Exercise Quality

Gail Muldoon May 4, 2016

Summary

Predictions of exercise quality are determined from various sources of accelerometer data. Two prediction algorithms are compared: a random forest and gradient boosting machine. The random forest is found to be most accurate and have the correspondingly lowest out-of-sample error on a validation dataset.

Background

Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement – a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways. More information is available from the website here: http://groupware.les.inf.puc-rio.br/har (see the section on the Weight Lifting Exercise Dataset).

Data

The training data for this project are available here:

https://d396gusza40orc.cloudfront.net/predmachlearn/pml-training.csv

The test data are available here:

https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv

The data for this project come from this source: http://groupware.les.inf.puc-rio.br/har. If you use the document you create for this class for any purpose please cite them as they have been very generous in allowing their data to be used for this kind of assignment.

Load and Clean Data

```
library(caret)
library(randomForest)
#Read in data, putting NAs in empty strings
training = read.csv("pml-training.csv", na.strings = c("NA", ""))
testing = read.csv("pml-testing.csv", na.strings = c("NA", ""))
#Create a validation set from 20% of the training set.
set.seed(100)
inTrain = createDataPartition(training$classe, p = 0.5, list = FALSE)
training = training[inTrain, ]
validating = training[-inTrain, ]
#Get rid of predictors that have NAs because that won't be useful
training = training[, colSums(is.na(training)) == 0]
validatiing = validating[, colSums(is.na(validating)) == 0]
testing = testing[, colSums(is.na(testing)) == 0]
#Get rid of non-acceleromator columns like name, timestamps, etc. because they're not predictor
trainClean = training[, -c(1:7)]
```

```
validClean = validating[, -c(1:7)]
testClean = testing[, -c(1:7)]
```

Prediction Models

I test two prediction models, random forests and gradient boosting machine, for comparison to see which has the highest accuracy and lowest out-of-sample error rate.

Random Forest

I construct a random forest using all the non-NA accelerometer data in the training set. I then predict the classe variable, the manner in which the subject did the exercise (correctly or incorrectly) using the validation data set. I then output the accuracy and out-of-sample error rate of this method.

```
#use k=10 folds for cross-validating
control = trainControl(method = "cv", number = 5)
rfMod = train(classe ~ ., data = trainClean, method = "rf")
rfPredict = predict(rfMod, validClean)
rfConfusion = confusionMatrix(validClean$classe, rfPredict)
#Accuracy
rfAccuracy = rfConfusion$overall[1]
#Out of sample error
rfError = 1 - rfConfusion$overall[1]
```

The accuracy of the random forest method is an incredible 99.9% leaving the error rate at less than 0.1%. This is likely to most accurate method already.

Gradient Boosting Machine

As an alternative method, I use GBM to predict classe.

```
gbmMod = train(classe ~ ., data=trainClean, method = "gbm", trControl = control)
```

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1279
##	2	1.5230	nan	0.1000	0.0899
##	3	1.4636	nan	0.1000	0.0682
##	4	1.4188	nan	0.1000	0.0516
##	5	1.3829	nan	0.1000	0.0452
##	6	1.3526	nan	0.1000	0.0450
##	7	1.3232	nan	0.1000	0.0405
##	8	1.2974	nan	0.1000	0.0333
##	9	1.2752	nan	0.1000	0.0346
##	10	1.2527	nan	0.1000	0.0280
##	20	1.0937	nan	0.1000	0.0140
##	40	0.9181	nan	0.1000	0.0096
##	60	0.8116	nan	0.1000	0.0072
##	80	0.7324	nan	0.1000	0.0055
##	100	0.6655	nan	0.1000	0.0024
##	120	0.6133	nan	0.1000	0.0034
##	140	0.5691	nan	0.1000	0.0025
##	150	0.5496	nan	0.1000	0.0017
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1879
##	2	1.4884	nan	0.1000	0.1337
##	3	1.4028	nan	0.1000	0.1065
##	4	1.3337	nan	0.1000	0.0828
##	5	1.2802	nan	0.1000	0.0710
##	6	1.2336	nan	0.1000	0.0658

