ProxSARAH: An Efficient Algorithmic Framework For Stochastic Composite Nonconvex Optimization

Nhan H. Pham nhanph@live.unc.edu nhanph.github.io

Department of Statistics and Operations Research
The University of North Carolina at Chapel Hill (UNC)
North Carolina

INFORMS Annual Meeting, Seatle
[Oct 21, 2019]

Joint work with

Quoc Tran-Dinh (UNC), Lam Nguyen, and Dzung Phan (IBM).

Outline

Problem Statement, Motivation, and Objectives

Plain SGD and Variance Reduction Algorithms

Proximal SARAH Algorithms

Numerical Examples

Extension to Proximal Hybrid SGD Methods

Summary and Future Research

Overview and References

COMPOSITE NONCONVEX OPTIMIZATION

$$\underset{x \in \mathbb{R}^d}{\text{minimize}} \left\{ F(x) := \underbrace{\mathbb{E}\left[f(x,\xi)\right]}_{f(x)} + \psi(x) \right\}$$

- ightharpoonup f(x) is nonconvex and smooth.
- $ightharpoonup \psi(x)$ is convex and possibly nonsmooth to handle regularizers, penalty, or constraints.

Majority of this talk is based on the following manuscript:

N. H. Pham, L. M. Nguyen, D. T. Phan, and T.D. ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization. Preprint: https://arxiv.org/pdf/1902.05679.pdf, 2019.

Problems of Interest

Composite (Expectation) Nonconvex Optimization

$$\min_{x \in \mathbb{R}^d} \bigg\{ F(x) := f(x) + \psi(x) \equiv \mathbb{E}[f(x,\xi)] \ + \ \psi(x) \bigg\}, \tag{NCVX}$$

where

- $f(x) := \mathbb{E}\left[f(x,\xi)\right] : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$: smooth and nonconvex expected function.
- $\psi: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is convex and possibly nonsmooth.
- $\blacktriangleright \psi$ can be proximally friendly.

Note: "proximally friendly" is not necessary for theoretical results, but for practice.

Composite finite-sum minimization problem

If $f_i(x) := f(x, \xi_i)$ $(i = 1, \dots, n)$, then (NCVX) reduces to:

$$\min_{x \in \mathbb{R}^d} \left\{ F(x) := f(x) + \psi(x) \equiv \frac{1}{n} \sum_{i=1}^n f_i(x) + \psi(x) \right\}. \tag{ERM}$$

Also arising from a sample averaging approximation (SAA) approach.

Motivation

Applications

- Problem (NCVX) and (ERM) cover many applications in different domains, including machine learning, statistics, and finance.
 - Empirical risk minimization
 - Neural network training (many talks have mentioned).
 - Many more ...

Theoretical aspect

- Modern variance reduction methods mostly focus on non-composite forms.
- Gap between the upper bound complexity in current research and lower bound worst-case complexity for (ERM).
- ► There exists no lower bound complexity for (NCVX), motivating to improve upper bound complexity (?)

Proximal Tractability: Review

Proximal operator

For a given **convex** function ψ , we define:

$$\mathrm{prox}_{\psi}(x) := \arg\min_{y} \left\{ \psi(y) + \tfrac{1}{2} \|y - x\|^2 \right\}$$

the proximal operator of ψ .

- If $prox_{\eta_l}(x)$ is efficient to evaluate, e.g. by:
 - a closed form or
 - a low-order polynomial-time algorithm,

then we say that ψ is tractably proximal or proximally friendly.

Common examples

- ψ is some common norms: ℓ_1 , ℓ_2 , ℓ_∞ , and nuclear norm.
- $\blacktriangleright \psi$ is separable functions: group sparsity.
- $\blacktriangleright \psi$ is the indicator function of a simple set such as box, cone, or simplex, i.e.:

$$\psi(x) = \begin{cases} 0 & \text{if } x \in \mathcal{X}, \\ +\infty & \text{otherwise}. \end{cases}$$

First-order Stationary Points

Optimality condition and first-order stationary points

• Given $F = f + \psi$, the gradient mapping of F is defined by

$$G_{\eta}(x) := \frac{1}{\eta} \left(x - \operatorname{prox}_{\eta \psi} \left(x - \eta \nabla f(x) \right) \right), \quad \eta > 0.$$

Optimality condition:

$$\mathbb{E}\left[\left\|G_{\eta}(x^{\star})\right\|^{2}\right] = 0. \tag{1}$$

Any x^* satisfies (1) is called a **first-order stationary point** of (NCVX).

Approximate first-order stationary points

Finding an ε -approximate stationary point x_T to x^* in (1) after at most T iterations within a given accuracy $\varepsilon > 0$, i.e.

$$\mathbb{E}\left[\|G_{\eta}(x_T)\|^2\right] \leq \varepsilon^2.$$

- ▶ How fast does $\mathbb{E}\left[\|G_{\eta}(x_T)\|^2\right]$ converge to 0?
 - lteration-complexity: Total number of iterations.
 - First-order oracle complexity: Total number of stochastic first-order (SFO) evaluations.
 - **Proximal operations:** Total number of $\operatorname{prox}_{\eta\psi}$ operations.

Structural Assumptions on the Models

Fundamental assumptions

- ▶ Boundedness from below: $F^* := \inf_{x \in \mathbb{R}^p} F(x) > -\infty$.
- L-average smoothness: For all $x, \hat{x} \in \text{dom } f$:

Expectation:
$$\mathbb{E}_{\xi}\left[\|\nabla_x f(x,\xi) - \nabla_x f(\hat{x},\xi)\|^2\right] \leq \frac{L^2}{\|x - \hat{x}\|^2}$$
.

Finite-sum:
$$\frac{1}{n}\sum_{i=1}^n\|\nabla f_i(x)-\nabla f_i(\hat{x})\|^2\leq \frac{L^2}{\|x-\hat{x}\|^2}.$$

Bounded variance: For all $x \in \text{dom } f$:

$$\mathbb{E}_{\xi} \left[\|\nabla_x f(x,\xi) - \nabla f(x)\|^2 \right] \le \sigma^2.$$

Our Goals and Main Contributions

Our goals

- ▶ Develop new proximal SARAH¹ variants to solve both (NCVX) and (ERM).
 - Achieve the optimal complexity bounds or the best-known complexity bounds.
 - Less parameters tuning.

Main theoretical contributions

- New proximal variance reduction stochastic gradient algorithms to solve both (NCVX) and (ERM)
- Obtaining best-known complexity in both expectation and finite-sum cases
 - Optimal complexity bound for (ERM).
- Adaptive step-size variants that outperform the constant step-sizes schemes.

¹SARAH (stochastic recursive gradient estimator) was introduced by Nguyen et al in an ICML paper, 2017.

Classical Proximal SGD and Other Single-loop Variants

Classical proximal SGD

Starting from x_0 , SGD generates $\{x_t\}$ by updating:

$$x_{t+1} = \operatorname{prox}_{\eta_t \psi} \left(x_t - \eta_t \mathbf{u_t} \right),\,$$

where

- $u_t := \nabla_x f(x_t; \xi_t)$ for (NCVX) or $u_t := \nabla_x f_{i_t}(x_t)$ for (ERM).
- $ightharpoonup u_t$ is an unbiased estimator of $\nabla f(x_t)$, i.e. $\mathbb{E}[u_t] = \nabla f(x_t)$.
- Using mini-batches, intermediate steps, averaging, momentum, etc.
- Key point: How to choose step-size η_t ? (also called learning rate).

Other single-loop SGD-type schemes

SAGA, AdaGrad, ADAM, etc.

Double-loop Algorithms: Variance reduction

Notable variants

- ▶ SVRG [2]: Both double-loop and loopless variants. The most popular one.
- ► SARAH [4]: Some notable variants such as SPIDER, SpiderBoost, etc.
- Not yet ready for DL?: Empirical performance is worse than standard SGD and ADAM in general.
- May need to tune many parameters.

