

Sistemas Embarcados

Prof. Ederson Luiz Silva

Condutores e Isolantes

- Condutores e isolantes são materiais elétricos que se comportam de maneiras opostas no que respeita à passagem de corrente elétrica.
- Enquanto os condutores permitem a movimentação dos elétrons ou íons, os isolantes dificultam essa movimentação, ou seja, a passagem da eletricidade.

Condutores e Isolantes

- É o mesmo que dizer que os condutores conduzem as cargas, ou facilitam, a sua passagem e que os isolantes a isolam.
- Isso acontece em decorrência da estrutura atômica das substâncias, ou melhor, dos elétrons que os materiais apresentam na sua <u>camada</u> <u>de valência</u>. A camada de valência é aquela que fica mais distante do núcleo atômico.

Condutores

- Condutores elétricos são materiais de baixa resistividade. A resistividade é uma propriedade dos materiais, que caracteriza o quão fácil os portadores de carga podem se movimentar através deles.
- Nos materiais condutores, as cargas elétricas se movimentam com mais liberdade em função dos elétrons livres presentes na sua camada de valência.
- A ligação dos elétrons livres com o núcleo atômico é bastante fraca. Assim, esses elétrons têm tendência para serem doados, movimentam-se e espalham-se facilitando a passagem da eletricidade.

Condutores

- São exemplos de condutores elétricos os metais em geral, tais como cobre, ferro, ouro e prata.
- Os condutores ainda podem ser de segunda espécie: soluções eletrolíticas, e soluções aquosas de ácidos, bases ou sais. Nestes condutores os portadores de cargas são íons negativos ou positivos.

- Tipos de condutores
- Sólidos também chamados condutores metálicos, caracterizam-se pelo movimento dos elétrons livres e pela forte tendência de doar elétrons;
- **Líquidos** também chamados condutores eletrolíticos, caracterizamse pelo movimento de cargas positivas (cátions) e negativas (ânions). Essa movimentação, em sentidos opostos, cria a corrente elétrica;
- Gasosos também chamados condutores de terceira classe, caracterizam-se pelo movimento de cátions e ânions. Ao contrário dos condutores líquidos, a energia é produzida através do choque entre as cargas e não isoladamente.

- Exemplos:
- Sólidos:
- Normalmente os metais, como o ouro, a prata e o cobre são citados como condutores e outros sólidos como a madeira.
- Líquidos:
- Podemos citar como exemplo as soluções básicas ácidas ou salinas. Numa solução salina, água pura com sal de cozinha.
- Gasosos:
- Como exemplo podemos citar o sódio, o fósforo, o mercúrio, o néon etc. Nesses condutores, ocorre o movimento ordenado de ânions e elétrons para o pólo positivo e de cátions para o negativo.

Isolantes

- Isolantes elétricos são materiais de alta resistividade, de modo que os portadores de carga (elétrons e íons) têm dificuldade de se movimentarem através dos mesmos.
- Nos materiais isolantes, também chamados dielétricos, verifica-se a ausência ou pouca presença de elétrons livres.
- Isso faz com que os elétrons dos isolantes estejam fortemente ligados ao núcleo, inibindo a sua movimentação.

Resistividade e condutividade

Resistividade e condutividade são propriedade dos materiais, inversamente proporcionais, que indicam o quão bem um material conduz eletricidade.

Materiais com alta resistividade, possuem baixa condutividade, e viceversa.

A resistividade também é afetada pela temperatura, portanto, a condutividade também. A resistividade aumenta com o aumento da temperatura.

Semicondutores

- Os materiais semicondutores são aqueles que podem se comportam como um condutor ou como um isolante mediante as condições físicas.
- Os exemplos mais comuns de semicondutores são silício e o germânio.

Camada de Valência

- A Camada de Valência é a última camada de distribuição eletrônica de um átomo. Por ser a camada mais externa, também é a que fica mais distante do núcleo atômico.
- De acordo com a **Regra do Octeto**, a camada de valência precisa de oito elétrons para se estabilizar.

- Assim, os átomos adquirem estabilidade quando têm 8 elétrons na camada de valência. Isso acontece com os gases nobres, eles apresentam a camada de valência completa. A única exceção é o elemento Hélio que possui 2 elétrons.
- Os demais elementos precisam fazer ligações químicas para receber os elétrons faltantes e alcançar os oito elétrons na camada de valência.
- Os elétrons da camada de valência são os que participam das ligações, pois são os mais externos.

Camada de Valência

Camada de Valência

Existem sete camadas designadas pelas letras K, L,M, N, O, P e Q. Cada uma suporta um número máximo de elétrons.

Camadas Eletrônicas	Nível	Número máximo de elétrons	Distribuição Eletrônica			
K	1	2	1s²			
L	2	8	2s ²	2p ⁶		
М	3	18	3s ²	3p ⁶	3d ¹⁰	
N	4	32	4s ²	4p6	4d ¹⁰	4f14
0	5	32	5s2	5p ⁶	5d ¹⁰	5f14
Р	6	18	6s²	6p ⁶	6d ¹⁰	
Q	7	2	7s ²	7p ⁶		

Camadas eletrônicas e os números de elétrons que suportam

Diagrama de Linus Pauling.

K	152	1		
L	252	2p6		
М	3.52	3p8	3d19	
N	4.82	4p6	4d10	4£14
0	5.82	5p5	5d18	5£14
Р	6.82	6p6	6d10	
Q	7.82	7p5		-

- Condutores
- Facilidade em ceder elétrons: 1, 2, 3.
- Isolantes
- Ganhar elétrons: 5, 6, 7.
- Semi-Condutores
- Nem Facilidade e nem dificuldade (4)

• Exemplo:

• Cobre: 29

• Alumínio: 13

• Oxigênio: 8

Referências Bibliográficas

Asth, C Rafael. Condutores e Isolantes. Disponível em:

https://www.todamateria.com.br/condutores-e-

isolantes/#:~:text=Condutores%20e%20isolantes%20s%C3%A3o%20materiais,seja%2C%20a%20pas sagem%20da%20eletricidade. Acesso em 09 de Fevereiro de 2023.

UFGRS. Tipos de condutores da rede elétrica. Disponível em:

https://ppgenfis.if.ufrgs.br/mef004/20031/Adriana/tiposcondutores.html#:~:text=Gasosos%3A,de% 20c%C3%A1tions%20para%20o%20negativo. Acesso em 09 de Fevereiro de 2023.

Magalhães, Lana.

https://ptable.com/?lang=pt#Propriedades

Material de Apoio

https://www.youtube.com/watch?v=jw3Yhh1A3og