第十八章 光的衍射

_	选择题
---	-----

远的是()

	匹]丰	赵									
妙		平行单色光垂 单缝处波面相						F屏上 P	点处	为第 2 约	级暗
汉,						•	· ·		_	- A	
	A.	一个	B.	两个		C.	三个		D.	四个	
	解:	暗纹条件:	$a\sin\theta = 1$	$\pm (2k\frac{\lambda}{2}), k =$	= 1,2,3	, k	=2,所以 2	k=4°			
		故本题答案法	力 D。								
	•) 中 公司X平 //	v⁄z 1. →	+ <i>kk</i> -	1 /河 11文 / 会 4.4 /	는 FE 크나는	· ムム なこ	白. 4. 4.	0 1
		皮长为λ的单位 			 连上,	了另 .	I 级暗纹的/	丛直 刈 巡	. H.J.14.1	别用力(θ =±
π	/6,	则缝宽的大小	〉为()							
	A.	$\lambda/2$	B.	λ		C.	2λ	Γ) . 3	λ	
	677		. λ			π	ee id	π .	λ		
	解:	$a\sin\theta = \pm (2a)$	(k-1), k = 1	1,2,3 k =	$\pm 1, \theta = \pm$	$\frac{-}{6}$	所以 a sin(=	$(\pm \frac{\pi}{6}) = \pm 2$	$2 \times \frac{1}{2}$	$\therefore a = 2.$	λ .
			2			U		O			
		、题答案为 C。									
	3.	一宇航员在1	60km 高3	空,恰好飠		也面上	二两个发射》	支长为 55	50nm	的点光	源,
假定宇航员的瞳孔直径为 5.0mm, 此两点光源的间距为 ()											
	Α	21.5m	В	10.5m		C	31.0m	Ī) 4	2.0m	
							31.011	•		2.0111	
	解:	$\theta_1 = 1.22 \frac{\lambda}{D} =$	$=\frac{\Delta x}{h}, \therefore \Delta$	$x = 1.22 \frac{\lambda}{D}$	h = 21.5	5m 。					
	本題	题答案为 A。									
		波长 <i>λ</i> =550nm	的角色	火	十二十十	11世米	tr J_2∨10-4	·am 的亚	而公司	计水畑	ㄴ
→ ∧					1 J J L/W	1 市 刻	$u=2 \wedge 10$	CIII [I] [田刊1	カリノしイスルリ _	т,
可自	包观务	科到的光谱线)						
	A.	2	B. 3		C.	4		D. 5			
	解:	$d\sin\theta=k\lambda,$	$k = \frac{d\sin x}{\lambda}$	$\frac{n \theta}{d} = 3.64$	k 的可	能最	大值对应s	$\sin \theta = 1$,	所以	$\lfloor k \rfloor = 3$	0
	故本	、题答案为 B。									
		一束单色光垂		1 平面光柵	上上流	射光	一连由土虫亚	17 5 条	旧经	- 若已	tu III
Alv Tu											
光제	掛缝 克	医度与不透明的							,,)
	A.	1级	В.	2级		C.	3级	D.	4 \$	及	
	解:	$d\sin\theta = \pm k\lambda$	$1, \frac{a+b}{a} =$	2, 因此±2	,±4,±6	.等组	及缺级。衍身	付光谱中	共出	现了5	条明
纹,	所以	$\downarrow k = \pm 3, \pm 1, 0 ,$	那么在	中央明纹-	一侧的第	有二条	条明纹是第	3级。			
		、题答案为 C。									
		一束白光垂直		一光栅上,	在形成	的同]一级光栅;	光谱中,	偏离	中央明纪	汶最

A. 紫光

B. 绿光

C.黄光 D. 红光

解: 本题答案为 D

7. 测量单色光的波长时,下列方法中哪一种最为准确(

A. 光栅衍射 B. 单缝衍射 C. 双缝干涉 D. 牛顿环

解: 本题答案为 A

8. X 射线投射到间距为 d 的平行点阵平面的晶体中,发生布拉格晶体衍射的最大 波长为(

A. d/4

B. d/2

C. d

D. 2d

解:最大波长对应最大掠射角 90° 和最小级数 k=1。根据布拉格公式易知: 本题答案为 D

二 填空题

1. 波长为 λ 的单色光垂直照射在缝宽为 $\alpha=4\lambda$ 的单缝上,对应 $\theta=30$ °衍射角,单缝处 的波面可划分为 半波带,对应的屏上条纹为 纹。

