Árvores I

Prof. Kennedy Lopes

UFERSA

April 14, 2021

Definições e representações básicas

- Uma árvore T é um conjunto finito de elementos denominados nós ou vértices tais que:
 - é árvore vazia;
 - possui um valor associado e dois ou mais vértices que são subárvores do mesmo formato que T.

Outras representações

Exemplo

Paretensco em árvores

- É filho de...
- É pai de...

Exemplo:

C tem os filhos (D, F, E) I tem como pai F

Árvores Ordenadas

- Se é considerada a ordem entre os filhos de cada nó, a árvore é ordenada.
- Árvores Isomorfas: São consideradas isomorfas, árvores nas quais uma permutação de suas sub-árvores as tornam coincidentes;

Árvores binárias

Uma árvore binária é uma das duas opções:

- Uma árvore vazia;
- Uma árvore com um nó especial chamado raiz e duas sub-árvores associados a ela:
 - Sub-árvore esquerda;
 - Sub-árvore direita.

Árvores binárias

Lemma

Tipos especiais de árvores binárias

- Estritamente binária
- · Binária completa
- · Binária cheia

FIGURA 3.7 Árvores estritamente binária, binária completa e cheia.

Altura de árvores binárias

- O processo de busca de dados em árvores
 - Feito a partir da raiz na direção de alguma de suas folhas;
 - Busca ágil: Árvore com a menor altura possível são desejáveis;
- Se uma árvore ${f T}$ com ${m n}>{f 0}$ nós é completa, então ela tem altura mínima
 - É possível reordenar folhas para torná-las completas.

Altura de árvores binárias

• Á altura de uma árvore binária pode ser calculada por:

$$h = 1 + piso(\log_2 n)$$

Onde **piso** representa o maior inteiro menor do que o argumento.

Exemplos:

$$h = 1 + \text{floor} \left[\log_2 \left(9 \right) \right] = 4$$

$$h = 1 + \text{floor} \left[\log_2 \left(15 \right) \right] = 4$$

Implementação em forma de vetor

- Árvores binárias implementadas em vetor:
 - Pode-se utilizar o armazenamento contíguo proporcionado por vetores;
 - Armazena-se níveis sucessivos da árvore sequencialmente no vetor.

Implementação em forma de vetor

- Considere um nó no índice i. Então seus filhos esquerdos e direitos serão indexados por:
 - Filho esquerdo de i: 2i
 - Filho direito de i: 2i + 1
- Uma árvore de altura h precisa de um vetor de $2^h - 1$ elementos;

Implementação com ponteiros

- · Utilizar vetores desperdiça memória;
 - · Complicado para reordenar os nós;
 - Ponteiros são mais utilizados.
- Estrutura de dados para um nó da árvore
 - Valor
 - Ponteiro para o nó da esquerda;
 - Ponteiro para o nó da direita.
- · A árvore é apenas um ponteiro para o nó raiz.

Implementação com ponteiros

- Estrutura completa da árvore:
 - Nó raiz apontado com um ponteiro T. 7 🕓
 - Nós folhas apontando para nós sem informação relevante. 🕏

