Supporting Information for

Computational insights on potential dependence of electrocatalytic synthesis of ammonia from nitrate

Huijuan Jing a,b, Jun Long a, Huan Li a,b, Xiaoyan Fu a, Jianping Xiao a,b,*

^a State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences,

Dalian 116023, Liaoning, China

b University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding author. E-mail: xiao@dicp.ac.cn (J.Xiao).

Computational details

Adsorption and reaction free energies. We calculated all the adsorption energies and structures of intermediates for ammonia and nitrite production on six MN_4 (M = Fe, Co, Ni, Cu, V, Sc) single atom catalysts, as shown in **Table S2** and **S3**. The solvation effect was considered to correct the adsorption free energies. We used the implicit solvation model implemented in VASPsol¹ to explicitly calculate solvation energy (E_{sol}), with the water dielectric constant of 78.5. **Table S5** lists all the E_{sol} over FeN_4 used in this work. The adsorption energy (E_{ad}) was defined as

$$E_{ad} = E_{tot} - E_{slab} - (xE_H + yE_N + zE_O)$$
 eq S1

where E_{tot} and E_{slab} are the total energies of the surfaces with adsorbates and the bare ones, respectively. E_H = 1/2 E_{H_2} , E_O = E_{H_2O} - E_{H_2} , E_N = 1/2 E_{N_2} . x, y, z represents the number of hydrogen, oxygen, nitrogen atoms in intermediates. The adsorption free energy (G_{ad}) and reaction energies (ΔE) were calculated with the following eq S2 and S3:

$$G_{ad} = E_{ad} + \Delta E_{ZPE} - T\Delta S + \Delta E_{sol} \qquad eq~S2$$

$$\Delta E = E_P - E_R \qquad eq~S3$$

While the reaction free energies (ΔG) were calculated using computational hydrogen electrode (CHE) model² under 298.15 K with the following equation:

$$\Delta G = \Delta E + \Delta E_{ZPE} - T\Delta S + \Delta E_{sol} + e(U - U_0)$$
 eq S4

where ΔE_{ZPE} , T, ΔS represent the difference of zero-point vibrational energy between the products and reactants, thermodynamic temperature, entropy change, respectively. ΔE_{sol} is the solvation energy, e is the energy of the electron, U and U₀ refer to the applied electrode potential and 0V versus RHE, respectively. The ΔE_{ZPE} – T ΔS of the intermediates involved in reaction are shown in **Table S4**. The zero-point energies and entropies of gas phase molecules were obtained from NIST database as listed in **Table S6**.

Potential-dependent protonation barriers. The potential-dependent electrochemical barriers were calculated using the "charge-extrapolation" method, proposed by Chan and Nørskov³⁻⁴. For an elementary reaction, the transition state (TS) was searched by the climbing image nudged elastic band (CI-NEB) method⁵. A monolayer of water containing a hydronium (H_3O^+) ion, which acts as the proton source, was placed on the catalyst surface to calculate the barrier of proton coupling electron transfer reaction. The conditions of the experimental results are used as the benchmark, although the experimentally neutral pH is considered to be the proton source from H_2O , and H_3O^+ as proton source to transfer can approximately simulate such a process, which has been successfully used in previous studies⁶⁻⁷. As there is good linear correlations between the calculated surface charge transfer (q) and potential (U) variation at IS, TS, and FS, so a capacitor model was employed to calculate the barrier at a given potential⁸. For a constant charge CI-NEB calculation, the energy change from state 1 to state 2 (state 1 and state 2 are any two of initial, transition and final states) at constant work functions, Φ_1 and Φ_2 (1 and 2 here are considered IS and TS), can be given by

$$E_2(\Phi_1) - E_1(\Phi_1) = E_2(\Phi_2) - E_1(\Phi_1) + \frac{(q_2 - q_1)(\Phi_2 - \Phi_1)}{2}$$
 eq S5

$$E_2(\Phi_2) - E_1(\Phi_2) = E_2(\Phi_2) - E_1(\Phi_1) - \frac{(q_2 - q_1)(\Phi_2 - \Phi_1)}{2}$$
 eq S6

Setting $\Delta E(\Phi) = E_2(\Phi) - E_1(\Phi)$ at a constant work function Φ and $\Delta q = q_2 - q_1$, it can derive the following equation:

$$\Delta E(\Phi_2) - \Delta E(\Phi_1) = -\Delta q(\Phi_2 - \Phi_1)$$
 eq S7

where $\Delta E(\Phi_2)$ and $\Delta E(\Phi_1)$ are the barriers at given Φ_2 and Φ_1 , respectively. Taking Φ_1 as the reference work function, Φ_{ref} (e.g., that corresponding to the standard hydrogen electrode potential⁹), and Φ_2 to be the independent variable, we obtained the barriers as a function of Φ_2

$$\Delta E(\Phi_2) = \Delta E(\Phi_{ref}) - \Delta q(\Phi_2 - \Phi_{ref})$$
 eq S8

The work functions, Φ , can be related to the absolute potential by $U_{SHE} = \frac{\Phi - \Phi_{SHE}}{e}$ and Φ_{SHE} has been determined experimentally to be $\sim 4.4 \text{ eV}^3$. Therefore, the potential-dependent barrier can be calculated by this method. For surface charge transfer (q), the corresponding charge of electrode slab (with adsorbates), which can be obtained via Bader charge calculation. For work function calculations, a dipole correction was applied in *z*-direction.

