Formulario general

Virgilio Murillo Ochoa 5 de mayo de 2021

Índice

1.	Alg	gebra	6			
	1.1.	factorization	6			
	1.2.	Sintetic divition	7			
	1.3.	cubic differences	8			
	1.4.	general formula	8			
	1.5.	Logarithms	8			
2.	Boo	olean Algebra	9			
	2.1.	Simple Formulas	9			
3.	Cor	mplex Algebra	9			
	3.1.	Polar coordinates	9			
	3.2.	Basic identiies and formulas	10			
	3.3.	Euler identity	10			
	3.4.	Multiplicative cycles	11			
	3.5.	Graphs	11			
	3.6.	Triangle inequality	12			
	3.7.	Golden Triangle	12			
4.	Lin	ear Algebra 1	2			
	4.1.	dot and cross product	12			
	4.2.	Crammer Rule	13			
	4.3.	Gauss jordan Algorithm	13			
	4.4.	simetry on matrices	13			
5.	Trigonometry 14					
	5.1.	Basic Identities	14			
	5.2.	Double Angle	14			

	5.3.	Sin in terms of e	14
	5.4.	hyperbolic functions	15
	5.5.	square reduction	15
	5.6.	Polar Coordinates	15
6.	Dife	erential Calculus	18
	6.1.	basic formulas	18
	6.2.	Limits	18
	6.3.	Derivatives of inverse trigonometric functions	18
	6.4.	Derivatives of Hiperbolic functions	19
7.	Inte	egral Calculus	20
	7.1.	basic integral formulas	20
		Reduction formulas	20
	7.3.	integrals of Hiperbolic functions	21
	7.4.	Particular Integrals	22
	7.5.	Taylor series	22
	7.6.	Riemann z function	22
	7.7.	Gamma Function	22
8.	Vector Calculus		
	8.1.	basic formulas	23
	8.2.	3d Line equation	23
9.	Diff	ferential Ecuations	24
	9.1.	linearity	24
	9.2.	homogeneous ecuations	25
		homogeneous function of grade n	
		Exact ED	
		Bernouully equation	

	9.6. Ricat Ecuation	26
	9.7. Cauchy Euler ecuation	26
	9.8. integrant factor	26
	9.9. Linear differential equations	27
	9.10. Order Reduction	27
	9.11. Constant coeficients Ecuation	28
	9.12. parameter variation	29
	9.13. Indeterminate Coeficients	30
10	0.probability and statistics	31
	10.1. Independent Events	31
	10.2. morgan laws	31
	10.3. separated probabilities	33
11	1.Numerical Calculus	34
	11.1. Taylor Polinomial	34
	11.2. Newton Raphson	34
	11.3. Complement to one	34
	11.4. complement to two	34
	11.5. complemento a dos	34
	11.6. convertir de punto flotante a decimal	35
	11.7. convert decimal to float	35
	11.8. Convert decimal fraction to float	37
	11.9. Fixed point iteration	38
	11.10Divided differences	39
	11.11Lagrange Polinomial	39
1 2	2.Arch Linux	40
	12.1. Mantainance	40
	12.2. Print in arch linux	41

12.3. configure date and time	41
12.4. Configure wireless	
12.5. mount devices	42
13.Latex	43
13.1. commonly used special symbols	43
13.2. Greek and Hebrew Letters	43
13.3. math constructs	44
13.4. Delimeters	44
13.5. Variable Sized simbols	45
13.6. binary operation relation symbols	45
13.7. arrow symbols	45
13.8. miscelanious	46
13.9. Matrices	46
14.Electronics	47
14.1. Logic Gates	47
14.2. MinTerminos y max terminos	48
15.Physics	49
15.1 Motion with constant acceleration	49

1. Algebra

1.1. factorization

- 1. common factor
- 2. common factor by agroupation of terms
- 3. cubic differences
- 4. perfect square trinomial
- 5. trinomial of the form $x^2 + bx + c$
- 6. trinomial of the form $ax^2 + bx + c$
- 7. sum and difference of cubes
- 8. sintetic divition
- 9. general formula

