(b) This can be deduced easily from (a) as follows: If $Ah = (\alpha + i\beta)h$, $A|h| = \alpha|h|$, then we have by A-III,Cor.6.4: $e^{-\alpha t}T(t)h = e^{i\beta t}h$ and $e^{-\alpha t}T(t)|h| = |h|$ for every $t \ge 0$. Hence by (a) $e^{-\alpha t}T(t)h^{[n]} = e^{in\beta t}h^{[n]}$ ($t \ge 0$, $n \in \mathbb{Z}$), which is equivalent to $Ah^{[n]} = (\alpha + in\beta)h^{[n]}$. If h does not have zeros, then $e^{-\alpha t}T(t) = e^{-\alpha t}e^{i\beta t}S_h^{-1}T(t)S_h$ for every $t \ge 0$ which is equivalent to the final statement of (b).

Before we state a first cyclicity result we give the definition and illustrate it by some examples.

<u>Definition</u> 2.5. A subset $M \subset \mathbb{C}$ is called <u>imaginary additively</u> <u>cyclic</u> (or simply <u>cyclic</u>), if it satisfies the following condition: $\alpha + i\beta \in M$, $\alpha, \beta \in \mathbb{R}$ implies that $\alpha + ik\beta \in M$ for every $k \in \mathbb{Z}$.

Every subset of $\mathbb R$ is cyclic. On the other hand, if M is cyclic and M $\not\subset \mathbb R$, then M has to be unbounded.

For a subset M of $i\mathbb{R}$ we give the following equivalent conditions:

- (i) M is imaginary additively cyclic;
- (ii) M is the union of (additive) subgroups of $i\mathbb{R}$;
- (iii) $M = \bigcup_{\alpha \in S} i\alpha \mathbb{Z}$ for some set $S \subset \mathbb{R}$.

Here are some concrete cyclic subsets of iR:

In the following we consider the boundary spectrum of several semigroups. The letter $\rm M_i$ refers to the sets just defined.

Examples 2.6.(a) For the Laplacian Δ on \mathbb{R}^n or the second derivative on [0,1] with Neumann boundary conditions the boundary spectrum is M_1 .

- (b) The first derivative on $\mathbb R$ or $\mathbb R_+$ is an example where the boundary spectrum of the generator is M_2 .
- (c) The rotation semigroup on C(r) (see A-III,Ex.5.6) with period $2\pi/\alpha$ has boundary spectrum M_{3} .