CPE301 - FALL 2019

MIDTERM 1

Student Name: Dillon Archibald

Student #: 5004439916

Student Email: Archid1@unlv.nevada.edu

Primary Github address: https://github.com/Dil-bert/Alabaster.git

Directory: Mid_Term_I

Submit the following for all Labs:

1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.

- 2. Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/Midterm, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

List of Components used

1 x Atmega 328p Xplained mini

1 x Multi-function sheild

1 x ESP8266-01 Wifi module

1 x LM35 temperature sensor

Block diagram with pins used in the Atmega328P

2. INITIAL/MODIFIED/DEVELOPED CODE OF TASK 1/A

```
/*
* DA3B.c
* Created: 10/24/2019 9:12:14 PM
* Author : Dilbert
#define F_CPU 16000000UL
#include <stdio.h>
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#define USART BAUDRATE 9600
#define UBRR VALUE (((F CPU/(USART BAUDRATE*16UL)))-1)
// Global Variables
volatile uint8_t tempL = 0;
volatile uint8_t tempH = 0;
volatile float tempOut = 0;
// Function definitions
void InitPort();
void InitADC();
void SetADCChannel(uint8_t ADCchannel);
void StartADC(void);
void DisableADC(void);
void USARTOInit(void);
void InitTimerO(void);
int USARTOSendByte(char u8Data, FILE *stream);
void StartTimerO(void);
void StopTimer(void);
ISR(ADC_vect);
// Set Stream Pointer
FILE usart0_str = FDEV_SETUP_STREAM(USARTOSendByte, NULL, _FDEV_SETUP_WRITE);
     ***********
```

```
int main(void) {
    // Initialize USARTO
    USARTOInit();
    // Initialize ports
    InitPort();
    // Assign our stream to standard I/O streams
    stdout=&usart0_str;
    // Initialize ADC
    InitADC();
    // Select ADC channel
    SetADCChannel (5);
    // Initialize timer0
    InitTimerO();
    // Start timer 0
    StartTimer0();
    // Start conversion
    StartADC();
    // Enable global interrupts
    sei();
    while (1) {
        // 1 Second Delay between displaying temp
        _delay_ms(1000);
        // Temp set up
        tempOut = ((tempOut * 0.488));
        // Temp Conversion from Celsius to Fahrenheit
        tempOut = (((9*tempOut)/5) + 32);
        printf("Temp = \%. 1f F\r\n", tempOut);
}
      ******Port Initialization function****
void InitPort() {
    // Set pin C5 as an input pin
    DDRC = (0 << PINC5);
    // Ensure pin C5 pull up resistor is off
    PORTC = (0 << PINC5);
    // Turn off Digital logic on pin C5
    DIDRO = (1 << ADC5D);
      *****ADC Initialization function*****
void InitADC() {
    // Select Vref=Avcc and set (left = ADLAR = 1) (right = ADLAR = 0) justified result
    ADMUX = (1 << REFSO) | (0 << ADLAR);
    // Set prescaller to 32, enable auto triggering, enable ADC interrupt
    // and enable ADC
    ADCSRA |=(1<<ADPS2) | (1<<ADPS1) | (1<<ADPS0) | (1<<ADATE) | (1<<ADEN) ;
    // Set ADC trigger source - TimerO compare match A
    ADCSRB =(1 << ADTS1) | (1 << ADTS0);
      ******ADC PORT SELECT function*****
```

```
void SetADCChannel(uint8 t ADCchannel) {
   // Select ADC channel with safety mask
   ADMUX = (ADMUX & OxFO) | (ADCchannel & OxOF);
     ********ADC start function******
void StartADC(void) {
   ADCSRA = (1 << ADSC);
     ********ADC end function*****
void DisableADC(void) {
   ADCSRA &= ^{\sim} ((1<<ADEN) | (1<<ADIE));
   ********USART Initialization function*****
void USARTOInit(void) {
   // Set baud rate
   UBRROH = (uint8_t) (UBRR_VALUE>>8);
   UBRROL = (uint8_t)UBRR_VALUE;
   // Set frame format to 8 data bits no parity, 1 stop bit
   UCSROC = (1 << UCSZO1) | (UCSZOO);
   // Enable transmission and reception
   UCSROB = (1 << RXENO) | (1 << TXENO);
     ******TimerO Initialization function****
void InitTimerO(void) {
   // Set Initial Timer value
   TCNTO = 0;
   // Place TOP timer value to Output compare register
   OCROA = 99;
   // Set CTC mode
   // and make toggle PD6/0C0A pin on compare match
   TCCROA = (1 < COMOAO) | (1 < WGMO1);
     *********USART Send function*****
int USARTOSendByte(char u8Data, FILE *stream) {
   // Wait while previous byte is completed
   while(!(UCSROA & (1<<UDREO))) {};
   // Transmit Data
   UDRO = u8Data;
   return 0:
```

```
******Timer start function*****
void StartTimerO(void) {
    // Set prescaller 8 and start timer
    TCCROB = (1 << CSO1);
      *******Timer end function*****
void StopTimer(void) {
   TCCROB &= ^{\sim} (1<<CSO1);
TIMSKO &= ^{\sim} (1<<OCIEOA);
      *******ADC conversion complete ISR*****
ISR(ADC vect) {
    // clear timer compare match flag
    TIFRO = (1 << OCFOA);
    // Toggle pin PD2 to track the end of ADC conversion
    PIND = (1 << PD2);
    tempL = ADCL;
    tempH = ADCH;
    tempOut = ((tempH << 8) | (tempL));
```