1.2. Sintetic divition

Example:

$$x^3 - 5x^2 + 2x + 8$$

Taking the divisors of the independent term

$$p = D_8 = \{\pm 1, \pm 2, \pm 4, \pm 8\}$$

and the divisors of the term with the highest exponent

$$q = D_1 = \{\pm 1\}$$

 $p/q = \{\pm 1, \pm 2, \pm 4, \pm 8\}$

now all the posibilities are in the space p/q that are integers so:

then:

$$(x^2 - 6x + 8)(x + 1)$$

then:

$$(x+1)(x-4)(x-2)$$

1.3. cubic differences

$$u^{3} + 1 = (u^{2} - u + 1)(u + 1)$$
$$u^{3} - 1 = (u^{2} + u + 1)(u - 1)$$

1.4. general formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

1.5. Logarithms

$$\log_a(p) = \frac{\log p}{\log a}$$

2. Boolean Algebra

2.1. Simple Formulas

$$AA' = 0, \quad A + A' = 1$$

$$AB + AC = A(B + C)$$

$$(AB...Z)' = A' + B' + ... + Z'$$

$$(A + B)(A + C) = A + BC$$

$$AB + AB' = A$$

$$(A + B)(A + C) = A + BC$$

$$A + A + B = A, \quad A(A + D) = A$$

$$(x + y)' = x'.y'$$

$$(x.y)' = x' + y'$$

3. Complex Algebra

3.1. Polar coordinates

 (r, θ)

3.2. Basic identiies and formulas

Basic convertions:

$$y = r(\sin(\theta))$$

$$x = r(\cos(\theta))$$

$$r = \sqrt{x^2 + y^2}$$

$$\theta = \tan^{-1}(\frac{x}{y})$$

Basic Formulas:

$$-i = \frac{1}{i}$$

$$Z = a + bi$$

$$\overline{Z} = a - bi$$

$$\overline{Z} + \overline{w} = \overline{Z + w}$$

$$\overline{Z} \times Z = |Z|^2$$

3.3. Euler identity

$$e^{iz} = \cos(z) + i \operatorname{sen}(z)$$
$$e^{\pi i} + 1 = 0$$

3.4. Multiplicative cycles

$$i = i$$

$$i^{2} = -1$$

$$i^{3} = -i$$

$$i^{4} = 1$$

$$i^{5} = i$$

3.5. Graphs

3.6. Triangle inequality

$$|z + w| \le |z| + |w|$$

3.7. Golden Triangle

$$\frac{a}{b} = \frac{b}{a-b}$$

4. Linear Algebra

4.1. dot and cross product

$$|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\sin\theta$$

$$\vec{a}.\vec{b} = |\vec{a}||\vec{b}|\cos\theta$$
$$A^{-1} = frac(adjA)^{T}def(A)$$

4.2. Crammer Rule

$$x = \frac{\delta_x}{\delta_s}, \ y = \frac{\delta_y}{\delta_s}, \ z = \frac{\delta_z}{\delta_s}$$

4.3. Gauss jordan Algorithm

$$A^{-1} = \left(\begin{array}{cc|c} a & b & 1 & 0 \\ c & d & 0 & 1 \end{array}\right)$$

4.4. simetry on matrices

5. Trigonometry

5.1. Basic Identities

$$\cos(\alpha) = \frac{1}{2}[\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

$$\sin(x)\cos(y) = \frac{1}{2}[\sin(x + y) + \sin(x - y)]$$

5.2. Double Angle

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$
$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$
$$\cos(2\theta) = 2\cos^2\theta - 1$$

5.3. Sin in terms of e

$$\sin(x) = \frac{e^{ix} - e^{-ix}}{-2i}$$
$$\cos(x) = \frac{e^{ix} - e^{-ix}}{2}$$

5.4. hyperbolic functions

$$\cosh^{2}(x) - \sinh^{2}(x) = 1$$
$$\operatorname{sech}^{2}(x) + \tan^{2}(x) = 1$$
$$\operatorname{senh}(x \pm y) = \sinh(x) \cosh(y) \pm \cosh(x) \sinh(x)$$
$$\cosh(x \pm y) = \cosh(x) \cosh(y) \pm \sinh(x) \sinh(y)$$

