

Bayesian regression with a categorical predictor

Alicia Johnson Associate Professor, Macalester College

Chapter 4 goals

- Incorporate categorical predictors into Bayesian models
- Engineer *multivariate* Bayesian regression models
- Extend our methodology for Normal regression models to generalized linear

models: Poisson regression

Rail-trail volume

Goal:

Explore daily volume on a rail-trail in Massachusetts.

Modeling volume

 Y_i = trail volume (# of users) on day i

$$Y_i \sim N(m_i, s^2)$$

 Y_i = trail volume (# of users) on day i X_i = 1 for weekdays, 0 for weekends

$$Y_i \sim N(m_i, s^2)$$

 Y_i = trail volume (# of users) on day i X_i = 1 for weekdays, 0 for weekends

$$Y_i \sim N(m_i, s^2)$$

 Y_i = trail volume (# of users) on day i X_i = 1 for weekdays, 0 for weekends

$$Y_i \sim N(m_i, s^2) \ m_i = a + b X_i$$

 Y_i = trail volume (# of users) on day i X_i = 1 for weekdays, 0 for weekends

Model

$$Y_i \sim N(m_i, s^2) \ m_i = a + b X_i$$

• a =typical weekend volume

 Y_i = trail volume (# of users) on day i X_i = 1 for weekdays, 0 for weekends

$$Y_i \sim N(m_i, s^2) \ m_i = a + b X_i$$

- *a* = typical weekend volume
- a + b = typical weekday volume
- b = contrast between typical weekday
 vs weekend volume
- *s* = residual standard deviation

Priors for a & b

Typical weekend volume is most likely around 400 users per day, but possibly as low as 100 or as high as 700 users.

We lack certainty about how weekday volume compares to weekend volume. It could be more, it could be less.

Prior for s

The standard deviation in volume from day to day (whether on weekdays or weekends) is equally likely to be anywhere between 0 and 200 users.

Bayesian model of volume by weekday status

$$egin{aligned} Y_i &\sim N(m_i, s^2) \ m_i &= a + b X_i \ a &\sim N(400, 100^2) \ b &\sim N(0, 200^2) \ s &\sim Unif(0, 200) \end{aligned}$$


```
egin{aligned} Y_i &\sim N(m_i, s^2) \ m_i &= a + b X_i \ a &\sim N(400, 100^2) \ b &\sim N(0, 200^2) \ s &\sim Unif(0, 200) \end{aligned}
```

```
rail_model_1 <- "model{
    # Likelihood model for Y[i]

# Prior models for a, b, s
}"</pre>
```

```
egin{aligned} Y_i &\sim N(m_i, s^2) \ m_i &= a + b X_i \ a &\sim N(400, 100^2) \ b &\sim N(0, 200^2) \ s &\sim Unif(0, 200) \end{aligned}
```

```
rail_model_1 <- "model{
    # Likelihood model for Y[i]
    for(i in 1:length(Y)) {
        Y[i] ~ dnorm(m[i], s^(-2))

    }

# Prior models for a, b, s
    a ~ dnorm(400, 100^(-2))
    s ~ dunif(0, 200)</pre>
```

```
m[i] < -a + b[X[i]]
```

- x[1] = weekend, x[2] = weekday
- b has 2 levels: b[1], b[2]
- weekend trend $(m_i = a)$

```
m[i] <- a + b[1]
```

```
rail_model_1 <- "model{
    # Likelihood model for Y[i]
    for(i in 1:length(Y)) {
        Y[i] ~ dnorm(m[i], s^(-2))
        m[i] <- a + b[X[i]]
    }

# Prior models for a, b, s
    a ~ dnorm(400, 100^(-2))
    s ~ dunif(0, 200)</pre>
```

```
m[i] < -a + b[X[i]]
```

- x[1] = weekend, x[2] = weekday
- b has 2 levels: b[1], b[2]
- weekend trend $(m_i = a)$

```
m[i] <- a + b[1]
b[1] <- 0
```

```
rail_model_1 <- "model{
    # Likelihood model for Y[i]
    for(i in 1:length(Y)) {
        Y[i] ~ dnorm(m[i], s^(-2))
        m[i] <- a + b[X[i]]
    }

# Prior models for a, b, s
    a ~ dnorm(400, 100^(-2))
    s ~ dunif(0, 200)
    b[1] <- 0</pre>
}"
```

```
m[i] < -a + b[X[i]]
```

- x[1] = weekend, x[2] = weekday
- b has 2 levels: b[1], b[2]
- weekend trend $(m_i = a)$

$$m[i] <- a + b[1]$$
 $b[1] <- 0$

• weekday trend $(m_i = a + b)$

```
m[i] <-a + b[2]

b[2] \sim dnorm(0, 200^{(-2)})
```

```
rail_model_1 <- "model{
    # Likelihood model for Y[i]
    for(i in 1:length(Y)) {
        Y[i] ~ dnorm(m[i], s^(-2))
        m[i] <- a + b[X[i]]
    }

# Prior models for a, b, s
    a ~ dnorm(400, 100^(-2))
    s ~ dunif(0, 200)
    b[1] <- 0
    b[2] ~ dnorm(0, 200^(-2))
}"</pre>
```


Let's practice!

