11) Veröffentlichungsnummer:

0 102 324 A2

12

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 83810338.0

(51) Int. Cl.³: A 61 K 9/50

22 Anmeldetag: 25.07.83

30 Priorität: 29.07.82 CH 4597/82

(3) Veröffentlichungstag der Anmeldung: 07.03.84 Patentblatt 84/10

Benannte Vertragsstaaten:
AT BE CH DE FR GB IT LI LU NL SE

71 Anmelder: CIBA-GEIGY AG Postfach CH-4002 Basel(CH)

(72) Erfinder: Hauser, Helmut, Dr. Schwarzbachstrasse 91 CH-8713 Uerikon(CH)

(54) Lipide und Tenside in wässriger Phase.

(5) Die vorliegende Erfindung betrifft ein neues, vorteilhaftes Verfahren zur Herstellung von unilamellaren Liposomen in wässriger Phase, indem man eine homogene Mischung eines ionischen Tensids und eines Lipids dispergiert. Die Bildung der unilamellaren Liposome erfolgt spontan, d.h. ohne zusätzliche äussere Energiezufuhr. Die verfahrensgemäss erhältlichen Liposome können als Träger von Wirkstoffen unterschiedlichster Art therapeutisch verwendet werden.

BEST AVAILABLE COPY

CIBA-GEIGY AG
Basel (Schweiz)

4

<u>4-14035/+</u>

Lipide und Tenside in wässriger Phase

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von unilamellaren Liposomen in wässriger Phase.

Liposomen sind in der Literatur in zahlreichen Veröffentlichungen beschrieben worden. Ihr Aufbau und ihre Verwendung ist Gegenstand vieler Untersuchungen. Man unterscheidet unilamelare Liposomen mit einer Doppelschicht aus Lipiden von multilamellaren Liposomen mit mehreren Doppelschichten aus Lipiden, die zwiebelförmig angeordnet sind.

Unilamellare Liposomen haben einen Durchmesser von ca. 200 bis 50000 Å, vorzugsweise ca. 200 bis 30000 Å. Die kugelförmige Hülle besteht aus einer Doppelschicht der Lipidkomponenten, z.B. amphipatischen Lipiden, z.B. Phospholipiden, z.B. Phosphatidsäure, Lecithin oder Kephalin, und gegebenenfalls neutralen Lipiden, z.B. Cholesterin. Diese Doppelschicht umschliesst einen Innenraum, der eine wässrige Phase enthält.

Es besteht grosses Interesse an der therapeutischen Verwendung von Liposomen als Träger von Wirkstoffen unterschiedlichster Art. So sind Liposomen als Träger von Proteinen, z.B. Antikörpern oder Enzymen, Hormonen, Vitaminen oder Genen oder zu analytischen Zwecken als Träger von markierten Verbindungen vorgeschlagen worden. Als Beispiel sei die US-Patentschrift 3,993,754 genannt, welche ein chemotherapeutisches Verfahren bei der Behandlung von Tumorzellen unter Verwendung von Liposomen als Träger zum Gegenstand hat.

Der betreffende Wirkstoff wird entweder bei der Bildung der Liposomen oder nachträglich durch Diffusion verkapselt. Die Herstellung von Liposomen und die Verkapselung des Wirkstoffs kann auf verschiedene Weise erfolgen und ist in dem Uebersichtsartikel von Kaye, St.B., Cancer Treatment Reviews (1981) 8, 27-50 beschrieben. Weitere Verfahren zur Herstellung von Liposomen zwecks Verkapselung von Wirkstoffen sind ebenfalls durch Barenholz et al, in Biochemistry, Vol. 16, No. 12, 2806-2810, sowie in den Deutschen Offenlegungsschriften (DOS) 28 19 855, 29 02 672, 25 32 319 und 28 42 608, in der US-Patentschrift 4,053,585 und in der Europäischen Patentammeldung 36 676 beschrieben.

Nach den bisher bekannt gewordenen Verfahren löst man beispielsweise die Lipidkomponenten, z.B. Phospholipide, z.B. Phosphatidsäure, Lecithin oder Kephalin, und gegebenenfalls neutrale Lipide, z.B. Cholesterin, in einem organischen Lösungsmittel, z.B. Chloroform oder Benzol, auf. Nach dem Eindampfen bleibt eine homogene Schicht, z.B. eine Filmschicht, der betreffenden Lipidkomponenten zurück. Man dispergiert anschliessend die Lipidkomponenten in einer wässrigen Phase, welche den betreffenden Wirkstoff enthält, z.B. durch Schütteln. Bei der anschliessenden Behandlung mit Ultraschall bilder sich unilamellare Liposomen, welche den Wirkstoff verkapseln.

Nach dem Verfahren der vorliegenden Erfindung lassen sich auf einfache Weise ohne apparativen Aufwand wässrige Phasen herstellen, welche kleine unilamellare Liposomen (KUL) mit einem Durchmesser von ca. 200-600 Å und grosse unilamellare Liposomen (GUL) mit einem Durchmesser von ca. 600-3000 Å enthalten. Mittels geeigneter Trennmethoden, z.B. Gelfiltration oder einer Ultrafiltrationszel:; kann man kleine von grossen unilamellaren Liposomen trennen.

Die vorliegende Erfindung hat ein Verfahren zur Herstellung von unilamellaren Liposomen zum Gegenstand, dadurch gekennzeichnet, dass man eine homogene Mischung eines ionischen Tensids und eines Lipids in wässriger Phase bei einer Konzentration niedriger als die kritische Mizellbildungskonzentration (cmc-critical micelle concentration) des Tensids in der betreffenden Phase dispergiert und, wenn notwendig, die erhältliche wässrige Phase neutralisiert und, wenn erwünscht, die erhältlichen unilamellaren Liposomen anreichert und/oder abtrennt.

Die weiter vorn und im folgenden genannten allgemeinen Begriffe haben im Rahmen der Beschreibung der vorliegenden Erfindung vorzugsweise die folgenden Bedeutungen:

Der im Zusammenhang mit organischen Resten, z.B. Niederalkyl, Niederalkylen, Niederalkoxy, Niederalkanoyl etc., verwendete Ausdruck "Nieder" bedeutet, dass solche organische Reste, falls nicht ausdrücklich anders definiert, bis zu 7 und bevorzugt bis zu 4 Kohlenstoffatome enthalten.

Die Herstellung der homogenen Mischung eines ionischen Tensids und eines Lipids erfolgt in an sich bekannter Weise und ist in dem Abschnitt "Herstellung der homogenen Schicht der Lipidkomponenten" beschrieben.

Ein ionisches Tensid ist ein kationisches oder anionisches Tensid.

Ein kationisches Tensid ist beispielsweise eine Verbindung der Formel

worin R_a einen gegebenenfalls substituierten Kohlenwasserstoffrest, R_b Niederalkyl, Phenylniederalkyl oder Hydroxy, R_c und R_d Niederalkyl oder R_b und R_c zusammen mit dem Stickstoffatom einen gegebenenfalls an einem Kohlenstoffatom substituierten, aliphatischen Heterocyclus und R_d Niederalkyl oder R_b , R_c und R_d zusammen mit dem Stickstoffatom einen gegebenenfalls an einem Kohlenstoffatom substituierten, aromatischen Heterocyclus und Y^Θ ein Anion darstellen.

In einem kationischen Tensid der Formel (IA) ist ein gegebenenfalls substituierter, aliphatischer Kohlenwasserstoffrest R_a beispiels-weise durch Aryloxyniederalkoxy substitutiertes Niederalkyl, geradkettiges oder verzweigtes Alkyl mit 7-22, insbesondere 12-20, Kohlenstoffatomen oder Alkenyl mit 8-20, insbesondere 12-20, Kohlenstoffatomen und 1-4 Doppelbindungen.

Aryl in Aryloxyniederalkoxy ist beispielsweise Phenyl, welches durch geradkettiges Niederalkyl mit 1-4 Kohlenstoffatomen, z.B. Methyl, Aethyl oder n-Propyl, oder durch verzweigtes Alkyl mit 3-10 Kohlenstoffatomen, z.B. Isobutyl, tert-Butyl, Amyl, Neopentyl, 2- oder 3-Methylpentyl, 2,2- oder 2,3-Dimethylbutyl, 2- oder 3-Methylpentyl, 3-Aethylpentyl, 2,2-, 2,3-, 2,4- oder 3,3-Dimethylpentyl, 4-Methylheptyl, 2,2,2- 2,2,4-, 2,3,3- oder 2,3,4-Trimethylpentyl, 1,1,3,3- Tetramethylbutyl oder 2,2,3,3-Tetramethylbutyl mono- oder disubstituiert sein kann.

Niederalkoxy in Aryloxyniederalkoxy ist beispielsweise Methoxy, Aethoxy, n-Propoxy oder n-Butoxy.

Niederalkyl R_a, welches durch Aryloxyniederalkoxy substituiert ist, ist beispielsweise Aryloxyniederalkoxymethyl oder 2-Aryloxyniederalkoxyäthyl, z.B. Aryloxymethoxymethyl, 2-Aryloxymethyloxyäthyl, 2-Aryloxyäthoxymethyl oder 2-(2-Aryloxyäthoxy)-äthyl, z.B. Phenoxymethoxymethyl, 2-Phenoxymethoxymethyl, 2-Phenoxyäthoxymethyl, 2-(2-Phenoxyäthoxy)-äthyl, 2-, 3- oder 4-Methylphenoxymethoxymethyl, 2-(2-Methylphenoxymethoxy)-äthyl, 2-(3-Methylphenoxymethoxy)-äthyl,

2-(4-Methylphenoxymethoxy)-äthyl, 2-(2-Methylphenoxy)-äthoxymethyl, 2-(3-Methylphenoxy)-äthoxymethyl, 2-(4-Methylphenoxy)-äthoxymethyl, 2-[2-(3-Methylphenoxy)-äthoxy]-äthyl, 2-[2-(3-Methylphenoxy)-äthoxy]-äthyl, 2-[2-(4-Methylphenoxy)-äthoxy]-äthyl, 4-(1,1,3,3-Tetramethylbutyl)-phenoxymethoxymethyl, 2-[4-(1,1,3,3-Tetramethylbutyl)-phenoxymethoxy]-äthyl, 2-[4-(1,1,3,3-Tetramethylbutyl)-phenoxy]-äthoxymethyl, 2-[2-(4-(1,1,3,3-Tetramethylbutyl)-phenoxy)-äthoxy]-äthyl, 2-Methyl-4-(1,1,3,3-tetramethylbutyl)-phenoxymethoxy]-äthyl, 2-[2-Methyl-4-(1,1,3,3-tetramethylbutyl)-phenoxymethoxy]-äthyl, 2-[2-(2-Methyl-4-(1,1,3,3-tetramethylbutyl)-phenoxymethoxy]-äthyl, 2-[2-(3-Methyl-4-(1,1,3,3-tetramethylbutyl)-phenoxy)]-äthoxymethyl, 2-[2-(2-Methyl-4-(1,1,3,3-tetramethylbutyl)-phenoxy)]-äthoxymethyl, 2-[2-(2-Methyl-4-(1,1,3,3-tetramethylbutyl)-phenoxy)-äthoxy]-äthyl oder 2-[2-(3-Methyl-4-(1,1,3,3-tetramethylbutyl)-phenoxy)-äthoxy]-äthoxy]-äthyl oder 2-[2-(3-Methyl-4-(1,1,3,3-tetramethylbutyl)-phenoxy)-äthoxy]-äthoxy]-äthyl.

Niederalkyl R_a, welches durch Aryloxyniederalkoxy substituiert ist, ist vorzugsweise 2-[2-(2-Methyl-4-(1,1,3,3-tetramethylbutyl)-phenoxy)-äthoxy]-äthyl und 2-[2-(3-Methyl-4-(1,1,3,3-tetramethyl-butyl)-phenoxy)-äthoxy]-äthyl.

Geradkettiges oder verzweigtes Alkyl R_a mit 7-22, insbesondere 12-20, Kohlenstoffatomen, ist beispielsweise n-Heptyl, 2-Methyl-hexyl, 3-Methylhexyl, 3-Aethylpentyl, 2,2-, 2,3-, 2,4- oder 3,3-Dimethylpentyl, n-Octyl, 4-Methylheptyl, 2,2,3-, 2,2,4-, 2,3,3-, 2,3,4-Trimethylpentyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl (Lauryl), n-Tridecyl, n-Tetradecyl (Myristyl), n-Pentadecyl, n-Hexadecyl (Cetyl), n-Heptadecyl, n-Octadecyl (Stearyl), n-Nonadecyl oder n-Eicosyl (Arachinyl).

Bevorzugt ist geradkettiges Alkyl mit einer geraden Anzahl von 12-20 Kohlenstoffatomen, beispielsweise n-Dodecyl (Lauryl), n-Tetradecyl (Myristyl), n-Hexadecyl (Cetyl), n-Octadecyl (Stearyl) oder n-Eicosyl (Arachinyl).

Alkenyl R_a mit 8-20, insbesondere 12-20, Kohlenstoffatomen und 1-4 Dopppelbindungen ist beispielsweise 1-Octenyl, 1-Nonenyl, 1-Decenyl, 1-Undecenyl, 1-Dodecenyl, 9-cis-Dodecenyl (Lauroleyl), 1-Tridecenyl, 1-Tetradecenyl, 9-cis-Tetradecenyl (Myristoleyl), 1-Pentadecenyl, 1-Hexadecenyl, 9-cis-Hexadecenyl (Palmitoleinyl), 1-Heptadecenyl, 1-Octadecenyl, 6-cis-Octadecenyl (Petroselinyl), 6-trans-Octadecenyl (Petroselaidinyl), 9-cis-Octadecenyl (Oleyl), 9-trans-Octadecenyl (Elaidinyl), 9-cis-12-trans-Octadecadienyl (Linoleyl), 9-cis-11-trans-13-tans-Octadecatrienyl (α-Eläostearinyl), 9-cis-12-15-cis-Octadecatrienyl (B-Eläostearinyl), 9-cis-12-15-cis-Octadecatrienyl (Linolenyl), 9-, 11-, 13-, 15-Octadecatetraenyl (Parinaryl), 1-Nonadecenyl, 1-Eicosenyl, 9-cis-Eicosenyl (Gadoleinyl), 5-, 11-, 14-Eicosatrienyl oder 5-, 8-, 11-, 14-Eicosatetraenyl (Arachidonyl).

Bevorzugt ist Alkenyl mit 12-20 Kohlenstoffatomen und einer Doppelbindung, beispielsweise 9-cis-Dodecenyl (Lauroleyl), 9-cis-Tetra-decenyl (Myristoleyl), 9-cis-Hexadecenyl (Palmitoleinyl), 6-cis-Octadecenyl (Petroselinyl), 6-trans-Octadecenyl (Petroselaidinyl), 9-cis-Octadecenyl (Oleyl), 9-trans-Octadecenyl (Elaidinyl) oder 9-cis-Eicosenyl (Gadoleinyl).

Niederalkyl R_b , R_c oder R_d ist beispielsweise Methyl oder Aethyl.

Phenylniederalkyl R ist beispielsweise Benzyl oder 2-Phenyläthyl.

Ein aliphatischer Heterocyclus, welcher von R_b und R_c zusammen mit dem Stickstoffatom gebildet wird, ist beispielsweise ein monocyclischer, fünf- oder sechsgliedriger Aza-, Oxaaza- oder Thiaza-cyclylrest, z.B. Piperidino, Morpholino oder Thiamorpholinio.

Substituenten dieses Heterocylus sind die Substituenten R und R am Stickstoff sowie gegebenenfalls an einem Kohlenstoffatom Nieder-alkyl, z.B. Methyl, Aethyl, n-Propyl oder n-Butyl.

Ein Heterocyclus, welcher von R_b und R_c zusammen mit dem Stickstoffatom gebildet wird und an einem Kohlenstoffatom durch Niederalkyl substituiert ist, ist z.B. 2-, 3- oder 4-Methylpiperidinio, 2-, 3oder 4-Aethylpiperidinio oder 2- oder 3-Methylmorpholinio.

Ein aromatischer Heterocyclus, welcher von R_b, R_c und R_d zusammen mit dem Stickstoffatom gebildet wird, ist beispielsweise ein monocyclischer, fünf- oder sechsgliedriger, Aza-, Diaza-, Oxaaza- oder Thiazacyclylrest, z.B. Pyridinio, Imidazolinio, Oxazolinio oder Thiazolinio oder beispielsweise ein benzokondensierter Monoazabicyclylrest, z.B. Chinolinio oder Isochinolinio.

Substituenten diese Heterocyclus sind der Rest R_a am Stickstoffatom sowie gegebenenfalls an einem Kohlenstoffatom Niederalkyl, z.B. Methyl oder Aethyl, Hydroxyniederalkyl, z.B. Hydroxymethyl oder 2-Hydroxyäthyl, Oxo, Hydroxy oder Halogen, z.B. Chlor oder Brom.

Ein Heterocyclus, welcher von R_b, R_c und R_d zusammen gebildet wird und an einem Kohlenstoffatom durch die genannten Reste substituiert ist, ist beispielsweise 2- oder 4-Niederalkylpyridinio, z.B. 2- oder 4-Methyl oder 2- oder 4-Aethylpyridinio, Diniederalkylpyridinio, z.B. 2,6-Dimethyl-, 2-Methyl-3-äthyl-, 2-Methyl-4-äthyl-, 2-Methyl-5-äthyl-, oder 2-Methyl-6-äthylpyridinio, 2-, 3- oder 4-Halogen-pyridinio, z.B. 2-, 3- oder 4-Chlorpyridinio oder 2-, 3- oder 4-Brompyridinio, 2-Niederalkylimidazolinio, -oxazolinio oder -thiazolinio, z.B. 2-Methyl- oder 2-Aethylimidazolinio, -oxazolinio oder -thiazolinio oder 2-Niederalkyl-8-halogenchinolinio, z.B. 2-Methyl-8-chlorchinolinio.

Ein Anion Y ist beispielsweise ein Halogenid-, z.B. Fluorid-, Chlorid- oder Bromid-, Niederalkanoat, z.B. Formiat- oder Acetat-, Hydrogensulfat-, Niederalkylsulfat-, z.B. Methyl- oder Aethylsulfat-, Niederalkylsulfonat-, z.B. Methyl-, oder Arylsulfonat-, z.B. Phenylsulfonat- oder Toluolsulfonation.

Ein Anion Y^{Θ} ist vorzugsweise ein Halogenid-, z.B. Chlorid- oder Bromidion.

Ein kationisches Tensid der Formel IA ist vorzugsweise N-Benzyl-N,N-dimethyl-N-2-[2-(4-(1,1,3,3-tetramethylbutyl)-phenoxy)-äthoxy]athylammoniochlorid, N-Benzyl-N,N-dimethyl-N-2-[2-(3-methyl-4-(1,1,3,3-tetramethylbutyl)-phenoxy)-äthoxy]-äthylammoniochlorid (Methylbenzethoniumchlorid), n-Dodecyltrimethylammoniochlorid oder -bromid, Trimethyl-n-tetradecylammoniochlorid oder -bromid, n-Hexadecyltrimethylammoniochlorid oder -bromid (Cetyltrimethylammoniumchlorid oder -bromid), Trimethyl-n-octadecylammoniochlorid oder -bromid, Aethyl-n-dodecyldimethylammoniochlorid oder -bromid, Aethyldimethyl-n-tetradecylammoniochlorid oder -bromid, Aethyl-nhexadecyldimethylammoniochlorid oder -bromid, Aethyldimethyl-noctadecylammoniochlorid oder -bromid, n-Alkyl-benzyldimethylammoniochlorid oder -bromid (Benzalkoniumchlorid oder -bromid), z.B. Benzyl-n-dodecyldimethylammoniochlorid oder bromid, Benzyldimethyln-tetradecylammoniochlorid oder -bromid, Benzyl-n-hexadecyldimethylammoniochlorid oder -bromid oder Benzyldimethyl-n-octadecylammoniochlorid oder -bromid, N-(n-Decyl)-pyridiniochlorid oder -bromid, N-(n-Dodecyl)-pyridiniochlorid oder -bromid, N-(n-Tetradeyl)pyridiniochlorid oder -bromid, N-(n-Hexadecyl)-pyridiniochlorid oder -bromid (Cetylpyridiniumchlorid) oder N-(n-Octadecyl)- pyridiniochlorid oder -bromid oder eine Mischung von diesen Tensiden.

