Chapitre 3

Étude de fonctions

I. Fonctions de référence

1) Variations d'une fonction

Définitions:

Soit f une fonction définie sur un intervalle I.

- f est **croissante** (respectivement **strictement croissante**) sur I si pour tous réels a et b de I : si a < b alors $f(a) \le f(b)$ (respectivement si a < b alors f(a) < f(b)).
- f est décroissante (respectivement strictement décroissante) sur I si pour tous réels a et b de I ·

si a < b alors $f(a) \ge f(b)$ (respectivement si a < b alors f(a) > f(b)).

• f est **constante** sur I si pour tous réels a et b de I, f(a) = f(b)

Définition:

Soit f une fonction définie sur un intervalle I.

f est **monotone** sur I si f est croissante sur I ou décroissante sur I.

2) **Rappels**

	Fonctio	n affine	Fonction carrée	Fonction inverse	
définition	Une fonction affine f es sur \mathbb{R} par : $f(x) = 0$ où a et b sont deux réel	ax+b	La fonction carré est la fonction f définie sur \mathbb{R} par : $f(x)=x^2$	La fonction inverse est la fonction f définie sur $\mathbb{R}\setminus\{0\}$ par : $f(x) = \frac{1}{x}$	
propriétés	Si <i>a</i> >0 alors <i>f</i> est croissante sur I	Si <i>a</i> <0 alors <i>f</i> est décroissante sur I	f est décroissante sur $]-\infty$;0] et croissante sur $[0;+\infty[$	f est décroissante sur $]-\infty$; 0[et]0; + ∞ [
Tableau de variations	$ \begin{array}{c ccc} x & -\infty & +\infty \\ \hline f(x) & & +\infty \\ \hline \end{array} $	$\begin{array}{ c c c c }\hline x & -\infty & +\infty \\ \hline f(x) & +\infty \\ \hline & -\infty \\ \hline \end{array}$	$ \begin{array}{c cccc} x & -\infty & 0 & +\infty \\ \hline f(x) & +\infty & & +\infty \\ 0 & & & & \\ \end{array} $	$ \begin{array}{c cccc} x & -\infty & 0 & +\infty \\ \hline f(x) & & & +\infty \\ & & & -\infty & & -\infty \end{array} $	
Représentation graphique			La courb a cet vers		
	La courbe est une droite		La courbe est une parabole	La courbe est une hyperbole	

3) Fonction racine carrée

Définition:

La fonction racine carrée est la fonction f définie sur $[0;+\infty[$ par $f(x)=\sqrt{(x)}$.

Propriété:

La fonction racine carrée est **strictement croissante** sur $[0;+\infty[$.

Démonstration:

Soit
$$a$$
 et b deux réels tels que $0 \le a < b$.
Or $\sqrt{a} - \sqrt{b} = \frac{(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})}{\sqrt{a} + \sqrt{b}} = \frac{a - b}{\sqrt{a} + \sqrt{b}}$ de plus $a - b < 0$ et $\sqrt{a} + \sqrt{b} > 0$.
On a donc $\sqrt{a} - \sqrt{b} < 0$ et ainsi $\sqrt{a} < \sqrt{b}$

Tableau de variations

Représentation graphique :

Dans le repère $(O; \vec{i}, \vec{j})$ la courbe représentative de la fonction racine carrée est une **demi-**

parabole de sommet O.

Fonction valeur absolue

Valeur absolue et distance

Définition:

La valeur absolue d'un réel x est le nombre, noté |x|, qui est égal au nombre x si x est positif, et au nombre -x si x est négatif.

