160/498

a-d, i, n-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 to 20. R = polymer; R' = sugar, glycoconjugate.

FIG. 40H

161/498

```
NSO expressed tPA
A = B; a-m, r-u (independently selected) = 0 or 1;
n = 1; o, p, q, v-y = 0
```

```
    sialidase, alpha-galactosidase
    CMP-SA-levulinate, ST3Gal3,
    H<sub>4</sub>N<sub>2</sub>-PEG
```

```
A = B; a-m, r-y (independently selected) = 0 or 1;

n = 1; o, p, q = 0;

v-y (independently selected) = 1,

when j-m (independently selected) is 1;

R = PEG.
```

FIG. 401

```
CHO, BHK, 293 cells, Vero expressed tPA a-g, n, p = 1; h = 1 to 3; j-m, i, (independently selected) = 0 or 1; r-u (independently selected) = 0 to 1; q, o, v-y = 0.
```

- 1. alpha and beta Mannosidases
- 2. CMP-SA, ST3Gal3
- 3. Galactosyltransferase, UDP-Gal-PEG

```
a-g, n = 1; h = 1 to 3;
i, r-u (independently selected) = 0 or 1; o = 1;
q, p, v-y = 0; j-m (independently selected) = 0 or 1;
R' = Gal-PEG
```

FIG. 40J

162/498

```
Plant expressed tPA

A = B; a-d, f, h, j- m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1;
n = 1; R' = xylose
```

- 1. hexosaminidase,
- 2. alpha mannosidase and xylosidase
- 3. GlcNAc transferase, UDP-GlcNAc-PEG

```
A = B; a-d, f, h, j-n, s, u, v-y = 0;
e, g, i, r, t (independently selected) = 0;
q = 1; R' = GlcNAc-PEG.
```

FIG. 40K

163/498

$$\mathbf{A} \leftarrow \begin{bmatrix} \left[\operatorname{GlcNAc-(Gal)}_{a} \right]_{e^{-}} \left(\operatorname{Sia} \right)_{j} - \left(\operatorname{R} \right)_{v} \right]_{r} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{f^{-}} \left(\operatorname{Sia} \right)_{k} - \left(\operatorname{R} \right)_{w} \right]_{s} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{c} \right]_{g^{-}} \left(\operatorname{Sia} \right)_{l} - \left(\operatorname{R} \right)_{x} \right]_{t} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\ \left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left[\operatorname{Sia}_{h^{-}} \left(\operatorname{Sia}_{h^{-}}$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer.

FIG. 40L

164/498

CHO, BHK, 293 cells, Vero expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 40M

```
CHO, BHK, 293 cells, Vero expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (1.2 mol eq), ST3Gal3
- 3. CMP-SA (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 40N

165/498

```
NSO expressed TNK tPA

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; v-y = 0;

Sia (independently selected) = Sia or Gal.
```

- 1. Sialidase and α-galactosidase
- 2. Galactosyltransferase, UDP-Gal
- **★** 3. CMP-SA-PEG, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 400

166/498

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer.

167/498

CHO, BHK, 293 cells, Vero expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3
- 3. CMP-SA, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 40Q

```
CHO, BHK, 293 cells, Vero expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

```
    CMP-SA-levulinate, ST3Gal3,
buffer, salt
    H<sub>4</sub>N<sub>2</sub>-PEG
```

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 40R

168/498

CHO, BHK, 293 cells, Vero expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

1. CMP-SA, α2,8-ST

a-d, i, q-u (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-20; v-y (independently selected) = 0.

FIG. 40S

169/498

a-d, i, n-y (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 6.

j-m (independently selected) = 0 to 100.

R = modifying group, mannose, oligo-mannose;

R' = H, glycosyl residue, modifying group, glycoconjugate.

R" = glycosyl residue.

FIG. 40T

170/498

```
Insect cell expressed TNK tPA
a-d, f, h, j-m, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

```
a-i, q-u (independently selected) = 0 or 1;

j-m = 0; v-y (independently selected) = 1,

when e-h (independently selected) is 1;

R = PEG.
```

FIG. 40U

```
Yeast expressed TNK tPA a-m=0; q-y (independently selected) = 0 to 1; p=1; R (branched or linear) = Man, oligomannose.
```

- 1. Endoglycanase
- 2. Galactosyltransferase, UDP-Gal-PEG

```
a-m, p-y = 0; n (independently selected) = 0 or 1; R' = -Gal-PEG.
```

FIG. 40V

171/498

CHO, BHK, 293 cells, Vero expressed TNK tPA a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. CMP-SA-linker-Gal-UDP, ST3Gal3
- 2. Galactosyltransferase, anti-TNF IG chimera produced in CHO.

a-m, r-u (independently selected) = 0 or 1; p, q = 1; n = 0; v-y (independently selected) = 0 or 1; R = linker-anti-TNF IG chimera protein.

FIG. 40W

172/498

$$\mathbf{B} \leftarrow \begin{bmatrix} (\mathrm{Sia})_{b} \\ -\mathrm{GalNAc} - (\mathrm{Gal})_{a} - (\mathrm{Sia})_{c} - (\mathrm{R})_{d} \end{bmatrix}_{e}$$

a-c, e (independently selected) = 0 or 1;
d = 0;
R = modifying group, mannose, oligomannose.

FIG. 41A

173/498

CHO, BHK, 293 cells, Vero expressed IL-2 a-c, e (independently selected) = 0 or 1; d = 0

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal1

a-d, e (independently selected) = 0 or 1; R = PEG.

FIG. 41B

Insect cell expressed IL-2 a, e (independently selected) = 0 or 1; b, c, d = 0.

- 1. Galactosyltransferase, UDP-Gal
- 2. CMP-SA-PEG, ST3Gal1

a, c, d, e (independently selected) = 0 or 1; R = PEG.

FIG. 41C

174/498

E. coli expressed IL-2 a-e = 0.

- 1. GalNAc Transferase, UDP-GalNAc
- 2. CMP-SA-PEG, sialyltransferase

c, d, e (independently selected) = 0 or 1; a, b = 0; R = PEG.

FIG. 41D

NSO expressed IL-2

a, e (independently selected) = 0 or 1;

b, c, d = 0

- 1. CMP-SA-levulinate, ST3Gal1
- 2. H₄N₂-PEG

a, c, d, e (independently selected) = 0 or 1; b = 0; R = PEG.

FIG. 41E

175/498

FIG. 41F

FIG. 41G

176/498

2 peptides

A and A' - N-linked sites

B - O-linked sites

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} & \operatorname{Man} & ([\operatorname{GlcNAc-(Gal})_{a}]_{e^{-}} & (\operatorname{Sia})_{j^{-}} & (\operatorname{R})_{v} \\ \operatorname{GlcNAc-GlcNAc-Man} & ([\operatorname{GlcNAc-(Gal})_{b}]_{f^{-}} & (\operatorname{Sia})_{k^{-}} & (\operatorname{R})_{w} \\ \operatorname{Man} & ([\operatorname{GlcNAc-(Gal})_{c}]_{g^{-}} & (\operatorname{Sia})_{l^{-}} & (\operatorname{R})_{x} \\ & ([\operatorname{GlcNAc-(Gal})_{d}]_{h^{-}} & (\operatorname{Sia})_{m^{-}} & (\operatorname{R})_{y} \end{bmatrix}_{u} \end{bmatrix}_{aa}$$

$$\mathbf{B} \leftarrow \begin{pmatrix} (\operatorname{Sia})_{o} \\ -\operatorname{GalNAc-(Gal)}_{n} - (\operatorname{Sia})_{p} - (R)_{z} \end{pmatrix}$$

a-d, i, n-u (independently selected) = 0 or 1. aa, bb (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 20. v-z = 0; R = polymer, glycoconjugate.

FIG. 42A

177/498

CHO, BHK, 293s cells, Vero, MDCK, HEKC expressed Factor VIII.

e-h = 1 to 4;

aa, bb, a-d, j-m, i, n-u (independently selected) = 0 or 1;

v-z = 0.

- 1. Sialidase
 - 2. CMP-SA-PEG, ST3Gal3

```
e-h = 1 to 4;
aa, bb, a-d, i, n, q-u (independently selected) = 0 or 1;
o, p, z = 0; j-m, v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 42B

CHO, BHK, 293S cells, Vero, MDCK, 293S, HEKC expressed Factor VIII.

e-h = 1 to 4;

aa, bb, a-d, j-m, i, n-u (independently selected) = 0 or 1;

v-z = 0.

