Cálculo Diferencial e Integral I

Mestrado Integrado em Engenharia Electrotécnica e de Computadores 2º Exame - 26 de Janeiro de 2008 - 13:00

Solução

Problema 1 (0,5 val.) Seja $f(x) = \arcsin(x^2 - 3x + 1)$.

(a) Determine o domínio de f.

Resolução: As condições a satisfazer são:

$$-1 \le x^2 - 3x + 1 \le 1$$
, ou seja, $0 \le x^2 - 3x + 2 \to x^2 - 3x \le 0$

Notamos que:

- A quadrática $x^2 3x + 2 = (x 1)(x 2)$ tem raízes x = 1 e x = 2. É claro que $x^2 3x + 2 \ge 0$ quando $x \le 1$ OU $x \ge 2$, i.e, quando $x \in (]-\infty,1] \cup [2,+\infty[)$.
- A quadrática $x^2 3x = x(x-3)$ tem raízes x = 0 e x = 3. É claro que $x^2 3x \le 0$ quando $x \in [0,3]$.
- Concluímos que $-1 \le x^2 3x + 1 \le 1$ se e só se $x \in ([0,1] \cup [2,3])$, ou seja,

O domínio de f é o conjunto $[0,1] \cup [2,3]$

(b) Determine, se existirem, o máximo, mínimo, supremo e ínfimo do domínio de f.

Resolução: É óbvio que supremo = máximo = 3 e ínfimo = mínimo = 0.

Problema 2 (1,5 val.) Seja $f: \mathbb{R} \to \mathbb{R}$ a função definida por

$$f(x) = \begin{cases} e^{-\frac{3}{2x^2}} & x \neq 0\\ 0 & x = 0 \end{cases}$$

(a) Determine os intervalos de monotonia de f.

Resolução: Se $x \neq 0$ a função é contínua e diferenciável em x temos

$$f'(x) = e^{-\frac{3}{2x^2}} \cdot \frac{3}{x^3}$$
, donde o sinal de f' é o sinal de x

Quando $x\to 0$ é claro que $-\frac{3}{2x^2}\to -\infty$, e portanto $f(x)\to 0$, donde f é também contínua em x=0. Concluímos que

 $f \in \text{DECRESCENTE EM }]-\infty,0] \in \text{CRESCENTE EM } [0,+\infty[.$

(b) Estude a concavidade de f.

Resolução: Se $x \neq 0$ então

$$f''(x) = e^{-\frac{3}{2x^2}} \cdot \frac{9}{x^6} - e^{-\frac{3}{2x^2}} \cdot \frac{9}{x^4} = e^{-\frac{3}{2x^2}} \frac{9}{x^4} (\frac{1}{x^2} - 1) = e^{-\frac{3}{2x^2}} \frac{9}{x^4} (\frac{1 - x^2}{x^2})$$

O sinal algébrico de f''(x) é o sinal algébrico de $1-x^2$, pelo menos quando $x \neq 0$. Temos então que

f tem a concavidade para cima em] -1,0[e]0,1[, e

f tem a concavidade para baixo em] $-\infty, -1$ [e] $1, +\infty$ [.

(c) Diga se f é diferenciável em x = 0.

RESOLUÇÃO: A função é diferenciável em 0, porque

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{e^{-\frac{3}{2x^2}}}{x} =$$

$$= \lim_{x \to 0} \frac{1/x}{e^{\frac{3}{2x^2}}} = \lim_{x \to 0} \frac{-1/x^2}{e^{\frac{3}{2x^2}}(-3/x^3)} = \lim_{x \to 0} \frac{x}{e^{\frac{3}{2x^2}}(3)} = 0$$

(d) Esboce o gráfico de f. Resolução: Notamos que f tem um mínimo absoluto em

x=0, onde f(0)=0, e é também claro que $\lim_{x\to\pm\infty}f(x)=e^0=1$, donde a recta horizontal com equação y=1 é assímptota do gráfico tanto à esquerda como à direita. O gráfico apresenta-se abaixo.

