

线性代数提高笔记

奇峰

之前

目录

第·	一章	行列式	3
	II.	求行列式的值	3
	III.	代数余子式	3
	IV.	抽象矩阵行列式	4
	V.	求行列式方程的根	6
第.	二章	矩阵	8
	VI.	求解与伴随矩阵相关的问题	8
	VII.	可逆矩阵的应用	9
	VIII.	初等变换与初等矩阵之间的关系	10
	IX.	求矩阵的秩	11
	X.	求解矩阵方程	12
	XI.	计算 n 阶矩阵高次幂	12
第.	三章	向量	14

概述

题型

线性代数的题目一般有三个选择题、一个填空题和一个12分大题。其中,选填部分主要涵盖

「行列式计算(特殊;抽象) 矩阵 (A^n, A^{-1}, A^*) 初等矩阵(左/右) 秩(性质) 相关性(系数、秩) 等价、相似、合同 惯性系数 $\begin{cases} \neg \dot{\psi}$ 变换 $p+q=r \end{cases}$

大题部分主要涵盖

一个中心

可以说秩是线性代数的一个中心。其常用于考虑下列问题。

$$\begin{cases} |A| = 0? \\ \exists A^{-1}? \\ A = (\alpha_i)$$
是否相关?
$$AX = 0$$
的基解?
$$A \sim B \\ p + q = r \end{cases}$$

一种方法

初等行变换是非常常用的一种方法, 其常用于求

$$A^{-1}$$
 极大无关组 方程组 求 $(\lambda_0 E - A)X = 0$ 求正交变换

第一章 行列式

定义与性质

I. 求行列式的值

- 用性质消零 (展开定义)
- 特殊行列式
 - 。 三角形
 - 。 范德蒙德行列式
 - 。 分块
- 特殊形状的行列式

II. 代数余子式

代数余子式 $A_{ij} = (-1)^{i+j} M_{ij}$. 注意,

- 其为 (n-1) 阶子式;
- 其线性组合 $\sum_{i} a_i A_k i$ 相当于将行列式第 k 行元素替换为 (a_i) ;

•
$$a_{i1}A_{j1} + a_{i2}A_{j2} + \dots + a_{in}A_{jn} = \begin{cases} D, & i = j \\ 0, i \neq j \end{cases}$$

• 伴随矩阵 $A^* = (A_{ij})^\top \stackrel{\triangle}{=} |\mathbf{A}| \cdot \mathbf{A}^{-1}$

对数值型矩阵 A, 求 A^* 时,可先求 |A| 并利用 $(A \\cdot E)$ $\xrightarrow{f \\cdot \\cd$

III. 抽象矩阵行列式

性质

ii.
$$|kA| = k^n |A|$$
, 其中 k 可以是行列式;
$$|A^\top| = A, |AB| = |A||B| = |B||A| = |BA|;$$

iii. 设
$$A$$
 可逆,则 A^* 可逆,且有
$$|A^*| = |A|^{n-1}; (A^*)^* = |A|^{n-2}A;$$

$$|(A^*)^*| = A^{(n-1)^2};$$

iv.
$$|A| = \prod \lambda_i; tr(A) = \sum a_{ii} = \sum \lambda_i;$$

v.
$$P^{-1}AP = B \Rightarrow |A| = |B|;$$

vi.
$$aA + bE$$
 不可逆 $\Leftrightarrow |aA + bE| = 0 \Rightarrow \exists \lambda_0 = \frac{-b}{a};$

vii.
$$AA^{\top} = A^{\top}A = E \Rightarrow |A| = \pm 1;$$

viii. 对可逆矩阵
$$A, |A + \alpha \beta^T| = |A|(1 + \beta^T A^{-1}\alpha);$$

对 $B = \alpha \beta^T, |\lambda E + \alpha \beta^T = \lambda^{n-1}(\lambda + \beta^\top \alpha);$

ix. 对
$$A_n$$
, 若 $A^2 = A$, $A \neq E$, 则有 $|A| = 0$.

