Problem 1

Suppose $f:[0,1]\to\mathbb{R}$ is a continuous function with f(0)=f(1). Show that there is a $c\in[0,1/2]$ with f(c)=f(c+1/2). Conclude that there are always antipodal points on the earth's equator with the same temperature.

Consider g(x) = f(x) - f(x+1/2) on [0, 1/2]. Then, g(0) = f(0) - f(1/2), and g(1/2) = f(1/2) - f(1). Since f(0) = f(1), it must be the case that g(0) = -g(1/2).

Therefore, on [0,1/2], if g(0)=k for $k\in\mathbb{R}$, then g(1/2)=-k, meaning that by the Intermediate Value Theorem, $\exists c\in[0,1/2]$ with g(c)=0. This is equivalent to f(c)=f(c+1/2) by the definition of g.

For any two antipodes on the earth's equator, let t(x) be the temperature at point x. Then, moving from x to -x, where -x denotes the opposite point on the earth's equator, it must be the case that the values of t at x and -x flip. Therefore, there is a point where t(c) = t(-c).

Problem 2

Suppose $f:[a,b]\to\mathbb{R}$ is injective and continuous. Show that f is strictly monotone.

Let $f:[a,b] \to \mathbb{R}$ be injective and continuous. WLOG, let $p < q \in [a,b]$. Then, since $p \neq q$, $f(p) \neq f(q)$, meaning that f(p) < f(q) and f(p) > f(q).

Since f is continuous, f by the Intermediate Value Theorem, $\forall x \in [f(p), f(q)]$ or $[f(q), f(p)], \exists ! x' \in [p, q]$ or [q, p] such that f(x') = x. Therefore, $\forall p, q \in [a, b], p < q \Rightarrow f(p) < f(q)$ or f(p) > f(q), so f is strictly monotone.

Problem 3

Suppose $f:[0,1] \to \mathbb{R}$ is a map that takes on each of its values exactly twice. Show that f cannot be continuous at every point.

I don't know how to do this problem.

Problem 4

Show that the function $f(x) = \frac{1}{x^2}$ is uniformly continuous on $[1, \infty)$ but not on $(0, \infty)$.

Let $f(x) = \frac{1}{x^2}$ defined on $[1, \infty)$. Let $\varepsilon > 0$.

$$|f(x) - f(y)| = \left| \frac{1}{x^2} - \frac{1}{y^2} \right|$$

$$= \left| \frac{x^2 - y^2}{x^2 y^2} \right|$$

$$= \frac{x + y}{x^2 y^2} |x - y|$$

$$\leq 2|x - y|$$

$$< \varepsilon$$

Set $\delta = \frac{\varepsilon}{2}$.

On
$$(0,\infty)$$
, let $u_n=\frac{1}{\sqrt{n+1}}$ and $v_n=\frac{1}{\sqrt{n}}$. Then,
$$|f(u_n)-f(v_n)|=|n+1-n|$$

$$=1$$

$$=\varepsilon_0$$

$$|u_n-v_n|=\left|\frac{1}{\sqrt{n+1}}-\frac{1}{\sqrt{n}}\right|$$

$$=\left|\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}\right|$$

Therefore, f is not uniformly continuous.

Problem 5

 $= \left| \frac{1}{\sqrt{n(n+1)} \left(\sqrt{n+1} + \sqrt{n} \right)} \right|$

Suppose $f: \mathbb{R} \to \mathbb{R}$ is periodic with period p; that is,

$$f(x+p) = f(x) \qquad \forall x \in \mathbb{R}$$

If f is continuous, show that f is bounded and uniformly continuous on \mathbb{R} .

Let $x \in \mathbb{R}$. Since f is continuous on \mathbb{R} , f is continuous on [x, x + p], and f takes every value on [x, x + p] in all of \mathbb{R} , since if $q \in [x, x + p]$, then f(q + np) = f(q).

Since f is continuous on [x, x + p], f is bounded on [x, x + p], and so is bounded on \mathbb{R} . Additionally, f is uniformly continuous on [x, x + p], and so is uniformly continuous on \mathbb{R} .

Problem 6

Show that f(x) = x and $g(x) = \sin(x)$ are both uniformly continuous on \mathbb{R} , but the product

$$h(x) = x \sin(x)$$

is not uniformly continuous on ${\mathbb R}.$

Let f(x) = x. Setting $\delta = \varepsilon$, we have that

$$|x - y| < \delta$$

$$|f(x) - f(y)| < \delta$$

$$|f(x) - f(y)| < \varepsilon.$$

Similarly, since sin(x) is periodic and continuous, it must be uniformly continuous.

Problem 7

If $f: D \to \mathbb{R}$ is uniformly continuous and $|f(x)| \ge k > 0$ for some k, show that $\frac{1}{f}$ is uniformly continuous on D.

Since $f: D \to \mathbb{R}$ is uniformly continuous, $\forall u_n, v_n \in D$ with $(u_n - v_n)_n \to 0$, $(f(u_n) - f(v_n))_n \to 0$.

Since |f| is bounded away from 0, it must be the case that

$$\left(\frac{1}{f(u_n)}-\frac{1}{f(v_n)}\right)_n\to 0,$$

so $\frac{1}{f}$ is uniformly continuous.

Problem 8

If $D \subseteq \mathbb{R}$ is a bounded set and $f: D \to \mathbb{R}$ is uniformly continuous, show that f is bounded.

Since D is bounded, $\forall x \in D$, |x| < M for some M. Let $\varepsilon > 0$, and $\delta > 0$ be the corresponding value such that $|x - y| < \delta$. Then,

$$|f(x)| = |f(x) - f(y) + f(y)|$$

$$\leq |f(x) - f(y)| + |f(y)|$$

$$< \varepsilon + |f(y)|$$

So, for all x, |f(x)| is bounded above, meaning that f is bounded.

Problem 9

Suppose $f_n: D \to \mathbb{R}$ is a sequence of uniformly continuous functions such that $(f_n)_n \to f$ uniformly on D. Show that f is also continuous. Is this true with pointwise convergence?

Let $f_n:D\to\mathbb{R}$ be a sequence of uniformly continuous functions that uniformly converges to $f:D\to\mathbb{R}$.

Let $c \in D$. Since f_n is uniformly continuous, $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $\forall y \in D$ where $|c - y| < \delta$, $|f_n(c) - f_n(y)| < \varepsilon$, for all $n \in \mathbb{N}$. Additionally, since $f_n \to f$ uniformly, if $|c - y| < \delta$, $|f(c) - f(y)| < \varepsilon$.

Therefore, f is continuous at c for any arbitrary $c \in D$.

This is not the case with pointwise convergence — for example, $f_n = x^n$ on [0,1] converges to the discontinuous function δ_1 .

Problem 10

Prove that there does not exist a continuous function $f: \mathbb{R} \to \mathbb{R}$ with

$$f(\mathbb{Q}) \subseteq \mathbb{R} \setminus \mathbb{Q}$$
$$f(\mathbb{R} \setminus \mathbb{Q}) \subseteq \mathbb{Q}.$$

Since f does not map an interval to an interval, f cannot be continuous.