LaPIS Diagnostic Test Workbook - Mathematics

Name : Thanvanth E

Class: 7

Section : A

School : AKV Public School

Login ID : AKV117

Thanvanth E's Performance Report

Score: 16/40 Percentage: 40.0%

Thanvanth E's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
				ipal Signature	

Mensuration

Topics to be Improved		
Perimeter	Perimeter of triangle	

Hi, here in this video you will learn **Perimeter**

Question: 1

Highlight the perimeter in the given image.

1	n	SI	,,	o	n.
\boldsymbol{H}	Ή.	S 7	17	ייש	

Perimeter is the _____ (outer / inner) boundary of the shape

Question: 2

Find the perimeter of the given figure.

Answer:

Sides of the given shape = _____

Perimeter of a shape is _____ (sum / difference) of _____ (all/ opposite) sides.

Perimeter of the given shape = _____

Question: 3

Find the length of the rectangular floor if its perimeter is 60 ft and breadth is 3 ft.

Answer:

Shape of the floor is _____ and its perimeter formula is _____. Given:

floor perimeter =
$$___$$
, and breadth = $___$.
Perimeter of the floor = $2(___+ ___)$.

Therefore, length of the rectangular floor is ______.

Data handling

Topics to be Improved				
Arithmetic mean, mode and median	Mean, Median and Mode			
Chance of probability	Basis of probability			

Hi, here in this video you will learn Mean, Median, Mode

Question: 4

Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67, 24, 19 and 98.

Answer:

Mode is the number that occurs _____ (frequently / rarely) in a given list of observations.

Arranging the data in ascending order: _____ occurs most number of times. Then, mode of the given data is _____

Question: 5

Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1

Answer:

Median is the _____(first/central/last) value of a data when the data is arranged in ascending or descending order.

Arrange the given data in ascending order: _____ and it is the _____ of a data.

 $\underline{Question: 6}$

Marks scored	100	90	80	70
Number of students	4	5	2	1

 $Mean = \underline{\hspace{1cm}}$, $Median = \underline{\hspace{1cm}}$ and $Mode = \underline{\hspace{1cm}}$.

Answer:
$Mean = \frac{\text{of all observation}}{\text{number of observation}}.$
Here s sum of all observation =, number of observation = Therefore, mean = Arrange the data in ascending order :
Here, median =, mode =
Hi, here in this video you will learn Basics of probability
Question: 7
Identify the sure events and impossible events
(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
Answer:
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is event.
Clock rotates in clock wise direction is event. Ball is square in shape is event.
Question: 8
Probability of sure events is (greater / smaller) than probability of impossible events.
Answer:
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Probability of impossible event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Therefore, Probability of sure event $\underline{\hspace{1cm}}$ Probability of impossible event.
Question: 9
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.
Answer:
Things Raju have (Yes/ No). Does Raju have pen in his box, (Yes/ No). Then probability of getting pen from his box is (0/1)

Geometry

	Topics to be Improved			
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle			
Faces vertex and edges	Idenfication of faces, edges and vertices			
Lines of symmetry for regular polygons	Identification of lines of symmetry			
Transversal angle made by transversal	Basics of Transversal angle			
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles			

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 10

Find the greatest distance to reach C from A in the given diagram.

Answer:

The sides of the given triangle are _____.

The possible way to reach point C from point A are _____ and AB then to

 $Side\ AC = \underline{\hspace{1cm}}$

 $Side AB + BC = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

Therefore, the greatest distance to reach C from A in the given diagram is ______

Question: 11

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

.....

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is ______ than the other side of the triangle.

The difference of the two sides of a triangle is _____ than the other side of the triangle.

Example: In triangle XYZ,

Question: 12

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

Answer:

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = _____ + ___ = ____ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be _____ (less/ greater) than sum of other two sides.

 Here, difference of the two sides = ____ ___ = ____

 Therefore, the length of the third side is greater than _____

Therefore, length of the third side is greater than ______ but less than _____.

Hi, here in this video you will learn Basics of 3D model

Question: 13

A point at which two or more lines segments meet is called _____(Vertex/ edges/ faces).

Answer:

has two end point (line/line segment/ray).

A ______is a point where two or more line segments meet(Vertex/ edges/ faces).

Mark the vertices in the diagram

Mark the vertices in the diagram,

Quartien: 11			
Question: 14	 	 	

Mark and find the number of vertices, edges and faces in a cube.

$\underline{Answer:}$

Mark the vertex, edges and faces in a cube.

Count the numb	oer of vertex,	edges and faces	in a cube.
Cube have	vertices, _	edges ar	id faces.

