Теория категорий

Никита Лисица

2020

■ Первая половина XX — развитие алгебраической топологии

- Первая половина XX развитие алгебраической топологии
- 1940е: Эйленберг, Маклейн определения категории, функторов, *естественных преобразований*

- Первая половина XX развитие алгебраической топологии
- 1940е: Эйленберг, Маклейн определения категории, функторов, *естественных преобразований*
 - ⇒ Аксиомы Эйленберга-Стинрода

- Первая половина XX развитие алгебраической топологии
- 1940е: Эйленберг, Маклейн определения категории, функторов, *естественных преобразований*
 - ⇒ Аксиомы Эйленберга-Стинрода
- 1950-60e: Серр, Гротендик, et al. бум алгебраической геометрии

- Первая половина XX развитие алгебраической топологии
- 1940е: Эйленберг, Маклейн определения категории, функторов, *естественных преобразований*
 - ⇒ Аксиомы Эйленберга-Стинрода
- 1950-60e: Серр, Гротендик, et al. бум алгебраической геометрии
- 1960e: Маклейн моноидальные категории, 2-категории

- Первая половина XX развитие алгебраической топологии
- 1940е: Эйленберг, Маклейн определения категории, функторов, *естественных преобразований*
 - ⇒ Аксиомы Эйленберга-Стинрода
- 1950-60e: Серр, Гротендик, et al. бум алгебраической геометрии
- 1960e: Маклейн моноидальные категории, 2-категории
- 1960e: Ловер Категорная логика, аксиоматизация категории множеств, топосы

- Первая половина XX развитие алгебраической топологии
- 1940е: Эйленберг, Маклейн определения категории, функторов, *естественных преобразований*
 - ⇒ Аксиомы Эйленберга-Стинрода
- 1950-60e: Серр, Гротендик, et al. бум алгебраической геометрии
- 1960e: Маклейн моноидальные категории, 2-категории
- 1960е: Ловер Категорная логика, аксиоматизация категории множеств, топосы
- 1960е: Хааг, Кастлер Алгебраическая квантовая теория поля

- Первая половина XX развитие алгебраической топологии
- 1940е: Эйленберг, Маклейн определения категории, функторов, *естественных преобразований*
 - ⇒ Аксиомы Эйленберга-Стинрода
- 1950-60e: Серр, Гротендик, et al. бум алгебраической геометрии
- 1960e: Маклейн моноидальные категории, 2-категории
- 1960е: Ловер Категорная логика, аксиоматизация категории множеств, топосы
- 1960е: Хааг, Кастлер Алгебраическая квантовая теория поля
- 1970е и далее: очень много всего

■ Целое число

lacktriangle Целое число \Rightarrow кольцо целых чисел $\mathbb Z$

- lacktriangle Целое число \Rightarrow кольцо целых чисел $\mathbb Z$
- Вещественное число

- lacktriangle Целое число \Rightarrow кольцо целых чисел $\mathbb Z$
- lacktriangle Вещественное число \Rightarrow поле вещественных чисел $\mathbb R$

- lacktriangle Целое число \Rightarrow кольцо целых чисел $\mathbb Z$
- lacksquare Вещественное число \Rightarrow поле вещественных чисел $\mathbb R$
- Непрерывная функция

- lacktriangle Целое число \Rightarrow кольцо целых чисел $\mathbb Z$
- lacksquare Вещественное число \Rightarrow поле вещественных чисел $\mathbb R$
- lacktriangle Непрерывная функция \Rightarrow пространство непрерывных функций C(X)

- lacksquare Целое число \Rightarrow кольцо целых чисел $\mathbb Z$
- lacktriangle Вещественное число \Rightarrow поле вещественных чисел ${\mathbb R}$
- lacktriangle Непрерывная функция \Rightarrow пространство непрерывных функций C(X)
- Конкретные алгебраические структуры

- lacksquare Целое число \Rightarrow кольцо целых чисел ${\mathbb Z}$
- lacktriangle Вещественное число \Rightarrow поле вещественных чисел ${\mathbb R}$
- lacktriangle Непрерывная функция \Rightarrow пространство непрерывных функций C(X)
- Конкретные алгебраические структуры ⇒ универсальная алгебра (изучение структуры с произвольными операциями и аксиомами)

- lacktriangle Целое число \Rightarrow кольцо целых чисел $\mathbb Z$
- lacktriangle Вещественное число \Rightarrow поле вещественных чисел ${\mathbb R}$
- lacktriangle Непрерывная функция \Rightarrow пространство непрерывных функций C(X)
- Конкретные алгебраические структуры ⇒ универсальная алгебра (изучение структуры с произвольными операциями и аксиомами)
- Множество* всех колец/полей/пространств/etc ⇒

