

NAND: the basis of modern computers	Division with potences is a rightshift!!	$1111'1111_b \cdot 1111'1111_b = 1111'1110'0000'0001_b \neq 1$
it is easy to create with transistors. It only results in False if both inputs are true, hence the name Not-AND.	$\frac{1.0111}{2^3}$ = remove 3 bits from 1.0111 -> 101	\Rightarrow signed Multiplikation \neq unsigned Multiplikation
mathematical notation: $\overrightarrow{NAND} = x y = \overline{x \wedge v}$ all base operations can be made with NAND	Left & Rightshift java logical right: $a > > x -> 101 >>> 1 -> 010$	check if both operands are negative, if so invert them to positive. do unsigned multiplication if only one operand was negative, take the negative result.
$\overline{x} = \overline{x \wedge x} = x \mid x$	logical left: a < < < x -> 101 < < 2 -> 1 '0100 arithmic right: a » x -> 101 » 1 -> 110	$\Rightarrow N_n(a) \cdot N_n(b) = a \cdot b \text{ und } N_n(a) \cdot b = N_{2n}(a \cdot b) = a \cdot N_n(b) \text{ (mit } a, b \ge 0)$
$x \wedge y = \overline{x \mid y} = (x \mid y) \mid (x \mid y)$	arithmic left: a \times x -> 101 \times 2 -> 1'0111 the \times and \times add the MSB value instead of 0	Note that we don't need to care about signed, if
$x \lor y = \overline{x} \land \overline{y} = (x \mid x) \mid (y \mid y)$	The reason for this is unsigned and signed!! Reading a bit	we do not overwrite the MSB! Division
NOR NOR is only true when neither of the inputs are true.	$b \wedge m = b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0 \wedge m_7 m_6 m_5 m_4 m_3 m_2 m_1 m_0$ $= b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0 \wedge 0100'0000$	should be avoided, slow operation compared to others 32 bit -> 20 times as long as multiplication 64 bit -> 80 times as long as multiplication
aka NOR = 1 if x==0 && y==0 $\frac{x \vee v}{v}$ Luct like with NAND, all functions	= 0b ₆ 00'0000	– can be replaced with right shift for potences see $/10$ for decimal numbers.
Just like with NAND, all functions can be made with NOR XOR: exclusive or	Setting a bit	signed and unsigned division are completely different $ullet$ Unsigned: Iteratives Verfahren für $i=n-1$ bis $i=0$:
The XOR is true if only one input is true.	$b \lor m = b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0 \lor m_7 m_6 m_5 m_4 m_3 m_2 m_1 m_0$ = $b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0 \lor 0100'0000$	 Man überprüft ob b· 2ⁱ in die n – i obersten Bits von a «passt» Wenn ja, dann setzt man im Ergebnis Bit i und zieht b· 2ⁱ von a ab
$x \oplus y$ Addition of bits.	= b ₇ 1b ₅ b ₄ b ₃ b ₂ b ₁ b ₀ Java b v 0b0100_0000	Inversion
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Deleting a bit	$N(b+1) > 2^n - 1 - b > 2^n == 0$
$\left \begin{array}{c cccc} 0 & 0 & 00 & 0 & 0 \\ 0 & 1 & 01 & 0 & 1 \end{array} \right $	$b \wedge m' = b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0 \wedge m'_7 m'_6 m'_6 m'_4 m'_3 m'_2 m'_1 m'_0$ $= b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0 \wedge 1011'1111$	$0-1=-1>11111>-1-b=\overline{b}$ Okay, the idea is that -1 is the number with all bits set to 1
1 0 01 0 1	$= b_7 0 b_5 b_4 b_3 b_2 b_1 b_0$ Java b & 0b1011_1111	This means that no matter what you do, you can't have overflow. In fact this means that b can be inverted by subtracting it to -1.
$ \begin{vmatrix} 1 & 1 & 1 & 0 \\ AND \text{ signifies the overflow of bits. } 1 & 0 < -1 & 1 $	Combine these with right and left shift! read: b & (1 « n) »> n 000(b AND 11111)	this is -1 !!
