Демьянчук Г.В. ИУ5-22М ЛР№1

import numpy as np
import pandas as pd
import seaborn as sb
import matplotlib.pyplot as plt

%matplotlib inline
sb.set(style='ticks')

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning:
 import pandas.util.testing as tm

Будем анализировать данные только на обучающей выборке data = pd.read_csv('/content/athlete_events.csv', sep=",")

Первые 5 строк датасета data.head()

₽		ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season
	0	1	A Dijiang	M	24.0	180.0	80.0	China	CHN	1992 Summer	1992	Summer
	1	2	A Lamusi	М	23.0	170.0	60.0	China	CHN	2012 Summer	2012	Summer
	2	3	Gunnar Nielsen Aaby	М	24.0	NaN	NaN	Denmark	DEN	1920 Summer	1920	Summer
	3	4	Edgar Lindenau Aabye	M	34.0	NaN	NaN	Denmark/Sweden	DEN	1900 Summer	1900	Summer
	4	5	Christine Jacoba Aaftink	F	21.0	185.0	82.0	Netherlands	NED	1988 Winter	1988	Winter

[#] Размер датасета - 271116 строк, 15 колонок data.shape

```
C→ (271116, 15)
total_count = data.shape[0]
print('Bcero ctpok: {}'.format(total_count))
    Всего строк: 271116
data.columns
    Index(['ID', 'Name', 'Sex', 'Age', 'Height', 'Weight', 'Team', 'NOC', 'Games',
            'Year', 'Season', 'City', 'Sport', 'Event', 'Medal'],
           dtype='object')
data.dtypes
                 int64
 Гэ
     ID
     Name
                object
     Sex
                object
               float64
     Age
               float64
     Height
     Weight
               float64
     Team
                object
     NOC
                object
     Games
                object
                 int64
     Year
     Season
                object
     City
                object
     Sport
                object
     Event
                object
     Medal
                object
     dtype: object
#Проверим на пустые значения
for column in data.columns:
    temp_null_count = data[data[column].isnull()].shape[0]
    print('{} - {}'.format(column,temp_null_count))
 [→ ID - 0
     Name - 0
     Sex - 0
     Age - 9474
     Height - 60171
     Weight - 62875
     Team - 0
     NOC - 0
     Games - 0
     Year - 0
     Season - 0
     City - 0
     Sport - 0
     Event - 0
     Medal - 231333
```

С→

•		ID	Age	Height	Weight	Year
	count	271116.000000	261642.000000	210945.000000	208241.000000	271116.000000
	mean	68248.954396	25.556898	175.338970	70.702393	1978.378480
	std	39022.286345	6.393561	10.518462	14.348020	29.877632
	min	1.000000	10.000000	127.000000	25.000000	1896.000000
	25%	34643.000000	21.000000	168.000000	60.000000	1960.000000
	50%	68205.000000	24.000000	175.000000	70.000000	1988.000000
	75%	102097.250000	28.000000	183.000000	79.000000	2002.000000
	max	135571.000000	97.000000	226.000000	214.000000	2016.000000

Определим уникальные значения для целевого признака data['Season'].unique()

```
r→ array(['Summer', 'Winter'], dtype=object)
```

Определим уникальные значения для целевого признака data['Sport'].unique()

```
ray(['Basketball', 'Judo', 'Football', 'Tug-Of-War', 'Speed Skating',
           'Cross Country Skiing', 'Athletics', 'Ice Hockey', 'Swimming',
           'Badminton', 'Sailing', 'Biathlon', 'Gymnastics',
           'Art Competitions', 'Alpine Skiing', 'Handball', 'Weightlifting',
           'Wrestling', 'Luge', 'Water Polo', 'Hockey', 'Rowing', 'Bobsleigh',
           'Fencing', 'Equestrianism', 'Shooting', 'Boxing', 'Taekwondo',
           'Cycling', 'Diving', 'Canoeing', 'Tennis', 'Modern Pentathlon',
           'Figure Skating', 'Golf', 'Softball', 'Archery', 'Volleyball',
           'Synchronized Swimming', 'Table Tennis', 'Nordic Combined',
           'Baseball', 'Rhythmic Gymnastics', 'Freestyle Skiing',
           'Rugby Sevens', 'Trampolining', 'Beach Volleyball', 'Triathlon',
           'Ski Jumping', 'Curling', 'Snowboarding', 'Rugby',
           'Short Track Speed Skating', 'Skeleton', 'Lacrosse', 'Polo',
           'Cricket', 'Racquets', 'Motorboating', 'Military Ski Patrol',
           'Croquet', 'Jeu De Paume', 'Roque', 'Alpinism', 'Basque Pelota',
           'Aeronautics'], dtype=object)
```

Определим уникальные значения для целевого признака data['Sex'].unique()

```
array(['M', 'F'], dtype=object)
```

