On String Languages Generated by Spiking Neural P Systems with Structural Plasticity

Master of Science Thesis by Ren Tristan A. de la Cruz

Algorithms and Complexity Laboratory
Department of Computer Science
University of the Philippines
Diliman, Quezon City, Philippines

2018 May 11

Introduction

Figure 1: A membrane structure

1998: Computing with Membranes (P Systems)

Introduction

2007: Spiking Neural P Systems

Introduction

2015: Spiking Neural P Systems with Structural Plasticity

Contributions

Contributions

Results:

- **1.** Two procedures for constructing **SNPSP systems** that generate *FIN* languages
- **2.** Two procedures for constructing SNPSP systems that generate *REG* languages

3. Two versions of a procedure for constructing SNPSP systems that generate *RE* languages

4. An implementation of an SNPSP module called **Arithmetic-Memory module** that performs arithmetic operations

Contributions

Results:

5. A procedure for constructing an **SNPSP** system that generates *CF* languages

6. A way for **simulating** SNP system's **forgetting rules** in SNPSP systems

7. Ways for **simulating** the '**delay**' aspect of an SNP system's spiking rule in SNPSP systems

8. A way for **simulating**, in SNP systems, some aspects of SNPSP system's **plasticity rules**

SNP & SNPSP Systems

SNP & SNPSP Systems (1/11)

SNP system Π of degree m:

$$\Pi = (0, \sigma_1, \dots, \sigma_m, syn, out)$$

SNPSP system
$$\Pi$$
 of degree m:
 $\Pi = (0, \sigma_1, ..., \sigma_m, syn, out)$

Alphabet: $O = \{a\}$, a - spike

Alphabet:
$$O = \{a\}$$
, a - spike

Synapses: syn ⊂ {1,...,m} ×

$$\{1,...,m\}$$
Neurons: $\sigma_1, \ldots, \sigma_m$

$$\sigma_{i} = (n_{i}, R_{i})$$

Output Neuron (label):
$$out \in \{1,...,m\}$$

Initial Synapses: syn ⊂

$$\{1,...,m\} \times \{1,...,m\}$$

Neurons: $\sigma_1, ..., \sigma_m$

Neurons:
$$\sigma_1, \dots, \sigma_m$$

$$\sigma_i = (n_i, R_i)$$

SNP & SNPSP Systems (2/11)

SNP/SNPSP system
$$\Pi$$
 of degree m: $\Pi = (0, \sigma_1, ..., \sigma_6, syn, 6)$

Alphabet:
$$O = \{a\}$$

Synapses:
$$syn = \{(1,2), (2,3), (3,5), (3,6), (4,1), (4,2), (5,4)\}$$

Neurons:
$$\sigma_1 = (2, R_1), \sigma_2 = (3, R_2), \sigma_3 = (5, R_3), \sigma_4 = (7, R_4),$$

$$\sigma_5 = (11, R_5), \sigma_6 = (13, R_6)$$

Output Neuron (label): 6

SNP & SNPSP Systems (3/11)

SNP system Rules:

Neurons:
$$\sigma_i = (n_i, R_i)$$

R_i - set of rules of the neuron

Rule:
$$r_j \in R_i$$

 \mathbf{r}_{j} is a rule in \mathbf{R}_{i} . It can have either of the following forms:

Spiking Rule (Form):

 $E / a^c \rightarrow a:d$

Forgetting Rule (Form):

 $a^c \ \to \ \lambda$

SNPSP system Rules:

Neurons:
$$\sigma_i = (n_i, R_i)$$

R_i - set of rules of the neuron

Rule:
$$r_i \in R_i$$

 \mathbf{r}_{j} is a rule in \mathbf{R}_{i} . It can have either of the following forms:

Spiking Rule (Form):

 $E / a^c \rightarrow a$

Plasticity Rule (Form):

 $E / a^c \rightarrow \alpha k(i, N)$

SNP & SNPSP Systems (4/11)

Rule's Activation Criteria: E / ac

- 1) $\mathbf{a}^{c} \mathbf{c}$ is positive integer. \mathbf{a}^{c} means that the neuron that contains the rule should have at least \mathbf{c} spikes.
- 2) E Regular Expression over O = $\{a\}$. The rule can only activate when the number of spikes (represented by a^n) in the neuron is 'covered' by the regular expression E.

$$a^n \in L(E)$$
.

