## **Project Title:**

Predictive Modeling for Breast Cancer Diagnosis Using Machine Learning

## Feature Descriptions for Breast Cancer Dataset

- id: Unique identifier for each sample.
- diagnosis: Target variable indicating the diagnosis (M = Malignant, B = Benign).

#### Mean Features:

- radius\_mean: Mean radius of the tumor cells.
- texture\_mean: Mean texture (variation in gray levels) of the tumor cells.
- perimeter\_mean: Mean perimeter of the tumor cells.
- area\_mean: Mean area of the tumor cells.
- smoothness\_mean: Mean smoothness (local variation in radius lengths) of the tumor cells.
- compactness\_mean: Mean compactness (perimeter² / area 1.0) of the tumor cells.
- concavity\_mean: Mean concavity (severity of concave portions of the contour) of the tumor cells.
- concave points mean: Mean number of concave portions of the tumor cell contours.
- symmetry\_mean: Mean symmetry of the tumor cells.
- fractal\_dimension\_mean: Mean fractal dimension ("coastline approximation") of the tumor cells.

#### Standard Error Features:

- radius\_se: Standard error of the radius of the tumor cells.
- texture\_se: Standard error of the texture of the tumor cells.
- perimeter\_se: Standard error of the perimeter of the tumor cells.
- area\_se: Standard error of the area of the tumor cells.
- smoothness\_se: Standard error of the smoothness of the tumor cells.
- compactness\_se: Standard error of the compactness of the tumor cells.
- concavity\_se: Standard error of the concavity of the tumor cells.
- concave points\_se: Standard error of the number of concave portions of the tumor cell contours.
- symmetry\_se: Standard error of the symmetry of the tumor cells.
- fractal\_dimension\_se: Standard error of the fractal dimension of the tumor cells.

#### Worst (Largest) Features:

- radius\_worst: Largest (worst) radius of the tumor cells.
- texture\_worst: Largest (worst) texture of the tumor cells.
- perimeter\_worst: Largest (worst) perimeter of the tumor cells.
- area\_worst: Largest (worst) area of the tumor cells.
- smoothness worst: Largest (worst) smoothness of the tumor cells.
- compactness\_worst: Largest (worst) compactness of the tumor cells.
- concavity\_worst: Largest (worst) concavity of the tumor cells.
- concave points\_worst: Largest (worst) number of concave portions of the tumor cell contours.
- symmetry\_worst: Largest (worst) symmetry of the tumor cells.
- fractal\_dimension\_worst: Largest (worst) fractal dimension of the tumor cells.

### Import Libraries

```
In [4]: # Libraries
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import StandardScaler
         from sklearn.linear model import LogisticRegression
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.naive_bayes import GaussianNB
         from sklearn.svm import SVC
         from sklearn.preprocessing import StandardScaler
         \textbf{from} \ \text{sklearn.metrics} \ \textbf{import} \ \text{accuracy\_score}, \ \text{f1\_score}, \ \text{classification\_report}, \ \text{confusion\_matrix}
         import warnings
         warnings.filterwarnings("ignore")
```

### Load the Cancer Wisconsin dataset

```
In [6]: df = pd.read_csv('Cancer Wisconsin.csv')
          df.head()
Out[7]:
                   id diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavit
              842302
                                        17.99
                                                      10.38
                                                                      122.80
                                                                                  1001.0
                                                                                                   0.11840
                                                                                                                       0.27760
         0
              842517
         1
                              M
                                        20.57
                                                      17.77
                                                                      132.90
                                                                                  1326.0
                                                                                                   0.08474
                                                                                                                       0.07864
         2 84300903
                              М
                                        19.69
                                                      21.25
                                                                      130.00
                                                                                  1203.0
                                                                                                   0.10960
                                                                                                                       0.15990
         3 84348301
                                        11.42
                                                      20.38
                                                                       77.58
                                                                                  386.1
                                                                                                   0.14250
                                                                                                                       0.28390
         4 84358402
                                        20.29
                                                      14.34
                                                                      135.10
                                                                                  1297.0
                                                                                                   0.10030
                                                                                                                       0.13280
        5 rows × 33 columns
```

