Chương 1

CÁC PHƯƠNG TRÌNH CHI PHỐI

1.1 Mở đầu

Tất cả các dòng chuyển động của không khí đều là dòng chảy nén được, bởi vì không khí là nén được. Tuy nhiên, đối với các dòng chảy có tốc độ không quá lớn, theo $thực\ nghiệm$, số Mach của nó phải thỏa M<0.3, ta có thể đơn giản xấp xỉ nó như các dòng lưu chất không nén được và áp dụng các kết quả đã biết đối với dòng chảy không nén được của lưu chất. Điều này có thể thực hiện được bởi vì ở các vận tốc chuyển động không quá lớn, tốc độ của các hiện tượng lan truyền là không quá lớn và do đó sự trao đổi năng lượng là không quá đáng kể. Điều này làm cho các xử lý liên quan đến năng lượng (có bản chất nhiệt động lực học) là không cần thiết.

Tuy nhiên, đối với các dòng chuyển động có tốc độ lớn hơn, số Mach $M \geq 0.3$, những xử lý nhiệt động lực học là không thể tránh khỏi. Bên cạnh đó, các hiện tượng lan truyền sẽ xảy ra và một sự xử lý nó bằng toán học là cần thiết, điều này sẽ được thực hiện thông qua bài toán Riemanne. Do đó, đầu tiên, chúng ta hãy nhắc lại về các khái niệm đã biết trong cơ lưu chất và nhiệt động lực học.

1.2 Tính nén được của lưu chất

Mọi vật chất đều có tính nén được. Khi ta nén một vật chất, ta có thể làm thay đổi thể tích và qua đó thay đổi khối lượng riêng của nó, điều này đặc trung cho tính nén được của nó. Tính nén được đối với chất khí là rõ ràng; đối với chất lỏng tính chất này là ít đặc trung hơn; đối với chất rắn, tính nén được hầu như không xảy ra.

Để đặc trung cho tính nén được, ta sẽ đặc trung nó bởi hệ số nén:

$$\tau = \frac{1}{\rho} \frac{d\rho}{dp}.\tag{1.1}$$

Trong đó, $d\rho$ là lượng tăng khối lượng riêng của khối lưu chất có khối lượng riêng ban đầu ρ khi áp đặt vào nó một sự tăng áp suất một lượng dp. Định nghĩa này đương nhiên là không đủ, bởi vì lưu chất có quá trình trao đổi năng lượng với môi trường bên ngoài và do đó sự thay đổi nhiệt độ của nó là đáng kể và ta phải tính đến điều này. Đối với một quá trình đẳng nhiệt, ta định nghĩa hê số nén đẳng nhiệt bởi:

$$\tau_t = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial p} \right)_{T=hs}.$$
 (1.2)

Đối với quá trình nén đẳng entropy, nó không trao đổi nhiệt với môi trường bên ngoài, do đó ta có thể liên hệ nhiệt độ của nó bởi các hệ thức đã biết về quá trình đoạn nhiệt, do đó ta có thể định nghĩa hệ số nén đẳng entropy:

$$\tau_s = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial p} \right)_{s=hs}. \tag{1.3}$$

Như vậy, với điều kiện nào thì lưu chất không nén được? Từ phương trình định nghĩa tính nén được:

$$d\rho = \tau \rho dp$$
.

Ta thấy độ tăng khối lượng riêng tỉ lệ với độ tăng áp suất áp đặt lên lưu chất. Do đó:

- Đối với các lưu chất có hệ số nén là nhỏ: nếu một sự tăng áp suất là không quá lớn, tức là áp suất có thể thay đổi giá trị trong một khoảng đủ rộng, ta vẫn xem lưu chất là không nén được. Đây là một trường hợp rất điển hình đối với các chất lỏng.
- Đối với các lưu chất có hệ số nén là đủ lớn: nếu một sự tăng áp suất nhỏ, tức là áp suất chỉ có thể thay trong một *khoảng giá trị hạn chế*. Điều này ngầm định rằng các dòng chuyển động có vận tốc không quá lớn. Đây là trường hợp rất điển hình đối với các chất khí.