- 反证
 假设 A 可逆,则 A²A⁻¹ = AA⁻¹ = E ⇒ A = E, 与题设矛盾,故 A 不可逆,因此 |A| = 0.
- 秩 $A^2 = A \Rightarrow A(A E) = O \Rightarrow r(A) + r(A E) \le n;$ $A \ne E \Rightarrow r(A E) > 0 \Rightarrow r(A) < n \Rightarrow |A| = 0.$

- 方程组 $A^2 = A \Rightarrow A(A E) = O; A \neq E \Rightarrow AX = O$ 存在非零解,因此 r(A) < n,即 |A| = 0.
- 特征值
 A(A E) = O = O(A E), A ≠ E, 因此 A 存在一特征值 λ₀ = 0, 此时 |A| = ∏ λ = 0.
 其中,对于第八条,
- i. 有分块乘法

$$\begin{pmatrix} E & -\alpha \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A & \alpha \\ -\beta^{\top} & 1 \end{pmatrix} = \begin{pmatrix} A + \alpha\beta^{\top} & 0 \\ -\beta^{T} & 1 \end{pmatrix}$$
 (i)
$$\begin{pmatrix} E & 0 \\ \beta^{\top}A^{-1} & 1 \end{pmatrix} \begin{pmatrix} A & \alpha \\ -\beta^{\top} & 1 \end{pmatrix} = \begin{pmatrix} A & \alpha \\ 0 & 1 + \beta^{T}A^{-1}\alpha \end{pmatrix}$$
 (ii)

显然 (i),(ii) 的两边也相等。此时对二者右边取得行列式,得到

$$|A + \alpha \beta^T| = |A|(1 + \beta^T A^{-1}\alpha)$$

考虑一个例子
$$D = \begin{pmatrix} x + a_1 & a_2 & \cdots & a_n \\ a_1 & x + a_2 & \cdots & a_n \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \cdots & x + a_n \end{pmatrix}$$
显然其可以被拆分为 $\begin{pmatrix} x & & & \\ & x & & \\ & & & \ddots & \\ & & & & x \end{pmatrix}$ 和 $\begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ a_1 & a_2 & \cdots & a_n \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \cdots & a_n \end{pmatrix}$

此时可令前者为 A, 后者为 $\alpha\beta^{\mathsf{T}}$.

- ii. $|\lambda E + \alpha \beta^{\top}| = |\lambda E (-\alpha \beta^{\top})|$, 此时视 $A = \lambda E$, 套用前述方法有 $|\lambda E + \alpha \beta^{\top}| = |\lambda E|(1 + \beta^T(\lambda E)^{-1}\alpha) = \lambda^n(1 + \frac{\beta^{\top}\alpha}{\lambda}) = \lambda^{n-1}(\lambda + \beta^{\top}\alpha)$. 注意,若有 $AB = O, B = (\beta_i)$, 则考虑
- $r(A) + r(B) \le n$;
- B 的列向量为 AX = O 的一组解;
- $A\beta_i = O = O\beta_i$, 此时 B 的列向量为 $\lambda_A = 0$ 的特征向量。

计算抽象行列式

计算抽象的行列式时,若其有法则,如 $A^{-1},A^{\top},A^*,$ 则利用其法则,若其无法则,则利用 $E=AA^{-1}$ 或 $E=AA^{\top}.$

对求 |A+B| 的情况,由于无法则,考虑添加 E,此时"一前一后,前者前,后者后。"对于

$$|A + B| = |E_1A + BE_2|$$
, E_1, E_2 都是单位矩阵

有

- E_1 在 A 前, E_2 在 B 后,此谓一前一后;
- E_1 拆时,考虑同在前面的 B, 即 $B^{-1}B$ 或 BB^{-1} , 此谓前者前;
- E_2 拆时,考虑同在后面的 A, 即 $A^{-1}A$ 或 AA^{-1} ,此谓后者后;

由行列式值求参数

需要加减•消元•出公因式。如

$$\begin{pmatrix} \lambda - 3 & 1 & -1 \\ 1 & \lambda - 5 & 1 \\ -1 & 1 & \lambda - 3 \end{pmatrix} \xrightarrow{\hat{\mathfrak{A}} = \widehat{\mathfrak{A}} - 1 \text{ fin } \widehat{\mathfrak{A}} \widehat{\mathfrak{A}} = -\widehat{\mathfrak{A}}} \begin{pmatrix} \lambda - 2 & 0 & 2 - \lambda \\ 1 & \lambda - 5 & 1 \\ -1 & 1 & \lambda - 3 \end{pmatrix}$$

此时可以从第一列提出系数 $\lambda - 2$.

