MAS365 Cheatsheet

5.1 IVP

- $dy/dt = f(t,y), a \le t \le b, y(a) = \alpha$ is well**posed** if it has a unique solution y(t), and there are $\epsilon_0 > 0$ and k > 0 s.t. $\forall \epsilon \in (0, \epsilon), \delta_0 \in$ $(-\epsilon, \epsilon)$, and a continuous function $\delta(t)$ satisfying $|\delta(t)| < \epsilon$, there is a unique solution to $\dot{z} = f(t, z) + \delta(t), \ a \le t \le b, \ z(a) = \alpha + \delta_0$ satisfying $|z(t) - y(t)| < k\epsilon$ for all $t \in [a, b]$.
- When f is conti and Lipschitz in y on D = $[a, b]_t \times \mathbb{R}_y, \ \dot{y} = f(t, y), \ y(a) = \alpha \text{ is well-posed.}$

5.2 Euler's Method

- $w_0 = \alpha, w_{i+1} = w_i + h f(t_i, w_i).$
- Err bound: if f is Lipschitz with const L on $D = [a, b]_t \times \mathbb{R}_y$ and if $|y''(t)| \leq M$, then

$$|y(t_i) - w_i| \le \frac{hM}{2L} [e^{L(t_i - a)} - 1].$$

• Perturb: $u_0 = \alpha + \delta_0$, $u_{i+1} = u_i + h(t_i, u_i) + \delta_{t+1}$ then under the same hypotheses,

$$|y(t_i) - u_i| \le \frac{1}{L} \left(\frac{hM}{2} + \frac{\delta}{h} \right) [e^{L(t_i - a)} - 1] + |\delta_0| e^{L(t_i - a)}$$
where $\delta \ge \sup |\delta_i|$,

5.3**Higher-Order Taylor**

• The difference method $w_0 = \alpha$, $w_{i+1} = w_i +$ $h\phi(t_i, w_i)$ has local trunc err

$$\tau_{i+1}(h) = \frac{y_{i+1}-y_i}{h} - \phi(t_i,y_i), \quad y_i = y(t_i).$$
 • Taylor method of order n : $w_0 = \alpha$,

$$\frac{w_{i+1} - w_i}{h} = \sum_{j=0}^{n-1} \frac{h^j}{(j+1)!} f^{(j)}(t_i, w_i).$$

Note $\dot{f}(t) = \partial_t f(t, y) + \partial_y f(t, y(t)) \dot{y}(t)$, etc. If $y \in C^{n+1}$, then the loc trunc err is $O(h^n)$.

5.4 Runge-Kutta

• From 2nd Taylor, $T^{(2)}(t,y) \approx f(t+\frac{h}{2},y+\frac{h}{2}f(t,y))$ gives 'midpoint method' $(O(h^2))$:

$$\frac{w_{i+1} - w_i}{h} = f\left(t_i + \frac{h}{2}, w_i + \frac{h}{2}f(t_i, w_i)\right)$$

• From 3rd Taylor, $T^{(3)}(t,y) \approx \frac{1}{2}f(t,y) + \frac{1}{2}f(t+h,y+hf(t,y))$ gives 'modified Euler method' $(O(h^2))$:

$$\frac{w_{i+1} - w_i}{h} = f(t_i, w_i) + f(t_{i+1}, w_i + hf(t_i, w_i))$$

• From 3rd Taylor, $T^{(3)}(t,y) \approx a_1 f(t,y) + a_2 f(t+y)$ $\alpha_1, y + \delta_1 f(t + \alpha_2, y + \delta_2 f(t, y))$. With proper choices, this gives 'Heun's method' $(O(h^3))$:

$$\frac{w_{i+1} - w_i}{h} = \frac{1}{4}f(t_i, w_i) + \frac{3}{4}f\left(t_i + \frac{2h}{3}, w_i + \frac{2h}{3}f\left(t_i + \frac{h}{3}, w_i + \frac{h}{3}f(t_i, w_i)\right)\right).$$

• Runge-Kutta of order 4 $(O(h^4))$: $w_0 = \alpha$, $k_1 = h f(t_i, w_i),$ $k_2 = hf(t_i + h/2, w_i + k_1/2),$ $k_3 = h f(t_i + h/2, w_i + k_2/2),$ $k_4 = hf(t_{i+1}, w_i + k_3),$ $w_{i+1} = w_i + (k_1 + 2k_2 + 2k_3 + k_4)/6.$

Multistep Methods

 \bullet *m*-step multi method:

$$w_{i+1} = a_{m-1}w_i + \dots + a_0w_{i+1-m} + h\sum_{j=0}^m b_j f(t_{i+1-m+j}, w_{i+1-j})$$

- $b_m = 0$: explicit or open;
- $b_m \neq 0$: implicit or closed.

