1. Architektura PC

Obsah

1	Veli	ice stručná historie 3
	1.1	Analytický stroj
	1.2	Turingův stroj
	1.3	Bombe
	1.4	ENIAC
	1.5	UNIVAC
	1.6	IBM PC
2		hitektura počítačů 4
	2.1	Von Neumannova architektura
	2.2	Řadič
	2.3	Aritmeticko-logická jednotka
	2.4	Registry
	2.5	Sběrnice
	2.6	Centrální procesorová jednotka
	2.7	Harvardská architektura
	2.8	Mikroarchitektury
3	Цог	dware počítače 6
J	3.1	Procesor
	3.2	Chladiče
	3.3	Základní deska
	ა.ა	3.3.1 Patice
		1
	2.4	3.3.5 Sběrnice, piny a jiné konektory
	3.4	RAM
		3.4.1 Rozdíly mezi SDR, DDR, QDR
	0.5	3.4.2 Časování a latence
	3.5	Grafická karta
		3.5.1 Jádro a VRM
		3.5.2 Pamět GPU
		3.5.3 Srovnání CPU a GPU
	3.6	Disky
		3.6.1 HDD
		3.6.2 SSD
		3.6.3 Archaické disky
	3.7	Zdroj
		3.7.1 Hodnocení zdrojů
	3.8	Rozšiřující karty
	3.9	Bedny
4	Ref	erence 8

1 Velice stručná historie

1.1 Analytický stroj

Analytický stroj je návrh obecně použitelného mechanického počítače. Obsahoval aritmetickou jednotku, řídící tok s podmíněným větvením a cykly a integrovanou pamět. Je to první turingovsky úplný počítač, což znamená, že by teoreticky dokázal vyřešit jakoukoliv úlohu za pomocí přesně definovaných kroků zapsaných přesně definovanými symboly (algoritmem).

S návrhem přišel anglický matematik Charles Babbage v roce 1837. Babbage ho sám nikdy nedokončil. První obecný počítač bude postaven až po více než 100 letech.

1.2 Turingův stroj

Turingův stroj je teoretický počítač, popsaný matematikem Alanem Turingem v roce 1936. Stroj posouvá nekonečně dlouhou pásku dle daných pravidel. Stroj z této pásky může číst či do ní zapisovat. Je teoreticky schopen vyřešit libovolný problém podle algoritmu.

1.3 Bombe

Bombe byl elektromechanický počítač sestrojený Alanem Turingem za druhé světové války. Jeho cílem bylo dešifrovat tajné zprávy zašifrované pomocí německé Enigmy. Stroj jako takový simuloval 36 strojů Enigma, s celkem 108 rotory, každý simulující 1 rotor stroje Enigma. Bombe využil slabinu Enigmy – vstupní písmeno se nikdy nerovnalo výstupnímu

1.4 ENIAC

Z anglického *Electronic Numerical Integrator and Computer* byl první programovatelný elektronkový počítač sestrojený v roce 1945 v USA. Jeho prvním úkolem bylo zjistit proveditelnost termojaderné zbraně. Pro své logické obvody používal elektronky, tedy vakuuové trubičky; takovéto počítače jsou označovány názvem *počítače první generace*. Jeho nástupce, MANIAC byl prvním strojem, který porazil člověka ve hře podobné šachu, tzv. Los Alamos šachy, hrané na 6×6 šachovnici, tedy bez střelců.

1.5 UNIVAC

Z anglického *UNIVersal Automatic Computer* byl první komerčně vyráběný počítač. Byl vyrobený v USA a na vývoji se podíleli vynálezci strojů ENIAC a MANIAC. Tento počítač je známý tím, že předpovědel vítězství Eisenhowera ve volbách v roce 1952. Stejně jako ENIAC a MANIAC používal pro své obvody elektronky.

1.6 IBM PC

Uvedený na trh v roce 1981, tento počítač odstartoval éru počítačů jak je známe dnes. Přinesl uživatelské rozhraní a časem i spoustu rozšiřujících karet. Díky vynálezu mikroprocesoru bylo možné razantně zmenšit velikost počítače – odstupuje se od sálových počítačů. Dnešní počítače jsou jakýmisi praprapravnuky právě IBM PC, používal procesor Intel 8088, měl pamět RAM a podporoval diskety.

2 Architektura počítačů

Architektura počítače je způsob realizace počítače. Zaměřuje se na návrh a konstrukci zařízení, která zpracovávají data. Zkoumá, jak pracuje CPU a jak přistupuje k paměti.

2.1 Von Neumannova architektura

Architektura popsaná americko-maďarským matematikem Johnem von Neumannem. Popisuje počítač, který má společnou paměť pro instrukce i data. Zpracování dat je *sekvenční*, tj. instrukce se vykonají v přesném pořadí jedna za druhou. Von Neumannova architektura popisuje řadič s aritmeticko-logickou jednotkou jako centrální procesorovou jednotku, která komunikuje s pamětí.

2.2 Řadič

Řadič řídí celou činnost počítače. Řadič v procesoru je nadřazen všem ostatním řadičům (např. pamětový řadič, SATA řadič...) Počítač řídí pomocí řídících signálů, které zasílá jednolivým modulům počítače a odpovědi na tyto signály jsou předány zpět do řadiče.

V dnešní době používáme tzv. *mikroprogramovatelné řadiče*, tedy řadiče řízené kódem, který je uložený v paměti.

Existují tři typy mikroprogramovatelných řadičů:

- Horizontální používá dlouhé mikroinstrukce, které obsahují i řídící signály. Každá mikroinstrukce vyžaduje 1 takt. Mikroinstrukce obsahuje i adresu paměti.
- Vertikální používá krátké mikroinstruke, které však vyžadují více taktů.
- Diagonální kompromis mezi horizontálním a vertikálním. Jedna mikrointrukce vyžaduje 1 takt, ale neobsahuje adresu paměti, proto musí být přítomen i programový čítač.

2.3 Aritmeticko-logická jednotka

Aritmeticko-logická jednotka, neboli ALU provádí logické (negace, konjunkce, disjunkce . . .) a aritmetické (sčítání, násobení, bitový posun . . .) operace s daty podle programu. ALU se používá výhradně pro celočíselné operace. Pro operace s plovoucí desetinnou čárkou se používá tzv. FPU, neboli FLoating-Point Unit, v češtině matematický koprocesor.

Největší velikost dat, se kterým ALU může pracovat se nazývá *slovo*. Dnešní procesory (na architektuře x86-64) mají velikost slova 64 bitů.

2.4 Registry

Registr je nejrychlejší pamět počítače, slouží pro uložení informace o velikosti jednoho slova. CPU používá registry pro práci s čísly a další zpracovávání informací. ALU a FPU mají své vlastní registry o své vlastní délce slova. Délka slova záleží na architektuře daného procesoru a instruknční sady, kterou procesor disponuje.

2.5 Sběrnice

Sběrnice, anglicky bus má za účel zajistit přenos dat a řídících povelů mezi dvěma a více elektronic-kými zařízeními. Přenos dat se řídí stanoveným protokolem – určitým postupem jak a které informace si předat. V posledních letech se od sběrnic ustupuje ve prospěch dvoubodových spojů, na kterých, na rozdíl od sběrnice, jsou data přenášena bez potřeby adresy, čímž se uvolní místo pro jiná data, a navíší se tak výkon. Příkladem sběrnice je USB, zkratka znamenající Universal Serial Bus, či sběrnice PCI. Příkladem dvoubodového spoje je moderní PCIe.

2.6 Centrální procesorová jednotka

Centrální procesorová jednotka, anglicky Central Processing Unit, CPU je souhrnné označení pro ALU, FPU, a řadič. CPU umí vykonávat strojové instrukce a obsluhovat vstupy a výstupy. Na začátku bylo CPU složeno z mnoha individuálních částí, ale v 70. letech minulého století byly všechny části sloučeny do jednoho integrovaného obvodu. CPU, který má části sloučené do integrovaného obvodu se nazývá mikroprocesor.

2.7 Harvardská architektura

Narozdíl od von Neumannovy architektury odděluje Harvardská architektura paměť programu a dat. To znamená, že instrukce a programová data jsou uloženy zvlášť a nesdílí sběrnice. CPU může současně číst instrukci a zároveň přistupovat do paměti dat. Dochází tedy k paralelizaci a tudíž ke zvýšení výkonu oproti sekvenčnímu způsobu přístupu k datům von Neumannovy architektury.

Dnešní procesory spojují tyto architektury dohromady. Uvnitř se chovají podle Harvardské architektury - oddělují paměť pro data a pro instrukce, ale zvenku se chovají podle von Neumannovy architektury, protože načítá data i program z hlavní paměti (RAM) najednou.

2.8 Mikroarchitektury

Představuje způsob, jakým je implementovaná instrukční sada v procesoru. Pro jednu danou instrukční sadu může existovat více mikroarchitektur, např. mikroarchitektura Zen a mikroarchitektura Core implementují instrukční sady x86-64.

Hlavním prvkem mikroarchitektury je *exekuční jednotka*, která zahrnuje ALU, FPU, jednotky pro adresování, jednotky pro předpovídání větvení a *SIMD* (Single Instruction, Multiple Data).

3 Hardware počítače

3.1 Procesor

Je "mozek" počítače. Procesor postupně zpracovává jednotlivé instrukce programu. Moderní procesory jsou vyráběny z křemíkového substrátu (wafer). Na substrát jsou naneseny miliony nanoskopických tranzistorů. Procesor, který se dnes používá se nazývá *mikroprocesor*, protože je celý uložený do pouzdra integrovaného obvodu.

