1847	С	LYS	2090	-27.371	41.420	38.023	1.00	18.18	FRAP
	ATOM	1848	0	LYS	2090	-28.022	42.230	38.695	1.00	16.27	FRAP
	MOTA	1849	N	SER	2091	-26.466	40.597	38.554	1.00	18.19	FRAP
	MOTA	1850	Н	SER	2091	-25.955	40.047	37.923	0.00	0.00	FRAP
20	MOTA	1851	CA	SER	2091	-26.302	40.464	40.008	1.00	16.08	FRAP
	MOTA	1852	СВ	SER	2091	-26.662	39.051	40.465	1.00	15.61	FRAP
	ATOM	1853	Œ	SER	2091	-25.722	38.108	39.982	1.00	18.00	FRAP
	MOTA	1854	HG	SER	2091	-26.010	37.832	39.096	0.00	0.00	FRAP
	MOTA	1855	С	SER	2091	-24.917	40.794	40.537	1.00	14.61	FRAP
25	MOTA	1856	0	SER	2091	-24.761	41.071	41.724	1.00	16.95	FRAP
	MOTA	1857	N	GLY	2092	-23.903	40.637	39.691	1.00	10.93	FRAP
	MOTA	1858	Н	GLY	2092	-24.107	40.356	38.784	0.00	0.00	FRAP
	MOTA	1859	CA	GTA	2092	-22.536	40.883	40.117	1.00	12.47	FRAP
	MOTA	1860	С	GLY	2092	-22.009	39.837	41.083	1.00	13.42	FRAP
30	MOTA	1861	0	GLY	2092	-20.913	39.974	41.622	1.00	11.96	FRAP
	MOTA	1862	N	ASN	2093	-22.701	38.704	41.127	1.00	14.42	FRAP
	MOTA	1863	Н	ASN	2093	-23.481	38.626	40.514	0.00	0.00	FRAP
	MOTA	1864	CA	ASN	2093	-22.465	37.664	42.114	1.00	15.72	FRAP
	MOTA	1865	Œ	ASN	2093	-23.572	36.626	42.021	1.00	15.84	FRAP
35	MOTA	1866	Œ	ASN	2093	-23.884	35.977	43.353	1.00	16.87	FRAP
	MOTA	1867	OD1	ASN	2093	-25.031	35.976	43.798		23.23	FRAP
	MOTA	1868	ND2	ASN	2093	-22.879			1.00	9.23	FRAP
	MOTA	1869	HD21	NZA	2093	-21.955	35.362		0.00	0.00	FRAP
	MOTA	1870	HD22	ASN	2093	-23.187	35.027	44.822	0.00	0.00	FRAP

	MOTA	1871	С	ASN	2093	-21.112	36.959	42.015	1.00 20.	92	FRAP
	MOTA	1872	0	ASN	2093	-20.599	36.466	43.015	1.00 28.	74	FRAP
	MOTA	1873	N	VAL	2094	-20.653	36.711	40.797	1.00 18.	46	FRAP
	MOTA	1874	Н	VAL	2094	-21.105	37.113	40.045	0.00 0.	.00	FRAP
5	MOTA	1875	CA	VAL	2094	-19.386	36.003	40.528	1.00 19.	15	FRAP
	MOTA	1876	СВ	VAL	2094	-18.134	36.636	41.223	1.00 17.	65	FRAP
	MOTA	1877	CG1	VAL	2094	-17.885	36.035	42.612	1.00 19.	24	FRAP
	MOTA	1878	CG2	VAL	2094	-16.911	36.422	40.333	1.00 22.	.37	FRAP
	MOTA	1879	С	VAL	2094	-19.390	34.508	40.807	1.00 17.	.55	FRAP
10	MOTA	1880	0	VAL	2094	-18.534	33.779	40.311	1.00 20.	43	FRAP
	MOTA	1881	N	LYS	2095	-20.415	34.016	41.485	1.00 16.	.99	FRAP
	MOTA	1882	Н	LYS	2095	-20.859	34.593	42.164	0.00 0.	.00	FRAP
	MOTA	1883	CA	LYS	2095	-20.615	32.570	41.511	1.00 19.	.09	FRAP
	MOTA	1884	СВ	LYS	2095	-21.166	32.125	42.869	1.00 24.	46	FRAP
15	MOTA	1885	CG	LYS	2095	-20.193	31.221	43.633	1.00 33.	72	FRAP
	MOTA	1886	Θ	LYS	2095	-18.736	31.682	43.507	1.00 32.	.25	FRAP
	MOTA	1887	Œ	LYS	2095	-17.771	30.625	44.033	1.00 37.	61	FRAP
	MOTA	1888	NZ	LYS	2095	-17.512	29.527	43.054	1.00 34.	.92	FRAP
	MOTA	1889	HZ1	LYS	2095	-17.131	29.930	42.177	0.00 0.	.00	FRAP
20	ATOM	1890	HZ2	LYS	2095	-18.395	29.025	42.842	0.00 0.	.00	FRAP
	ATOM	1891	HZ3	LYS	2095	-16.816	28.873	43.458	0.00 0.	.00	FRAP
	MOTA	1892	С	LYS	2095	-21.515	32.087	40.378	1.00 16.	91	FRAP
	ATOM	1893	0	LYS	2095	-21.621	30.893	40.110	1.00 15.	. 63	FRAP
	ATOM	1894	N	ASP	2096	-22.168	33.029	39.710	1.00 14.	.55	FRAP
25	ATOM	1895	Н	ASP	2096	-22.269	33.893	40.141	0.00 0.	.00	FRAP
	MOTA	1896	CA	ASP	2096	-22.850	32.737	38.459	1.00 11.	.12	FRAP
	MOTA	1897	СВ	ASP	2096	-23.799	33.868	38.099	1.00 12	.16	FRAP
	MOTA	1898	∞	ASP	2096	-24.973	33.956	39.042	1.00 14.	.76	FRAP
	ATOM	1899	OD1	ASP	2096	-25.630	32.925	39.259	1.00 18	.49	FRAP
30	MOTA	1900	OD2	ASP	2096	-25.238	35.055	39.567	1.00 24	. 14	FRAP
	MOTA	1901	С	ASP	2096	-21.837	32.538	37.339	1.00 10	. 59	FRAP
	MOTA	1902	0	ASP	2096	-21.903	31.563	36.590	1.00 13	.81	FRAP
	MOTA	1903	N	LEU	2097	-20.816	33.386	37.326	1.00 7	.24	FRAP
	MOTA	1904	Н	LEU	2097	-20.814	34.129	37.956	0.00 0	.00	FRAP
35	MOTA	1905	CA	LEU	2097	-19.723	33.244	36.383	1.00 7	. 03	FRAP
	MOTA	1906	СВ	LEU	2097	-18.701	34.357	36.591	1.00 2	. 85	FRAP
	MOTA	1907	CG	LEU	2097	-18.252	35.073	35.317	1.00 7	. 43	FRAP
	MOTA	1908	CD1	LEU	2097	-19.451	35.345	34.428	1.00 2	. 68	FRAP
	MOTA	1909	CD2	LEU	2097	-17.543	36.371	35.661	1.00 6	. 68	FRAP

