Using Natural Splines in Logistic Regression, with an Application to Tulip Germination Experiments

Mickey Warner

Problem Statement

Tulips are significant to Netherlands:

- · Symbol of the region
- · Contribution to agricultural exports
- · Tourist attraction

Tulips require a chilling time to bloom

Climate change in Netherlands

Research Questions

Is the effect of chilling time the same across all populations?

Which populations are the same/different?

Is there an "ideal" chilling time?

Does this ideal chilling time vary by population?

What effect will a decrease from 10 to 8 weeks of winter/chilling time have for tulips?

Statistical Model and Methods

Logistic regression

Model formulation:

$$Y_i \sim \text{Bern}(p_i)$$

$$\log\left(\frac{p_i}{1 - p_i}\right) = \mathbf{x}_i' \boldsymbol{\beta}$$

 p_i is the probability of germination given covariates \mathbf{x}_i

 $oldsymbol{eta}$ is the vector of coefficient parameters

Non-monotonic effects

12

Natural splines (basis functions)

Advantages:

- · Allows for non-"linear" responses
- · Imposes smoothness constraints (knots)
- · Provides nice tail behavior

Disadvantages:

- · Increases the number of parameters
- · Is difficult to interpret (without a figure)

Analysis

Likelihood ratio tests for differences in models ($\alpha = 0.05$)

- · Compute full and reduced models
- · Bonferroni correction
- · Low p-value suggests a difference in population

Determine number of knots via cross-validation and AUC

Bootstrapping to compute ideal chilling times

Results

Effect of chilling time for populations

Not the same across all populations (small p-value)

Populations with same chilling time effect:

- · A: 2, 3, 4
- · B: 6, 7, 10, 11

Effect of chilling time for populations

Models

Ideal chilling times and uncertainties

Chilling Time					Probabilities		
Pop.	Lower	Est.	Upper	Pop.	Lower	Est.	Upper
1	1.28	10.06	12.00	1	0.93	0.99	1.00
5	2.40	2.86	9.68	5	0.69	0.84	0.94
8	6.75	7.65	12.00	8	0.26	0.41	0.55
9	12.00	12.00	12.00	9	0.54	0.77	0.93
Α	8.92	9.81	12.00	Α	0.83	0.90	0.95
В	9.64	10.15	10.55	В	0.73	0.84	0.92

Change from 10 to 8 week winters

Change in Probability

Change in 1 Tobability							
Pop.	Lower	Est.	Upper				
1	-0.263	-0.008	0.090				
5	-0.127	0.002	0.204				
8	-0.069	0.037	0.185				
9	-0.451	-0.230	-0.161				
Α	-0.108	-0.051	0.003				
В	-0.379	-0.193	-0.065				

Conclusion

Some populations experience same effect on chilling time

Most groups had ideal chilling times around 10 weeks, others had low times

Future research:

- · Consider other knot locations for natural splines
- · Other possible non-linear methods
- · What's up with population 12?