Data Science in Bioinformatics week.02.remember.your.statistics.class

Palle Villesen & Thomas Bataillon

Outline for week 02

- Any questions from last week?
- Basic statistics
 - Most data are samples
 - Describing data
 - Descriptive statistics of a sample
 - Displaying data
 - Sampling with uncertainty
 - Sampling distributions

Population VS SUNKNOWN KI

- Virtually infinite
- Parameters
- Probability distribution

sample KNOWN

- n obs: x₁, x₂, ...x_n
- Parameter estimates
- Sampling distribution

Biased sample: "High-rise syndrome"

Number of stories fallen

Biased sample

What if the blue balls are more slippery than the others? ...

Bullet holes in returning planes in WWII

How would you enforce the planes?

EVERY INSPIRATIONAL SPEECH BY SOMEONE SUCCESSFUL SHOULD HAVE TO START WITH A DISCLAIMER ABOUT SURVIVORSHIP BIAS.

Displaying data

What is best?

What is best?

What is best?

Displaying data

 If is really difficult in ggplot, then it is probably a bad idea

Describing data

- Arithmetic mean = average
- Standard deviation (compares all observations with mean)
- Median = 50% quantile
- IQR (75% quantile 25% quantile)

Present a case where one is really bad

Life expectancy is a mean

Standard deviation

$$s = \sqrt{\frac{\sum (Y_i - \overline{Y})^2}{n-1}}$$

Median absolute deviation

$$\mathrm{MAD} = \mathrm{median}(\ |X_i - \mathrm{median}(X)| \),$$

Exercise

Make a small dataset with 3 outliers:

```
x = c(70:90,1000,1100,1200)
```

Calculate mean and median

```
mean(x)
median(x)
```

Calculate sd, iqr and mad

```
sd(x)
quantile(x)
mad(x)
```

Conclusions?

Distribution of the data: boxplots

Distribution of the data: histograms

Outliers

- Outliers:
 - Influence mean and sd

- Median and iqr are more robust
 - Median is a single data point
 - iqr only use half of the data

Bodymass of mammals Discuss and present

Estimating with uncertainty

Keywords

- We want to say something about the population
- But we only have a sample
- So the sample estimate is different from the true value because of sampling error
- The sampling distribution is the distribution of estimate from different samples
- The standard error is the standard deviation of the sampling distribution
- Confidence intervals on the estimate
 - The 2SE rule of thumb
 - Bootstrap (chapter 19)

All genes

df <- read_csv(file =
"chap04e1HumanGeneLengths.csv")</pre>

set.seed(0)
dfsub <- df %>% sample_n(size = 100)

- df <- read_csv(file="chap04e1HumanGeneLengths.csv")
- Replicate figure 4.1-3
 - the sampling distribution of the mean for n=100
- Replicate figure 4.1-4
 - the sampling distribution of the mean for n=20,
 n=100 and n=500
- Calculate standard error from your samples (n=20, n=100, n=500)
- Compare with table 4.2-1

```
set.seed(0)
r <- data.frame() %>% tbl_df()
for (i in 1:10000) {
   dfsub = df %>% sample_n(size = 100)
   r <- rbind(r, data.frame(n = nrow(dfsub), gene.mean = mean(dfsub$geneLength)))
}</pre>
```

GROUP WORK