5.5. square reduction

$$\sinh^{2}(x) = \frac{\cosh(x) - 1}{2}$$
$$\cosh^{2}(x) = \frac{\cosh(x) + 1}{2}$$

5.6. Polar Coordinates

$$r\cos(u) = x, \quad r\sin(u) = y$$
$$r^2 = x^2 + y^2$$

The symetry around the x axis:

$$y - r = f(\theta) = f(-\theta)$$

The symetry around the y axis:

$$r = f(\pi - \theta)$$

Symetry around $\theta = \frac{\pi}{2}$

$$f(\pi - \theta) = f(\theta)$$

Symetry around the origin

$$f(\pi + \theta) = -f(\theta)$$

Find the type of graphic the next function is gonna make:

$$r = \pm a + b\sin(u)$$

a < b	a = b	a > b
cola	corazon pasa origen	sin cola

Roses:

$$r = a\sin(n\theta), \quad r = \cos(n\theta)$$

1. number of petals

```
if(n %2 == 0)
{
         return 2n;
}
else
{
         return n;
}
```

- 2. $angle = \frac{360^{\circ}}{\#petals}$
- 3. first petal

```
if(cos(x))
{
          return "x axis";
}
else
{
          return "theta = \pi / 2n ";
}
```

6. Diferential Calculus

6.1. basic formulas

$$(\tan(x))' = \sec^2(x), (\csc(x))' = \csc(x)\cot(x)$$

$$(\sec(x))' = \sec(x)\tan(x), (\cot(x))' = -\csc^2(x)$$

$$(\ln(x))' = \frac{1}{x}$$

$$(a^x)' = a^x \ln(a) * x'$$

$$(\frac{f(x)}{g(x)})' = \frac{g(x)f(x)' = g(x)'f(x)}{(g(x))^2}$$

6.2. Limits

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

6.3. Derivatives of inverse trigonometric functions

$$(\sin^{-1}(x))' = \frac{x'}{\sqrt{1 - x^2}}, \ (\cos^{-1}(x))' = \frac{-x'}{\sqrt{1 - x^2}}$$
$$(\tan^{-1}(x))' = \frac{x'}{x^2 + 1}, \ (\cot^{-1}(x))' = \frac{-x'}{x^2 + 1}$$

$$(\sec^{-1}(x))' = \frac{x'}{|x|\sqrt{x^2 + 1}}, (\csc^{-1}(x))' = \frac{-x'}{|x|\sqrt{x^2 + 1}}$$

6.4. Derivatives of Hiperbolic functions

$$(\sinh(x))' = \cosh(x), \ (\cosh(x))' = \sinh(x)$$
$$(\tanh(x))' = \operatorname{sech}^{2}(x), \ (\coth(x))' = -\operatorname{csch}^{2}(x)$$
$$(\operatorname{sech}(x))' = -\operatorname{sech}(x) \tanh(x), \ (\operatorname{csch}(x))' = -\operatorname{csch}(x) \coth(x)$$

7. Integral Calculus

7.1. basic integral formulas

$$\int \frac{1}{X} dx = \ln|x|$$

$$\int a^x dx = \frac{a^x}{\ln a}$$

$$\int \sin(x) dx = -\cos(x)$$

$$\int \cos(x) dx = \sin(x)$$

$$\int \tan(x) dx = \ln|\sec(x)| \quad or \quad -\ln|\cos(x)|$$

$$\int \cot(x) dx = \ln|\sin(x)|$$

$$\int \sec(x) dx = \ln|\sec(x) + \tan(x)|$$

$$\int \csc(x) dx = \ln|\csc(x) - \cot(x)|$$

7.2. Reduction formulas

$$\int \sin^{n}(x) = -\frac{\sin^{n-1}(x)\cos(x)}{n} + \frac{n-1}{n} \int \sin^{n-2}(x) dx$$
$$\int \cos^{n}(x) = \frac{\cos^{n-1}(x)\sin(x)}{n} + \frac{n-1}{n} \int \cos^{n-2}(x) dx$$

