Module IN 2018

3D User Interfaces - Dreidimensionale Nutzerschnittstellen -

Prof. Gudrun Klinker

Interaction Techniques: Travel SS 2023

Agenda

- → 1. 3D travel tasks
 - 2. Travel techniques
 - 3. Design guidelines

Overview

1. 3D Travel Tasks

- → 1.1 Exploration
 - 1.2 Search
 - 1.3 Manoeuvering
 - 1.4 Additional travel task characteristics

1. 3D Travel Tasks

1.1 Exploration

- No explicit goal for movement
 - Browse the environment
 - Obtain information about objects and locations
 - Build up knowledge of the environment
- Used at the beginning of an interaction with an environment
- Spontaneous movements
- **UI** Requirements
 - Allow for continuous, direct control of viewpoint
 - Interrupt animated viewpoint control
 - Little cognitive load on user w.r.t understanding the technique

1. 3D Travel Tasks

1.2 Search

- Travel to a specific goal or target location within the environment
 - Naive search
 - **Exploration**
 - Primed search
 - Incomplete starting knowledge of environment
- UI options
 - Goal-oriented approaches
 - Specify destination on map (inefficient if destination is not explicitly shown on map)

1.3 Manoeuvering

- Small, precise movements in a small area
 - Reposition local viewpoint
- Can cost users precious time and cause frustration
- UI requirements
 - Great precision of motion
 - Very fast
 - Tight feedback loop

1.4 Additional Travel Task Characteristics

- Distance to be traveled
 - Short-range: high precision
 - Medium-range
 - Long-range: velocity control, tele-portation
- Amount of curvature or number of turns in the path
 - Little curvature: steering based on torso-direction
 - Much curvature: pointing-based travel
- Visibility of the target from the starting location
 - Visible target: gaze-based techniques

1. 3D Travel Tasks

1.4 Additional Travel Task Characteristics

- Number of DOFs required for the movement
 - Motion in horizontal plane (driving, terrain-following)
 - Motion in 3D (flying)
- Required accuracy of the movement
 - High accuracy: technique that allows for
 - Fine control of direction, speed, target location
 - Easy error recovery
 - Medium/low accuracy: map-based techniques
- Other primary tasks that take place during travel
 - E.g., count the number objects in an environment
 - Travel technique must be
 - Unobtrusive
 - Intuitive
 - Easily controlled

Agenda

- 1. 3D travel tasks
- → 2. Travel techniques
 - 3. Design guidelines

Overview

2. Travel Techniques

- → 2.1 Technique classifications
 - 2.2 Physical locomotion techniques
 - 2.3 Steering techniques
 - 2.4 Route-planning techniques
 - 2.5 Target-based techniques
 - 2.6 Manual manipulation techniques
 - 2.7 Travel-by-scaling techniques
 - 2.8 Viewpoint orientation techniques
 - 2.9 Velocity specification techniques
 - 2.10 Integrated camera controls for desktop 3D environments

2.1 Technique Classifications

- Active vs. passive techniques
 - Active: movement of viewpoint controlled by user
 - Passive: viewpoint controlled by the system
 - if travelling is secondary task
 - Mixture: route planning (user plans, system executes)
- Physical vs. virtual techniques
 - Physical: user's body physically translates/rotates
 - Physical motion via locomotion device
 - Virtual: user's body is stationary/irrelevant
 - desktop VEs
 - Mixtures:
 - Physical rotation (head tracking) + virtual translation

	active	passive
physical	user motion	user-initated, then system-animated?
virtual	desktop Uls	animated

2.1 Technique Classifications

Example: VR Roller Coaster

Animated?

