

BAYES AT 10+GBPS: IDENTIFYING MALICIOUS AND VULNERABLE PROCESSES FROM PASSIVE TRAFFIC FINGERPRINTING

DAVID McGREW, PhD CISCO FELLOW mcgrew@cisco.com

FLOCON 2020

PEOPLE

David McGrew Security Research

Blake Anderson Security Research

Brandon Enright CSIRT

Adam Weller CSIRT

Lucas Messenger CSIRT

BACKGROUND: TECHNOLOGY TRENDS DISRUPTING VISIBILITY

End Host Monitoring

- Consumerization (BYOD) makes deployment hard
- Virtualization makes circumvention easy
- Cloud computing clones and relocates software
- **IoT** devices don't support agents

Network Monitoring

- Cloud and distributed architectures require network encryption
- Network encryption impedes session data inspection
 - Intrusion detection, data leakage detection, attack detection, . . .
- New protocols like QUIC, Wireguard, ...

OUR GOALS

- Infer [malware] process from observations of TLS sessions
- High accuracy
 - Extensive ground truth data
 - Use all characteristic data features
 - Generalize to any Internet destination
- Support high data rates on server class hardware, with easy deployment
- Immediate inference from initial packet(s)
- Enrich CSIRT Splunk system
- Interpretability

VISIBILITY USING NETWORK AND END HOST MONITORING

TRAINING DATA FROM NETWORK/END-HOST FUSION

Produces ~200M new labeled session records *per day* Host data: AnyConnect NVM, network data: Mercury

PROCESS INFERENCE EXAMPLE

Destination Port: 443
Destination Address: 192.168.60.1
TLS ProtocolVersion: 0301
TLS CipherSuites: 0035...0003
TLS Extensions: None
TLS Server Name: None

Process: chrome.exe
Version: 76.0.3809.132
SHA-256: 5616...9acc
Category: browser
OS: WinNT
OSversion: 10.0.17134
OSedition: Enterprise

TLS FINGERPRINT DATABASE

```
"str repr": "(0303)(0081c02cc02bc030c02f009f009ec024c023c028c027c00ac009c014c013009d009c003d003c0035002f000a)...".
"total_count": 4187,
"process_info": [
    "process": "OneDrive.exe",
    "sha256": "53135CD348E8E80BEE5B156F2F95EE81F1176B818768A4421CA775A99F9D313C",
    "application_category": "storage",
    "count": 516,
    "classes_ip_as": {
      "8075": 373.
      "8068" - 143
    }.
    "classes_hostname_domains": {
      "windows.net": 214.
      "sharepoint.com": 176.
      "live.com": 95.
      "msn.com": 18.
      "windows.com": 9.
      "microsoft.com": 4
    ٦.
    "os info": {
      "(WinNT)(Windows 10 Enterprise)(10.0.17134)": 516
٦.
```

FINGERPRINT DATABASE STATISTICS

Sources

Source	Fingerprints	Sessions
Malware Sandbox	5,633	$3.61 \cdot 10^7$
End Host Agent	7,909	5.43·10 ⁹
Unlabeled	64,214	$4.10 \cdot 10^{10}$
Total	69,310	4.65·10 ¹⁰

Application Categories

Category	Population
browser	6416
programming	1839
communication	1429
system	1046
email	725
productivity	627
storage	597
gaming	334
vpn	269
sysadmin	231
security	223
music	188
enterprise	166
photography	141
credential_manager	58
remote_desktop	57
misc	52
video	23
health	3
virtual_machine	2

Strings per Process

Number of Strings	Population
1	5559
2	1436
3-4	771
5-8	461
9-16	197
17-32	85
33-64	46
65-128	11
129-256	3
257-512	2

TLS FINGERPRINTING

DATA FEATURES AND ANALYSIS

String Analysis

Features are 'just bytes'

- TLS Version
- TLS Ciphersuite Offer List
- TLS Extension List

Context Analysis

Features have semantic meaning

- IP Destination Address (subnets)
- TCP Destination Port (ranges)
- TLS Server Name (domains)

CHARACTERISTIC STRING PROCESSING

SELECTIVE PACKET PARSING

16							ContentType
	01						ProtocolVersion
03	01						Protocolversion
02	00						RecordLength
01							HandshakeType
00	01	fc					HandshakeLength
03	03						ProtocolVersion
е5	2c	a 9	01	fa	69	46	Random
20							SessionIDLength
a1	f1	67	1b	0a	17	69	SessionID
00	14						${\tt CipherSuiteVectorLength}$
00	39	00	38	2f	00	07	CipherSuiteVector
							${\tt CompressionMethodsLength}$
.*							${\tt CompressionMethodsVec}$
00	0a						ExtensionsVectorLength
00	00						
	00						ExtensionType
00	18						ExtensionType ExtensionLength
	18	00	00	63	6f	6d	**
00	18	00	00	63	6f	6d	ExtensionLength
00	18 16	00	00	63	6f	6d	ExtensionLength ExtensionData
00	18 16 0b	00	00	63	6f	6d	ExtensionLength ExtensionData ExtensionType

Characteristic String

((0303)(00390038...2f0007)((0000)(000b00020100)))

- Bracket notation expresses parse tree
- Strings are self-typing
- General and flexible

SEMANTIC ANALYSIS OF DESTINATION CONTEXT

(NAÏVE) BAYESIAN INFERENCE

$$process = \underset{all \ processes}{argmax} \mathbf{P}(process \mid fingerprint, da, dp, sni)$$

- Inference on fingerprint and destination context
- Interpretable
- ML model captures knowledge of the Internet

GENERALIZING THROUGH INTERNET CONTEXT

The fundamental goal of machine learning is to generalize beyond the examples in the training set - Pedro Domingos

- Problem: what probabilities do we assign to addresses outside the training set?
- Solution: compute probabilities over equivalence classes of addresses
 - Addresses are equivalent if they are in the same BGP AS, or related via DNS, or owned by the same company, or related via PKIX

$$\mathbf{P}(f_i \mid z) = \prod_{j=1,p} \mathbf{P}(\gamma_i^j(f_i) \mid z).$$

INFERENCE EXAMPLE

```
"fingerprints": {
  "tls": "(0303)(c02bc02fc02cc030c00ac009c013c01400330039002f0035000a00ff)((0000)(000b000403000102)(000a001c00 ... 01))"
},
"tls": {
 "sni": "www.mku4kwjx7t.com"
},
"analysis": {
 "process": "tor.exe",
 "score": 0.999988.
 "malware": 1,
  "p_malware": 1
٦.
"sa": "64.100.12.6".
"da": "62.210.5.178".
"pr": 6.
"sp": 4743,
"dp": 443.
"time_start": 1564612518.326139
```

PROCESS IDENTIFICATION ACCURACY

FS Fingerprint String

DG Generalized Destination Info

DA Destination Address

PR Prior Result

MALWARE TLS SESSION IDENTIFICATION

Single-session analysis of TLS features with[out] destination context, with[out] schannel

MERCURY

MERCURY: PACKET METADATA CAPTURE AND ANALYSIS

Goals

- 20+ Gbps on modern servers
- Minimal dependencies
- Linux AF_PACKET/TPACKETv3
- FPs: TLS, TCP, HTTP, DHCP
- Online NB inferencing
- FPDB updated weekly

Download

https://github.com/cisco/mercury

Disclaimer: accuracy requires using an FPDB appropriate for the network

FUTURE WORK

- Publish characteristic string analysis details
- Improve Naïve Bayes analysis with more context
- Collaborate to extend database and improve analysis
- Fingerprint more protocols
- Combined Operating System / Process inference
- Robustness across disparate networks

