MSDS692_CGREEN_Final Project ML Code

March 4, 2022

1 CGreen - MSDS692 Project Code - ML and Extremist Ideology

This code takes in extremist attack information from 1970 to 2019 and tests whether KNN can accurately assign ideological motivation based on the characteristics of the attack.

1.1 Loading Packages and Setting Pandas Options

```
[1]: | # pandas
     import pandas as pd
     # sklearn
     from sklearn.neighbors import KNeighborsClassifier
     from sklearn.model selection import train test split
     from sklearn.decomposition import PCA
     from sklearn.preprocessing import StandardScaler
     from sklearn import model_selection
     from sklearn.model_selection import KFold
     from sklearn.model_selection import cross_val_score
     from sklearn.model_selection import GridSearchCV
     from sklearn.linear_model import LinearRegression
     from sklearn.linear_model import Lasso
     from sklearn.linear model import ElasticNet
     from sklearn.svm import SVR
     from sklearn.pipeline import Pipeline
     from sklearn.metrics import mean_squared_error
     from sklearn.metrics import classification report
     from sklearn.metrics import confusion_matrix
     from matplotlib import pyplot
     from sklearn.metrics import accuracy_score
     from sklearn.pipeline import Pipeline
     from sklearn.linear_model import LogisticRegression
     from sklearn.tree import DecisionTreeClassifier
     from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
     from sklearn.naive_bayes import GaussianNB
     from sklearn.svm import SVC
     from sklearn.ensemble import AdaBoostClassifier
     from sklearn.ensemble import GradientBoostingClassifier
     from sklearn.ensemble import RandomForestClassifier
```

```
from sklearn.ensemble import ExtraTreesClassifier

# plotting
!conda install -c conda-forge scikit-plot -y
from scikitplot.estimators import plot_feature_importances
import seaborn as sns
from matplotlib import pyplot
import matplotlib.pyplot as plt
from sklearn.metrics import plot_confusion_matrix
%matplotlib inline
sns.set()

# others
import numpy as np
import scipy.stats as stats
```

Collecting package metadata (current_repodata.json): done Solving environment: done

All requested packages already installed.

```
[2]: pd.set_option('display.max_rows', None)
   pd.set_option('display.max_columns', None)
   pd.set_option('display.width', None)
   pd.set_option('display.max_colwidth', None)
```

1.2 Importing Initial Datasets

Data for this project came in two parts. The GTD data contained attack information from 1970-2019 without ideological motivation. The PPT data contained information on specific groups and their ideologies. Merging the two allowed me to link together the attacks to dominant ideologies.

```
[3]: df_GTD = pd.read_csv('20220210_GTD.csv')
df_PPT = pd.read_csv('20220210_PPT.csv')
```

```
[4]: df_GTD.shape
```

[4]: (3004, 35)

```
[5]: df_PPT.shape
```

[5]: (239, 45)

For the join operation, I reviewed the 2022 article by Lee and the 2021 article by Stratis for reminders on the merge function in Pandas.

```
[6]: df_combined = pd.merge(df_GTD, df_PPT, on='ORGNAME', how='inner')
```

- [7]: df_combined.shape
- [7]: (2969, 79)
- [8]: df_combined.head()
- [8]: Event ID# Year Month Day State City LAT 197001010002 1970 1 1 Illinois Cairo 37.005105 1 197001120001 1970 12 1 New York New York City 40.697132 2 197001130001 1970 1 13 Washington Seattle 47.610786 3 197001140001 1970 14 1 Illinois Champaign 40.116748 4 197001190002 1970 Seattle 47.610786 1 19 Washington

LONG \

- 0 -89.176269
- 1 -73.931351
- 2 -122.331306
- 3 -88.239270
- 4 -122.331306

Summary \

- 0 1/1/1970: Unknown African American assailants fired several bullets at police headquarters in Cairo, Illinois, United States. There were no casualties, however, one bullet narrowly missed several police officers. This attack took place during heightened racial tensions, including a Black boycott of Whiteowned businesses, in Cairo Illinois.
- 1/12/1970: Unknown perpetrators threw a pipe bomb into the vacant dean's office of James Madison High School in Brooklyn, New York, United States. There were no casualties but the explosion caused minor damages. Earlier in the day anti-war and pro-Black Panther statements were discovered painted outside the walls of the school.
- 1/13/1970: Unknown perpetrators firebombed Fuson's Department Store in Seattle, Washington, United States. There were no casualties but the store sustained an estimated \$17,000 in damages. Less than a week earlier, the store owner shot and killed an African American male attempting to rob the store.

3

1/14/1970: Suspected Black militants threw two firebombs into the Champaign Police Department in Champaign, Illinois, United States. The building was damaged and one police officer was severely burned.

4

1/17/1970: Three African Americans were suspected of detonating a bomb on the Seattle University campus in Seattle, Washington, United States. There were no casualties but the Liberal Arts and Garrand buildings sustained \$2,200 in damages.