$$\int \tan^{n}(x) = \frac{\tan^{n-1}(x)}{n-1} - \int \tan^{n-2}(x) dx$$

$$\int \csc^{n}(x) = -\frac{\csc^{n-2}(x)\cot(x)}{n} + \frac{n-2}{n-1} \int \csc^{n-2}(x) dx$$

$$\int \sec^{n}(x) = \frac{\sec^{n-2}(x)\tan(x)}{n} + \frac{n-2}{n-1} \int \sec^{n-2}(x) dx$$

$$\int \cot^{n}(x) = -\frac{\cot^{n-1}(x)}{n-1} - \int \cot^{n-2}(x) dx$$

$$\frac{1}{n-1} du = \frac{2n-3}{n-1} \int \frac{1}{n-1} du + \frac{u}{n-1} du$$

$$\int \frac{1}{(au^2 + b)^n} du = \frac{2n - 3}{2b(n - 1)} \int \frac{1}{(au^2 + b)^{n-1}} du + \frac{u}{2b(n - 1)(au^2 + b)^{n-1}}$$
$$\int \csc^n(x) \sec^n(x) dx = \frac{-\csc^{m-1}(x) \sec^{n-1}(x)}{m-1} + \frac{m+n-1}{m-1} \int \csc^{m-2}(x) \sec^n(x) dx$$

7.3. integrals of Hiperbolic functions

$$\int \sinh(x)dx = \cosh(x), \quad \int \cosh(x)dx = \sinh(x)$$

$$\int \tanh(x)dx = \ln|\cosh(x)|, \quad \int \coth(x)dx = \ln|\sinh|(x)$$

$$\int \operatorname{sech}(x)dx = \tan^{-1}(\sinh(x)), \quad \int \operatorname{csch}(x)dx = \ln|\tanh(x)|$$

$$\int \coth(x)dx = \ln|\sinh(x)|$$

7.4. Particular Integrals

$$\int e^{\alpha x} \sin(\beta x) dx = \left[e^{\alpha x} (\alpha \sin(\beta x) - \beta \cos(\beta x)) \right] \frac{1}{\alpha^2 + \beta^2}$$
$$\int e^{\alpha x} \cos(\beta x) dx = \left[e^{\alpha x} (\alpha \cos(\beta x) + \beta \sin(\beta x)) \right] \frac{1}{\alpha^2 + \beta^2}$$

7.5. Taylor series

$$T(x) = \sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x - a)^n$$

7.6. Riemann z function

$$f(s) = 1 + \frac{1}{2^5} + \frac{1}{3^5} + \frac{1}{4^5} + \dots$$

7.7. Gamma Function

$$\int_0^\infty e^{-t} t^{t-1} dt = \Gamma(t)$$

$$\gamma = \lim_{n \to \infty} \left[\sum_{k=1}^n \frac{1}{k} - \ln(n) \right]$$

8. Vector Calculus

8.1. basic formulas

$$proj_u(v) = \left(\frac{u.v}{u.v}\right)u$$

8.2. 3d Line equation

$$\vec{r} = \vec{p} + t\vec{v}$$

9. Differential Ecuations

9.1. linearity

$$a_n(x)\frac{d^ny}{dx^n} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = f(x)$$

9.2. homogeneous ecuations

given:

$$M(x,y)dx + N(x,y)dy = 0$$

the ecuation is homogeneous if M and N are homogeneous functions of the same exponent cambio de variable y=ux o x=uy, dy=xdu+udx Subsección 9.3

9.3. homogeneous function of grade n

$$f(tx, ty) = t^n f(x, y)$$

9.4. Exact ED

para ser exacta tiene que cumplir dos condiciones

$$1. M(x,y)dx + N(x,y)dy = 0$$

$$2. \ \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

si no las cumple puedes usar el factor integrante para que cumpla Subsección 9.8

para resolver toma en cuenta las siguientes dos cosas

$$f(x,y) = \int M dx + g(y) = \int N dy + h(x)$$
$$\frac{\partial F}{\partial x} = M , \frac{\partial F}{\partial y} = N$$

