Decision Trees

Consider the following data set. Use information theory to design a decision tree that classifies people according to whether they are a "cat-person" or a "dog-person".

#	Introvert	Stylish	Has-Mice	Category
1	Т	Т	Т	Cat-person
2	Т	Т	F	Cat-person
3	F	F	Т	Dog-person
4	Т	F	F	Dog-person
5	Т	F	Т	Cat-person
6	F	Т	F	Dog-person
7	Т	Т	F	Cat-person
8	F	F	Т	Dog-person

Solution:

The root:

Gain(introvert) = I(4/8, 4/8) - [5/8 * I(4/5, 1/5) + 3/8 * I(0/3, 3/3)]= 1 - 0.4512050593046014= 0.5487949406953986Gain(stylish) = I(4/8, 4/8) - [4/8 * I(3/4, 1/4) + 4/8 * I(1/4, 3/4)]= 1 - 0.8112781244591328= 0.18872187554086717

Gain(has-mice) = I(4/8, 4/8) - [4/8 * I(2/4, 2/4) + 4/8 * I(2/4, 2/4)]= 1 - 1 = 0

The introvert=T branch:

By process of elimination the introvert=T, stylist=F branch must use the has-mice attribute since it is the only attribute that remains.