```
In [91]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   import warnings
   warnings.filterwarnings('ignore')
```

Reading the data sets

```
In [92]:
          import pandas as pd
          train_data=pd.read_csv(r'C:\Users\newsoft\Desktop\train.csv')
          test_data=pd.read_csv(r'C:\Users\newsoft\Desktop\test.csv')
In [93]:
         train_data.head()
Out[93]:
              ID
                      y X0 X1 X2 X3 X4 X5 X6 X8 ... X375 X376
                                                                       X377
                                                                             X378 X379
                                                                                          X380
                                                                                                X382
           0
               0
                  130.81
                                          d
                                                               0
                                                                     0
                                                                                 0
                                                                                       0
                                                                                             0
                                                                                                   0
                                 at
                                                      o
                                      а
               6
                   88.53
                                          d
                                                                                             0
                                                                                                   0
                                 av
                                      е
           2
               7
                  76.26
                                                               0
                                                                           0
                                                                                 0
                                                                                       0
                                                                                             0
                                                                                                   1
                                          d
                         az
                              w
                                  n
                                      С
                                              Х
                                                      Х
               9
           3
                   80.62
                         az
                                          d
                                                                                             0
                                                                                                   0
              13
                   78.02
                         az
                                          d
                                              h
                                                      n ...
                                                                                                   0
          5 rows × 378 columns
In [94]: test data.head()
Out[94]:
              ID X0 X1 X2 X3 X4
                                     X5 X6
                                             X8 X10
                                                         X375
                                                               X376
                                                                    X377
                                                                           X378
                                                                                 X379
                                                                                       X380
                                                                                             X382
                                                                                                   X:
               1
                  az
                       ٧
                           n
                               f
                                  d
                                       t
                                          а
                                              w
                                                   0
                                                             0
                                                                                                 0
               2
                   t
                      b
                          ai
                                  d
                                      b
                                                   0
                                                             0
                                                                   0
                                                                         1
                                                                               0
                                                                                     0
                                                                                           0
                                                                                                 0
                              а
               3
                  az
                                  d
                                                   0
                                                                                                 0
                                                   0 ...
                                                                         0
                                  d
                                              n
                                                                                                 0
                  az
                          n
               5
                                                   0
                                                                                                 0
                          as
          5 rows × 377 columns
In [95]:
          print(train_data.shape)
          (4209, 378)
In [96]:
          print(test_data.shape)
          (4209, 377)
```

Removing the variables having zero variance

```
variance=pow(train_data.drop(columns={'ID','y'}).std(),2).to_dict()
In [98]:
          null_count = 0
          for key,value in variance.items():
               if(value==0):
                      print('Name=',key)
                      null count=null count+1
          print('Number of columns which has zero variance=',null count)
          Name= X11
          Name= X93
          Name= X107
          Name= X233
          Name= X235
          Name= X268
          Name= X289
          Name= X290
          Name= X293
          Name= X297
          Name= X330
          Name= X347
          Number of columns which has zero variance= 12
In [99]: train_data=train_data.drop(columns={'X11','X93','X107','X233','X235','X268','X289
          train data.head()
Out[99]:
             ID
                     y X0 X1 X2 X3 X4 X5 X6 X8
                                                     ... X375 X376 X377 X378 X379 X380 X382
          0
              0
                 130.81
                                                            0
                                                                  0
                                                                             0
                                                                                   0
                                                                                        0
                                                                                              0
                         k
                                at
                                    а
                                        d
                                                   0
                  88.53
                                                                                              0
                         k
                               av
                                        d
                                           У
                                                   0
              7
                  76.26 az
                                        d
                                                j
                                                            0
                                                                  0
                                                                       0
                                                                             0
                                                                                   0
                                                                                        0
                                                                                              1
                                n
                                    С
                                           Х
                                                   х ...
           3
              9
                  80.62 az
                                                   е
                                                            0
                                                                  0
                                                                       0
                                                                             0
                                                                                   0
                                                                                        0
                                                                                              0
             13
                  78.02 az
                                           h
                                                   n ...
                                                                                              0
          5 rows × 366 columns
```

```
In [100]: train_data.shape
Out[100]: (4209, 366)
```

check for null and unique values for test and train data sets

```
In [101]: train_data.isnull().sum().any()
Out[101]: False
```

