

Tutorials Week 7

	Dataset on Blackboard	Papers	Description
C.15.3	card.dta	Card, D.(1993): Using geographic variation in college proximity to estimate the return to schooling. No 4483, NBER Working Papers, National Bureau of Economic Research, Inc.	Omitted Variable Bias
C.15.5	card.dta	Card, D.(1993): Using geographic variation in college proximity to estimate the return to schooling. No 4483, NBER Working Papers, National Bureau of Economic Research, Inc.	Difference between OLS and 2SLS, application of the Sargan test to verify for the overidentification restriction.
C.16.2	mroz.dta	T.A. Mroz (1987), "The Sensitivity of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions," Econometrica 55, 765-799	2SLS, test for overidentifying restriction. Simultaneous Equations

- C3 Use the data in CARD.RAW for this exercise.
 - (i) The equation we estimated in Example 15.4 can be written as

$$\log(wage) = \beta_0 + \beta_1 educ + \beta_2 exper + \dots + u,$$

- where the other explanatory variables are listed in Table 15.1. In order for IV to be consistent, the IV for *educ*, *nearc4*, must be uncorrelated with *u*. Could *nearc4* be correlated with things in the error term, such as unobserved ability? Explain.
- (ii) For a subsample of the men in the data set, an IQ score is available. Regress *IQ* on *nearc4* to check whether average IQ scores vary by whether the man grew up near a four-year college. What do you conclude?
- (iii) Now, regress *IQ* on *nearc4*, *smsa66*, and the 1966 regional dummy variables *reg662*, ..., *reg669*. Are *IQ* and *nearc4* related after the geographic dummy variables have been partialled out? Reconcile this with your findings from part (ii).
- (iv) From parts (ii) and (iii), what do you conclude about the importance of controlling for *smsa66* and the 1966 regional dummies in the log(*wage*) equation?

USING COLLEGE PROXIMITY AS AN IV FOR EDUCATION

Card (1995) used wage and education data for a sample of men in 1976 to estimate the return to education. He used a dummy variable for whether someone grew up near a four-year college (nearc4) as an instrumental variable for education. In a log(wage) equation, he included other standard controls: experience, a black dummy variable, dummy variables for living in an SMSA and living in the South, and a full set of regional dummy variables and an SMSA dummy for where the man was living in 1966. In order for nearc4 to be a valid instrument, it must be uncorrelated with the error term in the wage equation—we assume this—and it must be partially correlated with educ. To check the latter requirement, we regress educ on nearc4 and all of the exogenous variables appearing in the equation. (That is, we estimate the reduced form for educ.) Using the data in CARD.RAW, we obtain, in condensed form,

$$educ = 16.64 + .320 nearc4 - .413 exper + ...$$

(.24) (.088) (.034)
 $n = 3,010, R^2 = .477.$

We are interested in the coefficient and t statistic on nearc4. The coefficient implies that in 1976, other things being fixed (experience, race, region, and so on), people who lived near a college in 1966 had, on average, about one-third of a year more education than those who did not grow up near a college. The t statistic on nearc4 is 3.64, which gives a p-value that is zero in the first three decimals. Therefore, if nearc4 is uncorrelated with unobserved factors in the error term, we can use nearc4 as an IV for educ.

The OLS and IV estimates are given in Table 15.1. Interestingly, the IV estimate of the return to education is almost twice as large as the OLS estimate, but the standard error of the IV estimate is over 18 times larger than the OLS standard error. The 95% confidence interval for the IV estimate is between .024 and .239, which is a very wide range. The presence of larger confidence intervals is a price we must pay to get a consistent estimator of the return to education when we think *educ* is endogenous.

nearc4: =1 if near to a 4-year college, 1966 smsa: =1 if in SMSA, 1976 educ=years of schooling

SMSA: Standard Metropolitan Statistical Areas; equivalent to Metropolitan Statistical Areas (MSA)

TABLE 15.1 Dependent Var	riable: log(<i>wage</i>)	
Explanatory Variables	OLS	IV
educ	.075 (.003)	.132 (.055)
exper	.085 (.007)	.108 (.024)
exper ²	0023 (.0003)	0023 (.0003)
black	199 (.018)	147 (.054)
smsa	.136 (.020)	.112 (.032)
south	148 (.026)	145 (.027)
Observations R-squared	3,010 .300	3,010 .238
Other controls: smsa66, reg662	2,, reg669	

As discussed earlier, we should not make anything of the smaller *R*-squared in the IV estimation: by definition, the OLS *R*-squared will always be larger because OLS minimizes the sum of squared residuals.

i) IQ scores might vary by geographic region, and so does the availability of four-year colleges. It could be that, for various reasons, people with higher abilities grow up in areas with four-year colleges nearby.

ii) The regression of *IQ* on *nearc4* gives

Source	SS	df	MS		Number of o		-,001
Model Residual	2869.62905 487188.423	1 2,059	2869.6290 236.61409		F(1, 2059) Prob > F R-squared	=	
Total	490058.052	2,060	237.8922	 58	Adj R-squar Root MSE		0.0054 15.382
IQ	Coefficient	Std. err.	t	P>	t [95%	conf.	interval]
nearc4 _cons	2.5962 100.6106	.7454966 .6274557	3.48 160.35			34195 38014	4.058206 101.8412

- This shows that the predicted *IQ* score is about 2.6 points higher for a man who grew up near a four-year college. The difference is statistically significant (*t* statistic=3.48; P-value 0.001).
- The average IQ scores vary by whether the man grew up near a four-year college.

