

8

RIBBON CUT BY CERTIFICATION BRANCH

RIBBON CUI

本 国 特 許 万 PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 顧 年 月 日 Date of Application:

1999年 2月 9日

出 類 番 号 Application Number:

平成11年特許願第031765号

出 顧 人 Applicant (s):

オリンパス光学工業株式会社

CERTIFIED COPY OF PRIORITY DOCUMENT

2000年 2月18日

特許庁長官 Commissioner, Patent Office

近 藤 隆

出証番号 出証特2000-3008043

特平11-031765

【書類名】 特許願

【整理番号】 98P02453

【提出日】 平成11年 2月 9日

【あて先】 特許庁長官殿

【国際特許分類】 A61B 1/04

【発明の名称】 内視鏡装置

【請求項の数】 1

【発明者】

【住所又は居所】 東京都渋谷区幡ヶ谷2丁目43番2号 オリンパス光学

工業株式会社内

【氏名】 大野 光伸

【発明者】

【住所又は居所】 東京都渋谷区幡ヶ谷2丁目43番2号 オリンパス光学

工業株式会社内

【氏名】 村田 雅尚

【特許出願人】

【識別番号】 000000376

【住所又は居所】 東京都渋谷区幡ヶ谷2丁目43番2号

【氏名又は名称】 オリンパス光学工業株式会社

【代表者】 岸本 正壽

【代理人】

【識別番号】 100076233

【弁理士】

【氏名又は名称】 伊藤 進

【手数料の表示】

【予納台帳番号】 013387

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9101363

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 内視鏡装置

【特許請求の範囲】

【請求項1】 内視鏡に内蔵された或いは着脱自在に接続される撮像手段を駆動する第1の駆動信号を生成する手段と、

前記撮像手段で得られた撮像信号に含まれる第1の映像信号を得る映像信号抽 出手段と、

前記映像信号抽出手段を駆動して前記映像信号抽出手段が前記撮像信号から前 記第1の映像信号を得る際のタイミングを制御する第2の駆動信号を生成する手 段と、

前記第1の映像信号からモニタ表示可能な第2の映像信号を得る回路の少なくとも一部を格納した第1のプロセッサとを有する内視鏡装置において、

前記第1のプロセッサに格納され前記第1の駆動信号及び前記第2の駆動信号 に含まれる信号のうち少なくとも一部の信号を遅延させる遅延回路を備えたこと を特徴とする内視鏡装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、内視鏡挿入部先端に備えられた或いは内視鏡接眼部に着脱自在に取り付けられる撮像素子に接続された信号ケーブルによる信号遅延を補正する手段に特徴を有する内視鏡装置に関する。

[0002]

【従来の技術】

近年、体腔内や管路内等に細長の挿入部を挿入し、体腔内や管路内等の被写体を観察できる内視鏡が広く利用されている。このような内視鏡は、例えば、挿入部先端に被写体像を撮像するための撮像手段としてのCCDを備え、このCCDから延出する信号ケーブルは、挿入部内及びこの挿入部基端側に連設された操作部内を挿通し、この操作部から延出して、外部のビデオプロセッサに電気的に接続される。このビデオプロセッサは、前記信号ケーブルを介してCCDに駆動信

号を与え、そしてCCDから信号ケーブルを介して得られた撮像信号を映像信号 に変換してモニタ装置等へ被写体像を描出するようになっている。

[0003]

しかしながら、前記信号ケーブルが長い場合には、駆動信号や撮像信号は、前記信号ケーブルを伝送する間に遅延を生じ、前記ビデオプロセッサ内において、 駆動信号を送信するタイミングに対して受信される撮像信号のタイミングが遅れ てしまい、映像信号が正常に再現できない虞があった。

[0004]

そこで、例えば、特許第2694753号では、駆動信号と受信した撮像信号をサンプリングするサンプルホールド信号との位相を合わせるための遅延線を設けることで、信号ケーブル長に起因する遅延を補正する手段が示されている。

[0005]

【発明が解決しようとする課題】

しかしながら、特許第2694753号では、ケーブル長補正即ち信号ケーブル長に起因する遅延に対する補正を行う手段を構成するために、このケーブル長補正手段専用の遅延線や、IC等の電子部品が、ビデオプロセッサに付加されるため、その分、部品数の増加によりコストが増加してしまうという問題があった

本発明は、上記事情に鑑みてなされたものであり、部品数を削減することで、 安価な構成でケーブル長補正を行うことができる内視鏡装置を提供することを目 的とする。

[0006]

【課題を解決するための手段】

前記目的を達成するため、本発明は、内視鏡に内蔵された或いは着脱自在に接続される撮像手段を駆動する第1の駆動信号を生成する手段と、前記撮像手段で得られた撮像信号に含まれる第1の映像信号を得る映像信号抽出手段と、前記映像信号抽出手段を駆動して前記映像信号抽出手段が前記撮像信号から前記第1の映像信号を得る際のタイミングを制御する第2の駆動信号を生成する手段と、前記第1の映像信号からモニタ表示可能な第2の映像信号を得る回路の少なくとも

一部を格納した第1のプロセッサとを有する内視鏡装置において、前記第1のプロセッサに格納され前記第1の駆動信号及び前記第2の駆動信号に含まれる信号のうち少なくとも一部の信号を遅延させる遅延回路を備えたことを特徴としている。

[0007]

【発明の実施の形態】

以下、図面を参照して本発明の実施の形態を説明する。

図1及び図2は本発明の第1の実施の形態に係り、図1は内視鏡装置の全体構成を示すブロック図、図2は遅延回路の構成を示すブロック図である。

[0008]

図1に示すように、本実施の形態の内視鏡装置1は、体腔内や管路内等に挿入して被写体像に対応した撮像信号を得る内視鏡2と、この内視鏡2で得られた撮像信号からモニタ表示可能な映像信号を得るビデオプロセッサ3を有して構成されている。

[0009]

前記内視鏡2は、体腔内や管路内などに挿入するための細長の挿入部11と、この挿入部11の基端側に連設され、内視鏡2を把持し操作するための操作部12と、この操作部12側部から延出し、前記ビデオプロセッサに接続するための信号ケーブル13と、この信号ケーブル13端部に設けられ、前記ビデオプロセッサ3に着脱自在に接続するためのコネクタ14と、前記挿入部11先端に設けられ、被写体像を結像するための対物光学系15と、この対物光学系15の結像位置に受光面が配置され、この対物光学系15で結像した被写体像を撮像するための撮像手段としてのCCD16と、このCCD16の入出力信号を波形成形するための波形成形回路17を有して構成されている。そして、波形成形回路17を介してCCD16に入出力される信号を伝送する信号線が、内視鏡2内を挿通して、前記コネクタ14に電気的に接続されている。

[0010]

前記ビデオプロセッサ3は、前記CCD16を駆動したり、映像信号を生成する映像信号処理用DSP21 (DSPはデジタル信号プロセッサの略である)と

、この映像信号処理用DSP21から出力され前記CCD16を駆動する駆動信号を増幅するための駆動アンプ22と、前記CCD16から伝送された撮像信号を増幅するためのプリアンプ23と、このプリアンプ23から出力される撮像信号にCDS(相関二重サンプリング)処理を施して映像信号成分を抽出するCDS回路24と、このCDS回路24で得られた映像信号をデジタル信号に変換して前記映像信号処理用DSP21へ与えるA/D変換回路25と、前記映像信号処理用DSP21へ与えるA/D変換回路25と、前記映像信号処理用DSP21及びビデオプロセッサ3各部を制御する制御マイクロプロセッサ26と、この制御マイクロプロセッサ26が実行するソフトウェアを格納するROM27と、前記制御マイクロプロセッサ26により設定状態を検知可能なDIPスイッチ等の設定スイッチ28を有して構成されている。

[0011]

前記映像信号処理用DSP21は、前記CCD16を駆動する駆動信号を出力するCCD駆動回路31と、前記CCD駆動回路31へ与える駆動信号及び前記CDS回路24へ与えるサンプルホールド信号等の信号を同期発生するSSG32(同期信号発生回路)と、このSSG32から前記CCD駆動回路31へ与えられる駆動信号及びCDS回路24へ与えられるサンプルホールド信号をそれぞれ遅延させる遅延回路33と、前記A/D変換回路25で得られたデジタル映像信号に各種映像信号処理を施す映像信号処理回路34と、この映像信号処理回路34から出力される映像信号をデジタル変調してD/A変換しモニタ表示可能なアナログ映像信号に変換するデジタルエンコーダを有して構成されている。なお、各種映像信号処理とは、例えば、ホワイトバランス補正処理、輪郭強調処理、ガンマ補正及びニー処理、輝度/色信号分離処理等である。

