第 1 届綞覌鄈襵聛侤冴婱鄈蓌計

CCC-WF

第二试

cdqz

时间: 2021年1月16日

一、题目概况

题目名称	小 A 与棋盘	遗忘的记忆	板凳	
题目类型	传统型	传统型	传统型	
目录	chess	forget	seat	
源程序文件名	chess.cpp	forget.cpp	seat.cpp	
可执行文件名	chess	forget	seat	
输入文件名	chess.in	forget.in	seat.in	
输出文件名	chess.out	forget.out	seat.out	
每个测试点时限	3s	3s	3s	
内存限制	512MB	512MB	512MB	
子任务数目	7	7	9	
编译选项	-lm -O2			

二、注意事项

- 1. 选手提交的源文件应直接存放在对应的个人文件夹中,无需建立对应题目的子文件夹。
- 2. 文件名(包括程序名和输入输出文件名)必须使用英文小写。
- 3. 函数 main() 的返回值类型必须是 int, 值必须为 0。
- 4. 若无特殊说明,输入文件中同一行内的多个整数、浮点数、字符串等均使用一个空格进行分隔。
- 5. 若无特殊说明,结果比较方式为忽略行末空格、文末回车后的全文比较。
- 6. 程序可使用的栈空间大小与该题内存空间限制一致。
- 7. 在终端下可使用命令 ulimit -s unlimited 将栈空间限制放大,但你使用的栈空间大小不应超过题目限制。
- 8. 请注意题目按照目录名字典序排序,不一定按照题目难度排序。

小 A 与棋盘 (chess)

【题目描述】

机房的神仙又开始下棋了,这次它们在一个 $n \times n$ 的棋盘上轮流放旗子,并给一些相邻的点之间连上边,变成一棵树。

小 A 不会下神仙棋, 但小 A 总爱提出一些问题, 比如: 给定一棵树, 把根结点放在左上角后, 将其他点摆在棋盘内, 需要保证有边直接连接的边必需相邻, 一个点的位置不同就代表两种不同的方案, 问根结点为 r 的方案有多少种?

这当然被机房的神仙直接切掉了,但是神仙们忙于下棋都不屑于跟小 A 讲,小 A 只好求助于你,你只用帮小 A 解决放在大小为 $2 \times n$ (两行 n 列)的棋盘内的问题即可。由于一些原因,你需要将答案对 10^9+7 取模。

【输入格式】

从文件 chess.in 中读入数据。

输入共若干行。

第一行两个正整数 n,q。

接下来 (n-1) 行,每行两个正整数 u_i, v_i 代表树上的一条连接点 u_i 和 v_i 的边。保证这些边形成了一棵树且这些边不重不漏。

接下来 q 行,每行一个数代表询问的根 r。

【输出格式】

输出到文件 chess.out 中。

输出一共q行,按顺序对应每个询问的答案对 10^9+7 取模的结果。

【样例 1 输入】

```
1 5 5 5 2 1 2 3 1 3 4 3 4 5 6 1 7 2 8 3 9 4 10 5
```

【样例 1 输出】

1 | 4 | 2 | 9 | 3 | 2 | 4 | 4 | 5 | 9 |

【样例1解释】

以1为根的不同方案有以下4种:

【样例 2】

见选手目录下的 chess/chess2.in 与 chess/chess2.ans。

【样例 2 解释】

此样例满足子任务 3 的特殊限制。

【测试点约束】

对于所有测试点,满足 $1 \le n, q \le 10^6$, $1 \le u_i, v_i \le n$,保证输入的边不重不漏地描述了一棵树的所有边。

每个子任务的具体限制见下表:

子任务编号	分值	$n \leq$	$q \leq$	树是一条链
1	5	5	5	
2		3000	1	否
3	15	3000	3000	
4		10^{5}	10^{5}	
5	10	$0 10^6$	10^{6}	是
6	10		1	否
7	30		10^{6}	

遗忘的记忆 (forget)

【题目背景】

但愿忘却, 挥之不去。

早已遗忘,何曾忆起。

【题目描述】

小 N 现在的记忆看作一个 n 个点 m 条边的简单无向图,每个点表示一个元,每条边表示一条与其连接的点代表的元相关的记忆。小 N 把他的记忆分为了 k 类,分别用正整数 $1,2,3,\ldots,n$ 表示,且每条记忆都恰好属于其中的一类。

现在小 N 想要忘记。具体地,他想要保留类别 i 的记忆最多 c_i 个,并将其余的全部忘掉。而为了避免他再次忆起时相关的记忆在思绪中连绵不断,他想要剩下的记忆对应的边不形成简单环。

小 N 想知道,他最少需要忘却的记忆的条数 t 与在忘却的记忆条数为 t 的情况下一组可能的忘却的记忆 $e_1, e_2, e_3, \ldots, e_t$ 。由于一些众所周知的原因,你需要写一个程序帮他算。

