Experiencia laboratorio 5: MRUA - Plano Inclinado

Integrantes del Grupo:

Ignacia Miranda Jose Rodriguez Adolfo Toledo

Profesor: Julio Andres Marin Malebran

Fecha: 22 de Octubre de 2024

Resumen

En esta experiencia se estudió el MRUA usando un riel de aire inclinado. Se realizaron 11 mediciones experimentales de tiempo y posición, obteniendo una aceleración experimental promedio de 0.2907 ± 0.0306 m/s². El ajuste cuadrático de los datos mostró una ecuación x(t) = $0.0962t^2 + 0.1124t - 0.0415$ con R² = 0.9996. La aceleración teórica calculada fue 0.741 m/s², basada en un ángulo de inclinación de 4.34° (obtenido de las medidas: hipotenusa=291cm, altura=22cm, base=200cm). La comparación entre valores teóricos y experimentales mostró un error del 60.77%, atribuible principalmente a la fricción residual en el sistema.

Objetivos

- 1. Determinar experimentalmente la aceleración de un carrito en un plano inclinado mediante mediciones de tiempo y posición.
- 2. Calcular la aceleración teórica esperada a partir de las dimensiones del plano inclinado.
- 3. Comparar los resultados experimentales con los teóricos y analizar las causas de las diferencias observadas.

Diseño, Montaje Experimental y Procedimiento

Materiales:

- Riel de aire con sistema de aire comprimido
- Carrito de laboratorio
- Sistema de medición de tiempo y posición
- Plano inclinado con dimensiones medibles
- Microsoft Excel para análisis de datos

Procedimiento Experimental:

- 1. Montaje del sistema:
 - a. Se instaló el riel de aire en posición inclinada
 - b. Se conectó el sistema de aire comprimido
 - c. Se verificó el correcto deslizamiento del carrito
- 2. Toma de datos:
 - a. El profesor realizó 11 mediciones dejando caer el carrito
 - b. Para cada medición se registró:
 - i. El tiempo de descenso
 - ii. La distancia recorrida
- 3. Análisis de datos:

- a. Se tabularon los datos en Excel
- b. Se calculó la aceleración para cada medición usando la fórmula $a(t) = 2x(t)/t^2$
- c. Se realizó el ajuste cuadrático de posición vs tiempo

4. Mediciones físicas:

a. Se midieron las dimensiones del plano inclinado:

i. Hipotenusa: 291 cm ii. Altura: 22 cm

ii. Altura: 22 cm iii. Base: 200 cm

Resultados

1. Datos y Cálculos Experimentales:

n	t	x(t)	a(t)
1	0,7418	0,10	0,3635
2	1,1166	0,20	0,3208
3	1,4019	0,30	0,3053
4	1,6485	0,40	0,2944
5	1,8578	0,50	0,2897
6	2,0514	0,60	0,2852
7	2,2404	0,70	0,2789
8	2,4156	0,80	0,2742
9	2,6193	0,90	0,2624
10	2,7587	1,00	0,2628
11	2,9076	1,10	0,2602
	1,9781	0,60	0,2907
		DESV EST	0,0306

Del análisis estadístico:

Aceleración experimental promedio: 0.2907 m/s²

Desviación estándar: 0.0306 m/s²

El ajuste cuadrático de los datos dio como resultado:

$$x(t) = 0.0962t^2 + 0.1124t - 0.0415$$

 $R^2 = 0.9996$

2. Cálculos Teóricos:

Ángulo del plano inclinado

 $\theta = \arcsin(\text{opuesto/hipotenusa})$

 $\theta = \arcsin(22/291)$

 $\theta = 4.34^{\circ}$

Aceleración teórica

 $a_t = g \times \sin(\theta)$

 $a_t = 9.8 \text{ m/s}^2 \times \sin(4.34^\circ)$

 $a_t = 0.741 \text{ m/s}^2$

3. Cálculo del Error:

 $%Error = ((a_t - a_{ex})/a_t) \times 100$

%Error = $((0.741 - 0.2907)/0.741) \times 100$

%Error = 60.77%

Análisis y Discusión de Resultados

Análisis del Ajuste Experimental:

- 1. El alto valor de R² (0.9996) confirma que el movimiento sigue el patrón MRUA
- 2. La desviación estándar (0.0306 m/s²) indica consistencia en las mediciones
- 3. Los valores de aceleración muestran una tendencia ligeramente decreciente con el tiempo

Comparación con la Teoría:

- 1. La aceleración experimental (0.2907 m/s²) es significativamente menor que la teórica (0.741 m/s²)
- 2. El error del 60.77% sugiere la presencia importante de fuerzas de fricción

Causas de las Discrepancias:

- a) Fricción Residual:
 - 1. El sistema de aire no elimina completamente la fricción
 - 2. La velocidad del carrito puede afectar la eficiencia del colchón de aire
- b) Factores del Sistema:
 - 1. Posible insuficiencia en la presión del aire
 - 2. Contacto residual entre el carrito y el riel
- c) Factores Experimentales:
 - 1. Liberación manual del carrito
 - 2. Posibles vibraciones durante el descenso
 - 3. Incertidumbres en las mediciones de las dimensiones del plano

Conclusiones

- 1. El experimento permitió estudiar el MRUA en un plano inclinado, obteniendo una aceleración experimental promedio de 0.2907 ± 0.0306 m/s².
- 2. La diferencia significativa con la aceleración teórica (0.741 m/s²) se explica principalmente por la presencia de fricción residual en el sistema.
- 3. El alto valor de R² en el ajuste cuadrático confirma que, a pesar de las fuerzas de fricción, el movimiento sigue el patrón MRUA.
- 4. El error del 60.77% indica que las fuerzas de fricción juegan un papel importante en este sistema experimental.

Bibliografía

Serway, R. A., & Jewett, J. W. (2023). Física para Ciencias e Ingeniería, Vol. 1 (10a ed.). Cengage Learning.

Young, H. D., & Freedman, R. A. (2023). Física Universitaria, Vol. 1 (14a ed.). Pearson.

Manual de Laboratorio de Física 1 (2024). Departamento de Física, Universidad de La Serena.

Taylor, J. R. (2023). An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books.

"((0.741 - 0.2907)/0.741) × 100 - Wolfram|Alpha." Wolframalpha.com, 2016, www.wolframalpha.com/input?i=%28%280.741+-+0.2907%29%2F0.741%29+%C3%97+100&lang=es. Accessed 29 Oct. 2024.

"Riel Lineal de Aire." Azeheb.com, 2024, azeheb.com/es/riel-lineal-de-aire.html. Accessed 29 Oct. 2024.