Autômatos com Pilha

Douglas O. Cardoso douglas.cardoso@cefet-rj.br docardoso.github.io

- 1 Introdução
- 2 Autômatos com Pilha Determinísticos (APDs)
- 3 Autômato com Pilha Não-Determinístico (APN)

Introdução

1 Introdução

- 2 Autômatos com Pilha Determinísticos (APDs)
- 3 Autômato com Pilha Não-Determinístico (APN)

Motivação: expressões aritméticas

- lacksquare Seja L a linguagem de todas as expressões aritméticas sem parênteses.
 - 123, 1+2, 2*3/5, etc.
- Determine o AF A, ER E e GR G t.q. L(A) = L(E) = L(G) = L.
- lacktriangle Seja L' a linguagem de todas as expressões aritméticas.
- lacktriangle Mostre usando o Lema do Bombeamento que L' não é regular.

Como reconhecer expressões aritméticas?

É necessário lembrar, i.e. contar, quantos parênteses foram abertos.

Num AF, a memória são os estados, finitos e assim insuficientes.

Ideia: utilizar uma pilha infinita como memória auxiliar do AF.

1 Introdução

- 2 Autômatos com Pilha Determinísticos (APDs)
- 3 Autômato com Pilha Não-Determinístico (APN)

Descrição informal

 $b \in \Gamma \cup \{\lambda\}$ é tirado do topo da pilha

 $z \in \Gamma^*$ é colocado no topo da pilha

$$\delta(e, a, b) = (e', z)$$

Exemplo: reconhecedor de expressões aritméticas

Exemplo de processamento:

Definição formal

- Um APD $(E, \Sigma, \Gamma, \delta, i, F)$ é definido em parte como um AFD:
 - Alfabeto de entrada, Σ ;
 - Conjuntos de estados, *E*;
 - Estado inicial, $i \in E$;
 - Conjunto de estados finais, $F \subset E$.
- As diferenças entre ambos são duas:
 - lacksquare Um APD também possui um alfabeto da pilha, Γ , definido livremente;
 - A função (parcial) de transição de um APD é $\delta: E \times (\Sigma \cup \{\lambda\}) \times (\Gamma \cup \{\lambda\}) \to E \times \Gamma^*$.

Configuração instantânea e linguagem aceita

- \blacksquare A configuração instantânea de um AF é o par $[e,w]:e\in E,w\in \Sigma^*.$
- No caso de um AP, temos o trio $[e, w, p] : p \in \Gamma^*$.
- Uma computação $[e,ay,bz] \vdash [e',y,xz]$ é válida sss $\delta(e,a,b) = (e',x)$.
- $\qquad [e,x,y] \vdash^* [e',y,xz] \text{ \'e v\'alida sss } [e,ay,bz] \vdash \cdots \vdash [e',w,z]$
- A linguagem aceita por um APD $(E, \Sigma, \Gamma, \delta, i, F)$ é

$$\{w \in \Sigma^* : [i, w, \lambda] \vdash^* [e, \lambda, \lambda], e \in F\}$$

.

Exercícios

- Determine os APDs que aceitem as linguagens:
 - $\{0^n 1^n : n \ge 0\};$
 - $\{w \in \{0,1\}^* : \text{o número de 0s e 1s em } w \text{ \'e igual}\}.$
- Qual a linguagem aceita pelo APD a seguir?

1 Introdução

- 2 Autômatos com Pilha Determinísticos (APDs)
- 3 Autômato com Pilha Não-Determinístico (APN)

Motivação

■ Como é o APD que aceita a linguagem $\{0^m1^n : m < n\}$?

- E como é o APD que aceita a linguagem $\{w0w^R : w \in \{1,2\}^*\}$?
- E para as linguagem $\{0^m1^n: m>n\}$ e $\{ww^R: w\in\{1,2\}^*\}$, existem APDs correspondentes?

A importância do não-determinismo para APs

- Diferente do caso de AFs, um APN tem mais poder de reconhecimento que um APD.
- Logo, não é possível converter um APN em um APD correspondente.
- Considerando também que APNs tem um conjunto de estados iniciais, a linguagem aceita por um APN $(E, \Sigma, \Gamma, \delta, I, F)$ é:

$$\{w \in \Sigma^* : [i, w, \lambda] \vdash^* [e, \lambda, \lambda], i \in I, e \in F\}.$$

Compatibilidade de transições

- Considere um AP qualquer.
- lacksquare Duas das sua transições $\delta(e,a,b)$ e $\delta(e,a',b')$ são ditas compatíveis se

$$(a = a' \lor a = \lambda \lor a' = \lambda) \land (b = b' \lor b = \lambda \lor b' = \lambda)$$

■ A principal diferença entre APDs e APNs é que os últimos permitem transições compatíveis, e os primeiros não.

Exercícios

- Determine os APNs que aceitem as linguagens:
 - $\blacksquare \ \{w \in \{0,1\}^* : \text{o número de 0s e 1s em } w \text{ \'e igual} \}$ (menor que o APD!);

 - $\quad \blacksquare \ \{0^m1^n: m \geq n\}.$