Commencé le	mardi 29 septembre 2020, 14:45
État	Terminé
Terminé le	mardi 29 septembre 2020, 15:43
Temps mis	57 min 53 s
Note	10,92 sur 12,00 (91 %)

Terminer

Note de 1,00 sur 1,00 En notant

Baleine(x): x est une baleine

Mammifere(x): x est un mammifère

Poisson(x): x est un poisson

Animal(x): x est animal

Nage(x): x sait nager

Une formulation en calcul des prédicats de :

Tous les poissons savent nager et d'autres mammifères que les baleines aussi

est:

Veuillez choisir une réponse :

- \bigcirc [$\forall x (\neg Poisson(x) \lor Nage(x))$] \land [$\exists x (Mammifere(x) \land Nage(x) \land \neg Baleine(x))$]
- \bigcirc [$\forall x (Poisson(x) \land Nage(x))$] \land [$\exists x (Mammifere (x) \land Nage(x) \land \neg Baleine(x))$]
- $\forall x [(Nage(x) \Rightarrow (Poisson(x)) \lor (Mammifere (x) \land \neg Baleine(x)))]$
- orien de tout ça

La réponse correcte est : $[\forall x (\neg Poisson(x) \lor Nage(x))] \land [\exists x (Mammifere(x) \land Nage(x) \land \neg Baleine(x))]$

Question **2**

Terminer

Note de 1,00 sur 1,00 En notant

Baleine(x): x est une baleine

Mammifere(x): x est un mammifère

Poisson(x): x est un poisson

Animal(x): x est animal

Nage(x): x sait nager

Une formulation en calcul des prédicats de :

Si des poissons ne savent pas nager alors des baleines ne sont pas des mammifères

est:

Veuillez choisir une réponse :

- \bigcirc [$\exists x (Poisson(x) \land \neg Nage(x))$] \land [$\exists x (Baleine(x) \land \neg Mammifere(x))$]
- Aucune des autres réponses
- \bigcirc [∃x (Poisson(x) $\land \neg$ Nage (x))] \Rightarrow [∃x (Baleine(x) $\land \neg$ Mammifere(x))]
- \bigcirc [$\forall x \ (Poisson(x) \Rightarrow \neg Nage(x))$] \Rightarrow [$\forall x \ (Baleine(x) \Rightarrow \neg Mammifere \ (x))$]

La réponse correcte est : $[\exists x \ (Poisson(x) \land \neg Nage (x))] \Rightarrow [\exists x \ (Baleine(x) \land \neg Mammifere(x))]$

Terminer

Note de 2,00 sur 2,00

Associer à chacune des phrases ci-dessous, la formule qui en est une formulation en utilisant les prédicats suivants :

- *pauvre(x)* : x est une personne pauvre
- riche(x): x est une personne riche
- mDroits(x,y): x et y ont légalement les mêmes droits
- gLoto(x): x est un gagnant du loto
- imafa(x) : x a fait IMAFA