Donc,
$$|x| = \begin{cases} x \text{ si } x \ge 0 \\ -x \text{ si } x \le 0 \end{cases}$$

Exemples:

•
$$|5| = 5 \text{ car } 5 > 0$$

•
$$|3-\pi| = -(3-\pi) = \pi - 3$$
 car $3-\pi < 0$

•
$$|3-\pi| = -(3-\pi) = \pi - 3 \text{ car } 3 - \pi < 0$$

• $|2-t| = \begin{cases} 2-t \text{ si } 2-t \ge 0 \text{ soit } t \le 2\\ t-2 \text{ si } 2-t \le 0 \text{ soit } t \ge 2 \end{cases}$

- Une valeur absolue est toujours positive : pour tout réel x, $|x| \ge 0$.
- Deux nombres opposés ont la même valeur absolue : pour tout réel x, |x|=|-x|.

3

• Pour tout réel x, $\sqrt{x^2} = |x|$.

Définition:

La distance entre deux réels x et y est la distance entre les points d'abscisses x et y sur la droite réelle munie d'un repère $(O; \vec{i})$.

On la note d(x; y).

Exemple:

La distance entre les réels -3 et 4,6 est d(-3;4,6) = AB = 4,6 - (-3) = 4,6 + 3 = 7,6.

La distance entre les réels 4,6 et 0 est d(4,6;0)=OB=4,6. La distance entre les réels -3 et 0 est d(-3;0)=OA=3.

Remarques:

- La distance d'un réel x à 0 est égale à x si $x \ge 0$ et à -x si $x \le 0$.
- La distance entre les réels x et y est obtenue en calculant la différence entre le plus grand et le plus petit de ces deux nombres ; le résultat est alors positif.

On a:
$$d(x;y) = \begin{cases} x - y & \text{si } x \ge y \\ y - x & \text{si } x \le y \end{cases}$$

Propriétés:

$$d(x;0)=|x|$$

$$d(x; y) = |x - y| = |y - x|$$

Propriétés :

- $|x|=0 \Leftrightarrow x=0$
- $|x| = |y| \Leftrightarrow x = y \text{ ou } x = -y$
- Pour tous réels x et y, on a :

$$\circ |xy| = |x| \times |y|$$

$$\circ$$
 si $y \neq 0$, $\left| \frac{x}{y} \right| = \frac{|x|}{|y|}$

∘
$$|x+y| \le |x| + |y|$$
 (inégalité triangulaire)

Fonction valeur absolue

Définition:

La fonction valeur absolue est la fonction f définie sur \mathbb{R} par f(x)=|x|.

Propriété :

La fonction valeur absolue est **strictement décroissante** sur $]-\infty;0]$ et **strictement croissante** sur $[0;+\infty[$

Démonstration :

Pour tout réel x positif, f(x)=x donc f est strictement croissante sur $[0;+\infty[$.

Pour tout réel x négatif, f(x) = -x donc f est strictement décroissante sur $]-\infty;0]$.

Tableau de variations:

x	-∞	0		+∞
x	+∞	0	#	+∞

Propriétés:

- La représentation graphique de la fonction valeur absolue est la réunion de deux droites.
- Dans un repère orthogonal $(O; \vec{i}, \vec{j})$, la courbe représentative de la fonction valeur absolue est symétrique par rapport à l'axe des ordonnées.

Démonstration :

Soit *f* la fonction valeur absolue.

Pour tout réel a, on a f(-a)=|-a|=|a|=f(a). Les deux points de coordonnées (a;f(a)) et (-a;f(-a)) sont donc symétriques par rapport à l'axe des ordonnées.

Remarque:

$$d(x;y)$$
 est une fonction $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$
 $(x,y) \longmapsto z = d(x;y)$

5

L'ensemble des points M(x, y, d(x, y)) de l'espace est une **surface**.

II. Positions relatives de courbes

1) Position relative de deux courbes

Définitions:

Soit f et g deux fonctions définies sur un intervalle I, de courbes représentatives \mathcal{C}_f et \mathcal{C}_g dans un repère du plan.

• On dit que f est **supérieure** à g (et on note $f \ge g$) sur I lorsque, pour tout réel x de I $f(x) \ge g(x)$.

La courbe \mathcal{C}_f est **au-dessus** de la courbe \mathcal{C}_g sur l'intervalle I.

• On dit que f est **inférieure** à g (et on note $f \le g$) sur I lorsque, pour tout réel x de I $f(x) \le g(x)$.

