

## Tracing the Reaction Steps Involving Oxygen and IR Observable Species in Ethanol Photocatalytic Oxidation on TiO<sub>2</sub>

Felipe Guzman and Steven S. C. Chuang\*

The University of Akron, Department of Chemical and Biomolecular Engineering, 200 East Buchtel Commons, Akron, Ohio 44325-3906

Received September 5, 2009; E-mail: schuang@uakron.edu

Photocatalytic oxidation of organics on TiO<sub>2</sub> has long been shown to occur via generation of light-induced charge carriers (i.e., electron/hole pairs) and charge transfer reactions of electrons and holes to species adsorbed on the surface. Transient spectroscopic studies have demonstrated that charge carrier generation and charge transfer reactions occur in time scales of femtoseconds and nanoseconds, whereas the overall conversion of organics to CO<sub>2</sub> and H<sub>2</sub>O occur in a time scale of minutes to hours. The factors governing the slow conversion of reactants and the rate-determining steps in photocatalytic reactions have seldom been studied.<sup>2</sup> We have identified the rate-determining step in the photocatalytic oxidation of ethanol by an in situ infrared (IR) spectroscopy coupled with mass spectrometry method. Ethanol was selected as a model molecule for tracing the reaction pathways because it produces IRobservable adsorbed species and possesses the ability to displace adsorbed H<sub>2</sub>O, slowing down electron and hole recombination.

The reaction steps involving  $O_2$  and IR-observable species were studied by illuminating adsorbed ethanol on  $TiO_2$  (P 25, Degussa) with UV light (25 mW/cm²) and dosing small amounts of  $O_2$  (i.e., pulsing  $10-500~\mu L$  of  $O_2$ ) into a 15 cm³/min He stream flowing through the DRIFT cell. The evolution of gaseous species was quantified with a mass spectrometer (MS, Pfeiffer Omnistar) connected to the outlet of the DRIFT cell.

The top spectrum in Figure 1A (i.e., spectrum at 0 min) shows ethanol adsorbed as ethoxy (CH<sub>3</sub>CH<sub>2</sub>O<sub>ad</sub>) and molecularly adsorbed ethanol (CH<sub>3</sub>CH<sub>2</sub>OH<sub>ad</sub>), giving the increased intensity of the C-H bands at 2971, 2931, and 2870 cm<sup>-1</sup>. The formation of CH<sub>3</sub>CH<sub>2</sub>O<sub>ad</sub> can be distinguished by the intense  $\nu(C-O)$  band at 1147 cm<sup>-1</sup> and the low intensity ratio of  $\delta(OH)/\delta(CH)$ . The appearance of the ethanol bands was accompanied by the decreased (i.e., negative) hydroxyl bands at 3632 and 3692 cm<sup>-1</sup> and the HOH bending at 1625 cm<sup>-1</sup>, indicating that adsorption of ethanol consumed the hydroxyl groups and displaced H<sub>2</sub>O from the TiO<sub>2</sub> surface. The initial surface coverage was determined to be 820  $\mu$ mol/g TiO<sub>2</sub> for adsorbed ethanol/ethoxy and 980 µmol/g TiO<sub>2</sub> for H<sub>2</sub>O<sub>ad</sub>. The spectrum at 0.6 min in Figure 1A shows that UV illumination caused the decrease in the intensity of the ethanol C-H bands and the rise of an IR structureless background absorbance in the 3000-1000 cm<sup>-1</sup> range (i.e., background shift), attributed to photogenerated electrons accumulating on the conduction band.<sup>3-5</sup> The absence of variation in the IR intensity of the H<sub>2</sub>O and OH bands during this period indicates that the intensity decrease of the C-H bands was the result of the reaction of CH<sub>3</sub>CH<sub>2</sub>O<sub>ad</sub>/ CH<sub>3</sub>CH<sub>2</sub>OH<sub>ad</sub> with h<sup>+</sup> (i.e., holes), allowing accumulation of the photogenerated electrons giving the intense background shift.<sup>6</sup>

Pulsing  $O_2$  on ethanol adsorbed on the  $TiO_2$  caused a decrease in the extent of the background shift intensity, as shown by the spectrum at 30 min in Figure 1A, indicating that  $O_2$  directly reacted with photogenerated electrons.<sup>4</sup> Subsequent  $O_2$  pulses (e.g., spectrum at 76 min) produced similar changes on the background shift

intensity accompanied by the formation of adsorbed acetate  $(CH_3COO_{ad}^-)$  at 1542 and 1441 cm<sup>-1</sup>, adsorbed  $H_2O$ , and  $CO_2$ .



