

(19) Bundesrepublik Deutschland Deutsches Patent- und Markenamt (10) DE 10 2005 012 482 A1 2006.09.21

(12)

Offenlegungsschrift

(21) Aktenzeichen: 10 2005 012 482.8

(22) Anmeldetag: 16.03.2005 (43) Offenlegungstag: 21.09.2006 (51) Int CL²: *C08G 2/18* (2006.01)

(71) Anmelder:

BASF AG, 67063 Ludwigshafen, DE

(72) Erfinder:

Aßmann, Jens, Dr.rer.nat., 68165 Mannheim, DE; Zöliner, Knut. Dr., 68165 Mannheim, DE; Blinzler, Marko, Dr., 68163 Mannheim, DE; Urtel, Melanie, Dr.rer.nat., 68535 Edingen-Neckarhausen, DE; Schwittay, Claudius, Dr., 69121 Heidelberg, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(54) Bezeichnung: Verfahren zur Herstellung von Polyoxymethylenen

(57) Zusammenfassung: Verfahren zur Herstellung von Polyoxymethylenen durch kalionische Polymerisation der Monomeren a) in Gegenwart von Initiatoren b) sowie gegebenenfalls in Gegenwart von Reglem c) und anschließender Desaktivierung und Abtrennung des Polymeren, dadurch gekennzeichnet, dass bei der gesamten Polymerisation die gesamte Menge der Protonendonatoren kleiner 5000 ppm beträgt.

Beschreibung

[0001] Die Erfindung betrifft ein verbessertes Verfahren zur Herstellung von Polyoxymethylenen.

Stand der Technik

[9092] Aus dem Stand der Technik sind verschiedene Verfahren bekannt, welche vorwiegend Protonendonatoren/protische Verbindungen in der Reaktionsmischung enthalten:

In der DE-A 361 77 54 oder DE-A 292 07 03 werden beispielsweise Alkohole als Regier/Kettenüberträger eingesetzt. In der Regel wird das Abbruchmittel in elkoholischen Lösungsmitteln in die Mischung eingeführt.

- DE-A 361 77 54 Hydrolyse mit H₂O/Alkohol-Mischungen
- DE-A 250 99 24 NEt, wird in MeOH/H₂O zugegeben (NEt,=Triethylamin)
- JP-A 59/197 415 NEt, wird in Ethanol zugegeben
- WO 97/24 384 NEt, wird in Wasser zugegeben
- EP-A 999 224 Desaktivator kann in wässriger Phase vorliegen

[0003] Lauf Lehrbüchern wie Echte, Handbuch der Polymerchemie, VCH, Weinheim, 1993, Kap. 8.5.2, werden POM-Copolymere nach kationischer Polymerisation alkalisch neutralisiert.

[9094] Weiterhin können POM-Polymere auch mit Wasserdampf entgast werden: DE-A 370 73 90.

[0005] Aus der EP-A 678 535 ist bekannt, dass der Wassergehalt im Monomergemisch vorteilhaft zu begrenzen ist. In den weiteren Schritten der Polymerisation werden Leichtsieder und H-Donatoren nicht begrenzt.

[0006] In den o.g. Schriften werden als Lösungsmittel z.B. der Katalysatoren leichtsiedende inerte Lösungsmittel (Siedepunkt unterhalb von 140°C) eingesetzt, da diese einfacher zu entfernen sind.

[0007] Die Polymerisation von Trioxan liefert in der Regei Ausbeuten von < 100%. Bei der Schmelzepolymerisation werden beispielsweise nur 70%ige Umsätze erreicht. Die nicht-umgesetzten Restmonomeren werden in der Regel gasförmig abgezogen und rezykliert. Diese Rückführung der Brüden wird erheblich erleichtert, wenn sie weitestgehend frei von Leichtsiedern sind. In diesem Fall kann eine aufwändige Reinigung der Brüden vermieden werden. Sind die Brüden frei von Protonendonatoren, so tritt keine (Gasphasen-)Polymerisation ein, die zu störenden Belägen in den Zuleitungen führen.

[0008] Ein maßgebliches Gütekriterium für Polyoxymethylene ist außerdem der Rest-Formaldehydgehalt (Rest-FA). Wünschenswert ist es, den Rest-FA auf deutlich < 10 ppm zu reduzieren. Ein geringer Rest-FA ist gleichbedeutend mit einer hohen thermischen Stabilität des Polymers (i.e. mit einem geringen Massenverlust bei thermischer Belastung).

[0009] Hierfür ist es entscheidend, dass die Polymerketten keine instabilen Endgruppen aufweisen.

