第1章 实数与函数

§ 1.1 实数集的界与确界

一、实数集的界

引例:某班同学的身高集合与自然数集合的不同.

1. 界的概念

定义:设A是一个非空实数集,若存在M>0,使得对任意的 $x\in A$,都有 $|x|\leq M$,则称实数集A有界,M称为A的**界**; 若存在 $M\in R$,使得对任意的 $x\in A$,都有 $x\leq M$,则称实数集A有上界,M称为A的**上界**; 若存在 $M\in R$,使得对任意的 $x\in A$,都有 $x\geq M$,则称实数集A有下界,M称为A的下界。

Note: 界的不唯一性.

2. 界与上、下界之间的关系

定理: 实数集A有界的充分必要条件是其既有上界、又有下界.

证明: 必要性证明. 设M 是实数集A 的界,则

 $-M \leq x \leq M$, $\forall x \in A$.

所以实数集A既有上界、又有下界.

充分性证明. 设 M_1 , M_2 分别是实数集A的下界和上界,则

$$M_1 \leqslant x \leqslant M_2$$
, $\forall x \in A$.

取 $M = \max\{|M_1|, |M_2|\}$,则

$$-M \leqslant x \leqslant M$$
 , $\forall x \in A$.

所以实数集A有界.

3. 实数集 A 无界的严格描述

实数集 A 无界 ⇔ 任给 M > 0,总存在 $x_M \in A$,使得 $|x_M| > M$.

Note: 实数集 A 无上界、无下界的严格描述.

例 1: 证明正整数集 Z⁺无上界.

证明: 任给 M>0, 取 $n_0=[M]+1$,则 $n_0\in Z^+$,且 $n_0>M$.

例 2: 证明数集 $\left\{ n \sin \frac{n\pi}{2} \right\} (n = 1, 2, 3, \dots)$ 无界.

证明: 任给M > 0, 取 $n_0 = 2[M] + 1$, 则

$$\left| a_{n_0} \right| = (2[M] + 1) \left| \sin \frac{2[M] + 1}{2} \pi \right| = 2[M] + 1 > M.$$

练习题: 证明数集 $A = \{\frac{1}{x}\sin\frac{1}{x} | x \neq 0, x \in R\}$ 无界.

因为任给M>0,取 $x_0=\frac{1}{2[M]\pi+\frac{\pi}{2}}$,则 $\frac{1}{x_0}\sin\frac{1}{x_0}=2[M]\pi+\frac{\pi}{2}>M$.