{ 3D PROJECTIVE GEOMETRIC ALGEBRA } 3D PGA CHEAT SHEET SIGGRAPH 2019 COURSE NOTES

BASICS

Basis & Metric: (1)

$\mathbb{R}_{3.0.1}^*$

		VEC	TOR		BIVECTOR							TRIVECTOR				
1	e_0	e_1	e_2	e_3	e_{01}	e_{02}	e_{03}	e_{12}	e_{31}	e_{23}	e_{021}	e_{013}	e_{032}	e_{123}	e_{0123}	
+1	0	+1	+1	+1	0	0	0	-1	-1	-1	0	0	0	-1	0	
		PLA	NE p		LINE ℓ						POINT P					

Multiplication Table:

1	\mathbf{e}_0	\mathbf{e}_1	\mathbf{e}_2	e_3	\mathbf{e}_{01}	e_{02}	e_{03}	\mathbf{e}_{12}	\mathbf{e}_{31}	e_{23}	e_{021}	e_{013}	e_{032}	e_{123}	I
\mathbf{e}_0	0	e_{01}	e_{02}	e_{03}	0	0	0	$-\mathbf{e}_{021}$	$-\mathbf{e}_{013}$	$-\mathbf{e}_{032}$	0	0	0	I	0
\mathbf{e}_1	$-e_{01}$	1	\mathbf{e}_{12}	$-e_{31}$	-e ₀	\mathbf{e}_{021}	$-e_{013}$	e_2	- e ₃	\mathbf{e}_{123}	\mathbf{e}_{02}	$-e_{03}$	I	\mathbf{e}_{23}	e_{032}
\mathbf{e}_2	$-e_{02}$	$-e_{12}$	1	e_{23}	$-\mathbf{e}_{021}$	$-\mathbf{e}_0$	e_{032}	$-\mathbf{e}_1$	e_{123}	e_3	$-e_{01}$	I	\mathbf{e}_{03}	e_{31}	e_{013}
\mathbf{e}_3	- e ₀₃	e_{31}	$-e_{23}$	1	e_{013}	$-e_{032}$	- e ₀	e_{123}	\mathbf{e}_1	-e ₂	I	\mathbf{e}_{01}	$-e_{02}$	\mathbf{e}_{12}	e_{021}
\mathbf{e}_{01}	0	\mathbf{e}_0	$-\mathbf{e}_{021}$	e_{013}	0	0	0	e_{02}	$-e_{03}$	I	0	0	0	$-e_{032}$	0
\mathbf{e}_{02}	0	e_{021}	\mathbf{e}_0	$-e_{032}$	0	0		$-e_{01}$	I	e_{03}	0	0	0	$-\mathbf{e}_{013}$	0
\mathbf{e}_{03}	0	$-\mathbf{e}_{013}$	e_{032}	\mathbf{e}_0	0	0	0	I	e_{01}	$-e_{02}$	0	0	0	$-\mathbf{e}_{021}$	0
\mathbf{e}_{12}	$-e_{021}$	$-\mathbf{e}_2$	\mathbf{e}_1	\mathbf{e}_{123}	$-e_{02}$	\mathbf{e}_{01}	I	-1	\mathbf{e}_{23}	$-e_{31}$	\mathbf{e}_0	\mathbf{e}_{032}	$-\mathbf{e}_{013}$	- e ₃	$-\mathbf{e}_{03}$
\mathbf{e}_{31}	$-e_{013}$	e_3	e_{123}	-e ₁	e_{03}	I	$-e_{01}$	$-e_{23}$	-1	e_{12}	$-\mathbf{e}_{032}$	\mathbf{e}_0	e_{021}	- e ₂	$-\mathbf{e}_{02}$
\mathbf{e}_{23}	$-e_{032}$	e_{123}	-e ₃	\mathbf{e}_2	I	$-e_{03}$	e_{02}	e_{31}	$-e_{12}$	-1	e_{013}	$-\mathbf{e}_{021}$	\mathbf{e}_0	-e ₁	$-e_{01}$
e_{021}	0	e_{02}	$-e_{01}$	-I	0			\mathbf{e}_0	e_{032}	$-\mathbf{e}_{013}$		0	0	e_{03}	0
e_{013}	0	$-e_{03}$	-I	e_{01}	0	0	0	$-e_{032}$	\mathbf{e}_0	e_{021}	0	0	0	e_{02}	0
e_{032}	0	-I	e_{03}	$-e_{02}$	0	0	0	e_{013}	$-e_{021}$	\mathbf{e}_0	0	0	0	e_{01}	0
e_{123}	-I	\mathbf{e}_{23}	\mathbf{e}_{31}	\mathbf{e}_{12}	e_{032}	e_{013}	e_{021}	- e ₃	$-\mathbf{e}_2$	-e ₁	$-e_{03}$	$-e_{02}$	$-e_{01}$	-1	\mathbf{e}_0
I	0	$-\mathbf{e}_{032}$	$-\mathbf{e}_{013}$	$-\mathbf{e}_{021}$	0	0	0	$-e_{03}$	$-e_{02}$	$-e_{01}$	0	0	0	- e ₀	0