Algorithm 1 (General double-loop algorithms)

- 1: Initialize \tilde{x}_0 and learning rate $\eta_t > 0$.
- 2: OuterLoop: For $s := 1, 2, \cdots, S$ do
- 3: Generate a gradient snapshot $v_0^{(s)}$ at $x_0^{(s)} := \tilde{x}_{s-1}$.
- 4: InnerLoop: For $t := 1, \dots, m$ do
- 5: Compute stochastic gradient estimator $v_t^{(s)}$.
- 6: Update $x_{t+1}^{(s)} := \operatorname{prox}_{\eta_t \psi} (x_t^{(s)} \eta_t v_t^{(s)}).$
- 7: EndFor
- 8: Choose \tilde{x}_s from $\{x_0^{(s)}, \cdots, x_{m+1}^{(s)}\}$.
- 9: EndFor

Iteration Complexity and Oracle Complexity: A Summary

Iteration complexity and oracle complexity

- **Iteration complexity:** Total number of iterations to achieve an ε -stationary point.
- First-order oracle complexity: Total number of stochastic gradient evaluations and proximal operations.

Complexity summary

This is a non-exhaustive list.

Algorithms	Finite-sum	Expectation	Step-size	Composite	Adaptive step-size
GD	$\mathcal{O}\left(\frac{n}{\varepsilon^2}\right)$	NA	$\mathcal{O}\left(L^{-1}\right)$	Yes	Yes
SGD	NA	$\mathcal{O}\left(\sigma^2\varepsilon^{-4}\right)$	$\mathcal{O}\left(L^{-1}\right)$	Yes	Yes
SVRG	$\mathcal{O}\left(n+n^{2/3}\varepsilon^{-2}\right)$	NA	$\mathcal{O}\left((nL)^{-1}\right) \to \mathcal{O}\left(L^{-1}\right)$	Yes	No
SPIDER	$\mathcal{O}\left(n+n^{1/2}\varepsilon^{-2}\right)$	$\mathcal{O}\left(\sigma^2\varepsilon^{-2} + \sigma\varepsilon^{-3}\right)$	$\mathcal{O}\left(L^{-1}arepsilon ight)$	No	Yes
SpiderBoost	$\mathcal{O}\left(n+n^{1/2}\varepsilon^{-2}\right)$	$\mathcal{O}\left(\sigma^2\varepsilon^{-2} + \sigma\varepsilon^{-3}\right)$	$\mathcal{O}\left(L^{-1}\right)$	Yes	No
ProxSARAH	$\mathcal{O}\left(n+n^{1/2}\varepsilon^{-2}\right)$	$\mathcal{O}\left(\sigma^2\varepsilon^{-2} + \sigma\varepsilon^{-3}\right)$	$\mathcal{O}\left(L^{-1}m^{-1/2}\right) \to \mathcal{O}\left(L^{-1}\right)$	Yes	Yes

Table: Comparison of results on SFO (stochastic first-order oracle) complexity for nonsmooth non-convex optimization (both non-composite and composite cases).

Common Stochastic Gradient Estimators

Common stochastic gradient estimators

SGD estimators: unbiased and fixed variance

$$u_t := \nabla f(x_t, \xi_t) \ \ \text{(singe sample)} \ \ \text{or} \quad u_t := \frac{1}{b_t} \sum_{\xi_t \in \mathcal{B}_t} \nabla f(x_t, \xi_t) \ \ \text{(batch)}.$$

▶ SAGA: Only for finite-sum problems, unbiased, and variance reduced:

$$v_t := \nabla f_{i_t}(z_{t+1}^{i_t}) - \nabla f(z_t^{i_t}) + \frac{1}{n} \sum_{i=1}^n \nabla f(z_t^i),$$

where $z_{t+1}^{it} = x_t$ if $i_t = i$, and $z_{t+1}^i = z_t^i$ if $i \neq i_t$.

SVRG: unbiased and variance reduced estimator

$$v_t := \widetilde{u}_t + \nabla f(x_t, \xi_t) - \nabla f(\widetilde{x}, \xi_t),$$

where \widetilde{x} is a snapshot point, and \widetilde{u}_t is an unbiased estimator of ∇f at \widetilde{x} .

