Transpose & Dot Product

Def: The **transpose** of an $m \times n$ matrix A is the $n \times m$ matrix A^T whose columns are the rows of A.

So: The columns of A^T are the rows of A. The rows of A^T are the columns of A.

Example: If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
, then $A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$.

Convention: From now on, vectors $\mathbf{v} \in \mathbb{R}^n$ will be regarded as "columns" (i.e.: $n \times 1$ matrices). Therefore, \mathbf{v}^T is a "row vector" (a $1 \times n$ matrix).

Observation: Let $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$. Then $\mathbf{v}^T \mathbf{w} = \mathbf{v} \cdot \mathbf{w}$. This is because:

$$\mathbf{v}^T \mathbf{w} = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix} = v_1 w_1 + \cdots + v_n w_n = \mathbf{v} \cdot \mathbf{w}.$$

Where theory is concerned, the key property of transposes is the following:

Prop 18.2: Let A be an $m \times n$ matrix. Then for $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^m$:

$$(A\mathbf{x}) \cdot \mathbf{y} = \mathbf{x} \cdot (A^T \mathbf{y}).$$

Here, \cdot is the dot product of vectors.

Extended Example

Let A be a 5×3 matrix, so $A : \mathbb{R}^3 \to \mathbb{R}^5$.

- $\circ N(A)$ is a subspace of _____
- \circ C(A) is a subspace of _____

The transpose A^T is a ____ matrix, so A^T : \rightarrow

- $\circ C(A^T)$ is a subspace of _____
- $\circ N(A^T)$ is a subspace of _____

Observation: Both $C(A^T)$ and N(A) are subspaces of _____. Might there be a geometric relationship between the two? (No, they're not equal.) Hm...

Also: Both $N(A^T)$ and C(A) are subspaces of ______. Might there be a geometric relationship between the two? (Again, they're not equal.) Hm...

Orthogonal Complements

Def: Let $V \subset \mathbb{R}^n$ be a subspace. The **orthogonal complement** of V is the set

$$V^{\perp} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \cdot \mathbf{v} = 0 \text{ for every } \mathbf{v} \in V \}.$$

So, V^{\perp} consists of the vectors which are orthogonal to every vector in V.

Fact: If $V \subset \mathbb{R}^n$ is a subspace, then $V^{\perp} \subset \mathbb{R}^n$ is a subspace.

Examples in \mathbb{R}^3 :

- \circ The orthogonal complement of $V = \{\mathbf{0}\}$ is $V^{\perp} = \mathbb{R}^3$
- \circ The orthogonal complement of $V = \{z\text{-axis}\}$ is $V^{\perp} = \{xy\text{-plane}\}$
- The orthogonal complement of $V = \{xy\text{-plane}\}\ \text{is}\ V^{\perp} = \{z\text{-axis}\}$
- The orthogonal complement of $V = \mathbb{R}^3$ is $V^{\perp} = \{0\}$

Examples in \mathbb{R}^4 :

- \circ The orthogonal complement of $V = \{\mathbf{0}\}$ is $V^{\perp} = \mathbb{R}^4$
- \circ The orthogonal complement of $V = \{w \text{-axis}\}\ \text{is}\ V^{\perp} = \{xyz \text{-space}\}\$
- \circ The orthogonal complement of $V = \{zw\text{-plane}\}\$ is $V^{\perp} = \{xy\text{-plane}\}\$
- \circ The orthogonal complement of $V = \{xyz\text{-space}\}$ is $V^\perp = \{w\text{-axis}\}$
- The orthogonal complement of $V = \mathbb{R}^4$ is $V^{\perp} = \{0\}$

Prop 19.3-19.4-19.5: Let $V \subset \mathbb{R}^n$ be a subspace. Then:

- (a) $\dim(V) + \dim(V^{\perp}) = n$
- (b) $(V^{\perp})^{\perp} = V$
- (c) $V \cap V^{\perp} = \{ \mathbf{0} \}$
- (d) $V + V^{\perp} = \mathbb{R}^n$.

Part (d) means: "Every vector $\mathbf{x} \in \mathbb{R}^n$ can be written as a sum $\mathbf{x} = \mathbf{v} + \mathbf{w}$ where $\mathbf{v} \in V$ and $\mathbf{w} \in V^{\perp}$."

