SBML Model Report

Model name: "Albeck2008_extrinsic_apoptosis"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following two authors: Lukas Endler¹ and Simon Fourquet² at July first 2009 at 5:12 p. m. and last time modified at February 25th 2015 at 12:42 a. m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	58
events	0	constraints	0
reactions	42	function definitions	0
global parameters	77	unit definitions	0
rules	6	initial assignments	0

Model Notes

This the model used in the article:

Quantitative analysis of pathways controlling extrinsic apoptosis in single cells.

Albeck JG, Burke JM, Aldridge BB, Zhang M, Lauffenburger DA, Sorger PK. Mol Cell. 2008 Apr 11;30(1):11-25. PMID: 18406323, doi: 10.1016/j.molcel.2008.02.012

¹EMBL-EBI, lukas@ebi.ac.uk

²Institut Curie, simon.fourquet@curie.fr

Abstract:

Apoptosis in response to TRAIL or TNF requires the activation of initiatorcaspases, which then activate the effector caspases that dismantlecells and cause death. However, little is known about the dynamicsand regulatory logic linking initiators and effectors. Using a combination of live-cell reporters, flow cytometry, and immunoblotting, we findthat initiator caspases are active during the long and variable delaythat precedes mitochondrial outer membrane permeabilization (MOMP) and effector caspase activation. When combined with a mathematical model of core apoptosis pathways, experimental perturbation of regulatorylinks between initiator and effector caspases reveals that XIAP and proteasome-dependent degradation of effector caspases are important in restraining activity during the pre-MOMP delay. We identify conditions which restraint is impaired, creating a physiologically indeterminatestate of partial cell death with the potential to generate genomic instability. Together, these findings provide a quantitative picture of caspase regulatory networks and their failure modes.

The mitochondrial compartment is just added as a logical partition and its volume is not used in the mathematical formulas, to stick closer to the expressions used in the matlab files distributed with the original publication. There only the rate constants for bimolecular reactions are adapted by division by \underline{v} , the ration of the volumes of the mitochondrial compartment and the total cell. For BCL2 overexpression in figure 5, the initial BCL2 amount was increased by a factor 12 to $2.4*10^{5}$. For siRNA downregulation of XIAP its amount was multiplied by 0.13 to $1.3*10^{4}$.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

			•				
Id	Name	SBO	Spatial	Size	Unit	Constant	Outside
			Dimensions				
cell	cell		3	1	litre	Ø	
${\tt mitochondrion}$	mitochondrion		3	1	litre		cell

3.1 Compartment cell

This is a three dimensional compartment with a constant size of one litre.

Name cell

3.2 Compartment mitochondrion

This is a three dimensional compartment with a constant size of one litre, which is surrounded by cell (cell).

Name mitochondrion

4 Species

This model contains 58 species. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
L	L	cell	$\text{mol} \cdot 1^{-1}$		
R	R	cell	$\operatorname{mol} \cdot 1^{-1}$		\Box
flip	flip	cell	$\text{mol} \cdot 1^{-1}$		\Box
pC8	proC8	cell	$\text{mol} \cdot l^{-1}$		\Box
C8	casp8	cell	$\text{mol} \cdot 1^{-1}$		\Box
C6	casp6	cell	$\text{mol} \cdot l^{-1}$		\Box
BAR	BAR	cell	$\text{mol} \cdot l^{-1}$		\Box
pC3	proC3	cell	$\text{mol} \cdot l^{-1}$		\Box
C3	casp3	cell	$\text{mol} \cdot l^{-1}$		\Box
Bid	Bid	cell	$\text{mol} \cdot 1^{-1}$		\Box
tBid	tBid	cell	$\text{mol} \cdot l^{-1}$		\Box
pC6	proC6	cell	$\text{mol} \cdot 1^{-1}$		\Box
XIAP	XIAP	cell	$\text{mol} \cdot 1^{-1}$		\Box
C3_Ub	Ub C3	cell	$\text{mol} \cdot l^{-1}$		
PARP	PARP	cell	$\text{mol} \cdot l^{-1}$		\Box
CPARP	cPARP	cell	$\text{mol} \cdot 1^{-1}$		
Smac	Smac	cell	$\text{mol} \cdot 1^{-1}$		
Bcl2c	cytosolic Bcl-2	cell	$\text{mol} \cdot 1^{-1}$		\Box
Bax	Bax	cell	$\text{mol} \cdot 1^{-1}$		
Bax_hash	Bax#	cell	$\text{mol} \cdot 1^{-1}$		
Bc12	Bcl-2	mitochondrion	$\text{mol} \cdot l^{-1}$		
L_R	L:R	cell	$\text{mol} \cdot l^{-1}$		\Box

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
R_hash	R#	cell	$\text{mol} \cdot l^{-1}$		
flip_R_hash	flip:R#	cell	$\text{mol} \cdot 1^{-1}$		
R_hash_pC8	R#:pC8	cell	$\text{mol} \cdot l^{-1}$		
C6_pC8	C6:pC8	cell	$\mathrm{mol}\cdot \mathrm{l}^{-1}$		
BAR_C8	BAR:C8	cell	$\mathrm{mol}\cdot \mathrm{l}^{-1}$		
C8_pC3	C8:pC3	cell	$\text{mol} \cdot l^{-1}$		
pC3_Apop	pC3:Apop	cell	$\text{mol} \cdot l^{-1}$		
Арор	Apop	cell	$\text{mol} \cdot l^{-1}$		
C8_Bid	C8:Bid	cell	$\text{mol} \cdot l^{-1}$		
C3_pC6	C3:pC6	cell	$\operatorname{mol} \cdot 1^{-1}$		
XIAP_C3	XIAP:C3	cell	$\operatorname{mol} \cdot 1^{-1}$		
PARP_C3	PARP:C3	cell	$\operatorname{mol} \cdot 1^{-1}$		
Apop_XIAP	Apop:XIAP	cell	$\text{mol} \cdot l^{-1}$		
Smac_XIAP	Smac:XIAP	cell	$\operatorname{mol} \cdot 1^{-1}$		
$Bcl2c_tBid$	Bcl2c:tBid	cell	$\text{mol} \cdot l^{-1}$		\Box
Bax_tBid	Bax:tBid	cell	$\operatorname{mol} \cdot 1^{-1}$		
Baxm_Bc12	Baxm:Bcl2	mitochondrion	$\operatorname{mol} \cdot 1^{-1}$		\Box
Bax4	Bax4	mitochondrion	$\operatorname{mol} \cdot 1^{-1}$		
Bax2_Bc12	Bax2:Bcl2	mitochondrion	$\text{mol} \cdot l^{-1}$		\Box
Bax4_Bc12	Bax4:Bcl2	mitochondrion	$\text{mol} \cdot l^{-1}$		\Box
M	M	mitochondrion	$\text{mol} \cdot l^{-1}$		\Box
$Bax4_M$	Bax4:M	mitochondrion	$\text{mol} \cdot l^{-1}$		\Box
M_hash	M#	mitochondrion	$\operatorname{mol} \cdot 1^{-1}$		
Smacm	Smac_m	mitochondrion	$\operatorname{mol} \cdot 1^{-1}$	\Box	\Box
M_hash_Smacm	M#:Smac_m	mitochondrion	$\operatorname{mol} \cdot 1^{-1}$		
Smacr	Smac released	mitochondrion	$\text{mol} \cdot l^{-1}$		\Box
CytoCm	CytoC_m	mitochondrion	$\text{mol} \cdot l^{-1}$		\Box