Ein anionisches Tensid ist beispielsweise

a) eine Verbindung der Formel:

$$\begin{bmatrix} R_{\mathbf{a}} - (\mathbf{0} - \mathbf{A})_{\mathbf{m}} - \mathbf{B} \end{bmatrix}^{\Theta} \mathbf{Z}^{\Theta} \tag{1 B}$$

worin R_a einen gegebenenfalls substituierten Kohlenwasserstoffrest, A Niederalkylen, m null (direkte Bindung) oder eins, B die Sulfonatoder Sulfatgruppe und Z^{\oplus} ein einwertiges Kation darstellen, oder

b) eine Verbindung der Formel:

$$R_{1}^{-CH_{2}} = \begin{bmatrix} R_{3} & (0) \\ M_{1} & M_{1} \\ R_{2} & (0) \\ R_{2} & (0) \\ R_{2} & (0) \end{bmatrix}$$
 (1 C),

worin m null oder eins ist, einer der Reste R_1 und R_2 Wasserstoff, Hydroxy, Niederalkyl mit 1-4 C-Atomen und der andere Rest Alkyl, Alkenyl, Alkoxy, Alkenyloxy oder Acyloxy mit je 10-20 C-Atomen, R_3 Wasserstoff oder Niederalkyl mit 1-4 C-Atomen und R_4 gegebenenfalls substituiertes Niederalkyl mit 1-7 C-Atomen, einen Kohlehydratrest mit 5-12 C-Atomen oder, wenn beide Reste R_1 und R_2 Wasserstoff oder Hydroxy bedeuten, einen Steroidrest bedeuten, und Z^{\oplus} ein einwertiges Kation bedeutet, oder

c) eine Verbindung der Formel

$$R_{1} - CH_{2} - \begin{bmatrix} R_{3} & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & &$$

worin R_1 , R_2 , R_3 und Z^{\oplus} die unter Formel (I C) genannten Bedeutungen haben.

In einem anionischen Tensid der Formel (I B) hat der gegebenenfalls substituierte Kohlenwasserstoffrest R_a die weiter vorn unter Formel I A genannten Bedeutungen und ist vorzugsweise geradkettiges oder verzweigtes Alkyl mit 7-22, insbesondere 12-20, Kohlenstoffatomen und Alkenyl mit 6-20, insbesondere 12-20, Kohlenstoffatomen und 1-4 Doppelbindungen.

In einem anionischen Tensid der Formel IB ist R_a in erster Linie geradkettiges Alkyl mit einer geraden Anzahl von 12-20 Kohlenstoffatomen, beispielsweise n-Dodecyl (Lauryl), n-Tetradecyl (Myristyl), n-Hexadecyl (Cetyl), n-Octadecyl (Stearyl) oder

n-Eicosyl (Arachinyl), oder Alkenyl mit 12-20 Kohlenstoffatomen und 1 Doppelbindung, beispielsweise 9-cis-Dodecenyl (Lauroleyl)-, 9-cis-Tetradecenyl (Myristoleyl), 9-cis-Hexadecenyl (Palmitoleinyl)-6-cis-Octadecenyl (Petroselinyl), 6-trans-Octadecenyl (Petroselaidinyl), 9-cis-Octadecenyl (Oleyl), 9-trans-Octadecenyl (Elaidinyl) oder 9-cis-Eicosenyl (Gadoleinyl).

A mit der Bedeutung Niederalkylen ist beispielsweise Methylen, Aethylen, n-Propylen oder n-Butylen.

Das Kation Z^{Θ} ist ein Alkalimetallkation, z.B. das Lithium-, Natrium- oder Kaliumion, oder ein Tetraniederalkylammoniumion, z.B. Tetramethylammonium.

Ein anionisches Tensid der Formel IB ist vorzugsweise ein Alkalimetallalkylsulfat (m = o), z.B. Natrium oder Kalium-n-dodecyl (lauryl)-sulfat, -n-tetradecyl (myristyl)-sulfat, -n-hexadecyl (cetyl)-sulfat oder -n-octadecyl (stearyl)-sulfat, ein Alkalimetallalkyläthersulfat (m = 1), z.B. Natrium- oder Kalium-n-dodecyloxyäthylsulfat, -n-tetradecyloxyäthylsulfat, -n-hexadecyloxyäthylsulfat oder , ein Alkalimetallalkansulfonat, z.B. Natrium- oder Kalium-n-dodecansulfonat, -n-tetradecansulfonat, -n-hexadecansulfonat oder -n-octadecansulfonat.

In einem anionischen Tensid der Formel I C ist Niederalkyl R_1 , R_2 oder R_3 mit 1-4 C-Atomen bevorzugt Methyl, ferner Aethyl, n-Propyl, oder n-Butyl.

Alkyl R₁ oder R₂ ist vorzugsweise n-Decyl,-n-Undecyl, n-Dodecyl (Lauryl), n-Tridecyl, n-Tetradecyl (Myristyl), n-Pentadecyl, n-Hexadecyl (Cetyl), n-Octadecyl (Stearyl) und n-Eicosyl (Arachinyl).

Alkenyl R₁ oder R₂ ist vorzugsweise 9-cis-Dodecenyl (Lauroleyl), 9-cis-Tetradecenyl (Myristoleyl), 9-cis-Hexadecenyl (Palmitoleinyl), 6-cis-Octadecenyl (Petroselinyl), 6-trans-Octadecenyl (Petroselaidinyl), 9-cis-Octadecenyl (Oleyl), 9-trans-Octadecenyl (Elaidinyl) und 9-cis-Eicosenyl (Gadoleinyl).

Alkoxy R₁ oder R₂ ist vorzugsweise n-Decyloxy, n-Dodecyloxy (Lauryloxy), n-Tetradecyloxy (Myristyloxy), n-Hexadecyloxy (Cetyloxy), n-Octadecyloxy (Stearyloxy) und n-Eicosyloxy (Arachinyloxy).

Alkenyloxy R₁ oder R₂ ist vorzugsweise 9-cis-Dodecenyloxy (Lauroleyloxy), 9-cis-Tetradecenyloxy (Myristoleyloxy), 9-cis-Hexadecanyloxy (Palmitoleinyloxy), 6-cis-Octadecenyloxy (Petroselinyloxy), 6-trans-Octadecenyloxy (Petroselaidinyloxy), 9-cis-Octadecenyloxy (Oleyloxy), 9-trans-Octadecenyloxy (Elaidinyloxy) und 9-cis-Eicosenyl (Gadoleinyloxy).

Acyloxy R₁ oder R₂ ist beispielsweise Alkanoyloxy oder Alkenoyloxy.

Alkanoyloxy R₁ oder R₂ ist vorzugsweise n-Decanoyloxy, n-Dodecanoyloxy (Lauroyloxy), n-Tetradecanoyloxy (Myristoyloxy), n-Hexadecanoyloxy (Palmitoyloxy), n-Octadecanoyloxy (Stearoyloxy) und n-Eicosoyloxy (Arachinoyloxy).

Alkenoyloxy R₁ oder R₂ ist vorzugsweise 9-cis-Dodecenyloxy (Lauroleoyloxy), 9-cis-Tetradecenoyloxy (Myristoleoyloxy), 9-cis-Hexadecenoyloxy (Palmitoleinoyloxy), 6-cis-Octadecenoyloxy (Peteroselinoyloxy), 6-trans-Octadecenoyloxy (Petroselaidinoyloxy), 9-cis-Octadecenoyloxy (Oleoyloxy), 9-trans-Octadecenoyloxy (Elaidinoyloxy) und 9-cis-Eicosenoyl (Gadoleinoyloxy).

Niederalkyl R₄ mit 1-7 C-Atomen ist z.B. Methyl, Aethyl, Isopropyl, n-Propyl, Isobutyl oder n-Butyl, und kann durch saure Gruppen, z.B. Carboxy oder Sulfo, saure und basische Gruppen, z.B. Carboxy und Amino, wobei die Aminogruppe sich in α-Stellung zur Carboxygruppe

befindet, freie oder verätherte Hydroxygruppen, wobei zwei verätherte Hydroxygruppen durch einen bivalenten Kohlenwasserstoffrest, z.B. durch Methylen, Aethylen, Aethyliden, 1,2-Propylen oder 2,2-Propylen, miteinander verbunden sein können, Halogen, z.B. Chlor oder Brom, Niederalkoxycarbonyl, z.B. Methoxy- oder Aethoxycarbonyl, oder durch Niederalkansulfonyl, z.B. Methansulfonyl, substituiert sein.

Substituiertes Niederalkyl R₄ mit 1-7 C-Atomen ist vorzugsweise Carboxyniederalkyl, z.B. Carboxymethyl, 2-Carboxyäthyl oder 3-Carboxy-n-propyl, \(\omega-\text{Amino-}\omega-\text{carboxyniederalkyl}\), z.B. 2-Amino-2-carboxyäthyl oder 3-Amino-3-carboxy-n-propyl, Hydroxyniederalkyl, z.B. 2-Hydroxyäthyl oder 2,3-Dihydroxypropyl, Niederalkoxyniederalkyl, z.B. Methoxy- oder Aethoxymethyl, 2-Methoxyäthyl oder 3-Methoxy-n-propyl, Niederalkylendioxyniederalkyl, z.B. 2,3-Aethylendioxypropyl oder 2,3-(2,2-Propylen)-dioxypropyl, oder Halogenniederalkyl, z.B. Chlor oder Brommethyl, 2-Chlor oder 2-Bromäthyl, 2- oder 3-Chlor oder 2-oder 3-Brom-n-propyl.

Ein Kohlehydratrest R₄ mit 5-12 C-Atomen ist beispielsweise ein natürlicher Monosaccharidrest, der sich von einer als Aldose oder Ketose vorliegenden Pentose oder Hexose ableitet.

Eine als Aldose vorliegende Pentose ist z.B. D-Ribose, D-Arabinose, D-Xylose oder D-Lyxose.

Eine als Ketose vorliegende Pentose ist z.B. D-Ribulose oder D-Xylulose.

Eine als Aldose vorliegende Hexose ist z.B. D-Allose, D-Altrose, D-Glucose, D-Mannose, D-Galactose oder D-Talose.

Eine als Ketose vorliegende Hexose ist z.B. D-Psicose, D-Fructose, D-Sorbose oder D-Tagatose.

Eine Hexose liegt vorzugsweise in zyklischer Form vor, z.B. als Pyranose (Aldose), z.B. α- oder β-D-Glucopyranose, oder als Furanose, z.B. α- oder β-D-Fructose. Der Pyranosylrest ist vorzugsweise durch die in 1- oder 6-Stellung und der Furanosylrest durch in 1- oder 5-Stellung befindliche Hydroxygruppe mit der Phosphatidylgruppe (m = 1) verestert.

Ein Kohlehydratrest R₄ mit 5-12 C-Atomen ist ferner ein natürlicher Disaccharidrest, z.B. ein aus zwei Hexosen gebildeter Disaccaridrest, der sich beispielsweise durch Kondensation von zwei Aldosen, z.B. D-Glucose oder D-Galactose, oder einer Aldose, z.B. D-Glucose mit einer Ketose, z.B. Fructose, ableitet. Aus zwei Aldosen gebildete Disaccharide, z.B. Lactose oder Maltose, sind vorzugsweise über die in 6-Stellung des betreffenden Pyranosylrests befindliche Hydroxygruppe mit der Phosphatidylgruppe verestert. Aus einer Aldose und einer Ketose gebildete Disaccharide, z.B. Saccharose, sind vorzugsweise über die in 6-Stellung des Pyranosylrests oder über die in 1-Stellung des Furanosylrest befindliche Hydroxygruppe mit der Phosphatidylgruppe (m = 1) verestert.

Ein Kohlehydratrest R₄ mit 5-12 C-Atomen ist ferner ein derivatisierter Mono- oder Disaccharidrest, worin beispielsweise die Aldehydgruppe und/oder ein oder zwei endständige Hydroxygruppen zu Carboxygruppen oxydiert sind, z.B. ein D-Glucon-, D-Glucar- oder D-Glucoronsäurerest, welche vorzugsweise als zyklische Lactonreste vorliegen. Ebenso können in einem derivatisierten Mono- oder Disaccharidrest Aldehyd- oder Ketogruppen zu Hydroxygruppen reduziert sein, z.B. Inosit, Sorbit oder D-Mannit, oder Hydroxygruppen durch Wasserstoff, z.B. Desoxyzucker, z.B. 2-Desoxy-D-ribose, L-Rhamnose oder L-Fucose, oder durch Aminogruppen, z.B. Aminozucker, z.B. D-Glucosamin oder D-Galactosamin, ersetzt sein.

Ein Kohlehydrat R₄ kann ebenfalls ein durch Umsetzung eines der genannten Mono- oder Disaccharide mit einem starken Oxydations-mittel, z.B. Perjodsäure, gebildetes Spaltprodukt sein.

Ein Steroidrest R_4 ist beispielsweise ein Sterinrest, der über die in 3-Stellung des Steroidgerüsts befindliche Hydroxygruppe mit der Phosphatidylgruppe (m=1) verestert ist.

Ein Sterinrest ist beispielsweise Lanosterin, Sitosterin, Koprostanol, Cholestanol, Glycocholsäure, Ergosterin oder Stigmasterin, vorzugsweise Cholesterin.

Wenn R_4 einen Steroidrest darstellt, sind R_1 und R_2 vorzugsweise Hydroxy und R_3 ist Wasserstoff.

 Z^{\oplus} hat die unter Formel I B genannten Bedeutungen und ist vorzugs-weise Natrium oder Kalium.

In einen anionischen Tensid der Formel I C ist vorzugsweise m eins. R₁ Alkyl, z.B. n-Dodecyl (Lauryl), n-Tridecyl, N-Tetradecyl (Myristyl), n-Pentacedyl, n-Hexadecyl (Cetyl), n-Heptadecyl oder n-Octadecyl (Stearyl), Alkoxy, z.B. n-Dodecyloxy (Lauryloxy), n-Tetradecyloxy (Myristyloxy), n-Hexadecyloxy (Cetyloxy), oder n-Octadecyloxy (Stearyloxy), Acyloxy, z.B. Lauroyloxy, Myristoyloxy, Palmitoyloxy oder Stearoyloxy, R2 Wasserstoff oder Hydroxy, R2 Wasserstoff oder Niederalkyl, z.B. Methyl, R4 Niederalkyl, z. B. Methyl oder Aethyl, Niederalkyl substituiert durch saure und basische Gruppen, z.B. Carboxy und Amino, z.B. ω-Amino-ω-carboxyniederalkyl, z.B. 2-Amino-2-carboxyäthyl oder 3-Amino-3-carboxyn-propyl, Hydroxyniederalkyl, z.B. 2-Hydroxyathyl oder 2,3-Hydroxypropyl, Niederalkylendioxyniederalkyl, z.B. 2,3-Aethylendioxypropyl oder 2,3-(2,2-Propylen)-dioxypropyl, Halogenniederalkyl, z.B. 2-Chlor- oder 2-Bromäthyl, einen Kohlenhydratrest mit 5-12 C-Atomen, z.B. Inosit, oder einen Steroidrest, z.B. ein Sterin, z.B. Cholesterin und 2[⊕] Natrium oder Kalium.

Ein anionisches Tensid der Formel I C ist in erster Linie das Natrium- oder Kaliumsalz des Lysophosphatidylserins, z.B. das Natrium- oder Kaliumsalz des Lysophosphatidylserins aus dem Rinderhirn oder das Natrium- oder Kaliumsalz eines synthetischen Lysophosphatidylserins, z.B. Natrium- oder Kalium-l-myristoyl- oder
-l-palmitoyllysophosphatidylserin, oder das Natrium- oder Kaliumsalz
des Lysophosphatidylglycerins.

In einem anionischen Tensid der Formel I D haben R_1 , R_2 , R_3 und z^{\oplus} die unter Formel IC genannten Bedeutungen. Das Kation z^{\oplus} ist vorzugsweise Natrium oder Kalium. Das Wasserstoffatom an der Phosphatgruppe kann durch ein zweites Kation z^{\oplus} oder das Magnesiumion ersetzt sein.

In einem anionischen Tensid der Formel I D ist vorzugsweise R₁
Alkyl, z.B. n-Dodecyl (Lauryl), n-Tridecyl, n-Tetradecyl (Myristyl), n-Pentacedyl, n-Hexadecyl (Cetyl), n-Heptadecyl oder n-Octadecyl (Stearyl), Alkoxy, z.B. n-Dodecyloxy (Lauryloxy), n-Tetradecyloxy (Myristyloxy), n-Hexadecyloxy (Cetyloxy), oder n-Octadecyloxy (Stearyloxy), Acyloxy, z.B. Lauroyloxy, Myristoyloxy, Palmitoyloxy oder Stearoyloxy, R₂ Wasserstoff oder Hydroxy und R₃ Wasserstoff oder Niederalkyl, z.B. Methyl, und 2^{\text{O}} Natrium oder Kalium.

Ein anionisches Tensid der Formel I D ist in erster Linie das
Natrium- oder Kaliumsalz einer natürlichen Phosphatidsäure, z.B.
Ei-Phosphatidsäure, das Natrium- oder Kaliumsalz einer natürlichen
Lysophosphatidsäure, z.B. Ei-Lysophosphatidsäure, das Natrium- oder
Kaliumsalz einer synthetischen Lysophosphatidsäure, z.B. 1-Lauroyl-,
1-Myristoyl- oder 1-Palmitoyllysophosphatidsäure.

Ein Lipid, welches in der wässrigen Phase dispergiert wird, ist beispielsweise eine Verbindung der Formel

$$R_1 - CH_2 - CH_2 - CH_2 O - P - O - R_4$$
 (I C'),

worin m, R₁, R₂, R₃ und R₄ die unter Formel I C genannten Bedeutungen haben, R₄ ist ausserdem durch Triniederalkylammonio, z.B.

Trimethylammonio, oder Amino substituiertes Niederalkyl, z.B.

2-Trimethylammonioäthyl (Cholinyl).

Ein Lipid ist vorzugsweise ein Lipid der Formel (I C') worin m eins, R₁ und R₂ Acyloxy, R₃ Wasserstoff und R₄ 2-Trimethylammonioäthyl oder 2-Aminoäthyl darstellen.

Ein solches Lipid ist z.B. ein natürliches Lecithin, z.B. Ei-Lecithin oder Lecithin aus Sojabohnen (R₄ = 2-Trimethylammonio-äthyl), und ein natürliches Kephalin, z.B. Ei-Kephalin oder Kephalin aus Sojabohnen (R₄ = 2-Aminoäthyl).

Ausserdem sind als zusätzliche Lipide synthetische Lecithine (R_{Δ} = 2-Trimethylammoniosthyl) und synthetische Kephaline ($R_4 = 2$ -Aminoäthyl) der Formel (I C') bevorzugt, worin R_1 und R_2 identische Acyloxyreste, z.B. Lauroyloxy, Oleoyloxy, Linoyloxy, Linoleoyloxy oder Arachinoyloxy bedeuten, z.B. Dilauroyl-, Dimyristoyl-, Dipalmitoyl-, Distearoyl-, Diarachinoyl-, Dioleoyl-, Dilinoyl-, Dilinoleoyl-, oder Diarachinoyllecithin oder -kephalin, R_1 und R_2 verschiedene Acyloxyreste, z.B. R_1 Palmitoyloxy und R_2 Oleoyloxy, z.B. l-Palmitoyl-2-oleoyl-lecithin oder -kephalin, R_1 und R_2 identische Alkoxyreste, z.B. Tetradecyloxy oder Hexadecyloxy, z.B. Ditetradecyl-oder Dihexadecyllecithin oder -kephalin, R, Alkenyl und R₂ Acyloxy, z.B. ein Plasmalogen (R₄ = Trimethylammonioäthyl), oder R₁ Acyloxy, z.B. Myristoyloxy oder Palmitoyloxy, und R₂ Hydroxy, z.B. natürliches oder synthetisches Lysolecithin oder Lysokephalin, z.B. 1-Myristoyl- oder 1-Palmitoyllysolecithin oder -kephalin, und $R_{\rm q}$ Wasserstoff darstellen.

Ein geeignetes Lipid ist ferner ein Lipid der Formel I C', worin eins ist, R₁ einen Alkenylrest, R₂ einen Acylamidorest, R₃ Wasserstoff und R₄ 2-Trimethylammonioäthyl (Cholinrest) darstellen. Ein solches Lipid ist unter dem Namen Sphingomyelin bekannt.

Ein geeignetes Lipid ist ausserdem ein Lysolecithin-Analoges, z.B. 1-Lauroyl-1,3-propandiol-3-phosphorylcholin, ein Monoglycerid, z.B. Monoolein oder Monomyristin, ein Cerebrosid, ein Gangliosid oder ein Glycerid, welches keine freie oder veresterte Phosphoryl- oder Phosphonylgruppe in 3-Stellung enthält. Ein solches Glycerid ist beispielsweise ein Diacylglycerid oder 1-Alkenyl-1-hydroxy-2-acylglycerid mit den genannten Acyl- bzw. Alkenylgruppen, worin die 3-Hydroxygruppe durch einen der genannten Kohlenhydratreste, z.B. einen Galactosylrest, veräthert ist, z.B. ein Monogalactosylglycerin.

