Nafn:	

- 1. (40%) Tveir massar $m_1 = 1.0 \,\mathrm{kg}$ og $m_2 = 2.0 \,\mathrm{kg}$ liggja á núningslausum, láréttum fleti. Þeir eru festir saman með vír og eru togaðir af öðrum vír sem er festur við massann $m_3 = 3.0 \,\mathrm{kg}$ sem hangir undir massalausri, núningslausri trissu. Gera má ráð fyrir að vírarnir séu massalausir.
 - (a) Merkið inn á myndina kraftana sem verka á hvern massa fyrir sig.
 - (b) Skrifið niður kraftajöfnur fyrir alla massana.
 - (c) Finnið heildarhröðun kerfisins, a.
 - (d) Finnið togkraftinn, T_2 , í vírnum sem tengir saman massana m_2 og m_3 .

2. (10%) Hafdís var að hita $m=100\pm 2\,\mathrm{g}$ af vatni. Upphafshitastig vatnsins var $T_1=7.3\pm 0.2\,^{\circ}\mathrm{C}$ en lokahitastig þess er $T_2=85.0\pm 0.2\,^{\circ}\mathrm{C}$. Eðlisvarmi vatns er $c_{\mathrm{vatn}}=4.186\,\mathrm{kJ/kg}^{\circ}\mathrm{C}$. Notið jöfnuna $Q=c_{\mathrm{vatn}}m\Delta T$ til þess að finna hversu mikinn varma $Q\pm\Delta Q$ hún þurfti til þess a hita vatnið. Skráið svarið með óvissu og réttum fjölda markverðra stafa.

- 3. (10%) Lögmál Coulombs segir að krafturinn sem verkar milli tveggja rafhleðslna q_1 og q_2 í fjarlægð r frá hver annarri sé gefinn með $F_k = k \frac{q_1 q_2}{r^2}$ þar sem að k er fasti sem nefnist fasti Coulombs. Finnið SI-einingar fastans k ef víddir hleðslu eru [q] = C (fyrir Coulomb).
- 4. (40%) Kubbur með massa $m_1 = 10\,\mathrm{kg}$ stendur kyrr á skábretti sem hallar um hornið $\theta = 27^\circ$. Kubburinn er festur yfir trissu við vatnsfötu með massa $m_2 = 5,0\,\mathrm{kg}$. Gerum ráð fyrir að hlutfallið $\frac{m_1}{m_2}$ og hornið θ séu þannig að kassinn byrji að renna úr kyrrstöðu. Núningsstuðullinn milli kubbsins með massa m_1 og skábrettisins er $\mu = 0.20$.
 - (a) Gerið kraftamynd og skrifið niður kraftajöfnur fyrir báða massana.
 - (b) Finnið hröðun kubbsins í stefnu samsíða skábrettinu.
 - (c) Finnið tímann t sem það tekur kubbinn að renna niður skábrettið um vegalengd s.
 - (d) Kubbnum með massa m_1 er aftur komið fyrir í upphafsstöðu og er haldið kyrrum meðan vatni er hellt ofan í fötuna. Hversu miklu vatni m_{vatn} , þarf að hella ofan í fötuna svo að m_1 verði kyrr á skábrettinu eftir að honum er sleppt? (Ath: þá er a = 0 niður skábrettið)

Bónusdæmi: (Gildir 40 stig til upphækkunnar á lægsta prófinu ykkar) Skábretti með massa M, sem hallar um α gráður, stendur kyrrt á núningslausum láréttum fleti. Kassa með massa m er komið fyrir á skábrettinu, samtímis er láréttum krafti \vec{F} beitt á skábrettið. Gerum ráð fyrir að enginn núningur verki milli kassans og skábrettisins. Hversu miklum krafti \vec{F} þarf að beita til þess að kassinn með massa m haldist í fastri hæð?

