

BUNDESREPUBLIK DEUTSCHLAND

**PRIORITY
DOCUMENT**
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D 11 NOV 2004
WIPO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:	103 49 480.4
Anmeldetag:	21. Oktober 2003
Anmelder/Inhaber:	Basell Polyolefine GmbH, 50389 Wesseling/DE
Bezeichnung:	Formmassen aus einem glasfaserverstärkten Olefinpolymerisat
IPC:	C 08 J, C 08 L, C 08 K

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 28. April 2004
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

Ajurks

Formmassen aus einem glasfaserverstärkten Olefinpolymerisat

5 Die Erfindung betrifft eine Formmassen aus einem Olefinpolymerisat, insbesondere einem Propylenpolymerisat, enthaltend 5-50 Gew.-% Glasspinnfasern, die mittels eines Verträglichkeitsvermittlers an das Olefinpolymerisat gebunden sind, und 10⁻⁴ bis 1 Gew.-% eines Phthalocyaninpigmentes als Nukleierungsmittel.

10 Die Verstärkung von Olefinpolymerisaten mit Hilfe von Glasfasern ist seit langem bekannt. In der EP 663 418 A1 ist beispielsweise eine Polypropylenformmasse beschrieben, die mit Glasfasern verstärkt ist. Allerdings ist es für den Erhalt guter mechanischer Eigenschaften nötig, Verträglichkeitsvermittler oder Kopplungsmittel einzusetzen, die für eine gute Anbindung der Glasspinnfasern an die Polyolefinmatrix sorgt. Die Verträglichkeitsvermittler enthalten häufig zum einen ein reaktiv-modifiziertes, mit dem Matrixpolymer kompatibles Polymer als Koppler, zum anderen eine Verbindung mit reaktiven polaren Gruppen, die einerseits an die Glasfaser und andererseits an den Koppler binden können.

15 Die Nukleierung von unverstärkten Polymerisaten des Propylens zur Verbesserung der Steifigkeit und Festigkeit aber auch der Transparenz des daraus hergestellten Formkörpers ist ebenfalls allgemein üblich. Hierzu werden neben Natrium-Benzoat, Feintalk, Phosphatestersalzen, Sorbitolen, Chinacridonpigmenten und anderen auch Phthalocyaninpigmente als Nukleierungsmittel eingesetzt. Die Nukleierung führt im allgemeinen zu einer Verbesserung der Zugfestigkeit und Steifigkeit, allerdings nicht zu einer nennenswerten Verbesserung der Schlagzähigkeiten und oft zu einer reduzierten Streck- und Bruchdehnung.

20 In Polymer 34, 4747 (1993) und in European Polymer Journal 32, 1425 (1996) wurde der Einfluss der Nukleierung auf Polypropylen-Glasfaserverbunde unter Einsatz von Natriumbenzoat als Nukleierungsmittel untersucht. Es wurde für die nukleierten Glasfaserverbunde ein um 10% erhöhter Elastizitätsmodul und um 10% erhöhte Zugfestigkeit gegenüber den nicht nukleierten Verbunden gefunden.

25 Das Natriumbenzoat wie auch viele andere Nukleierungsmittel haben aufgrund ihres die Nukleierung verbessernden polaren Charakters den Nachteil, dass sie mit dem Koppler des Verträglichkeitsvermittlers reagieren können und so die Anbindung der Glasspinnfasern stören oder aufgrund ihres hohen Preises wirtschaftlich wenig attraktiv sind.

Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, eine Polyolefinformmasse zur Verfügung zu stellen, die eine verbesserte Matrixanbindung der Glasspinnfasern und damit bessere mechanische Eigenschaften zeigt und preisgünstig erhältlich ist.