Successful Suicide Attack Type

Attack Type Text \

```
0
                                   2
                                                        Armed Assault
                     0
                                   3
1
            1
                     0
                                                    Bombing/Explosion
2
                                   7
                                      Facility/Infrastructure Attack
3
                                   7
                                      Facility/Infrastructure Attack
                     0
                                                    Bombing/Explosion
            1
   Target Type
                        Target Type Text \
0
             3
                                  Police
             8
1
                Educational Institution
2
             1
                                Business
3
             3
                                  Police
               Educational Institution
                                                     Target
                                                                         ORGNAME
0
                                 Cairo Police Headquarters
                                                             Black Nationalists
1
                                 James Madison High School
                                                             Black Nationalists
2
             Fuson's Department Store, Seattle Washington
                                                             Black Nationalists
                               Champaign Police Department
                                                             Black Nationalists
  Liberal Arts and Garrand buildings, Seattle University
                                                             Black Nationalists
                                                         Motive \
0
To protest the Cairo Illinois Police Deparment
1 Suspected motives were to protest the Vietnam War and/or show support for the
Black Panther Party and/or show support for the Young Lords.
                          Retaliation for the store owner who shot and killed an
African American attempting to commit a robbery at his store.
3
NaN
                                                The incident took place during
disturbances between the Black Student Union and the university.
   Unaffiliated Individual
                             Claim
                                    Weapon Type Weapon Type Text
0
                               0.0
                                              5
                                                         Firearms
                          0
                               0.0
                                              6
                                                       Explosives
1
2
                          0
                               0.0
                                              8
                                                       Incendiary
                          0
                               0.0
                                              8
3
                                                       Incendiary
                               0.0
                                              6
                                                       Explosives
                                                     Number Killed
   Weapon Sub-Type
                             Weapon Sub-Type Text
0
               5.0
                                 Unknown Gun Type
1
              31.0
                                        Pipe Bomb
                                                               0.0
2
              19.0 Molotov Cocktail/Petrol Bomb
                                                               0.0
3
              19.0
                    Molotov Cocktail/Petrol Bomb
                                                               0.0
              16.0
                           Unknown Explosive Type
                                                               0.0
```

Number Wounded Number Attackers Killed Number Atackers Wounded \

```
0.0
                                                                     0.0
0
               0.0
1
               0.0
                                          0.0
                                                                     0.0
               0.0
                                          0.0
                                                                     0.0
2
3
               1.0
                                          0.0
                                                                     0.0
4
               0.0
                                          0.0
                                                                     0.0
                     Property Damage Extent
                                                         Damage Extent Text \
   Property Damage
0
                                          3.0 Minor (likely < $1 million)
                  1
1
                  1
                                          3.0 Minor (likely < $1 million)
2
                  1
                                          3.0 Minor (likely < $1 million)
3
                  1
                                          3.0 Minor (likely < $1 million)
                                          3.0 Minor (likely < $1 million)
                                  Ransom Demand Hostage/Kidnapping Outcome
   Kidnapping Number Hostages
0
           0.0
                             NaN
                                             0.0
                                                                            NaN
           0.0
                                             0.0
1
                             NaN
                                                                            NaN
2
           0.0
                             NaN
                                             0.0
                                                                            NaN
           0.0
3
                             NaN
                                             0.0
                                                                            NaN
4
           0.0
                                              0.0
                             NaN
                                                                            NaN
          I_ETHNO
                    I_REL
                            I_REL_1
                                     I_REL_2 I_REL_3 I_REL_4
                                                                  I_REL_5
0
                         0
       2
                 0
                                   0
                                            0
                                                      0
                                                                0
                                                                          0
1
       2
                 0
                         0
                                   0
                                            0
                                                      0
                                                                0
                                                                          0
                                                                0
2
       2
                 0
                         0
                                   0
                                            0
                                                      0
                                                                          0
       2
                 0
                                            0
                                                      0
                                                                0
3
                         0
                                   0
                                                                          0
       2
                 0
                         0
                                   0
                                            0
                                                      0
4
   I_REL_6 I_REL_7 I_REL_8 I_REL_9 I_REL_10 I_RACE I_RACE_1 I_RACE_2 \
0
                                                          0
                                                                     0
         0
                   0
                             0
                                       0
                                                  0
                                                                                 0
         0
                   0
                             0
                                       0
                                                  0
                                                          0
                                                                     0
                                                                                0
1
2
         0
                   0
                             0
                                       0
                                                  0
                                                          0
                                                                     0
                                                                                0
3
         0
                   0
                                       0
                                                  0
                                                          0
                                                                     0
                             0
                                                                                0
4
         0
                   0
                             0
                                       0
                                                  0
                                                           0
   I_RACE_3
              I_LEFT
                       I_LEFT_1
                                 I_LEFT_2
                                           I_LEFT_3 I_LEFT_4 I_LEFT_5
0
        0.0
                   1
                              0
                                         0
                                                  0.0
                                                               0
                                                                          1
        0.0
                   1
                              0
                                         0
                                                  0.0
                                                               0
                                                                          1
1
                   1
                              0
                                                  0.0
                                                               0
2
        0.0
                                         0
                                                                          1
3
        0.0
                   1
                              0
                                         0
                                                  0.0
                                                               0
                                                                          1
                   1
                              0
                                                  0.0
4
        0.0
                                         0
                                                                          1
   I_LEFT_6 I_RIGHT
                       I_RIGHT_1 I_RIGHT_2 I_RIGHT_3 I_RIGHT_4
0
           0
                    0
                                0
                                            0
                                                        0
                                                                    0
           0
                    0
                                0
                                            0
                                                        0
                                                                    0
1
                                                                           0
2
           0
                    0
                                0
                                            0
                                                        0
                                                                    0
                                                                           0
3
           0
                    0
                                0
                                            0
                                                        0
                                                                    0
                                                                           0
4
           0
                    0
                                            0
                                                                           0
                                0
```

