Semantics of Propositional Logic

Yu "Tony" Zhang, Ph.D.
Assistant Professor
Arizona State University

Interpretation

An interpretation of a propositional signature σ is a function from σ into $\{f,t\}$

- A propositional signature is a set of symbols called atoms, such as p, q, r
- The symbols f and t are called truth values.
- If σ is finite, an interpretation can be defined by a truth table

p	q	r
f	f	t

Basics

Basic valuations:

¬f	t
¬t	f
fVt, tVf, fVt	t
fVf	f
t∧t	t
t∧f, f∧t, f∧f	f
t→f	f
t→t, f→t, f→f	t

Valuation

A valuation of a formula *F* is an assignment of each propositional atom in *F* to a truth value

- $F = (p \rightarrow \neg q) \rightarrow (q \lor \neg p)$
- List all valuations of its subformulas

			\leq			
p	q	¬р	¬q	$p \rightarrow \neg q$	q V=p	$(p \rightarrow \neg q) \rightarrow (qV \neg p)$
t	t	f	f	f	t	t
t	f	f	t	t	f	f
f	t	t	f	t	t	t
f	f	t	t	t	t	t

Valuation with Parse Tree

Example:
$$F = \neg p \land q \rightarrow p \land (q \lor \neg r)$$
 $I = \begin{bmatrix} p & q & r \\ f & f & t \end{bmatrix}$

If $F^I = t$ then we say that the interpretation I satisfies F (symbolically $I \models F$)

Valuation with computers

- For any formula F and any interpretation I, the truth value F^I that is assigned to F by I is defined recursively, as follows:
 - For any atom $F, F^I = I(F)$ $\bot^I = f, \top^I = t$ $(\neg F)^I = \neg (F^I)$
 - $-(F\odot G)^I=\odot (F^I,G^I)$ for every binary connective \odot

Entailment

- A set Γ of formulas entails a formula F (symbolically, $\Gamma \models F$), if every interpretation that satisfies all formulas in Γ satisfies F also.
 - c.f. Entailment uses the same symbol as satisfaction, the difference being what appears on the left of .
 - The formulas entailed by Γ are also called the logical consequences of Γ .

Example

Q: True or false?

$$- \{A, A \rightarrow B\} \models B$$

	A	В	$A \rightarrow B$
{	t	t	t $ \leftarrow$
	t	f	f
	f	t	t
	f	f	t
	•		

Tautology

A propositional formula F is a tautology if every interpretation satisfies F

Q: Is the following formula a tautology?

p	q	¬р	p→q	¬pV q	$(p \rightarrow q) \rightarrow (\neg p \lor q)$
t	t	f	t	t	t
t	f	f	f	f	t
f	t	t	t	t	t
f	f	t	t	t	t

Satisfiability

A propositional formula F is satisfiable if some interpretation satisfies F

– Q: Is the following formula satisfiable?

$$(p \to (q \to p))$$

p	q	$q \rightarrow p$	$(p \rightarrow (q \rightarrow p))$
t	t	t	t
t	f	t	t
f	t	f	t
f	f	t	t

Equivalence

F is equivalent to G (symbolically, $F \Leftrightarrow G$) if, for every interpretation I, $F^I = G^I$

— Q: Are the following formulas equivalent?

p	q	¬р	$p \rightarrow q$	¬pV q
t	t	f	t	t
t	f	f	f	f
f	t	t	t	t
f	f	t	t	t

Soundness and Completeness

- When we define a logic (or any type of calculus), we want to show that it is useful.
 - Soundness: Formulas that we derive using the calculus reflect a "real" truth.
 - Completeness: Every formula corresponding to a "real" truth can be inferred using rules of the calculus.

Soundness and Completeness

- In the case of propositional logic, given the formulas $\Phi_1, \Phi_2, ..., \Phi_n$ and Ψ , we have deduction entirely
 - Soundness: if $\Phi_1,...,\Phi_n \vdash \Psi$ holds, then $\Phi_1,...,\Phi_n \biguplus \Psi$ holds.
 - Completeness: if $\Phi_1,...,\Phi_n \models \Psi$ holds, then $\Phi_1,...,\Phi_n \vdash \Psi$ holds.
- Natural Deduction is Sound and Complete

Summary

- Semantics of propositional logic
 - Interpretation
 - Valuation
- Logic relationships based on semantics
 - Entailment
 - Tautology
 - Satisfiability
 - Equivalence
- Natural deduction is sound and complete