Lecture 8

Students evaluation for the "Manifolds" course (do it before tomorrow!): http://evaluation.tu-darmstadt.de/evasys/online.php?pswd=Y5DJH

Chapter 7 Vector fields

- 7.1 Definition and examples
- 7.2 Vector fields as derivations
- 7.3 Pushforward of a vector field
- 7.4 Vector fields in local coordinates

7.1 Definition

7.1 Definition

Definition

Let $\pi\colon E\to B$ be a fiber bundle. A **section of** E is a map $s\colon B\to E$ s.t. $\pi\circ s=\mathrm{id}_B$. The space of sections of E is denoted $\Gamma(E)$.

Remarks.

- $s: B \to E$ is a section $\Leftrightarrow \forall x \in B \ s(x) \in E_x$, where $E_x: \pi^{-1}(x)$ is the fiber over x.
- Henceforth, we only consider smooth fiber bundles and smooth sections.

Definition

Let M be a smooth manifold. A (smooth) *vector field* on M is a section of TM. The space of vector fields on M is denoted $\Gamma(TM)$.

Remarks

- A vector field on M is a smooth map $X: M \to TM$ s.t. $\forall p \in M, X(p) \in T_pM$.
- We write X_p (or $X_{|_p}$) instead of X_p .

7.1 Definition and examples

Examples.

Example 1. Let $F: U \subseteq \mathbb{R}^m \to \mathbb{R}^m$ be a smooth function.

Define $X: U \to TU$ by $X_p = F(p) \in \mathbb{R}^m \approx T_pU$. Then X is a vector field on U.

Remark. In fact, a vector field is always of this form, when looking at it in a chart.

For instance, take $F \colon \mathbb{R}^2 \to \mathbb{R}^2$ defined by:

- (a) F(x, y) = (1, 2)
- (b) $F(x,y) = (-x, -y)/\sqrt{x^2 + y^2}$
- (c) $F(x, y) = (\cos y, \sin x)$
- (d) F(x, y) = (x, -y)

7.1 Definition and examples

Examples.

7.1 Definition and examples

Examples.

Example. Two vector fields on the sphere:

- $X_{(x,y,z)} = (-y, x, 0)$ $Y_{(x,y,z)} = (xz, yz, -x^2 y^2)$

Definition and examples

Examples.

Example: Coordinate vector fields.

Let (x^1,\ldots,x^m) be local coordinates on $U\subseteq M$. Then $\frac{\partial}{\partial x^1},\ldots,\frac{\partial}{\partial x^m}$ are vector fields on U, called **coordinate vector fields**.

7.2 Vector fields as derivations

7.2 Vector fields as derivations

Let *X* be a vector field on a smooth manifold *M*. Let $f: M \to \mathbb{R}$ be a smooth function.

For every $p \in M$, we can define $\mathrm{d}f_p(X_p) \in \mathbb{R}$.

The function $df(X): p \mapsto df_p(X_p)$ is a smooth function $M \to \mathbb{R}$.

Recall that a tangent vector $X_p \in \mathrm{T}_p M$ can also be seen as derivation on $C^\infty(M,\mathbb{R})$. With this point of view, the function $\mathrm{d} f(X)$ is alternatively denoted $\frac{\partial}{\partial X^p} f$ or X(f) or $X \cdot f$.

Definition

A *derivation* on $A := C^{\infty}(M, \mathbb{R})$ is a \mathbb{R} -linear map $D: A \to A$ s.t. $\forall f, g \in A$:

$$D(fg) = D(f) g + f D(g)$$
 (Leibniz rule)

Proposition

We have a linear isomorphism:

$$\Gamma(\mathrm{T}\,M) \to \{ \text{Derivations on } C^\infty(M,\mathbb{R}) \}$$

$$X \mapsto \frac{\partial}{\partial X}$$

7.3 Pushforward of a vector field

Let X be a vector field on a smooth manifold M.

Let $f: M \to N$ be a smooth function.

For every $p \in M$, we can define $\mathrm{d} f_p(X_p) \in \mathrm{T}_{f(p)} \in \mathrm{T}_{f(p)} N$. We have a smooth map $\mathrm{d} f(X) \colon M \to \mathrm{T} N$.

If f is a diffeo, consider $Y: N \to TN$ defined by $Y = df(X) \circ f^{-1}$.

Proposition

Y is a smooth vector field on *N*, called **pushforward** of *X* by *f* and denoted f_*X .

Proposition

Let $f: M \to N$ be a diffeo. The pushforward map

$$f_* : \Gamma(TM) \to \Gamma(TN)$$

 $X \mapsto f_*(X)$

is a linear isomorphism, whose inverse is $(f^{-1})_*$.

As a map on derivations, the pushforward map is:

$$f_* \colon \{ \text{Derivations on } C^\infty(M,\mathbb{R}) \} \to \{ \text{Derivations on } C^\infty(N,\mathbb{R}) \}$$

$$D \mapsto D \circ f^{-1}$$

Proof: Exercise (easy).