- 5 Es wurde nun überraschend gefunden, dass sich durch die Kombination aus Glasspinnfasern, die mittels eines Verträglichkeitsvermittlers an das Olefinpolymerisat gebunden sind, und einem Phthalocyaninpigment eine besonders gute Matrixanbindung der Glasspinnfasern im Matrixpolymer, insbesondere Propylenpolymerisat, erzielen lässt. Dementsprechend weisen die erfindungsgemäßen Formmassen ein Olefinpolymerisat auf enthaltend 5-50 Gew.-%
- 10 Glasspinnfasern und 10⁻⁴ bis 1 Gew.-%, bevorzugt 10⁻³ bis 10⁻¹ Gew.-%, eines Phthalocyaninpigmentes als Nukleierungsmittel. Durch die geringen Kosten des Phthalocyaninpigments und die Tatsache, dass bereits ein sehr geringer Anteil des Phthalocyaninpigments im Polymer zu einer ausreichenden Nukleierung führt, ist eine äußerst preisgünstige Herstellung gewährleistet.
- 15 Wesentlich für die erfindungsgemäße Polyolefinformmasse ist zum einen der Gehalt an 5 bis 50 Gew.-% Glasspinnfasern bezogen auf die Gesamtmasse. Bei den Glasspinnfasern kann es sich sowohl um geschnittene Glasspinnfasern mit einer Länge von etwa 3 bis 6 mm als auch um Lang-Glasspinnfasern handeln, wobei die Verwendung von geschnittenen Glasspinnfasern bevorzugt
- 20 ist. Weiterhin bevorzugt werden 10 bis 40 Gew.-%, besonders bevorzugt 20 bis 40 Gew.-% Glasspinnfasern verwendet.

Bevorzugt ist die Verwendung von geschnittenen Glasspinnfasern, auch chopped strands genannt. Durch die Nukleierung lässt sich bei der Verwendung der geschnittenen

- 25 Glasspinnfasern die Steifigkeit von Formmassen mit langen Glasspinnfasern zu einem deutlich günstigeren Preis erreichen. Die eingesetzten Glasspinnfasern haben dabei bevorzugt eine Länge von 3 bis 6 mm, besonders bevorzugt 3 bis 4,5 mm und einen Durchmesser von 10 bis 20 µm, bevorzugt 12 bis 14 µm. Je nach Compoundier- und Spritzgieß-Bedingungen beträgt die Länge der Glasfasern in der Formmasse (Granulat bzw. spritzgegossenes Fertigteil) 50µm bis
- 30 3000 µm, bevorzugt 50 bis 1000 µm.

Zur Anbindung der Glasfasern an die Polyolefinmatrix wird ein polar funktionalisierter Verträglichkeitsvermittler eingesetzt. Zum einen können niedermolekulare Verbindungen eingesetzt werden, die ausschließlich dazu dienen, die Glasfasern weniger hydrophil und damit kompatibler mit dem Polymer zu machen. Geeignete Verbindungen sind beispielsweise Silane wie Aminosilane, Epoxysilane, Amidosilane or Acrylsilane. Bevorzugt enthält der Verträglichkeitsvermittler allerdings ein funktionalisiertes Polymer und eine niedermolekulare Verbindung mit reaktiven polaren Gruppen. Bei dem funktionalisierten Polymer handelt sich bevorzugt um Ppropf- oder Blockcopolymere, die mit dem Matrixpolymer kompatibel sind. Für ein

Propylenhomopolymer als Matrixkomponente ist beispielsweise bevorzugt, ein Ppropf-oder Blockcopolymers des Propylens als funktionalisiertem Polymer einzusetzen.

Hierbei sind solche Polymere bevorzugt, die als reaktive Gruppen Säureanhydride,

- 5 Carbonsäuren, Carbonsäurederivate, primäre und sekundäre Amine, Hydroxylverbindungen, Oxazoline und Epoxide sowie ionische Verbindungen enthalten. Besonders bevorzugt ist der Einsatz eines Maleinsäureanhydrid gepropften Propylenpolymerisats als funktionalisiertes Polymer. Die niedermolekulare Verbindung dient dazu, die Glasspinnfaser an das funktionalisierte Polymer zu koppeln und somit fest an die Polyolefinmatrix zu binden. Es handelt sich zumeist um bifunktionelle Verbindungen, wobei die eine funktionelle Gruppe eine bindende Wechselwirkung mit den Glasspinnfasern eingehen kann und die zweite funktionelle Gruppe eine bindende Wechselwirkung mit dem funktionalisierten Polymer eingehen kann. Als niedermolekulare Verbindung werden bevorzugt Amino- und Epoxy-Silane, besonders bevorzugt Aminosilane eingesetzt. Die Aminosilane binden mit den Silan-Hydroxy-Gruppen an die Glasfaser, während die Aminogruppen beispielsweise mit Maleinsäureanhydrid gepropftem Polypropylen eine stabile Amidbindung ausbilden.

