

Question Number		Scheme	Marks	
	(b)	$Sxy = 69798 - \frac{256 \times 2465}{10} = \underline{6694}$ 256, 2465	B1	
		Sxy or Sxx	M1	
		$Sxx = 7266 - \frac{256^2}{10} = \underline{712.4}$	A1	
		712.4	A1	(4)
	(c) (i)	$b = \frac{6694}{712.4} = \underline{9.3964}$ $a = \frac{2465}{10} - \frac{6694}{712.4} \times \frac{256}{10} = \underline{5.95199}$ $\therefore \underline{y = 5.95 + 9.40x}$ 3.s.f.	M1 A1 B1 B1	^
	(ii)	Line on graph	B1	(5)
	(d)	Salary increases by £940 for every 1 point performance increase	B1	(1)
	(e)	$x = 35 \implies y = 334.95$	B1	
		Salary is £33,495	B1 √	(2)
				<u>16</u>

Question Number				Scl	heme			Mark	s
2.	(a)	P(scores 30 points) = P(hit, hit, hit,) = $0.6^3 = 0.216$ 0.6^3			M1				
							0.216	A1	(2)
	(b)	X	0	10	20	30	x = 0, 10, 20, 30	B1	
			0.4	0.6×0.4	$0.6^2 \times 0.4$		One correct $P(X=x)$	M1	
		P(X=x)	0.4	0.24	0.144	(0.216)	0.4; 0.24; 0.144	A1; A1; A2	1
									(5)
	(c)	E(X) = (0	0×0.4)++(30	0×0.216)=	=11.76	$\sum x P(X = x)$	M1	
		() (, (,		11.8	A1	
		$\mathbf{E}(\mathbf{V}^2)$	(10^2)	. 0.24) .	. (202 0	216) 27			
		E(X) =	(10 ×	(0.24)+	$+(30^2\times0$	(.216) = 27	<u>6</u>	B1	
		Std Dev =	= $\sqrt{276}$	$6 - 11.76^2$	=11.7346	E(2	X^2) $-(E(X))^2$	M1	
							11.7	A1	(5)
	(d)	P (Linda s more in ro than in ro	ound 2						
			,	$= P(X_1)$	$= 0 \& X_2$	= 10, 20, 3	30) $X_2 > X_1$	M1	
				+	$P(X_1 = 0)$	& $X_2 = 10$,	(20,30) All possible	A1	
					+ P(X	$T_1 = 20 \& X$	$X_2 = 30$	A1 √	
				$=0.4\times$	(0.24 + 0.1)	44+0.216	5)	A 1 √	
				+	(0.24(0.14	14 + 0.216))	A1 √	
					+(0.1	44×0.126)	A 1√	
				=0.357	7504		0.358	A1	(6) <u>18</u>

Question Number	Scheme		Marks	
3.	(a)(i) Let X represent amount of sauce in a $\therefore X \sim N(505, 10^2)$	ı jar.		
	$\therefore P(X < 500) = P(Z < \frac{500 - 505}{10})$	Standardising with 505, 10	M1	
	= P(Z < -0.5) $= 1 - 0.6915$	-0.5	A1	
	=0.3085	0.3085	A1	
	(ii) Expected number $= 30 \times 0.3085$	$30 \times (i)$	M1	
	= <u>9.225</u>	9.23	A1 ((5)
	(b) $P(X < 500) = 0.01$		B1	
	$\therefore \frac{500 - \mu}{10} = -2.3263$	Standardising	M1	
		-2.3263	B1	
	$\therefore \mu = 523.263$	523	A1 (4	4)
				<u>9</u>

Question Number	Scheme	Marks
4.	(a) A list of all possible outcomes of an experiment	B1 (1)
	(b) A set of outcomes of an experiment	B1 (1)
	(c) $P(A \cap B) = P(A)P(B) = \frac{1}{3} \times \frac{1}{4} = \frac{1}{12}$	B1 (1)
	(d) $P(A B) = P(A) = \frac{1}{3}$ Application of indep.	M1
	1/3	A1 (2)
	(e)	
	Application of $P(A \cup B)$	M1
	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$ ¹ / ₂	A1 (2)
	$= \frac{1}{3} + \frac{1}{4} - \frac{1}{12}$	7
	$=\frac{1}{2}$	
	Aliter	
	$ \begin{array}{c c} A & B \\ \hline 1/4 & 1/12 & 1/6 \\ \hline 1/2 & 1/6 \end{array} $	

Question Number	Scheme	N	Marks
5.	(a) $E(X) = \sum x \times P(X = x) = \frac{1}{n} + \frac{2}{n} + \dots + \frac{n}{n}$ Use of $E(X)$	M1	
	$=\frac{1}{n}\left\{1+2\ldots+n\right\}$		
	Use of $= \frac{1}{n} \cdot \frac{1}{2} n(n+1) = \frac{n+1}{2} \qquad \frac{1}{2} n(n+1)$	M1	
	$\therefore \frac{n+1}{2} = 5 \implies \underline{n=9} *$ c.s.o	A1	(3)
	(b) $P(X < T) = \frac{1}{9} \times 6 = \frac{2}{3}$	M1	A1 (2)
	(c) $Var(X) = E(X^2) - \{E(X)\}^2$		
	$= \frac{1^2}{9} + \frac{2^2}{9} + \dots + \frac{9^2}{9} - 5^2$ Use of Var(X)	M1	
	$= \frac{1}{9} \times \frac{1}{6} \times 9 \times 10 \times 19 - 5^2$ Use of $\sum n^3$	M1	
	Correct	A1	
	$=\frac{20}{3}$ $\frac{20}{3}$	A1	(4)
	OR $Var(X) = \frac{n^2 - 1}{12} = \frac{80}{12} = \frac{20}{3}$	M2	A1 A1
			<u>9</u>

Question Number		Scheme		Mark	KS
6.	(a)	$\sum x = 12075; \sum x^2 = 15499685$			
		$\therefore \bar{x} = \frac{12075}{15} = \underline{805}$		B1	
		$sd = \sqrt{\frac{15499685}{15} - 805^2} = 620.71491$		M1	
			621	A1	(3)
		(NB Using <i>n</i> -1 gives 642.50125)			
	(b)	99, 169, 299, 350, 475, 485, 550, 650, 689, 830,	Attament to		
		999, 1015, 1050, 2100, 2315	Attempt to order	M1	
		$\therefore Q_2 = \underline{650}$	650	A1	
		$\therefore IQR = Q_3 - Q_1 = 1015 - 350 = \underline{665}$	Attempt at $Q_3 - Q_1$	M1	
			665	A1	(4)
	(c)	$Q_3 + 1.5(Q_3 - Q_1) = 1015 + 1.5 \times 665 = 2012.5$	Use of given outlier formula	M1	
		∴ 2100 and 2315 are outliers		A1	
		$Q_1 - 1.5(Q_3 - Q_1) = 350 - 1.5 \times 665 < 0$			
		∴ No outliers		A 1	(3)

Question Number	Scheme	N		Marks	
	(d)	Во	xplot	M1	
	Website		les & abels	A1	
		We	bsite	A1	
	Shop × ×		Shop	A1	
	0 500 1000 1500 2000 2500 PRICE				(4)
	(e) Median website > median shop				
	Website negative skew; shop approx symmetrical Ignoring outliers				
	Ranges approximately equal Shop $Q_3 <$ Website $Q_3 \Rightarrow$ shop sales low value	Any sensi	ble	B1	B1
	Website sales more variable in value	•			(2)
	Website sales more variable in value				<u>16</u>