第9章 人机交互接口

- 人机交互接口就是用户与计算机进行交流的接口,即用户如何将信息输入计算机,计算机如何将处理后的信息告诉用户。
- 使用人机交互接口的设备主要有键盘、鼠标、扫描仪等常见的输入设备, CRT 显示器、液晶显示器、LED 七段显示器、打印机、绘图机等常见的输出设备。

9.1 键盘接口

- 按编码提供方式,常用的键盘有两种基本类型:编码键盘、非编码键盘。
- 编码键盘: 能够由硬件逻辑自动提供与被按键对应的ASCII码或其它编码。 编码键盘中的某一键按下后,能够提供与该键相对应的编码信息。
- 非编码键盘: 仅仅简单地提供被按键行和列的矩阵,其它工作都靠程序 实现,这样,非编码键盘就为系统软件在定义键盘的某些操作上提供了更大 的灵活性。
- 在非编码键盘中,为了检测哪个键被按下,必须解决如下问题:
 - (1) 清除键接触时产生的抖动干扰。
 - (2) 防止键盘操作的重键错误。
 - (3) 键盘的结构及被按键的识别。
 - (4) 产生被按键相应的编码。

9.1.1 消除抖动及重键处理

- 键盘的按键有机械式、电容式、薄膜式等多种,但就它们的作用而言,都是一个使电路"通"或"断"的开关。
- 抖动: 抖动的产生是当机械开关的触点闭合时,在达到稳定之前需要短暂抖动或弹跳几下,即反复闭合、断开几次之后,才能达到可靠地闭合在一起。抖动也存在于开关断开时,其情形与开关闭合时相同。
- 根据所用键的不同质量,键的抖动时间可为10~20ms。键的抖动会引起一次按键被读入多次。
- 解决键的抖动:硬件滤波方法、软件延迟方法。
- 硬件滤波:对每一个键加上R-C滤波电路,或加上RS去抖电路。
- 软件去抖动技术:采用20ms左右延迟子程序, 等待键的输出达到完全稳定后才去读取代码。

重键

- 重键:指两个或两个以上的键同时按下,或者一个键按下后还未弹开, 另一个键又按下的情况。
- 解决方法3种:
- (1) 不理会所有被按下的键,直至只剩下一个键按下时为止。
- (2)将所有按键的信息存入内部键盘输入缓冲器,逐个处理。这种方法 成本较高,在较便宜的系统中很少采用。
- (3) n键连锁技术: 当一键被按下时,在此键未完全释放之前,其它的键虽然可被按下或松开,但并不产生任何代码。

9.1.2 线性键盘

- 从按键连接方式,键盘分为:线性键盘、矩阵键盘。
- 线性键盘:采用独立式按键,直接用I/O口线构成单个按键电路。
- 假设8255A的A口、B口、C口、控制口的端口地址分别是60H、61H、62H、63H,采用软件消抖技术(只考虑前沿消抖),编程实现对按键K3~K0的识别,假设按键K3~K0的对应编码为3~0,识别按键后,将对应的编码存到AH寄存器中。有D20ms延时子程序可以调用。

图 9.1.2 线性键盘的按键电路

5

程序设计

CODE	SEGME	NT				
	ASSUMI	E CS:COD	E			
KEY	PROC	FAR				
START:	PUSH	DS				
	MOV	AX , 0			标准程序段前	
	PUSH	AX				
	MOV	AL, 90H			00 = = } 11 4/\ / /	
	OUT	63H, AL	;	设置8255的A口为方式0,输入	8255初始4	۷
A1:	IN	AL, 60H	;	输入A口键盘状态		
	AND	AL, 0FH	;	析取K3~K0信号线	判断是否有领	建按下
	CMP	AL, 0FH				
	JZ	A1	;	没有键按下,继续查询		
	CALL	D20ms	;	有键按下,延时消抖	软件消抖	
	IN	AL, 60H	;	输入A口键盘状态		
	AND	AL, 0FH	;	析取K3~K0信号线	确认是否有领	排按下
	CMP	AL, 0FH				
	JZ	A1	;	此时,说明延时消抖前的按键判断	是源于干扰,	
			;	或者,延时消抖时间不足,重新查	询	

