1. Let function f be defined by the polynomial below:

$$f(x) = -3x^4 - 4x^3 + 2x^2 + 7x - 8$$

Draw lines that match each function reflection with its polynomial:

Reflections	Polynomials	
f(-x) •		
-f(x) •		
-f(-x) •	\bullet $-3x^4+4x^3+2x^2-7x-8$	

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

\overline{x}	f(x)	g(x)	h(x)
1	9	$\begin{array}{ c c }\hline g(x)\\ \hline 5\\ \end{array}$	7
2	1	8	5
3	8	1	3
4	3	4	2
5	4	3	9
6	7	2	8
7	2	9	4
8	5	7	1
9	6	6	6

3. Evaluate g(1).

4. Evaluate $f^{-1}(2)$.

5. By filling more rows of the table, it is possible to make function h **odd**. If that were done, what would be the value of h(-4)?

6. By filling more rows of the table, it is possible to make function g even. If that were done, what would be the value of g(-9)?

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = -x^3 + 1$$

a. Express p(-x) as a polynomial in standard form.

b. Express -p(-x) as a polynomial in standard form.

c. Is polynomial p even, odd, or neither?

d. Explain how you know the answer to part c.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = \frac{x}{3} - 7$$

a. Evaluate f(57).

b. Evaluate $f^{-1}(6)$.

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(7).

b. Evaluate $b^{-1}(3)$.

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	9			
-1	-6			
0	0			
1	6			
2	-9			

b. Is function f even, odd, or neither?

c. How do you know the answer to part b?