

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

DEPARTAMENTO DE INFORMÁTICA

Computación Gráfica – Clipping de polígonos

Versión 220323

Clipping de polígonos

- Clipping (algoritmo de recorte): Procedimiento que identifica las partes de una imagen que se encuentran adentro o afuera de una región específica del espacio.
- Ventana de recorte: región contra la cual se recorta un objeto.
- Usos del Clipping:
 - Extracción de una parte de la escena para visualizarla.
 - Despliegue en múltiples ventanas.
 - Selección de una parte de una imagen para copiarla, moverla, suprimirla o duplicarla.

Clipping de polígonos

Dependiendo de la aplicación, la ventana de recorte puede ser un polígono general o incluso puede tener fronteras curvas.

■ Para efectos del curso, se consideraran principalmente métodos de recorte que emplean regiones rectangulares de recorte.

Clipping de polígonos

Los paquetes gráficos contienen rutinas de recorte de líneas y polígonos. Manejan incluso objetos curvos, o se pueden manejar con aproximaciones a segmentos de línea recta.

Algoritmo desarrollado en 1974 bajo una estrategia de "divide y conquistarás". Simplifica el problema al recortar un polígono contra una sola arista y luego repite el proceso para el resto de las aristas.

1. Cortar con respecto a la arista izquierda.

Algoritmo desarrollado en 1974 bajo una estrategia de "divide y conquistarás". Simplifica el problema al recortar un polígono contra una sola arista y luego repite el proceso para el resto de las aristas.

2. Cortar con respecto a la arista inferior.

Algoritmo desarrollado en 1974 bajo una estrategia de "divide y conquistarás". Simplifica el problema al recortar un polígono contra una sola arista y luego repite el proceso para el resto de las aristas.

3. Cortar con respecto a la arista derecha.

Algoritmo desarrollado en 1974 bajo una estrategia de "divide y conquistarás". Simplifica el problema al recortar un polígono contra una sola arista y luego repite el proceso para el resto de las aristas.

4. Cortar con respecto a la arista superior.

Algoritmo desarrollado en 1974 bajo una estrategia de "divide y conquistarás". Simplifica el problema al recortar un polígono contra una sola arista y luego repite el proceso para el resto de las aristas.

5. Imagen final

- Lo anterior sirve para recortar una imagen por un polígono (rectángulo).
- ¿Qué pasa si quiero recortar un polígono P cualquiera por un rectángulo (e.g., window/viewport)?

EXUMBRA IN SOLEM

- Lo anterior sirve para recortar una imagen por un polígono (rectángulo).
- ¿Qué pasa si quiero recortar un polígono P cualquiera por un rectángulo (e.g., window/viewport)?

Es necesario contar con la lista de vértices y arcos que definen el polígono y hacer clipping de dichos segmentos contra el rectángulo.

- Lo anterior sirve para recortar una imagen por un polígono (rectángulo).
- ¿Qué pasa si quiero recortar un polígono P cualquiera por un rectángulo (e.g., window/viewport)?

Es necesario contar con la lista de vértices y arcos que definen el polígono y hacer clipping de dichos segmentos contra el rectángulo.

- Sea *L* una lista vacía de puntos.
- Para cada arco formado por (p_i, p_i) :
 - Si p_i y p_j están fuera, pase al siguiente arco.
 - Si p_i y p_j están dentro, entonces: $L \leftarrow L + p_i$.
 - \blacksquare Si p_i está dentro y p_j está fuera, calcule la intersección p_k

$$L \leftarrow L + p_k$$
.

 Si p_i está fuera y p_j está dentro, calcule la intersección p_k

$$L \leftarrow L + p_k + p_j$$
.

NOTA: este algoritmo asume que a lo más hay una intersección entre cada segmento del polígono y el borde.

