Kalkulua

Aldagai anitzeko funtzioen estudio lokala

Berretura-seriezko garapena eta aldagai anitzeko funtzioen muturrak

Ivan Arrizabalaga Cupido

April 25, 2017

Aurkibidea

3.1	Berretura-seriezko garapena	1
3.2	Aldagai anitzeko funtzioen muturrak	2
3.3	Ariketak	4

3.1 Berretura-seriezko garapena

Izan bedi $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$ funtzio erreal diferentzia
garria.

Hortaz, $\forall k = 1, ..., n \quad \exists D_k f(x)$ eta horiek $D_k f: \mathbb{R}^n \to \mathbb{R}$ funtzio errealak dira.

Hori j aldagaiarekiko deriba dezakegu: $D_j(D_k f) = D_{jk} f$. Hori da bigarren ordenako deribatu partzial bat.

Berdinak al dira $D_{jk}f$ eta $D_{kj}f$? Hau da, deribazio ordenak eragina al du emaitzan? Bai, izango du, ondorioz, deribazio-ordena kontuan izan beharko dugu.

3.1. Adibidea.
$$f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$$
 $f(x,y) = y^2 e^x + x^2 y^3 + 1$.

Kalkulatu $D_{112}f(x,y)$ eta $D_{211}f(x,y)$.

$$D_2 f = 2ye^x + 3x^2y^2$$
; $D_{12} f = 2ye^x + 6xy^2$; $D_{112} f = 2ye^x + 6y^2$.

$$D_1 f = y^2 e^x + 2xy^3$$
; $D_{11} f = y^2 e^x + 2y^3$; $D_{211} f = 2y e^x + 6y^2$.

Kasu honetan berdinak dira.

Deribatu gurutzatuak dira, baina ez da beti horrela.

3.2. Teorema. Taylor-en garapena

Izan bedi $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funtzio erreala (p+1) aldiz diferentziagarria $a \in A$ puntuaren B(a,r) bola batean.

$$\forall x \in B(a,r) / L[a,x] \in B(a,r) \quad \exists z \in L[a,x], \ non$$

$$f(x) = f(a) + \frac{1}{1!}Df(a)(x-a) + \frac{1}{2!}D^{(2)}f(a)(x-a)^{(2)} + \dots + \frac{1}{p!}D^{(p)}f(a)(x-a)^{(p)} + \frac{1}{(p+1)!}D^{(p+1)}f(z)(x-a)^{(p+1)} beteko baita.$$

$$f: \mathbb{R}^2 \to \mathbb{R}$$
 funtzioaren kasuan: $a \equiv (a, b), x \equiv (x, y)$

$$f(x,y) = f(a,b) + \frac{1}{1!}(D_1f(a,b)(x-a) + D_2f(a,b)(y-b)) + \frac{1}{2!}(D_{11}f(a,b)(x-a)^2 + 2D_{12}f(a,b)(x-a)(y-b) + D_{22}f(a,b)(y-b)^2) + \frac{1}{3!}(D_{111}f(a,b)(x-a)^3 + 3D_{112}f(a,b)(x-a)^2(y-b) + 3D_{122}f(a,b)(x-a)(y-b)^2 + D_{222}f(a,b)(y-b)^3) + \dots$$

3.3. Adibidea. $f(x,y) = y^x$ (1,1) puntuan

$$f(x,y) = y^{x}$$

$$D_{1}f(x,y) = y^{x} \ln y$$

$$D_{2}f(x,y) = xy^{x-1}$$

$$D_{11}f(x,y) = (1y^{x} \ln y)(\ln y) = y^{x} \ln^{2} y$$

$$D_{11}(1,1) = 0$$

$$D_{12}f(x,y) = y^{x-1} + xy^{x-1} \ln y$$

$$D_{12}(1,1) = 1$$

$$D_{22}f(x,y) = x(x-1)y^{x-2}$$

$$D_{22}(1,1) = 0$$

2 Aurkibidea

$$D_{111}f(x,y) = y^{x} \ln^{3} y \qquad D_{111}(1,1) = 0$$

$$D_{112}f(x,y) = 2y^{x-1} \ln y + xy^{x-1} \ln^{2} y \qquad D_{112}(1,1) = 0$$

$$D_{122}f(x,y) = (2x-1)y^{x-2} + (x^{2}-x)y^{x-2} \ln y \qquad D_{122}(1,1) = 1$$

