

1024 x 4-BIT STATIC CMOS RAM

DESCRIPTION

The μ PD444 is a high-speed, low power silicon gate CMOS 4096 bit static RAM organized 1024 words by 4 bits. It uses DC stable (static) circuitry throughout and therefore requires no clock or refreshing to operate. Data access is particularly simple since address setup times are not required. The data is read out non-destructively and has the same polarity as the input data. Common input/output pins are provided.

CS controls the power down feature. In less than a cycle time after CS goes high — deselecting the $\mu PD444$ — the part automatically reduces its power requirements and remains in this low power standby mode as long as CS is high. There is no minimum CS high time for device operation, although it will determine the length of time in the power down mode. When CS goes low, selecting the $\mu PD444$, the $\mu PD444$ automatically powers up.

The μ PD444 is placed in an 18-pin plastic package for the highest possible density. It is directly TTL compatible in all respects: inputs, outputs, and a single +5V supply. The μ PD444 is pin-compatible with the μ PD2114L NMOS Static RAM.

Data retention is guaranteed to 2 volts on all parts. These devices are ideally suited for low power applications where battery operation or battery backup for non-volatility is required.

FEATURES

- Low Power Standby 1 μA Typ.
- Low Power Operation
- Data Retention 2.0V Min.
- Capability of Battery Backup Operation
- Fast Access Time 200-450 ns
- Identical Cycle and Access Times
- Single +5V Supply
- No Clock or Timing Strobe Required
- Completely Static Memory
- Automatic Power-Down
- Directly TTL compatible: All Inputs and Outputs
- Common Data Input and Output using Three-State Outputs
- Available in a Standard 18-Pin Plastic Package
- For Operation at +3V Power Supply, Contact the NEC Sales Office.

PIN CONFIGURATION

PIN NAMES

A ₀ -A ₉	Address Inputs
WE	Write Enable
CS	Chip Select
1/01-1/04	Data Input/Output
VCC	Power (+5V)
GND	Ground

BLOCK DIAGRAM

-40°C to +85°C

RATINGS* Supply Voltage+8.0 Volts

Note: 1 With Respect to Ground

 $T_a = 25^{\circ}C$

*COMMENT: Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 $T_a = -40^{\circ}$ C to +85°C; $V_{CC} = +5V \pm 10\%$ unless otherwise noted.

DC CHARACTERISTICS

ABSOLUTE MAXIMUM

		LIMITS												1	
•		444-3			444-2			444-1			444			1	
PARAMETER	SYMBOL	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	`MAX	UNIT	TEST CONDITIONS
Input Leakage Current	LI	-1.0		1.0	-1.0		1.0	-1.0	·	1.0	-1.0		1.0	ДΑ	VIN = GND to VCC
I O Leakage Current	¹ LO	-1.0		10	-1.0		1.0	-1.0		1.0	-1.0		1.0	ДΑ	CS - VIH. VI/O = GND to VCC
Operating Supply Current	^I CCA1		19	35	·	15	35		12	35		9	35	mΑ	CS = VIL, VIN = VCC, Outputs Open
Operating Supply Current	¹ CCA2		23	.0		19	40		15	40		12	40	mΑ	CS = V _{IL} , V _{IN} = 2.4V, Outputs Open
Average Operating Supply Current	^I CCA3		10	20		9	20		8	20		7	20	mA	V _{IN} = GND or V _{CC} , Outputs Open f = 1 MHz Duty 50%
Standby Supply Current	¹ccs		,	5		1	5		1	5		1	50	μА	CS = V _{CC} , V _{IN} = GND to V _{CC}
Input Low Voltage	VIL	-0.3		0.8	-0.3		0.8	-0.3		0.8	-0.3		0.8	٧	
Input High Voltage	VIH	2.4		V _{CC} + 0.3	2.4		V _{CC} + 0.3	2.4	·	V _{CC} + 0.3	2.4		V _{CC} + 0.3	٧	
Output Low Voltage	VOL			0.4			0.4			0.4			0.4	V	I _{OL} = 2.0 mA
Output High Voltage	νон	2.4			24			2.4			2.4			V	IOH1.0 mA

Ta = 25 C, f = 1 MHz

			LIMIT	s			
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS	
Input/Output Capacitance	C _{I/O}			10	ρF	V _{1/O} = 0V	
Input Capacitance	CIN			5	ρF	V _{IN} = 0V	

Note: This parameter is periodically sampled and not 100% tested.

