Hoare Logic

Hoare Logic is used to reason about the correctness of programs. In the end, it reduces a program and its specification to a set of verifications

Slides by Wishnu Prasetya URL: www.cs.uu.nl/~wishnu

Course URL: www.cs.uu.nl/docs/vakken/pc

Overview

- Hoare triples
- Basic statements

// SEQ, IF, ASG

- Composition rules for seq and if
- Assignment
- Weakest pre-condition
- Loops

// WHILE

- Invariants
- Variants

Hoare triples

3

How do we prove our claims?

- In Hoare logic we use inference rules.
- Usually of this form:

```
premise-1 , premise-2 , ...
------
conclusion
```

A proof is essentially just a series of invocations of inference rules, that produces our claim from known facts and assumptions.

Needed notions

Inference rule:

is this sound?

- What does a specification mean ?
- Programs
- Predicates
- States

We'll explain this in term of abstract models.

State

- In the sequel we will consider a program P with two variables: x:int, y:int.
- The state of P is determined by the value of x,y. Use record to denote a state:

- This notion of state is abstract! Actual state of P may consists of the value of CPU registers, stacks etc.
- Σ denotes the space of all possible states of P.

Expression

• An expression can be seen as a function $\Sigma \rightarrow val$

$$x + 1 \{ x=0, y=9 \}$$
 yields 1
 $x + 1 \{ x=9, y=9 \}$ yields 10
 etc

A (state) predicate is an expression that returns a boolean:

$$x>0 { x=0 , y = 9 }$$
 yields false $x>0 { x=9 , y = 9 }$ yields true etc

Viewing predicate as set

So, a (state) predicate P is a function Σ → bool. It induces a set:

$$\chi_P = \{ |s| |s| = P \}$$
 // the set of all states satisfying P

P and its induced set is 'isomorphic':

- Ehm ... so for convenience lets just overload "P" to also denote χ_P . Which one is meant, depends on the context.
- Eg. when we say "P is an empty predicate".

.

Implication

 $P \Rightarrow Q$

// P⇒ Q is valid

This means: $\forall s. s = P \Rightarrow s = Q$

In terms of set this is equivalent to: $\chi_P \subseteq \chi_Q$

- And to confuse you ©, the often used jargon:
 - □ P is stronger than Q
 - Q is weaker than P
 - Observe that in term of sets, stronger means smaller!

Non-termination

What does this mean?

s Pr s' stands for (Pr,s)→ s'

 $\{s' \mid s \mid Pr \mid s'\} = \emptyset$, for some state s

- Can be used to model: "Pr does not terminate when executed on s".
- However, in discussion about models, we usually assume that our programs terminate.
- Expressing non-termination leads to some additional complications → not really where we want to focus now.

ç

Hoare triples

Now we have enough to define abstractly what a specification means:
s Pr s' stands for (Pr,s)→ s'

$$\{ P \} Pr \{ Q \} = (\forall s. \ s|=P \Rightarrow (\forall s'. \ sPrs' \Rightarrow s' \mid= Q))$$

- Since our model cannot express non-termination, we assume that Pr terminates.
- The interpretation of Hoare triple where termination is assumed is called "partial correctness" interpretation.
- Otherwise it is called <u>total correctness</u>.

Now we can explain ...

Post-condition weakening Rule:

11

And the dual

13

And the dual

And the dual

Pre-condition strengthening Rule:

Joining specifications

Conjunction:

Disjunction:

$$\{P_1\} S \{Q_1\} , \{P_2\} S \{Q_2\}$$

$$\{P_1 \lor P_2\} S \{Q_1 \lor Q_2\}$$

13

Reasoning about basic statements

15

16

16

17

17

Rule for IF

Rule for IF

18

Rule for IF

Rule for IF

18

Rule for IF

Rule for IF

{ P
$$\land$$
 g } S₁ { Q } , { P \land ¬g } S₂ { Q }
 { P } if g then S₁ else S₂ { Q }

18

Rule for Assignment

- Find a pre-condition W, such that, for any begin state s, and end state t:

$$s = W \Leftrightarrow t = Q$$

Then we can equivalently prove P ⇒ W

Assignment, examples

•
$$\{ x+a = y \}$$
 $x:=x+a$ $\{ x=y \}$

So, W can be obtained by Q[e/x]

20

Assignment

Theorem:

Q holds after x:=e iff Q[e/x] holds before the assignment.