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
M_hash_CytoCm	M#:CytoC_m	mitochondrion	$\text{mol} \cdot l^{-1}$		
CytoCr	CytoC released	mitochondrion	$\text{mol} \cdot l^{-1}$	\Box	
CytoC	CytoC	cell	$\text{mol} \cdot l^{-1}$		
Apaf	Apaf	cell	$\text{mol} \cdot l^{-1}$		
${\tt CytoC_Apaf}$	CytoC:Apaf	cell	$\text{mol} \cdot l^{-1}$		
Apaf_hash	Apaf#	cell	$\text{mol} \cdot 1^{-1}$		
pC9	proC9	cell	$\text{mol} \cdot l^{-1}$	\Box	
Baxm	Baxm	mitochondrion	$\text{mol} \cdot l^{-1}$	\Box	
Bax2	Bax2	mitochondrion	$\text{mol} \cdot l^{-1}$		\Box

5 Parameters

This model contains 77 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	$4 \cdot 10^{-7}$	
$k_{-}1$	$k_{-}1$	0.001	
kc1	kc1	10^{-5}	
k2	k2	10^{-6}	
k_2	k_2	0.001	
k3	k3	10^{-6}	
$k_{-}3$	$k_{-}3$	0.001	
kc3	kc3	1.000	$\overline{\mathbf{Z}}$
k4	k4	10^{-6}	$\overline{\mathbf{Z}}$
k_4	k_4	0.001	$\overline{\mathbf{Z}}$
k5	k5	10^{-7}	$\overline{\mathbf{Z}}$
k_5	k_5	0.001	$\overline{\mathbb{Z}}$
kc5	kc5	1.000	$\overline{\mathscr{L}}$
k6	k6	10^{-6}	$\overline{\mathbf{Z}}$
$k_{-}6$	k_6	0.001	$\overline{\mathbf{Z}}$
kc6	kc6	1.000	$\overline{\mathbb{Z}}$
k7	k7	$3 \cdot 10^{-8}$	$\overline{\mathbf{Z}}$
$k_{-}7$	$k_{-}7$	0.001	$\overline{\mathbf{Z}}$
k8	k8	$2 \cdot 10^{-6}$	$\overline{\mathbf{Z}}$
k_8	$k_{-}8$	0.001	$\overline{\mathscr{L}}$
kc8	kc8	0.100	$\overline{\mathbb{Z}}$
k9	k9	10^{-6}	$\overline{\mathbb{Z}}$
k_9	k_9	0.010	$\overline{\mathbf{Z}}$
kc9	kc9	1.000	$\overline{\mathbf{Z}}$
k10	k10	10^{-7}	$\overline{\mathbf{Z}}$
k_10	$k_{-}10$	0.001	$\overline{\mathbf{Z}}$
kc10	kc10	1.000	$\overline{\mathbf{Z}}$
k11	k11	10^{-6}	$\overline{\mathscr{A}}$
k_11	k_11	0.001	$\overline{\mathbb{Z}}$
k12	k12	10^{-7}	$\overline{\mathbb{Z}}$
k_12	$k_{-}12$	0.001	$\overline{\mathbb{Z}}$
kc12	kc12	1.000	$\overline{\mathscr{A}}$
k13	k13	0.010	$\overline{\mathbb{Z}}$
k_13	$k_{-}13$	0.010	$\overline{\mathbf{Z}}$
k14	k14	10^{-6}	$\overline{\mathbf{Z}}$
$k_{-}14$	$k_{-}14$	0.001	\mathbf{Z}
k15	k15	10^{-6}	$\overline{\mathbf{Z}}$

Id	Name	SBO Value Unit	Constant
$k_{-}15$	k_15	0.001	
k16	k16	10^{-6}	<u></u>
$k_{-}16$	$k_{-}16$	0.001	$\overline{\mathbf{Z}}$
k17	k17	10^{-6}	<u></u>
$k_{-}17$	$k_{-}17$	0.001	<u></u>
k18	k18	10^{-6}	<u></u>
k_18	$k_{-}18$	0.001	<u></u>
k19	k19	10^{-6}	$\overline{\mathbf{Z}}$
k_19	k_19	0.001	$\overline{\mathbf{Z}}$
kc19	kc19	1.000	$\overline{\mathbb{Z}}$
k20	k20	$2 \cdot 10^{-6}$	$\overline{\mathbb{Z}}$
k_20	k_20	0.001	$\overline{\mathbb{Z}}$
kc20	kc20	10.000	$\overline{\mathbb{Z}}$
k21	k21	$2 \cdot 10^{-6}$	$\overline{\mathbb{Z}}$
k_21	k_21	0.001	$\overline{\mathbb{Z}}$
kc21	kc21	10.000	$\overline{\mathscr{A}}$
k22	k22	0.010	\mathbf{Z}
k_22	k_22	0.010	$\overline{\mathscr{A}}$
k23	k23	$5 \cdot 10^{-7}$	$\overline{\mathbb{Z}}$
k_23	k_23	0.001	$\overline{\mathbb{Z}}$
kc23	kc23	1.000	$\overline{\mathbb{Z}}$
k24	k24	$5 \cdot 10^{-8}$	$\overline{\mathbb{Z}}$
$k_{-}24$	$k_{-}24$	0.001	$\overline{\mathbb{Z}}$
k25	k25	$5 \cdot 10^{-9}$	$\overline{\mathbb{Z}}$
$k_{-}25$	k_25	0.001	<u></u>
kc25	kc25	1.000	<u></u>
k26	k26	0.010	<u></u>
$k_{-}26$	k_26	0.010	<u></u>
k27	k27	$2 \cdot 10^{-6}$	<u></u>
$k_{-}27$	$k_{-}27$	0.001	$\overline{\mathscr{A}}$
k28	k28	$7 \cdot 10^{-6}$	$\overline{\mathbb{Z}}$
k_28	k_28	0.001	$\overline{\mathbf{Z}}$
kc7	kc7	1.000	$\overline{\mathbf{Z}}$
v	V	0.070	$\overline{\mathbf{Z}}$
pC3_frac	pC3 fraction	0.000	
C3_frac	C3 fraction	0.000	
C3_UB_frac	degraded C3 fraction	0.000	
cPARP_frac	cPARP fraction	0.000	
C3_tot	total Caspase 3	0.000	
fC3_fract	free C3 fraction	0.000	

6 Rules

This is an overview of six rules.