• 4th order Adams–Bashforth (explicit)

$$\frac{w_{i+1} - w_i}{h} = \frac{55}{24} f_i - \frac{59}{24} f_{i-1} + \frac{37}{24} f_{i-2} - \frac{9}{24} f_{i-3 \ge 0}$$
• 4th order Adams–Moulton (implicit)

 $\frac{\Delta w_i}{h} = \frac{9}{24} f_{i+1} + \frac{19}{24} f_i - \frac{5}{24} f_{i-1} + \frac{1}{24} f_{i-2 \ge 0}$ • Derivation of A–B: from backward diff poly,

$$f(t,y(t)) = \sum_{k=0}^{m-1} (-1)^k {\binom{-s}{k}} \nabla^k f(t_i,y(t_i))$$

$$+ s(s+1) \cdots (s+m-1) f^{(m)}(\xi_i(s),y(\xi_i(s)))$$
where $t = t_i + sh$ so that $(\nabla p_n = p_n - p_{n-1})$

$$\int_{t_i}^{t_{i+1}} f(t,y(t))$$

$$= h \sum_{k=0}^{m-1} \nabla^k f(t_i,y(t_i))(-1)^k \int_0^1 {\binom{-s}{k}} ds$$

$$+ \frac{h^{m+1}}{m!} \int_0^1 s \cdots (s+m-1) f^{(m)}(\xi_i(s),y(\xi_i(s))) ds$$

$$= h \sum_{k=0}^{m-1} \nabla^k f(t_i,y(t_i))(-1)^k \int_0^1 {\binom{-s}{k}} ds$$

$$= h \sum_{k=0}^{\infty} \sqrt{f(t_i, y(t_i))(-1)} \int_0^1 \binom{k}{k} ds$$

$$+ h^{m+1} f^{(m)}(\mu_i, y(\mu_i))(-1)^m \int_0^1 \binom{-s}{m} ds$$

so that
$$\frac{y(t_{i+1}) - y(t_i)}{h}$$
$$= \sum_{k=0}^{m-1} \left[(-1)^k \int_0^1 \binom{-s}{k} ds \right] \nabla^k f(t_i, y(t_i))$$

$$+h^{m+1}f^{(m)}(\mu_i,y(\mu_i))(-1)^m \int_0^1 {-s \choose m} ds$$

• Loc trunc err of multistep method

$$\tau_{i+1} = \frac{y(t_{i+1}) - \sum_{j=0}^{m-1} a_j y(t_{i+m-1-j})}{h} - \sum_{j=0}^{m} b_j f(t_{i+1-m+j}, y(t_{i+1-m+j})).$$

- m-step (m-th order) A-B: $O(h^m)$.
- (m-1)-step (m-th order) A-M: $O(h^m)$.
- A-B: $\frac{1}{2}(3,-1), \frac{1}{12}(23,-16,5), \frac{1}{24}(55,-59,37,-9),$ $\frac{1}{720}(1901, -2774, 2616, -1274, 251).$
- $A-M: \frac{1}{12}(5,8,-1), \frac{1}{24}(9,19,-5,1),$ $\frac{1}{720}(251,646,-264,106,-19).$
- Predictor-Corrector method: predict w_{i+1} by A-B, correct w_{i+1} by A-M.

Highr Ord/Systems of DE

• m-th order sys of 1st order IVP:

$$\dot{\mathbf{u}}(t) = \mathbf{f}(t, \mathbf{u}(t)), \quad \mathbf{u}(a) = \boldsymbol{\alpha}.$$

If f_i are conti and Lipschitz in **u** on D = $[a,b]_t \times \mathbb{R}^m_{\mathbf{u}}$, then the IVP has a unique sol.

