Gathering & Cleaning Data

Crops Yield Data:

```
import numpy as np
import pandas as pd
df_yield = pd.read_csv('/content/yield.csv')
→ (56717, 12)
df_yield.head()
₹
                                                                                                                                     \blacksquare
         Domain Code
                       Domain Area Code
                                                       Element Code
                                                                      Element Item Code
                                                                                             Item Year Code
                                                                                                              Year
                                                                                                                      Unit
                                                                                                                            Value
      0
                  QC
                                                                5419
                         Crops
                                        2 Afghanistan
                                                                          Yield
                                                                                        56
                                                                                           Maize
                                                                                                         1961
                                                                                                               1961
                                                                                                                     hg/ha
                                                                                                                            14000
                                                                                                                                     th
                  QC
                         Crops
                                        2
                                           Afghanistan
                                                                5419
                                                                          Yield
                                                                                        56
                                                                                           Maize
                                                                                                         1962
                                                                                                               1962
                                                                                                                     hg/ha
                                                                                                                            14000
      2
                                                                                                                     hg/ha
                  QC
                                                                5419
                                                                          Yield
                                                                                        56
                                                                                                               1963
                                                                                                                            14260
                         Crops
                                           Afghanistan
                                                                                           Maize
                                                                                                         1963
      3
                  QC
                                        2
                                                                5419
                                                                          Yield
                                                                                                                     hq/ha
                                                                                                                            14257
                        Crops
                                           Afghanistan
                                                                                        56
                                                                                           Maize
                                                                                                         1964
                                                                                                               1964
                                                                                                                     hg/ha 14400
                  OC
                                        2 Afghanistan
                                                                5419
                                                                                        56 Maize
                        Crops
                                                                          Yield
                                                                                                         1965
                                                                                                              1965
 Next steps:
              Generate code with df yield

    View recommended plots

                                                                           New interactive sheet
df yield.tail(10)
₹
                                                                                                                         Unit Value
              Domain Code Domain Area Code
                                                     Area Element Code Element Item Code
                                                                                                Item Year Code
                                                                                                                 Year
      56707
                       \Omega C
                             Crops
                                           181
                                               Zimbabwe
                                                                   5419
                                                                             Yield
                                                                                           15
                                                                                               Wheat
                                                                                                            2007
                                                                                                                  2007
                                                                                                                         hg/ha
                                                                                                                               29998
                                                                                                                                         ıl.
                       QC
      56708
                             Crops
                                           181
                                               Zimbabwe
                                                                   5419
                                                                             Yield
                                                                                           15
                                                                                               Wheat
                                                                                                            2008
                                                                                                                  2008
                                                                                                                         hg/ha
                                                                                                                               30097
      56709
                       QC
                                                                   5419
                                                                                               Wheat
                                                                                                            2009
                                                                                                                  2009
                                                                                                                               30000
                             Crops
                                           181
                                               Zimbabwe
                                                                             Yield
                                                                                           15
                                                                                                                         hg/ha
                                                                   5419
      56710
                       OC
                                                                                              Wheat
                                                                                                            2010
                                                                                                                  2010
                                                                                                                               27681
                             Crops
                                           181
                                               7imbabwe
                                                                             Yield
                                                                                           15
                                                                                                                         hg/ha
      56711
                       ററ
                                                                   5419
                                                                                                                         hg/ha
                                           181
                                               7imbabwe
                                                                             Yield
                                                                                           15
                                                                                               Wheat
                                                                                                            2011
                                                                                                                  2011
                                                                                                                               26274
                             Crops
      56712
                             Crops
                                                                   5419
                                                                                                                  2012 hg/ha
                       OC
                                           181
                                               7imbabwe
                                                                             Yield
                                                                                           15
                                                                                               Wheat
                                                                                                            2012
                                                                                                                               24420
      56713
                       QC
                             Crops
                                           181
                                                                   5419
                                                                                               Wheat
                                                                                                            2013
                                                                                                                  2013
                                                                                                                               22888
                                               Zimbabwe
                                                                             Yield
                                                                                           15
                                                                                                                        hg/ha
      56714
                       QC
                                                                   5419
                                                                                               Wheat
                                                                                                            2014
                                           181
                                               Zimbabwe
                                                                             Yield
                                                                                           15
                                                                                                                  2014
                                                                                                                               21357
                             Crops
                                                                                                                         hg/ha
      56715
                       QC
                                           181
                                               Zimbabwe
                                                                   5419
                                                                             Yield
                                                                                           15
                                                                                               Wheat
                                                                                                            2015
                                                                                                                  2015
                                                                                                                                19826
                             Crops
                                                                                                                         hq/ha
      56716
                       QC
                                           181
                                               Zimbabwe
                                                                   5419
                                                                             Yield
                                                                                           15 Wheat
                                                                                                            2016
                                                                                                                  2016 hg/ha
                                                                                                                               18294
                             Crops
# rename columns.
df_yield = df_yield.rename(index=str, columns={"Value": "hg/ha_yield"})
df_yield.head()
∓
                                                                                                                                           \overline{\Pi}
         Domain Code Domain Area Code
                                                 Area Element Code Element Item Code
                                                                                             Item Year Code
                                                                                                              Year
                                                                                                                      Unit hg/ha_yield
      0
                  QC
                         Crops
                                        2 Afghanistan
                                                                5419
                                                                          Yield
                                                                                        56
                                                                                           Maize
                                                                                                         1961
                                                                                                               1961
                                                                                                                     hg/ha
                                                                                                                                   14000
                                                                                                                                            ılı.
                  QC
                         Crops
                                        2
                                           Afghanistan
                                                                5419
                                                                          Yield
                                                                                        56
                                                                                            Maize
                                                                                                         1962
                                                                                                               1962
                                                                                                                     hg/ha
                                                                                                                                  14000
      2
                  QC
                         Crops
                                           Afghanistan
                                                                5419
                                                                          Yield
                                                                                        56
                                                                                           Maize
                                                                                                         1963
                                                                                                               1963
                                                                                                                     hg/ha
                                                                                                                                  14260
      3
                  OC
                                                                5419
                                                                          Yield
                                                                                        56
                                                                                                                                  14257
                         Crops
                                           Afghanistan
                                                                                           Maize
                                                                                                         1964
                                                                                                               1964
                                                                                                                     hg/ha
                                                                                                                                  14400
      4
                  QC
                                        2 Afghanistan
                                                                5419
                                                                          Yield
                                                                                        56 Maize
                         Crops
                                                                                                         1965
                                                                                                              1965
                                                                                                                     hg/ha
 Next steps:
              Generate code with df_yield
                                             View recommended plots
                                                                           New interactive sheet
# drop unwanted columns.
df_yield = df_yield.drop(['Year Code','Element Code','Element','Year Code','Area Code','Domain Code','Domain','Unit','Item Code'], axis=1)
```