► SARAH: biased and variance reduced estimator

$$v_t := v_{t-1} + \nabla f(x_t, \xi_t) - \nabla f(x_{t-1}, \xi_t).$$

Main Idea and Main Steps

Related works

SPIDER, SpiderBoost, and some other variants: Update a plain proximal step $x_{t+1}^{(s)} := \operatorname{prox}_{\eta \psi} \left(x_t^{(s)} - \eta v_t^{(s)} \right)$ using SARAH estimator:

$$v_t^{(s)} := v_{t-1}^{(s)} + \left(\nabla f(x_t^{(s)}, \xi_t) - \nabla f(x_{t-1}^{(s)}, \xi_t)\right). \tag{SARAH} \label{eq:sarah}$$

- Require batch and constant/adaptive step-size to obtain best-known complexity.
- SPIDER performs poorly due to small step-size
- **SpiderBoost** performs well in practice if well tuning parameters.

Our scheme

ProxSARAH: one proximal step and one averaging step:

$$\begin{cases} \widehat{x}_{t+1}^{(s)} &:= \operatorname{prox}_{\eta_t \psi} \left(x_t^{(s)} - \eta_t v_t^{(s)} \right), \\ x_{t+1}^{(s)} &:= (1 - \gamma_t) x_t^{(s)} + \gamma_t \widehat{x}_{t+1}^{(s)}. \end{cases}$$
(ProxSARAH)

Additional damped step-size $\gamma_t \to \text{more flexibility}$.

Proximal SARAH algorithm (ProxSARAH)

Algorithm 2 (ProxSARAH: A simplified version)

```
1: Choose an initial \hat{x}_0, fix a parameter \eta > 0.

2: OuterLoop: For s := 1, 2, \cdots, S do

3: Generate a snapshot v_0^{(s)} as a stochastic estimator of \nabla f(x_0^{(s)}).

4: Update \hat{x}_1^{(s)} := \text{prox}_{\eta\psi}(x_0^{(s)} - \eta v_0^{(s)}) and x_1^{(s)} := (1 - \gamma_0)x_0^{(s)} + \gamma_0 \hat{x}_1^{(0)}.

5: InnerLoop: For t := 1, \cdots, m do

6: Evaluate SARAH estimator v_t^{(s)}

7: Update \hat{x}_{t+1}^{(s)} := \text{prox}_{\eta\psi}(x_t^{(s)} - \eta v_t^{(s)}) and x_{t+1}^{(s)} := (1 - \gamma_t)x_t^{(s)} + \gamma_t \hat{x}_{t+1}^{(s)}

8: EndFor

9: Set \hat{x}_s := x_{m+1}^{(s)}
```

Remarks

- ► The outer loop in ProxSARAH is mandatory to guarantee convergence.
- \blacktriangleright Both step-sizes η and γ can be fixed or adaptively updated.
- ▶ Work with both single sample and mini-batch.
- ▶ The main step can be written as $x_{t+1} := x_t \gamma_t \eta G_n(x_t)$.

Convergence Guarantee: Summary

Convergence in the finite-sum case (ERM)

Let the step-sizes γ, η be fixed or updated adaptively. If we choose snapshot batch size b:=n and epoch length m:=n, then to guarantee $\mathbb{E}\left[\|G_{\eta}(\widetilde{x}_T)\|^2\right]\leq \varepsilon^2$, the followings hold

▶ The number of outer iterations S does not exceed

$$S := \mathcal{O}\left(\frac{L}{\sqrt{n}\varepsilon^2} \left[F(\widetilde{x}_0) - F^* \right] \right).$$

lacktriangle The number of stochastic gradient evaluations $\mathcal{T}_{\mathrm{grad}}$ does not exceed

$$\mathcal{T}_{\mathrm{grad}} := \mathcal{O}\left(\frac{L\sqrt{n}}{\varepsilon^2}\left[F(\widetilde{x}_0) - F^{\star}\right]\right),$$

► The number of prox_{nψ} operations does not exceed

$$\mathcal{T}_{\text{prox}} := \mathcal{O}\left(\frac{L\sqrt{n}}{\varepsilon^2} \left[F(\widetilde{x}_0) - F^* \right] \right).$$

Convergence Guarantee: Summary (cont.)