##	7	1.1908	nan	0.1000	0.0618
##	8	1.1516	nan	0.1000	0.0543
##	9	1.1163	nan	0.1000	0.0437
##	10	1.0873	nan	0.1000	0.0402
##	20	0.8801	nan	0.1000	0.0195
##	40	0.6633	nan	0.1000	0.0109
##	60	0.5401	nan	0.1000	0.0073
##	80	0.4560	nan	0.1000	0.0053
##	100	0.3881	nan	0.1000	0.0024
##	120	0.3370	nan	0.1000	0.0026
##	140	0.2914	nan	0.1000	0.0017
##	150	0.2732	nan	0.1000	0.0010
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2404
##	2	1.4575	nan	0.1000	0.1572
##	3	1.3565	nan	0.1000	0.1291
##	4	1.2737	nan	0.1000	0.1109
##	5	1.2027	nan	0.1000	0.0835
##	6	1.1489	nan	0.1000	0.0697
##	7	1.1027	nan	0.1000	0.0677
##	8	1.0577	nan	0.1000	0.0746
##	9	1.0111	nan	0.1000	0.0588
##	10	0.9738	nan	0.1000	0.0449
##	20	0.7370	nan	0.1000	0.0254
##	40	0.5189	nan	0.1000	0.0087
##	60	0.3939	nan	0.1000	0.0057
##	80	0.3143	nan	0.1000	0.0056
##	100	0.2565	nan	0.1000	0.0025
##	120	0.2150	nan	0.1000	0.0020
##	140	0.1810	nan	0.1000	0.0015

##	150	0.1657	nan	0.1000	0.0014
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1307
##	2	1.5225	nan	0.1000	0.0876
##	3	1.4651	nan	0.1000	0.0644
##	4	1.4204	nan	0.1000	0.0528
##	5	1.3847	nan	0.1000	0.0441
##	6	1.3558	nan	0.1000	0.0440
##	7	1.3269	nan	0.1000	0.0355
##	8	1.3024	nan	0.1000	0.0365
##	9	1.2791	nan	0.1000	0.0295
##	10	1.2589	nan	0.1000	0.0314
##	20	1.1001	nan	0.1000	0.0184
##	40	0.9270	nan	0.1000	0.0088
##	60	0.8176	nan	0.1000	0.0072
##	80	0.7382	nan	0.1000	0.0048
##	100	0.6737	nan	0.1000	0.0037
##	120	0.6226	nan	0.1000	0.0019
##	140	0.5799	nan	0.1000	0.0018
##	150	0.5617	nan	0.1000	0.0020
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1803
##	2	1.4896	nan	0.1000	0.1256
##	3	1.4053	nan	0.1000	0.1119
##	4	1.3357	nan	0.1000	0.0861
##	5	1.2804	nan	0.1000	0.0721
##	6	1.2340	nan	0.1000	0.0597
##	7	1.1947	nan	0.1000	0.0649
##	8	1.1550	nan	0.1000	0.0531

##	9	1.1209	nan	0.1000	0.0499
##	10	1.0895	nan	0.1000	0.0369
##	20	0.8874	nan	0.1000	0.0241
##	40	0.6762	nan	0.1000	0.0109
##	60	0.5566	nan	0.1000	0.0082
##	80	0.4658	nan	0.1000	0.0048
##	100	0.3995	nan	0.1000	0.0044
##	120	0.3480	nan	0.1000	0.0029
##	140	0.3046	nan	0.1000	0.0025
##	150	0.2873	nan	0.1000	0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2305
##	2	1.4599	nan	0.1000	0.1615
##	3	1.3569	nan	0.1000	0.1211
##	4	1.2801	nan	0.1000	0.1143
##	5	1.2089	nan	0.1000	0.0835
##	6	1.1544	nan	0.1000	0.0698
##	7	1.1088	nan	0.1000	0.0813
##	8	1.0587	nan	0.1000	0.0569
##	9	1.0216	nan	0.1000	0.0493
##	10	0.9893	nan	0.1000	0.0460
##	20	0.7532	nan	0.1000	0.0233
##	40	0.5248	nan	0.1000	0.0115
##	60	0.4014	nan	0.1000	0.0059
##	80	0.3194	nan	0.1000	0.0046
##	100	0.2611	nan	0.1000	0.0014
##	120	0.2171	nan	0.1000	0.0033
##	140	0.1842	nan	0.1000	0.0014
##	150	0.1717	nan	0.1000	0.0010
##					

