Week 12 Review Class

VE281 TA Group

Violation at Leaf

• Case 1: Q is a **red leaf**.

May **recurse**, since G's parent may be red.

Violation at Leaf

• Case 2: Q is empty; I is P's **left** child.

Violation at Leaf

• Case 3: Q is empty; I is P's right child.

Violation at Leaf: Summary

- For Case 2 (Q is empty; I is P's **left** child) and Case 3 (Q is empty; I is P's **right** child), **we're done**.
- For Case 1 (Q is a **red leaf**), we may recurse.
 - Violation of red rule.

- Caused by moving the violation up the tree.
- When violating, its **parent** is **red** and its **grandparent** is **black**.
- <u>Assume</u>: the parent "P" is the **left child** of the grandparent "G". (The "right child" case is **symmetric**.)
- **Denote**: the right child of the grandparent to be Q.

• Three Cases:

- <u>Claim</u>:
 - α , β , γ , δ , ϵ are trees with black root.
 - α , β , γ , δ , ϵ have the <u>same</u> <u>black height</u>.

- Three Cases:
 - 2. Q is a **black node**; I is P's **left** child.
 - 3. Q is a **black node**; I is P's **right** child.
- <u>Claim</u> for Case 2 and 3:
 - α , β , γ , Q are trees with **black** root.
 - α, β, γ, Q have the <u>same</u> black height.

• Case 1: Q is a **red node**.

May **recurse**, since G's parent may be red.

Example

• Insert 1

• Insert 8

• Insert 2 Case 3 at leaf 8 Right Rotation Left Rotation Recoloring

Case 1 at leaf • Insert 7 Recoloring 8 Recoloring Root

• Insert 3 Case 2 at leaf Right Rotation Recoloring

• Insert 6