Apply Label Encoder

```
In [102]: from sklearn.preprocessing import LabelEncoder
           le = LabelEncoder()
In [103]: | train_data_feature = train_data.drop(columns={'y','ID'})
           train data target=train data.y
In [104]: train data feature.head()
Out[104]:
              X0 X1 X2 X3 X4 X5 X6 X8 X10 X12 ... X375 X376 X377 X378 X379
                                                                                      X380
                                                                                            X382
            0
                              d
                                                                                   0
                                                                                         0
                                                                                               0
                       at
                           а
                                          0
                                                   0 ...
                                                                                   0
                                                                                         0
                                                                                               0
                      av
                           е
                              d
                                          0
                                               0
                                                                  0
                                                                        0
                                                                              0
                                                                  0
                                                                                   0
                                                                                         0
                                                                                               1
                                                   0 ...
                                                                                   0
                                                                                         0
                                                                                               0
                              d
                                          е
                                               0
                                                             0
                                                                  0
                                                                        0
                                                                              0
               az
                                               0
                                                   0 ...
                                                            0
                                                                  0
                                                                        0
                                                                              0
                                                                                   0
                                                                                         0
                                                                                               0
                              d
                                  h
                                      d
                                          n
               az
           5 rows × 364 columns
In [105]: |train_data_target.head()
Out[105]: 0
                130.81
           1
                 88.53
           2
                 76.26
                 80.62
                 78.02
           Name: y, dtype: float64
In [106]:
           print(train_data_feature.shape)
           (4209, 364)
```

In [107]:

```
(4209,)
In [108]:
          train_data_feature.describe(include='object')
Out[108]:
                    X0
                          X1
                               X2
                                    X3
                                          X4
                                               X5
                                                     X6
                                                          X8
            count 4209
                        4209
                             4209
                                   4209
                                        4209
                                             4209
                                                   4209
                                                        4209
                                      7
            unique
                    47
                          27
                               44
                                               29
                                                     12
                                                          25
              top
                     Z
                          aa
                               as
                                      С
                                           d
              freq
                   360
                         833
                             1659
                                   1942 4205
                                              231
                                                   1042
                                                         277
In [109]:
          le=LabelEncoder()
           train data_feature['X0']=le.fit_transform(train_data_feature.X0)
           train data feature['X1']=le.fit transform(train data feature.X1)
           train_data_feature['X2']=le.fit_transform(train_data_feature.X2)
           train_data_feature['X3']=le.fit_transform(train_data_feature.X3)
           train_data_feature['X4']=le.fit_transform(train_data_feature.X4)
           train_data_feature['X5']=le.fit_transform(train_data_feature.X5)
           train_data_feature['X6']=le.fit_transform(train_data_feature.X6)
           train data feature['X8']=le.fit transform(train data feature.X8)
```

print(train_data_target.shape)

Perfoming Dimensionality Reduction

```
In [110]:
            print(train data feature.shape)
            print(train_data_target.shape)
            (4209, 364)
            (4209,)
In [111]:
            train data feature.head()
Out[111]:
                X0 X1 X2 X3 X4 X5 X6
                                            X8
                                                X10 X12
                                                               X375 X376 X377
                                                                                 X378
                                                                                        X379
                                                                                              X380
                                                                                                     X382
                                                                                            0
                32
                    23
                        17
                                  3
                                     24
                                             14
                                                        0
                                                                         0
                                                                               1
                                                                                     0
                                                                                                  0
                                                                                                        0
                32
                    21
                        19
                             4
                                  3
                                     28
                                         11
                                             14
                                                   0
                                                        0
                                                                         0
                                                                               0
                                                                                     0
                                                                                            0
                                                                                                  0
                                                                                                        0
                                                                  1
                             2
                                     27
                20
                    24
                        34
                                  3
                                          9
                                             23
                                                        0
                                                                  0
                                                                         0
                                                                               0
                                                                                     0
                                                                                            0
                                                                                                  0
                                                                                                        1
                                     27
                                                                         0
                                                                               0
                                                                                     0
                                                                                            0
                                                                                                  0
                                                                                                        0
                20
                    21
                        34
                             5
                                  3
                                         11
                                                                               0
                                                                                     0
                                                                                            0
                                                                                                  0
                                                                                                        0
                20
                    23
                              5
                                  3
                                    12
                                          3
                                            13
                                                        0
                                                                  0
                        34
            5 rows × 364 columns
```

```
In [112]: train_data_target.head()
Out[112]: 0
                130.81
          1
                 88.53
          2
                 76.26
          3
                 80.62
                 78.02
          Name: y, dtype: float64
In [113]: | from sklearn.decomposition import PCA
          pca=PCA(n_components=.95)
          pca.fit(train_data_feature,train_data_target)
Out[113]: PCA(n components=0.95)
In [114]: | train_data_feature_trans = pca.fit_transform(train_data_feature)
          print(train data feature trans.shape)
           (4209, 6)
```

predict test_df valuesusing XGBoost

Building model using the train data set

```
In [115]: import xgboost as xgb
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import r2_score,mean_squared_error
    from math import sqrt

In [116]: train_x,test_x,train_y,test_y = train_test_split(train_data_feature_trans,train_c
    print(train_x.shape)
    print(train_y.shape)
    print(test_x.shape)
    print(test_y.shape)

    (2946, 6)
    (2946,)
    (1263, 6)
    (1263,)

XGBoost's hyperparameters tuning manually
```

```
In [117]: xgb_reg=xgb.XGBRegressor(objective='reg:linear',colsample_bytree=0.3,learning_rat
model=xgb_reg.fit(train_x,train_y)
print('RMSE=',sqrt(mean_squared_error(model.predict(test_x),test_y)))
```

[23:33:03] WARNING: c:\ci\xgboost-split_1638290375667\work\src\objective\regres sion_obj.cu:188: reg:linear is now deprecated in favor of reg:squarederror. RMSE= 12.288794806074309

RMSE is 12.29 approximately after tuning the hyperparameters to attain minimum RMSE

```
In [118]: import matplotlib.pyplot as plt
   import seaborn as sns
   pred_test_y=model.predict(test_x)
   plt.figure(figsize=(10,5))
   sns.distplot(test_y[test_y<150],color="yellow",label="Actual value")
   sns.distplot(pred_test_y[pred_test_y<150],color="purple",label="predicted value")
   plt.tight_layout()</pre>
```


k-fold cross validation using XGBoost

In [148]: dmatrix_train=xgb.DMatrix(data=train_data_feature_trans,label=train_data_target)
 params={'objective':'reg:linear','colsample_bytree':0.3,'learning_rate':0.3,'max_
 model_cv=xgb.cv(dtrain=dmatrix_train,params=params,nfold=3,num_boost_round=50,ear
 model_cv.tail(7)

[00:16:39] WARNING: c:\ci\xgboost-split_1638290375667\work\src\objective\regres sion_obj.cu:188: reg:linear is now deprecated in favor of reg:squarederror. [00:16:39] WARNING: c:\ci\xgboost-split_1638290375667\work\src\objective\regres sion_obj.cu:188: reg:linear is now deprecated in favor of reg:squarederror. [00:16:39] WARNING: c:\ci\xgboost-split_1638290375667\work\src\objective\regres sion obj.cu:188: reg:linear is now deprecated in favor of reg:squarederror.

Out[148]:		train-rmse-mean	train-rmse-std	test-rmse-mean	test-rmse-std
	32	8.250753	0.159901	11.120521	0.692890
	33	8.189093	0.143499	11.125260	0.692265
	34	8.123231	0.150525	11.122377	0.685467
	35	8.080281	0.134426	11.119444	0.687319
	36	8.033158	0.129848	11.118596	0.683865
	37	7.981515	0.122538	11.114965	0.689016
	38	7.944047	0.115245	11.114256	0.693008

By using k-fold cross validation, RMSE is reduced by approximately 10%, RMSE=11.1

Prediction on test data set using XGBoost

Preparing test data set

```
test_data=test_data.drop(columns={'X11','X93','X107','X233','X235','X268','X289'
           test_data.shape
Out[120]: (4209, 365)
In [121]: |test_data.head()
Out[121]:
              ID X0 X1 X2 X3 X4 X5 X6 X8 X10 ... X375 X376 X377 X378 X379 X380 X382
           0
                                                 0
                                                          0
                                                                0
                                                                     0
                                                                                0
                                                                                      0
                                                                                            0
               1
                                 d
                  az
                          n
                                                 0
                      b
                         ai
                              а
                                 d
                                     b
                                         g
                                             у
               3
                                                 0 ...
                                                          0
                                                                0
                                                                     0
                                                                                0
                                                                                            0
                  az
                         as
                                 d
                                     а
            3
               4
                                                 0 ...
                                                          0
                                                                0
                                                                     0
                                                                                0
                                                                                      0
                                                                                            0
               5
           5 rows × 365 columns
In [122]: test data.isnull().sum().any()
Out[122]: False
In [123]:
          from sklearn.preprocessing import LabelEncoder
           le=LabelEncoder
In [124]:
          test_data_feature=test_data.drop(columns={'ID'})
           print(test_data_feature.shape)
           (4209, 364)
```

```
In [125]: | test_data_feature.head()
Out[125]:
               X0
                   X1 X2 X3 X4 X5 X6 X8 X10 X12 ... X375 X376 X377
                                                                              X378 X379
                                                                                           X380
                                                                                                 X382
                                                                                        0
                                                                                              0
            0
               az
                             f
                                d
                                                 0
                                                      0
                                                                0
                                                                      0
                                                                            0
                                                                                  1
                                                                                                    0
                    ٧
                        n
                                            W
                                        а
                                                  0
                                                      0
                                                                      0
                                                                            1
                                                                                  0
                                                                                        0
                                                                                              0
                                                                                                    0
                 t
                    b
                        ai
                                d
                                                                0
                                        g
                                            У
                                                      0
                                                                      0
                                                                            0
                                                                                  1
                                                                                        0
                                                                                              0
                                                                                                    0
               az
                       as
                                d
                                    а
                                                                0
                                                 0
                                                      0
                                                                            0
                                                                                        0
                                                                                              0
                                                                                                    0
             3
                             f
                                d
                                         ı
                                            n
                                                                0
                                                                      0
                                                                                  1
               az
                        n
                                    z
                                                                            0
                                                                                  0
                                                                                        0
                                                                                              0
                                                                                                    0
                       as
                                            m
                                                 0
                                                      0
                                                                      0
           5 rows × 364 columns
In [126]:
           test_data_feature.describe(include='object')
Out[126]:
                            X1
                                 X2
                                             X4
                                                              X8
                      X0
                                       X3
                                                   X5
                                                        X6
                          4209
                               4209
                                     4209
                                           4209
                                                 4209
                                                       4209
                                                            4209
              count 4209
                                        7
             unique
                      49
                            27
                                  45
                                              4
                                                   32
                                                         12
                                                               25
                                              d
               top
                      ak
                                        С
                                                    ٧
                                                          g
                                                               е
                            aa
                                  as
                           826
                               1658
                                     1900
                                           4203
                                                  246
                                                      1073
                                                             274
               freq
                     432
In [128]:
           le=LabelEncoder()
           test data feature['X0']=le.fit transform(test data feature.X0)
           test data feature['X1']=le.fit transform(test data feature.X1)
           test_data_feature['X2']=le.fit_transform(test_data_feature.X2)
           test data feature['X3']=le.fit transform(test data feature.X3)
           test_data_feature['X4']=le.fit_transform(test_data_feature.X4)
           test data feature['X5']=le.fit transform(test data feature.X5)
           test data feature['X6']=le.fit transform(test data feature.X6)
           test data feature['X8']=le.fit transform(test data feature.X8)
In [129]:
           test data feature.head()
Out[129]:
                       X2 X3 X4
                                   X5 X6
                                           X8
                                               X10
                                                    X12
                                                            X375
                                                                  X376
                                                                         X377
                                                                               X378
                                                                                     X379
                                                                                           X380
                                                                                                 X382
                   X1
                                                        ...
            0
               21
                   23
                       34
                            5
                                3
                                   26
                                        0
                                           22
                                                 0
                                                      0
                                                                0
                                                                      0
                                                                            0
                                                                                  1
                                                                                        0
                                                                                              0
                                                                                                    0
               42
                    3
                        8
                            0
                                3
                                    9
                                        6
                                           24
                                                 0
                                                      0
                                                                0
                                                                      0
                                                                            1
                                                                                  0
                                                                                        0
                                                                                              0
                                                                                                    0
               21
                   23
                            5
                                3
                                    0
                                        9
                                            9
                                                 0
                                                      0
                                                                0
                                                                      0
                                                                            0
                                                                                  1
                                                                                        0
                                                                                              0
                                                                                                    0
                       17
               21
                    13
                       34
                            5
                                3
                                    31
                                        11
                                           13
                                                  0
                                                                                        0
                                                                                              0
                                                                                                    0
               45
                   20
                       17
                            2
                                3
                                   30
                                        8
                                           12
                                                 0
                                                      0
                                                                1
                                                                      0
                                                                            0
                                                                                  0
                                                                                        0
                                                                                              0
                                                                                                    0
           5 rows × 364 columns
In [130]: | test_data_feature.shape
Out[130]: (4209, 364)
```

```
In [131]: | test_data_feature.dtypes.value_counts()
Out[131]: int64
                  356
          int32
                    8
          dtype: int64
In [132]: |pca.fit(test_data_feature)
Out[132]: PCA(n_components=0.95)
In [134]: test_data_feature_trans=pca.fit_transform(test_data_feature)
          print(test_data_feature_trans.shape)
          (4209, 6)
In [137]: print(test_data_feature_trans)
          2.40835691 11.31942221
              6.94220721]
           [-15.25161267 -7.73675643 -7.45495068 -2.66203503 11.59379316
              1.15940345]
           [ 11.8564649
                         -1.68017324 -9.9896148
                                                  14.91886587 -1.08886021
             -2.69130553]
                          3.2885825
                                      -6.85236431
                                                  18.91025575 11.32365564
           [-13.44644008
              3.22410016]
           [ 24.92612317 -4.89888683 -10.16941028 11.44337736
                                                                5.90178724
              4.55323232]
           [-15.38430989 -7.73425491 -15.4930104
                                                  -0.5595126
                                                                4.7793639
              1.0829113 ]]
In [138]: | test pred=model.predict(test data feature trans)
          test_pred
Out[138]: array([ 86.12015 , 92.929794, 98.74635 , ..., 92.836525, 118.76457 ,
                  98.46741 ], dtype=float32)
```

```
In [147]: fig,ax=plt.subplots(1,2,figsize=(25,9))
    train_plot=sns.distplot(train_data_target[train_data_target<250],bins=250,kde=Tru
    train_plot.set_xlabel('Target(train_data)',weight='bold',size=25)
    train_plot.set_ylabel('Distribution',weight='bold',size=25)
    train_plot.set_title('Dist of target for train_data',weight='bold',size=25)
    test_plot=sns.distplot(test_pred[test_pred<250],bins=250,kde=True,ax=ax[1])
    test_plot.set_xlabel('Target(test_data)',weight='bold',size=25)
    test_plot.set_ylabel('Distribution',weight='bold',size=25)
    test_plot.set_title('Dist of target for test _data',weight='bold',size=25)
    plt.tight_layout()</pre>
```


It is the Pictorial view for comaprision between target for training data_set and predicted target for testing data_set