Fixed Points of Integral Type Contractions in Uniform Spaces with a Graph

Aris Aghanians 1 and Kourosh Nourouzi 1*†

¹Department of Mathematics, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran

June 3, 2013

Abstract

In this paper, we discuss the existence of fixed points for integral type contractions in uniform spaces endowed with both a graph and an E-distance. We also give two sufficient conditions under which the fixed point is unique. Our main results generalize some recent metric fixed point theorems.

Keywords: Separated uniform space; integral type p-G-contraction; fixed point.

1 Introduction and Preliminaries

In [7], Branciari discussed the existence and uniqueness of fixed points for mappings from a complete metric space (X, d) into itself satisfying a general contractive condition of integral type. The result therein is a generalization of the Banach contraction principle in metric spaces. In fact, Branciari considered mappings $T: (X, d) \to (X, d)$ satisfying

$$\int_0^{d(Tx,Ty)} \varphi(t) \mathrm{d}t \leq \alpha \int_0^{d(x,y)} \varphi(t) \mathrm{d}t \qquad (x,y \in X),$$

where $\alpha \in (0,1)$ and $\varphi : [0,+\infty) \to [0,+\infty)$ is a Lebesgue-integrable function on $[0,+\infty)$ whose Lebesgue-integral is finite on each compact subset of $[0,+\infty)$, and satisfies $\int_0^{\varepsilon} \varphi(t) dt > 0$ for all $\varepsilon > 0$. Recently, an integral version of Ćirić's contraction was given in [10].

In 2008, Jachymski [8] generalized the Banach contraction principle in metric spaces endowed with a graph. This idea was followed by the authors (see [3, 5]) in uniform spaces. In [1], the concept of an E-distance was introduced in uniform spaces as a generalization of a metric and a w-distance and then many different nonlinear contractions were generalized from metric to uniform spaces (see, e.g., [2, 4, 9]).

The aim of this paper is to study the existence and uniqueness of a fixed point for integral type contractions in uniform spaces endowed with both a graph and an E-distance. Our results generalize Theorem 2.1 in [7] as well as Corollary 3.1 in [8] by replacing metric spaces with

^{*}Corresponding author

 $^{^\}dagger e\text{-mail: nourouzi@kntu.ac.ir; fax: } +98\ 21\ 22853650$

²⁰¹⁰ Mathematics Subject Classification. 47H10, 05C40.

uniform spaces endowed with a graph and by considering a weaker contractive condition. We also prove an integral version of [8, Theorems 3.2 and 3.3].

We begin with notions in uniform spaces that are needed in this paper. For more detailed discussion, the reader is referred to, e.g., [11].

By a uniform space (X, \mathcal{U}) , shortly denoted here by X, it is meant a nonempty set X together with a uniformity \mathcal{U} . For instance, if d is a metric on a nonempty set X, then it induces a uniformity, called the uniformity induced by the metric d, in which the members of \mathcal{U} are all the supersets of the sets

$$\{(x,y) \in X \times X : d(x,y) < \varepsilon\},\$$

where $\varepsilon > 0$.

It is well-known that a uniformity \mathcal{U} on a nonempty set X is separating if the intersection of all members of \mathcal{U} is equal to the diagonal of the Cartesian product $X \times X$, that is, the set $\{(x,x): x \in X\}$ which is often denoted by $\Delta(X)$. If \mathcal{U} is a separating uniformity on a nonempty set X, then the uniform space X is said to be separated.

We next recall the definition of an E-distance on a uniform space X as well as the notions of convergence, Cauchyness and completeness with E-distances.

Definition 1 ([1]). Let X be a uniform space. A function $p: X \times X \to [0, +\infty)$ is called an E-distance on X if

- i) for each member V of \mathcal{U} , there exists a $\delta > 0$ such that $p(z,x) \leq \delta$ and $p(z,y) \leq \delta$ imply $(x,y) \in V$ for all $x,y,z \in X$;
- ii) the triangular inequality holds for p, that is,

$$p(x,y) \le p(x,z) + p(z,y) \qquad (x,y,z \in X).$$

Let p be an E-distance on a uniform space X. A sequence $\{x_n\}$ in X is said to be p-convergent to a point $x \in X$, denoted by $x_n \stackrel{p}{\longrightarrow} x$, if it satisfies the usual metric condition, that is, $p(x_n, x) \to 0$ as $n \to \infty$, and similarly, p-Cauchy if it satisfies $p(x_m, x_n) \to 0$ as $m, n \to \infty$. The uniform space X is called p-complete if every p-Cauchy sequence in X is p-convergent to some point of X.

