Supplementary Material – SOFEA: A Non-iterative and Robust Optical Flow Estimation Algorithm for Dynamic Vision Sensors

Weng Fei Low, Zhi Gao, Cheng Xiang, and Bharath Ramesh* The N.1 Institute for Health, National University of Singapore

Email: bharath.ramesh03@u.nus.edu

1. Proof of Local Optimality of $\overline{\mathcal{N}}$

In Section 4.2 of the main text, we have claimed that the proposed greedy heuristic yields a set of neighboring events $\overline{\mathcal{N}}$ that is locally optimal with respect to the criteria laid down for \mathcal{N}^* . Thus, we will deliver a mathematical proof of the local optimality of $\overline{\mathcal{N}}$ in this section.

Definition 1.1. \mathcal{N}_n^* is a set of neighboring events of size $n \in \mathbb{N}$ that is optimal with respect to Criterion 1 to 6. The set of all possible \mathcal{N}_n^* is denoted by $\{\mathcal{N}_n^*\}$.

Definition 1.2. $\widehat{\mathcal{N}}_n$ is a set of neighboring events of size $n \in \mathbb{N}$ that is optimal with respect to Criterion 1 to 5. The set of all possible \mathcal{N}_n^* is denoted by $\{\widehat{\mathcal{N}}_n\}$.

Definition 1.3. $\overline{\mathcal{N}}_n$ is the set of neighboring events of size $n \in \mathbb{N}$ that is given by the greedy heuristic.

Definition 1.4. $t_{min}(\mathcal{N})$ is a function that gives the minimum timestamp of events in the set of neighboring events \mathcal{N} (i.e. $t_{min}(\mathcal{N}) = \min \{ t \mid e = (x, y, t, p) \in \mathcal{N} \}$).

Lemma 1.1 (Monotonicity Lemma). The minimum timestamp of events in $\widehat{\mathcal{N}}$ of size n+1 is no larger than the minimum timestamp of events in $\widehat{\mathcal{N}}$ of size n. Simply speaking, $t_{min}(\widehat{\mathcal{N}}_{n+1}) \leq t_{min}(\widehat{\mathcal{N}}_n)$.

Proof.

- 1: Suppose $t_{min}(\widehat{\mathcal{N}}_{n+1}) > t_{min}(\widehat{\mathcal{N}}_n)$:
- 2: By removing any one of the events in $\widehat{\mathcal{N}}_{n+1}$ in such a way that Criterion 4 is not violated, we are able to obtain a new set of neighboring events \mathcal{N}_n such that $t_{min}(\mathcal{N}_n) \geq t_{min}(\widehat{\mathcal{N}}_{n+1})$.
- 3: Combining the above with the assumption, $t_{min}(\mathcal{N}_n) > t_{min}(\widehat{\mathcal{N}}_n)$ is implied.
- 4: With that, there is a contradiction in the fact that $\widehat{\mathcal{N}}_n$ is optimal with respect to Criterion 1 to 5 (Definition 1.2), as \mathcal{N}_n clearly provides a better solution in terms of Criterion 5.
- 5: Thus, $t_{min}(\widehat{\mathcal{N}}_{n+1}) \leq t_{min}(\widehat{\mathcal{N}}_n)$.

Definition 1.5. \mathcal{C}^n is the set of candidate neighboring events \mathcal{C} given by Algorithm 1 at (the end of) iteration $n \in \mathbb{N}$ of the while loop. It is equivalent to the set of 8-neighbors of all events in $\overline{\mathcal{N}}_n$. \mathcal{C}^0 is defined to be the initialized value of \mathcal{C} in Algorithm 1 (i.e. $\mathcal{C}^0 = \{e \mid e \text{ is an 8-neighbor of } e_{EOI} \text{ with the same polarity }\}$).

Definition 1.6. $e^n_{new}=(x^n_{new},y^n_{new},t^n_{new},p^n_{new})$ is the newly selected neighboring event given by Algorithm 1 at (the end of) iteration $n\in\mathbb{N}$ of the while loop.

