Exponential							
Exponential graph							
	y = 5 ^x			y = 5-x			
	y = 2 ^x			$y = 5^{-x}$ $y = 2^{-x}$			

Exponentia	ıl						
Exponential graph							
		$y = 5^x + 3$		y = 6*5x + 3			

Exponential

- 1. Using your calculator, sketch the following functions on the same set of axes, for $-5 \le x \le 5$ and $0 \le y \le 10$. Show all the axis intercepts and state the equation of the horizontal asymptote.
 - (a) (i) $y = 1.5^x$
- (ii) $y = 3^x$

Exponential

- 1. Using your calculator, sketch the following functions on the same set of axes, for $-5 \le x \le 5$ and $0 \le y \le 10$. Show all the axis intercepts and state the equation of the horizontal asymptote.
 - (b) (i) $y = 2 \times 3^x$
- (ii) $y = 6 \times 1.4^x$

Exponential

- 1. Using your calculator, sketch the following functions on the same set of axes, for $-5 \le x \le 5$ and $0 \le y \le 10$. Show all the axis intercepts and state the equation of the horizontal asymptote.
 - (d) (i) $y = 5 + 2^x$
- (ii) $y = 8 + 3^x$

Exponential

$$N = Ba^{\left(\frac{t}{k}\right)} + c$$

In this case, B represents how much N starts above the background level, so the initial value is B+c.

For
$$N = Ba^{\left(\frac{t}{k}\right)} + c$$
:

- the background level is c (i.e. the asymptote is N = c)
- the initial value is B+c
- k is the time taken for the difference between N and the background level to increase by a factor of a
- if a > 1 the function models exponential growth
- if 0 < a < 1 the function models exponential decay.

The temperature T, in degrees Celsius, of a cooling liquid is modelled by the equation $T = 24 + 72 \times 0.6^{3t}$, where t is the time in minutes after the cooling begins.

- (a) What was the initial temperature of the liquid?
- (b) Find the temperature of the liquid after 2 minutes.
- (c) How long does it take for the liquid to cool to 26°C?
- (d) What temperature does the model predict the liquid will eventually reach?

A population of bacteria in a culture medium doubles in size every 15 minutes. At 08:00 there are 1000 bacterial cells. Let N be the number of bacterial cells t hours after 08:00.

- (a) Write down a model for N in terms of t.
- (b) How many cells are there at
 - (i) 08:15?
 - (ii) 09:24?

% 6. The speed V (in metres per second) of a parachutist tseconds after jumping from an aeroplane is modelled by the equation

$$V = 40(1-3^{-0.1t})$$

- (a) Find the parachutist's initial speed.
- (b) What speed does the model predict that the parachutist [6 marks] will approach eventually?

7. The air temperature *T* (in degrees Celsius) around a light bulb is given by the equation

$$T = A + B \times 2^{-\frac{x}{k}}$$

where x is the distance in millimetres from the surface of the light bulb. The background temperature in the room is a constant 25°C, and the temperature on the surface of the light bulb is 125°C.

- (a) Suppose that the air temperature 3 mm from the surface of the bulb is 75°C. Find the values of A,B and k.
- (b) Determine the air temperature 2 cm from the surface of the bulb.
- (c) Sketch a graph of air temperature against distance from the surface of the bulb. [10 marks]

