MẬT MÃ ỨNG DỤNG TRONG AN TOÀN THÔNG TIN Bài 06. Chuẩn mật mã RSA

- Giới thiệu chung
 Khóa RSA và các phép biến đổi cơ sở
 Lược đồ mã hóa
 Lược đồ ký số
 Tiêu chuẩn tham số
- Giới thiệu chung
 Khóa RSA và các phép biến đổi cơ sở
 Lược đồ mã hóa
 Lược đồ ký số
 Tiêu chuẩn tham số

Thuật toán RSA nguyên thủy $c=m^e \bmod n$ $m=c^d \bmod n$ • Khóa công khai $K_p=(n,e)$ • Khóa bí mật $K_S=(n,d)$

PKCS#1. Ver 1.0-2.2. RSA Cryptography Standard

Tiêu chuẩn về RSA

TCVN 7635:2007. Tiêu chuẩn mật mã – Chữ kí số

Tiêu chuẩn về RSA

- Khóa RSA
- Hàm chuyển đổi dữ liệu cơ sở I2OSP, OS2IP
- Phép mã hóa, giải mã cơ sở RSAEP, RSADP
- Phép ký số và kiểm tra chữ ký số cơ sở RSASP, RSAVP
- Lược đồ mã hóa và giải mã
- Lược đồ ký số và kiểm tra chữ ký số
- Lược đồ định dạng (encode) dữ liệu
- Cú pháp ASN.1 để biểu diễn khóa và xác định lược đồ

Giới thiệu chung

- Khóa RSA và các phép biến đổi cơ sở
- Lược đồ mã hóa
- 4 Lược đồ ký số
- (5) Tiêu chuẩn tham số

Khóa RSA và các phép biến đổi cơ sở

□Khóa RSA

- Khóa công khai: $K_P = (n,e)$; $GCD(e,\lambda(n)) = 1$; $\lambda(n) = LCM(p-1,q-1)$
- Khóa bí mật dạng bộ 2: $K_s = (n,d); de \equiv 1 \mod \lambda(n)$

□Hàm chuyển đổi dữ liệu cơ sở

X = I2OSP(x, sLen),

I2OSP: Integer To Octet String Primitive

• Khóa bí mật dạng bộ 5: (p,q,dP,dQ,qInv); d>q; $q\cdot qInv\equiv 1 \mod p$ $e\cdot dP\equiv 1 \mod (p-1)$; $e\cdot dQ\equiv 1 \mod (q-1)$

Khóa RSA và các phép biến đối cơ sở

Khóa RSA và các phép biến đổi cơ sở

□Hàm chuyển đổi dữ liệu cơ sở

OS2IP: Octet String To Integer Primitive

$$x = OS2IP(X)$$

$$X = X_1 X_2 \dots X_{xLen};$$
 $x_{xLen-i} = X_i$
 $x = x_{xLen-1} 256^{xLen-1} + x_{xLen-2} 256^{xLen-2} + \dots + x_0$

□Ví du

X = 22AA33FF

$$x = 22_h \cdot 256^3 + AA_h \cdot 256^2 + 33_h \cdot 256 + FF_h$$

= $34 \cdot 256^3 + 170 \cdot 256^2 + 51 \cdot 256 + 255 = 581.579.775$

□Ví dụ

X = I2OSP(581.579.775, 6)

 $X = X_1 X_2 \dots X_{xLen}$

x = 581.579.775

 $= 00_h \cdot 256^5 + 00_h \cdot 256^4 + 22_h \cdot 256^3 + AA_h \cdot 256^2 + 33_h \cdot 256 + FF_h$