Ein geeignetes Lipid ist ferner ein neutrales Lipid, welches in Zellmembranen enthalten und nur in apolaren organischen Lösungsmitteln, z.B. in Chloroform, löslich ist. Neutrale Lipide sind beispielsweise Steroide, z.B. Oestradiol oder Sterine, z.B. Cholesterin, B-Sitosterin, Desmosterin, 7-Keto-Cholesterin oder B-Cholestanol, fettlösliche Vitamine, z.B. Vitamin A, z.B. Vitamin A1 oder A2, Vitamin E, Vitmin K, z.B. Vitamin K1 oder K2 oder Vitamin D2 oder D3.

Die homogene Mischung besteht vorzugsweise aus einem Tensid der Formel I A, insbesondere N,N-Dimethyl-N-2-[2-(4-(1,1,3,3-tetramethylbutyl)-phenoxy)-äthoxy]-äthylammoniochlorid, N-Benzyl-N,N-dimethyl-N-2-[2-(3-methyl-4-(1,1,3,3-tetramethylbutyl)-phenoxy)äthoxy]-äthylammoniochlorid (Methylbenzethoniumchlorid), n-Dodecyltrimethylammoniochlorid oder -bromid, Trimethyl-n-tetradecylammoniochlorid oder-bromid, n-Hexadecyltrimethylammoniochlorid oder -bromid (Cetyltrimethylammoniumchlorid oder -bromid), Trimethyl-n-octadecylammoniochlorid oder -bromid, Aethyl-n-dodecyldimethylammoniochlorid oder -bromid, Aethyldimethyl-n-tetradecylammoniochlorid oder -bromid, Aethyl-n-hexadecyldimethylammoniochlorid oder -bromid, Aethyldimethyl-n-octadecylammoniochlorid oder -bromid, n-Alkylbenzyldimethylammoniochlorid oder -bromid (Benzalkoniumchlorid oder -bromid), z.B. Benzyl-n-dodecyldimethylammoniochlorid oder -bromid, Benzyldimethl-n-tetradecylammoniochlorid oder -bromid, Benzyl-nhexadecyldimethylammoniochlorid oder -bromid oder Benzyldimethyl-n-

octadecylammoniochlorid oder -bromid, N-(n-Decyl)-pyridiniochlorid oder -bromid, N-(n-Dodecyl)-pyridiniochlorid oder -bromid, N-(n-Tetradecyl)-pyridiniochlorid oder -bromid, N-(n-Hexadecyl)-pyridiniochlorid oder -bromid (Cetylpyridiniumchlorid) oder N-(n-Octsdecyl)-pyridiniochlorid oder -bromid oder einem anionischen Tensid der Formel IB, insbesondere Natrium oder Kalium-n-dodecyl (lauryl)-sulfat, -n-tetradecyl (myristyl)-sulfat, -n-hexadecyl (cetyl)-sulfat oder -n-octadecyl (stearyl)-sulfat, Natrium- oder Kalium-n-dodecyloxyäthylsulfat, -n-tetradecyloxyäthylsulfat, -n-hexadecyloxyäthylsulfat oder -n-octadecyloxyäthylsulfat, oder einem anionischen Tensid der Formel I C, insbesondere Natrium- oder Kalium-2,2-dimethyl-3-palmitoyloxypropylhydrogenphosphat, Natrium- oder Kalium-l-palmitoyllysophosphatidylglycerin, Natrium- oder Kalium-1-palmitoyllysophosphatidylserin, und einem Lipid der Formel I C', worin R₁ und R₂ Acyloxy, z.B. Lauroyloxy, Myristoyloxy, Palmitoyloxy oder Stearoyloxy, R_3 Wasserstoff und R_{Δ} 2-Trimethylammonioäthyl, z.B. ein natürliches Kephalin, z.B. Ei-kephalin-oder Kephalin aus Sojabohnen, oder 2-Aminoäthyl, z.B. ein natürliches Lecitin, z.B. Ei-Lecithin oder Lecithin aus Sojabohnen, bedeuten.

Die weiter vorn und im folgenden genannten Tenside und Lipide mit einem chiralen Kohlenstoffatom können auch als racemische Mischungen oder als optisch reine Enantiomere vorliegen.

In der homogenen Mischung beträgt das ungefähre Molverhältnis inonisches Tensid zu Lipid ca. 0,1 bis ca. 2 zu 1, bevorzugt ca. 0,8 bis ca. 1,2 zu 1.

Die homogene Mischung, z.B. den zuvor hergestellten Film oder Schaum, dispergiert man anschliessend in wässriger Phase, welche die zu verkapselnden Stoffe, z.B. Agrochemikalien, z.B. Schädlingsbekämpfungsmittel, Duftstoffe, Härtungsmittel, Farbstoffe oder pharmazeutischen Wirkstoffe, z.B. Peptide, z.B. Muramylpeptide, in gelöster, kolloider oder suspendierter Form Tenside enthält.

Man dispergiert beispielsweise durch Schütteln oder Rühren der wässrigen Phase, welche die zuvor hergestellte homogene Mischung enthält. Dabei findet die Bildung von unilamellaren Liposomen (KUL) und (GUL) spontan (spontaneous vesiculation), d.h. ohne zusätzliche Energiezufuhr von aussen und mit grosser Geschwindigkeit statt. Die Konzentration an Tensid, Lipid und Einschlussverbindung kann erhöht werden, bis die kritische Mizellbildungskonzentration (cmc) des betreffenden ionischen Tensids in der betreffenden wässrigen Phase erreicht ist.

Oberhalb der kritischen Mizellbildungskonzentration werden bevorzugt Mizellen geildet. Dieser Vorgang ist in vielen Fällen durch Verschwinden der Opaleszenz, z.B. Klarwerden der wässrigen Phase, erkennbar. Die cmc ist eine variable Richtgrösse für die Menge eines ionischen Tensids, welche man in einem bestimmten Volumen Wasser unter Vermeidung von Mizellbildung dispergieren kann. Auf den Zahlenwert der cmc hat die Struktur des hydrophoben Rests des Tensids Einfluss: Je grösser die Kettenlänge, desto niedriger der cmc-Wert. Raumbeanspruchende Substituenten im hydrophoben Rest, z.B. ein aromatischer Rest, setzen die cmc ebenfalls herab. Funktionelle Gruppen, z.B. Doppelbindungen, welche den hydrophoben Charakter des hydrophoben Restes abschwächen, erhöhen die cmc. Diese wird ferner von sämtlichen dispergierten und gelösten Bestandteilen in der wässrigen Phase beeinflusst, z.B. durch Gegenionen, zusätzliche Lipide, Art des zu verkapselnden Wirkstoffs etc. Der Zahlenwert der cmc lässt sich nur experimentell für das betreffende System ermitteln und zwar indirekt durch elektrochemische Verfahren, z.B. Leitfähigkeitsmessungen oder potentiometrische Bestimmung der Gegenionen mit Hilfe einer geeignete Elektrode, durch Messung der Ueberführungszahl, der Oberflächenspannung, Messung von kolligativen Eigenschaften wie Dampfdruckerniedrigung, Gefrierpunktserniedrigung und osmotischer Druck, Messung der Dichte, des Brechungsindex, der Absorption von UV- und IR-Licht, der Solubilisation löslicher und unlöslicher Farbstoffe, der Lichtstreuung, der Fluoreszenzpolarisation und der Viskosität. Diese Eigenschaften erfahren bei Erreichen der cmc eine deutliche Aenderung. So ist die Oberflächenspannung in Abhängigkeit von der Konzentration des ionischen Tensids bis zum Erreichen der cmc durch eine starke Abnahme gekennzeichnet, oberhalb der cmc bleibt die Oeberflächenspannung praktisch konstant. Es wird auf die Ausführung in Stache H., Tensidtaschenbuch, Hanser, 1981, verwiesen, insbesondere S. 26, 3.1. "Methoden zur cmc-Bestimmung" und S. 28, 3.2. "Abhängigkeit der cmc von verschiedenen Parametern". Spezifische cmc-Werte, z.B. für Dodecylpyridiniumbromid, sind in Adderson J.B. and Taylor H., J. Colloid. Sci. 19, 495 (1964) angegeben. Ist die cmc überschritten, kann man durch Verdünnen der wässrigen Phase mit Wasser die cmc wieder unterschreiten. Aus Mizellen bilden sich dann reversibel unilamellare Liposomen.

Wässrige Phasen mit einem pH-Wert höher als ca. 8 werden nach der Dispersion neutralisiert, z.B. auf den physiologischen pH-Wert von 7,2. Die Neutralisation ist notwendig, um eine Zerstörung des Wirkstoffs und/oder der Liposomen unter basischen Bedingungen zu vermeiden und um die physiologische Verträglichkeit der applizierbaren wässrigen Phase mit der Liposomenmischung zu gewährleisten. Man neutralisiert mit einer physiologisch verträglichen Säure oder einer Pufferlösung mit einem pH-Wert von 7 bis 8. Physiologisch verträgliche Säuren sind beispielsweise verdünnte wässrige Mineralsäuren, z.B. verdünnte Salzsäure, Schwefelsäure oder Phosphorsäure, oder organische Säuren, z.B. Niederalkancarbonsäuren, z.B. Essigsäure.

Wässrige Phasen mit kationischen Tensiden der Formel IA können sauer reagieren. Diese neutralisiert man durch Zugabe von verdünnten wässrigen Basen, z.B. verdünnter wässriger Natronlauge oder Kalilauge oder mit einer Pufferlösung vom pH-Wert 7 bis 8.

Man arbeitet zweckmässigerweise bei Raumtemperatur oder auch bei höheren Temperaturen, z.B. bis ca. 60°C, und unter Rühren oder Schütteln. Falls es die Empfindlichkeit des zu verkapselnden Wirkstoffs verlangt, führt man das Verfahren unter Kühlen und gegebenenfalls Inertgasatmosphäre, z.B. Stickstoffatmosphäre,

durch. Die so erhältlichen Liposomen sind in wässriger Phase relativ lange (bis zu mehreren Tagen) beständig. Wässrige Phasen mit erfindungsgemäss herstellbaren unilamelaren Liposomen können nach dem in der Europäischen Patentanmeldung 00 65 292 angegebenen Verfahren lagerungsfähig gemacht werden.

Die Grösse der gebildeten unilamellaren Liposomen ist u.a. von der Struktur der Tenside und der Lipidkomponenten, dem Mischungsverhältnis der Komponent, der Konzentration dieser Komponenten in der wässrigen Phase und von der Menge und Struktur des zu verkapselnden Wirkstoffs abhängig. So kann man beispielsweise durch Erhöhung der Konzentration der Tensidkomponenten wässrige Phasen mit einem hohen Anteil an kleinen oder grossen unilamellaren Liposomen herstellen. Zusätzlich zu KUL entstehen auch grosse unilamellare Liposomen (GUL-Durchmesser bis zu 50,000 Å), Diese schliessen grössere Volumina pro Mol eingesetzter Lipidkomponenten ein und eignen sich zur Verkapselung von voluminösen Materalien, z.B. Viren, Bakterien oder Zellorganellen.

Die Trennung der KUL von GUL erfolgt mittels herkömmlicher Trennmethoden, z.B. Gelfiltration, z.B. mit Sepharose 4B oder Sephacryl als Träger, oder durch Sedimentation der GUL in der Ultrazentrifuge z.B. bei 160,000 x g. Beispielsweise setzen sich nach mehrstündigem, ca. dreistündigem, Zentrifugieren in diesem Schwerefeld GUL ab, während die KUL dispergiert bleiben und dekantiert werden können. Nach mehrmaligem Zentrifugieren erreicht man eine vollständige Trennung der GUL von KUL.

Auch durch Gelfiltration kann man alle in der wässrigen Phase befindlichen Liposomen mit einem Durchmesser grösser als 600 Å, z.B. GUL oder multilamellare Liposomen, sowie nicht verkapselte Wirkstoffe und überschüssige, dispergierte Lipide abtrennen und so eine wässrige Phase mit einer Fraktion KUL von relativ einheitlicher Grösse erhalten.

Nach Abtrennung von grossen unilamellaren (GUL) und multilamellaren Liposomen mit einer der genannten Methoden lässt sich die erfolgte Bildung von kleinen unilamellaren Liposomen und ihr Gehalt in wässriger Phase in an sich bekannter Weise anhand verschiedener physikalischer Messmethoden nachweisen, z.B. mit gefriergebrochenen (freeze fracture) Proben und Dünnschnitten im Elektronenmikroskop oder durch Röntgendiffraktion, durch dynamische Lichtstreuung, durch Massenbestimmung des Filtrats in der analytischen Ultrazentrifuge und vor allem spektroskopisch, z.B. im Kernresonanzspektrum (1H. 13C und 31 P). So ergeben beispielsweise scharfe Signale mit schmaler Linienbreite im Kernresonanzspektrum einen Hinweis auf erfolgte Bildung von unilamellaren Liposomen mit einem Durchmesser kleiner als ca. 1000 Å. Scharfe Signale bei δ ca. 0,89 ppm (-CH₃), δ ca. 1,28 ppm (-CH₂-) und δ ca. 3,23 ppm (-N(CH₃)₃) sind z B. für verfahrensgemäss erhaltene unilamellare Liposomen mit Phosphatidylcholin als Bestandteil charakteristisch. Im Kernresonanzspektrum sind solche Signale für unilamellare Liposomen typisch und unterscheiden sich von gemischten Mizellen, z.B. aus Phospholipiden, z.B. Lecithin, und Tensiden, z.B. Cetyltrimethylammoniumbromid. Für gemischte Mizellen mit diesen Komponenten ist ein Methylsignal bei 8 ca. 0,89 ppm charakteristisch, welches zu einem Triplett aufgespalten ist und eine wesentlich geringere Linienbreite hat als das Methylsignal (Singlett) (ebenfallsbei δ ca. 0,89 ppm) das von unilamellaren Liposomen stammt.

Die erfindungsgemäss erhältlichen Liposomen (KUL und GUL) sind geeignete Trägersystem, welche in wässriger Phase zur Solubilisierung von lipophilen Stoffen, z.B. fettlöslichen Farbstoffen, zur Stabilisierung von hydrolyseempfindlichen Stoffen, z.B.

Prostaglandinen, zum Einschluss von Schädlingsbekämpfungsmitteln, z.B. zur Veränderung des Wirkungsprofils von Dichlorphos, zum Einschluss von Nahrungsmittelzusätzen, z.B. zwecks Aenderung des Adsorptionsverhaltens von Vitaminen oder Farbstoffen, oder zur Einschleusung von verkapselten Wirkstoffen, Enzymen, Antikörpern, Hormonen, Genen, Viren, Vitaminen oder Zellorganellen in die Zellen einer Zellkultur verwendet werden können.

Wässrige Phasen, welche die erfindungsgemäss erhältlichen Liposome mit verkapselten Wirkstoffen enthalten, sind Verbreichungssysteme, welche sich, gegebenenfalls nach Konzentrierung oder Isolierung der Liposomen, z.B. durch Ultrazentrifugieren, zu therapeutischen Zwecken für die orale (p.o.), parenterale (i.v., i.m. oder i.p.) oder topikale Verabreichung eignen.

Bei oraler Verabreichung können Verabreichungssysteme auf Liposomenbasis einen Wirkstoff, beispielsweise Insulin, das im Verdauungstrakt unbeständig ist, schützen oder seine Resorption verbessern. Für die orale Verabreichung kann die Liposomen-haltige wässrige Phase mit pharmazeutisch unbedenklichen Verdünnungsmiteln oder Trägern oder mit üblichen Zusätzen, z.B. Farbstoffen oder Geschmacksstoffen, vermischt und als Sirup oder in Form von Kapseln verabreicht werden.

Bei parenteraler Verabreichung können Verabreichungssysteme auf Liposomenbasis beispielsweise die Verweilzeit z.B. von Desferrioxamin, siehe Guilmette R.A. et al., Life Sci. 22 (4) 313-320, 1978, oder Gentamycin, siehe Scheld W.M. et al., Clin.Res. 26, No. 1, 59 A, 1978, in einem Organismus verlängern. Ebenso wird die Verweilzeit von verkapselten Chelatbildern, z.B. EDTA (Aethylendiamintetraessigsäure), in Organismen verlängert, so dass man durch Chelatbildung Schwermetalle besonders aus Leber, Milz oder Nieren entfernen kann, siehe Rahmann et al, Science, Vol 180,300-302, 1973, und J. Lab.Clin. Med. 640-647, 1974. Mit Verabreichungssystemen auf Liposomenbasis kann man Wirkstoffe im Myokard anreichern, siehe Landesmann et al, Science Vol. 198, 737-738, 1977. Antiinflammatorisch wirkende Stoffe, z.B. Cortisol, siehe Nature 271, No. 5643, 372-73, 1978, oder Proteaseinhibitoren, siehe Anal. Biochem. 89, No.2, 400-07, 1978, kann man in der Gelenkflüssigkeit und Cytostatika in Tumorgewebe, siehe Uebersichtsartikel von Kaye St. B., Cancer Treatment Reviews 8, 27-50, 1981, und die vielen darin zitierten Literaturstellen, anreichern. Manche Chemotherapeutika in der Krebstherspie sind weniger toxisch und besser verträglich, wenn

sie in Liposomen verkapselt verabreicht werden, z.B. liposomverkapseltes Actinomycin D. siehe Rahman et al. Proceedings of the Society for Experimental Biology and Medicine 146, 1173-1176, 1974, Methotrexat, siehe Lesermann L.D. et al. Proc. Natl. Acad. Sci. 77, No. 7, 4089-93, 1980, Vinblastin, Daunomycin oder Cytosin-Arabinosid, siehe Mühlensiepen et al., Cancer Res. 41, Nr. 5, 1602-07, 1981. Liposomen können zur Einschleusung von Wirkstoffen, z.B. Enzymen, Peptidhormonen, Genen oder Viren in das Cytoplasma von Zellen in lebenden Organismen, z.B. zur Einschleusung von Asparaginase, siehe Uebersichtsartikel von Finkelstein M. und Weissmann, G., J. Lipid Research, Vol. 19, 1978, 289-303, von Amyloglucosidase, siehe Gregoriadis G. und Ryman B.E., Eur. J.Biochem. 24 (1972), 485-491, oder Neurominidase, siehe Gregoriadis et al., Biochem. J. (1974) 140, 232-330, zur Verankerung spezifischer Erkennungsmoleküle, z.B. monoklonaler Antikörper, zwecks zielgerichteter Einschleusung in definierte Zielzellen, siehe Leserman et al., Nature 293 (5829), 226-228, 1981, zur Immunstimulation als Adjuvans bei Impfungen, z.B. gegen Leishmaniasen, siehe New R.R.C. et al. Nature 272 (5648) 55-56, 1978, oder zur induzierten Freisetzung von Wirkstoffen durch Signale wie Temperaturerhöhungen, z.B. in entzündetem Gewebe, oder pH-Wert Aenderungen verwendet werden. Für die parenterale Verabreichung können die konzentrierten oder isolierten Liposomen in einer geeigneten Trägerflüssigkeit, beispielsweise in sterilem destilliertem Wasser oder in physiologischer Kochsalzlösung, suspendiert werden.

Herstellung der homogenen Schicht der Lipidkomponenten

Die Herstellung der homogenen Schicht der Lipidkomponenten kann in an sich bekannter Weise erfolgen. Beispielsweise löst man zunächst das Tensid der Formel IA, z.B. Cetylpyridiniumchlorid und das Lipid, z.B. Ei-Lecithin, gegebenenfalls unter Zumischung eines lipophilen Wirkstoffs, z.B. Proteins, das bei der Bildung der Liposomen in der Lipidschicht eingeschlossen wird, in einem organischen Lösungsmittel auf. Durch Entfernen des organischen Lösungsmittels, am

zweckmässigsten im Vakuum oder durch Abblasen mit Inertgas, z.B. Stickstoff, stellt man eine aus einem Film bestehende homogene Schicht der Lipidkomponenten her.

