Understanding t-SNE & UMAP

Comparing clustering techniques for single-cell RNAseq

Razib Obaid, PhD

Points to discuss

Principal Component Analysis

Graph-based clustering

- K-means clustering
- ° t-SNE
- UMAP

High dimensional correlated data → Low dimensional uncorrelated data (Keeping the variance of the data same for both) UNSUPERVISED

High dimensional correlated data → Low dimensional uncorrelated data (Keeping the variance of the data same for both) UNSUPERVISED

original data space

High dimensional correlated data → Low dimensional uncorrelated data (Keeping the variance of the data same for both) UNSUPERVISED

Keys steps of the algorithm:

Take high D data, normalize and center it

Compute covariance matrix

Compute eigenvectors and eigenvalues

Pick number of eigenvectors

Project data points to those eigenvectors

Ringner, Nature Biotechnology, 26, 303-304 (2008)

Ringner, Nature Biotechnology, 26, 303-304 (2008)

What will PCA tell a biologist about their cell sample?

- Which components have the highest correlation in the dataset?
- How many components are the key player in the effect observed during the experiment?
- Which components should be used as a reference for classification or clustering?

What will happen if you don't do PCA?

- Will give bad clustering if correlated datapoints are used. (lose)
- Will take a much longer computational time for any clustering (or bad clustering). (lose - lose)
- Wrong conclusion of the results. (lose lose lose)

Clustering (WHY?)

- Identify groups of similar cells or samples into meaningful structures.
- Summarize the attributes of large datasets
- No 'a priori' assumptions or hypothesis
- Uses PCA as its input
- Optimization problem
 - Minimize within cluster distance
 - Maximize between cluster distance

Graph based clustering

- Create cluster by computing neighbor graph based on connectivity
- In scRNA-seq, nodes are cells and edges are cell-cell pairwise distance.
- O Commonly used algorithm

 ☐ Louvain algorithm locate area with most density of neighbor graph

The algorithm does the clustering in two levels:

- 1) Moving of the nodes locally
- 2) Aggregating them based on density of edges, known as 'Community'.

The algorithm tries to maximize a function called 'Modularity' defined by:

Actual # of edges in a community – Expected # of edges

$$H = \frac{1}{2m} \sum_{c} (e_c - \gamma K_c^2/2m)$$

Traag et al., Scientific Reports 9, 5233 (2019)

$$H = \frac{1}{2m} \sum_{c} (e_c - \gamma K_c^2/2m)$$

Actual # of edges - Expected # of edges

Expected number of edges is determined by:

- Number of degrees of nodes (how many near neighbors)
- Total number of edges
- 'Resolution' a fudge factor that determines how many communities form. Increasing this will produce a larger number of smaller, more well defined clusters.

$$H = \frac{1}{2m} \sum_{c} (e_c - \gamma K_c^2/2m)$$

Some points of be aware of:

- 1) Resolution: Problem of detecting small communities in a large network.
- 2) <u>Degeneracy:</u> Finding the global maximum and difficult to determine if the global maximum is truly more scientifically important than local maxima.

$$H = \frac{1}{2m} \sum_{c} (e_c - \gamma K_c^2 / 2m)$$

Some points of be aware of:

- 1) Resolution: Problem of detecting small communities in a large network.
- 2) <u>Degeneracy:</u> Finding the global maximum and difficult to determine if the global maximum is truly more scientifically important than local maxima.

Solution 1: Louvain with refinement

Iterative application of Louvain

$$H = \frac{1}{2m} \sum_{c} (e_c - \gamma K_c^2/2m)$$

Some points of be aware of:

- 1) Resolution: Problem of detecting small communities in a large network.
- 2) <u>Degeneracy:</u> Finding the global maximum and difficult to determine if the global maximum is truly more scientifically important than local maxima.

<u>Solution 2:</u> Smart Local Moving (SLM) Communities divided into local network. Then apply displacement.