La courbe \mathcal{C}_f est **au-dessous** de la courbe \mathcal{C}_g sur l'intervalle I.

• On dit que f est **égale** à g (et on note f = g) sur I lorsque, pour tout réel x de I f(x) = g(x).

La courbe \mathcal{C}_f est **confondue** avec la courbe \mathcal{C}_g sur l'intervalle I.

Sur $]-\infty;0]$, $f:x \mapsto x$ est inférieure à $g:x \mapsto |x|$. Sur $[0;+\infty[$, $f:x \mapsto x$ est égale à $g:x \mapsto |x|$.

2) Croissances comparées

Le plan est muni d'un repère orthonormal $(O; \vec{i}, \vec{j})$. \mathcal{C}_f , \mathcal{C}_g et \mathcal{C}_h sont les courbes associées aux fonctions $f: x \mapsto x^2$, $g: x \mapsto x$ et $h: x \mapsto \sqrt{x}$. f, g et h sont définies (et croissantes) sur $[0; +\infty[$.

Propriétés:

- Les points de coordonnées (0;0) et (1;1) sont communs aux trois courbes \mathscr{C}_f , \mathscr{C}_g et \mathscr{C}_h .
- Sur l'intervalle]0;1[, la courbe \mathscr{C}_f , est **au-dessous** de la courbe \mathscr{C}_g elle-même **au-dessous** de la courbe \mathscr{C}_h .
- Sur l'intervalle]1;+ ∞ [, la courbe \mathcal{C}_f , est **au-dessus** de la courbe \mathcal{C}_g elle-même **au-dessus** de la courbe \mathcal{C}_h .

Exemple:

$$\overline{\forall x} \in [0;1], \ x^2 \leqslant x \leqslant \sqrt{x}.$$

Donc pour $x \in [0;1]$, x^2 est inférieure à x qui est inférieure à \sqrt{x} .

$$\forall x \in [1; +\infty[, x^2 \geqslant x \geqslant \sqrt{x}].$$

Donc pour $x \in [1; +\infty[$, x^2 est supérieure à x qui est supérieure à \sqrt{x} .

Démonstration :

Pour les positions relatives des courbes \mathscr{C}_f et \mathscr{C}_g sur l'intervalle $[0;+\infty[$, on compare f(x) et g(x).

$$f(x)-g(x)=x^2-x=x(x-1)$$
.

Or on a le tableau de signe suivant :

On a donc bien:

- pour x=0, $x^2=x$
- $\forall x \in]0;1[, x^2 < x]$
- pour x=1, $x^2=x$
- $\forall x \in]1; + \infty[, x^2 > x]$

x	0		1		$+\infty$
х		+		+	
x-1		_		+	
x(x-1)	0	_	0	+	

III. Fonctions associées

1) Fonction u+k

Définition:

Soit u une fonction définie sur une partie \mathcal{D} de \mathbb{R} et k un réel.

La fonction notée u+k est la fonction définie sur \mathcal{D} par :

$$(u+k)(x)=u(x)+k$$

Exemple:

Soit u la fonction définie sur \mathbb{R} par $u(x)=x^2+1$.

Pour tout réel x, $(u+3)(x)=u(x)+3=x^2+1+3=x^2+4$.

Propriété :

Soit *u* une fonction **monotone** sur un intervalle I et *k* un réel.

La fonction u+k a **même sens de variation** que u sur I.

Démonstration : (on procède par disjonction des cas)

• Supposons que *u* est croissante sur I.

Pour tous réels a et b de I, si $a \le b$ alors $u(a) \le u(b)$.

Donc $u(a)+k \le u(b)+k$, soit $(u+k)(a) \le (u+k)(b)$

Ainsi, u+k est croissante sur I.

• Supposons que *u* est décroissante sur I.

Pour tous réels a et b de I, si $a \le b$ alors $u(a) \ge u(b)$.

