2주차 1차시 디지털 정보

[학습목표]

- 1. 아날로그와 디지털의 차이점을 이해하고 설명할 수 있다.
- 2. 정보를 디지털화하는 방식을 이해하고 설명할 수 있다.

학습내용1: 아날로그 정보와 디지털 정보

- 아날로그 정보의 특징을 이용해서 활용한다는 점을 강조
- 디지털 정보가 컴퓨터에서 활용한다는 점을 강조
- 1. 아날로그와 디지털의 예

아날로그 데이터 : 연속적(Continuous)인 데이터 디지털 데이터 : 비연속적(Discrete)인 데이터

[시계와 체중계의 아날로그 방식과 디지털 방식]

숫자뿐만 아니라 사운드, 이미지, 동영상과 같은 다양한 데이터도 고유한 아날로그 방식의 표현과 디지털 방식의 표현 존재

구분	디지털 컴퓨터	아날로그 컴퓨터
입력 방식	숫자, 문자, 소리, 그림, 동영상 데이터	길이, 전압, 전류 등 연속적인 물리량
출력 방식	숫자, 문자, 소리, 그림, 동영상 데이터	곡선, 그래프
정밀도	필요한 한도까지 가능	제한적(0.01%까지)
연산 방식	사칙과 논리연산	미적분 연산, 속도가 고속
회로 구성	논리 회로	증폭 회로
대상 업무	범용	특수 목적용
프로그램	일에 따라 필요함.	필요 없음(내장되어 있음).
유지 관리	복잡하고 비용이 많이 소요됨.	유지 및 관리가 용이하고 저렴함.

[디지털과 아날로그 컴퓨터의 차이점]

2. 아날로그에서 디지털로 변환

- * 실세계 데이터는 원래 아날로그 데이터
- 예 : 숫자 "3", 문자 "사과"는 쓰는 사람에 따라 매우 다양함
- 디지털 세계에서는 글자는 모두 동일한 방식으로 표현되고, 저장

- 아날로그 데이터나 정보는 모두 적절한 과정을 거쳐 디지털 데이터로 변화 - 워래 아날로그 데이터에 얼마든지 가깝게 디지털화 가능

3. 디지털 데이터의 이점

- ① 처리방식이 같아져 정보의 호환성이 높아짐
- 디지털로 변화하면 데이터의 종류와 관계없이 동일한 방식으로 처리
- ② 컴퓨터의 회로는 디지털 정보를 처리하고, 저장하기 쉽게 고안되어 설계에 반영
- ③ 데이터 전송 오류나 손실의 문제점을 최소화
- 일단 디지털화 되면 동일한 저장매체에 수록 할 수 있고, 동일한 매체로 전송
- 모든 데이터가 디지털 형태로 변환(예, 전자 도서관)
- ④ 문자, 숫자, 이미지, 사운드, 동영상 등이 아날로그 형태로 존재할 때는 그 특성이 상이하여 저장, 처리, 전송 방식이모두 다름
- 디지털 데이터는 동일하게 처리

출처: www.martinhilbert.net/worldinfocapacity.html

[아날로그에서 디지털로 변환 추세(1986년~2014년)

학습내용2 : 정보의 디지털화

- 컴퓨터 내부의 모든 정보 표현은 2진수, 즉 0과 1인 디지털로 표현된다는 점을 강조
- 1. 이진법(Binary System)
- ① "0"과 "1"의 두 가지 상태

"5 볼트", "0 볼트"

- ② 이진법의 예 "On", "Off" "True", "False" "컵에 물이 차 있음", "컵에 물이 비어 있음"
- * 컵에 물이 차 있는 정도를 "1"과 "0"으로 표현

| 그림 2-5 컵에 물이 차 있는 정도를 "1"과 "0"로 표현

2. 소리정보의 디지털화

표본화 : 아날로그 소리 신호에서 일정한 간격으로 디지털화하기 위한 표본 추출 과정(표본 점이 많을수록 정확)

양자화 : 추출된 신호 크기인 진폭을 정해진 대푯값으로 표현하는 과정

부호화 : 양자화에서 얻어진 정수값을 2진 부호로 표현하는 과정

(직사각형 적분법과 유사)

[아날로그 형태의 소리 정보의 디지털 변환 과정]

3. 이미지(Image)의 디지털화

- ① 실세계 장면의 사진, 그림이미지 : 아날로그 형태로 존재
- ② 디지털 이미지는 픽셀(Pixel)로 구성
- 수직, 수평 방향의 픽셀
- 예: 수직, 수평 방향으로 각각 1000개의 픽셀 1000×1000=1,000,000 (백만)픽셀
- ③ RGB 컬러 모델
- 각 픽셀을 표현하기 위해 (Red, Green, Blue)에서 각 컬러가 1바이트 차지
- 예: 1,000,000 픽셀×3바이트=3백만 바이트

3	표현 문자	문자 표현 바이트	
Г	W	01110111	
	0	01101111	
	R	01110010	
	D	01100100	
	S	01110011	
a)'WORDS'의 표현		DRDS'의 표현	b) 모니터의 흑백 그림자료 표현
1	00000000000001		- 10
2	000000000000000000000000000000000000000		
-1	111111111111110		
c)정수 1, 2, -1의 표현		1 2 -1이 교형	d) 모니터의 컬러 그림자료 표현

[여러 가지 데이터 표현]

4. 멀티미디어 정보의 특성

멀티미디어 데이터 : 숫자, 문자, 사운드, 이미지, 그래픽, 동영상 등 동일한 2진 데이터를 다르게 해석특성: 데이터 용량이 매우 크다 \rightarrow 데이터의 압축 용도와 환경에 따라 다양한 형태로 표현

[학습정리]

- 1. 아날로그 데이터는 연속적(Continous)인 데이터를 디지털 데이터는 비연속적(Discrete)인 데이터를 의미한다.
- 2. 컴퓨터는 모든 정보를 이진수로 표현한다.
- 3. 비트 8개가 모여 하나의 바이트가 되며, 영문자 한 글자를 표현 할 수 있다.
- 4. 진법은 사용하는 문자의 개수로 정해지는데, 이진법은 0 과 1, 10진법은 0,1, ..., , 9를 사용한다.