§6.3 同步时序电路设计

Synchronous Sequential Circuit Design

已知 → 功能或状态图

求 → 电路

例 1. 设计同步5进制加法计数器 (例6.4)

1) 确定状态及状态图

M-5 计数器, 5 个状态: S_0 , S_1 , S_2 , S_3 , S_4

在计数脉冲CLK作用

下,5 个状态周期性变换,在 S_4 状态下进位输出 Y=1 。

2) 状态化简

M-5, 5 个状态,不须再化简

3) 状态分配、编码

n: 二进制位数 3位

状态表

Q_{2}^{n}	$Q_1^n Q_0^n$	Q_2^{n+}	$-1Q_1^n$	$^{+1}Q_0^{n+1}$	Y
0		0	0	1	0
0	01	0	1	0	0
0	10	0	1	1	0
0	11	1	0	0	0
1	0 0	0	0	0	1

4) 选择 FF,确定驱动方程、状态方程 Q^{n+1} 及输出方程

方法 1: 先不确定用哪种触发器

由状态表填卡诺图

$Q_2^{n+1} Q$ Q_0^{n}	$2^{\mathbf{n}} Q_1^{\mathbf{n}} $	01	11	10
0	0	0	Ф	0
1	0	1	Ф	Ф

状态表

Q_2^n	$Q_1^n Q_0^n$	Q_2^{n+}	$-1Q_1^{n-1}$	Q_0^{n+1}	Y
0	00	0	0	1	0
0	01	0	1	0	0
0	10	0	1	1	0
0	11	1	0	0	0
10	00	0	0	0	1

也可直接填卡诺图

直接填卡诺图

Y_{Q_n}	$2^{\mathbf{n}} \mathbf{Q_1}^{\mathbf{n}} $	01	11	10
0	0	0	Ф	1
1	0	0	Ф	Ф

$$Q_0^{n+1}$$
 $Q_2^{n}Q_1^{n}$
 Q_0^{n}
 $Q_0^{$

$$Q_2^{n+1} = Q_1^n Q_0^n$$
$$= D_2$$

$$D_2 = Q_1^{\mathbf{n}} Q_0^{\mathbf{n}}$$

$$Q_2^{n+1} = Q_1^n Q_0^n \qquad Q_1^{n+1} = Q_0^n \overline{Q}_1^{n+1} + \overline{Q}_0^n Q_1^n$$

$$= D_2 \qquad \qquad = Q_0^n \oplus Q_1^n$$

$$D_2 = Q_1^n Q_0^n \qquad \qquad = T_1 \oplus Q_1^n$$

$$T_1 = Q_1^n$$

$$Y = Q_2^n$$

$$Q_0^{n+1} = \overline{Q}_2^n \overline{Q}_0^n$$

$$= D_0$$

$$\begin{cases} J_0 = \overline{Q}_2^n \\ K_0 = 1 \end{cases}$$

$$D_2 = Q_1^{n} Q_0^{n}$$
 $T_1 = Q_0^{n}$
$$\begin{cases} J_0 = \overline{Q}_2^{n} \\ K_0 = 1 \end{cases}$$
 $Y = Q_2^{n}$

5) 电路

与门可以省略

6)检查是否可以自启动

$$\begin{aligned} Q_{2}^{n+1} &= Q_{1}^{n} Q_{0}^{n} \\ Q_{1}^{n+1} &= Q_{0}^{n} \overline{Q}_{1}^{n} + \overline{Q}_{0}^{n} Q_{1}^{n} \\ &= Q_{0}^{n} \oplus Q_{1}^{n} \\ Q_{0}^{n+1} &= \overline{Q}_{2}^{n} \overline{Q}_{0}^{n} \end{aligned}$$

状态表

Q_2^n	$Q_1^n Q_0^n$	Q_2^{n+1}	\mathcal{Q}_{l}^{n}	Q_0^{n+1}	Y
0	0 0	0	0	1	0
0	01	0	1	0	0
0	10	0	1	1	0
0	11.	1	0	0	0
1	00	0	0	0	1
1	0 1	0	1	0	1
1	10	0	1	0	1
1	11	1	0	0	1

