TE Sem VI (Mech) (R-2017) C Scheme Paper / Subject Code: 89422 / Turbo Machinery

Time: 3 hour

Note:

- 1. Question No.1 is compulsory.
- 2. Attempt any three questions from the remaining.
- 3. Assume suitable data if required.

Q1. Solve any four out of five.

5 marks each

- а Write short note on multi staging of reciprocating compressor.
- Describe working of reheating gas turbine plant with the help of a T-S diagram.

 Write the time b
- Write the differences between Mountings and Accessories of boiler.
- d Write short note on air vessel with neat sketch.
- E Write short note on reciprocating pump with indicator diagram.

Q2.

The steam at 4.9 bar and 160°C is supplied to a single-stage impulse turbine at a a mass flow rate of 30 kg/min, from where it is exhausted to a condenser at a pressure of 19.6 kPa. The blade speed is 300 m/s. The nozzles are inclined as 25° to the all to the plane of wheel and the outlet blade angle is 35°.

Neglecting friction losses, determine

Theoretical power developed by the turbine,

- (b) diagram efficiency, and
- (c) stage efficiency.

10 marks

Explain the construction and working of once through boiler with neat sketch.

5 marks

Write the Function and location of Blow off cock, Fusible plug, pressure gauge & 5 marks water level indicator in boiler.

- The air enters the compressor of an open cycle constant pressure gas turbine at a pressure of 1 bar and temperature of 20°C. The pressure of the air after compression is 4 bar. The isentropic efficiencies of compressor and turbine are 80% and 85% respectively. The air-fuel ratio used is 90: 1. If flow rate of air is 3.0 kg/s, find:
 - (i) Power developed.
 - (ii) Thermal efficiency of the cycle.

Assume $C\hat{p} = 1.0 \text{ kJ/kg K}$ and $\chi = 1.4 \text{ of air and gases}$

Calorific value of fuel = 41800 kJ/kg.

10 marks

Write short note on Francis turbine.

5 marks

Write short note on Turbojet engine.

5 marks

Paper / Subject Code: 89422 / Turbo Machinery

Q4.		
a	Calculate	
	Calculate the efficiency of (a) boiler, (b) economiser, and (c) who (a) Boiler.	ole plant havin
	Mass of the factor	
	Mass of the coal burnt = 227 kg/h Calorific value of coal = 22.7 kg/h	
	Calorific value of Kg/h	
	Enthalpy of $ct = 30,000 \text{ kJ/kg}$	
	(b) Economises Produced = 2/50 kJ/kg	
	met temperature	3 2
	Exit temperature of feed water = 15°C Atmospheric air temperature	
	Atmospheric air temperature = 18°C Temperature of fluo cos	
	Temperature of flue gases entering = 370°C Mass of flue gases = 4075 to a	
	Mass of flue gases entering = 370°C Specific heat of g	27 10
	Specific heat of flue gases = 1.3 kJ/kg.°C.	8 marks
b		177
	Derive the condition for maximum blade efficiency of impulse turb	ine. 8 marks
C	What is the Classification of pumps?	4 marks
350	particularly of pullips:	\$ ⁷
Q5.		46/
a S	A pump operates at a maximum efficiency of 82% and delivers 2.2 head of 18 m while running at 3600 r.p.m speed. Compute the Power speed of the pump. Also determine the discharge, head and power at a shaft speed of 2400 r.p.m. Cite the assumption made, if any.	er and specific
b	Write short note on Centrifugal compressor.	6 marks
c.	What is specific speed for turbine and centrifugal pump?	4 marks
Q6.		
a	A Pelton wheel has a mean bucket speed of 12 m/s and is supplied w	ith water at a
) ()	rate of 750 liters per second under a head of 35 m. If the bucket de	eflects the jet
	through an angle of 160°, find the power developed by the turn hydraulic efficiency. Take the coefficient of velocity as 0.98. Neglethe bucket. Also determine the overall efficiency of the turbine if it	bine and its ct friction in s mechanical
	efficiency is 80%.	10 marks
b	What is multistaging of impulse turbine? and What is degree of reacti	a0
D ,	what is degree of reacti	
		5 marks
c	What do you mean by cavitation and its effect in turbine and pump?	5 marks