Package 'GlarmaVarSel'

October 12, 2022

Type Package

Title Variable Selection in Sparse GLARMA Models

Version 1.0
Date 2021-09-15
Author M. Gomtsyan, C. Levy-Leduc, S. Ouadah, L. Sansonnet
Maintainer Marina Gomtsyan <marina.gomtsyan@agroparistech.fr></marina.gomtsyan@agroparistech.fr>
Description Performs variable selection in high-dimensional sparse GLARMA models. For further details we refer the reader to the paper Gomtsyan et al. (2020), <arxiv:2007.08623v1>.</arxiv:2007.08623v1>
License GPL-2
Depends R (>= 3.5.0), Matrix, glmnet, stats, ggplot2
VignetteBuilder knitr
Suggests knitr, markdown, formatR, doMC
NeedsCompilation no
Repository CRAN
Date/Publication 2021-09-16 07:40:02 UTC
R topics documented: GlarmaVarSel-package
grad_hess_beta
grad_hess_gamma
NR_gamma
variable_selection
Y 7
Index 8

GlarmaVarSel-package Variable Selection in Sparse GLARMA Models

Description

GlarmaVarSel consists of four functions: "variable_selection.R", "grad_hess_beta.R", "grad_hess_gamma.R" and "NR_gamma.R" For further information on how to use these functions, we refer the reader to the vignette of the package.

Details

GlarmaVarSel consists of four functions: "variable_selection.R", "grad_hess_beta.R", "grad_hess_gamma.R" and "NR_gamma.R" For further information on how to use these functions, we refer the reader to the vignette of the package.

Author(s)

Marina Gomtsyan, Celine Levy-Leduc, Sarah Ouadah, Laure Sansonnet

Maintainer: Marina Gomtsyan <marina.gomtsyan@agroparistech.fr>

References

M. Gomtsyan et al. "Variable selection in sparse GLARMA models", arXiv:2007.08623v1

```
n=50
p=30
X = matrix(NA,(p+1),n)
f = 1/0.7
for(t in 1:n){X[,t]<-c(1,cos(2*pi*(1:(p/2))*t*f/n),sin(2*pi*(1:(p/2))*t*f/n))}
gamma0 = c(0)
data(Y)
result = variable_selection(Y, X, gamma0, k_max=2, n_iter=100, method="min",
nb_rep_ss=1000, threshold=0.7, parallel=FALSE, nb.cores=1)
beta_est = result$beta_est
Estim_active = result$estim_active
gamma_est = result$gamma_est</pre>
```

grad_hess_beta 3

grad_hess_beta Gra	dient and Hessian of the log-likelihood with respect to beta
grad_hess_beta Gra	dient and Hessian of the log-likelihood with respect to beta

Description

This function calculates the gradient and Hessian of the log-likelihood with respect to beta.

Usage

```
grad_hess_beta(Y, X, beta0, gamma0)
```

Arguments

Υ	Observation matrix
Χ	Design matrix
beta0	Initial beta vector
gamma0	Initial gamma vector

Value

grad_L_beta	Vector of the gradient of L with respect to beta
hess L beta	Matrix of the Hessian of L with respect to beta

Author(s)

Marina Gomtsyan, Celine Levy-Leduc, Sarah Ouadah, Laure Sansonnet Maintainer: Marina Gomtsyan marina.gomtsyan@agroparistech.fr

References

M. Gomtsyan et al. "Variable selection in sparse GLARMA models", arXiv:2007.08623v1

```
n=50
p=30
X = matrix(NA,(p+1),n)
f = 1/0.7
for(t in 1:n){X[,t]<-c(1,cos(2*pi*(1:(p/2))*t*f/n),sin(2*pi*(1:(p/2))*t*f/n))}
gamma0 = c(0)
data(Y)
glm_pois<-glm(Y~t(X)[,2:(p+1)],family = poisson)
beta0<-as.numeric(glm_pois$coefficients)
result = grad_hess_beta(Y, X, beta0, gamma0)
grad = result$grad_L_beta
Hessian = result$hess_L_beta</pre>
```

4 grad_hess_gamma

grad_hess_gamma

Gradient and Hessian of the log-likelihood with respect to gamma

Description

This function calculates the gradient and Hessian of the log-likelihood with respect to gamma

Usage

```
grad_hess_gamma(Y, X, beta0, gamma0)
```

Arguments

Y Observation matrix
X Design matrix
beta0 Initial beta vector
gamma0 Initial gamma vector

Value

grad_L_gamma Vector of the gradient of L with respect to gamma
hess_L_gamma Matrix of the Hessian of L with respect to gamma

Author(s)

Marina Gomtsyan, Celine Levy-Leduc, Sarah Ouadah, Laure Sansonnet Maintainer: Marina Gomtsyan marina.gomtsyan@agroparistech.fr

