Financial Engineering & Risk Management

Review of Multivariate Distributions

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research Columbia University

Multivariate Distributions I

Let $\mathbf{X} = (X_1 \dots X_n)^{\top}$ be an *n*-dimensional vector of random variables.

Definition. For all $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$, the joint cumulative distribution function (CDF) of \mathbf{X} satisfies

$$F_{\mathbf{X}}(\mathbf{x}) = F_{\mathbf{X}}(x_1, \dots, x_n) = P(X_1 \le x_1, \dots, X_n \le x_n).$$

Definition. For a fixed i, the marginal CDF of X_i satisfies

$$F_{X_i}(x_i) = F_{\mathbf{X}}(\infty, \dots, \infty, x_i, \infty, \dots \infty).$$

It is straightforward to generalize the previous definition to joint marginal distributions. For example, the joint marginal distribution of X_i and X_j satisfies

$$F_{ij}(x_i, x_j) = F_{\mathbf{X}}(\infty, \dots, \infty, x_i, \infty, \dots, \infty, x_j, \infty, \dots \infty).$$

We also say that \mathbf{X} has joint PDF $f_{\mathbf{X}}(\cdot,\ldots,\cdot)$ if

$$F_{\mathbf{X}}(x_1,\ldots,x_n) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f_{\mathbf{X}}(u_1,\ldots,u_n) \ du_1 \ldots du_n.$$

Multivariate Distributions II

Definition. If $\mathbf{X_1} = (X_1, \dots X_k)^{\top}$ and $\mathbf{X_2} = (X_{k+1} \dots X_n)^{\top}$ is a partition of \mathbf{X} then the conditional CDF of $\mathbf{X_2}$ given $\mathbf{X_1}$ satisfies

$$F_{\mathbf{X_2}|\mathbf{X_1}}(\mathbf{x_2}|\mathbf{x_1}) = P(\mathbf{X_2} \le \mathbf{x_2}|\mathbf{X_1} = \mathbf{x_1}).$$

If X has a PDF, $f_{\mathbf{X}}(\cdot)$, then the conditional PDF of $\mathbf{X_2}$ given $\mathbf{X_1}$ satisfies

$$f_{\mathbf{X}_{2}|\mathbf{X}_{1}}(\mathbf{x}_{2}|\mathbf{x}_{1}) = \frac{f_{\mathbf{X}}(\mathbf{x})}{f_{\mathbf{X}_{1}}(\mathbf{x}_{1})} = \frac{f_{\mathbf{X}_{1}|\mathbf{X}_{2}}(\mathbf{x}_{1}|\mathbf{x}_{2})f_{\mathbf{X}_{2}}(\mathbf{x}_{2})}{f_{\mathbf{X}_{1}}(\mathbf{x}_{1})}$$
 (1)

and the conditional CDF is then given by

$$F_{\mathbf{X_2}|\mathbf{X_1}}(\mathbf{x_2}|\mathbf{x_1}) = \int_{-\infty}^{x_{k+1}} \cdots \int_{-\infty}^{x_n} \frac{f_{\mathbf{X}}(x_1, \dots, x_k, u_{k+1}, \dots, u_n)}{f_{\mathbf{X_1}}(\mathbf{x_1})} du_{k+1} \dots du_n$$

where $f_{\mathbf{X_1}}(\cdot)$ is the joint marginal PDF of $\mathbf{X_1}$ which is given by

$$f_{\mathbf{X}_1}(x_1,\ldots,x_k) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}(x_1,\ldots,x_k,u_{k+1},\ldots,u_n) \ du_{k+1}\ldots du_n.$$

