







# 并行与分布式计算 Parallel & Distributed Computing

陈鹏飞 数据科学与计算机学院 2018-05-30 chenpf7@mail.sysu.edu.cn



#### Lecture 12 — Characterization of Distributed Systems

Pengfei Chen

**School of Data and Computer Science** 

May 30, 2018

chenpf7@mail.sysu.edu.cn

#### Text books







Resources: http://www.cdk5.net/wp/



- > What is a Distributed System
- > Examples of Distributed Systems
- > Common Characteristics
- Basic Design Issues
- > Summary



#### Distributed System Types

Enslow's model



# What is a Distributed System?

<u>Definition</u>: A *distributed system* is one in which components located at **networked computers** communicate and coordinate their actions only by **passing messages**. This definition leads to the following characteristics of distributed systems:

- concurrency of components
- ◆ lack of a global clock
- independent failures of components

### Centralized System Characteristics

- One component with non-autonomous parts
- Component shared by users all the time
- > All resources accessible
- Software runs in a single process
- Single point of control
- Single point of failure

### Distributed System Characteristics

- Multiple autonomous components
- Components are not shared by all users
- Resources may not be accessible
- Software runs in concurrent processes on different processors
- Multiple points of control
- Multiple points of failure

### Examples of Distributed Systems

- Local Area Network and Intranet
- Database Management System
- Automatic Teller Machine Network
- ➤ Internet/World-Wide Web
- Mobile and Ubiquitous Computing

#### Local Area Network



# Database Management System (DBMS)



#### Automatic Teller Machine Network



#### Internet





#### Internet



#### Web Servers and Web Browsers



The performance and security problems of DNS server?

# Mobile and Ubiquitous Computing (普适计算)



**Edge Computing?** 

#### **Common Characteristics**

- What are we trying to achieve when we construct a distributed system? Certain common characteristics can be used to assess distributed systems
  - □ Heterogeneity (异构性)
  - Openness
  - Security
  - Scalability
  - □ Failure Handling
  - □ Concurrency (多用户)
  - Transparency

### Heterogeneity

- Variety and differences in
  - Networks
  - Computer hardware
  - Operating systems
  - □ Programming languages
  - Implementations by different developers
- Middleware as software layers to provide a programming abstraction as well as masking the heterogeneity of the underlying networks, hardware, OS, and programming languages (e.g., Web service).
- ➤ Mobile Code to refer to code that can be sent from one computer to another and run at the destination (e.g., Java applets, Java *virtual machine, Apps*) (可移植性).

### **Openness**

- Openness is concerned with extensions and improvements of distributed systems.
- Detailed interfaces of components need to be published.
- > New components have to be integrated with existing components.
- Differences in data representation of interface types on different processors (of different vendors) have to be resolved.

# Security

- ➤ In a distributed system, clients send requests to access data managed by servers, resources in the networks:
  - Doctors requesting records from hospitals
  - Users purchase products through electronic commerce
- Security is required for
  - □ Concealing (隐藏) the contents of messages: security and privacy
  - ☐ Identifying a remote user or other agent correctly: authentication
- ➤ New challenges:
  - Denial of service attack
  - Security of mobile code or apps

# Scalability

- Adaptation of distributed systems to
  - accommodate more users
  - □ respond faster (this is the hard one)
- Usually done by adding more and/or faster processors.
- > Components should not need to be changed when scale of a system increases. (解耦)
- Design components to be scalable!

Scale out / in?

### Concurrency

- Components in distributed systems are executed in concurrent processes.
- Components access and update shared resources (e.g. variables, databases, device drivers).
- Integrity of the system may be violated if concurrent updates are not coordinated.
  - Lost updates
  - Inconsistent analysis

#### Transparency

- Distributed systems should be perceived by users and application programmers as a whole rather than as a collection of cooperating components.
- ➤ Transparency has different aspects. (自主)
- > These represent various properties that distributed systems should have.

### Access Transparency

- Enables local and remote information objects to be accessed using identical operations.
- Example: File system operations
- Example: Navigation in the Web
- Example: Database queries.

### Location Transparency

- Enables information objects to be accessed without knowledge of their location.
- Example: File system operations
- > Example: Pages in the Web
- Example: Tables in distributed databases (How about NoSQL DB?)

# Concurrency Transparency

➤ Enables several processes to operate concurrently using shared information objects without interference between them.

Example: File system operations

Example: Automatic teller machine network

Example: Database Management System (DBMS)

# Replication Transparency

- ➤ Enables multiple instances of information objects to be used to increase reliability and performance without knowledge of the replicas by users or application programs
- Example: Distributed DBMS
- Example: Mirroring Web Pages

HDFS?

# Failure Transparency

- Enables the concealment of faults
- Allows users and applications to complete their tasks despite the failure of other components.
- Example: Database Management System (DBMS)
- Example: Cloud Computing Amazon Web Service

# Mobility Transparency

- ➤ Allows the movement of information objects within a system without affecting the operations of users or application programs
- > Example: Network file service
- > Example: Web Pages

# Performance Transparency

Allows the system to be reconfigured to improve performance as loads vary and parallelism can be explored.

> Example: Hadoop which implements MapReduce.

# Scaling Transparency

Allows the system and applications to expand in scale without change to the system structure or the application algorithms.

Example: World-Wide-Web

Example: Distributed Database

#### Design Issues

- > Specific issues for distributed systems:
  - Naming
  - Communication
  - Software structure
  - System architecture
  - Workload allocation
  - Consistency maintenance

# Naming

- ➤ A name is resolved when translated into an interpretable form for resource/object reference.
  - ☐ Communication identifier (IP address + port number)
  - Name resolution involves several translation steps
- Design considerations
  - ☐ Choice of name space for each resource type
  - Name service to resolve resource names to comm. id.
- Name services include naming context resolution, hierarchical structure, resource protection

#### **Communication**

- Separated components communicate with sending processes and receiving processes for data transfer and synchronization.
- Message passing: send and receive primitives
  - synchronous or blocking
  - asynchronous or non-blocking
  - ☐ Abstractions defined: channels, sockets, ports.
- Communication patterns: client-server communication (e.g., RPC, function shipping) and group multicast

#### Software Structure

➤ Layers in centralized computer systems:

Applications

Middleware

Operating system

Computer and Network Hardware

Platform

#### Software Structure

> Layers and dependencies in distributed systems:



### System Architectures

- Client-server
- > Peer-to-peer
- Services provided by multiple servers
- Proxy servers and caches
- Mobile code and mobile agents
- Network computers
- > Thin clients and mobile devices

#### Clients Invoke Individual Servers



### Peer-to-peer Systems



### A Service by Multiple Servers



# Web Proxy Server



# Web Applets

a) client request results in the downloading of applet code



b) client interacts with the applet





# Thin Clients and Compute Servers



### Summary

- Definitions of distributed systems and comparisons to centralized systems.
- The characteristics of distributed systems.
- > The eight forms of transparency.
- > The basic design issues.
- Read Chapter 1 and Chapter 2 of the textbook.

# Thank You!