7.4 Vector fields in local coordinates

Let $\varphi = (x^1, \dots, x^m)$ be local coordinates on $U \subseteq M$.

Any smooth vector field X can be written $X = \sum_{i=1}^m X^i \frac{\partial}{\partial x^i}$ on U. The X^i 's are smooth real-valued functions on U, called the **components** (or **coordinates**) of X.

Remark.
$$X^i = \mathrm{d} x^i(X) = x^i \cdot X = \frac{\partial x^i}{\partial X}$$
.

Remark.
$$\varphi_*X = (X^1, \dots, X^m) = \sum_{i=1}^m X^i \frac{\partial}{\partial x^i}$$

7.4 Vector fields in local coordinates

Change of coordinates.

Let (y^1, \ldots, y^m) be other local coordinates on $V \subseteq M$. Write $X = \sum_{i=1}^m Y^i \frac{\partial}{\partial y^i}$.

Proposition

Let *F* denote the transition function from $\varphi = (x^i)$ to $\psi = (y^j)$ on $U \cap V$.

Then
$$Y^j = \sum_{i=1}^m \frac{\partial F^j}{\partial x^i} X^i$$
.

Proof.

$$\begin{split} Y^{j} &= \mathrm{d} y^{j}(X) = \mathrm{d} (F^{j} \circ \varphi)(X) \\ &= \mathrm{d} F^{j} \left(\mathrm{d} \varphi(X) \right) \\ &= \mathrm{d} F^{j} \left(\sum_{i=1}^{m} X^{i} \frac{\partial}{\partial x^{i}} \right) \\ &= \sum_{i=1}^{m} \frac{\partial F^{j}}{\partial x^{i}} X^{i} \, . \end{split}$$

Differentials in coordinates.

Proposition

Let (x^1, \ldots, x^m) be local coordinates on $U \subseteq M$. Let X be a smooth vector field on U.

• For any smooth function $f: U \to \mathbb{R}$,

$$X \cdot f = df(X) = \sum_{i=1}^{m} X^{i} \frac{\partial f}{\partial x^{i}}$$

• For any smooth map $f: M \to N$,

$$df(X) = \sum_{i=1}^{m} X^{i} df \left(\frac{\partial}{\partial x^{i}}\right) = \sum_{i=1}^{m} \sum_{j=1}^{n} X^{i} \frac{\partial f^{j}}{\partial x^{i}} \frac{\partial}{\partial y^{j}}$$

• For any diffeomorphism $f: M \to N$,

$$(f_*X)_{|f(p)} = \sum_{i=1}^m \sum_{j=1}^n (X^i)_{|p} \frac{\partial f^j}{\partial x^i}_{|p} \frac{\partial}{\partial y^j}_{|f(p)}$$

Chapter 8 Flows and Lie Bracket

- 8.1 Integral curves
- 8.2 Flow of a vector field
- 8.3 Lie bracket
- 8.4 Lie derivative
- 8.5 Lie algebras
- 8.6 The Frobenius theorem

Let M be a smooth manifold and X a smooth vector field on M.

Definition

A smooth curve $\gamma: I \subseteq \to M$ is called an *integral curve* of X if, for all $t \in I$:

$$\gamma'(t) = X_{\gamma(t)} \; .$$

Example 1. Consider the constant vector field $Y = \frac{\partial}{\partial y}$ in \mathbb{R}^2 . $\gamma(t) = (x(t), y(t))$ is an integral curve $\Leftrightarrow (x'(t), y'(t)) = (0, 1)$. Integral curves: $\gamma(t) = (x_0, t + y_0)$. Integral curves = vertical lines.

Example 2. Consider the vector field $X = -y \frac{\partial}{\partial y} + x \frac{\partial}{\partial y}$. Integral curves = Circles centered at the origin. Exercise.

Theorem

There exists a unique integral curve through any point.

More precisely: $\forall p \in M, \exists !$ integral curve $\gamma : I \to M$, with I maximal, s.t. $\gamma(0) = p$.

Proof. If $U \subseteq \mathbb{R}^m$, X is a given by $F \colon U \to \mathbb{R}^m$, and the equation of an integral curve is $\gamma'(t) = F(\gamma(t))$. Conclude by the Picard-Lindelöf (i.e. Cauchy-Lipschitz) theorem.

In general, use charts to apply with previous result in local charts. This shows local existence and uniqueness, and conclude.

Remark. Prerequisite: Basic theory of ODEs. Reference: [Lee, Appendix D]. In addition to the existence and uniqueness result, we have:

- Smooth dependence of solutions of ODEs on initial condition.
- If the maximal interval I has a finite bound, for instance I=(a,b) with $b<+\infty$, then $\gamma(t)$ leaves every compact set when $t\to b^-$.

In particular, if M is compact, then $I = \mathbb{R}$: all integral curves are *complete*, i.e. X is complete.

Remark. If $X_{|_p}=0$, then the constant curve $\gamma(t)=p$ is an integral curve. p is called a **zero** or a **singular point** of the vector field.

8.2 Flow of a vector field

Let M be a smooth manifold and X a smooth vector field on M.

