An estimate of ISM "porosity" in a Lyman Break Galaxy at z=8.312 based on the luminosities of [OIII] 88µm, [CII] 158µm, and dust continuum

Nagoya University M1 Masato Hagimoto

Y. Tamura, T. Bakx, A. Taniguchi, K. Sunaga, Y. Togami (Nagoya-U), A.K. Inoue (Waseda-U), T. Hashimoto (UTsukuba), Yuichi Harikane, K. Mawatari(UTokyo ICRR), H. Matsuo (NAOJ)

Outline

1. Introduction

- What is the Epoch of Reionization (EoR)?
- Far-infrared emission lines in the galaxies of EoR
- Previous studies
- The goal of this work
- 2. Target / Method
- 3. Result
- 4. Discussion
- 5. Future works / Summary

Introduction: What is the Epoch of Reionization?

Robertson +2010

- Epoch of Reionization
 - The era when the universe was re-ionized by UV radiation of some objects (e.g.; galaxies, QSOs) after the birth of first stars
 - Metal and dust enrichment for the first time in the cosmic-history
 - Before this time there are only hydrogen and helium in the universe
- How does the ISM structure affect on the escape fraction of ionizing photons?
- What physical conditions did the galaxies at EoR have?

Introduction: What is the Epoch of Reionization?

Robertson +2010

- Epoch of Reionization
 - The era when the universe was re-ionized by UV radiation of some objects (e.g.; galaxies, QSOs) after the birth of first stars
 - Metal and dust enrichment for the first time in the cosmic-history
 - Before this time there are only hydrogen and helium in the universe
- How does the ISM structure affect on the escape fraction of ionizing photons?
- What physical conditions did the galaxies at EoR have?

Introduction: Far-Infrared line emissions at EoR

- Far-Infrared fine structure lines
 - Observable by ALMA at z > 6 (EoR) (e.g.: Inoue +2014)
 - The number of detections has been increasing
- Useful to understand the multi-phase structure of ISM
 - Various ionization potentials
 (O++: 35.1eV → HII region, C+: 11.3eV → PDR)

Introduction: multi-phase modeling in dwarf galaxies

- Cormier +2019: multi-phase modeling based on FIR lines and dust continuum using the spectral synthesis code, CLOUDY (Ferland +2017)
 - target: Herschel Dwarf Galaxy Survey (DGS) samples (Madden +2013)
 - $Z \sim 0.1 Z_{\odot}$, SFR $\sim 0.1 M_{\odot} \text{ yr}^{-1}$

Introduction: The goal of this work

Problem

- What is the ISM structure affected on the escape fraction of ionizing photons?
- What are similarities and differences between the galaxies at EoR and nearby galaxies?
- Goal: to estimate the physical properties, especially "porosity" of the neutral gas, in the galaxy at EoR from FIR emission lines and dust continuum
 - Method: modified Cormier's method
 - Target object: MACS0416_Y1
 - Observed [OIII] 88μm, [CII] 158μm, and dust continuum at 90μm in the rest-frame

Target: MACS0416_Y1 at z=8.312

- ALMA observation result
 - [OIII] 88 μ m: $(1.2 \pm 0.3) \times 10^9 L_{\odot}$
 - [CII] 158 μ m: $(1.40 \pm 0.22) \times 10^8 L_{\odot}$
 - Dust continuum: $(11.1 \pm 2.0) \times 10^{11} L_{\odot}$ $(T_{dust} = 80 K, \beta = 2.0)$
 - Only detected at 850µm → calculate a luminosity assuming a modified black body

Bakx +2020

Target: MACS0416_Y1 at z=8.312

- Dust continuum: $(11.1 \pm 2.0) \times 10^{11} L_{\odot}$ $(T_{dust} = 80 K, \beta = 2.0)$
 - Only detected at 850µm → calculate a luminosity assuming a modified black body

Method: geometry and model parameters

ISM structure assumed in this research

Fixed Parameters		
dominant radiation field	BPASS ver 2.1 (1) binary, age of star= 4 Myr, $Z_* = 0.2Z_{\odot}$ (2)	
Background radiation field	CMB radiation at z=8.312 (2) cosmic ray background (3)	
Gas metallicity	$Z_{\rm gas} = 0.2 Z_{\odot}$ (2)	
Density transition law	$n_{\rm H,PDR} = n_{\rm H,HII} \times (1 + N(\rm H)/10^{21} [\rm cm^{-2}])$ (4)	
Stopping criterion of calculation	$H^+/H_{tot} = 10^{-2}$ for HII region (5) $A_V = 5 \text{ mag}$ for PDR (4)	

