Computation of Forces Arising from the Linear Poisson-Boltzmann Method in the Domain Decomposition Paradigm

Abhinay Jha

Applied and Computational Mathematics, RWTH Aachen University

92nd Annual Meeting of the International Association of Applied
Mathematics and Mechanics
16th August 2022

Joint work with M.Nottoli (Università di Pisa, Pisa), C. Quan (SUS Tech, China), and B. Stamm (Universität Stuttgart, Stuttgart)

Outline

- **1** Solvation Models
- 2 ddLPB Method
- **3** Computation of Forces
- **4** Numerical Studies
- **5** Conclusions and Outlook

Solvation Models

- Ionic Solvation Models ¹
 - Explicit Solvation Models
 - Adopts molecular representation of both solute and solvent
 - Accurate results
 - Computationally expensive

¹Zhang et. al.: JCTC, 13, 1034-1043, 2017

²Tomasci, Persico: CR 94, 2027-2094, 1994

³Honig, Nicholls: Sci. 268, 1144-1149, 1995

Solvation Models

- Ionic Solvation Models ¹
 - Explicit Solvation Models
 - Adopts molecular representation of both solute and solvent
 - Accurate results
 - Computationally expensive
 - Implicit Solvation Models ^{2,3}
 - Microscopic treatment of solute
 - Macroscopic treatment of solvent using physical properties
 - Less computational cost

¹Zhang et. al.: JCTC, 13, 1034-1043, 2017

²Tomasci, Persico: CR 94, 2027-2094, 1994

³Honig, Nicholls: Sci. 268, 1144-1149, 1995

Figure 1: Formaldehyde molecule

Linear Poisson-Boltzman (LPB) equation

$$-\nabla \cdot [\varepsilon(\mathbf{x})\nabla \psi(\mathbf{x})] + \bar{\kappa}(\mathbf{x})^2 \psi(\mathbf{x}) = 4\pi \rho_{\mathsf{M}}(\mathbf{x}) \quad \text{in } \mathbb{R}^3$$

 $\circ \psi(x)$ - Electrostatic potential

Linear Poisson-Boltzman (LPB) equation

$$-\nabla\cdot[\varepsilon(\mathbf{x})\nabla\psi(\mathbf{x})] + \bar{\kappa}(\mathbf{x})^2\psi(\mathbf{x}) = 4\pi\rho_{\mathsf{M}}(\mathbf{x}) \quad \text{in } \mathbb{R}^3$$

- $\circ \psi(x)$ Electrostatic potential
- o $\varepsilon(x)$ Space-dependent dielectric permittivity

$$\varepsilon(\mathbf{x}) = \begin{cases} \varepsilon_1 & \text{in } \Omega, \\ \varepsilon_2 & \text{in } \Omega^{\mathsf{C}} := \mathbb{R}^3 \setminus \overline{\Omega} \end{cases}$$

Ω− Solute Cavity

 \circ $\bar{\kappa}(x)$ – Modified Debye-Hückel parameter

$$\bar{\kappa}(\mathbf{x}) = \begin{cases} 0 & \text{in } \Omega, \\ \sqrt{\varepsilon_2} \kappa & \text{in } \Omega^{\mathsf{C}} \end{cases}$$

κ – Debye-Hückel screening constant

o $\bar{\kappa}(x)$ – Modified Debye-Hückel parameter

$$\bar{\kappa}(\mathbf{x}) = \begin{cases} 0 & \text{in } \Omega, \\ \sqrt{\varepsilon_2} \kappa & \text{in } \Omega^{\mathsf{C}} \end{cases}$$

- κ Debye-Hückel screening constant
- $\rho_{M}(x)$ Solute charge distribution

$$\rho_{\mathsf{M}}(\mathsf{x}) = \sum_{i=1}^{\mathsf{M}} q_i \delta(\mathsf{x} - \mathsf{x}_i)$$

- M— Number of solute atoms
- q_i— Partial charge on the ith atom

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

Boundary Element Method (BEM) ¹

¹Yoon, Lehnoff: JCC 11, 1080-1086, 1990

²Madura et.al.: CPC 91, 57-95, 1995

³Chen, Holst, Xu: SINUM 45, 2295–2320, 2007

⁴Cancés, Maday, Stamm: JCP 139, 054111, 2013

⁵Lipparini et.al.: JCP 141, 184108, 2014

⁶Quan, Stamm, Maday: SISC 41, B320-B350, 2019

⁷ Lebedev, Laikov: DM 59, 477-481, 1999

- Boundary Element Method (BEM) ¹
- Finite Difference Method (FDM)²

¹Yoon, Lehnoff: JCC 11, 1080-1086, 1990

²Madura et.al.: CPC 91, 57-95, 1995

³Chen, Holst, Xu: SINUM 45, 2295–2320, 2007

⁴Cancés, Maday, Stamm: JCP 139, 054111, 2013

⁵Lipparini et.al.: JCP 141, 184108, 2014

⁶Quan, Stamm, Maday: SISC 41, B320-B350, 2019

⁷Lebedev, Laikov: DM 59, 477-481, 1999

- Boundary Element Method (BEM) ¹
- Finite Difference Method (FDM)²
- Finite Element Method (FEM)³

¹Yoon, Lehnoff: JCC 11, 1080-1086, 1990

²Madura et.al.: CPC 91, 57-95, 1995

³Chen, Holst, Xu: SINUM 45, 2295–2320, 2007

⁴Cancés, Maday, Stamm: JCP 139, 054111, 2013

⁵Lipparini et.al.: JCP 141, 184108, 2014

⁶Quan, Stamm, Maday: SISC 41, B320-B350, 2019

⁷Lebedev, Laikov: DM 59, 477-481, 1999

- Boundary Element Method (BEM) ¹
- Finite Difference Method (FDM)²
- Finite Element Method (FEM)³
- Domain Decomposition Methods ^{4,5,6}

¹Yoon, Lehnoff: JCC 11, 1080-1086, 1990

²Madura et.al.: CPC 91, 57-95, 1995

³Chen, Holst, Xu: SINUM 45, 2295–2320, 2007

⁴ Cancés, Maday, Stamm: JCP 139, 054111, 2013

Cancès, Maday, Stamm: JCP 139, 054111, 2013

⁵Lipparini et.al.: JCP 141, 184108, 2014

⁶Quan, Stamm, Maday: SISC 41, B320-B350, 2019

⁷Lebedev, Laikov: DM 59, 477-481, 1999

- Boundary Element Method (BEM) ¹
- Finite Difference Method (FDM)²
- Finite Element Method (FEM)³
- Domain Decomposition Methods ^{4,5,6}
 - Schwarz decomposition method
 - Does not rely on mesh but quadrature points⁷
 - Computation of forces becomes natural as spheres are centered at nucleus position

¹Yoon, Lehnoff: JCC 11, 1080-1086, 1990

²Madura et.al.: CPC 91, 57-95, 1995

³Chen, Holst, Xu: SINUM 45, 2295–2320, 2007

⁴Cancés, Maday, Stamm: JCP 139, 054111, 2013

⁵Lipparini et.al.: JCP 141, 184108, 2014

⁶Quan, Stamm, Maday: SISC 41, B320-B350, 2019

⁷Lebedev, Laikov: DM 59, 477-481, 1999

The LPB equation can be written in two equations

$$\begin{split} -\Delta \psi(\mathbf{x}) &= \frac{4\pi}{\varepsilon_1} \rho_{\mathbf{M}}(\mathbf{x}) \qquad \text{in } \Omega, \\ -\Delta \psi(\mathbf{x}) &+ \kappa^2 \psi(\mathbf{x}) = 0 \qquad \text{in } \Omega^{\mathbf{C}}, \end{split}$$

with

$$\begin{split} \llbracket \psi(\mathbf{X}) \rrbracket &= 0 \qquad \text{ on } \Gamma, \\ \llbracket \partial_{\mathbf{n}} \psi(\mathbf{X}) \rrbracket &= 0 \qquad \text{ on } \Gamma \end{split}$$

