Johns Hopkins Engineering for Professionals 605.767 Applied Computer Graphics

Brian Russin

Module 9H Image-Based Effects

Image Based Effects

- Chapter 10 discusses many image based effects
 - Skyboxes
 - Sprites
 - Billboarding
 - Imposters
 - Image processing
 - Color correction
 - Tone mapping
 - High dynamic range lighting
 - Lens flare and bloom
 - Depth of field
 - Motion blur
 - Fog
- For now just touch on a couple

Rendering Spectrum

- Continuum of rendering techniques from Lengyel
- Show level of detail techniques
 - Used to improve speed
 - As object recedes from the viewer can substitute images for polygons

Skyboxes

- Environment maps can be used to represent distant objects
 - 6 faces of cube as drawn from camera location
- Show parallax effect
 - Shift of near objects in relation to far objects as camera moves
 - Near objects move while distant objects remain still
- Skyboxes replace distant geometry with texture maps
 - Cube maps are most common
 - Other shapes like a flattened dome (equirectangular) image can be used
- To work properly the skybox texture resolution should be approximately one texel per screen pixel
 - texture resolution = screen resolution / tan(fov/2)
- Downloadable skybox textures:
 - https://combineoverwiki.net/wiki/Category:Skybox images (Half-Life 2)
 - Mercator Images: https://stock.adobe.com/search?k=equirectangular
- Simple tutorial
 - http://sidvind.com/wiki/Skybox_tutorial

Sprites and Layers

- Sprites are 2D images that move around the screen
 - Many early computer games used sprites extensively
 - Simple sprites have a 1:1 mapping to screen pixels
- More general sprites can be a texture applied to a polygon that always faces the viewer
 - Can have transparency
 - A set of sprites may be used to simulate an object from different viewpoints
- One can think of a scene as a series of layers
 - As is done for 2D cel animation

Billboards

- Several graphics techniques render an image onto a polygon that faces the eye/camera
 - Orienting the polygon based on view direction is called billboarding
 - Polygon is called a billboard
 - As the view changes the orientation of the polygon changes
- Texture map can be used to replace complex geometry
 - Improve performance yet retain realism
 - Draw a complex object (such as a tree) with a simple planar texture mapped geometry
 - Transform geometry to face the viewer
 - Texture often has transparent regions
 - Text discusses using billboards to simulate clouds
 - An example is an **imposter** object
 - Application creates the texture dynamically
- Also see
 - http://www.flipcode.com/archives/Billboarding-Excerpt From iReal-Time Renderingi 2E.shtml
 - http://www.vterrain.org/Plants/Modelling/

Billboards

- Axial billboard is a 2D object rotated about its y axis
 - Angle making it normal to the view direction
 - Translated to is position in the scene
- Modeling z-rotation is:

$$\theta = \cos^{-1}(V_{\mathbf{b}} \cdot B_n)$$

- B_n is the normal vector of the billboard
 - often (1,0,0)
- V_b is the vector from the position of the billboard to the view point (in world coordinates)
- Works well if the object possesses cylindrical symmetry
 - If not, different texture can be used
 - Directional billboards
- Works well if viewing direction is primarily perpendicular to axis of symmetry
 - Doesn't work well looking "down" on the object

www.vterrain.org/Plants/Modelling

Image Processing

- Post effects of rendered image
 - Example: effects that mimic real camera artifacts like light glare
- Implementation
 - Render to a framebuffer object with texture memory
 - Use output as input to next pass
 - Combine textures for a final image
 - Often performed in 2D space
 - Figure 12.5 (10.23 in 3rd Edition)
- Common image processing techniques
 - Blur
 - Sobel Edge Detection
 - enhance cell shading
 - Bloom or glare
 - https://learnopengl.com/Guest-Articles/2022/Phys.-Based-Bloom

Bloom Effect

https://learnopengl.com/Advanced-Lighting/Bloom

