ASSIGNMENT 9

0.65^X y

PAGE 1

1. (a) =
$$\lim_{x \to \infty} x^3 = \infty$$

(b) =
$$\lim_{x \to -\infty} x^3 = -\infty$$

(c) =
$$\lim_{x\to\infty} x^2 = \infty$$

$$(y) = \lim_{x\to -a} x_3 = \infty$$

(9)

$$lim = 00$$

(b)
$$\lim_{x\to a} 3.76^{-x} = \lim_{x\to a} \frac{1}{3.76^{x}} = \frac{1}{\infty} = 0$$

(c)
$$\lim_{x\to\infty} e^{-x^2} = e^{-(\infty)^2} = e^{-\infty} = 0$$

(4)
$$\lim_{x\to -\infty} e^{-x^2} = e^{(-\infty)^2} = e^{-\infty} = 0$$

(e)
$$\lim_{x\to a} \ln(x-100) = \ln(\infty) = \infty$$

(f)
$$\lim_{x\to\infty} \ln\left(\frac{x}{10}\right) = \ln(\infty) = \infty$$

3.(a)
$$\lim_{x\to\infty} 1^x = \lim_{x\to\infty} 1 = 1$$

(b)
$$\lim_{x\to\infty} \ln(1-x^5) = \ln(1-\infty) = \ln(-\infty) = dne$$

(c)
$$\lim_{x\to -\infty} \ln(1-x^5) = \ln(1-(-\infty)) = \ln(\infty) = \infty$$

(d)
$$\lim_{x\to\infty} \sqrt{\frac{x}{10}} = \sqrt{\infty} = \infty$$

(f)
$$\lim_{x\to a} e^{x^2-x-4} = \lim_{x\to a} e^{x^2} = e^{a} = \infty$$

(9)
$$\lim_{x \to \infty} e^{-x^2 - x + 44} = \lim_{x \to \infty} e^{-x^2} = e^{-x} = 0$$

X	7000X5	0.03x3
Ö	0	0
700	107	0,03.10
703	103	0.03.10
104	10.	0.03.10
105	1013	0.03.1035
\		= 3.1013
	2	

 $if x = 10_Z$ 0.03 $x_3 > 1000x_S$

aw	swa: 0.03x.
(6)	44 11 x2
•	46
	answer: ale x

ΧJ	x2	eo.lx PAGE4
0	0	1
4	7	4.4
2	4	1.22
10	700	e=2.718
50	2500	148.41
100	10000	22,026.47

answa: e0.1x

100

50

answa: X

	30		PAGE 5
X	1 UX	lnx	•
1	1	0	
10	2.15	2.30	2 —
100	4.64	4.60	シメ
200	C.69	5.70	

X	LOEX	e1.2X	
0	10	1	
7	27.18	3.32	_1.2x
10	2.2.105	1.65.702	2
15	3.2-107	3.32 4.62.10 ⁵ 6.6.10 ⁷	
	1		

$$5.(a) = \lim_{x \to a} \frac{-3x^3}{2x^3} = -\frac{3}{2}$$

(b) =
$$\lim_{x \to \infty} \frac{1.4 \times^2}{24 \times^3} = \frac{1.4}{24} \cdot \lim_{x \to \infty} \frac{1}{x} = 0$$

(c) =
$$\lim_{x \to \infty} \frac{0.001 x^4}{20000 x^3} = \lim_{x \to \infty} x \cdot (\frac{0.001}{20000}) = \infty$$

$$(d) = \lim_{x \to \sigma} \left(\ln \frac{2x^4 + 1}{x^2 - 13} \right) = \lim_{x \to \sigma} \left(\ln \frac{2x^4}{x^2} \right)$$

answer: X-2

人	1×2	10.1×-1	
12550	0.25	0.1 0.05 0.02 0.01 0.005	×-2

(c) 3	_	X-ro		
	1	20	±> So	X

×	1 x 10	ē	
1	1	0.37	
5	1.0.10+	700,0	e-X
20	8.10gg	2-10-9	-
50	1.10-14	1.9.10-22	
	1		

2-2X

Quod to land: if x70 exc1 | ex ex. excex a e2x Lex!

(a)
$$\lim_{x \to \infty} \frac{e^{x} - e^{x}}{2e^{x} + e^{x}} = \lim_{x \to \infty} \frac{\frac{e^{x}}{e^{x}} - \frac{e^{-x}}{e^{x}}}{\frac{2e^{x}}{e^{x}} + \frac{e^{x}}{e^{x}}}$$

= $\lim_{x \to \infty} \frac{1 - e^{-2x}}{2e^{-2x} + 1} = \frac{1 - e^{-\infty}}{2e^{-\infty} + 1} = \frac{1 - 0}{0 + 1} = 1$

(b)
$$\lim_{x\to -\infty} \frac{e^{x}-e^{-x}}{2e^{x}+e^{x}} = \{ \text{divide by } e^{-x} \}$$

$$= \lim_{x \to -\infty} \frac{e^{x} - 1}{2 + e^{2x}} = \frac{e^{-\infty} - 1}{2 + e^{-\infty}} = -\frac{1}{2}$$

[note:
$$\frac{e^{x}}{e^{-x}} = e^{x-(-x)} = e^{2x}$$
]