(a) A uniform disk h rotates clockwise ar What is the rotation	ound its ax	cis when vie	ewed from	n above (t												
$\vec{L}_{rot} =$	kg · m	² /s														
What is the rotation $K_{\text{rot}} = $		energy of th	e disk?													
(b) A uniform spher axis. If you stand so What is the rotation	omewhere	on the +x a	axis and lo	ook towar										axis paralle	el with the	; x
$\vec{L}_{rot} =$	kg · m	² /s														
What is the rotation $K_{rot} = $		energy of th	e sphere?	?												
(c) A uniform rod har radius is 0.06 m, its What is the rotation	length is	0.9 m, and	its mass i	is <mark>5</mark> kg. It												. I
$\vec{L}_{rot} =$	kg · m	² /s														
What is the rotation $K_{\text{rot}} = $	al kinetic e J	energy of th	ie rod?													
Par	A															
147	1 (1															
1-	<u> </u>	T	•													
	Vc	=	W													
		= 7	I M	Q^2	캦											
			. *		6											
		=	00	01	00	k.a	M ₂									
						l Cg	J									
	Ise	the	2 V	isu	F	hai	16	rul	e							
Ĭ	>	= <	C	-10)C1.	Ala	0	3)	١,	M2						
	rot		. 0 ,	V	0,		<i>)</i> , (Ng	5						
		\	_	0												
- !	vot	= 2	بالم	UZ												
		=	71	. 7	35	5										

Moments of inertia for some objects of uniform density: disk $I=(1/2)MR^2$, cylinder $I=(1/2)MR^2$, sphere $I=(2/5)MR^2$

Part B

$$|\vec{\Gamma}_{not}| = \frac{2}{5} MR^2 \cdot \frac{2\pi}{T}$$

$$= 160.096 \text{ ks} \frac{m^2}{s}$$

Use the visut hand rule
$$\vec{\Gamma}_{not} = \frac{1}{2} \Gamma \omega^2$$

$$= 2S14.775 \text{ J}$$

Part C

$$|\vec{\Gamma}_{not}| = \frac{1}{2} MR^2 \frac{2\pi}{T}$$

$$= 1.414 \text{ ks} \frac{m^2}{s}$$

Use the visut hand rule
$$\vec{\Gamma}_{not} = \langle 0, 0, -1.414 \rangle \text{ kg} \frac{m^2}{s}$$

$$\vec{\Gamma}_{not} = \frac{1}{2} \Gamma \omega^2$$

$$= 111.033 \text{ J}$$

Mounted on a low-mass rod of length 0.36 m are four balls (see figure below). Two balls (shown in red on the diagram), each of mass 0.88 kg, are mounted at opposite ends of the rod. Two other balls, each of mass 0.34 kg (shown in blue on the diagram), are each mounted a distance 0.09 m from the center of the rod. The rod rotates on an axle through the center of the rod (indicated by the "x" in the diagram), perpendicular to the rod, and it takes 0.9 s to make one full rotation.

(a) What is the moment of inertia of the device about its center?

__ kg ⋅ m²

(b) What is the angular speed of the rotating device?

(c) What is the magnitude of the angular m $ kg \cdot m^2/s $	omentum of the rotating device?				
Ng III /3					
V) \ \					
Part A					
M.					
$T = \sum_{i=1}^{N} m_i r$	2				
1=1	i				
=0.062	S RSM2				
$D \setminus \Omega$					
Part B					
211					
W=ZTT					
= 6.981	(ad				
6.981	Sec				
Part C					
I D					
L=Iw					
= 0.437	Ca M2				
0.172	175				

A barbell spins around a pivot at its center at A. The barbell consists of two small balls, each with mass 550 grams (0.55 kg), at the ends of a very low mass rod of length d = 50 cm (0.5 m; the radius of rotation is 0.25 m). The barbell spins clockwise with angular speed 90 radians/s.

