ELEC 335 - Lab #2

Objective

In this lab we will work with **assembly language**, practice connecting basic components such as LEDs and buttons to the board, read from / write to them.

Submission

You should submit the following items organized in a folder:

- Lab report Written in English. Proper cover page, intro, problems, flow charts, block diagrams, schematic diagrams, comments, and theoretical, mathematical work, simulation vs.
- **Source files** should have proper comments and pin connections if there are any external components.
- Elf files generated elf file with debug information.

Compress the folder to a **zip** file, and submit that way. Each problem should be in a separate folder. Example folder structure is given below.

```
name_lastname_number_lab2/
name_lastname_report_lab2.pdf
problem1/
   problem1.s
   problem1.elf
   ..
problem2/
   problem2.s
   problem2.elf
   ..
```

Problems

Problem 1. Write assembly code that will toggle the on-board LED at a rate of 1 second.

Problem 2. Connect a button to the board, and turn on the on-board LED when the button is pressed. When the button is released, the LED should turn off.

Problem 3. Connect 8 external LEDs to the board, and toggle all the LEDs at the same time at a rate of 1 second.

Problem 4. Connect 8 LEDs and 1 button to the board, and implement a shift pattern.

Requirements:

- The pattern should light 3 LEDs at the same time
- These 3 LEDs should shift right or left indefinitely.
- The button should toggle the shift direction when pressed. You can think of this as having two modes (right shift and left shift). The button is used to change modes.
- There should be around 100 ms delay between transitions. (i.e. t3-t2 ~= 100 ms)
- First 12 patterns are given in Table 1 for one mode.

Expectations:

- Add your connection diagram (schematic). (This diagram should have a box for the microcontroller, and any LEDs, resistors for connection.)
 - Someone looking at your design could reproduce your circuit.

	LED1	LED2	LED3	LED4	LED5	LED6	LED7	LED8
t0								
t1								
t2								
t3								
t4								
t5								
t6								
t7								
t8								
t9								
t10								
t11								
t12								

Table 1. Pattern on LEDs. Rows represent time steps, and columns represent each LED for right shift mode operation.