Sprawozdanie z laboratorium Metody Numeryczne

Interpolacja

Data odbycia laboratorium: 26-04-2018

Data oddania sprawozdania: 14-05-2018

Grupa 6 Sekcja 11 Martyna Drabińska Mateusz Kawulok

1. Treść zadania

Napisać program wyznaczający wartości wielomianu interpolacyjnego Lagrange'a w punktach leżących w przedziale <a;b> dla funkcji interpolowanej:

$$f(x) = |\sin(x)|$$

Wartości funkcji interpolującej otrzymaliśmy korzystając ze wzoru Lagrange'a:

$$L_n(x) = \sum_{i=0}^n f_i \prod_{j=0}^n \frac{(x - x_j)}{(x_i - x_j)}$$

Wartości błędu interpolacji wyznaczyliśmy korzystając ze wzoru:

$$R_n(x) = |f(x) - L_n(x)|$$

2. Otrzymane wykresy

3. Wnioski

Najlepsze wyniki uzyskaliśmy dla węzłów dobranych optymalnie gdzie n=16 i $x \in <-3;3>$.

Lepsze wyniki można zaobserwować dla mniejszego przedziału interpolacji. Także zwiększanie liczby węzłów powodowało uzyskanie dokładniejszej funkcji interpolującej. W przypadku węzłów rozłożonych równomiernie można zauważyć znaczny wzrost błędu interpolacji na końcach przedziałów wraz ze wzrostem ilości węzłów. Dla węzłów dobranych optymalnie wartości błędu maleją wraz ze wzrostem ilości węzłów.

4. Kod programu

```
#define _USE_MATH_DEFINES
#include <iostream>
#include<vector>
#include<cmath>
#include <fstream>
#include <string>
using namespace std;
/* Funkcja tworzaca tablice n+1 rownoodleglych x z przedzialu <a;b> */
vector<double> stworzTabliceX(double a, double b, double n) {
       vector<double> X;
       double h = (b - a) / n;
       for (int i = 0; i <= n; i++) {
             double x = a + i*h;
             X.push back(x);
       return X;
/* Funkcja obliczajaca wartosci funkcji |sin(x)| dla x z przekazanego wektora */
vector<vector<double> > obliczY(vector<double> X) {
       vector<double> Y;
       vector<vector<double> > XY;
       XY.push_back(X);
       for (int i = 0; i < X.size(); i++) {</pre>
              Y.push_back(abs(sin(X[i])));
       XY.push_back(Y);
       return XY;
}
/*Funkcja tworzaca wektor n+1 optymalnie dobranych x */
vector<double> stworzTabliceXOptymalnych(double a, double b, double n) {
       vector<double> X;
```

```
for (int i = 0; i <= n; i++) {</pre>
               double x = 0.5*(a + b) - 0.5*(b - a)*cos((2 * i + 1) / (2 * n + 2)*
M_PI);
               X.push_back(x);
       }
       return X;
}
/* Obliczenie wartosci Lagrange'a w punkcie x*/
double obliczWartosciLagrange(vector<vector<double> > XY, double x) {
       double Lnx = 0;
       for (int i = 0; i <XY[0].size(); i++) {</pre>
               double iloczyn = 1;
               for (int j = 0; j<XY[0].size(); j++) {</pre>
                      if (j != i) {
                              iloczyn *= (x - (XY[0][j])) / ((XY[0][i]) - (XY[0][j]));
                      }
               Lnx += (XY[1][i])*iloczyn;
       }
       return Lnx;
}
/*zapisanie danych do pliku csv*/
void zapisz(vector<vector <double> > XY, vector<vector <double> > XYL, int n, string
nazwa) {
       ofstream plik;
       if (!n) {
               nazwa += "r_.csv";
               plik.open(nazwa);
       }
       else {
               nazwa += "o .csv";
               plik.open(nazwa);
       plik << " wezly:" << endl;</pre>
       for (int i = 0; i<XY.size(); i++)</pre>
               for (int j = 0; j<XY[0].size(); j++)</pre>
               {
                      plik << XY[i][j] << ";";</pre>
               plik << endl;
       }
       plik << "Lagrange" << endl;</pre>
       for (int i = 0; i<XYL.size(); i++)</pre>
               for (int j = 0; j<XYL[0].size(); j++)</pre>
                      plik << XYL[i][j] << ";";</pre>
               plik << endl;</pre>
       }
       plik << "wartosci bledu:" << endl;</pre>
       for (int j = 0; j<XYL[0].size(); j++)</pre>
               plik << abs(XYL[1][j] - XYL[2][j]) << ";";</pre>
       plik << endl;</pre>
```

```
plik.close();
}
int main(int argc, char** argv) {
      cout << "Podaj przedzial: " << endl;</pre>
      double a, b;
      cin >> a >> b;
      cout << "podaj n:" << endl;</pre>
      double n;
      cin >> n;
      cout << "podaj nazwe: " << endl;</pre>
       string nazwa;
      cin>>nazwa;
      //rownoodlegle
      vector<double> x = stworzTabliceX(a, b, n);
      vector<vector<double> > XY = obliczY(x); //wektor wezlow
      //150
      vector<double> X_150 = stworzTabliceX(a, b, 150);
      vector<vector<double>> XY_150 = obliczY(X_150); vector<double> LN;
      for (int i = 0; i <= 150; i++) {
              double 1 = obliczWartosciLagrange(XY, XY_150[0][i]);
              LN.push_back(1);
      XY_150.push_back(LN);
       zapisz(XY, XY_150, 0, nazwa);
      //optymalne
      vector<double> Xoptymalne = stworzTabliceXOptymalnych(a, b, n);
       vector<vector<double> > XY_optymalne = obliczY(Xoptymalne); //wektor wezlow
optymalnych
       //150
      vector<double> X_1500 = stworzTabliceX(a, b, 150);
      vector<vector<double> > XY 1500 = obliczY(X 1500);
      vector<double> LNo;
      for (int i = 0; i <= 150; i++) {
              double 1 = obliczWartosciLagrange(XY_optymalne, XY_150o[0][i]);
              LNo.push_back(1);
      XY_150o.push_back(LNo);
       zapisz(XY_optymalne, XY_150o, 1, nazwa);
       return 0;
}
```