spreg Cheat Sheet (version 1.7)

Required Arguments (depending on the function)

y numpy array or Pandas Series with observations on the dependent variable x numpy array or Pandas/GeoPandas dataframe/geo-dataframe with observations

on the explanatory variables (no constant term!)

w PySAL spatial weights object

yend numpy array of Pandas/GeoPandas dataframe/geo-dataframe with observations

on the endogenous variables

q numpy array of Pandas/GeoPandas dataframe/geo-dataframe with observations

on the instruments

coords numpy array, Pandas/GeoPandas dataframe/geo-dataframe, or geo-dataframe

geometry column with point coordinates to construct the sparse input weights -

nonlinear SLX only

General Options

name_y string with name of dependent variable (not needed when using Pandas Series)

name_x list of strings with names of explanatory variables (not needed when using

Pandas dataframe) – no constant term

name_ds string with name for data set

name w string with name for spatial weights

name_gwk string with name for kernel weights (for HAC only, not in SLX)

name yend list of strings with names for endogenous variables (not including Wy) – not

needed when using Pandas dataframe

name_q list of strings with names for instruments (not including WX) – not needed when

using Pandas dataframe

robust type of robust standard error - default None, "white" or "hac" (all but ML

estimation)

spat diag spatial diagnostics (LM tests; common factor test) - default False, if True, requires

W

latex coefficient table output in Latex format - default False

method Jacobian computation in ML estimation, default = "full", others "ord" or "LU";

type of GMM estimation in GMM Error model, default = "het", others "hom" or

"kp98"

vm include full variance covariance matrix in output listing, default = False

Common Options

nonspat diag non-spatial diagnostics (multicollinearity, heteroskedasticity; Durbin-Wu-

Hausman test for 2SLS) - default True (OLS and TSLS)

spat impacts method for spatial multipliers computation, default = "simple", other options are

"full", "power", "all" or None (all models with Wy)

sig2n_k	use n-k as denominator in variance calculation, default = False (OLS and TSLS)
w_lags	order of spatial lags to use as instruments for Wy, default = 1 (all IV estimations)
lag_q	boolean, whether instruments should be lagged as well, default = True (all IV
	estimations of lag model with endogenous variables)
slx_lags	(inclusive) order of spatial lag SLX terms, default = 0 (should be 1 or higher for
	SLX model)
slx_vars	number of variables to apply spatial lag to, default = "All", otherwise list of
	Booleans matching X variables indicating whether (True) or not (False) a spatial
	lag should be applied to that variable
add wy	flag for inclusion of Wy in other than spatial lag specification, default = False

Estimation

Classic Models

- OLS
 - spreg.OLS(y, x)
 - options:
 - moran: default False
 - white test: default False
 - vif: default False
- 2SLS
 - spreg.TSLS(y, x, yend, q)

Spatial Lag

- S2SLS spatial lag exogenous only
 - spreg.GM_Lag(y, x, w)
- S2SLS spatial lag exogenous and endogenous
 - spreg.GM_Lag(y, x, yend, q, w)
- ML spatial lag
 - spreg.ML_Lag(y, x, w)

Spatial Error

- GMM spatial
 - spreg.GMM_Error(y, x, w)
- GMM spatial error with endogenous variables
 - o spreg.GMM_Error(y, x, w, yend, q)
- ML Error
 - spreg.ML_Error(y, x, w)

SLX

- SLX
 - spreg.OLS(y, x, slx_lags=1,slx_vars='All')

- 2SLS with SLX
 - spreg.TSLS(y, x, yend, q, slx_lags=1,slx_vars='All')
- Nonlinear SLX
 - spreg.NSLX(y,x,coords)
 - o options:
 - params: list with tuples; default is [(10,np.inf,"exponential")]
 - k=10, number of nearest neighbors
 - distance_upper_bound = np.inf (adaptive bandwidth), a specific distance value for fixed bandwidth
 - model = "exponential" "power" for inverse distance power
 - distance_metric default "Euclidean", other "Arc"
 - var_flag: analytical standard errors, default = 1, 0 = numerical approximation
 - conv flag: convergence summary listing, default = 1
 - verbose: full output listing (every iteration), default = False

SLX-Error

- SLX Error
 - spreg.GMM Error(y, x, w, slx lags=1,slx vars='All')
- SLX Error with endogenous variables
 - spreg.GMM_Error(y, x, w, yend, q, slx_lags=1,slx_vars='All')
- ML SLX Error
 - spreg.ML Error(y, x, w, slx lags=1,slx vars='All')

Spatial Durbin

- Spatial Durbin
 - spreg.GM_Lag(y, x, w, slx_lags=1, slx_vars='All')
- Spatial Durbin with endogenous variables
 - spreg.GM_Lag(y, x, yend, q, w, slx_lags=1, slx_vars='All')
- ML spatial Durbin
 - spreg.ML Lag(y, x, w, slx lags=1,slx vars='All')

SAR-Error

- Combo model (SAR-Error)
 - spreg.GMM Error(y, x, w, add wy=True)
- Combo model (SAR-Error) with endogenous
 - spreg.GMM Error(y, x, w, yend, q, add wy=True)

GNS

- Spatial Durbin Error = GNS = Combo with SLX
 - spreg.GMM_Error(y, x, w, slx_lags=1, add_wy=True)
- Spatial Durbin Error with endogenous = GNS = Combo with SLX
 - spreg.GMM Error(y, x, w, yend, q, slx lags=1, add wy=True)