[0012]

図2に示すように、前記遅延回路33は、信号を遅延させるための直列に接続された複数のバッファ41と、前記制御マイクロプロセッサ26の制御に応じて、各バッファ41の出力を選択して出力する選択回路42を有して構成されている。このとき、複数のバッファ41は、例えば、1個当たりの遅延時間が1ナノ秒のバッファ41を100個接続して構成してもよい。これにより、遅延回路33は、制御マイクロプロセッサ26の制御に応じて、駆動信号及びサンプルホー

ルド信号をそれぞれ任意の時間だけ遅延させることができるようになっている。

[0013]

次に、本実施の形態の作用を述べる。

SSG32から出力された駆動信号は、遅延回路33で遅延され、CCD駆動回路31と、駆動アンプ22と、信号ケーブル13と、波形成形回路17を介して、CCD16へ与えられる。このとき、制御マイクロプロセッサ26は、設定スイッチ28で設定された値に従い、遅延回路33の選択回路42を設定し、遅延回路33は、設定スイッチ28で設定された値だけ駆動信号を遅延させる。

[0014]

駆動信号で駆動されたCCD16で得られた撮像信号は、波形成形回路17と、信号ケーブル13と、プリアンプ23を介してCDS回路24へ与えられる。また、SSG32から出力されたサンプルホールド信号が、遅延回路33により遅延されて、CDS回路24へ与えられる。このとき、制御マイクロプロセッサ26は、設定スイッチ28で設定された値に従い、遅延回路33の選択回路42を設定し、遅延回路33は、設定スイッチ28で設定された値だけサンプルホールド信号を遅延させる。

[0015]

CDS回路24で得られた映像信号は、A/D変換回路25によりデジタル映像信号に変換され、このデジタル映像信号は、映像信号処理回路34により、各種映像信号処理が施され、デジタルエンコーダ35により、モニタ表示可能な映像信号に変換されて出力される。

[0016]

以上のように、信号ケーブル13や挿入部11等の長さに応じて、設定スイッチ28で駆動信号及びサンプルホールド信号の遅延時間を設定しておくことで、 CDS回路24に入力される撮像信号とサンプルホールド信号との位相が補正され、ビデオプロセッサ3は、正常な映像信号を得ることができる。

[0017]

以上説明したように、本実施の形態によれば、遅延回路33を設けたことで、

ケーブル長補正を行うことができる。

また、遅延回路33は、映像信号処理用DSP21に組み込まれて構成されるので、遅延回路33を設けるための部品数の増加を削減でき、内視鏡装置1を安価に構成することができる。

従って、本実施の形態によれば、本発明によれば、部品数を削減することで、 安価な構成でケーブル長補正を行うことができるという効果が得られる。

また、遅延回路33は、制御マイクロプロセッサ26の制御により、遅延時間が可変であるので、ビデオプロセッサ3は、信号ケーブル13や挿入部11等の長さが異なる複数の種類の内視鏡2に対応して、ケーブル長補正を行うことができる。

[0018]

図3は第1の実施の形態の変形例に係り、内視鏡装置の全体構成を示すブロック図である。なお、本変形例では、前記第1の実施の形態と同様に構成されている部位には同じ符号を付して説明を省略する。

[0019]

図3に示すように、本変形例では、前記第1の実施の形態(図1参照)の設定スイッチ28が設けられる代わりに、内視鏡2の種別を識別するための識別信号を前記制御マイクロプロセッサ26へ与える識別信号発生回路51が内視鏡2に設けられ、この識別信号発生回路51からの識別信号は、信号ケーブル13を介して前記制御マイクロプロセッサ26へ与えられるようになっている。なお、識別信号発生回路は、内視鏡2の識別情報を前記制御マイクロプロセッサ26へ与えられるものであればよく、例えば、簡易なスイッチや、プルアップ・プルダウン抵抗による回路でもよい。

[0020]

前記ROM27には、前記識別情報から前記遅延回路33に与える信号遅延量を得るためのソフトウェアが格納されており、制御マイクロプロセッサ26は、 識別信号発生回路51から与えられた識別情報に応じて、遅延回路33を設定するようになっている。

[0021]

次に、本変形例の作用を述べる。なお、本変形例では、前記第1の実施の形態 と異なる点についてのみ説明する。

内視鏡2の信号ケーブル13端部のコネクタ14が、ビデオプロセッサ3に接続されると、内視鏡2の種別を識別するための識別信号が、識別信号発生回路51から制御マイクロプロセッサ26へ与えられる。すると、制御マイクロプロセッサ26は、与えられた識別情報に応じて、遅延回路33の遅延時間を自動的に設定する。

[0022]

以上説明した本変形例によれば、第1の実施の形態で述べた効果に加えて、次の効果を得ることができる。

本変形例では、遅延回路33の遅延時間が自動的に設定されるので、操作性が 向上する。

[0023]

なお、本発明は、上述の実施の形態のみに限定されるものではなく、発明の要 旨を逸脱しない範囲で種々変形実施可能である。

例えば、ROM27は、マスクROMに限らず、ソフトウェアを格納できるその他の記憶素子であってもよい。

また、例えば、設定スイッチ28で設定する情報は、遅延回路33の遅延時間を示す情報に限らず、ケーブル長を示す情報であってもよい。このとき、ROM27には、ケーブル長を示す情報から遅延回路33への設定情報を得るソフトウェアを格納しておく。

また、例えば、設定スイッチ28で設定する情報は、遅延回路33の遅延時間を示す情報に限らず、内視鏡2の種別を識別するための識別情報であってもよい。このとき、ROM27には、識別情報から遅延回路33への設定情報を得るソフトウェアを格納しておく。

また、例えば、識別信号発生回路 5 1 がビデオプロセッサ 3 へ与える情報は、 内視鏡 2 の種別を識別する識別情報に限らず、ケーブル長を示す情報であっても よいし、遅延回路 3 3 へ与える遅延時間を示す情報であってもよい。 また、内視鏡 2 は、撮像手段を挿入部先端に備えた電子内視鏡に限らず、被写体像の光学像が接眼部から射出される光学内視鏡であってもよい。このとき、撮像手段は、接眼部に着脱自在に接続されるカメラヘッド等に設けられる。また、このとき、識別信号発生回路 5 1 と同様の機能を有する回路をカメラヘッドに設けてもよい。

[0024]

ところで、近年、内視鏡の挿入部先端に設けられ被写体像を撮像するための撮像手段としてのCCDと、前記CCDを駆動制御し、前記CCDで得られる撮像信号からモニタ表示可能な映像信号を得るビデオプロセッサを備えた内視鏡装置が広く利用されている。

このような内視鏡装置では、一般にCCDを駆動する駆動信号をビデオプロセッサが出力し、CCDで得られた撮像信号がビデオプロセッサに入力されるまでに、これらの信号を伝送する信号ケーブルで遅延が生じる。すると、ビデオプロセッサで、撮像信号から映像信号成分を抽出した後、例えばこの映像信号の輝度成分と色差信号成分を分離する色分離処理を行う際に、信号ケーブルによる遅延に起因した映像信号に含まれる画素のタイミングのずれにより、誤った色差信号が抽出され、ビデオプロセッサから出力される映像信号において正常な色が再現されないことがあった。

そこで、例えば特開平6-269404号では、ケーブル長に起因する信号の 遅れ時間によって発生する色再現性の悪化を防止する手段が提案されている。

[0025]

しかしながら、例えば特開平6-269404号等に示される従来技術では、 色再現性の悪化を防止する手段を構成するために、映像信号処理を行う際の制御 信号を遅延させて撮像信号の遅れに対して位相を補正するディレイラインを設け たり、色分離処理を行う際の特殊な制御信号を生成する回路を設ける等して、部 品数が増加し、コストが増加するという欠点があった。

そこで、簡易な構成で安価に色再現性の悪化を防止できる内視鏡装置について、図4ないし図9を参照して以下に説明する。

[0026]

図4に示すように、内視鏡装置101は、体腔内或いは管路内等に挿入して被写体像を観察するための内視鏡102と、この内視鏡102に着脱自在に接続され、この内視鏡102に供給する照明光を発生する光源装置103を有して構成されている。

[0027]