Express this indirectly by:

$$\{ P \} x := e \{ Q \} = P \Rightarrow Q[e/x]$$

Corollary:

 $\{Q[e/x]\}$ x:=e $\{Q\}$ always valid.

22

How does a proof proceed now?

```
■ { x≠y } tmp:= x ; x:=y ; y:=tmp { x≠y }
```

- { x≠y } tmp:= x ; x:=y ; y:=tmp { x≠y }
- Rule for SEQ requires you to come up with intermediate assertions:

```
\{ x \neq y \}  tmp:= x \{ ? \}; x:=y \{ ? \}; y:=tmp \{ x \neq y \}
```

- What to fill ??
 - Use the "Q[e/x]" suggested by the ASG theorem.
 - Work in reverse direction.
 - "Weakest pre-condition"

2

Weakest Pre-condition (wp)

"wp" is a meta function:

```
wp : Stmt X Pred → Pred
```

- wp(S,Q) gives the weakest (largest) pre-cond such that executing S in any state in any state in this pre-cond results in states in Q.
 - □ Partial correctness → termination assumed
 - □ Total correctness → termination demanded

Weakest pre-condition

- $\blacksquare \text{ Let W = wp(S,Q)}$
- Two properties of W

- s S s' stands for (S,s)→ s'
- Reachability: from any s|=W, if s S s' then s' |= Q
- □ Maximality: s S s' and s' |= Q implies s|=W

24

Defining wp

In terms of our abstract model:

```
wp(S,Q) = \{ s \mid forall s'. s S s' implies s' \mid = Q \}
```

Abstract characterization:

```
\{ P \} S \{ Q \} = P \Rightarrow wp(S,Q)
```

 Nice, but this is not a constructive definition (does not tell us how to actually construct "W")

Some examples

All these pre-conditions are the weakest:

```
 = \{ y=10 \}   x:=10  \{ y=x \}
```

• {
$$Q[e/x]$$
 } $x:=e$ { Q }

20

Some examples

All these pre-conditions are the weakest:

• {
$$Q[e/x]$$
 } $x:=e$ { Q }

wp skip Q = Q
$$wp (x:=e) Q = Q[e/x]$$

wp of SEQ

$$wp ((S_1; S_2), Q) = wp(S_1, (wp(S_2, Q)))$$

27

wp of SEQ

$$wp ((S_1; S_2), Q) = wp(S_1, (wp(S_2, Q)))$$

wp of SEQ

$$wp ((S_1; S_2), Q) = wp(S_1, (wp(S_2, Q)))$$

27

wp of IF

wp of IF

 $wp(\ (\underline{if} \ g \ \underline{then} \ S_1 \ \underline{else} \ S_2), Q) = \\ g \ \land \ wp(S_1, Q) \ \lor \neg g \ \land \ wp\ (S_2, Q)$

28

wp of IF

$$wp((\underline{if} g \underline{then} S_1 \underline{else} S_2), Q) = \\ g \wedge wp(S_1, Q) \vee \neg g \wedge wp(S_2, Q)$$

Other formulation:

wp of IF

How does a proof proceed now?

```
■ { x≠y } tmp:= x ; x:=y ; y:=tmp { x≠y }
```

29

How does a proof proceed now?

```
■ { x≠y } tmp:= x ; x:=y ; y:=tmp { x≠y }
```

n Calculate:

```
W = wp((tmp:= x ; x:=y ; y:=tmp), x\neq y)
```

```
■ { x≠y } tmp:= x ; x:=y ; y:=tmp { x≠y }
```

Calculate:

```
W = wp((tmp:= x ; x:=y ; y:=tmp), x\neq y)
```

29

How does a proof proceed now?

- { x≠y } tmp:= x ; x:=y ; y:=tmp { x≠y }
- ⁿ Calculate:

$$W = wp((tmp:= x ; x:=y ; y:=tmp), x\neq y)$$

n Then prove: x≠y ⇒ W

- { x≠y } tmp:= x ; x:=y ; y:=tmp { x≠y }
- n Calculate:

$$W = wp((tmp:= x ; x:=y ; y:=tmp), x\neq y)$$

- n Then prove: x≠y ⇒ W
- We <u>calculate</u> the intermediate assertions, rather than figuring them out by hand!

20

Proof via wp

- Wp calculation is fully syntax driven. (But no while yet!)
 - No human intelligence needed.
 - Can be automated.
- Works, as long as we can calculate "wp" → not always possible.
- Recall this abstract def:

$$\{P\} S \{Q\} = P \Rightarrow wp(S,Q)$$

It follows: if $P \Rightarrow W$ not valid, then so does the original spec.