**Figure 1.** (A) IR spectra recorded during photocatalytic oxidation of adsorbed (Ads.) ethanol with  $O_2$  pulses. Absorbance is obtained by Abs. =  $-\log(I/I_0)$  where I and  $I_0$  are the single beam spectra taken during and prior to ethanol adsorption, respectively. The negative bands indicates the decrease in the IR intensity (I) with respect to  $I_0$ . (B) Variation of the IR intensity at  $2000 \text{ cm}^{-1}$ , MS profile of  $O_2$  concentration, and volume of  $O_2$  pulsed and adsorbed; the latter shown in  $\mu$ L in parentheses.

The reaction process for producing these IR-observable species can be described by Scheme 1.

## Scheme 1

$$\begin{array}{c|c} \operatorname{CH_3CHO_{ad}} & \operatorname{CH_3CO_{ad}} \\ & \uparrow \downarrow & \uparrow \downarrow \\ \operatorname{CH_3CH_2O_{ad}} \xrightarrow{h^+} I_{\operatorname{CH_3CHO_{ad}}} \xrightarrow{h^+} I_{\operatorname{CH_3CO_{ad}}} \xrightarrow{\operatorname{O^+_{int}}} \operatorname{CH_3COO_{ad}} \\ & \operatorname{O_{2ad}} & \overset{e^-}{\underset{h^+}{\longleftrightarrow}} \operatorname{O_2}^- \xrightarrow{\operatorname{H_2O/OH}} \end{array}$$

The oxygen adsorption step and its interaction with photogenerated electrons  $(O_{2ad} + e^- \rightarrow O_2^-)$  can be further examined by comparing the intensity of the background shift, measured as the IR absorbance intensity at 2000 cm<sup>-1</sup> ( $I_{2000}$ ) and the O<sub>2</sub> concentration profile, as presented in Figure 1B.  $I_{2000}$  has been used to quantify the extent of the background shift due to the absence of overlapping bands.<sup>4</sup> Expanding the initial IR intensities versus time in the inset of Figure 1B shows the rapid rise in  $I_{2000}$ , accompanied by the gradual decay of the C-H intensity, highlighting the fact that the process of electron and hole generation is significantly faster than the hole-abstracting reaction (CH<sub>3</sub>CH<sub>2</sub>O<sub>ad</sub> + h<sup>+</sup>  $\rightarrow$   $I_{\text{CH}_3\text{CHO}_{ad}}$ ).  $I_{\text{CH}_3\text{CHO}_{ad}}$  would be a common intermediate for the formation of CH3COO-ad, CH3CHOad, and CH<sub>3</sub>CO<sub>ad</sub>. The presence of such an intermediate can be inferred from the observation of the evolution of CH<sub>3</sub>COO<sup>-</sup><sub>ad</sub> at 1542 and 1441 cm<sup>-1</sup>, which preceded that of CH<sub>3</sub>CHO<sub>ad</sub> at 1718 cm<sup>-1</sup>, and CH<sub>3</sub>CO<sub>ad</sub> at  $1650 \text{ cm}^{-1}$ , as shown in Figure 2.



Figure 2. (A) Difference IR spectra of adsorbed species and CO2. (B) Variation of the coverage of adsorbed species as a function of UV illumination time. The dotted line represents the cumulative coverage of O<sub>2ad</sub>, and the continuous black line the resulting IR intensity at 2000 cm<sup>-1</sup>  $(I_{2000})$  after each  $O_2$  addition.

Each O2 pulse caused the adsorption of O2 and the sudden decrease in  $I_{2000}$  followed by a gradual recovery to nearly its initial intensity. Since the TiO<sub>2</sub> temperature and the irradiation intensity are constant, the rate of photoelectron and hole generation is expected to be constant. Thus, the decrease in the extent of the  $I_{2000}$  recovery can be attributed to (i) the reaction of  $O_2$  and electrons<sup>9</sup> ( $O_2 + e^- \rightarrow O_2^-$ ) and (ii) an increase in the rate of electron and hole recombination. The O<sub>2</sub><sup>-</sup> produced can react with OH groups or H<sub>2</sub>O on the TiO<sub>2</sub> surface to form oxygen reactive intermediates (O\*int) such as hydroxyl radicals (•OH)1. Although we do not have direct evidence of the formation of these oxygen intermediates, their formation has been well established. 10 The O\*int can further react with  $I_{\text{CH}_3\text{CHO}_{\text{ad}}}$  or  $\text{CH}_3\text{CO}_{\text{ad}}$  to produce  $\text{CH}_3\text{COO}^-_{\text{ad}}$  $(CH_3CO_{ad} + O*_{int} \rightarrow CH_3COO^-_{ad})$  and ultimately  $CO_2$ , through the Koble reaction. 11 The specific nature of the O\*int requires further Electron Spin Resonance (ESR) studies and correlating the ESR signal of O\* with the infrared intensity of CH3COad and CH<sub>3</sub>COO-ad. The formation of CH<sub>3</sub>COO-ad and CH<sub>3</sub>CO<sub>ad</sub> can be unambiguously determined by the difference IR spectra in Figure 2A, which were obtained by subtracting spectra exhibiting the same  $I_{2000}$  intensity. The IR intensities of CH<sub>3</sub>COO<sub>ad</sub>, the major intermediate of the reaction, were further calibrated with those of adsorbed ethanol and CO2 to convert them to the quantities shown in Figure 2B (details presented in Supporting Information).

Figure 2B shows formation of CH<sub>3</sub>COO-ad preceded that of CH<sub>3</sub>CHO<sub>ad</sub>, suggesting the abundance of h<sup>+</sup> and O\*<sub>int</sub> for reacting with  $I_{\text{CH}_3\text{CHO}_{\text{ad}}}$ . In turn, CH<sub>3</sub>CHO<sub>ad</sub> can only be formed when O<sub>2</sub> adsorption is limited, as shown in the ninth pulse. The O<sub>2ad</sub> from the first three pulses, which corresponds to 494 µmol/g TiO<sub>2</sub>, caused a 5.3% decrease of  $I_{2000}$  with the formation of negligible CO<sub>2</sub>/H<sub>2</sub>O and 31% of the final acetate coverage. The subsequent 3 pulses reduced 9.3% of  $I_{2000}$  and produced additional 17.6% of the final acetate coverage. This observation indicates that (i) the initial O<sub>2ad</sub> fills those TiO<sub>2</sub> surface sites which do not have a significant influence on the electron and hole recombination rate and (ii) sufficient coverage of  ${\rm O_2}^-$  is needed to increase the rate of electron and hole recombination and initiate formation of CH<sub>3</sub>COO<sub>ad</sub> and H<sub>2</sub>O. Further O<sub>2</sub> additions did not increase the O<sub>2ad</sub> coverage, but resulted in a significant increase in the formation of  $CH_3CO_{ad}$ ,  $CO_2$ , and  $H_2O$  with a slight decrease in  $I_{2000}$ . As the coverage of O<sub>2ad</sub> approached 640 µmol/g TiO<sub>2</sub> and the accumulation of acetate reached 300  $\mu$ mol/g TiO<sub>2</sub>, the addition of a large O<sub>2</sub> pulse at 90 min produced little changes in O<sub>2ad</sub> and formation of CH<sub>3</sub>COO<sup>-</sup><sub>ad</sub> and CO<sub>2</sub>, indicating that the oxygen adsorption step is a rate-limiting step. These observations for pulsing O2 over adsorbed ethanol on TiO2 were found to be consistent with the results of pulsing ethanol/O<sub>2</sub> (1/1 molar ratio) on TiO<sub>2</sub> without preadsorbed ethanol, as described in the Supporting Information. In conclusion, IR coupled with the MS method showed that the oxygen adsorption step controls the overall reaction process; this step is further slowed down by the presence of the stable acetate on the TiO<sub>2</sub> surface. The effective removal of carboxylate species from the catalyst holds the key to accelerating the rate of photocatalytic oxidation of organics. This study bridges the gap between the results of nanosecond and millisecond time transient absorption studies and that of minute scale photocatalytic oxidation studies.

**Acknowledgment.** This work was partially supported by the U.S. Department of Energy (Grant DE-FG26-01NT41294) and FirstEnergy Corp.

Supporting Information Available: Additional experiments. This material is available free of charge via the Internet at http://pubs.acs.org.

## References

- (1) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69-96.
- Morris, N. D.; Suzuki, M.; Mallouk, T. E. J. Phys. Chem. A 2004, 108, 9115-9119.
- Szczepankiewicz, S. H.; Colussi, A. J.; Hoffmann, M. R. J. Phys. Chem. B 2000, 104, 9842-9850.
- (4) Berger, T.; Sterrer, M.; Diwald, O.; Knoezinger, E.; Panayotov, D.; Thompson, T. L.; Yates, J. T., Jr. J. Phys. Chem. B 2005, 109, 6061–6068.
- Yamakata, A.; Ishibashi, T.-A.; Onishi, H. J. Mol. Catal. A: Chem. 2003, 199, 85-94
- Chuang, S. S. C.; Guzman, F. *Top. Catal.* **2009**, *52*, 1448–1458. Muggli, D. S.; Lowery, K. H.; Falconer, J. L. *J. Catal.* **1998**, *180*, 111–122. Chuang, S. S. C.; Pien, S. I. *J. Mol. Catal.* **1989**, *55*, 12–22.
- Henderson, M. A.; Epling, W. S.; Peden, C. H. F.; Perkins, C. L. J. Phys. Chem. B 2003, 107, 534-545.
- Anpo, M.; Shima, T.; Kubokawa, Y. Chem. Lett. 1985, 1799-802.
- (11) Kraeutler, B.; Bard, A. J. J. Am. Chem. Soc. 1978, 100, 2239-40.

JA907256X