Examples:

$$a^n = a^7$$
, $E_1 = a^2(a^5)^* - a^7 \in L(E_1) - OK - L(E_1) = \{a^{5x+2} \mid x \ge 0\}$

$$a^n = a^9$$
, $E_2 = (a^2)^* - a^9 \notin L(E_2) - Not OK - L(E_2) = {a^{2x} | x \ge 0}$

$$a^n = a^{10}$$
, $E_3 = (a^2 + a^3)^* - a^{10} \in L(E_3) - OK$

$$L(E_3)=\{a^{2x+3y} \mid x \ge 0, y \ge 0\}$$

SNP & SNPSP Systems (5/11)

Notes on: E / ac

- 1) When the regular expression $\mathbf{E} = \mathbf{a}^{c}$, the rule criteria " \mathbf{a}^{c} " \mathbf{a}^{c} " can simply be written as " \mathbf{a}^{c} ".
- **2)** For **forgetting rule**, the activation criteria are written as " \mathbf{a}^c ". The regular expression \mathbf{E} (of forgetting rules) is restricted and is always " \mathbf{a}^c ". For any forgetting rule with criteria \mathbf{a}^c , the string $\mathbf{a}^c \notin \mathbf{L}(\mathbf{E}')$ where \mathbf{E}' a regular expression of any of the spiking rule in the same neuron.
- **3)** If rule \mathbf{r}_1 has regular expression \mathbf{E}_1 and rule \mathbf{r}_2 has regular expression \mathbf{E}_2 , it is possible that $\mathbf{L}(\mathbf{E}_1) \cap \mathbf{L}(\mathbf{E}_2) \neq \varnothing$. The languages defined by the regular expressions can intersect. It is possible that <u>multiple rules are applicable</u>. If this is the case, then one rule in non-deterministically selected and appliced/activated.

SNP & SNPSP Systems (6/11)

Spiking Rule: E / a^c → a:d

d ≥ **0** is known as the delay. When a spiking rule is activated / applied at time **t**, **c** spikes are consumed and the neuron containing the rule will be 'closed' for **d** steps, then will open at time **t+d** and send a spike to connected neurons.

Example:
$$r_j$$
: (a²)* / a² \rightarrow a:3, $r_j \in R_1$, $n_1 = 8$

SNP & SNPSP Systems (7/11)

Notes on Spiking Rules: E / a^c → a:d

- When a neuron is '<u>closed</u>', it can not receive spikes from other neurons and can not activate/applied other rules.
- After applying a spiking rule at time t, only at time t+d+1 can another rule be applied.

Forgetting Rule: a^c → λ

When a forgetting rule is applied/activated it will simply consume **c** spikes (all the spikes) from the neuron that contains the rule.

SNP & SNPSP Systems (8/11)

Plasticity Rules: $E / a^c \rightarrow \alpha k(i, N)$

- 1) i is the label of the neuron containing the rule.
- 2) $\alpha \in \{+,-,\pm,\mp\}$ action to be performed.
- add synapses
- delete synapses
- **±** add then (in the next step) delete synapses
- **∓** delete then (in the next step) add synapses.
- 3) $N \subseteq \{1,...,m\}-\{i\}$ the set of target neurons
- 4) $1 \le k \le |N|$ number of synapses to be added or deleted.
- **5)** When a synapse (i,j) is created, it will send one spike to neuron j.

SNP & SNPSP Systems (9/11)

Example: r_i : $a(aa)* / a^2 \rightarrow +2(1, \{2,3,4\}), r_i \in R_1, n_1 = 5$

SNP & SNPSP Systems

Example: r_i : $a(aa)* / a^2 \rightarrow -2(1, \{2,3,4\}), r_i \in R_1, n_1 = 5$

SNP & SNPSP Systems (11/11)

Semantics:

- 1) There is a global clock. For every step, every (open) neuron will check if there are any rules that are applicable.
- 2) If there are applicable rules, the neuron will nondeterministically select and apply a rule.
- 3) The system will halt if there are no active rules and there are no rules in any neuron that can be activated.

