ECONOMIA DO SETOR PÚBLICO TRIBUTAÇÃO DO TRABALHO

Victor Rodrigues de Oliveira

2024

Sumário I

- Introdução
- 2 EQUIDADE E EFICIÊNCIA
- OFERTA DE TRABALHO
- TRIBUTAÇÃO ÓTIMA
- **1** Tributação e o Eleitor Mediano
- 6 EVIDÊNCIAS

- A tributação ótima da renda do trabalho estuda a distribuição justa e eficiente da carga tributária em indivíduos com rendimentos diferentes.
- Em 1799, um imposto de renda foi introduzido pela primeira vez no Reino Unido para pagar a guerra napoleônica.
- O imposto foi cobrado a uma taxa de 10% sobre a renda acima de £60 e sobreviveu até ser revogado em 1816, após grande oposição pública.
- Parte da oposição se deveu a preocupações com a privacidade, e isso se refletiu na decisão do Parlamento de arquivar todos os documentos relacionados ao imposto de renda.
- O imposto voltou em 1842 como uma medida temporária (imposta por três anos com possibilidade de prorrogação por dois anos) para cobrir um grande déficit orçamentário.
- Manteve-se em vigor desde então, embora ainda seja temporário e o Parlamento tenha de aplicá-lo novamente todos os anos.

Organização

- O sistema tributário deve maximizar uma função de bem-estar social sujeita a uma restrição orçamentária do governo, levando em conta como os indivíduos respondem a impostos e transferências.
- O bem-estar social é maior quando os recursos são distribuídos de forma mais igualitária, mas os impostos e transferências redistributivas podem afetar negativamente os incentivos para trabalhar e ganhar renda em primeiro lugar.
- Isso cria o trade-off clássico entre equidade e eficiência, que está no cerne do problema do imposto sobre o rendimento do trabalho.

Trade-off

- Há duas questões principais envolvidas na tributação de renda.
- A primeira é o efeito da tributação sobre a oferta de mão-de-obra. A tributação altera as escolhas que os consumidores fazem ao afetar o trade-off entre trabalho e lazer.
- A esse respeito, uma questão particularmente importante é se um aumento na taxa de imposto reduz necessariamente a oferta de mão-de-obra. Nesse caso, seria fornecido apoio ao argumento de que os impostos deveriam ser reduzidos para atender às necessidades de eficiência.
- A segunda questão que foi estudada é a determinação do nível ideal de tributação de renda. Por razões que ficarão claras, esse é um problema complexo, pois só pode ser abordado em um modelo com uma troca significativa entre eficiência e patrimônio.
- A busca pelo *trade-off* correto provou ser um caminho frutífero de investigação.

Taxação e Oferta de Trabalho

- O efeito do imposto de renda na oferta de mão-de-obra pode ser investigado usando o modelo padrão de escolha do consumidor.
- O principal insight que isso fornecerá será destacar a importância dos efeitos renda e substituição.

A função utilidade que representa as preferências pode ser definida por

$$U = U(x, L - \ell) = U(x, \ell) \tag{1}$$

em que L é a dotação total de tempo, ℓ é a oferta de trabalho e x é o consumo.

- Consequentemente, o tempo de lazer é $L \ell$.
- Presume-se que o trabalho seja desagradável para o trabalhador, de modo que a utilidade é reduzida à medida que mais trabalho é fornecido, o que implica em $\frac{\partial U}{\partial \ell} < 0$.
- Cada hora de trabalho rende uma taxa salarial de ω de modo que a renda, na ausência de tributação, é $\omega \ell$.
- Deixando que a taxa (constante) de imposto seja t, a restrição orçamentária que o consumidor enfrenta é $px = [1 t]\omega \ell$, em que p é o preço do bem de consumo.

- O problema de escolha é mostrado no painel (a) da Figura 1, que representa graficamente o consumo contra o lazer.
- As curvas de indiferença e as restrições orçamentárias são padrão para a maximização da utilidade.
- A escolha ideal está na tangência da restrição orçamentária e na curva de indiferença mais alta possível. Isso resulta no consumo x^* e lazer $L \ell^*$.

