Chipimplementation einer zweidimensionalen Fouriertransformation für die Auswertung eines Sensor-Arrays

Bachelorkolloquium

Thomas Lattmann

30. April 2018

Inhaltsübersicht

- Einleitung
- Grundlagen
- Vergleich von Ansätzen zur Berechnung der DFT
- Vergleich verschiedener Größen von Twiddlefaktormatrizen
- Optimierung der 8x8-DFT Twiddlefaktormatrix
- Benötigte Takte für Berechnungen
- Entwickeln der 2D-DFT aus der 1D-DFT
- Testumgebung
- Zeitabschätzung der Implementation bezogen auf realen Anwendungsfall
- Erweiterung zur IDFT
- Zusammenfassung
- Ausblick

Einleitung: Einordung im ISAR-Projekt

 $Quelle: Frequency_filtering_and_stray_field_compensation_using_2D-DFT_algorithm.pdf, \ K.-R. \ Riemschneider + \ T. \ Sch\"{u}the and the compensation of the compens$

Einleitung: Details zur Hardware

- 350 µm Prozess
- Array von Magnetsensoren
- Sensoren, Signalverarbeitung & Ausgabe des digitalen Nutzsignals auf einem ASIC

Grundlagen: Übersicht

- Interpretation von Dualzahlen
- Komplexe Multiplikation
- Matrixmultiplikation
- DFT
- 2D-DFT
- IDFT

Interpretation von Dualzahlen

Mögliche Arten sind:

- positive Ganzahldarstellung (a)
- Darstellung im Einerkomplement (b)
- Darstellung im Zweierkomplement (c)
- voreichenbehaftete Festkommazahlen (SQ) mit und ohne Vorkommaanteil (d)

10010110101002

$$4096 + 512 + 128 + 64 + 16 + 4 = 4820_{10}$$
 (a)

$$-(512+128+64+16+4) = -724_{10}$$
 (b)

$$-4096 + 512 + 128 + 64 + 16 + 4 = -3372_{10}$$
 (c)

$$-4+0, 5+0, 125+0, 062+0, 015625+0, 00390625 = -3.29296875_{10} \quad \mathrm{in} \ \mathrm{S2Q10} \ (\mathrm{d})$$

Komplexe Multiplikation

Komplexe Multiplikation sind 4 einfache Multiplikationen und 2 Additionen.

$$e + jf = (a + jb) \cdot (c + jd)$$

$$= a \cdot c + j(a \cdot d) + j(b \cdot c) + j^{2}(b \cdot d)$$

$$= a \cdot c - b \cdot d + j(a \cdot d + b \cdot c)$$

Wenn einer der beiden Multiplikanden keinen Imaginärteil haben, reduziert sich das zu

$$e + jf = a \cdot (c + jd)$$
$$= a \cdot c + j(a \cdot d)$$

Matrixmultiplikation

Abbildung: Veranschaulichung der Matrixmultiplikation.

Diskrete Fouriertransformation und ihre inverse

$$X^* [m] = \frac{1}{N} \cdot \sum_{n=0}^{N-1} x[n] \cdot e^{-\frac{j2\pi mn}{N}}$$
$$x [n] = \frac{1}{N} \sum_{n=0}^{N-1} X^* [m] \cdot e^{+\frac{j2\pi mn}{N}}$$
$$X^* = W \cdot x$$

Berechnungsarten der DFT und deren Aufwand

- optimierte Matrixmultiplikation mit reellen Eingangswerten
- optimierte Matrixmultiplikation mit komplexen Eingangswerten
- Fast Fouriertransformation
- variable Matrixmultiplikation

Reelle Eingangswerte

Analyse und Entwicklung: Übersicht

- Gegenüberstellung verschiedener Größen von Twiddlefaktormatrizen
- Optimieren der 8x8-DFT
- Konstantenmultiplikation
- Benötigte Takte
- Zustandsfolge
- Entwickeln der 2D-DFT auf Basis der 1D-DFT

Gegenüberstellung verschiedener Größen von DFT-Twiddlefaktormatrizen

8	9	12	15	16
64	81	144	225	256
48	45	128	81	128
16	36	16	144	128
48	21	96	45	128
16	60	48	180	128
96	66	224	126	256
32	96	64	324	256
1	7	1	13	3
3	0,6875	3,5	0,3889	1
	64 48 16 48 16 96 32 1	64 81 48 45 16 36 48 21 16 60 96 66 32 96 1 7	64 81 144 48 45 128 16 36 16 48 21 96 16 60 48 96 66 224 32 96 64 1 7 1	64 81 144 225 48 45 128 81 16 36 16 144 48 21 96 45 16 60 48 180 96 66 224 126 32 96 64 324 1 7 1 13