9.5. Bernoully ecuation

aplica cuando la ecuacion diferencial tiene la siguiente forma:

$$P_0(x)\frac{dy}{dx} + P(x)y = F(x)y^n$$

se hace el cambio de variable $u=y^{1-n}$ y se obtiene una ecuacion lineal

9.6. Ricat Ecuation

tiene la siguiente forma

$$y' = Q(x)y^2 + P(x)y + R(x)$$

se hace la sustitución $y = y_1 + u^{-1}$

9.7. Cauchy Euler ecuation

se usa para resolver una ecuacion de segundo grado

$$ax^2y'' + bxy' + cy = 0$$

$$y = x^r , \ x > 0$$

9.8. integrant factor

aplica cuando hay una f(x,y) tal que f(x,y)(ED) = exacta

• si $\frac{M_y - N_x}{N}$ es funcion solamente de x entonces $P(x) = \frac{M_y - N_x}{N}$

$$f(x) = e^{\int P(x)dx}$$
 es un factor de integracion

$$\bullet$$
 si $M_y-N_x=mrac{N}{x}-nrac{M}{y}$ entonces
$$f(x)=x^my^n ext{ es un factor de integracion}$$

used by Elemento 9.4

9.9. Linear differential equations

$$\frac{dy}{dx} + P(x)y = q(x)$$
$$u(x) = e^{\int P(x)dx}$$

Sol =
$$u(x)y = \int u(x)q(x)dx$$

9.10. Order Reduction

aplica cuando conoces una solucion de una ED Lineal homogenea de segundo orden

$$y_2 = y_1 \int \frac{e^{-\int P(x)dx}}{y_1'} dx$$

$$y'' + P(x)y' + q(x)y = 0$$

9.11. Constant coefficients Ecuation

para poder resolver por este metodo tiene que ser una ecuacion lineal de coeficientes constantes de la forma

$$y''C_1 + y'C_2 + yC_3 = 0$$

se hace la sustitucion

$$y = e^{rx}$$

quedara una funcion cuadratica en terminos de r se puede llegar a usar la identidad de euler la solucion queda de la forma:

$$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$$

tambien puede servir:

$$r = a + bi$$

$$y_1 = C_1 * e^{\alpha x} \cos(bx)$$

$$y_2 = C_2 * e^{\alpha x} \operatorname{sen}(bx)$$

nota: si hay multiplicidad, ejemplo: $(r-1)^3 = 0$

$$y_h = e^{rx} + xe^{rx} + x^2e^{rx}$$

siendo que r = 1 entonces:

$$y_h = e^x + xe^x + x^2e^x$$

9.12. parameter variation

tienen la forma $k_1y'' + k_2y' + k_3y = f(x)$

$$u_1 = -\int \frac{y_2 f(x)}{W} dx \qquad u_2 = \int \frac{y_1 f(x)}{W} dx$$
$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \\ y_1' & y_2' \end{vmatrix}$$

 $siendo y_h$ la solucion de la ecuacion homogenea asociada

$$y_h = C_1 y_1 + C_2 y_2$$

y siendo y_p la solucion definitiva

$$y_p = u_1 y_1 + C_2 y_2$$

9.13. Indeterminate Coeficients

r(x) = polinomio, exponencial, Seno, Coseno

pasos:

- 1. Calcular y_n es decir calcular la ecuación homogenea relacionada, por coeficientes constantes
- 2. Encontrat y_p
- caso 1 No hay funciones en comun con r(x)

nota: tomar en cuenta el teorema de superposicion de soluciones si

$$r(x) = x^3 + x + 10 \operatorname{sen} 8x$$

simplemente se suman los proposiciones

$$y_p = Ax^3 + Bx^2 + Cx + D + A\sin(8x) + B\cos(8x)$$

y lo mismo aplica para la multiplicacion

-
$$y'' + C_1 y' + c_2 y = x^3 + x$$

proponer $\to y_p = Ax^3 + Bx^2 + Cx + D$
- $y'' + C_1 y' + c_2 y = 10 \sec 8x$
proponer $\to y_p = A \sec (8x) + B \cos (8x)$
- $y'' + C_1 y' + c_2 y = 12e^{5x}$
proponer $\to y_p = Ae^{5x}$

caso 2 hay funciones que coinciden con r(x)

simplemente multiplicar la funcion for x hasta que no hayas funciones en comun con x pero tiene que ser la x^n mas pequena posible