- Mostly passive? viewpoint controlled by the system
- Mixture physical/virtual? user's body is stationary (position fixed in the MOVING car, head rotation not fixed)

https://www.schloss-thurn.de/attraktion/vr-achterbahn/

_	active	passive
physical	user motion	user-initated, then system-animated?
virtual	desktop Uls	VR Roller Coaster animated

2.1 Technique Classifications

Classification using task decomposition [Bowman et al 97]

Overview

2. Travel Techniques

- 2.1 Technique classifications
- 2.2 Physical locomotion techniques
 - 2.3 Steering techniques
 - 2.4 Route-planning techniques
 - 2.5 Target-based techniques
 - 2.6 Manual manipulation techniques
 - 2.7 Travel-by-scaling techniques
 - 2.8 Viewpoint orientation techniques
 - 2.9 Velocity specification techniques
 - 2.10 Integrated camera controls for desktop 3D environments

2.2 Physical Locomotion Techniques

- Use user's physical exertion
- Intended for immersive VEs
- Used in
 - High-end video games

https://www.facebook.com/levrgalaxy/

https://www.nintendo.de/Spiele/Smart-Gerat/Pokemon-GO-1112517.html

Overview

2.2 Physical Locomotion Techniques

- → 2.2.1 Walking
 - 2.2.2 Walking in place
 - 2.2.3 Devices simulating walking
 - 2.2.4 Cycles

2. Travel Techniques | 2.2 Physical Locomotion Techniques

2.2.1 Walking

Full gait techniques

- Real walking
- Redirected walking
- Scaled walking

2. Travel Techniques | 2.2 Physical Locomotion Techniques

2.2.1 Walking

- Approach
 - (Tracked) users physically walk in the VE
- Addressed human cues
 - Vestibular motion
 - Spatial understanding
- Problems
 - Limited "real" range of the VE
 - Cables
- Experiments/extensions
 - VirtualPit experiments (UNC)
 - HiBall system (UNC)
 - Augmented Reality

University of Northern Carolina (UNC)

Columbia University (CU)

2. Travel Techniques | 2.2 Physical Locomotion T

Partial gait techniques

Walking in place

Human joystick

VMC, Wells 96 (HIT Lab)

2. Travel Techniques | 2.2 Physical Locomotion Techniques

2.2.2 Walking in Place

Approach

- Move feet to simulate walking (without real translation)
- Addressed human cues
 - Physical exertion
- Problems
 - Users cannot walk infinitely far (takes too long, users get tired)
- Experiments/extensions
 - Relative tracking of moving feet
 - Sense of presence: Walking > walking in place > virtual travel in VEs (flying) [Usoh 99]
 - Efficiency, task performance: virtual travel > walking in place

2. Travel Techniques | 2.2 Physical Locomotion Techniques

2.2.3 Devices Simulating Walking

Gait negation techniques

- Treadmills
- Passive omnidirectional treadmills
- Active omnidirectional treadmills
- Low-friction surfaces
- Step-bases devices

2.2.3 Devices Simulating Walking

- Approach
 - Use special locomotion devices (treadmills, ...)
- Problems
 - How can users rotate on a treadmill?
- Experiments/extensions
 - Joystick or head tracking for rotations
 - Treadmill on a motion platform
 - Omnidirectional treadmill (ODT), Torus treadmill
 - GaitMaster
 (detection of walking motion via force sensors in a "ground surface" attached to each foot)

Torus Treadmill Tzukuba University, Iwata 1999

GaitMaster2 Tzukuba University, Iwata 2001

2. Travel Techniques | 2.2 Physical Locomotion Techniques

2.2.4 Cycles

- Approach
 - Vehicle-based approach
 - Bicycle (pedal-driven)
- Pro
 - Mechanically less complex
- Problems
 - Not as believable as real walking

Peloton bike

Overview

2. Travel Techniques

- 2.1 Technique classifications
- → 2.3 Steering techniques 持有
 - 2.4 Route-planning techniques
 - 2.5 Target-based techniques
 - 2.6 Manual manipulation techniques
 - 2.7 Travel-by-scaling techniques
 - 2.8 Viewpoint orientation techniques
 - 2.9 Velocity specification techniques
 - 2.10 Integrated camera controls for desktop 3D environments