PCT/US96/16953 WO 97/15659 **MOTA** 1910 C LEU 2097 -19.05631.873 36.504 1.00 12.75 FRAP MOTA 1911 2097 0 LEU -18.85431.190 35.499 1.00 17.71 FRAP MOTA 1912 2098 N THR -18.84731.410 37.735 1.00 13.89 FRAP MOTA 1913 Η THR 2098 -19.01731.985 38.512 0.00 0.00 FRAP 5 MOTA 1914 CA THR 2098 -18.26630.082 37.954 1.00 14.50 FRAP MOTA 1915 CB THR 2098 -17.86629.853 39.429 1.00 18.86 FRAP MOTA 1916 OG1 THR 2098 -18.95230.231 40.288 1.00 27.76 FRAP **MOTA** 1917 HG1 THR 2098 -19.66329.576 40.325 0.00 0.00 FRAP **MOTA** CG2 THR 1918 2098 -16.62430.666 39.781 1.00 14.88 FRAP MOTA 1919 С 2098 10 THR -19.18728.940 37.521 1.00 14.65 FRAP MOTA 1920 THR 2098 0 -18.73327.967 36.924 1.00 20.42 FRAP MOTA 1921 N GLN 2099 -20.48629.070 37.772 1.00 13.41 FRAP MOTA 1922 Н GLN 2099 -20.807 29.834 38.297 0.00 0.00 FRAP MOTA 1923 GLN 2099 CA -21.44328.076 37.293 1.00 10.97 FRAP 15 MOTA 1924 CB GIN 2099 -22.84328.371 37.838 1.00 19.13 FRAP MOTA 1925 2099 α GLN -23.42327.264 38.720 1.00 26.63 FRAP **ATOM** 1926 \oplus GLN 2099 -23.315 25.887 38.084 1.00 33.37 FRAP ATOM 1927 OE1 GLN 2099 -22.60425.017 38.580 1.00 35.83 FRAP MOTA 1928 NE2 GLN 2099 -23.989 25.697 36.959 1.00 38.47 FRAP 20 1929 HE21 GLN MOTA 2099 -24.521 26.407 36.558 0.00 0.00 FRAP MOTA 1930 HE22 GLN 2099 -23.848 24.808 36.587 0.00 0.00 FRAP **MOTA** 1931 C GLN 2099 -21.47828.072 35.768 1.00 9.33 FRAP MOTA 1932 0 GLN 2099 -21.842 27.085 35.147 1.00 13.05 FRAP MOTA 1933 ALA 2100 -21.146 29.211 N 35.178 1.00 9.52 FRAP 25 MOTA 1934 Η ALA 2100 -21.07430.018 35.723 0.00 0.00 FRAP MOTA 1935 CA ALA 2100 -21.016 29.323 33.738 1.00 3.77 FRAP MOTA 1936 ALA 2100 CB -20.95330.796 33.348 1.00 2.00 FRAP MOTA 1937 C ALA 2100 -19.76028.586 33.277 1.00 2.86 FRAP MOTA 1938 0 ALA 2100 -19.82327.736 32.394 1.00 2.63 FRAP 30 MOTA 1939 N TRP 2101 -18.65928.801 33.988 1.00 2.00 FRAP MOTA TRP 2101 1940 Η -18.71729.421 34.743 0.00 0.00 FRAP ATOM. 1941 CA TRP 2101 -17.367 28.222 33.627 1.00 3.21 FRAP MOTA 1942 CB TRP 2101 -16.26329.010 34.300 1.00 3.18 FRAP MOTA 1943 α TRP 2101 -15.70430.029 33.420 1.00 4.37 FRAP 35 MOTA 1944 CD2 TRP 2101 -15.00329.798 32.198 1.00 5.80 FRAP MOTA 1945 CE2 TRP 2101 -14.676 31.057 31.662 1.00 7.80 FRAP MOTA CE3 TRP 2101 1946 -14.62528.646 31.500 1.00 5.41 FRAP ATOM 1947 CD1 TRP 2101 -15.775 31.378 33.581 1.00 5.99 FRAP MOTA 1948 NE1 TRP 2101 -15.158 32.008 32.525 1.00 13.05 FRAP