6.1 Rule C3_tot

Rule C3_tot is an assignment rule for parameter C3_tot:

$$C3_tot = [pC3] + [C8_pC3] + [pC3_Apop] + [C3] + [C3_pC6] + [XIAP_C3] + [PARP_C3] + [C3_Ub]$$
(1)

Derived unit $mol \cdot l^{-1}$

6.2 Rule C3_frac

Rule C3_frac is an assignment rule for parameter C3_frac:

$$C3_frac = \frac{[C3] + [C3_pC6] + [XIAP_C3] + [PARP_C3]}{C3_tot}$$
(2)

6.3 Rule C3_UB_frac

Rule C3_UB_frac is an assignment rule for parameter C3_UB_frac:

$$C3_UB_frac = \frac{[C3_Ub]}{C3_tot}$$
 (3)

6.4 Rule pC3_frac

Rule pC3_frac is an assignment rule for parameter pC3_frac:

$$pC3_frac = \frac{[pC3] + [C8_pC3] + [pC3_Apop]}{C3 \text{ tot}}$$
(4)

6.5 Rule fC3_fract

Rule fC3_fract is an assignment rule for parameter fC3_fract:

$$fC3_fract = \frac{[C3]}{C3 \text{ tot}}$$
 (5)

6.6 Rule cPARP_frac

Rule cPARP_frac is an assignment rule for parameter cPARP_frac:

$$cPARP_frac = \frac{[CPARP]}{[CPARP] + [PARP] + [PARP_C3]}$$
(6)

Derived unit dimensionless

7 Reactions

This model contains 42 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N₀	Id	Name	Reaction Equation	SBO	
1	re1		$L+R \rightleftharpoons L_R$		
2	re2		$L_R \longrightarrow R_hash$		
3	re3		$R_hash + flip \Longrightarrow flip_R_hash$		
4	re4		$R_hash + pC8 \rightleftharpoons R_hash_pC8$		
5	re5		$R_hash_pC8 \longrightarrow C8 + R_hash$		
6	re6		$C6 + pC8 \rightleftharpoons C6 - pC8$		
7	re7		$C6-pC8 \longrightarrow C8+C6$		
8	re8		$C8 + BAR \Longrightarrow BAR_C8$		
9	re9		$pC3 + C8 \rightleftharpoons C8_pC3$	$pC3 + C8 \Longrightarrow C8_pC3$	
10	re10		$C8_pC3 \longrightarrow C8 + C3$		
11	re11		$C8 + Bid \rightleftharpoons C8 - Bid$		
12	re12		$C8_Bid \longrightarrow tBid + C8$		
13	re13		$pC3 + Apop \Longrightarrow pC3_Apop$		
14	re14		$pC3_Apop \longrightarrow C3 + Apop$		
15	re15		$C3 + pC6 \rightleftharpoons C3_pC6$		
16	re16		$C3_pC6 \longrightarrow C3 + C6$		
17	re17		$C3 + XIAP \Longrightarrow XIAP_C3$		
18	re18		$XIAP_C3 \longrightarrow C3_Ub + XIAP$		
19	re19		$PARP + C3 \Longrightarrow PARP_C3$		
20	re20		$PARP_C3 \longrightarrow CPARP + C3$		
21	re21		$XIAP + Apop \Longrightarrow Apop_XIAP$		
22	re22		$XIAP + Smac \Longrightarrow Smac_XIAP$		
23	re23		$tBid + Bcl2c \Longrightarrow Bcl2c_tBid$		

No	Id	Name	Reaction Equation	SBO
24	re24		tBid+Bax === Bax_tBid	
25	re25		$Bax_tBid \longrightarrow tBid + Bax_hash$	
26	re26		Bax_hash ← Baxm	
27	re27		$Baxm + Bcl2 \Longrightarrow Baxm_Bcl2$	
28	re29		$Baxm + Baxm \Longrightarrow Bax2$	
29	re30		$Bax2 + Bax2 \Longrightarrow Bax4$	
30	re31		$Bcl2 + Bax2 \Longrightarrow Bax2_Bcl2$	
31	re32		$Bcl2 + Bax4 \Longrightarrow Bax4_Bcl2$	
32	re33		$Bax4 + M \Longrightarrow Bax4 M$	
33	re34		$Bax4_M \longrightarrow M_hash$	
34	re35		$M_hash + Smacm \rightleftharpoons M_hash_Smacm$	
35	re36		$M_hash_Smacm \longrightarrow M_hash + Smacr$	
36	re37		Smacr ← Smac	
37	re38		$M_hash + CytoCm \Longrightarrow M_hash_CytoCm$	
38	re39		$M_hash_CytoCm \longrightarrow CytoCr + M_hash$	
39	re40		CytoCr ← CytoC	
40	re41		$CytoC + Apaf \Longrightarrow CytoC_Apaf$	
41	re42		CytoC_Apaf → CytoC + Apaf_hash	
42	re43		$Apaf_hash + pC9 \Longrightarrow Apop$	

7.1 Reaction re1

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$L + R \rightleftharpoons L_R \tag{7}$$

Reactants

Table 6: Properties of each reactant.

Id	Name	SBO
L	L	
R	R	

Product

Table 7: Properties of each product.

Id	Name	SBO
L_R	L:R	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol}(\text{cell}) \cdot ([L] \cdot [R] \cdot k_1 - [L R] \cdot k_1)$$
(8)

7.2 Reaction re2

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$L_R \longrightarrow R_hash$$
 (9)

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
L_R	L:R	

Product

Table 9: Properties of each product.

Id	Name	SBO
R_hash	R#	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol}(\text{cell}) \cdot [\text{L}_{-}\text{R}] \cdot \text{kc1}$$
 (10)

7.3 Reaction re3

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$R_hash + flip \Longrightarrow flip_R_hash$$
 (11)

Reactants

Table 10: Properties of each reactant.

Id	Name	SBO
R_hash	R#	
flip	flip	

Product

Table 11: Properties of each product.

Id	Name	SBO
flip_R_hash	flip:R#	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}(\text{cell}) \cdot ([\text{R_hash}] \cdot [\text{flip}] \cdot \text{k2} - [\text{flip_R_hash}] \cdot \text{k_2})$$
(12)

7.4 Reaction re4

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$R_hash + pC8 \rightleftharpoons R_hash_pC8$$
 (13)

Reactants

Table 12: Properties of each reactant.

Id	Name	SBO
R_hash	R#	
pC8	proC8	

Product

Table 13: Properties of each product.

Id	Name	SBO
R_hash_pC8	R#:pC8	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = vol\left(cell\right) \cdot \left(\left[R_hash\right] \cdot \left[pC8\right] \cdot k3 - \left[R_hash_pC8\right] \cdot k_3\right) \tag{14}$$

7.5 Reaction re5

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$R_hash_pC8 \longrightarrow C8 + R_hash$$
 (15)

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
R_hash_pC8	R#:pC8	

Products

Table 15: Properties of each product.

Id	Name	SBO
C8	casp8	
R_hash	R#	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{vol}(\text{cell}) \cdot [\text{R_hash_pC8}] \cdot \text{kc3}$$
 (16)

7.6 Reaction re6

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$C6 + pC8 \Longrightarrow C6 - pC8 \tag{17}$$

Reactants

Table 16: Properties of each reactant.

Id	Name	SBO
C6	casp6	
pC8	proC8	

Product

Table 17: Properties of each product.

