

Congruent Triangles Ex 10.3 Q9

Answer:

It is given that in $\triangle ABC$

$$\angle B = 2 \angle C$$

$$AB = CD$$

And AD bisects $\angle BAC$

We have to prove that $\angle BAC = 72^{\circ}$

Now let $\angle C = y$

$$\angle B = 2y$$
 (Given)

Since AD is a bisector of $\angle BAC$ so let $\angle BAD = \angle CAD = x$

Let BP be the bisector of $\angle ABC$

If we join PD we have

In $\triangle BPC$

$$\angle CBP = \angle BCP = y$$

So
$$BP = PC$$

In triangle ABP and DCP we have

$$\angle ABP = \angle DCP = y$$

$$AB = CD$$
 (Given)

$$BP = PC$$
 (Proved above)

So by SAS congruence criterion, we have

$$\triangle ABP \cong \triangle DCP$$

$$\Rightarrow \angle BAP = \angle CDP$$

And
$$AP = DP$$

$$\angle CDP = 2x$$
, and $\angle ADP = \angle DAP = x$ (since $\angle A = 2x$)

In $\triangle ABD$ we have

$$\angle ADC = \angle ABD + \angle BAC$$

Since,

$$\angle ADC = \angle ADP + \angle CDP$$

$$= x + 2x$$

$$=3x$$

And,

$$\angle ADC = \angle BAD + \angle ABD$$

$$= x + 2y$$

$$3x = x + 2y$$

$$2x = 2y$$

$$\Rightarrow x = y$$

In $\triangle ABC$ we have

$$\angle A + \angle B + \angle C = 180^{\circ}$$
$$2x + 2y + y = 180^{\circ}$$
$$5x = 180^{\circ}$$
$$x = 36^{\circ}$$

Here,

$$\angle BAC = 2x$$
$$= 2 \times 36^{\circ}$$
$$= 72^{\circ}$$

Hence
$$\angle BAC = 72^{\circ}$$
 Proved.

Congruent Triangles Ex 10.3 Q10

Answer:

It is given that

$$\angle A = 90^{\circ}$$

$$AB = AC$$

We have to find $\angle B$ and $\angle C$.

Since
$$AB = AC$$
 so, $\angle B = \angle C$

Now
$$\angle A + \angle B + \angle C = 180^{\circ}$$
 (property of triangle)

$$\angle 90^{\circ} + \angle B + \angle B = 180^{\circ} (\text{Since } \angle B = \angle C)$$

$$\angle 90^{\circ} + 2 \angle B = 180^{\circ}$$

$$2\angle B = 90^{\circ}$$

$$2B = \frac{90^\circ}{2}$$

$$\angle B = 45^{\circ}$$

Here
$$\angle B = \angle C = 45^{\circ}$$

Then
$$\angle A = 90^{\circ}$$

Hence

$$\angle B = 45^{\circ}$$

$$\angle C = 45^{\circ}$$

******** END *******