1	2	3	4

Calificación

ÁLGEBRA LINEAL Segundo parcial — 12 de diciembre de 2020

1. Sea $A \in \mathbb{R}^{4 \times 4}$ la matriz

$$A = \begin{pmatrix} -1 & 4 & 0 & -4 \\ 0 & -1 & 0 & 0 \\ 0 & -3 & 2 & 0 \\ 0 & -4 & 0 & 3 \end{pmatrix}.$$

- (a) Probar que existe $B \in \mathbb{C}^{4 \times 4}$ tal que $B^2 = A$ y m_B tiene grado 4.
- (b) Probar que existe $C \in \mathbb{R}^{4 \times 4}$ tal que $C^2 = A$.

Nota: no hace falta calcular explícitamente las matrices $B \ y \ C$.

2. Sea $A \in \mathbb{C}^{4 \times 4}$ una matriz *no diagonalizable* tal que

$$A^4 + 3A^3 - 4A = 0$$
 y $rg(A) < 4$.

- (a) Probar que si $B \in \mathbb{C}^{4\times 4}$ es una matriz que cumple las mismas tres condiciones y además $\operatorname{tr}(A) = \operatorname{tr}(B)$, entonces A y B son semejantes.
- (b) Mostrar que la afirmación de (a) es falsa sin la hipótesis de "no diagonalizable".
- 3. Sea Φ un producto interno en \mathbb{R}^3 cuya matriz en la base canónica es

$$[\Phi]_E = \begin{pmatrix} a & 0 & 2 \\ 0 & b & -3 \\ 2 & -3 & 3 \end{pmatrix}.$$

(a) Hallar los valores de $a \ y \ b$ sabiendo que

$$\|(1,1,0)\| = \sqrt{13}$$
 y $(1,0,0) \perp (1,0,-2)$.

- (b) Para este producto interno, hallar una base ortonormal de $\langle (1,0,0) \rangle^{\perp}$.
- **4.** Sea $L \subseteq \mathbb{R}^2$ la recta de ecuación $x+y=\sqrt{2}$, y sea P=(0,1/3). Hallar una transformación ortogonal $f:\mathbb{R}^2\to\mathbb{R}^2$ tal que d(P,f(L))=2/3. ¿Es f única?