Big O

Ashis Kumar Chanda

chanda@rowan.edu

Introduction

- Big O notation is used to classify algorithms according to how their run time grow as the input size grows.
- In other term, how long an algorithm takes to run.
- The letter O is used because the growth rate of a function is also referred to as the **order of the function**.
- Big O notation usually only provides an upper bound on the growth rate of the function.

What is the big O of the following operation:

$$0 X = 10 + 5 x n$$

Suppose, n is any real number.

- Look, the value of n doesn't affect processing of code/algorithm.
- So, it is O(1).

What is the big O of the following operation:

```
o for (i=0; i<n; i++){
    X += 10 + 5 x i
}</pre>
```

- Suppose, n is any real number and n >1.
- Look, the operation is running for n times.
- So, it is O(n).

What is the big O of the following operation:

```
o for (i=0; i<n; i++){
  for (j=0; j<i; j++){
      X += 10 + 5 x j
      }
}</pre>
```

Suppose, n is any real number and n >1.

n	operations
2	1
3	1+2
4	1+2+3
n	1+2+3+ +(n-1)

- Look, the operation is running for n*(n-1)/2 times.
- \circ So, it is O(n²).

What is the big O of the following operation:

```
o for (i=1; i<n; i= i*2 ){
    print (i)
}</pre>
```

- \circ Suppose, n is any real number and n = 16.
- \circ So, it is $O(log_2(n))$.

step	print
1	1
2	2
3	4
4	8
h	Log ₂ (n)

What is the big O of the following operation:

```
o for (i=n; i>=1; i= i/2 ){
    print (i)
}
```

- \circ Suppose, n is any real number and n > 1.
- \circ So, it is $O(log_2(n))$.

Suppose, n is 16

step	print
1	16
2	8
3	4
4	2
5	1

Notes

- In typical usage the O notation is asymptotical, that is, it refers to very large input values.
- As a result, the following simplification rules can be applied:
 - o If f(x) is a sum of several terms, if there is one with largest growth rate, it can be kept, and all others omitted.
 - o If f(x) is a product of several factors, any constants (terms in the product that do not depend on x) can be omitted.

What is the big O of the following operation:

$$\circ$$
 $F(x) = x^4 - 2x + 5$

- \circ So, it is O(n⁴).
- \circ F(x) = $(6x^4 2)/2$
- \circ So, it is O(n⁴).

Different time complexity

Graphs of functions commonly used in the analysis of algorithms

AK Chanda 10

Thanks!