

(Recognised by A.I.C.T.E., New Delhi & Govt. of Maharashtra, Affiliated to R.T.M.Nagpur University) Near CRPF Campus, Hingna Road, Nagpur-440 019, Maharashtra (India)

Department of Robotics & Artificial Intelligence

2024-25 (Odd Sem)

Experiment No.1: Programs on basic control structures & loops.

1)Conditional (if-else) Statement:

Write a program that determines if a given number is even or odd.

Program to determine if a number is even or odd num = int(input("Enter a number:"))
if num % 2 == 0: print(f"{num} is even.")
else:
print(f"{num} is odd.")

2)While Loop:

Write a program that prints numbers from 1 to 5 using a while loop. # Program to print numbers from 1 to 5 using a while loop count = 1 while count <= 5: print(count) count += 1

3)For Loop:

Write a program that calculates the sum of numbers from 1 to 10 using a for loop.

Program to calculate the sum of numbers from 1 to 10 using a for loop sum = 0 for i in range(1, 11): sum += i print("Sum of numbers from 1 to 10 is:", sum)

4)Nested Loop:

Write a program that prints a pattern of stars using nested loops. # Program to print a pattern of stars in a nested loop n = 5 for i in range(1, n + 1): for j in range(i): print("*", end="") print()

5)Break and Continue:

Write a program that finds the first even number in a list and skips the rest if the number is odd.

Program to find the first even number in a list and continue to the next number if odd numbers = [7, 12, 5, 8, 3, 10] for num in numbers: if num % 2 == 0: print(f"The first even number in the list is {num}.") break else: Continue

6) Switch Case (Using Dictionary):

Write a program that performs basic arithmetic operations (addition, subtraction, multiplication, division) using a dictionary to simulate a switch case.

(Recognised by A.I.C.T.E., New Delhi & Govt. of Maharashtra, Affiliated to R.T.M.Nagpur University)
Near CRPF Campus, Hingna Road, Nagpur-440 019, Maharashtra (India)

Department of Robotics & Artificial Intelligence

Program to implement a simple switch case using a dictionary def add(x, y):

return x + y

def subtract(x, y): return x - y

def multiply(x, y): return x * y

def divide(x, y): return x / y

choice = input("Enter operation (+, -, *, /):") num1 = float(input("Enter first number:")) num2 = float(input("Enter second number:"))

operations = {
 '+': add(num1, num2),
 '-': subtract(num1, num2),
 '*': multiply(num1, num2),
 '*': divide(num1, num2)
}

if choice in operations:
 print(f"Result: {operations[choice]}") else:
 print("Invalid operation")

Experiment No.2: Programs on operators & I/O operations.

1)Arithmetic Operators:

Write a program to perform arithmetic operations on two numbers.

```
# Program to perform arithmetic operations on two numbers num1 = float(input("Enter the
first number: "))
num2 = float(input("Enter the second number: "))
sum = num1 + num2 difference = num1 - num2 product = num1 * num2 quotient = num1 /
num2
print(f"Sum: {sum}") print(f"Difference: {difference}") print(f"Product: {product}")
print(f"Quotient: {quotient}")
```

2) Comparison Operators:

Write a program to compare two numbers. # Program to compare two numbers

PRIYADARSHINI COLLEGE OF ENGINEERING

(Recognised by A.I.C.T.E., New Delhi & Govt. of Maharashtra, Affiliated to R.T.M.Nagpur University)
Near CRPF Campus, Hingna Road, Nagpur-440 019, Maharashtra (India)

Department of Robotics & Artificial Intelligence

num1 = float(input("Enter the first number: ")) num2 = float(input("Enter the second number:
"))

if num1 > num2:
print(f"{num1} is grea

print(f"{num1} is greater than {num2}") elif num1 < num2:

print(f"{num1} is less than {num2}") else:

print(f"{num1} is equal to {num2}")

3)Logical Operators:

Write a program to check if a number is within a specified range.

Program to check if a number is within a specified range num = int(input("Enter a number: "))

lower limit = 10

upper_limit = 50

if num >= lower_limit and num <= upper_limit: print(f"{num} is within the range [{lower_limit}, {upper_limit}]") else: print(f"{num} is outside the range.")

4)Input/Output Operations:

Write a program to read and write to a text file.

Program to read and write to a text file file name = "sample.txt"

Writing to a file

with open(file_name, 'w') as file: file.write("Hello, this is a sample file.\n") file.write("Python is a great programming language.")

