Robust Survival Prediction via Linear Transformation Models

Keith Betts
Dave Harrington

dph@jimmy.harvard.edu

Analysis Group, Harvard University

7 August 2014

Graphic from 1993 *NEJM* paper, prognosis in non-Hodgkin's lymphoma

Covariates in model:

- Age
- Stage
- Tumor size
- Extent of disease
- Performance status

'Prognostic models' now widely used

Models that predict the risk of disease or disease progression have a long history in medical literature.

- ► Gail model for breast cancer risk (JNCI, 1989)
- ▶ N. Cook's work in cardiovascular disease (JAMA, NEJM)
- ► Mayo Clinic model in primary biliary cirrhosis (*Hep*, 1989)
- Models for Cardiovascular disease from Framingham Heart Study (D'Agostino, Circ, 1998, 2004, 2008)
- Coronary Heart Disease Policy Model, (Weinstein et. al, Am J Pub Health, 1987)
- Non-Hodgkin's lymphoma, (Shipp, et al. NEJM, 1993)

Sample of important methodologic literature, prediction with event time data

- Measures of explained variation with event time data, Korn and Simon, 1990,
- Prediction error, Graf et. al, 1999
- ► Haegerty, et al., 2000
- Gerds and Schumacher, 2006
- Cai, Tian, Solomon, Uno, Wei (2007a, 2007b, 2008)

Our general approach

- Use flexible class of linear transformation models for censored data
- Evaluate time-dependent mean-squared error of prediction, and its standard error
- Avoid bias in apparent error rate
- Obtain unbiased estimates of error rates when model is misspecified

Notation and Models

- ➤ T = event time, C = potential censoring time, Z = p-dimensional vector of covariates
- ▶ Observed time $\tilde{T} = \min(T, C)$, $\delta = (T \leq C)$
- $S(t|Z) = \Pr(T > t|Z)$
- Semi-parametric Linear Transformation Model

$$h(T) = -\beta^T Z + \epsilon,$$

 $h(\cdot)$ is a unknown monotone strictly increasing function, ϵ has 'known' distribution.

Equivalent to

$$g^{-1}(S(t|Z)) = h(t) + \beta^T Z,$$

with $g^{-1} = 1 - F_{\epsilon}$

Goal

Predict survival probability,

$$\hat{S}(t|Z^0) = g(\hat{h}(t,\hat{\beta}) + \hat{\beta}^T Z^0)$$

for an 'out of sample' individual.

 Estimate mean squared error of prediction (MSEP) as a function of time,

$$\overline{\mathsf{MSEP}}(t,\hat{S},G) = E_{T,Z}\{I(T>t) - \hat{S}(t|Z)\}^2,$$

even when working model is wrong.

► This is expected Brier score, originally used in weather prediction

Assumptions

- \vdash $(T \perp C)|Z$
- Z is bounded
- G(t|Z) = Pr(C > t|Z) can be consistently estimated
- An assortment of regularity conditions

Formulation for MSEP similar to Graf, Gerds.

Proofs rely on work by H. Uno, T Cai, L Tian and LJ Wei on asymptotics of mis-specified models

Estimating equations and main results

Estimating Equations

$$U_1(h(t),\beta) = \sum_{i=1}^n \left[I(\tilde{T}_i \ge t) - g(h(t) + \beta^T Z_i) \hat{G}(t|Z) \right]$$

$$U_2(\hat{h}(t,\beta),\beta) = \sum_{i=1}^n \int_{\tau_a}^{\tau_b} Z_i \left[I(\tilde{T}_i \ge t) - g(\hat{h}(t,\beta) + \beta^T Z_i) \hat{G}(t|Z) \right] dt$$

- ▶ Main results: Even when S is mis-specified
 - ▶ Unique solutions $\hat{h}(t,\beta)$ and $h_*(t,\beta)$ for $U_1(h(t),\beta)$ and its expectation for a fixed β
 - ▶ Unique solutions $\hat{\beta}$ and β_* , for $U_2(\hat{h}(t), \beta)$ and $E[U_2(h_*(t), \beta)]$
 - ▶ Consistency, $\hat{\beta} \xrightarrow{p} \beta_*$
 - ▶ Uniform consistency, $\sup_t |\hat{h}(t, \hat{\beta}) h_*(t, \beta_*)| \xrightarrow{\rho} 0$

Results ...

There exists a survivor function \bar{S} such that

▶ $\sqrt{n}\{\hat{S}(t|Z^0) - \bar{S}(t|Z^0)\}$ converges to a Gaussian process, and

$$\overline{\mathsf{MSEP}}(t, \bar{S}, G) = E_{Z} \{ S(t|Z) - \bar{S}(t|Z) \}^{2} + E_{Z} \{ S(t|Z)(1 - S(t|Z)) \}^{2}$$

▶ Limiting distribution has complicated covariance structure but does not depend on censoring distribution, even when *S* has been mis-specified.