2.3 Steering Techniques

Virtual travel techniques
 (immersive, desktop-based)

Continuous control of the direction of motion

- Absolute (north, west, east, south) ラ流 投: 有mas

Relative (left, right, forward, backward)

Coordinate systems:

World-based (absolute)

– Person-based (relative: "ego"-x)

Large number of interlinked coordinate systems

 Positions: head, left eye, right eye, torso, left hand, right hand

Orientations: gaze, body, hand pointing (left, right)

2. Travel Techniques

更自然

2.3 Steering Techniques

https://www.3dart.it/en/how-to-transfer-mocap-data-from-the-content-browser-over-to-a-character-in-c4d/

AzureKinect, Assetstore.unity.com

https://ar-tracking.com/en/product-program/motion-capture

Overview

2.3 Steering Techniques

- → 2.3.1 Gaze-directed steering
 - 2.3.3 Pointing
 - 2.3.3 Torso-directed steering
 - 2.3.4 Lean-directed steering
 - 2.3.5 Camera-in-hand technique
 - 2.3.6 Physical steering props
 - 2.3.7 Virtual motion controller
 - 2.3.8 Semi-automated steering

2.3.1 Gaze-Directed Steering

- Approach
 - Travel along viewing direction
 - Directional component:
 - Orientation of head tracker
 - Viewing direction of eye tracker (if available)
 - Desktop: Ray from virtual camera position through center of window
 - Translational component (slider or joystick with button-press)
 - (Scaled) additive amount (position change)
 - Multiplicative amount (speed)
- Pro
 - Easy to understand for users
 - Modest hardware requirements
- Problems
 - "Flying" hard to realize
 - Horizontal motion: head has to be exactly upright
 - Lifting up from the ground = looking up to the ceiling (HMD may fall off)
 - Coupling of gaze direction with steering direction
- Experiments/extensions
 - Strafing (motion orthogonal to viewing direction)

pointing

2.3.1 Gaze-Directed Steering

- Approach
 - Travel along viewing direction
 - Directional component:
 - Orientation of head tracker
 - Viewing direction of eye tracker (if available)
 - Desktop: Ray from virtual camera position through center of window
 - Translational component (slider or joystick with button-press)
 - (Scaled) additive amount (position change)
 - Multiplicative amount (speed)
- Pro
 - Easy to understand for users
 - Modest hardware requirements
- Problems
 - "Flying" hard to realize
 - Horizontal motion: head has to be exactly upright
 - Lifting up from the ground = looking up to the ceiling (HMD may fall off)
 - Coupling of gaze direction with steering direction
- Experiments/extensions
 - Strafing (motion orthogonal to viewing direction)

2.3.2 Pointing

- Approach
 - Use hand to point in travel direction
 - Desktop: keyboard for travel, mouse for gaze
- Addressed human cues, Pros
 - Proprioceptive sense (of own hand motion)
 - Good for acquisition of spatial knowledge
- Problems
 - More complex (simultaneous control of two values)
 - Higher levels of cognitive load
- Experiments/extensions
 - Two-hand pointing
 - Extension: using pinch gloves for initiation of steering gesture
 - motion direction
 - optionally: also speed

pointing

2.3.3 Torso-Directed Steering

- Approach
 - People naturally turn their bodies in walking direction
 - Tracked torso (waist)
- Addressed human cues
 - Decoupling of motion and gaze
 - More natural than pointing (less cognitive load)
 - Hands are left free for other tasks
- Problems
 - Only usable for horizontal motions
 - Additional tracker (target) required

2.3.4 Lean-directed Steering

Combination of several body-based techniques

2.3.5 Camera-In-Hand Technique

- Approach
 - For desktop VE (with position trackers)
 - Tracker in hand = virtual camera
- Addressed human cues
 - Proprioceptive sense of hand motion
- Problems
 - Confusing due to exocentric control of workspace, drawn from an egocentric perspective
- Example: Magic Lens
 - Drone, steered by thumbs on tablet
 - Drone, steered by tracked tablet
 - Tablet relative to head

