Binomial Option Pricing: Basic Principles

Financial 5350: Computational Finance

Tyler J. Brough

Department of Finance and Economics

Section 10.1: A One-Period Binomial Tree

Section 10.2: Constructing A Binomial Tree

Section 10.3: Two Or More Binomial Periods

Section 10.4: Put Options

Section 10.5: American Options

Section 10.6: Options on Other Assets

Introduction to Binomial Option Pricing

- The binomial option pricing model enables us to determine the price of an option, given the characteristics of the stock or other underlying asset
- The binomial option pricing model assumes that the price of the underlying asset follows a binomial distribution - that is, the asset price in each Period can move only up or down by a specified amount
- The binomial model is often referred to as the "Cox-Ross-Rubinstein pricing model"

A One-Period Binomial Tree

Example

- Consider a European call option on the stock of XYZ, with a \$40 strike and 1
 year to expiration
- XYZ does not pay dividends (i.e. $\delta=0$), and its current price is $S_0=\$41$
- The continuously compounded risk-free interest rate is 8% (i.e. r=0.08)
- The following is the corresponding binomial tree:

Computing the Option Price

- Next, consider two portfolios:
 - Portfolio A: buy one call option
 - Portfolio B: buy 2/3 shares of XYZ and borrow \$18.462 at the risk-free rate, r

- Portfolio Costs:
 - Portfolio A: the call premium, which is unknown and what we are solving for
 - Portfolio B: 2/3 × \$41 − \$19.462 = \$8.871

Computing the Option Price Continued

Computing the Option Price Continued

- Portfolios A and B have the same payoff. Therefore:
 - Portfolios A and B should have the same cost. Since Portfolio B costs \$8.871, the price of on option must also be \$8.871
 - There is a way to create the payoff to a call by buying shares and borrowing.
 Portfolio B is a synthetic call
 - One option has the risk of 2/3 shares. The value 2/3 is the delta (Δ) of the option: the number of shares that replicates the option payoff

The Bimonial Solution

- How do we find a replicating portfolio consisting of Δ shares of stock and a dollar amount B in lending, such that the portfolio imitates the option whether the stock or falls?
 - Suppose that the stock has a continuous dividend yield of δ , which is reinvested in the stock. Thus, if you buy one share at time t, at time t+h you will have $e^{\delta h}$ shares
 - If the length of a period is h, the interest factor per period is e^{rh}
 - uS denotes the stock price when the price goes up, and dS denotes the stock price when the price goes down

The Binomial Solution Continued

The Binomial Solution Continued

The Bimonial Solution Continued

Arbitraging a Mispriced Option

• If the observed option price differs from its theoretical price, arbitrage is possible:

Risk-Neutral Pricing

Summary

- In order to price an option, we need to know the following:
 - Stock price (S)
 - Strike price(K)
 - The expiration date of the options (T)
 - Standard deviation of returns on the stock (σ)
 - Divided yield (δ)
 - Risk-free rate (r)
- Using the risk-free rate and σ , we can approximate the future distribution of the stock by creating a binomial tree using equation (10.9)
- Once we have the binomial tree, it is possible to price the option using equation (10.3)

Continuously Compounded Returns

Volatility

The Standard Deviation of Continuously Compounded Returns Continued

Constructing u and d

Constructing u and d Continued

Estimating Historical Volatility

Estimating Historical Volatility Continued

One-Period Example with a Forward Tree

One-Period Example with a Forward Tree Continued

A Two-Period European Call

A Two-Period European Call Continued

Pricing the Call Option

Pricing the Call Option Continued

Pricing the Call Option Continued

Many Binomial Periods

Many Bimonial Periods Continued

Many Bimonial Periods Continued

Put Options

Put Options Continued

American Options

American Options Continued

American Options Continued

American Options Continued

Options on Other Assets

Options on a Stock Index

Options on a Stock Index Continued

Options on Futures Contracts

Options on Futures Contracts Continued

Options on Futures Contracts Continued

Options on Futures Contracts Continued

Options on Commodities

Options on Bonds

Summary