

(https://www.bigdatauniversity.com)

Classification with Python

In this notebook we try to practice all the classification algorithms that we learned in this course.

We load a dataset using Pandas library, and apply the following algorithms, and find the best one for this specific dataset by accuracy evaluation methods.

Lets first load required libraries:

```
In [1]: import itertools
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import NullFormatter
import pandas as pd
import numpy as np
import matplotlib.ticker as ticker
from sklearn import preprocessing
%matplotlib inline
```

About dataset

This dataset is about past loans. The **Loan_train.csv** data set includes details of 346 customers whose loan are already paid off or defaulted. It includes following fields:

Description	Field
Whether a loan is paid off on in collection	Loan_status
Basic principal loan amount at the	Principal
Origination terms which can be weekly (7 days), biweekly, and monthly payoff schedule	Terms
When the loan got originated and took effects	Effective_date
Since it's one-time payoff schedule, each loan has one single due date	Due_date
Age of applicant	Age
Education of applicant	Education
The gender of applicant	Gender

Lets download the dataset

```
In [2]:
        !wget -0 loan train.csv https://s3-api.us-geo.objectstorage.softlayer.net/cf-c
        ourses-data/CognitiveClass/ML0101ENv3/labs/loan train.csv
        --2019-07-09 22:30:28-- https://s3-api.us-geo.objectstorage.softlayer.net/cf
        -courses-data/CognitiveClass/ML0101ENv3/labs/loan train.csv
        Resolving s3-api.us-geo.objectstorage.softlayer.net (s3-api.us-geo.objectstor
        age.softlayer.net)... 67.228.254.193
        Connecting to s3-api.us-geo.objectstorage.softlayer.net (s3-api.us-geo.object
        storage.softlayer.net) | 67.228.254.193 | :443... connected.
       HTTP request sent, awaiting response... 200 OK
        Length: 23101 (23K) [text/csv]
        Saving to: 'loan train.csv'
        loan train.csv
                           in 0.02s
        2019-07-09 22:30:29 (1.04 MB/s) - 'loan_train.csv' saved [23101/23101]
```

Load Data From CSV File

```
In [3]:
          df = pd.read csv('loan train.csv')
          df.head()
Out[3]:
              Unnamed:
                        Unnamed:
                                    loan_status Principal terms effective_date due_date age education
                               0.1
                                                                                                    High
           0
                      0
                                 0
                                      PAIDOFF
                                                    1000
                                                             30
                                                                      9/8/2016 10/7/2016
                                                                                           45
                                                                                                School or
                                                                                                   Below
           1
                      2
                                 2
                                      PAIDOFF
                                                    1000
                                                             30
                                                                      9/8/2016 10/7/2016
                                                                                           33
                                                                                                Bechalor
           2
                      3
                                 3
                                      PAIDOFF
                                                    1000
                                                                      9/8/2016 9/22/2016
                                                                                           27
                                                                                                  college
                                                             15
                      4
                                 4
                                      PAIDOFF
                                                    1000
                                                             30
                                                                      9/9/2016
                                                                               10/8/2016
                                                                                           28
                                                                                                  college
                                 6
                                      PAIDOFF
                                                    1000
                                                                      9/9/2016 10/8/2016
                                                             30
                                                                                           29
                                                                                                  college
In [4]:
         df.shape
Out[4]: (346, 10)
```

Convert to date time object

```
In [5]: df['due_date'] = pd.to_datetime(df['due_date'])
    df['effective_date'] = pd.to_datetime(df['effective_date'])
    df.head()
```

Out[5]:

	Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	education
0	0	0	PAIDOFF	1000	30	2016-09-08	2016-10- 07	45	High School or Below
1	2	2	PAIDOFF	1000	30	2016-09-08	2016-10- 07	33	Bechalor
2	3	3	PAIDOFF	1000	15	2016-09-08	2016-09- 22	27	college
3	4	4	PAIDOFF	1000	30	2016-09-09	2016-10- 08	28	college
4	6	6	PAIDOFF	1000	30	2016-09-09	2016-10- 08	29	college
4									+

