Introduction to Digital Systems Part III (Sequential Components) 2020/2021

Analysis of Clocked Synchronous Finite State Machines

Lecture Contents

- Analysis of Clocked Synchronous Finite State Machines
 - Typical structure
 - Mealy machine
 - Moore machine
 - Next state and output logic
 - State, transition and output tables
 - State diagrams
 - Timing analysis

Figures and most content extracted from: John F. Wakerly, "Digital Design – Principles and Practices", 4 ed., Pearson – Prentice Hall, 2006 (chapter 7). Reading chapter 7 (4th ed.) or chapter 10 (5th ed.) is highly recommended.

Clocked Synchronous Finite State Machines

- Why?
 - "Finite State Machine" (FSM)
 - "Clocked"
 - "Synchronous"
- State change at clock "tick"

FSM Structure (Mealy Machine)

Figure 7-35 Clocked synchronous state-machine structure (Mealy machine).

next state = F(current state, inputs)

outputs = G(current state, inputs)

FSM Structure (Moore Machine)

Figure 7-36 Clocked synchronous state-machine structure (Moore machine).

next state = F(current state, inputs)
outputs = G(current state)

Latches and Flip-flops Characteristic Equations

 Characteristic Equation – what is the next state depending on current state and input(s)?

Device Type	Characteristic Equation
S-R latch	$Q* = S + R' \cdot Q$
D latch	Q* = D
Edge-triggered D flip-flop	Q* = D
D flip-flop with enable	$Q* = EN \cdot D + EN' \cdot Q$

Table 7-1

Latch and flip-flop characteristic equations.

Clocked Synchronous FSM Analysis

The analysis of a clocked synchronous state machine has three basic steps:

- 1. Determine the next-state and output functions *F* and *G*.
- 2. Use F and G to construct a *state/output table* that completely specifies the next state and output of the circuit for every possible combination of current state and input.
- 3. (Optional) Draw a *state diagram* that presents the information from the *state diagram* previous step in graphical form.

Figure 7-35 Clocked synchronous state-machine structure (Mealy machine).

Example of an FSM Logic Circuit

Example of an FSM Logic Circuit

Excitation equations

 $D0 = Q0 \cdot EN' + Q0' \cdot EN$

 $D1 = Q1 \cdot EN' + Q1' \cdot Q0 \cdot EN + Q1 \cdot Q0' \cdot EN$

Charateristic equations

Q0* = D0

Q1* = D1

Transition equations

 $Q0* = Q0 \cdot EN' + Q0' \cdot EN$

 $Q1* = Q1 \cdot EN' + Q1' \cdot Q0 \cdot EN + Q1 \cdot Q0' \cdot EN$

Output(s) equation(s)

 $MAX = Q1 \cdot Q0 \cdot EN$

Transition, State and State/Output Tables

Transition equations

Q0* = Q0 · EN' + Q0' · EN Q1* = Q1 · EN' + Q1' · Q0 · EN + Q1 · Q0' · EN Output(s) equation(s)

 $MAX = Q1 \cdot Q0 \cdot EN$

What is the purpose of the circuit and the role of its inputs and outputs?

a)		E	N
	Q1 Q0	0	1
	00	00	01
	01	01	10
	10	10	11
	11	11	00
		Q1*	Q0*

	E	N
s	0	1
Α	Α	В
В	В	С
С	C	D
D	D	Α
	S	*

Table 7-2
Transition, state, and state/output tables for the state machine in Figure 7-38.

State Diagram for a Mealy Machine

	EN		
s	0	1	
Α	A, 0	В, 0	
В	B, 0	C, 0	
С	C, 0	D, 0	
D	D, 0	A, 1	
	S*, MAX		

Figure 7-39
State diagram
corresponding to the
state machine of
Table 7-2.

Outputs in a Moore Machine

Table 7-3
State/output table for
a Moore machine.

	EN		
s	0	1	MAXS
Α	Α	В	0
В	В	C	0
С	С	D	0
D	D	Α	ibni1o
	S	*	

State Diagram for a Moore Machine

01	E	N	
s	0	1	MAXS
Α	Α	В	0
В	В	С	0
C	C	D	0
D	D	Α	1
	S	*	

Figure 7-40
State diagram
corresponding to the
state machine of
Table 7-3.

Redrawn Logic Diagram

Transition equations

 $Q0* = Q0 \cdot EN' + Q0' \cdot EN$

 $Q1* = Q1 \cdot EN' + Q1' \cdot Q0 \cdot EN + Q1 \cdot Q0' \cdot EN$

Output(s) equation(s)

 $MAX = Q1 \cdot Q0 \cdot EN$

Figure 7-41 Redrawn logic diagram for a clocked synchronous state machine.

