Preen oil composition in pied flycatchers: reproducibility and ontogeny

Laurence Jeanjean, Tim Schmoll, Barbara A.Caspers & Marc Gilles 2024-03-26

Contents

1	Dat		2			
	1.1	Impor	t library and data	2		
	1.2 Pre-selection of samples for analysis			3		
1.3 Preparation of the Chemical data			ration of the Chemical data	3		
		1.3.1	Alignment of the chemical data with GCalignR	3		
		1.3.2	Transformation of the aligned data	5		
	1.4	ration of the Metadata	5			
		1.4.1	Calculating alpha diversity and Volatility measures	5		
	1.5 Control for Concentration bias					
2 Pre-registered analysis				8		
	2.1	.1 Sex and breeding pair effects during nestling-rearing:				
		2.1.1	NMDS plots	9		
		2.1.2	Richness (Number of substances recorded after alignment)	11		
		2.1.3	Diversity (Shannon Index)	16		
		2.1.4	Volatility	22		
2.2 Breed			reeding stage and individual identity effects in females:			
		2.2.1	NMDS plot	26		
		2.2.2	Richness	27		
		2.2.3	Diversity	33		
		2.2.4	Volatility	37		
3	Effe	Effect sizes (comparisons with pilot paper)				
	3.1	Calculation of Hedges'g effect sizes for both studies				
	3.2	Plot		45		

1	$\mathbf{E}\mathbf{x}\mathbf{p}$	oloratory analysis			
	4.1	Spatia	ıl analysis of pairs during nestling-rearing:	47	
		4.1.1	Spatial analysis in females:	48	
		4.1.2	Spatial analysis in males:	51	
	4.2	Life st	tage difference	54	
		4.2.1	NMDS plot	54	
		4.2.2	Richness	56	
		4.2.3	Diversity (Shannon Index)	61	
		4.2.4	Volatility	66	
4.	4.3	Nestli	ng-Adult similarities	71	
		4.3.1	Creating a Pairwise-Similarity data file	71	
		4.3.2	Mother VS father analysis	75	
		4.3.3	Mother VS other adult females analysis	78	
		4.3.4	Father VS other adult males analysis	80	
		4.3.5	Adult females VS adult males (other than mother and father) analysis	82	
		4.3.6	Plot	84	

• Context

The present document is an appendix of a paper on the preen oil composition in pied flycatchers (reproducibility and ontogeny). It contains the script for all R-based analyses from this paper. In the first part of this document, we prepare the chemical and meta data for analysis. In a second part, we present the code and results of our pre-registered analysis, replication of a pilot study by Gilles et al. (2024). In a last part you will find the code and results for our exploratory analyses on the same data-set.

- Pre-registered analysis: Jeanjean et al. 2023, https://osf.io/tbcug
- Original paper: Gilles M, Fokkema RW, Krosten P, Caspers BA, Schmoll T. Preen oil composition of Pied Flycatchers is similar between partners but differs between sexes and breeding stages. Ibis. 2024.

1 Data

1.1 Import library and data

Required library

```
library(tidyverse) # For data transformation and plots
library(readxl) # To upload excel files
library(lme4) # To fit the mixed model
library(lmerTest) # To obtain P-values of the mixed models
library(broom.mixed) # To obtain $\beta$ estimates and their confidence intervals of the fixed effects
library(partR2) # To obtain marginal R2
library(rptR) # To obtain repeatability of random effects
library(performance) # For model diagnostics
#library(qaplotr) # For the performance package to fully function
```

```
library(see) # For the performance package to fully function
library(patchwork) # For the performance package to fully function
library(effsize) # For effect sizes
library(vegan) # For Bray Curtis matrices in the spatial analysis
library(glmmTMB) # For Pairwise distance analyses
library(GCalignR) # For the chemical alignment
```

Import data

```
setwd("~/Internship Pied Flycatchers/Analyse/Final Markdown")
Metadata <- read_excel("metadata.xlsx")
ChemdataRaw <- read.csv("chemdata.csv", header = F, check.names = F)
MetadataP1 <- read_excel("metadata_orig.xlsx")
eff_sizes <- read_excel("effect_sizes.xlsx")
GPSNetboxes <- read.csv("gpsdata.csv")</pre>
```

1.2 Pre-selection of samples for analysis

We discard N=23 samples for which the chromatogram seemed to carry too much noise or no preen oil substances, N=2 samples for which information on breeding stage was missing, and N=6 samples from individuals that were sampled twice during nestling-rearing (in that case we kept the second sample, the first one being too close to the hatching date). We are left with a total of 218 samples.

-> Maybe I should add here that 8 more samples end up being discarded because they have been identified as clear outliers. 4 are incubating females, so we talk about it in the methods as this changes the pre-registered sample sizes, but 3 are nestlings and 1 is an incubating male. Maybe I should remove the male from the outlier list as incubating males did not make it in the final analysis anyway, but I should probably mention the 3 nestlings somewhere? And also mention somewhere that the total number of sampled used in at least one analysis in 210 (is it though? There are more incubating males in this number... Better only mention the sample size in each relevant group as we already did).

```
Metadata <- Metadata %>%

filter(GCsuccess == 1, # Remove samples with too much noise or no preen oil

Breeding_Stage != "NA", # Remove samples with no information on breeding stage

CapturedTwiceNR == 0) %>% # Remove samples from individuals sampled twice during nestling-rear

select(-c(GCsuccess, CapturedTwiceNR, captureevent, wing, mass, drost, GCbatch)) # Remove variables t
```

1.3 Preparation of the Chemical data

1.3.1 Alignment of the chemical data with GCalignR

```
#Creating a file in the right format for GCalignR
aligndata <- ChemdataRaw[,!(ChemdataRaw[3,]=="failed chromatogram")] # Removing failed samples
aligndata <- aligndata[,!(aligndata[3,]=="no chromatogram")]
aligndata <- aligndata[,c(T,T,F,F)] # Removing 3rd and 4th colomn
sampleids <- aligndata[1,] # create a dataframe with just the first row
sampleids <- sampleids[,c(T,F)] # remove empty cell between each sampleID
RTarea <- matrix(c("RT","area")) # prepare the row with RT/area
RTarea <- t(RTarea) # flip columns and rows
RTarea <- data.frame(RTarea)</pre>
```

```
aligndata <- qpcR:::rbind.na(sampleids, RTarea, aligndata) # bind sampleIDs, RTarea and the data, fill
ChemdataRaw <- aligndata[-c(3,4),] # remove unnecessary rows
write.table(ChemdataRaw, "Alignment.txt",
            row.names = F, col.names = F, sep="\t", na = "", quote = F) # save as a .txt file
check_input("Alignment.txt") # check that the data format is good
#Choosing a reference sample
choose optimal reference(data = "Alignment.txt", rt col name = "RT")
#Grouping blanks and field controls in a separate file
blanks <- c("blank1108_1", "blank1108_2", "blank1208_1", "blank1208_5", "blank1308_1", "blank1308_2", "
            "L21", "L31", "L49", "L62", "L44", "L70", "L82", "L91", "L97", "L133", "L166", "L199", "L23
#Alignment
alignedData <- align_chromatograms(</pre>
  data = "Alignment.txt", # raw chromatographic data
  rt_col_name = "RT",
  reference = "L223", # obtained from the function 'choose_optimal_reference()'
  blanks = blanks, # delete substances detected in control samples
  delete_single_peak = TRUE, # delete substances detected in one sample only
  remove_empty = TRUE, # remove empty samples
  max_linear_shift = 0.03, # expected linear drift
  max_diff_peak2mean = 0.015, # allowed RT difference of a peak with the mean of the corresponding row
 min_diff_peak2peak = 0.035, # expected minimum RT difference among homologous substances
  permute = F, # keep the order of samples constant between different alignments
  write_output = c("area"))
print(alignedData)
save(alignedData, file = "alignedData.RData")
# Diagnistics plots
gc_heatmap(alignedData,threshold = 0.02)
plot(alignedData, which_plot = "all")
```

If the chemical data has already been aligned once on the computer, instead of running the alignment each time, the aligned data can directly be loaded

```
load("~/Internship Pied Flycatchers/Analyse/Final Markdown/alignedData.RData")
```

Manual method (load the data from the text file created by GC-alignR)

```
Chemdata <- read.table("Alignment_area.txt",header = F)
samplenames <- Chemdata[1,]
rownames(Chemdata) <- as.matrix(Chemdata[,1])
Chemdata <- Chemdata[,-1]
colnames(Chemdata) <- as.matrix(Chemdata[1,])
Chemdata <- Chemdata[-1,]
Chemdata <- as.data.frame(t(Chemdata))
str(Chemdata)
chemdata.num <- data.frame(lapply(Chemdata, function(x) as.numeric(as.character(x))))
str(chemdata.num)
chemdata.num$sample <- t(samplenames)[-1,]
chemdata.num[names(chemdata.num)=='sample']</pre>
```

1.3.2 Transformation of the aligned data

Standardize the aligned data

```
Chemdata.norm <- norm_peaks(alignedData, conc_col_name = "area",rt_col_name = "RT",
out = "data.frame")</pre>
```

Log-transforme the aligned data

```
Chemdata <- log(Chemdata.norm + 1)
```

1.4 Preparation of the Metadata

1.4.1 Calculating alpha diversity and Volatility measures

Chemical richness: the number of substances in each sample

```
Richness <- specnumber(Chemdata)
```

Shannon Diversity of each sample

```
Shannon_Index <- diversity(Chemdata)
```

Volatility: i.e. the proportion of highly volatile compounds (total area under the chromatogram before peak C (retention time 10.12))

```
# We get the volatility on the chemical data non log-transformed (Chemdata.norm)
CumSum <- t(apply(Chemdata.norm, 1, cumsum))
volatility <- CumSum[,"9.922", drop = F]
colnames(volatility) <- "Volatility"
volatility <- as.data.frame(volatility)</pre>
```

Example of the cumulative abundance curve of one sample for visualisation

```
RT <- as.numeric(colnames(CumSum))
prop <- CumSum["L61",] # sample L61
data.plot <- data.frame(RT, prop)

theme_set(theme_classic())
ggplot(data.plot, aes(x=RT, y=prop))+</pre>
```

```
geom_line()+
geom_vline(xintercept=10, color="red")+
xlab("Retention Time (min)")+
ylab("Proportion of Abundance (%)") +
annotate("text", x=10.4, y=28, label= "C", color="red")+
annotate("text", x=5.5, y=50, label= "High Volatility")+
ggtitle("Proportion of abundance in relation with the retention time of one sample")
```

Proportion of abundance in relation with the retention time of one sample

Add the alpha-diversity and volatility measures to the Metadata

How many substances:

```
ncol(Chemdata)
```

[1] 88

```
mean(Metadata$Richness)

## [1] 24.45872

sd(Metadata$Richness)

## [1] 7.448789

On the 218 samples retained for alignment, we find 88 substances. On average, each sample has 24 substances (sd = 7).

# Create a Sample data set and a Sample variable in Chemdata
Sample <- rownames(Chemdata)
Chemdata <- rownames_to_column(Chemdata, var = "Sample")</pre>
```

1.5 Control for Concentration bias

Plot the Shannon diversity against "concentration", i.e. the total area under the chromatogram divided by the number of substances (the mean area under a substance in each sample)

```
# We need to calculate the area under the entire chromatogram, therefore we use
# the raw chemical data, before alignment.
TotArea <- ChemdataRaw[,!(ChemdataRaw[3,]=="failed chromatogram")]</pre>
TotArea[1, seq(2, ncol(TotArea), by = 2)] <- TotArea[1, seq(1, ncol(TotArea), by = 2)] # So that the ar
TotArea <- TotArea[,c(F,T,F,F)] # select the areas</pre>
TotArea <- TotArea[-2,]</pre>
TotArea <- t(TotArea)</pre>
TotArea <- as.data.frame(TotArea)</pre>
SampleTotArea <- TotArea[,1]</pre>
SampleTotArea <- as_tibble(SampleTotArea)</pre>
SampleTotArea <- SampleTotArea %>% rownames to column()
TotArea <- as_tibble(TotArea)</pre>
TotArea <- TotArea%>% # Calculate the total area under each chromatogram
  mutate_all(funs(as.integer(as.character(.))))%>%
  rowwise() %>%
 mutate(AreaTot= sum(c_across(), na.rm = T))%>%
  dplyr::select("AreaTot", everything())
TotArea <- TotArea%>%
  select(AreaTot)%>%
  rownames_to_column()
df_list <- list(SampleTotArea, TotArea)</pre>
TotArea <- df_list%>%
  reduce(full_join, by="rowname")%>%
  select(value, AreaTot)%>%
  rename(Sample = value)
df_list <- list(Metadata, TotArea)</pre>
plot.Concentration <- df_list%>% # Combine with the metadata
  reduce(full join, by="Sample")%>%
  filter(Individual_ID != "NA")%>% # select only the samples that get used during analyses
  mutate(Concentration = AreaTot/Richness) # calculate our proxy for the concentration of each sample
```

```
# plot
ggplot(plot.Concentration, aes(x=Concentration, y=Shannon_Index))+
geom_point(shape=19)+
geom_smooth(color="#00CED1", se=F)+
ylab("Shannon Index")+
xlab("Concentration")
```


Unlike for the original study, although there is a positive relationship between "concentration" and Shannon diversity, there is no clear concentration threshold under which the Shannon diversity drops. Therefore, we will not discard additional samples from our data set.

2 Pre-registered analysis

You will find here the NMDS and GLMM analysis that we replicated from Gilles et al. (2024). The PER-MANOVA and PERMDISP analyses were conducted using PRIMER v7.0.21, and therefore are not available on this document.

We studied the effects of sex (fixed) and pair identity (random), as well as the effects of breeding stage (fixed) and individual identity (random) on the chemical richness, Shannon diversity and volatility of preen oil using linear mixed models (LMM) with Gaussian distributions, using the *lme4* package (Bates et al. 2014). We assessed the significance of fixed effects by checking whether the 95% confidence interval of the beta estimates contained 0 using the broom.mixed package (Bolker et al. 2022), and also checked P-values using the *lmerTest* package (Kuznetsova et al. 2017). The significance of random effects was evaluated by checking whether the 95% confidence intervals of the repeatability estimates contained 0, and by checking the P-value based on permutations, using the *rptr* package (Stoffel et al. 2017). In addition, we measured the variance explained

(marginal R^2) by each fixed effect using the partR2 package (Stoffel et al. 2021). We verified the assumptions for LMMs using the performance package (Lüdecke et al. 2021).

