1.Download the dataset: Dataset

2.Load the dataset

In [5]:

```
import numpy as np
import pandas as pd
df = pd.read csv("Churn Modelling.csv")
```

3.Perform Below Visualizations.

Univariate Analysis

In [6]:

import seaborn as sns sns.histplot(df.CreditScore, kde=True)

Out[6]:

Bi - Variate Analysis

In [7]:

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.scatterplot(df.CreditScore, df.EstimatedSalary)
plt.ylim(0,15000)
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarni
ng: Pass the following variables as keyword args: x, y. From version 0.12, th
e only valid positional argument will be `data`, and passing other arguments
without an explicit keyword will result in an error or misinterpretation.
  FutureWarning
```

Out[7]:

(0.0, 15000.0)

Multi - Variate Analysis

import seaborn as sns
df=pd.read_csv("Churn_Modelling.csv")
sns.pairplot(df)

Out[8]:

4.Perform descriptive statistics on the dataset.

In [9]:

df=pd.read_csv("Churn_Modelling.csv")
df.describe(include='all')

Out[9]:

	Row Num ber	Cust omer Id	Sur na me	Credi tScor e	Geo gra phy	Ge nd er	Age	Tenu re	Balan ce	Num OfPro ducts	HasC rCar d	IsActi veMe mber	Estim atedS alary	Exite d
co un t	1000 0.00 000	1.000 000e +04	10 00 0	1000 0.000 000	100 00	10 00 0	1000 0.000 000	1000 0.000 000	1000 0.000 000	10000 .0000 00	1000 0.00 000	10000 .0000 00	10000 .0000 00	1000 0.000 000
un iq ue	NaN	NaN	29 32	NaN	3	2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
to p	NaN	NaN	Sm ith	NaN	Fra nce	M ale	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
fr eq	NaN	NaN	32	NaN	501 4	54 57	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
m ea n	5000 .500 00	1.569 094e +07	Na N	650.5 2880 0	NaN	Na N	38.92 1800	5.012 800	7648 5.889 288	1.530 200	0.70 550	0.515 100	10009 0.239 881	0.203 700
st d	2886 .895 68	7.193 619e +04	Na N	96.65 3299	NaN	Na N	10.48 7806	2.892 174	6239 7.405 202	0.581 654	0.45 584	0.499 797	57510 .4928 18	0.402 769

	Row Num ber	Cust omer Id	Sur na me	Credi tScor e	Geo gra phy	Ge nd er	Age	Tenu re	Balan ce	Num OfPro ducts	HasC rCar d	IsActi veMe mber	Estim atedS alary	Exite d	
mi n	1.00 000	1.556 570e +07	Na N	350.0 0000 0	NaN	Na N	18.00 0000	0.000	0.000	1.000	0.00 000	0.000	11.58 0000	0.000 000	
25 %	2500 .750 00	1.562 853e +07	Na N	584.0 0000 0	NaN	Na N	32.00 0000	3.000	0.000	1.000	0.00 000	0.000	51002 .1100 00	0.000 000	
50 %	5000 .500 00	1.569 074e +07	Na N	652.0 0000 0	NaN	Na N	37.00 0000	5.000 000	9719 8.540 000	1.000	1.00 000	1.000	10019 3.915 000	0.000 000	
75 %	7500 .250 00	1.575 323e +07	Na N	718.0 0000 0	NaN	Na N	44.00 0000	7.000 000	1276 44.24 0000	2.000	1.00 000	1.000	14938 8.247 500	0.000	
m ax	1000 0.00 000	1.581 569e +07	Na N	850.0 0000 0	NaN	Na N	92.00 0000	10.00 0000	2508 98.09 0000	4.000 000	1.00 000	1.000	19999 2.480 000	1.000 000	
df.c	ount (()												In [28]:	
Cust Surn Cred Geog Gend Age Tenu Bala NumO HasC IsAc Esti Exit	itScoraphy er re nce fProd tiveM mated ed	d ore lucts l Iember	У	10000 10000 10000 10000 10000 10000 10000 10000 10000 10000										Out[28]:	
dtyp	e: in	t64												In [30]:	
df['	<pre>df['Geography'].value_counts()</pre>														

Out[30]:

France 5014 Germany 2509 Spain 2477

Name: Geography, dtype: int64

5. Handle the Missing values.

In [11]:

from ast import increment_lineno
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(color_codes=True)
df=pd.read_csv("Churn_Modelling.csv")
df.head()

Out[11]:

	RowN umbe r	Custo merl d	Sur nam e	Credi tScor e	Geog raph y	Ge nd er	A g e	Te nur e	Bala nce	NumOf Product s	HasC rCar d	IsActive Membe r	Estimat edSalar y	Exi te d
0	1	1563 4602	Har grav e	619	Franc e	Fe mal e	4	2	0.00	1	1	1	101348. 88	1
1	2	1564 7311	Hill	608	Spain	Fe mal e	4 1	1	8380 7.86	1	0	1	112542. 58	0
2	3	1561 9304	Oni o	502	Franc e	Fe mal e	4 2	8	1596 60.8 0	3	1	0	113931. 57	1
3	4	1570 1354	Boni	699	Franc e	Fe mal e	3 9	1	0.00	2	0	0	93826.6	0
4	5	1573 7888	Mitc hell	850	Spain	Fe mal e	4	2	1255 10.8 2	1	1	1	79084.1 0	0

\cap	[21]	٠
Out	וכן	١.

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

No missing values here, so no need to perform further operations

6.Find the outliers and replace the outliers

In [23]:

