МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №4 по дисциплине «Параллельные алгоритмы»

Тема: Параллельное умножение матриц

Студент гр. 0303	Парамонов В.В
Преподаватель	Сергеева Е. И.

Санкт-Петербург

2023

Цель работы.

Исследовать реализации масштабируемого и "быстрого" умножения матриц (Штрассена). Проверить корректность реализации и скорость выполнения.

Постановка задачи.

Выполняется на основе работы 1.

- Реализовать параллельный алгоритм умножения матриц с масштабируемым разбиением по потокам (2).
- Исследовать масштабируемость выполненной реализации с реализацией из работы 1 (1).
- Реализовать параллельный алгоритм "быстрого" умножения матриц (Штрассена или его модификации) (3).
- Проверить, что результаты вычислений (2) и (3) совпадают.
- Сравнить производительность (3) с (2) на больших размерностях данных (порядка $10^4 10^6$)

Выполнение задач.

1. Изменения структуры решения в сравнении с лабораторной 1:

- 1) Были убраны решения задачи умножения матриц с разделением по задачам на потоки и процессы.
- 2) Добавлены 2 новых функции параллельного умножения матриц:
 - Масштабируемое умножение (2) [void threadsScalableMul(Matrix& first, Matrix& second, Matrix& mulResult, int threadInd, int threadsNum)], которое заключается в вычислении каждым потоком отдельных значений матрицы результата.
 - "Быстрое" умножение Штрассена (3) [threadsMulStrassen(Matrix first, Matrix second, Matrix& mulResult, int recursionDepth, int allowRecursionDepth)], которое соответствует стратегии "разделяй и властвуй". Умножаемые матрицы делятся на четыре равные части и

- каждая рекурсивно вычисляется тем же алгоритмом, далее в 7 умножений находится искомая матрица результат.
- 3) Класс матрица претерпел изменения. Добавились операции сложения, вычитания и обычного не параллельного умножения.
- 4) При каждом запуске программы есть выбор на использование нескольких вариантов перемножения матриц из (1), (2) и (3). Результаты данных умножений сравниваются на идентичность.

2. Исследование полученных с использованием программы результатов:

1) Исследуем скорость работы параллельного умножения матриц, реализованной в 1 лабораторной по строкам (1) с масштабируемым умножением с вычислением элемента результирующей матрицы (2). Будем рассматривать умножение матриц (x, 1000) на (1000, 1000) в 7 потоков (см. таблицу 1):

Таблица 1 – Измерение времени работы параллельных умножений матриц (1) и (2)

Размеры матриц	Время выполнения для	Время выполнения для
	параллельного умножения	масштабируемого параллельного
	матриц по строкам (1) (с)	умножения матриц (2) (с)
(1000, 1000); (1000, 1000)	1.56842	2.15794
(100, 1000); (1000, 1000)	0.189192	0.212244
(10, 1000); (1000, 1000)	0.0347434	0.029875
(1, 1000); (1000, 1000)	0.0190915	0.00706199

Исходя из полученных данных в таблице 1 масштабируемое умножение матриц (2) гораздо быстрее, чем умножение по строкам при уменьшении количества строк в результирующей матрице, так как в случае параллельного умножения матриц по строкам (1) не все потоки получают равный объем работы из-за проблем с масштабированием такого подхода.

2) Теперь исследуем скорости работы масштабируемого умножения матриц (2) и "быстрого" умножения матриц Штрассена (3). Будем рассматривать

умножение 2-х квадратных матриц размера (size, size); (size, size) в 7 потоков (см. таблицу 2).

Таблица 2 - Измерение времени работы параллельных умножений матриц (2) и (3)

Размеры матриц size	Время выполнени	я для	Время выполнения для "быстрого"
	масштабируемого п	араллельного	параллельного умножения матриц
	умножения матриц (2) (с))	Штрассена (3) (с)
64	0.000703902		0.00268239
128	0.00556726		0.00965697
256	0.0414657		0.0477349
512	0.30188		0.223769
1024	2.50183		1.37716
2048	39.3093		10.6346
4096	261.531		85.3452
8192	2251.61		654.763

Исходя из полученных данных в таблице 2 масштабируемое умножение матриц (2) быстрее, чем "быстро" умножение Штрассена (3) только при маленьких размерах перемножаемых матриц. При увеличении размера матриц (3) начинает выигрывать за счёт меньшей асимптотической сложности у (2), как и ожидалось.

Заключение.

В ходе работы были изучены алгоритмы масштабируемого умножения матриц (2) и "быстрого" умножения матриц Штрассена (3). Была практически доказана масштабируемость параллельного умножения матриц (2) и эффективность при больших размерах матриц (3).