(OLLISIONS IN PLASMAS (UN MAGNETIZED)

1. HEAD ON COLLISION

CLOSEST DISTANCE TWO CHARGE PARTICLE CAN APPYOACH.

- 10 Two electrons moving in opposite direction. heading towards each other.
- @ each have K.E.: 1 my2
- the interaction force between them: For (Coulomb interaction) which will slow them down.

At the closest approach (Po)

K.E. (Tot) -> Interaction potential energy.

$$2 \times K.E = mv^2 = Fc = \frac{e^2}{4\pi6P_0}$$

$$=) mv^2 = \frac{e^2}{4\pi6\rho_0}$$

For head on collision with two moving electron the closest approach

1.A.

IF A MOVING CHARGE COLLIDES WITH A STATONARY CHARGE OF SAME KIND (MAG)

Similarly,

$$K.E_{(TOT)} = Fc$$

$$=) \frac{1}{2} mv^{2} = \frac{1}{2} \frac{e^{2}}{2\pi 60} \frac{e^{2}}{e^{2}}$$

$$=) mv^{2} = \frac{e^{2}}{2\pi 60} \frac{e^{2}}{e^{2}}$$

The closest approach in this case,

 $\lambda_D = \sqrt{\frac{6\kappa T}{2m}}$

Now, having a collection of charge particle, the most probable velocity would be the thermal Velocity.

So approximately, eqn. (1) can be written

$$p_0 = \frac{e^2}{4\pi f_0 \kappa T}$$

$$= \frac{1}{4\pi} \times \frac{e^{2\pi}}{6nkT} \times \frac{1}{n}$$

$$N_{p} = n \lambda_{p}^{3}$$

$$= \frac{1}{4\pi} \frac{1}{\lambda_D^2} \times \frac{\lambda_D^2}{N_P}$$

$$b_0 = \frac{\lambda_D}{4\pi N_P} < < \lambda_D$$

Since, NP>>1

So, the closest approach (Po) is much Smaller than the debye length.

Hence, the debye sphere is uniformly filled with electrons.

If Np ≤ 1, one electron does not gets closer to another in a debye sphere. As a result debye sphere will end up like voids.

2. GLANCING COLLISION:

b - impact parameter

The movement of the particle 2 can either be considered stationary or otherwise based on the frame of reference.

CENTER OF MASS COORDINATE

$$\overrightarrow{R} = \underbrace{M_1 \overrightarrow{r}_1 + M_2 \overrightarrow{r}_2}_{M_1 + M_2}$$

position

$$\vec{U} = \frac{m_1 \vec{u}_1 + m_2 \vec{u}_2}{m_1 + m_2}$$

velo aty

$$M_{\mathcal{R}} = \frac{m_1 m_2}{m_1 + m_2}$$

many (reduced)

Collision in CENTER OF MASS

@ ELECTRON - ION COLLISION !

- collision of electron with ion will change both the direction and magnitude of electron velocity.
- The electron will only stort interacting with ions once they enter the sphere of influence.

The electron will only interact for a limited time.

The time of interaction (7)

$$T \approx \frac{b}{v} = \frac{impact parameter}{impact velocity}$$

Now, the change in electrons momentum,

$$\Delta(mv) = |F_c \cdot \gamma| \approx \frac{e^2}{4\pi \epsilon_0 b v}$$

(Coulomb) $F_c = \frac{1}{4\pi \epsilon_0} \frac{e^2}{v^2}$ impact param

Force

For collision $v \sim b$

LARGE ANGE SCATTERING

WHEN & > 90°

For
$$d \approx 90^{\circ}$$

$$= \frac{e^{2}}{4\pi 60}$$

$$= \frac{e^{2}}{$$

$$\Delta(mv) = 2mv \rightarrow P_{180} \approx \frac{e^2}{r}$$

(ROSS SECTION (COLLISIONAL)

$$\lambda_{b} = \sqrt{\frac{f_{o}KT}{e^{2}n}}$$

$$N_{p} = n\lambda_{b}^{3}$$

$$=\frac{1}{16\pi}\left(\frac{e^2n}{6\kappa T}\right) \times \frac{1}{n^2}$$

$$\beta_{90} = \frac{1}{16\pi} \left(\frac{\lambda_D}{N_P} \right)^{\gamma}$$

The effective area of interaction is the collisional cross section.

If thickness is dz

$$\frac{\Gamma - (\Gamma + d\Gamma)}{\Gamma} = N \cdot 6 \cdot \frac{1}{A} = dz \cdot m_{\varsigma} \cdot 6$$

$$=) \frac{d\Gamma}{\Gamma} = dzn_s \delta$$

& Flux decays exportentially with the thickness of the slab.