- lacktriangle Целое число \Rightarrow кольцо целых чисел $\mathbb Z$
- lacktriangle Вещественное число \Rightarrow поле вещественных чисел ${\mathbb R}$
- lacktriangle Непрерывная функция \Rightarrow пространство непрерывных функций C(X)
- Конкретные алгебраические структуры ⇒ универсальная алгебра (изучение структуры с произвольными операциями и аксиомами)
- Множество* всех колец/полей/пространств/etc \Rightarrow категория

Категория ${\it C}$ — это

Категория C — это

■ Набор* объектов Ob(C)

- Набор* объектов Ob(C)
- ullet $\forall X,Y\in Ob(C)$ набор * морфизмов/стрелок $Hom_C(X,Y)$

- Набор* объектов Ob(C)
- ullet $\forall X,Y\in Ob(C)$ набор * морфизмов/стрелок $Hom_C(X,Y)$
- Композиция морфизмов: $f \in Hom_C(X,Y), g \in Hom_C(Y,Z) \Rightarrow g \circ f : Hom_C(X,Z)$

- Набор* объектов Ob(C)
- ullet $\forall X,Y\in Ob(C)$ набор * морфизмов/стрелок $Hom_C(X,Y)$
- Композиция морфизмов: $f \in Hom_C(X,Y), g \in Hom_C(Y,Z) \Rightarrow g \circ f : Hom_C(X,Z)$
- Композиция ассоциативна: $(h \circ g) \circ f = h \circ (g \circ f)$

- Набор* объектов Ob(C)
- ullet $\forall X,Y\in Ob(C)$ набор * морфизмов/стрелок $Hom_C(X,Y)$
- Композиция морфизмов: $f \in Hom_C(X,Y), g \in Hom_C(Y,Z) \Rightarrow g \circ f : Hom_C(X,Z)$
- Композиция ассоциативна: $(h \circ g) \circ f = h \circ (g \circ f)$
- Тождественное отображение: $\exists id_X \in Hom_C(X,X)$
- $\bullet id_X \circ f = f \quad g \circ id_X = g$

- Нужно отношение равенства на морфизмах
- Не нужно отношение равенства на объектах

- Нужно отношение равенства на морфизмах
- Не нужно отношение равенства на объектах
- Вместо равенства для объектов используется изоморфизм

Композиция:

$$X \xrightarrow{f} Y \xrightarrow{g} Z \tag{1}$$

Композиция:

$$X \xrightarrow{f} Y \xrightarrow{g} Z \tag{1}$$

Диаграмма коммутативна, если композиция вдоль любого пути из одной вершины в другую даёт один и тот же морфизм.

Ассоциативность:

Ассоциативность:

Ассоциативность:

Тождественное отображение:

$$\begin{array}{c}
X \\
d_X \downarrow \\
X \stackrel{f}{\longrightarrow} Y
\end{array} (3)$$

Тождественное отображение:

$$\begin{array}{ccc}
X \\
d_X \downarrow & f \\
X & \xrightarrow{f} & Y
\end{array}$$
(3)

Изоморфизм

Морфизмы могут быть обратными друг другу:

$$X \xrightarrow{f} Y \xrightarrow{g} X \tag{4}$$

Изоморфизм

Морфизмы могут быть обратными друг другу:

$$X \xrightarrow{f} Y \xrightarrow{g} X \tag{4}$$

$$f = g^{-1} \tag{5}$$

$$g = f^{-1} \tag{6}$$

Обратимый морфизм — изоморфизм $id_X^{-1}=id_X$

■ Категория множеств Set

- Категория множеств Set
- Категория групп Grp

- Категория множеств Set
- Категория групп Grp
- Категория колец **Ring**

- Категория множеств Set
- Категория групп Grp
- Категория колец **Ring**
- lacktriangle Категория $oldsymbol{\mathsf{Vect}}_K$ векторных пространств над полем K

- Категория множеств Set
- Категория групп Grp
- Категория колец **Ring**
- lacktriangle Категория ${f Vect}_K$ векторных пространств над полем K
- Категория топологических пространств Тор

- Категория множеств Set
- Категория групп Grp
- Категория колец **Ring**
- lacktriangle Категория ${f Vect}_K$ векторных пространств над полем K
- Категория топологических пространств Тор
- Категория Хаусдорфовых пространств **Haus**

