Corrigé proposé par :

M. Afekir - École Royale de l'Air

CPGE Marrakech

cpgeafek@yahoo.fr

CORRIGÉ DE L'ÉPREUVE PHYSIQUE II - CNC 2016

I- Transmission de signaux par voie hertzienne

ERRATA!!Dans cette partie, la masse de l'électron a été noté par m_e dans certaines questions et par m dans d'autres...finalement j'ai pris $m_e = m!$!

I.1.

$$\operatorname{div} \overrightarrow{E}(M,t) = \frac{\rho(M,t)}{\varepsilon_o} ; \quad \operatorname{div} \overrightarrow{B}(M,t) = 0$$

$$\overrightarrow{\operatorname{rot}} \overrightarrow{E}(M,t) = -\frac{\partial \overrightarrow{B}(M,t)}{\partial t} ; \quad \overrightarrow{\operatorname{rot}} \overrightarrow{B}(M,t) = \mu_o \left(\overrightarrow{j}(M,t) + \varepsilon_o \frac{\partial \overrightarrow{E}(M,t)}{\partial t} \right)$$

 $\rho(M,t)$: densité volumique de charges et $\overrightarrow{j}(M,t)$: vecteur densité de courant volumique.

1.2. En représentation complexe : $\underline{\overrightarrow{E}}(M,t) = E_o \exp i(\omega t - kz) \overrightarrow{u}_y$. Equation de Maxwell-Faraday : $\overrightarrow{\operatorname{rot}}\underline{\overrightarrow{E}}(M,t) = -\frac{\partial \underline{\overrightarrow{B}}(M,t)}{\partial t} = -i\omega \underline{\overrightarrow{B}}(M,t)$, soit :

$$\underline{\overrightarrow{B}}(M,t) = \frac{k}{\omega} \overrightarrow{u}_z \wedge \underline{\overrightarrow{E}}(M,t) = -\frac{k}{\omega} E_o \exp i(\omega t - kz) \overrightarrow{u}_x$$

1.3. Le principe fondamental de la dynamique appliqué à un électron dans \mathcal{R} :

$$m_e \overrightarrow{g} - e \overrightarrow{E} - e \overrightarrow{v} \wedge \overrightarrow{B} = m_e \frac{\partial \overrightarrow{v}}{\partial t}$$

 \overrightarrow{q} est l'accélération de pesanteur.

I.4. $\overrightarrow{f}_e = -e\overrightarrow{E}$ et $\overrightarrow{f}_m = -e\overrightarrow{v} \wedge \overrightarrow{B}$:

$$\frac{\|\overrightarrow{f}_e\|}{\|\overrightarrow{f}_m\|} = \frac{1}{v} \frac{\|\overrightarrow{E}\|}{\|\overrightarrow{B}\|} = \frac{1}{v} \frac{\omega}{k} \gg 1 \quad \text{car} \quad \frac{\omega}{k} = v_\varphi \ge c \quad \text{et} \quad v \gg c \quad \Rightarrow \quad \|\overrightarrow{f}_e\| \gg \|\overrightarrow{f}_m\|$$

Le poids étant négligeable devant la force électromagnétique, soit :

$$-e\overrightarrow{\underline{E}} = m_e \frac{\partial \overrightarrow{\underline{v}}}{\partial t} = m_e i\omega \overrightarrow{\underline{v}} \qquad \Rightarrow \qquad \overrightarrow{\underline{v}} = \frac{ie}{m_e \omega} \overrightarrow{\underline{E}}$$

1.5. Le vecteur densité de courant : $\overrightarrow{\underline{\jmath}} = \rho_m \overrightarrow{\underline{v}} = -ne \overrightarrow{\underline{v}}$, soient :

$$\overrightarrow{\underline{j}} = -\frac{ine^2}{m_e\omega}\overrightarrow{\underline{E}} = \underline{\gamma}\overrightarrow{\underline{E}} \text{ avec } \underline{\gamma} = -\frac{ine^2}{m_e\omega}$$

1.6.

$$p = \langle \overrightarrow{j}.\overrightarrow{E} \rangle_t = \frac{1}{2} \mathcal{R}e(\overrightarrow{j}.\overrightarrow{E}^*) = \frac{1}{2} \mathcal{R}e(\underline{\gamma} || \overrightarrow{E} ||^2) = \frac{E_o^2}{2} \mathcal{R}e(\underline{\gamma})$$

 $\mathcal{R}e(X)$ désigne la partie réelle de X; et $\underline{\gamma}$ est imaginaire : d'où p=0. Commentaire : l'onde ne communique aucune puissance au milieu (plasma).