Die Auswahl des betreffenden Lösungsmittels ist von der Löslichkeit der betreffenden Lipidkomponenten darin abhängig. Geeignete Lösungsmittel sind beispielsweise unsubstituierte oder substituierte, z.B. halogenierte, aliphatische, cycloaliphatische, aromatische oder aromatisch-aliphatische Kohlenwasserstoffe, z.B. Benzol, Toluol, Methylenchlorid oder Chloroform, Alkohole, z.B. Methanol oder Aethanol, Niederalkancarbonsäureester, z.B. Essigsäureäthylester, Aether, z.B. Diäthyläther, Dioxan oder Tetrahydrofuran, oder Mischungen dieser Lösungsmittel.

Eine homogene Mischung kann man auf die in der DE-A 28 18 655 beschriebene Weise durch lyophilisieren aus organischer Lösung herstellen. Man erhält die homogene Schicht in Form eines Schaums.

Die in der Beschreibung erwähnten ionischen Tenside, z.B. die kationischen Tenside der Formel IA und die anionischen Tenside der Formel IB sind bekannt. Die Herstellung dieser Tenside ist in dem Standardwerk "Cationic surfactants" von Eric Jungermann, Dekker, New York 1970, beschrieben. Eine Uebersicht über sämtliche im Handel befindlichen anionischen und kationischen Tenside, sowie die Warenzeichen, unter denen diese Tenside von den Herstellerfirmen vertrieben werden, gilt das jährlich neu erscheinende Handbuch "Mc Cutcheon's, Emulsifiers & Detergents", Manufacturing Confectioner Publishing Co. Die Tenside der Formeln I B und I C sind bekannt oder können falls sie neu sind, in an sich bekannter Weise nach den im Standardwerk von Knight C.G., Liposomes, Elsevier 1981, Kapitel 3, angegebenen Vorschriften hergestellt werden. Die weiter vorn genannten Lipide sind bekannt und grösstenteils handelsüblich.

Die folgenden Beispiele veranschaulichen die Erfindung, ohne sie zu beschränken. Temperaturen sind in Grad Celsius und chemische Verschiebungen (δ) im NMR-Spektrum in ppm angegeben.

Beispiel 1: Man löst 10 mg Ei-Lecithin und 0,05 mg Cetyltrimethylammoniumbromid in 2 ml einer Chloroform/ Methanol-Mischung (2:1) und
dampft diese Lösung im Vakuum im Rotationsverdampfer ein. Zur
Bildung von unilamellaren Liposomen dispergiert man bei Raumtemperatur den filmartigen Rückstand in 1 ml Wasser durch 5-10
Minuten langes Schütteln. Man erhält eine leicht opaleszierende,
wässrige Phase.

Die erfolgte Bildung von kleinen unilamellaren Liposomen ist im NMR-Spektrum durch die Signale $\delta=1,28$ (Methylen). $\delta=0,86$ (Methyl) und $\delta=3,25$ (-N(CH₃)₃) erkennbar.

Die gebildeten unilamellaren Liposomen können im Elektronenmikroskop sichtbar gemacht werden. Die Liposomendispersion wird zunächst der üblichen Gefrierbruchmethode (freeze-fracture) unterzogen. Es liegen hauptsächlich zwei "Populationen" von unilamellaren Liposomen vor, die sich durch ihre durchschnittliche Grösse unterscheiden:

1. Kleine unilamellare Liposomen (KUL) mit einem Durchmesser von ca. 200-600 Å und

2. Grosse unilamellare Liposomen (GUL) mit einem Durchmesser von ca. 1,000 - 10,000 Å.

Beispiel 2: Analog Beispiel 1 löst man pro Versuch 10 mg Ei-Lecithin und eine steigende Menge Cetyltrimethylammoniumbromid (CTAB, siehe Tabelle) in je 2 ml einer Chloroform/Methanol-(2:1)-Mischung, dampft ein und dispergiert in Wasser. Man erhält eine opaleszierende wässrige Phase, welche aus kleinen (KUL) und grossen (GUL) unilamellaren Liposomen besteht.

Tabelle 1:

Versuch Nr.	Konzentration CTAB [g/1]	Ausbeute KUL
1	0,1	10
2	0,2	10
3	0,5	10
4	1,0	10
5	2,0	12
6	5,0	14
7	7,0	20
8	10,0	40
9	15,0	70

Beispiel 3: Man löst pro Versuch 10 mg Ei-Lecithin und eine steigende Menge Cetylpyridiniumchlorid (CPC, siehe Tabelle 2) oder Benzalkoniumchlorid (BAC, siehe Tabelle 3) in je 2 ml einer Chloroform/Methanol - (2:1) - Mischung, dampft diese Lösung im Vakuum ein und dispergiert in 1 ml Wasser durch fünf bis zehn Minuten langes Schütteln. Man erhält eine opaleszierende, wässrige Phase, welche aus kleinen (KUL) und grossen (GUL) unilamellaren Liposomen besteht.

Tabelle 2:

Versuch Nr.	Konzentration CPC [g/1]	Ausbeute KUL
1	1,0	10
2	1,5	15
3	2,0	20
4	2,5	20
5	3,0	25
6	3,5	30

Tabelle 3:

Versuch Nr.	Konzentration BAC [g/1]	Ausbeute KUL
1	0,5	2
2 .	1,0	5
3	2,0	5
4	3,0	10
5	5,0	15
6	10,0	60

Beispiel 4: Man löst pro Versuch 10 mg Ei-Lecithin und eine steigende Menge an Texapon N 25[®] (Natriumlauryläthersulfat, siehe Tabelle 4), Octadecylphospho-D-mannit (OPM, siehe Tabelle 5) oder Natriumdodecylsulfat (SDS, Tabelle 6) in je 2 ml einer Chloroform/Metanol-(2:1)-Mischung, dampft diese Lösung im Vakuum ein und dispergiert in 1 ml Wasser durch fünf bis zehn Minuten langes Schütteln. Man erhält eine opaleszierende, wässrige Phase, welche aus kleinen (KUL) und grossen (GUL) unilamellaren Liposomen besteht.

Tabelle 4:

Versuch Nr.	Konzentration	Ausbeute KUL
	Texapon N 25 [g/1]	[2]
1	1,0	2
2	2,0	5
3	3,0	5
4	4,0	10

Tabelle 5:

Versuch Nr.	Konzentration	Ausbeute KUL	
	OPM [g/1]	[%]	
• 1	1,0	10	
2	2,0	15	
3	3,0	20	

Tabelle 6:

Versuch Nr.	Konzentration SDS [g/1]	Ausbeute KUL
1	1,0	5
2	2,0	8
3	3,0	10
4	4,0	12
5	5,0	15
6	6,0	15
7	7,0	20
8	8,0	30
9	9,0	35

Beispiel 5: Man löst jeweils eine Gesamtmenge von 10 mg enthaltend den in den Tabellen 1-3 angegebenen Anteil an Natrium-2,2-dimethyl-3-palmitoyloxypropylhydrogenphosphat (Tabelle 7), Natrium-1-palmitoyllysophosphatidylglycerin (Tabelle 8) und Natrium-1-palmitoyllysophosphatidylserin (Tabelle 9) und die entsprechende Menge Ei-Lecithin (Lipid) in 1 ml einer Chloroform/Methanol Mischung (2:1) und dampft diese Lösung im Rotationsverdampfer ein. Anschliessend dispergiert man den filmartigen Rückstand in 1 ml destilliertem Wasser und neutralisiert durch Zugabe von 0,1 N Natriumhydroxid-Lösung. Man erhält eine opaleszierende wässrige Phase.

Tabelle 7:

	Konzentration	Ausbeute
Versuch Nr.	Tensid [g/1]	KUL [7]
1	0.5	7
2	1,0	13
3	1,5	19
4	2,0	23
5	2,5	26
6	3,0	30
7	4,0	37
8	5,0	60
9	6,0	83
10	7,0	90
11	8,0	95
12	9,0	100
13	9,5	100
		200

Bei einen Anteil von mehr als 60 % Tensid enthalten die KUL-Fraktionen ausserdem kleine Mizellen aus Lipid und Tensid.

Tabelle 8:

	Konzentration	Ausbeute
Versuch Nr.	Tensid [g/l]	KUL [2]
1	1,0	6
2	1,5	10
3	2,0	15
4	2,5	17
5	3,0	20
6	3,5	25
7	4,0	27
8	4,5	30
9	5,0	33
10	6,0	40

Tabelle 9:

Versuch Nr.	Konzentration	n Ausbeute
	Tensid g/1	KUL [2]
1	. 1	5
2	2	8
3	3	13
4	4	18
5	5	20
6	6	25

Beispiel 6: Man löst 3 mg eines in der Tabelle 10 genannten Tensids und 7 mg Ei-Lecithin (Lipid) in 1 ml einer Chloroform/Methanol Mischung (2:1) und dampft diese Lösung ein. Der filmartige Rückstand wird in 1 ml Wasser dispergiert. Anschliessend neutralisiert man durch Zugabe von 0,1 N Natriumhydroxidlösung. Man erhält eine opaleszierende, wässrige Phase.

Tabelle 10:

Tensid	Ausbeute [KUL]
2-Hydroxyäthy1-3-palmitoyloxypropylphosphat	20
2,2-Dimethyl-3-palmitoyloxypropylhydrogen-phosphat	50
3-Cetyloxypropyl-2-hydroxyäthylphosphat	29
2-Bromäthyl-cetylphosphat	30
n-Eicosyl-2,3-(2,2-propylen)-dioxypropylphosphat	18
3-Stearyloxypropylhydrogenphosphat	8
2,3-Dihydroxypropyl-myristylphosphat	34
3-Cetyloxypropylhydrogenphosphat	19
2,3-Dihydroxypropyl-n-eicosylphosphat	8

Cetyl-2,3-dihydroxypropylphosphat

25

Methyl-3-stearoyloxypropylphosphat

45

Beispiel 7: Man löst 20 mg (0,026 mMol) Sojalecithin, 1 mg (0,76 µMol) N-Acetylmuramyl-L-alanyl-2-(1',2'-dipalmitoyl-sn-glycero-3'-phosphoryl)-äthylamid und 5 mg n-Hexadecylpyridiniumchlorid in 2 ml einer Chloroform/Methanol-Mischung (2:1) und dampft diese Lösung im Rotationsverdampfer ein. Der filmartige Rückstand wird in 3 ml destilliertem Wasser fünf Minuten lang geschüttelt. Man erhält eine opaleszierende, wässrige Phase. Man puffert anschliessend die wässrige Dispersion durch Zugabe von 0,2 ml eines zehnfachen Konzentrats von Phosphat-gepufferter, isotonischer Kochsalzlösung (PBS für Injektionszwecke) auf den pH-Wert von 7,4 ab.

Beispiel 8: Man löst 30 mg (0,04 mMol) Sojalecithin, 2 mg (0,004 mMol) Flumethason-21-pivalat und 8 mg (0,002 mMol) n-Hexadecyl-pyridiniumchlorid in 3 ml einer Chloroform/Methanol Mischung (2:1) und dampft diese Lösung im Rotationsverdapfer ein. Der filmartige Rückstand wird in 3 ml destilliertem Wasser fünf Minuten lang geschüttelt. Man erhält eine opaleszierende, wässrige Phase.

Anschliessend puffert man wie im Beispiel 7 beschrieben auf den pH-Wert von 7,4 ab.

Beispiel 9: Man löst 30 mg (0,040 mMol) Sojalecithin und 15 mg (0,042 mMol) Lanette E • (Natrium-stearyl- oder palmitylsulfat) in 8 ml einer tert-Butanol/Methanol Mischung (4:1) bei 70° und dampft diese Lösung im Vakuum ein. Der filmartige Rückstand wird mit 3 ml destilliertem Wasser fünf Minuten lang geschüttelt. Man erhält eine opaleszierende, wässrige Phase, welche man wie im Beispiel 7 beschrieben auf den pH-Wert von 7,4 abpuffert.

Beispiel 10: Man löst 20 mg (0,026 mMol) Sojalecithin, 1 mg

(0,76 Mol) N-Acetylmuramyl-L-alanyl-2-(1',2'-dipalmitoyl-sn-glycero-3'-phosphory 1)-äthylamid und 10 mg (0,028 mMol) Lanette E in 6 ml einer tert-Butanol/Mcthanol Mischung (4:1) bei 70° und dampft diese Lösung im Rotationsverdampfer ein. Der filmartige Rückstand wird in 2 ml destilliertem Wasser 5 Minuten lang geschüttelt. Man erhält eine opaleszierende, wässrige Phase.

Diese wird in eine gerührte Ultrafiltrationszelle (Amicon *), eingefüllt, die anstelle des Ultrafilters mit einem geradporigen Filter aus Polycarbonat (Nucleopore *) mit einem Porendurchmesser von 0,1 µm versehen ist und partikelfrei gewaschen wurde, und unter geringem Ueberdruck und stetiger Zufuhr von sterilfiltrierter Pufferlösung nach Dulbecco (pH 7,4 ohne Ca und Mg) so filtriert, dass das Volumen in der Zelle nicht unter 30 ml sinkt. Nach Durchtritt von 0,3 l Filtrat sind alle KUL abgetrennt und die überstehende Dispersion an GUL kann ampulliert und für Behandlungsversuche eingesetzt werden.

Beispiel 11: Man löst 30 mg (0,04 mMol) Sojalecithin, 4 mg (0,081 mMol) Flumethason-21-pivalat und 10 mg (0,028 mMol) Lanette E • in 6 ml einer tert-Butanol/Methanol Mischung (4:1) bei ca. 70° und dampft diese Lösung im Rotationsverdampfer ein. Der filmartige Rückstand wird in 3 ml destilliertem Wasser geschüttelt. Man erhält eine opaleszierende, wässrige Phase. Nach Einfüllen in eine gerührte Filterzelle (Totalvolumen 100 ml) gemäss Beispiel 10 wird unter Zugabe von sterilem, partikelfrei filtriertem Wasser so lange filtriert, bis 500 ml Filtrat gesammelt sind. Dieses Filtrat wird in eine gerührte Filterzelle, die mit einem Ultrafilter, z.B. Amicon U 10 •, bestückt ist, kontinuierlich eingespeist und auf ein Volumen von 30 ml konzentriert. Die konzentrierte Dispersion enthält kleine, unilamellare Liposomen und kann nach Zugabe eines Konzentrats von Phosphatpuffer nach Dulbecco (pH 7,4 ohne Ca und Mg) ampulliert und für Behandlungsversuche eingesetzt werden.

Ansprüche

- 1. Verfahren zur Herstellung von unilamellaren Liposomen in wässriger Phase, dadurch gekennzeichnet, dass man eine homogene Mischung eines ionischen Tensids und eines Lipids in wässriger Phase bei einer Konzentration niedriger als die kritische Mizellbildungs-konzentration (cmc-critical micelle concentration) des Tensids in der betreffenden Phase dispergiert und, wenn notwendig, die erhältliche wässrige Phase neutralisiert und, wenn erwünscht, die erhältlichen unilamellaren Liposomen anreichert und/oder abtrennt.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man eine homogene Mischung eines anionischen oder kationischen Tensids dispergiert.
- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass man eine homogene Mischung eines kationischen Tensids der Formel:

worin R_a einen gegebenenfalls substituierten Kohlenwasserstoffrest, R_b Niederalkyl, Phenylniederalkyl oder Hydroxy, R_c und R_d Niederalkyl oder R_b und R_c zusammen mit dem Stickstoffatom einen gegebenenfalls an einem Kohlenstoffatom substituierten, aliphatischen Heterocyclus und R_d Niederalkyl oder R_b , R_c und R_d zusammen mit dem Stickstoffatom einen gegebenenfalls an einem Kohlenstoffatom substituierten, aromatischen Heterocyclus und Y^Θ ein Anion darstellen und eines Lipids dispergiert.

- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass man eine homogene Mischung von N-Benzyl N, N-dimethyl-N-2-2-(4-(1,1,3,3tetramethylbutyl)-phenoxy)-äthoxy]-äthylammoniochlorid, N-Benzyl-N, N-dimethyl-N-2-[2-(3-methyl-4-(1,1,3,3-tetramethylbutyl)-phenoxy)äthoxy]-äthylammoniochlorid (Methylbenzethoniumchlorid), n-Dodecyltrimethylammoniochlorid oder -bromid, Trimethyl-n-tetradecylammoniochlorid oder -bromid, n-Hexadecyltrimethylammoniochlorid oder -bromid (Cetyltrimethylammoniumchlorid oder -bromid), Trimethyl-noctadecylammoniochlorid oder -bromid, Aethyl-n-dodecyldimethylammoniochlorid oder -bromid, Aethyldimethyl-n-tetradecylammoniochlorid oder -bromid, Aethyl-n-hexadecyldimethylammoniochlorid oder -bromid, Aethyldimethyl-n-octadecylammoniochlorid oder -bromid, n-Alkyl-benzyldimethylammoniochlorid oder -bromid (Benzalkoniumchlorid oder -bromid), z.B. Benzyl-n-dodecyldimethylammoniochlorid oder bromid, Benzyldimethyl-n-tetradecylammoniochlorid oder -bromid, Benzyl-n-hexadecyldimethylammoniochlorid oder -bromid oder Benzyldimethyl-n-octadecylammoniochlorid oder -bromid, N-(n-Decyl)pyridiniochlorid oder -bromid, N-(n-Dodecyl)-pyridiniochlorid oder -bromid, N-(n-Tetradeyl)-pyridiniochlorid oder -bromid, N-(n-Hexadecyl)-pyridiniochlorid oder -bromid (Cetylpyridiniumchlorid) oder N-(n-Octadecyl)-pyridiniochlorid oder -bromid oder eine Mischung von diesen Tensiden und eines Lipids dispergiert.
- 5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass man eine homogene Mischung eines anionischen Tensids der Formel:
- a) eine Verbindung der Formel:

$$\begin{bmatrix} R_{a} - (O-A)_{m} - B \end{bmatrix}^{\Theta} Z^{\Theta}$$
 (I B)

worin R_{a} einen gegebenenfalls substituierten Kohlenwasserstoffrest, A Niederalkylen, m null (direkte Bindung) oder eins, B die Sulfonatoder Sulfatgruppe und Z^{\oplus} ein einwertiges Kation darstellen, oder b) eine Verbindung der Formel:

worin m null oder eins ist, einer der Reste R_1 und R_2 Wasserstoff, Hydroxy, Niederalkyl mit 1-4 C-Atomen und der andere Rest Alkyl, Alkenyl, Alkoxy, Alkenyloxy oder Acyloxy mit je 10-20 C-Atomen, R_3 Wasserstoff oder Niederalkyl mit 1-4 C-Atomen und R_4 gegebenenfalls substituiertes Niederalkyl mit 1-7 C-Atomen, einen Kohlehydratrest mit 5-12 C-Atomen oder, wenn beide Reste R_1 und R_2 Wasserstoff oder Hydroxy bedeuten, einen Steroidrest bedeuten, und Z^{\oplus} ein einwertiges Kation bedeutet, oder

c) eine Verbindung der Formel

$$R_1 - CH_2 - \frac{R_3}{C} - CH_2 - O - \frac{O}{P} - OH Z^{\oplus}$$
 (I D),

worin R_1 , R_2 , R_3 und Z^{\oplus} die unter Formel (I C) genannten Bedeutungen haben, und eines Lipids dispergiert.

6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass man eine homogene Mischung enthaltend ein Alkalimetallalkylsulfat (m = o), z.B. Natrium oder Kalium-n-dodecyl (lauryl)-sulfat, -n-tetradecyl (myristyl)-sulfat, -n-hexadecyl (cetyl)-sulfat oder -n-octadecyl (stearyl)-sulfat, ein Alkalimetallalkyläthersulfat (m = 1), z.B. Natrium- oder Kalium-n-dodecyloxyäthylsulfat, -n-tetradecyloxyäthylsulfat, -n-tetradecyloxyäthylsulfat oder -n-octadecyloxyäthylsulfat oder -n-octadecyloxyäthylsulfat oder, ein Alkalimetallalkansulfonat, z.B. Natrium- oder Kalium-n-dodecansulfonat, n-tetradecansulfonat, n-hexadecansulfonat oder -n-dodecansulfonat, das Natrium- oder Kaliumsalz des Lysophosphatidylserins, z.B. das Natrium- oder Kaliumsalz des Lysophosphatidylserins aus dem Rinderhirn oder das Natrium- oder

Kaliumsalz eines synthetischen Lysophosphatidylserins, z.B. Natriumoder Kalium-1-myristoyl- oder -1-palmitoyllysophosphatidylserin,
oder das Natrium- oder Kaliumsalz des Lysophosphatidylglycerins,
oder Natrium- oder Kaliumsalz einer natürlichen Phosphatidsäure,
z.B. Ei-Phosphatidsäure, das Natrium- oder Kaliumsalz einer
natürlichen Lysophosphatidsäure, z.B. Ei-Lysophosphatidsäure, das
Natrium- oder Kaliumsalz einer synthetischen Lysophosphatidsäure,
z.B. 1-Lauroyl-, 1-Myristoyl- oder 1-Palmitoyllysophosphatidsäure,
oder einer Mischung von diesen Tensiden und eines Lipids dispergiert.