- Категория множеств Set
- Категория групп Grp
- Категория колец **Ring**
- lacktriangle Категория $oldsymbol{\mathsf{Vect}}_K$ векторных пространств над полем K
- Категория топологических пространств Тор
- Категория Хаусдорфовых пространств Haus
- Категория метрических пространств Met

- Категория множеств Set
- Категория групп Grp
- Категория колец **Ring**
- lacktriangle Категория $oldsymbol{\mathsf{Vect}}_K$ векторных пространств над полем K
- Категория топологических пространств Тор
- Категория Хаусдорфовых пространств Haus
- Категория метрических пространств Met
- Категория графов Gph

- Категория множеств Set
- Категория групп Grp
- Категория колец **Ring**
- lacktriangle Категория $oldsymbol{\mathsf{Vect}}_K$ векторных пространств над полем K
- Категория топологических пространств Тор
- Категория Хаусдорфовых пространств **Haus**
- Категория метрических пространств Met
- Категория графов Gph
- Любые математические объекты одной природы

- Моноид ⇔ категория с одним объектом
- Группа ⇔ категория с одним объектом, где все морфизмы обратимы
- Предпорядок ⇔ категория, где между любыми объектами не более одного морфизма
- Категория путей графа

Пустая категория:

Категория с одним объектом (и тождественным морфизмом):

• (7

Категория с двумя объектами:

• • (8)

Категория с двумя объектами и морфизмом между ними:

$$\bullet \longrightarrow \bullet \tag{9}$$

- Категория высказываний логической системы
 - Морфизмы доказательства выводимости

- Категория высказываний логической системы
 - Морфизмы доказательства выводимости
- Категория типов системы типизации
 - Морфизмы термы функций

- Категория высказываний логической системы
 - Морфизмы доказательства выводимости
- Категория типов системы типизации
 - Морфизмы термы функций
- Категория типов языка Haskell Hask
 - Морфизмы функции

 Для большинства приложений — язык описания явлений и конструкций

- Для большинства приложений язык описания явлений и конструкций
- Несколько несложных результатов, полезных везде

- Для большинства приложений язык описания явлений и конструкций
- Несколько несложных результатов, полезных везде
- Алгебраическая геометрия, алгебраическая топология невозможны в современном виде без теории категорий

- Для большинства приложений язык описания явлений и конструкций
- Несколько несложных результатов, полезных везде
- Алгебраическая геометрия, алгебраическая топология невозможны в современном виде без теории категорий
- Распространение реального применения на другие области — активно развивающаяся сфера

- Для большинства приложений язык описания явлений и конструкций
- Несколько несложных результатов, полезных везде
- Алгебраическая геометрия, алгебраическая топология невозможны в современном виде без теории категорий
- Распространение реального применения на другие области
 активно развивающаяся сфера
- Указывает на правильные абстракции \Rightarrow помогает проектировать интерфейсы

$$lack oxed{\blacksquare} oxed{\bot} \in Ob(C)$$
 такой, что $orall X \in Ob(C)$ $\exists ! f \in Hom_C(oxed{\bot}, X)$
$$oxed{\bot} \stackrel{\exists !}{\longrightarrow} orall X \tag{11}$$

$$lack oxedsymbol oxedsymbol oxedsymbol oxedsymbol eta \in Ob(C)$$
 такой, что $orall X \in Ob(C)$ $\exists ! f \in Hom_C(oxedsymbol oxedsymbol X)$ (11)

- Set: $\bot = \varnothing$
- Grp: $\bot = 1$

- **Set**: ⊥ = Ø
- Grp: $\bot = 1$
- $Vect_K$: $\bot = \{0\}$

$$lacktriangle$$
 $lacktriangle$ $lacktriang$

- **Set**: ⊥ = Ø
- Grp: $\bot = 1$
- $Vect_K$: $\bot = \{0\}$
- Hask: ⊥ = Data. Void

$$\forall X \xrightarrow{\exists !} \top \tag{12}$$

$$\forall X \xrightarrow{\exists !} \top \tag{12}$$

• Set:
$$\top = \{ \bullet \}$$

$$\forall X \xrightarrow{\exists !} \top \tag{12}$$

- \blacksquare Set: $\top = \{ ullet \}$
- Grp: $\top = 1$

$$\forall X \xrightarrow{\exists !} \top \tag{12}$$

- $\blacksquare \ \mathbf{Set} \colon \top = \{ \bullet \}$
- Grp: $\top = 1$
- $\bullet \ \textbf{Vect}_{\textit{K}} \colon \top = \{0\}$

$$\forall X \xrightarrow{\exists !} \top \tag{12}$$

- Set: $\top = \{\bullet\}$
- Grp: $\top = 1$
- Vect $_K$: $\top = \{0\}$
- **Hask**: T = ()

