Optimalizace

Ondřej Schindler

Co nás dneska čeká

 Zavedení pojmů: Optimalizovatelný problém, dimenzionalita problému, prostor parametrů, objektivní funkce

2) Optimalizace

3) Optimalizační metody

Co nás dneska čeká?

1) Zavedení pojmů: Optimalizovatelný problém, dimenzionalita problému, prostor parametrů, objektivní funkce

2) Optimalizace

3) Optimalizační metody

Více řešení

Porovnatelná kvalita řešení

• (Dobrá definice problému)

S optimalizovatelnými problémy se setkáváme každý den!

"Na světě se nestane nic, v čem by nebylo vidět smysl nějakého minima nebo maxima." (Euler)

"Náš svět je nejlepší ze všech možných světů, a proto lze jeho zákony vyjádřit extremálními principy." (Leibnitz)

S optimalizovatelnými problémy se setkáváme každý den!

"Jaký je váš optimalizovatelný problém?"

S optimalizovatelnými problémy se setkáváme každý den!

Jak zalévat kytku? Jak osolit jídlo? Jak se učit? Jak se obléct? Jaký mít účes?

V kolik hodin jít spát? Co jíst? Jaký materiál na nůž vybrat?

S optimalizovatelnými problémy se setkáváme každý den!

Jak zalévat kytku? Jak osolit jídlo? Jak se učit? Jak se obléct? Jaký mít účes?

V kolik hodin jít spát? Co jíst?

Jaký materiál na nůž vybrat?

Jsou to dobře definované problémy?

Lépe definovaný optimalizovatelný problém

Jak zalévat kytku?

&

Jak často jaké množství vody přidat do 100ml květináče (30% rašeliny, 70% mulče), ve kterém je zasazená měsíc stará květina Matricaria chamomilla pokud je vlhkost okolního vzduchu 60%, okolní teplota 23°C a květina má světlo 18 hodin

denně?

Garbage in

Garbage **OUT**

Lépe definovaný optimalizovatelný problém

Jak osolit jídlo?

Jak se učit?

Jak se obléct?

Jaký mít účes?

V kolik hodin jít spát?

Co jíst?

Jaký materiál na nůž vybrat?

DŽÍN	OPTIMALIZACE	
Plní přání	Hledá optimální řešení problému	
Je v láhvi	Je na (super)počítači	
Poslouchá majitele láhve	Poslouchá programátora	
Udělá přesně co se mu řekne Udělá přesně co se jí řekne		
Pro moudré je vlastnictví láhve přínosem	Pro moudré je optimalizace přínosem	
Pro pošetilé je vlastnictví láhve zkázou	Pro pošetilé je optimalizace zkázou	

Jak se dostat z Komárova na Campus?

Počet proměnných ovlivňujících kvalitu řešení

Jak často jaké množství vody přidat do 100ml květináče (30% rašeliny, 70% mulče), ve kterém je zasazená měsíc stará květina Matricaria chamomilla pokud je vlhkost okolního vzduchu 60%, okolní teplota 23°C a květina má světlo 18 hodin denně?

Počet proměnných ovlivňujících kvalitu řešení

Jak často jaké množství vody přidat do 100ml květináče (30% rašeliny, 70% mulče), ve kterém je zasazená měsíc stará květinu Matricaria chamomilla pokud je vlhkost okolního vzduchu 60%, okolní teplota 23°C a květina má světlo 18 hodin denně? (2)

Optimalizace struktury molekuly?

Počet proměnných (parametrů) ovlivňujících kvalitu řešení

Jak často jaké množství vody přidat do 100ml květináče (30% rašeliny, 70% mulče), ve kterém je zasazená měsíc stará květinu Matricaria chamomilla pokud je vlhkost okolního vzduchu 60%, okolní teplota 23°C a květina má světlo 18 hodin denně? (2)

Optimalizace struktury molekuly? (~3N)

Trénování umělé inteligence?

Počet proměnných (parametrů) ovlivňujících kvalitu řešení

Jak často jaké množství vody přidat do 100ml květináče (30% rašeliny, 70% mulče), ve kterém je zasazená měsíc stará květinu Matricaria chamomilla pokud je vlhkost okolního vzduchu 60%, okolní teplota 23°C a květina má světlo 18 hodin

denně? (2)

Optimalizace struktury molekuly? (~3N)

Trénování umělé inteligence? (~10°)

Prostor parametrů

N dimenzionální prostor, kde N je počet parametrů problému

Každý parametr je reprezentován jednou dimenzí

 Každý jeden bod v tomto prostoru reprezentuje jedno konkrétní řešení problému

Prostor parametrů

N dimenzionální prostor, kde N je počet parametrů problému

Každý parametr je reprezentován jednou dimenzí

Každý jeden bod v tomto prostoru reprezentuje jedno konkrétní řešení problému
Jak ohodnotit dané řešení?

