Perry Hart K-theory seminar

Talk #10

October 24, 2018

Abstract

We continue to look at low-dimensional K-theory, finishing our description of $K_0(-)$ and then defining $K_1(-)$, and $K_2(-)$ for rings. The main sources for this talk are the following.

- nLab.
- Charles Weibel's The K-book: an introduction to algebraic K-theory, Chapters II and III.
- Eric M. Friedlander's An Introduction to K-theory, Chapter 1.
- http://people.math.harvard.edu/~lurie/281notes/Lecture3-Whitehead.pdf.

1 K_0 of a Waldhausen category

Definition 1.1. Let \mathscr{C} be a category equipped with a "subcategory" $co \mathscr{C}$ of morphisms called *cofibrations*. The pair (\mathscr{C}, co) is a *category with cofibrations* \rightarrow if the following conditions hold.

W0. Every isomorphism in \mathscr{C} is a cofibration.

W1. There is a zero object * in $\mathscr C$ such that the unique morphism $* \mapsto A$ is a cofibration for any $A \in \text{ob } \mathscr C$.

W2. \mathscr{C} has all pushouts of the form

$$\begin{array}{ccc} A & \longrightarrow & B \\ \downarrow & & & \vdots \\ C & \longmapsto & B \cup_A C \end{array}.$$

Terminology. The map $B \to B \cup_A C$ is known as the cobase change of $A \to C$ along $A \rightarrowtail B$.

Note that the coproduct $B \coprod C$ always exists as the pushout $B \cup_* C$ and that the cokernel of any $i: A \rightarrowtail B$ exists as the pushout $B \cup_A *$ along the unique map $A \to *$. We call $A \rightarrowtail B \twoheadrightarrow B/A$ a cofiber sequence.

Definition 1.2. A Waldhausen category \mathscr{C} is a category with cofibrations together with a subcategory $w(\mathscr{C})$ of morphisms called weak equivalences $\stackrel{\sim}{\longrightarrow}$ such that every isomorphism in \mathscr{C} is a weak equivalence and the following "gluing axiom" holds.

W3. For any commutative diagram of the form

$$\begin{array}{cccc} C & \longleftarrow & A & \longmapsto & B \\ \sim & \downarrow & & \sim & \downarrow & \\ C' & \longleftarrow & A' & \longmapsto & B' \end{array},$$

the induced map $B \cup_A C \to B' \cup_{A'} C'$ is a weak equivalence.

Definition 1.3. Let \mathscr{C} be a Waldhausen category. Define $K_0(\mathscr{C})$ as the abelian group generated by [C] for each object C of \mathscr{C} such that

- 1. [C] = [C'] if there some weak equivalence from C to C'
- 2. $[C] = [B] + \begin{bmatrix} C/B \end{bmatrix}$ for every $B \rightarrowtail C \twoheadrightarrow C/B$
- 3. The weak equivalence classes of objects in $\mathscr C$ is a set.

Proposition 1.4.

- 1. [0] = 0.
- 2. $[B \] \ [C] = [B] + [C]$.
- 3. $[B \cup_A C] = [B] + [C] [A]$.
- 4. [C] = 0 whenever $0 \simeq C$.

Example 1.5. Let $\mathcal{R}_f(*)$ denote the category of finite CW complexes. Here, cofibrations and weak equivalences correspond to cellular inclusions and weak homotopy equivalences, respectively. It is known that $K_0(\mathcal{R}_f) \cong \mathbb{Z}$.

Definition 1.6. Suppose that \mathscr{C} and \mathscr{D} are Waldhausen categories. A functor $F:\mathscr{C}\to\mathscr{D}$ is exact if

- (a) it preserves base points, cofibrations, and weak equivalences and
- (b) for any $A \rightarrow B$, the map $FB \cup_{FA} FC \rightarrow F(B \cup_A C)$ is an isomorphism.

In this case, F induces a group map $K_0(F): K_0(\mathscr{C}) \to K_0(\mathscr{D})$.