	CMP	AL, 0000 <mark>111</mark> 0B		
	JNZ	A2	;不是单键K0按下,转	若单键K0按下,
	MOV	AH, 0	;设置K0的编码	则设置K0编码
	JMP	A6		
A2:	CMP	AL, 00001101B		
	JNZ	A3	;不是单键K1按下,转	
	MOV	AH, 1	, ,, , , , , , , , , , , , , , , , , , ,	若单键K1按下,
		AII, 1		则设置K1编码
	JMP	A6		
A3:	CMP	AL, 00001011B		
	JNZ	A4	;不是单键K2按下,转	若单键K2按下,
	MOV	AH, 2		则设置K2编码
	JMP	A6		
A4:	CMP	AL, 00000111B		
	JNZ	A5	;不是单键K3按下,转	若单键K3按下,
	MOV	АН, 3		则设置K3编码
		•		
	JMP	A6		

MOV AH, 0FFH **A5:**

; 此时说明有多个按键同时按下,

; 在此处可加入其他需要处理的程序

设置缺省状态

;用0FFH表示这种状态

A6: NOP

RET

KEY ENDP

CODE ENDS

> **END START**

9.1.3 矩阵键盘

- 矩阵式键盘:又叫行列式键盘,用I/O口线组成行、列结构。按键设置在 行列的交点上。
- 键盘扫描方式,两种:行扫描法,线反转法。

行扫描法: 是步进扫描方式,每次向键盘的某一行发出扫描信号,同时通过检查列线的输出来确定闭合键的位置。

例:用行扫描法识别键盘按键

• 假设行输出端口1的地址为200H,列输入端口2的地址为201H,采用软件消抖技术(只考虑前沿消抖),编程实现对0键~F键的识别,识别按键后,将按键的键号(即0~F)存到AH寄存器中,若为重键,则将0FFH存到AH寄存器中。有D20ms延时子程序可以调用。

键的位置码组成: 一个字节

4位行号 4位列号

例如: B键的行号为1011,列号为0111,则B键的位置码为10110111。

程序设计

键值表

DATA	SEGME	NT			
TABLE	DB	<u>11101110</u> B	;	第0行第0列,	0键的位置码
	DB	11101101B	;	第0行第1列,	1键的位置码
	DB	11101011B	;	第0行第2列,	2键的位置码
	DB	11100111B	;	第0行第3列,	3键的位置码
	DB	11011110B	;	第1行第0列,	4键的位置码
	DB	11011101B	;	第1行第1列,	5键的位置码
	DB	11011011B	;	第1行第2列,	6键的位置码
	DB	11010111B	;	第1行第3列,	7键的位置码
	DB	10111110B	;	第2行第0列,	8键的位置码
	DB	10111101B	;	第2行第1列,	9键的位置码
	DB	10111011B	;	第2行第2列,	A键的位置码
	DB	10110111B	;	第2行第3列,	B键的位置码
	DB	01111110B	;	第3行第0列,	C键的位置码
	DB	01111101B	;	第3行第1列,	D键的位置码
	DB	01111011B	;	第3行第2列,	E键的位置码
	DB	01110111B	;	第3行第3列,	F键的位置码
DATA	ENDS				

CODE SEGMENT ASSUME CS:CODE, DS:DATA **KEY PROC FAR START: PUSH** DS MOV AX, 0标准程序段前缀 **PUSH** \mathbf{AX} **MOV** AX, DATA **MOV** DS, AX ; 设置行输出端口地址 **A1: MOV** DX, 200H **MOV AL, 00H** ; 行输出0000, 准备检查是否有任何键按下 **OUT** DX, AL ;设置列输入端口地址201H INC $\mathbf{D}\mathbf{X}$;输入列线状态 判断是否有键按下 IN AL, DX : 析取D3~D0列信号线 **AND** AL, 0FH **CMP** AL, 0FH : 没有任何键按下,继续查询 JZ **A1** ; 有键按下, 延时消抖 **D20ms** CALL 软件消抖

