

60V N-Channel Enhancement Mode MOSFET

Description

The NP6003MR uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- ightharpoonup V_{DS} =60V I_D =3A R_{DS(ON)}=75mΩ @ V_{GS}=10V (Typ:80m Ω) R_{DS(ON)}=83mΩ @ V_{GS}=4.5V (Typ:90m Ω)
- ♦ High density cell design for ultra low Rdson.
- Fully characterized avalanche voltage and current.
- Low gate to drain charge to reduce switching losses.

Application

- Power switching application.
- Hard switched and high frequency circuits.
- Uninterruptible power supply.

Package

♦ SOT-23-3L

Schematic diagram

Marking and pin assignment

SOT-23-3L (TOP VIEW)

Ordering Information

Part Number	Part Number Storage Temperature		Devices Per Reel	
NP6003MR-G	-55°C to +150°C	SOT-23-3L	3000	

Absolute Maximum Ratings (TA=25℃ unless otherwise noted)

parameter		symbol	limit	unit
Drain-source voltage	Drain-source voltage		60	V
Gate-source voltage		V_{GS}	±20	V
Continuous Drain Current	TC=25°C		3	^
Continuous Drain Current	TC=70°C	l _D	2	Α
Pulsed Drain Current		I _{DP}	12	А
Maximum power dissipation TC=25°C		P _D	2	W
Power Dissipation – Derate above 25°C TC=75°C			1.4	
Operating junction Temperature range		Tj	-55—150	$^{\circ}$

Rev.1.0 —Oct. 26. 2017 1 www.natlinear.com

Electrical Characteristics (TA=25°C unless otherwise noted)

Parameter	Parameter Symbol Condition		Min	Тур	Max	Unit
Static Characteristics						
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0V, I _D =250μA	60	-	-	V
BVDSS Temperature Coefficient	$\triangle BV_{DSS}/\triangle T_{J}$	Reference to 25℃,ID=1mA		33		mV/℃
Zana mata walta na dinaka awana sa		V _{DS} =60V, V _{GS} =0V	-	-	1	
Zero gate voltage drain current	I _{DSS}	T _J =85°C	-	-	30	μΑ
Gate Leakage Current	I _{GSS}	V_{DS} =0V, V_{GS} =±20V	-	-	±100	nA
Gate threshold voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.2	1.9	2.5	V
Drain-source on-state resistance ¹	D	V _{GS} =10V, I _D =3A	-	75	90	mΩ
Drain-source on-state resistance	$R_{DS(ON)}$	V _{GS} =4.5V, I _D =2A		86	100	
On Status Drain Current	I _{D(ON)}	VDS=10V, VGS=10V	3	-	-	Α
Diode Characteristics						
Diode Forward Voltage	VsD	IsD=1A,Vgs=0V	-	0.75	1.1	V
Diode Continuous Forward Current	Is		-	-	3	Α
Reverse Recovery Time	trr	I==1.5A,	-	15	-	ns
Reverse Recovery Charge	arge Q _{rr} dl/dt=100A/us		-	12	-	nC
Dynamic Characteristics ²						
Gate Resistance	Rg	Vgs=0V, Vps=0V,f=1MHz	-	2.0	-	Ω
Input capacitance	C _{ISS}		-	175	-	pF
Output capacitance	C _{oss}	V _{GS} =0V ,V _{DS} =25V f=1.0MHz	-	21	-	
Reverse transfer capacitance	C_{RSS}	1-1.00112	-	13	-	
Turn-on delay time	t _{D(ON)}		-	15	-	ns
Turn-on Rise time	tr	V_{GS} =10V, V_{DD} =30V, V_{L} =4.7 Ω , V_{L} =1.5A,	-	16	-	
Turn-off delay time	t _{D(OFF)}	$R_{G}=3.3\Omega$	-	10	-	
Turn-off Fall time	tf		-	10	-	
Total gate charge	Qg		-	4.1		
Gate-source charge V _{GS} =10V,I _D =2A		$V_{GS}=10V, I_{D}=2A$ $V_{DS}=30V$		0.8		nC
Gate-drain charge	Q_{gd}	, 100 001	-	1	-	

Note: 1: Pulse test; pulse width \leq 300ns, duty cycle \leq 2%.

2: Guaranteed by design, not subject to production testing.

Thermal Characteristics

Parameter	Symbol	Typical	Unit
Thermal Resistance-Junction to Case	Rθjc	60	°C/W
Thermal Resistance junction-to ambient	Rθja	90	C/VV

Rev.1.0 —Oct. 26. 2017 2 www.natlinear.com

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Package Information

• SOT-23-3L

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
Е	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(BSC)		0.037(BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

Rev.1.0 —Oct. 26. 2017 4 www.natlinear.com