Contents

1. Combinatorial methods	2	_
2. Fourier-analytic techniques	;	
3. Probabilistic tools	[-
4. Further topics	[

1. Combinatorial methods

Definition. Let G be an abelian group and $A, B \subseteq G$. The sumset of A and B is

$$A + B := \{a + b : a \in A, b \in B\}.$$

The **difference set** of A and B is

$$A - B := \{a - b : a \in A, b \in B\}.$$

Proposition. $\max\{|A|, |B|\} \le |A + B| \le |A| \cdot |B|$.

Proof. Trivial.

Example. Let $A = [n] = \{1, ..., n\}$. Then $A + A = \{2, ..., 2n\}$ so |A + A| = 2|A| - 1.

Lemma. Let $A \subseteq \mathbb{Z}$ be finite. Then $|A + A| \ge 2|A| - 1$ with equality iff A is an arithmetic progression.

Proof (Hints). Consider two sequences in A + A which are strictly increasing and of the same length.

Proof.

- Let $A=\{a_1,...,a_n\}$ with $a_i < a_{i+1}$. Then $a_1+a_1 < a_1+a_2 < \cdots < a_1+a_n < a_2+a_n < \cdots < a_n+a_n$.
- Note this is not the only choice of increasing sequence that works, in particular, so does $a_1+a_1 < a_1+a_2 < a_2+a_2 < a_2+a_3 < a_2+a_4 < \cdots < a_2+a_n < a_3+a_n < \cdots < a_n+a_n$.
- So when equality holds, all these sequences must be the same. In particular, $a_2 + a_i = a_1 + a_{i+1}$ for all i.

Lemma. If $A, B \subseteq \mathbb{Z}$, then $|A + B| \ge |A| + |B| - 1$ with equality iff A and B are arithmetic progressions with the same common difference.

Proof (Hints). Similar to above, consider 4 sequences in A + B which are strictly increasing and of the same length.

Example. Let $A, B \subseteq \mathbb{Z}/p$ for p prime. If $|A| + |B| \ge p + 1$, then $A + B = \mathbb{Z}/p$.

Proof (Hints). Consider $A \cap (g - B)$ for $g \in \mathbb{Z}/p$.

Proof.

- $g \in A + B$ iff $A \cap (g B) \neq \emptyset$ where $(g B = \{g\} B)$.
- Let $g \in \mathbb{Z}/p$, then use inclusion-exclusion on $|A \cap (g-B)|$ to conclude result.

Theorem (Cauchy-Davenport). Let p be prime, $A, B \subseteq \mathbb{Z}/p$ be non-empty. Then

$$|A + B| \ge \min\{p, |A| + |B| - 1\}.$$

Proof (Hints).

- Assume $|A| + |B| , and WLOG that <math>1 \le |A| \le |B|$ and $0 \in A$ (by translation).
- Induct on |A|.
- Let $a \in A$, find B' such that $0 \in B'$, $a \notin B'$ and |B'| = |B| (use fact that p is prime).
- Apply induction with $A \cap B'$ and $A \cup B'$, while reasoning that $(A \cap B') + (A \cup B') \subseteq A + B'$.

Proof.

- Assume $|A| + |B| , and WLOG that <math>1 \le |A| \le |B|$ and $0 \in A$ (by translation).
- Use induction on |A|. |A| = 1 is trivial.
- Let $|A| \geq 2$ and let $0 \neq a \in A$. Then since p is prime, $\{a, 2a, ..., pa\} = \mathbb{Z}/p$.
- There exists $m \ge 0$ such that $ma \in B$ but $(m+1)a \notin B$ (why?). Let B' = B ma, so $0 \in B'$, $a \notin B'$ and |B'| = |B|.
- $1 \le |A \cap B'| < |A|$ (why?) so the inductive hypothesis applies to $A \cap B'$ and $A \cup B'$.
- Since $(A \cap B') + (A \cup B') \subseteq A + B'$ (why?), we have $|A + B| = |A + B'| \ge |(A \cap B') + (A \cup B')| \ge |A \cap B'| + |A \cup B'| 1 = |A| + |B| 1$.

Example. Cauchy-Davenport does not hold general abelian groups (e.g. \mathbb{Z}/n for n composite): for example, let $A = B = \{0, 2, 4\} \subseteq \mathbb{Z}/6$, then $A + B = \{0, 2, 4\}$ so $|A + B| = 3 < \min\{6, |A| + |B| - 1\}$.

Example. Fix a small prime p and let $V \subseteq \mathbb{F}_p^n$ be a subspace. Then V + V = V, so |V + V| = |V|. In fact, if $A \subseteq \mathbb{F}_p^n$ satisfies |A + A| = |A|, then A is an affine subspace (a coset of a subspace).

Proof. If $0 \in A$, then $A \subseteq A + A$, so A = A + A. General result follows by considering translation of A.