Cascading Two Counters

Using MAX output

Using MAXS output

Timing Analysis

Purpose

 Obtain all the circuit delays with the aim of determine the maximum operating frequency

Ideal vs. real circuits

- Real circuits exhibit propagation, setup and hold times
- In ideal circuits all these timing parameters are zero

Simplifications

- Single clock domain fully synchronous circuits
- Flip-flop "hold time" lower than both propagation times $(T_{pLH} \text{ and } T_{pHL})$

Timing Analysis - A Simple Example

- Flip-flop(s) without combinatorial logic in between / in the feedback path
- What is the maximum operating frequency / minimum period of CLK?

$$T_{min}$$
 when $T_{slack} = 0$

$$T_{min} when T_{slack} = 0$$
 $T_{min} = \max(T_{pHL}, T_{pLH}) + T_{setup}$

$$f_{max} = \frac{1}{T_{min}}$$

Timing Analysis - Another Example

- Flip-flop(s) with simple logic gate in between / in the feedback path
- What is the maximum operating frequency / minimum period of CLK?

$$T_{min} \ when \ T_{slack} = 0 \quad T_{min} = \max(T_{pHL}, T_{pLH}) + T_{gate} + T_{setup} \quad f_{max} = \frac{1}{T_{min}}$$

Synchronous Circuit General Structure

What is the maximum operating frequency / minimum period of CLK?

$$T_{min}$$
 when $T_{slack} = 0$

$$T_{min} = \max(T_{pHL}, T_{pLH}) + T_{criticalpath} + T_{setup}$$

$$f_{max} = \frac{1}{T_{min}}$$

FSM Timing Analysis

Figure 7-38 Clocked synchronous state machine using positive-edge-triggered D flip-flops.

$$T_{min} = ?$$
$$f_{max} = ?$$

Consider:

$$T_{pHL} = 4 \text{ ns}$$

$$T_{pLH} = 5 \text{ ns}$$

$$T_{\text{setup}} = 3 \text{ ns}$$

$$T_{hold} = 1$$
ns

Another FSM Example

Another FSM Example **Excitation Equations**

$$D0 = Q1' \cdot X + Q0 \cdot X' + Q2$$

$$D1 = Q2' \cdot Q0 \cdot X + Q1 \cdot X' + Q2 \cdot Q1$$

$$D2 = Q2 \cdot Q0' + Q0' \cdot X' \cdot Y$$

Another FSM Example Transition Equations

 $Q0* = Q1' \cdot X + Q0 \cdot X' + Q2$ $Q1* = Q2' \cdot Q0 \cdot X + Q1 \cdot X' + Q2$

Another FSM Example Output Equations

Another FSM Example – Transition / Output and State / Output Tables

$$Q0* = Q1' \cdot X + Q0 \cdot X' + Q2$$

$$Q1* = Q2' \cdot Q0 \cdot X + Q1 \cdot X' + Q2 \cdot Q1$$

$$Q2* = Q2 \cdot Q0' + Q0' \cdot X' \cdot Y$$

$$Z1 = Q2 + Q1' + Q0'$$

$$Z2 = Q2 \cdot Q1 + Q2 \cdot Q0'$$

Table 7-4

Transition/output and state/output tables for the state machine in Figure 7-43.

		X	Y		
Q2 Q1 Q0	00	01	10	11	Z1 Z2
000	000	100	001	001	10
001	001	001	011	011	10
010	010	110	000	000	10
011	011	011	010	010	00
100	101	101	101	101	11
101	001	001	001	001	10
110	111	111	111	111	11
111	011	011	011	011	11
	(Q2* Q	1* Q0	*	0

)						
	s	00	01	10	11	Z1 Z2
	Α	Α	E	В	В	10
	В	В	В	D	D	10
	C	C	G	Α	Α	10
	D	D	D	C	C	00
	E	F	F	F	F	- 11
	F	В	В	В	В	10
	G	Н	Н	Н	Н	11
	Н	D	D	D	D	11
	743		S	*		

Another FSM Example State Diagram

Conclusion

- At the end of this lecture and corresponding lab, it is fundamental to know how to analyse sequential circuits described by finite state machines and implemented with D type flip-flops, including functional/behavioral and timing aspects
- Plan for the next lectures
 - Synthesis of sequential circuits (Finite State Machines)
 - Standard sequential circuits
 - Registers and shift registers
 - Counters
 - Iterative vs. sequential circuits

Reading chapter 7 (4th ed.) or chapter 10 (5th ed.) of *John F. Wakerly,* "Digital Design – Principles and Practices", Pearson – Prentice Hall, is highly recommended.