Problema 3 (0,5 val.) Calcule, se existirem, os seguintes limites:

(a)
$$\lim_{x \to \pi^+} \arctan\left(\frac{1}{\sin x}\right)$$

(b)
$$\lim_{x\to 0} \frac{\operatorname{sen}(x) - x}{x^3}$$

RESOLUÇÃO: Para o limite em (a), notamos que quando $x \to \pi^+$ então $sen(x) \to 0$ por valores negativos, donde $1/sen(x) \to -\infty$. Segue-se que

$$\lim_{x \to \pi^{+}} \arctan\left(\frac{1}{\sin x}\right) = \lim_{u \to -\infty} \arctan\left(u\right) = -\pi/2$$

Para o limite em (b), aplicamos a regra de Cauchy duas vezes:

$$\lim_{x \to 0} \frac{\sin(x) - x}{x^3} = \lim_{x \to 0} \frac{\cos(x) - 1}{3x^2} = \lim_{x \to 0} \frac{-\sin(x)}{6x} = -1/6$$

Problema 4 (0.5 val.) Calcule as derivadas das seguintes funções:

(a)
$$f(x) = \arcsin(x^2)$$
 (b) $g(x) = (\sin x)^{\cos x}$ (c) $h(x) = \int_{2x}^{1} e^{t^2} dt$

Resolução:

(a)
$$f'(x) = \frac{1}{\sqrt{1 - (x^2)^2}} \cdot (2x) = \frac{2x}{\sqrt{1 - x^4}}$$

(b)
$$g(x) = e^{\cos(x)\log(\sin(x))}$$
 donde $g'(x) = e^{\cos(x)\log(\sin(x))} \cdot (-\sin(x)\log(\sin(x)) + \frac{\cos^2(x)}{\sin(x)})$

(c) Sendo F uma primitiva de e^{x^2} , temos h(x) = F(1) - F(2x), donde

$$h'(x) = -e^{(2x)^2}(2) = -2e^{4x^2}$$

Problema 5 (1,5 val.) Determine uma primitiva de cada uma das seguintes funções:

(a)
$$f(x) = \arctan(x)$$
 (b) $g(x) = e^x \sec(1 + e^x)$ (c) $h(x) = \frac{1}{(x+1)(x^2+1)}$

(d) Calcule o integral $\int_0^1 \frac{1}{(x+1)(x^2+1)} dx$. O integral é superior ou inferior a $\frac{3}{8}$?

Resolução:

(a)
$$\int 1 \cdot \arctan(x) dx = x \arctan(x) - \int \frac{x}{1+x^2} dx = x \arctan(x) - \frac{1}{2} \log(1+x^2)$$

(b)
$$\int e^x \sin(1+e^x) dx = \int \sin(u) du = -\cos(u) = -\cos(1+e^x)$$

(c)
$$\frac{1}{(x+1)(x^2+1)} = \frac{A}{(x+1)} + \frac{Bx+C}{(x^2+1)}$$
, onde $A(x^2+1) + (Bx+C)(x+1) = 1$.

Temos assim que

$$(A+B)x^2 + (B+C)x + A + C = 1$$
, donde
 $A+B=B+C=0, A+C=1$, ou $A=C=-B=1/2$

$$\int \frac{1}{(x+1)(x^2+1)} dx = \frac{1}{2} \int \frac{1}{(x+1)} dx - \frac{1}{2} \int \frac{x-1}{(x^2+1)} dx =$$

$$= \frac{1}{2}\log(x+1) - \frac{1}{4}\int \frac{2x}{(x^2+1)}dx + \frac{1}{2}\int \frac{1}{(x^2+1)}dx =$$

$$= \frac{1}{2}\log(x+1) - \frac{1}{4}\int \frac{1}{(u)}du + \frac{1}{2}\int \frac{1}{(x^2+1)}dx =$$

$$= \frac{1}{2}\log(x+1) - \frac{1}{4}\log(u) + \frac{1}{2}\arctan(x).$$

$$= \frac{1}{2}\log(x+1) - \frac{1}{4}\log(1+x^2) + \frac{1}{2}\arctan(x).$$
(1)

