

The Effects of Robots on the Workplace

Adrianto¹, Avner Ben-Ner¹, and Ainhoa Urtasun²

¹University of Minnesota ²Public University of Navarra

Annual Meeting of the Academy of Management
Sheraton: Old Town, Chicago, IL
August 11, 4:00 – 5:30pm
https://cdmcd.co/9Wbwax

The multifaceted effects of robots

- Displacement
- Complementarity
- Productivity enhancement

Studying employment effect of robots at aggregated level gives conflicting findings

Robot adopters are outnumbered by nonadopters

Firm size	Firms	% Robotic plants per firm
A. Adopters	534	37.58
1 plant	101	100
2-5 plants	140	41.7
6-20 plants	161	18.98
21-100 plants	112	8.71
>100 plants	20	4.88
B. Non-adopters	8,041	0

The net aggregate effect depends on:

- Size of displacement and productivity effects
- 2. Number of adopters and nonadopters

What we do in this study

- We use online job postings and employment
- We focus on US manufacturing, 2010-2022
- We separate occupations into:
 - Production
 - High-skill (production managers, engineers, computers)
 - Medium-skill (technicians)
 - Low-skill (operators)
 - Direct (assembler, welder, material handler, painter, packager)
 - Support
 - Finance, HR, logistics, etc.
- We perform difference-in-differences and instrumental variables analyses.
- We analyze specific skills directly related to robotic operations (technical) and general skills that are important on the job.

Statistics

Robot adoption effect on hiring Staggered difference-in-differences

	Pre-adoption Postings	Change in postings pre-to-post			
A. Adopting vs. non-adopting plants					
All postings	64.71	98.36***			
		(14.01)			

- Plant-level employment increases by 15% post-adoption
- Positive but nonsignificant increase in employment at the firm-level

- Robot adoption gradually increases hiring and employment.
- The increase is larger for production activities, and the increase is similar across high, medium, and low skill occupations
- Robot adoption has spillover effect to support activities
- Within an adopting firm, robot adoption also increases hiring in nonrobotic plants, albeit in smaller magnitudes.
- This is probably due to higher productivity

^{*} Same results for employment, which increases by 15%.

Employment in nonadopting competitors and industry Results from instrumental variables analysis

- Employment in nonadopters decreases by **0.4**% one year later, and further to **0.5**% in two years.
- No significant effect at the industry level

	Period relative to adoption rate in t_0		
	0	1	2
Plant-level log of employment in nonadopting firm	-0.000	-0.004**	-0.005**
	(0.002)	(0.001)	(0.002)
Industry-level log of employment	0.0009	0.0026	0.0031
	(0.0018)	(0.0025)	(0.0028)

Notes: Table shows the effect of changing the stock of robots per 1,000 workers in an industry by one unit on the log of full-time employment. standard errors (in parentheses) are clustered by industry. In stage 1 (not shown), the number of US industrial robot stock per 1,000 workers is predicted by the number of industrial robot stock per 1,000 workers and R&D capital stock per 1,000 workers in Denmark, Finland, France, Italy, and Sweden. Included as controls, US industry-level real GDP, year fixed effects, and plant fixed effects. Significance levels: * 10%, ** 5%, *** 1%.

Technical skill requirements for robotic job postings Results from two-way difference-in-differences analysis

- Robotic jobs experience a significant change post-adoption in skills closely related to robotic operations
- Zero effect on non-robotic jobs
- Zero effect on general skills

	Design (1)
High-skill robotic job	0.56*** (0.05)
Medium-skill robotic job	0.01 (0.06)
Low-skill robotic job	0.13*** (0.04)

Notes: Skills are measured as the plant-level average frequency the skill is used in production occupations. Significance levels: * 10%, ** 5%, *** 1%.

Implications

- 1. Robots can displace certain production tasks and create new opportunities for employment and skill development
- Need to support workers displaced by robotics, not in adopting plants but elsewhere in the economy.
- Provision of training for reskilling workers to transition into new roles created by automation.
- 4. Technical education should focus on programming, maintenance, and supervision of robotic systems and their integration with AI.
- 5. Encourage robot adoption by firms by enhancing their technical and human resource capabilities.
- 6. Improve data collection on robot adoption and its effects on employment to enable more detailed and comprehensive studies.

