

Lecture # 4.2 CHE331A

- Reaction rate is a function of concentration and temperature
- Basic definition about reactions
- Molecularity, order, elementary and non-elementary reactions
- Irreversible and reversible reactions
- Rate and Equilibrium constants

GOUTAM DEO
CHEMICAL ENGINEERING DEPARTMENT
IIT KANPUR

Reaction rate constant, *k*, is often concentration independent

- Also called specific reaction rate or rate constant, units depend on the reaction
 - o for nth order the units of k is $\frac{(concentration)^{1-n}}{time}$
- Strongly dependent on temperature
- ▶ For gaseous system: k(T) may depend on total pressure
- ▶ Liquid systems: k(T) may depend on ionic strength & choice of solvent

Rate constant is one of the temperature dependent terms, $-r_A = f(T, C_i)$

- Strong dependence on temperature given by Arrhenius Equation
- $\blacktriangleright k(T) = A. exp(^{-E}/_{RT})$
 - $_{\odot}$ A is the pre-exponential factor or frequency factor (order of 10¹³ s⁻¹)
 - $_{\circ}$ E is the activation energy of the reaction
 - T is the temperature and R the universal gas constant
- ► Exceptions are free radicals that react immediately on collisions
- Depends on the presence of catalyst

Activation energy is required by most reactions

- Activation energy is required (some reasons)
 - Molecules need energy to distort or stretch bonds so that bonds break and/or new bonds are formed
 - Overcome stearic and electronic repulsion forces as the reacting molecules come close together

- $\triangleright A + BC \rightleftharpoons AB + C$
- ▶ Transition state, A B C

Energy of molecules are distributed at temperature T

- At T_2 , the fraction of molecules having energy is larger at E_a
 - \rightarrow the rate $(-r_A)$ increases
- The activation energy is determined experimentally by carrying out the reaction at different temperatures $\frac{E(I)}{I} = \frac{I}{I} \frac{A}{I} = \frac{E(I)}{I}$

$$lnk = lnA - \frac{E}{R} \left(\frac{1}{T}\right)$$

ightharpoonup ightharpoonup plot lnk versus $\frac{1}{T}$ to determine $\frac{E}{R}$

Equilibrium constant is also temperature dependent

- $ightharpoonup \Delta G = -RTln(K_a)$, where K_a is the true equilibrium constant in terms of activity, a_i , and is dimensionless
- $a_i = \frac{f_i}{f_i^0}$ where f_i is the fugacity of the species i in the mixture and f_i^0 is the fugacity of i in the standard state
- The temperature dependency of the equilibrium constant is given by van't Hoff equation

$$\frac{\partial lnK_a}{\partial T} = \frac{\Delta H_{Rxn}}{RT^2}$$

- ▶ Change in $K_a(T)$ with temperature depends ΔH_{Rxn}
 - Decreases with increasing temperature for exothermic reactions
 - Increases with increasing temperature for endothermic reactions

Other equilibrium constants defined from K_a

- ▶ Reaction given by: $A + \frac{b}{a}B \rightleftharpoons \frac{c}{a}C + \frac{d}{a}D$
- ► For liquid systems: $K_a = K_{\gamma}K_{\chi}$ correction factor \rightarrow 1
- ▶ For gaseous systems: $K_a = K_{\varphi}K_yP^{\delta} = K_{\varphi}K_{P_i}$ with P or P_i in atm.
- ▶ Further, for ideal gas systems: $P_i = C_i RT$ and $K_P = K_C (RT)^{\delta}$
 - \circ with $\delta = \frac{d}{a} + \frac{c}{a} \frac{b}{a} 1$
- ▶ If k(T) and $K_C(T)$ are known at a particular temperature, T_0 , they can be determined at another temperature, T, if E and ΔH_{Rxn} are known