MICHAEL SCHRAPP UBUNGSBLATT 3 LÖSUNGEN Analysis I

Repetitorium Analysis I für Physiker

Aufgabe 1

Wir definieren zunächst die Funktion $g(t)=\int\limits_0^2 f(t)t^2dt$

Die Menge $B = g^{-1}(]-\infty, 5[)$ ist somit als stetiges Urbild einer offenen Menge ebenfalls offen.

Aufgabe 2

Als Quotienten stetiger Funktionen, wobei der Nenner jew. ≥ 1 ist, sind alle Funktionen g_n stetig.

Für den Grenzübergang gilt:

$$x \neq 0 \Longrightarrow \lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} \frac{x}{\frac{1}{n} + |x|} = \frac{x}{|x|} = sgn(x) = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases}$$

$$x = 0 \Longrightarrow q_n(x) = 0 \ \forall n \in \mathbb{N}$$

Die überall stetigen Funktionen g_n konvergieren also punktweise gegen die Funktion sgn(x), die unstetig ist im Punkt x = 0.

Aufgabe 3

a) Die Funktion $d(x) = \tan x - x$ ist auf dem Intervall $[0, \pi/2[$ stetig und differenzierbar auf dem offenen Intervall $]0, \pi/2[$ mit der Ableitung

$$d'(x) = 1 + \tan^2 x - 1 = \tan^2 x$$
.

Sie ist > 0 für alle $x \in]0, \pi/2[$. Nach dem Mittelwertsatz gilt dort $d(x) = d(x) - d(0) = x \cdot d'(\xi)$ für ein passendes $\xi \in]0, x[$. Das ergibt d(x) > 0.

b) Die gefragte Funktion $g(x) = \frac{\sin x}{x}$ ist im Intervall $]0, \pi/2[$ nach der Quotientenregel differenzierbar mit der Ableitung

$$g'(x) = \frac{\cos x \cdot x - \sin x \cdot 1}{x^2} = \frac{\cos x}{x^2} \cdot (x - \tan x).$$

Dieser Wert ist nach Teil a) überall negativ; folglich ist g (nach dem Monotoniekriterium für differenzierbare Funktionen) strikt monoton fallend.

Aufgabe 4

a.)

(i) Mehrfaches anwenden der Regel von L'Hopital liefert:

$$\lim_{x \to 0} \frac{x - \tan x}{x^3} = \lim_{x \to 0} \frac{1 - 1 - \tan^2 x}{3x^2} = \lim_{x \to 0} \frac{-2\tan x(1 + \tan^2 x)}{6x}$$
$$= \lim_{x \to 0} \frac{-2\tan x - 2\tan^3 x}{6x} = \lim_{x \to 0} \frac{-2(1 + \tan^2 x) - 2(3\tan^2 x(1 + \tan^2 x))}{6} = -1/3$$

(ii)

$$\lim_{x \to \infty} (\cos \frac{1}{x})^x = \lim_{x \to \infty} e^{x \ln(\cos \frac{1}{x})} = e^{\lim_{x \to \infty} x \ln(\cos \frac{1}{x})}$$

$$\lim_{x \to \infty} \frac{\ln(\cos \frac{1}{x})}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\frac{1}{\cos \frac{1}{x}} (-\sin \frac{1}{x}) (-\frac{1}{x^2})}{\frac{-1}{x^2}}$$

$$= -\lim_{x \to \infty} \tan \frac{1}{x} = 0$$

$$\lim_{x \to \infty} (\cos \frac{1}{x})^x = e^0 = 1$$

(iii)

$$\lim_{x \to \pi/2} (\sin x)^{\tan x} = \lim_{x \to \pi/2} e^{\tan x \ln(\sin x)} = e^{\lim_{x \to \pi/2} \tan x \ln(\sin x)}$$

$$\lim_{x \to \pi/2} \frac{\ln |\sin x|}{\tan x} = \lim_{x \to \pi/2} \frac{\frac{1}{\sin x} \cos x}{-\frac{1}{\sin^2 x}}$$