Id	Name	SBO
C6_pC8	C6:pC8	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol}(\text{cell}) \cdot ([\text{C6}] \cdot [\text{pC8}] \cdot \text{k7} - [\text{C6}_\text{pC8}] \cdot \text{k_7})$$
(18)

7.7 Reaction re7

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$C6_pC8 \longrightarrow C8 + C6 \tag{19}$$

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
C6_pC8	C6:pC8	

Products

Table 19: Properties of each product.

Id	Name	SBO
C8	casp8	
C6	casp6	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{vol}(\text{cell}) \cdot [\text{C6}_{-}\text{pC8}] \cdot \text{kc7}$$
 (20)

7.8 Reaction re8

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$C8 + BAR \Longrightarrow BAR_C8$$
 (21)

Reactants

Table 20: Properties of each reactant.

Id	Name	SBO
C8	casp8	

Id	Name	SBO
BAR	BAR	

Product

Table 21: Properties of each product.

Id	Name	SBO
BAR_C8	BAR:C8	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \text{vol}(\text{cell}) \cdot ([\text{C8}] \cdot [\text{BAR}] \cdot \text{k4} - [\text{BAR}_\text{C8}] \cdot \text{k_4})$$
 (22)

7.9 Reaction re9

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$pC3 + C8 \rightleftharpoons C8_pC3 \tag{23}$$

Reactants

Table 22: Properties of each reactant.

Id	Name	SBO
pC3 C8	proC3 casp8	

Product

Table 23: Properties of each product.

Id	Name	SBO
C8_pC3	C8:pC3	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = \text{vol}(\text{cell}) \cdot ([pC3] \cdot [C8] \cdot k5 - [C8_pC3] \cdot k_5)$$
 (24)

7.10 Reaction re10

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$C8_pC3 \longrightarrow C8 + C3 \tag{25}$$

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
C8_pC3	C8:pC3	

Products

Table 25: Properties of each product.

Id	Name	SBO
C8	casp8	
C3	casp3	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{vol}(\text{cell}) \cdot [\text{C8_pC3}] \cdot \text{kc5}$$
 (26)

7.11 Reaction re11

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$C8 + Bid \Longrightarrow C8_Bid$$
 (27)

Reactants

Table 26: Properties of each reactant.

Id	Name	SBO
C8 Bid	casp8 Bid	

Product

Table 27: Properties of each product.

Id	Name	SBO
C8_Bid	C8:Bid	

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = vol(cell) \cdot ([C8] \cdot [Bid] \cdot k10 - [C8_Bid] \cdot k_10) \tag{28}$$

7.12 Reaction re12

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$C8_Bid \longrightarrow tBid + C8 \tag{29}$$

Reactant

Table 28: Properties of each reactant.

Id	Name	SBO
C8_Bid	C8:Bid	

Products

Table 29: Properties of each product.

Id	Name	SBO
tBid	tBid	
C8	casp8	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{vol}(\text{cell}) \cdot [\text{C8_Bid}] \cdot \text{kc10}$$
(30)

7.13 Reaction re13

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$pC3 + Apop \Longrightarrow pC3_Apop$$
 (31)

Reactants

Table 30: Properties of each reactant.

Id	Name	SBO
рСЗ	proC3	
Apop	Apop	

Product

Table 31: Properties of each product.

Id	Name	SBO
pC3_Apop	pC3:Apop	

Kinetic Law

20

Derived unit contains undeclared units

$$v_{13} = \text{vol}(\text{cell}) \cdot ([\text{pC3}] \cdot [\text{Apop}] \cdot \text{k25} - [\text{pC3_Apop}] \cdot \text{k_25})$$
(32)

7.14 Reaction re14

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$pC3_Apop \longrightarrow C3 + Apop$$
 (33)

Reactant

Table 32: Properties of each reactant.

Id	Name	SBO
pC3_Apop	pC3:Apop	

Products

Table 33: Properties of each product.

Id	Name	SBO
СЗ	casp3	
Apop	Apop	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{vol}(\text{cell}) \cdot [\text{pC3_Apop}] \cdot \text{kc25}$$
 (34)

7.15 Reaction re15

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$C3 + pC6 \Longrightarrow C3 - pC6 \tag{35}$$

Reactants

Table 34: Properties of each reactant.

Id	Name	SBO
C3	casp3	

Id	Name	SBO
pC6	proC6	

Product

Table 35: Properties of each product.

Id	Name	SBO
C3_pC6	C3:pC6	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \text{vol}(\text{cell}) \cdot ([\text{C3}] \cdot [\text{pC6}] \cdot \text{k6} - [\text{C3}_\text{pC6}] \cdot \text{k_6})$$
 (36)

7.16 Reaction re16

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$C3_pC6 \longrightarrow C3 + C6 \tag{37}$$

Reactant

Table 36: Properties of each reactant.

Id	Name	SBO
C3_pC6	C3:pC6	

Products

Table 37: Properties of each product.

Id	Name	SBO
СЗ	casp3	
C6	casp6	

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = \text{vol}(\text{cell}) \cdot [\text{C3_pC6}] \cdot \text{kc6}$$
(38)

7.17 Reaction re17

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$C3 + XIAP \Longrightarrow XIAP_C3 \tag{39}$$

Reactants

Table 38: Properties of each reactant.

Id	Name	SBO
C3 XIAP	casp3 XIAP	

Product

Table 39: Properties of each product.

Id	Name	SBO
XIAP_C3	XIAP:C3	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \text{vol}\left(\text{cell}\right) \cdot \left(\left[\text{C3}\right] \cdot \left[\text{XIAP}\right] \cdot \text{k8} - \left[\text{XIAP_C3}\right] \cdot \text{k_8}\right) \tag{40}$$

7.18 Reaction re18

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$XIAP_C3 \longrightarrow C3_Ub + XIAP$$
 (41)

Reactant

Table 40: Properties of each reactant.

Id	Name	SBO
XIAP_C3	XIAP:C3	

Products

Table 41: Properties of each product.

Id	Name	SBO
C3_Ub	Ub C3	
XIAP	XIAP	

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \text{vol}\left(\text{cell}\right) \cdot [\text{XIAP_C3}] \cdot \text{kc8}$$
 (42)

7.19 Reaction re19

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$PARP + C3 \Longrightarrow PARP_C3 \tag{43}$$

Reactants

Table 42: Properties of each reactant.

Id	Name	SBO
PARP	PARP	
C3	casp3	

Product

Table 43: Properties of each product.

Id	Name	SBO
PARP_C3	PARP:C3	

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = \text{vol}(\text{cell}) \cdot ([\text{PARP}] \cdot [\text{C3}] \cdot \text{k9} - [\text{PARP}_\text{C3}] \cdot \text{k_9})$$
(44)

7.20 Reaction re20

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$PARP_{-}C3 \longrightarrow CPARP + C3 \tag{45}$$

Reactant

Table 44: Properties of each reactant.

Id	Name	SBO
PARP_C3	PARP:C3	

Products

Table 45: Properties of each product.

		1
Id	Name	SBO
CPARP	cPARP	
C3	casp3	

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \text{vol}(\text{cell}) \cdot [\text{PARP_C3}] \cdot \text{kc9}$$
 (46)

7.21 Reaction re21

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$XIAP + Apop \Longrightarrow Apop_XIAP$$
 (47)

Reactants

Table 46: Properties of each reactant.

