Theorem (2.4.42). The cardinality of $\mathbb{Z}^+ \times \mathbb{Z}^+$ is aleph null.

Proof. $\mathbb{Z}^+ \times \mathbb{Z}^+$ is defined as $\{\langle x,y \rangle | (x \in \mathbb{Z}^+) \land (y \in \mathbb{Z}^+) \}$. Since x and y are positive integers, for every ordered pair $\langle x,y \rangle$ in $\mathbb{Z}^+ \times \mathbb{Z}^+$, $\langle x,y \rangle$ exists if and only if the rational number $\frac{x}{y}$ exists. Thus, $\frac{x}{y}$ exists, and all elements in $\mathbb{Z}^+ \times \mathbb{Z}^+$ can be represented by the two dimensional list

$$\langle 1, 1 \rangle \iff \frac{1}{1}, \langle 1, 2 \rangle \iff \frac{1}{2}, \langle 1, 3 \rangle \iff \frac{1}{3}, \dots$$

$$\langle 2, 1 \rangle \iff \frac{2}{1}, \langle 2, 2 \rangle \iff \frac{2}{2}, \langle 2, 3 \rangle \iff \frac{2}{3}, \dots$$

$$\langle 3, 1 \rangle \iff \frac{3}{1}, \langle 3, 2 \rangle \iff \frac{3}{2}, \langle 3, 3 \rangle \iff \frac{3}{3}, \dots$$

$$\vdots$$

The hypotheses in the biconditional converse statements for each list entry are the list elements in the proof for the countability of rational numbers. That means $\mathbb{Z}^+ \times \mathbb{Z}^+$ is countable if and only if the rational numbers are countable. We know the rational numbers are countable. Therefore the cardinality of $\mathbb{Z}^+ \times \mathbb{Z}^+$ is \aleph_0 .