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal3
- 3. ST3Gal1, CMP-SA

e-h = 1 to 4; aa, bb, a-d, i, n, p-u (independently selected) = 0 or 1; o, z = 0; j-m, v-y (independently selected) = 0 or 1; R = PEG.

FIG. 42C

178/498

CHO, BHK, 293s cells, Vero, MDCK, HEKC expressed Factor VIII.

e-h = 1 to 4;

aa, bb, a-d, j-m, i, n-u (independently selected)=0 or 1;

v-z = 0.

1. CMP-SA-PEG, ST3Gal3

e-h = 1 to 4; aa, bb, a-d, i, n-u (independently selected) = 0 or 1; z = 0; j-m, v-y (independently selected) = 0 or 1; R = PEG.

FIG. 42D

CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.
e-h = 1 to 4;
aa, bb, a-d, j-m, i, n-u (independently selected) 0 or 1;
v-z = 0.

1. CMP-SA-PEG, ST3Gal1

e-h = 1 to 4; aa, bb, a-d, i, n-u (independently selected) = 0 or 1; z = 0; j-m, v-y (independently selected) = 0 or 1; R = PEG.

FIG. 42E

179/498

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.
e-h = 1 to 4;
aa, bb, a-d, j-m, i, n-u (independently selected)=0 or 1;
v-z = 0.
```

1. CMP-SA-PEG, α 2,8-ST

```
e-h = 1 to 4;
aa, bb, a-d, i, n-y (independently selected) = 0 or 1;
z = 0; j-m (independently selected) = 0 to 2;
v-y (independently selected) = 1,
when j-m (independently selected) is 2;
R = PEG.
```

FIG. 42F

180/498

2 peptides

A or A' - N-linked sites

B - O-linked sites

$$\mathbf{B} \quad \bullet \begin{pmatrix} (\operatorname{Sia})_{o} \\ -\operatorname{GalNAc-(Gal)}_{n} - (\operatorname{Sia})_{p} - (R)_{z} \end{pmatrix}_{c}$$

a-d, i, n-u, (independently selected) = 0 or 1.
aa, bb, cc, dd (independently selected) = 0 or 1.
e-h (independently selected) = 0 to 6.
j-m (independently selected) = 0 to 20.
v-z = 0;

R = modifying group, mannose, oligo-mannose. R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 42G

181/498

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.
e-h = 1 to 4;
aa, bb, cc, a-d, j-m, i, n-u (independently selected) = 0 or 1;
dd, v-z = 0.
```

CMP-SA-levulinate, ST3Gal3,
 H₄N₂-PEG

```
e-h = 1 to 4;
aa, bb, cc, a-d, i, n-u (independently selected) = 0 or 1;
dd, z = 0; j-m, v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 42H

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.

e-h = 1 to 4;

aa, bb, cc, a-d, j-m, i, n-u (independently selected) = 0 or 1;

dd, v-z = 0.
```

1. endo-H2. galactosyltransferase, UDP-Gal-PEG

```
e-h = 1 to 4;
aa, bb, dd, a-d, i, j-u (independently selected) = 0 or 1;
cc, v-z=0; R'=-Gal-PEG.
```

FIG. 421

182/498

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.
e-h = 1 to 4;
aa, bb, cc, a-d, j-m, i, n-u (independently selected) = 0 or 1;
dd, v-z = 0.
```

- 1. ST3Gal3, CMP-SA
- 2. endo-H
- 3. galactosyltransferase, UDP-Gal-PEG

```
e-h = 1 to 4;
aa, bb, dd, a-d, i, j-u (independently selected) = 0 or 1;
cc, v-z = 0; R' = -Gal-PEG.
```

FIG. 42J

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.

e-h = 1 to 4;

aa, bb, cc, a-d, j-m, i, n-u (independently selected) = 0 or 1;

dd, v-z = 0.
```

- 1. mannosidases
- 2. GNT 1 & 2, UDP-GlcNAc
- $3.\ galactosyltransferase,\ UDP\mbox{-}Gal\mbox{-}PEG$

```
e-h = 1 to 4;
aa, a-d, i, j-y (independently selected) = 0 or 1;
bb, cc, dd, z = 0; R = PEG.
```

FIG. 42K

183/498

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC
expressed Factor VIII.
e-h = 1 to 4;
aa, bb, cc, a-d, j-m, i, n-u (independently selected) = 0 or 1;
dd, v-z = 0.

1. mannosidases
2. GNT-1,2, 4 & 5; UDP-GlcNAc
```

2. GN1-1,2, 4 & 5; UDP-GICNAC
3. galactosyltransferase, UDP-Gal
4. ST3Gal3, CMP-SA

e-h = 1 to 4; aa, bb, cc, a-d, i, j-q (independently selected) = 0 or 1;

FIG. 42L

dd, v-z = 0.

```
CHO, BHK, 293S cells, Vero, MDCK, HEKC expressed Factor VIII.

e-h = 1 to 4;

aa, bb, cc, a-d, j-m, i, n-u (independently selected) = 0 or 1;

dd, v-z = 0.
```

1. mannosidases2. GNT-1, UDP-GlcNAc-PEG

```
e-h = 0 to 4;
aa, a-d, i, j-y (independently selected) = 0 or 1;
bb, cc, dd, z = 0.
```

FIG. 42M

184/498

$$\mathbf{A} \leftarrow \begin{bmatrix} [\mathrm{GlcNAc\text{-}(Gal)}_{a}]_{e}^{-} & (\mathrm{Sia})_{j}^{-} & (\mathrm{R})_{v} \end{bmatrix}_{r}^{r} \\ [\mathrm{GlcNAc\text{-}Gal)}_{b}]_{f}^{-} & (\mathrm{Sia})_{j}^{-} & (\mathrm{R})_{v} \end{bmatrix}_{r}^{r} \\ [\mathrm{GlcNAc\text{-}(Gal)}_{b}]_{f}^{-} & (\mathrm{Sia})_{k}^{-} & (\mathrm{R})_{w} \end{bmatrix}_{s}^{r} \\ [\mathrm{GlcNAc\text{-}(Gal)}_{c}]_{g}^{-} & (\mathrm{Sia})_{l}^{-} & (\mathrm{R})_{x} \end{bmatrix}_{t}^{r} \\ [\mathrm{GlcNAc\text{-}(Gal)}_{d}]_{h}^{-} & (\mathrm{Sia})_{m}^{-} & (\mathrm{R})_{y} \end{bmatrix}_{u}^{r} \\ [\mathrm{GlcNAc\text{-}(Gal)}_{d}]_{h}^{-} & (\mathrm{Sia})_{m}^{-} & (\mathrm{R})_{w} \end{bmatrix}_{u}^{r} \\ [\mathrm{GlcNAc\text{-}(Gal)}_{d}]_{u}^{-} & (\mathrm{Sia})_{m}^{-} & (\mathrm{R})_{w} \end{bmatrix}_{u}^{r} \\ [\mathrm{GlcNAc\text{-}(Gal)}_{d}]_{u}^{-} & (\mathrm{R})_{w} \\ [\mathrm{GlcNAc\text{-}(Ga$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer.

FIG. 43A

185/498

CHO, BHK, 293 cells, Vero expressed Urokinase. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 43B

CHO, BHK, 293 cells, Vero expressed Urokinase. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. Sialidase
- 2. CMP-SA-PEG (1.2 mol eq), ST3Gal3
- 3. CMP-SA (16 mol eq), ST3Gal3

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 43C

186/498

CHO, BHK, 293 cells, Vero expressed Urokinase. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3
- 3. CMP-SA, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 43D