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1292
##	2	1.5229	nan	0.1000	0.0862
##	3	1.4646	nan	0.1000	0.0677
##	4	1.4216	nan	0.1000	0.0492
##	5	1.3876	nan	0.1000	0.0456
##	6	1.3587	nan	0.1000	0.0434
##	7	1.3301	nan	0.1000	0.0408
##	8	1.3044	nan	0.1000	0.0323
##	9	1.2827	nan	0.1000	0.0323
##	10	1.2602	nan	0.1000	0.0340
##	20	1.0982	nan	0.1000	0.0174
##	40	0.9252	nan	0.1000	0.0095
##	60	0.8152	nan	0.1000	0.0052
##	80	0.7373	nan	0.1000	0.0050
##	100	0.6741	nan	0.1000	0.0015
##	120	0.6209	nan	0.1000	0.0025
##	140	0.5780	nan	0.1000	0.0022
##	150	0.5588	nan	0.1000	0.0020
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	•
##	1	1.6094	nan	0.1000	0.1849
##	2	1.4888	nan	0.1000	0.1387
##	3	1.4000	nan	0.1000	0.1072
##	4	1.3315	nan	0.1000	0.0873
##	5	1.2741	nan	0.1000	0.0667
##	6	1.2303	nan	0.1000	0.0737
##	7	1.1835	nan	0.1000	0.0564
##	8	1.1459	nan	0.1000	0.0534
##	9	1.1119	nan	0.1000	0.0404
##	10	1.0843	nan	0.1000	0.0443

##	20	0.8874	nan	0.1000	0.0195
##	40	0.6759	nan	0.1000	0.0091
##	60	0.5437	nan	0.1000	0.0121
##	80	0.4564	nan	0.1000	0.0057
##	100	0.3912	nan	0.1000	0.0039
##	120	0.3402	nan	0.1000	0.0016
##	140	0.2980	nan	0.1000	0.0018
##	150	0.2825	nan	0.1000	0.0014
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2342
##	2	1.4595	nan	0.1000	0.1651
##	3	1.3559	nan	0.1000	0.1309
##	4	1.2741	nan	0.1000	0.1022
##	5	1.2079	nan	0.1000	0.0919
##	6	1.1494	nan	0.1000	0.0782
##	7	1.0987	nan	0.1000	0.0653
##	8	1.0564	nan	0.1000	0.0537
##	9	1.0210	nan	0.1000	0.0606
##	10	0.9809	nan	0.1000	0.0494
##	20	0.7467	nan	0.1000	0.0267
##	40	0.5243	nan	0.1000	0.0071
##	60	0.3994	nan	0.1000	0.0082
##	80	0.3172	nan	0.1000	0.0048
##	100	0.2602	nan	0.1000	0.0021
##	120	0.2160	nan	0.1000	0.0023
##	140	0.1812	nan	0.1000	0.0008
##	150	0.1689	nan	0.1000	0.0019
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1230

##	2	1.5247	nan	0.1000	0.0903
##	3	1.4656	nan	0.1000	0.0670
##	4	1.4215	nan	0.1000	0.0523
##	5	1.3866	nan	0.1000	0.0517
##	6	1.3530	nan	0.1000	0.0357
##	7	1.3292	nan	0.1000	0.0407
##	8	1.3037	nan	0.1000	0.0317
##	9	1.2822	nan	0.1000	0.0325
##	10	1.2606	nan	0.1000	0.0276
##	20	1.1008	nan	0.1000	0.0152
##	40	0.9276	nan	0.1000	0.0097
##	60	0.8193	nan	0.1000	0.0045
##	80	0.7382	nan	0.1000	0.0055
##	100	0.6749	nan	0.1000	0.0024
##	120	0.6231	nan	0.1000	0.0023
##	140	0.5775	nan	0.1000	0.0028
##	150	0.5566	nan	0.1000	0.0027
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1841
##	2	1.4891	nan	0.1000	0.1299
##	3	1.4032	nan	0.1000	0.1045
##	4	1.3371	nan	0.1000	0.0847
##	5	1.2817	nan	0.1000	0.0770
##	6	1.2326	nan	0.1000	0.0620
##	7	1.1915	nan	0.1000	0.0529
##	8	1.1563	nan	0.1000	0.0534
##	9	1.1221	nan	0.1000	0.0382
##	10	1.0961	nan	0.1000	0.0437
##	20	0.8890	nan	0.1000	0.0222
##	40	0.6800	nan	0.1000	0.0125

