Informatique de la biodiversité

Dimitri Justeau-Allaire

dimitri.justeau@ird.fr

La crise de la biodiversité

Science and Policy for People and Nature

- IPBES: Plateforme intergouvernementale scientifique et politique sur la biodiversité et les services écosystémiques
- Missions similaire au **GIEC** (Groupe d'experts intergouvernemental sur l'évolution du climat)
- Groupe international d'experts, sous l'égide de l'ONU
- Missions:
 - Evaluer les connaissances sur la biodiversité, et les menaces
 - Jouer un rôle d'interface entre la science et la politique
 - Renforcer les capacités des pays sur la gestion de la biodiversité

La crise de la biodiversité - Quelques chiffres issus du dernier rapport de l'IPBES

- Près d'un million d'espèces menacées d'extinction
- Taux d'extinction 1000 fois plus élevé que le taux «naturel» d'extinction

Source: dernier rapport de l'**IPBES** (Diaz et al. 2020)

La crise de la biodiversité - Quelques chiffres issus du dernier rapport de l'IPBES

- Près d'un million d'espèces menacées d'extinction
- Taux d'extinction 1000 fois plus élevé que le taux «naturel» d'extinction
- Les activités humaines en sont la cause principale:
 - 1. Changement d'utilisation des sols / espaces maritimes
 - 2. Exploitation directe
 - 3. Changement climatique
 - 4. Pollution
 - 5. Espèces invasives introduites

Source: dernier rapport de l'**IPBES** (Diaz et al. 2020)

La crise de la biodiversité - Objectifs internationaux

- Objectifs de développement durable, ONU
- Décénie des Nations Unies pour la restauration des écosystèmes
- The Bonn Challenge: restaurer 350 millions d'hectares de forêt d'ici 2030

Protect Restore Sustainable use

Sustainable agriculture

La biologie de la conservation - une discipline de crise

Biologie de la conservation

Biologie de la conservation

- Une discipline récente et multidisciplinaire
- Appliquée et motivée par les valeurs éthiques de la conservation

Biologie de la conservation

- Une discipline récente et multidisciplinaire
- Appliquée et motivée par les valeurs éthiques de la conservation

Biologie de la conservation

- Une discipline récente et multidisciplinaire
- Appliquée et motivée par les valeurs éthiques de la conservation

- 1.
- 2.
- 3.

Biologie de la conservation

- Une discipline récente et multidisciplinaire
- Appliquée et motivée par les valeurs éthiques de la conservation

- 1. Décrire et comprendre la biodiversité
- 2.
- 3.

Biologie de la conservation

- Une discipline récente et multidisciplinaire
- Appliquée et motivée par les valeurs éthiques de la conservation

- 1. Décrire et comprendre la biodiversité
- 2. Evaluer les impacts des activités humaines sur la biodiversité
- 3.

Biologie de la conservation

- Une discipline récente et multidisciplinaire
- Appliquée et motivée par les valeurs éthiques de la conservation

- 1. Décrire et comprendre la biodiversité
- 2. Evaluer les impacts des activités humaines sur la biodiversité
- 3. Proposer des solutions pour preserver/restaurer la biodiversité

Informatique de la biodiversité

Qu'est ce que c'est, «l'informatique de la biodiversité» ??

Informatique de la biodiversité

Informatique de la biodiversité

Informatique de la biodiversité

Biodiversité

Qu'est ce que c'est, «l'informatique de la biodiversité» ??

Exemple 1: Identifier et recencer les plantes grâce à la science citoyenne (pilier I)

- Science citoyenne
- Données d'occurrences (GBIF)
- Modèles de distribution d'espèces
- > Développement mobile
- > Gestion de données massives
- > Deep learning

Exemple 2: Modéliser et prédire la déforestation dans les régions tropicales (pilier II)

- Données satellitaires (Landsat)
- Sur une longue période (1990-2019)
- A fine échelle (30m x 30m)
- > Analyse de séries temporelles
- > Modélisation statistique
- > Modèles prédictifs

forestatrisk Python package, Vieilledent (2021)

Vancutsem et al. (2021)

Exemple 3: Evaluer la santé des coraux grâce à la bioacoustique et le machine learning (pilier II et III)

- Données acoustiques
- Indices écoacoustiques
- Labelisés (sain VS dégradé)

- > Machine learning
- > Regularised Discriminant Analysis
- > Application: monitoring

Exemple 4: Planifier la restoration ecologique grâce à la programmation par contraintes (pilier III)

- Données paysagères (habitat)
- Contraintes socio-économiques
- Objectifs écologiques
- > Programmation par contraintes
- > Algorithmique des graphes
- > Aide à la décision

Merci!

Des questions?

dimitri.justeau@ird.fr

