Práctica 3 - Circuitos Aritméticos

Sistemas Digitales - FIUBA

April 26, 2021

Herramientas

EDAplayground: https://www.edaplayground.com/

GTKWave, GHDL: https://www.youtube.com/watch?v=H2GyAIYwZbw

Modelsim: https://www.mentor.com/company/higher_ed/modelsim-student-edition

Notación:

 $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$

Ejercicio 1 - Dar las expresiones aritméticas de los siguientes formatos numéricos:

- Sin signo (unsigned, US)
- Signo y magnitud (SM)
- Complemento a dos (two's complement 2C)
- Dígito Signado (SD)

Ejercicio 2 - Cuáles de las codificaciones del ejercicio 1 son unívocas?

Ejercicio 4 - Demostrar el teorema de extensión de signo para la codificación 2C.

 ${\bf Ejercicio}~{\bf 5}$ - Dar las expresiones aritméticas de las siguientes representaciones en punto fijo:

- Sin signo, uI.F, donde $I,F\in\mathbb{Z}$, N=I+F es la cantidad de bits de representación.
- Con signo, uI.F, donde $I,F\in\mathbb{Z}$, N=I+F es la cantidad de bits de representación.

- **Ejercicio 6** Cuáles son los rangos de representación de las codificaciones del ejercicio 5? Determinar también el tamaño numérico del LSB.
- **Ejercicio 7 -** Implementar en VHDL un multiplicador de N bits (genérico) de acuerdo a la arquitectura presentada en el apéndice H "Computer Arithmetic" (A Quantitative Approach Hennessy Patterson).
- **Ejercicio 8 -** Implementar en VHDL un divisor de N bits (genérico) con restauración de acuerdo a la arquitectura presentada en el apéndice H "Computer Arithmetic" (A Quantitative Approach Hennessy Patterson).
- **Ejercicio 9 -** Implementar en VHDL un divisor de N bits (genérico) sin restauración de acuerdo a la arquitectura presentada en el apéndice H "Computer Arithmetic" (A Quantitative Approach Hennessy Patterson).
- **Ejercicio 10 -** Implementar en VHDL un multiplicador de N bits (genérico), con operandos signados utilizando la codificación de Booth.
- **Ejercicio 11 -** Implementar en VHDL un barrel shifter de N bits con M líneas indicativas del desplazamiento ($N=2^M$). Además debe permitir desplazamiento tanto a derecha como a izquierda, teniendo en cuenta el tipo (aritmético o lógico).
- **Ejercicio 12 -** Dar las expresiones aritméticas de la representación en punto flotante de tamaño de significando N_F y exponente N_e .
- **Ejercicio 13 -** De acuerdo a la norma IEEE-754, indicar qué número de precisión simple representa la siguiente palabra de 32 bits:

1	10000011	110000000000000000000000

Ejercicio 14 - Aplicar los cuatro modos de redondeo a los siguientes valores (aritmética decimal con redondeo a 3 cifras):

Valor	+8	-8	0	Nearest Even
2,452				
2,455				
2,465				
-2,452				

Ejercicio 15 - Calcular en binario (4 bits) el producto entre $-1.011_2 \times 2^2$ y $1.011_2 \times 2^3$. Aplicar al resultado los cuatro métodos de redondeo.

Ejercicio 15 - . Calcular en binario (5 bits) el producto entre $1.1001_2 \times 2^5$ y $1.0010_2 \times 2^2$. Aplicar al resultado los cuatro métodos de redondeo.

Ejercicio 1

Ejercicio 1 - Dar las expresiones aritméticas de los siguientes formatos numéricos:

• Sin signo (unsigned, US)

Sea $x \in \mathbb{N}_0$, $x_i \in \{0, 1\}$

$$x = \sum_{i=0}^{N-1} x_i 2^i \tag{1}$$

• Signo y magnitud (SM)

Sea $x \in \mathbb{Z}$, $x_i \in \{0, 1\}$

$$x = -1^{x_{N-1}} \cdot \left(\sum_{i=0}^{N-2} x_i 2^i\right) \tag{2}$$

• Complemento a dos (two's complement 2C)

Sea $x \in \mathbb{Z}$, $x_i \in \{0, 1\}$

$$x = -x_{N-1}2^{N-1} + \sum_{i=0}^{N-2} x_i 2^i$$
 (3)

• Dígito Signado (SD)

Sea $x \in \mathbb{Z}$, $x_i \in \{-1, 0, 1\}$

$$x = \sum_{i=0}^{N-1} x_i 2^i \tag{4}$$

Ejercicio 4

Teorema de extensión de signo para 2C:

Sea $x \in \mathbb{Z}$ tal que tiene un representación 2C de N bits dada por

$$x = -x_{N-1}2^{N-1} + \sum_{i=0}^{N-2} x_i 2^i$$
 (5)

Entonces la representación 2C de M>N bits estará dada por

$$x = -x_{N-1}2^{M-1} + \sum_{i=N-1}^{M-2} x_{N-1}2^i + \sum_{i=0}^{N-2} x_i 2^i$$
 (6)

Es decir, que la nueva representación en M>N bits se obtiene repitiendo el MSB de x por M-N veces.

Ejemplo:

$$x = -10_D$$
, $N = 5$, $M = 7$

Entonces

$$x = -10_D = 10110_{2C-N} = 1110110_{2C-M}$$

Demostración:

Basta con ver que si $x_{N-1} \neq 0$ entonces

$$-x_{N-1}2^{M-1} + \sum_{i=N-1}^{M-2} x_{N-1}2^{i} = -2^{M-1} + \left(2^{N-1} + 2^{N} + \dots + 2^{M-3} + 2^{M-2}\right)$$

$$= -2^{N-1}2^{M-N} + 2^{N-1} \left(1 + 2 + \dots + 2^{M-N-1}\right)$$

$$= -2^{N-1}2^{M-N} + 2^{N-1} \left(2^{M-N} - 1\right)$$

$$= 2^{N-1} \left(-2^{M-N} + 2^{M-N} - 1\right)$$

$$= -2^{N-1}$$
(7)

Por el contrario, si $x_{N-1} = 0$ entonces

$$-x_{N-1}2^{M-1} + \sum_{i=N}^{M-2} x_{N-1}2^i = 0$$
 (8)

Luego,

$$x = -x_{N-1}2^{M-1} + \sum_{i=N-1}^{M-2} x_{N-1}2^i + \sum_{i=0}^{N-2} x_i2^i = -2^{N-1} + \sum_{i=0}^{N-2} x_i2^i$$
 (9)

Ejercicio 5

Dar las expresiones aritméticas de las siguientes representaciones en punto fijo:

• Sin signo, uI.F, donde $I,F\in\mathbb{Z}$, N=I+F es la cantidad de bits de representación.

$$x = \left(\sum_{i=0}^{N-1} x_i 2^i\right) 2^{-F}
 x = \sum_{i=0}^{N-1} x_i 2^{i-F}$$
(10)

• Con signo, sI.F, donde $I,F\in\mathbb{Z}$, N=I+F es la cantidad de bits de representación.

$$x = \left(-x_{N-1}2^{N-1} + \sum_{i=0}^{N-2} x_i 2^i\right) 2^{-F}$$

= $-x_{N-1}2^{I-1} + \sum_{i=0}^{N-2} x_i 2^{i-F}$ (11)