FlatIron Exercise

Isabel Metzger

```
In [1]: # importing packages
   import pandas as pd
   from statsmodels.distributions.empirical_distribution import ECDF
   import warnings
   warnings.filterwarnings('ignore')
   import matplotlib.pyplot as plt
   import matplotlib.patches as mpatches
   import seaborn as sns
   sns.set()
```

Question 1:

First, the clinic would like to know for which diseases they are seeing patients.

- 1a) Which types of cancer does the clinic see patients for?
- 1b) How many patients does the clinic see for each cancer type?

Question 2:

The clinic wants to know how long it takes for patients to start therapy after being diagnosed, which they consider to be helpful in understanding the quality of care for the patients.

- 2a) How long after being diagnosed do cancer patients start treatment for each cancer type?
- 2b) Are there any patients which are diagnosed but not treated at the practice?

Question 3:

After being treated with a first line of treatment (a drug or combination of drugs), what proportion of all cancer patients go on to be treated with a second line of treatment? (For more information on the concept of "first-line therapy", please reference https://www.cancer.net/navigating-cancer-care/how-cancer-treated/when-first-treatment-doesnt-work)

Question 4:

How does each drug used at the clinic compare in terms of its duration of therapy?

Load Data

```
In [2]: # reading data provided
         df_treatment = pd.read_csv('./TreatmentSample01.csv', )
         print(df_treatment.shape)
         df_diagnosis = pd.read_csv('./DiagnosisSample01.csv', )
         print(df_diagnosis.shape)
         (714, 3)
         (44, 5)
In [3]: # Let's view the format of each table
         print('Treatment Table')
         df_treatment.head()
         Treatment Table
Out[3]:
            PatientID TreatmentDate DrugCode
         0
               2038
                       2010-01-24
                                       Α
         1
               2038
                       2010-01-27
                                       Α
         2
               2038
                       2010-01-30
                                       Α
               2038
                                       Α
         3
                       2010-02-02
               2038
                       2010-02-06
                                       Α
```

In [4]: print('Diagnosis Table')
 df_diagnosis.head()

Diagnosis Table

Out[4]:

	PatientID	DiagnosisDate	DiagnosisCode	Diagnosis	IsCancerDiagnosis
0	2634	2011-02-19	285.8	Anemia	False
1	5657	2012-06-07	285.8	Anemia	False
2	7937	2013-01-06	285.8	Anemia	False
3	8615	2013-07-18	284.9	Anemia	False
4	4354	2012-02-04	284.9	Anemia	False

Question 1

To answer the first question, we count how many times a given diagnosis shows up in the Diagnosis table

In [5]: #Let's first check whether the Diagnosis codes are normalized,
 #and check for cases where there is missing information that could impac
 t our analysis

normally, would use a lib like pandas-profiling to run a quick analysi
 s on the dataframe,
 # but below I just do some manual checks

df_diagnosis.describe(include='all')
 # we can confirm by looking at the 'count' row that there are no Nonetyp
 e values in the dataframe

Out[5]:

	PatientID	DiagnosisDate	DiagnosisCode	Diagnosis	IsCancerDiagnosis
count	44.000000	44	44.000000	44	44
unique	NaN	38	NaN	5	2
top	NaN	2012-03-20	NaN	Breast Cancer	True
freq	NaN	3	NaN	22	33
mean	5228.181818	NaN	207.618182	NaN	NaN
std	2095.923976	NaN	76.155521	NaN	NaN
min	2038.000000	NaN	153.300000	NaN	NaN
25%	3449.000000	NaN	169.050000	NaN	NaN
50%	4533.000000	NaN	174.650000	NaN	NaN
75%	6922.000000	NaN	202.400000	NaN	NaN
max	9331.000000	NaN	401.900000	NaN	NaN

In [6]: # We want to groupby on Diagnosis, and we confirmed above that each row
 has a value for Diagnosis
now let's check that the Diagnosis terms are normalized (e.g. no obvio
 us mispellings)

print('Listed Diagnoses:', ''.join([f'\n* {diag_name}' for diag_name in
 df_diagnosis.Diagnosis.unique()]))

Listed Diagnoses:

- * Anemia
- * Breast Cancer
- * Colon Cancer
- * Hypertension
- * Hypertension

```
In [7]: # we see that there are two instances of Hypertension, and one clearly h
    as a trailing space
    # we'll strip the Diagnosis strings to fix this
    df_diagnosis['Diagnosis'] = df_diagnosis.Diagnosis.str.strip()

# let's confirm that we no longer see the duplicate diagnosis string
    print('Listed Diagnoses (cleaned):', ''.join([f'\n* {diag_name}' for dia
    g_name in df_diagnosis.Diagnosis.unique()]))
```