Multivariate Bayesian regression

Alicia Johnson Associate Professor, Macalester College

Modeling volume

 Y_i = trail volume (# of users) on day i

 Y_i = trail volume (# of users) on day i X_i = 1 for weekdays, 0 for weekends

Modeling volume by temperature

```
Y_i = trail volume (# of users) on day i
```

 Z_i = high temperature on day i (in $^{\circ}$ F)

Modeling volume by temperature & weekday

 Y_i = trail volume (# of users) on day i X_i = 1 for weekdays, 0 for weekends Z_i = high temperature on day i (in $^{\circ}$ F)

$$Y_i \sim N(m_i, s^2)$$

$$m_i = a + bX_i + cZ_i$$

Weekends: $m_i = a + cZ_i$

Weekdays: $m_i = (a+b) + cZ_i$

Modeling volume by temperature & weekday

 Y_i = trail volume (# of users) on day i X_i = 1 for weekdays, 0 for weekends Z_i = high temperature on day i (in $^{\circ}$ F)

$$Y_i \sim N(m_i, s^2)$$

$$m_i = a + bX_i + cZ_i$$

Weekends: $m_i = a + cZ_i$

Weekdays: $m_i = (a+b) + cZ_i$

Modeling volume by temperature & weekday

$$m_i = a + bX_i + cZ_i$$

Weekends: $m_i = a + cZ_i$

Weekdays: $m_i = (a+b) + cZ_i$

- a = weekend y-intercept
- a + b = weekday y-intercept
- b = contrast between weekday vs
 weekend y-intercepts
- c = common slope
- s = residual standard deviation

Priors for a and b

We lack certainty about the y-intercept for the relationship between temperature & weekend volume.

We lack certainty about how typical volume compares on weekdays vs weekends of similar temperature.

Priors for *c* and *s*

Whether on weekdays or weekends, we lack certainty about the association between trail volume & temperature.

The typical deviation from the trend is equally likely to be anywhere between 0 and 200 users.

Bayesian model of volume by weekday status

$$egin{aligned} Y_i &\sim N(m_i, s^2) \ m_i &= a + b X_i + c Z_i \ a &\sim N(0, 200^2) \ b &\sim N(0, 200^2) \ c &\sim N(0, 20^2) \ s &\sim Unif(0, 200) \end{aligned}$$


```
egin{aligned} Y_i &\sim N(m_i, s^2) \ m_i &= a + b X_i + c Z_i \ a &\sim N(0, 200^2) \ b &\sim N(0, 200^2) \ c &\sim N(0, 20^2) \ s &\sim Unif(0, 200) \end{aligned}
```

```
rail_model_2 <- "model{
    # Likelihood model for Y[i]
    for(i in 1:length(Y)) {
        Y[i] ~ dnorm(m[i], s^(-2))
        m[i] <- a + b[X[i]] + c * Z[i]
    }

# Prior models for a, b, c, s
    a ~ dnorm(0, 200^(-2))
    b[1] <- 0
    b[2] ~ dnorm(0, 200^(-2))
    c ~ dnorm(0, 20^(-2))
    s ~ dunif(0, 200)
}"</pre>
```


Let's practice!

Poisson regression

Alicia Johnson Associate Professor, Macalester College

Normal likelihood structure

Y = volume (# of users) on a given day $Y \sim N(m,s^2)$

Technically...

- The Normal model assumes Y has a continuous scale and can be negative.
- But Y is a discrete count and cannot be negative.

- Y is the # of independent events that occur in a fixed interval (0, 1, 2,...).
- Rate parameter l represents the typical # of events per time interval (l > 0).

- Y is the # of independent events that occur in a fixed interval (0, 1, 2,...).
- Rate parameter l represents the typical # of events per time interval (l > 0).

- Y is the # of independent events that occur in a fixed interval (0, 1, 2,...).
- Rate parameter l represents the typical # of events per time interval (l > 0).

- Y is the # of independent events that occur in a fixed interval (0, 1, 2,...).
- Rate parameter l represents the typical # of events per time interval (l > 0).

 $Y_i \sim \operatorname{Pois}(l_i)$ where $l_i > 0$

$$Y_i \sim \operatorname{Pois}(l_i)$$
 where $l_i > 0$

$$l_i = a + bX_i + cZ_i$$

$$Y_i \sim \operatorname{Pois}(l_i)$$
 where $l_i > 0$

$$l_i = a + bX_i + cZ_i$$

A problem:

Linking l_i directly to the linear model assumes l_i can be negative.

$$Y_i \sim \operatorname{Pois}(l_i)$$
 where $l_i > 0$

$$log(l_i) = a + bX_i + cZ_i$$

A solution:

Use a log **link function** to link l_i to the linear model. In turn:

$$l_i = e^{a+bX_i+cZ_i}$$

$$Y_i \sim \operatorname{Pois}(l_i)$$
 where $l_i > 0$

$$log(l_i) = a + bX_i + cZ_i$$

A solution:

