International **IOR** Rectifier

IRF7316

Generation V Technology

- Ultra Low On-Resistance
- **Dual P-Channel MOSFET**
- Surface Mount
- Fully Avalanche Rated

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques.

Absolute Maximum Ratings (T_A = 25°C Unless Otherwise Noted)

		Symbol	Maximum	Units	
Drain-Source Voltage		V _{DS}	-30	_ v	
Gate-Source Voltage		V_{GS}	± 20	V	
Continuous Drain Current®	$T_A = 25^{\circ}C$		-4.9		
Continuous Diain Current	$T_A = 70^{\circ}C$	l _D	-3.9] _A	
Pulsed Drain Current		I _{DM}	-30	- A	
Continuous Source Current (Diode Conduction)		Is	-2.5		
Maximum Power Dissipation ⑤	T _A = 25°C	- P _D	2.0	W	
Waximum Fower Dissipation	$T_A = 70$ °C	LD.	1.3	VV	
Single Pulse Avalanche Energy		E _{AS}	140	mJ	
Avalanche Current		I _{AR}	-2.8	Α	
Repetitive Avalanche Energy		E _{AR}	0.20	mJ	
Peak Diode Recovery dv/dt ③		dv/dt	-5.0	V/ ns	
Junction and Storage Temperature Range		$T_{J,}T_{STG}$	-55 to + 150	°C	

Thermal Resistance Ratings

Parameter	Symbol	Limit	Units
Maximum Junction-to-Ambient®	R _{θJA}	62.5	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

2. Control of the con							
	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-30			V	$V_{GS} = 0V, I_D = -250\mu A$	
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.022		V/°C	Reference to 25°C, I _D = -1mA	
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.042	0.058	Ω	$V_{GS} = -10V, I_D = -4.9A$ @	
1 (DS(on)			0.076	0.098	52	$V_{GS} = -4.5V, I_D = -3.6A$ ④	
V _{GS(th)}	Gate Threshold Voltage	-1.0			V	$V_{DS} = V_{GS}$, $I_D = -250\mu A$	
9 fs	Forward Transconductance		7.7		S	$V_{DS} = -15V, I_{D} = -4.9A$	
lane	Drain-to-Source Leakage Current			-1.0		V _{DS} = -24V, V _{GS} = 0V	
I _{DSS}	Dialii-to-Source Leakage Current			-25	μA	$V_{DS} = -24V, V_{GS} = 0V, T_{J} = 55^{\circ}C$	
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = -20V$	
IGSS	Gate-to-Source Reverse Leakage			-100	111/4	$V_{GS} = 20V$	
Qg	Total Gate Charge		23	34		I _D = -4.9A	
Q _{gs}	Gate-to-Source Charge		3.8	5.7	nC	$V_{DS} = -15V$	
Q _{gd}	Gate-to-Drain ("Miller") Charge		5.9	8.9	Ī	V_{GS} = -10V, See Fig. 10 \oplus	
t _{d(on)}	Turn-On Delay Time		13	19		V _{DD} = -15V	
tr	Rise Time		13	20	ns	$I_D = -1.0A$	
t _{d(off)}	Turn-Off Delay Time		34	51	115	$R_G = 6.0\Omega$	
t _f	FallTime		32	48		$R_D = 15\Omega \ \oplus$	
C _{iss}	Input Capacitance		710			V _{GS} = 0V	
Coss	Output Capacitance		380		pF	$V_{DS} = -25V$	
C _{rss}	Reverse Transfer Capacitance		180			f = 1.0MHz, See Fig. 5	

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current (Body Diode)	_		-2.5	_	MOSFET symbol showing the	
I _{SM}	Pulsed Source Current (Body Diode) ①		_	-30	A	integral reverse p-n junction diode.	
V _{SD}	Diode Forward Voltage		-0.78	-1.0	V	$T_J = 25$ °C, $I_S = -1.7A$, $V_{GS} = 0V$ ③	
t _{rr}	Reverse Recovery Time		44	66	ns	T _J = 25°C, I _F = -1.7A	
Q _{rr}	Reverse RecoveryCharge		42	63	nC	di/dt = 100A/µs ③	

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Starting T_J = 25°C, L = 35mH R_G = 25 Ω , I_{AS} = -2.8A.
- $\label{eq:loss_def} \begin{tabular}{ll} $ I_{SD} \le -2.8A, di/dt} \le 150$A/$\mu s, $V_{DD} \le V_{(BR)DSS}, $ \\ $ T_J \le 150 \ensuremath{^{\circ}C} \ensuremath{^{\circ}C} \ensuremath{^{\circ}} \ensuremath{$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Source-Drain Diode Forward Voltage

Fig 5. Normalized On-Resistance Vs. Temperature

0.6

Fig 6. Typical On-Resistance Vs. Drain Current

Fig 7. Typical On-Resistance Vs. Gate Voltage

Fig 8. Maximum Avalanche Energy Vs. Drain Current

V_{DS}=-15V

-V_{GS}, Gate-to-Source Voltage (V) 0 0 Q_G, Total Gate Charge (nC)

Fig 9. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 10. Typical Gate Charge Vs. Gate-to-Source Voltage

I_D = -4.9A

16

12

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

SO-8 Package Details

DIM	INC	HES	MILLIM	MILLIMETERS		
DIIVI	MIN	MAX	MIN	MAX		
Α	.0532	.0688	1.35	1.75		
A1	.0040	.0098	0.10	0.25		
b	.013	.020	0.33	0.51		
С	.0075	.0098	0.19	0.25		
D	.189	.1968	4.80	5.00		
Е	.1497	.1574	3.80	4.00		
е	.050 BASIC		1.27 BASIC			
el	.025 BASIC		0.635 BASIC			
Н	.2284	.2440	5.80	6.20		
K	.0099	.0196	0.25	0.50		
L	.016	.050	0.40	1.27		
У	0°	8°	0°	8°		

NOTES

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 (.006).
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.010).
- [7] DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking

SO-8 Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION : MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES

- 1. CONTROLLING DIMENSION : MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331

EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020

IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897

IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086

IR SOUTHEAST ASIA: 315 Outram Road. #10-02 Tan Boon Liat Building. Singapore 0316 Tel: 65 221 8371