1 Moment of Inertual of an Off-Balance, Non-Uniform Cylinder

(10)
$$Tr_j = \int_{Am} \left(S_{ij} \stackrel{?}{r} \right)^{2} - rcr_{ij} \right)$$
 $Txy = Tx' = Ty' = 0$
 $T_{ij} = \int_{Am}^{Ma} \int_{Am}^{Am} (i\pi r) r^{2} r(ra)^{2} = \frac{\pi f_{a} a^{a} b}{3} = 2\pi$
 $Txx' = Tyy' = \int_{Am}^{Ma} \int_{Am}^{Am} r^{2} r^$

2. Moment of Inertia of Fractols

(a)

after so times

We denote the final object as with mass m and lenth l
This object consists of two Small objects,

each of which has mass m_2 and lenth 43, inertial $I_1 = I_2 = \frac{1}{2} \left(\frac{1}{3}\right)^2 I_1$

By parnellel axis theorem,

$$J = J_1 + J_2 + 2 \frac{m}{2} \left(\frac{\ell}{3}\right)^2$$

$$\Rightarrow J = \frac{1}{8} m \ell^2$$

(1) The final object

$$I = 3 \cdot \frac{1}{3} \left(\frac{1}{2}\right)^2 I + 3 \cdot \frac{m}{3} \left(\frac{3}{6} \ell\right)^2$$

$$\Rightarrow \int = \frac{1}{9} m \ell^3$$

(८)

$$I = 8 \cdot \frac{1}{8} \left(\frac{1}{3}\right)^{2} I + 4 \frac{m}{8} \left(\frac{\ell}{3}\right)^{2} + 4 \frac{m}{8} \left(\frac{\sqrt{2}\ell}{3}\right)^{2}$$

$$\Rightarrow I = \frac{3}{(6)} m \ell^{2}$$

(d)
$$\log 3^d = 2$$
 $d = \log_3 2 = 0.63$

(b)
$$2^d = 3$$
 $d = l \cdot q_2 3 = 1.58$

(b)
$$2^d = 3$$
 $d = lg_2 3 \approx 1.58$
(c) $3^d = 8$ $d = lg_2 \approx 1.89$