	ATOM	1949	HE1	TRP	2101	-15.113	32.979	32.395	0.00 0.00	FRAP
	MOTA	1950	CZ2	TRP	2101	-13.993	31.197	30.456	1.00 6.76	FRAP
	MOTA	1951	CZ3	TRP	2101	-13.951	28.786	30.301	1.00 3.13	FRAP
	MOTA	1952	CH2	TRP	2101	-13.644	30.052	29.791	1.00 6.31	FRAP
5	MOTA	1953	С	TRP	2101	-17.206	26.736	33.960	1.00 8.69	FRAP
	MOTA	1954	0	TRP	2101	-16.274	26.065	33.501	1.00 10.67	FRAP
	MOTA	1955	N	ASP	2102	-18.091	26.240	34.807	1.00 8.35	FRAP
	ATOM	1956	H	ASP	2102	-18.571	26.864	35.388	0.00 0.00	FRAP
	MOTA	1957	CA	ASP	2102	-18.235	24.815	35.005	1.00 9.05	FRAP
10	MOTA	1958	СВ	ASP	2102	-19.277	24.564	36.099	1.00 13.12	FRAP
	MOTA	1959	Œ	ASP	2102	-19.127	23.207	36.759	1.00 16.43	FRAP
	MOTA	1960	OD1	ASP	2102	-20.084	22.779	37.436	1.00 23.14	FRAP
	MOTA	1961	OD2	ASP	2102	-18.048	22.585	36.637	1.00 18.55	FRAP
	MOTA	1962	С	ASP	2102	-18.688	24.180	33.686	1.00 10.27	FRAP
15	ATOM	1963	0	ASP	2102	-18.144	23.158	33.248	1.00 11.33	FRAP
	ATOM	1964	N	LEU	2103	-19.646	24.828	33.029	1.00 8.01	FRAP
	MOTA	1965	H	LEU	2103	-19.988	25.662	33.421	0.00 0.00	FRAP
	MOTA	1966	CA	LEU	2103	-20.230	24.302	31.794	1.00 7.80	FRAP
	MOTA	1967	СВ	LEU	2103	-21.589	24.951	31.537	1.00 2.00	FRAP
20	MOTA	1968	CG	LEU	2103	-22.694	24.551	32.512	1.00 2.00	FRAP
	MOTA	1969	CD1	LEU	2103	-23.659	25.697	32.675	1.00 2.04	FRAP
	MOTA	1970	CD2	LEU	2103	-23.417	23.318	32.012	1.00 2.00	FRAP
	ATOM	1971	С	LEU	2103	-19.314	24.486	30.577	1.00 7.45	FRAP
	MOTA	1972	0	LEU	2103	-19.177	23.580	29.756	1.00 5.72	FRAP
25	MOTA	1973	N	TYR	2104	-18.594	25.602	30.530	1.00 6.39	FRAP
	MOTA	1974	Н	TYR	2104	-18.814	26.319	31.162	0.00 0.00	FRAP
	MOTA	1975	CA	TYR	2104	-17.605	25.821	29.482	1.00 7.03	FRAP
	MOTA	1976	СВ	TYR	2104	-16.987	27.215	29.602	1.00 7.14	FRAP
	MOTA	1977	CG	TYR	2104	-17.865	28.342	29.108	1.00 4.21	FRAP
30	MOTA	1978	CD1	TYR	2104	-18.003	29.508	29.852	1.00 7.88	FRAP
	MOTA	1979	CE1	TYR	2104	-18.772	30.564	29.400	1.00 5.53	FRAP
	ATOM	1980	CD2	TYR	2104	-18.535	28.256	27.888	1.00 2.00	FRAP
	ATOM	1981	CE2	TYR	2104	-19.316	29.308	27.423	1.00 3.76	FRAP
	MOTA	1982	CZ	TYR	2104	-19.419	30.462	28.187	1.00 8.86	FRAP
35	MOTA	1983	OH	TYR	2104	-20.122	31.548	27.727	1.00 12.11	FRAP
	MOTA	1984	HH	TYR	2104	-20 .69 3	31.333	27.011	0.00 0.00	FRAP
	MOTA	198 5	С	TYR	2104	-16.506	24.771	29.555	1.00 9.25	FRAP
	MOTA	1986	0	TYR	2104	-16.102	24.216	28.536	1.00 12.91	FRAP
	MOTA	1987	N	TYR	2105	-16.054	24.475	30.771	1.00 12.79	FRAP