(iii) When we add *smsa66*, *reg662*, , *reg669* to the regression in part (ii), we obtain

. reg IQ near	c4 smsa66 reg6	62-reg669				
Source	SS	df	MS		per of obs	= 2,061
				- F(10	0, 2050)	= 13.70
Model	30699.1017	10	3069.9101	7 Prol) > F	= 0.0000
Residual	459358.951	2,050	224.07753	7 R-s	quared	= 0.0626
				– Adj	R-squared	= 0.0581
Total	490058.052	2,060	237.89225	8 Roo	t MSE	= 14.969
IQ	Coefficient	Std. err.	t	P> t	[95% conf	. interval]
nearc4	.3478974	.8144087	0.43	0.669	-1.249257	1.945052
smsa66	1.089165	.8086998	1.35	0.178	4967934	2.675124
reg662	1.099282	1.649748	0.67	0.505	-2.136074	4.334639
reg663	-1.559295	1.622997	-0.96	0.337	-4.742191	1.6236
reg664	5425011	1.916258	-0.28	0.777	-4.300517	3.215515
reg665	-8.47546	1.665513	-5.09	0.000	-11.74173	-5.209185
reg666	-7.421172	1.973869	-3.76	0.000	-11.29217	-3.550175
reg667	-8.39441	1.829768	-4.59	0.000	-11.98281	-4.806013
reg668	-2.924975	2.34463	-1.25	0.212	-7.52308	1.67313
reg669	-2.891917	1.797382	-1.61	0.108	-6.416801	.6329674
_cons	104.7735	1.624972	64.48	0.000	101.5867	107.9602

where, for brevity, the coefficients on the regional dummies are not reported. Now, the relationship between *IQ* and *nearc4* is much weaker and statistically insignificant.

In other words, once we control for region and environment while growing up, there is no apparent link between IQ score and living near a four-year college.

(iv) The findings from parts (ii) and (iii) show that it is important to include *smsa66*, *reg662*,..., *reg669* in the wage equation to control for differences in access to colleges that might also be correlated with ability. The importance of controlling for smsa66 and the 1966 regional dummies in the log(wage) equation helped to mitigate omitted bias, accounts for regional differences, and provides a better understanding of how education and geographic factors interact to influence IQ and wages.

Use the data in CARD.RAW for this exercise.

- (i) In Table 15.1, the difference between the IV and OLS estimates of the return to education is economically important. Obtain the reduced form residuals, \hat{v}_2 , from the reduced form regression *educ* on *nearc4*, *exper*, *exper*², *black*, *smsa*, *south*, *smsa*66, *reg*662, ..., *reg*669—see Table15.1. Use these to test whether *educ* is exogenous; that is, determine if the difference between OLS and IV is *statistically* significant.
- (ii) Estimate the equation by 2SLS, adding *nearc2* as an instrument. Does the coefficient on *educ* change much?
- (iii) Test the single overidentifying restriction from part (ii).

Structural Equation: $\log(wage) = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 expersq + \beta_4 black + \beta_5 smsa + \beta_6 ssouth + \beta_7 smsa66_i + \beta_8 reg_{662} + \cdots + \beta_{15} reg_{669} + u_i$

Reduced Form Equation: $educ_i = \alpha_0 + \alpha_1 nearc4 + \alpha_2 exper + \alpha_3 expersq + \alpha_4 black + \alpha_5 smsa + \alpha_5 south + \cdots + v_1$

OLS

Source	SS	df	MS	Numb	er of obs	=	3,01
				- F(15	, 2994)	=	85.4
Model	177.695591	15	11.8463727	7 Prob	> F	=	0.000
Residual	414.946054	2,994	.138592536	6 R-sq	uared	=	0.299
				_	R-squared	=	0.296
Total	592.641645	3,009	.196956346	Root	MSE	=	.3722
	Γ						
lwage	Coefficient	Std. err.	t	P> t	[95% cor	nf.	interval
educ	.0746933	.0034983	21.35	0.000	.0678339	9	.081552
exper	.084832	.0066242	12.81	0.000	.071843	5	.097820
expersq	002287	.0003166	-7.22	0.000	0029079	9	001666
black	1990123	.0182483	-10.91	0.000	234792	7	16323
smsa	.1363845	.0201005	6.79	0.000	.096972	4	.17579
south	147955	.0259799	-5.69	0.000	198895	2	097014
smsa66	.0262417	.0194477	1.35	0.177	011890	5	.06437
reg662	.0963672	.0358979	2.68	0.007	.025980	1	.16675
reg663	.14454	.0351244	4.12	0.000	.075669	5	.213410
reg664	.0550756	.0416573	1.32	0.186	026604	3	.13675
reg665	.1280248	.0418395	3.06	0.002	.045987	В	.21006
reg666	.1405174	.0452469	3.11	0.002	.0517992	2	.22923
reg667	.117981	.0448025	2.63	0.008	.030134	3	.20582
reg668	0564361	.0512579	-1.10	0.271	1569404	4	.04406
reg669	.1185698	.0388301	3.05	0.002	.042433	5	.1947
_cons	4.620807	.0742327	62.25	0.000	4.475254	4	4.7663

