

Ивакин Кирилл Б01-907

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках. **Оборудование:** электромагнит с регулируемым источником питания; вольтметр; амперметр; миллиамперметр; милливеберметр или миллитесламетр; источник питания (1,5 B), образцы легированного германия.

1 Теория

1.1 Движение носителей заряда в металлах и полупроводниках

Проводимость большинства твёрдых тел связана с движением электронов. Электроны входят в состав атомов всех тел, однако одни тела не проводят электрический ток (диэлектрики), а другие являются хорошими его проводниками. Причина различия заключается в особенностях энергетического состояния внешних электронов в атомах этих веществ.

При объединении атомов в твёрдое тело — кристалл — внешние (валентные) электроны теряют связь со «своими» атомами и становятся принадлежностью всего кристалла. Каждый уровень энергии электрона. В промежутках между зонами допустимых состояний электрона нет — эти области называют запрещёнными зонами.

Рис. 1: Структура состояний а) металла, б) полупроводника, в) диэлектрика

Если одна из зон полностью заполнена электронами, а следующая — пуста, то под действием слабого внешнего электрического поля электроны не могут изменить своё состояние, а значит, и не могут прийти в упорядоченное движение. Тогда вещество является ∂ иэлектриком. Верхняя из заполненных зон называется валентнойзоной.

Положение меняется, если в кристалле имеется зона, частично заполненная электронами. В этом случае внешнее электрическое поле может изменить распределение электронов по уровням энергии и вызвать их упорядоченное движение. Частично заполненная зона называется зоной проводимостии.

Если ширина запрещённой зоны E не слишком велика по сравнению с тепловой энергией $(E=k_{\rm B}T)$, тепловое движение перебрасывает часть электронов из валентной зоны в свободную зону проводимости над ней. При этом в зоне проводимости появляются электроны, а в валентной зоне — вакантные места — дырки. Как электроны в зоне проводимости, так и дырки в валентной зоне участвуют в переносе заряда. Такие вещества называются полупроводникам и. Проводимость полупроводников экспоненциально растёт с повышением температуры, поскольку вероятность для электрона преодолеть запрещённую зону определяется распределением Больцмана.

1.2 Эффект Холла

Во внешнем магнитном поле В на заряды действует сила Лоренца:

$$\mathbf{F} = q\mathbf{E} + q\mathbf{u} \times \mathbf{B}.\tag{1}$$

Эта сила вызывает движение носителей, направление которого в общем случае не совпадает с Е. Действительно, траектории частиц будут либо искривляться, либо, если геометрия проводника этого не позволяет, возникнет дополнительное электрическое поле, компенсирующее магнитную составляющую силы Лоренца. Возникновение поперечного току электрического поля в образце, помещённом во внешнее магнитное поле, называют эффектом Холла.

Выразим общую связь между ${\bf E}$ и ${\bf j}$ для случая носителей одного типа. Магнитное поле направим вдоль оси ${\bf z}$, а о направлении ${\bf E}$ и ${\bf j}$ никаких предположений делать не будем. При движении носителей с постоянной средней скоростью сила Лоренца будет уравновешена трением со стороны среды

Рис. 2: Силы, действующие на положительный носитель заряда в проводящей среде при наличии магнитного поля

$$q(\mathbf{E} + \mathbf{u} \times \mathbf{B}) - q\frac{\mathbf{u}}{\mu} = 0 \tag{2}$$

Этот баланс сил можно переписать как

$$\mathbf{E} = \frac{\mathbf{j}}{\sigma_0} - \frac{1}{nq} \mathbf{j} \mathbf{B} \tag{3}$$

где $\sigma_0 = qn\mu$

Введя тензор удельного сопротивления $\hat{\rho}$ получим

$$\mathbf{E} = \hat{\rho}\mathbf{j} = \begin{pmatrix} 1 & -\mu B & 0\\ \mu B & 1 & 0\\ 0 & 0 & 0 \end{pmatrix} \frac{\mathbf{j}}{\sigma_0}$$
 (4)

1.3 Мостик Холла

Для исследования зависимости проводимости среды от магнитного поля в нашем опыте используют $мостик \ Xonna.$

