EM 算法简介

吴天阳 张卓立

XJTU

强基数学

2022年11月13日

目录

- 💶 前置知识
- ② EM 算法详解
 - 问题引入
 - 算法思路
 - 算法大致流程
 - EM 算法推导
- ③ EM 算法流程
 - 一个例子

定义1(极大似然估计)

设 X_1, \dots, X_n 是来自密度函数为 $f(x; \theta)$ 的独立随机样本,称

$$\mathcal{L}(\theta) = f(\mathbf{x}_1, \cdots, \mathbf{x}_n; \theta) = \prod_{i=1}^n f(\mathbf{x}_i; \theta)$$
 为关于 θ 的似然函数,则 θ 的极大似

然估计为

$$\hat{\theta} = \underset{\theta \in \Theta}{\arg\max} \, L(\theta)$$

其中 Θ 为参数空间.

定义1(极大似然估计)

设 X_1, \dots, X_n 是来自密度函数为 $f(x; \theta)$ 的独立随机样本,称

$$\mathcal{L}(\theta) = f(\mathbf{x}_1, \cdots, \mathbf{x}_n; \theta) = \prod_{i=1}^n f(\mathbf{x}_i; \theta)$$
 为关于 θ 的似然函数,则 θ 的极大似然估计为

$$\hat{\theta} = \argmax_{\theta \in \Theta} \mathit{L}(\theta)$$

其中 Θ 为参数空间.

注1

- (1) θ 可以是一个参数向量 $(\theta_1, \dots, \theta_n)$, 包含多个参数.
- (2) 计算时一般采用对数似然函数 $J(\theta) = \log \mathcal{L}(\theta) = \sum_{i=1}^{n} \log f(x_i; \theta)$.

- ◀ㅁ▶◀@▶◀돌▶◀돌▶ · 돌 · 쒸٩(

定理 2 (Jensen 不等式)

设 f(x) 是 \mathbb{R} 上的实值凸函数, X 为随机变量, 若 $\mathbb{E}X$ 存在, 则

 $\mathbb{E}[f(X)] \geqslant f(\mathbb{E}X)$

上式取到等号, 当且仅当, X 为常量.

定理 2 (Jensen 不等式)

设 f(x) 是 \mathbb{R} 上的实值凸函数, X 为随机变量, 若 $\mathbb{E}X$ 存在, 则

 $\mathbb{E}[f(X)] \geqslant f(\mathbb{E}X)$

上式取到等号, 当且仅当, X 为常量.

注 2

(1) 当 f(x) 为凹函数时,上述不等号反向,即 $\mathbb{E}[f(X)] \leq f(\mathbb{E}X)$.

问题引入

假设有 A 和 B 两个硬币,每轮选择一个硬币,进行 N 次投掷得到一个样本集,包含 N 个样本 X_1, \dots, X_n , X_i 表示每次的投掷结果(正面或反面),设硬币 A,B 分别服从不同的 Bernoulli 分布,记为 $B(1,p_1)$, $B(1,p_2)$.则样本中每个样本 X_1, \dots, X_n 来自这两个分布中的一个,但无法确定具体是哪一个分布,即不知道是投掷硬币 A 还是硬币 B 得到的 X_i .

问题引入

假设有 A 和 B 两个硬币,每轮选择一个硬币,进行 N 次投掷得到一个样本集,包含 N 个样本 X_1, \cdots, X_n , X_i 表示每次的投掷结果(正面或反面),设硬币 A,B 分别服从不同的 Bernoulli 分布,记为 $B(1,p_1)$, $B(1,p_2)$.则样本中每个样本 X_1, \cdots, X_n 来自这两个分布中的一个,但无法确定具体是哪一个分布,即不知道是投掷硬币 A 还是硬币 B 得到的 x_i .

- 可以将该问题分为以下两个:
 - 这轮投掷是使用硬币 A 还是硬币 B?
 - ② 硬币 A 正面的概率 p_1 和硬币 B 正面的概率 p_2 分别是多少?

问题引入

假设有 A 和 B 两个硬币,每轮选择一个硬币,进行 N 次投掷得到一个样本集,包含 N 个样本 X_1, \cdots, X_n , X_i 表示每次的投掷结果(正面或反面),设硬币 A,B 分别服从不同的 Bernoulli 分布,记为 $B(1,p_1)$, $B(1,p_2)$.则样本中每个样本 X_1, \cdots, X_n 来自这两个分布中的一个,但无法确定具体是哪一个分布,即不知道是投掷硬币 A 还是硬币 B 得到的 X_i .

