

OCR Prevodilac

Soft kompjuting – Vukašin Janković, SW/29-2015 Univerzitet u Novom Sadu, Fakultet Tehničkih Nauka, Novi Sad

Uvod

Računarska inteligencija i kompjuterska vizija u obradi slike se primenjuju danas u mnogim aspektima života i zastupljeni su u skoro svim pametnim uređajima. Ideja ovog projekta je primena istih u optičkom prepoznavanju karaktera (OCR) i ekstrakciji teksta sa slike kao i prosleđivanje prepoznatog teksta prevodiocu koji za uneti početni i odredišni jezik prevodi dati tekst. Pun potencijal ovog projekta se može videti u budućoj mobilnoj aplikaciji koja bi direktno pristupala kameri, slikala tekst i vršila instant prevod.

Aplikacija podržava cifre, sva slova engleske abecede kao i srpska slova š,đ,č,ć,ž.

Arhitektura i tehnologije

Projekat je rađen na *Python 3.6 + Anaconda* 5.2.0 platformi i u programskom okruženju *Jupyter Notebook.*

Korišćene biblioteke za OCR:

- OpenCV
- Keras
- Scikit

Za prevod teksta je korišćena biblioteka googletrans koja sadrži ugrađen Google Translate API.

Napomena: S obzirom da se za prevod teksta samo pozivaju ugrađene metode ove biblioteke i da je akcenat projekta na samom prepoznavanju teksta, ova komponenta će biti isključena iz dalje analize i evaluacije.

Struktura

Ceo projekat se sastoji iz 3 osnovne faze: Treniranje neuronske mreže, Ekstrakcija teksta sa slike i Prevođenje.

Proces treniranja traje ~45min i korišćeno je 5 različitih fontova:

- ABCDabcd1234šđčćž
- ABCDabcd1234šāčćž
- ABCDabcd1234šđčćž
- ABCDabcd1234šđčćž
- ABCDabcd1234šđčćž

Sam OCR proces se sastoji iz sledećih faza:

- 1. Učitavanje slike
- Predprocesiranje (binarizacija, uklanjanje šuma, rotacija)
- 3. Ekstrakcija kontura i sortiranje
- 1. Prepoznavanje

Učitavanje i predprocesiranje slike

Obradićemo sledeći primer:

Optical Character Recognition

Svaku sliku je prvo neophodno konvertovati u format pogodan za izdvajanje kontura. To ćemo postići binarizacijom slike i uklanjanjem šuma. Naša aplikacija nudi sledeće metode pronalaženja *threshold-a* za binarizaciju:

- Otsu (default)
- Adaptive mean
- Adaptive gaussian
- Scikit local

Šum se uklanja kombinacijom **dilacije** i **erozije** a takođe je moguće blurovati sliku korišćenjem *median* i *gaussian* metode.

Nakon obrade, naša slika dobija novi izgled:

Optical Character Recognition

Primetićemo da je tekst ispisan pod uglom ili nekom perspektivnom, te je nephodno ispraviti dati tekst kako bi prepoznavanje karaktera bilo uspešnije. Korišćenjem određenih metoda detektujemo ceo tekst na slici:

Optical Character Recognition

Nakon obrade, dobijamo relativno ravan tekst:

Optical Character Recognition

Ekstrakcija kontura i sortiranje

Obrađenu sliku šaljemo na detekciju kontura i spajanje odvojenih delova na slova ukoliko postoje (i,š,ž,č,ć) i dobijamo rezultat:

Optical Character Recognition

Osim samih regiona, čuvamo i distance između istih kako bi mogli da spojimo prepoznate karaktere u slova i redove. Izdvojene regione sortiramo po odgovarajućem redosledu i dobijamo podatke spremne za slanje istreniranoj neuronskoj mreži na prepoznavanje

Prepoznavanje

Nakon obrade, naša mreža je prepoznala sledeći tekst:

Optžcai character Recosnžtžon

Empirijski gledano, naša aplikacija je za dati primer omašila u 5 slova što daje tačnost od **81%**

Zaključak

Za jednostavne slike, ravnomernog osvetljenja i krupnog teksta, naša aplikacija prepoznaje slova sa visokim procentom preciznosti. Učitana slika prolazi kroz sve faze obrade i pripreme za prepoznavanje karaktera, čime je cilj projekta uspešno ispunjen.

Za kompleksnije slike, preciznost značajno opada. S obzirom da je svaka slika sebi specifična po određenim karakteristikama (osvetljenje, kontrast, orijentacija...), kvalitet rešenja u ovakvim slučajevima se može unaprediti treniranjem mreže nad većim skupom podataka kao i dodatnim "eksperimentisanjem" sa postojećim tehnikama thresholding-a, uklanjanja šuma, izdvajanja i sortiranja kontura dok se ne dođe do najoptimalnijeg rešenja. Takođe, postojeće metode se mogu unaprediti dodatnim proverama i obradama radi pobolišania rezultata na kompleksnijim slikama.

Poređeni su rezultati naše aplikacije sa postojećim OCR algoritmima poput *Google Tesseract-a* i za krupan, ravan i jasan tekst na slici je *Tesseract* u skoro svim slučajevima davao bolji rezultat, dok je za neke slike sa mutnijom pozadinom i "iskrivljenim" tekstom naša aplikacija prevagnula.