	I_SI_1	I_SI_2	I_SI_3	I_SI_4	I_SI_5	I_SI_6	I_SI_7	I_SI_8	I_SI_9	\
0	0	0	0	0	0	0	0.0	0	0	
1	0	0	0	0	0	0	0.0	0	0	
2	0	0	0	0	0	0	0.0	0	0	
3	0	0	0	0	0	0	0.0	0	0	
4	0	0	0	0	0	0	0.0	0	0	
	I_SI_10	I_SI_11	I_SI_1	2 I_SI	_13 I_S	I_14				
0	0	C)	0	0	0				
1	0	C)	0	0	0				
2	0	C)	0	0	0				
3	0	()	0	0	0				
4	0	C)	0	0	0				

[9]: df_combined.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 2969 entries, 0 to 2968
Data columns (total 79 columns):

#	Column	Non-Null Count	Dtype
0	Event ID#	2969 non-null	int64
1	Year	2969 non-null	int64
2	Month	2969 non-null	int64
3	Day	2969 non-null	int64
4	State	2969 non-null	object
5	City	2969 non-null	object
6	LAT	2968 non-null	float64
7	LONG	2968 non-null	float64
8	Summary	1927 non-null	object
9	Successful	2969 non-null	int64
10	Suicide	2969 non-null	int64
11	Attack Type	2969 non-null	int64
12	Attack Type Text	2969 non-null	object
13	Target Type	2969 non-null	int64
14	Target Type Text	2969 non-null	object
15	Target	2924 non-null	object
16	ORGNAME	2969 non-null	object
17	Motive	1577 non-null	object
18	Unaffiliated Individual	2969 non-null	int64
19	Claim	1935 non-null	float64
20	Weapon Type	2969 non-null	int64
21	Weapon Type Text	2969 non-null	object
22	Weapon Sub-Type	2697 non-null	float64
23	Weapon Sub-Type Text	2697 non-null	object
24	Number Killed	2900 non-null	float64

25	Number Wounded	2879 non-null	float64
26	Number Attackers Killed	1978 non-null	float64
27	Number Atackers Wounded	1964 non-null	float64
28	Property Damage	2969 non-null	int64
29	Property Damage Extent	1703 non-null	float64
30	Damage Extent Text	1703 non-null	object
31	Kidnapping	2810 non-null	float64
32	Number Hostages	68 non-null	float64
33	Ransom Demand	2155 non-null	float64
34	Hostage/Kidnapping Outcome	47 non-null	float64
35	DOM_I	2969 non-null	int64
36	I_ETHNO	2969 non-null	int64
37	I_REL	2969 non-null	int64
38	I_REL_1	2969 non-null	int64
39	I_REL_2	2969 non-null	int64
40	I_REL_3	2969 non-null	int64
41	I_REL_4	2969 non-null	int64
42	 I_REL_5	2969 non-null	int64
43	 I_REL_6	2969 non-null	int64
44	 I_REL_7	2969 non-null	int64
45	I_REL_8	2969 non-null	int64
46		2969 non-null	int64
47		2969 non-null	int64
48	I_RACE	2969 non-null	int64
49	I_RACE_1	2969 non-null	int64
50	I_RACE_2	2969 non-null	int64
51	I_RACE_3	2953 non-null	float64
52	 I_LEFT	2969 non-null	int64
53	I_LEFT_1	2969 non-null	int64
54		2969 non-null	int64
55	I_LEFT_3	2966 non-null	float64
56	I_LEFT_4	2969 non-null	int64
57	I_LEFT_5	2969 non-null	int64
58		2969 non-null	int64
59		2969 non-null	int64
60	_ I_RIGHT_1	2969 non-null	int64
61	I_RIGHT_2	2969 non-null	int64
62	I_RIGHT_3	2969 non-null	int64
63	I_RIGHT_4	2969 non-null	int64
64	I_SI	2969 non-null	int64
65	_ I_SI_1	2969 non-null	int64
66		2969 non-null	int64
67		2969 non-null	int64
68	I_SI_4	2969 non-null	int64
69		2969 non-null	int64
70		2969 non-null	int64
71	I_SI_7	2967 non-null	float64
72	I_SI_8	2969 non-null	int64
	_ _		

```
73 I_SI_9
                                   2969 non-null
                                                    int64
                                   2969 non-null
     I_SI_10
                                                    int64
 75
     I_SI_11
                                   2969 non-null
                                                    int64
76
     I_SI_12
                                   2969 non-null
                                                    int64
     I SI 13
                                   2969 non-null
 77
                                                    int64
     I_SI_14
                                   2969 non-null
 78
                                                    int64
dtypes: float64(16), int64(52), object(11)
memory usage: 1.8+ MB
```

Jupyter and it also gave me an expanded platform for data visualization.

