

Forelesning nr.9 INF 1411 Elektroniske systemer

Transistorer MOSFET Strømforsyning

Dagens temaer

- Radiorør
- Transistorer
- Moores lov
- Bipolare transistorer
- Felteffekttransistorer
- Digitale kretser: AND, OR og NOT

Introduksjon

- Transistoren er den viktigste typen halvleder
- En transistor er en strøm- eller spenningsstyrt strømkilde spm brukes i både analog og digital elektronikk
 - I analog elektronikk: forsterkere og filtre
 - I digital elektronikk: logiske porter (AND, OR og NOT)
- Med transistorer kan man også lage
 - Dioder
 - Kondensatorer
 - Resistorer

Radiorør

- Radiorøret er forgjengeren til transistoren
 - Oppfunnet tidlig på 1900-tallet
 - Radiosendinger over større avstander ble mulig fordi man kunne forsterke radiosignalene
- Radiorøret brukes enten som forsterker eller diode, og baserer seg på elektroner som beveger seg i et vakuum

Vakuumrør (forts)

- Radiorøret var enerådende i elektronikk frem til 50-tallet
- Den første moderne datamaskinen (von Neumann-arkitektur) var Colossus M1 som bestod av rundt 1500 radiorør
- Colossus ble brukt til kryptoanalyse av britene i 2. verdenskrig
- Strømforbruket var på 15kW

Radiorør (forts)

- Radiorøret brukes fortsatt i noen anvendelser, bla i høykvalitets audioforsterkere og radiosendere med høy effekt
- Radiorør har en rekke ulemper:
 - Stor fysisk størrelse og stort varmetap
 - Upålitelig (glasset sprekker og vakuum ødelegges)
 - Blir dårligere over tid (bla sot på innsiden av glasskolben)
 - Treg oppstart (trenger oppvarming)
 - Langsomme som digitale brytere

Transistoren

- Transistoren avløste radiorøret på slutten av 50-tallet
- Transistorens halvlederegenskaper baserer seg på elektriske egenskaper i overganger mellom ulike materialer, f.eks silisium, germanium eller silisiumkarbid mot bor, arsen eller silisium
- Transistorer er mye mindre enn radiorør
 - mange transistorer får plass på samme chip (et par milliarder)
 - Effektforbruket synker
 - Hastigheten øker (tiden det tar å slå av/på strømmen minker)

7

Transistoren (forts)

- Transistoren avløste radiorøret på slutten av 50-tallet
- Transistorens virkemåte baserer seg på elektriske egenskaper i overganger mellom ulike materialer, f.eks silisium, germanium eller silisiumkarbid mot bor,
 - arsen eller silisium
- 18 milliarder transistorer får plass på 2x2cm
- Transistoren en lang rekke fordeler:
 - Liten størrelse og vekt
 - Lav arbeidsspenning (3.3 v eller lavere)
 - Ingen oppvarmingstid, lavt effektforbruk og lite varmetap
 - Høy pålitelighet og fysisk robust
 - Lang levetid
 - Tåler mekanisk sjokk og vibrasjon

Transistoren – Moores Iov

- Moores lov fra 1956:
 Antall transistorer på
 en integrert krets vil
 dobles hvert annet år
- Regnekraft og tilgjengelig hukommelse dobles ca hver 18.måned
- Begge deler betyr eksponentiell vekst

Transistoren – Moores Iov i praksis

- Bærbar fra 1982 med 4MHz
 CPU vs iPhone5 2012 med
 1.3 GHz dual core CPU
 - 100 ganger tyngre
 - 500 ganger større volum
 - 10 ganger dyrere (justert)
 - 1/325 av klokkefrekvensen

Transistoren (forts)

