Bayesian model uncertainty

Dr. Merlise Clyde

hurricane Joaquin

model uncertainty

Image from Levi Cowan, http://tropicaltidbits.com

posterior model probabilities

- assign each model a prior probability $p(\mathcal{M}_m)$
- ▶ Bayes theorem ⇒ posterior model probabilities

$$p(\mathcal{M}_m \mid \text{data}) = \frac{marginal \ likelihood \ of \ model \ \mathcal{M}_m \times p(\mathcal{M}_m)}{\sum_{j=1}^{2^p} marginal \ likelihood \ of \ model \ \mathcal{M}_j \times p(\mathcal{M}_j)}$$

$$= \frac{\mathsf{BF}[\mathcal{M}_m : \mathcal{M}_b] O[\mathcal{M}_m : \mathcal{M}_b]}{\sum_{j=1}^{2^p} \mathsf{BF}[\mathcal{M}_j : \mathcal{M}_b] O[\mathcal{M}_j : \mathcal{M}_b]}$$

$$\mathsf{BF}[\mathcal{M}_m:\mathcal{M}_b] = rac{marginal\ likelihood\ of\ model\ \mathcal{M}_m}{marginal\ likelihood\ of\ model\ \mathcal{M}_b}$$

$$O[\mathcal{M}_m:\mathcal{M}_b] = \frac{p(\mathcal{M}_m)}{p(\mathcal{M}_b)}$$

R: posterior probabilities of all models

```
R
```

- base model intercept only
- $\blacktriangleright \mathsf{BF}[\mathcal{M}_m : \mathcal{M}_1] = (1 R_m^2)^{-n/2} \times n^{-p_m/2}$
- $p(\mathcal{M}_m) = \frac{1}{16} \Leftrightarrow O[\mathcal{M}_m : \mathcal{M}_1] = 1$

summary of top models

R

> round(summary(cog_bas),3)

		Intercept	hs	iq	work	age	BF	PostProbs	R2	dim	logmarg	
	[1,]	1	1	1	0	0	1.000	0.529	0.214	3	-2583.135	
	[2,]	1	0	1	0	0	0.562	0.297	0.201	. 2	-2583.712	\square +
	[3,]	1	0	1	1	0	0.109	0.058	0.206	3	-2585.349	
	[4,]	1	1	1	1	0	0.088	0.046	0.216	3 4	-2585.570	
	[5,]	1	1	1	0	1	0.061	0.032	0.215	4	-2585.939	

- BIC is proportional to -2 x logmarg
- base model for BF is best BIC model

83%

summary

- posterior probabilities on models
- BIC
- software

next:

- visualization
- Bayesian model averaging