Physics 137B Notes

Keshav Balwant Deoskar

January 22, 2024

These are notes taken from lectures on Quantum Mechanics delivered by Professor Raúl A. Briceño for UC Berekley's Physics 137B class in the Sprng 2024 semester.

Contents

1	January 18 - Review and Intro to Symmetries	2
	1.1 Why Quantum?	2
	1.2 Topics covered in 137A	
	1.3 Review of 1D OM	2

1 January 18 - Review and Intro to Symmetries

1.1 Why Quantum?

- It's cool lmao
- Computers [Quantum Computing]
- Applications such as Condensed Matter Physics
- More accurate description of reality than Classical Mechanics
 - 3 of the 4 fundamental forces that we know of are Quantum Mechanical.
 - These are the Strong Nuclear, Weak Nuclear, and Quantum Electrodynamic.

1.2 Topics covered in 137A

- Review of Historical events such as the Photoelectric effect and other precursors to Quantum
- Postulates of QM
- Solve exactly some key examples such as Free Particle, Particle in a Quantum Harmonic Oscillator, Hydrogen Atom.
 - Unfortunately, most of the problems in nature we want to solve are not solvable exactly.
 - In 137B, one of the key concepts we will introduce in that of <u>Perturbation Theory</u>, which will allow us to approximate solutions and their associated errors.

1.3 Review of 1D QM

- A particle is described by its wavefunction $\Psi(x,t)$ and the probability density is given by $P(x,t) = |\Psi(x,t)|^2$.
- The probability of finding the particle in a particular region of space is

$$dxP(x,t) = dx|\Psi(x,t)|^2 = \Psi(x,t)^*\Psi(x,t)$$

- Physically, we require $\int dx |\Psi(x,t)|^2 = 1$. Such a wavefunction is called *normalizable*.
- The wavefunction itself is not something we observe. Instead, our observables are the expectation values of operators. Expectation value of $\hat{\Theta}$ is

$$\langle \hat{\Theta} \rangle = \int dx \Psi(x,t)^* \hat{\Theta} \Psi(x,t)$$

• Principle of Superposition: If we have a set $\{\psi_1, \dots, \psi_n\}$ of solutions which solve the Schroedinger equation, then any linear combination of the ψ_i 's will also be a solutions

$$\Psi(x) = \sum_{n} c_n \psi(x, t)_n$$

• Time-Dependent Schroedinger Equation:

write the equation here later

• Time Independent Schroedinger Equation: (When the potential does not depend on time)

$$\left(\frac{-\hbar^2}{2m}\frac{d^2}{dx^2} + V(x)\right)\psi(x) = E\psi(x)$$

- So, if $\{\psi_n\}$ satisfy TISE with wigenenergies $\{E_n\}$, then we know
 - The states $\{\psi_n\}$ are called *Stationary States*.
 - By the Principle of Superposition,

$$\Psi(x,0) = \sum_{n} c_n \psi_n(x)$$

describes the total wavefunction at time t = 0.

– To verify that Ψ is a valid wavefunction, we can test its normalizability.

$$1 = \int dx \Psi(x)^* \Psi(x)$$

$$= \int dx \left(\sum_n c_n \psi_n(x) \right)^* \left(\sum_m c_m \psi_m(x) \right)$$

$$= \sum_n \sum_m \int dx c_n^* c_m \psi_n(x) \psi(m)$$

$$= \sum_n \sum_m \int dx c_n^* c_m \delta_{nm}$$

$$= \sum_n |c_n|^2$$

– At $t \neq 0$, we use the propagator to obtain the state

$$\Psi(x,t) = \sum_{n} c_n e^{-E_n t/h} \psi_n(x)$$

• Bra and Ket notation:

$$|\psi\rangle = \sum_{i} |i\rangle \underbrace{\langle i|\psi\rangle}_{c_{i}}$$

$$= \sum_{i} |i\rangle c_{i}$$

Also, recall that
$$\sum_i |i\rangle\langle i|=1$$

Or in the continuous case,

$$|\psi\rangle = \int dx |i\rangle \underbrace{\langle i|\psi\rangle}_{c_i}$$
$$= \int |i\rangle \psi(x)$$