In the next lemma, an important property of E-distances in separated uniform spaces is formulated.

Lemma 1 ([1]). Let p be an E-distance on a separated uniform space X and $\{x_n\}$ and $\{y_n\}$ be two arbitrary sequences in X. If $x_n \stackrel{p}{\longrightarrow} x$ and $x_n \stackrel{p}{\longrightarrow} y$, then x = y. In particular, if $x, y \in X$ and p(z, x) = p(z, y) = 0 for some $z \in X$, then x = y.

Finally, we recall some concepts about graphs. For more details on graph theory, see, e.g., [6].

Let X be a uniform space and consider a directed graph G without any parallel edges such that the set V(G) of its vertices is X, that is, V(G) = X and the set E(G) of its edges contains all loops, that is, $E(G) \supseteq \Delta(X)$. So the graph G can be simply denoted by G = (V(G), E(G)). By \widetilde{G} , it is meant the undirected graph obtained from G by ignoring the direction of the edges of G, that is,

$$V(\widetilde{G}) = X \quad \text{and} \quad E(\widetilde{G}) = \big\{ (x,y) \in X \times X : \text{either } (x,y) \text{ or } (y,x) \text{ belongs to } E(G) \big\}.$$

A subgraph H of G is itself a directed graph such that V(H) and E(H) are contained in V(G) and E(G), respectively, and $(x,y) \in E(H)$ implies $x,y \in V(H)$ for all $x,y \in X$.

We need also a few notions about connectivity of graphs. Suppose that x and y are two vertices in V(G). A finite sequence $(x_i)_{i=0}^N$ consisting of N+1 vertices of G is a path in G from x to y if $x_0 = x$, $x_N = y$ and $(x_{i-1}, x_i) \in E(G)$ for i = 1, ..., N. The graph G is weakly connected if there exists a path in \widetilde{G} between each two vertices of \widetilde{G} .

2 Main Results

In this section, we consider the Euclidean metric on $[0, +\infty)$ and denote by λ the Lebesgue measure on the Borel σ -algebra of $[0, +\infty)$. For a Borel set E = [a, b], we will use the notation $\int_a^b \varphi(t) dt$ to show the Lebesgue integral of a function φ on E. We employ a class Φ consisting of all functions $\varphi : [0, +\infty) \to [0, +\infty)$ satisfying the following properties:

- $(\Phi 1)$ φ is Lebesgue-integrable on $[0, +\infty)$;
- (Φ2) The value of the Lebesgue integral $\int_0^\varepsilon \varphi(t) dt$ is positive and finite for all $\varepsilon > 0$.

The next lemma embodies some important properties of functions of the class Φ which we need in the sequel.

Lemma 2. Let $\varphi : [0, +\infty) \to [0, +\infty)$ be a function in the class Φ and $\{a_n\}$ be a sequence of nonnegative real numbers. Then the following statements hold:

- 1. If $\int_0^{a_n} \varphi(t) dt \to 0$ as $n \to \infty$, then $a_n \to 0$ as $n \to \infty$.
- 2. If $\{a_n\}$ is monotone and converges to some $a \geq 0$, then $\int_0^{a_n} \varphi(t) dt \to \int_0^a \varphi(t) dt$ as $n \to \infty$.

Proof. 1. Let $\int_0^{a_n} \varphi(t) dt \to 0$ and suppose first on the contrary that $\limsup_{n \to \infty} a_n = \infty$. Then $\{a_n\}$ contains a subsequence $\{a_{n_k}\}$ which diverges to ∞ . By passing to a subsequence if necessary, one may assume without loss of generality that $\{a_{n_k}\}$ is a nondecreasing subsequence of $\{a_n\}$. Because the sequence $\{\int_0^{a_{n_k}} \varphi(t) dt\}$ of nonnegative numbers increases to zero, so $a_{n_k} = 0$ for all $k \ge 1$. This is a contradiction and therefore the sequence $\{a_n\}$ is bounded.

Next, if $\limsup_{n\to\infty} a_n = \varepsilon > 0$, then there exists a strictly increasing sequence $\{n_k\}$ of positive integers such that $a_{n_k} \to \varepsilon$. Pick an integer $k_0 > 0$ so that the strict inequality $a_{n_k} > \frac{\varepsilon}{2}$ holds for all $k \ge k_0$. Therefore,

$$0 < \int_0^{\frac{\varepsilon}{2}} \varphi(t) dt \le \int_0^{a_{n_k}} \varphi(t) dt \to 0,$$

which is again a contradiction. So $\limsup_{n\to\infty} a_n = 0$, and consequently,

$$0 \le \liminf_{n \to \infty} a_n \le \limsup_{n \to \infty} a_n = 0,$$

that is, $a_n \to 0$.

2. Let $\{a_n\}$ be nondecreasing and put $E_n = [0, a_n]$ for all $n \geq 1$. Then each E_n is a Borel subset of $[0, +\infty)$ and we have $E_1 \subseteq E_2 \subseteq \cdots$ and $\bigcup_{n=1}^{\infty} E_n = [0, a]$. Because the function $E \stackrel{\mu}{\longmapsto} \int_E \varphi d\lambda$ is a Borel measure on $[0, +\infty)$, using the continuity of μ from below we get

$$\int_0^a \varphi(t) dt = \mu \Big(\bigcup_{n=1}^\infty E_n \Big) = \lim_{n \to \infty} \mu(E_n) = \lim_{n \to \infty} \int_0^{a_n} \varphi(t) dt.$$

A similar argument is true if $\{a_n\}$ is nonincreasing since each E_n defined above is of finite μ -measure by $(\Phi 2)$.

Let T be a mapping from a uniform space X endowed with a graph G into itself. We denote as usual the set of all fixed points for T by $\operatorname{Fix}(T)$, and by C_T , we mean the set of all $x \in X$ such that $(T^n x, T^m x)$ is an edge of \widetilde{G} for all $m, n \geq 0$. Clearly, $\operatorname{Fix}(T) \subseteq C_T$.

Definition 2. Let p be an E-distance on a uniform space X endowed with a graph G. We say that a mapping $T: X \to X$ is an integral type p-G-contraction if

- IC1) T preserves the egdes of G, that is, $(x, y) \in E(G)$ implies $(Tx, Ty) \in E(G)$ for all $x, y \in X$;
- IC2) there exists a $\varphi \in \Phi$ and a constant $\alpha \in (0,1)$ such that the contractive condition

$$\int_{0}^{p(Tx,Ty)} \varphi(t) dt \le \alpha \int_{0}^{p(x,y)} \varphi(t) dt$$

holds for all $x, y \in X$ with $(x, y) \in E(G)$.

Now, we give some examples of integral type p-G-contractions.

Example 1. Let p be an E-distance on a uniform space X endowed with a graph G and x_0 be a point in X such that $p(x_0, x_0) = 0$. Since E(G) contains the loop (x_0, x_0) , it follows that the constant mapping $T = x_0$ preserves the edges of G, and since $p(x_0, x_0) = 0$, (IC2) holds trivially for any arbitrary $\varphi \in \Phi$ and $\alpha \in (0, 1)$. Therefore, T is an integral type p-G-contraction. In particular, each constant mapping on X is an integral type p-G-contraction if and only if p(x, x) = 0 for all $x \in X$.

Example 2. Let (X,d) be a metric space and $T:X\to X$ a mapping satisfying

$$\int_{0}^{d(Tx,Ty)} \varphi(t) dt \le \alpha \int_{0}^{d(x,y)} \varphi(t) dt \qquad (x,y \in X),$$

where $\varphi \in \Phi$ and $\alpha \in (0,1)$. If we consider X as a uniform space with the uniformity induced by the metric d, then T is an integral type d- G_0 -contraction, where G_0 is the complete graph with the vertices set X, that is, $V(G_0) = X$ and $E(G_0) = X \times X$. The existence and uniqueness of fixed point for these kind of contractions were considered by Branciari in [7].

Example 3. Let \leq and p be a partial order and an E-distance on a uniform space X, respectively, and consider the poset graphs G_1 and G_2 by

$$V(G_1) = X$$
 and $E(G_1) = \{(x, y) \in X \times X : x \leq y\},$

and

$$V(G_2) = X \quad \text{and} \quad E(G_2) = \big\{ (x,y) \in X \times X : x \preceq y \vee y \preceq x \big\}.$$

Then integral type p-G₁-contractions are precisely the ordered integral type p-contractions, that is, nondecreasing mappings $T: X \to X$ which satisfy (IC2) for all $x, y \in X$ with $x \leq y$ and for some $\varphi \in \Phi$ and $\alpha \in (0,1)$. And integral type p-G₂-contractions are those mappings $T: X \to X$ which are order preserving and satisfy (IC2) for all comparable $x, y \in X$ and for some $\varphi \in \Phi$ and $\alpha \in (0,1)$.

