APPENDIX

Theorem A.1. There is a strict Nash Equilibrium in which, for any computation with a per player reward $Reward_i > \frac{cost(calc)}{\omega - \tau}$, rational computers and requesters follow the protocol.

Proof. Consider a RequestComputation(requester, *) instance corresponding to a computation instance calc, and computers selected for computation I. Based on $n_{comp} > n_{comp}(\psi)$, the majority of computers in I are rational.

First consider a rational requester. Correctly running RevealRewards(calc,*) allows the requester to run ReturnEscrow(calc,*) and receive back $calc.escrow_{MM}$. This is because no computer can run a FinaliseRewards(calc,*) resulting in claim = true. Therefore, rational requesters follow the protocol

Consider now the rational computers. If the requester correctly runs RevealRewards(calc, *), calc.trgt calc.responses_{qood} are generated correctly. Therefore, if all rational computers follow the protocol, the assumption under which we chose Rewardi in Section V, for a given rational computer computer, correctly running SubmitResult(calc, *), $computer_i$ is included in $calc.responses_{good}$ with probability ω . If computer_i incorrectly runs SubmitResult(calc, *), computer_i is included in calc.responses_{qood} with probability of at most τ . By our choice of Reward_i, we have seen in Section V, given calc.responses_{good} is generated correctly and computers included in calc.responses_{good} receive this with probability 1, this is sufficient for rational computers to compute result, equivalent to running SubmitResult(calc, *).

If the requester correctly runs RevealRewards(calc,*), $calc.responses_{good}$ is generated correctly. A computer can then run FinaliseRewards(calc,*) to receive $Reward_i$ if included in $calc.responses_{good}$, as required. If the requester incorrectly runs RevealRewards(calc,*), any computer can run FinaliseRewards(calc,*) to generate claim = true receive $Reward_i$ with probability 1, which is strictly greater than if the requester correctly runs RevealRewards(calc,*).

Therefore, rational computers and requesters follow the protocol if $Reward_i > \frac{cost(calc)}{\omega - \tau}$

Lemma A.2. For a series of computations $[calc_1, calc_2, ..., calc_n]$ with $Reward_i > \frac{cost(calc)}{\omega - \tau}$ and $n_{comp} > n_{comp}(\psi)$, as the number of completed computations increases, the probability of selecting a Byzantine computer for a computation with $n_{comp} < \frac{Computers}{2}$ is strictly decreasing in expectancy and approaches 0 as n tends to infinity.

Proof. As $Reward_i > \frac{cost(calc)}{\omega - \tau}$, from Theorem A.1 rational computers follow the protocol. Let α be the share of computers that are Byzantine. We know a majority of computers selected are rational, as $n_{comp} > n_{comp}(\psi)$. Therefore, Byzantine computers are rewarded with probability $\tau < \omega$. For a given computation, the expected reputation increase of a selected Byzantine computer is τ , while the expected increase for a selected rational computer is ω . Given n_{comp} are selected for the computation, the expected number of these being rational computers is $(1-\alpha)n_{comp}$, while the number of selected

Byzantine computers is αn_{comp} . Furthermore, this means the expected increase in reputation for rational computers is $(1-\alpha)n_{comp}\omega$, while the expected increase in reputation for Byzantine computers is $\alpha n_{comp}\tau$. At the beginning of the protocol, the probability of selecting a Byzantine player from the set of all computers is in direct proportion to starting reputation. Given initial reputations of *initRep*, after the first computation, the selection probability of a Byzantine computer reduces in expectancy to:

$$\frac{\alpha(|Computers|initRep + n_{comp}\tau)}{|Computers|initRep + n_{comp}((1 - \alpha)\omega + \alpha\tau)}.$$
 (5)

First it be can see that

$$\frac{\alpha(|\textit{Computers}|\textit{initRep} + n_{comp}\tau)}{|\textit{Computers}|\textit{initRep} + n_{comp}((1 - \alpha)\omega + \alpha\tau)} < \alpha \qquad (6)$$

meaning Byzantine selection probability is decreasing. To prove that Byzantine selection probability tends to 0 in the number of computations as described in the Lemma statements, let α_k be the Byzantine computer selection probability after k computations. We have the expected Byzantine selection probability after k+1 computations, denoted , α_{k+1} , is:

$$\begin{split} &\frac{\alpha_{k}(|\textit{Computers}|\textit{initRep} + n_{comp}\tau)}{|\textit{Computers}|\textit{initRep} + n_{comp}\left((1 - \alpha_{k})\omega + \alpha_{k}\tau\right)} \\ &= \frac{\alpha_{k}(|\textit{Computers}|\textit{initRep} + \tau n_{comp})}{|\textit{Computers}|\textit{initRep} + n_{comp}\omega - \alpha_{k}n_{comp}(\omega - \tau)}. \end{split} \tag{7}$$

We have already seen:

$$\alpha_{k+1} = \frac{\alpha_k(|\textit{Computers}|\textit{initRep} + n_{comp}\tau)}{|\textit{Computers}|\textit{initRep} + n_{comp}\omega - \alpha_k n_{comp}(\omega - \tau)} < \alpha_k.$$
(8)

which implies:

$$\frac{(|\textit{Computers}| \textit{initRep} + n_{comp}\tau)}{|\textit{Computers}| \textit{initRep} + n_{comp}\omega - \alpha_k n_{comp}(\omega - \tau)} < 1. \quad (9)$$

Letting the term on the right be r_k , we can see r_k is decreasing in k as $n_{comp}(\omega-\tau)>0$ (because $\omega>\tau$) and $\alpha_{k+1}<\alpha_k$, meaning the negative term in the denominator of r_k is increasing (towards 0) and as such the denominator of r_k is increasing. Therefore $\alpha_k<\alpha_0r_0^k$, with $r_0<1$. The result follows.