Id	Name	SBO
XIAP	XIAP	
Apop	Apop	

Product

Table 47: Properties of each product.

Id	Name	SBO
Apop_XIAP	Apop:XIAP	

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{vol}(\text{cell}) \cdot ([\text{XIAP}] \cdot [\text{Apop}] \cdot \text{k27} - [\text{Apop}_\text{XIAP}] \cdot \text{k_27})$$
(48)

7.22 Reaction re22

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$XIAP + Smac \Longrightarrow Smac XIAP$$
 (49)

Reactants

Table 48: Properties of each reactant.

Id	Name	SBO
XIAP	XIAP	
${\tt Smac}$	Smac	

Product

Table 49: Properties of each product.

Id	Name	SBO
Smac_XIAP	Smac:XIAP	

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = \text{vol}(\text{cell}) \cdot ([\text{XIAP}] \cdot [\text{Smac}] \cdot \text{k28} - [\text{Smac}_\text{XIAP}] \cdot \text{k}_28)$$
 (50)

7.23 Reaction re23

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$tBid + Bcl2c \Longrightarrow Bcl2c_tBid$$
 (51)

Reactants

Table 50: Properties of each reactant.

Id	Name	SBO
tBid	tBid	
Bcl2c	cytosolic Bcl-2	

Product

Table 51: Properties of each product.

Id	Name	SBO
Bcl2c_tBid	Bcl2c:tBid	

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = \text{vol}(\text{cell}) \cdot ([\text{tBid}] \cdot [\text{Bcl2c}] \cdot \text{k11} - [\text{Bcl2c}_{\text{-}}\text{tBid}] \cdot \text{k}_{\text{-}}\text{11})$$
(52)

7.24 Reaction re24

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$tBid + Bax \Longrightarrow Bax_tBid$$
 (53)

Reactants

Table 52: Properties of each reactant.

Id	Name	SBO
tBid	tBid	
Bax	Bax	

Product

Table 53: Properties of each product.

Id	Name	SBO
Bax_tBid	Bax:tBid	

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = \text{vol}(\text{cell}) \cdot ([\text{tBid}] \cdot [\text{Bax}] \cdot \text{k12} - [\text{Bax}_{\text{t}}\text{tBid}] \cdot \text{k}_{\text{12}})$$
(54)

7.25 Reaction re25

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Bax_tBid \longrightarrow tBid + Bax_hash$$
 (55)

Reactant

Table 54: Properties of each reactant.

Id	Name	SBO
Bax_tBid	Bax:tBid	

Products

Table 55: Properties of each product.

Id	Name	SBO
tBid	tBid	
Bax_hash	Bax#	

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = \text{vol}(\text{cell}) \cdot [\text{Bax_tBid}] \cdot \text{kc12}$$
 (56)

7.26 Reaction re26

This is a reversible reaction of one reactant forming one product.

Reaction equation

$$Bax_hash \Longrightarrow Baxm \tag{57}$$

Reactant

Table 56: Properties of each reactant.

Id	Name	SBO
Bax_hash	Bax#	

Product

Table 57: Properties of each product.

Id	Name	SBO
Baxm	Baxm	

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = \text{vol}(\text{cell}) \cdot ([\text{Bax_hash}] \cdot \text{k13} - [\text{Baxm}] \cdot \text{k_13})$$
(58)

7.27 Reaction re27

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$Baxm + Bcl2 \Longrightarrow Baxm_Bcl2 \tag{59}$$

Reactants

Table 58: Properties of each reactant.

Id	Name	SBO
	Baxm Bcl-2	
Bc12	Bcl-2	

Product

Table 59: Properties of each product.

Id	Name	SBO
Baxm_Bc12	Baxm:Bcl2	

Kinetic Law

Derived unit contains undeclared units

$$v_{27} = \text{vol}\left(\text{mitochondrion}\right) \cdot \left(\frac{[\text{Baxm}] \cdot [\text{Bcl2}] \cdot \text{k14}}{\text{v}} - [\text{Baxm_Bcl2}] \cdot \text{k_14}\right)$$
 (60)

7.28 Reaction re29

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$Baxm + Baxm \Longrightarrow Bax2 \tag{61}$$

Reactants

Table 60: Properties of each reactant.

Id	Name	SBO
	Baxm Baxm	
Daxiii	Daxiii	

Product

Table 61: Properties of each product.

Id	Name	SBO
Bax2	Bax2	

Kinetic Law

Derived unit contains undeclared units

$$v_{28} = \text{vol}\left(\text{mitochondrion}\right) \cdot \left(\frac{[\text{Baxm}] \cdot [\text{Baxm}] \cdot \text{k15}}{\text{v}} - [\text{Bax2}] \cdot \text{k}_{-}15\right)$$
 (62)

7.29 Reaction re30

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$Bax2 + Bax2 \Longrightarrow Bax4 \tag{63}$$

Reactants

Table 62: Properties of each reactant.

Id	Name	SBO
	Bax2 Bax2	

Product

Table 63: Properties of each product.

Id	Name	SBO
Bax4	Bax4	

Kinetic Law

Derived unit contains undeclared units

$$v_{29} = \text{vol}\left(\text{mitochondrion}\right) \cdot \left(\frac{[\text{Bax2}] \cdot [\text{Bax2}] \cdot \text{k17}}{\text{v}} - [\text{Bax4}] \cdot \text{k}_{-}17\right) \tag{64}$$

7.30 Reaction re31

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$Bcl2 + Bax2 \Longrightarrow Bax2_Bcl2 \tag{65}$$

Reactants

Table 64: Properties of each reactant.

Id	Name	SBO
Bc12	Bcl-2	
Bax2	Bax2	

Product

Table 65: Properties of each product.

Id	Name	SBO
Bax2_Bc12	Bax2:Bcl2	

Kinetic Law

Derived unit contains undeclared units

$$v_{30} = vol\left(mitochondrion\right) \cdot \left(\frac{[Bcl2] \cdot [Bax2] \cdot k16}{v} - [Bax2_Bcl2] \cdot k_16\right) \tag{66}$$

7.31 Reaction re32

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$Bcl2 + Bax4 \Longrightarrow Bax4_Bcl2 \tag{67}$$

Reactants

Table 66: Properties of each reactant.

Id	Name	SBO
Bc12	Bcl-2	
Bax4	Bax4	

Product

Table 67: Properties of each product.

Id	Name	SBO
Bax4_Bc12	Bax4:Bcl2	

Kinetic Law

Derived unit contains undeclared units

$$v_{31} = vol\left(mitochondrion\right) \cdot \left(\frac{[Bcl2] \cdot [Bax4] \cdot k18}{v} - [Bax4_Bcl2] \cdot k_18\right) \tag{68}$$

7.32 Reaction re33

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$Bax4 + M \Longrightarrow Bax4_M \tag{69}$$

Reactants

Table 68: Properties of each reactant.

Id	Name	SBO
Bax4	Bax4	
M	M	

Product

Table 69: Properties of each product.

