

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1992-06

Simulation of acoustic multipath arrival structure in the Barents Sea

Elliott, John M.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/24036

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

Unclassi										
SECURITY C	LASSIFICATION OF	THIS PAGE								
		REPORT	DOCUMENTATIO	ON PAGE						
1a. REPORT Unclassifie	SECURITY CLASSIF	FICATION		1b. RESTRICTIVE MARKINGS						
2a. SECURIT	Y CLASSIFICATION	AUTHORITY		3. DISTRIBUTION/A	VAILABILITY OF R	EPORT				
2b. DECLAS	SIFICATION/DOWN	NGRADING SCHED	ULE	Approved for publi	c release; distribu	ition is unlin	nited.			
4. PERFORM	ING ORGANIZATION	ON REPORT NUMB	ER(S)	5. MONITORING OR	GANIZATION REF	ORT NUMBI	ER(S)			
	OF PERFORMING O	RGANIZATION	6b. OFFICE SYMBOL (If applicable) 35	7a. NAME OF MONITORING ORGANIZATION Naval Postgraduate School						
	SS (City, State, and CA 93943-5000	ZIP Code)		7b. ADDRESS (City, Monterey, CA 939		de)				
8a. NAME (ORGANIZA	OF FUNDING/SPON	ISORING	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT I	NSTRUMENT IDE	NTIFICATION	INUMBER			
8c. ADDRE	SS (City, State, and	ZIP Code)		10. SOURCE OF FUN	NDING NUMBERS					
				Program Element No.	Project No.	Task No.	Work Unit Accession Number			
13a. TYPE (Master's TI 16. SUPPLE	nesis MENTARY NOTAT Expressed in this th	13b. TIME (From	COVERED To ne author and do not refle	14. DATE OF REPORT 1992, June ct the official policy or			GE COUNT 110 f Defense or the U.S.			
17. COSATI			18. SUBJECT TERMS (6	continue on reverse if i	necessary and ide	ntify by bloc	k number)			
FIELD	GROUP	SUBGROUP		y, Ocean Acoustics, Oc						
			-							
In support tomograph Acoustic ra Input to HI structure w of the simu omnidirect	of the Barents Sea y signal transmiss ys were traced to t ARPO was a mathe ras constructed thr lated arrival struc- ional hydrophones	Polar Front Experions from a near be the receiver array a matical ocean enviough eigenray sea ture reveals that to and 7 from plane	and identify by block numbers (BSPFEX) in Septiottom sound source to a vata range of 50 km using ironment based on historiches and estimation of rhere are a total of 49 unionave beamforming.	ember 1992 (Barents Sertical receiver array the NOAA Hamiltonical bathymetric and raytube spreading and que resolvable ray arr	consisting of 16 h ian Raytracing Pr sound speed data surface and botto ivals. Among the	ydrophones rogram for th . Acoustic m om losses. A m; 42 are fro	were simulated. ne Ocean (HARPO). sultipath arrival resolvability analysis			
K UNCLA		SAME AS REPORT	DTIC USERS	21. ABSTRACT SECU			224 OFFICE CALADO			
Dr. Ching-	OF RESPONSIBLE II Sang Chiu	NDIVIDUAL	•	22b. TELEPHONE (Ir 408-646-3239	PHONE (Include Area code) 22c. OFFICE SYMBOL OC/Ci					

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE Unclassified

Approved for public release; distribution is unlimited.

SIMULATION OF ACOUSTIC MULTIPATH ARRIVAL STRUCTURE IN THE BARENTS SEA

by

John M. Elliott Lieutenant Commander, United States Navy B.S., University of Florida, 1977 M.E., University of Florida, 1978

Submitted in partial fulfillment of the requirements for the degrees of

MASTER OF SCIENCE IN PHYSICAL OCEANOGRAPHY MASTER OF SCIENCE IN ENGINEERING ACOUSTICS

from the

ABSTRACT

In support of the Barents Sea Polar Front Experiment (BSPFEX) in September 1992 (Barents Sea Polar Front Group, 1992), the planned 224 Hz tomography signal transmissions from a near bottom sound source to a vertical receiver array consisting of 16 hydrophones were simulated. Acoustic rays were traced to the receiver array at a range of 50 km using the NOAA Hamiltonian Raytracing Program for the Ocean (HARPO). Input to HARPO was a mathematical ocean environment based on historical bathymetric and sound speed data. Acoustic multipath arrival structure was constructed through eigenray searches and estimation of raytube spreading and surface and bottom losses. A resolvability analysis of the simulated arrival structure reveals that there are a total of 49 unique resolvable ray arrivals. Among them, 42 are from individual omnidirectional hydrophones and 7 from plane wave beamforming.

6367 C.1

TABLE OF CONTENTS

I.	INTE	RODUCTION	1
	Α.	OCEAN ACOUSTIC TOMOGRAPHY	1
	Α.	OCEAN ACOUSTIC TOMOGRAPHI	1
	В.	BARENTS SEA POLAR FRONT EXPERIMENT	2
	C.	THESIS OBJECTIVES AND APPROACHES	6
	D.	THESIS OUTLINE	7
II.	PH	YSICAL OCEANOGRAPHY	٥
	A.	INTRODUCTION	9
	В.	WATER MASSES AND SURFACE WAVES	9
	С.	BARENTS SEA POLAR FRONT	12
III	. A	COUSTIC EFFECTS	15
	A.	INTRODUCTION	15
	В.	ABSORPTION	15
	C:	SPREADING AND REFRACTIVE EFFECTS	15
	D.	SURFACE LOSS	16
	E.	BOTTOM LOSS	18
TV.	RA	Y THEORY ACOUSTICS	20
1			
	Α.	INTRODUCTION	20
	В.	HAMILTONIAN RAY TRACING	20
	С.	HARPO OVERVIEW	21

	D.	MODELING THE BARENTS SEA ACOUSTIC ENVIRONMENT .	22
		1. General	22
		2. Sound Speed Field, Bathymetry, and Sea	
		Surface	23
		3. Summary	27
v.	ARR	IVAL STRUCTURE SIMULATION & ANALYSIS	29
	Α.	INTRODUCTION	29
	в.	RAY PATH STRUCTURE	29
	c.	ARRIVAL STRUCTURE	30
	D.	ARRIVAL TIME STRUCTURE	32
	E.	RELATIVE AMPLITUDE	34
	F.	RESOLVABILITY ANALYSIS	39
		1. Introduction	39
		2. Method I - Individual Hydrophones	40
		a. Time Analysis	40
		b. σ_{t} Analysis	41
		c. Resolvable Rays	43
		3. Method II - Plane Wave Beamformer	46
VI.	COI	NCLUSIONS	51
LIST	r of	REFERENCES	53
APPE	ENDIX	X A: LIST OF EXTERNAL PROGRAMS	55

APPENDIX		INDIV ANALY										•	•	•	81
APPENDIX	C:	LINE	ARRA	Y RE	SOLV	ABIL	ITY	ANA	LYS]	SI	'ABI	Æ	•	•	92
INITIAL I	DISTR	RIBUT	ION L	IST											98

LIST OF FIGURES

Figure 1 Barents Sea bathymetry (after Eldhom and Talwami, 1977). Box centered at 74.6N 24.0E indicates the specific area of study	3
Figure 2 Barents Sea Polar Front experiment configuration and the details of the bathymetry (20 m contour interval). ((A)-224 Hz Source, (B)-16 element vertical hydrophone array, (C,D)-400 Hz transceivers.)	5
Figure 3 A three dimensional view of the study area. ((A)-224 Hz source; (B)-Vertical hydrophone array; (C,D)-400 Hz transceivers.)	6
Figure 4 Geographical distribution of water masses in the Barents Sea (Loeng, 1991). The Barents Sea Polar Front is defined by the shaded line. Water masses are described in the text. Box centered at 74.6N 24.0E indicates the BSPFEX area	11
Figure 5 Mean wave heights (ft) for the Barents Sea, July - September (NAVOCEANO, 1990)	12
Figure 6 Temperature structure in °C (1°C contour interval) of the Polar Front in an area 100 km SW of the BSPFEX area. The shaded area is defined by the 3-4°C contour. (Johannessen and Foster, 1978)	13
Figure 7 Topographically controlled section of the Barents Sea Polar Front (broad line) around Bear Island (Johannessen and Foster, 1978)	14
Figure 8 Surface loss at a sea state of 3 (Emblidge, 1991)	17
Figure 9 Bottom loss along the 50 km path from the source location (A) to vertical hydrophone array location (B) (Kerr, 1990 and Blodgett, et al., 1987)	19
Figure 10 Historical sound speed profiles. SSP1-North Atlantic Water, SSP2-Polar Front, SSP3-Arctic Water.(NAVOCEANO MOODS, 1991)	24

Figure 11 Linear interpolation of historical sound speed profiles. A1-A5 are defined in the text. (Emblidge, 1991)	24
Figure 12 Grid overlay for bathymetry model	25
Figure 13 Orientation of modeled sound speed profile. (P3 - Arctic Water, P2 - Polar Front, P1 - North Atlantic Water, A1 - A5 represent the linear interpolated averages.)	26
Figure 14 Modeled sound speed field along the track from source A to hydrophone array B	27
Figure 15 Ray path along a vertical slice from source (A) to receiver array (B) for a launch angle of 5.00°.	30
Figure 16 Ray path along the track from source (A) to hydrophone array (B) for a launch angle of 8.89°	31
Figure 17 Ray path along the track from source (A) to hydrophone array (B) for a launch angle of 10.40°.	31
Figure 18 Arrival depth versus launch angle for the near bottom sound source (A)	32
Figure 19 Arrival depth versus arrival angle for the near bottom sound source (A)	33
Figure 20 Arrival depth versus arrival time for the near bottom sound source (A)	34
Figure 21 Arrival angle versus arrival time for the near bottom sound source (A)	35
Figure 22 Launch angle versus arrival time for the near bottom sound source (A)	35
Figure 23 Individual ray transmission loss versus launch angle for a near bottom sound source (A) at a sea state of 3	37
Figure 24 Individual ray transmission loss versus launch angle for a near bottom sound source (A) at a sea state of 5	37
Figure 25 Individual ray transmission loss versus arrival angle for a near bottom sound source (A) at a sea state of 3	38

Figure 26 Relative amplitude of all rays from source (A) arriving at a vertical surface 50 km away at location (B) for a sea state of 3	39
. Figure 27 SNR versus $\sigma_{\rm t}$ for two pulse widths. The 224 Hz source has a d of 62.5 ms whereas the 400 Hz source has a d of 10 ms	43
Figure 28 Simulated arrival structure at hydrophone #8 (depth 220 m) at a sea state of 3	46
Figure 29 Beam pattern for modeled linear array with beam steered to 20 degrees off broadside	47
Figure 30 Simulated beamformed arrival structure in sector 13 (+13.5° grazing angle). R9 and R10 are resolvable and have $\sigma_t \le 6.3 \text{ ms}.$	50

LIST OF TABLES

Table I LOCATIONS AND CHARACTERISTICS OF ACOUSTIC ELEMENTS	4
Table II BARENTS SEA WATER MASSES	10
Table III INDIVIDUAL HYDROPHONE RESOLVABLE RAY ARRIVALS WITH $\sigma_{\rm t} \leq 6.3~{\rm ms}$	45
Table IV PLANE WAVE BEAMFORMED RESOLVABLE ARRIVALS WITH σ ≤ 6.3 ms	49

I. INTRODUCTION

A. OCEAN ACOUSTIC TOMOGRAPHY

Ocean tomography is an acoustical method to monitor the ocean interior (Munk and Wunsch, 1979). Like the computer assisted tomography (CAT) scans used in medicine and seismic tomography used in geology, ocean tomography employs beams of energy to create a three-dimensional image of the volume traversed. In CAT scans, these energy beams consist of X-rays; in seismic tomography, shock waves from earthquakes or explosions; and in ocean tomography, low frequency sound waves. As sound waves travel through the ocean they gather information on the changes in ocean temperature and currents. The data are in the form of changes in sound pulse travel times. Using inverse techniques the best estimate of the ocean structure is constructed.

An ocean acoustic tomography problem can be divided into two parts. The first is known as the "forward" and the second as the "inverse" (Munk and Wunsch, 1979). The forward problem establishes the physical relationship between data and the unknown ocean structure. Simulation studies using this relationship can be used to investigate signal and array design issues. The inverse problem deals with the

reconstruction of the unknown ocean structure based on the gathered data and the established forward relationship.

The feasibility of using tomography for ocean monitoring depends on four factors (Munk and Wunsch, 1979):

- 1. Stability
- 2. Resolvability
- 3. Identifiability
- 4. Signal to Noise Ratio (SNR)

Useful time series of acoustic travel time can only be derived from stable and resolvable multipath arrivals over successive transmissions. Identification (i.e. association) of the observed arrivals with modeled arrivals is required to determine the geometry of the acoustic paths. SNR determines the accuracy of the travel time measurement.

B. BARENTS SEA POLAR FRONT EXPERIMENT

The Barents Sea Polar Front Experiment (BSPFEX) is planned for August 1992 (Barents Sea Polar Front Group, 1992). The experiment will be conducted jointly by the Naval Postgraduate School (NPS), Woods Hole Oceanographic Institution (WHOI), and Science Applications International Corporation (SAIC). The experiment will take place within an approximately 70 x 80 km polygon centered at about 100 km east of Bear Island and situated over the steep northwestern slope of Bear Island. Trough as shown in Figure 1.

This field study will emphasize small-scale to mesoscale processes, and will utilize both traditional oceanographic measurements and acoustic tomographic techniques.

Figure 1 Barents Sea bathymetry (after Eldhom and Talwami, 1977). Box centered at 74.6N 24.0E indicates the specific area of study.

Figure 2 shows the experimental configuration and details of the bathymetry. The tomography system will consist of a 224 Hz source (A), a vertical array composed of 16 hydrophones (B), and two 400 Hz transceivers (C,D). Figure 3 shows a three dimensional view of the test area. Some of the characteristics of the sources and receivers are summarized in Table I. This study will focus on the 224 Hz source and the hydrophone array. The 224 Hz source is mounted 3 m off the bottom on an oceanographic mooring. The hydrophone array consists of 16 hydrophones mounted at a 10 m interelement spacing on a vertical oceanographic mooring with the top hydrophone at 150 m.

Table I LOCATIONS AND CHARACTERISTICS OF ACOUSTIC ELEMENTS

MOORING A B	TYPE Source Hyd	LAT (deg N) 74.91	LON (deg E) 24.39	FREQ (Hz) 224	BAND WIDTH(Hz) 16
C	Array Trans-	74.51	25.28	N/A	N/A
D	ceiver Trans-	74.28	23.85	400	100
	ceiver	74.67	22.95	400	100

The scientific objectives of the tomography experiment can be summarized as follows (Barents Sea Polar Front Group, 1992):

- 1. Provide a detailed physical description of the front.
- 2. Enhance the understanding of dynamics of the front, including frontogenesis and its influence on regional

Figure 2 Barents Sea Polar Front experiment configuration and the details of the bathymetry (20 m contour interval). ((A)-224 Hz Source, (B)-16 element vertical hydrophone array, (C,D)-400 Hz transceivers.)

oceanographic processes.

- 3. Assess the ability of acoustic tomography to define frontal and associated mesoscale features.
- 4. Provide improved documentation of shallow water acoustic propagation in this region and the effect of the environment on acoustic ASW operations.

Figure 3 A three dimensional view of the study area. ((A)-224 Hz source; (B)-Vertical hydrophone array; (C,D)-400 Hz transceivers.)

C. THESIS OBJECTIVES AND APPROACHES

The objective of this thesis was to address the tomographic forward problem in the Barents Sea. The study simulated and examined the expected multipath arrival structure of the 224 Hz signal at the hydrophone array. The simulation used a three-dimensional ray theory acoustics

model. The major focus was to investigate resolvability and its relation to SNR.

In simulating the multipath arrival structure, the computer program HARPO (Hamiltonian Acoustic Raytracing Program for the Ocean) was used to trace a fan of rays to the hydrophone array location. Input to HARPO was a mathematical ocean based on a high resolution bathymetry chart (Norsk, 1986) and historical sound speed profiles. Transmission loss for each ray was then computed using computer programs external to HARPO. Eigenrays and hence arrival structure were then determined for each hydrophone of the vertical array by analysis of the rays' arrival depths and times.

Resolvability of the eigenray arrivals at the hydrophone array were examined for two cases. The first case considered each hydrophone of the vertical array as an independent omnidirectional receiver. The second case considered the hydrophones of the vertical array together as a plane wave beamformer.

D. THESIS OUTLINE

The remainder of this thesis consists of five chapters. Chapter II describes the physical oceanography of the Barents Sea including water masses, surface waves, and Polar Front features. Much of this chapter is taken from Emblidge (1991).

Chapter III describes the acoustic properties of the Barents Seas. Here the method of calculating transmission loss of individual acoustic arrivals is discussed.

In Chapter IV a review of ray theory, the ray tracing program HARPO, and the environmental models used are presented. Chapter V provides the simulated arrival structure results, transmission loss calculations, and resolvability analysis.

Chapter VI discusses the conclusion of this study.

II. PHYSICAL OCEANOGRAPHY

A. INTRODUCTION

The Barents Sea is bordered to the south by the coasts of Scandinavia and Russian Republic, to the north by the Svalbard Archipelago and Franz Joseph Land in the southern edge of the Arctic Ocean. It is bounded on the eastern side by Novaya Zemlya. Its western boundary is nearly open and can be approximated by the 15 degree east meridian (Figure 1). With an average depth of 230 m and a maximum depth of 500 m, the Barents Sea is among the shallowest seas of the world ocean (Klenova, 1966).

The Barents Sea contains a complex oceanographic structure. The meeting of Polar and Atlantic water masses to the east of Bear Island forms the Barents Sea Polar Front.

The oceanographic conditions described in this chapter are those that are expected to exist at the time of the BSPFEX (August and September).

B. WATER MASSES AND SURFACE WAVES

Currents in the region transport water of both Arctic and Atlantic origin. These water masses have vastly different temperature and salinity characteristics (Table II).

Table II BARENTS SEA WATER MASSES (after Loeng, 1991)

TYPE	T (deg C)	S (psu)
Arctic Water (AW)	<0.0	34.2 - 34.8
Polar Front Water (PW)	-0.5 to 2.0	34.8 - 35.0
North Atlantic Water (NAW)	>3.0	>35.0

Figure 4 shows Loeng's model of the geographic regions occupied by the major water masses. The abbreviations are AW for Arctic Water, SBW for Svalbard Bank Water, NAW for North Atlantic Water, BW for Bottom Water, BSW for Barents Sea Water, and CW for Coastal Water. The BSPFEX region is indicated by a small square in Figure 4.

As shown in Table II the NAW flowing north introduces warm saline water while AW flowing south introduces cold, relatively fresh water into the Barents Sea. The confluence of these flows creates the Barents Sea Polar Front. As in many frontal situations in the ocean, the front has a complex horizontal and vertical structure.

An important effect on sound transmission is the roughness of the sea surface. Many acoustic paths are expected to be surface interacting because of the shallowness of the sea. Figure 5 shows the mean wave height in feet, in the summer months of July - September (NAVOCEANO, 1990). Note that the BSPFEX area has mean summer wave heights of about 3 feet (1

Figure 4 Geographical distribution of water masses in the Barents Sea (Loeng, 1991). The Barents Sea Polar Front is defined by the shaded line. Water masses are described in the text. Box centered at 74.6N 24.0E indicates the BSPFEX area.

meter). The effects of sea surface roughness on the scattering of sound will be discussed in Chapter III.