Output of the System (Interpretations):

- 1) Take note of the times when the first two spikes were sent by the output neuron to the environment. If it halts, the time difference is the output (number generated) of the system.
- **2)** If the output neuron sends a spike to the environment then symbol '1' is generated, otherwise '0' is generated. If the system halts, then the string of 0 and 1 symbols is the output of the system.

SNP & SNPSP System Features

SNP & SNPSP Features: Forgetting Rule

Example 1:
$$r_j$$
: E / $a^c \rightarrow -1(1, \{0\}), r_j \in R_1$

Example 2:
$$r_i$$
: E / $a^c \rightarrow +1(1, \{0\}), r_i \in R_1$

Notes:

- **1.** SNP's forgetting rule $\mathbf{a}^c \to \lambda$ has a restriced regular expression $\mathbf{E} = \mathbf{a}^c$.
- **2.** SNPSP's "forgetting" rule $Ela^c \rightarrow \lambda$ cis more general that SNP's.

SNP & SNPSP Features: Rules with Delay

SNP spiking rule at neuron a: E / a^c → a:d

SNPSP plasticity rule at neuron a: $E / a^c \rightarrow \pm 1(a, \{c_1, c_2, ..., c_d\})$

SNP & SNPSP Features: Selecting Neurons

$$E / a^c \rightarrow +1(a,\{b_1,...,b_n\})$$

Theorem: If $L \in FIN$ and $L \subseteq \{0,1\}^+$, then the SNPSP system Π generates words in L' where $L' = \{0\}L$.

$$L = \{b_{1}, b_{2}, b_{3}, ..., b_{n}\}$$

$$L' = \{0\}L = \{0b_{1}, 0b_{2}, 0b_{3}, ..., 0b_{n}\}$$

$$I_{max} = max\{|b_{i}|\}$$

 I_{max} is the length of the longest word in L.

For each word $b_i \in L$, there will be plasticity rule r_i in neuron 0 with form r_i : $a \rightarrow +k_i(0, N_i \cup \{|b_i|'\})$ where

 $N_i = \{p \mid p^{th} \text{ symbol of } \mathbf{b}_i \text{ is '1'}\} \text{ and } \mathbf{k}_i = |\mathbf{b}_i|_1 + 1.$

Example: L=
$$\{b_1=10110\}$$
, $N_1=\{1,3,4\}$, $k_1=3+1=4$,

$$r_1: a \rightarrow +4(0, \{1,3,4\} \cup \{5'\})$$

Example: L={b₁=10110},
$$r_1$$
: $a \rightarrow +4(0, \{1,3,4\} \cup \{5'\})$

SNP System for FIN Languages

Theorem: If $L \in FIN$ and $L \subseteq \{0,1\}^+$, then the SNPSP system Π that generates words in L.

Let $L = \{b_1, b_2, b_3, ..., b_n\}$.

Let $l_{max} = max\{|b_i|\}$ is the length of the longest word in L.

For each b_i , the 3 rules $r_{0,i}$, $r_{i,0}$, $r_{i,1}$ are added in σ_0 .

r_{0,i} - generates the **initial** symbol of **b**_i

r_{i.0} - generates the '0' symbols of b_i

r_{i,1} - generates the '1' symbol of b_i

Example:
$$L = \{b_1 = 101, b_2 = 01001, b_3 = 1100\}$$
. $l_{max} = 5$. $(n+1) \cdot l_{max} = (3+1)5 = 20$.

Example:
$$L = \{b_1 = 101, b_2 = 01001, b_3 = 1100\}$$
. $l_{max} = 5$. $(n+1) \cdot l_{max} = (3+1)5 = 20$.

For each b_i , the 3 rules $r_{0,i}$, $r_{i,0}$, $r_{i,1}$ are added in σ_0 .