Nếu hai điều kiện vừa phân tích ở bên trên đều bị vi phạm, ta bắt buộc phải áp dụng một khuôn khổ lưu chất nén được.

1.3 Nhắc lại về cơ lưu chất

Ở đây xin không chứng minh lại các biểu thức mà chỉ đơn giản liệt kê chúng với mục đích làm tham chiếu trực tiếp cho các phát triển sau này.

Phương trình bảo toàn lưu lượng:

$$\frac{\partial \rho}{\partial t} + \underline{\nabla} \cdot (\rho \underline{u}) = 0. \tag{1.4}$$

Phương trình Navier-Stokes: như đã thảo luận, trong dòng chảy nén được, không thể bỏ qua hiện tượng lan truyền sóng, do dó, chúng tôi đưa ra phương trình tổng quát sau đây

$$\rho \frac{D\underline{u}}{Dt} = -\underline{\nabla}p + \underline{\nabla} \cdot \left[\mu \left(\underline{\nabla}\underline{u} + {}^{t}\underline{\nabla}\underline{u} - \frac{2}{3} \left(\underline{\nabla} \cdot \underline{u} \right) \underline{\mathbb{1}} \right) + \zeta \left(\underline{\nabla} \cdot \underline{u} \right) \underline{\mathbb{1}} \right] + \rho \underline{g}. \tag{1.5}$$

trong đó $\zeta = \lambda + 2\mu/3$ là hệ số nhớt khối, là một hệ số phụ thuộc không những vào đặc tính lưu chất mà còn vào đặc tính dòng chuyển động. Điều này ứng với phương trình ứng suất-biến dang có dang:

$$\underline{\underline{\tau}} = \mu \left(\underline{\nabla u} + {}^{t}\underline{\nabla u} - \frac{2}{3} \left(\underline{\nabla} \cdot \underline{u} \right) \underline{\underline{1}} \right) + \zeta \left(\underline{\nabla} \cdot \underline{u} \right) \underline{\underline{1}}. \tag{1.6}$$

Tuy nhiên trong các nghiên cứu mà không có sự hấp thụ âm thanh hay sự suy giảm sóng xung kích, ta sẽ sử dụng dạng phương trình đơn giản hơn của phương trình Navier-Stokes:

$$\rho \frac{D\underline{u}}{Dt} = -\underline{\nabla}p + \mu \underline{\Delta}\underline{u} + \frac{1}{3}\mu \underline{\nabla}(\underline{\nabla} \cdot \underline{u}) + \rho \underline{g}.$$
(1.7)

1.4 Nhắc lại về nhiệt động lực học

1.4.1 Cân bằng năng lượng tổng quát

Nguyên lý thứ nhất của nhiệt động lực học phát biểu rằng, năng lượng của lưu chất được bảo toàn. Năng lượng của lưu chất bao gồm nội năng và động năng, mà khi xem xét sự biến đổi, phải bằng tổng lượng nhiệt và lượng công mà lưu chất trao đổi (cho và nhận), như vậy nếu kí hiệu e là nội năng riêng của lưu chất, phương trình cân bằng năng lượng được viết:

$$\frac{D}{Dt} \iiint_{\mathcal{V}} \rho\left(e + \frac{\underline{u}^2}{2}\right) d\tau = \dot{W} + \dot{Q}.$$

Nhiệt mà lưu chất trao đổi bao gồm lượng nhiệt mà bản thân lưu chất sinh ra và không có nguồn gốc cơ học vĩ mô, chẳng hạn khi có sự xuất hiện của một phản ứng hóa học và thông qua sự truyền nhiệt với môi trường bên ngoài. Công mà lưu chất trao đổi bao gồm công do các tác động cơ ngoại sinh ra và công do

chính các tác động cơ nội bên trong lưu chất. Do đó, nếu gọi q là tốc độ sinh nhiệt riêng của lưu chất và \underline{j}_{th} là vecteur mật độ dòng nhiệt (theo quy ước, luôn luôn hướng ra khỏi Ω), sự trao đổi nhiệt có thể được viết:

