一阶逻辑

本次讲座

上次我们谈到了命题逻辑,即简单陈述的逻辑。

这次我们将讨论一阶逻辑,即量化陈述上的逻辑。

- 一阶逻辑比命题逻辑更具表现力。
- 一阶逻辑的主题是:

量词

否定

多个量词

量化陈述的论点

命题逻辑的局限

命题逻辑 简单陈述的逻辑

$$\neg, \wedge, \vee, \rightarrow, \leftrightarrow$$

如何使用命题逻辑制定勾股定理?

如何表述存在无限多个素数的陈述?

谓词

谓词是带有变量的命题(即陈述)。

例子: P(x,y):x+2=y

x = 1 和y = 3: P(1,3) 为真

x = 1 和y = 4: P(1,4) 为假

P(1,4) 为真

当有变量时,我们需要指定要放入变量中的内容。

变量的域是所有值的集合

可以代替变量。

通用量词

全称量词

x代表所有x

例子:

x ₹+ P(x) 表示 P(1) ∧ P(2) ∧ P(3) ∧

例子:

 $x \not \equiv y Z_{x} + y = y + x_{o}$

勾股定理

 \forall right – angled triangle $a^2 + b^2 = c^2$

例子:

$$\forall x \ x^2 > x$$

如果域是 Z,则此陈述为真,但如果域为 R,则此陈述不正确。

谓词的真值取决于域。

存在量词

谓词的真值取决于域。

ХУ	/Xy _o
<u> </u>	真值
整数 Z	吨
正整数Z+	吨
负整数 Z	F
负实数 R	吨

翻译数学定理

翻译成逻辑 公式?

Fermat (1637):如果整数 n 大于 2,

那么方程an + bn = cn在正整数 $a \cdot b$ 和 c 中没有解。

三个重要元素:

$$a^n + b^n \neq c^n$$

·变量: a、b、c、n

 \in , b $\mathbb{Z}+$, c $\mathbb{Z}+$, n $\mathbb{Z}_n > 2$

最后一步:添加量词并协调顺序

$$\forall a, b, c \in \mathbb{Z}^+, (n \le 2) \lor (n \notin \mathbb{Z}) \lor (a^n + b^n \ne c^n)$$

安德鲁·怀尔斯 (1994) http://en.wikipedia.org/wiki/Fermat s_last_theorem

翻译数学定理

哥德巴赫猜想:每一个至少6的正偶数都是两个素数之和。

假设我们已经有谓词 prime(x)、even(x)、odd(x)。

1.条件: p+q=n 2.变

量: p,q,n 3.域:素数

(p),素数(q),偶数(n),n≥6,n Z+4.添加量词并调和命令:∈

翻译数学定理

如何写素数(p)?

素数 (或素数)是大于1的自然数,除了1和它本身之外没有正除数。

1.条件: p≠a b

2.变量: p、a、b

3. 领域: , , > 1, , ∈

4.添加量词并协调顺序:

$$(>1) \land \in (\land () \land () \land (=1) \lor (=))$$

Machine Translated by Google

量词

否定

多个量词

量化陈述的论点

量化陈述的否定

每个人都喜欢足球。

这种说法的否定是什么?

不是每个人都喜欢足球=有人不喜欢足球。

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

(广义)德摩根定律

假设域只有三个值。

$$\neg \forall x P(x) \equiv \neg (P(1) \land P(2) \land P(3))$$

$$\equiv \neg (P(1) \land P(2)) \lor \neg P(3)$$

$$\equiv \neg P(1) \lor \neg P(2) \lor \neg P(3) \equiv \exists x \neg P(x)$$

相同的想法可用于证明任意数量的变量。

量化陈述的否定

有一种植物会飞。

这种说法的否定是什么?

不存在会飞的植物=所有植物都不会飞。

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

(广义)德摩根定律假设域只有三个值。

$$\neg \exists x P(x) \equiv \neg (P(1) \lor P(2) \lor P(3))$$
$$\equiv \neg (P(1) \lor P(2)) \land \neg P(3)$$
$$\equiv \neg P(1) \land \neg P(2) \land \neg P(3)$$
$$\equiv \forall x \neg P(x)$$

相同的想法可用于证明任意数量的变量。

Machine Translated by Google

量词

否定

多个量词

量化陈述的论点

防病毒程序会杀死所有计算机病毒。

如何解读这句话?

对于每个计算机病毒,都有一个杀毒程序可以杀死它。 $orall V \;\; \exists P, \mathsf{kill}(P,V)$

- · 对于每一次攻击,我都有一个防御:
- · 针对MYDOOM,使用Defender
- · 针对ILOVEYOU,使用诺顿
- · 针对BABLAS,使用Zonealarm …

买这么多好贵!

有一个杀毒程序可以杀死所有计算机病毒。

如何解读这句话?

有一个单一的防病毒程序可以杀死所有计算机病毒。

$$\exists P \ \forall V, \mathsf{kill}(P, V)$$

我对每一次攻击都有一个很好的防御。

示例: P是CSC3001-antivirus,可防御

所有病毒

那好多了!

量词的顺序很重要!