```
CHO, BHK, 293 cells, Vero expressed Urokinase.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y = 0.
```

- 1. CMP-SA-levulinate, ST3Gal3, buffer, salt
 - 2. H₄N₂-PEG

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 43E

187/498

```
CHO, BHK, 293 cells, Vero expressed Urokinase. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

1. CMP-SA, α2,8-ST

```
a-d, i, q-u (independently selected) = 0 or 1;
e-h = 1;
j-m (independently selected) = 0-20;
v-y (independently selected) = 0.
```

FIG. 43F

188/498

$$\mathbf{A} \leftarrow \begin{bmatrix} \left[\operatorname{GlcNAc-(Gal)}_{a} \right]_{e} - \left(\operatorname{Sia} \right)_{j} - \left(\operatorname{R} \right)_{v} \\ \left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{f} - \left(\operatorname{Sia} \right)_{k} - \left(\operatorname{R} \right)_{w} \end{bmatrix}_{s} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{g} - \left(\operatorname{Sia} \right)_{l} - \left(\operatorname{R} \right)_{x} \right]_{t} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h} - \left(\operatorname{Sia} \right)_{m} - \left(\operatorname{R} \right)_{y} \right]_{u} \\ q \\ p \\ \end{bmatrix}$$

a-d, i, n, p-u (independently selected) = 0 or 1.
e-h (independently selected) = 0 to 6.
j-m (independently selected) = 0 to 100.
v-y = 0;
R = modifying group, mannose, oligo-mannose;
R' = H, glycosyl residue, modifying group,
glycoconjugate.

FIG. 43G

189/498

```
Insect cell expressed Urokinase.
a-d, f, h, j-n, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

```
a-i, q-u (independently selected) = 0 or 1;
j-n = 0; v-y (independently selected) = 1,
when e-h (independently selected) is 1;
R = PEG.
```

FIG. 43H

```
Yeast expressed Urokinase.

a-n = 0;

q-y (independently selected) = 0 to 1;

p = 1; R (branched or linear) = Man, oligomannose.
```

- 1. Endoglycanase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

```
a-m, p-y = 0; n (independently selected) = 0 or 1; R' = -Gal-Sia-PEG.
```

FIG. 431

190/498

```
CHO, BHK, 293 cells, Vero expressed Urokinase.
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; n, v-y = 0.
```

- 1. CMP-SA-linker-SA-CMP, ST3Gal3
- 2. ST3Gal1, desialylated Urokinase produced in CHO.
- 3. CMP-SA, ST3Gal3, ST3Gal1

```
a-m, q-u (independently selected) = 0 or 1;

p = 1; n = 0;

v-y (independently selected) = 0 or 1;

R = linker-Urokinase.
```

FIG. 43J

```
Isolated Urokinase.

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; v-y = 0; n = 0;

Sia (independently selected) = Sia or SO<sub>4</sub>;

Gal (independently selected) = Gal or GalNAc;

GlcNAc (independently selected) = GlcNAc or GlcNAc-Fuc.
```

- 1. sulfohydrolase
- 2. CMP-SA-PEG, sialyltransferase

```
a-d, i-m, q-u (independently selected) = 0 or 1;
n = 0; e-h = 1; Sia = Sia;
Gal (independently selected) = Gal or GalNAc;
GlcNAc (independently selected) = GlcNAc or GlcNAc-Fuc.
v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 43K

191/498

```
Isolated Urokinase.

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; n = 0; v-y = 0;

Sia (independently selected) = Sia or SO<sub>4</sub>;

Gal (independently selected) = Gal or GalNAc;

GlcNAc (independently selected) = GlcNAc or GlcNAc-Fuc.
```

- 1. sulfohydrolase, hexosaminidase
- 2. UDP-Gal-PEG, galactosyltransferase

```
a-d, i, q-u (independently selected) = 0 or 1;
e-h = 1; j-n = 0; Gal (independently selected) = Gal;
GlcNAc (independently selected) = GlcNAc or GlcNAc-Fuc;
v-y (independently selected) = 0 or 1; R = PEG.
```

FIG. 43L

192/498

$$\mathbf{A} \leftarrow \begin{bmatrix} \left[\operatorname{GlcNAc-(Gal)}_{a} \right]_{e^{-}} \left(\operatorname{Sia} \right)_{j^{-}} \left(\operatorname{R} \right)_{v} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{b} \right]_{f^{-}} \left(\operatorname{Sia} \right)_{k^{-}} \left(\operatorname{R} \right)_{w} \right]_{s} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{c} \right]_{g^{-}} \left(\operatorname{Sia} \right)_{l^{-}} \left(\operatorname{R} \right)_{x} \right]_{t} \\ \left[\left[\operatorname{GlcNAc-(Gal)}_{d} \right]_{h^{-}} \left(\operatorname{Sia} \right)_{m^{-}} \left(\operatorname{R} \right)_{y} \right]_{u} \right]_{q} \\$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y=0; R = polymer, glycoconjugate.

FIG. 44A

193/498

```
CHO, BHK, 293 cells, Vero expressed DNase I. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 44B

```
CHO, BHK, 293 cells, Vero expressed DNase I. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (1.2 mol eq), ST3Gal3
- 3. CMP-SA (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 44C

194/498

```
CHO, BHK, 293 cells, Vero expressed DNase I. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3
- 3. CMP-SA, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 44D

```
CHO, BHK, 293 cells, Vero expressed DNase I. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.
```

```
    CMP-SA-levulinate, ST3Gal3,
buffer, salt
    2. H<sub>4</sub>N<sub>2</sub>-PEG
```

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1; v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 44E

195/498

```
CHO, BHK, 293 cells, Vero expressed DNase I. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.
```

1. CMP-SA, α2,8-ST

```
a-d, i, q-u (independently selected) = 0 or 1;
e-h = 1;
j-m (independently selected) = 0-20;
v-y (independently selected) = 0.
```

FIG. 44F

196/498

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} \\ -\operatorname{GlcNAc-Man} \\ (\operatorname{R'})_{n} \end{bmatrix} \begin{bmatrix} (\operatorname{GlcNAc-(Gal)}_{a}]_{e} - (\operatorname{Sia})_{j} - (\operatorname{R})_{v} \\ (\operatorname{GlcNAc-(Gal)}_{b}]_{f} - (\operatorname{Sia})_{k} - (\operatorname{R})_{w} \end{bmatrix}_{s} \\ (\operatorname{GlcNAc-(Gal)}_{b}]_{g} - (\operatorname{Sia})_{l} - (\operatorname{R})_{x} \end{bmatrix}_{t} \\ (\operatorname{GlcNAc-(Gal)}_{d}]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{y} \end{bmatrix}_{u} = 0$$

a-d, i, n, p-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = modifying group, mannose, oligo-mannose; R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 44G

197/498

```
Insect cell expressed DNase I.
a-d, f, h, j-n, s, u, v-y = 0;
e, g, i, q, r, t (independently selected) = 0 or 1.
```

- 1. GNT's 1,2,4,5, UDP-GlcNAc
- 2. Galactosyltransferase, UDP-Gal-PEG

```
a-i, q-u (independently selected) = 0 or 1; j-n = 0;
v-y (independently selected) = 1,
when e-h (independently selected) is 1;
R = PEG.
```

FIG. 44H

```
Yeast expressed DNase I.

a-n = 0;

q-y (independently selected) = 0 to 1;

p = 1; R (branched or linear) = Man, oligomannose.
```

- 1. Endoglycanase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

a-n, p-y = 0; n (independently selected) = 0 or 1; R' = -Gal-Sia-PEG.

FIG. 441

198/498

CHO, BHK, 293 cells, Vero expressed DNase I. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; n, v-y=0.

- 1. CMP-SA-linker-SA-CMP, ST3Gal3
- 2. ST3Gal1, desialylated alpha-1-Proteinase inhibitor.
- 3. CMP-SA, ST3Gal3, ST3Gal1

```
a-m, q-u (independently selected) = 0 or 1;

p = 1; n = 0;

v-y (independently selected) = 0 or 1;