##	60	0.5496	nan	0.1000	0.0114
##	80	0.4584	nan	0.1000	0.0043
##	100	0.3904	nan	0.1000	0.0031
##	120	0.3395	nan	0.1000	0.0020
##	140	0.2985	nan	0.1000	0.0018
##	150	0.2812	nan	0.1000	0.0014
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2304
##	2	1.4604	nan	0.1000	0.1613
##	3	1.3571	nan	0.1000	0.1262
##	4	1.2765	nan	0.1000	0.0979
##	5	1.2141	nan	0.1000	0.0860
##	6	1.1579	nan	0.1000	0.0736
##	7	1.1109	nan	0.1000	0.0759
##	8	1.0620	nan	0.1000	0.0699
##	9	1.0169	nan	0.1000	0.0592
##	10	0.9787	nan	0.1000	0.0425
##	20	0.7498	nan	0.1000	0.0208
##	40	0.5232	nan	0.1000	0.0108
##	60	0.3968	nan	0.1000	0.0067
##	80	0.3160	nan	0.1000	0.0050
##	100	0.2580	nan	0.1000	0.0026
##	120	0.2122	nan	0.1000	0.0022
##	140	0.1795	nan	0.1000	0.0013
##	150	0.1658	nan	0.1000	0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1281
##	2	1.5246	nan	0.1000	0.0849
##	3	1.4661	nan	0.1000	0.0659

##	4	1.4230	nan	0.1000	0.0536
##	5	1.3880	nan	0.1000	0.0493
##	6	1.3558	nan	0.1000	0.0383
##	7	1.3288	nan	0.1000	0.0397
##	8	1.3032	nan	0.1000	0.0360
##	9	1.2803	nan	0.1000	0.0338
##	10	1.2571	nan	0.1000	0.0277
##	20	1.0999	nan	0.1000	0.0170
##	40	0.9242	nan	0.1000	0.0102
##	60	0.8188	nan	0.1000	0.0064
##	80	0.7398	nan	0.1000	0.0036
##	100	0.6776	nan	0.1000	0.0043
##	120	0.6244	nan	0.1000	0.0025
##	140	0.5806	nan	0.1000	0.0026
##	150	0.5613	nan	0.1000	0.0027
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	Iter 1	TrainDeviance 1.6094	ValidDeviance nan	StepSize 0.1000	Improve 0.1824
##				•	
##	1	1.6094	nan	0.1000	0.1824
## ## ## ##	1 2 3	1.6094 1.4891	nan nan	0.1000 0.1000	0.1824 0.1361
## ## ## ##	1 2 3	1.6094 1.4891 1.4018	nan nan nan	0.1000 0.1000 0.1000	0.1824 0.1361 0.0996
## ## ## ## ##	1 2 3 4 5 6	1.6094 1.4891 1.4018 1.3372	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.1824 0.1361 0.0996 0.0872
## ## ## ## ## ##	1 2 3 4 5	1.6094 1.4891 1.4018 1.3372 1.2822	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.1824 0.1361 0.0996 0.0872 0.0650
## ## ## ## ## ##	1 2 3 4 5 6	1.6094 1.4891 1.4018 1.3372 1.2822 1.2378	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1824 0.1361 0.0996 0.0872 0.0650 0.0717
## ## ## ## ## ##	1 2 3 4 5 6 7	1.6094 1.4891 1.4018 1.3372 1.2822 1.2378 1.1932	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1824 0.1361 0.0996 0.0872 0.0650 0.0717 0.0608
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	1.6094 1.4891 1.4018 1.3372 1.2822 1.2378 1.1932 1.1542 1.1542 1.0907	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1824 0.1361 0.0996 0.0872 0.0650 0.0717 0.0608 0.0444
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.6094 1.4891 1.4018 1.3372 1.2822 1.2378 1.1932 1.1542 1.1245 1.0907 0.8920	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1824 0.1361 0.0996 0.0872 0.0650 0.0717 0.0608 0.0444 0.0530 0.0397 0.0228
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	1.6094 1.4891 1.4018 1.3372 1.2822 1.2378 1.1932 1.1542 1.1245 1.0907 0.8920 0.6783	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1824 0.1361 0.0996 0.0872 0.0650 0.0717 0.0608 0.0444 0.0530 0.0397 0.0228 0.0084
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.6094 1.4891 1.4018 1.3372 1.2822 1.2378 1.1932 1.1542 1.1245 1.0907 0.8920	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1824 0.1361 0.0996 0.0872 0.0650 0.0717 0.0608 0.0444 0.0530 0.0397 0.0228

