

Proving CANDO

Leo Freitas
Overture 11/06/2025, Aarhus

In collaboration with:

Ben Wooding
 PhD Student

Patrick Degenaar Brain pacemaker eng. (NCL) lead

Brain Pacemaker (mid point adoption)

- Optogenetic stimulation (i.e. electrical signal input; light signal output)
- Embedded software within the controller unit for closed-loop stimulation
- External software for wireless download diagnostic information and upload control parameters

What's been verified

- CANDO VDM verification went as far as POG
 - QC didn't exist at the time of modelling (2017/18)
 - Retrospective QC failures corroborated by failed Isabelle proofs
 - Better to have QC counter examples in secs than hours of Isabelle frustration!
- Motivation for the VDM to Isabelle translator
 - Translation strategy developed since 2010 as part of AI4FM project
 - UG / PG taught module on applying translation manually (2012-2022)
 - Isabelle translator implementation (2020-)
 - Improvement of translation strategy (still some constructs are missing)

What's been verified?

- Manual translation of CANDO FSM and its (136 [2018/9 POG]) POs
 - ~96% of POs discovered automatically (e.g. Isabelle's sledgehammer tool)
 - Higher automation requires a specific "VDM modelling style" (a.k.a. exu)
 - Proofs were mostly similar, 1-3 lines on average
 - 72 lemmas and expertise needed for initialisation and state invariant POs
 - POG varied since MSc work (i.e. 272 POs [2025] x 136 POs [2018/9]).
- Proof of initialisation / state invariant
 - Required about 34 auxiliary lemmas for a single proof!
 - Overall 5 proofs took most (90+%) of the (2 weeks) verification effort
 - Smooth verification due to adequate VDM style for Isabelle proofs.

Results Overview

- Translator now applied to various models of different complexity
 - Geneal infrastructure (e.g. now also translates VDM to Dafny)!
- Translation infrastructure as VDMJ and VSCode plugins:
 - exu: VDM style checker for ease of proof
 - exu can suggest/enforce style choices (~100 of unpacking/rewrite rules), e.g.

```
types
Okay : set of nat inv s == forall x in set s & x < 10;

Value : nat          inv v == v < 10;
--@Witness({1,2,3})
Better: set of Value;</pre>
```


Results Overview

- VDM to Isabelle
 - VDM math toolkit 1605LOC (406 lemmas, 11 theorems, 84 unpacking rules)
 - FSM: VDM (1053LOC); Isabelle (1456LOC)
 - FSM POs proofs: 820LOCs; 72 auxiliary lemmas needed
 - Not all proofs completed (i.e. many are to be repeated with slight variation)

- VDM Toolkit (https://github.com/leouk/VDM_Toolkit)
 - Numerous examples, experiments and demos
 - Let's have a look

Conclusion

- Translation infrastructure as VDMJ and VSCode plugins:
 - vdm2isa:
 - Model organizer (declaration before use, dependency checks, etc.)
 - Model translator (VDM to Isabelle strategy with 3 flavours)
 - Configurable proof strategy generator (i.e. 4 different target model flavours)
 - Unearthed ~50 VDM AST / TC / POG / VSCode issues
 - VDMJ (more developed), as well as VSCode (less developed) plugins
- VDM mathematical toolkit in Isabelle
 - Community resource for VDM proofs in Isabelle/HOL.