PATENT ABSTRACTS OF JAPAN

(11) Publication number: 63272226 A

(43) Date of publication of application: 09.11.88

(51) Int. CI

H03M 13/00 G06F 11/10

(21) Application number: 62107528

(22) Date of filing: 30.04.87

(71) Applicant:

SHARP CORP

(72) Inventor:

YAMAGUCHI TAKESHI SUGIURA TERUKI SAKAMOTO NORIAKI

DEGUCHI TOSHIHISA

(54) DECODING METHOD FOR REED SOLOMON CODE

(57) Abstract:

PURPOSE: To decrease an error location detecting and processing time by deciding whether or not a mean value of error location is larger than a prescribed value depending on the value calculated based on a coefficient of an error location polynomial, and deciding the element of a Galois field GF substituted into the said polynomial based on the result of decision.

CONSTITUTION: A syndrome from a syndrome calculation section 12 is inputted to a display section 13 for the number of errors where the presence of an error and the number to an original data string are estimated and each coefficient of the error location polynomial is calculated, and the result obtained is outputted to an error location detection section 14 and the solution of the given polynomial is obtained based on each of the said coefficients. The result is outputted to a data correction section 16 and an error pattern detection section 15. The detection section 15 calculates the error location from the detection section 14 and the error pattern from the syndrome from the calculation section 12 and the result is outputted to the correction section 16, which reads a data stored in

an address of a data buffer 11 represented by the inputted error location and corrects it and writes the data after the correction into the buffer 11 again.

COPYRIGHT: (C)1988, JPO& Japio

⑩ 公 開 特 許 公 報 (A)

昭63-272226

@Int_Cl_1

識別記号

庁内整理番号 6832 - 5 J

⑩公開 昭和63年(1988)11月9日

H 03 M 13/00 G 06 F 11/10

3 3 0

P - 7368 - 5B

審査請求 未請求 発明の数 1 (全7頁)

リードソロモン符号の復号方法 国発明の名称

> ②特 顖 昭62-107528

願 昭62(1987) 4月30日 四出

大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社 毅 四発 明者 Щ 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社 輝 樹 何発 明 者 杉 浦 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社 餰 眀 の発 明 者 坂 本 内 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社 久 の発 明 者 出 敏

シャープ株式会社 ②出 願 人.

大阪府大阪市阿倍野区長池町22番22号

葆 砂代 理 弁理士 青 山

外2名

1. 発明の名称

・リードソロモン符号の復号方法

- 2. 特許請求の範囲
- (1) ガロア体GF(2^m)上の元で構成されるリ ードソロモン符号により符号化されたデータ列か らシンドロームを発生させ、このシンドロームよ り導かれる誤り位置多項式に、上記ガロア体GF (2 11)の元を逐次代入することにより誤り位置お よび誤りパターンを求め、上記誤り位置および誤 りパターンに基づいて上記データ列の誤りデータ を修整するリードソロモン符号の復号方法におい

上紀誤り位置多項式σ(X)における Xの 0次の 係数σοに基づいて算出される値によって、誤り 位置の平均値が誤り位置の存在可能範囲を仕切る 所定の値より大きいか否かを判定し、その判定結 果に基づいて、上記誤り位置多項式に代入する上 記ガロア体GF(2°)の元を、上記所定の値によっ て仕切られた一方の範囲に存在する元にしたこと

を特徴とするリードソロモン符号の復号方法。

3. 発明の詳細な説明

〈産業上の利用分野〉

この発明は、リードソロモン符号の復号方法に 関する。

〈従来の技術〉

近年、記録媒体上において情報をディジタル信 号で記錄再生する場合や、通信路により情報をディ ジタル信号で送受信する場合に、誤り訂正符号で あるリードソロモン符号を採用したシステムが多 くなっている。このリードソロモン符号は、再生 信号あるいは受信信号の劣化に併うデータの誤り を校出して修整することができる符号である。

ガロア体 G F (2 m)上の元により構成される上 記リードソロモン符号の復号時における誤り位置 検出方法および修整方法は次の手順によって行な われる。

- (1) 再生データ列あるいは受信データ列よりシ ンドロームを求める。
- (2) 上記シンドロームより誤り個数の判定を行

ない、さらに誤り位置多項式を求める。

- (3) 上記誤り位置多項式の解を求める(誤り位置を求める)。
- (4) 上記誤り位置とシンドロームとに基づいて、 誤りパターンを求める。
- (5) 上記誤り位置と誤りパターンとに基づいて、 上記再生データ列あるいは受信データ列中の誤り データを修整する。

