Metodi Matematici e Statistici per il corso di Laurea in Informatica - A.A. 2021/2022

Distribuzioni campionarie

Distribuzione campionaria della media

Note:

$$\begin{split} Z &= \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \\ Z &= \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{(\sigma_1^2 / n_1) - (\sigma_2^2 / n_2)}} \end{split}$$

Esercizio 1

Un'impresa produce lampadine che hanno una durata di vita distribuita come una normale con media pari a 800 ore e deviazione standard di 40 ore. Trovare la probabilità che un campione casuale di 16 lampadine abbia una durata di vita media minore di 775 ore.

Esercizio 2

Sono condotti due esperimenti indipendenti per confrontare due diversi tipi di vernice. Diciotto campioni sono verniciati utilizzando la vernice di tipo A e per ognuno viene registrato il tempo di asciugatura in ore. Lo stesso viene fatto con la vernice di tipo B. Le deviazioni standard delle popolazioni sono entrambe note ed uguali a 1.0.

Supponendo che il tempo medio di asciugatura è uguale per i due tipi di vernice, si calcoli la probabilità $P(|\bar{X}_A - \bar{X}_B| > 1.0)$, dove \bar{X}_A e \bar{X}_B sono i tempi medi di asciugatura per campioni di dimensioni $n_A = n_B = 18$.

Distribuzione campionaria di S^2

Nota:

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \frac{(X_i - \bar{X})^2}{\sigma^2}$$

Esercizio 1

Un produttore di batterie per auto garantisce che le batterie durino, in media, 3 anni con una deviazione standard di 1 anno. Se cinque di queste batterie hanno una durata rispettivamente di 1.9, 2.4, 3.0, 3.5, 4.2 anni, il produttore dovrebbe essere ancora convinto che le batterie hanno una deviazione standard di 1 anno? Si supponga che la vita di una batteria si distribuisca come una distribuzione normale.

Distribuzione t di Student

Per un campione con n < 30,

$$T = \frac{(\bar{X} - \mu)/(\sigma/\sqrt{n})}{\sqrt{S^2/\sigma^2}} = \frac{Z}{\sqrt{V/(n-1)}},$$

dove $Z=rac{ar{X}-\mu}{\sigma/\sqrt{n}}$ ha la distribuzione della normale standardizzata e $V=rac{(n-1)S^2}{\sigma^2}$ ha

una distribuzione chi-quadro con $\nu=n-1$ gradi di libertà.

Campionando da una popolazione normale, \bar{X} e S^2 sono indipendenti e, di conseguenza, lo sono anche Z e V.

Teorema

Sia Z una variabile casuale normale standardizzata e V una variabile chi-quadro con ν gradi di libertà. Se Z e V sono indipendenti, allora la distribuzione della variabile casuale T, dove

$$T = \frac{Z}{\sqrt{V/\nu}}$$

è data dalla funzione di densità

$$h(t) = \frac{\Gamma\left[(\nu+1)/2\right]}{\Gamma(\nu/2)\sqrt{\pi\nu}} \left(1 + \frac{t^2}{\nu}\right)^{-(\nu+1)/2}, \, -\infty < t < +\infty.$$

Questa è chiamata **distribuzione t di Student** con ν gradi di libertà.

Esercizio 1

Calcolare il valore di t, con $\nu=14$ gradi di libertà, che lascia un'area di 0.025 a sinistra.

Esercizio 2

Calcolare $P(-t_{0.025} < T < t_{0.05})$.

Esercizio 3

Trovare k in modo che P(k < T < -1.761) = 0.045 per un campione casuale di dimensione 15 estratto da una distribuzione normale e $\frac{\bar{X} - \mu}{s/\sqrt{n}}$.

Esercizio 4

Un ingegnere chimico sostiene che la media del rendimento di una certa produzione di lotti è 500 grammi per millilitri di materia prima. Per affermare questa affermazione campiona 25 lotti ogni mese. Se il valore della t ottenuto è compreso tra $-t_{0.05}$ e $t_{0.05}$, si ritiene soddisfatto della procedura. Quale conclusione si trae da un campione che ha media $\bar{x}=518$ grammi per millilitri e una deviazione standard campanaria di s=40 grammi? Si assuma che le distribuzioni dei rendimenti siano normali.