- (18分)、给定方程エーlnx-2=0 (1) 分析该方程存在几个根, 并找出每个根所在的区间(区间长度取 1); (2) 用收敛的不动点迭代格式求出最小根(取产 10-3,保留小数点后3位),并证明迭代法的收敛性。 (5.0分)

二 (18分)、给定方程组 Ax = b, 其中

$$\mathbf{A} = \begin{pmatrix} 1 & w & w \\ 3w & 1 & 0 \\ w & 0 & 1 \end{pmatrix},$$

而 $x,b\in\mathbb{R}^3$, $w\in\mathbb{R}$. 试确定w 的取值范围,使求解该方程组的 Jacobi 迭代格式和 Gauss-Seidel 迭代格式都收敛.

3 三 (20分)、(1) 已知连续函数 f(x) 在 x = -3, -1, 0, 5 时的值分别是 -2, 0, 2, 5, 用二次拉格朗日插值估计 f(x) 3).

(2) 确定经验曲线 $y = ae^{bx}$ 中的参数 a, b,使该曲线与下列数据相拟合. (保留小数点后 4 位)

Xi	1	2	3	4
y _i	40	30	20	15

4 四 (20分)、给定定积分

(用7个点上的函数值计算),

(1) 用复化梯形法计算 T6;

(2) 用复化辛普森法计算 53.

(保留小数点后 4位)

(5.0分)

 $y' = e^{-x} \cos x - y$, $0 \le x \le 1$, y(0) = 0,

五 (17分)、用梯形公式解初值问题:

取步长 h=0.1, 计算 y(0.1), y(0.2), y(0.3) 和 y(0.4) 的近似值. (保留小数点后 4 位) (5.0分)

六 (7分)、考虑求 \sqrt{c} 的牛顿迭代公式 $X_{k+1}=\frac{1}{2}(X_k+\frac{1}{X_k})$,对任意的初始值 x_0 ,证明: $X_k \geq \sqrt{c}$,且 $\{x_k\}$ 是单 调递减序列,其中 k≥1. (5.0分)

40. 给定方程组
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
, 其中 $\mathbf{A} = \begin{bmatrix} 1 & \omega & \omega \\ 3\omega & 1 & 0 \\ \omega & 0 & 1 \end{bmatrix}$, $\mathbf{x}, \mathbf{b} \in \mathbf{R}^3, \omega \in \mathbf{R}$. 试确定

ω 的取值范围, 使求解该方程组的 Jacobi 迭代格式和 Gauss-Seidel 迭代格式都收敛. 解 Jacobi 迭代矩阵的特征方程为

即 $\lambda^3 - 4\omega^2\lambda = 0$,求得其根为 $\lambda_1 = 0$, $\lambda_2 = 2\omega$, $\lambda_3 = -2\omega$. 当且仅当 $|2\omega| < 1$,即 $|\omega| < \frac{1}{2}$ 时,Jacobi 格式收敛.

Gauss-Seidel 迭代矩阵的特征方程为

$$\begin{vmatrix} \lambda & \omega & \omega \\ 3\lambda\omega & \lambda & 0 \\ \lambda\omega & 0 & \lambda \end{vmatrix} = 0,$$

即 $\lambda^3 - 4\lambda^2\omega^2 = 0$, 求得 $\lambda_{1,2} = 0$, $\lambda_3 = 4\omega^2$. 迭代格式收敛 $\Longleftrightarrow |4\omega^2| < 1$, 即 $|\omega| < \frac{1}{2}$. 综上, 当 $|\omega| < \frac{1}{2}$ 时, Jacobi 迭代格式和 Gauss-Seidel 迭代格式都收敛.

即满起群。

3.山西于多用一次转值取金数米十、谷口、松上进行超值 XI L(X)= X(X+5) XO + (X+1)(x-5) X2 + (X+1)X 1X(0-5) X2 + (X+1)X5 二-五X+33X+2 取分3代人解析(3)≈12(3)=5.2 (2) 取 /ny=/na+bx 全对=/ny A=/na 对有 可=A+bx 取到SPM 引, X PO(X)=1, P, (X)=X 2:1 (80, 10)=4 (60, 6, 1:(8, 60)=/0

 $21(P_0, P_0) = 4$ $(P_0, P_0) = 4$ $(P_0, P_0) = 6$ $(P_0, P_0) = 6$ (P

校生 C475. e-85X

4 几日 用给糊粉 $h = \frac{3-0}{7} = \frac{2}{3}$ f(X) = JA > IN(X) = JA > IN(X)

用额籍新维·允子·于(X)=在5/1X d Xk=至k(k=1,2…6)

五. 由于格形活动等分科 3ml=3nt空[fixn,3n)+fixn+1.3mm)]

故由于f(x)=C-xcosx-y

i /h+1 = 1/n + 2 (exhos xn - 4/n + exhot Cos xn+1 - Jn+1)

超理图 加二 1.05.9n+ 立(ex (05×n-yn+e-(xn+0.1) cos(xn+0.1)]

 $\Re \gamma(0)=0 2/10.1) = 0.09071$ $\gamma(0.2) \approx 0.1642$ $\gamma(0.3) \approx 0.2228$ 更正

MO.4) 20.2688

证法二 设 $f(x) = x^2 - a(a > 0)$. 易知 f(x) = 0在 $[0, +\infty)$ 内有唯一实根 $x^* = \sqrt{a}$. 对 f(x)

应用牛顿迭代法,得

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = \frac{1}{2} \left(x_k + \frac{a}{x_k} \right), k = 0, 1, 2, \dots$$

当 $x_0 > \sqrt{a}$ 时, $\{x_k\}_{k=0}^{\infty}$ 单调递减有下界 \sqrt{a} ,且 $\lim x_k = \sqrt{a}$.

当 $x_0 \in (0, \sqrt{a})$ 时,

$$x_1 = \frac{1}{2} \left[x_0 + \frac{a}{x_0} \right] = \frac{1}{2} \left[\sqrt{x_0} - \sqrt{\frac{a}{x_0}} \right] + \sqrt{a} > \sqrt{a}$$