The elementary steps of eNO₃RR. For electrochemical reduction of nitrate, we have considered two whole reactions, as follows:

$$NO_3^- + 9H^+ + 8e^- \rightarrow NH_3 + 3H_2O$$
 eq S9

$$NO_3^- + 3H^+ + 2e^- \rightarrow HNO_2 + H_2O$$
 eq S10

For the above two total reactions there are some elementary reactions that are considered, listed in Table S1. Note that these elementary reactions other than R0 and R1 are written to proceed via the Heyrovsky route, considering that this route becomes more dominant at high overpotentials¹⁰.

The first elementary step considerations for eNO₃RR. There are two forms of consideration for the first elementary step (R0: $NO_3^- + H^+ \rightarrow HNO_3$ and R1: $NO_3^- + H^+ + * \rightarrow HNO_3*$), whose Gibbs reaction free energy¹¹⁻¹² can be indirectly calculated as follows:

$$NO_3^- + H^+ \rightarrow HNO_3(l)$$
 $\Delta G_{S11} = 0.317 \text{ eV}$ eq S11
 $HNO_3(l) \rightarrow HNO_3(g)$ $\Delta G_{S12} = 0.075 \text{ eV}$ eq S12
 $HNO_3(g) + * \rightarrow HNO_3^*$ $\Delta G_{S13} = G_{ad}HNO_3^* - G_{gas}HNO_3$ eq S13

Therefore, the reaction free energies of elementary R0 and R1 can be respectively approximated as:

$$\Delta G_{R0} = \Delta G_{S11} + \Delta G_{S12} = 0.392 \text{ eV}$$

$$\Delta G_{R1} = \Delta G_{S11} + \Delta G_{S12} + \Delta G_{S13} = G_{ad}HNO_3* - G_{gas}HNO_3 + 0.392$$

Microkinetic simulations. CATKINAS code were used for microkinetic simulations¹³⁻¹⁴, based on the potential-dependent barriers and reaction free energies for electrochemical steps. For thermochemical steps, the barriers and reaction free energies were assumed to be constant. For eNO₃RR to NH₃ and to HNO₂, we combine R0 and R2 into an elementary step in the microkinetic simulation, avoiding the problem of HNO₃ partial pressure setting. The reaction rate was calculated following the Arrhenius equation (eq S14) and the surface coverage of adsorbed species was solved with the steady-state approximation (eq S15).

$$r = k\theta_A \theta_B = \frac{k_B T}{h} exp\left(-\frac{G_a}{RT}\right) \theta_A \theta_B$$
 eq S14
$$\frac{\partial \theta_i}{\partial t} = 0$$
 eq S15
$$\sum_i \theta_i = 1$$
 eq S16

where r is the reaction rate, k is reaction rate constant, θ_A and θ_B are the surface concentrations of the reactants, k_B is the Boltzmann constant, T is the thermodynamic temperature, G_a is the activation free barrier, and θ_i represents the surface coverage of anyone adsorbed species. The considered elementary steps and kinetic equations have been shown in **Table S10**.

Figure S1. The possible first step reaction free energies on FeN₄ catalyst.

Figure S2. The structures of CuN_4 , NiN_4 , CoN_4 , FeN_4 , VN_4 and ScN_4 catalysts.

Figure S3. Scaling relations for intermediates involved in eNO_3RR to $NH_3 + HNO_2$, $G_{ad}(NH^*)$ and $G_{ad}(HNO_2^*)$ were chosen as two descriptors.

Table S1. The 22 elementary steps considered for eNO_3RR process.

Number	Elementary reactions	Number	Elementary reactions
R0	$NO_3^- + H^+ \rightarrow HNO_3$	R11	$(H^+ + e^-) + NOH^* \rightarrow HNOH^*$
R1	$NO_3^- + H^+ + * \rightarrow HNO_3^*$	R12	$(H^+ + e^-) + HNO^* \rightarrow HNOH^*$
R2	$(H^+ + e^-) + HNO_3 + * \rightarrow NO_2* + H_2O$	R13	$(H^+ + e^-) + HNO^* \rightarrow H_2NO^*$
R3	$(H^+ + e^-) + HNO_3^* \rightarrow NO_2^* + H_2O$	R14	$(H^+ + e^-) + H_2NO^* \rightarrow NH_2OH^*$
R4	$(H^+ + e^-) + NO_2^* \rightarrow cisHNO_2^*$	R15	$(H^+ + e^-) + HNOH^* \rightarrow NH_2OH^*$
R5	$(H^+ + e^-) + cisHNO_2^* \rightarrow NO^* + H_2O$	R16	$(H^+ + e^-) + NOH^* \rightarrow N^* + H_2O$
R6	$(H^+ + e^-) + NO_2^* \rightarrow HNO_2^*$	R17	$(H^+ + e^-) + HNOH^* \rightarrow NH^* + H_2O$
R7	$(H^+ + e^-) + NO_2^* \to HNO_2 + *$	R18	$(H^+ + e^-) + NH_2OH^* \rightarrow NH_2^* + H_2O$
R8	$HNO_2^* \rightarrow HNO_2 + *$	R19	$(H^+ + e^-) + N^* \rightarrow NH^*$
R9	$(H^+ + e^-) + NO^* \rightarrow NOH^*$	R20	$(H^+ + e^-) + NH^* \rightarrow NH_2^*$
R10	$(H^+ + e^-) + NO^* \rightarrow HNO^*$	R21	$(H^+ + e^-) + NH_2^* \rightarrow NH_3 + *$

Table S2. Adsorption energies (in eV) of intermediates involved in eNO_3RR on six MN_4 SACs.