2.3.6 Physical Steering Props

Approach

- "Near-field haptics" approach
- Use specialized steering devices
 - In cars: steering wheel, gas pedal, brake
 - Ships, tractors, aircrafts

Metaphors, Pros

- Vehicle metaphor
- Usable without training

Problems

- User has to be seated
- Potentially unrealistic user expectations of realistic control and system response

Examples

- Virtual jungle cruise, DisneyQuest: collaborative control of a virtual raft with physical oars
- Pirates of the Caribbean: virtual ship
- Arcade games: motorcycles handlebars, skateboards, skis, ...

2.3.7 Virtual Motion Controller (VMC)

Approach

- Platform with embedded pressure sensors along the rim of the platform
- Center = stationary position
- Rim = motion (direction + speed) in vector direction (center → rim)

VMC, Wells 96 (HIT Lab)

Addressed human cues

 Natural proprioceptive, kinesthetic senses to maintain spatial orientation and understanding of movement

Problems

Limited to 2D motions

2.3.8 Semi-Automated Steering

- Approach
 - System provides general constraints and rule on user's movement
 - User controls motion within given constraints
- Metaphors
 - River metaphor, virtual boat ride: the boat continues to negotiate its way down the river even when the user doesn't interact [Galyean 95]
 - User attached to a "controlled path" by
- Examples
 - Magical story telling
 - Disney's Aladdin attraction: magical carpet rides [Pausch et al 96]

- 2.1 Technique classifications
- 2.2 Physical locomotion techniques
- 2.3 Steering techniques
- 2.4 Route-planning techniques
 - 2.5 Target-based techniques
 - 2.6 Manual manipulation techniques
 - 2.7 Travel-by-scaling techniques
 - 2.8 Viewpoint orientation techniques
 - 2.9 Velocity specification techniques
 - 2.10 Integrated camera controls for desktop 3D environments

2.4 Route-Planning Techniques

- Two-step process:
 - User first specifies/plans a route
 - System then arranges travel along this route
- Applications:
 - Define a camera path for an animation
 - Focus on other tasks:
 - Information gathering
 - ...to some extent...: surgery planning

2.4 Route-Planning Techniques

- → 2.4.1 Drawing a path
 - 2.4.2 Marking points along a path
 - 2.4.3 Manipulating a user representation
 - 2.4.4 Transistions between different modes

2.4.1 Drawing a Path

Approach

- Desktop 3D UIs: draw directly in the 3D environment with mouse (according to projected 3D world on screen)
 - Path at fixed height above ground
 - Intelligent path mapping through tunnels and valleys

Immersive VE: draw into a 2D or 3D map of the virtual world

2.4.2 Marking Points Along a Path

- Approach
 - User places markers at key locations along the path
 - · Directly in the environment
 - On a 2D or 3D map of the environment
 - System interpolates between markers
 - According to 3D environment map (straight line on surface)
 - Markers as control points for curves

Columbia University, MARS System

2.4.3 Manipulating a User Representation

- Approach
 - Two-phase approach:
 - Represent user by an avatar in a WIM-presentation
 - User: define motion path by controlling avatar
 - System: execute motion path in real-scale VE
 - Transitions large-scale VE ↔ WIM: "fly-in", "fly-out"
- Pros
 - User representation (6 DOF)

2.4.3 Manipulating a User Representation (Entity)

- Remote view control
 - Remote person completely controls the view of a VR user
 - E.g.: test situations in a driving simulator
 - Basic setup
- Tangible Car UI

CAR (TU Munich)

2.4.4 Transitions between Different Modes

Travelling in a mixed world (AR mixed with VR)

