PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-189684

(43)Date of publication of application: 10.07.2001

(51)Int.Cl.

H04B 1/707 G06F 17/12

(21)Application number : 2000-339122

(71)Applicant: MITSUBISHI ELECTRIC INF

TECHNOL CENTER EUROP BV

(22)Date of filing:

07.11.2000

(72)Inventor: JECHOUX BRUNO

(30)Priority

Priority number: 1999 9914033

Priority date: 08.11.1999

Priority country: FR

(54) JOINT DETECTION METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a joint detection method for a receiver in a communication system of a CDMA type.

SOLUTION: In this joint detection method, a signal transmitted by a transmitter and inputted in the form of vector (x) in a communication system is calculated from a series of signals which are received from the transmitter of the communication system and inputted in the form of vector (y), a series of characteristics of the communication system which are inputted in the form of matrix A and a series of expected noise characteristics which are inputted in the form of vector (n). The said calculation step includes a step where an inverse matrix M-1 of matrix M, i.e., a function of the system matrix A is calculated and a step where a series of received signals (y) are multiplied by a matrix that is obtained from the product of the matrix M-1 and a conjugate transposed system matrix A+. In the said calculation step of the matrix M-1, the Cholesky conversion is carried out into a triangular matrix U or L.

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-189684 (P2001 - 189684A)

(43)公開日 平成13年7月10日(2001.7.10)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

H04B 1/707 GO6F 17/12

G06F 17/12

HO4J 13/00

D

審査請求 未請求 請求項の数7 OL (全 7 頁)

(21)出願番号

特願2000-339122(P2000-339122)

(22)出頭日

平成12年11月7日(2000.11.7)

(31)優先権主張番号 9914033

(32)優先日

平成11年11月8日(1999,11.8)

(33)優先権主張国

フランス (FR)

(71)出願人 599036406

ミツピシ・エレクトリック・インフォメイ

ション・テクノロジー・センター・ヨーロ

ッパ・ピー・ヴィ

フランス国、35700 レンヌ、アヴニュ

ー・デ・ピュット・ド・コスケム 80

(72)発明者 ブルーノ・ジョショー

フランス国、35700 レンヌ、アヴニュ

ー・デ・ビュット・ド・コエスム 80

(74)代理人 100057874

弁理士 曾我 道照 (外6名)

(54) 【発明の名称】 ジョイント検出方法

(57) 【要約】

【課題】 本発明は、CDMAタイプの通信システムの 受信機において実行されるべく意図されたジョイント検 出方法に関する。

【解決手段】 前記検出は、通信システムの送信機によ って送信されベクトルxの形態で入力される信号を、前 記通信システムの送信機から受信されベクトルッの形態 で入力される一連の信号と、行列Aの形態で入力される 前記通信システムの一連の特性と、ベクトルnの形態で 入力され予想される一連のノイズ特性とから計算するス テップからなり、前記計算ステップは、システム行列A の関数である行列Mの逆行列M⁻¹を算出するステップ と、一連の受信信号 v を、前記逆行列M-1と前記システ ム行列Aの共役転置システム行列A*との積から得られ た行列に掛けるステップとを含み、前記行列Mの逆行列 M-1を算出するステップは、三角行列U又はLにコレス キイ変換するステップである。

【特許請求の範囲】

【請求項1】 符号分割多元接続通信システムのよう な、通信システムの受信機において実行されるべく意図 されたジョイント検出方法であって、

このジョイント検出方法は、前記通信システムの送信機 によって送信されベクトルxの形態で入力される信号 を、前記通信システムの送信機から受信されベクトルッ の形態で入力される一連の信号と、行列Aの形態で入力 される前記通信システムの一連の特性と、ベクトルnの 形態で入力され予想される一連のノイズ特性とから計算 10 するステップからなり、

前記計算ステップは、システム行列Aの関数である行列 Mの逆行列M⁻¹を算出するステップと、

一連の受信信号yを、前記逆行列M-1と前記システム行 列Aの共役転置システム行列A*との積から得られた行 列に掛けるステップとを含み、

前記行列Mの逆行列MTIを算出するステップは、三角行 列U又はLにコレスキイ変換するステップであるジョイ ント検出方法において、

のブロックの行に存在する一連のブロックを計算し、関 値と比較され前記三角行列の計算処理の展開を特徴付け る所定の基準によって得られた値に基いて、次の反復を パスするか、1ブロックだけ右にシフトさせて他のすべ ての残りの行に対して現在の行を重複し、また適用可能 ならば過剰ブロックを切り取ることを特徴とするジョイ ント検出方法。