IV. 求行列式方程的根

考察的方式可能为

- 讨论根的个数(行列式和最高次方)
- 根与系数的关系

对
$$f(x) = D = \sum_{i=0}^{n} a_i x^{n-i}$$
 及其根 x_i 有
$$\begin{cases} \sum x_i = -\frac{a_1}{a_0} \\ \prod (-x_i) = \frac{a_n}{a_0} \end{cases}$$

矩阵加边

对行列式 D_n , 显然

$$|D| = \begin{vmatrix} 1 & * & \cdots & * \\ -1 & * & \cdots & * \\ 0 & \square & \square & \square \\ \vdots & \square & D & \square \\ 0 & \square & \square & \square \end{vmatrix}$$

其中,为*的部分可以为任意值,因此可以按题面设置易于计算的值。另外,加入的一行具体在哪一行都可以。

也可以通过加边构造行列式,使得其虽然不等于原式,但能通过性质辅助计算。如证明

$$D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ a_1^1 & a_2^1 & a_3^1 & a_4^1 \\ a_1^2 & a_2^2 & a_3^2 & a_4^2 \\ a_1^4 & a_2^4 & a_3^4 & a_4^4 \end{vmatrix} = \sum a_i \prod (a_i - a_j)$$

可以将其变为

$$f(x) = \begin{vmatrix} x^0 & 1 & 1 & 1 & 1 \\ x^1 & a_1^1 & a_2^1 & a_3^1 & a_4^1 \\ x^2 & a_1^2 & a_2^2 & a_3^2 & a_4^2 \\ x^3 & a_1^2 & a_2^2 & a_3^2 & a_4^2 \\ x^4 & a_1^4 & a_2^4 & a_3^4 & a_4^4 \end{vmatrix} \leftarrow$$
增补行

并按照第一列展开,此时 x^3 的系数 A_3 正好为 -|D|,而 x^4 的系数 A_4 为范德蒙德行列式,值为 $\prod (x_i-x_j)$,由前述结论, $\sum a_i=-\frac{A_3}{A_4}$,整理即得到结论。

第二章

矩阵

$$\begin{cases} AB \neq BA; (kE, A^{-1}, A^*, A^T \Leftrightarrow A) \\ AB = 0 \Leftrightarrow A = 0 \text{ od } B = 0; A^2 = 0 \text{ 同理} \\ AB = AC \Rightarrow B = C, \text{ 当且仅当}A \text{ 可逆时成立} \end{cases}$$
 特殊矩阵 $-E, \Lambda, A^T = A, AA^T = E$ 件随矩阵 A^*
$$\begin{cases} 定义 \\ \text{可逆矩阵} \end{cases}$$
 求法
$$\text{证明}A \text{ 可逆}$$
 初等矩阵(逆,变换) 秩(性质)
$$\text{应用} \begin{cases} \text{矩阵} 方程 \\ \vec{x}A^n \end{cases}$$

V. 求解与伴随矩阵相关的问题

$$\begin{cases} 求 A^* \begin{cases} 定义法 - A^* = (A_{ij})^\top \\ 公式法 - A^* = |A|A^{-1} \end{cases} \\ \{ AA^* = A^*A = |A|E(可推广为\Delta\Delta^* = \Delta^*\Delta = |\Delta|E) \\ (kA)^* = k^{n-1}A^* \\ (A^*)^* = |A|^{n-2}A \\ |A^*| = |A|^{n-1} \\ |(A^*)^*| = |A|^{(n-1)^2} \\ A^{-1,\top,*}之间可以互换,如(A^{-1})^\top = (A^\top)^{-1} \end{cases}$$

矩阵行列和的结论

对矩阵 A, 若其每行元素和均为 k, 则有 $A(1,1,1)^{\top} = (k,k,k)^{\top} = k(1,1,1)^{\top}(\lambda \alpha)$; 若为每列元素和均为 k, 有 (1,1,1)A = (k,k,k), 转置后与前者相同。

右乘/左乘 A^* , 可以求伴随矩阵的行/列和。

关于伴随矩阵和转置矩阵的结论

- $\forall (i,j), a_{ij} = A_{ij} \Leftrightarrow A^* = A^\top \Leftrightarrow AA^T = E \perp |A| = 1;$
- $\forall (i,j), a_{ij} = -A_{ij} \Leftrightarrow A^* = -A^\top \Leftrightarrow AA^T = E \ \mathbb{H} \ |A| = -1;$ 也可以使用矩阵表达式替代 A.