Listed Diagnoses (cleaned):

- * Anemia
- * Breast Cancer
- * Colon Cancer
- * Hypertension

Out[8]:

Counts

Diagnosis	
Breast Cancer	22
Colon Cancer	11

Q1 Answers:

1a) The types of cancers the clinic sees are: Breast Cancer and Colon Cancer

1b) The number fo patients for each cancer type are :

Breast Cancer: 22 Colon Cancer: 11

Question 2:

In order to look at the time it takes to treat a patient after diagnosis, we'll need to combine the two tables and compare the Diagnosis date to the Treatment date

In [9]: # We want to look at the time between diagnosis and treatment,
so let's first filter out our diagnosis table for just cancer diagnose
s
Also recall that only anti-cancer drugs are being listed in the treatm
ent table
so the only diagnoses being treated here will be cancer diagnoses
df_cancer_diagnosis = df_diagnosis[df_diagnosis.IsCancerDiagnosis==True]

let's look to see how many cases we have where someone is diagnosed mu
ltiple times
df_cancer_diagnosis[df_cancer_diagnosis.duplicated(subset=['PatientID'],
keep=False)].sort values('PatientID')

Out[9]:

	PatientID	DiagnosisDate	DiagnosisCode	Diagnosis	IsCancerDiagnosis
30	3095	2011-07-01	153.9	Colon Cancer	True
31	3095	2011-07-10	153.3	Colon Cancer	True
32	3449	2011-08-26	153.5	Colon Cancer	True
38	3449	2011-08-26	153.4	Colon Cancer	True
13	3757	2011-10-11	174.1	Breast Cancer	True
39	3757	2011-10-08	153.5	Colon Cancer	True
17	4374	2012-03-20	174.5	Breast Cancer	True
25	4374	2012-03-20	174.8	Breast Cancer	True
26	4374	2012-03-20	174.7	Breast Cancer	True
27	6877	2012-12-09	174.3	Breast Cancer	True
34	6877	2012-11-16	153.4	Colon Cancer	True

In [10]: # let's also account for combination therapies, where a patient is given multiple drugs together # for each patient and each treatment day, we will combine rows where mu ltiple drugs are listed df_combo_treatment = df_treatment.groupby(['PatientID', 'TreatmentDate']).sum().reset_index()

```
In [11]: # Unfortunately we don't have a way to tell which treatment corresponds
          to which diagnosis in the above cases
         # For now let's assume the following:
              - Each instance where a person has a change in treatment at some po
         int is a case of second-line therapy
              - For cases where a patient has multiple diagnoses, we consider all
         diagnoses to be treated by all drugs used in treatment
         # given this, we can effectively reduce the problem to finding the time
          between first diagnosis and first treatment
         # for each patient get the first diagnosis date
         df first_cancer_diagnosis = (df_cancer_diagnosis
                                       .sort values(['PatientID', 'DiagnosisDate'
         1)
                                       .groupby(['PatientID'])
                                       .first()
                                       .reset index()
                                       [['PatientID', 'DiagnosisDate', 'Diagnosis'
         11
         # for each patient get the first date of any treatment
         df_first_treatment = (df_combo treatment
                                .sort_values(['PatientID', 'TreatmentDate'])
                                .groupby(['PatientID'])
                                .first()
                                .reset_index()
                                [['PatientID', 'TreatmentDate']]
         )
         df diag to treat = df first cancer diagnosis.merge(df first treatment, o
         n='PatientID', how='outer')
         # convert the date cols to datetime object, so we can more easily calcul
         ate the difference
         df diag to treat['DiagnosisDate'] = pd.to datetime(df diag to treat.Diag
         nosisDate, infer datetime format=True)
         df diag to treat['TreatmentDate'] = pd.to datetime(df diag to treat.Trea
         tmentDate, infer datetime format=True)
         df diag to treat['DaysDiagToTreat'] = df diag to treat.apply(lambda row:
         (row['TreatmentDate'] - row['DiagnosisDate']).days, axis=1)
         df diag to treat.sort values('DaysDiagToTreat')
```

Out[11]:

	PatientID	DiagnosisDate	Diagnosis	TreatmentDate	DaysDiagToTreat
0	2038	2010-01-21	Breast Cancer	2010-01-24	3
20	6889	2012-11-17	Breast Cancer	2012-11-20	3
14	4692	2012-04-27	Breast Cancer	2012-04-30	3
3	2425	2010-12-15	Breast Cancer	2010-12-19	4
4	2462	2011-01-07	Breast Cancer	2011-01-11	4
5	2763	2011-04-19	Breast Cancer	2011-04-23	4
17	6321	2012-09-06	Breast Cancer	2012-09-10	4
16	6281	2012-08-12	Breast Cancer	2012-08-16	4
15	5259	2012-05-13	Breast Cancer	2012-05-17	4
10	3948	2011-12-18	Breast Cancer	2011-12-22	4
24	7796	2013-01-16	Breast Cancer	2013-01-21	5
25	7976	2013-03-06	Breast Cancer	2013-03-11	5
13	4374	2012-03-20	Breast Cancer	2012-03-25	5
11	4256	2011-11-07	Breast Cancer	2011-11-12	5
12	4354	2012-02-04	Breast Cancer	2012-02-09	5
2	2407	2010-06-13	Breast Cancer	2010-06-19	6
26	9331	2013-08-23	Breast Cancer	2013-08-29	6
22	7230	2013-01-02	Colon Cancer	2013-01-09	7
7	3095	2011-07-01	Colon Cancer	2011-07-13	12
23	7242	2013-01-11	Colon Cancer	2013-01-23	12
9	3757	2011-10-08	Colon Cancer	2011-10-22	14
21	6922	2012-11-07	Colon Cancer	2012-11-22	15
6	2770	2011-04-06	Colon Cancer	2011-04-22	16
1	2120	2010-01-09	Breast Cancer	2010-01-25	16
18	6837	2012-10-08	Colon Cancer	2012-10-25	17
19	6877	2012-11-16	Colon Cancer	2012-12-03	17
8	3449	2011-08-26	Colon Cancer	2011-09-13	18

In [12]: # let's look at the empirical CDF to see how the time between diagnosis
 and treatment is distributed
 days_diag_to_treat = ECDF(df_diag_to_treat.DaysDiagToTreat)
 sns.lineplot(days_diag_to_treat.x, days_diag_to_treat.y, estimator=None)
 plt.show()
 print(df_diag_to_treat.DaysDiagToTreat.describe())
 # we notice there is a noticeable split in the times, where most treatme
 nt occurs within 7 days, and the rest between 12-18 days

count 27.000000 mean 8.074074 std 5.363164 min 3.000000 25% 4.000000 50% 5.000000 75% 13.000000 max 18.000000

Name: DaysDiagToTreat, dtype: float64

In [13]: # let's group this by type of cancer now. there is one particular case w here a subject has diagnoses for both types of cancer, # but we will assume the therapy is intially targeted for the first diag nosis colon days diag to treat = ECDF(df diag to treat[df diag to treat.Diagno sis=='Colon Cancer'].DaysDiagToTreat) breast days diag to treat = ECDF(df diag to treat[df diag to treat.Diagn osis=='Breast Cancer'].DaysDiagToTreat) sns.lineplot(colon days diag to treat.x, colon days diag to treat.y, est imator=None, color='r') sns.lineplot(breast days diag to treat.x, breast days diag to treat.y, e stimator=None, color='b') plt.legend(handles=[mpatches.Patch(color='r', label='Colon Cancer'), mpa tches.Patch(color='b', label='Breast Cancer')]) plt.show() # we've already included the first diagnosis in our table, so we can now groupby the cancer type and recalc df diag to treat.groupby('Diagnosis').DaysDiagToTreat.describe() # Ah-ha! we see that the two groupings in the ECDF above actually corres pond to the cancer types, # where Breast Cancer starts being treated soon after diagnosis, and Col on Cancer typically starting treatment later

mean

count

Out[13]:

Diagnosis								
Breast Cancer	18.0	5.000000	2.890146	3.0	4.0	4.0	5.0	16.0
Colon Cancer	9.0	14.222222	3.456074	7.0	12.0	15.0	17.0	18.0

std min 25% 50% 75% max

```
In [14]: # in order to determine whether there are any patients who are diagnosed
   but not treated,
   # we can check if there are any patients in the diagnosis table with a c
   ancer diagnosis, but does not show up in the treatment table
   unique_cancer_diagnosis_patients = set(df_cancer_diagnosis.PatientID.uni
   que())
   # we can look at unique subjects in the treatment table since these are
   all; anti-cancer treatments
   unique_treatment_patients = set(df_treatment.PatientID.unique())

patients_cancer_diagnosis_no_treatment = unique_cancer_diagnosis_patient
   s - unique_treatment_patients
   print('Count of patients diagnosed with cancer but not treated: {}'.form
   at(len(patients_cancer_diagnosis_no_treatment)))
```

Count of patients diagnosed with cancer but not treated: 0

Q2 Answers:

2a) The time from diagnosis to treatment are:

Breast Cancer - between 3 to 16 days, with a mean of 5 and median of 4 Colon Cancer - between 7 and 18 days, with a mean of appx. 14.2 and median of 15

2b) No, there do not appear to be any patients that have been diagnosed with cancer but not treated

Question 3

We will determine how many patients go on to a second-line therapy

Out[15]:

	PatientID	TherapyCounts
14	4692	2
23	7242	2
18	6837	2
10	3948	2
17	6321	2
16	6281	2
15	5259	2
0	2038	1
25	7976	1
24	7796	1
22	7230	1
21	6922	1
20	6889	1
19	6877	1
13	4374	1
1	2120	1
12	4354	1
11	4256	1
9	3757	1
8	3449	1
7	3095	1
6	2770	1
5	2763	1
4	2462	1
3	2425	1
2	2407	1
26	9331	1

Proportion of subjects who go on to 2nd Line Therapy: 0.259 (7 of 27)

Q3 Answers:

The proportion of subjects who go on to 2nd Line Therapy is 0.259 (7 of 27)

Question 4

We will estimate the duration of each therapy

```
In [17]: # to estimate the duration for each therapy we can take the avg time it
          is used during the treatment a patient
         # the treatment dataframe includes a row for each time a therapy is give
         n to a patient,
         # so we can determine the duration by taking the difference between the
          first and last dates for a therapy for each patient
         df combo treatment duration = (df combo treatment
                                         .sort_values(['PatientID', 'DrugCode', 'T
         reatmentDate'])
                                         .groupby(['PatientID', 'DrugCode'])
                                         .TreatmentDate
                                         .agg(['first','last'])
                                         .reset index()
         # convert the first and last columns into datetimes to make it easier to
         take the difference
         df combo treatment duration['first'] = pd.to datetime(df combo treatment
         duration['first'], infer datetime format=True)
         df combo treatment duration['last'] = pd.to datetime(df combo treatment
         duration['last'], infer datetime format=True)
         df_combo_treatment_duration['TreatmentDuration'] = df_combo_treatment_du
         ration.apply(lambda row: (row['last'] - row['first']).days, axis=1)
         df combo treatment duration.head()
```

Out[17]:

	PatientID	DrugCode	first	last	TreatmentDuration
0	2038	А	2010-01-24	2010-02-20	27
1	2120	AB	2010-01-25	2010-03-02	36
2	2407	AB	2010-06-19	2010-08-03	45
3	2425	AB	2010-12-19	2011-02-08	51
4	2462	AB	2011-01-11	2011-03-04	52

Out[18]:

	count	mean	std	min	25%	50%	75%	max
DrugCode								
Α	5.0	59.2000	19.110207	27.0	61.00	62.0	69.00	77.0
АВ	10.0	54.6000	11.413442	36.0	46.50	55.0	62.25	70.0
В	3.0	93.0000	18.357560	80.0	82.50	85.0	99.50	114.0
С	16.0	112.0625	109.574005	66.0	73.75	85.5	98.25	520.0

```
In [19]: plt.figure(figsize=(10,5))
    sns.boxenplot(data=df_combo_treatment_duration, x='DrugCode', y='Treatme
    ntDuration')
    plt.show()
```


In [20]: # hmm, clearly there is a large outlier for Therapy "C"
if we look at the therapies sorted by duration we see a huge jump betw
een the longest and the second-longest
520 days, then 114 days
df_combo_treatment_duration.sort_values('TreatmentDuration', ascending=F
alse).head(10)

Out[20]:

	PatientID	DrugCode	first	last	TreatmentDuration
30	7242	С	2013-05-23	2014-10-25	520
29	7242	В	2013-01-23	2013-05-17	114
24	6837	С	2013-01-20	2013-05-06	106
22	6321	С	2012-11-24	2013-03-08	104
20	6281	С	2012-10-29	2013-02-05	99
18	5259	С	2012-07-24	2012-10-30	98
16	4692	С	2012-06-16	2012-09-21	97
33	9331	С	2013-08-29	2013-11-27	90
9	3757	С	2011-10-22	2012-01-17	87
11	3948	В	2012-03-03	2012-05-27	85

In [21]: # for the sake of making it easier to compare the therapy durations in o
 ur boxen plot, we'll plot a new figure but with this outlier removed
 plt.figure(figsize=(10,5))
 sns.boxenplot(data=df_combo_treatment_duration.sort_values('TreatmentDur
 ation').iloc[:-1], x='DrugCode', y='TreatmentDuration')
 plt.show()
 # much easier to see the relative ranges for each therapy

Q3 Answers:

The duration of treatment for each therapy is:

A - range of 27-77 days, with a mean of appx 59.2 and a median of 62

B - range of 80-114 days, with a mean of 93 and median of 85

AB - range of 36-70 days, with a mean of appx. 54.6 and median of 55

C - range of 66-520 days, with a mean of appx. 112 and median of 85.5

(note: for therapy C, there is a large single outlier with a duration of 520 days. Ignoring this, the range would be 66-106 days)