【請求項2】 前記閾値は、前記計算の期間において利 用可能な計算手段に依存して動的に求められることを特 徴とする請求項1記載の方法。

【請求項3】 前記基準は、その値が、現在の行の一連 のブロックの要素の少なくとも…つと、前回の反復で計 算された行の一連のブロックの対応する要素または複数 の要素とによってそれぞれ得られる値に依存しているこ とを特徴とする請求項1又は2記載の方法。

【請求項4】 前記基準は、その値が、絶対値が最大で ある現在の行の 連のブロックの要素と、前の行の 連 のブロックの対応する要素とによってそれぞれ得られた 値の間の差の絶対値に等しいことを特徴とする請求項3 記載の方法。

【請求項5】 前記基準は、その値が、現在の行の一連 のブロックの全要素と、前の行の一連のブロックの対応 する要素とによってそれぞれ得られた値の間の差の絶対 値の最大値に等しいことを特徴とする請求項3記載の方 法。

【請求項6】 前記基準の値が反復回数であり、閾値が 反復の最大回数に対応していることを特徴とする請求項 1から請求項5までのいずれか一つに記載の方法。

【請求項7】 符号分割多元接続の通信システムのよう な、通信システムの受信機であって、

前記通信システムの送信機によって送信された信号を受 信、検出して再生するするように設計されている受信機

前記信号を検出するために、請求項1から請求項6まで のいずれか一つに基づく検出方法を実行するように設計 されていることを特徴とする通信システムの受信機。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、CDMA(Cod e Division Multiple Access:符号分割多元接続) タイプの通信システムの受信機において実行されるべく 意図されたジョイント検出方法に関するものである。 [0002]

【従来の技術】開発過程にある多数の通信システムがC DMA技術を実行している。これらの技術は、周波数資 源のコード共有方式を使用している。すなわち、この方 式では多数のユーザが同時に同じ周波数を使用し、ま た、ユーザが使用するコードを別々に分散させることに よって区別されている。ユーザは一般的に、信号を自分 前記三角行列を反復方法で求め、各反復が前記三角行列 20 の分散コードと比較することによって全受信信号中から 自分に送信された信号を区別している。

> 【0003】しかし、受信信号の質がMAI(Multipl e Access Interference:多元接続インターフェアレ ンス)と呼ばれる他のユーザから発せられる残留インタ ーフェアレンスによって低下する。ジョイント検出を含 む種々の技術、より詳しくは同期化分散コードの場合で 使用される技術が、他のユーザから発せられるこの残留 インターフェアレンスを減じるために他のユーザの分散 コードの知識を使用することに向けられている。

【0004】図1は、ジョイント検出方法を使用するC DMAタイプの通信システムのアップリンクのモデルを 示す。このシステムは、各々10k(k=1からK)の送信 機を備えたKのユーザを受信するように設計されてい る。各送信機10kは、N個のデータ・シンボルのバー スト中のユーザ k のデータ d k を送信するように設計さ れており、これでこれらのデータはdk={x1x,..., x Nk) で示され、ここで、x Nk はユーザ k によって送信 されたnth (n番目) のシンボルを表している。各送信 機10kにおいて、ユーザkのデータd*はチャネル20 40 kに送信される前に、考慮中のユーザkに割り当てられ た長さQビットの分散コードckに従属している。各チ ャネル2 Okは、hkで示された時間と、Bc=I/Tcで示さ れた周波数帯域に渡って変化するパルス応答によって特 徴付けられる。こうしてデータはチャネル2 Oxで送信 される。各チャネル20kのパルス応答 h k を評価するた めに、Toに等しい時間によって互いに隔置されたL個 のサンプルが考慮される。

【0005】クレイン他は、受信機によって受信された 信号yがディメンジョン (NxQ+L-1) のベクトル 50 yによって表すことができ、このディメンジョンの要素