Figure 5 Mean wave heights (ft) for the Barents Sea, July - September (NAVOCEANO, 1990).

C. BARENTS SEA POLAR FRONT

Across the western interior of the Barents Sea a front exists due to the adjacent position of the NAW to the south and AW to the north (Figure 4). The front near Bear Island has been studied in some detail by Johannessen and Foster (1978). Figure 6 shows the structure of the front, annotated by the shaded area, with a complex vertical and horizontal structure.

Johannessen and Foster (1978) suggested that the mean position of the front was approximately locked to the outer part of the Svalbard Shelf by the 100-m isobath (Figure 7).

Figure 6 Temperature structure in °C (1°C contour interval) of the Polar Front in an area 100 km SW of the BSPFEX area. The shaded area is defined by the 3-4°C contour. (Johannessen and Foster, 1978).

Figure 6 shows a baroclinic subsurface structure of the front and that the surface signature is nearly absent.

The frontal core oscillates with the tides and seasons. The tidal oscillation is on the order of 10 km/cycle around Bear Island (Johannessen and Foster, 1978). The seasonal and yearly positions vary on the order of 50 km/year (NAVOCEANO, 1991).

The Barents Sea Polar Front is characterized by a change in temperature of about 5°C and salinity of 1 psu over the 100 km of its horizontal extent near Bear Island (Dickson et al., 1970).

Figure 7 Topographically controlled section of the Barents Sea Polar Front (broad line) around Bear Island (Johannessen and Foster, 1978)

The BSPFEX location is about 100 km NE of the area studied by Johannessen and Foster. Frontal conditions in the BSPFEX area are expected to be similar to those found by Johannessen and Foster.

III. ACOUSTIC EFFECTS

A. INTRODUCTION

Understanding the propagation of sound in the ocean requires a knowledge of the properties of the ocean medium, its boundaries and their influence on sound propagation. Among the many environmental factors the principal ones include: absorption, spreading and refraction, and surface/bottom interactions.

B. ABSORPTION

Absorption is the loss of acoustic energy along its path due to the conversion of acoustic energy into thermal energy. This absorption loss (TL_{abs}) can be approximated by the following equation:

$$TL_{abs} = r\gamma$$
 (1)

where ${\bf r}$ is the ray path distance in meters and ${\bf \gamma}$ is the absorption coefficient. For 224 Hz, ${\bf \gamma}$ is approximately 0.000006 dB/m (Kinsler, et al., 1982). So for a distance of 50 km TL_{abs} is 0.3 dB.

C. SPREADING AND REFRACTIVE EFFECTS

Spreading and refractive loss (${\rm TL}_{\rm rl}$) is the loss or apparent gain of acoustic energy over the traveled path due to

the defocusing or focusing of adjacent rays as they travel away from a small spherical source. TL_{rl} was calculated using a FORTRAN computer algorithm 'cordat.f' (Appendix A) for each ray by comparing the separation between adjacently launched rays. Assuming cylindrical symmetry, the equation for TL_{rl} from C.S. Chiu (1992) is

$$TL_{rl} = 10\log \frac{rh}{(\Delta\theta)\cos(\theta)}$$
 (2)

where r is the range between source and receiver, h is the ray tube cross sectional distance at the receiver (the cross section is orthogonal to the eigen-ray path), θ is the launch angle of the ray and $\Delta\theta$ is the difference in launch angle between adjacently launched rays.

D. SURFACE LOSS

Due to the high potential for acoustic ray interaction with the surface in a shallow ocean, the losses at the surface can be important. Acoustic energy is lost at each ray reflection with the surface due to the scatter of energy out of the ray path. This loss in energy can be described by the reflection coefficient at the sea surface which is the ratio of ray energy reflected to incident ray energy.

Using an equation in Clay and Medwin (1977), for scattering loss by a rough surface having a gaussian distribution, Emblidge (1991) calculated the surface loss per

bounce corresponding to a rms waveheight of 1 m or a sea state of 3. Figure 8 is a plot of the calculation.

Figure 8 Surface loss at a sea state of 3 (Emblidge, 1991)

The total loss due to surface interactions, ${\rm TL_{sfc}}$, can be computed by summing the losses of each surface interaction, ${\rm sloss_i}$, that the ray encounters over its path:

$$TL_{sfc} = \sum_{i=1}^{N} sloss_{i}$$
 (3)

E. BOTTOM LOSS

The acoustic energy lost by the ray interacting with the bottom is due to the transmission of some of the acoustic energy into the bottom and the scattering of acoustic energy out of the ray tube. The loss of energy can be described by the reflection coefficient at the bottom which is the ratio of acoustic energy reflected to that incident at the bottom.

To get an estimate of the bottom loss, the U.S. Navy standard Bottom Loss Upgrade (BLUG) is used (Kerr, 1990). BLUG is an interactive routine to compute a bottom loss curve from user-defined geoacoustic inputs. Using the standard Navy BLUG computer algorithm and geoacoustic parameters from an arctic acoustic model called ICECAP (Blodgett, et. al., 1987) a bottom loss profile for the BSPFEX area was computed (Keenan, 1992). The results for 224 Hz are shown in Figure 9.

As can be seen in Figure 9 bottom loss per bounce for grazing angles less than 25 degrees are less than 7 dB for ranges less than 18 km. The bottom loss per bounce is about 0.01 dB for ranges greater than 18 km.

Figure 9 Bottom loss along the 50 km path from the source location (A) to vertical hydrophone array location (B) (Kerr, 1990 and Blodgett, et al., 1987).

If a constant loss per bottom bounce is assumed then the loss due to the bottom for the entire ray path, ${\rm TL}_{\rm bot}$, can be expressed as:

$$TL_{bot} = N(bloss)$$
 (4)

where N is the number of bottom bounces the ray encounters and bloss is the transmission loss in Db per bounce.

IV. RAY THEORY ACOUSTICS

A. INTRODUCTION

The propagation of sound in an ocean medium can be represented as rays. Ray theory provides a visual representation of the paths taken by sound energy and graphically illustrates how various ocean parameters affect the path of each ray. The ocean acoustic model used in this thesis is the Hamiltonian Acoustic Raytracing Program for the Ocean (HARPO).

HARPO is a three-dimensional acoustic ray theory computer model. A significant advantage of HARPO is that it deals with continuous sound speed and bathymetric structure. This continuous treatment overcomes the problems of false caustics.

(Jones et al., 1986)

B. HAMILTONIAN RAY TRACING

Acoustic energy travels in the form of compressional waves. In the high frequency approximation waves behave like particles. The path of these "acoustic particles" can then be determined by integrating a differential form of the wave equation. Hamilton's equation, which governs changes of position and momentum in mechanical systems, are applicable to sound propagation at high frequency (Lighthill, 1978).

Hamilton's equation has the general form:

$$\frac{dp_i}{dt} = \frac{\partial H}{\partial q_i} \qquad i=1,2,3$$

$$\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i} \qquad i=1,2,3$$
(5)

where $H(p_1, p_2, p_3; q_1, q_2, q_3)$ is a Hamiltonian function describing the total energy of a system in terms of generalized coordinate system p and momenta q. For acoustic application q is the wave number vector and p is a coordinate system. In HARPO the coordinate system is spherical polar. Solutions to equation (5) are obtained by choosing initial values for the six values of q_i and p_i and integrating this system of six differential equations. For sound propagation in the ocean the Hamiltonian takes on the form:

$$H(p_i, q_i) = \omega^2 - c(p_i) q^2$$
 (6)

where ω is the angular wave frequency, $c(p_i)$ is the sound speed field and q^2 is the magnitude squared of the wave number vector (Jones, et al., 1986). Along the raypath, the Hamiltonian is defined to be zero.

C. HARPO OVERVIEW

HARPO is a computer ray tracing algorithm that numerically integrates Hamilton's equations. It requires, for input, a continuous three-dimensional representation of the sound speed field, and a continuous two-dimensional representation of the

upper and lower reflecting surfaces. The upper and lower surfaces are the ocean surface and bottom respectively.

Gridded sound speed and bathymetry fields can be made continuous by the use of empirical orthogonal functions (EOF's) and splines using computer subroutines external to HARPO. These routines originated from Newhall et al. (1987).

HARPO does not compute signal amplitude or eigenrays.

Amplitude and eigenray determinations are made by external programs applied to the HARPO output files called DOUTP and RAYSET. The documentation of HARPO by Jones et al. (1986) provides a complete description of the mathematics and computer coding of HARPO.

D. MODELING THE BARENTS SEA ACOUSTIC ENVIRONMENT

1. General

The accuracy with which HARPO calculates ray paths is primarily dependent on the accuracy with which the ocean is described by the input models. Chapter II described the environment of the BSPFEX area. Modeling the environment for the simulation of acoustic ray arrival structure was accomplished by selecting environmental data that provided adequate mathematical description for the sound speed field and bathymetry.

2. Sound Speed Field, Bathymetry, and Sea Surface

The bathymetry input to HARPO is shown in Figure 12. The square box was manually gridded into 13 subdivisions along each side with a 7.5 km spacing. The bottom depths were then visually read off the chart (Norsk, 1986) at the gridded intersections. This gridded bathymetry input was splined to provide a continuous topography using FORTRAN computer subroutines 'tgridin.f' (Emblidge, 1991), 'tgridder.f' (Newhall, et al., 1987), and 'bottom.f' (Newhall, et al., 1987). Appendix A contains a copy of 'tgridin.f' which has been extensively modified for this research. Programs 'tgridder.f' and 'bottom.f' only required a one line modification to change the size of the horizontal and vertical grid spacing.

Figure 10 shows the three sound speed profiles (SSPs), extracted from the NAVOCEANO MOODS data base, chosen to represent conditions on the North Atlantic side of the Polar Front (SSP1), front interior (SSP2), and on the Arctic side (SSP3), respectively. See Figure 4 for the water mass orientation. From the three SSPs described above, five others were created by Emblidge (1991) by linear interpolation, as shown in Figure 11 (A1,A2,A3,A4,and A5), to provide a gradual change in sound speed on each side of the front.

The three-dimensional sound speed field was generated by tying a specific SVP or linear interpolated SVP to a diagonal of the bathymetry field (Figure 12). Figure 13 shows the

Figure 10 Historical sound speed profiles. SSP1-North Atlantic Water, SSP2-Polar Front, SSP3-Arctic Water. (NAVOCEANO MOODS, 1991).

Figure 11 Linear interpolation of historical sound speed profiles. Al-A5 are defined in the text. (Emblidge, 1991).

Figure 12 Grid overlay for bathymetry model.

orientation of the SVP's in the modeled BSPFEX area. This sound velocity input was then used to generate a continuous sound velocity field by EOF's and splines using FORTRAN computer subroutines 'gridin.f' (Emblidge, 1991), 'gridder.f' (Newhall, et al., 1987), and 'cgrid.f' (Newhall, et al., 1987). Appendix A contains a copy of 'gridin.f' which has been extensively modified for this work. Programs 'gridder.f' and 'cgrid.f' only required a one line modification to change the size of the horizontal and vertical grid spacing. This

Figure 13 Orientation of modeled sound speed profile. (P3 - Arctic Water, P2 - Polar Front, P1 - North Atlantic Water, A1 - A5 represent the linear interpolated averages.)

generated a modeled Polar Front about 40 km wide, oriented along the bathymetry contours, centered approximately between the source and receiver. A contour plot of the modeled SSP field along the track between the 224 Hz source (A) and the vertical array (B) is shown in Figure 14. This modeled cross front vertical slice compares favorably to actual data as shown in Figure 6.

Figure 14 Modeled sound speed field along the track from source A to hydrophone array B.

The sea surface was modeled as a flat sphere concentric with the earth with a radius of 6370 km.

3. Summary

The environmental model designed provided for a 40 km wide front between the source (A) and the receiver array (B), with the source in the cold Arctic water, and the receiver array in the warm North Atlantic Water. Table I provides a description of the source/receiver positions.

In the simulation, the source was placed about 3 m off the bottom in about 163 m of water. The receiver was placed 50 km

away in about 318 m of water (Figure 3). The track from the source to the receiver array has a bearing of 151.8° true.

V. ARRIVAL STRUCTURE SIMULATION & ANALYSIS

A. INTRODUCTION

To simulate the propagation of the 224 Hz pulse signal from a near-bottom sound source, through the front to the vertical receiver array, ray traces were performed for launch angles between 0.00 to 25.00° at 0.01° increments. The rays were terminated after passing 50 km in horizontal distance. Since HARPO does not stop the rays exactly at 50 km, a correction was made via the FORTRAN program 'cordat.f' to "back-up" the rays and compute arrival depth and time at the 50 km receiver surface.

B. RAY PATH STRUCTURE

Rays with launch angles less than 8.89° are refracted bottom-reflected (RBR) as expected due to the downward refracting sound profile (Figure 10). Figure 15 shows a ray launched at 5.00°. The first ray to interact with the sea surface is the ray launched at 8.89°. Figure 16 shows the ray launched at 8.89 degrees. The first ray to become completely surface-reflected and bottom-reflected (SRBR) is the ray launched at 10.40 degrees. Figure 17 shows the ray launched at this angle.

Figure 15 Ray path along a vertical slice from source (A) to receiver array (B) for a launch angle of 5.00°.

C. ARRIVAL STRUCTURE

For the 2500 rays traced between 0.00 and 25.00° various plots were made to study the arrival structure. The launch angle versus arrival depth plot is shown in Figure 18. The number of ray arrivals at any one receiver in the vertical array can be found by drawing a horizontal line across Figure 18 at the corresponding receiver depth. Eigenrays are given by the intersection of the horizontal line with the curve.

Figure 16 Ray path along the track from source (A) to hydrophone array (B) for a launch angle of 8.89°.

Figure 17 Ray path along the track from source (A) to hydrophone array (B) for a launch angle of 10.40°.

Figure 18 Arrival depth versus launch angle for the near bottom sound source (A).

Figure 18 shows more arrivals for receivers deeper than 150 m. The hydrophone array occupies the water column between 150 m and 300 m.

The arrival angle versus arrival depth plot is shown in Figure 19. It is interesting to note that the rays tend to arrive at some preferred directions independent of arrival depth, especially for arrival angles larger than 10°.

D. ARRIVAL TIME STRUCTURE

Examination of the arrival times of the acoustic rays reveals information about temporal resolvability of acoustic signals for tomographic inversion. To accomplish this

Figure 19 Arrival depth versus arrival angle for the near bottom sound source (A).

examination various plots were made of the 2500 rays launched between 0.00 and 25.00°.

The arrival time versus arrival depth plot is shown in Figure 20 for all rays launched. This plot indicates that the later acoustic arrivals are associated with a more tilted wave front. The figure also indicates that the duration of the multipath arrival structure is about 4 s.

The arrival time versus arrival angle plot is shown in Figure 21. In this plot one can see that the earliest arrivals come in at small grazing angles.

Figure 20 Arrival depth versus arrival time for the near bottom sound source (A).

The arrival time versus launch angle plot is shown in Figure 22. Consistent with Figure 21, this plot shows generally that rays with smallest launch angles arrive first.

E. RELATIVE AMPLITUDE

The ray amlitude of each ray that arrives at the vertical receiver surface 50 km away from the source can be computed using the transmission loss analysis discussed in Chapter III. The source level for the 224 Hz source (A) is 183 dB so the ray amplitude of the i'th ray, RAMP, may be computed as follows:

Figure 21 Arrival angle versus arrival time for the near bottom sound source (A).

Figure 22 Launch angle versus arrival time for the near bottom sound source (A).

$$RAMP_i = 183 - TL_{tot_i} \tag{7}$$

where $\mathrm{TL_{tot}}$ is the total transmission loss of the i'th ray. The total transmission loss for each ray is a sum of the energy losses due to absorption, spreading and refraction, and surface/bottom interactions as discussed in Chapter III. Neglecting absorption (which is insignificantly small) then the total transmission loss $\mathrm{TL_{tot}}$ is

$$TL_{tot} = TL_{Il} + TL_{sfc} + TL_{bot}$$
 (8)

Using Equations (2), (3), (4), and (8) the total transmission loss was calculated for each ray using 'cordat.f'. For simplification the bottom loss was taken to be a constant of 0.5 dB per bounce (i.e., an average over the 50 km track). Figures 23 and 24 are plots of the results of the transmission loss calculation for launch angles from 0 to 25° at 0.01° steps over the 50 km horizontal distance for sea states 3 and 5 respectively. These figures show a strong dependence of acoustic energy loss due to interactions with the sea surface. Clearly, ray angle and sea state acoustic energy losses are quite significant for launch angles ≥13° at a sea state of 5. The corresponding mean wave heights is 4 m. Due to the large surface losses, the horizontal axis of Figure 24 was intentionally terminated at 15°.

Figure 25 is a plot of transmission loss versus arrival angle of all rays arriving at the vertical receiver surface 50

Figure 23 Individual ray transmission loss versus launch angle for a near bottom sound source (A) at a sea state of 3.

Figure 24 Individual ray transmission loss versus launch angle for a near bottom sound source (A) at a sea state of 5.

km away. It shows consistently that rays arriving at narrow angles will encounter the least transmission loss.

Figure 25 Individual ray transmission loss versus arrival angle for a near bottom sound source (A) at a sea state of 3.

A plot of ray amplitude versus arrival time of all rays arriving at the vertical receiver surface at a sea state of 3 is shown in Figure 26. This figure shows that the trend of the amplitude decreases with increasing ray arrival time. The later arrivals are associated with rays having larger launch and arrival angles and thus are subject to interaction with the sea surface.

Figure 26 Relative amplitude of all rays from source (A) arriving at a vertical surface 50 km away at location (B) for a sea state of 3.

F. RESOLVABILITY ANALYSIS

1. Introduction

Two methods for resolving ray arrivals using a vertical array of 16 hydrophones with a 10 m interelement spacing were considered. The first method used the hydrophones as independent omnidirectional receivers with resolvability in time. The second method used all the hydrophones together as a plane wave beamformer with resolvability not only in time but also in arrival angle. Thus, in order to estimate the total number of resolvable ray arrivals analyses of time and angle separations of the

eigenrays were required. For the time analysis the eigenrays for each individual phone were compared to each other for a minimum time separation requirement. For the angle analysis the plane wave beam pattern of the line array was used to construct the beamformed arrival structure. The beamformed arrivals within each beam were then compared to each other for the same minimum time separation requirement as used for individual phones.

In addition to addressing resolvability it was also important to consider the accuracy of the travel time measurements. A resolved arrival may not be a useful datum for tomographic inversion if its travel time uncertainty $\sigma_{\rm t}$ is large. This uncertainty depends on the signal-to-noise ratio (SNR) associated with the individual arrival and can be estimated by considering the source level, ambient noise, and array gains from directivity and signal processing. Estimates of $\sigma_{\rm t}$ for both methods are included in this section. (Chiu, 1992)

2. Method I - Individual Hydrophones

a. Time Analysis

The investigation of resolvability in time was accomplished by comparing each ray arrival in time with its neighbor. If the separation in time was more than the width of the transmitted pulse then the ray was resolved from all other arrivals. The 224 Hz source signal has a bandwidth of

16 Hz. Therefore, the theoretical width of the received pulses is 1/16 Hz or 62.5 msec.

b. σ_t Analysis

To determine the $\sigma_{\rm t}$'s of the resolvable arrivals an SNR estimate was needed for each arrival. Using an approach similar to Spindel (1979) and from Miller (1992) the SNR estimate at the receiver for a single pulse used was:

$$SNR = RAMP - DNL + PCG + CAG$$
 (9)

where RAMP is the ray amplitude (source level (SL) minus the total transmission loss (TL_{tot})), DNL is the detected ambient noise level, PCG is the pulse compression gain, and CAG is the coherent average gain. The SL for the 224 Hz source is 183 dB. TL_{tot} was computed for each ray as described in section E. DNL was computed from the following equation (Kinsler et al., 1982):

$$DNL = NSL + 10\log(BW) - DI$$
 (10)

where NSL is the ambient noise level, BW is the band width of the transmitted signal and DI the array directivity index. NSL has many contributions including shipping, agitation of sea surface, bioacoustics, sea ice and seismic sources. Ambient noise due to shipping and the sea surface was only considered here. For medium shipping density and a sea state of 3, a NSL of 67 dB was found in Kinsler et al. (1982). The ambient noise information from Kinsler et al. (1982) is for

deep water and was used here as an approximation. Using a 16 Hz BW the DNL increased by 12 dB. For individual omnidirectional hydrophones DI = 0 so DNL = 67 + 12 = 79 dB.

