Machine Learning

Personal Formula Collection

Patrick Bucher

December 28, 2020

Contents

1	Linear Regression										
	1.1	One Variable	2								
	1.2	Multiple Variables	2								
	1.3	Normalization	3								
2	Classification 3										
	2.1	Logistic Regression	3								
		2.1.1 Regularization (Gradient Descent)	4								
		2.1.2 Regularization (Normal Equation)	4								
3	Neural Networks 4										
	3.1	Activation	5								
		3.1.1 Vectorization	5								
	3.2	Cost Function	5								
	3.3	Forward Propagation	6								
	3.4	Backpropagation	6								
	3.5	Gradient Checking	7								
	3.6	Random initialization	7								
4	Erro	or Metrics	7								
5	Support Vector Machines										
	5.1	Kernels	8								
	5.2	Choice of Parameters	8								
6 K-Means											
7	Principal Component Analysis										
	7.1	Choosing the Number of Principal Components	9								

8	Anomaly Detection			
	8.1	Multivariate Gaussian Distribution		11

1 Linear Regression

1.1 One Variable

Prediction:

$$y = h(x) = \theta_0 + \theta_1 x = \theta^T x$$

Cost Function (Squared Error):

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Gradient Descent:

$$\theta = \theta - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

1.2 Multiple Variables

Prediction:

$$y = h(x) = \theta_0 + \theta_1 x_1 = + \dots + \theta_n x_n = \theta^T x$$

Cost Function:

$$J(\theta_j) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_j^{(i)}) - y_j^{(i)})^2$$

Gradient Descent:

$$\theta_j = \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}, j := 0 \dots n$$

An additional feature $x_0 = 1$ is introduced, so that the vector x becomes n + 1 dimensional, which simplifies the matrix calculations.

Normal Equation:

$$\theta = (X^T X)^{-1} X^T y$$

Octave (Complexity with n features: $O(n^3)$):

theta =
$$pinv(X'*X)*X'*y$$

1.3 Normalization

$$x_i = \frac{x_i - \mu_i}{s_i}$$

Octave:

X = (X - mean(X)) ./ std(X)

2 Classification

Binary Classification: $y \in \{0, 1\}$, where 0 signifies negative or absent, and 1 signifies positive or present.

2.1 Logistic Regression

$$0 \le h_{\theta(x)} \le 1$$

Sigmoid Activation Function g (with asymptotes at y 0 and 1, to be interpreted as probabilities):

$$h_{\theta} = g(\theta^T x), g(z) = \frac{1}{1 + e^{-z}}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Cost Function: $-log(h_{\theta}(x))$ for y=1 and $-log(1-h_{\theta}(x))$ for y=0, combined:

$$C(h_{\theta}(x), y) = -y \cdot log(h_{\theta}(x)) - (1 - y) \cdot log(1 - h_{\theta}(x))$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} C(h_{\theta}(x^{(i)}), y^{(i)})$$

With maximum likelihood estimation:

$$J(\theta) = \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \cdot log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \cdot log(1 - h_{\theta}(x^{(i)})) \right]$$

Prediction:

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Gradient Descent (for each j in θ):

$$\theta_j := \theta_j - \frac{\alpha}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Vectorized:

$$\theta := \theta - \frac{\alpha}{m} \sum_{i=1}^{m} \left[(h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)} \right]$$
$$\theta := \theta - \frac{\alpha}{m} X^{T} (g(X\theta) - \vec{y})$$

2.1.1 Regularization (Gradient Descent)

Regularization mitigates the problem of overfitting for higher-order polynomials. Regularization term (only regularize θ_j for $j \geq 1$, but not θ_0):

$$\lambda \sum_{j=1}^{m} \theta_j^2$$

Regularized Cost Function:

$$J(\theta) = \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \cdot log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \cdot log(1 - h_{\theta}(x^{(i)})) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Regularized Gradient Descent (for θ_i with $j \ge 1$):

$$\theta_0 := \theta_0 - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \right]$$

$$\theta_j := \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m \left((h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \right) + \frac{\lambda}{m} \theta_j \right]$$

2.1.2 Regularization (Normal Equation)

To regularize using the normal equation, (n+1)(n+1) matrix L with i rows and j columns and the values 1 (for $i=j \land i \geq 1 \land j \geq 1$) and 0 (all the other indices), respectively, has to be created. (This is an identity matrix of size n+1 with the value at (0,0) set to 0.)

$$\theta = (X^T X + \lambda L)^{-1} X^T y$$

With regularization, the matrix is always inversible.

3 Neural Networks

Definitions:

- x_0 : bias unit
- $a_i^{(j)}$: activation unit i of layer j

• $\Theta^{(j)}$: weight matrix between layer j and j+1

Given layer j with s_j units, and layer j+1 with s_{j+1} units, the matrix $\Theta^{(j)}$ has the dimensions $s_{j+1} \times (s_j+1)$.

3.1 Activation

Neural network with three units in the one hidden layer:

$$a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \dots)$$

$$a_2^{(2)} = g(\Theta_{20}^{(2)}x_0 + \Theta_{21}^{(2)}x_1 + \dots)$$

$$a_3^{(2)} = g(\Theta_{30}^{(3)}x_0 + \Theta_{31}^{(3)}x_1 + \dots)$$

$$h_{\Theta}(x) = a_1^3 = g(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \dots)$$

3.1.1 Vectorization

With (forward propagation):

$$a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)$$

And:

$$z_1^{(2)} = \Theta_{10}^{(1)} x_0 + \Theta_{11}^{(1)} x_1 + \Theta_{12}^{(1)} x_2 + \Theta_{13}^{(1)} x_3$$

Follows:

$$a_1^{(2)} = g(z_1^{(2)})$$

So that:

$$z^{(2)} = \Theta^{(1)}x = \Theta^{(1)}a^{(1)}$$

Output layer:

$$h_{\Theta} = a^{(3)} = q(z^{(3)})$$

3.2 Cost Function

$$J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} log(h_{\Theta}(x^{(i)}))_k + (1 - y_k^{(i)}) log(1 - (h_{\Theta}(x^{(i)}))_k \right] + \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (\Theta_{ji}^{(l)})^2$$

With $(h_{\Theta}(x))_i$ being the i^{th} output. Note that regularization is *not* added to the bias unit, i.e. only for $j \geq 1$.

3.3 Forward Propagation

With a single training example (x, y). The first activation is the input (a bias unit $a_0^{(1)} = 1$ must be added before):

$$a^{(1)} = x$$

The second activation is computed using Θ and the sigmoid function g(z):

$$z^{(2)} = \Theta^{(2)}a^{(2)}$$

$$a^{(2)} = g(z^{(2)})$$

The bias unit $a_0^{(2)}=1$ must be added again, then the further activations (l) are computed:

$$z^{(l)} = \Theta^{(l)}a^{(l)}$$

$$a^{(l)} = g(z^{(l)})$$

Finally, the output (layer L) is computed:

$$z^{(L)} = \Theta^{(L)} a^{(L)}$$

$$a^{(L)} = g(z^{(L)}) = h_{\Theta}(x)$$

3.4 Backpropagation

The δ for the rightmost layer L is computed as:

$$\delta^L = a^{(L)} - y$$

The further δ values are computed from right to left, down to l=2 (no δ for the input layer):

$$\delta^{(l)} = \delta^{(l+1)} \Theta^{(l)} q'(z^{(l)})$$

With (bias unit included in $a^{(l)}$):

$$g'(z^{(l)}) = a^{(l)}(1 - a^{(l)})$$

The Δ values are computed as ($a^{(l)}$ without bias unit):

$$\Delta^{(l)} = (\delta^{(l+1)})^T a^{(l)}$$

Finally, the gradients D for $j \ge 1$ are computed as follows:

$$D_{ij}^{(l)} = \frac{1}{m} (\Delta_{ij}^{(l)} + \lambda \Theta_{ij}^{(l)})$$

And without regularization for j = 0, respectively:

$$D_{ij}^{(l)} = \frac{1}{m} (\Delta_{ij}^{(l)})$$

Which is the partial derivative of the cost function:

$$\frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta) = D_{ij}^{(l)}$$

3.5 Gradient Checking

Estimate the derivative of $J(\Theta)$ with $\varepsilon \approx 10^{-4}$ (two-sided difference):

$$\frac{d}{d\Theta}J(\Theta)\approx\frac{J(\Theta+\varepsilon)-J(\Theta-\varepsilon)}{2\varepsilon}$$

The result should only deviate from the D values by a rounding margin.

3.6 Random initialization

When working with neural networks, Θ must be initialized to a random value symmetrically around 0. A (10×11) matrix is initialized as follows (Octave):

4 Error Metrics

Confusion Matrix:

		actual		
		1	0	
п	1	true	false	
ction	1	positive	positive	
edio		false	true	
pre	U	negative	negative	

Precision ($0 \le P \le 1$):

$$P = \frac{tp}{tp + fp}$$

Recall $(0 \le R \le 1)$:

$$R = \frac{tp}{tp + fn}$$

 F_1 Score $(0 \le F_1 \le 1)$:

$$F_1 = 2\frac{PR}{P+R}$$

Some rules of thumb:

- A higher classification threshold leads to a higher precision and a lower recall.
- A lower classification threshold leads to a lower precision and a higher recall.
- Many features can help to lower the bias.
- Many training examples can help to lower the variance.
- If a human expert can predict y based on x, more training data can help.