VI. 可逆矩阵的应用

$$\begin{cases} AB = BA = kE(\text{此时}A^{-1} = \frac{1}{k}B) \\ |A| \neq 0 \\ r(A) = n \\ A \text{的列向量线性无关} \\ AX = 0 \text{仅有零解} \\ AX = b \text{有唯一解} \\ \forall \lambda, \lambda \neq 0 \end{cases}$$
 可逆矩阵的计算
$$\begin{cases} \text{id} \quad \begin{cases} AB = E \\ AB = E \\ AB = E \end{cases} \\ \text{时候 } \begin{cases} (A^{-1})^{-1} = A \\ (kA)^{-1} = \frac{1}{k}A^{-1} \\ (AB)^{-1} = B^{-1}A^{-1} \end{cases} \\ \text{低阶 } (2\text{-}3) - A^{-1} = \frac{1}{|A|}A^* \\ \text{初等变换 } - (A:E) \xrightarrow{\text{free}} (E:A^{-1}) \\ \text{分块矩阵} \end{cases}$$

分块矩阵求逆

- 主对角分块

。 仅在主对角上非零的分块
$$\begin{pmatrix} B & O \\ O & C \end{pmatrix}^{-1} = \begin{pmatrix} B^{-1} & O \\ O & C^{-1} \end{pmatrix}$$

。 仅"缺一块"的分块

先写逆矩阵的对角部分,同行同列根据逆矩阵寻找。

万法为"左来问行,石来问列"。先与
$$\begin{pmatrix} B & D \\ O & C \end{pmatrix}^{-1} = \begin{pmatrix} B^{-1} & -B^{-1}DC^{-1} \\ O & C^{-1} \end{pmatrix}$$
$$\begin{pmatrix} B & O \\ D & C \end{pmatrix}^{-1} = \begin{pmatrix} B^{-1} & O \\ -C^{-1}DB^{-1} & C^{-1} \end{pmatrix}$$

• 副对角分块

副对角分块取逆时,要交换对角的元素。

。 仅在副对角上非零的分块

$$\begin{pmatrix} O & B \\ C & O \end{pmatrix}^{-1} = \begin{pmatrix} O & C^{-1} \\ B^{-1} & O \end{pmatrix}$$

o 仅"缺一块"的分块
$$\begin{pmatrix} O & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} -B^{-1}DC^{-1} & C^{-1} \\ B^{-1} & O \end{pmatrix}$$
$$\begin{pmatrix} D & B \\ C & O \end{pmatrix}^{-1} = \begin{pmatrix} O & C^{-1} \\ B^{-1} & -C^{-1}DB^{-1} \end{pmatrix}$$

可交换矩阵的结论

- 线性组合 $AB = aA + bB \Rightarrow AB = BA$;
- 一元二次形式 $A^2 + aAB = E \Rightarrow AB = BA$;

证明的思路是,因为可逆矩阵可交换,因此构造互逆矩阵。

其中,对前者,

$$AB = aA + bB \Rightarrow A(B - aE) - bB = O$$

$$\Rightarrow A(B - aE) - b(B - \mathbf{aE} + \mathbf{aE}) = O$$

$$\Rightarrow (A - bE)(B - aE) = abE$$

$$\Rightarrow (B - aE)(A - bE) = abE$$

展开,可以证明结论。

VII. 初等变换与初等矩阵之间的关系

初等矩阵左乘做行变换, 右乘做列变换。其有三种, 为

	符号	行列式	逆
交换	E_{ij}	-1	$E_{ij}(k)$
倍乘	$E_i(k)$	k	$E_i(1/k)$
倍加	$E_{ij}(k)$	1	$E_{ij}(-k)$

利用性质计算矩阵

有例子

$$E_{12}A = B \Rightarrow \begin{cases} -|A| = |B| \\ A^{-1}E_{12} = B^{-1} \end{cases}$$
$$\Rightarrow -|A|A^{-1}E_{12} = |B|B^{-1}$$
$$\Rightarrow -A^*E_{12} = B^*$$

VIII. 求矩阵的秩

秩的求解

性质

- 对 $A_{m \times n}$, 有 $r(A) = r(A \top A) = r(AA^{\top}) = r(A^{\top}) = r(kA)$.
 - 。 证明 $r(A^{T}A) = r(A)$ 利用同解方程组。

$$A^{\top}AX = O \Rightarrow X^{\top}A^{\top}AX = O$$
$$\Rightarrow (AX)^{\top}AX = O$$
$$\Rightarrow |AX| = 0$$
$$\Rightarrow AX = O$$

$$AX = O \Rightarrow A^{\top}AX = O$$

因此 $A 与 A^{T}A$ 同解,故其秩相等。

- $r(A_{m \times n}) \leq \min(m, n)$.
- $r(AB) \le r(A); r(AB) \le r(B)$. 对前者, B 可逆时等号成立。
- $r(A:B) \le r(A) + r(B)$; $r(A) \le r(A) + r(B)$
- 对矩阵 $A_{m \times n}, B_{n \times s}, AB = O$, 有 $r(A) + r(B) \le n$, 此即所谓"前看列,后看行"。判断有关于行/列和秩的问题时,都应考虑这一句。

