

Agenda

- 1. Einführung
- 2. Vorgehen
- 3. Hands-on Coding
- 4. Exkurs
- Praxisbeispiel

Coding Challenge ©

Motivation Organisation Seminarthemen Ausblick

Umsetzung

- Vorlesungen: Die Vorlesungen werden einige Inhalte des Buches aufgreifen und weiter vertiefen.
- Seminarbeiträge: Pro Seminarthema soll ein entsprechender Vortrag (Folien, Code-Beispiele, ...) ausgearbeitet werden, welcher sich an den entsprechenden Abschnitten des Buches orientiert.
 - Kleingruppen: Bearbeitung in Kleingruppen (2-3 Teilnehmer)
 - ▶ Vortrag: Ca. 60 (2er Teams) bzw. 90 Minuten (3er Teams); auf Deutsch
 - Inhalte: Abschnitte des Buches sowie ggf. Sekundärliteratur
- 3 Challenge: Bearbeitung eines Deep-Learning-Problems in Kleingruppen
 - Code + Flash Talk: Entwicklung eines entsprechenden Deep-Learning-Ansatzes; kurze Präsentation
 - Ausarbeitung: 4 (2er Team) bzw. 6 Seiten (3er Teams); Deutsch oder Englisch Vorlage: https://www.acm.org/publications/proceedings-template Overleaf: https://www.overleaf.com/latex/templates/ association-for-computing-machinery-acm-sig-conference-proceedings-template/ bmwfbcdoxftv
- Mündliche Prüfung: Abschließende Prüfung (individuell)
 - ► Umfang: 20 Minuten
 - ▶ Inhalt: Vorlesungen + alle Seminarvorträge + Deep-Learning-Challenge

Virtuelle Anwesenheit bei allen Veranstaltungen falls möglich :-).

Coding Challenge ©

- Challenge: Bearbeitung eines Deep-Learning-Problems in Kleingruppen
 - Code + Flash Talk: Entwicklung eines entsprechenden Deep-Learning-Ansatzes; kurze Präsentation
 - Ausarbeitung: 4 (2er Team) bzw. 6 Seiten (3er Teams); Deutsch oder Englisch Vorlage: https://www.acm.org/publications/proceedings-template Overleaf: https://www.overleaf.com/latex/templates/ association-for-computing-machinery-acm-sig-conference-proceedings-template/ bmvfhcdnxfty
- Ziel: Binary Image Classifier → Unterscheidung Pferd vs. Mensch
- Problem: ~1000 Bilder = zu wenig Trainingsdaten 🥲
- Reguläres Trainieren: < 50% accuracy

1. Einführung

Vortrainiertes Modell

- Nutze Gelerntes von ähnlichem Modell
 - → untere Layer übernehmen
 - (= grundlegendere Zusammenhänge)
- ↑Ähnlichkeit → mehr Layer übernehmen
- × neg. transfer → N Performance
 - Vortrainiertes Modell nicht ähnlich
 - Kleine & dichte Modelle:
 aufgabenspezifische Muster

Wie vorgehen?

TRADITIONELLES ML

- Isoliertes Lernen von Einzelaufgaben
- → Wissen nicht einbehalten
- → Lernen erfolgt ohne Berücksichtigung von bereits gelerntem Wissen aus anderen Aufgaben

TRANSFER LEARNING

The next big thing?

6

Wie gehen wir vor? 🤥

- Dasselbe Input-Format wird benötigt
- Gelerntes Übertragen = untere
 Schichten inkl. Gewichte übernehmen
- Anderer Output
- Output Schicht hat zufällig initialisierte Gewichte
 → große Errors → alle Gewichte
 beeinflusst = vergisst Gelerntes

- Preprocessing: auf vortrainierten Modell-Input anpassen
- 2. Feature extraction
 - 1. Alle übernommenen Gewichte einfrieren
 - 2. Output Schicht (= classifier head)
 hinzufügen
 - 3. Deren Gewichte trainieren
- 3. Fine tuning
- → Bei schlechter Performance: ungünstige
 #Schichten übernommen? → weniger
 übernehmen

Wie sieht's im Code aus? 🖺

https://colab.research.google.com/drive/1d8besbXkXBHt5H3XXEJX5O-Fdmu4MKtI?usp=sharing

Hands on Coding

Jetzt seid ihr gefragt ⋘ Löst zusammen die Code-Challenge!