Theorem 1.7. Let $F: \mathcal{A} \to \mathcal{B}$ be an exact functor. Assume the following.

- (1) A morphism f is a weak equivalence iff F(f) is a weak equivalence.
- (2) For any morphism $b: FA \to B$ in \mathcal{B} , there is some cofibration $a: A \rightarrowtail A'$ in \mathcal{A} along with a weak equivalence $b': FA' \xrightarrow{\sim} B$ in \mathcal{B} such that $b = b' \circ F(a)$. Moreover, we may choose a to be a weak equivalence whenever b is a weak equivalence.

Then F induces an isomorphism $K_0(\mathscr{A}) \cong K_0(\mathscr{B})$.

Proof. Apply condition (2) to any map $* \mapsto B$ to get $FA' \xrightarrow{\sim} B$. If this is a weak equivalence, then there is some $A \xrightarrow{\sim} A'$. Hence there is a bijection between the set W of weak-equivalence classes of objects of \mathscr{A} and that in \mathscr{B} .

The group $K_0(\mathscr{B})$ is given by the free abelian group $\mathbb{Z}[W]$ modulo the relation

$$[C] = [B] + \left[\begin{array}{c} C \\ B \end{array} \right].$$

Let $FA \xrightarrow{\sim} B$. Then applying condition (2) yields the diagram

$$\begin{array}{cccc}
* & \longleftarrow & FA & \rightarrowtail & FA' \\
 & & \sim \downarrow & & \sim \downarrow \\
* & \longleftarrow & B & \rightarrowtail & C
\end{array}$$

Apply the glueing axiom to see that $F\left(A'/A\right) \to C/B$ is a weak equivalence. Hence $[C] = [B] + \left[C/B\right]$ holds iff $[A'] = [A] + \left[A'/A\right]$ holds.

2 K_1 for rings

Let R be a unital ring. Recall that direct limits in \mathbf{M} od $_R$ always exist. Let

$$K_1(R) = GL(R)^{ab}$$

where $GL(R) \equiv \operatorname{colim}_{n \in \mathbb{N}} GL(n, R)$.

Note 2.1 (Universal property of K). The universal property of ab : $\mathbf{Grp} \to \mathbf{Ab}$ induces the universal property of K_1 that any homomorphism $f : \mathrm{GL}(R) \to H$ with H abelian has $f = g \circ \pi$ for some unique $g : K_1(R) \to H$.

Proposition 2.2. Any ring map $f: R \to S$ induces a natural map $GL(R) \to GL(S)$. Hence K_1 is a functor $\mathbf{Rng} \to \mathbf{Ab}$.

Thanks to Whitehead, we know that the commutator subgroup [GL(R), GL(R)] is equal to $E(R) = \bigcup_n E_n(R)$, the group of elementary matrices $E_{i,j}(r)$ where $r \in R$ and $i \neq j$. Thus, $K_1(R)$ can be viewed as the "stabilized" group of automorphisms of the trivial projective module modulo trivial automorphisms.

Example 2.3. If F is a field, then $K_1(F) = F^{\times}$.

Proof. It is each to check that $E_n(F) \cong \mathrm{SL}_n(F)$ for any $n \in \mathbb{N}$. Therefore, $E(F) \cong \mathrm{SL}(R)$.

Proposition 2.4. Suppose R is commutative. Consider the sequence $R^* \cong GL(1,R) \to GL(R) \to K_1(R)$. This induces a natural split exact sequence.

$$1 \longrightarrow SK_1(R) \longrightarrow K_1(R) \xrightarrow{\det} R^{\times} \longrightarrow 1,$$

where $SK_1(R)$ denotes $\ker(\det)$.

This means that $K_1(R) \cong R^{\times} \times SK_1(R)$.

Example 2.5. Suppose R is a Euclidean domain. Then $SK_1(R) = 1$, so that $K_1(R) \cong R^{\times}$.

Lemma 2.6. Let D be a division ring. Then $K_1(D) \cong \operatorname{GL}_n(D)/E_n(D)$ for any $n \geq 3$.

