Introduction aux corps finis

M. Belkasmi

ENSIAS 2009-2010

Intérêt

- Les opérations sur l'anneau des entiers classiques sont relativement lentes.
- Les calculs dans les corps finis peuvent être fait beaucoup plus vite, surtout sur architectures dédiées.
- Pour cette raison, il existe des cryptogrammes utilisant les corps finis (ex: courbes elliptiques)
- De plus ils sont utilisés dans d'autres domaines des communications (codes en blocs, Reed-Solomon, BCH, codes de Goppa ...)

Notion de corps

 Un corps est un anneau où tous les éléments non nuls sont inversibles.

Exemples:

- · l'ensemble des réels, des complexes...
- L'ensemble des entiers relatifs est un anneaux mais pas un corps.
- Z/2Z est un corps, Z/4Z n'en est pas un.
- L'ensemble $Q[\sqrt{2}]$ formé des réels de la forme $a+b\sqrt{2}$ avec $a,b\in Q$ est un corps.

Polynômes irréductibles

- On dit qu'un polynôme P(X) est irréductible s'il n'admet pas de factorisation.
- Cette notion dépend de l'ensemble où sont considérés les coefficients de P.
- Exemple:
- Prenons $P(X)=X^2-2$. Si on considère ce polynôme comme un polynôme de R[X], alors il n'est pas irréductible $(P(X)=(X+\sqrt{2})(X-\sqrt{2}))$.
- Par contre, si on considère P(X) comme un polynôme de Q[X], P est irréductible.

Théorèmes principaux

- Théorème: Soit p un nombre premier et I(X) un polynôme irréductible de degré n≥1 dans Z/pZ[X]. Alors (Z/pZ[X])/(I) est un corps. Il possède pⁿ éléments et il ne dépend pas de I (seulement du degré de I).
- Ce corps est appelé corps de Galois à pⁿ éléments, noté GF(pⁿ) (GF pour Galois Fields).
- Théorème: Les seuls corps finis qui existent sont les corps de Galois.

Exemples

- Soit p=2 et I(X)=X²+X+1. I(X) est bien irréductible dans Z/2Z[X] (on peut vérifier par exemple qu'aucun des polynômes de Z/2Z[X] de degré inférieur ou égal à 1 ne divise I(X)).
 - \rightarrow (Z/2Z[X])/(I) est donc un corps (c'est GF(2²)).
- De même si P(X)= X³+X+1 alors Z/2Z[X]/(P) est un corps. Il est formé des restes modulo P des polynômes de Z/2Z[X]. C'est le corps GF(2³).

Deux Questions

- · Quels sont les éléments de ces corps :
 - $GF(2^2)$) $\approx (Z/2Z[X])/(I) = (Z/2Z[X])/(X^2+X+1)$
 - $GF(2^3)$) $\approx (Z/2Z[X])/(I) = (Z/2Z[X])/(X^3+X+1)$
- Comment peut on faire les calculs avec?

Calcul dans les corps finis

- (I) est l'idéal { $R \in K[X] \mid \exists S \in K[X], R(X) = S(X).I(X)$ }.
- Deux polynômes Pet Q sont dans la même classe si et seulement si
 P(X)-Q(X) = S(X).I(X) avec S∈ K[X] donc P(X) = Q(X) mod I(X).
- Pour faire les calculs, on prend donc n'importe quel élément de la classe et on fait les calculs modulo I(X).

Exemple

- Soit GF(8)≈Z/2Z[X]/(X³+X+1).
- L'ensemble des classes d'équivalence est exactement l'ensemble des restes des polynômes de Z/2Z[X] modulo X³+X+1.
- Il s'agit donc de tous les polynômes de degré strictement inférieur à 3 dans Z/2Z[X] (=GF(2)[X]).
- Soit à calculer (<u>X²+X+1</u>).(<u>X²+1</u>):
- On prend deux représentants dans l'anneau GF(2)[X] et on les multiplie: $(X^2+X+1).(X^2+1)=X^4+X^3+2X^2+X+1$.
- On réduit ensuite modulo $X^3+X+1: X^4+2X^2+2X+2=X^2+X$

Représentation linéaire

- Théorème: GF(2ⁿ) est un espace vectoriel de dimension n sur GF(2)≈Z/2Z.
- ça veut dire que l'on peut représenter les éléments de $GF(2^n)$ comme des *n*-uplets d'éléments de GF(2).
- $X^2+X+1 \leftrightarrow (1,1,1)$
- On parle de représentation linéaire du corps $GF(2^n)$.
- Exemple: GF(4)={(00),(01),(10),(11)}

Racines de polynômes

- Théorème: Soit Pun polynôme irréductible de GF(2)[Y] de degré égal à n. Alors Pest entièrement décomposable dans GF(2ⁿ)[Y].
- Exemple: $P(Y)=Y^3+Y^2+1$ est irréductible dans GF(2)[Y].
- Dans GF(8)≈GF(2)[X]/(X³+X+1), Padmet trois racines.

