KEY 7 DEWPHYE Taylor

§1. DEWPYPE Taylor

of: 'Ecrw $f = [a_1 B] \rightarrow IR$ Kar $X_0 \in [a_1 B]$, $n \in IN$ Kar unoversume of $n \in IN$ fixer $n \in IN$ for IN for IN

$$= f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \frac{f'''(x_0)}{3!}(x-x_0)^3 + \dots + \frac{f'''(x_0)}{n!}(x-x_0)^n$$

 $\frac{\int_{X_{0}}^{X_{0}} f(x) dx}{\int_{X_{0}}^{X_{0}} f(x)} = \frac{\int_{X_{0}}^{X_{0}} f(x) dx}{\int_{X_{0}}^{X_{0}} f(x)} = \frac{\int_{X_{0}}^{X_{0}} f(x) dx}{\int_{X_{0}}^{X_{0}} f(x)} = \frac{\int_{X_{0}}^{X_{0}} f(x) dx}{\int_{X_{0}}^{X_{0}} f(x) dx} = \frac{\int_{X_{0}}^{X_{0}} f($

$$T_{n,f_1X_0}^{"}(x) = \sum_{K=2}^{n} \frac{f^{(K)}(x_0)}{(K-Z)!} (x-x_0)^{K-2} \Rightarrow T_{n,f_1X_0}^{"}(x_0) = f^{"}(x_0)$$

$$T_{n_{1}f_{1}X_{0}}^{(j)}(x) = \sum_{K=j}^{n} \frac{f^{(K)}(x_{0})}{(K-j)!} (x-x_{0})^{K-j} \Rightarrow T_{n_{1}f_{1}X_{0}}^{(j)}(x_{0}) = f^{(j)}(x_{0}), \forall j = 0,-1,n.$$

• 6p: 6p: 6p: 5p: 5p: 5v: 5v

- Θεώρημα (Taylor): Έστω $f = [α_1 B] → iR$, (n+1) Ψορές παραγωχίσιμη στο [α|β] και χο \in [α|β]: Τότε, για κάθε $\times \in [α|B]$ 16χύει
 - 1) $R_{n_1 f_1 X_0}(x) = \left(\int_0^1 \frac{(1-u)^n}{n!} f^{(n+1)}(x_0 + u(x-x_0)) du \right) (x-x_0)^{n+1}$
 - $=\int_{X_{0}}^{X} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt, \text{ as } \eta f^{(n+1)} \text{ are odokanewsing}$ $=\int_{X_{0}}^{X} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt, \text{ as } \eta f^{(n+1)} \text{ are odokanewsing}$

 $\left[\frac{d^{2}}{d^{2}} \frac{d^{2}}{$

2) $R_{n_1f_1X_0}(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) (x-x_0)^{n+1}$, yid kánolo ξ heta ξ' hav x_0 kal x_0

ο Λαρατήρη 6η; Για n = 0 οι τύποι του Ταγβος 1) και 2) τωντί Τονται με το 2ο θεμελιώδες θεώρημα του ολοκληρωτικού λογισμού και με το θεώρημα μέσης τιμής αντίσωιχα:

1)
$$f(x) - f(x_0) = \int_{x_0}^{x} f'(t) dt$$
 star y $f'(t) = \int_{x_0}^{x} f'(t) dt$

2)
$$f(x) - f(x_0) = f(x_0) - (x_0)$$
 you kanow ξ perazita, nav x .

« Παρατήρηση; AV n = 1 η ιδιώτητα lim $\frac{R_1 f_1 x_0(x)}{x - x_0} = 0$ επιβράζει την παραγωγιδιμώτητα της f 620 x_0 :

$$\lim_{X \to X_0} \frac{R_1 f_1 x_0 (X)}{X - X_0} = 0 \iff \lim_{X \to X_0} \left(\frac{f(X) - f(X_0)}{X - X_0} - f'(X_0) \right) = 0$$

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + (x - x_0) \varepsilon(x) \quad \text{we } \varepsilon(x) \to 0$$

$$\varepsilon \xi \varepsilon \omega \varepsilon \gamma \quad \text{this electronical previous}$$

Δηλοδή, η f προδεγγίζεται από μία γραμμική δυναρτιγομ.
Τα θεωρήματα Taylor δίνουν μία καδύτερη προδέγγρομ μέδω ποδυωνύμου Βαθμού η όταν η f είναι η θορές παραγωγίδιμη:

$$\lim_{X \to X_0} \frac{R_n \cdot f_i(X_0)(X_1)}{(X - X_0)^h} = 0 \iff f(X) = f(X_0) + f^i(X_0)(X - X_0) + \cdots + \frac{f^{(n)}(X_0)}{n!}(X - X_0)^h + (X - X_0)^h f(X)$$

