

83

AD A O 483

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesda, Md. 20084

PERFORMANCE CHARACTERISTICS OF A
PAIR OF PROPELLERS FOR THE SEA FOX

by

James G. Peck

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

SHIP PERFORMANCE DEPARTMENT
DEPARTMENTAL REPORT

December 1977

SPD-806-01

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE SPD-806-01 PERFORMANCE CHARACTERISTICS OF A PAIR OF PROPELLERS FOR THE SEA FOX. 6. PERFORMING ORG. REPORT NUMBER A. CONTRACT OR GRANT NUMBER(s) James G./Peck 10. PROGRAM ELEMENT, PROJECT, TASK PERFORMING ORGANIZATION NAME AND ADDRESS Task Area S0414-SW001 David W. Taylor Naval Ship R&D Center Bethesda, MD 20084 Element 63586N Work Unit 1-1532-080 11. CONTROLLING OFFICE NAME AND ADDRESS Dece Naval Ship Engineering Center, Norfolk Division Norfolk, VA 23511 14 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report) UNCLASSIFIED 15a. DECLASSIFICATION/DOWNGRADING DISTRIBUTION STATEMENT (of this Report) APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED 17. DISTRIBUTION ST 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Cavitation, Propeller 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
Two 22 inch Newton Rader type full scale propellers were manufactured and tested for use during full scale trials on the 11 meter "Sea Fox". Open water tests were conducted and cavitating performance characteristics were obtained for these propellers over a range of cavitation numbers corresponding to full scale speeds from 9 to 45 knots. The propeller performance data and a table containing the principal propeller geometry

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE 6 94

information is presented in this report.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Enforce

	Parketter Committee Commit
301	
	TO STAY A HO STORENGE TO SAUL / DE ANDORRES A STAY A HO STORENGE TO SAUL / DE ANDORRES A STAY A STAY OF THE SAUL / DE ANDORRES
	post manager our rest of memory
	Commission of the commission o
	ero Armaghania (Santagara) and an armana and an armana and an armana and a santagara and a san
	ero Armaghania (Santagara) and an armana and an armana and an armana and a santagara and a san
	The state of the s

TABLE OF CONTENTS

	Page
ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	1
EXPERIMENTAL PROCEDURE AND FACILITIES	2
PRESENTATION OF DATA AND DISCUSSION	2

LIST OF FIGURES

	Page
Figure 1 - Open Water Propeller Characteristics	4
Figure 2 - Propeller Cavitating Performance Characteristics	5
Figure 3 - Representative Sketches of Cavitation Patterns for Thrust Loading Coefficients of 0.10 and 0.15	6
LIST OF TABLES	
TABLE 1 - PROPELLER GEOMETRY	7
TABLE 2 - TABULATED VALUES OF PROPELLER CAVITATION PERFORMANCE CHARACTERISTICS	8

NOTATION

		Dimensions
A _E	Expanded area of propeller blades $A_E = EAR (A_O)$	ft ² , m ²
A _o	Disc area of propeller $A_0 = \frac{\pi D^2}{4}$	ft ² , m ²
A _p	Projected area of propeller blades $A_p = A_E (1.067-0.229 P/D)$	ft ² , m ²
C	Blade section length	ft, m
C _{0.7}	Blade section at 0.7 radius	ft, m
D	Propeller diameter	ft, m
EAR	Expanded area ratio A _E /A _o	
g	Acceleration due to gravity	ft/sec ² , m/sec ²
h	Propeller submergence	ft, m
J	Advance coefficient J = V/nD	
K _T	Thrust coefficient $K_T = \frac{T}{\rho n^2 D^4}$	
K-/J ²	Loading coefficient	
κ _Q	Torque coefficient $K_Q = \frac{Q}{\rho n^2 D^5}$	
K _Q /J ³	Powering coefficient	
n	Propeller rotation speed	rev/sec, r/s
P	Propeller pitch	ft, m
P/D	Pitch-diameter ratio	
PA	Atmospheric pressure	1b/ft ² , N/m ²
P _H	Static water pressure, P _H = pgh	1b/ft ² , N/m ²
P _V	Vapor pressure	1b/ft ² , N/m ²
Т	Propeller thrust	16, N