	WO 97	/15659							P	CT/US96	/16953
	MOTA	1988	Н	TYR	2105	-16.371	25.002	31.536	0.00	0.00	FRAP
	ATOM	1989	CA	TYR	2105	-15.030	23.452	30.996	1.00	10.70	FRAP
	ATOM	1990	СВ	TYR	2105	-14.680	23.376	32.481	1.00	7.06	FRAP
	ATOM	1991	Œ	TYR	2105	-13.496	22.488	32.765	1.00	4.50	FRAP
5	ATOM	1992	CD1	TYR	2105	-12.288	22.693	32.111	1.00	8.17	FRAP
	ATOM	1993	CE1	TYR	2105	-11.184	21.892	32.360	1.00	12.33	FRAP
	ATOM	1994	CD2	TYR	2105	-13.579	21.446	33.684	1.00	6.11	FRAP
	MOTA	1995	Œ2	TYR	2105	-12.472	20.629	33.946	1.00	12.32	FRAP
	MOTA	1996	CZ	TYR	2105	-11.276	20.866	33.279	1.00	15.17	FRAP
10	ATOM	1997	OH	TYR	2105	-10.155	20.113	33.542	1.00	21.26	FRAP
	ATOM	1998	HH	TYR	2105	-9.397	20.447	33.059	0.00	0.00	FRAP
	ATOM	1999	С	TYR	2105	-15.479	22.070	30.515	1.00	10.02	FRAP
	MOTA	2000	0	TYR	2105	-14.702	21.307	29.942	1.00	11.77	FRAP
	ATOM	2001	N	HIS	2106	-16.746	21.759	30.737	1.00	9.87	FRAP
15	MOTA	2002	H	HIS	2106	-17.288	22.402	31.250	0.00	0.00	FRAP
	MOTA	2003	CA	HIS	2106	-17.298	20.488	30.314	1.00	11.64	FRAP
	ATOM	2004	CB	HIS	2106	-18.705	20.326	30.881	1.00	15.15	FRAP
	MOTA	2005	CG	HIS	2106	-19.294	18.971	30.664	1.00	24.44	FRAP
	MOTA	2006	CD2	HIS	2106	-20.529	18.588	30.259	1.00	25.83	FRAP
20	ATOM	2007	ND1	HIS	2106	-18.578	17.808	30.865	1.00	28.70	FRAP
	MOTA	2008	HD1	HIS	2106	-17.628	17.736	31.114	0.00	0.00	FRAP
	MOTA	2009	CE1	HIS	2106	-19:346	16.767	30.595	1.00	28.91	FRAP
	MOTA	2010	NE2	HIS	2106	-20.535	17.214	30.226	1.00	31.03	FRAP
	MOTA	2011	HE2	HIS	2106	-21.295	16.644	29.972	0.00	0.00	FRAP
25	MOTA	2012	С	HIS	2106	-17.315	20.332	28. 7 87	1.00	14.72	FRAP
	MOTA	2013	0	HIS	2106	-16.928	19.284	28.273	1.00	17.34	FRAP
	MOTA	2014	N	VAL	2107	-17.768	21.355	28.062		13.33	FRAP
	MOTA	2015	Н	VAL	2107	-18.077	22.171	28.519	0.00	0.00	FRAP
	MOTA	2016	CA	VAL	2107	-17.797	21.281	26.599	1.00	10.31	FRAP
30	ATOM	2017	CB	VAL	2107	-18.640	22.425	25.963	1.00	9.70	FRAP
	ATOM	2018	CG1	VAL	2107	-20.082	22.296	26.372		11.91	FRAP
	ATOM	2019	CG2	VAL	2107	-18.116	23.780	26.371	1.00	15.79	FRAP
	ATOM	2020	С	VAL	2107	-16.384	21.294	26.009		10.92	FRAP
	ATOM	2021	0	VAL	2107	-16.047	20.456	25.172		11.27	FRAP
35	ATOM	2022	N	PHE	2108	-15.518	22.127	26.576	1.00	9.62	FRAP
	ATOM	2023	H	PHE	2108	-15.849	22.771	27.234	0.00	0.00	FRAP
	ATOM	2024	CA	PHE	2108	-14.109	22.164	26.187	1.00	8.05	FRAP
	ATOM	2025	СВ	PHE	2108	-13.371	23.223	27.007	1.00	4.20	FRAP
	MOTA	2026	CG	PHE	2108	-11.923	23.366	26.651	1.00	2.00	FRAP