##	100	0.3949	nan	0.1000	0.0028
##	120	0.3405	nan	0.1000	0.0015
##	140	0.3008	nan	0.1000	0.0015
##	150	0.2836	nan	0.1000	0.0028
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2299
##	2	1.4601	nan	0.1000	0.1621
##	3	1.3566	nan	0.1000	0.1257
##	4	1.2767	nan	0.1000	0.1023
##	5	1.2105	nan	0.1000	0.0998
##	6	1.1493	nan	0.1000	0.0786
##	7	1.1003	nan	0.1000	0.0617
##	8	1.0607	nan	0.1000	0.0723
##	9	1.0142	nan	0.1000	0.0535
##	10	0.9801	nan	0.1000	0.0444
##	20	0.7494	nan	0.1000	0.0249
##	40	0.5260	nan	0.1000	0.0101
##	60	0.4024	nan	0.1000	0.0057
##	80	0.3162	nan	0.1000	0.0044
##	100	0.2588	nan	0.1000	0.0043
##	120	0.2166	nan	0.1000	0.0010
##	140	0.1840	nan	0.1000	0.0026
##	150	0.1690	nan	0.1000	0.0011
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2302
##	2	1.4640	nan	0.1000	0.1694
##	3	1.3579	nan	0.1000	0.1241
##	4	1.2799	nan	0.1000	0.1089
##	5	1.2108	nan	0.1000	0.0963
1					

```
1.1514
##
                                                0.1000
                                                           0.0857
        6
                                       nan
                                                           0.0576
##
                  1.0991
                                                0.1000
                                       nan
##
                  1.0612
                                                0.1000
                                                           0.0566
                                       nan
                  1.0252
                                                0.1000
                                                           0.0636
##
                                       nan
                  0.9840
                                                0.1000
                                                           0.0459
##
       10
                                       nan
       20
                                                0.1000
                                                           0.0214
##
                  0.7558
                                       nan
       40
                  0.5309
                                                0.1000
                                                           0.0100
##
                                       nan
##
       60
                  0.4073
                                                0.1000
                                                           0.0069
                                       nan
                                                           0.0062
##
       80
                  0.3235
                                                0.1000
                                       nan
##
      100
                  0.2631
                                                0.1000
                                                           0.0033
                                       nan
##
      120
                  0.2188
                                                0.1000
                                                           0.0029
                                       nan
      140
                  0.1863
                                                0.1000
                                                           0.0019
##
                                       nan
##
      150
                  0.1712
                                                0.1000
                                                           0.0014
                                       nan
```

```
gbmPredict = predict(gbmMod, validClean)
gbmConfusion = confusionMatrix(validClean$classe, gbmPredict)
#Accuracy
gbmAccuracy = gbmConfusion$overall[1]
#Out of sample error
gbmError = 1 - gbmConfusion$overall[1]
```

The accuracy and corresponding expected out-of-sample error rate are 97% and 3%, respectively. While still highly accurate, the random forest is a more accurate algorithm for this case so I will use it to make predictions of the test set.

Prediction of classe in test set

The most accurate algorithm is random forest, with an accuracy of ~99%. I therefore use it to do the final prediction of classe on the test set.

```
(predict(rfMod, testClean))
```

```
[1] B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E
```

This predictive method is 100% accurate on this test set.