2.1 Sex and breeding pair effects during nestling-rearing:

Data = 46breeding pairs (92 samples) sampled during the nestling-rearing period

```
# Subset of the Metadata for the sex and breeding pair analyses:
Pairs_Nrearing <-Metadata%>% #92 samples
filter(pair_brood==1)%>%
select(-c(Outliers, F_Connected_to_Outlier, Partner_Connected_to_Outlier, f_sampled_twice, Families,)
```

2.1.1 NMDS plots

Here we create NMDS plots showing the similarity between our samples on a 2D scale. We use Bray-Curtis distances as our similarity measure.

Step 1: Building a Bray-Curtis matrix for our 92 samples

```
ChemdataSex <- Chemdata%>%
filter(Sample %in% Pairs_Nrearing$Sample)%>%
select(-Sample)# Select the subset of Chemdata from our 92 samples
bc <- metaMDS(ChemdataSex, distance = "bray") # Bray-Curtis matrix
```

Step 2: Checking the stress (how good the distance between samples in actual multivariate distance is represented in two dimensions)

```
bc$stress
```

[1] 0.07472752

Step 3: Plot the NMDS, here by sex

```
bc <- as.data.frame(bc[["points"]]) # Create a data file with the coordinates of each samples in the Br
# Add the coordinates of each sample in the Subset of the Metadata
Pairs_Nrearing$MDS1 <- bc$MDS1
Pairs_Nrearing$MDS2 <- bc$MDS2</pre>
# plot
ggplot(Pairs_Nrearing) +
  geom_point(aes(x=MDS1, y=MDS2, color = Sex, size = Sex, shape = Sex)) +
  stat_ellipse(aes(MDS1, MDS2, color = Sex), type = "t", level = 0.95) +
  scale_size_manual(values=c(5,5)) +
  scale_shape_manual(values=c(16,16)) +
  scale_color_manual(values = c("#BCBAB7","#19181E")) +
  theme_void() +
  theme(panel.background = element_rect(colour = "grey3", size = 0.3, fill = NA),
        aspect.ratio = 1,
        legend.title = element_blank(),
        legend.position = c(0.08, 0.9),
        legend.text = element text(size=8),
        legend.background = element_rect(size = 0.4, linetype = "solid", color = "grey"),
```

```
legend.key.size = unit(0.3, "cm"),
legend.margin = margin(0,2,2,2),
plot.margin=unit(c(1,1,1,1),"cm"))
```


We can see here that there seem to be no difference in position or dispersion between male and female samples, as confirmed by the PERMANOVA and PERMDISP analyses on PRIMER.

The PERMANOVA analysis also shows that breeding pairs are significantly more similar to each other than random. Therefore, we also create an NMDS plot by breeding pairs. To make the figure more easy to read, we choose randomly 12 breeding pairs that will be represented in the plot.

2.1.2 Richness (Number of substances recorded after alignment)

a. Visualisation of the distribution of our data and of the sex difference (within pairs) in terms of chemical richness.

```
theme_set(theme_classic())
ggplot(Pairs_Nrearing)+
  geom_freqpoly(aes(x=Richness, color=Sex), binwidth=4)+
  ylab("Number of samples")+
  xlab("Number of substances")+
  scale_color_manual(values = c("F"="grey", "M"="grey8"))
```



```
ggplot(Pairs_Nrearing, aes(x=Sex, y=Richness))+
  geom_boxplot(data = Pairs_Nrearing %>% filter(Sex=="F"),
               aes(x=Sex, y=Richness),
               position=position_nudge(x=-0.3), outlier.shape = NA, width = .25, lwd = 0.5,
               alpha = .8, colour="black", fill = "grey")+
  geom_boxplot(data = Pairs_Nrearing %>% filter(Sex=="M"), lwd = 0.5,
               aes(x=Sex, y=Richness),
              position=position_nudge(x=0.3), outlier.shape = NA, width = .25,
               alpha = .8, colour="black", fill = "grey8")+
  geom_line(aes(group=Nestbox_ID), alpha=0.1, size = 0.6, position=position_dodge(0), show.legend = FAL
  geom_point(size = 0.6) +
  scale_x_discrete(labels=c("Female","Male")) +
  ylab("Number of Substances")+
  theme(axis.title.y=element_text(size=16, margin = margin(t = 0, r = 10, b = 0, l = 0)),
        axis.text.y = element_text(size=13),
       axis.text.x = element_text(size=14),
       axis.title.x = element_blank())
```


In this boxplot, each point represents a sample, and each line connects the members of a breeding pair.

b. Analysis

• Fitting the model

```
LMM_Sex_R <- lme4::lmer(formula = "Richness ~ Sex + (1 | Nestbox_ID)", data = Pairs_Nrearing)
summary(LMM_Sex_R)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Richness ~ Sex + (1 | Nestbox_ID)
##
      Data: Pairs_Nrearing
##
## REML criterion at convergence: 581.7
##
## Scaled residuals:
##
                    Median
                                        Max
##
   -2.9701 -0.6018
                    0.1371
                            0.6521
                                     2.4145
##
## Random effects:
    Groups
               Name
                           Variance Std.Dev.
    Nestbox_ID (Intercept)
                            2.123
                                     1.457
##
##
    Residual
                           32.441
                                     5.696
## Number of obs: 92, groups: Nestbox_ID, 46
##
## Fixed effects:
```

```
Estimate Std. Error t value
                             0.8668 25.731
## (Intercept) 22.3043
## SexM
                 1.0870
                             1.1876
##
## Correlation of Fixed Effects:
##
        (Intr)
## SexM -0.685
  • Finding the P-value for the fixed effect
summary(lmerTest::lmer(formula = "Richness ~ Sex + (1 | Nestbox_ID)", data = Pairs_Nrearing))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: "Richness ~ Sex + (1 | Nestbox_ID)"
      Data: Pairs_Nrearing
##
## REML criterion at convergence: 581.7
##
## Scaled residuals:
##
                1Q Median
       Min
                                 3Q
                                        Max
## -2.9701 -0.6018 0.1371 0.6521 2.4145
##
## Random effects:
  Groups
               Name
                            Variance Std.Dev.
## Nestbox_ID (Intercept)
                            2.123
                                     1.457
                            32.441
                                     5.696
## Residual
## Number of obs: 92, groups: Nestbox_ID, 46
##
## Fixed effects:
##
               Estimate Std. Error
                                         df t value Pr(>|t|)
## (Intercept) 22.3043
                             0.8668 89.6618 25.731
                                                       <2e-16 ***
## SexM
                 1.0870
                             1.1876 45.0000
                                              0.915
                                                        0.365
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Correlation of Fixed Effects:
##
        (Intr)
## SexM -0.685
P-value = 0.365 -> non significant.
  • Finding the \beta estimate and it's confidence interval (fixed effect)
tidy(LMM_Sex_R, conf.int = TRUE, conf.method = 'boot')
## # A tibble: 4 x 8
##
     effect
                                          estimate std.error stati~1 conf.~2 conf.~3
              group
                          term
     <chr>>
                          <chr>
                                              dbl>
                                                                <dbl>
                                                                         <dbl>
                                                                                 <dbl>
              <chr>>
                                                        <dbl>
## 1 fixed
                                              22.3
              < NA >
                          (Intercept)
                                                        0.867
                                                               25.7
                                                                         20.6
                                                                                 24.0
## 2 fixed
              <NA>
                                               1.09
                                                        1.19
                                                                0.915
                                                                         -1.30
                                                                                  3.34
                          SexM
## 3 ran_pars Nestbox_ID sd__(Intercept)
                                              1.46
                                                       NΑ
                                                               NA
                                                                          0
                                                                                  3.61
## 4 ran_pars Residual
                         sd__Observation
                                                                                  6.52
                                              5.70
                                                       NA
                                                               NA
                                                                          4.47
## # ... with abbreviated variable names 1: statistic, 2: conf.low, 3: conf.high
```

 β estimate of sexM effect: 1.09 -> males have on average 1.09 more substances than females in our samples. Confidence interval: [-1.60; 3.38] -> includes "0".

• Finding the marginal R² (fixed effect)

```
partR2(LMM_Sex_R, nboot = 1000)
```

Marginal R^2 for the effect of sex: 0.0086 The sex effect only explains 0.86% of the variation of richness in adults during nestling-rearing.

• Finding the repeatability (random effect)

```
rpt(Richness ~ Sex + (1 | Nestbox_ID),
    grname = "Nestbox_ID",
    data = Pairs_Nrearing, datatype = "Gaussian",
    nboot = 1000, npermut = 1000,
    adjusted = TRUE)
```

```
## Bootstrap Progress:
## Permutation Progress for Nestbox_ID :

##
##
## Repeatability estimation using the lmm method
##
## Repeatability for Nestbox_ID
## R = 0.061
## SE = 0.109
## CI = [0, 0.354]
## P = 0.338 [LRT]
##
## 0.375 [Permutation]
```

Repeatability of the NestboxID effect: 0.061 -> 6.1% of the variation of richness between samples is due to the variation between pairs in our data. P(perm)= 0.342, non significant. The chemical richness is not repeatable between partners.

• Model diagnostic

2.1.3 Diversity (Shannon Index)

a. Visualisation of the distribution of our data and of the sex difference (within pairs) in terms of Shannon diversity.

b. Analysis

• Fitting the model

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: Shannon_Index ~ Sex + (1 | Nestbox_ID)
##
      Data: Pairs_Nrearing
##
## REML criterion at convergence: 8.1
##
## Scaled residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -4.4774 -0.4051 0.1037 0.6733 1.6916
##
## Random effects:
   Groups
                           Variance Std.Dev.
##
               Name
   Nestbox_ID (Intercept) 0.00000 0.0000
## Residual
                           0.05881 0.2425
## Number of obs: 92, groups: Nestbox_ID, 46
##
## Fixed effects:
               Estimate Std. Error t value
##
```

```
## (Intercept) 2.56738
                            0.03576 71.804
## SexM
                0.03856
                            0.05057
                                      0.763
##
## Correlation of Fixed Effects:
        (Intr)
## SexM -0.707
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
  • Finding the P-value for the fixed effect
summary(lmerTest::lmer(formula = "Shannon_Index ~ Sex + (1 | Nestbox_ID)", data = Pairs_Nrearing))
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: "Shannon_Index ~ Sex + (1 | Nestbox_ID)"
##
      Data: Pairs_Nrearing
## REML criterion at convergence: 8.1
## Scaled residuals:
##
                1Q Median
       Min
                                 3Q
                                        Max
## -4.4774 -0.4051 0.1037 0.6733 1.6916
##
## Random effects:
                           Variance Std.Dev.
## Groups
               Name
## Nestbox_ID (Intercept) 0.00000 0.0000
## Residual
                            0.05881 0.2425
## Number of obs: 92, groups: Nestbox_ID, 46
##
## Fixed effects:
                                          df t value Pr(>|t|)
               Estimate Std. Error
## (Intercept) 2.56738
                           0.03576 90.00000 71.804
                0.03856
                           0.05057 90.00000
                                               0.763
                                                         0.448
## SexM
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
##
        (Intr)
## SexM -0.707
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
P-value = 0.448 \rightarrow non significant.
  • Finding the \beta estimate and it's confidence interval (fixed effect)
```

tidy(LMM_Sex_D, conf.int = TRUE, conf.method = 'boot')

```
## # A tibble: 4 x 8
##
     effect group
                         term
                                         estimate std.error stati~1 conf.~2 conf.~3
     <chr>
##
              <chr>>
                         <chr>
                                             <dbl>
                                                       <dbl>
                                                               <dbl>
                                                                       <dbl>
## 1 fixed
              <NA>
                         (Intercept)
                                            2.57
                                                      0.0358 71.8
                                                                      2.49
                                                                                2.63
## 2 fixed
              <NA>
                         SexM
                                            0.0386
                                                      0.0506
                                                               0.763 -0.0702
                                                                                0.132
## 3 ran_pars Nestbox_ID sd__(Intercept)
                                            0
                                                              NA
                                                                      0
                                                                                0.133
                                                     NA
## 4 ran_pars Residual
                         sd Observation
                                            0.243
                                                     NA
                                                              NA
                                                                      0.190
                                                                                0.275
## # ... with abbreviated variable names 1: statistic, 2: conf.low, 3: conf.high
```

 β estimate of sexM effect: 0.038 -> males have an average greater diversity of 0.038 than females in our samples. Confidence interval: [-0.059 ; 0.14] -> includes "0".

• Finding the marginal R² (fixed effect)

```
partR2(LMM_Sex_D, nboot = 1000)
```

Marginal \mathbb{R}^2 for the effect of sex: 0.0064 So the sex only explain 0.64% of the variation of the diversity in our data.

• Finding the repeatability (random effect)

```
rpt(Shannon_Index ~ Sex + (1 | Nestbox_ID),
    grname = "Nestbox_ID",
    data = Pairs_Nrearing, datatype = "Gaussian",
    nboot = 1000, npermut = 1000,
    adjusted = TRUE)
## Bootstrap Progress:
```

```
## Permutation Progress for Nestbox_ID :

##
##
## Repeatability estimation using the lmm method
##
## Repeatability for Nestbox_ID
## R = 0
## SE = 0.093
## CI = [0, 0.324]
## P = 1 [LRT]
##
## 1 [Permutation]
```

Repeatability of the NestboxID effect: $0 \rightarrow 0\%$ of the variation of diversity between samples is due to the variation between pairs in our data. The diversity is not repeatable between partners.

• Model diagnostic

check model(LMM Sex D)

2.1.4 Volatility

a. Visualisation of the distribution of our data and of the sex difference (within pairs) in terms of volatility.

b. Analysis

SexM

-0.3595

• Fitting the model

```
LMM_Sex_V <- lme4::lmer(formula = "Volatility ~ Sex + (1 | Nestbox_ID)", data = Pairs_Nrearing)
summary(LMM_Sex_V)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Volatility ~ Sex + (1 | Nestbox_ID)
##
      Data: Pairs_Nrearing
## REML criterion at convergence: 249.3
##
## Scaled residuals:
       Min
                1Q Median
                                ЗQ
                                       Max
## -2.5329 -0.7089 -0.1806 0.6859
                                    2.4298
##
## Random effects:
  Groups
               Name
                           Variance Std.Dev.
## Nestbox_ID (Intercept) 0.006745 0.08213
                           0.851410 0.92272
##
   Residual
## Number of obs: 92, groups: Nestbox_ID, 46
##
## Fixed effects:
##
               Estimate Std. Error t value
## (Intercept)
                2.3379
                            0.1366 17.117
```

0.1924 -1.868