前記内視鏡102は、体腔内或いは管路内等に挿入する細長の挿入部111と 、この挿入部111の基端側に連設され、内視鏡102を把持し操作するための 操作部112と、前記挿入部111内及び前記操作部112内を挿通し、前記光 源装置から発せられる照明光を挿入部111先端まで導光するライトガイド11 3と、前記挿入部111先端に設けられ、前記ライトガイド113から出射され る照明光を被写体へ向けて配光する配光光学系114と、前記挿入部111先端 に設けられ、被写体像を結像する対物光学系115と、前記挿入部111先端の 前記対物光学系115の結像位置に受光面が配置され、被写体像を撮像するため の撮像手段としてのCCD116と、このCCD116の後端側近傍に設けられ 、このCCD116が入出力する信号を波形成形する波形成形回路117と、前 記操作部112に設けられ、前記波形成形回路117を介して、前記CCD11 6を駆動制御し、前記CCD116で得られた撮像信号からモニタ表示可能な映 像信号を得る機能等を有するビデオプロセッサ118と、前記ビデオプロセッサ 118が映像信号に対してホワイトバランス調整を施す際の調整値を前記ビデオ プロセッサ118へ与えるホワイトバランス調整スイッチ119を有して構成さ れている。

[0028]

前記ビデオプロセッサ118は、前記CCD116を駆動制御し、前記CCD116で得られた撮像信号からモニタ表示可能な映像信号を得る映像信号処理回路121等のビデオプロセッサ118各部を制御する制御マイクロプロセッサ122と、この制御マイクロプロセッサ122が実行するソフトウェアを格納するROM123と、前記映像信号処理回路121が処理する映像信号のゲインを前記制御マイクロプロセッサ122が制御する際

に、前記制御マイクロプロセッサ122が参照するゲイン情報を設定するための ゲイン設定回路124を有して構成されている。

[0029]

前記映像信号処理回路121は、前記CCD116を駆動する駆動信号を発生し、前記CCD116で得られた撮像信号を変換して得られたデジタル映像信号を入力し、モニタ表示可能な映像信号を得る機能を有する映像信号処理用DSP131た、この映像信号処理用DSP131から出力される駆動信号を増幅し、前記波形成形回路117を介して前記CCD116へ駆動信号を与えるドライブアンプ132と、前記波形成形回路117を介して前記CCD116から得られた撮像信号を増幅するプリアンプ133と、このプリアンプ133から出力される撮像信号にCDS(相関二重サンプリング)処理を施して映像信号成分を抽出するCDS回路134と、このCDS回路134で得られた映像信号をデジタル信号に変換して前記映像信号処理用DSP131へ与えるA/D変換回路135を有して構成されている。

[0030]

前記映像信号処理用DSP131は、駆動信号を生成する基本となる信号及び前記映像信号処理回路121各部が動作する際の基本となる信号を同期的に発生するSSG141(同期信号発生回路)と、このSSG141から与えられる基本信号に従い、駆動信号を発生するCCD駆動TG142(TGはタイミングジェネレータの略である)と、前記SSG141から与えられる同期信号に従って動作し、前記A/D変換回路135から与えられるデジタル映像信号から、輝度信号Y及び色差信号R-Y,B-Yを得る色分離回路143と、前記ゲイン設定回路124及びホワイトバランス調整スイッチ119の状態に応じて制御マイクロプロセッサ122で制御され、前記色差信号R-Y,B-Yのそれぞれを増幅してホワイトバランスを調整するホワイトバランス調整用可変デジタルアンプ144と、前記色分離回路143から入力される輝度信号Y及び前記ホワイトバランス調整用可変デジタルアンプ144から入力される色差信号R-Y,B-Yからなる映像信号にデジタル変調を施してD/A変換し、モニタ表示可能な映像信号であるY/C分離映像信号及びコンポジット映像信号を得るデジタルエンコー

ダ145を有して構成されている。

[0031]

前記ゲイン設定回路124は、前記光源装置103にメタルハロイドランプが 装着されている際の映像信号の赤成分のゲインを設定するメタルハロイドランプ 用Rゲイン設定トリマ151aと、前記光源装置103にキセノンランプが装着 されている際の映像信号の赤成分のゲインを設定するキセノンランプ用Rゲイン 設定トリマ151bと、前記光源装置103にメタルハロイドランプが装着され ている際の映像信号の青成分のゲインを設定するメタルハロイドランプ用Bゲイ ン設定トリマ151cと、前記光源装置103にキセノンランプが装着されてい る際の映像信号の青成分のゲインを設定するキセノンランプ用Bゲイン設定トリ マ151dと、前記制御マイクロプロセッサ122に制御され、前記光源装置1 03に装着されたランプの種類に応じたゲイン設定信号を選択し、即ち、メタル ハロイドランプ用Rゲイン設定トリマ151a及びメタルハロイドランプ用Bゲ イン設定トリマ151cの組み合わせとキセノンランプ用Rゲイン設定トリマ1 51b及びキセノンランプ用Bゲイン設定トリマ151dの組み合わせとのうち 一方の組み合わせからのゲイン設定信号を選択して通過させる選択回路152と 、この選択回路152を通過した赤成分及び青成分の設定信号をそれぞれデジタ ル信号に変換して前記制御マイクロプロセッサへ与えるA/D変換回路 1 5 3 a 、153bを有して構成されている。

[0032]

前記光源装置103は、照明光を発するための例えばメタルハロイドランプ或いはキセノンランプ等の光源ランプ161と、この光源ランプ161から発せられる照明光を集光して前記ライトガイド113へ入射させる集光光学系162と、前記光源ランプ161の種類を示す信号を前記ビデオプロセッサ118の制御マイクロプロセッサ122へ与えるための識別信号発生回路163を有して構成されている。

[0033]

図5に示すように、色分離回路143は、SSG141から与えられる制御信号であるメモリクロック、ラインメモリアドレス、ライト信号、リード信号によ

り制御され、前記A/D変換回路135で得られたデジタル映像信号を逐次記憶する第1のラインメモリ171a、第2のラインメモリ171b、第3のラインメモリ171c、第4のラインメモリ171dと、前記ラインメモリ171a、171bからそれぞれ読み出される信号を減算し、色差信号R-Yを得る減算器172aと、前記ラインメモリ171c、171dからそれぞれ読み出される信号を減算し、色差信号B-Yを得る減算器172bと、前記A/D変換回路135で得られたデジタル映像信号の低域周波数成分を通過させ、輝度信号Yを得るLPF173(低域通過フィルタ)を有して構成されている。

[0034]

次に、図4及び図5を参照して構成を説明した内視鏡装置101の作用のうち、全体動作に関する作用を説明する。

光源装置103の光源ランプ161から発せられた照明光は、集光光学系162で集光されてライトガイド113の光入射端に入射し、ライトガイド113により導光され、配光光学系114により、被写体へ向けて照射される。このとき、光源ランプ161は、異なる種類のランプ、例えばメタルハロイドランプ及びキセノンランプのうち任意の種類のランプを使用することができる。そして、光源ランプ161の種類が異なると、被写体には波長構成の異なる照明光が照射される。

[0035]

被写体に照射された反射光による被写体像は、対物光学系115により、CCD116の受光面に結像する。また、映像信号処理回路121のCCD駆動TG142から出力される駆動信号は、ドライブアンプ132及び波形成形回路117を介してCCD116へ与えられ、CCD116は、この駆動信号に駆動されて、受光面に結像した被写体像に対応する撮像信号を出力する。この撮像信号は、波形成形回路117、プリアンプ133を介して、CDS回路134に与えられ、このCDS回路134は、与えられた撮像信号から映像信号成分を抽出してA/D変換回路135な、映像信号をデジタル信号に変換して色分離回路143へ与える。この色分離回路143は、与えられた映像信号を輝度信号Yと色差信号R-Y、B-Yに変換し、輝度信号Yはデ

ジタルエンコーダ145へ与えらる。そして、色差信号R-Y,B-Yは、ホワイトバランス調整用可変デジタルアンプ144へ与えられて、それぞれレベルが調整され、デジタルエンコーダ145へ与えられる。デジタルエンコーダ145は、与えられた輝度信号Y、色差信号R-Y,B-Yをデジタル変調してD/A変換し、コンポジット映像信号及びY/C分離映像信号を出力する。

[0036]

次に、ホワイトバランス調整に関する作用を説明する。

メタルハロイドランプ用Rゲイン設定トリマ151a及びメタルハロイドランプ用Bゲイン設定トリマ151cには、光源ランプ161としてメタルハロイドランプを使用した場合の赤及び青のゲイン調整値を予め設定しておく。同様に、キセノンランプ用Rゲイン設定トリマ151b及びキセノンランプ用Bゲイン設定トリマ151dには、光源ランプ161としてキセノンランプを使用した場合の赤及び青のゲイン調整値を予め設定しておく。