7. Verfahren nach einem der Ansprüche 1-6, dadurch gekennzeichnet, dass man als Lipid eine Verbindung der Formel

$$R_1 - CH_2 - CH_2 - CH_2 = 0 - P - O - R_4$$
 (I C'),

worin m, R₁, R₂, R₃ und R₄ die unter Formel I C genannten Bedeutungen haben und R₄ ausserdem durch Triniederalkylammonio oderAmino substituiertes Niederalkyl ist, dispergiert.

8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass man als Lipid ein natürliches Lecithin, z.B. Ei-Lecithin oder Lecithin aus Sojabohnen (R₄ = 2-Trimethylammonioäthyl), ein natürliches Kephalin, z.B. Ei-Kephalin oder Kephalin aus Sojabohnen (R₄ = 2-Aminoäthyl), ein synthetisches Lecithin (R₄ = 2-Trimethylammonioäthyl) oder ein synthetisches Kephalin (R₄ = 2-Aminoäthyl) der Formel (I C') bevorzugt, worin R₁ und R₂ identische Acyloxyreste, z.B. Lauroyloxy, Oleoyloxy, Linoyloxy, Linoleoyloxy oder Arachinoyloxy bedeuten, z.B. Dilauroyl-, Dimyristoyl-, Dipalmitoyl-, Disteararoyl-, Diarachinoyl-, Dioleoyl-, Dilinoyl-, Dilinoleoyl-, oder Diarachinoyllecithin oder -kephalin, R₁, und R₂ verschiedene Acyloxyreste, z.B. R₁ Palmitoyloxy und R₂ Oleoyloxy, z.B. 1-Palmitoyl-2-oleoyl-lecithin oder -kephalin, R₁ und R₂ identische Alkoxyreste, z.B. Tetradecyloxy oder Hexadecyloxy, z.B. Ditetradecyl- oder Dihexadecyllecithin oder

-kephalin, R₁ Alkenyl und R₂ Acyloxy, z.B. ein Plasmalogen (R₄ = Trimethylammonioäthyl), oder R₁ Acyloxy, z.B. Myristoyloxy oder Palmitoyloxy, und R₂ Hydroxy, z.B. natürliches oder synthetisches Lysolecithin oder Lysokephalin, z.B. 1-Myristoyl- oder 1-Palmitoyl-lysolecithin oder -kephalin, und R₃ Wasserstoff darstellen, dispergiert.

9. Verfahren nach einem der Ansprüche 1-8, dadurch gekennzeichnet, dass man eine homogene Mischung aus einem Tensid der Formel I A, insbesondere N,N-Dimethyl-N-2-[2-(4-(1,1,3,3-tetramethylbutyl)phenoxy)-athoxy]-athylammoniochlorid, N-Benzyl-N,N-dimethyl-N-2-[2-(3-methyl-4-(1,1,3,3-tetramethylbutyl)-phenoxy)-athoxy]-athylammoniochlorid (Methylbenzethoniumchlorid), n-Dodecyltrimethylammoniochlorid oder -bromid, Trimethyl-n-tetradecylammoniochlorid oder-bromid, n-Hexadecyltrimethylammoniochlorid oder -bromid (Cetyltrimethylammoniumchlorid oder -bromid), Trimethyl-n-octadecylammoniochlorid oder -bromid, Aethyl-n-dodecyldimethylammoniochlorid oder -bromid, Aethyldimethyl-n-tetradecylammoniochlorid oder -bromid, Aethyl-n-hexadecyldimethylammoniochlorid oder -bromid, Aethyldimethyl-n-octadecylammoniochlorid oder -bromid, n-Alkylbenzyldimethylammoniochlorid oder -bromid (Benzalkoniumchlorid oder -bromid), z.B. Benzyl-n-dodecyldimethylammoniochlorid oder -bromid, Benzyldimethl-n-tetradecylammoniochlorid oder -bromid, Benzyl-nhexadecyldimethylammoniochlorid oder -bromid oder Benzyldimethyl-noctadecylammoniochlorid oder -bromid, N-(n-Decyl)-pyridiniochlorid oder -bromid, N-(n-Dodecyl)-pyridiniochlorid oder -bromid, N-(n-Tetradecyl)-pyridiniochlorid oder -bromid, N-(n-Hexadecyl)-pyridiniochlorid oder -bromid (Cetylpyridiniumchlorid) oder N-(n-Octadecyl)-pyridiniochlorid oder -bromid oder einem anionischen Tensid der Formel IB, insbesondere Natrium oder Kalium-n-dodecyl (lauryl)-sulfat, -n-tetradecyl (myristyl)-sulfat, -n-hexadecyl (cetyl)-sulfat oder -n-octadecyl (stearyl)-sulfat, Natrium- oder Kalium-n-dodecyloxyäthylsulfat, -n-tetradecyloxyäthylsulfat, -n-hexadecyloxyäthylsulfat oder -n-octadecyloxyäthylsulfat, oder einem anionischen Tensid der Formel I C, insbesondere Natrium- oder Kalium-2,2-dimethyl-3-palmitoyloxypropylhydrogenphosphat, Natriumoder Kalium-l-palmitoyllysophosphatidylglycerin, Natrium- oder Kalium-l-palmitoyllysophosphatidylserin, und einem Lipid der Formel I C¹, worin R₁ und R₂ Acyloxy, z.B. Lauroyloxy, Myristoyloxy, Palmitoyloxy oder Stearoyloxy, R₃ Wasserstoff und R₄ 2-Trimethyl-ammonioäthyl, z.B. ein natürliches Kephalin, z.B. Ei-kephalin-oder Kephalin aus Sojabohnen, oder 2-Aminoäthyl, z.B. ein natürliches Lecitin, z.B. Ei-Lecithin oder Lecithin aus Sojabohnen, dispergiert.

- 10. Verfahren nach einem der Ansprüche 1-9, dadurch gekennzeichnet, dass man eine homogene Mischung eines Tensids und eines Lipids gemäss Anspruch 9 und eines pharmazeutischen Wirkstoffs dispergerit.
- 11. Verfahren nach einem der Ansprüche 1-10, dadurch gekennzeichnet, dass man eine homogene Mischung aus einem anionischen Tensid der Formel I B, Ei-Lecithin und einem Muramylpeptid dispergiert.
- 12. Verfahren nach einem der Ansprüche 1-10, dadurch gekennzeichnet, dass man eine homogene Mischung aus einem kationischen Tensid der Formel I A, Sojalecithin und einem Muramylpeptid dispergiert.
- 13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass man eine homogene Mischung aus n-Hexadecylpyridiniumchlorid, Soja-lecithin und N-Acetylmuramyl-L-alanyl-2-(1',2'-dipalmitoyl-sn-glycero-3'-phosphoryl)-äthylamid dispergiert.
- 16. Verabreichungssystem auf Liposomenbasis für verkapseltes N-Acetylmuramyl-L-alanyl-D-isoglutamyl-L-alanyl-2-(1',2'-dipalmitoyl-sn-glycero-3'-phosphoro)-äthylamid, hergestellt nach den Verfahren gemäss Patentanspruch 1.
- 17. Pharmazeutische Zusammensetzung enthaltend ein Verabreichungssystem auf Liposomenbasis für verkapselte Wirkstoffe gemäss Anspruch 15. vermischt mit pharmazeutisch verträglichen Zusatzstoffen.

- 18. Verabreichungssystem gemäss Anspruch 15 zur Anwendung bei der Behandlung des menschlichen oder tierischen Körpers.
- 19. Pharmazeutische Zusammensetzung gemäss Anspruch 15 zur Anwendung bei der Behandlung des menschlichen oder tierischen Körpers.
- 20. Die Methode der Behandlung von Erkrankungen des menschlichen oder tierischen Körpers mit Verabreichungssystemen gemäss Anspruch 15.

FO 7.4 RS/eg*

- (54) LIPIDS AND TENSIDS IN AQUEOUS PHASE
- (71) CIBA-GEIGY AG
- (21) 17402/83 (22) 28.7.83

(24) 29.7.82

- (31) 4597/82 (32) 29.7.82 (33) CH
- (43) 2.2.84
- (51)³ C07G 17/00 A61K 9/10
- (72) HELMUT HAUSER
- (74) WM
- (57)

There is great interest in the therapeutic use of liposomes as carriers for a very wide range of active ingredients. Accordingly, liposomes have been proposed as carriers for proteins, e.g. antibodies or enzymes, hormones, vitamins or genes or, for analytical purposes, as carriers for marker compounds. For example, US patent 3 933 754 describes a chemotherapeutic process for treating tumour cells, wherein liposomes are used as drug carriers.

In the process of this invention it is possible to prepare, in simple manner and without using complicated apparatus, aqueous phases which contain small unilamellar liposomes (SUL) with a diameter of about 200 to 600 Å, and large unilamellar liposomes (LUL) with a diameter of about 600 to 3000 Å. Small unilamellar liposomes can be separated from large unilamellar liposomes by means of suitable separating methods, e.g. by gel filtration or in an ultrafiltration cel

Claim

1. A process for the preparation of unilamellar liposcues in aqueous phase, which comprises dispersing a homogeneous mixture of an anionic surfactant and a lipid, in aqueous phase, at a concentration lower than the critical micelle concentration (cmc) of the surfactant in the

.../2

particular phase and, if necessary, neutralising the aqueous phase so obtained and, if desired, enriching and/or separating the resultant unilamellar liposomes.

2. A process according to claim 1, which comprises dispersing a homogeneous mixture of an anionic or cationic surfactant.

COMMONWEALTH OF AUSTRALIA

PATENTS ACT 1952-69

COMPLETE SPECIFICATION

4000

Int. Class

Application Number:

17402/83

Lodged

Complete Specification Lodged:

Accepted

Published

Priority:

Related Art:

Name of Applicant:

CIBA-GEIGY AG

Address of Applicant :

Klybeckstrasse 141, 4002 Basle, Switzerland

Actual Inventor:

HELMUT HAUSER

Address for Carriers

EDWD. WATERS & SONS,

50 QUEEN STREET, MELBOURNE, AUSTRALIA, 3000.

Complete Specification for the invention entitled:

LIPIDS AND TENSIDS IN AQUEOUS PHASE

The following statement is a full description of this invention, including the best method of performing it known to :- us

Case 4-14035/+

Lipids and tensids in aqueous phase

The present invention relates to a process for the preparation of unilamellar liposomes in aqueous phase.

Liposomes have been described in the literature in a wide range of publications, and many investigations are concerned with their structure and use. A distinction is made between unilamellar liposomes having a double layer of lipids and multilamellar liposomes having a number of double layers of lipids of onion-like structure.

Unilamellar liposomers have a spherical shell and a diameter of about 200 to 50,000 Å, preferably of about 200 to 30,000 Å. The spherical shell consists of a double layer of the lipid components, e.g. amphiphatic lipids such as phospholipids, e.g. phosphatidic acid, lecithin or cephalin, with or without neutral lipids, e.g. cholesterol. This double layer surrounds a cavity which contains an aqueous phase.

There is great interest in the therapeutic use of liposomes as carriers for a very wide range of active ingredients. Accordingly, liposomes have been proposed as carriers for proteins, e.g. antibodies or enzymes, hormones, vitamins or genes or, for analytical purposes, as carriers for marker compounds. For example, US patent 3 933 754 describes a chemotherapeutic process for treating tumour cells, wherein liposomes are used as drug carriers.

The drug is encapsulated either during the formation of the liposomes or subsequently by diffusion. The preparation of liposomes and the encapsulation of the drug can be effected by different methods, a survey of which may be found in the article "Liposomes - Problems

and promise as selective drug carriers" by Stanley B. Kaye, Cancer Treatment Reviews (1981), 8, pp. 27-50. Further methods of preparing liposomes for encapsulating drugs are also described by Barenholz et al. in Biochemistry, Vol. 16, No. 12, 2806-2810, and also in German Offenlegungsschrift specifications 28 19 855, 29 02 672, 25 32 317 and 28 42 608, in US patent 4 053 585, and in European patent application 36 676.

In the prior art methods, the lipid components, e.g. phospholipids such as phosphatidic acid, lecithin or cephalin, with or without neutral lipids, e.g. cholesterol, are dissolved in an organic solvent, e.g. chloroform or benzene. After stripping off the solvent, there remains a homogeneous layer, e.g. a film, of the particular lipid components. The lipid components are subsequently dispersed in an aqueous phase which contains the appropriate drug, e.g. by shaking. Unilamellar liposomes which encapsulate the drug are formed in the course of the subsequent treatment with ultrasonic irradiation.

In the process of this invention it is possible to prepare, in simple manner and without using complicated apparatus, aqueous phases which contain small unilamellar liposomes (SUL) with a diameter of about 200 to 600 Å, and large unilamellar liposomes (LUL) with a diameter of about 600 to 3000 Å. Small unilamellar liposomes can be separated from large unilamellar liposomes by means of suitable separating methods, e.g. by gel filtration or in an ultrafiltration cell.

The present invention relates to a process for the preparation of unilametlar liposomes, which comprises dispersing a homogeneous mixture of an ionic surfactant and a lipid, in aqueous phase, at a concentration lower than the critical micelle concentration (cmc) of the surfactant in the particular phase and, if necessary, neutralising the aqueous phase so obtained and, if desired, enriching and/or separating the resultant unilamellar liposomes.

Throughout this specification, the general terms employed preferably have the meanings set forth below.

The term "lower" used to qualify organic radicals, e.g. lower alkyl, lower alkylene, lower alkoxy, lower alkanoyl etc., denotes that such radicals, unless otherwise expressly defined, contain from 1 to 7, preferably 1 to 4, carbon atoms.

The preparation of the homogeneous mixture of an ionic surfactant and a lipid is effected in a manner which is known per se and is described in the section entitled "Preparation of the homogeneous layer of the lipid components."

An ionic surfactant will be understood as meaning a cationic or anionic surfactant.

A cationic surfactant is e.g. a compound of the formula

wherein R_a is an unsubstituted or substituted hydrocarbon radical, R_b is lower alkyl, phenyl-lower alkyl or hydroxy, R_c and R_d are lower alkyl, or R_b and R_c, together with the nitrogen atom to which they are attached, form an aliphatic heterocyclic ring system which may be substituted at a carbon atom, and R_d is lower alkyl, or R_b, R_c and R_d, together with the nitrogen atom to which they are attached, form an aromatic heterocyclic ring system, and Y is an anion.

In a cationic surfactant of the formula (IA), an unsubstituted or substituted aliphatic hydrocarbon radical R is for example lower alkyl substituted by aryloxy-lower alkoxy, or is straight chain or

branched alkyl containing 7 to 22, preferably 12 to 20, carbon atoms, or alkenyl containing 8 to 20, preferably 12 to 20, carbon atoms and 1 to 4 double bonds.

Aryl in arlyoxy-lower alkoxy is for example phenyl which may be mono- or disubstituted by straight chain $C_1^{-C_4}$ alkyl, e.g. methyl, ethyl or n-propyl, or by branched $C_3^{-C_1}$ 0alkyl, e.g. isobutyl, tertbutyl, amyl, neopentyl, 2- or 3-methylpentyl, 2,2- or 2,3-dimethylbutyl, 2- or 3-methylpentyl, 3-ethylpentyl, 2,2-, 2,3-, 2,4- or 3,3-dimethylpentyl, 4-methylpentyl, 2,2,2-, 2,2,4-, 2,3,3- or 2,3,4-trimethylpentyl, 1,1,3,3-tetramethylbutyl or 2,2,3,3-tetramethylbutyl.

Lower alkoxy in aryloxy-lower alkoxy is for example methoxy, ethoxy, n-propoxy or n-butoxy.

R as lower alkyl substituted by aryloxy-lower alkoxy is for example aryloxy-lower alkoxymethyl or 2-aryloxy-lower alkoxyethyl, e.g. aryloxy-methoxymethyl, 2-aryloxymethoxyethyl, 2-aryloxyethoxymethyl or 2-(2-aryloxyethoxy)ethy1, e.g. phenoxymethoxymethy1, 2-phenoxymethoxyethyl, 2-phenoxyethoxymethyl, 2-(2-phenoxyethoxy)ethyl, 2-, 3- or 4-methylphenoxymethyl, 2-(2-methylphenoxymethoxy)ethyl, 2-(3-methylphenoxymethoxy)ethyl, 2-(4-methylphenoxymethoxy)ethyl, 2-(2-methylphenoxy)ethoxymethyl, 2-(3-methylphenoxy)ethoxymethyl, 2-(4-methylphenoxy)ethoxymethyl, 2-[2-(2-methylphenoxy)ethoxy]ethyl, 2-[2-(3methylphenoxy)ethoxy]ethyl, 2-[2-(4-methylphenoxy)ethoxy]ethyl, 4-(1,1,3,3-tetramethylbutyl)phenoxymethoxymethyl, 2-[4-(1,1,3,3-tetramethylbutyl)phenoxymethoxy]ethyl, 2-[4-(1,1,3,3-tetramethylbutyl)phenoxy]ethoxymethyl, 2-[2-(4-(1,1,3,3-tetramethylbutyl)phenoxy)ethoxy]ethyl, 2-methyl-4-(1,1,3,3-tetramethylbutyl)phenoxymethoxyethyl, 2-[2-methyl-4-(1,1,3,3-tetramethylbutyl)phenoxymethoxy]ethyl, 2-[3-methyl-4-(1,1,3,3-tetramethylbutyl)phenoxymethoxy]ethyl, 2-[2-(2-methyl-4-(1,1,3,3-tetramethylbutyl)phenoxy)]ethoxymethyl, 2-[2-(3-methy1-4-(1,1,3,3-tetramethy1buty1)phenoxy]ethoxymethy1, 2-[2-(2-methyl-4-(1,1,3,3-tetramethylbutyl)-phenoxy)ethoxy]ethyl or 2-[2-(3-methyl-4-(1,1,3,3-tetramethylbutyl)phenoxy)ethoxy]ethyl.

 R_a as lower alkyl substituted by aryloxy-lower alkoxy is preferably 2-[2-(2-methyl-4-(1,1,3,3-tetramethylbutyl)phenoxy)ethoxy]ethyl and <math>2-[2-(3-methyl-4-(1,1,3,3-tetramethylbutyl)phenoxy)ethoxy]ethyl.

R_a as straight chain or branched alkyl of 7 to 22, preferably 12 to 20, carbon atoms, is for example n-heptyl, 2-methylhexyl, 3-methylhexyl, 3-ethylpentyl, 2,2-, 2,3-, 2,4- or 3,3-dimethylpentyl, n-octyl, 4-methylheptyl, 2,2,3-, 2,2,4-, 2,3,3-, 2,3,4-trimethylpentyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl (lauryl), n-tridecyl, n-tetradecyl (myristyl), n-pentadecyl, n-hexadecyl (cetyl), n-heptadecyl, n-octadeyl (stearyl), n-nonadecyl or n-eicosyl (arachinyl).

Straight chain alkyl containing an even number of 12 to 20 carbon atoms is preferred, e.g. n-dodecyl (lauryl, n-tetradecyl (myristyl), n-hexadecyl (cetyl), n-octadecyl (stearyl) or n-eicosyl (arachinyl).

R_a as alkenyl containing 8 to 20, preferably 12 to 20, carbon atoms and 1 to 4 double bonds is for example octen-1-yl, nonen-1-yl, decen-1-yl, wwdecen-1-yl, dodecen-1-yl, 9-cis-dodecenyl (lauroleyl), tridecen-1-yl, tetradecen-1-yl, 9-cis-tetradecenyl (myristoleyl), pentadecen-1-yl, hexadecen-1-yl, 9-cis-hexadecenyl (palmitoleinyl), heptadecen-1-yl, octadecen-1-yl, 6-cis-octadecenyl (petroselinyl), 6-trans-octadecenyl (petroselaidinyl), 9-cis-octadecenyl (oleyl), 9-trans-octadecenyl (elaidinyl), 9-cis-12-trans-octadecadienyl (linoleyl), 9-cis-11-trans-13-trans-octadecatrienyl (α-eleostearinyl), 9-cis-12-cis-15-cis-octadecatrienyl (linolenyl), 9-, 11-, 13-, 15-octadecatetraenyl (parinaryl), nonadecen-1-yl, eicosen-1-yl, 9-cis-eicosenyl (gadoleinyl), 5-, 11-, 14-eicosatrienyl or 5-, 8-, 11-, 14-eicosatetraenyl (arachidonyl).