Convergence in the expectation case (NCVX)

Let the step-sizes γ, η be fixed or updated adaptively. If we choose snapshot batch size $b:=\mathcal{O}\left(\frac{\sigma^2}{\epsilon^2}\right)$ and epoch length $m:=\mathcal{O}\left(\frac{\sigma^2}{\epsilon^2}\right)$, then to guarantee $\mathbb{E}\left|\|G_{\eta}(\widetilde{x}_T)\|^2\right| \leq \varepsilon^2$, the followings hold

► The number of outer iterations S is at most

$$S := \mathcal{O}\left(\frac{L[F(\widetilde{x}_0) - F^{\star}]}{\sigma \varepsilon}\right).$$

The number of individual stochastic gradient evaluations $\nabla f(\cdot, \xi_t)$ does not exceed

$$\mathcal{T}_{\mathrm{grad}} := \mathcal{O}\left(\frac{L\sigma}{\varepsilon^3} \left[F(\widetilde{x}_0) - F^{\star} \right] \right),$$

► The number of prox_{nψ} operations does not exceed

$$\mathcal{T}_{\text{prox}} := \mathcal{O}\left(\frac{\sigma L[F(\widetilde{x}_0) - F^{\star}]}{\varepsilon^2}\right).$$

Optimal Complexity for the Finite-sum Case

Lower bound complexity for the finite-sum problem

Fang et al. 2 and Zhou et al. 3 showed that under standard assumptions, the lower bound complexity of SGD on $\mathcal{T}_{\rm grad}$ is

$$\Omega\left(\frac{L\left[F(x^0) - F^{\star}\right]\sqrt{n}}{\varepsilon^2}\right).$$

A few remarks

For the finite-sum case:

- ▶ If $n = \mathcal{O}\left(\varepsilon^{-4}\right)$, then $\mathcal{T}_{\text{grad}} = \mathcal{O}\left(n^{1/2}\varepsilon^{-2}\right)$.
- ▶ If $n = \Omega\left(\varepsilon^{-4}\right)$, then $\mathcal{T}_{\text{grad}} = \mathcal{O}\left(n + n^{1/2}\varepsilon^{-2}\right)$ due to the full gradient snapshots.

For the expectation case:

- ▶ If $\sigma \leq \frac{32L[F(\widetilde{x}_0) F^*]}{\varepsilon^2}$, then $\mathcal{T}_{grad} = \mathcal{O}\left(\sigma\varepsilon^{-3}\right)$.
- ▶ Otherwise, $\mathcal{T}_{\mathrm{grad}} = \mathcal{O}\left(\sigma\varepsilon^{-3} + \sigma^2\varepsilon^{-2}\right)$ due to the snapshot $v_0^{(s)}$

³D. Zhou and Q. Gu. Lower bounds for smooth nonconvex finite-sum optimization. arXiv preprint arXiv:1901.11224, 2019.

²C. Fang, C. J. Li, Z. Lin, and T. Zhang. SPIDER: Near-optimal non-convex optimization via stochastic path integrated differential estimator. arXiv preprint arXiv:1807.01695, 2018.

Three Numerical Examples

Nonconvex optimization models

- ▶ Simple example: Nonnegative principal component analysis (NN-PCA)
- ▶ Binary classification: Sparse binary classification with nonconvex losses
- ▶ DL relations: Sparse feedforward neural network training

Our numerical examples are still very preliminary. Our code can be found at:

https://github.com/unc-optimization/StochasticProximalMethods.

Comparison criteria

- ▶ The norm of gradient mapping $\|G_{\eta}(x_t^{(s)})\|$ with $(\eta = 0.5)$
- Training loss values.
- Training accuracy and test accuracy.

Datasets

- Standard datasets from LIBSVM datasets.
- From small datasets to relatively large datasets.