he E(X) -> 0-

$$\begin{cases} 2 & \Delta \text{UNN} \mu \text{OSERTING} \text{ SURPTION } f(x) = e^{x}. \\ & \text{Fid. Kathe } \text{ Kelik Kan. Kathe } \text{ K.E. NU dog Exame } \begin{cases} f(x) \\ f(x) = e^{x}. \end{cases} \\ & \text{Fid. Kathe } \text{ Kelik Kan. Kathe } \text{ K.E. NU dog Exame } \begin{cases} f(x) \\ f(x) = e^{x}. \end{cases} \\ & \text{Fid. Kathe } \text{ Kelik Kan. Kathe } \text{ K.E. NU dog Exame } \begin{cases} f(x) \\ f(x) = e^{x}. \end{cases} \\ & \text{Fid. Kathe } \text{ Fin. } \text{ Fid. Kathe } \text{ Kelik } \end{cases} \\ & \text{Fid. Kathe } \text{ Fid. Kathe } \text{ Fid. Kathe } \text{ Fid. } \text$$

2B) By Frigoria raigns on $\cos x = \sum_{K=0}^{\infty} \frac{(-1)^K}{(2K)!} x^{2K}$, $\forall x \in \mathbb{R}$ [EGRAL $f(x) = \omega x$.

ME Endywyn 670 K Enddy DEGOUPE npwth ou $f^{(2K)}(x) = (-1)^{K} \cos x$ 'Apd $f^{(2K+1)}(0) = (-1)^{K} \cot x$ $f^{(2K+1)}(0) = 0$.

 $Rn_{i}f_{i}o(x) = (-1)^{n} \int_{b}^{x} \frac{(x-t)^{n}}{(1+t)^{n+1}} dt = (-1)^{n} \int_{x}^{0} \frac{-u^{n}}{1+u} du$ $AAAXYYY METABAYTÁNV <math>u = \frac{x-t}{1+t} \Rightarrow du = \frac{-1-t-x+t}{(1+t)^{2}} dt = -\frac{dt}{1+t} \left(\frac{x-t+1+t}{1+t}\right)$ $= -\frac{dt}{1+t} (1+u)$

Diakpivoure nefinimens

 $AV -12 \times 20, \ \ \, \text{Total} \ \, \left| R_{n,f,o} \left(X \right) \right| \leq \int_{X}^{0} \frac{\left| u \right|^{n}}{1+u} \, du \leq \frac{1}{1+x} \int_{0}^{\left| X \right|} u^{n} du = \frac{1}{1+x} \frac{\left| X \right|^{n+1}}{n+1}$ $|Apl | |R_{n} \left(X \right) | \xrightarrow{n \to \infty} 0 .$

 $AV b < X \leq 1, \ \ 1672 \ \, |Rn_{1}f_{10}(X)| \leq \int_{0}^{X} \frac{u^{n}}{1+u} du \leq \int_{0}^{X} \frac{u^{n}du}{n+1} \frac{1}{n+10} \frac{1}{n+10}$

Αυτο αποδεικνύει τον ζητώμενο τύπο και ειδικότερα για X=1 έχουμε

 $\ln 2 = \sum_{K=1}^{\infty} \frac{(-1)^{K-1}}{K} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$

22) H Siwinping swaping $f(x) = (1+x)^{\alpha} = e^{\alpha \ln(1+x)} \mu \in X > -1, \alpha \in \mathbb{R}$.

AnoJEINVÚETAI GTI $(1+x)^{x} = \sum_{k=0}^{\infty} {x \choose k} x^{k}$ yid |x| < 1

onou pla Káte KEIN DETOUPE $\binom{d}{K} = \frac{d(d-1) - - (d-K+1)}{K!}$ Kai $\binom{d}{0} = 1$.

Napatypii618 on an DEIN , tote $\forall K > \lambda$ Exorpre $\binom{\lambda}{K} = 0$ Kar GWENNYS $(1+\chi)^{\lambda} = \sum_{K=0}^{\lambda} \binom{\lambda}{K} \chi^{K}$

2 ST) H Gwapty Gy f(x) = archanx.

Anoseikvűetől őu azchan $x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$, $\forall x \in [-1,1]$

§ 3 Zบบลุดาร์ 625 กลคล6 เลือนคร 62 ธีบบล คอธยคล์

ο Υπενθύμιδη: Έστω $\sum_{K=0}^{\infty} d_{K} x^{K}$ δυναμοσειρά με συντελέστες d_{K} Ορίσαμε την ακτίνα σύγκλισης ως

 $R = \sup \int_{\Gamma} |X| = \eta \text{ Swaposerpá supráiver 670 x y (µnopei xar <math>R = \infty$)}

Kar ano seízape óu $\forall x \in (-R, R)$ y swaposerpá supráiver $\forall x \in [R, R] \in [X] = [X]$

• Moordon: 16x0E1 $R = \frac{1}{lnnsup} \left[\frac{9 \cdot 2700 \mu s}{6} + \frac{1}{6} + \frac{1}{400} = 0 \right]$

ο Dp: Λέμε ότι μια ενάρτηση $f = (-R, R) \rightarrow IR$ είναι αναπαραστάσιμη 62 δυναμοσειρά με κέντρο το D αν υπάρχει ακολουθία $(d_K)_K$ τ-ω- $f(X) = \sum_{K=0}^{\infty} d_K x^K , \forall x \in (-R, R).$

Θεώρημα (Movaδικότητας) Έστω $[α_K]_K$ και $[β_K]_K$ ακολουθίες και R>0. Υποθέτουμε ότι $\forall x \in [-R,R]$ έχουμε $\overset{\infty}{\underset{K=0}{\mathcal{E}}} α_K x^K = \overset{\infty}{\underset{K=0}{\mathcal{E}}} β_K x^K$. Τότε, $α_K = β_K$, $\forall K$.

