

Information Visualization and Visual Analytics (M1522.000500)

Marks and Channels

Jinwook Seo, Ph. D.

Professor, Dept. of Computer Science and Engineering Seoul National University

Why Marks and Channels?

 Every complex visual encoding idiom can be broken down into two orthogonal components: Marks and Channels

Idiom

Marks & Channels

Marks

- Basic graphical element
- Classified with their spatial dimension
 - Point (OD), Line (1D), Area (2D), Volume (3D)

Marks and Their Types

Geometric primitives

Marks as Items/Nodes

(Marks to represent individual items)

Marks as Links

(Marks to represent links between items)

Previous work by Jacques Bertin

Vairables of a Visual Image

Defining Marks and Channels

Channels

• A way to control the appearance of marks

- human perceptual system has two fundamentally different kinds of sensory modalities
 - Identity channel (what, where)
 - Magnitude channel (how much)

Defining Marks and Channels

Marks and Channels

- Marks
 - geometric primitives
- Channels
 - control appearance of marks
 - can redundantly code with multiple channels
- Interactions (marks vs. size and shape channels)
 - size and shape channels cannot be used on all types of marks
 - constraints that arise from the way that marks are defined
 - area marks fully constrained (e.g., an area mark denoting a state or province)
 - cannot be size or shape coded
 - line marks convey position and length
 - can only be size coded in 1D (width)
 - point marks only convey position; no area constraints
 - can be size and shape coded

Analyze Idiom Structure

Analyze Idiom Structure

• as combination of marks and channels

1: vertical position

2: vertical position horizontal position

3: vertical position horizontal position color hue

4:
vertical position
horizontal position
color hue
size (area)

mark: line

mark: point

mark: point

mark: point

1D, 2D, and 3D

• size ratio for each pair → 1:4

INTERACTIVE DATA VISUALIZATION: FOUNDATIONS, TECHNIQUES, AND APPLICATIONS, Matthew O. Ward; Georges Grinstein; Daniel Keim, A K Peters Ltd (July 1, 2010)

Using Marks and Channels

Expressiveness and Effectiveness

- Expressiveness
 - Vis idiom should express all of, and only, the information in the dataset attributes
 - match channel and data characteristics
- Effectiveness
 - Most important attributes should be encoded with the most effective channels
 - → ranking of channels
 - Ranking of channels: where do they come from?
 - accuracy
 - discriminability
 - separability
 - popout

Any Better Encoding?

Expressiveness and Effectiveness

Channels: Expressiveness types and effectiveness rankings

- Magnitude Channels for Ordered Attributes
 - Position (aligned scale > unaligned) > Length (1D size) > Tilt/angle >
 Area (2D size) > Depth > Color (luminance = saturation) >
 Curvature = Volume (3D size)
- Identity Channels for Categorical Attributes
 - Spatial region > Color Hue > Motion > Shape
- Position dominates the user's mental model

Accuracy: Fundamental Theory

Stevens' Power Law

- p: perceived magnitude
- a: actual magnitude

•
$$p = ka^{\alpha}$$

•
$$p_1/p_2 = (a_1/a_2)^{\alpha}$$

- length judgment: $\alpha \approx 1$
- area judgment: $\alpha < 1$
- volume judgment: $\alpha \ll 1$

Stevens' Power Law

$$S = I^N$$

S: perceived magnitude

I: actual magnitude

Steven's Psychophysical Power Law: S= I^N

Visual Encoding Principles according to accuracy

1등은 포지션

Channel Ranking Varies by Data Type

quantitative 꼴뜽이 ordinal 윗등 quantative 2-5등이 ordinal 반대

Crowdsourced Results

- T1~T3
 - position along a common scale
- T4~T5
 - length encoding
- T6: angle
- T7: circular area
- T8~T9
 - rectangular area

Text

How many usable steps?

