Delaware River PIT tag data analysis

Ben Letcher

2022-07-20

Note: the results shown here are preliminary and have not been officially reviewed by USGS, NYDEC or PA Fish and Boat

This notebook uses targets to manage running code and updating R objects. Targets sets up dependencies among specified objects and only re-runs code as necessary (when an upstream component gets updated). This can save run times for projects with models that take a while to run, like capture-mark-recapture models.

Data preparation and model running happens using targets and exploration of the data and model runs is below in this Markdown document.

'knit' the document to update all targets and the markdown exploration below.

'tar_make()' runs all the R scripts and functions specified in '_targets.R'. Only updated code or sections that are downstream from updated data are re-run.

'tar_read()' reads 'target' data into the global environment.

To set up a targets project, use use_targets()

This section (tar make()) reruns the model

```
# tar_watch(seconds = 10, outdated = FALSE, targets_only = TRUE)

# comment this out when kniting - get Latex error that it can't find the check mark the tar_make() uses
#tar_make()

# tar_prune() # cleans unused data files
#tar_invalidate(everything())
#tar_invalidate(ends_with("ttt"))
```

Load data for analysis

#str(d)

Without a postscript, the data are for all fish (main and trib)

```
dRaw0 <- tar_read(dRaw0) #all data - including untagged
dRaw <- tar_read(dRaw) #all data for CMR models
d <- tar_read(target_d)
eh <- tar_read(target_eh)</pre>
```

Visualize the network - does not work with pdf output

#tar_visnetwork()

Which rivers (Water) river N corresponds to $\,$

```
table(d$Water, d$riverN)
#>
#>
                          3
                             4 5
#> Balls Creek
                   41 0
                              0
                                0
                                     0
                         0
                  0 95
#> Cold Spring Creek
                         0
                              0
                                0
#> Roods Creek
                   0 0 159
                            0 0
                   0 0
#> Sands Creek
                         0 139
                                0
#> Shehawken Creek
                   0 0
                         0
                                   0
                             0
                                91
#> West Br Delaware River 0 0
                         0
                              0 0 5634
```

Raw data summary tables

```
kable(data.frame(ftable(d$date)))
```

Var1	Freq
2018-05-07	110
2018-05-08	34
2018-05-09	48
2018-06-11	129
2018-06-12	99
2018-06-13	88
2018-07-16	212
2018-07-17	176
2018-07-18	142
2018-08-21	11
2018-09-17	21
2018-09-20	89
2018-10-22	85
2018-10-23	131
2018-10-24	129
2019-04-08	240
2019-04-10	129
2019-05-06	170
2019-05-07	91
2019-06-10	169
2019-06-11	129
2019-07-15	212
2019-07-16	312
2019-07-17	25
2019-08-12	131
2019-08-13	139
2019-08-14	186
2019-08-15	49
2019-09-16	108
2019-09-17	55

Var1	Freq
2019-09-18	293
2019-10-21	262
2019-10-22	31
2019-10-23	74
2020-07-16	146
2020-07-20	249
2020 - 07 - 21	29
2020-08-10	89
2020-08-11	41
2020-08-17	145
2020-08-20	110
2020-09-10	187
2020-09-14	252
2020-09-15	47
2020-10-13	368
2020-10-14	55
2020-10-15	132

```
#kable(data.frame(ftable(d$Water, d$riverN)))
#kable(data.frame(ftable(d$Water, d$riverN, d$date)))
kable(data.frame(ftable(d$species)))
```

Var1	Freq
brook trout	13
brown trout	5534
rainbow trout	611

```
### Number of unique tags
length(unique(d$tag))
#> [1] 4610
```

Group observations by month.

Luckily, sampling periods do not span months, so we can use month as a grouping variable for sampling occasion

kable(data.frame(ftable(d\$dateYM)))

Var1	Free
2018-05	192
2018-06	316
2018-07	530
2018-08	11
2018-09	110
2018-10	345
2019-04	369
2019-05	261

Var1	Freq
2019-06	298
2019-07	549
2019-08	505
2019-09	456
2019-10	367
2020-07	424
2020 - 08	385
2020-09	486
2020-10	555

Tag information

Grouped by Water (sampling area)

```
tagN <- d %>%
 group_by(tag, Water) %>%
 summarize(n = n()) \%>\%
 filter(tag != "") %>%
 arrange(desc(n))
#> `summarise()` has grouped output by 'tag'. You can override using the `.groups`
#> argument.
### Number of times individual fish were observed
table(tagN$n)
#>
#>
                            6
                                           9
    1 2
                   4
                        5
                                      8
#> 3641 611 223
                  90
                       30
                            12
                                      1
                                           1
### Number of times individual fish were observed by river
(table(tagN$Water, tagN$n))
#>
                            1
                                 2
                                               5
                                                    6
                                                         7
                                                             8
                                                                  9
#>
  Balls Creek
                            30
                                 4
                                     1
                                        0 0
                                                             0
                                                                  0
                                           2
#>
    Cold Spring Creek
                            39
                                 9
                                               1
                                                    1
                                                         1
                                                                  0
                                                             0
#>
    Roods Creek
                            78
                                21
                                               1
                                                    0
                                                         0
                                                                  0
                                      6
                                          4
                                                             0
                            97 16
                                    2 1 0
                                                    0
                                                         0
                                                                  0
#>
    Sands Creek
#>
    Shehawken Creek
                           45
                               10
                                    6 2 0
                                                    0
                                                         0
                                                             0
                                                                  0
    West Br Delaware River 3352 551 204
                                        81 28
                                                   11
```

Grouped by main/trib

```
tagN_mt <- d %>%
  group_by(tag, mainTrib) %>%
  summarize(n = n()) %>%
  filter(tag != "") %>%
  arrange(desc(n))
#> `summarise()` has grouped output by 'tag'. You can override using the `.groups`
#> argument.
### Number of times individual fish were observed
```

```
table(tagN_mt$n)
#>
                       5
                            6
                                     8
                                          9
     1
         2
              3
#> 3641 611 223 90
                      30
                           12
                                     1
                                          1
### Number of times individual fish were observed by river
(table(tagN_mt$mainTrib, tagN_mt$n))
#>
                2
                   3
                         4
                            5
                                  6
                                       7
#>
   main 3352 551 204
                        81
                             28
                                 11
                                       3
                                           1
                                                1
#> trib 289 60
                  19 9 2
                                       1
```

Grouped by state

```
tagN_s <- d %>%
 group_by(tag, state) %>%
 summarize(n = n()) \%>\%
 filter(tag != "") %>%
 arrange(desc(n))
#> `summarise()` has grouped output by 'tag'. You can override using the `.groups`
#> argument.
### Number of times individual fish were observed
table(tagN_s$n)
                   4 5 6 7
#>
     1
        2 3
#> 3949 640 170 57 23
                            9
### Number of times individual fish were observed by river
table(tagN_s$state, tagN_s$n)
#>
#>
                                          9
         1
             2
                  3
                       4
                            5
                                     7
                                6
#>
    1 963
            69
                  4
                       0
                            0
                                0
                                          0
#> 2 1660 274
                      17
                           7
                                     0
                 58
                                0
                                          0
#> 3 1025 232
                 87
                      35
                           15
                                8
                                     2
                                          1
    4 264
            59
                 15
                       5
                                     0
                                          0
#>
                           1
                                1
       29
            6
                  6
                       0
                            0
                                0
                                     0
                                          0
#>
    5
#> 6 8
              0
                0
                       0
                            0
                                0
```

Basic summary plots of raw tagging data

```
ggplot(d %>% filter(species == "brown trout"), aes(Length)) +
  geom_freqpoly() +
  geom_vline(xintercept = c(tar_read(target_sizeCutoff1), tar_read(target_sizeCutoff2))) +
  facet_grid(~mainTrib)
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```



```
# dTame <- d %>%
# select(Latitude, Longitude, tag, dateTime, species, Length, Weight) %>%
# filter(tag != "", tag != "ad")
#
# write.csv(dTame, './dataOut/dTame.csv', row.names = FALSE)
```

Encounter histories

This is the data structure for the capture-recapture models. Each column is a sampling 'occasion' (here = month) and each row is an individual, where a '1' indicates capture and a '0' indicates not captured.