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

Using potential theory the final equations are

$$\begin{array}{rcl} -\Delta \psi_{\mathbf{r}}(\mathbf{x}) & = & 0 & \text{in } \Omega, \\ -\Delta \psi_{\mathbf{e}}(\mathbf{x}) + \kappa^2 \psi_{\mathbf{e}}(\mathbf{x}) & = & 0 & \text{in } \Omega, \end{array}$$

with

$$\begin{array}{ll} \psi_0 + \psi_{\text{r}} = \psi_{\text{e}} & \text{on } \Gamma, \\ \sigma_{\text{e}} = \partial_{\text{n}} \psi_{\text{e}} - \frac{\varepsilon_1}{\varepsilon_2} \partial_{\text{n}} (\psi_0 + \psi_{\text{r}}) & \text{on } \Gamma^{\text{1}} \end{array}$$

Sauter, Schwab, Springer, Berlin-2011, Thm. 3.3.1

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

Using potential theory the final equations are

$$\begin{array}{rcl} -\Delta \psi_{\mathbf{r}}(\mathbf{x}) & = & 0 & \text{in } \Omega, \\ -\Delta \psi_{\mathbf{e}}(\mathbf{x}) + \kappa^2 \psi_{\mathbf{e}}(\mathbf{x}) & = & 0 & \text{in } \Omega, \end{array}$$

with

$$\begin{split} \psi_0 + \psi_{\text{r}} &= \psi_{\text{e}} & \text{on } \Gamma, \\ \sigma_{\text{e}} &= \partial_{\text{n}} \psi_{\text{e}} - \frac{\varepsilon_1}{\varepsilon_2} \partial_{\text{n}} (\psi_0 + \psi_{\text{r}}) & \text{on } \Gamma^1 \end{split}$$

where

- \circ $\psi_{r}-$ Reaction potential in Ω
- $\circ~\psi_0-$ Potential generated by ho_{M} satisfying,

$$-\Delta\psi_0 = \frac{4\pi}{\varepsilon_1} \rho_{\mathsf{M}}$$

Sauter, Schwab, Springer, Berlin-2011, Thm. 3.3.1

- $\circ \ \psi_{\mathsf{e}}-$ Extended potential from Ω^{C} to Ω
- \circ $\sigma_{e}-$ Charge density generating ψ_{e} satisfying

$$\mathbf{S}_{\kappa} \sigma_{\mathbf{e}}(\mathbf{x}) := \int_{\Gamma} \frac{\exp\left(-\kappa |\mathbf{x} - \mathbf{y}|\right) \sigma_{\mathbf{e}}(\mathbf{y})}{4\pi |\mathbf{x} - \mathbf{y}|} = \psi_{\mathbf{e}} \quad \forall \ \mathbf{x} \in \Gamma$$

 \circ S_{κ} – Invertible single-layer potential operator ¹

$$S_{\kappa}: H^{-1/2}(\Gamma) \to H^{1/2}(\Gamma)$$

¹ Sauter, Schwab, Springer, Berlin-2011, 101-181

ddLPB-Method

• Energy for LPB equations¹

$$\mathsf{E}_\mathsf{s} = rac{1}{2} \left\langle \psi_\mathsf{r},
ho_\mathsf{M} \right
angle = rac{1}{2} \sum_{j=1}^\mathsf{M} \left\langle \mathsf{X}, \mathsf{Q}
ight
angle_j,$$

where,

$$[Q]_{j\ell m} = \begin{cases} \mathbf{q}_{j} \delta_{\ell 0} \delta_{m0}, & \text{if } 1 \leq j \leq M, \\ 0 & \text{if } M < j \leq 2M. \end{cases}$$

and

$$\langle X, Q \rangle_j = \sum_i [X]_{ji} [Q]_{jj}$$
.

