

Tópicos de Geometria e Topologia

LISTA 1

Bruno Sant'Anna 14 de novembro de 2023

Seja X um conjunto infinito. Considere as seguintes coleções de subconjuntos de X.

 $\mathcal{T}_1 = \{ U \subseteq X ; X \setminus U \text{ \'e finito ou todo } X \}$

 $\mathcal{T}_2 = \{ U \subseteq X ; X \setminus U \text{ \'e infinito ou vazio} \}$

 $\mathcal{T}_3 = \{U \subseteq X; X \setminus U \text{ \'e enumerável ou todo } X\}$

Para cada uma das coleções determine se é uma topologia.

Para que uma coleção $\mathcal T$ de subconjuntos de um conjunto X seja uma topologia, é necessário mostrar que

- 1. $\emptyset, X \in \mathcal{T}$
- 2. A interseção finita de elementos de \mathcal{T} está em \mathcal{T} .
- 3. A união qualquer de elementos de $\mathcal T$ está em $\mathcal T$

 \mathcal{T}_1 é uma topologia em X

- 1. $\emptyset \in \mathcal{T}_1$, de fato, $X \setminus \emptyset = X$, que não é um conjunto finito, mas é todo X. Além disso, $X \in \mathcal{T}_1$, já que $X \setminus X = \emptyset$, que é um conjunto finito.
- 2. Sejam $A_1, A_2 \in \mathcal{T}_1$, precisamos mostrar que $A_1 \cap A_2 \in \mathcal{T}_1$, com efeito, pela definição da topologia \mathcal{T}_1 , isso é equivalente a mostrar que $X \setminus (A_1 \cap A_2)$ é finito ou X. Usando as leis de De Morgan, temos que

$$X \setminus (A_1 \cap A_2) = (X \setminus A_1) \cup (X \setminus A_2)$$

como A_1 e A_2 estão em \mathcal{T}_1 , segue que $(X \setminus A_1)$ e $(X \setminus A_2)$ são conjuntos finitos, e a união de conjuntos finitos é finita, logo, $X \setminus (A_1 \cap A_2)$ é finito e $A_1 \cap A_2 \in \mathcal{T}_1$.

3. Seja $\{A_{\lambda}\}$ uma coleção de abertos em X em relação a topologia \mathcal{T}_1 . Precisamos mostrar que $A = \bigcup_{\lambda \in \Lambda} A_{\lambda}$, onde Λ é um conjunto de indices, também é aberto em X. De fato, como no caso anterior, isso é o mesmo que mostrar que $X \setminus A$ é finito. Novamente usando as leis de De Morgan, temos

$$X \setminus \left(\bigcup_{\lambda \in \Lambda} A_{\lambda}\right) = \bigcap_{\lambda \in \Lambda} \left(X \setminus A_{\lambda}\right)$$

Como todos $X\setminus A_\lambda$ são finitos, a interseção também será, então $X\setminus A$ é finito, e por isso, $A=\bigcup_{\lambda\in\Lambda}A_\lambda\in\mathcal{T}_1$

Como as propiedades foram todas satisfeitas, podemos afirmar que \mathcal{T}_1 é uma topologia sobre X. \mathcal{T}_2 não é uma topologia em X.

Note que a propiedade 3 não é válida na topologia \mathcal{T}_2 . De fato, seja $\{A_\lambda\}$ uma coleção de elementos de \mathcal{T}_2 , nesse caso para todo $\lambda \in \Lambda$ temos que $X \setminus A_\lambda$ é infinito, porem a interseção de conjuntos infinitos não é necessariamente infinita, então é possível que $X \setminus \bigcup_{\lambda \in \Lambda} A_\lambda$ seja finito, ou seja, nessa situação $A = \bigcup_{\lambda \in \Lambda} A_\lambda \notin \mathcal{T}_2$.

 \mathcal{T}_3 é uma topologia em X.

- 1. $\emptyset \in \mathcal{T}_3$, pois $X \setminus \emptyset = X$, e $X \in \mathcal{T}_3$, já que $X \setminus X = \emptyset$ que é um conjunto enumerável pois é finito.
- 2. Da mesma forma que mostramos que a interseção de elementos de $\mathcal T$ está em $\mathcal T$ para a topologia $\mathcal T_1$, podemos mostrar que o mesmo vale para a topologia $\mathcal T_3$. Com efeito, dados $A_1,A_2\in\mathcal T_3$, daí, $X\setminus A_1$ e $X\setminus A_2$ são enumeráveis. Para que $A_1\cap A_2$ esteja em $\mathcal T_3$ é necessário que $X\setminus (A_1\cap A_2)$ seja enumerável, de fato, pela lei de De Morgan isso é equivalente a $(X\setminus A_1)\cup (X\setminus A_2)$, que é enumerável pois é uma união finita de conjuntos enumeráveis, então, $A_1\cap A_2\in\mathcal T_3$.
- 3. Seja $\{A_{\lambda}\}$ uma coleção de abertos em X em relação a topologia \mathcal{T}_3 . Usando os mesmos argumentos dos casos anteriores, se $A_{\lambda} \in \mathcal{T}_3$, então $X \setminus A_{\lambda}$ é enumerável, daí

$$X \setminus \left(\bigcup_{\lambda \in \Lambda} A_{\lambda}\right) = \bigcap_{\lambda \in \Lambda} \left(X \setminus A_{\lambda}\right)$$

como a interseção de conjuntos enumeráveis é enumerável, temos que $X\setminus\bigcup_{\lambda\in\Lambda}A_\lambda$ é enumerável e $A=\bigcup_{\lambda\in\Lambda}A_\lambda\in\mathcal{T}_3$

Assim, está demonstrado que \mathcal{T}_3 é uma topologia em X