I.7. On a :

$$\overrightarrow{\mathrm{rot}} \, \underline{\overrightarrow{B}} = -i \, \overrightarrow{k} \wedge \underline{\overrightarrow{B}} = -i k \underline{B} \, \overrightarrow{u}_{y} = +i \frac{k^{2}}{\omega} \underline{\overrightarrow{E}} \quad (\text{Maxwell-Faraday et structure de } \underline{\overrightarrow{B}})$$

$$\overrightarrow{\mathrm{rot}} \, \overrightarrow{\underline{B}} = \mu_o \underline{\gamma} \, \overrightarrow{\underline{E}} + i \mu_o \varepsilon_o \omega \, \overrightarrow{\underline{E}} \quad (\mathrm{Maxwell-Ampère} \)$$

Soit, par simple identification, et avec $\mu_o \varepsilon_o c^2 = 1$:

$$i\frac{k^2}{\omega} = \mu_o \underline{\gamma} + i\frac{\omega}{c^2} \quad \Rightarrow \quad k^2 = \frac{\omega^2 - \omega_p^2}{c^2}$$
 (équation I-1)

- **I.8.** Si $\omega < \omega_p$:
- k est imaginaire pur : $k=\pm i\frac{\sqrt{\omega_p^2-\omega^2}}{c}$ (pas de propagation de l'onde dans le plasma);
- Si on considère la propagation suivant les z croissant, la structure possible de $\overrightarrow{\underline{E}}$ est telle que $k=-i\frac{\sqrt{\omega_p^2-\omega^2}}{c}$:

$$\underline{\overrightarrow{E}} = E_o \exp(-\frac{\sqrt{\omega_p^2 - \omega^2}}{c} z) e^{i\omega t} \overrightarrow{u}_y$$

- L'onde n'est pas progressive;
- Conclusion : L'onde est totalement réfléchie par le plasma.

1.9.

I.9.1. Si
$$\omega > \omega_n$$
:

- $k \text{ est r\'eel}: k = \pm \frac{\sqrt{\omega^2 \omega_p^2}}{c};$
- Si on considère la propagation suivant les z croissant, la structure possible de $\overrightarrow{\underline{E}}$ est telle que $k=+\frac{\sqrt{\omega^2-\omega_p^2}}{c}$:

$$\overrightarrow{\underline{E}} = E_o \exp i \left(\omega t - \frac{\sqrt{\omega_p^2 - \omega^2}}{c} z \right) \overrightarrow{u}_y$$

• C'est la structure d'une onde plane progressive qui se propage à la vitesse $\frac{c\omega}{\sqrt{\omega^2-\omega_p^2}}$;

1.9.2.

1.9.3.

- Vitesse de phase : $v_{\varphi}=\frac{\omega}{k}=\frac{c}{\sqrt{1-\frac{\omega^2}{\omega_c^2}}}$
- Vitesse de groupe : $v_g = \frac{d\omega}{dk} = c\sqrt{1 \frac{\omega^2}{\omega_c^2}}$

I.10.

I.10.1. La condition de réflexion par l'ionosphère des ondes émises par les stations radio est $\omega_i < \omega_p$ (Cf. I.8.); soit pour une longueur d'onde telle que :

$$\frac{2\pi c}{\lambda} < \omega_p$$
 ou $\lambda > \frac{2\pi c}{\omega_p}$

Application numérique : $\lambda > 33,35\,m$. Ce qui correspond à la longueur d'onde $\lambda_1 = 300\,m$.

