

VE 320 – Summer 2012 Introduction to Semiconductor Device

Instructor: Professor Hua Bao

NANO ENERGY LAB

Bao Ve320 S12

1

Previous Lecture

- In order to understand the transport property of semiconductor, we need to understand the chemical composition and atomic arrangements.
- Crystalline structure can be built by repeating basic building blocks... Bravais lattice, basis
- · Diamond and zinc-blende structure
- To identify crystal planes... Miller Indices, vector indices

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12

Quantum Concepts ...

- · Blackbody Radiation
- Photoelectric Effect
- Bohr Effect
- Wave Particle Duality

Bao Ve320 S12

Interpretation of Planck's Formula

Energy of the mode

EM emission in discrete quanta of E = hf

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12

9

Photoelectric Effect $\begin{array}{c} E = (hf-W) \\ Electrons \end{array}$ $\begin{array}{c} qV_R \approx \left(\frac{1}{2}\right)m_0v^2 = hf - W \end{array}$ $\begin{array}{c} W \\ M \\ M \end{array}$ University of Michigan – Shanghai Jiao Tong University Joint Institute Center of Optics and Optoelectronics $\begin{array}{c} Bao Ve320 S12 \end{array}$ 10

Bohr Atom

Assuming the angular momentum are quantized:

$$L_n = mvr_n = n\hbar$$

$$v = \frac{n\hbar}{mr_n}$$

$$n = 1,2,3,....$$

$$n = 1,2,3,...$$

$$F = \frac{mv^2}{r_n} = \frac{q^2}{4\pi\varepsilon_0 r_n^2}$$

$$r_n = \frac{4\pi\varepsilon_0 \; (n\hbar)^2}{mq^2}$$

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12

Bohr Atom Cont'd

$$r_n = \frac{4\pi\varepsilon_0 \ (n\hbar)^2}{mq^2}$$

$$KE = \frac{1}{2}mv^2 = \frac{1}{2}\frac{q^2}{4\pi\varepsilon_0 r_n}$$

$$PE = -\frac{q^2}{4\pi\varepsilon_0 r_n}$$

$$E_n = KE + PE = -\frac{1}{2} \frac{q^2}{4\pi \varepsilon_0 r_n} = -\frac{13.6}{n^2} \text{ eV}$$

$$E_{m,n} = const \times \left(\frac{1}{m^2} - \frac{1}{n^2}\right)$$

Bao Ve320 S12

13

Wave-Particle Duality

Photons act both as wave and particle, what about electrons?

Remember
$$E = mc^2$$
 ?

$$E = \sqrt{m_0^2 c^4 + p^2 c^2}$$

$$hf = pc$$

$$m_0 = 0 \text{ (photon rest mass)}$$

$$p = hf / c$$

$$= h / \lambda \quad \text{(because } c = \lambda f \text{)}$$

$$= \hbar k \quad \text{(because } k = 2\pi / \lambda \text{)}$$

Wave vector and momentum are connected!

University of Michigan – Shanghai Jiao Tong University Joint Institut

Center of Optics and Optoelectronics

Bao Ve320 S12

Schrodinger Equation for Electrons

$$E = \sqrt{m_0^2 c^4 + p^2 c^2} \approx m_0 c^2 \left[1 + p^2 c^2 / 2m_0^2 c^4 + \dots \right]$$

$$E - m_0 c^2 = V + (p^2 / 2m_0)$$

$$hf = \hbar \omega = V + (\hbar^2 k^2 / 2m_0)$$

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12

15

Schrodinger Equation (cont'd)

$$\hbar\omega = (\hbar^2 k^2 / 2m_0) + V$$

Assume, $\Psi(x,t) = A \exp(-i(\omega t - kx))$

$$d\Psi/dt = -i\omega\Psi \quad \text{and} \quad d^2\Psi/dx^2 = -k^2\Psi$$
$$i\hbar \frac{d\Psi}{dt} = \left(-\frac{\hbar^2}{2m_0} \frac{d^2\Psi}{dx^2}\right) + V\Psi$$

This is the Schrodinger Equation electrons for one-dimensional problems.

University of Michigan – Shanghai Jiao Tong University Joint Institut

Center of Optics and Optoelectronics

Bao Ve320 S12

What have we learned so far?