• Vorgehen: 2 Gruppen mit vorgehen: 2 Gruppen mit

- Gruppe A: vortrainiertem Modell mit IM ♣GENET
- Gruppe B: zufällige Gewichten
- Code-Lücken ausfüllen [~ 10 min]
- Vergleich der Ergebnisse √

Vergleich der Ergebnisse

Gruppe A: ImageNet-Gewichte

Gruppe B: zufällige Gewichte

Fine Tuning 🍥

Nicht nur Klassifikator (oberste Schicht) trainieren, sondern mehrere obere Schichten des vorab trainierten Modells

- → Nur wenn vorherige Schritte bereits durchgeführt wurden
- → Keine tiefen Schichten
- → Lernrate verringern

Fine Tuning 🍥

Vortrainierte Modelle

**TensorFlow Hub

```
!pip install --upgrade tensorflow_hub
import tensorflow_hub as hub
model = hub.KerasLayer("https://tfhub.dev/google/nnlm-en-dim128/2")
embeddings = model(["The rain", "in Spain", "falls", "In the plain!"])
print(embeddings.shape) #(4,128)
```


Interoperabilität durch 🕼 ONNX

• Open Neural Network Exchange (ONNX): offenes Format

- Modelle nicht mehr fest an bestimmtes Framework gebunden
- Modelle können leicht zwischen Frameworks verschoben werden,
 - z.B. bei Marktveränderungen
- → Bessere Nutzung von Hard- und Softwareressourcen
- → Kürzere Entwicklungszeiten

Konvertierung: K Keras → Ø ONNX

```
import onnxmltools
from keras.models import load_model
# Update the input name and path for your Keras model
input keras model = 'model.h5'
# Change this path to the output name and path for the ONNX model
output_onnx_model = 'model.onnx'
# Load your Keras model
keras model = load model(input keras model)
# Convert the Keras model into ONNX
onnx_model = onnxmltools.convert_keras(keras_model)
# Save as protobuf
onnxmltools.utils.save_model(onnx_model, output_onnx_model)
```

5. Praxisbeispiel

Autonomes Fahren

- 8 Kameras
- Rekurrentes neuronales Netz mit 16 Zeitschritten
- Jeder Forward pass: 4096 Bilder

→ Schaffen nicht einmal 2 GPUs!

Teslas Lösung 🖓

- Architektur: HydraNets
- 48 neuronal network heads
- → Tiefe Schichten (backbones)
 werden geteilt

Take home message

- Transfer learning...
 - ... bezeichnet das Wiederverwenden von Schichten vortrainierter Modelle bei einem ähnlichen Problem
 - + Spart Trainingszeit
 - + Erhöht Performance
 - + Ermöglicht performante neuronale Netzwerke schon mit geringer Menge an Trainingsdaten

Abbildungsverzeichnis

- Bottle PR. (2020). School Absorbing GIF. GIPHY. https://giphy.com/gifs/wearebottle-school-knowledge-scooping-KCqO4k31TnkC2pT5LY
- Ruder, S. (2017). Transfer Learning Machine Learning's Next Frontier. https://ruder.io/transfer-learning/index.html#whytransferlearningnow
- Dilmegani, C. (2021). Transfer Learning in 2021: What It Is & How It Works. AI Multiple. https://research.aimultiple.com/transfer-learning/
- Sarkar, D. (2019). Guide to Transfer Learning with Real-World Applications in Deep Learning. Third Eye Data. https://thirdeyedata.io/a-comprehensive-hands-onguide-to-transfer-learning-with-real-world-applications-in-deep-learning/

Literaturverzeichnis 🞏

- Asgarian, A. (2018). An Introduction to Transfer Learning. Medium. https://medium.com/georgian-impact-blog/transfer-learning-part-1-ed0c174ad6e7
- Code mit FloW. (2020). Was Ist das Transfer Learning? | Künstliche Intelligenz. YouTube. https://www.youtube.com/watch?v=K csnXsNN5Q
- Cohen, J. (2020). Computer Vision at Tesla. Heartbeat. https://heartbeat.fritz.ai/computer-vision-at-tesla-cd5e88074376
- Dilmegani, C. (2021). Transfer Learning in 2021: What It Is & How It Works. AI Multiple. https://research.aimultiple.com/transfer-learning/
- Géron, A. (2019). Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow (2nd ed.). O'Reilly Media, Inc.
- Kaggle. (2018). Transfer Learning | Kaggle. YouTube. https://www.youtube.com/watch?v=mPFq5KMxKVw
- Luber, S., & Litzel, N. (2019). Was ist ONNX (Open Neural Network Exchange)? https://www.bigdata-insider.de/was-ist-onnx-open-neural-network-exchange-a-851510/
- Persson, A. (2020). TensorFlow Tutorial 11 Transfer Learning, Fine Tuning and TensorFlow Hub. YouTube. https://www.youtube.com/watch?v=WJZoywOG1cs
- Ruder, S. (2017). Transfer Learning Machine Learning's Next Frontier. https://ruder.io/transfer-learning/index.html#whytransferlearningnow
- Sarkar, D. (2019). Guide to Transfer Learning with Real-World Applications in Deep Learning. Third Eye Data. https://thirdeyedata.io/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning/
- TensorFlow. (2021a). TensorFlow Hub. https://www.tensorflow.org/hub
- TensorFlow. (2021b). Transfer Learning and Fine-Tuning. TensorFlow Advanced. https://www.tensorflow.org/tutorials/images/transfer learning

Backlog

Rekurrentes neuronales Netz

Notationen & Definitionen

- Anwendungsbereich/Domain $\mathfrak{D} = \{X, P(X)\}$
 - + Feature space (= Merkmalsraum) X
 - + Marginal probability distribution P(X) where $X = \{x_1, x_2, x_3, ..., xn\} \in X$
- Unterschiedliche domains liegen vor, wenn:
 - + $Xt \neq X$
 - + Randvt.: $P(Xt) \neq P(Xs)$

- Task $T = \{Y, f(.)\} = \{Y, P(Y|X)\}$
 - + Label space (= Beschriftungsraum) Y
 - + Training data $\{(x_i, y_i) | i \in \{1, 2, ..., N\}$
 - + Predictive function f(.): $f(x_i) = p(y_i | x_i)$
- Unterschiedliche tasks liegen vor, wenn:
 - + *Y*t ≠ *Y*s
 - + Wahrscheinlichkeitsvt.:
 (P(Yt|Xt) ≠ P(Ys|Xs))

Notationen & Definitionen

• "Given a source domain $\mathfrak{D}s$ and corresponding learning task $\mathcal{T}s$, a target domain $\mathfrak{D}t$ and learning task $\mathcal{T}t$, transfer learning aims to improve the learning of the conditional probability distribution $P(Yt \mid Xt)$ in $\mathfrak{D}t$ with the information gained from $\mathfrak{D}s$ and $\mathcal{T}s$, where $\mathfrak{D}t \neq \mathfrak{D}s$ or $\mathcal{T}t \neq \mathcal{T}s$ " (Asgarian, 2018)

• Entweder Dt ≠ Ds oder Tt ≠ Ts -> 4 Szenarien (vgl. Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big Data, 3(1).

doi:10.1186/s40537-016-0043-6)

Kategorien

HOMOGENES TL

- Xt = Xs, Yt = Ys -> Lücke in
 Datenverteilung überbrücken:
 P(Xt) ≠ P(Xs) und/oder P(Yt|Xt) ≠
 P(Ys|Xs)
- Lösungsansätze:
 - + Verbinde Randverteilungsunterschiede: P(Xt) ≠ P(Xs)
 - + Korrigiere bedingte Verteilungsdifferenz: P(Yt|Xt) ≠ P(Ys|Xs)
 - + Korrigiere beides

HETEROGENES TL

 Xt ≠ Xs (generell ohne Überschneidungen) und/oder Yt ≠ Ys
 -> Lücke in Merkmalsraum überbrücken, Problem auf Homogenität reduzieren