10. probability and statistics

$$P(\epsilon^c) = 1 - P(\epsilon)$$

$$P(A \cap B^c) = P(A \backslash B) = P(A) - P(A \cup B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$A \cap (B \cup A) = (A \cap B) \cup (A \cap B)$$
$$A \cup (B \cup A) = (A \cup B) \cup (A \cup B)$$

10.1. Independent Events

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$p(A|B) = P(A \cup B) = p(A) * P(B)$$

10.2. morgan laws

$$A^c \cup B^c = (A \cap B)^c$$

$$A^c \cap B^c = (A \cup B)^c$$
$$| = dadoque$$

10.3. separated probabilities

Sean B_k Eventos mutuamente excluyentes, pariticion de S

$$P(A) = P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + \dots + P(B_k)P(A|B_k!)$$

$$P(A) = \sum_{i=1}^{k} P(B_i)P(A|B_k)$$

$$P(B_i|A) = \frac{P(B_i) * P(A|B_i)}{P(A)}$$

$$P(B_i|A) = \frac{P(B_i) - P(A|B_i)}{\sum_{i=1}^{k} P(B_i)P(A|B_k)}$$

$$a^{\Phi(m)} = 1 \pmod{m}$$

$$\Phi(p \times q) = (p-1)(q-1) \text{ para pq primos}$$

$$\Phi(p_1^{k_1} \times ... \times p_n^{k_n}) = (p_1^{k_1} - p_1^{k_1-1}) \times ... \times (p_n^{k_n} - p_n^{k_n-1})$$

11. Numerical Calculus

11.1. Taylor Polinomial

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x - x_0)^2}{2!}$$
$$= \sum_{i=0}^{n} \frac{f^i(x_0)(x - x_0)^i}{i!}$$

11.2. Newton Raphson

$$P_{n+1} = P_n - \frac{f(P_0)}{f'(P_0)}$$

11.3. Complement to one

11.4. complement to two

se cambian 1 por ceros y viceversa

11.5. complemento a dos

de derecha a izquierda y apartir del primer 1 encontrado sin incluirlo se hace la operacion de complemento a uno

11.6. convertir de punto flotante a decimal

Ejemplo:

$$(-1) \times (1 + mantisa) \times 2^{expo-maxExpo}$$

 $(-1) \times (1 + 0.75) \times 2^{124-127}$
 $= -0.21875$

11.7. convert decimal to float

Ejemplo:

$$171,25 = 10101011,01$$

Se pasa a una forma con exponente dejando solo un entero

$$1,010101101 \times 2^7$$

El primer bit es de signo

$$1 = -$$

$$0 = +$$

Los siguientes 8 numeros son el maximo exponente mas el exponente al que esta elevado el $2\,$

$$127 + 7 = 134$$

se convierte el 134 a base 2

$$134_10 = 10000110_2$$

y la parte decimal es la mantiza, que queda igual

010101101

11.8. Convert decimal fraction to float

para convertir de fraccionario a binario primero se convierte la parte entera y la parte fraccionaria se convierte usando el siguiente codigo

Codigo:

```
//se da un flotante de la forma 0.321312 con
//el numero de digitos a convertir
//ejemplo
//in: 0.42344 3
//out: .001
string FraccionBinaria(float FraccionDecimal, int Nume
{
        string ans = ".";
        for(int i=0;i<NumeroDeDigitos;i++)</pre>
        {
                FraccionDecimal*=2;
                 if(FraccionDecimal > 1.0)
                 {
                         FraccionDecimal-=1.0;
                         ans.push_back('1');
                 }
                 else
                 {
                         ans.push_back('0');
                }
        }
        return ans;
}
```

