Capstone Project Report: Battle of Neighborhoods

Applied Data Science by Coursera/ IBM

IBM Data Science Professional Certificate

Table of contents

- Introduction
- Data
- Methodology
- Analysis
- Results and Discussion
- Conclusion
- References

Introduction

Moving to a new city, state or country - is no easy task and one probably will feel the effect of change. Sometimes the effect of change could gradually lead us to culture shock! This might result to pack up and head back to home. Before doing so, let's have a look how data science (tools and methodology) can help us to find some similarities/ dissimilarities in neighborhoods.

Considering relocation, people usually tend to explore the places before moving and that involves so many aspects including **neighborhood analysis**. This requires a search algorithm that usually returns the requested features such as population rate, median housing price, school ratings, crime rates, weather conditions, recreational facilities and many more. Wouldn't it be nice to have an application (one platform) that could spit out an extensive analysis of all these features for a neighborhood or a comparative analysis between neighborhoods by just sending out the names of the neighborhoods?

In this project the above mentioned user need will be taken as main idea to develop the model. I will be focusing on **neighborhood analysis** in the city of our choice.

This Project aims to help the stakeholders take a better decision on choosing the best neighborhood out of many neighborhoods in the city of **Toronto** based on the distribution of various facilities in and around that neighborhood. For example, this project would compare 2 or more randomly chosen neighborhoods and analyze the top 10 most common venues in each of those two neighborhoods based on the number of visits by people in each of those places. I will use K-means clustering unsupervised machine learning algorithm to cluster the venues based on the place category such as restaurants, park, coffee shop, gym etc. This would help to understand better, the similarities and dissimilarities between/ among the chosen neighborhoods to retrieve more insights and to conclude which neighborhood wins over other.

Data

According to this problem, I will need to acquire data about the city of Toronto, specifically the boroughs and neighborhoods of the city. Geospatial data of the city, its boroughs and all the neighborhoods. Following this it also requires to gather data about each neighborhoods such as what are the top venues and most common venues, which categories these venues belong to.

To obtain the best datasets to achieve our aim, I will use **Foursquare API** (*) as my prime data gathering source.

^{*} Foursquare API has a database of more than 105 million places, especially their places API which provides the ability to perform location search, location sharing and details about a business. Photos, tips and reviews jolted by Foursquare users can also be used in many productive ways to add value to the results.

^{*} Please note: Due to limitations (on API call Quota) the number of places per neighborhood parameter would reasonably be set to 100 and the radius parameter would be set to 700.

Methodology

➤ Data Collection

This project depends on publicly available data, mainly from Wikipedia [1-5]. I will use **Web Scraping** with **Beautiful Soup** to retrieve data from different Web pages. Acquired data will then be cleaned and sorted according to the requirements.

```
: #importing all libraries
  import numpy as np
  import pandas as pd
  pd.set_option('display.max_columns', None)
  pd.set_option('display.max_rows', None)
  import json
  from pandas.io.json import json_normalize
  from geopy.geocoders import Nominatim
  from bs4 import BeautifulSoup
  import lxml.html as lh
  import requests
  import matplotlib.cm as cm
  import matplotlib.colors as colors
  from sklearn.cluster import KMeans
  !conda install -c conda-forge folium=0.5.0 --yes
  import folium
  print('Folium installed')
  print('Libraries imported.')
```

```
#Scraping Wikipedia
url = 'https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M'
r = requests.get(url)
soup = BeautifulSoup(r.content, 'html.parser')
table = soup.find('table')
trows = table.find_all('tr')
for tr in trows:
    i = tr.find_all('td')
   if i:
        rows.append(i)
lst = []
for row in rows:
    postalcode = row[0].text.rstrip()
    borough = row[1].text.rstrip()
   neighborhood = row[2].text.rstrip()
if borough != 'Not assigned':
       if neighborhood == 'Not assigned':
            neighborhood = borough
        lst.append([postalcode, borough, neighborhood])
cols = ['PostalCode', 'Borough', 'Neighborhood']
df = pd.DataFrame(lst, columns=cols)
print(df.shape)
(211, 3)
```

check – (.head) the scraped data:

P	ostalCode	Borough	Neighborhood
0	МЗА	North York	Parkwoods
1	M4A	North York	Victoria Village
2	M5A	Downtown Toronto	Harbourfront
3	M5A	Downtown Toronto	Regent Park
4	M6A	North York	Lawrence Heights

➤ Data Wrangle

I encountered that in the first data frame (df) there are several boroughs sharing the same postal code but recorded in separate rows. So I would group those by postal code to reduce the size of the data frame.

The size now looks fine. Let's run a test to see if we have the dataset how we wanted it to be.

df	df.head()							
	PostalCode	Borough	Neighborhood					
0	M1B	Scarborough	Rouge, Malvern					
1	M1C	Scarborough	Highland Creek, Rouge Hill, Port Union					
2	M1E	Scarborough	Guildwood, Morningside, West Hill					
3	M1G	Scarborough	Woburn					
4	M1H	Scarborough	Cedarbrae					

Yes! that's fine.

Another requirement of the dataset is to obtain the geospatial data for each neighborhood. I have collected geospatial data various sources [1-4]. I initially put all the collected data into .csv file and then read (dfgeo) in python and converted into pandas data frame (df2).

```
#Clean and sort
#read the csv and put it into pandas data frame
dfgeo = pd.read_csv("Geospatial.csv")
dfgeo.rename(columns={'Postal Code': 'PostalCode'}, inplace=True)
df2 = pd.merge(df, dfgeo, on="PostalCode", how='left')
df2.head()
```

	PostalCode	Borough	Neighborhood	Latitude	Longitude	Population
0	M1B	Scarborough	Rouge, Malvern	43.806686	-79.194353	66108
1	M1C	Scarborough	Highland Creek, Rouge Hill, Port Union	43.784535	-79.160497	35626
2	M1E	Scarborough	Guildwood, Morningside, West Hill	43.763573	-79.188711	46943
3	M1G	Scarborough	Woburn	43.770992	-79.216917	29690
4	M1H	Scarborough	Cedarbrae	43.773136	-79.239476	24383

The city of Toronto has 11 Boroughs and 103 Neighborhoods.

After finding the geographical coordinate of Toronto, I used **Folium** (python visualization library) to visualize the neighborhoods and the cluster distribution of the city of Toronto over an interactive leaflet map.

Then I used **Foursquare** to collect the venue data of each neighborhood. As mentioned earlier I have set the limit for API calls for venue parameter to 100 and the radius parameter to 700.

	name	categories	lat	Ing
0	Downtown Toronto	Neighborhood	43.653232	-79.385296
1	Textile Museum of Canada	Art Museum	43.654396	-79.386500
2	Sansotei Ramen 三草亭	Ramen Restaurant	43.655157	-79.386501
3	Japango	Sushi Restaurant	43.655268	-79.385165
4	Tsujiri	Tea Room	43.655374	-79.385354

Then I created a function to have the same process repeated for all 103 neighborhoods of Toronto. After processing the dataset I found that there are 319 unique venue categories exist in Toronto. However the size of the dataset is quite large and I reduced it from (3461, 319) to (102, 319) by "one hot encoding" and "groupby()" method.

In addition, I looked at the neighborhoods with the top 10 most common venue and their frequencies.

```
----Adelaide, King, Richmond----
             venue freq
        Coffee Shop 0.07
          Café 0.06
1
         Steakhouse 0.04
2
3 Sushi Restaurant 0.04
4 American Restaurant 0.04
5 Gastropub 0.03
6
        Restaurant 0.03
7
          Bar 0.03
8 Thai Restaurant 0.03
9 Theater 0.03
----Agincourt----
             venue freq
0 Shanghai Restaurant 0.1
         Pool Hall 0.1
1
    Badminton Court 0.1
2
3
     Breakfast Spot 0.1
         Coffee Shop 0.1
     Sandwich Place 0.1
5
6
      Clothing Store 0.1
7 Motorcycle Shop 0.1
8 Lounge 0.1
       Skating Rink 0.1
----Agincourt North, L'Amoreaux East, Milliken, Steeles Ea:
```

I then put the collected data into pandas data frame and merged with the df2.