Rule Form:
$$\mathbf{r}_{0,i}$$
: $\mathbf{a}^{(n+1)\cdot l_{max}} \mathbf{a}^{(n+1-i)\cdot l_{max}} \rightarrow \mathbf{x}$

(Spiking) x = a if the first symbol of b_i is '1'.

(Forgetting) $x = \lambda$ if the first symbol of b is '0'.

Rule Form: $r_{i,0}$: $E_i / a \rightarrow \lambda$

Rule Form:
$$r_{i,1}$$
: $E_i / a \rightarrow a$

$$\mathbf{E}_{\mathbf{i}} = \sum_{\mathbf{q}_{i} \in Q'_{\mathbf{i}}} i \cdot l_{max} - (q_{\mathbf{j}} - 2)$$

$$\mathbf{E_i} = \sum_{p_i \in P'_i} i \cdot l_{max} - (p_j - 2)$$

$$\mathbf{Q}_{i} = \{q \mid q^{th} \text{ symbol of } \mathbf{b}_{i} \text{ is '0'}\}$$

$$\mathbf{Q'}_{i} = \mathbf{Q}_{i} - \{1\}$$

$$P_i = \{p \mid p^{th} \text{ symbol of } b_i \text{ is '1'}\}$$

 $P'_i = P_i - \{1\}$

SNPSP Systems & REG Languages 1

SNPSP Systems & REG Languages 1

Right-Linear Grammar: G=(N,B,S,P)

 $N=\{N_1,N_2,...,N_m\}$ (non-terminal symbols)

B={0,1} (terminal symbols)

 $S=N_m$ (start symbol)

P is the set of **k** production rules of the forms:

$$\mathbf{R}_{i}: \mathbf{N}_{pi} \to \mathbf{bN}_{qi}, \ b \in \mathbf{B}, \ 1 \le p_{i}, q_{i} \le m, \ 1 \le i \le k$$

$$\mathbf{R}_{i}: \mathbf{N}_{pi} \to \mathbf{b}$$
, $b \in \mathbf{B}$, $1 \le p_{i} \le m$, $1 \le i \le k$

```
Right-Linear Grammar: G=(N,B,S,P)
```

$$N=\{N_1,N_2\}$$
 (non-terminal symbols)

P is the set of **3** production rules:

$$R_1: N_2 \rightarrow 1N_1$$

$$R_2: N_1 \rightarrow 0N_1$$

$$R_3: N_1 \rightarrow 1$$

String Derivation Example:

$$N_2 \xrightarrow{R_1} 1N_1 \xrightarrow{R_2} 10N_1 \xrightarrow{R_2} 100N_1 \xrightarrow{R_3} 1001$$

Theorem: If $L \subseteq B^+=\{0,1\}^+$ and $L \in REG$, then there is an SNPSP system Π and a morphism $h: B^* \to B^*$ such that $L = h^{-1}(L(\Pi))$.

```
If x \in L: x = s_1 s_2 s_3 ... s_n
then x' \in L(\Pi): x' = 0s_1 s_1 0s_2 s_2 0s_3 s_3 ... 0s_n s_n
s_i \in B \ (1 \le i \le n)
```

Morphism: h(0)=000, h(1)=011

Example: If **x=10100**, then **x'=h(10100)**

x'=h(1)h(0)h(1)h(0)h(0)

x'=011 000 011 000 000

x'=011000011000000

Theorem: If $L \subseteq B^+=\{0,1\}^+$ and $L \in REG$, then there is an SNPSP system Π and a morphism $h: B^* \to B^*$ such that

$$L = h^{-1}(L(\Pi)).$$

Production Rule: R_i: N_{pi} → 1N_{qi}

Time: t

Time: **t+1**

Time: **t+2**

Production Rule: R_i: N_{pi} → 0N_{qi}

Time: t

Time: **t+1**

Time: **t+2**

Production Rule: R_i: N_{pi} → 1

Time: t

Time: **t+1**

Time: **t+2**

Production Rule: R_i: N_{pi} → 0

Time: **t+1**

Time: **t+2**

Non-terminal Production rule: R_i: N_{pi} → bN_{qi}

Corresponding plasticity rule \mathbf{r}_i in σ_i :

