

<u>Gameboard</u>

Maths

Area Between Two Curves 3i

Area Between Two Curves 3i

Figure 1 shows parts of the curves $y=11-x-2x^2$ and $y=\frac{8}{x^3}$.

Figure 1: Parts of the curves $y=11-x-2x^2$ and $y=\frac{8}{x^3}$.

Use integration to find the exact area of the shaded region enclosed between the two curves, given that the curves intersect at (1,8) and (2,1).

Used with permission from UCLES A-level Maths papers, 2003-2017.

<u>Gameboard</u>

Maths

Modelling - Advanced 1ii

Modelling - Advanced 1ii

A forest is burning so that, t hours after the start of the fire, the area burnt is A hectares. It is given that, at any instant, the rate at which this area is increasing is proportional to A^2 .

Part A Differential equation

Write down a differential equation which models this situation. Your answer should include an unknown constant k.

The following symbols may be useful: A, Derivative(A, t), k, t

Part B Time taken to burn an area

After 1 hour, $1000 \, \mathrm{hectares}$ have been burnt; after 2 hours, $2000 \, \mathrm{hectares}$ have been burnt. After how many hours have $3000 \, \mathrm{hectares}$ have been burnt? Give your answer as an exact fraction.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

<u>STEM SMART Single Maths 50 - Synoptic Revision 1</u>

Gameboard

Maths

Functions and Algebra 1i

Functions and Algebra 1i

The functions f and g are defined by

$$f(x)=2\sin x \ ext{ for } -rac{1}{2}\pi\leqslant x\leqslantrac{1}{2}\pi, \ g(x)=4-2x^2 \ ext{ for } x\in\mathbb{R}.$$

Find the range of f.

What form does your answer take? Choose from the list below, where a and b are constants and a < b, and then find a and/or b.

- y < a
- $y \leq a$
- y > c
- $y \geq a$
- $\bigcirc \quad a < y < b$
- $a \le y \le b$
- y < a or y > b
- $y \le a \text{ or } y \ge b$

Write down the value of a.

Write down the value of b (or if your chosen form has no b, write "n").

The following symbols may be useful: n

${\bf Part \ B} \qquad {\bf Range \ of} \ g$

Find the range of g.

What form does your answer take? Choose from the list below, where a and b are constants and a < b, and then find a and/or b.

- y < a
- $y \leq a$
- y > c
- $y \ge a$
- $\bigcirc \quad a < y < b$
- $a \le y \le b$
- y < a or y > b

Write down the value of a.

Write down the value of b (or if your chosen form has no b, write "n").

The following symbols may be useful: n

Part C Function of a function

Give the value of g(f(0.5)) correct to 3 significant figures.

Explain why f(g(0.5)) is not defined.

Easier question?

Part D $f^{-1}ig(g(x)ig)$

Find the set of values of x for which $f^{-1}\big(g(x)\big)$ is defined.

Give the largest value of x for which $f^{-1}ig(g(x)ig)$ is defined in the form x < a or $x \le a$.

The following symbols may be useful: $\langle , \langle =, \rangle, \rangle = , \times$

Give the lowest value of x for which $f^{-1}ig(g(x)ig)$ is defined in the form x>a or $x\geq a$.

The following symbols may be useful: $\langle , \langle =, \rangle, \rangle = , \times$

Give either of the centre bounds for the domain of $f^{-1}ig(g(x)ig)$.

The following symbols may be useful: , \langle , \langle =, \rangle , \rangle =, \times

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 50 - Synoptic Revision 1

Gameboard

Maths

Newton-Raphson Method 1i

Newton-Raphson Method 1i

It is given that the equation $x^4-2x-1=0$ has only one positive root lpha, and that 1.3<lpha<1.5.

Part A Iteration

Figure 1 shows a sketch of y=x and $y=\sqrt[4]{2x+1}$ for $x\geq 0$. Use the iteration $x_{n+1}=\sqrt[4]{2x_n+1}$ with $x_1=1.35$ to find x_2 and x_3 , correct to 5 significant figures. On the copy of the diagram show how the iteration converges to α .

Figure 1: y=x and $y=\sqrt[4]{2x+1}$

Find x_2 correct to 5 significant figures.

Find x_3 correct to 5 significant figures.

On a copy of the diagram show how the iteration converges to α .

Easier question?

Part B Sketch

For the same equation, the iteration $x_{n+1}=\frac{1}{2}(x_n^4-1)$ with $x_1=1.35$ gives $x_2=1.1608$ and $x_3=0.4071$, correct to 4 decimal places. Draw a sketch of y=x and $y=\frac{1}{2}(x^4-1)$ for $x\geq 0$ and show how this iteration does not converge to α .

Easier question?

Part C Root

Find the positive root of the equation $x^4 - 2x - 1 = 0$ by using the Newton-Raphson method with $x_1 = 1.35$, giving the root correct to 5 significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 50 - Synoptic Revision 1

<u>Gameboard</u>

Maths

Integration by Substitution 3ii

Integration by Substitution 3ii

By first using the substitution $t=\sqrt{x+1}$, find $\int \mathrm{e}^{2\sqrt{x+1}}\mathrm{d}x$.

The following symbols may be useful: I, c, e, x

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 50 - Synoptic Revision 1

<u>Gameboard</u>

Maths

Pulley with Three Masses

Pulley with Three Masses

Figure 1: Particles P, Q, and R attached along a string that passes over a pulley.

Particles P and Q, of masses $m \log 10.05 \log$

Part A Light string

The string is described as light. Explain how this modelling assumption affects calculations when treating the whole system as a single particle.

The string is described as light. Explain how this modelling assumption affects calculations when **finding the tension in a vertical string**.

Part B Acceleration of R

Find the acceleration of R during its descent. Give your answer to 2 significant figures.

${\bf Part \ C} \qquad {\bf Tension \ in} \ PQ$

By considering the motion of Q, calculate the tension in the string PQ during the descent of R. Give your answer to 2 significant figures.

${\bf Part \ D} \qquad {\bf Finding} \ m$

Find the value of m. Give your answer to 2 significant figures.

Part E Max height of P

R strikes the surface $0.5\,\mathrm{s}$ after release and does not rebound. During their subsequent motion, P does not reach the pulley and Q does not reach the surface.

Calculate the greatest height of P above the surface. Give your answer to 2 significant figures.

Adapted with permission from UCLES, A Level Maths, January 2012, OCR M1, Question 7