Intégration complexe

Théorème et hypothèses	Formule
Fonctions holomorphes	
Formule de Cauchy	
avec l'indice	$I_{\gamma}(z_0)f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz$
U ouvert étoilé, $z_0 \in U$,	$\int_{\gamma}^{\gamma} (z_0)^{\gamma} (z_0)^{-1} 2\pi i \int_{\gamma}^{\gamma} z - z_0^{\alpha z}$
$f:U\to\mathbb{C}$ holomorphe,	$I_{\gamma}(f, z_0) = I_{\gamma}(1, z_0)f(z_0)$
γ lacet C^1pm où $z_0 \notin \gamma([a,b])$	y 0 / 0 / y c / 0 / y c 0 /
Formule de Cauchy	
version à paramètre réel	$1 \int_{0}^{2\pi} f(-1) dt$
U ouvert étoilé, $z_0 \in U$,	$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt$
$f: U \to \mathbb{C}$ holomorphe, $\overline{D}(z_0, r) \subseteq U$	50
Théorème de Cauchy	
avec l'indice	1 $f(z)$
U ouvert, $f:U\to\mathbb{C}$ holomorphe	$a_n = \frac{1}{2\pi i} \int_{\partial D(z_0, r)} \frac{f(z)}{(z - z_0)^{n+1}} dz$
$z_0 \in U$ et $\overline{D}(z_0, R) \subseteq U$, $R \in \overline{\mathbb{R}}_+$	
$\forall z \in D(z_0, R) \ f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$	pour tout $0 < r < R$
Théorème de Cauchy	$1 \int_{0}^{2\pi} dt$
version à paramètre réel	$a_n = \frac{1}{2\pi r^n} \int_0^{2\pi} f(z_0 + re^{it}) e^{-int} dt$
Aucune différence	$\begin{array}{c} 2Rr & y_0 \\ \text{pour tout } 0 < r < R \end{array}$
Inégalité de Cauchy	pour tout o < r < r
U ouvert, $f:U\to\mathbb{C}$ holomorphe	$ c(n)c \leq n!$
$z_0 \in U$ et $D(z_0, R) \subseteq U$	$ f^{(n)}(z_0) \le \frac{n!}{r^n} \sup_{t \in [0,2\pi]} f(z_0 + re^{it}) $
$r \in]0, R[, n \in \mathbb{N}]$	$t \in [0,2\pi]$
Fonctions méromorphes	
Coefficients de Laurent	Mêmes formules que le théorème de
$f: \mathcal{C}(z_0, R_1, R_2) \to \mathbb{C}$ holomorphe	Cauchy pour les a_n
$\forall z \ f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$	
Résidu	$P_{\alpha}(f_{\alpha})$ 1 $\int_{\alpha}^{\alpha} f(x) dx$
$f: U \to \mathbb{C}$ méromorphe, z_0 pôle de f	$\operatorname{Res}(f, z_0) = \frac{1}{2\pi i} \int_{\partial D(z_0, r)} f(z) dz$
j. 0 7 c meromorphe, 2 ₀ pole de j	pour tout r t. q. f holomorphe sur $D^*(z_0, r)$
Formule des résidus	_
U ouvert étoilé non vide,	$\int_{\gamma} f(z)dz = 2\pi i \sum_{z_0 \in P_{\gamma}(f)} I_{\gamma}(z_0) \operatorname{Res}(f, z_0)$
$f:U o\mathbb{C}$ méromorphe,	•
γ lacet \mathcal{C}^1pm où $\gamma([a,b])$ ne contient	où $P_{\gamma}(f)$ est l'ensemble des pôles de f
aucun pôle de f	(tels que $I_{\gamma}(z_0) \neq 0$)
Expression pratique des résidus	$g(z) = (z - z_0)^k f(z)$
On reprend les hypothèses précédentes	
z_0 pôle d'ordre k de f	Res $(f, z_0) = \frac{g^{(k-1)}(z_0)}{(k-1)!}$ (en limite)
R tel que f n'a qu'un pôle sur $D(z_0, R)$	$\operatorname{Dos}(f, z) = \lim_{n \to \infty} (z, z) f(z)$
$Cas\ k=1$	Res $(f, z_0) = \lim_{z \to z_0} (z - z_0) f(z)$