Processamento de Imagens - IF69P/C81

Trabalho Final
Transfer Learning aplicado a arquiteturas CNN

Vinicius Augusto de Souza - 1997530 Engenharia de Computação

Introdução

Introdução

O projeto tem como objetivo aplicar técnicas de *transfer* learning a diferentes arquiteturas CNNs por meio do treinamento realizado no dataset ImageNet.

- A linguagem de programação utilizada foi Python
- Foi utilizado o Jupyter Notebook para realizar todo o projeto
- A arquitetura CNN escolhida foi a ResNet50V2
- Para os experimentos, foi utilizado 80% do dataset para treino e 20% para teste

Introdução

As bibliotecas utilizadas no projeto foram:

- random
- OS
- tqdm
- shutil
- pathlib
- tensorflow
- numpy
- pandas
- sklearn
- matplotlib
- seaborn
- OS

Conceitos e Trabalhos relacionados

ResNet50V2 é uma versão modificada do ResNet50 e seu desempenho é melhor do que ResNet50 e ResNet101 no conjunto de dados ImageNet. No ResNet50V2, o modo de propagação das conexões entre os blocos foi modificado. ResNet50V2 também obteve bons resultados no conjunto de dados ImageNet.

FONTE: https://cv-tricks.com/keras/understand-implement-resnets/

- Depois que o ResNet V1 executa uma operação de adição entre x e F (x), ele adiciona a segunda não linearidade. O ResNet V2 elimina a última não linearidade, portanto, o caminho da entrada à saída é eliminado na forma de conexões de identificação.
- Antes de multiplicar pela matriz de peso (operação de convolução), o ResNet V2 aplica a normalização de lote e a ativação de ReLU à entrada.
 O ResNet V1 realiza a convolução e, em seguida, normaliza em lote e ativa o ReLU.

ResNet - V1	ResNet - V2
$y = x_l + F(x_l, \{W_i\})$	$y = h(x_l) + F(x_l, \{W_i\})$
$x_{l+1} = H(x) = ReLU(y)$	$x_{l+1} = H(x) = f(y)$
y = Addition Output	y = Addition output
$x_{l+1} = Input to Next Block$	$h(x_1) = Generalized form of input.$
	For ResNet V1, $h(x_i) = x_i$.
	f = Function applied to 'y'.
	For ResNet V1, $f = ReLU$.
	For ResNet V2, f is an identity mapping.

FONTE: https://cv-tricks.com/keras/understand-implement-resnets/

Características principais da arquitetura ResNet50V2

- O ResNet usa a normalização em lote em seu núcleo. A normalização em lote pode ajustar a camada de entrada para melhorar o desempenho da rede. O problema de mudar as variáveis é reduzido.
- Utiliza a Conexões de Identidade para ajudar a proteger a rede de problemas de gradiente de desaparecimento.
- A rede residual profunda usa o projeto do módulo de gargalo residual para melhorar o desempenho da rede.

Descrição da Base de Imagens

Dataset PapSmear

O teste de Papanicolaou, também conhecido como teste de Papanicolaou, é um procedimento para testar mulheres quanto ao câncer cervical. O câncer cervical é um tipo de câncer que ocorre nas células do colo do útero, que são a parte inferior do útero que conecta a vagina.

Este dataset consiste em 917 amostras distribuídas desigualmente em 7 classes diferentes, das quais são classificadas como células normais as Superficial squamous, Intermediate squamous e Columnar e as células anormais, que são as classes Mild dysplasia, Moderate dysplasia, Servere dysplasia e Carcinoma in situ.

Norup, Jonas. "Classification of Pap-smear data by tranduction neuro-fuzzy methods." (2005).

Dataset PapSmear

Norup, Jonas. "Classification of Pap-smear data by tranduction neuro-fuzzy methods." (2005).

Separação do Dataset

```
data_dir = "Database"
classes = ["carcinoma_in_situ", "light_dysplastic", "moderate_dysplastic", "normal_columnar",
"normal_intermediate", "normal_superficiel", "severe_dysplastic"]
output_dir = "data_tt_g"
def split(data_dir, output_dir, ratio):
   for cell in classes:
       cell path = os.path.join(data dir, cell)
       files = os.listdir(cell_path)
       files = [os.path.join(cell_path, f) for f in files if f.endswith('.BMP')]
       files.sort()
       files_train = files[:split_train]
       files_test = files[split_test:]
       for (files, folder_type) in files_type:
           full_path = os.path.join(output_dir, folder_type)
           full_path = os.path.join(full_path, cell)
           pathlib.Path(full_path).mkdir(parents=True, exist_ok=True)
           for f in files:
split(data_dir, output_dir, ratio)
```


Estrutura e Conceitos

Estrutura

- Carrega-se o modelo da ResNet50V2 com os pesos aprendidos no treino da ImageNet sem a camada densa
- Adiciona-se um nó utilizando o método de GlobalAveragePooling
- Adicionam-se nós de camada densa com o método de ativação ReLu contendo:
 - 128 neurônios
 - 64 neurônios
 - 32 neurônios
- Adiciona-se uma camada de Dropout, desligando uma porcentagem de neurônios
- Por fim, uma última camada densa, com 7 neurônios (número de classes) com a função de ativação softmax
- Foi utilizado o método EarlyStopping, no qual para o treinamento quando uma métrica monitorada parar de melhorar

GlobalAveragePooling

- Ao aplicar o método, o tamanho do pool ainda é definido para o tamanho da entrada da camada, e a média é definida
- Eles são frequentemente usados para substituir as camadas totalmente conectadas ou densamente conectadas em um classificador.
- Ao alimentar os valores gerados pelo agrupamento médio global em uma função de ativação do Softmax, você obtém mais uma vez a distribuição de probabilidade multiclasse que deseja.

4	3	1	5	
1	3	4	8	
4	5	4	3	-
6	5	9	4	

ReLu

- Em uma rede neural, a função de ativação é responsável por transformar a entrada ponderada somada do nó na ativação do nó ou saída para essa entrada.
- A função de ativação linear retificada ou ReLU para breve é uma função linear por partes que produzirá a entrada diretamente se for positiva, caso contrário, ela produzirá zero.

Softmax

- Softmax é uma função matemática que converte um vetor de números em um vetor de probabilidades, onde as probabilidades de cada valor são proporcionais à escala relativa de cada valor no vetor.
- É utilizada como a função de ativação na camada de saída de modelos de rede neural que prevêem uma distribuição de probabilidade multinomial.

Formula

$$\sigma(ec{z})_i = rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

 σ = softmax

 \vec{z} = input vector

 $e^{\mathbf{z}_i}$ = standard exponential function for input vector

 $oldsymbol{K}$ = number of classes in the multi-class classifier

 e^{z_j} = standard exponential function for output vector

 e^{z_j} = standard exponential function for output vector

Cenários

Cenários

Foram realizados 8 testes, nos quais foram alterados os seguintes parâmetros

- batch número de amostras que será carregado a cada execução
- dropout desliga uma porcentagem de neurônios
- learning_rate é um parâmetro de ajuste em um algoritmo de otimização que determina o tamanho da etapa em cada iteração enquanto se move em direção a um mínimo de uma função de perda.

Por padão, foram utilizadas 100 *epochs* e 128x128 de tamanho de imagem

Train: 1.000, Test: 0.591

Train: 1.000, Test: 0.591

CLAS	SIFICATION			
	precision	recall	f1-score	support
carcinoma_in_situ	0.17	0.20	0.18	30
light_dysplastic	0.21	0.19	0.20	37
moderate dysplastic	0.07	0.07	0.07	30
normal columnar	0.00	0.00	0.00	20
normal intermediate	0.19	0.21	0.20	14
normal superficiel	0.09	0.07	0.08	15
severe_dysplastic	0.28	0.33	0.30	40
accuracy			0.17	186
macro avg	0.14	0.15	0.15	186
weighted avg	0.16	0.17	0.17	186

Train: 0.999, Test: 0.568

Train: 0.999, Test: 0.568

	precision	recall	f1-score	support
carcinoma_in_situ	0.18	0.17	0.17	30
light_dysplastic	0.19	0.14	0.16	37
moderate dysplastic	0.13	0.23	0.17	30
normal columnar	0.07	0.05	0.06	20
normal_intermediate	0.15	0.14	0.15	14
normal_superficiel	0.07	0.07	0.07	15
severe_dysplastic	0.19	0.17	0.18	40
accuracy			0.15	186
macro avg	0.14	0.14	0.14	186
weighted avg	0.15	0.15	0.15	186

Train: 1.000, Test: 0.574

Train: 1.000, Test: 0.574

CLAS	SIFICATION			
	precision	recall	f1-score	support
carcinoma_in_situ	0.23	0.33	0.27	30
light_dysplastic	0.22	0.22	0.22	37
moderate dysplastic	0.09	0.10	0.09	30
normal columnar	0.00	0.00	0.00	20
normal intermediate	0.12	0.14	0.13	14
normal superficiel	0.08	0.07	0.07	15
severe_dysplastic	0.18	0.15	0.16	40
accuracy			0.16	186
macro avg	0.13	0.14	0.14	186
weighted avg	0.15	0.16	0.15	186

Train: 0.988, Test: 0.540

Train: 0.988, Test: 0.540

CLAS	SIFICATION		5550	
	precision	recall	f1-score	support
carcinoma_in_situ	0.26	0.20	0.23	30
light_dysplastic	0.17	0.16	0.17	37
moderate_dysplastic	0.14	0.07	0.09	30
normal_columnar	0.17	0.15	0.16	20
normal_intermediate	0.00	0.00	0.00	14
normal_superficiel	0.00	0.00	0.00	15
severe_dysplastic	0.17	0.30	0.21	40
accuracy			0.16	186
macro avg	0.13	0.13	0.12	186
weighted avg	0.15	0.16	0.15	186

Train: 1.000, Test: 0.575

Train: 1.000, Test: 0.575

CLAS	SSIFICATION			
	precision	recall	f1-score	support
carcinoma_in_situ	0.16	0.20	0.18	30
light_dysplastic	0.18	0.16	0.17	37
moderate_dysplastic	0.17	0.20	0.18	30
normal_columnar	0.18	0.10	0.13	20
normal_intermediate	0.00	0.00	0.00	14
normal_superficiel	0.12	0.13	0.13	15
severe_dysplastic	0.24	0.25	0.24	40
accuracy			0.17	186
macro avg	0.15	0.15	0.15	186
weighted avg	0.17	0.17	0.17	186

Train: 0.990, Test: 0.500

Train: 0.990, Test: 0.500

SIFICATION			
precision	recall	f1-score	support
0.15	0.13	0.14	30
0.24	0.16	0.19	37
0.14	0.20	0.16	30
0.20	0.05	0.08	20
0.19	0.21	0.20	14
0.14	0.13	0.14	15
0.24	0.33	0.27	40
		0.19	186
0.18	0.17	0.17	186
0.19	0.19	0.18	186
	0.15 0.24 0.14 0.20 0.19 0.14 0.24	precision recall 0.15 0.13 0.24 0.16 0.14 0.20 0.20 0.05 0.19 0.21 0.14 0.13 0.24 0.33 0.18 0.17	precision recall f1-score 0.15

Train: 1.000, Test: 0.587

Train: 1.000, Test: 0.587

CLAS	SIFICATION			
	precision	recall	f1-score	support
carcinoma_in_situ	0.18	0.20	0.19	30
light_dysplastic	0.29	0.27	0.28	37
moderate dysplastic	0.19	0.17	0.18	30
normal columnar	0.14	0.15	0.15	20
normal intermediate	0.07	0.07	0.07	14
normal superficiel	0.17	0.13	0.15	15
severe_dysplastic	0.22	0.25	0.24	40
accuracy			0.20	186
macro avg	0.18	0.18	0.18	186
weighted avg	0.20	0.20	0.20	186

Train: 0.997, Test: 0.562

Train: 0.997, Test: 0.562

CLAS	SIFICATION			
	precision	recall	f1-score	support
carcinoma_in_situ	0.17	0.17	0.17	30
light_dysplastic	0.24	0.22	0.23	37
moderate_dysplastic	0.18	0.13	0.15	30
normal_columnar	0.08	0.10	0.09	20
normal_intermediate	0.00	0.00	0.00	14
normal_superficiel	0.08	0.07	0.07	15
severe_dysplastic	0.20	0.25	0.22	40
accuracy			0.16	186
macro avg	0.14	0.13	0.13	186
weighted avg	0.16	0.16	0.16	186

Resultados e Discussões

Resultados

100epochs_32batch_0.2dropout_0.001learningrate_128x128 - **Train: 0.997, Test: 0.562** 100epochs_32batch_0.2dropout_0.0001learningrate_128x128 - **Train: 1.000, Test: 0.587**

100epochs_16batch_0.2dropout_0.001learningrate_128x128 - **Train: 0.988, Test: 0.540** 100epochs_16batch_0.2dropout_0.0001learningrate_128x128 - **Train: 1.000, Test: 0.574**

100epochs_32batch_0.1dropout_0.001learningrate_128x128 - **Train: 0.990, Test: 0.500** 100epochs_32batch_0.1dropout_0.0001learningrate_128x128 - **Train: 1.000, Test: 0.575**

100epochs_16batch_0.1dropout_0.001learningrate_128x128 - **Train: 0.999, Test: 0.568** 100epochs_16batch_0.1dropout_0.0001learningrate_128x128 - **Train: 1.000, Test: 0.591**

Conclusões

Conclusões

Overfitting: ocorre quando nosso modelo se torna realmente bom em ser capaz de classificar ou prever dados que foram incluídos no conjunto de treinamento, mas não é tão bom em classificar dados nos quais não foi treinado. Então, essencialmente, o modelo super ajustou os dados no conjunto de treinamento.

Referências

Referências

- https://www.sciencedirect.com/science/article/pii/S2352914820302537#bib33
- https://keras.io/api/applications/resnet/
- https://cv-tricks.com/keras/understand-implement-resnets/
- https://www.machinecurve.com/index.php/2020/01/30/what-are-max-pooling-a verage-pooling-global-max-pooling-and-global-average-pooling/
- https://machinelearningmastery.com/rectified-linear-activation-function-for-dee p-learning-neural-networks/#:~:text=The%20rectified%20linear%20activation%20 function,otherwise%2C%20it%20will%20output%20zero.
- https://machinelearningmastery.com/softmax-activation-function-with-python/
- https://deeplizard.com/learn/video/DEMmkFC6IGM#:~:text=Overfitting%20occu rs%20when%20our%20model,data%20in%20the%20training%20set.

