In this section we compute the ordinary cohomology and the compactly supported cohomology of \mathbb{R}^n .

4.1 The Poincaré Lemma for de Rham Cohomology

Let $\pi: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ be the projection on the first factor and $s: \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}, x \mapsto (x,0)$ be the zero section.

Trivially, $s^* \circ \pi^* = 1$. We now to prove $\pi^* \circ s^*$ is the identity in cohomology $H^*(\mathbb{R}^n \times \mathbb{R})$. It is enough to find a map K on $\Omega^*(\mathbb{R}^n \times \mathbb{R})$ such that

$$1 - \pi^* \circ s^* = \pm (d \circ K \pm K \circ d)$$

Easy to find that $dK \pm Kd$ maps closed forms to exact forms and therefore induces zero in cohomology. Such a K is called a <u>homotopy operator</u>. if it exists, we say that $\pi^* \circ s^*$ is chain homotopic to the identity.

Note that the homotopy operator K decreases the degree by 1.

We will use df as we define before $\left(\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i\right)$ and $\int g$ for $\int g(x,t) dt$.

Every form on $\mathbb{R}^n \times \mathbb{R}$ is uniquely a linear combination of the following two types of forms:

$$(1) (\pi^* \phi) f(x, t),$$
$$(2) (\pi^* \phi) f(x, t) dt$$

where ϕ is a form on the base \mathbb{R}^n .

We define $K: \Omega^q(\mathbb{R}^n \times \mathbb{R}) \to \Omega^{q-1}(\mathbb{R}^n \times \mathbb{R})$ by

$$(1)\,(\pi^*\phi)f(x,t)\mapsto 0,$$

$$(2) (\pi^* \phi) f(x, t) \mathrm{d}t \mapsto (\pi^* \phi) \int_0^t f.$$

Let's check K is indeed a homotopy operator.

On the forms of type (1):

$$\omega = (\pi^* \phi) \cdot f(x, t), \qquad \deg \omega = q$$

$$(1 - \pi^* \circ s^*) \omega = (\pi^* \phi) \cdot f(x, t) - \pi^* \phi \cdot f(x, 0),$$

$$(dK - Kd) \omega = -K d\omega = -K \left((d\pi^* \phi) f + (-1)^q \pi^* \phi (df + \frac{\partial f}{\partial t} dt) \right)$$

$$= (-1)^{q-1} \pi^* \phi \int_0^t \frac{\partial f}{\partial t} = (-1)^{q-1} \pi^* \phi (f(x, t) - f(x, 0))$$

Thus,

$$(1 - \pi^* \circ s^*)\omega = (-1)^{q-1}(dK - Kd)\omega$$

On forms of type (2),

$$\omega = (\pi^* \phi) f(x, t) dt, \qquad \deg \omega = q$$

$$d\omega = (\pi^* d\phi) f dt + (-1)^{q-1} (\pi^* \phi) df dt.$$

$$(1 - \pi^* s^*) \omega = \omega \text{ because } s^* (dt) = 0$$

$$K d\omega = (\pi^* d\phi) \int_0^t f + (-1)^{q-1} (\pi^* \phi) \int_0^t df$$

$$dK\omega = (\pi^* d\phi) \int_0^t f + (-1)^{q-1} (\pi^* \phi) \left[d \int_0^t f + f dt \right].$$

Thus

$$(1-\pi^*\circ s^*)\omega=(-1)^{q-1}(dK-Kd)\omega$$

In this case,

$$1 - \pi^* \circ s^* = (-1)^{q-1} (dK - Kd)$$
 on $\Omega^q(\mathbb{R}^n \times \mathbb{R})$

This proves

Proposition 4.1. The maps $H^*(\mathbb{R}^n \times \mathbb{R}) \leftrightarrows H^*(\mathbb{R}^n)$ are isomorphisms.

Corollary 4.1.1 (Poincará Lemma).

$$H^*(\mathbb{R}^n) = H^*(point) = \begin{cases} \mathbb{R} & in \ dimension \ 0 \\ 0 & elsewhere \end{cases}$$

Similarly, we can show that $H^*(\mathbb{R}^n \times \mathbb{R}) \simeq H^*(\mathbb{R}^n)$ is an isomorphism via π^* and s^* defined before.

Corollary 4.1.2. (Homotopy Axiom for de Rham cohomology) Homotopic maps induce the same map in cohomology.

证明. Let $f = F \circ s_1, g = F \circ s_0$, where s_0 and $s_1 : M \to M \times \mathbb{R}$ are the 0-section and 1-section.