- 可以将该问题分为以下两个:
 - 这轮投掷是使用硬币 A 还是硬币 B?
 - ② 硬币 A 正面的概率 p₁ 和硬币 B 正面的概率 p₂ 分别是多少?
- 已知:
 - 模型的分布(均满足二项分布)
 - ② 观察到的样本(投掷结果)
- 未知:
 - 每个个体来自于哪个分布(投掷 A 还是 B)
 - 模型参数(p₁,p₂)

算法思路

• 通过引入隐变量 $Z = (Z_1, \dots, Z_n)$ 来将描述未被观测到的隐含数据,表示上文中每个个体来自于哪个分布,是由隐变量 Z 控制的.

6/12

算法思路

- 通过引入隐变量 $Z = (Z_1, \dots, Z_n)$ 来将描述未被观测到的隐含数据,表示上文中每个个体来自于哪个分布,是由隐变量 Z 控制的.
- 举一个例子: 我们假设还有第三个硬币 C, 也服从 Bernoulli 分布 $B(1,p_3)$, 每次试验时,先投掷硬币 C, 若硬币 C 为正面,则投掷硬币 A, 反之,则投掷硬币 B. 于是,隐变量就是硬币 C 的投掷结果,记为随机变量 Z,且 $Z \sim B(1,p_3)$.

算法思路

- 通过引入隐变量 $Z = (Z_1, \dots, Z_n)$ 来将描述未被观测到的隐含数据,表示上文中每个个体来自于哪个分布,是由隐变量 Z 控制的.
- 举一个例子: 我们假设还有第三个硬币 C,也服从 Bernoulli 分布 $B(1,p_3)$,每次试验时,先投掷硬币 C,若硬币 C 为正面,则投掷硬币 A,反之,则投掷硬币 B. 于是,隐变量就是硬币 C 的投掷结果,记为随机变量 Z,且 $Z \sim B(1,p_3)$.
- 通过这个例子,我们可以假设隐变量 Z_1, \dots, Z_n 是来自密度函数为 g(z) 的分布.
- 由于隐变量是人为假定的,我们假设隐变量独立同分布于某一种分布,从而能进一步对其研究.在实际应用中,试验数据应该满足这一假设,才能使用 EM 算法.
- 这一假设分布也称为先验分布.

以上文抛硬币问题为例

● 初始化参数: 投掷硬币 A,B 正面的概率分别为 p_1, p_2 .

以上文抛硬币问题为例

- 初始化参数: 投掷硬币 A,B 正面的概率分别为 p₁, p₂.
- ② 计算每个样本是来自于哪个分布:由 A 投掷出来的概率大,还是由 B 投掷出来的概率大.

以上文抛硬币问题为例

- 初始化参数: 投掷硬币 A,B 正面的概率分别为 p_1, p_2 .
- ② 计算每个样本是来自于哪个分布:由 A 投掷出来的概率大,还是由 B 投掷出来的概率大.
- **③** 重新估计参数:通过每个样本属于 A 的概率,从而得到硬币 A 正面的期望次数和反面的期望次数,通过极大似然得到对 p_1 的估计.同理可以得到 p_2 的估计.对它们进行更新.

以上文抛硬币问题为例

- 初始化参数: 投掷硬币 A,B 正面的概率分别为 p₁, p₂.
- ② 计算每个样本是来自于哪个分布:由 A 投掷出来的概率大,还是由 B 投掷出来的概率大.
- 重新估计参数:通过每个样本属于 A 的概率,从而得到硬币 A 正面的期望次数和反面的期望次数,通过极大似然得到对 p_1 的估计.同理可以得到 p_2 的估计.对它们进行更新.
- 若参数变化小于阈值,退出循环;否则返回步骤 2.

以上文抛硬币问题为例

- 初始化参数: 投掷硬币 A,B 正面的概率分别为 p_1, p_2 .
- 计算每个样本是来自于哪个分布:由 A 投掷出来的概率大,还是由B 投掷出来的概率大。
- 重新估计参数:通过每个样本属于 A 的概率,从而得到硬币 A 正面的期望次数和反面的期望次数,通过极大似然得到对 p_1 的估计.同理可以得到 p_2 的估计.对它们进行更新.
- 若参数变化小于阈值,退出循环;否则返回步骤 2.

