Configurar a Interface Serial (UART):

```
Freq. DCO = 8 \text{ MHZ}
```

Taxa = 9.600 bps

 N^0 de bits = 8 (sem paridade)

Após a recepção do primeiro byte, enviar um texto inicial, e retornar (ecoar) os bytes recebidos pela UART:

```
>Interface Serial:
>1
>2
>3
>A
>B
>C
>D
>
```

Interface Serial (UART)

C: Exercício 26

Taxa de Transmissão: Frequência de clock dos registradores de deslocamento

Taxa de Transmissão: bps (baud)

Interface Serial (UART)

C: Exercício 26

Transmissão de um byte:

USCI_Ax:

C: Exercício 26

C: Exercício 26

Table 16. Port P1 (P1.0 to P1.2) Pin Functions

PIN NAME (P1.x)	x		CONTROL BITS / SIGNALS (1)						
		FUNCTION	P1DIR.x	P1SEL.x	P1SEL2.x	ADC10AE.x INCH.x=1 ⁽²⁾	CAPD.y		
P1.0/		P1.x (I/O)	I: 0; O: 1	0	0	0	0		
TA0CLK/		TA0.TACLK	0	1	0	0	0		
ACLK/	0	ACLK	1	1	0	0	0		
A0 ⁽²⁾ /	0	A0	X	X	X	1 (y = 0)	0		
CA0/		CA0	X	Х	Х	0	1 (y = 0)		
Pin Osc		Capacitive sensing	Х	0	1	0	0		
P1.1/		P1.x (I/O)	I: 0; O: 1	0	0	0	0		
TA0.0/		TA0.0	1	1	0	0	0		
		TA0.CCI0A	0	1	0	0	0		
UCA0RXD/		UCA0RXD	from USCI	1	1	0	0		
UCA0SOMI/	'	UCA0SOMI	from USCI	1	1	0	0		
A1 ⁽²⁾ /		A1	Х	Х	X	1 (y = 1)	0		
CA1/		CA1	X	X	X	0	1 (y = 1)		
Pin Osc		Capacitive sensing	Х	0	1	0	0		
P1.2/		P1.x (I/O)	I: 0; O: 1	0	0	0	0		
TA0.1/		TA0.1	1	1	0	0	0		
		TA0.CCI1A	0	1	0	0	0		
UCA0TXD/	2	UCA0TXD	from USCI	1	1	0	0		
UCA0SIMO/	2	UCA0SIMO	from USCI	1	1	0	0		
A2 ⁽²⁾ /		A2	Х	Х	Х	1 (y = 2)	0		
CA2/		CA2	Х	Х	Х	0	1 (y = 2)		
Pin Osc		Capacitive sensing	Х	0	1	0	0		

C: Exercício 26

UCAxCTL0, USCI_Ax Control Register 0							
UCPEN	UCPAR	UCMSB	UC7BIT	UCSPB	UCMODEx		UCSYNC=0
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0
UCPEN	Bit 7	(UCAxR	sabled. nabled. Parit XD). In addr I in the parity	ess-bit multi	processor m	,	•
UCPAR	Bit 6	Parity select. UCPAR is not used when parity is disabled. Odd parity Even parity					
UCMSB	Bit 5	MSB first select. Controls the direction of the receive and transmit shift register. USB first MSB first					
UC7BIT	Bit 4	Character len 0 8-bit dat 1 7-bit dat	a	7-bit or 8-bit	character le	ength.	
UCSPB	Bit 3	Stop bit selec 0 One sto 1 Two sto	p bit	stop bits.			
UCMODEx	Bits 2–1	10 Address		ssor Mode. cessor Mode	ў Э.		de when
UCSYNC	Bit 0	•	mode enable onous mode nous Mode				

C: Exercício 25

UCAxBR0, USCI_Ax Baud Rate Control Register 0

UCAxBR1, USCI_Ax Baud Rate Control Register 1

UCBRx

Clock prescaler setting of the Baud rate generator. The 16-bit value of (UCAxBR0 + UCAxBR1 \times 256) forms the prescaler value.

UCAxMCTL, USCI_Ax Modulation Control Register

15.3.10 Setting a Baud Rate

For a given BRCLK clock source, the baud rate used determines the required division factor N:

$$N = \frac{f_{BRCLK}}{Baudrate}$$

The division factor N is often a non-integer value thus at least one divider and one modulator stage is used to meet the factor as closely as possible.