Catalysts Species	CuN ₄	NiN ₄	CoN ₄	FeN ₄	VN ₄	ScN ₄
NO ₂ *	4.19	4.25	3.27	3.28	1.83	1.37
NO*	3.21	3.13	1.89	1.63	0.59	1.19
HNO ₂ *	3.63	3.60	3.44	3.27	2.26	2.47
cisHNO ₂ *	3.67	3.66	3.49	3.05	2.21	2.72
HNO ₃ *	5.24	5.27	5.27	5.23	2.97	3.87
HNO*	3.29	3.60	2.38	1.70	0.20	1.02
NOH*	4.30	4.28	3.10	2.28	0.58	2.50
HNOH*	2.98	3.04	2.05	1.81	0.60	0.84
H_2NO*	2.62	2.63	2.04	2.05	-0.31	-0.06
NH ₂ OH*	1.67	1.73	1.42	1.32	0.79	1.53
N*	4.45	4.60	3.10	2.01	-0.25	2.63
NH*	3.04	3.49	1.89	1.39	-1.45	1.09
NH ₂ *	1.10	1.33	0.17	-0.09	-1.64	-1.35
NO ₃ *	5.69	5.92	5.26	5.11	3.01	2.43

 $\textbf{Table S3.} \ \ \text{The optimized adsorption structures of intermediates for eNO}_{3}RR \ \ on \ six \ MN_{4} \ SACs.$

Catalysts Species	CuN ₄	NiN ₄	CoN ₄	FeN ₄	VN ₄	ScN ₄
NO ₂ *	00-00 -0 00-00	DG-000-00	20-00-00	20-00-00	80-80-90-90	NO=00=00=00
NO*	90 30 30	0 0-00-00	20-00-00 X	90 -00-00-0	NS 56 86 94	NC-00-06-04
HNO ₂ *	00-00200-00	90 -00000 00	N 00 00 M	80-30-30-00	90-00-90-96	00 00 00
cisHNO ₂ *	~	م _ب هٔ 20—00 <u>=00</u>	20-00-00	NO 000 000	80 00 00 00	NO 80 90 90
HNO ₃ *) 0 00 00 00	₩). >0-00 -00-0 0	30-00=00	00 00 00	NT NO 80 90
HNO*	10-00 - 00	30-00 -00	20-00-00	90-00-00-00	NO 00 00 00	90=86=90
NOH*	00-06-00-0x	8	X-00-00	NO-000-00	90-00-00-00	NO 000 000
HNOH*	80-00-06-04	20-00-00	DG-00500-00	N 20 30 00	PC - 20 - 96 - 98	80-08-96-96
H ₂ NO*	∞	20 -00=00-0 0	20-00-00	20-00-00	90-08-90-91	86-86-36

Table S4. ΔE_{ZPE} -T ΔS for intermediate species at 298.15 K.

Species	ZPE-TS (eV)	Species	ZPE-TS (eV)
HNO*	0.34	HNO ₃ *	0.34
NOH*	0.32	HNO ₂ *	0.33
HNOH*	0.60	cisHNO ₂ *	0.39
H_2NO*	0.61	N*	0.02
NH ₂ OH*	0.97	NH*	0.24
NO ₂ *	0.05	NH_2*	0.56
NO*	0.03	NO ₃ *	0.17

Table S5. Solvation energy corrections for adsorption energies of intermediate species.

Species	Solvation Energy (eV)	Species	Solvation Energy (eV)
HNO*	-0.18	HNO ₃ *	0.21
NOH*	-0.19	HNO ₂ *	-0.11
HNOH*	-0.20	cisHNO ₂ *	-0.16
H_2NO*	-0.38	N*	-0.07
NH ₂ OH*	-0.16	NH*	-0.16
NO_2^*	-0.25	NH ₂ *	-0.10
NO*	0.00	NO ₃ *	-0.80

Table S6. The corrections of zero-point energy and entropy (in eV) for gas phase molecules at 298.15 K.

Species	ZPE ^a	TS^b	ZPE-TS
H_2	0.27	0.40	-0.14
H_2O	0.54	0.58	-0.05
N_2	0.14	0.59	-0.45
NH_3	0.89	0.60	0.29
HNO_2	0.50	0.77	-0.27
HNO_3	0.65	0.83	-0.18

^aZero-point energies and ^bEntropies were taken from NIST Computational Chemistry Comparison and Benchmark Database. NIST Standard Reference Database Number 101 Release 22, May 2022, Editor: Russell D. Johnson III http://cccbdb.nist.gov/ DOI:10.18434/T47C7Z

Table S7. The summary of considered pathways for eNO₃RR to NH₃ and HNO₂ production.

