Løsningsforslag Dataøving 3

Oppgave 1 Forberedelse og implementering

- a) Dobbeltklikk eller skriv mopar.m i Matlab Command Window.
- b) Funksjonen tf tar inn teller og nevner som argumenter dvs. h = tf(t,n), der t og n er definert som en vektor av koeffisienter der f.eks. $t = [T1 \ 1]$ gir $(T_1s + 1)$. Vi definerer derfor $h_u(s)$ slik:

```
hu = tf([K_T], [J*L_a J*R_a+B*L_a R_a*B+K_T*K_v 0]);
```

Oppgave 2 Proporsjonalregulator

a) Transferfunksjonen til $h_r(s)$ implementeres slik:

```
K_p=1;

hr = K_p;

Vi finner h_0 ved å benytte series,

h0 = series(hr,hu);

evt bare ved å multiplisere h_u(s) og h_r(s):
```

h0 = hr*hu;

Figure 1: Resultat av margin med $K_p = 1$

b) Ved å bruke margin får vi bode plottet vist i figur 1 (forsterkningsmarginen er gitt av Gm og fasemarginen av Pm): Forsterkningsmarginen er 44.5 dB, så vi øker K_p med 38.5 dB for å tilfredsstille kravet om høyest mulig båndbredde og samtidig tilfredsstille $\Delta K \geq 6[dB]$. For å øke forsterkningen med 38.5 kan vi multiplisere den gamle forsterkningen med $10^{(\frac{38.5}{20})}$, og tilsvarende, kan vi senke den ved å multiplisere med $10^{(\frac{-38.5}{20})}$.

Figure 2: Resultat av margin med $K_p = 84.1$

Figure 3: Resultatet med $K_p = 18.2$

Vi har nå hevet forsterkningen så mye at vi er på grensen av kravet om $\Delta K \geq 6$ [dB]. Men vi ser at kravet om $\psi \geq 45^{\circ}$ ikke lenger er oppfylt, vi må altså senke forsterkningen noe. For å finne ut hvor mye leser vi av <u>amplituden</u> der fasen krysser 135° , og senker forsterkningen med den avleste verdien, ca. 13.3 dB. Resultatet av <u>margin</u> blir som i figur 3, med $\Delta K = 19.3$ [dB] og $\psi = 45.6^{\circ}$.

c) Vi leser av kryssfrekvensen, ω_c , fra figur 3 og finner at den er 504 $^{rad}/_s$. $|N(j\omega)|$ er skissert i figur 4. Vi finner $|N(jw)|_{\text{max}}$ på følgende møte:

```
N = feedback(1,h0)
[aN,pN,w] = bode(N)
Nmax = 20*log10(max(aN))
```

som gir $|N(jw)|_{\text{max}} = 4.42$. N(s) kalles avviksforholdet og forteller systemets evne til å undertrykke forstyrrelser ved forskjellige frekvenser.

d) Simularing med $K_p = 18.2$ gir stepresponsen for vinkelen $\theta(t)$ vist i figur 6

Figure 4: Amplituden $|N(j\omega)|$ for avviksforholdet $N(j\omega)$ for $K_p = 18.2$

Figure 5: Respons med proporsjonal regulator og $K_p=18.2$

e) Resultaten er oppsummert i tabellen under, og simuleringsresultatene er vist i figur 5.

K_p	$\Delta K[dB]$	ψ[°]	$ N(j\omega) _{\max}[dB]$	$\omega_c[dB]$
0.01	84.5	90	0.0054	0.359
0.1	64.5	89.6	0.0508	3.58
1	44.5	86.3	0.4247	35.8
10	24.5	59.5	2.8294	318
99	4.61	9.5	16.1883	1400

- f) Vi ser at lavere K_p gir tregere respons men mindre oversving. Høy K_p gir kort stigetid men samtidig mer oversving og oscillasjoner. Se figur 6 for simuleringer.
- g) Systemet klarer ikke å følge referansen når forstyrrelsen er et enhetssprang. Vi ser at ved å øke K_p forbedrer vi evnen til å motvirke forstyrrelsen, men responsen blir samtidig mer oscillatorisk. Uansett verdi av K_p er det et avvik mellom utgang og refereanse i stasjonær tilstand (stasjonæravvik). Resultatet er vist i figur 7

Figure 6: Responsen med forskjellige verdier for ${\cal K}_p$

Figure 7: Respons med forstyrrelse og forskjellige verdier for ${\cal K}_p$

h) Ved å bruke sluttverditeoremet, finner vi

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} se(s) \tag{1}$$

$$= \lim_{s \to 0} s \frac{-(R_a + L_a s)}{s(R_a + L_a s)(B + J s) + K_v K_T s + K_p K_T} v(s)$$
 (2)

$$= \lim_{s \to 0} s \frac{-(R_a + L_a s)}{s(R_a + L_a s)(B + J s) + K_v K_T s + K_p K_T} \frac{1}{s}$$
 (3)

$$= \lim_{s \to 0} \frac{-(R_a + L_a s)}{s(R_a + L_a s)(B + J s) + K_v K_T s + K_p K_T}$$
(4)

$$=\frac{-R_a}{K_p K_T} \tag{5}$$

Vi ser at større K_p gir mindre avvik, noe som stemmer med simuleringene. Likning (5) impliserer også at stasjonæravviket vil være forskjellig fra null for alle endelige verdier av forsterkningen K_p .

