# Grupos - Introdução

José Antônio O. Freitas

MAT-UnB

19 de outubro de 2020



Definição  $Seja \ G \neq \emptyset$ 





Seja  $G \neq \emptyset$  um conjunto no qual está definida uma operação binária \*



Seja  $G \neq \emptyset$  um conjunto no qual está definida uma operação binária \* tal que:



Seja  $G \neq \emptyset$  um conjunto no qual está definida uma operação binária \* tal que:

i) Para todos x, y,  $z \in G$ :



Seja  $G \neq \emptyset$  um conjunto no qual está definida uma operação binária \* tal que:

i) Para todos x, y,  $z \in G$ :

$$(x*y)*z$$



Seja  $G \neq \emptyset$  um conjunto no qual está definida uma operação binária \* tal que:

i) Para todos x, y,  $z \in G$ :

$$(x*y)*z=x*(y*z).$$



Seja  $G \neq \emptyset$  um conjunto no qual está definida uma operação binária \* tal que:

i) Para todos x, y,  $z \in G$ :

$$(x*y)*z=x*(y*z).$$

ii) Existe  $e \in G$ 



Seja  $G \neq \emptyset$  um conjunto no qual está definida uma operação binária \* tal que:

i) Para todos x, y,  $z \in G$ :

$$(x*y)*z=x*(y*z).$$



Seja  $G \neq \emptyset$  um conjunto no qual está definida uma operação binária \* tal que:

i) Para todos x, y,  $z \in G$ :

$$(x*y)*z=x*(y*z).$$

$$x * e$$



Seja  $G \neq \emptyset$  um conjunto no qual está definida uma operação binária \* tal que:

i) Para todos x, y,  $z \in G$ :

$$(x*y)*z=x*(y*z).$$

$$x * e = x =$$



Seja  $G \neq \emptyset$  um conjunto no qual está definida uma operação binária \* tal que:

i) Para todos x, y,  $z \in G$ :

$$(x*y)*z=x*(y*z).$$

$$x * e = x = e * x$$



Seja  $G \neq \emptyset$  um conjunto no qual está definida uma operação binária \* tal que:

i) Para todos x, y,  $z \in G$ :

$$(x*y)*z=x*(y*z).$$

ii) Existe  $e \in G$  tal que

$$x * e = x = e * x$$

para todo  $x \in G$ .



Seja  $G \neq \emptyset$  um conjunto no qual está definida uma operação binária \* tal que:

i) Para todos x, y,  $z \in G$ :

$$(x*y)*z=x*(y*z).$$

ii) Existe  $e \in G$  tal que

$$x * e = x = e * x$$

para todo  $x \in G$ . Tal elemento e



Seja  $G \neq \emptyset$  um conjunto no qual está definida uma operação binária \* tal que:

i) Para todos x, y,  $z \in G$ :

$$(x*y)*z=x*(y*z).$$

ii) Existe  $e \in G$  tal que

$$x * e = x = e * x$$

para todo  $x \in G$ . Tal elemento e é chamado de **elemento neutro** 



Seja  $G \neq \emptyset$  um conjunto no qual está definida uma operação binária \* tal que:

i) Para todos x, y,  $z \in G$ :

$$(x*y)*z=x*(y*z).$$

ii) Existe  $e \in G$  tal que

$$x * e = x = e * x$$

para todo  $x \in G$ . Tal elemento e é chamado de **elemento neutro** ou **unidade** 



Seja  $G \neq \emptyset$  um conjunto no qual está definida uma operação binária \* tal que:

i) Para todos x, y,  $z \in G$ :

$$(x*y)*z=x*(y*z).$$

ii) Existe  $e \in G$  tal que

$$x * e = x = e * x$$

para todo  $x \in G$ . Tal elemento e é chamado de **elemento neutro** ou **unidade** de G.