```
import pandas as pd
import matplotlib
from matplotlib import pyplot as pyplot
%matplotlib inline
matplotlib.rcParams['figure.figsize']=(10,4)
df=pd.read_csv("Churn_Modelling.csv")
df.sample(5)
```

Out[23]:

	RowN umbe r	Custo merl d	Surna me	Credi tScor e	Geog raph y	Ge nd er	A g e	Te nur e	Bala nce	NumOf Produc ts	HasC rCar d	IsActive Membe r	Estimat edSalar y	Exi te d
6 4 8	649	1563 3064	Stone brake r	438	Fran ce	Fe ma le	3 6	4	0.00	2	1	0	64420. 50	0
4 8 7 2	4873	1564 5937	Gueri n	790	Spain	Ma le	3	3	0.00	1	1	0	91044. 47	0
7 4	7432	1570 5379	Upjo hn	678	Fran ce	Ma le	3	3	0.00	2	1	0	66561. 60	0

	RowN umbe r	Custo merl d	Surna me	Credi tScor e	Geog raph y	Ge nd er	A g e	Te nur e	Bala nce	NumOf Produc ts	HasC rCar d	IsActive Membe r	Estimat edSalar y	Exi te d
3 1														
7 4 5 9	7460	1558 3724	Raym ond	645	Spain	Fe ma le	2	4	0.00	2	1	1	74346. 11	0
6 6 3 9	6640	1558 3076	Deleo n	588	Ger man y	Ma le	4	6	1061 16.5 6	2	1	0	198766 .61	0
<pre>In [26]: sns.boxplot(x='CreditScore', data=df)</pre>													[26]:	
5115	ZOMPIN		OLCUI	20010	, aa	Ju -u1	- /						Ou	t[26]:

7. Check for Categorical columns and perform encoding.

```
In [12]:

df=pd.read_csv("Churn_Modelling.csv")

df.columns
import pandas as pd
import numpy as np
headers=['RowNumber','CustomerID','Surname','CreditScore','Geography',
    'Gender','Age','Tenure','Balance','NumofProducts','HasCard'
    'IsActiveMember','EstimatedSalary','Exited']
import seaborn as sns
df.head()

Out[12]:
```

	RowN umbe r	Custo merl d	Sur nam e	Credi tScor e	Geog raph y	Ge nd er	A g e	Te nur e	Bala nce	NumOf Product s	HasC rCar d	IsActive Membe r	Estimat edSalar y	Exi te d
0	1	1563 4602	Har grav e	619	Franc e	Fe mal e	4 2	2	0.00	1	1	1	101348. 88	1
1	2	1564 7311	Hill	608	Spain	Fe mal e	4 1	1	8380 7.86	1	0	1	112542. 58	0
2	3	1561 9304	Oni o	502	Franc e	Fe mal e	4 2	8	1596 60.8 0	3	1	0	113931. 57	1
3	4	1570 1354	Boni	699	Franc e	Fe mal e	3 9	1	0.00	2	0	0	93826.6	0
4	5	1573 7888	Mitc hell	850	Spain	Fe mal e	4	2	1255 10.8 2	1	1	1	79084.1 0	0

8. Split the data into dependent and independent variables.

print(Y)

```
In [34]:
#Splitting the Dataset into the Independent Feature Matrix:
X = df.iloc[:, :-1].values
print(X)
[[1 15634602 'Hargrave' ... 1 1 101348.88]
  [2 15647311 'Hill' ... 0 1 112542.58]
  [3 15619304 'Onio' ... 1 0 113931.57]
    ...
  [9998 15584532 'Liu' ... 0 1 42085.58]
  [9999 15682355 'Sabbatini' ... 1 0 92888.52]
  [10000 15628319 'Walker' ... 1 0 38190.78]]
  #Extracting the Dataset to Get the Dependent Vector
Y = df.iloc[:, -1].values
```

9. Scale the independent variables

10. Split the data into training and testing

```
In [40]:
from sklearn.model selection import train test split
# split the dataset
X train, X test, Y train, Y test = train test split(X, Y, test size=0.05,
random state=0)
                                                                            In [41]:
X train
                                                                           Out[41]:
array([[800, 15567367, 'Tao', ..., 0, 1, 103315.74],
       [1070, 15628674, 'Iadanza', ..., 1, 0, 31904.31],
       [8411, 15609913, 'Clark', ..., 1, 0, 113436.08],
       [3265, 15574372, 'Hoolan', ..., 1, 0, 181429.87],
       [9846, 15664035, 'Parsons', ..., 1, 1, 148750.16],
       [2733, 15592816, 'Udokamma', ..., 1, 0, 118855.26]], dtype=object)
                                                                            In [42]:
Y train
                                                                           Out[42]:
array([0, 1, 0, ..., 0, 0, 1])
                                                                            In [43]:
```

```
X test
                                                                Out[43]:
array([[9395, 15615753, 'Upchurch', ..., 1, 1, 192852.67],
      [899, 15654700, 'Fallaci', ..., 1, 0, 128702.1],
      [2399, 15633877, 'Morrison', ..., 1, 1, 75732.25],
      [492, 15699005, 'Martin', ..., 1, 1, 9983.88],
      [2022, 15795519, 'Vasiliev', ..., 0, 0, 197322.13],
      [4300, 15711991, 'Chiawuotu', ..., 0, 0, 3183.15]], dtype=object)
                                                                 In [44]:
Y test
                                                                Out[44]:
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
      0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1,
      0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0,
      1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
      0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
      0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
      1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0,
```

0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0])