```
##
## Correlation of Fixed Effects:
        (Intr)
## SexM -0.704
  • Finding the P-value for the fixed effect
summary(lmerTest::lmer(formula = "Volatility ~ Sex + (1 | Nestbox_ID)", data = Pairs_Nrearing))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: "Volatility ~ Sex + (1 | Nestbox_ID)"
##
      Data: Pairs_Nrearing
##
## REML criterion at convergence: 249.3
##
## Scaled residuals:
                1Q Median
       Min
                                 3Q
                                        Max
## -2.5329 -0.7089 -0.1806 0.6859 2.4298
##
## Random effects:
## Groups
               Name
                           Variance Std.Dev.
## Nestbox_ID (Intercept) 0.006745 0.08213
                           0.851410 0.92272
## Residual
## Number of obs: 92, groups: Nestbox_ID, 46
##
## Fixed effects:
##
               Estimate Std. Error
                                         df t value Pr(>|t|)
               2.3379
                            0.1366 89.9944 17.117
                                                      <2e-16 ***
## (Intercept)
## SexM
                -0.3595
                            0.1924 45.0000 -1.868
                                                      0.0682 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
##
        (Intr)
## SexM -0.704
P-value = 0.068 -> non significant.
  • Finding the \beta estimate and it's confidence interval (fixed effect)
tidy(LMM_Sex_V, conf.int = TRUE, conf.method = 'boot')
## # A tibble: 4 x 8
              group
                                          estimate std.error stati~1 conf.~2 conf.~3
##
     effect
                         term
##
     <chr>>
              <chr>
                         <chr>
                                             <dbl>
                                                       <dbl>
                                                                <dbl>
                                                                        <dbl>
## 1 fixed
              <NA>
                         (Intercept)
                                            2.34
                                                       0.137
                                                                17.1
                                                                        2.07 2.63
## 2 fixed
              <NA>
                                           -0.359
                                                       0.192
                                                                -1.87 -0.694 0.00954
                         SexM
## 3 ran_pars Nestbox_ID sd__(Intercept)
                                            0.0821
                                                      NA
                                                                NA
                                                                        0
                                                                              0.526
                         sd__Observation
## 4 ran_pars Residual
                                            0.923
                                                      NA
                                                                NA
                                                                        0.730 1.04
```

... with abbreviated variable names 1: statistic, 2: conf.low, 3: conf.high

 β estimate of sexM effect: -0.36 -> males have a proportion of on average 0.36 less volatile substances than females in our samples. Confidence interval: [-0.75; 0.048] -> includes "0".

• Finding the marginal R² (fixed effect)

Marginal R^2 for the effect of sex: 0.0367 So the sex only explain 3.67% of the variation of volatility in our data.

• Finding the repeatability (random effect)

Part (semi-partial) R2:
[1] "No partitions selected."

```
rpt(Volatility ~ Sex + (1 | Nestbox_ID),
    grname = "Nestbox_ID",
    data = Pairs_Nrearing, datatype = "Gaussian",
    nboot = 1000, npermut = 1000,
    adjusted = TRUE)

## Bootstrap Progress:
## Permutation Progress for Nestbox_ID :

##
##
##
## Repeatability estimation using the lmm method
##
## Repeatability for Nestbox_ID
## R = 0.008
## SE = 0.094
```

Repeatability of the NestboxID effect: 0.008 -> 0.8% of the variation of volatility between samples is due to the variation between pairs in our data. P(perm)= 0.515, non significant. The volatility is not repeatable between partners.

• Model diagnostic

0.503 [Permutation]

CI = [0, 0.29]## P = 0.479 [LRT]

2.2 Breeding stage and individual identity effects in females:

Data = 29 individual females (58 samples) sampled both during the incubation and nestling-rearing period

2.2.1 NMDS plot

Step 1: Building a Bray-Curtis matrix

```
ChemdataBS <- Chemdata%>%
  filter(Sample %in% F_sampled_twice$Sample)%>%
  select(-Sample)
bc <- metaMDS(ChemdataBS, distance = "bray")</pre>
```

Step 2: Checking the stress

bc\$stress

[1] 0.07181659

Step 3: Plot the NMDS, here by breeding stage

2.2.2 Richness

a. Visualisation of the distribution of our data and of the breeding stage difference (within individuals) in terms of chemical richness.

```
theme_set(theme_classic())
ggplot(F_sampled_twice)+
  geom_freqpoly(aes(x=Richness, color=Breeding_Stage), binwidth=4)+
  scale_color_manual(values = c("Incubation"="#66cdff", "N_Rearing"="#97704d"))
```



```
ggplot(F_sampled_twice, aes(x=Breeding_Stage, y=Richness))+
  geom_boxplot(data = F_sampled_twice %>% filter(Breeding_Stage=="Incubation"),
               aes(x=Breeding_Stage, y=Richness),
               position=position_nudge(x=-0.3), outlier.shape = NA, width = 0.25, lwd = 0.5,
               alpha = 0.8, colour="black", fill = "#66cdff")+
  geom_boxplot(data = F_sampled_twice %>% filter(Breeding_Stage=="N_Rearing"), lwd = 0.5,
               aes(x=Breeding_Stage, y=Richness),
               position=position_nudge(x=0.3), outlier.shape = NA, width = 0.25,
               alpha = 0.8, colour="black", fill = "#97704d")+
  geom_line(aes(group=Individual_ID),alpha = 0.1, size = 0.6, position=position_dodge(0), show.legend =
  geom_point(aes(color = Breeding_Stage), alpha = 0.8, size=2.5,show.legend = FALSE)+
  scale_color_manual(values = c("#66cdff", "#97704d")) +
  scale_x_discrete(labels=c("Incubation","Nestling-rearing")) +
  ylab("Number of substances") +
  theme(axis.title.y=element_text(size=16, margin = margin(t = 0, r = 10, b = 0, l = 0)),
        axis.text.y = element_text(size=13),
        axis.text.x = element_text(size=14),
        axis.title.x = element blank())
```


- b. Analysis
- Fitting the model

```
LMM_B_Stage_R <- lme4::lmer(formula = "Richness ~ Breeding_Stage + (1 | Individual_ID)", data = F_samp
## boundary (singular) fit: see help('isSingular')
summary(LMM_B_Stage_R)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Richness ~ Breeding_Stage + (1 | Individual_ID)
      Data: F_sampled_twice
##
##
## REML criterion at convergence: 370.1
##
## Scaled residuals:
                1Q Median
##
       Min
                                3Q
                                       Max
  -2.9129 -0.6031 0.1668 0.6337
##
## Random effects:
                              Variance Std.Dev.
    Groups
                  Name
   Individual_ID (Intercept) 0.00
                                       0.000
                              38.48
                                       6.203
   Residual
##
```

```
## Number of obs: 58, groups: Individual_ID, 29
##
## Fixed effects:
                           Estimate Std. Error t value
##
## (Intercept)
                             27.966
                                        1.152 24.278
## Breeding_StageN_Rearing
                           -4.897
                                        1.629 -3.006
## Correlation of Fixed Effects:
##
               (Intr)
## Brdng_StN_R -0.707
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
  • Finding the P-value for the fixed effect
summary(lmerTest::lmer(formula = "Richness ~ Breeding_Stage + (1 | Individual_ID)", data = F_sampled_t
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: "Richness ~ Breeding_Stage + (1 | Individual_ID)"
##
     Data: F_sampled_twice
##
## REML criterion at convergence: 370.1
##
## Scaled residuals:
      Min
               1Q Median
                                3Q
                                       Max
## -2.9129 -0.6031 0.1668 0.6337 2.2458
##
## Random effects:
## Groups
                              Variance Std.Dev.
            Name
## Individual_ID (Intercept) 0.00
                                       0.000
## Residual
                              38.48
                                       6.203
## Number of obs: 58, groups: Individual_ID, 29
##
## Fixed effects:
                           Estimate Std. Error
                                                   df t value Pr(>|t|)
##
## (Intercept)
                             27.966
                                       1.152 56.000 24.278 < 2e-16 ***
                                        1.629 56.000 -3.006 0.00396 **
## Breeding_StageN_Rearing
                          -4.897
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Correlation of Fixed Effects:
##
               (Intr)
## Brdng StN R -0.707
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
```

• Finding the β estimate and it's confidence interval (fixed effect)

P-value = 0.004 -> significant **

```
tidy(LMM_B_Stage_R, conf.int = TRUE, conf.method = 'boot')
```

```
## # A tibble: 4 x 8
##
     effect group
                                            estim~1 std.e~2 stati~3 conf.~4 conf.~5
                            term
##
     <chr>
              <chr>
                            <chr>
                                              <dbl>
                                                      <dbl>
                                                               <dbl>
                                                                       <dbl>
## 1 fixed
              <NA>
                            (Intercept)
                                              28.0
                                                               24.3
                                                                       25.7
                                                       1.15
                                                                               30.4
## 2 fixed
              <NA>
                            Breeding_Stage~
                                              -4.90
                                                       1.63
                                                               -3.01
                                                                       -8.14
                                                                               -1.53
## 3 ran_pars Individual_ID sd__(Intercept)
                                               0
                                                      NA
                                                               NA
                                                                        0
                                                                                3.81
## 4 ran_pars Residual
                            sd__Observation
                                               6.20
                                                                        4.58
                                                      NA
                                                              NA
## # ... with abbreviated variable names 1: estimate, 2: std.error, 3: statistic,
## # 4: conf.low, 5: conf.high
```

 β estimate of Nestling-rearing period effect: -4.90 -> females during nestling-rearing have on average 4.897 less substances than females during incubation in our samples. Confidence interval: [-8.25 ; -1.70] -> does not includes "0".

• Finding the marginal R² (fixed effect)

```
partR2(LMM_B_Stage_R, nboot = 1000)
```

Marginal R² for the effect of breeding stage: 0.1368 So the breeding stage explains 13.68% of the variation of richness in our data.

• Finding the repeatability (random effect)

```
rpt(Richness ~ Breeding_Stage + (1 | Individual_ID),
    grname = "Individual_ID",
    data = F_sampled_twice, datatype = "Gaussian",
    nboot = 1000, npermut = 1000,
    adjusted = TRUE)
```

```
## Bootstrap Progress:
## Permutation Progress for Individual_ID :

##
##
##
Repeatability estimation using the lmm method
##
## Repeatability for Individual_ID
```

```
## R = 0

## SE = 0.115

## CI = [0, 0.387]

## P = 0.5 [LRT]

## 1 [Permutation]
```

Repeatability of the Individual ID effect: $0 \rightarrow 0\%$ of the variation of richness between samples is due to the variation between individuals in our data. The chemical richness is not repeatable among individuals.

• Model diagnostic

check_model(LMM_B_Stage_R)

2.2.3 Diversity

a. Visualisation of the distribution of our data and of the breeding stage difference (within individuals) in

terms of Shannon diversity.

b. Analysis

• Fitting the model

```
LMM_B_Stage_D <- lme4::lmer(formula = "Shannon_Index ~ Breeding_Stage + (1 | Individual_ID)", data = F
## boundary (singular) fit: see help('isSingular')
summary(LMM_B_Stage_D)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Shannon_Index ~ Breeding_Stage + (1 | Individual_ID)
     Data: F_sampled_twice
## REML criterion at convergence: 3.2
##
## Scaled residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
   -4.7481 -0.3296 0.1555 0.5355
##
## Random effects:
## Groups
                              Variance Std.Dev.
                  Name
## Individual_ID (Intercept) 0.000
                                       0.0000
                              0.055
                                       0.2345
## Residual
## Number of obs: 58, groups: Individual_ID, 29
##
```

```
## Fixed effects:
##
                           Estimate Std. Error t value
## (Intercept)
                            2.74851
                                       0.04355 63.115
## Breeding_StageN_Rearing -0.15344
                                       0.06159 -2.492
## Correlation of Fixed Effects:
               (Intr)
## Brdng_StN_R -0.707
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
  • Finding the P-value for the fixed effect
summary(lmerTest::lmer(formula = "Shannon_Index ~ Breeding_Stage + (1 | Individual_ID)", data = F_samp
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: "Shannon_Index ~ Breeding_Stage + (1 | Individual_ID)"
      Data: F_sampled_twice
##
##
## REML criterion at convergence: 3.2
##
## Scaled residuals:
##
       Min
                1Q Median
                                30
## -4.7481 -0.3296 0.1555 0.5355 1.6312
##
## Random effects:
## Groups
                              Variance Std.Dev.
                 Name
## Individual_ID (Intercept) 0.000
                                       0.0000
## Residual
                              0.055
                                       0.2345
## Number of obs: 58, groups: Individual_ID, 29
##
## Fixed effects:
##
                           Estimate Std. Error
                                                     df t value Pr(>|t|)
## (Intercept)
                            2.74851
                                       0.04355 56.00000 63.115
                                                                  <2e-16 ***
## Breeding_StageN_Rearing -0.15344
                                       0.06159 56.00000 -2.492
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Correlation of Fixed Effects:
               (Intr)
## Brdng StN R -0.707
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
P-value = 0.0157 -> significant (*)
```

• Finding the β estimate and it's confidence interval (fixed effect)

```
tidy(LMM_B_Stage_D, conf.int = TRUE, conf.method = 'boot')
```

```
## # A tibble: 4 x 8
##
    effect group
                                           estim~1 std.e~2 stati~3 conf.~4 conf.~5
                           term
##
     <chr>
             <chr>
                           <chr>
                                             <dbl>
                                                     <dbl>
                                                             <dbl>
                                                                     <dbl>
## 1 fixed
             <NA>
                           (Intercept)
                                                             63.1
                                                                     2.66
                                             2.75
                                                    0.0435
                                                                            2.84
## 2 fixed
             <NA>
                           Breeding_Stage~
                                            -0.153 0.0616
                                                             -2.49 -0.284 -0.0276
## 3 ran_pars Individual_ID sd__(Intercept)
                                                                            0.143
                                             0
                                                   NA
                                                             NA
                                                                     0
## 4 ran_pars Residual
                           sd__Observation
                                             0.235 NA
                                                                     0.168 0.270
                                                             NA
## # ... with abbreviated variable names 1: estimate, 2: std.error, 3: statistic,
## # 4: conf.low, 5: conf.high
```

 β estimate of Nestling-rearing period effect: -0.153 -> females during nestling-rearing have on average 0.153 less diversity than females during incubation in our samples. Confidence interval: [-0.268; -0.0479] -> does not includes "0".

• Finding the marginal R² (fixed effect)

