Database Design Using ER to Relational Mapping

Overview

ER-to-Relational Mapping Algorithm

- Step 1: Mapping of Regular Entity Types
- Step 2: Mapping of Weak Entity Types
- Step 3: Mapping of Binary 1:1 Relation Types
- Step 4: Mapping of Binary 1:N Relationship Types.
- Step 5: Mapping of Binary M:N Relationship Types.
- Step 6: Mapping of Multivalued attributes.
- Step 7: Mapping of N-ary Relationship Types.

- Relations (tables) correspond with entity types and with many-to-many relationship types
- Rows correspond with entity instances and with many-tomany relationship instances
- Columns correspond with attributes

- For each regular entity type E in ER, create a relation R that includes all the simple attributes of E
- Choose one of the key attributes of E as primary key of R
- If the chosen key is a composite, then the set of simple attributes that form it will together form pk of R

Mapping Regular Entities to Relations

- Simple attributes: E-R attributes map directly onto the relation
- 2. Composite attributes: Use only their simple, component attributes
- 3. Multi-valued Attribute: Becomes a separate relation with a foreign key taken from the superior entity

(a) CUSTOMER entity type with simple attributes

(b) CUSTOMER relation

CUSTOMER		
Customer_ID	Customer_Name	Customer_Address

(b) CUSTOMER relation with address detail

CUSTOMER						
Customer_ID	Customer_Name	Street	City	State	Zip	

Multivalued attribute becomes a separate relation with foreign key

Mapping weak entity types

- Weak entity type becomes a separate relation with a foreign key taken from the superior (owner) entity type
 - Primary key composed of:
 - Partial identifier of weak entity
 - Primary key of identifying relation (strong entity)

Mapping weak entity types

Mapping weak entity types

Mapping 1:1 relationship types

- Foreign key approach
 - Primary key of optional (partial) side becomes foreign key in mandatory (total) side
- Merged relation approach
 - Merge two entity types and the relationship into a single relation when both participations are total

Mapping 1:1 relationship types

Mapping 1:1 relationship types

Mapping 1:N relationship types

 Primary key on the 1- one side becomes a foreign key on the N many side

Mapping 1:N relationship types

Mapping M:N relationship types

- Create a new relation with primary key of both the entity types as its primay key
 - combination of primary key of participating entity types
- Also include any of the simple attribute(s) of M:N relationship type as attributes of new relation

Mapping M:N relationship types

Mapping M:N relationship types

Mapping unary relationship type

- One-to-Many Recursive foreign key in the same relation
- Many-to-Many Two relations:
 - One for the entity type
 - One for an associative relation in which the primary key has two attributes, both taken from the primary key of the entity

Mapping unary relationship type

(b) EMPLOYEE relation with recursive foreign key

Mapping unary relationship type

(a) Bill-of-materials relationships (M:N)

(b) ITEM and COMPONENT relations

Mapping n-ary relationship types

- For each n-ary relationship type R, where n>2, create a new relation S to represent R.
- Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types.
- Also include any simple attributes of the n-ary relationship type as attributes of S.
- **Example:** The relationship type SUPPY in the ER on the next slide.
 - This can be mapped to SUPPLY, whose primary key is the combination of the three foreign keys {SNAME, PARTNO, PROJNAME}

Mapping n-ary relationship types

Mapping n-ary relationship types

SUPPLIER

|--|

PROJECT

PROJNAME • • •

PART

SUPPLY

|--|

Mapping supertype/subtype relationships

- One relation for supertype and for each subtype
- Supertype attributes (including identifier and subtype discriminator) go into supertype relation
- Subtype attributes go into each subtype; primary key of supertype relation also becomes primary key of subtype relation
- 1:1 relationship established between supertype and each subtype, with supertype as primary table

Mapping supertype/subtype relationships

Mapping supertype/subtype relationships

