HÖHERE TECHNISCHE BUNDESLEHRANSTALT HOLLABRUNN

Höhere Abteilung für Elektronik – Technische Informatik

Klasse/ Jahrgang:	Übungsbetreuer:
	Prof. Josef Reisinger
4BHEL	
Übungsnummer:	Übungstittel:
Z80 Übung	Behälter + Ventile
Datum der Vorführung:	Gruppe:
10.11.2021	Marvin Perzi
Datum der Abgabe:	Unterschrift:
11.11.2021	

Beurteilungskriterien

Programm:	Punkte
Programm Demonstration	
Erklärung Programmfunktionalität	
Protokoll:	Punkte
Pflichtenheft	
(Beschreibung Aufgabenstellung)	
Beschreibung SW Design (Flussdiagramm,	
Blockschaltbild,)	
Dokumentation Programmcode	
Testplan (Beschreibung Testfälle)	
Kommentare / Bemerkungen	
Summe Punkte	

Note:		

1 Inhaltsverzeichnis

1 Inha	naltsverzeichnis	2
2 Pro	oduktanforderungen	2
2.1	Allgemeines	
2.2	μPF1	
2.3	Bitbelegung	3
2.4	Softwaredesign	
2.5	Speicher / Registerbelegung	
2.6	Berechnung der verwendeten Zeitschleife	6
2.7	Programmlistung	
	Testdaten:	
	obleme	
	kenntnisse	
	itaufwand	

2 Produktanforderungen

2.1 Allgemeines

Es ist ein mit Unterprogrammen strukturiertes Programm für den "Microprofessor" µPF1 zu schreiben, welches die 2 Zulaufventile eines Behälters (Grob- u. Feinventil) simuliert. Spricht der untere Schwimmer an, so ist das Grobventil zeitverzugslos zu schliessen. Spricht der obere Schwimmer an, so ist das Feinventil nach einer unter der RAM-Adresse 1900H in 1/10 sec gespeicherten Verzögerung zu schliessen. Es soll ein Endlosprogramm sein.

Zusätzliches:

Wenn der Hauptschalter aus ist, sollen die Ventile auch zu sein. Wenn z.B. in Adresse1900_H, 0A_H steht, soll die Verzögerung 1s lang sein.

2.2 μPF1

2.3 Bitbelegung

Zur Simulation der Ventile bzw. des Hauptschalters und der Schwimmer im Auto wird die LED / Schalterplatine des μ PF1 verwendet. In untenstehender Tabelle ist die Verwendung der einzelnen Schalter und Lampen festgelegt.

Schalter - Belegung:

S7	S6	S5	S4	S3	S2	S1	S0
Hauptschalter	Oberer Schwimmer	Unterer Schwimmer	-	-	-	-	-

LED - Belegung:

L7	L6	L5	L4	L3	L2	L1	L0
Grobventil	-	-	-	-	-	-	Feinventil

2.4 Softwaredesign

2.5 Speicher / Registerbelegung

RAM Speicher wurde nur für den Programmcode verwendet

Register:

D aktuelle Schalterstellung

L unbenutzt

H Zeitschleifenabfrageregister; zwischenspeichert, ob die Zeitschleife schon

aufgerufen wurde, da diese sonst fortlaufend wieder aufgerufen werden würde

E Zeiteinstellregister – Wert, der unter 1900H stand wird hierin gespeichert

B, C Hilfsregister für Warteschleife

A diverses

I/O Einheiten:

LED / Schalter Die LED / Schalter Platine kann unter der Adresse C0_H angesprochen

werden

2.6 Berechnung der verwendeten Zeitschleife

Label	Mnemonic	Taktzyklen	Durchläufe	Taktzyklen*Durchläufe
wait100ms:	LD B, 82	7	1	7
loop2:	LD C, 61	7	130	910
loop1:	DEC C	4	97*130	50440
	JP NZ, loop1	10	97*130	126100
	DEC B	4	130	520
	JP NZ, loop2	10	130	1300
	RET	10	1	10
				179287

