Solutions: Tutorial-5

Q-1.

Α	В	С	D	S ₁	S ₀	I ₀	l ₁	l ₂	l ₃	F
0	0	0	0	0	0	1	0	0	0	1
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	0	1	0	0	0	0
0	0	1	1	1	1	1	0	0	0	0
0	1	0	0	0	0	0	1	0	0	0
0	1	0	1	0	1	0	1	0	0	1
0	1	1	0	1	0	0	1	0	0	0
0	1	1	1	1	1	0	1	0	0	0
1	0	0	0	0	0	0	0	1	0	0
1	0	0	1	0	1	0	0	1	0	0
1	0	1	0	1	0	0	0	1	0	1
1	0	1	1	1	1	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	0	1	0	1	0	0	0	1	0
1	1	1	0	1	0	0	0	0	1	0
1	1	1	1	1	1	0	0	0	1	1

a. The Karnaugh map is:

AB CD	00	01	11	10
00	1	0	0	0
01	0	1	0	0
11	0	0	1	0
10	0	0	0	1

b. The minimal SOP form:

$$=A'B'C'D'+A'BC'D+ABCD+\\AB'CD'$$

c. The minimal POS form:

$$= (A' + C)(A + C')(B' + D)(B + D')$$

a.	b.	c.	d.	e.
$i(0^+) = 0A$	$\frac{di}{dt}(0^+) = \frac{10}{L} = 10A/s$	$\frac{d^2i}{dt^2}(0^+) = -1000A/s^2$	$V_c(0^+) = 0V$	$V_L(0^+) = 10V$

Q-3.

a. If the switch is closed a long time before t=0, it means that the circuit has reached dc steady state at t=0. At dc steady state, the inductor acts like a short circuit, while the capacitor acts like an open circuit (Fig.3a). Hence, at t=0⁻,

$$i(0^{-}) = \frac{12}{4+2} = 2A, \ \ v(0^{-}) = 2i(0^{-}) = 4V$$

Since the inductor current cannot change abruptly

$$i(0^+) = i(0^-) = 2A$$

b. From fig.5, and argument given in section a, the voltage is given by-

$$v(0^+) = v(0^-) = 4V$$

c. At time t=0⁺, the switch is opened. The equivalent circuit is shown in (Fig.3b). The same current flows through both the inductor and capacitor. Hence,

$$i_c(0^+) = i(0^+) = 2A$$

Applying the KVL to the loop in Figure 2 results in

$$-12+4i(0^+)+v_I(0^+)+v(0^+)=0$$

Ωľ

$$v_{I}(0^{+}) = 12 - 8 - 4 = 0$$

Hence,

$$\frac{di(0^+)}{dt} = \frac{v_L(0^+)}{L} = 0A / s$$

d. At time t=0+, since

$$C\frac{dv}{dt} = i_c, \quad \frac{dv}{dt} = \frac{i_c}{C}$$

$$\frac{dv(0^+)}{dt} = \frac{i_c(0^+)}{C} = \frac{2}{0.1} = 20V / s$$

e. $t \to \infty$, the circuit reaches steady state, Fig.3c. The inductor acts like a short circuit and the capacitor like an open circuit, hence, $i(\infty) = 0$ A and,

$$f. V(\infty) = 12 V.$$

Fig.3a Fig.3b

Fig.3c

Q-4. The operation impedances of the different branches are-

$$Z_{R} = 1$$

$$Z_{L} = 2p$$

$$Z_{c} = \frac{1}{pC} = \frac{3}{p}$$

The operation impedance of the as seen from the terminals **a-b** is-

$$Z_{ab} = Z_R + \frac{Z_L Z_C}{Z_L + Z_C} = 1 + \frac{2p \times \frac{3}{p}}{2p + \frac{3}{p}} = \frac{2p^2 + 6p + 3}{2p^2 + 3}$$

The current in the network is-

$$i = \frac{e}{Z_{ab}} = \frac{2p^2 + 3}{2p^2 + 6p + 3}e$$

the current through the inductor is

$$i_{L} = \frac{Z_{C}}{Z_{L} + Z_{C}} i = \frac{\frac{3}{p}}{2p + \frac{3}{p}} \times \frac{2p^{2} + 3}{2p^{2} + 6p + 3} e$$
$$= \frac{3}{2p^{2} + 6p + 3} e$$

Hence, the governing differential equation is

$$(2p^2 + 6p + 3)i_L = 3e$$

$$\Rightarrow 2\frac{d^2i_L}{dt^2} + 6\frac{di_L}{dt} + 3i_L = 3e$$

Q-5. The period of the waveform is T=4. Over a period, the current waveform can be written as-

$$i(t) = \begin{cases} 5t, \ 0 < t < 2 \\ -10, \ 2 < t < 4 \end{cases}$$

The rms value is

$$I_{rms} = \sqrt{\frac{1}{T} \int_0^T i^2 dt} = \sqrt{\frac{1}{4} \left[\int_0^2 (5t)^2 dt + \int_2^4 (-10)^2 dt \right]}$$
$$= \sqrt{\frac{1}{4} \left[25 \frac{t^3}{3} \right]_0^2 + \left[100t \right]_2^4} = 8.165 A$$

The power absorbed by 2 Ohm resistor is

$$P=I_{rms}^2 R = (8.165)^2 (2) = 133.3W$$

Q-6.

W	Х	Υ	Z	S	С	I ₀	l ₁	l ₂	l ₃	S ₁	S ₀	Н
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	1	0	0	0	1	1
0	0	1	0	1	0	0	1	0	0	1	0	0
0	0	1	1	0	1	1	0	0	0	1	1	0
0	1	0	0	0	0	0	0	0	0	0	0	0
0	1	0	1	1	0	0	1	0	0	0	1	1
0	1	1	0	1	0	0	1	0	0	1	0	0
0	1	1	1	0	1	1	0	0	0	1	1	0
1	0	0	0	0	0	0	0	0	1	0	0	0
1	0	0	1	1	0	0	1	0	1	0	1	1
1	0	1	0	1	0	0	1	0	1	1	0	0
1	0	1	1	0	1	1	0	0	1	1	1	1
1	1	0	0	0	0	0	0	1	1	0	0	0
1	1	0	1	1	0	0	1	1	1	0	1	1
1	1	1	0	1	0	0	1	1	1	1	0	1
1	1	1	1	0	1	1	0	1	1	1	1	1

YZ WX	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	0	0	1	1
10	0	0	1	0

$$SOP: H = Y'Z + WZ + WXY$$
 and,
 $POS: H = (Y + Z)(\overline{Y} + W)(X + Z)$

X	Υ	S ₁	S ₀	I ₀	l ₁	l ₂	I ₃	F
0	0	0	1	1	0	0	0	0
0	1	1	0	0	1	0	0	0
1	0	1	0	0	0	1	0	1
1	1	1	1	0	0	0	1	1

F = X