TABLE 1 MODEL COMPARISON

AICc Qualitative Comparison	Free Parameters	N_{free}	$N_{ m data}$	RMS	$\ln \mathcal{L}$	BIC	AICc	$\Delta { m AICc}$
AICc Favored Model	$e_b, K_b, e_c, K_c, \sigma, \gamma$	20	458	5.85	-1344.41	2797.57	2716.96	0.00
Ruled Out	$e_b, K_b, K_c, \sigma, \gamma$	18	458	7.28	-1423.15	2942.81	2870.08	153.12
Ruled Out	e_b, K_b, σ, γ	15	458	11.26	-1658.91	3395.94	3335.12	618.16
	$K_b, e_c, K_c, \sigma, \gamma$	18	458	19.66	-2161.34	4419.20	4346.47	1629.51
	K_b, K_c, σ, γ	16	458	22.06	-2191.81	4467.87	4403.07	1686.11
	K_b, σ, γ	13	458	22.59	-2279.88	4625.63	4572.80	1855.84
	$e_b, K_b, e_c, K_c, \gamma$	15	458	6.02	-3246.97	6572.06	6511.25	3794.29
	e_b, K_b, K_c, γ	13	458	7.71	-4200.65	8467.16	8414.34	5697.38
	e_c, K_c, σ, γ	15	458	45.49	-5540.60	11159.33	11098.51	8381.55
	K_c, σ, γ	13	458	54.29	-5850.37	11766.62	11713.79	8996.83
	σ, γ	10	458	56.88	-inf	12453.72	12412.94	9695.98
	e_b, K_b, γ	10	458	11.18	-21521.90	43091.29	43050.51	40333.55
	K_b, e_c, K_c, γ	13	458	19.97	-64798.32	129662.52	129609.69	126892.73
	K_b, K_c, γ	11	458	22.52	-66169.11	132391.85	132347.05	129630.09
	K_b, γ	8	458	22.78	-76996.87	154028.98	153996.29	151279.33
	e_c, K_c, γ	10	458	44.14	-418654.99	837357.48	837316.70	834599.74
	K_c, γ	8	458	55.09	-530177.21	1060389.65	1060356.96	1057640.00
	γ	5	458	57.15	-564158.37	1128333.59	1128313.09	1125596.13

