Modeling the Human Haptic Code: A Deep Learning Approach to Neuro-Prosthetic Development

Cleah Winston

December 11

Cleah Winston

Experiment Recap

10s	10s	3x
rest	experiment	•••

- Participant Number = 2
- Collected data for touch, vision, and touch-vision on 4 pairs of objects
- The above diagram shows the setup for an experiment for a single pair of objects
- Starting with touch hot/cold for model

Model Pipeline

- 1. **Compile:** Concatenated the hot/cold data from participants.
- Label: Added a binary column which contained -1 if the participant was not touching any object, 0 if they were touching hot object, and 1 if they were touching cold object.
- 3. Remove unnecessary data: Deleted empty rows and unnecessary columns.
- 4. **Normalize Data:** Normalized features (Alpha, Beta, Delta, Gamma, Theta on AF_7, AF_8, TP_9, TP_10)
- 5. **Train Model:** Trained logistic regression model on these features.

Logistic Regression on Hot/Cold

- Preliminary Results
 - This model was trained on all the data (no splitting.)
 - Training accuracy: 91%

- Testing Results
 - Split data into 80% training and 20% testing data.
 - Training accuracy: 82%

Confusion Matrix for Logistic Regression

- I created a confusion matrix using results from the model trained on the testing data.
- I think this confusion matrix is good because the model predicted the correct binary number most of time!

Theta_AF8 vs. Gamma_AF8 Plot

- I created a plot using two random frequency bands.
- Here is the plot:
- I created this plot to visualize how the activity during hot and cold differed.

Gamma_AF7 vs. Beta_TP9 Plot

- I used recursive feature elimination and found the two most significant features.
- Here is the plot:
- ❖ I created this plot to visualize how the activity during hot and cold differed.

Potential Next Steps

- Collect more data
- Do principal component analysis (I am currently doing that!)
- Use other objects
- Use different models
- Try vision or vision-touch
- Analyze different people and objects
- Model power bands given object

Questions

- Currently, my model is predicting a binary number based on the EEG data. How could I make the model predict the EEG data based on they binary numbers?
- Are there other visualizations or analysis I should do on the data?
- Are there any other models that I should make?
- What should I do next?

January 4

Cleah Winston

Purpose of Project

- Generating EEG signals that would produce touch sensation based on the response to vision (just vision to touch vision) and/or based on the tactile labels(eg., hot or cold) ----> This could be then used to build touch neuroprosthetics for individuals who cannot sense touch but can see!
- Predict what someone ??? using imaginary touch (imagining what you want to touch) ---> This could be used to build prosthetics/devices for individuals who can touch but can not speak/move

Purpose of Project

- Generating EEG signals that would produce touch sensation based on the response to vision (just vision to touch vision) and/or based on the tactile labels(eg., hot or cold) ----> This could be then used to build touch neuroprosthetics for individuals who cannot sense touch but can see!
- Predict what someone ??? using imaginary touch (imagining what you want to touch) ---> This could be used to build prosthetics/devices for individuals who can touch but can not speak/move

My Progress

- Collected data for 4 participants for imaginary touch, touch vision, and touch (eyes close) of objects with various tactile features
- Created binary classifiers
 - for opposing touch types (hot vs. cold) when sensed by touch, vision, and touch+vision - Tested multiple machine learning models, reasonably high accuracies
 - Visualized data with PCA and tSNE
 - imaginary touch vs. touch vision had high accuracy meaning much separation

Touch Vision Mapping

Touch Vision Mapping

- Green Arrow is what I am doing
- Neural networks (multilayer and recurrent) to the rescue!
- Freq. bands for vision data to freq. bands of the touch vision data
- Correlatory analysis to also understand relationship -- do I need the tactile label as well? (hopefully not!)
- This would then be used in a prosth.

Generating EEG signals from the tactile

labels

Variational Autoencoder

- Generates EEG signals or specific features of EEG signals (i.e., frequency bands) given tactile labels
- I have to research and then implement this

Can we use the same prosthetic for

everyone?

Transfer Learning

- Train the model on 1 person and test it on another person
- See if training the model partially on 1 person and then continuing to train on a different person speeds up training
- This would elucidate whether models learned on individuals with touch or just other individuals could be useful for creating neuroprosthetics for other individuals without touch sensation

February 2

Cleah Winston

Recursive Feature Elimination Heatmap

- I performed recursive feature elimination on my features for touch hot vs. cold.
- I then got a ranking for them where 1 means most important.
- From this, I think TP10 is the most important.
- This supports the involvement of the parietal lobe representing touch.
- TP10 is between the temporal and parietal lobe.

Touch Vision Mapping

- I created a multilayer perceptron which predicts the EEG response to touch-vision data given the response to vision.
- I used all the data for all objects and participants.
- Layers: (10, 5, 10)
- Learning Rate = 0.1
- Solver = Stochastic Gradient Descent (SG
- Mean Squared Error = 0.73343066806644

Conditional Variational AutoEncoder

- I created a Conditional Variational AutoEncoder(CVAE) that generates a sample of EEG data for touch on a given label.
- Layer-Size
 - Encoder: [15, 10, 5]
 - o Decoder: [5, 10, 15]
- Latent Space

Conditional Variational AutoEncoder Results

- Loss Curve
 - Trained on collected data on 20 epochs and found that the loss decreased! :)
 - I used mean squared error and Kullback–Leibler divergence

Conditional Variational AutoEncoder Results (cont.)

