Zadanie 11.

Wiązka zadań Odwrotna notacja polska

Dla przetwarzania przez komputer wygodnym sposobem zapisu wyrażeń arytmetycznych jest tzw. odwrotna notacja polska (ONP). Zapis w ONP wyrażenia *W* nazywamy *postacią ONP* i oznaczamy ją ONP(*W*). W ONP operator (dodawania, odejmowania, mnożenia, dzielenia) umieszczamy za jego argumentami, np. 2+5 zapisujemy jako 2 5 +. Dokładniej, postać ONP dla wyrażenia definiujemy rekurencyjnie w następujący sposób:

- 1. Jeżeli W jest liczbą, to jego postać ONP jest równa W.
- 2. Jeżeli W ma postać W_1 op W_2 , gdzie op jest operatorem, a W_1 i W_2 wyrażeniami, to ONP(W) jest równe $ONP(W_1)$ $ONP(W_2)$ op.

Przykład

$W = W_1 \ op \ W_2$	W_1	W_2	op	ONP(W)
1 + 2	1	2	+	12+
5-7	5	7	_	57-
3 * (5-7)	3	5 – 7	*	3 5 7 - *
(1+2)+(3*(5-7))	1 + 2	3 * (5-7)	+	12+357-*+

Zauważmy, że dla W=(1+2)+(3*(5-7)) wartość ONP(W) uzyskujemy z połączenia ONP(1+2)=12+, ONP(3*(5-7))=357-* oraz znaku dodawania +.

11.1.

Uzupełnij poniższą tabelę, podając dla każdego wyrażenia z pierwszej kolumny jego podwyrażenia, łączący je operator oraz postać ONP tego wyrażenia.

$W = W_1 x W_2$	W_1	W_2	op	ONP(W)
4+3	4	3	+	4 3 +
(4+3)*2				
5 * (7 – 6)				
((4+3)*2)-(5*(7-6))				

11.2.

Postać ONP wyrażeń, choć dla ludzi mało czytelna, ma własności bardzo przydatne dla analizy komputerowej. W ONP nie są potrzebne nawiasy, a do wyznaczania wartości wyrażenia można zastosować prosty algorytm podany poniżej.

Specyfikacja

Dane:

n — liczba całkowita dodatnia,

X = X[1... n] — wyrażenie w ONP, gdzie X[i] dla $1 \le i \le n$ jest liczbą lub znakiem ze zbioru $\{+, -, *\}$.

Wynik:

wartość wyrażenia X.

Algorytm:

```
k \leftarrow 1
dla i=1,2,...,n wykonuj
         jeżeli X[i] jest liczbą
                    T[k] \leftarrow X[i]
          jeżeli X[i] \in \{+, -, *\}
                    b \leftarrow T[k-1]
                    a \leftarrow T[k-2]
                    k \leftarrow k - 2
                    jeżeli X[i] = '+'
                              T[k] \leftarrow a + b
                    jeżeli X[i] = `-`
                              T[k] \leftarrow a - b
                    jeżeli X[i] = `*`
                              T[k] \leftarrow a * b
          k \leftarrow k + 1
zwróć T[1]
```

Prześledź działanie podanego algorytmu dla wyrażenia X = 9.7 + 3 * 5.4 - 2 * -, czyli dla n=11 oraz następujących wartości X[I],...,X[11]:

i	1	2	3	4	5	6	7	8	9	10	11
X[i]	9	7	+	3	*	5	4	_	2	*	_

Uzupełnij poniższą tabelę:

i	Wartość zmiennej <i>k</i> po <i>i</i> -tym przebiegu pętli	Zawartość tablicy <i>T</i> [1 <i>k</i> -1] po <i>i</i> -tym przebiegu pętli
1	2	9
2	3	9, 7
4	3	16, 3
5		
6		
10		
11		

11.3.

Poniższy algorytm sprawdza, czy podany na wejściu ciąg liczb i operatorów jest poprawnym wyrażeniem w ONP.

Specyfikacja

Dane:

```
 n — liczba całkowita dodatnia
```

X = X[1..n] — ciąg elementów, z których każdy jest liczbą lub znakiem ze zbioru $\{+, -, *\}$.

Wynik:

```
Tak — jeśli X jest poprawnym wyrażeniem w ONP,
```

Nie — w przeciwnym przypadku.

```
Algorytm:
```

```
licznik ← 0
dla i=1,2,...,n wykonuj
jeżeli X[i] jest liczbą
licznik ← licznik + 1
jeżeli X[i]∈ {+, -, *}
jeżeli licznik < 2
zwróć "Nie" i zakończ działanie
w przeciwnym razie
licznik ← licznik - 1
jeżeli licznik ≠ 1
zwróć "Nie"
w przeciwnym razie
zwróć "Tak"
```

Oceń, które z podanych poniżej napisów są wyrażeniami zapisanymi poprawnie w ONP, wpisując słowa TAK lub NIE w trzeciej kolumnie poniższej tabeli. W drugiej kolumnie podaj wartości zmiennej *licznik* po zakończeniu działaniu algorytmu dla poszczególnych napisów.

Napis	Wartość zmiennej <i>licznik</i> po zakończeniu algorytmu	Czy poprawne wyrażenie w ONP?
1 2 + *	1	NIE
12 + 34 - 5 * 78 + 9		
1 2 3 4 5 + + + +		
1 2 3 4 5 + + + + + +		
1 2 3 4 5 + + + + +		
12+23-34*45+		
1 2 + 2 3 - 3 4 * 4 5 +		
1 2 + 3 4 - 5 * 7 8 + 9 + + +		

11.4.

W poniższych wyrażeniach przyjmujemy, że op_{1,...,} op₁₀ to znaki ze zbioru $\{+, -, *\}$. Podaj postać ONP poniższych wyrażeń.

32	Egzamin maturalny. Informatyka. Poziom rozszerzony. Zbiór zadań

Y: (1 op ₁ (2 op ₂ (3 op ₃ (4 op ₄ (5 op ₅ (6 op ₆ (7 op ₇ (8 op ₈ (9 op ₉ 10))))))))	X: ((((((((((((((((((((((((((((((((((((
ONP(Y):		

Publikacja opracowana przez zespół koordynowany przez **Renatę Świrko** działający w ramach projektu *Budowa banków zadań* realizowanego przez Centralną Komisję Egzaminacyjną pod kierunkiem Janiny Grzegorek.

Autorzy

dr Lech Duraj dr Ewa Kołczyk Agata Kordas-Łata dr Beata Laszkiewicz Michał Malarski dr Rafał Nowak Rita Pluta Dorota Roman-Jurdzińska

Komentatorzy

prof. dr hab. Krzysztof Diks prof. dr hab. Krzysztof Loryś Romualda Laskowska Joanna Śmigielska

Opracowanie redakcyjne

Jakub Pochrybniak

Redaktor naczelny

Julia Konkołowicz-Pniewska

Zbiory zadań opracowano w ramach projektu Budowa banków zadań,
Działanie 3.2 Rozwój systemu egzaminów zewnętrznych,
Priorytet III Wysoka jakość systemu oświaty,
Program Operacyjny Kapitał Ludzki