Optimierung der 8x8-DFT

Anzahl reeller Multiplikationen für die Berechnung der 2D-DFT

Methode	Anzahl reeller Multiplikationen
komplexe Eingangswerte	128
reelle Eingangswerte	64
ladbare Matrixmultiplikation	4096
FFT	128

Konstantenmultiplikation mit $\frac{\sqrt{2}}{2} \simeq 0.70703125 = 0001011010100_2$

Anzahl benötigter Takte je Element, ungerade Zeilen

1. Spalte:
$$r_0 + r_1 + r_2 + r_3 + r_4 + r_5 + r_6 + r_7$$

Anzahl benötigter Takte je Element, gerade Zeilen

2. Spalte:
$$r_1 - r_3 + i_1 - i_7 + i_3 - r_5 + r_7 - i_5 + r_0 - r_4 + i_2 - i_6$$

Takt					Bit
1	$\underbrace{r_1-r_3}$ $\underbrace{i_1-i_7}$	$\underbrace{i_3-r_5}$	$\underbrace{r_7-i_5}$	$\underbrace{r_0-r_4}$ $\underbrace{i_2-i_6}$	12
	1 1	↓ .		↓ ↓	13
2	$sum1_1 + sum1_2$	sum1_3 -	- sum1_4	$sum1_5 + sum1_6$	12
	\downarrow	1	[+	13
3	$sum2_1$ +	sur	n2_2		12
	<u> </u>			\	13
	sum 5	3_1			13
	‡			\downarrow	13
4	$\frac{\sqrt{2}}{2}$	2			13
	Į.				26
5	sum4	_1	+	$sum2_3$	12
			$\overrightarrow{\psi}$		13
			$sum5_1$		12

Summe der Takte für die Berechnung der 2D-DFT

Zeile	Additionen	Takte pro Element	Takte für	Summe der
Zene	pro Element (N)	$(\log_2(N))$	Multiplikation	Takte
1	8	3	0	3
2	12	3,6	1	5
3	8	3	0	3
4	12	3,6	1	5
5	8	3	0	3
6	12	3,6	1	5
7	8	3	0	3
8	12	3,6	1	5

Summe der Takte ist $(3+5) \cdot 4 \cdot 8 \cdot 2 = 512$

Zustandsfolge

4 □ **>**

Alternative Schreibweise der 2D-DFT als Matrixmultiplikation

$$X = W \cdot x \cdot W$$
$$= \left((x \cdot W)^T \cdot W \right)^T$$
$$= \left(X^{*T} \cdot W \right)^T$$

Alternative Schreibweise der 2D-DFT als Matrixmultiplikation

Evaluation: Übersicht

- Testumgebung
- Zeitabschätzung
- Chipimplementation

Evaluation: Testumgebung

- Simulation mit NC Sim und SimVision
 - nützlich für Teilfunktionen
 - Betrachtung einzelner Signalverläufe
- Automatisierung durch Shell-Skript
 - Simulation mit NC Sim und TCL-Skript
 - Berechnung mittels Matlab
 - Vergleich

Evaluation: Zeitabschätzung

$$RPM = 8000 \, \text{min}^{-1}$$

$$\frac{\textit{RPM}}{60} = 1333, \bar{3}\,\text{sec}^{-1}$$

$$1 \, \text{Umdrehung} = \frac{1}{1333, \overline{3} \, \text{sec}^{-1}}$$

$$=7,5\cdot10^{-3}\sec$$

$$1^{\circ} \widehat{=} \frac{7, 5 \cdot 10^{-3} \sec}{360}$$

$$1^{\circ} \widehat{=} 20,83 \cdot 10^{-6} \text{ sec}$$

$$100 \cdot 10^6 \ \text{Hz} = 10 \cdot 10^{-9} \ \text{sec}$$

$$\frac{20,83\cdot 10^{-6}\,\text{sec}}{10\cdot 10^{-9}\,\text{sec}} = 2083\,\mathrm{Takte}$$

Evaluation: Chipimplementation

Evaluation: Chipimplementation

Zusatzfeature: Implementation der IDFT

Zusammenfassung

- DFT als 8x8 hat sich als effizienteste erwiesen
- Optimierung der Multiplikationen mit der Twiddlefaktormatrix
- Kritischer Pfad scheint Konstantenmultiplikation zu sein
- Berechnung der 1D- und 2D-DFT mit selber Einheit
- Benötigte Takte liegen im realistischen Rahmen
- IDFT kann durch geringe Ergänzungen im Quelltext berechnet werden
- Wertvolle Grundlagen für die Implementation der 15x15 2D-DFT

Ausblick

- Reduzierung des kritischen Pfades
 - auf zwei Gatter aufteilen
 - ► Wallace-Tree verwenden
- 15x15 mit ähnlich vielen Takten