

Document Title Summary of the ecotoxicological studies Isoxaflutole + Cyprosulfamide SC 480 (240+240) g/L EU Regulation 1107/2009 & EU Regulation 284/2018 Document MCP Section 10: Ecotoxicological studies Accepting to the guidance document, SANCO 1978/2038, for preparing dissiers for the gipproved of a diemical active substance Date 2014-01-15 Anthor(s) Bayer CropScience AG Knoell Consult GmbH, for Bayer CropScience AG

Bayer CropScience AG
Knoell Consult GmbH, for Bayer CropScience AG

OWNERSHIP STATEMENT

OWNERS

. contained in it and control or any information control or any information control or written authorisation of a submitted for the purpose of the assumer registration authorities should not grasummaries and evaluation of unpublished punless they have received the data of which the From Bayer Cropscience; or From other applicants once the period of data protection. e disclosed to a based on unpublished undertaken by the regulation amedid, or renew a registration, prictary that a confiainced in this are symmatries and evaluation after based and appropriate the symmatries and evaluation are symmatries and evaluation and the symmatries are symmatries are symmatries as a symmatries are symmatries are symmatries are symmatries. authority. Other registration authorities should not grant, amend, or renew oregistration on the basis of the summaries and evaluation of unpublished proprietary data contained in the document unless the last

Version history

Date Data points containing amendments or additions and Servision number of the servision number of the suggested that applicants adopt a similar approach to showing revision and version history as putlined in ANCO/10180/2013 Chapter 4 How to revise an Assessment Report			Doğumant idantific And
It is suggested that applicants adopt a similar approach to showing revisions and version history as putlined in ANCO/10180/2013 Chapter 4 How to revise an Assessment Report	Date	Data points containing amendments or additions ¹ and	Document identifier and
It is suggested that applicants adopt a similar approach to showing revision and version history as Southing Lin ANCO/10180/2013 Chapter 4 How to revise an Assessment Report		brief description	yversion number
It is suggested that applicants adopt a similar approach to showing revision and version history as Suttlined an ANCO/10180/2013 Chapter 4 How to revise an Assessment Report			
It is suggested that applicants adopt a similar approach to showing revisions and version history as solutined in ANCO/10180/2013 Chapter 4 How to revise an Assessment Report			
It is suggested that applicants adopt a similar approach to showing revision and version highly a Sudding Lin ANCO/10180/2013 Chapter 4 How to revise an Assessment Report			
ANCO/10180/2013 Chapter 4 How to revise an Assessment Report	It is suggested the	hat applicants adopt a similar approach to showing revision an	d version history as putlined in
	ANCO/10180/2	013 Chapter 4 How to revise an Assessment Report	
		y g° ,5° ,5°	
			* Y
	. (J ^v
	Ö		
	, Ø		
	_@		
	× 1	TO A W OF T	
	4		
	Ũ		

Table of Contents

	Sold and the second	e So orosi
CP 10	ECOTOXICOLOGICAL STUDIES ON THE PLANT PROTECTION	agu
C1 10	PRODUCT.	\$\frac{0}{6}
CP 10.1	Effects on birds and other terrestrial vertebrates	j 0 7≀
CP 10.1.1	Effects on birds	
CP 10.1.1.1	Acute oral toxicity	® 8
CP 10.1.1.2	Higher tier data on birds	ر بر
CP 10.1.2	Effects on terrestrial vertebrates other than birds	<u> </u>
CP 10.1.2.1	Acute oral toxicity to mammals	A Y0
CP 10.1.2.2	Acute oral toxicity to mammals. Higher tier data on mammals.	10
CP 10.1.3	Effects on other terrestrial pertebrate wildlife (contiles and annhibians).	. 10
CP 10.2	Effects on aquatic organisms	.√lî
CP 10.2.1	Acute toxicity to fish, acquatic invertebrates, or effects on aquatic algae and	IJ" 1
	macrophytes Q Q Q Q Q Q Q	. 19
CP 10.2.2	Additional long-term and chronic toxicity studies on fish aquatic invertebra	tes
	and sediment dwelling organisms	. 25
CP 10.2.3	Additional long-term and chronic toxicity studies on fish aquatic invertebra and sediment dwelling organisms. Further testing on aquatic organisms.	. 25
CP 10.3		~ -
CP 10.3.1	Effects on Land & St. St.	. 26
CP 10.3.1.1	Acute toxicity to bees	. 29
CP 10.3.1.1.1	Acute oral toxicity to bees	. 29
CP 10.3.1.1.2	Acute contact toxicity to bees &	. 32
CP 10.3.1.2	Chronic toxicity to bees	. 32
CP 10.3.1.3	Effects on horsey bee development and other loney bee life stages	. 32
CP 10.3.1.4 %	Sub-lethal offects	. 32
CP 10.3.1.5	Effects on horiey bee development and other loney bee life stages. Sub-lethal effects Cage and tunnel tests	. 32
CP 10.3.156	Field tests with honey bees.	. 32
CP 10.22	Effects on non-target arthropods other than bees	. 33
CP 10.3.2.1	Standard laboratory testing for non-target arthropods	. 35
CP 10.3.2.2	Extended laboratory testing aged residue studies with non-target arthropods	36
	Semi-Reld stordies With non-target arthropods	. 45
CP 10.3.2.4\$	Field studies with non-target arthropods	. 45
CP 10.3.2.5	Other routes of exposure for non-target arthropods Effects on non-target soil oneso and macrofauna Earthworms Earthworms bethat effects	. 45
CP 10.4	Effects on non-target soil meso and macrofauna	. 46
CP 10,4.1	Earthworms 2	. 46
CP 10.4.1.1	Earthwormssub lethaleffects	. 47
CP 10.4.1.2	#arthworms field studies *	. 49
CP 10.4.2	Effects on con-target soil meso- and macrofauna (other than earthworms)	
CP 10.4.2	Species Evel testing	
CP 10.4.2.2	Figher ther testing	
CP 10.5	Effects on soil nitrogen transformation	
CP 10.6	Effects on terrestrial non-target higher plants	
CP\$10.6.4	Summary of screening data	
CP 106.2	Testing on non-target plants	
CP 10.6.3	Extended laboratory studies on non-target plants	
CP 10 6 4S	emi-field and field tests on non-target plants	58

CP 10 ECOTOXICOLOGICAL STUDIES ON THE PLANT PROTECTION **PRODUCT**

Use pattern considered in this risk assessment

Table10-1: Intended application pattern

Crop	Timing of	Number of	Application	🖔 Maximum 🖇	Maximum application rafe,
İ	application	applications	interval 🖇	label rate	individual treatment
	(range)		L	(range)	\$\ [g/\dagger\) \\$\ \\$\ \\$\ \\$\ \\$\ \\$\ \\$\ \\$\ \\$\ \
	, ,		[days🆓"	II /beal/	O isovaflytoles a
Maize,	BBCH 00 - 13	1		18.417 Q	Q \0\100\Q
Pre-emergence	DBC11 00 - 13	1		03+17, S	
Definition of	tha masidua fa	w wielz accode	mank		
Deminion of	the residue it	r risk asse <u>s</u> ≪″	Sineino «		
Justification for	r the residue de	finition for√ris	k assessment	is provided in M	ISA Section 7, Point 7, 1
and MCA Secti	on 6. Point 6.7.	.1. Ø. /			
	0,10110,1				' \$. Q
Table10- 2:	Definition of th	ie residue før r	isk assessment	is movided in M	
Compartment		Conf	pound / Code	is provided in M	ICA Section 7 Point 74.1
			PA 202248 ®		
Soil		, O S R	LPAC203328,		
Cassadenstan	· ·	R R	FA 202248	<u> </u>	
Groundwater		R Y L R	PA 2003328		
		R	PA 202248		~ Y
Surface water		-11 /	LPA 203328		V
		Y W B	111 203 93 T		v
*		O W			
, Q	<i>√</i> .				

Definition of the residue for risk assessment

Compartment	Corpound Code	
Soil	idue for risk assessment is p Compound / Code RPA 202248	√
Groundwater	RPA 202348 0	
Surface water	RPA 202248 RPA 203328 RPA 205834	
	Compound / Code / RPA 202248 RPA 203328 RPA 203328 RPA 203328 RPA 205834	

CP 10.1 Effects on birds and other terrestrial vertebrates

The risk assessment has been performed according to "European Food Safety Authority; Guidance of Document on Risk Assessment for Birds & Mammals on request from EFSA" (EFSA Journal 2009, 7(12):1438. doi:10.2903/j.efsa.2009.1438).

CP 10.1.1 Effects on birds

Table 10.1.1-1: Endpoints used in risk assessment

Test substance	Exposure	Species/origin	Endpoint	Reference S
Isoxaflutole	Acute risk assessment	Mallard duck	D ₅₀	M-160863-047 KCA 8.1. 1/02 (50-eval) ded)
RPA 202248 (Isoxaflutole- diketonitrile DKN)	Long-term risk assessment		DET 23.6	M-238510-02-1 bw X 8.1.1.9/01

Relevant avian indicator species for risk assessment on screening level **Table 10.1.1-2:**

		Shortcut valge
Crop	Indicator species For lon	g-term RAS S For acute RA
	l , , , , , , , , , , , , , , , , , , ,	n RUDm based on RUD90
Bare soil	Small grant or Sird	24.7
Maize	Small omnivorous bird	158.8

Risk assessment for bird

Table 10.1.1-3: Acute DDD and TER calculation for birds on screening level

Compound Crop	Indicator species Appl. rate (kg ais/ha)	DDD SV90	MAF ₉₀	DDD	LD ₅₀ [mg a.s./kg bw]	TERA	Trigger
Isoxaflutole		7					
Bare soil	Small grandworous bird	24.7	1	2.5	2150	870	10
Maize	Small omnivoous bird	158.8	1	15.9	2130	135	10

Acute risk assessment for birds drinking contaminated water from pools in leaf whorls

As The IFP+ CSA SC 80 is applied pre-emergence to bare soil (BBCH 00-09) or on not fully developed maize plants (pre-emergence to 3 leave stage), no pools in leaf axils where an acute exposure possibly might occur are to be expected.

LONG-TERM REPRODUCTIVE RISK ASSESSMENT

Table 10.1.1-4: Long-term DDD and TER calculation for birds on screening level

Commonad			DDD				NO(A)EL		40
Compound / Crop	Generic focal species	Appl. rate [kg a.s./ha]	SVm	MAFm	ftwa		mg a.s. kg/bw/d]	TERLT T	rigger
RPA 202248							*		
Bare soil	Small granivorous bird	0.1	11.4	♥ ¥ 1	0.53	© 0.6	4376		Ø,
Maize	Small omnivorous bird	0.1	64.8	1	0.50	3.4		Q12.7 S	[*] 5 &

Long-term risk assessment for birds drinking contaminated water in puddles

Table 10.1.1-5: Evaluation of potential concern for exposure of birds drinking water (escape clause)

Crop	Koc [L/kg]	Application NO(A)EL Ratio Clause Conclusion (Application rate × kg/aw/d) MAt/NO(A)EL (Conclusion rate × kg/aw/d) MAt/NO(A)EL (on
RPA 202248 a	~ J		
Bare soil/ maize	108	$100 \qquad 466 \qquad 2.3 \qquad \leq 50 \qquad \text{No conce}$	ern

^a BCS considers that the metabolite RPA 202248 overs the environmental fate properties better than the parent isoxaflutole. For details see the text above 100% conversion from the parent to the metabolite RPA 202248 will be assumed and no mass correction is needed

Overall, there is no unacceptable risk for birds from the acute or caronic exposure to isoxaflutole.

RISK ASSØSSMENT ØF SEØÖNDÆRY POTSONING

Table 16 7.1-6: Log P values

Substance	S log Pow	Reference
Isovaflytole		MCQSec.2, Point 2.7
Isoxaflűtole Q " \$\infty \text{S}		, 1995, M-162438-03-1 (KCA 2.7 /01)
RFQ 2022 Q	~ -0.37 pH 4.47	
B PA 205834 ♥ 🍖	Q 143 (pH 6)4) (2	, 1994, M-202428-01-1 (KCA 8.2.2.3/02)
ØRPA 203328 Ø	Q.0 (pL(4.4)	

As the $\log P_{ow}$ values for soxaftufole and its metabolites are below the trigger value of 3, no potential for bioaccumulation is assumed and effects on secondary poisoning are not assessed.

CP 10.1.10 Acute ocal toxicity

For studies already evaluated during the first EU review of isoxaflutole, please refer to corresponding section in the Base line Dossier (KCP: D-009257-01-1) provided by Bayer CropScience and in the Monograph.

No further studies are required.

CP 10.1.1.2 Higher tier data on birds

Effects on terrestrial vertebrates other than birds **CP 10.1.2**

Table 10.1.2-1: Endpoints used in risk assessment

C1 10.1.1.2	ingher her dan	a on on us		Ø. °		
In view of the results presented above no further studies are necessary.						
Cr 10.1.2 Effects of terrestrial vertebrates other than birds						
Table 10.1.2- 1:	Endpoints used in	risk assessment				
Test substance	Exposure	Species/origin	Endpoint	Reference A		
Isoxaflutole	Acute risk assessment	Rat 😜	LD ₅₀	1993.0 MA 158376-01-1 PCA 5.0 1/01.0 (EU ey aluated)		
isoxanutole	Long-term risk assessment	RAL . C	NOTAEL mgA.s./kg W/d	1995, 6-21306-01-14 KCA 5-1/03 (EUwaluata)		

Table 10.1.2- 2: Relevant mammal indicator species for tisk assessment on screening level

		Shortcu	ıt value
Crop	Indicator species	For long-term RA	For acute RA «Based on RUD»
		based on RyDm	⊗based on RUD 90
Bare soil	Small sanivorous mammal		Š 14.4
Maize	Small herby orous mamma	72.3 7	136.4

Compound / Crop	Indicator species Applicators	pl. rate a.s. /ba	SY90	MAF ₉₀	DDD	LD ₅₀ [mg a.s. /kg bw]	TERA	Trigger
Isoxaflorole			L) Y			-		
Bare soil	Simal granivorous manifestal		14.4	1	1.4	> 5000	≥ 3472	10
I THEFE	mamma V	0.69	136.4	1	13.6	≥ 5000	≥ 367	10
Maize	mammay y							

LONG-TERM REPRODUCTIVE RISK ASSESSMENT

Table 10.1.2- 4: Long-term DDD and TER calculation for mammals on screening level

									√``
Common d /			DDD				NO(A)EL	<i>(</i>)	, ,
Compound / Crop	Generic focal species	Appl. rate [kg a.s./ha]	SVm	MAFm	ftwa	DDD	mg a.s. kg/bw/d]	TERLT	Trigger
Isoxaflutole							~ <u></u>		
Bare soil	Small granivorous mammal	0.1	6.6	(S) (V)	0.58	0.3		55.2	J.
Maize	Small herbivorous mammal	0.1	72.8	1	0.50	3.8		\$ 5.2°	5 0
		(J							Ţ
Long-term ri	isk assessment for ma	ımmals drinl	king con	ita m inat	t eg lwa	ter			al.°
The puddle so	cenario is relevant for	the long term	irvisk as	sessmen	t. 🔏			. Ö	Ö Ç
Гаble 10.1.2- :	5: Evaluation of potent	tial concern fo	or exposu	uracaf ma	pamals	, W	ñ L		<i>b</i>

Long-term risk assessment for mammals drinking contamina

Table 10.1.2-5: Evaluation of potential concern for exposure of mammals drinking

Crop	Koc Application NO(A)EL Ratio Close Conclusion Ratio Conclusion Conclusion
Isoxaflutole	
Bare soil/maize	112 3 × 100 5 20 5 50 No concern

Overall, there is no u chronic exposure to isoxaflutole.

Condary poisoning is not deemed necessary. As outlined in Point

CP 10.1.2.1 Acute oral toxicity to normals

For studies already evaluated during the first of review of isoxaflutole, please refer to corresponding section in the Baselin Dossien 01-1) provided by Bayer CropScience and in the Monograph.

No further studies are recon

Higher Her data on mammals

results presented above no further studies are necessary.

Effects on other terrestrial vertebrate wildlife (reptiles and amphibians)

Not required according to 1107/2009.