$$D_{222}f(x,y) = x(x-1)(x-2)y^{x-3} \qquad D_{222}(1,1) = 0$$

$$f(x,y) = 1 + \frac{1}{1!}(0(x-1) + 1(y-1)) + \frac{1}{2!}(0(x-1)^{2} + 2 \cdot 1(x-1)(y-1) + 0(y-1)^{2}) + \frac{1}{3!}(0(x-1)^{3} + 3 \cdot 0(x-1)^{2}(y-1) + 3 \cdot 1(x-1)(y-1)^{2} + (y-1)^{3}) + \dots$$

$$= 1 + (y-1) + (x-1)(y-1) + \frac{1}{2}(x-1)(y-1)^{2} + \dots$$

3.2 Aldagai anitzeko funtzioen muturrak

- **3.4. Definizioa.** $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funtzio errealak mutur absolutua izango du $a \in A$ puntuan $f(x) \leq f(a)$ (maximoa) edo $f(a) \leq f(x)$ (minimoa) bada.
- **3.5. Definizioa.** $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funtzio errealak mutur erlatiboa izango du $a \in A$ puntuan B(a,r) bola bat existitzen bada, non $\forall x \in B(a,r) \subseteq A$ $f(x) \leq f(a)$ (maximoa) edo $f(a) \leq f(x)$ (minimoa) bada.
- **3.6. Definizioa.** $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funtzio erreala diferentziagarria bada $a \in A$ puntuan eta $Df(a) = \theta$ (nulua) bada, $a \in A$ puntuari funtzioaren puntu kritiko deritzo.
- **3.7. Definizioa.** $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funtzio erreal diferentziagarria emanik, $a \in A$ puntu kritikoa zela-puntua da $\forall r > 0 \ / \ \exists \ x, y \in B(a, r), \ non \ f(x) < f(a) < f(y)$ betetzen baita.
- **3.8. Teorema.** Baldintza beharrezkoa

Izan bedi $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funtzio erreala $a \in A$ puntuan funtzioaren diferentzial totala (deribatu partzial guztiak) existitzen bada, funtzioak $a \in A$ puntuan mutur bat badu, $Df(a) = \theta$ izango da.

3.9. Teorema. Baldintza nahikoak

Izan bedi $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ funtzio erreala bi aldiz diferentziagarria $a \in A$ puntuan. Demagun 2. ordenako deribatu partzial guztiak jarraituak direla $a \in A$ puntuaren bola batean eta $Df(a) = \theta$ dela.

Orduan, segida hau osatuko dugu: $\{1, H_1, H_2, ..., H_n\}$, non

$$H_{1} = D_{11}f(a), H_{2} = \begin{vmatrix} D_{11}f(a) & D_{12}f(a) \\ D_{21}f(a) & D_{22}f(a) \end{vmatrix}, \dots, H_{n} = \begin{vmatrix} D_{11}f(a) & D_{12}f(a) & \dots & D_{1n}f(a) \\ D_{21}f(a) & D_{22}f(a) & \dots & D_{2n}f(a) \\ \dots & \dots & \dots & \dots \\ D_{n1}f(a) & D_{n2}f(a) & \dots & D_{nn}f(a) \end{vmatrix}$$

baitira (azken matrize honeri matrize hessetarra deritzo).

- 1) $\{1, H_1, H_2, ..., H_n\}$ segidaren gai guztiak positiboak badira, funtzioak minimo erlatibo bat izango du $a \in A$ puntuan.
- 2) $\{1, H_1, H_2, ..., H_n\}$ segidaren gaiak, txandaka, positiboak eta negatiboak badira, funtzioak maximo erlatibo bat izango du $a \in A$ puntuan.

- 3) $\{1, H_1, H_2, ..., H_n\}$ segidaren gaiak positiboak eta negatiboak badira beste edozein ordenatan, funtzioak zela-puntu bat izango du $a \in A$ puntuan.
 - 4) $\{1, H_1, H_2, ..., H_n\}$ segidaren gairen bat 0 bada, azterketa berezia egin beharko da.
- **3.10. Korolarioa.** Izan bedi $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$ funtzio erreala bi aldiz diferentziagarria $a \in A$ puntuan. Demagun 2. ordenako deribatu partzial guztiak jarraituak direla $a \in A$ puntuaren bola batean eta $Df(a) = \theta$ dela.

Orduan, segida hau osatuko dugu $\{1, D_{11}f(a), \Delta\}$, non $\Delta = \begin{vmatrix} D_{11}f(a) & D_{12}f(a) \\ D_{21}f(a) & D_{22}f(a) \end{vmatrix}$ hessetarra baita.

- 1) $D_{11}f(a) > 0$ eta $\Delta > 0$ badira, funtzioak minimo erlatiboa izango du $a \in A$ puntuan.
- 2) $D_{11}f(a) < 0$ eta $\Delta > 0$ badira, funtzioak maximo erlatiboa izango du $a \in A$ puntuan.
 - 3) $D_{11}f(a) \neq 0$ eta $\Delta < 0$ badira, funtzioan zela-puntu bat izango du $a \in A$ puntuan.
 - $4)\{1, D_{11}f(a), \Delta\}$ segidaren gai bat 0 bada, azterketa berezia egon beharko da.
- **3.11. Adibidea.** $f(x,y) = x^3 + y^3 3x 12y + 20$ funtzioaren mutur erlatiboak bilatuko ditugu.
 - a) puntu kritikoak bilatuko ditugu

$$D_1 f(x,y) = 3x^2 - 3 \mid | = 0 \Rightarrow x^2 = 1 \Rightarrow x = \pm 1.$$

$$D_2 f(x,y) = 3y^2 - 12 \mid \mid = 0 \Rightarrow y^2 = 4 \Rightarrow y = \pm 2.$$

Beraz, (1,2),(1,-2),(-1,2),(-1,-2) puntu kritikoak ditugu.

b) puntu kritikoak aztertuko ditugu

$$D_{11}f(x,y) = 6x$$

$$D_{12}f(x,y) = 0$$

$$\begin{vmatrix} 6x & 0 \\ 0 & 6y \end{vmatrix} = 36xy \Rightarrow \{1,6x,36xy\} \text{ segida dugu.}$$

$$D_{22}f(x,y) = 6y$$

Puntuak	1	$D_{11}f(x,y)$	$\mid \Delta \mid$
(1,2) puntua	1	6	72
(1,-2) puntua	1	6	-72
(-1,2) puntua	1	-6	-72
(-1,-2) puntua	1	-6	72

Funtzioak minimo erlatiboa du (1,2) puntuan, non f(1,2)=2 baita.

Funtzioak zela- puntu bat du (1,-2) puntuan, non f(1,-2)=34 baita.

Funtzioak zela- puntu bat du (-1,2) puntuan, non f(-1,2)=6 baita.

Funtzioak maximo erlatiboa du (1,-2) puntuan, non f(-1,-2)=38 baita.

4 Aurkibidea

3.3 Ariketak

1.1-3 Kalkula itzazu deribatu partzial hauek:

$$u = x^3 + y^3 + z^3 - 6xyz$$
, 3. ordenakoak.

$$\begin{array}{lll} D_{111}u=6 & D_{211}u=0 \\ D_{112}u=0 & D_{212}u=0 \\ D_{113}u=0 & D_{213}u=-6 \\ D_{221}u=0 & D_{313}u=0 \\ D_{222}u=6 & D_{323}u=0 \\ D_{223}u=0 & D_{333}u=6 \end{array}$$