- Sea *L* una lista vacía de puntos.
- Para cada arco formado por (p_i, p_j) :
 - Si p_i y p_i están fuera, pase al siguiente arco.
 - Si p_i y p_j están dentro, entonces: $L \leftarrow L + p_i$.
 - \blacksquare Si p_i está dentro y p_j está fuera, calcule la intersección p_k

$$L \leftarrow L + p_k$$
.

$$L = \{\}$$

- Sea *L* una lista vacía de puntos.
- Para cada arco formado por (p_i, p_i) :
 - Si p_i y p_i están fuera, pase al siguiente arco.
 - Si p_i y p_j están dentro, entonces: $L \leftarrow L + p_i$.
 - \blacksquare Si p_i está dentro y p_j está fuera, calcule la intersección p_k

$$L \leftarrow L + p_k$$
.

$$L = \{\}$$

- Sea *L* una lista vacía de puntos.
- Para cada arco formado por (p_i, p_j) :
 - Si p_i y p_i están fuera, pase al siguiente arco.
 - Si p_i y p_j están dentro, entonces: $L \leftarrow L + p_i$.
 - \blacksquare Si p_i está dentro y p_j está fuera, calcule la intersección p_k

$$L \leftarrow L + p_k$$
.

$$L = \{\}$$

- Sea *L* una lista vacía de puntos.
- Para cada arco formado por (p_i, p_j) :
 - Si p_i y p_j están fuera, pase al siguiente arco.
 - Si p_i y p_j están dentro, entonces: $L \leftarrow L + p_i$.
 - \blacksquare Si p_i está dentro y p_j está fuera, calcule la intersección p_k

$$L \leftarrow L + p_k$$
.

$$L = \{Q_1, P_4\}$$

- Sea *L* una lista vacía de puntos.
- Para cada arco formado por (p_i, p_j) :
 - Si p_i y p_j están fuera, pase al siguiente arco.
 - Si p_i y p_j están dentro, entonces: $L \leftarrow L + p_i$.
 - Si p_i está dentro y p_j está fuera, calcule la intersección p_k $L \leftarrow L + p_k$.
 - Si p_i está fuera y p_j está dentro, calcule la intersección p_k $L \leftarrow L + p_k + p_i$.

$$L = \{Q_1, P_4, P_5\}$$

- Sea *L* una lista vacía de puntos.
- Para cada arco formado por (p_i, p_j) :
 - Si p_i y p_j están fuera, pase al siguiente arco.
 - Si p_i y p_j están dentro, entonces: $L \leftarrow L + p_i$.
 - Si p_i está dentro y p_j está fuera, calcule la intersección p_k $L \leftarrow L + p_k$.
 - Si p_i está fuera y p_j está dentro, calcule la intersección p_k $L \leftarrow L + p_k + p_i$.

$$L = \{Q_1, P_4, P_5, P_6\}$$

- Sea *L* una lista vacía de puntos.
- Para cada arco formado por (p_i, p_j) :
 - Si p_i y p_j están fuera, pase al siguiente arco.
 - Si p_i y p_j están dentro, entonces: $L \leftarrow L + p_i$.
 - Si p_i está dentro y p_j está fuera, calcule la intersección p_k $L \leftarrow L + p_k$.
 - Si p_i está fuera y p_j está dentro, calcule la intersección p_k $L \leftarrow L + p_k + p_i$.

$$L = \{Q_1, P_4, P_5, P_6, Q_2\}$$

- Sea *L* una lista vacía de puntos.
- Para cada arco formado por (p_i, p_i) :
 - Si p_i y p_i están fuera, pase al siguiente arco.
 - Si p_i y p_j están dentro, entonces: $L \leftarrow L + p_i$.
 - Si p_i está dentro y p_j está fuera, calcule la intersección p_k $L \leftarrow L + p_{\nu}$.
 - Si p_i está fuera y p_j está dentro, calcule la intersección p_k $L \leftarrow L + p_k + p_i$.

$$L = \{Q_1, P_4, P_5, P_6, Q_2\}$$

¿Problemas?

- Sea *L* una lista vacía de puntos.
- Para cada arco formado por (p_i, p_i) :
 - Si p_i y p_i están fuera, pase al siguiente arco.
 - Si p_i y p_j están dentro, entonces: $L \leftarrow L + p_i$.
 - Si p_i está dentro y p_j está fuera, calcule la intersección p_k $L \leftarrow L + p_{\nu}$.
 - Si p_i está fuera y p_j está dentro, calcule la intersección p_k $L \leftarrow L + p_k + p_i$.

$$L = \{Q_1, P_4, P_5, P_6, Q_2\}$$

¿Problemas?