```
partR2(LMM_B_Stage_D, nboot = 1000)
```

Marginal R^2 for the effect of breeding stage: 0.0982 So the breeding stage explains 9.82% of the variation of the diversity in our data.

• Finding the repeatability (random effect)

```
rpt(Shannon_Index ~ Breeding_Stage + (1 | Individual_ID),
    grname = "Individual_ID",
    data = F_sampled_twice, datatype = "Gaussian",
    nboot = 1000, npermut = 1000,
    adjusted = TRUE)
```

```
## Bootstrap Progress:
## Permutation Progress for Individual_ID :

##
##
## Repeatability estimation using the lmm method
##
## Repeatability for Individual_ID
```

```
## R = 0

## SE = 0.12

## CI = [0, 0.402]

## P = 1 [LRT]

## 1 [Permutation]
```

Repeatability of the Individual ID effect: $0 \rightarrow 0\%$ of the variation of diversity between samples is due to the variation between individuals in our data. The diversity is not repeatable among individuals.

• Model diagnostic

2.2.4 Volatility

a. Visualisation of the distribution of our data and of the breeding stage difference (within individuals) in terms of volatility.

LMM_B_Stage_V <- lme4::lmer(formula = "Volatility ~ Breeding_Stage + (1 | Individual_ID)", data = F_sa

b. Analysis

• Fitting the model

```
summary(LMM_B_Stage_V)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Volatility ~ Breeding_Stage + (1 | Individual_ID)
      Data: F_sampled_twice
##
##
## REML criterion at convergence: 198.5
##
## Scaled residuals:
##
       Min
                1Q Median
                                ЗQ
                                        Max
## -1.8401 -0.7040 -0.2028 0.6813 2.4513
##
## Random effects:
                              Variance Std.Dev.
##
   Groups
                  Name
   Individual_ID (Intercept) 0.1125
                                        0.3355
                              1.6872
## Residual
                                        1.2989
## Number of obs: 58, groups: Individual_ID, 29
##
## Fixed effects:
##
                           Estimate Std. Error t value
```

```
## Breeding_StageN_Rearing -1.3380
                                         0.3411 - 3.922
## Correlation of Fixed Effects:
               (Intr)
## Brdng_StN_R -0.685
  • Finding the P-value for the fixed effect
summary(lmerTest::lmer(formula = "Volatility ~ Breeding_Stage + (1 | Individual_ID)", data = F_sampled
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: "Volatility ~ Breeding_Stage + (1 | Individual_ID)"
##
      Data: F_sampled_twice
##
## REML criterion at convergence: 198.5
## Scaled residuals:
       Min
                1Q Median
## -1.8401 -0.7040 -0.2028 0.6813 2.4513
##
## Random effects:
## Groups
                               Variance Std.Dev.
                  Name
## Individual_ID (Intercept) 0.1125
                                        0.3355
                               1.6872
## Residual
## Number of obs: 58, groups: Individual_ID, 29
## Fixed effects:
##
                           Estimate Std. Error
                                                     df t value Pr(>|t|)
                             3.9162
                                        0.2491 55.7819 15.720 < 2e-16 ***
## (Intercept)
## Breeding_StageN_Rearing -1.3380
                                         0.3411 28.0000 -3.922 0.000517 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Correlation of Fixed Effects:
##
               (Intr)
## Brdng_StN_R -0.685
P-value = 0.0005 -> significant ***
  • Finding the \beta estimate and it's confidence interval (fixed effect)
tidy(LMM_B_Stage_V, conf.int = TRUE, conf.method = 'boot')
## # A tibble: 4 x 8
                                             estim~1 std.e~2 stati~3 conf.~4 conf.~5
     effect
              group
                            term
##
                                                                <dbl>
                             <chr>
                                                       <dbl>
                                                                        <dbl>
                                                                                <dbl>
     <chr>
              <chr>
                                               <dbl>
## 1 fixed
              <NA>
                             (Intercept)
                                               3.92
                                                       0.249
                                                                15.7
                                                                        3.44
                                                                                4.39
## 2 fixed
                                                       0.341
              <NA>
                            Breeding_Stage~ -1.34
                                                                -3.92 -2.07
                                                                               -0.639
## 3 ran_pars Individual_ID sd__(Intercept)
                                                                NA
                                                                        0
                                                                                0.944
                                               0.335
                                                      NA
## 4 ran_pars Residual
                            sd__Observation
                                               1.30
                                                      NA
                                                                NA
                                                                        0.950
## # ... with abbreviated variable names 1: estimate, 2: std.error, 3: statistic,
## # 4: conf.low, 5: conf.high
```

0.2491 15.720

(Intercept)

3.9162

 β estimate of Nestling-rearing period effect: -0.013 -> females during nestling-rearing have a proportion of on average 0.013 less diversity than females during incubation in our samples. Confidence interval: [-0.020; -0.006] -> does not includes "0".

• Finding the marginal R² (fixed effect)

```
partR2(LMM_B_Stage_V, nboot = 1000)
```

Marginal R^2 for the effect of breeding stage: 0.2019 So the breeding stage explains 20.2% of the variation of the volatility in our data.

• Finding the repeatability (random effect)

```
rpt(Volatility ~ Breeding_Stage + (1 | Individual_ID),
    grname = "Individual_ID",
    data = F_sampled_twice, datatype = "Gaussian",
    nboot = 1000, npermut = 1000,
    adjusted = TRUE)
```

```
## Bootstrap Progress:
## Permutation Progress for Individual_ID :

##
##
## Repeatability estimation using the lmm method
##
## Repeatability for Individual_ID
## R = 0.063
## SE = 0.128
## CI = [0, 0.411]
## P = 0.368 [LRT]
## 0.399 [Permutation]
```

Repeatability of the Individual ID effect: 0.063 -> 6.3% of the variation of volatility between samples is due to the variation between individuals in our data. P(perm) = 0.411, non significant. The volatility is not repeatable among individuals.

• Model diagnostic

3 Effect sizes (comparisons with pilot paper)

To compare the results from the replication study and the original study, we calculated effect sizes for the LMM analyses (chemical richness, Shannon diversity and volatility). For fixed effects, we calculated a corrected version of the standardised effect size Cohen's d (Cohen 1987) for small sample sizes, the Hedges' g (Hedges & Olkin, 1985) and its 95% confidence interval, using the *effsize* package (Torchiano & Torchiano, 2020). We used the repeatabilities with their confidence interval as effect sizes for random effects (Stoffel et al. 2017).

3.1 Calculation of Hedges'g effect sizes for both studies

```
#### Sex effect
#Original study
cohen.d(Richness ~ sex, data=Pairs_NrearingP1, hedges.correction=TRUE)

##
## Hedges's g
##
## g estimate: 0.1424218 (negligible)
```

```
## 95 percent confidence interval:
##
       lower
                  upper
## -0.7143432 0.9991869
#Replication study
cohen.d(Richness ~ Sex, data=Pairs_Nrearing, hedges.correction=TRUE)
##
## Hedges's g
##
## g estimate: -0.1833413 (negligible)
## 95 percent confidence interval:
       lower
                   upper
## -0.5949919 0.2283094
#Original study
cohen.d(Diversity ~ sex, data=Pairs_NrearingP1, hedges.correction=TRUE) #Replication study
##
## Hedges's g
## g estimate: 0.5185992 (medium)
## 95 percent confidence interval:
      lower
                 upper
## -0.351346 1.388544
cohen.d(Shannon_Index ~ Sex, data=Pairs_Nrearing, hedges.correction=TRUE)
##
## Hedges's g
## g estimate: -0.1576961 (negligible)
## 95 percent confidence interval:
       lower
                   upper
## -0.5691226 0.2537305
#Original study
cohen.d(Volatility ~ sex, data=Pairs_NrearingP1, hedges.correction=TRUE)
##
## Hedges's g
## g estimate: 1.200461 (large)
## 95 percent confidence interval:
      lower
                upper
## 0.2708989 2.1300226
#Replication study
cohen.d(Volatility ~ Sex, data=Pairs_Nrearing, hedges.correction=TRUE)
```

```
##
## Hedges's g
##
## g estimate: 0.3848055 (small)
## 95 percent confidence interval:
        lower
                     upper
## -0.02976734 0.79937840
### Breeding stage effect
#Original study
cohen.d(Richness ~ breeding_stage, data=F_sampled_twiceP1, hedges.correction=TRUE)
##
## Hedges's g
## g estimate: -0.005965077 (negligible)
## 95 percent confidence interval:
       lower
                 upper
## -1.019866 1.007936
#Replication study
cohen.d(Richness ~ Breeding_Stage, data=F_sampled_twice, hedges.correction=TRUE)
##
## Hedges's g
##
## g estimate: 0.7787462 (medium)
## 95 percent confidence interval:
       lower
                 upper
## 0.2404344 1.3170579
#Original study
cohen.d(Diversity ~ breeding_stage, data=F_sampled_twiceP1, hedges.correction=TRUE)
##
## Hedges's g
## g estimate: 0.285192 (small)
## 95 percent confidence interval:
       lower
                   upper
## -0.7338482 1.3042322
#Replication study
cohen.d(Shannon_Index ~ Breeding_Stage, data=F_sampled_twice, hedges.correction=TRUE)
##
## Hedges's g
## g estimate: 0.6455071 (medium)
## 95 percent confidence interval:
       lower
                upper
## 0.1131631 1.1778511
```

```
#Original study
cohen.d(Volatility ~ breeding_stage, data=F_sampled_twiceP1, hedges.correction=TRUE)
##
## Hedges's g
##
## g estimate: -0.1176329 (negligible)
## 95 percent confidence interval:
        lower
                   upper
## -1.1324086 0.8971427
#Replication study
cohen.d(Volatility ~ Breeding_Stage, data=F_sampled_twice, hedges.correction=TRUE)
##
## Hedges's g
##
## g estimate: 0.9839316 (large)
## 95 percent confidence interval:
       lower
                 upper
## 0.4344252 1.5334379
```

3.2 Plot

The values obtained with the cohen.d() function were manually collected into an exel file, which we will use now to plot the results

```
eff_sizes <- eff_sizes %>%
  mutate(Paper=as.character(as.double(Paper)),
   Response = case_when(
   Response == "Shannon Diversity" ~ "Diversity",
   TRUE ~ Response
 ))
# subset of the data for Sex and Richness, Diversity, and Volatility in paper 1 and 2
subset sex <- eff sizes [eff sizes Effect == "Sex" & eff sizes Response %in% c("Richness", "Diversity",
\# subset of the data for BreedingStage and Richness, Diversity, and Volatility in paper 1 and 2
subset_breeding <- eff_sizes$Effect == "BreedingStage" & eff_sizes$Response %in% c("Richness"</pre>
# create a new variable for interaction grouping
subset_sex$Interaction <- interaction(subset_sex$Effect, subset_sex$Response, subset_sex$Paper, sep = "</pre>
subset_breeding$Interaction <- interaction(subset_breeding$Effect, subset_breeding$Response, subset_bre
# reorder levels
subset_sex$Response <- factor(subset_sex$Response, levels = c("Richness", "Diversity", "Volatility"))</pre>
subset_breeding$Response <- factor(subset_breeding$Response, levels = c("Richness", "Diversity", "Volat
# colours
col_response <- c("Richness" = "#8888D3",</pre>
                  "Diversity" = "#F7932F"
                  "Volatility" = "#68BCAC")
```

```
# Plot Sex
sex <- ggplot(subset_sex, aes(x = fct_rev(Response), y = Estimate, color = Response, shape = Paper, siz</pre>
  geom_pointrange(aes(ymin = int.inf, ymax = int.sup), position = position_dodge(width = 0.6), linewidt
  geom hline(vintercept = 0, linetype = "dotted", color = "black") +
  labs(title = "Sex", y = "Hedges' g") +
  ylim(-1.4, 2.2) +
  theme_minimal() +
  coord flip() +
  scale_color_manual(values = col_response) +
  theme(axis.title.y = element_blank(), legend.position = "none", panel.grid = element_blank(),
        axis.line.x = element_line(), panel.border = element_rect(fill = NA),
        axis.text.y = element_text(size = 11)) +
  scale\_shape\_manual(values = c(1, 16)) +
  scale_size_manual(values = c(0.5, 0.6))
# Plot Breeding stage
breeding <- ggplot(subset_breeding, aes(x = fct_rev(Response), y = Estimate, color = Response, shape = 1
  geom_pointrange(aes(ymin = int.inf, ymax = int.sup), position = position_dodge(width = 0.6), linewidt
  geom_hline(yintercept = 0, linetype = "dotted", color = "black") +
  labs(title = "Breeding stage", y = "Hedges' g") +
  ylim(-1.4, 2.2) +
  theme_minimal() +
  coord_flip() +
  scale_color_manual(values = col_response) +
  theme(axis.title.y = element_blank(), legend.position = "none", panel.grid = element_blank(),
        axis.line.x = element_line(), panel.border = element_rect(fill = NA),
        axis.text.y = element_text(size = 11)) +
  scale\_shape\_manual(values = c(1, 16)) +
  scale_size_manual(values = c(0.5, 0.6))
# Plot Pair ID
pair <- ggplot(subset_sex, aes(x = fct_rev(Response), y = Repeatability, color = Response, shape = Pape
  geom_pointrange(aes(ymin = Reap.Int.inf, ymax = Reap.Int.sup), position = position_dodge(width = 0.6)
  geom_hline(yintercept = 0, linetype = "dotted", color = "black") +
  labs(title = "Pair identity", y = "Repeatability") +
  ylim(-0.1, 1) +
  theme_minimal() +
  coord flip() +
  scale_color_manual(values = col_response) +
  theme(axis.title.y = element_blank(), legend.position = "none", panel.grid = element_blank(),
        axis.line.x = element_line(), panel.border = element_rect(fill = NA),
        axis.text.y = element_text(size = 11)) +
  scale\_shape\_manual(values = c(1, 16)) +
  scale_size_manual(values = c(0.5, 0.6))
# Plot Individual ID
individual <- ggplot(subset_breeding, aes(x = fct_rev(Response), y = Repeatability, color = Response, s
  geom_pointrange(aes(ymin = Reap.Int.inf, ymax = Reap.Int.sup), position = position_dodge(width = 0.6)
  geom_hline(yintercept = 0, linetype = "dotted", color = "black") +
  labs(title = "Individual identity", y = "Repeatability") +
  ylim(-0.1, 1) +
  theme_minimal() +
  coord_flip() +
```


In this figure, we can see that the confidence intervals around the effect sizes of the GLMM results from the pilot study always overlap the confidence intervals for the effect sizes of the replication. This could mean that the same effect is being tested in both studies, which is what is desired. However, it should be noted that the confidence intervals around the effect sizes of the pilot study are especially wide, therefore making it easier for each pair of intervals to overlap over one another.

4 Exploratory analysis

4.1 Spatial analysis of pairs during nestling-rearing:

Gilles et al. (2024) found a high similarity in preen oil composition between breeding partners and proposed that this may be due to their spatial proximity, as they share the same territory and the same food available. To test for the effect of spatial proximity on preen oil composition, we ran Mantel tests of the spatial versus the Bray-Curtis distance, along with Mantel correlograms (Borcard et al. 2011) and scatterplots for

visualisation, using the *vegan* package (Oksanen et al. 2010) in R. This method tests whether chemical similarity covaries with spatial proximity by comparing pairwise chemical distances with pairwise spatial distances. We used all the samples from adult males and females during nestling-rearing for which we had the GPS position of the nestbox (regardless of whether they were part of a complete breeding pair). We tested males (N=42) and females (N=44) separately to control for the effect of breeding partner proximity.

4.1.1 Spatial analysis in females:

Preparation of the data