Aufgabenstellung

[9010] Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, die instabilen Kettenenden sowie Rest-FA zu minimieren, die thermische Stabilität des Polymeren zu erhöhen und die Rückführung der Monomeren zu vereinfachen, sowie die Standzeiten der Leitungen und Apparaturen für die Rückführung zu verlängern.

[0011] Demgemäß wurde ein Verfahren zur Herstellung von Polyoxymethylenen durch kationische Polymerisation der Monomeren a) in Gegenwart von Initiatoren b) sowie gegebenenfalls in Gegenwart von Reglern c) und anschließender Desaktivierung und Abtrennung der Polymeren gefunden, welches dadurch gekennzeichnet ist, dass bei der gesamten Polymerisation die gesamte Menge der Protonendonatoren kleiner 5.000 ppm beträgt. Bevorzugte Ausführungsformen sind den Unteransprüchen zu entnehmen.

[0012] Überraschenderweise kann die Stabilität der POM-Ketten(enden) erheblich erhöht werden, wenn bei der Polymerisation der Anteil der Protonendonatoren im genannten Mengenbereich begrenzt wird. Die Aufarbeitung kann effektiver und verschleißfreier durchgeführt werden, insbesondere bei einer zusätzlichen Begrenzung der Leichtsieder – außer den eingesetzten Monomeren – im Reaktionssystem.

[0013] Der Begriff "gesamte Polymerisation" umfasst alle Verfahrensschritte vom Monomeransatz bis zum Granulat.

[0014] Das Verfahren kann grundsätzlich auf jeglichen Reaktoren mit hoher Mischwirkung durchgeführt werden, wie beispielsweise Schalen, Pflugscharmischern, Rohrreaktoren, List-Reaktoren, Knetern, Rührreaktoren, Extrudern und Bandreaktoren.

[0015] Geeignete Reaktoren sind beispielsweise; Kenics (Chemineer Inc.); interfacial surface Generator-ISG und low pressure drop mixer (Ross Engineering Inc); SMV, SMX, SMXL, SMR (Suizer Koch-Giltsch); Inliner series 45 (Lightnin Inc.); CSE-Mischer (Fluitec Georg AG).

[0016] Die entstehenden POM-Polymerisate sind dem Fachmann an sich bekannt und in der Literatur beschrieben.

[0017] Ganz allgemein weisen diese Polymere mindestens 50 mol-% an wiederkehrenden Einheiten «CH₂Oin der Polymerhauptkette auf.

[0018] Die Homopolymeren werden im allgemeinen durch die Polymerisation von Monomeren a) wie Formaldehyd oder Trioxan herstellt, vorzugsweise in der Gegenwart von geeigneten Katalysatoren.

[0019] Im Rahmen der Erfindung werden Polyoxymethylencopolymere bevorzugt, insbesondere solche, die neben den wiederkehrenden Einheiten -CH₂O- noch bis zu 50, vorzugsweise 0,01 bis 20, insbesondere 0,1 bis 10 mol-% und ganz besonders bevorzugt 0,5 bis 3 mol-% an wiederkehrenden Einheiten enthalten.

wobei R^4 bis R^4 unabhängig voneinander ein Wasserstoffatom, eine C_1 -bis C_4 -Alkylgruppe oder eine halogensubstituierte Alkylgruppe mit 1 bis 4 C-Atomen und R^6 eine $-CH_2$ -, $-CH_2O$ -, eine C_4 -bis C_4 -Alkyl- oder C_4 - bis C_4 -Haloalkyl substituierte Methylengruppe oder eine entsprechende Oxymethylengruppe darstellen und n einen Wert im Bereich von 0 bis 3 hat. Vorteilhafterweise können diese Gruppen durch Ringöffnung von cyclischen Ethern in die Copolymere eingeführt werden. Bevorzugte cyclische Ether sind solche der Formel

wobei R¹ bis R⁵ und n'die oben genannte Bedeutung haben. Nur beispielsweise selen Ethylenoxid, 1,2-Propylenoxid, 1,2-Butylenoxid, 1,3-Butylenoxid, 1,3-Dioxan, 1,3-Dioxolan und 1,3-Dioxapan als cyclische Ether genannt sowie lineare Oligo- oder Polyformale wie Polydioxolan oder Polydioxepan als Comonomere genannt.

[0020] Ebenfalls geeignet sind Oxymethylenterpolymerisate, die beispielsweise durch Umsetzung von Trioxan, einem der vorstehend beschriebenen cyclischen Ether mit einem dritten Monomeren, vorzugsweise bifunktionellen Verbindungen der Formei

wobei Z eine chemische Bindung, -O-, -ORO- (R C_1 - bis C_8 -Alkylen oder C_3 - bis C_8 -Cycloalkylen) ist, hergestellt werden.

