Relatório 3º projeto ASA 2023/2024

Grupo: AL008

Alunos: Vasco Conceição (106481), Henrique Luz (99417)

❖ Descrição do Problema e da Solução

A nossa solução para o problema baseia-se na técnica de programação linear, utilizando, para tal, a biblioteca PuLP.

As variáveis x_i representam a quantidade do brinquedo ou pacote especial i. Sejam n o número de brinquedos e p o número de pacotes especiais, se $1 \le i \le n$, x_i representa a quantidade do brinquedo i, se $n+1 \le i \le n+p$, x_i representa a quantidade do pacote especial i.

O programa linear pode ser modelado da seguinte forma:

$$\begin{cases} \max \sum_{i=1}^{n+p} c_i x_i \\ \sum_{j} a_{ij} \leq b_i, 1 \leq i \leq n+1 \end{cases} , \text{ tal que}$$

- A é uma lista de listas, em que, caso $1 \le i \le n$, a_i é uma lista composta pela variável x_i e as variáveis x_k , sendo k um pacote especial que inclui o brinquedo i, e caso i=n+1, a_i é uma lista composta por $x_i \mid 1 \le j \le n$ e $3x_i \mid n+1 \le j \le n+p$;
 - b_i representa a capacidade de produção do brinquedo ou pacote especial i;
 - c_i é o lucro do brinquedo ou pacote especial i.

Para além destas restrições, todas as variáveis x_i estão limitadas inferiormente por 0. Superiormente, caso $1 \le i \le n$, x_i está limitado por b_i e, caso $n+1 \le i \le n+p$, x_i está limitado por $\min(b_{j_1},b_{j_2},b_{j_3})$, sendo j_1,j_2 e j_3 os briquedos presentes no pacote especial i.

❖ Análise Teórica

- 1. <u>Número de variáveis do programa linear</u>: Cada brinquedo está associado a uma variável, tal como os pacotes especiais. Logo, O(n + p).
- 2. <u>Número de restrições do programa linear</u>: Todos os brinquedos estão associados a uma restrição. Adicionalmente, há uma restrição final acerca do número total de brinquedos. Logo, O(n+1) = O(n).

Relatório 3º projeto ASA 2023/2024

Grupo: AL008

Alunos: Vasco Conceição (106481), Henrique Luz (99417)

❖ Avaliação Experimental dos Resultados

Neste gráfico, apresentamos o tempo de execução do algoritmo em função do tamanho do programa linear codificado (número de variáveis (n + p) + número de restrições (n + 1)).

Neste gráfico, apresentamos o tempo de execução do algoritmo em função dos parâmetros do problema (n+p). Para tal, utilizámos 12 instâncias espaçadas igualmente entre si.