References

M. Gomtsyan et al. "Variable selection in sparse GLARMA models", arXiv:2007.08623v1

```
n=50
p=30
X = matrix(NA,(p+1),n)
f = 1/0.7
for(t in 1:n){X[,t]<-c(1,cos(2*pi*(1:(p/2))*t*f/n),sin(2*pi*(1:(p/2))*t*f/n))}
gamma0 = c(0)
data(Y)
glm_pois<-glm(Y~t(X)[,2:(p+1)],family = poisson)
beta0<-as.numeric(glm_pois$coefficients)
result = grad_hess_gamma(Y, X, beta0, gamma0)
grad = result$grad_L_gamma
Hessian = result$hess_L_gamma</pre>
```

NR_gamma 5

NR_gamma

Newton-Raphson method for estimation of gamma

Description

This function estimates gamma with Newton-Raphson method

Usage

```
NR_gamma(Y, X, beta0, gamma0, n_iter)
```

Arguments

X Design matrix beta0 Initial beta vector gamma0 Initial gamma vector n_iter Number of iterations of the algorithm. Default=100	Υ	Observation matrix
gamma0 Initial gamma vector	Χ	Design matrix
C C	beta0	Initial beta vector
n_iter Number of iterations of the algorithm. Default=100	gamma0	Initial gamma vector
	n_iter	Number of iterations of the algorithm. Default=100

Value

gamma Estimated gamma vector

Author(s)

Marina Gomtsyan, Celine Levy-Leduc, Sarah Ouadah, Laure Sansonnet Maintainer: Marina Gomtsyan marina.gomtsyan@agroparistech.fr

References

M. Gomtsyan et al. "Variable selection in sparse GLARMA models", arXiv:2007.08623v1

```
n=50
p=30
X = matrix(NA,(p+1),n)
f = 1/0.7
for(t in 1:n){X[,t]<-c(1,cos(2*pi*(1:(p/2))*t*f/n),sin(2*pi*(1:(p/2))*t*f/n))}
gamma0 = c(0)
data(Y)
glm_pois<-glm(Y~t(X)[,2:(p+1)],family = poisson)
beta0<-as.numeric(glm_pois$coefficients)
gamma_est = NR_gamma(Y, X, beta0, gamma0, n_iter=100)</pre>
```

6 variable_selection

on	
----	--

Description

This function performs variable selection, estimates a new vector beta and a new vector gamma

Usage

```
variable_selection(Y, X, gamma0, k_max = 2, n_iter = 100, method = "min",
   nb_rep_ss = 1000, threshold = 0.8, parallel = FALSE, nb.cores = 1)
```

Arguments

Υ	Observation matrix
X	Design matrix
gamma0	Initial gamma vector
k_max	Number of iteration to repeat the whole algorithm
n_iter	Number of iteration for Newton-Raphson algorithm
method	Stability selection method: "fast", "min" or "cv". In "min" the smallest lambda is chosen, in "cv" cross-validation lambda is chosen for stability selection. "fast" is a fater stability selection approach. The default is "min"
nb_rep_ss	Number of replications in stability selection step. The default is 1000
threshold	Threshold for stability selection. The default is 0.9
parallel	Whether to parallelize stability selection step or not. The default is FALSE
nb.cores	Number of cores for parallelization. The default is 1

Value

estim_active	Estimated active coefficients
beta_est	Vector of estimated beta values
gamma_est	Vector of estimated gamma values

Author(s)

Marina Gomtsyan, Celine Levy-Leduc, Sarah Ouadah, Laure Sansonnet Maintainer: Marina Gomtsyan <marina.gomtsyan@agroparistech.fr>

References

M. Gomtsyan et al. "Variable selection in sparse GLARMA models", arXiv:2007.08623v1

Y 7

Examples

```
n=50
p=30
X = matrix(NA,(p+1),n)
f = 1/0.7
for(t in 1:n){X[,t]<-c(1,cos(2*pi*(1:(p/2))*t*f/n),sin(2*pi*(1:(p/2))*t*f/n))}
gamma0 = c(0)
data(Y)
result = variable_selection(Y, X, gamma0, k_max=2, n_iter=100, method="min",
nb_rep_ss=1000, threshold=0.7, parallel=FALSE, nb.cores=1)
beta_est = result$beta_est
Estim_active = result$estim_active
gamma_est = result$gamma_est</pre>
```

v

Observation matrix Y

Description

An example of observation matrix

Usage

```
data("Y")
```

Format

The format is: num [1:50] 11 8 3 3 3 4 4 4 3 1 ...

References

M. Gomtsyan et al. "Variable selection in sparse GLARMA models", arXiv:2007.08623v1

```
data(Y)
```

Index

```
* package
    GlarmaVarSel-package, 2
GlarmaVarSel (GlarmaVarSel-package), 2
GlarmaVarSel-package, 2
grad_hess_beta, 3
grad_hess_gamma, 4
NR_gamma, 5
variable_selection, 6
Y, 7
```