

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE INFORMÁTICA

RELATÓRIO DAS PRÁTICAS

ES238 - Eletrônica 1

Thalisson Moura Tavares

RECIFE, 25 DE JULHO DE 2021 Professor: Renato Mariz de Moraes

Sumário

- 1. Apresentação
- 2. Conversor DA R2R
 - 2.1. Cálculos
 - 2.2. Simulação
- 3. Considerações Finais

Seção 1. Apresentação:

O objetivo da prática é montar e simular um circuito de conversor digital analógico para fazer um buzzer ser ativado de acordo com a tensão alimentada no circuito. O conversor será do tipo digital-analógico R-2R como mostrado na imagem abaixo.

Seção 2. Conversor DA R2R

Seção 2.1. Cálculos:

$$G = -\frac{R_2}{R_1} = -\frac{3R}{2R} = -\frac{3}{2}$$

$$Resolução = \frac{V_{fim\ de\ escala}}{2^N - 1} = \frac{-5}{2^4} = \frac{-5}{16} = \frac{-1}{3} = -0,3125V\ \text{Obs: considerando o nível}$$
 lógico 0

Tabela 1 - Valores de Vin e Vout calculados

X3	X2	X1	X0	Vin	Vout
0	0	0	0	0	0
0	0	0	1	$-\frac{V_R}{24}=-0,2083V$	$\frac{V_R}{16} = 0, 3125V$
0	0	1	0	$-\frac{V_R}{12} = -0, 4167V$	$\frac{V_R}{8}=0,6250V$
0	0	1	1	$-\frac{v_R}{12} - \frac{v_R}{24} = -0, 625V$	$\frac{V_R}{8} + \frac{V_R}{16} = 0, 9375V$
0	1	0	0	$-\frac{V_R}{6}=-0,833V$	$\frac{V_R}{4}=1,25V$
0	1	0	1	$-\frac{V_R}{6} - \frac{V_R}{24} = -1,0416V$ $V_R V_R$	$\frac{V_R}{4} + \frac{V_R}{16} = 1,5625V$
0	1	1	0	$\frac{6}{6} \frac{24}{12} = 1,0410V$ $-\frac{V_R}{6} - \frac{V_R}{12} = -1,25V$ $-\frac{V_R}{6} - \frac{V_R}{12} - \frac{V_R}{24} = -1,4583V$ $-\frac{V_R}{6} = -1,67V$	$\frac{V_R}{4} + \frac{V_R}{16} = 1,5625V$ $\frac{V_R}{4} + \frac{V_R}{8} = 1,875V$
0	1	1	1	$-\frac{V_R}{6} - \frac{V_R}{12} - \frac{V_R}{24} = -1,4583V$	$\frac{V_R}{4} + \frac{V_R}{8} + \frac{V_R}{16} = 2,1875V$
1	0	0	0	3 - 1,077	$\frac{V_R}{2}=2,5V$
1	0	0	1	$-\frac{1}{3}-\frac{1}{24}=-1,875V$	$\frac{V_R}{2} + \frac{V_R}{16} = 2,8125V$ $\frac{V_R}{2} + \frac{V_R}{8} = 3,125V$
1	0	1	0	$-\frac{V_R}{3} - \frac{V_R}{12} = -2,0833V$	$\frac{V_R}{2} + \frac{V_R}{8} = 3,125V$
1	0	1	1	$-\frac{x}{3} - \frac{x}{12} - \frac{x}{24} = -2,2916V$	$\frac{V_R}{2} + \frac{V_R}{8} + \frac{V_R}{16} = 3,4375V$
1	1	0	0	$-\frac{V_R}{3} - \frac{V_R}{6} = -2$, 5V	$\frac{V_R}{2} + \frac{V_R}{4} = 3,75V$
1	1	0	1	$-\frac{V_R}{3} - \frac{V_R}{6} - \frac{V_R}{24} = -2,7083V$	$\frac{V_R}{2} + \frac{V_R}{4} + \frac{V_R}{16} = 4, 0625V$
1	1	1	0	$-\frac{V_R}{3} - \frac{V_R}{6} - \frac{V_R}{12} = -2,9167V$	$\frac{V_R}{2} + \frac{V_R}{4} + \frac{V_R}{8} = 4, 375V$
1	1	1	1	$\frac{-V_R}{3} - \frac{V_R}{6} - \frac{V_R}{12} - \frac{V_R}{24} = -3, 125V$	$\frac{V_R}{2} + \frac{V_R}{4} + \frac{V_R}{16} = 4,0625V$ $\frac{V_R}{2} + \frac{V_R}{4} + \frac{V_R}{8} = 4,375V$ $\frac{V_R}{2} + \frac{V_R}{4} + \frac{V_R}{8} + \frac{V_R}{16} = 4,6875V$

Seção 2.2. Simulação:

Figura 1 - Vin e Vout para os bits 0001

Figura 2 - Vin e Vout para os bits 0010

Figura 3 - Vin e Vout para os bits 0100

Figura 4 - Vin e Vout para os bits 1000

Tabela 2 - Valores de Vin e Vout simulados

X3	X2	X1	X0	Vin	Vout
0	0	0	1	-0,208V	0,312V
0	0	1	0	-0,417V	0,625V
0	1	0	0	-0,833V	1,250V
1	0	0	0	-1,670V	2,500V

Seção 3. Considerações Finais

Como mostrado na seção anterior, os valores simulados são aproximadamente iguais aos valores calculados. Os valores calculados e simulados de Vin e Vout são apresentados nas tabelas 1 e 2, respectivamente.

 $\label{link_para_simulação: https://www.tinkercad.com/things/fM7GMueXQT8-brave-fulffy/editel?sharecode=-iTOc83ur0LNmYVAtS3nR8lJFEwhR5QvzvBPFuobhMA} \\$