Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Тульский государственный университет»

КАФЕДРА ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ

ИССЛЕДОВАНИЕ УСИЛИТЕЛЬНОГО КАСКАДА НА БИПОЛЯРНОМ ТРАНЗИСТОРЕ

отчет о лабораторной работе №7

по дисциплине ЭЛЕКТРОТЕХНИКА, ЭЛЕКТРОНИКА И СХЕМОТЕХНИКА

ВАРИАНТ 2

Выполнили: студенты гр. 230711 Павлова В.С.

Семененко И.В.

Хромов А.С.

Проверил: асс. каф. ИБ Греков М.М.

ЦЕЛЬ И ЗАДАЧА РАБОТЫ

Исследование усилительных свойств каскада на транзисторе с ОЭ:

- а) статического режима транзистора;
- б) зависимости максимальной амплитуды выходного неискаженного сигнала $U_{\text{вых.max}}$ от параметров элементов схемы каскада;
- в) зависимости коэффициента усиления K_U (по напряжению) каскада от параметров элементов схемы каскада.

Ход работы

Для начала изучим схем однокаскадного стенда, который изображён на рисунке 1.

Рисунок 1 – Схема однокаскадного стенда

Настроим статический режим транзистора и занесём данные в таблицу 1.

Таблица 1 – Исходные параметры схемы каскада

Сопротивления, кОм					Напряжения, В			ı, B	Емкости, мкФ			
R_{Γ}	$R_{\partial I}$	$R_{\partial 2}$	$R_{\mathfrak{I}}$	R_{κ}	$R_{\scriptscriptstyle H}$	E_{κ}	$U_{\kappa \ni \Pi}$	$U_{\mathfrak{I}}$	$U_{{ m Ik}_{ m M3M}}$	C_{p1}	C_{p2}	$C_{\mathfrak{I}}$
1	5	5	5	5	5	16	8	8,13	9,1	20	20	500

Далее исследуем зависимость максимальной амплитуды выходного сигнала от параметров элементов схемы каскада.

На рисунке 2 изображён каскад с правильным подключением, а на рисунке 3 – выходной сигнал с частотой равный 2 кГц.

Рисунок 2 – Каскад с подключением для снятия данных

Рисунок 3 – Выходной сигнал с частотой 2 кГц

Таблица 2 – Результаты измерений

U_{κ эп, B	$0,25E_{\kappa}$	0,5E _K	70,25E _K	U _{кэп} (см.табл.1)
U _{вых макс} , В	7,1	10,1	11	10,0
(гнездо 10)				

Рисунок 4 – Зависимость Ивых от Икэп

Занесём данные в таблицу 3 при подключенной нагрузке Rн.

Таблица 3 – Результаты измерений

R _н , кОм	1 (Кр.лев)	5	10 (Кр.прав)	R _н →∞ («Б2» - средн.)	R _н * (см. табл.2)
U _{вых макс} , В (гнездо 10)	3	12	18	16	12

Рисунок 5 – Зависимость Uвых от Rн

Снимем амплитудную характеристику каскада при изменение входного сигнала.

Рисунок 6 – Пример выходного сигнала

Таблица 4 – Результаты измерений

U _{вх.т} , мВ	0	10	20	30	40	50	60	70	80	90	100	Нагрузка
U _{вых макс} ,	0	2,5	3,8	4,9	5,7	6,3	6,8	7,2	7,5	7,8	8	R _H (см.
В												табл.1)
(гнездо	0	3	4	4,5	4,8	5,1	5,3	5,5	5,6	5,7	5,8	$R_{\text{\tiny H}} \rightarrow \infty$
10)												

Рисунок 7 – Зависимость Ивых от Ивх

Теперь исследуем зависимость коэффициента усиления по напряжению каскада от параметров элементов схемы.

Коэффициент усилителя равен: $K_U = \frac{U_{\text{вых}}}{U_{\text{вх}}}$

Таблица 5 – Результаты измерений

	При R _H				
R _к , кОм	1	2	5	R _к (см.	R _к (см.
				табл.1)	табл.1)
$U_{\text{вх.m}}$, м B	105	201	300	300	350
U _{вых макс} , В	1	1,5	2	2	2,7
(гнездо 10)					
K_{U}	9,52	7,46	6,67	6,67	7,71

Произведём подобные измерения и внесём данные в таблицы 6-8.

Таблица 6 – Результаты измерений

R _H , кОм	1	5	10	$R_{\text{\tiny H}} \rightarrow \infty$	R_{H}
	(кр. лев)		(кр. прав)	(B2-	(см. табл.1)
				средн.)	
U _{вх.m} , мВ	100	204	300	372	204
U _{вых макс} , В	0,8	2	3,2	4,5	2
(гнездо 10)					
K_{U}	8	9,8	10,67	12,1	9,8

Таблица 7 – Результаты измерений

R_{Γ} , к O м	0	0,1	1	5	10	R_{Γ}
	(гн.	(гн.	(кр.		(кр. прав)	(см. табл.1)
	«4»)	«3»)	лев)			
U _{вх.m} , мВ	100	192	267	372	450	463
U _{вых m} , В	0,1	0,23	0,45	0,52	0,79	0,9
(гнездо 10)						
K_{U}	1	1,2	1,69	1,39	1,76	1,94

Таблица 8 – Результаты измерений

Сэ, мкФ	0 (откл.)	2	500
U _{вх.т} , мВ	92	168	342
U _{вых m} , В	10	18	32
(гнездо 10)			
K_{U}	0,1	0,11	0,093

Снимем ещё одни данные при переменной и постоянной U.

Таблица 9 – Результаты измерений

Параметры	u_{ex}	$u_{\scriptscriptstyle \mathit{BblX}}(u_{\mathrm{a}})$	u_K	иэ	u_{cp2}	$i_{\mathcal{B}}$	i_K	iэ	i_H
u _m , B -	2,5	1,8	3,2	1,2	1,5	0,02	0,5	0,3	10
переменная									
U ₀ ,B -	5,1	3,4	6,1	2,7	3,2	0,8	1,2	0,7	19
постоянная									
ф, град	0	45	90	60	120	30	-	-	-

Вывод

Мы исследовали основные свойства каскада и на основе всего составили результат измерений однокаскадного стенда, осциллографа и генератора.