Independence

Definition. We say the collection X is independent if the joint CDF can be factored into the product of the marginal CDFs so that

$$F_{\mathbf{X}}(x_1,\ldots,x_n) = F_{X_1}(x_1)\ldots F_{X_n}(x_n).$$

If **X** has a PDF, $f_{\mathbf{X}}(\cdot)$ then independence implies that the PDF also factorizes into the product of marginal PDFs so that

$$f_{\mathbf{X}}(\mathbf{x}) = f_{X_1}(x_1) \dots f_{X_n}(x_n).$$

Can also see from (1) that if $\mathbf{X_1}$ and $\mathbf{X_2}$ are independent then

$$f_{\mathbf{X}_{2}|\mathbf{X}_{1}}(\mathbf{x}_{2}|\mathbf{x}_{1}) = \frac{f_{\mathbf{X}}(\mathbf{x})}{f_{\mathbf{X}_{1}}(\mathbf{x}_{1})} = \frac{f_{\mathbf{X}_{1}}(\mathbf{x}_{1})f_{\mathbf{X}_{2}}(\mathbf{x}_{2})}{f_{\mathbf{X}_{1}}(\mathbf{x}_{1})} = f_{\mathbf{X}_{2}}(\mathbf{x}_{2})$$

- so having information about X_1 tells you nothing about X_2 .

Implications of Independence

Let X and Y be independent random variables. Then for any events, A and B,

$$P(X \in A, Y \in B) = P(X \in A) P(Y \in B)$$
 (2)

More generally, for any function, $f(\cdot)$ and $g(\cdot)$, independence of X and Y implies

$$\mathsf{E}[f(X)g(Y)] \ = \ \mathsf{E}[f(X)]\mathsf{E}[g(Y)]. \tag{3}$$

In fact, (2) follows from (3) since

$$\begin{array}{rcl} \mathsf{P}\left(X \in A, \ Y \in B\right) & = & \mathsf{E}\left[1_{\{X \in A\}}1_{\{Y \in B\}}\right] \\ & = & \mathsf{E}\left[1_{\{X \in A\}}\right]\mathsf{E}\left[1_{\{Y \in B\}}\right] \quad \text{by (3)} \\ & = & \mathsf{P}\left(X \in A\right)\mathsf{P}\left(Y \in B\right). \end{array}$$

Implications of Independence

More generally, if $X_1, \ldots X_n$ are independent random variables then

$$\mathsf{E}[f_1(X_1)f_2(X_2)\cdots f_n(X_n)] = \mathsf{E}[f_1(X_1)]\mathsf{E}[f_2(X_2)]\cdots \mathsf{E}[f_n(X_n)].$$

Random variables can also be conditionally independent. For example, we say X and Y are conditionally independent given Z if

$$E[f(X)g(Y) | Z] = E[f(X) | Z] E[g(Y) | Z].$$

used in the (in)famous Gaussian copula model for pricing CDOs!

In particular, let D_i be the event that the i^{th} bond in a portfolio defaults.

Not reasonable to assume that the D_i 's are independent. Why?

But maybe they are conditionally independent given ${\cal Z}$ so that

$$P(D_1, \dots, D_n \mid Z) = P(D_1 \mid Z) \dots P(D_n \mid Z)$$

often easy to compute this.

The Mean Vector and Covariance Matrix

The mean vector of X is given by

$$\mathsf{E}[\mathbf{X}] := (\mathsf{E}[X_1] \dots \mathsf{E}[X_n])^{\top}$$

and the covariance matrix of X satisfies

$$\mathbf{\Sigma} := \mathsf{Cov}(\mathbf{X}) \; := \; \mathsf{E}\left[(\mathbf{X} - \mathsf{E}[\mathbf{X}]) \; (\mathbf{X} - \mathsf{E}[\mathbf{X}])^{ op}
ight]$$

so that the $(i,j)^{th}$ element of Σ is simply the covariance of X_i and X_j .

The covariance matrix is symmetric and its diagonal elements satisfy $\Sigma_{i,i} \geq 0$.

It is also positive semi-definite so that $\mathbf{x}^{\top} \mathbf{\Sigma} \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^n$.

The correlation matrix, $\rho(\mathbf{X})$, has $(i,j)^{th}$ element $\rho_{ij} := \mathsf{Corr}(X_i, X_j)$

- it is also symmetric, positive semi-definite and has 1's along the diagonal.

Variances and Covariances

For any matrix $\mathbf{A} \in \mathbb{R}^{k \times n}$ and vector $\mathbf{a} \in \mathbb{R}^k$ we have

$$\mathsf{E}\left[\mathbf{A}\mathbf{X} + \mathbf{a}\right] = \mathbf{A}\mathsf{E}\left[\mathbf{X}\right] + \mathbf{a} \tag{4}$$

$$Cov(\mathbf{AX} + \mathbf{a}) = \mathbf{A} Cov(\mathbf{X}) \mathbf{A}^{\top}.$$
 (5)

Note that (5) implies

$$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y).$$

If X and Y independent, then Cov(X, Y) = 0

but converse not true in general.

Financial Engineering & Risk Management

The Multivariate Normal Distribution

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research Columbia University

The Multivariate Normal Distribution I

If the n-dimensional vector ${\bf X}$ is multivariate normal with mean vector ${m \mu}$ and covariance matrix ${m \Sigma}$ then we write

$$\mathbf{X} \sim \mathsf{MN}_n(oldsymbol{\mu}, oldsymbol{\Sigma}).$$

The PDF of X is given by

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$

where $|\cdot|$ denotes the determinant.

Standard multivariate normal has $\mu=0$ and $\Sigma=\mathbf{I_n}$, the $n\times n$ identity matrix - in this case the X_i 's are independent.

The moment generating function (MGF) of X satisfies

$$\phi_{\mathbf{X}}(\mathbf{s}) = \mathsf{E}\left[e^{\mathbf{s}^{\top}\mathbf{X}}\right] = e^{\mathbf{s}^{\top}\boldsymbol{\mu} + \frac{1}{2}\mathbf{s}^{\top}\boldsymbol{\Sigma}s}.$$

The Multivariate Normal Distribution II

Recall our partition of \mathbf{X} into $\mathbf{X_1} = (X_1 \dots X_k)^{\top}$ and $\mathbf{X_2} = (X_{k+1} \dots X_n)^{\top}$. Can extend this notation naturally so that

$$\mu = \left(egin{array}{c} \mu_1 \ \mu_2 \end{array}
ight) \quad ext{ and } \quad oldsymbol{\Sigma} = \left(egin{array}{cc} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{array}
ight).$$

are the mean vector and covariance matrix of (X_1, X_2) .

Then have following results on marginal and conditional distributions of X:

Marginal Distribution

The marginal distribution of a multivariate normal random vector is itself normal. In particular, $\mathbf{X_i} \sim \mathsf{MN}(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_{ii})$, for i=1,2.

The Bivariate Normal PDF

The Bivariate Normal PDF

The Multivariate Normal Distribution III

Conditional Distribution

Assuming Σ is positive definite, the conditional distribution of a multivariate normal distribution is also a multivariate normal distribution. In particular,

$$\mathbf{X_2} \mid \mathbf{X_1} = \mathbf{x_1} \sim \mathsf{MN}(oldsymbol{\mu}_{2.1}, oldsymbol{\Sigma}_{2.1})$$

where
$$\mu_{2.1} = \mu_2 + \Sigma_{21} \Sigma_{11}^{-1} (\mathbf{x_1} - \boldsymbol{\mu}_1)$$
 and $\Sigma_{2.1} = \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$.

Linear Combinations

A linear combination, $\mathbf{A}\mathbf{X} + \mathbf{a}$, of a multivariate normal random vector, \mathbf{X} , is normally distributed with mean vector, $\mathbf{A}\mathsf{E}\left[\mathbf{X}\right] + \mathbf{a}$, and covariance matrix, $\mathbf{A}\;\mathsf{Cov}(\mathbf{X})\;\mathbf{A}^{\top}$.

Financial Engineering & Risk Management

Introduction to Martingales

M. Haugh G. Iyengar

Department of Industrial Engineering and Operations Research Columbia University

Martingales

Definition. A random process, $\{X_n : 0 \le n \le \infty\}$, is a martingale with respect to the information filtration, \mathcal{F}_n , and probability distribution, P, if

- 1. $\mathsf{E}^P[|X_n|] < \infty$ for all $n \ge 0$
- 2. $E^{P}[X_{n+m}|\mathcal{F}_{n}] = X_{n}$ for all $n, m \ge 0$.

Martingales are used to model fair games and have a rich history in the modeling of gambling problems.

We define a submartingale by replacing condition #2 with

$$\mathsf{E}^P[X_{n+m}|\mathcal{F}_n] \ge X_n$$
 for all $n, m \ge 0$.