- This is the confusion matrix for a multilayer perceptron for binary classification(hot vs. cold) without using CVAE.
 - Trained on collected EEG data
 - Tested on collected EEG Data

- This is the confusion matrix for a multilayer perceptron for binary classification(hot vs cold).
 - Trained on collected EEG data
 - Tested on collected CVAE output data

Conditional Variational AutoEncoder Results (cont.)

- The CVAE is always generating data that is similar to hot(0) data.
- I am not sure why this is happening.
- I also created confusion matrices for when:
 - Trained on CVAE output
 - Tested on Real Data

February 10

Cleah Winston

Hot: Touch vs. Vision

Hot: Vision vs. Touch-Vision

Cold: Touch vs. Touch-Vision

Hot vs. Cold: Touch-Vision

Conclusions

- It seems as though TP10 is the most important feature for all of the touch types for hot and cold.
- I feel that from order of most important to least important, TP10>AF8>TP9.

Logistic Regression: Touch

- Logistic Regression for hot vs. cold.
- Darker the color means more important
- TP9 seems to be the most important.

Logistic Regression: Vision

- Hot vs Cold
- Darker means more important.
- This says TP10 is the most important.

Logistic Regression: Touch-Vision

- Darker colors mean more important.
- This says that TP9 is the most important feature.

Multiple Classifier: k_Nearest-Neighbours

- Neighbours = 1
- Accuracy = 0.7043010752688172

- Neighbours = 1
- Accuracy = 0.5369565217391304

Multiple Classifier: Multi-Layer Perceptron

- Layers = 100, 100
- Accuracy = 0.5483870967741935

- Layers = 100, 100
- Accuracy = 0.358695652173913

Multiple Classifier: k_Nearest Neighbours

I did RFE for the KNN with all features.

Important Dates

- Abstract
 - March 5, 2021
 - 250 word length
- Virtual Project Board ← Poster? Examples?
 - March 7, 2021
 - PDF showing most important data of project
- Video
 - Video discussing project
 - March 7, 2021
 - This is for special award judging.

February 16

Cleah Winston

Justification: TP10 is the most important

НОТ	TP9	AF8	TP10
Touch vs. Vision	59.0	25.0	22.0
Touch vs. Touch-Vision	46.0	37.0	23.0
Vision vs. Touch-Vision	40.0	46.0	20.0
COLD	TP9	AF8	TP10
COLD Touch vs. Vision	TP9 44.0	AF8 32.0	TP10 30.0

Multiple Classification of Touch types in the Touch state

Multiple Classifier: Logistic Regression

• Accuracy = 0.5

• Accuracy = 0.23893805309734514

Multiple Classifier: Logistic Regression

 I did RFE for Logistic Regression for all features.

Multiple Classifier: k_Nearest-Neighbours

- Neighbours = 1
- Accuracy = 0.75

- Neighbours = 1
- Accuracy = 0.5619469026548672

k-Nearest-Neighbours: Visualization

- This shows the KNN separation.
- The point represent the training points and the fills represent regions in the testing mesh.
- These are the most important features according to RFE.
- Gray → Hot
- Pink \rightarrow Cold
- White → Firm

Multilayer Perceptron Architecture

- 2 layers
- 100 neurons per layer
- (Multilayer Perceptron on next slide)

Multiple Classifier: Multi-Layer Perceptron

- Layers = 100, 100
- Accuracy = 0.5434782608695652

- Layers = 100, 100
- Accuracy = 0.35398230088495575

Multiple Classification for Touch types in the

Touch-Vision and Touch State

Multiple Classifier: Logistic Regression

• Accuracy = 0.46236559139784944

• Accuracy = 0.2326086956521739

Multiple Classifier: k_Nearest-Neighbours

- Neighbours = 1
- Accuracy = 0.7043010752688172

- Neighbours = 1
- Accuracy = 0.5369565217391304

Multiple Classifier: Multi-Layer Perceptron

- Layers = 100, 100
- Accuracy = 0.5483870967741935

- Layers = 100, 100
- Accuracy = 0.358695652173913

Multiple Classifier: Logistic Regression

 I did RFE for Logistic Regression for all features.

February 27

Cleah Winston

How does Multiple Classification for Logistic Regression work?

- https://towardsdatascience.com/multiclass-classification-algorithm-from-scratch-with-a-project-in-python-step-by-step-quide-485a83c79992
- Multiple Classification uses the one vs. all method to classify.
- Basically, it considers one class vs. all other classes.
- Logistic Regression uses a sigmoid function.
 - This function returns a value between 0 and 1.
 - If the value is between 0 and 0.5, the predicted value would be 0.
 - If the value is between 0.5 and 1, the predicted value would be 1.

Clarifying the KNN Visualization

- The x-axis and y-axis represent the how much frequency there is in an actual
- I normalized the frequency bands, so they are z-scores.
- The legend represents the dots: black is hot, pink is cold, and peach is firm.
- The intermediate values are not

Screen to prevent other distractions in the room

Table where participants outstretched their arms and objects were placed on their left palm or on the table

Hot

Cold

Firm

Squishy

Rough

Smooth

Dry

Wet

March 1

Cleah Winston

k-Nearest-Neighbours Vision: Neighbours = 3

• Accuracy = 0.7368421052631579

• Accuracy = 0.4765957446808511