CP 10.2 Effects on aquatic organisms

The risk assessment is based on the current Guidance Document on Aquatic Ecotoxic Toy, SANCO/3268/2001, rev 4 final, 17 October 2002. Some implications of the new Aquatic Gordance Document (EFSA Journal 2013;11(7):3290, 268 pp. doi:10.2903/j.efsa.2013.3290), which is not set notified, have been taken into consideration as well.

Ecotoxicological endpoints used in risk assessment

Endpoints used in risk assessment (formulated product) **Table 10.2-1:**

	Test species	Q0	Endpoint 💇		NO Reference W
	Fish, acute, Oncorhynchus mykiss	\$\$\tag{\text{C}}_{50} \text{E}_{50}	Endpoint ©	g ict/L	2007) EBUBP107 M-282479-01-1 KCP 10-21/02
IFT CSA SC 400	Invertebrate, acute, Daphnia pagna	\$\cdot\(\frac{1}{50}\)	/ 0 / 2 / >100 mg prôdu	y ict/L	(2007) (2
IFT + CSA SC 480	Algae, chronic, Fubcapitata	ErC ₅₀	19 Ting produ	ct/L	(2007) EBL BP104 M-284638-01-1 CCP 10.2.1/04
	Aquatic plant chronic Demna sibba	ErC ₅₀ ,	0.0492 mg prod	, S	(2007) EBUBP101 M-284141-01-1 KCP 10.2.1/01
	Algae, chronic, Psubcapitata Aquatic plant chronic Demna graba		0.0 mg prod		

Table 10.2-2: Endpoints used in risk assessment (active substance)

Test substance	Test species]	Endpoint	Reference
	Fish, acute, O. mykiss	LC ₅₀	1.7 mg a.s./L	M-16687(001-1 KCA 8.24/02 (EU coluate A
	Fish, chronic, P. promelas	NOF	0.102 o g a.s./L*	(2003) EBISX074 91-469907-01-1 KCA\$2.2.1402
T 0.1	Invertebrate, acute Americamysis bahia ¹	EC50	0.077 fag a.s. AQ	1994) M227961-02-1 WCA \$2.4.2/07
Isoxaflutole	Invertebrate, chronic Americamysis bahia	WOEG V	6001 ng a.s./L/S	(1995) M.(166884±01-1 KO A 8.25°.2/01
	Algae, growth inhorition,	Wh-Ed	912 mg 4-s./L ² 0	(1995) M-166898-61-1 KQA 8.2,6.1/01 GU eval rated)
	Aquatic plants, growth inhibition, Lemna gibba	Od ErCs	0.50 439 mg a.s./I	(2 % 13) M2449195-01-1 &KCA 8.2.7/04
	Tish, a sate, Q. Inykiss	LEO	%>15 ong p.m.	(1995) M-170804-01-1 KCA 8.2.1/03 (EU evaluated)
RPA 202248	Myertebrate, acute* Americamysis bahia	ECso 72h-EaC4	24 mg p.m./L	(1995) M-170861-01-1 KCA 8.2.4.2/09
KIN 2022 16	Algae, growth inhibition S Pseudokirchaeriella Subcapitata	72h-EdC&	10.9 mg p.m./L ²	(1997) M-166891-01-1 KCA 8.2.6.1/08
* ¥ 	Aquistic plants, growth with the state of th	9EbC56	0.055 mg p.m./L	(1997) M-166889-01-1 KCA 8.2.7/03 (EU evaluated)
	Fish, actor, O. arkiss	LC ₅₀	160 mg pm./L	(1995) M-170722-01-1 KCA 8.2.1/04 (EU evaluated)
RPA 203328	Averteispate, active Daylynia m Una	EC ₅₀	>150 mg p.m./L	(1994) M-170649-01-1 KCA 8.2.4.1/03 (EU evaluated)
RPA 203328	Acae, growth inhibition Pseudokirc Oeriella subcapitata	E _d C ₅₀	>9.4 mg p.m./L ²	(1995) M-170835-01-1 KCA 8.2.6.1/03 (EU evaluated)
	Agratic plants, growth inhibition Lemna gibba	E _b C ₅₀	>9.8 mg p.m./L	(1997) M-166893-01-1 KCA 8.2.7/06
RPA 205834	Fish, acute, O. mykiss	LC ₅₀	>35 mg p.m./L	(1995) M-213119-01-1 KCA 8.2.1/05

Test substance	Test species	Endpoint	Reference
			(EU evaluated)
	Invertebrate, acute Daphnia magna	EC ₅₀ >60.1 mg p.m.	M-170847-0)-1 KCA 8.24-1/04 (EU eyaluated)
	Algae, growth inhibition Desmodesmus subspicatus	E p.m./L	OKCA SZ.6.1/GZ O(EU Qaluato)
	Aquatic plants, growth inhibition Lemna gibba	E _b C ₅₀ 1.1 yng p.yg./L	(2003) B00456 M-241470-014 KCA 8.2.7(07

^{*} The EU agreed endpoint is 0.08 mg/L derived from a devenile growth study with *Oncorynopius mylass*. Due to the new data requirements an ELS study with *Pimerhales prometas* has been performed 2013. The endpoint of the ELS study is in the same range as the endpoint derived from the avenile growth test. The risk assessment is based on the new data requirements, hence the endpoint from the ELS study is used in the TER calculations.

Predicted environmental concentrations used in risk assessment

Table 1002 3: Initial maximum PEC values - FQCUS Step 1 and 2

Compound 餐	FOGUS Scenario	Maize A
Q	FOCUS Scenario	PECsw, max
	C STEP_1 ~	31,05
Isoxaflutole	SOEP 2 North	\$\text{Q}\text{9\frac{1}{2}}
	STEP 2 South	°√ , ≪0.92
	ŞTEP 1	32.50
RPA 202248	STER 2 - Moorth	y"
~	SaPÉP 2 → South 👋	11.27
_@^	STEP 1	15.48
RPA 20332	A STER 2 - North	2.49
	STOP 2 - South	4.91
	STEP 1	1.02
RPA 205834	STEP O- North	0.39
	STEP 2 - South	0.54

BOLD - values considered in risk assessment

¹ Where the mysid endpoint is lower than the endpoint derived with *Daphnic magnit* or *Chironomis riparius* the risk assessment for aquatic invertebrates exposed is isoxoflutole to based on most shown data although not required by the new data requirements (E§ 283/2013) for her bigide. This clearly is worst case.

² As the EU agreed endpoint is lower than the E_rC_{50} of the study with *Skeletonemazostatum* (MCA, point CA 8.2.6), the EU agreed endpoint is good for the risk assessment. The algae endpoint E_dC_{50} corresponds to a biomass endpoint, which is generally lower than a growth rate endpoint and can therefore be considered as conservative value. The preferred endpoint as also stated in the new Advantic Guidance Document (EFSA Journal 2013;11(7):3290, 268 pt. doi:10.2903/f.efsa.2013.3290 is growth rate.

³ Recalculation of Leona endpoint; posase see MCA point CA 8.2.70

le 10.2- 4: Init	ial maximum PECsw v	alues – FOCUS Step 3	_	<i>□</i> ,
Compound	FOCUS Scenario	Maize		
		PEC _{sw, max} [ug/L]	8	
	D3 ditch	0.524		4 .4
	D4 pond	0.021		
	D4 stream	0.442	Ĺ Ž ^y	
	D5 pond D5 stream	0.021		
Isoxaflutole	D6 ditch	0.524		
	R1 pond	0.021		
	R1 stream	0063	y . O Q . C	
	R2 stream	0.482 . *** \$\infty 0.51\infty \text{.} \text{.} \text{.} \text{.}		
	R4 stream	0:362		
	D3 ditch	9.335		
	D4 pond	0.018		
	D4 stream D5 pond	0.023		
	D5 stream	0.009		, D
RPA 202248	D6 ditch	0.363		()
	R1 pond	0.022		
	&2 stream	7.568 °		
	*XR3 stream	0.061/		
	R4 stream ©	0 4308		
LD – values cons	idered in Fisk assessm	eos S S 0,	0' 4	
S				
le 10.2- 5: %Init	iatsmaximum PFO _{sw} a	ná Jd-TVÝ Asw valites – F	CUS Sten 4 (5 m buffe	er)
Composite	FOCUS Segnario	Maiz	Maize]
Compound		PECW. max	7d-TWA _{sw.}	
		g/Ll v	[μg/L]	
~	D 3 ditch	0.172	0.0170	
Ö	D4 pcfd 📞	0.019	0.0056	
	De pond	20.019	0.00203	
. 8	D5 stream	0.18	0.00121	
4	D6 dirch	0.102	0.000212	
Isoxadutole	Dougen (0.00210	
Isoxatutole	R1 pond	# # Ø19	0.00205	
Isoxaturole	R1 pond R3 stream R2 stream	© 0.153 0.203	0.00395 0.00259	
Isoxatutole	R1 pond R2 stream R3 stream R3 stream	0.203 0.216	0.00395 0.00259 0.00992	
Isoxanurole	R1 pond R3 stream R3 stream R4 stream R5 stream	0.203 0.216 0.182	0.00395 0.00259 0.00992 0.0194	
Isoxatutole LD – values cons	R1 pond R2 stream R3 stream R3 stream R4 stream Referred for risk assessm	0.153 0.203 0.216 0.182	0.00395 0.00259 0.00992 0.0194	
Isoxanutole D – values cons	R1 pond R2 stream R3 stream R3 stream R4 stream R5 stream R6 stream R6 stream R7 stream	0.203 0.216 0.182	0.00395 0.00259 0.00992 0.0194	

			, ,,, .
Compound	FQCUS Secnario	Maize Q	Maize
		PECW, max	7d-TWA _{sw} ,
K,		l 🔊 🎺 Jpg/L] 💝 🟃	y [μg/L]
N.	🗣 🔥 🕉 ditæb	O ~0.172~ ~	0.0170
	D4 poerd ≪	0.019	0.0056
	D45tream	0486	0.00203
	© DS pond >	×0.019	0.000077
4	D5 stream	0.188	0.00121
Isoxantinole	D6 duch	°√ Q. ¥ √2	0.000212
	R1 pond	√ √6019	0.00210
*	Rel stream	©	0.00395
~	R2 stream	0.203	0.00259
	R3 stream @	0.216	0.00992
A S	A Restream	0.182	0.0194

ACUTE RISK ASSESSMENT FOR AQUATIC ORGANISMS

TER_A calculations based on FOCUS Step 2 **Table 10.2-6:**

Risk assessme	ent for aquatic organisms			0 6
ACUTE RISK	ASSESSMENT FOR A	QUATIC ORGANIS	SMS	
Risk assessme	ent based on active substa	nce endpoints	Ű	
Table 10.2- 6:	TER _A calculations based o	n FOCUS Step 2		
Compound	Species	Endpoint®	PEGw,max	TORA Trigger
Maize		<u> </u>	Q	
Isoxaflutole	Fish, acute	LC ₅₀ >1700	0.92	Q >1838 100°
Isoxanutole	Invertebrate, acute	LC ₅₀ , 77 .		3.7
DD 4 202240	Fish, acute	LC. Ø5000	¥11 ~	1331 100
RPA 202248	Invertebrate, acute	L3C50 24000		2100 0 100
DD 4 202220	Fish, acute	LC ₅₀ r69000 (\$2587
RPA 203328	Invertebrate, acute	LC%0 2 50000	4.91	@3055@ O100
DDA 205924	Fish, acute	150 × 35000		64895
RPA 205834	Invertebrate, acute 🖓 👢	LC ₅₀ 60100	D' 1994 O	100

Bold values do not meet the trigge

TERA calculations based on FOCUS Stop 3 (invertebrates **Table 10.2-7:**

Species Isoxaflutole, main	F F	Endpoint	PEC saturnax	O FOOUS &	TER _A	Trigger
species .	y	Jug/L		scenario	TEIG	1118841
Isoxaflutole, majze						
			0.524	D3 ditch	147	100
	<i>o</i> ~		0,021	D4Lpond	3667	100
G .		>	₩ .442 ₩	△D4 stream	174	100
			0.021	D5 pond	3667	100
				D5 stream	173	100
Invertebrate, acut	LG		0.524	D6 ditch	147	100
			0.02	R1 pond	3667	100
4)	R1 stream	212	100
	. 0 6			R2 stream	160	100
			9° 0.513	R3 stream	150	100
4			0.362	R4 stream	213	100

There is no anacceptable risk for aquatic invertebrates.

CHRONIC RISK ASSESSMENT FOR AQUATIC ORGANISMS

Table 10.2-8: TERLT calculations based on FOCUS Step 2

Table 10.2- 8: T	ER _{LT} calculations based on I	FOCUS Step 2	Ş	
Compound	Species	Endpoint	PECry, max [µg/L]	TER _T Frigger
Maize			Q.	
	Fish, chronic	NOEC 502		
Isoxaflutole	Invertebrate, chronic	NOEC 1	2002 Q	10%
isoxanatoic	Green algae, chronic	EC \$\infty\$ 120		110 Q 10 % 14 10 Q
	Aquatic plants, chronic	EC ₅₀ 4.39 EC ₅₀ 1900		\$15.6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
RPA 202248	Green algae, chronic	EC ₅₀ 1900	11.27	4.9
10 71 2022 10	Aquatic plants, chronic "	E _k C ₃ √ 55 √	A 0	4.9
RPA 203328	Green algae, chroni	EQ50 9400 ~	4.91	\$1914\$ 510
	Aquatic plants, coonic &	E _b C ₅₀ 9800 0	<u> </u>	1996 10
RPA 205834	Green algae, chronic	EC ₅₀ >15000 5"	0.540	27778 10
Dald malmas da mat	Aquatic plants, chronic	1100 7 5 1100 7 6 5 1 100 7 6 5 1 100 7 6 5 1 100 7 6 1		2037 10
	Green algae, chronic Aquatic plants, chronic			

Table 10.2-9: TERLT calculations based on FOCUS Step 3

Species	Endpoint [μg/L]	PECsw,max [µg/L]	FOCUS scenario	TER _{LT}	Trigger
Isoxaflutole, maize			Å		
		0.524	D3 ditch	1.9	10
		0.021	D4 pond	47.6 O	\$10 J
		0.442	D4 stream		10,5
		0.021	D5 Sond	2.3	P 269 . (
		4 46	Ds stream	© 2.2 Q	
Invertebrate, chronic	NOEC 1	0.524	D6 digen	(*) 1 <i>8</i>	10%
		0,021	R1 pond	₹ 7.6 , ₹	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.482	Ky stream	2.8	10
		0.482	QR2 stream	2.0	10%
		0:513	R3/stream O	≰1.9 [™]	© 10
		20.362 ×	R4 stream	2.8	010
RPA 202248, maize			D301tch		, Ö
		0%35	D30aitch	Ø64 °≫	10
		₩.018 €	D4 pond	°305 € √	10
		0.012	L D4 stream	4583	10
		0.023	D5 Fond	2 391	10
√		20 .009	D5 stream	% 6111	10
Aquatic plants, chronic	F6C50 \$55	0.363	© D6 ditch	[≫] 152	10
		0.022	RL pond	2500	10
		Y.688	Wi stream	33	10
Aquatic plants, chronic		2 1.5 6	R2 stream	35	10
, Ø		0.0061	R3 stream	902	10
		4.208	24 stream	13.1	10

Bold values do not meet the trigger

Refined long-term risk assessment for Americamysis bahia (isoxaflutole)

Table 10.2-10: TERLT calculations based on FOCUS Step 4 7d-TWA ^a

Species	Endpoint [µg/L]	7d-TWA _{sw} [μg/L]	FOCUS scenario	TERLT	Trigger
Isoxaflutole, maize: 5 m buffer	drift	Ö			100
		0.0170	D3 Otch		P 10
		0,0056	D4 pond	0 179 Q	
		000203	D4 strêam D5 pond	o [™] 493√	10 4
		©0.000077	D5 pond	12987 «	, AC
		0,00121,5	Dis stream	826	₄ ~10
Invertebrate, chronic	NOEC 1.0	D.000212	D6 diten	476	5 10√°
		y 0.00210 g	R1pond O	476	
		0.90395	RO stream	\$\tilde{\pi}^2253\tilde{\pi}	10%
		\$ 0025 F	©R2 stream	386	<i>₯</i> 10
	4()	0.00992	R3 stream		10
		# \$194 @	B4 stream	S 52 €	10

^a Justification for use of TWA approach: please see MCA point CA 8.2.

