6.1) Единетвенность разложения на неприводния множимем

Определение 6.1: Пусть $f \in k[x_1,...,x_n]$. Мисточен f научваетах неприводимих над $k \Leftrightarrow \kappa$ когда $f \notin k$ и f не являетах произведением двух неностояниях мисточенов из $k[x_1,...,x_n]$.

Осевидно, что мобой непостянный многочен монет быт родожен в произведение непривод-х.

Теорема 6.1: Пусть $f \in k[x_1,...,x_n]$ неприводима над k, т.г. f деми процведение gk, где $g,h \in k[x_1,...,x_n]$. Тогда f демя мого g, мого h.

Dokazaresoció: Ungykywei no komrecty repenenyora. Sycre sumorosena f, g u h \in k[z]. Paccuomprin $p=\gcd(f,g)$. Cem pèk, mo l'emy hampibogunoemi suoroziena f, on nomes sorto janucan b buge f=ap, 29e $a\in$ k. B oton crycae f genim g. Cem ree $p\in$ k, mo moreno orusare, two p=1. Forga que neucomoprix $A,b\in$ k[z] unestae pabencibo Af+bg=1, yunoxub komopoe na h, nonyum h=h(Af+bg)=Ahf+bgh

те. 7 дешт в. Боза шедукуши доказана.

Бредположим, что чеорема верка в кольцах многосменов ст n-1 переменной. Сперва докатем учеорждения

(*) Ease $u \in k[x_1,...,x_n]$ renowbogue a genum repowbegence gh, ege $g,h \in k[x_1,...,x_n]$, mo encoveren a genum survo g, survo h.

Due goregares cros (x) repension g u h b buge $g = \sum_{i=0}^{l} a_i x_i^i \quad \text{so } h = \sum_{i=0}^{m} b_i x_i^i,$

где $a_i, b_i \in k[x_2, ..., x_n]$. Многохин и деші $g \Leftrightarrow u$ демі катдай a_i . Акамоштно для многомин k. Ўредполотин, сто и не демі им g, ни k. Уногра существуют значених индексов i, j > 0, m.z. ни a_i не демігах на u, ми b_j не демігах на u. Ўуст $i_0, j_0 - это нашиниши индексов с таким свойством. Рассмотрим когранцият при <math>x_i^{i_0 i_0}$ в произведении gh:

 $G_{i,j,} = (a_0b_{i,j,0} + a_1b_{i,j,0} + a_1b_{i,j,0}) + a_{i,0}b_{j,0} + (a_{i,0}b_{j,0} + a_{i,0}b_{j,0})$. В силу вотбора i_0 много тем i_0 дели кат дое слагаемое в первой скобке, а в силу вотбора j_0 — кат дое слагаемое во возрой скобке. Многосме и не демі им $a_{i,0}$, им $b_{j,0}$, тогда по предположению инодукум в иму своей неприводимости и не демі i_0 i_0

Герегде" и к общему смугаю: пуст f демі g,h, где f,g и $h\in k[x_1,...,x_n]$. Есм f не зовисих от x_2 , то утверждение докозомо. Даме полагаем, что f не является постояниям по x_2 .

баненим, что f остаётся неприводими, если транновай его как элемент кольца $k(x_2,...,x_n)[X_1]$, еде $k(x_2,...,x_n)$ – поле раушональных друмкулий от $x_2,...,x_n$. Desicibusanью, предполоним, что f=RB, где $A,B\in k(x_2,...,x_n)[X_1]$. Вие неприводимости нутно показать, что A им B пульвой отенени по x_1 . Обозначим черку $d\in k[x_1,...,x_n]$ — процредение знаменателей b A n B. Тогда $\tilde{A}:=dA$, $\tilde{B}:=dB$ летаї b $k[x_1,...,x_n]$, а значи b колице $k[x_1,...,x_n]$ $d^2f=\tilde{A}\tilde{B}$.