Id	Name	SBO
Bax4_M	Bax4:M	

Kinetic Law

Derived unit contains undeclared units

$$v_{32} = vol (mitochondrion) \cdot \left(\frac{[Bax4] \cdot [M] \cdot k19}{v} - [Bax4_M] \cdot k_19 \right)$$
 (70)

7.33 Reaction re34

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Bax4_M \longrightarrow M_hash \tag{71}$$

Reactant

Table 70: Properties of each reactant.

Id	Name	SBO
Bax4_M	Bax4:M	

Product

Table 71: Properties of each product.

Id	Name	SBO
M_hash	M#	

Kinetic Law

Derived unit contains undeclared units

$$v_{33} = \text{vol} (\text{mitochondrion}) \cdot [\text{Bax4_M}] \cdot \text{kc19}$$
 (72)

7.34 Reaction re35

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$M_hash + Smacm \Longrightarrow M_hash_Smacm$$
 (73)

Reactants

Table 72: Properties of each reactant.

Id	Name	SBO
M_hash	M#	
Smacm	Smac_m	

Product

Table 73: Properties of each product.

	1	
Id	Name	SBO
M_hash_Smacm	M#:Smac_m	

Kinetic Law

Derived unit contains undeclared units

$$v_{34} = vol\left(mitochondrion\right) \cdot \left(\frac{[M_hash] \cdot [Smacm] \cdot k21}{v} - [M_hash_Smacm] \cdot k_21\right) \quad (74)$$

7.35 Reaction re36

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$M_hash_Smacm \longrightarrow M_hash + Smacr$$
 (75)

Reactant

Table 74: Properties of each reactant.

Id	Name	SBO
M_hash_Smacm	M#:Smac_m	

Products

Table 75: Properties of each product.

Id	Name	SBO
M_hash	M#	
Smacr	Smac released	

Kinetic Law

Derived unit contains undeclared units

$$v_{35} = \text{vol} (\text{mitochondrion}) \cdot [\text{M_hash_Smacm}] \cdot \text{kc21}$$
 (76)

7.36 Reaction re37

This is a reversible reaction of one reactant forming one product.

Reaction equation

$$Smacr \Longrightarrow Smac \tag{77}$$

Reactant

Table 76: Properties of each reactant.

Id	Name	SBO
Smacr	Smac released	

Product

Table 77: Properties of each product.

Id	Name	SBO
Smac	Smac	

Kinetic Law

Derived unit contains undeclared units

$$v_{36} = \text{vol}(\text{cell}) \cdot ([\text{Smacr}] \cdot \text{k26} - [\text{Smac}] \cdot \text{k_26})$$
(78)

7.37 Reaction re38

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$M_hash + CytoCm \rightleftharpoons M_hash_CytoCm$$
 (79)

Reactants

Table 78: Properties of each reactant.

Id	Name	SBO
M_hash	M#	
${\tt CytoCm}$	CytoC_m	

Product

Table 79: Properties of each product.

1	1	
Id	Name	SBO
M_hash_CytoCm	M#:CytoC_m	

Kinetic Law

Derived unit contains undeclared units

$$v_{37} = vol\left(mitochondrion\right) \cdot \left(\frac{[M_hash] \cdot [CytoCm] \cdot k20}{v} - [M_hash_CytoCm] \cdot k_20\right) \quad (80)$$

7.38 Reaction re39

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$M_hash_CytoCm \longrightarrow CytoCr + M_hash$$
 (81)

Reactant

Table 80: Properties of each reactant.

Id	Name	SBO
M_hash_CytoCm	M#:CytoC_m	

Products

Table 81: Properties of each product.

Id	Name	SBO
CytoCr M_hash	CytoC released M#	

Kinetic Law

Derived unit contains undeclared units

$$v_{38} = \text{vol} (\text{mitochondrion}) \cdot [\text{M_hash_CytoCm}] \cdot \text{kc20}$$
 (82)

7.39 Reaction re40

This is a reversible reaction of one reactant forming one product.

Reaction equation

$$CytoCr \rightleftharpoons CytoC \tag{83}$$

Reactant

Table 82: Properties of each reactant.

Id	Name	SBO
CytoCr	CytoC released	

Product

Table 83: Properties of each product.

Id	Name	SBO
CytoC	CytoC	

Kinetic Law

Derived unit contains undeclared units

$$v_{39} = \text{vol}(\text{cell}) \cdot ([\text{CytoCr}] \cdot \text{k22} - [\text{CytoC}] \cdot \text{k_22})$$
(84)

7.40 Reaction re41

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$CytoC + Apaf \Longrightarrow CytoC_Apaf$$
 (85)

Reactants

Table 84: Properties of each reactant.

Id	Name	SBO
CytoC	CytoC	
Apaf	Apaf	

Product

Table 85: Properties of each product.

Id	Name	SBO
${\tt CytoC_Apaf}$	CytoC:Apaf	

Kinetic Law

Derived unit contains undeclared units

$$v_{40} = \text{vol}(\text{cell}) \cdot ([\text{CytoC}] \cdot [\text{Apaf}] \cdot \text{k23} - [\text{CytoC_Apaf}] \cdot \text{k.23})$$
 (86)

7.41 Reaction re42

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$CytoC_Apaf \longrightarrow CytoC + Apaf_hash$$
 (87)

Reactant

Table 86: Properties of each reactant.

Id	Name	SBO
CytoC_Apaf	CytoC:Apaf	

Products

Table 87: Properties of each product.

Id	Name	SBO
CytoC Apaf_hash	CytoC Apaf#	

Kinetic Law

Derived unit contains undeclared units

$$v_{41} = \text{vol}\left(\text{cell}\right) \cdot \left[\text{CytoC_Apaf}\right] \cdot \text{kc23}$$
 (88)

7.42 Reaction re43

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$Apaf_hash + pC9 \Longrightarrow Apop$$
 (89)

Reactants

Table 88: Properties of each reactant.

Id	Name	SBO
Apaf_hash	Apaf#	

Id	Name	SBO
pC9	proC9	

Product

Table 89: Properties of each product.

Id	Name	SBO
Apop	Apop	

Kinetic Law

Derived unit contains undeclared units

$$v_{42} = \text{vol}(\text{cell}) \cdot ([\text{Apaf_hash}] \cdot [\text{pC9}] \cdot \text{k24} - [\text{Apop}] \cdot \text{k_24}) \tag{90}$$

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

8.1 Species L

Name L

Notes TRAIL: L = 3000 correspond to 50 ng/ml SuperKiller TRAIL for experiments under saturating conditions use L = 60000

Initial amount 3000 mol

Charge 0

This species takes part in one reaction (as a reactant in re1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{L} = -v_1 \tag{91}$$

8.2 Species R

Name R

Notes TRAIL receptor: for experiments without siRNA R = 200

Initial amount 200 mol

Charge 0

This species takes part in one reaction (as a reactant in re1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{R} = -v_1 \tag{92}$$

8.3 Species flip

Name flip

Initial amount 100 mol

Charge 0

This species takes part in one reaction (as a reactant in re3).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{flip} = -v_3 \tag{93}$$

8.4 Species pC8

Name proC8

Initial amount 20000 mol

Charge 0

This species takes part in two reactions (as a reactant in re4, re6).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{pC8} = -|v_4| - |v_6| \tag{94}$$

