

بسمه تعالى

تمرین نهم درس معماری کامپیوتر نیمسال دوم ۰۰–۹۹

مهلت تحویل ساعت ۲۳:۵۵ روز ۲/۳۱ ۱۴۰۰/۰

۱. الف) اعداد زیر را با توجه به قالب زیر به صورت ممیز شناور نمایش دهید و سپس مشخص کنید که آیا اعداد
 حاصل دقیق هستند یا خیر.

decimal	sign	Exponent(4bit)	Fraction(11bit)
22.004	0 positive	$(22.004)_{10} =$ $(10110.000000010)_2$ $= 1.011000000001 \times 2^4$ Exponent = $(4)_{10} = (1100)_2$	0110000000 دقیق نیست زیرا اعشارها همچنان ادامه دارند و ما قادر به ذخیرهی کامل عدد در فضای محدود داده شده، نیستیم.
-0.0103	1 negative	$(0.0103)_{10} =$ $(0.000000101010001100)_2$ = 1.01010001100 × 2 ⁻⁷ Exponent = (-7) ₁₀ = (0001) ₂	01010001100 اینجا هم مثل حالت قبل عدد دقیق نیست.

ب) این بار اعداد داخل جدول را با توجه به قالب زیر و به صورت ممیز ثابت نمایش دهید. سپس دقیق بودن نمایش را بررسی کنید.

decimal	sign	6bit	6bit
-13.33	1 negative	= (13) ₁₀ = (001101) ₂	اعشار = $(0.33)_{10}$ = $(010101)_2$ حاصل دقیق نیست.
18.51	0 positive	= (18) ₁₀ = (010010) ₂	اعشار $(0.51)_{10} = (100000)_2$ حاصل دقیق نیست و اعشار همچنان ادامه دارد.

۲. مقدار عددیهای زیر را محاسبه نمایید.

$$(11\cdots 1\cdots 1)_{\gamma}$$
 •

$$(1+0+0+1\times2^3+1\times2^4)+(0+0+0+1\times2^{-4})=1+8+16+\frac{1}{16}$$
= 25.0625

(19.1)15

$$(9 \times 16^{0} + 1 \times 16^{1}) + (1 \times 16^{-1}) = 9 + 16 + \frac{1}{16} = 25.0625$$

(٣1.·1)₁ •

$$(1 \times 8^0 + 3 \times 8^1) + (0 + 1 \times 8^{-2}) = 1 + 24 + \frac{1}{64} = 25.015625$$

 $b_{31}b_{30}\dots b_0$... در یک کامپیوتر اعداد ممیز شناور ۳۲ بیتی ذخیره میشوند. مقدار عددی رشته ۳۲ بیتی دخیره می برابر است با:

$$2^{E-64} \times (2 \times b_{31} - 1) \times \sum\nolimits_{i = 0}^{23} \overline{b_i} \times 2^{i-12}$$

$$E = \sum_{i=24}^{30} 2^{i-24} \times b_i$$

مقدار عددی کوچکترین عدد مثبت و کوچکترین عدد منفی قابل نمایش چقدر است؟

کوچکترین عدد مثبت:

بخش Exponent را برابر کوچکترین حالت باید در نظر بگیریم. پس همه ی b_i از بیت ۳۰ تا ۱۲۴م را فور در نظر می گیریم بنابراین E=0 خواهد شد. بیت E=0 باید برابر با ۱ باشد چون در صورتی که ۰ باشد صفر در نظر می گیریم بنابراین حاصل سیگما هم باید مینیمم شود. در این صورت عدد ما برابرست با: $2^{-64} \times (2 \times 1 - 1) \times 2^{-12} = 2^{-76}$

کوچکترین عدد منفی:

این بار بخش Exponent را برابر بزرگترین حالت باید در نظر بگیریم تا همه چیز ماکزیمم شود اما عدد منفی باشد. پس b_i ها از بیت ۳۰ تا ۲۴ام را یک در نظر می گیریم بنابراین b_i می منفی بود عدد بیت b_{31} باید برابر با 0 باشد. در این صورت عدد ما برابرست با:

$$2^{127-64} \times (2 \times 0 - 1) \times (2^{-12} + 2^{-11} + 2^{-10} + \dots + 2^{11})$$

= $-2^{63}(1 - 2^{-12} + 2^{12} - 1) = 2^{51} - 2^{75}$

الگوریتم تقسیم دو عدد بیعلامت، به ترتیب مقسوم ۱۰۱۱۰۱۰۱۰ و مقسوم علیه ۱۰۱۱۰۱۰۱۰ و مقسوم علیه ۱۱۰۰۰۱۰ و مقسوم علیه در قالب جدول در ۸ گام اجرا کنید. وضعیت ثباتها در هر گام مشخص گردد. خارج قسمت و باقیمانده تقسیم را بدست آورید.

SC	Е	R	Α	В	توضيحات
n=8	0	10110100	10110100	11000010	مقداردهي اوليه
					E:R = R+B'+1 = 10110100
	0	11110010			+ 00111101 + 1
	1	10110100	10110100	11000010	$E = 0 \rightarrow R = R + B =$
					11110010 + 11000010
	1	01101001	01101000		SHL E:R:A
	0	10100111	01101000	11000010	$E = 1 \rightarrow E:R = R+B'+1 =$
					01101001 + 00111101 + 1
			01101001		A0 = 1
7	1	01001110	11010010	11000010	SHL E:R:A
	0	10001100	11010010	11000010	$E = 1 \rightarrow E:R = R+B'+1 =$
					01001110 + 00111101 + 1
			11010011		A0 = 1
6	1	00011001	10100110	11000010	SHL E:R:A
	0	01010111	10100110	11000010	$E = 1 \rightarrow E:R = R+B'+1 =$
					00011001 + 00111101 + 1
			10100111		A0 = 1
5	0	10101111	01001110	11000010	SHL E:R:A
	0	11101101	01001110	11000010	$E = 0 \rightarrow E:R = R+B'+1 =$
					10101111 + 00111101 + 1

	0	11101101	01001110	11000010	$E = 0 \rightarrow A0 = 0$
					R = R + B = 11101101 +
	1	10101111			11000010
4	1	01011110	10011100	11000010	SHL E:R:A
	0	10011100	10011100	11000010	$E = 1 \rightarrow E:R = R+B'+1 =$
					01011110 + 00111101 + 1
			10011101		A0 = 1
3	1	00111001	00111010	11000010	SHL E:R:A
	0	01110111	00111010	11000010	$E = 1 \rightarrow E:R = R+B'+1 =$
					00111001 + 00111101 + 1
			00111011		A0 = 1
2	0	11101110	01110110	11000010	SHL E:R:A
	1	00101100	01110110	11000010	$E = 0 \rightarrow E:R = R+B'+1 =$
					11101110 + 00111101 + 1
	1	00101100	01110111	11000010	$E = 1 \rightarrow A0 = 1$
1	0	01011000	11101110	11000010	SHL E:R:A
	0	10010110	11101110	11000010	$E = 0 \rightarrow E:R = R+B'+1 =$
					01011000 + 00111101 + 1
	0	10010110	11101110	11000010	$E = 0 \rightarrow A0 = 0$
					R = R + B = 10010110 +
	1	01011000			11000010

 $\dot{\sigma}$ خارج قسمت = A = مانده جامع باقیمانده = R = مانده

لطفا نکات زیر را در نظر بگیرید.

اشکالات خود را می توانید از طریق ایمیل <u>CAspring2021@gmail.com</u> بپرسید. لینک کانال تلگرام درس https://t.me/CA2021Spring است. برای اطلاع از اخبار درس دنبال کنید.

موفق باشيد