Natural Language Processing & Word Embeddings

Quiz, 10 questions

1 poin	t
10000 10000	se you learn a word embedding for a vocabulary of words. Then the embedding vectors should be dimensional, so as to capture the full range of on and meaning in those words.
	True
	False
1 poin 2. What i	t s t-SNE?
	A linear transformation that allows us to solve analogies on word vectors
	A non-linear dimensionality reduction technique
	A supervised learning algorithm for learning word embeddings
	An open-source sequence modeling library

Natural Language Processing & Word Embeddings

Quiz, 10 questions

3.

Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.

x (input text)	y (happy?)
I'm feeling wonderful today!	1
I'm bummed my cat is ill.	0
Really enjoying this!	1

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y=1.

True

False

1 point

4.

Which of these equations do you think should hold for a good word embedding? (Check all that apply)

 $e_{boy} - e_{girl} pprox e_{brother} - e_{sister}$

 $e_{boy} - e_{girl} pprox e_{sister} - e_{brother}$

1	
point	

5.

Let $m{E}$ be an embedding matrix, and let $m{e_{1234}}$ be a one-hot vector corresponding to word 1234. Then to get the embedding of word 1234, why don't we call $m{E}*m{e_{1234}}$ in Python?

It is computationally wasteful.
The correct formula is $E^Tst e_{1234}.$
This doesn't handle unknown words (<unk>).</unk>
None of the above: Calling the Python snippet as described above is fine.

1 point

6.

When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.

True
False

Natural Language Processing & Word Embeddings

Quiz, 10 questions

7.

In the word2vec algorithm, you estimate $P\left(t\mid c\right)$, where t is the target word and c is a context word. How are t and t chosen from the training set? Pick the best answer.

- $oldsymbol{c}$ and $oldsymbol{t}$ are chosen to be nearby words.
- $oldsymbol{c}$ is the sequence of all the words in the sentence before $oldsymbol{t}$.
- $oldsymbol{c}$ is a sequence of several words immediately before $oldsymbol{t}$.
- c is the one word that comes immediately before t.

point

8.

Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function:

$$P\left(t\mid c
ight) = rac{e^{ heta_{t}^{T}e_{c}}}{\sum_{t'=1}^{10000}e^{ heta_{t'}^{T}e_{c}}}$$

Which of these statements are correct? Check all that apply.

- lacksquare $heta_t$ and e_c are both 500 dimensional vectors.
- $heta_t$ and e_c are both 10000 dimensional vectors.
- $heta_t$ and e_c are both trained with an optimization algorithm such as Adam or gradient descent.

After training, we should expect θ_t to be very close to e_c when t and t are the same word. Natural Language Processing & Word Embeddings

Quiz, 10 questions

1 point

9.

Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:

$$\min \ \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f\left(X_{ij}
ight) \left(heta_i^T e_j + b_i + b_j' - log X_{ij}
ight)^2$$

Which of these statements are correct? Check all that apply.

- $heta_i$ and e_j should be initialized to 0 at the beginning of training.
- $heta_i$ and e_j should be initialized randomly at the beginning of training.
- X_{ij} is the number of times word i appears in the context of word j.
- The weighting function f(.) must satisfy f(0) = 0.

1 point

10.

You have trained word embeddings using a text dataset of m_1 words. You are considering using these word Natural Language resigns was word him beddings

Quiz, 10 questions

separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful?

$m_1 >> m_2$
$m_1 << m_2$
I, Sabbiu Shah , understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code
Submit Quiz

