1 Постановка задачи

Дано сообщение — упорядоченный набор символов — $M=(s_0,\ldots,s_n), s_i\in \Sigma, \Sigma=\{c_0,\ldots,c_k\}$. Необходимо проверить гипотезу о том, что в сообщении закодирован текст M_0 на английском языке, при условии, что кодирование было произведено переобозначением с помощью какой-то биекции $f:\Sigma\to\Sigma$ исходных символов новыми: $M=(f(M_0[i]),\ldots,f(M_0[n]))$.

2 Решение

Формализация гипотезы Рассмотрим сообщение M_0 как n наблюдений случайной величины S, принимающей значения из Σ . Для английского языка определённой стилистики S подчиняется некоторому закону распределения, который можно считать известным.

Проверка гипотезы Рассмотрим все биекции на Σ : $F = \{f|f\colon \Sigma \to \Sigma\}$. Предположим, что $f_j \in F$ — биекция, которой было закодировано сообщение M_0 . Гипотеза H_0 которую необходимо проверить состоит в том, что случайная величина S', для которой наблюдается выборка $M' = (f_j^{-1}(M[0]), \dots, f_j^{-1}(M[n]))$, подчиняется такому же закону распределения, что и S.

Проверим гипотезу с помощью критерия согласия Пирсона:

$$\chi^2 = \sum_{i=1}^k \frac{(v_i - np_i)^2}{np_i},$$

 p_i — теоретическая вероятность наблюдения c_i в S, v_i — число наблюдений c_i в выборке M'. Выборочная характеристика χ^2 при $n \to \infty$ имеет χ^2 -распределение с k-1 степенями свободы.

Теперь для выбранного уровня значимости α , сравним полученную величину χ^2 с критической величиной $\chi^2_{cr}(k,\alpha)$ (табличная величина): если $\chi^2 < \chi^2_{cr}(k,\alpha)$, то гипотеза принимается с уровнем значимости α .

Если хотя бы для одного f_i принимается H_0 , то в сообщении закодирован текст на английском языке, иначе — нет.

В ходе решения были использованы из [1], [2], [3], [4].

Список литературы

- [1] Wikipedia: Chi-square distribution. http://en.wikipedia.org/wiki/Chi-square_distribution.
- [2] Wikipedia: Pearson's chi-square test. http://en.wikipedia.org/wiki/Pearson's_chi-square_test.
- [3] Wikipedia: Квантили распределения хи-квадрат. http://ru.wikipedia.org/wiki/%D0%9A%D0% B2%D0%B0%D0%BD%D1%82%D0%B8%D0%BB%D0%B8_%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4% D0%B5%D0%BB%D0%B5%D0%B8%D1%8F_%D1%85%D0%B8-%D0%BA%D0%B2%D0%B0%D0%B4%D1%80%D0% B0%D1%82.
- [4] Н.И. Чернова. Лекции по математической статистике. http://www.nsu.ru/mmf/tvims/chernova/ms/lec/node46.html, 2006.