

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: BM-401

STATISTICS, NUMERICAL METHODS AND ALGORITHM

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) $(I + \Delta) (I \nabla)$ is equal to
 - a) l

b) Δ^2

c) ∇^2

- d) none of these.
- ii) Lagrange's interpolation formula is used for
 - a) equally spaced arguments
 - b) unequally spaced arguments
 - c) unequally or equally spaced arguments-
 - d) none of these.

4/40341

[Turn over

iii)	The	e number of signifi	cant dig	its in 1.00234 is			
	a)	3	b)	4			
	c)	5	d)	6.			
iv)	First order forward difference of a constant function						
	is						
	a)	0	b)	1			
	c)	3	d)	4.			
v)	Nev	wton-Raphson met	hod car	n be used to solve the			
	equ	nation $f(x) = 0$ when	en				
	a)	$f^{I}(x) > 0$	b)	f'(x) < 0			
	c)	f'(x)=0	d)	none of these.			
vi)	Tra	pezoidal rule wili r	ot prod	uce any error if $f(x)$ is			
	a)	Parabolic	b)	Linear			
	c)	Logarithmic	d)	None of these.			
vii)	Wh	ich of the follow	ing me	thods is an iterative			
	me	thod ?					
	a)	Gauss Elimination	n Meth	od			
	b) Gauss-Jordan Method						
	c) Gauss-Jacobi Method						
	d)	Crout's Method.					
0341		2					
* * * * * * * * * * * * * * * * * * * *	:		•				

V111;	1 11	c ciroi ili Kunge	-Kutta me	inou of 4 order is				
,	a)	0 (h ²)	b)	0 (h ³)				
	c)	0 (h ⁴)	d)	0 (h ⁵).				
ix)	If t	he nth order for	rward diffe	erence of a polynom	ial			
	is (), then the degre	e of the po	olynomial will be				
	a)	n	b)	(n-1)				
	c)	(n+1)	d)	None of these.	:			
x)	Re	gula-Falsi metho	od is					
	a)	conditionally c	onvergent		٦,			
	b)	linearly conver	gent					
	c)	divergent			•			
•	d)	none of these.						
xi)	Modified Euler's method has a truncation error of							
	the	order of						
	a)	h	b }					
	c)	h ³	d)	h ⁴	÷.			
xii)	The	e rate of converg	ence of sec	eant method is	· .			
	a)	2	b)					
	c)	0.62	d)	1.62				
	e)	None of these.						
341	.		3	{ Turn o	<i>n</i> er			
			•	(I MIII O				

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5 = 15$

2. Solve the following equations using Gauss-Seidel Method;

3x + y + 5z = 13, 5x - 2y + z = 4, x + 6y - 2z = -1 continue up to 3 successive approximation.

3. Find f (5) using Newton's divide difference formula, for the following data:

X	0	2	3	4	7	8
f(x)	4	26	58	112	466	668

- 4. Find a negative root of the equation $x^3 3x 5 = 0$ using Bisection method correct up to three decimal places.
- 5. Evaluate $\int_{1}^{3} \frac{x dx}{x^2 + 3}$ by Simpson's $\frac{1}{3}$ rule taking 7 ordinates and find the value of $\log_e \sqrt{3}$.
- 6. Using Taylor's series method find y (0.2) correct up to three decimal places from $\frac{dy}{dx} = 2x + 3y^2$ given y(0) = 0 taking h = 0.1.

4/40341

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. a) Apply Lagrange's interpolation formula to find f(x) if f(1) = 2, f(2) = 4, f(3) = 8, f(4) = 16 and f(7) = 128.
 - b) Solve the equation $x^3 3x 5 = 0$ within (1, 2) by Bisection method correct to three decimal places.
 - c) Deduce Newton's Backward Interpolation formula.

5 + 5 + 5

- 8. a) Solve by Euler's method the following differential equation $\frac{dy}{dx} = x^2 y$, y(0) = 1, for x = 0.3 taking h = 0.1, correct up to four decimal places.
 - b) Use Regula-Falsi method to evaluate the smallest real root of the equation $3x \cos x 1 = 0$, correct to three decimal places.
- 9. a) Solve the following system of equations by LUFactorization method.6

$$2x - 3y + 4z = 8$$

$$x + y + 4z = 15$$

$$3x + 4y - z = 8$$

4/40341

5

| Turn over

- b) Obtain the order of convergence of Newton-Raphson method.
- Solve the following system of equations by Gauss-Jacobi iteration method correct up to
 3 significant figures.

$$20x + 5y - 2z = 14$$

$$3x + 10y + z = 17$$

$$x - 4y + 10z = 23$$

10. a) Use Runge-Kutta method of order 2 to calculate y (0·1) for the equation correct up to 4 decimal places.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x + y^2, \ y(0) = 1$$

- b) Given $\frac{dy}{dx} = x^2 + y^2$, $y(1) = 2 \cdot 3$, calculate $y(1 \cdot 1)$ by modified Taylor Series method correct up to 4 decimal places.
- c) Find a real root of the equation x = 2x 3 correct up to 3 decimal places by iteration method. 5
- 11. a) Solve the system of eqation by Gauss elimination method:

$$x + 3y + 2z = 5$$

$$2x - y + z = -1$$

$$x + 2y + 3z = 2$$

4/40341

b) The following table gives the distance in nautical miles of the visible horizon for the given heights in feet above the earth's surface:

Height (x)	100	150	200	250	300	350	400
Distance (y):	10.66	13-06	15.07	16.84	18 45	19.93	21 3

Find the value of y when x = 120 ft and x = 390 ft. 8

4/40341