Homework 1

Anthony Falcon

January 27, 2021

1 Problem 1

Assume A is upper-triangular thus A^* is lower-triangular. Since A is unitary we know $AA^* = I$. We also know that the inverse of an upper-triangular unitary matrix must also be upper triangular. Since $A^* = A^{-1}$ and we know that A^* is lower-triangular and A^{-1} is upper-triangular this implies that A^* is diagonal thus A is diagonal. The same logic holds for lower-triangular and unitary matrices.

2 Problem 2

a) Since we know that A is invertible and $\lambda \neq 0$ we know the following:

$$Av = \lambda v \implies v = \lambda A^{-1}v \implies \frac{1}{\lambda}v = A^{-1}v$$

Thus $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} .

- b) If λ is an eigenvalue of AB then the following is true. $ABx = \lambda x \ (x \neq 0)$. Let $z = Bx \ Az = \lambda x \lambda Bx = \lambda Bx = BAz = \lambda z$ thus it has been shown that BA and AB have the same eigenvalues.
- c) We want to show that $\det(A \lambda I) = \det(A^* \lambda I)$ Since $A \in \mathbb{R}^{n \times n}$, $A^* = A^T$ So we only need to show that A^T and A have the same eigenvalues or $\det(A \lambda I) = \det(A^T \lambda I)$. We can show this by the following

$$\det(A - \lambda I) = \det(A - \lambda I)^T = \det(A^T - \lambda I)$$

So we see that A^T and A have the same eigenvalues.

3 Problem 3

a) Since we know that A is hermitian we know that $A = A^*$ By the following:

$$\langle Ax, y \rangle = \langle \lambda x, y \rangle = \lambda \langle x, y \rangle$$

$$\langle x, A^*y \rangle = \langle x, Ay \rangle = \langle x, \lambda y \rangle = \bar{\lambda} \langle x, y \rangle$$

This implies $\lambda = \bar{\lambda}$. This is only true when λ has only a real part.

b) Let $Ax = \lambda_1 x$ and $Ay = \lambda_2 y$ where $\lambda_1 \neq \lambda_2$ Since $A = A^*$ the following holds.

$$\langle x, Ay \rangle = y^*A^*x = y^*Ax = y\lambda_1x = \lambda_1\langle x, y \rangle$$

we also have

$$\langle x, Ay \rangle = \langle x, \lambda_2 y \rangle = \lambda_2 \langle x, y \rangle.$$

Therefore we have $\lambda_1 \langle x, y \rangle = \lambda_2 \langle x, y \rangle \implies (\lambda_1 - \lambda_2) \langle x, y \rangle = 0$ since $\lambda_1 \neq \lambda_2 \implies \langle x, y \rangle = 0$

4 Problem 4

a) $Ax = \lambda x$ and $(Ax = \lambda x)^* = x^*A^* = \bar{\lambda}x^*$ left multiply the second equation with the first and we get the following

$$x^*A^*Ax = \bar{\lambda}\lambda x^*x \implies ||x||^2 = |\lambda|^2||x||^2 \implies |\lambda|^2 = 1 \implies |\lambda| = 1$$

b) Disproof

$$||A||_F = \sqrt{\operatorname{tr}(AA^*)} = \sqrt{\operatorname{tr}(I)} \neq 1$$

unless $A \in \mathbb{C}^{1 \times 1}$

5 Problem 5

a)

$$\langle Ax, y \rangle = \langle \lambda x, y \rangle = \lambda \langle x, y \rangle$$
$$\langle x, A^*x \rangle = \langle x, -Ax \rangle = \langle x, -\lambda x \rangle = -\bar{\lambda} \langle x, y \rangle$$

 $\lambda = -\bar{\lambda}$ Thus λ must be only imaginary.

