

## Numerical Analysis and Computational Mathematics

Fall Semester 2019 - Section CSE

Dr. Rafael Vázquez Hernández

Assistant: Ondine Chanon

Session 3 - 2 October 2019

# Nonlinear equations: Newton method

## Exercise I (MATLAB)

With the help of the file newton\_template.m, implement the Newton method in a MATLAB function, say newton (saved inside the file newton.m). The layout of the function is the following:

```
function [xvect, resvect, nit] = newton( fun, dfun, x0, tol, nmax )
% NEWTON Find a zero of a nonlinear scalar function.
% [XVECT] = NEWTON(FUN,DFUN,X0,TOL,NMAX) finds a zero of the differentiable
% function FUN using the Newton method and returns a vector XVECT containing
% the successive approximations of the zero (iterates). DFUN is the derivative of FUN.
% FUN and DFUN accept real scalar input x and return a real scalar value;
% FUN and DFUN can also be inline objects. X0 is the initial guess.
% TOL is the tolerance on error allowed and NMAX the maximum number of iterations.
% The stopping criterion based on the difference of successive iterates is used.
% If the search fails a warning message is displayed.
%
% [XVECT,RESVECT,NIT] = NEWTON(FUN,DFUN,X0,TOL,NMAX) also returns the vector
% RESVECT of residual evaluations for each iterate, and NIT the number of iterations.
% Note: the length of the vectors is equal to ( NIT + 1 ).
%
```

As a stopping criterion for the Newton method, check if the difference of successive iterates at the step n is smaller than the prescribed tolerance tol, i.e.  $|x^{(n)} - x^{(n-1)}| < tol$ , with a limit on the maximum number of iterations  $n_{max}$   $(n \le n_{max})$ .

- a) Use the function newton to find the zero  $\alpha = 0$  of the nonlinear function  $f(x) = \sin(2x) + x$  in (-1,1) starting from  $x^{(0)} = 0.7$  with the tolerance  $tol = 10^{-5}$  and  $n_{max} = 50$ . How many iterations are required for the convergence of the Newton method, say  $n_c$ , and how large is the error  $e^{(n_c)} = |x^{(n_c)} \alpha|$ ?
- b) What is the expected convergence order of the Newton method to the zero  $\alpha$  for the function f(x) of point a)? Motivate the answer based on the theoretical convergence results.

- c) Plot in semi-logarithmic scale the errors  $e^{(n)} = |x^{(n)} \alpha|$  vs. the iteration number n, with  $n = 0, \ldots, n_{(max)}$ , for the function f(x) given at point a); set  $x^{(0)} = 0.7, n_{(max)} = 6$  and  $tol = 10^{-12}$ . By comparing the result with the plot of  $b_n = 2^{-n}$  for  $n = 0, \ldots, n_{max}$ , what can we deduce about the convergence order of the Newton method applied to the function f(x)?
- d) Modify the function newton to implement the stopping criterion based on the residual, i.e.  $|r^{(n)}| = |f(x^{(n)})| < tol$  and save it in a different file newton\_residual.m. Apply it to find the unique zero  $\alpha = 0$  of the function  $f(x) = \exp(\beta x) 1$ , with  $\beta = 10^{-3}, 1, 10^3$ . Set the initial value  $x^{(0)} = 0.1$ , the tolerance  $tol = 10^{-7}$  and  $n_{max} = 150$ . Compare the values of the (absolute) residual  $|r^{(n_c)}|$  and error  $e^{(n_c)}$  at convergence for the different values of  $\beta$ . Is the stopping criterion based on the residual satisfactory for these values of  $\beta$ ? Why?

## Exercise II (MATLAB)

Consider the Newton method for finding the zero  $\alpha = 0$  of the function  $f(x) = (\sin(x))^m$  in the interval  $(-\pi/2, \pi/2)$  starting from the initial value  $x^{(0)} = \pi/6$  for different  $m = 1, 2, 3, \ldots$ 

- a) What are the expected convergence orders of the Newton method to the zero  $\alpha$  for the function f(x) with m = 1, 2, and 3? Motivate the answer based on the theoretical convergence results.
- b) Use the function newton to find the zero  $\alpha$  for m=1,2, and 3. Set  $tol=10^{-8}$  and use the stopping criterion based on the difference of successive iterates and maximum number of iteration  $n_{max}=50$ . How many iterations are required to converge for the prescribed tolerance?
- c) Similarly to Exercise 1 point c), plot the errors obtained for m=1,2, and m=3 vs. the iteration number  $n=0,\ldots,n_{max}$  (set  $n_{max}=5$ ). Motivate the results obtained in relation to point a).
- d) How should the Newton method be modified if the function f(x) has a zero  $\alpha$  of multiplicity m > 1, i.e. such that (for  $f(x) \in C^m(I_\alpha)$ , with  $I_\alpha$  a neighborhood of  $\alpha$ ):

$$f(\alpha) = f'(\alpha) = \dots = f^{m-1}(\alpha) = 0$$
 and  $f^{(m)}(\alpha) \neq 0$ ?