Oppgave 3 Proporsjonal+begrenset derivat-regulator

a) PD-regulatoren implementeres slik

Kp = 100;

Td = 1;

hr = tf([Kp*Td Kp], [0.1*Td 1])

b) Med $K_p = 100$ og $T_d = 1$ er systemet ustabilt. Vi må derfor få hevet fasen når kryssfrekvensen. Fra formelen på side 328 ser vi at

$$T_d = \frac{1}{\sqrt{\omega_1 \omega_2} \sqrt{\alpha}} \tag{6}$$

og velger $\omega_1 = 5000$ og $\omega_2 = 1500$ for å få toppen i $\sqrt{\omega_1 \omega_2}$, som gir $T_d = 0.0012$. Vi får nå $\Delta K = 13.6[dB]$ og $\psi = 45.3^{\circ}$.

- c) $\omega_c = 2400 \ ^{rad}/_s \text{ og } |N(j\omega)|_{\text{max}} = 4.66[dB].$
- d) Vi ser at responsen, gjengitt i figur 8 har lik form som den i oppgave 2d), men at den er mye raskere.

Figure 8: Responsen med PD regulator, $T_d = 0.0012$ og $K_p = 100$

e) Figur 9 viser responsen til vinkelen $\theta(t)$. Sammenliknet med responsen i figur 7 (ren proposjonalregulator) ser vi at responsen har blitt raskere og vesentlig mindre oscillatorisk. Ved å legge til

begrenset derivatvirkning er fasen løftet ved høye frekvenser og forsterkningen i systemet kan økes. Båndbredden ω_c har blitt større og systemet motvirker derfor forstyrrelser hurtigere. $|N(j\omega)|_{\text{max}}$ er tilnærmet det samme, med frekvensen der $|N(j\omega)|_{\text{max}}$ inntreffer har blitt høyere. Dette betyr at systemet motvirker forstyrrelser i et større frekvensområdet, og dermed fungerer generelt som et reguleringssystem i et større frekvensområde.

Figure 9: Respons med PD-regulator og enhetssprang i forstyrrelsen

f) En ideell derivatvirkning benyttet i en PD-regulator gir forsterkningsbidrag (amplitudeforsterkning) for frekvenser større enn knekkfreksen ved $\omega=\frac{1}{T_d}$. Dette gjør at høy frekvent målestøy forsterkes, noe som er ugunstig for reguleringen. For å begrense forsterkningen ved høye frekvenser med PD-regulering benyttes derfor vanligvis begrenset derivatvirkning. Se side 324 i læreboka. Et annet argument for begrenset derivatvirkning er å unngå å derivere refereansen, siden denne typisk er et sprang (som gir uendelig derivert). Dette oppnås med leddet $\frac{1}{1+\alpha T_d}$ i begrenset PD-regulator.

Oppgave 4 Proporsjonal+integral+begrenset derivat-regulator

a) PID regulatoren implenteres slik

```
Kp = 100;
Td = 0.0012;
Ti=100;
hrpd = tf([Kp*Td Kp],[0.1*Td 1])
hri = tf([Ti 1],[Ti 0])
hr = series(hri,hrpd)
```

- b) Ved gjentatte simuleringer med forskjellige verdier av T_i kan vi finne en verdi for T_i som fjerner stasjonæravviket på mindre enn 0.1 sekunder. Ved å velge parameterverdiene $T_i = 0.01$ og $K_p = 10^{(39/20)}$ får vi stabilitetsmarginene $\Delta K = 14.4[dB]$ og $\psi = 45.4^{\circ}$. Responsen fra et enhetssprang i referansen med denne regulatortuningen er vist i figur 11. Responsen er relativt lik responsen i figur 8 for PD-regulatoren, men responsen er såvidt litt tregere pga integralvirkningen som er lagt til.
- c) Responsen for PID-regulatoren med sprang i forstyrrelsen er vist i figur 11. Vi ser at systemet nå klarer å motvirke forstyrrelsen, referansevinkelen θ_0 oppnås på utgangen og stasjonæravviket er dermed fjernet.

Figure 10: Respons fra enhetssprang i referansen med tunet PID-regulator

Figure 11: Responsen med PID-regulator og forstyrrelse

Oppgave 5 Følgeregulering med foroverkopling fra referansen

- a) Utgangen blir liggende litt etter referansen.
- b) M = feedback(h0,1). M(s) kalles følgeforholdet og forteller om systemets evne til å følge en referanse.