Exporting the combined set for further analysis At this point I exported the combined set out to Excel for further analysis. It was easier to visualize the connections and features outside of

```
[10]: df_combined.to_excel("combined.xlsx")
```

1.3 Importing the Cleaned, Combined Dataset

After cleaning and shaping the data in Excel, I re-imported the dataset for use in our ML test.

```
[11]: df = pd.read_csv('20220217 Combined for ML_No I Codes.csv')
[12]:
      df.shape
[12]: (2394, 19)
      df.head()
[13]:
[13]:
            Event ID#
                        Year
                              Month
                                     Day
                                               State
                                                         City \
         197001010002
                        1970
                                  1
                                            Illinois
                                                         Cairo
                                        1
        197001020003
                       1970
                                  1
                                        2
      1
                                           Wisconsin Madison
      2 197001030001
                                        3
                        1970
                                  1
                                           Wisconsin Madison
      3 197001050001
                        1970
                                  1
                                        1
                                           Wisconsin Baraboo
      4 197001060001
                       1970
                                        6
                                            Colorado
                                                       Denver
                                            Unaffiliated Individual
                                                                      Claim
                                    Group
      0
                       Black Nationalists
                                                                   0
                                                                          0
      1
                          New Year's Gang
                                                                   0
                                                                           1
      2
                          New Year's Gang
                                                                   0
                                                                          0
        Weather Underground, Weathermen
                                                                   0
                                                                          0
      3
                      Left-Wing Militants
                                                                          0
      4
                                                                   0
         Successful
                      Suicide
                                                                                Target \
                                                          Type
      0
                   1
                                                 Armed Assault
                                                                                Police
                   1
                               Facility/Infrastructure Attack
      1
                            0
                                                                              Military
      2
                   1
                            0
                               Facility/Infrastructure Attack Government (General)
      3
                   0
                            0
                                             Bombing/Explosion
                                                                              Military
      4
                   1
                               Facility/Infrastructure Attack
                                                                              Military
```

	Weapon	Casualties	Property Damage	Kidnapping	Ransom Demand	\
0	Firearms	0	1	0	0	
1	Incendiary	0	1	0	0	
2	Incendiary	0	1	0	0	
3	Explosives	0	0	0	0	
4	Incendiary	0	1	0	0	

Dominant Ideology

- O Extreme Left Wing
- 1 Single Issue
- 2 Single Issue
- 3 Extreme Left Wing
- 4 Extreme Left Wing

[14]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2394 entries, 0 to 2393
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	Event ID#	2394 non-null	int64
1	Year	2394 non-null	int64
2	Month	2394 non-null	int64
3	Day	2394 non-null	int64
4	State	2394 non-null	object
5	City	2394 non-null	object
6	Group	2394 non-null	object
7	Unaffiliated Individual	2394 non-null	int64
8	Claim	2394 non-null	int64
9	Successful	2394 non-null	int64
10	Suicide	2394 non-null	int64
11	Туре	2394 non-null	object
12	Target	2394 non-null	object
13	Weapon	2394 non-null	object
14	Casualties	2394 non-null	int64
15	Property Damage	2394 non-null	int64
16	Kidnapping	2394 non-null	int64
17	Ransom Demand	2394 non-null	int64
18	Dominant Ideology	2394 non-null	object

dtypes: int64(12), object(7)
memory usage: 355.5+ KB

1.4 Prepping the features for ML Test

I had to convert a number of features from categories/objects to numerical variables so that the algorithm could recognize them. I used my notes from MSDS650 and reviewed the 2021 article by Chen and the 2017 article by Moffitt for additional reference on this process.

```
[15]: df = pd.get_dummies(df, columns=["Type", "Target", "Weapon", "Dominant_
       →Ideology"])
[16]: df.head()
「16]:
            Event ID# Year
                             Month Day
                                               State
                                                          City \
         197001010002 1970
                                   1
                                        1
                                            Illinois
                                                         Cairo
      1
         197001020003 1970
                                   1
                                        2
                                           Wisconsin Madison
      2 197001030001 1970
                                           Wisconsin Madison
                                   1
                                        3
      3 197001050001 1970
                                   1
                                        1
                                           Wisconsin Baraboo
      4 197001060001 1970
                                   1
                                        6
                                            Colorado
                                                        Denver
                                           Unaffiliated Individual
      0
                       Black Nationalists
                                                                           0
                                                                    0
      1
                          New Year's Gang
                                                                           1
      2
                          New Year's Gang
                                                                    0
                                                                           0
      3
         Weather Underground, Weathermen
                                                                    0
                                                                           0
      4
                      Left-Wing Militants
                                                                    0
                                                                           0
         Successful
                      Suicide
                               Casualties
                                            Property Damage
                                                              Kidnapping
      0
                                         0
      1
                            0
                                         0
                                                           1
                                                                        0
      2
                   1
                            0
                                         0
                                                           1
                                                                        0
                   0
                                                           0
      3
                            0
                                         0
                                                                        0
      4
                   1
                            0
                                         0
                                                           1
                                                                        0
                         Type_Armed Assault
                                              Type_Assassination
         Ransom Demand
      0
                      0
                                                                0
                      0
                                           0
                                                                0
      1
      2
                      0
                                           0
                                                                0
      3
                      0
                                           0
                                                                0
      4
                      0
                                           0
                                                                 0
         Type_Bombing/Explosion
                                  Type_Facility/Infrastructure Attack
      0
      1
                               0
                                                                       1
                               0
      2
                                                                       1
      3
                                                                       0
                               1
      4
                               0
                                                                       1
                          Type_Hostage Taking (Barricade Incident)
         Type_Hijacking
      0
                                                                    0
                       0
      1
                       0
                                                                    0
                       0
                                                                    0
      2
      3
                       0
                                                                    0
                       0
                                                                    0
```

```
Type_Hostage Taking (Kidnapping)
                                        Type_Unarmed Assault
                                                                Type_Unknown
0
                                     0
                                                            0
                                                                            0
1
2
                                     0
                                                            0
                                                                            0
3
                                     0
                                                                            0
                                     0
                                                                            0
   Target_Abortion Related Target_Airports & Aircraft Target_Business
0
1
                           0
                                                         0
                                                                            0
2
                           0
                                                         0
                                                                            0
3
                           0
                                                         0
                                                                            0
   Target_Educational Institution Target_Food or Water Supply
0
1
                                  0
                                                                  0
2
                                  0
                                                                  0
3
                                                                  0
4
                                                                  0
   Target_Government (Diplomatic)
                                     Target_Government (General)
0
                                  0
                                                                  0
1
2
                                  0
                                                                  1
                                   0
3
                                                                  0
4
                                                                      Target_NGO
   Target_Journalists & Media
                                 Target_Maritime
                                                  Target_Military
0
                              0
                                                0
1
                                                                   1
                                                                                0
2
                              0
                                                0
                                                                   0
                                                                                0
3
                              0
                                                0
4
                              0
   Target_Other
                 Target_Police
                                  Target_Private Citizens & Property
0
                                                                      0
                               0
                                                                      0
1
               0
                               0
2
               0
                                                                      0
                               0
3
               0
                                                                      0
               0
                               0
                                                                      0
   Target_Religious Figures/Institutions Target_Telecommunication
0
                                          0
                                                                      0
1
2
                                          0
                                                                      0
3
                                          0
                                                                      0
```

```
4
                                         0
                                                                     0
   Target_Terrorists/Non-State Militia Target_Tourists
0
                                       0
                                                         0
1
2
                                       0
                                                         0
3
                                       0
                                                         0
4
                                       0
                                                         0
   Target_Transportation Target_Unknown Target_Utilities
0
                        0
                                         0
                                                             0
1
2
                                         0
                        0
                                                             0
3
                        0
                                         0
                                                             0
4
                        0
                                         0
                                                             0
   Target_Violent Political Party Weapon_Biological Weapon_Chemical
0
1
                                  0
                                                      0
                                                                        0
                                  0
2
                                                      0
                                                                        0
                                  0
3
                                                      0
                                                                        0
4
                                  0
                                                      0
                                                                        0
   Weapon_Explosives
                      Weapon_Fake Weapons
                                             Weapon_Firearms Weapon_Incendiary \
0
                    0
                                                                                 0
                    0
                                                                                 1
1
                                          0
                                                             0
2
                    0
                                          0
                                                             0
                                                                                 1
3
                    1
                                          0
                                                             0
                                                                                 0
4
                    0
                                          0
   Weapon_Melee
                 Weapon_Other Weapon_Sabotage Equipment Weapon_Unknown
0
               0
1
               0
                              0
                                                          0
                                                                            0
2
               0
                              0
                                                          0
                                                                            0
                              0
                                                          0
3
               0
                                                                            0
4
                                                          0
   Weapon_Vehicle (not to include vehicle-borne explosives, i.e., car or truck
bombs) \
0
0
1
0
2
0
3
0
```

```
4
0
   Dominant Ideology_Ethnonationalist-Separatist
0
1
                                                    0
2
                                                    0
3
                                                    0
4
                                                    0
   Dominant Ideology_Extreme Left Wing Dominant Ideology_Extreme Right Wing
0
                                         1
1
                                         0
                                                                                  0
2
                                         0
                                                                                  0
                                                                                  0
3
                                         1
4
                                         1
                                                                                  0
                                   Dominant Ideology_Single Issue
   Dominant Ideology_Religious
0
                                0
                                                                   1
1
2
                                0
                                                                   1
                                0
3
                                                                   0
4
                                0
                                                                   0
   Dominant Ideology_Unknown Ideology
0
1
                                       0
2
                                       0
3
                                       0
                                       0
```

1.5 Running the Data though the KNN classifier

There were five Dominant Ideologies (Ethnonationalist-Separatist, Left-Wing, Right-Wing, Religious, and Single Issue). In order to test the KNN accuracy, I decided to run the model against each of these targets separately, adjust based on the optimal K, and then use a K-Fold Cross Validation as a metric/test for accuracy. This source for this section was my notes from MSDS650.

1.5.1 KNN Run for Ethnonationalist-Separatist

```
[17]: features = df.drop(['Event ID#', 'Year', 'Month', 'Day', 'State', 'City', □

→'Group', 'Dominant Ideology_Ethnonationalist-Separatist', 'Dominant □

→Ideology_Extreme Left Wing', 'Dominant Ideology_Extreme Right Wing', □

→'Dominant Ideology_Religious', 'Dominant Ideology_Single Issue', 'Dominant □

→Ideology_Unknown Ideology'], axis=1)

targets = df['Dominant Ideology_Ethnonationalist-Separatist']
```

```
[18]: X_train, X_test, y_train, y_test = train_test_split(features, targets,__
       →test_size=0.2, random_state=42)
[19]: scores = []
      for k in range(2, 20):
          print(f'Evaluating {k} clusters')
          model = KNeighborsClassifier(n_neighbors=k, n_jobs=-1)
          model.fit(X_train, y_train)
          scores.append(model.score(X_test, y_test))
     Evaluating 2 clusters
     Evaluating 3 clusters
     Evaluating 4 clusters
     Evaluating 5 clusters
     Evaluating 6 clusters
     Evaluating 7 clusters
     Evaluating 8 clusters
     Evaluating 9 clusters
     Evaluating 10 clusters
     Evaluating 11 clusters
     Evaluating 12 clusters
     Evaluating 13 clusters
     Evaluating 14 clusters
     Evaluating 15 clusters
     Evaluating 16 clusters
     Evaluating 17 clusters
     Evaluating 18 clusters
     Evaluating 19 clusters
[20]: plt.plot(range(2, 20), scores)
     plt.scatter(range(2, 20), scores)
     plt.xticks(range(2, 20))
      print(f'\nMax accuracy = {(max(scores)*100)}%')
```

Max accuracy = 80.58455114822547%


```
[21]: model = KNeighborsClassifier(n_neighbors=4, n_jobs=-1)
model.fit(X_train, y_train)
print(model.score(X_train, y_train))
print(model.score(X_test, y_test))
```

- 0.8182767624020888
- 0.8058455114822547

K-Fold Cross Validation for Ethnonationalist-Separatist

```
[22]: seed = 42
num_folds = 5
scoring = 'accuracy'
```

```
ensembles = []
ensembles.append(('KNN', KNeighborsClassifier(n_neighbors=4, n_jobs=-1)))
ensembles.append(('AB', AdaBoostClassifier()))
ensembles.append(('GBM', GradientBoostingClassifier()))
ensembles.append(('RF', RandomForestClassifier(n_estimators=10)))
ensembles.append(('ET', ExtraTreesClassifier(n_estimators=10)))
```

```
[24]: results = []
names = []
for name, model in ensembles:
    kfold = KFold(n_splits=num_folds, random_state=seed, shuffle=True)
```

KNN: 0.778068 (0.020157)
AB: 0.779112 (0.016808)
GBM: 0.785379 (0.018639)
RF: 0.792167 (0.015631)
ET: 0.791123 (0.013617)

1.5.2 KNN Run for Extreme Left Wing

```
[25]: features = df.drop(['Event ID#', 'Year', 'Month', 'Day', 'State', 'City', \cup \infty' Group', 'Dominant Ideology_Ethnonationalist-Separatist', 'Dominant \cup \infty Ideology_Extreme Left Wing', 'Dominant Ideology_Extreme Right Wing', \cup \infty 'Dominant Ideology_Religious', 'Dominant Ideology_Single Issue', 'Dominant \cup \infty Ideology_Unknown Ideology'], axis=1)

targets = df['Dominant Ideology_Extreme Left Wing']
```

```
[26]: X_train, X_test, y_train, y_test = train_test_split(features, targets, u →test_size=0.2, random_state=42)
```

```
[27]: scores = []
for k in range(2, 20):
    print(f'Evaluating {k} clusters')

model = KNeighborsClassifier(n_neighbors=k, n_jobs=-1)
    model.fit(X_train, y_train)
    scores.append(model.score(X_test, y_test))
```

Evaluating 3 clusters
Evaluating 4 clusters
Evaluating 5 clusters
Evaluating 6 clusters
Evaluating 7 clusters
Evaluating 8 clusters
Evaluating 9 clusters
Evaluating 10 clusters
Evaluating 11 clusters
Evaluating 12 clusters
Evaluating 13 clusters
Evaluating 14 clusters
Evaluating 15 clusters

Evaluating 2 clusters

```
Evaluating 16 clusters
Evaluating 17 clusters
Evaluating 18 clusters
Evaluating 19 clusters
```

```
[28]: plt.plot(range(2, 20), scores)
  plt.scatter(range(2, 20), scores)
  plt.xticks(range(2, 20))

print(f'\nMax accuracy = {(max(scores)*100)}%')
```

Max accuracy = 78.91440501043841%


```
[29]: model = KNeighborsClassifier(n_neighbors=18, n_jobs=-1)
model.fit(X_train, y_train)
print(model.score(X_train, y_train))
print(model.score(X_test, y_test))
```

0.8219321148825065

0.7891440501043842

K-Fold Cross Validation for Extreme Left Wing

```
[30]: seed = 42
num_folds = 5
scoring = 'accuracy'
```

```
[31]: ensembles = []
      ensembles.append(('KNN', KNeighborsClassifier(n_neighbors=18, n_jobs=-1)))
      ensembles.append(('AB', AdaBoostClassifier()))
      ensembles.append(('GBM', GradientBoostingClassifier()))
      ensembles.append(('RF', RandomForestClassifier(n_estimators=10)))
      ensembles.append(('ET', ExtraTreesClassifier(n_estimators=10)))
[32]: results = []
      names = []
      for name, model in ensembles:
          kfold = KFold(n_splits=num_folds, random_state=seed, shuffle=True)
          cv_results = cross_val_score(model, X_train, y_train, cv=kfold,__

→scoring=scoring)
          results.append(cv_results)
          names.append(name)
          msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
          print(msg)
     KNN: 0.803133 (0.005376)
     AB: 0.796345 (0.011077)
     GBM: 0.799478 (0.008800)
     RF: 0.807311 (0.006888)
     ET: 0.806789 (0.010444)
     1.5.3 KNN Run for Extreme Right Wing
[33]: features = df.drop(['Event ID#', 'Year', 'Month', 'Day', 'State', 'City',
       →'Group', 'Dominant Ideology_Ethnonationalist-Separatist', 'Dominant
       \hookrightarrowIdeology_Extreme Left Wing', 'Dominant Ideology_Extreme Right Wing', \sqcup
       → 'Dominant Ideology_Religious', 'Dominant Ideology_Single Issue', 'Dominant
       →Ideology_Unknown Ideology'], axis=1)
      targets = df['Dominant Ideology_Extreme Right Wing']
[34]: X_train, X_test, y_train, y_test = train_test_split(features, targets,__
       →test_size=0.2, random_state=42)
[35]: scores = []
      for k in range(2, 20):
          print(f'Evaluating {k} clusters')
          model = KNeighborsClassifier(n_neighbors=k, n_jobs=-1)
          model.fit(X_train, y_train)
          scores.append(model.score(X_test, y_test))
     Evaluating 2 clusters
     Evaluating 3 clusters
```

Evaluating 4 clusters

```
Evaluating 5 clusters
Evaluating 6 clusters
Evaluating 7 clusters
Evaluating 8 clusters
Evaluating 9 clusters
Evaluating 10 clusters
Evaluating 11 clusters
Evaluating 12 clusters
Evaluating 13 clusters
Evaluating 14 clusters
Evaluating 15 clusters
Evaluating 16 clusters
Evaluating 17 clusters
Evaluating 18 clusters
Evaluating 18 clusters
Evaluating 19 clusters
```

```
[36]: plt.plot(range(2, 20), scores)
  plt.scatter(range(2, 20), scores)
  plt.xticks(range(2, 20))

print(f'\nMax accuracy = {(max(scores)*100)}%')
```

Max accuracy = 91.02296450939458%


```
[37]: model = KNeighborsClassifier(n_neighbors=2, n_jobs=-1)
      model.fit(X_train, y_train)
      print(model.score(X_train, y_train))
      print(model.score(X_test, y_test))
     0.9122715404699739
     0.9102296450939458
     K-Fold Cross Validation for Extreme Right Wing
[38]: seed = 42
     num_folds = 5
      scoring = 'accuracy'
[39]: ensembles = []
      ensembles.append(('KNN', KNeighborsClassifier(n_neighbors=2, n_jobs=-1)))
      ensembles.append(('AB', AdaBoostClassifier()))
      ensembles.append(('GBM', GradientBoostingClassifier()))
      ensembles.append(('RF', RandomForestClassifier(n_estimators=10)))
      ensembles.append(('ET', ExtraTreesClassifier(n_estimators=10)))
[40]: results = []
      names = []
      for name, model in ensembles:
         kfold = KFold(n_splits=num_folds, random_state=seed, shuffle=True)
          cv_results = cross_val_score(model, X_train, y_train, cv=kfold,__
      →scoring=scoring)
         results.append(cv_results)
         names.append(name)
         msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
         print(msg)
     KNN: 0.875718 (0.019857)
     AB: 0.879373 (0.015080)
     GBM: 0.886684 (0.013272)
     RF: 0.885117 (0.013816)
     ET: 0.887206 (0.010099)
     1.5.4 KNN Run for Religious
[41]: features = df.drop(['Event ID#', 'Year', 'Month', 'Day', 'State', 'City', |
      →'Group', 'Dominant Ideology_Ethnonationalist-Separatist', 'Dominant
      →Ideology_Extreme Left Wing', 'Dominant Ideology_Extreme Right Wing', ⊔
      _{\hookrightarrow}'Dominant Ideology_Religious', 'Dominant Ideology_Single Issue', 'Dominant_{\sqcup}
```

targets = df['Dominant Ideology_Religious']

```
[42]: X_train, X_test, y_train, y_test = train_test_split(features, targets,__
       →test_size=0.2, random_state=42)
[43]: scores = []
      for k in range(2, 20):
          print(f'Evaluating {k} clusters')
          model = KNeighborsClassifier(n_neighbors=k, n_jobs=-1)
          model.fit(X_train, y_train)
          scores.append(model.score(X_test, y_test))
     Evaluating 2 clusters
     Evaluating 3 clusters
     Evaluating 4 clusters
     Evaluating 5 clusters
     Evaluating 6 clusters
     Evaluating 7 clusters
     Evaluating 8 clusters
     Evaluating 9 clusters
     Evaluating 10 clusters
     Evaluating 11 clusters
     Evaluating 12 clusters
     Evaluating 13 clusters
     Evaluating 14 clusters
     Evaluating 15 clusters
     Evaluating 16 clusters
     Evaluating 17 clusters
     Evaluating 18 clusters
     Evaluating 19 clusters
[44]: plt.plot(range(2, 20), scores)
      plt.scatter(range(2, 20), scores)
      plt.xticks(range(2, 20))
      print(f'\nMax accuracy = {(max(scores)*100)}%')
```

Max accuracy = 97.28601252609603%


```
[45]: model = KNeighborsClassifier(n_neighbors=3, n_jobs=-1)
model.fit(X_train, y_train)
print(model.score(X_train, y_train))
print(model.score(X_test, y_test))
```

- 0.970757180156658
- 0.9728601252609603

K-Fold Cross Validation for Religious

```
[46]: seed = 42
num_folds = 5
scoring = 'accuracy'
```

```
ensembles = []
ensembles.append(('KNN', KNeighborsClassifier(n_neighbors=3, n_jobs=-1)))
ensembles.append(('AB', AdaBoostClassifier()))
ensembles.append(('GBM', GradientBoostingClassifier()))
ensembles.append(('RF', RandomForestClassifier(n_estimators=10)))
ensembles.append(('ET', ExtraTreesClassifier(n_estimators=10)))
```

```
[48]: results = []
names = []
for name, model in ensembles:
    kfold = KFold(n_splits=num_folds, random_state=seed, shuffle=True)
```

```
cv_results = cross_val_score(model, X_train, y_train, cv=kfold,__
       →scoring=scoring)
          results.append(cv_results)
          names.append(name)
          msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
          print(msg)
     KNN: 0.959269 (0.010778)
     AB: 0.955091 (0.009543)
     GBM: 0.963969 (0.009105)
     RF: 0.960836 (0.008893)
     ET: 0.962924 (0.007083)
     1.5.5 KNN Run for Single Issue
[49]: | features = df.drop(['Event ID#', 'Year', 'Month', 'Day', 'State', 'City', |
       →'Group', 'Dominant Ideology_Ethnonationalist-Separatist', 'Dominant_
       {\scriptstyle \leftarrow} {\tt Ideology\_Extreme~Left~Wing',~'Dominant~Ideology\_Extreme~Right~Wing',} \\ {\scriptstyle \vdash}
       _{\hookrightarrow}'Dominant Ideology_Religious', 'Dominant Ideology_Single Issue', 'Dominant_{\sqcup}
       →Ideology_Unknown Ideology'], axis=1)
      targets = df['Dominant Ideology_Single Issue']
[50]: X_train, X_test, y_train, y_test = train_test_split(features, targets,__
       →test_size=0.2, random_state=42)
[51]: scores = []
      for k in range(2, 20):
          print(f'Evaluating {k} clusters')
          model = KNeighborsClassifier(n_neighbors=k, n_jobs=-1)
          model.fit(X_train, y_train)
          scores.append(model.score(X_test, y_test))
     Evaluating 2 clusters
     Evaluating 3 clusters
     Evaluating 4 clusters
     Evaluating 5 clusters
     Evaluating 6 clusters
     Evaluating 7 clusters
     Evaluating 8 clusters
     Evaluating 9 clusters
     Evaluating 10 clusters
     Evaluating 11 clusters
     Evaluating 12 clusters
     Evaluating 13 clusters
     Evaluating 14 clusters
     Evaluating 15 clusters
```

```
Evaluating 16 clusters
Evaluating 17 clusters
Evaluating 18 clusters
Evaluating 19 clusters
```

```
[52]: plt.plot(range(2, 20), scores)
   plt.scatter(range(2, 20), scores)
   plt.xticks(range(2, 20))

print(f'\nMax accuracy = {(max(scores)*100)}%')
```

Max accuracy = 84.34237995824635%


```
[53]: model = KNeighborsClassifier(n_neighbors=7, n_jobs=-1)
model.fit(X_train, y_train)
print(model.score(X_train, y_train))
print(model.score(X_test, y_test))
```

- 0.8605744125326371
- 0.8434237995824635

K-Fold Cross Validation for Single Issue

```
[54]: seed = 42
num_folds = 5
scoring = 'accuracy'
```

```
[55]: ensembles = []
ensembles.append(('KNN', KNeighborsClassifier(n_neighbors=7, n_jobs=-1)))
ensembles.append(('AB', AdaBoostClassifier()))
ensembles.append(('GBM', GradientBoostingClassifier()))
ensembles.append(('RF', RandomForestClassifier(n_estimators=10)))
ensembles.append(('ET', ExtraTreesClassifier(n_estimators=10)))
```

```
results = []
names = []
for name, model in ensembles:
    kfold = KFold(n_splits=num_folds, random_state=seed, shuffle=True)
    cv_results = cross_val_score(model, X_train, y_train, cv=kfold,
    scoring=scoring)
    results.append(cv_results)
    names.append(name)
    msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
    print(msg)
```

KNN: 0.829765 (0.023493) AB: 0.831332 (0.006310) GBM: 0.836554 (0.008355) RF: 0.829765 (0.014621) ET: 0.841253 (0.014051)

1.6 Final Analysis and Further Research

The accuracy for the KNN runs were as follows:

• Ethnonationalist-Separatist: 80.58%

• Extreme Left Wing: 78.91%

• Extreme Right Wing: 91.02%

Religious: 97.28%Single Issue: 84.34%

The high number for accurately identifying Religously motivated attacks gives me pause and merits further investigation. It could be that accurate, but, based on my limited experience in MSDS650, I doubt it. There may be a feature that is triggering this level of accuracy and allowing the machine to "cheat." I experienced this phenonmena during initial tests when I had some extra sub-ideology features that were actually giving the machine the answer to the target.

The K-Fold cross validations showed a slight improvement using Extra Trees or Random Forests. This may merit some experimentation but the gains were minimal.

For further research, more detailed data on the incidents would increase the confidence in the model outcomes. For example, detailed data on attackers/ perpetrators might be another variable that could assist in classification.