Question ID: 37 q6

Question: Table in {type1} {entry1} shows experimental data of longitudinal velocity at different temperatures of (CuO)

X

(Te02)1-x

glasses at frequency 10 MHz. An example of a material composition is 75% \ce{Si0_2}, 15% \ce{B_20_3} and 10% \ce{Na_20}, where \ce{Si0_2}, \ce{B_20_3} and \ce{Na_20} are the chemical compounds contributing to the material composition. How many unique chemical compounds like these are shown in the table?

Keywords: table-questions, material-composition,

difficulty-advanced, requires-knowledge, requires-ocr

Target Value: 2

Image:

Sample (a) x = 0.160		Sample (b) x = 0.179		Sample (c) x = 0.190		Sample (d) x = 0.203	
T (K)	V _L (103 m/s)						
79	3.492 ± 0.002	77	3.528 ± 0.002	78	3.515 ± 0.002	80	3.761 ± 0.002
99	3.479 ± 0.002	94	3.517 ± 0.002	97	3.510 ± 0.002	99	3.746 ± 0.002
109	3.470 ± 0.002	104	3.509 ± 0.002	117	3.487 ± 0.002	119	3.748 ± 0.002
120	3.465 ± 0.002	122	3.497 ± 0.002	126	3.485 ± 0.002	123	3.751 ± 0.002
134	3.449 ± 0.002	146	3.472 ± 0.002	132	3.482 ± 0.002	127	3.753 ± 0.002
144	3.431 ± 0.002	162	3.533 ± 0.002	137	3.484 ± 0.002	131	3.736 ± 0.002
155	3.469 ± 0.002	167	3.537 ± 0.002	142	3.497 ± 0.002	136	3.734 ± 0.002
160	3.477 ± 0.002	177	3.536 ± 0.002	147	3.515 ± 0.002	147	3.727 ± 0.002
164	3.480 ± 0.002	181	3.535 ± 0.002	152	3.535 ± 0.002	157	3.720 ± 0.002
169	3.481 ± 0.002	186	3.537 ± 0.002	157	3.546 ± 0.002	167	3.719 ± 0.002
185	3.476 ± 0.002	192	3.535 ± 0.002	162	3.551 ± 0.002	177	3.714 ± 0.002
194	3.467 ± 0.002	202	3.534 ± 0.002	167	3.546 ± 0.002	187	3.223 ± 0.002
205	3.462 ± 0.002	207	3.530 ± 0.002	178	3.541 ± 0.002	197	3.721 ± 0.002
210	3.457 ± 0.002	222	3.514 ± 0.002	197	3.525 ± 0.002	212	3.706 ± 0.002
229	3.439 ± 0.002	243	3.500 ± 0.002	222	3.510 ± 0.002	232	3.693 ± 0.002
249	3.425 ± 0.002	262	3.492 ± 0.002	242	3.498 ± 0.002	252	3.711 ± 0.002
281	3.407 ± 0.002	283	3.490 ± 0.002	262	3.493 ± 0.002	272	3.701 ± 0.002
303	3.390 ± 0.002	301	3.476 ± 0.002	282	3.489 ± 0.002	291	3.697 ± 0.002
-	-	-	-	296	3.477 ± 0.002	301	3.684 ± 0.002