Samuren d^2 kar noonjbegerne renpubogunsk unomuserei in $k[x_2,...,x_n]$. So ymbepmgernu (*) onn gensi \widetilde{A} um \widetilde{B} . Cokpasub uz b nocnegnen pobencibe, nony um b $k[x_1,...,x_n]$ pabencibo $f=\widetilde{\lambda_1}\,\widetilde{B_1}$.

Tak kak of renpuboque b $k[x_1,...,x_n]$, mo unto A_1 , into B_1 nocrosume. Jamerin, timo unioresimos A_1 , B_1 nongreum us A u B general u gunomente na positivare secuent $k[x_1,...,x_n]$ (regobarens uo, into A, into B he sabucur om x_1 .

Nyer of nempulogum of $h(x_2,...,x_n)[x_1]$, morga cornacuo bage unqueque survoyame provides of general grant h of $k(x_2,...,x_n)[x_1]$. Due onpegeriennocum bygen orminos, aro g=Af que nenomorporo $A\in k[x_2,...,x_n][x_1]$. Themsomae nocuedul paleucibo na guamenaïen de suemera A, nonyem of $k[x_1,...,x_n]$ and $dg=\widetilde{A}f$.

Так как $d \in k[x_1,...,x_n]$, то по (x) катдогії неприводименії миожиїєль d день мию \tilde{A} , мию f. Ябоседнее невозможно, т.к. f неприводим и поможиїєльної степени по x_2 . Тогда, провода сокращения в последнем ровенсіве, получим, сто f демій д.

Cuegorbue: Pyero $f, g \in k[x_1,...,x_n]$ novomureus un comenque no x_1 .

Torga emprocuent f u g une som obusui empomenteus b $k[x_1,...,x_n]$ novomureus noi comenque no x_1 morga u rous no morga, korga one une one obusui unomureus b $k(x_2,...,x_n)[x_1]$

Доказательство: Пуст f,g имеют общий имотичем h b $k[x_1,...,x_n], m.z.$ deg $_x,h>0.$ Тогда у них есть общий имотичем и b большем конце $k(x_2,..,x_n)[x_1].$

Обратию, пуст у f и g еей общий инотичень b $k(x_1,...,x_n)[x_1]$. Тогда дие некоторох \widetilde{f}_1 , $\widetilde{g}_1 \in k(x_2,...,x_n)[x_1]$ тием f = h \widetilde{f}_1 и g = h \widetilde{g}_1 .

Pбозначим герез $d \in h$ $[x_2,...,x_n]$ общий значенатель \tilde{h} , \tilde{f}_1 и \tilde{g}_1 . Тогда $h = d\tilde{h}$, $f_1 = d\tilde{f}_1$, $g_1 = d\tilde{g}_1$

— unovorceno uz $k[x_1,...,x_n]$ u b nouse $k[x_1,...,x_n]$ unevoca poboucha $d^2f=hf_1$, $d^2g=hg_1$

Teopena 6.2: Kamgorii neno ero envorii f E k [21,..., 2,] nomes 50110 npegcichien

Доказагелью (a) Из теорень в в еледуем, что, если в неприводил п делит произведение h:... hs, то в делит некоторый h;

(6) Cywycolobanue pagnomenue ocebugno. Tyen $f = f_1 : ... : f_r = g_1 : ... : g_3$, 29e $f_1 : -ore u g_1 : -ore neproboguna. Ecun <math>r = s$, mo s cury (a) $f_1 : g_2 : u g_1 : \in \{g_1, ..., g_5\}, \ 2ge \ s$ cury neprobogunocan $g_{i,k} : f_k : f_k : g_2 : u g_1 : \{g_1, ..., g_5\} \setminus \{g_4\}, \ 2ge \ s$ cury neprobogunocan $g_{i,k} : f_k : f_k : g_2 : u g_3 : g_3 : g_4 : g_4 : g_5 :$

for gener $g_{ir} \in \{g_1,...,g_5\} \setminus \{g_{ir},...,g_{ir}\}$, $2g_i \in g_{ir}$ being near giver $g_{ir} = g_{ir} \cdot g_5$, resymmetric entropologies entropologies $g_{ir} = g_{ir} \cdot g_5$, resymmetric entropologies $g_{ir} = g_{ir} \cdot g_5$,

6.2 Результанты

Tyest macococnessor

$$f(x) = a_0 x^{l} + a_1 x^{l-1} + ... + a_l$$

$$g(x) = b_0 x^{m} + b_1 x^{m-1} + ... + b_m$$

из k[x] имеют степень вит, соответствению.