Proof. Any invertible matrix over D is reducible (a la Gaussian elimination) to a diagonal matrix of the form (r, 1, ..., 1). Moreover, $E_n(D) \subseteq \operatorname{GL}_n(D)$ for each n. In particular, Dieudonné (1943) showed that $\operatorname{GL}_n(D)/E_n(D) \cong D^{\times}/(D^{\times})'$ for any $n \neq 2$.

Now, suppose that R is Noetherian of dimension d, so that $E_n(R) \leq GL_n(R)$ for any $n \geq d+2$.

Proposition 2.7 (Vaserstein). $K_1(R) \cong \operatorname{GL}_n(R) / E_n(R)$ for any $n \geq d+2$.

Let D be a d-dimensional division algebra over the field F := Z(D). We know that $d = n^2$ for some integer n. By Zorn's lemma, there is some maximal subfield $E \subset D$ such that [E : F] = n. Then $D \otimes_F E \cong M_n(E)$, where M_n denotes the n-dimensional matrix ring over E. Any field with this property is called a *splitting* field for D.

Let E' be a splitting field for D. For any $r \in \mathbb{N}$, the inclusions $D \hookrightarrow M_n(E')$ and $M_r(D) \hookrightarrow M_{nr}(E')$ induce maps $D^{\times} \subset \operatorname{GL}_n(E') \xrightarrow{\operatorname{det}} (E')^{\times}$ and $\operatorname{GL}_r(D) \to \operatorname{GL}_{nr}(E') \xrightarrow{\operatorname{det}} (E')^{\times}$ whose images are contained in F^* . The induced maps are called the *reduced norms* N_{red} for D.

Example 2.8. If $D = \mathbb{H}$, then N_{red} is the square of the usual norm. It induces an isomorphism $K_1(\mathbb{H}) \cong \mathbb{R}_+^{\times}$.

Let R be a commutative Banach algebra over $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ (i.e., a Banach space equipped with a commutative bilinear multiplication map $m: R \times R \to R$ such that $\|m(a,b)\| \le \|a\| \cdot \|b\|$). Recall that both $\mathrm{GL}_n(R)$ and $\mathrm{SL}_n(R)$ are topological groups as subspaces of \mathbb{R}^{n^2} .

Proposition 2.9. We have that $E_n(R)$ is the path component of the identity matrix I_n for any $n \geq 2$.

Corollary 2.10. We may identify $SK_1(R)$ with the set $\pi_0 SL(R)$.

Proof. Note that $E(R) \leq \operatorname{SL}(R)$. By the third isomorphism theorem, we get

$$\operatorname{GL}(R)/\operatorname{SL}(R)/\operatorname{SL}(R)/\operatorname{E}(R) \cong \operatorname{GL}(R)/\operatorname{SL}(R).$$

Thus, we get the short exact sequence

$$1 \longrightarrow {}^{\mathrm{SL}(R)}/_{E(R)} \longrightarrow {}^{\mathrm{GL}(R)}/_{E(R)} \cong K_{1}(R) \longrightarrow {}^{\mathrm{GL}(R)}/_{\mathrm{SL}(R)} \cong R^{\times} \longrightarrow 1$$

By Proposition 2.9, we know that $SL(R)/E(R) \cong \pi_0 SL(R)$, yielding a short exact sequence.

$$1 \longrightarrow \pi_0 \operatorname{SL}(R) \longrightarrow K_1(R) \xrightarrow{\operatorname{det}} R^{\times} \longrightarrow 1$$
.

Example 2.11. If X is compact, then

$$SK_1(\mathbb{R}^X) \leftrightarrow [X, SL(\mathbb{R})] \cong [X, SO]$$

 $SK_1(\mathbb{C}^X) \leftrightarrow [X, SL(\mathbb{C})] \cong [X, SU].$

In particular, $SK_1(\mathbb{R}^{S^1}) \leftrightarrow \pi_1 SO \cong C_2$.

