CS 170, Fall 2022

Contents

1.	Algorithms with numbers	3
2.	Divide-and-conquer Algorithms	4
	2.a. Multiplication	4
	2.b. Recurrence Relations	4
	2.c. Mergesort	4
	2.d. Medians	
	2.e. Matrix Mltiplication	
	2.f. Fast Fourier Transform	

1. Algorithms with numbers

2. Divide-and-conquer Algorithms

2.a. Multiplication

Definition 2.1 (Integer Multiplication)

A divide-and-conquer algorithm for integer multiplication is defined as follows:

```
function mul(x(0b[1...k]), y(0b[1...h]))
%Input: Positive integers x, y in binary
%Output: x times y

n = max(size of x, size of y)
if n == 1: return x × y

x<sub>L</sub>, x<sub>R</sub> = x(0b[1...[n/2]]), x(0b[[n/2]...n])
y<sub>L</sub>, y<sub>R</sub> = y(0b[1...[n/2]]), y(0b[[n/2]...n])

P<sub>1</sub> = multiply(x<sub>L</sub>, y<sub>L</sub>)
P<sub>2</sub> = multiply(x<sub>L</sub>, y<sub>R</sub>)
P<sub>3</sub> = multiply(x<sub>L</sub> + x<sub>R</sub>, y<sub>L</sub> + y<sub>R</sub>)
return P<sub>1</sub> × 2<sup>n</sup> + (P<sub>3</sub> - P<sub>1</sub> - P<sub>2</sub>) × 2<sup>n/2</sup> + P<sub>2</sub>
```

Where 0b[1...k] denotes the binary string representing a number

2.b. Recurrence Relations

```
Theorem 2.2 (Master Algorithm)
If T(n) = aT(n/b) + cn^k and T(1) = c for some constants a, b, c and k, then
T(n) \in \begin{cases} O(n^k) & if a < b^k \\ O(n^k \log n) & if a = b^k \\ O(n^{\log_b a}) & if a > b^k \end{cases}
```

2.c. Mergesort

Definition 2.3 (Mergesort)

The Mergesort algorithm is defined as follows:

```
function mergesort(a[1...n])
    %Input: An array of numbers a[1...n]
    %Output: Sorted array a
    if n>1:
      return merge (mergesort (a[1...|n/2]), mergesort (a[n/2+1...n]))
6
      return a
  function merge(x[1...k], y[1...h])
10
    %Input: Two arrays of numbers (x[1...k], y[1...h])
11
12
    "Output: An array of numbers in x and y in ascending order
13
    if k=0: return y
14
    if 1=0: return x
    if x[1] <= y[1]:</pre>
16
      return x[1] o merge(x[2...k], y[1...h])
17
18
      return y[1] o merge(x[1...k], y[2...h])
```

Where • denotes concatenation.

The merge function above does a constant amount of work (concatenating two arrays) per recursive call, for a total running time of O(k+l). Thus the calls to merge in mergesort are linear, we conclude that the overall time taken by mergesort is

$$T(n) = 2T(n/2) + O(n)$$

Recall the Master Algorithm, here $a = b^k$, and therefore

$$T(n) \in O(n \log n)$$

2.d. Medians

2.e. Matrix MItiplication

Definition 2.4

2.f. Fast Fourier Transform