[0037]

[0038]

次に、色分離処理に関する作用を説明する。

図6に、CCD116の画素配列の一例を示す。なお、図において、フレームを構成する2つのフィールドを便宜的にAフィールド及びBフィールドと呼んでいる。また、「Cy」(シアン)、「Ye」(黄)、「G」(緑)、「Mg」(マゼンタ)は、各画素の色成分の電荷レベル或いは信号レベルを意味している。図に示すように、1つのフィールドラインは、2つの画素ラインから構成されている。例えば、Aフィールドの第nラインは、Cy、Ye、Cy、…からなる画素ラインと、G、Mg、G、…からなる画素ラインから構成されている。そして、CCD116に備えられ1フィールドライン分の信号を蓄積して転送するための水平転送レジスタには、Aフィールドの第2ラインの信号は、G+Cy、Mg+Ye、G+Cy、…のような信号値が蓄積される。また、Aフィールドの第n+1ラインの信号は、図の転送レジスタの括弧内に記すように、Mg+Cy、G+Ye、Mg+Cy、…のような信号値が蓄積される。この水平転送レジスタに蓄積された信号は、フィールドライン単位で、撮像信号に含まれて映像信号処理回路121へ転送され、デジタル映像信号に変換されて、フィールドライン単位で、色分離回路143へ与えられる。

[0039]

図5に示す色分離回路の各ラインメモリ171a、171b、171c、171dには、SSG141から、それぞれラインメモリアドレス、ライト信号、リード信号、メモリクロックが与えられて制御される。このとき、各フィールドの奇数ラインの信号は、第1のラインメモリ171a及び第2のラインメモリ171bに記憶され、偶数ラインの信号は、第3のラインメモリ171c及び第4のラインメモリ171dに記憶されるように制御される。また、各フィールドライン内の各画素信号には、0、1、2、3、…の順でラインメモリアドレスが対応付けされ、ラインメモリアドレスが偶数の場合には、第1のラインメモリ171a及び第3のラインメモリ171cが動作し、奇数の場合には、第2のラインメモリ171b及び第4のラインメモリ171dが動作するように制御される。

[0040]

図7に示すように、例えばAフィールドの第nラインが偶数ラインであるとした場合、Aフィールドの第nラインの画素信号は、G+Cy、Mg+Ye、G+Cy、…の順で色分離回路143に入力される。ここで、これらの画素信号のラインメモリアドレスが、6、7、8、…であるとすると、第1のラインメモリ171aには、G+Cyの画素信号が記憶され、第2のラインメモリ171bには、Mg+Yeの画素信号が記憶される。奇数ラインの画素信号の場合も同様に、第3のラインメモリ171cには、Mg+Cyの画素信号が記憶され、第4のラインメモリ171dには、G+Yeと記される画素信号が記憶される。Bフィールドについても、記憶される画素信号の色構成は異なるが、同様の動作により画素信号が記憶される。

[0041]

各ラインメモリ171a、171bに記憶された画素信号は、ラインメモリアドレスの最下位ビットを除くアドレスが同じアドレスに記憶された画素信号が同時に読み出されて減算器172aに与えられ、この減算器172aは、第2のラインメモリ171bの画素信号のレベルから第1のラインメモリ171aの画素信号のレベルを減じたレベルの画素信号を出力する。また、各ラインメモリ171c、171dに記憶された画素信号は、ラインメモリアドレスの最下位ビットを除くアドレスが同じアドレスに記憶された画素信号が同時に読み出されて減算器172bに与えられ、この減算器172bは、第3のラインメモリ171cの画素信号のレベルから第4のラインメモリ171dの画素信号のレベルを減じたレベルの画素信号を出力する。

[0042]

このとき、一般に、画素信号と色差信号R-Y,B-Yの間には、◎

$$R - Y = (Mg + Ye) - (G + Cy) \otimes$$

$$B - Y = (Mg + Cy) - (G + Ye) \otimes$$

の関係が知られている。

従って、図8(A)に示すように、減算器172aからは、色差信号R-Yが出力される。なお、図において、(6)、(7)、(8)、…と記された数値は

、ラインメモリアドレスを示している。同様にして、減算器172bからは、色 差信号B-Yが出力される。

[0043]

ところが、信号ケーブル等に起因する電気的な遅延により、映像信号処理回路 121に入力される撮像信号の位相が例えば1画素分遅れると、色分離回路14 3に入力される映像信号の位相が1画素分遅れてしまう。すると、図8(B)に示すように、第1のラインメモリ171aと第2のラインメモリ171bの内容が逆になってしまい、減算器172aからは、色差信号R-Yが得られなくなってしまう。同様に、減算器172bからは、色差信号B-Yが得られなくなってしまう。これは、映像信号の位相が奇数画素分遅れた場合についても同様である。すると、デジタルエンコーダ145から出力される映像信号の色再現性が悪化してしまう。

[0044]

そこで、SSG141は、以下に述べるように色分離回路143の動作を制御する。即ち、SSG141は、1ラインの転送周期を示すライン基準信号の例えば立ち下がり等の基準タイミングに対して、ラインメモリアドレス開始タイミングを遅らせて、ラインメモリアドレスを色分離回路143へ出力するように制御する。このとき、ラインメモリアドレス開始遅延時間は、撮像信号の位相の遅れに応じて設定される。これにより、色分離回路143に与えられる映像信号の位相が奇数画素分遅れても、ラインメモリアドレス開始タイミングを調節することで、色分離回路143から正しい色差信号R-Y,B-Yが出力され、デジタルエンコーダ145から出力される映像信号の色再現性が維持される。

[0045]

以上説明したように、内視鏡装置101によれば、出力映像信号の色再現性の 悪化を防止できる。

また、SSG141から色分離回路143へ与えるラインメモリアドレスの開始タイミングを遅延させるのみの簡易な構成で、色再現性の悪化を防止できる。

また、SSG141は、映像信号処理用DSP131内に構成されており、こ

の映像信号処理用DSP131が実行するソフトウェアを格納する図示しないR OM等の記憶素子の内容を変更する等の処理で、各種の内視鏡102に対する色 再現性の悪化を防止できるので、追加部品を削減でき、コストを削減できる。

従って、内視鏡装置101によれば、簡易な構成で安価に色再現性の悪化を防止できる。

また、光源ランプ161の種類に応じて、各色差信号R-Y,B-Yのゲインが自動的に調節されるので、異なる種類の光源ランプ161を使用することによる色再現性の悪化を防止できる。なお、図4の内視鏡装置101の例では、色差信号R-Y,B-Yのゲインは、メタルハロイドランプ用Rゲイン設定トリマ151a、キセノンランプ用Rゲイン設定トリマ151b、メタルハロイドランプ用Bゲイン設定トリマ151dで設定しているが、このような構成に限らず、制御マイクロプロセッサ122に接続されたROM123にゲイン値を格納し、この制御マイクロプロセッサ122によりゲイン値を選択して設定することができる。更に、制御マイクロプロセッサ122に、図示しない外部との通信線を設け、この通信線を介して、例えばPC(パーソナルコンピュータ)を接続し、このPCから色差信号R-Y,B-Yのゲインを設定するようにすることもできる。

[0046]

なお、図4に構成の一例を示す内視鏡装置101は、ビデオプロセッサ118 が内視鏡102と一体に構成されているが、このような構成に限らず、ビデオプロセッサが内視鏡と別体に構成されていてもよい。

[0047]

ところで、近年、体腔内や管路内等に細長の挿入部を挿入し、体腔内や管路内等の被写体を観察できる内視鏡装置が広く利用されており、一般にこのような内視鏡装置は、例えば図15に示すように構成されている。

図15に示す内視鏡装置301は、体腔内や管路内等に挿入して被写体像に対応した撮像信号を得る内視鏡302と、この内視鏡302で得られた撮像信号からモニタ表示可能な映像信号を得るビデオプロセッサ303を有して構成されて

いる。

[0048]

前記内視鏡302は、体腔内や管路内等に挿入する細長の挿入部311と、この挿入部311の基端側に連設され、内視鏡302を把持し操作するための操作部312と、この操作部312側部から延出し、前記ビデオプロセッサ303との間で信号を伝送する信号ケーブル313と、この信号ケーブル313端部に設けられ、前記ビデオプロセッサ303に着脱自在に接続されるコネクタ314と、前記挿入部311先端に設けられ、被写体像を結像する対物光学系315と、この対物光学系315で結像された被写体像を撮像するための撮像手段としてのCCD316を有して構成されている。

[0049]