Определим уникальные значения для целевого признака

```
aata| 'NUC' |.unique()
```

```
array(['CHN', 'DEN', 'NED', 'USA', 'FIN', 'NOR', 'ROU', 'EST', 'FRA',
             'MAR', 'ESP', 'EGY', 'IRI', 'BUL', 'ITA', 'CHA', 'AZE',
            'RUS', 'ARG',
                           'CUB',
                                  'BLR',
                                         'GRE', 'CMR',
                                                        'TUR',
                                                               'CHI',
                                                                      'MEX',
                                  'NGR',
                                         'ALG', 'KUW',
                                                        'BRN',
                                                               'PAK',
            'URS', 'NCA', 'HUN',
                   'LIB',
                           'QAT',
                                  'MAS',
                                         'GER', 'CAN', 'IRL', 'AUS',
                                                                      'RSA',
                           'JOR',
                                  'TUN',
                                         'LBA',
                                                 'BEL',
                                                        'DJI',
            'ERI',
                    'TAN',
                                                               'PLE',
                           'IND',
            'KAZ', 'BRU',
                                  'KSA',
                                         'SYR', 'MDV', 'ETH', 'UAE',
                                         'KGZ',
            'INA', 'PHI',
                                                        'EUN',
                           'SGP',
                                  'UZB',
                                                 'TJK',
                                                               'JPN',
                                                                       'CGO',
            'SUI', 'BRA', 'FRG',
                                  'GDR',
                                         'MON', 'ISR',
                                                        'URU',
                                                               'SWE',
                                                                       'ISV',
            'SRI', 'ARM',
                           'CIV',
                                  'KEN',
                                         'BEN', 'UKR',
                                                       'GBR',
                                                               'GHA',
                                                                       'SOM'.
                   'NIG',
                                  'AFG',
                                         'POL',
                           'MLI',
                                                 'CRC',
                                                        'PAN',
                                                                'GEO',
                                                                       'SLO'
            'LAT',
            'CRO', 'GUY', 'NZL',
                                  'POR',
                                         'PAR', 'ANG', 'VEN', 'COL',
                                  'UGA',
                                                 'ECU',
                                                        'TKM',
            'PER', 'ESA',
                           'PUR',
                                         'HON',
                                                               'MRI',
            'TCH', 'LUX', 'MTN',
                                  'CZE',
                                         'SKN', 'TTO', 'DOM', 'VIN',
                                  'MGL',
            'LBR',
                   'SUR',
                           'NEP',
                                         'AUT', 'PLW', 'LTU',
                                                               'TOG',
                                                                       'NAM'
                                  'SAM',
            'AHO',
                                         'RWA',
                                                               'MLT',
                   'ISL',
                           'ASA',
                                                'DMA',
                                                        'HAI',
                                                                       'CYP'
                           'YMD',
                                  'KOR',
                                                               'SCG',
            'GUI', 'BIZ',
                                         'THA', 'BER', 'ANZ',
                                  'OMA',
                   'YEM',
                           'IOA',
                                                 'VAN',
                                                                'YUG',
                                         'FIJ',
                                                        'MDA',
                                  'MOZ', 'CAF', 'MAD', 'MAL',
            'GUA', 'SRB', 'IVB',
                                                               'BIH',
                                         'TLS',
            'CAY',
                   'SVK',
                           'BAR',
                                  'GBS',
                                                 'COD',
                                                        'GAB',
                                                                'SMR',
                                                                       'LAO'
                                                        'CPV',
                           'CAM',
                                  'PRK',
                                         'SOL',
            'BOT',
                   'ROT',
                                                'SEN',
                                                               'CRT',
                                                                       'GEQ',
            'BOL',
                   'SAA',
                          'AND',
                                  'ANT', 'ZIM', 'GRN', 'HKG', 'LCA',
                                                                      'FSM',
                   'MAW',
                           'ZAM',
                                  'RHO', 'TPE',
                                                        'MKD',
                                                               'BOH',
                                                'STP',
            'LIE', 'MNE', 'GAM', 'COK', 'ALB', 'WIF', 'SWZ', 'BUR', 'NBO',
            'BDI', 'ARU', 'NRU', 'VNM', 'VIE', 'BHU', 'MHL', 'KIR', 'UNK',
            'TUV', 'NFL', 'KOS', 'SSD', 'LES'], dtype=object)
# Определим уникальные значения для целевого признака
data['Medal'].unique()
     array([nan, 'Gold', 'Bronze', 'Silver'], dtype=object)
# Определим уникальные значения для целевого признака
data['Year'].unique()
    array([1992, 2012, 1920, 1900, 1988, 1994, 1932, 2002, 1952, 1980, 2000,
            1996, 1912, 1924, 2014, 1948, 1998, 2006, 2008, 2016, 2004, 1960,
            1964, 1984, 1968, 1972, 1936, 1956, 1928, 1976, 2010, 1906, 1904,
            1908, 1896])
fig, ax = plt.subplots(figsize=(10,10))
sb.scatterplot(ax=ax, x='Sex', y='Sport', data=data)
\Box
```


fig, ax = plt.subplots(figsize=(10,10))
sb.scatterplot(ax=ax, x='Age', y='Medal', data=data)

```
•
```

fig, ax = plt.subplots(figsize=(10,10))
sb.scatterplot(ax=ax, x='Height', y='Weight', data=data, hue='Sex')