确认是否有键按下

DX, 200H; 设置行输出端口地址 MOV

MOV **AL, 00H**

DX, AL ; 行输出0000, 消抖后确定是否有任何键按下 OUT

;设置列输入端口地址201H **INC** DX

AL, DX ;输入列线状态 IN

AL, 0FH ; 析取D3~D0列信号线 **AND**

CMP AL, 0FH

;此时,说明延时消抖前的按键判断是源于干扰, JZ **A1**

; 或者,延时消抖时间不足,重新查询

	MOV	AH, 11111110B	;设置行扫描初值,首先扫描第0行 扫描初值
	MOV	CX, 4	;设置扫描行数计数值,共4行
A2:	MOV	DX, 200H	; 设置行输出端口地址
	MOV	AL, AH	; 传递行扫描值 行输出
	OUT	DX, AL	; 行扫描值输出,准备检查键按在哪一列
	INC	DX	;设置列输入端口地址201H
	IN	AL, DX	; 输入列线状态 列输入
	AND	AL, 0FH	;析取D3~D0列信号线
	CMP	AL, 0FH	确定按键所在列
	JNZ	A3	; 找到按键所在列号,转,列号保存在AL中
	ROL	AH, 1	; AH循环左移一位,准备扫描下一行
	LOOP	A2	;4行未全部扫描完,转 扫描下一行
	MOV	АН, 80Н	;4行全部扫描完,却未发现有键按下(可能出现
			;了干扰),以80H作为这种情况的标志。
			;该指令的设置,主要考虑到程序的完备性,
			,即可以使程序在任何情况下都能正确执行。

A3:	MOV	CI 1		
AJ:		CL, 4	A TY WELL TO A RE NO ME A RESIDE A RE	T/ A /A E 777
	SHL	AH, EL	;AH逻辑左移4位,将低4位的行号移到高4位	形成位置码
	OR	AL, AH	;行号与列号相"或",形成键的位置码	
	LEA	BX, TAB	LE;设置TABLE位置码表的指针	
	MOV	CL, 0	;设置键号初值为0	
A4:	CMP	AL, [BX]	;在TABLE表中查找本次形成的键位置码	
	JZ	A5	;找到,转,对应的键号就在CL中 <u>*</u>	E 表,计算键号,
	INC	\mathbf{CL}		方法不同则键号
	INC	$\mathbf{B}\mathbf{X}$; 指向下一个存储单元保存的键位置码 不	「同
	CMP	CL, 10H	;键号等于10H吗?	
	JNZ	A4	;不等,继续查找	
	MOV	AH, 0FFF	H; CL等于10H,说明在TABLE表中没有找到	
			; 对应的键位置码,其原因可能是出现了重键	LL NA LL TH
			;的情况,以0FFH作为这种情况的标志。	缺省处理
	JMP	A6		
A5:	MOV	AH, CL	,将CL中保存的键号传到AH中	
A6:	NOP		; 在此处可加入其他需要处理的程序	
	RET			
KEY	ENDP			
CODE	ENDS			
	END	START		
ti I in i	limitareini f	MARCONICO	THE P. SCHENICE AND TECHNOLOGY Zhaohw@ilu.	edu cn 15

线反转法

(a) 第一步: 行输出

(b) 第二步: 线反转

9.1.4 键盘工作方式

- 键盘3种工作方式:程序控制扫描方式,定时扫描方式,中断扫描方式。
- (1)程序控制扫描方式:这种方式是利用CPU工作的空余时间,调用键盘扫描子程序,响应键盘的输入请求。
- (2) 定时扫描方式:这种方式是利用定时器产生定时中断,CPU响应中断后对键盘进行扫描,并在有键按下时转入键功能处理程序。定时扫描方式在本质上是中断方式,但不是实时响应,而是定时响应。
- (3)中断扫描方式: 当应用系统工作时,并不经常需要键的输入,因此,无论键盘是工作于程控方式还是定时方式,CPU都经常处于空扫描状态。为了进一步提高CPU效率,可以采用中断扫描方式,当键盘上有键闭合时便产生中断请求,CPU响应中断,执行中断服务程序,对闭合键进行识别,并作相应的处理。