Терминальный объект категории

$$\forall X \stackrel{\exists!}{\longrightarrow} \top \tag{12}$$

- Set: $\top = \{\bullet\}$
- Grp: $\top = 1$
- $Vect_K$: $\top = \{0\}$
- Hask: T = ()
- Получается «переворачиванием стрелок» из определения начального объекта

■ **Set**: *X* × *Y*

Set: $X \times Y$

■ Grp: $X \times Y$

■ **Set**: *X* × *Y*

■ Grp: $X \times Y$

■ \mathbf{Vect}_K : $X \oplus Y$

$$X \longleftrightarrow X \times Y \longrightarrow Y$$

$$\exists ! \uparrow \qquad \forall A$$

$$(13)$$

■ **Set**: *X* × *Y*

■ Grp: $X \times Y$

■ \mathbf{Vect}_K : $X \oplus Y$

■ **Hask**: (*X*, *Y*)

■ **Set**: *X* [] *Y*

$$X \xrightarrow{\forall} X + Y \longleftarrow Y$$

$$\downarrow_{\exists!} \qquad \forall A$$

$$(14)$$

- **Set**: *X* [] *Y*
- **Grp**: *X* * *Y*

$$X \longrightarrow X + Y \longleftarrow Y$$

$$\downarrow_{\exists!} \qquad \forall A$$

$$(14)$$

■ **Set**: *X* [] *Y*

■ **Grp**: *X* * *Y*

Vect_K: X ⊕ Y

$$X \longrightarrow X + Y \longleftarrow Y$$

$$\downarrow_{\exists!} \qquad \forall A$$

$$(14)$$

■ **Set**: *X* [] *Y*

■ **Grp**: *X* * *Y*

■ \mathbf{Vect}_K : $X \oplus Y$

Hask: Either X Y

$$X \longrightarrow X + Y \longleftarrow Y$$

$$\downarrow_{\exists!} \qquad \forall A$$

$$(14)$$

- **Set**: *X* [] *Y*
- **Grp**: *X* * *Y*
- Vect_K: X ⊕ Y
- Hask: Either X Y
- Получается «переворачиванием стрелок» из определения произведения

Функтор F:C o D — это

Функтор F:C o D — это

 $lacksymbol{\bullet}$ Отображение на объектах: F: Ob(C) o Ob(D)

Функтор F:C o D — это

- $lacksymbol{\bullet}$ Отображение на объектах: F: Ob(C) o Ob(D)
- Отображение на морфизмах:
 - $F: Hom_C(X,Y) \rightarrow Hom_D(F(X),F(Y))$

Функтор F:C o D — это

- $lacksymbol{\bullet}$ Отображение на объектах: F: Ob(C) o Ob(D)
- lacktriangle Отображение на морфизмах: $F: Hom_C(X,Y)
 ightarrow Hom_D(F(X),F(Y))$

Переводит композицию в композицию: $F(g \circ f) = F(g) \circ F(f)$

Функтор F:C o D — это

- $lue{}$ Отображение на объектах: F: Ob(C)
 ightarrow Ob(D)
- lacktriangle Отображение на морфизмах: $F: Hom_{\mathcal{C}}(X,Y)
 ightarrow Hom_{\mathcal{D}}(F(X),F(Y))$

Переводит композицию в композицию: $F(g \circ f) = F(g) \circ F(f)$

$$\begin{array}{ccc}
X & \xrightarrow{f} & Y & F(X) & \xrightarrow{F(f)} & F(Y) \\
\downarrow g & & \downarrow F(g \circ f) & \downarrow F(g) & F(Z)
\end{array}$$

$$(15)$$

Функтор $F:C \to D$ — это

- $lue{}$ Отображение на объектах: F: Ob(C)
 ightarrow Ob(D)
- lacktriangle Отображение на морфизмах: $F: Hom_C(X,Y)
 ightarrow Hom_D(F(X),F(Y))$

Переводит композицию в композицию: $F(g \circ f) = F(g) \circ F(f)$

Переводит тождественное в тождественное: $F(id_X) = id_{F(X)}$

Переводит коммутативные диаграммы в коммутативные диаграммы:

Переводит коммутативные диаграммы в коммутативные диаграммы:

$$h \circ g \circ f = j \circ i \implies F(h) \circ F(g) \circ F(f) = F(j) \circ F(i)$$
 (17)

Переводит изоморфизм в изоморфизм:

$$X \xrightarrow{f} Y \downarrow g$$

$$\downarrow id_X \downarrow \chi$$

$$F(X) \xrightarrow{F(f)} F(Y)$$

$$\downarrow_{f(g)} \qquad (18)$$

$$F(X)$$

Переводит изоморфизм в изоморфизм:

$$\begin{array}{cccc}
X & \xrightarrow{f} & Y & & F(X) & \xrightarrow{F(f)} & F(Y) \\
\downarrow id_{X} & & \downarrow f(g) & & \downarrow f(g) \\
X & & & F(X)
\end{array} (18)$$

$$F(g) = F(f^{-1}) = F(f)^{-1} = F(g)$$
(19)

lacktriangle Тождественный функтор Id_C

- Тождественный функтор *Id_C*
- Постоянный функтор

- Тождественный функтор Id_C
- Постоянный функтор
- Множество подмножеств $X \mapsto 2^X$

- Тождественный функтор Id_C
- Постоянный функтор
- Множество подмножеств $X \mapsto 2^X$
- Свободный моноид/группа/etc, свободные функторы

- Тождественный функтор *Id_C*
- Постоянный функтор
- Множество подмножеств $X \mapsto 2^X$
- Свободный моноид/группа/etc, свободные функторы
- lacksquare Забывающие функторы, например $\mathbf{Grp} o \mathbf{Set}$

- Тождественный функтор *Id_C*
- Постоянный функтор
- Множество подмножеств $X \mapsto 2^X$
- Свободный моноид/группа/etc, свободные функторы
- lacktriangle Забывающие функторы, например ${f Grp} o {f Set}$
- Если категории частичные порядки, то функтор монотонная функция

- Тождественный функтор *Id_C*
- Постоянный функтор
- Множество подмножеств $X \mapsto 2^X$
- Свободный моноид/группа/etc, свободные функторы
- lacktriangle Забывающие функторы, например ${f Grp} o {f Set}$
- Если категории частичные порядки, то функтор монотонная функция
- Если категории моноиды/группы, то функтор гомоморфизм моноидов/групп

- Тождественный функтор *Id_C*
- Постоянный функтор
- Множество подмножеств $X \mapsto 2^X$
- Свободный моноид/группа/etc, свободные функторы
- lacktriangle Забывающие функторы, например ${f Grp} o {f Set}$
- Если категории частичные порядки, то функтор монотонная функция
- Если категории моноиды/группы, то функтор гомоморфизм моноидов/групп
- $lue{}$ Функторы в Хаскеле: Hask
 ightarrow Hask
 - Отображение на морфизмах fmap

Изоморфизм категорий

Изоморфизм категорий — обратимый функтор:

$$F: C \to D$$
 (20)

$$G:D\to C$$
 (21)

$$\forall X \in Ob(C) \quad G(F(X)) = X \tag{22}$$

$$\forall f: X \to Y \quad G(F(f)) = f \tag{23}$$

Изоморфизм категорий

Изоморфизм категорий — обратимый функтор:

$$F: C \to D$$
 (20)

$$G:D\to C$$
 (21)

$$\forall X \in Ob(C) \quad G(F(X)) = X \tag{22}$$

$$\forall f: X \to Y \quad G(F(f)) = f \tag{23}$$

Используется равенство объектов — плохое определение!

Изоморфизм категорий

Изоморфизм категорий — обратимый функтор:

$$F: C \to D$$
 (20)

$$G:D\to C$$
 (21)

$$\forall X \in Ob(C) \quad G(F(X)) = X \tag{22}$$

$$\forall f: X \to Y \quad G(F(f)) = f \tag{23}$$

Используется равенство объектов — плохое определение! Лучше рассматривать *эквивалентность* категорий. Для этого нужны *естественные преобразования*.

