NURTIÇÃO VEGETAL E TROCAS GASOSAS **Introdicion**

AULA 1 – NUTRIÇÃO INORGÂNICA

Visão geral:

A nutrição mineral corresponde à absorção de nutrientes minerais (água e sais minerais) do solo, principalmente pelas raízes, por meio da zona pilífera.

Quanto aos sais minerais necessários à planta:

- Macronutrientes: necessários quantidade pela planta. Exemplos: Nitrogênio, Fósforo, Potássio, Enxofre e Magnésio.
- Micronutrientes: necessários em quantidade pela planta. Exemplos: Zinco, Ferro e Manganês.

Hidroponia:

Cultivo de plantas em maio inerte, suspensas e com suas raízes mergulhadas em uma solução com níveis ideais de sais minerais.

A raiz e a nutrição mineral:

A zona pilífera da raiz é a região de maior atividade de absorção de água e sais minerais por apresentar maior superfície de contato com o solo.

Regiões da raiz a partir de um corte transversal:

- Epiderme: tecido de revestimento;
- Córtex: região de preenchimento logo adjacente à epiderme;
- Cilindro central: origina os tecidos condutores;
- Periciclo: origina as raízes secundárias;
- Endoderme: regula o fluxo de minerais (íons) em direção ao xilema. Apresenta as estrias de Caspary (cinturão de entre as células de endoderme).

AULA 2 - FOTOSSÍNTESE: VISÃO GERAL

Importância da fotossíntese:

Nutrição orgânica.

Local:

- Em procariontes: no citoplasma;
- Em eucariontes: no interior dos cloroplastos.

Importância ecológica:

- Captura de CO₂ atmosférico;
- Renovação de O₂ atmosférico.
- Contribui para o fluxo de matéria e energia nos ecossistemas.

A luz branca e a fotossíntese:

Luz branca: possui todos os comprimentos de onda.

Pigmentos fotossintetizantes: absorvem certos comprimentos de onda.:

- Clorofila: pigmento principal;
- Carotenoides: pigmentos acessórios.

Etapas da fotossíntese:

Etapa fotoquímica ou reações de claro.

Etapa química ou reações de escuro.

Equação química da fotossíntese:

Equação geral:

$$6 \text{ CO}_2 + 12 \text{ H}_20 \xrightarrow[\text{FOTOSSINTÉTICOS}]{\text{PIGMENTOS}} \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{H}_2\text{O} + 6\text{O}_2$$

Equação simplificada

http://aprovaja.blogspot.com.br/2011/08/fotossintesecelular.html

AULA 3 - FOTOSSÍNTESE: ETAPA FOTOQUÍMICA OU REAÇÕES DE CLARO

Visão geral:

Local: membrana dos tilacoides.

NURTIÇÃO VEGETAL E TROCAS GASOSAS 💉 toodi

Magnésio: excita-se na presença da luz e perde elétrons.

Papel da água: sofre fotólise e cede elétrons para o magnésio da clorofila.

Fotofosforilação: formação de ATP a partir da energia dissipada pela transferência dos elétrons perdidos pelo magnésio.

NADP+: aceptor intermediário de prótons H+ e elétrons.

http://www.sobiologia.com.br/conteudos/bioquimica/bioqui mica15.php

AULA 4 - FOTOSSÍNTESE: ETAPA QUÍMICA OU REAÇÕES DE ESCURO

Visão geral:

Local: estroma do cloroplasto.

Utiliza o ATP e os NAPH2 produzidos na fase fotoquímica.

Ciclo de Calvin-Benson: ciclo de reações que consome CO₂ e gera glicose.

A Rubisco: enzima que inicia o ciclo incorporador de CO₂ no ciclo de Calvin-Benson.

O ciclo de Calvin-Benson:

Entra:

- CO_2
- **ATP**
- NADPH₂

Sai:

- glicose (C₆H₁₂O₆)
- H_2O

https://sites.google.com/site/correiamiguel25/obten%C3%A 7%C3%A3odemat%C3%A9rianasplantas

AULA 5 – FOTOSSÍNTESE: FATORES QUE INFLUENCIAM O PROCESSO

Luz:

Fator limitante para a realização da etapa fotoquímica.

Intensidade luminosa: é limitante até atingir o ponto de saturação.

http://professor.tirinto.uni5.net/provas_topicos.asp?topico= Fotossintese&curpage=3

Gás carbônico:

Fator limitante para a realização da etapa química.

Concentração de gás carbônico: é limitante até atingir o ponto de saturação.

NURTIÇÃO VEGETAL E TROCAS GASOSAS 🖊 toodi

http://www.vestibulandoweb.com.br/biologia/teoria/fatoreslimitantes-fotossintese.asp

Temperatura:

Fator limitante para a realização das etapas fotoquímica e

Aumento da temperatura: aumento da velocidade da fotossíntese até a desnaturação

http://www.vestibulandoweb.com.br/biologia/teoria/fatoreslimitantes-fotossintese.asp.

AULA 6 - FOTOSSÍNTESE: PONTO DE COMPENSAÇÃO FÓTICO

Conceito:

Intensidade luminosa em que as velocidades da fotossíntese e da respiração celular se igualam.

Tipos de plantas quanto à absorção de luz:

- Umbrófilas: atingem o ponto de compensação fótico mais rápido, ou seja, com menos luz.
- Heliófilas: atingem o ponto de compensação fótico mais lentamente, ou seja, com mais luz.

Discussões e conclusões:

Quando:

intensidade da respiração	X	intensidade da fotossíntese
consumo de O ₂ atmosférico complementar à fotossíntese	۸	sobrevivência do vegetal comprometida
consumo de todo o O ₂ liberado na fotossíntese.	II	estagnação do crescimento
utilização de parte do O ₂ liberado na fotossíntese	٧	favorece o crescimento e libera O ₂

Gráfico:

http://www.vestibulandoweb.com.br/biologia/teoria/pontode-compensacao-fotico.asp

AULA 7 – TROCAS GASOSAS E TRANSPIRAÇÃO

Visão geral:

As trocas gasosas estão relacionadas aos tecidos de revestimento:

- Epiderme: revestimento primário;
- Periderme: revestimento secundário.

Epiderme e seus anexos:

- Pelos: podem apresentar função absorvente (como nas raízes) ou função secretora (tricomas das folhas);
- Estômatos: realizam as trocas gasosas nas folhas;
- Acúleos: função protetora nos caules de certas plantas.
- Hidatódios: realizam a sudação (perda de gotículas de água nas bordas de certas folhas);

Os estômatos:

Estrutura:

NURTIÇÃO VEGETAL E TROCAS GASOSAS otoodi

- Duas células-guardas (clorofiladas);
- Duas células anexas (aclorofiladas);
- Ostíolo: fenda formada pelo estômato aberto.

Quanto à localização na folha:

- Folha hipostomática: estômatos localizados na epiderme inferior;
- Folha epistomática: estômatos localizados na epiderme superior;
- Folha anfistomática: estômatos localizados na epiderme superior e na epiderme inferior.

Funcionamento do estômato (influenciados por fatores):

- Disponibilidade de água (mecanismo hidroativo);
- Disponibilidade de luz (mecanismo fotoativo);
- Concentração de CO₂ no mesófilo foliar;
- Variação na temperatura.