	ATOM	2027	CD1	PHE	2108	-11.519	24.292	25.702	1.00 4.15	FRAP
	MOTA	2028	CD2	PHE	2108	-10.961	22.606	27.295	1.00 3.42	FRAP
	MOTA	2029	CE1	PHE	2108	-10.170	24.461	25.396	1.00 8.79	FRAP
	ATOM	2030	Œ2	PHE	2108	-9.613	22.760	27.000	1.00 9.05	FRAP
5	ATOM	2031	CZ	PHE	2108	-9.214	23.692	26.045	1.00 12.56	FRAP
	ATOM	2032	С	PHE	2108	-13.423	20.810	26.364	1.00 9.13	FRAP
	ATOM	2033	0	PHE	2108	-12.685	20.368	25.493	1.00 10.33	FRAP
	ATOM	2034	N	ARG	2109	-13.609	20.198	27.528	1.00 11.74	FRAP
	ATOM	2035	Н	ARG	2109	-14.125	20.671	28.212	0.00 0.00	FRAP
10	ATOM	2036	CA	ARG	2109	-13.001	18.905	27.832	1.00 12.27	FRAP
	MOTA	2037	CВ	ARG	2109	-13.358	18.476	29.256	1.00 18.36	FRAP
	ATOM	2038	Œ	ARG	2109	-12.193	18.477	30.239	1.00 32.13	FRAP
	ATOM	2039	$^{\circ}$	ARG	2109	-11.939	17.082	30.819	1.00 43.37	FRAP
	MOTA	2040	NE	ARG	2109	-13.169	16.442	31.297	1.00 53.59	FRAP
15	ATOM	2041	ΗE	ARG	2109	-13.738	16.951	31.910	0.00 0.00	FRAP
	MOTA	2042	CZ	ARG	2109	-13.573	15.218	30.956	1.00 54.76	FRAP
	MOTA	2043	NHI	ARG	2109	-14.732	14.754	31.413	1.00 54.90	FRAP
	MOTA	2044	HH11	ARG	2109	-15.288	15.321	32.021	0.00 0.00	FRAP
	MOTA	2045	HH1 2	ARG	2109	-15.033	13.832	31.173	0.00 0.00	FRAP
20	ATOM	2046	NH2	ARG	2109	-12.812	14.444	30.188	1.00 53.94	FRAP
	MOTA	2047	HH21	ARG	2109	-11.931	14.776	29.851	0.00 0.00	FRAP
	MOTA	2048	HH22	ARG	2109	-13.130	13.529	29.944	0.00 0.00	FRAP
	MOTA	2049	С	ARG	2109	-13.454	17.829	26.849	1.00 11.58	FRAP
	MOTA	2050	0	ARG	2109	-12.682	16.939	26.509	1.00 11.33	FRAP
25	MOTA	2051	N	ARG	2110	-14.710	17.911	26.412	1.00 10.43	FRAP
	MOTA	2052	H	ARG	2110	-15.280	18.632	26.748	0.00 0.00	FRAP
	MOTA	2053	CA	ARG	2110	-15.260	16.952	25.455	1.00 10.64	FRAP
	MOTA	2054	CB	ARG	2110	-16.795	16.947	25.499	1.00 12.47	FRAP
	MOTA	2055	œ	ARG	2110	-17.418	16.320	26.743	1.00 19.35	FRAP
30	MOTA	2056	В	ARG	2110	-17.423	14.786	26.714	1.00 31.28	FRAP
	MOTA	2057	NE	ARG	2110	-16.091	14.194	26.900	1.00 41.95	FRAP
	MOTA	2058	HE	ARG	2110	-15.389	14.432	26.260	0.00 0.00	FRAP
	MOTA	2059	CZ	ARG	2110	-15.762	13.332	27.865	1.00 41.41	FRAP
	MOTA	2060	NH1	ARG	2110	-14.534	12.815	27.899	1.00 36.39	FRAP
35	MOTA	2061	HH11	ARG	2110	-13.866	13.068	27.201	0.00 0.00	FRAP
	MOTA	2062	HH12	ARG	2110	-14.282	12.171	28.621	0.00 0.00	FRAP
	ATOM	2063	NH2	ARG	2110	-16.633	13.017	28.820	1.00 36.79	FRAP
	MOTA	2064	HH21	ARG	2110	-17.547	13.422	28.830	0.00 0.00	FRAP
	MOTA	2065	HH22	ARG	2110	-16.368	12.373	29.538	0.00 0.00	FRAP

	wo s	97/15659							PCT/US96/1	6953
	MOTA	2066	С	ARG	2110	-14.810	17.200	24.014	1.00 12.51	FRAP
	ATOM	2067	0	ARG	2110	-14.818	16.280	23.209	1.00 15.19	FRAP
	ATOM	2068	N	ILE	2111	-14.494	18.447	23.670	1.00 14.35	FRAP
	ATOM	2069	H	ILE	2111	-14.598	19.149	24.342	0.00 0.00	FRAP
5	ATOM	2070	CA	ILE	2111	-14.033	18.769	22.314	1.00 18.50	FRAP
	ATOM	2071	CB	ILE	2111	-14.644	20.117	21.784	1.00 14.09	FRAP
	MOTA	2072	CG2	ILE	2111	-16.148	20.108	21.982	1.00 19.97	FRAP
	MOTA	2073	CG1	ILE	2111	-14.044	21.333	22.500	1.00 13.58	FRAP
	MOTA	2074	CD1	ILE	2111	-14.821	22.615	22.301	1.00 2.00	FRAP
10	ATOM	2075	C	ILE	2111	-12.510	18.791	22.163	1.00 22.21	FRAP
	ATOM	2076	0	ILE	2111	-11.963	19.586	21.395	1.00 27.42	FRAP
	MOTA	2077	N	SER	2112	-11.840	17.887	22.870	1.00 27.11	FRAP
	ATOM	2078	H	SER	2112	-12.312	17.230	23.418	0.00 0.00	FRAP
	MOTA	2079	CA	SER	2112	-10.410	17.634	22.673	1.00 32.50	FRAP
15	MOTA	2080	CB	SER	2112	-9.590	18.179	23.852	1.00 31.61	FRAP
	MOTA	2081	∞	SER	2112	-9.589	19.601	23.899	1.00 28.34	FRAP
	MOTA	2082	HG	SER	2112	-9.617	19.750	24.846	0.00 0.00	FRAP
	MOTA	2083	С	SER	2112	-10.155	16.126	22.525	1.00 35.63	FRAP
	MOTA	2084	0	SER	2112	-10.552	15.361	23.432	1.00 36.42	FRAP
20	MOTA	2085	OT	SER	2112	-9.613	15.712	21.474	1.00 41.38	FRAP
	MOTA	2086	OH2	WATR	301	-13.963	32.282	39.005	1.00 20.07	WATR
	MOTA	2087	H1	WATR	301	-14.436	33.059	39.326	0.00 20.00	WATR
	MOTA	2088	H2	WATR	301	-13.909	31.701	39.771	0.00 20.00	WATR
	ATOM	2089	OH2	WATR	302	-0.900	21.657	34.783	1.00 23.80	WATR
25	MOTA	2090	H1	WATR	302	-1.021	21.041	35.510	0.00 20.00	WATR
	MOTA	2091	H2	WATR	302	-1.478	21.246	34.123	0.00 20.00	WATR
	MOTA	2092	OH2	WATR	303	-6.938	34.185	40.131	1.00 41.17	WATR
	MOTA	2093	H1	WATR	303	-6.199		39.638	0.00 20.00	WATR
	MOTA	2094	H2	WATR	303	-6.527	33.918	40.941	0.00 20.00	WATR
30	MOTA	2095		WATR	304	-10.919	15.222	48.819	1.00 28.06	WATR
	MOTA	2096	H1	WATR	304	-10.331	15.994	48.864	0.00 20.00	WATR
	ATOM	2097	H2	WATR	304	-10.602	14.763	48.037	0.00 20.00	WATR
	ATOM	2098		WATR	305		35.769	26.707	1.00 26.77	WATR
25	MOTA	2099		WATR	305	-21.139	35.329	27.513	0.00 20.00	WATR
35	MOTA	2100	H2	WATR	305	-22.356	35.778	26.710	0.00 20.00	WATR
	MOTA	2101		WATR	306	0.813	27.087	37.460	1.00 15.38	WATR
	MOTA	2102		WATR	306		27.451	36.742	0.00 20.00	WATR
	ATOM	2103		WATR	306		26.516	37.895	0.00 20.00	WATR
	MOTA	2104	OH2	WATR	307	-30.428	31.660	28.013	1.00 46.41	WATR

