

DVLSI PROJECT

18.04.2022

Jacob V Sanoj

ECE

Sem 4

B Section

PES1UG20EC083

TOPIC: D FLIP FLOP

Overview

The D flip-flop is a clocked flip-flop with a single digital input 'D'. Each time a D flip-flop is clocked, its output follows the state of 'D'. The D Flip Flop has only two inputs D and Clock Pulse. The D inputs go precisely to the S input and its complement is used to the R input.

It is a rising edge flip-flop which means that the output is decided when the clock reached 50% of its final value.

Schematic

Symbol

Specifications

- I. Number of CMOS Used is 6
- II. Length of the CMOS 180 nm
- III. Width of the CMOS 2 μm

Testbench

Observations

For A = B = C = 1, the output of the NAND Gate is 0 V

Power Dissipated is 467.93 μW

Delay is 2.14 ns

D Flip-Flop

Schematic

Symbol

Specifications

Number of CMOS Used is 36

Length of the CMOS 180 nm

Width of the CMOS 2 μm

Test Parameters

I. When S=1 and R=1

Power Dissipation = $-332.05 \mu W$

II. When S=0 and R=1

Expected Output Q=1 AND Q'=0

Q=4.889 V AND Q'=2 mV

Power Dissipation = 209.35 μ W

III. When S=1 and R=0

Expected Output Q=0 AND Q'=1

Power Dissipation = $86.03 \mu W$

Results

We have successfully a designed and implement D Flip-Flop using CMOS Structure