Dimensions

Q

Propeller torque

1b/ft, N·m

 Q_c

Torque load coefficient, $0 = \frac{2.55 \text{ K}_{Q}}{2.55 \text{ K}_{Q}}$

 $Q_C = \frac{Q_C}{(J^2 + 4.84)(EAR)(1.067 - 0.229 P/D)}$

v

Velocity of boat

ft/sec, m/sec

v_{0.7}

Resultant velocity of water at 0.7 radius of propeller

ft/sec, m/sec

 $v_{0.7}^2 = \frac{J^2 + 4.83}{J^2} v^2$

n

Propeller open water efficiency,

$$\eta = \frac{K_T}{K_0} \frac{J}{2\pi}$$

P

Mass density of water

 $1b-\sec^2/ft^4$, K_q/m^3

σ

Cavitation number,

$$\sigma = \frac{P_A + P_H - P_V}{\frac{1}{2} p V^2}$$

σ_{0.7}

Local cavitation number,

$$\sigma_{0.7} = \frac{P_A + P_H - P_V}{\frac{1}{2} \rho V_{0.7}^2}$$

_

Thrust load coefficient,

$$\tau = \frac{\tau}{\frac{1}{2} \rho A_p v_{0.7}^2}$$

ABSTRACT

Two 22 inch Newton Rader type full scale propellers were manufactured and tested for use during full scale trials on the 11 meter "Sea Fox". Open water tests were conducted and cavitating performance characteristics were obtained for these propellers over a range of cavitation numbers corresponding to full scale speeds from 9 to 45 knots. The propeller performance data and a table containing the principal propeller geometry information is presented in this report.

ADMINISTRATIVE INFORMATION

This work was performed for the Naval Ship Engineering Center, Norfolk Division under Task Area SO414-SW001 and Project Element 63586N.

INTRODUCTION

The Naval Ship Engineering Center Norfolk Division (NAVSECNORDIV) requested that the David Taylor Naval Ship R&D Center (DTNSRDC) procure and characterize a pair of propellers for use during full scale trials of the "Sea Fox". This pair of propellers was manufactured for DTNSRDC as per NAVSEA drawing No. Seafox 101-5033153 by Michigan Wheel Co. The principal dimensions of these propellers are given in Table 1.

Open water characteristics were obtained on both right and left hand propellers. Cavitating performance characteristics were obtained on the right hand propeller only since open water test results indicated that the performance of the two propellers is essentially identical. Upon completion of the test program this pair of propellers was shipped to the boat construction site as per NAVSECNORDIV request.

EXPERIMENTAL PROCEDURE AND FACILITIES

Open water characteristics of the propellers were obtained in the deep water basin using the 35 HP dynamometer. Both propellers were characterized in open water over a range of speed coefficients (J) from zero velocity to zero thrust. The Reynolds number for the open-water tests ranged from 2.5×10^6 to 3.1×10^6 .

Cavitation characteristics of the propellers were obtained in the 36" Variable Pressure Water Tunnel in uniform flow. Two water velocities, 25 fps and 30 fps were used to provide a range of cavitation numbers from 9.43 to 0.40. The cavitation numbers represent a range of full scale speeds from 9.4 to 45 knots. Reynolds number for the cavitation experiments ranged from 4.0×10^6 to 7.4×10^6 .

PRESENTATION OF DATA AND DISCUSSION

The open water characteristics data of the propellers were reduced to the usual nondimensional coefficients of thrust and torque. The open water characteristics for both propellers are presented in Figure 1. The closeness of the coefficients for the left hand and right hand propellers indicate that they are very closely matched in both pitch and blade outline.