¹Fogolari, Brigo, Molinari; JMR 15, 2002

• Force with respect to λ

$$\mathbf{F}_{\lambda} = \nabla^{\lambda} \left(\mathbf{E}_{s} \right) = \frac{1}{2} \left(\left\langle \nabla^{\lambda} \mathbf{X}, \mathbf{Q} \right\rangle + \left\langle \mathbf{X}, \nabla^{\lambda} \mathbf{Q} \right\rangle \right) = \frac{1}{2} \left\langle \nabla^{\lambda} \mathbf{X}, \mathbf{Q} \right\rangle$$

• Force with respect to λ

$$\mathbf{F}_{\lambda} = \nabla^{\lambda} \left(\mathbf{E}_{s} \right) = \frac{1}{2} \left(\left\langle \nabla^{\lambda} \mathbf{X}, \mathbf{Q} \right\rangle + \left\langle \mathbf{X}, \nabla^{\lambda} \mathbf{Q} \right\rangle \right) = \frac{1}{2} \left\langle \nabla^{\lambda} \mathbf{X}, \mathbf{Q} \right\rangle$$

• Let LX = g be the ddLPB system

$$\begin{array}{rcl} \nabla^{\lambda} \mathbf{L} \mathbb{X} + \mathbf{L} \nabla^{\lambda} \mathbb{X} & = & \nabla^{\lambda} \mathbf{g} \\ \nabla^{\lambda} \mathbb{X} & = & \mathbf{L}^{-1} \left(\nabla^{\lambda} \mathbf{g} - \nabla^{\lambda} \mathbf{L} \mathbb{X} \right). \end{array}$$

• Force with respect to λ

$$\textbf{\textit{F}}_{\lambda} = \nabla^{\lambda}\left(\textbf{\textit{E}}_{s}\right) = \frac{1}{2}\left(\left\langle\nabla^{\lambda}\textbf{\textit{X}},\textbf{\textit{Q}}\right\rangle + \left\langle\textbf{\textit{X}},\nabla^{\lambda}\textbf{\textit{Q}}\right\rangle\right) = \frac{1}{2}\left\langle\nabla^{\lambda}\textbf{\textit{X}},\textbf{\textit{Q}}\right\rangle$$

Let LX = g be the ddLPB system

$$\begin{array}{rcl} \nabla^{\lambda} \mathbf{L} X + \mathbf{L} \nabla^{\lambda} X & = & \nabla^{\lambda} \mathbf{g} \\ \nabla^{\lambda} X & = & \mathbf{L}^{-1} \left(\nabla^{\lambda} \mathbf{g} - \nabla^{\lambda} \mathbf{L} X \right). \end{array}$$

Substituting ∇^λX

$$\begin{split} \textbf{\textit{F}}_{\lambda} &= \frac{1}{2} \left\langle \textbf{\textit{L}}^{-1} \left(\nabla^{\lambda} \textbf{\textit{g}} - \nabla^{\lambda} \textbf{\textit{LX}} \right), \textbf{\textit{Q}} \right\rangle \\ &= \frac{1}{2} \left\langle \left(\nabla^{\lambda} \textbf{\textit{g}} - \nabla^{\lambda} \textbf{\textit{LX}} \right), \left(\textbf{\textit{L}}^{-1} \right)^{*} \textbf{\textit{Q}} \right\rangle \\ &= \frac{1}{2} \left\langle \left(\nabla^{\lambda} \textbf{\textit{g}} - \nabla^{\lambda} \textbf{\textit{LX}} \right), \textbf{\textit{X}}_{\text{adj}} \right\rangle \end{split}$$