- Classical theory is not consistent with experimental observation. That's the origin of quantum mechanics
- We saw how Schrodinger equation can arise as a consequence of quantization and relativity, <u>but this is not</u> <u>a derivation.</u>

Bao Ve320 S12

Time-independent Shrodinger's Equation

Assume

$$-\frac{\hbar^2}{2m_0}\frac{d^2\Psi}{dx^2} + U(x)\Psi = i\hbar\frac{d\Psi}{dt} \qquad \Psi(x,t) = \psi(x)e^{-iEt/\hbar}$$

$$-e^{-\frac{iEt}{\hbar}}\frac{\hbar^2}{2m_0}\frac{d^2\psi(x)}{dx^2} + e^{-\frac{iEt}{\hbar}}U(x)\psi(x) = i\hbar\frac{-iE}{\hbar}\psi(x)e^{-\frac{iEt}{\hbar}}$$

$$-\frac{\hbar^2}{2m_0}\frac{d^2\psi}{dx^2} + U(x)\psi = E\psi$$

$$\frac{d^2\psi}{dx^2} + \frac{2m_0}{\hbar^2}(E - U)\psi = 0$$

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12

19

Time-independent Schrodinger's Equation

$$\frac{d^2\psi}{dx^2} + \frac{2m_0}{\hbar^2} (E - U)\psi = 0$$

If E >U, then

$$k \equiv \frac{\sqrt{2m_0 \left[E-U\right]}}{\hbar} \qquad \frac{d^2 \psi}{dx^2} + k^2 \psi = 0 \qquad \psi\left(x\right) = A \sin\left(kx\right) + B \cos\left(kx\right)$$
$$\equiv A_+ e^{ikx} + A_- e^{-ikx}$$

If U>E, then

$$\alpha = \frac{\sqrt{2m_0[U - E]}}{\hbar} \qquad \frac{d^2\psi}{dx^2} - \alpha^2\psi = 0 \qquad \psi(x) = De^{-\alpha x} + Ee^{+\alpha x}$$

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12

Basic Steps to Solve the Equation

$$-\frac{\hbar^2}{2m_0}\frac{d^2\psi}{dx^2} + U(x)\psi = E\psi$$

- Obtain U(x) and the boundary conditions for a given problem.
- Solve the 2nd order equation pretty basic
- Interpret $\left|\psi\right|^2=\psi^*\psi^-$ as the probability of finding an electron at x
- Compute anything else you need, e.g.,

$$p = \int_{0}^{\infty} \Psi^{*} \left[\frac{\hbar}{i} \frac{d}{dx} \right] \Psi \ dx \qquad E = \int_{0}^{\infty} \Psi^{*} \left[-\frac{\hbar}{i} \frac{d}{dt} \right] \Psi \ dx$$

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12

Five Steps to Solve this Problem

- 1) $\frac{d^2\psi}{dx^2} + k^2\psi = 0$ \longrightarrow 2N unknowns for N regions
- 2) $\psi(x = -\infty) = 0$ Reduces 2 unknowns
- 3) $\psi|_{x=x_B^-} = \psi|_{x=x_B^+}$ Set 2N-2 equations for 2N-2 unknowns (for continuous U)
- 4) Det (coefficient matrix)=0
 And find E by graphical
 or numerical solution
- 5) $\int_{-\infty}^{\infty} |\psi(x,E)|^2 dx = 1$

for wave function

Bao Ve320 S12

23

Case 1: Bounded Levels in a Finite Well

X

Step 1: $\psi = Ne^{-\alpha x} + Ce^{+\alpha x}$ $\psi = De^{-\alpha x} + Ne^{+\alpha x}$

 $\psi = A \sin kx + B \cos kx$

Step 2: $\psi = De^{-\alpha x} + Ne^{+\alpha x}$ $\psi(x = -\infty) = 0$

 $\psi(x = +\infty) = 0$

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12

Continuity of Wavefunction

3)
$$\psi|_{x=x_B^-} = \psi|_{x=x_B^+}$$

$$\frac{d\psi}{dx}\Big|_{x=x_B^-} = \frac{d\psi}{dx}\Big|_{x=x_B^+} \Big[$$

$$C = B$$
$$\alpha C = -kA$$

 $A\sin(ka) + B\cos(ka) = De^{-\alpha a}$ $kA\cos(ka) - kB\sin(ka) = -\alpha De^{-\alpha a}$

$$\psi = A \sin kx + B \cos kx$$

Bao Ve320 S12

25

Continuity of Wavefunction

$$C = B$$
$$\alpha C = -kA$$

$$A\sin(ka) + B\cos(ka) = De^{-\alpha a}$$
$$kA\cos(ka) - kB\sin(ka) = -\alpha De^{-\alpha a}$$

$$\begin{bmatrix} 0 & 1 & -1 & 0 \\ k & 0 & \alpha & 0 \\ \sin(ka) & \cos(ka) & 0 & -e^{-\alpha a} \\ \cos(ka) - \sin(ka) & 0 & \alpha e^{-\alpha a} / k \end{bmatrix} \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Bao Ve320 S12

