Розрахунково-графічне завдання №1

Онищенко О. А. КНТ-122

1. Розв'язати диференційні рівняння першого порядку

Умова

1.
$$(1 - e^x)\sin(y)y' = e^x\cos^3(y)$$

2.
$$xy' = y + \sqrt{x^2 + y^2}$$

3.
$$y' + y \cot(x) = \frac{\cos^2(x)}{\sin^3(x)}$$

4.
$$2xy^2 = x\frac{y'}{\ln(x)} + \frac{y}{\ln(x)}$$

Рішення 1

Розв'яжемо диференціальне рівняння першого порядку:

$$(1-e^x)\sin(y)y'=e^x\cos^3(y)$$

Ми можемо переписати це рівняння так:

$$(1-e^x)\sin(y)dy=e^x\cos^3(y)dx$$

Тепер ми можемо розділити змінні:

$$rac{\sin(y)}{\cos^3(y)}dy = rac{e^x}{1-e^x}dx$$

Інтегруючи обидві частини, отримаємо:

$$\int rac{\sin(y)}{\cos^3(y)} dy = \int rac{e^x}{1 - e^x} dx$$

Ліва частина є стандартним інтегралом, який можна розв'язати підстановкою $u=\cos(y)$, $du=-\sin(y)dy$. Права частина також є стандартним інтегралом, який можна розв'язати за допомогою підстановки $v=1-e^x$, $dv=-e^xdx$.

Отже, маємо:

$$-\int \frac{du}{u^3} = -\int \frac{dv}{v}$$

Розв'язавши ці інтеграли, отримаємо:

$$\frac{1}{2u^2} = \ln|v| + C$$

Підставивши назад u і v, отримаємо загальний розв'язок:

$$rac{1}{2\cos^2(y)}=\ln|1-e^x|+C$$

Це і є розв'язок даного диференціального рівняння.

Рішення 1 в зошиті

Рішення 2

Розв'яжемо диференціальне рівняння першого порядку:

$$xy'=y+\sqrt{x^2+y^2}$$

Ми можемо переписати його у вигляді:

$$xy'-y=\sqrt{x^2+y^2}$$

Тепер ми можемо розділити змінні:

$$rac{y}{\sqrt{x^2+y^2}}dy=rac{x}{\sqrt{x^2+y^2}}dx$$

Інтегруючи обидві частини, отримаємо:

$$\int rac{y}{\sqrt{x^2+y^2}} dy = \int rac{x}{\sqrt{x^2+y^2}} dx$$

Ліва частина є стандартним інтегралом, який можна розв'язати підстановкою $u=x,\,du=dx.$ Права частина також є стандартним інтегралом, який можна розв'язати підстановкою $v=y,\,dv=dy.$

Отже, маємо

$$\int \frac{du}{\sqrt{u^2 + v^2}} = \int \frac{dv}{\sqrt{u^2 + v^2}}$$

Розв'язуючи ці інтеграли, отримаємо:

$$\ln |u + \sqrt{u^2 + v^2}| = \ln |v + \sqrt{u^2 + v^2}| + C$$

Підставивши назад u і v, отримаємо загальний розв'язок:

$$\ln|x + \sqrt{x^2 + y^2}| = \ln|y + \sqrt{x^2 + y^2}| + C$$

Це і є розв'язок даного диференціального рівняння.

Рішення 2 в зошиті

Рішення 3

Розв'яжемо диференціальне рівняння першого порядку:

$$y'+y\cot(x)=rac{\cos^2(x)}{\sin^3(x)}$$

Ми можемо переписати це як:

$$y' + y \cot(x) - \frac{\cos^2(x)}{\sin^3(x)} = 0$$

Це лінійне неоднорідне диференціальне рівняння першого порядку. Загальний розв'язок такого рівняння має вигляд:

$$y=e^{-\int P(x)dx}\left(\int Q(x)e^{\int P(x)dx}dx+C
ight)$$

де
$$(P(x)=\cot(x))$$
 і $(Q(x)=-rac{\cos^2(x)}{\sin^3(x)}).$

Отже, маємо:

$$y = e^{-\int \cot(x) dx} \left(\int -rac{\cos^2(x)}{\sin^3(x)} e^{\int \cot(x) dx} dx + C
ight)$$

Розв'язавши ці інтеграли, отримаємо загальний розв'язок:

$$y=e^{-\ln|\sin(x)|}\left(\int -rac{1-\sin^2(x)}{\sin^2(x)}e^{\ln|\sin(x)|}dx+C
ight)$$

Спрощуючи, отримаємо:

$$y=rac{1}{\sin(x)}igg(-\int (1-\sin^2(x))dx+Cigg)$$

Це і є розв'язок даного диференціального рівняння.

Рішення 3 в зошиті

Рішення 4

Розв'яжемо диференціальне рівняння першого порядку:

$$2xy^2=xrac{y'}{\ln(x)}+rac{y}{\ln(x)}$$

Ми можемо переписати це як:

$$2xy^2-rac{xy}{\ln(x)}=xrac{y'}{\ln(x)}$$

Тепер ми можемо розділити змінні:

$$rac{y'}{\ln(x)} = rac{2y^2 - rac{y}{\ln(x)}}{x}$$

Проінтегрувавши обидві частини, отримаємо:

$$\int rac{y'}{\ln(x)} dx = \int rac{2y^2 - rac{y}{\ln(x)}}{x} dx$$

Ліва частина є стандартним інтегралом, який можна розв'язати підстановкою $u=y,\,du=y'dx.$ Права частина також є стандартним інтегралом, який можна розв'язати за допомогою підстановки $v=x,\,dv=dx.$

Отже, маємо

$$\int rac{du}{\ln(u)} = \int rac{2v^2 - rac{1}{\ln(v)}}{v} dv$$

Розв'язуючи ці інтеграли, отримаємо:

$$\ln |\ln |u|| = 2v - \ln |\ln |v|| + C$$

Підставивши назад u і v, отримаємо загальний розв'язок:

$$\ln |\ln |y|| = 2x - \ln |\ln |x|| + C$$

Це і є розв'язок даного диференціального рівняння.

Рішення 4 в зошиті

2. Розв'язати диференційні рівняння вищих порядків

Умова

1.
$$y \ln(y) \times y'' + (y')^2 = 0$$
, $y(0) = e$ $y'(0) = 1$

2.
$$y'' + 4y = \cot 2x$$

3.
$$y'' + 2y' + 5y = 8.5\cos(2x) + 40e^5x$$
, $y(0) = 1\frac{7}{17}$ $y'(0) = 8\frac{5}{17}$

Рішення 1

Рішення 2

Рішення 3

3. Розв'язати систему диференційних рівнянь

Умова

$$\left\{ egin{aligned} x' &= 4x + y \ y' &= x + 4y - e^t \end{aligned}
ight.$$

Рішення

Дана система диференціальних рівнянь має вигляд:

$$\left\{ egin{aligned} x' &= 4x + y \ y' &= x + 4y - e^t \end{aligned}
ight.$$

Це система лінійних однорідних диференціальних рівнянь. Ми можемо записати її у матричній формі наступним чином:

$$egin{pmatrix} egin{pmatrix} x' \ y' \end{pmatrix} = egin{pmatrix} 4 & 1 \ 1 & 4 \end{pmatrix} egin{pmatrix} x \ y \end{pmatrix} - egin{pmatrix} 0 \ e^t \end{pmatrix}$$

Характеристичне рівняння матриці має вигляд:

$$\lambda^2 - 8\lambda + 15 = 0$$

Розв'язання цього рівняння дає нам два власних значення, $\lambda_1=3$ і $\lambda_2=5$. Відповідні власні вектори $v_1=(1,-1)^T$ і $v_2=(1,1)^T$.

Отже, загальний розв'язок однорідної системи (без доданка e^t) має вигляд:

$$egin{pmatrix} x(t) \ y(t) \end{pmatrix} = c_1 e^{3t} egin{pmatrix} 1 \ -1 \end{pmatrix} + c_2 e^{5t} egin{pmatrix} 1 \ 1 \end{pmatrix}$$

Для знаходження конкретного розв'язку неоднорідної системи можна скористатися методом невизначених коефіцієнтів. Ми вгадуємо розв'язок виду $y_p(t)=Ae^t$, і підставляємо його у друге рівняння для знаходження A. Це дає нам

$$Ae^t + 4Ae^t - e^t = Ae^t \Rightarrow A = rac{1}{5}$$

Отже, конкретний розв'язок має вигляд $y_p(t)=\frac{1}{5}e^t$, а відповідне значення $x_p(t)$ можна знайти з першого рівняння:

$$x_p(t)=rac{1}{5}e^t-y_p(t)=0$$

Отже, загальний розв'язок неоднорідної системи має вигляд:

$$egin{pmatrix} x(t) \ y(t) \end{pmatrix} = c_1 e^{3t} \begin{pmatrix} 1 \ -1 \end{pmatrix} + c_2 e^{5t} \begin{pmatrix} 1 \ 1 \end{pmatrix} + \begin{pmatrix} 0 \ rac{1}{5} e^t \end{pmatrix}$$

де c_1 і c_2 - константи, що визначаються початковими умовами.

Рішення в зошиті