1. Рюкзак на отрезке

Даны n предметов. И m запросов вида "можно ли подмножеством отрезка предметов $[l_i..r_i]$ получить вес ровно $x_i \leq w$ ". $\mathcal{O}(nw+m)$.

2. Мосты

У нас есть x брёвен длины a, y брёвен длины b и число k. Нужно составить k рядов так, чтобы длина минимального из рядов была максимальна. $x, a, y, b, k \leq N$.

- (a) $\mathcal{O}(N^3 \log N)$.
- (6) $\mathcal{O}(N^2 \log N)$.

3. Рюкзак

Даны n чисел от 0 до 127. Разбить их на четыре множества, максимизировать минимум XOR-ов в множествах.

- (a) $n \le 50$.
- (6) $n \leq 500$.

4. Казино

Есть строка t и набор правил. Каждое правило имеет вид "можно удалить из t подстроку равную s_i ". Для каждого символа строки t известен бонус за удаление этого символа. Какой максимальный суммарный бонус мы можем получить, применяя правила сколько угодно раз в произвольном порядке? (a) $\mathcal{O}(n^4)$ времени и $\mathcal{O}(n^3)$ памяти.

- (б) $\mathcal{O}(n^4/w)$ времени и $\mathcal{O}(n^3/w)$ памяти.
- * w размер машинного слова; $|t|, \sum_{i} |s_{i}| \leq n$.

5. LCIS

Найти наибольшую общую возрастающую подпоследовательность за $\mathcal{O}(n^2)$ времени и $\mathcal{O}(n)$ памяти, алфавит произвольный.

6. Пути в графе

Найти в орграфе количество необязательно простых путей длины

- (a) ровно k
- (б) не более k
- $\mathcal{O}(n^3 \log k)$.

7. к-я лексикографически скобочная последовательность

Из m типов скобок длины 2n. $\mathcal{O}(n^2)$ при $k < 2^{64}$.

8. Диаграммы Юнга

Диаграмма Юнга — это конечный набор клеток, выровненных по левой границе, в котором длины строк образуют невозрастающую последовательность.

			1	2	4	7	8
			3	5	6	9	
			10				

Дана диаграмма Юнга из $n \le 40$ клеток, посчитать число способов Раставить в её клетках различные числа от 1 до n так, чтобы по всем строкам и по всем столбцам числа возрастали.

9. Чёрно-белый прямоугольник

Дан чёрно-белый прямоугольник размера $w \times h$. Найти в нём подквадрат максимального размера с не более чем k чёрными клетками. $\mathcal{O}(wh)$.

10. Посёлки

На прямой есть n поселений, i-е находится в точке x_i и имеет население a_i человек. Нужно выбрать k особенных из n поселений так, чтобы $\sum_i a_i dist_i$ была минимальна, где $dist_i$ – расстояние от i-го до ближайшего особенного поселения.

- (a) решение за $\mathcal{O}(n^2)$ с оценкой времени
- (б) доказательство корректности =)

11. Найти самый большой дар

Даны n чисел. Мысленно отсортируем их. Найти за $\mathcal{O}(n)$ максимальную разницу между соседними.

12. Лексикографически минимальный путь

Дан ацикличный орграф. На рёбрах символы. Найти лексикографически минимальный путь из s в t. (a) $\mathcal{O}(VE)$

(6) $\mathcal{O}(E \log V)$

Задача	1	2a	2б	3a	3б	4a	4б	5	6a	6б	7	8	9	10a	10б	11	12a	12б

фио.									