• Linear System

$$LX = g$$

• Linear System

$$LX = g$$

where

$$\textbf{L} = \begin{bmatrix} \textbf{A} & 0 \\ 0 & \textbf{B} \end{bmatrix} + \begin{bmatrix} \textbf{C}_1 & \textbf{C}_2 \\ \textbf{C}_1 & \textbf{C}_2 \end{bmatrix}, \quad \textbf{X} = \begin{bmatrix} \textbf{X}_r \\ \textbf{X}_e \end{bmatrix}, \quad \text{and} \quad g = \begin{bmatrix} \textbf{G}_0 + \textbf{F}_0 \\ \textbf{F}_0 \end{bmatrix}$$

- \mathbf{G}_0 Associated with ψ_0
- \mathbf{F}_0 Associated with $\partial_{\mathbf{n}}\psi_0$
- C_1 Associated with $\partial_n \psi_r$
- C_2 Associated with $\partial_{\mathbf{n}}\psi_{\mathbf{e}}$

Linear System

$$LX = g$$

where

$$\textbf{L} = \begin{bmatrix} \textbf{A} & 0 \\ 0 & \textbf{B} \end{bmatrix} + \begin{bmatrix} \textbf{C}_1 & \textbf{C}_2 \\ \textbf{C}_1 & \textbf{C}_2 \end{bmatrix}, \quad \textbf{X} = \begin{bmatrix} \textbf{X}_r \\ \textbf{X}_e \end{bmatrix}, \quad \text{and} \quad g = \begin{bmatrix} \textbf{G}_0 + \textbf{F}_0 \\ \textbf{F}_0 \end{bmatrix}$$

- \mathbf{G}_0 Associated with ψ_0
- \mathbf{F}_0 Associated with $\partial_{\mathbf{n}}\psi_0$
- C_1 Associated with $\partial_n \psi_r$
- C_2 Associated with $\partial_{\mathbf{n}}\psi_{\mathbf{e}}$
- Using the global strategy

$$\begin{bmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{bmatrix} \begin{bmatrix} X_r^k \\ X_e^k \end{bmatrix} = - \begin{bmatrix} \mathbf{C}_1 & \mathbf{C}_2 \\ \mathbf{C}_1 & \mathbf{C}_2 \end{bmatrix} \begin{bmatrix} X_r^{k-1} \\ X_e^{k-1} \end{bmatrix} + \begin{bmatrix} \mathbf{G}_0 + \mathbf{F}_0 \\ \mathbf{F}_0 \end{bmatrix}$$

where

k— Iteration

Linear System

$$LX = g$$

where

$$\textbf{L} = \begin{bmatrix} \textbf{A} & 0 \\ 0 & \textbf{B} \end{bmatrix} + \begin{bmatrix} \textbf{C}_1 & \textbf{C}_2 \\ \textbf{C}_1 & \textbf{C}_2 \end{bmatrix}, \quad \textbf{X} = \begin{bmatrix} \textbf{X}_r \\ \textbf{X}_e \end{bmatrix}, \quad \text{and} \quad \textbf{g} = \begin{bmatrix} \textbf{G}_0 + \textbf{F}_0 \\ \textbf{F}_0 \end{bmatrix}$$

- \mathbf{G}_0 Associated with ψ_0
- \mathbf{F}_0 Associated with $\partial_{\mathbf{n}}\psi_0$
- \circ C₁ Associated with $\partial_{\mathbf{n}}\psi_{\mathbf{r}}$
- C_2 Associated with $\partial_n \psi_e$

Computation of forces in ddLPB, 16th August 2022

Using the global strategy

$$\begin{bmatrix} \mathbf{A} & 0 \\ 0 & \mathbf{B} \end{bmatrix} \begin{bmatrix} X_r^k \\ X_e^k \end{bmatrix} = - \begin{bmatrix} \mathbf{C}_1 & \mathbf{C}_2 \\ \mathbf{C}_1 & \mathbf{C}_2 \end{bmatrix} \begin{bmatrix} X_r^{k-1} \\ X_e^{k-1} \end{bmatrix} + \begin{bmatrix} \mathbf{G}_0 + \mathbf{F}_0 \\ \mathbf{F}_0 \end{bmatrix}$$

where

- k— Iteration
- A, B are sparse
- C₁, C₂ are not sparse

Comparison of Results

¹ Jurrus et. al. : Protein Sci. 27 (1), 112-128, 2018

- Comparison of Results
 - Adaptive Poisson-Boltzmann Solver¹
 - Energy
 - Memory