Remark 1. Let T be a mapping from an arbitrary uniform space X into itself. If X is endowed with the complete graph G_0 , then the set C_T coincides with X.

If \leq is a partial order on X and X is endowed with either G_1 or G_2 , then a point $x \in X$ belongs to C_T if and only if $T^n x$ is comparable to $T^m x$ for all $m, n \geq 0$. In particular, if T is monotone, then each $x \in X$ satisfying $x \leq Tx$ or $Tx \leq x$ belongs to C_T .

Example 4. Let p be any arbitrary E-distance on a uniform space X endowed with a graph G and define a function $\varphi:[0,+\infty)\to[0,+\infty)$ by the rule $\varphi(t)=t^\beta$ for all $t\geq 0$, where $\beta\geq 0$ is constant. It is clear that φ is Lebesgue-integrable on $[0,+\infty)$ and $\int_0^\varepsilon \varphi(t)\mathrm{d}t = \frac{\varepsilon^{1+\beta}}{1+\beta}$ which is positive and finite for all $\varepsilon>0$, that is, $\varphi\in\Phi$. Now, let a mapping $T:X\to X$ satisfy $p(Tx,Ty)\leq \alpha p(x,y)$ for all $x,y\in X$ with $(x,y)\in E(G)$, where $\alpha\in(0,1)$. Then T satisfies (IC2) for the function φ defined as above and the number $\alpha^{1+\beta}\in(0,1)$. In fact, if $x,y\in X$ and $(x,y)\in E(G)$, then

$$\int_0^{p(Tx,Ty)} \varphi(t) \mathrm{d}t = \frac{p(Tx,Ty)^{1+\beta}}{1+\beta} \le \alpha^{1+\beta} \cdot \frac{p(x,y)^{1+\beta}}{1+\beta} = \alpha^{1+\beta} \int_0^{p(x,y)} \varphi(t) \mathrm{d}t.$$

Therefore, our contraction generalizes Banach's contraction with E-distances in uncountably many ways. In particular, if T is a Banach G-p-contraction (i.e., the Banach contraction in uniform spaces endowed with an E-distance and a graph), then T is an integral type p-G-contraction for uncountably many functions $\varphi \in \Phi$.

To prove the existence of a fixed point for an integral type p- \widetilde{G} -contraction, we need the following two lemmas:

Lemma 3. Let p be an E-distance on a uniform space X endowed with a graph G and $T: X \to X$ be an integral type p-G-contraction. Then $p(T^nx, T^ny) \to 0$ as $n \to \infty$, for all $x, y \in X$ with $(x, y) \in E(G)$.

Proof. Let $x, y \in X$ be such that $(x, y) \in E(G)$. According to Lemma 2, it suffices to show that $\int_0^{p(T^nx,T^ny)} \varphi(t) dt \to 0$, where $\varphi \in \Phi$ is as in (IC2). To this end, note that because T preserves the edges of G, we have $(T^nx,T^ny) \in E(G)$ for all $n \geq 0$, and so by (IC2), we find

$$\int_0^{p(T^n x, T^n y)} \varphi(t) dt \le \alpha \int_0^{p(T^{n-1} x, T^{n-1} y)} \varphi(t) dt \le \dots \le \alpha^n \int_0^{p(x, y)} \varphi(t) dt \qquad (n \ge 1),$$

where $\alpha \in (0,1)$ is as in (IC2). Since, by $(\Phi 2)$, $\int_0^{p(x,y)} \varphi(t) dt$ is finite (even possibly zero), it follows immediately that $\int_0^{p(T^n x, T^n y)} \varphi(t) dt \to 0$.

Lemma 4. Let p be an E-distance on a uniform space X endowed with a graph G and $T: X \to X$ be an integral type p- \widetilde{G} -contraction. Then the sequence $\{T^nx\}$ is p-Cauchy for all $x \in C_T$.