[0021] Bevorzugte Monomere dieser Art sind Ethylendiglycid, Diglycidylether und Diether aus Glycidylen und Formaldehyd, Dioxan oder Trioxan im Molverhältnis 2:1 sowie Diether aus 2 mai Glycidylverbindung und 1 mol eines allphatischen Diols mit 2 bis 8 C-Atomen wie beispielsweise die Diglycidylether von Ethylengiykol, 1,4-Butandiol, 1,3-Butandiol, Cyclobutan-1,3-diol, 1,2-Propandiol und Cyclobexan-1,4-diol, um nur einige Beispiele zu nennen.

[9022] Endgruppenstabilisierte Polyoxymethylenpolymerisate, die an den Kettenenden C-C- oder -O-CH₂-Bindungen aufweisen, werden besonders bevorzugt.

[9023] Die bevorzugten Polyoxymethylencopolymere haben Schmeizpunkte von mindestens 150°C und Molekulargewichte (Gewichtsmittelwert) M_w im Bereich von 5,000 bis 300,000, vorzugsweise von 7,000 bis 250,000.

[0024] Insbesondere bevorzugt sind POM-Copolymerisate mit einer Uneinheitlichkeit (M_w/M_n) von 2 bis 15, bevorzugt von 3 bis 12, besonders bevorzugt von 3,5 bis 9. Die Messungen erfolgen in der Regel über GPC/SEC (size exclusion chromatography), der M_n-Wert (Zahlenmittel des Molekulargewichtes) wird im allgemeinen bestimmt mittels GPC/SEC (size exclusion chromatography).

[0025] Die gemäß dem Verfahren erhältlichen POM-Polymerisate weisen bevorzugt eine uni- modale Molekulargewichtsverteilung auf, wobei der niedermolekulare Anteil gering ist.

[0026] Die Polyoxymethylenhomo- oder -copolymerisate weisen insbesondere Quotienten der d_{60}/d_{10} -Werte (bezogen auf M_{\odot}) von 2,25 bis 5,5, vorzugsweise von 2,75 bis 5 und insbesondere 3,2 bis 4,5 auf. Der Quotient der d_{60}/d_{50} -Werte (bezogen auf M_{\odot}) beträgt vorzugsweise 1,25 bis 3,25, bevorzugt 1,75 bis 2,75 und insbesondere 2 bis 2,5.

[0027] Die POM-Polymerisate weisen sehr geringe Anteile an niedermolekularen Anteilen auf und vorzugsweise eine asymmetrische, unimodale Verteilungskurve auf, wobei die Differenz der o.g. Quotienten d_{50}/d_{10} zu d_{30}/d_{30} mindestens 0.25, bevorzugt 1 bis 3 und insbesondere 1,0 bis 2,3 beträgt.

[0028] Die Molmassenbestimmung durch GPC (Geipermeationschromatographie):

Elutionsmittel: Hexafluorisopropanol + 0,05% Trifluoressigsäure-Kaliumsalz

Säulentemperatur: 40°C

Durchflussgeschwindigkeit: 0,5 mL/min

Detektor: Differentialrefraktometer Agilent G1362A.

[0029] Die Kailbrierung erfolgte mit eng verteilten PMMA-Standards der Fa. PSS mit Molekulargewichten von M = 505 bis M = 2.740.000. Außerhalb dieses Intervalls liegende Eiutionsbereiche wurden durch Extrapolation geschätzt.

[0030] Unter einem d_{to} Wert versteht der Fachmann in der Regel den Wert, bei welchem 50% des Polymerisates ein kleineres M_w aufweisen und entsprechend 50% ein größeres M_w aufweisen.

[0031] Bevorzugt weisen die gemäß dem erfindungsgemäßen Verfahren erhältlichen Roh-Polyoxymethylene einen Restformaldehydgehalt gemäß VDA 275 im Granulat von maximal 1%, bevorzugt maximal 0,1%, vorzugsweise maximal 0,01% auf.

[0032] Das erfindungsgemäße Verfahren wird bevorzugt für die Homo- und die Copolymensation von Trioxan angewandt. Als Monomeres a) kann aber grundsätzlich jegliches vorstehend beschriebene Monomere, beispielsweise auch Tetroxan eingesetzt werden.

[0033] Die Monomeren, beispielsweise Trioxan, werden bevorzugt im geschmolzenen Zustand zudosiert, im allgemeinen bei Temperaturen von 60 bis 180°C.

[0034] Vorzugsweise beträgt die Temperatur der Reaktionsmischung bei der Dosierung 62 bis 170°C, insbesondere 120 bis 160°C.

