#### 1) NFET Cell Description

The Enhancement mode NFET Inverter cell is a 1 input 1 output device. When used in a digital circuit it acts as a logic NOT gate. 2 inverter circuits can be used as a buffer and a repeater since the output flows from  $V_{dd}$  and ground and not from the input.

### 2) NFET Cell Symbol



Figure 1: Symbol for Enhancement mode NFET Inverter

### 3) NFET Cell Truth Table

| Cell Truth Table |             |  |  |  |
|------------------|-------------|--|--|--|
| Inputs Outputs   |             |  |  |  |
| 0                | 1(degraded) |  |  |  |
| 1                | 0           |  |  |  |

### 4) NFET Cell Schematic Diagram



Figure 2: Circuit for Enhancement mode NFET Inverter

# 5) NFET Transistor Dimensions

| Transistor Dimensions   |      |      |  |  |  |  |
|-------------------------|------|------|--|--|--|--|
| Transistor Length Width |      |      |  |  |  |  |
| Instance Number         | (nm) | (nm) |  |  |  |  |
| NMOS (M0)               | 350  | 90   |  |  |  |  |
| Pullup                  |      |      |  |  |  |  |
| NMOS_(M1)               | 50   | 90   |  |  |  |  |
| Pulldown                |      |      |  |  |  |  |

**Performance Analysis** 

## 6,7) NFET Output Rise/Fall Time Data

| Input X: Output Rise Time Data t <sub>r</sub> (ps) |           |       |  |  |  |  |  |
|----------------------------------------------------|-----------|-------|--|--|--|--|--|
| Input Rise/ Output Load (FOx)                      |           |       |  |  |  |  |  |
| Fall Time                                          | 0 1 2 4 8 |       |  |  |  |  |  |
| 40                                                 |           | 511.1 |  |  |  |  |  |

| Input X: Output Fall Time Data t <sub>f</sub> (ps) |           |  |  |       |  |
|----------------------------------------------------|-----------|--|--|-------|--|
| Input Rise/ Output Load (FOx)                      |           |  |  |       |  |
| Fall Time                                          | 0 1 2 4 8 |  |  |       |  |
| 40                                                 |           |  |  | 68.02 |  |



Figure 3: NFET Plot of The Input and Output Waveforms with Rise and Fall Times

### 8,9) NFET Propagation Delays

| Data Worst Case Low to High Propagation Delay Data tplh |           |                   |  |    |  |
|---------------------------------------------------------|-----------|-------------------|--|----|--|
| (ps)                                                    |           |                   |  |    |  |
| Input Rise/                                             |           | Output Load (FOx) |  |    |  |
| Fall Time                                               | 0 1 2 4 8 |                   |  |    |  |
| 40                                                      |           |                   |  | NA |  |

| Data Worst Case High to Low Propagation Delay Data t <sub>phl</sub> (ps) |           |  |  |    |  |
|--------------------------------------------------------------------------|-----------|--|--|----|--|
| Input Rise/ Output Load (FOx)                                            |           |  |  |    |  |
| Fall Time                                                                | 0 1 2 4 8 |  |  |    |  |
| 40                                                                       |           |  |  | NA |  |

### NA due to not reaching 1.2V



Figure 4: Plot of The Input and Output Waveforms with Propagation Delay Times

## 10.) NFET Inverter DC Analysis

| Type | V <sub>IH_DC</sub><br>(mV) | V <sub>IL_DC</sub> (mV) | V <sub>OH_DC</sub> (mV) | V <sub>OL_DC</sub> (mV) |
|------|----------------------------|-------------------------|-------------------------|-------------------------|
| NFET | 624.0                      | 344.8                   | 508.5                   | 117.8                   |



Figure 5: Plot of DC Sweep with the Derivative of the Output Response

Long-Gate Inverter Joseph Wetzel, Alex Beaulier, Josh Horejs

### Group 17 10/29/2021 Introduction and Physical Properties

#### 1) NFET Long-Gate Cell Description

The Enhancement mode NFET Long-Gate Inverter cell is a 1 input 1 output device. When used in a digital circuit it acts as a logic NOT gate. 2 inverter circuits can be used as a buffer and a repeater since the output flows from  $V_{dd}$  and ground and not from the input. This Inverter has a larger gate to better the transient resonse.

#### 2) NFET Long-Gate Cell Symbol



Figure 6: Symbol for Enhancement mode NFET Long-Gate Inverter

### 3) NFET Long-Gate Cell Truth Table

| Cell T | Cell Truth Table |  |  |  |  |
|--------|------------------|--|--|--|--|
| Inputs | Outputs          |  |  |  |  |
| 0      | 1(degraded)      |  |  |  |  |
| 1      | 0                |  |  |  |  |

## 4) NFET Long-Gate Cell Schematic Diagram



Figure 7: Circuit for Enhancement mode NFET Long-Gate Inverter

## 5) NFET Long-Gate Transistor Dimensions

| Transistor Dimensions |                         |      |  |  |  |  |  |
|-----------------------|-------------------------|------|--|--|--|--|--|
| Transistor            | Transistor Length Width |      |  |  |  |  |  |
| Instance Number       | (nm)                    | (nm) |  |  |  |  |  |
| NMOS (M0)             | 1000                    | 90   |  |  |  |  |  |
| Pullup                |                         |      |  |  |  |  |  |
| NMOS_(M1)             | 50                      | 90   |  |  |  |  |  |
| Pulldown              |                         |      |  |  |  |  |  |

# **Performance Analysis**

# 6,7) NFET Long-Gate Inverter Cell Output Rise/Fall Time Data

| Input X: Output Rise Time Data t <sub>r</sub> (ps) |         |           |  |  |  |  |  |
|----------------------------------------------------|---------|-----------|--|--|--|--|--|
| Input Rise/ Output Load (FOx)                      |         |           |  |  |  |  |  |
| Fall Time                                          | 0       | 0 1 2 4 8 |  |  |  |  |  |
| 40                                                 | 40 1158 |           |  |  |  |  |  |

| Input X: Output Fall Time Data t <sub>f</sub> (ps) |           |  |  |  |  |
|----------------------------------------------------|-----------|--|--|--|--|
| Input Rise/ Output Load (FOx)                      |           |  |  |  |  |
| Fall Time                                          | 0 1 2 4 8 |  |  |  |  |
| 40 72.77                                           |           |  |  |  |  |



Figure 8: Plot of The Input and Output Waveforms with Rise and Fall Times

### 8,9) NFET Long-Gate Inverter Cell Propagation Delays

| Data Worst Case Low to High Propagation Delay Data tplh |                   |  |  |    |  |
|---------------------------------------------------------|-------------------|--|--|----|--|
| (ps)                                                    |                   |  |  |    |  |
| Input Rise/                                             | Output Load (FOx) |  |  |    |  |
| Fall Time                                               | 0 1 2 4 8         |  |  |    |  |
| 40                                                      |                   |  |  | NA |  |

| Data Worst Case High to Low Propagation Delay Data t <sub>phl</sub> (ps) |                   |   |   |    |   |  |
|--------------------------------------------------------------------------|-------------------|---|---|----|---|--|
| Input Rise/                                                              | Output Load (FOx) |   |   |    |   |  |
| Fall Time                                                                | 0                 | 1 | 2 | 4  | 8 |  |
| 40                                                                       |                   |   |   | NA |   |  |



Figure 9: Plot of The Input and Output Waveforms with Propagation Delay Times

NA due to not reaching 1.2V

# 10.) NFET Long-Gate Inverter Cell DC Analysis

| $V_{IH\_DC}(mV)$ | $V_{IL\_DC}(mV)$ | $V_{OH\_DC}(mV)$ | $V_{OL\_DC}$ (mV) |
|------------------|------------------|------------------|-------------------|
| 550.6            | 270.7            | 528.8            | 66.0              |



Figure 10: Plot of DC Sweep with the Derivative of the Output Response