stalC	ode	Borough	Neighborhood	Latitude	Longitude	Population	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue
	м1В	Scarborough	Rouge, Malvern	43.806686	-79.194353	66108	4.0	Fast Food Restaurant	Coffee Shop	Spa	Bus Station	Hobby Shop	Construction & Landscaping	Women's Store	Donut Shop
	M1C	Scarborough	Highland Creek, Rouge Hill, Port Union	43.784535	-79.160497	35626	4.0	Breakfast Spot	Bar	Burger Joint	Dumpling Restaurant	Discount Store	Dive Bar	Dog Run	Doner Restaurant
	M1E	Scarborough	Guildwood, Morningside, West Hill	43.763573	-79.188711	46943	0.0	Pizza Place	Fast Food Restaurant	Grocery Store	Breakfast Spot	Moving Target	Electronics Store	Fried Chicken Joint	Rental Car Location
	M1G	Scarborough	Woburn	43.770992	-79.216917	29690	1.0	Park	Coffee Shop	Convenience Store	Business Service	Event Space	Ethiopian Restaurant	Dessert Shop	Dim Sum Restaurant
	м1н	Scarborough	Cedarbrae	43.773136	-79.239476	24383	4.0	Coffee Shop	Indian Restaurant	Bakery	Thai Restaurant	Gym / Fitness Center	Fried Chicken Joint	Flower Shop	Chinese Restaurant

Before I proceeded to the next steps, I have done a small test on a single neighborhood as a part of the data exploration and to check the workability of our resources. (*see the supporting notebook*). The results look fine and I am ready to step forward.

> Clustering

In order to carry out the extensive comparative analysis of randomly chosen neighborhoods, I have used K-means clustering; an unsupervised machine learning algorithm; to form the clusters of different categories of places residing in and around the neighborhoods.

However determining the optimal number of clusters in a data set is a fundamental issue in partitioning clustering, such as K-means clustering in our case, which requires the user to specify the number of clusters k to be generated. There are many methods to determine the optimal number. These methods include **direct methods** and **statistical testing methods**.

In this project, I have considered the direct methods. I used **Elbow method** and **Average Silhouette method** to calculate the optimal number of k.

Silhouette analysis for KMeans clustering on sample data with n_clusters = 3

I set k = 5 and added the cluster labels to each group of neighborhoods accordingly.

_	ew_toronto=toronto_merged.set_index("Neighborhood",drop=True) ew_toronto.head(10)												
	PostalCode	Borough	Latitude	Longitude	Population	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue
Neighborhood													
Rouge, Malvern	M1B	Scarborough	43.806686	-79.194353	66108	4	Fast Food Restaurant	Coffee Shop	Spa	Bus Station	Hobby Shop	Construction & Landscaping	Women's Store
Highland Creek, Rouge Hill, Port Union	M1C	Scarborough	43.784535	-79.160497	35626	4	Breakfast Spot	Bar	Burger Joint	Dumpling Restaurant	Discount Store	Dive Bar	Dog Run
Guildwood, Morningside, West Hill	M1E	Scarborough	43.763573	-79.188711	46943	0	Pizza Place	Fast Food Restaurant	Grocery Store	Breakfast Spot	Moving Target	Electronics Store	Fried Chicken Joint
Woburn	M1G	Scarborough	43.770992	-79.216917	29690	1	Park	Coffee Shop	Convenience Store	Business Service	Event Space	Ethiopian Restaurant	Dessert Shop
Cedarbrae	м1Н	Scarborough	43.773136	-79.239476	24383	4	Coffee	Indian	Bakery	Thai	Gym / Fitness	Fried Chicken	Flower

Visualization: I have visualized this dataset (new_toronto), neighborhoods along with cluster labels by using Folium (as mentioned before).

Analysis

In this section the clusters from each of the chosen neighborhoods would be analyzed individually, collectively and comparatively to derive the conclusions.