If N is equal or greater than 16 the oversampling baud rate generation mode can be chosen by setting UCOS16.

$$f_{\text{BRCLK}} = 8 \text{ MHz}$$

 $Baudrate = 9.600 \text{ bps}$

$$N = 8000000 / 9600 = 833,33333...$$

15.3.10 Setting a Baud Rate

For a given BRCLK clock source, the baud rate used determines the required division factor N:

$$N = \frac{f_{BRCLK}}{Baudrate}$$

The division factor N is often a non-integer value thus at least one divider and one modulator stage is used to meet the factor as closely as possible.

If N is equal or greater than 16 the oversampling baud rate generation mode can be chosen by setting UCOS16.

Low-Frequency Baud Rate Mode Setting

In the low-frequency mode, the integer portion of the divisor is realized by the prescaler:

$$UCBRx = INT(N)$$

and the fractional portion is realized by the modulator with the following nominal formula:

$$UCBRSx = round((N - INT(N))*8)$$

C: Exercício 26

IE2, Interrupt Enable Register 2

7	6	5	4	3	2	1	0
				UCB0TXIE	UCB0RXIE	UCA0TXIE	UCA0RXIE
				rw-0	rw-0	rw-0	rw-0
		These bits may be used by other modules (see the device-specific data sheet).					specific data
UCB0TXIE	(USCI_B0 transmit interrupt enable Interrupt disabled Interrupt enabled					
UCB0RXIE	(USCI_B0 receive interrupt enable 1 Interrupt enabled					
UCA0TXIE	(USCI_A0 transmit interrupt enable 0 Interrupt disabled 1 Interrupt enabled					
UCA0RXIE	(•	eive interrupt disabled enabled	t enable			

C: Exercício 26

IFG2, Interrupt Flag Register 2

	Bits 7-4	These bits may be used by other modules (see the device-specific data sheet).
UCB0 TXIFG	Bit 3	USCI_B0 transmit interrupt flag. UCB0TXIFG is set when UCB0TXBUF is empty. O No interrupt pending Interrupt pending
UCB0 RXIFG	Bit 2	USCI_B0 receive interrupt flag. UCB0RXIFG is set when UCB0RXBUF has received a complete character. O No interrupt pending Interrupt pending
UCA0 TXIFG	Bit 1	USCI_A0 transmit interrupt flag. UCA0TXIFG is set when UCA0TXBUF empty. O No interrupt pending Interrupt pending
UCA0 RXIFG	Bit 0	USCI_A0 receive interrupt flag. UCA0RXIFG is set when UCA0RXBUF has received a complete character. O No interrupt pending Interrupt pending

Interrupções

```
/* 0xFFE4 Port 1 */
#define PORT1 VECTOR
                                   (2 * 2u)
#define PORT2 VECTOR
                                   (3 * 2u)
                                           /* 0xFFE6 Port 2 */
                                           /* 0xFFEA ADC10 */
#define ADC10 VECTOR
                                   (5 * 2u)
                                   (6 * 2u) /* 0xFFEC USCI A0/B0 Transmit */
#define USCIABOTX VECTOR
#define USCIABORX VECTOR
                                   (7 * 2u) /* 0xFFEE USCI A0/B0 Receive */
#define TIMERO A1 VECTOR
                                   (8 * 2u) /* 0xFFF0 Timer0)A CC1, TA0 */
#define TIMERO AO VECTOR
                                   (9 * 2u) /* 0xFFF2 Timer0 A CC0 */
#define WDT VECTOR
                                   (10 * 2u) /* 0xFFF4 Watchdog Timer */
                                   (11 * 2u) /* 0xFFF6 Comparator A */
#define COMPARATORA VECTOR
#define TIMER1 A1 VECTOR
                                   (12 * 2u) /* 0xFFF8 Timer1 A CC1-4, TA1 */
#define TIMER1 A0 VECTOR
                                   (13 * 2u) /* 0xFFFA Timer1 A CC0 */
#define NMI VECTOR
                                   (14 * 2u) /* 0xFFFC Non-maskable */
#define RESET VECTOR
                                   (15 * 2u) /* 0xFFFE Reset [Highest Priority] */
```

C: Exercício 26

C: Exercício 26

C: Exercício 26

