Math 395: Homework 2 Name: Avinash Iyer Due: 09/12/2024

Collaborators: Noah Smith

Problem 10

Problem. Let $T \in \text{Hom}_{\mathbb{F}}(V, \mathbb{F})$. Prove that if $v \in V$ is not in ker(T), then

$$V = \ker(T) \oplus \{cv \mid c \in \mathbb{F}\}.$$

Solution. Since $T(v) \neq 0$, there exists $(T(v))^{-1} \in \mathbb{F}$. Let $w \in V$. Then,

$$\mathsf{T}(w) = \left(\mathsf{T}(w) \left(\mathsf{T}(v)\right)^{-1}\right) \mathsf{T}(v).$$

We let $c = T(w) (T(v))^{-1}$. We have

$$T(w) = cT(v)$$
$$= T(cv),$$

meaning

$$T(w - cv) = 0,$$

so $w - cv \in \ker(T)$, or $w \in [cv]_{\sim}$, where \sim is the equivalence relation defining $V/\ker(T)$.

Thus, we have $w \in \ker(T) + \{cv \mid c \in \mathbb{F}\}$, implying that $V \subseteq \ker(T) + \{cv \mid c \in \mathbb{F}\}$, so $V = \ker(T) + \{cv \mid c \in \mathbb{F}\}$.

For $k \in ker(T)$, suppose

$$cv + k = 0$$
.

Then,

$$T(cv + k) = 0_V$$

$$cT(v) + T(k) = 0$$

$$cT(v) = 0.$$

Since $T(v) \neq 0$ by the definition of v, it must be the case that c = 0, meaning $cv = 0_V$. Thus, it is the case that ker(T) and $\{cv \mid c \in \mathbb{F}\}$ are independent subspaces, meaning

$$V = \ker(T) \oplus \{cv \mid c \in \mathbb{F}\}.$$