Alkenyl containing 12 to 20 carbon atoms and one double bond is preferred, e.g. 9-cis-dodecenyl (lauroleyl), 9-cis-tetradecenyl (myristoleyl), 9-cis-hexadecenyl (palmitoleinyl), 6-cis-octacecenyl (petroselinyl), 6-trans-octadecenyl (petroselaidinyl), 9-cis-octadecenyl (oleyl), 9-trans-octadecenyl (elaidinyl) or 9-cis-eicosenyl (gadoleinyl).

R_b, R_c or R_d as lower alkyl is for example methyl or ethyl. R_b as phenyl-lower alkyl is for example benzyl or 2-phenylethyl.

An aliphatic heterocyclic ring system formed by R_b and R_c together with the nitrogen atom to which they are attached is for example a monocyclic 5- or 6-membered azacyclyl, oxaazacyclyl or thiazacyclyl radical, e.g. piperidino, morpholino or thiamorpholino. Substituents of this heteroring are the substituents R_a and R_d at the nitrogen and lower alkyl, e.g. methyl, ethyl, n-propyl or n-butyl, at a carbon atom.

A heterocyclic ring system formed by R_b and R_c together with the nitrogen atom and substituted at a carbon atom by lower alkyl is e.g. 2-, 3- or 4-methylpiperidinio, 2-, 3- or 4-ethylpiperidinio or 2- or 3-methylmorpholinio.

An aromatic heterocyclic ring system formed by R_b, R_c and R_d together with the nitrogen atom is e.g. a monocyclic 5- or 6-membered azacyclyl, diazacyclyl, oxaazacyclyl or thiazacyclyl radical, e.g. pyridinio, imidazolinio, oxazolinio or thiazolinio, or for example a monoazabicyclyl radical which is fused to a benzene ring, e.g. quinolinio or iosquinolinio. Substituents of this hetero-ring are the radical R_a at the nitrogen and lower alkyl at a carbon atom, e.g. methyl or ethyl, hydroxy-lower alkyl, e.g. hydroxymethyl or 2-hydroxyethyl, oxo, hydroxy or halogen, e.g. chlorine or bromine.

A heterocyclic ring system formed by R_b, R_c and R_d and substituted at: a carbon atom by the above mentioned radicals is for example 2- or 4-lower alkylpyridinio, e.g. 2- or 4-methylpyridinio or 2- or 4-ethylpyridinio, di-lower alkylpyridinio, e.g. 2,6-dimethylpyridinio, 2-methyl-3-ethylpyridinio, 2-methyl-4-ethylpyridinio, 2-methyl-5-ethylpyridinio or 2-methyl-6-ethylpyridinio, 2-, 3- or 4-halopyridinio, e.g. 2-, 3- or 4-chloropyridinio or 2, 3- or 4-bromopyridinio, 2-lower alkylimidazolinio, 2-lower alkylimidazolinio, 2-lower alkylimidazolinio, 2-methyl- or 2-methyloxazolinio or 2-lower alkyl-8-haloquinolinio, e.g. 2-methyl-8-chloroquinolinio.

An anion Y is for example a halide ion, e.g. the fluoride, chloride or bromide ion, a lower alkanoate, e.g. the formate or acetate ion, the hydrogen sulfate ion, a lower alkylsulfate ion, e.g. the methyl or ethyl sulfate ion, a lower alkylsulfonate ion, e.g. the methyl sulfonate ion, or an arylsulfonate ion, e.g. the phenyl sulfonate ion or the toluene sulfonate ion. An anion Y is preferably a halide ion, e.g. the chloride or bromide ion.

A cationic surfactant of the formula IA is preferably N-benzyl N,N-dimethyl-N-2-[2-(4-(1,1,3,3-tetramethylbutyl)phenoxy)ethoxy]ethyl-ammonium chloride, N-benzyl N,N-dimethyl-N-2-[2-(3-methyl-4-(1,1,3,3-tetramethylbutyl)phenoxy)ethoxy]ethylammonium chloride (methyl-benzethonium chloride), n-dodecyltrimethylammonium chloride or bromide, trimethyl n-tetradecylammonium chloride or bromide, n-hexadecyl-trimethylammonium chloride or bromide (cetyltrimethylammonium chloride or bromide), trimethyl n-octadecylammonium chloride or bromide, ethyl n-dodecyldimethylammonium chloride or bromide, ethyl n-tetradecylammonium chloride or bromide, ethyl n-tetradecylammonium chloride or bromide, ethyl n-octadecylammonium chloride or bromide, n-alkyl benzyldimethylammonium chloride or bromide (benz-alkonium chloride cr bromide), e.g. benzyl n-dodecyldimethylammonium chloride or bromide or bromide, benzyl n-hexadecyldimethylammonium chloride or

bromide or benzyldimethyl n-octadecylammonium chloride or bromide, N-(n-decyl)pyridinium chloride or bromide, N-(n-dodecyl)pyridinium chloride or bromide, N-(n-tetradecyl)pyridinium chloride or bromide, N-(n-hexadecyl)pyridinium chloride or bromide (cetylpyridinium chloride or bromide), or N-(n-octadecyl)pyridinium chloride or bromide, or a mixture of these surfactants.

An anionic surfactant is for example

a) a compound of the formula

$$[R_a^{-(0-A)}_m^{-B}]^{Q}$$
(IB)

wherein R_a is an unsubstituted or substituted hydrocarbon radical, A is lower alkylene, m is O (direct bond) or 1, B is the sulfonate or sulfate group and Z is a monovalent cation, cr

b) a compound of the formula

wherein m is 0 or 1, one of R_1 and R_2 is hydrogen, hydroxy or lower C_1 - C_4 alkyl, and the other is alkyl, alkenyl, alkoxy, alkenyloxy or acyloxy, each of 10 to 20 carbon atoms, R_3 is hydrogen or lower C_1 - C_4 alkyl, and R_4 is unsubstituted or substituted lower C_1 - C_7 alkyl, a carbohydrate radical of 5 to 12 carbon atoms or, if both R_1 and R_2 are hydrogen or hydroxy, is a steroid radical, and Z^{\bigoplus} is a monovalent cation, or

c) a compound of the formula

$$R_{1} - CH_{2} - CH_{2} - CH_{2} - C - P - OH Z$$
(ID),

wherein R_1 , R_2 , R_3 and Z^{\oplus} are as defined for formula (IC).

In an anionic surfactant of the formula (IB), the unsubstituted or substituted hydrocarbon radical R is as defined for formula (IA) and is preferably straight chain or branched alkyl containing 7 to 22, preferably 12 to 20, carbon atoms, and alkenyl containing 6 to 20, preferably 12 to 20, carbon atoms and 1 to 4 double bonds.

In an anionic surfactant of the formula (IB), R is preferably straight chain alkyl containing an even number of 12 to 20 carbon atoms, for example n-dodecyl (lauryl), n-tetradecyl (myristyl), n-hexadecyl (cetyl), n-octadecyl (scearyl) or n-eicosyl (arachinyl), or is alkenyl containing 12 to 20 carbon atoms and one double bond, for example 9-cis-d decenyl (lauroleyl), 9-cis-tetradecenyl (myristoleyl), 9-cis-nexadecenyl (palmitoleinyl), 6-cis-octadecenyl (petroselinyl), 6-trans-octadecenyl (retroselaidinyl), 9-cis-octadecenyl (oleyl), 9-trans-octadecenyl (elaidinyl) or 9-cis-eicosenyl (gadoleinyl).

A as lower alkylene is for example methylene, ethylene, n-propylene or n-butylene.

The cation Z is an alkali metal cation, e.g. the linhium, sodium or potassium cation, or is a tetra-lower alkylammonium cation, e.g. tetramethylammonium.

An anionic surfactant of the formula IB is preferably an alkali metal alkyl sulfate (m = 0), e.g. sodium or potassium n-dodecyl (lauryl) sulfate, sodium or potassium n-tetradecyl (myristyl) sulfate, sodium

or potassium n-hexadecyl (cetyl) sulfate or sodium or potassium n-octadecyl (stearyl) sulfate, an alkali metal alkyl ether sulfate (m = 1), e.g. sodium or potassium m-dodecyloxyethyl sulfate, sodium or potassium n-tetradecyloxyethyl sulfate, sodium or potassium n-hexadecyloxyethyl sulfate or sodium or potassium n-octadecyloxyethyl sulfate, or an alkali metal alkane sulfonate, e.g. sodium or potassium n-dodecane sulfonate, sodium or potassium n-tetradecane sulfonate, sodium or potassium n-hexadecane sulfonate or sodium or potassium n-octadecane sulfonate.

In an anionic surfactant of the formula IC, R_1 , R_2 or R_3 as lower C_1 - C_4 alkyl is preferably methyl, and also ethyl, n-propyl or n-butyl.

R₁ or R₂ as alkyl is preferably n-decyl, n-undecyl, n-dodecyl (lauryl), n-tridecyl, n-tetradecyl (myristyl), n-pentadecyl, n-hexadecyl (cetyl), n-octadecyl (stearyl) and n-eicosyl (arachinyl).

R₁ or R₂ as alkenyl is preferably 9-cis-dodecenyl (lauroleyl), 9-cis-tetradecenyl (myristoleyl), 9-cis-hexadecenyl (palmitoleinyl), 6-cis-octadecenyl (petroselinyl), 6-trans-octadecenyl (petroselaidinyl), 9-cis-octadecenyl (oleyl), 9-trans-octadecenyl (elaidinyl) or 9-cis-eicosenyl (gadoleinyl).

R₁ or R₂ as alkoxy is preferably n-decyloxy, u-dodecyloxy (lauryloxy), n-tetracecyloxy (myristyloxy), n-hexadecyloxy (cetyloxy), u-octadecyloxy (stearyloxy) or n-eicosyloxy (arachinyloxy).

R₁ or R₂ as alkenyloxy is preferably 9-cis-dodecenyloxy (lauroleyloxy), 9-cis-tetradecenyloxy (myristoleyloxy), 9-cis-hexadecenyloxy (palmitoleinyloxy), 6-cis-octadecenyloxy (petroselinyloxy), 6-trans-octadecenyloxy (petrocelaidinyloxy), 9-cis-octadecenyloxy (oleyloxy), 9-trans-octadecenyloxy (elaidinyloxy) or 9-cis-eicosenyl (gadoleinyloxy).

 R_1 or F_2 as acyloxy is e.g. alkanoyloxy or alkenoyloxy.

R₁ or R₂ as alkanoyloxy is preferably n-decanoyloxy, n-dedecanoyloxy (lauroyloxy), n-tetradecenoyloxy (myristoyloxy), n-hexadecanoyloxy (palaitoyloxy), n-octadecanoyloxy (stearoyloxy) or n-eicosoyloxy (arachinoyloxy).

R₁ or R₂ as alkenoyloxy is preferally 9-cis-dodecenyloxy (lauroleoyloxy), 9-cis-tetradecenoyloxy (myristoleoyloxy), 9-cis-hexadecenoyloxy (palmitoleinoyloxy), 6-cis-octadecenoyloxy (petroselinoyloxy), 6-trans-octadecenoyloxy (petroselaidinoyloxy), 9-cis-octadecenoyloxy (oleoyloxy), 9-trans-octadecenoyloxy (elaidinoyloxy) or 9-cis-eicosenoyl (gadoleinoyloxy).

R₄ as lower C₁-C₇alkyl is e.g. methyl, ethyl, isopropyl, n-propyl, isobutyl or n-butyl, and may be substituted by acidic groups, e.g. carboxyl or sulfo, by acidic and basic groups, e.g. carboxyl and amino, in which case the amino group is in the a-position relative to the carboxyl group, by free or etherified hydroxyl groups, where two etherified hydroxyl groups may be linked to each other through a divalent hydrocarbon radical, e.g. by methylene, ethylene, ethylidene, 1,2-propylene or 2,2-propylene, by halogen, e.g. chlorine or bromine, by lower alkoxycarbonyl, e.g. methoxycarbonyl or ethoxycarbonyl, or by lower alkanesulfonyl, e.g. methanesulfonyl.

R₄ as substituted C₁-C₇alkyl is preferably carboxy lower alkyl, e.g. carboxymethyl, 2-carboxyethyl or 3-carboxy-n-propyl, &-amino-&-carboxy-lower alkyl, e.g. 2-amino-2-carboxyethyl or 3-amino-3-carboxy-n-propyl, bydroxy-lower alkyl, e.g. 2-hydroxyethyl or 2,3-dihydroxypropyl, lower alkoxy-lower alkyl, e.g. methoxy, methyl or ethoxymethyl, 2-methoxyethyl or 3-methoxy-n-propyl, lower alkylenedioxy-lower alkyl, e.g. 2,3-ethylenedioxypropyl or 2,3-(2,2-propylene)dioxypropyl, or halo-lower alkyl, e.g. chloromethyl or bromomethyl, 2-chloroethyl or 2-bromoethyl, 2- or 3-chloro-n-propyl

or 2- or 3-bromo-n-propy'.

R₄ as a carbohydrate radical of 5 to 12 carbon atoms is e.g. a natural monosaccharide radical which is derived from a pentose or hexose in the form of an aldose or a ketose.

A pentose in the form of an aldose is e.g. D-ribose, D-arabinose, D-xylose or D-lyxose. A pentose in the form of a ketose is e.g. D-ribulose or D-xylulose. A hexose in the form of an aldose is e.g. D-allose, D-altrose, D-glucose, D-mannose, D-galactose or D-talose. A hexose in the form of a ketose is e.g. D-psicose, D-fructose, D-sorbose or D-tagatose.

A nexose is preferably in cyclic form, e.g. in the form of a pyranose (aldose), e.g. α - or β -D-glucopyranose, or a furanose, e.g. α - or β -D-fructose. The pyranosyl radical is preferably esterified with the phosphatidyl group through the hydroxy group in the 1- or 6-position, and the furanosyl radical is esterified with the phosphatidyl group through the hydroxyl group in the 1- or 5-position (m = 1).

A carbohydrate radical R4 of 5 to 12 carbon atoms is also a natural disaccharide radical, e.g. a disaccharide radical which is formed from two hexoses by condensation of two aldoses, e.g. D-glucose or D-galactose, or of an aldose, e.g. D-glucose, with a ketose, e.g fructose.

Disaccharides formed from two aldoses, e.g. lactose or maltose, are preferably esterified with the phosphatidyl group through the hydroxyl group which is in the 6-position of the particular pyranosyl radical. Disaccharides formed from an aldose and a ketose, e.g. saccharose, are preferably esterified with the phosphatidyl group through the hydroxyl group which is in the 6-position of the pyranosyl radical or in the 1-position of the furanosyl radical (m = 1).

A carbohydrate radical R₄ of 5 to 12 carbon atoms is further a derived mono- or disaccharide radical, wherein e.g. the aldehyde group and/or one or two terminal hydroxyl groups are oxidised to carboxyl groups, and is e.g. a D-gluconic, D-glucaric or D-glucoronic acid radical which is preferably in the form of a cyclic lactone radical. Likewise, the aldehyde or keto group of a derived mono- or disaccharide radical can be reduced to hydroxyl groups, e.g. mositol, sorbitol or D-mannitol, or hydroxyl groups can be replaced by hydrogen, e.g. desoxy sugar, e.g. 2-desoxy-D-ribose, L-rhamnose or L-fucose, or by amino groups, e.g. amino sugar, e.g. D-glucosamine or D-galactosamine.

A carbohydrate radical R₄ can also be a fission product formed by reacting one of the mono- or disaccharides mentioned above with a strong oxidising agent, e.g. periodic acid.

A steroid radical R_4 is e.g. a sterol radical which is esterified with the phosphatidyl group through the hydroxyl group which is in the 3-position of the steroid skeleton (m = 1).

A sterol radical is e.g. lanosterol, sitosterol, coprostanol, cholestanol, glycocholic acid, ergosterol or stigmasterol, but is preferably cholesterol.

If R_4 is a steroid radical, R_1 and R_2 are preferably hydroxyl and R_3 is hydrogen.

Z is as defined for formula IB and is preferably sodium or potassium.

In an anionic surfactant of the formula IC, m is preferably 1, R₁ is alkyl, e.g. n-dodecyl, (lauryl), n-tridecyl, n-tetradecyl (myristyl), n-pentadecyl, n-hexadecyl (cetyl), n-heptadecyl or n-octadecyl (stearyl), alkoxy, e.g. n-dodecyloxy (lauryloxy),

n-tetradecyloxy (myristyloxy), n-hexadecyloxy (cetyloxy), or n-octadecyloxy (stearyloxy), acyloxy, e.g. lauroyloxy, myristoyloxy, palmitoyloxy or stearyloxy, R₂ is hydrogen or hydroxy, R₃ is hydrogen or lower alkyl, e.g. methyl, R₄ is lower alkyl, e.g. methyl or ethyl, lower alkyl substituted by acid and basic groups, e.g. carboxy and amino, e.g. ω-amino-ω-carboxy-lower alkyl, e.g. 2-amino-2-carboxyethyl or 3-amino-3-carboxy-n-propyl, hydroxy-lower alkyl, e.g. 2-i.ydroxyethyl or 2,3-hydroxypropyl, lower alkylenedioxy-lower alkyl, e.g. 2,3-ethylenedioxypropyl or 2,3-(2,2-propylene)dioxypropyl, halo-lower alkyl, e.g. 2-chloroethyl or 2-bromoethyl, a carbohydrate radical of 5 to 12 carbon atoms, e.g. inositol, or a steroid radical, e.g. a sterol such as cholesterol, and z is sodium or potassium.

An anionic surfactant of the formula IC is preferably the sodium or potassium salt of lysophosphatidylserine, e.g. the sodium or potassium salt of beef brain lysophosphatidylserine or the sodium or potassium salt of a synthetic lysophosphatidylserine, e.g. sodium or potassium 1-myristoyllysophosphatidylserine or sodium or potassium 1-palmitoyllysophosphatidylserine, or the sodium or potassium salt of lysophosphatidyl glyerol.

In an anionic surfactant of the formula ID, R_1 , R_2 , R_3 and $Z^{\textcircled{\tiny{+}}}$ are as defined for formula IC. The cation $Z^{\textcircled{\tiny{+}}}$ is preferably sodium or potassium. The hydrogen atom at the phosphate group may be replaced by a second cation $Z^{\textcircled{\tiny{+}}}$ or by the magnesium ion.

In an anionic surfactant of the formula ID, R₁ is preferably alkyl, e.g. n-dodecyl (lauryl), n-tridecyl, n-tetradecyl (myristyl), n-pentadecyl, n-hexadecyl (cetyl, n-heptadecyl or n-octadecyl (stearyl), or alkoxy, e.g. n-dodecyloxy (lauryloxy), n-tetradecyloxy (myristyloxy), n-hexadecyloxy (cetyloxy), or n-octadecyloxy (stearyloxy), or acyloxy, e.g. lauroyloxy, myristoyloxy, palmitoyloxy

or stearoyloxy, R_2 is hydrogen or hydroxy and R_3 is hydrogen or lower alkyl, e.g. metnyl, and Z^{\bigodot} is sodium or potassium.

An anionic surfactant of the formula ID is in particular the sodium or potassium salt of a natural phosphatidic acid, e.g. egg phosphatidic acid, the sodium or potassium salt of a natural lysophosphatidic acid, e.g. egg lysophosphatidic acid, the sodium or potassium salt of a synthetic lysophosphatidic acid. e.g. 1-lauroyllysophosphatidic acid, 1-myristoyllysophosphatidic acid or 1-palmitoyllysophosphatidic acid.

A lipid which is dispersed in the aqueous phase is e.g. a compound of the formula

$$R_1 - CH_2 - C - CH_2O - P - O - R_4$$
 $R_2 - CH_2O - P - O - R_4$
 $R_2 - CH_2O - P - O - R_4$

wherein m, R₁, R₂, R₃ and R₄ are as defined for formula IC, and R₄ is also lower alkyl substituted by tri-lower alkylammonio, e.g. trimethylammonio, or by amino, e.g. 2-trimethylammonioethyl (cholinyl).

A suitable lipid is preferably a lipid of the formula IC', wherein m is 1, R_1 and R_2 are acyloxy, R_3 is hydrogen and R_4 is 2-trimethylammonioethyl or 2-aminoethyl. Such a lipid is e.g. a natural lecithin, e.g. egg lecithin or lecithin obtained from soybeans (R_4 is 2-trimethylammonioethyl), and a natural cephalin, e.g. egg cephalin or cephalin obtained from soybeans (R_4 is 2-aminoethyl).