```
# Select all samples from females during nestling-rearing (44 samples)
Females_Nrearing <-Metadata%>%
  filter(Ageclass=="A",
         Breeding_Stage == "N_Rearing",
         Sex == "F",
         Outliers == 0,
         Sample != "L280")%>%
  select(-c(Richness, Shannon_Index, Volatility, pair_brood, f_sampled_twice, Families, FamiliesOrdered
# Select the GPS data for the nestboxes in which we sampled females during nestling-rearing
FGPSNetboxes <- GPSNetboxes%>%
  filter(Name %in% Females_Nrearing$Nestbox_ID)%>%
  rename(Nestbox ID=Name)
# Select samples from females for which we have GPS data on the nestbox
Females_Nrearing <- Females_Nrearing%>%
  filter(Nestbox_ID %in% FGPSNetboxes$Nestbox_ID)
df_list <- list(Females_Nrearing, FGPSNetboxes)</pre>
Females_Nrearing <- df_list%>%
  reduce(full_join, by="Nestbox_ID") # Combine it in a single data frame
# Select the chemical data from the subset of samples
Chem_F <- Chemdata%>%
  filter(Sample %in% Females_Nrearing$Sample)
Chem_F <- subset(Chem_F, select = !apply(Chem_F, 2, function(x) all(x == 0))) # to remove columns where
Females_Nrearing <- list(Females_Nrearing, Chem_F)%>%
  reduce(full_join, by="Sample") # Add the chemical data to the main data frame
Chem_F <- Females_Nrearing%>%
  select(-c(1:15)) # Chemical data file in the right order
CoordinatesF <- Females_Nrearing%>% #Coordinates data file in the right order
  select(c(Easting, Northing))%>%
 rename(x=Easting, y=Northing)
Chem_F_det <- resid(lm(as.matrix(Chem_F)~., data=CoordinatesF)) # detrend Chem_F data
ChemF_det_1 <- Chem_F_det + 1 # we add 1 the the detrend data, because in order to create the bray-curt
MatrixF <- vegdist(ChemF_det_1) # Our Bray-curtis distance (dissimilarity) matrix
Mantel test:
```

```
# For the Mantel test, we need to build the matrix of spatial distances:
SpatialMatrixF <- dist(CoordinatesF)
mantel(MatrixF, SpatialMatrixF, permutations=1000)</pre>
```

```
## Mantel statistic based on Pearson's product-moment correlation
##
## Call:
## mantel(xdis = MatrixF, ydis = SpatialMatrixF, permutations = 1000)
## Mantel statistic r: -0.007228
##
        Significance: 0.5025
##
## Upper quantiles of permutations (null model):
     90%
           95% 97.5%
                        99%
## 0.0833 0.1101 0.1338 0.1594
## Permutation: free
## Number of permutations: 1000
Mantel correlogram:
Mantel_correlog_F <- mantel.correlog(MatrixF, XY=CoordinatesF, nperm=9999)</pre>
summary(Mantel_correlog_F)
             Length Class Mode
##
## mantel.res 55
                   -none- numeric
## n.class 1
                   -none- numeric
## break.pts 12 -none- numeric
## mult 1
                  -none- character
## n.tests
             1 -none- numeric
## call
                   -none- call
FBC <- plot(Mantel_correlog_F)</pre>
title(main="Females")
```

Females

${\bf Scatterplot:}$

Scatterplot of Chemical vs Spatial Distance in Females

4.1.2 Spatial analysis in males:

Preparation of the data

```
Males_Nrearing <-Metadata%>%
  filter(Ageclass=="A",
         Breeding_Stage == "N_Rearing",
         Sex == "M",
         Outliers == 0)%>%
  select(-c(Richness, Shannon_Index, Volatility, pair_brood, f_sampled_twice, Families, FamiliesOrdered
MGPSNetboxes <- GPSNetboxes%>%
  filter(Name %in% Males_Nrearing$Nestbox_ID)%>%
  rename(Nestbox_ID=Name)
Males_Nrearing <- Males_Nrearing%>%
  filter(Nestbox_ID %in% MGPSNetboxes$Nestbox_ID)
df_list <- list(Males_Nrearing, MGPSNetboxes)</pre>
Males_Nrearing <- df_list%>%
  reduce(full_join, by="Nestbox_ID")
Chem_M <- Chemdata%>%
  filter(Sample %in% Males_Nrearing$Sample)
Chem_M <- subset(Chem_M, select = !apply(Chem_M, 2, function(x) all(x == 0)))</pre>
Males_Nrearing <- list(Males_Nrearing, Chem_M)%>%
  reduce(full_join, by="Sample")
```

```
Chem_M <- Males_Nrearing%>%
  select(-c(1:15))
CoordinatesM <- Males_Nrearing%>%
  select(c(Easting, Northing))%>%
  rename(x=Easting, y=Northing)
Chem_M_det <- resid(lm(as.matrix(Chem_M)~., data=CoordinatesM)) #detrend matrixF</pre>
Chem_M_det_1 <- Chem_M_det + 1</pre>
MatrixM <- vegdist(Chem_M_det_1) #BC Matrix of detrend data</pre>
Mantel test:
# For the Mantel test, we need to build the matrix of spatial distances:
SpatialMatrixM <- dist(CoordinatesM, diag=T)</pre>
mantel(MatrixM, SpatialMatrixM, permutations=1000)
##
## Mantel statistic based on Pearson's product-moment correlation
##
## Call:
## mantel(xdis = MatrixM, ydis = SpatialMatrixM, permutations = 1000)
## Mantel statistic r: 0.03386
##
         Significance: 0.28272
##
## Upper quantiles of permutations (null model):
      90%
            95% 97.5%
                           99%
## 0.0915 0.1287 0.1419 0.1677
## Permutation: free
## Number of permutations: 1000
Mantel correlogram:
Mantel_correlog_M <- mantel.correlog(MatrixM, XY=CoordinatesM, nperm=9999)
summary(Mantel_correlog_M)
             Length Class Mode
## mantel.res 55 -none- numeric
## n.class 1
                    -none- numeric
## break.pts 12
                   -none- numeric
## mult 1
                   -none- character
## n.tests
              1
                    -none- numeric
## call
                    -none- call
MBC <- plot(Mantel_correlog_M)</pre>
```

title(main="Males")

Males

${\bf Scatterplot:}$

4.2 Life stage difference

We tested whether preen oil composition differs between nestlings and adults, and whether it contains family signatures (i.e. high similarity between family members). We used samples from 16 broods (100 samples, 31 from adults and 69 from nestlings) collected during nestling-rearing, and employed the same analytical method as for the replication analysis. We tested the effect of life stage (fixed effect) and nest identity (random effect) on on beta diversity (Bray-Curtis dissimilarities) using PERMANOVA, PERMDISP (these analyses were ran on PRIMER v7.0.21 and are thus not included in this document) and NMDS, and on chemical richness, Shannon diversity and volatility using LMMs.

```
# Create a subset of the Metadata containing all samples taken from nestboxes for which we have sampled
Families <-Metadata%>% #100 samples
filter(Families==1)%>%
select(-c(Outliers, F_Connected_to_Outlier, Partner_Connected_to_Outlier, f_sampled_twice, pair_brood)
```

4.2.1 NMDS plot

Bray-Curtis matrix

Check the stress (how good the distance between samples in actual multivariate distance is represented in two dimensions)

```
bc$stress
```

[1] 0.1119627

Plot NMDS by Family

4.2.2 Richness

a. Visualisation of the distribution of our data and of the life-stage difference (within families) in terms of chemical richness.

Chemical richness in relation with Life stage during nestling-rearing

Each point represents a sample, and each line connects the members of a breeding pair.

- b. Analysis
- Fitting the model

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: Richness ~ Ageclass + (1 | Nestbox_ID)
##
      Data: Families
##
## REML criterion at convergence: 633.7
##
## Scaled residuals:
       Min
                1Q
                    Median
                                 3Q
                                        Max
  -2.1837 -0.7428
                    0.1422
                            0.6684
                                     2.9230
##
##
## Random effects:
   Groups
               Name
                           Variance Std.Dev.
##
   Nestbox_ID (Intercept)
                            6.296
                                     2.509
##
  Residual
                           30.741
                                     5.544
## Number of obs: 100, groups: Nestbox_ID, 16
```

```
##
## Fixed effects:
               Estimate Std. Error t value
##
## (Intercept)
                 24.340
                             1.178 20.656
## AgeclassN
                 -1.153
                             1.207 -0.955
##
## Correlation of Fixed Effects:
##
             (Intr)
## AgeclassN -0.698
  • Finding the P-value for the fixed effect
summary(lmerTest::lmer(formula = "Richness ~ Ageclass + (1 | Nestbox_ID)", data = Families))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: "Richness ~ Ageclass + (1 | Nestbox_ID)"
##
      Data: Families
##
## REML criterion at convergence: 633.7
##
## Scaled residuals:
       Min
                1Q Median
##
                                3Q
## -2.1837 -0.7428 0.1422 0.6684
                                    2.9230
##
## Random effects:
## Groups
                           Variance Std.Dev.
               Name
## Nestbox_ID (Intercept) 6.296
                                     2.509
## Residual
                           30.741
                                     5.544
## Number of obs: 100, groups: Nestbox_ID, 16
##
## Fixed effects:
               Estimate Std. Error
                                        df t value Pr(>|t|)
## (Intercept) 24.340
                             1.178 47.753 20.656
                                                     <2e-16 ***
## AgeclassN
                             1.207 84.532 -0.955
                                                      0.342
                 -1.153
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Correlation of Fixed Effects:
             (Intr)
## AgeclassN -0.698
P-value = 0.342 \rightarrow non significant.
  • Finding the \beta estimate and it's confidence interval (fixed effect)
tidy(LMM_LifeStage_R, conf.int = TRUE, conf.method = 'boot')
## # A tibble: 4 x 8
##
     effect
              group
                                          estimate std.error stati~1 conf.~2 conf.~3
                         term
     <chr>
                          <chr>
                                             <dbl>
                                                       <dbl>
                                                                <dbl>
                                                                        <dbl>
              <chr>>
                                                        1.18 20.7
                                             24.3
                                                                        22.0
                                                                                26.7
## 1 fixed
              <NA>
                          (Intercept)
```

```
AgeclassN
## 2 fixed
              <NA>
                                             -1.15
                                                         1.21
                                                               -0.955
                                                                         -3.57
                                                                                  1.17
## 3 ran_pars Nestbox_ID sd__(Intercept)
                                                                         0
                                              2.51
                                                       NA
                                                               NA
                                                                                  4.12
## 4 ran_pars Residual
                         sd Observation
                                              5.54
                                                        NA
                                                               NA
                                                                         4.54
                                                                                  6.42
## # ... with abbreviated variable names 1: statistic, 2: conf.low, 3: conf.high
```

 β estimate of sexM effect: -1.15 -> Nestlings have on average 1.15 less substances than adults in our samples. Confidence interval: [-3.33; 1.07] -> includes "0".

• Finding the marginal R² (fixed effect)

Marginal R² for the effect of Life stage: 0.0077 The Life stage effect only explains 0.77% of the variation of richness in our samples during nestling-rearing.

• Finding the repeatability (random effect)

[1] "No partitions selected."

P = 0.0188 [LRT]

0.013 [Permutation]

```
rpt(Richness ~ Ageclass + (1 | Nestbox_ID),
    grname = "Nestbox_ID",
    data = Families, datatype = "Gaussian",
    nboot = 1000, npermut = 1000,
    adjusted = TRUE)

## Bootstrap Progress:
## Permutation Progress for Nestbox_ID :

##
##
##
##
## Repeatability estimation using the lmm method
##
## Repeatability for Nestbox_ID
## R = 0.17
## SE = 0.096
## CI = [0, 0.369]
```

Repeatability of the NestboxID effect: 0.17 -> 17% of the variation of richness between samples is due to the variation between families in our data. P(perm)= 0.007, significant. The chemical richness is repeatable between families.

• Model diagnostic

check_model(LMM_LifeStage_R)

4.2.3 Diversity (Shannon Index)

a. Visualisation of the distribution of our data and of the life-stage difference (within families) in terms of Shannon diversity.

Chemical Shannon Diversity in relation with Life stage during nestling-rear

Each point represents a sample, and each line connects the members of a breeding pair.

