Квантовое сознание и матричная космология (ZFSC):

биологические подсистемы мозга как спектральные резонаторы Вселенной

Евгений Монахов*

Сентябрь 2025

Аннотация

Мы формулируем строгую, проверяемую гипотезу квантового сознания в рамке Zero-field Spectral Cosmology (ZFSC). Мозг трактуется как вложенная матричная подсистема со своим гамильтонианом $H_{\rm brain}$, спектром устойчивых мод (мысле-паттернов) и поправками на межслойную запутанность, совместимыми с ранее введёнными энергетическими сдвигами $\Delta E_s = \alpha I_{AB} + \beta I_{\rm intra}$. Проводится сопоставление с известными квантово-биологическими механизмами (вибронная когерентность, радикальные пары, гипотеза спиновых кубитов фосфора, микротрубочки), обсуждаются ограничения по декогеренции и экспериментальные протоколы верификации. Предложена феноменологическая связь с глобальной «луковичной» матрицей Вселенной $H_{\rm universe}$ через слабую спектральную связь и условия резонанса. Указаны проверяемые предсказания и границы применимости подхода.

1 Постановка задачи

Классическая нейрофизиология успешно описывает потенциалы действия и синаптическую пластичность, но оставляет открытыми вопросы интеграции опыта и возникновения единых субъективных состояний (квалий). Квантово-биологические эффекты обнаружены в ряде тёплых биосистем (фото-синтетическая когерентность, радикальные пары, шумо-ассистированный транспорт), что мотивирует осторожное рассмотрение квантовых вкладов в мозге. Наша цель — задать минимально достаточную математическую рамку в духе ZFSC, совместимую с экспериментом и не противоречащую известным оценкам декогеренции.

2 ZFSC как надсистема и мозг как вложенная матрица

В ZFSC реальность представлена вложенными матричными уровнями («луковица»), где устойчивые плато собственных значений соответствуют наблюдаемым спектрам

^{*}OOO «VOSCOM ONLINE» Research Initiative; ORCID: 0009-0003-1773-5476

частиц и полей. Введём прямую сумму

$$H_{\text{universe}} = H_{\text{cosmo}} \oplus H_{\text{matter}} \oplus H_{\text{brain}} + \varepsilon V_{\text{cpl}}, \tag{1}$$

где $H_{\rm brain}$ — биологическая подсистема, $V_{\rm cpl}$ — слабая спектральная связь (например, через гравитационно-геометрические флуктуации или электромагнитный фон), $\varepsilon \ll 1$.

Био-гамильтониан. Мозг моделируется композиционно:

$$H_{\text{brain}} = H_{\text{micro}} + H_{\text{neuro}} + H_{\text{svn}} + H_{\text{spin}} + H_{\text{chem}}, \tag{2}$$

где $H_{\rm micro}$ — внутримикротрубочечные взаимодействия; $H_{\rm neuro}$ — динамика мембран и аксонов; $H_{\rm syn}$ — синаптическая сеть; $H_{\rm spin}$ — потенциальные спиновые степени свободы (напр. $^{31}{\rm P}$ в фосфатных кластерах); $H_{\rm chem}$ — радикальные пары и прочие химические пути.

Графовая структура. На уровне сети рассмотрим ориентированный взвешенный граф $G = (\mathcal{V}, \mathcal{E})$ нейронных и микротрубочечных узлов. С учётом мультиуровневости используем блочное представление:

$$\mathbf{A} = \begin{pmatrix} A_{\text{micro}} & C_{\text{m} \leftrightarrow \text{n}} \\ C_{\text{n} \leftrightarrow \text{m}} & A_{\text{neuro}} \end{pmatrix}, \qquad \mathbf{L} = \mathbf{D} - \mathbf{A}, \tag{3}$$

где A — матрица смежности, L — лапласиан, D — диагональная матрица степеней. Спектр $\{\lambda_i(L)\}$ задаёт естественные моды согласованных колебаний.

3 Сознательные состояния как устойчивые спектральные моды

Определим coshameльное cocmoshue как квази-стационарный кластер собственных мод H_{brain} с малыми дрейфами по времени:

$$\frac{d\lambda_i}{dt} \approx 0, \quad \forall \lambda_i \in \mathcal{C}_{\text{cons}},$$
 (4)

и ненулевой межуровневой интеграцией информации. Следуя ZFSC-введению поправок на запутанность, положим

$$\Delta E_s = \alpha I_{AB} + \beta I_{\text{intra}},\tag{5}$$

где I_{AB} — взаимная информация между крупными областями мозга (лобные, теменные, лимбическая система и т.п.), I_{intra} — когерентность/взаимная информация внутри подуровней (например, внутри ансамбля микротрубочек).