• Θεώρημα [παραγώγισης Γυναμοσειρών] εξετω $\sum_{K=0}^{\infty}$ ακχ^K Γυναμοσειρά που συγκλίνει στο (-R,R) για κάποιο R>0.

Ορίζουμε $f=[-R,R] \rightarrow R$ με $f(x)=\sum_{K=0}^{\infty}$ ακχ^K. Τότε η f είναι απειρες φορές παραγωγίσιμη στο (-R,R) και για κάθε λε [N] υφοζ και χε (-R,R) έχουμε

 $f^{(\ell)}(x) = \sum_{K=\ell}^{\infty} \kappa(K-1) - (K-\ell+1) \alpha_K x^{K-\ell}$. Enlars $\alpha_K = \frac{f^{(\kappa)}(0)}{\kappa!}$, γ_K

KEY 8 = Kuptés Kai Koites GUNAPTYGERS

- · napatijenon: 'EBOW 2 < B 600 IR Tote [2, B] = { (1-t) 2+tB = t \in [0,1] }

(dvr. $f((1-t)\alpha+t\beta) < (1-t)f(\alpha)+tf(\beta)$). H f radital roidy dv η - f $\epsilon(v\alpha)$ ruptý-

ο Ιδιότητες κυρτών δυναρτήδεων: Έδτω $f = [x_1]_B \rightarrow IR$ κυρτή.

Τότε η f είναι δωεχής και για κάθε $x \in [a_1]_B$ υπάρχουν οι παευριπές παράγωχοι $f' = [x]_B$ μιπ f(x+y) - f(x) και $f' = \lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h}$.

Επίδης, οι $f' = [a_1]_B \rightarrow IR$ είναι αύξουδες και $f' = f'_+$.

· Napaywyi6ipes Kuptés Gwaptý6is

 $θεωρημα = 'Εστω f = (α₁ β) → IR παραγωρίσημη - Τα εξής είναι 160 δύναμα

i) Η f κυρτή

ii) Η f' είναι αύξουσα

ii) Για κάθε χιγε (α₁β) έχουμε ότι <math>f(y) \Rightarrow f(x) + f'(x)(y-x)$

Pringenped: 'EGTW $f = |d_1|B$) $\rightarrow IR$ Súo Gopés napaywrigipny. Tote $\eta f \in \text{Eival}$ kuptý ANN $f''(x) \ge 0$, $\forall x \in (d_1|B)$.

Avidorytal Jensen: 'Etaw
$$f = I \rightarrow IR$$
 xvprý $pe I \subset IR$ $J_1 \overline{J_2} \in I$ $f_1 \overline{J_2} \in I$ $f_2 \in I$ $f_3 \in I$ $f_4 \in I$ $f_4 \in I$ $f_6 \in I$ f_6

ANGOTYTH APIPHYTIKOÙ - YEWHETPIKOÙ MÉGOU: LEGTW
$$n \in \mathbb{N}$$
, $x_1, \dots, x_n \geqslant 0$

Kai $A_1, \dots, A_n \geqslant 0$ me $\sum_{j=1}^n A_j = 1$.

The $\prod_{j=1}^n x_i A_i \leq \sum_{j=1}^n \lambda_i x_i$
 $J=1$

AVIGOTYTA Hölder: 'EGTW PI 9 GUJUYES EXPETES: Judasý PI 9 31

WAI
$$\frac{1}{p} + \frac{1}{9} = 1$$
 - 'EGTW NEIN KAU $d_1 = 1$ - I $d_1 = 1$ - d_1

Fid p=q=2 Exoups the deleast tal Cauchy-Schwarz:

$$\sum_{\bar{l}=1}^{N} d_{i} \beta_{i} \leq \sum_{\bar{l}=1}^{N} |d_{i} \beta_{i}| \leq \left(\sum_{\bar{l}=1}^{N} |d_{i}|^{2}\right)^{1/2} \left(\sum_{\bar{l}=1}^{N} |\beta_{i}|^{2}\right)^{1/2}$$

εσωτερικό γινόμενο των διανυσμάτων

$$\vec{A} = \begin{pmatrix} d_1 \\ \vec{a}_n \end{pmatrix}$$
 KdI $\vec{B} = \begin{pmatrix} B_1 \\ \vec{B}_n \end{pmatrix} \in \mathbb{R}^n$

EUKACISCIA VÓPMA TUV SIAVUGHATUV

ÄKAI BEIRT