前記ビデオプロセッサ303は、このビデオプロセッサ303各部を制御する ための制御マイクロプロセッサ321と、ビデオプロセッサ303を操作するた めの前記制御マイクロプロセッサ321に接続された操作スイッチ322と、ビ デオプロセッサ303各部に与える制御信号を生成するタイミングジェネレータ 323と、CCD315の電子シャッタ機能を制御する機能を有し、CCD31 5の駆動信号を生成するCCD駆動・シャッタ設定回路324と、このCCD駆 動・シャッタ設定回路324で生成した駆動信号を増幅し、前記CCD316へ 与えるCCDドライブ回路325と、前記CCD316で得られた撮像信号にC DS(相関二重サンプリング)処理及びAGC(自動利得制御)処理を施して映 像信号成分を抽出するCDS/AGC回路331と、このCDS/AGC回路3 31で得られた映像信号をデジタル信号に変換するA/D変換回路332と、こ のA/D変換回路332で得られた映像信号に補正処理等を施し、輝度信号及び 色信号からなる映像信号を得る映像信号補正回路333と、この映像信号補正回 路333で得られた映像信号を一時記憶するフレームメモリ334と、このフレ ームメモリ334を制御するメモリコントローラ335と、前記フレームメモリ 334からの映像信号をデジタル変調してからD/A変換しモニタ表示可能な映 像信号を得るデジタルエンコーダ336を有して構成されている。

[0050]

前記映像信号補正回路333は、例えば、OB(オプティカル・ブラック)クランプ回路314、ガンマ補正回路342、ホワイトクリップ回路343、フィルタ回路344、エンハンス回路345を備えて、映像信号の輝度信号成分に補正処理等を施す輝度信号補正回路333aと、色分離回路351、色ガンマ補正回路352、フィルタ回路353、赤成分及び青成分を独立に増幅するR/Bアンプ354を備えて、色信号成分に補正処理などを施す色信号補正回路333bを有して構成されている。

[0051]

しかしながら内視鏡装置301のような従来の内視鏡装置で、露光時間を長くして動作する長時間露光モード及び映像信号のダイナミックレンジを拡大して動作するダイナミックレンジ拡大モードといった特殊動作モードで処理を実行しようとすると、従来は、制御信号を発生する回路や映像信号の演算処理を行う回路を新たに追加していたので、コストの増加につながっていた。

そこで、追加するハードウェアを削減しつつ、長時間露光モード及びダイナミックレンジ拡大モードといった特殊動作モードを切り替えて動作できる内視鏡装置について、図10ないし図14を参照して説明する。

[0052]

図10に示すように、内視鏡201は、体腔内或いは管路内等に挿入する細長の挿入部202と、この挿入部202の基端側に連設され、内視鏡201を把持し操作するための操作部203と、例えば前記操作部203に設けられ、照明光を供給するための光源装置211と、前記操作部203及び前記挿入部202内を挿通し、前記光源装置211から発せられた照明光を前記挿入部202先端まで導光するライトガイド212と、前記挿入部202先端に設けられ、前記ライトガイド212から出射した照明光を被写体へ向けて配光する配光光学系213と、前記挿入部202先端に設けられ、被写体像を結像する対物光学系214と、前記挿入部202先端の前記対物光学系214の結像位置に受光面が配置され、前記対物光学系214で結像した被写体像を撮像するための撮像手段としてのCCD215と、例えば前記操作部203に設けられ、前記CCD215を駆動

制御し、前記CCD215で得られた撮像信号からモニタ表示可能な映像信号を 得るビデオプロセッサ216を有して構成されている。

[0053]

前記ビデオプロセッサ216は、前記CCD215を駆動する駆動信号を生成したり、前記CCD215で得られた撮像信号から得られたデジタル映像信号をモニタ表示可能な映像信号に変換する映像信号処理用DSP221(DSPはデジタル信号プロセッサの略である)と、この映像信号処理用DSP221から出力される駆動信号のタイミングを変換して前記CCD215へ与える駆動信号タイミング変換回路222と、前記CCD215で得られた撮像信号にCDS(相関二重サンプリング)処理及びAGC(自動利得制御)処理を施して映像信号成分を抽出するCDS/AGC回路223と、このCDS/AGC回路223で得られた映像信号をデジタル信号に変換して前記映像信号処理用DSP221へ与えるA/D変換回路224と、前記映像信号処理用DSP221の処理途中のデジタル映像信号を一時記憶して、指定された演算処理等を行い、映像信号処理用DSP221へ戻す画像メモリ回路225と、前記映像信号処理用DSP221を前記映像信号処理用DSP221へ戻す画像メモリ回路225と、前記映像信号処理用DSP221との間で情報を伝送しつつ、前記駆動信号タイミング変換回路22や前記画像メモリ回路225等のビデオプロセッサ216各部を制御する制御マイクロプロセッサ226を有して構成されている。

[0054]

前記DSP221は、前記CCD215を駆動する駆動信号を生成して前記駆動信号タイミング変換回路222へ与える駆動信号TG231(TGはタイミングジェネレータの略である)と、前記A/D変換回路224で得られた映像信号に補正処理等を施して前記画像メモリ回路225へ映像信号を与える映像信号補正回路232と、前記画像メモリ回路225から戻された映像信号にデジタル変調を施してD/A変換しモニタ表示可能な映像信号を得るデジタルエンコーダ232と、前記画像メモリ回路225へ与えるメモリ制御信号を生成するメモリ制御回路234を有して構成されている。

[0055]

前記画像メモリ回路225は、便宜的にAフィールド及びBフィールドと呼ぶ

2つのフィールドで構成される映像信号のうち、Aフィールドの映像信号を逐次記憶するするフィールドメモリ251と、Bフィールドの映像信号を逐次記憶するフィールドメモリ252と、前記制御マイクロプロセッサ226からの制御に応じて、前記フィールドメモリ251、252から読み出される映像信号データに演算処理等を施す演算処理回路271と、演算処理回路271から出力される映像信号を一時記憶し、映像信号を前記映像信号処理用DSP221へ戻すフレームメモリ274を有して構成されている。

[0056]

前記演算処理回路271は、前記フィールドメモリ251、252から読み出される映像信号データのそれぞれに前記制御マイクロプロセッサ226から与えられる係数を乗じる2つの乗算器272と、これら2つの乗算器272から出力される映像信号データを足し合わせる加算器273を有して構成されている。

[0057]

次に、内視鏡201の通常の動作に関する作用を説明する。

光源装置211から発せられた照明光は、ライトガイド212により導光され 、配光光学系213により被写体へ向けて照射される。

[0058]

照明光を照射された被写体の光学像は、対物光学系214によりCCD215 の受光面に結像され、CCD215は、被写体像を撮像する。駆動信号TG231で生成された駆動信号は、通常は駆動信号タイミング変換回路222においてタイミング変換されずに、CCD215へ与えられ、駆動信号により駆動されたCCD215は、撮像信号をCDS/AGC回路223へ与える。このCDS/AGC回路223は、与えられた撮像信号から映像信号成分を抽出してA/D変換回路224な、与えられた映像信号をデジタル信号に変換して映像信号処理用DSP221へ与える。この映像信号処理用DSP221では、与えられた映像信号に対して、映像信号補正回路232により、補正処理等を施し、例えば「Y:U:V=4:2:2」形式のデジタル映像信号出力として画像メモリ回路225では、与えられた映像信号は、フィールドメモリ251、252に一時記憶され、通常は

演算処理回路271で処理を施されずに、そのまま、フレームメモリ274を介して映像信号処理用DSP221へデジタル映像信号入力として戻される。映像信号処理用DSP221では、戻された映像信号が、デジタルエンコーダ233によりモニタ表示可能な映像信号に変換され出力される。このとき、フィールドメモリ251は、映像信号処理用DSP221のメモリ制御回路234からのメモリ制御信号により制御され、駆動信号タイミング変換回路222及び演算処理回路の動作モードは、制御マイクロプロセッサ226により制御される。

[0059]

内視鏡201では、メモリ制御回路234がフィールドメモリ251、252を制御したり、制御マイクロプロセッサ226が駆動信号タイミング変換回路222及び演算処理回路271の動作モードを制御することにより、上述した通常の動作モードに加えて、CCD215の露光時間を通常より長くして動作する後述する長時間露光モードと、CCD215で得られる撮像信号から得られる映像信号のダイナミックレンジを拡大して動作する後述するダイナミックレンジ拡大モードで動作できるようになっている。

[0060]

