Chapter 1

Computer Abstractions and Technology

The Computer Revolution

- Progress in computer technology
 - Underpinned by Moore's Law
 - vacuum tube → transistor → IC → VLSI
 - ~ doubling every 18 months: memory capacity processor speed
 - » (Due to advances in technology and organization/architecture)

Old Mainframes

ILLIAC II (1962) 8192 words of memory IBM 7094 (1970's vintage) 32K words of memory

Newer, pervasive computers

Tablets and phones

More powerful than the mainframes on previous slide.

The Computer Revolution

- Makes novel applications feasible
 - Computers in automobiles
 - Cell phones
 - Human genome project
 - World Wide Web
 - Search Engines
- Computers are pervasive!

Classes of Computers

- Desktop computers
 - General purpose, variety of software
 - Subject to cost/performance tradeoff
- Server computers
 - Network based
 - High capacity, performance, reliability
 - Range from small servers to building sized

Classes of Computers

- Supercomputers
 - High-end scientific and engineering calculations
 - Highest capability but represent a small fraction of the overall computer market
- Embedded computers
 - Hidden as components of systems
 - Stringent power/performance/cost constraints

The PostPC Era

The PostPC Era

- Personal Mobile Device (PMD)
 - Battery operated
 - Connects to the Internet
 - Hundreds of dollars
 - Smart phones, tablets, electronic glasses
- Cloud computing
 - Warehouse Scale Computers (WSC)
 - Software as a Service (SaaS)
 - Portion of software run on a PMD and a portion run in the Cloud
 - Amazon and Google

What You Will Learn

- How programs are translated into the machine language
 - And how the hardware executes them
- The hardware/software interface
- What determines program performance
 - And how it can be improved
- How hardware designers improve performance
- What is parallel processing

Understanding Performance

- Algorithm
 - Determines number of operations executed
- Programming language, compiler, architecture
 - Determine number of machine instructions executed per operation
- Processor and memory system
 - Determine how fast instructions are executed
- I/O system (including OS)
 - Determines how fast I/O operations are executed

Eight Great Ideas

- Design for Moore's Law
- Use abstraction to simplify design
- Make the common case fast
- Performance via parallelism
- Performance via pipelining
- Performance via prediction
- Hierarchy of memories
- Dependability via redundancy

Below Your Program

- Application software
 - Written in high-level language
- System software
 - Compiler: translates HLL code to machine code
 - Operating System: service code
 - Handling input/output
 - Managing memory and storage
 - Scheduling tasks & sharing resources
- Hardware
 - Processor, memory, I/O controllers

Levels of Program Code

- High-level language
 - Level of abstraction closer to problem domain
 - Provides for productivity and portability
- Assembly language
 - Textual representation of instructions
- Hardware representation
 - Binary digits (bits)
 - Encoded instructions and data

High-level language program (in C)

Assembly language program (for MIPS)

Binary machine language program (for MIPS)

What is "Computer Architecture"

```
Computer Architecture =
Instruction Set Architecture (sw) +
Machine Organization (hw)
```

The Instruction Set: a Critical Interface

How Do the Pieces Fit Together?

- Coordination of many levels of abstraction
- Under a rapidly changing set of forces
- Design, measurement, and evaluation

Abstractions

The BIG Picture

- Abstraction helps us deal with complexity
 - Hide lower-level detail
- Instruction set architecture (ISA)
 - The hardware/software interface
- Application binary interface
 - The ISA plus system software interface
- Implementation
 - The details underlying and interface

Components of a Computer

The BIG Picture

- Same components for all kinds of computer
 - Desktop, server, embedded
- Input/output includes
 - User-interface devices
 - Display, keyboard, mouse
 - Storage devices
 - Hard disk, CD/DVD, flash
 - Network adapters
 - For communicating with other computers

The Big Picture

The Five Classic Components of a Computer

Inside the Processor (CPU)

- Datapath: performs operations on data
- Control: sequences datapath, memory, ...
- Cache memory
 - Small fast SRAM memory for immediate access to data

Chapter 4: We'll spend a lot of our time in this course on these bullets!

Inside the Processor

AMD Barcelona: 4 processor cores

Core 1

Inside the Processor

Apple A5: Dual core ARM (iphone, ipad, apple TV)

A Safe Place for Data

- Volatile main memory
 - Loses instructions and data when power off
- Non-volatile secondary memory
 - Magnetic disk
 - Flash memory
 - Solid state drives (SSD): becoming more common
 - Optical disk (CDROM, DVD)

SSD drive Mag disk

Networks

- Communication and resource sharing
- Local area network (LAN): Ethernet
 - Within a building
- Wide area network (WAN): the Internet
- Wireless network: WiFi, Bluetooth

Technology Trends

- Electronics technology continues to evolve
 - Increased capacity and performance
 - Reduced cost

DRAM capacity

Year	Technology	Relative performance/cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated circuit (IC)	900
1995	Very large scale IC (VLSI)	2,400,000
2013	Ultra large scale IC	250,000,000,000

Where we are headed

- Read Chapter 1 (introduction) on your own.
- Performance issues (Chapter 1) *vocabulary and motivation, basic concepts.*
- Instruction Set Architectures in general and a specific instruction set architecture (MIPS) (Chapter 2)
- Number representations, computer arithmetic, and how to build a simple integer ALU (Chapter 3)
- Constructing a MIPS processor (Chapter 4)
 - Build a processor to execute a subset of MIPS instruction set (datapath+control)
 - Pipelining to improve performance (datapath+control), hazards, etc.
- Memory architecture: caches and virtual memory (Chapter 5)
- Parallel Architectures/multiprocessors (Chapter 6)