HIGH PASS FILTER WITH 50 DB ATTENUATION AT 2.3 GHZ AND CUTOFF AT 2.4 GHZ

KIRAN M.V.(122101019)

Done by: D.S.D.CHARISHMA (122101010)

Aim: To design a high pass filter with 50db attenuation at 2.3GHZ and cutoff at 2.4GHZ.

High Pass filter transformed from low pass prototype

Basic transmission line structure of Optimum distributed high pass filter:

To design high pass filter, the cut off frequency fc=2.4 GHz is selected and a 0.1dB Ripple in pass band up to 10.4 GHz is taken

$$(pi/\Theta c)-1=10.4/fc$$

from this we get $\Theta c=33.75^{\circ}$. For given terminating impedance Zo the associated impedance values can be determined by these equations:

Shorting stub:

Connecting line:

$$Z_i = Z_0/Y_i$$

$$Z_{i,i+1} = Z_0/Y_{i,i+1}$$

For i=1, 2.....6

Zc=Zo = 50Ω and ϵ r (dielectric constant) = 4.4, W= width, h= height of dielectric which is taken as 1.6mm.

When
$$\left(\frac{W}{H}\right) < 1$$

$$\varepsilon_e = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left[\frac{1}{\sqrt{1 + 12\left(\frac{H}{W}\right)}} + 0.4\left(1 - \frac{W}{H}\right)^2 \right]$$

$$Z_{o} = \frac{60}{\sqrt{\epsilon_{e}}} \ln \left(8 \frac{H}{W} + 0.25 \frac{W}{H} \right)$$

When
$$\left(\frac{W}{H}\right) > 1$$

$$\varepsilon_e = \frac{\varepsilon_r + 1}{2} + \left[\frac{\varepsilon_r - 1}{2\sqrt{1 + 12\left(\frac{H}{W}\right)}} \right]$$

$$z_{o} = \frac{120\pi}{\sqrt{\epsilon_{e}} \left[\frac{W}{H} + 1.393 + \frac{2}{3} ln \left(\frac{W}{H} + 1.444 \right) \right]}$$

The guided wavelength is given by:

$$\lambda_{\rm g} = \frac{300}{\rm f(GHz)\sqrt{\epsilon_{\rm re}}}$$

εe =εre is the effective dielectric constant

Element values of high pass filter with 0.1db ripple:

		y_1	$y_{1,2}$	y_2	$y_{2,3}$	y_3	
n	θ_c	y_n	$y_{n-1,n}$	y_{n-1}	$y_{n-2,n-1}$	y_{n-2}	y3,4
2	25°	0.15436	1.13482				
	30°	0.22070	1.11597				
	35°	0.30755	1.08967				
3	25°	0.19690	1.12075	0.18176			
	30°	0.28620	1.09220	0.30726			
	35°	0.40104	1.05378	0.48294			
4	25°	0.22441	1.11113	0.23732	1.10361		
	30°	0.32300	1.07842	0.39443	1.06488		
	35°	0.44670	1.03622	0.60527	1.01536		
5	25°	0.24068	1.10540	0.27110	1.09317	0.29659	
	30°	0.34252	1.07119	0.43985	1.05095	0.48284	
	35°	0.46895	1.02790	0.66089	0.99884	0.72424	
6	25°	0.25038	1.10199	0.29073	1.08725	0.33031	1.08302
	30°	0.35346	1.06720	0.46383	1.04395	0.52615	1.03794
	35°	0.48096	1.02354	0.68833	0.99126	0.77546	0.98381

Length of the elements is given by: $\Theta c = \beta^* l$

where β is phase constant

Y1 Calculation:

Z1 Calculation:

Z1=50/Y1 =50/0.449396 =111.32

Parameters	Connecting line	Short Circuit Stub
	Y1,2= 1.03472	Y1=0.44936
	Y2,3=1.00483	Y2=0.63258
	Y3,4=0.99746	Y3=0.71545
	Y4,5=1.00483	Y4=0.71545
	Y5,6= 1.03472	Y5=0.63258
Admittance values (mho)		Y6=0.44936
	Z1,2= 48.336	Z1= 111.325
	Z2,3= 49.856	Z2= 79.128
	Z3,4= 50.147	Z3= 70.159
	Z4,5= 49.856	Z4= 70.159
	Z5,6= 48.336	Z5= 79.128
Impedance values (ohm)		Z6= 111.325

Values Used

Frequency: 2.4 GHz

Dielectric Constant (εr): 4.4 FR4 Epoxy

Dielectric Height: 1.6 mm

Electrical Length: 90 & 33.75

Values Used

	11,2= 12.937	l1= 6.822
	12,3= 12.964	12= 6.690
	l3,4= 12.970	l3= 6.636
	14,5= 12.964	l4= 6.636
	l5,6= 12.937	I5= 6.690
Length of the element (mm)		l6= 6.822
	w1,2= 3.296	w1= 0.535
	w1,2= 3.296 w2,3= 3.133	w1= 0.535 w2= 1.302
	-	
	w2,3= 3.133	w2= 1.302
	w2,3= 3.133 w3,4= 3.103	w2= 1.302 w3= 1.684