上述问题算法步骤 2 最难得到,这里就需要通过引入隐变量方法对其计算(利用 Bayes 公式).

我们直接从最大似然估计开始推导

$$\log \mathcal{L}(\theta) = \sum_{i=1}^{n} \log f(x_i; \theta) = \sum_{i=1}^{n} \log \sum_{z_i} f(x_i, z_i; \theta)$$

$$= \sum_{i=1}^{n} \log \sum_{z_i} g(z_i) \frac{f(x_i, z_i; \theta)}{g(z_i)}$$

$$\geqslant \sum_{i=1}^{n} \sum_{z_i} g(z_i) \log \frac{f(x_i, z_i; \theta)}{g(z_i)}$$
(2.2)

8/12

我们直接从最大似然估计开始推导

$$\log \mathcal{L}(\theta) = \sum_{i=1}^{n} \log f(x_i; \theta) = \sum_{i=1}^{n} \log \sum_{z_i} f(x_i, z_i; \theta)$$

$$= \sum_{i=1}^{n} \log \sum_{z_i} g(z_i) \frac{f(x_i, z_i; \theta)}{g(z_i)}$$

$$\geqslant \sum_{i=1}^{n} \sum_{z_i} g(z_i) \log \frac{f(x_i, z_i; \theta)}{g(z_i)}$$
(2.2)

• (2.1) 处引入了 z_i,从而将边缘分布转化为联合分布的形式.

我们直接从最大似然估计开始推导

$$\log \mathcal{L}(\theta) = \sum_{i=1}^{n} \log f(x_i; \theta) = \sum_{i=1}^{n} \log \sum_{z_i} f(x_i, z_i; \theta)$$

$$= \sum_{i=1}^{n} \log \sum_{z_i} g(z_i) \frac{f(x_i, z_i; \theta)}{g(z_i)}$$

$$\geqslant \sum_{i=1}^{n} \sum_{z_i} g(z_i) \log \frac{f(x_i, z_i; \theta)}{g(z_i)}$$
(2.2)

- (2.1) 处引入了 z_i,从而将边缘分布转化为联合分布的形式.
- (2.2) 处,由于 $\log(x)$ 为凹函数,且 $\sum_{z_i} g(z_i) \frac{f(x_i, z_i; \theta)}{g(z_i)} = \mathbb{E}\left[\frac{f(x_i, z_i; \theta)}{g(z_i)}\right], \text{ 由 Jensen 不等式可得.}$

$$\log \mathcal{L}(\theta) \geqslant \sum_{i=1}^{n} \sum_{z_{i}} g(z_{i}) \log \frac{f(x_{i}, z_{i}; \theta)}{g(z_{i})}$$

于是我们得到了对数似然函数的一个下界,这个下界是由期望 $\mathbb{E}\left[\log \frac{f(x_i,z_i;\theta)}{g(z_i)}\right]$ 构成,这里就是 EM 算法中 Exception 部分. 我们希望将最大化问题转化为对右式最大化,也就是 EM 中的 Maximum 部分,先将 θ 固定(使用上一次迭代的 θ_t),考虑当 $g(z_i)$ 满足什么条件时,Jensen 不等式取到等号.

$$\log \mathcal{L}(\theta) \geqslant \sum_{i=1}^{n} \sum_{z_{i}} g(z_{i}) \log \frac{f(x_{i}, z_{i}; \theta)}{g(z_{i})}$$

于是我们得到了对数似然函数的一个下界,这个下界是由期望

 $\mathbb{E}\left|\log \frac{f(x_i,z_i;\theta)}{a(z_i)}\right|$ 构成,这里就是 EM 算法中 Exception 部分. 我们希望将

最大化问题转化为对右式最大化,也就是 EM 中的 Maximum 部分,先将 θ 固定(使用上一次迭代的 θ_t),考虑当 $g(z_i)$ 满足什么条件时,Jensen 不 等式取到等号.

$$\frac{f(x_i, z_i; \theta)}{g(z_i)} = c \Rightarrow f(x_i, z_i; \theta) = cg(z_i)$$
(对 z_i 求和) $\Rightarrow f(x_i; \theta) = \sum_{z_i} f(x_i, z_i; \theta) = c \sum_{z_i} g(z_i) = c.$

于是
$$g(z_i) = \frac{f(x_i, z_i; \theta)}{c} = \frac{f(x_i, z_i; \theta)}{f(x_i; \theta)} = f(z_i|x_i; \theta).$$

① 初始化参数 θ_0 .