Operators: (7)

ab		Geometric Product	
\mathbf{a}^*		Dual (2)	
\mathbf{a}^{\perp}	aI	Polarity	
ã		Reverse (3)	
$\hat{\mathbf{a}}$		Normalization (4)	
$\langle \mathbf{a} \rangle_{\mathbf{n}}$		Select grade n	
$\mathbf{a} \wedge \mathbf{b}$	$\langle {f ab} angle_{{f s}+{f t}}$	Outer Product	meet
$\mathbf{a} \lor \mathbf{b}$	$(\mathbf{a}^* \wedge \mathbf{b}^*)^*$	Regressive Product	join
$\mathbf{a} \cdot \mathbf{b}$	$\langle {f a}{f b} angle_{ {f s}-{f t} }$	Inner Product	
$\mathbf{a} \times \mathbf{b}$	$\frac{1}{2}(\mathbf{ab} - \mathbf{ba})$	Commutator Product	
	abã	Sandwich Product	

Dual, Reverse: (2) (3)

	1	\mathbf{e}_0	\mathbf{e}_1	\mathbf{e}_2	\mathbf{e}_3	\mathbf{e}_{01}	\mathbf{e}_{02}	e_{03}	\mathbf{e}_{12}	\mathbf{e}_{31}	\mathbf{e}_{23}	e_{021}	e_{013}	e_{032}	e_{123}	Ι
MV	a	b	c	d	e	f	g	h	i	j	k	l	m	n	0	p
MV*	p	o	n	m	l	k	j	i	h	g	f	e	d	c	b	a
ΜĨV	a	b	c	d	e	- f	-a	-h	-i	- j	-k	-l	-m	-n	-0	p

Sub-algebras:

$\{1\}$ \mathbb{R} Real	$\{1, \mathbf{e_{12}}\}$ \mathbb{C} Complex
$\{1, \mathbf{e_0}\}$ \mathbb{D} Dual	$\{1, \mathbf{e_1}\}$ \mathbb{D} Hyperbolic
$\{1, \mathbf{e_{12}}, \mathbf{e_{31}}, \mathbf{e_{23}}\}$	III Quaternions / rotors
$\{1, \mathbf{e_{01}}, \mathbf{e_{02}}, \mathbf{e_{03}}\}$	translators
$\{1, \mathbf{e}_{12}, \mathbf{e}_{31}, \mathbf{e}_{23}, \mathbf{e}_{01}, \mathbf{e}_{02}, \mathbf{e}_{02}, \mathbf{e}_{02}, \mathbf{e}_{02}, \mathbf{e}_{01}, \mathbf{e}_{02}, \mathbf{e}_$	$\{\mathbf{e}_{03}, \mathbf{I}\}$ Dual Quaternions / motors