Leaving the real world behind: Magic book

- 2.1 Technique classifications
- 2.2 Physical locomotion techniques
- 2.3 Steering techniques
- 2.4 Route-planning techniques
- 2.5 Target-based techniques
 - 2.6 Manual manipulation techniques
 - 2.7 Travel-by-scaling techniques
 - 2.8 Viewpoint orientation techniques
 - 2.9 Velocity specification techniques
 - 2.10 Integrated camera controls for desktop 3D environments

2.5 Target-Based Techniques

- Go directly to a specific viewpoint in the VE
- Not necessarily "tele-portation"!
 - Decreases user's spatial orientation

2.5 Target-Based Techniques

2.5.1 Map-based or WIM-based target specification 2.5.2 ZoomBack technique

See also: "cross-task" target-specifications

- Object selection/manipulation: travel to selected object
- Object selection/manipulation: travel to a newly positioned (manipulated) target
- Select a predefined target from a list or menu
- Enter 2D or 3D coordinates or location name, using text entry

2. Travel Techniques | 2.5 Target-Based

2.5.1 Target Specification

Map-based or WIM-based

- Approach
 - User specifies target location in 2D map or WIM (e.g. by positioning an avatar with a virtual hand)

- System generates a path from current to target location
- Details
 - How to relate position in the WIM to the position in the large VE
 - Interaction via stylus (or tracked tangible)
 - 3D path

2. Travel Techniques | 2.5 Target-Based

2.5.2 ZoomBack Technique

- Approach
 - User selects an object in the environment (ray-casting)
 - System moves user to a position directly in front of the object
 - System remembers previous position
 - User can move back after inspecting the object
 - Implementation via "pop-through" button
- Experiments/extensions
 - Virtual museum (step up to a virtual painting, step back to get an overview)

back

- 2.1 Technique classifications
- 2.2 Physical locomotion techniques ***
- 2.3 Steering techniques 🗚 🏚
- 2.4 Route-planning techniques
- 2.5 Target-based techniques
- 2.6 Manual manipulation techniques
 - 2.7 Travel-by-scaling techniques
 - 2.8 Viewpoint orientation techniques
 - 2.9 Velocity specification techniques
 - 2.10 Integrated camera controls for desktop 3D environments

2.6 Manual Manipulation Techniques

Hand-based manipulation: HOMER, GoGo Manipulate viewpoint instead of virtual object

Suitable for interspersed actions: both travel and object manipulation

- → 2.6.1 Grabbing the air
 - 2.6.2 Fixed-object manipulation

2.6.1 Grabbing the Air

2. Travel Techniques | 2.6 Manual Manipulation

Approach

- User: grabbing gesture "anywhere" in the virtual world, followed by hand motion
- System: move the entire world according to hand motion

Problems

- World motion ≠ hand motion!! (Ignore hand rotations)
- Determine whether user wants to travel or to manipulate a virtual object

Experiments/extensions

 Use Go-Go concept to allow for faster/larger motions (to reduce clutching)

2.6.2 Fixed-Object Manipulation

Approach

- User selects an object, makes hand movements
- System interpretes hand movements as travel instructions relative to selected object

Example: motion on slippery floor (ice dance)

Examples

- Move toward an object by pulling it close
- Move around an object by rotating it

- 2.1 Technique classifications
- 2.2 Physical locomotion techniques
- 2.3 Steering techniques
- 2.4 Route-planning techniques
- 2.5 Target-based techniques
- 2.6 Manual manipulation techniques
- → 2.7 Travel-by-scaling techniques
 - 2.8 Viewpoint orientation techniques
 - 2.9 Velocity specification techniques
 - 2.10 Integrated camera controls for desktop 3D environments

2.7 Travel-By-Scaling Techniques

- Approach
 - Arbitrarily scaled physical motion in virtual world
- Problems
 - User must understand current scale factor
 - Use virtual body of fixed scale
 - Danger of cyber sickness
 - Imprecise user movements (for large scale factors)
 - Additional interface component required to specify scale factor (e.g., pinch gloves)

