Lecture 07 - CPSC392

- Model the relationship between 2 variables

- Model the relationship between 2 variables
 - The 2 variables are a dependent variable (denoted by y) and an independent variable (denoted by x)

- Model the relationship between 2 variables
 - The 2 variables are a dependent variable (denoted by y) and an independent variable (denoted by x)
- Linear regression is in fact a comparison of 2 models

The Data

- You have randomly selected 5 tests from a pool of tests and want to see if you can predict the test score using only this data.

The Data

- You have randomly selected 5 tests from a pool of tests and want to see if you can predict the test score using only this data.
- We only have 1 variable here, but we can still make a model!

The Data

- You have randomly selected 5 tests from a pool of tests and want to see if you can predict the test score using only this data.
- We only have 1 variable here, but we can still make a model!
- Let's plot the data

- What can we say about this data?
- What is the score for test 6 or 7 going to be?

- What can we say about this data?
- What is the score for test 6 or 7 going to be?

Our best estimate, in this case, is the mean

- What can we say about this data?
- What is the score for test 6 or 7 going to be?

- Our best estimate, in this case, is the mean
- So for every future test, we can predict that the score is going to be 7

- What can we say about this data?
- What is the score for test 6 or 7 going to be?

- Our best estimate, in this case, is the mean
- So for every future test, we can predict that the score is going to be 7

"with only one variable, and no other information, the best prediction for the next measurement is the mean of the sample"

Goodness of Fit

Goodness of Fit

- How good a line fits the y-values

Goodness of Fit

- How good a line fits the y-values
- This is very similar to the concept of standard deviation

Residuals/Errors

- Distance between the best fit line to the observed values

Sum of Squared Errors (SSE)

Sum of Squared Errors (SSE)

- Measure of discrepancy between the data and the estimated model

Sum of Squared Errors (SSE)

- Measure of discrepancy between the data and the estimated model
- Calculated by squaring all errors and summing them up

Goals

The goal of a simple linear regression is to create a linear model that minimizes the SSE

Goals

- The goal of a simple linear regression is to create a linear model that minimizes the SSE
- If the regression model is "significant", it will take away a large chunk of the SSE

Goals

- The goal of a simple linear regression is to create a linear model that minimizes the SSE
- If the regression model is "significant", it will take away a large chunk of the SSE
- The model should "fit" the data better and minimize the residuals once we introduce an independent variable

The SSE of the model with just test scores is 20. Let's introduce a new independent variable, total hours of study, and see if we can create a linear regression model using this attribute

```
- y = mx + b
```

- **m** = slope (rise/run)
- $\mathbf{b} = y$ -intercept (point where x = 0)

- y = mx + b
- $y = \beta_0 + \beta_1 x + \varepsilon$

- β_1 = slope parameter
- β_0 = y-intercept parameter
- ε = error term (unexplained variation in y)

- y = mx + b
- $y = \beta_0 + \beta_1 x + \varepsilon$ (for population data)

- β_1 = slope parameter
- β_0 = y-intercept parameter
- ε = error term (unexplained variation in y)

Lines (Simple Linear Regression)

-
$$E(y) = \beta_0 + \beta_1 x$$

- β_1 = slope parameter
- β_0 = y-intercept parameter
- **E(y)** = mean or expected value of y, given some x

$$E(y) = \beta_0 + (0) x$$

 $E(y) = \beta_0 + (0) x$

 $E(y) = \beta_0 - \beta_1 x$

 $E(y) = \beta_0 + (0) x$

 $E(y) = \beta_0 - \beta_1 x$

 $E(y) = \beta_0 + \beta_1 x$

Linear Regression for a Sample

- $E(y) = \beta_0 + \beta_1 x$
- $\hat{y} = b_0 + b_1 x$

- \hat{y} (y-hat) = estimator of E(y)

Data (with hours of study)

Does the plot of hours of study vs test scores show some relationship?

Data (with hours of study)

- Does the plot of hours of study vs test scores show some relationship?
- If yes, then we can fit a linear regression line to predict future scores

Data (with hours of study)

- Does the plot of hours of study vs test scores show some relationship?
- If yes, then we can fit a linear regression line to predict future scores
- If no, then the linear regression model might be useless

$$\hat{y} = b_0 + b_1 x$$

$$y_{i} = b_{0} + b_{i} \times i$$

$$b_{i} = \sum (x_{i} - \overline{x})(y_{i} - \overline{y}), b_{0} = y_{i} - b_{i} \times i$$

$$\sum (x_{i} - \overline{x})^{2}$$

x = mean of independent variable
x: = value of independent variable
y = mean of dependent variable
y: = value of dependent variable

Best-fit Line

$$\hat{y}_{i} = 3.2 + 0.95 X_{i}$$

Best-fit Line

$$\hat{y}_i = 3.2 + 0.95 X_i$$

- For every 1 hour increase in study time, you expect to get an increase in score by 0.95 points

Best-fit Line

$$\hat{y}_i = 3.2 + 0.95 x_i$$

- For every 1 hour increase in study time, you expect to get an increase in score by 0.95 points
- If you don't study, x = 0, then you will end up with a score of 3.2 (practical?)

Least Square Criterion

$$\min \Sigma (y_i - \hat{y}_i)^2$$

 y_i = observed value of test score \hat{y}_i = predicted value of test score

Least Square Criterion

- Goal is to minimize the sum of the squared differences between the actual value of dependent variable and the estimated (predicted) value

Least Square Criterion

- Goal is to minimize the sum of the squared differences between the actual value of dependent variable and the estimated (predicted) value
- We can find this sum and compare with the SSE of Model 1 to see how much linear regression minimizes the distance

SSR & SST

- SSE = sum of squared errors
- SST = sum of squared total
 - Equals to SSE when no independent variable is used in model
- SSR = sum of squared regression
 - SSR = SST SSE

 $r^2 = SSR / SST$

- Proportion of the variance in the dependent variable that is predictable from the independent variable

 $r^2 = SSR / SST$

- Proportion of the variance in the dependent variable that is predictable from the independent variable
- For our model, $r^2 = 0.983$ or 98.3%

 $r^2 = SSR / SST$

- Proportion of the variance in the dependent variable that is predictable from the independent variable
- For our model, $r^2 = 0.983$ or 98.3%
- So hours of study are able to explain 98.3% of variation in test scores

 $r^2 = SSR / SST$

- Proportion of the variance in the dependent variable that is predictable from the independent variable
- For our model, $r^2 = 0.983$ or 98.3%
- So hours of study are able to explain 98.3% of variation in test scores
- GOOD FIT!