Donc $u(a)+k \ge u(b)+k$, soit $(u+k)(a) \ge (u+k)(b)$

Ainsi, u+k est décroissante sur I.

Propriété:

Le plan est muni d'un repère orthogonal $(O; \vec{i}, \vec{j})$.

Soit u une fonction définie sur une partie \mathcal{D} de \mathbb{R} et k un réel.

La courbe représentative de la fonction u+k est l'image de la courbe représentative de u par la **translation** de vecteur $k \vec{j}$.

Démonstration :

Soit \mathscr{C} la courbe de u et a courbe de u+k.

On considère un point M(x;u(x)) de la courbe \mathscr{C} et le point M'(x;u(x)+k) qui appartient à la courbe \mathscr{C}' .

Alors le vecteur \overline{MM}' a pour coordonnées . Le (0;k) point M' est donc l'image du point M par la translation de vecteur $k \vec{j}$.

Ce raisonnement est valable pour tout point M de la courbe \mathscr{C} .

Donc on obtient la courbe \mathscr{C}' à partir de la courbe \mathscr{C} par la translation de vecteur $k \vec{j}$.

2) Fonction ku

Définition:

Soit u une fonction définie sur une partie \mathcal{D} de \mathbb{R} et k un réel.

La fonction notée ku est la fonction définie sur \mathcal{D} par :

 $(ku)(x) = k \times u(x)$

Exemple:

Soit *u* la fonction définie sur \mathbb{R} par $u(x)=x^2+1$.

Pour tout réel x, $(2u)(x)=2\times u(x)=2(x^2+1)=2x^2+2$.

Propriété:

Soit *u* une fonction **monotone** sur un intervalle I et *k* un réel.

- Si k > 0, la fonction ku a même sens de variation que u sur I.
- Si k < 0, la fonction ku a le sens de variation contraire à celui de u sur I.

Démonstration:

Supposons que u est croissante sur I et k > 0.

Pour tous réels a et b de I, si $a \le b$ alors $u(a) \le u(b)$.

Donc $ku(a) \le ku(b)$, soit $(ku)(a) \le (ku)(b)$

Ainsi, ku est croissante sur I.

On procède de la même manière pour les autres cas.

Propriété:

Le plan est muni d'un repère orthogonal $(O; \vec{i}, \vec{j})$.

Soit u une fonction définie sur une partie \mathcal{D} de \mathbb{R} et k un réel.

La courbe représentative de la fonction ku s'obtient en **multipliant par** k l'ordonnée y de chaque point de la courbe de u.

Exemples:

• Les fonctions u, v et w sont définies sur \mathbb{R} par $u(x)=x^2$, $v(x)=3x^2$ et $w(x)=-\frac{1}{2}x^2$.

• <u>Cas particulier</u>: lorsque k = -1, les courbes représentatives de u et -u sont symétriques par rapport à l'axe des abscisses.

3) Fonction \sqrt{u}

Définition:

Soit u une fonction définie sur une partie \mathcal{D} de \mathbb{R} telle que, pour tout réel x de \mathcal{D} , $u(x) \ge 0$.

La fonction racine carrée de u notée \sqrt{u} , est la fonction définie sur \mathscr{D} par :

$$(\sqrt{u})(x) = \sqrt{u(x)}$$

Exemple:

Soit u la fonction définie sur \mathbb{R} par $u(x)=x^2+1$. Alors pour tout réel x, u(x)>0. La fonction \sqrt{u} est la fonction définie sur \mathbb{R} par $(\sqrt{u})(x)=\sqrt{u(x)}=\sqrt{x^2+1}$.

Propriété :

Soit u une fonction **monotone** et à **valeurs positives** sur un intervalle I.

La fonction \sqrt{u} a même sens de variation que u sur I.

Démonstration:

Supposons que u est croissante sur I et à valeurs positives.

Pour tous réels a et b de I, si $a \le b$ alors $0 \le u(a) \le u(b)$.