Reading from a file

with open(file name, 'r') as file: content = file.read() print("File Contents:") print(content)

5)String Operators:

Write a program to concatenate two strings entered by the user.

Program to concatenate strings str1 = "Hello, "

str2 = "world!"

concatenated_str = str1 + str2 print(concatenated_str)

Program to repeat a string original_str = "Python" repeated_str = original_str * 3 print(repeated_str)

PRIYADARSHINI COLLEGE OF ENGINEERING

(Recognised by A.I.C.T.E., New Delhi & Govt. of Maharashtra, Affiliated to R.T.M.Nagpur University)
Near CRPF Campus, Hingna Road, Nagpur-440 019, Maharashtra (India)

Department of Robotics & Artificial Intelligence

2024-25 (Odd Sem)

Experiment No.3: Programs on Lists.

1)Creating and Accessing Lists:

Create a list of fruits and access different elements of the list. # Program to create a list and access its elements fruits = ["apple", "banana", "cherry", "date"]

Accessing elements print("First fruit:", fruits[0]) print("Last fruit:", fruits[-1]) print("Slicing the list:", fruits[1:3])

2)Modifying Lists:

Modify a list of numbers by appending, updating, and removing elements. # Program to modify a list numbers = [1, 2, 3, 4, 5]

- # Appending an element numbers.append(6)
- # Updating an element numbers[2] = 10
- # Removing an element numbers.remove(4)
- # Printing the modified list print(numbers)

3) Iterating Over Lists:

Iterate over a list of fruits and print each fruit.

Program to iterate over a list
fruits = ["apple", "banana", "cherry", "date"]
for fruit in fruits:
print(fruit)

4)List Comprehension:

Create a new list of squared numbers using list comprehension.

Program to create a new list using list comprehension numbers = [1, 2, 3, 4, 5]

PRIYADARSHINI COLLEGE OF ENGINEERING

(Recognised by A.I.C.T.E., New Delhi & Govt. of Maharashtra, Affiliated to R.T.M.Nagpur University)
Near CRPF Campus, Hingna Road, Nagpur-440 019, Maharashtra (India)

Department of Robotics & Artificial Intelligence

2024-25 (Odd Sem)

squared_numbers = [num**2 for num in numbers] print(squared_numbers)

5) Finding Elements in Lists:

Check if a specific fruit is in the list and print a corresponding message. # Program to find an element in a list fruits = ["apple", "banana", "cherry", "date"] search_fruit = "banana"

if search_fruit in fruits: print(f"{search_fruit} is in the list.")
else:
print(f"{search_fruit} is not in the list.")

6)Sorting and Reversing Lists:

Sort a list of numbers in ascending order and then reverse it. # Program to sort and reverse a list numbers = [3, 1, 4, 2, 5]

Sorting the list in ascending order numbers.sort() print("Sorted list:", numbers)

Reversing the list numbers.reverse() print("Reversed list:", numbers)

Experiment No.4: Programs on Tuples.

1)Creating and Accessing Tuples:

Write a program to create a tuple and access its elements using indexing and slicing. # Program to create a tuple and access its elements fruits = ("apple", "banana", "cherry", "date")

Accessing elements print("First fruit:", fruits[0]) print("Last fruit:", fruits[-1]) print("Slicing the tuple:", fruits[1:3])

2) Tuple Packing and Unpacking:

Write a program to demonstrate tuple packing and unpacking.
Program to use tuple packing and unpacking person = ("John", 30, "Engineer")

Unpacking the tuple into variables name, age, occupation = person

print(f"Name: {name}")

print(f"Age: {age}") print(f"Occupation: {occupation}")

(Recognised by A.I.C.T.E., New Delhi & Govt. of Maharashtra, Affiliated to R.T.M.Nagpur University) Near CRPF Campus, Hingna Road, Nagpur-440 019, Maharashtra (India)

Department of Robotics & Artificial Intelligence

2024-25 (Odd Sem)

3) Combining Tuples:

```
Write a program to combine two tuples into one.
```

Program to combine two tuples fruits = ("apple", "banana") more_fruits = ("cherry", "date")

combined_fruits = fruits + more_fruits

print("Combined tuple:", combined fruits)

4) Finding Elements in Tuples:

Write a program to check if a specific element exists in a tuple.

Program to find an element in a tuple fruits = ("apple", "banana", "cherry", "date") search fruit = "banana"

if search_fruit in fruits: print(f"{search_fruit} is in the tuple.") else:

print(f"{search fruit} is not in the tuple.")