	rays for eNO_3RR to NH_3 and HNO_2 production.
Pathway (0):	Pathway (1):
$(0) \text{ NO}_3^- + \text{H}^+ \rightarrow \text{HNO}_3$	$(0) NO_3^- + H^+ \rightarrow HNO_3$
(2) $HNO_3 + (H^+ + e^-) + * \rightarrow NO_2 * + H_2O$	(2) $HNO_3 + (H^+ + e^-) + * \rightarrow NO_2 * + H_2O$
(4) $NO_2^* + (H^+ + e^-) \rightarrow cisHNO_2^*$	(4) $NO_2^* + (H^+ + e^-) \rightarrow cisHNO_2^*$
(5) $cisHNO_2* + (H^+ + e^-) \rightarrow NO* + H_2O$	(5) $cisHNO_2^* + (H^+ + e^-) \rightarrow NO^* + H_2O$
(10) NO* + (H ⁺ + e ⁻) \rightarrow HNO*	(9) NO* + (H ⁺ + e ⁻) \rightarrow NOH*
(13) HNO* + (H' + e') \rightarrow H ₂ NO*	(16) NOH* + (H ⁺ + e ⁻) \rightarrow N* + H ₂ O
(14) $H_2NO^* + (H^+ + e^-) \rightarrow NH_2OH^*$	(19) $N^* + (H^+ + e^-) \rightarrow NH^*$
(18) $NH_2OH^* + (H^+ + e^-) \rightarrow NH_2^* + H_2O$	$(20) \text{ NH*} + (\text{H}^+ + \text{e}^-) \rightarrow \text{NH}_2^*$
(21) $NH_2* + (H^+ + e^-) \rightarrow NH_3 + *$	(21) $NH_2^* + (H^+ + e^-) \rightarrow NH_3 + *$
Pathway (2):	Pathway (3):
(1) $NO_3^- + H^+ + * \rightarrow HNO_3^*$	(1) $NO_3^- + H^+ + * \rightarrow HNO_3^*$
(3) $HNO_3^* + (H^+ + e^-) \rightarrow NO_2^* + H_2O$	(3) $HNO_3^* + (H^+ + e^-) \rightarrow NO_2^* + H_2O$
(4) $NO_2^* + (H^+ + e^-) \rightarrow cisHNO_2^*$	(4) $NO_2^* + (H^+ + e^-) \rightarrow cisHNO_2^*$
(5) $cisHNO_2^* + (H^+ + e^-) \rightarrow NO^* + H_2O$	(5) $cisHNO_2^* + (H^+ + e^-) \rightarrow NO^* + H_2O$
$(10) \text{ NO*} + (\text{H}^+ + \text{e}^-) \rightarrow \text{HNO*}$	(9) NO* + (H ⁺ + e ⁻) \rightarrow NOH*
(13) HNO* + (H ⁺ + e ⁻) \rightarrow H ₂ NO*	(16) NOH* + (H ⁺ + e ⁻) \rightarrow N* + H ₂ O
$(14) H2NO* + (H+ + e-) \rightarrow NH2OH*$	(19) $N^* + (H^+ + e^-) \rightarrow NH^*$
(14) $\text{NH}_2\text{NO}^+ + (\text{H}^+ + \text{e}^-) \rightarrow \text{NH}_2\text{OH}^+$ (18) $\text{NH}_2\text{OH}^* + (\text{H}^+ + \text{e}^-) \rightarrow \text{NH}_2^* + \text{H}_2\text{O}$	$(20) NH^* + (H^+ + e^-) \rightarrow NH_2^*$
(21) $NH_2* + (H^+ + e^-) \rightarrow NH_3 + *$	(21) $NH_2^* + (H^+ + e^-) \rightarrow NH_3 + *$
Pathway (4):	Pathway (5):
$(0) NO_3^- + H^+ \rightarrow HNO_3$	$(0) NO_3^- + H^+ \rightarrow HNO_3$
(0) $NO_3 + II \rightarrow IINO_3$ (2) $HNO_3 + (H^+ + e^-) + * \rightarrow NO_2 * + H_2O$	(0) $NO_3 + H \rightarrow HNO_3$ (2) $HNO_3 + (H^+ + e^-) + * \rightarrow NO_2 * + H_2O$
(4) $NO_2^* + (H^+ + e^-) \rightarrow cisHNO_2^*$	$(2) \text{ InVO}_3^+ (\text{II}^+ + \text{e}^-) \rightarrow \text{risHNO}_2^* + \text{II}_2^{2O}$ $(4) \text{ NO}_2^* + (\text{H}^+ + \text{e}^-) \rightarrow \text{cisHNO}_2^*$
(4) $NO_2^{-1} + (H^+ + e^-) \rightarrow NO^* + H_2O$	(4) $NO_2^* + (H^+ + e^-) \rightarrow CISTINO_2^*$ (5) $cisHNO_2^* + (H^+ + e^-) \rightarrow NO^* + H_2O$
(9) NO* + (H ⁺ + e ⁻) \rightarrow NOH*	(9) NO* + (H ⁺ + e ⁻) \rightarrow NOH*
(11) NOH* + (H ⁺ + e ⁻) \rightarrow NOH*	(11) NOH* + (H ⁺ + e ⁻) \rightarrow HNOH*
$(15) \text{ HNOH}^* + (H^+ + e^-) \rightarrow \text{NH}_2\text{OH}^*$	(17) HNOH* + (H ⁺ + e ⁻) \rightarrow NH* + H ₂ O
(18) $NH_2OH^* + (H^+ + e^-) \rightarrow NH_2^* + H_2O$	(20) NH* + (H ⁺ + e ⁻) \rightarrow NH ₂ *
$(16) \text{ NH}_2 \text{OH} + (\text{H}^+ + \text{e}^-) \rightarrow \text{NH}_2 + \text{H}_2 \text{O}$ $(21) \text{ NH}_2 * + (\text{H}^+ + \text{e}^-) \rightarrow \text{NH}_3 + *$	$(21) \text{ NH}_2^* + (\text{H}^+ + \text{e}^-) \rightarrow \text{NH}_3 + *$
	· / · · · · · · · · · · · · · · · · · ·
Pathway (6): (0) $NO_3^- + H^+ \rightarrow HNO_3$	Pathway (7): (0) $NO_3^- + H^+ \rightarrow HNO_3$
(0) $NO_3 + H \rightarrow HNO_3$ (2) $HNO_3 + (H^+ + e^-) + * \rightarrow NO_2 * + H_2O$	(0) $NO_3 + H \rightarrow HNO_3$ (2) $HNO_3 + (H^+ + e^-) + * \rightarrow NO_2 * + H_2O$
(2) $HNO_3 + (H + e^-) + \cdots + HO_2 + H_2O$ (4) $NO_2 + (H^+ + e^-) \rightarrow cisHNO_2 + H_2O$	(2) $HNO_3 + (H + e^-) + \cdots \rightarrow NO_2 + H_2O$ (4) $NO_2 + (H^+ + e^-) \rightarrow cisHNO_2 + \cdots$
(4) $NO_2^+ + (H^+ + e^-) \rightarrow NO^* + H_2O$	(4) $NO_2^{+} + (\Pi^{+} + e^{-}) \rightarrow CISTINO_2^{+}$ (5) $cisHNO_2^{*} + (H^{+} + e^{-}) \rightarrow NO^{*} + H_2O$
(10) NO* + (H ⁺ + e ⁻) \rightarrow HNO*	$(3) \text{ CISTINO}_2^{-1} + (\Pi^- + e^-) \rightarrow \text{NO}^{-1} + \Pi_2 O^-$ $(10) \text{ NO}^* + (H^+ + e^-) \rightarrow \text{HNO}^*$
(12) $HNO^* + (H^+ + e^-) \rightarrow HNOH^*$	$(12) \text{ HNO*} + (\text{H}^+ + \text{e}^-) \rightarrow \text{HNOH*}$
$(15) \text{ HNOH}^* + (\text{H}^+ + \text{e}^-) \rightarrow \text{NH}_2\text{OH}^*$	(12) HNOH* + (H + e') \rightarrow HNOH* (17) HNOH* + (H ⁺ + e') \rightarrow NH* + H ₂ O
(18) $NH_2OH^* + (H^+ + e^-) \rightarrow NH_2^* + H_2O$	(20) NH* + (H ⁺ + e ⁻) \rightarrow NH ₂ *
(18) $NH_2OH^* + (H^+ + e^-) \rightarrow NH_2^* + H_2O^-$ (21) $NH_2^* + (H^+ + e^-) \rightarrow NH_3 + *$	$(20) \text{ NH}^{+} + (\text{H}^{+} + \text{e}^{-}) \rightarrow \text{NH}_{2}^{+}$ $(21) \text{ NH}_{2}^{+} + (\text{H}^{+} + \text{e}^{-}) \rightarrow \text{NH}_{3}^{+} + *$
Pathway (8):	Pathway (9):
(1) $NO_3^- + H^+ + * \rightarrow HNO_3^*$ (3) $HNO_3^* + (H^+ + e^-) \rightarrow NO_2^* + H_2O$	(1) $NO_3 + H^+ + * \rightarrow HNO_3 *$ (3) $HNO_3 * + (H^+ + e^-) \rightarrow NO_2 * + H_2O$
(4) $NO_2^* + (H^+ + e^-) \rightarrow cisHNO_2^*$	(4) $NO_2^* + (H^+ + e^-) \rightarrow cisHNO_2^*$
(5) $\operatorname{cisHNO_2}^* + (\operatorname{H}^+ + \operatorname{e}^-) \to \operatorname{H_2O} + \operatorname{NO}^*$ (9) $\operatorname{NO}^* + (\operatorname{H}^+ + \operatorname{e}^-) \to \operatorname{NOH}^*$	(5) $cisHNO_2* + (H^+ + e^-) \rightarrow H_2O + NO*$ (9) $NO* + (H^+ + e^-) \rightarrow NOH*$
	(9) NO* + (H + e) \rightarrow NOH* (11) NOH* + (H ⁺ + e) \rightarrow HNOH*
(11) NOH* + (H ⁺ + e ⁻) \rightarrow HNOH*	
(15) HNOH* + (H ⁺ + e ⁻) \rightarrow NH ₂ OH*	(17) HNOH* + (H ⁺ + e ⁻) \rightarrow NH* + H ₂ O
(18) $NH_2OH^* + (H^+ + e^-) \rightarrow NH_2^* + H_2O$	$(20) \text{ NH*} + (\text{H}^+ + \text{e}^-) \rightarrow \text{NH}_2*$ $(21) \text{ NH*} + (\text{H}^+ + \text{e}^-) \rightarrow \text{NH}_2 + *$
$(21) NH_2* + (H^+ + e^-) \rightarrow NH_3 + *$	$(21) NH_2* + (H^+ + e^-) \rightarrow NH_3 + *$
Pathway (10):	Pathway (11):
$(1) NO_3 + H^+ + * \rightarrow HNO_3 *$	(1) $NO_3^- + H^+ + * \rightarrow HNO_3^*$