The PCG and CAG are signal processing gains. Using equations from Spindel (1979) and the planned signal parameters for the 224 Hz source, the following values were calculated. With a kernel sequence of 63 digits the PCG is 10log(63) or 18 dB. With 30 repetitions of the sequences, a CAG of 10log(30) or 15 dB was obtained.

According to Spindel (1979) a reception with a SNR of about 20 dB is desired in order to clearly distinguish multipath arrivals from noise and to reduce the error in travel time estimation to a figure adequate for tomographic inversion. Since the error is approximately given by (Spindel, 1979)

$$\sigma_t = \frac{d}{\sqrt{SNR_{raw}}} \tag{11}$$

a 20 dB SNR and a pulse width of d = 62.5 ms yields a $\sigma_{\rm t}$ of 6.3 ms. Figure 27 provides a plot of SNR verses $\sigma_{\rm t}$ for two values of d.

Solving Equation (9) for RAMP with SNR \geq 20 dB, DNL = 79 dB, PCG = 18 dB and CAG = 15 dB yielded a RAMP \geq 66 dB. The implication was that resolvable arrivals with RAMP \geq 66 dB have travel time uncertainty \leq 6.3 ms. These strong arrivals

Figure 27 SNR versus σ_t for two pulse widths. The 224 Hz source has a d of 62.5 ms whereas the 400 Hz source has a d of 10 ms.

would give high quality travel time data for tomographic inversion.

c. Resolvable Rays

To assist in identifying the resolvable ray arrivals a table summarizing all of the eigenrays for each of the sixteen hydrophones was compiled using a MATLAB (The Mathworks, Inc, 1989) computer program 'resanl.m' (Appendix A). The table is given in Appendix B and the list is in order of increasing travel time. For all the rays traced to a range of 50 km, the rays that arrived within 1/2 wavelength of each hydrophone were picked as eigenrays.

Each arrival was then compared to its adjacent arrival in time. Arrivals with greater than 62.5 ms separation to the arrivals before and after were considered resolvable in time and are annotated with a 'R' next to the arrival time in the table in Appendix B.

The arrivals resolvable in time were then inspected for adequate $\sigma_{\rm t}$. Arrivals with a $\sigma_{\rm t} \leq 6.3$ ms corresponding to a RAMP ≥ 66 dB were considered as having adequate travel time accuracy (see Sec. F.2.b). Inspection of the table in Appendix B yielded 42 resolvable arrivals that met this criterion. Table III provides a summary of these 42 arrivals.

Figure 28 shows the simulated arrival structure at the eighth hydrophone from the top of the vertical hydrophone array. This phone is located at a depth of 220 m. The plot was created using the MATLAB program 'hyd8beam.m' (Appendix A). The figure shows a total of 27 ray arrivals at this hydrophone. The arrivals resolvable in time and have a $\sigma_{\rm t} \leq$ 6.3 ms are annotated by R17, R18, R19, and R20. The numbers correspond to the numbering in Table III.

Table III INDIVIDUAL HYDROPHONE RESOLVABLE RAY ARRIVALS WITH $\sigma_{\rm t} \leq 6.3~{\rm ms}$

	Launch	Arrival		200		Arrival
N =	Angle	Angle	Hyd	RAMP	σt	Time
No.	(deg)	(deg)	<u>No.</u>	(dB)	$\frac{(ms)}{1.0}$	<u>(s)</u>
1	11.49 12.74	-10.7803 +10.6750	1 1	82.0474 74.9298	2.2	34.8858 34. 9759
2 3	14.83	+13.4689	1	72.2280	3.1	35.3221
4	11.51	-11.0427		80.6225	1.2	34.8846
5	12.65	+10.8853	2 2 3 3	82.0131	1.0	34.9881
6	7.78	+8.0024	3	70.2431	3.9	34.7172
7	11.52	-11.1197	3	76.0964	2.0	34.8853
8	14.74	+13.7346	3	76.0389	2.0	35.3332
9	8.62	+ 8.2148	4	85.9763	0.6	34.7075
10	11.53	-11.2162	4	78.5257	1.5	34.8852
11	14.60	+13.9993	5	77.0836	1.8	35.3518
12	11.54	-11.3108	6	75.0689	2.2	34.8864
13	14.53	+13.9967	6	76.7759	1.8	35.3615
14	11.55	-11.3583	7	76.8271	1.8	34.8868
15	14.45	+14.0910	7	76.9178	1.8	35.3719
16	13.10 8.50	-14.2447	7 8	66.9958	5.6	35.5378
17 18	11.63	+8.4845 -11.3509	8	79.5235 75.6184	1.3 2.1	34.7140 35.0917
19	14.38	+14.0919	8	77.3569	1.7	35.3814
20	17.01	+16.5614	8	66.5519	5.9	35.8676
21	7.68	-8.3897	9	78.1157	1.6	34.6960
22	11.56	-11.3548	9	75.7405	2.0	34.8880
23	11.61	-11.3504	9	73.5302	2.6	35.0963
24	14.29	+14.1118	9	78.1330	1.6	35.3934
25	16.92	+16.5555	9	67.5459	5.2	35.8819
26	14.18	+14.1081	10	79.2232	1.4	35.4087
27	13.13	-14.2383	10	73.2166	2.7	35.5376
28	16.83	+16.5507	10	66.6980	5.8	35.8963
29	14.06	+14.0723	11	78.8534	1.4	35.4251
30	13.15	-14.1958	11	72.7723	2.9	35.5364
31	16.72	+16.6531	11	66.8359	5.7	35.9145
32	7.71	-8.3325	12	79.3256	1.4	34.6980
33	13.94	+14.0684	12	78.8688	1.4	35.4415
34 35		-14.1533 +16.5382	12 12	72.5735 66.1088	2.9 6.2	
36	7.72	-8.3059	13		0.2	
37		+14.0650	13	78.6391	1.5	
38	13.19	-14.1535	13	70.6539	3.7	35.5337
39		+16.5326	13	66.5419	5.9	35.9380
40	7.74	-8.2335	15	80.9442	1.1	34.6987
41		-11.2190	15	72.4460		35.0256
42	8.45	-8.3734	16	74.1797	2.4	34.7021

Figure 28 Simulated arrival structure at hydrophone #8 (depth 220 m) at a sea state of 3.

3. Method II - Plane Wave Beamformer

If the vertical array of 16 hydrophones is used as a plane wave beamformer then angle, in addition to time, becomes another parameter available for resolving arrivals. To determine the resolution in angle, the plane wave beamforming method of Ziomek (1985) for a linear array of equally spaced point hydrophones was used. The far-field directivity function or beam pattern of the linear array can be computed using a Fast Fourier Transform (FFT) computer algorithm.

Using a MATLAB computer program 'beampat.m' (Appendix A) incorporating such FFT algorithms, the theoretical beam pattern of the hydrophone array was computed.

Figure 29 shows the beam pattern of the vertical receiver array with the beam steered to 20° off broadside. The corresponding beam width defined by the 3 dB down point (0.7071 normalized directivity) is about 3.0°. The beam pattern steered to broadside was found to be about 2.5° wide. The grating lobe for this array appears 48° away from the steered beam so should not cause a problem for arrivals within 20° of broadside.

Figure 29 Beam pattern for modeled linear array with beam steered to 20 degrees off broadside.

To assist in identifying the resolvable beam formed arrivals, a table was compiled using 'resanl.m'. This table is

presented in Appendix C. The method used here was similar Method I for individual hydrophones with the following exceptions. Following extraction of all eigenrays arriving within 1/2 wavelength of each hydrophone, the eigenrays were separated into fifteen groups associated with their arrival angles. The 15 groups are associated with 15 nonoverlapping angular sectors. Each angular sector is three degrees wide. The three degree width was based on the beam pattern analysis discussed above. The limiting arrival angles defining these sectors are given at the end of the table in Appendix C.

Similarly, the beamformed ray arrivals were compared in time for a 62.5 ms separation. The rays meeting this time separation criterion within each angular sector are annotated with an 'R' next to the arrival time in the table in Appendix C.

For the $\sigma_{\rm t}$ analysis, the same parameter values for PCG, CAG and BW as before are used here. The only difference is that a directivity gain was added. The directivity index (DI), according to Ziomek (1985), may be approximated by 10 Log(number of hydrophones). For 16 phones it is 12 dB. Thus from Equation (10), DNL is now 67 + 12 - 12 = 67 dB. Using Equation (9), this results in a minimum RAMP requirement of 54 dB for resolvable arrivals to attain a $\sigma_{\rm t}$ smaller than 6.3 ms.

By inspection of the table in Appendix C, 11 resolvable beamformed arrivals that also have an adequate σ_{τ} of 6.3 ms or

less (i.e., with RAMP \geq 54 dB) were obtained. Table IV provides a summary of these 11 arrivals. Seven of these arrivals are unique to the 42 arrivals determined using Method I.

Table IV PLANE WAVE BEAMFORMED RESOLVABLE ARRIVALS WITH $\sigma_{\rm t} \leq 6.3~{\rm ms}$

	Launch Angle	Arrival Angle		RAMP	σ_{t}	Arrival Time
No.	(deg)	(deg)	Sector	<u>(dB)</u>	(msec)	(sec)
1	15.59	-16.5311	2	62.4927	2.4	36.0685
2	15.41	-14.2058	3	55.6390	5.2	35.2809
3	13.10	-14.2447	3	64.9958	1.8	35.5378
4	11.56	-11.3548	4	74.7405	0.6	34.8880
5	13.02	-12.2672	4	73.3231	0.7	35.0269
6	11.61	-11.3504	4	73.5302	0.7	35.0963
7	11.71	+11.1330	12	67.3867	1.3	35.1003
8	14.83	+13.4689	12	72.2280	0.8	35.3221
9	13.55	+14.0571	13	77.6399	0.4	35.4936
10	17.21	+16.3884	13	64.2685	1.9	35.8375
11	16.35	+16.5172	14	65.0820	1.8	35.9726

Figure 30 shows a total of three arrivals in angular sector 13. Arrivals resolvable in time within this sector which have a $\sigma_{\rm t} \leq$ 6.3 ms are annotated with 'R9' and 'R10'. The numbers correspond to the numbers in Table IV.

Figure 30 Simulated beamformed arrival structure in sector 13 (+13.5° grazing angle). R9 and R10 are resolvable and have $\sigma_{\rm t}$ \leq 6.3 ms.

VI. CONCLUSIONS

The objective of this thesis was to examine the arrival structure of the planned tomographic transmissions in the upcoming BSPFEX using computer simulation. This study examined the resolvability of those rays that intersected a vertical hydrophone array 50 km from a near bottom source. Conclusions are:

- The duration of the multipath arrival structure is about
 s.
- 2. The arrival structure can be grouped into the following two distinctive regimes:

a. Early Arrivals (0-600 ms)

- (i) These arrivals have angles less than 10°. They exhibit the least transmission loss due to minimum interactions with the sea surface.
- (ii) They exhibit mode-like properties. Large number of simultaneous ray arrivals are found. The investigation of the resolvability of modes will require a simulation using full-wave acoustic models based on parabolic equation or coupled mode methods.
- (iii) Fewer ray arrivals are resolved in this regime.

b. Late Arrivals (600-4000 ms)

- (i) These arrivals have angles greater than 10° . They exhibit higher transmission loss due to greater interactions with the surface. For sea states ≥ 5 (i.e., mean wave heights ≥ 4 m) little signal amplitude is expected of rays launched at $\geq 13^{\circ}$.
- (ii) Individual ray arrivals are separated more in time.
- (iii) More ray arrivals are resolved in this regime.
- 3. One to four accurate ray arrivals are resolvable per single hydrophone. Accuracy is measured by $\sigma_{\rm t}$ and a requirement of $\sigma_{\rm t} \leq 6.3$ ms is used for extraction of the accurate arrivals.
- 4. A total of 42 ray arrivals with the required amplitude are resolvable from the sixteen individual hydrophones. All of these arrivals come within the first 1500 ms in the multipath arrival structure.
- 5. Seven additional, non-redundant, ray arrivals with the required amplitude are resolvable through plane wave beamforming using the 16 hydrophones. All of these arrive within two 6 degree bands of +11 to +17° and -11 to -17°.

LIST OF REFERENCES

- Clay, C.S. and H. Medwin, <u>Acoustical Oceanography</u>, John Wiley & Sons, New York, 1977.
- Chiu, C.S., Department of Oceanography, Naval Postgraduate School, Monterey, CA., Personal communication, 1992.
- Blodgett, M.L., M. Bradley, J. Hanna, R. Keenan, D. Rubenstein, ICECAP: Arctic models and data bases for the Navy standard tactical desktop computer, SAIC-86/1906, 1987.
- Barents Sea Polar Front Group, A.J. Plueddemann, Experimental Plan Barents Sea Polar Front Experiment August 1992, May 1992. (Bourke, R.H., C.S. Chiu, J.F. Lynch, J.H. Miller R.D. Muench)
- Devore, J.L., <u>Probability and Statistics for Engineering and the Sciences</u>, Brooks/Cole Pub. Co., Monterey, CA., 1987.
- Dickson, R.R., L.S. Midttun, and A.I. Mukhin, The hydrographic conditions in the Barents Sea in August-September 1965-1968, in <u>International O-Group Fish Survew in the Barents Sea Cooperative Research Report</u> ser. A, no. 18, edited by O. Dragesund International Council for the Exploration 6 the Sea, Charlottenlund Slot, Denmark, 3-24, 1970.
- Eldholm, O. and M. Talwani, Sediment distribution and structural framework of the Barents Sea. <u>Geological Society of America Bulletin</u>, 88, 1015-1029, 1977.
- Emblidge, J.M., <u>A Feasability Study of Ocean Acoustic</u>

 <u>Tomography in the Barents Sea</u>, Naval Postgraduate School
 Thesis, 1991.
- Johannessen, O.M. and L.A. Foster, A note on the topographically controlled oceanic polar front in the Barents Sea, <u>J. Geophysical Reasearch</u>, 83, 4567-4571, 1978.
- Jones, R.M., J.P. Riley and T.M. Georges, HARPO a versatile three-dimensional hamiltonian ray-tracing program for acoustic waves in an ocean with irregular bottom., Wave Propagation Laboratory, NOAA, Boulder, Colorado, 457 pp.

- Keenan, R. E., Science Applications International Corporation, Mashpee, MA., Personal communication, 1992.
- Kerr, G., Data base description for low frequency bottom loss (LFBL), OAML-DBD-12B, 1990.
- Kinsler, L., A. Frey, A. Coppens, and J. Sanders, <u>Fundamentals</u> of <u>Acoustics</u>, fourth edition, John Wiley & Sons, N.Y., 1982.
- Klenova, M.V., Barents Sea and White Sea, in <u>The Encyclopedia</u> of Oceanography, edited by Faibridge, R.W., Reinhold Publishing Corp., N.Y., 95-101, 1966.
- Lighthill, M.J., <u>Waves in Fluids</u>, Cambridge Univ. Press, sec 4.5. 1978.
- Loeng, H., Features of the physical oceanographic conditions of the Barents Sea, (In press), 1991.
- Miller, J.H., Department of Electrical and Computer Engineering, Naval Postgraduate School, Monterey, CA, personal communication, 1992.
- Munk, W. and C. Wunsch, Ocean acoustic tomography: a scheme for large scale monitoring, Deep Sea Res., Part A, 26, 123-161, 1979.
- NAVOCEANO Publication SP-279-2, U.S. Naval Oceanographic Office, NSTL Mississippi, 1989.
- Newhall, A.E., J.F. Lynch, C.S. Chiu, and J.R. Daugherty, Improvements in three-dimensional raytracing codes for underwater acoustics, <u>Computational Acoustics</u>, Vol 1, 1987.
- Norsk Polarinstitutt, Bathymetry Barents Sea, Chart No. 7421, Oslo, Norway, 1986.
- Spindel, R.C., An Underwater Acoustic Pulse Compression System, <u>IEEE Transactions on Acoustics</u>, <u>Speech</u>, <u>and Signal Processing</u>, Vol. ASSP-27, No. 6, 1979.
- The Mathworks, Inc., MATLAB for SUN Workstations User's Guide, South Natick, MA, 1989.
- Tolstoy I. and C.S. Clay, <u>Ocean Acoustics</u>, McGraw-Hill, New York, 1966.
- Ziomek, L.J., <u>Underwater Acoustics A Linear Systems Theory</u>
 <u>Approach</u>, Academic Press, inc., San Diego, 1985.

