Student Name _____

Math 131

Homework 7

Due Date: November 2, 2018

Homework 7

Problem 1.

Let *C* be the Cantor set, as defined in 2.44 of Rudin.

Recall that the Schroder-Berstein theorem (sometimes known as the Cantor-Bernstein-Schroder theorem) gives another way to show the equality of the cardinality of two sets. The theorem states: Given two sets X and Y, |X| = |Y| if and only if $|X| \le |Y|$ and $|Y| \le |X|$.

- 1. Find a function $f: C \rightarrow [0,1]$ that is onto.
- 2. Prove that Cantor set C has the same cardinality as the closed interval $[0,1] \in \mathbb{R}$ by using the function from part (a) and invoking the Schroder-Berstein theorem.

Solution.

Problem 2.

For this problem, it may help to review exercise 2.9 in Rudin. Let A be a subset of a metric space X with closure \overline{A} . Let A° be the *interior* of set A. That is, A° denotes the set of interior points of (recall definition 2.18(e) of Rudin). Let ∂A be the *boundary* of A. Thus,

$$A^{\circ} = \bigcup \{G \subset A : G \text{ is open}\}$$
$$\partial A = \overline{A} \backslash A^{\circ}$$

- 1. Prove or disprove: If set *A* is open, then it follows that $(\overline{A})^{\circ} = A$.
- 2. Prove or disprove: If set A is connected, \overline{A} will also be connected.
- 3. Prove or disprove: If set A is connected, A° will also be connected.

Solution.

Problem 3.

Convince yourself of the following theorem (do not turn in this part): If $\{G_1, G_2, G_3, \dots\}$ is a countable collection of dense, open sets, then the intersection $\bigcap_{n=1}^{\infty} G_n$ is a dense (and therefore non-empty) subset of \mathbb{R}

Note that a set G is dense in \mathbb{R} if and only if $\overline{G} = \mathbb{R}$. So, for example, the set of rationals \mathbb{Q} is dense in \mathbb{R} , but the set of integers \mathbb{Z} is not.

We call a set E in \mathbb{R} nowhere-dense if \overline{E} contains no nonempty open intervals. Note that \mathbb{Z} is nowhere-dense in \mathbb{R} since $\mathbb{Z} = \overline{\mathbb{Z}}$ contains no nonempty open intervals.

- 1. Show that a set E is nowhere-dense in \mathbb{R} if and only if the complement of the closure, $(\overline{E})^c$, is dense in \mathbb{R} .
- 2. Prove that the set \mathbb{R} cannot be written as a countable union of nowhere dense sets. Hint: Use a proof by contradiction.

Solution.