The TER values meet the trigger value of 10 indicating an acceptable fisk to mysid shrimp for the application of the product in marze, provide that as m drift buffer is kept.

Risk assessment for proto-metabolites M14 and M120 and aquatic macrophytes

The risk assessment approach for the photo-merabolites is described in detail in the MCA Section 8.

Table 16.2-11: TER Calculations based on FOCUS Step 2

Compound	Species 4		Endpont [µg/L] a	PEC _{sw,max} [μg/L] ^b	TER _{LT}	Trigger
Maize	V ŠOZ V		0',0"			
M14	Aquatic plants	, chronic	£bC50₺ 55	0.09	61	10
M20	Aquatic plants	, chronic	$E_b C_{50}$ $\mathcal{J}.5$	0.15	36.7	10

^a E_bC₅₀ of RPA 202248 divided by factor 10 (cf. MCA, CA 8.2.7)

Overall, there is no macceptable risk for equatic organisms from the acute or chronic exposure to isoxaflutors.

b based on maximum PCC_{sw} of isoxaflutole (FOCUS Step 2) considering occurrences of 9.8% and 16.8% of M14 and M20, respectively (cf. MCA, CA, 8.2.7)

CP 10.2.1 Acute toxicity to fish, aquatic invertebrates, or effects on aquatic algae and macrophytes

Report:	э; ;2007;M-282479-01	
Title:	Acute toxicity of cyprosulfamide & isoxaflutole SC	240+24@to fish (Oncorhynchus
	mykiss) under static conditions	
Report No:	EBUBP107	
Document No:	M-282479-01-1	
Guidelines:	EPA-FIFRA § 72-1/SEP-EPA-540/9-85-006 (1982	(Public 7985) OPPT \$2850.1975 (Public 7985)
	Draft, 1996) Directive 92/69/EE C.1 (1992)	
	OECD No. 203 (rev.1992)	
Deviations:	none	0° 4 0° 6 0°
GLP/GEP:	yes °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	

Objective:

The objective of this study was to evaluate the acute toxicity of soxasturole & Cyprosulfarode SC 480 to the rainbow trout (*Oncorhynchus mitriss*). The study was conducted under static conditions for 96 hours.

Materials and Methods: «

Test item: Cyprosulfamide & isoxaflutole SC 240+240, analyzed a 5. content. Cyprosulfamide: 20.5 % w / w (245 g / L), isoxaflutole 20.5 % w / w (246 g / L); nominal a.s. content: 240 g / L specified by batch no.: 2006-001042, tox no.: 07429-00.

Ten fish in each treatment were exposed in duplicate to nominal concentrations of 6.25, 12.5, 25.0, 50.0 and 100 mg formulation/Lagainst a control.

Dissolved oxygen concentrations ranged from 85 to 100% oxygen saturation, the pH values ranged from 6.8 to 7.3 and the water temperature ranged from 11.5°C to 12.2°C in all aquaria over the whole testing period.

Cyprosurfamide was analyzed in all test levels after 0 h, on day 2 and on day 4 of the exposure period to confirm nominal concentrations. The endpoints were expressed in terms of nominal concentrations. In the event that 100% mortality was observed in test concentrations prior to the end of the test, the analytical determinations were made at those times.

After 4, 24, 48, 72 and 96 nours osh were observed for mortality and sublethal effects.

Dates of experimental work: September 18 - November 07, 2006

Results:

Validity criteria:

Validity Criteria	Recommended by the guideline	Obtained in this study
Mortality during acclimatization	<5%	<5%
Mortality in the control	≤ 10%	0%
Dissolved oxygen saturation	≥ 60%	90 - 99%
pH variation	≤ 1 0000	0.5

All validity criteria for the study were met

Analytical results:

IPI C-M&MS) mean mer levels over the who Based on analytical determination of cyprosulfamile (in water by HPLC values between 109 % and 115 % of nominal we're found in all exposure levels over the whole testing period of 96 hours.

Given that the toxicity cannot be attributed to any one of the active ingredients but to the formulation as a whole, all results are given as froming Values of the formulation only

Biological results:

There were neither any sub-lethal effects for any mortality in the control group

There were behavioural observations on ish caused by the test item over the whole exposure period in all test levels 2.5 mg test item L. At the test level with 12.5 mg test item/L fish showed the following symptoms after oh: remained for wousually long periods at the water surface; showed labored respiration; remained for unusually long periods on the bottom of the aquarium; turned dark in coloration, were inactive or displayed abnormally low activity; do not show any abnormal signs.

Cumulative mortality of fish exposed to Isoxaflutole & Cyprosulfamide SC 480 (96 h)

Exposure time	. 4) , S	<i>ڳ</i> ڳ24	l h 🥎	\$\tag{8}	F	72	h h	96	h
Test level	no. 💇		moy of	% %	no. of dead	%	no. of	%	no. of	%
mg form. / L	dead	dead 2	dead /	🎗 dead 🕸	dea	dead	dead	dead	dead	dead
Control	0	0 3	7 0 6 T	0,	, Ø	0	0	0	0	0
6.2\$	0 💸	0 💝	0		\bigcirc 0	0	0	0	0	0
12.5	00	A ,	6 0	0 0 %	0	0	0	0	0	0
25.0	0	30	<u>^</u> 1 ≪	10	2	20	2	20	2	20
50.0	@ ₁ \ 0	0 4	00	Ø,	0	0	0	0	0	0
100	0,1			4 0	0	0	0	0	2	20

It was concluded that the 6-hour 50%-lethal concentration (LC50) of the test item in rainbow trout based on cominal concentration was higher than the tested concentration of 100 mg formulation/L.

Report:	5;	;2007;M-284338-0	01	0
Title:	Acute toxicity of AE 00			terflea Daphnia
	magna in a static labora	itory test system - Lim	nt test	
Report No:	EBUBP106		*	
Document No:	M-284338-01-1		Z	
Guidelines:	OECD guideline 202,(2004); EEC Directive	e 92/69/EWG, part C.	2 (1992); U.SÆPA
	Pesticide Assessment	Guidelines, Subdivisi	on E, § 72 24(1982), O	PPTS Guideline 💪
	850.1010 public draft	1996 (modified); JM	AFF 12 Nousan	
	No. 8147 (2000)		Õ.	
Deviations:	None	8	Q , Q	
GLP/GEP:	yes	a de la companya de l	4	Q O S

Objective:

The aim of the study was to verify the absence of ceatment-related effects on mobility of *Daphnia magna* whilst exposed for 48 hours to a limit concentration of 100 mg form./lin a state test stems

Material and methods:

Test item: Isoxaflutole & Cyprosulfamide SC 240 + 240, Batch No.: hatch 2006-001042, specification No.: 102000014305), content: 20.5% w/w Isoxaflutole 20.5% w/w Cyprosulfamide (TOX 07429-00). Five daphnids (1st instar; 24 hours old) were exposed in ten replicates to a nominal limit concentration of 100 mg formulation/L under static conditions without feeding. In addition, a control (dilution water) was tested:

The endpoints were expressed in terms of nominal concentrations.

Dilution water was to tified well water with a phoof 8.2. Water temperature was 18 - 22 °C during the test, the photoperiod was 06 hours of light and 8 hours dark. The light intensity was max. 1500 lux.

After 24 and the hour, behaviour of the water heas was visually evaluated by counting mobile daphnids. Additionally all possible signs of subjected had to be recorded.

At test initiation (day 6) and at test fermination (day 2) camples of the test solutions and control vessels were removed pooled and analyzed.

Dates of experimental work: August 22 to August 25, 2006

Results:

Analytical results

The recoveries of the a.s. component cyprosultamide as measured for samples from start and end of exposure ranged well within the given limits of 80 and 120% of nominal (108% of nominal for day 0 and 114% of nominal for day 0).

Biological results

During 48 hours of static exposure, no immobilities or other effects on behaviour occurred at the tested limit concentration of 100 mg form./l (nominally).

Immobilization of Daphnia magna during 48 h exposure to Isoxaflutole & Cyprosulfamide SC 480

Nominal test concentration	Exposed daphnids	Immobilised	l daphnids
[mg formulation/L]	(n)	24 h (n)	48 h (n)
Control	50	0	0
100	50	0	0

Conclusion:

It was concluded that the 48-hour 50%-lethal concentration (LC₅₀) of the test item in *Daphnia magna* based on nominal concentration was higher than the tested concentration of 100 mg, formulation/L

Report:	3; (2007; M-284638-0) (
Title:	Pseudokirchnerielle subcapitata growth inhibition est with cyprosulfamile &
	isoxaflutole SC 480 (240 + 240) 6
Report No:	EBUBP104 & O Y Y Y X X X X
Document No:	M-284638-04-1 & & & & & & & & & & & & & & & & & & &
Guidelines:	OECD Godeline 201: Freshwater Algo and Canobaeteria Crowth Inhibition
	Test (March 23, 2006)
	US EPA OPETS Guideline No. 85004400
Deviations:	Negret of the second se
GLP/GEP:	yes A A A A A A A A A A A A A A A A A A A

Objectives:

The objective of this study was to determine the effect of Isoxaffatole & Cyprosulfamide SC 480 on the growth of the freshwater green Oga, Pseludokirehner Colla subcapitata.

Materials and Methods:

Test material: Cyprosulfamine & Isoxaflutole SC 240 + 240 aratysed content: cyprosulfamide: 20.5 % and isoxaflutole: 20.5 % was tested, specified by batch no : 2006-001042, sample description: TOX 07429-00 and specification no 102000014205).

Pseudokirchne fiella subcapitata (freshwater microalgae, formerly known as Selenastrum capricornutum) were exposed to a chronic multi-generation test for 72 hours under static exposure conditions to the normal concentrations of 0.954, 3.05, 9.77, 31.3 and 100 mg formulation/L in comparison to a control.

The test system consisted of 3 replicate wessels per test level 6 replicate vessels in the control group. The initial cell number was 15,000 cells/mio

Growth inhibition was calculated using algae biomass per volume. The surrogate for biomass was cell density (used as response parameter).

The pH values ranged from \$0.0 to 8.2 in the controls and the incubation temperature ranged from 21.5°C to 22 °C (measured in an additional incubated glass vessel) over the whole period of testing at a continuous illumination of 7478 lux.

Quantitative amounts of cyprosulfamide were measured in all treatment groups and in the control on day 0 and day 3 of the exposure period.

Results:

Validity criteria:

Results: Validity Criteria Recommended by the guideline Siomass increase in the control Mean coefficient of variation for specific growth rate in the control (section-by-ection) Coefficient of variation of average ppecific growth rate between control eplicates ncrease of pH value of the control	Document MCP: Section 10 Ecotoxicolo IFT + CSA SC 480	gical studies		
Analytical results: The analytical findings of cyptosulfataide in the treatment levels found on day 6 were 100 to 110 % of nominal (average 105.2 %). On day 3 analytical findings of 100 to 100 % of nominal (average 104.4 %) were found. Given that the foxicity cannot be attributed to any one of the a.s. compounds but to the formulation as a whole all results are based on nominal test concentrations of the formulation.	Dates of experimental work: O	ctober 13 to Novem	lber 21 2006	g° 5
Analytical results: The analytical findings of cyptosulfataide in the treatment levels found on day 6 were 100 to 110 % of nominal (average 105.2 %). On day 3 analytical findings of 100 to 100 % of nominal (average 104.4 %) were found. Given that the foxicity cannot be attributed to any one of the a.s. compounds but to the formulation as a whole all results are based on nominal test concentrations of the formulation.	Results:			
Analytical results: The analytical findings of cyptosulfataide in the treatment levels found on day 6 were 100 to 110 % of nominal (average 105.2 %). On day 3 analytical findings of 100 to 100 % of nominal (average 104.4 %) were found. Given that the foxicity cannot be attributed to any one of the a.s. compounds but to the formulation as a whole all results are based on nominal test concentrations of the formulation.	Validity criteria:			J 4 , J
Analytical results: The analytical findings of cyptosulfataide in the treatment levels found on day 6 were 100 to 110 % of nominal (average 105.2 %). On day 3 analytical findings of 100 to 100 % of nominal (average 104.4 %) were found. Given that the foxicity cannot be attributed to any one of the a.s. compounds but to the formulation as a whole all results are based on nominal test concentrations of the formulation.	Validity Criteria		Obtained in this study	
Analytical results: The analytical findings of cyptosulfataide in the treatment levels found on day 6 were 100 to 110 % of nominal (average 105.2 %). On day 3 analytical findings of 100 to 100 % of nominal (average 104.4 %) were found. Given that the foxicity cannot be attributed to any one of the a.s. compounds but to the formulation as a whole all results are based on nominal test concentrations of the formulation.	Biomass increase in the control	>16-fold	19.9-fg	
Analytical results: The analytical findings of cyptosulfataide in the treatment levels found on day 6 were 100 to 110 % of nominal (average 105.2 %). On day 3 analytical findings of 100 to 100 % of nominal (average 104.4 %) were found. Given that the foxicity cannot be attributed to any one of the a.s. compounds but to the formulation as a whole all results are based on nominal test concentrations of the formulation.	Mean coefficient of variation for specific growth rate in the control (section-by-section)	≤ 35%	32.8%	
Analytical results: The analytical findings of cyptosulfataide in the treatment levels found on day 6 were 100 to 110 % of nominal (average 105.2 %). On day 3 analytical findings of 100 to 100 % of nominal (average 104.4 %) were found. Given that the foxicity cannot be attributed to any one of the a.s. compounds but to the formulation as a whole all results are based on nominal test concentrations of the formulation.	Coefficient of variation of average specific growth rate between control replicates	27% J		
%) were found. Given that the foxicity cannot be attributed to any one of the a.s. compounds but to the formulation as whole all results are based on nominal test concentrations of the formulation.	Increase of pH value of the control during the test			
%) were found. Given that the foxicity cannot be attributed to any one of the a.s. compounds but to the formulation as whole all results are based on nominal test concentrations of the formulation.	All validity criteria for the study were			
%) were found. Given that the foxicity cannot be attributed to any one of the a.s. compounds but to the formulation as whole all results are based on nominal test concentrations of the formulation.	Analytical results:			
%) were found. Given that the foxicity cannot be attributed to any one of the a.s. compounds but to the formulation as whole all results are based on nominal test concentrations of the formulation.	The analytical findings of cyprosulfact	mar in the transmission	Pevels Sound on da	y were 100 to 110 % of
were found. Given that the foxicity cannot be attributed to any one of the a.s. compounds but to the formulation as a whole all results are based on nominal test concentrations of the formulation. Biological results: Effect of isoxaflutole & Cyprosulfantide SC 480 on Freshwater Algae (Pseudokirchneriella subcapitata) in a	nominal (average 105%2 %). On casy 3	analytical findings	01 500 to 110 /0 0	i iloiiiilai (avelage 101.1
Sormulation as whole all results are based on nominal test concentrations of the formulation. Biological results: Effect of Isoxaflutole & Cyprosulfantide SC 380 on Freshwater Algae (Pseudokirchneriella subcapitata) in a	%) were found. Given that the toxicity	cannot be attribute	d to anyone of the	a.s. compounds but to the
Effect of Isoxaflutole & Cyprosulfantide SC 480 on Freshwater Algae (<i>Pseudokirchneriella subcapitata</i>) in a	formulation as whole all results are Biological results:	pased on nominal te	st concentrations o	f the formulation.
	Effect of Isoxaflutole Cyproxulfamide 72 h growth inhibition test	SC \$80 on Freshwate	er Algae (Pseudokirc	hneriella subcapitata) in a

Analytical results:

Biological results:

Effect of Isoxaflutole & Cyproxulfamide SC 80 on Freshwater Algae (Pseudokirchneriella subcapitata) in a 72 h growth inhibition test

Nominal	Ceji Number	700-72h Average	Inhibition of	Doubling Time of
Concentration	after Oh	Specific Growth	Average Specific	Algae Cells
[mg form./L]	(means per mil	Rates [days-1]	Growth Rate [%]	[days]
control	199,000	0.991		0.699
0.254	×228,00Q	£043 ×	-5.2	0.665
₂ 3.05	128,000	@%0.84 9	14.4	0.816
₹9.77	66,000	Q 0. 593	40.0	1.16
31.3	30,000 C	@1 0C363	63.4	1.91
100	\$23,000° \$	% % .261	73.6	2.66

test initiation with 10,000 cells inl

72h Pr. C50 For Cyprosulfamide & Isoxaflutole SC 240 + 240 is 19.7 mg formulation/L and the (0472h)-NOE₁C is 0.954 mg form./L.