(3) $HNO_3* + (H^+ + e^-) \rightarrow NO_2* + H_2O$	(3) $HNO_3* + (H^+ + e^-) \rightarrow NO_2* + H_2O$
(4) $NO_2^* + (H^+ + e^-) \rightarrow cisHNO_2^*$	(4) $NO_2^* + (H^+ + e^-) \rightarrow cisHNO_2^*$
(5) $cisHNO_2^* + (H^+ + e^-) \rightarrow H_2O + NO^*$	(5) $cisHNO_2* + (H^+ + e^-) \rightarrow H_2O + NO*$
$(10) \text{ NO*} + (\text{H}^+ + \text{e}^-) \rightarrow \text{HNO*}$	$(10) \text{ NO*} + (\text{H}^+ + \text{e}^-) \rightarrow \text{HNO*}$
$(12) \text{ HNO*} + (\text{H}^+ + \text{e}^-) \rightarrow \text{HNOH*}$	$(12) \text{ HNO*} + (\text{H}^+ + \text{e}^-) \rightarrow \text{HNOH*}$
$(15) \text{ HNOH*} + (\text{H}^+ + \text{e}^-) \rightarrow \text{NH}_2\text{OH*}$	(17) HNOH* + $(H^+ + e^-) \rightarrow NH* + H_2O$
(18) $NH_2OH^* + (H^+ + e^-) \rightarrow NH_2^* + H_2O$	(20) $NH^* + (H^+ + e^-) \rightarrow NH_2^*$
(21) $NH_2^* + (H^+ + e^-) \rightarrow NH_3 + *$	(21) $NH_2^* + (H^+ + e^-) \rightarrow NH_3 + *$
HNO ₂	production
Pathway (12):	Pathway (13):
$(0) NO_3^- + H^+ \rightarrow HNO_3$	$(0) \text{ NO}_3^- + \text{H}^+ \rightarrow \text{HNO}_3$
(2) $HNO_3 + (H^+ + e^-) + * \rightarrow NO_2 * + H_2O$	(2) $HNO_3 + (H^+ + e^-) + * \rightarrow NO_2 * + H_2O$
(6) $NO_2^* + (H^+ + e^-) \rightarrow HNO_2^*$	$(7) \text{ NO}_2 * + (\text{H}^+ + \text{e}^-) \rightarrow \text{HNO}_2 + *$
(8) $HNO_2* \rightarrow HNO_2 + *$	

