

#### **AGENDA**

01

#### INTRODUCTION

Importance of flight disruptions and problem statement

02

#### **METHODOLOGY**

Dataset overview and models tested

03

#### **RECCOMENDATIONS**

What actions should Delta Air Lines take in the future

04

#### **CONCLUSION**

Recap of project and next steps

#### SIGNIFICANCE OF FLIGHT DELAYS & **CANCELLATIONS**



#### **CANCELLATIONS**

Common and disruptive events in air travel

#### **IMPACT ON PASSENGERS**

Lead to traveler frustrations and





#### **BROADER IMPLICATIONS**

Can damage an airline's reputation and customer loyalty

## AIRLINE OPERATIONAL CHALLENGES



## INCREASED OPERATIONAL COSTS

Delays and cancellations often result in financial losses due to additional staffing, fuel, and accommodation costs

## RESOURCE MANAGEMENT

Disruptions lead to inefficient use of resources like aircraft and crew, affecting overall operational flow

## RIPPLE EFFECT ON SCHEDULES

A single delay can have a cascading effect, disrupting the schedule of multiple flights and causing broader network inefficiencies



#### **PROBLEM STATEMENT**





#### **OVERVIEW**

- Millions of flights
  - Multiple airlines
  - 2018-2022
- 61 original features
  - Origin, destination, departure time, delayed status, etc.

#### **DATASET**

#### FEATURE GENERATION

- Holiday closeness
- Delta Hubs (Origin & Destination)
- Flight congestion

#### **MODELS**

#### **XGBoost**

- Performs Well in Practice
- Fitting on Residuals

#### **Random Forest**

- **Ensemble Learning**
- **Reduces Overfitting**



#### **Naive Bayes**



- Simple Model
- Handles High **Dimensional Data**



- Handles Non-Linearity
- **Robust Generalization**

#### **Logistic Regression**

- Works Well for Linear Relationships
- Interpretable











# RESULTS AND ANALYSIS



#### MODEL PERFORMANCE



#### **XGBoost**

Highest Accuracy with 0.724

### **Naive Bayes**

Lowest Accuracy with 0.591

XGBoost has the capability to handle complex relationships within an extensive feature set

|                              | Accuracy |
|------------------------------|----------|
| Logistic Regression          | 0.708386 |
| Random Forest                | 0.713459 |
| Naive Bayes                  | 0.591443 |
| Support Vector Machine (SVM) | 0.704056 |
| XGBoost                      | 0.723925 |

## FEATURE IMPORTANCE









MONTH & QUARTER

Second highest



**MEM DAY** 

Least Important Feature

#### FEATURE PREDICTION ACCURACY

#### **Airports:**

Top 5 accuracies: XNA, MSN, DSM, TLH, JAN

#### Day of Week:

Tuesday has the highest accuracy

#### **Day in Month:**

1st day has the highest accuracy

## **Arrival Time Block:**

Block 4 (4:00 – 5:00 AM) has the highest accuracy

#### **Hub or Not:**

Hub Origin: Low accuracy
Hub Destination: High accuracy



What has been working and what needs to change



## LEAST DISRUPTIVE AIRPORTS



#### **AIRPORTS:**

XNA, MSN, DSM, TLH, JAN



#### **IMPLICATION:**

Apply successful strategies from these airports to more challenging ones

### **MOST DISRUPTIVE AIRPORTS**





#### **AIRPORTS:**

EYW, GNV, MTJ, PWM, MDT



## CONTRIBUTING FACTORS:

Geographic location, airport infrastructure, operational constraints









## RECCOMENDED APPROACH:

Targeted operations handling, enhanced resource allocation, apply successful strategies from previous airports

### DAY OF WEEK DISRUPTIONS







#### HIGHER DISRUPTION DAYS

Fridays and Sundays (overall weekends)



#### **REASONING**

Increased passenger traffic & tighter schedules lead to cascading delays



#### **STRATEGY**

Implement more robust strategies on peak days

## TIME OF DAY DISRUPTIONS



04:00 am **TIME BLOCK 4** Least disruptions

12:00 am **TIME BLOCK 0** Most disruptions

RESULTS IN CUMULATIVE DELAYS

Focus on morning punctuality to mitigate night delays





## OPTIMIZING FLIGHT SCHEDULING

Predictive analytics is essential in improving strategies against disruptions.

Key to Reducing Disruptions:

- Avoid scheduling during peak congestion
- Distribute flights evenly throughout the day
- Focus on worse performing airports
- Apply successful strategies to other airports

With more data can enhance accuracy of predictive model in the future.

#### **PROJECT RECAP**

## REVOLUTIONARY PREDICTIVE MODEL



XGBoost Capable of Forecasting Flight Status with 72.4% Accuracy

#### FEATURE-ORIENTED ANALYSIS



Uncovered factors influencing disruptions: flight congestion and proximity to major holidays



## ACTIONABLE INSIGHTS FOR DELTA

Identified successful strategies to apply to flights that are likely to face challenges



## POTENTIAL FUTURE DIRECTIONS

Investigate external factors: weather and global events and implement models with real-time data



## **QUESTIONS?**