Announcements Week Sept 23th to 27th

Quiz 3 Closes on Friday at 5:00 PM

Review 2 this week (can attend either Thursday or Friday)

PeerCollab:

Monday and Wednesday: 3:00 to 5:00 PM

Office Hour:

Thursday 3:00 to 4:30 pm Otto Maass 100

This week in Chem110

- We will use our understanding of orbitals/electronic configurations to:
- Determine how bonds are formed
- Understand why there is a difference in the types of bonds
- Compare bond strengths between different bonds
- Draw 2-dimensional representation of covalent bonds in simple molecules

Department of Chemistry Research

Sustainable Nanomaterial Design, Synthesis and Applica to Catalysis

Welcome to the Moores Research group website!

Since 2007, my research group in the <u>Department of Chemistry</u> at <u>McGill University</u> works at the interfaces between the fields of nanoparticle science, material chemistry, coordination chemistry and organic synthesis.

https://www.mooresresearch.org/

Selective and recyclable catalyst

Audrey Moores

Comparison of Lattice Energy (Periodic Trend)

Lattice energy depends upon the electrostatic interactions between the cation and the anion

$$E \propto q_1 q_2 / r^2$$

q₁ and q₂ are the anionic and cationic charge

r is the distance between them

The factors that determine lattice energy:

- 1) Charge of the ions higher the charge, higher the lattice energy
- 2) Size Larger the ions (larger the radius), lower the lattice energy

Which of the following has higher lattice energy?

KCl or CaS

CsCl or MgCl₂

RbI or NaBr

Which of the following has higher lattice energy?

CsCl or MgCl₂

Mg²⁺ smaller than Cs⁺ Mg2+ higher charge

Rbl or NaBr

Na⁺ smaller than Rb⁺ Br- is smaller than I-

KCI or CaS

Higher charge for both Ca²⁺ and S²⁻

Ca²⁺ smaller than K⁺

Even though CI- is smaller than S2-; the higher charge of both cation and anion and the smaller size of cation results in CaS with a higher lattice energy (In an exam, you will not have opposing trends like in this question)

Compare the bond energy and bond order of the following:

A C-O C=O C=O

B C = C C = N C = O

C H—F H—CI H—Br H—I

Compare the bond energy and bond order of the following:

A C = 0

Higher the bond order – stronger the bond (bond energy is higher)

If the bond order is the same, then compare the bond length. Shorter the bond length – stronger the bond (bond energy is higher)

slido

Which molecule has higher bond energy?

(i) Start presenting to display the poll results on this slide.

Sirjoosingh Chem 110

How are covalent bonds formed?

We can plot the energy of the two atoms forming a covalent bond as a function of the distance between them

slido

Which molecule has higher bond energy?

(i) Start presenting to display the poll results on this slide.

Noble Gases

Practice the Lewis Structure for the following molecules:

 H_2O

 H_2

 O_2

Practice the Lewis Structure for the following molecules:

Calculate the enthalpy of reaction for the following reaction

$$2H_2O(I)$$
 $\longrightarrow 2H_2(g) + O_2(g)$

BOND ENERGIES:

H-H: 436 kJ

O=O: 498 kJ

O-H: 464 kJ

Calculate the enthalpy of reaction for the following reaction

BOND ENERGIES:

H-H: 436 kJ/mol O=O: 498 kJ/mol

O-H: 464 kJ /mol

BREAK

4 mol O-H: 4(+ 464 kJ)

+ 1856 kJ

MAKE

2 mol H-H: 2(- 436 kJ)

1 mol O=O: <u>- 498 kJ</u>

- 1370 kJ

$$\Delta_{\rm r}{\rm H}^{\circ}$$
 = (1856 - 1370) = 486 kJ > 0 (positive, endothermic)

IONIC BONDING

Hypothetical steps in the formation of an ionic solid

$$Li(s) + \frac{1}{2} F_2(g)$$
 \longrightarrow $LiF(s)$

- i. Formation of gaseous metal atoms
- $Li(s) \longrightarrow Li(g)$
- ii. Formation of gaseous metal cations
- $Li(g) \longrightarrow Li^+(g)$
- iii. Formation of gaseous non-metal atoms
- $\frac{1}{2} F_2(g) \longrightarrow F(g)$
- iv. Formation of gaseous non-metal anions
- $F(g) \longrightarrow F^{-}(g)$

v. Formation of ionic solid/lattice

$$Li^+(g) + F^-(g) \longrightarrow LiF(s)$$

Step v releases a lot of heat (-ve enthalpy), compensating for i to iv

Reverse of step v – gives us the Lattice Energy

Destruction of ionic lattice (Lattice Energy)

$$LiF(s) \longrightarrow Li^+(g) + F^-(g)$$

The enthalpy change associated with lattice destruction is called lattice energy

IONIC BONDING

Lattice Energy

Formation of ionic solid

$$Li^+(g) + F^-(g) \longrightarrow LiF(s)$$

 $\Delta H = -1050 \text{ kJ/mol}$

The ΔH for the above reaction is a high negative value (Exothermic reaction)

Destruction of ionic lattice

LiF(s)
$$\longrightarrow$$
 Li⁺(g) + F⁻ (g)
 $\Delta H = 1050 \text{ kJ/mol}$

The enthalpy change associated with **lattice destruction** is called lattice energy

How do we determine lattice energy?