HNO ₂ production				
Pathway (12):	Pathway (13):			
$(0) NO_3^- + H^+ \rightarrow HNO_3$	$(0) NO_3^- + H^+ \rightarrow HNO_3$			
(2) $HNO_3 + (H^+ + e^-) + * \rightarrow NO_2 * + H_2O$	(2) $HNO_3 + (H^+ + e^-) + * \rightarrow NO_2 * + H_2O$			
(6) $NO_2^* + (H^+ + e^-) \rightarrow HNO_2^*$	$(7) \text{ NO}_2^* + (\text{H}^+ + \text{e}^-) \rightarrow \text{HNO}_2 + *$			
$(8) HNO2* \rightarrow HNO2 + *$				
Pathway (14):	Pathway (15):			
(1) $NO_3^- + H^+ + * \rightarrow HNO_3^*$	(1) $NO_3^- + H^+ + * \rightarrow HNO_3^*$			
(3) $HNO_3* + (H^+ + e^-) \rightarrow NO_2* + H_2O$	(3) $HNO_3^* + (H^+ + e^-) \rightarrow NO_2^* + H_2O$			
(6) $NO_2^* + (H^+ + e^-) \rightarrow HNO_2^*$	$(7) \text{ NO}_2^* + (\text{H}^+ + \text{e}^-) \rightarrow \text{HNO}_2 + *$			
$(8) HNO2* \rightarrow HNO2 + *$				

Table S8. Reaction free energies and activation barriers (in eV) of elementary reactions on FeN_4 for eNO_3RR in the optimal pathways at various potentials in microkinetic modeling.