R = linker- alpha-1-Proteinase inhibitor.
```

FIG. 44J

199/498

$$(Fuc)_{i}$$

$$A \leftarrow GlcNAc-GlcNAc-GlcNAc-Man$$

$$(R')_{n}$$

$$(R')_{n}$$

$$(Fuc)_{i}$$

$$(GlcNAc-(Gal)_{a}]_{e}-(Sia)_{j}-(R)_{v}$$

$$[(GlcNAc-(Gal)_{b}]_{f}-(Sia)_{k}-(R)_{w}]_{s}$$

$$[(GlcNAc-(Gal)_{c}]_{g}-(Sia)_{l}-(R)_{x}]_{t}$$

$$[(GlcNAc-(Gal)_{d}]_{h}-(Sia)_{m}-(R)_{y}]_{u}$$

$$[(GlcNAc-(Gal)_{d}]_{h}-(Sia)_{m}-(R)_{y}]_{u}$$

a-d, i, r-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 or 1. n, v-y = 0; z = 0 or 1; R = modifying group, mannose, oligo-mannose; R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 45A

200/498

```
CHO, BHK, 293 cells, Vero expressed Insulin. a-m, r-u (independently selected) = 0 or 1; n = 0; v-y = 0; z = 1.
```

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal3

```
a-m, r-u (independently selected) = 0 or 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
n = 0; R = PEG; z = 1.
```

FIG. 45B

```
Insect cell expressed Insulin.
a-h, j-n, s-y = 0;
i, r (independently selected) = 0 or 1; z = 1.
```

1. GNT's 1&2, UDP-GlcNAc-PEG

```
a-d, f, h, j-n, s, u, w, y = 0;
e, g, i, r, t, v, x (independently selected) = 0 or 1;
v, x (independently selected) = 1,
when e, g (independently selected) is 1;
z = 1; R = PEG.
```

FIG. 45C

201/498

Yeast expressed Insulin.

a-n = 0; r-y (independently selected) = 0 to 1; z = 1;

R (branched or linear) = Man, oligomannose or polysaccharide.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal-PEG

a-m, r-z=0; n = 1; R' = -Gal-PEG.

FIG. 45D

202/498

$$\mathbf{B} \leftarrow \begin{pmatrix} (\operatorname{Sia})_{b} \\ -\operatorname{GalNAc-(Gal)}_{a} - (\operatorname{Sia})_{c} - (R)_{d} \end{pmatrix}_{c}$$

a-c, e (independently selected) = 0 or 1; d = 0; R = polymer

FIG. 45E

203/498

CHO, BHK, 293 cells, Vero expressed insulinmucin fusion protein.

a-c, e (independently selected) = 0 or 1; d = 0

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal1

a-d, e (independently selected) = 0 or 1; R = PEG.

FIG. 45F

Insect cell expressed Insulin-mucin fusion protein. a, e (independently selected) = 0 or 1; b, c, d = 0.

1. Galactosyltransferase, UDP-Gal-PEG

a, d, e (independently selected) = 0 or 1; b, c = 0; R = PEG.

FIG. 45G

204/498

E. coli expressed Insulin-mucin fusion protein. a-e = 0.

- 1. GalNAc Transferase, UDP-GalNAc
- 2. CMP-SA-PEG, sialyltransferase

c, d, e (independently selected) = 0 or 1; a, b = 0; R = PEG.

FIG. 45H

205/498

$$\mathbf{B} \leftarrow \begin{pmatrix} (\operatorname{Sia})_{b} \\ -\operatorname{GalNAc-(Gal)}_{a} - (\operatorname{Sia})_{c} - (\operatorname{R})_{d} \end{pmatrix}_{e}$$

$$\mathbb{C} \leftarrow (\mathbb{R}')_n$$

a-c, e (independently selected) = 0 or 1; d = 0; R = modifying group, mannose, oligo-mannose.

FIG. 451

206/498

E. coli expressed Insulin-mucin fusion protein. a-e, n = 0.

 GalNAc Transferase, UDP-GalNAc-PEG

d, e (independently selected) = 0 or 1; a-c, n = 0; R = PEG.

FIG. 45J

E. coli expressed Insulin-mucin fusion protein. a-e, n = 0.

- GalNAc Transferase, UDP-GalNAc-linker-SA-CMP
- 2. ST3Gal3, asialo-transferrin
- 3. CMP-SA, ST3Gal3

d, e (independently selected) = 0 or 1; a-c, n = 0; R = linker-transferrin.

FIG. 45K

207/498

E. coli expressed Insulin (N)—no mucin peptide. a-e, n = 0.

- 1. NHS-CO-linker-SA-CMP
- 2. ST3Gal3, asialo-transferrin
- 3. CMP-SA, ST3Gal3

```
a-e = 0; n = 1;
R' = linker-transferrin.
```

FIG. 45L

208/498

a-d, i, n-u, aa (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = polymer, glycoconjugate.

FIG. 46A

209/498

CHO, BHK, 293 cells, Vero expressed M-antigen. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z = 0.

- 1. Sialidase
- 2. CMP-SA-linker-lipid-A, ST3Gal3

```
a-d, i-m, q-u, aa (independently selected) = 0 or 1;
o, p, z = 0; n, e-h = 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = linker-lipid-A.
```

FIG. 46B

CHO, BHK, 293 cells, Vero expressed M-antigen. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z = 0.

- 1. sialidase
- 2. CMP-SA-linker-tetanus toxin, ST3Gal1
- ▼ 3. CMP-SA, ST3Gal3

a-d, i-m, p-u, z, as (independently selected) = 0 or 1; o, v-y=0; n, e-h=1; R = tetanus toxin.

FIG. 46C

210/498

```
NSO expressed M-antigen.
a-d, i-n, o-u, aa (independently selected) = 0 or 1;
e-h = 1; v-z = 0;
Sia (independently selected) = Sia or Gal.
```

- 1. α-galactosidase
- 2. CMP-SA, ST3Gal3
- 2. CMP-SA-KLH, ST3Gal1

```
a-d, i-n, p-u, z, aa (independently selected) = 0 or 1;
e-h = 1; o, v-y = 0;
z = 1, when p = 1;
R = KLH.
```

FIG. 46D

```
Yeast expressed M-antigen.
a-p, z = 0; q-y, aa (independently selected) = 0 to 1;
R (branched or linear) = Man, oligomannose;
GalNAc = Man.
```

α1,2-mannosidase
 GNT 1,
 UDP-GlcNAc-linker-diphtheria toxin.

e, q, l, m, r, t, u, v, aa (independently selected) =0 or 1; a-d, f-h, j, k, n-p, s, w-z = 0; Sia = Man; R = linker-diphtheria toxin.

FIG. 46E

211/498

CHO, BHK, 293 cells, Vero expressed M-antigen. a-d, i-m, o-u, aa (independently selected) = 0 or 1; n, e-h = 1; v-z = 0.

- 1. CMP-SA-levulinate, ST3Gal3,
- 2. H₄N₂-linker-DNA

a-d, i-m, o-y, as (independently selected) = 0 or 1; z = 0; n, e-h = 1; R = linker-DNA.

FIG. 46F

CHO, BHK, 293 cells, Vero expressed M-antigen. a-d, i-n, o-u, aa (independently selected) = 0 or 1; e-h=1; v-z=0.

1. CMP-SA, poly- α 2,8-ST

a-d, i, n-u, aa (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-100; v-z (independently selected) = 0.

FIG. 46G

212/498

$$\mathbf{A} \leftarrow (\operatorname{Fuc})_{i} \\ -\operatorname{GlcNAc-GlcNAc-Man} \\ | (\operatorname{R'})_{cc} \\ | (\operatorname{R'})_{cc} \\ | (\operatorname{GlcNAc-(Gal)}_{a}]_{e^{-}} (\operatorname{Sia})_{j^{-}} (\operatorname{R})_{v} \\ | (\operatorname{GlcNAc-(Gal)}_{b}]_{f^{-}} (\operatorname{Sia})_{k^{-}} (\operatorname{R})_{w} \\ | (\operatorname{GlcNAc-(Gal)}_{c}]_{g^{-}} (\operatorname{Sia})_{l^{-}} (\operatorname{R})_{x} \\ | (\operatorname{GlcNAc-(Gal)}_{d}]_{h^{-}} (\operatorname{Sia})_{m^{-}} (\operatorname{R})_{y} \\ | (\operatorname{GlcNAc-(Gal)}_{d})_{h^{-}} (\operatorname{Gal})_{m^{-}} (\operatorname{R})_{y} \\ | (\operatorname{GlcNAc-(Gal)}_{d})_{h^{-}} (\operatorname{Gal})_{m^{-}} (\operatorname{Gal})_{m^{$$

$$\mathbf{B} \leftarrow \begin{bmatrix} (\mathrm{Sia})_{o} \\ -\mathrm{GalNAc-(Gal)}_{n} - (\mathrm{Sia})_{p} - (\mathrm{R})_{z} \end{bmatrix}_{aa}$$

a-d, i, n, q-u, aa, bb, (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-p (independently selected) = 0 to 100. Cc, v-y = 0; R = modifying group, mannose, oligo-mannose. R'= H, glycosyl residue, modifying group, glycoconjugate.

FIG. 46H

213/498