$$\begin{split} \dot{Q} &= \iiint_{\mathcal{V}} \rho q d\tau + \oiint_{\mathcal{S}} -\underline{j}_{th} d\underline{S}, \\ \dot{W} &= \iiint_{\mathcal{V}} \underline{\underline{\sigma}} : \underline{\underline{D}} d\tau + \iiint_{\mathcal{V}} \rho \underline{g} \cdot \underline{u} d\tau \end{split}$$

trong đó

$$\underline{\underline{D}} = \frac{1}{2} \left(\underline{\nabla u} + {}^{t}\underline{\nabla u} \right)$$

là tenseur tốc độ biến dạng. Kết hợp các phương trình này lại, sử dụng định lý Gauss-Odtrogradsky và công thức đạo hàm đối lưu đối với đại lượng thể tích, ta có phương trình cân bằng năng lượng dưới dạng vi phân:

$$\frac{\partial}{\partial t} \left[\rho \left(e + \frac{\underline{u}^2}{2} \right) \right] + \underline{\nabla} \cdot \left[\rho \left(e + \frac{\underline{u}^2}{2} \right) \underline{u} \right] = \rho q - \underline{\nabla} \cdot \underline{j}_{th} + \underline{\underline{\sigma}} : \underline{\underline{D}} + \rho \underline{g} \cdot \underline{u}. \quad (1.8)$$

Sử dụng định nghĩa của tenseur tốc độ biến dạng, ta có:

$$\frac{\partial}{\partial t} \left[\rho \left(e + \frac{\underline{u}^2}{2} \right) \right] + \underline{\nabla} \cdot \left[\rho \left(e + \frac{\underline{u}^2}{2} \right) \underline{u} + \underline{j}_{th} - \underline{\underline{\sigma}} \cdot \underline{u} \right] = \rho q + \rho \underline{\underline{g}} \cdot \underline{\underline{u}}. \tag{1.9}$$

1.4.2 Cân bằng entropy

Bây giờ ta áp dụng các khái niệm đã biết của nguyên lý thứ hai nhiệt động lực học cho khối lưu chất. Nếu gọi s là entropy riêng của lưu chất, thế thì entropy của toàn bộ khối lưu chất được viết

$$S = \iiint_{\mathcal{X}} \rho s d\tau.$$

Entropy liên hệ trực tiếp đến thông tin của hệ thống, do đó nó không thể bị phá hủy, điều đó chứng tỏ phải có sự cân bằng entropy. Sự biến thiên entropy của lưu chất có thể do sự cung cấp của môi trường bên ngoài và sự biến đổi của tự bản thân lưu chất, nếu gọi Φ_S là vecteur thông lượng entropy sinh ra do tương tác với môi trường bên ngoài (được quy ước hướng ra ngoài Ω) và q_s là tốc đô sinh ra entropy riêng bên trong bản thân lưu chất, ta có:

$$\Delta S = \iiint_{\mathscr{V}} \rho q_s d\tau + \oiint_{\mathscr{S}} -\underline{\Phi}_S d\underline{S}.$$

Như vậy entropy nội sinh của lưu chất được tính:

$$S_{\rm ns} = \dot{S} - \Delta S = \frac{D}{Dt} \iiint_{\mathcal{V}} \rho s d\tau - \iiint_{\mathcal{V}} \rho q_s d\tau + \oiint_{\mathcal{S}} \underline{\Phi}_S d\underline{S}. \tag{1.10}$$

Theo nguyên lý thứ hai nhiệt động lực học, $S_{\rm ns} \geq 0$, do đó khi sử dụng định lý Gauss-Odtrogradsky, ta có bất đẳng thức entropy cục bộ:

$$\frac{D}{Dt}(\rho s) - \rho q_s + \underline{\nabla} \cdot \underline{\Phi}_S \ge 0. \tag{1.11}$$

Sử dụng các mật độ trao đổi nhiệt trong phần trên, ta có:

$$\boxed{\frac{D(\rho s)}{Dt} - \rho \frac{q}{T} + \underline{\nabla} \cdot \left(\frac{\underline{j}_{th}}{T}\right) \ge 0}.$$
(1.12)

Đây là một bất đẳng thức quan trọng và được gọi là **bất đẳng thức Claussius- Duhem**, bởi vì, mọi hành vi của lưu chất mà không thỏa mãn bất đẳng thức này đều không được phép xảy ra.