30

がKのユーザの各々によって送信された信号を表し、こ れもディメンジョン (NxQ+L-1) のベクトルnに よって表わされたガウス・ノイズに付加することが可能 である。従って、次のように掛くことができる。 y = A x + n

ここに、 $x=[x^1, x^2, ..., x^K, ..., x^M, x^M, ...]$

x ^KH] は、分散前の送信信号であり、 y = [y i , . . . , XN.0,..., yN.0+L-1は、受信機によって受信された信 号であり、n=[n1,..., nN.0,..., nN.0+L-1は、付加 白色ガウス・ノイズであり、およびAは、ディメンジョ 10 る。 ン (N. Q+L-1) × (K. N) の行列である。

【0006】Aijで示される行列Aの各要素は、オーダ ーkの各チャネルのパルス応答性の評価に基づいて決定 される。 h k=[hk1, hk2, ... , hkl]、k=1,..., Kとし、 また、オーダーkの各分散コードに基づいて、c*= [c^K1, c^k2, ..., c^k0]、k=1,...,Kとする。次のこと、 $i=Q. \quad (n-1)+w$ が書ければ

j = k + K (n-1) $\sigma \delta_{n}$

Aijが次のフォームで書くことができる方法でモデル化 できる。 $A_{i,j}=b^k$ w、ここでk=1...K, n=1...N、 およびw=1...Q+L-1であり、Ai.j=0でなければ、 CCC, $b^k = c^k * h^k = [b^k], b^k_2, ...,$ $b^{k}a+l-1$], cck=1...K c b b

【0008】各ユーザkによって送信されたデータを評 価するために、1994年IEEEによって出版された「符 号分割多元接続モービル・ラジオ・システムによるマル チ・ユーザ検出のためのイコライザ」と称する記事でA. Klein, G.K.KalehおよびP.W.Baierによって閉示された ようなジョイント検出が、受信機30内で実行できる。 【0009】これら公知のジョイント検出方法は、検出 信号y、システム行列Aおよびノイズベクトルnを既知 として、本質的にシンボルxのベクトルを決定すること によって上述の付与された行列式を解くことからなる。

【0010】ベクトルy、行列Aおよびベクトルnの既 知内容は、当該技術に習熟した人において知られている 評価方法によってさらに実行されていることに注意しな ければならない。従って、この説明についてはさらなる 詳細説明は省略する。

【0011】さらに、時間にともなって変化する各チャ ネル20xのパルス応答を特に考慮して、行列Aの要素 がそのつど、値を変化させることにも注意しなければな らない。

【0012】上述の方法によるシンボルベクトルxの決 定は、一般的に次の二つの基準 (criteria) の内の一つ を使用し、一方においてゼロ・フォーシング(ZF:ze ro forcing) であり、他方において「最小二乘平均誤 差」(MMSE: Minimum MeanSquare Error)である。 これらの二つの基準はそれぞれ次の解法につながる。ゼ 50 スキイ変換方法を使用するが、計算量は従来技術の方法

ロ・フォーシング基準に対して、

 $x = (A^*A)^{-1}A^*y$

また、最小二乗平均誤差MMSE基準に対して、

 $x = (A^+ A + \sigma^2 I)^{-1} A^+ y$

(1は単位行列、σ2はノイズベクトルnの要素の変数

【0013】説明の残りの部分において、指数+はその 共役転置に関係する行列平均に適用される。

【0014】これらの式は次のように書くこともでき

 $x = M^{-1} A^{+} y$

【0015】気がつくであろうが、従って、この式の解 法は、Mで表される行列の逆行列を必要とし、このMは 共役転置システム行列A*とシステム行列Aとの積A*・ Aに等しいか、または共役転置システム行列A*とノイ ズの変数 σ^2 で乗算された単位行列 I の加算されたシス テム行列Aとの積A*・A+σ21に等しいかのいずれか

【0016】行列Mがエルミート (Hermitian) 行列で 【0007】CDMAタイプの通信システムは、各要素 20 あり、限定され、かつ正の行列であるとき(上述したC DMAシステムのモデリングの場合常にそうである が)、行列Mは、コレスキイ・アルゴリズム (Cholesky algorithm) として参照されるアルゴリズムによって、 行列Mが共役転置行列U*と上三角行列Uとの積に等し いような、上三角行列U(または選択された表記法に基 づく下三角行列し、に変換できる。