8.5 Species C8

Name casp8

Initial amount 0 mol

Charge 0

This species takes part in seven reactions (as a reactant in re8, re9, re11 and as a product in re5, re7, re10, re12).

$$\frac{\mathrm{d}}{\mathrm{d}t}C8 = |v_5| + |v_7| + |v_{10}| + |v_{12}| - |v_8| - |v_9| - |v_{11}| \tag{95}$$

8.6 Species C6

Name casp6

Initial amount 0 mol

This species takes part in three reactions (as a reactant in re6 and as a product in re7, re16).

$$\frac{d}{dt}C6 = v_7 + |v_{16}| - |v_6| \tag{96}$$

8.7 Species BAR

Name BAR

Initial amount 1000 mol

Charge 0

This species takes part in one reaction (as a reactant in re8).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{BAR} = -v_8 \tag{97}$$

8.8 Species pC3

Name proC3

Initial amount 10000 mol

Charge 0

This species takes part in two reactions (as a reactant in re9, re13).

$$\frac{d}{dt}pC3 = -v_9 - v_{13} \tag{98}$$

8.9 Species C3

Name casp3

Initial amount 0 mol

Charge 0

This species takes part in seven reactions (as a reactant in re15, re17, re19 and as a product in re10, re14, re16, re20).

$$\frac{\mathrm{d}}{\mathrm{d}t}C3 = |v_{10}| + |v_{14}| + |v_{16}| + |v_{20}| - |v_{15}| - |v_{17}| - |v_{19}| \tag{99}$$

8.10 Species Bid

Name Bid

Initial amount 40000 mol

Charge 0

This species takes part in one reaction (as a reactant in re11).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Bid} = -v_{11} \tag{100}$$

8.11 Species tBid

Name tBid

Initial amount 0 mol

Charge 0

This species takes part in four reactions (as a reactant in re23, re24 and as a product in re12, re25).

$$\frac{d}{dt}tBid = |v_{12}| + |v_{25}| - |v_{23}| - |v_{24}|$$
 (101)

8.12 Species pC6

Name proC6

Initial amount 10000 mol

Charge 0

This species takes part in one reaction (as a reactant in re15).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{pC6} = -v_{15} \tag{102}$$

8.13 Species XIAP

Name XIAP

Initial amount 100000 mol

Charge 0

This species takes part in four reactions (as a reactant in re17, re21, re22 and as a product in re18).

$$\frac{\mathrm{d}}{\mathrm{d}t} XIAP = |v_{18}| - |v_{17}| - |v_{21}| - |v_{22}| \tag{103}$$

8.14 Species C3_Ub

Name Ub C3

Notes ubiquitinylated caspase 3

Initial amount 0 mol

Charge 0

This species takes part in one reaction (as a product in re18).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{C3}_{-}\mathrm{Ub} = v_{18} \tag{104}$$

8.15 Species PARP

Name PARP

Notes EC substrate

Initial amount 1000000 mol

Charge 0

This species takes part in one reaction (as a reactant in re19).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PARP} = -v_{19} \tag{105}$$

8.16 Species CPARP

Name cPARP

Notes cleaved PARP

Initial amount 0 mol

Charge 0

This species takes part in one reaction (as a product in re20).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CPARP} = v_{20} \tag{106}$$

8.17 Species Smac

Name Smac

Initial amount 0 mol

Charge 0

This species takes part in two reactions (as a reactant in re22 and as a product in re37).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Smac} = |v_{36}| - |v_{22}| \tag{107}$$

8.18 Species Bc12c

Name cytosolic Bcl-2

Initial amount 20000 mol

This species takes part in one reaction (as a reactant in re23).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Bcl2c} = -v_{23} \tag{108}$$

8.19 Species Bax

Name Bax

Initial amount 100000 mol

Charge 0

This species takes part in one reaction (as a reactant in re24).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Bax} = -v_{24} \tag{109}$$

8.20 Species Bax_hash

Name Bax#

Notes activated Bax

Initial amount 0 mol

Charge 0

This species takes part in two reactions (as a reactant in re26 and as a product in re25).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Bax_hash} = |v_{25}| - |v_{26}| \tag{110}$$

8.21 Species Bc12

Name Bcl-2

Notes mitochondrial Bcl-2

Initial amount 20000 mol

Charge 0

This species takes part in three reactions (as a reactant in re27, re31, re32).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Bcl2} = -|v_{27}| - |v_{30}| - |v_{31}| \tag{111}$$

8.22 Species L_R

Name L:R

Notes TRAIL-receptor complex

Initial amount 0 mol

Charge 0

This species takes part in two reactions (as a reactant in re2 and as a product in re1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{L}_{-}\mathbf{R} = |v_1| - |v_2| \tag{112}$$

8.23 Species R_hash

Name R#

Notes activated receptor

Initial amount 0 mol

Charge 0

This species takes part in four reactions (as a reactant in re3, re4 and as a product in re2, re5).

$$\frac{d}{dt}R_{hash} = |v_2| + |v_5| - |v_3| - |v_4|$$
 (113)

8.24 Species flip_R_hash

Name flip:R#

Initial amount 0 mol

Charge 0

This species takes part in one reaction (as a product in re3).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{flip}_{R}\mathrm{hash} = |v_3| \tag{114}$$

8.25 Species R_hash_pC8

Name R#:pC8

Initial amount 0 mol

Charge 0

This species takes part in two reactions (as a reactant in re5 and as a product in re4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{R}_{-}\mathrm{hash}_{-}\mathrm{pC8} = |v_4| - |v_5| \tag{115}$$

8.26 Species C6_pC8

Name C6:pC8

Initial amount 0 mol

Charge 0

This species takes part in two reactions (as a reactant in re7 and as a product in re6).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{C6_pC8} = |v_6| - |v_7| \tag{116}$$

8.27 Species BAR_C8

Name BAR:C8

Initial amount 0 mol

Charge 0

This species takes part in one reaction (as a product in re8).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{BAR}.\mathrm{C8} = v_8 \tag{117}$$

8.28 Species C8_pC3

Name C8:pC3

Initial amount 0 mol

$\textbf{Charge} \ \ 0$

This species takes part in two reactions (as a reactant in re10 and as a product in re9).

$$\frac{d}{dt}C8_pC3 = |v_9| - |v_{10}| \tag{118}$$

8.29 Species pC3_Apop

Name pC3:Apop

Initial amount 0 mol

Charge 0

This species takes part in two reactions (as a reactant in re14 and as a product in re13).

$$\frac{d}{dt}pC3_Apop = |v_{13}| - |v_{14}|$$
 (119)

8.30 Species Apop

Name Apop

Notes apoptosome

Initial amount 0 mol

Charge 0

This species takes part in four reactions (as a reactant in re13, re21 and as a product in re14, re43).

$$\frac{d}{dt}Apop = |v_{14}| + |v_{42}| - |v_{13}| - |v_{21}|$$
(120)

8.31 Species C8_Bid

Name C8:Bid

Initial amount 0 mol

Charge 0

This species takes part in two reactions (as a reactant in re12 and as a product in re11).

$$\frac{d}{dt}C8_Bid = |v_{11}| - |v_{12}|$$
 (121)

