Midterm (2)

...../15

(Due date: Sunday May 15th at 10:00 pm)

Question 1 [2 Marks]

Plot the step response of the three transfer functions below on <u>ONE figure.</u>

- 1- Add a Legend on the figure.
- 2- Show the <u>rising time value</u> of each response on the figure.

$$G1(s) = \frac{50}{10 s^2 + 140 s + 40}$$
 ; $G2(s) = \frac{80}{s^2 + 26 s + 80}$; $G3(s) = \frac{10}{s^2 + 80 s + 40}$

- ➤ Your answer must include the following:
- 1- Add screenshot of the figure.

Question 2 [3 Marks]

Design a PID controller using PID tuner app to meet the following requirements of the plant below:

- 1-Rise time less that 0.5
- 2- Overshoot % below: 8%

$$Q2 = \frac{0.1s + 1}{s^3 + 9s^2 + 7s + 1}$$

- 1- Complete the table below.
- 2- Provide a screenshot(s) of your design showing (Step response, Show parameter windows).

	Uncompensated	Compensated
Кр	0	33.8
Ki	0	9.4
Kd	0	30.3

Figure 1 - Question 2. Compensated response

Question 3 [Marks 5]

Feedback Design via Root Locus

Design a compensator via **Root Locus** on the **Control System Designer** app to meet the following design requirements for the plant below.

$$Q3(s) = \frac{5(s+2)}{s(s+1)(s+5)}$$

Design requirements:

- Rise time of less than 0.5 second
- Overshoot of less than 2%
- ➤ Your answer MUST include the following:
 - 1- Complete the table below.
 - 2- Provide a screenshot(s) of your design showing (Root locus, step response, transfer function, and compensator).
 - 3- Save your design and send the (.mat) file.

	Uncompensated	Compensated
Rise time	0.942 s	5.21 s
Overshoot %	14%	0%
Damping ratio	0.588	0.98
Natural frequency	1.55 rad/s	1.42 rad/s

Figure 2 - Question 3. Compensated response

Question 4 [5 marks]

Feedback Design via Frequency Response

Design a compensator via **Frequency Response** (Bode Diagram) on the **Control System Designer** app to meet the following design requirements for the plant below.

$$Q4(s) = \frac{5}{s^2 + 14 \, s + 4}$$

- Rise time of **less than 1** second
- Overshoot of less than 20%
- **Eliminate** steady-state error.
- Gain margin greater than 20 dB
- Phase margin greater than 50 degrees

➤ Your answer MUST include the following:

- 1. Complete the table below.
- 2. Provide a screenshot(s) of your design showing (Bode plot, step response, transfer function, and compensator).
- 3. Save your design and send the (.mat) file.

	Uncompensated	Compensated
Rise Time	7.53 s	0.35 s
Overshoot Percent	0	5 %
Steady state error	0.207	0.034
Gain Margin	inf	27.2 dB
Phase Margin	148 deg	62.2 deg

Figure 3 - Question 4. Compensated response

Name: Iakov Umrikhin

Student ID: A01203711

Complete the tables add screenshots below each table to verify your results.

Question 2

	Compensated
Кр	33.8
Ki	9.4
Kd	30.3
Rise time	0.486
Overshoot %	4.92%

Question 3

	Uncompensated	Compensated
Rise time	0.942 s	5.21 s
Overshoot %	14%	0%
Damping ratio	0.588	0.98
Natural frequency	1.55 rad/s	1.42 rad/s

Question 4

	Uncompensated	Compensated
Rise Time	7.53 s	0.35 s
Overshoot Percent	0	5 %
Steady state error	0.207	0.034
Gain Margin	inf	27.2 dB
Phase Margin	148 deg	62.2 deg