Also, it turns out that the expression $\mathbf{x} = \mathbf{v} + \mathbf{w}$ is unique: that is, there is only one way to write \mathbf{x} as a sum of a vector in V and a vector in V^{\perp} .

Meaning of $C(A^T)$ and $N(A^T)$

Q: What does $C(A^T)$ mean? Well, the columns of A^T are the rows of A. So:

$$C(A^T)$$
 = column space of A^T
= span of columns of A^T
= span of rows of A .

For this reason: We call $C(A^T)$ the **row space** of A.

Q: What does $N(A^T)$ mean? Well:

$$\mathbf{x} \in N(A^T) \iff A^T \mathbf{x} = \mathbf{0}$$

$$\iff (A^T \mathbf{x})^T = \mathbf{0}^T$$

$$\iff \mathbf{x}^T A = \mathbf{0}^T.$$

So, for an $m \times n$ matrix A, we see that: $N(A^T) = \{ \mathbf{x} \in \mathbb{R}^m \mid \mathbf{x}^T A = \mathbf{0}^T \}$. For this reason: We call $N(A^T)$ the **left null space** of A.

Relationships among the Subspaces

Theorem: Let A be an $m \times n$ matrix. Then:

$$C(A^T) = N(A)^{\perp}$$

$$N(A^T) = C(A)^{\perp}$$

Corollary: Let A be an $m \times n$ matrix. Then:

$$C(A) = N(A^T)^{\perp}$$

$$N(A) = C(A^T)^{\perp}$$

Prop 18.3: Let A be an $m \times n$ matrix. Then $\operatorname{rank}(A) = \operatorname{rank}(A^T)$.

Motivating Questions for Reading

Problem 1: Let $\mathbf{b} \in C(A)$. So, the system of equations $A\mathbf{x} = \mathbf{b}$ does have solutions, possibly infinitely many.

Q: What is the solution \mathbf{x} of $A\mathbf{x} = \mathbf{b}$ with $\|\mathbf{x}\|$ the smallest?

Problem 2: Let $\mathbf{b} \notin C(A)$. So, the system of equations $A\mathbf{x} = \mathbf{b}$ does <u>not</u> have any solutions. In other words, $A\mathbf{x} - \mathbf{b} \neq \mathbf{0}$.

Q: What is the vector \mathbf{x} that minimizes the error $||A\mathbf{x} - \mathbf{b}||$? That is, what is the vector \mathbf{x} that comes closest to being a solution to $A\mathbf{x} = \mathbf{b}$?

Orthogonal Projection

Def: Let $V \subset \mathbb{R}^n$ be a subspace. Then every vector $\mathbf{x} \in \mathbb{R}^n$ can be written uniquely as

$$\mathbf{x} = \mathbf{v} + \mathbf{w}$$
, where $\mathbf{v} \in V$ and $\mathbf{w} \in V^{\perp}$.

The **orthogonal projection** onto V is the function $\operatorname{Proj}_V \colon \mathbb{R}^n \to \mathbb{R}^n$ given by: $\operatorname{Proj}_V(\mathbf{x}) = \mathbf{v}$. (Note that $\operatorname{Proj}_{V^{\perp}}(\mathbf{x}) = \mathbf{w}$.)

Prop 20.1: Let $V \subset \mathbb{R}^n$ be a subspace. Then:

$$\operatorname{Proj}_V + \operatorname{Proj}_{V^{\perp}} = I_n.$$

Of course, we already knew this: We have $\mathbf{x} = \mathbf{v} + \mathbf{w} = \text{Proj}_V(\mathbf{x}) + \text{Proj}_{V^{\perp}}(\mathbf{x})$.

Formula: Let $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ be a basis of $V \subset \mathbb{R}^n$. Let A be the $n \times k$ matrix

$$A = \begin{bmatrix} | & & | \\ \mathbf{v}_1 & \cdots & \mathbf{v}_k \\ | & & | \end{bmatrix}.$$

Then:

$$\operatorname{Proj}_{V} = A(A^{T}A)^{-1}A^{T}. \tag{*}$$

Geometry Observations: Let $V \subset \mathbb{R}^n$ be a subspace, and $\mathbf{x} \in \mathbb{R}^n$ a vector.

- (1) The distance from \mathbf{x} to V is: $\|\operatorname{Proj}_{V^{\perp}}(\mathbf{x})\| = \|\mathbf{x} \operatorname{Proj}_{V}(\mathbf{x})\|$.
- (2) The vector in V that is closest to \mathbf{x} is: $\text{Proj}_V(\mathbf{x})$.