(d)
$$\int_0^1 \frac{1}{(x+1)(x^2+1)} dx = \left(\frac{1}{2}\log(x+1) - \frac{1}{4}\log(1+x^2) + \frac{1}{2}\arctan(x)\right|_{x=0}^{x=1} =$$

$$= \left(\frac{1}{2}\log(2) - \frac{1}{4}\log(2) + \frac{1}{2}\arctan(1)\right) - \left(\frac{1}{2}\log(1) - \frac{1}{4}\log(1) + \frac{1}{2}\arctan(0)\right) =$$

$$= \frac{1}{4}\log(2) + \frac{\pi}{8} > \frac{\pi}{8} > \frac{3}{8}$$

Problema 6 (1 val.) Calcule a área da região do plano limitada pelas curvas $y=x^2$ e $y=2x^2+x-2$. A área da região em causa é superior ou inferior a 5?

Resolução: As curvas intersectam-se quando $x^2=2x^2+x-2$, ou seja, $0=x^2+x-2$. Esta equação tem as soluções x=1 e x=-2. A região está representada graficamente abaixo: A

sua área é:

$$\int_{-2}^{1} (x^2 - (2x^2 + x - 2)) dx = \int_{-2}^{1} (2 - x^2 - x) dx = \left(2x - \frac{x^3}{3} - \frac{x^2}{2} \Big|_{x = -2}^{x = 1} \right) = \left(2 - \frac{1}{3} - \frac{1}{2} \right) - \left(-4 + \frac{8}{3} - \frac{4}{2} \right) = 8 - \frac{9}{3} - \frac{1}{2} = 5 - \frac{1}{2} < 5$$

Problema 7 (1 val.) Determine se as seguintes séries são convergentes ou divergentes:

(a)
$$\sum_{k=0}^{\infty} \sqrt{k}$$
 (b) $\sum_{k=0}^{\infty} \frac{1}{2^k + 3^k}$ (c) $\sum_{n=2}^{\infty} \frac{1}{n \log^2(n)}$

Resolução:

(a) $\sum_{k=0}^{\infty} \sqrt{k}$ é divergente, porque $\sqrt{k} \to +\infty$ quando $k \to +\infty$.

(b)
$$\sum_{k=0}^{\infty} \frac{1}{2^k + 3^k}$$
 é convergente, por comparação com a série geométrica $\sum_{k=0}^{\infty} \frac{1}{2^k}$, já que $\frac{1}{2^k + 3^k} < \frac{1}{2^k}$. (também é fácil chegar à mesma conclusão pelo critério da razão).

(c) $\sum_{n=2}^{\infty} \frac{1}{n \log^2(n)}$ é convergente, pelo teste do integral, já que, fazendo $u = \log(x)$

$$\int_{2}^{+\infty} \frac{1}{x \log^{2}(x)} dx = \int_{\log(2)}^{+\infty} \frac{1}{u^{2}} du = -\frac{1}{u} \Big|_{u=\log(2)}^{u=+\infty} = \frac{1}{\log(2)} < \infty$$

Problema 8 (0,5 val.) Considere a função $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} e^x & \text{se } x \le 1\\ x^{-2} & \text{se } x > 1 \end{cases}$$

(a) Determine $F: \mathbb{R} \to \mathbb{R}$ tal que

$$\int_{a}^{b} f(x)dx = F(b) - F(a), \text{ para quaisquer } a, b \in \mathbb{R}.$$

RESOLUÇÃO: Como a função f é contínua excepto em x=1, teremos F'(x)=f(x) para $x\neq 1$, ou seja,

$$F'(x) = \begin{cases} e^x & \text{se } x < 1\\ x^{-2} & \text{se } x > 1 \end{cases}$$

Segue-se imediatamente que existem constantes C_1 e C_2 tais que

$$F(x) = \begin{cases} e^x + C_1 & \text{se } x < 1\\ -x^{-1} + C_2 & \text{se } x > 1 \end{cases}$$

A função F é um integral indefinido, e portanto é contínua em \mathbb{R} , incluindo em x=1, logo

$$\lim_{x \to 1^{-}} F(x) = e + C_1 = \lim_{x \to 1^{+}} F(x) = -1 + C_2$$

Concluímos assim que $C_2=C_1+e+1$, e o valor de C_1 é arbitrário. Tomando por exemplo $C_1=0$, obtemos

$$F(x) = \begin{cases} e^x & \text{se } x \le 1\\ -x^{-1} + e + 1 & \text{se } x \ge 1 \end{cases}$$

(b) Calcule $\int_{-\infty}^{+\infty} f(x) dx$.