ここで、上記手順(3)において、ガロア体 $GF(2^m)$ の原始元を α としたときの、生成多項式G(X)

r+d-2 Π $(X+\alpha^i)$ で表わされる符号長 Π のリードソロモン符号を考える。今、上記データ列中における $j_1,j_2,...,j_l$ の桁にl 個の誤りが生じ、いずれも修整可能であるとすると、誤り位置多項式 $\sigma(X)$ は

$$\sigma(X) = \prod_{\nu=1}^{t} (X + X_{\nu})$$

$$= X^{t} + \sigma_{t-1} X^{t-1} + \cdots + \sigma_{1} X + \sigma_{0}$$

と表わされる。ただし、 $X \nu = \alpha^{j\nu} (\nu = 1, 2, \nu)$

〈問題点を解決するための手段〉

上記目的を達成するため、この発明は、ガロア 体 G F (2 ^a)上の元で構成されるリードソロモン 符号により符号化されたデータ列からシンドロー ムを発生させ、このシンドロームより導かれる誤 り位置多項式に、上記ガロア体GF(2^a)の元を 逐次代入することにより誤り位置および誤りパタ ーンを求め、上記誤り位置および誤りパターンに 基づいて上記データ列の誤りデータを修整するリ ードソロモン符号の復号方法において、上記誤り 位置多項式の係数の。に基づいて算出される値に よって、誤り位置の平均値が誤り位置の存在可能 範囲を仕切る所定の値より大きいか否かを判定し、 その判定結果に基づいて、上記誤り位置多項式に 代入する上記ガロア体GF(2°)の元を、上記所 定の値によって仕切られた一方の範囲に存在する 元にしたことを特徴としている。

ここで、この発明におけるリードソロモン符号 の誤り位置検出方法の原理について説明する。

上記誤り位置多項式σ(X)は次の様に展開する

…t)。また、各係数σ₀,σ₁,…,σ₁₋₁はシンドロームよって定まる。

従来、データ列中の誤り位置を求めるために σ (X)=0 の解を求めるに際し、上記誤り位置多項式 $\sigma(X)$ にガロア体 $GF(X)=(2^n)$ の元の α^k を、例えばk=0.1.2...n-1の顧序で一律に代入し、代入結果の判定により $\alpha^{j\nu}(\nu=1.2...t)$ によって表わされる誤りの発生している桁すなわち誤り位置を検出するという方法が用いられている。

〈発明が解決しようとする問題点〉

しかしながら、上記従来の誤り位置検出方法では、ガロア体の元を誤り位置多項式に代入した結果整整不可能であると判定されるような場合も含め、最大n回の代入計算を行なう必要があり、リードソロモン符号の復号処理に多大な時間を要するという問題がある。

そこで、この発明の目的は、リードソロモン符号の復号時において、誤り位置検出処理に要する 処理時間を短縮することができるリードソロモン 符号の復号方法を提供することにある。

ことができる。

$$\sigma(X) = \prod_{\nu=1}^{t} (X + X_{\nu})$$

$$= X^{t} + (X_{i} + X_{i} + \dots + X_{t}) X^{t-1} + \dots$$

$$+ X_{i} \cdot X_{i} \cdot \dots \cdot X_{t}$$

$$= X^{t} + \sigma_{t-1} X^{t-1} + \dots + \sigma_{0}$$

ここで、 $X\nu = \alpha^{j\nu}$ より、上式の X の O 次項 の係数 σ 。は

$$\sigma_0 = X_1 \cdot X_2 \cdot \cdots \cdot X_k$$

$$= \prod_{\nu=1}^{t} \alpha^{j\nu} = \alpha^{\sum_{\nu=1}^{j} \nu}$$

と表わされる。ただし0 ≤ jν ≤ n-1(ν = 1.2 ···. t)。さらにいかなる修整可能な第 0 桁から第 n-1 桁の間にあるt個の誤りの組み合せに対して も、

$$\sum_{\nu=1}^{t} j\nu < 2^{n}-1$$

という関係が満足されるならば、以下の関係が成 り立つ。すなわち、

(1)
$$\sum_{\nu=1}^{t} (\nu-1) \leq \sum_{\nu=1}^{t} j\nu \leq n \cdot t - \sum_{\nu=1}^{t} \nu$$

(II) 第 k+1 桁から第 $\ell-1$ 桁の間に t 他の誤りが存在する場合、 $\sum_{\nu=1}^{t}$ j_{ν} $\leq \lfloor \frac{k+\ell}{2} \rfloor \cdot t$ ならば、各 j_{ν} $'(\nu'=1,2,3,\cdots,t')$ のうち