Objektivní funkce

 Vstupem je sada parametrů (bod prostoru parametrů, jedno řešení) a výstupem je reálné číslo jehož hodnota určuje kvalitu daného řešení (objektivní hodnota)

Hodnoty objektivní funkce tvoří hyperplochu

Obvykle čím menší tím lepší (minimalizace)

Hodnota objektivní funkce tohoto čísla pak vyjadřuje kvalitu řešení

Účelová funkce, cílová funkce, kriteriální funkce, nákladová funkce, hodnotící funkce...

Tvar objektivní funkce

- Závisí na problému!
- Její tvar je stejně důležitý jako definice samotného problému!

Optimalizace struktury molekuly? → Energie molekuly

Zalevání Chamomilly? -> Hmotnost rostliny? Plocha listů? Počet semen?

Trénování Alphafoldu? → Statistika (RMSD, Pearsonův korelační koeficient)

Co nás dneska čeká?

 Zavedení pojmů: Optimalizovatelný problém, dimenzionalita problému, prostor parametrů, objektivní funkce

2) Optimalizace

3) Optimalizační metody

Optimalizace

Hledání extrémů objektivní funkce.

Co je náročného na optimalizaci?

hluboké porozumění optimalizovaného problému

vytvoření objektivní funkce

znalost optimalizačních metod

Proč optimalizovat?

Přesnější řešení

Optimalizace vícerozměrných problémů

Pokročilé optimalizační metody

(Super)počítače

Optimalizace v bioinformatice

- Prokládání bodů křivkou
- Kvantová mechanika
- Molekulová dynamika
- Force-fieldy
- Hrubozrnné modely
- Struktura proteinu
- Empirické metody
- QSPR/QSAR modelování
- Strojové učení
- ...

The modelling you know as a child

The modelling you know as an adult

Optimalizace

Optimalizace

Iterativní hledání extrémů objektivní funkce.

Konvergence v optimalizaci

"Změna je již natolik malá, že jsme ochotni jí zanedbat."

- Změna objektivní funkce
- Změna parametrů

Kritéria konvergence mohou zásadně ovlivnit výsledek optimalizace!

Optimalizace	LOKÁLNÍ	GLOBÁLNÍ
Cíl optimalizace	Lokální minimum	Globální minimum
Jistota nalezení	Ano	Ne
Rychlost	Rychlá	Pomalá
Vstup	Sada parametrů	Omezený prostor
Paralelizovatelnost	Špatná	Dobrá

Speciální případy optimalizací

 Diskrétní optimalizace - hodnoty objektivní funkce nabývají pouze celočíselných hodnot

2) Optimalizace s omezením - parametry vůči sobě jsou v nějakém vztahu

Co nás dneska čeká?

 Zavedení pojmů: Optimalizovatelný problém, dimenzionalita problému, prostor parametrů, objektivní funkce

2) Optimalizace

3) Optimalizační metody

Poznámky pro začátek

Optimalizační metody dělíme na lokální a globální

Optimalizačních metod existuje mnoho

- Není potřeba všechny znát, protože spousta jich je speciálních (vyvinutých pro konkrétní typ objektivní funkce)
- Optimalizační metody mají většinou své vlastní parametry (optimalizace nastavení optimalizační metody)

Lokálně optimalizační metody

- Hledají lokální minimum
- Pokud zkonvergují, víme, že lokální minimum našly
- Jsou rychlé
- Vstupem je sada parametrů (jedno řešení problému)
- Obecně jsou hůře paralelizovatelné

Random optimalizace

- Lokálně optimalizační metoda
- Generujeme náhodné body kolem bodu se zatím nejlepší dosaženou objektivní hodnotou

Výhody:

- Robustní
- Paralelizovatelná

Nevýhody:

- Pomalá
- V některých případech extrémně pomalu konverguje

Simplexová metoda

- Lokálně optimalizační metoda
- Pohybujeme po hyperploše simplexem tak, že vrchol s nejvyšší objektivní hodnotou projektujeme skrze rovinu tvořenou ostatními vrcholy

Výhody:

Robustní

Nevýhody:

Pomalá

Spádové metody

- Dvoufázové metody:
 - 1) Určíme směr
 - 2) Postupujeme tím směrem, dokud klesáme

Každá iterace je tedy 1D optimalizace.