```
Insect cell expressed M-antigen.
a-d, f, h, j-m, o, p, s, u, v-z, cc = 0;
bb = 1;
e, g, i, n, q, r, t, aa (independently selected) = 0 or 1.
```

1. GNT-2, UDP-GlcNAc-linker-Neisseria protein

```
a, c, e, g, i, n, q, r, t, v, x, aa (independently selected) = 0 or 1;
b, d, f, h, j-p, s, u, w, y, z, cc = 0;
bb = 1; R = -linker-Neisseria protein.
```

FIG. 461

```
Yeast expressed M-antigen.
a-p, z, cc = 0;
q-y, aa (independently selected) = 0 to 1;
bb = 1; R (branched or linear) = Man, oligomannose;
GalNAc = Man.
```

1. Endoglycanase

2. Galactosyltransferase, UDP-Gal-linker-Neisseria protein

```
a-p, r-z, bb = 0;
q, aa, cc (independently selected) = 0 or 1;
R' = -Gal-linker-Neisseria protein.
```

FIG. 46J

214/498

```
Yeast expressed M-antigen.
a-p, z, cc = 0;
q-y, as (independently selected) = 0 to 1; bb = 1;
R (branched or linear) = Man, oligomannose;
GalNAc = Man.
```

- 1. mannosidases
- 2. GNT 1 & 2, UDP-GlcNAc3. UDP-Gal, Galactosyltransferase,

```
a, c, e, g, j, l, q, r, t, aa (independently selected) = 0 or 1;
b, d, f, h, k, m-p, s, u-z, cc = 0; bb = 1.
```

FIG. 46K

215/498

$$(Fuc)_{i} \\ \mathbf{A} \leftarrow GlcNAc - GlcNAc - Man \\ \begin{bmatrix} [GlcNAc - (Gal)_{a}]_{e} - (Sia)_{j} - (R)_{v} \end{bmatrix}_{r} \\ \begin{bmatrix} [GlcNAc - (Gal)_{b}]_{f} - (Sia)_{k} - (R)_{w} \end{bmatrix}_{s} \\ (R')_{n} \\ \end{bmatrix} \\ Man \\ \begin{bmatrix} [GlcNAc - (Gal)_{c}]_{g} - (Sia)_{l} - (R)_{x} \end{bmatrix}_{t} \\ \begin{bmatrix} [GlcNAc - (Gal)_{d}]_{h} - (Sia)_{m} - (R)_{y} \end{bmatrix}_{u} \\ \end{bmatrix}_{z}$$

a-d, i, r-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 or 1. n, v-y = 0; z = 0 or 1; R = modifying group, mannose, oligo-mannose; R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 47A

216/498

CHO, BHK, 293 cells, Vero expressed Growth Hormone.

```
a-m, r-u (independently selected) = 0 or 1;

n = 0; v-y = 0; z = 1.
```

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal3

```
a-m, r-u (independently selected) = 0 or 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
n = 0; R = PEG; z = 1.
```

FIG. 47B

```
Insect cell expressed growth hormone.

a-h, j-n, s-y = 0;

i, r (independently selected) = 0 or 1; z = 1.
```

1. GNT's 1&2, UDP-GlcNAc-PEG

```
a-d, f, h, j-n, s, u, w, y = 0;
e, g, i, r, t, v, x (independently selected)= 0 or 1;
v, x (independently selected) = 1,
when e, g (independently selected) is 1;
z = 1; R = PEG.
```

FIG. 47C

217/498

Yeast expressed growth hormone.

a-n=0; r-y (independently selected) = 0 to 1; z=1;

R (branched or linear) = Man, oligomannose or polysaccharide.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal-PEG

a-m, r-z=0; n = 1; R' = -Gal-PEG.

FIG. 47D

218/498

$$\mathbf{B} \leftarrow \begin{bmatrix} (\mathrm{Sia})_{b} \\ -\mathrm{GalNAc} - (\mathrm{Gal})_{a} - (\mathrm{Sia})_{c} - (\mathrm{R})_{d} \end{bmatrix}_{e}$$

a-c, e (independently selected) = 0 or 1;
d = 0;
R = modifying group, mannose, oligomannose.

FIG. 47E

219/498

CHO, BHK, 293 cells, Vero expressed growth hormone-mucin fusion protein.

a-c, e (independently selected) = 0 or 1; d = 0

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal1

a-d, e (independently selected) = 0 or 1; R = PEG.

FIG. 47F

Insect cell expressed Growth Hormone-mucin fusion protein.

a, e (independently selected) = 0 or 1; b, c, d = 0.

1. Galactosyltransferase, UDP-Gal-PEG

a, d, e (independently selected) = 0 or 1; b, c = 0; R = PEG.

FIG. 47G

220/498

E. coli expressed growth hormone-mucin fusion protein.

$$a-e=0$$
.

- 1. GalNAc Transferase, UDP-GalNAc
- 2. CMP-SA-PEG, sialyltransferase

c, d, e (independently selected) = 0 or 1; a, b = 0; R = PEG.

FIG. 47H

E. coli expressed growth hormone-mucin fusion protein.

$$a-e, n = 0.$$

1. GalNAc Transferase, UDP-GalNAc-PEG

d, e (independently selected) = 0 or 1; a-c, n = 0; R = PEG.

FIG. 471

221/498

E. coli expressed growth hormone-mucin fusion protein.