次に、長時間露光モードの動作に関する作用を説明する。

図10に示すように構成された内視鏡201は、長時間露光モードでは、図11に示す機能構成と等価的になる。即ち、図11に示すように、駆動信号タイミング変換回路222では、駆動信号のうち垂直転送信号 Vのタイミングが変換され、他の駆動信号のタイミングは変換されないので、駆動信号タイミング変換回路222は、機能的には、垂直転送信号 Vのタイミングを変換する読み出しパルスタイミング変換部281を有し、他の駆動信号はそのまま通過させる構成となっている。また、画像メモリ回路225では、演算処理回路271による処理が施されないので、画像メモリ回路225は、機能的には、演算処理回路271による処理が施されないので、画像メモリ回路225は、機能的には、演算処理回路271を介さずに、フィールドメモリ251、252からの映像信号が、フレームメモリ274を介してそのまま映像信号処理用DSPへ戻される構成となっている。なお、図11では、図10と同一の部位には同じ符号が付されている。

[0061]

[0062]

読み出しパルスタイミング変換部 281 は、垂直転送信号 ϕ Vに含まれる読み出しパルスを間引くべく、垂直転送信号 ϕ V を変換した垂直転送信号 ϕ V a を出力する。読み出しパルスは、通常は、1/60 秒の周期で発生するが、図の例では、垂直転送パルスが 3 回発生する内に読み出しパルスは 1 回発生するので、読み出しパルスは、1/20 秒に 1 回発生する。従って、読み出しパルスの周期が長くなることに応じて、CCD 215 の露光周期が長くなる。

[0063]

すると、通常はCCD215からは1/60秒の周期で撮像信号が出力されるのに対し、長時間露光モードでは、例えば1/20秒の周期で撮像信号CCDoutが出力される。この撮像信号CCDoutは、映像信号に変換されて画像メモリ回路225に与えられ、この画像メモリ回路225では、与えられた映像信号をメモリ制御回路234により制御されたフィールドメモリ251、252、フレームメモリ274により補間し、この補間した映像信号を映像信号処理用DSP221へ戻す。

[0064]

次にダイナミックレンジ拡大モードの動作に関する作用を述べる。

ダイナミックレンジ拡大モードでは、駆動信号タイミング変換回路222は、 駆動信号のうちCCD215の電子シャッタ機能を制御する電子シャッタ信号S UBのタイミングを変換し、他の駆動信号のタイミングは変換しない。また、画 像メモリ回路225では、演算処理回路271により演算処理が行われる。

[0065]

図13に示すように、例えば1/60秒を周期とする垂直転送信号 ø Vにより、露光周期は1/60秒となっている。そして、通常は、露光周期内の電子シャッタ信号SUBの発生期間は一定であるが、ダイナミックレンジ拡大モードでは、電子シャッタ信号SUB a の発生期間は、フィールドにより異なるように制御マイクロプロセッサ226が制御している。露光周期内におけるCCD215の露光期間は、電子シャッタ信号SUB a の発生が終了してから開始するまでの期間であるので、電子シャッタ信号SUB a の発生期間が制御されることで、CCD215の露光期間が変化する。この露光期間は、映像信号処理用DSP221の例えば映像信号補正回路232等に設けられた測光回路により得られた映像信号の測光情報が映像信号処理用DSP221から制御マイクロプロセッサ226に与えられ、この測光情報に応じて、制御マイクロプロセッサ226が制御するようになっている。

[0066]

電子シャッタ信号SUBaを与えられたCCD215は、このSUBaに対応した露光期間が終了した次の読み出しタイミングで撮像信号CCDoutを出力する。すると、露光期間が短い場合には、撮像信号CCDoutの映像信号成分のレベルが小さくなり、逆に、露光期間が長い場合には、撮像信号CCDoutの映像信号成分のレベルが大きくなる。ここで映像信号成分のレベルが所定のレベルを超えると、図に示すように映像信号成分が飽和してしまう。

[0067]

このように、例えば交互に信号レベルの異なるフィールド信号は、フィールドメモリ251、252に交互に記憶される。そして、各フィールドメモリ251、252から読み出される映像信号は、それぞれ別々の乗算器271によって補正係数が乗じられてレベル補正され、これら2つの乗算器272から出力される映像信号は、加算器273でレベルが加算されてフレームメモリ274へ与えられる。このとき、乗算器272に制御マイクロプロセッサ226から与えられる補正係数は、図14に示すように、映像信号処理用DSP221で測光された映像信号の測光レベルに対する関数になるように制御される。この関数は、例えば

映像信号の高レベルの成分に対する補正係数の関数と低レベルの成分に対する補 正係数を重畳した関数になっている。そして、図13に示すように、加算器27 3からフレームメモリに与えられる映像信号は、映像信号の飽和部分が補正され 、ダイナミックレンジの広い信号となっている。フレームメモリ274は、加算 器273から出力された映像信号を補間して、映像信号処理用DSP221へ戻 す。

[0068]

以上図10ないし図14を参照して説明した内視鏡201によれば、映像信号 処理用DSP221がフィールドメモリ251、252等を制御したり、制御マイクロプロセッサ226が画像メモリ回路225及び駆動信号タイミング変換回路222を制御することで、ハードウェアの変更を伴わずに、長時間露光モード及びダイナミックレンジ拡大モード等の特殊動作モード動作を切り替えることができる。

[0069]

なお、図10及び図11に構成の一例を示す内視鏡装置101は、ビデオプロセッサ216が内視鏡201と一体に構成されているが、このような構成に限らず、ビデオプロセッサが内視鏡と別体に構成されていてもよい。

[0070]

ところで、従来、挿入部先端に設けられ被写体像を撮像するための撮像手段としてのCCDと、操作部に設けられ前記CCDを駆動制御し、前記CCDで得られる撮像信号からモニタ表示可能な映像信号を得るビデオプロセッサと、必要に応じて操作部に設けられ、前記映像信号を描出する表示手段としてのLCD(液晶ディスプレイ)を備えたことで、携帯に便利な内視鏡が知られている。

しかしながら、従来、このようなビデオプロセッサを備えた内視鏡では、日付 や時刻及び任意の文字を映像信号に重畳する機能等の付加機能を備えていなかっ た。

そこで、ビデオプロセッサを備えた内視鏡において、日付や時刻及び任意の文字を映像信号に重畳する機能等の付加機能を備えた内視鏡について、図16及び図17を参照して以下に説明する。

[0071]

図16に示す内視鏡501は、体腔内或いは管路内等に挿入する細長の挿入部 502と、この挿入部502の基端側に連設され、内視鏡501を把持し操作す るための操作部503と、この操作部503に設けられた操作部スイッチ504 と、前記操作部503から延出するケーブルにより接続されたリモートコントロ ーラ505と、前記挿入部502先端に設けられ、被写体像を結像するための対 物光学系511と、前記挿入部502先端の前記対物光学系511の結像位置に 受光面が配置され、前記対物光学系511で結像した被写体像を撮像するための 撮像手段としてCCD512と、例えば前記操作部503に設けられ、前記CC D512を駆動制御し、前記CCD512で得られた撮像信号からモニタ表示可 能な映像信号を得るビデオプロセッサ513と、例えば前記操作部503に設け られ、前記ビデオプロセッサ513で得られた映像信号を描出するLCDモニタ 514(LCDは液晶ディスプレイの略である)と、例えば操作部503に着脱 自在に装着され、前記ビデオプロセッサ513及びLCDモニタ514等の内視 鏡501各部へ電力を供給するバッテリ515と、例えば操作部503に着脱自 在に装着され、前記ビデオプロセッサ513内の時計機能を維持するための電源 を供給する時計用リチウム電池516等の電池とを有して構成されている。

[0072]

前記ビデオプロセッサ513は、ビデオプロセッサ513各部へ供給するシステムクロックを発振するシステムクロック用水晶発振器521等の発振器と、前記CCD512を駆動する駆動信号を発生するCCD駆動回路522と、前記CCD512で得られた撮像信号にCDS(相関二重サンプリング)処理及びAGC(自動利得制御)処理を施して映像信号成分を抽出するCDS/AGC回路523と、このCDS/AGC回路523で得られた映像信号をデジタル信号に変換するA/D変換回路524と、このA/D変換回路524で得られたデジタル信号からモニタ表示可能な例えばアナログ映像信号であるコンポジット映像信号及びY/C分離映像信号を得る映像信号処理用DSP525(DSPはデジタル信号プロセッサの略である)と、前記映像信号処理用DSP525等のビデオプロセッサ513各部へ与える信号を同期的に発生する同期回路526と、前記映

