Radijske pristupne mreže

Doc. dr. sc. Gordan Šišul

Radijske mreže gradskih područja

(802.16-2004 OFDMA radijsko sučelje, obilježja norme IEEE 802.16e, QoS)

OFDMA radijsko sučelje

- OFDMA (Orthogonal Frequency Division Multiple Access)
 - svi prijenosni resursi (frekvencijski i vremenski) dijele se između svih korisnika.
 - kod OFDM-a se u nekome određenom vremenskom odsječku svi resursi stavljaju na raspolaganje jednom korisniku.

OFDMA u stvari predstavlja kombinaciju višestrukih pristupa TDMA i OFDM

FDMA.

OFDMA radijsko sučelje

- OFDMA dijeli cjelokupni prostor podnosilaca u $N_{\rm G}$ skupina od kojih svaka ima $N_{\rm E}$ podnosilaca. Znači, postoji $N_{\rm E}$ logičkih podkanala (svaki logički podkanal opslužuje jednog korisnika).
- Kao primjer može se uzeti OFDMA s 2048 podnosilaca kod koje je u silaznoj vezi $N_E = 32$ i $N_G = 48$, dok su u uzlaznoj vezi ti iznosi $N_E = 32$ i $N_G = 53$. Ostali podnosioci koriste se kao piloti ili se uopće ne koriste (zaštitni pojas).
- Kodiranje, modulacija i razine amplitude mogu se namjestiti različito za svaki podkanal ovisno o uvjetima u kanalu kako bi se optimizirao prijenos.

Terminologija kod OFDMA

- PODRUČJE (zone) kompletan logički dio okvira. Postoje silazna i uzlazna područja (DL i UL). Neka koriste sve podkanale u OFDMA frekvencijskom području (FUSC, Full Usage of SubChannels), dok neka koriste samo dijelove (PUSC, Partial Usage of Subchannels). Područja se sastoje od burstova.
- BURST (burst) dio unutar područja koji je dodijeljen jednom korisniku. Sastoji se od odsječaka. Koristi određen broj podkanala i simbola.
- ODSJEČAK (slot) najmanja moguća jedinica podataka unutar OFDMA, definirana u vremenu i frekvenciji. Uvijek sadrži jedan podkanal i može sadržavati jedan do tri simbola (ovisno o vrsti područja). U DL-PUSC području odsječak je širok 2 simbola, a u UL-PUSC području 3 simbola.

Terminologija kod OFDMA

- PODKANAL (subchannel) opisuje najmanju logičku jedinicu u frekvencijskoj domeni. Sadrži jedan ili više podnosilaca (nisu susjedni) čiji raspored se može mijenjati unutar bursta, od simbola do simbola. Prema 802.16-2004 broj podkanala se mijenja od 32 do 96 ovisno o vrsti područja.
- SIMBOL (symbol) najmanja jedinica unutar vremenske domene.
 Njegovo trajanje ovisi o zaštitnom vremenskom intervalu OFDMA simbola i razmaku frekvencija podnosilaca. Treba razlikovati ovo značenje pojmova simbol i OFDMA simbol.
- SEGMENT (segment) je skup OFDMA skupina podkanala. Postoje tri segmenta za silaznu i tri za uzlaznu vezu.
- SKUPINA PODKANALA (subchannel group) jedan ili više podkanala (od kojih se svaki sastoji od 1 ili više fizičkih podnosilaca) u DL-PUSC području. Postoji 6 skupina podkanala.

Struktura OFDMA okvira

Struktura OFDMA okvira

- OFDMA okvir može trajati od 2 ms do 20 ms (približne vrijednosti, ovise o zaštitnom pojasu). Pri tome se prenese 19 do 198 OFDMA simbola. Iako se podržava FDD i TDD, dominantno se koristi TDD.
- Unutar silazne i uzlazne veze ne moraju se upotrijebiti različite vrste područja. U okviru se uvijek moraju nalaziti: preambula, FCH i DL MAP.

