PUNE INSTITUTE OF COMPUTER TECHNOLOGY DHANKAWADI, PUNE

DATA MINING AND WAREHOUSING MINI-PROJECT REPORT **ON**

"CLASSIFYING RESULTS OF GAME"

SUBMITTED BY

Maitraya Kakade 41427 Pranav Kulkarni 41430

Under the guidance of Dr. S.D Kale

DEPARTMENT OF COMPUTER ENGINEERING
Academic Year 2020-21

Contents

1	Problem Statement	1
2	Abstract	2
3	INTRODUCTION	3
4	OBJECTIVE	5
5	Test Cases	6
6	Result	8
7	Conclusion	12
References		13
List of Figures		14
List of Tables		15

1 Problem Statement

Consider a labeled dataset belonging to an application domain. Apply suitable data preprocessing steps such as handling of null values, data reduction, discretization. For prediction of class labels of given data instances, build classifier models using different techniques (minimum 3), analyze the confusion matrix and compare these models. Also apply cross validation while preparing the training and testing datasets.

2 Abstract

Classification is a form of data analysis that extracts models describing important data classes. Such models, called classifiers, predict categorical (discrete, unordered) class labels. For example, we can build a classification model to categorize bank loan applications as either safe or risky. Such analysis can help provide us with a better understanding of the data at large. In this project we use multiple classification models to analyse the outcome of hockey game played between various teams. Use apply suitable data preprocessing steps. We then compare performance of classification models to find which one is the best.

3 INTRODUCTION

We have been provided with the data regarding various aspects of the home team, the opposition team and their supporters for a number of hockey games.

The Data fields are

- 1. Id Unique id given to each game.
- 2. game_seq Sequence of the game in the history of FIH (International Hockey Federation).
- 3. season_end Year in which the corresponding season ended.
- 4. date Date on which the game was played.
- 5. season_game_seq Sequence of the game in the corresponding season.
- 6. playoff Whether the game is a playoffs game.
- 7. team_id Unique id for the home team.
- 8. Elo Elo rating for the home team before the game.
- 9. opp_team_id Unique id for the opposition team.
- 10. $opp_Elo Elo$ rating for the opposition team before the game.
- 11. win_equivalent Equivalent number of wins for the home team in a season.
- 12. bet_ratio Fraction of bets placed on the home team.
- 13. home_crowd Number of supporters for the home team.
- 14. opp_crowd Number of supporters for the opposition team.
- 15. total_crowd Total number of attendees for the game.
- 16. game_result Win or loss for the home team (Win 1, Loss 0).

The train set contains 45000 records while the test set contains 13107 records. We drop the date column from our analysis. The null entries are as follows

Attribute	Null Count		
Elo	9197		
opp_Elo	7006		
win_equivalent	12263		

Table 1: Null Counts

We fill the null Elo and opp_elo entries with the mean value of Elo and opp_Elo attribute respectively i.e. 1501.184 1501.837

The boxplots of some attributes are as follows:

Figure 1: Boxplots

We drop rows with bet_ratio below 0.13 and above 0.97. Similarly we drop rows with opp_Elo below 1200 and above 1750, Elo below 1175 and above 1780 and win_eqivalent below 14 and above 68

We extract the id from string team_id and opp_id fields. We drop columns Id,game_seq,team_id and opp_id. We convert playoff to categorical data.

We have trained using two models Logistic Regression, KNN classifier, XGBoost Classifier and RandomForest Classifier. We find that XGBoost Classifier performs better.

4 OBJECTIVE

- To understand data preprocessing
- To perform classification on dataset and predict labels for test dataset.

5 Test Cases

Figure 2: Output for logistic regression

Figure 3: Output for K Neighbours classifier

Figure 4: Output for random forest classifier

Figure 5: Output for XGBoost classifier

6 Result

The accuracy for XGBoost classifier is arround 80%. while that of other models is lesser. The following are confusion matrices of various model outputs.

Figure 6: Logistic regression

Figure 7: K Neighbours classifier

Figure 8: random forest classifier

Figure 9: XGBoost classifier

7 Conclusion

We have analysed the hockey game dataset and performed data pre-processing steps. We have experimented multiple classification models and found out the best performer amongt them. We have then used this model to mae predictions on test dataset.

References

- [1] https://www.kaggle.com/c/datawiz19round1/data
- [2] https://seaborn.pydata.org/index.html
- [3] Jiawei Han, Micheline Kamber, Jian Pei, Data Mining Concepts and Techniques

List of Figures

1	Boxplots	4
2	Output for logistic regression	6
3	Output for K Neighbours classifier	6
4	Output for random forest classifier	7
5	Output for XGBoost classifier	7
6	Logistic regression	8
7	K Neighbours classifier	9
8	random forest classifier	10
9	XGBoost classifier	11

T	• 4	c		1 1	
I.	ist	OT	Ta	n	les