2.1-1 Kalkula ezazu funtzioen Taylor-en garapena jatorriaren inguruan:

$$f(x,y) = \sin x \sin y$$
, 3. ordenaraino.
(a,b)=(0,0)

$$f(0,0)=0$$

$$D_1 f(x, y) = \cos x \sin y$$
 $D_1 f(0, 0) = 0$
 $D_2 f(x, y) = \sin x \cos y$ $D_2 f(0, 0) = 0$

$$D_{11}f(x,y) = -\sin x \sin y \qquad D_{11}f(0,0) = 0$$

$$D_{12}f(x,y) = \cos x \cos y \qquad D_{12}f(0,0) = 1$$

$$D_{22}f(x,y) = -\sin x \sin y \qquad D_{21}f(0,0) = 0$$

$$D_{111}f(x,y) = -\cos x \sin y \qquad D_{111}f(0,0) = 0$$

$$D_{112}f(x,y) = -\sin x \cos y \qquad D_{112}f(0,0) = 0$$

$$D_{122}f(x,y) = -\cos x \sin y \qquad D_{122}f(0,0) = 0$$

$$D_{222}f(x,y) = -\sin x \cos y \qquad D_{222}f(0,0) = 0$$

$$P(x,y) = \frac{1}{2}(2D_{12}f(0,0))(x-0)(y-0).$$

$$P(x,y) = xy.$$

3.3. Ariketak 5

3.1-1 Kalkula itzazu funtzio honen muturrak:

$$\begin{split} z &= x^3 + 3xy^2 - 15x - 12y \\ D_1 z &= 3x^2 + 3y^2 - 15 \ || = 0 \Rightarrow 3x^2 + 3y^2 - 15 = 0 \Rightarrow x^2 + y^2 = 5 \\ D_2 z &= 6xy - 12 \ || = 0 \Rightarrow 6xy - 12 = 0 \Rightarrow x = \frac{2}{y} \\ x &= \frac{2}{y} \text{ goiko ekuazioan ordezkatuz,} \end{split}$$

$$\frac{4}{y^2} + y^2 - 5 = 0 \Rightarrow \frac{4}{y^2} + \frac{y^4}{y^2} - \frac{5y^2}{y^2} = 0 \Rightarrow 4 + y^4 - 5y^2 = 0 \Rightarrow y^4 - 5y^2 + 4 = 0.$$

$$t^2 - 5t + 4 = 0 \Rightarrow t = \frac{+5 \pm \sqrt{(5)^2 - 4 * 4 * 1}}{2} = \frac{-5 \pm \sqrt{9}}{2} \Rightarrow t = \frac{+5 + 3}{2} = 4 \text{ eta}$$

$$t = \frac{+5 - 3}{2} = 2.$$

$$y^2 = t$$
, beraz $y^2 = 4 \Rightarrow y = +2$ edo -2 .
eta $y^2 = 2 \Rightarrow y = +1$ edo -1 .

Dauden kondizioak kontuan hartuta $(x = \frac{2}{y})$, hauek dira puntu posibleak: (2,1),(1,2),(-1,-2) eta (-2,-1).

$$D_{11}f(x,y) = 6x$$

 $D_{12}f(x,y) = 6y$ $\Delta = \begin{vmatrix} 6x & 6y \\ 6y & 6x \end{vmatrix} = 36x^2 - 36y^2$.
 $D_{22}f(x,y) = 6x$

Puntuak	1	$D_{11}f(x,y)$	Δ
(2,1) puntua	1	12	108
$\overline{(1,2)}$ puntua	1	6	-108
(-1,-2) puntua	1	-6	-108
(-2,-1) puntua	1	-12	108

Funtzioak minimo erlatiboa du (2,1) puntuan, non f(2,1)=-28. Funtzioak zela- puntu bat du (1,2) puntuan, non f(1,2)=-26. Funtzioak zela- puntu bat du (-1,-2) puntuan, non f(-1,-2)=26. Funtzioak maximo erlatiboa du (-2,-1) puntuan, non f(-2,-1)=28.