【输入格式】

从文件 forget.in 中读入数据。

输入共 (m+2) 行。

第一行三个正整数 n, m, k,分别表示小 N 现在的记忆元个数,记忆条数与记忆的类数。

第二行 k 个正整数 c_1, c_2, \ldots, c_k ,分别表示小 N 逍遥保留的每一类记忆的条数。

接下来 m 行,每行三个正整数 u_i, v_i, w_i ,不重不漏地表示了连接 u_i 和 v_i 的类别为 w_i 的记忆。

【输出格式】

输出到文件 forget.out 中。

输出共两行。

第一行输出一个非负整数 t,表示小 N 至少需要忘却的记忆的条数。

第二行共 n 个两两不等、按升序排序的正整数 $e_1, e_2, e_3, \ldots, e_t$,表示小 N 可以忘记第 e_1 条、第 e_2 条、第 e_3 条、……、第 e_t 条记忆。如果有多组解,输出任意一组即可。

【样例 1 输入】

1 5 7 3

2 3 1 1

3 | 1 2 1 4 | 2 3 1 5 | 3 1 1

6 4 1 2

7 4 2 3

8 5 1 2

9 5 2 3

【样例 1 输出】

1 3

2 2 4 6

【样例1解释】

正确的答案包括 $\{2,4,7\}$, $\{2,5,6\}$, $\{3,5,7\}$ 在内共有 8 个。

【样例 2】

见选手目录下的 forget/forget2.in 与 forget/forget2.ans。

【样例 2 解释】

此样例满足子任务 2 的特殊限制。

【测试点约束】

对于所有测试点,满足 $1 \le n, m \le 500$, $1 \le k, c_i, w_i \le m$, $1 \le u_i, v_i \le n$,保证图没有重边、没有自环。

每个子任务的具体限制见下表:

子任务编号	分值	特殊限制
1	10	$n, m \leq 5$
2	20	$n, m \le 50$
3	5	k = 1
4	20	k=2
5	20	$c_i = 1$
6	5	图无简单环
7	20	无

板凳 (seat)

【题目背景】

公元 2919 年,吞天共和国将军杨吞天击败了外来的侵略联盟,一举夺取了大陆上的霸权 地位。

吞天国盛极一时,杨吞天个人也声望滔天,他准备改共和国为吞天帝国,而他自己就是吞 天大帝即将登基!

【题目描述】

登基大典即将举行,为了让每个吞天帝国的公民都能够目睹这史无前例的盛况,杨吞天准备了m个板凳,让来观看的m人坐。为了让每个人都看得清楚,这些板凳只排成了一排,并从左到右依次从1开始编号。但坐在哪个板凳上有很严格的规定:

对于第 *i* 个进来的人,他得找到这一排板凳中最长的一段连续的空板凳,如果有多个,就选择最左边那个。然后选择这一段连续的空板凳中间的那个板凳坐上去,如果有两个中间的板凳,则选择左边的那个。

除此之外,前 n 个进来的人是吞天帝国的政要高官,他们可以不受这些规则的限制自己选择坐哪个板凳。第 i 个进来的人选择了第 a_i 个板凳。

小 K 是吞天帝国的一位平民,他也来观看了登基大典,为了获得最佳的观看位置,他开始计算在多久进去可以获得自己想要的座位。但吞天帝国地大物博,人口众多,前来观看登基大典的人络绎不绝。小 K 的脑袋有点转不过来了,于是他转而求助于你。

他向你发出了q次询问,第i次询问第 b_i 个进来的人将会坐在哪个板凳上。

【输入格式】

从文件 seat.in 中读入数据。

输入共三行。

第一行包含三个正整数 m, n, q。

第二行包含 n 个正整数, 第 i 个正整数表示 a_i 。

第三行包含 q 个正整数, 第 i 个正整数表示 n_i 。

所有输入的意义见意义见【题目描述】。

【输出格式】

输出到文件 seat.out 中。

输出一共 q 行, 第 i 行一个正整数表示第 i 次询问的答案。

【样例 1 输入】

```
1 8 1 8
2 4
3 1 2 3 4 5 6 7 8
```

【样例 1 输出】

【样例 2】

见选手目录下的 seat/seat2.in 与 seat/seat2.ans。

【样例 2 解释】

此样例满足子任务 6 的特殊限制。

【测试点约束】

对于所有测试点,满足 $1 \le n, q \le 10^5$, $1 \le a_i, b_i \le m \le 10^{14}$ 。 每个子任务的具体限制见下表:

子任务编号	分值	$m \leq$	特殊限制
1	3	10^{6}	无
2	7		A
3	13	10^{8}	В
4	16		无
5	1		С
6	6		D
7	13	10^{14}	A
8	17		В
9	24		无

特殊性质 A: n=0。

特殊性质 B: 前 n 个人坐下后,所有连续的空板凳序列长度分别等于 2 的某个自然数幂减一。即对于每一个连续的空板凳长度 l_i ,总能找到自然数 k_i 使得 $l_i=2^{k_i}-1$ 。

特殊性质 C: n = m。 特殊性质 D: $b_i \le 10^6$ 。

【后记】

吞天大帝万万岁!