The Geometry of Virtual Worlds

CS 6334 Virtual Reality
Professor Yu Xiang
The University of Texas at Dallas

Some slides of this lecture are courtesy Dr. Steven LaValle

Review of VR Systems

How to Build the Virtual World?

Computer games

2D Virtual World

3D Virtual World

3D Virtual World, first person

How to Build the Virtual World?

• Examples of game engines

Unity Unreal

How to Build the 3D World?

Physics simulation

PyBullet Simulation

NVIDIA FleX Simulation

How to Build the 3D World?

- Game engines
 - Photo-realistic rendering
 - Built in physics simulation, e.g., Unity uses the NVIDIA PhysX engine
 - Need more experience
- Physics simulators
 - Usually non-photo-realistic rendering
 - Usually easy to program, e.g., PyBullet
 - Good for learning the concepts in VR

Representations of the 3D World

3D Voxels

3D Particles

3D Meshes

3D Triangle Mesh

The Virtual World as 3D Triangle Meshes

Face-Vertex Meshes

From Wikipedia

Coordinate Systems

Compose Scenes

3D Translation

$$(x_1,y_1,z_1)\mapsto(x_1+x_t,y_1+y_t,z_1+z_t)$$

$$(x_2,y_2,z_2)\mapsto(x_2+x_t,y_2+y_t,z_2+z_t)$$

$$(x_3,y_3,z_3)\mapsto(x_3+x_t,y_3+y_t,z_3+z_t)$$

$$\mathbf{v_1}\mapsto\mathbf{v_1}+\mathbf{t}$$

$$(x_3,y_3,z_3)$$

$$\mathbf{v_2}\mapsto\mathbf{v_2}+\mathbf{t}$$

$$(x_3,y_3,z_3)$$

$$\mathbf{v_3}\mapsto\mathbf{v_3}+\mathbf{t}$$
3D Translation $\mathbf{t}=(x_t,y_t,z_t)$

Relativity

Both result in the same coordinates of the triangle

Apply a 2D Matrix to a 2D point

$$M = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$$

$$\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

$$x' = m_{11}x + m_{12}y$$
$$y' = m_{21}x + m_{22}y$$

 $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$

Apply a 2D Matrix to a 2D point

$$M = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$$

$$\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

$$x' = m_{11}x + m_{12}y$$
$$y' = m_{21}x + m_{22}y$$

x-shear

15

J Singular

 $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$

Yu Xiang

2D Rotations $M = \begin{vmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{vmatrix}$

- No stretching of axes $m_{11}^2 + m_{21}^2 = 1 \text{ and } m_{12}^2 + m_{22}^2 = 1$
- No shearing Dot product $m_{11}m_{12}+m_{21}m_{22}=0$
- No mirror images $\det \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} = m_{11} m_{22} m_{12} m_{21} = 1$

$$M = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \qquad \underbrace{\begin{pmatrix} \sin \theta \\ \cos \theta \end{pmatrix}}$$

1 Degree of Freedom Rotate by θ

3D Rotations

- Unit-length columns
- Perpendicular columns
- $\det M = 1$
- 3 DOFs

$$M = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}$$

Euler Angles: Yaw, Pitch, Roll

Counterclockwise rotation

$$R_z(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad R_x(\beta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \beta & -\sin \beta \\ 0 & \sin \beta & \cos \beta \end{bmatrix}$$

Pitch

$$R_x(\beta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \beta & -\sin \beta \\ 0 & \sin \beta & \cos \beta \end{bmatrix}$$

Yaw

$$R_y(\alpha) = \begin{bmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix}$$

Combining Rotations

Matrix multiplications are "backwards"

$$R(\alpha, \beta, \gamma) = R_y(\alpha) R_x(\beta) R_z(\gamma)$$

$$\alpha, \gamma \in [0, 2\pi]$$
 $\beta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$

Singularities

• When pitch $\beta = \frac{\pi}{2}$

$$R(\alpha, \beta, \gamma) = R_y(\alpha) R_x(\beta) R_z(\gamma)$$

$$\begin{bmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos(\alpha - \gamma) & \sin(\alpha - \gamma) & 0 \\ 0 & 0 & -1 \\ -\sin(\alpha - \gamma) & \cos(\alpha - \gamma) & 0 \end{bmatrix}$$

Only one DOF

Axis-Angle Representations of Rotation

 Euler's rotation theorem: every 3D rotation can be considered as a rotation by an angle about an axis through the origin

$$\mathbf{v} = (v_1, v_2, v_3)$$

Unit vector 2DOF + 1DOF

Rodrigues' Rotation Formula

• Rotate $\mathbf{v} \in \mathbb{R}^3$ about unit vector \mathbf{k} by angle heta

$$\mathbf{v}_{\text{rot}} = \mathbf{v}\cos\theta + (\mathbf{k}\times\mathbf{v})\sin\theta + \mathbf{k}(\mathbf{k}\cdot\mathbf{v})(1-\cos\theta)$$

Derivation HW1

 $oldsymbol{\cdot}$ Matrix notation $oldsymbol{v}_{\mathrm{rot}} = \mathbf{R} \mathbf{v}$

