Exercises FYS4480, week 35, August 29-September 2, 2022

Exercise 1

Consider the fermion Slater determinant as ansatz for a quantum mechanical state function,

$$\Phi_{\lambda}^{AS}(x_1x_2\dots x_N;\alpha_1\alpha_2\dots\alpha_N) = \frac{1}{\sqrt{N!}} \sum_{p} (-)^p P \prod_{i=1}^N \psi_{\alpha_i}(x_i).$$

where P is an operator which permutes the coordinates of two particles. We have assumed here that the number of particles is the same as the number of available single-particle states, represented by the greek letters $\alpha_1 \alpha_2 \dots \alpha_N$.

- a) Write out Φ^{AS} for N=3.
- b) Show that

$$\int dx_1 dx_2 \dots dx_N \left| \Phi_{\lambda}^{AS}(x_1 x_2 \dots x_N; \alpha_1 \alpha_2 \dots \alpha_N) \right|^2 = 1.$$

c) Define a general one body operator $\hat{F} = \sum_{i}^{N} \hat{f}(x_i)$ and a general two body operator $\hat{G} = \sum_{i>j}^{N} \hat{g}(x_i, x_j)$ with g being invariant under the interchange of the coordinates of particles i and j. Calculate the matrix elements for a two-particle Slater determinant

$$\langle \Phi_{\alpha_1 \alpha_2}^{AS} | \hat{F} | \Phi_{\alpha_1 \alpha_2}^{AS} \rangle$$
,

and

$$\left\langle \Phi_{\alpha_{1}\alpha_{2}}^{AS}\right| \hat{G} \left|\Phi_{\alpha_{1}\alpha_{2}}^{AS}\right\rangle .$$

Explain the short-hand notation for the Slater determinant. Which properties do you expect these operators to have in addition to an eventual permutation symmetry?

Exercise 2

We will now consider a simple three-level problem, depicted in the figure below. This is our first and very simple model of a possible many-fermion problem and what we later will call full configuration interaction theory (dubbed FCI). We will assume the particles are fermions. The single-particle states are labelled by the quantum number p and can accomodate up to two single particles, viz., every single-particle state is doubly degenerate (you could think of this as one state having spin up and the other spin down). We let the spacing between the doubly degenerate single-particle states be constant, with value d. The first state has energy d. There are only three available single-particle states, p = 1, p = 2 and p = 3, as illustrated in the figure.

- a) How many two-particle Slater determinants can we construct in this space?
- b) We limit ourselves to a system with only the two lowest single-particle orbits and two particles, p = 1 and p = 2. We assume that we can write the Hamiltonian as

$$\hat{H} = \hat{H}_0 + \hat{H}_I,$$

and that the onebody part of the Hamiltonian with single-particle operator \hat{h}_0 has the property

$$\hat{h}_0 \psi_{p\sigma} = p \times d\psi_{p\sigma},$$

where we have added a spin quantum number σ . We assume also that the only two-particle states that can exist are those where two particles are in the same state p, as shown by the two possibilities to the left in the figure. The two-particle matrix elements of \hat{H}_I have all a constant value, -g. Show then that the Hamiltonian matrix

$$p = 3$$

$$p=2$$

$$p = 1$$

FIG. 1: Schematic plot of the possible single-particle levels with double degeneracy. The filled circles indicate occupied particle states. The spacing between each level p is constant in this picture. We show some possible two-particle states.

can be written as

$$\left(\begin{array}{cc} 2d-g & -g \\ -g & 4d-g \end{array}\right),$$

and find the eigenvalues and eigenvectors. What is the mixing of the state with two particles in p = 2 to the wave function with two-particles in p = 1? Discuss your results in terms of a linear combination of Slater determinants.

c) Add the possibility that the two particles can be in the state with p=3 as well and find the Hamiltonian matrix, the eigenvalues and the eigenvectors. We still insist that we only have two-particle states composed of two particles being in the same level p. You can diagonalize numerically your 3×3 matrix.

This simple model catches several birds with a stone. It demonstrates how we can build linear combinations of Slater determinants and interpret these as different admixtures to a given state. It represents also the way we are going to interpret these contributions. The two-particle states above p=1 will be interpreted as excitations from the ground state configuration, p=1 here. The reliability of this ansatz for the ground state, with two particles in p=1, depends on the strength of the interaction g and the single-particle spacing g. Finally, this model is a simple schematic ansatz for studies of pairing correlations and thereby superfluidity/superconductivity in fermionic systems.