Derivation of (*): Notice $\operatorname{Proj}_V(\mathbf{x})$ is a vector in $V = \operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_k) = C(A) = \operatorname{Range}(A)$, and therefore $\operatorname{Proj}_V(\mathbf{x}) = A\mathbf{y}$ for some vector $\mathbf{y} \in \mathbb{R}^k$.

Now notice that $\mathbf{x} - \operatorname{Proj}_V(\mathbf{x}) = \mathbf{x} - A\mathbf{y}$ is a vector in $V^{\perp} = C(A)^{\perp} = N(A^T)$, which means that $A^T(\mathbf{x} - A\mathbf{y}) = \mathbf{0}$, which means $A^T\mathbf{x} = A^TA\mathbf{y}$.

Now, it turns out that our matrix A^TA is invertible (proof in L20), so we get $\mathbf{y} = (A^TA)^{-1}A^T\mathbf{x}$. Thus, $\operatorname{Proj}_V(\mathbf{x}) = A\mathbf{y} = A(A^TA)^{-1}A^T\mathbf{x}$. \Diamond

Minimum Magnitude Solution

Prop 19.6: Let $\mathbf{b} \in C(A)$ (so $A\mathbf{x} = \mathbf{b}$ has solutions). Then there exists exactly one vector $\mathbf{x}_0 \in C(A^T)$ with $A\mathbf{x}_0 = \mathbf{b}$.

And: Among all solutions of $A\mathbf{x} = \mathbf{b}$, the vector \mathbf{x}_0 has the smallest length.

In other words: There is exactly one vector \mathbf{x}_0 in the row space of A which solves $A\mathbf{x} = \mathbf{b}$ – and this vector is the solution of smallest length.

To Find \mathbf{x}_0 : Start with any solution \mathbf{x} of $A\mathbf{x} = \mathbf{b}$. Then

$$\boxed{\mathbf{x}_0 = \operatorname{Proj}_{C(A^T)}(\mathbf{x}).}$$

Least Squares Approximation

Idea: Suppose $\mathbf{b} \notin C(A)$. So, $A\mathbf{x} = \mathbf{b}$ has no solutions, so $A\mathbf{x} - \mathbf{b} \neq \mathbf{0}$.

We want to find the vector \mathbf{x}^* which minimizes the error $||A\mathbf{x}^* - \mathbf{b}||$. That is, we want the vector \mathbf{x}^* for which $A\mathbf{x}^*$ is the closest vector in C(A) to \mathbf{b} .

In other words, we want the vector \mathbf{x}^* for which $A\mathbf{x}^* - \mathbf{b}$ is orthogonal to C(A). So, $A\mathbf{x}^* - \mathbf{b} \in C(A)^{\perp} = N(A^T)$, meaning that $A^T(A\mathbf{x}^* - \mathbf{b}) = \mathbf{0}$, i.e.:

$$A^T A \mathbf{x}^* = A^T \mathbf{b}.$$

Quadratic Forms (Intro)

Given an $m \times n$ matrix A, we can regard it as a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$. In the special case where the matrix A is a *symmetric matrix*, we can also regard A as defining a "quadratic form":

Def: Let A be a symmetric $n \times n$ matrix. The **quadratic form** associated to A is the function $Q_A : \mathbb{R}^n \to \mathbb{R}$ given by:

$$Q_A(\mathbf{x}) = \mathbf{x} \cdot A\mathbf{x} \qquad (\cdot \text{ is the dot product})$$
$$= \mathbf{x}^T A \mathbf{x} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} A \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Notice that quadratic forms are <u>not</u> linear transformations!

Orthonormal Bases

Def: A basis $\{\mathbf{w}_1, \dots, \mathbf{w}_k\}$ for a subspace V is an **orthonormal basis** if:

- (1) The basis vectors are mutually orthogonal: $\mathbf{w}_i \cdot \mathbf{w}_j = 0$ (for $i \neq j$);
- (2) The basis vectors are unit vectors: $\mathbf{w}_i \cdot \mathbf{w}_i = 1$. (i.e.: $\|\mathbf{w}_i\| = 1$)

Orthonormal bases are nice for (at least) two reasons:

- (a) It is much easier to find the \mathcal{B} -coordinates $[\mathbf{v}]_{\mathcal{B}}$ of a vector when the basis \mathcal{B} is orthonormal;
- (b) It is much easier to find the **projection matrix** onto a subspace V when we have an orthonormal basis for V.