- ① 初始化参数 θ_0 .
- ② E 步: 计算条件概率期望 $g_i(z_i) = f(z_i|x_i;\theta_t)$, 对数似然函数 $\log \mathcal{L}(\theta) = \sum_{i=1}^n \sum_{z_i} g_i(z_i) \log \frac{f(x_i,z_i;\theta)}{g_i(z_i)}$
 - M 步: 极大化对数似然函数,更新参数 θ:

$$\theta_{t+1} = \operatorname*{arg\,max}_{\theta \in \Theta} \log \mathcal{L}(\theta) = \sum_{i=1}^{n} \sum_{z_i} g_i(z_i) \log f(x_i, z_i; \theta)$$

- ① 初始化参数 θ_0 .
- ② E 步: 计算条件概率期望 $g_i(z_i) = f(z_i|x_i;\theta_t)$, 对数似然函数 $\log \mathcal{L}(\theta) = \sum_{i=1}^n \sum_{z_i} g_i(z_i) \log \frac{f(x_i,z_i;\theta)}{g_i(z_i)}$
 - M 步: 极大化对数似然函数, 更新参数 θ:

$$\theta_{t+1} = \operatorname*{arg\,max}_{\theta \in \Theta} \log \mathcal{L}(\theta) = \sum_{i=1}^{n} \sum_{z_i} g_i(z_i) \log f(x_i, z_i; \theta)$$

● 返回第2步,直到 θ_{t+1} 收敛.

- **①** 初始化参数 θ_0 .
- ② E 步: 计算条件概率期望 $g_i(z_i) = f(z_i|x_i;\theta_t)$, 对数似然函数 $\log \mathcal{L}(\theta) = \sum_{i=1}^n \sum_{z_i} g_i(z_i) \log \frac{f(x_i,z_i;\theta)}{g_i(z_i)}$
 - M 步: 极大化对数似然函数,更新参数 θ:

$$\theta_{t+1} = \operatorname*{arg\,max}_{\theta \in \Theta} \log \mathcal{L}(\theta) = \sum_{i=1}^{n} \sum_{z_i} g_i(z_i) \log f(x_i, z_i; \theta)$$

- 返回第2步,直到θ_{t+1}收敛.
- M 步中,由于对数似然函数中 $g_i(z_i)$ 与 θ 无关,所以可以去掉.

一个例子

```
prA, prB = 0.3, 0.7 # 初始化参数, 硬币 A,B 正面朝上的概率
samples = [4, 6, 0, 9, 5] \# 每个样本中正面朝上的个数
for in range(10):
   expectA, expectB = np.zeros(2), np.zeros(2) # 硬币 A.B 的
    → 期望
   for i in range(len(samples)):
       tmp1 = np.power(prA, samples[i]) * np.power(1 - prA,
        \rightarrow 10 - samples[i])
       tmp2 = np.power(prB, samples[i]) * np.power(1 - prB,
        \rightarrow 10 - samples[i])
        chooseA = tmp1 / (tmp1 + tmp2) # 选择硬币 A 的概率
        chooseB = 1 - chooseA # 选择硬币 B 的概率
       expectA += np.array([samples[i] * chooseA, (10 -
        \rightarrow samples[i]) * chooseA]) # E \oplus
        expectB += np.array([samples[i] * chooseB, (10 -

    samples[i]) * chooseB])

   prA = expectA[0] / np.sum(expectA) # M 步
   prB = expectB[0] / np.sum(expectB)
```

迭代结果

迭代次数	A 正面期望	A 背面期望	B 正面期望	B 背面期望	A 正面概率	B 正面概率
1	6.82	18.19	17.18	7.81	0.27	0.69
2	5.82	17.2	18.18	8.8	0.25	0.67
3	4.99	16.32	19.01	9.68	0.23	0.66
4	4.27	15.53	19.73	10.47	0.22	0.65
5	3.59	14.75	20.41	11.25	0.2	0.64
6	2.92	13.95	21.08	12.05	0.17	0.64
7	2.21	13.04	21.79	12.96	0.14	0.63
8	1.39	11.96	22.61	14.04	0.1	0.62
9	0.52	10.75	23.48	15.25	0.05	0.61
10	0.03	10.04	23.97	15.96	0	0.6