5.10 Stability

• A one-step diff method is consistent iff

$$\lim_{h \to 0} \max_{1 \le i \le N} |\tau_i(h)| = 0.$$

• A one-step diff method is convergent iff

$$\lim_{h \to 0} \max_{1 \le i \le N} |w_i - y(t_i)| = 0.$$

- A method is stable when the results depend continuously on the initial data.
- Supp a one-step diff method $w_{i+1} = w_i +$ $h\phi(t_i, w_i, h)$ has a constant $h_0 > 0$ so that ϕ is conti and Lipschitz in w with Lipsch const L

$$D = [a, b]_t \times \mathbb{R}_w \times [0, h_0]_h.$$

Then (a) this method is stable, (b) the method is convergent iff consistent iff $\phi(t, y, 0) = f(t, y)$, (c) if there is a function τ so that $|\tau_i(h)| \leq \tau(h)$ for all i and $0 \le h \le h_0$, then

$$|y(t_i) - w_i| \le \tau(h)e^{L(t_i - a)}/L.$$

• A one-step diff method is convergent iff $\lim_{h \to 0} \max_{1 \le i \le N} |w_i - y(t_i)| = 0.$

• A one-step diff method is consistent iff

$$\lim_{h \to 0} \max_{1 \le i \le N} |\tau_i(h)| = 0, \ \lim_{h \to 0} |\alpha_i - y(t_i)| = 0.$$

- The stability of a multistep method w.r.t. round-off err is dictated by the magnitudes of the zeros of the char poly.
- Char poly: $P(\lambda) = \lambda^m a_{m-1}\lambda^{m-1} \dots a_0 =$ 0 where $w_i = \alpha_i \ (i = 0, ..., m - 1),$

$$w_{i+1} = \sum_{j=0}^{m-1} a_j w_{i+1-m+j} + hF(t_i, h, w_{i+1}, \dots, w_{i+1-m})$$

If $P(\lambda) = 0 \implies |\lambda| \le 1$ and if the roots with abs value 1 are simple, we say this method satisfies the root condition, aka stable.

If 1 is the only root of char eqn with magnitude 1, strongly stable. O/w but satisfying the root condition, weakly stable. Elsewise

If a multistep method is consistent, then stable iff convergent iff satisfying root condition.

5.11 Stiff DE

- The exact solution of stiff equation has term of the form e^{-ct} where c is a large positive constant, called the transient solution. The more important portion is called the **steady**state solution.
- n-th derivative of e^{-ct} is $c^n e^{-ct}$ so that c^n can cause some numerical unstability.
- Test equation: $y' = \lambda y$, $y(0) = \alpha$ ($\lambda < 0$)
- Euler's method applied on test equation: we

$$|w_i-y(t_i)|=\left|(e^{h\lambda})^i-(1+h\lambda)^i\right||\alpha|$$
 so that $|1+h\lambda|<1,$ i.e., $h<2/|\lambda|$ should be satisfied.

- Taylor: $\left|1 + h\lambda + \dots + \frac{h^n\lambda^n}{n!}\right| < 1$.
- Multistep method

$$w_{i+1} = \sum_{j=0}^{m-1} a_j w_{i+1-m+j} + h\lambda \sum_{j=0}^{m} b_j w_{i+1-m+j}$$

is equiv to

$$(1 - h\lambda b_m)w_{i+1} - \dots - (a_0 + h\lambda b_0)w_{i+1-m} = 0$$
 yielding the following assoc'd char poly:

$$Q(z, h\lambda) = (1 - h\lambda b_m)z^m - \dots - (a_0 + h\lambda b_0).$$

Region of absolute stability: for one-step, $R = \{w = h\lambda \in \mathbb{C} : |Q(w)| < 1\}; \text{ for multistep,}$ $R = \{ w \in \mathbb{C} : |\beta| < 1 \text{ for all } \beta : Q(\beta, w) = 0 \}.$

Gaussian Elimination

• When $a_{kk} = 0$, find minimal $k+1 \le p \le n$ and exchange k-th row with p-th row.

Pivoting Strategies

- When $a_{kk}^{(k)}$ has relatively small magnitude, errors can increase.
- Partial pivoting: choose $\max_{k as a$ pivot elem at k-th step.
- Scaled partial pivoting: do partial pivoting after scaling each row by dividing it with s_i $\max_{1 \leq j \leq n} |a_{ij}|$.
- Complete pivoting: at k-th step, search all $(n+1-k)^2$ entries and select one of the largest magnitude, which yields $O(n^3)$ comparisons, while partial pivotings require $O(n^2)$ (and additional $O(n^2)$ division for scaled one).

