Logical Equivalence

Propositions A and B are logically equivalent, A = B exactly when $A \leftrightarrow B$ is a totalogy.

A recursive definition of or the set of logical propositions, ${\cal P}$

- 1. $T \in P, F \in P, p \in P$ where p is a propostional \equiv is a binary relation on P variable.
- 2. If $x, y \in P$, then $\neg \in P$, $x \land y \in P$, $x \lor y \in P$, $x \lor y \in P$, $y \in P$, $x \leftrightarrow y \in P$, $x \leftrightarrow y \in P$ $y \in P$, $x \leftrightarrow y \in P$ $y \in P$, $x \leftrightarrow y \in P$ $y \in P$, $x \leftrightarrow y \in P$ $y \in P$, $x \leftrightarrow y \in P$ $y \in P$, $y \in P$, $y \in P$, $y \in P$ $y \in P$, $y \in P$ $y \in P$, $y \in P$ $y \in P$ y
- 3. Nothing else is in P

De Morgan's Laws

$$\neg (A \land B) \equiv (\neg A) \lor \neg B$$

$$\neg(A \lor B) \equiv (\neg A) \land (\neg B)$$

Logical Equivalence	Name
$A \wedge T \equiv A$	Identity Laws
$A \lor F \equiv A$	
$A \vee T \equiv T$	Domination Laws
$A \wedge F \equiv F$	
$A \vee A \equiv A$	Idempotent Laws
$A \wedge A \equiv A$	
$\neg \neg A \equiv A$	Double Negative Law
$A \vee B \equiv B \vee A$	Commutative Laws
$A \wedge B \equiv B \wedge A$	
$(A \vee B) \vee C \equiv A \vee (B \vee C)$	Associative Laws
$(A \land B) \land C \equiv A \land (B \land C)$	
$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$	Distributive Laws
$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$	
$\neg (A \land B) \equiv (\neg A) \lor \neg B$	De Morgan's Laws
$\neg (A \lor B) \equiv (\neg A) \land (\neg B)$	
$A \vee (A \wedge B) \equiv A$	Absorption Laws
$A \wedge (A \vee B) \equiv A$	
$A \vee \neg A \equiv T$	Complement Laws
$A \land \neg A \equiv F$	
$A \to B \equiv (\neg A) \lor B$	Conditional Identities
$A \leftrightarrow B \equiv (A \to B) \land (B \to A)$	