Prop: Let $\{\mathbf{w}_1, \dots, \mathbf{w}_k\}$ be an orthonormal basis for a subspace $V \subset \mathbb{R}^n$.

(a) Every vector $\mathbf{v} \in V$ can be written

$$\mathbf{v} = (\mathbf{v} \cdot \mathbf{w}_1)\mathbf{w}_1 + \dots + (\mathbf{v} \cdot \mathbf{w}_k)\mathbf{w}_k.$$

(b) For all $\mathbf{x} \in \mathbb{R}^n$:

$$\operatorname{Proj}_{V}(\mathbf{x}) = (\mathbf{x} \cdot \mathbf{w}_{1})\mathbf{w}_{1} + \dots + (\mathbf{x} \cdot \mathbf{w}_{k})\mathbf{w}_{k}.$$

(c) Let A be the matrix with columns $\{\mathbf{w}_1, \dots, \mathbf{w}_k\}$. Then $A^T A = I_k$, so: $\operatorname{Proj}_V = A(A^T A)^{-1} A^T = AA^T.$

Orthogonal Matrices

Def: An **orthogonal matrix** is an invertible matrix C such that

$$C^{-1} = C^T.$$

Example: Let $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be an orthonormal basis for \mathbb{R}^n . Then the matrix

$$C = \begin{bmatrix} | & & | \\ \mathbf{v}_1 & \cdots & \mathbf{v}_n \\ | & & | \end{bmatrix}$$

is an orthogonal matrix.

In fact, every orthogonal matrix C looks like this: the columns of any orthogonal matrix form an orthonormal basis of \mathbb{R}^n .

Where theory is concerned, the key property of orthogonal matrices is:

Prop 22.4: Let C be an orthogonal matrix. Then for $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$:

$$C\mathbf{v} \cdot C\mathbf{w} = \mathbf{v} \cdot \mathbf{w}.$$

Gram-Schmidt Process

Since orthonormal bases have so many nice properties, it would be great if we had a way of actually manufacturing orthonormal bases. That is:

Goal: We are given a basis $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$ for a subspace $V\subset\mathbb{R}^n$. We would like an *orthonormal* basis $\{\mathbf{w}_1, \dots, \mathbf{w}_k\}$ for our subspace V.

Notation: We will let

$$V_1 = \operatorname{span}(\mathbf{v}_1)$$

$$V_2 = \operatorname{span}(\mathbf{v}_1, \mathbf{v}_2)$$

$$\vdots$$

$$V_k = \operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_k) = V.$$

Idea: Build an orthonormal basis for V_1 , then for $V_2, \ldots,$ up to $V_k = V$.

Gram-Schmidt Algorithm: Let $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ be a basis for $V \subset \mathbb{R}^n$.

- (1) Define $\mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}$.
- (2) Having defined $\{\mathbf{w}_1, \dots, \mathbf{w}_j\}$, let

$$\mathbf{y}_{j+1} = \mathbf{v}_{j+1} - \operatorname{Proj}_{V_j}(\mathbf{v}_{j+1})$$

$$= \mathbf{v}_{j+1} - (\mathbf{v}_{j+1} \cdot \mathbf{w}_1)\mathbf{w}_1 - (\mathbf{v}_{j+1} \cdot \mathbf{w}_2)\mathbf{w}_2 - \dots - (\mathbf{v}_{j+1} \cdot \mathbf{w}_j)\mathbf{w}_j,$$

and define $\mathbf{w}_{j+1} = \frac{\mathbf{y}_{j+1}}{\|\mathbf{y}_{j+1}\|}$. Then $\{\mathbf{w}_1, \dots, \mathbf{w}_k\}$ is an orthonormal basis for V.

Definiteness

Def: Let $Q: \mathbb{R}^n \to \mathbb{R}$ be a quadratic form.

We say Q is **positive definite** if $Q(\mathbf{x}) > 0$ for all $\mathbf{x} \neq 0$.

We say Q is **negative definite** if $Q(\mathbf{x}) < 0$ for all $\mathbf{x} \neq 0$.