• linewidth: only a few

Separable channels vs. Integral channels

Position + Hue (Color)

Fully separable

2 groups each

Size + Hue (Color)

Some interference

2 groups each

Width
+ Height

Some/significant interference

3 groups total: integral area

Red + Green

Major interference

4 groups total: integral hue

Separability

Channel Effectiveness

Preattentive Processing

- Cognitive operations done preattentively, without the need for focused attention
 - less than 200-250 ms
 - eye movements take 200 ms
 - minimum time to initiate eye movement
 - involves only information available in a single glance

- Popout effects
- Segmentation effects

Preattentive Perception

- find the red dot
 - how long does it take?
- parallel processing on many individual channels
 - speed *independent* of # of distractors
 - speed depends on channel and amount of difference from distractors
- serial search for (almost all) combinations
 - speed depends on number of distractors

Popout

- many channels: tilt, size, shape, proximity, shadow direction, ...
- but not all! parallel line pairs do not pop out from tilted pairs

Popout

Grouping

Gestalt Psychology

- Principles of perceptual organization
 - the whole is different from the sum of its parts
 - how smaller objects are grouped to form larger ones
 - "gestalt": German for "pattern/form/shape"
 - "leaving us with a set of descriptive principles, but without a model of perceptual processing"
 - rules themselves still very useful
- Law of Prägnanz
 - law of simplicity, law of good figure
 - fundamental principle of gestalt perception
 - tend to order our experience in a manner that is regular, orderly, symmetric, and simple
 - simplest possibility wins

How do we perceive groups

- **Proximity**: tendency of elements to be associated with nearby elements
- Similarity: tendency of elements to be associated with similar elements
- **Continuity**: preference for continuous, unbroken, smoothest contours with the *simplest possible physical explanation*
- Common Fate: things moving together

Gestalt Psychology

- containment
- connection

- proximity
 - same spatial region
- similarity
 - same values as other categorical channels

Marks as Links

→ Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape

Gestalt laws - Connectedness

Gestalt laws - Continuity

Which is Longer?

Weber's Law

- Perceptual system mostly operates with relative judgements, not absolute
 - that's why accuracy increases with common frame/scale and alignment
- Weber's Law: the perceived change in stimuli is proportional to the initial stimuli
 - ratio of increment to background is constant $\frac{(JND)dS}{S} = constant$
 - filled rectangles are long and differ in length by 15% → difficult judgement
 - white rectangles are show and differ in length by 50% → easy judgement

after [Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Cleveland and McGill. Journ. American Statistical Association 79:387 (1984), 531-554.

Weber-Fechner's Law

- $\frac{\delta I}{I} = K$, where I is a stimulus intensity and K is a fixed percentage
- perceived change in stimuli is proportional to initial stimuli
- ullet detectable difference in stimulus intensity I as a fixed percentage K of the object magnitude

• *JND*: just noticeable difference

JND and Visual Perception

- Contrast sensitivity function
 - Sensitivity of Visual Perception dependes on frequency

Luminance contrast – Simultaneous Brightness Contrast

- Perception of color and luminance is contextual
- Luminance perception is based on relative judgements

Luminance contrast – Simultaneous Brightness Contrast

• Luminance perception is based on relative judgements

Contrast for constancy

Contrast for constancy

• Does Mild gray paper reflect about the same amount of light as the white paper?

Contrast for constancy

• Does Mild gray paper reflect about the same amount of light as the white paper?

Lightness Constancy

Illumination Discounted

- In bright sunlight or moonlight, we can tell whether a surface is black, white, or gray
- Luminance is **completely unrelated** to perceived lightness (or brightness)
 - black paper in full sunlight 1000 candelas
 - white paper in an office 50 candelas
- Visual system extracts surface information
- Discounts illumination level
- Discounts color of illumination
- Mechanisms
 - Adaptation (photopigments in the receptors bleach/regenerate)
 - Simultaneous brightness contrast (background considered)

Design & Validation

Note

• Questions?

References

- Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design. Heer and Bostock. Proc ACM Conf. Human Factors in Computing Systems (CHI) 2010, p. 203–212.
- Automating the Design of Graphical Presentations of Relational Information. Mackinlay. ACM Trans. on Graphics (TOG) 5:2 (1986), 110–141.
- Graphical Perception: Theory, Experimentation and the Application to the Development of Graphical Models. William S. Cleveland, Robert McGill, J. Am. Stat. Assoc. 79:387, pp. 531-554, 1984.
- Many slides from Tamara Munzner's slide deck
- Many figures from Main Textbook by Tamara Munzner