- b) The eigenvalues of I-A are equal to $1-\lambda$ where λ is the eigenvalues of A where $\lambda=bi$ thus $1-\lambda\neq 0$
 - c) Multiply B and B^* to show if B is unitary

$$BB^* = (I-A)^{-1}(I+A)(I-A)(I+A)^{-1} = (I-A)^{-1}(I-A)(I+A)(I+A)^{-1} = I$$

The middle terms can commute since (I+A)(I-A)=I-AA and (I-A)(I+A)=I-AA Thus we know $(B^*)^{-1}=B \implies [(B^*)^{-1}]^*=B^* \implies (B^{**})^{-1}=B^* \implies B^{-1}=B^*$

6 Problem 6

 $\rho(A) =]\max\{|\lambda_1|, |\lambda_2|, ..., |\lambda_n|\} = \lambda_{max}$. Want to show $\rho(A) \le ||A|| = \max_{||x||=1} ||Ax||$. If $\rho(A) = |\lambda^*|$ and u is an eigenvector corresponding to λ^* where ||u|| = 1 then

$$||A|| \le ||Au|| = ||\lambda^* u|| = ||\lambda^*||.$$

Problem 7

a) $||A||_2 = \sqrt{\lambda_{max}(AA^*)} = \sqrt{\lambda_{max}(uv^*vu^*)} = \sqrt{||v||_2^2 \lambda_{max}(uu^*)}$ The only nonzero eigenvalue of the matrix uu^* is $||u||_2^2$ so the equation reduces to $\sqrt{||v||_2^2||u||_2^2} =$ $||u||_2||v||_2$. Thus it has been shown.

 $\ddot{\mathbf{b}}) \ \|\ddot{A}\|_F = \sqrt{\mathrm{tr}(AA^*)} = \sqrt{\mathrm{tr}(uv^*vu^*)} = \sqrt{\|v\|_2\mathrm{tr}(uu^*)} = \sqrt{\|v\|_2^2\|u\|_2^2} = \sqrt{\|v\|_2^2} = \sqrt{\|v\|_2$ $||v||_2||u||_2$.

8 Problem 8

- a) Let $U\Sigma V^*$ be the SVD of B Thus $A=QU\Sigma(QV)^*$. This is also a singular
- value decomposition for A because (QU) and $(QV)^*$ are unitary matrices. b) Disproof. Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ Assume B and A are unitarily equivalent Thus we have the following

$$B = QAQ^* \implies \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} = Q \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} Q^* \implies I = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

 $\rightarrow \leftarrow$ Thus A,B are not unitarily equivalent.

Problem 9 9

a) $J_{(x)} = (1,1)$ a row vector. Using the infinity-norm to find the condition number

$$||J||_{\infty} = 2$$

$$||x||_{\infty} = \max(|x_1|, |x_2|)$$

$$||f(x)||_{\infty} = |x_1 + x_2|$$

$$\frac{||J||_{\infty} ||x||_{\infty}}{||f(x)||_{\infty}} = \frac{2 \max(|x_1|, |x_2|)}{|x_1 + x_2|}$$

Becomes ill-conditioned when $x_1 \rightarrow -x_2$

b) Let $x_2 = \alpha x_1$ then the function becomes $g(x) = \alpha x^2$. From here we see $J_{(x)} = 2\alpha x$. Using the infinity-norm we have

$$||J||_{\infty} = |2\alpha x|$$
$$||x||_{\infty} = |x|$$
$$||f(x)||_{\infty} = |\alpha x^{2}|.$$

We find that our condition number is

$$\frac{\|J\|_\infty\|x\|_\infty}{\|f(x)\|_\infty} = \frac{|2\alpha x||x|}{|\alpha x^2|} = 2.$$

There is no point where the condition number becomes ill-conditioned.

c) $J=9(x-2)^8$ Using the infinity-norm to find the condition number $\frac{\|J\|_{\infty}\|x\|_{\infty}}{\|f(x)\|_{\infty}}=\frac{9(x-2)^8|x|}{|x-2|(x-2)^8}=\frac{9|x|}{|x-2|}$ Becomes ill-conditioned as $x\to 2$

10 Problem 10

c) We see that as we approach 2 where the function becomes ill-conditioned we see the expanded function starts to have round off errors.