APPENDIX A: LIST OF EXTERNAL PROGRAMS

The following programs were developed or extensively modified during the course of this research. They include:

- 1. <u>cordat.f</u> Path and time correction for a vertical receiver and TL calculation.
 - tgridin.f HARPO topography input generator.
 - 3. gridin.f HARPO sound speed profile input generator.
- 4. beampat.m vertical hydrophone array beam pattern
 generator.
 - 5. <u>resanl.m</u> Ray resolvability analysis table generator.
- 6. hyd8beam.m Arrival structure plotting program including pulse shape generation.

botcnt = 0srfcnt = 0

```
cordat.f
C
C
Written by: J. Mark Elliott, LCDR/USN, NPS, Dec
C
С
Modified 23 Jan 92 by J.M. Elliott to correct for total ray travel time
c to the vertical receiver surface.
   Modified 27 Jan 92 by J.M. Elliott to calculate Transmission Loss due to
С
c spreading.
С
   Modified 21 Feb 92 by J.M. Elliott account for trans loss due to bot and
С
c surface reflections.
C
   Modified 20 Apr 92 by J.M. Elliott to count the no of surface, bottom,
c and turning point interactions.
C
   Purpose:
C
   This program extacts from RAYSET (HARPO output file) the last line of
С
c data for a particular launch ray corresponding to the first event (ray point)
c after passing max range (W28 of DINP). Then this is backed up the ray path
c geometrically to compute the height above msl and arrival time for a ray
c crossing a vertical recvr surface at max r.
   This program also computes the fol: Transmission Loss due to spreading,
c surface interactions, bottom interactions; and counts the number of surface
c interactions, bottom interactions, and turning points.
   This program will skip rays that are trapped above the surface.
C
c problem was later found to be mitigatied but not eliminated by reducing W44
c (initial integration step size) from .1km to .05km or less.
C
    Define the 10 Columns of RAYSET data output, max range specified in
C
c DINP W28 (rmax), and initial launch elevation angle specified in DINP
c W15 (ths), and the step in launch ele angle W17 as dths.
     Also six indexes are used i, tlbot, sloss, botcnt, srfcnt, and tpcnt.
C
c The index i is to be used in the spreading trans loss calc. The indexs
c tlbot and sloss are used to measure the TL due to bottom and surface
c reflections respectively that the ray makes along its total path.
c The number of bottom, surface and turning points are counted by 'botcnt',
c 'srfcnt', and 'tpcnt' respectively.
              f(10), ths, thr, r, zp, duml, t, tlbot, sloss, tlt, z, rp, ds, dt, tp,
     a
              cave1, cave2, z2, rmax, rmax2, thr2, h, a11, a12, a21, a22, b1, b2,
              w, zi, ri, tlspn, tlspo, theta, sigma, k, botcnt, srfcnt, tpcnt
      rmax = 50.
       ths = 0.00
      dths = 0.01
       i = 1
       tlbot = 0
       sloss = 0
```

```
Jun
     8 08:37 1992 cordat.f Page 2
       tpcnt = 0
    Define output files:
C
       raysetX Y = rayset data from harpo output, launch angles from X to Y
C
               = launch angle vs arrival depth output
C
       f3time.dat= arrival time vs arrival depth output
C
       f3tl.dat = launch angle vs transmission loss due to spreading
C
       f3ttl.dat = arrival time, total trans loss (dB)
C
       f3res.dat = ths, thr, z, tpcnt, srfcnt, botcnt, ramp, t
C
       open(unit=10, file='rayset0 10', status='old', form
          ='formatted')
        open(unit=20, file='f3.dat', status='new', form='formatted')
C
       open(unit=30, file='f3time.dat', status='new', form='formatted')
C
      open(unit=40, file='f3tl.dat', status='new', form='formatted')
C
       open(unit=50, file='f3ttl.dat', status='new', form='formatted')
       open(unit=60, file='f3res.dat', status='new', form='formatted')
c skip the first 7 lines of RAYSET
       DO 15 i = 1,7
          read(10, *)
  15
       continue
C
C
   Read in the 10 columns of RAYSET data and call the data n for new
C
      Define RAYSET columns:
C
         f(1) = earth radius to mean sea level (msl) in km
C
         f(2) = earth radius to ocean floor in km
C
         f(3) = horiz range to ray point along msl in km
C
         f(4) = earth radius to ray point in km
C
         f(5) = ray phase angle ?
C
         f.(6) = ?
C
C
         f(7) = phase arrival time in sec
C
         f(8) = local sound speed in m/s
C
         f(9) = ?
C
         f(10) = local ray elevation angle in deg
   1
       read(10,*)f(1),f(2),f(3), f(4),f(5),f(6), f(7),f(8),f(9),f(10)
       fln = f(1)
       f2n = f(2)
       f3n = f(3)
       f4n = f(4)
       f5n = f(5)
       f6n = f(6)
       f7n = f(7)
       f8n = f(8)
       f9n = f(9)
       f10n = f(10)
C
С
    Look for the last line -999 flag of each launch ray data set, otherwise
c (else) call the new data line the old (fxo) data, compute surface
c and bottom trans loss, and then look at the next data line in RAYSET:
       if (fln.lt.-900.) then
```

f60 = f6n

```
go to 2
       end if
C
     Compute bottom/surface interaction trans loss. Let each bottom ref
C
c equal 0.5 dB of loss. For surface loss compute the trans loss
c (sloss) using gaussian scattering theory (Clay & Medwin, 1985):
        Define:
          zp = arrival ht above msl in km
С
          dum1 = arrival ht above bottom in km
C
          sloss = -20*log10(abs(exp(-2*(k**2)*(sigma**2)*(sin(f(10)))**2)))
С
          k = wavenumber at surface using avg surf sound speed of c(m/s) and
С
               frequency f (Hz)
С
            = 2*pi*f/c = 2*pi*224/1465 = 0.9607
С
С
          sigma = rms wave ht in meters (0.7071 used for sea state 3)
                = 0.0707 for sea state 1
С
                = 0.7071 for sea state 3
С
                = 2.8284 for sea state 5
С
          f(10) = graze angle assumed to be appx = local ele angle f10
С
           botcnt = no of bottom interactions
С
           srfcnt = no of surface interactions
           tpcnt = no of turning points
c First test to see if the RAYSET data line was a repeat by checking range f3,
c and if so skip the computation and repeat (cause of this problem is unk):
        if (f3n.eq.f3o) then
         go to 1
        end if
        zp = f4n - f1n
        duml = f4n - f2n
        if (abs (dum1).le.0.00009) then
         tlbot = tlbot + 0.5
         botcnt = botcnt + 1
        end if
        k = 0.9607
C
         sigma = 2.8284
C
        if (abs(zp).le.0.00009) then
          theta = \sin(f10n*3.14159/180)**2
           sloss = -20*log10(abs(exp(-2*(k**2)*(sigma**2)*theta))) + sloss
c Can't get program to compute sloss in this form, cuse unk, must use fol:
          sloss = -20*log10(abs(exp(-0.9229*theta))) + sloss
          srfcnt = srfcnt + 1
        end if
c Now count the no of turning points. Since the method I use just counts the
c no of times grazing angle changes sign I subtract out the sign changes due to
c surface and bot bounces at the end of this program just before the write
c statement:
        if (abs(f10o-f10n).ge.abs(f10o)) then
           tpcnt = tpcnt + 1
        end if
         flo = fln
         f2o = f2n
         f3o = f3n
         f40 = f4n
         f50 = f5n
```

```
Jun 8 08:37 1992 cordat.f Page 4
         f70 = f7n
         f80 = f8n
         f90 = f9n
         f100 = f10n
         go to 1
С
С
  Look when f(3) (range) > max range specified(W28) otherwise (else) the ray
С
 is trapped above the surface and must be skipped
       if (f3o.GT.rmax) then
        go to 3
       else
        ths = ths + dths
        go to 1
       end if
    Correct the ray arrival depth back up the raypath from the last event
C
c to where it crossed an imaginary vertical surface at r max (W28 of DINP).
  (C-S Chiu, NPS, 1991).
C
     Define
                  = arrival ht above msl (km)
С
             dum1 = arrival ht above bot(km)
С
             thr = local arrival angle(deg)
C
                  = msl dist from source(km)
C
             rp
                  = msl dist to recvr (km)
С
                  = ray arrival hieght above msl accross a vert sfc at
С
С
                    the recvr (km)
C
             ths = launch angle last + step in elevation angle (W17 DINP)
   3
       zp = f40 - f10
       dum1 = f40 - f20
       thr = f100
       rp = f30
       r = rmax
c If the ray has just reflected from the bottom or surface then correct the
c angle to incident vice reflected by changing the sign:
       if (abs(zp).le.0.00009.or.abs(dum1).le.0.00009) then
        thr = -thr
       end if
       z = zp + (r - rp) * tand(thr)
        write(20,100) ths, z
C
c 100
        format (2f9.4)
       Correct for ray travel time:
С
         Define:
C
                  = path length past vertical receiver surface
             ds
C
С
                  = total phase travel time to horz recvr surface
                  = travel time for path beyond vert recvr surfc
C
             dt
                    corrected total ray travel time to vert recvr surf
С
             cavel= ave sound speed for 0-150m array depth = 1.460km/s
             cave2= ave sound speed for 150-320m array depth=1.446km/s
С
C
       cave1 = 1.460
```

```
Jun 8 08:37 1992 cordat.f Page 5
       cave2 = 1.446
       tp = f70
       ds = sqrt((z - zp)**2 + (r - rp)**2)
       dt_{\bullet} = ds/cave2
       t = tp - dt
        write(30,200) z, t
C
c 200
       format (2f9.4)
С
С
С
    Calculate TL due to spreading (Ching-Sang Chiu, NPS, 1991):
С
       Define:
С
           ths = launch angle
С
           ths2 = previous ray launch angle
C
            dths = difference btn one ray launch angle and the previous one
CC
                = arrival depth
С
                = previous ray arrival depth
           z 2
С
           rmax = vertical reciever range
С
           rmax2= rmax (previous vert recvr range)
С
           thr = arrival angle
С
           thr2 = previous ray arrival angle
C
                = xsec distance btn launch ray and previous ray, perp to
C
С
                   launch ray at rmax
С
           tlsp = trans loss due to spreading (dB)
C
       if (i.eq.1) go to 5
С
       if (abs(thr).le.0.00009) then
        h = abs(z-z2)
        go to 6
       endif
C
       if (thr.qt.0.00009) then
        phi = -(90. - thr)
       endif
C
       if (thr.lt.-0.00009) then
        phi = 90. + thr
       endif
C
       al1 = 1.
       a12 = -tand(thr2)
       a21 = 1.
       a22 = -tand(phi)
       b1 = z2 - rmax*tand(thr2)
       b2 = z - rmax*tand(phi)
       w = a11*a22 - a21 * a12
       zi = (b1*a22 - b2 * a12)/w
       ri = (al1 * b2 - b1 * a21)/w
       h = sqrt((z - zi)**2 + (rmax - ri)**2)
c Check for Caustic by looking for h near zero. If so assign the spreading
c loss calc from the last ray (tlspo) equal to this calc (tlspn):
       if (abs(h).le.0.00009)then
          tlspn = tlspo
          go to 5
```

```
Jun 8 08:37 1992 cordat.f Page 6
       end if
       tlspn = 10*log10((rmax*h*1000**2)/(cosd(ths)*dths*3.14159/180.))
C
   5
       z^2 = z
       thr2 = thr
       ths2 = ths
       rmax2 = rmax
C
        write(40,300) ths, tlspn
C
C
   300 format (2f9.4)
C
C
       Compute total trans loss (tlt) for each ray as sum of bottom loss
C
c (tlbot), surface loss (sloss), and spreading loss (tlsp). Trans loss
c due to absorption will be neglected since its on order 0.3dB for 224 Hz
c over 50 km distance:
       tlt = tlbot + sloss + tlspn
     Compute relative amplitude (ramp) by subtacting the source level (183 dB)
c from the total transmission loss (tlt):
       ramp = 183 - tlt
                      ths, thr, z, t, tlt, tlbot, sloss, tlspn
       write(50,400)
  400
       format (8f9.4)
C
       tpcnt = tpcnt - (srfcnt + botcnt + 1)
       if (tpcnt.lt.0.00009) then
          tpcnt = 0
       end if
       write(60,500)
                      ths, thr, z, tpcnt, srfcnt, botcnt, ramp, t
  500
      format (8f9.4)
       i = i + 1
       ths = ths + dths
       tlbot = 0
       sloss = 0
       tlspo = tlspn
       tpcnt = 0
       srfcnt = 0
       botcnt = 0
c Repeat the process for the next launch ray data set
C
       go to 1
       close(10)
       close(20)
       close(30)
C
       close(40)
       close(50)
       close(60)
       end
```

```
tgridin.f
  Written By: John M. Emblidge Lt/USN, NPS, May 1991
 Purpose
          : To write the manually gridded topography of the Barents
            Sea Acoustic Tomography Transmission Test study area to
            to an output file (GRIDBATHY.DAT) for use by tgridder.f
 Modified by: John M. Elliott, LCDR/USN, 28DEC91, to change location of
             bathymetry area closer to Bear Is in support of the
             Barents Sea Polar Front experiment to be conducted Aug 92
             J.M. Elliott, LCDR/USN, 16Jan92, to correct the bathy
             grid to a true N-S coord sys.
 *****
     IMPLICIT DOUBLE PRECISION (A-H, O-Z)
     INTEGER I,J
     LOGICAL EX
     PARAMETER (MX=13, MY=13)
     REAL*8 BLAT, TLAT, DELLAT, DELLON, LLON, RLON
     DIMENSION BOTGRID (MX, MY)
     DIMENSION XCOORD (MX), YCOORD (MY)
     DIMENSION IN1 (MY), IN2 (MY), IN3 (MY), IN4 (MY), IN5 (MY), IN6 (MY),
              IN7 (MY), IN8 (MY), IN9 (MY), IN10 (MY), IN11 (MY), IN12 (MY),
              IN13 (MY)
C
              IN14 (MY), IN15 (MY), IN16 (MY), IN17 (MY), IN18 (MY),
C
              IN19 (MY), IN20 (MY), IN21 (MY)
 C DEFINE BATHYMETRY DAT. TOP ROW IS EASTERN BOUNDARY, RIGHT HAND
C VERTICAL ROW IS NORTHERN BOUNDARY:
               /279,220,175,137,119,116,113,112,110,107,110,110,100/
     DATA IN1
               /310,245,201,159,130,118,117,121,120,121,123,122,108/
     DATA IN2
               /340,270,226,190,156,139,130,132,128,127,131,127,119/
     DATA IN3
     DATA IN4
               /359,295,250,222,192,169,152,145,137,136,137,137,127/
               /369, 316, 275, 249, 220, 194, 173, 160, 150, 144, 145, 143, 135/
     DATA IN5
     DATA IN6
               /386,340,302,272,241,210,197,184,166,156,153,147,140/
     DATA IN7
               /406,360,323,296,260,224,210,203,182,167,156,153,149/
     DATA IN8
               /420,382,345,312,279,243,220,207,192,178,167,162,158/
     DATA IN9
               /428,401,366,330,298,268,240,217,207,193,181,175,170/
     DATA IN10
               /438,411,375,338,312,290,265,238,223,212,202,192,185/
     DATA IN11
               /442,419,384,342,322,306,288,266,246,229,223,212,196/
               /440,422,393,358,331,316,303,284,262,239,229,215,203/
     DATA IN12
               /433,421,400,370,340,325,313,302,277,250,233,219,212/
     DATA IN13
```

C DEFINE THE GEOGRAPHICAL LIMITS OF BATHYMETRY BOX:

-IN12(J)

IF(I .EQ. 10) BOTGRID(I,J) = -IN10(J)IF(I .EQ. 11) BOTGRID(I,J) = -IN11(J)

IF(I .EQ. 12) BOTGRID(I,J) =

```
Jun 8 08:40 1992 tgridin.f Page 3
        IF (I .EQ. 13) BOTGRID (I, J) = -IN13(J)
      ENDDO
      ENDDO
C WRITTING XCOORD, YCOORD, & BOTGRID TO THE OUTPUT FILE GRIDBATHY.DAT
     WRITE(35) XCOORD
     WRITE (35) YCOORD
     write(6,*) xcoord
     write(6,*) ycoord
DO I = 1,MX
      DO J = 1, MY
        WRITE(35) BOTGRID(I,J)
С
         write(6,*) BOTGRID(I,J)
      ENDDO
     ENDDO
     CLOSE (35)
     STOP
```

