Package 'IsoplotR'

May 24, 2016

Title Statistical Toolbox for Radiometric Geochronology

Version 0.3

Description An R implementation of Ken Ludwig's popular Isoplot add-in to Microsoft Excel. Currently plots U-Pb data on Wetherill and Tera-Wasserburg concordia diagrams. Calculates concordia and discordia ages. Performs linear regression of measurements with correlated errors using the 'York' approach. Future versions will include functionality for the Ar-Ar, Rb-Sr, Sm-Nd, Re-Os, U-Th-He, fission track and cosmogenic nuclide methods, including isochrons, age spectra, ternary diagrams, kernel density estimates, radial plots, banana diagrams and multidimensional scaling plots. A graphical user interface is provided as an RStudio Shiny app.

Author Pieter Vermeesch [aut, cre]

Maintainer Pieter Vermeesch < p. vermeesch@ucl.ac.uk>

Depends R (>= 3.0.0)

Imports methods

License GPL-2

LazyData true

Index

RoxygenNote 5.0.1

R topics documented:

ncordia.age	. 2
ncordia.plot	
cordia.age	
pse	. 4
	. 5
nbda	
d.data	
d.matrix	
tings	. 8
Ъ	
kfit	. 9
	11

2 concordia.age

concordia.age

Calculate U-Pb concordia ages

Description

Evaluates the equivalence of multiple (²⁰⁶Pb/²³⁸U-²⁰⁷Pb/²³⁵U or ²⁰⁷Pb/²⁰⁶Pb-²⁰⁶Pb/²³⁸U) compositions, computes the weighted mean isotopic composition and the corresponding concordia age using the method of maximum likelihood, computes the mswd of equivalence and concordance and their respective Chi-squared p-values.

Usage

```
concordia.age(x, wetherill = TRUE, dcu = TRUE)
```

Arguments

x an object of class UPb

wetherill boolean flag to indicate whether the data should be evaluated in Wetherill (TRUE)

or Tera-Wasserburg (FALSE) space

dcu propagate the decay constant uncertainties?

Value

a list with the following items:

x: a named vector with the weighted mean U-Pb composition

x.cov: the covariance matrix of the mean U-Pb composition

age: the concordia age (in Ma)

age.err: the standard error of the concordia age

mswd: a list with two items (equivalence and concordance) containing the MSWD (Mean of the Squared Weighted Deviates, a.k.a the reduced Chi-squared statistic outside of geochronology) of isotopic equivalence and age concordance, respectively.

p.value: a list with two items (equivalence and concordance) containing the p-value of the Chi-square test for isotopic equivalence and age concordance, respectively.

```
data(UPb)
fit <- concordia.age(UPb)
print(paste('age = ',fit$age,'+/-',fit$age.err,'Ma, MSWD = ',fit$mswd))</pre>
```

concordia.plot 3

concordia.plot	Concordia diagram
----------------	-------------------

Description

Wetherill and Tera-Wasserburg concordia diagrams

Usage

```
concordia.plot(x, limits = NULL, alpha = 0.05, wetherill = TRUE,
    show.numbers = FALSE, ellipse.col = rgb(0, 1, 0, 0.5),
    concordia.col = "darksalmon", dcu = TRUE, show.age = 0)
```

Arguments

x an object of class UPb

limits age limits of the concordia line

alpha confidence cutoff for the error ellipses
wetherill boolean flag (FALSE for Tera-Wasserburg)
show.numbers boolean flag (TRUE to show grain numbers)

ellipse.col background colour of the error ellipses

concordia.col colour of the concordia line

dcu show decay constant uncertainty?

show.age one of either

0: don't show the age

1: calculate the concordia age

2: fit a discordia line

Examples

```
data(UPb)
concordia.plot(UPb)
```

discordia.age

Linear regression on a U-Pb concordia diagram

Description

Performs linear regression of U-Pb data on Wetherill and Tera-Wasserburg concordia diagrams. Computes the upper and lower intercept ages (for Wetherill) or the lower intercept age and the ²⁰⁷Pb/²⁰⁶Pb intercept (for Tera-Wasserburg), taking into account error correlations and decay constant uncertainties.