9.1.5 PC机键盘与接口

- PC系列机都采用非编码键盘,其按键排列为矩阵式。不同时期的PC系列机配有物理上各不相同的键盘。
- 主要的键盘类型:
 - 1) 83键PC/XT键盘(已淘汰)(一般称作标准键盘)
 - 2) 84键PC/AT键盘(已淘汰)
 - 3) 101键键盘(386、486机型)
 - 4) 104键Windows键盘(Pentium机型)
- 5) 108键Windows键盘:在104键盘的基础上又增加了Windows 98功能键Power(关机)、Sleep(休眠)、WakeUp(唤醒)和Fn组合键。
- 早期的PC机、PC/XT机和一些增强型扩展键盘使用的是5针电缆插,后来使用6针微型电缆插头,现在键盘多数使用USB接口。

PC机104键盘布局与位置关系

打字区 61

编辑键区10

数字键区17

PC键盘扫描码与按键的对应关系-标准83键

扫描码: 键盘输 出的数据信号

扫描码是指后面的字节,前 面是对应的ASCII码

ASCII码

扫描码反映键的位置和键 的接通或断开状态。1个键 的接通与断开分别输出接 通扫描码和断开扫描码

标准键盘的扫描码用1个字 节表示。接通扫描码是键 号的二进制数,断开扫描 码由接通扫描码的最高位 置1形成。如f键的接通扫 描码为21H,而断开扫描 码为21H+80H=A1H。

∃描码: 键盘输	系统键盘缓冲	忡区中,	ASCII	码存放在	生低字节	力扫描	码存放在	高字节
出的数据信号	按键	扫描码	按键	扫描码	按键	扫描码	按键	扫描码
1H1387/H H J	Esc	1B01	u	7516	١ /	7C2B	F6	0040
3描码是指后面的字节,前	1	3102) i	6917	z /	7A2 C	F 7	0041
T是对应的ASCII码	2	3203	0	6F18	*	782D	F8	0042
TENT MENTAL THE	3	3304	p	7019	/c	632E	F9	0043
	4	3405	[5D1A	/ v	762F	F10	0044
ASCII码 系统扫描码	5	3506]	5B1B	/ b	6230	NumLock	0045
Althorn Call John D. N. 1999 Acade	6	3607	Enter	0D1C	n	6E31	ScrollLock	0046
日描码反映键的位置和键	7	3708	Ctrl	1D /	m	6D32	7/Home	3747
的接通或断开状态。1个键	8	3809	a	611E	,	2C33	8/↑	3848
的接通与断开分别输出接	9	390A	S	731F		2E34	9/PgUp	3949
通扫描码和断开扫描码	0	300B	d	6420	1	2F35	小键盘-	2D4A
		2D0C	f	6621	Shift(R)	36	4/←	344B
派准键盘的扫描码用1个字	=	3D0D	g	6722	小键盘*	2A37	小键盘5	354C
表示。接通扫描码是键	Backspace	080E	h	6823	Alt(L)	38	6/→	364D
号的二进制数,断开扫描 3. 数 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	Tab	090F	j	6A24	Space	2039	小键盘+	2B4E
	q	7110	k	6B25	CapsLoc	3A	1/End	314F
日由接通扫描码的最高位			_	6006	k	0027		22.50
引形成。如f键的接通扫	W	7711	1	6C26	F1	003B	2/↓	3250
描码为21H,而断开扫描	e	6512	;	3B27	F2	003C	3/PgDn	3351
马为21H+80H=A1H。	r	7213	•	2728	F3	003D	0/Ins	3052
	t	7414	•	6029	F4	003E	Del	2E53
Ji Lin University China COMPU	UT <u>er Scie</u>	7915	Shift(L)	$INO^{2A}_{-}OG$	y F5zha	oh 003Fjlu	.edu.cn	20

增强型扩展键盘接口逻辑示意图

数据格式变换: 键盘扫描码→系统扫描码→键盘缓冲区格式

9.1.6 BIOS键盘中断及DOS键盘功能调用

- BIOS键盘中断及DOS键盘功能调用有三种方式:
- 中断类型码09H
- 中断类型码16H
- 中断类型码21H

1. 中断09H的处理过程

- (1) 从键盘接口的输出缓冲寄存器(60H)读取系统扫描码。
- (2) 判断该键的分类,并处理:
 - 1) ASCII码0~127 的处理方法:
 - 2) ASCII码128~255的处理方法:
 - 3) 组合键和功能键的处理方法:

命令键、组合功能键等的编码,称为扩展码,如SHIFT+a。

5) 对特殊键的处理方法: 设置"键盘状态字节"的状态。

高位字节低位字节系统扫描码ASCII码0ASCII码扩展码0

键盘缓冲区

INT 9H:

向键盘缓冲区写入数据

键盘缓冲区

- 键盘缓冲区:建立在系统主存的BIOS数据区中。
- 占用32个字节,可存放16次击键产生的ASCII码和扫描码。
- 以先进先出的方式工作,输入的键盘代码在其中形成循环队列。
- 中断09H输入的地址指针总指向队尾,从那里写入数据。

2. 中断16H的功能

- INT 16H: 读取键盘缓冲区的数据。
- 以先进先出的方式工作, INT 16H的输出指针总指向队首。
- INT 16H有3种子功能,由AH=(0、1、2)识别。
- (1) AH=0
- 功能: 从键盘读入字符送AL寄存器, 当无键按下时, 处于等待状态。
- 入口参数: AH=0
- 出口参数: AL中为键盘输入的字符的ASCII码值, AH中为扫描码。
- (2) AH=1
- 功能: 从键盘缓冲器中读入字符送给AL,并设置ZF标志,若按过任一键 (即键盘缓冲区不空),置ZF=0,否则ZF=1。
- 入口参数: AH=1
- · 出口参数: 若ZF=0,则AL中为输入的字符的ASCII码。
- 由于该功能是从键盘缓冲区读数,当无键按下时,不等待,常通过检测 ZF标志来控制某一程序的执行。
- (3) AH=2
- 功能:读取特殊功能键的状态。
- 入口参数: AH=2
- 出口参数: AL为各特殊功能键的状态。

中断21H的功能

- 在DOS功能调用中,也有多个功能调用号用于获得所需要的键盘信息。 常用的键盘操作功能如下:
- (1) AH=1
- 功能: 从键盘输入一个字符并回显在屏幕上。
- 入口参数: AH=1
- 出口参数: AL=字符
- (2) AH=6
- 功能:读键盘字符(直接控制台I/O)。
- 入口参数: AH=6, DL=0FFH(表示输入)
- 出口参数:若有字符可取,AL=字符,ZF=0。若无字符可取,AL=0, **ZF=1**
- (3) AH=7
- 功能: 从键盘输入一个字符,不回显。
- 入口参数: AH=7
- 出口参数: AL=字符

中断21H的键盘功能

- (4) AH=8
- 功能: 从键盘输入一个字符,不回显。检测Ctrl Break。
- 入口参数: AH=8
- 出口参数: AL=字符
- (5) AH=0AH
- 功能:输入字符到缓冲区。
- 入口参数: AH=0AH, DS:DX=缓冲区首址
- 出口参数: 无
- (6) AH=0BH
- 功能: 读键盘状态。
- 入口参数: AH=0BH
- 出口参数: AL=0FFH,有键输入。AL=0,无键输入
- (7) AH=0CH
- 功能:清除键盘缓冲区,并调用一种键盘功能。
- 入口参数: AH=0CH, AL=键盘功能号(1、6、7、8、A)
- 出口参数:与调用的功能有关

9.2 发光二极管显示器接口

9.2.2 发光二极管显示器组成与显示方式

- LED显示器显示方式:静态显示、动态显示。
- 静态显示: 当显示器显示某一个字符时,相应的发光二极管恒定地导通或截止。
- 静态显示方式电路每一显示位可独立显示,在同一时刻不同的显示位可以显示不同的字符。

