Lecture 17 Feb. 13th, 2015

Chapter 21

Last time, Legendre Symbol:
$$\left(\frac{a}{4}\right) = 1$$
 if $a \otimes R$, $\chi^2 = a \mod P$ has schotion.

 $\left(\frac{a}{g}\right) = -1$ if a NR, $\chi \triangleq a$ much p has no solution.

If $a_1 = a_2 \mod p$, $\left(\frac{a_1}{p}\right) = \left(\frac{a_2}{p}\right)$, $\chi^2 = a_1 = a_2 \mod p$. (a:a2)=(4)(42)

Quadratic Reciprocity (Part I) P odd prime

$$\left(\frac{-1}{p}\right)=1$$
 when $p\equiv 1 \mod 4$

$$\left(\frac{-1}{P}\right) = -1$$
 when $p=3 \mod 4$

$$\left(\frac{-1}{P}\right) = \left(-1\right)^{\frac{P-1}{2}}$$

(=1)=1 => for which prime p is -1 QR?

<=>-for which prime p does $x^2=-1$ mod p have a solution?

P	3	5	7		[13	17	[19	23	
solns to x = -1 malp	NR	2,3	NR	NR	5,8	413	NR	NR	

Proof: use Fermat's Little Theorem. We'll prove $(-1) = (-1)^{\frac{p-1}{2}} \mod p \Rightarrow (-1)^{\frac{p-1}{2}}$

why? $a = (-\frac{1}{p}) = \pm 1$, $b = (-1)^{\frac{p-1}{2}} = \pm 1$ $p(a-b), p \ge 3$, $|a-b| \le 2$, so a-b=0

By Fermat's Little Thm: $\alpha^{P-1} = 1 \mod p$, pta, let $A = \alpha^{\frac{pq}{2}}$, $A^2 = (\alpha^{\frac{pq}{2}})^2 = \alpha^{\frac{pq}{2}} = 1 \mod p$

 $A \equiv 1 \text{ or } -1 \text{ mod } P$ What is A mod p?

Guess: A= 1 mod p <=> (=)=1

Euler's Criterion: p add prime, a = (a) mad p for any a NR, set a=-1, (-1) = (-1) mad p Proof:

First a is a
$$QR \Rightarrow (P)=1$$

 $a \equiv b^2 \mod P$

 $\alpha^{\frac{p_1}{2}} = (b^2)^{\frac{p_2}{2}} = b^{p_1} = 1 \mod p$ Consider $X^{\frac{p_2}{2}} = 1 \mod p$. We just proved every QR is a solution to this equation. There are exactly $\frac{p_2}{2}$ QRs.

Polynomial p theorem => There are at most -> solutions to this equation.

So [solution to $X^{P_{\overline{2}}}$ mod p] = [QRs mod p]

Now let a to be a NR => ($\frac{a}{p}$) =-1 $a^{P_{\overline{1}}}$ = 1 mod p $0 = a^{P_{\overline{1}}} - 1 = (a^{P_{\overline{2}}} - 1)(a^{P_{\overline{2}}} + 1) \Rightarrow a^{P_{\overline{2}}} = -1 \mod p$.

Application of quadratic reciprocity.

Prime 1 mod 4 Theorem

There are inf. many prime congruent to 1 mod 4.

[In chapter 12, we showed there are inf. many primes congruent to 3 mod 4.]

Proof: Suppose we are given a list of prime $P_1, \dots, P_r \equiv | \mod 4$.

We want to find a new prime $\equiv | \mod 4$ not in the list.

Set $A = (2p_1 \dots p_r)^2 + | = q_1 q_2 \dots q_s$, q_i 's are primes, none of q_i 's are in our list since $P_1 \nmid A$ for any $i, q_i \neq q_j$ for any i, j.

Claim: All gi's $\equiv 1 \mod 4$. $A \equiv 1 \mod 4 \Rightarrow g$ is are odd, g: A. For each i, $A = 2p \cdots pr$ is a solution to $x^2 + 1 \equiv 0 \mod g$. So -1 is a QR mod $g: \Rightarrow (\frac{-1}{2!}) = 1 \Rightarrow g: \equiv 1 \mod 4$

> e.g. $P_1 = 5$ $A = (2P_1)^2 + |= |0|$ $P_1 = 5$, $P_2 = |0|$ $A = (2P_1P_2P_3)^2 + |= |020|0|$ prime