Mathematics for physics

@t-34400

May 14, 2023

1 Differentiation and partial differentiation

1.1 Lagrange multiplier

Problems 1.1. If there is a condition

$$g(\mathbf{x}) = c$$
 where c is constant (1)

on a variable $\mathbf{x} = (x_1, \dots, x_n)$, find the extrema of $f(\mathbf{x})$. Here, assume that both functions f, g belong to C^1 .

Solutions 1.1. Under the condition g(x), a infinitely small variations in variables dx satisfies equation:

$$\nabla g(\boldsymbol{x}) \cdot d\boldsymbol{x} = \sum_{i=1}^{n} \frac{\partial g}{\partial x_i} dx_i = 0$$
 (2)

so the change in f with respect to these variations in variables can be describe as follows:

$$df = \nabla f \cdot dx \tag{3}$$

$$= \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \mathrm{d}x_i \tag{4}$$

$$= \sum_{i=1}^{n-1} \frac{\partial f}{\partial x_i} dx_i + \frac{\partial f}{\partial x_n} \left(\frac{\partial g}{\partial x_n} \right)^{-1} \sum_{i=1}^{n-1} \frac{\partial g}{\partial x_i} dx_i$$
 (5)

$$= \sum_{i=1}^{n-1} \left(\frac{\partial f}{\partial x_i} + \lambda \frac{\partial g}{\partial x_i} \right) dx_i$$
 (6)

where $\lambda = \frac{\partial f}{\partial x_n} \left(\frac{\partial g}{\partial x_n} \right)^{-1}$. Since df = 0 on the constrained extrema of f for the arbitrary infinitesimal variations dx_1, \ldots, dx_{n-1} , the coefficients of $dx_i (i = 1, \ldots, n-1)$ must be zero:

$$\frac{\partial f}{\partial x_i} + \lambda \frac{\partial g}{\partial x_i} = 0 \quad \text{for} \quad x = 1, \dots, n - 1$$
 (7)

From the definition of λ , this equation holds for all i between 1 and n inclusive. Therefore, the extrema of a function $f(\mathbf{x})$ subject to constraints $g(\mathbf{x}) = c$ can be obtained by solving the extrema problem for $\tilde{f} = f - \lambda g$.

Problems 1.2. If there are two conditions:

$$\sum_{i=1}^{N} p_i = 1 \tag{8}$$

$$\sum_{i=1}^{N} p_i \epsilon_i = E \text{ (constant)}$$
(9)

on the variables $p_i\{i=1,\ldots,N\}$, find the stationary points of the following value:

$$S = -\sum_{i=1}^{N} p_i \log p_i \tag{10}$$

Solutions 1.2. Let \tilde{f} be

$$\tilde{f} = -\sum_{i=1}^{N} p_i \log p_i - \alpha \sum_{i=1}^{N} p_i - \beta \sum_{i=1}^{N} p_i \epsilon_i$$

$$\tag{11}$$

where α, β are the Lagrange multipliers. At the stationary points,

$$\frac{\partial \tilde{f}}{\partial p_i} = 0 \tag{12}$$

and then

$$-\log p_i - 1 - \alpha - \beta \epsilon_i = 0 \tag{13}$$

threfore

$$p_i = e^{-\alpha - 1} e^{-\beta \epsilon_i} \tag{14}$$

By determining α based on the first condition, we obtain

$$p_i = \frac{e^{-\beta \epsilon_i}}{\sum_{i=1}^N e^{-\beta \epsilon_i}} \tag{15}$$

 β can be determined based on the second condition

$$\frac{\sum_{i=1}^{N} \epsilon_i e^{-\beta \epsilon}}{\sum_{i=1}^{N} e^{-\beta \epsilon}} = E \tag{16}$$