```
a-e, n = 0.
```

- GalNAc Transferase, UDP-GalNAc-linker-SA-CMP
- 2. ST3Gal3, asialo-transferrin
- ▼ 3. CMP-SA, ST3Gal3

d, e (independently selected) = 0 or 1; a-c, n = 0; R = linker-transferrin.

FIG. 47J

E. coli expressed growth hormone(N)—no mucin peptide.a-e, n = 0.

- 1. NHS-CO-linker-SA-CMP
- 2. ST3Gal3, asialo-transferrin
- 3. CMP-SA, ST3Gal3

a-e=0; n=1; R' = linker-transferrin.

FIG. 47K

222/498

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} & & & \\ -\operatorname{GlcNAc-Man} & & & \\ (\operatorname{GlcNAc-Gal})_{a} \\ -\operatorname{GlcNAc-Man} & & & \\ (\operatorname{GlcNAc-Gal})_{b} \\ -\operatorname{GlcNAc-Gal})_{b} \\ -\operatorname{GlcNAc-Gal})_{c} \\ \mathbf{B} \leftarrow \begin{bmatrix} (\operatorname{GlcNAc-Gal})_{a} \\ -\operatorname{GalNAc-Gal})_{m} \\ -$$

a-d, i-m, q-u, w, z, nn, ww, zz (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. n, v-y=0;

R = modifying group, mannose, oligo-mannose;

R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 48A

223/498

CHO, BHK, 293 cells, Vero or transgenic animals expressed TNF Receptor IgG Fusion. a-m, o-u, aa (independently selected) = 0 or 1; n = 1; v-z = 0.

- 1. CMP-SA, ST3Gal1
- 2. galactosyltransferase, UPD-Gal
- 3. CMP-SA-PEG, ST3Gal3

a-m, o-u, v-y, as (independently selected) = 0 or 1; n = 1; z = 0; R = PEG.

FIG. 48B

CHO, BHK, 293 cells, Vero expressed TNF Receptor IgG Fusion. a-m, o-u, aa (independently selected) = 0 or 1; n = 1; v-z = 0.

- 1. sialidase
- 2. CMP-SA-PEG, ST3Gal1

a-i, p-u, z, aa (independently selected) = 0 or 1; n = 1; o, j-m, v-y = 0; R = PEG.

FIG. 48C

224/498

CHO, BHK, 293 cells, Vero expressed
TNF Receptor IgG Fusion.
a-m, o-u, aa (independently selected) = 0 or 1;
n = 1; v-z = 0.

1. galactosyltransferase, UPD-Gal-PEG

a-m, o-u, v-y, as (independently selected) = 0 or 1; n = 1; z = 0; R = PEG.

FIG. 48D

CHO, BHK, 293 cells, Vero or transgenic animals expressed TNF Receptor IgG Fusion.

a-m, o-u, aa (independently selected) = 0 or 1;

n = 1; v-z = 0.

1. CMP-SA, ST3Gal12. galactosyltransferase, UPD-Gal-PEG

a-m, o-u, v-y, as (independently selected) = 0 or 1; n = 1; z = 0; R = PEG.

FIG. 48E

225/498

CHO, BHK, 293 cells, Vero or transgenic animals expressed TNF Receptor IgG Fusion.
a-m, o-u, aa (independently selected) = 0 or 1;
n = 1; v-z = 0.

1. CMP-SA-levulinate, ST3Gal1 · · · 2. H₄N₂-PEG

a-m, o-u, v-y, as (independently selected) = 0 or 1; n = 1; z = 0; R = PEG.

FIG. 48F

CHO, BHK, 293 cells, Vero expressed
TNF Receptor IgG Fusion.
a-m, o-u, aa (independently selected) = 0 or 1;
n = 1; v-z = 0.

1. CMP-SA-PEG, α2,8-ST

a-i, o, q-u, v-z, aa (independently selected) = 0 or 1; n = 1; j-m, p (independently selected) = 0 to 2; v-z (independently selected) = 1, when j-m, p (independently selected) is 2; R = PEG.

FIG. 48G

226/498

$$\mathbf{A} \leftarrow \begin{bmatrix} [\mathrm{GlcNAc\text{-}(Gal)}_a]_e - (\mathrm{Sia})_j - (\mathrm{R})_v \end{bmatrix}_r \\ [\mathrm{GlcNAc\text{-}Man} \leftarrow \begin{bmatrix} [\mathrm{GlcNAc\text{-}(Gal)}_b]_f - (\mathrm{Sia})_k - (\mathrm{R})_w \end{bmatrix}_s \\ [\mathrm{GlcNAc\text{-}(Gal)}_b]_g - (\mathrm{Sia})_l - (\mathrm{R})_x \end{bmatrix}_t \\ [\mathrm{GlcNAc\text{-}(Gal)}_d]_h - (\mathrm{Sia})_m - (\mathrm{R})_y \end{bmatrix}_u = \sum_{q=0}^{q=0} (\mathrm{Sia})_q - (\mathrm{Sia})_q - (\mathrm{R})_q = (\mathrm{R})_q$$

a-d, i, l, q-u (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 4.

j-k (independently selected) = 0 or 1.

M = 0 to 20.

n, v-y = 0; z = 0 or 1;

R = polymer, toxin, radioisotope-complex, drug, mannose, oligo-mannose.

R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 49A

227/498

```
CHO, BHK, 293 cells, Vero expressed Herceptin.
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0;
q, z = 1.
```

- 1. galactosyltransferase, UPD-Gal
- 2. CMP-SA-toxin, ST3Gal3

```
a, c, i, j, l (independently selected) = 0 or 1;
e, g, r, t = 1; R = toxin;
f, h, k, m, n, s, u-y = 0; q, z = 1;
v-y (independently selected) = 51,
when j, l (independently selected) is 1.
```

FIG. 49B

```
CHO, BHK, 293 cells, Vero or fungal expressed Herceptin.

a, c, i (independently selected) = 0 or 1;

e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0;

q, z = 1.
```

1. galactosyltransferase, UPD-Gal-Toxin

```
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, j-m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
when a, c (independently selected) is 1;
R = toxin.
```

FIG. 49C

228/498

Fungi expressed Herceptin.

```
e, g, i, r, t (independently selected) = 0 or 1;
a-d, f, h, j-m, n, s, u-y=0; q, z=1.
```

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal

a-m, r-z= 0; q, n = 1; R' = -Gal-Sia-radioisotope complex.

FIG. 49D

229/498

a-d, i, p-u, (independently selected) = 0 or 1.
e-h (independently selected) = 0 to 4.
j-m (independently selected) = 0 or 1.
n, v-y = 0; z = 0 or 1;
R = polymer, toxin, radioisotope-complex, drug, mannose, oligo-mannose.
R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 50A

230/498

```
CHO, BHK, 293 cells, Vero expressed Synagis.
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1;
b, d, f, h, j-m, n, s, u-y = 0; q, z = 1.
```

1. galactosyltransferase, UPD-Gal

```
2. CMP-SA-PEG, ST3Gal3
```

```
a, c, i, j, w, (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, k, m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
when j, 1 (independently selected) is 1;
R = PEG.
```

FIG. 50B

```
CHO, BHK, 293 cells, Vero or fungal expressed Synagis.

a, c, i (independently selected) = 0 or 1;

e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0;

q, z = 1.
```

1. galactosyltransferase, UPD-Gal-PEG

```
a, c, i, w (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, j-m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
when a, c (independently selected) is 1;
R = PEG.
```

FIG. 50C

231/498

Fungi expressed Synagis. e, g, i, r, t (independently selected) = 0 or 1; a-d, f, h, j-m, n, s, u-y = 0; q, z = 1.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal
- 3.. CMP-SA-PEG, ST3Gal3

a-m, r-z=0; q, n=1; R'=-Gal-Sia-PEG.

FIG. 50D

232/498

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} \\ \operatorname{GlcNAc-\operatorname{Gal}}_{a} \end{bmatrix}_{e} - (\operatorname{Sia})_{j} - (\operatorname{R})_{v} \end{bmatrix}_{r} \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}})_{b} \right]_{f} - (\operatorname{Sia})_{k} - (\operatorname{R})_{w} \end{bmatrix}_{s} \\ \operatorname{Man} \begin{bmatrix} (\operatorname{GlcNAc-\operatorname{Gal}})_{b} \right]_{f} - (\operatorname{Sia})_{l} - (\operatorname{R})_{w} \end{bmatrix}_{t} \\ \left[(\operatorname{R'})_{n} \right]_{t} \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}})_{d} \right]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{y} \end{bmatrix}_{u} \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}})_{d} \right]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{y} \end{bmatrix}_{u} \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}})_{d} \right]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{y} \end{bmatrix}_{u} \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}})_{d} \right]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{y} \end{bmatrix}_{u} \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}})_{d} \right]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{y} \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}})_{d} \right]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{w} \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}})_{d} \right]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{w} \\ \left[(\operatorname{GlcNAc-\operatorname{Gal}})_{d} \right]_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{w} \\ \left[(\operatorname{GlcNAc-\operatorname{Gal})_{d} \right]_{h} - (\operatorname{Gal})_{m} - (\operatorname{Gal})_{m} - (\operatorname{Cal})_{m} - (\operatorname{Cal})_{$$

a-d, i, q-u, w (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 6.

j-m (independently selected) = 0 to 20.

n, v-y = 0; z = 0 or 1;

R = polymer, toxin, radioisotope-complex, drug, mannose, oligo-mannose.

R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 51A

233/498