Further preferred lipids are synthetic lecithins ($R_4 = 2$ -trimerhyl-ammonioethyl) and synthetic cephalins ($R_4 = 2$ -aminoethyl) of the formula IC', wherein R_1 and R_2 are identical acyloxy radicals such

as lauroyloxy, oleoyloxy, linoleoyloxy or arachinoyloxy, e.g. dilauroyl lecithin or cephalin, dimyristoyl lecithin or cephalin, dipalmitoyl lecithin or cephalin, distearcyl lecithin or cephalin, diarachinoyl lecithin or cephalin, dioleoyl lecithin or cephalin, dilinoyl lecithin or cephalin, dilinoleoyl lecithin or cephalin, or diarachinoyl lecithin or cephalin, R_1 and R_2 are different acyloxy radicals, e.g. R_1 is palmitoyloxy and R_2 is oleoyloxy, e.g. 1-palmitoyl-2-oleoyl lecithin or cephalin, R, and R, are identical alkoxy radicals, e.g. tetradecyloxy or hexadecyloxy, e.g. ditetradecyl lecithin or cephalin, or dihexadecyl lecithin or cephalin, R_1 is alkenyl and R_2 is acyloxy, e.g. a plasmalogen $(R_4 = trimethylammonioethyl)$, or R_1 is acyloxy, e.g. myristoyloxy or palmitoyloxy, and R_2 is hydroxy, e.g. a natural or synthetic lysolecithin or lysocephalin, e.g. 1-myristoy1 lysolecithin or lysocephalin or 1-palmitoyl lysolecithin or lysocephalin, and R_3 is hydrogen.

A suitable lipid is also a lipid of the formula IC', wherein m is 1, R₁ is alkenyl, R₂ is acylamido, R₃ is hydrogen, and R₄ is a 2-trimethylammonioethyl radical (choline radical). Such a lipid is known as sphingomyelin.

A suitable lipid is furthermore a lysolecithin analogue, e.g. l-lauroyl-1,3-propanediol-3-phosphorylcholine, a monoglyceride, e.g. monoolein or monomyristin, a cerebroside, a ganglioside or a glyceride which contains no free or etherified phosphoryl or phosphonyl groups in the 3-position. Such a glyceride is e.g. a diacylglyceride or l-alkenyl-1-hydroxy-2-acylglyceride containing the indicated acyl and alkenyl groups, wherein the 3-hydroxy group is therified by one of the indicated carbohydrate radicals, e.g. a galactosyl radical, e.g. a monogalactosyl glycerol.

Yet another suitable lipid is a neutral lipid which is contained in cell membranes and is soluble only in a polar organic solvent, e.g. in chloroform. Examples of neutral lipids are steroids such as oestradiol or sterol, e.g. cholesterol, β situsterol, desmosterol, 7-keto-cholesterol or β -cholestanol, fat-soluble vitamins such as vitamin A, e.g. vitamin A₁ or A₂, vitamin E, vitamin K such as vitamin K₁ or K₂, or vitamin D₂ or D₃.

The homogeneous mixture consists preferably of a surfactant of the formula IA, in particular N-benzyl-N, N-dimethyl-N-2-[2-(4-(1,1,3,3tetramethylbutyl)phenoxy)ethoxy]ethylammonium chloride, N-benzyl N, N-dimethyl-N-2-[2-(3-methyl-4-(1,1,3,3-tetramethylbutyl)phenoxy)ethoxy]ethylammonium chloride (methylbenzethonium chloride), n-dodecyltrimethylammonium chloride or bromide, trimethyl n-tetradecylammonium chloride or bromide, n-hexadecyltrimethylammonium chloride or bromide (cetyltrimethylammonium chloride or bromide), trimethyl-noctadecylammonium chloride or bromide, ethyl n-dodecyldimethylammonium chloride or bromide, ethyldimethyl-n-tetradecylammonium chloride or bromide, ethyl n-hexadecyldimethylammonium chloride or bromide, ethyldimethyl n-octadecylammonium chloride or bromide, n-alkyl benzyldimethylammonium chloride or bromide (benzalkonium chloride or bromide), e.g. benzyl n-dodecyldimethylammonium chloride or bromide, benzyldimethyl n-tetradecylammonium chloride or bromide, benzyl n-hexadecyldimethylammonium chloride or bromide or benzyldimethyl-n-octadecylammonium chloride or bromide, N-(n-decyl)pyridinium chloride or bromide, N-(n-dodecyl)pyridinium chloride or bromide, N-(n-tetradecyl)pyridinium chloride or bromide, N-(n-hexadecyl)pyridinium chloride or bromide (cetylpyridinium chloride or bromide), or N-(n-octadecyl)pyridinium chloride or bromide, or an anionic surfactant of the formula IB, in particular socium or potassium n-dodecyl (lauryl) sulfate, sodium or potassium n-tetradecyl (myristyl) sodium or potassium n-hexadecyl (cetyl) sulfate or sodium or potassium n-octadecyl (stearyl) sulfate, sodium or potassium m-dodecyloxyethyl sulfate, sodium or potassium n-tetradecyloxyethyl

sulfate, sodium or potassium n-hexadexyloxyethyl sulfate or sodium or potassium n-octadecyloxyethyl sulfate, or an anionic surfactant of the formula IC, in particular sodium or potassium 2,2-dimethyl-3-palmitoyloxypropyl hydrogen phosphate, sodium or potassium l-palmitoyllysophosphatidyl glycerol, sodium or potassium l-palmitoyllysophosphatidylserine, and a lipid of the formula IC', wherein R₁ and R₂ are acyloxy, e.g. lauroyloxy, myristoyloxy, palmitoyloxy or stearoyloxy, R₃ is hydrogen and R₄ is 2-trimethyl-ammonioethyl, e.g. a natural cephalin such as egg cephalin or cephalin or cephalin obtained from soybeans, or 2-aminoethyl, e.g. a natural lecithin such as egg lecithin or lecithin obtained from soybeans.

The surfactants and lipids containing a chiral carbon atom mentioned above and hereinafter may also be in the form of racemic mixtures or of optionally pure enantiomers.

In the homogeneous mixture, the approximate molar ratio of anionic surfactant to lipid is 0.1 to 2:1, preferably 0.8 to 1.2:1.

The homogeneous mixture, e.g. the prepared film or foam, is subsequently dispersed in an aqueous phase containing the substances to be encapsulated, e.g. agrochemicals such as pesticides, perfumes, hardeners, dyes, or pharmaceutical drugs such as peptides, e.g. muramyl peptides, in dissolved, colloidal or suspended form, and surfactants.

Dispersion is effected e.g. by shaking or stirring the aqueous phase which contains the previously prepared homogeneous mixture. The formation of unilamellar liposomes (SUL) and (LUL) takes place spontaneously (spontaneous vesiculation), i.e. without the additional supply of external energy and at a high rate. The concentration of surfactant, lipid and encapsulated compound can be increased until the critical micelle concentration (cmc) of the particular ionic

surfactant in the particular aqueous phase is attained.

Micelles are preferably formed above the critical micelle concentration. This occurrence is often detectable by the disappearance of opalescence, e.g. clarification of the aqueous phase. The cmc is a variable indicating the amount of an anionic surfactant which can be dispersed in a specific volume of water while avoiding micelle formation. The structure of the hydrophobic radical of the surfactant influences the cmc value: the longer the chain length, the lower the cmc value. Voluminous substituents in the hydrophobic radical, e.g. an aromatic radical, also lower the cmc. Functional groups, e.g. double bonds which weaken the hydrophobic character of the hydrophobic radical, increase the cmc. The cmc is further influenced by all dispersed and dissolved components present in the aqueous phase, e.g. by counterions, additional lipids, the character of the active ingredient to be encapsulated etc. The cmc value can only be determined experimentally for the particular system, namely indirectly by electrochemical methods, e.g. by conductivity measurements or potentiometric determination of the counterions using a suitable electrode, by measuring the transport number and the surface tension, by measuring colligative properties such as lowering of vapour pressure, lowering of the freezing point and osmotic pressure, measuring the density, the refractive index, the absorption of UV and IR light, solubilisation of soluble and insoluble dyes, light scattering, fluorescence polarisation and viscosity. These properties undergo a substantial change when the cmc is attained. For example, the surface tension decreases sharply as a function of the concentration of the ionic surfactant until the cmc is attained, but remains virtually constant above the cmc. Reference is made in this connection to the particulars given in H. Stache, Tensidtaschenbuch, Hanser 1981, especially on page 26, 3.1 "Methoden zur cmc-Bestimmung" and page 28, 3.2 "Abhängigkeit der cmc von verschiedenen Parametern." Specific cmc values, e.g. for dodecylpyridinium bromide, are given by J.B. Adderson and H. Taylor,

: :

J. Colloid. Sci. 19, 495 (1964). If the cmc value is exceeded, it is possible to lower the concentration by diluting the aqueous phase with water. Reversibly unilamellar liposomes are then formed from the micelles.

Aqueous phases with a pH higher than about 8 are neutralised following dispersion, e.g. to physiological pH 7.2. Neutralisation is necessary to prevent decomposition of the active ingredient and/or the liposomes under basic conditions and to ensure the physiological tolerance of the applicable aqueous phase with the mixture of liposomes. Neutralisation is effected with a physiologically acceptable acid or a buffer solution with a pH of 7 to 8. Physiologically acceptable aicds are e.g. dilute mineral acids such as dilute hydrochloric acid, sulfuric acid or phosphoric acid, or organic acids such as lower alkanecarboxylic acids, e.g. acetic acid.

Aqueous phases containing cationic surfactants of the formula IA may show acid reaction. These phases are neutralised by adding dilute aqueous bases, e.g. dilute aqueous NaOH or KOH or a buffer solution with a pH of 7 to 8.

The process is conveniently carried out at room temperature or also at elevated temperature, e.g. up to about 60°C, and with stirring or shaking. If the limited stability of the active ingredient to be encapsulated requires it, the process is carried out with cooling and, if appropriate, in an inert gas atmosphere, e.g. in a nitrogen atmosphere. The liposomes so obtained are fairly stable in aqueous phase (up to several days). Aqueous phases containing unilamellar liposomes obtainable by the process of this invention can be made storage stable by the process described in European patent application 00 65 292.

The size of the unilamellar liposomes depends inter alia on the structure of the surfactants and of the lipid components, on the ratio of the components, on the concentration of these components in the aqueous phase, and on the amount and structure of the drug to be encapsulated. Accordingly, for example, aqueous phases containing a high concentration of small or large unilamellar liposomes can be prepared by varying the concentration of the surfactant components. In addition to SUL, large unilamellar liposomes (LUL, diameter up to 50,000 Å) are also formed. These encapsulate larger volumes per mole of lipid components employed and are suitable for encapsulating voluminous substances, e.g. viruses, bacteria or cell organellae.

The separation of SUL from LUL is accomplished by conventional separation methods such as gel filtration, e.g. with Sepharose 4B or Sephacryl as carrier, or by sedimentation of the LUL in an ultracentrifuge at 160,000 x g. For example, the LUL deposit after centrifugation for several hours, e.g. about 3 hours, in this gravitional field, whereas the SUL remain in dispersion and can be decanted. Complete separation of the LUL from the SUL is achieved after repreated centrifugation.

All liposomes having a diameter greater than 600 Å present in the aqueous phase, e.g. LUL or multilamellar liposomes, as well as non-encapsulated drugs and excess dispersed lipids, can also be separated by gel filtration, so making it possible to obtain an aqueous phase containing a fraction of SUL of relatively uniform size.

After the separation of large unilamellar liposomes (LUL) and multilamellar liposomes by one of the above methods, the formation of small unilamellar liposomes and their concentration in aqueous phase can be detected by different physical methods, e.g. by applying freeze fracture samples and thin layer numples to the electron microscope or by X-ray diffraction, by dynamic light scattering, by mass analysis of the filtrate in an analytical ultracentrifuge, in particular by spectroscopy, e.g. in the nuclear resonance spectrum (NMR) $(^{1}H, ^{13}C)$ and ^{31}P). For example, sharp signals of narrow line within the nuclear resonance spectrum indicate the formation of unilamellar liposomes with a diameter smaller than about 1000 Å. Sharp signals at 6 c. 0.89 ppm (-CH₃), 6 c. 1.28 ppm (-CH₂-) and \mathcal{L} c 3.23 ppm (-N(CH₃)₃) are characteristic e.g. of unilamellar liposomes obtained by the process of this invention with phosphatidyl choline as constituent. In the nuclear resonance spectrum, such signals are typical of unilamellar liposomes and differ from mixed micelles, e.g. from phospholipids such as lecithin, and surfactants such as cetyltrimethylammonium bromide. A methyl signal at 0.89 ppm is characteristic of mixed micelles with these components, which signal is resolved to a triplet and has a substantially narrower line width than the methyl signal (singlet; also of c. 0.89 ppm) which originates from unilamellar liposomes.

The liposomes obtainable by the process of this invention (SUL and LUL) are suitable carrier systems which, in aqueous phase, may be used for solubilising lipophilic substances, e.g. fat-soluble dyes, for stabilising substances which are sensitive to hydrolysis, e.g. prostaglandins, for encapsulating pesticides, e.g. for modifying the activity spectrum of dichlorphos, for encapsulating food additives, e.g. to modify the adsorption properties of vitamins or dyes, or for introducing encapsulated drugs, enzymes, antibodies, hormones, genes, viruses, vitamins or cell organellae into the cells of a cell culture.

Aqueous phases which contain the liposomes obtainable by the process of the invention with encapsulated durgs are delivery systems which are suitable, optionally after concentration or isolation of the liposomes, e.g. by ultracentrifugation, for therapeutic purposes for oral (p.o.), parenteral (i.v. or i.p.) or topical administration.

In scal administration, liposome-based delivery systems can protect a drug, e.g. insulin, which is unstable in the digestive tract, or improve its resorption. For oral administration, the liposome-containing aqueous phase can be mixed with pharmaceutically acceptable diluents or carriers or with conventional additives such as dyes or flavourings, and administered as a syrup or in the form of capsules.

For parenteral administration, liposome-based delivery systems can prolong the retention time e.g. of desferrioxamin (q.v. R.A. Guilemette et al., Lif Sci. 22 (4), 313-320, 1978) or gentamycin (q.v. W.M. Scheld et al., Clin. Res. 26, No. 1, 59 A, 1978), in an organism. The retention time of entrapped chelating agents, e.g. EDTA (ethylenediamintetraacetic acid), in organisms is prolonged in the same manner, so that heavy metals can be removed by chelation especially from the liver, spleen or kidneys (q.v. Rahmann et al., Science, Vol. 180, 300-302, 1973, and J. Lab. Clin. Med. 640-647, 1974). With liposome-based delivery systems it is possible to enrich drugs in the myocardium (q.v. Landesmann et al., Science, Vol. 198, 737-738, 1977). It is possible to enrich antiflammatory drugs, e.g. cortisol (q.v. Nature 271, No. 5643, 372-73, 1978) or protease inhibitors (q.v. Anal. Biochem. 89, No. 2, 400-07, 1978) in the synovial fluid, and cytostatic drugs in tumour tissue (q.v. the article entitled "Liposomes - Problems and promise as selective drug carriers" by Stanley B. Kaye in Cancer Treatment Reviews 8, 27-50, 1981, and the many references cited therein). Many chemotherapeutic drugs employed in cancer therapy are less toxic and better tolerated if they are encapsulated in liposomes, e.g. liposome-encapsulated Actinomycin D (q.v. Rahmann et al., Proceedings of the Society for Experimental Biology and Medicine 146, 1173-1176, 1974), Methotrexate (q.v. L.D. Lasermann et al., Proc. Natl. Acad. Sci. 77, No. 7, 4089-93, 1980), Vinblastin, Daunomycin or cytosinarabinoside (q.v. Mühlensiepen et al., Cancer Res. 41, No. 5, 1602-07, 1981). Liposomes can be used for introducing e.g. enzymes, peptide hormones, genes or viruses into the cytoplasma of cells in

living organisms, e.g. for introducing aspariginase (q.v. the article entitled "The Introduction of enzymes into cells by means of liposomes" by M. Finkelstein and G. Weissmann in J. Lipid Research, Vol. 19, 1978, 289-303), of amyloglucosidase (q.v. G. Gregoriadis and B.E. Ryman, Eur. J. Biochem. 24 (1972), 485-491, or neuromidase (q.v. Gregoriadis et al., Biochem. J. (1974) 140, 232-330), for bonding specific detection molecules, e.g. monoclonal antibodies, for specific introduction into defined target cells (q.v. Lesermann et al., Nature 292 (5829), 226-228, 1981), for immunostimulation as adjuvant for inoculations, e.g. against leishmaniasis (q.v. New, R.R.C. et al., Nature 272 (5648) 55-56, 1978), or for the induced release of drugs by signals such as temperature increases, e.g. in inflamed tissue, or changes in pH values. For parenteral administration, the concentrated or isolated liposomes can be suspended in a suitable carrier liquid, for example in sterile distilled water or in physiological sodium chloride solution.

Preparation of the homogeneous layer of lipid components

The homogeneous layer of lipid components can be prepared in a manner which is known per se. For example, the surfactant of the formula IA, e.g. cetylpyridinium chloride, and the lipid, e.g. egg lecithin, optionally in admixture with a lipophilic active ingredient, e.g. a protein which is encapsulated during the formation of the liposome in the lipid layer, is dissolved in an organic solvent. A homogeneous layer of lipid components consisting of a film is obtained by removing the organic solvent, most conveniently in vacuo or by blowing off with an inert gas, e.g. nitrogen.

The choice of solvent depends on the solubility of the particular lipid components therein. Examples of suitable solvents are: halogenated, aliphatic, cycloaliphatic, aromatic or aromaticaliphatic hydrocarbons, e.g. benzene, toluene, methylene chloride or chloroform; alcohols, e.g. methanol or ethanol; lower alkanecarboxyletes, e.g. ethyl acetate; ethers, e.g. diethyl ether, dioxan

or tetrahydrofuran; or mixtures of these solvents.

A homogeneous mixture can be prepared by the manner described in German Auslegeschrift 28 18 655 by lyophilisation from organic solution. The homogeneous layer is obtained as a foam.

The ionic surfactants mentioned in the description, e.g. the cationic surfactants of the formula IA and the anionic surfactants of the formula IB are known. The preparation of these surfactants is described in the standard work "Cationic Surfactants" by Eric Jungermann, Dekker, New York 1970. The annually published handbook "McCutcheon's Emulsifiers & Detergents", Manufacturing Confectioner Publishing Co., provides a survey of all commercially available anionic and cationic surfactants together with the trade names under which these surfactants are marketed by the manufacturers. The surfactants of the formulae IB and IC are known or, if novel, can be prepared in a manner known per se in accordance with the particulars given in Chapter 3 of the standard work by C.G. Knight, Liposomes, Elsevier 1981. The lipids referred to hereinbefore are known and most are commercially available.

The following Examples illustrate the invention, without implying any restriction to what is disclosed therein. Chemical displacements (d) in the NMR spectrum are indicated in ppm.

Example 1: 10 mg of egg lecithin and 0.05 g of cetyltrimethylammonium bromide are dissolved in 2 ml of a 2:1 mixture of chloroform/methanol and this solution is concentrated in vacuo by rotary evaporation. Unilamellar liposomes are formed by dispersing the film-like vesidue at room temperature in 1 ml of water by shaking for 5-10 minutes. A slightly opalescent aqueous phase is obtained.

The formation of small unilamellar liposomes can be detected in the NMR spectrum by the signals $\mathcal{S} = 1.28$ (methylene), $\mathcal{S} = 0186$ (methyl) and $\mathcal{S} = 3.25$ (-N(CH₃)₃).

The unilamellar liposomes so obtained can be made visible in an electron microscope. The liposome dispersion is first subjected to conventional freeze-fracture. There are obtained mainly two "populations" of liposomes, which differ in their average size:

- 1. small unilamellar liposomes (SUL) with a diameter of about $200-600~\textrm{\AA}$ and
- 2. large unilamellar liposomes (LUL) with a diameter of about 1000-10,000 Å.

Example 2: Following the procedure of Example 1, 10 and of egg lecithin and an increasing amount of cetyltrimethylammonium bromide (CTAB, see table 1) are dissolved in 2 ml of a 2:1 mixture of chloroform/methanol. The solution is concentrated and the residue is dispersed in water to give an opalescent aqueous phase which consists of small (SUL) and large (LUL) unilamellar liposomes.

