Empirical Macroeconomics and Finance

Structural Vector Autoregressive Models

Shiu-Sheng Chen

Department of Economics National Taiwan University

Section 1

Introduction

VAR and Structural Econometric Models

- The reduced-form VAR model is simply a statistical description of the dynamic interrelations between k different variables contained in the vector y_t .
- No economic prior has been imposed on the econometric models.

Structural Vector Autoregressions

- Structural vector autoregressions can be used to address the following type of question in macroeconomics:
 - How does the economy respond to different shocks such as monetary shocks, fiscal shocks, and oil price shocks?
 - What is the contribution of the different shocks to the business cycle?
- The answers to these type of questions are key in business cycle analysis, where the purpose is to study impulses and propagations.

Structural Vector Autoregressions

- More recently, the answers provided have been very useful in the construction and evaluation of dynamic stochastic general equilibrium (DSGE) models
- Discriminate between economic theories
 - Does RBC (or New Keynesian) fit the facts?
 - Contributions of demand vs. supply shocks (real vs. nominal shocks)?
 - Response of hour to technology shocks?

Section 2

Motivation: A Recap

Autoregressions

- From AR models to VAR models
- From VAR models to SVAR models

Section 3

Structural VAR (SVAR) Models

Structural VAR (SVAR)

The SVAR is

$$y_t = D_0 y_t + D_1 y_{t-1} + \dots + D_p y_{t-p} + B u_t$$

- where $u_t \sim^{i.i.d.} (0, I)$, and $Bu_t \sim^{i.i.d.} (0, BB')$
- Bu_t is called the structural shock. Bu_t = e_t
- We can rewrite it as:

$$y_t = (I - D_0)^{-1} D_1 y_{t-1} + \dots + (I - D_0)^{-1} D_p y_{t-p} + (I - D_0)^{-1} B u_t$$

That is,

$$y_t = \Phi_1 y_{t-1} + \dots + \Phi_p y_{t-p} + \varepsilon_t$$

• where $\Phi_i = (I - D_0)^{-1}D_i$, and $\varepsilon_t = (I - D_0)^{-1}Bu_t$

Identification

- As $D_j = (I D_0)\Phi_j$, we can obtain D_j from D_0 .
- Hence, according to

$$\varepsilon_t = (I - D_0)^{-1} B u_t$$

the identification can be achieved by

$$E = (I - D_0)^{-1}BB'(I - D_0)^{-1'}$$

- $\frac{k(k-1)}{2} + k$ parameters can be identified from Σ_{ε} .
- ullet On the other hand, we need to identify $2k^2$ parameters in D_0 and ${\sf B}_*$
- Thus, the difference is $\frac{k(3k-1)}{2}$.

Standard Assumptions

- (a) B is diagonal. (Structural shocks are uncorrelated to each other.)
- (b) Standardization: $D_{jj,0} = 0, \ j = 1,...k \ \text{or} \ [D_0]_{jj} = 0$
- These conditions imply

$$\underbrace{k^2-k}_{\mathsf{by}(a)} + \underbrace{k}_{\mathsf{by}(b)}$$

• We still need to identify

$$\frac{k(3k-1)}{2} - (k^2 - k) - k = \frac{k(k-1)}{2}$$

Identification

- How to obtain $\frac{k(k-1)}{2}$ conditions?
 - Short-run restriction
 - ♦ Recursive (semi-structural)
 - ⋄ Economic theory (structural)
 - Long-run restriction
- See Sims (1980), Bernanke (1986), and Blanchard and Quah (1989).