```
CHO, BHK, 293 cells, Vero expressed Remicade.

a, c, i (independently selected) = 0 or 1;

e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0;

q, z = 1.
```

galactosyltransferase, UPD-Gal
 CMP-SA-PEG, ST3Gal3

```
a, c, i, j, l (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, k, m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
when j, l (independently selected) is 1;
R = PEG.
```

FIG. 51B

```
CHO, BHK, 293 cells, Vero or fungal expressed Remicade.

a, c, i (independently selected) = 0 or 1;

e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0;

q, z = 1.
```

1. galactosyltransferase, UPD-Gal-PEG

```
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, j-m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
when a, c (independently selected) is 1;
R = PEG.
```

FIG. 51C

Fungi expressed Remicade. e, g, i, r, t (independently selected) = 0 or 1; a-d, f, h, j-m, n, s, u-y = 0; q, z = 1.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal
- 3.. CMP-SA-radioisotope complex, ST3Gal3

a-m, r-z= 0; q, n = 1; R' = -Gal-Sia-radioisotope complex.

FIG. 51D

235/498

$$\mathbf{A} \leftarrow \begin{array}{c} \text{(Fuc)}_{i} \\ \text{GlcNAc-GlcNAc-Man} \\ \text{([GlcNAc-(Gal)_{a}]_{e}-(Sia)_{j}-(R)_{v})_{r}} \\ \text{(R')}_{n} \\ \text{(R')}_{n} \\ \text{([GlcNAc-(Gal)_{c}]_{g}-(Sia)_{l}-(R)_{x})_{t}} \\ \text{([GlcNAc-(Gal)_{d}]_{h}-(Sia)_{m}-(R)_{y})_{u}} \\ \text{([GlcNAc-(Gal)_{d}]_{h}-(Sia)_{m}-(R)_{y}} \\ \text{([GlcNAc-(G$$

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 or 1. n, v-y = 0; z = 0 or 1; R = modifying group, mannose, oligo-mannose; R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 52A

236/498

```
CHO, BHK, 293 cells, Vero expressed Reopro. a-m, r-u (independently selected) = 0 or 1; n = 0; v-y = 0; z = 1.
```

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal3

```
a-m, r-u (independently selected) = 0 or 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
n = 0; R = PEG; z = 1.
```

FIG. 52B

```
Insect cell expressed Reopro.
a-h, j-n, s-y = 0; i, r (independently selected) = 0 or 1;
z = 1.
```

1. GNT's 1&2, UDP-GlcNAc-PEG

```
a-d, f, h, j-n, s, u, w, y = 0;
e, g, i, r, t, v, x (independently selected) = 0 or 1;
v, x (independently selected) = 1,
when e, g (independently selected) is 1;
z = 1; R = PEG.
```

FIG. 52C

237/498

Yeast expressed Reopro. a-n = 0; r-y (independently selected) = 0 to 1; z = 1; R (branched or linear) = Man, oligomannose or

1. Endo-H

polysaccharide.

2. Galactosyltransferase, UDP-Gal-PEG

a-m, r-z= 0; n = 1; R' = -Gal-PEG.

FIG. 52D

$$\mathbf{B} \leftarrow \begin{bmatrix} (\mathrm{Sia})_{b} \\ -\mathrm{GalNAc-(Gal)}_{a} - (\mathrm{Sia})_{c} - (\mathrm{R})_{d} \end{bmatrix}_{e}$$

a-c, e (independently selected) = 0 or 1; d = 0; R = polymer

FIG. 52E

CHO, BHK, 293 cells, Vero expressed
Reopro-mucin fusion protein.
a-c, e (independently selected) = 0 or 1; d = 0

- 1. Sialidase
- 2. CMP-SA-PEG, ST3Gal1

a-d, e (independently selected) = 0 or 1; R = PEG.

FIG. 52F

Insect cell expressed Reopro-mucin fusion protein. a, e (independently selected) = 0 or 1; b, c, d = 0.

1. Galactosyltransferase, UDP-Gal-PEG

a, d, e (independently selected) = 0 or 1; b, c = 0; R = PEG.

FIG. 52G

240/498

E. coli expressed Reopro-mucin fusion protein. a-e=0.

- 1. GalNAc Transferase, UDP-GalNAc
- 2. CMP-SA-PEG, sialyltransferase

c, d, e (independently selected) = 0 or 1; a, b = 0; R = PEG.

FIG. 52H

$$\mathbf{B} \leftarrow \begin{bmatrix} (\operatorname{Sia})_{b} \\ -\operatorname{GalNAc-(Gal)}_{a} - (\operatorname{Sia})_{c} - (R)_{d} \end{bmatrix}_{e}$$

a-c, e (independently selected) = 0 or 1; d = 0; R = polymer, linker.

FIG. 521

E. coli expressed Reopro-mucin fusion protein. a-e, n = 0.

1. GalNAc Transferase, UDP-GalNAc-PEG

d, e (independently selected) = 0 or 1; a-c, n = 0; R = PEG.

FIG. 52J

E. coli expressed Reopro-mucin fusion protein. a-e, n = 0.

- GalNAc Transferase,
 UDP-GalNAc-linker-SA-CMP
- 2. ST3Gal3, asialo-transferrin
- 3. CMP-SA, ST3Gal3

d, e (independently selected) = 0 or 1; a-c, n = 0; R = linker-transferrin.

FIG. 52K

243/498

E. coli expressed Reopro(N)—no mucin peptide. a-e, n = 0.

- 1. NHS-CO-linker-SA-CMP
- 2. ST3Gal3, asialo-transferrin
- 3. CMP-SA, ST3Gal3

a-e=0; n=1; R'=linker-transferrin.

FIG. 52L

244/498

$$\mathbf{A} \leftarrow \begin{bmatrix} (\operatorname{Fuc})_{i} \\ \operatorname{GlcNAc} - (\operatorname{Gal})_{a} \end{bmatrix}_{e} - (\operatorname{Sia})_{j} - (\operatorname{R})_{v} \end{bmatrix}_{r} \\ \left[(\operatorname{GlcNAc} - (\operatorname{Gal})_{b})_{f} - (\operatorname{Sia})_{k} - (\operatorname{R})_{w} \end{bmatrix}_{s} \\ \left[(\operatorname{GlcNAc} - (\operatorname{Gal})_{b})_{g} - (\operatorname{Sia})_{l} - (\operatorname{R})_{x} \end{bmatrix}_{t} \\ \left[(\operatorname{GlcNAc} - (\operatorname{Gal})_{d})_{h} - (\operatorname{Sia})_{m} - (\operatorname{R})_{y} \end{bmatrix}_{u} \right]_{q}$$

a-d, i, q-u (independently selected) = 0 or 1.
e-h (independently selected) = 0 to 4.
j-m (independently selected) = 0 or 1.
n, v-y = 0; z = 0 or 1; R = polymer, toxin, radioisotopecomplex, drug, glycoconjugate.
R' = H, sugar, glycoconjugate.

FIG. 53A

245/498

```
CHO, BHK, 293 cells, Vero or transgenic animal expressed Rituxan.

a, c, i (independently selected) = 0 or 1;

e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0; q, z = 1.
```

- 1. galactosyltransferase, UPD-Gal
- 2. CMP-SA-toxin, ST3Gal3

```
a, c, i, j, l (independently selected) = 0 or 1;
e, g, r, t = 1;
f, h, k, m, n, s, u-y = 0; q, z = 1;
v-y (independently selected) = 1,
when j, l (independently selected) is 1;
R = toxin.
```

FIG. 53B

```
CHO, BHK, 293 cells, Vero or fungal expressed Rituxan.

a, c, e, g, i, r, t (independently selected) = 0 or 1;

b, d, f, h, j-m, n, s, u-y = 0; q, z = 1.
```

1. galactosyltransferase, UPD-Gal-drug

