Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Группа	M32131	К работе допущен19.09.22
	срат Джахан	
Преподаватель <u>Эльвира Олеговна</u> Отчет принят		
Рабочий протокол и отчет по лабораторной работе № 3.00		
<u>———</u>	кциональный гене	ратор и цифровой осциллограф

Цель работы: Ознакомление с устройством осциллографа, изучение с его помощью процессов в электрических цепях.

Приборы:

- 1. Осциллограф цифровой запоминающий GDS-71102B 1 шт.
- 2. Генераторы сигналов произвольной формы АКИП-3409 1 шт.
- 3. Стенд С3-ЭМ01 1 шт.

Соединительные провода:

- 1. ВNС/Штекер 2 шт.
- 2. BNC/BNC1 шт.
- 3. Штекер/Штекер (перемычки) 4 шт.

Часть 1: Осциллограммы периодических сигналов

- 1. Нам необходимо включите осциллограф и генератор.
- 2. Затем соединим осциллограф с генератором, используя гнёзда, расположенные у правого края стенда СЗ-ЭМ01 и перемычку.
- 3. Подадим простой гармонический сигнал амплитуды порядка 1 вольта и частоты 1 ÷10 кГц на осцилограф. Используем режим «Автонастройка», для ускорения процесса получения стабильного изображения сигнала.

4. Используя режим «Измерения», измерим peak-to-peak амплитуду, период и среднеквадратическое (RMS) значение подаваемого сигнала. Сделайте то же самое,

используя курсоры.

5. Проведем аналогичные измерения с сигналами типа «меандр» и пилообразной формы, предварительно посчитав во сколько раз у них должны отличаться амплитудные и среднеквадратические (т.н. «действующие») значения.

Часть 2: Фигуры Лиссажу

- 1. Включите второй канал генератора и установите на нём ту же частоту, что и на первом. Подключите второй канал генератора ко второму входу осциллографа. Первый канал подключите как в первой части работы, убрав из цепи все сосредоточенные элементы
- 2. Включите на осциллографе режим отображения ХҮ. При необходимости используйте кнопку автонастройки.
- 3. Изменяя начальную фазу на одном из выходов генератора, получите фигуру, при разности фаз равной 0, 45 и 90 градусов.

2) 1:2 $\delta = 0$

 $\delta = \pi/4$

3) 1:3 $\delta = 0$

 $\delta = \pi/4$

4) 2:3 $\delta = 0$

 $\delta = \pi/4$

5) 3:4 $\delta = 0$

 $\delta = \pi/4$

 $\delta = \pi/2$