像信号処理用DSP525と情報伝送しつつ、ビデオプロセッサ513各部を制御する制御マイクロプロセッサ527と、この制御マイクロプロセッサ527が実行するソフトウェアを格納するROM528と、前記制御マイクロプロセッサ527に接続され、文字データを画素データに変換するキャラクタジェネレータ529と、前記時計用リチウム電池516から電源供給され、前記制御マイクロプロセッサ530に日付や時刻の情報を与える時計IC530と、前記映像信号処理用DSP525の処理途中の映像信号と制御マイクロプロセッサ527から与えられる画素データとを重畳して映像信号を前記映像信号処理用DSP525へ戻すスーパインポーズ回路531と、前記バッテリ515から供給される電源ラインを前記制御マイクロプロセッサ527からの制御に応じて開くことができる電源制御回路532を有して構成されている。

[0073]

図17に示すように、前記映像信号処理用DSP525は、前記A/D変換回路524で得られた映像信号の輝度信号成分に補正処理等を施す輝度信号補正回路541bを有し映像信号を前記スーパインポーズ回路531へ与える映像信号補正回路541と、前記スーパインポーズ回路531から戻された映像信号をデジタル変調してからD/A変換し、コンポジット映像信号及びY/C分離映像信号を得るデジタルエンコーダ542と、前記同期回路526から与えられる同期信号に従い前記スーパインポーズ回路531に与える制御信号を発生するSSG543(同期信号発生回路)と、前記制御マイクロプロセッサ527と情報伝送するためのシリアルインタフェース544を有して構成されている。

[0074]

前記スーパインポーズ回路531は、前記映像信号処理用DSP525から与えられる例えば16ビットの「Y:U:V=4:2:2」形式の映像信号をラッチするラッチ回路551と、このラッチ回路551から出力される例えば16ビットの映像信号を一時記憶するフレームメモリ552と、前記制御マイクロプロセッサ527から画素信号等が与えられ例えば24ビットのRGB映像信号を発生するビデオディスプレイプロセッサ553と、このビデオディスプレイプロセ

ッサ553で得られた例えば24ビットのRGB映像信号に色差変換処理を施し、例えば16ビットの「Y:U:V=4:2:2」形式の映像信号を得る色差変換回路554と、前記ビデオディスプレイプロセッサ553に制御され前記フレームメモリ552からの映像信号と前記色差変換回路554からの映像信号とを重畳して映像信号を前記映像信号処理用DSP525へ戻すデジタルセレクタ555を有して構成されている。

[0075]

次に、図16及び図17を参照して構成を説明した内視鏡501の作用を述べる。

CCD駆動回路522からの駆動信号により駆動されたCCD512は、被写体像に対応する撮像信号をCDS/AGC回路523に与え、このCDS/AGC回路523は、与えられた撮像信号から映像信号成分を抽出してA/D変換回路524に与え、このA/D変換回路524は、与えられた映像信号をデジタル信号に変換して映像信号処理用DSP525に与える。この映像信号処理用DSP525では、与えられた映像信号に映像信号補正回路541が補正処理等を施し、例えば「Y:U:V=4:2:2」形式の映像信号をスーパインポーズ回路531に与える。このスーパインポーズ回路531では、与えられた映像信号が、ラッチ回路551で同期化され、フレームメモリ552に一時記憶され、デジタルセレクタ555に与えられる。

[0076]

一方、制御マイクロプロセッサ527は、時計IC530から、日付や時刻の情報を得る。そして、制御マイクロプロセッサ527は、この日付や時刻の情報を示す文字情報をキャラクタジェネレータ529で画素情報に変換し、スーパインポーズ回路531のビデオディスプレイプロセッサ553に与える。このとき、時計IC530の日付や時刻の修正は、操作部スイッチ504或いはリモートコントローラ505からの操作入力により行われる。また、制御マイクロプロセッサ527は、操作部スイッチ504或いはリモートコントローラ505から任意の文字情報を得ることができる。そして、制御マイクロプロセッサ527は、この任意の文字情報をキャラクタジェネレータ529で画素情報に変換し、ビデ

[0077]

すると、デジタルセレクタ555は、フレームメモリ552からの映像信号に、色差変換回路554からの映像信号を重畳し、例えば「Y:U:V=4:2:2」形式の映像信号を映像信号処理用DSP525へ戻す。この重畳された映像信号は、DSP525のデジタルエンコーダ542で、モニタ表示可能な例えばコンポジット映像信号に変換されて出力される。また、このコンポジット映像信号は、LCDモニタ514には、被写体像に日付や時刻を示す文字及び任意の文字が重畳された画像が表示される。

[0078]

また、制御マイクロプロセッサ527は、時計IC530から与えられる時刻が所定の時刻になると、電源制御回路532を制御し、これにより、バッテリ515から内視鏡501各部へ供給される電源が切断される。

[0079]

以上図16及び図17を参照して説明した内視鏡501によれば、スーパインポーズ回路531、制御マイクロプロセッサ527、時計IC530、操作部スイッチ504、キャラクタジェネレータ529を内視鏡501内に設けたことで、外部装置を設けなくても日付や時刻の表示及び任意の文字の表示を被写体像に重畳して表示することができる。

また、映像信号処理用DSP525の処理途中の映像信号に対して、日付や時刻及び任意の文字を含む映像信号を重畳し、重畳した映像信号を映像信号処理用DSP525へ戻すので、重畳した映像信号をモニタ表示可能な映像信号に変換するためのプロセッサ等の回路を新たに設けなくてもよく、その分部品数を削減でき、安価に構成できる。

また、時計IC530を設け、更に、制御マイクロプロセッサ527の制御に

よりバッテリ515から供給する電源を切断できる電源制御回路532を設けたので、所定の時刻に自動で電源を切断するように制御することができる。

[0080]

また、時計IC530用の電源である時計用リチウム電池516を設けたので、バッテリ515から内視鏡501各部へ供給される電源が切断されている間でも、時計IC530は時刻を常時更新することができる。

[0081]

「付記]

(付記項1-1)

内視鏡に内蔵された或いは着脱自在に接続される撮像手段を駆動する第1の駆動信号を生成する手段と、

前記撮像手段で得られた撮像信号に含まれる第1の映像信号を得る映像信号抽 出手段と、

前記映像信号抽出手段を駆動して前記映像信号抽出手段が前記撮像信号から前 記第1の映像信号を得る際のタイミングを制御する第2の駆動信号を生成する手 段と、

前記第1の映像信号からモニタ表示可能な第2の映像信号を得る回路の少なく とも一部を格納した第1のプロセッサとを有する内視鏡装置において、

前記第1のプロセッサに格納され前記第1の駆動信号及び前記第2の駆動信号 に含まれる信号のうち少なくとも一部の信号を遅延させる遅延回路を備えたこと を特徴とする内視鏡装置。

[0082]

(付記項1-2)

付記項1-1に記載の内視鏡装置であって、

前記第1のプロセッサは、集積回路で構成されたデジタル信号プロセッサである。

[0083]

(付記項1-3)

付記項1-1に記載の内視鏡装置であって、

前記遅延回路は、遅延時間が可変である。

[0084]

(付記項1-4)

付記項1-3に記載の内視鏡装置であって、

前記遅延回路は、直列に接続された多段のバッファ回路と、前記多段のバッファ回路の段数を選択する回路とを備えた。

[0085]

(付記項1-5)

付記項1-3に記載の内視鏡装置であって、

前記遅延回路の遅延時間を設定する第2のプロセッサを備えた。

[0086]

(付記項1-6)

付記項1-5に記載の内視鏡装置であって、

前記遅延時間を指定するためのスイッチを備え、

前記第2のプロセッサは、前記スイッチの状態に応じて前記遅延時間を設定する。

[0087]

(付記項1-7)

付記項1-5に記載の内視鏡装置であって、

前記遅延時間を導出可能な情報を設定するためのスイッチを備え、

前記第2のプロセッサは、前記スイッチの状態に応じて前記遅延時間を設定する。

[0088]

(付記項1-8)

付記項1-7に記載の内視鏡装置であって、

前記遅延時間を導出可能な情報は、前記内視鏡の挿入部の長さを示す情報を含む。

[0089]

(付記項1-9)

付記項1-7に記載の内視鏡装置であって、

前記遅延時間を導出可能な情報は、前記内視鏡の種別を識別するための識別情報を含む。

[0090]

(付記項1-10)

付記項1-5に記載の内視鏡装置であって、

前記内視鏡は、前記遅延時間を示す情報を前記第2のプロセッサへ与える情報 通知手段を備え、

前記第2のプロセッサは、前記情報通知手段から通知される情報に応じて前記 遅延時間を設定する。

[0091]

