Mathematics for Computer Science

Jakxel

1 de agosto de $2025\,$

Índice

1.	Lógica Proposicional
	1.1. Conectivos Lógicos
	1.2. Tablas de verdad
2.	Teoría de Conjuntos
	2.1. Operaciones
3.	Teoría de Números
	3.1. Congruencias
4.	Combinatoria
	4.1. Permutaciones y Combinaciones
5.	Probabilidad Discreta
	5.1. Eventos
6.	Grafos
	6.1. Definición
	6.2. Árboles
7.	Código en $C++$
	7.1. Ejemplo: Factorial Recursivo
	7.2. Código desde archivo externo

Jakxel Mathematics for CS

1. Lógica Proposicional

1.1. Conectivos Lógicos

Definición 1.1. Un conectivo lógico es un operador que une dos o más proposiciones para formar una proposición compuesta. Ejemplos comunes: \neg , \wedge , \vee , \rightarrow , \leftrightarrow .

Fórmula clave

$$p \to q \equiv \neg p \lor q$$

1.2. Tablas de verdad

Ejemplo 1.1. Verifica la validez de la siguiente proposición: $((p \to q) \land (q \to r)) \to (p \to r)$

2. Teoría de Conjuntos

2.1. Operaciones

Definición 2.1. La intersección de dos conjuntos A y B es el conjunto de todos los elementos que pertenecen a ambos: $A \cap B$.

Fórmula clave

$$\neg (A \cup B) = \neg A \cap \neg B$$
 y $\neg (A \cap B) = \neg A \cup \neg B$

3. Teoría de Números

3.1. Congruencias

Definición 3.1. $a \equiv b \pmod{n}$ significa que n divide a = a - b.

Teorema 3.1 (Pequeño Teorema de Fermat). Si p es un número primo y a no es divisible por p, entonces:

$$a^{p-1} \equiv 1 \pmod{p}$$

4. Combinatoria

4.1. Permutaciones y Combinaciones

Fórmula clave

Permutaciones sin repetición: $P(n,r) = \frac{n!}{(n-r)!}$

Fórmula clave

Combinaciones: $C(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!}$

Jakxel Mathematics for CS

5. Probabilidad Discreta

5.1. Eventos

Definición 5.1. Un **evento** es un subconjunto del espacio muestral. Por ejemplo, al lanzar un dado, obtener un número par es un evento: $\{2,4,6\}$.

Ejemplo 5.1. ¿Cuál es la probabilidad de obtener al menos una cara al lanzar dos monedas?

6. Grafos

6.1. Definición

Definición 6.1. Un grafo G = (V, E) consiste en un conjunto de vértices V y un conjunto de aristas $E \subseteq V \times V$.

6.2. Árboles

Teorema 6.1. Todo árbol con n vértices tiene exactamente n-1 aristas.

7. Código en C++

7.1. Ejemplo: Factorial Recursivo

Definición 7.1. En muchas estructuras algorítmicas, es común definir funciones recursivas para resolver problemas. Aquí mostramos un ejemplo del cálculo del factorial usando C++.

```
C++: Factorial recursivo
  #include <iostream>
2
   using namespace std;
3
4
   int factorial(int n) {
5
     if (n <= 1) return 1;</pre>
6
     return n * factorial(n - 1);
7
   }
8
9
   int main() {
10
     int n = 5;
11
     cout << "Factorial de " << n << " es: " << factorial(n) << endl;</pre>
12
     return 0;
13
  }
14
```

Ejemplo 7.1. El código anterior imprimirá: Factorial de 5 es: 120

7.2. Código desde archivo externo

```
// factorial.cpp
#include <iostream>
using namespace std;

int factorial(int n) {
   if (n <= 1) return 1;
   return n * factorial(n - 1);
}</pre>
```

Jakxel Mathematics for CS

```
int main() {
  int n = 5;
  cout << "Factorial de " << n << " es: " << factorial(n) << endl;
  return 0;
}</pre>
```