

KS141203 MATEMATIKA DISKRIT (DISCRETE MATHEMATICS)

Functions

Ahmad Muklason, Ph.D.

Outline

- 1. Definition of function
- 2. Function arithmetic
- 3. One-to-one functions
- 4. Onto functions
- 5. Bijections

- 6. Identity functions
- 7. Inverse functions
- 8. Composition of functions
- 9. Some useful functions
- 10. Proofing problems

Definition of a function

A function takes an element from a set and maps it to a **UNIQUE** element in another set.

A class grade function

A string length function

Even More functions ©

Range

Some function...

Not a valid function!

Also not a valid function!

Function arithmetic

Let
$$f_1(x) = 2x$$

Let
$$f_2(x) = x^2$$

Let f_1 and f_2 are function from A to **R**.

Then $f_1 + f_2$ and $f_1 * f_2$ are also function from A to **R** defined by:

$$f_1 + f_2 = (f_1 + f_2)(x) = f_1(x) + f_2(x) = 2x + x^2$$

$$f_1 * f_2 = (f_1 * f_2)(x) = f_1(x) * f_2(x) = 2x * x^2 = 2x^3$$

One-to-one functions

A function $f: A \rightarrow B$ is one-to-one if each element in the co-domain has a unique pre-image

- f is one to one $\leftrightarrow \forall a \forall b [f(a) = f(b) \rightarrow a = b]$
- Or equivalently $\forall a \forall b [a \neq b \rightarrow f(a) \neq f(b)]$

A one-to-one function

A function that is not one-to-one

Injective is synonymous with one-to-one

A function is an injection if it is one-to-one

Meaning no 2 values map to the same result

Note that there can be un-used elements in the co-domain

A one-to-one function

Example

Determine whether the function $f(x) = x^2$ from **Z** to **Z** is one to one.

The function $f(x) = x^2$ is not one to one, because for instance f(1) = f(-1) = 1, but $1 \ne -1$.

Is the function f(x) = x + 1 one to one?

The function is one to one. (Note: $x + 1 \neq y + 1$ if $x \neq y$).

Onto functions

A function $f: A \rightarrow B$ is onto if each element in the co-domain is an image of some pre-image

• f is onto $\leftrightarrow \forall y \exists x [f(x) = y]$

An onto function

A function that is not onto

More on onto

Surjective is synonymous with onto

A function is an surjection if it is onto

Meaning all elements in the right are mapped to

Note that there can be multiply used elements in the co-domain

An onto function

Onto vs. one-to-one

Are the following functions onto, one-to-one, both, or neither?

1-to-1, not onto

Both 1-to-1 and onto

Neither 1-to-1 nor onto

Not a valid function

Onto vs. one-to-one

Suppose that $f: A \to B$.

To show that f is injective Show that if f(x) = f(y) for arbitrary $x, y \in A$ with $x \neq y$, then x = y.

To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y).

To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

Example

Determine whether the function $f(x) = x^2$ from **Z** to **Z** is onto.

The function $f(x) = x^2$ is not onto because there is no integer x with $x^2 = -1$ for instance.

Is the function f(x) = x + 1 onto?

The function is onto because for every integer y there is an integer x such that f(x) = y.

(Note: f(x) = y if and only if x + 1 = y, which holds if and only if x = y - 1)

Bijections

Consider a function that is both one-to-one and onto:

Such a function is a one-to-one correspondence, or a bijection

Identity functions

A function such that the image and the pre-image are ALWAYS equal

$$f(x) = 1 * x$$

$$f(x) = x + 0$$

The domain and the co-domain must be the same set

Let f be a one-to-one correspondence from the set A to the set B. The *inverse function* of f is the function that assigns to an element b belonging to B the unique element a in A such that f(a) = b. The inverse function of f is denoted by f^{-1} . Hence, $f^{-1}(b) = a$ when f(a) = b.

More on inverse functions

Can we define the inverse of the following functions?

What is $f^{-1}(2)$? Not onto!

What is f⁻¹(2)? Not 1-to-1!

An inverse function can ONLY be defined on a bijection

Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The composition of the functions f and g, denoted for all $a \in A$ by $f \circ g$, is defined by

$$(f \circ g)(a) = f(g(a)).$$

Does
$$f(g(x)) = g(f(x))$$
?

Let
$$f(x) = 2x+3$$
 Let $g(x) = 3x+2$
 $f(g(x)) = 2(3x+2)+3 = 6x+7$
 $g(f(x)) = 3(2x+3)+2 = 6x+11$ Not equal!

