Unsupervised Learning: clustering algorithms

Slim Essid

Télécom ParisTech

slim.essid@telecom-paristech.fr

Largely based on slides by Florence d'Alché-Buc and Alexandre Gramfort

Learning from unlabeled data

Unlabeled data

- Available data are unlabeled: documents, webpages, clients database...
- · Labeling data is expensive and requires some expertise

Learning from unlabeled data

- Modeling probability distribution \rightarrow graphical models
- ullet Dimensionality reduction o pre-processing for pattern recognition
- Clustering: group data into homogeneous clusters → organize your data, make easier access to them, pre and post processing

What is clustering?

Here is a clustering in 2 clusters

Different clusterings

Clustering for image segmentation

Image from C. Bishop's book, Pattern recognition and Machine Learning, Springer

Clustering algorithms: a data-analysis point of view

Definitions

- **Dissimilarity** : $d(x_i, x_i)$, a distance (without the triangle inequality)
- **Between-class dispersion :** for a given K-clustering C : $B(C) = \frac{1}{2} \sum_{k} \sum_{i.i.C(i)=k,C(i)\neq k} d(x_i,x_j)$
- Within-class dispersion :

$$W(\mathcal{C}) = \frac{1}{2} \sum_{k} \sum_{i,j,C(i)=k,C(j)=k} d(x_i, x_j)$$

Total dispersion :

$$T(x_1,\ldots,x_n)=\tfrac{1}{2}\sum_{i,j}d(x_i,x_j)$$

NB:

$$T = B(\mathcal{C}) + W(\mathcal{C})$$
, for all \mathcal{C}

Clustering algorithms

Definition: a data-analysis point of view

Given a set of data $S = \{x_1, x_2, \dots, x_n\}$, a chosen K and a dissimilarity d, one seeks a K-partition of S, such that the between-class dispersion (inertia) is the largest and/or the within-class dispersion is the smallest.

Outline

- M-means
- 2 Hierarchical Agglomerative Clustering (HAC)
- BSCAN
- 4 Gaussian Mixture Modelling
- Model selection

The K-means algorithm : an example of vector quantization model

Given a set of vectors x_1, x_2, \ldots, x_n , the K-means algorithm seeks a partition of this set into K clusters C_1, C_2, \ldots, C_k that minimizes the following loss function :

$$R(\lbrace C \rbrace_{k=1}^{K}) = \sum_{k=1}^{K} \sum_{x_i \in C_k} ||x_i - \mu_k||^2,$$
 (1)

where
$$\mu_k = \frac{\sum_{x_i \in C_k} x_i}{|C_k|}$$

 $|C_k|$: cardinal of C_k

The K-means algorithm

- 1. **Initialization** (t = 0): initialization of the μ_k with K randomly chosen observations
- 2. **Assignment step**: assign each observation to the cluster whose mean yields the least within-cluster quantization error:

-
$$C_k^{(t)} = \{x_m, ||x_m - \mu_k^{(t)}|| \le ||x_m - \mu_j^{(t)}||, \forall j, 1 \le j \le K\}$$

- 3. **Update step**: compute the new means
 - $\begin{array}{l}
 t \leftarrow t + 1 \\
 \mu_k^{(t)} = \frac{1}{|C_k^{(t)}|} \sum_{x_j \in C_k^{(t)}} x_j
 \end{array}$
- 4. Stopping criterion: Stop when the assignments no longer change

The K-means algorithm

After Bishop, 2006

The K-means algorithm

After Bishop, 2006

Remarks

- The K-means algorithm converges monotonically : each iteration of the algorithm does not increase the K-means objective function.
- There is no guarantee on the number of iterations the k-means algorithm needs in order to reach convergence.
- There is no nontrivial lower bound on the gap between the value of the K-means objective of the algorithm output and the minimum possible value of that objective function.
- K-means might converge to a point which is not even a local minimum!
- To improve the results of K-means it is recommended to repeat the procedure several times with different randomly chosen initial centroids.

The K-medoids objective function

Similar to the K-means objective, except that a more general dissimilarity $\mathcal{V}(x,\mu_i)$ is considered and the cluster centroids are required to be members of the input set :

$$G_{\text{K-medoids}}((\mathcal{X},d),(C_1,\ldots,C_K)) = \min_{\mu_1,\ldots\mu_k \in \mathcal{X}} \sum_{i=1}^K \sum_{x \in C_i} \mathcal{V}(x,\mu_i)$$

The K-median objective function

Similar to the K-medoids objective, except that the "distortion" between a data point and the centroid of its cluster is measured by distance, rather than by the square of the distance :

$$G_{\mathrm{K-median}}((\mathcal{X},d),(C_1,\ldots,C_K)) = \min_{\mu_1,\ldots,\mu_k\in\mathcal{X}} \sum_{i=1}^K \sum_{x\in C_i} d(x,\mu_i)$$

An example is the facility location problem. Consider the task of locating K fire stations in a city. One can model houses as data points and aim to place the stations so as to minimize the average distance between a house and its closest fire station.

Outline

- 1 K-means
- 2 Hierarchical Agglomerative Clustering (HAC)
- OBSCAN
- Gaussian Mixture Modelling
- Model selection

Principle of Hierarchical clustering

Goal build a dendrogram

Hierarchical Agglomerative clustering

Building a dendrogram

- 1. Singletons containing a single data are initial clusters
- 2. nb = n
- 3. Build the distance matrix between the clusters
- 4. While (nb > 1) do
 - The two closest clusters are joined using a node/branch whose length is equal to the distance between the two clusters
 - The two clusters are removed and nb = nb-1;
 - The distance between the new cluster and all remaining ones are computed

Clustering from a dendrogram

- In order to obtain a clustering, the dendrogram is cut using some cutoff value
- As for K-means or Gaussian Mixture Models, finding the right cutoff is a difficult issue

Distance D between two clusters A and B

Common choices:

- Single linkage : $D(A, B) = min_{x \in A, y \in B} d(x, y)$
- → favours connectivity
 - Complete linkage : $D(A, B) = \max_{x \in A, y \in B} d(x, y)$
- → favours compactness
 - Ward's method : $D(A, B) = \frac{n_A n_B}{n_A + n_B} d(m_A, m_B)$ m_A (resp. m_B) : center of gravity of A (resp. B)
- → minimises the total within-cluster dispersion

Examples 1

Examples 2

Outline

- 1 K-means
- 2 Hierarchical Agglomerative Clustering (HAC)
- OBSCAN
- 4 Gaussian Mixture Modelling
- Model selection

DBSCAN

- "Density-based spatial clustering of applications with noise" (DBSCAN) is a very popular, simple and powerful algorithm first proposed by Ester et al. 1996.
- DBSCAN is one of the most common clustering algorithms and also most cited in scientific literature.
- In 2014, it was awared the test of time award at the leading data mining conference, KDD.

DBSCAN Algorithm

- 2 parameters : ϵ and the minimum number of points required to form a dense region q.
- Start with an arbitrary starting point not yet visited. Retrieve its ϵ -neighborhood. If it contains sufficiently many points, a cluster is started. Otherwise, the point is labeled as noise. ¹
- If a point is found to be a dense part of a cluster, its ϵ -neighborhood is also part of that cluster. All points that are found within the ϵ -neighborhood are added, so is their own ϵ -neighborhood when they are also dense.
- Process continues until the density-connected cluster is completely found.
- Start again with a new point, until all points have been visited.

^{1.} A point marked as noise might later be found in a sufficiently sized ϵ -environment of a different point and hence be made part of a cluster.

DBSCAN Illustration

With q=4 in 2D:

Red: core points, Yellow: non core but in cluster, Blue: noise

Source: https://en.wikipedia.org/wiki/DBSCAN

```
Algorithm 1 DBSCAN

1: procedure DBSCAN(\mathcal{X}, \epsilon, q)
    Initialize : \mathcal{C} = 0.

2: for each point x in \mathcal{X} do

3: if x is visited then

4: continue to next point.

5: end if

6: mark x as visited.

7: neighbors = getNeighbors(x, \epsilon)
```

8:

9.

