We have discussed Non-linear Shooting method for solving second order BVP with Dirichlet's boundary condition

$$y''=f(x,y,y')$$
 for $a \le x \le b$
with $y(a)=x$ and $y(b)=\beta$

The solution to the boundary-value problem is approximated by using the solutions to a sequence of initial-value problems involving a parameter S having the form

$$y''=f(x,y,y')$$
 for $a \le x \le b$

This is done by choosing the parameters $S = S_k$ in a manner to ensure that

where $y(x, s_k)$ denotes the solution to the initial-value problem with $s=s_k$, while y(x) denotes the solution to the boundary-value problem

-- is called a "shooting" method by analogy to the procedure of firing objects at a stationary target.

If y(b, s_0) is not sufficiently close to β , the approximation is corrected by choosing s = s_1, s_2, and so on until y(b, s k) is sufficiently close to "hitting" β

$$y(b,s_k) - \beta = 0$$

This is a non-linear equation that is solved by the Newton-Raphson or Secant method

Neumann Boundary Conditions

Now y(a) is approximated and then improved in each iteration

Use the initial conditions

$$y(a) = 5$$
, $y'(a) = x$

S is chosen such that
$$F(s) = y'(b,s) - y(b) = y'(b,s) - \beta = 0$$

$$y(n) - sol^n f BVP$$

 $y(n,s) - sl^n f IVP with $y(a) = s$$

Robin Boundary Condition at x=b

bin Boundary Condition at x=b

$$y(a) + y(a) = x$$

$$y(a) = x$$

$$y'(a) = x$$

y'(a) = x B, y (b) + B2 y (b) = B3 4(a) = 5

Now the objective function whose roots are to be determined is

Example

 $y(x) = (x+1)^2$ **Analytical Solution**

Neumann BC

Objective function
$$F(s) = 32 - y(3, s) - 2y'(3,s)$$

Voing RK4 with step pige 0.2 and secant method with initial guess $S_0 = 0$, $S_1 = 1$ Tolerance 0.5×10^{-6} i.e. $|F(S)| < 0.5 \times 10^{-6}$ is condition for termination

S	y(3,s)	y'(3,s)	F(s)
0	8.303482	5.781270	12.133978
1 .	10.361601	6.445059	8.748282
3.583894	15.254059	7.811455	1.123031
3.964445	15.936660	7.984070	0.0952008
3.999693	15.999486	7.999773	9.677×10^{-4}
4.000054	16.000131	7.999934	8.265×10^{-7}
4.000055	16.000132	7.999934	7.168×10^{-12}

with s = s 6 = 4.0000055y (xi) About (y(24) - y(24)) y (xi, So) y (xi) y (xi, yii) y (xi,) \mathcal{U}_{ν} x_i Error 1.004.0000554.000.0000551.204.8401024.840.0001021.405.760118-5.760.0001186.7601241.606.760.0001241.807.8401257.840.0001252.009.0001259.000.0001252.2010.24012610.240.0001262.4011.56012711.560.0001272.6012.96012812.960.00012814.440130 2.8014.440.0001303.0016.00013216.000.000132

$$y'' = 2y^3 \qquad o \leq \pi \leq 1$$

a)
$$3y(0) - 9y'(0) = 2$$

 $y(1) = \frac{1}{4}$

b)
$$4(0) = \frac{1}{3}$$
, $24(1)+24'(1) = 1$

$$y_{and}(x) = \frac{1}{x+3}$$

If
$$V_{DR}(C) \quad y(0) = \frac{1}{3}, y'(0) = S$$
]

94 use (d)
$$y(0) = S$$
, $y'(0) = -1$ — $\boxed{1}$

9f une (a) (i)
$$y(0) = S \Rightarrow y'(0) = -\frac{2}{9} + (\frac{1}{3}) S$$

(ii) $y'(0) = S \Rightarrow y(0) = \frac{2}{3} + 3 S$

— III)

(c)
$$y(0) = \frac{1}{3}, y(1) = \frac{1}{3}$$

d) $y'(0) = -\frac{1}{3}, y'(1) = \frac{1}{4}$

$$y'(0) = -\frac{1}{9}, y'(1) = \frac{1}{9}$$

$$Plsts \quad y_{\Sigma}(x,s)$$

$$e \quad y_{\overline{\Pi}}(x,s)$$

$$wlt \quad s = -1, -0.5, 0,$$

$$0.5, 1$$

Plst
$$y_{II}(x,s)$$

 $x = -1, -0.5, 0, 0.5, 1$

$$y'' = 2y^{3}$$

 $3y(0) - 9y'(0) = 2$, $y(1) = \frac{1}{y}$
 $8 = 1 - x$
 $\frac{d}{dx} = -\frac{d}{dx}$
 $8 \cdot y'' = 2y^{3}$
 $y'' = 2y^{3}$
 $y'' = 2y^{3}$

Solve unif IVP
$$y'' = 2y^3$$

 $y(0) = \frac{1}{4}$, $y'(0) = 5$

 $y(0) = \frac{1}{4}, 3y(1) - 9y'(1) = 2$