解: $a \sin \theta = 4\lambda \sin 30^0 = 2\lambda = 4 \times \frac{\lambda}{2}$, 所以可划分为 4 个半波带,且为暗纹。

2. 在单缝衍射中,衍射角 θ 越大,所对应的明条纹亮度 ,衍射明条纹的角 宽度 (中央明条纹除外)。

解: 越小: 不变。

3. 平行单色光垂直入射在缝宽为 a=0.15mm 的单缝上,缝后有焦距 f=400mm 的凸 透镜,在其焦平面上放置观察屏幕,现测得屏幕中央明条纹两侧的两个第3级暗纹之间 的距离为 8mm,则入射光的波长为λ= ____。

解:
$$a \sin \theta = 2k \frac{\lambda}{2}, k = 3, \sin \theta = \frac{3\lambda}{a} = \frac{x}{f}$$

$$\lambda = \frac{ax}{3f} = \frac{1.5 \times 10^{-4} \times 4 \times 10^{-3}}{3 \times 400 \times 10^{-3}} = 500 \text{ nm}$$

4. 在单缝实验中,如果上下平行移动单缝的位置,衍射条纹的位置。

解: 衍射条纹的位置是由衍射角决定的, 因此上下移动单缝, 条纹位置不会变化。

5. 一个人在夜晚用肉眼恰能分辨 10 公里外的山上的两个点光源(光源的波长取为 λ=550nm)。假定此人眼瞳孔直径为 5.0 mm,则此两点光源的间距为。。

解:
$$\theta_1 = 1.22 \frac{\lambda}{D} = \frac{\Delta x}{h}$$

所以
$$\Delta x = 1.22 \frac{\lambda}{D} h = \frac{1.22 \times 550 \times 10^{-9} \times 10 \times 10^{3}}{5.0 \times 10^{-3}} = 1.342 \,\mathrm{m}$$
。

6. 已知天空中两颗星相对于一望远镜的角距离为 4.84×10⁻⁶ rad, 它们发出的光波波 长为 550nm, 为了能分辨出这两颗星,望远镜物镜的口径至少应为 0.139m 。

解:
$$D = 1.22 \frac{\lambda}{\theta_1} = 0.139 \,\mathrm{m}$$

7. 平行单色光垂直入射到平面衍射光栅上,若增大光栅常数,则衍射图样中明条纹的间距将_____。

解:
$$d \sin \theta = \pm k\lambda$$
, $\theta \sim \sin \theta \sim \tan \theta \sim \frac{x}{f}$

所以d增大, θ 变小,间距变小; λ 增大, θ 变大,间距变大。

8. 波长为 500nm 的平行单色光垂直入射在光栅常数为 2×10^{-3} mm 的光栅上,光栅透光缝宽度为 1×10^{-3} mm,则第_____级主极大缺级,屏上将出现_____条明条纹。

解:
$$a = 1 \times 10^{-3}$$
 mm, $d = 2 \times 10^{-3}$ mm, $\frac{d}{a} = 2$; 故第 2 级主极大缺级;

 $d\sin\theta = k\lambda$, 当 $\sin\theta = 1$ 时, $k_{\max} = \frac{d}{\lambda} = 4$; 故屏上将出现 $k=0,\pm 1,\pm 3$ 共 5 条明条纹。

9. 一束具有两种波长的平行光入射到某个光栅上, λ_1 =450nm, λ_2 =600nm,两种波长的谱线第二次重合时(不计中央明纹), λ_1 的光为第____级主极大, λ_2 的光为第____级主极大。

解: 重合时,
$$d\sin\theta = k_1\lambda_1 = k_2\lambda_2$$
, $\frac{\lambda_1}{\lambda_2} = \frac{k_2}{k_1} = \frac{3}{4}$

 k_1 、 k_2 为整数又是第2次重合,所以 $k_1=8$, $k_2=6$ 。

10. 用 X 射线分析晶体的晶格常数, 所用 X 射线波长为 0.1nm。在偏离入射线 60° 角方向上看到第 2 级反射极大,则掠射角为______, 晶格常数为_____。