 $\begin{array}{c} {\rm TABLE~2} \\ {\rm MCMC~Posteriors} \end{array}$

Parameter	Credible Interval	Maximum Likelihood	Units		
Modified M	Modified MCMC Step Parameters				
P_b	$1766.71^{+0.58}_{-0.59}$	1766.71	$_{ m days}$		
Tconj _b	$2456836.0_{-1.7}^{+1.6}$	2456836.0	$_{\mathrm{BJD}}$		
$T_{\text{peri}_{\text{b}}}$	$2456673.4_{-2.2}^{+2.3}$	2456673.4	$_{\mathrm{BJD}}$		
e_b	$0.3652^{+0.0035}_{-0.0034}$	0.3653			
ω_b	$0.3944^{+0.01}_{-0.0098}$	0.3946	radians		
K_b	89.47 ± 0.42	89.47	${ m m~s^{-1}}$		
P_c	19751^{+4700}_{-590}	19946	days		
Tconj _c	2454808_{-74}^{+250}	2454830	$_{\mathrm{BJD}}$		
$T_{\rm peri_c}$	2451427^{+160}_{-140}	2451413	$_{\mathrm{BJD}}$		
e_c	$0.372^{+0.058}_{-0.026}$	0.368			
ω_c	$-0.244^{+0.096}_{-0.081}$	-0.252	radians		
K_c	$43.8_{-1.8}^{+2.7}$	43.7	${ m m\ s^{-1}}$		
Orbital Par					
P_b	$1766.71^{+0.58}_{-0.59}$	1766.71	days		
Tconj _b	$2456836.0_{-1.7}^{+1.6}$	2456836.0	$_{\mathrm{BJD}}$		
Tperi _b	$2456673.4_{-2.2}^{+2.3}$	2456673.4	$_{\mathrm{BJD}}$		
e_b	$0.3652^{+0.0035}_{-0.0034}$	0.3653			
ω_b	$0.3944^{+0.01}_{-0.0098}$	0.3946	radians		
K_b	89.47 ± 0.42	89.47	${ m m~s^{-1}}$		
P_c	19751^{+4700}_{-590}	19946	days		
Tconj _c	2454808_{-74}^{+250}	2454830	$_{ m BJD}$		
Tperi _c	2451427^{+160}_{-140}	2451413	$_{\mathrm{BJD}}$		
e_c	$0.372^{+0.058}_{-0.026}$	0.368			
ω_c	$-0.244^{+0.096}_{-0.081}$	-0.252	radians		
K_c	$43.8^{+2.7}_{-1.8}$	43.7	${ m m~s^{-1}}$		
Other Para	ameters				
$\gamma_{ m HJS}$	$-31.0^{+3.2}_{-6.1}$	-30.8	${ m m~s}{-}1$		
$\gamma_{\rm HIRES-pre}$	$4.1^{+3.0}_{-6.2}$	4.2	${ m m~s}{-}1$		
$\gamma_{ m HIRES-post}$	$-3.7^{+1.8}_{-6.6}$	-3.9	${ m m\ s-1}$		
$\gamma_{ m ELODIE}$	$-13876.1^{+3.2}_{-6.2}$	-13875.9	${ m m~s}{-}1$		
$\gamma_{ m APF}$	$45.1_{-6.4}^{+2.1}$	45.1	${ m m\ s-1}$		
$\dot{\gamma}$	$\equiv 0.0$	$\equiv 0.0$	${\rm m}\ {\rm s}^{-1}\ {\rm d}^{-1}$		
$\ddot{\gamma}$	$\equiv 0.0$	$\equiv 0.0$	${\rm m}\ {\rm s}^{-1}\ {\rm d}^{-2}$		
$\sigma_{ m HJS}$	$-4e - 07^{+0.00058}_{-0.00051}$	-4e - 07	$\mathrm{m}\;\mathrm{s}^{-1}$		
$\sigma_{ m HIRES-pre}$	$2.73^{+0.45}_{-0.37}$	2.52	${ m m}\ { m s}^{-1}$		
$\sigma_{ m HIRES-post}$	$3.18^{+0.23}_{-0.23}$	3.1	$\mathrm{m}\;\mathrm{s}^{-1}$		
$\sigma_{ m ELODIE}$	$7.22^{+1.0}_{-0.95}$	7.04	$\mathrm{m}\;\mathrm{s}^{-1}$		
$\sigma_{ m APF}$	$3.31^{+0.26}_{-0.24}$	3.24	${ m m~s^{-1}}$		

134000 links saved Reference epoch for $\gamma,\dot{\gamma},\ddot{\gamma}$: 2454185.380222

TABLE 3 Derived Posteriors

Parameter	Credible Interval	Maximum Likelihood	Units
$M_b \sin i$	4.86 ± 0.14	4.81	M_{Jup}
a_b	$2.835^{+0.04}_{-0.041}$	2.823	AU
$M_c \sin i$	$2.835_{-0.041}^{+0.04} \\ 5.34_{-0.31}^{+0.53} \\ 14.26_{-0.52}^{+2.1}$	5.79	${ m M_{Jup}}$
a_c	$14.26^{+2.1}_{-0.52}$	16.75	AU

TABLE 4 Summary of Priors

 e_b constrained to be < 0.99

 e_c constrained to be < 0.99

K constrained to be >0

Bounded prior: $0.0 < \sigma_{\rm HIRES-pre} < 10.0$ Bounded prior: $0.0 < \sigma_{\rm HIRES-post} < 10.0$

Bounded prior: $0.0 < \sigma_{\mathrm{APF}} < 10.0$

TABLE 5 FINAL CONVERGENCE CRITERION

Criterion	Final Value
minAfactor	53.372
maxArchange	0.021
maxGR	1.010
minTz	2968.773

