Problem Set 5

D. Zack Garza

Monday 4th May, 2020

Contents

1	4.3		1
_		Solution	
3	4.11		2

1 4.3

Proposition 1.1.

Suppose $\lambda + \rho \in \Lambda^+$. Then $M(w \cdot \lambda) \subset M(\lambda)$ for all $w \in W$. Thus all $[M(\lambda) : L(w \cdot \lambda)] > 0$.

More precisely, if $w = s_n \cdots s_1$ is a reduced expression for w in terms of simple reflections corresponding to roots α_i , then there is a sequence of embeddings:

$$M(w \cdot \lambda) = M(\lambda_n) \subset M(\lambda_{n-1}) \subset \cdots \subset M(\lambda_0) = M(\lambda)$$

Here

$$\lambda_0 := \lambda, \lambda_k := s_k \cdot \lambda_{k-1} = (s_k \dots s_1) \cdot \lambda \implies \lambda_n = s_n \cdot \lambda_{n-1} = w \cdot \lambda$$
$$w \cdot \lambda = \lambda_n \le \lambda_{n-1} \le \dots \le \lambda_0 = \lambda \text{with} \quad \langle \lambda_k + \rho, \alpha_{k+1}^{\vee} \rangle \in \mathbb{Z}^+ \text{ for } k = 0, \dots, n-1.$$

Assume $\lambda + \rho \in \Lambda^+$.

- a. Prove that the unique simple submodule of $M(\lambda)$ is isomorphic to $M(w_{\diamond} \cdot \lambda)$, where w_{\diamond} is the longest element of W.
- b. In case $\lambda \in \Lambda^+$, show that the inclusions obtained in the above proposition are all proper.

2 4.6

Theorem 2.1(Verma).

Let $\lambda \in \mathfrak{h}^{\vee}$. Given $\alpha > 0$, suppose $\mu := s_{\alpha} \cdot \lambda \leq \lambda$. Then there exists an embedding $M(\mu) \subset M(\lambda)$.

Work through the steps of Verma's Theorem in the special case discussed in the previous problem

2.1 Solution

Let $\mathfrak{g} = \mathfrak{sl}(3,\mathbb{C})$ and identify its root system A_2 with $\Delta = \{\alpha,\beta\}$ and $\Phi^+ = \{\alpha,\beta,\gamma \coloneqq \alpha+\beta\}$ We can also identify the Weyl group as $W = \{1,s_{\alpha},s_{\beta},s_{\alpha}s_{\beta},s_{\beta}s_{\alpha},s_{\gamma}\}$ where there is a reduced expression $s_{\gamma} = w_0 = s_{\alpha}s_{\beta}s_{\alpha}$.

We can begin by letting $\lambda \in \Lambda$ be an arbitrary integral weight and let μ be an arbitrary weight linked to λ , where WLOG apply some Weyl group element to μ to place it in the dominant chamber and assume

$$\mu := s_{\alpha} \cdot \lambda \leq \lambda$$
.

2.1.1 Part 1

Since μ is assumed integral, we can find some $w \in W$ such that

$$\mu' \coloneqq w^{-1} \cdot \mu \in \Lambda^+ - \rho.$$

Claim: $w = s_{\alpha} s_{\beta}$

As in Proposition 4.3, we then write

$$\mu_0 = \mu'$$

$$\mu_1 = s_\beta \mu'$$

$$\mu_2 = s_\alpha s_\beta \mu' = w \mu' = \mu$$

which (by that Proposition) gives a sequence of embeddings

$$M(\mu) = M(\mu_2) \hookrightarrow M(\mu_1) \hookrightarrow M(\mu_0) = M(\mu')$$

i.e.
 $M(\mu) \hookrightarrow M(s_\beta \mu') \hookrightarrow M().$

3 4.11

In the case of $\mathfrak{sl}(3,\mathbb{C})$, what can be said at this point about Verma modules with a singular integral highest weight?

Aside from the trivial case $-\rho$, a typical linkage class has 3 elements. For example, if λ lies in the α hyperplane and is antidominant, the linked weights are λ , $s_{\beta} \cdot \lambda$, $s_{\alpha} s_{\beta} \cdot \lambda$.

3 4.11 2