Moon Premium – Giải pháp học trực tuyến số 1 Việt Nam 02. TÍNH ĐƠN ĐIỀU HÀM SỐ BẬC BA

Khóa Nền Tảng – Thầy Đặng Việt Hùng – Moon.vn

🗷 Dạng 1. Hàm số đồng biến, nghịch biến trên R

Câu 1 [383322]: Với giá trị nào của a thì hàm số $y = ax + x^3$ đồng biến trên \mathbb{R} .

A. $a \ge 0$.

B. a < 0.

C. a = 0.

D. $\forall a$.

Câu 2 [383323]: Hàm số $y = \frac{-1}{3}x^3 + (m-2)x^2 - mx + 3m$ nghịch biến trên khoảng xác định khi:

A. m < 0.

B. m > 4.

C. $1 \le m \le 4$.

D. $\begin{vmatrix} m < 1 \\ m > 4 \end{vmatrix}$.

Câu 3 [383324]: Hàm số $y = \frac{x^3}{3} + mx^2 + 4x$ đồng biến trên \mathbb{R} khi?

A. $-2 \le m \le 2$.

B. $\begin{vmatrix} m = -2 \\ m = 2 \end{vmatrix}$. **C.** $m \le -2$.

D. $m \ge 2$.

Câu 4 [383325]: Hàm số $y = \frac{-x^3}{3} + mx^2 - 4x$ nghịch biến trên \mathbb{R} khi:

 $\mathbf{A.} -2 \le m \le 2.$

B. $\begin{bmatrix} m = -2 \\ m = 2 \end{bmatrix}$. **C.** $m \le -2$.

D. $m \ge 2$.

Câu 5 [383326]: Hàm số nào sau đây nghịch biến trên \mathbb{R} với mọi m?

A. $y = -m^2 x^3 + m$.

B. $y = -m^2x^3 + mx^2 - 3x + 1$

C. $y = \frac{-mx+1}{x+m}$

D. $y = x^3 - 2mx + 1$

Câu 6 [383327]: Với giá trị nào của m, hàm số $y = -\frac{1}{3}x^3 + 2x^2 - mx + 2$ nghịch biến trên tập xác định của nó?

A. $m \le 4$.

B. $m \ge 4$.

C. m > 4.

D. m < 4.

Câu 7 [383328]: Với điều kiện nào của m thì hàm số $y = x^3 + (m-2)x^2 + (m^2-4)x + 9$ đồng biến trên \mathbb{R} ?

A. $m \ge 1$ hoặc $m \le -2$.

B. $m \ge 2$ hoặc $m \le -4$.

C. $m \ge 0$ hoặc $m \le -1$.

D. $m \ge 3$ hoặc $m \le -3$.

Câu 8 [383329]: Tất cả các giá trị của m để hàm số $f(x) = \frac{x^3}{3} + mx^2 + 4x$ đồng biến trên R là:

A. -2 < m < 2.

B. $-2 \le m \le 2$.

C. $m \le -2$.

D. $m \ge 2$.

Câu 9 [383330]: Tìm các giá trị m để hàm số $y = -\frac{1}{3}x^3 + (2m+1)x^2 - mx - 1$ nghịch biến trên \mathbb{R} .

$$\mathbf{A.} \ \frac{1}{4} \le m \le 1.$$

B.
$$-1 \le m \le -\frac{1}{4}$$
.

Câu 10 [383331]: Cho hàm số $y = -\frac{1}{3}x^3 + mx^2 + (3m+2)x + 1$. Số giá trị nguyên của m để hàm số nghịch biến trên \mathbb{R} là:

A. 0.

B. 1.

C. 2.

D. 3.

∡ Dạng 2. Hàm số đồng biến, nghịch biến trên một khoảng (a; b) – cô lập tham số

Câu 11 [383332]: Cho hàm số $y = x^3 - 6x^2 + mx + 1$. Số giá trị nguyên của $m \le 15$ để hàm số đồng biến trên khoảng (0;+∞) là:

A. 1.

C. 3.

D. 4.

Câu 12 [383333]: Tìm tất cả các giá trị thực của m để hàm số $y = x^3 - 6x^2 + mx + 1$ đồng biến trên khoảng $(0;+\infty)$.