 $k+1 \le j\nu' \le \lfloor \frac{k+\ell}{2} \rfloor$ を満足する $j\nu'$ が必ず存在する。ただし、 $-1 \le k < \ell \le n$. $1 \le t' \le t$. (\square) t個の誤りの内t-1 個の誤り位置が既知ならば、残りのt番目の誤り位置は

$$\alpha^{jt} = \sigma_{\circ} / \prod_{\nu=1}^{t-1} \alpha^{j\nu} = \sigma_{\circ} / \alpha^{\nu=1}$$
により与えられる。

ここで、 $\lfloor x \rfloor$ はxを超えない正の整数を表す。 したがって、上記(I)、(I)、(I) だよび(I)の 関係を用いることにより、後に詳述するようにガロア体G F (2 n)の元を上記誤り位置多項式 σ (X)

多項式 σ (X)の各係数が計算され、得られた結果は誤り位置検出部 1 4 に出力される。そして、この誤り位置検出部 1 4 によって、上記誤り個数判定部 1 3 から入力された誤り位置多項式 σ (X)の各係数に基づいて、与えられた誤り位置多項式 σ (X)の解が、後に述べる手法により求められる。 そして、その結果がデータ修整部 1 6 と誤りパターン検出部 1 5 に出力される。さらに、誤りパターン検出部 1 5 によって、上記誤り位置検出部 1 4 から人力された誤り位置および上記シンドローム計算部 1 2 から入力されるシンドロームから誤りパターンが計算され、その結果がデータ修整部 1 6 に出力される。

このようにして、誤り位置検出部14から入力された誤り位置および誤りパターン検出部15から入力された誤りパターンに基づいて、上紀デーク修整部16は、上紀入力された誤り位置で示される上紀データバッファ11上のアドレスに記憶されたデータを読み出して修整を施こし、再度上紀データバッファ11に修整後のデータを書き込

= 0 に代入する範囲を挟めて、代入計算の回数を 減少することができるのである。

(実施例)

以下、この発明を図示の実施例により詳細に説明する。

第1図は、この発明におけるリードソロモン符号の復号化回路のブロック図である。第1図により、データバッファ11は、1つのデータが例えば8ピット(m=8)で表わされる符号長nのリードソロモン符号により符号化されたデータの、再生データ列あるいは受信データ列を格納している。上記データバッファ11に格納されている上記可生データ列あるいは受信データ列は、シンドローム計算部12に送られてシンドロームが計算部12で計算をして、上記シンドローム計算部12で計算されたシンドロームは、誤り個数判定部13および誤りパターン検出部15に送られる。そうされたシンドロームよりの質に送られる。入力された上記シンドロームより元データ列に対する誤りの有無および個数が推定されると共に、誤り位置

t.

上記(「)、(□)、(□) および(□)の関係を用いて、上記誤り位置検出部 | 4 で実施される再生データ列あるいは受信データ列の誤り位置検出処理のフローチャートを第2図に示す。以下、第2図に従って位置検出処理を説明する。今、上記誤り個数判定部 | 3 において、誤りがt個存在すると判定されると共に、誤り位置多項式σ(X)が推定されたとする。

ステップS.で、誤り位置S項式 $\sigma(X)$ におけるXの0次の係数 σ 。に対して、上記(I)の関係を満足するか否かが次のようにして判定される。 すなわち、 σ 。= α P としたとき、次式(A)

$$\frac{t}{\sum_{i=1}^{t} (i-1)} \leq p \leq n \cdot t - \sum_{i=1}^{t} i \cdots (A)$$

なる関係を満足するか否かが判定される。その結果、上記式(A)を満足しない場合はステップSisに進み、上記誤り個数判定部13で推定した誤り個数におよび誤り位置多項式 σ(X)が不適であると判断され、上記データ列の誤りを修整不可とす

る。一方、上記式(A)を満足する場合はステップ S.に進む。

ステップS.で、k=-1.l=n.ν=0なる初期設定を行ない、実際の誤り位置検出動作が開始される。

k+ℓ ステップS₃で、vに1を加算しh= しーーjを 2 昨出する。

ステップS.で、t個の誤りの内、上記ステップS,で算出した ν (= ν +1=0+1=1)番目の 誤り位置を、第k+1(=0)桁がら第 ℓ -1(=n-1)桁の範囲で求めるために、上記ステップS,で

求めた
$$h(=\lfloor\frac{k+\ell}{2}\rfloor=\lfloor\frac{n-1}{2}\rfloor$$
に対して次式(B) $p \le h \cdot (t-\nu+1)$ …(B)

