

Лекция
Online advertising 2

Владимир Гулин

10 апреля 2020 г.

План лекции

Kaggle ads click challenges

SOTA

Practical Lessons from industry companies

Kaggle ads click challenges

Kaggle ads click challenges

Criteo leaderboard

Avazu leaderboard

SOTA

Linear Prediction Models

$$\hat{y} = f(\boldsymbol{w}^T \boldsymbol{x})$$

Pros

- Highly efficient and scalable
- Explore larger feature space and training data

Cons

- Modelling limit: feature independence assumption
- Cannot capture feature interactions unless defining high order combination features
 - E.g., hour=10AM & city=London & browser=Chrome

Non-linear Models

- Factorization Machines
- ► Gradient Boosting Decision Trees
- Combined Models
- Deep Neural Networks

Factorization Machines

Prediction based on feature embedding

$$y_{\mathrm{FM}}(\boldsymbol{x}) := \operatorname{sigmoid}\left(w_0 + \sum_{i=1}^N w_i x_i + \sum_{i=1}^N \sum_{j=i+1}^N \langle \boldsymbol{v}_i, \boldsymbol{v}_j \rangle x_i x_j \right)$$
 Logistic Regression Feature Interactions

For x=[Weekday=Friday, Gender=Male, City=Shanghai]

$$y_{\text{FM}}(\boldsymbol{x}) = \operatorname{sigmoid} \left(w_0 + w_{\text{Friday}} + w_{\text{Male}} + w_{\text{Shanghai}} + \langle \boldsymbol{v}_{\text{Friday}}, \boldsymbol{v}_{\text{Male}} \rangle + \langle \boldsymbol{v}_{\text{Friday}}, \boldsymbol{v}_{\text{Shanghai}} \rangle + \langle \boldsymbol{v}_{\text{Male}}, \boldsymbol{v}_{\text{Shanghai}} \rangle \right)$$

[Rendle. Factorization machines. ICDM 2010.]

[Oentaryo et al. Predicting response in mobile advertising with hierarchical importance-aware factorization machine. WSDM 14]

Field-aware Factorization Machines

Feature embedding for another field

$$y_{\text{FFM}}(\boldsymbol{x}) = \operatorname{sigmoid}\left(w_0 + \sum_{i=1}^N w_i + \left| \sum_{i=1}^N \sum_{j=i+1}^N \langle \boldsymbol{v}_{i, \text{field}(j)}, \boldsymbol{v}_{j, \text{field}(i)} \rangle x_i x_j \right| \right)$$

Field-aware field embedding

For x=[Weekday=Friday, Gender=Male, City=Shanghai]

$$y_{ ext{FFM}}(m{x}) = ext{sigmoid} \Big(w_0 + w_{ ext{Friday}} + w_{ ext{Male}} + w_{ ext{Shanghai}} \\ + \langle m{v}_{ ext{Friday,Gender}}, m{v}_{ ext{Male,Weekday}} \rangle + \langle m{v}_{ ext{Friday,City}}, m{v}_{ ext{Shanghai,Weekday}} \rangle \\ + \langle m{v}_{ ext{Male,City}}, m{v}_{ ext{Shanghai,Gender}} \rangle \Big)$$

[Juan et al. Field-aware Factorization Machines for CTR Prediction. RecSys 2016.]

Gradient Boosting

Additive decision trees for prediction

$$\hat{y}_i = \phi(\mathbf{x}_i) = \sum_{k=1}^K f_k(\mathbf{x}_i), \quad f_k \in \mathcal{F}$$

• Each decision tree $f_k(\mathbf{x}_i)$ A>1 A<1 C<=6 W₃=1 W_2 =3 W_3 =1 W_4 =9 W_5 =0

[Chen and He. Higgs Boson Discovery with Boosted Trees . HEPML 2014.]

Neural Networks Models

 Difficulty: Impossible to directly deploy neural network models on such data

E.g., input features 1M, first layer 500, then 500M parameters for first layer

Review Factorization Machines

Prediction based on feature embedding

$$y_{\mathrm{FM}}(\boldsymbol{x}) := \operatorname{sigmoid}\left(w_0 + \sum_{i=1}^N w_i x_i + \sum_{j=i+1}^N \sum_{j=i+1}^N \langle \boldsymbol{v}_i, \boldsymbol{v}_j \rangle x_i x_j \right)$$

$$\operatorname{Logistic Regression} \qquad \operatorname{Feature Interactions}$$

- Embed features into a k-dimensional latent space
- Explore the feature interaction patterns using vector innerproduct

[Rendle. Factorization machines. ICDM 2010.]

[Oentaryo et al. Predicting response in mobile advertising with hierarchical importance-aware factorization machine. WSDM 14]

Factorization Machines is a Neural Networks

Factorization-Machine supported Neural Networks(FNN)

[Zhang et al. Deep Learning over Multi-field Categorical Data – A Case Study on User Response Prediction. ECIR 16]

Factorization-Machine supported Neural Networks(FNN)

Chain rule to update factorisation machine parameters

$$\begin{split} \frac{\partial L(y, \hat{y})}{\partial \boldsymbol{W}_{0}^{i}} &= \frac{\partial L(y, \hat{y})}{\partial \boldsymbol{z}_{i}} \frac{\partial \boldsymbol{z}_{i}}{\partial \boldsymbol{W}_{0}^{i}} = \frac{\partial L(y, \hat{y})}{\partial \boldsymbol{z}_{i}} \boldsymbol{x}[\operatorname{start}_{i} : \operatorname{end}_{i}] \\ \boldsymbol{W}_{0}^{i} &\leftarrow \boldsymbol{W}_{0}^{i} - \eta \cdot \frac{\partial L(y, \hat{y})}{\partial \boldsymbol{z}_{i}} \boldsymbol{x}[\operatorname{start}_{i} : \operatorname{end}_{i}]. \end{split}$$

[Zhang et al. Deep Learning over Multi-field Categorical Data – A Case Study on User Response Prediction. ECIR 16]

Factorization-Machine different from Neural Networks

Product Operations as Feature Interactions

[Yanru Qu et al. Product-based Neural Networks for User Response Prediction. ICDM 2016]

Product-based Neural Networks (PNN)

[Yanru Qu et al. Product-based Neural Networks for User Response Prediction. ICDM 2016]

Convolutional Click Prediction Model

• CNN to (partially) select good feature combinations

[Qiang Liu et al. A convolutional click prediction model. CIKM 2015]

Overall comparisons

Model	AUC		Log Loss	
	Criteo	iPinYou	Criteo	iPinYou
LR	71.48%	73.43%	0.1334	5.581e-3
FM	72.20%	75.52%	0.1324	5.504e-3
FNN	75.66%	76.19%	0.1283	5.443e-3
CCPM	76.71%	76.38%	0.1269	5.522e-3
PNN-I	77.79%	79.14%	0.1252	5.195e-3
PNN-II	77.54%	81.74%	0.1257	5.211e-3
PNN-III	77.00%	76.61%	0.1270	4.975e-3

Model	RN	ISE	RIG	
	Criteo	iPinYou	Criteo	iPinYou
LR	9.362e-4	5.350e-07	6.680e-2	7.353e-2
FM	9.284e-4	5.343e-07	7.436e-2	8.635e-2
FNN	9.030e-4	5.285e-07	1.024e-1	9.635e-2
CCPM	8.938e-4	5.343e-07	1.124e-1	8.335e-2
PNN-I	8.803e-4	4.851e-07	1.243e-1	1.376e-1
PNN-II	8.846e-4	5.293e-07	1.211e-1	1.349e-1
PNN-III	8.988e-4	4.819e-07	1.118e-1	1.740e-1

Practical Lessons From Industry Companies

Yandex (2012)

Бустинг логрегрессии деревьями

Facebook (2014)

Дообучаем деревья логрегрессией

Google (2016)

Совместно обучаем логрегрессию и нейронку

Microsoft Bing (2017)

Бустим нейронку деревьями

Figure 3: DNN+GBDT.

Microsoft Bing (2017)

Models	Position=ML1		Position=ALL		Description
	AUC Gain	RIG Gain	AUC Gain	RIG Gain	•
NN	0.00%	0.00%	0.00%	0.00%	NN with 1 hidden layer and 30 hidden units (baseline model)
LR	-1.97%	-16.14%	-1.46%	-10.01%	LR with normalized position bias
LR V2	-1.81%	-10.68%	-0.91%	-5.13%	LR with inversed position bias
GBDT2LR	0.06%	-0.17%	0.05%	0.44%	Cascade leaf index in GBDT as categorical feature to LR (used in Facebook
LR+GBDT	0.12%	-1.87%	-0.33%	-1.93%	Boost LR with GBDT (used in Yandex [25])
LR2GBDT V2	0.13%	-0.14%	0.03%	0.67%	Cascade LR with inversed position bias to GBDT
GBDT	0.14%	0.36%	0.03%	0.91%	GBDT initialized with inversed position bias
LR2GBDT	0.14%	-0.27%	0.01%	0.50%	Cascade LR with normalized position bias to GBDT
GBDT2NN	0.16%	1.29%	0.04%	1.32%	Cascade GBDT to NN
LR+GBDT V2	0.24%	1.36%	0.07%	1.04%	Boost LR (inversed position bias) with GBDT
NN2GBDT	0.25%	0.15%	0.08%	0.72%	Cascade NN to GBDT
GBDT+DNN	0.25%	1.33%	0.15%	1.52%	Average NN and GBDT
NN+GBDT	0.40%	2.81%	0.15%	1.30%	Boost NN with GBDT

Вопросы