GEOMETRY

Points, Lines, Planes:

Euclidean point (x, y, z)	$\mathbf{P} = x\mathbf{e}_{032} + y\mathbf{e}_{013} + z\mathbf{e}_{021} + \mathbf{e}_{123}$
Ideal point (direction) (x, y, z)	$\mathbf{P} = x\mathbf{e}_{032} + y\mathbf{e}_{013} + z\mathbf{e}_{021}$
Plane $a\mathbf{x} + b\mathbf{y} + c\mathbf{z} + d = 0$	$\mathbf{p} = a\mathbf{e}_1 + b\mathbf{e}_2 + c\mathbf{e}_3 + d\mathbf{e}_0$

Incidence: (5)

Join points/directions $\mathbf{P}_1,\mathbf{P}_2$ in line $oldsymbol{\ell}$	$\boldsymbol{\ell} = \mathbf{P}_1 \vee \mathbf{P}_2$
Meet planes $\mathbf{p}_1,\mathbf{p}_2$ in line $\boldsymbol{\ell}$	$\boldsymbol{\ell} = \mathbf{p}_1 \wedge \mathbf{p}_2$
Join points $\mathbf{P}_1,\mathbf{P}_2,\mathbf{P}_3$ in plane \mathbf{p}	$\mathbf{p} = \mathbf{P}_1 \vee \mathbf{P}_2 \vee \mathbf{P}_3$
Meet planes $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$ in point \mathbf{P}	$\mathbf{P} = \mathbf{p}_1 \wedge \mathbf{p}_2 \wedge \mathbf{p}_3$
Join line ℓ and point ${f P}$ in plane ${f p}$	$\mathbf{p} = \boldsymbol{\ell} \vee \mathbf{P}$
Meet line ℓ and plane ${f p}$ in point ${f P}$	$\mathbf{P} = \boldsymbol{\ell} \wedge \mathbf{p}$

Project, Reject:

Plane \perp to plane p through line ℓ	$\mathbf{p}\cdot\boldsymbol{\ell}$
Line \perp to plane ${f p}$ through point ${f P}$	$\mathbf{p}\cdot\mathbf{P}$
Plane \perp to line ℓ through point ${f P}$	$\ell \cdot \mathbf{P}$
Project plane ${f p}$ onto point ${f P}^{(6)}$	$(\mathbf{p}\cdot\mathbf{P})\mathbf{P}$
Project point ${f P}$ onto plane ${f p}$	$(\mathbf{p}\cdot\mathbf{P})\mathbf{p}$
Project plane p onto line ℓ	$(\mathbf{p}\cdot\boldsymbol{\ell})\boldsymbol{\ell}$
Project line ℓ onto plane ${f p}$	$(\mathbf{p}\cdot\boldsymbol{\ell})\mathbf{p}$
Project line ℓ onto point ${f P}$	$(\boldsymbol{\ell}\cdot\mathbf{P})\mathbf{P}$
Project point ${f P}$ onto line ℓ	$(\boldsymbol{\ell}\cdot\mathbf{P})\boldsymbol{\ell}$
Direction \perp to plane p	$\mathbf{p}^\perp = \mathbf{p}\mathbf{I}$
Ideal line ot to line ℓ	$\boldsymbol{\ell}^\perp = \boldsymbol{\ell}\mathbf{I}$