MEAN FREE PATH

$$\mathcal{L}_{\varsigma} \simeq \left(\frac{1}{n_{\varsigma}}\right)^{\frac{1}{3}}$$

- Mean distance between particle. (Atso

last class)

REVISITING COLLISION CROSS SECTION

$$\delta_{90} = \pi p_{90} \approx \frac{e^4}{16\pi \epsilon_0^2 m^2 u^4} = \frac{1}{16\pi} \left(\frac{\lambda_0}{N_P}\right)^2$$

MEAN FREE PATH

$$l_{c} = \frac{1}{n \delta_{q_{D}}} = 16\pi \lambda_{p} N_{p}$$

$$N_p = n \lambda_0^3$$

COLLISION FREQUENCY

$$\int_{ei} = n \cdot \delta_{qi} u = n \cdot \frac{1}{16\pi} \cdot \left(\frac{\lambda_D}{N_P}\right)^{\gamma} \cdot u$$

$$= ne^4 \qquad \text{When the sum of the properties of the$$

$$= \frac{ne^{2}}{6m} \cdot \frac{e^{2}}{16\pi 6mu^{3}} = \int_{e_{1}}^{\infty} \frac{\omega_{Pe}}{N_{P}}$$

$$= \frac{\omega_{Pe}}{\omega_{Pe}} \cdot \frac{e^{2}}{e^{2}} \cdot \frac{\omega_{Pe}}{N_{P}}$$

$$|\omega_{Pe}| = \sqrt{\frac{e^{2}n_{e}}{f_{o}m_{e}}} \rightarrow u = \omega_{Pe} \lambda_{D}$$

$$|\lambda_{D}| = \sqrt{\frac{f_{o}\kappa_{T}}{e^{2}n}} \qquad mu' = \kappa_{T}$$

$$|mu'| = \kappa_{T}$$

$$\gamma = \frac{m}{ne^2} \int_{e_i}^{e_i} = \frac{e^2}{16\pi \epsilon^2 mu^3}$$

more collision -> more resistivity

TO CONSIDER SMALL ANGLE COLLISION (NON-TRIVIAL)

Using SPITZER LOGARITHM WE can approximate Such contribution.

Small

Now, le becomes.

le =
$$\frac{1}{n \delta_{90} \text{ m/l}}$$

MEAN TIME BETWEEN COLLISION

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} = \frac{\partial$$

HOW TO DEFINE A COLLISIONLESS PLASMA

- @ Either the system length hus to be Smaller them mean free path (dc)
- 1 Plasma measurements are smaller in time scale composed to Tc.

For large NP.

n-1/3

Alarg. < to << le

Larg. < le

Joe le

PLASNA RESISTIVITY (MAIN CONTRIBUTOR)

- 1) UNMAGNETIZED, STATIONARY CASE ONLY MOVING ELECTRON.
 - 1D IONS STATIONARY
 - 3) IF MAG. FIELD, IT'S ASSUMED TO BE PARALLEL TO ELECTRON MOVEMENT

CURRENT (7):
$$\vec{j} = -en\vec{u}$$

=)
$$j_x = -enu_x$$

$$= \frac{1}{2} m \frac{du_x}{dt} = 9 E_x$$

Because of the registance, we assume some monventum will be lost per unit time. This locs is counted by adding to the momentum equation.

For steady state:

$$=) \quad 9E = muSc = mu \frac{\omega_{Pe}}{N_{P}}$$

$$=) U = - \frac{e NP}{m \omega_{Pe}} E$$

$$= \frac{e^2 \eta}{m \omega_{p_e}} N_p E$$

y & Conductivity.

$$\frac{3}{2} = \frac{e^2n}{mv_e} = \frac{\omega_{Pe}^2 + o}{v_c}$$

CONDUCTIVITY

Vi = Wp Np

$$\xi = \frac{1}{6} = \frac{1}{N_p \omega_{pe} \epsilon_0}$$

CONSIDERING SMALL ANGLE SCATTERING

$$\xi = \frac{e^{\sqrt{m}}}{16\pi6(KT)^{3/2}} \cdot m \Lambda$$

1 = 127 Np

While this tells that RESISTIVITY does not depend on density, in actual, adding SPITZER LOGARITHM we can see it actually depends upon density. weakly.

REVIEW OF FUNDAMENTAL LENGTH STALE IN PLASMA

Distance of Closest approach for 90' scatter

o Avg.
o interparticle
spacing

Debye Shielding Laughy

Avo. Mean Fra pakn

b

i n

0

· Amfp

Np -1

· Np-1/2

1

 λ_{D}

· Np WNp

10-6

. 10

1

° 10⁵