



# Robot Forward Kinematics

MUHAMMAD A. SHEHAB

### Introduction

- Robot kinematics:
  - Description of motion of the robot without consideration of the forces and torques causing the motion.
  - ▶ The Kinematics is a geometric description.





### Forward and Inverse Kinematics

- Forward Kinematics
  - Determination of the (actual) position and orientation of the end-effector given the values for the joint variables of the robot
- Inverse Kinematics
  - Determination of the values of the joint variables of the robot given the (desired) position and orientation of the end-effector
- Notes
  - ▶ Inverse Kinematics is required to determine the control action
  - Forward kinematics is required to give feedback about end-effector pose

## Kinematic Chains

MANIPULATORS
FORWARD KINEMATICS

### Robot Manipulators

- A robot manipulator is composed of a set of links connected together by joints.
- $\triangleright$  A robot manipulator with n joints will have n+1 links as each joint connects two links.



## Robot Manipulators

#### Convention

- We number the joints from 1 to n, and we number the links from 0 to n, starting from the base.
- By this convention, joint i connects link i-1 to link i. We will consider the location of joint i to be fixed with respect to link i-1.
- When joint i is actuated, link i moves.
- $\blacktriangleright$  With  $i^{th}$  joint we associate a joint variable, denoted by  $q_i$ 
  - Angle of rotation in case of revolute joint
  - ▶ Joint displacement in case of prismatic joint

## Kinematics Analysis

- To perform the kinematic analysis, we attach a coordinate frame rigidly to each link. In particular, we attach frame  $o_i x_i y_i z_i$  to link i.
- The frame  $o_0x_0y_0z_0$ , which is attached to the robot base, is referred to as the inertial frame.



### Kinematic Analysis

- Suppose  $A_i$  is the homogeneous transformation matrix that expresses the position and orientation of  $o_i x_i y_i z_i$  with respect to  $o_{i-1} x_{i-1} y_{i-1} z_{i-1}$ .
- $\triangleright$   $A_i$  is a function of only a single joint variable, namely  $q_i$ .
  - $A_i = A_i(q_i)$
- The homogeneous transformation matrix that expresses the position and orientation of frame  $o_i x_i y_i z_i$  with respect to frame  $o_i x_i y_i z_i$  is denoted by:

$$T_{j}^{i} = \begin{cases} A_{i+1}A_{i+2} \dots A_{j-1}A_{j} & \text{if } i < j \\ I & \text{if } i = j \\ (T_{i}^{j})^{-1} & \text{if } j > i \end{cases}$$

### **End-Effector Pose**

- The position and orientation of the end-effector with respect to the inertial frame are denoted by a vector  $O_n^0$  (represents the coordinates of the origin of the end-effector frame with respect to the base frame) and a rotation matrix  $R_n^0$  respectively.
- The homogeneous transformation matrix of end-effector pose H is:

$$H = \begin{bmatrix} R_n^0 & O_n^0 \\ 0 & 1 \end{bmatrix}$$

$$H = T_n^0 = A_1(q_1) \dots A_n(q_n), \qquad A_i = \begin{bmatrix} R_i^{i-1} & O_i^{i-1} \\ 0 & 1 \end{bmatrix}$$

### Pose components

 $\triangleright$  For homogeneous transformation matrix  $T_i^i$ 

$$T_{j}^{i} = A_{i+1}A_{i+2} \dots A_{j} = \begin{bmatrix} R_{j}^{i} & O_{j}^{i} \\ 0 & 1 \end{bmatrix}, \qquad j > i$$

$$R_{j}^{i} = R_{i+1}^{i}R_{i+2}^{i+1} \dots R_{j}^{j-1}$$

$$O_{j}^{i} = O_{j-1}^{i} + R_{j-1}^{i}O_{j}^{j-1}$$

### Review Example

Consider the two-link planer manipulator

$$A_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 & a_{1}c_{1} \\ s_{1} & c_{1} & 0 & a_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{1}^{0} = A_{1}$$

$$T_{2}^{0} = A_{1}A_{2} = \begin{bmatrix} c_{12} & -s_{12} & 0 & a_{1}c_{1} + a_{2}c_{12} \\ s_{12} & c_{12} & 0 & a_{1}s_{1} + a_{2}s_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} c_{2} & -s_{2} & 0 & a_{2}c_{2} \\ s_{2} & c_{2} & 0 & a_{2}s_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Note: 
$$c_1 \equiv \cos(\theta_1)$$
,  $c_{12} \equiv \cos(\theta_1 + \theta_2)$   
 $s_1 \equiv \sin(\theta_1)$ ,  $s_{12} \equiv \sin(\theta_1 + \theta_2)$ 