Table 1:

Experiment	Concentration CTAB [g/1]	Yield of SUL
. 1	0.1	10
2	0.2	10
3	0.5	10
. 4	1.0	10
5	2.0	12
6	5.0	14
7	7.0	20
8	10.0	40
9	15.0	70

Example 3: In each experiment, 10 mg of egg lecithin and an increasing amount of cetylpyridinium chloride (CPC, see Table 2) or benzalkonium chloride (BAS, see Table 3) are dissolved in 2 ml of a 3:1 mixture of chloroform/methanol. The solution is concentrated in vacuo and the residue is dispersed in 1 ml of water by shaking for 5-10 minutes to give an opalescent aqueous phase which consists of small (SUL) and large (LUL) unilamellar liposomes.

Table 2:

Experiment	Concen	tration CPC [g/1]	Yield of SUL [Z]
1	;;	1.0	10
2	:	1.5	15
3		2.0	20
4		2.5	20
5		3.0	25
6		3.5	30

Table 3:

Experiment	Concentration BAC [g/1]	Yield of SUL [Z]
1	0.5	2
2	1.0	5
3	2.0	5
4	3.0	10
. 5	5 . 0	15
6	10.0	60

Example 4: In each experiment, 10 mg of egg lecithin and an increasing of Texapon N 25 (sodium lauryl ether sulfate, see Table 4), octadecylphospho-D-mannitol (OPM, see Table 5) or sodium

dodecyl sulfate (SDS, see Table 6) are dissolved in 2 ml of a 2:1 mixture of chloroform/methanol. The solution is concentrated in vacuo and the residue is dispersed in 1 ml of water by shaking for 5-10 minutes to give an opalescent aqueous phase which consists of small (SUL) and large (LUL) unilamellar liposomes.

Table 4:

Experiment	t Concentration Texapon N 25 [g/1] Yield of		
1	1.0	2	
2	2.0	2	
3	3.0	5	
	4.0	10	

Table 5:

Experiment	Concentration OPM [g/1	Yield of SUL [Z]
1	1.0	10
3	2.0	15
•	3.0	20

Table 6:

Experiment	Concentration OPM [g/1]	Yield of SUL [2]
1	1.0	[8]
2	2.0	5
3		8
4	3.0	10
5 .	4.0	12
6	5.0	15
7	6.0	.15
8 .	7.0	20
•	8.0	30
9	9.0	35

Example 5: A total amount of 10 mg containing the amount indicated in Table 3 of sodium 2,2-dimethyl-3-palmitoyloxypropyl hydrogen phosphate (Table 7), sodium 1-palmitoyllysophatidyl glycerol (Table 8) and sodium 1-palmitoyllysophosphatidylserine (Table 9) and the corresponding amount of egg lecithin (lipid) are dissolved in 1 ml of a 2:1 mixture of chloroform/methanol and the solution is concentrated by rotary evaporation. The film-like residue is then dispersed in 1 ml of distilled water and the dispersion is neutralised with 0.1N sodium hydroxide solution. An opalescent aqueous phase is obtained.

Table 7:

Experiment	Concentration Surfactant [g/1]	Yield of SUL 171
1	0.5	7
2	1.0	13
3	1.5	19
4	2.0	23
5	2.5	26
6	3.0	30
7	4.0	37
8	5.0	60
9	6.0	83
10	7.0	90
11	8.0	95
12	9.0	100
13	9.5	100

Table 8:

Experiment	Concentration	Surfactant [g/1]	Yield of SUL [%]
1	1.0		6
·- 2	1.5		10
3	2.0		15
4	2.5		17
5	3.0		20
6	3.5		25
7	4.0		27
8	4.5		30
9	5.0		33
10	6.0		40

Table 9:

Experiment	Concentration Surfactant [g/1]	Yield of SUL [Z]
1	1	5
2	2	8
3	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13
4	4	18
5	5	20
6	6	25

Example 6: 3 mg of one of the surfactants listed in Table 10 and 7 mg of egg lecithin (lipid) are dissolved in 1 ml of a 2:1 mixture of chloroform/methanol and the solution is concentrated. The film-like residue is dispersed in 1 ml of water and the dispersion is neutralised with 0.1N NaOH. An opalescent aqueous phase is obtained.

Table 10:

Surfactant	Yield [% SUL]
2-hydroxyethyl-3-palmitoyloxypropyl phosphate	20
2,2-dimethyl-3-palmitoyloxypropyl hydrogenphosphate	50
3-cetyloxypropyl-2-hydroxyethyl phosphate	29
2-bromoethylcetylphosphate	30
n-eicosyl-2,3-(2,2-propylene)dioxypropyl phosphate	18
3-stearyloxypropylhydrogen phosphate	8
2,3-dihydroxypropylmyristyl phosphate	34
3-cetyloxypropylhydrogen phosphate	19
2,3-dihydroxypropyl-n-eicosyl phosphate	8
cetyl 2,3-dihydroxypropyl phosphate	25
methyl 3-stearoyloxypropyl phosphate	45

Example 7: 20 mg (0.026 mmole) of soybean lecithin, 1 mg (0.76 umole) of N-acetylmuramyl-L-alanyl-2-(1',2'-dipalmitoyl-sn-glycero-3'-phosphoryl)ethylamide and 5 mg of n-hexadecylpyridinium chloride are dissolved in 2 ml of a 2:1 mixture of chloroform/methanol and the solution is concentrated by rotary evaporation. The film-like residue is shaken for 5 minutes in 3 ml of distilled water to give an opalescent aqueous phase. The aqueous dispersion is then buffered with 0.2 ml of a 10-fold concentrate of a phosphate-buffered isotonic solution of sodium chloride (FBS for injection purposes) to pH 7.4.

Example 8: 30 mg (0.04 mmole) of soybean lecithin, 2 mg (0.004 mmole) of flumethason 21-pivalate and 8 mg (0.002 mmole) of n-hexadecyl-pyridinium chloride are dissolved in 2 ml of a 2:1 mixture of chloroform/methanol and the solution is concentrated by rotary evaporation. The film-like residue is shaken for 5 minutes in 3 ml of distilled water to give an opalescent aqueous phase. The aqueous dispersion is then buffered to pH 7.4 as described in Example 7.

Example 9: 30 mg (0.040 mmole) of soybean lecithin and 15 mg (0.042 mmole) of Lanette E (sodium steary) or palmityl sulfate; are dissolved in 8 ml of a 4:1 mixture of tert.-butanol/methanol at 70°C and the solution is concentrated in vacuo. The film-like residue is shaken for 5 minutes in 3 ml of distilled water to give an opalescent aqueous phase which is buffered to pH 7.4 as described in Example 7.

Example 10: 20 mg (0.026 mmole) of soybean lecithin, 1 mg (0.76 mmole) of N-acetylmuramyl-L-alanyl-2-(1',2'-dipalmitoyl-sn-glycero-3'-phosphoryl)ethylamide and 10 mg of (0.028 mmole) of Lanette E (R) are dissolved in 6 ml of 4:1 mixture of tert-butanol/methanol and the solution is concentrated by rotary evaporation. The film-like residue is shaken for 5 minutes in 2 ml of distilled water to give an opalescent aqueous phase. The aqueous dispersion is filled into a stirred ultrafiltration cell (Amicon R), which, instead of the ultrafilter, is provided with an even pore filter of polycarbonate (Nucleopore (R) which has a pore diameter of 0.1 um, and has been washed free of particles. The dispersion is filtered under slight overpressure and with constant addition of Dulbecco's sterile buffer solution (pH 7.4 without Ca and Mg) so that the volume in the cell does not decrease to less than 30 ml. After the passage of 0.3 litre of filtrate, all the SUL are separated and the supernatant dispersion of LUL can be filled into ampoules and used for treatment assays.

Example 11: 30 mg (0.04 mmole) of soybean lecithin, 4 mg (0.081 mmole) of flumethason 21-pivalate and 10 mg (0.028 mmole) of Lanette \mathbb{R} are dissolved in 6 ml of a 4:1 mixture of tert-butanol/methanol at about 70°C and the solution is concentrated by rotary evaporation. The film-like residue is shaken in 3 ml of distilled water to give an opalescent aqueous phase.

The dispersion is filled into a stirred filter cell (total volume: 100 ml) as described in Example 10 and then filtered, while adding sterile water which has been filtered until free of particles, until 500 ml of filtrate have collected. This filtrate is fed continuously into a stirred filter cell equipped with an ultrafilter, e.g. Amicon U 10 R, and then concentrated to a volume of 30 ml. The concentrated dispersion contains small unilamellar liposomes and, after addition of Dulbecco's phosphate buffer (pH 7.4, without Ca and Mg), is filled into ampoules and used for treatment assays.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

- 1. A process for the preparation of unilamellar liposomes in aqueous phase, which comprises dispersing a homogeneous mixture of an anionic surfactant and a lipid, in aqueous phase, at a concentration lower than the critical micelle concentration (cmc) of the surfactant in the particular phase and, if necessary, neutralising the aqueous phase so obtained and, if desired, enriching and/or separating the resultant unilamellar liposomes.
- 2. A process according to claim 1, which comprises dispersing a homogeneous mixture of an anionic or cationic surfactant.
- 3. A process according to claim 2, which comprises dispersing a homogeneous mixture of a cationic surfactant of the formula

wherein R_a is an unsubstituted or substituted hydrocarbon radical, R_b is lower alkyl, phenyl-lower alkyl or hydroxy, R_c and R_d are lower alkyl, or R_b and R_c , together with the nitrogen atom to which they are attached, form an aliphatic heterocyclic ring system which may be substituted at a carbon atom, and R_d is lower alkyl, or R_b , R_c and R_d , together with the nitrogen atom to which they are attached, form an aromatic heterocyclic ring system, and F_d is an anion, and a lipid.

4. A process according to claim 3, which comprises dispersing a homogeneous mixture of N-benzyl-N,N-dimethyl-N-2-[2-(4-(1,1,3,3-tetramethylbutyl)phenoxy)ethoxy]ethyl-

ammonium chloride, N-benzyl N, N-dimethyl-N-2-[2-(3-methyl-4-(1,1,3,3tetramethylbutyl)phenoxy)ethoxy]ethylammonium chloride (methylbenzethonium chloride), n-dodecyltrimethylammonium chloride or bromide, trimethyl n-tetradecylammonium chloride or bromide, n-hexadecyltrimethylammonium chloride or bromide (cetyltrimethylammonium chloride or bromide), trimethyl n-octadecylammonium chloride or bromide, ethyl n-dodecyldimethylammonium chloride or bromide, ethyldimethyl n-tetradecylammonium chloride or bromide, ethyl n-hexadexyldimethylammonium chloride or bromide, ethyldimethyl n-octadecylammonium chloride or bromide, n-alkyl benzyldimethylammonium chloride or bromide (benzalkonium chloride or bromide), e.g. benzyl n-dodecyldimethylammonium chloride or bromide, benzyl n-hexadecyldimethylammonium chloride or bromide or benzyldimethyl n-octadecylammonium chloride or bromide, N-(n-decyl)pyridinium chloride or bromide, N-(n-dodecyl)pyridinium chloride or bromide, N-(n-tetradecyl)pyridinium chloride or bromide, N-(n-hexadecyl)pyridinium chloride or bromide (cetylpyridinium chloride or bromide), or N-(n-octadecyl)pyridinium chloride or bromide, or a mixture of these surfactants, and a lipid.

- 5. A process according to claim 2, which comprises dispersing a homogeneous mixture of an anionic surfactant
- a) of the formula

$$[R_{a}^{-(0-A)}_{m}^{-B}]^{\bigcirc}Z^{\bigoplus}$$
(TB)

wherein R_a is an unsubstituted or substituted hydrogen radical, A is lower alkylene, m is 0 (direct bond) or 1, B is the sulfonate or sulfate group and 2^{+} is a monovalent cation, or

b) a compound of the formula

wherein m is 0 or 1, one of R_1 and R_2 is hydrogen, hydroxy or lower C_1 - C_4 alkyl, and the other is alkyl, alkenyl, alkoxy, alkenyloxy or acyloxy, each of 10 to 20 carbon atoms, R_3 is hydrogen or lower C_1 - C_4 alkyl, and R_4 is unsubstituted or substituted lower C_1 - C_7 alkyl, a carbohydrate radical of 5 to 12 carbon atoms or, if both R_1 and R_2 are hydrogen or hydroxy, is a steroid radical, and Z^{\bigoplus} is a monovalent cation, or

c) a compound of the formula

$$R_1 - CH_2 - \frac{R_3}{C - CH_2} - O - \frac{P - OH}{P - OH}$$
 (ID),

wherein R_1 , R_2 , R_3 and Z^{\bigoplus} are as defined for formula (IC), and a lipid.

6. A process according to claim 5, which comprises dispersing a homogeneous mixture containing an alkali metal alkyl sulfate (m = 0), e.g. sodium or potassium n-dodecyl (lauryl) sulfate, sodium or potassium n-tetradecyl (myristyl) sulfate, sodium or potassium n-hexadecyl (cetyl) sulfate or sodium or potassium n-octadecyl (stearyl) sulfate, an alkali metal alkyl ether sulfate (m = 1), e.g. sodium or potassium m-dodecyloxyethyl sulfate, sodium or potassium n-tetradecyloxyethyl sulfate, sodium or potassium n-hexadecyloxyethyl sulfate or sodium or potassium n-octadecyloxyethyl sulfate, or an alkali metal alkane sulfonate, e.g. sodium or potassium n-dodecane sulfonate, sodium or potassium n-tetradecane sulfonate, sodium or potassium n-tetradecane sulfonate, sodium or potassium n-octadecane sulfonate, the sodium or potassium salt of lyso-phosphatidylserine, e.g. the sodium or potassium salt of beef brain

lysophosphatidylserine or the sodium or potassium salt of a synthetic lysophosphatidylserine, e.g. sodium or potassium l-palmitoyl-lysophosphatidylserine, or the sodium or potassium salt of lysophosphatidylglycerol, the sodium or potassium salt of natural phosphatidic acid, e.g. egg phosphatidic acid, the sodium or potassium salt of a natural lysophosphatidic acid, e.g. egg lysophosphatidic acid, the sodium or potassium salt of a synthetic lysophosphatidic acid, e.g. l-lauroyllysophosphatidic acid, l-myristoyllysophosphatidic acid or l-palmitoyllysophosphatidic acid, or a mixture of these surfactants and a lipid.

7. A process according to any one of claims 1 to 6, wherein the lipid is a compound of the formula

wherein m, R_1 , R_2 , R_3 and R_4 are as defined for formula IC and R_4 is also lower alkyl substituted by tri-lower alkylammonio or amino.

8. A process according to claim 7, wherein the lipid is preferably a natural lecithin, for example egg lecithin or lecithin obtained from soybeans (R₄ = 2-trimethylammonioethyl), a natural cephalin, for example egg cephalin or cephalin obtained from soybeans (R₄ = 2-aminoethyl), a synthetic lecithin (R₄ = 2-trimethylammonioethyl) or a synthetic cephalin (R₄ = 2-aminomethyl) of the formula IC', wherein R₁ and R₂ are identical acyloxy radicals such as lauroyloxy, oleoyloxy, linoyloxy, linoleoyloxy or arachinoyloxy, e.g. dilauroyl lecithin or cephalin, dimyristoyl lecithin or cephalin, dipalmitoyl lecithin or cephalin, distearoyl lecithin or cephalin, diarachinoyl lecithin or cephalin, dioleoyl lecithin or cephalin, dilinoleoyl lecithin or cephalin, dilinoleoyl lecithin or

cephalin, or diarachinoyl lecithin or cephalin, R_1 and R_2 are different acyloxy radicals, e.g. R_1 is palmitoyloxy and R_2 is oleoyloxy, e.g. 1-palmitoyl-2-oleoyl lecithin or cephalin, R_1 and d_2 are identical alkoxy radicals, e.g. tetradecyloxy or hexadecyloxy, e.g. ditetradecyl lecithin or cephalin, or dihexadecyl lecithin or cephalin, R_1 is alkenyl and R_2 is acyloxy, e.g. a plasmalogen (R_4 = trimethylammonioethyl), or R_1 is acyloxy, e.g. myristoyloxy or palmitoyloxy, and R_2 is hydroxy, e.g. a natural or synthetic lysolecithin or lysocephalin, e.g. 1-myristoyl lysolecithin or lysocephalin, and R_3 is hydrogen.

9. A process according to any one of claims 1 to 8, which comprises dispersing a homogeneous mixture of a surfactant of the formula IA, in particular N-benzyl N, N-dimethyl-N-2-[2-(4-(1,1,3,3tetramethylbutyl)phenoxy)ethoxy]ethylammonium chloride, N-benzyl N, N-dimethyl-N-2-[2-(3-methyl-4-(1,1,3,3-tetramethylbutyl)phenoxy)ethoxylethylammonium chloride (methylbenzethonium chloride), n-dodecyltrimethylammonium chloride or bromide, trimethyl n-tetradecylammonium chloride or bromide, n-hexadecyltrimethylammonium chloride or bromide (cetyltrimethylammonium chloride or bromide), trimethyl-noctadecylammonium chloride or bromide, ethyl n-dodecyldimethylammonium chloride or bromide, ethyldimethyl-n-tetradecylammonium chloride or bromide, ethyl n-hexadecyldimethylammonium chloride or bromide, ethyldimethyl n-octadecylammonium chloride or bromide, n-alkyl benzyldimethylammonium chloride or bromide (benzalkonium chloride or bromide), e.g. benzyl n-dodecyldimethylammonium chloride or bromide, benzyldimethyl n-tetradecylammonium chloride or bromide, benzyl n-hexadecyldimethylammonium chloride or bromide or benzyldimethyl-n-octadecylammonium chloride or bromide, N-(n-decyl)pyridinium chloride or bromide, N-(n-dodec;1)pyridinium chloride or bromide, N-(n-tetradecyl)pyridinium chloride or bromide, N-(n-hexadecyl)pyridinium chloride or bromide (cetylpyridinium chloride or

bromide), or N-(n-octadecyl)pyridinium chloride or b-omide, or an onionic surfactant of the formula IB, in particular sodium or potassium n-dodecyl (lauryl) suifate, sodium or potassium n-tetradecyl (myristyl) sodium or potassium n-hexadecyl (cetyl) sulfate or sodium or potassium n-octadecyl (stearyl) sulfate, sodium or potassium m-dodecyloxyethyl sulfate, sodium or potassium n-tetradecyloxyethyl sulfate, sodium or potassium n-hexadexyloxyethyl sulfate or sodium or potassium n-octadecyloxyethyl sulfate, or an anionic surfactant of the formula IC, in particular sodium or porassium 2,2-dimethyl-3palmitoyloxypropyl hydrogen phosphate, sodium or potassium 1-palmitoyllysophosphatidyl glycerol, andium or potassium 1-palmitovllysophosphatidylserine, and a lipid of the formula IC'. wherein R_1 and R_2 are acyloxy, e.g. lauroyloxy, myristoyloxy, palmitoyloxy or stearoyloxy, R_3 is hydrogen and R_4 is 2-trimethylammonioethyl, e.g. a natural cephalin such as egg cephalin or cephalin or cephalin obtained from soybeans, or 2-aminoethyl, e.g. a natural lecithin such as egg lecithin or lecithin obtained from soybeans.

- 10. A process according to any one of claims 1 to 9, which comprises dispersing a homogeneous mixture of a surfactant and a lipid according to claim 9, and a pharmaceutical drug.
- 11. A process according to any one of claims 1 to 10, which comprises dispersing a homogeneous mixture of an anionic surfactant of the formula IB, egg lecithin and a muramyl peptide.
- 12. A process according to any one of claims 1 to 10, which comprises dispersing a homogeneous mixture of a cationic surfactant of the formula IA, soybean lecithin and a muramyl peptide.

- 13. A process according to claim 12, which comprises dispersing a homogeneous mixture of n-hexadecylpyridinium chloride, soybean lecithin and N-acetylmuramyl-L-alanyl-2-(1,2,-dipalmitoyl-sn-glycero-3,-phosphoryl)ethylamide.
- 14. A delivery system based on liposomes for encapsulated N-acetyl-muramyl-L-alanyl-D-isoglutamyl-L-alanyl-2-(1',2'-dipalmitoyl-sn-glycero-3'-phosphoro)ethylamide, prepared by the process as claimed in claim 1.
- 15. A pharmaceutical composition containing a delivery system based on liposomes for encapsulated drugs as claimed in claim 14, in combination with pharmaceutically acceptable adjuvants.
- 16. A delivery system according to claim 14 for use in the treatment of humans or animals.
- 17. A pharmaceutical composition according to claim 14 for use in the treatment of humans or animals.
- 18. A method of treating diseases in humans or animals, which comprises the use of a delivery system as claimed in claim 14.

DATED this 27th day of July 1983.

CIBA-GETGY AG

EDWD. WATERS & SONS PATENT ATTORNEYS 50 QUEEN STREET MELBOURNE. VIC. 3000.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.