Metric relations: (Some 2D-similar formulas omitted.)									
Distance of points $\mathbf{P}_1, \mathbf{P}_2$	$\ \hat{\mathbf{P}}_1 \lor \hat{\mathbf{P}}_2\ $, $\ \hat{\mathbf{P}}_1 \times \hat{\mathbf{P}}_2\ _{\infty}$								
Angle of inters. planes $\mathbf{p}_1, \mathbf{p}_2$	$\cos^{-1}(\mathbf{\hat{p}}_1\cdot\mathbf{\hat{p}}_2)$, $\sin^{-1}(\ \mathbf{\hat{p}}_1\wedge\mathbf{\hat{p}}_2\)$								
Dist. between \parallel planes $\mathbf{p}_1,\mathbf{p}_2$	$\ \mathbf{\hat{p}}_1\wedge\mathbf{\hat{p}}_2\ _{\infty}$								
Angle of plane p and line ℓ	$\sin^{-1}(\ \langle \hat{\mathbf{p}}\hat{\boldsymbol{\ell}}\rangle_3\)$								
Dist. between parallel p and ℓ	$(\ \langle \hat{\mathbf{p}} \hat{m{\ell}} angle_3\ _{\infty})$								
Oriented distance ${\bf P}$ to ${\bf p}$	$\mathbf{\hat{P}} ee \mathbf{\hat{p}}$, $\ \mathbf{\hat{P}} \wedge \mathbf{\hat{p}}\ _{\infty}$								
Oriented distance P to ℓ	$\ \hat{\mathbf{P}} ee \hat{oldsymbol{\ell}}\ $								
Angle bisector of \mathbf{p}_1 and \mathbf{p}_2	$(\mathbf{\hat{p}}_1 + \mathbf{\hat{p}}_2) \text{ or } (\mathbf{\hat{p}}_1 - \mathbf{\hat{p}}_2)$								
Common normal line to ℓ_1,ℓ_2	$\widehat{\boldsymbol{\ell_1 \times \ell_2}}$								
Angle α between ℓ_1, ℓ_2	$\alpha = \cos^{-1} \left(\hat{\boldsymbol{\ell}}_1 \cdot \hat{\boldsymbol{\ell}}_2 \right)$								
Distance between ℓ_1,ℓ_2	$d_{\boldsymbol{\ell}_1\boldsymbol{\ell}_2} = \csc\alpha \left(\hat{\boldsymbol{\ell}}_1 \vee \hat{\boldsymbol{\ell}}_2\right)$								

Norms & Motors

Norms: (Planes, points, and pss like 2D analogs) (8)

Line
$$\ell = ... + d\mathbf{e}_{12} + e\mathbf{e}_{31} + f\mathbf{e}_{23}$$
: $\|\ell\| := \sqrt{\ell \tilde{\ell}} = \sqrt{d^2 + e^2 + f^2}$
Ideal $\ell = a\mathbf{e}_{01} + b\mathbf{e}_{02} + c\mathbf{e}_{03}$: $\|\ell\|_{\infty} := \sqrt{a^2 + b^2 + c^2}$
Normalize line ℓ $\hat{\ell} = \frac{\ell}{\|\ell\|}$ (eucl.) or $\frac{\ell}{\|\ell\|_{\infty}}$ (ideal)

Sandwiches and motors:

Rotator $lpha$ around line $oldsymbol{\ell}_E$	$e^{\frac{\alpha}{2}\ell_E} = \cos\frac{\alpha}{2} + \sin\frac{\alpha}{2}\ell_I$
Translator $d\perp$ to $\boldsymbol{\ell}_{\infty}$	$e^{\frac{d}{2}\boldsymbol{\ell}_{\infty}} = 1 + \frac{d}{2}\boldsymbol{\ell}_{\infty}$
Screw axis ℓ + pitch $p = \frac{d}{\alpha}$	$e^{t(1+p\mathbf{I})\boldsymbol{\ell}} = e^{t\boldsymbol{\ell}}e^{tp\mathbf{I}\boldsymbol{\ell}} = e^{tp\mathbf{I}\boldsymbol{\ell}}e^{t\cdot \mathbf{r}}$
Motor between lines ℓ_1 , ℓ_2	$\sqrt{\hat{m{\ell}}_2\hat{m{\ell}}_1}=\widehat{1+\hat{m{\ell}}_2\hat{m{\ell}}}$
Logarithm of motor ${f m}^{~(9)}$	$\mathbf{b} = \langle \mathbf{m} \rangle_2, s = \sqrt{-\mathbf{b} \cdot \mathbf{b}}, p = \frac{-\mathbf{b} \wedge \mathbf{b}}{2s}$
	$\log \mathbf{m} = \left(\tan^{-1}\left(\frac{s}{\langle \mathbf{m} \rangle_0}\right) + \frac{p}{\langle \mathbf{m} \rangle_0}\right) \mathbf{b} \frac{s-p}{s^2}$

