CSER 2207: Numerical Analysis

Lecture-10 Interpolation and Polynomial Approximation

Dr. Mostak Ahmed
Associate Professor
Department of Mathematics, JnU

Newton's Divided-Difference Formula

Suppose that $P_n(x)$ is the *n*th Lagrange polynomial that agrees with the function f at the distinct numbers x_0, x_1, \ldots, x_n . Although this polynomial is unique, there are alternate algebraic representations that are useful in certain situations. The divided differences of f with respect to x_0, x_1, \ldots, x_n are used to express $P_n(x)$ in the form

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) + \dots + a_{n-1}(x - x_{n-1}), \quad (3.5)$$

for appropriate constants a_0, a_1, \ldots, a_n . To determine the first of these constants, a_0 , note that if $P_n(x)$ is written in the form of Eq. (3.5), then evaluating $P_n(x)$ at x_0 leaves only the constant term a_0 ; that is,

$$a_0 = P_n(x_0) = f(x_0).$$

Similarly, when P(x) is evaluated at x_1 , the only nonzero terms in the evaluation of $P_n(x_1)$ are the constant and linear terms,

$$f(x_0) + a_1(x_1 - x_0) = P_n(x_1) = f(x_1);$$

SO

$$a_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}. (3.6)$$

We now introduce the divided-difference notation, which is related to Aitken's Δ^2 notation used in Section 2.5. The *zeroth divided difference* of the function f with respect to x_i , denoted $f[x_i]$, is simply the value of f at x_i :

$$f[x_i] = f(x_i). (3.7)$$

Cont...

The remaining divided differences are defined recursively; the *first divided difference* of f with respect to x_i and x_{i+1} is denoted $f[x_i, x_{i+1}]$ and defined as

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}.$$
(3.8)

The second divided difference, $f[x_i, x_{i+1}, x_{i+2}]$, is defined as

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}.$$

Similarly, after the (k-1)st divided differences,

$$f[x_i, x_{i+1}, x_{i+2}, \dots, x_{i+k-1}]$$
 and $f[x_{i+1}, x_{i+2}, \dots, x_{i+k-1}, x_{i+k}]$,

have been determined, the **kth divided difference** relative to $x_i, x_{i+1}, x_{i+2}, \dots, x_{i+k}$ is

$$f[x_i, x_{i+1}, \dots, x_{i+k-1}, x_{i+k}] = \frac{f[x_{i+1}, x_{i+2}, \dots, x_{i+k}] - f[x_i, x_{i+1}, \dots, x_{i+k-1}]}{x_{i+k} - x_i}.$$
 (3.9)

The process ends with the single nth divided difference,

$$f[x_0,x_1,\ldots,x_n] = \frac{f[x_1,x_2,\ldots,x_n] - f[x_0,x_1,\ldots,x_{n-1}]}{x_n - x_0}.$$

Because of Eq. (3.6) we can write $a_1 = f[x_0, x_1]$, just as a_0 can be expressed as $a_0 = f(x_0) = f[x_0]$. Hence the interpolating polynomial in Eq. (3.5) is

$$P_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0)(x - x_1) \dots (x - x_{n-1}).$$

Cont...

As might be expected from the evaluation of a_0 and a_1 , the required constants are

$$a_k = f[x_0, x_1, x_2, \ldots, x_k],$$

for each k = 0, 1, ..., n. So $P_n(x)$ can be rewritten in a form called Newton's Divided-Difference:

$$P_n(x) = f[x_0] + \sum_{k=1}^n f[x_0, x_1, \dots, x_k](x - x_0) \cdots (x - x_{k-1}).$$
 (3.10)

The value of $f[x_0, x_1, ..., x_k]$ is independent of the order of the numbers $x_0, x_1, ..., x_k$, as shown in Exercise 21.

The generation of the divided differences is outlined in Table 3.9. Two fourth and one fifth difference can also be determined from these data.

Cont...

Table 3.9

x	f(x)	First divided differences	Second divided differences	Third divided differences
<i>x</i> ₀	$f[x_0]$	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$		
x_1	$f[x_1]$		$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$	$f[r, r, r_0] - f[r, r, r_0]$
x_2	$f[x_2]$	$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$	$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$
		$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$		$f[x_1, x_2, x_3, x_4] = \frac{f[x_2, x_3, x_4] - f[x_1, x_2, x_3]}{x_4 - x_1}$
<i>x</i> ₃	$f[x_3]$	$f[x_3, x_4] = \frac{f[x_4] - f[x_3]}{x_1 - x_2}$	$f[x_2, x_3, x_4] = \frac{f[x_3, x_4] - f[x_2, x_3]}{x_4 - x_2}$	$f[x_2, x_3, x_4, x_5] = \frac{f[x_3, x_4, x_5] - f[x_2, x_3, x_4]}{x_5 - x_2}$
x_4	$f[x_4]$	$x_4 - x_3$	$f[x_3, x_4, x_5] = \frac{f[x_4, x_5] - f[x_3, x_4]}{x_5 - x_3}$	$x_5 - x_2$
<i>x</i> ₅	$f[x_5]$	$f[x_4, x_5] = \frac{f[x_5] - f[x_4]}{x_5 - x_4}$		

Example

Example 1

Table 3.10

x	f(x)	
1.0	0.7651977	
1.3	0.6200860	
1.6	0.4554022	
1.9	0.2818186	
2.2	0.1103623	

Complete the divided difference table for the data used in Example 1 of Section 3.2, and reproduced in Table 3.10, and construct the interpolating polynomial that uses all this data.

