PRISMS PhaseField Allen-Cahn Dynamics (Implicit Solver Formulation)

David Montiel. Kubra Karayagiz and Stephen DeWitt

Consider a free energy expression of the form:

$$\mathcal{F}(\eta, \nabla \eta) = \int_{\Omega} f(\eta) + \frac{\kappa}{2} \nabla \eta \cdot \nabla \eta \ dV \tag{1}$$

where η is the structural order parameter (0 < η < 1), and κ is the gradient length scale parameter.

1 Kinetics

The parabolic PDE for Allen-Cahn dynamics is given by

$$\frac{\partial \eta}{\partial t} = -M \frac{\delta \mathcal{F}}{\delta \eta},\tag{2}$$

where M is the mobility of the interface. The term $\delta \mathcal{F}/\delta \eta$ is obtained by taking the variational derivative of \mathcal{F} :

$$\frac{\partial \eta}{\partial t} = -M(f_{,\eta} - \kappa \nabla^2 \eta),\tag{3}$$

where $f_{,\eta} = \partial f/\partial \eta$.

2 Time discretization

Considering fully implicit time stepping, we have the time discretized kinetics equation:

$$\eta^n = \eta^{n-1} - \Delta t M(f^n_{,\eta} - \kappa \nabla^2 \eta^n) \tag{4}$$

At each time step, it is assumed that we know η^{n-1} and need to solve for η^n . The approach in PRISMS-PF is to find the solution for η^n iteratively by employing a Newton-Picard scheme.

3 Implicit solver formulation

We denote the values of η for two consecutive Newton iterations as η_{i-1}^n and η_i^n and define

$$\delta \eta_i^n = \eta_i^n - \eta_{i-1}^n. \tag{5}$$

Substituting $\eta_j^n = \eta_{j-1}^n + \delta \eta_j^n$ into Eq. (4), we get

$$\eta_{i-1}^{n} + \delta \eta_{i}^{n} = \eta^{n-1} - \Delta t M \left[f_{,\eta} (\eta_{i-1}^{n} + \delta \eta_{i}^{n}) - \kappa \nabla^{2} (\eta_{i-1}^{n} + \delta \eta_{i}^{n}) \right]$$
 (6)

Assuming $\delta \eta_j^n$ is small everywhere, we can expand $f_{,\eta}$ around η_{j-1}^n to first order:

$$f_{,\eta}(\eta_{j-1}^n + \delta \eta_j^n) \simeq f_{,\eta}(\eta_{j-1}^n) + f_{,\eta\eta}(\eta_{j-1}^n) \delta \eta_j^n.$$

$$\tag{7}$$

Substituting in Eq. (6), and rearranging the equation so that all terms proportional to $\delta \eta_j^n$ are on the LHS and remaining terms on the RHS, we get

$$[1 + \Delta t M f_{,\eta\eta}(\eta_{j-1}^n)] \delta \eta_j^n - \Delta t M \kappa \nabla^2 \delta \eta_j^n = \eta^{n-1} - \eta_{j-1}^n - \Delta t M \left[f_{,\eta}(\eta_{j-1}^n) - \kappa \nabla^2 \eta_{j-1}^n \right]$$
(8)

4 Solution Scheme

At every time step, the known value η^{n-1} is taken as the initial guess for the Newton scheme, η_0^n . Then, for every Newton iteration, $\delta \eta_j^n$ is found using Eq. (8) and η_j^n is updated using Eq. (5). The Newton scheme converges when the norm of $\delta \eta_j^n$ is smaller than some tolerance value (given by the user) after N steps. At that, η^n is calculated as η_N^n and the scheme is repeated for the next time step.

5 Weak formulation

In the weak formulation, considering an arbitrary variation w, the above equation can be expressed as a residual equation: