

# Introduction to Robotics CSE 461

Lecture 1: Chapter 1(Introduction to robotics: basics)

Riad Ahmed Lecturer, Dept. of Computer Science and Engineering Brac University

### Marks Distribution

- Quizzes/Class Tests: 15%
- Assignment and surprise test: 5%
- Attendance: 5%
- Mid Term Examination: 20%
- Final Examination: **30%**
- Lab: 15%
- Project: **10%**
- Total: 100%

# Syllabus

| Chapter                            | Description                                                                                                        | Class   |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------|
| 1. Robotics Basics                 | Definition of Robot, Robotics, Roboticity,<br>Autonomy, Laws of Robotics, Types of robots,<br>Paradigms, Subsystem | 1 - 4   |
| 2 . Introduction to Industrial Arm | Manipulator Types, Forward Kinematics, Inverse Kinematics                                                          | 5 - 8   |
| 3. Control System                  | Types of Control, Block diagram solving, PID control, Fuzzy Logic Control                                          | 9 - 12  |
| 4. Robot Navigation                | Path Planning, Localization, Mapping, Exploration                                                                  | 13 - 14 |
| 5. Robot Learning                  | Machine Learning Reinforcement Learning Computer Vision                                                            | 15 - 18 |

An embodied agent that can be programmed to perform physical tasks.

- Ultimately, all proposed definitions have some issues
- Is this a robot?



- Ultimately, all proposed definitions have some issues
- Is this a robot?



- Ultimately, all proposed definitions have some issues
- Is this a robot?



- Ultimately, all proposed definitions have some issues
- Is this a robot?



#### Degrees of roboticity?

An embodied agent that can be programmed to perform physical tasks

- Lack of universally acceptable definition hints at some deep philosophical questions
- Could also be an indicator of the youth of the field
- Probably need to measure degree of "roboticity"
  - In terms of degree of embodiment, autonomy, complexity, programmability, ...
  - But we don't have formal definitions for these concepts

#### Robotics

Robotics is a branch of engineering and computer science that deals with the design, construction, operation, and use of robots.

## Robotics vs. Artificial Intelligence

- This is something most roboticists agree on
  - A robot needs to be embodied
  - Artificial Intelligence (AI) need not be embodied













https://www.ubs.com/global/en/investment-bank/in-focus/research-focus/china-360/2020/warehouse-robotics.html

#### How Robots Are Used Across Industries

- Industrial
- Farming and Agriculture
- Healthcare
- Logistics
- Family Robots

# Think of some features for your own family robot!

https://www.youtube.com/watch?v=-e1 QhJ1EhQ

## **Next Class**

- Laws of Robotics
- Primitives
- Paradigms

# Thank You