Example. Let $A \subseteq \mathbb{F}_p^n$ satisfy $|A + A| \leq \frac{3}{2} |A|$. Then there exists a subspace $V \subseteq \mathbb{F}_p^n$ such that $|V| \leq \frac{3}{2} |A|$ and A is contained in a coset of V.

Proof. Exercise (sheet 1). \Box

Definition. Let $A, B \subseteq G$ be finite subsets of an abelian group G. The **Ruzsa** distance between A and B is

$$d(A,B)\coloneqq\log\frac{|A-B|}{\sqrt{|A|\cdot|B|}}.$$

Lemma (Ruzsa Triangle Inequality). Let $A, B, C \subseteq G$ be finite. Then

$$d(A,C) < d(A,B) + d(B,C).$$

Proof.

• Note that $|B| |A-C| \le |A-B| |B-C|$. Indeed, writing each $d \in A-C$ as $d=a_d-c_d$ with $a_d \in A, c_d \in C$, the map $\varphi: B \times (A-C) \to (A-B) \times (B-C), \varphi(b,d) = (a_d-b,b-c_d)$ is injective (why?).

• Triangle inequality now follows from definition of Ruzsa distance.

Definition. The doubling constant of finite $A \subseteq G$ is $\sigma(A) := |A + A|/|A|$.

Definition. The difference constant of finite $A \subseteq G$ is $\delta(A) := |A - A|/|A|$.

Remark. The Ruzsa triangle inequality shows that

$$\log \delta(A) = d(A, A) \le d(A, -A) + d(-A, A) = 2\log \sigma(A).$$

So
$$\delta(A) \le \sigma(A)^2$$
, i.e. $|A - A| \le |A + A|^2/|A|$.

Notation. Let $A \subseteq G$, $\ell, m \in \mathbb{N}_0$. Then

$$\ell A + mA := \underbrace{A + \dots + A}_{\ell \text{ times}} \underbrace{-A - \dots - A}_{m \text{ times}}$$

This is referred to as the **iterated sum and difference set**.

Theorem (Plunnecke's Inequality). Let $A, B \subseteq G$ be finite and $|A + B| \le K|A|$ for some $K \ge 1$. Then $\forall \ell, m \in \mathbb{N}_0$,

$$|\ell B - mB| \le K^{\ell + m} |A|.$$

Proof.

- Choose $\emptyset \neq A' \subseteq A$ which minimises |A' + B|/|A'|. Let the minimum value by K'.
- Then |A'+B|=K'|A'|, $K'\leq K$ and $\forall A''\subseteq A$, $|A''+B|\geq K'|A''|$.
- Claim: for every finite $C \subseteq G$, $|A' + B + C| \le K'|A' + C|$:
 - Use induction on |C|. |C| = 1 is true by definition of K'.
 - Let claim be true for C, consider $C' = C \cup \{x\}$ for $x \notin C$.
 - $A' + B + C' = (A' + B + C) \cup ((A' + B + x) (D + B + x))$, where $D = \{a \in A' : a + B + x \subseteq A' + B + C\}$.
 - By definition of K', |D+B| > K'|D|. Hence,

$$\begin{split} |A'+B+C| &\leq |A'+B+C| + |A'+B+x| - |D+B+x| \\ &\leq K'|A'+C| + K'|A'| - K'|D| \\ &= K'(|A'+C| + |A'| - |D|). \end{split}$$

- Applying this argument a second time, write $A' + C' = (A' + C) \cup ((A' + x) (E + x))$, where $E = \{a \in A' : a + x \in A' + C\} \subseteq D$.
- Finally,

$$|A' + C'| = |A' + C| + |A' + x| - |E + x|$$

$$\ge |A' + C| + |A'| - |D|.$$

- We first show that $\forall m \in \mathbb{N}_0, |A' + mB| \leq (K')^m |A'|$ by induction:
 - m = 0 is trivial, m = 1 is true by assumption.

• Suppose $m-1 \ge 1$ is true. By the claim with C=(m-1)B, we have

$$|A'+mB| = |A'+B+(m-1)B| \le K'|A'+(m-1)B| \le (K')^m|A'|.$$

• As in the proof of Ruzsa's triangle inequality, $\forall \ell, m \in \mathbb{N}_0,$

$$|A'| \ |\ell B - mB| \leq |A' + \ell B| \ |A' + mB| \leq (K')^{\ell} |A'| (K')^m |A'| = (K')^{\ell + m} |A'|^2.$$

Theorem (Freiman-Ruzsa). Let $A \subseteq \mathbb{F}_p^n$ and $|A+A| \leq K|A|$. Then A is contained in a subspace $H \leq \mathbb{F}_p^n$ with $|H| \leq K^2 p^{K^4} |A|$.

- 2. Fourier-analytic techniques
- 3. Probabilistic tools
- 4. Further topics