Entitás kinyerés magyar nyelvű szövegekből kétirányú LSTM-mel

Scheier Balázs – FAKK40, Mészáros Bálint – HY90XY

Budapesti Műszaki és Gazdaságtudományi Egyetem

Entitás felismerés bevezető

• NLP feladat

Entitás felismerés bevezető

- NLP feladat
- Célja, hogy felismerjük a szövegben szereplő előre maghatározott kategóriába tartozó entitásokat.

Entitás felismerés bevezető

- NLP feladat
- Célja, hogy felismerjük a szövegben szereplő előre maghatározott kategóriába tartozó entitásokat.
- Fontos alapfeladat a szövegfeldolgozásban.

Az entitásokról

A következő entitásokkal foglalkozunk:

- Helyszín (location)
- Személy (person)
- Szervezet (organization)
- Vegyes (miscellaneous)

Az entitásokról

A következő entitásokkal foglalkozunk:

- Helyszín (location)
- Személy (person)
- Szervezet (organization)
- Vegyes (miscellaneous)

Jelölések:

- B-LOC, I-LOC
- B-PER, I-PER
- B-ORG, I-ORG
- B-MISC, I-MISC
- 0

Az entitásokról

A következő entitásokkal foglalkozunk:

- Helyszín (location)
- Személy (person)
- Szervezet (organization)
- Vegyes (miscellaneous)

Jelölések:

- B-LOC, I-LOC
- B-PER, I-PER
- B-ORG, I-ORG
- B-MISC, I-MISC
- 0

Budapest egy szép város. – B-LOC A budapesti kirándulás nagyon tetszett. – Nem entitás

Adatbázis

hunNERwiki

```
ART
        text
céljuk
                        NOUN<POSS<PLUR>>
                                                 cél
                                                          0
        text
        text
                        PUNCT
                                         0
hogy
        text
                        CONJ
                                 hogy
biztosítsák
                text
                                 VERB<SUBJUNC-IMP><PLUR><DEF>
                                                                  hiztosít
                                                                                   0
                        PUNCT
        text
                        CONJ
hogy
        text
                                 hogy
                        ART
        text
korábbi text
                        ADJ
                                 korai
szerzők text
                        NOUN<PLUR>
                                         szerző
kilétét text
                        NOUN<POSS><CAS<ACC>>
                                                 kilét
```

Az adat struktúrája

Architektúra

```
'B-LOC' : 0,
'B-MISC' : 1,
'B-ORG' : 2,
'B-PER' : 3,
'I-LOC' : 4,
'I-MISC' : 5,
'I-ORG' : 6,
'I-PER': 7,
'0': 8,
'PAD' : 9,
'BOS' : 10,
'EOS' : 11
```

```
Model: "model"
```

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 28)]	0
embedding (Embedding)	(None, 28, 64)	1262464
bidirectional (Bidirectiona 1)	(None, 28, 512)	657408
<pre>bidirectional_1 (Bidirectio nal)</pre>	(None, 512)	1574912
dense (Dense)	(None, 12)	6156
======================================		=======

(a) A szótárunk

(b) A neurális háló architektúrája

Tanítás

• Adatok: tanító-teszt-validációs: 0.6-0.2-0.2

Tanítás

- Adatok: tanító-teszt-validációs: 0.6-0.2-0.2
- Optimalizáció accuracy-ra

Tanítás

- Adatok: tanító-teszt-validációs: 0.6-0.2-0.2
- Optimalizáció accuracy-ra
- Early stopping 5 epoch után

• Rejtett rétegek mérete: 64, 128, 256, 512

- Rejtett rétegek mérete: 64, 128, 256, 512
- Optimalizációs eljárások: RMSProp, Adam, SGD

• Rejtett rétegek mérete: 64, 128, 256, 512

Optimalizációs eljárások: RMSProp, Adam, SGD

• Batch méret: 32, 64, 128, 256

Embed-ding	Első LSTM	Második LSTM	Optimalizációs	Batch	Legjobb
réteg mérete	réteg mérete	réteg mérete	algoritmus	méret	validációs accuracy
64	256	256	Adam	256	0.9905
512	256	512	RMSprop	256	0.9883
512	512	64	Adam	64	0.9881
512	512	512	RMSprop	256	0.9876
128	128	128	Adam	128	0.9875

Az 5 legjobb eredmény

A legjobb modellel (64, 256, 256, Adam, 256)

A legjobb modellel (64, 256, 256, Adam, 256)

• Tanító accuracy: 0.9973

A legjobb modellel (64, 256, 256, Adam, 256)

• Tanító accuracy: 0.9973

• Validációs accuracy: 0.9861

A legjobb modellel (64, 256, 256, Adam, 256)

• Tanító accuracy: 0.9973

Validációs accuracy: 0.9861

• Teszt accuracy: 0.9874

 A tudomány szerint is működik az alvásmódszer, amit Salvador Dalí is használt.

- A tudomány szerint is működik az alvásmódszer, amit Salvador Dalí is használt.
 - Az eredeti címkék:

- A tudomány szerint is működik az alvásmódszer, amit Salvador Dalí is használt.

- A tudomány szerint is működik az alvásmódszer, amit Salvador Dalí is használt.
- Öt ok, amiért Macron Budapestre látogat.

- A tudomány szerint is működik az alvásmódszer, amit Salvador Dalí is használt.
- Öt ok, amiért Macron Budapestre látogat.
 - Az eredeti címkék: 'BOS', 'O', 'O', 'B-PER', 'B-LOC', 'O'

- A tudomány szerint is működik az alvásmódszer, amit Salvador Dalí is használt.
- Öt ok, amiért Macron Budapestre látogat.
 - Az eredeti címkék:
 'BOS', 'O', 'O', 'B-PER', 'B-LOC', 'O'
 - A predikció: 'BOS', 'O', 'O', 'B-LOC', 'B-LOC', 'O'

Összefoglalás

- Téma: Entitás kinyerés magyar nyelvű szövegekből kétirányú LSTM-mel
- Csapatnév: Bokor, Mészáros, Scheier
- Résztvevők: Mészáros Bálint, Scheier Balázs