Atelier Data Science

Deep learning practice 2
Convolutional Neural Networks

Irina Proskurina

<u>Irina.Proskurina@univ-lyon2.fr</u>

Laboratoire ERIC – Université Lyon 2

Previous Lesson Recap 1

- 1) Neural Networks -> no manual feature engineering is needed!
- 2) Fully connected layers (torch.nn.Linear(20, 30))
- 3) Fully connected neural networks: connect every neuron in one layer to every neuron in the other layer + activation function

Previous Lesson Recap 2 MNIST

 Each neuron can detect the presence of a specific set of pixels

Previous Lesson Recap 2 MNIST

• If you shift the digit slightly, the neuron will no longer detect its pattern

Number of parameters

- 784 inputs
- Fully connected layer: 1000 neurons
- Output layer: 10 neurons (one for each class)
- Weights between input and fully connected layers:
 (784 + 1) * 1000 = 785,000
- Weights between fully connected and output layers:
 (1000 + 1) * 10 = 10,010

Fully connected neural networks for image classification

- A lot of parameters
- Prone to overfitting
- Do not consider special patterns in images: shifts, slight changes in shape, etc.
- One of the best ways to combat overfitting is to reduce the number of parameters

Convolutional neural network

Experiments with the visual cortex

1	1		1	0		
		*			_	2
1	1		0	1	_	
_	_			_		

3	0	ماه	1	0	_	6
0	3	*	0	1	_	Ь

1	2	مام	1	0	_	1
3	0	*	0	1	_	1

0	2	مام	1	0	_	
3	0	*	0	1	_	0

- Detects a pattern in the image, which is defined by a filter
- The stronger the pattern in a particular area of the image, the higher the convolution value will be

• The result of the convolution is a new image, where each pixel is a weighted sum of the pixels in the original image

The maximum of convolution is invariant to shifts

Input

Filter

Output

Convolutions in computer vision

Convolutions in computer vision

+ a

•0	•0	•0
•0	•1	•0
•0	•0	•0

•	•0	•0
•0	•1	•0
•0	•	•0

•0	•0	•0	
•0	•2	•0	-
•0	•0	•0	

Convolutions in computer vision

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$Im^{out}(x,y) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} (K(i,j)Im^{in}(x+i,y+j)+b)$$

- A pixel in the resulting image depends only on a small set of the input image (local connectivity)
- The weights (kernel values) are the same for all pixels in the output image (shared weights)

- Typically, the original image is in color, implying it has multiple channels (R, G, B)
- Let's take this into account in the formula:

$$Im^{out}(x,y) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} \sum_{c=1}^{C} (K(i,j,c)Im^{in}(x+i,y+j,c)+b)$$

Number of parameters

$$Im^{out}(x,y) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} \sum_{c=1}^{C} (K(i,j,c)Im^{in}(x+i,y+j,c) + b_{t})$$

- Kernel parameters
- $((2d+1)^2*C+1)*T$

Receptive field

Consider a pixel in the output image

What part of the input image influences the value in this output

pixel?

Receptive Field (RF)

the size of the region in the input that produces the feature

Receptive field: 3 x 3

Receptive field: 5 x 5

Receptive field for 3 x 3 convolution:

- After 1 convolutional layer: 3 x 3
- After 2 convolutional layers: 5 x 5
- After 3 convolutional layers: 7 x 7

We need a lot of layers if the image size is 512 x 512!

Strides

$$s = 2$$

*

Stride:

the number of pixels by which we move the filter across the input image

Strides

Receptive field: 7 x 7

Dilated convolutions

l = 2

Input Kernel Output Layer 1

Dilated convolutions

The maximum of convolution is invariant to shifts

Input

Filter

Output

Pooling

Max-pooling with kernel 2x2

1	0	2	1	0	0				
0	1	3	2	1	2		1	3	2
						\rightarrow)	

Pooling

- Splits the image into $n \times m$ sections applying some function (usually max)
- Significantly reduces the size of the image (which means it increases the receptive field in the subsequent layers)
- Has no parameters

Why we need to know all this?

 It is important to ensure that the last convolutional layer has a receptive field relative to the size of input image

 If you apply convolution, the output image will be smaller than the input

Valid padding (= No padding)

 When applying convolution to image, the pixels at the edges have less impact on the output

0	0	1
0	0	1
1	1	1

Zero padding

Zero padding

- We add zeros along the boundaries so that the convolution calculated after this in valid mode gives an image of the same size as the original one
- There is a risk that the model will learn to understand where the edges are in the image - we may lose invariance

Reflection padding

Pad input data symmetrically with a reflection of its own values

3	6	6	7	8				
8	7	1	2	3				
2	1	1	2	3	4	5	6	
7	6	6	7	8	9	8	7	
2	1	1	2	3				

Reflection padding

- Can't easily find image edges
- But now the model can begin to find specular reflections and select filters for them

3	6	6	7	8				
8	7	1	2	3				
2	1	1	2	3	4	5	6	
7	6	6	7	8	9	8	7	
2	1	1	2	3				

Replication padding

Pad with replicated the values at the boundary

1	1	1	2	3				
1	1	1	2	3				
1	1	1	2	3	4	5	6	
6	6	6	7	8	9	8	7	
1	1	1	2	3				

Replication padding

- The pixel on the border is equal to the nearest pixel from the image
- The model can still adjust to the patterns that arise from such padding

	1	1	1	2	3				
	1	1	1	2	3				
	1	1	1	2	3	4	5	6	
İ	6	6	6	7	8	9	8	7	
1									
	1	1	1	2	3				

Summary

- Padding allows you to control the size of the output images
- Padding allows you to take into account objects on the edges
- Different types of padding allow different methods of retraining for edges

Convolutional Neural Networks

Architecture 1

Architecture 1

- Convolution->linear layer>pooling or convolution->non-linear layer
- 2) Flatten the output
- 3) Fully-connected layer

Architecture 2: LeNet

Architecture 3: AlexNet

Visualizing Convolutional Networks

Image representation (embedding) from the last layers

- Important observation: the output of final layers serve as good feature representations of images
- For instance, they can be used in tasks like searching for similar images

Last layer embeddings

Visualizing Convolutional Networks

Visualizing Convolutional Networks