XOR signifies the addition of bits. 0 OR 1 Literal: variable or negation of variable: $x_1, \overline{x_2}$	set: (b (1 « n)) b OR 11111 delete: b & (1 « n) b AND not 11111	-1 11111
Conjunction-term: conjunction of literals $x_1, x_2 = x_1 \wedge x_2$	given a binary number c and a bit amount p. shift c	
Disjunction-term: disjunction of literals $x_1 \lor x_2$	by p. 1. create mask, 2. read n bits from c into bb	b -01110
Minterm: conjunction with ALL parameters of a function Maxterm: disjunction with ALL parameters of a function	3. SHITE H DIES FION C to CC IN Older to Cleate Toom	b 10001
Disjunctive Normalform DNF		<u> </u>
a disjunction of conjunctions. $x_1x_2 \lor \overline{x_1x_2}$ Functions are often displayed as DNF, since this format requires only 3 symbols: $\lor \land \neg$	cc = (c m) << n; // r = bb cc; //	Unsigned in java
The canonical DNF C-DNF: a DNF with all parameters the canonical DNF is often used to display the true false table.	Addition and Subtraction	You can't declare unsigned integer etc, instead you just use the unsigned functions.
The C-DNF is then often simplified to get the end result $x y \mid x \oplus y = \overline{x}y \lor x\overline{y} \mid x \mid y = \overline{x}\overline{y} \lor \overline{x}y \lor x\overline{y}$	Addition: Subtraction: (Zweierkomplement)	compareUnsigned, divideUnsigned, remainderUnsigned for Integer, Short, Byte, Long
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	Java comparators
$\left egin{array}{c cccc} 0 & 1 & 1 & \overline{x}y & 1 & \overline{x}y \ 1 & 0 & 1 & x\overline{y} & 1 & x\overline{y} \end{array} \right $	(1) 0 0 0 0 0 1 1	==, !=, <, >, <=, >= • a != b \(\to ! (a == b) \)
	if the subtraction would (1) 0 0 0 0	$ \bullet a >= b \leftrightarrow !(a < b) $ $ \bullet a <= b \leftrightarrow (a < b) \mid (a == b) $
$\overline{x}\overline{y} \vee \overline{x}y \vee x\overline{y} = \overline{x}(\overline{y} \vee y) \vee x\overline{y} = \overline{x} \vee x\overline{y} = \overline{x} \vee \overline{y}$	result in 0, then we $ (0)_1 0_1 0_1 0_1 1$ add another 1 to	• a > b \leftrightarrow !(a <= b) \leftrightarrow !((a < b) (a == b)) we only need == <
$x \oplus y = \overline{x}y \lor x\overline{y}$ note that DNF has nothing to do with the ferrari engine.	the number above!! (0) 1 1 1 1	Beause processors are super fast in addition an subtraction,
logical function only return 1 or 0. In order to return an entire number, we would have to map this function.	Signed & Unsigned Unsigned: only positive integers!	we can simplify equality checks by using these 2 operations. - example unsigned, check if a < b:
 luckily there are several predefined mapped functions nor(x) invert all bits in x and(x,y) check the individual bits of x,y with and 	Signed: MSB 0 = positive integers: Signed: MSB 0 = positive, MSB 1 = negative the rest is a regular binary number.	==, !=, <, >, <=, >= • a != b \leftarrow !(a == b)
- or(x,y) check the individual bits of x,y with or - nor(x,y) check the individual bits of x,y with nor	the rest is a regular binary number. note: This is something you simply need to know. It isn't included in some encoding!!	$ \bullet a >= b \leftrightarrow !(a < b) $ $ \bullet a <= b \leftrightarrow (a < b) \mid (a == b) $
Bitwise operations in java NOT: $z = -q z_i \leftarrow \overline{q}_i $		• a > b \leftrightarrow !(a <= b) \leftrightarrow !((a < b) (a == b)) we only need == <
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0) 1 1 1 1 (0) 1 0 0 1	c is the carry bit, and it is only set to 1 if a < b!! - example signed:
XOR: $z = q - p$ $z_i \leftarrow q_i \oplus p_i$ and && are evaluations	$N(1) = 2^n - 1 = \underbrace{1 \cdots 1}_{n}$ $N(2^{n-1} - 1) = 2^n - (2^{n-1} - 1)$ $= 2 \cdot 2^{n-1} - 2^{n-1} + 1$	case 1, overflow(wrong prefix)
note that with and &&, if the first evaluation is enough to determine the result, the second one won't be executed.	this is because of the $= 2^{n-1} + 1$	(+a) - (-b) = (-d) 0111 - 1000 = (1)1111 7 - (-8) = -1
a=False, b=True -> a && b -> a is false, therefore result false. Variable sizes in java	overflow. see above!! $= 1001$ 0 = 0000> 10000	(-a) - (+b) = (+d) 1000 – 0111 = 0001 (-8) – 7 = 1 S = MSB of variable.
