

Processing tables with Python

Marcelo Leomil Zoccoler and Martin Schätz

With materials from

Till Korten, Robert Haase, PoL – TU Dresden

Pandas is very useful for processing 2D tables

⊘ICzechBIAS

- Typical use-case:
 - Data from a colleague (i.e. an excel file)
 - Output from a software that was saved to disk (i.e. a csv file)

Use pandas

conda install pandas

Loading a pandas table from a csv file

import pandas as pd

		Area	Mean	Circ.	AR	Round	Solidity
0	1	2610	96.920	0.773	1.289	0.776	1.0
1	2	2100	90.114	0.660	2.333	0.429	1.0
2	3	27	110.222	0.108	27.000	0.037	1.0

Display just the first 3 rows of a table:

Display just the last 3 rows of a table:

Creating pandas tables from Python data

○ CzechBIAS

from a nupy array

```
import numpy as np

data = np.random.random((4,3))
column_header = ['area',
'minor_axis', 'major_axis']

pd.DataFrame(data,
columns=column_header)
```

	area	minor_axis	major_axis
0	0.425681	0.135821	0.017084
1	0.036739	0.120840	0.925127
2	0.506095	0.453657	0.690560
3	0.748323	0.174359	0.603710

from a dictionary

```
measurements = {
"labels": [1, 2, 3],
"area": [45, 23, 68],
"minor_axis": [2, 4, 4],
"major_axis": [3, 4, 5],
}
```

pd.DataFrame(measurements)

	labels	area	minor_axis	major_axis
0	1	45	2	3
1	2	23	4	4
2	3	68	4	5

Saving pandas tables to disk

@|CzechBIAS

df.to_csv("output.csv")

Select a table column similar to an element of a dict

@|CzechBIAS

cities['City']

	City	Country	Population	Area_km2		City
0	Tokyo	Japan	13515271	2191	0	Tokyo
1	Delhi	India	16753235	1484	1	Delhi
2	Shanghai	China	24183000	6341	2	Shanghai
3	Sao Paulo	Brazil	12252023	1521	3	Sao Paulo
4	Mexico City	Mexico	9209944	1485	4	Mexico City

Select multiple columns with a list of column names

cities[['City', 'Country']]

	City	Country	Population	Area_km2		City	Country
0	Tokyo	Japan	13515271	2191	0	Tokyo	Japan
1	Delhi	India	16753235	1484	1	Delhi	India
2	Shanghai	China	24183000	6341	2	Shanghai	China
3	Sao Paulo	Brazil	12252023	1521	3	Sao Paulo	Brazil
4	Mexico City	Mexico	9209944	1485	4	Mexico City	Mexico

Note the double brackets

Select table rows through the loc object

Country

Japan

⊘|CzechBIAS

data_frame.loc[0, ['City', 'Country']]

	City	Country	Population	Area_km2		City
0	Tokyo	Japan	13515271	2191	0	Tokyo
1	Delhi	India	16753235	1484		
2	Shanghai	China	24183000	6341		
3	Sao Paulo	Brazil	12252023	1521		
4	Mexico City	Mexico	9209944	1485		

Select individual cells

	City	Country	Population	Area_km2
0	Tokyo	Japan	13515271	2191
1	Delhi	India	16753235	1484
2	Shanghai	China	24183000	6341
3	Sao Paulo	Brazil	12252023	1521
4	Mexico City	Mexico	9209944	1485

data_frame['City'][0]

'Tokyo'

Selecting rows that fulfill criteria

⊘|CzechBIAS

• Select cities with an area of more than 2000 km²

	City	Country	Population	Area_km2
0	Tokyo	Japan	13515271	2191
1	Delhi	India	16753235	1484
2	Shanghai	China	24183000	6341
3	Sao Paulo	Brazil	12252023	1521
4	Mexico City	Mexico	9209944	1485

0	True
1	False
2	True
3	False
4	False
N.I.	Δ

Name: Area_km2, dtype: bool

cities[cities["area"] > 2000]

	City	Country	Population	Area_km2
0	Tokyo	Japan	13515271	2191
2	Shanghai	China	24183000	6341

Combining similar tables

⊘|CzechBIAS

• If tables have the same columns

pd.concat([countries1, countries2])

countries1				со	untries2	
(Country	Population			Country	Population
0	Japan	127202192		0	Brazil	209489323
1	India	1352642280	_	1	Mexico	126190788
2	China	1427647786				

	Country	Population
0	Japan	127202192
1	India	1352642280
2	China	1427647786
0	Brazil	209489323
1	Mexico	126190788

Keep information about the data source

• Add a column to each table before concatenating them

⊘|CzechBIAS

<pre>countries1['Survey</pre>	ID']
= 26	

countries2['Survey ID']
= 73

	Country	Population	Survey ID		Country	F
0	Japan	127202192	26	0	Brazil	
1	India	1352642280	26	1	Mexico	
2	China	1427647786	26			

Country	Population	Survey ID
Brazil	209489323	73
Mexico	126190788	73
	Brazil	Brazil 209489323 Mexico 126190788

pd.concat([countries1, countries2])

	Country	Population	Survey ID
0	Japan	127202192	26
1	India	1352642280	26
2	China	1427647786	26
0	Brazil	209489323	73
1	Mexico	126190788	73

Handling NaN values

©|CzechBIAS

- Usually indicate missing data
- Can cause errors when handling the data
- The easiest is to drop them using the ".dropna" method
- Drops any row containing a NaN value

data_no_nan = data.dropna(how="any")

Work with tidy-data when processing tables

Tidy:

data_frame.melt()

• Each observation is a row.

Each type of observation has its own separate data frame.

		. •	1	
- INI	\cap t	ŤΙ	$\alpha \cdots$	
I A	Οt	LI	dy:	

		Before		After
	channel_1	channel_2	channel_1	channel_2
0	13.250000	21.000000	15.137984	42.022776
1	44.954545	24.318182	43.328836	48.661610
2	13.590909	18.772727	11.685995	37.926184
3	85.032258	19.741935	86.031461	40.396353

	variable_0	variable_1	value
0	Before	channel_1	13.250000
1	Before	channel_1	44.954545
2	Before	channel_1	13.590909
3	Before	channel_1	85.032258
4	Before	channel_1	10.731707
•••			
99	After	channel_2	73.286439
100	After	channel_2	145.900739

