Einzelprüfung "Theoretische Informatik / Algorithmen (vertieft)"

## Einzelprüfungsnummer 66115 / 2017 / Frühjahr

## Thema 2 / Aufgabe 3

(Berechen- und Entscheidbarkeit)

Stichwörter: Berechenbarkeit, Turing-Maschine

## (a) Primitiv rekursive Funktionen

(i) Zeigen Sie, dass die folgendermaßen definierte Funktion if:  $\mathbb{N} \times \mathbb{N} \times \mathbb{N} \mathbb{N}$  primitiv rekursiv ist.

sonst

(ii) Wir nehmen eine primitiv rekursive Funktionp: NN an und definieren g(n) als die Funktion, welche die größte Zahl i < n zurückliefert, für die p(/) = 0 gilt. Falls kein solches i existiert, soll g(n) = 0 gelten:

$$a(n) = max (i < n | p) = 0 U 0)$$
  
if  $(b, x, y) = (falls b=0)$ 

Zeigen Sie, dass g: N > N primitiv rekursiv ist. (Sie dürfen obige Funktion if als primitiv rekursiv voraussetzen.)

(b) Sei 
$$\Sigma = \{a, b, c\}$$
 und  $L \subseteq \Sigma^*$  mit  $L = \{a^i b^i c^i | i \in N\}$ .

(i) Beschreiben Sie eine Turingmaschine, welche die Sprache Z entscheidet. Eine textuelle Beschreibung der Konstruktionsidee ist ausreichend.

Lösungsvorschlag



Der Automat auf flaci.com (FLACI: Formale Sprachen, abstrakte Automaten, Compiler und Interpreter) Ein Projekt der Hochschule Zittau/Görlitz und der Pädagogischen Hochschule Schwyz: flaci.com/Apew1n7g9

"

"https://scanftree.com/automata/turing-machine-for-a-to-power-n-b-to-power-n-c-to-power

(ii) Geben Sie Zeit- und Speicherkomplexität (abhängig von der Länge der Eingabe) Ihrer Turingmaschine an.

Lösungsvorschlag

**Speicherkomplexität** *n* (Das Eingabewort wird einmal überschrieben)

**Zeitkomplexität** the turing machine time complexity is the number of transition execution will executed is call time complexity of the turing machine. first we start we main loop execution is (n/3)-1. transition (a,x,R) from state 1 to 2= 1. transition (a,a,R) and (y,y,R) on state 2 is = (n/3)-1. transition (b,y,R) from state 2 to 3=1. on state 3 (b,b,R) and (z,z,R)=(n/3)-1. transition (c,z,L) from state 3 to 4=1. on state 4 (y,y,L),(b,b,L),(z,z,L) and state 5 (a,a,L)=(n/3)-1. transition (a,a,L) form state 4 to 5 =1. transition (x,x,R) from 5 to1 =1 total(n+2) following transition will executed transition(a,x,R) from state 1 to 2= 1. transition (y,y,R) on state 2 is = (n/3)-1. transition (b,y,R) from state 2 to 3=1. transition (z,z,R) on state 3=(n/3)-1 transition (c,z,L) from state 3 to 4=1. on state 4 (y,y,L),(z,z,L) and state (n/3)-1. transition (x,x,R) from state 54 to 6 =1 transition on state 6 (y,y,R),(z,z,R)=(n/3) transition (d,d,R) from state 6 to 7 =1 total =(4n/3)+2 over alti time complexity (n+2)(n/3)-1+(4n/3)+2

ahttps://www.youtube.com/watch?v=vwnz9e\_Lrfo

- (c) Sei  $\Sigma = \{0,1\}$ . Jedes  $w \in \Sigma^*$  kodiert eine Turingmaschine  $M_w$ . Die von  $M_w$  berechnete Funktion bezeichnen wir mit  $\varphi_w(x)$ .
  - (i) Warum ist  $L = \{ w \in \Sigma^* \mid \exists x : \varphi_w(x) = xx \}$  nicht entscheidbar?
  - (ii) Warum ist  $L = \{ w \in \Sigma^* \mid \exists x \colon w = xx \}$  entscheidbar?



## Die Bschlangaul-Sammlung

Hermine Bschlangaul and Friends

Eine freie Aufgabensammlung mit Lösungen von Studierenden für Studierende zur Vorbereitung auf die 1. Staatsexamensprüfungen des Lehramts Informatik in Bayern.



Diese Materialsammlung unterliegt den Bestimmungen der Creative Commons Namensnennung-Nicht kommerziell-Share Alike 4.0 International-Lizenz.

Hilf mit! Die Hermine schafft das nicht allein! Das ist ein Community-Projekt! Verbesserungsvorschläge, Fehlerkorrekturen, weitere Lösungen sind herzlich willkommen - egal wie - per Pull-Request oder per E-Mail an hermine.bschlangaul@gmx.net.Der TEX-Quelltext dieses Dokuments kann unter folgender URL aufgerufen werden: https://github.com/bschlangaul-sammlung/examens-aufgaben/blob/main/Staatsexamen/66115/2017/03/Thema-2/Aufgabe-3.tex