Estimaciones de los Coefcientes Binomiales

Ronald Mas, Angel Ramirez

22 de junio de 2020

Contenido

- Principio de inclusión y exclusión
- Álgebra de Boole
- Funciones booleanas

Resultados Previos

Proposición

Si
$$A \subset B$$
 entonces $|B - A| = |B| - |A|$.

Prueba:

Si
$$A \subset B$$
 entonces $B = A \cup (B - A)$. Como $A \cap (B - A) = \emptyset$ entonces $|B| = |A \cup (B - A)| = |A| + |B - A|$ que concluye la prueba.

Proposición

Si A, B y C son conjuntos finitos disjuntos dos a dos se cumple que:

$$|A \cup B \cup C| = |A| + |B| + |C|$$

Prueba:

Como
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C) = \emptyset \cup \emptyset = \emptyset$$
. Luego

$$|A \cup B \cup C| = |A \cup (B \cup C)|$$

$$= |A| + |B \cup C|$$

$$= |A| + |B| + |C|$$

Principio de Inclusión-exclusión

Teorema

Para toda sucesión A_1, A_2, \dots, A_n de conjuntos finitos se cumple que:

$$|\bigcup_{i=1}^n A_i| = \sum_{k=1}^n (-1)^{k-1} \sum_{I \in \binom{\{1,2,\cdots,n\}}{k}} |\bigcap_{i \in I} A_i|.$$

Prueba:

Procedamos por inducción:

1) Para n=2 se tiene que: Como $A_1 \cup A_2 = [A_1 - (A_1 \cap A_2)] \cup [A_2 - (A_1 \cap A_2)] \cup [A_1 \cap A_2]$. Por lo resultados previos se tiene que:

$$|A_{1} \cup A_{2}| = |A_{1} - (A_{1} \cap A_{2})| + |A_{2} - (A_{1} \cup A_{2})| + |A_{1} \cap A_{2}|$$

$$= |A_{1}| - |A_{1} \cap A_{2}| + |A_{2}| - |A_{1} \cap A_{2}| + |A_{1} \cap A_{2}|$$

$$= |A_{1}| + |A_{2}| - |A_{1} \cap A_{2}|.$$

2) Supongamos que se cumple para n-1

$$|\bigcup_{i=1}^{n} A_{i}| = |\bigcup_{\substack{i=1\\n-1}}^{n-1} (A_{i}) \cup A_{n}|$$

$$= |\bigcup_{\substack{i=1\\n-1\\n-1}}^{n-1} A_{i}| + |A_{n}| - |(\bigcup_{\substack{i=1\\n-1\\n-1}}^{n-1} A_{i}) \cap A_{n}|$$

$$= |\bigcup_{i=1}^{n-1} A_{i}| + |A_{n}| - |(\bigcup_{i=1}^{n-1} (A_{i} \cap A_{n})|$$

Usando la hipotesis de inducción a $|\bigcup_{i=1}^{n-1}A_i|$ y $|\bigcup_{i=1}^{n-1}A_i'|$ con $A_i'=A_i\cap A_n$.

Continua la prueba

$$= \left(\sum_{k=1}^{n-1} (-1)^{k-1} \sum_{I \in \left(\{1, 2, \cdots, n-1\} \right)} |\bigcap_{i \in I} A_i| \right) + |A_n|$$

$$- \left(\sum_{k=1}^{n-1} (-1)^{k-1} \sum_{I \in \left(\{1, 2, \cdots, n-1\} \right)} |\bigcap_{i \in I \cup \{n\}} A_i| \right).$$

Luego en la primera suma agregamos con los signos apropiados el tamaño de las intersecciones que no incluyan a An y en la segunda suma el tamaño de las intersecciones que incluyan a An aparecidas. Luego esto concluiria la prueba.

Ejemplo:

Para un número natural el valor de $\varphi(n)$ llamado **Indicador de Euler o función de Euler** es definido como la cantidad de números $m \le n$ y que son coprimos con n Es decir:

$$\varphi(n) = \mid \{m \in \mathbb{N} : MCD(n, m) = 1\} \mid .$$

Por ejemplo, si: $n=p_1^{lpha_1}p_2^{lpha_2}$, luego

$$\begin{array}{rcl} \varphi(n) & = & n - \mid A_1 \cup A_2 \mid \\ & = & n - \mid A_1 \mid - \mid A_2 \mid + \mid A_1 \cap A_2 \mid \\ & = & n - \frac{n}{p_1} - \frac{n}{p_2} + \frac{n}{p_1 p_2} \\ & = & n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right). \end{array}$$

Fórmula del Indicador

Sea $n \in \mathbb{N}$ entonces por el teorema fundamental de la aritmética se tiene

$$n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_r^{\alpha_r},$$

con p_1, \dots, p_r primos distintos y $\alpha_i \in \mathbb{N}$.

Teorema

Para $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ se tiene:

$$\varphi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_r}\right)$$

Álgebra de Boole

Definición

Un álgebra de Boole también llamada un álgebra Booleana es un conjunto *B* junto con dos operaciones:

$$+: B \times B \longrightarrow B$$
 $(a,b) \longmapsto a+b$ $: B \times B \longrightarrow B$ $(a,b) \longmapsto a \cdot b$

que cumplen los siguientes axiomas:

- 1) a+b=b+a y $a \cdot b=b \cdot a$.
- 2) (a+b)+c = a + (b+c) y $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- 3) $a + (b \cdot c) = (a + b) \cdot (a + c)$ y $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$
- 4) Existen elementos 0 y 1 en B tal que a + 0 = a y $a \cdot 1 = a$.
- 5) Para cada $a \in B$ existe un elemento en B denotado por \overline{a} llamado el complemento de a tal que $a + \overline{a} = 1$ y $a \cdot \overline{a} = 0$.

Teorema

Sea B un álgebra de Boole, se cumple:

- 1) El complemento \overline{a} de $a \in B$ es único.
- 2) Los elementos 0 y 1 son únicos.
- 3) $\overline{(\overline{a})} = a, \forall a \in B.$
- 4) Para cada $a \in B$ se cumple que a + a = a y $a \cdot a = a$.
- 5) Para cada $a, b \in B$ se cumple que a + 1 = 1 y $a \cdot 0 = 0$.
- 6) Para cada $a, b \in B$ se cumple que $\overline{a+b} = \overline{a} \cdot \overline{b}$ y $\overline{a \cdot b} = \overline{a} + \overline{b}$.

Prueba del teorema

Prueba:

1) Supongamos que $a \in B$ posee otro complemento, es decir existe $x \in B$ tal que a + x = 1 y $a \cdot x = 0$. Entonces:

$$x = x \cdot 1$$

$$= x \cdot (a + \overline{a})$$

$$= x \cdot a + x \cdot \overline{a}$$

$$= a \cdot x + x \cdot \overline{a}$$

$$= 0 + x \cdot \overline{a}$$

$$= a \cdot \overline{a} + x \cdot \overline{a}$$

$$= \overline{a} \cdot a + \overline{a} \cdot x$$

$$= \overline{a} \cdot (a + x)$$

$$= \overline{a} \cdot 1$$

$$= \overline{a}.$$

Continuación de la prueba

3)
$$\overline{a} + a = a + \overline{a}$$
 y
 $= 1$ y
 $\overline{a} \cdot a = a \cdot \overline{a}$ = 0

Como a satisface las condiciones para ser el complemento de a se tiene que $\overline{(\overline{a})} = a$.

4) Sea $a \in B$ entonces:

$$a = a + 0$$

$$= a + (a \cdot \overline{a})$$

$$= (a + a) \cdot (a + \overline{a})$$

$$= (a + a) \cdot 1$$

$$= a + a.$$

Funciones Booleanas

Definición

Dado $B = \{0, 1\}$, sea $B^n = \{(x_1, \dots, x_n) : x_i \in B \text{ con } 1 \leq i \leq n\}$, definamos una función booleana como:

$$f: B^n \longrightarrow B$$

 $(x_1, \dots, x_n) \longmapsto f(x_1, \dots, x_n)$

Observaciones:

- a) La variable $x \in B$ se denomina variable booleana.
- b) En el lenguaje de las maquinas el 0 significa apagado y el 1 encendido.

Ejemplos:

Ejemplo 1:

Encuentre los valores que toma la función booleana dado por $F(x, y, z) = xy + \overline{z}$.

Solución:

X	у	z	F(x,y,z)
1	1	1	1
1	1	0	1
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	0
0	0	0	1

Ejemplo 2:

Encontrar la función booleana de una cámara fotográfica que tiene 3 sensores y toma la foto si.

- i) El sensor luz esta prendido (1) y el sensor distancia Apagado (0);
- ii) El sensor sonrisa Prendido(1) y el sensor luz apagado (0)

Solución:

Sean las variables:

x:El sensor de luz

y:El sensor de sonrisa

z:El sensor de distancia

Continua Ejemplo 2

Х	у	Z	F(x,y,z)
1	1	1	0
1	1	0	1
1	0	1	0
1	0	0	1
0	1	1	1
0	1	0	1
0	0	1	0
0	0	0	0

Por tanto la función booleana es:

$$F(x, y, z) = xy\overline{z} + x\overline{y}\,\overline{z} + \overline{x}yz + \overline{x}y\overline{z}.$$