Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Звіт

3 виконання лабораторної роботи №4

3 дисципліни «Аналогова електроніка»

Виконав:

Ст. гр. ДК-81

Шунь П. О.

Перевірив:

Ас. Короткий Є. В.

На цій лабораторній роботі ми дослідимо підсилювач на біполярному транзисторі з загальним емітером. Для побудови підсилювача використаємо транзистор КТ315A.

Схема підсилювача:

Компоненти: $C_1 = C_2 = 10$ мкФ, $R_1 = 30$ kOhm, $R_2 = 15$ kOhm, $R_3 = R_k = 1.4$ kOhm Компоненти були підібрані після налагодження схеми (здобуття умови $U_k = 2*U_{\text{жив.}}$ при відсутньому вхідному сигналі).

Визначимо характеристики робочої точки спокою цього підсилювача:

$$U_{6e0}$$
 = 705 MB; I_{60} = 96 MKA; U_{Ke0} = 2.5 B; I_{k0} = 1.78 MA

Виміряємо вхідний опір підсилювача:

Отже, згідно з вимірами, вхідний опір дорівнює 370 Ом.

Виміряємо вихідний опір:

Спочатку від'єднаємо $R_{\text{нав.}}$ І підберемо $U_{\text{вх}}$ так, щоб $U_{\text{хх}}$ = 1 В.

Потім підберемо $R_{Hab.}$ так, щоб $U_R = U_{xx}/2 = 500 \text{ mV}$.

Отже, вихідний опір дорівнює 1.2 кОм.

Для визначення амплітудної характеристики підсилювача, знайдемо

 $U_{\text{вх. макс}} = U_{\text{нас}}$. Для цього ми будемо збільшувати амплітуду вхідного сигналу, поки вихідний сигнал не почне спотворюватися.

U_{вх. макс} = 20 мВ. Тепер оберемо 8 точок в діапазоні від 4 до 20 мВ.

U _{вх} ,мВ	U _{вих} , мВ	I _{BX} , MKA	Івих, мкА
4	303	10.81	252.5
6.28	464.7	16.9	387.25
8.56	617.5	23.1	514.58
10.84	761.7	29.3	634.75
13.1	895	35.4	745.8
15.4	1002	41,6	835
17.68	1140	47,78	950
20	1250	54	1041.6

3 графіку визначили, що $K_u \approx 75$.

Підсилення за струмом

3 графіку визначили, що $K_i \approx 20$.

Розрахуємо параметри підсилювача теоретично:

$$g_m = I_{k0}/\phi_t = 1.78 / 25 = 0.0712$$

$$K_u = -g_m * (R_k | | R_H) = -89,2$$

$$K_i = K_u * R_{BX}/R_H = -18.8$$

$$\beta = I_{k0}/I_{60} = 18.54$$

$$r_i = \beta / g_m = 260.4$$

$$R_{BX} = R_1 \mid \mid R_2 \mid \mid r_i = 253.8 \text{ OM}$$

Висновок: Під час виконання лабораторної роботи було досліджено поведінку біполярного транзистора, ввімкненого в схему підсилювача з загальним емітером. Експериментально визначили межі амплітуди вхідного сигналу, вхідний та вихідний опори, коефіцієнти підсилення за напругою та струмом. Далі теоретично перевірили знайдені характеристики: Передавальна провідність, вхідний опір та коефіцієнт підсилення за струмом виявились близькими до експериментальних, а коефіцієнт підсилення за напругою – ні.