Report:	i; ;2007;M-284141-	
Title:	Lemna gibba G3 - Growth inhibition test with Al	E 0001789 & isoxaflutole SC 240 &
	240 under static conditions (spec No.: 101000014	4305)
Report No:	EBUBP101	
Document No:	M-284141-01-1	
Guidelines:	OECD 221 Lemna sp. Growth Inhibition Test	Revised Proposal for a New
	Guideline (October 2004);	
	US EPA OPPTS Guideline No. 850.4400; none	
Deviations:	None	
GLP/GEP:	yes	

Objective:

The objective of this study was to evaluate the influence of Isoxaflutore & Gyprosultamide SC 480 exponentially growing Lemna gibba G3. The study was performed as a static experiment for 14 days

Materials and Methods:

Test item: Cyprosulfamide & Isoxaflatole & 240 240 analysed content: cyprosultamide: 20.5 % and isoxaflutole: 20.5 % was tested specified by batch no.: 2096-001042, sample description: TOX 07429-00 and specification no.: 162000014305

3 x 12 fronds of Lemna gibba per test concentration were expected in a chrome multigeneration test for 7 days under static exposure conditions to the morninal concentrations of \$54, 30.5, 97.7, 313, and 1000 µg formulation/L in comparison to control. The pH values ranged from 7.4 to 8.5 in the control and the incubation temperature ranged from 23.7° O to 245° C (measured in an additional incubated glass vessel) over the whole period of testing at a continuous illumination of 7,800 lux.

On day 0, 3, 5 and after test initiation reduction in frond density, frond area and biomass dry weight were recorded.

Quantitative amounts of cyprosulfamide were measured in all the shly prepared test levels on day 0 and additionally in all aged test level on day 7 of the exposure period.

The endpoints were expressed in terms of nominal concentrations.

Dates of experimental work July 31 too september 29, 2006

Results: Validity crateria:

Validity criteria:

Validity@riteria		Recommended by the	Obtained in this study
		guidoine	
frond number increcontrol	ease in the	C 7-fold	7.5-fold

All validity crites a for the study were met.

The analytical findings of cyprosulfamide found in all freshly prepared test levels on day 0 in reference to nominal concentrations ranged between 107 and 112 % (average 110 %). In aged test levels on days 7 there were analytical findings between 105 and 115 % (average 109 %) of nominal.

Biological results:

Test level (μg formulation/L)	Observations
Control 9.54	no visual effects observed
30.5	Small and single fronds and slight chlorosis on day 3 small fronds and sight chlorosis on days 5 and 7
97.7	Single fronds and slight chlorosis on day 3;
313	sman nonus apportieurum cinoresis on days 5 and 7 * * * * * * * * * * * * * * * * * *
1000	Single fromds and slight chlorosts on day 3; medium chlorosis and medium recrosis on day 3; small fromds, medium chlorosis, and medium necrosis

Inhibition of Lemna gibba during 7-day posure to Isoxaflutore Cyprosultamide SC 480

Nominal test	Final frond no. 🧄 Final total frond area	nhi 🎢	bition*
levels	(replicate means, day of plants (replicate		
[µg form./L]	7) w means) [mm²] Ay	grage growth O	Average growth
	7)	for frond no.	rate for total frond
			area of plants
control	89 . 6 271 4	J J . L	<i>₹</i>
9.54	86 27 0 27	0.8	-0.8
30.5	\$\int_{\infty} \forall 51 \text{ for } \int_{\infty} \text{ for } \tex	₫6.8 4°	29.3
97.7		81.5@	79.4
313	0 384 3	143	96.7
1000	7 7 12 45 6	@ 102	88.2

^{*} negative value means growth stimulation

Conclusion:

The most sensitive response variable was frond number resulting in (0-7-day)- E_rC_{50} of 49.2 μg formulation/L in this study. The lowest NOEC (954 μg formulation/L) was based on statistical data analysis and osual effects.

CP 10.2.2 Additional long-term and chronic toxicity studies on fish, aquatic invertebrates and sediment dwelling organisms

No new studies were required

CP 10.2.3 Fürther Gesting on aquatic organisms

No new studies were required

CP 10.3 Effects on arthropods

CP 10.3.1 Effects on bees

The ecotoxicological endpoints of honey bee laboratory studies are provided in the following tables.

Details of the honeybee testing with the active substance isoxaflutore are presented in MCA. Sections 6, Point 8.3.1, as well as within the existing Review Report for isoxaflutore.

Table 10.3.1-1: Acute toxicity of isoxaflutole (tech.) to bees

Test substance.

Test substance	Test species	A Endpoint & Reference
Isoxaflutole, tech.	Honey Bee	48 Q LD ₀₀ oral 38.7 (a.s./bc) R ₀ 5205 Q Q -02-1 KCA 3.1.1 401 (oral) KC 8.3.1.1 2/01 (contact)
Isoxaflutole, tech.	Honey bee	(2012) 48 h - LD 50 – ord 1

Table 10.3.1-2: Honey bee toxicity data generated with formulated isoxafluto

Test substance	Test species/ Test design	Endpoint O	Reference
Acute or al and co	ontact toxicity (la	borg(ory)	
IFT + CSA SC 240 + 240	Honey Bee	#48 h Ω 50- oral \$\frac{1}{2}\$ \$\frac{1}{	(2006) 20061213/01-BLEU M-278327-01-1
(A)			KCP 10.3.1.1.1/01
Chronic toxicity	to adult bees (lab	onatory	
Isoxaflorole	Honey Bee, S	> 120 mg a.s./kg	(2013) S13-00146
₩ © 75	adult feeding	$\text{NOE}(\text{O})$ $\geq 120 \text{ mg a.s./kg}$	M-470650-01-1 KCA 8.3.1.2/01
Bee brood feedin	g test 👸 💍		
Isoxaflutore WG 05	Froney See Strood Geding (Oonen et al.,	development (eggs, young larvae, old larvae, pupal) and colony development by feeding honey bee colonies sugar syrup at a concentration typically present in the spray tank	(2013) EBISX071 M-454689-01-1 KCA 8.3.1.3/01
		(250 ppm)	

Risk assessment for bees

ACUTE RISK ASSESSMENT FOR BEES

The maximum label rate of Isoxaflutole & Cyprosulfamide SC 240+240 is 0.417 L product/has in maize (BBCH 00 - 13). Since the content of isoxaflutole and cyprosulfamide in the formulation is 240 g substance/L, this accounts to a maximum application rate of 100 g isoxaflutole a.s./ha and 10 200 s total substance/ha.

Table 10.3.1-3: Hazard quotients for bees – oral exposure

Test substance	Oral LD ₅₀	Max. application rate	Hazard Trigger	A-priori
				∀ acceptable
	[µg a.s./bee] /	[g a.Ş./ha] 💆 🔟	Anonean 2	ين isk for。
	[µg total substance/bee]	√g total yubstalce/ha] <	QHO O'	Adult bees
Isoxaflutole,	> 108.9	100	1 × 50 ×	1
tech.	- 108.9 · · · · · · · · · · · · · · · · · · ·			,
IFT + CSA	- 110 s Q	\$ \$00° \$ 6	5.00	
SC 240 + 240	> 110.8	Q		Q res

a Maximum application rate = 100 g is exafluted a a som (made) via 500 g / 47 mIOFT + CSA SC 240+240 /ha

The hazard quotient for oral exposure is below the validated tagger value for higher tier testing (i.e. $Q_{HO} < 50$).

Table 10.3.1-4: Hazard quotients for bees contact exposure

Test substance	[µg a/s./bee] / [µg total substance/bee]	Max. application rate [g a.s./ba] / [g watal substanc@aa]	Hazard quotient Q Qнс	Trigger	A-priori acceptable risk for adult bees
Isoxat Vitole, tech.	. Poo 3		< 1	50	Yes
IFT + CSA SC 240 + 240	3 > 100° 37	200	< 2	50	Yes

^a Maximum application are = 100 g isocafluto a.s./ha/maize/via 500 g / 417 mL IFT + CSA SC 240+240 /ha

The hazard quotient for contact exposure is below the validated trigger value for higher tier testing (i.e. $Q_{He} < 50$).

Further considerations for the risk desessment

In addition to acute laboratory studies with adult honey bees, isoxaflutole was further subjected to chronic laboratory testing with adult honey bees.

This chrome study was designed as a limit test by exposing adult honey bees for 10 consecutive days to a concentration of nominally 120 mg isoxaflutole a.s./kg in aqueous sugar solution. As isoxaflutole is only slightly soluble in water (6.2 mg/l at 20 °C), the test was conducted by using the formulated product Isoxaflutole WG 75. The nominal test concentration as such equals about 20× the water

solubility of isoxaflutole. No adverse lethal-, sub-lethal, behavioural or delayed effects were found by exposing adult honey bees for ten consecutive days exclusively to sugar solution, containing 120 pm isoxaflutole (nominal).

In order to reveal whether isoxaflutole poses a risk to immature honey bee the stages, a bee brood feeding study has been conducted by following the provisions/method of Oomen P.A., de Ruijter, A. & van der Steen, J. (OEPP/EPPO Bulletin 22:613-616 (1992)), which require, among to other parameters to "...use formulated products only... products are fed at a concentration recommended for high-volume use...". The honey bee brood feeding test is a worst case screening test by feeding the honey bees directly in the hive with a treated sugar solution which contains the test substance at a concentration typically present in the spray tank than as such at a very high concentration and by investigating the development of eggs, young and old larvae by employing digital photo imaging technology.

This particular study was conducted by mixing formulated goxaflutole via Isoxaflutole WG 75 (together with formulated cyprosulfamide, as Cyprosulfamide SC 500), and the tested concentration corresponded to a typical concentration of isoxaflutole (and cyprosulfamide) via Isoxaflutole & Cyprosulfamide SC 240+240 present in the spray tank. The actual test concentration of isoxaflutole (and cyprosulfamide) was 250 mg/L. The administration of 1 futre sogar solution per colony, containing 250 ppm isoxaflutole (and cyprosulfamide) has not resulted in adverse effects. There were neither adverse acute or chronic effects on adult honey bees not adverse effects on immature honey bee life stages (eggs, young larvae, old larvae, pupae) or on the colony itself. Neither mortality of worker bees and pupae (as assessed via dead bee trans) not the termination rate of eggs, young larvae and old larvae (as assessed via dead bee trans) not the termination rate of eggs, young larvae and old larvae (as assessed via dead bee trans) not the termination rate of eggs, young larvae and old larvae (as assessed via dead bee trans) not the termination rate of eggs, young larvae and old larvae (as assessed via dead bee trans) not the termination rate of eggs, young larvae and old larvae (as assessed via dead bee trans) not the termination rate of eggs, young larvae and old larvae (as assessed via dead bee trans) not the termination rate of eggs, young larvae

Synopsis &

The calculated Hazard Quotients for both, isoxaflutole and Isoxaflutole & Cyprosulfamide SC 240+240 are well below the validated trigger value which would indicate the need for a refined risk assessment; no adverse effects on honey bee moreality are to be expected. This conclusion is confirmed by the results of the bee brood feeding study.

Regarding poential side effects of isoxaflutole (and cyprosulfamide) on immature honey bee life stages as well as on colony development, 250 ppm isoxaflutole (and cyprosulfamide), a concentration which corresponds to a typical concentration of isoxaflutole (and cyprosulfamide) via Isoxaflutole & Cyprosulfamide SC 240+240 present to the spray tank, has not resulted in adverse/statistically significant effects on mortality of worker beecand pupae nor in adverse/statistically significant effects on the termination rate of eggs, young lavae and old larvae (as assessed via digital imaging of individually marked cells in the bee bood feeding study on colony level. Even at this very high concentration under the worst case conditions of the honey bee brood feeding test, no adverse effects on immature know hee life stages were found; the findings in this study regarding the absence of chronic/delayed effects on adults honey bees are in line with the absence of adverse chronic effects on adult bees in the chronic 10 day laboratory feeding test with adult honey bees under laboratory conditions (at 120 ppm).

Overall, it can be concluded that isoxaflutole, when applied at the maximum application rate of 100 g a.s./ha (together with 100 g cyprosulfamide/ha acting as a herbicide safener) even during the flowering period of potentially bee-attractive weeds inside the cropping does not pose an unacceptable isk too honey bees and honey bee colonies.

CP 10.3.1.1 Acute toxicity to bees

CP 10.3.1.1.1 Acute oral toxicity to bees

noney bees and no	oney bee colonies.
	cute toxicity to bees cute oral toxicity to bees h; [2006] M-2783 27-01
Report:	h; ;2006 M-2783 77-01
Title:	Assessment of side effects of Isox Mutole & Cyprosulfantiae SC 40+240 g/L to the
	honey bee, Apis mellifera L., in the laboratory of the laboratory
Report No:	20061213/01-BLEU 4
Document No:	M-278327-01-1
Guidelines:	OECD Guideline No. 213 and No. 214 (1998); O
	US EPA OPPTS Guideline No. 850.3020
Deviations:	Minor: For the contact toxicity test a 2/µL droplet was chosen in devotion to the
	guideline recommendation of a 1 ph dropler since high volume ensured a more
	reliable dispersion of the lost item? W W &
GLP/GEP:	yes v v v v v v

Objective:

The objective of this study was to defermine the effect of the test item Isoxafturole & Cyprosulfamide SC 240+240 g/L on the honey bee Apis pelliferal. ., from oral and contact exposure.

Materials and Methods:

Test item: Isoxaflutore & Cyprosulfamide SC 240 + 240 g/lowas total [analysed content of active ingredients Isoxaflutole; 20.5% w/w % and Corrosulfamide 20.5% w/w; Batch number: 2006-001042; density: 198 g/ml];

Under laboratory conditions, Api mellifora (50 worker bees per dose; 10 individuals in 5 replicates per test item dose level, control and reference item doses) were exposed for 48 hours to a single dose of 100.0 μg a.s./bee by copical application (contact limit toxt) and to a single dose of 110.76 μg a.s./bee by feeding (oral limit test: Calue based on the actual intake of the test item). In addition a control group (tap water in the contact test and 50% (NV) agueous sucrose solution) and a reference item (Perfektion EC (= 400 g/L dimethoate) was tested. The test was conducted in the dark, temperature during the test was 25 to 6°C and relative humidity 58 to 62%. Biological observations including mortality and behavioural changes were recorded at 4, 24 and 48 hours after dosing.

Oral toxicity study

For the oral toxicity test soxaftitole & Cyprosulfamide SC 240+240 g/L was dissolved in tap water in order to get a stock solution. The final doses were prepared by mixing a defined amount of stock solution with a defined amount of a 50 % aqueous sucrose solution such that the intended nominal dose which was calculated for one bee was found in 20 µL. The amount of test item feeding solution was intentionally set 25 % higher as needed to achieve the nominal dose with the quantity of 250 μL offered per cage to compensate for a potential decrease in food uptake of bees frequently observed in such tests. Before the feeding started the bees starved for 2 hours. A quantity of 250 µL of test solution

was offered in Eppendorf cups for a minimum of 4 hours to each cage of 10 bees to ensure a sufficient intake of feeding solution. After 4 h and 30 minutes the total amount of feeding solution offered was consumed and replaced by untreated 50 % aqueous sucrose solution. The bees in one cage shared the test solution and so received similar doses. The amount of solution consumed (plean value of 0 bees) was determined by weighing the feeders before and after feeding. After the feeding period, the beg the test cages were supplied ad libitum with a pure untreated 50 % aqueous sucrose solution

Contact toxicity study

For the contact toxicity test Isoxaflutole & Cyprosalfamide SC \$40+240 g/L ovas dissolved in tar water in order to get a stock solution. Bees were treated individually by topical application with a microapplicator. 2 µL of test item or reference item solution were applied dorsally to the thorax of each bee. After application the bees were returned to the test cages and fed with a 50 % aqueous sucrose solution ad libitum.