```
str(eh$eh)
#> num [1:3673, 1:17] 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
#> - attr(*, "dimnames")=List of 2
#> ..$ : NULL
#> ..$ : chr [1:17] "date_2018-05" "date_2018-06" "date_2018-07" "date_2018-08" ...
kable(head(eh$eh,8))
```

$\overline{\mathrm{date}}$	210alt&-	210alt&-	210alt&-	20alt&-	20alt&-	210alt86-	20alt9-	20att9-	20alt9-	21bit9-	20alt9-	210att9-	21bit9-	2020-	2020-	2020	_2020-
05	06	07	08	09	10	04	05	06	07	08	09	10	07	08	09	10	
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

$\overline{\text{date}}$	210att&-	210alt&-	20alt&-	210att&-	210att&-	21alt&-	20att@-	21att9-	20att9-	20att@-	20att9-	21att9-	20at@-	2020-	2020-	2020-	_2020-
05	06	07	08	09	10	04	05	06	07	08	09	10	07	08	09	10	
1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

```
table(paste(eh$first, eh$last, sep="_"))
#>
#>
    1_17 10_17 11_17 12_17 13_17 14_17 15_17 16_17
                                                           3_17
                                                                  4_17
                                                     2_17
                                                                        5_17
                                                                              6_17
#>
     173
           360
                 295
                       264
                              257
                                  297
                                          246
                                                291
                                                      264
                                                             373
                                                                     8
                                                                          62
                                                                               231
#>
    7_17
          8_17
                9_17
     233
           130
                 189
```

Transitions

 $River\ size1\ size2\ size3$

Main 1 2 3

Trib 456

There are very few transitions between main and trib and we can characterize size transitions better with a growth model - run phiT_pT models separately for main and trib

```
s <- eh$stateMatrix</pre>
s[s == 0] \leftarrow NA
s2 <- data.frame(s) %>%
  unite("all", sep = "", na.rm = TRUE, remove = TRUE) %>%
  #distinct() %>%
  arrange()
table(s2)
#> all
#>
                                 111
                                            1112
                                                                   1122
                                                                                 12
                                                                                            122
             1
                       11
                                                         112
#>
          774
                       58
                                    3
                                               1
                                                           6
                                                                       3
                                                                                 34
                                                                                             14
#>
         1222
                      132
                                    2
                                              22
                                                         222
                                                                   2222
                                                                              22222
                                                                                           2223
                                                                                  7
                                                                      17
#>
            5
                        1
                                1097
                                             185
                                                          46
                                                                                              4
#>
        22233
                      223
                                2233
                                           22333
                                                     223333
                                                                2233333
                                                                                             23
                                                                          22333333
#>
            2
                       25
                                   10
                                               6
                                                           2
                                                                       1
                                                                                  1
                                                                                             53
          233
                                                         253
                                                                       3
                                                                                 32
                                                                                             33
#>
                     2333
                               23333
                                          233333
#>
           33
                        8
                                    1
                                               2
                                                           1
                                                                     687
                                                                                  2
                                                                                            172
#>
          333
                     3333
                                          333333
                                                    3333333 333333333
                               33333
                                                                                  4
                                                                                             42
                                               7
#>
           71
                       32
                                  12
                                                           2
                                                                       1
                                                                                182
                                                                                              1
                                                                  44445
                                                                            4444555
#>
                                           44444
                                                                                           4445
           44
                      444
                                4444
                                                     444444
#>
           47
                       12
                                    3
                                               1
                                                           1
                                                                       1
                                                                                  1
                                                                                              1
#>
         4455
                       45
                                 455
                                            4555
                                                           5
                                                                   5455
                                                                                 55
                                                                                            555
#>
            2
                        2
                                    2
                                               2
                                                          17
                                                                       1
                                                                                  1
                                                                                              2
                        6
          556
                                   63
#>
#>
             1
                        6
```

Summary info for years and occasions

```
years <- colnames(eh$eh) %>%
  substr(6,9) %>%
  as.numeric()

occs <- colnames(eh$eh)</pre>
```

Models

'phi' = apparent survival (probability of staying in the area = p(survival) + p(not moving out of area)). 'p' = probability of capture given that the fish is alive.

phiT_pT_main

```
### Read the model run into global memory
if (tar_exist_objects(c("tt_modelOut_main"))) {
  mod_tt_main <- tar_read(tt_modelOut_main)</pre>
  #MCMCplot(object = mod_tt_main$mcmc, params = "betaPhiOut")
  #MCMCplot(object = mod tt main$mcmc, params = "betaPOut")
  priors <- rnorm(tar_read(tt_runData_main)$nIter * tar_read(tt_runData_main)$nChains, 0, 1/sqrt(.1))</pre>
  MCMCtrace(object = mod_tt_main$mcmc,
             \#ISB = FALSE,
             \#exact = TRUE,
             params = c("betaPhiOut"),
             pdf = FALSE,
             priors = priors
  (modSummary_tt_main <- MCMCsummary(object = mod_tt_main$mcmc, round = 3))</pre>
#> Warning in MCMCtrace(object = mod_tt_main$mcmc, params = c("betaPhiOut"), : Only
\#> one prior specified for > 1 parameter. Using a single prior for all parameters.
#> Warning in MCMCtrace(object = mod_tt_main$mcmc, params = c("betaPhiOut"), :
#> Number of samples in prior is greater than number of total or specified
#> iterations (for all chains) for specified parameter. Only last 1200 iterations
#> will be used.
```


1200

1200

0.507 0.211 0.123 0.502 0.890 1.01

0.494 0.208 0.123 0.491 0.868 1.00

#> betaPOut[3, 8]

#> betaPOut[1, 9]