假设我们有一个大小为 6x6 的数组 A。

 $\forall \text{ row } x \exists \text{ column } y \quad A[x,y] = 1$

1					
	1	1		1	
		1			
		1		1	
			1		
		1			

那么这张表就满足了这个说法。

假设我们有一个大小为 6x6 的数组 A。

 $\exists \text{ row } x \ \forall \text{ column } y \ A[x,y] = 1$

1					
	1	1		1	
		1			
		1		1	
			1		
		1			

但如果量词的顺序发生变化, 那么这个表不再满足新的陈述。

假设我们有一个大小为 6x6 的数组 A。

 $\exists \text{ row } x \ \forall \text{ column } y \ A[x,y] = 1$

1	1	1	1	1	1

为了满足新语句,必须有一行全为1。

问题

这些陈述是否等效?

$$\forall$$
 row $x \forall$ column $y A[x,y] = 1$

$$\forall$$
 column $y \forall$ row $x A[x,y] = 1$

这些陈述是否等效?

$$\exists \text{ row } x \exists \text{ column } y \ A[x,y] = 1$$

$$\exists$$
 column $y \exists$ row $x A[x,y] = 1$

是的,一般来说,你可以改变两个"forall"的顺序,也可以改变两个"exist"的顺序。

更多否定

有一个杀毒程序可以杀死所有计算机病毒。

$$\exists P \ \forall V, \mathsf{kill}(P, V)$$

上述句子的否定句是什么?

$$\neg(\exists P \ \forall V, \mathsf{kill}(P, V))$$

$$\equiv \forall P \ \neg(\forall V, \mathsf{kill}(P, V))$$

$$\equiv \forall P \exists V \neg \mathsf{kill}(P, V)$$

对于每个程序,都有一些它无法杀死的病毒。

练习

1.有一个最小的正整数。

$$\exists s \in Z^+ \ \forall x \in Z^+ \ s \le x$$

2.没有最小的正实数。

$$\forall r \in R^+ \ \exists x \in R^+ \ x < r$$

换句话说,总是有一个较小的正实数。

练习

3.有无穷多个素数。

这句话包含两层意思:

使用一阶逻辑形成句子在逻辑编程和数据库查询中很有用。

Machine Translated by Google

量词

否定

多个量词

量化陈述的论点

谓词演算有效性

命题逻辑	一阶逻辑
无论A和B的真值是什么, 重言式都是真的。	重言式无论如何都是真的 x,y,z的域是,或P,Q是。
例如,	例如,
(A -> B) V (B -> A)	$z, [Q(z) \land P(z)] \rightarrow [x, Q(x) \land y, P(y)]$

概括命题逻辑,

只要假设为真,如果结论为真,则量化论证(即带有变量、量词的论证)是有效的。

带有量化陈述的论点

通用实例化:

$$\forall x, P(x)$$

 $\therefore P(a)$

通用前言:

$$\forall x, P(x) \rightarrow Q(x)$$

$$P(a)$$

$$\therefore Q(a)$$

通用模式:

$$\forall x, P(x) \to Q(x)$$

$$\neg Q(a)$$

$$\therefore \neg P(a)$$

普遍概括

提供c独立于A

非正式地,如果我们可以证明 R(c) 对于任意 c 是正确的(在某种意义上,c 是一个"变量"),那么我们可以证明所有值的陈述。

例如对于任何数字 c,如果 1=1,则 2c 是偶数

=> 如果 1=1,那么对于所有 x,2x 都是偶数。

备注:普遍概括往往难以证明,我们将引入数学归纳法来证明所有值的 有效性。

有效规则?

$$z [Q(z) \lor P(z)] \rightarrow [x Q(x) \lor y P(y)]$$

证明:我们希望给出一个反例,其中 z [Q(z) ∨ P(z)] 为真,但x Q(x) ∨ y P(y)为假。找到一个域和一个调词。

为了提供这个例子,让 domain 是整数, 如果 z 是偶数, Q(z)为真,即 Q(z)=even(z) 如果 z 是奇数,则P(z)为真,即 P(z)=odd(z)

那么 $z[Q(z) \lor P(z)]$ 为真,因为每个数都是偶数或奇数。但是 xQ(x)不是真的,因为不是每个数都是偶数。 类似地, yP(y)不为真,因此 $xQ(x) \lor yP(y)$ 不为真。

有效规则?

$$z \oplus [Q(z) \land P(z)] \rightarrow [x D Q(x) \not \in A y D P(y)] \in$$

证明:假设 z [Q(z) ∧ P(z)]为真。

所以 $Q(z) \wedge P(z)$ 对域 D 中的所有z都成立。

现在让c是域 D 中的某个元素。

所以 $Q(c) \land P(c)$ 为真(通过实例化),因此Q(c)为真。

但是c可以是域 D 中的任何元素。

所以我们得出结论 x Q(x)为真。 (通过概括)

我们得出结论 y P(y)类似地为真(通过泛化)。所以,

x Q(x) ∧ y P(y)为真。

QED_o

概括

这样就完成了对逻辑的介绍。我们将使用逻辑来做数学证明。

此时,您应该能够:

- ·使用逻辑公式表达(量化)陈述
- ·使用简单的逻辑规则(例如 De Morgan、对立等)
- ·精通论证和逻辑等价

逻辑的应用

逻辑编程

用逻辑解决问题

	1		6		7			4
	4	2						
8	7		3			6		
	8			7			2	
			8	9	3			
	3			6			1	
		8			6		4	5
						1	7	
4			တ		8		6	

数据库

查询、数据挖掘

数字电路

p	q	sum	carry
1	1	0	1
1	0	1	0
0	1	1	0
0	0	0	0

更多关于逻辑 (可选)

理想情况下,我们可以想出一个"完美"的逻辑系统,它是一致的(没有矛盾)并且是强大的(可以推导出所有真实的)。

但是哥德尔证明了没有完美的逻辑系统。 这被称为哥德尔不完备定理。 这是数学中一个重要而令人惊讶的结果。

他证明中的思想在计算机科学中也有影响,证明某些问题是不可计算的,例如不可能编写程序来检查是否

另一个程序将在特定输入上永远循环(参见注 2.1 中的 停止问题)。