Theory on Matroids

April 6, 2024

This document contains definitions and properties that are implemented in the project. The focus is on clarity of statements and lean-friendliness of the proofs.

1 References

- James Oxley, Matroid Theory, Second edition, Oxford University Press, New York, 2011.
- Henning Bruhn, Reinhard Diestel, Matthias Kriesell, Rudi Pendavingh, Paul Wollan, Axioms for infinite matroids, Advances in Mathematics, Volume 239, 2013, Pages 18-46. https://doi.org/10.1016/j.aim. 2013.01.011

Todo: create bibliography, move to the end of document

2 Matroid

Notation. Given $\mathcal{E} \subseteq 2^E$, we write \mathcal{E}^{\max} for the set of maximal elements of \mathcal{E} .

2.1 Definition via Independence Axioms

Definition 2.1. A matroid $\mathcal{M} = (E, \mathcal{I})$ is a pair of a ground set E (finite or infinite) and a set $\mathcal{I} \subseteq 2^E$ satisfying the following independence axioms:

- 1. $\emptyset \in \mathcal{I}$.
- 2. If $A \subseteq B$ and $B \in \mathcal{I}$, then $A \in \mathcal{I}$.
- 3. For all $I \in \mathcal{I} \setminus \mathcal{I}^{\max}$ and $I' \in \mathcal{I}^{\max}$, there is an $x \in I' \setminus I$ such that $I + x \in \mathcal{I}$.
- 4. Whenever $I \subseteq X \subseteq E$ and $I \in \mathcal{I}$, the set $\{I' \in \mathcal{I} \mid I \subseteq I' \subseteq X\}$ has a maximal element.

Todo: more axioms, proof of equivalence following [2]?

3 Functions on Matroids

3.1 Closure

Definition 3.1. The closure operator is the function $2^E \to 2^E$ mapping a set $X \subseteq E$ to the set

$$\operatorname{cl}(X) = X \cup \{x \in E \mid \exists I \subseteq X \text{ s.t. } : I \in \mathcal{I} \text{ but } I + x \notin \mathcal{I}\}.$$

Todo: state and prove properties

need more details?

3.2 Relative Rank

Definition 3.2. The relative rank function is the function $r: (2^E \times 2^E)_{\subseteq} \to \mathbb{N} \cup \{\infty\}$ that maps a pair $A \supseteq B$ of subsets of E to

$$r(A \mid B) = \max\{|I \setminus J| \mid I \supseteq J, I \in \mathcal{I} \cap 2^A, J \text{ maximal in } \mathcal{I} \cap 2^B\}.$$

Todo: state and prove properties

Lemma 3.1. This maximum is attained and is independent of the choice of J.

4 Operations on Matroids

4.1 Direct Sum

Definition 4.1. Let $\mathcal{M}_1 = (E_1, \mathcal{I}_1)$ and $\mathcal{M}_2 = (E_2, \mathcal{I}_2)$ be matroids on disjoint sets E_1 and E_2 . Let $E = E_1 \cup E_2$ and $\mathcal{I} = \{I_1 \cup I_2 \mid I_1 \in \mathcal{I}_1, I_2 \in \mathcal{I}_2\}$. The *direct sum* of \mathcal{M}_1 and \mathcal{M}_2 is the matroid $\mathcal{M}_1 \oplus \mathcal{M}_2 = (E, \mathcal{I})$.

Lemma 4.1. $\mathcal{M}_1 \oplus \mathcal{M}_2$ is indeed a matroid, i.e., \mathcal{I} satisfies the independence axioms.

Proof. First, we list several propositions that will be useful when checking the axioms.