Candidates and Configurations

ProxSARAH vs. others

- ▶ We implement 8 different variants of our ProxSARAH algorithm:
 - ProxSARAH-v1: $\gamma := \frac{\sqrt{2}}{1 \cdot \sqrt{2m}}$, single sample (i.e., $\hat{b} = 1$), and m := n.
 - ProxSARAH-v2: $\gamma:=0.95$, mini-batch size $\hat{b}:=\Theta\left(\sqrt{n}\right)$ and $m:=\lfloor\sqrt{n}\rfloor$.
 - lacktriangle ProxSARAH-v3: $\gamma:=0.99$, mini-batch size $\hat{b}:=\Theta\left(\sqrt{n}\right)$ and $m:=\lfloor\sqrt{n}\rfloor$.
 - ProxSARAH-v4: $\gamma:=0.95$, mini-batch size $\hat{b}:=\Theta\left(n^{1/3}\right)$ and $m:=\lfloor n^{\frac{1}{3}}\rfloor$.
 - ProxSARAH-v5: $\gamma:=0.99$, mini-batch size $\hat{b}:=\Theta\left(n^{1/3}\right)$ and $m:=\lfloor n^{\frac{1}{3}}\rfloor$.
 - ProxSARAH-A-v1: $\hat{b} = 1$, and adaptive step-sizes.
 - ProxSARAH-A-v2: $\gamma_m := 0.99$ and mini-batch size $\hat{b} := \lfloor \sqrt{n} \rfloor$ and $m := \lfloor \sqrt{n} \rfloor$.
 - ProxSARAH-A-v3: $\gamma_m := 0.99$ and mini-batch size $\hat{b} := \lfloor n^{\frac{1}{3}} \rfloor$ and $m := \lfloor n^{\frac{1}{3}} \rfloor$.
- We also implement others algorithms: ProxSVRG, ProxSpiderBoost, ProxSGD, and ProxGD for comparison.

Nonnegative PCA (NN-PCA) Example

Problem formulation: A simple constrained nonconvex problem

$$F^{\star} := \min_{x \in \mathbb{R}^d} \bigg\{ F(x) := -\frac{1}{2n} \sum_{i=1}^n x^{\top} (z_i z_i^{\top}) x \quad \text{s.t.} \quad \|x\| \leq 1, \ x \geq 0 \bigg\}.$$

Here, f(x)=F(x) and ψ is the indicator function of $\{x:\|x\|\leq 1,\ x\geq 0\}.$

Datasets ⁴

Some datasets	n	d	
mnist	60,000	784	
rcv1-binary	20,242	47,236	
real-sim	72,309	20,958	
url_combined	2,396,130	3,231,961	
news20.binary	19,996	1,355,191	
avazu-app	14,596,137	999,990	

Table: Datasets used in the NN-PCA numerical example.

⁴available online at https://www.csie.ntu.edu.tw/~cjlin/libsvm/

NN-PCA Example: Convergence Behavior on Small Datasets

Figure: NN-PCA example with single sample on small and medium datasets.

Observation

- ▶ ProxSARAH variants outperform others.
- ► Adaptive ProxSARAH variant is better than fixed step-size variant.

NN-PCA Example: Convergence Behavior on Larger Datasets

Figure: NN-PCA example with minibatch on large datasets.

A few remarks

- ▶ ProxSpiderBoost works well in some datasets.
- ► ProxSARAH variants still perform well in all cases.

Sparse Binary Classification with Nonconvex Losses

Problem formulation

$$\min_{x \in \mathbb{R}^d} \left\{ F(x) := \frac{1}{n} \sum_{i=1}^n \ell(a_i^\top x, b_i) + \lambda \|x\|_1 \right\}.$$

Some nonconvex and smooth losses

1. Normalized sigmoid loss:

$$\ell_1(s,\tau) := 1 - \tanh(\omega \tau s)$$
 for a given $\omega > 0$.

Nonconvex loss in 2-layer neural networks:

$$\ell_2(s,\tau) := \left(1 - \frac{1}{1 + \exp(-\tau s)}\right)^2.$$

Logistic difference loss:

$$\ell_3(s,\tau) := \ln(1 + \exp(-\tau s)) - \ln(1 + \exp(-\tau s - \omega))$$
 for some $\omega > 0$.

Sparse Binary Classification with Nonconvex Losses - Single sample

Figure: Example with single sample on small and medium datasets using loss ℓ_2 .

Observation

- ► ProxSARAH variants still work best
- ► Adaptive ProxSARAH variant outperforms fixed step-size variant.

Sparse Binary Classification with Nonconvex Losses - mini-batch

Figure: Example with mini-batch on large datasets using loss ℓ_2 .