7.1Norms

- Matrix norm: $||A|| \ge 0$ w/ equality iff A = O, $\|\alpha A\| = |\alpha| \|A\|, \|A + B\| \le \|A\| + \|B\|$ and $||AB|| \le ||A|| ||B||.$
- $\rho(A)$ is the largest abs value of eigenvalues.

- $||A||_2 = \sqrt{\rho(A^t A)}$ and $\rho(A) \le ||A||$ for any induced(aka natural) norm.
- A is convergent if every entry of A^k tends to 0 as $k \to \infty$.
- A is convergent iff $||A^n|| = 0$ for some natural norm, iff $||A^n|| = 0$ for all natural norm, iff $\rho(A) < 1$, iff $A^n \mathbf{x} \to \mathbf{0}$ for any \mathbf{x} .

Jacobi/Gauss-Seidel

- Solve $A\mathbf{x} = \mathbf{b}$ by an iterative method.
- $\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}.$
- A = D L U, where D is diagonal part, -Lis strict lower triangular part and -U is strict upper triangular part.
- Jacobi: $T = D^{-1}(L + U)$, $\mathbf{c} = D^{-1}\mathbf{b}$.
- Gauss-Seidel:
- $T = (D L)^{-1}U, \mathbf{c} = (D L)^{-1}\mathbf{b}.$
- Iterative method converges for any $\mathbf{x}^{(0)}$ to the unique solution to $\mathbf{x} = T\mathbf{x} + \mathbf{c}$ $\iff \rho(T) < 1.$
- $||x x^{(k)}|| \le ||T||^k ||x x^{(0)}||$, $||x x^{(k)}|| \le \frac{||T||^k}{1 ||T||} ||x^{(1)} x^{(0)}||$. A is diagonally dominant iff
- $|a_{ii}| \ge \sum_{1 \le j(\ne i) \le n} |a_{ij}|$. Without equality holding, A is called to be **strictly diagonally** dominant. A strictly diagonally dominant matrix is nonsingular, and in this case, (i) Gaussian elim can be done without row/column exchanges; (ii) both Jacobi and G-S works well (converge to the unique solution to Ax = b).
- Since $||x^{(k)} x|| \approx \rho(T)^k ||x^{(0)} x||$, we'd like to choose a method making $\rho(T) < 1$ small.
- When A has nonpositive off-diagonal entries and positive diagonal entries, then one and only one of the following holds:
 - 1. $0 \le \rho(T_g) < \rho(T_j) < 1$,
 - 2. $1 < \rho(T_j) < \rho(T_g) < 1$,

7.4 Relaxation Techniques

• Residual vector for $\tilde{\mathbf{x}}$: $r = \mathbf{b} - A\tilde{\mathbf{x}}$. • Let $r_i^{(k)}$ be the res'l vec for $\tilde{\mathbf{x}}_i^{(k)}$ where

- 3. $\rho(T_g) = \rho(T_j) = 0$,
- 4. $\rho(T_g) = \rho(T_j) = 1.$

and hence when $\mathbf{x} \neq \mathbf{0} \neq \mathbf{b}$,

 $\frac{\|\mathbf{x} - \tilde{\mathbf{x}}\|}{\|\mathbf{x}\|} \le K(A) \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|}$

where $K(A) = ||A|| ||A^{-1}||$ is condition #. When ill-conditioned $(K(A) \gg 1)$, making accuracy decisions based on $\|\mathbf{r}\|$ makes no sense.

Perturb: suppose A is nonsingular and $\|\delta A\|$ < $1/\|A^{-1}\|$, then the solution $\tilde{\mathbf{x}}$ to $(A+\delta A)\tilde{\mathbf{x}}=$ $\mathbf{b} + \delta \mathbf{b}$ approximates $\mathbf{x} : A\mathbf{x} = \mathbf{b}$ where

 $\frac{\|\mathbf{x} - \tilde{\mathbf{x}}\|}{\|\mathbf{x}\|} \le \frac{K(A)\|A\|}{\|A\| - K(A)\|\delta A\|} \left(\frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|} + \frac{\|\delta A\|}{\|A\|}\right)$

7.6 Conjugate Gradient Methods

- Minimize $g(\mathbf{x}) = \langle \mathbf{x}, A\mathbf{x} \rangle 2 \langle \mathbf{x}, \mathbf{b} \rangle$.
 - $t_k = \frac{\left\langle \mathbf{v}^{(k)}, \mathbf{b} A\mathbf{x}^{(k-1)} \right\rangle}{\left\langle \mathbf{v}^{(k)}, A\mathbf{v}^{(k)} \right\rangle},$

and choose a new search direction $\mathbf{v}^{(k+1)}$.