```
a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, j-m, n, s, u-y = 0; q, z = 1;
v-y (independently selected) = 1,
when a, c (independently selected) is 1;
R = toxin.
```

FIG. 53C

246/498

Fungi expressed Rituxan. e, g, i, r, t (independently selected) = 0 or 1; a-d, f, h, j-m, n, s, u-y = 0; q, z = 1.

- 1. Endo-H
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-radioisotope complex, ST3Gal3

a-m, r-z= 0; q, n = 1; R' = -Gal-Sia-radioisotope complex.

FIG. 53D

247/498

$$A \leftarrow GlcNAc-Man \qquad Man \begin{bmatrix} [GlcNAc-(Gal)_a]_e - (Sia)_j - (R)_v \end{bmatrix}_r \\ [GlcNAc-(Gal)_b]_f - (Sia)_k - (R)_w \end{bmatrix}_s \\ Man \begin{bmatrix} [GlcNAc-(Gal)_b]_f - (Sia)_l - (R)_w \end{bmatrix}_t \\ [GlcNAc-(Gal)_c]_g - (Sia)_l - (R)_x \end{bmatrix}_t \\ [GlcNAc-(Gal)_d]_h - (Sia)_m - (R)_y \end{bmatrix}_u \\ = Q_t + Q_t$$

a-d, i, q-u (independently selected) = 0 or 1.
e-h (independently selected) = 0 to 4.
j-m (independently selected) = 0 or 1.
n, v-y = 0; z = 0 or 1;
R = polymer, toxin, radioisotope-complex, drug, glycoconjugate, mannose, oligo-mannose.
R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 53E

```
CHO, BHK, 293 cells, Vero or transgenic animal
expressed Rituxan,
a, c, i (independently selected) = 0 or 1;
```

```
e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0;
```

q, z = 1.

- 1. galactosyltransferase, UPD-Gal
- 2. CMP-SA-PEG, ST3Gal3

```
a, c, i, j, l (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, k, m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
  when j, 1 (independently selected) is 1;
R = PEG.
```

FIG. 53F

```
Fungi, yeast or CHO expressed Rituxan.
e, g, i, r, t, v, x (independently selected) = 0 or 1;
a-d, f, h, j-m, n, s, u, w, y = 0; q, z = 1;
R (independently selected) = mannose, oligomannose,
polymannose.
```

- 1. mannosidases (alpha and beta)
- 2. GNT-I,II, UDP-GlcNAc
- 3. Galactosyltransferase, UDP-Gal-radioisotope

```
a-m, r-z=0; q, n=1;
R' = -Gal-radioisotope complex.
```

FIG. 53G

249/498

a-d, i, q-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0; R = mannose, polymer.

FIG. 54A

250/498

```
CHO, BHK, 293 cells, Vero or transgenic animal expressed AT III.

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; v-y = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 54B

```
CHO, BHK, 293 cells, Vero or transgenic animal expressed AT III.

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; v-y = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (1.2 mol eq), ST3Gal3
- 3. CMP-SA (16 mol eq), ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1;
v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 54C

251/498

```
NSO expressed AT III.

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; v-y = 0;

Sia (independently selected) = Sia or Gal.
```

- 1. Sialidase and α -galactosidase
- 2. Galactosyltransferase, UDP-Gal
- ▼ 3. CMP-SA-PEG, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1;
v-y (independently selected) = 1,
when j-m (independently selected) is 1;
R = PEG.
```

FIG. 54D

```
CHO, BHK, 293 cells, Vero or transgenic animal expressed AT III.

a-d, i-m, q-u (independently selected) = 0 or 1;

e-h = 1; v-y = 0.
```

- 1. Sialidase
- 2. CMP-SA-PEG (16 mol eq), ST3Gal3
- 3. CMP-SA, ST3Gal3

```
a-d, i-m, q-u (independently selected) = 0 or 1;
e-h = 1;
v-y (independently selected) = 0 or 1;
R = PEG.
```

FIG. 54E

252/498

CHO, BHK, 293 cells, Vero or transgenic animal expressed AT III. a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y = 0.

 CMP-SA-levulinate, ST3Gal3, buffer, salt

2. H₄N₂-PEG

a-d, i-m, q-u (independently selected) = 0 or 1; e-h = 1; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 54F

CHO, BHK, 293 cells, Vero expressed AT III. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

1. CMP-SA, poly- α 2,8-ST

a-d, i, q-u (independently selected) = 0 or 1; e-h = 1; j-m (independently selected) = 0-20; v-y (independently selected) = 0.

FIG. 54G

253/498

a-d, i, p-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 6. j-m (independently selected) = 0 to 100. v-y = 0 to 100. R = polymer, linker, mannose. R' = H, sugar, glycoconjugate.

FIG. 54H

254/498

```
Insect, yeast or fungi cell expressed AT III. a-d, f, h, j-n, s, u, v-y = 0; e, g, i, q, r, t (independently selected) = 0 or 1; p = 1.
```

1. GNT 1, UDP-GlcNAc-PEG

```
a, i, q, r, -u (independently selected) = 0 or 1;
b-g, j-n, s-u, w-y = 0; p = 1;
v (independently selected) = 1,
when a (independently selected) is 1;
R = PEG.
```

FIG. 541

```
Yeast expressed AT III.

a-n = 0; q-y (independently selected) = 0 to 1;

p = 1;

R (branched or linear) = Man, oligomannose.
```

- 1. Endoglycanase
- 2. Galactosyltransferase, UDP-Gal
- 3. CMP-SA-PEG, ST3Gal3

```
a-m, p-y = 0;
n (independently selected) = 0 or 1;
R' = -Gal-Sia-PEG.
```

FIG. 54J

255/498

CHO, BHK, 293 cells, Vero expressed AT III. a-d, i-m, q-u (independently selected) = 0 or 1; e-h=1; v-y=0.

- 1. CMP-SA-linker-Gal-UDP, ST3Gal3
- 2. Galactosyltransferase, transferrin treated with endoglycanase

```
a-m, q-u (independently selected) = 0 or 1;

p = 1; n = 0;

v-y (independently selected) = 0 or 1;

R = linker-transferrin.
```

FIG. 54K

256/498

a-d, i, n-u (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 4.

j-m (independently selected) = 0 to 20.

R = polymer.

R', R" (independently selected) = sugar, glycoconjugate.

FIG. 54L

257/498

```
Yeast expressed AT III.

a-h, i-m, p, q = 0;

R (independently selected) = mannose,
oligomannose, polymannose;
r-u, v-y (independently selected) = 0 or 1;
n, o = 1.
```

- 1. endoglycanase
- ▼ 2. Galactosyltransferase, UDP-Gal-PEG

```
a-h, i-o, q, r-u, v-y = 0; p = 1.
R" = Gal-PEG.
```

FIG. 54M

```
Plant expressed AT III.

a-d, f-h, j-m, p, s-u, v-y = 0;

e, i, q, r (independently selected) = 0 or 1;

n, o = 1;

R' = xylose.
```

- 1. xylosidase
- 3. Galactosyl transferase, UDP-Gal-PEG

```
b-d, f-h, j-m, p, q, s-u, w-y = 0;
a, e, i, r (independently selected) = 0 or 1;
n, o = 1; R = PEG.
```

FIG. 54N

258/498

CHO, BHK, 293 cells, Vero, transgenic animal expressed AT III.

a-h, i-o, r-u (independently selected) = 0 or 1; p, q, v-y=0.

> 1. CMP-SA-PEG, ST3Gal3

a-h, i-o, r-u (independently selected) = 0 or 1; p, q = 0; v-y (independently selected) = 0 or 1; R = PEG.

FIG. 540

259/498

hCG
$$\alpha$$

$$H_2N$$

$$52$$

$$78$$
A
A
A
COOH

$$\mathbf{B} \leftarrow \begin{bmatrix} (\mathrm{Sia})_{o} \\ & | \\ -\mathrm{GalNAc-(Gal)}_{n} - (\mathrm{Sia})_{p} - (\mathrm{R})_{z} \end{bmatrix}_{q}$$

a-d, i, n-u (independently selected) = 0 or 1. e-h (independently selected) = 0 to 4. j-m (independently selected) = 0 to 20. v-z = 0; R = polymer

FIG. 55A