 $M=U^{+}\cdot U$

あるいは、下三角行列 L と共役転置行列 L・との積にな るような場合もありうる。

30 $M = L \cdot L^+$

【0017】しかし、行列Mの逆行列は、次の場合大き く簡略化される。すなわち、逆行列M-1が逆行列U-1と この逆行列の共役転置 (U-1) +との積に等しい場合

 $M^{-1} = U^{-1} (U^{-1}) +$

あるいは共役転置行列(L-1) *と逆行列L-1との積に 等しい場合である。

 $M^{-1} = (L^{-1}) \cdot L^{-1}$

【0018】Uの逆行列演算に必要な少数の演算を考慮 40 したとき、コレスキイ変換を介するMの逆行列演算に は、直接計算によるMの逆行列演算よりもより多くの少 数演算を必要とする。

【0019】このコレスキイ変換方法は、従来の直接の 逆行列演算技術と比較して、約2 (T3/6の複雑性、T は行列のディメンジョン)のファクタだけこの計算の複 雑性を減じることができる。しかし、計算量はなおも極 めて多く残ったままである。

[0020]

【発明が解決しようとする課題】本発明の目的は、コレ

と比較して減少したジョイント検出方法を提供する。 [0021]

【課題を解決するための手段】この目的のために、本発 明に基づくジョイント検出方法は、前記通信システムの 送信機によって送信されベクトルxの形態で入力される 信号を、前記通信システムの送信機から受信されベクト ルyの形態で入力される一連の信号と、行列Aの形態で 入力される前記通信システムの一連の特性と、ベクトル nの形態で入力され予想される一連のノイズ特性とから テム行列Aの関数である行列Mの逆行列Mでを算出する ステップと、一連の受信信号yを、前記逆行列MTIと前 記システム行列Aの共役転置システム行列A+との程か ら得られた行列に掛けるステップとを含み、前記行列M の逆行列M-1を算出するステップは、三角行列U又はL にコレスキイ変換するステップである。

【0022】この方法が、前記三角行列を反復方法で求 め、各反復が前記三角行列のブロックの行に存在する一 連のプロックを計算し、閾値と比較され前記三角行列の た値に基いて、次の反復をパスするか、1プロックだけ 右にシフトさせて他のすべての残りの行に対して現在の 行を重複し、また適用可能ならば過剰ブロックを切り取 ることを特徴とする。

【0023】本発明の他の特徴によれば、前記閾値が、 前記計算の期間において利用可能な計算手段に依存して 動的に決定される。

【0024】本発明の他の特徴によれば、前記基準は、 その値が、現在の行の一連のプロックの要素の少なくと も一つと、前回の反復で計算された行の一連のプロック 30 $U_{i,p}$]、 $_i > N-P+1$ のとき、 $E_i = [U_{i,p}, \dots U_{i,p}]$ の対応する要素または複数の要素とによってそれぞれ得 られる値に依存している。

【0025】木発明の他の特徴によれば、前記基準は、 その値が、絶対値が最大である現在の行の一連のブロッ クの要素と、前の行の一連のブロックの対応する要素と によってそれぞれ得られた値の間の差の絶対値に等し

【0026】本発明の他の特徴によれば、前記基準は、 その値が、現在の行の一連のブロックの全要素と、前の 行の一連のブロックの対応する要素とによってそれぞれ 40 りの部分において、セットE;のブロックU;,,の要素 a 得られた値の間の差の絶対値の最大値に等しい。

【0027】本発明の他の特徴によれば、前記基準の値 が反復回数であり、閾値が反復の最大回数に対応してい

【0028】本発明は、上述した検出方法を実行するよ うに設計された受信機に関する。

【0029】本発明の上述した特徴だけでなく他の特徴 は、添付図面に関連する実施の形態の次なる説明を読む ことによってより明らかとなろう。

[0030]

【発明の実施の形態】実施の形態1. 本発明は、CDM A通信システムの特性を表す行列M (2Fの場合、M= A^+A 、あるいはMMSEの場合、 $M=A^+A+\sigma^2$ Iの 状態でなければならない)が、ディメンジョン [K× K] のブロック内のテプリッツ(Toeplitz)タイプである という事実に基づいている。