- b. Analysis
- Fitting the model

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: Shannon_Index ~ Ageclass + (1 | Nestbox_ID)
##
      Data: Families
##
## REML criterion at convergence: -33.7
##
## Scaled residuals:
       Min
                1Q
                    Median
                                 3Q
                                        Max
   -3.3459 -0.6097
                    0.2347
                                     2.1864
##
                             0.6453
##
## Random effects:
    Groups
                            Variance Std.Dev.
               Name
    Nestbox_ID (Intercept) 0.003015 0.05491
##
##
    Residual
                            0.036022 0.18979
## Number of obs: 100, groups: Nestbox_ID, 16
```

```
##
## Fixed effects:
               Estimate Std. Error t value
##
## (Intercept) 2.65880
                           0.03678 72.293
              -0.04585
## AgeclassN
                           0.04121 -1.113
##
## Correlation of Fixed Effects:
##
             (Intr)
## AgeclassN -0.767
  • Finding the P-value for the fixed effect
summary(lmerTest::lmer(formula = "Shannon_Index ~ Ageclass + (1 | Nestbox_ID)", data = Families))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: "Shannon_Index ~ Ageclass + (1 | Nestbox_ID)"
      Data: Families
##
##
## REML criterion at convergence: -33.7
##
## Scaled residuals:
       Min
                1Q Median
##
                                3Q
## -3.3459 -0.6097 0.2347 0.6453
                                    2.1864
##
## Random effects:
  Groups
                           Variance Std.Dev.
               Name
  Nestbox_ID (Intercept) 0.003015 0.05491
## Residual
                           0.036022 0.18979
## Number of obs: 100, groups: Nestbox_ID, 16
##
## Fixed effects:
##
               Estimate Std. Error
                                          df t value Pr(>|t|)
## (Intercept) 2.65880
                           0.03678 63.46710 72.293
                                                       <2e-16 ***
## AgeclassN
              -0.04585
                           0.04121 85.47237 -1.113
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Correlation of Fixed Effects:
             (Intr)
## AgeclassN -0.767
P-value = 0.269 \rightarrow non significant.
  • Finding the \beta estimate and it's confidence interval (fixed effect)
tidy(LMM_LifeStage_D, conf.int = TRUE, conf.method = 'boot')
## # A tibble: 4 x 8
##
     effect
              group
                                          estimate std.error stati~1 conf.~2 conf.~3
                         term
     <chr>
                         <chr>
                                             <dbl>
                                                       <dbl>
                                                                <dbl>
                                                                        <dbl>
              <chr>>
                                            2.66
                                                      0.0368
                                                               72.3
                                                                        2.59
## 1 fixed
              <NA>
                         (Intercept)
                                                                               2.74
```

```
## 2 fixed
              <NA>
                         AgeclassN
                                           -0.0458
                                                      0.0412
                                                                      -0.124 0.0355
                                                               -1.11
## 3 ran_pars Nestbox_ID sd__(Intercept)
                                                                       0
                                            0.0549
                                                     NA
                                                               NA
                                                                              0.105
                         sd Observation
## 4 ran pars Residual
                                           0.190
                                                     NA
                                                               NA
                                                                       0.158 0.219
## # ... with abbreviated variable names 1: statistic, 2: conf.low, 3: conf.high
```

 β estimate of Life stage Nestling effect: -0.0458 -> Nestlings have on average a preen oil on average 0.0458 less diverse (Shannon index units) than adults in our samples. Confidence interval: [-0.130 ; 0.0350] -> includes "0".

• Finding the marginal R² (fixed effect)

```
partR2(LMM_LifeStage_D, nboot = 1000)
```

Marginal R² for the effect of Life stage: 0.0115 The Life stage effect only explains 1.15% of the variation of diversity in our samples during nestling-rearing.

• Finding the repeatability (random effect)

```
rpt(Shannon_Index ~ Ageclass + (1 | Nestbox_ID),
    grname = "Nestbox_ID",
    data = Families, datatype = "Gaussian",
    nboot = 1000, npermut = 1000,
    adjusted = TRUE)
```

```
## Bootstrap Progress:
## Permutation Progress for Nestbox_ID :

##
##
## Repeatability estimation using the lmm method
##
## Repeatability for Nestbox_ID
## R = 0.077
## SE = 0.071
## CI = [0, 0.25]
## P = 0.168 [LRT]
##
## 0.13 [Permutation]
```

Repeatability of the NestboxID effect: 0.077 -> 7.7% of the variation of diversity between samples is due to the variation between families in our data. P(perm) = 0.1, non-significant. The Shannon diversity is not repeatable between families.

• Model diagnostic

check_model(LMM_LifeStage_D)

4.2.4 Volatility

a. Visualisation of the distribution of our data and of the life-stage difference (within families) in terms of volatility.

Chemical Volatility in relation with Life stage during nestling-rearing

Each point represents a sample, and each line connects the members of a breeding pair.

- b. Analysis
- Fitting the model

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: Volatility ~ Ageclass + (1 | Nestbox_ID)
##
      Data: Families
##
## REML criterion at convergence: 245
##
## Scaled residuals:
       Min
                1Q Median
                                3Q
                                       Max
## -1.7935 -0.6926 -0.0170 0.4754
                                    3.6392
##
## Random effects:
   Groups
               Name
                           Variance Std.Dev.
##
   Nestbox_ID (Intercept) 0.1828
                                    0.4276
## Residual
                           0.5576
                                    0.7467
## Number of obs: 100, groups: Nestbox_ID, 16
```

```
## Fixed effects:
               Estimate Std. Error t value
##
## (Intercept) 2.4443
                            0.1717 14.234
## AgeclassN
                -0.6854
                            0.1628 -4.209
##
## Correlation of Fixed Effects:
##
             (Intr)
## AgeclassN -0.645
  • Finding the P-value for the fixed effect
summary(lmerTest::lmer(formula = "Volatility ~ Ageclass + (1 | Nestbox_ID)", data = Families))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: "Volatility ~ Ageclass + (1 | Nestbox_ID)"
##
      Data: Families
##
## REML criterion at convergence: 245
##
## Scaled residuals:
       Min
                1Q Median
##
                                3Q
## -1.7935 -0.6926 -0.0170 0.4754
                                    3.6392
##
## Random effects:
## Groups
                           Variance Std.Dev.
               Name
## Nestbox_ID (Intercept) 0.1828
                                     0.4276
## Residual
                           0.5576
                                     0.7467
## Number of obs: 100, groups: Nestbox_ID, 16
##
## Fixed effects:
               Estimate Std. Error
                                         df t value Pr(>|t|)
## (Intercept) 2.4443
                            0.1717 40.8085 14.234 < 2e-16 ***
## AgeclassN
                -0.6854
                            0.1628 84.9299 -4.209 6.34e-05 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Correlation of Fixed Effects:
             (Intr)
## AgeclassN -0.645
P-value = 6.34e-05 \rightarrow significant.
  • Finding the \beta estimate and it's confidence interval (fixed effect)
tidy(LMM_LifeStage_V, conf.int = TRUE, conf.method = 'boot')
## # A tibble: 4 x 8
##
     effect
              group
                                          estimate std.error stati~1 conf.~2 conf.~3
                         term
     <chr>
                         <chr>
                                             <dbl>
                                                       <dbl>
                                                                <dbl>
                                                                        <dbl>
              <chr>>
## 1 fixed
                                             2.44
                                                                14.2
              <NA>
                         (Intercept)
                                                       0.172
                                                                        2.07
                                                                                2.80
```

```
## 2 fixed
              <NA>
                         AgeclassN
                                            -0.685
                                                       0.163
                                                                -4.21
                                                                       -0.997
                                                                               -0.376
## 3 ran_pars Nestbox_ID sd__(Intercept)
                                             0.428
                                                      NA
                                                                NA
                                                                        0.139
                                                                                0.648
                         sd Observation
## 4 ran pars Residual
                                             0.747
                                                      NA
                                                                NA
                                                                        0.633
                                                                                0.870
## # ... with abbreviated variable names 1: statistic, 2: conf.low, 3: conf.high
```

 β estimate of Life stage Nestling effect: -0.007 -> Nestlings have on average a preen oil on average 0.006 less diverse (Shannon index units) than adults in our samples. Confidence interval: [-0.010 ; -0.003] -> does not include "0".

• Finding the marginal R² (fixed effect)

```
partR2(LMM_LifeStage_V, nboot = 1000)
```

Marginal R² for the effect of Life stage: 0.1205 The Life stage effect explains 12% of the variation of volatility in our samples during nestling-rearing.

• Finding the repeatability (random effect)

```
rpt(Volatility ~ Ageclass + (1 | Nestbox_ID),
    grname = "Nestbox_ID",
    data = Families, datatype = "Gaussian",
    nboot = 1000, npermut = 1000,
    adjusted = TRUE)
```

```
## Bootstrap Progress:
## Permutation Progress for Nestbox_ID :

##
##
##
Repeatability estimation using the lmm method
##
Repeatability for Nestbox_ID
## R = 0.247
## SE = 0.111
## CI = [0.044, 0.456]
## P = 0.000773 [LRT]
##
## 0.002 [Permutation]
```

Repeatability of the NestboxID effect: 0.247 -> 24.7% of the variation of volatility between samples is due to the variation between families in our data. P(perm) = 0.002, significant. The Volatility is repeatable between families.

• Model diagnostic

check_model(LMM_LifeStage_V)

4.3 Nestling-Adult similarities

We tested whether the preen oil from nestlings is more similar to that of their mother or father, to that of an adult female or male other than their mother and father, and whether it was more similar to that of their mother or father more so than to other adult females or males in the population. First, we extracted the pairwise Bray-Curtis similarity for each nestling-adult pair from the Bray-Curtis matrix, and separated them between nestling-mother, nestling-father, nestling-adult female and nestling-adult male pairs. We could then study the effect of adult and parent sex, as well as the effect of being the mother/father (fixed effect) on the similarity between samples, while controlling for the effect of nest identity (random effect) and nestling identity (random effect nested within nest identity). As Bray-Curtis similarity data ranges between 0 and 1, we decided to use generalised linear mixed models (GLMM) with Beta distribution using the glmmTMB package (Magnusson et al. 2017) on R. However this method does not allow us to measure the repeatability for random effects. Instead, to estimate the importance of random effects, we ran models with and without each random effect and compared them with a chi-square test using the stats package.