- Jak efektivně postupovat v daném směru?
 - Fixní krok
 - Metoda zlatého řezu
 - 0 ...
 - Brentova metoda (parabolická interpolace)

Metoda zlatého řezu

Brentova metoda

Základní spádové metody

Metody

- Metoda sestupu po koordinátách
- Metoda největšího spádu

Výhody:

Rychlejší než Simplexová metoda

Nevýhody:

"zig-zag" chování

Metoda sestupu po koordinátách

Metoda největšího spádu

Spádové metody s korekcí z předchozího kroku

Metody

- Metoda konjugovaných směrů
- Metoda konjugovaných gradientů

Výhody:

Rychlejší

Nevýhody:

Vyjímečně problémy s konvergencí

Gradient

Konjugované gradienty

Spádové metody využívající druhé parciální derivace (hessián)

Postaveny na myšlence, že objektivní funkce v oblasti minima se podobá paraboloidu Metody

- Broyden–Fletcher–Goldfarb–Shanno metoda (BFGS)
- L-BFGS

Výhody:

V ideálním případě extrémně rychlé

Nevýhody:

- Vyjímečně problémy s konvergencí
- Nekonzistentní rychlost v neideálních případech
- Výpočetně náročné pro mnohodimenzionální problémy

Metody aproximující objektivní funkci za paraboloid

Postaveny na myšlence, že objektivní funkce v oblasti minima se podobá paraboloidu Metody

- BOBYQA
- NEWUOA

Výhody:

Extrémně rychle v ideálních případech

Nevýhody:

- Vyjímečně problémy s konvergencí
- Nekonzistentní rychlost v neideálních případech
- Výpočetně náročné pro mnohodimenzionální problémy

Evoluce lokálně minimalizačních metod

Náhodný bod - Random optimalizace

Bod ve směru spádu - Simplexová metoda

Polopřímka ve směru spádu - Metoda sestupu po koordinátách

Polopřímka ve směru gradientu - Metoda největšího spádu

Polopřímka ve směru gradientu s "korekcí" z předchozích iterací - Metoda konjugovaných gradientů

Polopřímka vypočítaná z gradientu a jeho druhých derivací - metoda L-BFGS

Minimum parabolidu - metoda NEWUOA

Shrnutí lokálně optimalizačních metod

Lokální optimalizace je rychlá

Lokálně optimalizační metody mají své vlastní nastavení

- Hlavní metody k zapamatování:
 - Simplexová metoda (robustní)
 - Metoda konjugovaných gradientů (rychlá)
 - L-BFGS (rychlá)
 - NEWUOA (rychlá)

- Je dobrou praxí zkusit více různých optimalizačních metod a jejich nastavení
- Pokud jsou jednotlivé iterace pomalé, tak můžeme spustit více metod s omezeným množstvím kroků a porovnáním výsledků vybrat nejlepší metodu

Globálně optimalizační metody

- Hledají globální minimum
- I když zkonvergují, tak nevíme, zda jsme globální minimum našli
- Jsou pomalé
- Vstupem je prostor parametrů
- Jsou obvykle dobře paralelizovatelné

Globálně optimalizační metody

- Simulované žíhání postupné ochlazování částic
- Diferenciální evoluce kombinace nejlepších výsledků a vyloučení nejhorších
- Basinhopping Střídání lokální minimalizace a disturbance
- Bayesovská optimalizace Rekonstrukce objektivní funkce
- Guided minimization Gridové prohledávání prostoru

Guided minimization

Globálně optimalizační metoda

 Definujeme náhodné body v prostoru tak, aby byl prostor co nejlépe "pokrytý" a v nich vyhodnotíme objektivní funkci

Z nejlepších bodů pak spustíme lokální optimalizaci

Zamyšlení na závěr

$$t = n_i * t_i$$

Čas optimalizace = počet iterací * čas jedné iterace

Počet iterací ovlivňuje

- Globální & Lokální optimalizace
- Komplexnost (dimenzionalita) problému

	Lokální optimalizace	Globální optimalizace
Krátký čas jedné iterace		
Dlouhý čas jedné iterace		