4 ellipse

Usage

```
discordia.age(x, wetherill = TRUE, dcu = TRUE)
```

Arguments

x an object of class UPb

wetherill boolean flag to indicate whether the data should be evaluated in Wetherill (TRUE)

or Tera-Wasserburg (FALSE) space

dcu propagate the decay constant uncertainties?

Value

a list with the following items:

x: a two element vector with the upper and lower intercept ages (if wetherill==TRUE) or the lower intercept age and ²⁰⁷Pb/²⁰⁶Pb intercept (for Tera-Wasserburg)

cov: the covariance matrix of the elements in x

Examples

```
data(UPb)
fit <- discordia.age(UPb)
print(paste('lower intercept = ',fit$x[1],'+/-',sqrt(fit$cov[1,1]),'Ma'))</pre>
```

ellipse

Get coordinates of error ellipse for plotting

Description

Construct an error ellipse age a given confidence level from its centre and covariance matrix

Usage

```
ellipse(x, y, covmat, alpha = 0.05)
```

Arguments

x x-coordinate (scalar) for the centre of the ellipse
y y-coordinate (scalar) for the centre of the ellipse
covmat covariance matrix of the x-y coordinates
alpha the probability cutoff for the error ellipses

Value

```
a [50x2] matrix of plot coordinates
```

I.R 5

Examples

```
x = 99; y = 101;
covmat <- matrix(c(1,0.9,0.9,1),nrow=2)
ell <- ellipse(x,y,covmat)
plot(c(90,110),c(90,110),type='l')
polygon(ell,col=rgb(0,1,0,0.5))
points(x,y,pch=21,bg='black')
```

I.R

Isotopic ratios

Description

Gets or sets natural isotopic ratios.

Usage

```
I.R(ratio, x = NULL, e = NULL)
```

Arguments

Value

if x == e == NULL, returns a two-item vector containing the mean value of the requested ratio and its standard error, respectively.

References

Ar: Lee, Jee-Yon, et al. "A redetermination of the isotopic abundances of atmospheric Ar." Geochimica et Cosmochimica Acta 70.17 (2006): 4507-4512.

Rb: Catanzaro, E. J., et al. "Absolute isotopic abundance ratio and atomic weight of terrestrial rubidium." J. Res. Natl. Bur. Stand. A 73 (1969): 511-516.

Sr: Moore, L. J., et al. "Absolute isotopic abundance ratios and atomic weight of a reference sample of strontium." J. Res. Natl.Bur. Stand. 87.1 (1982): 1-8.

Re: Gramlich, John W., et al. "Absolute isotopic abundance ratio and atomic weight of a reference sample of rhenium." J. Res. Natl. Bur. Stand. A 77 (1973): 691-698.

Os: Voelkening, Joachim, Thomas Walczyk, and Klaus G. Heumann. "Osmium isotope ratio determinations by negative thermal ionization mass spectrometry." Int. J. Mass Spect. Ion Proc. 105.2 (1991): 147-159.

U: Hiess, Joe, et al. "238U/235U systematics in terrestrial uranium-bearing minerals." Science 335.6076 (2012): 1610-1614.

6 lambda

Examples

```
# returns the 238U/235U ratio of Hiess et al. (2012):
print(I.R('U238U235'))
# use the 238U/235U ratio of Steiger and Jaeger (1977):
I.R('U238U235',138.88,0)
print(I.R('U238U235'))
```

lambda

Decay constants

Description

Gets or sets the decay constants of radioactive istopes

Usage

```
lambda(nuclide, x = NULL, e = NULL)
```

Arguments

nuclide	the nuclide name
X	new value for the decay constant
е	new value for the decay constant uncertainty

Value

if x == e == NULL, returns a two-item vector containing the decay constant [in Ma-1] and its standard error, respectively.

```
print(lambda('U238'))
# use the decay constant of Kovarik and Adams (1932)
lambda('U238',0.0001537,0.0000068)
print(lambda('U238'))
```

read.data 7

read.data

Read geochronology data

Description

Cast a .csv file into one of IsoplotR's data classes

Usage

```
read.data(fname, method = "U-Pb", format = 1, ...)
```

Arguments

fname (.csv format)

method one of 'U-Pb', 'Ar-Ar', 'Rb-Sr', 'Sm-Nd', 'Re-Os', 'U-Th-He', 'fission tracks',

'cosmogenic nuclides' or 'other'

format formatting option, depends on the value of method. If method = 'U-Pb', then

format is one of either:

1: 7/6, s[7/6], 6/8, s[6/8], 7/5, s[7/5]

... optional arguments to the read.csv function

Value

```
an object of class 'UPb', 'ArAr', 'RbSr', 'SmNd', 'ReOs', 'UThHe', 'fission', 'cosmogenics', or 'other'
```

Examples

```
# load one of the built-in .csv files:
fname <- system.file("UPb.csv",package="IsoplotR")
UPb <- read.data(fname,'U-Pb')
concordia.plot(UPb)</pre>
```

read.matrix

Read geochronology data

Description

Cast a matrix into one of IsoplotR's data classes

Usage

```
read.matrix(x, method = "U-Pb", format = 1)
```

8 settings

Arguments

x a matrix

method see read.data for details format see read.data for details

Value

see read. data for details

Examples

```
# load one of the built-in .csv files:
fname <- system.file("UPb.csv",package="IsoplotR")
dat <- read.csv(fname,header=TRUE)
UPb <- read.matrix(dat,method='U-Pb',format=1)
concordia.plot(UPb)</pre>
```

settings

Load settings to and from json

Description

Get and set preferred values for decay constants and isotopic abundances from and to a . json file format

Usage

```
settings(fname = NULL)
```

Arguments

fname the path of a . json file

Value

```
if fname==NULL, returns a . json string
```

```
json <- system.file("defaults.json",package="IsoplotR")
settings(json)
print(settings())</pre>
```

UPb 9

UPb

An example U-Pb dataset

Description

An example U-Pb dataset provided with Ludwig's Isoplot add-in

Details

```
UPb is an object of class UPb, i.e. a list with two items x: a matrix formatted according to format format: an integer defining the format of x. Options are: 1: 7/6, s[7/6], 6/8, s[6/8], 7/5, s[7/5]
```

Author(s)

Ken Ludwig and Pieter Vermeesch

Examples

```
data(UPb)
concordia.plot(UPb)
```

yorkfit

Linear regression of X,Y-variables with correlated errors

Description

Implements the unified regression algorithm of York et al. (2004) which, although based on least squares, yields results that are consistent with maximum likelihood estimates of Ludwig and Titterington (1994)

Usage

```
yorkfit(X, Y, sX, sY, rXY)
```

Arguments

X	vector of measurements
Υ	vector of measurements
sX	standard errors of X
sY	standard errors of Y
rXY	correlation coefficients between \boldsymbol{X} and \boldsymbol{Y}

10 yorkfit

Value

```
a five element list containinga: the intercept of the straight line fitb: the slope of the fitsa: the standard error of the interceptsb: the standard error of the slope
```

References

Ludwig, K. R., and D. M. Titterington. "Calculation of 230ThU isochrons, ages, and errors." Geochimica et Cosmochimica Acta 58.22 (1994): 5031-5042.

York, Derek, et al. "Unified equations for the slope, intercept, and standard errors of the best straight line." American Journal of Physics 72.3 (2004): 367-375.

```
X \leftarrow c(1.550, 12.395, 20.445, 20.435, 20.610, 24.900,
        28.530,50.540,51.595,86.51,106.40,157.35)
Y \leftarrow c(.7268, .7849, .8200, .8156, .8160, .8322,
        .8642, .9584, .9617, 1.135, 1.230, 1.490)
n <- length(X)</pre>
sX <- X*0.01
sY <- Y*0.005
rXY \leftarrow rep(0.8,n)
fit <- yorkfit(X,Y,sX,sY,rXY)</pre>
covmat <- matrix(0,2,2)
plot(range(X),fit$a+fit$b*range(X),type='l',ylim=range(Y))
for (i in 1:n){
    covmat[1,1] \leftarrow sX[i]^2
    covmat[2,2] \leftarrow sY[i]^2
    covmat[1,2] \leftarrow rXY[i]*sX[i]*sY[i]
    covmat[2,1] <- covmat[1,2]</pre>
    ell <- ellipse(X[i],Y[i],covmat,alpha=0.05)</pre>
    polygon(ell)
}
```

Index

```
concordia.age, 2
concordia.plot, 3
discordia.age, 3
ellipse, 4
I.R, 5
lambda, 6
read.data, 7
read.matrix, 7
settings, 8
UPb, 9
yorkfit, 9
```