Differentiability of Piecewise Functions:

1. For what value of c is the function f continuous on $(-\infty,\infty)$? Justify your answer.

$$f(x) = \begin{cases} cx + 7 & x \le 2\\ cx^2 - 5 & x > 2 \end{cases}$$

Is the function differentiable with this value of c? Justify your answer.

- 2. Let $f(x) = \begin{cases} x^2 + 1 & x < 1 \\ 2x + 1 & x \ge 1 \end{cases}$. Is f differentiable at x = 1? Justify your answer.
- 3. Let $f(x) = \begin{cases} 3x^2 + x & x \le 0 \\ \sin(x) & x > 0 \end{cases}$. Is f(x) differentiable at x = 0? Justify your answer.

Derivative of Inverse Functions

The following table gives the values of a differentiable function f, and its derivative f' at given values of *x*.

х	f	f'
1	2	$\frac{1}{2}$
2	3	1
3	4	2
4	6	4

- 1. If g(x) is the inverse function of f(x), then what is the value of g'(4)?

- (a) $\frac{1}{6}$ (b) $\frac{1}{4}$ (c) $\frac{1}{3}$
- (e) 2
- 2. If $f(x) = x^3 3x^2 + 8x + 5$ and $g(x) = f^{-1}(x)$, then g'(5) =(a) 8 (b) $\frac{1}{8}$ (c) 1 (d) $\frac{1}{53}$

- (e) 5

Differentiability of Piecewise Functions:

1. For what value of c is the function f continuous on $(-\infty,\infty)$? Justify your answer.

$$f(x) = \begin{cases} cx + 7 & x \le 2\\ cx^2 - 5 & x > 2 \end{cases}$$

Is the function differentiable with this value of c? Justify your answer.

- 2. Let $f(x) = \begin{cases} x^2 + 1 & x < 1 \\ 2x + 1 & x \ge 1 \end{cases}$. Is f differentiable at x = 1? Justify your answer.
- 3. Let $f(x) = \begin{cases} 3x^2 + x & x \le 0 \\ \sin(x) & x > 0 \end{cases}$. Is f(x) differentiable at x = 0? Justify your answer.

Derivative of Inverse Functions

The following table gives the values of a differentiable function f, and its derivative f' at given values of *x*.

х	f	f'
1	2	$\frac{1}{2}$
2	3	1
3	4	2
4	6	4

- 1. If g(x) is the inverse function of $\overline{f(x)}$, then what is the value of g'(4)?

- (a) $\frac{1}{6}$ (b) $\frac{1}{4}$ (c) $\frac{1}{3}$
- (e) 2
- 2. If $f(x) = x^3 3x^2 + 8x + 5$ and $g(x) = f^{-1}(x)$, then g'(5) =(a) 8 (b) $\frac{1}{8}$ (c) 1 (d) $\frac{1}{53}$

- (e) 5