- Steepest descent: $\mathbf{v}^{(k+1)} = \mathbf{r}^{(k)} = \mathbf{b} A\mathbf{x}^{(k)}$ since $\mathbf{r} = -\frac{1}{2}\nabla g(\mathbf{x})$. But converges slowly.
- $\{\mathbf{v}^{(1)},\ldots,\mathbf{v}^{(n)}\}$: vectors $\langle \mathbf{v}^{(i)}, A\mathbf{v}^{(j)} \rangle = C_i \delta_{ij}$. Then the procedure stops after n steps with exact solution, assuming exact arithmetics.

Proof: show $\mathbf{r}^{(n)}$ is orthog to all $\mathbf{v}^{(k)}$.

Conjugate direction: choosing $\mathbf{v}^{(k)}$'s so that $\langle \mathbf{r}^{(k)}, \mathbf{v}^{(j)} \rangle = 0$ for $j = 1, \dots, k$. In summary,

$$t_{k} = \frac{\langle \mathbf{r}^{(k-1)}, \mathbf{r}^{(k-1)} \rangle}{\langle \mathbf{v}^{(k)}, A\mathbf{v}^{(k)} \rangle}, \quad \mathbf{x}^{(k)} = \mathbf{x}^{(k-1)} + t_{k}\mathbf{v}^{(k)},$$
$$\mathbf{r}^{(k)} = \mathbf{r}^{(k-1)} - t_{k}A\mathbf{v}^{(k)}, \quad s_{k} = \frac{\langle \mathbf{r}^{(k)}, \mathbf{r}^{(k)} \rangle}{\langle \mathbf{r}^{(k-1)}, \mathbf{r}^{(k-1)} \rangle},$$
$$\mathbf{v}^{(k+1)} = \mathbf{r}^{(k)} + s_{k}\mathbf{v}^{(k)}.$$

 \bullet Convergence rate of steepest descent:

$$g(\mathbf{x}^{(k)}) - g(\mathbf{x}^*) \leq \left(\frac{K(A) - 1}{K(A) + 1}\right)^{2k} (g(\mathbf{x}^{(0)}) - g(\mathbf{x}^*)).$$

• Convergence rate of conjugate gradient $(k \le n)$: • Geršgorin Circle theorem: let A be an $n \times n$ ma-

$$g(\mathbf{x}^{(k)}) - g(\mathbf{x}^*) \le 4 \left(\frac{\sqrt{K(A)} - 1}{\sqrt{K(A)} + 1} \right)^{2k} (g(\mathbf{x}^{(0)}) - g(\mathbf{x}^*))$$

• Preconditioning: to increase K(A).

$$\tilde{A} = C^{-1}A(C^{-1})^t, \quad \tilde{A}(C^t\mathbf{x}) = C^{-1}\mathbf{b}.$$

- One choice: $C = \operatorname{diag}(a_{11}, \ldots, a_{nn}).$
- When A is pos def, Cholesky decomp: $A = LL^t$, let C = L, then $\tilde{A} = I$.

$x_i^{(k)} = x_i^{(k-1)} + r_{ii}^{(k)} / a_{ii}.$

Note that this choice of $x_i^{(k)}$ is making $r_{i,i+1}^{(k)} =$ 0, and it is not necessarily efficient. Instead, consider the following:

 $\tilde{\mathbf{x}}_{i}^{(k)} = (x_{1}^{(k)}, \cdots, x_{i-1}^{(k)}, x_{i}^{(k-1)}, \cdots, x_{n}^{(k-1)})$

$$x_i^{(k)} = x_i^{(k-1)} + w r_{ii}^{(k)} / a_{ii}.$$

• 0 < w < 1: under-relaxation;

where the following holds

- w > 1: over-relaxation (aka SOR)
- Equivalently, $\mathbf{x}^{(k)} = T_w \mathbf{x} + \mathbf{c}_w =$
- $(D-wL)^{-1}[(1-w)D+wU]\mathbf{x}+(D-wL)^{-1}w\mathbf{b}$
- How to choose w?
- If $a_{ii} \neq 0$, then $\rho(T_w) \geq |w-1|$ so that SOR method can converge only if 0 < w < 2.
- Converse: if A is pos def, the converse of above
- If A is pos def and tridiagonal, then $\rho(T_q)$ = $\rho(T_j)^2 < 1$ and the optimal choice is

$$w = \frac{2}{1 + \sqrt{1 - \rho(T_j)^2}}.$$

With this choice, $\rho(T_w) = w$

7.5 **Error Bounds**

• Let **r** be the residual vector for $\tilde{\mathbf{x}}$, where A is nonsingular. Then

$$\|\mathbf{x} - \tilde{\mathbf{x}}\| \le \|\mathbf{r}\| \cdot \|A^{-1}\|$$

Discrete Least □'s Approx

• Minimize $E = \sum_{i=1}^{m} (y_i - (a_1 x_i + a_0))^2$ yields $(\partial E/\partial a_i = 0)$

$$a_{0} = \frac{(\sum x_{i}^{2})(\sum y_{i}) - (\sum x_{i}y_{i})(\sum x_{i})}{m(\sum x_{i}^{2}) - (\sum x_{i})^{2}},$$

$$a_{1} = \frac{m \sum x_{i}y_{i} - (\sum x_{i})(\sum y_{i})}{m(\sum x_{i}^{2}) - (\sum x_{i}y_{i})^{2}}$$

8.2 Orthog Poly & LSA

• Approx $f \in C[a,b]$ by $P_n(x) = \sum_{j=0}^n a_j x^j$.

$$\sum_{k=0}^{n} a_k \int_{a}^{b} x^{j+k} \, dx = \int_{a}^{b} x^{j} f(x) \, dx$$

for $j = 0, \ldots, n$, i.e., with $\mathbf{a} = (a_0, \ldots, a_n)^t$ and $\mathbf{b} = \left(\int_a^b x^j f(x) \, dx \right)_{j=0}^n$, $H\mathbf{a} = \mathbf{b}$ where

$$H_{jk} = \int_{a}^{b} x^{j+k} dx = \frac{b^{j+k+1} - a^{j+k+1}}{j+k+1},$$

 $0 \le j, k \le n$ is ill-conditioned

More efficient way: using orthog poly's ϕ_i (j = $(0,\ldots,n),\,P=\sum a_j\phi_j$ is the least square solu-

$$a_j = \frac{\langle \phi_j, f \rangle}{\langle \phi_j, \phi_j \rangle}, \quad \langle f, g \rangle = \int_a^b w f g \, dx.$$

• Recurrence formula for the orthog poly: $\phi_0(x) = 1, \ \phi_1(x) = x - B_1, \ \phi_{k(\geq 2)}(x) =$ $(x - B_k)\phi_{k-1}(x) - C_k\phi_{k-1}(x),$

$$B_k = \frac{\langle x\phi_j, \phi_j \rangle}{\langle \phi_j, \phi_j \rangle}, \quad C_k = \frac{\langle x\phi_{k-1}, \phi_{k-2} \rangle}{\langle \phi_{k-2}, \phi_{k-2} \rangle}.$$

8.3 Chebyshev Poly's

- $T_n(x) = \cos(n\arccos(x))$, orthogonal with the weight $w(x) = (1 - x^2)^{-1/2}, \langle T_n, T_n \rangle = \pi/2.$
- T_n has n simple zeros in [-1,1] at $\bar{x}_k =$ $\cos(\frac{2k-1}{2n}\pi)$, and its absolute extrema at $\bar{x}'_k =$ $\cos(k\pi/n)$ with $T_n(\bar{x}'_k) = (-1)^k$.
- Monic Chebyshev: $\tilde{T}_0 = 1$, $\tilde{T}_n = T_n/2^{n-1}$.

$$\tilde{T}_2 = x\tilde{T}_1 - \frac{1}{2}\tilde{T}_0, \quad \tilde{T}_{n+1} = x\tilde{T}_n - \frac{1}{4}\tilde{T}_{n-1}.$$