Then
$$f^* = (F \circ s_1)^* = s_1^* \circ F^*, g^* = (F \circ s_0)^* = s_0^* \circ F^*.$$

Since s_1^* and S_0^* both invert π^* in $H^*(\mathbb{R}^n \times \mathbb{R})$, they are equal. Hence

$$f^* = g^*$$

.

Two manifolds M and N are said to have the same homotopy type in the C^{∞} sense if there are C^{∞} maps $f: M \to N$ and $g: N \to M$ such that $g \circ f$ and $f \circ g$ are C^{∞} homotopic to the identity on M and N respectively. A manifold having the homotopy type of a point is said to be contratible.

Corollary 4.1.3. Two manifolds with the same homotopy type have the same de Rham cohomology.

If $i:A\subset M$ is the inclusion $r:M\to A$ is a map which restrict to the identity on A, then r is called a <u>retraction</u> of M onto A. Equivalently, $r\circ i:A\to A$ is the identity. If in addition $i\circ r:M\to M$ is homotopic to the identity on M, then r is said to be a <u>deformation retraction</u> of M onto A. In this case we have:

Corollary 4.1.4. If A is a deformation retract of M, then A and M have the same homotopy type.

Exercise 4.2. Show that $r: \mathbb{R}^2 - \{0\} \to S^1$ given by $r(x) = \frac{x}{||x||}$ is a deformation retraction.

Exercise 4.3. The cohomology of the n-sphere S^n . Cover S^n by two open sets U and V where $U \cap V$ is diffeomorphic to $S^{n-1} \times \mathbb{R}$. Using the Mayer Vietoris sequence, show that

$$H^*(S^n) = \begin{cases} \mathbb{R} & \text{in dimensions } 0, n \\ 0 & \text{otherwise} \end{cases}$$

Exercise 4.3.1 Volume form on a sphere. Let $S^n(r)$ be the spere of radius r

$$x_1^2 + x_2^2 + \dots + x_{n+1}^2 = r^2$$

in \mathbb{R}^{n+1} , and let

$$\omega = \frac{1}{r} \sum_{i=1}^{n+1} (-1)^{i-1} dx_1 \cdots \widehat{dx_i} \cdots dx_{n+1}$$

- Compute the integral $\int_{S^n} \omega$ and conclude that ω is not exact.
- Regarding r as a function on $\mathbb{R}^{n+1}-0$, show that $(dr)\cdot\omega=dx_1\cdots dx_{n+1}$. Thus ω is the Euclidean volume form on the sphere $S^n(r)$.

From (a) we obtain an explicit formula for the generator of the top cohomology of S^n . For example, the generator of $H^2(S^2)$ is represented by

$$\sigma = \frac{1}{4\pi} (x_1 dx_2 dx_3 - x_2 dx_1 dx_3 + x_3 dx_1 dx_2)$$

4.2 The Poincaré Lemma for Compactly Supported Cohomology

The computation of the compactly supported cohomology $H^*(\mathbb{R}^n)$ is again by induction; we will show that there is an isomorphism

$$H_c^{*+1}(\mathbb{R}^n \times \mathbb{R}) \simeq H_c^*(\mathbb{R}^n)$$

But the dimension is shifted by one.

More generally consider the projection $\pi: M \times \mathbb{R} \to M$. Pull back of a form necessarily has no compact support, However, there is a push-forward map $\pi_*: \Omega_c^*(M \times \mathbb{R}) \to \Omega_c^*(M)$, called <u>integration along fiber</u>, defined as follows. First note that a compactly supported form on $M \times \mathbb{R}$ is a linear conbination of two types of forms:

$$(1)(\pi^*\phi)f(x,t),$$

$$(2) (\pi^* \phi) f(x, t) dt$$

where ϕ is a form on the base (not necessarily with compact support), and f(x,t) is a function with compact support. We define π_* by

$$(1) (\pi^* \phi) f(x, t) \mapsto 0,$$

$$(2) (\pi^* \phi) f(x, t) dt \mapsto \phi \int_{-\infty}^{\infty} f(x, t) dt.$$

$$(4.4)$$

Exercise 4.5 $d\pi_* = \pi_* d$; in other words, π_* is a chain map.

By the exercise π_* induce a map in cohomopogy $\pi_*: H_c^* \to H_c^{*-1}$. To produce a map in the reverse direction, let e = e(t)dt be a compactly supported 1-form on \mathbb{R} with total integral 1 and define

$$e_*: \Omega_c^*(M) \to \Omega_c^{*+1}(M \times \mathbb{R})$$

by

$$\phi \mapsto (\pi^* \phi) \wedge e$$

The map e_* clearly commutes with d, so it also induces a map in cohomology. And $\pi_* \circ e_* = 1$ on $\Omega_c^*(\mathbb{R}^n)$ is trivial. Now we shall produce a homotopy operator K between 1 and $e_* \circ \pi_*$; then it will follow that $e_* \circ \pi_* = 1$ in cohomology.