IV

3,010 769.20 0.0000 0.2382 .3873		Wald o		regression	variables 2SLS	nstrumental v
interval]	[95% conf.	P> z	z	Std. err.	Coefficient	lwage
.238944	.0240637	0.016	2.40	.0548174	.1315038	educ
.1545176	.0620246	0.000	4.59	.0235956	.1082711	exper
001683	0029868	0.000	-7.02	.0003326	0023349	expersq
0414151	2521364	0.006	-2.73	.0537564	1467757	black
.1736995	.0499171	0.000	3.54	.0315777	.1118083	smsa
0913369	1980061	0.000	-5.32	.027212	1446715	south
.0607704	0237082	0.390	0.86	.0215511	.0185311	smsa66
.1744339	.0271017	0.007	2.68	.0375854	.1007678	reg662
.2202211	.0762964	0.000	4.04	.0367162	.1482588	reg663
.1353974	0356032	0.253	1.14	.0436234	.0498971	reg664
.2382701	.0542738	0.002	3.12	.0469387	.1462719	reg665
.2643731	.0614328	0.002	3.15	.0517714	.1629029	reg666
.2311413	.0380032	0.006	2.73	.0492708	.1345722	reg667
.0329008	1990548	0.160	-1.40	.0591735	083077	reg668
.1895494	.026079	0.010	2.59	.0417024	.1078142	reg669
5.473959	1.858342	0.000	3.97	.9223682	3.666151	cons

Endogenous: educ

Exogenous: exper expersq black smsa south smsa66 reg662 reg663 reg664

reg665 reg666 reg667 reg668 reg669 nearc4

(i) We have to obtain the $\widehat{v_2}$ from the reduced form regression *educ* on *nearc4*, *exper*, *exper2*, *black*, *smsa*, *south*, *smsa*66, *reg*662, ..., *reg*669 and test whether educ is exogenous:

Source	SS	df	MS		er of obs	=	3,0
					, 2994)	=	
Model	10287.6179	15	685.841194			=	
Residual	11274.4622	2,994	3.76568542		uared 	=	0.47
				_	R-squared	=	
Total	21562.0801	3,009	7.1658624	3 Root	MSE	=	1.94
educ	Coefficient	Std. err.	t	P> t	[95% co	nf.	interva
nearc4	.3198989	.0878638	3.64	0.000	.147619	4	.49217
exper	4125334	.0336996	-12.24	0.000	478610	1	34649
expersq	.0008686	.0016504	0.53	0.599	002367	4	.00410
black	9355287	.0937348	-9.98	0.000	-1.1193	2	7517
smsa	.4021825	.1048112	3.84	0.000	.196673	2	.60769
south	0516126	.1354284	-0.38	0.703	317154	В	.21392
smsa66	.0254805	.1057692	0.24	0.810	181907	1	.23280
reg662	0786363	.1871154	-0.42	0.674	445524	1	.2882
reg663	027939	.1833745	-0.15	0.879	387491	В	.33163
reg664	.117182	.2172531	0.54	0.590	308798	4	.54316
reg665	2726165	.2184204	-1.25	0.212	700885	В	.15565
reg666	3028147	.2370712	-1.28	0.202	767653	6	.16202
reg667	2168177	.2343879	-0.93	0.355	676395	3	.2427
reg668	.5238914	.2674749	1.96	0.050	000561	В	1.0483
reg669	.210271	.2024568	1.04	0.299	186697	5	.6072
_cons	16.63825	.2406297	69.14	0.000	16.1664	4	17.110

