22.012 Presentation: Materials in ITER and beyond!

Jill A. Rowehl May 18th, 2006

Outline

- Vessel = materials for containing plasma
- Other random
 Image removed for Copyright reasons.

 Components and materials for ITER. From Max Planck Society for Advancement of Science

http://www.ipp.mpg.de/ippcms/eng/pr/forschung/iter/

- Progress in Materials?
 - ☐ Going and going...

Vessel Materials: containing the plasma^{1,2}

- Must handle high heat loads
 - ☐ Steady and disruptions
- Radiation resistant
- Long-life (thousands of cycles)
- Cheap! (not going to happen)

Figure removed for copyright reasons.

Source: START experiment at UKAEA, Culham. http://www.fusion.org.uk/culham/start.htm

Vessel Materials in ITER³

Material	Material Grade	Components
Beryllium	S-65C VHP (backup DShG-200)	Armour tiles for first wall and limiter
Tungsten	Pure sintered W	Armour tiles for divertor components
Carbon fibre	SEP NB 31, NIC 01	Armour tiles for divertor vertical target
composite (CFC)	(back-up CX 2002U, SEP NS31)	
Cu and Cu alloys	CuCrZr-IG	Substrate for plasma-facing components (PFCs)
		and for heating systems
	CuAl25-IG	Substrate for PFCs (first wall)
	Nickel-aluminium bronze	Nuts, bearings and other friction parts
	Glidcop Al60	Compression collar of the flexible support bolts
Austenitic and	316L(N)-IG1 plates and forgings	Shield modules
precipitation	316L(N)-IG2 plates and forgings	Vacuum vessel, blanket cooling manifolds
hardened steels	316L(N)-IG3 cast	Some vacuum vessel components and
		back-up material for divertor body
	316L(N)-IG4 tubes	Thin walled tubes for first wall
	316L(N)-IG5 tubes	In-vessel cooling pipes
	316L(N)-IG6 powder HIP	Back-up material for shield modules
	AISI 660 (A-286)	Fastening components for the port plugs
		(e.g. fixing wedges and bolts)
	Steel 30467	Borated steel for in-wall shielding
		structures (plates)
Ni alloys	Inconel 718	Bolts for the flexible supports and electrical straps,
		blanket cooling manifold support
Ti alloy	Ti-6Al-4V	Flexible cartridges for the module support
Ferritic steel	SS 430	Ferromagnetic insert
Ceramic	Al ₂ O ₃ or MgAl ₂ O ₄	Electrical insulators of module attachment and
		limiter plates

Vessel Materials in ITER⁵:

- ITER First Wall:
 - □ Be- low Z
 - First used in JET
 - Disadv: Low melting point
- ITER Diverter:
 - □ Tungsten- low erosion
 - Disadv: high Z (causes power loss in the plasma)
 - ☐ CFC- can take very high heat
 - Erodes faster but can be thicker so lasts longer

Elevation view of ITER divertor.

Courtesy of Sandia National Laboratories.

Materials of the future⁴:

■ EUROFER alloy:

- elements have been substituted by more benign elements,
 e.g. Mo has been replaced by W; Nb by Ta and V.
- ☐ Cr content: optimize corrosion resistance and low embrittlement under neutron irradiation.
- □ expected to withstand neutron fluxes up to 150 dpa and an operational temperature range of 300°C to 560°C.
- ☐ For DEMO (life after ITER)

A Blanket to Control the Warmth⁷

- to protect other materials from the radiation
- Cools other ITER components and collects heat
- To breed tritium fuel (in the second phase of ITER)
- Overall cannot exceed 5 tons
- Designed to last 10 years
- Must be easily removed remotely for maintenance

Magnets = Materials^{6,3}

- Super large!
- Super high field!
 - □ ~13 T
- They're already super expensive!
- High Temp. Superconductors (HTS): T ~ 100K
- Niobium-Tin will most likely be used

ITER toroidal field magnet design

Courtesy of the U.S. Office of Fusion Energy Sciences.

- Structural: to keep ITER from falling apart
- Testing instruments
- (not to mention that the plasma itself is a material)

Figure removed for copyright reasons. See: graph on page 3 of Reference 2.

Graph figure removed for Copyright reasons.

http://www.iter.org

Bibliography

- 1 = Goldston, Robert. "ITER as a Step to Fusion Power". Nov 19, 2003, http://fire.pppl.gov/fpa03_goldston.ppt
- 2 = Fusion Energy: Power for future generations, May 2003, http://www-fusion.ciemat.es/New_fusion/es/Fusion/documentos/fusionenergy.pdf
- 3 = ITER ITA NEWSLETTER, Sept 2003, http://www-pub.iaea.org/MTCD/publications/PDF/Newsletters/ITER-NL-ITA-8.pdf
- 4 = Bolt, Materials for Fusion, Sept 8, 2004, http://www.mpg.de/pdf/europeanWhiteBook/wb_materials_100_104.pdf
- 5 = Ulrickson, M. et al., Selection of Plasma Facing Materials for ITER, 1995, http://ieeexplore.ieee.org/iel3/3790/11107/00534250.pdf?arnumber=534250
- 6 = DOE, The Potential Role of ITER in Magnetic Fusion Energy Research, Feb 3, 2003, http://www.ofes.fusion.doe.gov/ITER/RoleofITERinMFE.pdf
- 7 = Boeing, ITER Shield Blanket Design, Sept 12, 1997, http://www.boeing.com/assocproducts/hienergy/ITER_SB.htm

Thank You!