DH ASSUMPTIONS
ASSIGNING FRAMES

### Denavit-Hartenberg convention

- Denavit-Hartenberg convention or DH convention is a commonly used method for selecting reference frames of robots
- In DH convention, the 6 parameters associated with an arbitrary homogeneous transformation are reduced to 4 by appropriate selection of reference frames
- In this convention, each homogeneous transformation  $A_i$  is represented as a product of four basic transformations using the following parameters:
  - $\triangleright$   $a_i$ : Link length
  - $\alpha_i : Link twist$
  - $\rightarrow$   $d_i$ : Link offset
  - $\theta_i$ : joint angle

### DH-Assumptions

- DH coordinate frame assumptions
  - ▶ DH1- The axis  $x_i$  is perpendicular to the axis  $z_{i-1}$
  - $\triangleright$  DH2- The axis  $x_i$  intersects the axis  $z_{i-1}$
- $\triangleright$  Under the above assumptions  $A_i$  is achieved by
  - 1.  $Rot(z, \theta_i)$
  - 2.  $Trans(z, d_i)$
  - 3.  $Trans(x, a_i)$
  - 4.  $Rot(x, \alpha_i)$
- $A_i = Rot(z, \theta_i) * Trans(z, d_i) * Trans(x, a_i) * Rot(x, \alpha_i)$



### DH-Assumptions

$$A_{i} = Rot_{z,\theta_{i}} Trans_{z,d_{i}} Trans_{x,a_{i}} Rot_{x,\alpha_{i}}$$

$$= \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} & 0 & 0 \\ s_{\theta_{i}} & c_{\theta_{i}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\times \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{\alpha_{i}} & -s_{\alpha_{i}} & 0 \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}}c_{\alpha_{i}} & s_{\theta_{i}}s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}}c_{\alpha_{i}} & -c_{\theta_{i}}s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

### DH-Parameters

- The parameter a is the distance between the axes  $z_0$  and  $z_1$  measured along the axis  $x_1$
- The parameter  $\alpha$  is the angle between the axes  $z_0$  and  $z_1$ , measured in a plane normal to  $x_1$  axis
- The parameter d is the perpendicular distance from the origin  $O_0$  to the intersection of the  $x_1$  axis with  $z_0$  axis measured along the  $z_0$  axis
- The parameter  $\theta$  is the angle between  $x_0$  axis and  $x_1$  axis measured in a plane normal to  $z_0$  axis
- Hint:
  - ▶ d: is, only, the variable in case of prismatic joints
  - $\theta$ : is, only, the variable in case of revolute joints

## Coordinate Frames Assignment



### Assignment steps

- 1. Assign  $z_i$  to be axis of actuation of joint i+1
- 2. Establish arbitrarily the base frame:  $x_0, y_0, (z_0 \text{ determined in step 1})$
- 3. Define  $x_i$  based on one of three cases
  - a. The axes  $z_{i-1}$  and  $z_i$  intersects
  - b. The axes  $z_{i-1}$  and  $z_i$  are parallel
  - c. The axes  $z_{i-1}$  and  $z_i$  are not coplanar
- 4. Define  $y_i$  in the appropriate direction to complete the frame
- 5. The final coordinate frame  $o_n x_n y_n z_n$  is commonly referred to as the end-effector or tool frame. The origin  $o_n$  is most often placed symmetrically between the fingers of the gripper

### Assignment of $x_i$ axis

#### $z_{i-1}$ and $z_i$ are intersected

- $x_i$  is chosen normal to the plane formed by  $z_{i-1}$  and  $z_i$ .
- The positive direction of  $x_i$  is arbitrary.
- The most natural choice of  $o_i$  to be at the intersection point of  $z_{i-1}$  and  $z_i$
- In this case  $a_i$  equal zero

