

AD-A072 219

NAVY UNDERWATER SOUND LAB NEW LONDON CT
SPATIAL CORRELATION FUNCTION FOR A FREQUENCY BAND FOR VERTICAL --ETC(U)
AUG 65 R L SHAFFER

F/G 20/1

UNCLASSIFIED

USL-TM-913-136-65

NL

| OF |
AD
A072219

END
DATE
FILMED
9-70
DOC

DA072219

DDC FILE COPY

DISTRIBUTION STATEMENT A

Approved for public release
Distribution Unlimited

70 08 03 127
 254 200
 78 08-07-385

FEB 24 1966

✓ (12) 44 p.
LEVEL

C.J. Becker

1181
30 Aug 1965COPY 32
COLUMBIA UNIVERSITY
HEDS-N LABORATORIESU. S. NAVY UNDERWATER SOUND LABORATORY
FORT TRUMBULL, NEW LONDON, CONNECTICUT
CONTRACT Nonr-266(84)(6) SPATIAL CORRELATION FUNCTION FOR A FREQUENCY BAND
FOR VERTICAL RECEIVERS AND DIRECTIONAL NOISE.USL Problem No.
6-1-055-00-00

(9) Technical memo

(10) R. L. Shaffer

USL Technical Memorandum No. 913-136-65

(14)

USL-TM-913-136-65

(11) 27 August 1965

INTRODUCTION

The expression for the single frequency spatial correlation function reported in reference 1 as equation 2 of Section II B has been modified by Mr. B. Cron (Reference (2)) to comply with the revised general expression given in reference 3. The expression for the single frequency spatial correlation function with directional noise $g(\alpha) = \cos \alpha$ for vertical receivers as given by reference 2 is:

$$\rho(d, t) = 2 \left[\frac{\sin \theta d}{\theta d} + \frac{(\cos \theta d - 1)}{(\theta d)^2} \right] \cos \omega t + 2 \left[\frac{\sin \theta d}{(\theta d)^2} - \frac{\cos \theta d}{\theta d} \right] \sin \omega t$$

DDC
REF ID: A
AUG 6 1979
A

(1)

The definitions of the terms in this expression and those in subsequent equations are found in the glossary at the end of the memorandum. Most of these definitions come from references 1 and 3.

DISTRIBUTION STATEMENT A

Approved for public release
Distribution Unlimited

FEB 24 1966

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
	913-136-65	
4. TITLE (and Subtitle) SPATIAL CORRELATION FUNCTION FOR A FREQUENCY BAND FOR VERTICAL RECEIVERS AND DIRECTIONAL NOISE		5. TYPE OF REPORT & PERIOD COVERED Tech Memo
7. AUTHOR(s) Shaffer, R. L.		6. PERFORMING ORG. REPORT NUMBER
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Underwater Systems Center New London, CT		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research, Code 220 800 North Quincy St. Arlington, VA 22217		12. REPORT DATE 27 AUG 65
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)		13. NUMBER OF PAGES
		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)		

In this memorandum the expression for the spatial correlation for a frequency band was obtained by forming the product of the single frequency spatial correlation function and the power spectrum and then integrating this product over a bandwidth. This expression for the spatial correlation for a frequency band was checked by letting b approach unity and obtaining equation (1) again.

DEVIATION OF THE SPATIAL CORRELATION FOR A FREQUENCY BAND

The expression for the spatial correlation for a frequency band, $\rho(d, \tau, b)$, as outlined in the introduction is:

$$\begin{aligned} \rho(d, \tau, b) = & \int_{f_1}^{f_2} \left\{ 2 \left[\frac{\sin \beta d}{\beta d} + \frac{\cos \beta d - 1}{(\beta d)^2} \right] \cos \omega \tau \right. \\ & \left. + 2 \left[\frac{\sin \beta d}{(\beta d)^2} - \frac{\cos \beta d}{\beta d} \right] \sin \omega \tau \right\} \frac{df}{f_2 - f_1}. \end{aligned} \quad (2)$$

