from google.colab import drive drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive",

#Importing necessary libraries
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline

from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report, accuracy_score, confusion_m

path='/content/drive/MyDrive/prodigy ds/bank-additional.csv' bank = pd.read_csv(path,sep=';')

bank.head()

	age	job	marital	education	default	housing	loan
0	30	blue- collar	married	basic.9y	no	yes	no
1	39	services	single	high.school	no	no	no
2	25	services	married	high.school	no	yes	no
3	38	services	married	basic.9y	no	unknown	unknown
4	47	admin.	married	university.degree	no	yes	no

5 rows × 21 columns

bank.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4119 entries, 0 to 4118
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	age	4119 non-null	int64
1	job	4119 non-null	object
2	marital	4119 non-null	object
3	education	4119 non-null	object
4	default	4119 non-null	object
5	housing	4119 non-null	object
6	loan	4119 non-null	object
7	contact	4119 non-null	object
8	month	4119 non-null	object
9	day_of_week	4119 non-null	object
10	duration	4119 non-null	int64
11	campaign	4119 non-null	int64
12	pdays	4119 non-null	int64
13	previous	4119 non-null	int64
14	poutcome	4119 non-null	object
15	emp.var.rate	4119 non-null	float64

```
16 cons.price.idx 4119 non-null float64
17 cons.conf.idx 4119 non-null float64
18 euribor3m 4119 non-null float64
19 nr.employed 4119 non-null float64
20 y 4119 non-null object
dtypes: float64(5), int64(5), object(11)
memory usage: 675.9+ KB
```

bank.describe()

	age	duration	campaign	pdays	previous	emp.var.rate	cons.price.idx	cons.con
count	4119.000000	4119.000000	4119.000000	4119.000000	4119.000000	4119.000000	4119.000000	4119.0
mean	40.113620	256.788055	2.537266	960.422190	0.190337	0.084972	93.579704	-40.4
std	10.313362	254.703736	2.568159	191.922786	0.541788	1.563114	0.579349	4.5
min	18.000000	0.000000	1.000000	0.000000	0.000000	-3.400000	92.201000	-50.8
25%	32.000000	103.000000	1.000000	999.000000	0.000000	-1.800000	93.075000	-42.7
50%	38.000000	181.000000	2.000000	999.000000	0.000000	1.100000	93.749000	-41.8
75%	47.000000	317.000000	3.000000	999.000000	0.000000	1.400000	93.994000	-36.4
max	88.000000	3643.000000	35.000000	999.000000	6.000000	1.400000	94.767000	-26.9
4								>

bank.isnull().sum()

```
age
job
marital
education
default
                0
housing
loan
contact
month
day_of_week
duration
                0
campaign
pdays
                0
previous
poutcome
emp.var.rate
cons.price.idx 0
cons.conf.idx
euribor3m
nr.employed
                0
dtype: int64
```

#Checking for duplicates
bank.duplicated().sum()

a

Exploratory Data Analysis

```
sns.histplot(x="age", data=bank, kde=True, hue= "y")
plt.title("Age Distribution and Deposits\n")
plt.show()
```

Age Distribution and Deposits


```
plt.figure(figsize=(15,4))
sns.countplot(x="job", data= bank, hue ="y")
plt.title("Occupation Distribution and Deposits\n")
plt.show()
```



```
plt.figure(figsize=(12,4))
sns.countplot(x="education", data= bank, hue ="y")
plt.title("Education Status and Deposits\n")
plt.show()
```

Education Status and Deposits

bank.default.value_counts()

default no 3315 unknown 803 yes 1

Name: count, dtype: int64

plt.figure(figsize=(6,3.5))
sns.countplot(x="housing", data= bank, hue ="y")
plt.title("Housing Loan Distribution and Deposits\n")
plt.show()

Housing Loan Distribution and Deposits


```
bank.y.value_counts()
keys = bank.y.value_counts().index
data = bank.y.value_counts().values
plt.figure(figsize=(6,3.5))
explode = [0,0.1]
plt.pie(data,labels=keys,explode=explode, autopct='%.0f%%')
```

```
plt.show()
```



```
plt.figure(figsize=(6,3.5))
sns.countplot(x="loan", data= bank, hue ="y")
plt.title("Personal Loan Distribution and Deposits\n")
plt.show()
```

Personal Loan Distribution and Deposits


```
cols = bank.select_dtypes("object").columns
cols
```

le = LabelEncoder()

bank[cols] = bank[cols].apply(le.fit_transform)

bank.head(3)

	age	job	marital	education	default	housing	loan	contact	month	day_of_week	•••	campaign	pdays	ŗ
0	30	1	1	2	0	2	0	0	6	0		2	999	
1	39	7	2	3	0	0	0	1	6	0		4	999	
2	25	7	1	3	0	2	0	1	4	4		1	999	

3 rows × 21 columns

```
plt.figure(figsize=(23,10))
sns.heatmap(bank.corr(), cmap='brg', annot=True)
plt.show()
```



```
X = bank.drop("y", axis=1)
y = bank.y
scaler = StandardScaler()

X_scaled = pd.DataFrame(scaler.fit_transform(X), columns = X.columns)

#Train-test split
train_X, test_X, train_y, test_y = train_test_split(X_scaled, y, test_size=0.3
decision_tree = DecisionTreeClassifier()
decision_tree.fit(train_X, train_y)
```

```
DecisionTreeClassifier()
print('Train Score: {}'.format(decision tree.score(train X, train y)))
print('Test Score: {}'.format(decision tree.score(test X, test y)))
    Train Score: 1.0
    Test Score: 0.8818770226537217
cross val score(decision tree, train X, train y, cv=5).mean()
    0.8796432697862506
ypred = decision tree.predict(test X)
print(classification report(test y,ypred))
               precision recall f1-score support
            0
                   0.94
                          0.93
                                  0.93
                                           1107
                   0.44
            1
                          0.46
                                  0.45
                                           129
                                  0.88
                                         1236
       accuracy
                 0.69 0.69 0.69
                                         1236
      macro avg
    weighted avg
                 0.88 0.88
                                 0.88
                                          1236
param_grid = {
    'max depth': [3, 5, 7,10, None],
     'criterion' : ['gini', 'entropy'],
     'min_samples_leaf': [3, 5, 7, 9,10,20]
gscv = GridSearchCV(decision_tree, param_grid, cv=5, verbose=1)
gscv.fit(train X, train y)
    Fitting 5 folds for each of 60 candidates, totalling 300 fits
              GridSearchCV
     ▶ estimator: DecisionTreeClassifier
         ▶ DecisionTreeClassifier
gscv.best_params_
    {'criterion': 'entropy', 'max_depth': 5, 'min_samples_leaf': 20}
gscv.best estimator
                          DecisionTreeClassifier
    DecisionTreeClassifier(criterion='entropy', max_depth=5, min_samples_leaf=20)
clf = DecisionTreeClassifier(criterion= 'gini', max_depth= 5, min_samples_leaf
clf.fit(train X, train y)
```

▼ DecisionTreeClassifier

```
DecisionTreeClassifier
DecisionTreeClassifier(max_depth=5, min_samples_leaf=3)
```

print('Train Score: {}'.format(clf.score(train_X, train_y)))
print('Test Score: {}'.format(clf.score(test_X, test_y)))

Train Score: 0.9299340964273326 Test Score: 0.9134304207119741

pred y = clf.predict(test X)

Confusion Matrix

cm = confusion_matrix(pred_y, test_y)
ConfusionMatrixDisplay(cm, display_labels=clf.classes_).plot()
plt.show()

print(classification_report(pred_y, test_y))

	precision	recall	f1-score	support
0 1	0.97 0.44	0.94 0.62	0.95 0.52	1144 92
accuracy macro avg weighted avg	0.71 0.93	0.78 0.91	0.91 0.73 0.92	1236 1236 1236

accuracy = accuracy_score(test_y,pred_y)
print("Test Accuracy of Decision Tree Classifier : {}".format(accuracy*100))

Test Accuracy of Decision Tree Classifier : 91.34304207119742

```
Cross_val = cross_val_score(clf, test_X,test_y, cv=5).mean()
print("Cross-Validation Accuracy Scores Decision Tree : ",Cross_val*100)
```

The Tree Visualization

from sklearn import tree
fig = plt.figure(figsize=(25,20))
t= tree.plot_tree(clf,filled=True,feature_names=X.columns)

 \Rightarrow