reg lwage	educ exper exp	ersq black	smsa south	smsa66	reg662-reg	g669) v2
Source	SS	df	MS	Numb	er of obs	=	3,010
				F(16	, 2993)	=	80.21
Model	177.857408	16	11.116088	3 Prob	> F	=	0.0000
Residual	414.784236	2,993	.138584777	R-sq	uared	=	0.3003
				- Adj	R-squared	=	0.2964
Total	592.641645	3,009	.196956346	Root	MSE	=	.37227
lwage	Coefficient	Std. err.	t	P> t	[95% cor	nf.	interval
educ	.1315038	.0526906	2.50	0.013	.0281904	1	.2348172
exper	.1082711	.0226801	4.77	0.000	.0638008	3	.152741
expersq	0023349	.0003197	-7.30	0.000	0029618	3	001708
black	1467758	.0516708	-2.84	0.005	2480890	5	045462
smsa	.1118083	.0303526	3.68	0.000	.0522943	3	.171322
south	1446715	.0261562	-5.53	0.000	1959579	5	093385
smsa66	.0185311	.0207149	0.89	0.371	0220858	3	.059148
reg662	.1007678	.0361272	2.79	0.005	.0299312	2	.171604
reg663	.1482588	.0352916	4.20	0.000	.0790604	1	.217457
reg664	.0498971	.0419309	1.19	0.234	0323192	2	.132113
reg665	.1462719	.0451176	3.24	0.001	.057807	3	.234736
reg666	.1629029	.0497628	3.27	0.001	.0653302	2	.260475
reg667	.1345722	.0473592	2.84	0.005	.041712	3	.227432
reg668	083077	.0568776	-1.46	0.144	1946002	2	.028446
reg669	.1078142	.0400844	2.69	0.007	.0292184	1	.186410
v2	0570621	.0528071	-1.08	0.280	1606039	9	.046479
_cons	3.666152	.8865821	4.14	0.000	1.92778	3	5.404524

When we add $\widehat{v_2}$ to the original equation and estimate it by OLS, the coefficient on $\widehat{v_2}$ is about -0.057 with a t statistic of about -1.08. While the difference in the estimates of the return to education is practically large, it is not statistically significant.

Is educ endogenous? → apply the Test for endogeneity (Hausman-Wu).

(ii) We now add *nearc2* as an IV along with *nearc4*. The 2SLS estimate of β_1 is now 0.157, $se(\widehat{\beta_1}) = .052$. The estimate is even larger (as the estimate obtained using one IV *nearc4*), and statistically significant at 1%.

. ivregress 2sls lwage (educ=nearc2 nearc4) exper expersq black smsa south smsa66 reg662-reg669, first

First-stage regressions

Number of obs = 3,010 F(16, 2993) = 170.99 Prob > F = 0.0000 R-squared = 0.4776 Adj R-squared = 0.4748 Root MSE = 1.9400

educ	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
exper	4122915	.0336914	-12.24	0.000	4783521	3462309
expersq	.0008479	.00165	0.51	0.607	0023874	.0040832
black	9451729	.0939073	-10.06	0.000	-1.129302	7610434
smsa	.4013708	.1047858	3.83	0.000	.1959113	.6068303
south	0419115	.1355316	-0.31	0.757	3076561	.2238331
smsa66	.0000782	.1069445	0.00	0.999	2096139	.2097704
reg662	1002481	.1875618	-0.53	0.593	4680113	.2675151
reg663	0214286	.1833737	-0.12	0.907	3809798	.3381226
reg664	.1310678	.2173736	0.60	0.547	295149	.5572847
reg665	2683558	.2183813	-1.23	0.219	6965485	.1598369
reg666	3334436	.2377938	-1.40	0.161	7996995	.1328123
reg667	2087488	.2343833	-0.89	0.373	6683174	.2508198
reg668	.5507871	.2679423	2.06	0.040	.0254175	1.076157
reg669	.1687829	.2040832	0.83	0.408	2313747	.5689405
nearc2	.1229986	.0774256	1.59	0.112	0288142	.2748114
nearc4	.3205819	.0878425	3.65	0.000	.148344	.4928197
_cons	16.60428	.2415174	68.75	0.000	16.13072	17.07783
-	I					

Instrumental variables 2SLS regression	Number of obs	=	3,010
	Wald chi2(15)	=	709.89
	Prob > chi2	=	0.0000
	R-squared	=	0.1702
	Root MSE	=	.4042

lwage	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
educ	.1570594	.0524383	3.00	0.003	.0542822	.2598366
exper	.1188149	.0227454	5.22	0.000	.0742348	.163395
expersq	0023565	.0003466	-6.80	0.000	0030358	0016772
black	1232778	.0520112	-2.37	0.018	225218	0213376
smsa	.100753	.0314355	3.21	0.001	.0391406	.1623654
south	1431945	.0283691	-5.05	0.000	1987968	0875921
smsa66	.0150626	.0222765	0.68	0.499	0285986	.0587238
reg662	.1027473	.0391861	2.62	0.009	.0259441	.1795506
reg663	.1499316	.0382896	3.92	0.000	.0748853	.2249779
reg664	.0475676	.0454799	1.05	0.296	0415714	.1367066
reg665	.1544801	.0484336	3.19	0.001	.0595521	.2494082
reg666	.1729728	.0532743	3.25	0.001	.0685572	.2773884
reg667	.1420356	.0509858	2.79	0.005	.0421052	.2419659
reg668	0950611	.0608178	-1.56	0.118	2142617	.0241396
reg669	.102976	.0433068	2.38	0.017	.0180962	.1878558
_cons	3.236711	.8825567	3.67	0.000	1.506931	4.96649

Endogenous: educ

Exogenous: exper expersq black smsa south smsa66 reg662 reg663 reg664

reg665 reg666 reg667 reg668 reg669 nearc2 nearc4

Additional Material: do the potential instruments fulfill the relevance condition?