3. DEVELOPED MODIFIED CODE OF TASK 2/A from TASK 1/A

```
* Mid_Term.c
* Created: 10/29/2019 9:43:44 AM
* Author : Dilbert
#define F_CPU 16000000UL
#include <stdio.h>
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#include <string.h>
#include <stdlib.h>
#define USART BAUDRATE 115200
#define UBRR_VALUE (int)round((((F_CPU/(USART_BAUDRATE*8UL)))-1))
// Global Variables
volatile uint8_t tempL = 0;
volatile uint8_t tempH = 0;
volatile float tempOut = 0;
char TEMP[50];
char WIFI[] = "";
char PASSWORD[] = "";
```

```
// Function definitions
void InitPort();
void InitADC();
void SetADCChannel(uint8_t ADCchannel);
void StartADC(void);
void DisableADC(void);
void USARTOInit(void);
void InitTimerO(void);
int USARTOSendByte(char u8Data, FILE *stream);
void StartTimerO(void);
void StopTimer(void);
void check_OK(void);
void UART_sendString(char * AT);
char * UART_ReciveString(void);
ISR (ADC vect);
// Set Stream Pointer
FILE usartO_str = FDEV_SETUP_STREAM(USARTOSendByte, NULL, _FDEV_SETUP_WRITE);
      *********MAIN******
int main(void) {
    // Initialize USARTO
   USARTOInit();
   // Initialize ports
    InitPort();
    // Assign our stream to standard I/O streams
   stdout=&usart0_str;
    // Initialize ADC
    InitADC();
    // Select ADC channel
    SetADCChannel(4);
    // Initialize timer0
    InitTimerO();
    // Start timer 0
    StartTimer0();
    // Start conversion
    StartADC();
    // Enable global interrupts
    sei();
    UART\_sendString("AT\r\n");
    _delay_ms(20);
// Check if ok returned
    check_OK();
    _delay_ms(20);
    // Select WIFI mode
    UART\_sendString("AT+CWMODE=1\r\n");
    delay ms(20);
    // Connect to local WIFI
    UART sendString("AT+CWJAP=\"NoMore\", \"Ch@ng31!ng\"\r\n");
    delay ms (40):
    // Enable connection
   UART sendString("AT+CIPMUX=0\r\n");
    delay ms(40);
```

```
while (1) {
        // 15 Second Delay between displaying temp
        delay ms (15000);
        // Start a connection as client to Thingspeak
UART_sendString("AT+CIPSTART=\"TCP\", \"184.106.153.149\", 80\r\n");//"AT+CIPSTART=\"TCP\", \"184.106
. 153. 149\", 80\r\n"
        delay ms(40);
        // Specify the size of the data
        UART_sendString("AT+CIPSEND=51\r\n");
        _delay_ms(40);
        // Temp set up
        tempOut = ((tempOut * 0.488));
        // AT data send command set up
        snprintf(TEMP, sizeof(TEMP), "GET /update?key=XUHJJ4KV38XFPTT7&field1=%2f", tempOut);
        // Send temperature data
        UART sendString(TEMP);
        delay ms(20);
        UART\_sendString("\r\n\r\n");
      ******Port Initialization function****
void InitPort() {
    // Set pin C4 as an input pin
    DDRC = (0 << PINC4);
    // Ensure pin C4 pull up resistor is off
    PORTC = (0 << PINC4);
    // Turn off Digital logic on pin C4
    DIDRO = (1 << ADC4D);
      ******ADC Initialization function****
void InitADC() {
    // Select Vref=Avcc and set (left = ADLAR = 1) (right = ADLAR = 0) justified result
    ADMUX = (1 < REFS0) | (0 < ADLAR) | (0x04); // (1 << 2 or 3?)
    // Set prescaller to 32, enable auto triggering, enable ADC interrupt
    // and enable ADC
    ADCSRA |=(1<<ADPS2) | (1<<ADPS1) | (1<<ADPS0) | (1<<ADATE) | (1<<ADIE) | (1<<ADEN);
    // Set ADC trigger source - TimerO compare match A