[0035] Die Molekulargewichte des Polymeren können gegebenenfalls durch die bei der (Trioxan)polymerisation üblichen Regier o) auf die angestrebten Werte eingestellt werden. Als Regier kommen Acetale bzw. Formale einwertiger Alkohole, die Alkohole selbst sowie die als Kettenüberträger fungierenden geringen Mengen

Wasser, deren Anwesenheit als Protonendonatoren sich in der Regel nie vollständig vermeiden lässt, in Frage. Die Regler werden in Mengen von 10 bis 10,000 ppm, vorzugsweise von 50 bis 5 000 ppm, eingesetzt. Die Menge derartiger Regler sollte erfindungsgemäß wie unten aufgeführt begrenzt werden.

[0036] Als Initiaforen b) (auch als Katalysatoren bezeichnet) werden die bei der (Trioxan)polymerisation üblichen kationischen Starter verwendet. Es eignen sich Protonensäuren, wie fluorierte oder chlorierte Alkyl- und Arylsulfonsäuren, z.B. Perchlorsäure, Trifluormethansulfonsäure oder Lewis-Säuren, wie z.B. Zinntetrachlorid, Arsenpentafluorid, Phosphorsäurepentafluorid und Bortrifluorid sowie deren Komplexverbindungen und salzarlige Verbindungen, z.B. Bortrifluorid-Etherate und Triphenyimethylenhexafluorophosphat. Die Katalysatoren (Initiatoren) werden in Mengen von etwa 0,001 bis 1,000 ppm, vorzugsweise 0,01 bis 500 ppm und insbesondere von 0,05 bis 10 ppm eingesetzt. Im aligemeinen empfiehlt es sich, den Katalysator in verdünnter Form zuzusetzen, vorzugsweise in Konzentrationen von 0,005 bis 5 Gew.-%. Als Lösungsmittel hierfür können inerte Verbindungen wie aliphatische, cycloaliphatische Kohlenwasserstoffe z.B. Cyclohexan, halogenierte aliphatische Kohlenwasserstoffe, Glykolether, zyklische Carbonate, wie Propylencarbonat oder Lactone, z.B. v-Butyrolacton oder Ketone wie 6-Undecanon, sowie Triglyme (Triethylenglykoldimethylether) und 1,4-Dioxan verwendet werden. Die Mengen derartiger Leichtsieder sollen erfindungsgemäß wie unten ausgeführt begrenzt sein.

[0037] Monomere sowie Comonomere a), Initiatoren b) und gegebenenfalls Regler c) können auf beliebige Weise vorgemischt oder auch getrennt voneinander dem Polymerisationsreaktor zugegeben werden. Femer können die Komponenten a), b) und/oder c) zur Stabilisierung sterische gehinderte Phenole enthalten wie in EP-A 129 369 oder EP-A 128 739 beschrieben.

[0038] Um den Anteil an instabilen Endgruppen zu minimieren, hat es sich als vorteilhaft erwiesen den Initiator b) im Regler c) vor dessen Zugabe zum Monomeren a) und gegebenenfalls Comonomer a) zu lösen.

[0039] Die Polymerisation wird vorzugsweise in einem Rohrreaktor durchgeführt, welcher eine Mischungszone, eine Polymerisationszone und eine Desaktivierungszone aufweist.

[0040] Erfindungsgemäß wird direkt anschließend an die Polymerisation die Polymerisationsmischung desaktiviert, vorzugsweise ohne dass eine Phasenveränderung erfolgt.

[9041] Die Desaktivierung der Katalysatorreste erfolgt in der Regel durch Zugabe von mindestens einem Desaktivator d).

[0042] Geeignete Desaktivatoren sind z.B. Ammoniak, aliphatische und aromatische Amine, basisch reagierende Salze, wie Soda und Borax. Diese werden üblicherweise den Polymeren in Mangen von vorzugsweise bis zu 1 Gew.-% zugesetzt.

[0043] Zu den organischen Verbindungen der (Erd-)Alkalimetalle, vorzugsweise des Natriums gehören die entsprechenden Saize von (cyclo)aliphatischen, araliphatischen oder aromatischen Carbonsäuren mit vorzugsweise bis zu 30 C-Alomen und vorzugsweise 1 bis 4 Carboxylgruppen. Beispiele hierfür sind: Alkalimetalisalze der Ameisensäure, Essigsäure, Propionsäure, Buttersäure, Isobuttersäure, Caprylsäure, Stearinsäure, Cyclohexancarbonsäure, Bernsteinsäure, Adipinsäure, Korksäure, 1,10-Decandicarbonsäure, 1,4-Cyclohexandicarbonsäure, Terephthalsäure, 1,2,3-Propantricarbonsäure, 1,3,5-Cyclohexantricarbonsäure, Trimelithsäure, 1,2,3,4-Cyclopentantetracarbonsäure, Pyromellithsäure, Benzoesäure, substituierten Benzoesäuren, Dimersäure und Trimersäure sowie neutrale und teilneutrale Montanwachsselze oder Montanwachsestersalze (Montanate). Auch Saize mit andersgearteten Säureresten, wie z.B. Alkali-Paraffin-, Alkali-Olefin- und Alkali-Aryisulfonate oder auch Phenolate sowie Alkoholate, wie z.B. Methanolate, Ethanolate, Giykolate, können erfindungsgemäß eingesetzt werden.

