

Big Data: Definición desde el punto de vista de capacidad de cómputo

Big Data:

Es una plataforma tecnológica (hardware y software) que permite almacenar (de manera distribuida) y procesar (en forma paralela y distribuida) conjuntos de datos, que por su gran volumen, superan las capacidades de las plataformas TI tradicionales, ya sea porque tomaría demasiado tiempo procesar dichos datos o porque sería muy costoso implementar una arquitectura que soporte tal cantidad de datos.

Big Data: Definición desde el punto de vista científico (Ciencia de Datos)

Ciencia de Datos:

Es la generación de conocimiento a partir de grandes volúmenes de datos, aplicando técnicas de procesamiento paralelo y distribuido, para implementar algoritmos que permitan predecir o detectar patrones sobre los datos almacenados. A partir de los resultados obtenidos se podrán construir herramientas que permitan analizar los resultados y apoyar los procesos de toma de decisiones.

Big Data: Unidades de Medida

Unidades de Medidas

IEC prefixes and symbols for binary multiples				
Factor	Name	Symbol	Origin	SI Derivation
2 ¹⁰	kibi	Ki	kilobinary (2 ¹⁰) ¹	kilo: (10 ³) ¹
2 ²⁰	mebi	Mi	megabinary (2 ¹⁰) ²	mega: (10 ³) ²
2 ³⁰	gibi	Gi	gigabinary (2 ¹⁰) ³	giga: (10 ³) ³
2 ⁴⁰	tebi	Ti	terabinary (2 ¹⁰) ⁴	tera: (10 ³) ⁴
2 ⁵⁰	pebi	Pi	petabinary (2 ¹⁰) ⁵	peta: (10 ³) ⁵
2 ⁶⁰	exbi	Ei	exabinary (2 ¹⁰) ⁶	exa: (10 ³) ⁶
2 ⁷⁰	zebi	Zi	zettabinary (2 ¹⁰) ⁷	zetta: (10 ³) ⁷
280	yobi	Yi	yottabinary (2 ¹⁰) ⁸	yotta: (10 ³) ⁸

Big Data: V's

Visualización Despliegue Cuadro de Mandos

Valor

Utilidad Impacto Social Impacto Económico

Volumen Grandes volúmenes Velocidad Generación de datos Procesamiento

Variedad
Diversos Formatos
Data Stream

Veracidad Calidad de datos Precisión

Científico de Datos

Profesional que debe provenir y dominar las ciencias matemáticas y la estadística, además de tener avanzados conocimientos en programación (y sus múltiples lenguajes), ciencias de la computación y analítica predictiva.

Profesional dedicado a analizar e interpretar grandes almacenes o bases de datos

Científico de Datos

Científico de Datos

MODERN DATA SCIENTIST

Data Scientist, the sexiest job of 21th century requires a mixture of multidisciplinary skills ranging from an intersection of mathematics, statistics, computer science, communication and business. Finding a data scientist is hard. Finding people who understand who a data scientist is, is equally hard. So here is a little cheat sheet on who the modern data scientist, really is.

MATH & STATISTICS

- ☆ Machine learning
- ☆ Statistical modeling
- ☆ Experiment design
- ☆ Bavesian inference
- Supervised learning: decision trees, random forests, logistic regression
- Unsupervised learning: clustering, dimensionality reduction
- ☆ Optimization: gradient descent and variants

PROGRAMMING & DATABASE

- ☆ Computer science fundamentals
- ☆ Scripting language e.g. Python
- ☆ Statistical computing package e.g. R
- ☆ Databases SQL and NoSQL
- ☆ Relational algebra
- ☆ Parallel databases and parallel query processing
- ☆ MapReduce concepts
- ☆ Hadoop and Hive/Pig
- ☆ Custom reducers
- ★ Experience with xaaS like AWS

DOMAIN KNOWLEDGE & SOFT SKILLS

- ☆ Passionate about the business
- ☆ Curious about data
- ☆ Influence without authority
- ☆ Hacker mindset
- ☆ Problem solver
- Strategic, proactive, creative, innovative and collaborative

COMMUNICATION <u>& VI</u>SUALIZATION

- Able to engage with senior management
- ☆ Story telling skills
- ☆ Translate data-driven insights into decisions and actions
- ☆ Visual art design
- ☆ R packages like ggplot or lattice
- ★ Knowledge of any of visualization tools e.g. Flare, D3.is, Tableau

Científico de Datos: Trabajo en Equipo

Fuente: Drew Conway

Diagrama de Venn

Arquitectura de Big Data

Hardware: Cluster Maestro-Esclavo

Arquitectura de Big Data

Software: Open Source

Apache Hadoop: Antecedentes

Antecedentes Apache Hadoop

Publicaciones de Google (Papers):

- Google File System (2003)
- MapReduce (2004)
- Bigtable (2006)

Apache Hadoop

Apache Hadoop

Plataforma de software de código abierto para el almacenamiento distribuido y procesamiento distribuido de grandes volúmenes de datos (Big Data) en clusters de ordenadores construidos a partir de "Commodity hardware".

Los servicios de Hadoop proporcionan almacenamiento de datos, procesamiento de datos, acceso a datos, la gestión de datos, seguridad y operaciones.

Doug Cutting (2006)

Apache Hadoop: HDFS

Almacenamiento Distribuido Soporta grandes volúmenes de datos Replicación de datos Soporta escalabilidad horizontal 100 Integración con diversas plataformas 100 Integración con almacenes de datos Código abierto (Open Source)

HDFS: Hadoop Distributed File System

Apache Hadoop: HDFS

HDFS Data Distribution

Apache Hadoop: MapReduce

Apache Hadoop: MapReduce

Ejemplo: Conteo de palabras

Apache Hadoop: YARN

Características	Descripción	
Tenencia Múltiple (Multi-tenancy)	Permite que múltiples motores de acceso utilicen Hadoop como el estándar común para los procesamientos en lotes, interactivo y en tiempo real, permitiendo el acceso simultáneamente el mismo conjunto de datos.	
Utilización de Cluster	Asigna dinámicamente los recursos del cluster	
Escalabilidad	Soporta la escalabilidad o creciemiento del Cluster	
Compatibilidad	Mantiene la compatibilidad hacia atras de los procedimientos MapReduce de las versiones anteriores de Hadoop	

YARN: Yet Another Resource Negotiator

Ambari

Provisioning, Managing and Monitoring Hadoop Clusters

Workflow

Pig Scripting

Log Collector

Flume

Zookeeper Coordination

Oozie

YARN Map Reduce v2

Statistics

Distributed Processing Framework

R Connectors

Hbase

Columnar Store

HDFS

Hadoop Distributed File System

Integración de fuentes de datos empresariales

Casos de uso de Big Data

Redes Sociales

Patrones de Compra

Internet de las cosas

Detección de Fraudes

Investigaciones científicas

Ataques informáticos

Tendencias en Big Data

"Data Scientist" Job Trends

Fuente: www.indeed.com

