

Rapport Master M1

Aicha Maaoui

Master Calcul Haute Performance Simulation (CHPS)

TP4-TP5 Calcul Numerique

Décembre 2021

Institut des Sciences et Techniques des Yvelines (ISTY)

Abstract

Le TP 4 "Exploitation des Structures et Calcul Creux" est associé au cours de Calcul Numérique "Vers l'optimisation d'algorithmes numériques et algèbre creuse".

Il a pour but:

- \bullet Implémentation de l'algorithme de la factorisation LDL^T pour une matrice symétrique,
- Implémentation de l'algorithme de la factorisation Cholesky LL^T pour une matrice symétrique définie positive,
- Comparison des algorithmes de factorisation LDL^T et LU,
- Implémentation des algorithmes de stockage COO, CSR et CSC pour les matrices creuses,
- Algorithme de calcul du transposée d'une matrice creuse,
- Algorithme de calcul du Produit Matrice-Vecteur creux pour les formats COO et CSR,
- Test et validation, étude de compléxité, ainsi que des mesures de performance des algorithmes implémentés.

Le TP 5 "Application à l'équation de la chaleur 1D stationnaire" est associé au cours de Calcul Numérique "Vers l'optimisation d'algorithmes numériques et algèbre creuse". Il a pour objectif la résolution d'un système linéaire obtenu par la discrétisation (méthode des différences finies) de l'équation de la chaleur 1D stationnaire.

Il comporte:

- Travail préliminaire et explication du cas test Poisson 1D,
- Explication de l'architecture du code,
- Explication des appels aux bibliothèques externes,

- Explication du format de stockage et illustration des stockages en Row Major et Col Major,
- Explication et validation des appels à dgbsv,
- Explication et validation des appels à dgbmv,
- Implémentation de l'algorithme de factorisation LU pour la matrice tridiagonal (au format GB en C),
- Implémentation Scilab des algorithmes Jacobi et Richardson.

Contents

1	TP4	de Calcul Numérique	1
	1.1	Exercice 1.b: Factorisation LDL^T de A symétrique	1
	1.2	Exercice 4: Stockage CSR et CSC	13
	1.3	Exercice 5: Produit Matrice-Vecteur Creux	18
2	$ ext{TP5}$	de Calcul Numérique	26
R	eferen	aces	28
${f A}$	\mathbf{App}	endix Chapter	29

List of Tables

1.1	Erreur de la factorisation $A = LDL^{1}$	5
1.2	Temps de calcul de la factorisation $A = LDL^T$ (Complexité Temporelle)	6
1.3	Comparison de la complexité asymptotique entre les factorisation LU,LDL^T et	
	LL^T	10
1.4	Comparison entre temps de calcul de (Complexité Temporelle)	10
1.5	Comparison entre erreur de factorisation	11
1.6	Stockage CSR de la matrice A, exo.4	13
1.7	Stockage CSC de la matrice A, exo.4	14
1.8	Moyenne de temps de calcul de l'algorithme tranposée de $A.$	17
1.9	Moyenne de temps de calcul de l'algorithme Produit Matrice creuse Vecteur. $$	23
1.10	Moyenne de temps de calcul de l'algorithme Produit Matrice creuse Vecteur pour	
	les formats de stockage COO et CSR	25
1.11	Comparison entre les formats de stockage d'une matrice creuse: COO et CSR	25

Listings

1.1	Factorisation LDL^{r} d'une matrice symétrique $A \in \mathbb{R}^{n \times n}$	3
1.2	Factorisation LDL^T d'une matrice symétrique $A \in \mathbb{R}^{n \times n}$: Forme compacte	4
1.3	Test de Factorisation LDL^T d'une matrice symétrique $A \in R^{n \times n}$	5
1.4	Factorisation Cholesky LL^T d'une matrice symétrique définie positive $A \in R^{n \times n}$	8
1.5	Algorithme pour calculer le triplet d'une matrice creuse A	15
1.6	Algorithme pour calculer la tranposée d'une matrice creuse A	16
1.7	Tranposée de la matrice creuse A de l'exerice 4 et validation avec Scilab	17
1.8	Eléments non nuls d'une matrice creuse A	18
1.9	Stockage COO d'une matrice creuse A	18
1.10	Stockage CSR d'une matrice creuse A	19
1.11	Stockage CSC d'une matrice creuse A	19
1.12	Tests et Validation des algorithmes de stockage d'une matrice creuse A	20
1.13	Produit Matrice creuse Vecteur (Format COO)	22
1.14	Tests et Validation du produit matrice creuse vecteur	23
1.15	Produit Matrice creuse Vecteur (Format CSR)	23

Chapter 1

TP4 de Calcul Numérique

Les exercices 1.b, 4 et 5 sont réalisés sur scilab. Ce compte rendu comprend l'analyse des algorithmes à implémenter et les mesures de performances.

1.1 Exercice 1.b: Factorisation LDL^T de A symétrique

Cet exercice tient en compte des matrices particulières: (i) symétrique dans le cas de la factorisation LDL^{T} , (ii) symétrique définie positive dans le cas de la factorisation LL^{T} .

Dans le cas d'une matrice particulière, on n'a pas besoin de stocker toute la matrice A. Ce qui permet de réduire l'occupation mémoire.

1/ Algorithme de la factorisation LDL^T pour une matrice symétrique:

Soit A une matrice inversible symétrique $\in \mathbb{R}^{n \times n}$.

Il existe une unique factorisation LDL^T de la matrice A, tel que:

- D est une matrice diagonale; ie $D = diag(d_{11}, ..., d_{nn})$,
- L est une matrice triangulaire inférieure, avec des coefficients unitaires sur la diagonale (Unit Lower Triangular Matrix).

Dans un premier temps, on propose dans listing (1.1) l'algorithme de calcul de la matrice L et du vecteur d constitué par les coefficients diagonales de la matrice D.

Ainsi, la résolution du système Ax = b s'effectue en trois étapes:

• résoudre le système Ly = b, où L est une matrice triangulaire inférieure tel que les coefficients sur la diagonale de L, L(i,i) = 1,

- résoudre le système Dz = y, où D est une matrice diagonale,
- résoudre le système $L^T x = z$, où L^T est une matrice triangulaire supérieure, transposée de la matrice L. Comme le système est triangulaire, on obtient x par la méthode de remontée.

Description de l'algorithme LDL^T :

On présente deux algorithmes pour la factorisation LDL^T de la matrice A, répartis comme suit:

- Algorithme standard pour la factorisation LDL^T de la matrice A (listing (1.1)),
- Algorithme avec forme compacte pour la factorisation LDL^T de la matrice A (listing (1.2)).

On suppose qu'on connait les premières colonnes (j-1) de la factorisation $A=LDL^T$, comme illustré dans la figure (1.1).

Figure 1.1: Description de l'algorithme de factorisation $A = LDL^{T}$.

Soit le vecteur colonne v(1:j) solution du système triangulaire $A=L\times v$, avec:

$$v(1:j) = L(j,1:j) \times d(1:j), \quad v(j) = d(j)$$
(1.1)

Ainsi, le vecteur colonne j de la matrice A pour les lignes de j à n s'écrit:

$$A(j:n,j) = L(j:n,1:j) \times v(1:j)$$
(1.2)

Le vecteur d(j) est obtenu de la formule du produit scalaire:

$$A(j,j) = d(j) + \sum_{k=1}^{j-1} d(k) \times L(j,k)^2$$
(1.3)

On considère maintenant les (n-j) equations restantes, qui permettent d'identifier L(j+1:n,j):

$$A(j+1:n,j) = L(j+1:n,j) \times d(j) + L(j+1:n,1:j-1) \times v(1:j-1)$$
(1.4)

L'algorithme décrit est presenté dans listing (1.1). Il permet le calcul de la matrice triangulaire inférieure L, avec des coefficients unitaires sur sa diagonale, ainsi que les coefficients d_{ii} de la matrice diagonale D.

Listing 1.1: Factorisation LDL^T d'une matrice symétrique $A \in \mathbb{R}^{n \times n}$

```
function [L,d]=LDLFactorisation(A) %Algo. standard de la factorisation LDL'
n = size(A,1); %taille de la matrice A carre (n*n)
for i = 1:n
    L(i,i)=1; %Tous les coeffs de L sur la diagonale sont egaux a 1
d(1) = A(1,1); %1er element du vecteur D
L(2:n,1) = A(2:n,1)/d(1); %Coeffs de la 1ere colonne de la matrice L
for j=2:n
    for i=1:j-1
        v(i)= L(j,i)*d(i); %Calcul du vecteur v
    end
   %Calcul des elements du vecteur D
    d(j) = A(j,j)-L(j,1:j-1)*v(1:j-1);
    %Calcul des elements de L
    L(j+1:n,j)=(A(j+1:n,j)-L(j+1:n, 1:j-1)*v(1:j-1))/d(j);
end
endfunction
funcprot(0)
```

Forme compact de la factorisation LDL^T de A:

La forme compacte de la factorisation $A = LDL^T$ est presentée dans listing (1.2). Elle consiste à écraser A(i,j) par:

$$A(i,j) = \begin{cases} L(i,j), & \text{si } i > j \\ d(i), & \text{si } i = j \end{cases}$$

Cela nous permet de réduire davantage l'occupation mémoire lors de la factorisation LDL^T de la matrice A, comme on écrase les cases mémoire de A et on les remplace par L et d_i . De plus, comme A est une matrice symétrique, l'occupation mémoire est évaluée à $\frac{n^2}{2}$.

Listing 1.2: Factorisation LDL^T d'une matrice symétrique $A \in \mathbb{R}^{n \times n}$: Forme compacte

```
function [L,d]=LDLFactorisation_Compacte(A) %Forme compacte
n = size(A,1); %taille de la matrice A: Matrice carre (n*n)
A(1,1) = A(1,1);
A(2:n,1) = A(2:n,1)/A(1,1);
for j=2:n
                   for i=1:j-1
                                      v(i) = A(j,i)*A(i,i); %Calcul du vecteur v
                   %Calcul des elements du vecteur D
                    A(j,j) = A(j,j)-A(j,1:j-1)*v(1:j-1);
                   %Calcul des elements de L
                    A(j+1:n,j)=(A(j+1:n,j)-A(j+1:n, 1:j-1)*v(1:j-1))/A(j,j);
\mbox{\ensuremath{\mbox{$\%$}}}\mbox{\ensuremath{\mbox{$0$}}}\mbox{\ensuremath{\mbox{$t$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbox{\ensuremath{\mbox{$a$}}}\mbo
d = diag(A); %Coeff d de la matrice diagonale D
L = tril(A - diag(d), -1) + eye(n,n);
endfunction
funcprot(0)
```

Etude de complexité Théroqie de l'algorithme LDL^T :

• Le nombre d'opérations est évalué à:

$$-\sum_{j=1}^{n} (j-1) + (j-1) + (n-j) \times (j-1) \text{ multiplications,}$$

$$-\sum_{j=1}^{n} 1 + (n-j) \text{ soustractions,}$$

$$-\sum_{j=1}^{n} (j-2) + (n-j) \times (j-2) \text{ additions.}$$

$$-\sum_{j=1}^{n} (n-j) \text{ divisions.}$$

Au total, on a $(\frac{n^3}{3} + n^2 - \frac{4n}{3})$ opérations. Donc la complexité de l'algorithme évolue en $O(\frac{n^3}{3})$ pour n qui tend vers l'infini, c'est à dire la moitié de l'algorithme de factorisation LU.

Test, validation et performance de l'algorithme LDL^T :

L'algorithme de factorisation $A = LDL^T$ sous sa forme standard (listing (1.1)) et sa forme compacte (listing (1.2)) sont testés comme indiqué dans listing (1.3).

Pour utiliser la fonction rand() de Scilab, il faut tout d'abord vérifier que $A \in \mathbb{R}^{n \times n}$ soit symétrique $(A = A^T)$. Une solution consiste à calculer la matrice w = rand(n, n), puis on peut poser $A = w \times w^T$.

Listing 1.3: Test de Factorisation LDL^T d'une matrice symétrique $A \in \mathbb{R}^{n \times n}$

```
W = rand(3,3); %Matrice qlq construite a partir de la fonction random
A = W*W'; %Matrice A symetrique construite a partir de w et son transposee

%Factorisation de LDL' (Algo Factorisation_LDL')
tic(); %Activation du temps
[L,d] = LDLFactorisation(A); %Factorisation de LDL'
toc(); %Temps de calcul

%Calcul de l erreur commise de la factorisation LDL' =0
err_LDL = norm(A-L*diag(d)*L');

%Factorisation compacte de LDL' (Algo Factorisation_Compacte_LDL')
tic(); %Activation du temps
[L_LDL_Compacte,d_LDL_Compacte]=LDLFactorisation_Compacte(A); %Factorisation
compacte de LDL'
toc(); %Temps de calcul

%Calcul de l erreur commise de la factorisation compacte LDL' =0
err_LDL_Compacte = norm(A-L_LDL_Compacte*diag(d_LDL_Compacte)*L_LDL_Compacte');
```

Dans un premier temps, On va vérifier la validité des algorithmes de factorisation LDL^T . Ainsi, la moyenne de l'erreur relative de factorisation $(A - L \times D \times L^T)$ est calculée, comme montré dans le tableau (1.1).