<matplotlib.axes._subplots.AxesSubplot at 0x7f5c19abc1d0>

fig, ax = plt.subplots(figsize=(10,10))
sb.scatterplot(ax=ax, x='Age', y='Sport', data=data, hue='Medal')

sb.distplot(data['Age'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f5c19ab32b0>

sb.jointplot(x='Height', y='Weight', data=data)

<> <seaborn.axisgrid.JointGrid at 0x7f5c198f0fd0>

sb.jointplot(x='Height', y='Weight', data=data, kind="hex")

<seaborn.axisgrid.JointGrid at 0x7f5c197adac8>

sb.pairplot(data)

<seaborn.axisgrid.PairGrid at 0x7f5c1e1913c8>

sb.pairplot(data, hue="Sex")

<seaborn.axisgrid.PairGrid at 0x7f5c18babf60>

sb.boxplot(x=data['Weight'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f5c1821c898>

sb.boxplot(y=data['Height'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f5c18176438>

sb.boxplot(x='Sex', y='Weight',data=data)

<matplotlib.axes._subplots.AxesSubplot at 0x7f5c180ca198>

sb.violinplot(x=data['Weight'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f5c180d0780>

fig, ax = plt.subplots(2, 1, figsize=(10,10))
sb.violinplot(ax=ax[0], x=data['Weight'])
sb.distplot(data['Weight'], ax=ax[1])

 \Box

<matplotlib.axes._subplots.AxesSubplot at 0x7f5c17fcc400>

sb.violinplot(x='Sex', y='Year',data=data)

cmatplotlib.axes._subplots.AxesSubplot at 0x7f5c17f1ef98>

sb.catplot(x='Sex', y='Year', data=data, kind="violin", split=True)

<seaborn.axisgrid.FacetGrid at 0x7f5c17f332b0>

data.corr()

₽		ID	Age	Height	Weight	Year
	ID	1.000000	0.000555	0.011114	0.010938	0.011885
	Age	0.000555	1.000000	0.086514	0.114378	0.094453
	Height	0.011114	0.086514	1.000000	0.899466	0.652054
	Weight	0.010938	0.114378	0.899466	1.000000	0.622125
	Year	0.011885	0.094453	0.652054	0.622125	1.000000

data.corr(method='pearson')

₽		ID	Age	Height	Weight	Year
	ID	1.000000	0.000555	0.011114	0.010938	0.011885
	Age	0.000555	1.000000	0.086514	0.114378	0.094453
	Height	0.011114	0.086514	1.000000	0.899466	0.652054
	Weight	0.010938	0.114378	0.899466	1.000000	0.622125
	Year	0.011885	0.094453	0.652054	0.622125	1.000000

data.corr(method='kendall')

	ID	Age	Height	Weight	Year
ID	1.000000	-0.000083	0.001710	0.002794	0.008940
Age	-0.000083	1.000000	0.077636	0.104872	0.057767

data.corr(method='spearman')

₽		ID	Age	Height	Weight	Year
	ID	1.000000	-0.000118	0.002461	0.004066	0.013191
	Age	-0.000118	1.000000	0.105464	0.140278	0.078540
	Height	0.002461	0.105464	1.000000	0.884870	0.446163
	Weight	0.004066	0.140278	0.884870	1.000000	0.440047
	Year	0.013191	0.078540	0.446163	0.440047	1.000000

sb.heatmap(data.corr())

<matplotlib.axes._subplots.AxesSubplot at 0x7f5c17e24be0>

sb.heatmap(data.corr(), annot=True, fmt='.2f')

<matplotlib.axes. subplots.AxesSubplot at 0x7f5c17ec1908>

```
- 1.00 0.00 0.01 0.01 0.01
```

sb.heatmap(data.corr(), cmap='YlGnBu', annot=True, fmt='.2f')

<matplotlib.axes._subplots.AxesSubplot at 0x7f5c169c9780>


```
# Треугольный вариант матрицы
mask = np.zeros_like(data.corr(), dtype=np.bool)
# чтобы оставить нижнюю часть матрицы
# mask[np.triu_indices_from(mask)] = True
# чтобы оставить верхнюю часть матрицы
mask[np.tril_indices_from(mask)] = True
sb.heatmap(data.corr(), mask=mask, cmap='YlGnBu', annot=True, fmt='.2f')
```

 \Box <matplotlib.axes._subplots.AxesSubplot at 0x7f5c1694bd30>


```
fig, ax = plt.subplots(1, 3, sharex='col', sharey='row', figsize=(15,5)) sb.heatmap(data.corr(method='pearson'), ax=ax[0], cmap='YlGnBu', annot=True, fmt='.2f') sb.heatmap(data.corr(method='kendall'), ax=ax[1],cmap='YlGnBu', annot=True, fmt='.2f') sb.heatmap(data.corr(method='spearman'), ax=ax[2], cmap='YlGnBu', annot=True, fmt='.2f') fig.suptitle('Корреляционные матрицы, построенные различными методами') ax[0].title.set_text('Pearson')
```

ax[1].title.set_text('Kendall')
ax[2].title.set_text('Spearman')