Step 4: Bound-level in Finite Well

det (Matrix)=0

$$\tan(\alpha a \sqrt{\xi}) = \frac{2\sqrt{\xi(1-\xi)}}{2\xi-1} \qquad \xi \equiv \frac{E}{U_0} \quad \alpha \equiv \sqrt{\frac{2mU_0}{\hbar^2}}$$

Only unknown is E

- (i) Use Matlab function
- (ii) Use graphical method

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12

27

Graphical Method for Bound Levels

$$x^2 = x + 5$$
$$y_1 = x^2 \quad y_2 = x + 5$$

University of Michigan – Shanghai Jiao Tong University Joint Institut
Center of Optics and Optoelectronics

Bao Ve320 S12

Calculation of Wave Function

$$\psi = A\sin kx + B\cos kx$$

$$\int_{-\infty}^{\infty} \left| \psi \right|^2 dx = 1 \quad \Rightarrow$$

$$\int_{-\infty}^{0} C^2 e^{2\alpha x} dx + \int_{0}^{a} \left[A \sin(kx) + B \sin(kx) \right]^2 dx + \int_{a}^{\infty} D^2 e^{-2\alpha x} dx$$

Bao Ve320 S12

31

Infinite Quantum Well

$$\frac{d^2\psi}{dx^2} + k^2\psi = 0 \qquad k = \frac{\sqrt{2m_0[E - U]}}{\hbar} \quad E$$

1) Solutions: $\psi = A \sin kx + B \cos(kx)$

2) Boundary conditions

$$\psi(x=0) = 0 = A \sin k(0) + B \cos k(0)$$

$$\psi\left(x=a\right)=0=A\sin\left(ka\right)=A\sin\left(n\pi\right)$$

$$k_n = \frac{n\pi}{a} = \frac{\sqrt{2m_0 E_n}}{\hbar}$$
 $E_n = \frac{\hbar^2 n^2 \pi^2}{2m_0 a^2}$

University of Michigan – Shanghai Jiao Tong University Joint Institu

Center of Optics and Optoelectronics

Bao Ve320 S12

Five Steps to Solve this Problem

- 1) $\frac{d^2\psi}{dx^2} + k^2\psi = 0$ \longrightarrow 2N unknowns for N regions
- 2) $\psi(x = -\infty) = 0$ $\psi(x = +\infty) = 0$ Reduces 2 unknowns
- 3) $\psi|_{x=x_B^-} = \psi|_{x=x_B^+}$ $\frac{d\psi}{dx}\Big|_{x=x_B^-} = \frac{d\psi}{dx}\Big|_{x=x_B^+}$ Set 2N-2 equations for 2N-2 unknowns (for continuous U)
- 4) Det (coefficient matrix)=0 5) $\int_{-\infty}^{\infty} |\psi(x, E)|^2 dx = 1$ And find E by graphical or numerical solution

for wave function

Bao Ve320 S12

33

The Case of E >> U

$$\frac{d^2\psi}{dx^2} + k^2\psi = 0 \qquad k \equiv \frac{\sqrt{2m_0[E - U]}}{\hbar}$$

- 1) Solution $\psi(x) = A \sin(kx) + B \cos(kx)$ $\equiv A_i e^{ikx} + A_i e^{-ikx}$
- 2) Boundary condition $\psi(x) = A_{+}e^{ikx}$ positive going wave negative going wave

Bao Ve320 S12

Free Particle

$$\psi(x) = A\sin(kx) + B\cos(kx)$$
$$\equiv A_{+}e^{ikx} + A_{-}e^{-ikx}$$

$$\psi(x) = A_{+}e^{ikx}$$
 positive going wave
= $A_{-}e^{-ikx}$ negative going wave

Probability: $\left|\psi\right|^2 - \psi\psi^* - \left|A_{\!\scriptscriptstyle\perp}\right|^2 or \left|A_{\!\scriptscriptstyle\perp}\right|^2$

Momentum: $p = \int_{0}^{\infty} \Psi^* \left[\frac{\hbar}{i} \frac{d}{dx} \right] \Psi dx = \hbar k \text{ or } -\hbar k$

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12

35

Bounded vs Tunneling State

$$Ae^{ik_1x} + Be^{-ik_1x}$$

$$Ce^{ik_1x} + Me^{-ik_1x}$$

$$De^{ik_1x} + Ne^{-ik_1x}$$

$$De^{ik_1x} + Ne^{-ik_1x}$$

Boundary conditions

5 unknowns (C,M,A,B,D)

4 equations from x=0 and x=a interfaces

No bound levels

Ratios of D/C is of Interest.

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12