### Information of dataset

```
In [9]:
        df.shape
Out[9]: (569, 33)
In [10]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 569 entries, 0 to 568
       Data columns (total 33 columns):
        #
           Column
                                    Non-Null Count Dtype
        --- -----
        0 id
                                    569 non-null
                                                   int64
            diagnosis
                                    569 non-null
        1
                                                    object
            radius mean
                                    569 non-null
                                                    float64
                                    569 non-null
                                                    float64
        3
           texture mean
        4
           perimeter_mean
                                   569 non-null
                                                    float64
        5
            area mean
                                    569 non-null
                                                    float64
           smoothness_mean
        6
                                    569 non-null
                                                    float64
           compactness mean
                                    569 non-null
                                                    float64
        8 concavity mean
                                    569 non-null
                                                    float64
        9
            concave points mean
                                    569 non-null
                                                    float64
        10 symmetry_mean
                                    569 non-null
                                                    float64
        11 fractal dimension mean
                                    569 non-null
                                                    float64
        12 radius se
                                    569 non-null
                                                    float64
                                                    float64
        13 texture se
                                    569 non-null
        14 perimeter_se
                                    569 non-null
                                                    float64
        15 area se
                                    569 non-null
                                                    float64
        16 smoothness_se
                                    569 non-null
                                                    float64
        17
            compactness se
                                    569 non-null
                                                    float64
                                                    float64
        18 concavity_se
                                    569 non-null
        19 concave points_se
                                    569 non-null
                                                    float64
        20 symmetry_se
                                    569 non-null
                                                    float64
           fractal dimension se
                                    569 non-null
                                                    float64
        21
        22 radius_worst
                                    569 non-null
                                                    float64
                                    569 non-null
        23 texture worst
                                                    float64
                                   569 non-null
                                                    float64
        24 perimeter worst
                                    569 non-null
                                                    float64
        25 area_worst
        26 smoothness_worst
                                    569 non-null
                                                    float64
        26 SMUULINESS_WORST
                                   569 non-null
                                                    float64
                                    569 non-null
                                                    float64
        28 concavity_worst
            concave points worst
                                    569 non-null
                                                    float64
        29
                                                    float64
                                    569 non-null
        30 symmetry_worst
        31 fractal_dimension_worst 569 non-null
                                                    float64
                                                    float64
        32 Unnamed: 32
                                    0 non-null
       dtypes: float64(31), int64(1), object(1)
       memory usage: 146.8+ KB
```

## **Check The Column Names**

### Rename The Columns

## **Data Cleaning**

```
In [23]: # Check for missing values
         print("\nMissing Values:\n", df.isnull().sum())
        Missing Values:
        id
                                     0
        diagnosis
                                     0
        radius mean
                                    0
        texture mean
        perimeter mean
                                    0
        area mean
        smoothness mean
        compactness mean
        concavity_mean
                                    0
        concave points mean
        symmetry_mean
        fractal dimension mean
        radius_se
                                    0
        texture se
        perimeter_se
                                    0
        area se
        smoothness_se
                                    0
        compactness se
        concavity_se
        concave points se
        symmetry_se
        fractal dimension se
        radius_worst
        texture worst
        perimeter_worst
                                    0
        area worst
        smoothness_worst
        compactness worst
        concavity worst
        concave points worst
                                    0
        symmetry_worst
                                     0
        fractal dimension worst
        Unnamed: 32
                                   569
        dtype: int64
In [25]: # Drop Unwanted Columns
         df.drop(['id', 'Unnamed: 32'], axis=1, inplace=True)
In [27]: # Check the balance of the target classes
         df['diagnosis'].value_counts()
Out[27]: diagnosis
              357
         В
              212
         Name: count, dtype: int64
In [29]: # Change The Diagnosis in Numeric (M=1, B=0)
         df['diagnosis'] = df['diagnosis'].map({'M':1, 'B':0})
```

## **Check The Duplicate Values**

```
In [32]: # check the duplicate values
    df.duplicated().sum()
```

# **Summary Statistics**

In [35]: df.describe().T

Out[35]:

|                         | count | mean       | std        | min        | 25%        | 50%        | 75%         | max        |
|-------------------------|-------|------------|------------|------------|------------|------------|-------------|------------|
| diagnosis               | 569.0 | 0.372583   | 0.483918   | 0.000000   | 0.000000   | 0.000000   | 1.000000    | 1.00000    |
| radius_mean             | 569.0 | 14.127292  | 3.524049   | 6.981000   | 11.700000  | 13.370000  | 15.780000   | 28.11000   |
| texture_mean            | 569.0 | 19.289649  | 4.301036   | 9.710000   | 16.170000  | 18.840000  | 21.800000   | 39.28000   |
| perimeter_mean          | 569.0 | 91.969033  | 24.298981  | 43.790000  | 75.170000  | 86.240000  | 104.100000  | 188.50000  |
| area_mean               | 569.0 | 654.889104 | 351.914129 | 143.500000 | 420.300000 | 551.100000 | 782.700000  | 2501.00000 |
| smoothness_mean         | 569.0 | 0.096360   | 0.014064   | 0.052630   | 0.086370   | 0.095870   | 0.105300    | 0.16340    |
| compactness_mean        | 569.0 | 0.104341   | 0.052813   | 0.019380   | 0.064920   | 0.092630   | 0.130400    | 0.34540    |
| concavity_mean          | 569.0 | 0.088799   | 0.079720   | 0.000000   | 0.029560   | 0.061540   | 0.130700    | 0.42680    |
| concave_points_mean     | 569.0 | 0.048919   | 0.038803   | 0.000000   | 0.020310   | 0.033500   | 0.074000    | 0.20120    |
| symmetry_mean           | 569.0 | 0.181162   | 0.027414   | 0.106000   | 0.161900   | 0.179200   | 0.195700    | 0.30400    |
| fractal_dimension_mean  | 569.0 | 0.062798   | 0.007060   | 0.049960   | 0.057700   | 0.061540   | 0.066120    | 0.09744    |
| radius_se               | 569.0 | 0.405172   | 0.277313   | 0.111500   | 0.232400   | 0.324200   | 0.478900    | 2.87300    |
| texture_se              | 569.0 | 1.216853   | 0.551648   | 0.360200   | 0.833900   | 1.108000   | 1.474000    | 4.88500    |
| perimeter_se            | 569.0 | 2.866059   | 2.021855   | 0.757000   | 1.606000   | 2.287000   | 3.357000    | 21.98000   |
| area_se                 | 569.0 | 40.337079  | 45.491006  | 6.802000   | 17.850000  | 24.530000  | 45.190000   | 542.20000  |
| smoothness_se           | 569.0 | 0.007041   | 0.003003   | 0.001713   | 0.005169   | 0.006380   | 0.008146    | 0.03113    |
| compactness_se          | 569.0 | 0.025478   | 0.017908   | 0.002252   | 0.013080   | 0.020450   | 0.032450    | 0.13540    |
| concavity_se            | 569.0 | 0.031894   | 0.030186   | 0.000000   | 0.015090   | 0.025890   | 0.042050    | 0.39600    |
| concave points_se       | 569.0 | 0.011796   | 0.006170   | 0.000000   | 0.007638   | 0.010930   | 0.014710    | 0.05279    |
| symmetry_se             | 569.0 | 0.020542   | 0.008266   | 0.007882   | 0.015160   | 0.018730   | 0.023480    | 0.07895    |
| fractal_dimension_se    | 569.0 | 0.003795   | 0.002646   | 0.000895   | 0.002248   | 0.003187   | 0.004558    | 0.02984    |
| radius_worst            | 569.0 | 16.269190  | 4.833242   | 7.930000   | 13.010000  | 14.970000  | 18.790000   | 36.04000   |
| texture_worst           | 569.0 | 25.677223  | 6.146258   | 12.020000  | 21.080000  | 25.410000  | 29.720000   | 49.54000   |
| perimeter_worst         | 569.0 | 107.261213 | 33.602542  | 50.410000  | 84.110000  | 97.660000  | 125.400000  | 251.20000  |
| area_worst              | 569.0 | 880.583128 | 569.356993 | 185.200000 | 515.300000 | 686.500000 | 1084.000000 | 4254.00000 |
| smoothness_worst        | 569.0 | 0.132369   | 0.022832   | 0.071170   | 0.116600   | 0.131300   | 0.146000    | 0.22260    |
| compactness_worst       | 569.0 | 0.254265   | 0.157336   | 0.027290   | 0.147200   | 0.211900   | 0.339100    | 1.05800    |
| concavity_worst         | 569.0 | 0.272188   | 0.208624   | 0.000000   | 0.114500   | 0.226700   | 0.382900    | 1.25200    |
| concave_points_worst    | 569.0 | 0.114606   | 0.065732   | 0.000000   | 0.064930   | 0.099930   | 0.161400    | 0.29100    |
| symmetry_worst          | 569.0 | 0.290076   | 0.061867   | 0.156500   | 0.250400   | 0.282200   | 0.317900    | 0.66380    |
| fractal_dimension_worst | 569.0 | 0.083946   | 0.018061   | 0.055040   | 0.071460   | 0.080040   | 0.092080    | 0.20750    |

In [ ]:

# **Data Exploration**

```
In [39]: # 4.1 Diagnosis Count Plot
  plt.figure(figsize=(10,8))
  sns.countplot(x='diagnosis', data=df)
  plt.title("Benign (0) vs Malignant (1) Cases")
  plt.show()
```

Benign (0) vs Malignant (1) Cases



### **Correlation Matrix**

```
In [42]: plt.figure(figsize=(10,8))
    sns.heatmap(df.corr(), annot=False, cmap='coolwarm')
    plt.title("Features Correlation")
    plt.show()
```



# Define independent variables (X) and dependent variable (Y)

```
In [45]: # Features (X) and Target (y)
X = df.drop('diagnosis', axis=1)
y = df['diagnosis']
```

# **Feature Scaling**

```
In [48]: # Feature Scaling
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

## Split Data into Training & Testing Sets

```
In [51]: # Train-Test Split (80% Train, 20% Test)
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
```

# Defining & Training All The Model For Choosing the Best Model

```
In [54]: # Test Of Multiple Models
models = {
    "Logistic Regression": LogisticRegression(max_iter=1000),
    "Decision Tree": DecisionTreeClassifier(),
    "Random Forest": RandomForestClassifier(),
    "Support Vector Machine": SVC(),
    "Naive Bayes": GaussianNB(),
```

```
In [56]: results = []
       for name, model in models.items():
          # Model Training
          model.fit(X_train, y_train)
          # For Predictions
          y pred = model.predict(X test)
          # Check Performance
          acc = accuracy_score(y_test, y_pred)
          f1 = f1_score(y_test, y_pred)
          print("*"*60)
          results.append([name, acc, f1])
          # Classification Report
          print(f"\nModel: {name} \n")
          print("Accuracy:", round(acc, 4))
          print("F1 Score:", round(f1, 4))
          print("*"*60)
          print("Classification Report:\n", classification_report(y_test, y_pred))
      ************************
      Model: Logistic Regression
      Accuracy: 0.9737
      F1 Score: 0.9647
          ******************
      Classification Report:
                  precision recall f1-score support
               0
                     0.97
                             0.99
                                     0.98
                                               71
               1
                     0.98
                             0.95
                                     0.96
                                               43
         accuracy
                                      0.97
                                              114
                  0.97
0.97
                          0.97
0.97
                                    0.97
        macro avg
                                               114
      weighted avg
                                      0.97
                                               114
      ******************
      Model: Decision Tree
      Accuracy: 0.9386
      F1 Score: 0.9176
      *****************
      Classification Report:
                  precision recall f1-score support
                   0.94 0.96
0.93 0.91
                                             71
                                    0.95
               0
                                    0.92
                                     0.94
                                              114
         accuracy
                  0.94
0.94
                                   0.93
                            0.93
        macro avg
                                               114
                            0.94
      weighted avg
                                     0.94
      Model: Random Forest
      Accuracy: 0.9649
      F1 Score: 0.9524
           *******************
      Classification Report:
                  precision recall f1-score support
                    0.96 0.99
               0
                                    0.97
                                              71
                     0.98
                            0.93
                                     0.95
                                               43
               1
                                     0.96
         accuracv
                                              114
                   0.97 0.96
        macro avg
                                  0.96
                                              114
      weighted avg
                     0.97
                            0.96
                                     0.96
                                               114
      ********************
      Model: Support Vector Machine
      Accuracy: 0.9737
      F1 Score: 0.9647
      Classification Report:
                  precision recall f1-score support
```

| 1                                           | 0.98                                    | 0.95                   | 0.96                     | 43                         |
|---------------------------------------------|-----------------------------------------|------------------------|--------------------------|----------------------------|
| accuracy                                    |                                         |                        | 0.97                     | 114                        |
| macro avg                                   | 0.97                                    | 0.97                   | 0.97                     | 114                        |
| weighted avg                                | 0.97                                    | 0.97                   | 0.97                     | 114                        |
| *******                                     | ******                                  | ******                 | ******                   | ******                     |
| Model: Naive E                              | layes                                   |                        |                          |                            |
| Accuracy: 0.96<br>F1 Score: 0.95            |                                         |                        |                          |                            |
| ******                                      | *******                                 | ******                 | ******                   | ******                     |
| ******                                      | *******                                 |                        | **********               | ***********<br>support     |
| ******                                      | <br>*********************************** |                        |                          |                            |
| **************************************      | ************* Report: precision         | recall                 | f1-score                 | support                    |
| **************************************      | **************************************  | recall                 | f1-score<br>0.97         | support<br>71              |
| *******************Classification<br>0<br>1 | **************************************  | recall                 | f1-score<br>0.97<br>0.95 | support<br>71<br>43        |
| **************************************      | **************************************  | recall<br>0.99<br>0.93 | f1-score<br>0.97<br>0.95 | support<br>71<br>43<br>114 |

0.99

0.98

71

0.97

# **Drop Highly Correlated Features**

### Calculate correlation matrix

In [ ]:

```
In [61]: # Calculate correlation matrix
  corr_matrix = X.corr().abs()
```

### Select upper triangle of correlation matrix

```
In [64]: # Select upper triangle of correlation matrix
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))
```

### Find features with correlation > 0.95

```
In [67]: to_drop = [column for column in upper.columns if any(upper[column] > 0.95)]
    print("Highly correlated features:", to_drop)

Highly correlated features: ['perimeter_mean', 'area_mean', 'perimeter_se', 'area_se', 'radius_worst', 'perimeter_worst', 'area_worst']
```

### Remove Multicollinearity

```
In [70]: # Drop them
X_reduced = X.drop(to_drop, axis=1)
```

## **Display Summary Of Results**

```
In [73]: import statsmodels.api as sm

X_with_const = sm.add_constant(X_reduced)
logit_model = sm.Logit(y, X_with_const).fit()
print(logit_model.summary())
```

Optimization terminated successfully.

Current function value: 0.036903

Iterations 23

Logit Regression Results

| Dep. Variable: Model: Method: Date: We Time: converged: Covariance Type: | diagnosi<br>Logi<br>ML<br>d, 16 Apr 202<br>11:49:5<br>Tru<br>nonrobus | t Df Res<br>E Df Mod<br>5 Pseudo<br>6 Log-Li<br>e LL-Nul<br>t LLR p- | R-squ.:<br>kelihood:<br>l:<br>value: |        | 569<br>545<br>23<br>0.9441<br>-20.998<br>-375.72<br>4.545e-135 |           |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------|--------|----------------------------------------------------------------|-----------|
|                                                                          | coef                                                                  | std err                                                              | Z                                    | P>   z | [0.025                                                         | 0.975]    |
| const                                                                    | -103.8447                                                             | 36.003                                                               | -2.884                               | 0.004  | -174.409                                                       | -33.280   |
| radius_mean                                                              | 1.7697                                                                | 0.791                                                                | 2.238                                | 0.025  | 0.220                                                          | 3.320     |
| texture mean                                                             | -0.2662                                                               | 0.334                                                                | -0.797                               | 0.425  | -0.921                                                         | 0.388     |
| smoothness_mean                                                          | 182.4330                                                              | 118.254                                                              | 1.543                                | 0.123  | -49.341                                                        | 414.207   |
| compactness_mean                                                         | -138.6832                                                             | 93.874                                                               | -1.477                               | 0.140  | -322.673                                                       | 45.306    |
| concavity_mean                                                           | 107.8974                                                              | 68.669                                                               | 1.571                                | 0.116  | -26.692                                                        | 242.487   |
| concave_points_mean                                                      | 3.5654                                                                | 108.139                                                              | 0.033                                | 0.974  | -208.384                                                       | 215.514   |
| symmetry_mean                                                            | -55.3856                                                              | 42.870                                                               | -1.292                               | 0.196  | -139.409                                                       | 28.638    |
| <pre>fractal_dimension_mean</pre>                                        | 124.2543                                                              | 315.092                                                              | 0.394                                | 0.693  | -493.315                                                       | 741.824   |
| radius_se                                                                | 38.8085                                                               | 13.128                                                               | 2.956                                | 0.003  | 13.077                                                         | 64.540    |
| texture_se                                                               | -5.5030                                                               | 2.349                                                                | -2.342                               | 0.019  | -10.108                                                        | -0.898    |
| smoothness_se                                                            | 605.4090                                                              | 350.276                                                              | 1.728                                | 0.084  | -81.120                                                        | 1291.938  |
| compactness_se                                                           | 333.3153                                                              | 177.619                                                              | 1.877                                | 0.061  | -14.812                                                        | 681.443   |
| concavity_se                                                             | -202.0945                                                             | 93.101                                                               | -2.171                               | 0.030  | -384.568                                                       | -19.621   |
| concave points_se                                                        | 676.0393                                                              | 420.760                                                              | 1.607                                | 0.108  | -148.636                                                       | 1500.714  |
| symmetry_se                                                              | -264.4777                                                             | 187.604                                                              | -1.410                               | 0.159  | -632.174                                                       | 103.218   |
| <pre>fractal_dimension_se</pre>                                          | -4185.1475                                                            | 1601.426                                                             | -2.613                               | 0.009  | -7323.884                                                      | -1046.411 |
| texture_worst                                                            | 0.9795                                                                | 0.352                                                                | 2.782                                | 0.005  | 0.289                                                          | 1.669     |
| smoothness_worst                                                         | -53.4620                                                              | 63.474                                                               | -0.842                               | 0.400  | -177.868                                                       | 70.944    |
| compactness_worst                                                        | -43.6258                                                              | 31.653                                                               | -1.378                               | 0.168  | -105.665                                                       | 18.414    |
| concavity_worst                                                          | 22.3973                                                               | 18.855                                                               | 1.188                                | 0.235  | -14.559                                                        | 59.353    |
| concave_points_worst                                                     | 33.7196                                                               | 60.301                                                               | 0.559                                | 0.576  | -84.468                                                        | 151.907   |
| symmetry_worst                                                           | 53.8119                                                               | 27.327                                                               | 1.969                                | 0.049  | 0.252                                                          | 107.372   |
| fractal_dimension_worst                                                  | 461.8041<br>                                                          | 206.469                                                              | 2.237                                | 0.025  | 57.132                                                         | 866.477   |

Possibly complete quasi-separation: A fraction 0.77 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

• The model is indeed showing good accuracy; however, analysis revealed that out of the 31 features, only 8 to 10 are truly significant. This indicates that the model is also utilizing some irrelevant or noisy features, which could lead to overfitting. In the next phase, I plan to apply feature selection techniques to optimize the model and improve its interpretability.

### Feature Selection: Using Only Significant Features for Overfitting-Free Model

```
In [86]: # Features (X) and Target (y)
         X = df[[
         'radius_mean',
         'radius se',
         'texture_se',
         'concavity_se',
         'fractal_dimension_se',
         'texture worst',
         'symmetry_worst',
         'fractal_dimension_worst']]
         y = df['diagnosis']
         # Feature Scaling
         scaler = StandardScaler()
         X_scaled = scaler.fit_transform(X)
         # Train-Test Split (80% Train, 20% Test)
         X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
```

# Again Check And Drop Highly Correlated Features

```
In [90]: # Calculate correlation matrix
    corr_matrix = X.corr().abs()

# Select upper triangle of correlation matrix
    upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))

# Find features with correlation > 0.95
    to_drop = [column for column in upper.columns if any(upper[column] > 0.95)]

print("Highly correlated features:", to_drop)

# Drop them
    X_reduced = X.drop(to_drop, axis=1)

Highly correlated features: []
```

## Again Check And Display Summary Of Results

```
In [93]: import statsmodels.api as sm
              X with const = sm.add constant(X reduced)
              logit_model = sm.Logit(y, X_with_const).fit()
              print(logit model.summary())
            Optimization terminated successfully.
                         Current function value: 0.083104
                         Iterations 12
                                                   Logit Regression Results
            _____
            Dep. Variable:
                                                   diagnosis No. Observations:
                                                     Logit Df Residuals:
            Model:
                                        MLE Df Model: 8
Wed, 16 Apr 2025 Pseudo R-squ.: 0.8741
11:50:29 Log-Likelihood: -47.286
True LL-Null: -375.72
nonrobust LLR p-value: 1.375e-136
            Method:
            Date:
            Time:
            converged:
            Covariance Type:
            coef std err
                                                                                      z P>|z| [0.025 0.975]

        const
        -47.7101
        6.429
        -7.421
        0.000
        -60.311
        -35.109

        radius_mean
        1.3359
        0.224
        5.971
        0.000
        0.897
        1.774

        radius_se
        18.1385
        4.142
        4.379
        0.000
        10.020
        26.257

        texture_se
        -1.9022
        1.005
        -1.892
        0.058
        -3.872
        0.068

        concavity_se
        32.0266
        10.360
        3.092
        0.002
        11.722
        52.331

        fractal_dimension_se
        -889.7916
        280.682
        -3.170
        0.002
        -1439.917
        -339.666

        texture_worst
        0.4185
        0.088
        4.778
        0.000
        0.247
        0.590

        symmetry_worst
        12.9287
        5.841
        2.214
        0.027
        1.481
        24.376

        symmetry_worst
        12.9287
        5.841

        fractal_dimension_worst
        134.2854
        31.808

                                                                       5.841 2.214 0.027 1.481
31.808 4.222 0.000 71.944
                                                                                                                                        196.627
            ______
            Possibly complete quasi-separation: A fraction 0.36 of observations can be
            perfectly predicted. This might indicate that there is complete
            quasi-separation. In this case some parameters will not be identified.
 In [ ]:
```

## **Results Comparison**

```
In [96]: # Summary table
# Results Comparison
results_df = pd.DataFrame(results, columns=['Model', 'Accuracy', 'F1 Score'])
print("\nModels Comparison:")
results_df.sort_values('F1 Score', ascending=False)
```

Models Comparison:

| Out[96]: |   | Model                  | Accuracy | F1 Score |
|----------|---|------------------------|----------|----------|
|          | 0 | Logistic Regression    | 0.973684 | 0.964706 |
|          | 3 | Support Vector Machine | 0.973684 | 0.964706 |
|          | 2 | Random Forest          | 0.964912 | 0.952381 |
|          | 4 | Naive Bayes            | 0.964912 | 0.952381 |
|          | 1 | Decision Tree          | 0.938596 | 0.917647 |

### Model Performance



## **Best Model Of Confusion Matrix**

In [ ]:

```
In [102... # Best Model Of Confusion Matrix
plt.figure(figsize=(12, 8))
best_model = LogisticRegression(max_iter=1000)
best_model.fit(X_train, y_train)
y_pred = best_model.predict(X_test)

cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Confusion Matrix - Logistic Regression")
plt.show()
```



## Choose The Best Model

• Support Vector Machine And Logistic Regression Model is the best model for batter prediction

```
In [ ]:
```

## Prediction

### **Actual Data**

```
In [105... df[[
           'radius_mean',
           'radius_se',
           'texture se',
           'concavity_se',
           'fractal dimension se',
           'texture_worst',
'symmetry_worst',
           'fractal dimension worst',
           'diagnosis']].tail(2)
Out[105...
                radius_mean radius_se texture_se concavity_se fractal_dimension_se texture_worst symmetry_worst fractal_dimension_wo
           567
                       20.60
                                 0.7260
                                              1.595
                                                          0.07117
                                                                               0.006185
                                                                                                 39.42
                                                                                                                                         0.124
                                                                                                                 0.4087
           568
                        7.76
                                 0.3857
                                              1.428
                                                          0.00000
                                                                               0.002783
                                                                                                 30.37
                                                                                                                 0.2871
                                                                                                                                         0.070
 In [ ]:
```

#### No Cancer data

```
'fractal dimension se': 0.002783,
                                            'texture_worst': 30.37,
                                            'symmetry_worst': 0.2871,
                                            'fractal_dimension_worst':
                                                                            0.07039
In [109... new patient no cancer
            radius_mean radius_se texture_se concavity_se fractal_dimension_se texture_worst symmetry_worst fractal_dimension_wors
                    7.76
                           0.3857
                                       1.428
                                                     0.0
                                                                    0.002783
                                                                                    30.37
                                                                                                   0.2871
                                                                                                                        0.07039
         # Feature Scaling for New Data
In [111...
         new patient scaled = scaler.transform(new patient no cancer)
         prediction = best_model.predict(new_patient_scaled)
         prediction proba = best model.predict proba(new patient scaled)
         # Result Display
         print("\nNew Patient Prediction:")
         print("Predicted Class:", "Malignant (Cancer)" if prediction[0] == 1 else "Benign (No Cancer)")
         print("Probability [Benign, Malignant]:", prediction_proba[0])
        New Patient Prediction:
        Predicted Class: Benign (No Cancer)
        Probability [Benign, Malignant]: [0.99838012 0.00161988]
 In [ ]:
         Cancer data
In [114...
           new_patient= pd.DataFrame ([{ 'radius mean': 20.60,
                                            'radius se': 0.7260,
                                            'texture_se': 1.5950,
                                            'concavity_se': 0.07117,
                                            'fractal dimension se': 0.006185,
                                            'texture_worst': 39.42,
                                             'symmetry_worst': 0.4087,
                                            'fractal_dimension_worst':
                                                                            0.12400
In [116... new_patient
Out[116...
            radius_mean
                         radius_se texture_se concavity_se fractal_dimension_se texture_worst symmetry_worst fractal_dimension_wors
                    20.6
                            0.726
                                       1.595
                                                  0.07117
                                                                    0.006185
                                                                                    39.42
                                                                                                   0.4087
                                                                                                                          0.124
In [118... # Feature Scaling for New Data
         new_patient_scaled = scaler.transform(new_patient)
         # Prediction
         prediction = best model.predict(new patient scaled)
         prediction_proba = best_model.predict_proba(new_patient_scaled)
         # Result Display
         print("\nNew Patient Prediction:")
         print("Predicted Class:", "Malignant (Cancer)" if prediction[0] == 1 else "Benign (No Cancer)")
         print("Probability [Benign, Malignant]:", prediction_proba[0])
        New Patient Prediction:
        Predicted Class: Malignant (Cancer)
        Probability [Benign, Malignant]: [1.93916098e-07 9.99999806e-01]
 In [ ]:
 In [ ]:
```

# Run The Model in Streamlit Web App

```
In []:

In [122-
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
```

```
from sklearn.linear_model import LogisticRegression
import pickle
# Select the 8 features used for prediction
X = df[['radius_mean', 'radius_se', 'texture_se', 'concavity_se', 'fractal_dimension_se',
'texture_worst', 'symmetry_worst', 'fractal_dimension_worst']]
y = df['diagnosis'] # Assuming 'diagnosis' is the target column
# Scale the features
scaler = StandardScaler()
X scaled = scaler.fit transform(X)
# Train the model (Logistic Regression as an example)
model = LogisticRegression()
model.fit(X scaled, y)
# Save the trained model and scaler
with open('cancer_model.pkl', 'wb') as model_file:
    pickle.dump(model, model file)
with open('scaler.pkl', 'wb') as scaler file:
    pickle.dump(scaler, scaler_file)
print("Model and scaler saved!")
```

Model and scaler saved!

```
In [ ]:
```

```
In [125... %writefile app.py
         import streamlit as st
         import pandas as pd
         import numpy as np
         from sklearn.preprocessing import StandardScaler
         from sklearn.linear_model import LogisticRegression
         import pickle
         # Load saved model and scaler
         with open('cancer_model.pkl', 'rb') as model_file:
             model = pickle.load(model_file)
         with open('scaler.pkl', 'rb') as scaler_file:
             scaler = pickle.load(scaler_file)
         # App title and description
         st.title(" Breast Cancer Prediction App")
         st.write("""
         This app predicts whether a breast tumor is **Malignant (Cancerous)** or **Benign (Non-Cancerous)**
         using machine learning. Enter the patient's details below:
         # Input form
         st.header("Patient Details")
         with st.form("prediction form"):
             # Create input fields for the 8 features
             col1, col2 = st.columns(2)
             with col1:
                 radius mean = st.number input("Radius Mean", min_value=0.0, value=7.76)
                 radius se = st.number input("Radius SE", min value=0.0, value=0.3857)
                 texture_se = st.number_input("Texture SE", min_value=0.0, value=1.4280)
                 concavity_se = st.number_input("Concavity SE", min_value=0.0, value=0.00000)
             with col2:
                 texture_worst = st.number_input("Texture Worst", min_value=0.0, value=30.37)
                 symmetry_worst = st.number_input("Symmetry Worst", min_value=0.0, value=0.2871)
                 fractal dimension worst = st.number input("Fractal Dimension Worst", min value=0.0, value=0.07039)
                 fractal dimension se = st.number input("Fractal Dimension SE", min value=0.0, value=0.002783)
             submit_button = st.form_submit_button("Predict Diagnosis")
         # Prediction logic
         if submit button:
             # Create feature array with only the 8 selected features
             features = np.array([[
                 radius_mean, radius_se, texture_se, concavity_se, fractal_dimension_se,
                 texture_worst, symmetry_worst, fractal_dimension_worst
             11)
             # Scale features
             features scaled = scaler.transform(features)
             # Make prediction
             prediction = model.predict(features_scaled)
```

```
probability = model.predict_proba(features_scaled)
    # Display results
    st.header("Prediction Results")
    if prediction[0] == 1:
        st.error(f" **Prediction:** Malignant (Cancerous) - {probability[0][1]*100:.2f}% probability")
    else:
        st.success(f" **Prediction:** Benign (Non-Cancerous) - {probability[0][0]*100:.2f}% probability")
    # Show probability breakdown
    st.write(f"**Probability Breakdown:**")
    st.write(f"- Benign: {probability[0][0]*100:.2f}%")
    st.write(f"- Malignant: {probability[0][1]*100:.2f}%")
# Run instructions
st.sidebar.header("How to Use")
st.sidebar.write("""
1. Enter patient's tumor characteristics
2. Click 'Predict Diagnosis'
3. View results
```

Overwriting app.py

```
import subprocess
import sys

# Install streamlit if not installed
subprocess.check_call([sys.executable, "-m", "pip", "install", "streamlit"])

# Run the streamlit app
subprocess.Popen([sys.executable, "-m", "streamlit", "run", "app.py"])
```

Out[127... <Popen: returncode: None args: ['C:\\ProgramData\\anaconda3\\python.exe', '-...>