In equation (2) $\rho(d, \tau, b)$ can be thought of as being composed of two parts $\rho_1(d, \tau, b)$ and $\rho_2(d, \tau, b)$ where $\rho_1(d, \tau, b)$ and $\rho_2(d, \tau, b)$ are given by

$$\rho_1(d, \tau, b) = \int_{f_1}^{f_2} 2 \left[\frac{\sin \beta d}{\beta d} + \frac{\cos \beta d - 1}{(\beta d)^2} \right] \frac{\cos \omega \tau df}{f_2 - f_1} \quad (3)$$

$$\rho_2(d, \tau, b) = \int_{f_1}^{f_2} 2 \left[\frac{\sin \beta d}{(\beta d)^2} - \frac{\cos \beta d}{\beta d} \right] \frac{\sin \omega \tau df}{f_2 - f_1} \quad (4)$$

Equation (3) has been evaluated in reference 1 and is given by:

$$\rho_1(d, \tau, b) = \frac{1}{2\pi\lambda(t-1/b)} \int_{-1}^1 \left[\frac{\cos(2\pi\lambda\tau/b) - 1}{2\pi\lambda^2/b} \right] \left[\cos(2\pi\lambda\tau/b) \right]$$

79 08 03 127

2

~~78 08 07 385~~

$$\begin{aligned}
 & -2 \left[\frac{\cos 2\pi bx - 1}{2\pi bX} \right] \left[\cos 2\pi bY \right] + 24 \left[\sin (2\pi bx)Y - \sin (2\pi bY)/b \right] \\
 & - 4 \left\{ \sin [(1+4) 2\pi bX] - \sin [(1-4) 2\pi bX] - \sin [(1+4) 2\pi bY] \right. \\
 & \left. + \sin [(1-4) 2\pi bY] \right\} \quad (5)
 \end{aligned}$$

which now leaves the solution of the integral in equation 4 to be evaluated.

In evaluating the integral of equation (4) the following notation is used

$$I_1 = \int_{S_1}^{S_2} \frac{2 \sin b\delta}{(\delta d)^2} \frac{\sin \omega T}{S_2 - S_1} d\delta \quad (6)$$

$$I_2 = \int_{S_1}^{S_2} \frac{\cos b\delta}{\delta d} \frac{\sin \omega T}{S_2 - S_1} d\delta \quad (7)$$

and

$$I_2(dT, b) = I_1 - I_2 \quad (8)$$

By letting $u = kd = 2\pi f d/c$; then $du = 2\pi d/c df$ and $\omega T = u c/d T = \omega u$. Equation (6) can now be written as

$$I_1 = \frac{1}{2\pi X(b-1/b)} \int_{u_1}^{u_2} \frac{\sin u}{u^2} \sin 4u du \quad (9)$$

where $u_1 = 2\pi x/b$ and $u_2 = 2\pi bX$

Using trigonometric formulas, equation (9) becomes

$$I_1 = \frac{1}{2\pi X(b-1/b)} \left\{ \int_{u_1}^{u_2} \left[\frac{\cos(1-4)}{4^2} - \frac{\cos(1+4)}{4^2} \right] du \right\} \quad (10)$$

Accession For	GRA&I
For TAB	<input checked="" type="checkbox"/>
Announced	<input type="checkbox"/>
Classification	<input type="checkbox"/>
Y	<input type="checkbox"/>
Distribution/	<input type="checkbox"/>
Availability Codes	<input type="checkbox"/>
Available/or	<input type="checkbox"/>
Special	<input type="checkbox"/>
st	A

$$\begin{aligned}
 & \text{The values of the integrals are given by} \\
 & \int_{u_1}^{u_2} \frac{\cos[u(1-y)]}{u^2} du = -\frac{1}{4} \left[\frac{\cos[(1-y)u]}{u} \right] \Big|_{u=u_1}^{u=u_2} - (1-y) \int_{u_1}^{u_2} \frac{\sin(u(1-y))}{u} du \\
 & = -\frac{\cos[(1-y)2\pi x/b]}{2\pi x b} + \frac{\cos[(1-y)2\pi x/b]}{2\pi x/b} \\
 & - (1-y) \left\{ \operatorname{Si}[(1-y)2\pi x/b] - \operatorname{Si}[(1-y)2\pi x/b] \right\}
 \end{aligned}$$

$$\text{and } \int_{u_1}^{u_2} \frac{\cos u(1+y)}{u^2} du = \frac{\cos[2\pi b x(1+y)]}{2\pi b x} - \frac{\cos[2\pi x/b(1+y)]}{2\pi x/b} \quad (11)$$

$$+ (1+y) \left\{ \operatorname{Si}[(1+y)2\pi x/b] - \operatorname{Si}[(1+y)2\pi x/b] \right\} \quad (12)$$

Using the same substitutions used in arriving at equation (9), equation (7) becomes

$$I_2 = \frac{1}{2\pi x(b-1/b)} \int_{u_1}^{u_2} \frac{2\cos u \sin y u}{u} du \quad (13)$$

Using trigonometric formulas equation (13) becomes

$$I_2 = \frac{1}{2\pi x(b-1/b)} \int_{u_1}^{u_2} \left[\frac{\sin[u(1+y)]}{u} + \frac{\sin[u(y-1)]}{u} \right] du \quad (14)$$

Integrating this gives

$$\begin{aligned}
 I_2 = & \frac{1}{2\pi x(b-1/b)} \left\{ \operatorname{Si}[(1+y)2\pi x/b] - \operatorname{Si}[(1+y)2\pi x/b] \right. \\
 & \left. - \operatorname{Si}[(y-1)2\pi x/b] + \operatorname{Si}[(y-1)2\pi x/b] \right\} \quad (15)
 \end{aligned}$$

From equations (11), (12), and (15) equation (8) becomes

$$\begin{aligned}
 P_2(d, \gamma, b) = & \frac{1}{2\pi x(b - 1/b)} \left\{ \cos \frac{[2\pi x b (1+\gamma)]}{2\pi x b} - \cos \frac{[2\pi x b (1-\gamma)]}{2\pi x b} - \cos \frac{[(1-\gamma) 2\pi x b]}{2\pi x b} \right. \\
 & + \frac{\cos [(1-\gamma) 2\pi x b]}{2\pi x b} + (1+\gamma) \left\{ \text{li} \left[(1+\gamma) 2\pi x b \right] - \text{li} \left[(1+\gamma) 2\pi x b \right] \right\} \\
 & - (1-\gamma) \left\{ \text{li} \left[(1-\gamma) 2\pi x b \right] - \text{li} \left[(1-\gamma) 2\pi x b \right] \right\} \\
 & - \text{li} \left[(1+\gamma) 2\pi x b \right] + \text{li} \left[(1+\gamma) 2\pi x b \right] \\
 & \left. - \text{li} \left[(1-\gamma) 2\pi x b \right] + \text{li} \left[(1-\gamma) 2\pi x b \right] \right\}
 \end{aligned}$$

(16)

Regrouping terms and using appropriate trigonometric formulas, equation (16) can be rewritten as

$$\begin{aligned}
 P_2(d, \gamma, b) = & \frac{1}{2\pi x(b - 1/b)} \left\{ - \frac{2 \sin 2\pi x b \sin 2\pi x b \gamma}{2\pi x b} \right\} \\
 & + \frac{2 \sin 2\pi x b \sin 2\pi x b \gamma}{2\pi x b} + 4 \left\{ \text{li} \left[(1-\gamma) 2\pi x b \right] \right. \\
 & - \text{li} \left[(1-\gamma) 2\pi x b \right] + \text{li} \left[(1+\gamma) 2\pi x b \right] \\
 & \left. - \text{li} \left[(1+\gamma) 2\pi x b \right] \right\}
 \end{aligned}$$

(17)

The expression for $\rho(d, T, b)$ can be regrouped and written as:

$$\begin{aligned} \rho(d, T, b) = & \frac{1}{2\pi x(b-1/b)} \left\{ \frac{2 \cos 2\pi x/b \cos 2\pi x b}{2\pi x/b} - \frac{2 \cos 2\pi x b \cos 2\pi x b}{2\pi x b} \right. \\ & - \frac{2 \cos 2\pi x b}{2\pi x/b} + \frac{2 \cos 2\pi x b}{2\pi x b} + 24 \left[\text{li}(2\pi b x) - \text{li}(2\pi x b) \right] \\ & - k \left\{ \text{li}[(1+v)2\pi b x] - \text{li}[(1-v)2\pi b x] - \text{li}[(1+v)2\pi x/b] \right. \\ & \left. + \text{li}[(1-v)2\pi x/b] \right\} \end{aligned} \quad (18)$$