Estimation of MSEP

MSEP estimate

$$\widehat{\mathsf{MSEP}}(t,\hat{\mathcal{S}},\hat{\mathcal{G}}) = n^{-1} \sum_{i=1}^n \{ I(\tilde{T}_i \geq t) - \hat{\mathcal{S}}(t|Z_i) \}^2 w(t,\hat{\mathcal{G}},Z_i),$$

where

$$w(t, \hat{G}, Z_i) = \frac{I(\tilde{T}_i \leq t)\delta_i}{\hat{G}(\tilde{T}_i - |Z_i)} + \frac{I(\tilde{T}_i > t)}{\hat{G}(t|Z_i)}.$$

Uniform consistency

$$\sup_{t} |\widehat{\mathsf{MSEP}}(t, \hat{\mathcal{S}}, \hat{G}) - \overline{\mathsf{MSEP}}(t, \bar{\mathcal{S}}, G)| \stackrel{p}{\to} 0.$$

▶ Inference on $\sqrt{n}\{\widehat{\mathsf{MSEP}}(t,\hat{\mathcal{S}},\hat{\mathcal{G}}) - \overline{\mathsf{MSEP}}(t,\bar{\mathcal{S}},\mathcal{G})\}$ using perturbation resampling.

Cross validation to estimate MSEP

- Ideally: Independent training and test datasets
- Apparent error will be overly optimistic
- K-fold cross validation

$$\widehat{\mathsf{MSEP}}^{\mathsf{CV}} = \frac{1}{K} \sum_{k=1}^K \widehat{\mathsf{MSEP}}(\hat{h}^{(-k)}(t, \hat{\beta}^{(-k)}), \hat{\beta}^{(-k)}),$$

where $\hat{h}^{(-k)}(t, \hat{\beta}^{(-k)})$, and $\hat{\beta}^{(-k)}$ are estimated using the data in the K-1 datasets not including set k.

➤ Simulations show procedure works reasonably well – more interesting to look at examples.

Lymphoma Data

Covariates in model:

- Age
- Stage
- Tumor size
- Extent of disease
- Performance status

Lymphoma data: MSEP, original binary covariates

MSEP of PH and PO models in NHL data

Lymphoma data: mean squared error of prediction with confidence intervals, validation dataset

Multiple Myeloma

Myeloma study from Eastern Cooperative Oncology Group (E9486)

- ► Randomized trial of three treatments in multiple myeloma, no survival differences observed among 653 patients
- ▶ 295 participant specimens randomly chosen for analysis of a deletion on long arm of chromosome 13 (13q-). 270 deaths
- Originally reported in JCO (1999), Blood (2001), Biometrics (2002)

Myeloma: Value of an additional marker?

Working PH model coefficient estimates

Base		Base $+\Delta 13$	Stepwise	Stepwise $+\Delta 13$	
Δ13	-	-0.57 (.21)	-	-0.68 (.21)	
Albumin	0.30 (.27)	0.25 (.27)	-	-	
β_2 micro	-0.48 (.25)	-0.48 (.26)	-0.55 (.26)	-0.53 (.25)	
Creatine	-0.65 (.28)	-0.80 (.29)	-0.76 (.27)	-0.88 (.28)	
Hemoglobin	-0.31 (.30)	-0.29 (.31)	-	-	
IgA	0.10 (.22)	0.10 (.24)	-	-	
IgG	-0.42 (.32)	-0.46 (.32)	-	-	
Light chain (κ)	-0.67 (.39)	-0.76 (.38)	-	-	
% plasma cells	-0.78 (.23)	-0.69 (.24)	-	-	
PCLI	0.49 (.24)	0.41 (.23)	-	-	
IL-6	-0.42 (.21)	-0.44 (.21)	-0.51 (.20)	-0.52 (.20)	
C-reactive	-0.88 (.23)	-0.87 (.25)	-0.91 (.22)	-0.89 (.23)	
Durie-Salmon	-0.07 (.25)	-0.16 (.25)	-	-	

MSEP for Myeloma models

Some simulations

True vs. apparent vs. cross-validated *MSEP* for the Linear Transformation Model (LTM) and the Cox model evaluated at 1st quartile and median for simulated data.

			q = .25			q = .5		
		Truth	App.	CV	Truth	Арр.	CV	
Α	MSEP _{LTM}	.131	.134	.132	.132	.134	.130	
	$MSEP_{Cox}$	-	.133	.131	-	.134	.131	
В	$MSEP_{LTM}$.161	.169	.165	.210	.215	.211	
	MSEP _{Cox}	-	.168	.164	-	.214	.211	
С	$MSEP_{LTM}$.136	.142	.139	.145	.152	.147	
	$MSEP_{Cox}$	-	.155	.152	-	.159	.154	

A: PH data, correctly fit with LTM

B: PH data, correct LTM, but neglected covariate

C: PH data, PO model fit for LTM

Limitations

- Estimating equations are not efficient
- Must estimate censoring distribution (correctly!)
- MSEP not easily interpreted
- Falls short of predicting event times