Function composition is not commutative!

Note: fungsi yang paling kanan dioperasikan paling awal, selanjutnya fungsi di samping kirinya, and so forth.

Useful functions

Floor: \[\ \ \ x \] means take the greatest integer less than or equal to the number

Ceiling: $\lceil x \rceil$ means take the lowest integer greater than or equal to the number

Round(
$$x$$
) = floor(x +0.5) = $\lfloor x$ +0.5 \rfloor

Find these values

 $\lfloor 1.1 \rfloor$

 $\lceil 1.1 \rceil$

L-0.1

[-0.1]

[2.99]

[-2.99]

\[\frac{1}{2} + \left[\frac{1}{2} \right] \]

 $\begin{bmatrix} 1/2 \end{bmatrix} + \begin{bmatrix} 1/2 \end{bmatrix} + \frac{1}{2} \end{bmatrix}$

1

2

-1

0

3

-2

$$\lfloor \frac{1}{2} + 1 \rfloor = \lfloor \frac{3}{2} \rfloor = 1$$

$$[0+1+\frac{1}{2}]=[\frac{3}{2}]=2$$

Ceiling and floor properties

Let *n* be an integer

(1a)
$$\lfloor x \rfloor = n$$
 if and only if $n \le x < n+1$

(1b)
$$\lceil x \rceil = n$$
 if and only if $n-1 < x \le n$

(1c)
$$\lfloor x \rfloor = n$$
 if and only if $x-1 < n \le x$

(1d)
$$\lceil x \rceil = n$$
 if and only if $x \le n < x+1$

$$(2) x-1 < \lfloor x \rfloor \le x \le = \lceil x \rceil < x+1$$

(3a)
$$\lfloor -x \rfloor = -\lceil x \rceil$$

(3b)
$$\lceil -x \rceil = - \lfloor x \rfloor$$

$$(4a) \qquad \lfloor x+n \rfloor = \lfloor x \rfloor + n$$

$$(4b) \qquad \lceil x+n \rceil = \lceil x \rceil + n$$

Ceiling property proof

Prove rule 4a: $\lfloor x+n \rfloor = \lfloor x \rfloor + n$

- Where *n* is an integer
- Will use rule $1a: \lfloor x \rfloor = n$ if and only if $n \le x < n+1$

Direct proof!

- Let $m = \lfloor x \rfloor$
- Thus, $m \le x < m+1$ (by rule 1a)
- Add n to both sides: $m+n \le x+n < m+n+1$
- By rule 4a, $m+n = \lfloor x+n \rfloor$
- Since $m = \lfloor x \rfloor$, m+n also equals $\lfloor x \rfloor + n$
- Thus, $\lfloor x \rfloor + n = m + n = \lfloor x + n \rfloor$

Proving function problems

Let f be an invertible function from Y to Z Let g be an invertible function from X to Y

Show that the inverse of $f \circ g$ is:

$$\circ$$
 (f o g)⁻¹ = g⁻¹ o f⁻¹

Proving function problems

Thus, we want to show, for all $z \in Z$ and $x \in X$

$$((f \circ g) \circ (g^{-1} \circ f^{-1}))(z) = z$$

$$((g^{-1} \circ f^{-1}) \circ (f \circ g))(x) = x$$

$$((f \circ g) \circ (g^{-1} \circ f^{-1}))(z) = (f \circ g)((g^{-1} \circ f^{-1})(z))$$

$$= (f \circ g)(g^{-1}(f^{-1}(z)))$$

$$= f(g(g^{-1}(f^{-1}(z)))$$

$$= f(f^{-1}(z))$$

$$= z$$

The second equality is similar

When the composition of a function and its inverse is formed, in either order, an identity function is obtained.

Suppose that f is a one-to-one correspondence from the set A to the set B. Then the inverse function f^{-1} exists and is a one-to-one correspondence from B to A.

The inverse function reverses the correspondence of the original function, so $f^{-1}(b)=a$ when f(a)=b, and f(a)=b when $f^{-1}(b)=a$. Hence,

$$(f^{-1} \circ f)(a) = f^{-1}(f(a)) = f^{-1}(b) = a,$$

and
 $(f \circ f^{-1})(b) = f(f^{-1}(b)) = f(a) = b.$

Exercise

Determine whether function from Z to Z is onto if f(m, n) = m + n.

Show that the function f(x) = |x| from the set of real numbers to the set of non-negative real numbers is not invertible, but if the domain is restricted to the set of non-negative real numbers the function is invertible.