The Design and Analysis of Algorithms HW1

B12508026 戴偉璿

October 24, 2025

Collaboration

This homework is done by myself. I discussed with ChatGPT for Exercise 6 and Exercise 8 (and other exercises were done independently). Besides, to make my expression more precise, I also used ChatGPT to check my grammar and Latex formatting.

Answers

- 1. (a) It is known that $(\log n)^k \ll n^a \ll a^{\sqrt{n}} \ll b^n \quad (k, a, b > 0, b > 1)$ $\therefore (\log n)^{10} \ll \frac{n}{(\log n)^3} \ll n \ll n \log n \ll n \log^2 n \ll n^{3/2} \ll 64^{\sqrt{n}} \ll 2^n.$
 - (b) i. $\boxed{\textbf{Disprove.}}$ To prove or disprove $n^{\frac{1}{2}} = O(n^{\frac{1}{3}})$, consider the definition of Big-O notation. $n^{\frac{1}{2}} \leq cn^{\frac{1}{3}}$ where c is a constant. Dividing both sides by $n^{\frac{1}{3}}$ gives $n^{\frac{1}{6}} \leq c$. As n approaches infinity, $n^{\frac{1}{6}}$ also approaches infinity, so there is no constant c that satisfies the inequality. Therefore, $n^{\frac{1}{2}} \neq O(n^{\frac{1}{3}})$.
 - ii. Prove. To prove or disprove $3^n = \Omega(27^{\sqrt{n}})$, consider the definition of Big-Omega notation. $3^n \geq c27^{\sqrt{n}}$ where c is a constant. Dividing both sides by $27^{\sqrt{n}}$ gives $\frac{3^n}{27^{\sqrt{n}}} = 3^{n-3\sqrt{n}} \geq c$. As n approaches infinity, $n 3\sqrt{n}$ also approaches infinity, so there exists a constant c that satisfies the inequality. Therefore, $3^n = \Omega(27^{\sqrt{n}})$.
- 2. (a) The outer loop runs from 1 to n, and the inner loop runs from 1 to \sqrt{i} . So the total number of iterations is: $\sum_{k=1}^{n} \sqrt{k}$. To analysis this, we can use the integral method: $\sum_{k=1}^{n} \sqrt{k} \approx \int_{1}^{n} \sqrt{x} \, dx = \left[\frac{2}{3}x^{3/2}\right]_{1}^{n} = \frac{2}{3}(n^{3/2} 1) = \Theta(n^{3/2})$.
 - (b) The outer loop runs n times (for $i=n,\ldots,1$). In the inner loop, starting from j=i and repeatedly setting $j\leftarrow \sqrt{j}$ until j<2, and it takes $\min\{k:\ i^{1/2^k}<2\}=\min\{k:\ i<2^{2^k}\}=\Theta(\log\log i)$ iterations.

Hence the total work is $T(n) = \sum_{i=1}^{n} \Theta(\log \log i)$. For an upper bound, $T(n) \le$

 $\sum_{i=1}^{n} \log \log n = n \log \log n = O(n \log \log n).$ For a lower bound, for all $i \in [\frac{n}{2}, n]$ we have $\log \log i \ge \log \log \frac{n}{2}$, thus $T(n) \ge \frac{n}{2} \log \log \frac{n}{2} = \Omega(n \log \log n)$. Therefore, $T(n) = \Theta(n \log \log n).$

3. (a) We have
$$T(n) = \begin{cases} T\left(\frac{n}{6}\right) + T\left(\frac{n}{4}\right) + \frac{n}{2}, & n > 1\\ 1, & n = 1 \end{cases}$$

$$2T(\frac{n}{6}) + \frac{n}{2} \le T(n) \le 2T(\frac{n}{4}) + \frac{n}{2}$$

Solve
$$T(n) = 2T(\frac{n}{4}) + \frac{n}{2}$$
 by Master Theorem, where $a = 2, b = 4, f(n) = \frac{n}{2}$

Therefore,
$$n^{\log_b a} = n^{\log_4 2} = n^{1/2}$$

Since
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 for $\epsilon = \frac{1}{2}$ and $af(\frac{n}{b}) \le cf(n)$ for $c = \frac{3}{4}$, by case 3 of Master Theorem, we have $T(n) = \Theta(f(n)) = \Theta(n)$.

Similarly, solve
$$T(n)=2T(\frac{n}{6})+\frac{n}{2}$$
 by Master Theorem, where $a=2,b=6,f(n)=\frac{n}{2}$ Therefore, $n^{\log_b a}=n^{\log_6 2}$

Since
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 for $\epsilon = 1 - \log_6 2$ and $af(\frac{n}{b}) \le cf(n)$ for $c = \frac{3}{4}$, by case 3 of Master Theorem, we have $T(n) = \Theta(f(n)) = \Theta(n)$.

Thus, by the squeeze theorem, we have $T(n) = \Theta(n)$.

(b) We have
$$T(n) = \begin{cases} 2T\left(\frac{n}{2}\right) + n\log n, & n > 1\\ 1, & n = 1 \end{cases}$$

$$f(n) = \Theta(n \log n) = \Theta(n^{\log_b a} \log^1 n).$$

This matches Master Theorem case 2 with k = 1. $T(n) = \Theta(n \log^{k+1} n) =$ $\Theta(n\log^2 n)$.

$$T(n) = \Theta(n \log^2 n).$$

(c) We have
$$T(n) = \begin{cases} 4T(n^{1/4}) + \log n, & n > 4 \\ 2, & n \le 4 \end{cases}$$

Set $m = \log_2 n$, so $n = 2^m$. Then $\log_2 \left(n^{1/4}\right) = \frac{1}{4} \log_2 n = \frac{m}{4}$.

