Machine Learning for Sensory Signals

Dimensionality Reduction

09-02-2017

Principal Component Analysis

* First *M* eigenvectors of data covariance matrix

$$S = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \bar{\mathbf{x}})(\mathbf{x}_n - \bar{\mathbf{x}})^T$$

* Residual error from PCA

$$J = \sum_{i=M+1}^{D} \lambda_i$$

PCA

PCA - Reconstruction

Eigenvectors

PCA - Reconstruction

PRML - C. Bishop (Sec. 12.1)

Whitening the Data

PRML - C. Bishop (Sec. 12.1)

Linear Discriminant Analysis

Find a linear transform $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ with a criterion which maximizes the class separation

 Maximize the between class distance in the projected space while minimizing the within class covariance

$$J = \frac{\mathbf{w}^T \mathbf{S}_b \mathbf{w}}{\mathbf{w}^T \mathbf{S}_w \mathbf{w}}$$

$$oldsymbol{S}_b = \sum_{k=1}^K N_k (\mathbf{m}_k - oldsymbol{m}) (\mathbf{m}_k - oldsymbol{m})^T \quad oldsymbol{S}_w = \sum_{k=1}^K \sum_{n \in C_k} (\mathbf{x}_n - oldsymbol{m}_k) (\mathbf{x}_n - oldsymbol{m}_k)^T$$

- * Generalized Eigenvalue problem
- * Eigenvectors of $S_w^{-1}S_b$

Linear Discriminant Analysis

Projecting on line joining means

Fisher Discriminant

PCA versus LDA

PRML - C. Bishop (Sec. 4.1.4, Sec. 4.1.6)

Classifier Types

Non-parametric Modeling

• Non-parametric models do not specify an apriori set of parameters to model the distribution. Example - Histogram

The density is not smooth and has block like shape.

Non-parametric Modeling

- Non-parametric methods are dependent on number of data points
 - Estimation is difficult for large datasets.
- Likelihood computation and model comparisons are hard.
- Limited use in classifiers

Points of equal probability lie on on contour Diagonal Gaussian with Identical Variance

Diagonal Gaussian with different variance

Full covariance Gaussian distribution