If b=1,
$$r_i$$
: $a^{(m+pi)} / a^{(m+pi-qi)} \rightarrow \pm 3(0,\{1,2,3\})$

If b=0,
$$r_i$$
: $a^{(m+pi)}/a^{(m+pi-qi)} \rightarrow \pm 1(0,\{3\})$

Requires: $(m+p_i)$ spikes. Consumes: $(m+p_i-q_i)$ spikes.

Terminal Production rule: R_i : $N_{pi} \rightarrow b$

Corresponding plasticity rule r_i in σ_i :

If b=1,
$$r_i$$
: $a^{(m+pi)} / a^{(m+pi)} \rightarrow \pm 3(0,\{1,2,3\})$

If b=0,
$$r_i$$
: $a^{(m+pi)}/a^{(m+pi)} \rightarrow \pm 1(0,\{3\})$

Requires: (m+p_i) spikes. Consumes: (m+p_i) spikes.

SNP System for REG Languages

$$V=\{a_1,\dots,a_k\}$$

$$a_s - 0^s 1$$

$$N_i \rightarrow 0^s 1 N_j$$

$$a^{m+i}/a^{m+i-j} \rightarrow a;s$$

SNPSP Systems & RE Languages 1: Encoding

Encoding Strings: val_k(x)

$$V = \{a_1, a_2, a_3, ..., a_k\}$$
 – Alphabet

$$\mathbf{x} = \mathbf{a}_{i1} \mathbf{a}_{i2} \mathbf{a}_{i3} \dots \mathbf{a}_{im}$$
 – string over over \mathbf{V} .

Symbol Encoding: $val_k(a_i)=i$ of symbol a_i .

$$val_k(a_1) = 1$$

$$val_k(a_2) = 2$$

$$val_k(a_k) = k$$

SNPSP Systems & RE Languages 1: Encoding

```
Example: V=\{a_1=p, a_2=q, a_3=r, a_4=s\}, k+1=4+1=5
x = sqqrp
val_4(s) = 4_5
val_4(sq) = 10_5 \cdot val_4(s) + val_4(q) = |40_5 + 2_5| = |42_5|
val_4(sqq) = 10_5 \cdot val_4(sq) + val_4(q) = |420_5 + 2_5| = |422_5|
val_4(sqqr) = 10_5 \cdot val_4(sqq) + val_4(r) = |4220_5 + 3_5| = |4223_5|
val_4(sqqrp) = 10_5 \cdot val_4(sqqr) + val_4(p) = |42230_5 + 1_5| = |42231_5|
```

Theorem: For every alphabet $V=\{a_1,a_2,a_3,...,a_k\}$, there is a morphism $h_1:(V\cup\{b,c\})^*\to B^*$ and a projection $h_2:(V\cup\{b,c\})^*\to V^*$ such that for each language $L\subseteq V^*$, $L\in RE$, there is an SNPSP system Π such that $L=h_2(h_1^{-1}(L(\Pi)))$

```
x \in L, y \in L(\Pi)

x = a_{i1}a_{i2}a_{i3}...a_{im}

y = 10^{i1}1 | 0^{j1}1 | 10^{i2}1 | 0^{j2}1 | ... | 10^{im}1 | 0^{(jm+s)}1.
```

We define h_1 and h_2 as:

$$h_1(a_i) = 10^i 1$$
 for $1 \le i \le k$, $h_1(b) = 0$, $h_1(c) = 01$
 $h_2(a_i) = a_i$ for $1 \le i \le k$, $h_2(b) = \lambda$, $h_2(c) = \lambda$

```
h_{1}:
h_{1}(a_{i}) = 10^{i}1
h_{1}(b) = 0
h_{1}(c) = 01
```

```
h_2:

h_2(a_i) = a_i

h_2(b) = \lambda

h_2(c) = \lambda
```

```
y = 10^{i1} \mid 0^{j1} \mid 10^{i2} \mid 0^{j2} \mid ... \mid 10^{im} \mid 0^{(im+s)} 1.
y' = h_1^{-1}(y) = a_{i1} \mid b^{j1-1}c \mid a_{i2} \mid b^{j2-1}c \mid ... \mid a_{im} \mid b^{jm+s-1}c
x = h_2(y') = a_{i1} \mid \lambda \mid a_{i2} \mid \lambda \mid ... \mid a_{im} \mid \lambda
x = h_2(h_1^{-1}(y)) = a_{i1}a_{i2}a_{i3}...a_{im}
```

SNPSP Systems & RE Languages 1: System

SNPSP Systems for RE Languages (Version 1)

SNP System for RE Languages

SNPSP System for RE Languages (Version 0)

String Generation Algorithm

SNPSP + CFL: Context-free Grammar (GNF)

Greibach Normal Form Grammar: G=(N,T,S,P)

 $N = \{n_1, n_2, \dots, n_k\}$, (non-terminal symbols)

 $T=\{t_1,t_2,...,t_v\}$ (terminal symbols)

 $S \in \mathbb{N}$ (start symbol)

P is the set of production rules of the forms:

 $\mathbf{R}_{j}: \mathbf{n}_{rj} \to \mathbf{t}_{r'j} \mathbf{N}_{j}$ where $\mathbf{n}_{rj} \in \mathbf{N}, \mathbf{t}_{r'j} \in \mathbf{T}, \mathbf{N}_{j} \in \mathbf{N}^{*}, 1 \leq r_{j} \leq x, 1 \leq r'_{j} \leq y$.

SNPSP + CFL: Context-free Grammar (GNF)

Example:
$$G=(N=\{A,B,C\},T=\{a,b,c\},A,P)$$

 $R_1:A \rightarrow aABB$

R₂:A → bBBC

 $R_a:A \rightarrow a$

 $R_A:B\to b$

 $R_5:C \rightarrow C$

Derive: aabbbcb

$$\begin{array}{c} A \xrightarrow{R_1} aABB \xrightarrow{R_3} aaBB \xrightarrow{R_2} aabBBCB \xrightarrow{R_4} aabbBCB \\ & + aabbbCB \xrightarrow{R_5} aabbbcB \xrightarrow{R_4} aabbbbcb \end{array}$$

SNPSP + CFL: String Generation Algorithm

Grammar: G=(N,T,S,P)

- 1. Place initial symbol S on top of stack.
- 2. Pop: Get the non-terminal symbol on top of the stack.
- **3. Compare:** Check the <u>top symbol</u> and see which production rule $\mathbf{R}_j \colon \mathbf{n}_{rj} \to \mathbf{t}_{r'j} \mathbf{N}_j$ can be applied on the <u>top symbol</u>. Non-deterministically apply one of the applicable rule.
- **4. Output + Push:** Output the terminal t_{rij} symbol of the rule and push the non-terminal symbols N_i back to the stack.

5. Repeat steps 2-4 until stack is empty.

SNPSP + CFL: String Generation Algorithm

No	Stack	Rule	New Stack	Output
1	A*	$R_1:A \rightarrow aABB$	BBA*	a
2	BBA*	$R_3:A \rightarrow a$	BB*	a
3	BB*	R ₂ :A → bBBC	BCBB*	b
4	BCBB*	$R_4:B\to b$	BCB*	b
5	BCB*	$R_4:B\to b$	BC*	b
6	BC*	$R_5:C \to C$	B*	C
7	B*	$R_4:B\to b$	*	b

SNPSP + CFL: Encoding

```
Example: V=\{a_1=p, a_2=q, a_3=r, a_4=s\}, k+1=4+1=5
x = sqqrp
val_4(s) = 4_5
val_4(sq) = 10_5 \cdot val_4(s) + val_4(q) = |40_5 + 2_5| = |42_5|
val_4(sqq) = 10_5 \cdot val_4(sq) + val_4(q) = |420_5 + 2_5| = |422_5|
val_4(sqqr) = 10_5 \cdot val_4(sqq) + val_4(r) = |4220_5 + 3_5| = |4223_5|
val_4(sqqrp) = 10_5 \cdot val_4(sqqr) + val_4(p) = |42230_5 + 1_5| = |42231_5|
```