Cross product matrix

$$\mathbf{R} = \mathbf{I} + (\sin \theta)\mathbf{K} + (1 - \cos \theta)\mathbf{K}^2$$

$$\mathbf{K} = egin{bmatrix} 0 & -k_z & k_y \ k_z & 0 & -k_x \ -k_y & k_x & 0 \end{bmatrix}$$

$$\mathbf{k} \times \mathbf{v} = \mathbf{K} \mathbf{v}$$

https://en.wikipedia.org/wiki/Cross_product

SO(n): Special Orthogonal Group

• SO(n): Space of rotation matrices in \mathbb{R}^n

$$SO(n) = \{ R \in \mathbb{R}^{n \times n} : RR^T = I, \det(R) = 1 \}$$

- SO(3): space of 3D rotation matrices
- Group is a set G, with an operation ullet, satisfying the following axioms:
 - Closure: $a \in G, b \in G \Rightarrow a \cdot b \in G$
 - Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c), \forall a, b, c \in G$
 - Identity element: $\exists e \in G, e \cdot a = a, \forall a \in G$
 - Inverse element: $\forall a \in G, \exists b \in G, a \cdot b = b \cdot a = e$

Exponential Map for SO(3)

- Matrix exponential $\exp(X) = \sum_{k=0}^{\infty} \frac{1}{k!} X^k$ factorial
- For Lie Group, Hamilton-Cayley theorem $\exp(X) = \sum a_k(X)X^k$ ullet Coefficients are functions of eigenvalues of X
- $\mathbf{R} = \mathbf{I} + (\sin\theta)\mathbf{K} + (1-\cos\theta)\mathbf{K}^2$ skew-symmetric matrix $\mathbf{K} = \begin{bmatrix} 0 & -k_z & k_y \\ k_z & 0 & -k_x \\ -k_y & k_x & 0 \end{bmatrix}$ $= \exp(\theta \, \mathbf{K})$ $so(n) = \{ K \in \mathbb{R}^{n \times n} : K^T = -K \}$

$$\mathbf{R} = \mathbf{I} + (\sin \theta)\mathbf{K} + (1 - \cos \theta)\mathbf{K}^2$$
$$= \exp(\theta K)$$

Two-to-one Problem of Axis-Angle Representations

Quaternions for 3D Rotations

 Quaternions generalize complex numbers and can be used to represents 3D rotations

$$q = w + xi + yj + zk$$

Scale (real part) Vector (imaginary part)

• Properties $i^2=j^2=k^2=-1$ ij=k, ji=-k jk=i, kj=-i ki=j, ik=-j

Quaternion Addition and Multiplication

Addition

$$p + q = (p_0 + q_0) + (p_1 + q_1)\mathbf{i} + (p_2 + q_2)\mathbf{j} + (p_3 + q_3)\mathbf{k}$$

Multiplication

$$pq = (p_0 + p_1 \mathbf{i} + p_2 \mathbf{j} + p_3 \mathbf{k})(q_0 + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k})$$

$$= p_0 q_0 - (p_1 q_1 + p_2 q_2 + p_3 q_3) + p_0 (q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k}) + q_0 (p_1 \mathbf{i} + p_2 \mathbf{j} + p_3 \mathbf{k})$$

$$+ (p_2 q_3 - p_3 q_2) \mathbf{i} + (p_3 q_1 - p_1 q_3) \mathbf{j} + (p_1 q_2 - p_2 q_1) \mathbf{k}.$$

$$pq = p_0q_0 - p \cdot q + p_0q + q_0p + p \times q$$

 $p = (p_1, p_2, p_3) \ q = (q_1, q_2, q_3)$

Complex Conjugate, Norm and Inverse

• Conjugate
$$q=q_0+m{q}=q_0+q_1m{i}+q_2m{j}+q_3m{k}$$
 $q^*=q_0-m{q}=q_0-q_1m{i}-q_2m{j}-q_3m{k}$

$$\begin{array}{lll} \bullet \ \mathsf{Norm} & |q| = \sqrt{q^*q} & \stackrel{q^*q}{=} & (q_0-q)(q_0+q) \\ & = & q_0q_0-(-q)\cdot q+q_0q+(-q)q_0+(-q)\times q \\ & = & q_0^2+q\cdot q \\ & = & q_0^2+q_1^2+q_2^2+q_3^2 \\ & = & qq^*. \end{array}$$

• Inverse
$$q^{-1} = rac{q^*}{|q|^2} \quad q^{-1}q = qq^{-1} = 1$$

Unit Quaternions as 3D Rotations

 $oldsymbol{\cdot}$ For $oldsymbol{v} \in \mathbb{R}^3$, rotation according to a unit quaternion $\ q = q_0 + oldsymbol{q}$

$$L_q(\mathbf{v}) = q\mathbf{v}q^*$$

= $(q_0^2 - \|\mathbf{q}\|^2)\mathbf{v} + 2(\mathbf{q} \cdot \mathbf{v})\mathbf{q} + 2q_0(\mathbf{q} \times \mathbf{v})$

The real part of v is 0

• For unit quaternions, axis-angle

$$(v,\theta) \longleftrightarrow q = \left(\cos\frac{\theta}{2}, v_1\sin\frac{\theta}{2}, v_2\sin\frac{\theta}{2}, v_3\sin\frac{\theta}{2}\right)$$

Two Equivalent Quaternions for 3D Rotation

Multiply -1 to a quaternion

$$q=\cosrac{ heta}{2}+\sinrac{ heta}{2}rac{ec{u}}{\|ec{u}\|}$$

$$-q = \cos{(rac{ heta}{2} + \pi)} + \sin{(rac{ heta}{2} + \pi)} rac{ec{u}}{\|ec{u}\|}$$

• q rotates θ , -q rotates $\theta+2\pi$

Further Reading

• Chapter 3, Virtual Reality, Steven LaValle

 Quaternion and Rotations, Yan-Bin Jia, https://graphics.stanford.edu/courses/cs348a-17-winter/Papers/quaternion.pdf

 Introduction to Robotics, Prof. Wei Zhang, OSU, Lecture 3, Rotational Motion, http://www2.ece.ohio-state.edu/~zhang/RoboticsClass/index.html