Regression Models Course Project

Author: Fred Zhou

In this document, we will try to answer the following questions:

- Q1: "Is an automatic or manual transmission better for MPG"
- Q2: "Quantify the MPG difference between automatic and manual transmissions"

By default, we assume that for the mpg, the lower the value the better.

(For am, 0 for automatic transmission, 1 for manual transmission.)

Q1. Is an automatic or manual transmission better for MPG

To answer this question, we assume that the all the variables in the population follow normal distribution. Thus we first use Student's T test to address whether there's difference in these two groups

```
test_mpg=t.test(mtcars$mpg[mtcars$am==1],mtcars$mpg[mtcars$am==0])
print(test_mpg)
```

Student's T-test between AUTOMATIC and MANUAL (alpha=0.05)

```
##
## Welch Two Sample t-test
##
## data: mtcars$mpg[mtcars$am == 1] and mtcars$mpg[mtcars$am == 0]
## t = 3.7671, df = 18.332, p-value = 0.001374
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 3.209684 11.280194
## sample estimates:
## mean of x mean of y
## 24.39231 17.14737

print(paste(
    'The P-value for the T-test between AUTOMATIC and MANUAL transmissions for the mpg is ', round(test_mpg$p.value,digits = 4),sep=''))
```

[1] "The P-value for the T-test between AUTOMATIC and MANUAL transmissions for the mpg is 0.0014"

```
print(paste(
  'Mean value for the mpg with AUTOMATIC transmissions:',
  round(test_mpg$estimate[1],digits = 2),sep=''))
```

[1] "Mean value for the mpg with AUTOMATIC transmissions:24.39"

```
print(paste(
   'Mean value for the mpg with MANUAL transmissions:'
   ,round(test_mpg$estimate[2],digits = 2),sep=''))
```

```
## [1] "Mean value for the mpg with MANUAL transmissions:17.15"
```

Thus we could address that indeed the types of transmission will affect the mpg, and on average AUTOMATIC will bear a *higher consumption of fuel* against the MANUAL transmission, and the average difference is around 7.24 miles per Gallon used.

Q2. Quantify the MPG difference between automatic and manual transmissions

```
sort(abs(cor(mtcars)[1,]))
```

Correlation analysis winthin all variables against the mpg

```
## qsec gear carb am vs drat hp
## 0.4186840 0.4802848 0.5509251 0.5998324 0.6640389 0.6811719 0.7761684
## disp cyl wt mpg
## 0.8475514 0.8521620 0.8676594 1.0000000
```

We already get the hint that the AUTOMATIC/MANUAL have impacts on the fuel consumption, thus from the correlation analsis we could guess that any variant with a higher correlation value against AUTOMATIC/MANUAL may contribute to the fuel consumption. including:

```
1.vs - V/S
2.drat - Rear axle ratio
3.hp - Gross horsepower
4.disp - Displacement (cu.in.)
5.cyl - Number of cylinders
6.wt - Weight (1000 lbs)
```

Thus, we could guess that it's reasonable to include any variable into the linear regressions. We could make a most general form of regression, then add in more variants to further optimize our model.

General model We only take the am as variables to do the linear regression first:

```
fit_1 <- lm(mpg~am, data = mtcars)
summary(fit_1)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ am, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.3923 -3.0923 -0.2974 3.2439 9.5077
```

```
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
                17.147
                            1.125 15.247 1.13e-15 ***
## (Intercept)
## am
                 7.245
                            1.764
                                    4.106 0.000285 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.902 on 30 degrees of freedom
## Multiple R-squared: 0.3598, Adjusted R-squared: 0.3385
## F-statistic: 16.86 on 1 and 30 DF, p-value: 0.000285
```

Based on the stat data we could address:

- On average, AUTOMATIC car have 17.15 MPG and MANUAL transmission cars have 7.25 MPG more
- The R² value is only 0.36, which means that our current model only explains 36% of the variance

```
fit_2 = step(lm(data = mtcars, mpg ~ .),trace=0,steps=50000)
summary(fit_2)
```

Multivariate model - adapted selection of variants

```
##
## Call:
## lm(formula = mpg ~ wt + qsec + am, data = mtcars)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -3.4811 -1.5555 -0.7257 1.4110 4.6610
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                            6.9596
                                     1.382 0.177915
                9.6178
## (Intercept)
## wt
                -3.9165
                            0.7112
                                    -5.507 6.95e-06 ***
## qsec
                 1.2259
                            0.2887
                                     4.247 0.000216 ***
## am
                 2.9358
                            1.4109
                                     2.081 0.046716 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.459 on 28 degrees of freedom
## Multiple R-squared: 0.8497, Adjusted R-squared: 0.8336
## F-statistic: 52.75 on 3 and 28 DF, p-value: 1.21e-11
```

Summary

This model explains 84% of the variance in miles per gallon (mpg), which is accaptable for the prediction of mpg with new data. Based on the multivariate model we could address:

- MANUAL is beneficial for the fuel saving, after model adjusting the value comes to be 2.936 miles per gallon.
- wt affect huge against the mpg, which is appearant since more load will eventually consume more fuel.

APPENDIX

Visualize the data between AUTOMATIC and MANUAL

Transmission vs mpg

Transmission

Comparision of general and multivariate model 1.ANOVA

```
anova(fit_2, fit_1)
```

```
## Analysis of Variance Table

## Model 1: mpg ~ wt + qsec + am

## Model 2: mpg ~ am

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 28 169.29

## 2 30 720.90 -2 -551.61 45.618 1.55e-09 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

 $2. \\ Residual \ diagnostics \ for \ multivariate \ model$

```
par(mfrow = c(2,2))
plot(fit_2)
```