Resolução:

$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{u \to -\infty} \int_{u}^{0} f(x)dx + \lim_{v \to +\infty} \int_{0}^{v} f(x)dx = \lim_{u \to -\infty} [F(0) - F(u)] + \lim_{v \to +\infty} [F(v) - F(0)] = -\lim_{u \to -\infty} F(u) + \lim_{v \to +\infty} F(v) = e + 1$$

Problema 9 (1 val.) Seja $f : \mathbb{R} \to \mathbb{R}$ uma função diferenciável estritamente crescente. Na tabela seguinte estão indicados alguns valores de f e f':

\boldsymbol{x}	0	1	2	3	4	5	6
f	0	2	4	5	6	7	9
f'	1	3	5	2	4	7	6

(a) Calcule a derivada de $f(x^2 + 1) + f(x)^2 + 1$ no ponto x = 2.

Resolução: Sendo
$$h(x) = f(x^2 + 1) + f(x)^2 + 1$$
, temos
$$h'(x) = 2xf'(x^2 + 1) + 2f(x)f'(x), \text{ donde}$$

$$h'(2) = 2 \cdot 2 \cdot f'(5) + 2f(2)f'(2) = 4 \cdot 7 + 2 \cdot 4 \cdot 5 = 48.$$

(b) Seja g a função inversa de f. Calcule g'(2).

Resolução: Temos $g'(x) = \frac{1}{f'(g(x))}$, e portanto $g'(2) = \frac{1}{f'(g(2))}$. Como f(1) = 2 sabemos que g(2) = 1, e obtemos finalmente

$$g'(2) = \frac{1}{f'(g(2))} = \frac{1}{f'(1)} = \frac{1}{3}$$

(c) Mostre que existe um $c \in]2,4[$ tal que f'(c) = 1.

Resolução: Notamos primeiro que

$$\frac{f(4) - f(2)}{4 - 2} = \frac{6 - 4}{2} = \frac{2}{2} = 1$$

Segue-se do Teorema de Lagrange que existe $c \in]2,4[$ tal que f'(c)=1.

(d) Mostre que $15 \le \int_2^5 f(x) \, dx \le 18$.

Resolução: Como a função é crescente, temos em qualquer intervalo [a,b] que

$$f(a) \le f(x) \le f(b)$$
, para qualquer $x \in [a, b]$, e portanto

$$f(a)(b-a) \le \int_a^b f(x)dx \le f(b)(b-a).$$

Esta observação aplicada em cada um intervalos [2,3],[3,4] e [4,5] permite-nos concluir que

$$\int_{2}^{5} f(x)dx = \int_{2}^{3} f(x)dx \int_{3}^{4} f(x)dx \int_{4}^{5} f(x)dx \le f(3) + f(4) + f(5) = 18 \text{ e}$$

$$\int_{2}^{5} f(x)dx = \int_{2}^{3} f(x)dx \int_{3}^{4} f(x)dx \int_{4}^{5} f(x)dx \ge f(2) + f(3) + f(4) = 15.$$

Problema 10 (1 val.) Determine a série de Taylor no ponto a=0 das funções:

(a)
$$f(x) = e^{2x}$$
 (b) $g(x) = \frac{1}{1+x^2}$ (c) $h(x) = \arctan(x)$

Resolução:

(a) Como
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
, temos $e^{2x} = \sum_{n=0}^{\infty} \frac{(2x)^n}{n!} = \sum_{n=0}^{\infty} \frac{2^n x^n}{n!}$

(b) A usual fórmula da soma de uma série geométrica com 1º termo igual a 1 e razão $r=-x^2$ conduz à série de Taylor:

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

(c) Como arctan $x = \int \frac{1}{1+x^2} dx$, temos

$$\arctan x = \int \sum_{n=0}^{\infty} (-1)^n x^{2n} dx = \sum_{n=0}^{\infty} \int (-1)^n x^{2n} dx = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} + C$$

Notamos que, como arctan 0 = 0, temos ainda C = 0.