END

gridin.f

```
C
C
  Written by: John M. Emblidge, LT/USN, NPS, May 91
C
C
             : Barents Sea Acoustic Tomography Experiment.
  For
C
C
             : To create the input file (GRIDSVP.DAT) for the HARPO
  Purpose
C
               subroutine gridder.f. This file must include the
C
               spacings in the 3 othonormal planes, and the SSP at
C
               each point.
C
               The file is written so that gridder.f reads the data as*
C
               follows:
C
                   LINE1: XCOORD (MX)
C
                   LINE2: YCOORD (MY)
C
                   LINE3: ZG(MZ)
C
                   LINE4: SVP (MX, MY, MZ)
C
C
               The most important thing to remember about using this *
  Structure :
C
               routine is that the values of MX, MY, MZ must be the same*
C
               as they are in GRIDDER, otherwise the data will not be *
C
               read by GRIDDER as you intended it to be.
C
C
  Modified by: J. Mark ELLIOTT, LCDR/USN, NPS
C
                       16 JAN 92: TO CORRECT FOR NEW BATHY in support
С
                 of the Barents Sea Polar Front exp - 50km box
C
                 centered at 74.6N 24.12E.
C
                       20 Jan 92: to correct for new SSP field
C
                 orientation to along diagonals vice horizontals
C
   C
C
   DATA DICTIONARY :
                       Definitions of each variable used
C
C
          CHARACTERS:
C
          INTEGERS
C
          REAL
                    : BLAT = LATITUDE OF BOTTOM. OF BOX (SOUTH EDGE)
C
                      DELLAT = NUMBER OF DEGREES BETWEEN GRID SPACINGS*
C
                      DELLON = NUMBER OF DEGREES BETWEEN GRID SPACINGS*
C
                      LLON = LONGITUDE OF LEFT SIDE OF BOX
C
                      RLON = LONGITUDE OF RIGHT SIDE OF BOX
C
                      TLAT = LATITUDE OF TOP OF BOX (NORTHERN EDGE)
C
C
          ARRAYS
                    : C1 = SVP IN FIRST REGION OF BOX
C
                      C2 = SVP IN SECOND REGION OF BOX
C
                      C3 = SVP IN THIRD REGION OF BOX
C
                      CSPD = OUTPUT FOR GRIDDER
C
C
          PARAMETERS: MX = # OF GRID SPACINGS || THE EQUATER
C
                      MY = # OF GRID SPACINGS | THE PRIME MERIDEN
C
                      MZ = # OF VERTICAL POINTS
```

```
INTEGER I, J, K, IX, IY, IZ
     LOGICAL EX
    PARAMETER (MX = 13, MY = 13, MZ = 151)
     REAL*8 BLAT, DELLAT, DELLON, LLON, RLON, TLAT
     DIMENSION C1 (MZ), C2 (MZ), C3 (MZ)
     DIMENSION AVE1 (MZ), AVE2 (MZ), AVE3 (MZ), AVE4 (MZ), AVE5 (MZ)
     DIMENSION AVE6 (MZ), AVE7 (MZ), AVE8 (MZ), AVE9 (MZ), AVE10 (MZ), AVE11 (MZ)
     DIMENSION XCOORD (MX), YCOORD (MY), ZG (MZ)
     DIMENSION CSPD (MX, MY, MZ)
     DATA LLON, RLON, TLAT, BLAT / 22.72d0, 25.52d0, 74.97d0, 74.22d0 /
**************
     INQUIRE (FILE='GRIDSVP.DAT', EXIST=EX)
     IF (EX) THEN
      OPEN(74,FILE='GRIDSVP.DAT',STATUS='OLD',FORM='UNFORMATTED')
      OPEN (74, FILE='GRIDSVP.DAT', STATUS='DELETE', FORM='UNFORMATTED')
     ENDIF
     OPEN (74, FILE='GRIDSVP.DAT', STATUS='NEW', FORM='UNFORMATTED')
     REWIND 74
C OPENING THE FILES THAT HOLD THE SSP'S CREATED IN MATLAB
OPEN(41,FILE='ssplf.dat',STATUS='OLD',FORM='FORMATTED')
     OPEN(42, FILE='ssp2f.dat', STATUS='OLD', FORM='FORMATTED')
     OPEN(43,FILE='ssp3f.dat',STATUS='OLD',FORM='FORMATTED')
     OPEN(44,FILE='zq.dat', STATUS='OLD',FORM='FORMATTED').
     REWIND 41
     REWIND 42
     REWIND 43
     REWIND 44
C READING IN THE THREE BASIC SOUND SPEED PROFILES, AND DEPTH ARRAY
READ (41, *) (C1(I), I=1, MZ)
     READ (42, *) (C2(I), I=1, MZ)
     READ (43, *) (C3(I), I=1, MZ)
```

```
Jun 8 08:39 1992 gridin.f Page 3
     READ (44, *) (ZG(I), I=1, MZ)
*************
C CALCULATING THE DEGEE SPACINGS BETWEEN LAT AND LONG GRID LINES.
************
     DELLAT = (TLAT - BLAT) / (MY-1)
     DELLON = (RLON - LLON) / (MX-1)
   CALCULATING THE AVERAGED PROFILES TO FILE SMOOTH THE OVERALL C FIELD
C WITH THE FRONT
     DO I = 1, MZ
      AVE2(I) = (C1(I) + C2(I))/2
      AVE1(I) = (C1(I) + AVE2(I))/2
      AVE4(I) = (C2(I) + C3(I))/2
      AVE3(I) = (C2(I) + AVE4(I))/2
      AVE5(I) = (C3(I) + AVE4(I))/2
     ENDDO
C CREATING A NEW SET OF AVERAGES FOR THE FIELD WITHOUT THE FRONT
     DO I = 1, MZ
      AVE6(I) = (C1(I) + C3(I))/2
      AVE7(I) = (C1(I) + AVE6(I))/2
      AVE8(I) = (C1(I) + AVE7(I))/2
      AVE9(I) = (AVE6(I) + C3(I))/2
      AVE10(I) = (AVE9(I) + C3(I))/2
      AVE11(I) = (AVE10(I) + C3(I))/2
     ENDDO
C FILLING THE CSPD ARRAY WITH VALUES
C ALSO FILLING THE XCOORD, AND YCOORD ARRAYS
DO IX = 1, MX
C
       DO IY = 1, MY
C
        DO IZ = 1.MZ
C
          IF(IX .LT. 4)
                                   CSPD(IX, IY, IZ) = C1(IZ)
C
           IF (IX. GT. 3 .AND. IX. LT. 6) CSPD(IX, IY, IZ) = AVE8(IZ)
C
           IF (IX. GT.5 .AND. IX. LT. 7) CSPD(IX, IY, IZ) = AVE7(IZ)
C
           IF(IX. GT.6 .AND. IX. LT. 8) CSPD(IX, IY, IZ) = AVE6(IZ)
           IF(IX. GT.7 .AND. IX. LT. 9) CSPD(IX, IY, IZ) = AVE9(IZ)
```

```
C
            IF(IX. GT.8 .AND. IX. LT. 11) CSPD(IX, IY, IZ) = AVE10(IZ)
С
            IF(IX. GT.10 .AND. IX. LT. 12) CSPD(IX,IY,IZ) = AVE11(IZ)
С
            IF (IX .GT. 11)
                                         CSPD(IX, IY, IZ) = C3(IZ)
С
            write(6, *) CSPD(IX, IY, IZ)
С
          ENDDO
С
       ENDDO
С
      ENDDO
     DO I=0, (MX-1)
       XCOORD(I+1)=LLON + DELLON*dfloat(I)
С
        write(6,*) XCOORD(I)
     ENDDO
     DO J = 0, (MY-1)
       YCOORD(J+1) = BLAT + DELLAT*dfloat(J)
        write(6, *) YCOORD(J)
C
     ENDDO
C ASSIGN SSP'S TO DIAGONALS OF BATHYMETRY COORDINATES - ORIENTATION IS
C ALONG BOTTOM LEFT TO TOP RIGHT DIAGONALS:
**************
     COUNTERY = 2
     DO IX = 1, MX-2
        DO IY = 1, MY-COUNTERY
           DO IZ = 1, MZ
               CSPD(IX,IY,IZ) = C3(IZ)
           ENDDO
        ENDDO
        COUNTERY = COUNTERY + 1
     ENDDO
     DO IZ = 1, MZ
        CSPD(12, 1, IZ) = AVE5(IZ)
        CSPD(11, 2, IZ) = AVE5(IZ)
        CSPD(10,3,IZ) = AVE5(IZ)
        CSPD(9,4,IZ) = AVE5(IZ)
        CSPD(8,5,IZ) = AVE5(IZ)
        CSPD(7,6,IZ) = AVE5(IZ)
        CSPD(6,7,IZ) = AVE5(IZ)
        CSPD(5,8,IZ) = AVE5(IZ)
        CSPD(4, 9, IZ) = AVE5(IZ)
        CSPD(3,10,IZ) = AVE5(IZ)
        CSPD(2,11,IZ) = AVE5(IZ)
        CSPD(1,12,IZ) = AVE5(IZ)
        CSPD(13, 1, IZ) = AVE4(IZ)
        CSPD(12, 2, IZ) = AVE4(IZ)
        CSPD(11,3,IZ) = AVE4(IZ)
        CSPD(10, 4, IZ) = AVE4(IZ)
        CSPD(9,5,IZ) = AVE4(IZ)
        CSPD(8,6,IZ) = AVE4(IZ)
        CSPD(7,7,IZ) = AVE4(IZ)
        CSPD(6,8,IZ) = AVE4(IZ)
        CSPD(5, 9, IZ) = AVE4(IZ)
        CSPD(4,10,IZ) = AVE4(IZ)
```

```
CSPD(3,11,IZ) = AVE4(IZ)
CSPD(2,12,IZ) = AVE4(IZ)
CSPD(1,13,IZ) = AVE4(IZ)
CSPD(13, 2, IZ) = AVE3(IZ)
CSPD(12, 3, IZ) = AVE3(IZ)
CSPD(11, 4, IZ) = AVE3(IZ)
CSPD(10, 5, IZ) = AVE3(IZ)
CSPD(9,6,IZ) = AVE3(IZ)
CSPD(8,7,IZ) = AVE3(IZ)
CSPD(7,8,IZ) = AVE3(IZ)
CSPD(6, 9, IZ) = AVE3(IZ)
CSPD(5,10,IZ) = AVE3(IZ)
CSPD(4,11,IZ) = AVE3(IZ)
CSPD(3,12,IZ) = AVE3(IZ)
CSPD(2,13,IZ) = AVE3(IZ)
CSPD(13,3,IZ) = C2(IZ)
CSPD(12,4,IZ) = C2(IZ)
CSPD(11, 5, IZ) = C2(IZ)
CSPD(10, 6, IZ) = C2(IZ)
CSPD(9,7,IZ) = C2(IZ)
CSPD(8,8,IZ) = C2(IZ)
CSPD(7,9,IZ) = C2(IZ)
CSPD(6,10,IZ) = C2(IZ)
CSPD(5,11,IZ) = C2(IZ)
CSPD(4,12,IZ) = C2(IZ)
CSPD(3,13,IZ) = C2(IZ)
CSPD(13, 4, IZ) = C2(IZ)
CSPD(12,5,IZ) = C2(IZ)
CSPD(11, 6, IZ) = C2(IZ)
CSPD(10, 7, IZ) = C2(IZ)
CSPD(9,8,IZ) = C2(IZ)
CSPD(8,9,IZ) = C2(IZ)
CSPD(7,10,IZ) = C2(IZ)
CSPD(6,11,IZ) = C2(IZ)
CSPD(5,12,IZ) = C2(IZ)
CSPD(4,13,IZ) = C2(IZ)
CSPD(13, 5, IZ) = C2(IZ)
CSPD(12, 6, IZ) = C2(IZ)
CSPD(11,7,IZ) = C2(IZ)
CSPD(10,8,IZ) = C2(IZ)
CSPD(9,9,IZ) = C2(IZ).
CSPD(8,10,IZ) = C2(IZ)
CSPD(7,11,IZ) = C2(IZ)
CSPD(6,12,IZ) = C2(IZ)
CSPD(5,13,IZ) = C2(IZ)
CSPD(13, 6, IZ) = AVE2(IZ)
CSPD(12,7,IZ) = AVE2(IZ)
CSPD(11, 8, IZ) = AVE2(IZ)
CSPD(10, 9, IZ) = AVE2(IZ)
CSPD(9,10,IZ) = AVE2(IZ)
CSPD(8,11,IZ) = AVE2(IZ)
CSPD(7,12,IZ) = AVE2(IZ)
CSPD(6,13,IZ) = AVE2(IZ)
CSPD(13,7,IZ) = AVE1(IZ)
CSPD(12,8,IZ) = AVE1(IZ)
CSPD(11, 9, IZ) = AVE1(IZ)
```

```
CSPD(10, 10, IZ) = AVE1(IZ)
       CSPD(9,11,IZ) = AVE1(IZ)
       CSPD(8,12,IZ) = AVE1(IZ)
       CSPD(7,13,IZ) = AVE1(IZ)
       CSPD(13, 8, IZ) = C1(IZ)
       CSPD(12, 9, IZ) = C1(IZ)
       CSPD(11, 10, IZ) = C1(IZ)
       CSPD(10,11,IZ) = C1(IZ)
       CSPD(9,12,IZ) = C1(IZ)
       CSPD(8,13,IZ) = C1(IZ)
       CSPD(13, 9, IZ) = C1(IZ)
       CSPD(12, 10, IZ) = C1(IZ)
       CSPD(11,11,IZ) = C1(IZ)
       CSPD(10, 12, IZ) = C1(IZ)
       CSPD(9,13,IZ) = C1(IZ)
       CSPD(13, 10, IZ) = C1(IZ)
       CSPD(12, 11, IZ) = C1(IZ)
       CSPD(11, 12, IZ) = C1(IZ)
       CSPD(10, 13, IZ) = C1(IZ)
       CSPD(13, 11, IZ) = C1(IZ)
       CSPD(12,12,IZ) = C1(IZ)
       CSPD(11,13,IZ) = C1(IZ)
       CSPD(13, 12, IZ) = C1(IZ)
       CSPD(12, 13, IZ) = C1(IZ)
       CSPD(13, 13, IZ) = C1(IZ)
     ENDDO
C WRITTING TO THE INPUT FILE FOR GRIDDER. (GRIDSVP.DAT)
WRITE (74) (XCOORD (I), I=1, MX)
     WRITE (74) (YCOORD (J), J=1, MY)
     WRITE (74) (ZG(K), K=1, MZ)
     DO I = 1, MX
       DOJ = 1,MY
        WRITE (74) (CSPD (I, J, K), K=1, MZ)
         write(6, *) CSPD(I, J, K)
       ENDDO
     ENDDO
CLOSE (41)
     CLOSE (42)
     CLOSE (43)
     CLOSE (44)
     CLOSE (74)
     STOP
     END
```

z = f3res(:,3);

[n,m] = size(b);

 $b = find(z \le uz \& z \ge lz);$

%c = find(f3res(b(:,1),2)>0.00009);

```
Define a new matrix "resd(n,7)" for ease in displaying the output data
% for hydrophone.
   resd = ones(n,7);
   resd(:,1) = f3res(b(:,1),1)*resd(1,1);
                                                   % launch angle (deg)
   resd(:,2) = f3res(b(:,1),2)*resd(1,2);
                                                   % arrival angle (deg)
   resd(:,3) = f3res(b(:,1),4)*resd(1,3);
                                                  % no of turning points
   resd(:,4) = f3res(b(:,1),5)*resd(1,4);
                                                  % no of surface bounces
                                                  % no of bottom bounces
   resd(:,5) = f3res(b(:,1),6)*resd(1,5);
   resd(:,6) = f3res(b(:,1),7)*resd(1,6);
                                                % relative amplitude (dB)
   resd(:,7) = f3res(b(:,1),8)*resd(1,7);
                                                  % arrival time (sec)
 Now sort the rays in order of increasing arrival time:
[Y,I] = sort(resd(:,7));
    EIGENRAY DETERMINATION:
  Eliminate duplicate launch rays and rays that are essentially the same
% due to identical number of turning points, surface bounces and bottom
% bounces. First define a new matrix resn with the data in order of
% arrival time:
    resn = ones(n,7);
    resn(:,1) = resd(I,1) *resn(1,1);
    resn(:,2)=resd(I,2)*resn(1,2);
    resn(:,3) = resd(I,3) * resn(1,3);
    resn(:,4) = resd(I,4) * resn(1,4);
    resn(:,5) = resd(I,5) * resn(1,5);
    resn(:, 6) = resd(I, 6) * resn(1, 6);
    resn(:,7) = resd(I,7) * resn(1,7);
    for i = 1:n;
      for k = 1:n;
         if i == k;
            else;
                difa = abs(resn(i,1) - resn(k,1));
                diftp = abs(resn(i,3) - resn(k,3));
                difs = abs(resn(i,4) - resn(k,4));
                difb = abs(resn(i,5) - resn(k,5));
                if ((difa == 0.0000) | ((diftp==0) & (difs==0)) & (difb==0)));
                     ; resn(i,:)=[0 \ 0 \ 0 \ 0 \ 0]; break; end;
             end;
          end:
    . end;
% Now eliminate the unwanted ray zero data lines and call new data
% matrix resf:
    k = 1:
    for i = 1:n;
        if resn(i,1) \sim =0;
           resf(k,:)=resn(i,:);
           k = k + 1;
        end;
    end:
Now plot the eigenray arrival time vs relative amplitude:
[n,m] = size(resf);
t = ones(n, 1);
```

```
Jun
     8 08:41 1992
                    hyd8beam.m Page 3
tlt = ones(n,1);
slr = ones(n,1);
amp = ones(n, 1);
for i = 1:n;
      t(i,1) = (resf(i,7)*t(i,1));
       tlt(i,1) = (f3res(b(c(i,1),1),5))*tlt(i,1);
       slr(i,1) = (sls - tlt(i,1))*slr(i,1);
      amp(i,1) = ((1e-06)*10^(resf(i,6)/20))*amp(i,1);
ક
       if slr(i,1) >= 100;
જુ
         slr(i,1) = 0;
8
       end;
end:
%axis([34.62 36.0 0 0.01]);
subplot (211), plot (t, amp, '.')
title ('HYD #8 EIGENRAY ARRIVALS')
text (34.65, .011, 'R17')
text(35.03,0.007,'R18')
text(35.32,0.0085,'R19')
text(35.80,0.003,'R20')
xlabel('Arrival Time (sec)')
ylabel('Relative Amplitude (Pa)')
%text(36.5,2,'Hydrophone Depth = 220m')
%text(36.5,-2,'Arriving w/i 1/2 Lambda')
%axis([1 2 3 4]);axis;
%pause;
subplot (212), plot (t, resf(:, 6),'.')
text(34.65,82,'R17')
text (35.03, 78, 'R18')
text (35.32,80,'R19')
text(35.80,70,'R20')
xlabel('Arrival Time (sec)')
ylabel('Relative Amplitude (dB)')
   Simulate received eigenrays as gaussian pulses:
  Define:
용
      ta = time axis
      gisa = gaussian intermediate signal amplitude
      gsa = gaussian signal amplitude
%ta = 34.500:.002:37.5000;
% [o,p]=size(ta);
%gisa = ones(n,p);
%gsa = ones(1,p);
%ti = [34.7140 35.0917 35.3814 35.8676]';
fampl = [1e-06*10^{(79.5235/20)}] 1e-06*10^{(75.6184/20)}...
        le-06*10^(77.3569/20) le-06*10^(66.5519/20)]';
%for j = 1:p;
% for i = 1:n;
   if i==1;
      gisa(i,j) = amp(i,1) *exp(-2*((ta(1,j)-t(i,1))^2)/(D^2)) *gisa(i,j);
35
     end:
210
     if i>1;
010
      gisa(i, j) = amp(i, 1) * exp(-2*((ta(1, j) - t(i, 1))^2)/(D^2)) * gisa(i, j)...
                          + gisa(i-1, j);
010
     end;
   end;
```

```
%end;
%gsa = sum(gisa);
%axis([34.5 37.5 0 0.04]);
%subplot(212),plot(ta,gsa)
%title('SIMULATED PULSE ARRIVALS')
%xlabel('Arrival Time (sec)')
%ylabel('Relative Amplitde (Pa)')
%text(36.3,le+04,'Pulse Width = 62.5 msec')
%axis([1 2 3 4]);axis;
%text(36,-68,'Launch Angles 0-25 Deg')
%text(36,-71,'Launch Step = 0.01 deg')
%text(36,-74,'Broad Front (40km)')
%text(36,-77,'Hyd Depth = 150m')
```

00

```
Barents Array Beam Pattern
                                               ************************
ક
   Written by: J.M. Elliott, LCDR/USN, NPS, 1992
00
   Purpose:
of
      This Matlab program plots an array plane wave beam pattern based on
% a method for a linear array of point hydrophones by Ziomek (1985).
£****************************
N = 16;
                                   % N = # of hydrophones
d = 10;
                                   % d = hydrophones interelement spacing (m)
f = 224;
                                   % f = frequency of interest (Hz)
c = 1450;
                                   % c = sound velocity (m/s)
for steer = 20 ;
                                   % steer = angle in deg main lobe is to be
                                             %steered off broadside of array
psip = 90 + steer;
                                   % psip = steered angle ref to broadside
                                   % fxp = steered angle in 'u' space
fxp = f*cos(psip*pi/180)/c;
n = -(N-1)/2:1:(N-1)/2;
                                   % n = hyd # index
ac = \cos((\cos((pi*((2*n-1)/2)/N))));
                                      % ac = cosine amplitude window
theta = (-2*pi*fxp*((2*n-1)/2)*d);
                                      % theta = phase weight
cn = ac'.*exp(j*theta');
                                        % cn = complex wieghting
SN = (fft(cn, 512))/sum(ac);
                                        % SN = normalized directivity
                                             % function
m = 0:1:511;
                                        % m = FFT bin #
psi = (acos((c.*m'))/(f*512*d)))*(180/pi); % psi = conversion fm 'u' to deg
   u = (c.*m')/(f*224*d);
end;
plot(psi,abs(SN))
title ('PLANE WAVE BEAM PATTERN')
xlabel('Degrees From Axial (90=broadside, 0=endfire)')
ylabel('Normalized Amplitude')
text(75,0.9,'16 Element Vertical Linear Array')
text(75,0.85,'10m Interelement Spacing')
text(75,0.8,'f = 400 Hz')
text(75,0.75,'Cosine Amplitude Window')
%text(73,0.5,'Steered to 20 deg off Broadside')
text(75,0.7,'Beam Width = 1 deg')
text(80,0.3, 'Grating Lobe 21 deg away')
%end
```

