Nombre _____ Carnet ____

EXAMEN CORTO 13 (100 pts.)

No se permite el uso de notas de clase. Para tener calificación toda respuesta requiere de procedimiento correcto. La duración del examen es de 15 minutos. $1 + 2e^{-t} = 1 + 0$

Encuentre si los siguientes límites tienen una forma indeterminada y·resuélvalos:

1.
$$\lim_{t\to\infty} \frac{e^t + t^2}{e^t - t}$$
 (50 pts.) $\frac{\infty}{\infty}$

lim $\underbrace{e^t + t^2}_{t\to\infty} = \lim_{e^t - t} \frac{e^t + 2t}{e^t - 1} = \lim_{e^t \to \infty} \frac{e^t + 2t}{e^t}$

the thin $\underbrace{e^t + t^2}_{t\to\infty} = \lim_{e^t \to \infty} \frac{e^t + 2t}{e^t} = \lim_{e^t \to \infty} \frac{e^t}{e^t} = \lim_{e^t \to \infty} \frac{e$

$$\ln \left(\frac{x}{s/x} \right)$$

Nombre _____ Carnet _____

EXAMEN CORTO 13 (100 pts.)

No se permite el uso de notas de clase. Para tener calificación toda respuesta requiere de procedimiento correcto. La duración del examen es de 15 minutos.

Encuentre si los siguientes límites tienen una forma indeterminada y resuélvalos:

1.
$$\lim_{x\to 0} \frac{(e^{x}-1)^{2}}{x\sin(x)}$$
 (50 pts.) $\frac{(1-1)^{\frac{1}{2}}}{0.5in0} = \frac{0}{0}$

1/m $\frac{(e^{x}-1)^{2}}{x\sin(x)} = \lim_{x\to 0} \frac{2(e^{x}-1)e^{x}}{x\sin(x)+x\cos(x)} = \lim_{x\to 0} \frac{2e^{2x}-2e^{x}}{x\sin(x)+x\cos(x)}$
 $= \lim_{x\to 0} \frac{(e^{x}-1)^{2}}{x\sin(x)} = \lim_{x\to 0} \frac{2(e^{x}-1)e^{x}}{\sin(x)+x\cos(x)} = \lim_{x\to 0} \frac{2e^{2x}-2e^{x}}{\sin(x)+x\cos(x)}$
 $= \lim_{x\to 0} \frac{(e^{x}-1)^{2}}{x\sin(x)} = \lim_{x\to 0} \frac{2(e^{x}-1)e^{x}}{\sin(x)+x\cos(x)} = \lim_{x\to 0} \frac{2e^{2x}-2e^{x}}{\sin(x)+x\cos(x)}$
 $= \lim_{x\to 0} \frac{(e^{x}-1)^{2}}{x\sin(x)} = \lim_{x\to 0} \frac{2(e^{x}-1)e^{x}}{\sin(x)+x\cos(x)} = \lim_{x\to 0} \frac{2e^{2x}-2e^{x}}{\sin(x)+x\cos(x)}$
 $= \lim_{x\to 0} \frac{(e^{x}-1)^{2}}{x\sin(x)} = \lim_{x\to 0} \frac{2(e^{x}-1)e^{x}}{\sin(x)+x\cos(x)} = \lim_{x\to 0} \frac{2e^{2x}-2e^{x}}{\sin(x)+x\cos(x)}$
 $= \lim_{x\to 0} \frac{4e^{2x}-2e^{x}}{\cos(x)+x\cos(x)} = \lim_{x\to 0} \frac{2e^{2x}-2e^{x}}{\cos(x)+x\cos(x)}$
 $= \lim_{x\to 0} \frac{4e^{2x}-2e^{x}}{\cos(x)+x\cos(x)} = \lim_{x\to 0} \frac{4e^{2x}-2e^{x}}{\cos(x)+x\cos(x)}$
 $= \lim_{x\to 0} \frac{4e^{2x}-2e^{x}}{\cos(x)+x\cos(x)} = \frac{4e^{x}-2e^{x}}{2} = \frac{2e^{x}-2e^{x}}{2}$

Evaluation

$$y = 2 \lim_{x \to 0^{+}} (x^{2} + x)^{1/\ln(x)} \text{ (50 pts.)} \qquad 0 = 0$$

$$\ln y = \lim_{x \to 0^{+}} \frac{\ln (x^{2} + x)}{\ln (x)} \qquad \lim_{x \to 0^{+}} \frac{\ln 0^{+} - \infty}{\ln 0^{+}} \qquad \lim_{x \to 0^{+}}$$