11.9. Fixed point iteration

de una ecuacion se despeja x y se substituye, tomando el resultado anterior empezando desde una x arbitraria

11.10. Divided differences

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$f[x_0, x_1, x_2] = \frac{f(x_1, x_2) - f(x_0, x_1)}{x_2 - x_0}$$

$$f[x_0, x_1, x_2, x_3] = \frac{x_2, x_3) - f(x_0, x_1)}{x_3 - x_0}$$

$$P_n = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) \times \dots \times (x - x_n)$$

$$\frac{\int X_j \ f(X_j) \ 1}{0 \ X_0 \ f(X_0)} \frac{1}{1} \frac{1}{1}$$

$$\frac{1 \ X_1 \ f(X_1) \ f(X_0, X_1)}{2 \ X_2 \ f(X_2) \ f(X_1, X_2) \ f(X_0, X_1, X_2)}$$

11.11. Lagrange Polinomial

$$P_n(x) = \sum_{i=0}^{n} L_i(x) f(x_i)$$
$$L_i(x) = \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{(x - x_j)}{(x_i - x_j)}$$

12. Arch Linux

12.1. Mantainance

#check file size

```
du -sh .cache/
     #remove a file
     rm -rt .cache/
     #delete what you don't need in .config file
specific mantainance:
     #check the failed systems
     systemctl --failed
     #check the systemd journal
     sudo journalctl -p 3-xb
     #if the system doesn't boots then ctrl+alt+shift the
     #then update mirrors
     #clar chache
     #then to update the whole system use:
     sudo pacman -Syyu
     #to check system updates
     sudo pacman -Syu
     #if you wan't to remove all packages in the drive us
     sudo pacman -Scc
     #remove all unwanted dependencies
     paru -Yc
     #remove orphan packages
     sudo pacman -Rns \$(pacman - Qdtq)
     #sudo pacman -Syyy Syncrhonise data use "mirror1"
```

12.2. Print in arch linux

install packages: usbutils, lsusb, cups use this to make cups usable

sudo systemct enable cups
sudo systemctl start cups
localhost:631

lp -d HP_Officejey_Pro_8600]

12.3. configure date and time

hwclock --set --date = "04/32/2021 19:00:00" hwclock -hctosys

12.4. Configure wireless

#when entering an iso
iwctl
#then in the ui

#to list all available devices
device list

#to scan networks
station <device> scan

#to get newworks
station <device> get-network

#to connect to a network
station <device> connect "<name of network>"
#to check if the connection is staable
ping -c s 8.8.8.8
#don't forget before rebooting the iso run
pacman nmtui

dwm basic configuration

#MODKEY + shift + q to restart X server
startx # to start the X server

12.5. mount devices

mount usb sticks:

#to mount a usb stick
mount /dev/sdb1 /mnt/<destination folder>
#to unmount a sub stick
umount /dev/sdb1

mount an android device:

#to mount and android device
simple-mtpfs --device 1 tablet/

#to unmount an android device
fusermount -u /tablet

13. Latex

13.1. commonly used special symbols

use the shortcut created to don't waste time $\= \text{textbackslash}$ = textbar $_= _$

13.2. Greek and Hebrew Letters

α	\ alpha	κ	\ kappa	ψ	\ psi
β	\ beta	λ	\ lambda	ρ	\ rho
χ	\ chi	$\mid \mu \mid$	\ mu	$\mid au$	\ tau
ϵ	\ epsilon	Ø	\ o	θ	\ theta
$\mid \eta \mid$	\ eta	ω	\setminus omega	$\mid v \mid$	\ upsilon
γ	\ gamma	ϕ	\ phi	$ \xi $	\ xi
ι	\ iota	π	\ pi	$ \zeta $	\ zeta
F	\ digamma	Δ	\ Delta	Θ	\ Theta
ε	\ varepsilon	Γ	\ Gamma	Υ	\ Upsilon
×	\ varkappa	Λ	\ Lambda		\ Xi
φ	\ varphi	Ω	\ Omega		
ω	\ varpi	Φ	\ Phi	×	\ aleph
ϱ	\ varrho	П	\ Pi		\ beth
ς	\ varsigma	Ψ	\ Psi	7	\ daleth
ϑ	\ vartheta	\sum	\ Sigma]	\ gimel