- (1): Eldridge +2017, (2): Tamura +2019,
- (3): Peebles +1971, Mather +1999, Wilkinson +1987
- (4): Cormier +2019, (5): Abel +2005

result: construction of multi-phase model

discussion: compare with nearby galaxies

- Trend: positive correlation → [CII] luminosity ∝ FIR luminosity
- Y1 is similar to Dwarf galaxies than normal star-forming galaxies

Future works

- To further restrict the model parameters
 - Observe additional lines or dust continuum at various wavelengths
 - Compare to the latest hydrodynamic simulations
 - Limiting the range of possible parameters

- Construct the multi-phase models for other high-z galaxies or local analogs
 - Do I find any trends among them ?

Summary

- I construct the multi phase model of ISM in a Lyman break galaxy at z=8.312 on the basis of [OIII] 88μm, [CII] 158μm, and dust continuum emissions using CLOUDY
 - Best fit parameters: $(\log U, \log n_{\rm H}, {\rm cov}_{\rm PDR}) = (-1.0^{-1.0}_{-2.5}, \ 0.0^{2.5}_{0.0}, \ 0.5^{0.9}_{0.3})$
 - This galaxy has strong ionization parameter and small covering fraction, i.e. big "porosity"
 - Perhaps, ionizing photons could escape into IGM easily
- I compare this galaxy to local dwarf galaxies and star-forming galaxies by plotting [OIII] / [CII] vs. [OIII] / FIR luminosity ratios
 - This galaxy is similar to local dwarfs especially which have high ionization parameter and big "porosity"

Appendix

Calculate range

• $1.08 \times 10^{21} \text{ cm} \rightarrow 300 \text{pc}$: red line in right figure

10²¹

 9×10^{20}

 8×10^{20}

Total SED

Schematic view of parameter space

Ionization parameter :

$$\log U = \{-4.0, -3.5, -3.0, -2.5, -2.0, -1.5, -1.0, -0.5\}$$

Hydrogen density:
1000 05 10 15 20 25 20 25

$$\log n_{\rm H} = \{0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5\} \text{ [cm}^{-3}\text{]}$$

• Covering factor : $cov_{PDR} = \{0.0, \, 0.1, \, 0.2, \, 0.3, \, 0.4, \, 0.5, \, 0.6, \, 0.7, \, 0.8, \, 0.9, \, 1.0\}$

The calculation of FIR luminosity

Object	Dust temperature	Emissivity Index eta	FIR luminosity L_{\odot}	Reference
MACS1149_JD1	40 K	1.5	$< 0.77 \times 10^{10}$	Hashimoto +2018
A2744_YD4	50 K	2.0	$(12.6 \pm 5.5) \times 10^{10}$	Laporte +2017, 2019
B14-65666	54 K	1.75	$(10.5 \pm 2.0) \times 10^{11}$	Hashimoto +2019
SXDF-NB10006-2	50 K	1.5	$< 1.96 \times 10^{11}$	Inoue +2016, Bakx +2020
BDF-3299	50 K	1.5	$< 0.9 \times 10^{11}$	Carniani +2017, Bakx +2020
SPT0311-058E	50 K	1.5	$(4.6 \pm 1.2) \times 10^{12}$	Marrone +2017
SPT0311-058W	50 K	1.5	$(3.3 \pm 0.7) \times 10^{13}$	Marrone +2017
RXCJ2248-ID3	50 K	1.5	$< 6.1 \times 10^{11}$	Tamura& sunaga + in prep, Bakx +2020
J2054-0005	50 K	1.8	$(1.3 \pm 0.2) \times 10^{13}$	Hashimoto +2019
J2310+1805	37 K	2.2	$1.9^{+0.2}_{-0.1} \times 10^{13}$	Hashimoto +2019
J0235-0532	50 K	1.5	$< 2.5 \times 10^{11}$	Harikane +2020
J0217-0208	25 K	1.5	$1.4^{+2.5}_{-0.3} \times 10^{11}$	Harikane +2020
J1211-0118	38 K	1.5	$3.2^{+18.7}_{-1.7} \times 10^{11}$	Harikane +2020