Certaines personnes qui ont fait IMAFA ne sont ni riches ni pauvres

 $\forall x [(riche(x) \Rightarrow (gLoto(x) \lor IMAFA(x))]$

Les riches sont des gagnants du loto ou ont fait IMAFA

 $\forall x [(riche(x) \land gLoto(x)) \Rightarrow IMAFA(x)]$

 $\exists x (IMAFA(x) \land \neg riche(x) \land \neg pauvre(x))$

Certains gagnants du loto sont pauvres et ont fait IMAFA

Tous les riches qui ont gagné au loto ont fait IMAFA

 $\exists x (gLoto(x) \land pauvre(x) \land IMAFA(x))$

Les riches sont des gagnants au loto qui ont fait IMAFA

 $\forall x [riche(x) \Rightarrow (gLoto(x) \land IMAFA(x))]$

La réponse correcte est : Certaines personnes qui ont fait IMAFA ne sont ni riches ni pauvres $\rightarrow \exists x$ (IMAFA(x) $\land \neg$ riche(x) $\land \neg$ pauvre(x)), Les riches sont des gagnants du loto ou ont fait IMAFA $\rightarrow \forall x$ [(riche(x) \Rightarrow (gLoto(x) \lor IMAFA(x))], Tous les riches qui ont gagné au loto ont fait IMAFA $\rightarrow \forall x$ [(riche(x) \land gLoto(x)) \Rightarrow IMAFA(x)], Certains gagnants du loto sont pauvres et ont fait IMAFA $\rightarrow \exists x$ (gLoto(x) \land pauvre(x) \land IMAFA(x)), Les riches sont des gagnants au loto qui ont fait IMAFA $\rightarrow \forall x$ [riche(x) \Rightarrow (gLoto(x) \land IMAFA(x))]

Question 4

Terminer

Note de 1,00 sur 1,00 Cochez la ou les modèlisations correctes de la phrase:

"Il y a des tickets gagnants et des tickets perdants parmi les tickets vendus".

Veuillez choisir au moins une réponse :

(∃ x(Vendu(x) ∧Ticket(x)∧Gagnant(x))∧(∃ x(Vendu(x) ∧Ticket(x)∧¬Gagnant(x))

 \forall x((Ticket(x) \land Vendu(x)) \Rightarrow (Gagnant(x) \lor \neg Gagnant(x)))

(∃ x(Vendu(x) ∧Ticket(x)∧Gagnant(x))∧(∃ y(Vendu(y) ∧Ticket(y)∧¬Gagnant(y))

 $\exists x(Vendu(x) \land Ticket(x) \land \neg Gagnant(x) \land Gagnant(x))$

Les réponses correctes sont :

 $(\exists \ x(Vendu(x) \land Ticket(x) \land Gagnant(x)) \land (\exists \ x(Vendu(x) \land Ticket(x) \land \neg Gagnant(x))$

. (∃ x(Vendu(x) ∧Ticket(x)∧Gagnant(x))∧(∃ y(Vendu(y) ∧Ticket(y)∧¬Gagnant(y))

Terminer

Note de 1,00 sur 1,00 Cochez la ou les modèlisations correctes de la phrase:

"Tous les tickets gagnants ont été vendus".

Veuillez choisir au moins une réponse :

□ ∀x [Ticket(x) ⇒ (Vendu(x) ⇒ Gagnant(x))]

□ Aucune des réponses proposées

□ ∀x [Ticket(x) ⇒ (¬Gagnant(x) ∧ ¬Vendu(x))]

□ ∀x (Vendu(x) ∨ ¬Ticket(x) ∨ ¬Gagnant(x))

□ ∀x (Ticket(x) ⇒ (¬Gagnant(x) ∨ ¬Vendu(x))]

□ ∀x [Ticket(x) ⇒ (Gagnant(x) ⇒ Vendu(x))]

□ ∀x [(Ticket(x) → ¬Vendu(x)) ⇒ ¬Gagnant(x)]

□ ∀x [(Ticket(x) ∧ ¬Vendu(x)) ⇒ ¬Gagnant(x)]

□ ∀x [(Ticket(x) ∧ ¬Vendu(x)) ⇒ ¬Gagnant(x)]

Vendu(x)], ∀x [(Ticket(x) ∧ ¬Vendu(x)) ⇒ ¬Gagnant(x)], ∀x [(Ticket(x) ∧ ¬Gagnant(x) ∨ ¬Vendu(x)], ∀x

Terminer

Note de 0,67 sur 1,00 On considère les prédicats suivants

 $[Ticket(x) \Rightarrow (Gagnant(x) \Rightarrow Vendu(x))]$

- eleve(x) : x est un eleve
- question(y): y est une question
- reponse(z) : z est une réponse
- correct(y,z) : la réponse y est proposée à la question z et c'est une reponse correcte
- incorrect(y,z) : la réponse y est proposée à la question z mais c'est une réponse incorrecte
- choisit(x,y,z) : la réponse z a ete choisie comme bonne à la question y par l'élève x