Theorem 1.2. $\overline{\mathcal{N}}_n$ is optimal with respect to Criterion 1 to 5 (i.e. $\overline{\mathcal{N}}_n \in \{ \widehat{\mathcal{N}}_n \}$)

Proof.

- 1: From the greedy heuristic, it is trivial that $\overline{\mathcal{N}}_n$ satisfies Criterion 1 to 4.
- 2: Without loss of generality, we will make use of Algorithm 1, which provides an efficient implementation of the greedy heuristic, instead to prove that $\overline{\mathcal{N}}_n$ satisfies Criterion 5 too by Mathematical Induction.
- 3: **Base Case:** k = 1
- 4: Due to the constraints of Criterion 1 to 4, $\widehat{\mathcal{N}}_1 \subset \mathcal{C}^0$.
- 5: Along with the constraint of Criterion 5, $\widehat{\mathcal{N}}_1 = \{ e \mid e \in \mathcal{C}^0 \text{ with the largest timestamp } \}$.
- 6: As e^1_{new} is clearly $e \in \mathcal{C}^0$ with the largest timestamp, we can conclude that $\overline{\mathcal{N}}_1 = \{ e^1_{new} \} \in \{ \widehat{\mathcal{N}}_1 \}$.
- 7: Inductive Step: $\forall k \in \mathbb{N}$
- 8: Assume that $\overline{\mathcal{N}}_k \in \{\widehat{\mathcal{N}}_k\}$:
- 9: The above assumption implies $t_{min}(\overline{\mathcal{N}}_k) = t_{min}(\widehat{\mathcal{N}}_k)$.
- 10: We now consider the case of $\overline{\mathcal{N}}_{k+1}$.
- 11: $\underline{\text{Case 1}}: t_{new}^{k+1} \ge t_{min}(\overline{\mathcal{N}}_k)$
- 12: In this particular case, the condition of $t_{min}(\overline{\mathcal{N}}_{k+1}) = t_{min}(\overline{\mathcal{N}}_k)$, which also equals to $t_{min}(\widehat{\mathcal{N}}_k)$ (Line 9), must hold.
- 13: Since $t_{min}(\widehat{\mathcal{N}}_{k+1}) \leq t_{min}(\widehat{\mathcal{N}}_k)$ (Lemma 1.1: Monotonicity Lemma), the best case scenario for $\widehat{\mathcal{N}}_{k+1}$ in terms of Criterion 5 is that $t_{min}(\widehat{\mathcal{N}}_{k+1}) = t_{min}(\widehat{\mathcal{N}}_k)$.