Утвертдение в.1: Многочлена f и д имеют общий множитель гогда и только гогда, когда существует многочлен h в k[#] отепени < l+m-1, к-оти дешти на оба многочлена (инами словами, когда пр-ва многочленов степени l+m-1 демахищию по отделености на f и д, имогот негрибиамное пересетение).

Последнее зививалентно минийной зависимости многожнов $f, xf, ..., x^{m-1}f, g, xg, ..., x^{k-1}g,$ им тому, что матрица редпериости $(l+m) \times (l+m)$

$$Syl(f,g,x) := \begin{pmatrix} a_0 & b_0 & b_1 & b_0 \\ a_1 & a_0 & b_1 & b_0 & b_1 \\ a_2 & a_1 & \ddots & a_0 & b_2 & b_1 & b_0 \\ \vdots & a_2 & \ddots & a_1 & \vdots & b_2 & b_1 \\ a_1 & \vdots & a_2 & b_m & \vdots & b_2 \\ a_1 & \vdots & b_m & \vdots & b_m \end{pmatrix}$$

uneen nyester onpegeneres Res(f,g,x):=det(Syl(f,g,x)), komoponi nagribaeman pezyesman mon unoroxienos f u g.

Предложение 6.1: Пусть $4.9 \in k[x_1,...,x_n]$ — многожлено положий ельной степени по x_1 . Тогда

(i) Res $(f,g,x_1) \in \langle f,g \rangle \cap k[x_2,...,x_n]$. (ii) Res $(f,g,x_1) = 0 \Leftrightarrow \kappa \log x \in \mathcal{G}$ une on obegin uno muters

b $h[x_1,...,x_n]$ resonant easient emeries no x_1 .

Dokayaseus crbo: U_{j} on pegenenus on pegeneseus cregyem, ruo Res (f,g,π_{1}) $\in k[\pi_{2},...,\pi_{n}]$. Upbecomo, ruo cyuncobyron $A,B \in k[\pi_{2},...,\pi_{n}][\pi_{1}]$, $m \in k[f,g,\pi_{1}]$, $m \in k[f,g,\pi_{1}]$ $\in k[f,g,\pi_{1}]$, $m \in k[f,g,\pi_{1}]$

Donamen (ii). Saverun, une que $f_1g \in k[x_1,...,x_n]$ pezqueran $les(f_1g,x_1)=0$

 \Leftrightarrow norga f u g unever objust uncomeren b name $h(x_2,...,x_n)[x_1]$ how necessaria comenent no x_2 . Torga no cregorbus up meopeum b 1 f u g unever objust unontees b $k[x_1,...,x_n]$ how necessaria no x_2 comenent.

Lugarbue: Eau f, g \in $\mathbb{C}[x]_{q}$ mo pezyus marin Res $(f,q,x)=0 \Leftrightarrow$ rorga f u g unerom objects f \mathbb{C} .

Muororiera $f, q \in \mathbb{C}[x_1, ..., x_n]$ noistirais nois no x_1 emeneric nomno ganicars b biege $f = a_0 x_1^{d_1} + a_1 x_1^{d_1} + ... + a_l$ $g = b_0 x_1^{m_1} + b_1 x_1^{m_2} + ... + b_m$, $a_i = b_i x_1^{m_1} + b_1 x_1^{m_2} + ... + b_m$, $a_i = b_1 x_1^{m_2} + b_1 x_1^{m_2} + ... + b_m$

(i) f(x1, c) ∈ C[x1] unesi comenesso l.