• \tilde{T}_n has minimal absolute maximum value among monic poly's of deg n on [-1,1]: for monic P_n of degree n,

$$2^{1-n} = \max_{[-1,1]} |\tilde{T}_n(x)| \le \max_{[-1,1]} |P_n(x)|.$$

• By letting x_i to be (i+1)-th zero of T_{n+1} , (upp bd of) Lagrange interpolation error is minimized (on [-1, 1]):

$$f(x) - P(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0) \cdots (x - x_n),$$

$$\max_{[-1,1]} |f(x) - P(x)| \le \frac{\max_{[-1,1]} |f^{(n+1)}(x)|}{2^n(n+1)}$$

• Approx P_n by (n-1) deg poly P_{n-1} :

$$\max_{[-1,1]} \left| \frac{1}{a_n} (P_n(x) - P_{n-1}(x)) \right| \ge \frac{1}{2^{n-1}}$$

so that letting $(P_n - P_{n-1})/a_n = \tilde{T}_n$ we achieve

$$\max_{[-1,1]} |P_n(x) - P_{n-1}(x)| = \frac{|a_n|}{2^{n-1}}$$

when $P_{n-1} = P_n - a_n \tilde{T}_n$.

9.1 Eigenvalues

trix and R_i be the circle in the complex plane with center a_{ii} and radius $\sum_{j=1, j\neq i}^{n} |a_{ij}|$. Then the eigenvalues of A are contained within the union of these circles, and each connected component of the union of circles contains exactly k eigenvalues where k is the # of circle merged to form the component.

9.2 Power Method

 $|\lambda_1| \ge \cdots \ge |\lambda_n|$: eigenval's of A, $\|\mathbf{x}^{(0)}\|_{\infty} = 1$, $\mathbf{x}^{(0)} = \sum \beta_k \mathbf{v}^{(k)}$, $\mathbf{v}^{(k)}$: unit eig'vec's corr to λ_k . $\mathbf{y}^{(m)} = A\mathbf{x}^{(m-1)},$

$$\mu^{(m)} = y_{p_{m-1}}^{(m)} = \lambda_1 \left[\frac{\sum_{j=1}^n (\frac{\lambda_j}{\lambda_1})^m \beta_j \mathbf{v}_{p_{m-1}}^{(j)}}{\sum_{j=1}^n (\frac{\lambda_j}{\lambda_1})^{m-1} \beta_j \mathbf{v}_{p_{m-1}}^{(j)}} \right],$$

$$\mathbf{x}^{(m)} = \frac{\mathbf{y}^{(m)}}{y_{p_m}^{(m)}} = \frac{A^m \mathbf{x}^{(0)}}{\|A^m \mathbf{x}^{(0)}\|_{\infty}}.$$

where $|y_{p_j}^{(j)}| = \|\mathbf{y}^{(j)}\|_{\infty}, p_j \text{ min'l}; \ \mu^{(m)} \to \lambda_1$ and $\mathbf{x}^{(m)} \to \mathbf{v}^{(1)}, \text{ provided by } \beta_1 \neq 0.$

- \bullet Deflation methods: matrix B with same eig'val's with A except the dominant eig'val replaced with 0.
- When λ_1 has multiplicity 1, $B = A \lambda_1 \mathbf{v}^{(1)} \mathbf{x}^t$ (with $\mathbf{x}^t \mathbf{v}^{(1)} = 1$) has eig'val's $0, \lambda_2, \dots, \lambda_n$ with assoc eig'vec's $\mathbf{v}^{(1)}, \mathbf{w}^{(2)}, \dots, \mathbf{w}^{(n)}$ where

$$\mathbf{v}^{(i)} = (\lambda_i - \lambda_1)\mathbf{w}^{(i)} + \lambda_1(\mathbf{x}^t\mathbf{w}^{(i)})\mathbf{v}^{(1)}.$$

- Wielandt deflation: $\mathbf{x} = (a_{i1}, \dots, a_{in})^t / (\lambda_1 v_i^{(1)})$ provided by $v_i^{(1)} = (\mathbf{v}^{(1)})_i \neq 0$. With this, i-th row of B is a zero vector. Therefore, $B\mathbf{w} = \lambda \mathbf{w}$ implies *i*-th entry of $\mathbf{w}^{(j \geq 2)}$ is 0.
- After Wielandt, B' obtained from B removing *i*-th row and column has $\lambda_2, \ldots, \lambda_n$.
- Eigenvec for B from B': insert 0 between (i-1)-th and i-th entry.