Cavitating performance characteristics were obtained for the right hand propeller for cavitation numbers ranging from 9.4 to 0.4. These data

were reduced to the usual nondimensional coefficients of torque, thrust, and efficiency. In addition to the normal coefficients the nondimensional coefficients of K_T/J^2 , K_Q/J^3 , Q_c , $\sigma_{0.7}$ and τ were calculated. Curves showing K_T , K_Q and η for constant values of σ are shown plotted against J in Figure 2. Tabulated values of J, K_T , K_Q , η , K_T/J^2 , K_Q/J^3 , Q_c , $\sigma_{0.7}$ and τ for all test conditions are provided in Table 2. Representative cavitation patterns for thrust loading coefficient (K_T/J^2) of 0.10 and 0.15 are shown in Figure 3.

Figure 1 - Open Water Propeller Characteristics

Figure 2 - Propeller Cavitation Performance Characteristics

Figure 3 - Representative Sketches of Cavitation Patterns for Thrust Loading Coefficients of 0.10 and 0.15

TABLE 1 - PROPELLER GEOMETRY

No. of Blades

Diameter

22 in (558 mm)

Pitch

Pitch Ratio

Developed Area Ratio

Hub to Diameter Ratio

0.18

DEST_AVAILABLE COPY

		TAUC			, , , , , , , , , , , , , , , , , , ,			TAUC	11111	111		12.5°	25.6		TAUC	***	111	14.5				1	500	\$ 2 S	5.5	i.		-,0163
		S10ma7	*****	****				51Gma7			23.				SIGNAT	**	- 12	133					37.			122		
STICS		8		***	****			8							8					22.0		1	1260.	500	11	155	20.00	.007
TERIS	1.0	KQ/33			3235 3235		0.75	KQ/J3			.0267	5200	.0052	0.5	KQ/33	1540.	9260.	.0243	95.0			9.4	5000	0.00	.0261		2000	.0028
HARAC	ON UC	11/15		2011	46.64		NO. no	KT/32	25.25.25.25.25.25.25.25.25.25.25.25.25.2	299	2001	4000	. 0005	on no	11/15	200		200		20.00		ON NO	1959	2.2	2.0	10.00	2000	0030
ANCE (Cavitatio		\$ 5 - 5 S	. 701. 500.		**************************************	Cavitatio	+		7001	201	50.10	.191.	Covitati		. 5415 6109	2000	228	5.55 5.55			Covitati	2005	959.	. 6976	. 7034	. 6226 . 5263 . 5263	
SFORM/		100001	£25.55	1657	1459	2000		100001	45.5.5.6.5		1959.		24.5		104001	0.000	5.005	\$ 5.5. 8.5. 8.5. 8.5. 8.5.	28.5	. 3620			1000001	6184	.510	.5250	3820	1367
ON PE		10018	iiii	25.55				KTOUT	£45554	ž	961	244	-0190		K1001		. 2017	205.		6536			1678	9	1763	0 141.	466.	0110
CAVITATION		,		2000	2,000			,							,	1.0500									. 250		25.00	1.7000
~																												
PROPELLER		*	25.55 25.55 5.25 5.25 5.25 5.25 5.25 5.	555 575 114		256				¥		1355	26.58	222	10.76						N.	721	15			111	223	ii.
PRO		7																										
P.		S164	51155	22.22		3.2623 3.3948 3.5256 3.6545				3	***		1535	***	•••	***					2.	~~.	*:	111	? * *	***		•
VALUES		8		\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	\$ 500.00 \$ 500.00	222000				8	946			42.5	¥.8						8					es.	242	
ED VA	943	KQ/J3			1223				50	K6/13	211				:					1.5	KQ/ J3					***		
BULAT	" NO"	27/18	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	229		******			. ov	KT/38	1		38.55	2.25	11	\$ - 5 5 - 5 5 - 5				" ON G	27/18		31.2	1	===	!!!		.002
- TA	avitatio	erric							avitatio	FFIC	.5704.			96.6	.6021	***				Cavitatio	erric			1				1510.
TABLE 2	٥	PKGOUT	10000		5695				ŭ	ОКООПТ	1 = 5	200	2000	5565	***	*				•	PRODUT			1		111	4555	3
I		KTOUT 1	*****							KTOUT 1	3865			9151.	?!	2000					KTOUT 1					111		300
		•								•	!!!			***							•							

DTNSRDC ISSUES THREE TYPES OF REPORTS

- 1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECHNICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.
- 2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIMINARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.
- 3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR INTERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE BASIS.