4 Afghanistan 1990

df_rain.tail()

Next steps: (Generate code with df_rain

New interactive sheet

327

View recommended plots

```
₹
                                                            \blacksquare
                Area Year average_rain_fall_mm_per_year
      6722 Zimbabwe 2013
                                                            ıl.
      6723 Zimbabwe 2014
                                                      657
      6724 Zimbabwe 2015
                                                      657
      6725 Zimbabwe 2016
                                                      657
      6726 Zimbabwe 2017
                                                      657
df_rain = df_rain.rename(index=str, columns={" Area": 'Area'})
df_rain.info()
<class 'pandas.core.frame.DataFrame'>
     Index: 6727 entries, 0 to 6726
     Data columns (total 3 columns):
      # Column
                                         Non-Null Count Dtype
     ---
     0 Area
                                         6727 non-null
                                                         object
                                         6727 non-null
      1 Year
                                                         int64
         average_rain_fall_mm_per_year 5953 non-null
                                                         object
     dtypes: int64(1), object(2)
     memory usage: 210.2+ KB
df_rain['average_rain_fall_mm_per_year'] = pd.to_numeric(df_rain['average_rain_fall_mm_per_year'],errors = 'coerce')
df_rain.info()
    <class 'pandas.core.frame.DataFrame'>
     Index: 6727 entries, \theta to 6726
     Data columns (total 3 columns):
     # Column
                                         Non-Null Count Dtype
     --- -----
     0 Area
                                         6727 non-null
                                                         object
         Year
                                         6727 non-null
                                                         int64
      2 average_rain_fall_mm_per_year 5947 non-null
                                                         float64
     dtypes: float64(1), int64(1), object(1)
     memory usage: 210.2+ KB
df_rain = df_rain.dropna()
df_rain.describe()
₹
                   Year average_rain_fall_mm_per_year
                                                         \blacksquare
      count 5947,000000
                                           5947,000000
                                           1124.743232
            2001.365899
      mean
       std
               9.526335
                                            786.257365
                                             51.000000
             1985.000000
      min
      25%
             1993.000000
                                            534.000000
            2001.000000
                                           1010.000000
      50%
      75%
            2010.000000
                                           1651.000000
      max
            2017.000000
                                           3240.000000
yield df = pd.merge(df yield, df rain, on=['Year', 'Area'])
yield_df.head()
```


Data Exploration


```
hg/ha_yield
```

Area					
India	327420324				
Brazil	167550306				
Mexico	130788528				
Japan	124470912				
Australia	109111062				
Pakistan	73897434				
Indonesia	69193506				
United Kingdom	55419990				
Turkey	52263950				
Spain	46773540				
dtvpe: int64					

yield_df.groupby(['Item','Area'],sort=True)['hg/ha_yield'].sum().nlargest(10)

hg/ha_yield

Item	Area	
Cassava	India	142810624
Potatoes	India	92122514
	Brazil	49602168
	United Kingdom	46705145
	Australia	45670386
Sweet potatoes	India	44439538
Potatoes	Japan	42918726
	Mexico	42053880
Sweet potatoes	Mexico	35808592
	Australia	35550294

dtvpe: int64

import sklearn

import seaborn as sns

import matplotlib.pyplot as plt

```
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
# Compute the correlation matrix
correlation_data = yield_df.select_dtypes(include=[np.number]).corr()
# Generate a mask for the upper triangle
mask = np.zeros_like(correlation_data, dtype=bool)
mask[np.triu_indices_from(mask)] = True
# Set up the matplotlib figure
f, ax = plt.subplots(figsize=(11, 9))
# Define the colormap correctly
cmap = "vlag"
# Draw the heatmap with the mask and correct aspect ratio
sns.heatmap(correlation_data, mask=mask, cmap=cmap, vmax=.3, center=0,
            square=True, linewidths=.5, cbar_kws={"shrink": .5})
plt.show()
```


Data Preprocessing


```
yield_df_onehot = pd.get_dummies(yield_df, columns=['Area',"Item"], prefix = ['Country',"Item"])
features=yield_df_onehot.loc[:, yield_df_onehot.columns != 'hg/ha_yield']
label=yield_df['hg/ha_yield']
features.head()
```

₹	Ye	ear average_rain_fall_mm_per_year	pesticides_tonnes	avg_temp	Country_Albania	Country_Algeria	Country_Angola	Country_Argentina
	0 19	990 1485.0	121.0	16.37	True	False	False	False
	1 19	991 1485.0	121.0	15.36	True	False	False	False
	2 19	992 1485.0	121.0	16.06	True	False	False	False
	3 19	993 1485.0	121.0	16.05	True	False	False	False
	4 19	994 1485.0	201.0	16.96	True	False	False	False
•								•

```
features = features.drop(['Year'], axis=1)
```

features.info()

```
<a href="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color.org/line="https://color
```

dtypes: bool(111), float64(3)
memory usage: 3.6 MB

features.head()

→		average_rain_fall_mm_per_year	pesticides_tonnes	avg_temp	Country_Albania	Country_Algeria	Country_Angola	Country_Argentina	Coun
	0	1485.0	121.0	16.37	True	False	False	False	
	1	1485.0	121.0	15.36	True	False	False	False	
	2	1485.0	121.0	16.06	True	False	False	False	
	3	1485.0	121.0	16.05	True	False	False	False	
	4	1485.0	201.0	16.96	True	False	False	False	
									•

Scaling Features:

```
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
features=scaler.fit_transform(features)
```

features

```
array([[4.49670743e-01, 3.28894097e-04, 5.13458262e-01, ..., 0.00000000e+00, 0.0000000e+00, 0.00000000e+00], [4.49670743e-01, 3.28894097e-04, 4.79045997e-01, ..., 0.00000000e+00, 0.00000000e+00], [4.49670743e-01, 3.28894097e-04, 5.02896082e-01, ..., 0.00000000e+00, 0.00000000e+00], ..., 0.00000000e+00, 0.00000000e+00], ..., [1.90028222e-01, 9.08240940e-03, 6.63713799e-01, ..., 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], [1.90028222e-01, 9.17806494e-03, 6.54855196e-01, ..., 0.00000000e+00, 1.0000000e+00, 0.0000000e+00], [1.90028222e-01, 6.93361288e-03, 6.28956818e-01, ..., 0.00000000e+00, 1.0000000e+00, 0.00000000e+00]])
```