#### $z_{i-1}$ and $z_i$ are parallel

- There are infinitely common normal between them
- DH1 doesn't specify  $x_i$  completely
- It's free to choose  $o_i$  anywhere along  $z_i$
- The normal going through  $o_i$  is chosen to be  $x_i$

#### $z_{i-1}$ and $z_i$ not coplanar

- There exists a unique shortest line segment from  $z_{i-1}$  to  $z_i$ , perpendicular to both of them
- This line segment defines  $x_i$
- The point where the line of  $x_i$  intersects  $z_i$  is the origin  $o_i$



PLANAR MANIPULATOR
CYLINDRICAL ROBOT

### DH-solution steps

- Assignment of coordinate frames according to the defined rules
- Construction of DH-Table containing the parameters of each transformation matrix between two successive links
- $\triangleright$  Compute the transformation matrix  $A_i$  for each link
- ightharpoonup Compute the whole homogenous transformation matrix  $T_n^0$
- Remember:
  - $A_i = Rot(z, \theta_i) * Trans(z, d_i) * Trans(x, a_i) * Rot(x, \alpha_i)$
  - $H = T_n^0 = A_1(q_1) \dots A_n(q_n)$

## Two-Link Planar Manipulator



Link parameters for 2-link planar manipulator

| Link   | $a_i$                                  | $  \alpha_i  $ | $d_i$  | $\theta_i$              |
|--------|----------------------------------------|----------------|--------|-------------------------|
| 1<br>2 | $egin{array}{c} a_1 \ a_2 \end{array}$ | 0              | 0<br>0 | $	heta_1^* \ 	heta_2^*$ |

<sup>\*</sup> variable

### Two-Link Planar Manipulator

$$A_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 & a_{1}c_{1} \\ s_{1} & c_{1} & 0 & a_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} c_{2} & -s_{2} & 0 & a_{2}c_{2} \end{bmatrix}$$

$$A_2 = \begin{bmatrix} c_2 & -s_2 & 0 & a_2c_2 \\ s_2 & c_2 & 0 & a_2s_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The T-matrices are thus given by

$$T_1^0 = A_1$$

$$T_2^0 = A_1 A_2 = \begin{bmatrix} c_{12} & -s_{12} & 0 & a_1 c_1 + a_2 c_{12} \\ s_{12} & c_{12} & 0 & a_1 s_1 + a_2 s_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

## Three-Link Cylindrical Robot



Link parameters for 3-link cylindrical manipulator

| Link | $a_i$ | $  lpha_i  $ | $d_i$                   | $\theta_i$  |
|------|-------|--------------|-------------------------|-------------|
| 1    | 0     | 0            | $d_1$                   | $	heta_1^*$ |
| 2    | 0     | 0<br>-90     | $d_2^*$                 | 0           |
| 3    | 0     | 0            | $d_1 \\ d_2^* \\ d_3^*$ | 0           |

<sup>\*</sup> variable

### Three-Link Cylindrical Robot

$$A_1 = \begin{bmatrix} c_1 & -s_1 & 0 & 0 \\ s_1 & c_1 & 0 & 0 \\ 0 & 0 & 1 & d_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_2 = \left[ egin{array}{ccccc} 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & -1 & 0 & d_2 \ 0 & 0 & 0 & 1 \end{array} 
ight]$$

$$A_3 = \left[ egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & d_3 \ 0 & 0 & 0 & 1 \end{array} 
ight]$$

$$A_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad T_{3}^{0} = A_{1}A_{2}A_{3} = \begin{bmatrix} c_{1} & 0 & -s_{1} & -s_{1}d_{3} \\ s_{1} & 0 & c_{1} & c_{1}d_{3} \\ 0 & -1 & 0 & d_{1} + d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

16 April 2016 CCE4242-Robotics

### Reference

Mark W. Spong, Seth Hutchinson and M. Vidyasagar, "Robot Modelling and Control", Wiley, 2005

