Jan Heiland as of: May 3, 2021

Differential Algebraic Equations

Exercise Sheet 2 - Linear DAEs with constant coefficients ctd.

A Index-1 condition

Show that the matrix pair

$$(E,A) = \begin{pmatrix} \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \end{pmatrix}$$

with $E, A \in \mathbb{C}^{n,n}$, and r < n, is of index 1 if, and only if, A_{22} is square and nonsingular.

B Regularity and commutativity

Let $E, A \in \mathbb{C}^{n,n}$ satisfy EA = AE. Show

- 1. that (E, A) is regular if, and only if, kernel $E \cap \ker A = \{0\}$
- 2. and that ind(E, A) = ind E.

C Regularity and commutativity II

Let (E, A) be regular with $E, A \in \mathbb{C}^{n,n}$. For a $\tilde{\lambda}$ such that $\tilde{\lambda}E - A$ is invertible, show

- 1. that $\tilde{E} := (\tilde{\lambda}E A)^{-1}E$ and $\tilde{A} := (\tilde{\lambda}E A)^{-1}A$ commute
- 2. and that $\operatorname{ind}(E, A) = \operatorname{ind} \tilde{E}$.

D Drazin inverse as group inverse

If ind $E \leq 1$, then the Drazin inverse E^D is also called group inverse of E and denoted by $E^\#$. Show that $E \in \mathbb{C}^{n,n}$ is an element of a group $\mathbb{G} \subset \mathbb{C}^{n,n}$ with the matrix multiplication if and only if ind $E \leq 1$, and that the inverse in such a group is just $E^\#$.

D Drazin inverse property

Prove that $((E^D)^D)^D = E^D$ for all $E \in \mathbb{C}^{n,n}$