<u>Announcements:</u>

Midterm exams etc. now scheduled (see website or email)
Office hours: Mon/Fri after class

Problem sessions: Tues. 3:00-4:20pm

Join Gradescope course if you haven't already! (entry code: VB7EYZ)

Euclidean Domains

Unless otherwise stated, all rings are commutative and have 1.

Def: An (integral) domain is a (commutative, nonzero) ring whout zero divisors: if $a \neq 0$, $b \neq 0$, then $ab \neq 0$.

Def:

- a) A norm is a function N: R → Z≥0 with N(0)=0
- b) N is Euclidean if Va, ber, b to, 3 a, rer s.t.
 - · a = qb+r

quotient remainder

- r = 0 or N(r) = N(b)
- c) A <u>Euclidean domain</u> is an int. domain w/ a Euclidean norm

Idea: we can use the Euclidean algorithm to find gcds

Ex: a)
$$72 \omega / N(a) = |a|$$
b) F: field $\omega / N(a) = 0$
c) $F[x]$ (F: field) $\omega / N(p(x)) = deg p$
d) $72[i]$ $\omega / N(a+bi) = |a+bi|^2 = a^2+b^2$
Non-ex: $72[J-s]$ (next week)

Def:

Def:

a) Write alb (in R) if 3xER s.t. ax=b a divides b

b) der is a gcd of a and b if

- · dla and dlb
- · If d'la and d'lb, then d'ld (gcd is always unique up to units)

Thm: Let R: Euclidean domain, a, b & R, b # O. Then a and b have a gcd.

Pf: Apply Euclidean algorithm:

 $r_0 = Q_2 r_1 + r_2$: $r_{n-1} = Q_{n+1} r_n + Q_{n+1}$

where N(b) > N(r_o) > --- > N(r_n)

At each step, notice that d is a common divisor

l is a common divisor \Leftrightarrow d is a common divisor of r_i and r_{i+2}

So gcds are unchanged at each step. There fore, the gcd of a and b equals $gcd(r_n,0)=r_n$.

Recall (from DRF (L.7):

- a) An ideal $I \subseteq R$ is an additive subgp. s.t. if $a \in I$, $r \in R$, then $ra \in I$.
- b) I is <u>principal</u> if I has the form

 (a):= {ralreR}

Thm: If R: Euclidean domain, then every ideal is principal.

Pf: Choose d to in I w/ minimum norm. If af I,

then by the Euclidean property
$$a=qd+r$$

Pf that Z[i] is a Euclidean domain:

let a, b & 7/[i].

Let q be an element of $7\ell[i]$ closest to a/b (in C). (i.e. |q-a/b| is minimal) Let $r = a-qb \in R$ (so that a=qb+r)

We have

$$N(r) = |r|^2 = |a - ab|^2 = \left|\frac{a}{b} - a\right|^2 |b|^2 \le \frac{1}{2} |b|^2 < N(b)$$

$$\leq \sqrt{2}$$

$$= \sqrt{2}$$