CENG 499 - Introduction to Machine Learning

Homework 2

Ahmet Eren Çolak e2587921@ceng.metu.edu.tr

December 6, 2023

Contents

	Par	
	1.1	KNN
2	Par	t 2
	2.1	K-Means
	2.2	K-Medoids
	2.3	2D Visualisation
	2.4	Time Complexity Analysis
3	Par	
		HAC
	3.2	2D Visualisation
	3.3	Time Complexity Analysis

1 Part 1

1.1 KNN

ID	K	Similarity Metric
1	3	Cosine Distance
2	3	Minkowski Distance (p=2)
3	5	Cosine Distance
4	5	Minkowski Distance (p=2)
5	5	Mahalonobis Distance

Table 1: Hyperparameter configurations

I applied 10-fold cross validation 5 times for each hyperparameter configuration and plotted their accuracy's 95% confidence intervals.

Figure 1: Accuracy confidence intervals for each hyperparameter

I tested the best performing model which is the first one with K=3 and cosine distance metric, with the test set which I set apart before cross validation. Best performing model has the %96.67 accuracy on the test set.

2 Part 2

2.1 K-Means

I picked the initial cluster centers with K-means++ algorithm and ran K-means algorithm 10 times for each K value and picked the smallest loss values for each K value.

Figure 2: K vs. Loss for dataset 1

Figure 3: K vs. Loss for dataset 2

2.2 K-Medoids

I ran one K-medoids algorithm with cosine distance and one K-medoids algorithm with euclidean distance 10 times for each K value. Then I picked the smallest loss values for each K value.

Figure 4: K vs. Loss for dataset 1 (cosine)

Best K value for dataset 1 with cosine distance is 5.

Figure 5: K vs. Loss for dataset 1 (euclidean)

Figure 6: K vs. Loss for dataset 2 (cosine)

Best K value for dataset 2 with cosine distance is 3.

Figure 7: K vs. Loss for dataset 2 (cosine)

Best K value for dataset 2 with euclidean distance is 3.

2.3 2D Visualisation

Figure 8: Dataset 1 dimensionality reduction with t-SNE

Figure 9: Dataset 1 dimensionality reduction with UMAP

For dataset 1, optimum K value obtained from elbow method and visualizations match with each other and is equal to 5.

Figure 10: Dataset 2 dimensionality reduction with t-SNE

Figure 11: Dataset 2 dimensionality reduction with UMAP

For dataset 2 however, optimum K value obtained from elbow method and visualizations does not match with each other. According to t-SNE and UMAP visualizations there are 4 clusters. In contrary to 2D visualisations, elbow method suggest that optimum K value is 3.

2.4 Time Complexity Analysis

Worst case time complexity of K-means is O(kndi), where k is the number of clusters, n is the number of data samples, d is the number of attributes, i is the maximum number of iterations till convergence. Worst case time complexity of K-medoid is worse than K-means since we have to iterate whole dataset once more to find data examples which minimizes loss. That means worst case time complexity of K-medoids is $O(kn^2i)$.

3 Part 3

3.1 HAC

Figure 12: Dendrogram for single linkage - euclidean distance HAC

Figure 13: Dendrogram for single linkage - cosine distance HAC

Figure 14: Dendrogram for complete linkage - euclidean distance HAC

Figure 15: Dendrogram for complete linkage - cosine distance HAC

Figure 16: Silhouette scores for single linkage - euclidean distance HAC

Figure 17: Silhouette scores for single linkage - cosine distance HAC

Figure 18: Silhouette scores for complete linkage - euclidean distance HAC

Figure 19: Silhouette scores for complete linkage - cosine distance HAC

Best K value is 4 for all of the configurations of HAC since it has the highest silhouette score for all of them.

3.2 2D Visualisation

Figure 20: Dataset t-SNE reduction

Figure 21: Dataset UMAP reduction

Although clusters are not quite obvious in the t-SNE reduction graph, result of the UMAP reduction aligns with the silhouette score analysis. In the UMAP graph, it is obvious that there are 4 clusters.

3.3 Time Complexity Analysis

Worst case time complexity of the HAC is $O(n^3d)$, where n is the number of data samples and d is the number of attributes. Assuming that number of iterations i, is not too large for K-means, I would prefer K-means to cluster dataset with large amount of samples.