13.3. math constructs

$\frac{abc}{xyz}$	$\additinute{\a$	\overline{abc}	\overline{abc}	\overrightarrow{abc}	abc
f'	$\backslash f$	\underline{abc}	$\setminus underline\{abc\}$	\overleftarrow{abc}	\overleftarrow{abc}
\sqrt{abc}	$\overline{c} \setminus \operatorname{sqrt} \{ \operatorname{abc} \}$	\widehat{abc}	\widehat{abc}	\widehat{abc}	\overbrace{abc}
$\sqrt[n]{aba}$	$c \operatorname{\sqrt{sqrt[n]}\{abc\}}$	\widetilde{abc}	\widetilde{abc}	abc	\underbrace{abc}

13.4. Delimeters

use the pair /lefts and /rights

example:

 $\left| expr \right|$

13.5. Variable Sized simbols

\sum	\sum	\int	\int	+	\biguplus
\prod	\prod	∮	oint	\cap	\bigcap
П	\coprod	$\int \int$	\iint	U	\bigcup
\oplus	\bigoplus	V	\bigvee	\otimes	bigotimes
\land	\bigwedge	\odot	\bigodot		\bigsqcup

13.6. binary operation relation symbols

\cap	\cap	U	\cup
\oplus	\uplus	Ш	\sqcup
П	\sqcap	\land	\wedge
V	\vee		\equiv
\neq	\neq	\simeq	\simeq
\approx	\approx	Ė	\doteq
	\subset	••	\because
	\sqsubset		\sqsubseteq
\geq	\geq	••	\therefore

13.7. arrow symbols

\leftarrow	\leftarrow	(\Leftarrow
\rightarrow	\rightarrow	\Rightarrow	Rightarrow
\leftrightarrow	\leftrightarrow	\Leftrightarrow	\Leftrightarrow
\uparrow	\uparrow	\uparrow	Uparrow
\downarrow	\downarrow	₩	\Downarrow
\downarrow	\updownarrow	\$	\Updownarrow
7	\nearrow	\searrow	\searrow
V	\swarrow		\nwarrow

13.8. miscelanious

∞	\infty	∂	\partial
	\cdots	:	\vdots
:	\vdots		\ldots
٠	\ddots	\forall	\forall
\exists	\exists	∄	\nexists
Ø	\emptyset	_	angle
_	angle	4	\measuredangle
\cap	\cap	\cap	\cap
\cap	\cap	\cap	\cap

13.9. Matrices

matrices				
type	latex markup	Renders as		
Plain	$\begin{<<} opt>\\ matrix \\ 1 2 \\ 2 \\ 3 \\ end {<} opt>\\ matrix \\ \end{<}$	1 2 3 4		

< opt >:

in this part you can specify which kind of matrix you wan't so you can place p: parenthesis matrix ()

b:bracket matrix []

B: for braces matrix

v: for pipes matrix —

V: for double pipe ——

14. Electronics

14.1. Logic Gates

And	A*B
Or	A+B
Nand	A'*B'
Nor	A'+B'
Not	A'
XOr	(A'*B) + (A*B')
XNor	[(A'*B) + (A*B')]'

14.2. MinTerminos y max terminos

a	b	С	term
0	0	0	$m_0 = x'y'z'$
0	0	1	$m_1 = x'y'z$
0	1	0	$m_2 = x'yz'$
0	1	1	$m_3 = x'yz$
1	0	0	$m_4 = xy'z'$
1	0	1	$m_5 = xy'z$
1	1	0	$m_6 = xyz'$
1	1	1	$m_7 = xyz$

15. Physics

15.1. Motion with constant acceleration

$$v = v_0 + at$$

$$x = x_0 + v_0 t + \frac{at^2}{2}$$

$$v^2 = v_0^2 + 2a(x - x_0)$$