[0044] Bevorzugt werden Natriumsalze von Mono-und Polycarbonsäuren, insbesondere die aliphatischer Mono- und Polycarbonsäuren, vorzugsweise solchen mit 2 bis 18 C-Atomen, insbesondere mit 2 bis 8 C-Atomen und bis zu vier, vorzugsweise bis zu zwei Carboxylgruppen, sowie Natriumalkoholate mit vorzugsweise 2 bis 15, insbesondere 2 bis 8 C-Atomen verwendet. Beispiele besonders bevorzugter Vertreter sind Natriumacetat, Natriumpropionat, Natriumbutyrat, Natriumoxalat, Natriummalonat, Natriumsuccinat, Natriummethanolat, Natriumethanolat, Natriumglykonat. Ganz besonders bevorzugt ist Natriummethanolat, welches besonders vorteilhaft in einer Menge von 1–5 fach äquimolar zur eingesetzten Komponente b) eingesetzt wird. Es können auch Gemische verschiedener (Erd-)Alkalimetall-Verbindungen eingesetzt werden, wobei auch Hydroxide einsetzber sind.

[0045] Weiterhin sind Erdalkalialkyle als Desaktivatoren d) bevorzugt, welche 2 bis 30 C-Atome im Alkylrest aufweisen. Als besonders bevorzugte Metalle seinen Li, Mg und Na genannt, wobei n-Butyllithium insbesondere bevorzugt ist.

[8046] Bevorzugte Desaktivatoren d) sind solche der Formel I

wobei R¹, R³, R⁴ und R⁵ unabhängig voneinander Wesserstoff oder eine C₁-C₁₀-Alkylgruppe und

R³ Wasserstoff oder eine C₁-C₁₀-Alkylgruppe oder O-R⁶ bedeutet.

[9047] Bevorzugte Reste R¹ bis R⁵ sind unabhängig voneinander Wasserstoff oder eine C₁-C₄-Alkylgruppe, wie Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, s-Butyl, t-Butyl,

[0048] Insbesondere bevorzugte Desaktivatoren d) sind substituierte N-haltige Heterozykien, insbesondere Derivate des Piperidins, wobel Triacetondiamin (4-Amino-2,2,6,6-Teframethylpiperidin) besonders bevorzugt ist.

[0049] Der Desaktivator wird, bezogen auf den Durchsatz an Trioxan in Mengen von 0,001 bis 25 ppm, bevorzugt 0,01 bis 5 ppm, insbesondere 0,05 bis 2 ppm zudosiert. Der Desaktivator liegt vorzugsweise verdünnt in einem der nachstehend genannten Träger/Lösungsmittel vor. Die Konzentration des Desaktivators im Träger/Lösungsmittel beträgt 0,001 bis 10%, bevorzugt 0,01 bis 5%, insbesondere 0,05 bis 2%, ganz besonders bevorzugt 0,1 bis 1%.

[0050] Bevorzugt wird der Desaktivator d) in einem aprotischen, nicht aromatischen Lösungsmittel zugegeben, beispielsweise den vorstehend genannten Monomeren und Comonomeren wie Dioxolan, Trioxan, Butandiolformal, Ethylenoxid oder oligomere bis polymere Polyacetale.

[0051] In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird der Desaktivator d) in einer Trägersubstanz mit Etherstruktureinheiten in die Polymerisationsmischung zugegeben.

[0052] Vorzugsweise eignen sich Trägersubstanzen, die dieselben Struktureinheiten aufweisen, die im jeweilig herzustellenden POM-Polymerisat vorhanden sind. Hierunter sind insbesondere die vorstehend aufgeführten Monomeren a) zu verstehen sowie oligomeres bis polymeres Polyoxymethylen oder Polyacetale.