- 2.1 Technique classifications
- 2.2 Physical locomotion techniques
- 2.3 Steering techniques
- 2.4 Route-planning techniques
- 2.5 Target-based techniques
- 2.6 Manual manipulation techniques
- 2.7 Travel-by-scaling techniques
- 2.8 Viewpoint orientation techniques
 - 2.9 Velocity specification techniques
 - 2.10 Integrated camera controls for desktop 3D environments

2.8 Viewpoint Orientation Techniques

- Head tracking
 - Standard approach
- Orbital tracking
 - The user "flies" on an orbit around a single object
- Non-isomorphic rotation
 - E.g., projected displays in which the displays do not completely surround the user
 - Amplified head rotations
- Virtual sphere techniques
 - For desktop VEs
 - E.g., ARCBALL

3. Interaction Techniques for 3D Manipulation | 3.7 Desktop 3D Manipulation

3.7.4 ARCBALL Technique

Use spherical geometry to interpret 3D rotations

- Great circle (arc) on the sphere
 - arc lies on plane through sphere center

http://rainwarrior.thenoos.net/dragon/arcball.html

rotation around the axis perpendicular to the circle

http://www.sph.sc.edu/comd/rorden/3d.html

ICE Sphere by Christoph Welkovits http://www.morphographic.com/Sphere.htm

- 2.1 Technique classifications
- 2.2 Physical locomotion techniques
- 2.3 Steering techniques
- 2.4 Route-planning techniques
- 2.5 Target-based techniques
- 2.6 Manual manipulation techniques
- 2.7 Travel-by-scaling techniques
- 2.8 Viewpoint orientation techniques
- 2.9 Velocity specification techniques
 - 2.10 Integrated camera controls for desktop 3D environments

2.9 Velocity Specification Techniques

Approach

- Adaptive speed depending on travel situation
 - Fast motion across large distances
 - Slow motion for detailed viewpoint adjustment
- Velocity control methods
 - "Lean-based" velocity: position of head relative to waist
 - Velocity defined by hand position (relative to body)
 - WIMP: buttons, menus, text input
 - Physical props: accelerator/brake pedals
 - Force-feedback joystick

Problems

Additional complexity

- 2.1 Technique classifications
- 2.2 Physical locomotion techniques
- 2.3 Steering techniques
- 2.4 Route-planning techniques
- 2.5 Target-based techniques
- 2.6 Manual manipulation techniques
- 2.7 Travel-by-scaling techniques
- 2.8 Viewpoint orientation techniques
- 2.9 Velocity specification techniques
- → 2.10 Integrated camera controls for desktop 3D environments

2.10 Integrated Camera Controls on Desktop

Approaches

- Use of standard keyboard and mouse mapping: 2DOF input → 6 DOF camera control
- VRML viewers, 3D modeling and animation systems (Blender, Unity etc):
 - Several navigation modes, entry of numeric coordinates
- Two-joystick technique (bulldozer technique)

Agenda

- 1. 3D travel tasks
- 2. Travel techniques
- → 3. Design guidelines

3. Design Guidelines

- Match the travel technique to the application
- Consider both natural and magic techniques
- Use an appropriate combination of travel technique, display technique, and input devices
- Choose travel techniques that can easily be integrated with other interaction techniques in the application
- Provide multiple travel techniques to support different travel tasks in the same application
- Make simple travel easier by using target-based techniques for goal-oriented travel and steering techniques for exploration and search

_ _ _

3. Design Guidelines

- Use a physical locomotion technique if physical user exertion or naturalism is required
- Use graceful transitional motions if overall environment context is important
- Train users in sophisticated strategies to help them acquire survey knowledge
- Consider integrated (cross-task) interaction techniques if travel is used in the context of manipulation
- Desktop 3D navigation techniques should allow the user to accomplish the most common travel tasks with a minimum effort

Thank you!