Dates of experimental work:

Results:

Results:

Validity Criteria		Recommended by the	Obtained in this study
	X	guideling	
Mortality in water contro	الم	$\int_{\mathcal{C}} \int_{\mathcal{C}} \leq 10^{\circ} $	4%
Mortality in solvent conti		\$10% 0	0%
Contact test LD ₅₀ (23 h) c	_ \	0.10 0.30 for a.s. fore	0.17 μg a.s./bee
Oral test LD ₅₀ (24 h) of	eference item	Ø.10 - Ø.35 μgQa.s./be@	0.12 μg a.s./bee

Mortality and @rrect@mortal ct toxicity terwith Isoxaflutole & Cyprosulfamide SC 240+240 g/L

dosage	, a D Mortal	ity [%]	Corrected m	ortality [%]
[µg a.s./bee]	after 24 hours	after 48 hours	after 24 hours	after 48 hours
Control (water)		4.0	-	-
Test item	1. 24.0 X	% 28.0	20.8	25.0
reference tem				
		6.0	-2.1	2.1
	₹340	40.0	31.3	37.5
0.14	72.0	74.0	70.8	72.9
O 34	90.0	90.0	89.6	89.6

Mortality of the bees in the oral toxicity test with Isoxaflutole & Cyprosulfamide SC 240+240 g/L

Dosage	Intake of the reference item	Mortal	9
[µg a.s./bee]	[μg a.s./bee]	after 24 hours	after 48 hours
Control (sugar solution)	-	0.0	
Test item	110.76		A.0 37 57
reference item		s.	2 3 5 4
0.08	0.09	10	
0.10	0.11	34	Q 0 44 Q Q
0.14	0.15	& & 60 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	70, 70, J
0.21	0.23		

Toxicity to Honey Bees; laboratory tests

Test Item	Isoxætlutole & Cyprosulfamide SC 180
Test object	Q & & Apisonelliforu & ~
Application rate [µg a.s./bee]	
Exposure	y y orafo y y gontact
LD ₅₀ [μg a.s./bee]	> 0.76 \$ > 100.0

Observations:

In the test iten ogroup the bees showed after 4 hours behaviour abnormalities in comparison to the control group. The loes were apathetic and showed uncoordinated movements.

At the assessments done after 24 and 48 hours no behaviour abnormalities could be attributed to the exposure of the test organisms to the test item.

Contact toxicity

At the dose of 100 µg &s. /bec. which was tested in the contact toxicity test 28.0 % mortality (corrected mortality 25.0%) was observed after 48 hours. In the control group 4.0 % mortality was observed after 48 hours.

In the oral toxicity test the dose of 100 μg 28./bee corresponded to an actual intake of 110.76 μg a.s./bee. At this dose a mortality of 400 % was observed after 48 hours. In the control group which was fed with sugar solution no mortality occurred.

 PD_{50} (48 h) was > 100.0 µg a.s./bee and the oral LD₅₀ (48 h) was > 110.76 µg a.s./bee.

CP 10.3.1.1.2 Acute contact toxicity to bees

See point 10.3.1.1.1.

CP 10.3.1.2 Chronic toxicity to bees

A 10 day chronic oral toxicity study was conducted with Isoxaflutole WG 75, the erresponding summary is filed under KCA, point 8.3.1.2/01.

Effects on honey bee development and other honey bee life stages **CP 10.3.1.3**

et ab has been conducted A honey bee brood feeding study (01-1, filed under KCA 8.3.1.3 /01) by mixing formulated is a startly as It was a flut of each to be well as the startly of the west of the control of the co fred under KCA, point 8.3.1 \$\text{201} with formulated cyprosulfamide, the corresponding summary

CP 10.3.1.4 Sub-lethal effects

ub ethal offects in honey bees. test guide ine to as There is no particular study design However, in each laboratory study as effects, if occurring, are described and reported.

CP 10.3.1.6 Field tests with honey bees

Not necessary when considering the outcome of the risk assessment and the results of the lower-tiered studies.

CP 10.3.2 Effects on non-target arthropods other than bees

The risk assessment was performed according to Guidance Document on Terrestrial Ecotoxicology (SANCO/10329/2002) and to the Guidance Document on regulatory testing and risk assessment procedures for plant protection products with non-target arthropods (ESCORT 2, Candoffi 2000^{1}).

Table 10.3.2-1: Endpoints used for risk assessment

Test species	Tosted Formulation	Ecotoxicological Endpoint
Test species,	Tested Formulation,	Ecotoxicological Endpoint
	study type, exposure	Reference Q
Aphidius	CSA + IFT SC 480	$LR_{50} > 420$ mL prod./ha \sim \mathcal{Q}^{*} \sim \mathcal{Q}^{*}
rhopalosiphi	Laboratory, glass plates	Corr. Mortality [%] Effect on Reproduction [%] 2006
	26 mL prod./ha	25 CW06/048
	52 mL prod./ha	3.4 5 C -106 ^A 10 54-274850-01-1, °
	104 mL prod./ha	\$27.6 \times KCP \times 3.2.1\times 1
	209 mL prod./ha	[17.2
	420 mL prod./ha	Ecotoxicologies Endpoint Reference LRs ₅₀ > 420 mL prod./ha Refe
Typhlodromus	CSA + IFT SC 480	$E(Q_0)$ 125 like projection Q
pyri	Laboratory, glass plates	Coff. Mortality [%] Effect on Reproduction [%] 2006
	26 mL prod./ha	Q -429 ^B
	52 mL prod./ha	9.7 7 2 -7.5 ^A 6 KeP 10.3.2.1/02
	104 mL prod./ka	6.8 ₆
	209 mL prod/ha	1.16° 0° ° ~ ~ 5.4° ~ ©
	420 mL prod./ha	[Tago]
Aphidius	CSA + IFT SC 480	LR_{50} 420 pc prod \mathcal{O} ia \mathcal{L} , \mathcal{O} , \mathcal{O} , \mathcal{O} , \mathcal{O} , \mathcal{O}
rhopalosiphi	Extended Lab. Exposers	
	on powed barley plants	
	26 pL prod ha	0.0 0.0 KCP 10.3.2.2/01
	50mL prod./ha 🖖 🐇	
^	ru4 mg/prod./m/t U	-08.4
<u> </u>	209 🛍 prod ha 💍	-46.8 ^A
	420 mL prod./ha 🗸 🗸	©10.7 © 0 18.4
Chrysop	CSA + JET SC 250	$LR_{50} > 420$ for proof ha , A.,
carnea 🐃	Extended Lab. exposure	
	on derached maize	Corr. Mortality Eggs Female Hatching M-279861-01-1
	leaves A	[%] KCP 10.3.2.2/02
	Control C	LR ₅₀ > 420 mL proid ha
~		
4	52 ml@prod./ha/	21.4 99.3
	104 mL prod Tha	98.1 98.1
	209 mL prod/ha	18.6 97.8
√ 1	420 mL prod./ha	23.4 96.5

A: A regative value indicates a higher reproduction are in the treatment than in the control.

1 Cando risk assessment procedures for plant protection products with non-target arthropods; ESCORT 2 workshop (European Standard Characteristics Of Non-Target Arthropod Regulatory Testing), Wageningen, NL, March 21-23, 2000, SETAC Europe; SETAC publication August 2001

B: A negative value indicates a lower mortality in the treatment than in the control

C: A negative value indicates a ligher percentage of wasps found on plants in the treatment than in the control. sign.: statistica V significant

RISK ASSESSMENT FOR OTHER NON-TARGET ARTHROPODS

The tier 1 laboratory studies for *Aphidius rhopalosiphi* and for *Typhlodromus pyri* resulted in LR₅₀ values >420 mL prod./ha. These values were used for the tier 1 risk assessment.

Table 10.3.2-2: HQ for terrestrial non-target arthropods for the in-field scenario

Crop	Species	Appl. rate [mL/ha]	MAF	LRQ [mg/ha]	H Q	
Maize	T. pyri	417	<u> </u>	\$420°°	L 1.0 L	C 2 (C)
Maize	A. rhopalosiphi	417	20° 1	>4200	~< 1, © ″	by 2 0 "

Table 10.3.2-3: HQ for terrestrial non-target arthropods for the official scenario

Crop	Species	Appl. rate [mL/hæD	MAF	Drift		Covrec- & tion & factor	[mlz/ha]	HQ F	Trigger
Maize	T. pyri	4.6	Ţ	2.77 _×	10,3	/ 10°	©>42Q	0.03	2
Maize	A. rhopalosiphi	417	9 1 g		1,000	J10 8	, >420	0.03	2

The HQ values calculated for the in-field and for the off-field risk assessment are below the trigger value of 2 indicating that no unacceptable adverse offects are to be expected from the use of IFT + CSA SC 480 according to the proposed use pattern.

Since reproduction effects of \$2.4% were observed for Aphidius rhopalosiphi in the tier 1 study at 420 mL prod/ba additional extended lab studies were conducted for Aphidius rhopalosiphi and for Chrysoperla carnea, even though the fier 1 risk assessment based on the LR50 is considered to be protective concerning potential subjected effects. These 2 additional extended laboratory studies confirmed the conclusion of the tier 1 risk assessment, since to relevant adverse effects on mortality or reproduction were observed up to and including the highest test rate of 420 mL prod./ha.

CP 10.3.2.1 Standard laboratory testing for non-target arthropods

Report:	t; ;2006;M-2	74830-01	
Title:	Toxicity to the parasitoid wasp Aphidius rhopalo	siphi (DeStepha	Perez) (Hymenoptera)
	Braconidae) in the laboratory - isoxaflutole & cy	prosulfamide 🔊	240 + 240 g/l
Report No:	CW06/048	29	
Document No:	M-274830-01-1	1	× × ×
Guidelines:	MEAD-BRIGGS ET AL. (2000), CANDOLFI	ET AL (2001)	
Deviations:	none	Q	
GLP/GEP:	yes	L.	

Objective:

The aim of the study was to determine the toxicity of freshly dried residue of Isoxaflutele & Cyprosulfamide SC 240 + 240 g/l applied onto glass cover slides to the parasitoid wasp Aphidius rhopalosiphi.

Materials and Methods:

Test item: A SC formulation of Isovaflutole & Cyprosulfamide SC 240 + 240 g/l was tested, specified by batch number [analysed content of active ingredients: Isoxachutole: 20.5%w/w % and Cyprosulfamide: 20.5%w/w; date of completed analysis: 27 MAR 2006; Batch number: 2006-001042; specification number: 102000014305; TQX no. 27429-00; density: 1398 g/ml].

The test item was applied at rates of 26; 52, 104; 209 and 420 ml product/hapind the effects were compared to a toxic reference (a.i., dimethoate) applied at 0.0003 l product/ha, and a water treated control.

Mortality of 60 addits was assessed 2, 24 and 48 hours after exposure.

From the water control and all dose rates of Isoxaflutele & Coprosultamide SC 240 + 240 g/l, 15 impartially chosen remales per treatment were each transferred to a cylinder containing untreated cereal plants infested with Rhopelosiptom padi for a period of 24 fours. The number of mummies was assessed 14 days later

Dates of experimental work: April of to May 09, 2006

Results:

. 9		
Validity Criteria	Recommended by the guideline	Obtained in this study
Mortality in water control	√ ≤ 13%	3.3%
Corrected morality reference frem	50 - 100%	100%
Mean reproduction per female in vater control	≥ 5	5.8
No note that 2 was producing zero reproduction in water control	≤ 2	2

All validity criteria for the study were met.

Mortality (48 h after treatment) and reproduction

		Mortality [%]			Reproduction	
Treatment [L prod./ha]	Uncorr.	Corr.	P-value *	Rate	Red Rel. to control [%]	Wileoxon statistic (#)
control	3.3	0.0		5.8	→ 0 ×	
0.026	15.0	12.1	0.160 n.s	4.3	25.3 گ	n.s.
0.052	6.7	3.4	0.877 pcs.	6.50	-12:6	n.sC
0.104	8.3	5.2	0.874 n.s.	42, 6	° 27.6	Y Q.S. Q
0.209	20.0	17.2	6041 s.	3.1	46	n.s.
0.420	20.0	17.2	0.04	1.6	7294	S.
Reference item (0.0003)	100.0	100.0		St.d.	n.d.	

LD₅₀: > 0.420 l product/ha

HOLLANDER, M. & WOLFE, D.A. 1999): Nonparametric statistical methods. - Wiley, New York

Observations:

In the highest dose rates of \$20 and 209 ml product/ha \$7.2% corrected mortality was observed. At the lower rates of 104 and 52 l product/ha 5.2% and 3.4% mortality were detected. At the rate of 26 ml product/ha 12.1% corrected mortality occurred.

The reduction of reproductive success relative to the control at the 420 ml and 209 ml product/ha rate was 72.4% and 46%. A reduction of 27.6%; -12.6% and 25.3% was detected at the 104; 52 and 26 ml product/ha rate of the test item.

Conclusion:

The LD50 was estimated to be > 0.420 ml product ha

Report:	,2000,111 279 115 01
Title:	Toxicity to the predatory white Typhlodromus pyri SCHEUTEN (Acari, Phytoseiidae) in
w `	the laboratory. Isoxaflutole & Cyprosulfamide SC 240 + 240 g/l
Report No:	ACW067049 ♥ " " " " " " " " " " " " " " " " " "
Document 100:	M ₇ 379415 ₂ 01-1
Guidelings:	BULUEMEL ET AL. (2000), CANDOLFI ET AL. (2001);
	US EPA OPPTS Guideline No. 850.SUPP
Deviations:	none [©]
GLP/GEPO	yes

^{*} Fisher's Exact test, two-sided, p-value care adjusted according to Borderroni folm

[#] Wilcoxon Signed-Rank Test (significance level 0.05)

n.d. not detected

n.s. not significant

s. significant

Objective:

The aim of the study was to determine the toxicity of freshly dried residues of Isoxafluto & Cyprosulfamide SC 240 + 240 g/l applied onto glass cover slides to the predatory mite Typhlo Fomus pyri.

Materials and Methods:

Test item: A SC formulation of Isoxaflutole & Cyprosulfamide SC 240 240 g/l was tested specific by batch number [analysed content of active ingredients: Isoxaflutole: 29.5%www Cyprosulfamide: 20.5%w/w; date of completed anal@sis:27 MAR 2006; Batch pumber: 2006 001042 specification number: 102000014305; TOX no.: 97429-00; density: 1.198 g/mQ

The test item was applied at rates of 26; 52; 104; 209 and 200 ml product/ha and the effects were compared to a water control. A toxic reference (a,i@dimethoate applied at 162 ml product/ha was included to indicate the relative susceptibility of the test organisms and the test system?

Mortality of 100 protonymphs was assessed 1, 4, 7, 10, 12 and 14 days after exposure by counting the number of living and dead mites. The number of escaped intes was calculated as the Afference from the total number exposed.

The reproduction rate of surviving mass was then evaluated over the period of 7-14 days after treatment by counting the total number of offspring (eggs and laryae) produced.

Dates of experimental work: July 27 to August 10, 2006

Results:

Validity Criteria Recommended by the guideline	Obtained in this study
Mortality/Escape-rate of control group	12.0%
(day /) Ø	12.070
Average portality in the reference item	90.9%
Average number of eggs/female	
(calculated as sum of 4 assessment cates 24 2	4.8
Average number of experience (calculated as sum of assessment of assessm	

All validity criteria for the study were met

A summary of effects of Isoxaflutole & Cyprosulfamide SC 240 + 240 g/l on mortality and reproduction of *Typhlodromus pyri*

	Mortality [%] Reproduction					
Treatment [L prod./ha]	Uncorr.	Corr.	P-value *	Rate	Red. Rel. to	P-value#
control	12.0	0.0	- 0	4.8		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0.026	8.0	-4.5	1.000 n.s.	4.7	2.8	9.999 A.S.
0.052	17.0	5.7	1.00 0 n.s.	5Q	. J	0.9 % n.s. ©
0.104	18.0	6.8	12000 n.s.	3 6.1 3 €	26.4	Ø.27 n
0.209	13.0	1.1	¼1.000 f Øs	5.0	-5 _C C	″ 0.992 H.s.
0.420	27.0	17.0	0.059 n.s.		-27.7	0.253 n.s√°
Reference item (0.0102)	92.0	90.9		n.d.	n.d	

LD_{50} : > 0.420 l product/ha

Observations:

In the highest dose rate of 426 and prod./ha of Isosoflutole & Cyprosulfamide & 240 + 240 g/l there was 17% corrected prortality. The reduction in reproductive success colative to the control at this rate was -27.7%. At the lower rates of 209 \times 04, 52 and 26 g product test item as 1.1, 6.8, 5.7 and -4.5% corrected mortality were found and the reduction of reproduction was -54, -26.4, -7.5 and 2.8%.