¹ Jurrus et. al. : Protein Sci. 27 (1), 112-128, 2018

- Comparison of Results
 - Adaptive Poisson-Boltzmann Solver¹
 - Energy
 - Memory
 - Analytical Forces vs Finite Difference

¹ Jurrus et. al. : Protein Sci. 27 (1), 112-128, 2018

- Comparison of Results
 - Adaptive Poisson-Boltzmann Solver¹
 - Energy
 - Memory
 - Analytical Forces vs Finite Difference

$$D_{h}[E_{s}](\lambda) = \frac{E_{s}(\lambda + h) - E_{s}(\lambda)}{h}$$

¹ Jurrus et. al. : Protein Sci. 27 (1), 112-128, 2018

- Comparison of Results
 - Adaptive Poisson-Boltzmann Solver¹
 - Energy
 - Memory
 - Analytical Forces vs Finite Difference

$$D_{h}[E_{s}](\lambda) = \frac{E_{s}(\lambda + h) - E_{s}(\lambda)}{h}$$

- $-\ell^{\infty}$ error
- $-\ell^2$ error

¹ Jurrus et. al.: Protein Sci. 27 (1), 112-128, 2018

Comparison of Results

- Adaptive Poisson-Boltzmann Solver¹
 - Energy
 - Memory
- Analytical Forces vs Finite Difference

$$D_{h}[E_{s}](\lambda) = \frac{E_{s}(\lambda + h) - E_{s}(\lambda)}{h}$$

- $-\ell^{\infty}$ error
- $-\ell^2$ error

$$\operatorname{Err}_{j,\alpha}(h) = \mathsf{D}_h[\mathsf{E}_s](\mathsf{x}_{j,\alpha}) - \frac{\partial \mathsf{E}_s}{\partial \mathsf{x}_{j,\alpha}},$$

with

$$\mathbf{x}_{i} = (x_{i,1}, x_{i,2}, x_{i,3})^{\mathsf{T}}$$

¹Jurrus et. al. : Protein Sci. 27 (1), 112-128, 2018

Constants in the Model

•
$$\varepsilon_1 = 1$$
, $\varepsilon_2 = 78.54$
• $\kappa = 0.104 \, \text{Å}^{-1}$

 $^{^{1}} ddX: https://github.com/ACoM-Computational-Mathematics/ddX \\$

²Berman et. al. : NAR 28, 235-242, 2000

Constants in the Model

•
$$\varepsilon_1 = 1$$
, $\varepsilon_2 = 78.54$
• $\kappa = 0.104 \, \text{Å}^{-1}$

- Stopping Criteria¹
 - \circ GMRES Tol= 10^{-8}
 - Tol= 10^{-10}

¹ddX: https://github.com/ACoM-Computational-Mathematics/ddX

²Berman et. al. : NAR 28, 235-242, 2000

Constants in the Model

•
$$\varepsilon_1 = 1, \varepsilon_2 = 78.54$$

• $\kappa = 0.104 \, \text{Å}^{-1}$

- Stopping Criteria¹
 - \circ GMRES Tol= 10^{-8}
 - Tol= 10^{-10}
- Test Structure²

PDB Code	М	Name		
1ay3	25	Nodularin		
1etn	180	Enterotoxin		
1qjt	9046	EH1 Domain		

¹ddX: https://github.com/ACoM-Computational-Mathematics/ddX

Computation of forces in ddLPB, 16th August 2022

²Berman et. al. : NAR 28, 235-242, 2000

Solvation Models ddLPB Method Computation of Force

Energy

Numerical Studies

Solvation Models ddLPB Method Computation of Forces Numerical Studies Conclusions and Outlook