10:

11:

12:

13:

14:

if —neighbors— < q **then**

mark x as noise.

C = next cluster

expandCluster(x, neighbors, C, ϵ , q)

else

end if

15: **Output :** All produced clusters.

end for

16: end procedure

```
1: procedure EXPANDCLUSTER(x, neighbors, C, \epsilon, q)
       add x to C
 2:
       for each y in neighbors do
 3:
4.
           if y is not visited then
               mark y as visited
 5:
               neighbors_y = regionQuery(y, \epsilon)
6:
               if —neighbors_y— > q then
7:
                   neighbors = neighbors joined with neighbors_y
 8:
               end if
9:
           end if
10:
           if y is not yet member of any cluster then
11:
               add v to cluster C
12:
           end if
13.
14.
       end for
15: end procedure
16: procedure REGIONQUERY(x, \epsilon)
       Output: all points within x's \epsilon-neighborhood (including x)
17:
18: end procedure
```

DBSCAN Pros

- No need to specify the number of clusters in the data a priori, as opposed to k-means.
- It can find arbitrarily shaped clusters. It can even find a cluster completely surrounded by (but not connected to) a different cluster.
- Due to the q parameter, the so-called single-link effect (different clusters being connected by a thin line of points) is reduced.
- It has a notion of noise, and is robust to outliers.

DBSCAN Cons

- It is not entirely deterministic (output depends on the order of the points).
- It still needs to specify a distance measure (like k-means or spectral clustering).
- It can not cluster data sets with a large difference in densities as the $q-\epsilon$ combination cannot then be chosen appropriately for all clusters.

Outline

- M-means
- 2 Hierarchical Agglomerative Clustering (HAC)
- 3 DBSCAN
- Gaussian Mixture Modelling
 - GMM parameter estimation
- Model selection

Clustering by modelling the data distribution

- Assume x_1, \ldots, x_n is an i.i.d sample of n data points
- Model the data distribution by a Gaussian Mixture Model
- Each data point is to be associated with the component that best explains it

Clustering by modelling the data distribution

- Assume x_1, \ldots, x_n is an i.i.d sample of n data points
- Model the data distribution by a Gaussian Mixture Model
- Each data point is to be associated with the component that best explains it

The Gaussian mixture model (GMM)

A parametric model:

$$p(x) = \sum_{k=1}^{K} \pi_k p(x|\mu_k, \Sigma_k)$$

where

- $p(x|\mu_k, \Sigma_k) = \mathcal{N}(x|\mu_k, \Sigma_k)$
- $\sum_{k=1}^{K} \pi_k = 1$, $0 \le \pi_k \le 1$.

GMM formulation using latent variables

Let's introduce the K-dimensional indicator variable $\mathbf{z} = [z_k]_{1 \leq k \leq K}$, such that $z_k \in \{0,1\}$, and $\sum_k z_k = 1$. Hence

- $p(z_k = 1) = \pi_k$ and $p(\mathbf{z}) = \prod_{k=1}^K \pi_k^{z_k}$
- $p(x|z_k=1) = \mathcal{N}(x|\mu_k, \Sigma_k)$ and $p(x|\mathbf{z}) = \prod_{k=1}^K \mathcal{N}(x|\mu_k, \Sigma_k)^{z_k}$

The marginal distribution is obtained by summing over all states of z :

$$p(x) = \sum_{\mathbf{z}} p(x, \mathbf{z}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(x|\mathbf{z})$$
$$= \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k)$$

GMM formulation using latent variables

Let's introduce the K-dimensional indicator variable $\mathbf{z} = [z_k]_{1 \leq k \leq K}$, such that $z_k \in \{0,1\}$, and $\sum_k z_k = 1$. Hence

- $p(z_k = 1) = \pi_k$ and $p(\mathbf{z}) = \prod_{k=1}^K \pi_k^{z_k}$
- $p(x|z_k=1) = \mathcal{N}(x|\mu_k, \Sigma_k)$ and $p(x|\mathbf{z}) = \prod_{k=1}^K \mathcal{N}(x|\mu_k, \Sigma_k)^{z_k}$

