CACHE MEMORY

CPU fact + fetaling husbandlan & data from memory -> CPU clas

L + Regleters -> CPU fact but content

of regleters he low.

I cache -> CPU foot

clower than regleter paster than main memory

store more than a have less content.

-> CACHE HIT: Look Into cache and perceive that whatever required to present buside it.

Hit latency: Time taken to find whether required element to present in eacher.

Cache Miss: If required data / Instir is not present in

Hoss latency: Due to eache mles, seesate main memory is used to get the element. Time taken in the latency.

Page cult and Page fault refer to writher regulared data check to present in main memory or not. This is done

by [Page Tololes].

For cache, Tag directory) de equivalent to Page Tables.

Scanned by TapScanner

The CPU will first check the line number, then be will matche the true tag. If tag matches then be will go for cache the.

PROBLEMS

0	MM aye	cache dize	Block dzi	Tag obts	7 ag directory eize
	129KB	16 kB	256 B	3	3 × 26
	32 GB	32 kB	IKB	20_	20 × 25
	64 MB	512 KB	IKB	7	7 × 2 9
	16613	16 MB	AKB	- 10	10× 212
	64 MB	64 KB	NA	10	NA_
	64MB	512 KB	NA_	1	NA NA

Assuming that memory is byte addressable.

128 kB, byte addressable, physical address contain 17 bills
128 kB, word addressable, physical address contain 15 bilts
6 32 kW 6 4 byte

For HM dage 128 KB, eache stept 16 KB & block elage 256 B

$$PA = 17 \text{ bd/G}$$

Block offset = 8 (28 = 256)

Tag 6dts = 17-8-6 = 3.

Tag der deze = # Tag deta x # lines = 3 x 26