Естественные преобразования

■ Функторы — между категориями

Естественные преобразования

- Функторы между категориями
- Естественные преобразования между функторами

Естественные преобразования

- Функторы между категориями
- Естественные преобразования между функторами

$$F,G:C\to D$$
 (24)

Естественные преобразования

- Функторы между категориями
- Естественные преобразования между функторами

$$F,G:C\to D\tag{24}$$

$$\eta: F \Rightarrow G \tag{25}$$

$$\eta_X : F(X) \to G(X) \quad (X \in Ob(C))$$
 (26)

Естественные преобразования

- Функторы между категориями
- Естественные преобразования между функторами

$$F,G:C\to D\tag{24}$$

$$\eta: F \Rightarrow G \tag{25}$$

$$\eta_X : F(X) \to G(X) \quad (X \in Ob(C))$$
 (26)

$$\begin{array}{ccc}
X & F(X) \xrightarrow{\eta_X} G(X) \\
\downarrow_f & F(f) \downarrow & \downarrow_{G(f)} \\
Y & F(Y) \xrightarrow{\eta_Y} G(Y)
\end{array} (27)$$

$$\eta_Y \circ F(f) = G(f) \circ \eta_X \tag{28}$$

Определитель матрицы: $\det: M(n,R) o R$

Определитель матрицы: $\det: M(n,R) \to R$

$$M(n,R) \xrightarrow{f} M(n,S)$$

$$det \downarrow \qquad \qquad \downarrow det$$

$$R \xrightarrow{f} S$$

$$(29)$$

Определитель матрицы: $\det: M(n,R) \to R$

$$M(n,R) \xrightarrow{f} M(n,S)$$

$$det \downarrow \qquad \qquad \downarrow det$$

$$R \xrightarrow{f} S$$

$$(29)$$

В частности:

- $\bullet \det(\overline{A}) = \overline{\det(A)}$
- $\bullet \det(A \bmod p) = \det(A) \bmod p$

Определитель матрицы: $\det: M(n,R) \to R$

$$M(n,R) \xrightarrow{f} M(n,S)$$

$$det \downarrow \qquad \qquad \downarrow det$$

$$R \xrightarrow{f} S$$

$$(29)$$

В частности:

- $\bullet \det(\overline{A}) = \overline{\det(A)}$
- $\bullet \det(A \bmod p) = \det(A) \bmod p$

Мораль: естественные преобразования — то, что определяется общей формулой, вне зависимости от параметров

Определитель матрицы: $\det: M(n,R) \to R$

$$M(n,R) \xrightarrow{f} M(n,S)$$

$$\det \downarrow \qquad \qquad \downarrow_{\text{det}}$$

$$R \xrightarrow{f} S$$

$$(29)$$

В частности:

- $\bullet \det(\overline{A}) = \overline{\det(A)}$
- $\bullet \det(A \bmod p) = \det(A) \bmod p$

Мораль: естественные преобразования — то, что определяется общей формулой, вне зависимости от параметров Естественные преобразования в Хаскеле — параметрически полиморфные функции $f: Fa \rightarrow Ga$

Естественный изоморфизм

 η — естественный изоморфизм, если все η_X — изоморфизмы.

Эквивалентность категорий

C и D эквивалентны, если существуют функторы F:C o D и G:D o C такие, что

- $G \circ F$ естественно изоморфно Id_C
- lacktriangledown $F \circ G$ естественно изоморфно Id_D

Эквивалентность категорий

C и D эквивалентны, если существуют функторы F:C o D и G:D o C такие, что

- $G \circ F$ естественно изоморфно Id_C
- $F \circ G$ естественно изоморфно Id_D
- Может быть разное количество изоморфных объектов, но суть остаётся
- *Скелет* категории выбираем по одному объекту из набора изоморфных
- Любая категория эквивалентна скелету

Двойственная (opposite) категория

- $\blacksquare Hom_{C^{op}}(X,Y) = Hom_C(Y,X)$

Двойственная (opposite) категория

$$lacksquare Ob(C^{op}) = Ob(C)$$

$$\blacksquare Hom_{C^{op}}(X,Y) = Hom_{C}(Y,X)$$

$$C: X \xrightarrow{f} Y (30)$$

$$C^{op}: X \xleftarrow{f} Y$$

Двойственная (opposite) категория

- $lacksquare Ob(C^{op}) = Ob(C)$
- $\blacksquare Hom_{C^{op}}(X,Y) = Hom_{C}(Y,X)$

$$C: X \xrightarrow{f} Y (30)$$

$$C^{op}: X \xleftarrow{f} Y$$

- Суть та же, стрелки перевёрнуты
- Превращает все понятия в двойственные

• Категория коммутативных колец \leftrightarrow категория аффинных схем

- Категория коммутативных колец \leftrightarrow категория аффинных схем
- (Представление Гельфанда) Категория коммутативных C^* -алгебр \leftrightarrow категория компактных хаусдорфовых пространств

- Категория коммутативных колец \leftrightarrow категория аффинных схем
- (Представление Гельфанда) Категория коммутативных C^* -алгебр \leftrightarrow категория компактных хаусдорфовых пространств
 - ⇒ Некоммутативная геометрия

