This example is set up in Libertine. It uses:

\usepackage[T1]{fontenc}
\usepackage{libertine}
\usepackage[greek=n]{libgreek}
\usepackage[noasterisk,defaultmathsizes]{mathastext}

Typeset with mathastext 1.13 (2011/03/11).

To illustrate some Hilbert Space properties of the co-Poisson summation, we will assume K=Q. The components (a_{ν}) of an adele a are written a_p at finite places and a_r at the real place. We have an embedding of the Schwartz space of test-functions on R into the Bruhat-Schwartz space on A which sends $\psi(x)$ to $\varphi(a) = \prod_p \mathbf{1}_{|a_p|_p \le 1}(a_p) \cdot \psi(a_r)$, and we write $E_R'(g)$ for the distribution on R thus obtained from E'(g) on A.

Theorem 1. Let g be a compact Bruhat-Schwartz function on the ideles of Q. The co-Poisson summation $E_R'(g)$ is a square-integrable function (with respect to the Lebesgue measure). The $L^2(R)$ function $E_R'(g)$ is equal to the constant $-\int_{A^\times} g(v)|v|^{-1/2}d^*v$ in a neighborhood of the origin.

Proof. We may first, without changing anything to $E_R'(g)$, replace g with its average under the action of the finite unit ideles, so that it may be assumed invariant. Any such compact invariant g is a finite linear combination of suitable multiplicative translates of functions of the type $g(v) = \prod_p \mathbf{1}_{|v_p|_p=1}(v_p) \cdot f(v_r)$ with f(t) a smooth compactly supported function on \mathbf{R}^\times , so that we may assume that g has this form. We claim that:

$$\int_{A^\times} |\varphi(v)| \sum_{q \in Q^\times} |g(qv)| \sqrt{|v|} \, d^*v < \infty$$

Indeed $\sum_{q\in Q^\times} |g(qv)| = |f(|v|)| + |f(-|v|)|$ is bounded above by a multiple of |v|. And $\int_{A^\times} |\varphi(v)||v|^{3/2} \, d^*v < \infty$ for each Bruhat-Schwartz function on the adeles (basically, from $\prod_p (1-p^{-3/2})^{-1} < \infty$). So

$$E'(g)(\varphi) = \sum_{q \in Q^{\times}} \int_{A^{\times}} \varphi(v)g(qv)\sqrt{|v|} d^{*}v - \int_{A^{\times}} \frac{g(v)}{\sqrt{|v|}} d^{*}v \int_{A} \varphi(x) dx$$

$$E'(g)(\varphi) = \sum_{q \in Q^\times} \int_{\mathbf{A}^\times} \varphi(v/q) g(v) \sqrt{|v|} \ d^*v - \int_{\mathbf{A}^\times} \frac{g(v)}{\sqrt{|v|}} d^*v \ \int_{\mathbf{A}} \varphi(x) \ dx$$

Let us now specialize to $\varphi(a)=\prod_p \mathbf{1}_{|a_p|_p\leq 1}(a_p)\cdot \psi(a_r)$. Each integral can be evaluated as an infinite product. The finite places contribute 0 or 1 according to whether $q\in \mathbf{Q}^\times$ satisfies $|q|_p<1$ or not. So only the inverse integers $q=1/n,\,n\in\mathbf{Z}$, contribute:

$$E_R'(g)(\psi) = \sum_{\mathbf{n} \in \mathbb{Z}^\times} \int_{\mathbb{R}^\times} \psi(\mathbf{n}t) f(t) \sqrt{|t|} \frac{dt}{2|t|} - \int_{\mathbb{R}^\times} \frac{f(t)}{\sqrt{|t|}} \frac{dt}{2|t|} \int_{\mathbb{R}} \psi(\mathbf{x}) d\mathbf{x}$$

We can now revert the steps, but this time on \mathbf{R}^{\times} and we get:

$$E_{R}'(g)(\psi) = \int_{R^{\times}} \psi(t) \sum_{n \in \mathbb{Z}^{\times}} \frac{f(t/n)}{\sqrt{|n|}} \frac{dt}{2\sqrt{|t|}} - \int_{R^{\times}} \frac{f(t)}{\sqrt{|t|}} \frac{dt}{2|t|} \int_{R} \psi(x) dx$$

Let us express this in terms of $\alpha(y) = (f(y) + f(-y))/2\sqrt{|y|}$:

$$E_R'(g)(\psi) = \int_R \psi(y) \sum_{n \ge 1} \frac{\alpha(y/n)}{n} dy - \int_0^\infty \frac{\alpha(y)}{y} dy \int_R \psi(x) dx$$

So the distribution $E_{R}'(g)$ is in fact the even smooth function

$$E'_{R}(g)(y) = \sum_{n>1} \frac{\alpha(y/n)}{n} - \int_{0}^{\infty} \frac{\alpha(y)}{y} dy$$

As $\alpha(y)$ has compact support in $\mathbf{R}\setminus\{0\}$, the summation over $n\geq 1$ contains only vanishing terms for |y| small enough. So $E_R'(g)$ is equal to the constant $-\int_0^\infty \frac{\alpha(y)}{y} \mathrm{d}y = -\int_{\mathbf{R}^\times} \frac{f(y)}{\sqrt{|y|}} \frac{\mathrm{d}y}{2|y|} = -\int_{\mathbf{A}^\times} g(t)/\sqrt{|t|} \, d^*t$ in a neighborhood of 0. To prove that it is L^2 , let $\beta(y)$ be the smooth compactly supported function $\alpha(1/y)/2|y|$ of $y\in\mathbf{R}$ ($\beta(0)=0$). Then $(y\neq 0)$:

$$E'_{R}(g)(y) = \sum_{n \in \mathbb{Z}} \frac{1}{|y|} \beta(\frac{n}{y}) - \int_{R} \beta(y) dy$$

From the usual Poisson summation formula, this is also:

$$\sum_{n \in \mathbb{Z}} \gamma(ny) - \int_{\mathbb{R}} \beta(y) \, dy = \sum_{n \neq 0} \gamma(ny)$$

where $\gamma(y) = \int_R \exp(i\,2\pi yw)\beta(w)\,dw$ is a Schwartz rapidly decreasing function. From this formula we deduce easily that $E_R'(g)(y)$ is itself in the Schwartz class of rapidly decreasing functions, and in particular it is is square-integrable.

It is useful to recapitulate some of the results arising in this proof:

Theorem 2. Let g be a compact Bruhat-Schwartz function on the ideles of Q. The co-Poisson summation $E_R'(g)$ is an even function on R in the Schwartz class of rapidly decreasing functions. It is constant, as well as its Fourier Transform, in a neighborhood of the origin. It may be written as

$$E'_{R}(g)(y) = \sum_{n \geq 1} \frac{\alpha(y/n)}{n} - \int_{0}^{\infty} \frac{\alpha(y)}{y} dy$$

with a function $\alpha(y)$ smooth with compact support away from the origin, and conversely each such formula corresponds to the co-Poisson summation $E_R'(g)$ of a compact Bruhat-Schwartz function on the ideles of \mathbf{Q} . The Fourier transform $\int_R E_R'(g)(y) \exp(i2\pi wy) \, dy$ corresponds in the formula above to the replacement $\alpha(y) \mapsto \alpha(1/y)/|y|$.

Everything has been obtained previously.