Struktura OFDMA okvira

- Na početku svakog podokvira silazne veze nalazi se preambula (traje jedan OFDMA simbol). Broj korištenih podnosilaca određuje koji od tri segmenta (koristi se kod planiranje pokrivanja BS) će se koristiti.
- Nakon preambule odašilje se FCH (zaglavlje koje kontrolira okvir) koje je QPSK modulirano i traje dva OFDMA simbola. Svaki segment sadrži FCH, a položaj FCH polja u okviru je fiksan. Sadržaj FCH opisuje koji podkanali se koriste te kolika je duljina DL-MAP-a koja slijedi.
- DL-MAP (raspoređivanje silazne veze) daje lokacije burstova u silaznim područjima. On sadrži broj silaznih burstova i njihov položaj kao i duljinu u matrici frekvencijski podnosioci – vrijeme. Odašilje se u svakom segmentu.
- UL-MAP (raspoređivanje uzlazne veze) se odašilje kao prvi burst u silaznoj vezi i sadrži informacije o lokacijama burstova uzlazne veze koji odašilju različiti korisnici.

Područja (zones)

- Više vrsta, ali DL-PUSC područje mora biti prvo u silaznoj vezi (tako je i UL-PUSC prvo područje u uzlaznoj vezi). Karakterizira ga djelomično korištenje podkanala.
- DL-FUSC nema segmente, koristi sve podkanale.
- Postoje i druge vrste područja kao što su opcijski DL-FUSC te AMC (Advanced Modulation and Coding). Sadržaj okvira može biti i AAS (Adaptive Antenna System) koji se koristi u slučaju korištenja inteligentnih antena i MIMO tehnike za unaprjeđivanje karakteristika.

Područja (zones)

primjer nekih specifikacija-informativno

Parametar	DL-FUSC	Opcijski DL-FUSC	DL-PUSC	UL-PUSC
FFT veličina	2048	2048	2048	2048
DC podnosilac	1 (indeks 1024)	1	1 (indeks 1024)	1 (indeks 1024)
Lijevi zaštitni podnosioci	173	159	184	184
Desni zaštitni podnosioci	172	160	183	183
Korisni podnosioci (bez DC podnosioca)	1702	1728	1680	1680
Piloti	166 (2×12+2×71)	192	promjenjivo	promjenjivo
Podnosioci koji prenose podatke	1536	1536		
Broj podnosilaca po podkanalu	48	48		
Podkanali	32	32	60	70
Veličina odsječka (podkanali×simbol)	1×1	1×1	1×2	1×3

Zaključak uz normu 802.16-2004

- iako postoji 5 definiranih radijskih sučelja, najviše se upotrebljava radijsko sučelje OFDM,
- OFDMA princip rada pogodniji je za mobilne mreže, dok je za fiksne mreže prikladniji OFDM (manje je kompleksan i jeftiniji),
- postoje certificirani proizvodi za OFDM radijska sučelja,
- proizvodi su već sazreli na tržištu,
- uklapa se u dodijeljeni spektar u našoj državi

- Norma 802.16e također definira više vrsta radijskih sučelja.
- Osnovno mobilnost; radijsko sučelje OFDMA
 - često u uporabi termin S-OFDMA- skalirajuća (scalable) OFDMA
 - osim FFT veličine 2048, koja se koristi u 802.16-2004, dopušta se i FFT razina 1024, 512 i 128. S mogućnošću namještanja FFT veličine, a istodobno fiksirajući razmak frekvencija između podnosilaca (10,94 kHz) postigla se skalabilnost sustava.
 - Faktor uzorkovanja n može poprimiti vrijednosti 8/7 i 28/25, dok je omjer zaštitnog intervala i korisnog vremena simbola G iznosa 1/4 ili 1/8 ili 1/16 ili 1/32.
- Najveće razlike u odnosu na raniju normu iskazuju se u višim slojevima (MAC sloju) gdje su dodane još neke funkcionalnosti.
 - npr. prekapčanje (handover), neograničeno kretanje (roaming).

- Sustav je također definiran za rad u različitim širinama kanala.
 - trenutno su najzastupljenije širine kanala 5 i 10 MHz (komercijalno dostupna oprema)
 - primjeri mogućih načina rada za različite širine kanala

- Složenija kodiranja
 - turbo kodovi, LDPC
- Više profila burstova (modulacija+kodiranje), čak 65
- Područja (zone): postojeće + TUSC (Tile Usage of Subcarriers)
 - svako područje na određeni način raspodjeljuje podnosioce (različite permutacije), odsječci (slots) su im različitih veličina

primjeri

- FUSC odsječak ima 48 podnosioca unutar 1 OFDMA simbola
- DL-PUSC odsječak ima 24 podnosioca unutar 2 OFDMA simbola
- UL-PUSC i TUSC odsječak ima 16 podnosioca unutar 3 OFDMA simbola
- AMC odsječak ima 8, 16, 24 podnosioca unutar 6, 3, 2 OFDMA simbola

podsjetnik

- "osnovna građevna jedinica podataka" u matrici vrijeme-frekvencija je odsječak, više odsječaka tvori burst
- burst je obilježen istim modulacijskim postupkom i kodiranjem

Struktura okvira

- Da bi se osigurala mobilnost, u uzlaznoj vezi nalaze se tri bloka:
 - UL podešavanje (UL *Ranging*): služi da bi se ostvarilo namještanje snage, frekvencije, traženog pojasa itd.
 - UL CQICH, zove se i CQI (*Channel Quality Indicator*), indikator kvalitete kanala: služi za povratnu informaciju o stanju u fizičkom kanalu,
 - UL ACK (acknowledgement), odgovor: služi da bi se odgovorilo na upit iz bazne postaje DL HARQ (Hybrid Automatic Repeat Request).

Usporedba najčešćih radijskih sučelja

- WiMAX je pokriven normama 802.16-2004 (nepokretne mreže) i 802.16e (mobilne mreže)
- U praksi se za nepokretni WiMAX koristi OFDM radijsko sučelje, dok se za mobilni WiMAX upotrebljava skoro isključivo OFDMA radijsko sučelje.
- U Južnoj Koreji zaživio je WiBRO sustav kojeg možemo smatrati dijelom mobilnog WiMAX-a

Usporedba najčešćih radijskih sučelja

Parametar	802.16-2004 OFDM	802.16-2004 OFDMA	802.16e	WiBRO
Veličina FFT	256	2048	2048, 1024, 512, 128	1024
Broj korisnih podnosilaca	200	1680/1728	promjenljiv	864/840
Broj pilota	8	166/192	promjenljiv	96
Frekvencijska širina kanala	1,25 do 28 MHz	1,25 do 28 MHz	1,25 do 28 MHz	8,75 MHz
Modulacijski postupci	BPSK, QPSK, 16-QAM, 64-QAM	QPSK, 16-QAM, 64-QAM	QPSK, 16-QAM, 64-QAM	QPSK, 16-QAM, 64- QAM
Dupleks	TDD/FDD	TDD/FDD	TDD/FDD	TDD
Zaštitni interval	1/4, 1/8, 1/16, 1/32	1/4, 1/8, 1/16, 1/32	1/4, 1/8, 1/16, 1/32	1/8
Podržano više korisnika po frekvenciji za vrijeme trajanja OFDM/OFDMA simbola	NE	DA	DA	DA
Podržano više korisnika po vremenu unutar jednog kanala	DA	DA	DA	DA
MIMO (Multiple Input Multiple Output)	DA	DA	DA	DA

MAC sloj – kratki pregled

- paketi iz višeg sloja MSDU (MAC service data units) organiziraju se u MPDU (MAC protocol data units) za odašiljanje u radijskom sučelju
- MPDU u WiMAX-u imaju varijabilnu duljinu
- svaki okvir započinje s generičkim MAC zaglavljem (GMH)
 - ono sadrži identifikaciju spajanja (CID), duljinu okvira, bitove koji govori o postojanju CRC-a, pod-zaglavlja, kako i koji su podaci kriptirani i s kojim ključem
- sadržaj okvira su korisnički ili upravljački podaci
- osim MSDu-a korisnički podaci mogu sadržavati podatke koji govore o zahtjevima za pojasom ili retransmisiji
- vrstu korisničkih podataka kazuje pod-zaglavlje koje slijedi

MAC sloj – kratki pregled

- zahtjev za reemitiranjem (ARQ) također može biti sadržaj okvira
- maksimalna duljina okvira je 2047 bajtova
- cijela upravljačka pamet nalazi se u baznoj postaji
 - dodjeljivanje resursa korisničkim postajama naziva se polling (prozivanje)
 - ono se može raditi individualno ili grupno (multicast, broadcast)

Primjeri različitih MAC PDU okvira

(a) MAC PDU okvir koji sadrži nekoliko MSDU paketa fiksne veličine

	GMH	Drugi SH	FSH	MSDU fragment	CRC	
--	-----	-------------	-----	------------------	-----	--

(b) MAC PDU okvir koji sadrži jedan MSDU paket

(c) MAC PDU okvir koji sadrži nekoliko MSDU paketa promjenjive veličine

GMH Drugi SH	ARQ	CRC	
-----------------	-----	-----	--

(d) MAC PDU okvir koji sadrži ARQ

GMH	Drugi SH	PSH	ARQ	PSH	MSDU promjenjive veličine	•••	CRC	
-----	-------------	-----	-----	-----	---------------------------------	-----	-----	--

(e) MAC PDU okvir koji sadrži ARQ i MSDU pakete

GMH	MAC upravljačka poruka	CRC	
-----	------------------------	-----	--

(f) MAC upravljački okvir

- CRC: cyclic redundacy check
- FSH: fragmentation subheader
- GMH: generic MAC header
- PSH: packing subheader
- SH: subheader
- ARQ: automatic repeat request

Kvaliteta usluge (QoS)

- prije prijenosa podataka (korisničkih), BS i SS uspostavljaju vezu između svoja dva MAC sloja
- svaka veza je označena (određena) s CID-om
- WiMAX definira tzv. protok usluge (service flow)
 - protok paketa s različitim postavkama QoS parametara identificira se pomoću identifikatora protoka usluge SFID (service flow identifier)
 - QoS parametri: prioritet u prometu, maksimalna neprekinuta brzina prijenosa, maksimalna brzina bursta, minimalna tolerancija u promjeni brzine, plan (raspored) dodjeljivanja resursa,vrsta ARQ, maksimalno kašnjenje...

Kategorije kvalitete usluge

- Sustav ima sljedeće kategorije kvalitete usluga (QoS, Quality of Service):
 - UGS (Unsolicited Grant Service) usluge s nezatraženim dodjeljivanjem: koristi se za prijenos VoIP-a, T1/E1 prijenos, a karakterizira ga maksimalni kontinuirani protok podataka, maksimalna tolerancija razdoblja čekanja, tolerancija na podrhtavanje takta, ima najveći prioritet;
 - rtPS (Real Time Polling Service) usluge s prozivanjem u stvarnom vremenu: koristi se za prijenos audio ili video tijeka podataka (MPEG video), karakterizira ga minimalni rezervirani protok, maksimalni mogući kontinuirani protok podataka, maksimalna tolerancija razdoblja čekanja, prioritet u prometu;

Kategorije kvalitete usluge

- ErtPS (Extended Real-Time Polling Service) proširene usluge s prozivanjem u stvarnom vremenu: koristi se za prijenos audio tijeka podataka (VOIP) s uključenom detekcijom aktivnosti, karakterizira ga sve što i rtPS plus tolerancija na podrhtavanje takta;
- nrtPS (Non Real Time Polling Service) usluge s nekontinuiranim prozivanjem: koristi se za prijenos datoteka (FTP), karakterizira ga minimalni rezervirani protok, maksimalni mogući kontinuirani protok, određeni prioritet u prometu;
- BE (Best Effort Service) najbolje moguće ostvarive usluge: koristi se za prijenos datoteka (HTTP), pregledavanje Web sadržaja, karakterizira ga da nisu zajamčene brzina prijenosa niti kašnjenje, maksimalni mogući kontinuirani protok, ima najmanji prioritet u prometu.