WO 97/15659 PCT/US96/16953

ATOM 2105 H1 WATR 307 -30.299 30.737 27.805 0.00 20.00 WAT

	ATOM	2105	H1	WATR	307	-30.299	30.737	27.805	0.00 20.00	WATR
	ATOM	2106	H2	WATR	307	-30.248	31.722	28.946	0.00 20.00	WATR
	MOTA	2107	OH2	WATR	308	-4.519	32.837	47.558	1.00 15.92	WATR
	ATOM	2108	H1	WATR	308	-4.435	32.964	48.515	0.00 20.00	WATR
5	MOTA	2109	H2	WATR	308	-4.287	31.920	47.465	0.00 20.00	WATR
	MOTA	2110	OH2	WATR	309	-18.089	22.614	12.803	1.00 25.97	WATR
	ATOM	2111	H1.	WATR	309	-17.511	23.005	12.138	0.00 20.00	WATR
	ATOM	2112	H2	WATR	309	-18.955	22.733	12.394	0.00 20.00	WATR
	ATOM	2113	OH2	WATR	310	-22.152	21.619	36.180	1.00 41.59	WATR
10	MOTA	2114	H1	WATR	310	-22.437	22.341	36.738	0.00 20.00	WATR
	MOTA	2115	H2	WATR	310	-22.872	21.464	35.569	0.00 20.00	WATR
	MOTA	2116	OH2	WATR	311	-6.459	3.543	52.877	1.00 32.94	WATR
	MOTA	2117	H1	WATR	311	-6.280	2.752	52.368	0.00 20.00	WATR
	MOTA	2118	H2	WATR	311	-5.832	4.191	52.543	0.00 20.00	WATR
15	MOTA	2119	OH2	WATR	312	-5.993	11.471	28.804	1.00 18.59	WATR
	MOTA	2120	H1	WATR	312	-6.909	11.725	28.881	0.00 20.00	WATR
	MOTA	2121	H2	WATR	312	-5.782	11.031	29.653	0.00 20.00	WATR
	MOTA	2122	OH2	WATR	313	-0.619	20.784	55.049	1.00 19.50	WATR
	MOTA	2123	H1	WATR	313	-0.854	20.074	55.637	0.00 20.00	WATR
20	MOTA	2124	H2	WATR	313	-1.113	21.551	55.388	0.00 20.00	WATR
	MOTA	2125	OH2	WATR	314	-5 .59 8	26.321	58.876	1.00 36.20	WATR
	MOTA	2126	H1	WATR	314	-6.497	26.108	58.602	0.00 20.00	WATR
	MOTA	2127	H2	WATR	314	-5.118	25.491	58.861	0.00 20.00	WATR
	MOTA	2128	OH2	WATR	315	-3.023	33.604	37.769	1.00 26.43	WATR
25	MOTA	2129	H1	WATR	315	-2.394	34.283	37.516	0.00 20.00	WATR
	MOTA	2130	H2	WATR	315	-3.855	33.984	37.469	0.00 20.00	WATR
	ATOM	2131	OH2	WATR	316	-25.006	29.561	22.950	1.00 41.75	WATR
	MOTA	2132	H1	WATR	316	-24.532	29.047	23.605	0.00 20.00	WATR
	MOTA	2133	H2	WATR	316	-25.677	28.934	22.652	0.00 20.00	WATR
30	MOTA	2134	OH2	WATR	317	-23.638	29.893	10.609	1.00 16.55	WATR
	ATOM	2135	H1	WATR	317	-23.016	29.169	10.621	0.00 20.00	WATR
	MOTA	2136	H2	WATR	317	-24.395	29.529	11.101	0.00 20.00	WATR
	MOTA	2137	OH2	WATR	318	-7.744	6.880	50.272	1.00 20.83	WATR
	MOTA	2138	H1	WATR	318	-7.080	6.901	49.564	0.00 20.00	WATR
35	MOTA	2139	H2	WATR	318	-7.480	6.116	50.785	0.00 20.00	WATR
	MOTA	2140	OH2	WATR	319	-2.748	2.703	46.777	1.00 31.05	WATR
	MOTA	2141	H1	WATR	319	-3.202	3.462	46.395	0.00 20.00	WATR
	MOTA	2142	H2	WATR	319	-3.353	2.352	47.432	0.00 20.00	WATR
	MOTA	2143	OH2	WATR	320	-19.295	42.654	40.303	1.00 39.42	WATR