- Transistoren har også noen ulemper sammenlignet med radiorør
 - Kan operere på maks 1000 volt
 - Vanskelig å lage transistorer for både høy frekvens og høy effekt samtidig (f.eks ved kringkasting)
 - Transistorer er mer f
 ølsomme for kraftig str
 åling og elektriske utladninger i omgivelsene
 - Ikke mulig å bytte ut enkelt-transistorer hvis de feiler; Hele kretsen må kastes

Produksjon av transistorer

Transistorer lages enten som diskrete komponenter eller integrerte kretser

13.03.2018

Det matematisk-naturvitenskapelige fakultet

Produksjon av transistorer

- Transistorer på integrerte kretser består av mange lag
- En «wafer» består av mange integrerte

kretser

13.03.2018 IN 1080

Transistorens hovedanvendelser

- Transistorer lages i mange ulike teknologier og for ulike typer bruk
 - **Bipolare** (BJT) brukes hovedsaklig til forsterkere i analoge kretser
 - Felteffekttransistorer (FET) er mest brukt, bla i logiske porter i digitale kretser, i likerettere, strømforsyninger og styring av av elektriske motorer

IN 1080

Bipolare transistorer (BJT)

- Bipolare transistorer (BJT) kan tenkes på som strømkontrollerte strømkilder
- BJTer finnes både som diskrete transistorer og på integrerte kretser
- En BJT består av tre terminaler: Base, emitter og kollektor
- En BJT er to dioder med koblet sammen, med enten felles p- eller n-region

Strømmer i bipolare transistorer

Kirchhoffs strømlov gir følgende sammenhenger mellom strømmene

$$I_C = \beta I_B$$
 $I_E = I_C + I_B$ $I_C = \alpha I_E$ der $\alpha = I_C/I_E$ og $\beta = I_C/I_B$

• Typiske verdier for α er 0.950-0.995, mens β er 20-300 (strømfor

Spenninger i bipolare transistorer

 For en BJT som er i korrekt operasjonsområde, er spenningene gitt av (KVL gjelder)

$$V_c = V_{cc} - I_c R_c$$

 $V_R = V_F + V_{RF}$

 R_B og R_C reduserer I_B og I_C slik at transistoren ikke ødelegges

Spenninger i bipolare transistorer (forts)

- For at en transistor skal fungere som strømforsterker, må V_B, V_C og V_E ligge i innenfor bestemte intervaller, f.eks. Med en spenningsdeler av motstander
- Motstandsverdiene velges slik at transistoren opererer i det ønskede området

Operasjonsområder

- En transistor må jobbe innenfor korrekt operasjonsområde
- Hva som er korrekt område avhenger av anvendelsen, f.eks.
 om transistoren skal være analog forsterker eller digital bryter
- En transistor opererer normalt i ett av tre områder:
 - Avstengt («Cut-off»)
 - Lineært («Linear»)
 - Metning («Saturation»)
- I tillegg kan den være i breakdown, men da kan den bli ødelagt av for høye strømmer og smelte

Sammenheng strøm-spenning

 Operasjonsområde og strømforsterkning er bestemt av I_C som er funksjon av V_{CE} og I_B

- Lineært: I_C er nesten ikke avhengig av V_{CE}, kun av I_B
- Breakdown: I_C er svært stor og ikke lenger avhengig av I_B
- Avstengt: I_B=0 og I_C veldig liten

Felles emitter-forsterker

- En felles-emitter forsterker (CE) isolerer forsterkeren både fra input og output DC-last vha kondensatorer
- I tillegg gjør en bypass-kondensator at spenningsforsterkningen

Felteffekttransistorer (FET)

- En FET er en spenningsstyrt strømbryter
- De tre terminalene heter hhv Drain (tilsv. Collector), Gate (tilsv. Base) og Source (tilsv. Emitter)
- Av FET finnes to hovedgrupper:
 - Junction FET (JFET)
 - Metal-Oxide Semiconductor FET (MOSFET)
- MOSFET-varianter er de vanligste transistorene i digitale integrerte kretser

FET karakteristikk (1)