8.32 Species C3_pC6

Name C3:pC6

Initial amount 0 mol

Charge 0

This species takes part in two reactions (as a reactant in re16 and as a product in re15).

$$\frac{d}{dt}C3_{-p}C6 = |v_{15}| - |v_{16}| \tag{122}$$

8.33 Species XIAP_C3

Name XIAP:C3

Initial amount 0 mol

Charge 0

This species takes part in two reactions (as a reactant in re18 and as a product in re17).

$$\frac{d}{dt}XIAP_{-}C3 = |v_{17}| - |v_{18}| \tag{123}$$

8.34 Species PARP_C3

Name PARP:C3

Initial amount 0 mol

Charge 0

This species takes part in two reactions (as a reactant in re20 and as a product in re19).

$$\frac{d}{dt}PARP_{-}C3 = |v_{19}| - |v_{20}| \tag{124}$$

8.35 Species Apop_XIAP

Name Apop:XIAP

Initial amount 0 mol

Charge 0

This species takes part in one reaction (as a product in re21).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Apop}_{-}\mathrm{XIAP} = v_{21} \tag{125}$$

8.36 Species Smac_XIAP

Name Smac:XIAP

Initial amount 0 mol

Charge 0

This species takes part in one reaction (as a product in re22).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Smac}_{-}\mathrm{XIAP} = v_{22} \tag{126}$$

8.37 Species Bcl2c_tBid

Name Bcl2c:tBid

Initial amount 0 mol

Charge 0

This species takes part in one reaction (as a product in re23).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Bcl2c}_{-}\mathrm{tBid} = v_{23} \tag{127}$$

8.38 Species Bax_tBid

Name Bax:tBid

Initial amount 0 mol

Charge 0

This species takes part in two reactions (as a reactant in re25 and as a product in re24).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Bax}_{\mathbf{t}}\mathrm{Bid} = v_{24} - v_{25} \tag{128}$$

8.39 Species Baxm_Bcl2

Name Baxm:Bcl2

Initial amount 0 mol

Charge 0

This species takes part in one reaction (as a product in re27).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Baxm}_{\mathrm{B}}\mathrm{Cl2} = v_{27} \tag{129}$$

8.40 Species Bax4

Name Bax4

Notes Bax tetramer

Initial amount 0 mol

This species takes part in three reactions (as a reactant in re32, re33 and as a product in re30).

$$\frac{\mathrm{d}}{\mathrm{d}t} Bax4 = |v_{29}| - |v_{31}| - |v_{32}| \tag{130}$$

8.41 Species Bax2_Bc12

Name Bax2:Bcl2

Initial amount 0 mol

This species takes part in one reaction (as a product in re31).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Bax2_Bcl2} = v_{30} \tag{131}$$

8.42 Species Bax4_Bc12

Name Bax4:Bcl2

Initial amount 0 mol

This species takes part in one reaction (as a product in re32).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Bax4_Bcl2} = v_{31} \tag{132}$$

8.43 Species M

Name M

Notes binding sites for activated Bax on the inner mitochondrial membrane

Initial amount 500000 mol

Charge 0

This species takes part in one reaction (as a reactant in re33).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{M} = -v_{32} \tag{133}$$

8.44 Species Bax4_M

Name Bax4:M

Initial amount 0 mol

This species takes part in two reactions (as a reactant in re34 and as a product in re33).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Bax4}_{-}\mathrm{M} = |v_{32}| - |v_{33}| \tag{134}$$

8.45 Species M_hash

Name M#

Notes opened inner mitochondrial membrane pore

Initial amount 0 mol

This species takes part in five reactions (as a reactant in re35, re38 and as a product in re34, re36, re39).

$$\frac{d}{dt}M \cdot hash = |v_{33}| + |v_{35}| + |v_{38}| - |v_{34}| - |v_{37}|$$
(135)

8.46 Species Smacm

Name Smac_m

Initial amount 100000 mol

Charge 0

This species takes part in one reaction (as a reactant in re35).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Smacm} = -v_{34} \tag{136}$$

8.47 Species M_hash_Smacm

Name M#:Smac_m

Initial amount 0 mol

This species takes part in two reactions (as a reactant in re36 and as a product in re35).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{M_hash_Smacm} = v_{34} - v_{35} \tag{137}$$

8.48 Species Smacr

Name Smac released

Notes Smac released into the mitochondrial intermembrane space

Initial amount 0 mol

This species takes part in two reactions (as a reactant in re37 and as a product in re36).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Smacr} = |v_{35}| - |v_{36}| \tag{138}$$

8.49 Species CytoCm

Name CytoC_m

Initial amount 500000 mol

Charge 0

This species takes part in one reaction (as a reactant in re38).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CytoCm} = -v_{37} \tag{139}$$

8.50 Species M_hash_CytoCm

Name M#:CytoC_m

Initial amount 0 mol

This species takes part in two reactions (as a reactant in re39 and as a product in re38).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{M}_{-}\mathrm{hash}_{-}\mathrm{CytoCm} = v_{37} - v_{38} \tag{140}$$

8.51 Species CytoCr

Name CytoC released

Notes cytochrom C released into the mitochondrial intermembrane space

Initial amount 0 mol

This species takes part in two reactions (as a reactant in re40 and as a product in re39).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CytoCr} = |v_{38}| - |v_{39}| \tag{141}$$

8.52 Species CytoC

Name CytoC

Initial amount 0 mol

This species takes part in three reactions (as a reactant in re41 and as a product in re40, re42).

$$\frac{d}{dt}CytoC = v_{39} + v_{41} - v_{40}$$
 (142)

8.53 Species Apaf

Name Apaf

Initial amount 100000 mol

Charge 0

This species takes part in one reaction (as a reactant in re41).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Apaf} = -v_{40} \tag{143}$$

8.54 Species CytoC_Apaf

Name CytoC:Apaf

Initial amount 0 mol

This species takes part in two reactions (as a reactant in re42 and as a product in re41).

$$\frac{d}{dt}CytoC_Apaf = v_{40} - v_{41}$$
 (144)

8.55 Species Apaf_hash

Name Apaf#

Initial amount 0 mol

This species takes part in two reactions (as a reactant in re43 and as a product in re42).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Apaf}\,\mathrm{hash} = |v_{41}| - |v_{42}| \tag{145}$$

8.56 Species pC9

Name proC9

Initial amount 100000 mol

Charge 0

This species takes part in one reaction (as a reactant in re43).

$$\frac{\mathrm{d}}{\mathrm{d}t}p\mathrm{C}9 = -v_{42} \tag{146}$$

8.57 Species Baxm

Name Baxm

Initial amount 0 mol

This species takes part in four reactions (as a reactant in re27, re29, re29 and as a product in re26).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Baxm} = |v_{26}| - |v_{27}| - |v_{28}| - |v_{28}| \tag{147}$$

8.58 Species Bax2

Name Bax2

Notes dimeric Bax

Initial amount 0 mol

This species takes part in four reactions (as a reactant in re30, re30, re31 and as a product in re29).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Bax2} = |v_{28}| - |v_{29}| - |v_{29}| - |v_{30}| \tag{148}$$

 $\mathfrak{BML2}^{d}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany