ABSTRACT

Historically, communication implies the transfer of information between bodies, yet this phenomenon is constantly adapting to new technological and cultural standards. In a digital context, it's commonplace to envision systems that revolve around verbal modalities. However, behavioural analysis grounded in psychology research calls attention to the emotional information disclosed by non-verbal social cues, in particular, actions that are involuntary. This notion has circulated heavily into various interdisciplinary computing research fields, from which multiple studies have arisen, correlating non-verbal activity to socio-affective inferences. These are often derived from some form of motion capture and other wearable sensors, measuring the 'invisible' bioelectrical changes that occur from inside the body.

This thesis proposes a motivation and methodology for using physiological sensory data as an expressive resource for technology-mediated interactions. Initialised from a thorough discussion on state-of-the-art technologies and established design principles regarding this topic, then applied to a novel approach alongside a selection of practice works to compliment this. We advocate for aesthetic experience, experimenting with abstract representations. Atypically from prevailing Affective Computing systems, the intention is not to infer or classify emotion but rather to create new opportunities for rich gestural exchange, unconfined to the verbal domain.

Given the preliminary proposition of non-representation, we justify a correspondence with modern Machine Learning and multimedia interaction strategies, applying an iterative, human-centred approach to improve personalisation without the compromising emotional potential of bodily gesture. Where related studies in the past have successfully provoked strong design concepts through innovative fabrications, these are typically limited to simple linear, one-to-one mappings and often neglect multi-user environments; we foresee a vast potential. In our use cases, we adopt neural network architectures to generate highly granular biofeedback from low-dimensional input data.

We present the following proof-of-concepts: Breathing Correspondence, a wearable biofeedback system inspired by Somaesthetic design principles; Latent Steps, a real-time

auto-encoder to represent bodily experiences from sensor data, designed for dance performance; and Anti-Social Distancing Ensemble, an installation for public space interventions, analysing physical distance to generate a collective soundscape. Key findings are extracted from the individual reports to formulate an extensive technical and theoretical framework around this topic. The projects first aim to embrace some alternative perspectives already established within Affective Computing research. From here, these concepts evolve deeper, bridging theories from contemporary creative and technical practices with the advancement of biomedical technologies.

Keywords: Wearable Sensors, Non-Verbal Communication, Interaction Design, Aesthetics, Machine Learning.

RESUMO

Historicamente, os processos de comunicação implicam a transferência de informação entre organismos, mas este fenómeno está constantemente a adaptar-se a novos padrões tecnológicos e culturais. Num contexto digital, é comum encontrar sistemas que giram em torno de modalidades verbais. Contudo, a análise comportamental fundamentada na investigação psicológica chama a atenção para a informação emocional revelada por sinais sociais não verbais, em particular, acções que são involuntárias. Esta noção circulou fortemente em vários campos interdisciplinares de investigação na área das ciências da computação, dos quais surgiram múltiplos estudos, correlacionando a actividade nãoverbal com inferências sócio-afectivas. Estes são frequentemente derivados de alguma forma de captura de movimento e sensores "wearable", medindo as alterações bioeléctricas "invisíveis" que ocorrem no interior do corpo.

Nesta tese, propomos uma motivação e metodologia para a utilização de dados sensoriais fisiológicos como um recurso expressivo para interacções mediadas pela tecnologia. Iniciada a partir de uma discussão aprofundada sobre tecnologias de ponta e princípios de concepção estabelecidos relativamente a este tópico, depois aplicada a uma nova abordagem, juntamente com uma selecção de trabalhos práticos, para complementar esta. Defendemos a experiência estética, experimentando com representações abstractas. Contrariamente aos sistemas de Computação Afectiva predominantes, a intenção não é inferir ou classificar a emoção, mas sim criar novas oportunidades para uma rica troca gestual, não confinada ao domínio verbal.

Dada a proposta preliminar de não representação, justificamos uma correspondência com estratégias modernas de Machine Learning e interacção multimédia, aplicando uma abordagem iterativa e centrada no ser humano para melhorar a personalização sem o potencial emocional comprometedor do gesto corporal. Nos casos em que estudos anteriores demonstraram com sucesso conceitos de design fortes através de fabricações inovadoras, estes limitam-se tipicamente a simples mapeamentos lineares, um-para-um, e muitas vezes negligenciam ambientes multi-utilizadores; com este trabalho, prevemos um potencial alargado. Nos nossos casos de utilização, adoptamos arquitecturas de redes neurais para gerar biofeedback altamente granular a partir de dados de entrada de baixa

dimensão.

Apresentamos as seguintes provas de conceitos: Breathing Correspondence, um sistema de biofeedback wearable inspirado nos princípios de design somaestético; Latent Steps, um modelo autoencoder em tempo real para representar experiências corporais a partir de dados de sensores, concebido para desempenho de dança; e Anti-Social Distancing Ensemble, uma instalação para intervenções no espaço público, analisando a distância física para gerar uma paisagem sonora colectiva. Os principais resultados são extraídos dos relatórios individuais, para formular um quadro técnico e teórico alargado para expandir sobre este tópico. Os projectos têm como primeiro objectivo abraçar algumas perspectivas alternativas às que já estão estabelecidas no âmbito da investigação da Computação Afectiva. A partir daqui, estes conceitos evoluem mais profundamente, fazendo a ponte entre as teorias das práticas criativas e técnicas contemporâneas com o avanço das tecnologias biomédicas.

Palavras-chave: Sensores, Comunicação não verbal, Design de Interação, Estética, Inteligência Artificial