. If there is eyele in the writ-Son-graph, The the system to in alexallock. Deadlock Recovery . Factor on about the Term minimum and dependen Deadlock Avoidance Enample 1 Max resource: 12 tape drives Po . There are 3 free tape drives. . The OS is in a safe state, since (P, Po, P2) is a safe segnence. Banker's Algorithm (Used for deadlooks avoidance) PPT

1. Allemation Act	ine, and there	labo Need		
/- W	9 93	ic nac		
7 30 2 9 0		122		
9211 23		600		
61005 43	3	431		
For Pe				
request (7, 4, 3) > (3, 3, 1	amilable			
Fon A	et just			
(1, 2, 2) \ (3, 8	.3			
05 grants de C.				
(A A Availle ->				
in after P, release it	nesources, avai	ce (21.0)		
•	(4.50)	+(3,1,2)		
For P2	40	= (5,3,2)		
$\frac{\text{For P2}}{\left(2^{6},0,0\right)} > \left(5,3\right)$	5,2)	(3) 3) 2)		
For P3				
(0,1,1) < (5,3,	2)			
OS granto Po's	regreat.			
· araileles -> (5,2, →)				
i after By releases int	ter resources, a	railable $(S,2,1)+\binom{2,2,1}{6,\frac{11}{2}}$		
	*	= (7,4,3)		

in after
$$P_{4}$$
 releases its resources, available $\rightarrow (3,1,2) + (4,3,3)$

$$= (7,4,5)$$

i. For Pa

.. aft release, available
$$\rightarrow$$
 $(0,0,2)+(7,5)$

$$-2(7,5,5)$$

CS against Polis regular.

2	Allocation 11 12 0 21 2 21 2 21 0 21 0 21 0 31		Awaihble A B C Z I O	Nead A B C 3 2 1 1 1 0 0 5 8 0 7 43 3 5 1 0 1
-	(4,0,3)>		3,2,1)>(2	
Manager of 198	(1,1,0) <	(2,1,0)	South a series	P1, P0, P2, P3, P4 bounsafe
Fo	For Py	(4,2,2)	ment of the south	u g

Process State Diagram

(a. C. C) (Con C) in a - hard man as

Folio of Senaphores -

-) Braces Synchronization
- 2) Managing Resources

suttalize look senaphores to o

3) For managing resources

- · signe V()
- · wat P()

2 process P. 9 2 limeny semaphores S, T

Process P	Proceso B
P(5) Print '0' Print '0' Print '0' Print '0'	while (1) {