なる関係が満足するか否かが判定され、誤り位置 多項式σ(X)へ代入するガロア体の元の範囲が決 定される。そして、上記判定の結果、式(B)を満 足する場合はステップSεに進み、満足しない場 合はステップSεに進む。ここで、式(B)を満足す

なるまで上記ステップ $S_s \sim S_t$ を繰り返す。一方、 $\sigma\left(\alpha^k\right) = 0$ であればステップ S_s に進む。

ステップS•で、 $j_1 = k(1 番目の誤り桁数を第k$ 桁とする)および $p = p - j_1$ が算出されてステップS $_{13}$ に進む。

一方、上記ステップS。で、式(B)を満足しない場合、すなわちp $\leq \lfloor \frac{n-1}{2} \rfloor$ ・Lを満足しない場合は、上記(\parallel) および(\parallel) の関係よりは個の誤りの内、少なくとも1個は第($\lfloor \frac{n-1}{2} \rfloor$ +1)桁から第(n-1)桁の範囲に存在する。そこで、代入する元 α^{ℓ} の ℓ の範囲を $\ell=n-1,n-2,\cdots, \lfloor \frac{n-1}{2} \rfloor$ +1として $\sigma(x)=0$ を満足する α^{j} ・を検出するまでガロア体の元 α^{ℓ} ($\ell=n-1,n-2,\cdots, \lfloor \frac{n-1}{2} \rfloor$ +1)を 駅次 $\sigma(X)$ へ代入する。すなわち、

ステップS。で、QよりIが被算される。

ステップS ioで、Qがh以下であるか否かが判定 され、その結果、hより大きい場合はステップS ii る場合、すなわち、 $p \leq \lfloor \frac{n-1}{2} \rfloor$ ・tを満足する場合は、上記($\mathbb I$)および($\mathbb I$)、の関係よりも個の誤りの内少なくとも1個は第0桁から第 $\lfloor \frac{n-1}{2} \rfloor$ 桁の範囲に存在する。そこで、代入する元 α^k のkの範囲をk=0、1、… $\lfloor \frac{n-1}{2} \rfloor$ として、 $\sigma(X)=0$ を満足する α^{j_1} を検出するまで、ガロア体の元 α^k (k=0、1、… $\lfloor \frac{n-1}{2} \rfloor$)を順次 $\sigma(X)$ へ代入する。すなわち、

ステップSsで、kにlが加算される。

ステップS。で、kがhより大きいか否かが判定され、その結果、hより小さい場合はステップS,に進む。一方、hより大きい場合はσ(X)=0を満足するガロア体の元が検出されないとして、上記ステップS」。に進む。

ステップS τ で、 σ (α^k) の演算値が零であるか 否かが判定され、その結果、零でなければ上記ス テップS π に戻り、以下、 σ (α^k) の計算値が零に

に進む。一方、h以下の場合は $\sigma(X)=0$ を満足するガロア体の元が検出されないとして、上記ステップ S_{10} に進む。

ステップ S_{11} で、 $\sigma(\alpha^{\ell})$ の計算値が零であるか否かが判定され、その結果等でなければ上記ステップ S_{\bullet} に戻り、以下 $\sigma(\alpha^{\ell})$ の計算値が零になるまで上記ステップ S_{\bullet} ~ S_{11} を繰り返す。一方 $\sigma(\alpha^{\ell})$ =0であれば、ステップ S_{12} に進む。

ステップ S_{12} で、 $j_1 = \ell$ (1番目の誤り桁数を第 ℓ 桁数とする)および $p = p - j_1$ が算出されてステップ S_{13} に進む。

以上の各ステップにより第 j_1 (=kあるいは ℓ)桁に $\nu=1$ 番目の誤りが検出される。

ステップ S_{13} で、 ν =t-lであるか否かが判定され、 ν =t-lであればステップ S_{14} に進む。一方、そうでなければ S_{3} に戻り、次に、 ν = ν +l(=l+l=2)番目の誤り位配を、第k+l(= j_1 +1)桁から第 ℓ -l(=n-1)桁の範囲、あるいは、第k+l(=0)桁から第 ℓ -l(= j_1 -1)桁の

粒囲で求める。すなわち、 $h = \lfloor \frac{k+\ell}{2} \rfloor$ (= $\lfloor \frac{j_1+n}{2} \rfloor$

あるいは $\lfloor \frac{j_1-1}{2} \rfloor$) および $p(=p-j_1)$ を用いて、ステップ S 、で再び式(B) を満足するか否かの判定が行なわれ、 $\sigma(X)$ へ代入するガロア体の元 α^k または α^ℓ の k ℓ の ℓ の