La fonction racine carrée étant croissante sur $[0;+\infty[$, on obtient $\sqrt{u(a)} \leqslant \sqrt{u(b)}$, soit $(\sqrt{u})(a) \leqslant (\sqrt{u})(b)$

Ainsi, \sqrt{u} est croissante sur I.

4) Fonction $\frac{1}{u}$

Définition:

Soit u une fonction définie sur une partie \mathcal{D} de \mathbb{R} telle que, pour tout réel x de \mathcal{D} , $u(x) \neq 0$.

La fonction inverse de u notée $\frac{1}{u}$, est la fonction définie sur \mathcal{D} par :

$$\left(\frac{1}{u}\right)(x) = \frac{1}{u(x)}$$

Exemple:

Soit u la fonction définie sur \mathbb{R} par $u(x)=x^2+1$. Alors pour tout réel x, u(x)>0

La fonction $\frac{1}{u}$ est la fonction définie sur \mathbb{R} par $\left(\frac{1}{u}\right)(x) = \frac{1}{u(x)} = \frac{1}{x^2 + 1}$.

Propriétés:

• Soit *u* une **fonction monotone** et à valeurs strictement **positives** sur un intervalle I.

La fonction $\frac{1}{u}$ a le sens de variation contraire à celui de u sur I.

• Soit *u* une **fonction monotone** et à valeurs strictement **négatives** sur un intervalle I.

La fonction $\frac{1}{u}$ a le sens de variation contraire à celui de u sur I.

Démonstration :

Supposons que u est croissante sur I et à valeurs strictement positives.

Pour tous réels a et b de I, si $a \le b$ alors $0 \le u(a) \le u(b)$.

La fonction inverse étant décroissante sur $[0; +\infty[$, on obtient $\frac{1}{u(a)} \ge \frac{1}{u(b)}$, soit

$$\left(\frac{1}{u}\right)(a) \geqslant \left(\frac{1}{u}\right)(b)$$

Ainsi, $\frac{1}{u}$ est décroissante sur I.

5) Somme et produit de fonctions

Définitions:

Soit u et v deux fonctions définies sur partie \mathcal{D} de \mathbb{R} .

• La fonction somme de u et v notée u+v, est la fonction définie sur \mathscr{D} par :

$$(u+v)(x)=u(x)+v(x)$$

• La fonction produit de u et v notée $u \times v$, est la fonction définie sur \mathcal{D} par :

$$(u \times v)(x) = u(x) \times v(x)$$

Exemple:

Soit u la fonction définie sur \mathbb{R} par $u(x)=x^2+1$ et v la fonction définie sur \mathbb{R} par v(x)=3x+1. La fonction u+v est la fonction définie sur \mathbb{R} par :

$$(u+v)(x)=u(x)+v(x)=x^2+1+3x+1=x^2+3x+2$$

La fonction $u \times v$ est la fonction définie sur \mathbb{R} par :

$$(u \times v)(x) = u(x) \times v(x) = (x^2 + 1) \times (3x + 1) = 3x^3 + 3x + x^2 + 1 = 3x^3 + x^2 + 3x + 1$$

Remarque:

La fonction ku est un cas particulier de fonction produit (k est une fonction constante).

Propriétés:

- Soit *u* et *v* deux fonctions **croissantes** sur un intervalle I.
 - La fonction u+v est **croissante** sur l'intervalle I.
- Soit *u* et *v* deux fonctions **décroissantes** sur un intervalle I.
 - La fonction u+v est **décroissante** sur l'intervalle I.

Démonstration :

Supposons que u et v sont croissantes sur I.

Pour tous réels a et b de I, si $a \le b$ alors $u(a) \le u(b)$ et $v(a) \le v(b)$.

Donc $u(a) + v(a) \le u(b) + v(a) \le u(b) + v(b)$, soit $(u+v)(a) \le (u+v)(b)$

Ainsi, u+v est croissante sur I.

On procède de la même manière pour l'autre cas.

Remarque:

Si u et v n'ont pas le même sens de variation sur l'intervalle I, alors on ne peut rien dire à priori sur le sens de variation de la fonction u+v.