Memory

PDB	ddLPB				APBS				
Code	ℓ_{max}	Energy (kJ/mol)	Rel. En.	Mem. (GB)	Iter.	h (Å)	Energy (kJ/mol)	Rel. En.	Mem. (GB)
	2	-126.5891	0.0323	0.0347	5	0.4353	-134.7127	0.0302	0.0215
	3	-128.4347	0.0182	0.0463	6	0.0127	-134.0656	0.0253	0.0218
	4	-129.1554	0.0127	0.0416	6	0.2213	-132.6796	0.0147	0.0638
	5	-129.6607	0.0088	0.0473	6	0.1697	-132.3780	0.0124	0.1244
1ay3	6	-129.9653	0.0065	0.0569	6	0.1333	-131.9791	0.0093	0.2448
Tayo	7	-130.1668	0.0050	0.0752	6	0.0900	-131.5849	0.0063	0.7906
(25)	8	-130.3308	0.0037	0.0922	6				
	9	-130.4356	0.0029	0.1249	6				
	10	-130.5462	0.0021	0.1525	6				
	12	-130.6886	0.0010	0.2873	6				
	2	-18411.4422	0.0244	1.2203	6	0.5690	-19075.6126	0.0122	2.9358
	3	-18603.4737	0.0142	3.1045	8	0.4840	-19041.8281	0.0104	4.7910
d with	4	-18701.0889	0.0090	6.9332	9	0.2900	-18962.9862	0.0062	24.8033
	5	-18757.4013	0.0060	13.7357	10				
	6	-18793.3707	0.0041	24.7674	10				
1qjt	7	-18819.8066	0.0027	41.5118	11				
(9046)	8	-18839.1510	0.0017	65.6922	11				
	9	-18853.5883	0.0009	99.2852	11				
	10	-18864.8898	0.0003	144.5051	11				
	12	-18880.1518	0.0005	279.6300	11				

Analytical Forces vs Finite Difference

 Derivation of analytical forces for the ddLPB numerical method using the adjoint method

¹J.,Nottoli, Quan, Stamm: arXiv: 2203.00552, 2022

² ddX: https://github.com/ACoM-Computational-Mathematics/ddX

³Mikhalev,Nottoli, Stamm: chemrxiv: 10.26434, 2022

⁴Geng,Kransy: JCP, 247, 62-78, 2013

- Derivation of analytical forces for the ddLPB numerical method using the adjoint method
- Implementation of the energy and forces validated by comparing results with APBS²

¹J.,Nottoli, Quan, Stamm: arXiv: 2203.00552, 2022

² ddX: https://github.com/ACoM-Computational-Mathematics/ddX

³Mikhalev,Nottoli, Stamm: chemrxiv: 10.26434, 2022

⁴Geng,Kransy: JCP, 247, 62-78, 2013

- Derivation of analytical forces for the ddLPB numerical method using the adjoint method
- Implementation of the energy and forces validated by comparing results with APBS²
- Current implementation scales quadratically with number of atoms

¹J.,Nottoli, Quan, Stamm: arXiv: 2203.00552, 2022

² ddX: https://github.com/ACoM-Computational-Mathematics/ddX

³Mikhalev,Nottoli, Stamm: chemrxiv: 10.26434, 2022

⁴Geng,Kransy: JCP, 247, 62-78, 2013

- Derivation of analytical forces for the ddLPB numerical method using the adjoint method
- Implementation of the energy and forces validated by comparing results with APBS²
- Current implementation scales quadratically with number of atoms

Outlook

- FMM implementation for linear scaling³
- Comparison with other software⁴

¹J.,Nottoli, Quan, Stamm: arXiv: 2203.00552, 2022

² ddX: https://github.com/ACoM-Computational-Mathematics/ddX

³Mikhalev,Nottoli, Stamm: chemrxiv: 10.26434, 2022

⁴Geng,Kransy: JCP, 247, 62-78, 2013