To begin with analysis, I have examined all the clusters. Individual outcomes are as follows:

	Borough	Population	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
2	Scarborough	46943	0	Pizza Place	Fast Food Restaurant	Grocery Store	Breakfast Spot	Moving Target	Electronics Store	Fried Chicken Joint	Rental Car Location	Thrift / Vintage Store	Greek Restaurant
5	Scarborough	36699	0	Fast Food Restaurant	Women's Store	Convenience Store	Coffee Shop	Pizza Place	Dim Sum Restaurant	Diner	Discount Store	Dive Bar	Dog Run
8	Scarborough	22913	0	Furniture / Home Store	Chinese Restaurant	Wings Joint	Burger Joint	Dim Sum Restaurant	Diner	Discount Store	Dive Bar	Dog Run	Done: Restaurant
11	Scarborough	29858	0	Pizza Place	Burger Joint	Coffee Shop	Middle Eastern Restaurant	Seafood Restaurant	Bakery	Korean Restaurant	Fish Market	Intersection	Convenience
13	Scarborough	34588	0	Pharmacy	Shopping Mall	Pizza Place	Chinese Restaurant	Italian Restaurant	Sandwich Place	Bus Stop	Thai Restaurant	Fried Chicken Joint	Seafood Restauran
14	Scarborough	54680	0	Chinese Restaurant	Pharmacy	BBQ Joint	Pizza Place	Park	Noodle House	Caribbean Restaurant	Shop & Service	Fast Food Restaurant	Baker
15	Scarborough	48471	0	Fast Food Restaurant	Grocery Store	Chinese Restaurant	Pharmacy	Indian Restaurant	Burger Joint	Cosmetics Shop	American Restaurant	Other Great Outdoors	Sandwich Place
		erged.loc	Cluster	_merged['Cli 1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	oronto_merg 4th Most Common Venue	5th Most Common Venue	[1] + list(r 6th Most Common Venue	7th Most Common Venue	ronto_merge 8th Most Common Venue	9th Most Common Venue	10th Mo Comm Ver
3	Scarborough	29690) 1		Coffee Shop	Convenience Store	Business Service	Event Space	Ethiopian Restaurant	Dessert Shop	Dim Sum Restaurant	Diner	Discou
21	North York	32320) 1	Park	Coffee Shop	Bus Line	Trail	Women's Store	Donut Shop	Dim Sum Restaurant	Diner	Discount Store	Dive E
23	North York	7843	3 1	Park	Tennis Court	Intersection	Pet Store	Bank	Donut Shop	Dim Sum Restaurant	Diner	Discount Store	Dive E
25	North York	34615	5 1	Park	Fast Food Restaurant	Pet Store	Burger Joint	Food & Drink Shop	Women's Store	Donut Shop	Diner	Discount Store	Dive E
30	North York	5997	7 1	Sandwich Place	Coffee Shop	Airport	Park	Donut Shop	Dessert Shop	Dim Sum Restaurant	Diner	Discount Store	Dive E
36	East York		3 1	Park	Pharmacy	Skating Rink	Asian Restaurant	Bus Stop	Bus Line	Curling Ice	Cosmetics Shop	Athletics & Sports	Video Sto
44	Centra Toronto) 1	Bus Line	Park	Business Service	Swim School	Women's Store	Donut Shop	Dim Sum Restaurant	Diner	Discount Store	Dive E
48	Centra Toronto		3 1	Park	Thai Restaurant	Gym / Fitness Center	Gym	Grocery Store	Playground	Bank	Women's Store	Dive Bar	Design Stud
50	Downtown		1 1	Park	Playground	Gym / Fitness	Trail	Doner Pastaurant	Design Studio	Dessert	Dim Sum	Diner	Discou
Clu	mine uster 3 toronto_me	rged.loc[toronto_r	merged['Clus	ster Labels	'] == 2, to	ronto_merge	d.columns[[1	l] + list(ra	nge(5, toro	onto_merged	.shape[1]))]	1
	Borough Po		uster abels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Mos Commo Venue
0	North York	11717	2 M	artial Arts Dojo	Cafeteria	Falafel Restaurant	Exhibit	Dessert Shop	Dim Sum Restaurant	Diner	Discount Store	Dive Bar	Dog Ru
Clu	mine uster 4 etoronto_me	rged.loc[toronto_r	merged['Clus	ster Labels	'] == 3, to	ronto_merge	d.columns[[1	l] + list(ra	nge(5, toro	onto_merged	.shape[1]))]	1
	Borough Po		uster abels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Mos Common Venue
96	North York	11950	3	Bakery P		Empanada Restaurant	Women's Store	Donut Shop	Dim Sum Restaurant	Diner	Discount Store	Dive Bar	Dog Ru

From this I could observe that cluster 5 (with Cluster Label 4) has the highest number of neighborhood with the first most common venue "Fast Food Restaurant" and the second largest is cluster 2 (with Cluster Label 1) with the first most common venue "Park".

