Math 172 Assignment 4 Tuesday, February 13, 2018

9.4.1bcd Determine whether the following polynomials are irreducible in the rings indicated. For those that are reducible, determine their factorization into irreducibles. The notation \mathbb{F}_p denotes the finite field $\mathbb{Z}/p\mathbb{Z}$, p a prime.

(b)
$$x^3 + x + 1$$
 in $\mathbb{F}_3[x]$

(c)
$$x^4 + 1$$
 in $\mathbb{F}_5[x]$

(d)
$$x^4 + 10x^2 + 1$$
 in $\mathbb{Z}[x]$

1

9.4.2bc Prove that the following polynomials are irreducible in $\mathbb{Z}[x]$:

- (b) $x^6 + 30x^5 15x^3 + 6x 120$
- (c) $x^4 + 4x^3 + 6x^2 + 2x + 1$ [Substitute x 1 for x.]

READ ONLY 9.4.5 Find all the monic irreducible polynomials of degree ≤ 3 in $\mathbb{F}_2[x]$, and the same in $\mathbb{F}_3[x]$.

9.4.6ac Construct fields of each of the following orders: (a) 9, (c) 8 (you may exhibit these as F[x]/(f(x)) for some F and f). [Use Exercise 2 and 3 in Section 2.]

9.4.7 Prove that $\mathbb{R}[x]/(x^2+1)$ is a field which is isomorphic to the complex numbers.

4

READ ONLY 9.4.11 Prove that $x^2 + y^2 - 1$ is irreducible in $\mathbb{Q}[x, y]$.

READ ONLY 13.1.1 Show that $p(x) = x^3 + 9x + 6$ is irreducible in $\mathbb{Q}[x]$. Let θ be a root of p(x). Find the inverse of $1 + \theta$ in $\mathbb{Q}(\theta)$.

13.1.3 Show that $x^3 + x + 1$ is irreducible over \mathbb{F}_2 and let θ be a root. Compute the powers of θ in $\mathbb{F}_2(\theta)$.

READ ONLY 13.1.5 Suppose α is a rational root of a monic polynomial in $\mathbb{Z}[x]$. Prove that α is an integer.

READ ONLY 13.2.1 Let \mathbb{F} be a finite field of characteristic p. Prove that $|\mathbb{F}| = p^n$ for some positive integer n.

13.2.3 Determine the minimal polynomial over \mathbb{Q} for the element 1 + i.