Proof. Suppose on the contrary that $\{T^n x\}$ is not p-Cauchy for some $x \in C_T$. Then there exist an $\varepsilon > 0$ and positive integers m_k and n_k such that

$$m_k > n_k \ge k$$
 and $p(T^{m_k}x, T^{n_k}x) \ge \varepsilon$ $k = 1, 2, \dots$

If the integer n_k is kept fixed for sufficiently large indices k (say, $k \ge k_0$), then using Lemma 3, one may assume without loss of generality that $m_k > n_k$ is the smallest integer with $p(T^{m_k}x, T^{n_k}x) \ge \varepsilon$, that is,

$$p(T^{m_k-1}x, T^{n_k}x) < \varepsilon \qquad (k \ge k_0).$$

Hence we have

$$\varepsilon \le p(T^{m_k}x, T^{n_k}x)
\le p(T^{m_k}x, T^{m_k-1}x) + p(T^{m_k-1}x, T^{n_k}x)
< p(T^{m_k}x, T^{m_k-1}x) + \varepsilon$$

for each $k \geq k_0$. Since $x \in C_T$, it follows that $(Tx, x) \in E(\widetilde{G})$ and by Lemma 3, we have $p(T^{m_k}x, T^{m_k-1}x) \to 0$. Thus, letting $k \to \infty$ yields $p(T^{m_k}x, T^{n_k}x) \to \varepsilon$. On the other hand, we have

$$p(T^{m_k+1}x, T^{n_k+1}x) \le p(T^{m_k+1}x, T^{m_k}x) + p(T^{m_k}x, T^{n_k}x) + p(T^{n_k}x, T^{n_k+1}x)$$

for all $k \geq 1$. Letting $k \to \infty$, since $(Tx, x), (x, Tx) \in E(\widetilde{G})$, it follows by Lemma 3 that

$$\lim_{k \to \infty} p(T^{m_k + 1}x, T^{n_k + 1}x) \le \varepsilon.$$

Moreover, the inequality

$$p(T^{m_k+1}x, T^{n_k+1}x) \ge p(T^{m_k}x, T^{n_k}x) - p(T^{m_k}x, T^{m_k+1}x) - p(T^{n_k+1}x, T^{n_k}x)$$

holds for all $k \geq 1$. Thus, similarly we have

$$\liminf_{k \to \infty} p(T^{m_k+1}x, T^{n_k+1}x) \ge \varepsilon.$$

Hence, $p(T^{m_k+1}x, T^{n_k+1}x) \to \varepsilon$. By passing to two subsequences with the same choice function if necessary, one may assume without loss of generality that both $\{p(T^{m_k}x, T^{n_k}x)\}$ and $\{p(T^{m_k+1}x, T^{n_k+1}x)\}$ are monotone. Therefore, using Lemma 2 twice, we have

$$\int_0^\varepsilon \varphi(t)\mathrm{d}t = \lim_{k\to\infty} \int_0^{p(T^{m_k+1}x,T^{n_k+1}x)} \varphi(t)\mathrm{d}t \leq \alpha \lim_{k\to\infty} \int_0^{p(T^{m_k}x,T^{n_k}x)} \varphi(t)\mathrm{d}t = \alpha \int_0^\varepsilon \varphi(t)\mathrm{d}t,$$

where $\varphi \in \Phi$ and $\alpha \in (0,1)$ are as in (IC2). Therefore, $\int_0^{\varepsilon} \varphi(t) dt = 0$, which is a contradiction. Consequently, the sequence $\{T^n x\}$ is p-Cauchy for all $x \in C_T$.

Definition 3. Let p be an E-distance on a uniform space X endowed with a graph G and T be a mapping from X into itself. We say that

- i) T is orbitally p-G-continuous on X if for all $x,y\in X$ and all sequences $\{a_n\}$ of positive integers with $(T^{a_n}x,T^{a_{n+1}}x)\in E(G)$ for $n=1,2,\ldots,\ T^{a_n}x\stackrel{p}{\longrightarrow} y$ as $n\to\infty$, implies $T(T^{a_n}x)\stackrel{p}{\longrightarrow} Ty$ as $n\to\infty$.
- ii) T is a p-Picard operator if T has a unique fixed point $u \in X$ and $T^n x \xrightarrow{p} u$ for all $x \in X$.
- iii) T is a weakly p-Picard operator if $\{T^n x\}$ is p-convergent to a fixed point of T for all $x \in X$.

It is clear that each p-Picard operator is weakly p-Picard. Moreover, a weakly p-Picard operator is p-Picard if and only if its fixed point is unique.