Proof via wp

- Wp calculation is fully syntax driven. (But no while yet!)
 - No human intelligence needed.
 - Can be automated.
- Works, as long as we can calculate "wp" → not always possible.
- Recall this abstract def:

```
\{ P \} S \{ Q \} = P \Rightarrow wp(S,Q)
```

It follows: if $P \Rightarrow W$ not valid, then so does the original spec.

30

W

```
bool find(a,n,x) {
    int i = 0;
    bool found = false;

    while (¬found /\ i<n) {
        found := a[i]=x;
        i++
    }
    return found;
}</pre>
```

31

31

31

```
{ \neg \text{found } \land \dots \land (\text{found } = (\exists k : 0 \le k < i : a[k] = x)) }
found := a[i] = x ;
i := i + 1
{ found = (\exists k : 0 \le k < i : a[k] = x) }
```

```
{ \negfound \land \dots \land (found = (\exists k : 0 \le k < i : a[k] = x)) }

found := <math>a[i] = x ;

i := i + 1

{ found = (\exists k : 0 \le k < i : a[k] = x) }
```

32

```
{ \neg \text{found } \land \dots \land (\text{found } = (\exists k : 0 \le k < i : a[k] = x)) }

found := a[i] = x;

i := i + 1

found = (\exists k : 0 \le k < i : a[k] = x)

{ found = (\exists k : 0 \le k < i : a[k] = x) }
```

```
{ \negfound \land \dots \land (found = (\exists k : 0 \le k < i : a[k] = x)) }

found := <math>a[i] = x;

i := i+1

found = (\exists k : 0 \le k < i : a[k] = x)

{ found = (\exists k : 0 \le k < i : a[k] = x) }

wp (x:=e) Q = Q[e/x]
```

```
{ \neg \text{found } \land \dots \land (\text{found } = (\exists k : 0 \le k < i : a[k] = x)) }

found := a[i] = x ;

i := i + 1

found = (\exists k : 0 \le k < i : a[k] = x)

{ found = (\exists k : 0 \le k < i : a[k] = x) }

wp (x:=e) Q = Q[e/x]
```

```
{ \neg found \ \land ... \ \land \ (found = (\exists k : 0 \le k < i : a[k] = x)) }

found := a[i] = x;

(a[i] = x) = (\exists k : 0 \le k < i + 1 : a[k] = x)

i:=i+1

found = (\exists k : 0 \le k < i : a[k] = x)

{ found = (\exists k : 0 \le k < i : a[k] = x) }

wp (x:=e) Q = Q[e/x]
```

52

Example

```
{ \neg found \land ... \land (found = (\exists k : 0 \le k < i : a[k] = x)) }

found := a[i] = x;

(a[i] = x) = (\exists k : 0 \le k < i + 1 : a[k] = x)

i:=i+1

found = (\exists k : 0 \le k < i : a[k] = x)

{ found = (\exists k : 0 \le k < i : a[k] = x) }

wp (x:=e) Q = Q[e/x]
```

32

32

Reasoning about loops

How to prove this?

- { P } while g do S { Q }
- Calculate wp first?
 - We don't have to
 - □ But wp has nice property → wp completely captures the statement:

```
\{P\} T \{Q\} = P \Rightarrow wp T Q
```

34

wp of a loop

- Recall:
 - $\neg wp(S,Q) = \{ s \mid forall s'. s S s' implies s' \mid = Q \}$
- But none of these definitions are actually useful to <u>construct</u> the weakest pre-condition.
- In the case of a loop, a constructive definition is not obvious.
 → pending.

How to prove this?

- { P } while g do S { Q }
- Plan-B: try to come up with an inference rule:

The rule only need to be "sufficient".

30

• { P } while g do S { Q }

37

Idea

• { P } while g do S { Q }

- { P } while g do S { Q }
- Try to come up with a predicate I that holds <u>after</u> each iteration :

37

- { P } while g do S { Q }
- Try to come up with a predicate I that holds <u>after</u> each iteration :

- { P } while g do S { Q }
- Try to come up with a predicate I that holds <u>after</u> each iteration :

■ I /\ ¬g holds as the loop exit!