. reg educ nea	arc2 nearc4 ex	per expers	q black sms	sa smsa6	6 south reg	662	2-reg669
Source	SS	df	MS		er of obs	=	3,010
Model	10297.1164	16	643.569774		, 2993)	=	170.99 0.0000
Residual	11264.9637	2,993	3.76377002		уг uared	=	0.4776
Kesiduai	11204.9037	2,993	3.76377002		uareu R-squared	=	0.4776
Total	21562.0801	3,009	7.16586243		•	=	1.94
educ	Coefficient	Std. err.	t	P> t	[95% con	f.	interval]
nearc2	.1229986	.0774256	1.59	0.112	0288142		.2748114
nearc4	.3205819	.0878425	3.65	0.000	.148344		.4928197
exper	4122915	.0336914	-12.24	0.000	4783521		3462309
expersq	.0008479	.00165	0.51	0.607	0023874		.0040832
black	9451729	.0939073	-10.06	0.000	-1.129302		7610434
smsa	.4013708	.1047858	3.83	0.000	.1959113		.6068303
smsa66	.0000782	.1069445	0.00	0.999	2096139		.2097704
south	0419115	.1355316	-0.31	0.757	3076561		.2238331
reg662	1002481	.1875618	-0.53	0.593	4680113		.2675151
reg663	0214286	.1833737	-0.12	0.907	3809798		.3381226
reg664	.1310678	.2173736	0.60	0.547	295149		.5572847
reg665	2683558	.2183813	-1.23	0.219	6965485		.1598369
reg666	3334436	.2377938	-1.40	0.161	7996995		.1328123
reg667	2087488	.2343833	-0.89	0.373	6683174		.2508198
reg668	.5507871	.2679423	2.06	0.040	.0254175		1.076157
reg669	.1687829	.2040832	0.83	0.408	2313747		.5689405
_cons	16.60428	.2415174	68.75	0.000	16.13072		17.07783

. test nearc2 nearc4

```
(1) nearc2 = 0
(2) nearc4 = 0
F(2, 2993) = 7.89
Prob > F = 0.000
```

- The instruments fulfill the relevance requirement.
- The value of the F-statistics is 7.89, which is less than 10, the value used as a rule of thumb.

iii) Test for overidentifying restriction

As we included two instruments, we need to check for overidentification.

After running 2SLS

ivregress 2sls lwage (educ=nearc2 nearc4) exper expersq black smsa south smsa66 reg662-reg669, first

Let $\hat{u_i}$ be the 2SLS residuals. We regress these on all exogenous variables, including *nearc2* and *nearc4*.

The *n-R*-squared statistic is $(3,010)(.0004) \approx 1.20$.

Ho: no overidentification

H1: overidentification

We have indication of overidentification if:

 $n*R^2 > \chi^2_{q,\alpha}$

1.20 < 3.84, there is no indication of overidentification

. predict uhat, res

. reg uhat nearc2 nearc4 exper expersq black smsa south smsa66 reg662-reg669

	Source	SS	df	MS	Number of obs		-
	Model	.203922835	16	.012745177	F(16, 2993) Prob > F	=	
R	esidual	491.568721			R-squared		
	Total	491.772644	3,009	.163433913	Adj R-squared Root MSE		

interval]	[95% conf.	P> t	t	Std. err.	Coefficient	uhat
.0482318	015194	0.307	1.02	.0161738	.0165189	nearc2
.0278961	044063	0.660	-0.44	.0183498	0080835	nearc4
.0138309	0137685	0.996	0.00	.0070379	.0000312	exper
.0006724	0006793	0.992	-0.01	.0003447	-3.43e-06	expersq
.0375784	0393489	0.964	-0.05	.0196167	0008852	black
.0435877	0422511	0.976	0.03	.0218892	.0006683	smsa
.0566574	0543678	0.968	0.04	.0283118	.0011448	south
.0432093	0443978	0.979	-0.03	.0223401	0005942	smsa66
.0739513	0796962	0.942	-0.07	.0391807	0028725	reg662
.0750238	0751928	0.998	-0.00	.0383058	0000845	reg663
.0902341	0878347	0.979	0.03	.0454082	.0011997	reg664
.088778	0901163	0.988	-0.01	.0456187	0006692	reg665
.0909536	1038431	0.897	-0.13	.0496738	0064448	reg666
.0951626	0968402	0.986	-0.02	.0489614	0008388	reg667
.1119548	107539	0.969	0.04	.0559717	.0022079	reg668
.0774835	089698	0.886	-0.14	.0426319	0061073	reg669
.098601	0992459	0.995	-0.01	.0504517	0003224	_cons

Alternative STATA command for Test for Overidentifaction Hansen J test (Sargan Test)

. estat overid

```
Tests of overidentifying restrictions:
```

Sargan (score) chi2(1) =
$$1.24815$$
 (p = 0.2639)
Basmann chi2(1) = 1.24162 (p = 0.2652)

Ho: no overidentification

H1: overidentification

If $\chi_q^2 > \chi_{cv}^2$, reject Ho

1.25 < 3.84, fail to reject Ho

We conclude that there is no overidentification.