We can calculate the angular momentum and kinetic energy of this object in two different ways, by treating the object as two separate balls, or as one barbell

an calculate the angular momentum and kinetic energy of this object in two different ways, by treating the object as two separate balls, of as one barben.	
reat the object as two separate balls	
What is the speed of ball 1? = m/s	
Calculate the <i>translational</i> angular momentum $\vec{L}_{trans, 1, A}$ of just one of the balls (ball 1). $ ans, 1, A = ans, 1, A = ans, 1, A $ kg $\hat{A} \cdot m^2/s$ $ ans, 1, A = ans, 1, A $ into page $ ans, 1, A = ans, 1, A $ of just one of the balls (ball 1).	
Calculate the <i>translational</i> angular momentum $\vec{L}_{trans, 2, A}$ of the other ball (ball 2). $s_{ans, 2, A} = s_{ans, 2, $	
Part A	
V=wr	
=22.5	
Part B	
$ \overrightarrow{L}_{tyqus} = \overrightarrow{r} \overrightarrow{p} \sin(\theta)$	
$= \Gamma \rho$	
= r mv	
$= 3.094 \text{ kg} \frac{\text{m}^2}{\text{s}}$	

Pa	4vx	6														
	ζ	~(\04.0	Off		and-	A	+ 0	4	B							
		7112						n (J								
Part C Same as part A qual B (3) to exciting the transitional angular momentum of ball 2 and the translational angular momentum of ball 2, calculate the total angular mamentum of the barboll, \$I_{box}, a.\$ I_{box}, a. = a. h. m^2 c. e. or of prace (a) or of prace (b) or of prace (c) or or or proportions in kinetic energy of ball 1. Good collabel the two consolitorial kinetic energy of ball 1.																
				ergy of ba	ıll 1.											
	Scarrier are part A guid B															
(g) By adding	By adding the translational angular momentum of ball 1 and the translational angular momentum of ball 2, calculate the lotal angular momentum of the barbell, \$I_{thic, A}\$. Institute															
II: Treat th	e object	as one ba	arbell													
(i) What is the set of the set o	ne directi page of page agnitude noment o page of page	on of the a ; no directi f inertia I a	on and the a · m²/s			: <mark>90</mark> rad/s	s to calcul	ate the ro	otational a	ngular mo	omentum	of the bai	-bell:			
Vo	rv t	D														
		101	.] =		417.00		1.2									
	, 0	1070														
			<	6	188	1 k	M ₂									
				•	00		5 >									
P	./\	F)	F		1	_								
10	(V T	K	<u> </u>	10		C	and									
	k			L 2 W	11/2											
	,	dvan	A													

-139.219 J		
Relate = Kaus A 2		
= 278.4385		
Part H		
n		
$T = \sum_{i=1}^{n} m_i r_i^2$		
- C 1 C 1 3		
= 0.0685 k A·m²		
Part I		
$ L_{rot} = 6.188 \text{ kg} \frac{\text{m}^2}{5}$		

A barbell consists of two small balls, each with mass 550 grams (0.55 kg), at the ends of a very low mass rod of length d = 35 cm (0.35 m). The center of the barbell is mounted on the end of a low mass rigid rod of length b = 0.525 m (see Figure), and this rod rotates clockwise with angular speed 120 rad/s. In addition, the barbell rotates clockwise about its own center, with an angular speed 100 rad/s.

		_				
(a)	Calculate	Lrot	(both	magnitude	and	direction).

kg·m²/s

- O zero magnitude; no direction
- \bigcirc **O** out of page
- \bigcirc \otimes into page

(b) Calculate $\vec{\mathbf{L}}_{\mathsf{trans},\;B}$ (both magnitude and direction).

kg·m²/s

- O zero magnitude; no direction
- \bigcirc \otimes into page
- \bigcirc $oldsymbol{\Theta}$ out of page

(c) Calculate $\vec{L}_{\text{tot, }B}$ (both magnitude and direction).

kg·m²/s

- O zero magnitude; no direction
- Sinto page
- out of page

Part A

$$|\widehat{L}_{vet}| = I_{w}$$

$$I = \widehat{Z}_{i+1} m_{i} r_{i}^{2}$$

$$= 0.337$$

$$|\widehat{L}_{vet}| = 3.369 \text{ kg} \frac{m^{2}}{s}^{2}$$

$$|\widehat{L}_{twans}| = |\widehat{r}| |\widehat{p}| |Sin(0)$$

$$= r_{p}$$

$$= r_{mw}$$

$$= r_{w}$$

$$= m_{w}r_{w}^{2}$$

$$= 36.383 \text{ kg} \frac{m^{2}}{r}^{2}$$

$$|\widehat{L}_{tetal}| = |\widehat{L}_{ret}| + |\widehat{L}_{twans}|$$

		= 2	39.	751	ka	m²							
					13	>							
_													
_													
_													
_													
_													
_													
_													
_													
_													
_													
_													
_													