[0053] Die vorzugsweise flüssige Zugabe erfolgt bei Temperaturen von 140 bis 220°C,

[0054] Werden als Trägersübstanzen oligomere oder polymere POM-Polymerisate verwendet, ist eine Zugabe in flüssiger Form bei Temperaturen von 160 bis 220°C ebenso bevor- zugt. Derartige Polymerisate können gegebenenfalls übliche Additive enthalten. Zur Dosierung derartiger Schmelzen der Trägersubstanzen, welche die Desaktivatoren d) enthalten, werden vorzugsweise Vorrichtungen wie Seitenextruder, Stopfschnecke, Schmelzepumpe etc eingesetzt.

[0055] Anschließend überführt man in der Regel das entstandene Polymerisat in eine Entgasungsvorrichtung.

[0056] Anschließend kann das entsprechende Polyoxymethylenpolymerisat mit üblichen Additiven wie Stabilisatoren, Kautschuken, Füllstoffen usw. in üblicher Weise weiterverarbeitet werden.

[0057] Erfindungsgemäß soll bei der gesamten Polymerisation die gesamte Menge der Protonendonatoren kleiner 5.000 ppm, vorzugsweise 0,1 bis 2.000 ppm, insbesondere 1 bis 1.000 ppm und ganz besonders bevorzugt 10 bis 750 ppm betragen.

[0058] Bevorzugt werden Protonendonatoren mit mindestens einer OH-Gruppe eingesetzt. Insbesondere weisen diese ein Molgewicht < 250 g/mol, bevorzugt < 200 g/mol auf.

[0059] Unter Protonendonatoren versteht man gemäß Brönstedt/Lowry Verbindungen, die Protonen abgeben körnen (siehe Römpp Chemie Lexikon, 9. Auflage 1992, S. 3958 und 3959). Hierzu zählen insbesondere gemäß der erfindungsgemäßen Fahrweise aliphatische/aromatische Alkohole (Lösungsmittel für Regler c) und auch d)), welche gesättigt oder ungesättigt sein können, sowie Wasser oder Wasser enthaltende Lösungen von Reaktanden wie auch die vorstehend genannten (Lewis)Säuren als Initiatoren b).

[0050] Um diese Mengenbegrenzungen einzuhalten, ist es vorteilhaft insbesondere als Kettenregler c) ein Formai wie Methylai oder Butylal einzusetzen. Welterhin ist es vorteilhaft, als Lösungsmittel für den Initiator b) oder des Abbruchmittel d) die vorstehenden Trägersubstanzen (mit Ethereinheiten) Lactone wie v-Butyrolacton, Ketone wie 6-Undecanon oder cyclische Kohlensäureester einzusetzen:

Als cyclische Kohlensäureester werden vorzugsweise solche mit 5 Ringgliedern verwendet, insbesondere Verbindungen der Formel

in der R ein Wasserstoffatom, einen Phenylrest oder einen niederen Alkylrest, vorzugsweise mit 1, 2 oder 3 Kohlenstoffatomen, und R¹ jeweils ein Wasserstoffatom oder einen niederen Alkylrest, vorzugsweise mit 1, 2 oder 3 Kohlenstoffatomen, bedeuten. Als Beispiele seien genannt: Ethylenglykolcarbonat, 1,2-Propylenglykolcarbonat, 1,2-Propylenglykolcarbonat, 1,2-Butylenglykolcarbonat, 2,3-Butylenglykolcarbonat, Phenylethylenglykolcarbonat, 1-Phenyl-1,2-propylenglykolcarbonat (1,3-Dioxolan-2-on, 4-Methyl-1,3-dioxolan-2-on, 4-Methyl-1,3-dioxolan-2-on, 4-Phenyl-1,3-dioxolan-2-on, 4-Methyl-5-phenyl-1,3-dioxolan-2-on, und 4,4-Dimethyl-1,3-dioxolan-2-on).

[0061] Die erfindungsgemäß verwendeten cyclischen Kohlensäureester haben einen Reinheitswert von mindestens 95%, vorzugsweise von mindestens 99,9%; sie sollen im wesentlichen wasser- und alkalifrei sein. Die Reinigung erfolgt im allgemeinen durch Destillation bei vermindertem Druck oder durch Absorption oder durch Adsorption. Soweit die gereinigten cyclischen Kohlensäureester unter Normalbedingungen im festen Aggregatzustand vorliegen, müssen sie zur Herstellung der Initiatoriösung durch Schmeizen in den flüssigen Aggregatzustand gebracht werden; dies erfolgt durch Erwärmen auf eine Temperatur, die 5 bis 10°C oberhalb des Schmeizpunktes des jeweiligen Kohlensäureesters liegt. Im allgemeinen reicht hierzu eine Temperatur von 35 bis 100, vorzugsweise von 45 bis 80°C aus.