SNPSP + CFL: Encoding

=val₄(sqqrppqrs)

```
Example: V=\{a_1=p, a_2=q, a_3=r, a_4=s\}, k+1=4+1=5
x = sqqrp, y=pqrs
val_4(sqqrp) = 42231_5
val_a(pqrs) = 1234_5
val_4(xy) = val_4(x)(10_5)^{|y|} + val_4(y)
= 42231_{5}(10_{5})^{4} + 1234_{5}
=42231_{5}(10000_{5})+1234_{5}
= 422310000<sub>5</sub>+1234<sub>5</sub>
= 422311234<sub>5</sub>
```

SNPSP + CFL: Encoding

```
Example: V=\{a_1=p, a_2=q, a_3=r, a_4=s\}, k+1=4+1=5

x = sqqrp

val_4(sqqrp) = 42231_5

val_4(sqqr) = val_4(sqqrp)/(10_5) = 4223_5

val_4(p) = val_4(sqqrp) \% (10_5) = 1_5
```

SNPSP + CFL: String Generation Algorithm

No	Stack	Rule	New Stack	Output
1	1,	R ₁ :A → aABB	221 ₄	a
2	221 ₄	$R_3:A \rightarrow a$	22 ₄	a
3	22 ₄	R ₂ :A → bBBC	2322 ₄	b
4	2322 ₄	$R_4:B\to b$	232 ₄	b
5	232 ₄	$R_4:B\to b$	23 ₄	b
6	23 ₄	$R_5:C \to C$	2 ₄	C
7	2 ₄	$R_4:B\to b$	0_4	b

Arithmetic Memory Module

Arithmetic-Memory Module: Addition, Subtraction

Addition: $|z|_1 = m + n$

Difference: $|z|_1 = |m-n|$

Arithmetic-Memory Module: Multiplication, Division

Multiplication: $|z|_1 = m \cdot n$

Division: $|z|_1 = m/n$

Arithmetic-Memory Module

Addresing

Operations (Spike Trains)

Data / Instruction Lines

Storage and Control

Output

Stack Operation Subsystems

SNPSP + CFL: Compare Subsystem $val_x^{\frac{1}{3}}(n_1)$ Module T Module N. $val_x(n_i)$ val_x(n_i) **Non-deterministic Rule Choice**

SNPSP + CFL: Output Subsystem

Summary + Future Work

Conclusion

Summary:

- **1.** We were able to create procedures for constructing <u>SNPSP</u> <u>systems</u> that generate *FIN*, *REG*, *RE* languages These results were presented at 18th International Conference on Membrane Computing, 24-28 July 2017 Bradford, UK.
- 2. We implemented an Arithmetic-Memory module that can perform arithmetic operations and store numbers. This result was presented at 6th Asian Conference on Membrane Computing, 21-25 September 2017, Chengdu (P.R. China)
- **3.** We were able to create a procedure for constructing <u>SNPSP</u> systems that generate **CF** languages.
- **4.** We we are able to simulate **forgetting rules** and **rules with delay** in <u>SNPSP system</u> and was able to show how, to some extent, <u>SNP systems</u> can simulate **plasticity rules**.

Conclusion

Possible Future Works:

- **1.** Improve the design of the AM modules. Can it be made smaller with lost of functionality? Additional operators may be added.
- **2.** Instead of language generation, compare the smallest know SNP to SNPSP systems. Does having plasticity rules decreases the size of the current smallest SNPSP system compared to the current smallest SNPSP systems?
- **3.** Is it possible use only one type of plasticity rule action (i.e. ± only) and still have a Turing-complete model?

Thank you!

Acknowledgments

R.T.A. de la Cruz is grateful for the Department of Science and Technology (DOST)'s support through the Engineering Research and Development for Technology (ERDT)'s graduate scholarship program.