Рис. 3: мостик Холла

В данной схеме ток вынуждают течь по оси x вдоль плоской пластинки (ширина пластинки a, толщина h, длина l). Сила Лоренца, действующая со стороны перпендикулярного пластинке магнитного поля, «прибивает» носители заряда к краям образца, что создаёт холловское электрическое поле, компенсирующее эту силу. Поперечное напряжение между краями пластинки (холовское напряжение $U_{\perp} = E_y * a$, где согласно (4)

$$E_y = \rho_{yx} j_x = \frac{j_x B}{nq} \tag{5}$$

Плотность тока, текущего через образец, равна $j_x = I/ah$, где I — полный ток, а h — поперечное сечение. Таким образом, для холловского напряжения имеем

$$U_{\perp} = \frac{B}{nah}I = R_H \frac{B}{h}I \tag{6}$$

Где константу

$$R_H = \frac{1}{nq} \tag{7}$$

называют *константой Холла* Знак постоянной Холла определяется знаком заряда носителей. Продольная напряжённость электрического поля равна

$$E_x = \rho_{xx} j_x = j_x / \sigma_0 \tag{8}$$

и падение напряжения $U_{\parallel}=E_x l$ вдоль пластинки определяется омическим сопротивлением образца $R_0=l/(\sigma_0 ah)$

$$U_{\parallel} = IR_0 \tag{9}$$

2 Эксперементальная установка

В работе изучаются особенности проводимости полупроводников в геометрии мостика Холла. Ток пропускается по плоской полупроводниковой пластинке, помещённой в перпендикулярное пластинке магнитное поле. Измеряется разность потенциалов между краями пластинки в поперечном к току направлении. По измерениям определяется константа Холла, тип проводимости (электронный или дырочный) и на основе соотношения (3.28) вычисляется концентрация основных носителей заряда.

Рис. 4: Эксперементальная установка

В зазоре электромагнита (рис. 1а) создаётся постоянное магнитное поле, величину которого можно менять с помощью регулятора источника питания электромагнита. Ток питания электромагнита измеряется амперметром А 1 (внешним или встроенным в источник).

Направление тока в обмотках электромагнита меняется переключением разъёма К 1. Градуировка электромагнита (связь тока с индукцией поля) проводится при помощи милливеберметра или миллитесламетра на основе датчика Холла.

Прямоугольный образец из легированного германия, смонтированный в специальном держателе, подключается к источнику питания (≈ 1.5 B). При замыкании ключа К 2 вдоль длинной стороны образца течёт ток, величина которого регулируется реостатом R 2 и измеряется миллиамперметром A 2. В образце, помещённом в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов U_{34} , которая измеряется с помощью вольтметра V.

Контакты 3 и 4 вследствие неточности подпайки могут лежать не на одной эквипотенциали. Тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения вдоль пластинки. Исключить этот эффект можно, изменяя направление магнитного поля, пронизывающего образец. При обращении поля ЭДС Холла меняет знак, а омическое падение напряжения остаётся неизменным. Поэтому ЭДС Холла U_{\perp} может быть определена как половина алгебраической разности показаний вольтметра, полученных для двух противоположных направлений магнитного поля в зазоре: $U = \frac{1}{2} \left(U_{34}^+ + U_{34}^- \right)$.

Альтернативно можно исключить влияние омического падения напряжения, если при каждом значении тока через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного

поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение U 0 остаётся неизменным. От него следует (с учётом знака) отсчитывать величину ЭДС Холла:

$$U_{\perp} = U_{34} - U_0 \tag{10}$$

При таком способе измерения нет необходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку U_{\perp} можно определить характер проводимости — электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение U 35 между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по формуле

$$_{0}=\frac{U_{35}ah}{II}\tag{11}$$

где l - расстояние между контактами 3 и 5, a - ширина образца, h - его толщина.

3 Ход работы

3.1 Градуировка электромагнита

Расчитаем индукцию магнитного поля B для каждого значения тока и построим график зависимости $B=f(I_M)$. Для этого воспользуемся милливеберметром, класс точности которого состовляет 0.5, а также формулой $\Phi=BSN$, где $BS=75 {\rm cm}^2/{\rm But}$ для нашей установки. Ток будем менять с помощью источника питания GPR-11H30, погрешность которого равна 0.02 A.