Let P be a finitely generated projective R-module. Any choice of isomorphism $P \oplus Q \cong R^n$ induces a group map

$$\operatorname{Aut}(P) \to \operatorname{Aut}(P) \oplus \operatorname{Aut}(Q) \cong \operatorname{Aut}(R^n) \cong \operatorname{GL}(n, R).$$

The group map $\operatorname{Aut}(P) \to \operatorname{GL}(R)$ is independent of our choice of isomorphism up to inner automorphism of $\operatorname{GL}(R)$. Therefore, there is a well-defined homomorphism $\Phi: \operatorname{Aut}(R) \to K_1(R)$.

Lemma 2.12. Suppose that R is commutative and T is an R-algebra. Then $K_1(T)$ has a natural module structure over $K_0(R)$.

Proof. For any $P \in \mathbf{P}(R)$ and $m \in \mathbb{N}$, consider the homomorphism $\Phi : \operatorname{Aut}(P \otimes T^m) \to K_1(R \otimes T)$. For any $\beta \in \operatorname{GL}_m(T)$, let

$$[P] \cdot \beta = \Phi(1_P \otimes \beta).$$

This action factors through $K_0(R)$ and $K_1(T)$, inducing an operation $K_0(R) \times K_1(T) \to K_1(R \otimes S)$. Now, since T is an R-algebra, there is a ring map $R \otimes T \to T$. The induced composite $K_0(R) \times K_1(T) \to K_1(R \otimes T) \to K_1(T)$ is the desired module structure.

As it turns out, $K_1(R)$ is completely determined by the category $\mathbf{P}(R)$. This means that K_1 is invariant under Morita equivalence, just as K_0 is.

Theorem 2.13. if R and S are Morita equivalent, then $K_1(R) \cong K_1(R)$.

For an application of K_1 to manifold theory, let π be a finitely generated group. Define the Whitehead group Wh(π) of π as the cokernel of the map $\pi \times \{\pm 1\} \to K_1(\mathbb{Z}\pi)$ given by $(g, \pm 1) \mapsto \left[\pm g\right]$.

Definition 2.14. Suppose that W, M, and N are compact manifolds (possibly smooth or piecewise-linear). Suppose that M and N are without boundary. Let $\dim(M) = \dim(N) = n$ and $\dim(W) = n + 1$.

- 1. We say that W is a cobordism of M and N if $\partial W \cong M \coprod N$.
- 2. We say that W is an h-cobordism of M and N if it is a cobordism of M and N and the inclusion maps $i_M: M \hookrightarrow \partial W$ and $i_N: N \hookrightarrow \partial W$ are homotopy equivalences.

Let R be a ring. A based chain complex over R is a bounded chain complex

$$\cdots \longrightarrow F_{n+1} \xrightarrow{d_{n+1}} F_n \xrightarrow{d_n} F_{n-1} \longrightarrow \cdots$$

of finitely generated free R-modules together with a choice B_n of basis (ordered in a predetermined way) for each F_n . The Euler characteristic of (F_*, d_n) is the finite sum

$$\chi(F_*) \equiv \sum_n (-1)^n |B_n|.$$

If F_* is acyclic, then it is contractible, so that there is some map $h: F_* \to F_{*+1}$ such that $dh + hd = \mathrm{Id}_{F_*}$. In this case, one can check that

$$d+h: \bigoplus_{n} F_{2n} \to \bigoplus_{n} F_{2n+1}.$$

is an isomorphism of free R-modules. If $\chi(F_*)=0$, then this yields an element $\underbrace{\rho(F_*)\coloneqq[d+h]}_{Reidemeister\ torsion}$ of $K_1(R)_{\{+1\}}$, which is independent of our choice of null-homotopy h.

Suppose that $f: X_* \to Y_*$ is a quasi-isomorphism of based chain complexes over R. Then $\operatorname{cone}(f)$ is an acyclic based chain complex over R. Further, if $\chi(X_*) = \chi(Y_*)$, then $\chi(\operatorname{cone}(f)) = 0$, in which case we may define the *torsion of* f as the element $\rho(\operatorname{cone}(f))$ of $K_1(R)/\{+1\}$.