Training Data

```
from sklearn.model_selection import train_test_split train_data, test_data, train_labels, test_labels = train_test_split(features, label, test_size=0.2, random_state=42)
```

```
#write final df to csv file
#yield_df.to_csv('../input/crop-yield-prediction-dataset/yield_df.csv')

from sklearn.model_selection import train_test_split
train_data, test_data, train_labels, test_labels = train_test_split(features, label, test_size=0.2, random_state=42)
```

Model Comparison & Selection

```
from sklearn.metrics import r2_score
def compare_models(model):
  model_name = model.__class__.__name
  fit=model.fit(train_data,train_labels)
  y_pred=fit.predict(test_data)
  r2=r2_score(test_labels,y_pred)
  return([model_name,r2])
from \ sklearn.ensemble \ import \ Random ForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn import svm
from sklearn.tree import DecisionTreeRegressor
models = [
   GradientBoostingRegressor(n_estimators=200, max_depth=3, random_state=0),
   RandomForestRegressor(n_estimators=200, max_depth=3, random_state=0),
   svm.SVR(),
   DecisionTreeRegressor()
   ]
model_train=list(map(compare_models, models))
print(*model_train, sep = "\n")
['GradientBoostingRegressor', 0.8948534135078133]
     ['RandomForestRegressor', 0.6937411507173485]
     ['SVR', -0.19547290633492498]
     ['DecisionTreeRegressor', 0.9623519545171448]
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import numpy as np
# Function to train the model and calculate evaluation metrics
def evaluate_model(model):
   Train the model, generate predictions, and calculate evaluation metrics.
   model_name = model.__class__.__name__
   # Train the model
   model.fit(train_data, train_labels)
   # Make predictions
   y_pred = model.predict(test_data)
   # Calculate metrics
   mse = mean_squared_error(test_labels, y_pred)
   rmse = np.sqrt(mse)
    mae = mean_absolute_error(test_labels, y_pred)
   r2 = r2_score(test_labels, y_pred)
   # Adjusted R<sup>2</sup> Calculation
   n = len(test_labels) # Number of test samples
   p = test_data.shape[1] # Number of features
   adjusted_r2 = 1 - ((1 - r2) * (n - 1) / (n - p - 1))
   \mbox{\#} Convert metrics to hectogram per hectare (hg/ha)
   mse_hg = mse * 100 # Convert kg^2/ha^2 to hg^2/ha^2
    rmse_hg = rmse * 10 # Convert kg/ha to hg/ha
   mae_hg = mae * 10 # Convert kg/ha to hg/ha
   # Print results
   print(f"\n {model name} - Model Evaluation:")
```

```
print(f"MSE (hg²/ha²): {mse_hg:.2f}")
    print(f"RMSE (hg/ha): {rmse_hg:.2f}")
    print(f"MAE (hg/ha): {mae_hg:.2f}")
    print(f"R2 Score: {r2:.4f}")
    print(f"Adjusted R2 Score: {adjusted_r2:.4f}")
# Define models
models = {
    "GradientBoostingRegressor": GradientBoostingRegressor(n_estimators=200, max_depth=3, random_state=0),
    "RandomForestRegressor": RandomForestRegressor(n_estimators=200, max_depth=3, random_state=0),
    "DecisionTreeRegressor": DecisionTreeRegressor(),
    "SVR": svm.SVR()
}
# Evaluate all models
for model_name, model in models.items():
    evaluate_model(model)
₹
      GradientBoostingRegressor - Model Evaluation:
     MSE (hg²/ha²): 75291435220.94
     RMSE (hg/ha): 274392.85
     MAE (hg/ha): 178202.52
     R<sup>2</sup> Score: 0.8949
     Adjusted R<sup>2</sup> Score: 0.8927
      RandomForestRegressor - Model Evaluation:
     MSE (hg²/ha²): 219300208222.34
     RMSE (hg/ha): 468295.00
     MAE (hg/ha): 317483.63
     R<sup>2</sup> Score: 0.6937
     Adjusted R<sup>2</sup> Score: 0.6874
      DecisionTreeRegressor - Model Evaluation:
     MSE (hg²/ha²): 27365626771.44
     RMSE (hg/ha): 165425.59
     MAE (hg/ha): 57995.08
     R<sup>2</sup> Score: 0.9618
     Adjusted R<sup>2</sup> Score: 0.9610
      SVR - Model Evaluation:
     MSE (hg²/ha²): 856032267794.01
     RMSE (hg/ha): 925220.12
     MAE (hg/ha): 565948.34
     R<sup>2</sup> Score: -0.1955
     Adjusted R<sup>2</sup> Score: -0.2201
yield_df_onehot = yield_df_onehot.drop(['Year'], axis=1)
yield_df_onehot.head()
 <del>_</del>
         hg/ha_yield average_rain_fall_mm_per_year pesticides_tonnes avg_temp Country_Albania Country_Algeria Country_Angola Country_Ar
      0
               36613
                                                1485.0
                                                                     121.0
                                                                               16.37
                                                                                                  True
                                                                                                                   False
                                                                                                                                   False
               29068
                                                1485.0
                                                                     121.0
                                                                               15.36
                                                                                                  True
                                                                                                                   False
                                                                                                                                   False
      2
               24876
                                                1485.0
                                                                     121.0
                                                                               16.06
                                                                                                                                   False
                                                                                                  True
                                                                                                                   False
                                                1485.0
                                                                               16.05
      3
               24185
                                                                     121.0
                                                                                                  True
                                                                                                                   False
                                                                                                                                   False
               25848
                                                1485.0
                                                                     201.0
                                                                               16.96
                                                                                                                   False
                                                                                                                                   False
                                                                                                  True
#setting test data to columns from dataframe and excluding 'hg/ha_yield' values where ML model should be predicting
test_df=pd.DataFrame(test_data,columns=yield_df_onehot.loc[:, yield_df_onehot.columns != 'hg/ha_yield'].columns)
# using stack function to return a reshaped DataFrame by pivoting the columns of the current dataframe
cntry=test_df[[col for col in test_df.columns if 'Country' in col]].stack()[test_df[[col for col in test_df.columns if 'Country' in col]].st
cntrylist=list(pd.DataFrame(cntry).index.get_level_values(1))
countries=[i.split("_")[1] for i in cntrylist]
itm=test_df[[col for col in test_df.columns if 'Item' in col]].stack()[test_df[[col for col in test_df.columns if 'Item' in col]].stack()>0]
itmlist=list(pd.DataFrame(itm).index.get_level_values(1))
items=[i.split("_")[1] for i in itmlist]
```

```
test_df.head()
 ∓
                  average_rain_fall_mm_per_year pesticides_tonnes avg_temp Country_Albania Country_Algeria Country_Angola Country_Argentina Country_Argentin
            0
                                                               0.183443
                                                                                                      0.090370
                                                                                                                           0.535264
                                                                                                                                                                         0.0
                                                                                                                                                                                                            0.0
                                                                                                                                                                                                                                             0.0
                                                                                                                                                                                                                                                                                    0.0
                                                               0.458451
                                                                                                      0.000135
                                                                                                                           0.631005
                                                                                                                                                                                                                                                                                    0.0
                                                                                                                                                                         0.0
                                                                                                                                                                                                            0.0
                                                                                                                                                                                                                                             0.0
             2
                                                               0.183443
                                                                                                      0.132330
                                                                                                                           0.552300
