

Learning a Projection Operator onto the Null Space of a Linear Imaging Operator

Albert Zhai

BIOE 580

November 29, 2021

Outline

- Imaging operators and null spaces
- ullet What is P_{null} and why is it useful?
- ullet Difficulties in computing $\,P_{null}$
- ullet Optimization-based methods for obtaining P_{null}
- Experimental results
- Next steps

Imaging operators and null spaces

$$g = \mathcal{H}f$$

- A digital imaging system can be modeled as a linear continuous-to-discrete (CD) operator
- In practice, approximated as discrete-to-discrete
 (DD):

$$\mathcal{H} \in \mathbb{E}^{M imes N}$$

• Null space:

$$N(\mathcal{H})=\{f\in\mathbb{E}^N|\mathcal{H}f=0\}$$

What is P_{null} and why is it useful?

- Objects in null space are "invisible" to imaging system
 - ullet Measurable space := $N_\perp(\mathcal{H})$
- Any object can be uniquely expressed as the sum of its measurable component and its null component:

$$f = f_{meas} + f_{null} \ f_{meas} \in N_{\perp}(\mathcal{H}), \ \ f_{null} \in N(\mathcal{H})$$

What is P_{null} and why is it useful?

- ullet P_{null} is an orthogonal projection onto the null space
- Can be used to extract null component of any object:

$$P_{null}f=f_{null}$$

- Analysis of null components allows us to assess what objects features are invisible to an imaging system
 - Can optimize system to reduce amount of task-relevant features that are missed
- Can also assess hallucinations in reconstructions

Difficulties in computing $\,P_{null}\,$

- ullet Dimensionality of $oldsymbol{\mathcal{H}} \in \mathbb{E}^{M imes N}$ often very large
 - E.g. $M \approx N = 1024x1024 \rightarrow H \text{ has } 10^{12} \text{ entries}$
- Explicit storage and matrix-multiplication are prohibitively expensive
- Classical linear algebra methods become infeasible:

$$P_{null} = I - \mathcal{H}^+ \mathcal{H}$$
 $\mathcal{H}^+ = U \Sigma^+ V^*$

• For any f,

$$P_{null}f=f_{null} \hspace{1cm} \mathcal{H}f_{null}=0$$

Let R be the rank of H. If we have

$$W \in \mathbb{E}^{N imes (N-R)} \; \; s. \; t. \qquad W^*W = I$$

and

$$W = \operatorname{argmin}_{W} ||\mathcal{H}WW^*f||_2^2$$

for all f, then

$$WW^* = P_{null}$$

How to ensure

for all f?

$$W = \operatorname{argmin}_{W} ||\mathcal{H}WW^*f||_2^2$$

 Treat f as a random variable and minimize the expectation:

$$W = \operatorname{argmin}_W \mathbb{E}_f[||\mathcal{H}WW^*f||_2^2]$$

- Support of distribution must span object space
- Draw samples and perform SGD

$$W \in \mathbb{E}^{N imes (N-R)} \ s. \ t. \ P_{null} = WW^*$$

$$W \in \mathbb{E}^{N \times (N-R)}$$
 s. t. $P_{null} = WW^*$

$$W \in \mathbb{E}^{M imes R}$$
 $s. t.$ $P_{null} = I - P_{meas} \ P_{meas} = \mathcal{H}^* W W^* \mathcal{H}$

- M < N
- ullet Range of projection is already restricted to $\,N_{\perp}({\cal H})\,$

- ullet If \mathcal{H}^*W is orthogonal, then $\mathcal{H}^*WW^*\mathcal{H}$ has rank R
- ullet This guarantees that $\mathcal{H}^*WW^*\mathcal{H}=P_{meas}$
- All we need is

$$W^*\mathcal{H}\mathcal{H}^*W=I$$

Solve minimization problem:

$$W = \operatorname{argmin}_W ||W^* \mathcal{H} \mathcal{H}^* W - I||_2^2$$

To avoid matrix-multiplication, minimize indirectly:

$$W = \operatorname{argmin}_W \mathbb{E}_v[||(W^* \mathcal{H} \mathcal{H}^* W - I)v||_2^2]$$

Experiments on RT operator

- 2D fan-beam curved-detector tomography
 - N = 256x256 = 65536
 - M = 10860
 - 30 views
 - round(256 sqrt(2)) = 362 rays per view
 - R = 10362
- ullet Train on white noise: $v \sim \mathcal{N}(0,I)$
 - Batch size 512
 - Adam optimizer with decaying learning rate

Experimental results

• $I - \mathcal{H}^*WW^*\mathcal{H}$ method is significantly more efficient but cannot converge to very low error

	Peak memory
rSVD	34.4 GB
WW^*	21.3 GB
$I-\mathcal{H}^*WW^*\mathcal{H}$	4.25 GB

 f_{null}

Next steps

- Want to achieve better convergence
- Investigate different training distributions
 - Sample from fixed orthogonal basis
 - Going back to $W = \operatorname{argmin}_W \mathbb{E}_f[||\mathcal{H}WW^*f||_2^2]$ and sampling real medical data