Equations (17) and (18) can be combined to give

$$\begin{aligned} \rho(d, T, b) &= \rho_1(d, T, b) + \rho_2(d, T, b) \\ &= \frac{1}{2\pi x(b-1/b)} \left\{ 2 \frac{\cos [2\pi x/b(1-v)]}{2\pi x/b} - 2 \frac{\cos [2\pi x b(1-v)]}{2\pi x b} \right. \\ &+ \frac{2 \cos 2\pi x b}{2\pi x b} - \frac{2 \cos 2\pi x/b}{2\pi x/b} + 24 \left\{ \text{li}(2\pi b x v) - \text{li}(2\pi x b v) \right. \\ &+ \text{li}[(1-v)2\pi b x] - \text{li}[(1-v)2\pi x/b] \left. \right\} \end{aligned}$$

(19)

COLUMBIA UNIVERSITY
HUDSON LABORATORY
CONTRACT No. N-266(84)

An alternate form of equation (19) is

$$\rho(d, T, b) = \frac{1}{2\pi x(b-1/b)} \left\{ \frac{2 \sin \pi x b \cdot \sin [\pi x b (1-2x)]}{\pi x b} \right.$$

$$- \frac{2 \sin \pi x b \cdot \sin [\pi x b (1-2x)]}{\pi x/b} + K \left\{ li[2\pi b x] - li[2\pi x^2/b] + li[(1-x)2\pi b x] - li[(1-x)2\pi x^2/b] \right\}$$

(20)

EVALUATION OF THE SPATIAL CORRELATION FOR A FREQUENCY BAND AS b APPROACHES UNITY

As a check on the validity of the spatial correlation for a frequency band, b was allowed to approach unity in equation (19). By letting $2\pi x = A$, $2\pi x(1-K) = B$, and $2\pi x^2 = C$ equation (19) becomes

$$\rho(d, T, b) = \frac{2}{A^2(b-1/b)} \left\{ \frac{\text{Cor } B/b}{b'} - \frac{\text{Cor } Bb}{b} + \frac{\text{Cor } C/b}{b} - \frac{\text{Cor } C/b}{b'} \right.$$

$$+ C [li Cb - li C/b] - B [li Bb - li B/b]$$

$$+ A [li Bb - li B/b]$$

(21)

By expressing the cosine and sine integral in the following series
(References (4) and (5))

$$\cos Z = 1 + \sum_{n=0}^{\infty} \frac{(-1)^{n+1} Z^{2n+2}}{(2n+2)!} \quad (22)$$

$$\sin Z = \sum_{n=0}^{\infty} \frac{(-1)^n Z^{2n+1}}{(2n+1)(2n+1)!} \quad (23)$$

equation (21) becomes

$$\begin{aligned} P(d, T, b) &= \frac{2}{A^2(b-1/b)} \left\{ \sum_{n=0}^{\infty} (-1) \left[\frac{(-1)^n}{(2n+2)!} \right] \left[C^{2n+2} - B^{2n+2} \right] \left[b^{2n+1} - b^{-2n-1} \right] \right. \\ &\quad + \frac{(-1)^n}{(2n+1)(2n+1)!} \left[C^{2n+2} - B^{2n+2} \right] \left[b^{2n+1} - b^{-2n-1} \right] \\ &\quad \left. + A \left[B^{2n+1} \left(b^{2n+1} - b^{-2n-1} \right) \right] \right\} \end{aligned} \quad (24)$$