Taille n	Erreur de la forme standard/ compacte	$\operatorname{cond}(\mathbf{A})$
3	5.551e-17	556.02688
5	2.220e-16	1461.0267
10	1.227e-15	3760.2106
15	2.381e-15	27897.335
20	3.626e-15	36612.426
40	1.184e-14	719820.87
60	5.861e-14	1380587.3
80	8.540e-14	2997920.3
100	8.869e-14	6838246.8
1000	1.411e-11	3.821D+09

Table 1.1: Erreur de la factorisation $A = LDL^{T}$.

On vérifie que l'erreur relative de la factorisation $(A - L \times D \times L^T)$ est faible, mais augemente en fonction de la taille de matrice n (de même cond(A) augmente).

L'erreur relative de factorisation $\delta = A - L \times D \times L^T$ est due aux erreurs d'arrondi de l'ordinateur, relative à la précision système de représenter des nombres réels en virgule flottante, et se produisent surtout quand la taille de la matrice n est grande: perte de chiffres significatifs par arrondi, "Arrondis des ordinateurs, erreurs de mesure" 2021.

Le traçage de la courbe de l'erreur relative de la factorisation LDL^T de la matrice symétrique A en fonction de sa taille n est illustré dans la figure (1.2).

Figure 1.2: Erreurs relatives de factorisation $A = LDL^{T}$.

Dans la suite, on considère l'algorithme de factorisation LDL^T sous sa forme compacte. La moyenne du temps de calcul est ainsi évalué pour n allant de 3 à 1000, comme montré dans le tableau (1.2).

Taille n	Temps de calcul (s)
3	0.000081
5	0.0001050
10	0.00023
15	0.000307
20	0.000462
40	0.001527
60	0.0027040
80	0.0049450
100	0.0068600
1000	1.3096240

Table 1.2: Temps de calcul de la factorisation $A = LDL^T$ (Complexité Temporelle). La figure (1.3) illustre la complexité temporelle de l'algorithme de factorisation $A = LDL^T$. On remarque que le temps de calcul évolue en fonction de la taille de matrice d'entrée $A \in R^{n \times n}$. Il faut noter que le nombre d'opérations effectuées par seconde est indiqué par la fréquence du processeur. Dans le cas d'étude, la fréquence du processeur est évaluée à $2.8GHz = 2.8 \times 10^9 Hz$, i.e., 2.8 milliards d'opérations par seconde. Ainsi, une opération nécessite environ: $T = \frac{1}{f} = \frac{1}{2.8 \times 10^9} = 0.357 \times 10^{-9} = 0.357$ nanoseconde. La complexité pour n grande est evaluée à $\frac{n^3}{3}$ opérations. Dans notre cas, pour n = 1000, le nombre d'opérations est evalué à: $\frac{1000^3}{3}$, soit environ $\frac{1000^3}{3} \times 0.357$ nanosecondes.

Figure 1.3: Complexité temporelle des algorithmes de factorisation $A = LDL^{T}$.

2/ Algorithme de la factorisation de Cholesky LL^{T} :

Soit A une matrice inversible symétrique définie positive $\in \mathbb{R}^{n \times n}$.

Description de l'algorithme:

A admet une décomposition unique sous la forme $A=LL^T,$ où L est une matrice triangulaire inférieure avec des éléments diagonaux positifs.

On suppose qu'on connait les premières colonnes (j-1) de la factorisation $A=LL^T$, comme illustré dans la figure (1.4).

Figure 1.4: Description de l'algorithme de factorisation $A = LL^T$.

La factorisation LL^T de la matrice A s'écrit comme suit:

$$A = L \times L^{T} \Rightarrow \sum_{k=1}^{n} L(i,k) \times L(j,k)$$
(1.5)

Les élements L(i, i) de la matrice triangulaire inférieure L sont donnés par:

$$L(i,i) = \sqrt{A(i,i) - \sum_{k=1}^{i-1} L(i,k) \times L(i,k)^T}$$
 (1.6)

Pour
$$i = 1$$
: $L(1,1) = \sqrt{A(1,1)}$ (1.7)

Pour la première colonne, les coefficients L(2:n,1) de la matrice L s'écrivent:

$$L(2:n,1) = \frac{A(2:n,1)}{L(1,1)} \tag{1.8}$$

On détermine maintenat la ième colonne de L pour $2 \le i \le n$:

$$L(j,i) = \frac{(A(j,i) - \sum_{k=1}^{i-1} L(j,k) \times L(i,k)^T)}{L(i,i)}$$
(1.9)

L'algorithme de Cholesky LL^T est donné dans listing (1.4).

Listing 1.4: Factorisation Cholesky LL^T d'une matrice symétrique définie positive $A \in \mathbb{R}^{n \times n}$

Test et validation de l'algorithme LL^T :

Soit la matrice $A \in \mathbb{R}^{4\times 4}$ suivante, symétrique $(A^T = A)$ définie positive (déterminants des sous matrices de A sont strictement positives):

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 5 & 5 & 5 \\ 1 & 5 & 14 & 14 \\ 1 & 5 & 14 & 15 \end{pmatrix}$$

On obtient la matrice L triangulaire inférieure obtenue suivante:

$$\mathbf{L} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 2 & 3 & 0 \\ 1 & 2 & 3 & 1 \end{pmatrix}$$

On peut vérifier ce resultat avec la fonction chol() de Scilab, qui retourne une matrice triangulaire supérieure. Ainsi, on vérifie bien que: L = chol(A)' et $A = L \times L^T$

La factorisation Cholesky d'une matrice symétrique définie positive A est fréquemment utilisée pour la résolution des équations normales dans le cas où ker(A) = 0, i.e. A^TA est symétrique définie positive, "Algèbre Linéaire Numérique" 2006.

Elle permet aussi la réduction de l'occupation mémoire vu qu'on calcule uniquement la matrice $\,L.\,$

Etude de complexité Théorique de l'algorithme LL^T :

- Le nombre d'opérations est évalué à:
 - n racines carrées,
 - $-\sum_{i=1}^{n} (n-i)$ divisions,
 - $-\sum_{i=1}^{n} (n+1)(n-i) \sum_{i=1}^{n} \sum_{j=i+1}^{n} j$ multiplications,
 - $-\sum_{i=1}^{n}(n+1)(n-i)-\sum_{i=1}^{n}\sum_{j=i+1}^{n}j$ sourtractions.

Au total, on a $(\frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6})$ opérations. Donc la complexité de l'algorithme évolue en $O(\frac{n^3}{3})$ pour n qui tend vers l'infini, c'est à dire la moitié de l'algorithme de factorisation LU.

3/ Comparison entre la factorisation LDL^T et LU de A:

Comparison de la complexité théorique:

Factorisation LU	Factorisation LDL^T	Factorisation LL^T
$\frac{2n^3}{3}$	$\frac{n^3}{3}$	$\frac{n^3}{3}$

Table 1.3: Comparison de la complexité asymptotique entre les factorisation LU, LDL^T et LL^T .

D'après le tableau (1.3), la complexité des algorithmes de factorisations LDL^T et Cholesky LL^T est la moitié de celle de LU. Ainsi, LDL^T et LL^T sont plus stable que l'algorithme de factorisation LU.

Comparison de la complexité temporelle: Temps de calcul

Le tableau (1.5) montre la variation du temps de calcul obtenue par Scilab des algorithmes de factorisations LDL^T et LU en fonction de la taille de matrice A.

Taille n	LU	LDL^{T} , forme compacte
5	0.000348	0.000211
10	0.001003	0.00032
20	0.004469	0.000632
40	0.036776	0.002045
60	0.1153720	0.003558
80	0.279546	0.005799
100	0.50551	0.0083650
1000	515.38789	1.194137

Table 1.4: Comparison entre temps de calcul de (Complexité Temporelle).

La variation du temps de calcul en fonction de la taille n de la matrice A est illustrée dans la figure (1.5).

Figure 1.5: Comparison de la complexité temporelle des algorithmes de factorisation d'une matrice A symétrique.

Le tableau (1.5) montre la variation des erreurs de factorisation obtenue par Scilab des algorithmes de factorisations LDL^T et LU en fonction de la taille n de la matrice symétrique A.

Taille n	LU	LDL^{T} , forme standard	$\operatorname{cond}(\mathbf{A})$
5	2.220D-16	1.110D-16	693.28446
10	1.386D-15	1.047D-15	1790.7644
20	6.647D-15	4.119D-15	67704.804
40	2.383D-14	1.185D-14	218188.22
50	3.261D-14	1.733D-14	186190.89
80	8.602D-14	7.544D-14	18920139
100	1.253D-13	8.147D-14	6.194e + 10

Table 1.5: Comparison entre erreur de factorisation.

On peut aussi dessiner la courbe montrant la variation des erreurs relatives de factorisation en fonction de la taille n, comme presenté dans la figure (1.6). On conclut ainsi que l'erreur relative est plus faible dans le cas de la factorisation de LDL^T que la factorisation LU. Ainsi, le résultat est plus stable face aux erreurs d'arrondi.

Figure 1.6: Comparison de l'erreur de factorisation des algorithmes LU et LUL^{T} .

4/ Discussion:

- Le calcul du conditionnement de la matrice A est important dans la résolution numérique des systèmes linéaires Ax = b, car il joue le rôle d'un indicateur de stabilité numérique pour les méthodes directes (plus le conditionnement est grand, plus la solution numérique est différente de celle exacte) et de vitesse de convergence pour les méthodes itératives, "Algèbre Linéaire Numérique" 2006.
- L'intéret d'utiliser des matrices diagonales est le fait qu'elles sont toujours inversibles, tandis que l'utilisation des matrices triangulaires facilite la résolution numérique à l'aide des algorithmes de remontée et descente,
- Les algorithmes de factorisation LDL^T et de Cholesky sont plus stables que celui de factorisation LU, car la complexité évolue en $O(\frac{n^3}{3})$. Donc, deux fois moins que la complexité de factorisation LU qui évolue en $O(\frac{2n^3}{3})$,
- Au terme de l'occupation mémoire, on peut bénéficier de la nature symétrique de la matrice A, utilisée dans la factorisation LDL^T . Ainsi, on stockera $\frac{n^2}{2}$ au lieu de n^2 ,
- La forme $A = LDL^T$ permet la détermination de l'inertie de la matrice A ("Loi d'inertie de Sylvester" 2021),
- La nature du problème envisagé impose la nature de la matrice A. Par exemple, dans le cas des problèmes de thermique ou d'élasticité, on a recours à des matrices symétriques définies positives, "Chapitre 3 Systèmes d'équations" 2015. Il s'agit donc de la factorisation LL^T de Cholesky. La factorisation LDL^T est restreinte au cas où la matrice A est positive, tandis que la factorisation LU est utilisée pour des matrices carrées A de formes générales (avec la matrice A et ses sous-matrices principales inversibles).

1.2 Exercice 4: Stockage CSR et CSC

- 0/ Stockage des matrices creuses: Pour des matrices avec des éléments égaux à zéro, on peut faire recourt au différentes formats de stockage caractéristiques des matrices creuses. Soit nnz le nombre des éléments non nuls d'une matrice creuse $A \in \mathbb{R}^{m \times n}$. On peut citer comme formats de stockage des éléments non nuls d'une matrice creuse A:
 - COO (Coordinate Storage): On stocke les éléments non nuls d'une matrice creuse dans $AA \in R^{1 \times nnz}$ (selon les lignes). Pour l'accès aux éléments, les indices sur les lignes i et sur les colonnes j sont stockées dans $JA \in R^{1 \times nnz}$ et $IA \in R^{1 \times nnz}$, respectivement,
 - CSR (Compressed Sparse Matrix): On stocke les éléments non nuls d'une matrice
 creuse dans AA ∈ R^{1×nnz}. Pour l'accès aux éléments, on stocke dans JA ∈ R^{1×nnz} le
 numéro j de la colonne respective a l'élément et dans IA ∈ R^{1×(n+1)} les pointeurs sur les
 lignes.
 - CSC (Compressed Sparse Column): On stocke les éléments non nuls d'une matrice creuse dans $AA \in R^{1 \times nnz}$ (selon les colonnes). Pour l'accès aux éléments, on stocke dans $JA \in R^{1 \times nnz}$ le numéro i de la ligne respective a l'élément et dans $IA \in R^{1 \times (m+1)}$ les pointeurs sur les colonnes.
- 1/ Soit la matrice $A \in \mathbb{R}^{8 \times 6}$ comme suit:

On a nnz = 12 éléments non nuls de la matrice A.

Stockage CSR de A:

AA	15	22	-15	11	3	2	-6	91	25	7	28	-2
JA	1	4	6	2	3	7	4	1	7	8	3	8
IA	1	4	7	8	8	11	13	-	-	-	-	-

Table 1.6: Stockage CSR de la matrice A, exo.4.

2/ Stockage CSC de A:

$\mathbf{A}\mathbf{A}$	15	19	11	3	28	22	-6	-15	2	25	7	-2
JA	1	4	2	2	5	1	3	1	2	4	4	5
IA	1	3	4	6	8	8	9	11	13	-	-	-

Table 1.7: Stockage CSC de la matrice A, exo.4.

3/ Transposée de la matrice creuse A:

Desciption de l'algorithme: Soit la matrice $A \in R^{6\times 8}$. la transposée de la matrice A est $A^T \in R^{8\times 6}$. On considère le stockage COO. Soit la matrice triplet $\in R^{12\times 3}$, dont la repartition des colonnes est la suivante:

- Première colonne: On stocke les indices des lignes des éléments non nuls de A, i,
- Deuxième colonne: On stocke les indices des colonnes des éléments non nuls de A, j,
- Troisième colonne: On stocke les éléments non nuls de A.

Soit la matrice triplet obtenue à partir de la matrice A:

Listing 1.5: Algorithme pour calculer le triplet d'une matrice creuse A

```
%Extract Triplet from matrix A
function [triplet] = Triplet(A)
[m n]=size(A); %taille de la matrice A (m*n)
nnz = 0; %nnz= elements non nuls de la matrice A
    for i=1:m
        for j=1:n
            if (A(i,j)^{=0}) then %condition: element non nul de la matrice A
                nnz = nnz+1; %nombre des elements non nuls augmente de 1
                %1ere colonne de triplet (indices i des lignes)
                triplet(nnz,1) = i;
                 %2eme colonne de triplet (indices j des colonnes)
                triplet(nnz,2) = j;
                %3eme colonne de triplet (elements non nuls de la matrice A)
                triplet(nnz,3) = A(i,j);
            end
        end
    end
endfunction
funcprot(0)
```

L'étape suivante consiste à inverser la première et la deuxième colonne dans triplet. Soit la matrice triplet' $\in R^{12\times 3}$, tel que:

Pour obtenir la matrice transposée de A à partir de triplet', il faut organiser cette dernière selon les valeurs minimales des lignes de la première colonne (tri). Si deux valeurs de lignes sont égales, on compare le minimum de la deuxième colonne. Soit la matrice tripletInvSor le résultat de cet algorithme. Alors:

L'algorithme qui permet de calculer la tranposée d'une matrice creuse A est donné dans listing (1.6).

Listing 1.6: Algorithme pour calculer la tranposée d'une matrice creuse A

```
%Extract Triplet from matrix A to proceed
function [tripletInvSort]=SortedInverseTriplet(triplet)
nnz = size(triplet,1); %nnz= nombre des elements non nuls de la matrice triplet
temp = zeros(nnz,3); %Initialisation de la matrice temp
%Calcul du transposee de la matrice Triplet
    for i=1:nnz %de 1 a nnz= nbre des elements non nuls
        for j=1:3
            temp = triplet(i,1); %stockage de la 1ere colonne de triplet
            triplet(i,1)=triplet(i,2); %inverser les colonnes 1 et 2
            triplet(i,2)=temp; %triplet(i,2)=triplet(i,1)
        end
    end
%Sorting du Transposee de la matrice Triplet
max= triplet(1,1); %inialisation de la valeur max de triplet
    for i=1:(nnz-1)
            if (triplet(i,1) < triplet(i+1,1)) then</pre>
                max = triplet(i+1,1); %Recherche de la valeur max de triplet
            end
    end
k=1; %initialisation du scalaire k
    for i=1:max
        for j=1:nnz
            if(triplet(j,1)==i) then
                tripletInvSort(k,1) = triplet(j,1); %sorting ligne1
                tripletInvSort(k,2) = triplet(j,2); %sorting ligne2
                tripletInvSort(k,3) = triplet(j,3); %sorting ligne3
                k=k+1; %increment k de 1
            end
        end
    end
endfunction
funcprot(0)
```

Le programme écrit en Scilab est testé avec la matrice A de l'exercice 4, comme indiqué dans listing (1.7).

Listing 1.7: Tranposée de la matrice creuse A de l'exerice 4 et validation avec Scilab

Avec la fonction sparse(A) de Scilab, on obtient la matrice transposée de A suivante (sous la forme "(i,j) val"):

```
(1, 1)
            15.
(1, 5)
            91.
(2, 2)
            11.
(3, 2)
            3.
(3, 6)
            28.
(4, 1)
           22.
(4, 3)
            -6.
(6, 1)
           -15.
            2.
(7, 2)
(7, 5)
            25.
(8, 5)
            7.
(8, 6)
            -2.
```

Il est à noter que la transposée d'une matrice creuse A avec la format de stockage CSR est une matrice avec la format de stockage CSC.

4/ La complexité de l'algorithme de calcul de la tranposée d'une matrice A est: $O(3 \times nnz)$. Le tableau 1.3 représente la moyenne de 10 mesures du temps de calcul de l'algorithme tranposée de la matrice creuse A de l'exercice.

Matrice	Moyenne du temps de calcul
$A \in \mathbb{R}^{8 \times 6}$	$0.0002152 \mathrm{\ s}$

Table 1.8: Moyenne de temps de calcul de l'algorithme tranposée de A.

1.3 Exercice 5: Produit Matrice-Vecteur Creux

Préambule: Pour optimiser le stockage mémoire d'une matrice creuse A, ainsi que le temps de calcul (performance), les éléments non nuls de la matrice sont uniquement stockés. Ainsi, la complexité devient O(nnz) au lieu de $O(m \times n)$, avec nnz est le nombre des éléments non nuls de la matrice creuse et $m \times n$ est la taille de la matrice. On propose dans (0) les différents formats de stockage d'une matrice creuse: COO, CSR et CSC.

Le but de cet exercice est d'ulitiser les formats COO et puis CSR dans le calcul du produit matrice creuse $A \in \mathbb{R}^{m \times n}$ et vecteur $x \in \mathbb{R}^{n \times 1}$, comme suit:

$$A \times x = y \in R^{m \times 1}$$

0/ Les algorithmes de Stockages: Les algorithmes des différents formats de stockages d'une matrice creuse A sont donnés dans les listings de (1.9) à (1.11). Ils se basent sur le calcul de nnz, le nombre des éléments non nuls d'une matrice creuse A (listing (1.8)).

Listing 1.8: Eléments non nuls d'une matrice creuse A

Listing 1.9: Stockage COO d'une matrice creuse A

```
function [AA,JA,IA]=COO_SPMat(A) %Stockage COO d'une matrice creuse A
[m n]=size(A); %taille de la matrice A (m*n)
[nnz]=NNZ_SPMat(A); %nombre des elements non nuls d'une matrice creuse A
AA=zeros(nnz,1); %initialisation du vecteur AA (nnz*1)
JA=zeros(nnz,1); %initialisation du vecteur JA (nnz*1)
IA=zeros(nnz,1); %initialisation du vecteur IA (nnz*1)
k=1; %initialisation du compteur k
    for i=1:m
        for j=1:n
            if (A(i,j)~=0) then %element non nul de A
                AA(k) = A(i,j); %remplissage du vecteur AA: elements ~=0 de A
                JA(k) = i; %remplissage du vecteur JA: i des elements ~=0 de A
                IA(k) = j; %remplissage du vecteur IA: j des elements ~=0 de A
                k=k+1; %incrementation de k
            end
        end
    end
endfunction
funcprot(0)
```

Listing 1.10: Stockage CSR d'une matrice creuse A

```
%Stockage CSR d'une matrice creuse A
function [AA, JA, IA] = CSR_SPMat(A)
[m n]=size(A); %taille de la matrice A (m*n)
[nnz]=NNZ_SPMat(A); %nombre des elements non nuls d'une matrice creuse A
AA=zeros(nnz,1); %initialisation du vecteur AA (nnz*1)
JA=zeros(nnz,1); %initialisation du vecteur JA (nnz*1)
IA=zeros(n+1,1); %initialisation du vecteur IA (n+1*1)
k=1; %initialisation du compteur k
    for i=1:m
        for j=1:n
            if (A(i,j)~=0) then %element non nul de A
                AA(k) = A(i,j); %remplissage du vecteur AA (selon les lignes)
                JA(k) = j; %remplissage du vecteur JA: j des elements ~=0 de A
                k=k+1; %incrementation de k
            end
        end
    end
%Remplissage du vecteur IA
nnz1=1; %initialisation du compteur sur les nbres des elements non nuls
IA(1)=1; %1er element du vecteur IA
IA(n+1)=nnz+1; %Element (n+1) du vecteur IA
    for i=1:m
        for j=1:n
            if (A(i,j)~=0) then %element non nul de A
                nnz1=nnz1+1; %nombre des elements non nuls de A
IA(i+1)=nnz1; %Remplissage du vecteur IA par des pointeurs sur les lignes
endfunction
funcprot(0)
```

Listing 1.11: Stockage CSC d'une matrice creuse A

```
%Stockage CSC d'une matrice creuse A
function [AA, JA, IA] = CSC_SPMat(A)
[m n]=size(A); %taille de la matrice A (m*n)
[nnz]=NNZ_SPMat(A); %nombre des elements non nuls d'une matrice creuse A
AA=zeros(nnz,1); %initialisation du vecteur AA (nnz*1)
JA=zeros(nnz,1); %initialisation du vecteur JA (nnz*1)
IA=zeros(m+1,1); %initialisation du vecteur IA (m+1*1)
nnz1=1; %initialisation du compteur sur les lignes
k=1; %intialisation du compteur k
IA(1)=1; %1er element du vecteur IA
IA(n+1)=nnz+1; %Element (n+1) du vecteur IA
    for j=1:n %boucle sur les lignes
        for i=1:m %boucle sur les colonnes
            if (A(i,j)~=0) then %elements non nuls de A
                AA(k) = A(i,j); %vecteur AA (selon les colonnes)
                JA(k) = i; %vecteur JA: i des elements ~=0 de A
                k=k+1; %incrementation de k
                nnz1=nnz1+1; %incrementation de nnz1
            end
        end
IA(j+1)= nnz1; %Remplissage du vecteur IA par des pointeurs sur les colonnes
endfunction
funcprot(0)
```

On peut également tester les différentes formats de stockage d'une matrice creuse A et la comparer avec les fonctions de Scilab pour une matrice creuse, comme montré dans listing (1.12).

Listing 1.12: Tests et Validation des algorithmes de stockage d'une matrice creuse A

```
\%Test des formats de stockage d'une matrice creuse A: COO, CSR et CSC
\texttt{A} = [1,2,0,11,0;0,3,4,0,0;0,5,6,7,0;0,0,0,8,0;0,0,0,9,10]; \\ \text{%matrice creuse } \texttt{A}(5*5)
%Stockage COO
[AA_COO, JA_COO, IA_COO] = COO_SPMat(A); %Algo COO
%Stockage COO dans Scilab
%Pour tester le stockage COO on utilise space(A) --> format(JA(i), IA(i), AA(i))
D=sparse(A); %(JA(i),IA(i),AA(i)) --> Algo validated
%On peut aussi utiliser [ij,AA_COO1,mn]=spget(D), ou D = matrice creuse de A
[ij,AA_COO1,mn]=spget(D); % COO avec Scilab
%Stockage CSR
[AA_CSR, JA_CSR, IA_CSR] = CSR_SPMat(A); %Algo CSR
%Stockage CSC
[AA_CSC, JA_CSC, IA_CSC] = CSC_SPMat(A); %Algo CSC
"Test avec Scilab de CSC
B=sparse(A);
[IA_CSC1, JA_CSC1, AA_CSC1] = sp2adj(B); %CSC avec Scilab
%Erreurs entre l'algo CSC et Scilab:
Err_AA = norm(AA_CSC-AA_CSC1); %Erreur entre AA de l'algo implemente et Scilab
Err_JA = norm(JA_CSC-JA_CSC1); %Erreur entre JA de l'algo implemente et Scilab
Err_IA = norm(IA_CSC-IA_CSC1); %Erreur entre IA de l'algo implemente et Scilab
disp(Err_AA); %Erreur =0 --> Algo validated
disp(Err_JA); %Erreur =0 --> Algo validated
disp(Err_IA); %Erreur =0 --> Algo validated
A1 = [1,2,0,11,0;0,3,4,0,0;0,5,6,7,0]; %matrice A(5*3)
[AA_COO, JA_COO, IA_COO] = COO_SPMat(A1); %COO
[AA_CSR, JA_CSR, IA_CSR] = CSR_SPMat(A1); %CSR
[AA_CSC, JA_CSC, IA_CSC] = CSC_SPMat(A1); %CSC
```

Dans la suite, on va illustrer les trois formats de stockage COO, CSR et CSC de la matrice A considerée dans le test de listing (1.12).

$$A = \begin{pmatrix} 1 & 2 & 0 & 11 & 0 \\ 0 & 3 & 4 & 0 & 0 \\ 0 & 5 & 6 & 7 & 0 \\ 0 & 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 9 & 10 \end{pmatrix}$$

Le nombre des éléments non nuls de la matrice A est nnz = 11.

Considérons dans un premier lieu le stockage COO de la matrice creuse A.

On regroupe les éléments non nuls de la matrice A selon les lignes dans le tableau AA, qui sera de taille $1 \times nnz$. Chaque élément a un indice ligne i (donné dans le tableau JA) et un indice colonne j (donné dans le tableau IA), comme montré dans la figure (1.7).

Figure 1.7: Stockage COO de la matrice A.

Considérons dans un deuxième lieu le stockage CSR de la matrice creuse A.

On regroupe les éléments non nuls de la matrice A selon les lignes dans le tableau AA, qui sera de taille $1 \times nnz$. On stocke dans le tableau JA les indices j des numéros de colonnes associées, et dans le tableau IA, qui est de taille $1 \times (n+1)$, les pointeurs sur les lignes, comme montré dans la figure (1.8).

Figure 1.8: Stockage CSR de la matrice A.

Finalement, on considère le stockage CSC de la matrice creuse A.

On regroupe les éléments non nuls de la matrice A selon les colonnes dans le tableau AA, qui sera de taille $1 \times nnz$. On stocke dans le tableau JA les indices i des numéros de lignes associées, et dans le tableau JA, qui est de taille $1 \times (m+1)$, les pointeurs sur les colonnes, comme montré dans la figure (1.9).

Figure 1.9: Stockage CSC de la matrice A.

1/ Produit Matrice creuse A (Format de stockage COO) et vecteur x:

Soit $A \in \mathbb{R}^{m \times n}$ une matrice creuse et $x \in \mathbb{R}^{n \times 1}$. On cherche à calculer le produit $y = A \times x$. Donc, le vecteur résultat $y \in \mathbb{R}^{m \times 1}$.

L'algorithme dans listing (1.13) est basé sur le stockage COO d'une matrice creuse A. Cet algorithme prend en compte les algorithmes de calcul des éléments non nuls de la matrice creuse A dans listing (1.8) et de stockage COO de la matrice creuse A dans listing (1.9).

Listing 1.13: Produit Matrice creuse Vecteur (Format COO)

```
%A partir du Stockage COO, on calcule: y=A*x

function [y]= COO_SPMatVec(A,x)

[m n]= size(A); %dimensions de la matrice A(m,n)
y=zeros(m,1); %initialisation du vecteur y

%Appel des fonctions NNZ_SPMat et COO_SPMat
[nnz]=NNZ_SPMat(A); %Fonction qui calcule nnz, le nombre des elements non nuls
    de la matrice A
[AA,JA,IA]=COO_SPMat(A); %Fonction qui calcule AA, JA, IA du stockage COO

for i=1:nnz
    y(JA(i)) = y(JA(i))+AA(i)*x(IA(i)); %Calcul du produit y=A*x
end
endfunction
funcprot(O)
```

(i) et (ii)/ L'algorithme de multiplication matrice creuse A vecteur x est testé et validé avec Scilab, comme montré dans listing (1.14). On considère deux cas de vecteurs x: x = [1, 1, 1, 1, 1]' et $x_2 = [1, 0, 0, 1, 0, 0]'$.

Listing 1.14: Tests et Validation du produit matrice creuse vecteur

```
%Test de l'algo produit matrice creuse vecteur
%Test n1 (i)
 \texttt{A} = \ [1,0,0,2,0;3,4,0,5,0;6,0,7,8,9;0,0,10,11,0;0,0,0,0,12] \ ; \ \texttt{\%matrice} \ \ \texttt{A}(5*5) 
x = [1,1,1,1,1]'; %n=5 (Ex5,i)
[y] = COO_SPMatVec(A,x); %Algo produit Mat Vec
disp(y); %Display le produit de A*x
%Test de l'algo avec Scilab
y1=A*x; %produit de A et x
err=norm(y-y1); %erreur entre y de l'algo et y1 de Scilab
disp(err); %err=0 --> Algo valide
%Test n2 (ii)
A2=[5,0,0,22,0,-15;0,11,3,0,0,4;0,0,0,-6,0,0]; %matrice A(6*3)
x2 = [1,0,0,1,0,0]'; %n=6 (Ex5,ii)
[y2] = COO_SPMatVec(A2,x2); %Algo produit Mat Vec
disp(y2); %Display le produit de A2*x2
%Test de l'algo avec Scilab
y3=A2*x2; %produit de A2 et x2
err2=norm(y3-y2); %erreur entre y2 de l'algo et y3 de Scilab
disp(err2); %err=0 --> Algo valide
funcprot(0)
```

La complexité de l'algorithme de produit matrice creuse vecteur dans listing (1.13) est évaluée à O(nnz).

On peut calculer la moyenne de 10 mesures du temps de calcul de cet algorithme, comme indiqué dans le tableau (1.9).

Algorithme	Moyenne du temps de calcul
$y = A \times x$	0.0003155 s

Table 1.9: Moyenne de temps de calcul de l'algorithme Produit Matrice creuse Vecteur.

2/ Produit Matrice creuse A (Format de stockage CSR) et vecteur x:

Le produit matrice-vecteur en utilisant le format du stockage CSR est exprimé par la relation (1.10), "CRS Matrix-Vector Product" 2000:

$$y_i = \sum_j a_{i,j} \times x_j \tag{1.10}$$

L'algorithme dans listing (1.15) est basé sur le stockage CSR d'une matrice creuse A.

Cet algorithme tient en compte les algorithmes de calcul des éléments non nuls de la matrice creuse A dans listing (1.8) et de stockage CSR de la matrice creuse A dans listing (1.10).

Listing 1.15: Produit Matrice creuse Vecteur (Format CSR)

```
%A partir du stockage CSR, on calcule le produit: y=A*x
function [y]= CSR_SPMatVec(A,x)

[m n] = size(A); %Taille de la matrice A (m,n)
y = zeros(m,1); %initialisation du vecteur y de taille (m,1)
[AA,JA,IA]=CSR_SPMat(A); %appel a l'algo de stockage CSR

for i = 1:m-1
   for j=IA(i):IA(i+1)-1
      y(i) = y(i) + AA(j)*x(JA(j)); %vecteur y produit de la matrice creuse A et du vecteur x
   end
end
   y(m) = y(m) + AA(IA(m))*x(JA(m)); %valeur m du vecteur y
endfunction
funcprot(0)
```

Pour valider l'algorithme dans listing (1.15), on reprend l'algorithme du test dans listing (1.14) qui comprend le produit de 2 matrices vecteurs: $A \in R^{5\times 5}$ et $x \in R^{5\times 1} = [1, 1, 1, 1, 1]$, ainsi que $A_2 \in R^{6\times 3}$ et $x_2 \in R^{6\times 1} = [1, 0, 0, 1, 0, 0]$.

Le stockage CSR de la première matrice creuse A est donné dans la figure (1.10).

Figure 1.10: Stockage CSR de la matrice A.

Le produit de la matrice creuse A et du vecteur x est illustré dans la figure (1.11).

Figure 1.11: Produit de la matrice A vecteur x.

Ensuite, le temps de calcul du produit matrice creuse vecteur, format CSR est comparé à celui COO dans le tableau (1.10). Comme il s'agit de la même complexité, on peut remarquer que

le temps de calcul du produit matrice creuse vecteur pour les deux formats de stockage CSR et COO est presque le même.

Algorithme	Mat-Vec COO	Mat-Vec CSR
$y = A \times x$	$0.0003155 \mathrm{\ s}$	0.000315s

Table 1.10: Moyenne de temps de calcul de l'algorithme Produit Matrice creuse Vecteur pour les formats de stockage COO et CSR.

En conclusion, la comparison entre les deux formats de stockage COO et CSR est donnée dans le tableau (1.11), "Matrice Creuse" 2020.

Stockage	Le stockage sous forme COO	Le stockage sous forme CSR
Avantages	- Facilité d'implémentation	- Format compressé (IA est de taille
	-Stockage pratique (sous forme de	(n+1) au lieu de nnz)
	triplet (i,j,élément))	- Tableaux triés
Désavantages	Pour le produit matrice vecteur:	Couteux d'ajouter des éléments
	deux adressages sont nécessaires	dans la matrice (il faut connaitre
		l'emplacement des éléments non
		nuls de la matrice creuse)

Table 1.11: Comparison entre les formats de stockage d'une matrice creuse: COO et CSR.

Chapter 2

TP5 de Calcul Numérique

Travail préliminaire: Etablissement d'un cas de Test

Problématique:

On considère l'équation de la chaleur dans un milieu immobile linéaire homogène avec terme source et isotrope:

$$\begin{cases}
-k\frac{\partial^2 T}{\partial x^2} = g, & x \in]0,1[\\ T(0) = T_0 \\ T(1) = T_1
\end{cases}$$
(2.1)

avec g est un terme source, k>0 le coefficient de conductivité thermique et $T_0< T_1$ les températures au bord du domaine considéré.

On se propose de résoudre cette équation par une méthode de différence finie centrée d'ordre 2. On discrétise le domaine 1D selon (n+2) noeuds x_i , i=0,1,...,n+1, espacés d'un pas h constant.

En chaque noeud, l'équation discrète s'écrit:

$$-k(\frac{\partial^2 T}{\partial x^2})_i = g_i \tag{2.2}$$

Exercice 1:

1/ Cherchons une écriture de la différence finie d'ordre 2 de la température T.

Soit le pas $h \in R$. Et on suppose qu'il existe $\epsilon > 0$, qui vérifie:

$$|x + \epsilon| \le h \tag{2.3}$$

D'après le développement de Taylor à l'ordre 2, on a:

$$\begin{cases}
T(x+h) = T(x) + h\frac{\partial T}{\partial x} + \frac{h^2}{2}\frac{\partial^2 T}{\partial x^2} + O(h^2) \\
T(x-h) = T(x) - h\frac{\partial T}{\partial x} + \frac{h^2}{2}\frac{\partial^2 T}{\partial x^2} + O(h^2)
\end{cases}$$
(2.4)

En sommant les deux égalités précédentes, on obtient:

$$T(x+h) + T(x-h) = 2T(x) + h^2 \frac{\partial^2 T}{\partial x^2} + O(h^2)$$
 (2.5)

Ainsi:

$$-\frac{\partial^2 T}{\partial x^2} = \frac{-T(x-h) + 2T(x) - T(x+h)}{h^2}$$
 (2.6)

References

- "Algèbre Linéaire Numérique" (2006). Universite de Rennes. URL: https://perso.univ-rennes1.fr/eric.darrigrand-lacarrieu/Teaching/PdfFiles/PolyF04cours.pdf.
- "Arrondis des ordinateurs, erreurs de mesure" (2021). URL: http://serge.mehl.free.fr/anx/arrondis_math.html.
- "Chapitre 3 Systèmes d'équations" (2015). U. Laval Dept. Math Stat MAT. URL: https://www2.mat.ulaval.ca/fileadmin/Cours/MAT-2910/H-14/semaine6-new.pdf.
- "CRS Matrix-Vector Product" (2000). Netlib. URL: http://www.netlib.org/utk/people/ JackDongarra/etemplates/node382.html.
- "Loi d'inertie de Sylvester" (2021). wikipedia. URL: https://fr.wikipedia.org/wiki/Loi_d%27inertie_de_Sylvester.
- "Matrice Creuse" (2020). URL: https://bthierry.pages.math.cnrs.fr/course-fem/lecture/elements-finis-triangulaires/matrice-creuse/.

Appendix A

Appendix Chapter

Les TPs 4 et 5 du calcul numérique sont déposés dans le dépot git "TPs-TDs-Calcul-Numerique-CHPS-M1-". Le code SSH de ce dépot est le suivant:

git@github.com: Chaichas/TPs-TDs-Calcul-Numerique-CHPS-M1-.git