【0031】これは、行列Mの要素がディメンジョンK ×Kのブロックに互いにグループ化されれば、行列Mの 最初のブロックまたは最後のブロックから始まる対角線 計算するステップからなり、前記計算ステップは、シス 10 と平行な一つの、また、同じ行に属するブロックが互い に等しいからである。同様のことが、前記対角線に属す るブロックにも適用される。

> 【0032】図2に関連して、行列M(U=C(M)= $C(A^{\dagger}A)$ か、または $C(A^{\dagger}A + \sigma^{2}I)$ のいずれ か) のコレスキイ変換から得られる行列Uが考慮される ことになる。

【0033】図2で気がつくであろうが、行列ひは上三 角行列である。従って、対角線の左側にあるプロックの 行の各部はディメンジョン [K, K] のゼロ乗行列に等 計算処理の展開を特徴付ける所定の基準によって得られ 20 しいブロックから構成される。対角線の右側にある指数 iのブロックの行の各部は、この対角線を含めて言え ば、これはディメンジョン [K, K] の少なくとも一つ のブロックUi.p(pはブロックの列の指数である) と、続いて示されるEiの一連のブロックを形成するデ ィメンジョン [K, K] の近接するブロック i のほとん どのP+1とからなる。 (P+1) thを越えて位置する ブロックは、もしそれが存在するとすれば、ゼロ行列で ある。従って、図2で示すことができる。すなわち、i ≦N-P+1のとき、E;= [U;, o U;, i ...

i, N-i]、さらに、EN=UN.oである。

【0034】Pは(1+(L-1)/Q)の指数部分で あることを示すことになる。

【0035】さらに、一連のブロックEiの第1行の要 素は、行列Uのi・Kth行のi・Kth要素であると考え ることもできることに注意しなければならない。

【0036】プロックUi.pのブロック列指数pが行列 Uの対角線につきゼロである表記をここで使用できるよ うにすることに注意しなければならない。この説明の残 n.m(nth行、mth列) は、セットEi-1のブロックU i-1.pの要素 an.m (同じ行と列指数) に対応すると言う ことになる。

【0037】ブロックは全て互いに異なっている。しか し、J·Rissanenは「コンピュータ操作の数学」、19 73年1月, vol 27, n-121、147-157ページに 発表された記事で、そのディメンジョンが無限に向かう 傾向にある行列であって、エルミートが規定され、ポジ ティブであり、またブロック中でテプレッツ・タイプで 50 あり、コレスキイ変換から帰着する行列として、ブロッ

クのセットEが特定する特徴を有する行列Uを有してい るゼロでないブロックの有限数からなる。

【0038】図2の符号を使用することにより、これら の特徴の一つは、ブロック行指数iが大きくなればなる ほど、指数Nが無限に向かう傾向にあるとき、ブロック が非対称的に等価に向かう傾向になるまで、ブロックU i.p (pは0とPの間) とブロックUi-1.p間の差がます ます小さくなることである。

【0039】本発明は本質的にこの特性に基づいてい る。本発明はまた図1に示した非常に大きい(例えば、 Nが61と976の間、またKが1から16の間に等し いUMTS-TDDの場合) ネットワークのような通信 ネットワークの場合において処理されるべき行列のため にも適用可能である。

【0040】従って、本発明は反復方向で行列Uの計算 を処理する。各反復において、一連のブロックEiがコ レスキイ方法を適用することによって計算され、その通 常の位置で行列Uに掛き込まれる。

【0041】従って、行列Uを計算するための処理の評 価を特徴付ける所定の基準によって得られた値に基づい 20 て、次の反復を開始するか、または1ブロックだけ右 に、指数iの行からj=i+1を伴う指数jの他の行に Nまで、シフトさせて二度 (重複して) 行うかを決定す る。より詳しく説明すると、この基準によって得られた 値は、閾値よりも小さければ、1ブロックだけ右ヘシフ トレて二度実行するか、さもなければ次の反復を実行す るかが考慮される。

【0042】理解できるであろうが、二度実行し1ブロ ックだけ右にシフトするときに、書き込まれるべきプロ 少ない場合、二度実行されるべきセットを切り取る必要

【0043】閾値は処理時間で利用可能な資源(計算手 段)に依存して動的に変化することに注意しなければな らない。

【0044】実施の形態1によれば、行列Uを計算する 処理の展開を特徴付けるために、この基準値は、ブロッ クの現在の行のセットEiの要素 an. mと、ブロックの前 の行のセットEi-Iの対応する要素、つまり複数の要素 an.mの少なくとも つによって得られた値に依存して いる。

