INTRODUCTION TO LIE ALGEBRAS – EXERCISES

- 16. Show that the special linear Lie algebra $\mathfrak{g}=\mathfrak{sl}_2\mathbb{C}$ has no ideals, except for the zero ideal $\{0\}$ and \mathfrak{g} itself.
- 17. Let $\mathfrak g$ be the vector subspace in the general linear Lie algebra $\mathfrak {gl}_4\mathbb C$ consisting of all block matrices

$$A = \begin{bmatrix} X & Z \\ 0 & Y \end{bmatrix}$$

where X,Y are any 2×2 matrices of trace zero, and Z is just any 2×2 matrix.

- (i) Check that ${\mathfrak g}$ is a Lie subalgebra in ${\mathfrak g}{\mathfrak l}_4{\mathbb C}\,.$
- (ii) Show that the radical $\mathcal{R}(\mathfrak{g})$ of \mathfrak{g} consists of all matrices A where X = Y = 0.