Seja  $G \neq \emptyset$  um conjunto no qual está definida uma operação binária \* tal que:

i) Para todos x, y,  $z \in G$ :

$$(x*y)*z=x*(y*z).$$

ii) Existe  $e \in G$  tal que

$$x * e = x = e * x$$

para todo  $x \in G$ . Tal elemento e é chamado de **elemento neutro** ou **unidade** de G.



iii) Para cada  $x \in G$ ,





iii) Para cada  $x \in G$ , existe  $y \in G$ 



iii) Para cada  $x \in G$ , existe  $y \in G$  tal que



iii) Para cada  $x \in G$ , existe  $y \in G$  tal que

x \* y



iii) Para cada  $x \in G$ , existe  $y \in G$  tal que

$$x * y = e =$$



iii) Para cada  $x \in G$ , existe  $y \in G$  tal que

$$x * y = e = y * x$$
.



iii) Para cada  $x \in G$ , existe  $y \in G$  tal que

$$x*y=e=y*x.$$

O elemento y



iii) Para cada  $x \in G$ , existe  $y \in G$  tal que

$$x * y = e = y * x$$
.

O elemento y é chamado de **inverso** 



iii) Para cada  $x \in G$ , existe  $y \in G$  tal que

$$x * y = e = y * x$$
.

O elemento y é chamado de inverso ou oposto



iii) Para cada  $x \in G$ , existe  $y \in G$  tal que

$$x * y = e = y * x$$
.

O elemento y é chamado de **inverso** ou **oposto** de x.



iii) Para cada  $x \in G$ , existe  $y \in G$  tal que

$$x * y = e = y * x$$
.

O elemento y é chamado de **inverso** ou **oposto** de x.

Nesse caso dizemos que o par (G,\*)



iii) Para cada  $x \in G$ , existe  $y \in G$  tal que

$$x * y = e = y * x$$
.

O elemento y é chamado de **inverso** ou **oposto** de x.

Nesse caso dizemos que o par (G,\*) é um **grupo**.

3/9



iii) Para cada  $x \in G$ , existe  $y \in G$  tal que

$$x * y = e = y * x$$
.

O elemento y é chamado de **inverso** ou **oposto** de x.

Nesse caso dizemos que o par (G,\*) é um **grupo**.

3/9



Quando \* é uma "soma",



Quando \* é uma "soma", dizemos que (G,\*) é um **grupo aditivo**.



Quando \* é uma "soma", dizemos que (G,\*) é um **grupo aditivo**.

Se \* é uma "multiplicação",



Quando \* é uma "soma", dizemos que (G,\*) é um **grupo aditivo**.

Se \* é uma "multiplicação", dizemos que (G,\*) é um **grupo** multiplicativo.



Quando \* é uma "soma", dizemos que (G,\*) é um **grupo aditivo**.

Se \* é uma "multiplicação", dizemos que (G,\*) é um **grupo** multiplicativo.

Além disso, quando não houver chance de confusão com relação à operação do grupo (G,\*)

4/9



Quando \* é uma "soma", dizemos que (G,\*) é um **grupo aditivo**.

Se \* é uma "multiplicação", dizemos que (G,\*) é um **grupo** multiplicativo.

Além disso, quando não houver chance de confusão com relação à operação do grupo (G,\*) vamos dizer simplesmente que G é um grupo.

4/9



Quando \* é uma "soma", dizemos que (G,\*) é um **grupo aditivo**.

Se \* é uma "multiplicação", dizemos que (G,\*) é um **grupo** multiplicativo.

Além disso, quando não houver chance de confusão com relação à operação do grupo (G,\*) vamos dizer simplesmente que G é um grupo.

## Definição

Um grupo (G, \*)



Quando \* é uma "soma", dizemos que (G,\*) é um **grupo aditivo**.

Se \* é uma "multiplicação", dizemos que (G,\*) é um **grupo** multiplicativo.