Idea

- { P } while g do S { Q }
- Try to come up with a predicate I that holds <u>after</u> each iteration :

■ I /\ ¬g holds as the loop exit!

sufficient to prove:

 $I \land \neg g \Rightarrow Q$

37

• { P } while g do S { Q }

Still need to capture this.

Try to come up with a predicate I that holds after each iteration:

> //g//;S {I} iter₁: iter₂: //g//; S { I }

// g // ; S { I } // last iteration! iter_n:

// ¬g // exit:

■ I /\ ¬g holds as the loop exit!

So, to get postcond Q, sufficient to prove:

 $I \land \neg g \Rightarrow Q$

- while g do S
- I is to holds after each iteration

- while g do S
- I is to holds after each iteration

38

- while g do S
- I is to holds after each iteration

- while g do S
- I is to holds after each iteration

Except for the first iteration!

38

- { P } while g do S
- For the first iteration :

- { P } <u>while</u> g <u>do</u> S
- For the first iteration :

- { P } while g do S
- For the first iteration :

- { P } <u>while</u> g <u>do</u> S
- For the first iteration :

- { P } while g do S
- For the first iteration :

- { P } <u>while</u> g <u>do</u> S
- For the first iteration :

To Summarize

Capture this in an inference rule:

- This rule is only good for partial correctness though.
- I satisfying the second premise above is called <u>invariant</u>.

Examples

Prove:

```
\{ i=0 \}  while i < n  do i++  \{ i=n \}
```

Prove:

```
{ i=0 \land s=0 }
while i<n do { s=s+a[i] ; i++ }
{ s=SUM(a[0..n)) }
```

41

Note

Recall :

```
wp ((while g do S),Q) = 
{ s | forall s'. s (while g do S) s' implies s' = Q }
```

- Theoretically, we can still construct this set if the state space is <u>finite</u>. The construction is exactly as the def. above says.
- You need a way to tell when the loop does not terminate:
 - Maintain a history H of states after each iteration.
 - Non-termination if the state t after i-th iteration is in H from the previous iteration.
- Though then you can just as well 'execute' the program to verify it (testing), for which you don't need Hoare logic.

Tackling while termination: invariant and variant

To prove

find invariant J and well-founded variant function of such that:

- \square invariant holds initially: $P \Rightarrow J$
- □ invariant is maintain (d): {J ∧ B} S {J}
- invariant is sufficient: J ∧¬B ⇒ Q
- variant function is bounded:

$$J \wedge B \Rightarrow 0 \leq vf$$

variant function decreases:

$${J \land B \land vf=VF} S {vf$$

Proving termination

- { P } while g do S { Q }
- Idea: come up with an integer expression m, satisfying :
 - At the start of every iteration m ≥ 0
 - Each iteration decreases m
- These imply that the loop will terminates.

Capturing the termination conditions

- At the start of every iteration m ≥ 0 :
 - $g \Rightarrow m \ge 0$
 - □ If you have an invariant: $I \land g \Rightarrow m \ge 0$
 - Each iteration decreases m :

```
\{ I \land g \} C:=m; S \{ m< C \}
```

45

To Summarize

To Summarize

46

To Summarize

Since we also have this pre-cond strengthening rule:

A Bit History and Other Things

48

History

- Hoare logic, due to CAR Hoare 1969.
- Robert Floyd, 1967 → for Flow Chart. "Unstructured" program.
- Weakest precondition → Edsger Dijkstra, 1975.
- Early 90s: the rise of theorem provers. Hoare logic is mechanized. e.g.
 "A Mechanized Hoare Logic of State Transitions" by Gordon.
- Renewed interests in Hoare Logic for automated verification: Leino et al, 1999, "Checking Java programs via guarded commands" Tool: ESC/Java.
- Byte code verification. Unstructured → going back to Floyd. Ehm... what did Dijkstra said again about GOTO??

History

- Hoare: "An axiomatic basis for computer programming", 1969.
- Charles Antony Richard Hoare, born 1934 in Sri Lanka
- 1980 : winner of Turing Award
- Other achievement:
 - CSP (Communicating Sequential Processes)
 - Implementor ALGOL 60
 - Quicksort
 - □ 2000 : sir Charles ©

50

History

- Edsger Wybe Dijkstra, 1930 in Rotterdam.
- Prof. in TU Eindhoven, later in Texas, Austin.
- 1972 : winner Turing Award
- Achievement
 - Shortest path algorithm
 - Self-stabilization
 - Semaphore
 - Structured Programming, with Hoare.
 - "A Case against the GO TO Statement"
 - Program derivation
- Died in 2002, Nuenen.