- Existe uma maneira alternativa de escrever a função de utilidade.
- Que a renda antes dos impostos seja denotada por z, de modo que $z=\omega\ell$. Como $\ell=\frac{z}{\omega}$, a utilidade pode ser escrita em termos de renda antes dos impostos, conforme

$$U = U\left(x, \frac{z}{\omega}\right) \tag{2}$$

- Essas preferências podem ser representadas em um gráfico da receita antes dos impostos em relação ao consumo.
- Expressa em termos de receita, a restrição orçamentária se torna px = [1-t]z.
- Isso é mostrado no painel (b) da Figura 1. A escolha ideal ocorre no ponto de tangência entre a curva de indiferença mais alta possível e a restrição orçamentária, com consumo x^* e receita antes dos impostos z^* .
- A característica importante dessa representação alternativa é que a restrição orçamentária não é afetada à medida que ω muda, portanto é a mesma que o salário que o consumidor ganha, as a curva de indiferença muda.

FIGURA 1: Decisão de Oferta de Trabalho

EFEITO DO AUMENTO SALARIAL

- Considere o efeito de um aumento na taxa salarial, que é mostrado no painel (a) da Figura 2 como uma mudança para a linha orçamentária mais alta e pela nova tangência em c.
- A mudança de a para c pode ser dividida em efeito substituição (a para b) e efeito renda (b para c).
- Com relação à direção do efeito substituição, sempre é possível conhecêla, uma vez que é dada por um movimento ao longo da curva de indiferença.
- Por outro lado, o efeito renda n\u00e3o pode ser definido previamente: pode ser positivo ou negativo.
- Consequentemente, o efeito líquido é ambíguo: um aumento na taxa salarial pode aumentar ou diminuir a oferta de mão-de-obra. Essa é a ambiguidade básica que ocorre ao longo da análise da oferta de mãode-obra.

- Um aumento na taxa salarial significa que menos mão-de-obra adicional é necessária para atingir qualquer aumento no consumo (gráfico b)
- Essa mudança no *trade-off* entre trabalho e consumo faz com que a curva de indiferença, através de um ponto, gire em volta e fique mais achatada. Esse achatamento das curvas de indiferença faz com que a escolha ideal se mova ao longo da restrição orçamentária.
- O nível de renda antes dos impostos aumentará, mas o efeito nas horas trabalhadas é ambíguo.

FIGURA 2: Efeito de um Aumento Salarial

Efeito do Aumento de Impostos

- No painel (a) da Figura 3, o aumento de imposto gira a linha do orçamento para baixo, de modo que a escolha ideal se move de a para c.
- O efeito substituição do aumento de imposto é a movimentação da curva de indiferença de a para b e o efeito renda afeta a movimentação de b para c.
- Usando a forma alternativa de preferências, um aumento na taxa de imposto gira a restrição orçamentária no painel b para baixo, de modo que o ponto escolhido se mova de a para c.
- Em nenhum diagrama, a alteração na taxa de imposto afeta as curvas de indiferença.

FIGURA 3: Efeito de um Aumento de Impostos

Múltiplos Thresholds

- De um modo mais geral, um sistema de imposto de renda pode ter vários limites, com a taxa marginal de imposto subindo a cada threshold.
- Esse sistema tributário aparece como na figura 4.
- Novamente, com as preferências variando entre os consumidores, a expectativa é de que haja uma coleção de consumidores em cada ponto crítico.
- Na prática, geralmente é o caso em que as horas são fixas ou há um mínimo que deve ser realizado com a possibilidade de mais.
- Qualquer um dos casos leva a uma descontinuidade na restrição de orçamento no ponto de horas mínimas.
- A escolha para o consumidor é, então, entre não realizar trabalho e trabalhar pelo menos o mínimo. Esta é a decisão de participação: se deve ou não ingressar na força de trabalho.

FIGURA 4: Múltiplos Thresholds

- O efeito de um aumento na tributação é diminuir a restrição orçamentária.
- Um consumidor que antes era indiferente entre trabalhar e não (ambos os pontos estão na mesma curva de indiferença) agora prefere estritamente não fazê-lo.
- Nesta margem, não há conflito entre os efeitos renda e substituição.
- Um aumento na tributação reduz estritamente a participação na força de trabalho.

Modelo

- Estudo da questão normativa de como a estrutura do imposto de renda deve ser determinada.
- O modelo de tributação de renda introduzido por Mirrlees (1971) possui vários atributos importantes.
- Primeiro, há uma distribuição desigual de renda, portanto existem motivações patrimoniais para a tributação.
- Segundo, o imposto de renda afeta as decisões de oferta de mão-de-obra dos consumidores, de modo que tenham consequências de eficiência.
- Terceiro, tendo em vista os comentários acima, a estrutura é suficientemente flexível para que não sejam impostas restrições prévias às funções fiscais ideais que possam surgir.

- Um imposto cobrado sobre a habilidade seria uma política first-best, pois seria um imposto fixo sobre a característica inalterável que diferencia os consumidores.
- Mas não é viável, uma vez que se supõe que o nível de habilidade seja uma informação privada e não observável pelo governo.
- Isso torna impossível tributar diretamente a habilidade.
- Como o governo não pode observar o nível de habilidade de um consumidor (que é essencialmente a dotação inicial do consumidor), emprega um imposto de renda como a segunda melhor política.
- A função de imposto de renda é escolhida para maximizar o bem-estar social sujeito a gerar receita suficiente para atender aos requisitos do governo.

Pressupostos

- Existem duas mercadorias: um bem de consumo e trabalho.
- A oferta de trabalho de um consumidor é denotada por ℓ e o consumo por x.
- ullet Cada consumidor é caracterizado por um nível de habilidade s.
- O valor de s mede a produção por hora do consumidor e, como a economia é competitiva, é igual à taxa salarial.
- Se um consumidor de habilidade s fornece ℓ horas de trabalho, esse consumidor ganha um salário de $s\ell$ antes de impostos.
- Seja a renda do consumidor com habilidade s denotada por $z(s) = s\ell(s)$.
- O valor do imposto pago sobre a renda z é dado por T(z). Essa é a função tributária que a análise pretende determinar.
- \bullet Equivalentemente, denote a função de consumo por c(z) para que um consumidor que obtém renda z possa consumir

$$x = c(z) = z - T(z) \tag{3}$$

- A relação entre renda, função tributária e consumo é mostrada na Figura 5.
- Na ausência de tributação, a renda seria igual ao consumo e isso é representado pela linha de 45 graus.
- Onde a função de consumo está acima da linha de 45 graus, o pagamento do imposto é negativo.
- É positivo quando a função de consumo está abaixo da linha.
- Por exemplo, o consumidor que ganha \hat{z} na figura paga uma quantia de imposto $T(\hat{z})$ e pode consumir \hat{x} .
- O gradiente da função de consumo é igual a um menos a taxa marginal de imposto.

FIGURA 5: Taxação e Função Consumo

DESENVOLVIMENTO

 Supõe-se que a utilidade é quase-linear em relação à renda do trabalho, isto é,

$$U\left(x, \frac{z}{s}\right) = u(x) - \frac{z}{s} \tag{4}$$

de modo que a desutilidade marginal do trabalho é $\ell = \frac{z}{s}$ é constante.

- A utilidade do consumo, u(x), é crescente e côncava (então u'>0 e u''<0).
- Para esta função de utilidade, a taxa marginal de substituição entre consumo e renda é $TMS_{x,z}=\frac{1}{su'(x)}$.
- Como a taxa marginal de substituição é decrescente em s, o gradiente da curva de indiferença para qualquer valor de x cai à medida que s aumenta.
- Isso torna a função de utilidade consistente com a monotonicidade do agente.

FIGURA 6: Monotonicidade do Agente

- Uma consequência imediata da monotonicidade do agente é que os consumidores de alta qualificação nunca ganharão menos renda do que os de baixa qualificação.
- Geralmente, eles ganharão estritamente mais.
- Este resultado é mostrado na Figura 6.
- Ela surge porque no ponto em que a curva de indiferença do consumidor de baixa qualificação é tangente à função de consumo (e assim determina a escolha ótima para aquele consumidor), a curva de indiferença do consumidor de alta qualificação é mais plana e, portanto, não pode estar ao mesmo tempo ser uma tangência.
- Lembre-se de que todos os consumidores enfrentam a mesma função tributária e, portanto, a mesma função de consumo, independentemente de suas habilidades.

- Supomos a existência de apenas dois consumidores, um com alto nível de habilidade, s_h , e outro com baixo nível, s_l .
- a_l é a alocação escolhida pelo consumidor de baixa qualificação e a_h é a alocação escolhida da alta habilidade.
- Selecionar a função de consumo é equivalente a especificar as duas alocações.

FIGURA 7: Alocações e Função Consumo

- Um consumidor só escolherá a alocação destinada a ele se preferir sua própria localização à do outro consumidor.
- Em outras palavras, as alocações devem ser compatíveis com incentivos.
- Como o consumidor de alta habilidade pode imitar a baixa habilidade, mas não vice-versa, a restrição de compatibilidade de incentivos deve ser vinculativa para o consumidor de alta habilidade.
- Denotando o local destinado ao consumidor de baixa qualificação por $\{x_l, z_l\}$ e o local destinado a alta qualificação por $\{x_h, z_h\}$, a restrição de compatibilidade de incentivo é

$$u(x_h) - \frac{z_h}{s_h} = u(x_l) - \frac{z_l}{s_h}$$
 (5)

• O consumidor de alta habilidade é indiferente entre as duas alocações $(a_l e a_h \text{ estão na mesma curva de indiferença para a alta habilidade}),$ enquanto o consumidor de baixa qualificação prefere estritamente a alocação a_l , conforme a Figura 8.

FIGURA 8: Incentivo de Compatibilidade Vinculante

• A otimização enfrentada por um governo que maximiza uma função utilidade de bem-estar social é

$$\max_{x_l, x_h, z_l, z_h} U = u(x_l) - \frac{z_l}{s_l} + u(x_h) - \frac{z_h}{s_h}$$
 (6)

sujeito a
$$x_l + x_h = z_l + z_h$$
 (7)

- A restrição de recursos supõe simplificadamente que nenhuma receita deve ser gerada para que o sistema tributário seja puramente redistributivo.
- O que é mostrado agora é que a quase linearidade da utilidade permite que esse problema de maximização seja consideravelmente simplificado.

 Reescrevendo a restrição de compatibilidade de incentivo, equação (5), temos:

$$z_h = s_h[u(x_h) - u(x_l)] + z_l (8)$$

• Combinando essa equação com a restrição de recursos e eliminando z_h , a renda do consumidor de baixa qualificação pode ser escrita como

$$z_{l} = x_{l} + x_{h} - z_{h}$$

$$z_{l} = x_{l} + x_{h} - [s_{h}[u(x_{h}) - u(x_{l})] + z_{l}]$$

$$2z_{l} = x_{l} + x_{h} - [s_{h}[u(x_{h}) - u(x_{l})]]$$

$$z_{l} = \frac{1}{2} \{x_{l} + x_{h} - s_{h}[u(x_{h}) - u(x_{l})]\}$$
(9)

De forma semelhante,

$$z_h = \frac{1}{2} \left\{ x_l + x_h + s_h [u(x_h) - u(x_l)] \right\}$$
 (10)

• Substituindo essas expressões na função objetivo, encontramos:

$$\max_{\{x_{l},x_{h}\}} U = u(x_{l}) - \frac{z_{l}}{s_{l}} + u(x_{h}) - \frac{z_{h}}{s_{h}}$$

$$= u(x_{l}) - \frac{1/2 \left[x_{l} + x_{h} - s_{h} \left[u(x_{h}) - u(x_{l})\right]\right]}{s_{l}}$$

$$+ u(x_{h}) - \frac{1/2 \left[x_{l} + x_{h} + s_{h} \left[u(x_{h}) - u(x_{l})\right]\right]}{s_{h}}$$

$$= u(x_{l}) \left[1 - \frac{1}{2} \frac{s_{h}}{s_{l}} + \frac{1}{2} \frac{s_{h}}{s_{h}}\right] + u(x_{h}) \left[1 + \frac{1}{2} \frac{s_{h}}{s_{l}} - \frac{1}{2}\right]$$

$$- \frac{s_{h} s_{l}}{2s_{h} s_{l}} (x_{l} + x_{h})$$

$$= \left[\frac{3s_{l} - s_{h}}{2s_{l}}\right] u(x_{l}) + \left[\frac{s_{l} + s_{h}}{2s_{l}}\right] u(x_{h}) - \frac{s_{h} s_{l}}{2s_{h} s_{l}} (x_{l} + x_{h})$$

$$= \beta_{l} u(x_{l}) + \beta_{h} u(x_{h}) - \frac{s_{h} + s_{l}}{2s_{h} s_{l}} (x_{l} + x_{h})$$
(11)

• A otimização enfrentada por um governo que maximiza uma função utilidade de bem-estar social é

$$\max_{\{x_l, x_h\}} U = \beta_l u(x_l) + \beta_h u(x_h) - \frac{s_h + s_l}{2s_h s_l} (x_l + x_h)$$
 (12)

• A suposição $s_h < 3s_l$ garante que β_l seja maior que zero, para que o consumidor de baixa qualificação tenha um peso social positivo.

- A construção empreendida transformou a maximização da função de utilidade de bem-estar social sujeita a restrições na maximização de uma função ponderada de bem-estar sem restrições.
- A compatibilidade de incentivos e as restrições de recursos foram incorporadas, colocando um peso maior no bem-estar do consumidor de alta qualificação (desde que $\beta_h > \beta_l$), o que, por sua vez, garante que seu nível de consumo seja maior no ponto ótimo.
- Isso gera um nível de renda mais alto para o consumidor de alta qualificação.
- Também é possível observar que, à medida que a diferença de habilidade entre os dois consumidores aumenta, o peso relativo atribuído à alta habilidade aumenta também.

Vamos resolver o problema de otimização:

$$\frac{\partial U}{\partial x_l} = 0 \quad \Longleftrightarrow \quad \beta_l u'(x_l) - \frac{s_h + s_l}{2s_h s_l} = 0 \tag{13}$$

$$\frac{\partial U}{\partial x_h} = 0 \quad \Longleftrightarrow \quad \beta_h u'(x_h) - \frac{s_h + s_l}{2s_h s_l} = 0 \tag{14}$$

• Para os consumidores de alta habilidade, substituindo os valores de β_h temos:

$$\beta_h = \frac{1}{u'(x_h)} \frac{s_h + s_l}{2s_h s_l}$$

$$\frac{s_l + s_h}{2s_l} = \frac{1}{u'(x_h)} \frac{s_h + s_l}{2s_h s_l}$$

$$u'(x_h) = \frac{1}{s_h}$$
(15)

- Consequentemente, a utilidade marginal do consumidor de alta habilidade é inversamente proporcional ao seu nível de habilidade.
- Com u''(x) < 0 (utilidade marginal decrescente), isso implica que o consumo é proporcional à habilidade.
- Combinando este resultado com o fato de que $TMS_{x,z}^h = \frac{1}{su'(x)}$, seguese que na alocação ótima temos $TMS_{x,z}^h = 1$.
- A constatação de que a taxa marginal de substituição é igual a 1 mostra que o consumidor de alta qualificação enfrenta uma taxa de imposto marginal zero. Este é o resultado sem distorção que já vimos.

• Para o consumidor de baixa qualificação, temos:

$$\beta_{l} = \frac{1}{u'(x_{l})} \frac{s_{h} + s_{l}}{2s_{h}s_{l}}$$

$$\frac{3s_{l} - s_{h}}{2s_{l}} = \frac{1}{u'(x_{l})} \frac{s_{h} + s_{l}}{2s_{h}s_{l}}$$

$$u'(x_{l}) = \frac{s_{l} + s_{h}}{s_{h}(3s_{l} - s_{h})}$$
(16)

e $TMS_{x,z}^l=\frac{s_h(3s_l-s_h)}{s_l+s_h}<1$. Isso mostra que o consumidor do tipo l enfrenta uma taxa marginal positiva de imposto.

- É interessante observar a simples dependência dos níveis de consumo das habilidades relativas e a maneira pela qual as restrições se traduzem em um maior peso efetivo do bem-estar para o consumidor de alta habilidade.
- Isso mostra que esse consumidor precisa ser incentivado a fornecer mais mão-de-obra através da recompensa do consumo adicional.

- Tendo identificado as propriedades da estrutura tributária ótima, consideramos agora o sistema tributário que emerge do processo político.
- Para fazer isso, consideramos as pessoas que votam em esquemas de impostos que possuem algum grau de redistribuição.
- Como é difícil modelar a votação em esquemas tributários não lineares dada a alta dimensionalidade do problema, vamos restringir a atenção a uma estrutura tributária linear conforme originalmente proposto por Romer (1975).
- Especificamos ainda mais o modelo com preferências quase lineares para evitar complicações desnecessárias e simplificar a análise do equilíbrio de votos.

- Suponha, como antes, que os indivíduos diferem apenas em seu nível de habilidade.
- Assumimos que as habilidades são distribuídas na população de acordo com uma função de distribuição cumulativa F(s)que é conhecida por todos, com habilidade média \bar{s} e mediana s_m .
- Os indivíduos trabalham e consomem.
- Eles também votam em um esquema de imposto linear que paga um benefício de montante fixo b para cada indivíduo financiado por um imposto de renda proporcional à taxa t.
- A função de utilidade individual tem a forma quase linear

$$u\left(x, \frac{z}{s}\right) = x - \frac{1}{2} \left(\frac{z}{s}\right)^2 \tag{17}$$

e a restrição orçamentária individual é

$$x = (1 - t)z + b \tag{18}$$

• É fácil verificar que neste modelo simples a escolha ótima de renda de um consumidor com nível de habilidade s é

$$z(s) = (1 - t)s^2 (19)$$

- As preferências quase lineares implicam que não há efeito renda sobre a oferta de trabalho (isto é, z(s) é independente do benefício global b).
- Isso simplifica a expressão da distorção tributária e facilita a análise do equilíbrio de votos.
- Menos surpreendente, uma taxa de imposto mais alta induz os contribuintes a trabalhar menos e ganhar menos.

 A transferência global b é limitada pela condição de equilíbrio do orçamento do governo

$$b = t\mathbb{E}(z(s)) = t(1-t)\mathbb{E}\left(s^2\right) \tag{20}$$

em que $\mathbb{E}(\cdot)$ é a expectativa matemática, e usamos a escolha de renda ótima para derivar a segunda igualdade.

• Essa restrição diz que o benefício global pago a cada indivíduo deve ser igual ao pagamento de imposto esperado $t\mathbb{E}(z(s))$. Essa expressão é denominada curva de Dupuit-Laffer e descreve a receita tributária como uma função da alíquota tributária.

- Nesse modelo simples, a curva de Dupuit–Laffer tem formato de sino com um pico em $t=\frac{1}{2}$ e nenhum imposto cobrado quando t=0 ou t=1.
- Agora podemos derivar as preferências individuais ao longo dos diferentes esquemas tributários substituindo (18) e (19) em (17). Após o rearranjo, a utilidade (indireta) pode ser escrita como

$$u\left(x, \frac{z}{s}\right) = x - \frac{1}{2} \left(\frac{z}{s}\right)^{2}$$

$$= (1 - t) \left[(1 - t)s^{2} \right] + b - \frac{1}{2} \left(\frac{(1 - t)s^{2}}{s}\right)^{2}$$

$$v(t, b, s) = b + \frac{1}{2} (1 - t)^{2} s^{2}$$
(21)

• Tomando a diferencial total de (21), obtemos:

$$dv = db - (1 - t)s^2 dt (22)$$

 \bullet Ao longo da curva de indiferença dv = 0. Logo,

$$\frac{db}{dt} = (1-t)s^2 \tag{23}$$

- Pode ser visto a partir disso que, para dado t, a curva de indiferença torna-se mais íngreme no espaço (t,b) à medida que s aumenta.
- Essa monotonicidade é consequência da propriedade de cruzamento único das curvas de indiferença.
- A propriedade de cruzamento simples é uma condição suficiente para a aplicação do Teorema do Eleitor Mediano.
- Segue-se que há apenas uma política tributária que pode resultar da votação majoritária: é a política preferida pelo eleitor mediano (metade dos eleitores é mais pobre que o mediano e prefere alíquotas mais altas, e a outra metade é mais rica e prefere taxas mais baixas de imposto).
- Sendo t_m a taxa de imposto preferida pelo eleitor mediano, temos t_m implicitamente definido pela solução da condição de primeira ordem para maximizar a utilidade do eleitor mediano.

• Diferenciando (21) em relação a t, obtemos:

$$\frac{dv(t,b,s)}{dt} = (1-2t)\mathbb{E}(s^2) - (1-t)s^2$$
 (24)

• Igualando esta expressão igual a zero para o nível de habilidade médio s_m produz a alíquota de imposto preferida pelo eleitor mediano:

$$t_m = \frac{\mathbb{E}\left(s^2\right) - s_m^2}{2\mathbb{E}\left(s^2\right) - s_m^2} \tag{25}$$

ou usando a renda ótima,

$$t_m = \frac{\mathbb{E}(z) - z_m}{2\mathbb{E}(z) - z_m} \tag{26}$$

- Este modelo simples prevê que a alíquota de equilíbrio político é determinada pela posição do eleitor mediano na distribuição de renda.
- Quanto maior a desigualdade de renda, medida pela distância entre a renda mediana e a média, maior a alíquota do imposto.
- Se o eleitor mediano estiver relativamente mal, com renda bem abaixo da renda média, então a redistribuição de equilíbrio é grande.
- Na prática, a distribuição de renda tem uma renda mediana abaixo da renda média, então a maioria dos eleitores seria a favor da redistribuição por meio da tributação proporcional da renda.
- Funções de utilidade mais gerais também preveriam que a extensão dessa redistribuição diminui com a elasticidade da oferta de trabalho.

EXEMPLO

• Suponha que a função de utilidade seja representada por

$$U = x(1 - \ell) \tag{27}$$

em que x denota consumo e ℓ é o tempo de trabalho. O preço do bem de consumo é normalizado para 1. Ao trabalhar, o consumidor recebe um salário por hora ω , considerado exógeno. Sua renda do trabalho é assim $\omega \ell$. O governo tem duas soluções para aumentar algumas receitas: definir um imposto fixo T ou definir um imposto linear sobre a renda do trabalho à taxa t.

- Determine ℓ_T , a oferta de mão-de-obra do indivíduo sob o imposto fixo.
- Determine ℓ_t , a oferta de trabalho do indivíduo sob o imposto linear sobre a renda do trabalho.

- O objetivo do artigo é estabelecer uma correspondência entre as alíquotas tributárias estatutárias e as efetivas na economia brasileira em 2002.
- O ponto principal da análise é a incidência tributária sobre as famílias, divididas em dez grupos diferenciados pela renda, para as quais serão determinadas as alíquotas efetivas da tributação sobre o consumo, sobre a renda do capital e sobre a renda do trabalho.
- Para tanto, serão utilizados os dados da Pesquisa de Orçamentos Familiares (POF) 2002/2003 do Instituto Brasileiro de Geografia e Estatística (IBGE), bem como dados da Declaração de Imposto de Renda Pessoa Física (DIRPF) 2002 da Secretaria da Receita Federal.

- Existem duas razões básicas para se estimar alíquotas efetivas.
 - A mais óbvia é que elas representam um resumo de um sistema tributário bastante complexo como o brasileiro, permitindo que governo e contribuintes tenham uma noção do tamanho e da distribuição do ônus tributário pela sociedade.
 - ② Um segundo motivo é que ao se estabelecer as alíquotas efetivas em determinado período abre-se a possibilidade de se avaliar os impactos que alterações ou reformas tributárias poderiam trazer para a economia.

- Antes dos cálculos dos parâmetros tributários é necessária a calibragem de algumas variáveis da economia brasileira.
- A hipótese mais importante nesta seção é que a função de produção que caracteriza a tecnologia disponível na economia é do tipo Cobb-Douglas.
- Considera-se, então, a seguinte função de produção:

$$Y = K^{\theta} H^{1-\theta} \tag{28}$$

em que K representa o estoque de capital, H as horas de trabalho e θ a participação da renda do capital no produto.

 Maximizando lucros em um ambiente competitivo, encontram-se as condições de otimalidade das quais derivamos os retornos reais de equilíbrio para cada fator produtivo, respectivamente:

$$W = (1 - \theta) \frac{Y}{H}$$

$$r = \theta \frac{Y}{K}$$
(29)

em que
$$\theta = 1 - \frac{WH}{Y}$$
.

- A tributação sobre a renda do trabalho será dividida em duas partes.
- Uma primeira fixa, ou seja, paga da mesma maneira por todas as famílias, e que corresponde aos tributos pagos sobre a folha de pagamento, representando um total de 8,51% do PIB.
- São fixas porque considerou-se que há pouca ou nenhuma diferenciação das alíquotas aplicadas aos diferentes grupos familiares.
- Todas pagam 8% de FGTS, 2,5% de Salário-Educação, 3,1% para o Sistema S, 20% da contribuição patronal ao INSS e de 8% a 11% de contribuição do empregado para a Previdência Social.
- Além disso, trabalhadores autônomos e empresários pagam 20% sobre seus rendimentos.
- Estes tributos são considerados como incidentes sobre a renda do trabalho na hipótese de que, se eles não existissem, todos seriam repassados integralmente aos salários das famílias.

• A alíquota fixa é de

$$\tau_h^F = 14,84\% \tag{30}$$

• Alíquotas efetivas TABELA 1: Alíquotas efetivas sobre a renda do trabalho

Grupo	1	2	3	4	5	6	7	8	9	10
Fixa	14.84	14.84	14.84	14.84	14.84	14.84	14.84	14.84	14.84	14.84
Variável	0,00	0,00	0,00	0,18	0,66	1,45	2,52	4,40	6,63	7,76
Total	14,84	14,84	14,84	15,02	15,50	16,29	17,36	19,24	21,4	7 22,60

• A progressividade deste imposto pode ser observada na tabela acima. Os grupos familiares de até 5 SM são de fato taxadas a uma alíquota efetiva que representa aproximadamente 66% da alíquota correspondente ao último grupo de 30 SM.

- Os resultados mostram o tamanho da carga fiscal brasileira.
- Tomando como exemplo uma família com uma renda em torno de R\$ 400,00 em 2002, esta pagaria 14,84% de tributos sobre a renda do trabalho (o equivalente a R\$ 59,36) e mais 27,94% sobre o seu consumo (ou seja, mais R\$ 95,17).
- Somando os dois tributos, a carga tributária total sobre esta família é de 38.63%.
- É desnecessário lembrar que o retorno que esta família recebe na forma de despesas públicas, em particular em educação, saúde, segurança pública e infra-estrutura, deixa muito a desejar.
- Os valores obtidos mostram também que a alíquota efetiva sobre a tributação do consumo é quase idêntica para todas as famílias, o que abre espaço para grandes simplificações no regime tributário sem alterar a distribuição da carga fiscal entre as famílias.
- É neste sentido que se encaixa a proposta de um IVA com alíquota única.