SNN-Cliq 算法实验简述

概述

SNN-Cliq由两个步骤组成。首先,使用输入数据集 (即gene expression matrix) 构建shared nearest neighbor (SNN) 图。 其次,在SNN图中通过递归地合并quasi-cliques来找到稠密子图。这两个步骤在相应的程序中执行:

1) SNN.m (or SNN.R) 2) Cliq.py

SNN.m

这是用matlab来实现的第一部分的程序。该matlab程序是用来将gene expression matrix转换成SNN图的,我认为是这个图的作用等同于distance matrix,即用来记录细胞与细胞之间的相似度的信息。

输入数据格式examples:

RPKM					
	gene 1	gene 2	gene 3	gene 4	gene 5
cell 1	5.90876	2.24234	4.74742	9.14232	6.92391
cell 2	6.92391	2.24234	9.14232	4.74742	5.90876
cell 3	4.74742	6.92391	5.90876	9.14232	2.24234
cell 4	6.92391	9.14232	2.24234	5.90876	4.74742
cell 5	9.14232	2.24234	5.90876	4.74742	6.92391

即行为cell,列为gene的格式。

输出数据格式examples:

2	1	3.5
3	1	3.5
3	2	3
4	1	3.5
4	2	3
4	3	3
6	5	3.5
7	5	3
7	6	3.5
8	5	3

Cliq.py

这是用python实现的第二部分的程序。该python程序实现聚类的过程,即搜寻最大最近子图合并的过程。 具体可调参数如下:

- r	用于调整聚类结果中每一类的粒度,r越小每一类中包括的细胞越多		
- m	与参数r的效果类似,控制合并过程中什么时候进行剪枝		
- n	SNN图中数据点的数量,可以不给		

输入数据格式即为SNN.m程序的输出数据格式。

输出数据格式examples:

6	
6	
6	
6	
5	
5	
5	
5	

进行的实验

- 首先,使用之前的代码对Human_Cancer_Cell这个数据集进行整理,得到行是cell,列是gene的expression matrix (为了符合程序要求),矩阵大小为86*3960。
- 接下来,在matlab中导入SNN.m文件,首先使用命令导入expression matrix

data=importdata('Human_Cancer_Cell_Expression_Matrix.txt');

然后使用命令得到SNN图, k为最邻近邻居的数量(使用默认值3)

SNN(data.data, 'SNN_graph.txt',k);

• 最后,使用python程序Cliq.py对SNN_graph.txt进行聚类操作,参数全部使用原文推荐的默认参数,得出结果,具体结果在文件Cluster_Result.txt中

实验结果分析

• 目前得到的结果是86个cell被全部聚类为11个类簇,而原本的数据集内86个细胞总共被分成10个类别,目前还在想办法区分哪些细胞被正确分类