Solution The first divided difference involving x_0 and x_1 is

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{0.6200860 - 0.7651977}{1.3 - 1.0} = -0.4837057.$$

The remaining first divided differences are found in a similar manner and are shown in the fourth column in Table 3.11.

Table 3.11

i	x_i	$f[x_i]$	$f[x_{i-1},x_i]$	$f[x_{i-2},x_{i-1},x_i]$	$f[x_{i-3},\ldots,x_i]$	$f[x_{i-4},\ldots,x_i]$
0	1.0	0.7651977				
			-0.4837057			
1	1.3	0.6200860		-0.1087339		
			-0.5489460		0.0658784	
2	1.6	0.4554022		-0.0494433		0.0018251
			-0.5786120		0.0680685	
3	1.9	0.2818186		0.0118183		
			-0.5715210			
4	2.2	0.1103623				

Solution

The coefficients of the Newton forward divided-difference form of the interpolating polynomial are along the diagonal in the table. This polynomial is

$$P_4(x) = 0.7651977 - 0.4837057(x - 1.0) - 0.1087339(x - 1.0)(x - 1.3)$$
$$+ 0.0658784(x - 1.0)(x - 1.3)(x - 1.6)$$
$$+ 0.0018251(x - 1.0)(x - 1.3)(x - 1.6)(x - 1.9).$$

Notice that the value $P_4(1.5) = 0.5118200$ agrees with the result in Table 3.6 for Example 2 of Section 3.2, as it must because the polynomials are the same.

103

Ref.: Introduction to Numerical Analysis - S. S. Sastray.

3.10.1 Newton's General Interpolation Formula

we have, from the definition of divided differences,

$$[x, x_0] - \frac{y - y_0}{x - x_0}$$

so that

$$y = y_0 + (x - x_0)(x, x_0).$$
 (3.65)

Again,

$$[x, x_0, x_1] = \frac{[x, x_0] - [x_0, x_1]}{x - x_1}.$$

which gives

$$[x, x_0] = [x_0, x_1] + (x - x_1)[x, x_0, x_1].$$

Subtributing this value of $[z, z_0]$ in (3.65), we obtain

$$F = F_0 + (x - x_0)[x_0, x_1] + (x - x_0)(x - x_1)[x, x_0, x_1].$$
 (3.56)

Dut

$$[x, x_0, x_1, x_2] = \frac{[x, x_0, x_1] - [x_0, x_1, x_2]}{x - x_2}$$

and so

$$[x_1, x_2, x_1] = [x_2, x_1, x_2] + (x - x_2) [x_1, x_2, x_1, x_2].$$
 (3.67)

Equation (366) now gives

$$Y = Y_0 + (x - x_0)[x_0, x_1] + (x - x_0)(x - x_1)[x_0, x_1, x_2] + (x - x_0)(x - x_1)(x - x_2)[x, x_0, x_1, x_2],$$
in this are:

Proceeding in this way, we obtain

$$y = y_0 * (x - x_0)[x_0, x_1] + (x - x_0)(x - x_1)[x_0, x_1, x_2]$$

$$+ (x - x_0)(x - x_1)(x - x_2)[x_0, x_1, x_2, x_3] + \cdots$$

$$+ (x - x_0)(x - x_1). \quad (x - x_1)[x, x_0, x_1, \dots, x_n].$$
(3.69)

This formula is called Newton's general interpolation formula with divided differences, the last term being the remainder term after (n + 1) terms.

Example 3.22 As our first example to illustrate the use of Newton's divided difference formula, we consider the data of Example 3.13.

The divided difference table is

×	10910 X		
300	2,4771		
	Portoca	0.00145	0-00001
304	2.4820	0.00140	· Litteracy (
306	2.4843	action invital	0
		0.00140	
307	2,4871		

Hence Eq. (3.69) gives

 $\log_{10} 301 - 2.4771 + 0.00145 + (-3)(-0.00001) = 2.4786$, as before.

It is clear that the arithmetic in this method is much simpler when compared to that in Lagrange's method.

Exemple 3.23 Using the following table find f(x) as a polynomial in x

x	f(x)
-1	3
Œ	-6
3	39
6	822
7	1611

The divided difference table is

x	1(2)				-
-1	э	-4			
0	-6	15	5		
3	39	261	31	13	
6	822		132		
7	1611	789			

Hence Eq. (3.69) gives

$$f(x) = 3 + (x+1)(-9) + x(x+1)(6) + x(x+1)(x-3)(5) + x(x+1)(x-3)(x-6)$$

$$= x^4 - 3x^3 + 5x^2 - 6.$$

Thank You