SOIL CLASSIFICATION CHALLENGE

PART 1

- The Soil Image Classification Challenge is a machine learning competition organized by Annam.ai at IIT Ropar, serving as an initial task for shortlisted hackathon participants.
- Competitors will build models to classify each soil image into one of four categories: Alluvial soil,
 Black soil, Clay soil, or Red soil.

Models

- Pretrained Models with custom heads have been used with 5-fold cross validation and image size
 of 512
- Models used are
 - resnext50_32x4d
 - EfficientnetB3
 - EfficientnetB5
 - EfficientnetB7
 - Vision Transformer Patch 16 384

5 folds

fold	label_encoded	
0	0	106
	1	46
	2	40
	3	53
1	0	106
	1	47
	2	40
	3	52
2	0	106
	1	46
	2	39
	3	53
3	0	105
	1	46
	2	40
	3	53
4	0	105
	1	46
	2	40
	3	53

dtype: int64

5 fold cross validation scores

MODEL	F1 SCORE	Image size	folds	
tf_efficientnet_b3_ns	0.96299	512	5	
tf_efficientnet_b5_ns	0.98584	512	5	
tf_efficientnet_b7_ns	0.94969	512	5	
vit_base_patch16_384	0.96552	384	5	
resnext50_32x4d	0.96594	512	5	

PART 2

- The Soil Image Classification Challenge is a machine learning competition organized by Annam.ai at IIT Ropar, serving as an initial task for shortlisted hackathon participants.
- Competitors will build models to classify the images to if they're soil image or not.

Models used

We follow a autoencoder architecture to train the images

The anomalies are detected using the reconstruction error

Top 5% are counted as anomalies

Backbone used

- EfficientnetB0, EfficientnetB1, EfficientnetB3, EfficientnetB5
- Simple Auto Encoder