ECE 336, spring 2024, Homework #9, Due: April 17, 2024

1.) Find the Laplace transform of $v(t) = e^{-2t} \sin(8t + 45^{\circ})u(t)$. Express your answer as a single rational function with a monic denominator.

2.) Find the Laplace transform of $v(t) = e^{-3t}(3t+6)u(t)$. Express your answer as a single rational function with a monic denominator.

3.) Find the Laplace transform of v(t) = 3tu(t) + (9-3t)u(t-3). Express your answer as a single rational function with a monic denominator.

4.) Find the inverse Laplace transform of $V(s) = \frac{15s+31}{s^2+4s+3}$

5.) Find the inverse Laplace transform of $V(s) = \frac{2s+18}{(s+8)^2}$

6.) Find the inverse Laplace transform of $V(s) = \frac{s+12}{s^2+9}$

7.) Find the inverse Laplace transform of $V(s) = \frac{2s^2 + 31s + 118}{s^3 + 22s^2 + 160s + 384}$

8.) 5.) Find the initial and final values of $V(s) = \frac{6s^2 + 11s + 25}{s^3 + 2s^2 + 5s}$ using the Laplace transform.

9.) Find the current $i_o(t)$ using the Laplace transform.

10.) Find the voltage v(t) using the Laplace transform.

11.) Find the voltage $v_o(t)$ using the Laplace transform.

12.) Find the transfer function $H(s) \equiv \frac{l_1(s)}{v_s(s)}$ for the circuit shown below.

13.) Design the circuit to have the transfer function $H(s) \equiv \frac{V_o}{V_i} = \frac{s+1000}{2(s+4000)}$ for the circuit shown below. Let $C_1 = 10 \, \mu\text{F}$.

14.) Find the current i(t) of the circuit below using the Laplace transform.

15.) Design the circuit below (choose R, L, and C) to have the transfer function $H(s) \equiv \frac{V_o}{V_i} = \frac{2}{s^2 + 3s + 2}$.

16.) Design the circuit below (choose R, L, and C) to have the transfer function $H(s) \equiv \frac{V_0}{V_i} = \frac{101}{s^2 + 2s + 101}$.

17.) Find the step-response (let $v_i(t) = u(t) V$) for question 15 and 16 and sketch.