Die Verträglichkeitsvermittler können dabei vorgefertigt eingesetzt oder in situ hergestellt werden.

- 20 Besonders vorteilhaft ist es, die niedermolekulare Komponente auf die Glasspinnfasern aufzubringen, bevor diese in die Polyolefinmatrix eingearbeitet wird. Das funktionalisierte Polymer lässt sich auf einfache Weise durch reaktive Extrusion des Matrixpolymers beispielsweise mit Maleinsäureanhydrid in situ erzeugen. Auch die Verwendung eines Masterbatches, der die Glasspinnfasern und die Verträglichkeitsvermittler vorgemischt enthält, ist möglich.
- 25 Weiterhin ist für die vorliegende Erfindung wesentlich, dass die glasfaserverstärkte Polypropylenformmasse mit einem Phthalocyaninpigment nukleiert ist. Die Phthalocyaninpigmente selbst sind allgemein bekannt und leiten sich vom Grundkörper des Phthalocyanins durch Einbau eines zentralen Metallions sowie durch Substitution des Phthalocyaninrings ab. In der Praxis werden Kupfer, Nickel und Kobalt als Zentralatome in den 30 Pigmenten verwendet, wobei Kupfer als Zentralatom bevorzugt ist. Der Phthalocyaningrundkörper kann gegebenenfalls substituiert sein, insbesondere mit Chlor oder Bromatomen. Auch eine Substitution mit organischen Resten kann zur Abstimmung der Nukleierungseigenschaften vorgenommen werden. Als Phthalocyaninpigmente sind beispielsweise das unsubstituierte Kupfer-Phthalocyanin (Phthalocyanin Blau,), Polychloriertes Kupfer-Phthalocyanin (Phthalocyanin 35 Grün, $C_{32}H_2N_8Cl_{14}Cu$), Cobalt-Phthalocyanin ($C_{32}H_{16}N_8Co$), Nickel-Phthalocyanin ($C_{32}H_{16}N_8Ni$). Besonders bevorzugt ist das unsubstituierte Kupfer-Phthalocyanin.

Das unsubstituierte Kupfer-Phthalocyanin und das polychlorierte Kupfer-Phthalocyanin werden beispielsweise von der Firma Clariant, Frankfurt, DE unter den Bezeichnungen PV Echtblau bzw. PV Echtgrün vertrieben.

5 Der Anteil an Nukleierungsmittel beträgt zwischen 10^{-4} und 1 Gew.-% bezogen auf die Gesamtmasse. Bevorzugt ist die Verwendung von 10^{-3} bis 10^{-1} Gew.-%, besonders bevorzugt $5 \cdot 10^{-3}$ bis $5 \cdot 10^{-2}$ Gew.-% des Nukleierungsmittels.

Durch die Kombination aus Glasfaserverstärkung und Nukleierung mit Phthalocyaninpigmenten
10 erhält man eine gegenüber dem Stand der Technik in Bezug auf die Steifigkeit und Zähigkeit verbesserte Formmasse. Weiterhin wird überraschenderweise bei gleichem Verträglichkeitsvermittler die Haftung der Glasspinnfaser an der Polyolefinmatrix deutlich verbessert, woraus eine verbesserte Rissausbreitung in der Formmasse resultiert. Weiterhin resultieren überraschenderweise aus der Nukleierung mit Phthalocyaninpigmenten deutlich 15 verbesserte Langzeitstabilitäten der Zugfestigkeiten und Schlagzähigkeiten in Heißwasser und heißen Detergentien, z.B. über Prüfzeiten von 1000 Stunden bei 95°C, gegenüber nicht nukleierten Glasfaser-verstärkten Vergleichsmustern.