5)Counting and Indexing:

Write a program to count the occurrences of a specific element and find the index of an element in a tuple.

Program to count occurrences and find the index of an element in a tuple fruits = ("apple", "banana", "cherry", "banana", "date")

count = fruits.count("banana") index = fruits.index("cherry")

print(f"Count of 'banana': {count}") print(f"Index of 'cherry': {index}")

Experiment No.5: Programs on Dictionary.

1) Creating and Accessing Dictionaries:

Write a program to create a dictionary and access its elements using keys.

Program to create a dictionary and access its elements

```
student = {
"name": "Alice", "roll_number": 101,
"marks": 95
}
```

Accessing elements

(Recognised by A.I.C.T.E., New Delhi & Govt. of Maharashtra, Affiliated to R.T.M.Nagpur University)
Near CRPF Campus, Hingna Road, Nagpur-440 019, Maharashtra (India)

Department of Robotics & Artificial Intelligence

print("Student Name:", student["name"]) print("Roll Number:", student["roll_number"])
print("Marks:", student["marks"])

2) Modifying Dictionaries:

Program to modify a dictionary

```
Write a program to modify an existing dictionary by updating, adding, and removing key-value pairs.
```

```
student = {
"name": "Alice", "roll_number": 101,
"marks": 95
}

# Updating a value
student["marks"] = 98
# Adding a new key-value pair
student["grade"]= "A"

# Removing a key-value pair del student["roll_number"]
```

3) Iterating Over Dictionary:

```
Write a program to iterate over a dictionary and print each key-value pair. # Program to iterate over a dictionary student = {
"name": "Alice", "roll_number": 101,
"marks": 95
}
```

Printing the modified dictionary print("Modified Student Info:", student)

for key, value in student.items(): print(f"{key}: {value}")

4)Checking for Key Existence:

```
Write a program to check if a specific key exists in a dictionary.
# Program to check if a key exists in a dictionary student = {
"name": "Alice", "roll_number": 101,
"marks": 95
}
search_key = "grade"
if search_key in student:
```

print(f"{search key} exists in the dictionary.") else:

PRIYADARSHINI COLLEGE OF ENGINEERING

(Recognised by A.I.C.T.E., New Delhi & Govt. of Maharashtra, Affiliated to R.T.M.Nagpur University) Near CRPF Campus, Hingna Road, Nagpur-440 019, Maharashtra (India)

Department of Robotics & Artificial Intelligence

print(f"{search_key} does not exist in the dictionary.")

5) Dictionary Comprehension:

Write a program to create a new dictionary where the keys are numbers and the values are the squares of those numbers.

Program to create a new dictionary using dictionary comprehension numbers = [1, 2, 3, 4, 5]

squared dict = {num: num**2 for num in numbers} print("Squared Dictionary:", squared dict)

Experiment No.6: Programs on Set.

1. Creating and Accessing Sets:

Program to create a set and access its elements fruits = {"apple", "banana", "cherry", "date"}

Accessing elements for fruit in fruits: print(fruit)

2. Modifying Sets:

Program to modify a set fruits = {"apple", "banana", "cherry", "date"}

Adding an element fruits.add("grape")

Removing an element fruits.remove("cherry")

Printing the modified set print("Modified Set:", fruits)

3. Set Operations:

Program to perform set operations

 $A = \{1, 2, 3, 4, 5\}$

 $B = \{3, 4, 5, 6, 7\}$

Union of sets union = A | B print("Union of A and B:", union)

Intersection of sets

PRIYADARSHINI COLLEGE OF ENGINEERING

(Recognised by A.I.C.T.E., New Delhi & Govt. of Maharashtra, Affiliated to R.T.M.Nagpur University)
Near CRPF Campus, Hingna Road, Nagpur-440 019, Maharashtra (India)

Department of Robotics & Artificial Intelligence

2024-25 (Odd Sem)

intersection = A & B print("Intersection of A and B:", intersection)

Difference of sets difference = A - B print("Difference of A and B:", difference)

4. Set Comprehension:

Program to create a new set using set comprehension numbers = {1, 2, 3, 4, 5}

squared_set = {num**2 for num in numbers}
print("Squared Set:", squared_set)

Experiment No.7: Programs on File Handling.

1. Writing to a Text File:

Program to write data to a text file file name = "sample.txt"

Open the file in write mode (creates a new file or overwrites an existing one) with open(file_name, 'w') as file: file.write("Hello, this is a sample text file.\n") file.write("Python is a great programming language.")

print(f"Data written to '{file_name}' successfully.")

