Heat egn as an infinite linear system of ODEs

$$\frac{Ex}{\partial t} : \begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \\ u(0,t) = u(\pi,t) = 0 \\ u(x,0) = f(x) \end{cases}$$

Representing u(x,t) using Fourier sine series for each fixed t.

$$u(x,t) = \sum_{n=1}^{\infty} a_n(t) \sin(nx)$$

$$a_n(t) = \frac{2}{\pi} \int_0^{\pi} u(x,t) \sin(nx) dx , \quad a_n(0) = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx$$

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

$$\Rightarrow \frac{\partial U}{\partial t} = \sum_{n=1}^{\infty} a_n'(t) \sin(nx)$$

$$\frac{\partial^2 u}{\partial x^2} = \sum_{n=1}^{\infty} -n^2 a_n(t) \sin(nx)$$

$$\Rightarrow$$
 $a_n'(t) = -n^2 a_n(t)$

i.e. for
$$a(t) = \begin{bmatrix} a_1 & t \\ a_2 & t \end{bmatrix}$$
, $a'(t) = Da(t)$
 $a_3(t)$ where $D = \begin{bmatrix} -1^2 \\ -2^2 \end{bmatrix}$
 $a_3(t)$ and $a_3(t)$ where $a_3(t)$ and $a_3(t)$ are $a_3(t)$ and $a_3(t)$ a

$$\Rightarrow a(t) = e^{Dt} a(0) = \begin{cases} e^{-1^{2}t} a_{1}(0) \\ e^{-2^{2}t} a_{2}(0) \\ e^{-3^{2}t} a_{3}(0) \end{cases}$$

$$\Rightarrow U(x,t) = \sum_{n=1}^{\infty} a_n(t) \sin(nx) = \sum_{n=1}^{\infty} a_n(0) e^{-n^2t} \sin(nx)$$

RMK: If we use Fourier cosine series to represent U(x,t) instead, it might appear that we get the same an, but not $a_n(o) = \frac{2}{\pi} \int_0^{\pi} f(x) \cos(nx) dx$ is different. This amounts to a phase shift for the $\cos(nx)$ which will make it equivalent to using $\sin(nx)$.

Representing u(x,t) using power series for each fixed t.

$$u(x;t) = \sum_{n=1}^{\infty} a_n(t) x^n$$
 (there's no need to have a)
 $u(x;t) = \sum_{n=1}^{\infty} a_n(t) x^n$ (u needs to be o)

$$\frac{\partial U}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

$$\Rightarrow \frac{\partial u}{\partial t} = \sum_{n=1}^{\infty} a_n'(t) \times^n = a_1' \times^1 + a_2' \times^2 + a_3' \times^3 + a_4' \times^4 + \cdots$$

$$\frac{\partial^{2}u}{\partial x^{2}} = \sum_{n=2}^{\infty} a_{n}(t) n(n-1) x^{n-2} = 2a_{2} + 6a_{3}x + 12a_{3}x^{2} + \cdots$$

$$\Rightarrow$$
 for $n \ge 1$

$$a_{n'} = (n+2)(n+1)a_{n+2}$$

A is not diagonal

$$a(t) = e^{At}a(0)$$
,