Drawing Statistical Conclusions

RANDOMIZED EXPERIMENTS V. OBSERVATIONAL STUDIES
RANDOM SAMPLES V. SELE-SELECTION

Two motivating examples

Creativity Scores: Intrinsic vs. Extrinsic Motivation

and statement and special	Intrinsic group		eir summary statistic		
	12.0	20.5	5.0	17.4	
	12.0	20.6	5.4	17.5	
	12.9	21.3	6.1	18.5	
	13.6	21.6	10.9	18.7	
	16.6	22.1	11.8	18.7	
	17.2	22.2	12.0	19.2	
	17.5	22.6	12.3	19.5	
	18.2	23.1	14.8	20.7	
	19.1	24.0	15.0	21.2	
	19.3	24.3	16.8	22.1	
	19.8	26.7	17.2	24.0	
G 1 . Ct	20.3	29.7	17.2		
Sample Size: Average: Standard Deviation:	19	.88 44	15	23 2.74 2.25	

Subjects Volunteered for the Study.

A 95% confidence interval for a difference in score due to having extrinsic motivation rather than intrinsic motivation is between 1.3 and 7.0 points.

Starting Salaries: Female vs. Male

Display 1.3	Starting salaries (\$U.S.) for 32 male and 61 female clerical hires at a bank									
				Females						
		Males		3,900	4,500	4,800	5,220	5,400	5,64	
	4,620	5,700	6,000	4,020	4,620	4,800	5,220	5,400	5,70	
	5,040	6,000	6,000	4,020	4,800	4,980	5,280	5,400	5,70	
	5,100 5,100	6,000	6,300	4,380	4,800	5,100	5,280	5,400	5,70	
	5,220	6.000	6,600	4,380	4,800	5,100	5,280	5,400	5,70	
	5,400	6,000	6,600	4,380	4,800	5,100	5,400	5,400	5,70	
	5,400	6,000	6,600	4,380	4,800	5,100	5,400	5,400	6,00	
	5,400	6,000	6,840	4,380	4,800	5,100	5,400	5,520	6,00	
	5,400	6,000	6,900	4,440	4,800	5,100	5,400	5,520	6,12	
	5,400	6,000	6,900 8,100	4,500	4,800	5,160	5,400	5,580	6,30	

n = 32 males n = 61 females The mean starting salary for males is estimated to be \$560 to \$1080 larger than the mean starting salary for females (95% confidence). Such a large difference is unlikely to occur by chance (p-value < .00001 from a two sample t-test of means).

Cause, Effect, and Inference to Populations

Types of Studies

Creativity Study

Randomized Experiment

Salary Study

Observational Study

Causal Inference: Randomized vs. Observational Study

- Causal inferences can be drawn from randomized experiments
- Causal inferences **cannot** be drawn from observational studies due to **CONFOUNDING** (*Technical point: there are causal inference techniques for observational studies*)

CONFOUNDING VARIABLE: Related to both group membership and to the outcome

Example: Since 2000 the U.S. median wage...

- •has overall increased about 1%
- Has decreased for high school (or below) dropouts and high school graduates
- •Is this a paradox?

No, more people are graduating high school

Causal Inference: Randomized vs. Observational Study

- Causal inferences can be drawn from randomized experiments
- Causal inferences cannot be drawn from observational studies due to Confounding

Maybe males have

- more education
- more seniority
- more age (older)

Intri	sic	group			Extrin	sic	group	
12.0 12.0 12.9 13.6 16.6 17.2 17.5 18.2 19.1 19.3 19.8 20.3	o y y o y y y o y	20.5 20.6 21.3 21.6 22.1 22.2 22.6 23.1 24.0 24.3 26.7 29.7	0 0 0 y y y		5.0 5.4 6.1 10.9 11.8 12.0 12.3 14.8 15.0 16.8 17.2	o y y o y y y o o y	17.4 17.5 18.5 18.7 19.2 19.5 20.7 21.2 22.1 24.0	0 0 y
19.88 4.44			15.74 5.25					

Why do an observational study?

- Establishing causation not always the goal
 - Predict whether or not an email is spam
- Randomization may not be ethical
 - Assign clinical trial subjects to treatment or placebo
- May be arguable scientifically that a confounder is "unlikely"
 - 6 month smoking ban in Helena, MT coinciding with 40% reduction in heart attacks
- Might have an incidentally observed dataset
 - Walmart collects petabytes of data/day. Should this data be discarded because it is observational?

Inference to Populations: Random Sample vs. Self-Selection

- Inference to populations can be drawn from a RANDOM SAMPLE
- Inference to populations cannot be drawn if units are self-selected

RANDOM SAMPLE: Experimental units selected via a "chance mechanism" from a well defined population

Example: call randomly selected phone numbers for a survey

SIMPLE RANDOM SAMPLE: Every subset of size n is equally likely

• Example: I'll assign everyone in this class a random integer 17, 200, -3, 472, ... and survey the n people (units) with smallest numbers

Inference to Populations: Random Sample vs. Self-Selection

- Inference to populations can be drawn from a RANDOM SAMPLE
- Inference to populations cannot be drawn if units are self-selected

- Neither study uses random sampling
 - Creativity study: units are volunteers
 - Bank study: units are the entire staff
- No inference about a larger population is possible
- Does not mean the results are not interesting or compelling!

Intrinsic group		Extrinsic group		
Tax Street	20.5	5.0	17.4	
12.0	20.5	5.4	17.5	
12.0	21.3	6.1	18.5	
12.9	21.6	10.9	18.7	
16.6	22.1	11.8	18.7	
17.2	22.2	12.0	19.2	
17.5	22.6	12.3	19.5	
18.2	23.1	14.8	20.7	
19.1	24.0	15.0	21.2	
19.3	24.3	16.8	22.1	
19.8	26.7	17.2	24.0	
20.3	29.7	17.2	24.0	
24				
19.88		23		
4.44			.74	
	Buch	5.	25	

Statistical Inferences Permitted by Study Design

Allocation of Units to Groups

Digitus Tertius