2. Reading from a Text File:

Program to read data from a text file file_name = "sample.txt"

Open the file in read mode with open(file_name, 'r') as file: content = file.read()

print("File Contents:")
print(content)

3. Appending to a Text File:

Program to append data to an existing text file file_name = "sample.txt"

Open the file in append mode (keeps the existing content and adds new content)

PRIYADARSHINI COLLEGE OF ENGINEERING

(Recognised by A.I.C.T.E., New Delhi & Govt. of Maharashtra, Affiliated to R.T.M.Nagpur University)
Near CRPF Campus, Hingna Road, Nagpur-440 019, Maharashtra (India)

Department of Robotics & Artificial Intelligence

2024-25 (Odd Sem)

with open(file_name, 'a') as file: file.write("\nThis is an additional line added to the file.")

print("Data appended to the file successfully.")

Experiment No.8: Programs on Strings.

1. String Concatenation:

Program to concatenate two strings str1 = "Hello, " str2 = "world!"

concatenated_str = str1 + str2
print(concatenated_str)

2. String Length:

Program to find the length of a string text = "Python is a powerful language."

length = len(text)
print(f"The length of the string is {length} characters.")

3. String Slicing:

Program to slice a string text = "Python is fun!"

Slicing the string to get a substring substring = text[7:9] print(f"Substring: {substring}")

4. String Methods:

Program to use string methods text = "Hello, world!"

Convert to uppercase
uppercase_text = text.upper()
print("Uppercase:", uppercase_text)

Convert to lowercase
lowercase_text = text.lower()
print("Lowercase:", lowercase_text)

Replace a substring

PRIYADARSHINI COLLEGE OF ENGINEERING

(Recognised by A.I.C.T.E., New Delhi & Govt. of Maharashtra, Affiliated to R.T.M.Nagpur University)
Near CRPF Campus, Hingna Road, Nagpur-440 019, Maharashtra (India)

Department of Robotics & Artificial Intelligence

2024-25 (Odd Sem)

replaced_text = text.replace("world", "Python")
print("Replaced Text:", replaced text)

5. String Splitting:

Program to split a string into a list text = "apple, banana, cherry, date"

Split the string by commas
fruits_list = text.split(", ")
print("List of Fruits:", fruits_list)

Experiment 9: Programs on NumPy Operations

1)Array Creation:

Program to create a 1D and 2D array using NumPy import numpy as np

Creating a 1D array array_1d = np.array([1, 2, 3, 4, 5]) print("1D Array:", array_1d)

Creating a 2D array array_2d = np.array([[1, 2, 3], [4, 5, 6]]) print("2D Array:\n", array_2d)

2) Array Shape and Size:

Program to find shape and size of a NumPy array import numpy as np

array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

Getting the shape of the array print("Shape of array:", array.shape)

Getting the size (number of elements) print("Size of array:", array.size)

3)Array Slicing:

Program to slice a NumPy array import numpy as np

PRIYADARSHINI COLLEGE OF ENGINEERING

(Recognised by A.I.C.T.E., New Delhi & Govt. of Maharashtra, Affiliated to R.T.M.Nagpur University)
Near CRPF Campus, Hingna Road, Nagpur-440 019, Maharashtra (India)

Department of Robotics & Artificial Intelligence

2024-25 (Odd Sem)

array = np.array([10, 20, 30, 40, 50])

Slicing the array to get elements from index 1 to 3 sliced_array = array[1:4] print("Sliced Array:", sliced_array)

4)Array Reshaping:

Program to reshape a NumPy array import numpy as np

array = np.array([1, 2, 3, 4, 5, 6])

Reshaping into a 2x3 array
reshaped_array = array.reshape(2, 3)
print("Reshaped Array:\n", reshaped_array)

5) Array Arithmetic Operations:

Program for arithmetic operations on NumPy arrays import numpy as np

array1 = np.array([1, 2, 3])array2 = np.array([4, 5, 6])

Element-wise addition addition = array1 + array2 print("Addition:", addition)

Element-wise multiplication multiplication = array1 * array2 print("Multiplication:", multiplication)

6) Array Broadcasting:

Program to demonstrate broadcasting in NumPy import numpy as np

array = np.array([1, 2, 3])

Broadcasting a scalar value
broadcasted_array = array + 10
print("Broadcasted Array:", broadcasted_array)