Тогда энергия сознательного эпизода в феноменологической аппроксимации:

$$E_{\rm cons} = \sum_{\lambda_i \in \mathcal{C}_{\rm cons}} \lambda_i + \Delta E_s,\tag{6}$$

а интеграционная метрика может быть соотнесена с ІІТ-подобной величиной Ф:

$$\Phi \sim \sum_{(A,B)\in\mathcal{P}} I(A:B) - \sum_{S\in\mathcal{S}} I_{\text{cut}}(S), \tag{7}$$

сопоставляя $I(\cdot : \cdot)$ с измеримой взаимной информацией функциональной нейровизуализации и внутренними метриками графа G.

4 Когерентность: биофизические кандидаты и ограничения

4.1 Вибронная когерентность и шумо-ассистированный транспорт

Эксперименты в фотосинтетических комплексах демонстрируют когерентные осцилляции при комнатных температурах на фемто-пико-секундных шкалах, что интерпретируется как квантовая волновая передача возбуждений; в моделях важную роль играют вибрации и оптимум при конечной декогеренции (ENAQT). Эти механизмы указывают, что биосистемы способны использовать квантовые эффекты на тёплых масштабах.

4.2 Радикальные пары

Механизм радикальных пар (магнеторецепция птиц) показывает чувствительность биохимических реакций к слабым магнитным полям через когерентную спиновую динамику. Это демонстрирует реальность $\phi y + \kappa u + \omega n$ когерентности спинов в «мокрой» биосреде.

4.3 Спиновые кубиты фосфора

Гипотеза ядерных спинов 31 P (Posner-молекулы) предлагает долгоживущую квантовую память и пути химической генерации/транспортировки запутанных пар. Это совместимо с $H_{\rm spin}$ и предоставляет естественные T_2 -кандидаты для мозговой среды.

4.4 Микротрубочки и тера-/гигагерцовые моды

Ряд работ указывает на резонансные электродинамические свойства микротрубочек (гига- и терагерцовые моды, эффекты гистерезиса/«многослойной памяти» на одиночной микротрубочке). Мы трактуем это как вклад в $H_{\rm micro}$ и $I_{\rm intra}$ (формула ??).

4.5 Оценки декогеренции

Тегмарк дал пессимистичные оценки характерных времён декогеренции $10^{-13}-10^{-20}$ с для типичных мозговых степеней свободы. Современные работы указывают, что в специфицированных каналах (защищённые спины, коррелированная шумовая среда, $\partial uccunamuвная$ стабилизация) окна когерентности могут быть существенно длиннее. Мы принимаем консервативный рабочий диапазон

$$\tau_{\phi} \sim 10^{-9} \text{ c} \dots 10^{-4} \text{ c}$$

для $\kappa a + d u d a m + u x$ подсистем, подчёркивая модельную зависимость и необходимость прямых измерений.

5 Связь с матрицей Вселенной: спектральный резонанс

Пусть $\{\lambda_i\}$ — собственные значения $H_{\rm brain}$, а $\{\Lambda_j\}$ — спектр соответствующего слоя $H_{\rm cosmo}$ (в рамке ZFSC). Введём спектральное перекрытие

$$S(\delta) = \sum_{i,j} \exp\left[-\frac{(\lambda_i - \Lambda_j)^2}{2\delta^2}\right] |\langle u_i | U | v_j \rangle|^2, \tag{8}$$

где $|u_i\rangle$ и $|v_j\rangle$ — собственные векторы локальной и космологической подсистем, U — слабая связь/проекционный оператор. Когерентное «прилипание» сознательных кластеров к вселенским модам ожидаемо при больших значениях $\mathcal{S}(\delta)$.

Эффективная динамика. В первом порядке по ε :

$$H_{\text{eff}} = H_{\text{brain}} + \varepsilon^2 \sum_{j} \frac{V |v_j\rangle\langle v_j| V^{\dagger}}{E - \Lambda_j + i0^+}, \tag{9}$$

что ведёт к сдвигам Ламба и эффективным куплингам между мозговыми модами через «фон» космологического слоя. В рамках ZFSC такие сдвиги можно интерпретировать как малые поправки к плато собственных значений.

6 Энергетические прикидки

Пусть тубулин выступает как двухуровневая система с эффективным разностью уровней $\Delta \varepsilon \sim 10^{-2}\,\mathrm{eV}~(\sim 10^{-21}\,\mathrm{J})$. Ансамбль когерентных тубулинов N_c даёт характерную энергию

$$E_c \sim N_c \Delta \varepsilon$$
.

Для $N_c \sim 10^6$ получаем $E_c \sim 10^{-15}\,\mathrm{J}$ (сопоставимо с энергией 10^4-10^5 фотонов видимого диапазона). Это ещё не «мозг целиком», но уже измеримый масштаб для резонансной тера-/гигагерцовой спектроскопии и для высокочувствительных магнитометров (OPM/SQUID).

