

Finding Four-Leaf Clovers: A Benchmark for Fine-Grained Object Localization

Gustavo Pérez^{1*}, Laura Bravo^{1*}, Alejandro Pardo^{1*}, Pablo Arbeláez¹

mIoU (%) (Left). Results for semantic segmentation.

June 16-20, 2019

INTRODUCTION

Fine-grained object recognition is a challenging open problem, in which the goal is to distinguish subordinate categories within entry-level categories. In other words, fine-grained recognition and, specifically, fine-grained localization is akin to looking for a needle in a haystack.

A large variety of applications require the study not only of fine-grained object categorization, but also of fine-grained localization. Fine-grained localization is characterized by imbalanced problems with a small inter-class variance, and a large intra-class variation.

Our main contribution is to present a comprehensive experimental framework, with highly detailed annotations, for studying fine-grained object localization tasks. We introduce the Four-Leaf Clover (FLC) Dataset, a novel benchmark for studying five different fine-grained localization tasks: object detection, semantic segmentation, instance segmentation, instance parsing, and semantic boundary detection.

THE FLC DATASET

Dataset	Classification	Detection	Semantic Sem.	Instances	Boundaries	Parsing
Imagenet [1]	Δ	Δ	×	×	×	×
PASCAL [2]	\triangle	\triangle	\triangle	\triangle	\triangle	×
MS-COCO [3]	\triangle	\triangle	×	\triangle	×	×
DAVIS [4]	\triangle	\triangle	×	\triangle	×	×
ADE20K[5]	×	\triangle	\triangle	\triangle	×	\triangle
CityScapes [6]	×	\triangle	\triangle	\triangle	×	×
iNaturalist [7]	*	\triangle	×	×	×	×
Cats & Dogs [8]	*	\triangle	\triangle	×	×	×
CUB-200 [9]	*	\triangle	Δ	×	×	×
CompCars [10]	*	\triangle	×	×	×	×
VegFru [11]	*	×	×	×	×	×
CDVCE [12]	*	\triangle	×	×	×	×
FLC	×	*	*	*	4	*

Comparison of FLC to major visual recognition datasets. Clubs indicates that a dataset allows to study a recognition problem at a fine-grained level, triangle (Δ) indicates that the version of the problem is not finegrained, and (x) indicates that a dataset does not allow to study a problem.

Examples of the level of detail in segmentation annotations of the FLC dataset.

CHALLENGES OF THE FLCD DATASET STATISTICS

Positive images refers to images that contain at least one 4-leaf clover.

4-leaf clover pixels and 4-leaf clover boundary pixels refer to the rate of the total of positive pixels over the total of pixels in the FLCD.

TASKS

Semantic Boundary Detection

EXPERIMENTS

			Note:	Object Detection						
Dataset	Method	mAP@.5(%)	mAP@[.5, .95] (%) all	mAP@[.5, .95] (%) small	mAP@[.5, .95] (%) medium	mAP@[.5, .95] (%) large				
	Mask R-CNN ResNet50+FPN	56.4	35.6	0.0	29.6	35.8				
HILC test (Hill)	Mask R-CNN ResNet50+FPN	6.20	4.10	0.0	0.00	8.0				

Leaf 3D orientation

Different clover

(Top). results using Mask R-CNN for the task of detection.

shows one false positive (red), two false negatives

EXPERIMENTS

Semantic Segmentation

FLC (Positives) FLC	MaskR-CNN R50 MaskR-CNN R50	32.71 7.71	(Bottom-left). Qualitative result on the test set.	(Bottom-right). Annot tions of same imag	

Instance Segmentation

Method

Dataset	Method	mAP@[.5,.95](%	
FLC (Positives)	MaskR-CNN R50	39.9	
FLC (Full)	MaskR-CNN R50	4.7	

Object Parsing				
Dataset	Method	mAP@[.5,.95] (%		
FLC (Positives)	MaskR-CNN R50	41.73		
FLC (Full)	MaskR-CNN R50	1.3		

Semantic Boundary Detection

Boundary detection task PR curves.

(Right). (A) boundary annotation of a fourleaf clover. (B) Result of Mask R-CNN. (C) Result of the CASENet model. (D) Result of the trained COB model.

[1] Deng, et al. Imagenet: A large-scale hierarchical image database. CVPR, 2009

[2] Everingam et al. The PASCAL Visual Object Classes Challenge: A Retrospective. IJCV, 2015

[3] Lin, Microsoft COCO: Common Objects in Context. In European conference on computer vision. ECCV, 2014 [4] Perazzi et al. A benchmark dataset and evaluation methodology for video object segmentation. CVPR, 2 [5] Zhou et al. Scene parsing through ade 20k dataset. CVPR, 2017

[6] Cordts et al. Cityscapes dataset for semantic urban scene understanding. CVPR, 2016 [7] Van Horn et al. The iNaturalist Challenge 2017 Dataset. arXiv preprint, 2017 [8] Parkhi et al. Cats and dogs. CVPR, 2012

[9] Welinder et al. Caltech-UCSD Birds 200. TechnicalReport CNS-TR-2010-001. Caltech. 2010 [10] Yang et al. A large-scale car dataset for fine-grained categorization and verification. CVPR, 2015 [11] Hou et al. Vegfru: A domain-specific dataset for fine-grained visual categorization. ICCV, 2017 [12] Gebru et al. Fine-grained car detection for visual census estimation. AAAI, 2017

Department of Biomedical engineering, Universidad de los Andes, Colombia