(付記項1-11)

付記項1-5に記載の内視鏡装置であって、

前記内視鏡は、前記遅延時間を導出可能な情報を前記第2のプロセッサへ与える情報通知手段を備え、

前記第2のプロセッサは、前記情報通知手段から通知される情報に応じて前記 遅延時間を設定する。

[0092]

(付記項1-12)

付記項1-11に記載の内視鏡装置であって、

前記遅延時間を導出可能な情報は、前記内視鏡の挿入部の長さを示す情報を含む。

[0093]

(付記項1-13)

付記項1-11に記載の内視鏡装置であって、

前記遅延時間を導出可能な情報は、前記内視鏡の種別を識別するための識別情報を含む。

[0094]

(付記項2-1)

被写体像を撮像する撮像手段と、

前記撮像手段で得た撮像信号からデジタル映像信号を得る手段と、

前記デジタル映像信号からモニタ表示可能なアナログ映像信号を得る映像信号 処理回路の少なくとも一部を格納した第1のプロセッサとを有する内視鏡装置に おいて、

1水平期間信号を保持するための複数のラインメモリと、

前記ラインメモリへのデータ取り込みタイミングを遅延させずに取り込む場合と所定時間遅延させて取り込む場合とを切り替えて使用できるラインメモリ制御手段とを備え、

前記撮像手段からの撮像信号を伝送する信号ケーブルによる電気的な遅延が前 記撮像手段の1画素走査期間を基準に奇数画素分遅延した場合は、前記ラインメ モリ制御手段により所定時間遅延させて前記ラインメモリへ前記撮像手段からの デジタル映像信号を取り込んで信号処理することを特徴とする電子内視鏡装置。

(付記項2-2)

付記項2-1に記載の内視鏡装置であって、

前記ラインメモリ制御手段の設定は、前記第1のプロセッサの外部に設けた第 2のプロセッサによって設定する。

[0095]

(付記項2-3)

付記項2-1に記載の内視鏡装置であって、

前記ラインメモリ制御手段の設定は、前記第1のプロセッサの外部に設けた第2のプロセッサ及びこの第2のプロセッサに入力される内視鏡の挿入部長を示す 識別信号によって設定する。

[0096]

(付記項3-1)

被写体像を撮像するための撮像手段と、

前記被写体像を駆動する駆動信号を生成する駆動信号生成手段と、

前記撮像手段で得られた撮像信号から映像信号を抽出する手段と、

各部を制御する主たる制御手段を格納した第1のプロセッサと、

前記映像信号に映像信号処理を施す回路の少なくとも一部を格納した第2のプロセッサと、

前記第1のプロセッサに格納され前記撮像手段の動作モードを制御する動作モード制御手段と、

前記動作モード制御手段からの制御に応じて、前記撮像手段に与える駆動信号 のタイミングを変更可能な駆動信号タイミング変更手段と、

前記映像信号処理の途中において少なくとも映像信号を一時記憶するメモリと

前記第2のプロセッサに格納され、前記動作モード制御手段からの制御に応じて、前記メモリの動作を制御する制御信号を生成するメモリ制御信号生成手段と を備えたことを特徴とする内視鏡装置。

[0097]

(付記項3-2)

付記項3-1に記載の内視鏡装置であって、

前記駆動信号タイミング変更手段は、前記撮像手段の電子シャッタ機能を駆動 するシャッタ駆動信号の発生期間を変更可能である。

[0098]

(付記項3-3)

付記項3-1に記載の内視鏡装置であって、

前記メモリは、前記第1の制御手段からの制御に応じて前記映像信号に含まれる各フレームの信号に対して演算処理を施す手段を備えた。

[0099]

(付記項3-3)

付記項3-1に記載の内視鏡装置であって、

前記メモリは、前記第1の制御手段からの制御に応じて前記映像信号に含まれる各フレームの信号を合成する手段を備えた。

[0100]

【発明の効果】

以上説明したように、本発明によれば、部品数を削減することで、安価な構成

でケーブル長補正を行うことができるという効果が得られる。

【図面の簡単な説明】

- 【図1】図1及び図2は本発明の第1の実施の形態に係り、図1は内視鏡装置の全体構成を示すブロック図
 - 【図2】遅延回路の構成を示すブロック図
- 【図3】第1の実施の形態の変形例に係り、内視鏡装置の全体構成を示すプロック図
- 【図4】図4ないし図9は簡易な構成で色ずれを補正する内視鏡装置の説明に 参照し、図4は内視鏡装置の全体構成を示すブロック図
 - 【図5】色分離回路の構成を示すブロック図
 - 【図6】CCDの画素とフィールドとの色の対応を示す説明図
 - 【図7】ラインメモリのデータ記憶タイミングを示すタイムチャート
 - 【図8】ラインメモリのデータ内容と減算器の出力との関係を示す説明図で、
- (A) はケーブル遅延が無い場合の動作を示す説明図で、(B) は1画素分のケーブル遅延が生じた場合の動作を示す説明図
 - 【図9】ラインメモリアドレス開始タイミングを示す説明図
- 【図10】図10ないし図14は安価な構成で映像信号処理機能に特殊効果機能を追加した内視鏡の説明に参照し、図10は全体構成を示すブロック図
- 【図11】長時間露光機能に関わる機能を抜粋した内視鏡の機能構成を示すブロック図
 - 【図12】長時間露光機能の動作を示すタイムチャート
 - 【図13】ダイナミックレンジ拡大機能の動作を示すタイムチャート
- 【図14】ダイナミックレンジ拡大機能で使用する補正係数の特性の一例を示す説明図
- 【図15】図10ないし図14を使用して説明する内視鏡の従来技術の説明に 使用し、内視鏡装置の構成を示すブロック図
- 【図16】図16及び図17は日付や時刻及び任意の文字を映像信号に重畳する機能等の付加機能を有する内視鏡の説明に参照し、図16は内視鏡の全体構成

を示すブロック図

【図17】スーパインポーズ回路及び映像信号処理用DSPの詳細構成を示す ブロック図

【符号の説明】

- 1…内視鏡装置
- 2…内視鏡
- 3 …ビデオプロセッサ
- 11…挿入部
- 13…信号ケーブル
- 16...CCD
- 21…映像信号処理用DSP
- 24 ··· C D S 回路
- 25 ··· A / D変換回路
- 26…制御マイクロプロセッサ
- 2 7 ··· R OM
- 28…設定スイッチ
- 3 1 ··· C C D 駆動回路
- 3 2 ··· S S G
- 33…遅延回路
- 3 4 …映像信号処理回路
- 35…デジタルエンコーダ
- 5 1 …識別信号発生回路

代理人 弁理士 伊藤 進

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図	8]
----	---	---

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】 アナログ・映像信号 🔼 } デジタル映像信号入出力 ▼ コンポジット映像信号 ▼ X X C 公路映像信号 **→** RS-232C ~515 バッテリ LCDE=9 歌舞海回路 532 531 スーパインボーズ回路 ۵. 映像信号処理用DS 527 525 513ビデオプロセッサ 504 操作部スイッチ 526 制御マイクロプロセッサ 回題回路 システムクロック用水晶発振器 521 524 タイロる帝回路 530 523 505 JE-13710-5 キャラクタジェネレータ ROM 成の回路 時計して CDS/ AGC回路 時計用 リチウム電池 516 **季**2039 基入部202 50% CCD **SI 20**

【書類名】

要約書

【要約】

【課題】 部品数を削減することで、安価な構成でケーブル長補正を行うことができる内視鏡装置を提供する。

【解決手段】 SSG32からの駆動信号は、遅延回路33等を介して、CCD16を駆動する。すると、CCD16からの撮像信号は、SSG32から遅延回路33を介して与えられるサンプルホールド信号により駆動されるCDS回路24で映像信号に変換され、A/D変換回路25、映像信号処理回路34、デジタルエンコーダ35を介して、モニタ表示可能な映像信号に変換されて出力される。このとき、遅延回路33により、CDS回路24へ与えられる撮像信号とサンプルホールド信号の位相とを補正することで、ケーブル長補正が行われる。また、遅延回路33は、映像信号処理回路34等を納めた映像信号処理用DSP21に組み込まれて構成されるので、部品数が削減され、安価に構成される。

【選択図】 図1

出願人履歴情報

識別番号

[000000376]

1. 変更年月日

1990年 8月20日

[変更理由]

新規登録

住 所

東京都渋谷区幡ヶ谷2丁目43番2号

氏 名

オリンパス光学工業株式会社