K-means clustering

```
Assign each item a class in 1 to K (randomly)

For 1 to max-iteration {

For each class 1 to K {

Calculate centroid (one of the "K means")

Calculate distance from centroid to each item
}

Assign each item the class of the nearest centroid

Exit if no items are re-assigned (convergence)
}
```

K-means clustering

```
Begin  \begin{array}{c} \text{Assign each item a class in 1 to } K \text{ (randomly)} \\ \text{For 1 to max-iteration } \{ \\ \text{For each class 1 to } K \text{ } \\ \text{Calculate centroid (one of the "$K$ means")} \\ \text{Calculate distance from centroid to each item} \\ \text{Such the properties of the nearest centroid} \\ \text{Exit if no items are re-assigned (convergence)} \\ \text{End} \\ \end{array} \begin{array}{c} \text{Distance method used is mostly} \\ \text{Euclidean: } d(x_i, y_i) = \sqrt{\sum_i (x_i - y_i)^2} \\ \text{But there are others} \\ \text{Spearman, Pearson.....} \\ \text{Depends on the dataset. But when in doubt start with Euclidean!} \\ \end{array}
```

Distance Measure	Equation	Time complexity	Advantages	Disadvantages	Applications
Euclidean Distance	$d_{euc} = \left[\sum_{i=1}^{n} (X_i - Y_i)^2\right]^{\frac{1}{2}}$	O(n)	Very common, easy to compute and works well with datasets with compact or isolated clusters [27,31].	Sensitive to outliers [27,31].	K-means algorithm, Fuzzy c-means algorithm [38].
Average Distance	$d_{\text{ave}} = \left(\frac{1}{D} \sum_{i=1}^{n} (x_i - y_i)^2\right)^{\frac{1}{2}}$	O(n)	Better than Euclidean distance [35] at handling outliers.	Variables contribute independently to the measure of distance. Redundant values could dominate the similarity between data points [37].	K-means algorithm
Weighted Euclidean	$d_{we} = \left(\sum_{i=1}^{n} w_i (x_i - y_i)^2\right)^{\frac{1}{2}}$	O(n)	The weight matrix allows to increase the effect of more important data points than less important one [37].	Same as Average Distance.	Fuzzy c-means algorithm [38]
Chord	$\textit{d}_{\textit{chord}} = \left(2 - 2 \frac{\sum_{l=1}^{n} x_l y_l}{\ x\ _2 \ y\ _2}\right)^{\frac{1}{2}}$	O(3n)	Can work with unnormalized data [27].	It is not invariant to linear transformation [33].	Ecological resemblance detection [35].
Mahalanobis	$d_{mah} = \sqrt{(x-y)S^{-1}(x-y)^T}$	<u>O(3n)</u>	Mahalanobis is a data- driven measure that can ease the distance distortion caused by a linear combination of attributes [35].	It can be expensive in terms of computation [33]	Hyperellipsoidal clustering algorithm [30].
Cosine Measure	$Cosine(x,y) = \frac{\sum_{i=1}^n x_i y_i}{\ x\ _2 \ y\ _2}$	O(3n)	Independent of vector length and invariant to rotation [33].	It is not invariant to linear transformation [33].	Mostly used in document similarity applications [28,33].
Manhattan	$d_{main} = \sum_{i=1}^n (X_i - y_i)$	O(n)	Is common and like other Minkowski-driven distances it works well with datasets with compact or isolated clusters [27].	Sensitive to the outliers. [27,31]	K-means algorithm
Mean Character Difference	$d_{MCD} = \frac{1}{D} \sum_{i=1}^{n} x_i - y_i $	O(n)	*Results in accurate outcomes using the K-medoids algorithm.	*Low accuracy for high- dimensional datasets using K-means.	Partitioning and hierarchical clustering algorithms.
Index of Association	$d_{\text{IOA}} = \frac{1}{n} \sum_{i=1}^{n} \left \frac{x_i}{\sum_{i=1}^{n} x_i} - \frac{y_i}{\sum_{i=1}^{n} y_i} \right $	O(3n)	-	*Low accuracy using K- means and K-medoids algorithms.	Partitioning and hierarchical clustering algorithms.
Canberra Metric	$d_{canb} = \sum_{i=1}^{n} rac{ \mathbf{x}_i \cdot \mathbf{y}_i }{ \mathbf{x}_i \cdot \mathbf{y}_i }$	O(n)	*Results in accurate outcomes for high- dimensional datasets using the K-medoids algorithm.	•	Partitioning and hierarchical clustering algorithms.
Czekanowski Coefficient	$d_{ ext{czeklar}} = 1 - rac{2\sum_{i=1}^{n} \min(q_i y_i)}{\sum_{i=1}^{n} (q_i + y_i)}$	O(2n)	*Results in accurate outcomes for medium-dimensional datasets using the K-means algorithm.	•	Partitioning and hierarchical clustering algorithms.
Coefficient of Divergence	$\mathcal{O}_{camb} = \left(\frac{1}{n} \sum_{i=1}^{n} \left(rac{\mathbf{x}_i - \mathbf{y}_i}{\mathbf{x}_i + \mathbf{y}_i} ight)^2 ight)^{rac{1}{2}}$	O(n)	*Results in accurate outcomes using the K- means algorithm.	•	Partitioning and hierarchical clustering algorithms.
Pearson coefficient	$Pearson(x,y) = \frac{\sum_{l=1}^{n} (v_{l} - p_{k})(y_{l} - p_{l})}{\sqrt{\sum_{l=1}^{n} (v_{l} - y_{l})^{2}} \sqrt{\sum_{l=1}^{n} (v_{l} - y_{l})^{2}}}$	O(2n)	*Results in accurate outcomes using the hierarchical single-link algorithm for high dimensional datasets.	•	Partitioning and hierarchical clustering algorithms.