Data visualization and pre-processing

Let's see how many of each class is in our data set

260 people have paid off the loan on time while 86 have gone into collection

Lets plot some columns to underestand data better:

In [7]: # notice: installing seaborn might takes a few minutes
!conda install -c anaconda seaborn -y

Collecting package metadata: done

```
Solving environment: -
The environment is inconsistent, please check the package plan carefully
The following packages are causing the inconsistency:
  - anaconda/linux-64::conda-build==3.17.8=py36 0
  - anaconda/linux-64::grpcio==1.16.1=py36hf8bcb03 1
  - anaconda/linux-64::keras==2.1.5=py36 0
  - anaconda/linux-64::libarchive==3.3.3=h5d8350f 5
  - anaconda/linux-64::python-libarchive-c==2.8=py36 6
  - anaconda/linux-64::tensorboard==1.8.0=py36hf484d3e 0
  - anaconda/linux-64::tensorflow==1.8.0=h57681fa 0
  - anaconda/linux-64::tensorflow-base==1.8.0=py36h5f64886 0
  - defaults/linux-64::anaconda==5.3.1=py37 0
  - defaults/linux-64::astropy==3.0.4=py37h14c3975 0
  - defaults/linux-64::bkcharts==0.2=py37 0
  - defaults/linux-64::blaze==0.11.3=py37 0
  - defaults/linux-64::bokeh==0.13.0=py37 0
 - defaults/linux-64::bottleneck==1.2.1=py37h035aef0 1
  - defaults/linux-64::dask==0.19.1=py37 0
  - defaults/linux-64::datashape==0.5.4=py37 1
  - defaults/linux-64::mkl-service==1.1.2=py37h90e4bf4 5
  - defaults/linux-64::numba==0.39.0=py37h04863e7 0
  - defaults/linux-64::numexpr==2.6.8=py37hd89afb7 0
  - defaults/linux-64::odo==0.5.1=py37 0
  - defaults/linux-64::pytables==3.4.4=py37ha205bf6 0
  - defaults/linux-64::pytest-arraydiff==0.2=py37h39e3cac 0
  - defaults/linux-64::pytest-astropy==0.4.0=py37 0
  - defaults/linux-64::pytest-doctestplus==0.1.3=py37 0
  - defaults/linux-64::pywavelets==1.0.0=py37hdd07704 0
  - defaults/linux-64::scikit-image==0.14.0=py37hf484d3e_1
done
## Package Plan ##
 environment location: /home/jupyterlab/conda
 added / updated specs:
    - seaborn
```

The following packages will be downloaded:

package	build		
ca-certificates-2019.5.15	0	133 KB	anaconda
certifi-2019.6.16	py36_0	154 KB	anaconda
conda-4.7.5	py36_0	3.0 MB	anaconda
<pre>conda-package-handling-1.3.10 </pre>	py36_0	259 K	B anaconda
libtiff-4.0.10	h2733197_2	604 KB	anaconda
<pre>python-libarchive-c-2.8</pre>	py36_9	22 KB	anaconda
zstd-1.3.7	h0b5b093_0	887 KB	anaconda
	Total:	5.0 MB	

The following NEW packages will be INSTALLED:

conda-package-han~ anaconda/linux-64::conda-package-handling-1.3.10-py36 0

The following packages will be UPDATED:

The following packages will be SUPERSEDED by a higher-priority channel:

Downloading and Extracting Packages

<pre>python-libarchive-c- 0%</pre>	22 KB	#####################################	10
libtiff-4.0.10 0%	604 KB	#####################################	10
certifi-2019.6.16 0%	154 KB	#####################################	10
zstd-1.3.7 0%	887 KB	#####################################	10
conda-4.7.5 0%	3.0 MB	#####################################	10
<pre>ca-certificates-2019 0%</pre>	133 KB	#####################################	10
conda-package-handli 0%	259 KB	#####################################	10

