A

PROJECT REPORT ON

IMAGE FORGERY DETECTION USING MATLAB

Submitted to JNT University for the partial fulfillment of the requirements for the award of the degree

Bachelor of Technology

In

ELECTRONICS AND COMMUNICATION ENGINEERING

By

S.NAYAB RASOOL	21L25A0424
J.SANDEEP KUMAR	21L25A0408
S.VENKATA RAMANA	20L21A0465
Y.SAI NARASIMHA REDDY	20L21A0466
K.VINAY KUMAR REDDY	20L21A0459

Under the guidance of

Mr.M.SREENIVASULU M.TECH.

Asst. Professor,

Department of ECE

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING VAAGDEVI INSTITUTE OF TECHNOLOGY &SCIENCE (Affiliated to JNTUA, ANANTAPURAMU),

Peddasettipalli,Proddatur,

Kadapa-516360,
2020-2024.

VAAGDEVI INSTITUTE OF TECHNOLOGY & SCIENCE (Affiliated to JNTUA, ANANTAPURAMU) Peddasettipalli, Proddatur.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

CERTIFICATE

This is to certify that the project work entitled "IMAGE FORGERY DETECTION USING MATLAB" is a bona fide record submitted by S.NAYAB RASOOL(21L25A0424), J.SANDEEP KUMAR(21L25A0408), S.VENKATA RAMANA(20L21A0465), Y.SAI NARASIMHA REDDY(20L21A0466), K.VINAY KUMAR REDDY(20L21A0459) in partial fulfillment for the award of the degree of Bachelor of Technology in "Electronics and Communication Engineering" for the year 2020-2024, the work reported here in does not form a part of any other thesis on which a degree has been awarded earlier.

This is to further certify that they have worked for a period of one semester for preparing their work under our supervision and guidance.

HEAD OF THE DEDARTMENT.

M CDEENINA CHI II	DECUDERWADA DEDDY
M.SREENIVASULUM.Tech.	Dr.S.SIDDESWARA REDDY _{M.Tech,Ph.D.}
Assistant Professor,	Assistant Professor,
Dept.of ECE.	Dept.of ECE.
External project viva-voice held on:	
INTERNAL EXAMINER:	EXTERNAL EXAMINER:

DDOIECT CLUDE.

Acknowledgement

An endeavor of a long period can be successful only with the advice of many well-wishers. We take this opportunity to express our deep gratitude and appreciation to all those who encouraged us for the successful completion of the main project work.

We are thankful to our guide Mr.M.SREENIVASULUM.TECH., Assistant Professor in the Department of E.C.E., Vaagdevi Institute of Technology and Science, Proddatur, for his valuable guidance and suggestions in analyzing and testing until the end of the main project work completion.

Our special thanks to **Dr.S.SIDDESWARA REDDYM.Tech,Ph.D.**, Head of Electronics & Communication Engineering Department, Vaagdevi Institute of Technology & Science, Proddatur. During the progress of work, for his timely suggestions and help inspite his busy schedule.

We wish to convey our gratitude and express sincere thanks to all **P.R.C** (**Project Review Committee**) members for their support and cooperation rendered for the successful submission of our project work.

We wish to express our gratitude to **Dr.B.Siddeswara Rao,Ph.D.**, Principal of Vaagdevi Institute of Technology and Science, Proddatur, for his consistent help and encouragement in completing the project work.

We are very much thankful to **Sri G.HUSSAIN REDDY**, Honorable Secretary of Mookambika Educational Trust, for his consistent help in providing good facilities in our college.

Whatever we are at present is due to the blessings of our's Great Father and mother.

Last but not least, we express our thanks to all faculties of VITS for assistance during the facilities in the laboratory, our well-wisherwisher friends, and lab technicians who encouraged us during the course of this project work successfully.

PROJECT ASSOCIATES:

S.NAYAB RASOOL	21L25A0424
J.SANDEEP KUMAR	21L25A0408
S.VENKATA RAMANA	20L21A0465
Y.SAI NARASIMHA REDDY	20L21A0466
K.VINAY KUMAR REDDY	20L21A0459

ABSTRACT

Over the past years, image manipulation tools have become widely accessible and easier to use, which made the issue of image tampering far more severe. As a direct result to the development of sophisticated image-editing applications, it has become near impossible to recognize tampered images with naked eyes. Thus, to overcome this issue, computer techniques and algorithms have been developed to help with the identification of tampered images.

Research on detection of tampered images still carries great challenges. In the present study, we particularly focus on image splicing forgery, a type of manipulation where a region of an image is transposed onto another image. The proposed study consists of four features extraction stages used to extract the important features from suspicious images, namely, Fractal Entropy (FrEp), local binary patterns (LBP), Skewness, and Kurtosis. The main advantage of FrEp is the ability to extract the texture information contained in the input image. Finally, the "support vector machine" (SVM) classification is used to classify images into either spliced or authentic. Comparative analysis shows that the proposed algorithm performs better than recent state-of-the-art of splicing detection methods.

