[PSZT-U] Magic mushrooms

Piotr Frątczak (300207)

Bartosz Świtalski (300279)

12 stycznia 2021

1 Opis problemu

Implementacja przewidywania jadalności grzyba¹ za pomocą algorytmu ID3.

2 Decyzje projektowe

• dane trenujące pochodzą ze strony

3 Cele eksperymentu

Implementacja algorytmu konstruowania drzewa decyzyjnego ID3 z testami binarnymi.

4 Użycie

```
/magic-mushrooms$

cd magic-mushrooms/
python3 main.py <plik> <indeks> <separator>
<k> <liczba uruchomien>
```

Oznaczenia argumentów

plik - nazwa pliku umieszczonego w katalogu data/, np. agaricus-lepiota.data indeks - indeks pozycji klasyfikatora w liście atrybutów, np. 0 separator - separator wartości atrybutów w pliku, np. , k - wartość k dla walidacji krzyżowej liczba uruchomień - liczba uruchomień testowych, z których będzie podawany średni wynik

¹rząd pieczarkowców (agaricales)

Komentarz do użycia

Po uruchomieniu skryptu na wyjściu pojawi się informacja o ustawionych parametrach, tj. liczbie uruchomień, wartość k, średniej dokładności algorytmu (w zakresie [0;1]) oraz poszczególnych średnich wartościach w macierzy błędów².

5 Testowanie

Analiza testowanego zbioru danych

• liczba przykładów: 8124

• liczba atrybutów: 22

• liczba klas: 2 (edible = e, poisonous = p)

• rozkład klas: edible: 4208 (51.8%), poisonous: 3916 (48.2%)

• liczba brakujących wartości: 2480 (wszystkie oznaczone '?', wszystkie dla atrybutu nr 11 (stalk-root)

Założenia

- w zbiorze danych brak wyróżnienia na podzbiór trenujący oraz testujący
- zastosowano walidację krzyżową (k-krotną)
- prezentowane wyniki są uśrednieniem z 25 uruchomień programu
- testowaliśmy wpływ wartości parametru k walidacji krzyżowej na wynik dokładności działania implementowanego algorytmu klasyfikacji
- testowaliśmy klasyfikację bez uwzględnienia najbardziej wartościowych atrybutów (tych, dla których przyrost informacji był największy) na dokładność klasyfikacji
- testowaliśmy wpływ wielkości zbioru danych na dokładność klasyfikacji
- wynik pozytywny oznacza, że grzyb został sklasyfikowany jako jadalny
- wynik negatywny oznacza, że grzyb został sklasyfikowany jako trujący
- wyniki zostały podane w procentach i zostały zaokrąglone do dwóch miejsc po przecinku

²wikipedia: Confusion matrix

6 Wyniki

Oznaczenia

TP - średnia liczba prawdziwie pozytywnych wyników (true positive)

FN - średnia liczba fałszywie negatywnych wyników (false negative)

FP - średnia liczba fałszywie pozytywnych wyników (false positive)

TN - średnia liczba prawdziwie negatywnych wyników (true negative)

Wpływ wartości parametru k walidacji krzyżowej

k	TP	FN	FP	TN	dokładność klasyfikacji
	4207.68	1.64	0.32	3914.36	$\approx 99.98\%$
	4207.00	1.04	0.52	0914.00	~ 99.9070
3	4208.0	0.32	0.0	3915.68	$\approx 100\%$
5	4205.76	0.32	0.0	3913.92	≈ 100%
7	4205.56	0.16	0.0	3914.28	≈ 100%
11	4204.8	0.08	0.0	3913.12	$\approx 100\%$
17	4204.8	0.08	0.0	3913.12	$\approx 100\%$

Analiza dokładności bez wybranych atrybutów

- testowano dla wartości k = 3 (k-krotna walidacja).
- 5 najlepszych atrybutów to: odor (indeks 5), spore-print-color (20), gill-color(9), ring-type (19) oraz stalk-surface-above-ring (12)

Przebadaliśmy przypadki usunięcia kolejno *n najlepszych* atrybutów. Po zignorowaniu pojedynczego atrybutu sprawdzaliśmy, jaki atrybut został wytypowany na kolejny *najlepszy* i w kolejnym teście dodawaliśmy go do ignorowanych, sprawdzając tym samym kolejny *najlepszy* atrybut itd.

n brakujących najlepszych atrybutów	TP	FN	FP	TN	dokładność klasyfikacji
1	4207.72	0.92	0.28	3915.08	$\approx 99.99\%$
2	4207.04	1.16	0.96	3914.84	$\approx 99.97\%$
3	4208.0	0.72	0.0	3915.28	$\approx 99.99\%$
4	4207.8	0.32	0.2	3915.68	$\approx 99.99\%$
5	4207.76	0.16	0.24	3915.84	$\approx 100\%$

Analiza dokładności wg wielkości zbioru danych

- $\bullet\,$ testowano dla wartości k=3 (k-krotna walidacja)
- zbiór zmniejszano o rząd wielkości w każdej iteracji (potęga liczby 2)

wielkość zbioru	procent zbioru	TP	FN	FP	TN	dokładność klasyfikacji
8124	$\approx 100\%$	4208.0	0.32	0.0	3915.68	$\approx 100\%$
4062	$\approx 50\%$	3326.0	1.0	0.0	735.0	$\approx 99.98\%$
2031	$\approx 25\%$	1791.0	1.0	0.0	239.0	$\approx 99.95\%$
1016	$\approx 13\%$	911.12	0.0	0.0	102.88	$\approx 100\%$
508	$\approx 6\%$	458.08	0.0	0.0	48.92	$\approx 100\%$
254	$\approx 3\%$	223.12	0.0	0.0	28.88	$\approx 100\%$
127	$\approx 1.6\%$	107.12	0.24	0.0	18.64	$\approx 99.81\%$
64	$\approx 0.08\%$	49.0	0.0	0.16	13.84	$\approx 99.75\%$
32	$\approx 0.4\%$	19.88	0.08	0.76	9.28	$\approx 97.2\%$
16	$\approx 0.2\%$	9.8	0.6	1.48	3.12	$\approx 86.13\%$

7 Wnioski

Dla wartości k=2 (walidacja krzyżowa) dokładność klasyfikacji algorytmu po uczeniu się na analizowanych zbiorze wynosi $\approx 99.98\%$. Przy każdej wartości k>2 dokładność wzrasta do 100%, zatem k=3 zostało wykorzystane do przeprowadzenia dalszych badań dokładności klasyfikacji przy manipulacji innymi parametrami.

Zauważyliśmy, że algorytm działa wyjątkowo dobrze nawet po usunięciu z rozważania kilku najbardziej wartościowych atrybutów (tych o największej potencjalnej zdobyczy informacyjnej). Jest to możliwe, ponieważ podczas normalnego działania algorytmu konstruowane jest drzewo, w którym do klasyfikacji nie są wykorzystywane wszystkie atrybuty, więc przy usunięciu kilku z nich używanych do konstrukcji drzewa binarnego, algorytm zastępuje je dotychczas nieużywanymi i zachowuje swoją dokładność.

Po przeprowadzeniu analizy dokładności przy zmniejszaniu wielkości zbioru danych byliśmy w stanie stwierdzić, że - pomijając wahania losowe - dokładność zmniejsza się o znaczący rząd wielkości przy wielkości ograniczonej do $\approx 1.6\%$.

8 Podsumowanie

Projekt wprowadzający w tematykę uczenia maszynowego oraz drzew decyzyjnych. Dzięki własnej implementacji algorytmu ID3 poznano istotę konstrukcji drzew decyzyjnych. Zastosowanie testów binarnych pozwoliło na zapoznanie się z przykładową reprezentacją modelu drzewa decyzyjnego.

9 Powiązane linki

• Repozytorium projektowe