beampat.m

```
엉
                                  resanl.m
                  Resovability Analysis Table Generator
00
ક
   Written by: J.M. Elliott, LCDR/USN, NPS, 1992
읭
90
   Purpose:
કુ
     This Matlab program uses the output data file <f3res.dat> from the
% fortran program <cordat.f> and provides an output data table of tomograph-
% ically resolvable rays for the whole array as a plane wave beamformer.
     To compute the data table of tomographically resolvable rays for each
og
% hydrophone as an omnidirectional receiver, the program should be modified
% as indicated in the comment lines in the body of the program.
     The data is presented in the fol format columns: launch angle, arrival
% angle, no of turning pts, no srf, bounces, no bot bounces, rel amp and
% arrival time.
엉
     The data is displayed in order of increasing arrival time and only for
% rays arriving w/i 1/2 wavelength (of the freq of interest) from each
% hydrophone.
응
     Rays following essentially the same paths, as indicated by similar
% number of turning points, surface bounces, and bottom bounces, are taken as
% one ray (the first ray of the group arriving in time).
     Each ray is tomographically resolved in time using a specified pulse
ક
ક
 width.
왕
ુ
    Define:
00
     z = hydrophone depth above msl in km (a negative number)
g
     lambda = 1/2 acoustic wavelength in km = 0.5 * (c(average)/f)*1e-03
     lambda = 0.5*(1445/224)*1e-03;
90
     uz = upper limit of depth window
ુ
      uz = z + lambda;
Q.O
     lz = lower limit of depth window
ogo
      lz = z - lambda;
엉
             Arrival angle (grazing) sector. Used for plane wave beam-
             formed array table only. One of 15 defined as follows:
엉
g<sub>o</sub>
             (Three degree beam widths used based on 224 Hz plane wave beam
양
              pattern analysis)
00
         = d1
                (-22.5 \text{ to } -19.5)
30
         = d2
               (-19.5 to -16.5)
010
         = d3
               (-16.5 to -13.5)
00
         = d4
               (-13.5 to -10.5)
00
         = d5
               (-10.5 \text{ to } -7.5)
                (-7.5 \text{ to } -4.5)
양
         = d6
3
         = d7
                (-4.5 \text{ to } -1.5)
00
         = d8
               (-1.5 to +1.5)
0,0
         = d9
                (+1.5 to +4.5)
010
         = d10 (+4.5 to +7.5)
0.5
         = d11 (+7.5 to +10.5)
0,0
         = d12 (+10.5 to +13.5)
         = d13 (+13.5 to +16.5)
         = d14 (+16.5 to + 19.5)
         = d15 (+19.5 to + 22.5)
```

```
Jun 8 08:41 1992 resanl.m Page 2
% f3res.m = ths, thr, z, tpcnt, srfcnt, botcnt, ramp, t
% Let z = the third column arrival depths:
z = f3res(:,3);
     Determine all eigenrays or all rays arriving w/i 1/2 wavelength of the
8
% frequency of interest in depth of the 16 hydrophones:
% First define hydrophone depths in km above mean sea level:
z1 = -.150;
z2 = -.160;
z3 = -.170;
z4 = -.180;
z5 = -.190;
z6 = -.200;
z7 = -.210;
z8 = -.220;
z9 = -.230;
z10 = -.240;
z11 = -.250;
z12 = -.260;
z13 = -.270;
z14 = -.280;
z15 = -.290;
z16 = -.300;
% Next define lambda depth window around each hydrophone:
uz1 = z1 + lambda;
lz1 = z1 - lambda;
uz2 = z2 + lambda;
1z2 = z2 - lambda;
uz3 = z3 + lambda;
1z3 = z3 - lambda;
uz4 = z4 + lambda;
1z4 = z4 - lambda;
uz5 = z5 + lambda;
1z5 = z5 - lambda;
uz6 = z6 + lambda;
1z6 = z6 - lambda;
uz7 = z7 + lambda;
1z7 = z7 - lambda;
uz8 = z8 + lambda;
1z8 = z8 - lambda;
uz9 = z9 + lambda;
1z9 = z9 - lambda;
uz10 = z10 + lambda;
lz10 = z10 - lambda;
uz11 = z11 + lambda;
lz11 = z11 - lambda;
uz12 = z12 + lambda;
1z12 = z12 - lambda;
uz13 = z13 + lambda;
lz13 = z13 - lambda;
uz14 = z14 + lambda;
1z14 = z14 - lambda;
uz15 = z15 + lambda;
lz15 = z15 - lambda:
uz16 = z16 + lambda;
```

```
lz16 = z16 - lambda;
   Now find the matrix index number associated with the eigenrays arriving
% w/i the depth windows around each hydrophone. For individual hydrophone
% table generation all but the hydrophone of interest must be commented out
% and the program run individually for each hyd, exiting and reentering
% Matlab each time.
b1 = find(z < uz1 & z > lz1);
b2 = find(z < uz2 & z > 1z2);
b3 = find(z < uz3 & z > 1z3);
b4 = find(z < uz4 & z > lz4);
b5 = find(z < uz5 & z > lz5);
b6 = find(z < uz6 & z > lz6);
b7 = find(z < uz7 & z > lz7);
b8 = find(z < uz8 & z > 1z8);
b9 = find(z < uz9 & z > lz9);
b10 = find(z < uz10 & z > lz10);
b11 = find(z < uz11 & z > lz11);
b12 = find(z < uz12 & z > lz12);
b13 = find(z < uz13 & z > 1z13);
b14 = find(z < uz14 & z > lz14);
b15 = find(z < uz15 & z > lz15);
b16 = find(z < uz16 & z > lz16);
   Let matrix c = all rays arriving w/i 1/2 wavelength of all 16 hyd's. Comment
% out this step when computing individual hyd resolvability table.
c = [b1; b2; b3; b4; b5; b6; b7; b8; b9; b10; b11; b12; b13; b14; ...
     b15; b16];
     Now determine the rays arriving in which of the 15 beam sectors of
% three degree beam widths each. The program must be run individually
% for each sector and Matlab must be exited and reentered each time.
% Comment out this step when computing individual hyd resolvability table.
d1 = find(f3res(c(:,1),2) >= -22.5000 & f3res(c(:,1),2) < -19.5000);
%d2 = find(f3res(c(:,1),2)>=-19.5000 & f3res(c(:,1),2)<-16.5000);
%d3 = find(f3res(c(:,1),2)>=-16.5000 & f3res(c(:,1),2)<-13.5000);
%d4 = find(f3res(c(:,1),2)>=-13.5000 & f3res(c(:,1),2)<-10.5000);
dS = find(f3res(c(:,1),2) > = -10.5000 & f3res(c(:,1),2) < -7.5000);
%d6 = find(f3res(c(:,1),2)>=-7.5000 & f3res(c(:,1),2)<-4.5000);
%d7 = find(f3res(c(:,1),2)>=-4.5000 & f3res(c(:,1),2)<-1.5000);
%d8 = find(f3res(c(:,1),2)>=-1.5000 & f3res(c(:,1),2)<+1.5000);
%d9 = find(f3res(c(:,1),2)>=+1.5000 & f3res(c(:,1),2)<+4.5000);
%d10 = find(f3res(c(:,1),2)) = +4.5000 & f3res(c(:,1),2) < +7.5000);
%dll = find(f3res(c(:,1),2)>=+7.5000 & f3res(c(:,1),2)<+10.5000);
%d12 = find(f3res(c(:,1),2)>=+10.5000 & f3res(c(:,1),2)<+13.5000);
%d13 = find(f3res(c(:,1),2)>=+13.5000 & f3res(c(:,1),2)<+16.5000);
%d14 = find(f3res(c(:,1),2)>=+16.5000 & f3res(c(:,1),2)<+19.5000);
%d15 = find(f3res(c(:,1),2)>=+19.5000 & f3res(c(:,1),2)<+22.5000);
     Define a new matrix "resd(n,7)" for ease in displaying the output data
% for sector dS. Sector dS must be changed for each program run.
% When computing individual hyd resolvability sector dS should be
% set equal to the hydrophone of interest, bX, vice sector, dX.
   dS = d1;
   [n,m] = size(d1);
```

```
% The new [n,1] matrix resg contains the 'U' for unresolved or 'R' for resolved
% info corresponding to the n rows of the resf matrix.
[n,m] = size(resf);
for i = 1:n;
  for k = 1:n;
       if i ==k:
       else;
         dift = abs(resf(i,7)-resf(k,7));
         if dift <= 0.01; resg(i,1)='U'; break; end;
         if dift > 0.01; resg(i,1)='R'; end;
       end;
  end;
end:
% To get a print out of the plane wave beamformed array resolvability data
% table for the sector of interest (or of the individual hydrophone data
% table for the hydrophone of interest) sorted by time type: resf.
% To get a print out of corresponding row 'U' or 'R' info type resq.
```

APPENDIX B: INDIVIDUAL HYDROPHONE RESOLVABILITY ANALYSIS TABLE

The following table was generated by treating each hydrophone of the 16 element vertical array (B) as an independent omnidirectional receiver. The table was compiled using the MATLAB computer program 'resanl.m'. A copy of 'resanl.m' can be found in Appendix A. Definitions of RAMP, R, and hydrophone depths can be found at the end of the Appendix.

LAUNCH ANGLE (deg)	ARRIVAL ANGLE (deg)	NUMBER TURNING POINTS	NUMBER SURFACE BOUNCES	NUMBER BOTTOM BOUNCES	RAMP (dB)	ARRIVAL TIME (sec) (R-resolvable)
		E	HYDROPHONE	1		
6.9401 6.8401 6.1600 6.1500 10.3300 7.3601 5.2700 3.7400 5.0600 3.5200 3.5100 3.0300 3.0700 3.0200 3.4100 5.7300 3.1400 11.4900 12.7401 14.8301 17.4301 15.4500 15.5900 23.6001 22.4401 20.8700 19.1901 24.9101	-5.9018 -5.8326 -5.3830 -5.4052 -8.0038 5.7628 -3.8777 -2.0106 3.1395 1.2458 1.7845 -1.2609 -1.1903 -1.5934 1.2439 4.6825 0.1968 0.6364 1.4714 -10.7803 10.6750 13.4689 16.2122 15.8085 -16.5311 19.8335 -20.2319 19.5090 -19.8838 19.7459	24.0000 25.0000 30.0000 33.0000 20.0000 35.0000 36.0000 29.0000 28.0000 37.0000 31.0000 31.0000 31.0000 32.0000 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.0000 8.0000 8.0000 13.0000 10.0000 12.0000 13.0000 13.0000 14.0000	81.4618 75.6515 90.4353 79.7049 85.4431 71.2161 81.9594 84.5104 79.1791 84.8566 81.2695 92.8483 89.7523 90.8481 86.5363 76.8802 90.0005 90.6720 87.5234 82.0474 74.9298 72.2280 65.2272 53.9500 62.4927 32.7316 36.1665 37.7131 43.1272 6.8913	34.5208 34.5254 34.5479 34.5485 34.5504 34.5647 34.5991 34.6058 34.6080 34.6099 34.6103 34.6109 34.6110 34.6119 34.6120 34.6140 34.6144 34.6145 34.8858 R 34.9759 R 35.3221 R 35.8038 R 36.0368 36.0685 36.2926 R 36.7950 R 37.0915 R 38.0673 R
		1	HYDROPHONE	2		
9.8801 9.4201 5.2600 5.4100 3.7800 5.0800 5.7400 2.9600 2.9100 2.9000 2.8800 2.8700	-8.3137 -8.5717 -4.3751 4.4178 -3.1832 3.9473 4.9827 -1.8640 -2.2746 -2.2732 -2.2719 -2.2722	23.0000 14.0000 35.0000 33.0000 28.0000 42.0000 35.0000 34.0000 32.0000 36.0000 37.0000	4.0000 9.0000 0 0 0 0 0 0	13.0000 11.0000 12.0000 12.0000 13.0000 13.0000 14.0000 14.0000 14.0000 14.0000	74.4526 72.9454 82.0625 79.1505 84.1878 82.0240 82.7198 92.9719 98.6870 100.6569 94.1395 99.6810	34.5899 34.5945 34.5991 34.6044 .34.6061 34.6071 34.6116 34.6118 34.6125 34.6126 34.6128 34.6128

2.2200 -1.1305 33.0000

19.2801 -19.8890

2.2300 2.4300 2.4400 3.1500 2.4600 9.5801 9.1001 8.9601 8.7901 11.5100 12.6501 15.4200 14.7901 18.2501 17.3601 15.6200 23.5801 22.4701 20.8400 19.2301 24.8501	-0.9361 -1.0742 0.5384 2.1998 1.4276 -8.2656 -8.2583 -8.3064 7.9245 7.9230 -11.0427 10.8853 -14.1318 13.7349 -16.7096 16.2069 -16.5354 19.8342 -20.2322 19.5091 -19.8860 19.7428	34.0000 36.0000 32.0000 33.0000 23.0000 24.0000 27.0000 28.0000 0 0 0 0 0	0 0 0 0 0 0 5.0000 4.0000 3.0000 21.0000 27.0000 26.0000 33.0000 32.0000 42.0000 42.0000 41.0000 51.0000	16.0000 15.0000 15.0000 14.0000 13.0000 12.0000 14.0000 14.0000 14.0000 26.0000 26.0000 32.0000 32.0000 31.0000 41.0000 41.0000 41.0000 41.0000 51.0000	85.1150 81.8107 96.0621 82.6676 85.1451 72.0275 71.2785 75.8058 91.1208 90.3469 80.6225 82.0131 63.3988 74.8372 50.9109 65.3260 62.7209 32.5233 35.1117 37.5658 40.9149 5.7596	34.6130 34.6136 34.6136 34.6139 34.6142 34.6288 34.6429 34.6443 34.6955 34.7043 34.8846 R 34.9881 R 35.2736 35.3268 35.7055 R 36.0650 R 36.2953 R 36.4973 R 36.7996 R 37.0848 R 38.0863 R
		- 1	HYDROPHONE	3		
10.3500 7.2601 9.3801 5.2500 3.8100 3.8000 4.4600 5.7600 2.7500 2.7700 2.7800 2.2500 7.7801 11.5200 12.4901 14.7401 17.3001 15.6500 23.5601 22.4901 20.6700	-8.4015 6.5014 -8.7232 -4.6341 -3.5709 -3.4509 3.8682 5.2035 -2.3802 -2.3957 -2.3947 -2.2828 1.7588 8.0024 -11.1197 10.8812 13.7346 16.3933 -16.5400 19.9735 -20.2327 19.6342	21.0000 20.0000 18.0000 34.0000 33.0000 32.0000 42.0000 33.0000 31.0000 31.0000 25.0000	5.0000 0 8.0000 0 0 0 0 0 0 0 0 0 0 0 19.0000 21.0000 26.0000 32.0000 42.0000 41.0000	13.0000 10.0000 11.0000 12.0000 13.0000 13.0000 14.0000 14.0000 14.0000 14.0000 14.0000 14.0000 21.0000 21.0000 22.0000 32.0000 31.0000 41.0000 41.0000	71.7701 77.7699 77.7173 79.9894 85.8399 85.6257 77.9114 87.7719 85.7410 90.9100 91.0000 92.1615 82.6124 70.2431 76.0964 65.2457 76.0389 64.8308 62.8901 33.1293 35.7968 38.6594	34.5481 34.5722 34.5971 34.5997 34.6056 34.6058 34.6080 34.6099 34.6113 34.6115 34.6116 34.6118 34.7172 R 35.3332 R 35.8241 R 36.0616 R 36.2980 R 36.4942 R 36.8374 R

0 16.0000 83.7539 34.6130

40.0000 41.0320 37.0763 R

41.0000

		I	HYDROPHONE	4		
6.1800 9.5501 3.9800 3.8200 3.3800 5.7800 4.0700 3.4900 2.7200 2.7100 2.4100 3.1800 2.2000 9.7601 8.6201 11.5300 15.4100 14.6701 13.0801 17.2501 15.6800 23.5401 22.5201 20.6300 19.3301	-6.1954 -8.8282 -3.7623 -3.6757 -3.3398 5.4669 3.7742 3.2803 -2.7050 -2.7899 -2.4460 2.9932 -2.3048 8.3682 8.2148 -11.2162 -14.2058 13.8941 -14.1102 16.3905 -16.5439 19.9739 -20.2345 19.6329 -19.8921	32.0000 17.0000 35.0000 37.0000 31.0000 31.0000 35.0000 38.0000 37.0000 36.0000 17.0000 27.0000 0 0 0 0 0	8.0000 0 0 0 0 0 0 0 0 0 0 0 0	8.0000 11.0000 13.0000 13.0000 13.0000 12.0000 14.0000 14.0000 14.0000 14.0000 14.0000 14.0000 15.0000 14.0000 26.0000 26.0000 25.0000 25.0000 31.0000 41.0000 41.0000 41.0000	82.1694 75.4934 82.7061 83.5789 77.2005 84.5104 76.6507 81.1359 86.5136 84.2842 77.0555 85.8173 79.9480 82.1069 85.9763 78.5257 55.6390 75.5284 62.4179 63.8601 63.3112 33.7756 35.8130 38.8646 41.3073	34.5488 34.5817 34.6051 34.6055 34.6061 34.6088 34.6102 34.6109 34.6115 34.6117 34.6124 34.6129 34.6134 34.6187 34.7075 R 34.8852 R 35.2809 35.3425 35.5348 R 35.8317 R 36.0581 R 36.3009 R 36.4895 R 36.8441 R 37.0677 R
		1	HYDROPHONE	5		
7.0001 9.6801 6.1900 6.0400 5.2400 3.8300 3.9700 5.8000 3.4800 2.7000 2.1900 2.4700 9.7501 8.9001 7.6601 8.6001 13.0401 14.6001 17.2001 15.7200 23.5201 22.5501 20.5900 19.3801	-6.9413 8.4837 -6.2254 -6.1733 -4.9855 -3.7923 -3.9770 5.5693 3.4689 -2.9579 -2.6832 2.6265 8.5460 -8.6710 -8.2771 8.3284 -11.2369 13.9993 16.5075 -16.6072 19.9736 -20.2361 19.7508 -19.8953	19.0000 22.0000 31.0000 34.0000 34.0000 35.0000 42.0000 31.0000 34.0000 37.0000 34.0000 19.0000 26.0000 27.0000	9.0000 0 0 0 0 0 0 0 0 0 0 9.0000 5.0000 22.0000 26.0000 32.0000 42.0000 41.0000 41.0000	8.0000 11.0000 8.0000 12.0000 13.0000 13.0000 14.0000 14.0000 15.0000 13.0000 11.0000 12.0000 14.0000 21.0000 21.0000 21.0000 21.0000 21.0000 21.0000 21.0000 21.0000 21.0000 21.0000 21.0000	75.1270 75.2540 87.4095 77.2233 78.8796 82.6098 80.2141 88.8643 82.6301 83.4417 82.2108 76.2350 81.8588 71.1665 76.2699 86.8713 64.0827 77.0836 64.4111 64.6623 34.4221 35.2348 39.1042 41.2806	34.5251 34.5453 34.5485 34.5552 34.6012 34.6046 34.6052 34.6076 34.6109 34.6113 34.6134 34.6135 34.6225 34.6225 34.6302 34.6302 34.6927 34.7084 34.9991 R 35.3518 R 35.3518 R 36.0534 R 36.3040 R 36.4850 R 36.8501 R 37.0590 R

24.7101	19.9566	0	51.0000	51.0000	-12.5946	38.1403 R
		F	HYDROPHONE	6		
6.7301 7.2301 7.2801 9.9401 5.9400 9.3401 3.8400 4.4500 4.4500 3.4600 3.4600 3.4200 3.4500 2.1700 1.7500 9.7401 7.6701 8.5201 11.5400 14.5301 13.0901 17.1500 15.7600 24.3901 23.4701 22.5701 20.5300 19.4301	-6.5062 -7.0787 6.8478 -8.6005 -6.0241 -8.9350 -4.0737 5.7742 4.2558 4.0282 -3.1992 3.7739 3.7727 -2.8317 2.6718 2.6720 8.6945 -8.3682 8.4104 -11.3108 13.9967 -14.1976 16.5044 -16.6109 -20.5048 20.0874 -20.2370 19.7469 -19.8984	24.0000 21.0000 19.0000 23.0000 40.0000 16.0000 34.0000 32.0000 32.0000 31.0000 31.0000 37.0000 34.0000 26.0000 27.0000 0	0 0 0 0 4.0000 0 8.0000 0 0 0 0 0 0 0 0 0 0 0 0 0	8.0000 9.0000 10.0000 13.0000 11.0000 13.0000 13.0000 13.0000 13.0000 13.0000 13.0000 13.0000 13.0000 13.0000 13.0000 13.0000 17.0000 17.0000 18.0000 12.0000 14.0000	85.3887 73.2176 81.6423 69.7785 75.7661 73.6931 80.4553 86.7325 79.1857 78.6523 83.5623 94.1943 74.7798 85.6882 84.3708 93.5275 87.3795 81.2176 80.8483 80.9017 75.0689 76.7759 65.9933 64.8475 63.8014 21.7995 36.4253 35.4650 39.4538 41.1807	34.5334 34.5509 34.5681 34.5846 34.5938 34.6049 34.6053 34.6054 34.6063 34.6014 34.6115 34.6118 34.6118 34.6118 34.6150 34.6151 34.6236 34.635 34.635 34.7146 34.8864 R 35.3615 R 35.3615 R 35.3615 R 35.3615 R 35.3615 R 36.4821 R 36.3138 R 36.4821 R 36.8622 R 37.0503 R
			HYDROPHONE	7		
6.7801 6.7201 10.1500 5.2300 3.3700 2.2700 3.4300 3.2000 1.6800 1.6900 1.7900 9.7101 8.9501 10.3900 8.5101	-6.5106 -6.5591 -8.6558 -5.3129 -3.8271 2.8957 3.9422 3.6690 2.7534 2.7440 2.8275 8.7181 -8.6845 8.6793 8.4818	24.0000 23.0000 23.0000 34.0000 31.0000 32.0000 32.0000 33.0000 33.0000 33.0000 17.0000 23.0000 11.0000 27.0000	9.0000 3.0000 0	8.0000 8.0000 13.0000 13.0000 13.0000 16.0000 14.0000 17.0000 17.0000 18.0000 12.0000 15.0000 14.0000	73.4603 73.1443 79.3014 78.1413 80.0934 75.4940 81.2258 77.8934 82.2989 85.5639 84.7492 69.0059 72.5930 97.7079 82.9342	34.5311 34.5342 34.5631 34.6036 34.6062 34.6122 34.6122 34.6135 34.6144 34.6146 34.6148 34.6250 34.6607 34.6670 34.7140