Question: 15

How many vertices, edges and faces does dices have?

Answer:				
The shape of dice is vertice			faces.	
Hi, here in this video	o you will	learn Symme	rty	
Question: 16				
Line of symmetry is divididentical) halves.	es any shap	oe into (or	ne / two)	(identical / non
Answer:				
Lines of symmetry is a line Symmetrical image have a Therefore, line of symmetry		(identical / n	on identical) parts	S.
Question: 17				
How many lines of symme	etry does sq	uare have?		
Answer:				
Square haveAll sides of square are		_ and all angles a	re	
	Ma	ark the lines of syr	nmetry.	
Therefore, square has	lines o	of symmetry.		

Question: 18		
v	g based on the symmetry. scalene triangle, Letter K, Rhombus, Number 8, and circ	ele .
$\underline{Answer:}$		
The letter S is	a line that divides the shape into (equal (symmetrical / asymmetrical) and have	
symmetry. Scalene triangle is symmetry.	(symmetrical / asymmetrical) and have	lines of
č č	(symmetrical / asymmetrical) and have	lines of
•	(symmetrical / asymmetrical) and have	lines of
	(symmetrical / asymmetrical) and have (symmetrical / asymmetrical) and have	
Hi, here in this v	video you will learn Basics of Transversal ang	
	1 and \angle 7 are (alternate / corresponding	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Answer:		
Intersecting line).	s two or more lines at distinct points is called a	,
0	fferent vertices and on the same sides of transversal is 7 are	angles.
Question: 20		

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
\angle a and \angle g, \angle b and \angle h,	\angle a and \angle e, \angle b and \angle f,

Question: 21

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Hi, here in th	is video y	ou will learn Crite	eria of congruence	
Question: 22				
Circle the groups	that contain	in congruent images.		
$\underline{Answer:}$				
(identical/non-ide	entical) in s	hapes and size.	they are	nt).
Question: 23				
		ngle are equal to the corr (SSS	rresponding sides of the o	ther triangle, then two
$\underline{Answer:}$				
			ongruent) if they are ident and	
		teria - $(2/3/5)$ sides of corresponding sides of	des of the triangle are the other triangle.	(equal/
			les and (o d the included angle of the	
			ngles andangles and the included s	
	SSS	sides and	angles are equal	
	SAS	sides and	angles are equal	
	ASA	sides and	angles are equal	
Question: 24				
The triangles LN	M and PRO	Q are congruent by SAS	S criteria. Then find the s	ide PR

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ____ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Number system

Topics to be Improved			
Operations on rational numbers	Subtraction of rational numbers, Division of rational numbers		
Fractions	Multiplication of fractions, Division of fraction		
Integers	Basics of integers		
Law of Exponents	Law of Exponents		
Exponents	Solving exponents		
Introduction to rational numbers	Basics of rational numbers		

Hi, here in this video you will learn **Operation on rational numbers**

Question: 25

Solve: $\frac{-3}{3} + \frac{1}{3}$

Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are ______ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{-3}{3} = \frac{-3}{3}$$

......

Question: 26

Find the addition of shaded part of box A and shaded part of box B.

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$. Number of shaded square in box $A = \underline{\hspace{1cm}}$.

Shaded part of box A in fraction = _____

Total number of square in box $B = \underline{\hspace{1cm}}$.

Number of shaded square in box $B = \underline{\hspace{1cm}}$.

Shaded part of box B in fraction = _____.

Shaded part of box A + Shaded part of box B = $___$ + $___$ = $__$

Question: 27

Find the missing values in the given figure.

Answer:

Given: $1 = \frac{7}{10} +$ ____ Transposing $\frac{7}{10}$ to other sides, $1 = \frac{7}{10} =$ _____

Therefore, result is _____

Hi, here in this video you will learn Multiplication on fractions

Question: 28

Fill the boxes

$$2+4+\frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

Answer:

The whole number can be expressed in fraction with denominator equal to _____ (zero/one). Therefore, 2 can be written as _____ in fraction.

4 can be written as _____ in fraction.

$$2+4+\frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Question: 29

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

Answer:

Total number of students = $_$

Fraction of students who are girls = _____

Number of girls = \times = = =

Question: 30

Solve: $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction. Here, 2 is _____, 7 is ____ and 4 is ____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

Improper fraction of $2\frac{7}{4} =$

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{\qquad} \times \frac{2}{3} = \boxed{\qquad}$$

Hi, here in this video you will learn Division on fractions

Question: 31

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction.

Here, 5 is _______, 2 is ______ and 7 is ______.