Applying L' Hospital's rule and letting b approach unity

$$\begin{aligned} P(d, T, b) &= \frac{1}{A^2} \left\{ \sum_{n=0}^{\infty} \left[\frac{(-1)^{n+1}}{(2n+2)!} \right] \left[C^{2n+2} - B^{2n+2} \right] \left[2(2n+1) \right] \right. \\ &\quad + (-1) \left[\frac{(-1)^{n+1} (2n+2) 2(2n+1)}{(2n+1)(2n+2)(2n+1)!} \right] \left[C^{2n+2} - B^{2n+2} \right] \\ &\quad \left. + \frac{(-1)^n A}{(2n+1)!} \left[2B^{2n+1} \right] \right\} \end{aligned} \quad (25)$$

which can be rewritten as

$$\rho(d, T, b) = \frac{2}{A} \sum_{m=0}^{\infty} \left\{ (2m+1) [\cos C - \cos B] - (2m+2) [\cos C - \cos B] \right\} + \frac{2}{A} \sin B \quad (26)$$

Substituting the appropriate values of A, B, and C equation (26) becomes

$$\begin{aligned} \rho(d, T, b) = & \frac{2}{(2\pi x)} \left\{ \cos [2\pi x(1-x)] - \cos [2\pi x^2] \right\} \\ & + \frac{2}{2\pi x} \left\{ \sin [2\pi x(1-x)] \right\} \end{aligned} \quad (27)$$

Equation (27) can be written in the form

$$\rho(d, T, b) = 2 \left[\frac{\cos(\theta_d - \omega t)}{(\theta_d)^2} - \frac{\cos \omega T}{(\theta_d)^2} \right] + \frac{\sin(\theta_d - \omega t)}{\theta d} \quad (28)$$

Using the proper trigonometric formulas, equation (28) becomes

$$\begin{aligned} \rho(d, T, b) = & 2 \left[\frac{\cos \theta_d - 1}{(\theta_d)^2} + \frac{\sin \theta d}{\theta d} \right] \cos \omega T \\ & + 2 \left[\frac{\sin \theta d}{(\theta d)^2} - \frac{\cos \theta d}{\theta d} \right] \sin \omega T \end{aligned} \quad (29)$$

USL Tech. Memo
913-136-65

Equation (29) is the desired result. Thus, equation (19) has been verified by letting b approach unity with the expected result of obtaining equation (1) again.

R. L. Shaffer
R. L. SHAFFER
Research Physicist

GLOSSARY OF TERMS

α is the angle between the line connecting the receiver and noise source and the vertical line passing through the center of the circular area of noise sources

d is the distance between receivers

T is the electrical time delay

= $2\pi/\lambda$ wavenumber

$\lambda = c/f$ wavelength

$\omega = 2\pi f$ angular frequency

c is velocity of sound

$$b = \sqrt{s_2/s_1}$$

$$x = d/\lambda_g$$

$\lambda_g = c/\sqrt{s_1 s_2}$ geometric wavelength

$$\gamma = T/d/c$$

$\sqrt{f_1 f_2}$ is geometric mean frequency of flat bandwidth f_1 to f_2

$$Si(x) = \int_0^x \frac{\sin u}{u} du = \text{sine integral}$$

USL Tech. Memo
913-136-65

REFERENCES

1. B. F. Cron, B. C. Hassell and F. J. Keltonic, "Comparison of Theoretical and Experimental Values of Spatial Correlation," Journal of Acoustic Society of America, 37, 523-529 (1965)
2. Private discussion with Mr. B. F. Cron.
3. B. F. Cron and C. H. Sherman, "Spatial Correlation of Noise," Erratum Submitted to Journal of Acoustic Society of America
4. M. Abramowitz and I. Stegrum, "Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables," page 232, National Bureau of Standards Applied Mathematics Series 55 (1964)
5. R. V. Churchill, "Introduction to Complex Variables and Applications," page 100, McGraw-Hill Book Company, Inc. (1948)

USL Tech. Memo
913-136-65

DISTRIBUTION LIST

Code 100
Code 101
Code 900
Code 900A
Code 900B
Code 902
Code 984.2 (5)
Code 905.1
Code 906A
Code 906.1
Code 906.2
Code 907
Code 907.5
Code 910
Code 911.1
Code 911.2
Code 911.3
Code 911.4
Code 912

RETURN TO LIBRARY