AD-A048 383

DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/G 13/10
PERFORMANCE CHARACTERISTICS OF A PAIR OF PROPELLERS FOR THE SEA--ETC(U)
DEC 77 J G PECK
SPD-806-01
NL

UNCLASSIFIED

2 of 2

AD AD A0 48 383

END DATE FILMED 2-78

SUPPLEMENTARY

INFORMATION

ERRATA SHEET

These corrections should be made to DTNSRDC report SPD-806-01, "Performance, Characteristics of a Pair of Propellers for the SEA FOX," by James G. Peck, December 1977.

Add to Table 1, page 7:

Expanded Area Ratio

0.82

Replace TAUC columns in Table 2, page 8 with these values:

Sigma	= 9.430	Sigma	= 2.0	Sigma = 1.5			
J	TAUC	J	TAUC	J	TAUC		
.9000	.3315	.9000	.3058	.9000	.2588		
.9500	.3040	.9500	.2943	.9500	.2668		
1.0000	.2784	1.0000	.2784	1.0000	.2639		
1.0500	.2546	1.0500	.2594	1.0500	.2530		
1.1000	.2323	1.1000	.2387	1.1000	.2368		
1.1500	.2115	1.1500	.2174	1.1500	.2174		
1.2000	.1919	1.2000	.1962	1.2000	.1966		
1.2500	.1734	1.2500	.1757	1.2500	.1756		
1.3000	.1558	1.3000	.1564	1.3000	.1554		
1.3500	.1391	1.3500	.1385	1.3500	.1367		
1.4000	.1231	1.4000	.1221	1.4000	.1198		
1.4500	.1077	1.4500	.1070	1.4500	.1047		
1.5000	.0928	1.5000	.0931	1.5000	.0912		
1.5500	.0783	1.5500	.0800	1.5500	.0787		
1.6000	.0641	1.6000	.0673	1.6000	.0667		
1.6500	.0503	1.6500	.0543	1.6500	.0543		
1.7000	.0366	1.7000	.0406	1.7000	.0404		
1.7500	.0231	1.7500	.0254	1.7500	.0239		
1.8000	.0097	1.8000	.0080	1.8000	.0037		

Si	gma	=	1	.0	
31	yılla	-		·U	

Si	gma	=	.75
31	Jilla	_	. / 3

Si	gma	=	.50

J	TAUC	J	TAUC	J.	TAUC
.9000	.1980	.9000	.1657	1.0000	.1326
.9500	.2132	.9500	.1709	1.0500	.1323
1.0000	.2195	1.0000	.1784	1.1000	.1348
1.0500	.2188	1.0500	.1849	1.1500	.1378
1.1000	.2128	1.1000	.1882	1.2000	.1399
1.1500	.2027	1.1500	.1873	1.2500	.1398
1.2000	.1897	1.2000	.1818	1.3000	.1367
1.2500	.1748	1.2500	.1721	1.3500	.1303
1.3000	.1587	1.3000	.1589	1.4000	.1202
1.3500	.1422	1.3500	.1431	1.4500	.1068
1.4000	.1256	1.4000	.1258	1.5000	.0904
1.4500	.1092	1.4500	.1080	1.5500	.0717
1.5000	.0932	1.5000	.0904	1.6000	.0516
1.5500	.0775	1.5500	.0736	1.6500	.0310
1.6000	.0622	1.6000	.0578	1.7000	.0113
1.6500	.0470	1.6500	.0426		
1.7000	.0317	1.7000	.0273		
1.7500	.0159	1.7500	.0105		
1.8000	0009	1.8000	0098		

Sigma = .40

TAUC				
.1153				
.1159				
.1179				
.1197				
.1199				
.1177				
.1124				
.1037				
.0915				
.0761				
.0580				
.0376				
.0159				
0062				