	WO 97/15659									PCT/US96/16953		
	MOTA	2144	ш	WATR	320	-19.042	41.825	39.876	0.00 20.00	WATR		
	MOTA	2145	H2	WATR	320	-18.638	43.269	39.991	0.00 20.00	WATR		
	ATOM	2146	OH2	WATR	321	0.583	32.369	55.901	1.00 39.29	WATR		
	ATOM	2147	H1	WATR	321	-0.191	32.008	55.428	0.00 20.00	WATR		
5	ATOM	2148	H2	WATR	321	1.272	31.719	55.776	0.00 20.00	WATR		
	ATOM	2149	OH2	WATR	322	-16.781	17.874	51.246	1.00 33.48	WATR		
	MOTA	2150	H1	WATR	322	-17.172	18.545	50.688	0.00 20.00	WATR		
	ATOM	2151	H2	WATR	322	-15.838	18.064	51.228	0.00 20.00	WATR		
	MOTA	2152	OH2	WATR	323	-19.829	12.916	46.549	1.00 26.46	WATR		
10	MOTA	2153	H1	WATR	323	-19.808	13.873	46.697	0.00 20.00	WATR		
	MOTA	2154	H2	WATR	323	-19.224	12.538	47.193	0.00 20.00	WATR		

Note: FKBP sequence is SEQ ID NO: 1 FRAP sequence is SEQ ID NO: 2

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- 5 (i) APPLICANT: CORNELL RESEARCH FOUNDATION, INC.
 - (ii) TITLE OF INVENTION: CRYSTALLINE FRAP COMPLEX
 - (iii) NUMBER OF SEQUENCES: 2

- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: ARIAD Pharmaceuticals, Inc.
 - (B) STREET: 26 Landsdowne Street
 - (C) CITY: Cambridge
- 15
- (D) STATE: MA
- (E) COUNTRY: USA
- (F) ZIP: 02139-4234
- (v) COMPUTER READABLE FORM:
- 20 (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- 25 (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: HEREWITH
 - (C) CLASSIFICATION:
- 30 (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 60/005,808
 - (B) FILING DATE: 23-OCT-1995
 - (vii) PRIOR APPLICATION DATA:
- 35 (A) APPLICATION NUMBER: US 60/006,069
 - (B) FILING DATE: 24-OCT-1995

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: BERSTEIN, David L.

(B) REGISTRATION NUMBER: 31,235

(C) REFERENCE/DOCKET NUMBER: ARIAD 350A-PCT

5

15

- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 617-494-0400
 - (B) TELEFAX: 617-494-0208
- 10 (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 107 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
- 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Gly Val Gln Val Glu Thr Ile Ser Pro Gly Asp Gly Arg Thr Phe Pro 1 5 10 15

25 Lys Arg Gly Gln Thr Cys Val Val His Tyr Thr Gly Met Leu Glu Asp
20 25 30

Gly Lys Lys Phe Asp Ser Ser Arg Asp Arg Asn Lys Pro Phe Lys Phe 35 40 45

Met Leu Gly Lys Gln Glu Val Ile Arg Gly Trp Glu Glu Gly Val Ala 50 55 60

Gln Met Ser Val Gly Gln Arg Ala Lys Leu Thr Ile Ser Pro Asp Tyr 35 65 70 75 80

> Ala Tyr Gly Ala Thr Gly His Pro Gly Ile Ile Pro Pro His Ala Thr 85 90 95

Leu Val Phe Asp Val Glu Leu Leu Lys Leu Glu 100 105

(2) INFORMATION FOR SEQ ID NO:2:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 100 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

10

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

15

Glu Leu Ile Arg Val Ala Ile Leu Trp His Glu Met Trp His Glu Gly
1 5 10 15

Leu Glu Glu Ala Ser Arg Leu Tyr Phe Gly Glu Arg Asn Val Lys Gly
20 25 30

Met Phe Glu Val Leu Glu Pro Leu His Ala Met Met Glu Arg Gly Pro 35 40 45

25 Gln Thr Leu Lys Glu Thr Ser Phe Asn Gln Ala Tyr Gly Arg Asp Leu
50 55 60

Met Glu Ala Gln Glu Trp Cys Arg Lys Tyr Met Lys Ser Gly Asn Val 65 70 75 80

30

35

Lys Asp Leu Thr Gln Ala Trp Asp Leu Tyr Tyr His Val Phe Arg Arg 85 90 95

Ile Ser Lys Gln

WO 97/15659

Claims

5

10

15

20

25

- 1. A crystalline composition comprising a complex formed by a first protein containing an FRB domain, a second protein containing an FKBP domain and a ligand capable of forming a ternary complex with the first and second proteins.
- 2. A composition of claim 1 in which the complex is characterized by the coordinates of Appendix I, or by coordinates having a root mean square deviation therefrom, with respect to conserved backbone atoms of the listed amino acids, of not more than 1.5 Å.
- 3. A machine-readable data storage medium, comprising a data storage material encoded with machine readable data which, when using a machine programmed with instructions for using said data, is capable of displaying a graphical three-dimensional representation of a molecule or molecular complex comprising a protein containing an FRB domain.
- 4. A machine-readable data storage medium of claim 3 in which the machine readable data includes data corresponding to the coordinates for the FRB domain set forth in Appendix I, or coordinates having a root mean square deviation therefrom, with respect to conserved protein backbone atoms, of not more than 1.5 Å.
- 5. A machine-readable data storage medium comprising a data storage material encoded with a first set of machine readable data which, when combined with a second set of machine-readable data, using a machine programmed with instructions for using said first set of data and said second set of data, can determine at least a portion of the coordinates corresponding to the second set of machine-readable data, wherein: said first set of data comprises a Fourier transform of at least a portion of the coordinates of the FRB domain set forth in Appendix I and said second set of data comprises an X-ray diffraction pattern of a molecule or molecular complex.
- 30 6. A method for displaying a three dimensional representation of a composition of claims 1 or 2 which comprises:
 - (a) providing a machine capable of reading data stored on a machine-readable storage medium of any of claims 3-5, programmed with instructions for using said data to display a graphical three-dimensional representation of a protein or protein:ligand complex or portion thereof defined by said data, and loaded with a machine-readable storage medium of any of claims 3-5; and,
 - (b) permitting the machine to read said data and display the three-dimensional representation.