                                                                                                                                                                         0.0
                                                                                                                                                                                                            0.0
                                                                                                                                                                                                                                             0.0
                                                                                                                                                                                                                                                                                    0.0
             3
                                                               1.000000
                                                                                                      0.179695
                                                                                                                           0.867802
                                                                                                                                                                         0.0
                                                                                                                                                                                                            0.0
                                                                                                                                                                                                                                             0.0
                                                                                                                                                                                                                                                                                    0.0
             4
                                                               0.458451
                                                                                                      0.000305
                                                                                                                          0.629983
                                                                                                                                                                         0.0
                                                                                                                                                                                                            0.0
                                                                                                                                                                                                                                             0.0
                                                                                                                                                                                                                                                                                    0.0
test_df.drop([col for col in test_df.columns if 'Item' in col],axis=1,inplace=True)
test_df.drop([col for col in test_df.columns if 'Country' in col],axis=1,inplace=True)
test_df.head()
 ₹
                  average_rain_fall_mm_per_year pesticides_tonnes
                                                                                                                                                 \blacksquare
                                                                                                      0.090370
            0
                                                               0.183443
                                                                                                                           0.535264
                                                                                                                                                  1
                                                               0.458451
                                                                                                      0.000135
                                                                                                                           0.631005
            2
                                                               0.183443
                                                                                                      0.132330
                                                                                                                           0.552300
                                                                                                                           0.867802
                                                               1.000000
            3
                                                                                                      0.179695
                                                               0.458451
                                                                                                      0.000305
                                                                                                                           0.629983
                            Generate code with test df
                                                                                    View recommended plots
                                                                                                                                               New interactive sheet
   Next steps:
test_df['Country']=countries
test_df['Item']=items
test_df.head()
 ∓
                                                                                                                                                                                                        \blacksquare
                  average_rain_fall_mm_per_year pesticides_tonnes avg_temp
                                                                                                                                                     Country
                                                                                                                                                                                         Item
            0
                                                               0.183443
                                                                                                                           0.535264
                                                                                                      0.090370
                                                                                                                                                          Spain
                                                                                                                                                                       Sweet potatoes
                                                                                                                                                                                                         ıl.
                                                               0.458451
                                                                                                      0.000135
                                                                                                                           0.631005 Madagascar
                                                                                                                                                                                  Potatoes
             2
                                                               0.183443
                                                                                                      0.132330
                                                                                                                           0.552300
                                                                                                                                                          Spain
                                                                                                                                                                       Sweet potatoes
             3
                                                               1.000000
                                                                                                      0.179695
                                                                                                                           0.867802
                                                                                                                                                   Colombia
                                                                                                                                                                                 Soybeans
             4
                                                               0.458451
                                                                                                      0.000305
                                                                                                                         0.629983
                                                                                                                                            Madagascar
                                                                                                                                                                              Rice, paddy
                            Generate code with test_df
                                                                                    View recommended plots
                                                                                                                                               New interactive sheet
   Next steps:
from sklearn.tree import DecisionTreeRegressor
clf=DecisionTreeRegressor()
model=clf.fit(train data,train labels)
test_df["yield_predicted"]= model.predict(test_data)
test_df["yield_actual"]=pd.DataFrame(test_labels)["hg/ha_yield"].tolist()
test_group=test_df.groupby("Item")
# test_group.apply(lambda x: r2_score(x.yield_actual,x.yield_predicted))
# So let's run the model actual values against the predicted ones
fig, ax = plt.subplots()
ax.scatter(test_df["yield_actual"], test_df["yield_predicted"],edgecolors=(0, 0, 0))
ax.set_xlabel('Actual')
ax.set_ylabel('Predicted')
ax.set_title("Actual vs Predicted")
plt.show()
```


Model Results & Conclusions

```
varimp= {'imp':model.feature_importances_,'names':yield_df_onehot.columns[yield_df_onehot.columns!="hg/ha_yield"]}
a4_dims = (8.27, 16.7)
fig, ax = plt.subplots(figsize=a4_dims)
df=pd.DataFrame.from_dict(varimp)
df.sort_values(ascending=False,by=["imp"],inplace=True)
df=df.dropna()
sns.barplot(x="imp",y="names",palette="vlag",data=df,orient="h",ax=ax);
#7 most important factors that affect crops
a4_dims = (16.7, 8.27)
fig, ax = plt.subplots(figsize=a4_dims)
df=pd.DataFrame.from_dict(varimp)
df.sort_values(ascending=False,by=["imp"],inplace=True)
df=df.dropna()
df=df.nlargest(7, 'imp')
sns.barplot(x="imp",y="names",palette="vlag",data=df,orient="h",ax=ax);
#Boxplot that shows yield for each item
a4_{dims} = (16.7, 8.27)
fig, ax = plt.subplots(figsize=a4_dims)
sns.boxplot(x="Item",y="hg/ha_yield",palette="vlag",data=yield_df,ax=ax);
```

```
<ipython-input-68-9382a76d0a38>:6: FutureWarning:
```

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend sns.barplot(x="imp",y="names",palette="vlag",data=df,orient="h",ax=ax); <ipython-input-68-9382a76d0a38>:16: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend sns.barplot(x="imp",y="names",palette="vlag",data=df,orient="h",ax=ax); <ipython-input-68-9382a76d0a38>:22: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend

