Examenul national de bacalaureat 2021

Proba E. c) Matematică *M_mate-info*

Varianta 4

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Calculați media aritmetică a numerelor reale $a = 2021 \sqrt{2}$ și $b = 2021 + \sqrt{2}$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 3x + 1$. Determinați numărul real m, știind că punctul A(1,m) aparține graficului funcției f.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_3(\sqrt{x}+3) + \log_3(\sqrt{x}-3) = 2$.
- **5p 4.** Determinați numărul de elemente ale unei mulțimi, știind că aceasta are exact 16 submulțimi.
- **5p 5.** În reperul cartezian xOy se consideră punctele M(3,0), N(8,3) și P(6,3). Determinați coordonatele punctului Q, știind că $\overrightarrow{MN} + \overrightarrow{MP} = \overrightarrow{MQ}$.
- **5p 6.** Se consideră triunghiul ascuțitunghic *ABC* în care $\sin 2A \cdot \cos A = \sin A$. Arătați că $A = \frac{\pi}{4}$.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricea $A(a) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & a & 0 \\ 1 + \log_2 a & 0 & 1 \end{pmatrix}$, unde $a \in (0, +\infty)$.
- **5p** a) Arătați că $\det(A(1))=1$.
- **5p b**) Demonstrați că, pentru orice $a \in (0, +\infty)$, matricea A(a) este inversabilă.
- **5p** c) Demonstrați că, pentru orice $a \in (0, +\infty)$, $\det(A(a) + (A(a))^{-1}) \ge 8$, unde $(A(a))^{-1}$ este inversa matricei A(a).
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = xy m(x+y) + m(m+1)$, unde $m \in (0,+\infty)$.
- **5p** a) Pentru m=1, arătați că $2 \circ 2 = 2$.
- **5p b**) Demonstrați că, dacă $2 \circ 1 = 5$, atunci $2 \circ 5 = 1$.
- **5p** c) Determinați numărul real x, știind că $(mx^3) \circ (-mx^2) = m$, pentru orice $m \in (0, +\infty)$.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = x^4 2 4 \ln x$.
- **5p** a) Arătați că $f'(x) = \frac{4(x^2+1)(x+1)(x-1)}{x}, x \in (0,+\infty).$
- **5p** \mid **b**) Determinați intervalele de monotonie a funcției f.
- **5p** c) Demonstrați că ecuația f(x) = 0 are exact două soluții distincte în intervalul $(0, +\infty)$.

- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 1 + \frac{2x}{x^4 + 1}$.
- **5p a)** Arătați că $\int_{0}^{1} (x^4 + 1) f(x) dx = \frac{11}{5}$.
- **5p b)** Se consideră $F: \mathbb{R} \to \mathbb{R}$ o primitivă a funcției f. Știind că graficul funcției F are asimptotă oblică spre $+\infty$, determinați panta acestei asimptote.
- **5p** c) Se consideră funcția $G: \mathbb{R} \to \mathbb{R}$, primitiva funcției f pentru care G(0) = 0. Arătați că $\int_{0}^{1} xG(x)dx = \frac{1}{3} + \frac{\pi}{8} \frac{1}{4}\ln 2.$