Phirotpes

Transcription de "Fundamental Properties of Phirotopes
–Duality, Chirotopality, Realisability, Euclideaness Katharina
Elena Schaar"

Yann MARIN

Encadré par Emeric GIOAN.

Université de Montpellier Faculté des Sciences

Définitions

- 1 Définitions
- 2 Application
- 3 Phirotope uniforme de rang 2

- 1 Définitions
- 2 Application
- 3 Phirotope uniforme de rang 2

Chirotopes

Chirotope

Soit E=1,...,n et $\mathcal{X}: E^d - > -, 0, +, \mathcal{X}$ est un chirotope sur E ssi :

- 1 $\mathcal{X} \neq 0$
- 2 Soit σ une permutation. Alors $\mathcal{X}(\sigma(x_1),...,\sigma(x_r)) = sign(\sigma)\mathcal{X}(x_1,...,x_r)$.
- Pour tout $X \in E^{d-1}$, $Y \in E^{d+1}$ il y a $R \in \mathbb{R}^{d+1^+}$ tel que $\sum_{i}^{d+1} (r_i * \mathcal{X}(X + y_i) * (\mathcal{X}(X x_i)) = 0$

Phirotopes

Phirotope

Soit E=1,...,n et $\varphi: E^d - > S^1 \cup 0 \subset \mathbb{C}$. φ est un phirotpe sur E ssi :

- $\varphi \neq 0$
- 2 Soit σ une permutation. Alors $\varphi(\sigma(x_1),...,\sigma(x_r)) = sign(\sigma)\varphi(x_1,...,x_r)$.
- Pour tout $X \in E^{d-1}$, $Y \in E^{d+1}$ il y a $R \in \mathbb{R}^{d+1^+}$ tel que $\sum_{i}^{d+1} (r_i * \varphi(X + y_i) * (\varphi(X x_i)) = 0$

Phase

0000

fonction de phase

Une fonction de *phase* est une fonction $w: \mathbb{C} \to \mathcal{S}^1 \cup 0$ tel que :

$$w(z) = \frac{z}{|z|}$$
 si $z \neq 0$ et 0 sinon.

- 1 Définitions
- 2 Application
- 3 Phirotope uniforme de rang 2

Phirotope d'une configuration de vecteur.

Soit $V = (V_1, ..., V_n) \in \mathbb{C}^{d \times n}$ une configuration finie de vecteurs engendrant \mathbb{C}^d . Le phirotope de V est la fonction :

$$\varphi_V : E^d \to \mathcal{S}^1 \cup 0, (a_1, ..., a_d) \to w(det(V_{x_1}, ..., V_{x_d})).$$

Où d est le rank du phirotope.

phirotope réalisable

Un phirotope de rang d sur E est *réalisable* s'il existe une configuration de vecteur $V \in \mathbb{C}^{dxn}$ tel que $\varphi_V = \varphi$.

Représentation affine d'un point complexe

Soit $P \in \mathbb{C}^d$ avec $P_d
eq 0$ les coordonnées d'un point. On peut

écrire
$$P=r_P*w_P*egin{pmatrix}|p\\p\\p\\1\end{pmatrix}$$
 avec $w_P\in\mathcal{S}^1,r_P\in\mathbb{R}^+,p\in\mathbb{C}^{d-1}.$

on appel w_P la phase de P, r_P sont rayon et p sa représentation affine. Si $P_d=0$, la phase de P est la phase $w_P=w(P_k)$ de la dernière entré différente de 0 pour k < d de P.

Réorientation de phirotope

Réorientation d'un phirotope

Soit φ un phirotope de rang d sur E=[1 : :n] et $\mathcal{P} \in (\mathcal{S}^1)^n$ un vecteur de n phases. La fonction

$$\varphi^{\mathcal{P}}: E^d \to \mathcal{S}^1 \cup 0$$
, $(x_1, x_2, ..., x_d) \to \mathcal{P}_{x_1} * ... * \mathcal{P}_{x_d} * \varphi(x_1, ..., x_d)$.

est appellé une réorientation de φ de vecteur ${\mathcal P}$

Toute réorientation d'un phirotope est encore un phirotope. De plus, un phirotope est réalisable si et seulement si une de ses réorientations est réalisable.

Propriétés

On peut définir le dual d'un phirotope. Le dual préserve la réalisabilité.

Une base d'un phirotope est un ensemble B de taille d tel que $\varphi(B) \neq 0$.

- 1 Définitions
- 2 Application
- 3 Phirotope uniforme de rang 2

Rang 2

Cross ratio phases

Soit *varphi* un phirotope de rang 2 sur E et 4 éléments a,b,c,d dans E. Alors on appelle cross ratio de phase de a,b,c,d la valeur

$$cr_{\varphi}(a,b|c,d) = \frac{\varphi(a,c)\varphi(b,d)}{\varphi(a,d)\varphi(b,c)}.$$

Le cross ratio à les propriétés suivantes :

- 1 Pour toute permutation $\sigma \in S_4(a,b,c,d)$ on a $cr_{\varphi}(a,b|c,d) \in \mathbb{R} \Leftrightarrow cr_{\varphi}(\sigma(A),\sigma(B)|\sigma(C),\sigma(D)) \in \mathbb{R}$.
- 2 Tous les cross ratio phases de φ sont purement réel si et seulement si il y a une réorientation de φ qui soit un chirotope. (toute les valeurs du phirotope réorientés sont dans -1,+1).
- 3 Si on prend les cross ratio phases sur 5 point alors soit il n'y a pas de valeur réel, soit il y a une valeur réel, soit toute le sont.

Chirotopality

Chirotopality d'un phirotope

Un phirotope uniforme de rang 2 est appellé chirotopal si tous ses cross ratio phases sont à valeur réel. Sinon il est appelé non-chirotopal.

Un phirotope φ est appellé *chirotopal* s'il existe une réorientation qui soit un chirotope.

Un point important : il y a un lien entre cross ratio et contraction. (voir article).

Un phirotope est chirotopal ssi sont dual est chirotopal.