	signed unsigned	$o = \bar{s}_a s_b s_d \vee s_a \bar{s}_b \bar{s}_d$
byte = 8 bit long 64 bit	4 Bit -8 7 0 15 8 Bit -128 127 0 255	The o stands for overflow, however it only checks
Please note that these should only be used when, you either save significant memory, or the integer isn't big enough.	16 Bit -32K 32K - 1 0 64K-1 32 Bit -2G 2G - 1 0 4G - 1	for an overflow of the prefix. Aka it checks wether or not the prefix makes sense.
multiplying a binary number you have to multiply every single bit and add the corresponding 0s	note the difference in positive and negative	when we subtract something negative then we
2 ² . 101011	in the signed category! size constraints! 0000′0000 _b ··· 0111′1111 _b 1000′0000 _b ··· 1111′1111 _b	expect a positive outcome, which we DIDN'T get above!!
1	unsigned 0 127 128 255 signed 0 127 -128 -1	case 2 correct prefix
2 ² 101011 L 1 100 · 101011	Note -1 is 1111'1111. Negative numbers are	1. result is positive -> Sd = 0 -> a>b
	calculated: 0 - number This means an overflow on unsigned ints will lead	2. result is negative -> Sd = 1 -> a <b< td=""></b<>
000000	to it being 0 again. On signed ints, it will drop to negative maximum. Special cases in signed:	$a < b \rightarrow o \oplus s_d = 1$
000000 10101100	Special cases in signed: 2^{n-1} max -> always negative as MSB = 1 Max : 100000000	the check for all 0 or 1 is also fast -> AND In java we only work with the signed interpretation by default
Multiplication of binary number	$0 - $ can't be negative as this bit is used for 2^{n-1}	use the before mentioned special functions for unsigned!
$b = 2^{n-1} \cdot b_{n-1} + \dots + 2^0 \cdot b_0$	Note that when increasing memory for signed values, you need to use the soperators to copy the MSB.	
Multiplication with potences> also binary! $c = 2^m \cdot (2^{n-1} \cdot b_{n-1} + \dots + 2^0 \cdot b_0)$	increasing memory for -1 -> 4 bit to 8 bit 0000'1111 = 15!! WRONG!! -> 1111'1111 = -1!!	
$= 2^{m} \cdot 2^{n-1} \cdot b_{n-1} + \dots + 2^{m} \cdot 2^{0} \cdot b_{0}$ = $2^{m+n-1} \cdot b_{n-1} + \dots + 2^{m} \cdot b_{0}$	For signed left shift, check if you have spare memory left shift without checking might result in loss of MSB!	
$= 2^{m+n-1} \cdot c_{m+n-1} + \dots + 2^m \cdot c_m + 2^{m-1} \cdot 0 + 2^0 \cdot 0$	4 bit max: $1001 < < < 2 = 0100 \text{ !! prefix changed !!}$ multiplication: series of left shifts.	
$c_{m+n-1} = b_{n-1}, \dots, c_m = b_0, c_{m-1} = \dots = c_0 = 0$ Multiplication with potences is just a leftshift!!	1101 * 110 = 11'0100 + 1'1010 = 100'1110 10 -> add 1 zero, 100 -> add 2 zero, get the sum of both	
$2^4 * 101 = \text{add } 4 \text{ 0s to } 101 -> 101'0000$	Size increase: max double -> x^2 110 * 110 -> 1100 + 1'1000 = 11'1000 (3 to 6 bits)	