Density transition law

• The result of Cormier +2019 : assumed $n_{\rm H}=10^2~{\rm [cm^{-3}]}$

The definition of ionization parameter

$$U = \frac{Q(H)}{4\pi r_o^2 n(H)c} = \frac{\Phi(H)}{n(H)c}$$

- r_o : the distance from ionizing source to illuminated face (cm)
- n(H): hydrogen density(cm⁻³)
- Q(H): the number of ionizing photons radiated from source
- $\Phi(H)$: the luminosity of ionization photon
- The value normalizing SED

The validity of the gas metallicity

- The star marked by circle:
 metallicity = 0.2 Z_☉
 → the similar to local dwarfs
- In this work, $Z_* = 0.2 \ Z_{\odot}$ The star was born in the surrounding gas $Z_{\rm gas} = 0.2 \ Z_{\odot}$

Fixed and varied parameters in Cormier +2019

Fixed parameters			
Radiation field	Starburst99 continuous SF of 10 Myr,		
	Geneva stellar track, scaled to Z,		
	Kroupa IMF,		
	$ \log(L/L_{\odot}) = 9$		
	Blackbody $T = 5 \times 10^6 \text{ K (X-ray)},$		
	$\ldots \log(L/L_{\odot}) = 5.2$		
	Cosmic rays background 0.5 log		
	CMB		
	Table ISM		
$v_{\rm turb}$	1.5km s^{-1}		
D/G mass ratio	$(5\times10^{-3})\times Z$		
Metal, PAH abund.	Set to values below		
Density law	$n_{\rm H, PDR} = n_{\rm H, HII} \times (1 + N(\rm H)/[10^{21} cm^{-2}])$		
Stopping criterion	$A_V = 5 \text{ mag}$		

Vai	ried parameters and grid values
log n _H	[0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5] cm ⁻³
$\log U$	[-4, -3.5, -3, -2.5, -2, -1.5, -1, -0.5]
COVPDR	[0, 0.2, 0.4, 0.6, 0.8, 1]
Z_{bin}	[0.05, 0.10, 0.25, 0.50, 1.00]
log O/H	[-4.80, -4.50, -4.10, -3.80, -3.50]
log C/O	[-0.99, -0.87, -0.69, -0.56, -0.44]
log N/O	[-1.60, -1.60, -1.60, -1.30, -1.00]
log Ne/O	[-0.82, -0.79, -0.75, -0.73, -0.70]
log S/O	[-1.70, -1.71, -1.72, -1.73, -1.74]
log Si/O	[-2.00, -2.00, -2.00, -2.00, -2.00]
log Ar/O	[-2.43, -2.42, -2.41, -2.39, -2.38]
log Fe/O	[-1.37, -1.55, -1.79, -1.98, -2.16]
log C1/O	[-3.50, -3.47, -3.42, -3.38, -3.35]
log PAH/H	[-9.51, -8.82, -7.90, -7.22, -6.52]

Chi square calculation

$$\chi^{2} = \sum_{i=1}^{n_{\text{lines}}} \frac{(M_{i} - O_{i})^{2}}{(\min\{M_{i}; O_{i}\} \times \sigma_{i})^{2}}$$

- M_i : modeled intensity
- O_i : observed intensity
- σ_i : fractional error on the observed flux (uncertainly / flux)
- For non-detection with a 1σ upper limit : $\sigma_{\rm ul}$
 - $M_i \le 3\sigma_{\rm ul} \to O_i$ set to $M_i \ (\chi^2 = 0)$
 - $M_i > 3\sigma_{\rm ul} \rightarrow O_i$ set to $3\sigma_{\rm ul}$ and σ_i set to 1

Typical values of DGS sample

- $-2.9 \le \log U \le -0.3 \rightarrow \text{median value} : \log U = -2.4$
- $0.2 \le \text{cov}_{\text{PDR}} \le 1.0 \rightarrow \text{median value} : \text{cov}_{\text{PDR}} = 0.4$
- $0.5 \le \log n_{\rm H} \le 3.0 \ [{\rm cm}^{-3}] \to {\rm median \ value} : \log n_{\rm H} = 2.0 \ [{\rm cm}^{-3}]$
 - Medians are very close to the values found in Cormier +2015