Comparative Study of Multivariable Linear Regression Implementations

Achyant Shrivastava Roll Number: 24155003

May 19, 2025

Contents

1	oduction					
2	Dataset Description					
3	Methodology	3				
	3.1 Part 1: Pure Python Implementation	3				
	3.2 Part 2: NumPy Implementation	4				
	3.3 Part 3: scikit-learn Implementation	4				
4	Results	4				
	4.1 Evaluation Metrics	4				
	4.2 Convergence Plots	5				
	4.3 Metrics Comparison	5				
5	Comparative Analysis					
6	Conclusion					
7	References					

1 Introduction

The objective of this project is to implement and compare three approaches to multi-variable linear regression: core Python, NumPy, and scikit-learn. The aim is to evaluate their convergence speed, predictive accuracy, and overall efficiency using the California Housing Price dataset.

2 Dataset Description

The California Housing Price dataset, available on Kaggle, consists of various socioe-conomic and geographical features along with median house values. It contains 20,600 entries and 10 features including:

- Median Income
- House Age
- Average Rooms
- Average Bedrooms
- Population
- Households
- Latitude
- Longitude
- Median House Value (target)
- Ocean Proximity

I discarded Ocean proximity to avoid complexity with string type feature values. So we take 8 features and 1 target value.

3 Methodology

3.1 Part 1: Pure Python Implementation

This implementation uses only core Python features (lists, loops, math) and follows the gradient descent optimization technique. Feature scaling is manually implemented using min-max normalization.

Algorithm Steps:

- 1. Read data using python in and preprocess the data.
- 2. Initialize weights and bias
- 3. Normalize input features

- 4. Iteratively update weights using gradient descent
- 5. Track cost over iterations, track time and calculate evaluation metrics

Challenges:

- Took a lot of time to compute due to lack of vectorization.
- Need for careful tuning of learning rate (First i took learning rate too small 0.000005 which resulted in consuming lot of time then tuned the learning rate after several attempts, finalize to 0.001).
- Require to think complex looping conditions in order to implement the logic.

3.2 Part 2: NumPy Implementation

Rewritten using NumPy for efficient matrix operations and faster computation. The core logic is maintained for fair comparison.

Benefits:

- Vectorized operations greatly reduce computation time
- Cleaner and more concise code

3.3 Part 3: scikit-learn Implementation

Used the LinearRegression class from the sklearn.linear_model module. Training was done on the same dataset for consistent comparison.

Advantages:

- Optimized solvers
- Built-in model evaluation as not logic impl is needed

4 Results

4.1 Evaluation Metrics

We used the following metrics to assess model performance on training and validation sets:

- Mean Absolute Error (MAE)
- Root Mean Squared Error (RMSE)
- R-squared (R^2 Score)

4.2 Convergence Plots

Figure 1: Cost vs Iterations (Pure Python)

Figure 2: Cost vs Iterations (NumPy)

4.3 Metrics Comparison

Method	MAE	RMSE	R^2 Score	Time Elapsed (in sec)
Pure Python	1.61	2.09	-0.2859	249.1836
NumPy	1.61	2.09	-0.2859	1.5961
scikit-learn	0.80	1.17	0.5942	0.0051

Table 1: Performance Metrics

5 Comparative Analysis

- Convergence Speed: NumPy was significantly faster than core Python due to vectorization.
- Accuracy: All methods yielded similar scores, with minor improvements from scikit-learn.
- Scalability: The scikit-learn model is highly scalable. Core Python struggled with large data.
- Initialization Sensitivity: Learning rate and weight initialization played a critical role in convergence for gradient-based methods.

Figure 3: Regression evaluation metrics comparison

Figure 4: Training time comparison

6 Conclusion

This project illustrated the trade-offs between different implementation strategies for linear regression. While pure Python emphasizes learning and mathematical understanding, NumPy offers performance, and scikit-learn offers ease-of-use and efficiency.

7 References

- Kaggle California Housing Dataset: https://www.kaggle.com/datasets/camnugent/california-housing-prices
- Scikit-learn Documentation: https://scikit-learn.org
- ChatGPT by OpenAI (used for conceptual guidance and a few part of Python code structure, graph plotting and LATEX code syntax)