Thématique 2 : Gestion de la production

Groupe 11.64

23/09/2015Dernière mise à jour: 23 septembre 2015

1 Synthèse de l'ammoniac

$$3\mathrm{H}_2 + \mathrm{N}_2 \longrightarrow 2\mathrm{NH}_3$$

$3\mathrm{H}_2$	$m = 250 \times 10^9 \mathrm{g}$	N_2	$m = 1167 \times 10^9 \mathrm{g}$	$2\mathrm{NH}_3$	$m = 1417 \times 10^9 \mathrm{g}$
	$n=125\times 10^6\mathrm{mol}$		$n=41.7\times 10^6\mathrm{mol}$		$n = 83.3 \times 10^6 \mathrm{mol}$
	$M=2.0\mathrm{gmol^{-1}}$		$M=28\mathrm{gmol^{-1}}$		$M = 17\mathrm{g}\mathrm{mol}^{-1}$

2 Aspect thermique

3 Réactions ATR I et WGS

ATR I:

$$2O_2 + 2CH_4 + H_2O \longrightarrow CH_4 + 3H_2O + CO_2$$

WGS:

$$2\mathrm{H}_2\mathrm{O} + \mathrm{CO}_2 + \mathrm{CO} + \mathrm{H}_2 \longrightarrow \mathrm{H}_2\mathrm{O} + 2\mathrm{CO}_2 + 2\mathrm{H}_2$$

4 Bilan des données

- 0 Quelle quantité de \mathcal{O}_2 et \mathcal{N}_2 nécessaire?
- 1a Quelle quantité d'énergie libérée lors de la combustion?
- 1a Quelle quantité de ${\rm CH_4}$ et ${\rm H_2O}$ (Pourquoi rentrée d' ${\rm H_2O}$ dans zone de combustion ?)
- 1b Zone de reformage \rightarrow 2 réactions incomplètes
 - o K_c des 2 réactions
 - o Energie libérée ou absorbée par chaque réaction
- 2 Energie absorbée ou libérée par la réaction
- 3 Technique d'élimination du CO_2/H_2O + énergie
- 4 Voir séance 1 Température dans chaque bloc