Observation

▶ ProxSARAHs and ProxSpiderBoost are comparable but are better than the rest.

Sparse Feedforward Neural Network Training

Problem formulation

$$\min_{x \in \mathbb{R}^d} \left\{ F(x) := \frac{1}{n} \sum_{i=1}^n \ell(h(x, a_i), b_i) + \psi(x) \right\},\,$$

Here, we add an ℓ_1 -norm regularizer to sparsify the weights.

Datasets and Network Architectures

Datasets	n	d
mnist ⁵	60,000	10,000
fashion_mnist 6	60,000	10,000

Table: Datasets used in neural network example.

- 1. Test 1: Fully-connected network $784 \times 100 \times 10$, ReLU activation, and soft-max cross-entropy loss.
- 2. Test 2: Fully-connected network $784 \times 800 \times 10$, ReLU activation, and soft-max cross-entropy loss.

⁵available at http://yann.lecun.com/exdb/mnist

⁶ available at https://github.com/zalandoresearch/fashion-mnist

Sparse Feedforward Neural Network Training

Figure: Fully-connected neural network $784 \times 100 \times 10$ on two datasets.

Observation

- ProxSARAH tends to compete with an adaptive SGD in this particular test.
- Norms of gradient mappings does not reflect test accuracy and training loss.

Sparse Feedforward Neural Network Training

Figure: Fully-connected network $784 \times 800 \times 10$ on mnist.

Observation

- ▶ Variance reduction methods can achieve lower norms of gradient mapping.
- ▶ ProxSARAH variants perform better than other variance reduction methods.
- ProxSGD has good performance in terms of training loss and test accuracy.

Motivation

Motivation

Observation

- ▶ Both SVRG and SARAH are variance reduction methods, but have two loops, making them challenging to tune parameters.
- ▶ SGD often has good progress at early stage but oscillates at the end.
- Variance reduction methods are better at later stage.

Questions

- Can we combine both schemes to obtain a trade-off?
- Can we design single loop algorithms with better complexity than SGD?
 - ⇒ A hybrid stochastic optimization approach

Key idea

Key idea

Combining SARAH estimator and an unbiased one such as SGD:

$$v_t := \beta_t v_t^{\text{sarah}} + (1 - \beta_t) u_t^{\text{unbiased}},$$

where $\beta_t \in [0, 1]$ is a given parameter that trades off between bias and variance.

Apply ProxSARAH framework to solve (NCVX) and (ERM).

More details

T.D., N. H. Pham, D. T. Phan, and L. M. Nguyen. A Hybrid Stochastic Optimization Framework for Stochastic Composite Nonconvex Optimization. Preprint: https://arxiv.org/pdf/1907.03793.pdf, 2019.

Summary and future research

Summary

- Seeking first-order stationary points of composite nonconvex optimization.
- New SARAH-based algorithms with flexible choices of parameters.
- Theoretical novelty
 - Convergence analysis in both single sample or mini-batch, finite-sum, or expectation cases
 - Optimal or best-known convergence rates and complexity bounds in all cases.
 - A new adaptive step-size scheme which is updated in an increasing fashion.
- A new hybrid approach for stochastic optimization methods.

Possible future directions

- ► The hybrid idea can be extended to other stochastic estimators.
- Second-order stationary points (local minima, saddle-points).
- Applications to other problems and algorithmic variants.

Thank you!

Check out nhanph.github.io for more information.

References |

[1] S. Ghadimi and G. Lan.

Stochastic first-and zeroth-order methods for nonconvex stochastic programming. *SIAM J. Optim.*, 23(4):2341–2368, 2013.

[2] R. Johnson and T. Zhang.
 Accelerating stochastic gradient descent using predictive variance reduction.
 In Advances in Neural Information Processing Systems (NIPS), pages 315–323, 2013

- [3] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM J. Optim., 19(4):1574–1609, 2009.
- [4] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takac. SARAH: A novel method for machine learning problems using stochastic recursive gradient.
 - In The 34th International Conference on Machine Learning (ICML), 2017.
- [5] H. Robbins and S. Monro.
 - A stochastic approximation method.

The Annals of Mathematical Statistics, 22(3):400-407, 1951.