TABLE 6
RADIAL VELOCITIES

	DV.	DVIII	т .
Time	RV	RV Unc.	Inst.
(JD)	$(m s^{-1})$	$(m s^{-1})$	
2449464.59560	-13782.00	8.00	ELODIE
2449531.43020	-13751.00	7.00	ELODIE
2449752.60510	-13802.00	8.00	ELODIE
2449755.71830	-13812.00	7.00	ELODIE
2449766.70610	-13791.00	7.00	ELODIE
2449820.61120	-13844.00	8.00	ELODIE
2449851.52080	-13867.00	8.00	ELODIE
2449904.40720	-13863.00	7.00	ELODIE
2449907.40650	-13864.00	7.00	ELODIE
2449970.32770	-13852.00	7.00	ELODIE
2450021.26730	-13896.00	7.00	ELODIE
2450027.24440	-13882.00	7.00	ELODIE
2450091.69090	-13887.00	7.00	ELODIE
2450148.56110	-13897.00	7.00	ELODIE
2450150.63830	-13901.00	7.00	ELODIE
2450207.51160	-13907.00	7.00	ELODIE
2450212.52370	-13902.00	7.00	ELODIE
2450263.51030	-13902.00	7.00	ELODIE
2450265.44030	-13921.00	7.00	ELODIE
2450267.46700	-13900.00	7.00	ELODIE
2450324.35710	-13883.00	7.00	ELODIE
2450380.24170	-13888.00	7.00	ELODIE
2450382.24420	-13886.00	7.00	ELODIE
2450474.71950	-13907.00	4.95	ELODIE
2450531.64675	-13868.50	4.95	ELODIE
2450535.64130	-13873.00	7.00	ELODIE
2450561.56720	-13899.00	7.00	ELODIE
2450579.55030	-13882.00	7.00	ELODIE
2450623.48790	-13890.00	7.00	ELODIE
2450678.32870	-13865.00	7.00	ELODIE ELODIE
2450701.30460	-13870.00	7.00	-
2450730.31730 2450731.30170	-13857.00 -13863.00	$8.00 \\ 7.00$	ELODIE ELODIE
2450751.30170	-13803.00	7.00	ELODIE
2450821.72290	-13835.00	7.00	ELODIE
2450858.09150	-13825.00	7.00	ELODIE
2450801.70020	-13820.00	8.00	ELODIE
2450887.65080	-13821.00	8.00	ELODIE
2450911.59232	-13821.00	5.98	ELODIE
2450911.53252	-13832.00	7.00	ELODIE
2450912.55990	-13820.00	7.00	ELODIE
2450941.54990	-13813.00	7.00	ELODIE
2450941.04990	-13809.00	7.00	ELODIE
2450977.43090	-13813.00	7.00	ELODIE
2451023.37260	-13801.50	5.66	ELODIE
2451025.37260	-13793.00	7.00	ELODIE
2451036.38330	-13791.00	7.00	ELODIE
2451054.31820	-13784.00	7.00	ELODIE
2451088.27960	-13775.00	7.00	ELODIE
2451234.71050	-13708.00	7.00	ELODIE
			

Note. — Only the first 50 of 458 RVs are displayed in this table. Use radvel table -t rv to save the full LATEX table as a separate file.

Fig. 1.— Best-fit 2-planet Keplerian orbital model for 14Her. The maximum likelihood model is plotted while the orbital parameters listed in Table 2 are the median values of the posterior distributions. The thin blue line is the best fit 2-planet model. We add in quadrature the RV jitter term(s) listed in Table 2 with the measurement uncertainties for all RVs. b) Residuals to the best fit 2-planet model. c) RVs phase-folded to the ephemeris of planet b. The Keplerian orbital models for all other planets (if any) have been subtracted. The small point colors and symbols are the same as in panel a. Red circles (if present) are the same velocities binned in 0.08 units of orbital phase. The phase-folded model for planet b is shown as the blue line.

Fig. 2.— Posterior distributions for all free parameters.

Fig. 3.— Posterior distributions for all derived parameters.