【0045】例えば、この基準値は、一方においてその 全ての要素中の最大絶対値を有するために選択されたブ ロックの現在の行のセットEiの要素an.mと、他方にお いてブロックの前の行のセットEi-iの対応する要素 a n.mによって、それぞれ得られた値における差の絶対値

【0046】現在の行のセットEiの要素 an. mと、前の 行のセットEi-Iの対応する要素 an. mによって、それぞ れ得られた値同士の差の絶対値の最大値を、基準値とし 50 に排他的なものではなく、いっしょに実行することがで

て得ることもできる。

【0047】これらの二つの場合において、閾値は許容 可能なエラー・レベルに対応する。この値を選択するこ とで、(この値に対応するレベルに)たぶん下がるが、 計算の複雑性がより低くなっているジョイント検出を得 ることを可能にする。

【0048】図3は、この実施の形態1に基づく本発明 の方法を展開したフローチャートである。

【0049】ステップ1は、開始ステップであって、こ 10 のステップ中に処理の種々の変数が決定される。これは 閾値 Sminの値と、ここで1に初期化される考慮下での 反復の回数を表す変数 i の値とが顕著な場合である。 【0050】ステップ2において、一連のプロックEi

の全ての要素の値が計算される。対応する行は、ステッ プ3で考慮された場所において行列U内に記憶される。 【0051】ステップ4において、一連のブロックE 1-1の要素の出力があり、反復処理に与えられるべき連 続性を決定するのに使用される。

【0052】ステップ5において、反復の回数iが増加 される。

【0053】ステップ6において、基準値Sが上述した 説明に基づいて計算される。

【0054】ステップ7において、この基準値Sが、ス テップ1で考慮して決定された閾値 Sminと比較され

(あるいは利用可能な資源 (計算手段) 条件に依存する のでたぶん再計算される)、また、行列Uを計算する過 程の継続に関する決定が実行される。ステップ2が次の 行を計算するために再度実行されるか、あるいは重複演 算と右側へシフトするためのステップ8が実行される。 ックの数が、前のブロックの行内のブロックの数よりも 30 この演算をするために、ループが設けられ、行列Uの最 終行が計算されたときに、ステップ9において中断され ることに注意しなければならない。

> 【0055】本発明の方法の結果は図2で示すことがで き、jth (j番目)の行から、二度実行された行に等し い行が1プロックだけ右にそのつどシフトされて、考慮 中の行の半分(ハーフライン)がPブロックより少ない ときに、必要があれば切り取られる。

【0056】実施の形態2.実施の形態2によれば、こ の基準値は実行された反復回数である。従って、閾値は 40 実行されるジョイント検出処理に割り当てられた最大計 第容量なしに許容可能な反復の最大回数に対応する。

【0057】図4は、本実施の形態2に対応するフロー チャートを示し、同じステップは同じ参照符号を付し、 またステップ4及び6は消滅している。新しいステップ 7' が反復の現回数 i と、ステップ 1 において決定され た反復の許容可能回数 i max との間の比較を実行する か、または利用可能な資源(計算手段)条件に基づいて 実行する。

【0058】実施の形態1及び実施の形態2は、お互い

きることに注意しなければならない。

【0059】これまでに採り上げらた説明は、上三角行 列Uとなるコレスキイ変換を考慮して得られ、また、本 発明は下三角行列しにつながるコレスキイ変換に同等に 適用されることに注意しなければならない。従って、こ の方法はここに説明したものと同じステップを有するこ とになる。

【図面の簡単な説明】

【図1】 本発明によるジョイント検出方法を実行する ように設計されたCDMAシステムのブロック図であ

る。

【図2】 本発明の方法を実行するコレスキイ変換から 得られた行列の図である。

【図3】 本発明の実施の形態1による方法によって実 行された種々のステップを示す図である。

【図4】 本発明の実施の形態2による方法によって実 行された種々のステップを示す図である。

【符号の説明】

10 送信機、20 チャネル、30受信機。

[図1]

