Empirical Asset Pricing Assignment 01

Morteza Aghajanzadeh*

Ge Song[†]

January 28, 2024

Question 1

(a) Let's define the variables that we need to use in the estimation.

$$f(v_t, \theta) = \begin{bmatrix} R_{t1} - \mu_1 \\ R_{t2} - \mu_2 \\ (R_{t1} - \mu_1)^2 - \sigma_1^2 \\ (R_{t2} - \mu_2)^2 - \sigma_2^2 \end{bmatrix} , \quad \theta = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \sigma_1^2 \\ \sigma_2^2 \end{bmatrix}$$
$$g_T(\theta) = \frac{1}{T} \sum_{t=1}^T f(v_t, \theta)$$

We know from the lecture that we need to calculate the $\frac{\partial f}{\partial \theta'}$ to get the $\hat{D_T}$:

$$\frac{\partial f(v_t, \theta)}{\partial \theta'} = \begin{bmatrix} -1 & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ -2(R_{t1} - \mu_1) & 0 & -1 & 0\\ 0 & -2(R_{t2} - \mu_2) & 0 & -1 \end{bmatrix}$$

$$\Rightarrow \hat{D_T} = \frac{1}{T} \sum_{t=1}^{T} \frac{\partial f(v_t, \theta)}{\partial \theta'} = \begin{bmatrix} -1 & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ 0 & 0 & -1 & 0\\ 0 & 0 & 0 & -1 \end{bmatrix} = -I$$

We also know that $A_T = I$ and $A_T g_T(\theta) = 0$. Therefore, we can calculate the $\hat{\theta}$:

$$A_T g_T(\theta) = 0 \Rightarrow g_T(\theta) = 0$$

$$g_T(\theta) = \begin{bmatrix} \frac{\sum_{t=1}^{R_{t1}} - \mu_1}{T} - \mu_1 \\ \frac{\sum_{t=1}^{R_{t2}} - \mu_2}{T} - \mu_2 \\ \frac{\sum_{(R_{t1} - \mu_1)^2} - \sigma_1^2}{T} - \sigma_2^2 \end{bmatrix} = 0 \Rightarrow \begin{bmatrix} \frac{\sum_{t=1}^{T} R_{t1}}{T} \\ \frac{\sum_{t=1}^{T} R_{t2}}{T} \\ \frac{\sum_{t=1}^{T} (R_{t1} - \hat{\mu_1})^2}{T} \\ \frac{\sum_{t=1}^{T} (R_{t2} - \hat{\mu_2})^2}{T} \end{bmatrix} = \begin{bmatrix} \hat{\mu_1} \\ \hat{\mu_2} \\ \hat{\sigma_1} \\ \hat{\sigma_2} \end{bmatrix} = \hat{\theta}$$

Our calculated $\hat{\theta}$ based on the given data is:

$$\hat{\theta} = \begin{bmatrix} 0.0162 \\ 0.0045 \\ 0.0212 \\ 0.0167 \end{bmatrix}$$

^{*}Department of Finance, Stockholm School of Economics. Email: morteza.aghajanzadeh@phdstudent.hhs.se

 $^{^\}dagger \mbox{Department}$ of Finance, Stockholm School of Economics. Email: ge.song@phdstudent.hhs.se

```
mu_1 = sum(df['Stock1'])/len(df['Stock1'])

mu_2 = sum(df['Stock2'])/len(df['Stock2'])

sigma_1 = sum((df.Stock1 - mu_1)**2)/(len(df.Stock1))

sigma_2 = sum((df.Stock2 - mu_2)**2)/(len(df.Stock2))
```