Now, suppose that $f: X \to Y$ is a homotopy equivalence of finite connected CW complexes. Since these are locally contractible, they admit respective universal covering spaces \widetilde{X} and \widetilde{Y} . If f is a cellular map, then it induces a map

$$\lambda_f: C_*(\widetilde{X}; \mathbb{Z}) \to C_*(\widetilde{Y}; \mathbb{Z})$$

of cellular chain complexes, which must be a quasi-isomorphism since f is assumed to be a homotopy equivalence. Note that $C_*(\widetilde{X}; \mathbb{Z})$ and $C_*(\widetilde{Y}; \mathbb{Z})$ may be viewed as based chain complexes over $\mathbb{Z}\pi_1(Y)$. In this case, the Whitehead torsion $\tau(f)$ of f is the image of the torsion of λ_f under the natural projection $K_1(\mathbb{Z}\pi_1(Y))/\{\pm 1\}$ $\xrightarrow{}$ Wh($\mathbb{Z}\pi_1(Y)$).

Theorem 2.15 (s-cobordism). Suppose that W, M, and N are compact manifolds and that W is an h-cobordism of M and N. If $\dim(M) \geq 5$, then $(W, M, N) \cong (M \times [0, 1], M \times [0, M])$ iff $\tau(i_M)$ vanishes.

Corollary 2.16 (Generalized Poincaré conjecture). Let M be an n-manifold that is homotopy equivalent to S^n . If $n \geq 5$, then M is homeomorphic to S^n .

Definition 2.17. Let I be an ideal in R. Define GL(I) as the kernel of the map $GL(R) \to GL\left(\frac{R}{I}\right)$. Moreover, define E(R,I) as the smallest normal subgroup of E(R) that contains $E_{i,j}(r)$ for any $r \in I$ and $i \neq j$.

Proposition 2.18. $[GL(I), GL(I)] \subset E(R, I) \subseteq GL(I)$

Definition 2.19. The relative group $K_1(R,I)$ is the the abelian group $\mathrm{GL}(I)/E(R,I)$.

Remark 2.20. Swan has shown that a ring homomorphism $f: R \to S$ mapping the ideal I isomorphically to the ideal J need not induce an isomorphism $K_1(R, I) \to K_1(S, J)$.

Proposition 2.21. We have an exact sequence

$$K_1(R,I) \longrightarrow K_1(R) \longrightarrow K_1\left(R/I\right) \longrightarrow K_0(I) \longrightarrow K_0(R) \longrightarrow K_0\left(R/I\right)$$
.

3 K_2 for rings

Definition 3.1. Let $n \geq 3$ and R be a ring. The *Steinberg group* $\operatorname{St}_n(R)$ is the group generated by the symbols $x_{ij}(r)$ with $1 \leq i \neq j \leq n$ and $r \in R$ that satisfy the following relations.

(i)
$$x_{ij}(r)x_{ij}(s) = x_{ij}(r+s)$$

(ii)
$$[x_{ij}(r), x_{kl}(s)] = \begin{cases} 1 & j \neq k, & i \neq l \\ x_{il}(rs) & j = k, & i \neq l \\ x_{kj}(-sr) & j \neq k, & i = l \end{cases}$$

We have a natural group surjection $\phi_n : \operatorname{St}_n(R) \to E_n(R)$ given by $x_{ij}(r) \mapsto E_{ij}(r)$. Moreover, there is a group map $\operatorname{St}_n(R) \hookrightarrow \operatorname{St}_{n+1}(R)$. Since $\operatorname{St}(R) := \operatorname{colim}_n \operatorname{St}_n(R)$ exists, the ϕ_n form a group epimorphism $\phi : \operatorname{St}(R) \to E(R)$. Let

$$K_2(n,R) = \ker \phi_n$$

 $K_2(R) = \ker \phi.$

Note that $K_2(-)$ is a functor $\mathbf{Rng} \to \mathbf{Ab}$. Furthermore, we have an exact sequence

$$1 \longrightarrow K_2(R) \longrightarrow \operatorname{St}(R) \stackrel{\phi}{\longrightarrow} \operatorname{GL}(R) \longrightarrow K_1(R) \longrightarrow 1$$
.