ALGOL-60

- ALGOL-60: "ALGOrithmic Language" (1958-1968) by very many people IFIP(International Federation for Information Processing), including John Backus, Peter Naur, Alan Perlis, Friedrich L. Bauer, John McCarthy, Niklaus Wirth, C. A. R. Hoare, Edsger W. Dijkstra
- Join effort by Academia and Industry
- Join effort by Europe and USA
- ALGOL-60 the most influential imperative language ever
- First language with syntax formally defined (BNF)
- First language with structured control structures
 - If then else
 - While (several forms)
 - But still goto
- First language with ... (see next)
- Did not include I/O considered too hardware dependent
- ALGOL-60 revised several times in early 60's, as understanding of programming languages improved
- ALGOL-68 a major revision
 - by 1968 concerns on data abstraction become prominent, and ALGOL-68 addressed them
 - Considered too Big and Complex by many of the people that worked on the original ALGOL-60 (C. A. R. Hoare' Turing Lecture, cf. ADA later)

C. A. R. Hoare (cf. axiomatic semantics, quicksort, CSP)

G

ALGOL-60

- First language with syntax formally defined (BNF)
 (after such a success with syntax, there was a great hope to being able to formally define semantics in an similarly easy and accessible way: this goal failed so far)
- First language with structured control structures
 - If then else
 - While (several forms)
 - But still goto
- First language with procedure activations based on the STACK (cf. recursion)
- First language with well defended parameters passing mechanisms
 - Call by value
 - Call by name (sort of call by reference)
 - Call by value result (later versions)
 - Call by reference (later versions)
- First language with explicit typing of variables
- First language with blocks (static scope)
- Data structure primitives: integers, reals, booleans, arrays of any dimension; (no records at first),
- Later version had also references and records (originally introduced in COBOL), and user defined types

Edsger W. Dijkstra (cf. shortest path,

C. A. R. Hoare (cf. axiomatic semantics, quicksort, CSP)

Unstructured programs

54

Unstructured programs

 "Structured" program: the control flow follows the program's syntax.

Unstructured programs

- "Structured" program: the control flow follows the program's syntax.
- Unstructured program:

54

Unstructured programs

- "Structured" program: the control flow follows the program's syntax.
- Unstructured program:

```
\underline{if} y=0 \underline{then} goto exit;

x := x/y;

exit: S_2
```

The "standard" Hoare logic rule for sequential composition breaks out!

Unstructured programs

- "Structured" program: the control flow follows the program's syntax.
- Unstructured program:

- The "standard" Hoare logic rule for sequential composition breaks out!
- Same problem with exception, and "return" in the middle.

54

Adjusting Hoare Logic for Unstructured Programs

Program S:

Program S: represented by a graph of guarded assignments; here acyclic.

55

Adjusting Hoare Logic for Unstructured Programs

Program S: represented by a graph of guarded assignments; here acyclic.

Program S:

- 1. Node represents "control location"
- 2. Edge is an assignment that moves the control of S, from one location to another.
- 3. An assignment can only execute if its guard is true.

55

Adjusting Hoare Logic for Unstructured Programs

Prove { P } S { Q }

Prove { P } S { Q }

- 1. Decorate nodes with assertions.
- 2. Prove for each edge, the corresponding Hoare triple.

56

Adjusting Hoare Logic for Unstructured Programs

Prove { P } S { Q }

- 1. Decorate nodes with assertions.
- 2. Prove for each edge, the corresponding Hoare triple.

Prove { P } S { Q }

- 1. Decorate nodes with assertions.
- 2. Prove for each edge, the corresponding Hoare triple.

56

Adjusting Hoare Logic for Unstructured Programs

Prove { P } S { Q }

- 1. Decorate nodes with assertions.
- 2. Prove for each edge, the corresponding Hoare triple.

Handling exception and return-in-the-middle

- Map the program to a graph of control structure, then simply apply the logic for unstructured program.
- Example:

```
try { if g then throw; S }
handle T ;
```


Example:

```
if g then return;
S;
return;
```


57

Beyond pre/post conditions

- Class invariant
- When specifying the order of certain actions within a program is important:
 - □ E.g. CSP
- When sequences of observable states through out the execution have to satisfy certain property:
 - E.g. Temporal logic
- When the environment cannot be fully trusted:
 - E.g. Logic of belief