11.5500	-11.3583	0	19.0000	18.0000	76.8271	34.8868 R
14.4501	14.0910	0	26.0000	26.0000	76.9178 66.9958	35.3719 R 35.5378 R
13.1001 17.0900	-14.2447 16.5006	0	26.0000 32.0000	25.0000 32.0000	64.6563	35.8554 R
15.7900	-16.6456	0	32.0000	31.0000	63.2850	36.0448 R
24.4001	-20.5035	0	43.0000	42.0000	27.6772	36.1719
24.5401	20.2243	ő	43.0000	43.0000	24.7608	36.1896
23.4301	20.0846	0	42.0000	42.0000	35.2288	36.3214 R
22.5901	-20.2841	0	42.0000	41.0000	34.9470	36.4795 R
20.4900	19.7453	0	41.0000	41.0000	38.7093	36.8691 R
18.2701	19.5355	0	39.0000	39.0000	43.1664	37.0239
19.4801	-19.9481	0	41.0000	40.0000	41.0658	37.0429
18.3901	19.5358	0	40.0000	40.0000	28.6644	37.1677 R
			HYDROPHONE	8		
6.4901	-6.6551	20.0000	0	9.0000	76.0663	34.5420 34.5555
10.1000 7.3301	-8.7826 6.9987	17.0000 20.0000	8.0000 0	12.0000	83.6994 76.7346	34.5555
7.3001	7.0077	21.0000	0	10.0000	78.6764	34.5639
4.4400	4.5260	. 33.0000	Ō	13.0000	80.7661	34.6053
3.8600	-4.2683	37.0000	0	13.0000	81.0829	34.6072
3.9300	-4.2713	36.0000	0	13.0000	84.1145	34.6072
2.1500	-3.0453	34.0000	0	16.0000	77.1946	34.6123
1.6000 1.6100	2.8218 2.8238	31.0000 33.0000	0	18.0000 18.0000	84.3046 88.4607	34.6140 34.6141
1.6200	2.8262	34.0000	0	18.0000	87.6881	34.6141
2.4900	3.2786	34.0000	Ö	15.0000	79.7407	34.6142
1.8300	2.9084	36.0000	0	18.0000	88.3969	34.6145
1.8500	2.9443	37.0000	0	17.0000	88.4486	34.6145
1.8600	2.9475	38.0000	0	17.0000	89.9119	34.6145
1.8700	2.9506	36.0000	0	17.0000	88.1069	34.6146
8.5001 12.9801	8.4845 -12.5758	27.0000 0	0 22.0000	14.0000 21.0000	79.5235 63.5496	34.7140 R 35.0235 R
11.6300	-11.3509	0	21.0000	20.0000	75.6184	35.0233 R
14.3801	14.0919	Ö	26.0000	26.0000	77.3569	35.3814 R
17.0100	16.5614	0	32.0000	32.0000	66.5519	35.8676 R
15.8300	-16.6487	0	32.0000	31.0000	62.7803	36.0398 R
24.4101	-20.5030	0	43.0000	42.0000	27.3978	36.1725 R
23.4001	20.1411	0	42.0000	42.0000	35.2906	36.3267 R
22.6301 20.4400	-20.2826 19.8024	0	42.0000	41.0000	35.1916	36.4719 R 36.8767 R
19.5301	-19.9510	0	41.0000 41.0000	40.0000	39.3015 41.0332	37.0341 R
17.5501	13.3310	O	41.0000	40.0000	41.0552	A IFCU.IC
			UVDDODUONE	9		
6 0100	6 4333	•	HYDROPHONE		70. 0670	24 5400
6.2100	-6.4777 -8.6481	32.0000 23.0000	0 4.0000	8.0000 13.0000	78.2679 68.8195	34.5499 34.5764
4.4300	4.5161	30.0000	4.0000	13.0000	82.3544	34.6034
3.8900	-4.2507	35.0000	Ö	13.0000	93.0906	34.6071
3.8800	-4.2505	37.0000	0	13.0000	82.3202	34.6073
3.8700	-4.2505	38.0000	0	13.0000	82.3202	34.6075

4.1000 0.0100 4.0900 2.2800 1.5500 1.5600 2.5000 1.8900 1.9100 2.5100 1.9000 9.1701 7.6801 11.5600 11.6100 14.2901 16.9200 15.8500 24.3701 24.5301 23.3701 22.6501 20.4100 19.5701	4.3296 2.4910 4.4045 3.0795 2.8262 2.8473 3.2975 2.9768 2.9664 3.2835 2.9786 -8.8374 -8.3897 -11.3548 -11.3504 14.1118 16.5555 -16.6289 -20.4659 20.2846 20.1396 -20.2531 19.8015 -19.9216	31.0000 29.0000 32.0000 34.0000 35.0000 36.0000 37.0000 34.0000 37.0000 26.0000 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 7.0000 21.0000 21.0000 32.0000 43.0000 43.0000 42.0000 41.0000	13.0000 17.0000 14.0000 16.0000 18.0000 17.0000 17.0000 17.0000 17.0000 11.0000 12.0000 12.0000 26.0000 26.0000 32.0000 42.0000 42.0000 41.0000 41.0000 41.0000	92.7447 88.4711 76.9184 77.1096 83.7825 83.5262 82.7834 85.8600 86.3548 83.8681 87.1345 69.9883 78.1157 74.7405 73.5302 78.1330 67.5459 62.4436 23.3981 25.2338 35.3201 35.1780 38.4805 40.9449	34.6075 34.6086 34.6086 34.6127 34.6138 34.6138 34.6141 34.6144 34.6144 34.6145 34.6214 34.6960 R 34.8880 R 35.0963 R 35.3934 R 35.3934 R 36.0383 R 36.1865 36.1880 36.3322 R 36.4693 R 36.8818 R 37.0281 R
	-	1	HYDROPHONE	10		
6.3801 6.0300 10.0600 4.4200 5.8700 3.3400 3.3300 0.0600 2.6400 3.2200 2.1400 1.5300 1.9400 9.6401 8.4401 7.7001 12.0000 11.8800 14.1801 13.1301 16.8300 15.8800 24.3801 23.3401 22.6801 20.3600 19.6201	6.3986 6.3075 -8.6973 4.4950 5.9170 -3.8104 -3.8091 2.4245 -3.3145 3.7438 -2.9798 2.7562 2.8891 8.6890 -8.5524 -8.3529 -11.3221 11.2156 14.1081 -14.2383 16.5507 -16.6314 -20.4657 20.1384 -20.2545 19.8000 -19.9235	23.0000 31.0000 23.0000 30.0000 41.0000 33.0000 34.0000 36.0000 37.0000 37.0000 27.0000 27.0000 0 0 0 0 0 0 0 0 0	0 0 0 4.0000 0 0 0 0 0 0 0 0 9.0000 21.0000 21.0000 26.0000 32.0000 43.0000 42.0000 41.0000 41.0000	9.0000 9.0000 13.0000 13.0000 14.0000 14.0000 14.0000 14.0000 14.0000 14.0000 14.0000 12.0000 13.0000 14.0000 12.0000 20.0000 21.0000 25.0000 32.0000 32.0000 41.0000 41.0000 41.0000	76.0695 71.9876 82.9998 80.2070 81.5520 92.5496 79.2503 86.9606 82.0412 80.3134 76.7822 80.9366 84.2725 68.3170 75.1737 83.0101 83.9062 74.8763 79.2232 73.2166 66.6980 63.0770 27.7887 34.8557 35.3448 39.2907 40.6985	34.5558 34.5649 34.5839 34.6034 34.6038 34.6081 34.6083 34.6086 34.6117 34.6124 34.6128 34.6133 34.6142 34.6314 34.6947 34.6959 35.0291 35.0802 35.4087 R 35.5376 R 35.8963 R 36.0346 R 36.1867 R 36.3373 R 36.4649 R 36.8903 R 37.0193 R

		I	HYDROPHONE	11		
10.2900 7.2901 9.9701 4.1100 0.1200 9.4101 2.6100 2.2900 1.5100 1.9700 1.9800 9.2601 12.5001 11.8600 14.0601 13.1501 16.7200 15.9200 24.6901 23.3001 22.7001 20.3200 19.6601	-8.5201 6.9111 -8.5225 4.2339 2.2687 8.6182 -3.1218 2.8892 2.6044 2.8663 2.8316 8.6170 11.1888 -11.3191 14.0723 -14.1958 16.5431 -16.5941 20.3055 20.1363 -20.2556 19.7987 -19.9250	22.0000 19.0000 24.0000 32.0000 35.0000 36.0000 31.0000 32.0000 31.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.0000 0 4.0000 0 8.0000 0 0 0 0 0 0 0 0 21.0000 21.0000 26.0000 32.0000 32.0000 44.0000 42.0000 41.0000	13.0000 10.0000 13.0000 13.0000 17.0000 12.0000 14.0000 19.0000 17.0000 17.0000 20.0000 21.0000 21.0000 25.0000 32.0000 32.0000 31.0000 44.0000 41.0000 40.0000	74.5918 76.3183 74.1964 78.7570 87.5601 74.1037 81.5199 77.2450 84.6509 88.7595 86.3594 71.0924 65.6602 77.5419 78.8534 72.7723 66.8359 63.4517 14.0856 35.7012 35.6383 39.5796 40.5354	34.5544 34.5597 34.5874 34.6069 34.6085 34.6112 34.6125 34.6125 34.6129 34.6145 34.6145 34.6289 34.6289 34.9902 35.0498 35.4251 R 35.5364 R 35.9145 R 36.3099 36.3446 36.4617 R 36.8971 R 37.0123 R
		1	HYDROPHONE	12		
6.4301 5.8800 4.4000 5.1800 0.1500 0.1500 0.1600 0.1700 3.3200 3.2400 2.6000 1.4800 2.1300 2.0000 7.7101 11.9700 11.8300 13.9401 13.1801 16.6500 15.9700 24.5101 23.2701 22.7301 20.2800	6.2827 5.8484 4.3367 -5.0945 2.2201 2.1676 2.1561 -3.6215 3.5394 -2.9887 2.5083 -2.7349 2.7577 -8.3325 -11.2825 11.1377 14.0684 -14.1533 16.5382 -16.5976 20.2899 20.1347 -20.2143 19.7971	24.0000 41.0000 32.0000 34.0000 27.0000 28.0000 34.0000 34.0000 34.0000 34.0000 34.0000 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.0000 12.0000 13.0000 17.0000 17.0000 17.0000 14.0000 14.0000 16.0000 17.0000 20.0000 21.0000 21.0000 25.0000 32.0000 31.0000 41.0000 41.0000 41.0000	89.6127 79.4809 81.1690 77.9052 88.5332 86.2914 87.1690 80.8535 79.4335 79.7294 86.1824 81.7180 83.0568 79.3245 78.9192 70.3082 78.8688 72.5735 66.1088 65.5213 26.8543 35.6155 35.7554 39.4713	34.5511 34.6035 34.6044 34.6085 34.6085 34.6085 34.6087 34.6113 34.6118 34.6128 34.6134 34.6134 34.6147 34.6980 R 35.0374 35.0374 35.0374 35.0374 35.0374 35.0374 35.0374 36.0232 R 36.3501 R 36.3501 R 36.3501 R 36.3501 R

19.7501	-19.8870	0	41.0000	40.0000	41.1746	36.9950 R
			HYDROPHONE	13		
7.3201 9.8301 4.1200 4.1300 0.2100 0.9000 0.9800 1.0100 1.0200 1.0400 1.0500 3.3000 1.0700 1.0800 2.3000 1.4500 2.1200 2.0100 9.2101 7.7201 12.0100 12.0300 13.8301 13.1901 16.5700 16.0200 24.5001 23.2401 22.7601 20.2400 19.8001	6.8537 8.5903 4.1334 4.1085 2.0172 -2.1376 -2.1914 -2.2061 -2.2120 -2.2169 -2.2217 -3.5531 -2.1951 -2.1601 2.6582 2.3618 -2.6580 2.6206 -8.4851 -8.3059 -11.2540 11.1396 14.0650 -14.1535 16.5326 -16.5719 20.2913 20.1331 -20.2160 19.7955 -19.8891	20.0000 16.0000 33.0000 31.0000 27.0000 32.0000 28.0000 29.0000 31.0000 27.0000 29.0000 27.0000 29.0000 34.0000 34.0000 34.0000 22.0000 26.0000	9.0000 0 0 0 0 0 0 0 0 0 0 0 0	10.0000 13.0000 13.0000 13.0000 17.0000 16.0000 17.0000 17.0000 16.0000 17.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 12.0000 12.0000 20.0000 21.0000 25.0000 25.0000 32.0000 31.0000 41.0000 41.0000 40.0000	75.4929 72.4467 79.4189 84.1847 87.7163 92.4143 93.9919 96.1761 93.2634 95.1576 92.2944 83.7259 90.1986 88.1058 77.3741 78.9123 81.8799 80.8960 85.5376 83.3586 70.3709 73.0061 78.6391 70.6539 66.5419 64.9706 26.1304 35.8631 35.5000 39.8323 41.0684	34.5577 34.6068 34.6076 34.6083 34.6090 34.6091 34.6093 34.6093 34.6093 34.6093 34.6093 34.6094 34.6095 34.6121 34.6125 34.6121 34.6125 34.6145 34.6262 34.6982 R 35.0335 35.0511 35.4564 R 35.5337 R 35.9380 R 36.1849 R 36.3555 R 36.4525 R 36.9859 R
			HYDROPHONE	14		
6.4801 6.2200 6.4701 7.5701 9.5101 4.3800 4.1400 0.2600 0.8100 0.8400 1.1200 1.1300 1.4400 2.5300	6.2757 -6.1502 6.2828 -7.1387 8.5461 4.2230 4.0386 1.9263 -1.9300 -2.0107 -2.0974 -2.0715 2.1630 2.8084	22.0000 31.0000 46.0000 22.0000 16.0000 29.0000 32.0000 31.0000 31.0000 30.0000 30.0000 33.0000	0 0 0 0 0 8.0000 0 0 0 0	9.0000 8.0000 18.0000 10.0000 12.0000 13.0000 17.0000 16.0000 16.0000 17.0000 15.0000	91.8753 77.4682 81.7271 70.7041 70.1657 82.4682 82.6945 88.4186 89.4463 88.0979 86.5873 87.3547 83.6084 80.2181	34.5508 34.5516 34.5520 34.5776 34.5985 34.6042 34.6073 34.6085 34.6091 34.6091 34.6099 34.6120 34.6120 34.6126

a series and a ser							
2.0200 2.4	504 330 620 189 270 756 933 814 862	000	0 16.0 0 17.0 000 12.0 000 21.0 000 21.0 000 26.0 000 32.0 000 31.0 00 43.0 00 41.00	0000 82.0 0000 79.2 0000 70.3 0000 73.3 000 85.7 000 67.3 000 73.9 000 66.4 000 22.8 000 35.72 000 36.70 000 36.70 000 36.70 000 36.70 000 36.70 000 36.70 000 36.70 000 36.70 000 36.70	35.0636 35.1003 462 35.4699 508 35.5303 554 35.9507 836 36.0097 931 36.1839 R 261 36.3628 R 36.4444 R		
		HYDROPHO	NF 15				
6.7501	21.0000 39.0000 34.0000 33.0000 34.0000 32.0000 30.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 30.00000 30.00	8.0000 8.0000 0 8.0000 21.0000 26.0000 32.0000 42.0000 41.0000 41.0000 40.0000	7.000 8.000 12.000 12.000 17.000 17.000 16.0000 17.0000 13.0000 17.0000 17.0000 17.0000 12.0000 12.0000 20.0000 20.0000 25.0000 32.0000 41.0000 41.0000 41.0000 39.0000	72.248 79.699 78.690 85.070 88.957 87.488 88.038 86.8450 71.7066 74.4812 83.4189	34.5252 34.6001 34.6083 1 34.6084 3 34.6084 3 34.6090 34.6092 34.6092 34.6093 34.6105 34.6107		
6.3701 6 1505		DROPHONE	16				
10.3100 6.1595 10.3100 8.5578 4.3500 4.0109	25.0000 15.0000 30.0000	8.0000	9.0000 13.0000 13.0000	89.8872 69.2232 83.0594	34.5509 34.5540 34.6031		

un 17 11:56 1992 resh1_16n Page 10

```
3.9939
                      29.0000
                                        0
                                            13.0000
                                                       84.4584
                                                                   34.6041
 4.3100
                      30.0000
                                        0
                                            12.0000
                                                       97.4540
                                                                   34.6053
 4.2500
           -4.0319
 4.1900
            3.9263
                      31.0000
                                        0
                                            13.0000
                                                       84.1616
                                                                   34.6054
                                        0
                                            12.0000
                                                       83.1009
                                                                   34.6064
           -4.0558
                      28.0000
 4.2400
                                            17.0000
 0.4000
            1.5370
                      29.0000
                                        0
                                                        90.6496
                                                                   34.6084
                                        0
                                            17.0000
                                                        88.9022
                                                                   34.6085
 0.4200
            1.5062
                      30.0000
 0.7100
           -1.7032
                      31.0000
                                        0
                                            16.0000
                                                        87.1150
                                                                   34.6093
                                                                   34.6094
           -1.6706
                                        0
                                            16.0000
                                                        87.8697
 0.7000
                      32.0000
                                        0
                                                        81.2573
 3.2700
            3.1659
                      36.0000
                                            14.0000
                                                                   34.6104
           -1.9175
                      28.0000
                                        0
                                            16.0000
                                                        89.4330
                                                                   34.6110
 1.2100
                                        0
                                                        90.4993
 1.2200
           -1.9175
                      27.0000
                                            16.0000
                                                                   34.6110
           -1.8862
                      29.0000
                                        0
                                            16.0000
                                                        87.8468
                                                                   34.6110
 1.2400
                                            17.0000
                                                        86.8783
 1.3700
            1.9304
                      33.0000
                                        0
                                                                   34.6119
                      33.0000
 2.3200
            2.3465
                                        0
                                            16.0000
                                                        77.0698
                                                                   34.6119
 1.3500
            1.8848
                      31.0000
                                        0
                                            17.0000
                                                        85.9762
                                                                   34.6120
 1.3600
            1.9280
                      32.0000
                                        0
                                            17.0000
                                                        85.5294
                                                                   34.6120
 2.5500
            2.5488
                      30.0000
                                        0
                                            15.0000
                                                        78.9044
                                                                   34.6122
                                                       80.5857
 2.0800
           -2.3105
                      37.0000
                                        0
                                            16.0000
                                                                   34.6131
                                  6.0000
                                                        69.7367
 8.9801
           -9.0491
                      17.0000
                                            10.0000
                                                                   34.6161
 9.2801
           -9.0787
                      15.0000
                                  8.0000
                                            11.0000
                                                        69.5766
                                                                   34.6247
                                            13.0000
                                                        74.1797
                                                                   34.7021 R
 8.4501
           -8.3734
                      28.0000
                                 26.0000
                                                        77.6399
13.5501
           14.0571
                             0
                                            26.0000
                                                                   35.4936
                             0
                                            25.0000
                                                        74.2337
                                                                   35.5176
13.3401
          -14.0889
                                 26.0000
16.3500
           16.5172
                             0
                                 32.0000
                                            32.0000
                                                        65.0820
                                                                   35.9726
                                            31.0000
          -16.5484
                             0
                                                        64.9918
                                                                   35.9978
16.1600
                                 32.0000
                                                       23.2387
                             0
24.4701
         -20.1854
                                 43.0000
                                            43.0000
                                                                   36.1764 R
                             0
22.8701
         -19.9860
                                 42.0000
                                            42.0000
                                                        35.0064
                                                                   36.4325 R
                             0
19.9601
          -19.6598
                                 41.0000
                                            41.0000
                                                        40.3247
                                                                   36.9591
19.9501
                             0
                                                        40.9984
          -19.8615
                                 41.0000
                                            40.0000
                                                                   36.9601
18.3601
         -19.7090
                             0
                                 40.0000
                                            39.0000
                                                        36.1161
                                                                   37.1353 R
```

RAMP - relative amplitude in dB (RAMP=SL-TL, Sea State 3, 0.5 dB/bottom bounce)
R - ray is temporally resolvable using a 62.5msec pulse separation.

