CSCD 439/539 GPU Computing Lab1 Finding Primes on GPU **Lab Report**

Michael Peterson

The only combination that should be incorrect is the one were the blockSize is 64, this results in a gridSize of 78126, which is greater then 65536. There wasn't a noticeable difference in performance compared to the other configurations, but I did notice during other testing that invalid sizes seemed to result in the gpu kernel not being ran at all.

a) Please use N=10,000,000, and blockSize as a variable

blockSize(in number of threads)	64	128	256	512	1024
GPU Time Cost (sec)	0.477	0.480	0.499	0.431	0.423
Speedups (compared with	9.20x	9.15x	9.67x	10.20x	10.25x
sequential time cost)					
Sequential Time Cost on CPU (sec)	4.389	4.390	4.340	4.397	4.342

b) Please use blockSize = 1024, and vary input N to fill in the table below.

N	200,000	2,000,000	4,000,000	8,000,000	16,000,000	32,000,000
GPU Time Cost (sec)	0.236	0.262	0.307	0.400	0.691	1.446
CPU Time Cost (sec)	0.052	0.544	1.305	3.235	8.470	22.53
Speedups	0.22x	2.08x	4.245x	8.08x	12.24x	15.58x