4.3.1 Creating a Pairwise-Similarity data file

This code follows the code from Raulo et al. (2021) (full reference in the references of the main paper)

```
#### Create Bray-Curtis matrix with the Families samples
# Recreate the subset of data containing the 100 family samples ordered
Metadata Families <- Metadata%>%
  filter(Families == 1.
         Outliers == 0)%>%
  select(c(Sample, Individual_ID, Nestbox_ID,
  Ageclass, Sex, Families, FamiliesOrdered))%>%
  rename(Order = FamiliesOrdered)
ChemdataF <- Chemdata%>%
  filter(Sample %in% Metadata_Families$Sample)%>%
  select(-Sample) # Select the subset of chemical data
BC_Families <- vegdist(ChemdataF)</pre>
BC_Families <- as.matrix(BC_Families)</pre>
BC_Families <- 1-BC_Families # to have bray-curtis similarity instead of dissimilarity
BC_Families <- as.data.frame(BC_Families)</pre>
colnames(BC_Families) <- Metadata_Families$Sample</pre>
rownames(BC_Families) <- Metadata_Families$Sample</pre>
n <- nrow(BC Families)</pre>
for (i in 1:n) { # Remove the upper triangular part of the matrix
 for (j in 1:n) {
    if (i < j) {</pre>
      BC_Families[i, j] <- NA}}}</pre>
for (i in 1:n) { # Remove the values from the main diagonal
  for (j in 1:n) {
    if (i == j) {
      BC_Families[i, j] <- 0}}}</pre>
#Transform Bray-Curtis in right format
BC_Families <- as.matrix(BC_Families)</pre>
key<-data.frame(Sample=Metadata_Families$Sample, Order=Metadata_Families$Order)
all(rownames(BC_Families) == key$Sample) # Control if the samples are in the same order in the matrix and
## [1] TRUE
####Create a binary matrix, value = 1 when the samples come from the same nestbox, 0 otherwise
\# 1. Create data frame \ with each \ Individual \ name \ (Sample\ ID) \ and \ their \ nestbox (\ Nest\ ID) \ as \ character (\ h
NestID_frame <- Metadata_Families[,c("Sample", "Nestbox_ID")]</pre>
# 2. Create an empty numeric matrix to fill with distances
NestM <- array(0,c(nrow(NestID_frame),nrow(NestID_frame)))</pre>
# 3. Derive matrix with binary NestID similarity between each sample (they are either from the same nes
for(i in 1:nrow(NestID_frame)){
  for(j in 1:nrow(NestID_frame)){
    if(NestID_frame$Nestbox_ID[i] == NestID_frame$Nestbox_ID[j]){
      NestM[i,j] = 1
   } else{
```

```
NestM[i,j] = 0
   }
 }
}
all(rownames(NestM) == key$Sample)
## [1] TRUE
rownames(NestM) <-key$Sample
colnames(NestM)<-key$Sample</pre>
#### Create a matrix with the BC distances
# 1. Create an empty numeric matrix to fill with nestID
NestIDM <-array(as.character(NA),c(nrow(NestID_frame),nrow(NestID_frame)))</pre>
# 2. Derive matrix with binary NestID similarity between each sample
for(i in 1:nrow(NestID frame)){
  for(j in 1:nrow(NestID frame)){
    if(NestID_frame$Nestbox_ID[i] == "15" & NestID_frame$Nestbox_ID[i] == NestID_frame$Nestbox_ID[j]){
      NestIDM[i,j]= "15"}
    if(NestID_frame$Nestbox_ID[i] == "26" & NestID_frame$Nestbox_ID[i] == NestID_frame$Nestbox_ID[j]){
      NestIDM[i,j]= "26"}
    if(NestID_frame$Nestbox_ID[i]=="121" & NestID_frame$Nestbox_ID[i]==NestID_frame$Nestbox_ID[j]){
      NestIDM[i,j] = "121"
    if(NestID_frame$Nestbox_ID[i]=="151" & NestID_frame$Nestbox_ID[i]==NestID_frame$Nestbox_ID[j]){
      NestIDM[i,j]= "151"}
    if(NestID_frame$Nestbox_ID[i]=="222" & NestID_frame$Nestbox_ID[i]==NestID_frame$Nestbox_ID[j]){
      NestIDM[i,j]= "222"}
    if(NestID_frame$Nestbox_ID[i]=="301" & NestID_frame$Nestbox_ID[i]==NestID_frame$Nestbox_ID[j]){
      NestIDM[i,j]= "301"}
    if(NestID_frame$Nestbox_ID[i]=="308" & NestID_frame$Nestbox_ID[i]==NestID_frame$Nestbox_ID[j]){
      NestIDM[i,j]= "308"}
    if(NestID_frame$Nestbox_ID[i]=="447" & NestID_frame$Nestbox_ID[i]==NestID_frame$Nestbox_ID[j]){
      NestIDM[i,j] = "447"
    if(NestID frame$Nestbox ID[i]=="512" & NestID frame$Nestbox ID[i]==NestID frame$Nestbox ID[j]){
      NestIDM[i,j]= "512"}
    if(NestID_frame$Nestbox_ID[i]=="715" & NestID_frame$Nestbox_ID[i]==NestID_frame$Nestbox_ID[j]){
      NestIDM[i,j]= "715"}
    if(NestID_frame$Nestbox_ID[i]=="39L" & NestID_frame$Nestbox_ID[i]==NestID_frame$Nestbox_ID[j]){
      NestIDM[i,j] = "39L"
    if(NestID_frame$Nestbox_ID[i] == "519A" & NestID_frame$Nestbox_ID[i] == NestID_frame$Nestbox_ID[j]){
      NestIDM[i,j] = "519A"}
    if(NestID_frame$Nestbox_ID[i] == "E" & NestID_frame$Nestbox_ID[i] == NestID_frame$Nestbox_ID[j]){
      NestIDM[i,j]= "E"}
    if(NestID_frame$Nestbox_ID[i]=="M" & NestID_frame$Nestbox_ID[i]==NestID_frame$Nestbox_ID[j]){
      NestIDM[i,j]= "M"}
    if(NestID_frame$Nestbox_ID[i]=="0" & NestID_frame$Nestbox_ID[i]==NestID_frame$Nestbox_ID[j]){
      NestIDM[i,j]= "0"}
    if(NestID_frame$Nestbox_ID[i]=="Y" & NestID_frame$Nestbox_ID[i]==NestID_frame$Nestbox_ID[j]){
      NestIDM[i,j]= "Y"}
    if(NestID frame$Nestbox ID[i]!=NestID frame$Nestbox ID[j]){
      NestIDM[i,j]= "NA"}
 }
```

```
}
all(rownames(NestIDM) == key$Sample)
## [1] TRUE
rownames(NestIDM) <- key$Sample
colnames(NestIDM)<-key$Sample</pre>
####Create a combination-factor matrix for Life Stage (Adult vs Nestling)
# 1. Create data frame with each Individual name (SampleID) and their Life stage (ageclass) as charact
LifeStage_frame <- Metadata_Families[,c("Sample", "Ageclass")]</pre>
# 2. Create an empty character matrix to fill with characters
AGEM<-array(as.character(NA),c(nrow(LifeStage_frame),nrow(LifeStage_frame)))
for(i in 1:nrow(LifeStage_frame)){
  for(j in 1:nrow(LifeStage_frame)){
    if(LifeStage_frame$Ageclass[i]=="A" & LifeStage_frame$Ageclass[i]==LifeStage_frame$Ageclass[j]){
      AGEM[i,j] = "AA"
    if(LifeStage_frame$Ageclass[i]=="N" & LifeStage_frame$Ageclass[i]==LifeStage_frame$Ageclass[j]){
      AGEM[i,j] = "NN"
    if( LifeStage_frame$Ageclass[i]!=LifeStage_frame$Ageclass[j]){
      AGEM[i,j] = "AN"
 }
}
rownames(AGEM) <- key$Sample
colnames(AGEM) <- key$Sample
all(rownames(AGEM) == key$Sample)
## [1] TRUE
####Create a combination-factor matrix for Sexes
Sex_frame<-Metadata_Families[,c("Sample","Sex")]</pre>
SEXM<-array(as.character(NA),c(nrow(Sex_frame),nrow(Sex_frame)))</pre>
for(i in 1:nrow(Sex_frame)){
  for(j in 1:nrow(Sex_frame)){
    if(Sex_frame$Sex[i] == "F" & Sex_frame$Sex[i] == Sex_frame$Sex[j]){
      SEXM[i,j]= "FF"}
    if(Sex_frame$Sex[i]=="M" & Sex_frame$Sex[i]==Sex_frame$Sex[j]){
      SEXM[i,j]= "MM"}
    if(Sex_frame$Sex[i]=="NA" & Sex_frame$Sex[i]==Sex_frame$Sex[j]){
      SEXM[i,j]= "NN"}
    if(Sex_frame$Sex[i]=="F" & Sex_frame$Sex[j]=="M"){
      SEXM[i,j]= "FM"}
    if(Sex_frame$Sex[j]=="F" & Sex_frame$Sex[i]=="M"){
      SEXM[i,j]= "FM"}
```

```
if(Sex_frame$Sex[i] == "F" & Sex_frame$Sex[j] == "NA"){
      SEXM[i,j]= "NF"}
    if(Sex_frame$Sex[j]=="F" & Sex_frame$Sex[i]=="NA"){
      SEXM[i,j] = "NF"
    if(Sex_frame$Sex[i] == "M" & Sex_frame$Sex[j] == "NA"){
      SEXM[i,j]= "NM"}
    if(Sex_frame$Sex[j]=="M" & Sex_frame$Sex[i]=="NA"){
      SEXM[i,j] = "NM"}
  }
rownames(SEXM) <- key$Sample
colnames(SEXM)<-key$Sample</pre>
#### Create dyadic data
bc families <- c(as.dist(BC Families))</pre>
nest <- c(as.dist(NestM))</pre>
age <- c(AGEM[lower.tri(AGEM)])</pre>
sex<-c(SEXM[lower.tri(SEXM)])</pre>
nestID<-c(NestIDM[lower.tri(SEXM)])</pre>
data.dyad<-data.frame(BC_Similarity=bc_families,</pre>
                        Nest_Similarity=nest,
                        NestID=nestID,
                        Age_combination=age,
                        Sex_combination=sex)
list<-expand.grid(key$Sample,key$Sample)</pre>
list<-list[which(list$Var1!=list$Var2),]</pre>
list$key <- apply(list, 1, function(x)paste(sort(x), collapse=''))</pre>
list<-subset(list, !duplicated(list$key))</pre>
i=90 # sanity check
BC Families[which(rownames(BC Families)==list$Var1[i]),which(colnames(BC Families)==list$Var2[i])]==bc
## [1] TRUE
data.dyad$SampleA<-list$Var2</pre>
data.dyad$SampleB<-list$Var1</pre>
```

```
data.dyad$SampleB<-list$Var1

data.dyad<-data.dyad[which(data.dyad$SampleA!=data.dyad$SampleB),] # sanity check

Pairwise_Data <- as_tibble(data.dyad)%>%
    dplyr::select("SampleB", everything())%>%
    dplyr::select("SampleA", everything())
```

4.3.2 Mother VS father analysis

```
Parent_Data <- Pairwise_Data%>%
  mutate(Relationship = case_when(
    Sex_combination == 'NM' & Nest_Similarity == '1' ~ 'Father',
```

```
Sex_combination == 'NF' & Nest_Similarity == '1' ~ 'Mother'
))%>%
filter(Relationship != "NA")
Age_of_Samples <- Metadata_Families%>%
    select(Sample, Ageclass)%>%
    rename(SampleA = Sample)
df_list <- list(Parent_Data, Age_of_Samples)
Parent_Data <- df_list%>%
    reduce(full_join, by="SampleA")%>%
    filter(SampleB != "NA")%>%
    mutate(SampleB = as.character(as.factor(SampleB)),
        Nestling = ifelse(Ageclass == 'A', SampleB, SampleA))%>%
    select(-c(Ageclass, Nest_Similarity, Age_combination, Sex_combination))
```

4.3.2.1 Analyse

• Fittig model and getting the P-value

```
Model_Parent_Nestling <- glmmTMB(BC_Similarity ~ Relationship + (1 | NestID) + (1 | NestID:Nestling),
                                family = beta_family(link = "logit"),
                                data=Parent_Data)
summary(Model_Parent_Nestling) #AIC = -380.8
## Family: beta (logit)
## Formula:
## BC_Similarity ~ Relationship + (1 | NestID) + (1 | NestID:Nestling)
## Data: Parent_Data
##
##
                       logLik deviance df.resid
        AIC
                 BIC
##
     -380.8
              -366.3
                       195.4
                                -390.8
                                            130
##
## Random effects:
##
## Conditional model:
## Groups
                   Name
                                Variance Std.Dev.
                    (Intercept) 0.10333 0.3215
## NestID:Nestling (Intercept) 0.07092 0.2663
## Number of obs: 135, groups: NestID, 16; NestID: Nestling, 69
## Dispersion parameter for beta family (): 68.4
##
## Conditional model:
##
                      Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                      1.72361
                                 0.09687 17.794
                                                    <2e-16 ***
## RelationshipMother -0.12897
                                  0.05694 - 2.265
                                                    0.0235 *
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

P-value = 0.0235, significant. Mother's preen oil composition is slightly more distant to their nestlings preen oil than the father's preen oil.

```
#Conversion in linear unit
mu_intercept <- 1.72361
mu_ParentMother <- -0.12897
plogis(mu_intercept + mu_ParentMother) - plogis(mu_intercept)</pre>
```

```
## [1] -0.01732533
```

The distance Mother-Nestling is 0.017 higher than the distance Father-Nestling in Bray-Curtis units.

• Confidence intervals

```
tidy(Model_Parent_Nestling, conf.int = TRUE, conf.method = "profile")
```

```
## # A tibble: 4 x 10
    effect compo~1 group term estim~2 std.e~3 stati~4 p.value conf.~5 conf.~6
           <chr> <chr> <chr>
##
    <chr>
                                <dbl>
                                      <dbl>
                                               <dbl>
                                                        <dbl>
                                                               <dbl>
                                                                      <dbl>
## 1 fixed
          cond <NA> (Int~ 1.72 0.0969
                                              17.8
                                                     7.87e-71
                                                               1.52
                                                                     1.92
## 2 fixed cond <NA> Rela~ -0.129 0.0569
                                             -2.27 2.35e- 2 -0.243 -0.0163
## 3 ran_pars cond Nest~ sd_~ 0.321 NA
                                              NA
                                                    NΑ
                                                              -1.66 -0.649
                 Nest~ sd__~ 0.266 NA
## 4 ran pars cond
                                               NA
                                                    NA
                                                              -1.79 - 0.995
## # ... with abbreviated variable names 1: component, 2: estimate, 3: std.error,
## # 4: statistic, 5: conf.low, 6: conf.high
```

 β estimate of the distance to the Mother effect: -0.129 (Beta family unit) Confidence interval: [-0.242 ; -0.016] -> does not include "0".

• AIC without Random effects

```
## Data: Parent_Data
## Models:
## Model_PN_noRandomeff: BC_Similarity ~ Relationship, zi=~0, disp=~1
## Model_PN_NestID: BC_Similarity ~ Relationship + (1 | NestID), zi=~0, disp=~1
## Model_PN_NestlingID: BC_Similarity ~ Relationship + (1 | NestID:Nestling), zi=~0, disp=~1
## Model_Parent_Nestling: BC_Similarity ~ Relationship + (1 | NestID) + (1 | NestID:Nestling), zi=~0, d
## Df AIC BIC logLik deviance Chisq Chi Df
## Model_PN_noRandomeff 3 -341.38 -332.66 173.69 -347.38
```

The stronger AIC is for the full model. There is a significant difference between the model without random effects and the model without the NestlingID effect, but no with the model without NestID effect. The NestlingID effect seems to be the random effect with the most impact.

4.3.3 Mother VS other adult females analysis

```
MotherVSOtherF_Data <- Pairwise_Data%>%
  mutate(Relationship = case_when(
    Sex_combination == 'NF' & Nest_Similarity == '0' ~ 'OtherF',
    Sex_combination == 'NF' & Nest_Similarity == '1' ~ 'Mother'
  ))%>%
  filter(Relationship != "NA")
Age_of_Samples <- Metadata_Families%>%
  select(Sample, Ageclass)%>%
  rename(SampleA = Sample)
df list <- list(MotherVSOtherF Data, Age of Samples)</pre>
MotherVSOtherF_Data <- df_list%>%
  reduce(full_join, by="SampleA")%>%
  filter(SampleB != "NA")%>%
  mutate(SampleB = as.character(as.factor(SampleB)),
   Nestling = ifelse(Ageclass == 'A', SampleB, SampleA))%>%
  select(-c(Ageclass, Nest Similarity, Age combination, Sex combination))
```

4.3.3.1 Analyse

• Fittig model and getting the P-value

```
##
## Random effects:
##
## Conditional model:
## Groups
                               Variance Std.Dev.
## NestID
                   (Intercept) 0.07611 0.2759
## NestID:Nestling (Intercept) 0.09286 0.3047
## Number of obs: 1035, groups: NestID, 16; NestID: Nestling, 135
##
## Dispersion parameter for beta family (): 56.3
## Conditional model:
                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                 0.09296
                                          17.03
                                                   <2e-16 ***
                      1.58318
## RelationshipOtherF -0.01167
                                 0.29364
                                            -0.04
                                                    0.968
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

P-value = 0.968, non-significant. Mother's preen oil composition is not more similar to that of their nestlings than that of another female in the population.

```
#Conversion in linear unit
mu_intercept <- 1.58318
mu_OtherF <- -0.01167
plogis(mu_intercept + mu_OtherF) - plogis(mu_intercept)</pre>
```

[1] -0.001655648

The distance Mother-Nestling is 0.002 higher than the distance OtherFemale-Nestling in Bray-Curtis units.

• Confidence intervals

confint(Model_Female_Nestling)

 β estimate of the distance to a dult females effect: -0.0016 (Beta family unit) Confidence interval: [-0.587 ; 0.564] -> includes "0".