The marginal distribution is obtained by summing over all states of z:

$$\begin{split} \rho(x) &= \sum_{\mathbf{z}} \rho(x, \mathbf{z}) &= \sum_{\mathbf{z}} \rho(\mathbf{z}) \rho(x|\mathbf{z}) \\ &= \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \end{split}$$

Cluster assignment and responsibilities

Assignment to a particular cluster C_k can be done based on :

$$\gamma(z_{k}) = p(z_{k} = 1|x) = \frac{p(z_{k} = 1)p(x|z_{k} = 1)}{\sum_{j=1}^{K} p(z_{j} = 1)p(x|z_{j} = 1)} \\
= \frac{\pi_{k} \mathcal{N}(x|\mu_{k}, \Sigma_{k})}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}(x|\mu_{j}, \Sigma_{j})}$$

 $\rightarrow \gamma(z_k)$ is the *responsibility* that component k takes for explaining x

Cluster assignment and responsibilities

Assignment to a particular cluster C_k can be done based on :

$$\gamma(z_k) = p(z_k = 1|x) = \frac{p(z_k = 1)p(x|z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(x|z_j = 1)}$$

$$= \frac{\pi_k \mathcal{N}(x|\mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(x|\mu_j, \Sigma_j)}$$

 $\rightarrow \gamma(z_k)$ is the *responsibility* that component k takes for explaining x

Cluster assignment and responsibilities

After Bishop, 2006

Mean and variance estimation in a 1D Gaussian distribution

We observe x_1, \ldots, x_n , n i.i.d samples from an unknown Gaussian distribution :

$$p(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{1}{2\sigma^2}(x-\mu)^2\}$$

Maximum Likelihood Principle

- · Likelihood: probability that data have been generated by the model
- Find μ and σ such that the likelihood $\ell(x_1, \dots, x_n; \mu, \sigma) = \prod_{i=1}^n p(x_i | \mu, \sigma)$ be maximal

In practice, for exponential distributions, we maximize $\ln \ell(.;.)$.

Likelihood

$$\mathcal{L}(x_1, \dots, x_n; \mu, \sigma) = \ln \prod_{i=1}^n p(x_i | \mu, \sigma)$$

$$= \sum_{i=1}^n \ln p(x_i | \mu, \sigma)$$

$$= -n \ln(\sqrt{2\pi}\sigma) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$$

Maximum Likelihood Principle estimates for μ and σ

(Strict) convexity of ${\mathcal L}$ makes the problem easy to solve :

- To find $\mu: \frac{\partial \mathcal{L}(\mu, \sigma)}{\partial \mu} = 0$
- \rightarrow We get : $\hat{\mu} = \frac{1}{n} \sum_{i} x_{i}$ (empirical mean)
 - Then, to find σ , we use $\hat{\mu}: \frac{\partial \mathcal{L}(\hat{\mu}, \sigma)}{\partial \sigma} = 0$
- \rightarrow We get : $\hat{\sigma} = \frac{1}{n} \sum_{i} (x_i \hat{\mu})^2$ (empirical variance)

Multivariate Gaussian Distribution

$$\mathcal{N}(x|\mu, \Sigma) = \frac{1}{(2\pi|\Sigma|)^{\frac{1}{2}}} \exp\{-\frac{1}{2}(x-\mu)^{T}\Sigma^{-1}(x-\mu)\}\$$

Mean and covariance estimation by maximum likelihood estimation :

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)(x_i - \mu)^T$$

Gaussian Mixture Model estimation (general case)

Log likelihood to be maximized

$$\ln \prod_{i=1}^n p(x_i|\pi,\mu,\Sigma) = \sum_{i=1}^n \ln \{\sum_{k=1}^K \pi_k p(x_i|\mu_k,\Sigma_k)\}$$

Gaussian Mixture Model estimation (general case)

Log likelihood to be maximized

$$\ln \prod_{i=1}^{n} p(x_{i}|\pi, \mu, \Sigma) = \sum_{i=1}^{n} \ln \{ \sum_{k=1}^{K} \pi_{k} p(x_{i}|\mu_{k}, \Sigma_{k}) \}$$