```
#> betaPOut[2, 9]
                     0.492 0.204 0.116 0.486 0.863 1.00
                     0.494 0.208 0.113 0.492 0.873 1.00
#> betaPOut[3, 9]
                                                           1200
#> betaPOut[1, 10]
                     0.503 0.203 0.143 0.497 0.889 1.00
                                                           1200
#> betaPOut[2, 10]
                     0.497 0.209 0.128 0.484 0.882 1.00
                                                           1449
#> betaPOut[3, 10]
                     0.506 0.213 0.129 0.501 0.882 1.00
                                                           1082
#> betaPOut[1, 11]
                     0.499 0.211 0.109 0.496 0.876 1.01
                                                           1215
#> betaPOut[2, 11]
                     0.491 0.206 0.113 0.486 0.866 1.00
                                                           1200
#> betaPOut[3, 11]
                     0.502 0.207 0.126 0.500 0.869 1.00
                                                          1200
#> betaPOut[1, 12]
                     0.485 0.209 0.116 0.481 0.874 1.00
                                                           1200
#> betaPOut[2, 12]
                     0.497 0.212 0.116 0.495 0.878 1.00
                                                           1200
#> betaPOut[3, 12]
                     0.496 0.207 0.131 0.490 0.881 1.00
                                                          1200
                     0.502 0.204 0.128 0.496 0.871 1.01
#> betaPOut[1, 13]
                                                          1410
#> betaPOut[2, 13]
                     0.495 0.211 0.116 0.498 0.862 1.00
                                                          1127
#> betaPOut[3, 13]
                     0.490 0.209 0.115 0.487 0.870 1.00
                                                           1200
#> betaPOut[1, 14]
                     0.502 0.207 0.116 0.507 0.880 1.00
                                                          1073
#> betaPOut[2, 14]
                     0.508 0.208 0.131 0.510 0.871 1.00
                                                           1200
#> betaPOut[3, 14]
                     0.494 0.216 0.104 0.497 0.887 1.00
                                                           1200
#> betaPOut[1, 15]
                     0.505 0.205 0.126 0.516 0.870 1.00
                                                           1132
                     0.508 0.209 0.129 0.519 0.863 1.00
#> betaPOut[2, 15]
                                                          1399
#> betaPOut[3, 15]
                     0.494 0.207 0.114 0.488 0.872 1.01
                                                           1244
#> betaPhiOut[1, 1]
                     0.498 0.208 0.129 0.503 0.872 1.00
                                                           1200
#> betaPhiOut[2, 1]
                     0.508 0.210 0.120 0.507 0.881 1.00
#> betaPhiOut[3, 1]
                     0.496 0.203 0.133 0.498 0.876 1.00
                                                           1062
#> betaPhiOut[1, 2]
                     0.491 0.205 0.130 0.494 0.852 1.01
                                                           1200
#> betaPhiOut[2, 2]
                     0.503 0.213 0.121 0.503 0.892 1.01
                                                           1034
#> betaPhiOut[3, 2]
                     0.501 0.212 0.128 0.503 0.884 1.00
                                                           1200
#> betaPhiOut[1, 3]
                     0.491 0.201 0.139 0.487 0.864 1.00
                                                          1200
#> betaPhiOut[2, 3]
                     0.503 0.206 0.127 0.510 0.862 1.00
                                                          1200
#> betaPhiOut[3, 3]
                     0.496 0.207 0.126 0.493 0.880 1.00
                                                          1200
#> betaPhiOut[1, 4]
                     0.496 0.208 0.133 0.491 0.884 1.00
                                                          1342
#> betaPhiOut[2, 4]
                     0.492 0.203 0.119 0.490 0.871 1.00
                                                           1374
#> betaPhiOut[3, 4]
                     0.491 0.203 0.139 0.485 0.863 1.00
                                                           1200
#> betaPhiOut[1, 5]
                     0.503 0.202 0.134 0.496 0.874 1.00
                                                           1500
#> betaPhiOut[2, 5]
                     0.512 0.204 0.136 0.518 0.870 1.00
                                                          1200
#> betaPhiOut[3, 5]
                     0.505 0.203 0.149 0.504 0.873 1.00
                                                           1105
                     0.496 0.212 0.111 0.499 0.871 1.00
#> betaPhiOut[1, 6]
                                                           1200
#> betaPhiOut[2, 6]
                     0.500 0.209 0.124 0.505 0.874 1.00
#> betaPhiOut[3, 6]
                     0.505 0.206 0.140 0.496 0.874 1.00
                                                           1200
#> betaPhiOut[1, 7]
                     0.511 0.208 0.135 0.521 0.882 1.00
                                                           1200
                     0.508 0.211 0.121 0.506 0.881 1.00
#> betaPhiOut[2, 7]
                                                           1324
#> betaPhiOut[3, 7]
                     0.491 0.209 0.118 0.483 0.869 1.00
                                                           1372
#> betaPhiOut[1, 8]
                     0.494 0.211 0.112 0.496 0.864 1.00
                                                          1111
#> betaPhiOut[2, 8]
                     0.502 0.209 0.131 0.506 0.863 1.00
                                                          1200
#> betaPhiOut[3, 8]
                     0.491 0.212 0.113 0.484 0.876 1.00
                                                          1200
#> betaPhiOut[1, 9]
                     0.503 0.216 0.121 0.502 0.885 1.01
                                                          1200
#> betaPhiOut[2, 9]
                     0.498 0.208 0.118 0.499 0.884 1.00
                                                           1123
#> betaPhiOut[3, 9]
                     0.484 0.210 0.116 0.478 0.879 1.00
                                                           1369
#> betaPhiOut[1, 10] 0.501 0.207 0.138 0.503 0.879 1.00
                                                           1296
#> betaPhiOut[2, 10] 0.503 0.205 0.119 0.507 0.881 1.01
                                                          1806
#> betaPhiOut[3, 10] 0.499 0.216 0.112 0.496 0.875 1.00
                                                           1200
#> betaPhiOut[1, 11] 0.506 0.212 0.123 0.517 0.888 1.00
                                                           1200
#> betaPhiOut[2, 11] 0.502 0.208 0.119 0.502 0.858 1.00
#> betaPhiOut[3, 11] 0.502 0.210 0.114 0.506 0.882 1.00
                                                          1109
#> betaPhiOut[1, 12] 0.503 0.208 0.122 0.507 0.887 1.00
```

```
#> betaPhiOut[2, 12] 0.497 0.210 0.109 0.496 0.877 1.00
#> betaPhiOut[3, 12] 0.509 0.209 0.132 0.508 0.877 1.00
                                                           1200
#> betaPhiOut[1, 13] 0.499 0.204 0.138 0.499 0.879 1.00
                                                           1200
#> betaPhiOut[2, 13] 0.497 0.209 0.134 0.497 0.875 1.00
                                                           1200
#> betaPhiOut[3, 13] 0.489 0.204 0.121 0.488 0.866 1.00
                                                           1123
#> betaPhiOut[1, 14] 0.506 0.205 0.126 0.507 0.884 1.00
                                                           1169
#> betaPhiOut[2, 14] 0.499 0.208 0.122 0.494 0.885 1.00
                                                           1256
#> betaPhiOut[3, 14] 0.506 0.209 0.131 0.510 0.874 1.00
                                                           1200
#> betaPhiOut[1, 15] 0.501 0.206 0.118 0.499 0.866 1.00
                                                           1200
#> betaPhiOut[2, 15] 0.498 0.214 0.112 0.502 0.880 1.00
                                                           1200
#> betaPhiOut[3, 15] 0.500 0.210 0.125 0.511 0.874 1.00
                                                           1200
#> psi[1, 1, 1]
                     0.762 0.313 0.039 0.939 1.000 1.01
                                                           1200
#> psi[2, 1, 1]
                     0.108 0.222 0.000 0.001 0.840 1.00
                                                           1118
#> psi[3, 1, 1]
                     0.103 0.219 0.000 0.002 0.869 1.00
                                                           1324
#> psi[1, 2, 1]
                     0.119 0.237 0.000 0.001 0.867 1.01
                                                           1123
#> psi[2, 2, 1]
                     0.778 0.304 0.037 0.949 1.000 1.00
                                                           1180
#> psi[3, 2, 1]
                     0.118 0.235 0.000 0.002 0.870 1.00
                                                           1435
#> psi[1, 3, 1]
                     0.119 0.237 0.000 0.001 0.887 1.01
                                                           1200
                     0.114 0.236 0.000 0.001 0.894 1.01
#> psi[2, 3, 1]
                                                           1056
#> psi[3, 3, 1]
                     0.780 0.303 0.027 0.948 1.000 1.00
                                                           1337
#> psi[1, 1, 2]
                     0.778 0.302 0.046 0.947 1.000 1.00
                                                           1137
                     0.120 0.240 0.000 0.001 0.882 1.03
#> psi[2, 1, 2]
                                                            930
#> psi[3, 1, 2]
                     0.111 0.228 0.000 0.001 0.861 1.01
                                                           1200
#> psi[1, 2, 2]
                     0.111 0.228 0.000 0.002 0.879 1.00
                                                           1493
#> psi[2, 2, 2]
                     0.771 0.305 0.036 0.944 1.000 1.01
                                                           1084
#> psi[3, 2, 2]
                     0.123 0.236 0.000 0.002 0.910 1.01
                                                           1200
#> psi[1, 3, 2]
                     0.111 0.230 0.000 0.001 0.886 1.01
                                                           1274
#> psi[2, 3, 2]
                     0.109 0.229 0.000 0.002 0.888 1.00
                                                           1200
#> psi[3, 3, 2]
                     0.766 0.305 0.029 0.928 1.000 1.01
                                                           1200
#> psi[1, 1, 3]
                     0.783 0.297 0.047 0.947 1.000 1.00
                                                           1200
#> psi[2, 1, 3]
                     0.111 0.233 0.000 0.001 0.872 1.00
                                                           1406
#> psi[3, 1, 3]
                     0.118 0.237 0.000 0.002 0.885 1.02
                                                           1200
#> psi[1, 2, 3]
                     0.113 0.227 0.000 0.002 0.867 1.00
                                                           1093
#> psi[2, 2, 3]
                     0.783 0.304 0.046 0.957 1.000 1.01
                                                           1200
#> psi[3, 2, 3]
                     0.115 0.234 0.000 0.001 0.856 1.07
                                                           1200
#> psi[1, 3, 3]
                     0.103 0.218 0.000 0.002 0.818 1.01
                                                           1200
#> psi[2, 3, 3]
                     0.107 0.227 0.000 0.001 0.855 1.02
#> psi[3, 3, 3]
                     0.766 0.307 0.038 0.945 1.000 1.00
                                                           1200
#> psi[1, 1, 4]
                     0.775 0.307 0.036 0.948 1.000 1.01
                                                           1200
#> psi[2, 1, 4]
                     0.108 0.225 0.000 0.001 0.865 1.00
                                                           1200
                     0.111 0.227 0.000 0.001 0.904 1.00
#> psi[3, 1, 4]
                                                           1034
#> psi[1, 2, 4]
                     0.113 0.230 0.000 0.001 0.851 1.00
                                                           1396
#> psi[2, 2, 4]
                     0.778 0.303 0.039 0.950 1.000 1.01
                                                           1200
#> psi[3, 2, 4]
                     0.108 0.227 0.000 0.001 0.888 1.00
                                                           1200
#> psi[1, 3, 4]
                     0.111 0.232 0.000 0.001 0.868 1.01
                                                           1200
#> psi[2, 3, 4]
                     0.114 0.234 0.000 0.001 0.877 1.02
                                                           1200
#> psi[3, 3, 4]
                     0.781 0.303 0.026 0.950 1.000 1.00
                                                           1200
#> psi[1, 1, 5]
                     0.770 0.301 0.060 0.943 1.000 1.00
                                                           1175
#> psi[2, 1, 5]
                     0.124 0.246 0.000 0.001 0.913 1.00
                                                           1200
#> psi[3, 1, 5]
                     0.115 0.235 0.000 0.001 0.882 1.01
                                                           1200
#> psi[1, 2, 5]
                     0.117 0.234 0.000 0.001 0.858 1.00
                                                           1200
#> psi[2, 2, 5]
                     0.772 0.306 0.026 0.942 1.000 1.00
                                                           1258
                     0.111 0.225 0.000 0.001 0.877 1.00
#> psi[3, 2, 5]
                                                           1200
#> psi[1, 3, 5]
                     0.112 0.218 0.000 0.002 0.809 1.00
                                                           1304
```

```
#> psi[2, 3, 5]
                     0.104 0.218 0.000 0.001 0.840 1.00
                                                           1200
#> psi[3, 3, 5]
                     0.775 0.302 0.037 0.945 1.000 1.00
                                                           1200
                     0.772 0.304 0.034 0.935 1.000 1.00
#> psi[1, 1, 6]
                                                           1200
#> psi[2, 1, 6]
                                                           1200
                     0.110 0.224 0.000 0.002 0.863 1.01
#> psi[3, 1, 6]
                     0.111 0.227 0.000 0.002 0.856 1.01
                                                           1200
#> psi[1, 2, 6]
                     0.101 0.216 0.000 0.001 0.832 1.01
                                                           1200
#> psi[2, 2, 6]
                     0.773 0.301 0.057 0.936 1.000 1.03
                                                           1090
#> psi[3, 2, 6]
                     0.111 0.231 0.000 0.002 0.884 1.01
                                                           1200
#> psi[1, 3, 6]
                     0.127 0.245 0.000 0.002 0.908 1.00
                                                           1142
#> psi[2, 3, 6]
                     0.117 0.235 0.000 0.002 0.869 1.05
                                                           1200
#> psi[3, 3, 6]
                     0.778 0.300 0.033 0.940 1.000 1.00
                                                           1200
#> psi[1, 1, 7]
                     0.785 0.300 0.042 0.953 1.000 1.00
                                                           1158
#> psi[2, 1, 7]
                     0.118 0.240 0.000 0.002 0.908 1.02
                                                           1200
#> psi[3, 1, 7]
                     0.108 0.231 0.000 0.001 0.894 1.00
                                                           1200
#> psi[1, 2, 7]
                     0.097 0.214 0.000 0.001 0.838 1.01
                                                           1150
#> psi[2, 2, 7]
                     0.774 0.304 0.034 0.935 1.000 1.02
                                                            873
#> psi[3, 2, 7]
                     0.107 0.224 0.000 0.002 0.872 1.00
                                                           1170
#> psi[1, 3, 7]
                     0.117 0.233 0.000 0.002 0.862 1.00
                                                           1206
#> psi[2, 3, 7]
                     0.108 0.221 0.000 0.002 0.859 1.01
                                                           1106
#> psi[3, 3, 7]
                     0.785 0.302 0.037 0.950 1.000 1.00
                                                           1200
#> psi[1, 1, 8]
                     0.788 0.297 0.039 0.949 1.000 1.00
                                                           1283
#> psi[2, 1, 8]
                     0.112 0.236 0.000 0.001 0.898 1.01
                                                           1313
#> psi[3, 1, 8]
                     0.121 0.241 0.000 0.001 0.916 1.00
                                                           1200
#> psi[1, 2, 8]
                     0.110 0.228 0.000 0.001 0.856 1.00
                                                           1291
#> psi[2, 2, 8]
                     0.777 0.308 0.028 0.958 1.000 1.00
                                                           1288
#> psi[3, 2, 8]
                     0.111 0.226 0.000 0.002 0.867 1.00
                                                           1330
#> psi[1, 3, 8]
                     0.102 0.219 0.000 0.002 0.870 1.00
                                                           1200
#> psi[2, 3, 8]
                     0.111 0.225 0.000 0.001 0.861 1.00
                                                           1200
#> psi[3, 3, 8]
                     0.769 0.306 0.031 0.933 1.000 1.00
                                                           1200
#> psi[1, 1, 9]
                     0.787 0.297 0.035 0.956 1.000 1.00
                                                           1200
#> psi[2, 1, 9]
                     0.115 0.235 0.000 0.001 0.898 1.00
                                                           1200
#> psi[3, 1, 9]
                     0.119 0.235 0.000 0.002 0.879 1.00
                                                           1200
#> psi[1, 2, 9]
                     0.108 0.230 0.000 0.001 0.888 1.00
                                                           1200
#> psi[2, 2, 9]
                     0.769 0.309 0.040 0.947 1.000 1.00
                                                           1200
#> psi[3, 2, 9]
                     0.105 0.223 0.000 0.001 0.865 1.00
                                                           1200
#> psi[1, 3, 9]
                     0.106 0.221 0.000 0.001 0.807 1.00
                                                           1080
#> psi[2, 3, 9]
                     0.117 0.237 0.000 0.001 0.883 1.00
                                                           1016
#> psi[3, 3, 9]
                     0.777 0.302 0.043 0.942 1.000 1.00
                                                           1379
#> psi[1, 1, 10]
                     0.782 0.301 0.042 0.954 1.000 1.00
                                                           1200
#> psi[2, 1, 10]
                     0.101 0.218 0.000 0.002 0.892 1.00
                                                           1180
#> psi[3, 1, 10]
                     0.104 0.224 0.000 0.001 0.887 1.01
                                                           1200
#> psi[1, 2, 10]
                     0.111 0.231 0.000 0.001 0.861 1.00
                                                           1200
#> psi[2, 2, 10]
                     0.786 0.298 0.028 0.949 1.000 1.00
                                                           1200
#> psi[3, 2, 10]
                     0.107 0.224 0.000 0.001 0.873 1.00
                                                           1351
#> psi[1, 3, 10]
                     0.107 0.227 0.000 0.001 0.861 1.00
                                                           1200
#> psi[2, 3, 10]
                     0.113 0.232 0.000 0.001 0.884 1.00
                                                           1099
#> psi[3, 3, 10]
                     0.789 0.299 0.027 0.960 1.000 1.00
                                                           1200
#> psi[1, 1, 11]
                     0.767 0.304 0.031 0.933 1.000 1.00
                                                           1200
#> psi[2, 1, 11]
                     0.113 0.225 0.000 0.002 0.834 1.01
                                                           1200
#> psi[3, 1, 11]
                     0.106 0.226 0.000 0.001 0.898 1.01
                                                           1200
#> psi[1, 2, 11]
                     0.119 0.233 0.000 0.002 0.886 1.00
                                                           1112
#> psi[2, 2, 11]
                     0.781 0.300 0.039 0.950 1.000 1.00
                                                           1200
#> psi[3, 2, 11]
                     0.101 0.217 0.000 0.001 0.866 1.00
                                                           1274
#> psi[1, 3, 11]
                     0.114 0.234 0.000 0.001 0.884 1.01
```

```
#> psi[2, 3, 11]
                     0.107 0.227 0.000 0.001 0.850 1.03
                     0.793 0.296 0.032 0.953 1.000 1.00
#> psi[3, 3, 11]
                                                          1200
#> psi[1, 1, 12]
                     0.770 0.311 0.019 0.948 1.000 1.00
                                                          1200
#> psi[2, 1, 12]
                     0.116 0.233 0.000 0.001 0.874 1.00
                                                          1200
#> psi[3, 1, 12]
                     0.111 0.233 0.000 0.001 0.884 1.00
#> psi[1, 2, 12]
                     0.112 0.232 0.000 0.001 0.899 1.00
#> psi[2, 2, 12]
                     0.774 0.300 0.046 0.944 1.000 1.00
#> psi[3, 2, 12]
                     0.106 0.222 0.000 0.002 0.870 1.01
                                                          1200
#> psi[1, 3, 12]
                     0.117 0.237 0.000 0.001 0.894 1.00
                                                          1200
#> psi[2, 3, 12]
                     0.110 0.224 0.000 0.002 0.846 1.00
                                                          1033
#> psi[3, 3, 12]
                     0.783 0.301 0.028 0.950 1.000 1.00
                                                          1200
#> psi[1, 1, 13]
                     0.771 0.303 0.046 0.939 1.000 1.00
                                                          1435
#> psi[2, 1, 13]
                     0.111 0.233 0.000 0.002 0.880 1.01
                                                          1200
#> psi[3, 1, 13]
                     0.110 0.233 0.000 0.002 0.910 1.00
                                                          1214
#> psi[1, 2, 13]
                     0.110 0.225 0.000 0.001 0.881 1.00
                                                          1090
#> psi[2, 2, 13]
                     0.785 0.297 0.039 0.946 1.000 1.01
                                                          1200
#> psi[3, 2, 13]
                     0.111 0.230 0.000 0.001 0.888 1.00
                                                          1200
#> psi[1, 3, 13]
                     0.119 0.234 0.000 0.003 0.876 1.00
                                                          1200
#> psi[2, 3, 13]
                     0.104 0.218 0.000 0.001 0.843 1.00
                                                          1200
#> psi[3, 3, 13]
                     0.780 0.306 0.026 0.953 1.000 1.00
                                                          1274
#> psi[1, 1, 14]
                     0.783 0.301 0.029 0.949 1.000 1.00
                                                          1215
#> psi[2, 1, 14]
                     0.111 0.224 0.000 0.002 0.833 1.01
#> psi[3, 1, 14]
                     0.117 0.233 0.000 0.002 0.881 1.01
                                                          1286
#> psi[1, 2, 14]
                     0.117 0.237 0.000 0.002 0.892 1.00
                                                           933
#> psi[2, 2, 14]
                     0.778 0.301 0.045 0.952 1.000 1.00
                                                          1230
#> psi[3, 2, 14]
                     0.108 0.226 0.000 0.002 0.859 1.00
                                                          1200
#> psi[1, 3, 14]
                     0.100 0.215 0.000 0.002 0.856 1.00
                                                          1126
#> psi[2, 3, 14]
                     0.111 0.228 0.000 0.001 0.849 1.00
                                                          1200
#> psi[3, 3, 14]
                     0.775 0.304 0.046 0.949 1.000 1.00
                                                          1278
#> psi[1, 1, 15]
                     0.765 0.309 0.029 0.933 1.000 1.00
                                                          1200
#> psi[2, 1, 15]
                     0.111 0.228 0.000 0.001 0.889 1.02
                                                          1200
#> psi[3, 1, 15]
                     0.102 0.214 0.000 0.001 0.827 1.00
                                                          1200
#> psi[1, 2, 15]
                     0.107 0.221 0.000 0.001 0.830 1.01
                                                          1200
#> psi[2, 2, 15]
                     0.783 0.303 0.028 0.951 1.000 1.00
                                                          1067
#> psi[3, 2, 15]
                     0.115 0.233 0.000 0.002 0.866 1.01
                                                          1344
                     0.128 0.249 0.000 0.002 0.925 1.00
#> psi[1, 3, 15]
                                                          1126
#> psi[2, 3, 15]
                     0.107 0.224 0.000 0.002 0.890 1.01
#> psi[3, 3, 15]
                     0.783 0.297 0.036 0.948 1.000 1.01 1200
#kable(modSummary %>%
         add_column(data.frame(year = rep(years[1:15], 2), dateYM = rep(occs[1:15], 2)))
# d %>%
  summarize(unique(data.frame(dateYM, occ)))
phiT_pT_trib
### Read the model run into global memory
if (tar_exist_objects(c("tt_modelOut_trib"))) {
  mod_tt_trib <- tar_read(tt_modelOut_trib)</pre>
  #MCMCplot(object = mod_tt_trib$mcmc, params = "betaPhiOut")
```