CAPACITANCE

AC CHARACTERISTICS

 $T_a = -40^{\circ}$ C to +85°C; $V_{CC} = +5V \pm 10\%$ unless otherwise noted.

		LIMITS							1 1				
		444-3		444-2		444-1		444			ļ		
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS		
			RE	EADC	YÇLE								
Read Cycle	tRC	200		250		300		450		ns	Input Pulse Levels:		
Address Access Time	[†] AA		200		250		300		450	n\$	+0.8 to +2.4 Volts		
Chip Select Access Time ①	tACS1		200		250		300		450	ns	Input Rise and Fall Times: 10 ns		
Chip Select Access Time ②	tACS2		250		300		350		500	ns	Input and Output Timing		
Output Hold from Address Change	tOH	50		50		50		50		ns	Levels: 1.5 Volt		
Chip Selection to Output in Low Z	tLZ	20		20		20	<u> </u>	20		ns	Output Load: 1 TTL		
Chip Deselection to Output in High Z	^t HZ		60		70		80		100	ns	Gate and CL = 100 pF		
			W	RITE	CYCLE								
Write Cycle Time	twc	200		250		300		450		nş	Input Pulse Levels:		
Chip Selection to End of Write	¹CW	180		230		250		350		ns	+0.8 to +2.4 Volts		
Address Valid to End of Write	^t AW	180		230]	250		350		ns.	Input Rise and Fall Times: 10 ns		
Address Setup Time	†AS	0		0		0		0		ns	Input and Output Timin		
Write Pulse Width	twp	180		210		230		300	<u> </u>	nş	Levels: 1.5 Volt		
Write Recovery Time	twR	0		0] 0		0		ns	Output Load: 1 TTL		
Data Valid to End of Write	t DW	120		140		150		200		ns	Gate and Ct = 100 pF		
Data Hold Time	¹DH	0		0		0		0		ns]		
Write Enabled to Output in High 2	twz		60		70		80	<u> </u>	100	ns]		
Output Active from End of Write	10W	0	1	0	1	0		0	T	nş]		

Notes: 1 Chip deselected for greater than 100 ns prior to selection.

LOW VCC DATA RETENTION CHARACTERISTICS

 $T_a = -40^{\circ} \text{C to } +85^{\circ} \text{C}$

	SYMBOL		LIMITS		UNIT	TEST CONDITIONS
PARAMETER		MIN	TYP	MAX		
Data Retention Supply Voltage	VCCDR	2.0			V	CS = V _{CC} ,V _{IN} = V _{CC} to GND
Data Retention Supply Current	ICCDR		0,01	2	μА	V _{CC} = 3V, CS = V _{CC} V _{IN} = V _{CC} to GND
Chip Deselect to Data Retention Time	tCDR	0			ns	
Operation Recovery Time	^t R	tRC(1)			ns	

Notes: 1 tRC = Read Cycle Time

② 444-1, -2, -3: Value is 2 μA

444 Value is 10 μA

TIMING WAVEFORMS

READ CYCLE ① ②

② Chip deselected for a finite time that is less than 100 ns prior to selection. (If the deselect time is 0 ns, the chip is by definition selected and access occurs according to Read Cycle No. 1.)

WRITE CYCLE 4 5 6

Notes: 1) WE is high for Read Cycles.

- 2 Device is continuously selected, CS = VIL
- 3 Address valid prior to or coincident with CS transition low.
- 4 If the $\overline{\text{CS}}$ low transition occurs simultaneously with the $\overline{\text{WE}}$ low transition, the output buffers remain in a high impedance state.
- (5) WE must be high during all address transitions.
- 6 two is measured from the latter of CS or WE going low to the earlier of CS or WE going high.

LOW VCC DATA RETENTION

PACKAGE OUTLINE μPD444C

Plastic

ITEM	MILLIMETERS	INCHES			
А	23.2 MAX.	0.91 MAX.			
В	1,44	0.055			
С	2.54	0.1			
D	0.45	0.02			
E	20.32	0.8			
F	1.2	0.05			
G	2.5 MIN.	0.1 MIN.			
Н	0.5 MIN.	0.02 MIN.			
ı	4.6 MAX.	0.18 MAX.			
, , , , , ,	5.1 MAX.	0.2 MAX.			
К	7.62	0.3			
L	6.7	0.26			
М	0.25	0.01			