Lattice Energy: Born Haber Cycle

We can't measure lattice energy directly: We determine it indirectly using Born Haber Cycle

Calculate the lattice energy of magnesium sulfide from the data given below.

$$Mg(s) \longrightarrow Mg(g)$$

$$\Delta H^{\circ} = 148 \text{ kJ/mol}$$

$$Mg(g) ---> Mg^{2+}(g) + 2e^{-}$$

$$\Delta H^{\circ}$$
 = 2186 kJ/mol

$$S_8(s) ---> 8S(g)$$

$$\Delta H^{\circ}$$
 = 2232 kJ/mol

$$S(g) + 2e^{-} --- > S^{2-}(g)$$

$$\Delta H^{\circ} = 450 \text{ kJ/mol}$$

$$8Mg(s) + S_8(s) ---> 8MgS(s)$$

$$\Delta H^{\circ} = -2744 \text{ kJ/mol}$$

Calculate the lattice energy of magnesium sulfide from the data given below.

$$Mg(s) \longrightarrow Mg(g)$$

$$\Delta H^{\circ} = 148 \text{ kJ/mol}$$

$$Mg(q) ---> Mg^{2+}(q) + 2e^{-}$$

$$\Delta H^{\circ} = 2186 \text{ kJ/mol}$$

$$S_8(s) \longrightarrow 8S(g)$$

(1/8) $S_8(s) \longrightarrow S(g)$

$$\Delta H^{\circ} = 2232 \text{ kJ/mol}$$

 $\Delta H^{\circ} = 279 \text{ kJ/mol}$

$$S(g) + 2e^{-} --- > S^{2-}(g)$$

$$\Delta H^{\circ} = 450 \text{ kJ/mol}$$

$$8Mg(s) + S_8(s) ---> 8MgS(s)$$

 $(8/8) Mg(s) + (1/8) S_8(s) ---> (8/8) MgS(s)$
 $Mg(s) + (1/8) S_8(s) ---> MgS(s)$
 $MgS(s) ---> Mg(s) + (1/8) S_8(s)$

$$\Delta H^{\circ} = -2744 \text{ kJ/mol}$$

 $\Delta H^{\circ} = (-2744/8) \text{ kJ/mol}$
 $\Delta H^{\circ} = -343 \text{ kJ/mol}$
 $\Delta H^{\circ} = 343 \text{ kJ/mol}$

Lattice Energy Reaction:

$$\Delta H^{\circ} = ?$$

Calculate the lattice energy of magnesium sulfide from the data given below.

$$-Mg(s) --> Mg(g)$$

$$\Delta H^{\circ} = 148 \text{ kJ/mol}$$

$$-Mg(g)$$
---> $Mg^{2+}(g) + 2e^{-}$

$$\Delta H^{\circ} = 2186 \text{ kJ/mol}$$

$$(1/8) S_8(s) ---> S(g)$$

$$\Delta H^{\circ} = 279 \text{ kJ/mol}$$

$$-S(g) + 2e^- --> S^{2-}(g)$$

$$\Delta H^{\circ} = 450 \text{ kJ/mol}$$

$$MgS(s) ---> Mg(s) + (1/8) S_8(s)$$

$$\Delta H^{\circ} = 343 \text{ kJ/mol}$$

Lattice Energy Reaction:

$$\Delta H^{\circ} = ?$$

$$\Delta H^{\circ}$$
 (Lattice energy) = 148 + 2186 + 279 + 450 +343 = 3406 kJ/mol

These reactions can

together to get the

representing the

lattice energy

now be added

reaction

reaction

Label the polar covalent bonds in the structures below, indicate δ + and δ –.

Which bond is the *most* polar? (Use the Datasheet – posted on myCourses has the

electronegativity chart)

H 2.1]	Electronegativity values of the elements (Pauling scale)													He		
Li	Be]										В	С	N	0	F	Ne
1.0	1.5											2.0	2.5	3.0	3.5	4.0	<u> </u>
0.9	Mg 1.2											AI 1.5	Si 1.8	P 2.1	S 2.5	3.0	Ar
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8	Kr 3.0
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	1 2.5	Xe 2.6
Cs	Ва	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	Ti	Pb	Bi	Рο	At	Rn
0.7 Fr	0.9 Ra	1.1 Ac	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	2.4
0.7	0.7	1.1															
Ca	Dr	NA	Dm	Sm.	E.,	G4	Th	Dv	ш	Er	Tm	Vh	1	1			

С	e	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
1.	1 '	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.2
Т	n	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
1.	3	1.5	1.7	1.3	1.3	1.3	1.3	1.3	Cf 1.3	1.3	1.3	1.3	1.3	

Practice Question 8: Determining Lewis Structures

Lewis structures to determine the bonding in complex molecules

- 1. Determine total number of valence electrons
- 2. Any charges? YES add (-ve charge)/subtract (+ve charge)
- 3. Build skeleton structure (incomplete Lewis Structure)
 - a) Group 14,15,16 atoms usually "central"
 - b) Hydrogen and Group 17 atoms "terminal"
 - c) Make multiple bonds only when necessary
- 4. Check Noble gas electronic configuration at each atom?