Cochez ci dessous toutes les formules qui signifient

" tous les élèves ont coché toutes les réponses proposées correctes"

Veuillez choisir au moins une réponse :

- $\forall x \forall y \forall z [\{eleve(x) \land question (y) \land correct (y,z)\} \Rightarrow choisit (x,y,z)]$
- Aucune des autres réponses proposées
- \square $\forall x \forall y \forall z [eleve(x) \land question(y) \land correct(y,z) \land choisit(x,y,z)]$
- $\forall x \forall y \forall z [\neg eleve(x) \lor \neg question(y) \lor \neg correct (y,z) \lor choisit(x,y,z)]$
- $\forall x \forall y \forall z [\neg choisit(x,y,z) \Rightarrow {\neg eleve(x) \lor \neg question(y) \lor \neg correct(y,z)}]$

Les réponses correctes sont : $\forall x \ \forall y \ \forall z \ [\{eleve(x) \land question (y) \land correct (y,z)\} \Rightarrow choisit (x,y,z)], \ \forall x \ \forall y \ \forall z \ [\neg eleve(x) \lor \neg question(y) \lor \neg correct (y,z) \lor choisit(x,y,z)], \ \forall x \ \forall y \ \forall z \ [\neg choisit(x,y,z) \Rightarrow \{\neg eleve(x) \lor \neg question(y) \lor \neg correct(y,z)\}]$

Terminer

Note de 1,00 sur 1,00 On considère les prédicats suivants

- eleve(x): x est un eleve
- question(y): y est une question
- reponse(z) : z est une réponse
- correct(y,z) : la réponse y est proposée à la question z et c'est une reponse correcte
- incorrect(y,z) : la réponse y est proposée à la question z mais c'est une réponse incorrecte
- choisit(x,y,z) : la réponse z a ete choisie comme bonne à la question y par l'élève x

En suppossant qu'un elève n'obtient les points d'une question que lorsqu'il a coché toutes les bonnes réponses proposées à la question et elles seules,

Cochez ci dessous toutes les formules qui signifient que :

l'élève x obtient les points de la question y

Veuillez choisir au moins une réponse :

- \forall z [question(y) \land eleve (x) \land {choisit (x,y,z) \Rightarrow correct (y,z)} \land {correct (y,z) \Rightarrow choisit (x,y,z)}]
- \forall z [question(y) \land eleve(x) \land {¬choisit(x,y,z) \Leftrightarrow ¬correct(y,z)}]
- \forall \forall z [question(y) \land eleve (x) \land {choisit (x,y,z) \Leftrightarrow correct (y,z)}]
- $\forall z \text{ [question(y) } \land \text{ eleve(x) } \land \{\neg \text{choisit}(x,y,z) \Rightarrow \neg \text{correct } (y,z)\} \land \{\neg \text{correct } (y,z) \Rightarrow \neg \text{choisit } (x,y,z)\}$
- Aucune des autres réponses proposées

Les réponses correctes sont : $\forall z \ [\text{question}(y) \land \text{eleve}(x) \land \{\text{choisit}(x,y,z) \Leftrightarrow \text{correct}(y,z)\}\], \ \forall z \ [\text{question}(y) \land \text{eleve}(x) \land \{\text{choisit}(x,y,z) \Rightarrow \text{correct}(y,z)\} \land \{\text{correct}(y,z) \Rightarrow \text{choisit}(x,y,z)\}\], \ \forall z \ [\text{question}(y) \land \text{eleve}(x) \land \{\neg\text{choisit}(x,y,z) \Rightarrow \neg\text{correct}(y,z)\}\]$

Terminer

Note de 0,75 sur 1,00 Soit la formule, concernant le prédicat p d'arité 2, appelé relation dans la suite :

$$\forall x \forall y \forall z [\{ p(x,y) \land p(y,z) \} \Rightarrow p(x,z)]$$

Elle signifie que la relation p est transitive.