Preparing transaction: done Verifying transaction: done Executing transaction: done

```
In [8]: import seaborn as sns

bins = np.linspace(df.Principal.min(), df.Principal.max(), 10)
g = sns.FacetGrid(df, col="Gender", hue="loan_status", palette="Set1", col_wra p=2)
g.map(plt.hist, 'Principal', bins=bins, ec="k")

g.axes[-1].legend()
plt.show()
Gender = male

Gender = female
```



```
In [9]: bins = np.linspace(df.age.min(), df.age.max(), 10)
g = sns.FacetGrid(df, col="Gender", hue="loan_status", palette="Set1", col_wra
p=2)
g.map(plt.hist, 'age', bins=bins, ec="k")
g.axes[-1].legend()
plt.show()
```


Pre-processing: Feature selection/extraction

Lets look at the day of the week people get the loan

```
In [10]: df['dayofweek'] = df['effective_date'].dt.dayofweek
    bins = np.linspace(df.dayofweek.min(), df.dayofweek.max(), 10)
    g = sns.FacetGrid(df, col="Gender", hue="loan_status", palette="Set1", col_wra
    p=2)
    g.map(plt.hist, 'dayofweek', bins=bins, ec="k")
    g.axes[-1].legend()
    plt.show()
```


We see that people who get the loan at the end of the week dont pay it off, so lets use Feature binarization to set a threshold values less then day 4

```
In [11]: df['weekend'] = df['dayofweek'].apply(lambda x: 1 if (x>3) else 0)
    df.head()
```

Out[11]:

	Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	education
0	0	0	PAIDOFF	1000	30	2016-09-08	2016-10- 07	45	High School or Below
1	2	2	PAIDOFF	1000	30	2016-09-08	2016-10- 07	33	Bechalor
2	3	3	PAIDOFF	1000	15	2016-09-08	2016-09- 22	27	college
3	4	4	PAIDOFF	1000	30	2016-09-09	2016-10- 08	28	college
4	6	6	PAIDOFF	1000	30	2016-09-09	2016-10- 08	29	college
4									+

Convert Categorical features to numerical values

Lets look at gender:

86 % of female pay there loans while only 73 % of males pay there loan

Lets convert male to 0 and female to 1:

```
In [13]: df['Gender'].replace(to_replace=['male','female'], value=[0,1],inplace=True)
    df.head()
```

Out[13]:

	Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	education
0	0	0	PAIDOFF	1000	30	2016-09-08	2016-10- 07	45	High School or Below
1	2	2	PAIDOFF	1000	30	2016-09-08	2016-10- 07	33	Bechalor
2	3	3	PAIDOFF	1000	15	2016-09-08	2016-09- 22	27	college
3	4	4	PAIDOFF	1000	30	2016-09-09	2016-10- 08	28	college
4	6	6	PAIDOFF	1000	30	2016-09-09	2016-10- 08	29	college
4									•

One Hot Encoding

How about education?

```
df.groupby(['education'])['loan_status'].value_counts(normalize=True)
In [14]:
Out[14]: education
                                loan status
         Bechalor
                                PAIDOFF
                                                0.750000
                                                0.250000
                                COLLECTION
         High School or Below
                                PAIDOFF
                                                0.741722
                                COLLECTION
                                                0.258278
         Master or Above
                                                0.500000
                                COLLECTION
                                                0.500000
                                PAIDOFF
         college
                                PAIDOFF
                                                0.765101
                                                0.234899
                                COLLECTION
         Name: loan_status, dtype: float64
```

Feature befor One Hot Encoding

```
In [15]: df[['Principal','terms','age','Gender','education']].head()
```

Out[15]:

education	Gender	age	terms	Principal	
High School or Below	0	45	30	1000	0
Bechalor	1	33	30	1000	1
college	0	27	15	1000	2
college	1	28	30	1000	3
college	0	29	30	1000	4

Use one hot encoding technique to conver categorical variables to binary variables and append them to the feature Data Frame

```
In [16]: Feature = df[['Principal','terms','age','Gender','weekend']]
    Feature = pd.concat([Feature,pd.get_dummies(df['education'])], axis=1)
    Feature.drop(['Master or Above'], axis = 1,inplace=True)
    Feature.head()
```

Out[16]:

	Principal	terms	age	Gender	weekend	Bechalor	High School or Below	college
0	1000	30	45	0	0	0	1	0
1	1000	30	33	1	0	1	0	0
2	1000	15	27	0	0	0	0	1
3	1000	30	28	1	1	0	0	1
4	1000	30	29	0	1	0	0	1

Feature selection

Lets defind feature sets, X:

```
In [17]: X_train=Feature
X = Feature
X[0:5]
```

Out[17]:

	Principal	terms	age	Gender	weekend	Bechalor	High School or Below	college
0	1000	30	45	0	0	0	1	0
1	1000	30	33	1	0	1	0	0
2	1000	15	27	0	0	0	0	1
3	1000	30	28	1	1	0	0	1
4	1000	30	29	0	1	0	0	1

What are our lables?

Normalize Data

Data Standardization give data zero mean and unit variance (technically should be done after train test split)

```
In [19]: X_train= preprocessing.StandardScaler().fit(X).transform(X)
X_train[0:5]
```

/home/jupyterlab/conda/lib/python3.6/site-packages/sklearn/preprocessing/dat a.py:625: DataConversionWarning: Data with input dtype uint8, int64 were all converted to float64 by StandardScaler.

```
return self.partial fit(X, y)
```

/home/jupyterlab/conda/lib/python3.6/site-packages/ipykernel_launcher.py:1: D ataConversionWarning: Data with input dtype uint8, int64 were all converted t o float64 by StandardScaler.

"""Entry point for launching an IPython kernel.

Classification

```
In [ ]:
```

Now, it is your turn, use the training set to build an accurate model. Then use the test set to report the accuracy of the model You should use the following algorithm:

- K Nearest Neighbor(KNN)
- · Decision Tree
- Support Vector Machine
- · Logistic Regression

Notice:

- You can go above and change the pre-processing, feature selection, feature-extraction, and so on, to make a better model.
- You should use either scikit-learn, Scipy or Numpy libraries for developing the classification algorithms.
- You should include the code of the algorithm in the following cells.

K Nearest Neighbor(KNN)

Notice: You should find the best k to build the model with the best accuracy.

warning: You should not use the **loan_test.csv** for finding the best k, however, you can split your train_loan.csv into train and test to find the best k.

Decision Tree

```
In [22]: from sklearn.tree import DecisionTreeClassifier
```

Support Vector Machine

Logistic Regression

```
In [ ]:
```

Model Evaluation using Test set

```
In [27]: from sklearn.metrics import jaccard_similarity_score
    from sklearn.metrics import f1_score
    from sklearn.metrics import log_loss
```

First, download and load the test set:

```
In [28]:
         !wget -0 loan_test.csv https://s3-api.us-geo.objectstorage.softlayer.net/cf-co
         urses-data/CognitiveClass/ML0101ENv3/labs/loan test.csv
         --2019-07-09 22:46:39-- https://s3-api.us-geo.objectstorage.softlayer.net/cf
         -courses-data/CognitiveClass/ML0101ENv3/labs/loan test.csv
         Resolving s3-api.us-geo.objectstorage.softlayer.net (s3-api.us-geo.objectstor
         age.softlayer.net)... 67.228.254.193
         Connecting to s3-api.us-geo.objectstorage.softlayer.net (s3-api.us-geo.object
         storage.softlayer.net) | 67.228.254.193 | :443... connected.
         HTTP request sent, awaiting response... 200 OK
         Length: 3642 (3.6K) [text/csv]
         Saving to: 'loan test.csv'
         loan test.csv
                             100%[======>]
                                                          3.56K --.-KB/s
                                                                             in 0s
         2019-07-09 22:46:39 (57.1 MB/s) - 'loan_test.csv' saved [3642/3642]
```

Load Test set for evaluation

```
In [36]: test_df = pd.read_csv('loan_test.csv')
  test_df.head()
```

Out[36]:

	Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	education
0	1	1	PAIDOFF	1000	30	9/8/2016	10/7/2016	50	Bechalor
1	5	5	PAIDOFF	300	7	9/9/2016	9/15/2016	35	Master or Above
2	21	21	PAIDOFF	1000	30	9/10/2016	10/9/2016	43	High School or Below
3	24	24	PAIDOFF	1000	30	9/10/2016	10/9/2016	26	college
4	35	35	PAIDOFF	800	15	9/11/2016	9/25/2016	29	Bechalor
4									>

Subset the same variables, convert to dummy values and Normalize Data

```
In [37]: test_df['due_date'] = pd.to_datetime(test_df['due_date'])
    test_df['effective_date'] = pd.to_datetime(test_df['effective_date'])
    test_df.head()
```

Out[37]:

education	age	due_date	effective_date	terms	Principal	loan_status	Unnamed: 0.1	Unnamed: 0	
Bechalor	50	2016-10- 07	2016-09-08	30	1000	PAIDOFF	1	1	0
Master or Above	35	2016-09- 15	2016-09-09	7	300	PAIDOFF	5	5	1
High School or Below	43	2016-10- 09	2016-09-10	30	1000	PAIDOFF	21	21	2
college	26	2016-10- 09	2016-09-10	30	1000	PAIDOFF	24	24	3
Bechalor	29	2016-09- 25	2016-09-11	15	800	PAIDOFF	35	35	4
N									4

In [38]: test_df['dayofweek'] = test_df['effective_date'].dt.dayofweek
 test_df['weekend'] = test_df['dayofweek'].apply(lambda x: 1 if (x>3) else 0)
 test_df['Gender'].replace(to_replace=['male','female'], value=[0,1],inplace=Tr
 ue)
 test_df.head()

Out[38]:

	Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	education
0	1	1	PAIDOFF	1000	30	2016-09-08	2016-10- 07	50	Bechalor
1	5	5	PAIDOFF	300	7	2016-09-09	2016-09- 15	35	Master or Above
2	21	21	PAIDOFF	1000	30	2016-09-10	2016-10- 09	43	High School or Below
3	24	24	PAIDOFF	1000	30	2016-09-10	2016-10- 09	26	college
4	35	35	PAIDOFF	800	15	2016-09-11	2016-09- 25	29	Bechalor
4									+

```
In [39]: Feat_t= test_df[['Principal','terms','age','Gender','weekend']] #'weekend'
Feat_t = pd.concat([Feat_t,pd.get_dummies(test_df['education'])], axis=1)
Feat_t.drop(['Master or Above'], axis = 1,inplace=True)
Feat_t.head()
```

Out[39]:

	Principal	terms	age	Gender	weekend	Bechalor	High School or Below	college
0	1000	30	50	1	0	1	0	0
1	300	7	35	0	1	0	0	0
2	1000	30	43	1	1	0	1	0
3	1000	30	26	0	1	0	0	1
4	800	15	29	0	1	1	0	0

```
In [40]: X_test=Feat_t
    X_test= preprocessing.StandardScaler().fit(X_test).transform(X_test)
    X_test[0:5]
```

/home/jupyterlab/conda/lib/python3.6/site-packages/sklearn/preprocessing/dat a.py:625: DataConversionWarning: Data with input dtype uint8, int64 were all converted to float64 by StandardScaler.