Problema 11 (0,5 val.) Seja $f: \mathbb{R} \to \mathbb{R}$ a função definida por

$$f(x) = \begin{cases} \frac{\sin(x)}{x} & x \neq 0\\ 1 & x = 0 \end{cases}$$

(a) Determine a série de Taylor de f e o respectivo raio de convergência.

RESOLUÇÃO: Recordamos a série de Taylor de sen x, válida para qualquer $x \in \mathbb{R}$, para concluir que, quando $x \neq 0$,

$$\operatorname{sen} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \Longrightarrow \frac{\operatorname{sen}(x)}{x} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n+1)!}$$

Quando x = 0 tanto esta última série como f são iguais a 1, pelo que

$$f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n+1)!}$$
, para qualquer $x \in \mathbb{R}$.

É evidente que esta é a série de Taylor de f, e tem raio de convergência $R = +\infty$.

(b) Sendo $P_n(x)$ o polinómio de Taylor de ordem n da função f, mostre que

$$|f(x) - P_{2n}(x)| < \frac{|x|^{2n+2}}{(2n+3)!}.$$

RESOLUÇÃO: Como x^{2n} é sempre positivo, a série de Taylor de f é alternada. Numa série alternada, a diferença entre uma sua soma parcial e a soma da série não excede o 1° termo que não foi considerado para a soma parcial. Dito doutra forma, como

$$f(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k+1)!} = P_{2n}(x) + (-1)^{n+1} \frac{x^{2n+2}}{(2n+3)!} + \cdots$$

Temos que

$$|f(x) - P_{2n}(x)| < \frac{|x|^{2n+2}}{(2n+3)!}.$$

(c) Mostre que

$$\frac{17}{18} < \int_0^1 \frac{\sin(x)}{x} dx < \frac{1.703}{1.800}$$

RESOLUÇÃO: Trata-se de estimar o valor do integral com error inferior a

$$\frac{1.703}{1.800} - \frac{17}{18} = \frac{3}{1.800} = \frac{1}{600}.$$

Para calcular um valor aproximado para o integral de f é razoável substituir a função f por um seu polinómio de Taylor apropriado, e a questão a esclarecer é a da ordem do polinómio que devemos utilizar.

Para estimar a diferença entre o integral de f e o integral de P_{2n} usamos a alínea anterior, notando que $0 \le x \le 1$:

$$|f(x) - P_{2n}(x)| < \frac{x^{2n+2}}{(2n+3)!}, \text{ donde}$$

$$\int_0^1 |f(x) - P_{2n}(x)| \, dx < \int_0^1 \frac{x^{2n+2}}{(2n+3)!} \, dx = \frac{1}{(2n+3)(2n+3)!}.$$

Quando n = 1, obtemos imediatamente

$$\frac{1}{(2n+3)(2n+3)!} = \frac{1}{(5)(120)} = \frac{1}{600}$$

Na verdade, para n=1, e como

$$f(x) = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \dots = 1 - \frac{x^2}{6!} + \frac{x^4}{120!} - \dots$$

temos com mais exactidão que

$$1 - \frac{x^2}{3!} < f(x) < 1 - \frac{x^2}{3!} + \frac{x^4}{5!}, e$$

$$\int_0^1 (1 - \frac{x^2}{3!}) \ dx < \int_0^1 f(x) \ dx < \int_0^1 (1 - \frac{x^2}{3!} + \frac{x^4}{5!}) \ dx, \text{ donde}$$

$$(1 - \frac{1}{3 \cdot 3!}) < \int_0^1 f(x) \ dx < (1 - \frac{1}{3 \cdot 3!} + \frac{1}{5 \cdot 5!}), \text{ ou seja,}$$

$$\frac{17}{18} < \int_0^1 f(x) \ dx < \frac{17}{18} + \frac{1}{600} = \frac{1.703}{1.800}$$