Capstone Project 3

Cardiovascular Risk Prediction

Satyajit Sahoo

Understanding Problem Statement:

 We are given with a data set where one of the variables represent whether a person may suffer from heart disease in next 10 years.
 Of size(3390,16)

Our aim is to predict the same.

The target variable is TenYearsCHD and it is binary where:

0 means NO

1 means YES

Variables Involved:

ID

Age

Education

Sex

Is_smoking

Cigs per days

BPMeds

Prevalent stroke

Prevalent Hypertensive

Diabetes

Total Cholestrol

sysBP

diaBP

BMI

Heart Rate

Glucose

Ten Year CHD

Exploratory Data Analysis:

Null Values

On exploring we see that these variables have null values in them.

	value_counts	percentage
education	87	2.57
cigsPerDay	22	0.65
BPMeds	44	1.30
totChol	38	1.12
ВМІ	14	0.41
heartRate	1	0.03
glucose	304	8.97

Null - Value treatment

Deciding which value to impute in place of null values.

Mean

Mode Median

Outlier treatment

education

totChol

Logistic Regression Data Preparation

Verifying linear dependency

Removing Multicollinearity

	feature	VIF
0	education	4.599856
1	sex	1.969307
2	cigsPerDay	1.760078
3	prevalentHyp	1.621659
4	glucose_age_chol	6.468307

Preparing data for SVCs

Preparing data for Ensemble tree models.

Handling Data Imbalance.

```
Before X_train : (2712, 5)
Before Y_train :
0 2303
1 409
Name: TenYearCHD, dtype: int64
After X_smote : (3810, 5)
After Y_smote :
0 1905
1 1905
Name: TenYearCHD, dtype: int64
```

Logistic Regression Implementation

Logistic Regression Implementation (Contd..)

Classification Report of train set					
	0	1	accuracy	macro avg	weighted avg
precision	0.639166	0.635697	0.638643	0.637432	0.637771
recall	0.908081	0.238313	0.638643	0.573197	0.638643
f1-score	0.750255	0.346667	0.638643	0.548461	0.587897
support	1621.000000	1091.000000	0.638643	2712.000000	2712.000000

Classification Report of test output					
	0	1	accuracy	macro avg	weighted avg
precision	0.642361	0.607843	0.637168	0.625102	0.628717
recall	0.902439	0.231343	0.637168	0.566891	0.637168
f1-score	0.750507	0.335135	0.637168	0.542821	0.586319
support	410.000000	268.000000	0.637168	678.000000	678.000000

High

SHAP value (impact on model output)

Gaussian Naïve Bayes Implementation

Support Vector Classifier Implementation

Support Vector Classifier Implementation (Contd..)

Classification Report of train set					
0	1	accuracy	macro avg	weighted avg	
0.616153	0.696822	0.628319	0.656487	0.650925	
0.919637	0.243798	0.628319	0.581718	0.628319	
0.737910	0.361217	0.628319	0.549563	0.575537	
1543.000000	1169.000000	0.628319	2712.000000	2712.000000	
	0.616153 0.919637 0.737910	e 1 0.616153 0.696822 0.919637 0.243798 0.737910 0.361217	6 1 accuracy 0.616153 0.696822 0.628319 0.919637 0.243798 0.628319 0.737910 0.361217 0.628319	0 1 accuracy macro avg 0.616153 0.696822 0.628319 0.656487 0.919637 0.243798 0.628319 0.581718 0.737910 0.361217 0.628319 0.549563	

Classification Report of test output					
	0	1	accuracy	macro avg	weighted avg
precision	0.631944	0.676471	0.638643	0.654208	0.650398
recall	0.916877	0.245552	0.638643	0.581214	0.638643
f1-score	0.748201	0.360313	0.638643	0.554257	0.587440
support	397.000000	281.000000	0.638643	678.000000	678.000000

Support Vector Classifier with balanced loss function Implementation

Support Vector Classifier with balanced loss Implementation (Contd..)

	Classification Report of train set					
	0	1	accuracy	macro avg	weighted avg	
precision	0.616153	0.696822	0.628319	0.656487	0.650925	
recall	0.919637	0.243798	0.628319	0.581718	0.628319	
f1-score	0.737910	0.361217	0.628319	0.549563	0.575537	
support	1543.000000	1169.000000	0.628319	2712.000000	2712.000000	

Classification Report of test output						
	0	1	accuracy	macro avg	weighted avg	
precision	0.631944	0.676471	0.638643	0.654208	0.650398	
recall	0.916877	0.245552	0.638643	0.581214	0.638643	
f1-score	0.748201	0.360313	0.638643	0.554257	0.587440	
support	397.000000	281.000000	0.638643	678.000000	678.000000	

LGBM Implementation

LGBM Implementation

Classification Report of train set					
	0	1	accuracy	macro avg	weighted avg
precision	0.612679	0.704156	0.626475	0.658418	0.652481
recall	0.921018	0.244068	0.626475	0.582543	0.626475
f1-score	0.735854	0.362492	0.626475	0.549173	0.573403
support	1532.000000	1180.000000	0.626475	2712.000000	2712.000000

Classification Report of test output					
	0	1	accuracy	macro avg	weighted avg
precision	0.604167	0.627451	0.607670	0.615809	0.614195
recall	0.901554	0.219178	0.607670	0.560366	0.607670
f1-score	0.723493	0.324873	0.607670	0.524183	0.551816
support	386.000000	292.000000	0.607670	678.000000	678.000000

age
sysBP
cigsPerDay
education
heartRate
totChol
glucose
diaBP
BMI

XGRFB Implementation

XGRFB Implementation

	Classification Report of train set					
	0	1	accuracy	macro avg	weighted avg	
precision	0.575771	0.748166	0.601770	0.661968	0.657328	
recall	0.927922	0.238504	0.601770	0.583213	0.601770	
f1-score	0.710611	0.361702	0.601770	0.536157	0.545548	
support	1429.000000	1283.000000	0.601770	2712.000000	2712.000000	

age
sysBP
cigsPerDay
education
totChol
heartRate
BMI
diaBP
prevalentHyp

Random Forest Implementation

Neural Network Implementation

Conclusion..

- 1. Logistic Regression can predict 61% of the negative values long with 35% of False Negative predictions.
- 2. Gaussian Naive Bayes can predict 55% of the negative values along with 34% of False Negative predictions.
- 3. Support Vector Classifier (without balanced loss function) can predict 68% of the negative values with 37% of False Negative predictions.
- 4. Support Vector Classifier (with balanced loss function) can predict 70% of the negative values with 37% of False Negative predictions.
- 5. LGBM can predict 63% of the negative values with 40% of False Negative predictions.
- 6. XGRFB can predict 69% of the negative values with 42% of False Negative predictions.
- 7. Random Forest Model can predict 66% of the negative values with 39 % False Negative predictions.