    ADCSRB = (1 << ADTS1) | (1 << ADTS0);
     *******ADC PORT SELECT function*****
void SetADCChannel(uint8 t ADCchannel) {
    // Select ADC channel with safety mask
    ADMUX = (ADMUX & OxFO) | (ADCchannel & OxOF):
```

```
********ADC start function*****
void StartADC(void) {
    ADCSRA = (1 << ADSC);
      ********ADC end function*****
void DisableADC(void) {
    ADCSRA &= ^{\sim} ((1<<ADEN) | (1<<ADIE));
      ********USART Initialization function*****
void USARTOInit(void) {
    // Set baud rate
    UBRROH = (uint8_t) (UBRR_VALUE>>8);
    UBRROL = (uint8_t)UBRR_VALUE;
    // Set frame format to 8 data bits no parity, 1 stop bit
    UCSROC \mid = (1 << UCSZO1) \mid (UCSZOO);
    // Enable transmission and reception
    UCSROB = (1 << RXENO) | (1 << TXENO);
    // Run double speed
    UCSROA \mid = (1 << U2XO);
      *******Timer 0 \ Initialization \ function ********
void InitTimerO(void) {
    // Set Initial Timer value
    TCNTO = 0;
    // Place TOP timer value to Output compare register
    OCROA = 99;
    // Set CTC mode
    // and make toggle PD6/0C0A pin on compare match
    TCCROA = (1 < COMOAO) | (1 < WGMO1);
}
      void UART_sendString(char * AT)
    volatile unsigned char len= 0;
    volatile unsigned char i;
    while (AT[len] != 0)
        len++;
    for (i = 0x00; i < len; i++) {
        // Wait for the transmitter to finish
        while(!(UCSROA & (1<<UDREO)));</pre>
        UDRO = AT[i];
```

```
********USART Send function****
int USARTOSendByte(char u8Data, FILE *stream) {
   // Wait while previous byte is completed
   while(!(UCSROA & (1<<UDREO))) {};
   // Transmit Data
   UDR0 = u8Data;
   return 0;
     ******Timer start function******
void StartTimerO(void) {
   // Set prescaller 8 and start timer
   TCCROB = (1 << CSO1);
void check OK(void) {
   uint8_t len = 0;
   char *returned str = UART ReciveString();
   returned_str = UART_ReciveString();
   len = strlen(returned_str);
   if(len > 3) { // error
       while (1);
       UART_sendString(returned_str);
        _delay_ms(1000);
       UART\_sendString("AT\r\n");
        _delay_ms(1000);
   if(1en < 3) {
       UART_sendString(returned_str);
        _delay_ms(1000);
   }
char * UART_ReciveString(void) {
   char *str = (char *) (sizeof(char)*20);
   volatile uint8_t i = 0;
   do {
        // Wait for the transmitter to finish
       while(!(UCSROA & (1<<UDREO)));
       str[i] = UDR0;
       i++;
       } while(!RXCO);
   return str;
     ******Timer end function*****
void StopTimer(void) {
   TCCROB &= ^{\sim} (1<<CS01);
   TIMSKO &= ^{\sim} (1<<OCIEOA);
```

```
//----
// *******ADC conversion complete ISR******
//------
ISR(ADC_vect) {
    // clear timer compare match flag
    TIFRO = (1<<OCFOA);
    // Toggle pin PD2 to track the end of ADC conversion
    PIND = (1<<PD2);
    tempL = ADCL;
    tempH = ADCH;
    tempOut = ((tempH << 8) | (tempL));
}</pre>
```

4. SCHEMATICS

5. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

6. SCREENSHOT OF EACH DEMO (BOARD SETUP)

7. VIDEO LINKS OF EACH DEMO

https://youtu.be/e0PbBv4xrsc

8. GITHUB LINK OF THIS DA

https://github.com/Dil-bert/Alabaster/tree/master/Midterms/Mid_Term_I

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Dillon Archibald