I, A	0.0	0.23	0.53	0.71	0.90	1.11	1.38
Ф, мВб	0.1	2.3	4.4	6.0	7.4	8.9	10.9
B, м T л,	13.3	306.5	586.6	800.0	986.6	1186.6	1453.3

Таблица 1: Градуировка электромагнита

Рис. 5: график зависимости $B = f(I_M)$

С помощью метода наименьших квадратов определим коеффициент наклона графика

$$k_1 = 1078.5 \pm 14.1 \; {
m мТл/A}$$

3.2 Эдс Холла

Расчитаем ЭДС Холла и построим на 1 графике семейство характеристик $\xi_x = f(I_m)$ (рис. 6):

I, A	0.0	0.1	0.3	0.5	0.7	0.9	1.0
U_34 , мВ	0.050	0.038	0.010	-0.015	-0.038	-0.057	-0.065

Таблица 2: $I_0 = 0.34$ мА

I, A	0.0	0.1	0.3	0.5	0.7	0.9	1.0
U_34 , мВ	0.065	0.050	0.013	-0.019	-0.047	-0.072	-0.082

Таблица 3: $I_0 = 0.43$ мА

I, A	0.0	0.1	0.3	0.5	0.7	0.9	1.0
U_34 , мВ	0.082	0.062	0.018	-0.022	-0.057	-0.088	-0.100

Таблица 4: $I_0 = 0.53$ мА

I, A	0.0	0.1	0.3	0.5	0.7	0.9	1.0
U_34 , мВ	0.107	0.082	0.026	-0.034	-0.074	-0.115	-0.131

Таблица 5: $I_0 = 0.69$ мА

<i>I</i> , A	0.0	0.1	0.3	0.5	0.7	0.9	1.0
U_34 , мВ	0.127	0.098	0.032	-0.034	-0.088	-0.133	-0.153

Таблица 6: $I_0 = 0.82 \text{ мA}$

I, A	0.0	0.1	0.3	0.5	0.7	0.9	1.0
U_34 , мВ	0.150	0.114	0.035	-0.037	-0.103	-0.158	-0.182

Таблица 7: $I_0 = 0.96$ мА

Рис. 6: график семейства характеристик $\xi_x = f(I_m)$

Запишем коэффициенты получившихся прямых. Коэффициенты и их погрешности были посчитамы методом наименьших квадратов.

I_0 , мА	0.34	0.43	0.53	0.69	0.82	0.96
к, мВ/Тл	-0.114	-0.145	-0.179	-0.236	-0.278	-0.328
σ_k , м B/T л	0.004	0.005	0.006	0.009	0.010	0.010

Таблица 8: Коэффиценты наклона $\xi_x = f(I_0)$

Рис. 7: график коффициентов наклона $k=f(I_0)$

По полученным данным построим график зависимости $k = f(I_0)$ (рис. 7). С помощью метода наименьших квадратов найдём угловой коэффициент этой прямой.

$$K = -0.23 \pm 0.02 \; \mathrm{B/T}$$
л А

3.3 Расчёты

Расчитаем постоянную Холла R_x

$$R_x = -Ka = (0.506 \pm 0.044) \cdot 10^{-3} \frac{\text{B} \cdot \text{M}}{\text{A} \cdot \text{Tr}_{\text{I}}}$$

Расчитаем концентрацию носителей в образце

$$n = \frac{1}{R_x e} = (6.84 \pm 0.03) \cdot 10^{21} \text{M}^{-3}$$

Подвижность носителей заряда равна

$$b = \frac{\sigma}{en} = (0.24 \pm 0.03) \frac{\text{M}}{\text{B} \cdot c}$$

, где

$$\sigma = \frac{IL_{35}}{U_{35}al} = 154 \pm 16 \frac{1}{\mathrm{Om} \cdot \mathrm{m}}$$

4 Вывод

Таблица 9: Результаты

$R_x \pm \Delta R_x, \frac{\text{MB·M}}{\text{A·Tn}} \cdot 10^{-4}$	Знак носителей	$n \pm \Delta n, \mathbf{m}^{-3} \cdot 10^{21}$	$\sigma \pm \Delta \sigma, \frac{1}{\mathrm{Om} \cdot \mathrm{M}}$	$b, \frac{\text{M}^2}{\text{B} \cdot \text{c}}$
5.06 ± 0.44	Минус	6.84 ± 0.19	154 ± 16	0.24 ± 0.03