1.5 Hệ phương trình chi phối hành vi của lưu chất

Như đã đề cập ở bên trên, một lưu chất nén được được đặc trưng thông qua khối lượng riêng, trường vận tốc, trường nhiệt độ và trường áp suất. Tức là 6 thông số cần phải được mô tả để mô tả đặc tính của một lưu chất nén được. Các phương trình (1.4), (1.5) và (1.9) chỉ cung cấp 5 phương trình, như vậy là còn thiếu một phương trình.

Phương trình còn thiếu này chắc chắn phải liên quan đến hành vi của lưu chất, mà ta sẽ gọi là phương trình trạng thái của lưu chất. Có nhiều phương trình trạng thái, nhưng có hai phương trình quan trọng và sẽ được sử dụng trong toàn bộ phần nghiên cứu này:

• Phương trình trạng thái của khí lý tưởng:

$$p = \rho RT. \tag{1.13}$$

Trong đó $R = 287.07 \,\mathrm{J\,kg^{-1}\,K^{-1}}$ là hằng số khí cho không khí. Đối với các khí khác, hằng số được cho trong bảng (???).

• Phương trình trạng thái polytrophic: một khí polytrophic là một khí lý tưởng mà nhiệt dung riêng đẳng tích là hằng số, tức là

$$e = c_v T (1.14)$$

trong đó c_v là nhiệt dung riêng đẳng tích và là hằng số. Tỉ số giữa nhiệt dung riêng đẳng áp và nhiệt dung riêng đẳng tích hiển nhiên là hằng số, đối với không khí

$$\gamma = \frac{c_p}{c_v} = 1.4. \tag{1.15}$$

Như vậy, trong khuôn khổ của phần lớn nghiên cứu của chúng ta, ta chỉ làm việc với khí lý tưởng polytropic. Hơn nữa, quá trình trao đổi nhiệt được giới hạn trong định luật truyền nhiệt FOURIER:

$$\underline{j}_{th} = -K\underline{\nabla}T. \tag{1.16}$$

Trong đó K được gọi là hệ số dẫn nhiệt. Khi đó, hệ phương trình chi phối hành vi của lưu chất được viết:

$$\frac{\partial \rho}{\partial t} + \underline{\nabla} \cdot (\rho \underline{u}) = 0$$

$$\rho \frac{D\underline{u}}{Dt} = -\underline{\nabla} p + \mu \underline{\Delta} \underline{u} - \frac{1}{3} \mu \underline{\nabla} \cdot (\underline{\nabla} \cdot \underline{u}) + \rho \underline{g}$$

$$\frac{\partial}{\partial t} \left[\rho \left(c_v T + \frac{\underline{u}^2}{2} \right) \right] + \underline{\nabla} \cdot \left[\rho \left(c_v T + \frac{\underline{u}^2}{2} \right) \underline{u} + \underline{j}_{th} - \underline{\underline{\sigma}} \cdot \underline{u} \right] = \rho q + \rho \underline{g} \cdot \underline{u}$$

$$p = \rho RT$$
(1.17)

mà ta gọi là hệ phương trình lưu chất thực.

Trong chừng mực mà lưu chất được xem là không nhớt, không có sự trao đổi nhiệt, các lực thể tích có thể bỏ qua được thì hệ phương trình trên được đơn giản thành hệ phương trình có phương trình động lượng theo Euler:

$$\frac{\partial \rho}{\partial t} + \underline{\nabla} \cdot (\rho \underline{u}) = 0$$

$$\rho \frac{D\underline{u}}{Dt} = -\underline{\nabla} p$$

$$\frac{\partial}{\partial t} \left[\rho \left(c_v T + \frac{\underline{u}^2}{2} \right) \right] + \underline{\nabla} \cdot \left[\rho \left(c_v T + \frac{\underline{u}^2}{2} + \frac{p}{\rho} \right) \underline{u} \right] = 0$$

$$p = \rho RT$$
(1.18)

mà ta gọi là hệ phương trình lưu chất lý tưởng.