- 1. If $A, B \in E_1 \cup E_2$ where $E_1 \cap E_2 = \emptyset$, then $A \subseteq B$ if and only if $A \cap E_1 \subseteq B \cap E_1$ and $A \cap E_2 \subseteq B \cap E_2$. Moreover, if $A \subseteq B$, then $A \cap E_1 \subseteq B \cap E_1$ or $A \cap E_2 \subseteq B \cap E_2$. This holds by set theory.
- 2. $I \in \mathcal{I}$ if and only if $I \cap E_1 \in \mathcal{I}_1$ and $I \cap E_2 \in \mathcal{I}_2$. Indeed, this follows from the definition of \mathcal{I} and the fact that $E_1 \cap E_2 = \emptyset$.
- 3. $I \in \mathcal{I}^{\max}$ if and only if $I \cap E_1 \in \mathcal{I}_1^{\max}$ and $I \cap E_2 \in \mathcal{I}_2^{\max}$. To prove the forward direction, first note that $I \cap E_1 \in \mathcal{I}_1$ and $I \cap E_2 \in \mathcal{I}_2$ by proposition 2. For the sake of deriving a contradiction, suppose that $I \cap E_1 \notin \mathcal{I}_1^{\max}$, i.e., there is $x \in E_1 \setminus I$ such that $(I \cap E_1) + x \in \mathcal{I}_1$. But then $(I \cap E_1) + x + (I \cap E_2) \in \mathcal{I}$ by definition of \mathcal{I} , which contradicts maximality of I. Thus, $I \cap E_1 \in \mathcal{I}_1^{\max}$, as desired. We can show $I \cap E_2 \in \mathcal{I}_2^{\max}$ similarly by swapping the roles of \mathcal{M}_1 and \mathcal{M}_2 . To show the converse by contraposition, suppose we have $I \notin \mathcal{I}^{\max}$. Then there exists $I' \in \mathcal{I}$ such that $I \subsetneq I'$. By proposition 1, we have $I \cap E_1 \subsetneq I' \cap E_1$ or $I \cap E_2 \subsetneq I' \cap E_2$. Since $I \cap E_1, I' \cap E_1 \in \mathcal{I}_1$ and $I \cap E_2, I' \cap E_2 \in \mathcal{I}_2$ by proposition 2, this means that $I \cap E_1 \notin \mathcal{I}_1^{\max}$ or $I \cap E_2 \notin \mathcal{I}_2^{\max}$.
- 4. Let $T = \{I' \in \mathcal{I} \mid I \subseteq I' \subseteq X\}$, $T_1 = \{I'' \in \mathcal{I} \mid I_1 \subseteq I'' \subseteq X_1\}$, $T_2 = \{I'' \in \mathcal{I} \mid I_1 \subseteq I'' \subseteq X_1\}$. If $I' \in T$, then $I' = I'_1 \cup I'_2$ where $I'_1 \in T_1$ and $I'_2 \in T_2$. Indeed, by definition of \mathcal{I} we have $I' = I'_1 \cup I'_2$ where $I'_1 \in \mathcal{I}_1$ and $I'_2 \in \mathcal{I}_2$. By applying proposition 1 to I and I' and to I' and X, we obtain $I_1 \subseteq I'_1 \subseteq X_1$ and $I_2 \subseteq I'_2 \subseteq X_2$.

Now we are ready to prove the independence axioms.

- 1. Since $\emptyset \in \mathcal{I}_1$ and $\emptyset \in \mathcal{I}_2$, we have $\emptyset \cup \emptyset = \emptyset \in \mathcal{I}$.
- 2. Let $A \subseteq B$ and $B \in \mathcal{I}$. By combining proposition 1 with proposition 2, we get $A \cap E_1 \subseteq B \cap E_1 \in \mathcal{I}$ and $A \cap E_2 \subseteq B \cap E_2 \in \mathcal{I}$. By independence axiom 2 for \mathcal{M}_1 and \mathcal{M}_2 , this implies $A \cap E_1 \in \mathcal{I}$ and $A \cap E_2 \in \mathcal{I}$, so $A \in \mathcal{I}$ by proposition 2.
- 3. Let $I \in \mathcal{I} \setminus \mathcal{I}^{\max}$ and $I' \in \mathcal{I}^{\max}$. Our goal is to show that there exists $x \in I' \setminus I$ such that $I + x \in \mathcal{I}$. To simplify notation, let $I_1 = I \cap E_1$, $I_2 = I \cap E_2$, $I'_1 = I' \cap E_1$, $I'_2 = I' \cap E_2$. By proposition 3 applied to I', we have $I'_1 \in \mathcal{I}^{\max}_1$ and $I'_2 \in \mathcal{I}^{\max}_2$, while by the same proposition applied to I, we know that $I_1 \notin \mathcal{I}^{\max}_1$ or $I_2 \notin \mathcal{I}^{\max}_2$. We assume that $I_1 \notin \mathcal{I}^{\max}_1$, as the argument in case $I_2 \notin \mathcal{I}^{\max}_2$ is the same up to swapping \mathcal{M}_1 and \mathcal{M}_2 . Since $I_1 \in \mathcal{I}_1$ by proposition 2, we can apply independence axiom 3 for \mathcal{M}_1 to I_1 and I'_1 , which yields $x \in I'_1 \setminus I_1$ such that $I_1 + x \in \mathcal{I}_1$. Clearly, $x \in I' \setminus I$: on the one hand, we have $x \in I'_1 \subseteq I'$, and on the other hand, $x \notin I$ follows from $x \notin I_1$ (by construction of x) and purely set-theoretic facts ($x \in I'_1 \subseteq E_1$, $x \in I'_2 \subseteq E_2$, $x \in I'_1 \cap E_2 = \emptyset$, $x \in I'_1 \cap I_2$. Additionally, $x \in I'_1$ together with $x \in I'_2$ implies $x \in I'_1 \cap I'_2$. Thus, element $x \in I'_1$ satisfies both the desired properties.