return self.partial_fit(X, y)

/home/jupyterlab/conda/lib/python3.6/site-packages/ipykernel_launcher.py:2: D ataConversionWarning: Data with input dtype uint8, int64 were all converted t o float64 by StandardScaler.

```
In [41]: y_test = test_df['loan_status'].values
    y_test[0:5]
```

KNN

```
In [45]: print("Jaccar: ",jaccard_similarity_score(y_test, yhat))
    print("F1 Score: ",f1_score(y_test, yhat, average='weighted'))

Jaccar: 0.6296296296297
    F1 Score: 0.6430311890838205
```

Decision Tree

```
In [47]: print("Jaccar: ",jaccard_similarity_score(y_test,loanTree.predict(X_test)))
    print("F1 Score: ",f1_score(y_test,loanTree.predict(X_test), average='weighte
    d'))

Jaccar: 0.777777777778
    F1 Score: 0.7283950617283951
```

SVM

Logistic Regression

```
In [51]: yhat_prob = LR.predict_proba(X_test)
         yhat prob[0:5]
Out[51]: array([[0.25256814, 0.74743186],
                [0.40233132, 0.59766868],
                [0.42774804, 0.57225196],
                [0.47276992, 0.52723008],
                [0.44726818, 0.55273182]])
In [52]: print("Jaccar: ",jaccard_similarity_score(y_test,LR.predict(X_test)))
         print("F1 Score: ",f1_score(y_test,LR.predict(X_test), average='weighted'))
         print("Log Losss: ",log_loss(y_test, yhat_prob))
         Jaccar: 0.7407407407407407
         F1 Score: 0.6304176516942475
         Log Losss: 0.5566084946309207
         /home/jupyterlab/conda/lib/python3.6/site-packages/sklearn/metrics/classifica
         tion.py:1143: UndefinedMetricWarning: F-score is ill-defined and being set to
         0.0 in labels with no predicted samples.
           'precision', 'predicted', average, warn_for)
```

Report

You should be able to report the accuracy of the built model using different evaluation metrics:

Algorithm	Jaccard	F1-score	LogLoss
KNN	0.62962	0.64303	NA
Decision Tree	0.77777	0.72839	NA
SVM	0.72727	0.62126	NA
LogisticRegression	0.74074	0.63041	0.55660

Want to learn more?

IBM SPSS Modeler is a comprehensive analytics platform that has many machine learning algorithms. It has been designed to bring predictive intelligence to decisions made by individuals, by groups, by systems – by your enterprise as a whole. A free trial is available through this course, available here: SPSS Modeler (http://cocl.us/ML0101EN-SPSSModeler)

Also, you can use Watson Studio to run these notebooks faster with bigger datasets. Watson Studio is IBM's leading cloud solution for data scientists, built by data scientists. With Jupyter notebooks, RStudio, Apache Spark and popular libraries pre-packaged in the cloud, Watson Studio enables data scientists to collaborate on their projects without having to install anything. Join the fast-growing community of Watson Studio users today with a free account at Watson Studio (https://cocl.us/ML0101EN_DSX)

Thanks for completing this lesson!

Author: Saeed Aghabozorgi (https://ca.linkedin.com/in/saeedaghabozorgi)

<u>Saeed Aghabozorgi (https://ca.linkedin.com/in/saeedaghabozorgi)</u>, PhD is a Data Scientist in IBM with a track record of developing enterprise level applications that substantially increases clients' ability to turn data into actionable knowledge. He is a researcher in data mining field and expert in developing advanced analytic methods like machine learning and statistical modelling on large datasets.

Copyright © 2018 <u>Cognitive Class (https://cocl.us/DX0108EN_CC)</u>. This notebook and its source code are released under the terms of the <u>MIT License (https://bigdatauniversity.com/mit-license/)</u>.