6.3: Volume by Slicing

General Slicing Method

Suppose a solid object extends from x = a to y = b, and the cross section of the solid perpendicular to the x-axis has an area given by a function A that is integrable on [a, b]. The volume of the solid is

$$V = \int_{a}^{b} A(x) \, dx.$$

Example. Use the general slicing method to find the volume of the solid whose base is the region bounded by the semicircle $y = \sqrt{1 - x^2}$ and the x-axis, and whose cross sections through the solid perpendicular to the x-axis are squares.

Disk Method about the x-Axis

Let f be continuous with $f(x) \ge 0$ on the interval [a, b]. If the region R bounded by the graph of f, the x-axis, and the lines x = a and x = b is revolved about the x-axis, the volume of the resulting solid of revolution is

$$V = \int_{a}^{b} \pi \underbrace{f(x)^{2}}_{\substack{\text{disk} \\ \text{radius}}} dx.$$

Washer Method about the x-Axis

Let f and g be continuous functions with $f(x) \ge g(x) \ge 0$ on [a, b]. Let R be the region bounded by y = f(x), y = g(x), and the lines x = a and x = b. When R is revolved about the x-axis, the volume of the resulting solid of revolution is

$$V = \int_{a}^{b} \pi \underbrace{(f(x)^{2} - g(x)^{2})}_{\text{outer inner radius}} dx.$$

6.3: Volume by Slicing 41 Math 1080 Class notes

Example. Consider the region bounded by $y = e^{x/4}$, y = 0, x = 0, and x = 6. Find the volume of the solid generated by rotating the region about the x-axis.

Disk and Washer Methods about the y-Axis

Let p and q be continuous functions with $p(y) \geq q(y) \geq 0$ on [c,d]. Let R be the region bounded by x = p(y), x = q(y), and the lines y = c and y = d. When R is revolved around the y-axis, the volume of the resulting solid of revolution is given by

$$V = \int_{c}^{d} \underbrace{(p(y)^{2} - q(y)^{2})}_{\text{outer radius radius}} dy.$$

If q(y) = 0, the disk method results:

$$V = \int_{c}^{d} \underbrace{p(y)^{2}}_{\substack{\text{disk} \\ \text{radius}}} dy.$$

6.3: Volume by Slicing 43 Math 1080 Class notes Fall 2021

Example. Consider the region bounded between $y = \sqrt[4]{x}$, y = 2, and x = 0.

Setup the integral with respect to x that gives the area of the region.

Setup the integral with respect to y that gives the area of the region.

Use the disk/washer method to setup the that represents the volume of the solid generated by rotating the region about the x-axis.

Example. Consider the region R between $y = \sqrt{x} + 1$ and $y = x^2 + 1$. Setup the integrals which find the volume of the solid obtained by rotating the region R as indicated below.

45

about the y-axis

about the x-axis

about the line x = 1

about the line y = -1