Regularisering i regression

Mattias Villani

Statistiska institutionen Stockholms universitet

Institutionen för datavetenskap Linköpings universitet

mtcars data - linjär regression mot hp

Mattias Villani

Prognosförmåga på nya data - Korsvalidering

Prognosfel i testdata

$$MSE_{CV} = \frac{\sum_{j=1}^{n_{\text{test}}} (y_j - \hat{y}_j^*)^2}{n}$$

Lättare att tolka Root MSE

$$RMSE_{CV} = \sqrt{MSE_{CV}}$$

Mattias Villani

ST123G

mtcars data - linjär regression mot hp

Mattias Villani

mtcars data - kvadratisk regression mot hp

Mattias Villani

mtcars data - kubisk regression mot hp

Mattias Villani

mtcars data - polynomregression ordning 4

mtcars data - polynomregression ordning 5

Mattias Villani

mtcars data - polynomregression ordning 10

Mattias Villani

mtcars data - R^2 och RMSE-CV(K = 4)

Mattias Villani

L2-regularisering (Ridge regression)

- **För många x-variabler** ⇒ MK-metoden överanpassar data.
- Modellen är överparametriserad.
- Variabelselektion (t ex forward selection) är en lösning.
- L2-regularisering minimerar en straffad SSE:

$$Q_{\lambda} = \sum_{i=1}^{n} (y_i - a - b_1 x_{1i} - \ldots - b_k x_{ki})^2 + \lambda \cdot \sum_{j=1}^{k} b_j^2$$

- Stort λ kommer **krympa** estimaten av b_j mot noll.
- Skattningen är nu biased, men har lägre varians.
- Bias-Variance trade-off

Mattias Villani

L1-regularisering (Lasso regression)

■ L1-regularisering (Lasso) straffar med absolutbelopp:

$$Q_{-} = \sum_{i=1}^{n} (y_{i} - a - b_{1}x_{1i} - \dots - b_{k}x_{ki})^{2} + \lambda \cdot \sum_{j=1}^{k} |b_{j}|$$

- Lasso har två effekter:
 - krymper b_j mot noll (shrinkage)
 - kan sätta vissa b_j exakt till noll (selection)
- glmnet paketet i R gör både L1 och L2 regularisering och mer.
- Lasso är extremt populär. Go-to när man har väldigt många förklarande variabler.

Mattias Villani

Polynom ordning 10 - ingen regularisering

Mattias Villani

Polynom ordning 10 - L1-regularisering

$$Q_{\lambda} = \sum_{i=1}^{n} (y_i - a - b_1 x_{1i} - \ldots - b_k x_{ki})^2 + \lambda \cdot \sum_{j=1}^{k} |b_j|$$

- $a = 35.80, b_1 = -43.58, b_3 = 23.32.$
- $b_2 = 0$ och $b_4 = \ldots = b_{10} = 0$ (variabelselektion).

Mattias Villani