动态显示

• 动态显示: 一位一位地轮流点亮各位显示器(扫描)。对于某一位显示器来说,每隔一段时间点亮一次。

图 9.2.3 通过 8255A 控制的三位动态发光二极管显示器接口原理

9.2.3 发光二极管显示器接口及应用举例

- 发光二极管七段显示器段码转换方法: 硬件译码, 软件译码。
- 例 9.2.1 软件译码静态显示接口。

程序设计

START:	MOV	AL, 90H ; 🕏	及置方式控制字,	<u> </u>	段码表	
		·	JA输入,口B输出	LEDTAB DB	3FH	; 0的段码
		·		DB	06H	;1的段码
	OUT	0C7H, AL		DB	5BH	; 2的段码
A1:	IN	AL, 0C4H; 第	俞入按键状态	DB	4FH	;3的段码
	AND	AL, 0FH ; 原	屏蔽掉不用的高4位	DB	66H	;4的段码
	MOV	BX, OFFSET	LEDTAR	DB	6DH	;5的段码
	1110 1	,		DB	7DH	;6的段码
		; 7	及置段码表指针	DB	07H	;7的段码
	XLAT	; ।	卖取段码	DB	7FH	;8的段码
	OUT	0C5H, AL; 箱	俞出段码到端口B	DB	6FH	;9的段码
	MOV	AX, 200H; 3		DB	77 H	;A的段码
			— ⊬1	DB	7CH	;B的段码
A2:	DEC	AX		DB	39H	; C的段码
	JNZ	A2		DB	5EH	; D的段码
	JMP	A1		DB	79H	;E的段码
	RET			DB	71H	;F的段码
	_ 					

例 9.2.2 软件译码动态显示接口

- 动态显示程序设计中显示程序的要点:
- (1)解决显示译码问题,因为要显示的数字与其对应的段选码并没有有机的联系和转换规律,所以要用查表的方法完成这种译码功能。
- (2) 在进入显示程序之前,为保持显示的数据,专门开辟几个单元作为显示缓冲区,用以存放要显示的数字(十六进制数)。
- 采用软件译码方法一般有两种表格设置方案:
- (1)顺序表格排列法,即按一定的顺序排列显示段码。通常显示的字形数据就是该段码在段码表中相对表头的偏移量。
- (2) 数据结构法,即按字形和段码的关系,自行设计一组数据结构。该方法设计灵活,但程序运行速度较慢。

图 9.2.5 8 位七段发光二极管显示器接口电路

设定8255A端口A、端口B、端口C、控制端口的地址分别为60H、61H、62H和63H。

程序设计

· 8个显示器重复显示(50次)8位十六进制数13579BDF的源程序:

0 1 2		<u> </u>	(50		L / \	T1413X1001		DI HIW
DATA	SEGMEN	IT						
TABLE	DB	0C0H	; 0	的段码,	开始设置	置段码表	,	段码表
	DB	0F9H	; 1	的段码				
	DB	0A4H	; 2	的段码				
	DB	0B0H	; 3	的段码				
	DB	99H	; 4	的段码				
	DB	92H	; 5	的段码				
	DB	82H	; 6	的段码				
	DB	0F8H	; 7	的段码				
	DB	80H	; 8	的段码				
	DB	98H	; 9	的段码				
	DB	88H	; A	的段码				
	DB	83H	; B	的段码				
	DB	0C6H	; (的段码				
	DB	0A1H	; D	的段码				
	DB	86H	; E	的段码				
	DB	8EH	; F	的段码				

DATA

ENDS

CODE SEGMENT

ASSUME CS:CODE,DS:DATA

START: MOV AX, DATA

MOV DS, AX

MOV AL, 80H

MOV 63H, AL ; 送各数据端口方式0的输出控制字

MOV DL, 50 ; 设置重复次数,显示50次

LEA SI, TABLE ; 取段码表首址

MOV BX,1 ; 欲显示的字形设置为数字 "1", 是最左位显示的数

MOV AH, 7FH ; 显示位7的位选码, 指向最左位(第7显示位)

8255初始化

循环参数设置

A1:	MOV	AL, [BX+SI]	;取数的段码,首次取1 取段码,并送段码
	OUT	61H, AL	; 送段选码,B端口
	MOV	AL, AH	场 公
	OUT	60H, AL	;送位选码,A端口 取位码,并送位码
	ROR	AH, 1	; 形成下一个位选码
	ADD	BX, 2	; 形成下一个要显示的数(奇数) 修改循环参数
	AND	BX, 0FH	
	MOV	CX, 30H	; 延迟一定的时间,在实际中应调整该参数
A2:	LOOP	A2	延时
	CMP	AH, 7FH	
	JNZ	A1	;判第7~0显示位是否结束
	DEC	DL	循环结束条件
	JNZ	A1	;判重复显示50次是否结束
_	MOV	AH, 4CH	
	INT	21H	
CODE	ENDS		
	END	START	

结束