7 Экспериментально проверяемые предсказания

- 1. **ТГц/ГГц-спектроскопия микротрубочек:** наличия стабильных полос сужается при *снижеении* шума до оптимума (ENAQT-окно); сверх- и недо-декогеренция уменьшают интеграционный индекс Ф.
- 2. Спиновые тесты 31 P: наблюдение аномально длинных T_2 в кальций-фосфатных кластерах in vitro/in vivo; генерация/детектирование энтангламента посредством ферментативных реакций (пирофосфат \rightarrow фосфаты).
- 3. **Нейро-магнитометрия:** узкополосные, воспроизводимые компоненты в МЭГ/ОРМ при когнитивных задачах, устойчивые к подавлению сосудистых и мышечных артефактов и не редуцируемые к классической осцилляторике.

- 4. **Леггетта—Гарга тесты:** проектирование макроскопических неинвазивных корреляций для отдельных подсистем (например, «мезоскопические» микротрубочечные домены) с контролем «clumsiness loophole».
- 5. **Радикальные пары:** повышенная чувствительность некоторых нейрохимических путей к слабым RF-помехам при частотах, совпадающих с гирамагнитными параметрами радикальных пар.

8 Границы применимости и фальсифицируемость

- Подход не утверждает «всеобщую квантовость» мозга: речь о локальных каналах с потенциалом когерентности, строго ограниченных биофизикой.
- Любая из следующих наблюдаемых фальсифицирует ключевые узлы гипотезы:

 (i) отсутствие узкополосных ТГц/ГГц-мод у микротрубочек при физиологических условиях;
 (ii) невозможность продемонстрировать Т₂ выше классической нижней границы в фосфатных кластерах;
 (iii) отрицательные результаты Леггетта-Гарга при устранении всех лазеек.

9 Интеграция с ZFSC и дорожная карта

Сопоставление с формализмом ZFSC

(i) Закон устойчивости спектральных мод: $d\lambda_n/dt \approx 0 \Rightarrow$ устойчивое сознательное состояние;

(10)

(ii) Запутанность-энергетика: $\Delta E_s = \alpha I_{AB} + \beta I_{\text{intra}}$ вносит сдвиги плато; (11)

(ііі) Расширенный гамильтониан: $H_{\rm ext} = \begin{pmatrix} H & \Delta \\ \Delta^{\dagger} & H_C \end{pmatrix}$ (частично нарушенные С/СР-симметрии в с

План работ

- 1. Спектральное картирование in vitro: измерение $\{\lambda_i\}$ микротрубочек и фосфатных кластеров ($T\Gamma_{\mathfrak{U}}/\Gamma\Gamma_{\mathfrak{U}}$, Рамановская спектроскопия).
- 2. **Граф-моделирование** G: построение A_{micro} , A_{neuro} , оценка Φ , I_{AB} , I_{intra} на данных fMRI/MЭГ.
- 3. **Спин-эксперименты**: T_1/T_2 ³¹P, контроль химии Posner-молекул, RF-сдвиги.
- 4. **Мезоскопические LG-тесты**: протоколы слабых измерений, минимизация инвазивности.
- 5. **Космологическое перекрытие** $S(\delta)$: численные сканы в ZFSC-ядре для оценки резонансных окон.

Заключение

Мы задали строго совместимую с ZFSC рамку квантового сознания: мозг рассматривается как матричная подсистема со спектрально устойчивыми модами и измеримыми каналами когерентности. Связь с «матрицей Вселенной» реализуется как слабосвязанная резонансная корректировка. Подход фальсифицируем и предлагает конкретные экспериментальные проверки.

Список литературы

- [1] S. Hameroff, R. Penrose, Consciousness in the universe: A review of the Orch OR theory, *Physics of Life Reviews* **11** (2014) 39–78.
- [2] M. Tegmark, The importance of quantum decoherence in brain processes, *Phys. Rev.* E **61** (2000) 4194–4206; arXiv:quant-ph/9907009.
- [3] M. P. A. Fisher, Quantum cognition: The possibility of processing with nuclear spins in the brain, *Annals of Physics* **362** (2015) 593–602.
- [4] G. S. Engel et al., Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems, *Nature* **446** (2007) 782–786.
- [5] S. F. Huelga, M. B. Plenio, Vibrations, quanta and biology, *Contemporary Physics* **54** (2013) 181–207.
- [6] N. Lambert et al., Quantum biology, Nature Physics 9 (2013) 10–18.
- [7] P. J. Hore, H. Mouritsen, The radical-pair mechanism of magnetoreception, *Annual Review of Biophysics* **45** (2016) 299–344.
- [8] G. Tononi, An information integration theory of consciousness, *BMC Neuroscience* **5** (2004) 42.
- [9] S. Sahu et al., Multi-level memory-switching properties of a single brain microtubule, *Applied Physics Letters* **102** (2013) 123701.
- [10] H. Fröhlich, Long-range coherence and energy storage in biological systems, *Int. J. Quantum Chem.* **2** (1968) 641–649; см. также подборку трудов в сборнике *Coherent Excitations in Biological Systems* (Springer, 1983).
- [11] C. Emary, N. Lambert, F. Nori, Leggett-Garg inequalities, Rep. Prog. Phys. 77 (2014) 016001.