01,03111	in the optimal pathways at various potentials i	-0.50 V		-0.59	V vs.	-0.66	V vs.
Number	Elementary reactions	RHE		RHE		RHE	
		ΔG	Ga	ΔG	Ga	ΔG	Ga
R0	$NO_3^- + H^+ \rightarrow HNO_3$	0.39	0.39	0.39	0.39	0.39	0.39
R2	$(H^+ + e^-) + HNO_3 + * \rightarrow NO_2* + H_2O$	-2.67	0.00	-2.76	0.00	-2.83	0.00
R4	$(H^+ + e^-) + NO_2^* \rightarrow cisHNO_2^*$	-0.30	0.55	-0.39	0.50	-0.46	0.46
R5	$(H^+ + e^-) + cisHNO_2^* \rightarrow NO^* + H_2O$	-2.11	0.39	-2.20	0.39	-2.27	0.39
R10	$(H^+ + e^-) + NO^* \rightarrow HNO^*$	-0.31	0.03	-0.40	0.00	-0.47	0.00
R12	$(H^+ + e^-) + HNO^* \rightarrow HNOH^*$	-0.15	0.00	-0.24	0.00	-0.31	0.00
R15	$(H^+ + e^-) + HNOH^* \rightarrow NH_2OH^*$	-0.59	0.00	-0.68	0.00	-0.75	0.00
R18	$(H^+ + e^-) + NH_2OH^* \rightarrow NH_2^* + H_2O$	-2.25	0.00	-2.34	0.00	-2.41	0.00
R21	$(H^+ + e^-) + NH_2^* \rightarrow NH_3 + *$	-1.03	0.36	-1.12	0.36	-1.19	0.36
R7	$(H^+ + e^-) + NO_2^* \rightarrow HNO_2 + *$	-0.01	0.48	-0.10	0.48	-0.17	0.48
		-0.73 V	V vs.	-0.78	V vs.	-0.85	V vs.
Number	Elementary reactions	RH	Е	RE	IE	RE	ΙE
Number	Elementary reactions	RH ΔG	E Ga	RH ΔG	IE Ga	RH ΔG	IE Ga
Number R0	Elementary reactions $NO_3^- + H^+ \rightarrow HNO_3$						
	·	ΔG	Ga	ΔG	Ga	ΔG	Ga
R0	$NO_3^- + H^+ \rightarrow HNO_3$	ΔG 0.39	G _a 0.39	ΔG 0.39	G _a	ΔG 0.39	G _a 0.39
R0 R2	$NO_3^- + H^+ \rightarrow HNO_3$ $(H^+ + e^-) + HNO_3 + * \rightarrow NO_2 * + H_2O$	ΔG 0.39 -2.90	G _a 0.39 0.00	ΔG 0.39 -2.95	G _a 0.39 0.00	ΔG 0.39 -3.02	G _a 0.39 0.00
R0 R2 R4	$NO_3^- + H^+ \rightarrow HNO_3$ $(H^+ + e^-) + HNO_3 + * \rightarrow NO_2 * + H_2O$ $(H^+ + e^-) + NO_2 * \rightarrow cisHNO_2 *$	ΔG 0.39 -2.90 -0.53	G _a 0.39 0.00 0.42	ΔG 0.39 -2.95 -0.58	G _a 0.39 0.00 0.40	ΔG 0.39 -3.02 -0.65	G _a 0.39 0.00 0.36
R0 R2 R4 R5	$NO_3^- + H^+ \rightarrow HNO_3$ $(H^+ + e^-) + HNO_3 + * \rightarrow NO_2 * + H_2O$ $(H^+ + e^-) + NO_2 * \rightarrow cisHNO_2 *$ $(H^+ + e^-) + cisHNO_2 * \rightarrow NO * + H_2O$	ΔG 0.39 -2.90 -0.53 -2.34	G _a 0.39 0.00 0.42 0.39	ΔG 0.39 -2.95 -0.58 -2.39	G _a 0.39 0.00 0.40 0.39	ΔG 0.39 -3.02 -0.65 -2.46	G _a 0.39 0.00 0.36 0.39
R0 R2 R4 R5 R10	$NO_3^- + H^+ \rightarrow HNO_3$ $(H^+ + e^-) + HNO_3 + * \rightarrow NO_2 * + H_2O$ $(H^+ + e^-) + NO_2 * \rightarrow cisHNO_2 *$ $(H^+ + e^-) + cisHNO_2 * \rightarrow NO * + H_2O$ $(H^+ + e^-) + NO * \rightarrow HNO *$	ΔG 0.39 -2.90 -0.53 -2.34 -0.54	G _a 0.39 0.00 0.42 0.39 0.00	ΔG 0.39 -2.95 -0.58 -2.39 -0.59	G _a 0.39 0.00 0.40 0.39 0.00	ΔG 0.39 -3.02 -0.65 -2.46 -0.66	Ga 0.39 0.00 0.36 0.39 0.00
R0 R2 R4 R5 R10 R12	$NO_3^- + H^+ \rightarrow HNO_3$ $(H^+ + e^-) + HNO_3 + * \rightarrow NO_2 * + H_2O$ $(H^+ + e^-) + NO_2 * \rightarrow cisHNO_2 *$ $(H^+ + e^-) + cisHNO_2 * \rightarrow NO * + H_2O$ $(H^+ + e^-) + NO * \rightarrow HNO *$ $(H^+ + e^-) + HNO * \rightarrow HNO +$	ΔG 0.39 -2.90 -0.53 -2.34 -0.54 -0.38	G _a 0.39 0.00 0.42 0.39 0.00 0.00	ΔG 0.39 -2.95 -0.58 -2.39 -0.59 -0.43	G _a 0.39 0.00 0.40 0.39 0.00 0.00	ΔG 0.39 -3.02 -0.65 -2.46 -0.66 -0.50	Ga 0.39 0.00 0.36 0.39 0.00 0.00
R0 R2 R4 R5 R10 R12 R15	$NO_3^- + H^+ \rightarrow HNO_3$ $(H^+ + e^-) + HNO_3 + * \rightarrow NO_2 * + H_2O$ $(H^+ + e^-) + NO_2 * \rightarrow cisHNO_2 *$ $(H^+ + e^-) + cisHNO_2 * \rightarrow NO * + H_2O$ $(H^+ + e^-) + NO * \rightarrow HNO *$ $(H^+ + e^-) + HNO * \rightarrow HNOH *$ $(H^+ + e^-) + HNOH * \rightarrow NH_2OH *$	ΔG 0.39 -2.90 -0.53 -2.34 -0.54 -0.38 -0.82	G _a 0.39 0.00 0.42 0.39 0.00 0.00 0.00	ΔG 0.39 -2.95 -0.58 -2.39 -0.59 -0.43 -0.87	G _a 0.39 0.00 0.40 0.39 0.00 0.00 0.00	ΔG 0.39 -3.02 -0.65 -2.46 -0.66 -0.50 -0.94	Ga 0.39 0.00 0.36 0.39 0.00 0.00

Table S9. The geometries of IS, TS and FS of elementary steps for eNO₃RR on FeN₄.

Elementary steps	Geometries	Elementary steps	Geometries
$HNO_3+* \rightarrow NO_2*+H_2O$	TS	NO ₂ *→cisHNO ₂ *	TS
cisHNO ₂ *→NO*+H ₂ O	TS FS	NO*→HNO*	TS

Table S10. Kinetic equations of considered elementary steps in the microkinetic modeling for eNO_3RR to NH_3 and HNO_2 .