Example 5. Let X be any arbitrary uniform space with more than one point equipped with an E-distance p. Choose a nonempty proper subset A of X and pick a and b from A and A^c , respectively. Then the mapping $T: X \to X$ defined by Tx = a if $x \in A$, and Tx = b if $x \notin A$ is a weakly p-Picard operator which fails to be p-Picard. In fact, we have $Fix(T) = \{a, b\}$. Therefore, a weakly p-Picard operator is not necessarily p-Picard.

Now, we are ready to prove our main theorems. The first result guarantees the existence of a fixed point when an integral type p- \widetilde{G} -contraction is orbitally p- \widetilde{G} -continuous on X or the triple (X, p, G) has a certain property.

Theorem 1. Let p be an E-distance on a separated uniform space X endowed with a graph G such that X is p-complete, and $T: X \to X$ be an integral type p- \widetilde{G} -contraction. Then $T \mid_{C_T}$ is a weakly p-Picard operator if one of the following statements holds:

- i) T is orbitally p- \widetilde{G} -continuous on X;
- ii) The triple (X, p, G) satisfies the following property:
 - (*) If a sequence $\{x_n\}$ in X is p-convergent to an $x \in X$ and satisfies $(x_n, x_{n+1}) \in E(\widetilde{G})$ for all $n \geq 1$, then there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $(x_{n_k}, x) \in E(\widetilde{G})$ for all $k \geq 1$.

In particular, having been held (i) or (ii), $Fix(T) \neq \emptyset$ if and only if $C_T \neq \emptyset$.

Proof. If $C_T = \emptyset$, then there is nothing to prove. Otherwise, note first that since T preserves the edges of \widetilde{G} , it follows that C_T is T-invariant, that is, T maps C_T into itself. Now, let $x \in C_T$ be given. Then $(T^n x, T^{n+1} x) \in E(\widetilde{G})$ for all $n \geq 0$. Moreover, by Lemma 4, the sequence $\{T^n x\}$ is p-Cauchy in X, and because X is p-complete, there exists a $u \in X$ (depends on x) such that $T^n x \stackrel{p}{\longrightarrow} u$.

To prove the existence of a fixed point for T, suppose first that T is orbitally p- \widetilde{G} -continuous. Then $T^{n+1}x \stackrel{p}{\longrightarrow} Tu$ and because X is separated, Lemma 1 ensures that Tu = u, that is, u is a fixed point for T.

On the other hand, if Property (*) holds, then $\{T^nx\}$ contains a subsequence $\{T^{n_k}x\}$ such that $(T^{n_k}x,u) \in E(\widetilde{G})$ for all $k \geq 1$. Since $p(T^{n_k}x,u) \to 0$, by passing to a subsequence if necessary, one may assume without loss of generality that $\{p(T^{n_k}x,u)\}$ is monotone. Hence by Lemma 2, we have

$$\int_0^{p(T^{n_k+1}x,Tu)} \varphi(t) \mathrm{d}t \leq \alpha \int_0^{p(T^{n_k}x,u)} \varphi(t) \mathrm{d}t \to 0 \quad \text{as} \quad k \to \infty,$$

where $\alpha \in (0,1)$ is as in (IC2). Using Lemma 2 once more, one obtains $p(T^{n_k+1}x,Tu) \to 0$ and since X is separated, Lemma 1 guarantees that Tu = u, that is, u is a fixed point for T.

Finally,
$$u \in Fix(T) \subseteq C_T$$
, and so $T|_{C_T}$ is a weakly p-Picard operator.

Setting $G = G_0$ in Theorem 1, we have the following result, which is a generalization of [7, Theorem 2.1] to uniform spaces equipped with an E-distance.

Corollary 1. Let p be an E-distance on a separated uniform space X such that X is p-complete. Let $T: X \to X$ satisfy

$$\int_0^{p(Tx,Ty)} \varphi(t) \mathrm{d}t \leq \alpha \int_0^{p(x,y)} \varphi(t) \mathrm{d}t \qquad (x,y \in X),$$

where $\varphi \in \Phi$ and $\alpha \in (0,1)$. Then T is a p-Picard operator.