Cocher les relations transitives ci-dessous :

Veuillez choisir au moins une réponse :

- p(x,y) signifie que : x et y sont dans la même promo
- \bigvee p(x,y) signifie que : x et y sont clients de la même agence une personne peut être cliente de plusieurs agences
- p(x,y) signifie que : x et y sont 2 agences distantes de moins de 1km
- p(x,y) signifie que : x < y
- p(x,y) signifie que : x et y ont un ami commun
- p(x,y) signifie que : x et y sont dans le même groupe pour au moins une matière

Les réponses correctes sont : p(x,y) signifie que : x < y, p(x,y) signifie que : x et y sont dans la même promo

Terminer

Note de 1,00 sur 1,00 On considère un graphe, c'est à dire un ensemble de sommets et d'arêtes.

Une arête relie deux sommets distincts ou non.

Un sommet est isolé s'il n'est relié à aucun sommet.

Le predicat binaire p(x,y) est vrai si et seulement si il y a une arête entre x et y

Tous les sommets sont reliés entre eux

 $\forall x \ \forall y \ b(x,y)$

Aucun sommet n'est isolé

 $\forall x \exists y p(x,y)$

Un des sommets est relié à tous les sommets

 $\exists x \ \forall y \ p(x,y)$

Le graphe n'est pas sans arêtes

∃х ∃у р(х,у)

Votre réponse est correcte.

La réponse correcte est : Tous les sommets sont reliés entre eux $\rightarrow \forall x \ \forall y \ p(x,y)$, Aucun sommet n'est isolé $\rightarrow \forall x \ \exists y \ p(x,y)$, Un des sommets est relié à tous les sommets $\rightarrow \exists x \ \forall y \ p(x,y)$, Le graphe n'est pas sans arêtes $\rightarrow \exists x \ \exists y \ p(x,y)$

Question 10

Terminer

Note de 0,50 sur 1,00 En utilisant les prédicats suivants :

- pauvre(x): x est une personne pauvre
- riche(x): x est une personne riche
- *mDroits(x,y)* : x et y ont légalement les mêmes droits

quelle(s) formule(s) est(sont) une formulation de la phrase suivante :

Les pauvres et les riches ont légalement les mêmes droits

Veuillez choisir au moins une réponse :

- Aucune des formules proposées
- $\forall x \forall y (\neg pauvre(x) \lor \neg riche(y) \lor mDroits(x,y))$

Les réponses correctes sont : $\forall x \ \forall y \ ((pauvre(x) \land riche(y)) \Rightarrow mDroits(x,y)), \ \forall x \ \forall y \ (\neg pauvre(x) \lor \neg riche(y) \lor mDroits(x,y))$

Question	1	1	

Terminer

Note de 1,00 sur 1,00 Indiquez quelles sont les ou la traduction correcte de l'énoncé "Les carrés sont des parallélépipèdes rectangles"

Veuillez choisir au moins une réponse :

- $\forall x (carre(x) \land parallelepipede(x) \land rectangle(x))$
- Aucune des formules proposées
- $\forall x [(\neg parallelepipede(x) \lor \neg rectangle(x)) \Rightarrow \neg carre(x)]$
- □ ∃x (carre(x) ∧ parallelepipede(x) ∧ rectangle(x))
- $\forall x (carre(x) \Rightarrow (parallelepipede(x) \land rectangle(x)))$

Les réponses correctes sont : $\forall x (carre(x) \Rightarrow (parallelepipede(x) \land rectangle(x))), \forall x [(\neg parallelepipede(x) \lor \neg rectangle(x)) \Rightarrow \neg carre(x)]$

▼ Entrainement_1_22sept2020

Aller à...

Entrainement_3_QMC_10oct2020 ►