I.10.2.

On suppose la sphéricité de la terre et que l'espace entre la terre et l'ionosphère est homogène et transparent... La portée maximale : $\operatorname{arc}(AB) = \alpha R_t$;

$$\cos\left(\frac{\alpha}{2}\right) = \frac{R_t}{R_t + h}$$

$$1 - \frac{\alpha^2}{8} = 1 - \frac{h}{R_t} \Rightarrow \alpha = 2\sqrt{2}\sqrt{\frac{h}{R_t}}$$

Soit:

$$\operatorname{arc}(AB) \simeq 2\sqrt{2hR_t} \approx 2024 \, km$$

I.11. La force de frottement : $\overrightarrow{F}_f = -m_e \omega_f \overrightarrow{v}$.

I.11.1.

► Le principe fondamental de la dynamique :

$$m_e \frac{\partial \overrightarrow{v}}{\partial t} = -e \overrightarrow{\underline{E}} - m_e \omega_f \overrightarrow{v}$$

► Expression de $\overrightarrow{\underline{v}}$:

$$im_e\omega \overrightarrow{\underline{v}} = -e\overrightarrow{\underline{E}} - m_e\omega_f \overrightarrow{\underline{v}} \qquad \Rightarrow \qquad \overrightarrow{\underline{v}} = -\frac{e\overrightarrow{\underline{E}}}{m(i\omega + \omega_f)}$$

► Expression de \overrightarrow{j} :

$$\overrightarrow{\underline{j}} = -ne\,\overrightarrow{\underline{v}} \qquad \Rightarrow \qquad \overrightarrow{\underline{j}} = \frac{ne^2}{m_e\omega_f}\frac{\overrightarrow{\underline{E}}}{1 + i\frac{\omega}{\omega_f}}$$

I.11.2. En utilisant le résultat de l'équation I-1 :

$$i\frac{k^2}{\omega} = \frac{ne^2\mu_o}{m_e\omega_f} \frac{1}{1 + i\frac{\omega}{\omega_f}} + i\frac{\omega}{c^2} \quad \Rightarrow \quad k^2 = \frac{\omega^2}{c^2} - \frac{\omega_p^2}{c^2} \frac{i\omega}{\omega_f + i\omega}$$

- **I.11.3.** $\omega^2 \ll \omega_f^2 \ll \omega_p^2$:
- $\circ \ \ \underline{ \mbox{Relation de dispersion}} : \ k^2 \simeq -i \frac{\omega_p^2}{c^2} \frac{\omega}{\omega_f};$
- o <u>Structure de $\overrightarrow{\underline{E}}$ </u>: l'expression de k est $k=\pm(1-i)\sqrt{\frac{\omega_p^2\omega}{2\omega_fc^2}}$; La solution acceptable physiquement est :

$$k = +(1-i)\sqrt{\frac{\omega_p^2\omega}{2\omega_f c^2}} \qquad \Rightarrow \qquad \underline{\overrightarrow{E}} = E_o \exp(-\frac{\omega_p}{c}\sqrt{\frac{\omega}{2\omega_f}}z) \exp(i(\omega t - \frac{\omega_p}{c}\sqrt{\frac{\omega}{2\omega_f}}z)\overrightarrow{u}_y)$$

o <u>Commentaire</u>: L'onde dans l'ionosphère a la structure d'une onde plane progressive qui s'atténue après une profondeur de pénétration caractéristique $\delta = \left(\frac{c}{\omega_p}\sqrt{\frac{2\omega_f}{\omega}}\right)$ au delà de laquelle l'onde est évanescente!

II- Interconversion numérique-analogique

II.1. Conversion numérique-analogique

II.1.1.

o On appelle <u>échantillons</u> d'un signal x(t), ses valeurs à des instants t_o , t_1 , t_2 , ...régulièrement répartis ou non dans le temps.

On peut considérer la succession d'échantillons issus de x(t) comme une fonction $x_e(t)$ constituée d'une suite d'impulsions de largeur nulle, de durée T_e dite période d'échantillonnage et dont l'amplitude est égale à x(t) aux instants correspondants.

o *Critre de* Nyquist-Shannon:

Pour garder toutes les informations sur un signal x(t), il faut que la fréquence d'échantillonnage f_e soit au moins égale au double de la plus haute composante fréquentielle du signal :

$$f_e > 2 \times f_{max}$$

Dans notre cas $f_e=F_E=44\,kHz$ et $f_{max}=20\,kHz$; le critère est bien vérifié et la valeur de F_E choisie correspond ainsi à un échantillonnage sans perte d'information.

II.1.2. quantum:

$$q = \frac{V_{max} - V_{min}}{2^N - 1} = 0,15 \, mV$$

II.1.3.

- **II.1.3.1.** On doit utiliser un filtre passe-bas de fréquence de coupure f_c telle que $f_{max} < f_c < F_E f_{max}$: soit une valeur ente $20\,kHz$ et $24,4\,kHz$ non inclues! afin d'éliminer les composantes parasites (hautes fréquences) et garder notre signal audio.
- **II.1.3.2.** On prend l'exemple simple d'un circuit RC série passif dont la tension de sortie s(t) aux bornes de C. L'équation différentielle :

$$e(t) = RC \frac{ds(t)}{dt} + s(t)$$

II.1.3.3. Relation de récurrence :

$$e_n = RC \frac{s_{n+1} - s_n}{T_E} + s_n$$
 ou $e_n = RCF_E(s_{n+1} - s_n) + s_n$

II.2. Conversion analogique-numérique

II.2.1. Caractéristique de l'un des amplificateurs opérationnels :

II.2.2. L'amplificateur opérationnel AO_1 :

- $V_{+,1} = v_a$;
- o Diviseur de tension:

$$V_{+,1} = \frac{\frac{R}{2}}{\frac{R}{2} + \frac{3R}{2} + 6R} E_{ref} = \frac{E_{ref}}{16}$$

 $\circ~$ Le seuil de basculement correspond à $\, \varepsilon_i = 0 : \, V_{basc,1} = v_a = \frac{E_{ref}}{16} = 0, 5 \, V$

11.2.3.

	AO_1	AO_2	AO_3	AO_4	AO_5	AO_6	AO_7
$V_{+,i}$	v_a	v_a	v_a	v_a	v_a	v_a	v_a
$V_{-,i} = V_{basc,i}$	$ \begin{array}{c c} E_{ref} \\ \hline 16 \\ 0.5 V \end{array} $	$\frac{3E_{ref}}{16}$ $1.5 V$	$\frac{5E_{ref}}{16}$ $2.5 V$	$\frac{7E_{ref}}{16}$ $3.5 V$	$\frac{9E_{ref}}{16}$ $4.5 V$	$\frac{11E_{ref}}{16}$ $5.5 V$	$\frac{13E_{ref}}{16}$ $6.5 V$

II.2.4. Lorsqu'on augmente progressivement v_a de $0\,V$ à $7\,V$, les amplificateurs opérationnels AO_i basculent successivement de $-15\,V$ à $+15\,V$.

II.2.5. 0
$$\rightarrow V_s = +15 V$$
 et 1 $\rightarrow V_s = -15 V$

	AO_1	AO_2	AO_3	AO_4	AO_5	AO_6	AO_7	Code binaire
$v_a = 0 V$	0	0	0	0	0	0	0	0000000
$v_a = 1 V$	1	0	0	0	0	0	0	1000000
$v_a = 2V$	1	1	0	0	0	0	0	1100000
$v_a = 3V$	1	1	1	0	0	0	0	1110000
$v_a = 4V$	1	1	1	1	0	0	0	1111000
$v_a = 5 V$	1	1	1	1	1	0	0	1111100
$v_a = 6 V$	1	1	1	1	1	1	0	1111110
$v_a = 7V$	1	1	1	1	1	1	1	1111111

III- Stockage et lecture de l'information sous forme numérique

III.1. Caractéristiques mécaniques

III.1.1.
$$r(\theta) = \alpha \theta + \beta$$
:

$$r(0) = R_1$$
 et $r(2\pi) = a + R_1$ \Rightarrow $\beta = R_1$ et $\alpha = \frac{a}{2\pi}$

III.1.2.

$$dL = \sqrt{(dr)^2 + (rd\theta)^2} = dr\sqrt{1 + \left(\frac{r}{\alpha}\right)^2}$$

M'ethode 1:

$$L = \int dL = \int_{R_1}^{R_2} dr \sqrt{1 + \left(\frac{r}{\alpha}\right)^2} = \alpha \left(I\left(\frac{R_2}{\alpha}\right) - I\left(\frac{R_1}{\alpha}\right)\right)$$

$$L = \frac{a}{4\pi} \left[\frac{2\pi R_2}{a} \sqrt{1 + \frac{4\pi^2 R_2^2}{a^2}} - \frac{2\pi R_1}{a} \sqrt{1 + \frac{4\pi^2 R_1^2}{a^2}} + \ln\left(\frac{2\pi R_2}{\frac{2\pi R_1}{a} + \sqrt{1 + \frac{4\pi^2 R_2^2}{a^2}}}{\frac{2\pi R_1}{a} + \sqrt{1 + \frac{4\pi^2 R_1^2}{a^2}}}\right)\right]$$

$$R_1\gg a$$
 et $R_2\gg a$, soit : $Lpprox \frac{\pi\left(R_2^2-R_1^2\right)}{a}=5,4\,km.$

$\underline{\text{M\'ethode } 2}:$

- $\bullet\,$ Le nombre N de pistes sur un disque est tel que : $Na=R_2-R_1$
- La longueur ℓ_i de chaque piste est : $\ell_i = 2\pi r_i$ tel que $r_i = R_1 + ai = R_1 + \frac{R_2 R_1}{N}$
- La longueur totale des piste = longueur totale de la piste sur le disque :

$$L = \sum_{i=0}^{N-1} \ell_i$$

$$= 2\pi \sum_{i=0}^{N-1} \left(R_1 + \frac{R_2 - R_1}{N} \right)$$

$$= 2\pi \left[NR_1 + \frac{R_2 - R_1}{N} \frac{N(N-1)}{2} \right]$$

$$= \frac{\pi \left(R_2^2 - R_1^2 \right)}{2}$$

Méthode 3:

a (et par conséquent α) est faible, on pourra directement calculer L par simplification de dL. en effet $dL \approx rd\theta = \frac{2\pi rdr}{a} \quad \Rightarrow \quad L = \frac{2\pi}{a} \int_{R_-}^{R_2} rdr = \frac{\pi \left(R_2^2 - R_1^2\right)}{a}.$

III.1.3. La durée totale de lecture :

$$\tau = \frac{L}{v_o} = \frac{\pi \left(R_2^2 - R_1^2\right)}{av_o} = 73\text{min}28\text{s}$$

III.1.4. Vitesse angulaire:

$$\underbrace{\frac{dL}{dt}}_{v_o} = \underbrace{\frac{d\theta}{dt}}_{\Omega} \sqrt{r^2 + \frac{a^2}{4\pi^2}} \quad \Rightarrow \quad \Omega = \frac{v_o}{\sqrt{r^2 + \frac{a^2}{4\pi^2}}} \quad \text{et} \quad \Omega_{max} = \Omega(r = R_1) = \frac{v_o}{\sqrt{R_1^2 + \frac{a^2}{4\pi^2}}} \approx 49 \, rads^{-1}$$

III.1.5.
$$L = N \times l_{oc} \Rightarrow l_{oc} \approx 8,3 \, \mu m$$

III.2. Aspect optique et lecture de l'information

III.2.1. Cas d'interférences destructives :

$$\delta = \left(n + \frac{1}{2}\right) \lambda_{CD} \ \text{ et } \ \varphi = 2\pi \left(n + \frac{1}{2}\right) \ \text{ avec } \ n \in \mathbb{Z}$$

III.2.2. Valeur minimale de la profondeur h:

$$\delta = 2hn_p \implies 2h_i n_p = \lambda_{CD} \left(i + \frac{1}{2}\right) \text{ avec } i \in \mathbb{Z}$$

$$h_{min} = h_{i=0} = \frac{\lambda_{CD}}{4n_p} \approx 126\,nm$$

III.2.3. Mesure du pas par diffraction

III.2.3.1. Principe d'Huygens-Fresnel

La lumière se propage de proche en proche; chaque point P d'une surface (Σ) atteint par cette lumière peut être considérer comme une source secondaire émettant une onde sphérique.

L'état vibratoire de cette source secondaire est proportionnel à celui de l'onde incidente en P et à l'élément de surface $d\Sigma$ entourant P. Les vibrations issues des différentes sources

secondaires interfèrent entre elles.

III.2.3.2. L'ordre p=0 correspond correspond à la réflexion des rayons lumineux selon la loi de Descartes de réflexion (*loi de l'optique géométrique*) ou comme le cas de la lumière réfléchie par un miroir plan!.

III.2.3.3. Chacune des deux radiations (λ et λ') se situe dans le domaine de l'infra-rouge!

III.2.3.4. Sous incidence normale i = 0: soit $\sin(i_p) = -p\frac{\lambda}{a}$ avec p entier relatif. Pour la première tache on prend p = -1, soit:

$$\sin(i_p) = \frac{\lambda}{a} = \frac{x_1}{\sqrt{x_1^2 + D^2}} \implies a = \lambda \frac{\sqrt{x_1^2 + D^2}}{x_1}$$

III.2.3.5. Application numérique :

$$a = 1,55 \,\mu m$$
 avec $a' = 0,762 \,\mu m$

III.2.3.6. $L = Nl_o$ et $L' = N'l'_o$

$$\eta = \frac{N'}{N} = \frac{L'}{l'_o} \times \frac{lo}{L} = \frac{l_o}{l'_o} \frac{a}{a'}$$

III.2.4. Dispositif d'ajustement de la focalisation du faisceau Laser

III.2.4.1. Force de Laplace : On choisit la convention où $B_o > 0$ et qu'effectivement les lignes de champ partent du Sud vers le Nord (mais le résultat est général!!) :

$$\begin{array}{rcl} d\overrightarrow{F}_{L} & = & i \overrightarrow{d\ell} \wedge \overrightarrow{B} \\ \overrightarrow{d\ell} & = & -d\ell \overrightarrow{u}_{\theta} \ \Rightarrow \ d\overrightarrow{F}_{L} = +i d\ell B_{o} \overrightarrow{u}_{x} \\ \overrightarrow{F}_{L} & = & \int_{bobine} d\overrightarrow{F}_{L} = i B_{o} 2\pi N_{o} r \overrightarrow{u}_{x} \end{array}$$

III.2.4.2.

- o La bobine est en mouvement dans l'entrefer siège d'un champ \overrightarrow{B} permanent; ce mouvement engendre une variation temporelle du flux du champ \overrightarrow{B} à travers la bobine : d'où phénomène d'induction dans cette dernière !
- \circ Force électromotrice e= différence de potentiel qui apparaît au sein de la bobine suite au phénomène d'induction :

$$e = \int_{bobine} \left(\overrightarrow{v}_{M \in bobine} \wedge \overrightarrow{B} \right) \cdot \overrightarrow{d\ell} = -N_o v B_o 2\pi r \quad (\overrightarrow{v}_{M \in bobine} = v \overrightarrow{u}_x)$$

III.2.4.3. Équation électrique :

Loi d'Ohm:

$$u(t) = Ri(t) + L\frac{di(t)}{dt} - e(t)$$

$$u(t) = Ri(t) + L\frac{di(t)}{dt} + 2\pi N_o v B_o \qquad (E)$$

III.2.4.4. Équation mécanique : $\overrightarrow{v} = \dot{x} \overrightarrow{u}_x$