Implement the modified Newton method in a function newton-modified taking as additional input the multiplicity m of the zero  $\alpha$ .

e) What are the expected convergence orders of the (properly) modified Newton method applied to the function f(x) in the cases m = 1, 2, and 3? Repeat the point c) by using the function newton-modified and comment the results obtained.

#### Exercise III (MATLAB)

Consider the polynomial  $p(x) = -3x^3/8 + 5x^2/4 + x/2 - 1$  of order 3.

a) Plot the polynomial p(x) in the interval  $x \in (-1,3)$ . Plot in the same figure the tangent lines to the curve (x,p(x)) at x=0 and x=2 (hint: the tangent line at the point  $(x_0,p(x_0))$  is given by  $y(x)=p(x_0)+p'(x_0)(x-x_0)$ ).

- b) Following point a), use the Newton method to find the zero  $\alpha \in (0, 2)$  starting from the initial value  $x^{(0)} = 10^{-3}$ . Set  $tol = 10^{-8}$  and  $n_{max} = 20$ . Does the method converge? To which value? In how many iterations?
- c) Repeat the point b) by setting  $x^{(0)} = 10^{-3}$  and  $x^{(0)} = 0$  (hint: check the value of the iterates in xvect). Motivate the results with the help of the plot obtained at point a).

### Exercise IV (MATLAB)

With the help of the file newtonsys\_template.m, complete the implementation of the Newton method for systems of nonlinear equations in a MATLAB function newtonsys (saved inside the file newtonsys.m). The layout of the function is the following:

```
function [x, res, nit] = newtonsys( F, J, x0, tol, nmax )
% NEWTONSYS Find the zeros of a system of nonlinear equations.
% [X] = NEWTONSYS(F,J,X0,TOL,NMAX) find the zero X of the
% continuous and differentiable system of functions F nearest to X0 using the
% Newton method. J is a function which takes X and returns the Jacobian matrix.
% X0 is a column vector; F returns a column vector and J a square matrix.
% The stopping criterion is based on the difference (norm) of successive
% iterates.
% If the search fails a warning message is displayed.
%
% [X,RES,NITER] = NEWTONSYS(F,J,X0,TOL,NMAX) returns the value of the
% residual RES in X and the number of iterations NITER required for computing X.
% Note: only the final iterate is stored in X; similarly for RES.
%
return
```

As stopping criterion for the Newton method, consider the test on the increment of successive iterates  $\mathbf{x}^{(n)}$  at the iteration step n, i.e.  $\|\mathbf{x}^{(n)} - \mathbf{x}^{(n-1)}\|_2 < tol$  for a prescribed tolerance tol, with a limit on the maximum number of iterations  $n_{max}$  ( $n < n_{max}$ ) (hint: use the MATLAB commands norm to compute the norm of a vector and  $\wedge$  to solve systems of linear equations). Use the function newtonsys to find the zero  $\boldsymbol{\alpha} \in \mathbb{R}^d$  of the system of nonlinear equations  $\boldsymbol{F}(\mathbf{x}) = \mathbf{0}$ , with  $\mathbf{x} = (x_1, \dots, x_d)^T \in \mathbb{R}^d$ ,  $\boldsymbol{F} : \mathbb{R}^d \to \mathbb{R}^d$ , where d = 2 and:

$$F(\mathbf{x}) = \begin{bmatrix} e^{x_1^2 + x_2^2} - 1 \\ e^{x_1^2 - x_2^2} - 1 \end{bmatrix}.$$

Find the zero  $\boldsymbol{\alpha} = (0,0)^T$  by setting  $tol = 10^{-5}$  and  $n_{max} = 100$  for the choices of the initial datum  $\mathbf{x}^{(0)} = (1.5, -2)^T$  and  $\mathbf{x}^{(0)} = (4, 4)^T$ . Report the number of iterations required for the convergence of the method and discuss the choice of  $\mathbf{x}^{(0)}$ .