Mo Tu We Th Fr Sa Su	Memo No Date /	1
LECSI Trans poses, 1		/
	2,2,	
text/200 k 2.7, transpse Transpose:		
the columns of AT (AT) ij = (A/ji		4
$\begin{cases} Sum^2 & CA+B \end{cases}^T = A^T \\ Product^2 & (AB)^T = B^T \\ T = B^T \end{cases}$	7. A 7 why	
LInverse! (A-1) =	$\boldsymbol{\psi}$	dumnof A
	$\int Ax$ combines the C X^TA^T combines the	nows of AT
If $A=LDU$ the $A^{T}=$ $A^{T}=I, A^{T}$		27
) (A-1)T, AT=I		

dot product $x:y \Rightarrow$ the sum of numbers x:y: $= x^{T}y \quad (|x|)(nx|) \rightarrow a \quad number$

Mo Tu We Th Fr Sa Su	Memo No/
P^{-1} is always equal to \Rightarrow because $PP^{T} = I$	pT $p^{-1} = p^{T}$
The [PA = LU] Factorizerthan Then A = P'LU	usth Row Exchange
concentrate on this form	
when A=LU, P=I	
Examples $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} 17A = \begin{bmatrix} 17A & 17A & 17A \\ 2 & 2 & 79 \end{bmatrix}$	T1217 279]
$\begin{cases} P = [0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{cases} = \begin{cases} PA = [0.5] \\ 0 & 0 \\ 0 & 0 \end{cases}$	-1007/12/7=LU 23/1/204/
LECTURES: some in $ \begin{cases} \text{Permutations } P : no \\ P^{-1} = P^{T} \end{cases} $	apritant pints w exchanges
transpose:	
$\int_{-\infty}^{\infty} (A^{T})_{ij} = A_{ji}$	~
Symmetric matrix A	! =A

亞 图 图								
	Мо	Tu	We	Th	Fr	Sa	Su	

Memo No.			
Date	1	/	

	RTR	is always	symmet	ric	
9		,			
	why? 7	take the	transpose	(XTX) T	= RTR
l			,		

text book 3, | Spaces of Vectors,

"fundemental theorem of Uneur Algebra"

The space Rⁿ consists of all column vectors V

with n components,

Example.

 $\begin{bmatrix} 7 \\ 7 \end{bmatrix} \text{ in } R^2, \quad (1,1,0,1,1) \text{ in } R^5$ $\begin{bmatrix} 1+i \\ 1-i \end{bmatrix} \text{ is in } C^2$

Subspace

in R3 a plane is a vector space inside R3 (Iwo like R2)

The plane going through (0,0,0) is a subspace of

the full vector space R3

Pefinition.

how to justy subspace

A subspace of a vector space is a set of vectors (including i) that satisfies two requirements:

if vand w are vectors in the subspace and c is any scalar, then (1) v+w is in the space ii) cv is in the

Mo Tu We Th Fr Sa Su	Memo No Date /	1
The Column Space of A		
The system bx = b is solv		ly by
bis in the alumn space of		
LEES antinues		
Vaetor Spaces.		
Examples: $R^2 = all$	2-dim real	veetors
[3]°[0],[e]]	11 x-y pla	<i>ine</i>
$K^3 = all vectors with$	A 3 compose	nds_
$ex \begin{bmatrix} 3 \\ 0 \end{bmatrix}$,	
$(R^n) = all column vector$	es with n com	nnents.
exumple not a vector space:		
7///4	it's not cold	closed
	by matipt mu	ulitple

Mo Tu We Th Fr Sa Su	Memo No
a veets space inside	e R2 = Subspace of R2
Example: a	Whole line line in R ² must go through
	the sero veets
multiply 0 =) 0	
Subspace of R2: Plane (1) the whole space	L line L [0] e @ lines through the zero
3 zero vector alone Z=[o]	Inda likes Right not Re
superpace adding and	multiply always in the
Same space subspace	
A= [2] Bou Columns	the column space from the mortrix
ack multiply take	all the linear combinations
[called	n u subspace column space C(A)
	creete subspace from a matrix
C(A) is getting	ng a plane thorough (0,0,0)