Let
$$S(m) = T(2^m)$$
. The recurrence becomes $S(m) = \begin{cases} 4S\left(\frac{m}{4}\right) + m, & m > 2\\ 1, & m \leq 2 \end{cases}$
Apply Master Theorem: $a = 4$, $b = 4$, $f(m) = m$, $m^{\log_b a} = m^{\log_4 4} = m$.

 $f(m) = \Theta(m) = \Theta(m^{\log_b a}).$

This is Case 2 of the Master Theorem: $S(m) = \Theta(m \log m)$. Since $m = \log n$, $T(n) = S(\log n) = \Theta(\log n \log \log n).$

$$T(n) = \Theta(\log n \log \log n).$$

- 4. Set E(n) be the expected times in n elements.
 - Case 1: pivot is the smallest, $\frac{1}{n} \times n 1$.
 - Case 2: pivot is the *j*-th smallest.

It is clear that E(n) = 0 if n = 1.

If
$$n > 1$$
, then $E(n) = \frac{n-1}{n} + \frac{1}{n} \sum_{j=1}^{n-1} [n + E(j)] = \frac{n-1}{n} + \frac{1}{n} \left[n - 1 + \sum_{k=1}^{n-1} E(k) \right] = \frac{2(n-1)}{n} + \frac{1}{n} \sum_{k=1}^{n-1} E(k), k = j-1$

$$nE(n) = 2(n-1) + \sum_{j=1}^{n-1} E(k)$$

$$\Rightarrow nE(n) = 2(n-1) + \sum_{j=1}^{n-1} E(k)$$

$$nE(n) - (n-1)E(n-1) = 2 + E(n-1)$$

$$nE(n) - nE(n-1) = 2, E(n) - E(n-1) = \frac{2}{n}, E(n) = \sum_{k=2}^{n} \frac{2}{k} = 2(H_n - 1)$$

$$\therefore E(n) = O(\log n)$$

- 5. $S_i \in [0, n^{\log_2 \log_2 1}]$, Applying radix sort with base = n. the number of digits is: $\log_n n^{\log_2 \log_2 n} = \log_2 \log_2 n$. For each digit, we use counting sort which runs in O(n+k) = O(n+n) = O(n) time. Thus the total time is $n \log \log n =$ $O(n \log n)$.
- 6. Let X_{ij} be an indicator random variable, then

Let
$$X_{ij}$$
 be an indicator random variable, then
$$X_{ij} = \begin{cases} 1 & \text{if elements } i \text{ and } j \text{ are compared during QuickSelect,} \\ 0 & \text{otherwise.} \end{cases}$$

The total number of comparisons is:

$$T(n) = \sum_{1 \le i < j \le n} X_{ij}, \quad E[T(n)] = \sum_{1 \le i < j \le n} \Pr(i, j \text{ are compared}).$$

If $k \notin [i,j]$, $\Pr(i,j)$ are compared $\neq 0$ depending on pivot position. If $k \in [i,j]$, $\Pr(i, j \text{ are compared}) \approx \frac{2}{n} \text{ on average.}$

Hence, the expected number of comparisons E[T(n)] is derived from the recurrence relation:

$$E[T(n)] = (n-1) + \frac{1}{n} \sum_{s=0}^{n-1} E[T(s)],$$

where n-1 is the cost of pivot selection, and the sum represents the expected cost of the recursive subproblem based on the random pivot.

Assume
$$E[T(n)] = c \cdot n + d$$
, Substitute $c \cdot n + d = (n-1) + \frac{1}{n} \left(c \cdot \frac{(n-1)n}{2} + d \cdot n \right)$, $c \cdot n + d = (n-1) + c \cdot \frac{n-1}{2} + d$, $c \cdot n = n-1 + c \cdot \frac{n-1}{2}$

As $n \to \infty$, $c \approx 2$, thus E[T(n)] = O(n).

Thus, the expected time complexity of QuickSelect is E[T(n)] = O(n).

7. For sequences X (length n) and Y (length m), the SCS length is computed using dynamic programming.

Define dp[i][j] as the SCS length for X[1..i] and Y[1..j].

- Initialize dp[0][j] = j for j = 0 to m, and dp[i][0] = i for i = 0 to n.
- For i = 1 to n and j = 1 to m:
 - If X[i] = Y[j], dp[i][j] = dp[i-1][j-1] + 1.
 - Otherwise, $dp[i][j] = \min(dp[i-1][j] + 1, dp[i][j-1] + 1).$

Time complexity: $O(n \cdot m)$, space complexity: $O(n \cdot m)$.

8. Consider an *n*-character sequence X and an *m*-character sequence Y. Define dp[i][j] as the minimum cost to convert the prefix X[1..i] into the prefix Y[1..j].

Initialize the dynamic programming table:

- Set $dp[0][j] = 2 \cdot j$ for j = 0 to m, representing the cost of inserting all characters of Y[1..j] into an empty string.
- Set $dp[i][0] = 2 \cdot i$ for i = 0 to n, representing the cost of deleting all characters of X[1..i].

For each i = 1 to n and j = 1 to m, compute dp[i][j] as follows:

- If X[i] = Y[j], set dp[i][j] = dp[i-1][j-1], since no operation is needed.
- Otherwise, set $dp[i][j] = \min(dp[i-1][j-1] + 3, dp[i-1][j] + 2, dp[i][j-1] + 2)$, where:
 - -dp[i-1][j-1]+3 is the cost of replacing X[i] with Y[j].
 - -dp[i-1][j] + 2 is the cost of deleting X[i].
 - -dp[i][j-1] + 2 is the cost of inserting Y[j].

The final answer is dp[n][m], which represents the minimum cost to convert X into Y.