Number	Elementary reactions	Reaction rate
R2	$(H^+ + e^-) + HNO_3 + * \rightarrow NO_2 * + H_2O$	$r = k_f P_{HNO_3} P_{H^+} - k_b \theta_{NO_2^*} P_{H_2O}$
R4	$(H^+ + e^-) + NO_2^* \rightarrow cisHNO_2^*$	$r = k_f \theta_{NO_2^*} P_{H^+} - k_b \theta_{cisHNO_2^*}$
R5	$(H^+ + e^-) + cisHNO_2^* \rightarrow NO^* + H_2O$	$r = k_f \theta_{cisHNO_2^*} P_{H^+} - k_b \theta_{NO^*} P_{H_2O}$
R10	$(H^+ + e^-) + NO^* \rightarrow HNO^*$	$r = k_f \theta_{NO^*} P_{H^+} - k_b \theta_{HNO^*}$
R12	$(H^+ + e^-) + HNO^* \rightarrow HNOH^*$	$r = k_f \theta_{HNO^*} P_{H^+} - k_b \theta_{HNOH^*}$
R15	$(H^+ + e^-) + HNOH^* \rightarrow NH_2OH^*$	$r = k_f \theta_{HNOH^*} P_{H^+} - k_b \theta_{NH_2OH^*}$
R18	$(H^+ + e^-) + NH_2OH^* \rightarrow NH_2^* + H_2O$	$r = k_f \theta_{NH_2OH^*} P_{H^+} - k_b \theta_{NH_2^*} P_{H_2O}$
R21	$(H^+ + e^-) + NH_2^* \rightarrow NH_3 + *$	$r = k_f \theta_{NH_2^*} P_{H^+} - k_b P_{NH_3}$
R7	$(H^+ + e^-) + NO_2^* \rightarrow HNO_2 + *$	$r = k_f \theta_{NO_2^*} P_{H^+} - k_b P_{HNO_2}$

Table S11. The β of elementary steps on FeN₄ in the eNO₃RR to NH₃ and HNO₂ optimal pathways.

Number	Elementary reactions	β
R0	$NO_3^- + H^+ \rightarrow HNO_3$	-
R2	$(H^+ + e^-) + HNO_3 + * \rightarrow NO_2 * + H_2O$	0.74
R4	$(H^+ + e^-) + NO_2^* \rightarrow cisHNO_2^*$	0.44
R5	$(H^+ + e^-) + cisHNO_2^* \rightarrow NO^* + H_2O$	0.01
R10	$(H^+ + e^-) + NO^* \rightarrow HNO^*$	0.41
R12	$(H^+ + e^-) + HNO^* \rightarrow HNOH^*$	0.04
R15	$(H^+ + e^-) + HNOH^* \rightarrow NH_2OH^*$	0.78
R18	$(H^+ + e^-) + NH_2OH^* \rightarrow NH_2^* + H_2O$	0.83
R21	$(H^+ + e^-) + NH_2^* \rightarrow NH_3 + *$	0.03
R7	$(H^+ + e^-) + NO_2^* \rightarrow HNO_2 + *$	0.03

Table S12. The FEs and NH₃ partial current in the eNO₃RR at various potentials on FeN₄ from Nat. Commun. 2021, 12 (1), 2870.

Potentials (V vs. RHE)	FE_{NH_3} (%)	FE_{HNO_2} (%)	NH ₃ partial current (mA/cm ²)
-0.50	38.82	65.89	1.67
-0.59	65.20	28.67	9.30
-0.66	74.91	19.83	26.47
-0.73	70.71	14.44	50.90
-0.78	68.31	11.67	80.21
-0.85	66.77	9.15	98.61

References

- [1] Mathew, K.; Kolluru, V. S. C.; Mula, S.; Steinmann, S. N.; Hennig, R. G., *J. Chem. Phys.* **2019**, *151* (23), 234101.
- [2] Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H., *J. Phys. Chem. B* **2004**, *108* (46), 17886-17892.
- [3] Chan, K.; Norskov, J. K., J Phys Chem Lett **2015**, 6 (14), 2663-8.
- [4] Chan, K.; Norskov, J. K., J Phys Chem Lett **2016**, 7 (9), 1686-90.
- [5] Henkelman, G.; Uberuaga, B. P.; Jónsson, H., J. Chem. Phys. 2000, 113 (22), 9901-9904.

- [6] Liu, X.; Schlexer, P.; Xiao, J.; Ji, Y.; Wang, L.; Sandberg, R. B.; Tang, M.; Brown, K. S.; Peng, H.; Ringe, S.; Hahn, C.; Jaramillo, T. F.; Nørskov, J. K.; Chan, K., *Nat. Commun.* **2019**, *10* (1), 32.
- [7] Long, J.; Guo, C.; Fu, X.; Jing, H.; Qin, G.; Li, H.; Xiao, J., J. Phys. Chem. Lett. 2021, 6988-6995.
- [8] Li, H.; Guo, C.; Fu, Q.; Xiao, J., J Phys Chem Lett 2019, 10 (3), 533-539.
- [9] Trasatti, S., Pure Appl. Chem. 1986, 58 (7), 955-966.
- [10] Wang, J. X.; Springer, T. E.; Adzic, R. R., J. Electrochem. Soc. 2006, 153 (9), A1732.
- [11] Lide, D. R.; Haynes, W. M., *CRC handbook of chemistry and physics*. CRC press Boca Raton, FL: 2010; Vol. 9.
- [12] Wan, H.; Bagger, A.; Rossmeisl, J., Angew. Chem. Int. Ed. Engl. 2021, 60 (40), 21966-21972.
- [13] Chen, J.; Jia, M.; Hu, P.; Wang, H., J. Comput. Chem. 2021, 42 (5), 379-391.
- [14] Chen, J.-F.; Mao, Y.; Wang, H.-F.; Hu, P., ACS Catal. 2016, 6 (10), 7078-7087.