Listing 1: Python code for calculating $\hat{\theta}$

(b) Still we assume that there is no serial correlation in the moments. Therefore, we can calculate the \hat{S}_T as follows:

$$\begin{split} \hat{S_T} = & \frac{1}{T} \sum_{t=1}^T f(v_t, \theta) f(v_t, \theta)' \\ = & \frac{1}{T} \sum_{t=1}^T \begin{bmatrix} \frac{(R_{t1} - \mu_t)^2}{(R_{t1} - \mu_t)(R_{t2} - \mu_2)} & \frac{(R_{t1} - \mu_t)(R_{t2} - \mu_2)}{(R_{t2} - \mu_2)^2} & \frac{(R_{t1} - \mu_t)^3 - \sigma_1^2(R_{t1} - \mu_1)}{(R_{t1} - \mu_t)(R_{t2} - \mu_2)} & \frac{(R_{t1} - \mu_t)(R_{t2} - \mu_2)^2 - \sigma_2^2(R_{t1} - \mu_1)}{(R_{t1} - \mu_t)^3 - \sigma_1^2(R_{t1} - \mu_1)} \\ = & \frac{1}{T} \sum_{t=1}^T \begin{bmatrix} \frac{(R_{t1} - \mu_t)^2}{(R_{t1} - \mu_t)(R_{t2} - \mu_2)} & \frac{(R_{t1} - \mu_t)(R_{t2} - \mu_2)}{(R_{t1} - \mu_t)^2 - \sigma_1^2(R_{t2} - \mu_2)} & \frac{(R_{t1} - \mu_t)^3 - \sigma_1^2(R_{t2} - \mu_2)}{(R_{t1} - \mu_t)^2 - \sigma_1^2(R_{t2} - \mu_2)} & \frac{(R_{t1} - \mu_t)^2 - \sigma_1^2(R_{t2} - \mu_2)}{(R_{t1} - \mu_t)^2 - \sigma_1^2(R_{t1} - \mu_1)^2 + \sigma_1^4} & \frac{(R_{t1} - \mu_t)^2(R_{t2} - \mu_2)^2 - \sigma_2^2(R_{t1} - \mu_1)}{(R_{t2} - \mu_2)^2 - \sigma_2^2(R_{t1} - \mu_1)} & \frac{(R_{t1} - \mu_t)^2(R_{t2} - \mu_2)}{(R_{t1} - \mu_t)^2 - \sigma_1^2(R_{t1} - \mu_1)^2 + \sigma_1^4} & \frac{(R_{t1} - \mu_t)^2(R_{t2} - \mu_2)^2 - \sigma_2^2(R_{t1} - \mu_1)}{(R_{t1} - \mu_t)^2 - \sigma_1^2(R_{t2} - \mu_2)} & \frac{(R_{t1} - \mu_t)^2(R_{t2} - \mu_2)}{(R_{t1} - \mu_t)^2 - \sigma_1^2(R_{t2} - \mu_2)} & \frac{(R_{t1} - \mu_t)^2(R_{t2} - \mu_2)}{(R_{t1} - \mu_t)^2 - \sigma_1^2(R_{t2} - \mu_2)} & \frac{(R_{t1} - \mu_t)^2(R_{t2} - \mu_2)}{(R_{t1} - \mu_t)^2 - \sigma_1^2(R_{t2} - \mu_2)} & \frac{(R_{t1} - \mu_t)(R_{t2} - \mu_2)^2 - \sigma_2^2(R_{t1} - \mu_1)}{(R_{t2} - \mu_2)^2 - \sigma_1^2(R_{t2} - \mu_2)} & \frac{(R_{t1} - \mu_t)^2(R_{t2} - \mu_2)}{(R_{t1} - \mu_t)^2 - \sigma_1^2(R_{t2} - \mu_2)} & \frac{(R_{t1} - \mu_t)^2(R_{t2} - \mu_2)}{(R_{t1} - \mu_t)^2 - \sigma_1^2(R_{t2} - \mu_2)} & \frac{(R_{t1} - \mu_t)^2(R_{t2} - \mu_2)}{(R_{t1} - \mu_t)^2 - \sigma_1^2(R_{t2} - \mu_2)} & \frac{(R_{t1} - \mu_t)^2(R_{t2} - \mu_2)}{(R_{t1} - \mu_t)^2 - \sigma_1^2(R_{t2} - \mu_2)} & \frac{(R_{t1} - \mu_t)^2(R_{t2} - \mu_2)}{(R_{t1} - \mu_t)^2 - \sigma_1^2(R_{t2} - \mu_2)} & \frac{(R_{t1} - \mu_t)^2(R_{t2} - \mu_2)}{(R_{t1} - \mu_t)^2 - \sigma_1^2(R_{t2} - \mu_2)} & \frac{(R_{t1} - \mu_t)^2(R_{t2} - \mu_2)}{(R_{t1} - \mu_t)^2 - \sigma_1^2(R_{t2} - \mu_2)} & \frac{(R_{t1} - \mu_t)^2(R_{t2} - \mu_2)}{(R_{t1} - \mu_t)^2 - \sigma_1^2(R_{t2} - \mu_2)} & \frac{(R_{t1} - \mu_t)^2(R_{t2} - \mu_t)}{(R_{t1} - \mu_t)^2 - \sigma_1^2(R_{t2} - \mu_t)} & \frac{(R_{t1} - \mu_t)^2(R_{t2} - \mu_t)}{(R_{t1} - \mu_t)^2 - \sigma_1^2(R_{t2}$$

