The Price of Routing Unsplittable Flow

Baruch Awerbuch Yossi Azar Amir Epstein

presented by Yajun Wang (yalding@cs.ust.hk)

Problem Formulation

- Graph G = (V, E) and k source-destination pairs $\{s_i, t_i\}$
- Q_i denotes the set of (simple) $s_i t_i$ paths, and
- Latency function $f_e: \mathcal{R}^+ \to \mathcal{R}^+$
- ullet Bandwidth request (s_j,t_j,w_j) $w_j\in\mathcal{R}^+$
- A flow is a function vector (l_j) .

$$l_j: \mathcal{Q}_j o \mathcal{R}^+$$

A flow is feasible if :

$$\sum_{Q \in \mathcal{Q}_j} l_j(Q) = w_j$$

Flow and Strategy

Splittable Flow

$$l_j(Q) \in [0, w_j]$$

Unsplittable Flow

$$l_j(Q) \in \{0, w_j\}$$

Pure Strategies:

User j selectes a single path $Q \in \mathcal{Q}_j$.

Mixed Strategies:

User j selectes a probability distribution $\{p_{Q,j}\}$ over Q_j .

Latency for Users

Pure Strategies:

Let S be the system of strategies.

Let Q_j be the choice of user j, and $Q = \cup_j Q_j$.

Define $J(e) = \{j \mid e \in \mathcal{Q}\}$ and $l_e = \sum_{j \in J(e)} w_j$.

Latency (per unit) of user j for select path Q (instead of Q_j):

$$c_{Q,j} = \sum_{(e \in Q) \land (e \in Q_j)} f_e(l_e) + \sum_{(e \in Q) \land (e \notin Q_j)} f_e(l_e + w_j)$$

Latency for Users

Mixed Strategies:

Let S be the system of strategies with $\{p_j\}$

Let $\{X_{Q,j}\}$ be the set of indicator random variables: whether request j is assigned to Q.

$$X_{e,j} = \sum_{Q|e \in Q} X_{Q,j}$$
 $l_e = \sum_{j=1}^n X_{e,j} w_j$

Expected latency (per unit) of user j for select path Q in S

$$c_{Q,j} = E[\sum_{e \in Q} f_e(l_e) | X_{Q,j} = 1]$$

$$= E[\sum_{e \in Q} f_e(\sum_{i=1, i \neq j}^n X_{e,i} w_i + w_j)]$$

$$= \sum_{e \in Q} E[f_e(l_e + (1 - X_{e,j}) w_j)]$$

Nash Equilibrium

A system S is at Nash equilibrium if and only if for every $j \in \{1, 2, ..., n\}$ and $Q, Q' \in Q_j$, with $p_{Q,j} > 0(Q = Q_j)$

$$c_{Q,j} \le c_{Q',j}$$

Social cost (expected) for system S is:

$$C(S) = E[\sum_{e \in E} f_e(l_e)l_e]$$

Coordination Ration (Price of Anarchy) is:

$$R = \max_{\mathcal{S}} \frac{C(\mathcal{S})}{C(\mathcal{S}^*)}$$

S takes over all Nash equilibrium(N.E), and S^* is the Social Optimal(S.O) solution.

Theorem For linear latency functions and pure strategies, the worse-case coordination ratio R is at most $\frac{3+\sqrt{5}}{2}\approx 2.618$ Proof: Let Q_j be the path assigned for request j in N.E. Let Q_j^* be the path assigned for request j in S.O.

$$\sum_{e \in Q_{j}} a_{e} l_{e} + b_{e} \leq \sum_{(e \in Q_{j}^{*}) \wedge (e \in Q_{j})} a_{e} l_{e} + b_{e} + \sum_{(e \in Q_{j}^{*}) \wedge (e \notin Q_{j})} a_{e} (l_{e} + w_{j}) + b_{e}$$

$$\leq \sum_{e \in Q_{j}^{*}} a_{e} (l_{e} + w_{j}) + b_{e}$$

$$\sum_{j} \sum_{e \in Q_{j}} (a_{e}l_{e} + b_{e})w_{j} \leq \sum_{j} \sum_{e \in Q_{j}^{*}} (a_{e}l_{e} + b_{e})w_{j} + a_{e}w_{j}^{2}$$

$$\sum_{e \in E} \sum_{j \in J(e)} (a_e l_e + b_e) w_j \le \sum_{e \in E} \sum_{j \in J^*(e)} (a_e l_e + b_e) w_j + a_e w_j^2$$

Proof (cont'):

$$\sum_{e \in E} \sum_{j \in J(e)} (a_e l_e + b_e) w_j \le \sum_{e \in E} \sum_{j \in J^*(e)} (a_e l_e + b_e) w_j + a_e w_j^2$$

$$\sum_{j \in J(e)} w_j = l_e, \sum_{j \in J^*(e)} w_j = l_e^*, \sum_{j \in J^*(e)} w_j^d \le (l_e^*)^d$$

$$\sum_{e \in E} (a_e l_e + b_e) l_e \leq \sum_{e \in E} (a_e l_e + b_e) l_e^* + a_e l_e^{*2}$$

$$= \sum_{e \in E} a_e l_e l_e^* + \sum_{e \in E} (a_e l_e^* + b_e) l_e^*$$

Proof (cont'):

$$\sum_{e \in E} (a_e l_e + b_e) l_e \le \sum_{e \in E} a_e l_e l_e^* + \sum_{e \in E} (a_e l_e^* + b_e) l_e^*$$

$$\sum_{e \in E} a_e l_e l_e^* \leq \sqrt{\sum_{e \in E} a_e l_e^2 \sum_{e \in E} a_e l_e^{*2}} \quad \text{Cauchy-Schwartz Inequality}$$

$$\leq \sqrt{\sum_{e \in E} (a_e l_e + b_e) l_e \sum_{e \in E} (a_e l_e^* + b_e) l_e^*}$$

$$x = \sqrt{\frac{C(\mathcal{S})}{C(\mathcal{S}^*)}} \qquad x^2 \le x + 1, \ x^2 \le \frac{3 + \sqrt{5}}{2}$$

Unweighted Demand: $w_j = 1$

Theorem For linear latency functions, unweighted demand and pure strategies, the worse-case coordination ratio R is at most 2.5

Proof:

$$\sum_{e \in E} \sum_{j \in J(e)} (a_e l_e + b_e) w_j \le \sum_{e \in E} \sum_{j \in J^*(e)} (a_e l_e + b_e) w_j + a_e w_j^2$$

$$\sum_{e \in E} (a_e l_e + b_e) l_e \le \sum_{e \in E} a_e l_e l_e^* + a_e l_e^* + b_e l_e^*$$

Proof:

$$\sum_{e \in E} (a_e l_e + b_e) l_e \leq \sum_{e \in E} a_e l_e l_e^* + a_e l_e^* + b_e l_e^*$$

$$(a_e l_e + b_e) l_e \leq a_e l_e^2 + \frac{3}{2} b_e l_e = \frac{3}{2} (a_e l_e^2 + b_e l_e) - \frac{1}{2} a_e l_e^2$$

$$\leq \frac{3}{2} (a l_e l_e^* + a l_e^* + b l_e^*) - \frac{1}{2} a l_e^2$$

$$= \frac{1}{2} a (3 l_e l_e^* + 3 l_e^* - l_e^2) + \frac{3}{2} b_e l_e^*$$

$$\leq \frac{5}{2} a_e l_e^{*2} + \frac{3}{2} b_e l_e^* \qquad 3ij + 3j - i^2 \leq 5j^2$$

$$\leq \frac{5}{2} (a_e l_e^* + b_e) l_e^*$$

Theorem For linear latency functions and mixed strategies, the worse-case coordination ratio R is at most $\frac{3+\sqrt{5}}{2}\approx 2.618$ Proof:

$$c_{Q,j} = E[\sum_{e \in Q} f_e(l_e) | X_{Q,j} = 1]$$

$$= E[\sum_{e \in Q} f_e(\sum_{i=1, i \neq j}^n X_{e,i} w_i + w_j)]$$

$$= \sum_{e \in Q} E[f_e(l_e + (1 - X_{e,j}) w_j)]$$

The change from $X_{Q,j}$ to $X_{e,j}$ does not affect the proofs. In particular, the proof of Lemma 3.4 is still correct, if we replace $p_{Q,j} - p_{Q,j}^2$ by $(1 - p_{e,j})p_{Q,j}$.

Remarks:

If we allow splittable flows, the price of anarchy is bounded by $\frac{4}{3}$ [Roughgarden, SODA 05]

Though I am doubt on this result, as the Proposition 1 there is counter intuitive to me.

Unweighted demand will not achieve better ratio in mixed strategies. Because we lose the properties for integers.

Lower Bounds for Linear Latency Functions

Optimal: $2\phi^2 + 2$

• User 1: *UV*

• User 2: *UW*

• User 3: *VW*

• User 4: *WV*

Demands: $\phi = \frac{1+\sqrt{5}}{2}, 1$

• User 1: (U, V, ϕ)

• User 2: (U, W, ϕ)

• User 3: (V, W, 1)

• User 4: (W, V, 1)

N.E $2\phi^2 + 2(\phi + 1)^2$

• User 1: *UWV*

• User 2: *UVW*

• User 3: *VUW*

• User 4: *WUV*

Nash Equilibrium for Polynomial Latency Functions

Theorem For polynomial latency functions of degree d and pure and mixed strategies, the worse-case coordination ratio R is $O(2^d d^{d+1})$

Theorem For polynomial latency functions of degree d and pure strategies, the worse-case coordination ratio R is $\Omega(d^{d/2})$

Lower Bounds for Polynomial Latency Functions

Optimal:

Group k assigns jobs to links of group k-1.

Nash Equilibrium:

Group k assigns jobs to links of group k.

$$OPT = \sum_{k=0}^{l-1} \frac{l!}{k!} 1^d = l! \sum_{k=0}^{l-1} \frac{1}{k!} \approx l! \cdot e$$

$$NE = \sum_{k=1}^{l} \frac{l!}{k!} k^{d} \ge \frac{l!}{(d/2)^{d}} \cdot (d/2)^{d} = l! \cdot \Omega(d^{d/2})$$

Remaining:

Lower bounds for mixed strategies.

Gap in the bounds of polynomial latency functions: $O(2^d d^{d+1})$ and $\Omega(d^{d/2})$.