^{*}Points marked by asterisk are compiled based on this article's experimental results.

doi:10.1371/journal.pone.0144059.t001

Distance measure

t-SNE (What is it?)

 A popular method for exploring high-dimensional data is t-SNE (t-Distributed Stochastic Neighbor Embedding)

No linear distance calculation.

Minimizes the divergence between two distributions:

distribution that measures pairwise similarities of the input objects distribution that measures pairwise similarities of the corresponding low-dimensional points in the embedding

van der Maaten, Journal of Machine Learning Research, 9, 2579–2605 (2008)

t-SNE (What is it?)

Minimizes the divergence between two distributions:

distribution that measures pairwise similarities of the input objects distribution that measures pairwise similarities of the corresponding low-dimensional points in the embedding

t-SNE (What is it?)

Perplexity: The measure of number of nearest neighbor a point has

This determines how the clustering would look. Typically, lies between 5 and 50.

Projection in view!

UMAP is a dimension reduction algorithm based on manifold learning techniques and ideas from topological data analysis.

Let's try to draw some something!

UMAP is a dimension reduction algorithm based on manifold learning techniques and ideas from topological data analysis.

Let's try to draw some something!

UMAP is a dimension reduction algorithm based on manifold learning techniques and ideas from topological data analysis.

UMAP is a dimension reduction algorithm based on manifold learning techniques and ideas from topological data analysis.

UMAP is a dimension reduction algorithm based on manifold learning techniques and ideas from topological data analysis.

Key variables for UMAP: number of neighbors, distance metric, visualization dimension

UMAP is a dimension reduction algorithm based on manifold learning techniques and ideas from topological data analysis.

Sample datasets

Cutoff for Principal components (measure of dimensions to consider)

t- SNE

10

UMAP_1

-10

UMAP_1

Bootstrapping

How confident can you be about your clustering?

For sanity check, always try to do bootstrapping.

- Take random sets of cells from the same dataset
- Perform the same clustering on each of these sets

Currently not present as a default option in commercial packages, but can be implemented outside.