 I det *lineære* området vil endring i drain-source spenningen V_{DS} føre til en endring i drain-strømmen I_{DS} (dvs. fast resistans)

 I metningsområdet vil endring i spenningen V_{DS} ikke føre til en endring i drain-strømmen I_{DS} (dvs. variabel resistans)

FET karakteristikk (2)

- I_{DS} bestemmes av V_{GS} forutsatt tilstrekkelig høy V_{DD}
- Hvis V_{GS} er lavere enn terskelspenningen V_T vil transistoren ha meget høy motstand og det vil ikke gå noe strøm I_{DS}

JFET

- JFET har en ledende kanal med source og drain-tilkobling i hver ende av kanalen
- Strømmen i kanalen kontrolleres av spenningen på gaten
- Som for en BJT finnes to typer JFET, kalt hhv n-type eller p-type, avhengig av hva som er majoritetsbærer i kanalen
- Gatespenningen regulererer motstanden i kanalen under gaten

JFET (forts)

Avhengig av om kanalen er p- eller n-type, er symbolene

 For n-type må gate-spenningen være høyere enn sourcespenningen for at JFET skal lede, mens gate-spenningen må være lavere enn drain-spenningen for at en p-type skal lede

MOSFET

- En MOSFET har ingen pn-overganger som JFET, BJT og dioder
- Gaten på en MOSFET er elektrisk isolert fra drain-source vha et tynt lag med silisiumdioksyd
- MOSFET kommer i to hovedkategorier
 - Depletion-mode
 - Enhancement-mode
- MOSFET er den aller vanligste transistorer i digitale kretser; den kan også brukes som spenningskontrollert motstand eller som kondensator, i f.eks hukommelsesceller (RAM)

Enhancement(E) MOSFET

- En E-MOSFET har ingen permanent fysisk kanal som kan lede strøm
 - Isteden vil det dannes en ledende kanal når gatespenningen er over et visst nivå i forhold til sourcespenningen

28

Enhancement(E) MOSFET (forts)

. En av de største fordelene med E-MOSFET er at det går svært lite strøm når den er i cutoff og at det går nesten ingen strøm gjennom gaten uansett operasjonsområde (~pA)

20.03.2018 IN 1080 29

Power MOSFET

- I digitale kretser er det ikke behov for mye strøm mellom drain og source
 - .Man ønsker at det skal gå så lite som mulig for å redusere strømforbruk/effektforbruk og dermed behov for kjøling
 - .Blir I_{ds} for stor vil transistoren bli ødelagt
- Ønsker man å styre (slå av/på) store strømmer (mange ampère) i f.eks motorstyringer, bruker man power MOSFET
- Disse er konstruert for å tåle store strømmer uten å bli ødelagt
- . Power MOSFET skal brukes i den 3. labøvelsen

CMOS

- CMOS er en spesiell type
 MOSFET hvor man produserer
 både p- og n-kanaltype på
 samme krets
- CMOS er svært utbredt i digitale kretser bla fordi man får høy transistortetthet kombinert med lavt effektforbruk, og fordi man kan lage noe nær ideelle svitsjer

Digitale porter: inverter

 En inverter tar som input et signal som enten er lavt (0v) eller høyt (5v) og produserer et utsignal som er det inverterte av innsignalet

Inverter circuit using IGFETs

Digitale porter: NAND-port

 En NAND-port utfører en logisk NAND-operasjon mellom to binære inputsignal (dvs signal som har kun to diskrete signalnivåer)

CMOS NAND gate

Digitale porter: NOR-port

 En NOR-port utfører en logisk NOR-operasjon mellom to binære inputsignal (dvs signal som har kun to diskrete signalnivåer)

CMOS NOR gate

Digitale porter: AND-port

 En AND-port konstrueres vha en NAND-port og en inverter

Digitale porter: OR-port

 En OR-port konstrueres vha en NOR-port og en inverter

UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

Oppsummeringsspørsmål

Kapittel 16