Overall, the proposed algorithm achieves an ideal balance between performance, accuracy, and efficacy, which makes it suitable for real-world applications.

LIST	OF CONTENTS	PAGE NO
CERTIFICATE		I
ACK	NOWLEDGEMENT	II
ABS	ΓRACT	III
ABB	REVIATIONS	VIII
	<u>CHAPTER-1</u>	
INTI	RODUCTION	1-13
1.1	MATLAB DESIGN	2
1.2	HISTORY OF MATLAB	2
1.3	SOFTWARE TOOLS	3
	1.3.1 SOFTWARE REQUIRED	3
	1.3.2 INTRODUCTION TO MATLAB	3
	1.3.3 EXPRESSIONS	4
	1.3.4 HANDLING MATRICES	4
	1.3.5 ENTERING MATRICES AND ADDRESING THE ELEMENTS	4
	1.3.6 GENERATING MATRICES	5
	1.3.7 CONCATENATION	6
	1.3.8 FILE TYPES	6
	1.3.9 M- FILES	7
1.4	WORKING WITH MATLAB	8
1.5	.5 GRAPHICAL USER INTERFACE	
	1.5.1 AXES	9
	1.5.2 CREATION OF PUSH BUTTON	10
	1.5.3 GO FOR CALLBACK	10
	1.5.4 WRITE THE CODE BELOW CALLBACK	11
	1.5.5 RUN THE PROGRAM	12
1.6	PROGRAMMING GUI	12
1.7	APPLICATIONS	13
	CHAPTER-2	
EXISTING METHOD		14-20
2.1	2.1 DIFFERENT TYPES OF IMAGE FORGERY DETECTION	

2.2	PASSIVE APPROACH	15
	2.2.1 COPY MOVE FORGERY	16
	2.2.2 DCT,DWT	17
	2.2.3 SIFT,SURF	18
2.3	IMAGE RETOUCHING	19
	<u>CHAPTER-3</u>	
PRO	OPOSED METHOD	21-28
3.1	INTRODUCTION	22
3.2	IMAGE SPLICING	22
3.3	RELATED WORK	23
3.4	PROPOSED ENHANCEMENT METHOD	25
3.5	PREPROCESSING	25
3.6	FEATURE EXTRACTION	26
	3.6.1 FRACTAL ENTROPY FrEp	26
	3.6.2 LBP BASED FEATURES	27
	3.6.3 SKEWNESS	27
	3.6.4 KURTOSIS	28
3.7	PROPOSED ALGORITHM	28
	CHAPTER-4	
COI	DING FOR IMAGE FORGERY DETECTION	29-30
	<u>CHAPTER-5</u>	
FOI	RGED IMAGE DETECTED OUTPUT	31-32
	<u>CHAPTER-6</u>	
COI	NCLUSION AND FUTURE SCOPE	33-36
6.1	CONCLUSION	34
6.2	FUTURE SCOPE	35
6.3	REFERENCES	36

LIST OF FIGURES

FIG NO	FIG NAME	PAGE NO
1.5	GUI QUICK START	9
1.5.1	AXES	10
1.5.2	CREATION OF PUSH BUTTON	10
1.5.3	GO FOR CALLBACK	11
1.5.4	WRITE THE CODE BELOW CALLBACK	11
1.5.5	RUN THE PROGRAM	12
2.1	TYPES OF IMAGE FORGERY DETECTION	15
2.2.1.1	FLOW CHART OF CMFD DETECTION	17
2.2.3	EXAMPLE OF COPY MOVE FORGERY	19
2.3	EXAMPLE OF IMAGE RETOUCHING	20
3.2.1	STEPS OF IMAGE SPLICING	23
3.2.2	EXAMPLE OF IMAGE SPLICING FORGERY DETECTION	23
3.4	DIAGRAM DEPICTING THE PROPOSED METHOD	26
3.7	PROPOSED ALGORITHM	28
5.1	DETECTED OUTPUT 1	32
5.2	DETECTED OUTPUT 2	32

LIST OF ABBREVIATIONS

CHAPTER NO	ABBREVIATIONS	PAGE NO
1.5	(GUI) - Graphical User Interface	8
2.2.1	(PCA) - Principal Component analysis	16
2.2.1	(SVD) - Singular Value decomposition	16
2.2.2	(DCT) - Discrete Cosine Transform	17
2.2.2	(DWT) - Discrete Wavelet Transform	17
2.2.3	(SIFT) - Scale Invariant Features Transform	18
2.2.3	(SURF) - Speed up Robust Feature	18
3.6.2	(LBP) - Local Binary Pattern	27