```
priors <- rnorm(tar_read(tt_runData_trib)$nIter * tar_read(tt_runData_trib)$nChains, 0, 1/sqrt(.1))</pre>
  MCMCtrace(object = mod_tt_trib$mcmc,
             \#ISB = FALSE,
             \#exact = TRUE,
             params = c("betaPhiOut"),
             pdf = FALSE,
             priors = priors
  (modSummary_tt_trib <- MCMCsummary(object = mod_tt_trib$mcmc, round = 3))</pre>
      MCMCplot(object = mod$mcmc, params = "betaPhiRiverOut")
#
    priors <- rnorm(tar_read(ttt_runData)$nIter * tar_read(ttt_runData)$nChains, 0, 1/sqrt(.1))
#
#
   MCMCtrace(object = mod$mcmc,
#
              \#ISB = FALSE,
#
              \#exact = TRUE,
              params = c("betaPhiRiverOut"),
#
#
              pdf = FALSE,
#
              priors = priors
#
}
#> Warning in MCMCtrace(object = mod_tt_trib$mcmc, params = c("betaPhiOut"), : Only
\#> one prior specified for > 1 parameter. Using a single prior for all parameters.
#> Warning in MCMCtrace(object = mod_tt_trib$mcmc, params = c("betaPhiOut"), :
#> Number of samples in prior is greater than number of total or specified
#> iterations (for all chains) for specified parameter. Only last 1200 iterations
#> will be used.
```


1200

1200

1200

1306

0.499 0.206 0.128 0.497 0.873 1.01

0.501 0.211 0.120 0.508 0.881 1.00

0.494 0.211 0.118 0.493 0.875 1.01

0.506 0.212 0.137 0.505 0.890 1.00

#> betaPOut[1, 8]

#> betaPOut[2, 8]

#> betaPOut[3, 8]

#> betaPOut[1, 9]

```
#> betaPOut[2, 9]
                     0.505 0.210 0.118 0.510 0.878 1.00
                     0.495 0.206 0.129 0.492 0.876 1.00
#> betaPOut[3, 9]
                                                           1200
#> betaPOut[1, 10]
                     0.500 0.211 0.121 0.499 0.872 1.00
                                                           1030
#> betaPOut[2, 10]
                     0.502 0.208 0.136 0.508 0.871 1.01
                                                           1200
#> betaPOut[3, 10]
                     0.497 0.200 0.134 0.499 0.861 1.00
                                                           1200
#> betaPOut[1, 11]
                     0.501 0.217 0.119 0.495 0.890 1.00
                                                           1200
#> betaPOut[2, 11]
                     0.510 0.204 0.135 0.512 0.867 1.00
                                                           1296
#> betaPOut[3, 11]
                     0.501 0.210 0.126 0.498 0.884 1.01
                                                           1200
#> betaPhiOut[1, 1]
                     0.487 0.206 0.128 0.482 0.869 1.00
                                                           1200
#> betaPhiOut[2, 1]
                     0.498 0.208 0.118 0.493 0.867 1.00
                                                           2507
#> betaPhiOut[3, 1]
                     0.497 0.209 0.120 0.501 0.880 1.00
                                                           1034
#> betaPhiOut[1, 2]
                     0.502 0.210 0.134 0.505 0.877 1.00
                                                           1309
#> betaPhiOut[2, 2]
                     0.512 0.202 0.126 0.516 0.875 1.00
                                                           1297
#> betaPhiOut[3, 2]
                     0.498 0.204 0.132 0.506 0.872 1.01
                                                           1375
#> betaPhiOut[1, 3]
                     0.502 0.210 0.112 0.505 0.893 1.00
                                                           1408
#> betaPhiOut[2, 3]
                     0.500 0.206 0.129 0.496 0.879 1.00
                                                           1200
#> betaPhiOut[3, 3]
                     0.505 0.212 0.122 0.509 0.886 1.01
                                                           1165
#> betaPhiOut[1, 4]
                     0.511 0.204 0.149 0.513 0.880 1.00
                                                           1082
#> betaPhiOut[2, 4]
                     0.492 0.208 0.134 0.494 0.870 1.00
                                                           1229
#> betaPhiOut[3, 4]
                     0.501 0.209 0.120 0.513 0.880 1.02
                                                           1287
#> betaPhiOut[1, 5]
                     0.510 0.209 0.119 0.509 0.881 1.00
                                                           1200
#> betaPhiOut[2, 5]
                     0.495 0.210 0.122 0.485 0.875 1.00
#> betaPhiOut[3, 5]
                     0.505 0.210 0.122 0.506 0.885 1.00
                                                           1302
                     0.494 0.203 0.131 0.494 0.869 1.00
#> betaPhiOut[1, 6]
                                                           1200
#> betaPhiOut[2, 6]
                     0.489 0.211 0.105 0.488 0.870 1.00
                                                           1338
#> betaPhiOut[3, 6]
                     0.505 0.205 0.131 0.496 0.883 1.01
                                                           1294
#> betaPhiOut[1, 7]
                     0.492 0.210 0.114 0.484 0.874 1.00
                                                           1581
#> betaPhiOut[2, 7]
                     0.507 0.211 0.136 0.505 0.889 1.00
                                                           1200
#> betaPhiOut[3, 7]
                     0.493 0.204 0.122 0.495 0.862 1.00
                                                           1200
#> betaPhiOut[1, 8]
                     0.494 0.208 0.120 0.488 0.876 1.00
                                                           1200
#> betaPhiOut[2, 8]
                     0.504 0.206 0.141 0.502 0.877 1.01
                                                           1074
#> betaPhiOut[3, 8]
                     0.495 0.208 0.119 0.486 0.881 1.00
                                                           1055
#> betaPhiOut[1, 9]
                     0.494 0.205 0.116 0.492 0.874 1.00
                                                           1511
#> betaPhiOut[2, 9]
                     0.491 0.209 0.124 0.482 0.877 1.00
                                                           1200
#> betaPhiOut[3, 9]
                     0.504 0.210 0.130 0.507 0.888 1.00
                                                           1200
#> betaPhiOut[1, 10] 0.495 0.211 0.127 0.488 0.870 1.01
                                                           1131
#> betaPhiOut[2, 10] 0.497 0.203 0.131 0.490 0.875 1.00
#> betaPhiOut[3, 10] 0.492 0.205 0.129 0.482 0.879 1.00
                                                           1200
#> betaPhiOut[1, 11] 0.498 0.207 0.113 0.506 0.883 1.00
                                                           1200
#> betaPhiOut[2, 11] 0.497 0.213 0.117 0.492 0.881 1.00
                                                           1200
#> betaPhiOut[3, 11] 0.510 0.206 0.129 0.509 0.883 1.00
                                                           1205
#> psi[1, 1, 1]
                     0.340 0.245 0.013 0.297 0.857 1.01
                                                           1200
#> psi[2, 1, 1]
                     0.331 0.235 0.012 0.297 0.844 1.01
                                                           1483
#> psi[3, 1, 1]
                     0.341 0.241 0.011 0.298 0.836 1.00
                                                           1200
#> psi[1, 2, 1]
                     0.328 0.236 0.009 0.280 0.830 1.00
                                                           1200
#> psi[2, 2, 1]
                     0.337 0.237 0.013 0.298 0.857 1.00
                                                           1200
#> psi[3, 2, 1]
                     0.328 0.234 0.012 0.286 0.824 1.00
                                                           1488
#> psi[1, 3, 1]
                     0.332 0.236 0.015 0.291 0.845 1.00
                                                           1375
#> psi[2, 3, 1]
                     0.332 0.234 0.016 0.295 0.824 1.00
                                                           1200
#> psi[3, 3, 1]
                     0.331 0.238 0.013 0.288 0.855 1.00
                                                           1445
#> psi[1, 1, 2]
                     0.334 0.236 0.011 0.301 0.840 1.01
                                                            991
#> psi[2, 1, 2]
                     0.334 0.240 0.012 0.293 0.851 1.00
#> psi[3, 1, 2]
                     0.325 0.236 0.008 0.284 0.844 1.00
                                                           1200
#> psi[1, 2, 2]
                     0.332 0.230 0.014 0.300 0.838 1.02
```