For any $p \in M$, denote $\varphi^X_t(p) \coloneqq \gamma(t)$, where γ is the integral curve of X through p. *Remark.* A priori, $\varphi^X_t(p)$ is only well-defined for t sufficiently small.

Theorem

- The map $\mathbb{R} \times M \to M$, $(t,p) \mapsto \varphi_t^X(p)$ is smooth on its domain of definition (which is a neighborhood of $\{0\} \times M$).
- $\varphi_s^X \circ \varphi_t^X(p) = \varphi_{t+s}^X(p)$ whenever well-defined.

Any map $\mathbb{R} \times M \to M$ as in the theorem is called a smooth *flow* on M.

Proof.

- Smooth dependence of solution of an ODE on initial condition.
- If γ is the integral curve through p, then so is $\gamma(t_0+t)$ is the integral curve through $\gamma(t_0)$.

Corollary

- $\varphi_0^X : M \to M$ is the identity map.
- If φ^X_t is well-defined, then it is a diffeomorphism of M with inverse φ^X_{-t} .
- If well-defined, the map $t \mapsto \varphi^X_t$ is a group homomorphism $\mathbb{R} \to \mathrm{Diff}(M)$.

Terminology. The flow is called *complete* if it is defined on $\mathbb{R} \times M$, i.e. all integral curves are complete (defined on \mathbb{R}), i.e. X is a *complete vector field*.

Fact. If M is compact, any vector field on M is complete.

Example. Let
$$X = \frac{\partial}{\partial y}$$
 on $M = \mathbb{R}^2$. Then $\varphi^X_t(x,y) = (x,y+t)$.

Exercise. Let $M = \mathbb{R}^2 - \{0\}$. Find two vector fields whose integral curves are rays emanating from the origin, one complete, the other incomplete.

8.2 Flow of a vector field

A normal form theorem:

Theorem

Let X be a smooth vector field on M. If $p \in M$ is regular (i.e. nonsingular) point, then there exists local coordinates x^1, \ldots, x^p near p s.t. $X = \frac{\partial}{\partial x^1}$.

Remark. For the proof of this theorem and more details on flows, refer to Lee's book.

8.3 The Lie bracket

Recall that a *derivation* on an algebra A is a \mathbb{R} -linear map $D: A \to A$ s.t.

$$D(fg) = D(f) g + f D(g)$$

Fact. If D_1 and D_2 are derivations, then $D := D_1 \circ D_2 - D_2 \circ D_1$ is a derivation.

Proof. Stupid algebra computation. Do it!!

Definition

D is denoted $[D_1, D_2]$ and called the **Lie bracket** (or *commutator*) of D_1 and D_2 .

Recall that there is a bijection between smooth vector fields and derivations on a smooth manifold, more precisely there is a linear isomorphism

$$\Gamma(TM) \to \{ \text{Derivations on } C^{\infty}(M, \mathbb{R}) \}$$

$$X \mapsto (f \mapsto X \cdot f)$$

With this correspondence, we get the *Lie bracket* of vector fields:

Proposition

If X and Y are smooth vector fields on M, there exists a unique smooth vector field [X,Y] such that for any smooth function $f:M\to\mathbb{R}$,

$$[X,Y]\cdot f=X\cdot (Y\cdot f)-Y\cdot (X\cdot g)\;.$$

Proposition (Properties of the Lie bracket)

- $[\cdot, \cdot]$ is \mathbb{R} -bilinear: $[\lambda X_1 + \mu X_2, Y] = \dots$ and $[X, \lambda Y_1 + \mu Y_2] = \dots$
- $[\cdot, \cdot]$ is antisymmetric: [Y, X] = -[X, Y]. In part. [X, X] = 0.
- Jacobi identity: [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.

Proof. Idiotic algebra computations. Do it!

Definition

A vector space A equipped with a bilinear map $[\cdot,\cdot]:A\times A\to A$ satisfying the properties above is called a *Lie algebra*.

Examples.

- 1. $[\cdot, \cdot] = 0$. (abelian Lie algebra)
- 2. {Derivations on $C^{\infty}(M,\mathbb{R})$ }
- 3. $\Gamma(TM)$
- 4. Lie algebra of a Lie group (see later).

Proposition (Further properties of the Lie bracket)

- $[fX, Y] = f[X, Y] (Y \cdot f)X$.
- Naturality of the Lie bracket: $f_*[X, Y] = [f_*X, f_*Y]$.

Proof. Moronic algebra computations. Do it!

Proposition (Lie bracket in coordinates)

$$\begin{bmatrix} \frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}} \end{bmatrix} = 0$$

$$\begin{bmatrix} \sum_{i=1}^{m} X^{i} \frac{\partial}{\partial x^{i}}, \sum_{j=1}^{m} Y^{j} \frac{\partial}{\partial x^{j}} \end{bmatrix} = \sum_{i,j=1}^{m} \left(X^{i} \frac{\partial Y^{j}}{\partial x^{i}} - Y^{i} \frac{\partial X^{j}}{\partial x^{i}} \right) \frac{\partial}{\partial x^{j}}$$