To convert mixed fraction into improper fraction, (Whole × ____

$$5 \frac{2}{7} = \frac{(--- \times ---) + ---- }{7} = \frac{\square}{\square}$$

......

.....

Question: 32

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $___$ and divisor = $___$.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$$

Question: 33

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{\hspace{1cm}} = \frac{12}{40} \times \overline{\hspace{1cm}} = \overline{\hspace{1cm}}$$

Then the answer is _____

Hi, here in this video you will learn **Operation on rational numbers**

Question: 34

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square$$

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the ______(same/reciprocal) of the divisor.

Here, dividend = and divisor = =

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

Question: 35

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of $0.6 = \underline{\hspace{1cm}}$

when any fraction is divided by a fraction, we multiply the dividend by the ______ (same/reciprocal) of the divisor. Here, dividend = _____ and divisor = _____.

$$\frac{18}{7} \div \boxed{\square} = \frac{18}{7} \times \boxed{\square} = \boxed{\square}$$

Question: 36

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\Box} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Transposing 16 to other side, the result is _____

Hi, here in this video you will learn Basics of integers

 $\underline{\textit{Question: 37}}$

Highlight the ring that contains whole numbers.

A	m	01		0	n
А	$T \iota$.51	11)	e:	۲.

<u>Answer:</u>
The numbers inside the inner ring $(1, 2, 3,)$ are numbers. The numbers inside the middle ring are numbers. The numbers inside the outer ring are negative numbers, positive numbers and zero and they are called as
Question: 38
Colour the frame of the box which contains the number 1, 4 and -10
Whole numbers
Answer:
Whole number consists of $0,1,2,3,4,$. Negative number consists of Natural numbers consists of Integers consists of Now, 1, 4, -10 are in
Question: 39
State whether the statement is true or false. Every positive number is an integer.
Answer:
Positive numbers are Integers consists of Therefore, positive numbers are (in/not in) integers.
Hi, here in this video you will learn Law of exponents
Question: 40
$(x)^0$ is equal to
Answer:

__ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result. In $(x)^0$ base = _____ Power = _____ Any number or variable with power zero is equal to _____ Therefore, $(x)^0$ equal to ______. Question: 41 i. $a^m \times a^n =$ _______ ii. $a^m \div a^n =$ ______ Answer: Multiplication of two numbers with same base with different power, their exponents are _____ (added/ subtracted) Division of two numbers with same base with different power, their exponents are ____ (added/ subtracted). Question: 42 Circle the result of the expression $(a^0 \times b^1) + (m^1 \times n^0) + (x^0 \times y^1)$ a+n+x bmy 1 ab+mn+xy 0 anx b+m+yAnswer: Any number with power zero is equal to_____(One/ Zero). Any number with power one is equal to _____ (same/ different) number. $(a^0 \times b^1) + (m^1 \times n^0) + (x^0 \times y^1) = (\underline{\hspace{1cm}}) + (\underline{\hspace{1cm}} \ddot{O} \underline{\hspace{1cm}}) + (\underline{\hspace{1cm}})$ = ____+ ____+ _____ Hi, here in this video you will learn Exponents and power Question: 43 Find the exponential form of 1000. Answer: ____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

Exponents is also called as (Base / Power).
1000 can be written as = $10 \times $ $\times $ 10 is raised to the power of = (10)
Question: 44 Find the value of $(-2)^3$.
Answer:
$\underline{\hspace{0.5cm}}$ (Exponents/Base) tells us how many times a number should be multiplied by itsel to get the desired result.
In this exponential form $(-2)^3$, base =, power = $(-2)^3 = \underline{\qquad} \times \underline{\qquad} = \underline{\qquad}.$
Question: 45
(i) Tenth power of 100 is $((10)^{100} \text{ or } (100)^{10})$.
(ii) k is raised to the power of 5 is ($(k)^5$ or $(5)^k$).
Answer:
Exponential form = $(Base)$ —
(i) Tenth power of 100 : Base =, Power/Exponents =, exponential form =
(ii) k is raised to the power of 5 : Base =, Power/Exponent =, exponential form =
Hi, here in this video you will learn Basics of rational numbers
Question: 46

The numbers in the diagram represents_____.

Answer:

0, 4,5,2,3,1 are _____ numbers.

-1,-2, -3, -4 are _____ numbers.

The combination of these circles are called ______.

 $\frac{1}{49}$, $\frac{1}{2}$, $\frac{8}{27}$, $\frac{11}{5}$, $\frac{13}{75}$ are ______.

Combination of all three circles are called as _____ numbers.

.....