```
#> psi[2, 2, 2]
                      0.343 0.242 0.012 0.301 0.874 1.00
                                                           1288
#> psi[3, 2, 2]
                      0.339 0.247 0.014 0.290 0.861 1.00
                                                           1127
                      0.333 0.235 0.012 0.293 0.843 1.00
#> psi[1, 3, 2]
                                                           1531
#> psi[2, 3, 2]
                      0.324 0.228 0.014 0.288 0.830 1.00
                                                           1669
#> psi[3, 3, 2]
                      0.337 0.240 0.013 0.289 0.844 1.00
                                                           1200
#> psi[1, 1, 3]
                      0.323 0.231 0.011 0.277 0.842 1.00
                                                           1302
#> psi[2, 1, 3]
                      0.336 0.236 0.012 0.300 0.865 1.00
                                                           1490
#> psi[3, 1, 3]
                      0.344 0.236 0.015 0.308 0.851 1.00
                                                           1283
#> psi[1, 2, 3]
                      0.329 0.238 0.014 0.285 0.848 1.00
                                                           1200
#> psi[2, 2, 3]
                      0.333 0.238 0.014 0.288 0.861 1.00
                                                           1155
#> psi[3, 2, 3]
                      0.322 0.228 0.015 0.275 0.802 1.00
                                                           1200
#> psi[1, 3, 3]
                      0.348 0.243 0.013 0.307 0.857 1.00
                                                           1200
#> psi[2, 3, 3]
                      0.331 0.235 0.011 0.289 0.836 1.00
                                                           1200
#> psi[3, 3, 3]
                      0.334 0.230 0.013 0.292 0.824 1.01
                                                           1303
#> psi[1, 1, 4]
                      0.324 0.227 0.017 0.289 0.827 1.00
                                                           1260
#> psi[2, 1, 4]
                      0.324 0.234 0.008 0.281 0.826 1.00
                                                           1200
#> psi[3, 1, 4]
                      0.341 0.237 0.012 0.299 0.837 1.00
                                                           1200
#> psi[1, 2, 4]
                      0.348 0.234 0.016 0.311 0.853 1.00
                                                           1129
#> psi[2, 2, 4]
                      0.337 0.240 0.014 0.294 0.849 1.03
                                                           1200
#> psi[3, 2, 4]
                      0.334 0.237 0.012 0.296 0.845 1.00
                                                           1463
#> psi[1, 3, 4]
                      0.329 0.235 0.014 0.293 0.847 1.00
                                                           1200
                      0.339 0.238 0.010 0.301 0.862 1.03
#> psi[2, 3, 4]
                                                           1295
#> psi[3, 3, 4]
                      0.325 0.237 0.012 0.278 0.848 1.00
                                                           1212
#> psi[1, 1, 5]
                      0.329 0.229 0.014 0.293 0.815 1.00
                                                           1299
#> psi[2, 1, 5]
                      0.337 0.235 0.014 0.301 0.836 1.00
                                                           1200
#> psi[3, 1, 5]
                      0.332 0.237 0.012 0.297 0.835 1.00
                                                           1287
#> psi[1, 2, 5]
                      0.335 0.233 0.013 0.296 0.864 1.01
                                                           1200
#> psi[2, 2, 5]
                      0.340 0.232 0.017 0.298 0.855 1.00
                                                           1200
#> psi[3, 2, 5]
                      0.351 0.238 0.017 0.312 0.859 1.00
                                                           1200
#> psi[1, 3, 5]
                      0.336 0.235 0.015 0.300 0.830 1.01
                                                           1323
#> psi[2, 3, 5]
                      0.323 0.227 0.011 0.285 0.809 1.00
                                                           1200
#> psi[3, 3, 5]
                      0.318 0.226 0.013 0.274 0.813 1.00
                                                           1200
#> psi[1, 1, 6]
                      0.331 0.233 0.014 0.289 0.837 1.02
                                                           1285
#> psi[2, 1, 6]
                      0.328 0.232 0.012 0.285 0.833 1.00
                                                           1200
#> psi[3, 1, 6]
                      0.337 0.240 0.011 0.303 0.849 1.00
                                                           1073
#> psi[1, 2, 6]
                      0.321 0.231 0.015 0.275 0.832 1.00
                                                           1121
#> psi[2, 2, 6]
                      0.329 0.233 0.011 0.296 0.833 1.00
                                                           1200
#> psi[3, 2, 6]
                      0.328 0.238 0.013 0.275 0.824 1.00
                                                           1132
                      0.348 0.241 0.017 0.314 0.851 1.01
                                                           1200
#> psi[1, 3, 6]
#> psi[2, 3, 6]
                      0.343 0.235 0.013 0.309 0.850 1.00
                                                           1395
#> psi[3, 3, 6]
                      0.334 0.236 0.010 0.291 0.850 1.00
                                                           1295
#> psi[1, 1, 7]
                      0.329 0.236 0.008 0.287 0.856 1.00
                                                           1424
#> psi[2, 1, 7]
                      0.339 0.237 0.013 0.303 0.851 1.00
                                                           1533
#> psi[3, 1, 7]
                      0.333 0.235 0.016 0.292 0.842 1.01
                                                           1200
#> psi[1, 2, 7]
                      0.331 0.235 0.014 0.286 0.843 1.01
                                                           1296
#> psi[2, 2, 7]
                      0.328 0.238 0.010 0.288 0.838 1.00
                                                           1200
#> psi[3, 2, 7]
                      0.345 0.240 0.012 0.315 0.841 1.00
                                                           1345
#> psi[1, 3, 7]
                      0.341 0.235 0.011 0.298 0.855 1.00
                                                           1200
#> psi[2, 3, 7]
                      0.333 0.238 0.011 0.298 0.836 1.00
                                                           1352
#> psi[3, 3, 7]
                      0.323 0.234 0.012 0.286 0.823 1.00
                                                           1310
#> psi[1, 1, 8]
                      0.341 0.240 0.014 0.302 0.832 1.00
                                                           1101
#> psi[2, 1, 8]
                      0.319 0.228 0.011 0.284 0.821 1.00
                                                           1200
#> psi[3, 1, 8]
                      0.337 0.236 0.015 0.296 0.818 1.01
                                                           1200
#> psi[1, 2, 8]
                      0.332 0.235 0.012 0.293 0.857 1.00
```