方法 2: 确定用哪种触发器

- 4) 选择 FF 选 JK-FFs
- 5) 状态方程 Q^{n+1} 及控制输入-J, K

状态表

Q_2^n	Q'_1	$^{n}Q_{0}^{n}$	Q_2^{n+}	Q_1^{n+1}	Q_0^{n+1}	Y
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1

JK-FF 驱动表

Q^n	$\rightarrow Q^{n+1}$	J K
0	0	0 ×
0	1	1 ×
1	0	X 1
1	1	\times 0

$$Q_2^n \Rightarrow Q_2^{n+1} \quad J_2$$

0 0	0
-----	---

$$X \quad X \quad X$$

$$\mathbf{X} \quad \mathbf{X} \quad \mathbf{X}$$

$$\mathbf{X} \quad \mathbf{X} \quad \mathbf{X}$$

得到 $2^{\#}$ -FF 控制输入 J_2 驱动卡诺图

状态图

Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_{l}^{n+1}	Q_0^{n+1}	Y
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1

JK-FF 驱动表

Q^n	$\rightarrow Q^{n+1}$	J	K
0	0	0	X
0	1	1	X
1	0	×	1
1	1	X	0

$$Q_1^n \Rightarrow Q_1^{n+1} \quad K_1$$

$$0 \quad 0 \quad X$$

$$\mathbf{X} \quad \mathbf{X} \quad \mathbf{X}$$

$$egin{array}{cccc} \mathbf{X} & \mathbf{X} & \mathbf{X} \\ \mathbf{X} & \mathbf{X} & \mathbf{X} \end{array}$$

得到 1[#]-FF 控制输入 *K*₁ 驱动卡诺图

得到各个触发器控制输入驱动卡诺图及控制输入

$$J_1 = Q_0^n$$

$$J_0 = \overline{Q_2^n}$$

$$K_2 = 1$$

$$K_1 = \mathcal{Q}_0^n$$

$$K_0 = 1$$

输出卡诺图

			V V · V			
Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	$Q_{\rm l}^{n+}$	Q_0^{n+1}	Y
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1

$$Y = Q_2^n$$

$$\begin{cases} J_2 = Q_1^n Q_0^n \\ K_2 = 1 \end{cases}$$

$$\begin{cases} J_1 = \mathcal{Q}_0^n \\ K_1 = \mathcal{Q}_0^n \end{cases}$$

$$\begin{cases}
J_2 = Q_1^n Q_0^n \\
K_2 = 1
\end{cases}
\begin{cases}
J_1 = Q_0^n \\
K_1 = Q_0^n
\end{cases}
\begin{cases}
J_0 = \overline{Q_2^n} \\
K_0 = 1
\end{cases}$$

电路

7)检查是否可以自启动

例 2. 设计 M-6 减法计数器

6 个状态

直接用3位数编码

 $Q_3Q_2Q_1$

/Z

Z_{Q_1}	$Q_2^{\mathbf{n}}$	01	11	10
0	1	0	Ф	0
1	0	0	Ф	0

Q_3^{n+1} Q_1^{n}	$Q_2^{\mathbf{n}}$	01	11	10
0	1	0	Φ	0
1	0	0	Ф	1

$$Q_3^{n+1} = \overline{Q_3} \ \overline{Q_2} \ \overline{Q_1} + Q_3 Q_1 \qquad Q_2^{n+1} = Q_2 Q_1 + Q_3 \overline{Q_1}$$

$$D_3 = \overline{Q_3} \ \overline{Q_2} \ \overline{Q_1} + Q_3 Q_1$$
 $D_2 = Q_2 Q_1 + Q_3 \overline{Q_1}$

$$Q_2^{n+1} = Q_2 Q_1 + Q_3 \overline{Q_1}$$

$$D_2 = Q_2 Q_1 + Q_3 \overline{Q_1}$$

$$Q_1^{n+1} = \overline{Q_1}$$

$$D_1 = \overline{Q_1}$$

$$Z = \overline{Q_3} \ \overline{Q_2} \ \overline{Q_1}$$

自启动及电路图略

例 3. (例6.5)

设计一个串行数据检测器。该检测器有一个输入端X。电路的功能是对输入信号进行检测。当连续输入三个1(以及三个以上1)时,该电路输出Y=1,否则输出Y=0。

1) 根据设计要求,设定状态,画出状态转换图。

 S_0 —初始状态或没有收到1时的状态;

 S_1 —收到一个1后的状态;

 S_2 —连续收到两个1后的状态;

 S_3 —连续收到三个1 (以及三个以上1) 后的状态。

X=1, 收到一个"1"

 S_0 —初始状态或没有收到1时的状态;

 S_1 —收到一个1后的状态;

 S_2 —连续收到两个1后的状态;

 S_3 —连续收到三个1 (以及三个以上1) 后的状态。

X=1, 收到一个"1"

输入三个1 (以及三个以上1) 时,输出Y=1

2) 状态化简

状态化简: 合并等效状态

等效状态:

在相同的输入条件下,输出相同、次态也相同的状态

 S_2 和 S_3 是等效状态,将 S_2 和 S_3 合并为 S_2

3) 状态分配、编码

Set
$$S_0 = 00$$

 $S_1 = 01$ 编码可以
 $S_2 = 11$

编码后的状态图

状态表

X	Q_1^n	Q_0^n	Q_1^{n+1}	Q_0^{n+1}	Y
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	Φ	Φ	Φ
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	Φ	Φ	Ф
1	1	1	1	1	1

4) 选触发器及控制输入

$$Q_1^{n+1} = XQ_0^n = D_1 \quad D_1 = XQ_0^n$$

$$Q_0^{n+1} = X = D_0 \qquad D_0 = X$$

X	Q_1^n	Q_0^n	Q_1^{n+1}	Q_0^{n+1}	Y
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	Φ	Φ	Φ
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	Φ	Φ	Φ
1	1	1	1	1	1

$$Y = XQ_1^n$$

5) 电路

$$D_1 = XQ_0^n \quad D_0 = X$$

$$Q_1^{n+1} = XQ_0^n$$

$$Q_0^{n+1} = X$$

$$Y = XQ_1^n$$

6) 自启动

从电路的状态图分析

可以自启动

 Q_1Q_0 X/Y

但其功能错误, 输出应设置为0,才符合题意

检测 连续输入三个及以上个1时,电路输出Y=1。

自启动

让110对应的输出为0

状态表

X	Q_1^n	Q_0^n	Q_1^{n+1}	Q_0^{n+1}	Y	
0	0	0	0	0	0	Y
0	0	1	0	0	0	16
0	1	0	0	0	0	CLOC
0	1	1	0	0	0 0	Min
1	0	0	0	1	0	
1	0	1	1	100	0	
1	1	0	0	1	0	
1	1	1	1	1	1	<u> </u>

Y X Q	2^n_1 00	01	11	10
0	0	0	0	0
1	0	0	1	0

$$Y = XQ_1^nQ_0^n$$

既实现自启动,也符号题意。

可以在最初设计时就考虑自启动问题。

例 4. 按照下面状态图设计电路 (例6.6)

确定状态及状态表

状态数

确定

FF 个数

 $n \text{ FFs} \rightarrow 2^n$ 状态

 $2^{n-1} \le$ 状态数 $\le 2^n \rightarrow n$ FFs

3 < 2² 需要 2 个 FF

状态表 (根据状态图)

X/Z

X	Q_2^n	Q_1^n	Q_2^{n+1}	Q_1^{n+1}	Z
0	0	0	0	0	0
0	0	1	ф	ф	ф
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	ф	ф	ф
1	1	0	1	1	0
1	1	1	0	0	1

选择 FF (K-map, 圈 1)

2# FF

$$Q_2^{n+1} = \overline{X}Q_2^n + X\overline{Q_1}^n$$

选择 JK-FF

$$Q_2^{n+1} = J_2 \overline{Q}_2^n + \overline{K}_2 Q_2^n$$

 Q_2^{n+1} 00 0

找到 $J_2 = ? K_2 = ?$

不能按上面方法圈,必须圈成 $Q_2^{n+1} = Q_2^{n} + Q_2^{n}$

$$Q_2^{n+1} = Q_2^{n+1} = Q_2^{n+1}$$

$$Q_{2}^{n+1}$$

$$Q_{1}^{n} Q_{2}^{n} Q_{2}^{n}$$

$$Q_{2}^{n+1} = X\overline{Q}_{2}^{n} + (\overline{X} + \overline{Q}_{1}^{n})Q_{2}^{n}$$

$$= X\overline{Q}_{2}^{n} + \overline{X}Q_{1}^{n}Q_{2}^{n}$$

$$\vdots \begin{cases} J_{2} = X \\ K_{2} = XQ_{1}^{n} \end{cases}$$

能找到系数(控制变量)时尽量 化简;找不到系数时,牺牲化简也 要找到系数。

1# FF

X	Q_2^n	Q_1^n	$Q_2^{n+1}Q_1^{n+1}Z$
0	0	0	0 0 0
0	0	1	ффф
0	1	0	1 0 0
0	1	1	1 1 0
1	0	0	1 0 0
1	0	1	ффф
1	1	0	1 1 0
1	1	1	0 0 1

JK-FF

$$Q_1^{n+1} = J_1 \overline{Q}_1^n + \overline{K}_1 Q_1^n$$
$$= X Q_2^n \overline{Q}_1^n + \overline{X} Q_1^n$$

$$\therefore \begin{cases} J_1 = XQ_2^n \\ K_1 = X \end{cases}$$

输出 Z

$$Z = XQ_1^n$$

电路

$$\begin{cases} J_2 = X \\ K_2 = XQ_1^n \end{cases}$$

$$\begin{cases} J_1 = XQ_2^n \\ K_1 = X \end{cases}$$

讨论: 01 状态

分析卡诺图 K-map

$$XQ_2^nQ_1^n = 001$$
, $(Z=0)$
Next state $Q_2^{n+1}Q_1^{n+1} = 01$,
 $XQ_2^nQ_1^n = 101$ 时, $(Z=1)$
Next state $Q_2^{n+1}Q_1^{n+1} = 10$,

实现自启动

要分析输出的物理意义(即电路功能)是否正确。

此电路为可控模3加 法计数器。

X=0,保持原状态;

X=1,作加法计数。

输出Y=1,为进位输出。

显然自启动之后电路功能出现错误。

应该将X=1时01状态的输出设为0。

在设计电路时

X=0, 保持原状态; X=1, 作加法计数 (从0开始)

在填状态表时不能填ф

状态表

Ī	X	O^n	Q_1^n	Q^{n+1}	Q_1^{n+1}	Z
	11	$\boldsymbol{\mathcal{Z}}_2$	\mathcal{L}_1	\mathbf{z}_2	∠ l	L
	0	0	0	0	0	0
	0	0	1	0	1	0
	0	1	0	1	0	0
	0	1	1	1	1	0
	1	0	0	1	0	0
	1	0	1	0	0	0
	1	1	0	1	1	0
	1	1	1	0	0	1

才能符合电路要求

例5. 设计一个自动售饮料机的逻辑电路。它的投币口每次只能投入一枚五角或一元的硬币。投入一元五角钱硬币后,机器会自动给出一杯饮料;投入两元(两个一元)硬币后,在给出饮料的同时找回一枚五角硬币。

解:

状态:

 S_0 : 初始 (未投币)

3个 状态 $S_1: 投入 \ \ 0.5,$

S₂:投入¥1.0(一个¥1.0或两个¥0.5)

再投入 Ψ 0.5, 返回 S_0 , 输出 Y=1, Z=0;

再投入¥ 1.0, 返回 S_0 , 输出 Y=1, Z=1 (找回¥ 0.5). 多输入,多输出

AB/YZ

A: ¥ 1.0

B: ¥ 0.5

Y: 饮料

Z: 找钱

· S₀:初始

 $S_1 : \Psi 0.5$

 $S_2 : Y = 1.0$

 S_0 : 投入¥ 0.5, S_1 S_0 : 投入¥ 1.0, S_2

S₁:投入¥ 0.5, S₂

S₁:投入¥ 1.0, S₀ 饮料

S₂:投入¥ 0.5, S₀ 饮料

S₂:投入¥ 1.0, S₀ 饮料 和 找钱

$Q_1^n Q_0^n$ $\left\{egin{array}{l} \mathbf{S_0} ightarrow \mathbf{000} \ \mathbf{S_1} ightarrow \mathbf{010} \ \mathbf{S_2} ightarrow \mathbf{100} \end{array} ight.$

状态表

A H	3 (Q_1^n	Q_0^n	Q_1^{n+1}	2_{0}^{n}	:+1	Y Z
0	0	0	0	0 ()	0	0
0	0	0	1	0	1	0	0
0	0	1	0	1	0	0	0
0	0	1	1	ФФ	Þ	Ф	Ф
0	1	0	0	0	1	0	0
0	1	0	1	1	0	0	0
0	1	1	0	0	0	1	0
0	1	1	1	ФФ	Þ	Ф	Ф
1	0	0	0	1	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	0	1	1
1	0	1	1	ФФ	þ (Ф	Þ
1	1	0	0	ФФ	Þ	Ф	Þ
1	1	0	1	ФФ	Þ	Ф	Þ
1	1	1	0	ФФ	Þ	Ф	Þ
1	1	1	1	ФФ	Þ	Ф	Þ

$$Q_1^{n+1} = BQ_0 + A\overline{Q}_1\overline{Q}_0 + \overline{A} \cdot \overline{B}Q_1$$

$$Y = AQ_0 + AQ_1 + BQ_1$$

$$Q_0^{n+1} = B\overline{Q}_1 \cdot \overline{Q}_0 + \overline{A} \cdot \overline{B}Q_0$$

$$Z = AQ_1$$

用 D-FF

$$D_{1} = BQ_{0} + A\overline{Q}_{1}\overline{Q}_{0} + \overline{A} \cdot \overline{B}Q_{1}$$

$$Y = AQ_{0} + AQ_{1} + BQ_{1}$$

$$D_{0} = B\overline{Q}_{1} \cdot \overline{Q}_{0} + \overline{A} \cdot \overline{B}Q_{0}$$

$$Z = AQ_{1}$$

由电路得到状态图

在电路处于"11" 状态时,

若 AB = 00 (无输入), $Q_1Q_0 = 11$, 电路不能自启动;

若AB = 01 或 10, 电路可以自启动, 但是找钱系统出错;

A: ¥ 1.0

B: ¥ 0.5

Y: 饮料

Z: 找钱

所以,电路初始工作时,应首先将 R_D 设置为低电平,电路状态从 "00"开始。

电路状态图应设计成

状态表

A	В	Q_1^n	Q_0^n	Q_1^n	⁺¹ Q	n+1	Y Z		
0	0	0	0	0	0	0	0		
0	0	0	1	0	1	0	0		
0	0	1	0	1	0	0	0		
0	0	1	1	1	1	0	0		
0	1	0	0	0	1	0	0		
0	1	0	1	1	0	0	0		
0	1	1	0	0	0	1	0		
0	1	1	1	0	1	0	0		
1	0	0	0	1	0	0	0		
1	0	0	1	0	0	1	0		
1	0	1	0	0	0	1	1		
1	0	1	1	1	0	0	0		
1	1	0	0	Φ	Ф	ΦΦ	Þ		
1	1	0	1	Φ	Ф	ΦΦ	Þ		
1	1	1	0	ΦΦΦΦ					
1	1	1	1	Φ	Ф	ΦΦ	Þ		