A. $m \ge 0$.

B. $m \ge 12$.

C. $m \le 0$.

D. $m \le 12$.

Câu 13 [383334]: Tìm tất cả các giá trị thực của m để hàm số $y = x^3 + 3x^2 + (m-1)x + 4m$ nghịch biến trên khoảng (-1;1).

A. m > 4.

B. m < -8.

C. $m \ge 4$.

D. $m \le -8$.

Câu 14 [383335]: Tìm tất cả các giá trị thực của m để hàm số $y = -x^3 + 3x^2 + 3mx - 1$ nghịch biến trên khoảng $(2; +\infty)$.

A. $m \le 0$.

B. $m \le -1$.

C. m < 0.

D. m < 1.

Câu 15 [383336]: Tìm tất cả các giá trị thực của m để hàm số $y = x^3 + 3x^2 - mx - 4$ đồng biến trên khoảng $(-\infty;0)$.

A. $m \le 0$.

B. $m \le -3$.

C. m < 0.

D. m < -3.

Câu 16 [383337]: Có bao nhiều giá trị nguyên âm của m để hàm số $y = x^3 + 6x^2 + (m+2)x + m^2$ đồng biến trên khoảng (-1;+∞).

A. 0.

B. 1.

C. 2.

D. 3.

Câu 17 [383338]: Tìm m để hàm số $y = -x^3 - 3x^2 + 4mx - 2$ nghịch biến trên $(-\infty; 0]$

A. $m \le \frac{-3}{4}$.

B. $m \ge \frac{-3}{4}$. **C.** $m \ge \frac{3}{4}$.

D. $m \le \frac{3}{4}$.

Câu 18 [383339]: Cho hàm số $y = 2x^3 + 3x^2 + 6(m+1)x + m^2$. Số giá trị nguyên của $m \ge -5$ để hàm số nghịch biến trên khoảng (-2;0) là:

A. 0.

B. 1.

C. 2.

D. 3.

🗷 Dạng 3. Hàm số đồng biến, nghịch biến trên một khoảng (a; b) không cô lập m được

Câu 19 [383340]: Cho hàm số
$$y = 2x^3 - 3(2m+1)x^2 + 6m(m+1)x$$

Giá trị của tham số m để hàm số đồng biến trên khoảng $(2;+\infty)$ là _____

Câu 20 [383341]: Cho hàm số
$$y = x^3 - 3mx^2 + 3(m^2 - 1)x + m^2 - m$$
.

Số giá trị nguyên của m thuộc [-10;10] để hàm số đã cho đồng biến trên khoảng $(0;+\infty)$ là _____

Câu 21 [383342]: Cho hàm số
$$y = x^3 - 3(m+1)x^2 + 3(m^2 + 2m - 3)x$$
.

Tổng các giá trị nguyên của tham số m để hàm số nghịch biến trên khoảng (1,2) là _____

Câu 22 [383343]: Cho hàm số
$$y = 2x^3 - 3(2m+1)x^2 + 6m(m+1)x + 1$$

Số giá trị nguyên của tham số m để hàm số đã cho nghịch biến trên khoảng (-1;0) là _____

Câu 23 [383344]: Cho hàm số
$$y = \frac{1}{3}x^3 - \frac{1}{2}(2m-1)x^2 + (m^2 - m - 2)x + 2m - 1$$
.

Gọi S là tập hợp các giá trị nguyên của tham số m để hàm số nghịch biến trên khoảng (2;3).

Tổng các phần tử của tập hợp S là _____

Câu 24 [383345]: Cho hàm số
$$y = \frac{1}{3}x^3 - \frac{1}{2}(m^2 - m)x^2 - m^3x + 2$$
.

Số các giá trị nguyên của tham số m nhỏ hơn 10 để hàm số nghịch biến trên đoạn [1;4] là _____