Lemma 3.2. $K_2(R) \cong Z(\operatorname{St}(R))$.

¹Section III.2.3 (Weibel).

Proof. The fact that $K_2(R) \supset Z(St(R))$ follows from the fact that Z(E(R)) is trivial. The reverse containment is easy but more tedious to prove. See III.5.2.1 (Weibel).

Example 3.3. A certain sort of Euclidean algorithm yields the following computations.

- 1. $K_2(\mathbb{Z}) \cong C_2$
- 2. $K_2(\mathbb{Z}[i]) = 1$
- 3. $K_2(F) \cong K_2(F[t])$ when F is a field

Theorem 3.4. Suppose that R is Noetherian of dimension d. Then $K_2(n,R) \cong K_2(R)$ for any $n \geq d+3$.

Theorem 3.5. If R and S are Morita equivalent, then $K_2(R) \cong K_2(R)$.

Example 3.6. Let $n \in \mathbb{Z}_{\geq 1}$. Let R be any ring and let $S = M_n(R)$. These are Morita equivalent, so that

$$K_i(R) \cong K_i(M_n(R))$$

for each i=0,1,2. Indeed, in one direction, define $F:M\mapsto M^n$. In the other direction, define $G:M\mapsto e_{11}M$ where $e_{1}1$ denotes the matrix with 1 in position (1,1) and 0 elsewhere. Define the natural isomorphism $\mathrm{Id}_{\mathbf{Mod}_R} \Rightarrow G \circ F$ by the components $f_M:M\to \{(m,0,\ldots,0):m\in M\}$. Further, define the natural isomorphism $\mathrm{Id}_{\mathbf{Mod}_S} \Rightarrow F\circ G$ by the components $g_M:M\to (e_{11}M)^n$ given by $m\mapsto (e_{11}m,\ldots,e_{1n}m)$. Hence \mathbf{Mod}_R and \mathbf{Mod}_S are equivalent, hence Morita equivalence as they are preadditive.

Lemma 3.7. Let R be a commutative Banach algebra. Then there is a surjection from $K_2(R)$ onto $\pi_1 \operatorname{SL}(R)$.

Example 3.8. There is a surjection $K_2(\mathbb{R}) \to \pi_1 \operatorname{SL}_{\ell}(\mathbb{R}) \cong \pi_1 \operatorname{SO} \cong C_2$. Hence $K_2(\mathbb{R})$ is nontrivial.

Theorem 3.9 (Matsumoto 1969). Let F be a field. Then $K_2(F)$ is isomorphic to the free abelian group with system of generators $\{a,b\}$ satisfying the following relations.

- (i) $\{ac, b\} = \{a, b\} \{c, b\}$
- (ii) $\{a, bd\} = \{a, b\} \{a, d\}$
- (iii) $\{a, 1-a\} = 1$ when $a \neq 1 \neq 1-a$.

Terminology. The $\{a,b\}$ are called Steinberg symbols.

Suppose that $A, B \in E(F)$ commute. Write $\phi(a) = A$ and $\phi(b) = B$. Then define

$$A \bigstar B = [a, b] \in K_2(R).$$

If $a, b \in F$, then we can alternatively define the Steinberg symbol

$$\{a,b\} = \begin{bmatrix} r & & \\ & r^{-1} & \\ & & 1 \end{bmatrix} \bigstar \begin{bmatrix} s & & \\ & 1 & \\ & & s^{-1} \end{bmatrix}.$$

Corollary 3.10. $K_2(\mathbb{F}_p^n) = 1$ for any prime p and any integer $n \geq 1$.

Proof. The proof is entirely computational. See III.6.1.1 (Weibel).

Proposition 3.11. If $F \supset \mathbb{Q}(t)$, then $|K_2(F)| = |F|$.

 $^{^2}$ III.5.9 (Weibel).