Question: 47

Shade the correct form of rational numbers.

Answer:

Rational number can be expressed as ______, where both numerator and denominator are _____ (integer/ not a integer),

denominator is equal to _____(zero/ one/ any integer other than zero).

Question: 48

Circle the number which is not a rational number.
$$\frac{-5}{-8}$$
 $\frac{-3}{2}$ $\frac{12}{-6}$ $\frac{0}{-9}$ 256 $\frac{4}{0}$

Answer:

Rational number can be expressed as ______, where both numerator and denominator are ______(integer/ not a integer), denominator is equal to ______ (zero/ one/ any integer other than zero).

Here, ______ is/are rational number and ______ is/are not a rational number.

Comparing Quantities

Topics to be Improved		
Simple interest	Calculation of simple interest	
Conversion of fraction into percentage	Conversion of fraction into percentage	
Percentage	Basic of percentage	

Hi, here in this video you will learn **Simple Interest**

Question: 49

Answer:

Match the following.

	Column A
i	Principle(P)
ii	Amount (A)
iii	Rate (R)
iv	Time period (T)

Column B		
a	Interest calculated based on this	
b	Total sum you borrow	
С	Number of years	
d	Total sum with interest	

Formula for calculating simple interest $=$
Interest calculated based on
Total sum you borrow is known as
Number of years is Total sum with interest is
Question: 50

Sara deposited Rs.1200 in a bank. After three years, she received Rs.1320. Find the interest she earned.

Answer:			
Given:			
Amount =	, Principle =	$\underline{\hspace{1cm}}$, Time period = $\underline{\hspace{1cm}}$	
If Amount and pri	inciple is given, then formula for	calculating interest is	
Interest =	=		
Question: 51			

The simple interest on Rs.5000 for 3 years is Rs.1350. Find the rate of interest.

Answer:

Interest =	, Time period =,	Principal =	
	x 100 Principal x		
Substituting values	in the formula,		
Rate of interest =	x 100 Principal x		
Rate of interest $=$ $=$			
	Of Interest is		ELEXTE
Hi, here in this percentage	s video you will learn Converting		
Question: 52			
Complete the box i	n the given equation.		
$5\% = \frac{5}{\square}$			
Answer:			
Percentage are the	fraction with the denominator		
	Therefore, 5% can be expressed as $_$		
$\underline{\textit{Question: } 53}$			
Mark the correct co	inversion form of fraction $\frac{1}{2}$ to percentage.		
(i) $\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} =$	= 50%		
(ii) $\frac{1}{2} \times \frac{100}{100} = \frac{100}{200}$	= 200%		
(iii) $\frac{1}{2} \times 100 = \frac{100}{2}$	=50%		
$\underline{Answer:}$			
100 or	into percentage, the value of (multiply / divide) the fraction with conversion form is		umerator)should be
Question: 54			
	e of shaded part of square.		

A	nsi	me	r

The square shape is divided into ______ parts.

Number of shaded part of square is _____.

Shaded part of square in fraction is _____.

To Convert	into percentage,	x 100

Hi, here in this video you will learn Basics of percentage

Question: 55

2% can be written as

Answer:

Percentages are numerators of fractions with denominator_____

$$2\% = \frac{\square}{\square}$$

Question: 56

Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?

Answer:

Arun attended LaPIS test for ______ marks. He got _____ marks. 75 % can be written in fraction form _____

Then the mark scored by Arun = Total mark \times 75% = \times =
Question: 57
There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten apples.
Answer:
There are apples in a basket. Number of rotten apples are Fraction form of rotten apples in a basket =
Convert it into a percent= x% =

Algebra

Topics to be Improved					
Monomials, binomials, trinomials and polynomials	Types of algebraic expression				
subtraction of algebraic expressions	subtraction of algebraic expressions				
Basics of simple equation	Formating of simple equation, Solving of simple equation				
Terms of an expression	Identification of terms in an expression				

Hi, here in this video you will	learn Types of expression
---------------------------------	---------------------------

Omontion	<i>58</i>
Question:	00

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

......

......

The terms in the expression are ______, _____, and ______.

Therefore, there are ______ terms in the expression.

Question: 59

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

Answer:

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a ______
- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.
- 3. The terms in expression 7m + n + 2 are _____. Here, expression has ____ term and it is a _____.