C2 Use MROZ.RAW for this exercise.

- (i) Reestimate the labor supply function in Example 16.5, using log(hours) as the dependent variable. Compare the estimated elasticity (which is now constant) to the estimate obtained from equation (16.24) at the average hours worked.
- (ii) In the labor supply equation from part (i), allow *educ* to be endogenous because of omitted ability. Use *motheduc* and *fatheduc* as IVs for *educ*. Remember, you now have two endogenous variables in the equation.
- (iii) Test the overidentifying restrictions in the 2SLS estimation from part (ii). Do the IVs pass the test?

EXAMPLE 16.5

LABOR SUPPLY OF MARRIED, WORKING WOMEN

We use the data on working, married women in MROZ.RAW to estimate the labor supply equation (16.19) by 2SLS. The full set of instruments includes *educ*, *age*, *kidslt6*, *nwifeinc*, *exper*, and *exper*². The estimated labor supply curve is

$$\widehat{hours} = 2,225.66 + 1,639.56 \log(wage) - 183.75 \ educ$$

$$(574.56) \quad (470.58) \qquad (59.10)$$

$$-7.81 \ age - 198.15 \ kidslt6 - 10.17 \ nwifeinc$$

$$(9.38) \quad (182.93) \qquad (6.61)$$

$$n = 428.$$

which shows that the labor supply curve slopes upward. The estimated coefficient on log(wage) has the following interpretation: holding other factors fixed, $\Delta hours \approx 16.4(\% \Delta wage)$. We can calculate labor supply elasticities by multiplying both sides of this last equation by 100/hours:

$$100 \cdot (\widehat{\Delta hours/hours}) \approx (1,640/hours)(\% \Delta wage)$$

or

$$\%\Delta \widehat{hours} \approx (1,640/hours)(\%\Delta wage),$$

which implies that the labor supply elasticity (with respect to wage) is simply 1,640/hours. [The elasticity is not constant in this model because hours, not log(hours), is the dependent variable in (16.24).] At the average hours worked, 1,303, the estimated elasticity is $1,640/1,303 \approx 1.26$, which implies a greater than 1% increase in hours worked given a 1% increase in wage. This is a large estimated elasticity. At higher hours, the elasticity will be smaller; at lower hours, such as hours = 800, the elasticity is over two.

For comparison, when (16.19) is estimated by OLS, the coefficient on $\log(wage)$ is -2.05 (se = 54.88), which implies no wage effect on hours worked. To confirm that $\log(wage)$ is in fact endogenous in (16.19), we can carry out the test from Section 15.5. When we add the reduced form residuals \hat{v}_2 to the equation and estimate by OLS, the t statistic on \hat{v}_2 is -6.61, which is very significant, and so $\log(wage)$ appears to be endogenous.

$$hours = \alpha_1 \log(wage) + \beta_{10} + \beta_{11}educ + \beta_{12}age + \beta_{13}kidslt6$$
$$+ \beta_{14}nwifeinc + u_1$$
 [16.19]

$$\log(wage) = \alpha_2 hours + \beta_{20} + \beta_{21} educ + \beta_{22} exper + \beta_{23} exper^2 + u_2.$$
 [16.20]

The wage offer equation (16.20) can also be estimated by 2SLS. The result is

$$\widehat{\log(wage)} = -.656 + .00013 \ hours + .110 \ educ$$

$$(.338) \ (.00025) \qquad (.016)$$

$$+ .035 \ exper - .00071 \ exper^2$$

$$(.019) \qquad (.00045)$$

$$n = 428.$$
[16.25]

This differs from previous wage equations in that *hours* is included as an explanatory variable and 2SLS is used to account for endogeneity of *hours* (and we assume that *educ* and *exper* are exogenous). The coefficient on *hours* is statistically insignificant, which means that there is no evidence that the wage offer increases with hours worked. The other coefficients are similar to what we get by dropping *hours* and estimating the equation by OLS.

(i). Generate first log(hours), run the 2sls regression and compare to 16.24.

. gen lhours= ln(hours)

(325 missing values generated)

. ivregress 2sls lhours (lwage=exper expersq) educ age kidslt6 nwifeinc, first

First-stage regressions

Number of obs = 428 F(6, 421) = 13.69 Prob > F = 0.0000 R-squared = 0.1633 Adj R-squared = 0.1514 Root MSE = 0.6662

l						
lwage	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
educ	.1011113	.0149618	6.76	0.000	.0717023	.1305204
age	0025561	.005192	-0.49	0.623	0127615	.0076492
kidslt6	0532185	.0884411	-0.60	0.548	2270596	.1206225
nwifeinc	.00556	.0033104	1.68	0.094	0009469	.0120669
exper	.0418643	.0132377	3.16	0.002	.015844	.0678846
expersq	0007625	.0004008	-1.90	0.058	0015503	.0000253
_cons	4471607	.2852028	-1.57	0.118	-1.00776	.1134381