Besonderer Vorteil des Phthalocyaninpigments ist, dass dieses mit den üblichen
20 Verträglichkeitsvermittlern weitgehend kompatibel ist, d.h. sich Nukleierungsmittel und Verträglichkeitsvermittler in ihrer Wirkung nicht oder kaum gegenseitig stören.

Die erfindungsgemäßen Formmassen sind erhältlich durch Aufschmelzen und Vermischen des Olefinpolymerisats mit dem Phthalocyaninpigment und den Glasspinnfasern, wobei das
25 Vermischen in einer Mischapparatur bei Temperaturen von 180 bis 320°C, bevorzugt von 200 bis 280°C, besonders bevorzugt von 220 bis 260°C erfolgt. Als Mischapparaturen können hierbei insbesondere Extruder oder Kneter eingesetzt werden, wobei Zweischnellenextruder besonders bevorzugt sind. Bei in Pulverform vorliegenden Polymeren wird zweckmäßigerweise eine 30 Vermischung des Polymeren mit dem Nukleierungsmittel sowie ggf. weiteren Zusatzstoffen bei Zimmertemperatur in einer Mischapparatur erfolgen. Die Vermischung des Olefinpolymerisats mit dem Nukleierungsmittel und den Glasfasern kann in einem Schritt aber auch in mehreren Schritten erfolgen. Es ist bevorzugt, in der Mischapparatur zunächst das Olefinpolymerisat mit dem Nukleierungsmittel und weiteren Additiven aufzuschmelzen und zu vermischen und anschließend die Glasspinnfasern mit der Schmelze zu vermischen, um die Abrasion in der 35 Mischvorrichtung und den Faserbruch zu vermindern.

Als Matrixkomponente der erfindungsgemäßen Formmasse kommen Homopolymere und Copolymeren von alpha-Olefinen mit 2 bis 12 C-Atomen in Frage, beispielsweise von Ethylen, Propen, 1-Buten, 1-Hexen oder 1-Octen. Weiterhin geeignet sind Copolymeren und Terpolymere,

die zusätzlich zu diesen Monomeren weitere Monomere, insbesondere Diene, enthalten, wie beispielsweise Ethyliennorbornen, Cyclopentadien oder Butadien.

Bevorzugte Matrixkomponenten sind Polyethylen, Polypropylen, Polybutylen und/oder

- 5 Copolymeren von Ethen mit Propen, 1-Buten, 1-Hexen oder 1-Octen. Grundsätzlich kann hiervon jeder handelsübliche Typ eingesetzt werden. So kommen beispielsweise infrage: lineares Polyethylen hoher, mittlerer oder niedriger Dichte, LDPE, Ethylen-copolymeren mit kleineren Mengen (bis maximal ca. 40 Gew.-%) an Comonomeren wie Propen, 1-Buten, 1-Hexen, 1-Octen, n-Butylacrylat, Methylmethacrylat, Maleinsäureanhydrid, Styrol, Vinylalkohol, Acrylsäure,
- 10 Glycidymethacrylat o. ä., isotaktisches oder ataktisches Homopolypropylen, Randomcopolymere von Propen mit Ethen und/oder 1-Buten, Ethylen-Propylen-Blockcopolymere und dergleichen mehr. Derartige Polyolefine können auch eine Schlagzähkomponente wie z. B. EPM- oder EPDM-Kautschuk oder SEBS enthalten.
- 15 Bei der Verwendung von Polyethylen als Matrixkomponente sollte der Comonomeren-Gehalt der Ethylen-copolymeren 1 mol % der Gesamtmenge eingesetzter Monomere nicht überschreiten. Bevorzugte Comonomere sind 1-Olefine, besonders bevorzugte Comonomere sind 1-Buten, 4-Methyl-1-penten, 1-Hexen und 1-Octen. Weiterhin kann es sich bei dem Polyethylen auch um ein Blend aus zwei oder mehreren Polyethylen-Komponenten handeln.
- 20 Besonders bevorzugt ist die Verwendung eines Propylenpolymerisats als Matrixkomponente. Als Propylenpolymerisat kann dabei insbesondere ein Propylenhomopolymerisat oder aber ein Propylen-copolymerisat mit bis zu 30 Gew.-% einpolymerisierter anderer Olefine mit bis zu 10 C-Atomen verwendet werden. Solche anderen Olefine sind insbesondere C₂-C₁₀-1-Alkene wie
- 25 Ethylen, 1-Buten, 1-Penten, 1-Hexen, 1-Hepten oder 1-Octen, wobei Ethylen, 1-Buten oder Ethylen und 1-Buten bevorzugt eingesetzt werden. Besonders bevorzugt ist die Verwendung von Propylenhomopolymerisaten.

Die Copolymerisate des Propylens sind hierbei Block- oder Impactcopolymere oder bevorzugt statistische Copolymerisate. Sofern die Copolymerisate des Propylens statistisch aufgebaut sind, enthalten sie im allgemeinen bis zu 15 Gew.-%, bevorzugt bis zu 6 Gew.-%, besonders bevorzugt bis zu 2 Gew.-% andere Olefine mit bis zu 10 C-Atomen, insbesondere Ethylen, 1-Buten oder ein Gemisch aus Ethylen und 1-Buten als Comonomere. Die Block- oder Impactcopolymere des Propylens sind Polymerisate, bei denen man in der ersten Stufe ein Propylenhomopolymerisat oder ein statistisches Copolymerisat des Propylens mit bis zu 15 Gew.-%, bevorzugt bis zu 6 Gew.-%, besonders bevorzugt bis zu 2 Gew.-%, anderer Olefine mit bis zu 10 C-Atomen als Comonomere herstellt und dann in der zweiten Stufe ein Propylen-Ethylen-Copolymerisat mit Ethylengehalten von 15 bis 99 Gew.-%, wobei das Propylen-Ethylen-Copolymerisat zusätzlich noch weitere C₄-C₁₀-Olefine enthalten kann, hinzupolymerisiert. In der Regel wird soviel des

30

35

40

Copolymerisat im Endprodukt einen Gehalt von 3 bis 90 Gew.-% aufweist. Die statistischen Copolymerisate des Propylens sind Polymerisate, bei denen man in der ersten Stufe ein Propylenhomopolymerisat oder ein statistisches Copolymerisat des Propylens mit bis zu 15 Gew.-%, bevorzugt bis zu 6 Gew.-%, besonders bevorzugt bis zu 2 Gew.-%, anderer Olefine mit bis zu

5 10 C-Atomen als Comonomere herstellt und dann in der zweiten Stufe ein Propylenhomopolymerisat oder ein statistisches Copolymerisat des Propylens mit bis zu 15 Gew.-%, bevorzugt bis zu 6 Gew.-% (besonders bevorzugt bis zu 2 % Comonomere), anderer Olefine mit bis zu 10 C-Atomen hinzu polymerisiert. Die Polymeren der beiden Stufen unterscheiden sich durch die Molmasse und den Comonomergehalt. Der Ethylengehalt des Blends beträgt 15 Gew.-%

10 % oder bevorzugt bis zu 6 Gew.-% und besonders bevorzugt bis zu 3 Gew.-% Comonomere.

Es wird bevorzugt ein isotaktisches Polypropylen mit einem xylolunlöslichen Anteil von über 95%, bevorzugt von über 97% eingesetzt. Das Polyolefin hat im allgemeinen einen MFR (230 °C / 2,16 kg) von 0,2 bis 200 g/10 min nach ISO 1133, bevorzugt zwischen 0,5 und 100 g/10 min und

15 besonders bevorzugt zwischen 2 und 30 g/10 min. Bevorzugt sind weiterhin Polypropylenformmassen mit einer monomodalen Molmassenverteilung.

Die erfindungsgemäßen Formmassen können weiterhin übliche Zusatzstoffen und Hilfsmittel, wie z.B. Stabilisatoren gegen schädliche Verarbeitungseinflüsse, gegen Wärmeoxidation, Alterung,

20 UV-Einfluss, Neutralisierungsmittel, Füllstoffe, organische und anorganische Pigmente bzw. Pigmentzubereitungen wie beispielsweise Rußdispersionen in Polyolefinen, Antistatika, Wachse oder spezielle niedermolekulare Gleit- und Schmiermittel enthalten. Die Menge an Zusatzstoffen und Hilfsmitteln sollte aber 10 Gew. % bezogen auf die Gesamtmenge des Materials, bevorzugt 5 Gew.% nicht überschreiten. Aus optischen Gründen kann es sich auch empfehlen, durch Zusatz 25 entsprechender geeigneter Farbpigmente zu den erfindungsgemäßen Formmassen diese in einer anderen, bevorzugt dunkleren Farbe einzufärben.

Die in den erfindungsgemäßen Formmassen verwendeten Olefinpolymerisate können mit allen gängigen Verfahren und Katalysatoren erhalten werden. Bevorzugt ist die Polymerisation der

30 entsprechenden Monomere mittels eines Ziegler–Natta-Katalysators, eines Phillips-Katalysators auf Chromoxid-Basis oder eines Metallocenkatalysators. Unter Metallocenen sollen hier Komplexverbindungen aus Metallen der Gruppen 3 bis 12 des Periodensystems mit organischen Liganden verstanden werden, die zusammen mit metalloceriumionenbildenden Verbindungen wirksame Katalysatorsysteme ergeben.

35 Zur Herstellung der Olefinpolymerisate können die üblichen, für die Polymerisation von C₂–C₁₀–Olefinen verwendeten Reaktoren eingesetzt werden. Geeignete Reaktoren sind u.a. kontinuierlich betriebene horizontale oder vertikale Rührkessel, Umlaufreaktoren, Schleifenreaktoren, Stufenreaktoren oder Wirbelbettreaktoren. Die Größe der Reaktoren ist für die Herstellung der

erfindungsgemäßen Formmassen nicht von wesentlicher Bedeutung. Sie richtet sich nach dem Ausstoß, der in der oder in den einzelnen Reaktionszonen erzielt werden soll. Das Polymerisationsverfahren kann einstufig oder mehrstufig ausgeführt werden. Es kann in der Gasphase, in Masse oder Suspension oder einer Kombination daraus polymerisiert werden.

5

Die erfindungsgemäße Formmasse eignet sich insbesondere für die Herstellung von Kraftfahrzeugteilen, die hohe Anforderungen an die Steifigkeit und Zähigkeit des Materials stellen.

Besonders vorteilhaft ist die Verwendung in dunkel eingefärbten oder mit einer Dekorschicht versehenen Kraftfahrzeugteilen wie beispielsweise Frontends oder Armaturentafelträger, bei

10 denen die durch das Phthalocyaninpigment hervorgerufenen Blaufärbung überdeckt wird. Aus der erfindungsgemäßen Formmasse hergestellte Formkörper sind durch ihre verbesserte Steifigkeit und Zähigkeit selbst beim Einsatz geschnittener Glasspinnfasern für Anwendungen geeignet, die bisher langfaserverstärkten Propylenpolymerisaten vorbehalten waren.

15 Weiterhin zeichnet sich die erfindungsgemäße Formmasse durch ein sehr gutes Zeitstandverhalten gegenüber Heißwasser und Detergentien aus. Sie lässt sich daher besonders vorteilhaft als Material für Formkörper einsetzen, die dem Kontakt mit Waschlaugen und anderen aggressiven Materialien ausgesetzt sind. Weiterer Gegenstand der vorliegenden Erfindung ist daher die Verwendung der erfindungsgemäßen Formmasse als Waschlaugenbehälter in
20 Waschmaschinen sowie Waschlaugenbehälter, hergestellt aus der erfindungsgemäßen Formmasse.

25

30

35

40

Patentansprüche

1. Formmassen aus einem Olefinpolymerisat enthaltend
 - 5 a) 5 bis 50 Gew.-% Glasspinnfasern, die mittels eines Verträglichkeitsvermittlers an das Olefinpolymerisat gebunden sind, und
 - b) 10^{-4} bis 1 Gew.-%, insbesondere 10^{-3} bis 10^{-1} Gew.-%, eines Phthalocyaninpigments als Nukleierungsmittel.
- 10 2. Formmasse nach Anspruch 1, wobei das Olefinpolymerisat ein Propylenpolymerisat ist.
3. Formmasse nach Anspruch 1 oder 2, wobei es sich bei den Glasspinnfasern um geschnittene Glasspinnfasern handelt.
- 15 4. Formmasse nach einem der Ansprüche 1 bis 3 enthaltend 10 bis 40, insbesondere 20 bis 40 Gew.-% Glasspinnfasern.
5. Formmasse nach einem der Ansprüche 1 bis 4, wobei der Verträglichkeitsvermittler ein mit polaren Gruppen funktionalisiertes Olefinpolymerisat, insbesondere Propylenpolymerisat, umfasst.
- 20 6. Formmasse nach Anspruch 5, wobei der funktionalisierte Verträglichkeitsvermittler ein mit Maleinsäureanhydrid gepropftes Olefinpolymerisat und ein Aminosilan oder Epoxysilan umfasst.
- 25 7. Formmasse nach einem der Ansprüche 2 bis 6, wobei das Propylenpolymerisat ein Propylenhomopolymerisat ist.
- 30 8. Formmasse nach einem der vorhergehenden Ansprüche, wobei das Olefinpolymerisat eine Schmelze-Masse Fließrate nach ISO 1133 bei 230 °C und 2,16 kg von 0,5 und 100 g/10 min, bevorzugt zwischen 2 und 30 g/10 min aufweist.
9. Verfahren zur Herstellung der Formmassen nach einem der vorangehenden Ansprüche, 35 wobei in einer Mischapparatur zunächst das Propylenpolymerisat mit dem Nukleierungsmittel bei Temperaturen von 180 bis 320°C aufgeschmolzen und vermischt wird und anschließend die Glasspinnfasern mit der Schmelze vermischt werden.

10. Verwendung der Formmassen nach einem der Ansprüche 1 bis 8 als Formkörper für den Automobilbau oder als Waschlaugenbehälter.
11. Waschlaugenbehälter erhalten aus den Formmassen gemäß einem der Ansprüche 1 bis 8.
- 5 12. Kraftfahrzeugteil, insbesondere Verkleidungsteil eines Kraftfahrzeugs, erhalten aus den Formmassen gemäß einem der Ansprüche 1 bis 5.

10

15.

20

25

30

35

40

10

Zusammenfassung

Formmassen aus einem glasfaserverstärkten Olefinpolymerisat

5 Die Erfindung betrifft eine glasfaserverstärkte Formmasse aus einem Olefinpolymerisat, insbesondere einem Propylenpolymerisat. Die Formmasse weist ein Olefinpolymerisat auf, das 5-50 Gew.-% Glasspinnfasern, die mittels eines Verträglichkeitsvermittlers an das Olefinpolymerisat gebunden sind, und 10^{-4} bis 1 Gew.-%, bevorzugt 10^{-3} bis 10^{-1} Gew.-%, eines Phthalocyaninpigmentes als Nukleierungsmittel enthält. Durch die geringen Kosten und die
10 Tatsache, dass bereits ein sehr geringer Anteil des Phthalocyaninpigments im Polymer zu einer ausreichenden Nukleierung führt, ist eine äußerst preisgünstige Herstellung gewährleistet. Die Nukleierung mit dem Phthalocyaninpigment führt zu einer Verbesserung der Schlagzähigkeit sowie der Streck- und Bruchdehnung der Formmasse.

15

20

25

30

35

40