Compose & Apply:

ı	Compose motors \mathbf{m}_1 and \mathbf{m}_2	$\mathbf{m}_2\mathbf{m}_1$
	Normalize motor m	$\widehat{\mathbf{m}} = rac{\mathbf{m}}{\ \mathbf{m}\ }$
ı	Square root simple motor m	$\sqrt{\mathbf{m}} = (\widehat{1+\mathbf{m}})$
ı	Square root general motor m	$\sqrt{\mathbf{m}} = (1+\mathbf{m})(\widehat{1+\langle \mathbf{m} \rangle} - \frac{1}{2}\langle \mathbf{m} \rangle_4)$
ı	Reflect element ${f X}$ in plane ${f p}$	pXp
l	Transform ${f X}$ with motor ${f m}$	$\mathbf{m}\mathbf{X}\mathbf{ ilde{m}}$

More

Volumes and areas:

Volume of tetra. $\mathbf{P}_1\mathbf{P}_2\mathbf{P}_3\mathbf{P}_4$	$\tfrac{1}{6}(\hat{\mathbf{P}}_1\vee\hat{\mathbf{P}}_2\vee\hat{\mathbf{P}}_3\vee\hat{\mathbf{P}}_4)$
Circum./area of edge loop $^{(10)}$	$c = \sum \ \boldsymbol{\ell}_i\ , \ a = \frac{1}{2!} \ \sum \boldsymbol{\ell}_i\ _{\infty}$
Area/vol of triangle mesh (11)	$a = \frac{1}{2!} \sum \ \mathbf{f}_i\ , \ v = \frac{1}{3!} \ \sum \mathbf{f}_i\ _{\infty}$

Rigid body mechanics: (Valid in euclidean, elliptic & hyperbolic space)

0	7 1 71 1
Velocity, momentum (lin. + ang.!)	bivectors \boldsymbol{v} , \boldsymbol{m}
Element in the body/space frame	$\mathbf{x}_b/\mathbf{x}_s$
Path of x under the motion g	$\mathbf{x}_s = \mathbf{g} \mathbf{x}_b \widetilde{\mathbf{g}}, \mathbf{x}_b = \widetilde{\mathbf{g}} \mathbf{x}_s \mathbf{g}$
Velocity $oldsymbol{v}_b$ in the body	$oldsymbol{v}_b = ilde{\mathbf{g}} \mathbf{\dot{g}}$
Inertia tensor $A: \bigwedge^2 \to \bigwedge^2$	$\boldsymbol{m}_b = A(\boldsymbol{v}_b), \boldsymbol{v}_b = A^{-1}(\boldsymbol{m}_b)$
Kinetic energy ${\cal E}$	$E = \boldsymbol{m}_b ee \boldsymbol{v}_b$
Euler Eq. of Motion 1:	$\dot{\mathbf{g}} = \mathbf{g}\boldsymbol{v}_b$
Euler EoM 2: (\mathcal{F}_b = ext. forces)	$\dot{\boldsymbol{v}}_b = 2A^{-1}(\boldsymbol{f}_b + (\boldsymbol{m}_b \times \boldsymbol{v}_b))$
Time derivative of energy ${\cal E}$	$\dot{E} = -2 \mathbf{p}_b \vee \mathbf{v}_b$
Work $w(t) = E(t) - E(0)$	$= \int_0^t \dot{E} ds = -2 \int_0^t \mathbf{f}_b \vee \mathbf{v}_b ds$

FOOTNOTES

1. Euclidean, Elliptic, Hyperbolic space: By choosing different values for \mathbf{e}_0^2 you obtain PGA also for elliptic and hyperbolic metric spaces. Many formulas on this sheet also apply to these spaces; the differences can be traced back to the differences in the ideal elements.

