11.3: Geometric Sequences and Series

Supplementary Notes

A geometric sequence $\{a_n\}$ may be defined recursively as

$$a_1 = a$$
 for real number a ,
 $a_n = a_{n-1} \cdot r$ for $n > 2$

or explicitly as

$$a_n = a_1 \cdot r^{n-1}$$
 for $n \ge 1$

where $r \neq 0, 1$ is a real number called the *common ratio*.

The sum S_n of the first n terms of a geometric sequence $\{a_n\}$ with common ratio r is

$$S_n = \sum_{k=1}^n a_k = a_1 \frac{1 - r^n}{1 - r}.$$

The sum S of all terms of a geometric sequence $\{a_n\}$ with common ratio r is called an *infinite* geometric series. If |r| < 1, the sum converges as

$$S = \sum_{k=1}^{\infty} a_k = \frac{a_1}{1-r}.$$

Exercises

- 1. If a geometric sequence has $a_3 = 9$ and $a_6 = -\frac{1}{3}$, what is the common ratio?
- 2. Find the 2^{nd} term of a geometric sequence whose 4^{th} term is -3 and whose 6^{th} term is $-\frac{1}{3}$.
- 3. Find the n^{th} term of a geometric sequence with first term $a_1 = 6$ and common ratio r = 4.
- 4. If the repeating decimal 1.424242... is written as $\frac{m}{n}$ in reduced form where m and n are integers, then m=