ALGORITMOS Y ESTRUCTURAS DE DATOS III - $2^{\underline{do}}$ Parcial Fecha de examen: 24-JUN-2022

	Nº Orden	Apellido y nombre		L.U.	# hojas ¹
Notas:	Ej1	Ej2	Ej3	Ej4	Final

Aclaraciones: El parcial se aprueba con 2 (dos) ejercicios aprobados. Cada hoja debe estar numerada y debe tener el número de orden y L.U. El parcial dura 4 horas y es a libro abierto. Cada respuesta dada debe contar con su correspondiente **justificación** para poder ser considerada correcta.

- 1) Dado un digrafo D (débilmente) conexo de n vértices y m aritas y dos vértices especiales s y t, queremos calcular la mínima cantidad de aristas cuya orientación tenemos que dar vuelta para que exista un camino de s a t.
 - a) Diseñar un algoritmo de complejidad $O(min\{n^2, m \log n\})$ que resuelva el problema.
 - b) Demostrar que el algoritmo propuesto es correcto.

Nota: Un digrafo es (débilmente) conexo si el grafo subyacente, que resulta de ignorar la orientación de sus aristas, es conexo.

- 2) Tenemos a n clientes de un supermercado $\{c_1, c_2, ..., c_n\}$ y queremos asignarle a cada uno, una caja para hacer fila. Las cajas están ordenadas en una línea y numeradas de izquierda a derecha de la 1 a la M y se encuentran separadas por pasillos. Durante el proceso de asignación algunos clientes se pelean entre sí y son separados por seguridad. Si dos clientes c_i y c_j pelean, los guardias les dicen que tienen que ponerse en filas distintas que se encuentren separadas por $K_{ij} > 0$ pasillos intermedios, para que no se vuelvan a pelear. Notar que cuando seguridad separa una pelea naturalmente hay un cliente que queda más a la izquierda (cerca de la caja 1) y el otro más a la derecha (cerca de la caja M). Con la restricción de no volver a acercarse, ese orden ya no puede cambiar. A su vez hay pares de clientes c_k y c_m que son amigos y no queremos que haya más que $L_{km} = L_{mk} \geq 0$ pasillos intermedios entre las filas de c_k y c_m . ¿será posible asignarlos a todos?
 - a) Modelar el problema utilizando un sistema de resticciones de diferencias (no olviden justificar).
 - b) Proponer un algoritmo polinomial que lo resuelva.
 - c) ¿Qué complejidad tiene el algoritmo propuesto? Para la respuesta, tener en cuenta la cantidades m_1 y m_2 de amistades y peleas, respectivamente.

Nota: K_{ij} de alguna manera captura la intensidad de la pelea y L_{ij} captura (inversamente) la intensidad de la amistad. Es posible que dos amigos se peleen y en ese caso hay que cumplir las dos condiciones. Si eso pasa solo puede haber soluciones si $K_{ij} \leq L_{ij}$. Para todo par de clientes sabemos si son amigos o si se pelearon, la intensidad de cada relación. Además, para aquellos clientes que se pelearon, conocemos cuál cliente quedó a la izquierda y cuál a la derecha.

Ayuda: Si tenemos n variables x_i en un SRD y queremos acotarlas entre A y B ($x_i \in [A, B]$) podemos agregar una variable auxiliar z, sumar restricciones del tipo $A \le x_i - z \le B$ y luego correr la solución para que z sea 0.

¹Incluyendo esta hoja.

3) Se tiene el mismo problema del enunciado anterior pero ahora las cajas están dispuestas en forma circular (con M > 2) y no podemos deducir en qué orden quedaron los clientes que fueron separados. Es decir, debemos ubicar a cada cliente de forma tal que si c_i y c_j se pelearon entonces hayan K_{ij} cajas entre c_i y c_j en ambos sentidos del círculo, sin conocer quién entre c_i y c_j será asignado a la caja de mayor número. Demostrar que este problema es NP-completo sabiendo que 3-coloreo² lo es.

Ayudas:

- Si podemos acotar las soluciones para que $x_i \in [0, 2]$ podríamos asociar los valores 0, 1 y 2 a colores.
- Si $x_i \neq x_j$ entonces los colores asociados son distintos.
- 4) Un camión tiene una ruta fija de clientes v_1, \ldots, v_n a la que se planificó enviarle paquetes (de alguna forma que es irrelevante). Dentro del camión se encuentra un drone que va a ser usado para visitar a n-1 clientes de otro conjunto $W=w_1,\ldots,w_p$ tal que $p\geq n-1$. La operación del camión y el drone es la siguiente. En cada v_i , el drone despega del camión, visita a uno de los clientes de W que aun no fue visitado, y se encuentra con el camión en el cliente v_{i+1} . El vehículo que llega primero al cliente v_{i+1} se queda esperando al vehículo más lento.

Conociendo el tiempo t_i que demora el camión en viajar de v_i a v_{i+1} y el tiempo d_{ij} que demora el drone en viajar desde v_i hasta w_j y luego ir a v_{i+1} , queremos encontrar el camino que pueda recorrerse en el menor tiempo posible.

- a) Modelar el problema como un problema de flujo máximo con costo mínimo o, alternativamente, como uno de matching bipartito de peso mínimo (no olviden justificar).
- b) Proponer un algoritmo polinomial que resuelva el modelo propuesto.
- c) ¿Qué complejidad tiene el algoritmo propuesto? Expresar la respuesta en función de n y p, indicando la cota más ajustada que sea posible.

 $^{^2}$ Recordar que dado un grafo G, 3-coloreo consiste en determinar si se puede particionar a los vértices de G en a lo sumo 3 conjuntos independientes.