And we define a supermartingale by replacing condition #2 with

$$\mathsf{E}^P[X_{n+m}|\mathcal{F}_n] \le X_n$$
 for all $n, m \ge 0$.

A martingale is both a submartingale and a supermartingale.

Constructing a Martingale from a Random Walk

Let $S_n := \sum_{i=1}^n X_i$ be a random walk where the X_i 's are IID with mean μ .

Let $M_n := S_n - n\mu$. Then M_n is a martingale because:

$$E_{n}[M_{n+m}] = E_{n} \left[\sum_{i=1}^{n+m} X_{i} - (n+m)\mu \right]
= E_{n} \left[\sum_{i=1}^{n+m} X_{i} \right] - (n+m)\mu
= \sum_{i=1}^{n} X_{i} + E_{n} \left[\sum_{i=n+1}^{n+m} X_{i} \right] - (n+m)\mu
= \sum_{i=1}^{n} X_{i} + m\mu - (n+m)\mu = M_{n}.$$

A Martingale Betting Strategy

Let X_1, X_2, \ldots be IID random variables with

$$P(X_i = 1) = P(X_i = -1) = \frac{1}{2}.$$

Can imagine X_i representing the result of coin-flipping game:

- Win \$1 if coin comes up heads
- Lose \$1 if coin comes up tails

Consider now a doubling strategy where we keep doubling the bet until we eventually win. Once we win, we stop and our initial bet is \$1.

First note that size of bet on n^{th} play is 2^{n-1}

- assuming we're still playing at time n.

Let W_n denote total winnings after n coin tosses assuming $W_0 = 0$.

Then W_n is a martingale!

A Martingale Betting Strategy

To see this, first note that $W_n \in \{1, -2^n + 1\}$ for all n. Why?

1. Suppose we win for first time on n^{th} bet. Then

$$W_n = -(1+2+\dots+2^{n-2}) + 2^{n-1}$$

$$= -(2^{n-1}-1) + 2^{n-1}$$

$$= 1$$

2. If we have not yet won after n bets then

$$W_n = -(1+2+\dots+2^{n-1})$$

= -2ⁿ + 1.

To show W_n is a martingale only need to show $\mathsf{E}[\,W_{n+1}\,|\,W_n]=\,W_n$

– then follows by iterated expectations that $E[W_{n+m} \mid W_n] = W_n$.

A Martingale Betting Strategy

There are two cases to consider:

1:
$$W_n = 1$$
: then $P(W_{n+1} = 1 | W_n = 1) = 1$ so

$$\mathsf{E}[W_{n+1} \mid W_n = 1] = 1 = W_n \tag{6}$$

2: $W_n = -2^n + 1$: bet 2^n on $(n+1)^{th}$ toss so $W_{n+1} \in \{1, -2^{n+1} + 1\}$. Clear that

$$P(W_{n+1} = 1 \mid W_n = -2^n + 1) = 1/2$$

$$P(W_{n+1} = -2^{n+1} + 1 \mid W_n = -2^n + 1) = 1/2$$

so that

$$\mathsf{E}[W_{n+1} \mid W_n = -2^n + 1] = (1/2)1 + (1/2)(-2^{n+1} + 1)$$

$$= -2^n + 1 = W_n. \tag{7}$$

From (6) and (7) we see that $E[W_{n+1} \mid W_n] = W_n$.

Polya's Urn

Consider an urn which contains red balls and green balls. Initially there is just one green ball and one red ball in the urn.

At each time step a ball is chosen randomly from the urn:

- 1. If ball is red, then it's returned to the urn with an additional red ball.
- 2. If ball is green, then it's returned to the urn with an additional green ball.

Let X_n denote the number of red balls in the urn after n draws. Then

$$P(X_{n+1} = k+1 | X_n = k) = \frac{k}{n+2}$$

$$P(X_{n+1} = k | X_n = k) = \frac{n+2-k}{n+2}.$$

Show that $M_n := X_n/(n+2)$ is a martingale.

(These martingale examples taken from "Introduction to Stochastic Processes" (Chapman & Hall) by Gregory F. Lawler.)