PSALTer results panel $S = \iiint (\frac{1}{4} (-2a_{\dot{0}} \mathcal{A}_{\alpha\chi\beta} \mathcal{A}^{\alpha\beta\chi} + 2a_{\dot{0}} \mathcal{A}^{\alpha\beta\chi}_{\beta\chi} + 4 \mathcal{A}^{\alpha\beta\chi} \mathcal{W}_{\alpha\beta\chi} + 4 \mathcal{A}^{\alpha\beta\chi} \mathcal{W}_{\alpha\beta\chi} + 4 \mathcal{A}^{\alpha\beta} h_{\alpha\beta} + 2a_{\dot{0}} h^{\alpha\beta} \partial_{\beta} \mathcal{A}^{\chi}_{\alpha\chi} - 2a_{\dot{0}} h^{\alpha\beta} \partial_{\chi} \mathcal{A}^{\chi}_{\alpha\beta} - a_{\dot{0}} h^{\alpha}_{\alpha} \partial_{\chi} \mathcal{A}^{\beta\chi}_{\beta} + h_{\dot{0}} \partial_{\beta} \mathcal{A}^{\chi}_{\alpha\beta} \partial_{\chi} \mathcal{A}^{\beta\chi}_{\beta} + h_{\dot{0}} \partial_{\gamma} \mathcal{A}^{\beta\chi}_{\beta} \partial_{\chi} \mathcal{A}^{\beta\chi}_{\beta} + h_{\dot{0}} \partial_{\gamma} \mathcal{A}^{\beta\chi}_{\beta} \partial_{\chi} \mathcal{A}^{\chi}_{\beta} \partial_{\chi} \mathcal{A}^{\chi}_{\beta$

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities
$k^{0+}W_{s^{\perp t}} + 2i^{0+}T^{\perp} == 0$	$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} == \partial_{\chi} \partial_{\beta} \partial_{\alpha} \mathcal{W}^{\alpha\beta\chi}$	1
$2k {}^{1}\mathcal{W}_{s}^{h\alpha} + k {}^{1}\mathcal{W}_{s}^{t\alpha} + 6i {}^{1}\mathcal{T}^{\alpha} = 0$	$2 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{T}^{\beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \mathcal{W}^{\beta \alpha \chi} = 2 \partial_{\chi} \partial^{\chi} \partial_{\beta} \mathcal{T}^{\alpha \beta} + \partial_{\delta} \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{W}^{\beta \chi \delta}$	3
Total expected gauge generators:		4

Massive spectrum

Massive particle

Pole residue:	$\frac{75 a68 h.}{3 a. h2 h.^{2}} > 0$
Square mass:	$-\frac{3a}{\frac{h}{2}} > 0$
Spin:	1
Parity:	Odd

Massless spectrum

Massless particle

Pole residue:	$-\frac{p^2}{a} > 0$
Polarisations:	2

Unitarity conditions