Seminario de Mecánica Cuántica / Teoría de la Información Cuántica

Práctica III (Curso 2020)

I. Compuertas Lógicas Cuánticas (2^a parte)

- 1) Escribir explícitamente el operador de rotación de un qubit alrededor de un eje n, $R_n(\theta) = \exp[-i\theta \mathbf{n} \cdot \boldsymbol{\sigma}/2]$, y mostrar que una transformación unitaria arbitraria de un qubit puede escribirse como $U = e^{i\alpha}R_{\vec{n}}(\theta)$.
- 2) Verificar que $X=iR_x(\pi), Y=iR_y(\pi), Z=iR_z(\pi), H=iR_n(\pi),$ con $\boldsymbol{n}=\frac{1}{\sqrt{2}}(1,0,1),$ y que por lo tanto XZX=-Z, XYX=-Y, HXH=Z, HZH=X.
- 3) Determinar los tiempos t y el Hamiltoniano de dos qubits tales que el operador evolución $U(t) = \exp[-iHt/\hbar]$ coincida con $R_{\boldsymbol{n}}(\theta) \otimes R_{\boldsymbol{m}}(\phi)$.
- 4) Determinar un Hamiltoniano de dos qubits H y un tiempo t tal que $U = \exp[-iHt/\hbar]$ sea el operador QCnot usual (U_X) .

II. Estados de dos qubits y traspuesta parcial.

1) A partir de la forma general de un estado de dos qubits

$$\rho_{AB} = \frac{1}{4} [I \otimes I + \sum_{i,j=1}^{3} \delta_{ij} (r_i^A \sigma_i \otimes I + r_i^B I \otimes \sigma_i) + J_{ij} \sigma_i \otimes \sigma_j]$$

donde σ_i , i = x, y, z, son las matrices de Pauli de cada qubit,

- a) expresar r_i^A , r_i^B y J_{ij} en términos de valores medios de observables del sistema.
- b) Indicar si es siempre posible encontrar ejes locales tales que la matriz de elementos J_{ij} es diagonal.
- c) Hallar las matrices densidad reducidas $\rho_A = \text{Tr}_B \, \rho_{AB}, \, \rho_B = \text{Tr}_A \, \rho_{AB}$.
- d) Hallar la traspuesta parcial respecto de B en esta representación.
- e) Expresar en la forma anterior el estado pur
o $\rho_{AB}=|\Psi\rangle\langle\Psi|,$ para
- i) $|\Psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ y ii) $|\Psi\rangle = \frac{1}{\sqrt{2}}(|01\rangle |10\rangle)$.

2)
 Para
$$|\Psi\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle),$$
 considerar el estado

$$\rho_{AB} = x|\Psi\rangle\langle\Psi| + (1-x)I \otimes I/4$$

- a) Indicar para qué valores de x es ρ_{AB} un estado físico.
- b) Indicar para qué valores de x es ρ_{AB} un estado puro.
- c) Indicar para qué valores de x se viola la desigualdad de Bell $|\text{Tr}\rho_{AB}O| \leq 2$, con O el observable CHSH descripto en clase.
- d) Indicar para qué valores de x es ρ_{AB} entrelazado.
- e) Evaluar la negatividad, concurrencia y entrelazamiento de formación de ρ_{AB} .