3. Flächen im \mathbb{R}^3

Definition

Sei $\emptyset \neq B \subseteq \mathbb{R}^2$, B sei beschränkt und abgeschlossen, $D \subseteq \mathbb{R}^2$ sei offen, $B \subseteq D$ und es sei $\phi(u,v)=(\phi_1,\phi_2,\phi_3)\in C^1(D,\mathbb{R}^3)$. Die Einschränkung $\phi_{|B}$ von ϕ auf B heißt eine **Fläche**, $S:=\phi(B)$ heißt **Flächenstück**, B heißt **Parameterbereich**.

$$\phi' = \begin{pmatrix} \frac{\partial \phi_1}{\partial u} & \frac{\partial \phi_1}{\partial v} \\ \frac{\partial \phi_2}{\partial u} & \frac{\partial \phi_2}{\partial v} \\ \frac{\partial \phi_3}{\partial u} & \frac{\partial \phi_3}{\partial v} \end{pmatrix}$$

$$=: \phi_u =: \phi_v$$

Sei weiterhin $(u_0, v_0) \in B$. Dann ist $N(u_0, v_0) := \phi_u(u_0, v_0) \times \phi_v(u_0, v_0)$ der **Normalenvektor** von ϕ in (u_0, v_0) . $I(\phi) := \int_B ||N(u, v)|| d(u, v)$ wird als **Flächeninhalt** von ϕ bezeichnet.

Beispiele:

(1)
$$B := [0, 2\pi] \times [-\frac{\pi}{2}, \frac{\pi}{2}]$$

 $\phi(u, v) := (\cos(u) \cdot \cos(v), \sin(u) \cdot \cos(v), \sin(v)) \ (D = \mathbb{R}^2)$
 $S = \phi(B) = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\} = \partial U_1(0)$
 $N(u, v) = \phi_u(u, v) \times \phi_v(u, v) = \cos(v) \cdot \phi(u, v)$
 $||N(u, v)|| = |\cos(v)| \cdot ||\phi(u, v)|| = |\cos(v)|$
 $\Longrightarrow I(\phi) = \int_B |\cos(v)| d(u, v) = 4\pi$
Beachte $\lambda_3(S) = 0$! (siehe: Analysis II 17.6)

(2) Explizite Parameterdarstellung

B und D seien wie oben. Es sei $f\in C^1(D,\mathbb{R})$ und $\phi(u,v):=(u,v,f(u,v))$ Dann ist $S=\phi(B)=$ Graph von $f_{|B}$ und $\phi_u=(1,0,f_u)$ $\phi_v=(0,1,f_v)$ $\Longrightarrow N(u,v)=\phi_u\times\phi_v=(-f_u,-f_v,1)$ $\Longrightarrow I(\phi)=\int_B (f_u^2+f_v^2+1)^{\frac{1}{2}}d(u,v)$ Beachte wieder $\lambda_3(S)=0!!$

(3) Sei
$$B = \{(u, v) \in \mathbb{R}^2 | u^2 + v^2 \le 1\}$$
 und $f(u, v) := u^2 + v^2$, sowie $\phi(u, v) = (u, v, f(u, v)) = (u, v, u^2 + v^2)$. $S = \phi(B)$ ist ein Paraboloid. Weiter ist $f_u = 2u$ und $f_v = 2v \implies I(\phi) = \int_B (4u^2 + 4v^2 + 1)^{\frac{1}{2}} d(u, v)$. Substitution mit $u = r \cdot \cos(\varphi)$, $v = r \cdot \sin(\varphi)$ und Fubini $\implies I(\phi) = \int_0^{2\pi} (\int_0^1 (4r^2 + 1)^{\frac{1}{2}} \cdot r dr) d\varphi = 2\pi \int_0^1 (4r^2 + 1)^{\frac{1}{2}} \cdot r dr = \frac{\pi}{6} \cdot ((\sqrt{5})^3 - 1)$