1.

ϕ	ψ	$\phi \Rightarrow \psi$	$\psi \Rightarrow \phi$	$(\psi \Rightarrow \psi) \land (\psi \Rightarrow \phi)$	$\phi \Leftrightarrow \psi$
\overline{T}	T	T	T	T	T
T	F	F	T	F	F
F	T	T	F	F	F
F	F	T	T	T	T

2.

ϕ	ψ	$\neg \phi$	$\phi \Rightarrow \psi$	$\neg \phi \lor \psi$	$(\phi \Rightarrow \psi) \Rightarrow (\neg \phi \lor \psi)$	$(\phi \Rightarrow \psi) \Leftarrow (\neg \phi \lor \psi)$	$(\phi \Rightarrow \psi) \Leftrightarrow (\neg \phi \lor \psi)$
\overline{T}	T	F	T	T	T	T	T
F	T	T	T	T	T	T	T
T	F	F	F	F	T	T	T
F	F	T	T	T	T	T	T

3.

4. (a)

- (b) it is a tautology meaning that ψ always follows from knowing ψ and $\phi \Rightarrow \psi$
- 5. $\phi \lor \psi$ means either ϕ or ψ is true or both

Thus $\neg(\phi \lor \psi)$ means that ϕ and ψ must both be false

This is the same as saying $\neg \phi$ and $\neg \psi$ must both be false (def of negation)

By def of and, this can be written as $(\neg \phi) \land (\neg \psi)$

- 6. (a) 34159 is not a prime number
 - (b) Roses are not red or violets are not blue
 - (c) There are no hamburgers but I won't have a hot-dog
 - (d) Fred won't go or he will play
 - (e) The number x is non-negative and less than or equal to 10
 - (f) We will lose the first game and the second

Intro to Math Thinking Fall 2024: Assignment 4

7.

ϕ	ψ	$\neg \phi$	$\neg \psi$	$(\neg \phi) \Leftrightarrow (\neg \psi)$	$\phi \Leftrightarrow \psi$
\overline{T}	T	F	F	T	T
F	T	T	F	F	F
T	F	F	T	F	F
F	F	T	T	T	T

8. (a)

ϕ	ψ	$\phi \Rightarrow \psi$	$\phi \Leftarrow \psi$	$\phi \Leftrightarrow \psi$
\overline{T}	T	T	T	T
F	T	T	F	F
T	F	F	T	F
F	F	T	T	T

(b)

ϕ	ψ	θ	$(\psi \lor \theta)$	$\phi \Rightarrow (\psi \lor \theta)$
\overline{T}	T	T	T	T
F	T	T	T	T
F	F	T	T	T
F	T	F	T	T
T	F	F	F	F
T	T	F	T	T
T	F	T	T	T
F	F	F	F	T

9.

ϕ	ψ	θ	$(\psi \wedge \theta)$	$\phi \Rightarrow (\psi \land \theta)$	$\phi \Rightarrow \psi$	$\phi \Rightarrow \theta$	$(\phi \Rightarrow \psi) \land (\phi \Rightarrow \theta)$
\overline{T}	T	T	T	T	T	T	T
F	T	T	T	T	T	T	T
F	F	T	F	T	T	T	T
F	T	F	F	T	T	T	T
T	F	F	F	F	F	F	F
T	T	F	F	F	T	F	F
T	F	T	F	F	F	T	F
F	F	F	F	T	T	T	T

10. $[\Rightarrow]$ Suppose ϕ is true

 $\psi \wedge \theta$ means that both ψ and θ must be true

Now suppose if ϕ is true, the $\psi \wedge \theta$ is true

By definition of *implies*, this can be written as $\phi \Rightarrow (\psi \land \theta)$

Since ψ and θ are true, it follows: if ϕ , then ψ ; and if ϕ , then θ

By def of *implies* and *and*, this can be written as $(\phi \Rightarrow \psi) \land (\phi \Rightarrow \theta)$

Intro to Math Thinking Fall 2024: Assignment 4

 $[\Leftarrow]$ Suppose $(\phi \Rightarrow \psi) \land (\phi \Rightarrow \theta)$ is true

Then ψ, θ cannot both be false when ϕ is true

By def of and, ψ , θ cannot both be false can be written as $(\neg \psi \lor \neg \theta)$ that is equivalent to $(\psi \land \theta)$

Thus by def of *implies*, the expression can be written as $\phi \Rightarrow (\psi \land \theta)$

11.

ϕ	ψ	$\neg \phi$	$\neg \psi$	$\phi \Rightarrow \psi$	$(\neg \psi) \Rightarrow (\neg \phi)$
T	T	F	F	T	T
F	T	T	F	T	T
T	F	F	T	F	F
F	F	T	T	T	T

- 12. (a) If 2 rectangles don't have the same area, they aren't congruent
 - (b) If $a^2 + b^2 \neq c^2$, then the triangle with sides a, b, c (c largest) is not right-angled
 - (c) If n is not prime, then $2^n 1$ is not prime
 - (d) If the Dollar does not fall, then the Yuan won't rise

13.

ϕ	ψ	$\neg \phi$	$\neg \psi$	$(\neg \psi) \Rightarrow (\neg \phi)$	$\psi \Rightarrow \phi$
T	T	F	F	T	T
F	T	T	F	T	F
T	F	F	T	F	T
F	F	T	T	T	T

- 14. (a) If 2 rectangles have the same area, then they are congruent
 - (b) If $a^2 + b^2 = c^2$, then a triangle with sides a, b, c (c largest) is right-angled
 - (c) If n is prime, then $2^n 1$ is prime
 - (d) If the Dollar falls, the Yuan will rise

1 Optional Probs

1. $\neg \psi \Rightarrow \phi$

2.

$$\begin{array}{cccc} \phi & \psi & \phi \dot{\vee} \psi \\ T & T & F \\ F & T & T \\ T & F & T \\ F & F & F \end{array}$$

- 3. $\phi \dot{\lor} \psi$ is equivalent to $(\phi \land \neg \psi) \lor (\neg \phi \land \psi)$
- 4. (a) If the statement is true, then it is not false
 - (b) If x = 3, then $x^2 = 9$
 - (c) If -3 < x < 3, then $x^2 < 9$
 - (d) If x = 2, then $x^2 = 4$

5.

M	N	$M \times N$	M + N
1	1	1	0
1	0	0	1
0	1	0	1
0	0	0	0

- 6. (a) \(\lambda\)
 - (b) **V**
 - (c) no
- 7. (a) \vee
 - (b) $(M \wedge N) \vee (\neg M \wedge \neg N)$
 - (c) yes
- 8. 2, cards B, 4
- 9. Suppose m, n are 2 natural numbers. If we multiply mn, then there are 3 cases:
 - (a) if at least 1 of m, n is even, then mn is even
 - (b) if both m, n are even, then mn is even
 - (c) if both m, n are odd, then mn is odd

Then mn is odd iff m and n are odd.

- 10. False, suppose m is even and n is odd, then mn is even. Refer to statements in 9.
- 11. 1 face down ID, 1 7-up or vodka and tonic
- 12. Similar, need 2 verifications. Used contrapositive in Wason's problem and process of elimination in 11. Setup for 11. made it clearer.