Max Planck Institut za Gravitacijsku fiziku Grupa za kontrolu kvantne kvalitete Pregled optomehanike Doktorski studij

Adrian Udovičić

Sažetak

Key words:

SADRŽAJ

1	Osnovna svojstva	_ 1
	Osnovna svojstva optičkih rezonatora	1
	Ulazno-Izlazni formalizam optičke šupljine	. 2
2	Mehanički rezonatori	
2		3

1 OSNOVNA SVOJSTVA 1

1 Osnovna svojstva

1.1 Osnovna svojstva optičkih rezonatora

Gledamo prvo klasični odziv jednostavne Fabry-Perot (FP) rezonirajuće komore. FP rezonantna šupljina sastoji se od dva visoko reflektivna zrcala udaljena L jedno od drugog, i niz rezonancija dane s kružnom frekvencijom $\omega_{cav,m} \approx \frac{m\pi c}{L}$. Ovdje je m cijeli broj koji označava vibracijski mod. Razmak između dva logitudinalna rezonantna moda je dan s

$$\delta\omega_{FSR} = \pi \frac{c}{L},$$

gdje $\delta\omega_{FSR}$ označava slobodni spektralni raspon, odnosno raspon frekvencija kojim naš rezonator ne vibrira. Konačna transparentnost zrcala i interna absorpcija ili raspršenje van rezonantne šupljine dovode do konačnog fotonske stope istjecaja κ . Korisna je znati i optičku finesa (eng. finess) \mathcal{F} naše šupljine koja obilježava srednji broj refleksija fotona prije nego izađe iz šupljine. Dana je s

(1.2)
$$\mathcal{F} = \frac{\delta \omega_{FSR}}{\kappa}.$$

Optička finesa je bitna za određivanje snage unutar komore. Također možemo uvesti faktor kvalitete za optički rezonator dan pomoću

$$Q_{opt} = \omega_{cav} \tau.$$

Bilješka

Recimo da je snaga lasera za pumpanje komore prije ulaska u komoru 1W. Recimo da je reflektivnost visoko reflektivnih zrcala 0,99999. U komoru će ući $(1-1\cdot 0,99999)$ W snage zračenja. Ako je $\mathcal{F}=100000$ snaga zračenenja u komori će biti $(1-1\cdot 0,99999)\cdot 100000=1W$ prije nego iscjedi zračenje iz komore u vremenu $\kappa^{-1}=\tau$, što je u ovom primjeru isto kao i snaga ulaznog zračenja.

Općenito stopa istjecanja κ može imati dva doprinosa: Od korisnog ulaznog (izlaznog) vezanja (κ_{ex}) i od unutarnjih gubitaka (κ_0). Tako da možemo pisati

(1.4)
$$\kappa = \kappa_{ex} + \kappa_0.$$

1 OSNOVNA SVOJSTVA 2

1.2 Ulazno-Izlazni formalizam optičke šupljine

Kvantno mehanički opis rezonantne šupljine vezane za vanjsko elektromagnetsko zračenje može se dati ili koristeći tzv. *Master* jednadžbe (ako nas zanima samo unutarnja dinamika) ili, ako želimo saznati EM polje emitiranog (reflektiranog) zračenja u šupljini, pomoću ulazno-izlaznog formalizma. Taj formalizam nam dopušta modeliranje kvantnih fluktuacija iz bilo kojeg terminala vezanja (npr. ulazno zrcalo) šupljine. Također se uzima u obzir koherentno zračenje kojim "guramo" sustav[‡].

[‡]Baciti oko na [1] i [2].

- 2 Mehanički rezonatori
- 2.1 Mehanički Normalni Modovi
- 2.2 Mehanička disipacija

LITERATURA 4

Literatura

[1] C. W. Gardiner and P. Zoller, Quantum Noise: A handbook of markovian and non-Markovian Quantum stochastic methods with applications to Quantum Optics. Springer, 2004.

[2] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, "Introduction to quantum noise, measurement, and amplification," *Reviews of Modern Physics*, vol. 82, no. 2, p. 1155–1208, 2010.

Popis tablica

Popis slika