Instrumental	variables 2SLS	regression	1	Numbe	er of obs	=	428
				Wald	chi2(5)	=	24.39
				Prob	> chi2	=	0.0002
				R-sq	uared	=	
				Root	MSE	=	1.6125
	I						
lhours	Coefficient	Std. err.	z	P> z	[95% d	onf.	interval]
lwage	1.994349	.5603396	3.56	0.000	.89616	934	3.092594
educ	2354609	.0703733	-3.35	0.001	373	339	0975318
age	0135248	.0111669	-1.21	0.226	03541	L15	.008362
kidslt6	4654385	.2178235	-2.14	0.033	89236	548	0385123
nwifeinc	0139044	.0078765	-1.77	0.078	02934	121	.0015333
_cons	8.370233	.6841642	12.23	0.000	7.0292	296	9.71117
I							

Endogenous: lwage

Exogenous: educ age kidslt6 nwifeinc exper expersq

$$\widehat{hours} = 2,225.66 + 1,639.56 \log(wage) - 183.75 \ educ$$

$$(574.56) \quad (470.58) \qquad (59.10)$$

$$-7.81 \ age - 198.15 \ kidslt6 - 10.17 \ nwifeinc$$

$$(9.38) \quad (182.93) \qquad (6.61)$$

$$n = 428,$$

We estimate a constant elasticity version of the labor supply equation (naturally, only for hours > 0), again by 2SLS. We get

$$log(hours) = 8.37 + 1.99 log(wage) - .235 educ - .014 age - .465 kidslt6 - .014 nwifeinc$$

which implies a labor supply elasticity of 1.99. This is much higher than the elasticity 1.26 ($E_L = 1.640/1.330 = 1.26$) we obtained from equation (16.24) at the mean value of hours (1303). The higher elasticity suggests that workers are more likely to increase their working hours when wages arise.

Additional Material: Test the Relevance of the excluded instruments and the overidentification restriction.

Estimate the first stage regression.

. reg lwage exper expersq educ age kidslt6 nwifeinc

Source	SS	df	MS	Number of obs	=	428
				F(6, 421)	=	13.69
Model	36.4697152	6	6.07828587	Prob > F	=	0.0000
Residual	186.857726	421	.443842579	R-squared	=	0.1633
				Adj R-squared	=	0.1514
Total	223.327441	427	.523015084	Root MSE	=	.66622

lwage	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
exper expersq educ age kidslt6 nwifeinc	.0418643 0007625 .1011113 0025561 0532185 .00556	.0132377 .0004008 .0149618 .005192 .0884411 .0033104	3.16 -1.90 6.76 -0.49 -0.60 1.68	0.002 0.058 0.000 0.623 0.548 0.094	.015844 0015503 .0717023 0127615 2270596 0009469	.0678846 .0000253 .1305204 .0076492 .1206225
_cons	4471607	.2852028	-1.57	0.118	-1.00776	.1134381

Do the exclusion test:

. estat overid

Tests of overidentifying restrictions:

Sargan (score)
$$chi2(1) = .068537$$
 (p = 0.7935)
Basmann $chi2(1) = .067426$ (p = 0.7951)

Ho: no overidentification H1: overidentification If $\chi_q^2 > \chi_{cv}^2$, reject Ho 0.068 < 3.84, there is no indication of overidentification

The overidentifying assumptions cannot be rejected at any level of significance.

They are statistically significant, and the relevance condition is fulfilled.

The Fstatistics is greater than the critical value (3.00), we reject Ho.

The F-test is less than 10.

(ii) Now we estimate the equation by 2SLS but allow log(wage) and educ to both be endogenous. The full list of instrumental variables is age, kidslt6, nwifeinc, exper, exper2, motheduc, and fatheduc.

Number of obs = 428 F(7, 420) = 23.38 Prob > F = 0.0000 R-squared = 0.2804 Adj R-squared = 0.2684 Root MSE = 1 9548

. ivregress	2sls lhours (lwage educ=	exper ex	persq mo	theduc fathedu	c) age kidslt6 nwifeinc,	firs
rst-stage re	egressions						
					Number of ob	s = 428	
					F(7, 420)	= 5.00	
					Prob > F	= 0.0000	
					R-squared		
					Adj R-square		
					Root MSE	= 0.7006	
lwage	Coefficient	Std. err.	t	P> t	[95% conf.	interval]	
age	0042493	.0055751	-0.76	0.446	0152078	.0067093	
kidslt6	.0201473	.0923331	0.22	0.827	1613451	.2016398	
nwifeinc	.0116132	.0033573	3.46	0.001	.005014	.0182124	
exper	.0485847	.0138808	3.50	0.001	.0213002	.0758691	
expersq	0008773	.0004214	-2.08	0.038	0017056	000049	
motheduc	.0009898	.0125966	0.08	0.937	0237704	.02575	
fatheduc	.0134516	.0116927	1.15	0.251	0095319	.0364351	
_cons	.5879528	.2761049	2.13	0.034	.0452333	1.130672	