We say Q is **indefinite** if there are vectors \mathbf{x} for which $Q(\mathbf{x}) > 0$, and also vectors \mathbf{x} for which $Q(\mathbf{x}) < 0$.

Def: Let A be a symmetric matrix.

We say A is **positive definite** if $Q_A(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \neq 0$.

We say A is **negative definite** if $Q_A(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} < 0$ for all $\mathbf{x} \neq 0$.

We say A is **indefinite** if there are vectors \mathbf{x} for which $\mathbf{x}^T A \mathbf{x} > 0$, and also vectors \mathbf{x} for which $\mathbf{x}^T A \mathbf{x} < 0$.

In other words:

- \circ A is positive definite \iff Q_A is positive definite.
- \circ A is negative definite \iff Q_A is negative definite.
- \circ A is indefinite \iff Q_A is indefinite.

The Hessian

Def: Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function. Its **Hessian** at $\mathbf{a} \in \mathbb{R}^n$ is the symmetric matrix of second partials:

$$Hf(\mathbf{a}) = \begin{bmatrix} f_{x_1x_1}(\mathbf{a}) & \cdots & f_{x_1x_n}(\mathbf{a}) \\ \cdots & \ddots & \cdots \\ f_{x_nx_1}(\mathbf{a}) & \cdots & f_{x_nx_n}(\mathbf{a}) \end{bmatrix}.$$

Note that the Hessian is a symmetric matrix. Therefore, we can also regard $Hf(\mathbf{a})$ as a quadratic form:

$$Q_{Hf(\mathbf{a})}(\mathbf{x}) = \mathbf{x}^T H f(\mathbf{a}) \mathbf{x} = \begin{bmatrix} x_1 \cdots x_n \end{bmatrix} \begin{bmatrix} f_{x_1 x_1}(\mathbf{a}) & \cdots & f_{x_1 x_n}(\mathbf{a}) \\ \cdots & \ddots & \cdots \\ f_{x_n x_1}(\mathbf{a}) & \cdots & f_{x_n x_n}(\mathbf{a}) \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

In particular, it makes sense to ask whether the Hessian is positive definite, negative definite, or indefinite.

Single-Variable Calculus Review

Recall: In calculus, you learned that for a function $f: \mathbb{R} \to \mathbb{R}$, a *critical* point is a point $a \in \mathbb{R}$ where f'(a) = 0 or f'(a) does not exist.

You learned that if f(x) has a local min/max at x = a, then x = a is a critical point. Of course, the converse is false: critical points don't have to be local minima or local maxima (e.g., they could be inflection points.)

You also learned the "second derivative test." If x = a is a critical point for f(x), then f''(a) > 0 tells us that x = a is a local min, whereas f''(a) < 0 tells us that x = a is a local max.

It would be nice to have similar statements in higher dimensions:

Critical Points & Second Derivative Test

Def: A **critical point** of $f: \mathbb{R}^n \to \mathbb{R}$ is a point $\mathbf{a} \in \mathbb{R}^n$ at which $Df(\mathbf{a}) = \mathbf{0}^T$ or $Df(\mathbf{a})$ is undefined.

In other words, each partial derivative $\frac{\partial f}{\partial x_i}(\mathbf{a})$ is zero or undefined.

Theorem: If $f: \mathbb{R}^n \to \mathbb{R}$ has a local max / local min at $\mathbf{a} \in \mathbb{R}^n$, then \mathbf{a} is a critical point of f.

N.B.: The converse of this theorem is false! Critical points do not have to be a local max or local min - e.g., they could be saddle points.

Def: A saddle point of $f: \mathbb{R}^n \to \mathbb{R}$ is a critical point of f that is not a local max or local min.

Second Derivative Test: Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function, and $\mathbf{a} \in \mathbb{R}^n$ be a critical point of f.

- (a) If $Hf(\mathbf{a})$ is positive definite, then \mathbf{a} is a local min of f.
- (b) If $Hf(\mathbf{a})$ is positive semi-definite, then \mathbf{a} is local min or saddle point.
- (c) If $Hf(\mathbf{a})$ is negative definite, then \mathbf{a} is a local max of f.
- (d) If $Hf(\mathbf{a})$ is negative semi-definite, then \mathbf{a} is local max or saddle point.
- (e) If $Hf(\mathbf{a})$ is indefinite, then \mathbf{a} is a saddle point of f.

