MATH 450 Seminar in Proof

Prove by induction that $|P(A)| = 2^n$ if |A| = n.

Proof. By induction.

Base Case: Let A be a set with 0 elements. Then the $P(A) = \{\emptyset\}$. Thus $|P(A)| = 1 = 2^0$.

Inductive Hypothesis: Assume if |A| = n then $|P(A)| = 2^n$ is true. Inductive Step:

We will prove that if |A| = n + 1 then, $|P(A)| = 2^{n+1}$. Now, let A be a set such that |A| = n + 1. Let $B = A - \{a\}$ where $a \in A$. Then |B| = n. Thus $|P(B)| = 2^n$ from our hypothesis.

Also we can split the subsets of A into two parts, namely subsets that contain a and one that does not i.e P(B). Note that P(B) does not have any sets in it that contains a. Let $B_1, B_2, B_3, ..., B_{2^n}$ be the elements of P(B). Then, $B_1 \cup \{a\} \in P(A), B_2 \cup \{a\} \in P(A), B_3 \cup \{a\} \in P(A), ..., B_{2^n} \cup \{a\} \in P(A)$ are the subsets of A that contain the element a. Since the union of each B_i and a produces 2^n subsets and $|P(B)| = 2^n$, then $|P(A)| = 2^n + 2^n = 2^n(1+1) = 2^{n+1}$.