The project aims to compare randomly chosen neighborhoods and to do so I have created a table that contains all the data frames (df3,df4,df5,df6 and df7) according to the cluster labels.

```
#creating cluster table
cluster_t=pd.DataFrame({"Cluster1":df3["Borough"],
                        "Cluster2":df4["Borough"],
                        "Cluster3":df5["Borough"],
                        "Cluster4":df6["Borough"],
                        "Cluster5":df7["Borough"]
cluster_t = cluster_t.replace(np.nan, '', regex=True)
cluster_t
          Cluster1
                           Cluster2
                                     Cluster3
                                               Cluster4
                                                                 Cluster5
  0
                                                              Scarborough
  1
                                                              Scarborough
  2
       Scarborough
  3
                        Scarborough
                                                             Scarborough
  Δ
  5
       Scarborough
  6
                                                              Scarborough
  7
                                                              Scarborough
  8
       Scarborough
                                                              Scarborough
```

Results and Discussion

In this step I take 2 random neighborhood names as input and run the comparison.

Compare the neighborhoods

Nbd1=input("Enter the Neighborhood: ")
Enter the Neighborhood: Northwest
Nbd2=input("Enter the Neighborhood: ")
Enter the Neighborhood: Weston
<pre>venue_comparison=new_toronto.loc[[Nbd1,Nbd2]].T venue_comparison</pre>

Neighborhood	Northwest	Weston
PostalCode	M9W	м9N
Borough	Etobicoke	York
Latitude	43.7067	43.7069
Longitude	-79.5941	-79.5182
Population	40684	25074
Cluster Labels	0	4
1st Most Common Venue	Rental Car Location	Diner
2nd Most Common Venue	Home Service	Fried Chicken Joint
3rd Most Common Venue	Drugstore	Pharmacy
4th Most Common Venue	Hotel	Breakfast Spot
5th Most Common Venue	Donut Shop	Women's Store
6th Most Common Venue	Dessert Shop	Donut Shop
7th Most Common Venue	Dim Sum Restaurant	Dim Sum Restaurant
8th Most Common Venue	Diner	Discount Store
9th Most Common Venue	Discount Store	Dive Bar
10th Most Common Venue	Dive Bar	Dog Run

From the comparison between "Northwest" and "Weston" I could retrieve the geospatial data of the neighborhoods, population count, the top 10 most common venue categories.

This comparison model also works for more than 2 randomly chosen neighborhoods. I have tested with 3 random neighborhood names as follows:

From the comparison among "Rosedale", "Woburn" and "Humber Summit" I could retrieve the postal code, name of the boroughs, geospatial data of the neighborhoods, population count, cluster labels and the top 10 most common venue categories.

This comparison model clearly shows the expected outcomes. I aimed to build up a model that can compare two or more randomly chosen neighborhoods of the city of Toronto. The comparison is carried out using K-means clustering algorithm to cluster the neighborhoods based on its venue categories. This model could be helpful for stakeholders to gain more insights about individual neighborhood or to compare chosen neighborhoods.

Conclusion

In this project, I have taken into account the need of an application or one platform that would help stakeholders to understand a country, state, city or its neighborhoods better. I have also mentioned that this would require a search algorithm that usually would return the requested features such as population rate, median housing price, school ratings, crime rates, weather conditions, recreational facilities etc. But I specifically focused only the neighborhood analysis in means of simple comparison of geospatial data, population counts and the top most common venues based on venue categories. This leaves us to an open end to elaborate the search algorithms by adding more features in the future and nonetheless refining and improving the algorithm further.

References

- 1. http://cocl.us/Geospatial_data
- 2. https://www.statcan.gc.ca
- 3. https://en.wikipedia.org/wiki/Demographics_of_Toronto_neighbourhoods
- 4. https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Demographics_of_Toronto.html
- 5. https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M