\overline{Que}	<i>stion:</i> 60				
$5m^2$	+ m + 0 is a	expression	. (Monomial/ B	Binomial/Trinomia	1)
\underline{Ans}	wer:				
		$n 5m^2 + m + 0 \text{ are } \underline{\hspace{1cm}}$ as $\underline{\hspace{1cm}} \text{ter}$		led a	_ expression.
Hi,	here in this vi	deo you will learn	Subtraction	on expression	n 2550
\overline{Que}	stion: 61				
Find	the sum of two ex	expressions $a + b + c$	and $b + c + d$		
\underline{Ans}	<u>wer:</u>				
The The	two terms will get sum of two expres answer is	ons are and _ added only if they are sions = +	re(Like	,	
			C 1 1 A	C. L. L.D.	
			School A	School B	
		Number of boys	100b	250b	
		Number of girls	150g	200g	
		Number of teachers	25t	45t	
(i)	Total number of	boys in school A and	B is		
(ii)	Total number of	students in school B i	s		
(iii)	How many more	teachers are there in s	school B than so	chool A?	
\underline{Ans}	wer:				
(i)	Number of boys	in school A = in school B = boys in school A and	_•	+= _	
(ii)	Number of girls i	in school B = n school B = students in school B i	·•	=	

(iii)	Number of t	eachers i	more in	school E	3 than	school	A =	Teachers	in schoo	l В –	Teachers	s in
	school $A = 1$											

Question: 63

Solve the following:

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
 \end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

Hi, here in this video you will learn Solving an equation using application

Question: 64

Box B contains _____ times the number of chocolates in Box A

Answer:

Box A contains _____ chocolates.

Box B contains _____ chocolates.

No. of chocolates in Box $B = \underline{\hspace{1cm}} \times (No. of chocolates in Box A)$

Question: 65

Write the equation for the following statement.

Subtracting four times of m from 4 is n

Answer:

Four times of $m = \underline{\hspace{1cm}}$

.....

Subtracting four times of m from $4 = \underline{\hspace{1cm}}$

The equation is	
Question: 66	
Compare the given two statements $(<,>,=)$	
Sum of $2a$ and 9 Add 9 to the product of a and 2	
Answer:	
Sum of $2a$ and $9 = \underline{\hspace{1cm}}$	
Product of a and $2 = \underline{\hspace{1cm}}$	
Add 9 to the product of a and $2 = \underline{\hspace{1cm}}$	
Therefore, sum of $2a$ and 9 \square Add 9 to the product of a and 2	
Hi, here in this video you will learn Solving an equation	
Question: 67	
${\text{If } \odot = 5, \text{ then } 5 \odot + 5} = $	
Answer:	
The value of the given smiley © is	
Substituting the value in the expression = $5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.	
Question: 68	
Which of the following number can be placed in the box to make the equation correct (-2, -1,), 1,
$ \begin{array}{c} 2) \\ 7 \square + 3 = -4 \end{array} $	
Answer:	
The given equation is $7 \pm 3 = -4$ Substitute the values $(-2, -1, 0, 1, 2)$ in the circle,	
7×+3=	
$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$ $7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$	
$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$ $7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$	
$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$	
Therefore, is the number that can be placed in a box to make the equation correct.	
<u>Question: 69</u>	
Arrange the terms in the descending order when the value of x is 2. $2x 5x \times 1 x + 3 2x - 4 \frac{1}{2}x$	
Answer:	
The given expression are	
The value of x is	

substituting value of x

$$2x = 2 \times \underline{\qquad} = \underline{\qquad}$$

$$x + 3 = \underline{\qquad} = \underline{\qquad}$$

$$2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $\frac{1}{2}x = \frac{1}{2} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

$$5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$$

Arranging in descending order: ____, ____, ____, ____, ____.

Their respective algebraic terms are ____, ____, ____, ____, _____.

Hi, here in this video you will learn **Terms of an expression**

Question: 70

Separate the variables and constants for all the terms given in the box

......

Answer:

In algebraic expression, variables are represented by _____ and Constant is a

Terms	Constants	Variables

.....

Question: 71

Mark the expression that contains two terms.

$$3x + 5$$
 $12a$ $4xy$ $12a + b + 1$ $7m + 0$

Answer:

The terms in the expression 3x + 5 is/are _____.

The terms in the expression 12a is/are _____.

The terms in the expression 4xy is/are ______.

The terms in the expression 12a + b + 1 is/are _____

The terms in the expression 7m + 0 is/are _____.

Question: 72

Shade the outline of circle that contains the term of the given expression.

$$6m^2 - 7mn + nl$$

$\underline{Answer:}$

In algebraic expression, $___$ (variables/ terms) are connected together with operations of addition.

Here, $\underline{\hspace{1cm}}$, $\underline{\hspace{1cm}}$ are the terms of the given expression.