Scheduling Techniques

Lecture 2

Inputs to Scheduling and Bar (Gantt) Charts

Scheduling

- Is the allocation of resources (time, equipment, ..., etc.).
- Steps
 - Calculate detailed information (activity)
 - Assign time to activities
 - Give consideration to resources
 - Allocate resources
 - How much will it cost?

Activity

- The elements into which the project is subdivided into manageable minor steps are called activities (tasks).
- An activity is a single work step, that has a recognizable beginning and an end.
- what about the number of activities? Is there any guideline?
- Task description & attributes
- Activity is the actual performance of a task, such as
 - Install computers
 - Test

Task types

- Value adding activities or production activities or the direct physical progressing activities (Engineering or construction).
- Non-value adding activity (Breaks in the work)
- Non-value adding activity, but necessary.

Flow Process Chart

s.No	Description of Activity	Time(min)	$0 \square D \Rightarrow \nabla$	No of Labour
1	Truck with rebar arrives at site	0	_	-
2	Wait for Engineer to come	25	>	-
3	VisualInspection	10	1	14
4	Receipt by engineer	10		-
5	Wait for the labours to arrive	20		2
6	Taking the sample to get it cut for the testing	10		2
7	Cutting the sample for further test by third party	5		2
8	Receipt by Quality in charge	10		-
9	Travelling of truck till weighing machine	3		- 41
10	Weight of the truck(W1)	.5		-
11	Feeding details of arrived truck in system by verifying the receipts at weighing machine	15		4
12	Movement of truck to the steel yard	6	7.	
13	Wait for labours to arrive	20		-
14	Unloading manually	60		4
15	Movement of truck to the weighing machine	5		-
16	Weight of empty truck(to calculate weight of steel)	5		201

Activity duration:

- The time required for each activity for its completion
 - all time-consuming activities are assigned a duration.
- Most difficult a time managing activities: estimating the correct time which will take for completing a project.
 - Low estimate or high estimate
- Direct method using total quantity and daily production rate
 - Ex: find the duration of painting for 400 m² using a crew of 12 m²/hr
 - Answer is 400/12=33.33 hrs = 34 hrs app.

Estimating Techniques

Expert judgment

- One of the most frequently used methods for estimating the duration of activities in projects
- An estimator using this approach relies on his expertise and is guided by historical information and experience with similar project
- For improved accuracy, this is often used in combination with other techniques

Analogous estimating

- It requires you to analyze previous projects to approximate the length of the activity
- It depends on selecting a completed project or sections of it, similar to the new project, and using the definite time from the finished project to estimate duration of the new project.
- Estimator needs to factor in any differences between the new work being estimated and the previous task being used for comparison
- This method provides quick and easy estimates for projects or tasks that are not very complicated

Estimating Techniques

- Heuristic estimating
 - Here, the estimating is based on a 'rule of thumb'
 - These are based on parameters derived from past experiences
- Parametric estimating
 - Parametric estimating uses the statistical correlation that exists between a set of historical data and a series of delineated list of other variables
 - This technique can be applied to any situation in which sufficient historical data are available
- The Delphi Technique
- Phased estimating
- Top-down estimating
 - Bottom-up estimating Monte-Carlo Simulation

Dependency Relationships

- Logic/dependency relationship
 - Order in which the activities are to be accomplished
 - A logical relationship exists between two activities when the start (or finish) of one activity depends physically on the finish (or start) of another activity
- Links need not follow conventional FS
- Loops/cycles
 - When two or more activities are linked in a circular manner
- Redundancies
- Logical relationships should not be confused with constraints

There are sequential and parallel which is a common relationship which we use in construction phase alone.

Constraints

 Constraint is when an activity is subject to constraint such as approval of an owner or an government agency, funding availability, or workspace availability, etc.

Constraints

- Flexible constraints as soon as possible, as late as possible there is no deadline. There is no demand
- Moderate constraints start no earlier than,
 finish no later than there is a deadline only for the start,
- Inflexible constraints must finish on, must start on, zero total float

