Elaborato di

Calcolo Numerico

Giovanni Bindi - 5530804 - giovanni.bindi@stud.unifi.it Gabriele Gemmi - 5602433 - gabriele.gemmi@stud.unifi.it Gabriele Puliti - 5300140 - gabriele.puliti@stud.unifi.it

March 2, 2017

Contents

1	Cap	itolo 1																			
	1.1	Esercizio	1.1.				 														
	1.2	Esercizio	1.2 .				 														
	1.3	Esercizio	1.3.				 														
	1.4	Esercizio	1.4 .				 														
	1.5	Esercizio	1.5 .				 														
	1.6	Esercizio	1.6.				 														
	1.7	Esercizio	1.7				 														
	1.8	Esercizio	1.8				 														
	1.9	Esercizio	1.9				 														
	1.10	Esercizio	1.10				 														
	1.11	Esercizio	1.11				 														
	1.12	Esercizio	1.12				 														
2	Can	itolo 2																			

1 Capitolo 1

1.1 Esercizio 1.1

Per definizione di metodo iterativo convergente si ha che

$$\lim_{k \to +\infty} x_k = x^*$$

Supponendo la funzione $\Phi(x_n)$ uniformemente continua vale

$$\lim_{k \to +\infty} \Phi(x_k) = x^* = \Phi(\lim_{k \to +\infty} x_k) = x^*$$

Per definizione é $\Phi(x_n) = x_{k+1}$ e quindi

$$\lim_{k \to +\infty} \Phi(x_k) = \lim_{k \to +\infty} x_{k+1} = x^*$$

Da cui otteniamo che x^* e' un punto fisso per la funzione $\Phi(x_n)$, ovvero che $x^* = \Phi(x^*)$.

1.2 Esercizio 1.2

Dal momento che le variabili intere di 2 byte in Fortran vengono gestite in Modulo e Segno, la variabile n, inizializzata con

```
integer*2 n
```

1.3 Esercizio 1.3

Per definizione si ha che la precisione di macchina u per arrotondamento e' data da $u=\frac{1}{2}b^{1-m}$. Se b=8, m=5 si ha $u=\frac{1}{2}\cdot 8^{-4}=1,2207031\cdot 10^{-4}$

1.4 Esercizio 1.4

1.5 Esercizio 1.5

1.6 Esercizio 1.6

Codice dell'esercizio 6:

```
format long
x = [2,1.5];
y = [];
rad = sqrt(2)

for i = 2:15
    x(i+1) = ((x(i)*x(i-1) +2)/(x(i) + x(i-1)));
end

for i=1:15
    y(i) = x(i) - rad;
end
```

- 1.7 Esercizio 1.7
- 1.8 Esercizio 1.8
- 1.9 Esercizio 1.9
- 1.10 Esercizio 1.10
- 1.11 Esercizio 1.11
- 1.12 Esercizio 1.12
- 2 Capitolo 2