解: 30°; 0.2nm

三 计算题

1. 在单缝衍射实验中,透镜焦距为 0.5m,入射光波长 $\lambda = 500$ nm,缝宽 a = 0.1mm。 求: (1) 中央明条纹宽度; (2) 第 1 级明条纹宽度。

解:(1)中央明条纹宽度

$$\Delta x_0 = 2f \tan \theta_0 \approx 2f \frac{\lambda}{a} = \frac{2 \times 0.5 \times 500 \times 10^{-9}}{0.1 \times 10^{-3}} = 5 \times 10^{-3} \text{m} = 5 \text{mm}$$

(2) 第1级明条纹宽度为第1级暗条纹和第2级暗条纹间的距离

$$\Delta x_1 = f \tan \theta_2 - f \tan \theta_1 = f(\frac{2\lambda}{a} - \frac{\lambda}{a}) = \frac{f\lambda}{a} = 2.5 \text{mm}$$

2. 在单缝夫琅禾费衍射实验中,第1级暗条纹的衍射角为0.4°,求第2级亮条纹的衍射角。

解:由亮条纹条件
$$a \sin \theta = (2k+1) \lambda / 2 \pi k = 2$$
 得

$$a \sin \theta_2 = 5\lambda / 2$$

由暗条纹条件 $a \sin \theta_1 = (2k) \lambda/2$ 和 k = 1 得

 $a \sin \theta_1 = \lambda$

故

 $\sin\theta_2/\sin\theta_1=5/2$

衍射角一般很小, $\sin\theta \approx \theta$, 得 $\theta_2=5/2\theta_1=1^\circ$

3. 假若侦察卫星上的照相机能清楚地识别地面上汽车的牌照号码。如果牌照上的笔划间的距离为 4cm,在 150km 高空的卫星上的照相机的最小分辨角应多大? 此照相机的孔径需要多大? 光波的波长按 500nm 计算。

解: 最小分辨角应为

$$\theta_1 = \frac{d}{l} = \frac{4 \times 10^{-2}}{150 \times 10^3} = 2.67 \times 10^{-7} \text{ rad}$$

照相机的孔径为

$$D = 1.22 \frac{\lambda}{\theta_1} = 1.22 \times \frac{500 \times 10^{-9} \text{ m}}{2.67 \times 10^{-7}} = 2.28 \text{ m}$$

4. 毫米波雷达发出的波束比常用的雷达波束窄,这使得毫米波雷达不易受到反雷达导弹的袭击。(1) 有一毫米波雷达,其圆形天线直径为 55cm,发射波长为 1.36mm 的毫米波,试计算其波束的角宽度。(2) 将此结果与普通船用雷达的波束的角宽度进行比较,设船用雷达波长为 1.57cm,圆形天线直径为 2.33m。

(提示: 雷达发射的波是由圆形天线发射出去的,可以将之看成是从圆孔衍射出去的波,其能量主要集中在艾里斑的范围内,故雷达波束的角宽度就是艾里斑的角宽度。)

解:(1)根据提示,雷达波束的角宽度就是艾里斑的角宽度。根据(18.3.3)式,艾里斑的角宽度为

$$2\theta_1 = 2.44 \frac{\lambda_1}{D_1} = 2.44 \times \frac{1.36 \times 10^{-3} m}{0.55} = 0.00603 \text{rad}$$

(2) 同理可算出船用雷达波束的角宽度为

$$2\theta_1 = 2.44 \frac{\lambda_2}{D_2} = 2.44 \times \frac{1.57 \times 10^{-2} m}{2.33} = 0.0164 \text{rad}$$

对比可见,尽管毫米波雷达天线直径较小,但其发射的波束角宽度仍然小于厘米波雷达波束的角宽度,原因就是毫米波的波长较短。

5. 一東具有两种波长 λ_1 和 λ_2 的平行光垂直照射到一个衍射光栅上,测得波长 λ_1 的第 3 级主极大与 λ_2 的第 4 级主极大衍射角均为 30°,已知 λ_1 =560nm,求:(1)光栅常数 d;(2)波长 λ_2 。

解:(1)由光栅衍射明纹公式

 $d\sin\theta = k\lambda$

$$d = k\lambda / \sin\theta = 3 \times 5.6 \times 10^{-7} \,\mathrm{m} / \sin 30^{\circ} = 3.36 \times 10^{-6} \,\mathrm{m}$$

 $(2) d\sin 30^\circ = 4\lambda_2$

$$\lambda_2 = d \sin 30^{\circ} / 4 = 420 \text{ nm}$$

6. 一个每毫米 500 条缝的光栅,用钠黄光垂直入射,观察衍射光谱,钠黄光包含两条谱线,其波长分别为 589.6nm 和 589.0nm。求第 2 级光谱中这两条谱线互相分离的

角度。

解: 光栅公式: $d\sin\theta = k\lambda$

 $d = 1 \text{ mm} / 500 = 2 \times 10^{-3} \text{ mm}$

 $\lambda_1 = 589.6 \text{ nm} = 5.896 \times 10^{-4} \text{mm}$

 $\lambda_2 = 589.0 \text{ nm} = 5.890 \times 10^{-4} \text{mm}$

因为 k=2

所以 $\sin \theta_1 = k \lambda_1 / d = 0.5896$

 $\theta_1 = \sin^{-1}0.5896 = 36.129^{\circ}$

 $\sin \theta_2 = k \lambda / d = 0.5890$

 $\theta_2 = \sin^{-1}0.5890 = 36.086^{\circ}$

所以 $\Delta\theta = \theta_1 - \theta_2 = 0.043^\circ$

7. 平行光含有两种波长 λ_1 = 400.0nm, λ_2 =760.0nm,垂直入射在光栅常数 $d = 1.0 \times 10^{-3}$ cm 的光栅上,透镜焦距 f = 50 cm,求屏上两种光第 1 级衍射明纹中心之间的距离。

解: 由光栅衍射主极大的公式

 $d \sin \theta_1 = k \lambda_1 = 1 \lambda_1$

 $d \sin \theta_2 = k\lambda_2 = 1\lambda_2$

 $x_1 = f \operatorname{tg} \theta_1 \approx f \sin \theta_1 = f \lambda_1 / d$

 $x_2 = f \operatorname{tg} \theta_2 \approx f \sin \theta_2 = f \lambda_2 / d$

 $\Delta x = x_2 - x_1 = 1.8$ cm

8. 波长 λ =700nm 的单色光,垂直入射在平面透射光栅上,光栅常数为 3×10^{-6} m,试问: (1) 最多能看到第几级衍射明条纹? (2) 若缝宽 0.001mm,第几级条纹缺级?

解: (1) 由光栅方程 $d \sin \theta = k\lambda$ 可得: $k = d \sin \theta / \lambda$

可见 k 的可能最大值对应 $\sin\theta=1$ 。将 d 及 λ 值代入上式,并设 $\sin\theta=1$,得

$$k = \frac{3 \times 10^{-6}}{700 \times 10^{-9}} = 4.28$$

k 只能取整数,故取 k=4,即垂直入射时最多能看到第 4 级条纹。

(2) 当 d 和 a 的比为整数比 $\frac{d}{a} = \frac{k}{k'}$ 时,k 级出现缺级。题中 $d=3\times10^{-6}$ m, $a=1\times10^{-6}$ m, $a=1\times$

 10^{-6} m, 因此 d/a = 3, 故缺级的级数为 3, 6, 9...。

又因 $k \leq 4$,所以实际上只能观察到第3级缺级。

9. 白光(λ_{s} = 400.0nm, λ_{s} =760.0nm)垂直入射到每厘米有 4000 条缝的光栅,试求利用此光栅可以产生多少级完整的光谱?

解: 对第 k 级光谱,角位置的范围从 θ_{k} 数到 θ_{k} 要产生完整的光谱,即要求 λ_{k} 的第 (k+1) 级纹在 λ_{k} 的第 k 级条纹之后,亦即

$$\theta_{k}$$
 $\leq \theta_{(k+1)}$ \sharp

根据光栅方程 $d \sin \theta = k \lambda$, 得

$$d\sin\theta_{k+1} = k\lambda_{k+1}$$

$$d\sin\theta_{(k+1)} = (k+1) \lambda_{\$}$$

由以上三式得到

$$k\lambda_{\text{LL}} < (k+1) \lambda_{\text{K}}$$

760 $k < 400(k+1)$

所以只有 k=1 才满足上式,所以只能产生一级完整的可见光谱,而第 2 级和第 3 级光谱即有重叠出现。