Local Extrema vs Global Extrema

Finding Local Extrema: We want to find the local extrema of a function $f: \mathbb{R}^n \to \mathbb{R}$.

- (i) Find the critical points of f.
- (ii) Use the Second Derivative Test to decide if the critical points are local maxima / minima / saddle points.

Theorem: Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function. If $R \subset \mathbb{R}^n$ is a closed and bounded region, then f has a global max and a global min on R.

Finding Global Extrema: We want to find the global extrema of a function $f: \mathbb{R}^n \to \mathbb{R}$ on a region $R \subset \mathbb{R}^n$.

- (1) Find the critical points of f on the <u>interior</u> of R.
- (2) Find the extreme values of f on the <u>boundary</u> of R. (Lagrange mult.) Then:
 - The largest value from Steps (1)-(2) is a global max value.
 - The smallest value from Steps (1)-(2) is a global min value.

Lagrange Multipliers (Constrained Optimization)

Notation: Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a function, and $S \subset \mathbb{R}^n$ be a subset.

The restricted function $f|_S \colon S \to \mathbb{R}^m$ is the same exact function as f, but where the domain is restricted to S.

Theorem: Suppose we want to optimize a function $f(x_1, ..., x_n)$ constrained to a level set $S = \{g(x_1, ..., x_n) = c\}$.

If **a** is an extreme value of $f|_S$ on the level set $S = \{g(x_1, \ldots, x_n) = c\}$, and if $\nabla g(\mathbf{a}) \neq \mathbf{0}$, then

$$\nabla f(\mathbf{a}) = \lambda \nabla g(\mathbf{a})$$

for some constant λ .

Reason: If **a** is an extreme value of $f|_S$ on the level set S, then $D_{\mathbf{v}}f(\mathbf{a}) = 0$ for all vectors **v** that are tangent to the level set S. Therefore, $\nabla f(\mathbf{a}) \cdot \mathbf{v} = 0$ for all vectors **v** that are tangent to S.

This means that $\nabla f(\mathbf{a})$ is orthogonal to the level set S, so $\nabla f(\mathbf{a})$ must be a scalar multiple of the normal vector $\nabla g(\mathbf{a})$. That is, $\nabla f(\mathbf{a}) = \lambda \nabla g(\mathbf{a})$. \square

Motivation for Eigenvalues & Eigenvectors

We want to understand a quadratic form $Q_A(\mathbf{x})$, which might be ugly and complicated.

Idea: Maybe there's an orthonormal basis $\mathcal{B} = \{\mathbf{w}_1, \dots, \mathbf{w}_n\}$ of \mathbb{R}^n that is somehow "best suited to A" – so that with respect to the basis \mathcal{B} , the quadratic form Q_A looks simple.

What do we mean by "basis suited to A"? And does such a basis always exist? Well:

Spectral Theorem: Let A be a symmetric $n \times n$ matrix. Then there exists an <u>orthonormal basis</u> $\mathcal{B} = \{\mathbf{w}_1, \dots, \mathbf{w}_n\}$ of \mathbb{R}^n such that each $\mathbf{w}_1, \dots, \mathbf{w}_n$ is an eigenvector of A.

i.e.: There is an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A.

Why is this good? Well, since \mathcal{B} is a basis, every $\mathbf{w} \in \mathbb{R}^n$ can be written $\mathbf{w} = u_1 \mathbf{w}_1 + \cdots + u_n \mathbf{w}_n$. (That is, the \mathcal{B} -coordinates of \mathbf{w} are (u_1, \dots, u_n) .) It then turns out that:

$$Q_A(\mathbf{w}) = Q_A(u_1\mathbf{w}_1 + \dots + u_n\mathbf{w}_n)$$

$$= (u_1\mathbf{w}_1 + \dots + u_n\mathbf{w}_n) \cdot A(u_1\mathbf{w}_1 + \dots + u_n\mathbf{w}_n)$$

$$= \left[\lambda_1(u_1)^2 + \lambda_2(u_2)^2 + \dots + \lambda_n(u_n)^2\right]$$
 (yay!)

In other words: the quadratic form Q_A is in diagonal form with respect to the basis \mathcal{B} . We have made Q_A look as simple as possible!

Also: the coefficients $\lambda_1, \ldots, \lambda_n$ are exactly the eigenvalues of A.

Corollary: Let A be a symmetric $n \times n$ matrix, with eigenvalues $\lambda_1, \ldots, \lambda_n$.