[8062] Weiterhin sollte erfindungsgemäß die Entgasung unter Ausschluss von Sauerstoff oder unter inertgas stattfinden, insbesondere unter Stickstoff.

[9063] Zusätzlich ist es für die Rückführung der Restmonomeren vorteilhaft, die Menge der Leichtsieder im Reaktionssystem – mit Ausnahme der eingesetzten Monomeren – zu begrenzen u.z. von 0,1 bis 15.000 ppm, vorzugsweise von 0,1 bis 2000 ppm und insbesondere von 0,1 bis 750 ppm.

[0064] Unter Leichtsiedern im Sinne der Erfindung wollen Verbindungen mit einem Siedepunkt < 160°C, vorzugsweise < 140°C und insbesondere < 120°C verstanden werden.

[0065] Die Molmasse derartiger Leichtsieder beträgt vorzugsweise < 400 g/mol, bevorzugt < 300 g/mol und insbesondere < 200 g/mol.

[0066] Vorzugsweise sind derartige Leichtsieder im System aprofische Lösungsmittel wie vorstehend unter b) bereits ausgeführt. Profische Lösungsmittel enthalten relativ bewegliche Protonen, die meinst an Sauerstoff, Stickstoff oder Schwefel gebunden sind. Bei den aprofischen Lösungsmitteln sind alle Wasserstoffatome an Kohlenstoff gebunden (s. F.A. Carey, R.J. Lundberg, Organische Chemie Verlag VCH 1995, S. 224).

[0067] Es ist jedoch nicht vorteilhaft, komplett auf protische Verbindungen zu verzichten, da protische Verbindungen die Polymerisation starten und beschleunigen können (wässrige Perchlorsäure dient als Reaktionsstarter), aber auch die Reaktion effektiv abbrechen können (TAD dient als Abbruchmittel und enthält geringe Mengen Wasser).

[9068] Durch die Kombination folgender erfindungsgemäßer Maßnahmen wird der Anteil an protischen Verbindungen im Reaktionsgemisch reduziert:

- 1. Als Kettenregier wird ein Formal verwendet, bevorzugt Methylal oder Butylal.
- 2. Als Lösungsmittel für das Abbruchmittel dient ein zyklisches Formal.
- 3. Als Lösungsmittel für den Starter dienen aprotische Verbindungen mit einem Siedepunkt > 160°C
- 4. Alla Einsatzstoffe weisen einen Wasseranteil von höchstens 500 ppm auf.

[0069] Niedermolekulare protische Verbindungen werden somit im erfindungsgemäßen Verfahren lediglich über den Starter (z.B. wässrige Perchlorsäure), das Abbruchmittel (z.B. TAD) und das Resilwasser in den Einsatzstoffen in die Reaktionsmischung eingebracht. Das Restwasser macht den größten Anteil an den erfindungsgemäß eingebrachten protischen Verbindungen aus.

Ausführungsbeispiel

[0070] 5 kg einer Mischung aus 96,495 Gew.-% flüssigem Trioxan, 3,5 Gew.-% Dioxolan und 0,005 Gew.-% Methylal wurden auf 160°C erwärmt und in einen Rohrreaktor mit statischen Mischern gepumpt. Der Restwassergehalt dieser Monomere betrug jeweils 0,05%. Durch Zugabe von 0,5 ppm Perchlorsäure (als 0,01 gew.-%ige Lösung in Lösungsmittel A) startete man die Polymerisation, der Druck im Reaktor betrug 20 bar.

[0071] Nach einer Verweilzeit von 2 min wurde in der Abbruchzone des Reaktors Triacetondiemin als Abbruchmittel (als 0,05 gew.-%ige Lösung in Lösungsmittel B) eindosiert, so dass TAD im Stachen Überschuss zur Perchlorsäure vorlag, und über einen statischen Mischer eingemischt.

[0072] Nach einer weiteren Verweitzeit von 3 min wurde das Produkt (Roh-POM) über ein Regelventil in einen Entgasungstopf auf einen Druck von 4 bar entspannt, wodurch die flüchtigen Komponenten von der Polymerschmeize abgetrennt wurden. In der Polymerschmeize verblieben Reste an Trioxan und Formaldehyd.

[0073] Die gasförmigen Monomere wurden aus dem Entgasungstopf über eine auf 130°C beheizte Rohrleitung – nachfolgend als Brüdenleitung bezeichnet – in einen Kondensator überführt und kondensiert. Das Kondensat wurde durch GC-MS-Messungen untersucht.