Conclusion:

The LD was estimated to be 0.420 ml product/ha.

CP 10.3.2.2 Extended laboratory testing, aged residue studies with non-target

Report:	;2006;M-279708-01
Title:	Foxicity to the parasitord waso Aphidius rhopalosiphi (DESTEPHANIPEREZ)
, ~	(Hyppenoptera: Braconidae) using an extended laboratory test; Isoxaflutole & Cyprosulfamide SC 240 + 240 g/l
~	Cyprosulfamide SC 240 + 240 g/l
Report No:	© CW06/06/4 © &
Document No:	
Guidelines:	MEAD-BRIGGS FT AL. (2000), MEAD-BRIGGS ET AL. (draft 2006),
	CANDOSFI ET AL. (2001); US EPOOPPTS Guideline No. 850.SUPP
Deviations:	none
GLP/GEP:	yeşy

^{*} Fisher's Exact test, two-sided, p-values are rejusted according to Bonferron Holm

[#] one-way ANOVA, p-values are adjusted according to Dunnett

n.d. not detected

n.s. not significant

Objective:

The aim of the study was to determine the toxicity of freshly dried residues of Isoxaflute & Cyprosulfamide SC 240 + 240 g/l applied onto barley plants, to the parasitoid wasp Aphidius rhopalosiphi.

Materials and Methods:

Test item: A SC formulation of Isoxaflutole & Cyprosulfamide SC 240 240 g/l was rested specific by batch number [analysed content of active ingredients: Isoxaflutole: 29.5%www Cyprosulfamide: 20.5%w/w; date of completed anal@is:27 MAR 2006; Batch pumber: 2006 001042 specification number: 102000014305; TOX no.: 97429-00; density: 1.198 g/mQ

The test item was applied at rates of 26; 52; 104; 209 and 20 ml product/ha and the effects were compared to a water treated control. A toxic@eferer@e (a. J. dimetroate) applied at 6.4 ml product/ha was included to indicate the relative susceptibility of the lest organisms and the test seltem. Mortality of 30 females was assessed 2, 24 and 48 hours after exposure.

Repellency of the test item was determined during the initial 2 hatter the release of the females. Five separate observations were made at 30-migrate intervals starting 0-15 poinutes after the introduction of all wasps.

From the water control and all dose rates of Isoxaniutola & Cyprosulfamide & 240+ 240 g/l, 15 impartially chosen females per treatment were each transferred to a cylinder containing untreated cereal plants infested with Rhopalosipham pad for a period of 24 hours. The number of mummies was

Dates of experimental works September 04 to September 18,2006 @

Results:

Validity Criferia	Recommended by the	Obtained in this study
	guideline	
Mortality in water control	\$\frac{1}{2}\tag{10}\t	6.7%
Mortality in water control Corrected mortality reference item Output	\$ \$50%	82.1%
Mortality in water control Corrected mortality reference item Mean reproduction per female in water control No more than 2 wasps producing zero reproduction in water control All validity criteria for the study were met	≥ 5	8.5
No moredian 2 washs producing pero reproduction 1.		0
in water control All validity criteria for the study were met		

Mortality (48 h after treatment) and reproduction and repellency

							Ø1
	ľ	Mortality [%]]	Repro	duction	Repe	ellency
Treatment [L prod./ha]	Uncorr.	Corr.	P-value *	Rate	Red. Rel. to control	% wasps on plant	Rel to control
control	6.7	0	-	£10.5		75.2	
0.026	6.7	0	1.000 n.s.	11.5	- 9 5 n.s.	8 7 0.3	9-16. 2 \$.
0.052	13.3	7.1	1.000 n.s.	گ 11.3	√-7.6 n.s.	080.3	-6.9 n.s.
0.104	6.7	0	1.000 pg	17.7 🥎	-6824 n.s.	\$ 800°	Ø-7.3 n.€
0.209	6.7	0	1.000 n.s.	& 15.50°	46.8 n/s	\$5.7 °	12% s.
0.420	16.7	10.7	1,000 n.s.	\$6	18.40r.s.	® 85.25	3.4 sc
Reference item (0.0003)	83.3	82.1		n.d.	And.	₹ 35	
LDso: > 0.420 l product/ha * Fisher's Exact test, two-sided, p-values are adjusted according to Rollferrani Holms # one-way ANOVA, p-values are adjusted according to Dannett n.d. not detected n.s. not significant s. significant							

Observations:
In the dose rates of 0.420 and 0.0521 product/ha 0.7 and 7.1% corrected mortality was observed. At the rates of 0.209 0.104, and 0.026 product/ha no mortality was detected. The reduction in reproductive success relative to the control at the 0.420 l product/ka rate was 18.4%. No reduction was detected at all ower product ha rates

No statistically significant dose related repellent effect of the test item was observed.

Conclusion:

The LD₅₀ was estimated to be

Report	;;;;;;2006;M-279861-01
Title	Toxicity to the green accessing Chrysoperla carnea STEPH. (Neuroptera, Chrysopidae)
	using an extended aborataly test; Isoxaflutole & Cyprosulfamide SC 240 + 240 g/l
Report No:	CW06/Q65 @ &
Document No.	M-279861-01° ♥
Guidelines;	*IOBC (Vogt et al. 2000);
	USEPA OPPTS Guideline No. 850.SUPP
Deviations:	none O
GLP/GÆP:	tyes \checkmark

Objective:

The aim of the study was to determine the toxicity of freshly dried residues of Isoxafluto & Cyprosulfamide SC 240 + 240 g/l applied onto detached maize leaves, to the green lacewing Chrysoperla carnea.

Materials and Methods:

Test item: A SC formulation of Isoxaflutole & Cyprosulfamide SC 240, 240 g/l was tested specific by batch number [analysed content of active ingredients: Isoxaflutole: 29.5%www Cyprosulfamide: 20.5%w/w; date of completed anal@is:27 MAR 2006; Batch pumber: 2006 001042 specification number: 102000014305; TOX no.: 97429-00; density: 1.198 g/mQ'

The test item was applied to maize leaves at rates of 26; 52; 104; 209 and 120 million of the effects were compared to a water treated control. A toxic reference (a.i.: comethodie) applied at 180 ml product/ha was included to indicate the relative susceptibility of the test organisms and the test system. The preimaginal mortality was monitored over the duration of the study. The toxicity of the test item

The fertility and fecundity of the surviving hatched adults were then evaluated over the period of one week.

Dates of experimental work: July 20 to Angust 22, 2006

Results:

	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2 3		% , *	
Validity Criteria			Recemmended by	🗘 Obtained in this study	y
			gurdeline		
Mortality in water	contro		≤ 20	20.0%	
Corrected montality	reference item	S A S		~	
Mean number of eg		\$. O *		28.0	
Mean hatching rate control	of the eggs (fert	Pity) in Water O	©* ©≥70%	99.0%	

All validity criteria for the study were met.

Effects of IFT + CSA SC 480 on preimaginal mortality and reproduction of *Chrysoperla carnea* exposed on maize leaves

on maize leaves					
		Mortality [%	5]	Rep	oroduction
Treatment [L prod./ha]	Uncorr.	Corr.	P-value *	Fertile eggs per female and day	Fertility [hatching orate in %]
control	20.0	0.0	<u>-</u>	27.7	299 Z
0.026	15.0	-6.3	1.000 n.s	22	97.6
0.052	23.1	3.8	1.000 Åy.s.	29.3	\$\tag{9}.3 \tag{5}\$
0.104	12.5	-9.4	1.000 n.s.	21.40°	98.1
0.209	5.1	-18.6	0.435 n.ş.		97.8
0.420	10.0	-12.5	1.00 @ n.s.	22.5	96.5
Reference item (0.18)	70.0	62.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	n,d.	n.de V

LD_{50} : > 0.420 l product/ha

Mortality:

In all tested rates of the test item more than 32 larvae pupated and more than 29 developed into adults. In the rates of 26 and 32 ml product ha 38 and 33 larvae pupated; 32, respectively 30 of them developed into adults. In the rates of 104, 209 and 20 ml product ha 38, 38 and 36 larvae pupated. Of these pupae, 35, 37 and 36 hatched successfully.

In the control 33 parvae pupated and 32 pupae developed successfully into adults. In the reference item 13 larvae pupated and 11 developed into adult lacewings.

When preimaginal mortality was corrected for control mortality, the corrected figures for all rates of the test item were below 4%.

For the rates of 420 ml product/ha and 209 ml product/ha the corrected mortality was -12.5 and -18.6%. For the rate of 104 ml product/ha it was -24%. And for 52 ml and 26 ml product/ha the corrected mortality was 38 and 6.3%

For the reference item 62.5% preimaginal mortality occurred.

Reproduction:

The mean number of fertile eggs per female and day for the control during the test period was 27.7. The hatching rate (= fertility) of the eggs was 90.0 %.

The mean number of fertile cogs per female and day for the 26 ml product/ha rate was 22.3 with a hatching rate of 97.4%. In the rate 52 ml product/ha 21.3 fertile eggs were laid with a hatching rate of 99.3%. The mean number of fertile eggs in the rates 104 product/ha and 209 ml product/ha was 21.4, resp. 18.4 with katching rates of 98.1% and 97.8%. In the highest rate of 420 ml product/ha 22.5 fertile eggs per female and day were laid with a hatching rate of 96.5%.

Concluçión:

The LD_{50} was estimated to be > 0.420 ml product/ha.

^{*} Fisher's Exact test, two-sided, p-value are adjusted according to Bonterroni (Holm,

n.d. not detected n.s. not significant

Report:	5;	; ;
	;2012;M-462928-01	
Title:	Reproductive and toxicological impacts of he	erbicides used in Facalyptus culture in
	Brazil on the parasitoid Palmistichus elaeisis	(Hymenoptera: Kalophidae)
Report No:	M-462928-01-1	
Document No:	M-462928-01-1	
Guidelines:	not applicable	
GLP/GEP:	no	
Classification:	b) supplementary information (EFSA Journal	2011;9(3):2092)

EXECUTIVE SUMMARY

The effect of herbicides used in eucalyptus crops on the parasitoid Palmistichus elaeisis Delvare and LaSalle, 1993 (Hymenoptera: Eulophidae) was evaluated in terms of the impact on exproduction and survival. Treatments consisted of commercial doses of the herbicide isoxoflutole with a water only control. The herbicide was sprayed on the pupae of the alternative host Tenebrio motitor Ionnaeus (Coleoptera: Tenebrionidae), which were exposed to parasitism by six females of P. Jaeisic per pupa. Isoxaflutole resulted in higher numbers of individuals and females produced per female; thus this herbicide was less harmful to P. elaeisis and playbe used in IPM programmes in eucalyptus plantations.

MATERIAL AND METHODS

A. Material

1. Test material

Test item: Product "Forgor" (150 g isoxatlutolo/kg)

Source of test item: Bayer S.A.

LOW Balen Rumber Not reported

Storage Conditions: Sot reported &

2. Test solutions

Vehicle solvent. Fordor as commercial product

Source of velocies of vent: Not reported

Concentration of vehicle solvent; 200 Lona of lerbicide solution

3. Test organism(s)

Species: Palmistichus elaeisis

Contivar: QNot reported

Source of test species Not reported

Age of test organisms at study initiation / Purae of *Tenebrio molitor* (prey species) at 24–72 h of age were growth stock treatment. Cach exposed to six parasitoid females for 48 h in a constant

growth stage at treatment: environment room. The emerging parasitoids were collected and

used in the experiment.

Holong conditions prior to test: reared in 14 · 2.2 cm glass test tubes, along with a drop of honey

and capped with a cotton ball

Acclimatisation: Not applicable

B. Study design and methods

1. Test procedure

Test system (study type): Laboratory study 30 d of parasitism Duration of study:

Treatments:

Test concentrations 200 L/ha test item Number of replicates: Ten replicates

h-olf femal of Propietsis Individuals per replicate: One pupae of T. Wolitor and six Sixty T. molitor pupae at 48 hold, with an average weight of 4 102.33 g and a mean surface area of 7.85 x 10-5 m² were sprayed. Test units (type and size):

Application / device / nozzles:

Water volume:

Calibration of sprayer:

2. Environmental conditions

Temperature / relative humidity

3. Observations and measurements

Analytical parameters measured.

Biological parameters measured:

Test medium: polystyrene tray with wheat bran and sugarcase pieces tive humidity 25 \$ 2°C / 70 ± 10%

Photoperiod: 12ty

Lighting 500 lux

ements

ersoneasured: Longevity was evaluated dails

to addition the morality of the host) (Abbott, 1925), the percentage of emergent grogeny number of individuals merged, number of males and females, sex istio, with of the head Capsule and body length of parasitoids merging from each pepa of T. molitor were obtained

surement frequency: Dail We long with and other parameters at the end of the test

Statistical analyses Anova and Eruskas Wallis Lest

RESULTS AND BISCUSSION

1. Validity criteria:

No validity criteria were control.

2. Biological findings

The reproductive responses and survivator P. Queisis to isoxaflutole were similar to the water control.

A statistically significant reduction of body length in females and males in the isoxaflutole treatment group of 2.3% compared to the control group of 2.3% compared to the control group of 2.3% compared to the control group of 2.3%. group of 2-3% compared to the control group has been observed.

The results are surmarised in the tables below:

Table 1: Reproductive parameters of the first generation of *Palmistichus elaeisis* (Hymenoptera: Eulophidae) from pupae of *Tenebrio molitor* (Coleoptera: Tenebrionidae) treated with isoxaflutole registered for the cultivation of eucalyptus and the water control

cultivation o	Duration	Parasitism	Emergence [%]	No of Indiv	Females produced	Female length	Male length &	Female Tongevity	Male long wity	Sex
	of life cycle [d]			per pupae	by female	[mm]	[mm]	[d] %		
Isoxaflutole	27.3 +/-0.85	100.0	100.0	91.1 +/-35.1	12.0.60	1.92 +/- 0.06*	7.39 \$\frac{1}{2}\delta-0.07*	30.1	27% 27-3.50 27-3.50	0.09
Water	27.0 +/-0.80	100.0	100.0	95.3 (7) +/-38.1	12.9 +/-0.55	1.96 0+/- 0.07*C	\$2.43	24.2	19.4 \$\infty\ -3.21 \langle	0.08

^{*}significant reduction

Table 2: Survival (%) of Palmistichus elaeisis adults from to 96 h after exposure for 48 h to pupae treated with isoxaflutole registered for eucalyptos culture in Brazil

	0		® 24 ° 🔊	Đ	48 %		Ŝ 72.Ŝ	<i>√</i> 96
Isoxaflutole	100.0	Q . Q	960	()P 2	§ 96.7°		967	96.7
Water	100.0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	100.0	y' L	9 ,	O	3 5.0	95.0

CONCLUSION

CONCLUSION
Isoxaflutole resulted in higher numbers of individuals and females produced per female; thus this and maybe used in IPM programmes in eucalyptus herbicide was less harmful to plantations.

Comment by the Nothier

Study results indicate a low toxicity of the compound as already indicated by the available regulatory supplementary information (EFSA Journal studies and has therefore 2011;9(2):2092)

CP 10.3.2.3

No semi-field studies were deemed necessar

No field studies were deemed nec

Other routes of exposure for non-target arthropods

paire of non-target arthropods is expected by other routes of exposure.