Além disso, quando não houver chance de confusão com relação à operação do grupo (G,\*) vamos dizer simplesmente que G é um grupo.

#### Definição

*Um grupo* (*G*,\*) é chamado de **grupo comutativo** 



Quando \* é uma "soma", dizemos que (G,\*) é um **grupo aditivo**.

Se \* é uma "multiplicação", dizemos que (G,\*) é um **grupo** multiplicativo.

Além disso, quando não houver chance de confusão com relação à operação do grupo (G,\*) vamos dizer simplesmente que G é um grupo.

#### Definição

Um grupo (G,\*) é chamado de **grupo comutativo** ou **abeliano** 



Quando \* é uma "soma", dizemos que (G,\*) é um **grupo aditivo**.

Se \* é uma "multiplicação", dizemos que (G,\*) é um **grupo** multiplicativo.

Além disso, quando não houver chance de confusão com relação à operação do grupo (G,\*) vamos dizer simplesmente que G é um grupo.

#### Definição

Um grupo (G,\*) é chamado de **grupo comutativo** ou **abeliano** quando \* é comutativa,



Quando \* é uma "soma", dizemos que (G,\*) é um **grupo aditivo**.

Se \* é uma "multiplicação", dizemos que (G,\*) é um **grupo** multiplicativo.

Além disso, quando não houver chance de confusão com relação à operação do grupo (G,\*) vamos dizer simplesmente que G é um grupo.

#### Definição

Um grupo (G,\*) é chamado de **grupo comutativo** ou **abeliano** quando \* é comutativa, ou seja, quando



Quando \* é uma "soma", dizemos que (G,\*) é um **grupo aditivo**.

Se \* é uma "multiplicação", dizemos que (G,\*) é um **grupo** multiplicativo.

Além disso, quando não houver chance de confusão com relação à operação do grupo (G,\*) vamos dizer simplesmente que G é um grupo.

#### Definição

Um grupo (G,\*) é chamado de **grupo comutativo** ou **abeliano** quando \* é comutativa, ou seja, quando

$$x * y =$$



Quando \* é uma "soma", dizemos que (G,\*) é um **grupo aditivo**.

Se \* é uma "multiplicação", dizemos que (G,\*) é um **grupo** multiplicativo.

Além disso, quando não houver chance de confusão com relação à operação do grupo (G,\*) vamos dizer simplesmente que G é um grupo.

#### Definição

Um grupo (G,\*) é chamado de **grupo comutativo** ou **abeliano** quando \* é comutativa, ou seja, quando

$$x * y = y * x$$



Quando \* é uma "soma", dizemos que (G,\*) é um **grupo aditivo**.

Se \* é uma "multiplicação", dizemos que (G,\*) é um **grupo** multiplicativo.

Além disso, quando não houver chance de confusão com relação à operação do grupo (G,\*) vamos dizer simplesmente que G é um grupo.

#### Definição

Um grupo (G,\*) é chamado de **grupo comutativo** ou **abeliano** quando \* é comutativa, ou seja, quando

$$x * y = y * x$$

para todos  $x, y \in G$ .



1)  $(\mathbb{Z},+)$  é um grupo abeliano.



- 1)  $(\mathbb{Z},+)$  é um grupo abeliano.
- 2)  $(\mathbb{Z},\cdot)$  não é grupo.

- 1)  $(\mathbb{Z},+)$  é um grupo abeliano.
- 2)  $(\mathbb{Z},\cdot)$  não é grupo.
- 3)  $(\mathbb{Q},+)$  é um grupo abeliano.

- 1)  $(\mathbb{Z},+)$  é um grupo abeliano.
- 2)  $(\mathbb{Z},\cdot)$  não é grupo.
- 3)  $(\mathbb{Q},+)$  é um grupo abeliano.
- 4)  $(\mathbb{Q}^*, \cdot)$  é um grupo abeliano.

- 1)  $(\mathbb{Z},+)$  é um grupo abeliano.
- 2)  $(\mathbb{Z},\cdot)$  não é grupo.
- 3)  $(\mathbb{Q}, +)$  é um grupo abeliano.
- 4)  $(\mathbb{Q}^*, \cdot)$  é um grupo abeliano.
- 5)  $(\mathbb{R},+)$  é um grupo abeliano.

- 1)  $(\mathbb{Z},+)$  é um grupo abeliano.
- 2)  $(\mathbb{Z},\cdot)$  não é grupo.
- 3)  $(\mathbb{Q},+)$  é um grupo abeliano.
- 4)  $(\mathbb{Q}^*, \cdot)$  é um grupo abeliano.
- 5)  $(\mathbb{R},+)$  é um grupo abeliano.
- 6)  $(\mathbb{R}^*, \cdot)$  é um grupo abeliano.

- 1)  $(\mathbb{Z},+)$  é um grupo abeliano.
- 2)  $(\mathbb{Z},\cdot)$  não é grupo.
- 3)  $(\mathbb{Q}, +)$  é um grupo abeliano.
- 4)  $(\mathbb{Q}^*, \cdot)$  é um grupo abeliano.
- 5)  $(\mathbb{R},+)$  é um grupo abeliano.
- 6)  $(\mathbb{R}^*,\cdot)$  é um grupo abeliano.
- 7)  $(\mathbb{C},+)$  é um grupo abeliano.

- 1)  $(\mathbb{Z},+)$  é um grupo abeliano.
- 2)  $(\mathbb{Z},\cdot)$  não é grupo.
- 3)  $(\mathbb{Q}, +)$  é um grupo abeliano.
- 4)  $(\mathbb{Q}^*, \cdot)$  é um grupo abeliano.
- 5)  $(\mathbb{R},+)$  é um grupo abeliano.
- 6)  $(\mathbb{R}^*, \cdot)$  é um grupo abeliano.
- 7)  $(\mathbb{C},+)$  é um grupo abeliano.
- 8) ( $\mathbb{C}^*$ , ·) é um grupo abeliano.



9)  $(\mathbb{Z}_m, \oplus)$  é grupo abeliano.





- 9)  $(\mathbb{Z}_m, \oplus)$  é grupo abeliano.
- 10) Considere o conjunto dos números reais  $\mathbb R$





- 9)  $(\mathbb{Z}_m, \oplus)$  é grupo abeliano.
- 10) Considere o conjunto dos números reais  $\mathbb R$  com a operação \*



- 9)  $(\mathbb{Z}_m, \oplus)$  é grupo abeliano.
- 10) Considere o conjunto dos números reais  $\mathbb R$  com a operação \* definida por



- 9)  $(\mathbb{Z}_m, \oplus)$  é grupo abeliano.
- 10) Considere o conjunto dos números reais  $\mathbb R$  com a operação \* definida por

$$x * y =$$



- 9)  $(\mathbb{Z}_m, \oplus)$  é grupo abeliano.
- 10) Considere o conjunto dos números reais  $\mathbb R$  com a operação \* definida por

$$x * y = x + y - 3$$



- 9)  $(\mathbb{Z}_m, \oplus)$  é grupo abeliano.
- 10) Considere o conjunto dos números reais  $\mathbb R$  com a operação \* definida por

$$x * y = x + y - 3$$

para  $x, y \in \mathbb{R}$ .



- 9)  $(\mathbb{Z}_m, \oplus)$  é grupo abeliano.
- 10) Considere o conjunto dos números reais  $\mathbb R$  com a operação \* definida por

$$x * y = x + y - 3$$

para  $x, y \in \mathbb{R}$ . Então  $(\mathbb{R}, *)$ 



#### Exemplos '

- 9)  $(\mathbb{Z}_m, \oplus)$  é grupo abeliano.
- 10) Considere o conjunto dos números reais  $\mathbb R$  com a operação \* definida por

$$x * y = x + y - 3$$



- 9)  $(\mathbb{Z}_m, \oplus)$  é grupo abeliano.
- 10) Considere o conjunto dos números reais  $\mathbb R$  com a operação \* definida por

$$x * y = x + y - 3$$

11) 
$$(\mathbb{Z}_m - \{\overline{0}\}, \otimes)$$



- 9)  $(\mathbb{Z}_m, \oplus)$  é grupo abeliano.
- 10) Considere o conjunto dos números reais  $\mathbb R$  com a operação \* definida por

$$x * y = x + y - 3$$

11) 
$$(\mathbb{Z}_m - \{\overline{0}\}, \otimes)$$
 é grupo?



- 9)  $(\mathbb{Z}_m, \oplus)$  é grupo abeliano.
- 10) Considere o conjunto dos números reais  $\mathbb R$  com a operação \* definida por

$$x * y = x + y - 3$$

- 11)  $(\mathbb{Z}_m {\overline{0}}, \otimes)$  é grupo?
- 12)  $(\mathbb{R},*)$



- 9)  $(\mathbb{Z}_m, \oplus)$  é grupo abeliano.
- 10) Considere o conjunto dos números reais  $\mathbb R$  com a operação \* definida por

$$x * y = x + y - 3$$

- 11)  $(\mathbb{Z}_m {\overline{0}}, \otimes)$  é grupo?
- 12)  $(\mathbb{R}, *)$  onde x \* y = y



- 9)  $(\mathbb{Z}_m, \oplus)$  é grupo abeliano.
- 10) Considere o conjunto dos números reais  $\mathbb R$  com a operação \* definida por

$$x * y = x + y - 3$$

- 11)  $(\mathbb{Z}_m \{\overline{0}\}, \otimes)$  é grupo?
- 12)  $(\mathbb{R},*)$  onde x\*y = y para todos  $x, y \in \mathbb{R}$



- 9)  $(\mathbb{Z}_m, \oplus)$  é grupo abeliano.
- 10) Considere o conjunto dos números reais  $\mathbb R$  com a operação \* definida por

$$x * y = x + y - 3$$

- 11)  $(\mathbb{Z}_m \{\overline{0}\}, \otimes)$  é grupo?
- 12)  $(\mathbb{R},*)$  onde x\*y=y para todos  $x, y \in \mathbb{R}$  é grupo?



13) Denote por  $\mathbb{K}$  um dos conjuntos  $\mathbb{Z}$ ,  $\mathbb{Q}$ ,  $\mathbb{R}$  ou  $\mathbb{C}$ , indistintamente. Seja  $M_{r\times s}(\mathbb{K})=\{A\mid A\ \'e\ uma\ matriz$ 

de r linhas por s colunas cujas entradas estão em  $\mathbb{K}$ }.

Então  $(M_{r\times s}(\mathbb{K}),+)$  onde + é a soma de matrizes é um grupo abeliano.

14) Denote por  $\mathbb{K}$  um dos conjuntos  $\mathbb{Q}$ ,  $\mathbb{R}$  ou  $\mathbb{C}$ , indistintamente. Seja  $GL_n(\mathbb{K}) = \{A \in M_{n \times n}(\mathbb{K}) \mid \det(A) = 1\}.$ 

Então  $(GL_n(\mathbb{K}), \cdot)$  onde  $\cdot$  é a multiplicação de matrizes é um grupo não abeliano.



# Proposição

Seja (G,\*) um grupo.





# Proposição

Seja (G, \*) um grupo. Então:



# Proposição

Seja (G,\*) um grupo. Então:

i) O elemento neutro de G é único.



- Seja (G,\*) um grupo. Então:
  - i) O elemento neutro de G é único.
  - ii) Existe um único inverso para cada  $x \in G$ .



- Seja (G,\*) um grupo. Então:
  - i) O elemento neutro de G é único.
  - ii) Existe um único inverso para cada  $x \in G$ .



iii) Para todos x,  $y \in G$ ,



iii) Para todos x,  $y \in G$ ,

$$(x*y)^{-1}$$



iii) Para todos  $x, y \in G$ ,

$$(x*y)^{-1} = y^{-1}*x^{-1}.$$



iii) Para todos  $x, y \in G$ ,

$$(x*y)^{-1} = y^{-1}*x^{-1}.$$

Por indução,





iii) Para todos  $x, y \in G$ ,

$$(x*y)^{-1} = y^{-1}*x^{-1}.$$



iii) Para todos  $x, y \in G$ ,

$$(x*y)^{-1} = y^{-1}*x^{-1}.$$

$$(x_1 * x_2 * \cdots * x_{n-1} * x_n)^{-1} =$$



iii) Para todos  $x, y \in G$ ,

$$(x*y)^{-1} = y^{-1}*x^{-1}.$$

$$(x_1 * x_2 * \cdots * x_{n-1} * x_n)^{-1} = x_n^{-1}$$



iii) Para todos  $x, y \in G$ ,

$$(x*y)^{-1} = y^{-1}*x^{-1}.$$

$$(x_1 * x_2 * \cdots * x_{n-1} * x_n)^{-1} = x_n^{-1} * x_{n-1}^{-1}$$



iii) Para todos  $x, y \in G$ ,

$$(x*y)^{-1} = y^{-1}*x^{-1}.$$

$$(x_1 * x_2 * \cdots * x_{n-1} * x_n)^{-1} = x_n^{-1} * x_{n-1}^{-1} * \cdots *$$



iii) Para todos  $x, y \in G$ ,

$$(x*y)^{-1} = y^{-1}*x^{-1}.$$

$$(x_1 * x_2 * \cdots * x_{n-1} * x_n)^{-1} = x_n^{-1} * x_{n-1}^{-1} * \cdots * x_2^{-1}$$



iii) Para todos  $x, y \in G$ ,

$$(x*y)^{-1} = y^{-1}*x^{-1}.$$

$$(x_1 * x_2 * \cdots * x_{n-1} * x_n)^{-1} = x_n^{-1} * x_{n-1}^{-1} * \cdots * x_2^{-1} * x_1^{-1}$$



iii) Para todos  $x, y \in G$ ,

$$(x*y)^{-1} = y^{-1}*x^{-1}.$$

Por indução,  $x_1$ ,  $x_2$ , ..., $x_{n-1}$ ,  $x_n \in G$ ,

$$(x_1 * x_2 * \cdots * x_{n-1} * x_n)^{-1} = x_n^{-1} * x_{n-1}^{-1} * \cdots * x_2^{-1} * x_1^{-1}$$

iv) Para todo  $x \in G$ ,



iii) Para todos  $x, y \in G$ ,

$$(x*y)^{-1} = y^{-1}*x^{-1}.$$

Por indução,  $x_1$ ,  $x_2$ , ..., $x_{n-1}$ ,  $x_n \in G$ ,

$$(x_1 * x_2 * \cdots * x_{n-1} * x_n)^{-1} = x_n^{-1} * x_{n-1}^{-1} * \cdots * x_2^{-1} * x_1^{-1}$$

iv) Para todo  $x \in G$ ,

$$(x^{-1})^{-1}$$



iii) Para todos  $x, y \in G$ ,

$$(x*y)^{-1} = y^{-1}*x^{-1}.$$

Por indução,  $x_1$ ,  $x_2$ , ..., $x_{n-1}$ ,  $x_n \in G$ ,

$$(x_1 * x_2 * \cdots * x_{n-1} * x_n)^{-1} = x_n^{-1} * x_{n-1}^{-1} * \cdots * x_2^{-1} * x_1^{-1}$$

iv) Para todo  $x \in G$ ,

$$(x^{-1})^{-1} = x.$$