- 14: This implies that $\overline{\mathcal{N}}_{k+1} \in \{\widehat{\mathcal{N}}_{k+1}\}$, as $\overline{\mathcal{N}}_{k+1}$ achieves the best case scenario for $\widehat{\mathcal{N}}_{k+1}$ in terms of Criterion 5.
- 15: <u>Case 2</u>: $t_{new}^{k+1} < t_{min}(\overline{\mathcal{N}}_k)$
- 16: Suppose $\overline{\mathcal{N}}_{k+1} \notin \{\widehat{\mathcal{N}}_{k+1}\}$:
- 17: As $\overline{\mathcal{N}}_{k+1}$ must satisfy Criterion 1 to 4, this implies that Criterion 5 is violated and hence $t_{min}(\overline{\mathcal{N}}_{k+1}) < t_{min}(\widehat{\mathcal{N}}_{k+1})$.
- 18: With $t_{new}^{k+1} < t_{min}(\overline{\mathcal{N}}_k)$ in this particular case, $t_{min}(\overline{\mathcal{N}}_{k+1}) = t_{new}^{k+1}$ must be true.
- 19: This implies that $t_{new}^{k+1} < t_{min}(\widehat{\mathcal{N}}_{k+1})$ and hence $e_{new}^{k+1} \notin \widehat{\mathcal{N}}_{k+1}$.
- 20: A new set of neighboring events \mathcal{N}_{k+1} can be obtained by removing a set of events \mathcal{R}_l of size $l \in \{0,1,\ldots,k\}$ from $\overline{\mathcal{N}}_k$ and adding in another disjoint set of events \mathcal{A}_{l+1} of size l+1 (i.e. $\mathcal{N}_{k+1}=(\overline{\mathcal{N}}_k\setminus\mathcal{R}_l)\cup\mathcal{A}_{l+1}$, where $\mathcal{R}_l\subset\overline{\mathcal{N}}_k$ and $\mathcal{R}_l\cap\mathcal{A}_{l+1}=\varnothing$), in such a way that Criterion 1 to 4 are satisfied.
- 21: By exhaustively searching for all possible \mathcal{N}_{k+1} , $\widehat{\mathcal{N}}_{k+1}$ can then be found.
- 22: As C^k is the set of 8-neighbors of all k events in $\overline{\mathcal{N}}_k$ and \mathcal{N}_{k+1} is of size k+1, at least one of the events in \mathcal{A}_{l+1} must be an event in C^k .
- 23: Because $t_{new}^{k+1} < t_{min}(\widehat{\mathcal{N}}_k)$ (given by the condition of Case 2 and Line 9) and e_{new}^{k+1} has the largest timestamp in \mathcal{C}^k , e_{new}^{k+1} must be in all possible \mathcal{N}_{k+1} that yields $\widehat{\mathcal{N}}_{k+1}$ (Criterion 5).
- 24: With that, it contradicts with the assumption that $e_{new}^{k+1} \notin \widehat{\mathcal{N}}_{k+1}$.
- 25: Therefore, $\overline{\mathcal{N}}_{k+1} \in {\{\widehat{\mathcal{N}}_{k+1}\}}$ is true.
- 26: As proven in both cases, we conclude that $\overline{\mathcal{N}}_{k+1} \in \{\widehat{\mathcal{N}}_{k+1}\}.$
- 27: By Mathematical Induction, the statement is true.

Definition 1.7. $\widehat{\mathcal{C}}^n$ is the subset of events in \mathcal{C}^n with timestamps larger than $t_{min}(\overline{\mathcal{N}}_n)$. Mathematically, $\widehat{\mathcal{C}}^n=\{\ e\mid t>t_{min}(\overline{\mathcal{N}}_n),\ e=(x,y,t,p)\in\mathcal{C}^n\}$.

Corollary 1.2.1. $\overline{\mathcal{N}}_n$ is locally optimal with respect to Criterion 1 to 6. Specifically, $\overline{\mathcal{N}}_n$ is optimal with respect to Criterion 6 (i.e. $\overline{\mathcal{N}}_n \in \{\mathcal{N}_n^*\}$) in the following scenarios:

- $\widehat{C}^n = \emptyset$ (i.e. $t_{min}(C^n) \leq t_{min}(\overline{N}_n) = t_{min}(\widehat{N}_n)$), hence the sum of timestamps cannot be further maximized, while still complying with Criterion 5. This also implies a unique \widehat{N}_n and hence N_n^* , given that no two events have the same timestamp.
- $\widehat{\mathcal{C}}^n \neq \emptyset$ (i.e. $t_{min}(\mathcal{C}^n) > t_{min}(\overline{\mathcal{N}}_n) = t_{min}(\widehat{\mathcal{N}}_n)$), but none of the events in $\overline{\mathcal{N}}_n$ can be removed to accommodate for events in $\widehat{\mathcal{C}}^n$, so that the sum of timestamps is further maximized, while still complying with Criterion 4.

In other words, the two scenarios imply that $\overline{\mathcal{N}}_n$ is optimal with respect to Criterion 6 when \mathcal{N}_n^* is as "spatially compact" as $\overline{\mathcal{N}}_n$, with respect to the EOI.