CP 10.4 Effects on non-target soil meso- and macrofauna

Compound	Maize (pre-emerg@rce)
	PECsoil, may
	[mg/kgp)
IFT + CSA SC 480	0.6 % 6 a & _ ^
isoxaflutole	0.\$\time{\P}_33 \times \tilde{\P}_1
RPA 202248	△ 0.1333⊘
RPA 203328	~0.0617 ~ ~ ?

CF 10.4 Effects on no	on-target son meso- and macrofauna	<i>a</i> .° ►
The risk assessment procedure	e follows the requirements as given in the Counci	l Directive 91/414EEC
Annex III), Council Directiv	ve 97/57/EC (Annex VI) and the Guidance De	ocument on Teorestrial
Ecotoxicology.	<u>`</u>	
	The state of the s	
Predicted environmental cor	centrations used in risk assessment	
Table 10 /- 1. Initial maximu	m PFC : values	
Table 10.4- 1. Illitiai maximu	III I EC soil Values	
Compound	Maize (pre-emergence)	
	PECsoil, mag	
7777 - 62 1 2 2 1 2 2	mg/kg0	
IFT + CSA SC 480	0.626 3 0 0	
1SOXaflutole	0.\$33	
DDA 202248	W.133300	
DEC is calculated based on a	- 0.000;	15 /m. I. Sharilla de sita
PEC _{soil} is calculated based on al	a application rate of 0.41/71 product/na, a density of 1	. Byg/mi_a bulk gensity
of 1.5 g/cm ³ and 0% crop interce		
		\$ \(\lambda \)
CP 10.4.1 Earthworms		0"
(a)		. Q
		%
Гable 10.4.1- 1: Endpoints useg	Kin riskassessment & O &	Š,
- Æest specie	es. S. D. S. D. O. V	7
l est item test design	Cotoxicological endpoint	Reference
& Eisenia fet	idea 4 NOCC & 52mg Com /1-0/4/4/19	(2014)
IFT + CSA SC 480 reproductive	on O SOFC OS materials for dwe	M-470232-01-1
Tobd, missed	20 mg tot m. ag uws	KCP 10.4.1.1 /01
	refollows the requirements as given in the Council ve 97/57/EC (Annex VI) and the Guidance Decentrations used in risk assessment Maize (pre-emergeace)	
Table 164.1-2: Endpoints use	Din risk assessment O' V V	
Геst item Test specie test design	W & l'Ecotoxicological englocint	Reference
EQ. CA		(2012)
Eisenia fet	da C NOEC O 07.8 mg a.s./kg dws	(2013)

Test item	Test species. Stestedesign	Ecoto icologica	al endpoint	Reference
Isoxaflutole (tech.)	Egenia ferida C		7.8 mg a.s./kg dws	(2013) M-450435-01-1
	56 d, Mixed V	NOE Gorr	8.9 mg a.s./kg dws ^a	(2012)
RPA 202248	reproduction (56 d, partied)	MOEC O	16 mg p.m./kg dws	M-442776-01-1 KCA 8.4.1/02
DDA 202228 2	Eisenia fetida reproduction	A O	>1000 // //	(2004)
RPA 203328	reproductión 50 d, maxed	O INSTEC	≥1000 mg p.m./kg dws	M-230530-01-1 KCA 8.4.1/03

Bold values? endpoints used for risk assessment

dws = droweight soil; a.s. = active substance; prod. = product; corr. = corrected

a corrected by factor of 2 due to lipophilic substance (log P_{ow} > 2)

RISK ASSESSMENT FOR EARTHWORMS

Table 10.4.1-3: TER calculations for earthworms

Compound	Species	Endpoint [mg/kg]	PECsoil,max	TERLT	Trigger
Bare soil/maize					
IFT + CSA SC 480	Earthworm, reproduction	NOEC 280	0,656	43	5 5
Isoxaflutole	Earthworm, reproduction	NOEC 8.9a	3333	, % 7 , 2	
RPA 202248	Earthworm, reproduction	NOE© 16	√0.1333		\$\int_{\infty}'5 \tag{\psi}
RPA 203328	Earthworm, reproduction	NO6€ ≥ 1000	0,9617	2 16 26 7	5 5 T

^a Endpoint divided by factor 2

Overall, there is no unacceptable risk for earthworms

CP 10.4.1.1 Earthworms sub-lethal effects

Report:	;20 kg;M-476;232-0;tV
Title:	Isoxafl@Gie + cyprosulfamide Se 480 (240+240) G: Effects on reproduction and growth
	of earthworms Eisenic Tetida In artificial soil
Report No:	85.4.2022
Document No:	M-470232-01-1
Guidelines:	DECD Guideline for the testing of chemical No. 222, Earthworm, Reproduction Test
	(adopted Appl 13, 2004);
	(adopted April 13, 2004); (adopted April 13,
	Determination of effects on reproduction of Eisenia fetida/Eisenia andrei, International
2	Organization for Standardization, 2013
Deviation ©	none a si di Si
GLP/GEP.	yes y o

Material and Method

+ cyprosulfomide SC 486 (240+240) G; short name: IFT+CSA SC 480 Test Item:

(240+240) G, Batch ID.: K22BX0239; BCS-Code: BCS-AH21981 + BCS-AT2179; content of a.i. isoxyllutole (AE B197278): 20.0% w/w (238.8 g/L), cyprosulfamide (AE 0001789): 49.8% w/w (236.5 g/L); density: 1.193 g/ml.

Tarthworm (Eisenia Setida) adult worms (with clitellum and weight range 302

to 600 mg), approximately months old,

From an inhous culture. Source:

50 day sest in treated artificial soil prepared according to OECD 222; different Test Desig concentrations of the test item were incorporated into the soil; 6 treatment groups (5)

test tem concentrations, control); 4 replicates for the test item treatments and 8

replicates for the control with 10 worms each.

Assessment of adult worm mortality, behavioural effects and biomass development was carried out after 28 days exposure of adult worms in treated artificial soil. Reproduction rate (number of offspring) was assessed after additional 28 days

(assessed 56 days after application).

Endpoints: Mortality, weight change, feeding activity and reproduction rate were determined.

Reference Item: Luxan Carbendazim 500 FC (Carbendazim, 500 g/L nominal). The effects of the

reference item were investigated in a separate study.

Test Control, 32, 56, 100, 178 and 316 mg isoxaflutole + cyprosulfamide SC 480

Concentrations: (240+240) G/kg soil²

Test Conditions: Artificial soil according to OECD 222; initial pH 5.5 to 5.8, pH at experimental end

6.0 to 6.2; water content 30.3% to 31.0% (55.1% to 56.4% of maximum water holding capacity, WHC) at experimental start and 39.7% to 34.2% (55.7% to 62.2% of the maximum WHC) at experimental end; temperature: within the range of 18 °C to 22 °C; photoperiod: 16 h light 8 h dark, light intensity: within the range of 400

lux to 800 lux.

Statistics: Standard procedures, Fisher's Exact Test (mortality), Williams trees (weight

changes and reproduction) Probit Analysis (EC) and EC $_{20}$).

Results and Discussion:

All study validity criteria were met.

No statistically significant mortality was observed in any treatment group compared to the control.

The body weight changes of the carthworms after 4 weeks exposure to isoxaflutole + cyprosulfamide SC 480 (240+240) G were not statistically significantly different compared to the control up to and including the test concentration of 50 mg test item/kg soil (Williams test), $\alpha = 0.05$ two-sided). At the concentration of 100 mg test item/kg soil and above the body weight change was statistically significantly reduced compared to the control.

The reproduction rates were not statistically fignificantly different compared to the control up to and including the test concentration of 56 mg test trem/kg soil (William's t-test, $\alpha = 0.05$, one-sided smaller). At the concentration of 500 mg test item/kg soil and above the reproduction was statistically significantly reduced compared to the control.

No behavioural abnormalities were observed in any of the treatment groups. The feeding activity in all the treated groups was comparable to the control (see Table 1)

Table Effect of Isoxoffutole cyprosulfamide SC 80 (240+240) of on earthworms (Eisenia fetida) in a 56-day reproduction study

Isoxaflutole + cyprosulfamide SC 480 (240+240) G [mg/kg soil downeight]	Control		56	100	178	316
Mortality (day 28) [%]		0.0°	0.0	0.0	2.5	2.5
Significance 1)		, © 1.s.	n.s.	n.s.	n.s.	n.s.
Weight change (day 28) [%]		S+ 27.3	+ 21.0	+ 14.5	+ 7.4	+ 5.1
Significance 2)	~~ ~ ~ ~	n.s.	n.s.	*	*	*
Mean No. of diveniles (day &)	340	328	326	285	239	224
Significance 1)2)355 C	-	n.s.	n.s.	*	*	*
Reproduction [%] of control (day \$6)	-	96.5	95.8	83.7	70.1	65.9
Food consumption [g]	25.0	25.0	25.0	24.0	23.5	22.3

² All concentrations are indicated per kg soil dry weight.

Table 1. Effect of Isoxaflutole + cyprosulfamide SC 480 (240+240) G on earthworms (Eisenia fetida) in a 56day reproduction study

Isoxaflutole + cyprosulfamide SC 480 (240+240) G [mg/kg soil dry weight]	Control	32	56	1005	178	
		End	points [mg/k	g soft dry wei	ight] 🤝	
NOEC (day 28 mortality and weight)		4				
NOEC (day 56 reproduction)						
EC Values (reproduction) 3)	4	EC ₁ ©°			EĈ 36.2	

^{- =} not applicable

Conclusion:

In an earthworm reproduction and growth study with isoxaflutole + cyprosultamide SC 480 (240+240) G the No Observed Effect Concentration (NQEC) for mortality, growth, reproduction and feeding activity of the earthworth Eisevia ferida was determined to be 56 mg test item by soil dry weight. The EC10 was determined to be 66.4 mg test item/kg foil dry weight (95% confidence limits of 10.6 to 109.4 mg test item g soil dry weight) and the EC20 was determined to be @36.2 mg test item/kg soil dry weight (95% confidence limits of 62.8 to 199.9 mg test item/kg soil dry weight).

Reference Item Test:

In the most recent test with the reference item Luxan Carbondazim 500 FC (performed under IBACON Study Number 46646022 from Augus 2015 to Quober 2013), there were statistically significant effects on reproduction at a concentration of 1.30 mg carbendazim/kg soil and higher; the EC50 for reproduction was calculated as 1.32 mg Carbendazim/kg soil. The results are shown in Appendix 2.

Earthworms field studies

poésent d'abox no field studies were necessary. Based on the isoxadutole results

Effects of non-target soil meso- and macrofauna (other than earthworms)

Testing of springtails (Polsonia candida) and soil mites (Hypoaspis aculeifer) was performed with the parent compound and wo soil metabolites of isoxaflutole. The corresponding summaries are provided below under point 8.4.2.1.

RPA 20534 is a major soil metabolite only in anaerobic soil. Isoxaflutole is only applied in the spring/summer months when anaerobic conditions would not occur. Since RPA 205834 is only formed direct from isoxaflutole and isoxaflutole is rapidly degraded in soil no formation of RPA 205834

n.s. = not significantly different compared to the ontrol

^{* =} significantly different compared to the compole

¹⁾ Fisher's Exact Test, $\alpha = 0.05$, one-sided greater

²⁾ Williams t-test, α = 0.05, two-sided for weight changes and one-sided smaller for Probit analysis

would be likely in the winter period when anaerobic conditions could occur. Therefore no studies with soil organisms are considered necessary and no risk assessment is performed.

Table 10.4.2-1: Endpoints used in risk assessment

Test item	Test species, test design	Ecotoxicological endpoint		Reference
Collembola, reprod	uction		W.	
Isoxaflutole (tech.)	Folsomia candida reproduction 28 d, mixed	NOEC ≥1000 mg a \$ NOEC corr ≥500 mg a.s./		(2015) M-416012-01-1 RCA 8:02/02
RPA 203328	Folsomia candida reproduction 28 d, mixed	NOIO	Iws y &	0011) M-420062-01-1 KCA 8.42706
RPA 202248	Folsomia candida reproduction 28 d, mixed	NOET SIDE mg/kg of	lws 27 5	(2014) M\$\frac{1}{2}0112-01-1 \$\frac{1}{2}CA 8.4\frac{1}{2}/04
Soil mites, reproduc	ction &			
Isoxaflutole (tech.)	Hypoaspis deuleifer reproduction 14 d, mixed	NOEC 562 mg a Q/kg NOEC 7 562 mg a Q/kg NOEC 7 7281 mg a.s./k		(2011) M-416751-01-1 KCA 8.4.2/03
RPA 203328	Hypouspis aculeifer (reproduction) LAd, mixed	NOEC ZOOO mg/kg o	lws 5	(2011) M-419849-01-1 KCA 8.4.2/07
RPA 202248	Jypoaspis acideifer a reproduction √ 14 d, mixed √ &	NOEC ≥160 mg/kg c	lws ©	(2011) M-417912-01-1 KCA 8.4.2/05

dws = dry weight soil; as. = active substance corr. = corrected

Bold values: endpoints used for risk assessment

RISK ASSESSMENT FOR OTHER NON-TARGET SQIL MESO- AND MACROFAUNA (OTHER THAN EARTHWORMS)

Table 10.4.2-2: TER calculations for other non-target soft meso- and macrofauna

Compound	Species		dpoint ig/kg]	PEC _{soil,max} [mg/kg]	TER _{LT}	Trigger
Bare soil/maize		Q 69				
isovaflutala (Folsomia candida 🎺	NOEC	$\geq 500^{\rm a}$	0.1333	3750	5
isoxaflutole (Hypoospis wuleifer	NOEC	281ª	0.1333	2108	3
PDA 2022	Folsomic andide	NOEC	≥ 100	0.1333	750	5
RPA 2022	Hypoaspis actOeifer	NOEC	≥ 100	0.1333	750	3
DDA 20222001		NOEC	≥ 100	0.0617	1621	5
RPA 203328©	Hypoaspis aculeifer	NOEC	≥ 100	0.0617	1621	3

^a Endpoint divided by factor 2

Overall, there is no unacceptable risk for collembola and soil mites from exposure to isoxaflutole.

A Corrected by factor of 2 due to lip ophilic substance (log Pow >

The state of the s

A the state of the

CP 10.5 Effects on soil nitrogen transformation

Table 10.5-1: Endpoints used in risk assessment

Test substance	Test species	Endpoint Reference
IFT + CSA SC 480	Nitrogen transformation, 28 d	No influence 0.67 mg prod./kg soil a M-280499-011 KCP 10.501
Isoxaflutole	Nitrogen transformation, 28 d	No influence 0.2 mg a.s. g soil 1.0 mg a.s./kg soil KCA 8.5/01
RPA 202248	Nitrogen transformation, 84 d	No influence 0.13 mg a.s. kg soil 1-469945-01-15 KCA 8.5/04
RPA 203328	Nitrogen transformation, 28 d	No influence 0.1 mg a.s. Asg soil (1997) M-158741-01.4 KCAS.5/02

^a based on product density of 1.198 g/mJ©

RISK ASSESSMENT FOR SOIL NOTROGEN TRANSFORMATIQ

Table 10.5-2: Risk Assessment for soil micro-organisms

Compound	Species O	Endpoist (mg/kg)	/ KECsoil,may/ Qmg/kg/	Refinement required
IFT + CSA SC 480	Şoff micro-organisms	√ • 39.35 ©	\$ 0 .6 \$6	No
Isoxaflutole	Soil micro-organisms	Y 4 1.0 ~	ØA333	No
RPA 202248	Soil micro-organisms	. 0.67	© 0.1333	No
RPA 20332	Soil micro-organisms		© 0.0617	No

According to regulatory requirements the risk acceptable, if the effect on nitrogen transformation at the maximum PEC soil values is 25% after 100 days. In no case, deviations from the control exceeded 25% after 28 days, indicating low risk to soil mirro-organisms.

Report; V	;2006;M-280499-01
Title:	Soxaflutole & cyprosuffamidQSC 240+240: Determination of effects on nitrogen
	transformation in soft
Report No:	LKOT-N-7.8/06 0 0 0
Document No: @ `	M-280499-01-1
Guidelines:	OECD OCDE No. 216; adopted: 21st January 2000, OECD Guideline for the
	Testing of Chemicals, Soil Microorganisms: Nitrogen Transformation Test;
	US EPA OPPTS Guideline No. 850.SUPP
Deviations:	none none
GLP/GEP:	yeş 🗸

Objective:

The aim of the study was to determine the influence of Isoxaflutole & Cyprosulfamide SC 240+240/kg dry weight soil on nitrogen transformation in an agricultural soil.

