A Certified Library of Ordinal Arithmetic

Nicolai Kraus Fredrik Nordvall Forsberg

Chuangjie Xu

Continuity, Computability, Constructivity: From Logic to Algorithms

September 20–24 2021, Birmingham/online

What are ordinals?

One answer: Numbers for ranking/ordering

0, 1, 2, ...,
$$\omega$$
, $\omega + 1$, ..., $\omega \cdot 2$, $\omega \cdot 2 + 1$, ..., $\omega \cdot 3$, ...
$$\omega^{2}, \ldots, \omega^{2} \cdot 3 + \omega \cdot 7 + 13, \ldots, \omega^{\omega}, \ldots, \varepsilon_{0} = \omega^{\omega^{\omega^{\cdots}}}, \ldots, \varepsilon_{17}, \ldots$$

Another answer: **Sets with an order** < which is

- **transitive**: $(a < b) \rightarrow (b < c) \rightarrow (a < c)$
- **wellfounded**: every sequence $a_0 > a_1 > a_2 > a_3 > \dots$ terminates
- ▶ and trichotomous: $(a < b) \lor (a = b) \lor (b < a)$
- ...or extensional (instead of trichotomous):

$$(\forall a.a < b \leftrightarrow a < c) \rightarrow b = c$$

What are ordinals good for?

Some examples:

- ▶ Justifying recursive definitions, e.g., the Ackermann function
- Consistency proof e.g. of Peano's axioms [Gentzen 1936]
- ➤ Termination of processes, e.g., [Goodstein 1944], [Turing 1949], Hydra game [Kirby&Paris 1982]: All hydras eventually die.

Constructive notions of ordinals

In a constructive setting: different definitions differ!

- N. Kraus and F. Nordvall Forsberg and C. Xu. *Connecting constructive notions of ordinals in homotopy type theory.* MFCS 2021.
 - an axiomatic framework for ordinals and ordinal arithmetic
 - connections between the three notions and their arithmetic operations

Cantor normal forms

Motivation: $\alpha = \omega^{\beta_1} + \omega^{\beta_2} + \cdots + \omega^{\beta_n}$ with $\beta_1 \geq \beta_2 \geq \cdots \geq \beta_n$

Let \mathcal{T} be the type of *unlabeled binary trees*:

$$0 : \mathcal{T}$$

$$\omega^{-} + - : \mathcal{T} \to \mathcal{T} \to \mathcal{T}$$

$$\alpha = \sqrt{\beta_{1}} \sqrt{\beta_{2}}$$

Problem: e.g., $\omega^{\beta_1} + \omega^{\beta_2} + 0 \neq \omega^{\beta_2} + \omega^{\beta_1} + 0$

Let < be the *lexicographical order* on binary trees.

A tree is a *Cantor normal form* (Cnf) if $\beta_1 \geq \beta_2 \geq \cdots \geq \beta_n$ and β_i 's are Cnfs.

Equivalent implementations: (i) hereditary descending lists (mutually with <), and (ii) finite hereditary multisets (as a quotient inductive type)

What Cnf can and cannot do

- ▶ The order < on Cnf is extensional, trichotomous and wellfounded.
 - ► Cnf is an ordinal (in the set-theoretic sense).
 - ► Cnf satisfies the principle of transfinite induction.
- Every Cnf is a zero, a successor or a limit (of its fundamental sequence).
- \triangleright Cnf has addition, multiplication and exponentiation (with base ω).
- ► Cnf cannot calculate limits of sequences.
 - ▶ The existence of the limit of ω , ω^{ω} , $\omega^{\omega^{\omega}}$, $\omega^{\omega^{\omega^{\omega}}}$, ... (which is ε_0) implies \bot .
 - ▶ Cnf represents only the ordinals below ε_0 .
- ▶ If Cnf has limits of arbitrary *bounded* sequences, then WLPO holds.

Ordinal arithmetic

Theorem. Cnf has addition, multiplication and exponentiation (with base ω).

However, what does it mean?

E.g., we define an operation + on Cnf, why can we call it addition?

Our answer: the set-theoretic (i.e., transfinite-recursive) definition

E.g., we show that our + satisfies

- a + 0 = a
- a + (b+1) = a+b+1
- ▶ b is-lim-of $f \to c$ is-lim-of $(\lambda i.a + fi) \to a + b = c$

Note: Cnf cannot calculate limits.

Ordinal arithmetic: addition

Addition is defined inductively on the arguments.

$$\text{E.g., } (\omega^a + c) \ + \ \left(\omega^b + d\right) \ = \left\{ \begin{array}{ll} \omega^b + d & \text{if } a < b \\[0.2cm] \omega^a + \left(c + \left(\omega^b + d\right)\right) & \text{otherwise} \end{array} \right.$$

To verify "b is-lim-of $f \to c$ is-lim-of $(\lambda i.a + fi) \to a + b = c$ ", we use the following subtraction lemma.

Lemma. If $a \le b$, then there exists a unique Cnf c such that a + c = b.

Similarly, we construct division for verifying the correctness of multiplication (and logarithm for exponentiation).

Commutative Hessenberg sum and product

Consider an equivalent structure that ignores the order:

Quotient inductive type Fhm: hSet of finite hereditary multisets, generated by

- ▶ 0 : Fhm
- \blacktriangleright $\omega^- \oplus : \mathsf{Fhm} \to \mathsf{Fhm} \to \mathsf{Fhm}$
- $\qquad \qquad \mathsf{per}(a,b,c): \omega^a \oplus \omega^b \oplus c = \omega^b \oplus \omega^a \oplus c \qquad \mathsf{for} \ a,b,c: \mathsf{Fhm}$

Example: $\omega^0 \oplus \omega^{\omega^0 \oplus 0} \oplus 0 \oplus \omega^{\omega^0 \oplus 0} \oplus 0 = \omega^{\omega^0 \oplus 0} \oplus 0 \oplus \omega^0 \oplus \omega^0 \oplus 0 \oplus 0$ by per, representing the ordinal $\omega^\omega + \omega + 1$.

Hessenberg sum is given by the union operation which is commutative.

Commutative product is also conveniently defined.

Equivalence between Cnf and Fhm

- ► Cnf descending lists
- ► Fhm lists quotient by permutation

The constructors $\omega^- \oplus -$ and per of Fhm "determine" the insertion on Cnf.

Hessenberg sum and product on Cnf, as well as their commutativity proofs, are obtained by transporting those on Fhm.

Summary

A certified library of a notation system representing ordinals below ε_0 :

- transfinite induction
- classification (zero, successor or limit)
- ordinary arithmetic (addition, subtraction, multiplication, division, exponentiation) and correctness proofs
- commutative Hessenberg sum and product
- development in cubical Agda: https://cj-xu.github.io/agda/CertifiedOrdinalArithmetic/
- connections to Brouwer trees and extensional wellfounded orders

THANK YOU!!