$$= -\lim_{x \to \pi/2} (-\sin x \cos x) = 0$$

$$\lim_{x \to \pi/2} (\sin x)^{\tan x} = e^0 = 1$$

(iv)

$$\lim_{x \to \frac{\pi}{4}} \frac{\tan x - 1}{\arcsin(\tan x) - \frac{\pi}{2}} = \lim_{x \to \frac{\pi}{4}} \frac{\frac{1}{\cos^2 x}}{\frac{1}{\sqrt{1 - \tan^2 x}} \frac{1}{\cos^2 x}}$$
$$= \lim_{x \to \frac{\pi}{4}} \sqrt{1 - \tan^2 x} = 0$$

b.)

Zunächst berechnen wir die Ableitungen von $y = \tan x$ und damit die Taylorreihe.

$$y = \tan x \quad y(0) = 0$$

$$y' = 1 + \tan^2 x \quad y'(0) = 1$$

$$y'' = 2\tan x(1 + \tan^2 x) \quad y''(0) = 0$$

$$y''' = 2(1 + 3\tan^2 x)(1 + \tan^2 x) \quad y'''(0) = 2$$

$$\implies y = x + 1/3x^3 + o(x^5)$$

Für den gesuchten Grenzwert erhalten wir schließlich:

$$\lim_{x \to 0} \frac{x - \tan x}{x^3} = \frac{x - (x + 1/3x^3 + o(x^5))}{x^3} = -1/3$$

Aufgabe 5

Zur Untersuchung der Stetigkeit nehmen wir eine Fallunterscheidung vor.

x < 0: dann wird $f(x) = \sqrt{-x}$. Aus Aufgabe sss wissen wir jedoch, dass diese Funktion stetig ist. Analoges gilt für x > 0.

Am Nullpunkt gilt:

$$\lim_{x \to 0 \land x < 0} \sqrt{-x} = 0 = \lim_{x \to 0 \land x > 0} \sqrt{x}$$

Womit auch die Stetigkeit im Ursprung gezeigt ist. Nun zur Differenzierbarkeit von f(x).

$$x < 0$$
: dann gilt: $f'(x) = \frac{1}{2\sqrt{x}}$
 $x > 0$: dann gilt: $f'(x) = \frac{-1}{2\sqrt{x}}$

im Falle x = 0 folgt jedoch:

$$\lim_{x \to 0 \land x < 0} \frac{1}{2\sqrt{x}} = +\infty \neq \lim_{x \to 0 \land x > 0} \frac{-1}{2\sqrt{x}} = -\infty$$

Abbildung 1: Graph zu f

Aufgabe 6

a). Die Funktion $y\mapsto \lfloor y\rfloor$ erfüllt die Relation $\lfloor y+1\rfloor=\lfloor y\rfloor+1$ für alle $y\in\mathbb{R}.$ Deshalb wird

$$\operatorname{zack}(x+1) = \Big| \big\lfloor x + 3/2 \big\rfloor - x - 1 \Big| = \Big| \big\lfloor x + 1/2 \big\rfloor + 1 - x - 1 \Big| = \operatorname{zack}(x) \ \text{ für alle } \ x \in \mathbb{R} \,.$$

Auf dem Intervall $[-1/2,1/2\,[$ gilt $\mathrm{zack}(x)=|-x|=|x|,$ und im Punkt x=1/2 ist $\mathrm{zack}(1/2)=|1-1/2|=\mathrm{zack}(-1/2)=1/2.$ Mithin ist $\mathrm{zack}(x)=|x|$ für alle $x\in I=[-1/2,1/2]$ und $\mathrm{zack}(x+1)=\mathrm{zack}(x)$ sonst. Insbesondere ist die Restrikton von $\mathrm{zack}(x)$ gleich -x auf $-1/2\leq x\leq 0,$ also linear und $\mathrm{zack}(x)=x$ auf $0\leq x\leq 1/2$ ebenfalls linear.

b.) Offenbar ist zack auf I stetig mit einem einzigen Minimum bei x=0 und mit je einem Maximum in x=-1/2 und in x=1/2. Wegen der Periodizität ist zack $(x+m)=\mathrm{zack}(x)$ für alle $m\in\mathbb{Z}$ und alle $x\in I$. Daraus folgt auch die Stetigkeit von zack auf \mathbb{R} . Die Menge der Minima von zack ist \mathbb{Z} , ihre Maxima liegen genau in den Punkten von $1/2+\mathbb{Z}$. Zwischen je zwei benachbarten Extremstellen von f verläuft die Funktion linear.

Aufgabe 7

a) Wir zeigen zunächst
$$\lim_{h \searrow 0} \frac{\exp(h) - 1}{h} = 1 = \lim_{h \nearrow 0} \frac{\exp(h) - 1}{h}.$$

Zum Beweis folgern wir aus der charakteristischen Ungleichung $\exp(x) \ge 1 + x$ und der Funktionalgleichung von exp für alle $h \in]0,1[$ die Abschätzung

$$(1+h/2)^2 \le (\exp(h/2))^2 = \exp(h) = \frac{1}{\exp(-h)} \le \frac{1}{1-h}.$$

Daraus erhält man für alle $h \in]0,1[$

$$1 + h/4 \le \frac{\exp(h) - 1}{h} \le \frac{1}{h} \left(\frac{1}{1 - h} - 1 \right) = \frac{1}{1 - h}.$$

Beide Seiten in den letzten Abschätzungen konvergieren für $h \searrow 0$ gegen 1. Das ergibt den Grenzwert $\lim_{h\searrow 0} \exp(h) = 1$ und die erste Gleichung in der Behauptung. Nun ist für alle $t\in]0,1[$

$$\frac{\exp(-t) - 1}{-t} = \frac{1}{\exp(t)} \cdot \frac{\exp(t) - t}{t};$$

daraus ergibt sich nach dem bereits Bewiesenen auch die zweite Behauptung. Sei jetzt $a \in \mathbb{R}$ beliebig. Dann wird für alle $h \in \mathbb{R} \setminus \{0\}$:

$$\frac{\exp(a+h) - \exp(a)}{h} = \exp(a) \cdot \frac{\exp(h) - 1}{h}.$$

Hieraus folgt jetzt $\exp'(a) = \exp(a)$.

b) Nach der Kettenregel wird die allgemeine Potenz $x^{\alpha} = \exp(\alpha \ln x)$ in \mathbb{R}_{+}^{\times} differenzierbar mit der Ableitung

$$\frac{d}{dx}x^{\alpha} = \alpha \frac{1}{x} \cdot \exp(\alpha \ln x) = \alpha \exp((\alpha - 1) \ln x) = \alpha x^{\alpha - 1}.$$

Darin wurde die Formel $\ln'(x) = 1/x$ verwendet.

Aufgabe 8

a) Es ergibt sich mit der Summen-, der Ketten- und der Quotienten-Regel

$$\sinh'(x) = \frac{1}{2} (e^x + e^{-x}) = \cosh x,$$

$$\cosh'(x) = \frac{1}{2} (e^x - e^{-x}) = \sinh x,$$

$$\tanh'(x) = \frac{\sinh'(x) \cosh(x) - \sinh(x) \cosh'(x)}{\cosh^2(x)} = \frac{\cosh^2(x) - \sinh^2(x)}{\cosh^2(x)} = 1 - \tanh^2(x).$$

b) Aus der bekannten Limesbeziehung $\lim_{x\to\infty}e^{-x}=0$ folgt für die differenzierbare und daher auch stetige Funktion sinh, dass $\sup \sinh(\mathbb{R})=\infty$ gilt. Mit $\sinh(-x)=-\sinh(x)$ ergibt sich daraus auch inf $\sinh(\mathbb{R})=-\infty$. Weiter garantiert die strikte Positivität der Ableitung

 $\sinh'(x) = \cosh x$, dass sinh eine samt Umkehrfunktion stetig differenzierbare bijektive Abbildung von \mathbb{R} auf sich definiert. Nach dem Satz über die Ableitung der Umkehrfunktion besitzt die üblicherweise Ar sinh bezeichnete Umkehrfunktion von sinh aufgrund der Relation $\cosh^2 x - \sinh^2 x = 1$ die Ableitung

$$\operatorname{Ar} \sinh'(y) = \frac{1}{\sinh'(\operatorname{Ar} \sinh y)} = \frac{1}{\sqrt{1 + \sinh^2(\operatorname{Ar} \sinh y)}} = \frac{1}{\sqrt{1 + y^2}}.$$

Die Funktion tanh und ihr Wertevorrat $\tanh(\mathbb{R}) =]-1,1[$ wurden bereits in **H30** bestimmt. Die strenge Positivität der Ableitung $\tanh' y = 1 - \tanh^2(y)$ bestätigt noch einmal das strengmonotone Wachstum von tanh und die Differenzierbarkeit der Umkehrfunktion Ar tanh. Nach der Formel von oben gilt

$$\operatorname{Ar} \tanh'(y) = \frac{1}{\tanh'(\operatorname{Ar} \tanh y)} = \frac{1}{1 - \tanh^2(\operatorname{Ar} \tanh y)} = \frac{1}{1 - y^2}.$$

Aufgabe 9

Wir berechnen die 2008.te Ableitung mithilfe der Leibniz-Formel. Es gilt:

$$f^{(2008)} = x^2 (e^{cx})^{(2008)} + {2008 \choose 1} (x^2)' (e^{cx})^{(2007)} + {(2008) \choose 2} (x^2)'' (e^{cx})^{(2006)}$$

Die restlichen Summanden verschwinden, da hhere Ableitungen von x^2 gleich sind. Zusammen mit $x^2(e^{cx})^{(n)} = x^2c^ne^{cx}$ folgt somit:

$$f^{(2008)} = c^{2008}x^2e^{cx} + 2 \cdot 2008 \cdot c^{2007}xe^{cx} + 2 \cdot 2008 \cdot 2007 \cdot c^{2006}e^{cx}$$

Aufgabe 10

a) Die Funktion $f(x) = \exp(\frac{1}{x}\ln x)$ ist auf dem Intervall $J =]0, \infty[$ differenzierbar mit der (aus Ketten- und Produktregel gewonnenen) Ableitung

$$f'(x) = \exp\left(\frac{1}{x}\ln x\right) \cdot \left[\frac{-1}{x^2}\ln x + \frac{1}{x^2}\right] = x^{1/x} \cdot \frac{1 - \ln x}{x^2}.$$

Sie ist offensichtlich größer als Null, falls 0 < x < e gilt, gleich Null bei x = e und kleiner als Null, falls $e < x < \infty$ gilt. Daher ist aufgrund des Monotoniekriteriums f strikt monoton wachsend im Intervall $0 < x \le e$ und strikt monoton fallend im Intervall $e \le x < \infty$. Insbesondere liegt bei x = e ein isoliertes lokales Maximum von f.

b) Das Argument $\frac{\ln x}{x}$ der Exponentialfunktion in der Definition von f genügt am rechten Intervallende ∞ von J der Voraussetzung der zweiten l'Hôpitalschen Regel. Sie ergibt

$$\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{1/x}{1} = 0; \quad \text{und daraus folgt} \quad \lim_{x \to \infty} x^{1/x} = e^0 = 1.$$

Am linken Intervallende von J gilt wegen $\lim_{x\searrow 0} \ln x = -\infty \quad \text{erst recht} \quad \lim_{x\searrow 0} \frac{\ln x}{x} = -\infty \,.$ Das ergibt wegen $\lim_{y\to -\infty} e^y = 0$ den Grenzwert $\lim_{x\searrow 0} x^{1/x} = 0.$

c) Aus der Tatsache $n^{1/n}=f(n)$ und mit dem unter Teil a) festgestellten Monotonieverhalten von f ist das Maximum von $\left(n^{1/n}\right)$ unter den beiden Zahlen $2^{1/2}$ und $3^{1/3}$ zu suchen. Ihre Differenz hat dasselbe Vorzeichen wie die Differenz der sechsten Potenzen. Für sie aber gilt $\left(2^{1/2}\right)^6=8 < \left(3^{1/3}\right)^6=9$. Mithin ist $f(3)=3^{1/3}$ das Maximum der genannten Folge.

Aufgabe 11

Wir zeigen zunächst die gleichmäßige Stetigkeit der Wurzelfunktion.

Für $x, \Delta x > 0$ gilt die Abschätzung : $\sqrt{x + \Delta x} - \sqrt{x} \le \sqrt{\Delta x}$ (verschiebe Δx auf die rechte Seite und quadriere alles)

Für beliebiges x, y > 0 und $\Delta x = y - x$ wobei o.B.d.A. gelte y > x folgt:

$$|x-y| < \delta \Longrightarrow |\sqrt{x} - \sqrt{y}| \le \sqrt{|x-y|} < \sqrt{\delta} = \varepsilon$$

was die gleichmäßige Stetigkeit der Wurzel-Funktion beweist.

Die Funktion $g(x)=x^2$ ist als Produkt der stetigen Funktionen y=x bekanntlich stetig auf ganz \mathbb{R} . Um zu zeigen, dass sie nicht gleichmäßig stetig ist, wählen wir ein festes $\varepsilon=1$ und beweisen, dass hierzu kein $\delta>0$ existiert.

Sei nun $\delta>0$ beliebig und wähle $x=\frac{1}{\delta}$ sowie $y=\frac{1}{\delta}+\delta/2$, dann gilt: $|x-y|=\delta/2<\delta$ aber $|f(x)-f(y)|=|\delta^2/4+1|>1=\varepsilon$

Aufgabe 12

a.) Betrachte die Funktion f(x) = (x - 1) - Ln(x) für x > 0

$$\lim_{x \to 0} f(x) = +\infty$$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (x[1 - \frac{1}{x} - \frac{Lnx}{x}]) = +\infty$$

Nun berechnen wir die Extrema von f. Aus $f'(x) = 1 - \frac{1}{x} = o$ folgt: x = 1 ist ein möglicher Kandidat. Aufgrund der Grenzwertbetrachtung muss es sich um ein globales Minimum handeln und $f(x) = x - 1 - Lnx \ge f(1) = 0$

$$\implies Lnx \le x - 1$$
 bzw. $Ln(x + 1) \le x$

Für die zweite Abschätzung verwenden wir die Funktion $g(x) = Lnx - (1 - \frac{1}{x})$. Es gilt:

$$g(x) = Lnx - (1 - \frac{1}{x}) = -Ln(\frac{1}{x}) - 1 + \frac{1}{x}$$
$$= (\frac{1}{x} - 1) - Ln(\frac{1}{x})$$
$$= f(\frac{1}{x}) \ge 0$$
$$\Longrightarrow 1 - \frac{1}{x} \le Lnx \text{ bzw. } 1 - \frac{1}{x+1} \le Ln(x+1)$$

zusammen folgt also:

$$1 - \frac{1}{x+1} \le Ln(x+1) \le x$$

b.) Die Funktion Ln(x+1) hat bekanntlich die Ableitung $\frac{1}{x+1}$. Für diese Ableitung können wir jedoch sehr einfach mithilfe der geometrischen Reihe die Potenzreihendarstellung angeben.

$$\frac{1}{1+x} = \frac{1}{1-(-x)} = \sum_{n=0}^{\infty} (-1)^n x^n$$

Durch Integration dieser Potenzreihe erhalten wir:

$$Ln(x+1) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1} = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$$

Mit der Abschätzung aus Teilaufgabe a.) $Ln(x+1) \le x$ folgt nun für die Funktion h(x):

$$h(x) = \frac{Ln(1+x) - x - x^2/2}{x} \le -\frac{x}{2}$$
 für $x > 0$.

