KTH Matematik

Olof Heden

Σρ	G/U	bonus

namn	pnr	kodnr
ľ	namn	namn pnr

Lösning till kontrollskrivning 3A, 8 maj 2015, 10.15–11.15, i SF1610 Diskret matematik för CINTE, CMETE mfl.

Inga hjälpmedel tillåtna.

Minst 8 poäng ger godkänt.

Godkänd ks n medför godkänd uppgift n vid tentor till (men inte med) nästa ordinarie tenta (högst ett år), $n = 1, \ldots, 5$.

13–15 poäng ger ett ytterligare bonuspoäng till tentamen.

Uppgifterna 3)–5) kräver väl motiverade lösningar för full poäng. Uppgifterna står inte säkert i svårighetsordning.

Spara alltid återlämnade skrivningar till slutet av kursen!

Skriv dina lösningar och svar på samma blad som uppgifterna, använd baksidan om det behövs.

1) (För varje delfråga ger rätt svar $\frac{1}{2}$ p, inget svar 0p, fel svar $-\frac{1}{2}$ p. Totalpoängen på uppgiften rundas av uppåt till närmaste icke-negativa heltal.) **Kryssa för** om påståendena **a**)-**f**) är sanna eller falska (eller avstå)!

		sant	falskt
a)	Alla sidoklasser till en delgrupp H i en grupp G är lika stora.	X	
b)	I varje grupp (G, \circ) har en ekvation $a \circ x = b$ precis en lösning för varje par av element $a, b \in G$.	X	
c)	Varje grupp har precis ett element vars ordning är 1.	X	
d)	En grupp med 31 stycken element har som delgrupper bara de två triviala delgrupperna.	X	
e)	Om $\psi \gamma$ är en jämn permutation så är $\gamma \psi$ också en jämn permutation.	X	
f)	Om elementet g i gruppen (G, \circ) har ordning 51 så har elementet $g \circ g \circ g$ ordning 17.	X	

poäng uppg.1

Namn	poäng uppg.2

2a) (1p) Ange ordnigen av elementet 4 i gruppen $(Z_{22}, +)$.

SVAR: 11.

b) (1p) Komplettera följande tabell så det blir operationstabellen till en grupp:

SVAR:

c) (1p) Låt φ och ψ skrivna som produkter av disjunkta cykler vara

$$\varphi = (1 \ 3 \ 2)(5 \ 6 \ 4)$$
 $\psi = (1 \ 2 \ 6 \ 5)(4 \ 3)$

Är permutationen $\psi \varphi$ en udda eller en jämn permutation?

SVAR: Jämn.

Namn	poäng uppg.3

3) (3p) Låt G beteckna gruppen $G = (Z_{15}, +)$. Bestäm delgrupper till G med 3 resp 5 element och ge en motivering, utifrån satser som diskuterats i kursen, varför G saknar en delgrupp med 4 element.

Lösnng. Enligt Lagranges sats delar antalet element i en delgrupp antalet element i gruppen själv. Då 4 inte delar 15 finns ingen delgrupp med 4 element. Delgrupper med 3 resp 5 element är

$$H_1 = \{0, 5, 10\}, \qquad H_2 = \{0, 3, 6, 9, 12\}.$$

Namn	poäng uppg.4

- 4) (3p) Låt G vara gruppen $G = (Z_{18}, +)$. Bestäm en sidoklass S till en delgrupp H till G som uppfyller följande tre specifikationer:
 - (1) 3 tillhör S,
 - (2) 0 tillhör inte S,
 - (3) |S| > 1.

OBS. En komplett lösning med fullständiga motiveringar skall ges.

Lösnng. Vi tar delgruppen $H = \{0, 9\}$ som har sidoklassen **SVAR:** $S = 3 + H = \{3, 12\}.$

Namn	poäng uppg.5

5) (3p) Betrakta gruppen S_7 bestående av alla permutationer av elementen i mängden $\{1, 2, ..., 7\}$. Bestäm en delgrupp H till S_7 sådan att H har 10 element och är Abelsk, dvs den kommutativa lagen $a \circ b = b \circ a$ gäller för alla element a, b i H.

OBS. En komplett lösning med fullständiga motiveringar skall ges.

Lösnng. Vi tar en cyklisk delgrupp $H = \langle \varphi \rangle$ med tio element, vilken per automatik blir abelsk eftersom alla cykliska grupper är abelska. Elementet φ som genererar gruppen skall då ha ordning 10. Permutationen

$$\varphi = (1 \ 2)(3 \ 4 \ 5 \ 6 \ 7).$$

har ordning 10.