Chú ý: Tồn tại nhiền hơn phương trình trạng thái của lưu chất bên cạnh phương trình khí lý tưởng. Chẳng hạn như phương trình Wan der Waals dành cho khí thực:

$$\left(P + \frac{n^2 a}{V}\right)(V - nb) = nRT.$$

Chương 2

DÒNG CHUYỂN ĐỘNG KHÔNG NHỚT

Một dòng chuyển động đơn chiều (không phải dòng chuyển động một chiều) là một dòng chuyển động mà trường vận tốc trong hình thức luận Euler chỉ phụ thuộc vào một tọa độ duy nhất x. Để nghiên cứu các dòng chuyển động loại này, ta giả thiết rằng dòng chuyển động là không nhớt, đẳng entropy và bỏ qua lưc thể tích.

2.1 Dòng chuyển động ổn định

Khi dòng chảy là dùng, hệ phương trình Euler được đơn giản thành:

$$\begin{cases}
\frac{\nabla \cdot (\rho \underline{u})}{\rho \frac{D \underline{u}}{D t}} = 0 \\
\rho \frac{D \underline{u}}{D t} = -\underline{\nabla} p \\
\nabla \cdot \left[\rho \left(c_v T + \frac{\underline{u}^2}{2} + \frac{p}{\rho} \right) \underline{u} \right] = 0 \\
p = \rho R T
\end{cases}$$
(2.1)

Khai triển phương trình năng lượng, ta có:

$$\underline{\nabla} \cdot \left[\rho \left(c_v T + \frac{\underline{u}^2}{2} + \frac{p}{\rho} \right) \underline{u} \right] = \left(c_v T + \frac{\underline{u}^2}{2} + \frac{p}{\rho} \right) \underbrace{\underline{\nabla} \cdot (\rho \underline{u})}_{=0} + \rho \underline{u} \underline{\nabla} \left(c_v T + \rho \frac{\underline{u}^2}{2} + \frac{p}{\rho} \right)$$

$$= \rho \underline{u} \underline{\nabla} \left(c_v T + \rho \frac{\underline{u}^2}{2} + \frac{p}{\rho} \right)$$

$$= 0.$$

Do đó, đối với một dòng chuyển động dừng và không nhớt thì ở mọi điểm bên trong lưu chất, năng lượng riêng của nó phải được bảo toàn, tức là:

$$c_v T + \rho \frac{\underline{u}^2}{2} + \frac{p}{\rho} = hs. \tag{2.2}$$

Khi lưu chất được chọn là khí lý tưởng, sử dụng phương trình trạng thái của khí lý tưởng, thay vào đó, ta có:

$$c_p T + \rho \frac{\underline{u}^2}{2} = hs \,. \tag{2.3}$$

Đây là một phương trình quan trọng bởi vì thứ nhất nó là một phương trình vô hướng đơn giản; thứ hai, nó liên hệ trạng thái của lưu chất T với thông số của dòng chuyển động \underline{u} . Như vậy, ta sẽ sử dụng hệ thức này để nghiên cứu dòng chuyển động của lưu chất. Lưu ý rằng phương trình này thu được bằng phép đạo hàm vật chất, do đó phương trình này chỉ đúng đối với một đường dòng nào đó. Khi đi dọc theo đường dòng, tồn tại một điểm mà ở đó hạt lưu chất nằm trong trạng thái nghỉ và ta gọi là trạng thái tham $chi\acute{e}u$, tức là:

$$c_p T + \rho \frac{\underline{u}^2}{2} = h_0. \tag{2.4}$$

Trong đó h_0 là enthalpy của điểm dùng.

- 2.2 Độ nhớt và sự truyền nhiệt
- 2.3 Sóng xung kích
- 2.4 Sóng xung kích thẳng