以上の動作をステップSiaでν=t-1であると判定されるまで繰り返し、ν=t-1番目までの誤り位置(桁数)ji.ji.....jt...を検出した後、最後のt番目の誤り位置を上記(Ⅲ)の関係より求める。すなわち、

ステップS、で、jt=pが算出されて誤り位置 検出動作は終了する。

このように、ステップ S 。において、p が式(B) を満たすか否かを判定し、その結果に基づいて上記誤り位置多項式 σ (X) に代入するガロア体の元を、誤り位置の存在可能範囲を上記 $h=\lfloor \frac{k+\ell}{2} \rfloor$ で 仕切ったうちの一方の範囲に存在する元として、代入計算の回数を減少することができるのである。

上述のALU101の演算は、上記レジスタ群102および入力レジスタ103のスリーステートパッファ群106を制御することによって選択されるデータバス201上のデータと、同様に、上記レジスタ群102および入力レジスタ103のスリーステートバッファ群107を制御することによって選択されるデータバス202上のデータとの間で行なわれる。上記データバス201.202はさらにスリーステートバッファ112.113および変換メモリ110.111のアドレ

第3図は、第1図のリードソロモン符号の復号 化回路を実現するための具体的回路構成のブロッ ク図を示す。メモリに格納されたプログラムによ り全体を制御される本回路は、例えばガロア体C F(2°)上の乗除算のための2°-1を法とする加 減算機能、および同様にガロア体上の加算のため の排他的論理和演算機能を有する算術論理演算回 路(ALU)101を有する。レジスタ群102は 上記ALUで得られる演算結果を格納し、入力レ ジスタ103は外部データパス200上のデータ・ を取り込み、出力レジスタ104は上記ALUで 得られた計算結果を上記外部データバス200上 に出力する。出力レジスタ105は上記出力レジ スタ104から計算結果のデータが外部データバ ス200を介して転送される際に、転送先の上記 データバッファー1内のアドレス値を出力する。

上記ALUI01に対する演算内容の指令、外 部データバス200上におけるデータの入出力お よびデータバッファ11のデータに対するリード /ライト動作指令等の制御命令はプログラムメモ

ス入力側に接続され、さらに上記変換メモリ!! 0.111のデータ出力側はスリーステートバッ ファー14.1!5に接続されている。ALU! 0.1 が具体的に演算対象とするデータはスリース テートバッファ112~115を制御することに よりデータバス201.202上のデータおよび、 そのデータバス201,202上のデータ値によ りアドレス指定された変換メモリ110.111 内のデータより選択される。また、スリーステー トパッファ116を制御することにより、プログ ラムメモリ117に格納された定数との間の流算 が可能となる。ここで、上記変換メモリ!10. 1.1.1にはガロア体 G F (2 *)の元を記憶してお り、元 α^{i} の2進表示のアドレス入力に対してiを、 また元αⁱのiのアドレス入力に対してαⁱの2進 表示を出力し、これら2種の表現の切換えは変換 メモリ [10 , 1 | 1の上位アドレス制御するこ とによって行なわれる。

(発明の効果)

以上より明らかなように、この発明によれば、ガ

特開昭63-272226 (6)

ロア体 G F (2 m)で構成されるリードソロモン符号により符号化されたデータよりからシンドロームを発生させ、このシンドロームより導かれる誤り位置多項式に上記がロア体 G F (2 m)の元を逐次代入して誤り位置を求めるに際し、上記誤り位置を攻めるに際の係数の平均位置を攻めるになりの係数の平均位置ののではないが認めないが設めて、といるがロア体 G F (2 m)の元を上記所定の値によって、上記誤り位置を項式にがロア体 G F (2 m)の元を上記所定の値によって、上記誤り位置を項式にがロア体 G F (2 m)の元を代入する回数を大幅に減少することができる。

4. 図面の簡単な説明

第1図はこの発明におけるリードソロモン符号の復号化回路のブロック図、第2図はこの発明におけるリードソロモン符号の誤り位置検出動作のフローチャート、第3図はこの発明の一実施例を

示すリードソロモン符号の誤り位置検出回路のブロック図である。

101…算術論理演算回路(ALU)、

102…レジスタ群、103…入力レジスタ、

104,105…出力レジスタ、

106.107.108,109,112,113.

114,115,116...スリーステートパッファ、

110,111…変換メモリ、

117…プログラムメモリ、118…ラッチ回路、

119…プログラムカウンタ、

120…フラグレジスタ、

121…マルチプレクサ。

特 許 出 願 人 シャープ株式会社代 理 人 弁理士 青 山 葆 ほか2名

第 1 図

特開昭 63-272226(7)

第3図

(ゴンド)