Here the definition of $\hat{m}_{1}^{(j)}$ is the one in the lecture notes. For the $\hat{k}_{mn}^{(j)}$, I do not have a good way to write it in the matrix form. Therefore, I just write it as a way to sum up the terms in the matrix.

As we know that two process are independent, and normally distributed, we can calculate the $\hat{S_T}$ as follows:

$$\hat{S_T} = \begin{bmatrix} \hat{\sigma_1}^2 & 0 & 0 & 0\\ 0 & \hat{\sigma_2}^2 & 0 & 0\\ 0 & 0 & 2\hat{\sigma_1}^4 & 0\\ 0 & 0 & 0 & 2\hat{\sigma_2}^4 \end{bmatrix}$$

Our calculated \hat{S}_T based on the given data is:

$$\hat{S_T} = \begin{bmatrix} 0.0212 & 0 & 0 & 0 \\ 0 & 0.0167 & 0 & 0 \\ 0 & 0 & 0.0347 & 0 \\ 0 & 0 & 0 & 0.0011 \end{bmatrix}$$

```
theta = np.array([mu 1,mu 2, sigma 1, sigma 2])
 def f_v(theta,x):
                      mu_1 = theta[0]
                       mu_2 = theta[1]
                       sigma_1 = theta[2]
                       sigma_2 = theta[3]
                       x_1 = x[0]
                       x_2 = x[1]
                         f = np.array([x_1-mu_1,x_2-mu_2,(x_1-mu_1)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)**2-sigma_1,(x_2-mu_2)
                                             sigma_2]).reshape(len(theta),1)
 def s(theta,x):
                         f = f_v(theta, x)
                         return f @ f.T
x = np.array([df[['Stock1', 'Stock2']]])[0]
s_{hat} = sum([s(theta,i) for i in x])/len(x)
# set non-diagonal elements to zero
```

```
s_hat = s_hat * np.eye(4)
```

Listing 2: Python function for calculating standard error of estimation

(c) Now we want to adjust the standard errors by Newey-West estimator. Therefore, we need to calculate the $\hat{\Gamma}_1$ by using the fact that two distributions are independent:

$$\hat{\Gamma_{1}} = \begin{bmatrix} \frac{\sum_{2}^{T}(R_{t}^{1} - \mu_{1})(R_{t-1}^{1} - \mu_{1})}{T-1} & 0 & \frac{\sum_{2}^{T}(R_{t}^{1} - \mu_{1})(R_{t-1}^{1} - \mu_{1})^{2}}{T-1} & 0 \\ 0 & \frac{\sum_{2}^{T}(R_{t}^{2} - \mu_{2})(R_{t-1}^{2} - \mu_{2})}{T-1} & 0 & \frac{\sum_{2}^{T}(R_{t-1}^{2} - \mu_{1})(R_{t-1}^{1} - \mu_{1})^{2}}{T-1} \\ \sum_{2}^{T}(R_{t-1}^{1} - \mu_{1})(R_{t-1}^{1} - \mu_{1})^{2} & 0 & \frac{\sum_{2}^{T}(R_{t-1}^{2} - \mu_{2})(R_{t-1}^{2} - \mu_{2})^{2}}{T-1} \\ 0 & \frac{\sum_{2}^{T}(R_{t-1}^{2} - \mu_{2})(R_{t-1}^{2} - \mu_{2})^{2}}{T-1} & 0 & \frac{\sum_{2}^{T}(R_{t-1}^{2} - \mu_{2})^{2}(R_{t-1}^{2} - \mu_{2})^{2}}{T-1} + \sigma_{1}^{4} \end{bmatrix}$$

and then we can calculate the $\hat{S_T}$ as follows:

$$\hat{S_T} = \begin{bmatrix} \hat{\sigma_1}^2 & 0 & 0 & 0 \\ 0 & \hat{\sigma_2}^2 & 0 & 0 \\ 0 & 0 & 2\hat{\sigma_1}^4 & 0 \\ 0 & 0 & 0 & 2\hat{\sigma_2}^4 \end{bmatrix} + \frac{1}{2}(\hat{\Gamma}_1 + \hat{\Gamma}_1')$$

Our calculated \hat{S}_T based on the given data is:

$$\hat{S_T} = \begin{bmatrix} 0.0162 & 0 & 0 & 0 \\ 0 & 0.0160 & 0 & 0 \\ 0 & 0 & 0.04 & 0 \\ 0 & 0 & 0 & 0.0013 \end{bmatrix}$$

```
theta = np.array([mu_1,mu_2, sigma_1, sigma_2])
lag = 1
def gamma(theta,x,lag):
    gamma = \{\}
     for i in range (1, lag +1):
         lag = np.array(df[['Stock1', 'Stock2']].shift(i).dropna())
         tempt = []
         for num, j in enumerate(x[i:]):
              tempt.append(f_v(theta,j) @ f_v(theta,lag[num]).T)
         \operatorname{gamma}[i] = \operatorname{sum}(\operatorname{tempt})/\operatorname{len}(\operatorname{tempt})
    gamma = [gamma[i] for i in gamma]
    return sum(gamma)
def s_newywest(theta, x):
    gamma_hat = gamma(theta,x,lag)
     return sum ([s(theta,i) for i in x])/len(x) + 0.5 * (gamma_hat +
         gamma_hat.T)
s_hat_newywest = s_newywest(theta,x)
s\_hat\_newywest \ * \ np.\,eye\,(\,4\,)
```

Listing 3: Python function for calculating Newy-West standard error

(d) Now we want to compare the Sharpe ratio of two stocks. Therefore, we need to test the hypothesis that:

$$\begin{cases} H_0: \frac{\mu_1}{\sigma_1} = \frac{\mu_2}{\sigma_2} \\ H_1: \frac{\mu_1}{\sigma_1} \neq \frac{\mu_2}{\sigma_2} \end{cases} \Rightarrow \begin{cases} H_0: \mu_1 \sigma_2 - \mu_2 \sigma_1 = 0 \\ H_1: \mu_1 \sigma_2 - \mu_2 \sigma_1 \neq 0 \end{cases}$$

now we can define the $R(\theta)$ as follows:

$$R(\theta) = \mu_1 \sigma_2 - \mu_2 \sigma_1$$

and then rewrite the hypothesis as follows:

$$H_0:R(\theta)=0$$

$$H_1:R(\theta)\neq 0$$

Now we can use the Delta method to find the distribution of $R(\hat{\theta})$:

$$\begin{split} \sqrt{T}(R(\hat{\theta}) - R(\theta)) &\xrightarrow{d} N(0, \frac{\partial R(\theta)}{\partial \theta'} V_{\theta} \frac{\partial R(\theta)}{\partial \theta'}) \\ \sqrt{T}(R(\hat{\theta})) &\xrightarrow{d} N(0, \frac{\partial R(\theta)}{\partial \theta'} V_{\theta} \frac{\partial R(\theta)}{\partial \theta'}) \end{split}$$

where V_{θ} is the variance of $\hat{\theta}$. Now we can calculate the $\frac{\partial R(\theta)}{\partial \theta'}$ as follows:

$$\frac{\partial R(\theta)}{\partial \theta'} = \begin{bmatrix} \sigma_2 & -\sigma_1 & -\mu_2 & \mu_1 \end{bmatrix}$$

and we know that $V_{\theta} = \hat{S}_{T}$. Therefore, we can find the distribution of $R(\hat{\theta})$ as follows:

$$\frac{\partial R(\theta)}{\partial \theta'} V_{\theta} \frac{\partial R(\theta)}{\partial \theta'} = \begin{bmatrix} \sigma_2 & -\sigma_1 & -\mu_2 & \mu_1 \end{bmatrix} \hat{S_T} \begin{bmatrix} \sigma_2 \\ -\sigma_1 \\ -\mu_2 \\ \mu_1 \end{bmatrix} = \hat{V}_T$$

Now we can calculate the test statistic as follows:

$$\begin{split} TR(\hat{\theta})'\hat{V}_T^{-1}R(\hat{\theta}) &\xrightarrow{d} \chi_1^2 \\ \frac{T(\mu_1\sigma_2 - \mu_2\sigma_1)^2}{\hat{S}_T} &\xrightarrow{d} \chi_1^2 \end{split}$$

Let's calculate the test statistic:

$$\hat{V}_T = \begin{bmatrix} 0.0167 & -0.0212 & -0.0045 & 0.0162 \end{bmatrix} \begin{bmatrix} 0.0212 & 0 & 0 & 0 \\ 0 & 0.0167 & 0 & 0 \\ 0 & 0 & 0.0347 & 0 \\ 0 & 0 & 0 & 0.0011 \end{bmatrix} \begin{bmatrix} 0.0167 \\ -0.0212 \\ -0.0045 \\ 0.0162 \end{bmatrix} = 0.001449$$

- (a) $f(v_t, \theta) =$
- (b)
- (c)

(d)
$$H_0: \mu_1 * \sigma_2 - \mu_2 * \sigma_1 = 0$$

 $R(\theta) = \mu_1 * \sigma_2 - \mu_2 * \sigma_1$
 $\theta =$

$$egin{array}{c} \mu_1 \\ \mu_2 \\ \sigma_1 \\ \sigma_2 \\ \end{array}$$

$$\frac{\partial R(\theta)}{\theta'} =$$

$$\begin{bmatrix} \sigma_2 & -\sigma_1 & -\mu_2 & \mu_1 \end{bmatrix}$$

 $T(R(\hat{\theta_T})'[\frac{\partial R(\theta)}{\theta'}\hat{V}\frac{\partial R(\theta)}{\theta'}']^{-1}(R(\hat{\theta})\sim\chi^2$ Sharpe Ratio Stock 1: 0.1113

Sharpe Ratio Stock 1: 0.1113 Sharpe Ratio Stock 2: 0.0352

T-test Statistic: 1.4645

p-value: 0.1433 Fail to reject the null hypothesis: No significant difference in Sharpe ratios.

(e) After introducing the correlation matrix:

Sharpe Ratio Stock 1: 0.1113 Sharpe Ratio Stock 2: 0.0352 Sample Correlation: 0.4187 T-test Statistic: 12.5329 Degrees of Freedom: 1198

p-value: 0.0000

Reject the null hypothesis: Stocks have different Sharpe ratios.

(f) Observed Sharpe Ratio Difference: 0.0761 95% Confidence Interval: [-0.0325, 0.1561] The sharp ratio difference is not significant at 5% level.

Question 2

(a) Optional

Question 3

(a) N=840

