

2

证明:

前序遍历:中左右中序遍历:左中右

后序遍历: 左右中

• 当树为空时,显然成立

• 当树只有一个节点时,也显然成立 (该节点就是叶节点)

归纳假设

假设当为k ($k \geq 2$) 时,二叉树的所有终端结点(叶结点),在前序序列、中序序列、后序序列中都按相同的相对位置出现。

那当为k+1时

- 对于前序遍历,我们访问根节点,再访问左子树,再访问右子树
- 对于中序遍历, 我们先访问左子树, 再访问根节点, 再访问右子树
- 对于后序遍历,我们先访问左子树,再访问右子树,再访问根节点

我们可以观察到,无论哪个遍历,都是左子树在右子树的前面,那么由于根节点不会是叶节点 (指的是树根节点 $k\geq 2$)

那么我们可以得到:

叶子结点的顺序 = 左子树叶子结点的顺序 + 右子树叶子结点的顺序

由于左子树和右子树的节点数 $\leq k$,那么得证!

3

(1)

叶节点数=内部节点数+1

则 199=2*x-1

x=100

即该哈夫曼树叶节点数为100

(2)

频率	编码
0.32	0
0.21	10
0.19	110
0.10	1110
0.07	11110
0.06	111111
0.03	1111101
0.02	1111100

(3)

频率	编码
0.32	000
0.21	001
0.19	010
0.10	011

频率	编码
0.07	100
0.06	101
0.03	110
0.02	111

优缺点对比

• 哈夫曼编码所占用的空间是最少的,即

$$\sum_{i=0}^{n-1} W_i l_i$$

是最小的, W_i 是权重, l_i 是编码长度 但生成和翻译哈夫曼编码的时间复杂度都较高

等长编码更容易解码 但占用空间大

4

(1)

第一步

最后图

最小值是67

(2)

该最小堆的叶子结点

(3)

- n个结点堆的高度为log n,第i层上的结点数最多为 $2^i (i \geq 0)$
- 建堆过程中,每个飞叶子结点都调用一次SiftDown算法,而每次最多向下调整到最底层,即第1层上的结点向下调整到最底层的调整次数为log n -i.
- 建堆时间为

首先将给定权值按从小到大排序。如果节点数n不满足 $n=1\ mod(k-1)$,则需要添加 s=(k-1)-((n-1)mod(k-1))个权值为0的虚拟节点,使得新的节点总数满足 $n^{'}=n+s=1\ mod(k-1)$

构造过程:

- 重复以下步骤,直到剩下一个节点为止:
 - 从当前节点集合中选出权值最小的k个节点
 - 。 将这k个节点合并为一个新节点,新节点的权值为这k个节点取值之和
 - 。 将新节点放回节点集合中

三叉树:

WPL=1×4+4×4+9×3+16×3+25×2+36×2+49×2+64×2+81×2+100×1=4+16+27+48+50+72+98+128+ 162+100=705