X = 000022AA33FF

10

x≥0

Khóa RSA và các phép biến đổi cơ sở

□Phép mã hóa, giải mã cơ bản

■ Mã hóa: c = RSAEP(K_P, m)

$$c = m^e \mod n$$

■ Giải mã: m = RSADP(K_s, c)

$$m = c^d \mod n$$

Giải mã dùng khóa bô 5:

$$m_1 = c^{dP} \mod p;$$
 $m_2 = c^{dQ} \mod q$
 $h = (qInv \cdot (m_1 - m_2)) \mod p$

$$m = m_2 + h \cdot q$$

Khóa RSA và các phép biến đổi cơ sở

□Phép ký và kiểm tra chữ ký cơ bản

• Ký: $s = RSASP(K_s, m)$

$$s = m^d \mod n$$

Ký dùng khóa bộ 5:

$$s_1 = m^{dP} \mod p;$$
 $s_2 = m^{dQ} \mod q$

$$h = (qInv \cdot (s_1 - s_2)) \bmod p$$

$$s = s_2 + h \cdot q$$

■ Kiểm tra chữ ký: m = RSAVP(K_P, s)

$$m == s^e \mod n$$

Lược đồ mã hóa và giải mã Lược đồ mã hóa RSAES-OAEP • Phép mã hóa cơ bản RSAEP • Phép giải mã cơ bản RSADP • Lược đồ định dạng dữ liệu EME-OAEP

Lược đồ mã hóa và giải mã

□Lược đô định dạng dữ liệu EME-OAEP

EM = EME-OAEP-ENCODE(M, L)

- EME = Encoding Method for Encryption
- OAEP = Optimal Asymmetric Encryption Padding
- M = Message, kích thước "bất kì"
- L = Label, có thể là xâu rỗng
- EM = Encoded Message, kích thước bằng k (octet), có tính ngẫu nhiên dù M cố định.
- Lược đổ sử dụng hàm băm Hash() và hàm sinh mặt na MGF()

Lược đồ kí và kiểm tra chữ kí

Lược đồ kí số RSASSA-PSS

- Phép kí số cơ bản RSASP
- Phép kiểm tra chữ kí số cơ bản RSAVP
- Lược đồ định dạng dữ liệu EMSA-PSS

Lược đồ kí và kiếm tra chữ kí

□Lược đô định dạng dữ liệu EMSA-PSS

EM = EMSA-PSS-ENCODE(M, emBits)

- Sử dụng: sLen, Hash, MGF
- EMSA = Encoding Method for Signature with Apendix
- PSS = Probabilistic Signature Scheme
- M = Message, kích thước bất kì
- emBits: độ dài bit tối đa của OS2IP(EM); tối thiểu là 8hLen + 8sLen + 9
- EM = Encoded Message, kích thước bằng emLen = 「emBits/8」 (octet)

Lược đồ kí và kiểm tra chữ kí Tạo chữ kí RSASSA-PSS-SIGN(Ks, M) 1. EM = EMSA-PSS-ENCODE(M, modBits-1) 2. m = OS2IP(EM) 3. s = RSASP(Ks, m) 4. S = I2OSP(s, k)

Yêu cầu đối với khóa RSA

- Theo TCVN 7635:2007
- Cặp khóa RSA dùng để ký thì không được dùng cho mục đích khác (ví dụ, mã hóa)
- Độ dài của mô-đun không được nhỏ hơn 1024 bít và thay đổi theo thời gian

Thời gian sử dụng	Security Strength	nLen
Tới năm 2010	80	1024
Tới năm 2020	112	2048
Sau năm 2020	128	3072
Sau năm 2020	128	3072

Yêu cầu đối với khóa RSA

• p, q ngẫu nhiên và

$$\sqrt{2} \left(2^{nLen/2-1} \right) \le q$$

$$p-q > 2^{(nLen/2)-(security_strength+20)}$$

- Từng số trong 4 số: p±1, q±1 phải có nhân tử nguyên tố lớn hơn $2^{secruity}$ strength+20
- Phải xác định e trước khi xác định d
- e là số lẻ và $65537 \le e < 2^{nLen-2 \cdot security_strength}$
- $d > 2^{nLen/2}$