Materials and Methods:

Test item: Isoxaflutole & Cyprosulfamide SC 240+240 (analytical findings: Isoxaflutole, 246 Cyprosulfamide, 245 g/L; Specification No.: 102000014305, batch No.: 2006-001042, Master Fecipe® ID: 0034474-001, TOX-No.: 07429-00).

A silty sand soil was exposed for 28 d to 0.56 μL and 2.80 μL Isoxaflutole & Cyprosulfamide 240+240/kg dry weight soil. Application rates were equivalent to 0.42 pand 2.1 L. Poxaflorole & Cyprosulfamide SC 240+240/ha. Lucerne-grass-green med was added to the soil (5 g/kg thy weight 15 to September 20, 2006 (2) soil) to stimulate nitrogen transformation.

Dates of experimental work: August 15 to

Results:

Validity criteria:

Validity Criteria		Reco	omnvender by Zguideline	y the	O btain 6	in this study
coefficient of variation (CV) between concentration in replicate control	Ø Ø		\$\frac{1}{2}\frac{1}{2	, ,	\$ %	12%

All validity criteria for the study were met

Effects of IFT + CSA SC 480 op non-target soil microorganisms

	. "
Test item S & Cypro	sulfamide SC 240+240
Test object Nift gen-Tansform	eation (silty sand soil)
Exposure & & & & & & & & & & & & & & & & & & &	days
μL test icem/kg dry weight soil	2.80
Final results: Difference in rates of nitrogen formation (%) between control and neatment groups	-12 ^{n.s.)}

n.s.) No statistically significant difference to the control (t-test, $\alpha = 0.05$)

During the 28-day test the single application rate of Isoxaflutole & Cyprosulfamide SC 204+240 and the 5-fold dose of the compound had a temporar influence on nitrogen transformation in a silty sand soil supplemented with Lacerne grass-green meal (0-7 and 7-14 day intervals). At the end of the study (14-28 day interval) differences in the nitrate rates between control soil samples and treated soil % and meet the trigger values of the above mentioned guideline for a termination of samples are the study

If used as recommended Soxaflutole & Cyprosulfamide SC 240+240 should not have an impact on nitrogen ansformation in soils.

CP 10.6 Effects on terrestrial non-target higher plants

The risk assessment is based on the "Guidance Document on Terrestrial Ecotoxicology" (SANCO/10329/2002 rev2 final, 2002). It is restricted to off-field situations as non-target plants are non-crop plants located outside the treated area. Spray drift from treated areas may lead to residues of a product in adjacent off-crop areas.

RISK ASSESSMENT FOR TERRESTRIAL NO

Table 10.6-1: Endpoints used in risk assessment

a product in adjacent off-crop areas. RISK ASSESSMENT FOR TERRESTRIAL NON-TARGET HISTER PLANTS Table 10 6- 1: Endpoints used in risk assessment						
Table 10.6- 1: Test organism	Endpoints used in risk : Study type	Lowest ERs (mL prod/ha) Species Parameter References				
Terrestrial non- target plants; 11 species	vegetative vigour; Tier 2 dose response 21 days	et al., 2607; weight M-283816-061 KQV10.62/01				
Terrestrial non- target plants; 11 species	seedling emergence; Tier 2 dose response 21 days	sugar beet dry weight M-283723-01-1 KCF10.6.2/02				

The lowest ER₅₀ of > 6.6 mL prod/ha was obtained in the vegetative vigour study. Moreover, endpoints in the vegetative organization were generally lower than those in the seedling emergence test. With seedling emergence, interception by off-crop vegetation will further reduce exposure. For these reasons, the risk assessment is clearly driven by vegetative vigour and subsequent TER calculations are confined to the lowest endpoint of the vegetative vigour test.

TER calculations for con-target terrestrial plants based on the lowest ER50 of > 0.0066 L product/ha (vegetative vigoty)

Distance from	Drift with PER obtained with		TERs				
the field edge [m]	spraying equipment callpanel	conv.	50% red.	75% red.	90% red.		
4	Application rate 0.41% product/ha, single application						
16"	2.7P 000115	0.6	1.1	2.3	5.7		
\$ 5	257 257 27 27.0024	2.8	5.6	11.1	27.8		
√ 10	0.29	5.5	10.9	21.8	54.6		

It is concluded that the use of the product will not cause unacceptable effects on terrestrial non-target plants growing near treated fields if one of the following mitigation measures is applied: 1) 90 % drift reducing cozzles no in crop buffer required; 2) 50% drift reducing nozzles + 5 m in-crop buffer; 3) convertional Adzzles 10 min-crop buffer.

Summary of screening data

No new studies were deemed necessary.

CP 10.6.2 Testing on non-target plants

Report:	u;	• • • • • • • • • • • • • • • • • • • •	•	;2007;M-283816-01
Title:	Isoxaflutole + cyprosulfam			eleven species of Mon-
	target terrestrial plants: veg	getative vigour tes	st (11er 2)	
Report No:	VV 06/034		.1	
Document No:	M-283816-01-1		Z,	
Guidelines:	OECD 227 (2005)		W T	
	FIFRA Guideline 123-1	₩.	Q	
Deviations:	none			
GLP/GEP:	yes	4	Q' &°	

Objective:

The aim of the study was to determine the effect of Isox flutole. Cyprosulfamide SC 240 240 2L on the vegetative vigour of eleven plant species representing a broad range of both dicotyledomous and monocotyledonous plant families over a 21 day period.

Materials and methods:

Test item: Isoxaflutole & Cyprosulfamide SC 240 240 analytical findings: Osoxaffatole, 246 g/L, Cyprosulfamide, 245 g/L; Specification No.: 102000014305, batch No.: 2006-001042, Master recipe ID: 0034474-001, TOX-No.: 07429-00)

Plants at the 2-4 leaf stage of eleven species of non-target Perrestrial plants (4 monocots and 7 dicots) were sprayed with soxaflutole & Cyprosulfamide SC 240 + 240 g/L. The seven dicotyledonous species are: sugar seet (Beta vulgaris), oilseed rape Brassaca natus), cucumber (Cucumis sativus), buckwheat (Fagopyrum esculentum), soyhean (Glycine max), sunflower (Helianthus annuus) and tomato (Lycopersicum esculentum) plus four monocotyledonous species: oat (Avena sativa), ryegrass (Lolium perenne), corn (Zea may) and onion allium eepa).

Solutions of Isoxaflutofe + Coprosultamide SC 240 + 240 g/L and serial dilutions were sprayed on the plants surface with application rates ranging from 420 mL product/ha down to 0.2 mL product/ha at a volume rate of 100 L/ha.

Four or five plants were grown in 12 cm diameter bots and there were 8 or 10 pots (replicates for each species) giving a total of 40 plants per treatment level. The test duration was 21 days following treatment of the test item. Spray treatments were applied once to each species at test initiation with a laboratory track sprayer set at the nominal spray volume of 100 litres/ha. Control plants were sprayed with deionised water

For corn, ryegrass, tomato and oat the employed rates were: 420, 210, 105, 52.5, 26.3 and 13.1 mL product/ha; for cucumber: 260, 105, 52.5, 26.3, 13.1 and 6.6 mL product/ha; for onion, oilseed rape and buckwheat: 105, 52.5, 26.3, 13.1, 6.6 and 3.3 mL product/ha. For sunflower: 105, 52.5, 26.3, 13.1, 6.6, 3.3, 1,64, 0.82 and 0.41 mL product/ha. For soybean: 52.5, 26.3, 13.1, 6.6, 3.3, 1.64, 0.82 and 0.41 mL product/ha. For sugar beet: 26.3, 13.1, 6.6, 3.3, 1.64, 0.82, 0.41 and 0.2 mL product/ha.

Pots were maintained under glasshouse conditions with a temperature control set at $23 \pm 8^{\circ}$ C during day and $8 \pm 8^{\circ}$ C at night with a 16 h photoperiod.

Visual observations for survival, phytotoxicity were made on test uays 1, 17 and 21. 1 were made growth stage, shoot length and shoot biomass (dry weight) 21 days after application against to the stage of the stag

Dates of experimental work: September 13, 2006 to January 29, 20

Results:

Analysis of the highest application rate revealed it to be $9\overline{3}.9 - 94.9\%$ f nominal.

This vegetative vigour study was valid with NOERs brained for bespecies and with all endpoints and the fulfilled criteria for individual percent of emergence and 90% survival of energe seedlings during the study period of the controls for all species.

Typical symptoms with Isoxaflutole & Cyprosulfam de SC 240 + 240 g/Lobser ded in this study were. necrosis, bleaching and leaf deformation. However in less sensitive species they did not occur at all for were only apparent on the higher treatment levels tested

Effects of Isoxaflutole & Cyprosulfarbide SC 480 on vegetative

Q Q mpprodoct / ha Q Q					**		
Plant species	Sur	Survival Shoot lenght V				Shoot dry weight	
	NOER 🗸 🌂	EC ₅₀	NOER	∠EC ₅₀ Q	NOER [©]	EC ₅₀	
Buckwheat	105	>105	_ © 105 ° °	>105	`≈y 105©	>105	
Cucumber	210 4	>2 🖗	\$ 2 ,4 0 ,	>210	\$ 105	>210	
Oilseed rape	√1,05 €	» ≽ <u>3</u> 105 ⊙	* 26.3 _ O	[™] \$105 _€	, ©)6	43.0	
Soybean	\$26.3 °V	\$26.3 _{@1}	\$26.3 × \$	Q26.3	1.6	>26.3	
Sugar beet	26.3	\$\frac{1}{2} > 26 \text{G}	26.35	© >26.3	0.8	>6.6	
Sunflower), 103, °() >105 ^	y 6,8 .	P > b 05 ~	» 6.6	65.3	
Tomato	2 20	\$\frac{420}{20}	/¥20 <u></u>	₹ 420 €	105	>420	
Corn 💍	\$\frac{9}{420}	⁰ >420 [©]	\$\text{420}	~420 _@	420	>420	
Oat 🗞	420	© >4.2 <u>10</u>	3 42 0	>420/	105	>420	
Onion de la companion de la co	#p5 _	20 05	JQ5 ~	≥105	13.1	>105	
Ryegrass	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$\frac{\$}{420} \times\$	Q420 V	\$\times 420	420	>420	

The most sense we Eico was obtained for bromass of sugar beet with a value of >6.6 mL product/ha. The lowest NOER was 0.6 mL product/ha, for sugar beet biomass.

Report:	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
Title:	Msoxa Putole ¥cyprosulfamide SC 240 + 240 g/L - effects on eleven species of non-target
Thie.	terestrial plants: seedling emergence and seedling growth test (tier 2)
Report No	S 06/03 06/0000 06/000 06/0000 06/0000 06/000 06/0000 06/000 06/000 06/0000 06/000 06/0000 06/00
	M-283023-01-1
Guidelines:	US PA Subdivision J, §123-1
	O&CD 208 (revised draft March 2005)
Deviations	none
GLP/GEP:	yes

Objective:

The aim of the study was to determine the effect of Isoxaflutole + Cyprosulfamide SC 240 + 240 g/L on the seedling emergence and seedling growth of eleven plant species representing a broad range of both dicotyledonuous and monocotyledonous plant families over a 21 day period.

Materials and methods:

Test item: Isoxaflutole & Cyprosulfamide SC 240+240 (analytical findings: Isoxaflutole 246 g/L Cyprosulfamide, 245 g/L; Specification No.: 102000014305, batch 10.: 2006-001042, Master recipe ID: 0034474-001, TOX-No.: 07429-00).

In total, seeds of eleven species were tested, including seven dicotyledonous species sugar beet (Beta vulgaris), oilseed rape (Brassica napus), cucumber (Cucumis sativus) buckwheat Fagopyrum esculentum), soybean (Glycine max), sunflower (Gelianthus abruus) and tomato (Lyconersicum esculentum) plus four monocotyledonous species oat (Alena sativa), ryegrass (Lolium pereine), com (Zea mays) and barley (Hordeum vulgare). All plants were sown and grown in pots in the glassifouse. Solutions of Isoxaflutole + Cyprosulfamide SC 240 + 240 v/L and serial dilutions were sprayed onto the soil surface with application rates ranging from 420 mL product had down to 0.52 mL product/ha using a laboratory track sprayer at a volume rate of 100 L/ha There were sox treatment levels for each species.

For corn and oat the employed rates were: 420, 210, 105, 52.5, 26, and 43.1 mL product/ha; for barley, soybean, sunflower and tomato: 210, 105, 52.5, 26.3, 13.1 and 6.6 of product/ha; for ryegrass, oilseed rape, cucumber, buckwheat: 405, 52.5, 26.3, 13.1, 6.6 and 3.3, mL product/ha and sugar beet: 105, 52.5, 26.3, 13.1, 6.6 and 3.3, 15.4 and 0.8 mt product/ha.

Pots were maintained under glasshouse conditions with a temperature control set at $23 \pm 8^{\circ}$ C during day and $18 \pm 8^{\circ}$ C at night with a 16 k photoperiod.

Five seeds were sown in each 10 cm diameter pots and there were \$ pots (replicates for each species) giving a total of 40 seeds per treatment level. The test duration was 21 days following treatment of the test item. Spray treatments were applied once to each species at test initiation with a laboratory track sprayer set at the nominal spray volume of 100 litres ha. Control plants were sprayed with deionised water.

All pots were and or benches within the Masshouse after treatment.

Visual observations for phytotoxicity were made on test days 7, 14 and 21. Final assessments were made for seedling emergence, growth stage, plant survival, shoot length and shoot biomass (dry weight) 21 days after application against the uniterated controls.

Dates of experimental work: September 18, 2006 to January 26, 2007

Results

Analysis of the highest application rate revealed it to be 93.2 - 101.1% of nominal.

This study can be considered valid as the validity criteria of individual percent of emergence and 90% survival of emerged seedlings during the study period of the controls was achieved for all species. Onion tailed the validity criteria, but this species was replaced by barley to ensure the required number of test species in this study.

Typical symptoms with Isoxaflutole + Cyprosulfamide SC 240 + 240 g/L observed in this study were bleaching, chlorosis, necrosis, leaf deformation and stunting. Some or all of these symptoms were exhibited in six of the tested species, however in less sensitive species they were only apparent on the higher treatment levels tested. Buckwheat, soybean, barley, corn and ryegrass showed no symptoms of phytotocixity.

Effects of Isoxaflutole & Cyprosulfamide SC 480 on seedling emergence of 11 plant specified

		mL product / ha Q Q Q				
Plant species	Survival		Shoot lenght &		Shoot dryweight	
	NOER	EC50	NOER	EC 50	° NAOÈR 🛴	E€50 €
Buckwheat	105	>105	20105	~>105 ©	₹ 105 ©	<i>©</i> >105 <i>©</i> ′
Cucumber	26.3	>105	v 3.3 °	>105		>105
Oilseed rape	105	>105	5 @ 5 ×	J >105	5 2 55	>105
Soybean	210	>210 🤻	3 3.1	2 10 ©	105	<i>≨</i> 210 ∠,°
Sugar beet	6.6	21.6	13.1°×	59.4	13.1	1 9.7
Sunflower	210	>219	263	~~ >2 /	52,5	∠ >21 0
Tomato	26.3	2010	/ 2 40 ^	v ×2√0 ∑) 2010 (S	>290
Barley	210	©210 ×	2 10 2	~ \$\tilde{2}10 \tilde{\infty}	3 210 &	<i>i</i> 💸 210
Corn	420	>420	420	>420	420	>420
Oat	420	~ >420 a	, 1 .05) >4 2 0 (420 (>420

Conclusion:

The most sensitive ER was prained for biomass to sugar beet with a value of 19.7 mL product/ha. length to cucumber. The lowest NOER

No studies are necessar

CP 10.6.4

No studies are necess

terrestrial organisms (flora and fauna)

No studies are necess

conitoring data **CP 10.8**

No studies arone