(ii) $g(x_{1,c}) \in \mathbb{C}[x_{1}]$ unes emerens $p \leq m$.

Torga que unoroxuna $h = Res(f, g, x_1) \in \mathbb{C}[x_1, ..., x_n]$ enpaleguelo $h(c) = a_0(c)^{m-p} Res(f(x_1, c), g(x_1, c), x_1)$

Donagasencho: Подставив тогну $C = (C_R, ..., C_n) \in \mathbb{C}^{n-1}$ в результанT замисания в виде определителя, получим возрамение

$$h(c) = \det \begin{pmatrix} a_o(c) & b_o(c) & b_o(c) \\ \vdots & a_o(c) & \vdots \\ a_e(c) & \vdots & b_m(c) \\ \vdots & a_e(c) & \vdots \end{pmatrix}$$

Если p=m, то $h(c)=Res(f(x_1,c),g(x_1,c),x_1)$. При p< m унозамионі определитель пересшаєт боть результантом многосланов $f(x_1,c)$ и $g(x_1,c)$, $g(x_2,c)$, $g(x_3,c)$, $g(x_4,c)$

Теорема 5.2 (об продолжении) Буст $I = \langle f_1,...,f_5 \rangle \in \mathbb{C}[x_1,...,x_5],$ для всех $1 \leq i \leq 3$ образующие идеала заться высре $f_i = g_i(x_2,...,x_n) x_n^{N_i} + \sum_{cmenens}^{N_i} f_i + \sum_{cmen$

где $V_i \geq 0$ п $g_i \in C[I_2,...,I_n]$ ненумьюй. Ягогда, если гостное решение $C^2(I_2,...,C_n) \in V(I_1)$, т.г. $(I_2,...,I_n) \in V(g_{7,...,g_s})$, то существует $C_1 \in C_1$ для которыг $(C_1,C_2,...,C_n) \in V(I)$.

Dokaja Telescho! Pacchiompich computation on Dispersion of $(x_1, ..., x_n) \rightarrow (x_1, c)$

Замения, что образ I отно этого гономоронума авгается преслом в $C[x_1]$. Это вытексат из того, что гомоморонум для ствует тоту ственно на под-кому $C[x_1]$,

house (L[21], Thenested houseon enabling regressly, no oppose ugeaus $\{f(a,c): f\in I\} = \langle n(x_1)\rangle$,

где $u(x_1)$ лежий в образе. Если $u(x_1)$ не постоянный, то по основной теорене аспера найзется $c_1 \in C$, т. $c_1 = 0$. Тогда $f(c_1, c) = 0$ для вся $f \in I$, $c_2 = 0$, следовательно, тыка $(c_1, c_2) \in V(I)$.

ÉCUL U1(x) ryseboù surorozen, mo $f_i(x_1,c)=0$ que $f_i(x_1,c)=0$ que $f_i(x_1,c)=0$ que $f_i(x_1,c)=0$ que $f_i(x_1,c)=0$ $f_i(x_1,c)=0$ que $f_i(x_1,c)=0$ que f

 $II_{peqnosomuss}$, των $u(x_1) = u_0 - renysebos κουσταντα <math>u_3$ k. Torga cynyectyse $f \in I$, m.τ. $f(x_1, c) = u_0$. Το γενοβιών πεορρασι $c \notin V(y_1, ..., y_3)$, m.e. $g_i(c) \neq 0$ gue μεμοτορούν i. Paccumpus $h = Res(f_i, f, x_1)$, no πρεquoπειώνο 6. L $h(c) = g_0(c) degf$ $Res(f_i(x_1, c), f(x_1, c), x_1)$, $u_0(x_1) = u_0$ $u_0(c) degf$ $u_0(c) degf$

Being fif & I no representes 61 h & I, no rosga h(c)=0, mr. CEV(I1).