- (a) A is positive-definite \iff all of $\lambda_1, \ldots, \lambda_n$ are positive.
- (b) A is negative-definite \iff all of $\lambda_1, \ldots, \lambda_n$ are negative.
- (c) A is indefinite \iff there is a positive eigenvalue $\lambda_i > 0$ and a negative eigenvalue $\lambda_j < 0$.

Useful Fact: Let A be any $n \times n$ matrix, with eigenvalues $\lambda_1, \ldots, \lambda_n$. Then

$$\det(A) = \lambda_1 \lambda_2 \cdots \lambda_n.$$

Cor: If any one of the eigenvalues $\lambda_j = 0$ is zero, then $\det(A) = 0$.

What is a (Unit) Sphere?

- \circ The **1-sphere** (the "unit circle") is $\mathbb{S}^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} \subset \mathbb{R}^2$.
- The **2-sphere** (the "sphere") is $\mathbb{S}^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\} \subset \mathbb{R}^3$.
- The **3-sphere** is $\mathbb{S}^3 = \{(x, y, z, w) \in \mathbb{R}^4 \mid x^2 + y^2 + z^2 + w^2 = 1\} \subset \mathbb{R}^4$.

Note that the 3-sphere is *not* the same as the unit ball $\{x^2 + y^2 + z^2 \le 1\}$.

 \circ The (n-1)-sphere is the set

$$\mathbb{S}^{n-1} = \{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid (x_1)^2 + \dots + (x_n)^2 = 1 \}$$

= $\{ \mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}||^2 = 1 \} \subset \mathbb{R}^n.$

In other words, \mathbb{S}^{n-1} consists of the **unit vectors** in \mathbb{R}^n .

Optimizing Quadratic Forms on Spheres

Problem: Optimize a quadratic form $Q_A : \mathbb{R}^n \to \mathbb{R}$ on the sphere $\mathbb{S}^{n-1} \subset \mathbb{R}^n$. That is, what are the maxima and minima of $Q_A(\mathbf{w})$ subject to the constraint that $\|\mathbf{w}\| = 1$?

Solution: Let λ_{max} and λ_{min} be the largest and smallest eigenvalues of A.

- \circ The maximum value of Q_A for unit vectors is λ_{max} . Any unit vector \mathbf{w}_{max} which attains this maximum is an eigenvector of A with eigenvalue λ_{max} .
- \circ The minimum value of Q_A for unit vectors is λ_{\min} . Any unit vector \mathbf{w}_{\min} which attains this minimum is an eigenvector of A with eigenvalue λ_{\min} .

Corollary: Let A be a symmetric $n \times n$ matrix.

- (a) A is positive-definite \iff the minimum value of Q_A restricted to unit vector inputs is positive (i.e., iff $\lambda_{\min} > 0$).
- (b) A is negative-definite \iff the maximum value of Q_A restricted to unit vector inputs is negative (i.e., iff $\lambda_{\text{max}} < 0$).
 - (c) A is indefinite $\iff \lambda_{\max} > 0$ and $\lambda_{\min} < 0$.

Directional First & Second Derivatives

Def: Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function, $\mathbf{a} \in \mathbb{R}^n$ be a point.

The directional derivative of f at \mathbf{a} in the direction \mathbf{v} is:

$$D_{\mathbf{v}}f(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot \mathbf{v}.$$

The "directional second derivative" of f at \mathbf{a} in the direction \mathbf{v} is:

$$Q_{Hf(\mathbf{a})}(\mathbf{v}) = \mathbf{v}^T H f(\mathbf{a}) \mathbf{v}.$$

That is: the quadratic form whose associated matrix is the Hessian $Hf(\mathbf{a})$.

Q: What direction **v** increases the directional derivative the most? What direction **v** decreases the directional derivative the most?

A: We've learned this: the gradient $\nabla f(\mathbf{a})$ is the direction of greatest increase, whereas $-\nabla f(\mathbf{a})$ is the direction of greatest decrease.

New Questions:

- What direction v increases the directional second derivative the most?
- What direction **v** decreases the directional **second** derivative the most?

Answer: The (unit) directions of minimum and maximum second derivative are (unitized) eigenvectors of $Hf(\mathbf{a})$, and so they are mutually orthogonal.

The max/min values of the directional second derivative are the max/min eigenvalues of $Hf(\mathbf{a})$.