Proof. By Theorem 1, the mapping T is a weakly p-Picard operator. To complete the proof, it suffices to show that T has a unique fixed point. To this end, let x and y be two fixed points for T. Then

$$\int_{0}^{p(x,y)} \varphi(t) dt = \int_{0}^{p(Tx,Ty)} \varphi(t) dt \le \alpha \int_{0}^{p(x,y)} \varphi(t) dt,$$

which is impossible unless p(x, y) = 0. Similarly, one can show that p(x, x) = 0 and since X is separated, it follows by Lemma 1 that x = y.

Because $\widetilde{G}_1 = \widetilde{G}_2 = G_2$, setting $G = G_1$ or $G = G_2$ in Theorem 1, we obtain the ordered version of Branciari's result as follows:

Corollary 2. Let p be an E-distance on a partially ordered separated uniform space X such that X is p-complete and a mapping $T: X \to X$ satisfy

$$\int_0^{p(Tx,Ty)} \varphi(t) \mathrm{d}t \le \alpha \int_0^{p(x,y)} \varphi(t) \mathrm{d}t$$

for all comparable elements x and y of X, where $\varphi \in \Phi$ and $\alpha \in (0,1)$. Assume that there exists an $x \in X$ such that $T^m x$ and $T^n x$ are comparable for all $m, n \geq 0$. Then T is a weakly p-Picard operator if one of the following statements holds:

- T is orbitally p- G_2 -continuous on X;
- X satisfies the following property:

If a sequence $\{x_n\}$ in X with successive comparable terms is p-convergent to an $x \in X$, then x is comparable to x_n for all $n \ge 1$.

Next, we are going to prove two theorems on uniqueness of the fixed points for integral type $p\text{-}\widetilde{G}$ -contractions.

Theorem 2. Let p be an E-distance on a separated uniform space X endowed with a graph G such that X is p-complete, and let $T: X \to X$ be an integral type p- \widetilde{G} -contraction such that the function φ in (IC2) satisfies

$$\int_{0}^{a+b} \varphi(t) dt \le \int_{0}^{a} \varphi(t) dt + \int_{0}^{b} \varphi(t) dt \tag{1}$$

for all $a, b \ge 0$. If G is weakly connected and C_T is nonempty, then there exists a unique $u \in X$ such that $T^n x \stackrel{p}{\longrightarrow} u$ for all $x \in X$. In particular, T is a p-Picard operator if and only if Fix(T) is nonempty.

Proof. Let x and y be two arbitrary elements of X. Since G is weakly connected, there exists a path $(x_i)_{i=0}^N$ in \widetilde{G} from x to y. Since T preserves the edges of \widetilde{G} , it follows that $(T^n x_{i-1}, T^n x_i) \in E(\widetilde{G})$ for all $n \geq 0$ and $i = 1, \ldots, N$. Therefore, by (1) and (IC2) we have

$$\int_{0}^{p(T^{n}x,T^{n}y)} \varphi(t)dt \leq \int_{0}^{\sum_{i=1}^{N} p(T^{n}x_{i-1},T^{n}x_{i})} \varphi(t)dt$$

$$\leq \sum_{i=1}^{N} \int_{0}^{p(T^{n}x_{i-1},T^{n}x_{i})} \varphi(t)dt$$

$$\leq \alpha \sum_{i=1}^{N} \int_{0}^{p(T^{n-1}x_{i-1},T^{n-1}x_{i})} \varphi(t)dt$$

$$\vdots$$

$$\leq \alpha^{n} \sum_{i=1}^{N} \int_{0}^{p(x_{i-1},x_{i})} \varphi(t)dt$$

for all $n \geq 0$, where $\varphi \in \Phi$ and $\alpha \in (0,1)$ are as in (IC2). Since, by $(\Phi 2)$, $\sum_{i=1}^{N} \int_{0}^{p(x_{i-1},x_i)} \varphi(t) dt$ is finite (possibly zero), it follows immediately that $\int_{0}^{p(T^n x, T^n y)} \varphi(t) dt \to 0$. Hence by Lemma 2, $p(T^n x, T^n y) \to 0$.

Now, pick a point $x \in C_T$. By Lemma 4, the sequence $\{T^n x\}$ is p-Cauchy in X and since X is p-complete, there exists a $u \in X$ such that $T^n x \xrightarrow{p} u$. If y is an arbitrary point in X, then

$$0 \le p(T^n y, u) \le p(T^n y, T^n x) + p(T^n x, u) \to 0$$
 as $n \to \infty$.

So $T^n y \stackrel{p}{\longrightarrow} u$. The uniqueness of u follows immediately from Lemma 1.