```
#> psi[2, 2, 8]
                     0.335 0.232 0.012 0.287 0.839 1.00
                     0.323 0.233 0.014 0.280 0.834 1.00
#> psi[3, 2, 8]
                                                          1200
#> psi[1, 3, 8]
                     0.326 0.235 0.010 0.284 0.851 1.00
                                                          1200
#> psi[2, 3, 8]
                     0.346 0.236 0.015 0.305 0.834 1.00
                                                          1200
#> psi[3, 3, 8]
                     0.340 0.236 0.014 0.299 0.835 1.00
                                                          1368
#> psi[1, 1, 9]
                     0.335 0.233 0.014 0.300 0.816 1.00
                                                          1200
#> psi[2, 1, 9]
                     0.338 0.234 0.015 0.301 0.848 1.00
#> psi[3, 1, 9]
                     0.339 0.236 0.015 0.300 0.839 1.00
                                                          1297
#> psi[1, 2, 9]
                     0.331 0.236 0.013 0.290 0.840 1.00
                                                          1215
#> psi[2, 2, 9]
                     0.333 0.236 0.016 0.286 0.841 1.01
                                                          1200
#> psi[3, 2, 9]
                     0.316 0.229 0.015 0.270 0.842 1.00
                                                          1015
#> psi[1, 3, 9]
                     0.335 0.234 0.015 0.293 0.845 1.00
                                                          1294
#> psi[2, 3, 9]
                     0.330 0.234 0.012 0.292 0.832 1.01
                                                          1200
#> psi[3, 3, 9]
                     0.345 0.242 0.013 0.309 0.859 1.02
                                                          1200
#> psi[1, 1, 10]
                     0.330 0.230 0.012 0.297 0.846 1.01
                                                          1348
#> psi[2, 1, 10]
                     0.346 0.242 0.016 0.302 0.859 1.01
                                                          1088
#> psi[3, 1, 10]
                     0.325 0.232 0.008 0.274 0.836 1.00
                                                          1368
#> psi[1, 2, 10]
                     0.333 0.229 0.012 0.296 0.817 1.00
                                                          1200
#> psi[2, 2, 10]
                     0.330 0.239 0.011 0.293 0.843 1.01
                                                          1091
#> psi[3, 2, 10]
                     0.338 0.239 0.012 0.299 0.841 1.00
                                                          1200
#> psi[1, 3, 10]
                     0.337 0.238 0.012 0.291 0.859 1.01
                                                          2220
                     0.324 0.235 0.010 0.279 0.818 1.00
#> psi[2, 3, 10]
#> psi[3, 3, 10]
                     0.337 0.241 0.011 0.296 0.865 1.00
                                                          1080
#> psi[1, 1, 11]
                     0.332 0.235 0.013 0.292 0.836 1.01
                                                          1229
#> psi[2, 1, 11]
                     0.342 0.237 0.012 0.294 0.835 1.01
                                                          1115
#> psi[3, 1, 11]
                     0.330 0.237 0.014 0.282 0.850 1.00
                                                          1120
#> psi[1, 2, 11]
                     0.329 0.236 0.011 0.286 0.824 1.00
                                                          1131
#> psi[2, 2, 11]
                     0.333 0.233 0.015 0.284 0.833 1.00
                                                          1200
#> psi[3, 2, 11]
                     0.329 0.237 0.013 0.289 0.851 1.00
                                                          1200
#> psi[1, 3, 11]
                     0.339 0.232 0.016 0.303 0.857 1.00
                                                          1200
#> psi[2, 3, 11]
                     0.325 0.233 0.013 0.280 0.822 1.01
                                                          1200
#> psi[3, 3, 11]
                     0.340 0.240 0.013 0.300 0.849 1.00
                                                          1200
#kable(modSummary %>%
         add_column(data.frame(year = rep(years[1:15], 2), dateYM = rep(occs[1:15], 2)))
  d %>%
   summarize(unique(data.frame(dateYM, occ)))
```

phiT_pT_psiT

Main and trib together

```
### Read the model run into global memory
if (tar_exist_objects(c("ttt_modelOut"))) {
   mod_ttt <- tar_read(ttt_modelOut)

#MCMCplot(object = mod$mcmc)

modSummary_ttt <- MCMCsummary(object = mod_ttt$mcmc, round = 3)
}

#kable(modSummary %>%

# add_column(data.frame(year = rep(years[1:15], 2), dateYM = rep(occs[1:15], 2)) )
```

```
# d %>%
# summarize(unique(data.frame(dateYM, occ)))
# nS <- tar_read(ttt_nStates)</pre>
# nT <- tar_read(ttt_myConstants)$T</pre>
# modSummaryPhi_ttt <- modSummary_ttt %>%
   filter(substr(row.names(modSummary), 1, 10) == "betaPhiOut") %>%
   add_column(data.frame(state = 1:nS, dateYM = rep(1:(nT - 1), each = nS))) %>%
   mutate(mainTrib = ifelse(state < 4, "Main", "Trib"),</pre>
#
           size = paste0("Size", (state - 1) %% 3 + 1))
#
# qqplot(modSummaryPhi_ttt, aes(dateYM, mean)) +
  geom_point() +
# geom_line() +
#
  facet_grid(mainTrib ~ size)
#
#
# # modSummaryYears <- modSummary %>%
     filter(substr(row.names(modSummary), 1, 3) == "betaPhiout") %>%
# #
     add_column(data.frame(year = years[1:15], dateYM = occs[1:15], occ = 1:15)) %>%
# #
     group by(year) %>%
# #
     mutate(maxSampPerYear = occ == max(occ))
# #
# # kable(
# # modSummaryYears %>%
# # group_by(year) %>%
# # filter(!maxSampPerYear) %>%
# # summarize(phiProd = prod(mean),
# #
                dateRange = range(dateYM)) %>%
# #
        as.data.frame()
# # )
#
   MCMCplot(object = mod$mcmc, params = "betaPhiRiverOut")
#
#
  priors <- rnorm(tar_read(ttt_runData)$nIter * tar_read(ttt_runData)$nChains, 0, 1/sqrt(.1))
#
  MCMCtrace(object = mod$mcmc,
#
              \#ISB = FALSE,
#
              #exact = TRUE,
              params = c("betaPhiRiverOut"),
#
#
              pdf = FALSE,
#
              priors = priors
#
              )
#
#
     MCMCtrace(object = mod$mcmc,
#
              \#ISB = FALSE,
#
              \#exact = TRUE,
              params = c("betaPhiOut"),
#
#
              pdf = FALSE,
#
              priors = priors
```

```
#create data frame for summarizing p results

# modSummaryYearsP <- modSummary %>%

# filter(substr(row.names(modSummary), 1, 2) == "p[") %>%

# add_column(data.frame(year = years[1:15], dateYM = occs[1:15], occ = 1:15)) %>%

# group_by(year) %>%

# mutate(maxSampPerYear = occ == max(occ))

#

# kable(
# modSummaryYearsP %>%

# group_by(year) %>%

# summarize(pMean = mean(mean),

# dateRange = range(dateYM))

# )
```

```
# # modSummaryYearsP <- modSummary %>%

# # filter(substr(row.names(modSummary), 1, 2) == "p[") %>%

# # add_column(data.frame(year = years[1:15], dateYM = occs[1:15], occ = 1:15)) %>%

# # group_by(year) %>%

# # mutate(maxSampPerYear = occ == max(occ))

#

# modSummaryPsi_ttt <- modSummary_ttt %>%

# filter(substr(row.names(modSummary_ttt), 1, 3) == "psi") %>%

# add_column(data.frame(state = 1:nS, state2 = rep(1:nS, each = nS), dateYM = rep(1:(nT - 1), each = mutate(mainTrib = ifelse(state < 4, "Main", "Trib"),

# size = pasteO("Size", (state - 1) %% 3 + 1))

# ggplot(modSummaryPsi_ttt, aes(dateYM, mean, color = factor(state2))) +

# geom_point() +

# facet_grid(mainTrib ~ size)
```