7. A method for determining the three-dimensional structure of a protein containing an FRB domain, or a complex of such protein with a ligand therefor, which comprises

- (a) obtaining x-ray diffraction data for crystals of the protein or complex,
- (b) providing three-dimensional structural coordinates for a composition of claims 1 or 2, and
- (c) determining the three-dimensional structure of the protein or complex by analyzing the x-ray diffraction data with reference to the previous structural coordinates using molecular replacement techniques.
- 10 8. A method for determining the three dimensional structure of a protein containing an an FRB domain or co-complex of said protein with a ligand therefor, which method comprises:
 - (a) providing structural coordinates for a composition of claims 1 or 2, and
 - (b) determining the three-dimensional structure of the FRB domain-containing protein or complex by homology modeling with reference to the previous structural coordinates.
 - 9. A method for selecting a compound capable of binding to an FRB domain which comprises:
 - (a) providing coordinates defining the three dimensional structure of the FRB domain;
 - (b) characterizing points associated with that three dimensional structure with respect to the favorability of interactions with one or more selected functional groups;
 - (c) providing a database of one or more candidate compounds; and
 - (d) identifying from the database those compounds having structures which best fit the points of favorable interaction with the three dimensional structure.
 - 10. A method of claim 9 which further comprises testing a compound so identified for its ability to:
 - (a) bind to FRAP, with or without FKBP12,
 - (b) inhibit the binding of rapamycin or FKBP12:rapamycin to FRAP, and/or
 - (c) trigger a biological function mediated by rapamycin.

5

15

20

25

FIG. 1

Fig. 2B

FIG. 3

PCT/US 96/16953 A. CLASSIFICATION OF SUBJECT MATTER
1PC 6 C12N9/12 G06F17/50 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N G06F Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category Citation of document, with indication, where appropriate, of the relevant passages 1-10 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 92, May 1995, WASHINGTON US, pages 4947-4951, XP002023699 J CHEN E.A.: "Identification of an 11 kDa FKBP12-rapamycin binding domain within the 289 kDa FRAP... cited in the application see the whole document 1-10 Y NATURE. vol. 369, 30 June 1994, LONDON GB, pages 756-758, XP002023700 E.J.BROWN E.A.: "A mammalian protien targeted by G1-arresting rapamycin-receptor complex" cited in the application see the whole document -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. X Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but sited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention 'E' earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone Y' document of particular relevance; the claimed invention cannot be considered to involve an inventor step when the document is combined with one or more other such documents, such combination being obvious to a person stalled "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search n 3, 62, 97 29 January 1997 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rixwijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax (+31-70) 340-3016

Form PCT/ISA/210 (second sheet) (July 1992)

Groenendijk, M

INT NATIONAL SEARCH REPORT

PC1/US 96/16953

		PC1/03 90/10933
С.(Сопапш	non) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	J.MOL.BIOL., vol. 229, no. 1, 1993, page 105-124 XP000616336 G.D. VAN DUYNE E.A.: "Atomic structures of the human immunophilin FKBP12 complexes with FK506 and rapamycin" cited in the application See especially page 107, column 2 under b	1-10
Y	CELL, vol. 82, 11 August 1995, NA US, pages 507-522, XP002023702 J.P.GRIFFITH E.A.: "X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12-FK506 complex" cited in the application See especially page 519	1-10
Y	WO 94 25860 A (IMMUNEX CORP) 10 November 1994 see the whole document	2-10
Y	US 5 353 236 A (SUBBIAH SUBRAMANIAN) 4 October 1994 see the whole document	2-10
Y	EP 0 676 471 A (AMERICAN HOME PROD ;UNIV COLUMBIA (US)) 11 October 1995 The whole document; see especially page 5, line 39 to page 6, line 8; claims 21,23,25	9,10
P,X	SCIENCE, vol. 273, 12 July 1996, LANCASTER, PA US, pages 239-242, XP002023703 J CHOI E.A.: "Structure of FKBP12-rapamycin complex interacting with the binding domain of human FRAP" see the whole document	1-10
	,	

INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	
1. X Claims Nos.: 3-6 because they relate to subject matter not required to be searched by this Authority, namely:	
Remark: Although these claims are directed to a representation of information on a carrier and a process for presenting this information, the search has been carried out as far as possible and based on the molecular structure represented by this information (Art.17/R.39.1)	
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:	
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This International Searching Authority found multiple inventions in this international application, as follows:	
1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.	
2. As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:	
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	1
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.	

INTENATIONAL SEARCH REPORT

information on patent family members

nter tal Application No PCI/US 96/16953

Patent document cited in search report	Publication date	Patent memi	Publication date	
WO-A-9425860	10-11-94	US-A- AU-A- US-A-	5453937 6779994 5557535	26-09-95 21-11-94 17-09-96
US-A-5353236	04-10-94	WO-A-	9322740	11-11-93
EP-A-0676471	11-10-95	AU-A- CA-A- HU-A- JP-A-	1367095 2144223 72189 8059696	14-09-95 09-09-95 28-03-96 05-03-96

Form PCT/ISA/216 (patent family annex) (July 1992)

	j
	₩
	•