基础物理实验原始数据记录

实验名称	弦上驻波	及介月	质中声速	[测量		地点		
学生姓名_			学号_			专业_		
实验日期		年	月	日	成绩评定	_	教师答字	

1. 线密度测试

表 1:线密度测试

弦号	质量 (g)	长度 (mm)	直径(mm)	线密度(Kg/m)

2. 波速的测量

将琴码放在 150mm 和 650mm 的地方,将砝码放在第 2~4 格,测基频 f_1 ,倍频 f_2 , f_3 ,计算波速的实验值($v=\lambda f$); 根据 $v=\sqrt{\frac{T}{\mu}}$, $T=\frac{1}{2}nmg$ 计算波速的理论值。

【用手机拍一张波节的相片,作为实验记录】

砝码质量:	
-------	--

表 2: 波速的测试

砝码位置	f ₁ (Hz)	f ₂ (Hz)	f ₃ (Hz)	波速 (v = λf)	张力(T)	波速 $v = \sqrt{T/\mu}$
2						
3						
4						

3. 频率和有效长度的关系

在上述实验中, 砝码放在第2格, 改变有效长度, 测试频率 f₁的变化。

表 3: 频率和有效长度的关系

L	640 mm	480 mm	320 mm	240 mm	160 mm
f_1					

4. 频率和张力的关系

固定有效长度 L=400 mm,将琴码放在 200mm 和 600mm 的地方,然后将砝码放在 1-5 格时,测频率 \mathbf{f}_1 。

【绘制 Inf-InT 的曲线,并进行线性拟合,对比斜率和截距的拟合值和理论值】

表 4: 频率和张力的关系

位置	1	2	3	4	5
T					
f_1					

5. 频率和线密度的关系

固定有效长度 L=400 mm,将琴码放在 200mm 和 600mm 的地方,将砝码放在第___格,测不同粗细琴弦的基频 f_1 ,也可以共享其它同学的实验数据。

【绘制 Inf-In µ 的曲线,并进行线性拟合,对比斜率和截距的拟合值和理论值。】

表 5: 频率和线密度的关系

弦号			
直径 (mm)			
μ (Kg/m)			
f_1			

6. 测超声波在空气和水中的波速。

【存储相位法测试时的屏幕图片,作为实验记录】

表 6: 空气中超声波波速的测试

f=	_Hz,室温 t=	℃, V _{理论}	_值 =m	's
i	驻波法 Li (mm)	λ_i	位相法 Li(mm)	λ_i
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
测量结果:	v= m	n/s	测量结果: v=	m/s

表 7: 水中超声波波速的测试

方法,f=	Hz,室温 t=	°C				
i	刻度值 Li(mm)	λ_i				
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
测量结果: v (实验值) = m/s						