Hydrophone depths in km above mean sea level:

Ну	droph	one	#	Depth
	·1			150;
	2			160;
	3			170;
	4			180;
	5			190;
	6			200;
	7			210;
	8			220;
	9			230;
	10			240;
	11			250;
	12			260;
	13			270;
	14			280;
	15			290;
	16			300;
- 👝	that	the	00025	hotton

Note that the ocean bottom at the hydrophone array location is modeled at 318m or -.318km above mean sea level.

APPENDIX C: LINE ARRAY RESOLVABILITY ANALYSIS TABLE

The following table was generated by treating the 16 hydrophones of the vertical linear array at position (B) in Figure 2 as a plane wave beamformer. The compilation was accomplished using the MATLAB computer program 'resanl.m'. A copy of 'resanl.m' can be found in Appendix A. Definitions of RAMP, R, and sector angles can be found at the end of the Appendix.

LAUNCH ANGLE (deg)	ARRIVAL ANGLE (deg)	NUMBER TURNING POINTS	NUMBER SURFACE BOUNCES	NUMBER BOTTOM BOUNCES	RAMP (dB)	ARRIVAL TIME (sec) (R-resovable)				
	SECTOR 1									
24.4701 24.3801 22.8701 22.4401 19.9601 19.1901 18.3501	-20.1854 -20.4657 -19.9860 -20.2319 -19.6598 -19.8838 -19.7114	0 0 0 0 0	43.0000 43.0000 42.0000 42.0000 41.0000 41.0000	43.0000 42.0000 42.0000 41.0000 41.0000 40.0000 39.0000	23.2387 27.7887 35.0064 36.1665 40.3247 43.1272 33.7800	36.1764 36.1867 36.4325 R 36.5017 R 36.9591 R 37.0915 37.1354				
			SECTOR 2							
18.2501 15.5900	-16.7096 -16.5311	0	33.0000 32.0000	32.0000 31.0000	50.9109 62.4927	35.7055 R 36.0685 R				
			SECTOR 3							
15.4100 13:1001	-14.2058 -14.2447	0	27.0000 26.0000	26.0000 25.0000	55.6390 66.9958	35.2809 R 35.5378 R				
			SECTOR 4							
11.5600 13.0201 11.6100	-11.3548 -12.2672 -11.3504	0 0 0	19.0000 22.0000 21.0000	18.0000 21.0000 20.0000	74.7405 73.3231 73.5302	34.8880 R 35.0269 R 35.0963 R				
		:	SECTOR 5							
10.3500 10.3300 10.2900 10.1000 9.5501 9.9701 9.8801 9.4201 9.3801 9.3401 8.9801 9.1701 9.2801 9.2101 9.5801 8.9001 9.1001 8.9601 8.9501	-8.4015 -8.0038 -8.5201 -8.7826 -8.8282 -8.5225 -8.3137 -8.5717 -8.7232 -8.9350 -9.0491 -8.8374 -9.0787 -8.4851 -8.2656 -8.6710 -8.2583 -8.3064 -8.6845	21.0000 20.0000 22.0000 17.0000 17.0000 24.0000 23.0000 14.0000 16.0000 17.0000 17.0000 17.0000 22.0000 23.0000 24.0000 24.0000 23.0000	5.0000 5.0000 4.0000 8.0000 4.0000 4.0000 9.0000 8.0000 6.0000 7.0000 8.0000 3.0000 5.0000 4.0000 3.0000 3.0000	13.0000 13.0000 13.0000 12.0000 11.0000 13.0000 11.0000 11.0000 11.0000 11.0000 11.0000 11.0000 11.0000 12.0000 12.0000 12.0000 12.0000 12.0000	71.7701 85.4431 74.5918 83.6994 75.4934 74.1964 74.4526 72.9454 77.7173 73.6931 69.7367 69.9883 69.5766 85.5376 72.0275 71.1665 71.2785 75.8058 72.5930	34.5481 34.5504 34.5555 34.5555 34.5874 34.5899 34.5945 34.5971 34.6049 34.6161 34.6214 34.6247 34.6262 34.6262 34.6262 34.6302 34.6429 34.6443 34.6607				

8.4401 7.7401 8.4501	-8.5524 -8.2335 -8.3734	27.0000 26.0000 28.00 00	0 0 0	14.0000 12.0000 13.0000	75.1737 80.9442 74.1797	34.6947 34.6987 34.7021
			SECTOR	5		
6.7501 7.0001 6.8401 6.7301 6.7201 6.4901 6.1600 6.1500 6.2100 7.2301 6.2200 6.0400 7.5701 5.9400 5.9200 5.1700	-6.5497 -6.9413 -5.8326 -6.5062 -6.5591 -6.6551 -5.3830 -5.4052 -6.4777 -7.0787 -6.1502 -6.1733 -7.1387 -6.0241 -5.8120 -4.9075	21.0000 19.0000 25.0000 24.0000 23.0000 30.0000 32.0000 21.0000 31.0000 34.0000 22.0000 40.0000 34.0000 34.0000	0 0 0 0 0 0 0 0 0 0	7.0000 8.0000 8.0000 8.0000 9.0000 8.0000 8.0000 9.0000 8.0000 10.0000 11.0000 12.0000	71.7002 75.1270 75.6515 85.3887 73.1443 76.0663 90.4353 79.7049 78.2679 73.2176 77.4682 77.2233 70.7041 75.7661 79.6993 78.6904	34.5146 34.5251 34.5254 34.5334 34.5342 34.5420 34.5479 34.5485 34.5499 34.5509 34.5516 34.5552 34.5776 34.5938 34.6001 34.6083
	·		SECTOR	7		
5.2600 4.2500 3.3800 3.3700 4.2400 3.8900 3.9300 3.8800 3.8700 3.3200 0.8400 1.0100 1.0200 1.0500 3.3000 0.7100 0.7000 1.1300 1.2100 1.2200 1.2400 2.7600 2.7100 2.9100 2.9100 2.9100 2.8900 2.8800	-4.3751 -4.0319 -3.3398 -3.8271 -4.0558 -4.2507 -4.2713 -4.2505 -3.6215 -2.0107 -2.2061 -2.2120 -2.2217 -3.5531 -1.7032 -1.6706 -2.0715 -1.9175	35.0000 30.0000 31.0000 28.0000 35.0000 36.0000 37.0000 31.0000 28.0000 29.0000 30.0000 31.0000 32.0000 31.0000 29.0000 31.0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12.0000 12.0000 13.0000 13.0000 13.0000 13.0000 13.0000 13.0000 17.0000 17.0000 17.0000 16.0000	82.0625 97.4540 77.2005 80.0934 83.1009 93.0906 84.1145 82.3202 80.8535 88.0979 96.1761 93.2634 92.2944 83.7259 87.1150 87.8697 87.3547 89.4330 90.4993 87.8468 90.9100 84.2842 77.0555 98.6870 84.3708 100.6569 94.1395 94.1395	34.5991 34.6053 34.6061 34.6062 34.6064 34.6071 34.6073 34.6073 34.6093 34.6093 34.6093 34.6093 34.6093 34.6093 34.6100 34.6110 34.6110 34.6110 34.6115 34.6125 34.6125 34.6125 34.6125 34.6127 34.6128

OA

2.8700 2.1800 2.0900 2.5900 2.2000 2.1900 2.1300	-2.2722 -2.7653 -2.3930 -2.9437 -2.3048 -2.6832 -2.7349	37.0000 37.0000 38.0000 35.0000 36.0000 37.0000 34.0000	0 0 0 0 0	14.0000 17.0000 16.0000 14.0000 16.0000 16.0000	99.6810 84.5048 80.6079 79.2481 79.9480 82.2108 81.7180	34.6129 34.6129 34.6129 34.6130 34.6134 34.6134
3.5200	1.2458	29.0000	SECTOR 8	13.0000	84.8566	34.6099
3.0 3 00	-1.2609	37.0000		14.0000	92.8483	34.6109
3.0300 3.0700 3.4100 2.2200	-1.2609 -1.1903 1.2439 -1.1305	35.0000 31.0000 33.0000	0 0	14.0000 14.0000 13.0000 16.0000	89.7523 86.5363 83.7539	34.6109 34.6119 34.6130
2.2300	-0.9361	34.0000	0 0	16.0000	85.1150	34.6130
2.4300	-1.0742	36.0000		15.0000	81.8107	34.6136
2.4400	0.5384	32.0000		15.0000	96.0621	34.6136
3.1100	0.1968	33.0000	0 0 0	14.0000	90.0005	34.6140
2.4600	1.4276	30.0000		15.0000	85.1451	34.6142
3.1200	0.6364	31.0000		14.0000	90.6720	34.6144
3.1400	1.4714	32.0000		14.0000	87.5234	34.6145
			SECTOR 9			
5.4100	4.4178	33.0000	0 0	12.0000	79.1505	34.6044
4.4500	4.2558	35.0000		13.0000	79.1857	34.6063
5.0600	3.1395	126.0000		17.0000	79.1791	34.6080
5.0700	3.3391	29.0000	0	13.0000	86.2085	34.6085
0.1600	2.1676	28.0000		17.0000	86.2914	34.6085
0.0100	2.4910	29.0000		17.0000	88.4711	34.6086
0.0600	2.4245	27.0000	0	17.0000	86.9606	34.6086
4.0800	4.0282	30.0000		13.0000	78.6523	34.6089
3.5100	1.7845	28.0000		13.0000	81.2695	34.6103
3.2700	3.1659	36.0000	0	14.0000	81.2573	34.6104
3.4800	3.4689	31.0000		14.0000	82.6301	34.6109
3.2400	3.5394	32.0000		14.0000	79.4335	34.6113
3.4200	3.7723	31.0000	0 0	13.0000	74.7798	34.6118
3.4500	3.7727	33.0000		13.0000	85.6882	34.6118
2.3200	2.3465	33.0000		16.0000	77.0698	34.6119
1.4400	2.1630	30.0000	0	17.0000	83.6084	34.6120
2.2700	2.8957	32.0000	0	16.0000	75.4940	34.6122
3.4300	3.9422	32.0000	0	13.0000	81.2258	34.6122
2.5500	2.5488	30.0000	0	15.0000	78.9044	34.6122
3.2200	3.7438	30.0000	0	14.0000	80.3134	34.6124
2.2900	2.8892	36.0000	0	16.0000	77.2450	34.6125
2.5300	2.8084	33.0000	0	15.0000	80.2181	34.6126
2.2800	3.0795	34.0000	0	16.0000	77.1096	34.6127
3.1800	2.9932	34.0000	0	14.0000	85.8173	34.6129
1.5100	2.6044	32.0000	0	19.0000	84.6509	34.6129
2.2500	1.7588	31.0000	0	16.0000	82.6124	34.6132
1.5500	2.8262	35.0000	0	18.0000	83.7825	34.6136
1.5600	2.8473	37.0000	0	18.0000	83.5262	34.6138
3.1500	2.1998	3 3. 0000		14.0000	82.6676	34.6139

1.6000	2.8218	31.0000	0	18.0000	84.3046	34.6140
2.5000	3.2975	35.0000	0	15.0000	82.7834	34.6141
2.5100	3.2835	34.0000	0	15.0000	83.8681	34.6144
1.8300	2.9084	36.0000	0	18.0000	88.3969	34.6145
1.8600	2.9475	38.0000	0	17.0000	89.9119	34.6145
1.9000	2.9786	35.0000	0	17.0000	87.1345	34.6145
1.9700	2.8663	31.0000	0	17.0000	88.7595	34.6145
1.9800	2.8316	32.0000	0	17.0000	86.3594	34.6145
1.6900	2.7440	33.0000	0	17.0000	85.5639	34.6146
1.8700	2.9506	36.0000	0	17.0000	88.1069	34.6146
2.0000	2.7577	34.0000	0	17.0000	83.0568	34.6147
1.7900	2.8275	33.0000	0	18.0000	84.7492	34.6148
1.7600	2.6718	37.0000	0	17.0000	93.5275	34.6150
1.7500	2.6720	34.0000		18.0000	87.3795	34.6151
			SECTOR 10			
6.6401 6.4801 6.3701 6.4301 6.4701 6.3801 7.3001 6.0300 7.2801 7.2601 4.4300 5.8700 4.4400	6.4043 6.2757 6.1595 6.2827 6.2828 6.3986 7.0077 6.3075 6.8478 6.5014 4.5161 5.9170 4.5260	21.0000 22.0000 25.0000 24.0000 46.0000 23.0000 21.0000 31.0000 19.0000 20.0000 41.0000 33.0000	0 0 0 0 0 0 0	8.0000 9.0000 9.0000 18.0000 9.0000 10.0000 10.0000 10.0000 13.0000 13.0000	72.2484 91.8753 89.8872 89.6127 81.7271 76.0695 78.6764 71.9876 81.6423 77.7699 82.3544 81.5520 80.7661	34.5252 34.5508 34.5509 34.5511 34.5520 34.5558 34.5639 34.5649 34.5681 34.5722 34.6034 34.6038 34.6053
5.1500	4.8549	32.0000	0	13.0000	74.4812	34.6105
5.7300	4.6825	42.0000	0	12.0000	76.8802	34.6120
5.1300	4.9142	31.0000	0	13.0000	73.2620	34.6125
			SECTOR 11			
9.6801 10.3100 9.7801 9.4101 9.3101 9.7401 9.2601 9.6401 9.0901 10.3900 8.6901 8.5201 7.7801	8.4837 8.5578 8.5481 8.6182 8.5401 8.6945 8.6170 8.6890 8.5378 8.6793 7.9230 8.4104 8.0024	22.0000 15.0000 17.0000 15.0000 17.0000 16.0000 17.0000 17.0000 17.0000 28.0000 27.0000 25.0000	9.0000 8.0000 8.0000 8.0000 9.0000 9.0000 7.0000 11.0000	11.0000 13.0000 13.0000 12.0000 12.0000 13.0000 12.0000 13.0000 14.0000 14.0000 13.0000	75.2540 69.2232 71.7066 74.1037 67.6847 81.2176 71.0924 68.3170 70.7126 97.7079 90.3469 80.9017 70.2431	34.5453 34.5540 34.6093 34.6112 34.6208 34.6236 34.6236 34.6289 34.6314 34.6421 34.6670 34.7043 34.7146 34.7172
			SECTOR 12			
11.7100	11.1330	0	21.0000	21.0000	67.3867	35.1003

R

14.8301	13.4689	0	26.0000	26.0000	72.2280	35.3221 R	
			SECTOR 13	}			
13.5501 17.2101 15.4500	14.0571 16.3884 15.8085	0 0 0	26.0000 32.0000 31.0000	26.0000 32.0000 31.0000	77.6399 64.2685 53.9500	35.4936 R 35.8375 R 36.0368 R	
SECTOR 14							
16.3500	16.5172	0	32.0000	32.0000	65.0820	35.9726 R	
· SECTOR 15							
24.5401 24.6901 22.9801 20.1000 18.2701 18.3901 24.7101	20.2243 20.3055 20.1094 19.7883 19.5355 19.5358 19.9566	0 0 0 0 0	43.0000 44.0000 42.0000 41.0000 39.0000 40.0000 51.0000	43.0000 44.0000 42.0000 41.0000 39.0000 40.0000 51.0000	24.7608 14.0856 35.6819 40.1243 43.1664 28.6644 -12.5946	36.1896 R 36.3099 R 36.4136 R 36.9360 R 37.0239 R 37.1677 R 38.1403 R	

RAMP - relative amplitude in dB (RAMP=SL-TL, Sea State 3, 0.5 dB/bottom bounce)
R - ray is temporally resolvable using a 62.5msec pulse separation

```
SECTOR 3 - Grazing angles from -16.5 to -13.5 degrees
SECTOR 4 - Grazing angles from -13.5 to -10.5 degrees
SECTOR 5 - Grazing angles from -10.5 to -7.5 degrees
SECTOR 6 - Grazing angles from -7.5 to -4.5 degrees
SECTOR 7 - Grazing angles from -4.5 to -1.5 degrees
SECTOR 8 - Grazing angles from -1.5 to +1.5 degrees
SECTOR 9 - Grazing angles from +1.5 to +4.5 degrees
SECTOR 10 - Grazing angles from +4.5 to +7.5 degrees
SECTOR 11 - Grazing angles from +7.5 to +10.5 degrees
SECTOR 12 - Grazing angles from +10.5 to +13.5 degrees
SECTOR 13 - Grazing angles from +13.5 to +16.5 degrees
SECTOR 14 - Grazing angles from +16.5 to +19.5 degrees
SECTOR 15 - Grazing angles from +19.5 to +22.5 degrees
```

SECTOR 1 - Grazing angles from -22.4 to -19.5 degrees SECTOR 2 - Grazing angles from -19.5 to -16.5 degrees

INITIAL DISTRIBUTION LIST

	No.Co	opies
1.	Defense Technical Information Center Cameron Station Arlington, VA 22304-6145	2
2.	Library, Code 52 Naval Postgraduate School Monterey, CA 93943-5000	2
3.	Chairman (Code OC/Co) Department of Oceanography Naval Postgraduate School Monterey, CA 93943-5000	1
4.	Library Scripps Institution of Oceanography P.O. Box 2367 La Jolla, CA 92037	1
5.	Professor Ching-Sang Chiu (Code OC/Ci) Department of Oceanography Naval Postgraduate School Monterey, CA 93943-5000	1
6.	Professor James H. Miller (Code EC/Mr) Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, CA 93943-5000	
7.	Professor Anthony A. Atchley (Code PH/Ay) Department of Physics Naval Postgraduate School Monterey, CA 93943-5000	1
8.	Director Naval Oceanography Division Naval Observatory 34th and Massachusetts Avenue NW Washington, DC 20390	1

9.	Commander Naval Oceanographic Command Stennis Space Center Bay St Louis, MS 39529-5000	1
10.	Commanding Officer Naval Oceanographic and Atmospheric Research Laboratory Stennis Space Center Bay St Louis, MS 39529-5004	1
11.	Dr. Thomas Curtin Office of Naval Research 800 North Quincy Street Arlington, VA 22217-5000	1
12.	LCDR John M. Elliott, USN USS Mariano G. Vallejo (SSBN 658) Blue FPO Miami 34093-2087	1
13.	Professor James F. Lynch Department of Applied Ocean Physics and Engineering Woods Hole Oceanographic Institution Woods Hole, MA 02543	1