- Категория коммутативных колец \leftrightarrow категория аффинных схем
- (Представление Гельфанда) Категория коммутативных C^* -алгебр \leftrightarrow категория компактных хаусдорфовых пространств
 - ⇒ Некоммутативная геометрия
- $lue{}$ (Теорема Стоуна) Категория булевых алгебр \leftrightarrow категория пространств Стоуна

- Категория коммутативных колец \leftrightarrow категория аффинных схем
- (Представление Гельфанда) Категория коммутативных C^* -алгебр \leftrightarrow категория компактных хаусдорфовых пространств
 - ⇒ Некоммутативная геометрия
- $lue{}$ (Теорема Стоуна) Категория булевых алгебр \leftrightarrow категория пространств Стоуна
- (Двойственность Понтрягина) Категория локально компактных абелевых групп двойственна самой себе

- Категория коммутативных колец \leftrightarrow категория аффинных схем
- (Представление Гельфанда) Категория коммутативных C^* -алгебр \leftrightarrow категория компактных хаусдорфовых пространств
 - ⇒ Некоммутативная геометрия
- $lue{}$ (Теорема Стоуна) Категория булевых алгебр \leftrightarrow категория пространств Стоуна
- (Двойственность Понтрягина) Категория локально компактных абелевых групп двойственна самой себе
 - Обобщение рядов Фурье, дискретных и непрерывных преобразований Фурье

- Параметрически полиморфные функции естественные преобразования функторов
- Можно делать вывод о свойствах функции, зная её тип

- Параметрически полиморфные функции естественные преобразования функторов
- Можно делать вывод о свойствах функции, зная её тип
- f :: a -> a
 - \blacksquare f x = x

- Параметрически полиморфные функции естественные преобразования функторов
- Можно делать вывод о свойствах функции, зная её тип
- f :: a -> a
 - \blacksquare f x = x
- f :: a -> (a,a)
 - \bullet f x = (x,x)

- Параметрически полиморфные функции естественные преобразования функторов
- Можно делать вывод о свойствах функции, зная её тип
- f :: a -> a
 - \blacksquare f x = x
- f :: a -> (a,a)
 - \bullet f x = (x,x)
- f :: (a,b) -> (b,a)

- Параметрически полиморфные функции естественные преобразования функторов
- Можно делать вывод о свойствах функции, зная её тип
- f :: a -> a
 - \blacksquare f x = x
- f :: a -> (a,a)
 - \blacksquare f x = (x,x)
- f :: (a,b) -> (b,a)
- f :: a -> [a]
 - f = replicate n

- Параметрически полиморфные функции естественные преобразования функторов
- Можно делать вывод о свойствах функции, зная её тип
- f :: a -> a
 - \blacksquare f x = x
- f :: a -> (a,a)
 - \bullet f x = (x,x)
- f :: (a,b) -> (b,a)
 - \blacksquare f (x,y) = (y,x)
- f :: a -> [a]
 - f = replicate n
- f :: [a] -> Int
 - \blacksquare f = g . length

Моноидальные категории

Задано произведение объектов: функтор $\otimes: C \times C \to C$ и нейтральный объект $I \otimes X \cong X \otimes I \cong X$

- $\blacksquare \mathsf{Set}, \otimes = \times, I = \{\bullet\}$
- Set, $\otimes = \coprod$, $I = \emptyset$
- $Vect_K$, $\otimes = \otimes$, I = K
- Категория функторов из категории в саму себя $(\ni H J O \phi Y H K T O P O B)$ **End** $(C), \otimes = \circ, I = I d_C$

Моноид в моноидальной категории

Больше структуры — новые определения!

Моноид M — это

- lacksquare Умножение: $\mu:M\otimes M o M$
- lacksquare Единица: $\eta:I o M$

Аксиомы (ассоциативность, нейтральный элемент) выражаются как диаграммы

Моноиды в $\mathbf{Set}, \times, \{ullet\}$ — обычные моноиды из алгебры

Монады

Монады — моноиды в категории эндофункторов.