III.2.4.5. En représentation complexe avec $\underline{X} = \underline{X}_0 e^{j\omega t}$, (E) et (M) s'écrivent :

$$\underline{u}(t) = R\underline{i}(t) + jL\omega\underline{i} + 2\pi N_o B_o j\omega\underline{x} \qquad (1)$$

$$-m\omega^2\underline{x} = 2\pi r N_o B_o \underline{i} - h\underline{\dot{x}} - k\underline{x} \qquad (2)$$

$$(2) \Rightarrow \underline{x} = \frac{2\pi N_o r B_o}{-m\omega^2 + jh\omega + k}$$

$$(2) \Rightarrow \underline{u} = \left[R + jL\omega + \frac{4\pi^2 N_o^2 r^2 B_o^2}{h - j\frac{k}{\omega} + jm\omega}\right] \underline{i} = \underline{Z}\underline{i}$$

III.2.4.6. Impédance motionnelle :

$$Z=\underline{Z}_e+\underline{Z}_m \qquad ext{avec} \qquad \underline{Z}_m=rac{4\pi^2N_o^2r^2B_o^2}{h-jrac{k}{\omega}+jm\omega}$$

La nomination de \underline{Z}_m est due au mouvement de (S) dans \mathcal{R} .

III.3. Étude thermodynamique de la gravure d'un CD-RW

- III.3.1. Un système diphasé d'un corps pur est monovariant (v = 2 1 + 2 2 = 1). Puisque la pression P est fixée, alors le système est invariant!.
 - III.3.2. La masse de la couche photosensible est $m = \rho \pi r_o^2 h$.

III.3.2.1. A pression fixée, la chaleur Q_1 est mesurée par la variation de l'enthalpie :

$$Q_1 = \Delta H = mc\Delta T = \rho \pi r_o^2 hc(T_f - T_o)$$

III.3.2.2. La chaleur Q_2 est mesurée par l'enthalpie de fusion de la couche :

$$Q_2 = m\Delta_{fusion}H_{couche} = \rho\pi r_o^2 h \times L$$

III.3.2.3. Le réchauffement suivi de la fusion nécessite de l'énergie thermique $Q_o = Q_1 + Q_2$. La puissance \mathcal{P}_o , du laser, est totalement absorbée par la couche pendant Δt_{min} , donc $Q_o = \mathcal{P}_o \Delta t_{min}$; soit :

$$\Delta t_{min} = \frac{Q_o}{\mathcal{P}_o} = \frac{Q_1 + Q_2}{\mathcal{P}_o}$$

III.3.2.4. Application numérique :

$$\Delta t_{min} = \frac{Q_1 + Q_2}{\mathcal{P}_o} = \frac{\rho \pi r_o^2 h}{\mathcal{P}_o} \left[1 + \frac{c}{L} (T_f - T_o) \right] \simeq 0,05 \,\mu s$$

III.3.3.

III.3.3.1.

► Surface:

$$dS = 2r_o \times rd\theta = 2r_o \times rd\dot{\theta}dt = 2r_o \times v_1dt$$

▶ <u>Volume</u> :

$$d\tau = hdS = 2r_0v_1hdt$$

III.3.3.2.

$$\delta Q = Q_o \frac{d\tau}{\pi r_o^2 h} = [Q_1 + Q_2] \frac{d\tau}{\pi r_o^2 h} = 2v_1 r_o h \rho dt \left[L + c(T_f - T_o) \right]$$

III.3.3.3. Vitesse maximale:

La vitesse maximale v_{1max} est telle que $\delta Q = \mathcal{P}_o dt$ (Cf. III.3.2.3.). Soit :

$$\mathcal{P}_{o} = 2v_{1max}r_{o}h\rho\left[L + c(T_{f} - T_{o})\right] \quad \Rightarrow \quad v_{1max} = \frac{\mathcal{P}_{o}}{2r_{o}h\rho\left[L + c(T_{f} - T_{o})\right]}$$

III.3.3.4. Application numérique :

$$v_{1max} = \frac{\rho \pi r_o^2 h}{2r_o h \rho \Delta t_{min}} = \frac{\pi r_o}{\Delta t_{min}} \simeq 17,27 \, ms^{-1}$$