Indian Institute of Technology Tirupati

Course: EE5106: Pattern Recognition & Machine Learning

Programming Assignment_2

Q.1 Go through the Datasets Uploaded and complete the following table:

S.No		1	2	3	4	5	6	7	8
	NAME OF THE DATASET								
1	Feature Vector Dimension								
2	No. of Classes								
3	Prior Prob. For Each class								
4	Mean Vector Dimension								
5	Covariance Matrix Dim.								

- **Q.2.** Select any one dataset. Then for each class select one feature and plot the 1D histogram i.e. p (x_k/w_i) for at least 3 classes where x_k is k^{th} feature of dataset. Repeat the same by selecting 2 features for at least 3 classes and plot the 2D histogram.
- **Q.3.** You need to perform Bayesian classification for the following Datasets. Before starting divide the data of each class into 70% data as training and 30% for testing.
- (a) Linearly Separable Data (3 Class Problem)

Text File has 1500 data points. First 500 data points belong to class_1, next 500 to class_2 and last 500 to class_3.Perform Bayesian Classification for the following cases:

- Case_1: Same Covariance Matrix for all the classes. Hint: Calculate ∑ by considering all data points.
- Case_2: Different Covariance Matrices. Hint: Calculate \sum_1 , \sum_2 and \sum_3 separately for each class.
- Case_3: Different Diagonal Covariance Matrices. Hint: Make $\sigma_{12} = \sigma_{21} = 0$ in covariance matrices generated in case_2.

NOTE: Plot Eigen vectors of Covariance Matrix and Contours in feature space for each case.

(**b**) Non Linearly Separable Data (2 class problem)

Two Text files for each class have been uploaded. Perform Bayesian Classification for Different Covariance Matrices case.

NOTE: Plot Eigen vectors of Covariance Matrix and Contours in feature space.

NOTE: You need to code yourself for building 2D Gaussian model. No inbuilt functions are allowed.

Sample Plots for Q.3.

Decision Boundary & Decision Surface

Eigen Vectors For Covariance Matrix