No funciona en polígonos cóncavos.

Clipping polígono no convexo

¿Qué se puede hacer?

Clipping polígono no convexo

¿Qué se puede hacer?

- ¿Separar el polígono cóncavo en convexos?
- ¿Verificar la lista de vértices creados?

Weiler-Atherton

Visitar: https://www.geeksforgeeks.org/weiler-atherton-polygon-clipping-algorithm/

- La lista de vértices del polígono están ordenados en el sentido de rotación de los punteros del reloj.
- Un punto de intersección, entre el arco y la ventana, se dirá de entrada si el arco del polígono está ingresando a la ventana.
- Un punto de intersección, entre el arco y la ventana, se dirá de salida si el arco del polígono está saliendo de la ventana

Weiler-Atherton

El orden para recorrer los nodos sería:

$$P_1 \rightarrow P_9 \rightarrow P_8 \rightarrow \ldots \rightarrow P_2.$$

El arco (P_1, P_9) sería de entrada.

El arco (P_8, P_7) sería de salida.

El arco (P_6, P_5) sería de entrada.

El arco (P_4, P_3) sería de salida.

Weiler-Atherton

Algoritmo general

- Partir de un punto de intersección de un arco que va hacia adentro.
- Recorrer el polígono
- Al llegar a un punto de intersección de un arco que va hacia afuera, seguir por el arco de la ventana y cerrar esta sección.
- Repetir hasta cerrar el polígono.
- Repetir para el resto de los polígonos

NOTA: este algoritmo asume que a lo más hay una intersección entre cada segmento del polígono y el borde.

Analizamos (P_1,P_9) , el que es un arco que va hacia adentro y calculamos la intersección Q_1 . Añadimos Q_1,P_9 al primer sub-polígono.

$$L = \{\{Q_1, P_9\}\}$$

Analizamos (P_9, P_8) , el que es un arco interno y añadimos el último nodo de éste.

$$L = \{\{Q_1, P_9, P_8\}\}$$

Analizamos (P_8,P_7) , el que es un arco que va hacia afuera y calculamos la intersección Q_2 para añadirla. Con ese nodo "cerramos" el primer sub-polígono.

$$L = \{\{Q_1, P_9, P_8, Q_2\}\}$$

Analizamos (P_7, P_6) , el que es un arco externo \Rightarrow no hacemos nada.

$$L = \{\{Q_1, P_9, P_8, Q_2\}\}$$

Analizamos (P_6,P_5) , el que es un arco que va hacia adentro y calculamos la intersección Q_3 . Añadimos Q_3,P_5 a un nuevo sub-polígono.

$$L = \{\{Q_1, P_9, P_8, Q_2\}, \{Q_3, P_5\}\}$$

Analizamos (P_5, P_4) , el que es un arco interno y añadimos el último nodo de éste.

$$L = \{\{Q_1, P_9, P_8, Q_2\}, \{Q_3, P_5, P_4\}\}$$

Analizamos (P_4,P_3) , el que es un arco que va hacia afuera y calculamos la intersección Q_4 para añadirla. Con ese nodo "cerramos" el segundo sub—polígono.

$$L = \{\{Q_1, P_9, P_8, Q_2\}, \{Q_3, P_5, P_4, Q_4\}\}$$

Finalmente recorremos los últimos segmentos hasta cerrar el polígono. Ellos están fuera por lo que la lista encontrada es la definitiva.

$$L = \{\{Q_1, P_9, P_8, Q_2\}, \{Q_3, P_5, P_4, Q_4\}\}$$

Clipping 3D

Existen más algoritmos de Clipping y también existen versiones para trabajar en 3D. En este último caso se debe hacer clipping con respecto a una "caja" (hexaedro).

Si analizamos el algoritmo de Cohen-Sutherland, esto equivale a añadir 2 bits más: uno lo encenderemos cuando estemos "adelante" de la caja y otro cuando estemos "atrás". Estos se suman a los que se encienden para saber si estamos a la izquierda, derecha, abajo o arriba de un rectángulo.

Notar que 3D se puede hacer el clipping de: puntos, segmentos, polígonos y poliedros.