Groupe multiplicatif

• Théorème: Soit n un nombre entier $n \ge 1$. Alors $(GF(2^n)-\{0\},*)$ est un groupe. De plus il est monogène i.e. il existe $\alpha \in GF(2^n)-\{0\}$ tel que pour tout $\beta \in GF(2^n)-\{0\}$, $\exists k$ entier compris entre 0 et 2^n-2 tel que $\beta = \alpha^k$.

On dit que α est un générateur du groupe. On a de plus $\forall \beta \in GF(2^n)$ - $\{0\}$, $\beta^{2^{n-1}}=1$.

Exemple

- Dans GF(16)=GF(2)[X]/(X⁴+X+1) pour un élément quelconque β ≠ 0 on a β¹⁵=1.
- Si α est une racine de X⁴+X+1 alors α est un générateur de GF(16)-{0}.
- De même α^7 est un générateur
- Par contre α^3 n'en est pas un.

Racines primitives

• Définition: Soit I un polynôme à coefficients dans GF(2) et soit α une racine de I. Si α est un générateur de $GF(2^n)$ - $\{0\}$, on dit que α est une racine primitive de I.

Exemples:

- Dans $GF(16) \approx GF(2)[X]/(X^4 + X + 1)$, $P(X) = X^4 + X + 1$ admet α , α^2 , α^4 et α^8 comme racines. Toutes ses racines sont primitives.
- L'élément α^3 qui est racine du polynôme $Y^4+Y^3+Y^2+Y+1$. Il n'est pas primitif.

Polynôme primitif

 Définition: Soit I un polynôme de degré n, irréductible sur GF(2)[X]. Le polynôme est dit primitif si ses racines sont primitives dans GF(2ⁿ)

Exemples:

- X^4+X+1 est un polynôme primitif pour GF(2)
- X⁴+X³+X²+X+1 n'est pas primitif.

Exemples

- $I(X)=X^4+X^3+X^2+X+1$ sur GF(2), α racine de I(X)
- On calcule récursivement $u_k = \alpha^k$
- Si I(X) est primitif, on doit générer 15 éléments distincts (les éléments du groupe multiplicatif).
- On a u_0 =1, u_1 = α , u_2 = α^2 , u_3 = α^3 , u_4 = α^4 , u_5 = α^5 =1.
- On ne génère donc que 5 éléments et donc I n'est pas primitif (Irréductible mais non primitif)
- Par contre (X⁴+1=(X+1).(X³+X²+X+1)) n'est pas primitif parce qu'il n'est pas irréductible.

Représentation exponentielle

- Soit I un polynôme de degré n, irréductible sur GF(2)[X] et α une racine primitive de I dans $GF(2^n)$.
 - Alors pour tout élément non nul β de $GF(2^n)$, on a $\beta = \alpha^k$, avec $0 \le k \le 2^n 2$.
- k est dit le logarithme discret de β .

Multiplication et division

- Soit α non nul dans $GF(2^n)$, alors $\alpha^{2^{n-1}}=1$.
- Soit $\beta_1 = \alpha^{k_1}$, alors 0. $\beta_1 = 0$.
- Soit $\beta_2 = \alpha^{k_2}$, alors $\beta_1 \cdot \beta_2 = \alpha^k$, avec $k = k_1 + k_2$ (mod $2^n 1$).
- De plus, $\beta_1/\beta_2 = \alpha^{k'}$, avec $k'=k_1-k_2$ (mod 2^n-1).

Construction de GF(16)

Représentation de $GF(2^4)$ en utilisant $p(z) = z^4 + z + 1$		
Notation Exponentielle	Notation Polynomiale	Notation linéaire
0	0	0000
α^0	1	0001
α^1	α	0010
α^2	α^2	0100
α^3	α^3	1000
α^4	α + 1	0011
α^5	$\alpha^2 + \alpha$	0110
α^6	$\alpha^3 + \alpha^2$	1100
α^7	$\alpha^3 + \alpha + 1$	1011
α^8	$\alpha^2 + 1$	0101
α^9	$\alpha^3 + \alpha$	1010
α^{10}	$\alpha^2 + \alpha + 1$	0111
α11	$\alpha^3 + \alpha^2 + \alpha$	1110
α^{12}	$\alpha^3 + \alpha^2 + \alpha + 1$	1111
α^{13}	$\alpha^3 + \alpha^2 + 1$	1101
α^{14}	α^3 + 1	1001

Liste des polynômes primitifs

egré du polynôme	Polynômes primitifs
2	$X^2 + X + 1$
3	$X^3 + X + 1$
4	$X^4 + X + 1$
5	$X^5 + X^2 + 1$
6	$X^6 + X + 1$
7	$X^7 + X^3 + 1$
8	$X^8 + X^4 + X^3 + X^2 + 1$
9	$X^9 + X^4 + 1$
10	$X^{10} + X^3 + 1$

Quelques applications

- Cryptographie sur courbes elliptiques.
- · Construction de fonctions intéressantes pour des opérations de hachage.
- Codes correcteurs: codes BCH, codes RS, codes de Goppa, codes résidus quadratiques.
- Construction de géométries projectives pour les codes LDPC (Low Density Parity Check Codes).
- · Etc...