¹ Taktzyklus des µPF1 dauert 1 / 1,79MHz = 0,56 µs

Summe von Taktzyklen*Durchläufe: NTaktzyklen = 179287

Dauer Warteschleife: 0,56 µs * 179287= 100,4ms

2.7 Programmlistung

		•		
Hauptprog	ramm:	.ORG 1800H		
1800	DB CO	Start:	IN A, (CO)	;Aktuelle Schalterstellung
1802	57		LD D,A	;in D Register speichern
1803	E6 80		AND #80	;Hauptschalter extrahieren
1805	CC 60 18		CALL Z, ALLEaus	;Hauptschalter ist aus - Ventile schließen
1808	CA 00 18		JP Z, Start	;und neu beginnen
180B	7A		LD A,D	;Aktuelle Schalterstellung
180C	E6 40		AND #40	;Oberen Schwimmer extrahieren
180E	C4 80 18		CALL NZ, Check	;Oberer Schwimmer wird angesprochen
				- Zeitschleifencheck
1811	C4 60 18		CALL NZ, ALLEaus	;und Ventile schließen
1814	C2 00 18		JP NZ, Start	;und neu beginnen
1817	7A		LD A,D	;Aktuelle Schalterstellung
1818	E6 20		AND #20	;Unteren Schwimmer extrahieren
181A	C4 40 18		CALL NZ, GROBaus	;Unter Schwimmer wird angesprochen - Grobventil schließen
181D	C2 00 18		JP NZ, Start	;und neu beginnen
1820	3E 81		LD A,#81	;sonst sind Fein- & Grobventil offen
1822	D3 C0		OUT (C0), A	
1824	26 FF		LD H, #FF	;Zeitschleife wieder verwenden
1826	C3 00 18		JP Start	;neu beginnen
Grobventil a	usschalten:	.ORG 1840H		
1840	3E 01	GROBaus:	LD A,#01	;Grobventil schließen
1842	D3 C0	Chobads.	OUT (C0), A	, or obvertill sermeiseri
1844	C9		RET	

beide	Ventile

ausschaiten:		.OKG 1860H		
1860	3E 00	ALLEaus:	LD A,#00	;alle Ventile zu
1862	26 00		LD H, #00	;Zeitschleife nicht mehr verwenden
1864	D3 C0		OUT (C0), A	
1866	C9		RET	

Zeitschleife	nCheck:	.ORG 1880H		
1880	7C	Check:	LD A, H	
1881	E6 FF		AND #FF	;Zeitschleife verwenden?
1883	C4 40 18		CALL NZ, GROBaus	;Grobventil schließen falls noch nicht zu
1886	C4 10 19		CALL NZ, Zeitschleife	;Zeitschleife soll verwendet werden
1889	F6 FF		OR #FF	;Zeroflag wieder richtig setzten
188B	C9		RET	

Zeitschleife:		.ORG 1910H		
1910	3A 00 19	zeitschleife:	LD A, (1900)	;Inhalt von 1900H
1913	5F		LD E,A	in Zeiteinstellregister speichern
1914	E6 FF		AND #FF	;Inhalt von 1900H ist 0?
1916	C8		RET Z	;keine Zeitschleife
1917	CD 40 19	loop3:	CALL wait100ms	;Zeitschleife aufrufen
191A	1D		DEC E	;Zeitschleife (Inhalt von 1900H)-Mal aufrufen
191B	C2 17 19		JP NZ, loop3	
191E	C9		RET	

100ms warten:		.ORG 1940H	
1940	06 82	wait100ms:	LD B, 82
1942	0E 61	loop2:	LD C, 61
1944	0D	loop1:	DEC C
1945	C2 44 19		JP NZ, loop1
1948	05		DEC B
1949	C2 42 19		JP NZ, loop2
194C	C9		RET

2.8 Testdaten:

Schalter	Wirkung	Anmerkung
Nur Hauptschalter ein	Beide Ventile sind offen und die zugehörigen LEDs leuchten	
Hauptschalter ein und	Feinventil wird zeitverzögert	falls das Grobventil noch
oberer Schwimmer spricht	geschlossen und zugehörige	nicht zu ist, wird es sofort
an	LED leuchtet nicht	geschlossen
Hauptschalter ein und unterer Schwimmer spricht an	Grobventil wird geschlossen und zugehörige LED leuchtet nicht; Feinventil offen und zugehörige LED leuchtet	
Hauptschalter aus und ein/beide Schwimmer sprechen an	Ventile bleiben zu und LEDs leuchten nicht	

3 Probleme

- Da ich die Angabe falsch verstanden hatte, musste ich mein Programm nochmals umprogramieren

4 Erkenntnisse

- Grundverständnis von Assemblerprogrammierung
- Bedienung des Mikroprofessors
- Hexadezimale Codierung von Assemblerbefehlen
- Testen fehlerhafter Programme: Step, breakpoint, Memory und Registerinhalte anschauen.

5 Zeitaufwand

Tätigkeit	Aufwand
Erstellung des Pflichtenhefts	1h
Erstellung des Systemdesign (Flussdiagramm bzw.	1,5h
Struktogramm und ev. UI Design)	
Programmcodierung	5h
Testen der Software	3h
Dokumentation (Protokoll)	3,5h
Gesamt:	14h