Lecture 9: Writing Fast Matlab Code

Cinna Wu cinnawu@math.berkeley.edu

Department of Mathematics University of California, Berkeley

Math 98 Introduction to MATLAB programming

Announcements

• HW4 is due this Thursday!

Optimization Guidelines

The main three

- **Comment:** Optimized codes tend to be harder to read. Remember to comment.
- Only optimize when it is time: Decide if it is worth it before optimizing. Don't do it until you have a working code.
- Only optimize where needed Make sure you are optimizing something that actually needs to be optimized. Check it is a bottleneck first.

Tools

Tic Toc

Measures time in matlab. Look up in help menu.

Exercise

Use tic toc to measure the time it takes for Newton's algorithm to converge. Compare the speed with computing sqrt(5) in matlab.

Tools

Profiler

Helps to find the bottlenecks in a program. Use **profile on** to turn the profiler on and **profile viewer** to view the profile.

Example

```
function result = example1(Count) for k = 1:Count result(k) = sin(k/50); if result(k) < -0.9 result(k) = gammaln(k); end end Use profile to analyze example1(5000).
```

Array Preallocation

Matlab dynamically augments rows and columns

```
a = 2; a(3,3) = 3;
```

Avoid this when possible by preallocating when possible.

```
Compare the following scripts:
a(1) = 1; b(1) = 0;
for k = 2.8000
a(k) = 0.99803 * a(k - 1) - 0.06279 * b(k - 1);
b(k) = 0.06279 * a(k - 1) + 0.99803 * b(k - 1);
end
a = zeros(1,8000); b = zeros(1,8000);
a(1) = 1; b(1) = 0;
for k = 2.8000
a(k) = 0.99803 * a(k - 1) - 0.06279 * b(k - 1);
b(k) = 0.06279 * a(k - 1) + 0.99803 * b(k - 1);
end
```

Use Vectorized Functions when Possible

Instead of this:

```
function d = minDistance(x,y,z)

nPoints = length(x);

d = zeros(nPoints,1);

for k = 1:nPoints

d(k) = sqrt(x(k)^2 + y(k)^2 + z(k)^2);

end

d = min(d);
```

Do this:

```
function d = minDistance(x,y,z)
d = sqrt(x.^2 + y.^2 + z.^2);
d = min(d);
```

Other Vectorized Functions

Common Built-in Function

min, max, repmat, meshgrid, sum, cumsum, diff, prod, cumprod, filter find, any, all

Example

Given a vector x, remove all the negative entries from the vector.

Exercises

Exercise 1

```
\begin{array}{l} a = 0; \\ count = 0; \\ for \ k = 1:10000 \\ v = exp(rand(1)*rand(1)); \\ if \ v > 0.5 \\ count = count + 1; \\ a(count) = v; \\ end \\ end \\ a = a(1:count); \end{array}
```