4. Let $I \subseteq X \subseteq E$ and $I \in \mathcal{I}$. For the sake of deriving a contradiction, assume that the set $T = \{I' \in \mathcal{I} \mid I \subseteq I' \subseteq X\}$ has no maximal element. Let us introduce the following notation: $I_1 = I \cap E_1$, $I_2 = I \cap E_2$, $X_1 = X \cap E_1$, $X_2 = X \cap E_2$. By independence axiom 4 for \mathcal{M}_1 and \mathcal{M}_2 , we know that $T_1 = \{I'' \in \mathcal{I} \mid I_1 \subseteq I'' \subseteq X_1\}$ and $T_2 = \{I'' \in \mathcal{I} \mid I_2 \subseteq I'' \subseteq X_2\}$ each have a maximal element, which we denote by S_1 and S_2 , respectively. Consider the set $S = S_1 \cup S_2$ and observe that $S \in T$. Indeed, $S \in \mathcal{I}$ follows from $S = S_1 \cup S_2$, $S_1 \in \mathcal{I}_1$ (as $S_1 \in T_1$), and $S_2 \in \mathcal{I}_2$ (as $S_2 \in T_2$), while applying proposition 1 to I and S and to S and X yields $I \subseteq S \subseteq X$. Since by our assumption T has no maximal element, there exists $S' \in T$ such that $S \subseteq S'$. Let $S'_1 = S' \cap E_1$ and $S'_2 = S' \cap E_2$ and note that $S'_1 \in \mathcal{I}_1$ and $S'_2 \in \mathcal{I}_2$ by proposition 2. Applying proposition 4 to S' yields $S'_1 \in T_1$ and $S'_2 \in T_2$. By maximality of S_1 and S_2 in T_1 and T_2 , respectively, we have $S'_1 \subseteq S_1$ and $S'_2 \subseteq S_2$. However, this implies $S' = S'_1 \cup S'_2 \subseteq S_1 \cup S_2 = S$, which contradicts $S \subseteq S'$ from earlier.

Questions about lean optimizations: maximality properties are automatically preserved under finite unions?

4.2 Mapping

Todo: definition, proof that result is a matroid

4.3 Union

Todo: definition, proof that result is a matroid

5 Representable Matroids

Todo: definition, proof that result is a matroid

6 Regular Matroids

Todo: definition, proof that result is a matroid

7 Largest Common Independent Set

Lemma 7.1. Let \mathcal{M}_1 and \mathcal{M}_2 be finite matroids with rank functions r_1 and r_2 and a common ground set E. Then

$$\max\{|I| \mid I \in \mathcal{I}_1 \cap \mathcal{I}_2\} = \min\{r_1(T) + r_2(E - T) \mid T \subseteq E\}.$$

Todo: proof? generalize?

8 Seymour's Decomposition Theorem

Todo: statement, proof