How Executives Can Avoid Analytics Mistakes

- Data Scientists tend to be well-versed in math, probabilities, and statistics.
- Even so, humans in general are susceptible to cognitive biases, especially when interpreting data
- · In this session we show you how to avoid some of these failings

"We have a problem with customer loyalty"

· "Our best customers (top 10%) in 2016 bought 30% less in 2017"

Issue 1: Regression to the Mean

• First witnessed by Sir Francis Galton in 1886

"Sales have increased for the past 4 weeks. We're on an upswing!!"

- · Is this a valid conclusion?
- this is an issue of "spotting trends too early"
- · Issue 2: Invalid trends

Issue 3: Learning Something That Isn't True

- "Superstitious learning occurs when the connection between the cause of an action and the outcomes experienced aren't clear or misattributed."
- · This can be due to:
 - · regression to the mean issues (Issue 1)
 - trends that are really random (Issue 2)
 - faulty case studies ("one-off occurrences")
 - · causation inferred from correlation

A statistically significant correlation between two variables may be due to:

- chance
 - the usual statistical significance burden of proof is 5%. If there is no relationship between 2 variables then we would be concluding there IS a statistical significance 1 in 20 times.
 - · If you look at relationships among 15 variables (by looking at pairs), 5 correlations will be statistically significant simply by chance.
- · underlying (hidden) factor
- a true cause-effect relationship (but which causes which)

Issue 4: Most observational studies tend to be wrong

- chance
 - the usual statistical significance burden of proof is 5%. If there is no relationship between 2 variables then we would be concluding there IS a statistical significance 1 in 20 times.
 - · If you look at relationships among 15 variables (by looking at pairs), 5 correlations will be statistically significant simply by chance.
- · underlying (hidden) factor
- · a true cause-effect relationship (but which causes which)

Wrong results reported from an observational study could be due to:

- innocence
 - · someone found a nugget of (fool's) gold
- not so innocent
 - we continue to torture the data until it confesses, all the while ignoring all other signals or common sense
 - · don't be pressured by management or customers to do this

Solution:

Test it. (clinical trial, Design of Experiments, A/B Test, Champion/Challenger)

Look at independent data sets

Never allow a dataset to suggest a relationship AND validate it

Issue 4: Avoid Other data dredging techniques

- · Throw out the "outliers" until we get the desired result
 - · we can throw out outliers sometimes if they truly are not representative, but don't do it because the data doesn't fit our narrative
- Slice and dice the data until you find a subset that gives you the desired result
- conduct many hypothesis tests (checking for many correlations). →
 - significance by chance 5% of the time
- Ignore negative results
- Question negative results and don't question positive results

Issue 5: Simpson's Paradox

Alaska Airlines			
Airport	No. On-time	No. Delayed	Pct Delayed
los angeles	497	62	11.1%
phoenix	221	12	5.2%
san diego	212	20	8.6%
san francisco	503	102	16.9%
seattle	1841	305	14.1%
total	3274	501	13.3%
America West			
Airport	No. On-time	No. Delayed	Pct Delayed
los angeles	694	117	14.4%
phoenix	4840	415	7.9%
san diego	383	65	14.5%
san francisco	320	129	28.7%
seattle	201	61	23.3%
total	6438	787	10.9%

Another Example: Test Scores

group	sum	n	mean(1980)	
1	6500000.00	10,000	650.00	
2	640000.00	1,000	640.00	
3	60000.00	100	600.00	
Total	7200000.00	11,100	648.65	

group	sum	n	mean(1990)
1 2 3	6550000.00 6450000.00 1830000.00	10,000 10,000 3,000	655.00 645.00 610.00
Total	14830000.00	23,000	644.78

Another Example

	Total SAT Subpopulation Scores by Ethnic Group					
Year	White	Black	Asian	American Indian	Mexican American	Puerto Rican
1976	944	686	932	808	781	765
1990	933	737	938	825	809	764

Berliner, D. (1993) Educational Reform in an Era of Disinformation. Educational Policy Analysis Archives

Issue 6: Bertrand's Box Paradox/Monty Hall Paradox

- I have three cards in my hat
 - One has on both sides
 - One has on both sides
 - One has on one side and on other side
- If I draw a card out of the hat and show you one side (say ♠) what is the probability the other side of the card is also ♠?
- 1/3, 1/2 or 2/3?

Why is all of this hard for humans?

- · we are poor at conditional probabilities
 - · the likelihood of events
- we are fooled by randomness
 - · misinterpret trends
 - · make generalizations from small number of occurrences
- we are susceptible to fallacies

How can this be solved?

- Have staff that understand these issues
- Continue learning/get some training
- Recognize the situation
 - · mistaking correlation/causation. Understand WHEN you need to prove causation and HOW to do it
 - · regression to the mean
 - · understand how to call a trend
- Use common sense and question all results