Work 1: Change point detection for time-correlation data with adaptive sampling

Consider multivariate time series
$$\mathbf{Y}(t) \in \mathbb{R}^p$$
 $\mathbf{X}(t) = \mathbf{A}\mathbf{X}(t-1) + \mathbf{w}_t$ $\mathbf{Y}(t) = \mathbf{C}\mathbf{X}(t) + \mathbf{v}_t$

For unknown change point au

$$\mathbf{X}(t) = \mathbf{A}\mathbf{X}(t) + \mathbf{w}_t, t < \tau.$$
 IC
 $\mathbf{X}(t) = \mathbf{A}\mathbf{X}(t) + \mathbf{f} + \mathbf{w}_t, t \ge \tau.$ OC

Partial observable set arxiv:2404.00220

$$Z(t) = [z_{1t}, \ldots, z_{pt}] \text{ and } \sum_{i=1}^p z_{it} = m. \ (m < p)$$

Work 2:

FEN model:
Network modeling
from a functional
edge perspective

arxiv:2404.00218

Work 3:

FRCOMA:

Nonparametric Regression for Continuous Multi-way Data

- $\{(y_i, \mathbf{x}_i)\}_{i=1}^n$ are *n* pairs of functional samples.
- $y_i \in \mathcal{Y} = \{y : \Omega_y \to \mathbb{R}\}$ is the response function and Ω_y is the compact subset of \mathbb{R}^{d_y} .
- $\mathbf{x}_i = (x_i^{(1)}, \cdots, x_i^{(p)})$ are the covariate functions with $x_i^{(I)} \in \mathcal{X}_I = \{x : \Omega_{x_I} \to \mathbb{R}\}.$ Ω_{x_I} is the compact subset of $\mathbb{R}^{d_I}, I = 1, \cdots, p$.
- Find a nonlinear function-on-function regression model with variable selection

$$f: \mathcal{X}_1 \times \cdots \times \mathcal{X}_p \to \mathcal{Y}$$

$$s.t. y_i = f(\mathbf{x}_i) + \epsilon_i, \quad i = 1, \cdots, n,$$
(1)

 ϵ_i is the white noise function.

Work 4: Quickest causal change detection by adaptive intervention

- $\bullet \quad X^t = \mathbf{A}^t X^t + \mathbf{U}^t, \quad \mathbf{U}^t \sim N(\boldsymbol{\mu}^t, \boldsymbol{\Sigma}^t), \ \boldsymbol{\Sigma}^t \triangleq \mathrm{diag}(\sigma_1^{t^2}, \dots, \sigma_p^{t^2}).$
- For some unknown τ , $(\mathbf{A}^t, \boldsymbol{\mu}^t, \boldsymbol{\Sigma}^t) = \begin{cases} (\mathbf{A}, \boldsymbol{\mu}, \boldsymbol{\Sigma}), & \text{for } t = 1, 2, ..., \tau 1, \\ (\widetilde{\mathbf{A}}, \widetilde{\boldsymbol{\mu}}, \widetilde{\boldsymbol{\Sigma}}), & \text{for } t = \tau, \tau + 1, ... \end{cases}$

Construct window-limited CUSUM statistic $W_{t,A^{\circ}}(W_{t,A^{*}})$!! $T_{b,A^{\circ}}^{\mathsf{IIIUU}}(T_{b,A^{*}}^{\mathsf{IIIUU}}) = t$ If $W_{t,A^{\circ}}(W_{t,A^{*}}) > b$, then trigger alarm; **Else**, decide the next intervention node(ε -greedy).

Max-AI (A^*) for short window and single change. Multi-AI (A°) for long window and multiple change.

Work 5: Design of Experiment for Discovering Directed Mixed Graph

Design \mathcal{I} , the collection of \mathbf{I} , to discovery DMG \mathcal{G} (using d-separation, σ -separating and do-see test).

		Lower bound of $\max_{\mathbf{I} \in \mathcal{I}} \mathbf{I} $	Lower bound of $ \mathcal{I} $	Unbounded design	Bounded design $(I \le M)$	
	-	$\left \mathbf{T}_{l+1}^{\mathcal{G}}\right _{n}+\zeta_{max}^{l+1,\mathcal{G}}-1$	$\sum_{k=1}^{l+1} \zeta_{max}^{k,\mathcal{G}}$	$ \mathcal{I} = 2 \left\lceil \log_2 \left(\chi(\mathcal{G}_r^{obs}) \right) \right\rceil + \sum_{k=1}^{l+1} \zeta_{max}^{k,\mathcal{G}}$	$ \mathcal{I} = \left\lceil \frac{n}{M} \right\rceil \left\lceil \log_{\left\lceil \frac{n}{M} \right\rceil} n \right\rceil + \sum_{k=1}^{l+1} \zeta_{max}^{k,\mathcal{G}} + \zeta_{max}^{l+1,\mathcal{G}} \left\lceil \frac{n - \left\lceil T_{l+1}^{\mathcal{G}} \right\rceil_n - \zeta_{max}^{l+1,\mathcal{G}} - 1}{M - \left\lceil T_{l+1}^{\mathcal{G}} \right\rceil_n - \zeta_{max}^{l+1,\mathcal{G}} + 2} \right\rceil$	
	-	$\max_{[X:Y]\in\mathbf{B}^N}\left Pa_{\mathcal{G}}(X\cup Y)\right $	$cc(\mathcal{G}^{uc})$	$ \mathcal{I} = cc(\mathcal{G}^{uc})$	$ \mathcal{I} \leq \sum_{k=1}^{K} 1 + \left\lfloor \frac{\left \frac{ c_k (c_k -1)}{2} - 1\right (n - c_k)}{M + 1 - \sum_{X,Y \in I_k \mid X, Y \neq Y} \operatorname{Pag}_{\mathcal{G}}(X,Y))} \right\rfloor$	
	•	Not well defined [1]		$ \mathcal{I} \leq 2\chi_s(\mathcal{G}^u)$	$ \mathcal{I} \leq 2 \sum_{k=1}^{K} 1 + \left \frac{(\mathbf{E}_k - 1)(n - 2 \mathbf{E}_k)}{M + 1 - \max_{[XY :]^{M} \in \mathbf{E}_k'} Pa_{\mathcal{G}}(\{X \cdot Y\})} \right $	
				Difficult to identify but have limited in	cult to identify but have limited impact	