To streamline the notation, write ϕ for $\pi^*\phi$ (in right place) and $\int f$ for $\int f(x,t)dt$. Then $K: \Omega_c^*(M \times \mathbb{R}) \to \Omega_c^{*-1}(M \times \mathbb{R})$ is defined by

$$\begin{split} &(1)\phi\cdot f\mapsto 0,\\ &(2)\phi\cdot f\,dt\mapsto \phi\int_{-\infty}^t f-\phi A(t)\int_{-\infty}^\infty f\qquad\text{where }A(t)=\int_{-\infty}^t e^{-t}dt\,dt\,, \end{split}$$

Proposition 4.6. $1 - e_*\pi_* = (-1)^{q-1}(dK - Kd)$ on $\Omega^q_c(M \times \mathbb{R})$

证明. On forms of type (1), assuming $\deg \phi = q$, we have:

$$(1 - e_* \pi_*) \phi f = \phi f$$

$$(dK - Kd) \phi f = -K(d\phi f + (-1)^q \phi df + (-1)^q \phi \frac{\partial f}{\partial t} dt)$$

$$= (-1)^{q-1} \phi f \quad \text{Here } \int_{-\infty}^{\infty} \frac{\partial f}{\partial t} = f(x, +\infty) - f(x, -\infty) = 0$$

So
$$1 - e_* \pi_* = (-1)^{q-1} (dK - Kd)$$

On forms of type(2), now assuming $\deg \phi = q - 1$, we have

$$(1 - e_* \pi_*) \phi f \, dt = \phi f \, dt - \phi \left(\int_{-\infty}^{\infty} f \right) e$$

$$(dK)(\phi f \, dt) = (d\phi) \int_{-\infty}^{t} f + (-1)^{q-1} \phi d \left(\int_{-\infty}^{t} f \right) + (-1)^{q-1} \phi f dt$$

$$- (d\phi) A(t) \int_{-\infty}^{\infty} f - (-1)^{q-1} \phi \left[e \int_{-\infty}^{\infty} f + A(t) \left(\int_{-\infty}^{\infty} df \right) \right]$$

$$(Kd)(\phi f \, dt) = K((d\phi) f \, dt + (-1)^{q-1} \phi df \, dt)$$

$$= (d\phi) \int_{-\infty}^{t} f - (d\phi) A(t) \int_{-\infty}^{\infty} f + (-1)^{q-1} \left[\phi \left(\int_{-\infty}^{t} df \right) - \phi A(t) \left(\int_{-\infty}^{\infty} df \right) \right]$$

So

$$(dK - Kd)\phi f dt = (-1)^{q-1} [\phi f dt - \phi (\int_{-\infty}^{\infty} f)e]$$

and the formula again holds.

This conclude the proof of the following

Proposition 4.7. The maps

$$H_c^*(M \times \mathbb{R}) \rightleftharpoons H_c^{*-1}(M)$$

are isomorphisms.

Corollary 4.7.1 (Poincaré Lemma for Compact Supports).

$$H_c^*(\mathbb{R}^n) = egin{cases} \mathbb{R} & \textit{in dimension } n \ 0 & \textit{otherwise} \end{cases}$$

Here the isomorphism $H_c^*(\mathbb{R}^n) \simeq \mathbb{R}$ is given by iterated π_* , i.e. by integration over \mathbb{R}^n . To determine a generator for $H_c^n(\mathbb{R})$, we start with the constant function 1 on a point and iterated with e_* . So a generator for $H_C^*(\mathbb{R}^n)$ is a bump n-form $\alpha(x) dx_1 \cdots dx_n = 1$ with

$$\int_{\mathbb{R}^n} \alpha(x) \, dx_1 \cdots dx_n = 1$$

The support of α can be made as small as we like.

Remark 1. It shows that the compactly supported cohomology is not invariant under homotopy equivalence, although it is of course invariant under diffeomorphisms.

Exercise 4.8. Compute the cohomology groups $H^*(M)$ and $H_c^*(M)$ of the open Möbius strip M.

4.3 The degree of a Proper Map

对光滑流形 X, 记 $C^{\infty}(X)$ 为所有光滑函数 $f\colon X\to\mathbb{R}$ 构成的实数向量空间.

Definition 4.3.1 (切空间). 设 X 是光滑流形, 设 $x \in X$. 则

• X 在 x 处的切向量是指一个线性函数

$$v \colon C^{\infty}(X) \to \mathbb{R},$$

满足对任意 $f,g \in C^{\infty}(X)$, 有 Leibniz 法则

$$v(fg) = f(x) \cdot v(g) + g(x) \cdot v(f).$$

这里, 我们把 v(f) 理解成函数 f 在点 x 处沿着向量 v 的方向导数.

• X 在 x 处的切空间 T_xX 是 X 在 x 处的所有切向量构成的向量空间.

对 Euclid 空间的切映射

Definition 4.3.2. 设 m,n 是自然数, $U \subset \mathbb{R}^m$ 和 $V \subset \mathbb{R}^n$ 是开集, $f:U \to V$ 是连续可微映射. 设 $x \in U$. 则 f 在 x 处的切映射是指切空间之间的线性映射

$$df_x : T_x U \longrightarrow T_{f(x)} V$$
,

由 Jacobi 矩阵

$$\begin{pmatrix} \frac{\partial f^1}{\partial x^1}(x) & \cdots & \frac{\partial f^1}{\partial x^m}(x) \\ \vdots & & \vdots \\ \frac{\partial f^n}{\partial x^1}(x) & \cdots & \frac{\partial f^n}{\partial x^m}(x) \end{pmatrix}$$

给出. 这里 f^1, \ldots, f^n 是 f 的各分量, 而 x^1, \ldots, x^m 是 U 上的坐标. 我们 自然地将 T_xU 与 \mathbb{R}^m 等同起来, 将 $T_{f(x)}V$ 与 \mathbb{R}^n 等同起来.

对流形的切映射

Definition 4.3.3. 设 X,Y 是光滑流形, $f: X \to Y$ 是光滑映射. 设 $x \in X$. 则 f 在 x 处的切映射是指切空间之间的线性映射

$$df_x \colon \mathrm{T}_x X \longrightarrow \mathrm{T}_{f(x)} Y,$$

 $v \longmapsto df_x(v),$

这里 $df_x(v)$ 定义如下: 对任何 $g \in C^{\infty}(Y)$, 有

$$df_x(v)(g) = v(g \circ f).$$

更一般地, 若 X,Y 是微分流形 C^1 流形, 而 f 是连续可微映射 C^1 映射, 则上述定义仍然有效, 只需将 $g \in C^{\infty}(Y)$ 换成 $g \in C^1(Y)$.

Theorem 4.9 (the Inverse Function theorem). There is a neighborhood around a regular point such that f is local diffeomorphism on it.

A map is proper if the inverse image of every compact set is compact.

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a proper map. Then the pullback $f^*: H_c^*(\mathbb{R}^n) \to H_c^*(\mathbb{R}^n)$ is defined. It carries a generator of $H_c^*(\mathbb{R}^n)$ to some multiple of the generator. Then the multiple is defined to be the degree. If α is a generator of $H_c^*(\mathbb{R}^n)$,

$$\deg f = \int_{\mathbb{R}^n} f^* \alpha$$

We now prove it to be an integer.

Recall the <u>critical point</u> of a smooth map $f: \mathbb{R}^n \to \mathbb{R}^n$ is a point p where the differential $(f_*)_p: T_p\mathbb{R}^n \to T_{f(p)}\mathbb{R}^n$ is not surjective, and a <u>critical value</u> is the image of a critical point. A point of \mathbb{R}^n which is not a critical value is called a regular value.

Theorem 4.10 (Sard's theorem for \mathbb{R}^n). The set of critical values of a smooth map $f: \mathbb{R}^m \to \mathbb{R}^n$ has measure zero in \mathbb{R}^n for any integers m and n.

Proposition 4.11. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a proper map. If f is not surjective, then it has degree 0.

延明. Since the image of a proper map is closed (use each infinite subset of the compact set has a limit point), if f misses a point q, then it must miss some neighborhood U of q. Choose a bump n-form α whose supported lies in U. Then $f^*\alpha \equiv 0$ so that $\deg f = 0$

Now we just need to look at surjective proper maps from \mathbb{R}^n to \mathbb{R}^n . By Sard's theorem, we can pick one regular value q. By the inverse function theorem, around any point in the pre-image of q, f is a local diffeomorphism. It implies the $f^{-1}(q)$ is a discrete set of points and hence a finite set. Choose a generator α whose support is localized near q. Then $f^*\alpha$ is a n-form whose support is localized near the points of $f^{-1}(q)$. As f^* is a local diffeomorphism, then the integral of f^* is $\pm \int \alpha = \pm 1$. Thus

$$\int_{\mathbb{R}^n} = \sum_{f-1(q)} \pm 1$$

Moreover, it shows that the number of the points, counted with multiplicity ± 1 , in the inverse image of any regular value is the same.