The biggest effect is to reduce the size of the coefficient on *educ* as well as its statistical significance. The labor supply elasticity is only moderately smaller.

educ	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
age	.0001603	.0155558	0.01	0.992	0304167	.0307373
kidslt6	.7347522	.2576312	2.85	0.005	.2283449	1.241159
nwifeinc	.0528863	.0093676	5.65	0.000	.0344731	.0712995
exper	.0603897	.0387307	1.56	0.120	0157404	.1365198
expersq	0009699	.0011758	-0.82	0.410	0032811	.0013413
motheduc	.1552934	.0351475	4.42	0.000	.0862065	.2243802
fatheduc	.166468	.0326255	5.10	0.000	.1023385	.2305976
_cons	8.013848	.7703985	10.40	0.000	6.499531	9.528165
				Prob R-squ Root		0.0001 1.5247
lhours	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
lwage	1.810915	.4942677	3.66	0.000	.8421684	2.779662
educ	1286057	.0868182	-1.48	0.139	2987662	.0415548
age	0116012	.0105112	-1.10	0.270	0322027	.0090003
kidslt6	5431861	.2098478	-2.59	0.010	9544802	1318919
nwifeinc	0189058	.0087217	-2.17	0.030	036	0018116
_cons	7.260764	1.012221	7.17	0.000	5.276847	9.244681

Endogenous: 1wage educ

Exogenous: age kidslt6 nwifeinc exper expersq motheduc fatheduc

Additional Material: Check the relevance of the instruments.

. reg lwage exper expersq fatheduc motheduc age kidslt6 nwifeinc

428)5 =	nber of ob:	Numb	MS	df	SS	Source
5.00	=	7, 420)	F(7)				
0.0000	=	b > F	18 Prob	2.455674	7	17.1897236	Model
0.0770	=	squared	89 R-sc	.49080408	420	206.137717	Residual
0.0616	ed =	j R-square	— Adj				
.70057	=	ot MSE	84 Roof	.52301508	427	223.327441	Total
interval]	conf.	[95%	P> t	t	Std. err.	Coefficient	lwage
.0758691	8002	.0213	0.001	3.50	.0138808	.0485847	exper
000049	7056	0017	0.038	-2.08	.0004214	0008773	expersq
	310	0000	0.251	1.15	.0116927	.0134516	fatheduc
.0364351	,,,,,	0095	0.231				
		0237	0.231	0.08	.0125966	.0009898	motheduc
.0364351	704					.0009898 0042493	
.0364351 .02575	7704 2078	0237	0.937	0.08	.0125966		motheduc age kidslt6
.0364351 .02575 .0067093	7704 2078 3451	0237 0152	0.937 0.446	0.08 -0.76	.0125966 .0055751	0042493	age

. test exper expersq fatheduc motheduc $% \left(1\right) =\left(1\right) \left(1\right)$

- (1) exper = 0
- (2) expersq = 0
- (3) fatheduc = 0
- (4) motheduc = 0

$$F(4, 420) = 6.29$$

 $Prob > F = 0.0001$

iii) Test for the overidentification assumptions:

estat overid

at Title

Tests of overidentifying restrictions:

```
Sargan (score) chi2(2) = .446375 (p = 0.8000)
Basmann chi2(2) = .438489 (p = 0.8031)
```

We can also do it like this:

- . predict uhat, res
 (325 missing values generated)
- . reg uhat exper expersq age kidslt6 nwifeinc motheduc fatheduc

Source	SS	df	MS	Number of obs	=	428
				F(7, 420)	=	0.06
Model	1.03769873	7	.148242676	Prob > F	=	0.9996
Residual	993.943409	420	2.36653193	R-squared	=	0.0010
				Adj R-squared	=	-0.0156
Total	994.981108	427	2.33016653	Root MSE	=	1.5384

uhat	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
exper	0043184	.0304801	-0.14	0.887	0642309	.0555941
expersq	.0001953	.0009253	0.21	0.833	0016235	.0020142
age	0005731	.0122421	-0.05	0.963	0246365	.0234902
kidslt6	.0031535	.2027493	0.02	0.988	3953762	.4016832
nwifeinc	.0005676	.0073721	0.08	0.939	0139232	.0150583
motheduc	.0144205	.0276602	0.52	0.602	0399491	.0687901
fatheduc	0131371	.0256754	-0.51	0.609	0636055	.0373312
_cons	.0041712	.6062841	0.01	0.995	-1.187558	1.1959

There are 4 excluded instruments and 2 endogenous variables.

Ho: no overidentification

H1: overidentification

If $\chi_2^2 > \chi_{cv}^2$, reject Ho.

0.45 < 5.99, fail to reject Ho.

There is no overidentification.

After obtaining the 2SLS residuals, $\hat{u_i}$ from the estimation in part (ii), we regress these on age, kidslt6, nwifeinc, exper, exper2, motheduc, and fatheduc.

The n-R-squared statistic is 428(.0010) = .428.

Ho: no overidentification

H1: overidentification

0.428<5.99, we fail to reject Ho.

There is no overidentification.