[0074] Die Schmeize wurde auf einem Extruder entgast, ausgetragen, im Wasserbad gekühlt und granuliert,

[0075] Der Anteil an niedermolekularen protischen Verbindungen in der Reaktionsmischung betrug somit-

500 ppm

- + 0.25 ppm
- + 2,6 ppm
- = 502,75 ppm

(Restwasser der Monomere) (aus der 70%igen wässrigen Perchlorsäure) (Triacetondiamin)

sowie - je nach Wahl der Lösungsmittel -

+ 5.000 ppm

Lösungsmittel B (z.B. Wasser, Methanol)

[0076] Der Anteil an Leichtsledern in der Reaktionsmischung beträgt - je nach Wahl der Lösungsmittel

5.000 ppm

Lösungsmittel A (z.B. 1,4-Dioxan, Cyclohexan)

Delegator	* * * * * * * * * * * * * * * * * * *		Transcription of the second	herester established and appropriately	*************************		
Dalabia	rosnuðsunttel	Losungsmittel Menge an	Menge an	Menge an	Menge an Analyse des	Belad in den	Standzeit der
	⋖	<u></u>	Leichtsiedern	Protonen-	Kondensats	Brûdenleitungen	Brüdenleitung
				donatoren			3
Erfindungs-	Propylen-	1,3-Dioxolan	< 10 ppm	503 ppm	Spuren von	Keine Belausbildung > 240 h	> 240 h
gemäß	Carbonat				Lösungsmittel A))
Vergleichs-	Cyclohexan	1,3-Dioxolan	5.000 ppm	503 ppm	Rückstände an	Keine Belaushildum	> 240 h
bsp. 1					Cyclohexan	Barran	
Vergleichs- 1,4-Dioxan	1,4-Dioxan	1,3-Dioxolan	5.000 ppm	503 ppm	Rückstände an	Keine Belanshiiding	> 240 h
bsp. 2					1,4-Dioxan		** > **
Vergleichs-	1,4-Dioxan	Methanol	5.000 ppm	5.500 ppm	5.500 ppm Rückstände an	Starke Belaushildung 10 h	10 h
bsp. 3					1,4-Dioxan	5	
Vergleichs-	1,4-Dioxan	Wasser	5.000 ppm	5.500 ppm	5.500 ppm Rückstände an	Sehr starke	3.6
bsp. 4					*********	Belagsbildung	· · · · · · · · · · · · · · · · · · ·

Die Vergleichsbeispiele 1 bis 4 zeigen im Monomer-Kondensat erhebliche Rückstände an 1,4-Dioxan bzw. Cyclohexan. Vor einer Rezyklierung der Monomere muss dieses aufwendig abgetrennt werden.

Die Vergleichsbeispiele 3 und 4, bei denen > 5.000 ppm Protonendonatoren vorliegen, zeigen ferner Belagsbildungen in den Brüdenleitungen und eine deutlich herabgesetzte Standzeit.

Bei einer erfindungsgemäßen Begrenzung von Leichtsiedern und Protonendonatoren ergeben sich eine hohe Standzeit in Kombination mit hochreinem Kondensat

Patentansprüche

^{1.} Verfahren zur Herstellung von Polyoxymethylenen durch kationische Polymerisation der Monomeren a)

in Gegenwart von Initiatoren b) sowie gegebenenfalls in Gegenwart von Regiern c) und anschließender Desaktivierung und Abtrennung des Polymeren, **dadurch gekennzeichnet**, dass bei der gesamten Polymerisation die gesamte Menge der Protonendonatoren kleiner 5,000 ppm beträgt.

- 2. Verfahren nach Anspruch 1, dedurch gekennzeichnet, dass die Protonendonatoren ein Molgewicht < 250 g/mol aufweisen.
- Verfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass man Protonendonatoren mit mindestens einer OH-Gruppe einsetzt.
- Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass die gesamte Menge der Protonendonatoren 0,1 bis 2,000 ppm beträgt.
- 5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die Gruppe der Protonendonatoren ausgewählt ist aus der Gruppe der aliphatischen oder aromatischen Alkohole, Wasser oder Wasser enthaltende Lösungen von Reaktanden, Säuren oder deren Mischungen.
- Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzelchnet, dass man die Restmonomeren entfernt und in den Polymerisationereaktor oder in die Monomeranlage zurückführt.
- 7. Verfahren nach den Ansprüchen 1 bis 6. dadurch gekennzeichnet, dass die Menge der Leichtsieder bei der gesamten Polymerisation mit Ausnahme der eingesetzten Monomeren 0,1 bis 15.000 ppm beträgt.
 - 8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass die Leichtsieder aprotisch sind.
- Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass die Leichtsieder eine Molmasse
 400 g/mol aufweisen.
- 10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass die Leichtsieder einen Siedepunkt < 160°C aufweisen.

Es folgt kein Blatt Zeichnungen