Use a log **link function** to link l_i to the linear model. In turn:

$$l_i = e^{a+bX_i+cZ_i}$$


```
egin{aligned} Y_i &\sim \operatorname{Pois}(l_i) \ log(l_i) = a + b X_i + c Z_i \ a &\sim N(0, 200^2) \ b &\sim N(0, 2^2) \ c &\sim N(0, 2^2) \end{aligned}
```

```
poisson_model <- "model{
    # Likelihood model for Y[i]

# Prior models for a, b, c

}"</pre>
```

```
egin{aligned} Y_i &\sim \operatorname{Pois}(l_i) \ log(l_i) = a + b X_i + c Z_i \ a &\sim N(0, 200^2) \ b &\sim N(0, 2^2) \ c &\sim N(0, 2^2) \end{aligned}
```

```
poisson_model <- "model{
    # Likelihood model for Y[i]

# Prior models for a, b, c
a ~ dnorm(0, 200^(-2))
b[1] <- 0
b[2] ~ dnorm(0, 2^(-2))
c ~ dnorm(0, 2^(-2))
}"</pre>
```

```
egin{aligned} Y_i &\sim \operatorname{Pois}(l_i) \ log(l_i) &= a + b X_i + c Z_i \ a &\sim N(0, 200^2) \ b &\sim N(0, 2^2) \ c &\sim N(0, 2^2) \end{aligned}
```

```
poisson_model <- "model{
    # Likelihood model for Y[i]
    for(i in 1:length(Y)) {
        Y[i] ~ dpois(1[i])

    }

# Prior models for a, b, c
    a ~ dnorm(0, 200^(-2))
    b[1] <- 0
    b[2] ~ dnorm(0, 2^(-2))
    c ~ dnorm(0, 2^(-2))
}</pre>
```

```
egin{aligned} Y_i &\sim \operatorname{Pois}(l_i) \ log(l_i) &= a + b X_i + c Z_i \ a &\sim N(0, 200^2) \ b &\sim N(0, 2^2) \ c &\sim N(0, 2^2) \end{aligned}
```

```
poisson_model <- "model{
    # Likelihood model for Y[i]
    for(i in 1:length(Y)) {
        Y[i] ~ dpois(l[i])
        log(l[i]) <- a + b[X[i]] + c*Z[i]
    }

    # Prior models for a, b, c
    a ~ dnorm(0, 200^(-2))
    b[1] <- 0
    b[2] ~ dnorm(0, 2^(-2))
    c ~ dnorm(0, 2^(-2))
}</pre>
```

Caveats

```
Y \sim Pois(l_i)
```

- Assumption: Among days with similar temperatures and weekday status, variance in Y_i is equal to the mean of Y_i .
- Our data demonstrate potential **overdispersion** the variance is larger than the mean.
- Though not perfect, this model is an OK place to start.

Let's practice!

Conclusion

Alicia Johnson Associate Professor, Macalester College

Bayesian modeling with RJAGS

- Define, compile, & simulate intractable Bayesian models.
- Explore the Markov chain mechanics behind RJAGS simulation.

The power of Bayesian modeling

• Combine insights from your data and priors to inform posterior insights.

The power of Bayesian modeling

- Combine insights from your data and priors to inform posterior insights.
- Conduct intuitive posterior inference: posterior credible intervals & probabilities.


```
my_model <- "model{
    # Likelihood model
    for(i in 1:length(Y)) {
        Y[i] ~ dnorm(m, s^(-2))
    }

    # Prior models
    m ~ dnorm(...)
    s ~ dunif(...)
}"</pre>
```



```
my_model <- "model{
    # Likelihood model
    for(i in 1:length(Y)) {
        Y[i] ~ dnorm(m[i], s^(-2))
        m[i] <- a + b * X[i]
    }

# Prior models
    a ~ dnorm(...)
    b ~ dnorm(...)
    s ~ dunif(...)
}"</pre>
```



```
my_model <- "model{
    # Likelihood model
    for(i in 1:length(Y)) {
        Y[i] ~ dnorm(m[i], s^(-2))
        m[i] <- a + b[X[i]]
    }

# Prior models
    a ~ dnorm(...)
    b[1] <- 0
    b[2] ~ dnorm(...)
    s ~ dunif(...)
}"</pre>
```



```
my_model <- "model{
    # Likelihood model
    for(i in 1:length(Y)) {
        Y[i] ~ dnorm(m[i], s^(-2))
        m[i] <- a + b[X[i]] + c * Z[i]
    }

# Prior models
    a ~ dnorm(...)
    b[1] <- 0
    b[2] ~ dnorm(...)
    c ~ dnorm(...)
    s ~ dunif(...)
}"</pre>
```



```
my_model <- "model{
    # Likelihood model
    for(i in 1:length(Y)) {
    Y[i] ~ dpois(l[i])
    log(l[i]) <- a + b[X[i]] + c*Z[i]
    }

# Prior models
    a ~ dnorm(...)
    b[1] <- 0
    b[2] ~ dnorm(...)
    c ~ dnorm(...)
}"</pre>
```


Thank you!