

Algorithmen Tutorium

BEGINN: 16:15

Organisation

- Noch keine*n Abgabepartner*in?
- Abgaben bitte nur als PDF, sonst harten Abzug oder O Punkte
 - Keine Scans/Bilder (Auch keine PDFs mit Bildern/Scans)
 - Screenshots/Bilder aus Programmen(z.B. Excel) sind okay
 - Schriebe auf iPad oder Vergleichbarem sind auch okay
- Falls Moodle down ist
 - Deadline wird i.d.R. verlängert => später hochladen
 - Mail mit Abgabe an mich (VOR Abgabeschluss)

Hilfreiche Programme

- Schreiben => LaTex-Distribution (Overleaf, TeXstudio, ...)
- Tabellen => Excel oder Text
- Abbildungen => LaTex-Package tikz, PaintIO, yEd-Live, Inkscape, ...
- Endliche Automaten => LaTex-Package tikz, http://madebyevan.com/fsm/
- Code => LaTex-Package lstlistings

Master-Theorem

- Laufzeit einer Rekursion?
- Einfach:

```
int intLog2(float n) {
    if (n <= 1) {
        return 0;
    }
    return 1 + intLog2(n / 2);
}</pre>
```

- Allgemeiner Fall: $T(n) = a * T(\frac{n}{b}) * f(n)$
 - a, b sind Konstanten
 - f(n) ist der "Aufwand" pro Rekursionsschritt

Master-Theorem

- 3 bzw. 4 Fälle:
 - Nur ein Fall kann zutreffen (wegen ε)

	Erster Fall ">"	Zweiter Fall "="	Dritter Fall "<"
Allgemein Falls gilt:	$f(n) \in \mathcal{O}\left(n^{\log_b a - arepsilon} ight)$ für ein $arepsilon > 0$	$f(n) \in \Theta\left(n^{\log_b a} ight)$	$f(n)\in\Omega\left(n^{\log_b a+arepsilon} ight)$ für ein $arepsilon>0$ und ebenfalls für ein c mit $0< c<1$ und alle hinreichend großen n gilt: $af(rac{n}{b})\leq cf(n)$
Dann folgt:	$T(n) \in \Theta\left(n^{\log_b a} ight)$	$T(n) \in \Theta\left(n^{\log_b a} \log(n) ight)$	$T(n)\in\Theta(f(n))$

- 4. Fall: Fall 1-3 treffen nicht zu
 - => MT nicht anwendbar

Quelle der Beispiele: https://de.wikipedia.org/wiki/Master-Theorem

Master-Theorem (1. Fall)

- Formel: $T(n) = 8T(\frac{n}{2}) + 1000n^2$ (aus Code ablesen)
 - a = 8, b = 2, $f(n) = 1000n^2$
 - $log_b(a) = log_2(8) = 3$
- Bedingung prüfen: $f(n) \in O(n^{\log_b a \varepsilon}) = O(n^{3 \varepsilon})$
 - Gilt für $\varepsilon = 1$
- => $T(n) \in \theta(n^3)$

	Erster Fall
Allgemein Falls gilt:	$f(n) \in \mathcal{O}\left(n^{\log_b a - arepsilon} ight)$ für ein $arepsilon > 0$
Dann folgt:	$T(n) \in \Theta\left(n^{\log_b a} ight)$

Master-Theorem (2. Fall)

- Formel: $T(n) = 2T\left(\frac{n}{2}\right) + 10n$
 - a = 2, b = 2, f(n) = 10n
 - $log_b(a) = log_2(2) = 1$
- Bedingung prüfen: $f(n) \in O(n^{\log_b a}) = O(n^1)$
 - Kein ε , da θ
- => $T(n) \in \theta(n * log_2(n))$

	Zweiter Fall
Allgemein Falls gilt:	$f(n) \in \Theta\left(n^{\log_b a} ight)$
Dann folgt:	$T(n) \in \Theta\left(n^{\log_b a} \log(n) ight)$

Master-Theorem (3. Fall)

- Formel: $T(n) = 2T\left(\frac{n}{2}\right) + n^2$
 - a = 2, b = 2, $f(n) = n^{2}$
 - $log_b(a) = log_2(2) = 1$

•	1. Bedingur	g prüfen:	f(n)	θ	$(n^{\log_b a + \varepsilon})$	$\theta = \theta$	$(n^{1+\varepsilon})$
		G 19 1 01 1 0 1 1 1	/ (, – – ,	1	, -	(

• Gilt für $\varepsilon = 1$

		Dritter Fall	
	Allgemein Falls gilt:	$f(n)\in\Omega\left(n^{\log_b a+arepsilon} ight)$ für ein $arepsilon>0$ und ebenfalls für ein c mit $0< c<1$ und alle hinreichend großen n gilt $af(rac{n}{b})\leq cf(n)$	
	Dann folgt:	$T(n)\in\Theta(f(n))$	

- 2. Bedingung prüfen: $\exists 0 < c < 1$: $af\left(\frac{n}{b}\right) \le cf(n)$ ab genügend großem n
 - Werte einsetzen : $2(\frac{n}{2})^2 \le cn^2 \Leftrightarrow 2\frac{n^2}{4} \le cn^2 \Leftrightarrow \frac{1}{2}n^2 \le cn^2$
 - Gilt für z.B. mit c = $\frac{1}{2}$ für $\forall n \geq 1$
- $\Rightarrow T(n) \in \theta(n^2)$