Theorem 3. Let p be an E-distance on a separated uniform space X endowed with a graph G and $T: X \to X$ be an integral type p- \widetilde{G} -contraction. If the subgraph of G with the vertices $\operatorname{Fix}(T)$ is weakly connected, then T has at most one fixed point in X.

Proof. Let x and y be two fixed points for T. Then there exists a path $(x_i)_{i=0}^N$ in \widetilde{G} from x to y such that $x_1, \ldots, x_{N-1} \in \operatorname{Fix}(T)$. Since $E(\widetilde{G})$ contains all loops, we can assume without loss of generality that the length of this path, that is, the integer N is even. Now, by (IC2) we have

$$\int_0^{p(x_{i-1},x_i)} \varphi(t) dt = \int_0^{p(Tx_{i-1},Tx_i)} \varphi(t) dt \le \alpha \int_0^{p(x_{i-1},x_i)} \varphi(t) dt \qquad i = 1,\dots, N,$$

where $\varphi \in \Phi$ and $\alpha \in (0,1)$, which is impossible unless $\int_0^{p(x_{i-1},x_i)} \varphi(t) dt = 0$ or equivalently, $p(x_{i-1},x_i) = 0$ for $i=1,\ldots,N$. Because $E(\widetilde{G})$ is symmetric, a similar argument yields $p(x_i,x_{i-1}) = 0$ for $i=1,\ldots,N$. Since N is even, using Lemma 1 finitely many times, we get $x=x_0=x_2=\cdots=x_N=y$. Consequently, T has at most one fixed point in T. \square

Remark 2. Theorem 3 guarantees that in a separated uniform space X endowed with a graph G and an E-distance p, if $(x,y) \in E(G)$, then both x and y cannot be a fixed point for any integral type p- \widetilde{G} -contraction T. In other words, each weakly connected component of G intersects $\operatorname{Fix}(T)$ in at most one point. So in partially ordered separated uniform spaces equipped with an E-distance p, no ordered integral type p-contraction has two comparable fixed points.

Remark 3. Since the Riemann integral (proper and improper) is subsumed in the Lebesgue integral, it follows that one may replace Lebesgue-integrability with Riemann-integrability of φ on $[0, +\infty)$ in $(\Phi 1)$, where the value of the integral on $[0, +\infty)$ is allowed to be ∞ . Facing with Riemann integrals, we should assume that the function φ is bounded. Therefore, all of the results of this paper can be restated and reproved for Riemann integrals instead of Lebesgue integrals. A similar remark holds for Riemann-Stieltjes integrable functions with respect to any fixed nondecreasing function on $[0, +\infty)$.

References

- M. Aamri, D. El Moutawakil, Common fixed point theorems for E-contractive or E-expansive maps in uniform spaces, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 20 (2004), no. 1, 83–91.
- [2] R. P. Agarwal, A. Aghanians, K. Fallahi, K. Nourouzi, Coincidence point theorems for E- (ψ, φ) and E- φ -weak contractions in partially ordered uniform spaces, J. Nonlinear Convex Anal. (to appear).
- [3] A. Aghanians, K. Fallahi, K. Nourouzi, An entourage approach to the contraction principle in uniform spaces endowed with a graph, Panamer. Math. J. 23 (2013), no. 2, 87–102.
- [4] A. Aghanians, K. Fallahi, K. Nourouzi, Fixed points for E-asymptotic contractions and Boyd-Wong type E-contractions in uniform spaces, Bull. Iranian Math. Soc. (to appear).
- [5] A. Aghanians, K. Fallahi, K. Nourouzi, Fixed points for G-contractions on uniform spaces endowed with a graph, Fixed Point Theory Appl. **2012**:182, 12 pages.
- [6] J. A. Bondy, U. S. R. Murty, Graph theory with applications, American Elsevier Publishing Co., Inc., New York, 1976.

- [7] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 29 (2002), no. 9, 531–536.
- [8] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. **136** (2008), no. 4, 1359–1373.
- [9] M. O. Olatinwo, Some common fixed point theorems for selfmappings satisfying two contractive conditions of integral type in a uniform space, Cent. Eur. J. Math. 6 (2008), no. 2, 335–341.
- [10] B. Samet, C. Vetro, An integral version of Ćirić's fixed point theorem, Mediterr. J. Math. 9 (2012), no. 1, 225–238.
- [11] S. Willard, General topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970.