A difficult function to optimize

- the log is outside the sum
- the model is not identifiable: many latent settings have the same likelihood

Expectation-Maximization (EM) algorithm

- A general algorithm to solve estimation problems with incomplete data
- this algorithm is used in many other probabilistic models (not only GMM)

Refs : Demspter, Laird and Rubin1977 : more than 40000 citations Good introductions : Bishop's book (2006), Kevin Murphy's course notes (2006), Bilmes's tutorial, (1998)

Key idea : exploit the responsibilities $\gamma(z_k)$

EM algorithm for GMM estimation

After Bishop, 2006

- 1. Initialise μ_k , Σ_k and π_k
- 2. **E-step**: evaluate the responsibilities using the current parameter values:

$$\gamma(z_{ik}) = \frac{\pi_k \mathcal{N}(x_i | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(x_i | \mu_j, \Sigma_j)}$$

where z_{ik} indicates if x_i comes from the k^{th} Gaussian

3. M-step: re-estimate the parameters using the current responsibilities:

$$\mu_k = \frac{1}{n_k} \sum_{i=1}^n \gamma(z_{ik}) x_i$$

$$\Sigma_k = \frac{1}{n_k} \sum_{i=1}^n \gamma(z_{ik}) (x_i - \mu_k) (x_i - \mu_k)^T$$

$$\pi_k = \frac{n_k}{n}; \text{ where } n_k = \sum_{i=1}^n \gamma(z_{ik})$$

EM algorithm for GMM estimation

After Bishop, 2006

4. Evaluate the log likelihood

$$\sum_{i=1}^{n} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(x_i | \mu_k, \Sigma_k) \right\}$$

and check for convergence of either the parameters or the log likelihood. If no convergence, return to step 2.

EM algorithm for GMM estimation

After Bishop, 2006

Expectation maximization algorithm

- Local convergence only
- Need to restart the algorithm with different initial guesses
- K-means are a good way of initialising the algorithm

Outline

- 1 K-means
- 2 Hierarchical Agglomerative Clustering (HAC)
- 3 DBSCAN
- 4 Gaussian Mixture Modelling
- Model selection

How to select *K* the number of clusters?

Numerous criteria have been proposed with varying success in practise.

- Stability criterion (Ben-Hur and Elisseef, 2002)
- BIC criterion for GMM

Stability

A clustering algorithm is *stable* if when run twice on two close datasets it provides almost similar clusterings.

In practice, use bootstrap samples without replacement to measure stability.

Stability Algorithm

Let S be the dataset.

- f = 0.8
- for k=2 to k_{max} do
 - for b=1 to B do
 - \triangleright $S_1 = \text{subsample}(S,f)$: a subsample with a fraction f of data
 - \triangleright S_2 = subsample(S_1): a subsample with a fraction f of data
 - $C_1 = \mathsf{cluster}(\mathcal{S}_1,\mathsf{k})$
 - $C_2 = \text{cluster}(S_2, k)$
 - ▶ intersect = $S_1 \cap S_2$
 - ▶ $S(b,k) = sim(C_1(intersect), C_2(intersect))$
 - endfor
 - S(k) = mean(S(b,k))
- endfor

Model selection for GMM

How do we select the number of components?

- A simple way is to use cross-validation to find the K valued that maximize the log likelihood.
- Alternatively, we can use the BIC (Bayesian information criterion) score

Model selection for GMM

BIC score:

$$BIC(\theta) = \log p(S|\hat{\theta}^{ML}) - \frac{d}{2}\log n,$$

where d is the dimensionality of the model and n the number of data points.

d, the dimensionality of the model, is here the number of estimated parameters : (K-1) mixing probabilities, KP mean coefficients and $K\frac{P(P+1)}{2}$ covariance parameters.

References

- Video-lectures :
 - http://videolectures.net/ecmlpkdd08_jain_dcyb/
- Books
 - The Elements of Statistical Learning, Hastie, Tibshirani and Friedman, Springer. [chapitre 14]
 - Pattern Recognition and Machine Learning, C. Bishop, 2006, Springer