 $AB = O \Rightarrow B$ 的列向量 β_i 是 AX = O 的一组解, 此时 $r(\beta_i) = r(B) \le n - r(A) \Rightarrow r(A) + r(B) \le n$.

• 对
$$A_n$$
, 其伴随矩阵的秩 $r(A^*) = \begin{cases} n, & r(A) = n \\ 1, & r(A) = n - 1 (n \ge 2) \\ 0, & r(A) < n - 1 \end{cases}$

•
$$r \begin{pmatrix} A & O \\ O & B \end{pmatrix} = r(A) + r(B)$$

• 若
$$P,Q$$
 可逆,则有 $r(PA) = r(AQ) = r(PAQ) = r(A)$ 若 $P(PAQ) = r(A)$ 若 $P(PAQ) = r(A)$ 若 $P(PAQ) = r(A)$ 表 第 等价。

- 对 $A_{m \times n}$, 若其行满秩,则 $r(A) = m, A \sim (E_m, O)$.
- $\forall A_{m \times n}, r(A) = n \Rightarrow r(AB);$ r(A) = m, r(BA) = r(B).
 - 。 证明前者成立

$$r(B) \le r(AB) \le r(A^{-1}AB) = r(B), \text{ if } r(AB) = r(B).$$

关于矩阵可因式分解的一元二次式的结论

- $A^2 = A \Rightarrow r(A) + r(A E) = n$.
- $A^2 = E \Rightarrow r(A E) + r(A + E) = n$.
 - 。 证明后者成立

$$(A-E)(A+E) = 0 \Rightarrow n \ge r(A-E) + r(A+E) = r(A-E) + r(-(\mathbf{A} - \mathbf{E})) \ge r(2E) = n$$
$$\Rightarrow r(A-E) + r(A+E) = n$$

事实上,对于 A 的一元二次式,若其可因式分解,则分解后的因式都满秩。

IX. 求解矩阵方程

可逆矩阵

- $\bullet \quad AX = C \Rightarrow X = A^{-1}C$
- $XA = C \Rightarrow X = CA^{-1}$
- $AXB = C \Rightarrow X = A^{-1}CB^{-1}$

不可逆矩阵

此时需要将其转化为方程组。

- $AX = C \Rightarrow A(X_i) = (C_i)$, 其中 X_i, C_i 是对应矩阵的列向量,解得到的 n 个非齐次方程组即可。
- $XA = C \Rightarrow A^{\top}X^{\top} = C^{\top}$, 然后同上。

X. 计算 n 阶矩阵高次幂

- 归纳运算。
- r(A) = 1 时,有 $A^n = tr(A)^{n-1}A$.

$$\bullet \ \ A = \begin{pmatrix} 0 & a & b \\ & 0 & c \\ & & 0 \end{pmatrix} \Rightarrow A^2 = \begin{pmatrix} & & ac \\ & & \\ & & \end{pmatrix}, A^{n \geq 3} = O.$$

• 相似性

若 $P^{-1}AP = B$, 则有 $P^{-1}A^nP = B^n$, 其中 P 不变,

第三章

向量

```
\begin{cases} &\text{RW}矩阵运算规律\\ &\text{内积 } (\alpha,\beta) = \alpha^{\top}\beta = \beta^{\top}\alpha(=tr(A))\\ &\text{两向量内积为零时,两向量正交}\\ &\text{正交矩阵} \end{cases} \\ &\text{柜 } \left\{ \begin{array}{c} &\text{单位 - 任意列向量为单位向量}\\ &\text{正交 - 任意两列向量正交} \end{array} \right. \\ \\ &\text{相 } \text{大性} \left\{ \begin{array}{c} &\text{定义}\\ &\text{判定} \end{array} \right. \\ &\text{传量组表示}\\ &\text{传量组等价}\\ &\text{KK} \end{array} \right. \\ &\text{KK} \\ &\text{KK} \end{cases}
```