SHI-HUI ZANG

EDUCATION

Tsinghua University, China

Sept 2018 - June 2022

Tsien's Excellence in Engineering Program, School of Aerospace Engineering

• **Overall GPA**: 3.86/4.00

• **Ranking**: 8/28

• TOEFL: 109 (Home Edition); 103 (Normal Edition)

• **GRE: 325** (V: 156; Q: 169; AW: 4.0)

• Research interests: Large scale structure, N-Body simulation, Cosmological data analysis

• Core Courses: Electrodynamics (score 98/100), Quantum Mechanics (score 100/100), Fundamentals of Dynamics and Control (score 92/100), Thermodynamics and Statistical Physics (score 87/100), Probability and Statistics (score 100/100), Signal and System Analysis (score 98/100), Methods of Mathematical Physics (score 100/100), Finite Element Method (score 98/100), Foundations of Scientific and Engineering Computing (score 92/100), Electrical Engineering and Applied Electronics (score 92/100), Fluid Mechanics (score 78/100), Foundation of Solid Mechanics (score 98/100).

WORK EXPERIENCE

National Astronomical Observatories, CAS, China

July 2022 - July 2023 (expected)

Research Assistant, Supervised by Prof. Gong-Bo Zhao

PUBLICATIONS

- 1. **Shi-Hui Zang**, Hong-Ming Zhu, Marcel Schmittfull & Ue-Li Pen, *Cosmic tidal reconstruction in redshift space*, in prep
- 2. **Shi-Hui Zang**, Hong-Ming Zhu, Baojiu Li, Ue-Li Pen & Gong-Bo Zhao, *Constraining νΛCDM with Nonlinear Reconstruction*, in prep

RESEARCH EXPERIENCE

Detecting Local Primordial non-Gaussianity With Halo Spin

June 2022 - present

Online Internship, Supervised by Prof. Ue-Li Pen, CITA, University of Toronto

- Led the largest f_{NL} CDM N-body simulation on NiagaraAtScale event.
- Used 1728 nodes (69120 CPUs in total) to complete two simulations of more than six trillion particles each. These two simulations enabled the accurate modeling of $f_{\rm NL}$ signal in statistics like halo bias and galaxy spin.
- Current analyzing the effects of $f_{\rm NL}$ on the alignment between the halo spin, protohalo spin, and initial angular momentum proposed by the tidal torque theory.

Cosmic Tidal Reconstruction In Redshift Space

Mar 2021 - Nov 2021

Online Internship, Supervised by Prof. Ue-Li Pen, CITA, University of Toronto

- Employed halo tides in the redshift space to reconstruct the large-scale structure of the universe, which has the potential to implement multi-tracer analysis in future surveys.
- Modeled the full-shear-term reconstructed field in the redshift space using a propagator in a brief quadratic form, which enabled the quantitive analysis of reconstructed large-scale structures.
- Verified the robustness of the transverse-shear term tidal reconstruction in the redshift space.
- Built TideRec, a parallel computing Python package for performing and analyzing tidal reconstruction.

Measuring Cosmic Tides With DES Y1 Data

Oct 2021 - present

Online Internship, Supervised by Prof. Ue-Li Pen, CITA, University of Toronto

- Evaluated and quantified the influence of different photo-Z errors on tidal reconstruction.
- Developed and verified a planar tidal reconstruction algorithm using various depths and number density.
- Currently developing a data analysis pipeline to measure the reconstructed power spectrum of DES Y1 data to improve cosmological constraints.

Constraining ν CDM With Iterative Initial Condition Reconstruction

Mar 2022 - Oct 2022

Online Internship, Supervised by Prof. Ue-Li Pen, CITA, University of Toronto

- Implemented the standard reconstruction, iterative displacement reconstruction, and multigrid relaxation reconstruction on δ_{cb} fields of 11,000 Quijote simulations. These reconstruction methods retrieve the high-order information back into two-point functions.
- Identified the Fisher information of six cosmological parameters in pre- and post- reconstruction power spectrums.
- Verity that the non-linear reconstruction improves the constraints from the $P_{\rm cb}$ on these parameters by a factor of approximately two at cutoff scale $k_{\rm max}=0.5h/{\rm Mpc}$ compared to the standard reconstruction. This implies the great potential of non-linear reconstruction in future surveys with much higher number density.
- Built StdRec and DisIter, two parallel computing Python packagse for initial condition reconstruction.

Extracting BAO Information From Halos With Non-linear Reconstruction

July 2022 - present

Independent Research Program, Supervised by Prof. Gong-Bo Zhao & Dr. Hong-Ming Zhu

- Applied the multigrid relaxation reconstruction on halo density fields of the Abacus-Summit simulation in the redshift space to sharpen the Baryonic Acoustic Oscillation (BAO) wiggle.
- Identified the Fisher information of six cosmological parameters in pre- and post- reconstruction power spectrums.
- Currently investigating the Fisher information about two geometric parameters and growth rate from the reconstructed BAO signal.

Flexible Electrostatic Sampler Based On Traveling Wave

Sept 2020 - June 2021

Independent Research Program, Supervised by Prof. Hexi Baoyin, School of Aerospace Engineering, Tsinghua Univ.

- Simulated the motion of ionized lunar regolith under the coupling of electric gravity fields.
- Established a four/six phase high voltage square wave generator, developed and 3D printed a model of the sampler.
- Performed experiments to evaluate the acceleration effect of an electric field on the simulated lunar regolith.

TALKS

CITA Cosmology Discussion | University of Toronto

Dec 10 2021

Measuring cosmic tides with DES Y1 data

SOFTWARE DEVELOPMENT

TideRec | Author and Maintainer

https://github.com/Zangshihui/TideRec

A tool to perform tidal reconstruction using halo catalogs and evaluate the reconstructed density field.

StdRec | Author and Maintainer

https://github.com/Zangshihui/StdRec

A tool to perform standard reconstruction on particle catalogs.

TideRec | Author and Maintainer

https://github.com/Zangshihui/DisIter

A tool to perform iterative initial condition reconstruction on particle catalogs.

TECHNICAL SKILLS

Programming: Proficient in Python, LATEX, Matlab and Simulink. Working knowledge of C++.

Software: Nbodykit, CAMB, Cython, GetDist, mpi4py, Solidworks, AutoCAD, abaqus.

AWARDS AND HONORS

Scholarships	
Globalink Research Award, Mitacs	Dec 2021
Scholarship For Academic Excellence, Tsinghua University	Sep 2021
Scholarship For Sports Excellence, Tsinghua University	Sep 2021
Xuetang Award, Tsinghua University	Oct 2020
Awards	
The fifth place in men's 1500 meters in Tsinghua University Games	May 2019
The second prize in mixed relay in Laser-run of Capita University Students Games	Nov 2020