TD réseau de neurones Gaston LENCZNER, Javiera CASTILLO NAVARRO, Guillaume VAUDAUX RUTH, Adrien CHAN-HON-TONG

Notation $relu(x) = max(x, \mathbf{0}) = [x]_+$.

- **Q1** On considère la fonction $f(x) = f((x_1 \ x_2)^T) = x_2 relu(x_1 x_2)$
- $\mathbf{Q1.1}$: déterminez les zones où f est positive vs négative.
- $\mathbf{Q1.2}$: écrivez cette fonction comme un MLP.

aide:
$$x = relu(x) - relu(-x)$$
 et si $x = (x_1 \ x_2)^T$ alors $x_1 = (1 \ 0)x$

Q2 même questions avec $g((x_1 \ x_2)^T) = x_2 + relu(x_1 - x_2)$ et $h((x_1 \ x_2)^T) = x_1 + relu(x_2 - x_1)$, que remarquez vous?

- **Q3** : chercher w_1, w_2, w_3, b tel que le réseau 1D $h(x, w) = w_1[x]_+ + w_2[x-1]_+ + w_3[x-2]_+ + b$ vérifie
 - -h(0,w) > 0 (par exemple 1)
 - -h(1, w) < 0 (par exemple -1)
 - -h(2, w) > 0 (par exemple 1)
 - -h(3,w) < 0 (par exemple -1)
- **Q4 :** Considérons la base de données $((0\ 2)^T,1), ((0\ -2)^T,1), ((2\ 0)^T,1), ((-2\ 0)^T,1), ((0\ 0)^T,-1),$ ainsi que les 2 réseaux
 - $-\psi(x) = [(0 \ 1)x]_{+} + [(0 \ -1)x]_{+} + [(1 \ 0)x]_{+} + [(-1 \ 0).x]_{+} 1$
 - $-\phi(x) = 2relu((-1 \ 1)x 1) + 2relu((1 \ -1)x 1) 1$
- **Q4.1**: Dessiner la base et donner la frontière de décision que vous considéreriez comme *naturelle* au vu de cette base de données.
 - Q4.2 : Montrez que les 2 réseaux apprennent la base par coeur.
 - Q4.3 : Donnez la structure de chaque réseau.
 - Q4.4 : Dessinez les zones positives et négatives.