IR Assignment 2

Homework Submission Guidelines

- 1. Due date: 10.12.19 at 23:55
- 2. Homework must be done in your assigned groups
- 3. PDF submissions only! (20% grade penalty otherwise)
- 4. The file name is: HW2 Student1ID student2ID
- 5. Answers can be submitted either in English or Hebrew
- 6. HW submission should be done via moodle in the corresponding area (by **only** one of the students)
- 7. Late submission penalty (20% a day) for submitting after the assignment's due date
- 8. Questions / clarifications and more in the dedicated discussion sub-forum.
- 9. Total time of machine usage is **600** minutes. Use the "**Stop**" button to shutdown your machine when needed.

Dry part (70%)

Vector space model (5%):

The following matrix represents the word frequencies of four documents d1, d2, d3, d4. Columns represent the documents in the above order; rows represent the vocabulary of six indexed terms a,b,c,d,e,f in that order. (Use In.)

	d1	d2	d3	d4
а	0	1	1	1
b	1	2	0	1
С	2	0	0	0
d	0	0	0	0
е	1	0	1	1
f	7	5	7	2

Assume that the fraction of corpus documents in which each term appears is 10%, 10%, 20%, 5%, 50%, 90% for the terms a, b, c, d, e, and f, respectively.

1. Compute the cosine similarity between d1 and d2 where terms are represented by the tf-idf scheme. (Describe the tf-idf scheme you have used and provide details of the computation. Use raw tf.) (5%)

Term Weighting and Ranking (10%):

- 1. What causes the short-documents bias effect when using cosine similarity? (4%)
- 2. Name two different examples where:
 - a. The removal of stopwords reduces the recall. (3%)
 - b. The removal of stopwords reduces precision. (3%)

Relevance feedback and evaluation (45%)

User 'A' submitted a query to a search engine and obtained an ordered result list.
Then, the user provided feedback to the engine (4 – the document is highly
relevant to the information need expressed by the query, 0 – the document is not
relevant)

DocID	Relevance		
5	4		
2	1		
1	1		
3	3		
4	0		

The total number of relevant documents in the collection is 10. Calculate the AP, precision and recall (at rank 5) (5%)

- 2. Suggest a version of Rocchio's model that utilizes graded relevance judgments. (10%)
- 3. Suggest a version of Rocchio's model that utilizes the rank of relevant documents in the list. (10%)
- 4. Propose a variant of AP that uses gradual relevance judgments (10%)
- 5. In which cases evaluation using MAP will yield the same results as evaluation using MRR? Mention at least 4 different cases (10%)

<u>True/False questions (10%):</u>

Mark each of the following sentences as true or false and give a short **(but full)** explanation for why your answer is correct:

- 1. df_t is an inverse measure of the informativeness of term t. (1%)
- 2. Cosine similarity and Euclidean distance are equivalent for ranking documents in response to a query under some condition. (3%)
- 3. Vector space-based retrieval is always more effective than Boolean retrieval. (1%)
- 4. In the vector space model, the higher the value of the normalization factor for a document is, the lower are the chances of retrieval for that document. (1%)
- 5. The stemming process increases the number of unique terms in the index (1%)

- 6. Values of beta>1 in F-measure emphasize precision. (1%)
- 7. In Rocchio's model, q_0 might be closer to the centroid of the relevant documents than q_m . (2%)

Wet part - Intro to Indri (30%)

Part A: (/data/HW2/WET_PART_A)

- 1. The collection for Part A is located in **docs.txt**
- 2. Create an Indri index using the following parameters:

```
<parameters>
  <memory>1G</memory>
  <corpus>
    <path> docs.txt path</path>
    <class>trectext</class>
  </corpus>
  <index>Your folder and index name</index>
</parameters>
```

If the index is created correctly you will find a manifest file **inside** the index directory which looks as follows:

```
<corpus>
     <document-base>1</document-base>
     <frequent-terms>0</frequent-terms>
          <maximum-document>5</maximum-
document>
          <total-documents>4</total-documents>
          <total-terms>212</total-terms>
          <unique-terms>140</unique-terms>
</corpus>
```

Run retrieval with the following parameter file:

```
<parameters>
     <memory>1G</memory>
     <index>Path to your index</index>
     <count>5</count>
     <trecFormat>true</trecFormat>
     <baseline>tfidf,k1:1.0,b:0.3</baseline>
</parameters>
```

- 1. Run a query "corporation" over the collection using the above parameter file
 - a. How many documents did you retrieve?
 - b. How many documents did you expect to retrieve? Perform and explain the change that is needed for getting the additional documents. (Examine the text of documents.)
- 2. Write a query that will return document D2 first; use up to 2 words; explain your choice.
- 3. Write a query that will return document D1 first; use up to 2 words; explain your choice.
- 4. By running the query: " Michael Jackson" you will retrieve document D4.
 - a. Do you think D4 is relevant to the information need expressed by this query? Explain.
 - b. Type a query for which D4 can be marked as relevant document; use up to 2 words; explain (refer to the ranking score assigned to D4 as a result of the two queries)

Part B:

- 1. The files for PartB are located in /data/HW2/WET PART B/
- 2. In the PartB folder you will find the following files and directories:
 - a. "AP_Coll.tgz" compress file contains AP documents ("database")
 - b. "queries.txt" query file with 150 queries
 - c. "grels_AP" file the AP relevance judgments
 - d. "StopWords.xml" the INQUERY 418 stopwords list
 - e. "IndriBuildIndex.xml" build index configuration file
- 3. Build 4 indexes using the given "database" directory and parameter file " IndriBuildIndex.xml".

Report the time it takes to build each index (you can use **stopwatch** or use the "**time**" command to launch prior to IndriBuildIndex application):

- a. Index1: Without stopwords removal and without stemming.
- b. Index2: With stopwords removal and without stemming.
- c. Index3: Without stopwords removal and with stemming (Use "Krovetz" stemmer)
- d. Index4: With stopwords removal and with stemming

(Note: Create first 4 index directories, each of which for an index version)

- 4. Which index version took less time to be created? Explain.
- 5. Run retrieval over the four indexes with the following parameter file (using tf.idf weights):

6. In your irstudent directory, unpack the trec_eval file located in the 'parameters.tgz' file.

Use the trec_eval application to evaluate the 4 retrieval results and complete the following table. Which retrieval result obtained the highest MAP value? Explain.

Stopword Removal	Krovetz Stemmer	MAP	P@5	P@10
Without	Without			
With	Without			
Without	With			
With	With			

Good Luck