• AIC without Random effects

```
Model_FN_noNestID <- glmmTMB(BC_Similarity ~ Relationship + (1 | NestID:Nestling),</pre>
                             family = beta_family(link = "logit"),
                            data=MotherVSOtherF_Data)
anova(Model_Female_Nestling, Model_FN_noRandomeff, Model_FN_noNestlingID, Model_FN_noNestID)
## Data: MotherVSOtherF_Data
## Models:
## Model_FN_noRandomeff: BC_Similarity ~ Relationship, zi=~0, disp=~1
## Model_FN_noNestlingID: BC_Similarity ~ Relationship + (1 | NestID), zi=~0, disp=~1
## Model_FN_noNestID: BC_Similarity ~ Relationship + (1 | NestID:Nestling), zi=~0, disp=~1
## Model_Female_Nestling: BC_Similarity ~ Relationship + (1 | NestID) + (1 | NestID:Nestling), zi=~0, d
                               AIC
##
                        Df
                                       BIC logLik deviance
                                                              Chisq Chi Df
## Model_FN_noRandomeff
                         3 -2653.3 -2638.5 1329.7 -2659.3
## Model_FN_noNestlingID 4 -2654.9 -2635.1 1331.5 -2662.9
                                                             3.5827
## Model_FN_noNestID
                         4 -3088.7 -3068.9 1548.3 -3096.7 433.8058
                                                                         0
## Model Female Nestling 5 -3093.3 -3068.6 1551.7 -3103.3 6.6411
                                                                         1
                        Pr(>Chisq)
## Model_FN_noRandomeff
## Model_FN_noNestlingID
                         0.058384 .
## Model_FN_noNestID
                          < 2.2e-16 ***
## Model_Female_Nestling 0.009965 **
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

The stronger AIC is for the full model. There is a significant difference between the model without random effects and the model without the NestID effect, but no with the model without NestlingID effect. The NestID effect seems to be the random effect with the most impact.

4.3.4 Father VS other adult males analysis

```
FatherVSOtherM_Data <- Pairwise_Data%>%
 mutate(Relationship = case_when(
   Sex_combination == 'NM' & Nest_Similarity == '0' ~ 'OtherM',
   Sex_combination == 'NM' & Nest_Similarity == '1' ~ 'Father'
  ))%>%
  filter(Relationship != "NA")
Age_of_Samples <- Metadata_Families%>%
  select(Sample, Ageclass)%>%
  rename(SampleA = Sample)
df_list <- list(FatherVSOtherM_Data, Age_of_Samples)</pre>
FatherVSOtherM_Data <- df_list%>%
  reduce(full_join, by="SampleA")%>%
  filter(SampleB != "NA")%>%
  mutate(SampleB = as.character(as.factor(SampleB)),
   Nestling = ifelse(Ageclass == 'A', SampleB, SampleA))%>%
  select(-c(Ageclass, Nest_Similarity, Age_combination, Sex_combination))
```

4.3.4.1 Analyse

• Fittig model and getting the P-value

```
Model_Male_Nestling <- glmmTMB(BC_Similarity ~ Relationship + (1 | NestID) + (1 | NestID:Nestling),
                                 family = beta_family(link = "logit"),
                                 data=FatherVSOtherM_Data)
summary(Model_Male_Nestling) \#AIC = -6970.3
## Family: beta ( logit )
## Formula:
## BC_Similarity ~ Relationship + (1 | NestID) + (1 | NestID:Nestling)
## Data: FatherVSOtherM_Data
##
                BIC
                       logLik deviance df.resid
##
        AIC
                       1842.2 -3684.4
##
   -3674.4 -3649.4
##
## Random effects:
##
## Conditional model:
                               Variance Std.Dev.
## Groups
## NestID
                    (Intercept) 0.08889 0.2981
## NestID:Nestling (Intercept) 0.13783 0.3712
## Number of obs: 1104, groups: NestID, 17; NestID:Nestling, 138
## Dispersion parameter for beta family (): 73.6
##
## Conditional model:
##
                       Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                       1.744503
                                 0.097097 17.967
                                                    <2e-16 ***
## RelationshipOtherM -0.005994
                                 0.316878 -0.019
                                                     0.985
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

P-value = 0.985, non-significant. Nestling's preen oil composition is not more similar to that of their father than to another male in the population.

```
#Conversion in linear unit
mu_intercept <- 1.74450
mu_OtherM <- -0.00599
plogis(mu_intercept + mu_OtherM) - plogis(mu_intercept)</pre>
```

```
## [1] -0.0007600387
```

The distance Father-Nestling is 0.001 higher than the distance Other male - Nestling in Bray-Curtis units.

• Confidence intervals

```
confint(Model_Male_Nestling)
```

 β estimate of the distance to a dult males effect: -0.0016 (Beta family unit) Confidence interval: [-0.627 ; 0.615] -> includes "0".

• AIC without Random effects

```
Model_MN_noRandomeff <- glmmTMB(BC_Similarity ~ Relationship,</pre>
                                family = beta_family(link = "logit"),
                                data=FatherVSOtherM_Data)
Model_MN_noNestlingID <- glmmTMB(BC_Similarity ~ Relationship + (1 | NestID),</pre>
                                 family = beta_family(link = "logit"),
                                 data=FatherVSOtherM_Data)
Model_MN_noNestID <- glmmTMB(BC_Similarity ~ Relationship + (1 | NestID:Nestling),</pre>
                             family = beta_family(link = "logit"),
                             data=FatherVSOtherM Data)
anova(Model_Male_Nestling, Model_MN_noRandomeff, Model_MN_noNestlingID, Model_MN_noNestID)
## Data: FatherVSOtherM Data
## Models:
## Model_MN_noRandomeff: BC_Similarity ~ Relationship, zi=~0, disp=~1
## Model_MN_noNestlingID: BC_Similarity ~ Relationship + (1 | NestID), zi=~0, disp=~1
## Model_MN_noNestID: BC_Similarity ~ Relationship + (1 | NestID:Nestling), zi=~0, disp=~1
## Model_Male_Nestling: BC_Similarity ~ Relationship + (1 | NestID) + (1 | NestID:Nestling), zi=~0, dis
                                        BIC logLik deviance
                                                                Chisq Chi Df
                         Df
                                AIC
## Model_MN_noRandomeff
                          3 -2940.0 -2925.0 1473.0 -2946.0
## Model_MN_noNestlingID 4 -2939.9 -2919.9 1474.0 -2947.9
                                                               1.9360
                                                                           1
## Model_MN_noNestID
                          4 -3670.7 -3650.7 1839.4 -3678.7 730.7680
                                                                           0
## Model_Male_Nestling
                          5 -3674.4 -3649.4 1842.2 -3684.4
                                                               5.7023
                                                                           1
                         Pr(>Chisq)
## Model_MN_noRandomeff
## Model_MN_noNestlingID
                            0.16411
## Model_MN_noNestID
                            < 2e-16 ***
## Model_Male_Nestling
                            0.01694 *
## ---
```

The stronger AIC is for the full model. There is a significant difference between the model without random effects and the model without the NestID effect, but no with the model without NestlingID effect. The NestID effect seems to be the random effect with the most impact.

4.3.5 Adult females VS adult males (other than mother and father) analysis

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

```
OtherFVSOtherM_Data <- Pairwise_Data%>%
  mutate(Relationship = case_when(
    Sex_combination == 'NF' & Nest_Similarity == '0' ~ 'OtherF',
    Sex_combination == 'NM' & Nest_Similarity == '0' ~ 'OtherM'
))%>%
  filter(Relationship != "NA")
Age_of_Samples <- Metadata_Families%>%
  select(Sample, Ageclass)%>%
  rename(SampleA = Sample)
df_list <- list(OtherFVSOtherM_Data, Age_of_Samples)</pre>
```

```
OtherFVSOtherM_Data <- df_list%>%
  reduce(full_join, by="SampleA")%>%
  filter(SampleB != "NA")%>%
  mutate(SampleB = as.character(as.factor(SampleB)),
    Nestling = ifelse(Ageclass == 'A', SampleB, SampleA))%>%
  select(-c(Ageclass, Nest_Similarity, Age_combination, Sex_combination))
```

4.3.5.1 Analyse

• Fittig model and getting the P-value

```
Model_Adult_Nestling <- glmmTMB(BC_Similarity ~ Relationship + (1 | NestID) + (1 | NestID:Nestling),
                                 family = beta_family(link = "logit"),
                                 data=OtherFVSOtherM Data)
summary(Model_Adult_Nestling) \#AIC = -6970.3
## Family: beta (logit)
## Formula:
## BC_Similarity ~ Relationship + (1 | NestID) + (1 | NestID:Nestling)
## Data: OtherFVSOtherM_Data
##
##
        AIC
                BIC
                       logLik deviance df.resid
   -6590.3 -6562.2
                      3300.1 -6600.3
                                           1999
##
##
## Random effects:
## Conditional model:
## Groups
                   Name
                               Variance Std.Dev.
## NestID
                   (Intercept) 1.353e-09 3.678e-05
## NestID:Nestling (Intercept) 1.278e-01 3.575e-01
## Number of obs: 2004, groups: NestID, 1; NestID:Nestling, 69
##
## Dispersion parameter for beta family (): 64.8
## Conditional model:
##
                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                       1.58315
                                 0.04432
                                            35.72
                                                    <2e-16 ***
## RelationshipOtherM 0.14358
                                 0.01477
                                            9.72
                                                    <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

P-value < 2e-16, significant. Nestlings' preen oil composition is not more similar to that of adult males than that of adult females in the population.

```
#Conversion in linear unit
mu_intercept <- 1.58315
mu_OtherM <- 0.14358
plogis(mu_intercept + mu_OtherM) - plogis(mu_intercept)</pre>
```

```
## [1] 0.0193435
```

The distance OtherM-Nestling is 0.02 higher than the distance OtherF-Nestling in Bray-Curtis units.

• Confidence intervals

confint(Model_Adult_Nestling)

 β estimate of the distance to a dult males effect: 0.14 (Beta family unit) Confidence interval: [0.115 ; 0.173] -> does not include "0".

• AIC without Random effects

```
Model_RN_noRandomeff <- glmmTMB(BC_Similarity ~ Relationship,</pre>
                                family = beta_family(link = "logit"),
                                data=OtherFVSOtherM_Data)
Model_RN_noNestlingID <- glmmTMB(BC_Similarity ~ Relationship + (1 | NestID),</pre>
                                 family = beta_family(link = "logit"),
                                 data=OtherFVSOtherM_Data)
Model_RN_noNestID <- glmmTMB(BC_Similarity ~ Relationship + (1 | NestID:Nestling),</pre>
                             family = beta_family(link = "logit"),
                             data=OtherFVSOtherM_Data)
anova (Model_Adult_Nestling, Model_RN_noRandomeff, Model_RN_noNestlingID, Model_RN_noNestID)
## Data: OtherFVSOtherM_Data
## Models:
## Model_RN_noRandomeff: BC_Similarity ~ Relationship, zi=~0, disp=~1
## Model_RN_noNestlingID: BC_Similarity ~ Relationship + (1 | NestID), zi=~0, disp=~1
## Model_RN_noNestID: BC_Similarity ~ Relationship + (1 | NestID:Nestling), zi=~0, disp=~1
## Model_Adult_Nestling: BC_Similarity ~ Relationship + (1 | NestID) + (1 | NestID:Nestling), zi=~0, di
                                        BIC logLik deviance
                                                              Chisq Chi Df
                         Df
                                AIC
## Model_RN_noRandomeff
                          3 -5252.3 -5235.5 2629.2
                                                    -5258.3
## Model_RN_noNestlingID 4 -5250.3 -5227.9 2629.2
                                                    -5258.3
                                                                         1
                                                                0.0
## Model_RN_noNestID
                          4 -6592.3 -6569.8 3300.1
                                                    -6600.3 1341.9
                                                                         0
## Model_Adult_Nestling
                          5 -6590.3 -6562.2 3300.1 -6600.3
                                                                0.0
                                                                         1
                         Pr(>Chisq)
## Model_RN_noRandomeff
## Model RN noNestlingID
                                  1
## Model RN noNestID
                             <2e-16 ***
## Model_Adult_Nestling
                                  1
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

The stronger AIC is for the model without NestID. This is the only model that is significantly different from the one with no random effect. NestID seem to be the only important random effect here. But note that the full model has almost the same AIC.

4.3.6 Plot

```
# Prepare data for plotting
Data_plot <- Pairwise_Data%>%
 mutate(Relationship = case_when(
   Sex combination == 'NM' & Nest Similarity == '1' ~ 'Father',
   Sex_combination == 'NF' & Nest_Similarity == '1' ~ 'Mother',
   Sex_combination == 'NF' & Nest_Similarity == '0' ~ 'Other adult female',
   Sex_combination == 'NM' & Nest_Similarity == '0' ~ 'Other adult male',
  ))%>%
  filter(Relationship != "NA")
Age_of_Samples <- Metadata_Families%>%
  select(Sample, Ageclass)%>%
  rename(SampleA = Sample)
df_list <- list(Data_plot, Age_of_Samples)</pre>
Data_plot <- df_list%>%
  reduce(full_join, by="SampleA")%>%
  filter(SampleB != "NA")%>%
  mutate(SampleB = as.character(as.factor(SampleB)),
         Nestling = ifelse(Ageclass == 'A', SampleB, SampleA))%>%
  select(-c(Ageclass, Nest_Similarity, Age_combination, Sex_combination))
# Plot
#tiff("boxplot-similarity-relationship-20240315-jpg.jpg", units="in", width=5.5, height=4, res=600)
ggplot(Data_plot, aes(x = Relationship, y = BC_Similarity)) +
  geom_boxplot(data = Data_plot %>% filter(Relationship == "Other adult female"), outlier.shape = NA, w
  geom_boxplot(data = Data_plot %>% filter(Relationship == "Mother"), position = position_nudge(x = -0...
  geom_boxplot(data = Data_plot %>% filter(Relationship == "Father"), position = position_nudge(x = 0.3
  geom_boxplot(data = Data_plot %>% filter(Relationship == "Other adult male"), outlier.shape = NA, wid
  geom_line(data = Data_plot %>% filter(Relationship == "Father" | Relationship == "Mother"), aes(group
  geom_point(data = Data_plot %>% filter(Relationship == "Mother" | Relationship == "Father"), aes(colo
  scale_color_manual(values = c("#323235","#BCBAB7")) +
  ylab("Bray-Curtis similarity") +
  theme(legend.position = "none",
        axis.title.y=element_text(size=16, margin = margin(t = 0, r = 10, b = 0, l = 0)),
       axis.text.y = element_text(size=13),
       axis.text.x = element_text(size=10),
       axis.title.x = element_blank()) +
  scale_x_discrete(limits = c("Other adult female", "Mother", "Father", "Other adult male"))
```