 $\mathbb{R}_{3,0,1}^*$ - Euclidean PGA

		VEC	TOR		BIVECTOR							TRIVECTOR				
1	e ₀	e_1	e_2	ез	e ₀₁	e_{02}	e_{03}	e_{12}	e ₃₁	e_{23}	e_{021}	e_{013}	e_{032}	e_{123}	e ₀₁₂₃	
+1	0	+1	+1	+1	0	0	0	-1	-1	-1	0	0	0	-1	0	
		PLA	NE p				LIN	JE ℓ								

 $\mathbb{R}^*_{4,0,0}$ - Elliptic PGA

		VECTOR				BIVECTOR							TRIVECTOR				
Г	1	e_0	e_1	e ₂	e ₃	e ₀₁	e ₀₂	e ₀₃	e ₁₂	e ₃₁	e ₂₃	e_{021}	e_{013}	e_{032}	e 123	e ₀₁₂₃	
-	+1	+1	+1	+1	+1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	+1	
Г			PLA	NE p				LIN	Εℓ								

 $\mathbb{R}^*_{3,1,0}$ - Hyperbolic PGA

Г			VEC	TOR		BIVECTOR							TRIVECTOR				
Г	1	e ₀	e_1	e_2	ез	e ₀₁	e ₀₁ e ₀₂ e ₀₃ e ₁₂ e ₃₁ e ₂₃					e_{021}	e_{013}	e_{032}	e_{123}	e ₀₁₂₃	
-	+1	-1	+1	+1	+1	+1	+1	+1	-1	-1	-1	-1	+1	+1	+1	-1	
Г			PLA	NE p				LIN	Εℓ								

- 2. Duality: See § 5.10 of the Course Notes.
- 3. Reverse: The reverse \widetilde{X} of an element X is the element obtained by reversing all the products of 1-vectors that occur in it.
- 4. Normalize: The normalization operator \widetilde{x} does different things, depending on its argument; they all have in common that the result is *normalized* in the category it belongs to. Typically a normalized element n satisfies $n\widetilde{n}=\pm 1$.
- **5. Intersecting lines:** See § 8.1.2 of the Course Notes.
- **6. Remarks on projection:** See § 7.2 of the Course Notes.
- 7. Outer and Inner product: s and t are the grades of a and b, respectively.
- **8. Ideal norm:** See § 7.1 of the Course Notes.
- 9. Logarithm of a motor: if s=0, the motor is a pure translation and its logarithm $\log \mathbf{m} = \frac{\mathbf{m}}{\langle \mathbf{m} \rangle_0} 1$. Else if $\langle \mathbf{m} \rangle_0 = 0$, the motor is a *turn* with logarithm $\log \mathbf{m} = \frac{\pi}{2} \frac{\langle \mathbf{m} \rangle_4}{8}$. See § 8.1.6 of the Course Notes.
- 10. Edge loop: the edges (lines) ℓ_i of an edge loop are found by joining adjacent normalized points, $\ell_i = \widehat{\mathbf{P}}_i \vee \widehat{\mathbf{P}}_{i+1}$, where the n+1-th point is the same as the first (the area formula works for edge loops contained in a single plane).
- 11. Triangle mesh: the faces (planes) f_i of a triangle mesh are found by joining the three points of each triangle (with consistent winding order), $f_i = \hat{P}_{i1} \vee \hat{P}_{i2} \vee \hat{P}_{i3}$.

Questions, comments, corrections? Contact the authors: Steven De Keninck (enkimute@gmail.com) Charles Gunn (projgeom@gmail.com)

IMPLEMENTATION

C++, C#, Rust, Python and javascript implementations, updated course notes and cheat-sheets on ${f bivector.net}$