II Examen Parcial de Ecuaciones diferenciales

NOMBRE: Isabella Martinez Martinez

Punto	1	2	3	4	Definitiva
Calificación	a8	14	13	9	4.4
Puntaje	10/50	15/50	15/50	10/50	

 \searrow Si y_1 y y_2 son soluciones linealmente independientes de

$$t^2y'' - 2y' + (3+t)y = 0$$

y si $W(y_1, y_2)(2) = 3$, calcule $W(y_1, y_2)(4)$.

💃 Considere el problema de valor inicial

$$2y'' + 3y' - 2y = 0$$
, $y(0) = 1$, $y'(0) = -\beta$, con $\beta > 0$

- 🔌 Encuentre la solución del problema de valor inicial .
- b) Para $\beta = 1$ dibuje la solución (puede usar el computador), halle las coordenadas (t_0, y_0) del punto mínimo de la solución en este caso. Muestre que sí se trata de un mínimo.
- \triangleright Halle el menor valor de β tal que la solución no tiene mínimo.

3. Considere la ecuación

$$y'' - 3y' - 4y = 2e^{-t}. (1)$$

Calcule la solución del problema homogéneo, llame $y_1 = e^{-t}$ la primera solución. Busque la solución del problema no homogéneo de la forma $Y = v(t)y_1 = v(t)e^{-t}$

- Reemplace Y en la ecuación (1) y encuentre una ecuación diferencial para v(t)
- b) Calcule v(t) con la ecuación anterior y presente la solución general de la ecuación no homogénea (1).

* Encuentre la solución general de

$$y'' + 9y = 9\csc^2 3t$$
, $0 < t < \pi/6$

Tiempo 90 minutos,

No se permiten celulares, tablet, calculadora, libros ni apuntes

Septiembre 25 2019, Bogotá