Homework 2 Newton Method

There are 3 questions in this homework. We have given you a starter code for all the questions. You only need to fillout the missing parts marked with "Fill in your code here".

▼ The Three Link Planar Manipulator

python libraries
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib import animation
from IPython.display import HTML
from math import pi
%matplotlib inline

The following function can be used to plot the 3 DOF planar manipulator

```
def plot_planar_manipulator(q, l1=1, l2=1, l3=1, target=None, eff_path=None, interval=100):
  fig= plt.figure(figsize=(10,10))
  ax = plt.subplot(1,1,1)
  link1, = ax.plot([], [], 'b', lw=10)
                                           # ax.plot returns a list of 2D line objects
  link2, = ax.plot([], [], 'r', lw=10)
  link3, = ax.plot([], [], 'c', lw=10)
  eff, = ax.plot([], [], 'g', marker='o', markersize=15)
  if eff_path is not None:
   ep, = ax.plot(eff_path[:, 0], eff_path[:, 1], 'g-')
  if target is not None:
   goal, = ax.plot([target[0]], [target[1]], 'r', marker='*', markersize=20)
  ax.set_xlim((-3.5, 3.5))
  ax.set_ylim((-3.5, 3.5))
  txt_title = ax.set_title('')
  def drawFrame(k):
    k = interval*k
   q0, q1, q2 = q[k]
    rA = [0, 0]
    rB = [l1*np.cos(q0), l2*np.sin(q0)]
    rC = [l1*np.cos(q0) + l2*np.cos(q0+q1), l1*np.sin(q0) + l2*np.sin(q0+q1)]
    rD = forward\_kinematics(q[k, :], l1, l2, l3)[:2]
    link1.set_data([rA[0], rB[0]], [rA[1], rB[1]])
    link2.set_data([rB[0], rC[0]], [rB[1], rC[1]])
    link3.set_data([rC[0], rD[0]], [rC[1], rD[1]])
    eff.set_data([rD[0], rD[0]],[rD[1], rD[1]])
    return link1, link2, eff
  anim = animation.FuncAnimation(fig, drawFrame, frames=len(q)//interval, interval=100, blit=True)
  return anim
```

Q.1 Derive the forward kinematics of the above three DoF planar manipulator. [5 points]

Use geometry to find the End Effector (EE) position in terms of joint coordinates $(q_1, q_2, \text{ and } q_3 \text{ correspond to } \theta_1, \theta_2, \text{ and } \theta_3 \text{ respectively})$. Note that this time we are including EE orientation in the variable named theta.

```
def forward_kinematics(q, l1=1, l2=1, l3=1): q0, q1, q2 = q  
x = l1 * np.cos(q0) + l2 * np.cos(q0 + q1) + l3 * np.cos(q0 + q1 + q2) # Fill your code here  
<math>y = l1 * np.sin(q0) + l2 * np.sin(q0 + q1) + l3 * np.sin(q0 + q1 + q2) # Fill your code here  
theta = q0 + q1 + q2 # Fill your code here  
return np.array([x,y,theta])
```

Run the code below to see if your implementation is correct.

```
N = 8000
L1 = 1
L2 = 1
L3 = 1
q1 = np.linspace(0, np.pi/4, N)
q2 = np.linspace(0, np.pi/2, N)
q3 = np.linspace(0, np.pi/2, N)
q = np.zeros((N, 3))
q[:, 0] = q1
q[:, 1] = q2
```

```
q[:, 2] = q3
```

anim = plot_planar_manipulator(q, L1, L2, L3)
HTML(anim.to_html5_video())

Run the following test function to see if your FK implementation is correct.

```
def test_FK():
    tests = [
             [0.5, 0.7, 0.9],
             [0.9, 1.2, 0.3],
             [1.7, 0.3, 2.5]
    sols = [
            [0.73509421, 2.27467399, 2.1,],
            [-0.62062985, 2.32199946, 2.4],
            [-0.75578713, 0.92343212, 4.5]
    same = True
    for i in range(len(sols)):
      eval = forward_kinematics(tests[i])
      for j in range(3):
        if abs(eval[j] - sols[i][j]) > 0.01:
          same = False
    if same:
      print("Your FK implementation is correct!")
    else:
      print("Your FK implementation is NOT correct!")
    return
test_FK()
    Your FK implementation is correct!
```

→ Q2 Build Jacobian [10 points]

Calculate the Jacobian:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{pmatrix} = \begin{pmatrix} \frac{dx}{dq_0} & \frac{dx}{dq_1} & \frac{dx}{dq_2} \\ \frac{dy}{dq_0} & \frac{dy}{dq_1} & \frac{dy}{dq_2} \\ \frac{d\theta}{dq_0} & \frac{d\theta}{dq_1} & \frac{d\theta}{dq_2} \end{pmatrix} \begin{pmatrix} \dot{q_0} \\ \dot{q_1} \\ \dot{q_2} \end{pmatrix}$$

Find the partial derivatives and fill in the Jacobian matrix below (take partial derivatives of EE position w.r.t. joint position coordinates q_0, q_1, q_2)

```
# Returns a function that can be used to get jacobian at the current state
def build_jacobian(l1=1, l2=1, l3=1):
    def evaluate jacobian(q):
        # Use these variables and the link lengths in function def
        q0, q1, q2 = q
        J = [[], [], []]
        J[0] = [-l1*np.sin(q0) - l2*np.sin(q0 + q1) - l3*np.sin(q0 + q1 + q2),
                -12 * np.sin(q0 + q1) - 13 * np.sin(q0 + q1 + q2),
                -13 * np.sin(q0 + q1 + q2)] # Your answers here
        J[1] = [l1*np.cos(q0) + l2*np.cos(q0 + q1) + l3*np.cos(q0 + q1 + q2),
                12 * np.cos(q0 + q1) + 13 * np.cos(q0 + q1 + q2),
                13 * np.cos(q0 + q1 + q2)] # Your answers here
        J[2] = [1, 1, 1] # Your answers here
        return np.array(J)
    return evaluate_jacobian
# From now on we use the function below to evaluate jacobian at a given state
jacobian = build_jacobian()
Run the following function to test if your Jacobian is correct.
def test_jacobian():
    J = [[], [], []]
    J[0] = [-0.70317549, 0.13829549, 0.2794155] # Your answers here
    J[1] = [0.5104801, -0.02982221, 0.96017029] # Your answers here
    J[2] = [1, 1, 1] # Your answers here
    jacobian = build_jacobian(1, 1, 1)
    J_{\text{test}} = \text{jacobian}([1, 2, 3])
    same = True
    for i in range(3):
      for j in range(3):
          if abs(J[i][j] - J_test[i][j]) > 0.01:
            same = False
    print("Expected:")
    print(np.array(J))
    print("\nRecieved:")
    print(J_test)
    if same:
      print("\nYour Jacobian Implementation is correct!")
      print("\nYour Jacobian Implementation is NOT correct!")
    return
test_jacobian()
     Expected:
     [[-0.70317549 0.13829549 0.2794155]
     [0.5104801 - 0.02982221 0.96017029]
                    1.
                                1.
    Recieved:
    [[-0.70317549 0.13829549 0.2794155]
     [ 0.5104801 - 0.02982221 0.96017029 ]
                    1.
                                1.
    Your Jacobian Implementation is correct!
```

Q3 Newton-Raphson Method [20 points]

Implement the Newton-Raphson method. First compute the error between the goal and EE position to get $d\mathbf{x}$, then use the psuedo-inverse of the Jacobian (done for you using numpy) to get the corresponding joint error $d\mathbf{q}$ and use that to update joint position accordingly. Repeat until $d\mathbf{x}$ is smaller than epsilon.

```
def newton_IK(x_goal, q_init):
  # array to hold joint position iterations
  q_anim = []
  # Choose an initial guess for joint position,
  qi = q_init
  q_anim += [qi.copy()]
 # Compute error between goal and current EE position
  d_x = x_goal - forward_kinematics(qi) # Your code here
 # Small value at which we stop iterating if the error is smaller
  epsilon = 0.01
  step\_size = 0.1
  iter = 0
  # Complete while loop
  while (np.linalg.norm(d_x) > epsilon and iter<100): # Your code here
    # Your code here
    J = jacobian(qi)
    J_I = np.linalg.pinv(J)
    d_q = np.matmul(J_I, d_x)
    qi += step_size * d_q
    q_anim += [qi.copy()]
    d_x = x_goal - forward_kinematics(qi)
    iter += 1
  # Returns final joint position and joint data for animation
  return (qi, q_anim)
# A test to see if your implementation is correct
x_{goal} = np.array([1.5, 2, pi/4])
qi, q_anim = newton_IK(x_{goal}, np.array([0.5, 0.5, 0.5]))
sol = [0.31012806, 1.42090816, -0.94563806]
same = True
for i in range(3):
    if abs(sol[i] - qi[i]) > 0.02:
      same = False
if same:
    print("Your Newton-Raphson implementation is correct!")
else:
    print("Your Newton-Raphson implementation is NOT correct!")
anim = plot_planar_manipulator(np.array(q_anim), L1, L2, L3, target=x_goal, interval= 1)
HTML(anim.to_html5_video())
```

Your Newton-Raphson implementation is correct!

▼ Q3 IK Singular Posture [5 points]

Test your implementation with the following goal position, if there is a problem with getting IK for this posture try to explain why there is an issue. (Hint: is J always invertable?) Write your response in the text box below the code.

```
x_goal = np.array([0, 3.1, 1])
eval2, q_anim2 = newton_IK(x_goal, np.array([0.5, 0.5, 0.5]))
anim2 = plot_planar_manipulator(np.array(q_anim2), 1, 1, 1, target=x_goal, interval= 1)
HTML(anim2.to_html5_video())
```


Write your response here (Click edit on this text box): Because the position is impossible for this 3 links system to reach, so when using Newton-Raphson to make a guess, the algorithm will pass that middle point and see that the delta is too large and go back and forth. That's why we see the arm do a little dance.

Colab paid products - Cancel contracts here