

Early Classification for Agricultural Monitoring from Satellite Time Series

Marc Rußwurm¹, Romain Tavenard², Sébastien Lefèvre², Marco Körner¹

Objective

Method

Based on previous work (Rußwurm et al., 2019) applied to crop type mapping from remote sensing data.

Mechanism \boldsymbol{x}_{t-1} \boldsymbol{x}_t x_t feature extractor $h_t = f(\boldsymbol{X}_{\to t})$ implemented as multi-layer LSTM probability of stopping at time t probability of not having stopped before $P(t) = p_t \cdot \prod_{\tau=0}^{t-1} 1 - p_{\tau}$ loss function that allows gradient backpropagation to θ_p and

Loss function

composite loss function

$$\mathcal{L}(oldsymbol{x},oldsymbol{y}) = \sum_{t=0}^{T} P(t;\delta_{ o t}) \mathcal{L}_t(oldsymbol{X}_{ o t},oldsymbol{y})$$

A Loss function including accuracy and ear-

score

Rußwurm, M., Lefèvre, S., Courty, N., Emonet, R., Körner, M., and Tavenard, R. End-to-end learning for early classification of time series. arXiv preprint arXiv:1901.10681, 2019.

Application

Agriculture

- early assessment of cultivated crops
- completely end-to-end trainable
- can be applied globally without regionspecific expert knowledge
- basis for early crop yield estimation
- method generalizes to other time series applications

Dataset and Area of Interest

49 000 field parcels of 6 main crop types covering 40 by 30 kilometer in central Germany.

Results

Losses during Training

The combined loss L_t , as well as earliness L_e and accuracy L_e losses during training.

Stopping rules learned for each Class

Balancing Earliness and Accuracy

α	accuracy	$ar{t}_{\sf stop}$	precision	recall	f_1	κ
.0	$.25\pm .22$	$-10 \pm .17$	$.19 \pm .20$	$.\overline{25\pm.17}$	$.16 \pm .20$	$$.12 \pm .19
.2	$.81\pm.03$	$.40\pm.02$	$.70\pm.01$	$.74\pm.01$	$.71\pm.01$	$.71\pm.04$
.4	$\textbf{.80} \pm \textbf{.09}$	$.47\pm.03$	$.71\pm.02$	$.74\pm.01$	$.71\pm .02$	$.71\pm.10$
.6	$\textbf{.85} \pm \textbf{.02}$	$\textbf{.88} \pm \textbf{.07}$	$.73\pm.04$	$.74\pm.03$	$.73\pm.03$	$.77\pm.03$
.8	$\textbf{.84} \pm \textbf{.01}$	$.93\pm.05$	$.72\pm.02$	$.75\pm.01$	$.73\pm.02$	$.76\pm.02$
1.0	$\textbf{.83} \pm \textbf{.03}$	$1.00\pm.00$	$.72\pm.03$	$.75\pm.01$	$.72\pm.03$	$.75\pm.04$
experiments varying the trade-off factor α and observing the achieved ear-						
liness and accuracy.						

Extracting Vegetation CharacteristicsStopping time grouped per crop category