Dnes se výrobou procesorů zabývají firmy, z nichž jsou hlavní *AMD*, *Intel*, *ARM*, *Nvidia*, *Apple*, *Qualcomm*. Intel je schopen i výroby svých mikroprocesorů, kdežto ostatní výrobci jsou odkázáni na dodavatele, jako například *TSMC*. Procesor, který dnes používáme obsahuje krom jádra procesoru i integrovaný rozvaděč tepla, který výrazně napomáhá chlazení.

3.2 Chladiče

Většina elektrické energie dodávaná polovodičovým součástkám je přeměněna na teplo. Protože by se jednotlivé součástky mohly poškodit, je velmi důležité je adekvátně chladit. U procesorů dle *TDP*, *Thermal Design Power* lze určit, jak moc "budou hřát" a podle toho zvolit správný chladič.

Chladiče můžeme rozdělit následovně:

- Pasivní chlazení teplo generované polovodičem se přesune na, většinou hliníkový, chladič, který si vyměňuje teplo s okolím. Pasivní chladiče se v drtivé většině dělají do 37 W, po překročení této hodnoty je skoro nutné přejít na aktivní chlazení.
- Aktivní chlazení lze rozlišit na:
 - Chlazení vzduchem větrák fouká čerstvý vzduch do chladiče a tak značně pomáhá s
 rozptylem tepla. Krom větráku je identický s pasivním chladičem ve funkčnosti i v obecném
 principu funkčnosti.
 - Chlazení vodou používá kapalinu, která proudí skrze uzavřený okruh přes procesor až k radiátoru, kde si s ním vymění teplo. Lze rozdělit na:
 - * AIO All-in-one obsahuje chładící desku, pumpu, kapalinu, trubičky, radiátor a větráky na radiátor v jednom uceleném balení, "plug and play"
 - * Custom loop Všechny výše uvedené části a k tomu rezervoár (nádrž) si koupíte zvlášť a sestavíte se na míru dle svých požadovaných specifikací. Nutné značné úsilí, je dražší.
- Chlazení tekutým dusíkem v extrémních případech, tekutý dusík se nalévá přímo na jádro CPU/GPU. Velice nepraktické k dennímu použití, ale lze tak dosáhnout nejlepšího výkonu.

- 3.3 Základní deska
- 3.3.1 Patice
- 3.3.2 Čipová sada
- 3.3.3 Napájecí kaskády
- 3.3.4 Integrované technologie
- 3.3.5 Sběrnice, piny a jiné konektory
- 3.4 RAM
- 3.4.1 Rozdíly mezi SDR, DDR, QDR
- 3.4.2 Časování a latence
- 3.5 Grafická karta
- 3.5.1 Jádro a VRM
- 3.5.2 Paměť GPU
- 3.5.3 Srovnání CPU a GPU
- 3.6 Disky
- 3.6.1 HDD
- 3.6.2 SSD
- 3.6.3 Archaické disky
- 3.7 Zdroj
- 3.7.1 Hodnocení zdrojů
- 3.8 Rozšiřující karty
- 3.9 Bedny

4 Reference

- https://en.wikipedia.org/wiki/MANIAC_I
- https://en.wikipedia.org/wiki/IBM_Personal_Computer
- https://en.wikipedia.org/wiki/UNIVAC_I
- https://cs.wikipedia.org/wiki/ENIAC
- https://cs.wikipedia.org/wiki/Elektronkov%C3%BD_po%C4%8D%C3%ADta%C4%8D
- https://en.wikipedia.org/wiki/Bombe
- $\bullet \ \, \texttt{https://cs.wikipedia.org/wiki/Turingovsk\%C3\%A1_\%C3\%BAplnost}$
- https://cs.wikipedia.org/wiki/Turing%C5%AFv_stroj
- https://en.wikipedia.org/wiki/Turing_machine
- https://cs.wikipedia.org/wiki/%C5%98adi%C4%8D
- https://cs.wikipedia.org/wiki/%C4%8C%C3%ADta%C4%8D_instrukc%C3%AD
- https://cs.wikipedia.org/wiki/Architektura_po%C4%8D%C3%ADta%C4%8De
- https://en.wikipedia.org/wiki/Processor_register
- https://cs.wikipedia.org/wiki/Aritmeticko-logick%C3%A1_jednotka
- https://cs.wikipedia.org/wiki/Von_Neumannova_architektura
- https://cs.wikipedia.org/wiki/Sb%C4%9Brnice
- https://cs.wikipedia.org/wiki/PCI-Express
- https://cs.wikipedia.org/wiki/Centr%C3%A1ln%C3%AD_procesorov%C3%A1_jednotka
- https://cs.wikipedia.org/wiki/Harvardsk%C3%A1_architektura
- https://cs.wikipedia.org/wiki/Architektura_po%C4%8D%C3%ADta%C4%8De
- https://cs.wikipedia.org/wiki/Mikroarchitektura
- https://cs.wikipedia.org/wiki/Mikroprocesor