- $\blacksquare \ \mu: M(M(X)) \to M(X)$
 - \blacksquare join :: Monad m => m (m a) -> m a
- $\eta: X \to M(X)$
 - return :: Monad m => a -> m a

Тройки Клейсли

- Эквивалентны монадам
- вместо μ операция $f:X o M(Y) \implies f^*:M(X) o M(Y)$
- flip (>>=) :: Monad m => (a -> m b) -> (m a -> m b)

Струнные диаграммы

- Пенроуз, Фейнман, ...
- Объекты струны/нити, морфизмы блоки

Соответствие Карри-Говарда

Интуиционистская	Просто типизиро-	
логика	ванное лямбда-	
	исчисление	
Линейная логика	Линейные типы	
Интуиционистская	Зависимые типы	
логика первого		
порядка		

Соответствие Карри-Говарда-Ламбека

Интуиционистская	Просто типизиро-	Декартово-
логика	ванное лямбда-	замкнутые кате-
	исчисление	гории
Линейная логика	Линейные типы	Моноидальные
		категории
Интуиционистская	Зависимые типы	Локально
логика первого		декартово-
порядка		замкнутые ка-
		тегории

nLab: computational trinitarianism

Hask is not a category

- Для определения категории нужно уметь сравнивать морфизмы
- Что означает равенство функций в Хаскеле?

Hask is not a category

- Для определения категории нужно уметь сравнивать морфизмы
- Что означает равенство функций в Хаскеле?
 - Синтаксически равные термы

Hask is not a category

- Для определения категории нужно уметь сравнивать морфизмы
- Что означает равенство функций в Хаскеле?
 - lacktriangle Синтаксически равные термы fst != snd . swap

- Для определения категории нужно уметь сравнивать морфизмы
- Что означает равенство функций в Хаскеле?
 - Синтаксически равные термы fst != snd . swap
 - Денотационно равные функции

- Для определения категории нужно уметь сравнивать морфизмы
- Что означает равенство функций в Хаскеле?
 - lacktriangle Синтаксически равные термы fst != snd . swap
 - Денотационно равные функции никто не описал денотационную семантику Хаскеля

- Для определения категории нужно уметь сравнивать морфизмы
- Что означает равенство функций в Хаскеле?
 - lacktriangle Синтаксически равные термы fst != snd . swap
 - Денотационно равные функции никто не описал денотационную семантику Хаскеля
- Можно ли жить без равенства морфизмов?

- Для определения категории нужно уметь сравнивать морфизмы
- Что означает равенство функций в Хаскеле?
 - $lue{}$ Синтаксически равные термы fst != snd . swap
 - Денотационно равные функции никто не описал денотационную семантику Хаскеля
- Можно ли жить *без* равенства морфизмов? Да, если заменить равенство на *изоморфизм*.

- Объекты
- Морфизмы между объектами

- Объекты
- Морфизмы между объектами
- 2-морфизмы между обычными морфизмами

- Объекты
- Морфизмы между объектами
- 2-морфизмы между обычными морфизмами
- Аксиомы для морфизмов (ассоциативность, тождественный морфизм) выполняются с точностью до 2-изоморфизма

- Объекты
- Морфизмы между объектами
- 2-морфизмы между обычными морфизмами
- Аксиомы для морфизмов (ассоциативность, тождественный морфизм) выполняются с точностью до 2-изоморфизма
- Похоже на триангуляцию: объекты точки, морфизмы рёбра, 2-морфизмы грани
 - Связь с алгебраической топологией

- Объекты
- Морфизмы между объектами
- 2-морфизмы между обычными морфизмами
- Аксиомы для морфизмов (ассоциативность, тождественный морфизм) выполняются с точностью до 2-изоморфизма
- Похоже на триангуляцию: объекты точки, морфизмы рёбра, 2-морфизмы грани
 - Связь с алгебраической топологией
- Нужно уметь сравнивать 2-морфизмы!

∞ -категории

- Объекты
- 1-морфизмы между объектами, аксиомы с точностью до 2-изоморфизма
- 2-морфизмы между 1-морфизмами, аксиомы с точностью до 3-изоморфизма
- 3-морфизмы между 2-морфизмами, ...
- ...

∞ -категории

- Объекты
- 1-морфизмы между объектами, аксиомы с точностью до 2-изоморфизма
- 2-морфизмы между 1-морфизмами, аксиомы с точностью до 3-изоморфизма
- 3-морфизмы между 2-морфизмами, ...
- **...**
- С каждым шагом аксиомы (coherence diagrams) всё сложнее — область активных исследований
- Модель для гомотопической теории типов

Ссылки

- nLab: ncatlab.org
- Saunders Mac Lane, Categories for the Working Mathematician
- Bartosz Milewski, Category Theory for Programmers
- John C. Baez, Mike Stay, Physics, Topology, Logic and Computation: A Rosetta Stone
- Peter Selinger, A survey of graphical languages for monoidal categories