- 12. Sea $A \in \mathbb{R}^{m \times n}$. Supongamos que dim(Nu(A)) = k y sea $B_1 = \{v_1, \dots, v_k\} \subseteq \mathbb{R}^n$ una base del subespacio Nu(A). Además sea $B_2 = \{v_{k+1}, \dots, v_n\} \subseteq \mathbb{R}^n$ una base tal que $B_1 \cup B_2 = \{v_1, \dots, v_n\}$ es una base de \mathbb{R}^n .
 - a) Probar que cualquier vector $y \in Im(A)$ se puede escribir como una combinación lineal de $\{Av_{k+1}, \ldots, Av_n\} \subseteq \mathbb{R}^m$.
 - b) Probar que los vectores del conjunto $\{Av_{k+1}, \dots, Av_n\} \subseteq \mathbb{R}^m$ son linealmente independientes.
 - c) Deducir el Teorema de la dimensión: dim(Nu(A)) + dim(Im(A)) = n.

Sea y & Im(A) & IRM. Y = Ax para algún x & IRn.

QVQ: Y se puede escribir como una combinación lineal de {AVk+1, ..., AVn} & IRM.

A es una matriz de mxn, y cada vi es un vector de IRn

Entonces Avi e IRM para todo i=1...n (en particular para i=ktl...n).

Considerando que A es una T.L. podemos reescribir la combinación lineal para ver que y = Ax (para algún x).

Y = 2KH AVKH + ... + dn AVn

= A dk+1 VK+1 + ... + A dn Yn A TL: & FA(V) = FA(XV)

= $A(\alpha_{k+1}V_{k+1} + \cdots + \alpha_nV_n)$ A TL: $F_A(v+w) = F_A(v) + F_A(w)$

= Ax

al

Con x combinación lineal de {VK+1, ..., Yn}

usando coeficientes xxxx,..., xn.

Obs: XEIR^ porque es combinación lineal de {VK+1,..., Yn} ⊆IR^