5 Support Vector Machines

The prediction yields 0 and 1 rather than probabilities. Cost Functions with Safety Margins (*Large Margin Classifier*):

$$cost_0(\theta^T x^{(i)}) : 1 \quad \text{if} \quad \theta^T x \le -1, \quad \text{else} \quad 0$$

$$cost_1(\theta^T x^{(i)}) : 1 \quad \text{if} \quad \theta^T x \ge +1, \quad \text{else} \quad 0$$

Minimize θ ($C = \frac{1}{\lambda}$):

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} \mathsf{cost}_1(\theta^T x^{(i)}) + (1 - y^{(i)}) \mathsf{cost}_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$

5.1 Kernels

Calculate features depending on proximity (similarity function) using landmarks ($l^{(i)} = x^{(i)}$) with the *Gaussian kernel* (squared euclidian distance $||x - l^{(i)}||^2$):

$$f_1 = \sin(x, l^{(i)}) = \exp\left(-\frac{||x - l^{(i)}||^2}{2\sigma^2}\right)$$

5.2 Choice of Parameters

- C
- large C: low bias, high variance (small λ)
- small C: high bias, low variance (large λ)
- σ^2
 - large σ^2 : high bias, low variance (flat gaussian curve)
 - small σ^2 : low bias, high variance (abrupt gaussian curve)

6 K-Means

Input: Training Set $(x^{(i)}, x^{(2)}, \dots, x^{(m)}, x \in \mathbb{R}^n)$, number of clusters (K); Algorithm:

- 1. initialize centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$ (pick random training examples)
- 2. for i=1..m: set $c^{(i)}$ by proximity to $\mu\left(\min_{k}||x^{(i)}-\mu_{k}||\right)$ (assign index of closest centroid)
- 3. for j = 1..k: move μ_j to mean of xs with c = k
- 4. repeat steps 1 to 3

Repeat the algorithm with different random initializations in order to find a global rather than just a local minimum of the cost function ("Distortion of K-Means Algorithm"):

$$J(c^{(1)}, c^{(2)}, \dots, c^{(m)}, \mu_1, \mu_2, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

7 Principal Component Analysis

Idea: Reduce input matrix $x \in \mathbb{R}^n$ to $z \in \mathbb{R}^k$ with k < n to reduce amount of features while retaining as much variance as possible to save storage, memory, processing power and for easier visualization. Algorithm:

- 1. preprocess data: mean normalization and feature scaling: $x_j := \frac{x_j \mu_j}{\sigma}$
- 2. compute covariance matrix $\Sigma = \frac{1}{m} \sum_{i=1}^n (x^{(i)}) (x^{(i)})^T$ (Octave: Sigma=(1/m)*X'*X;)
- 3. compute eigenvectors of Σ (Octave: [U, S, V]=svd(Sigma);)
- 4. take first k vector (i.e. columns) of U (Octave: Ureduce=U(:,1:k);)
- 5. compute $z = U_{\text{reduce}}^T x^{(i)} \in \mathbb{R}^k$ (Compression, Octave: z=Ureduce'*X;)
- 6. reconstruct $x_{\text{approx}} \in \mathbb{R}^n$ from $z \in \mathbb{R}^k$: $x_{\text{approx}} = U_{\text{reduce}}z \approx x$ (Octave: Xapprox=Ureduce*z)

The bias unit $x_0 = 1$ is omitted.

7.1 Choosing the Number of Principal Components

Squared Projection Error:

$$\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - x_{\text{approx}}^{(i)}||^2$$

Total variation in the data:

$$\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)}||^2$$

In order to retain 99% of the variance, choose k = 1..(n-1) to be the smallest value, so that:

$$\frac{\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - x_{\text{approx}}^{(i)}||^2}{\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)}||^2} \le 0.01$$

Algorithm (for k = 1..(n-1)):

- 1. compute $U_{\text{reduce}}, z^{(1)}, \dots, z^{(m)}, x_{\text{approx}}^{(i)}, \dots, x_{\text{approx}}^{(m)}$
- 2. compute variance thus retained (see formula above)
- 3. finish if variance \leq threshold

In Octave, the S in [U, S, V] = SVd(Sigma) is a diagonal matrix that can be used to compute the variance retained:

$$1 - \frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{n} S_{ii}} \le 0.01 \quad \text{or} \quad \frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{n} S_{ii}} \ge 0.99$$

PCA should not be used to address the issue of overfitting; use regularization instead. PCA should only be introduced if really needed.

8 Anomaly Detection

Given a dataset $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$, x_{test} is anomalous if:

$$p(x_{\mathsf{test}}) < \varepsilon$$

or not anomalous (i.e. normal) if:

$$p(x_{\mathsf{test}}) \ge \varepsilon$$

With $x \sim \mathcal{N}(\mu, \sigma^2)$ (Gaussian):

$$p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

The parameters μ and σ^2 can be guessed from the dataset:

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)} \quad \sigma_j^2 = \frac{1}{m} \sum_{i=1}^m (x_j^{(i)} - \mu_j)^2$$

Given an $\mathit{unlabeled}$ training set $x \in \mathbb{R}^n, x \sim \mathcal{N}(\mu, \sigma^2)$:

$$p(x) = p(x_1; \mu_1, \sigma_1^2) p(x_2; \mu_2, \sigma_2^2) \dots p(x_n; \mu_n, \sigma_n^2) = \prod_{j=1}^n p(x_i; \mu_i, \sigma_i^2) = \prod_{j=1}^n \frac{e^{-\frac{(x_j - \mu_j)^2}{2\sigma_j^2}}}{\sqrt{2\pi}\sigma_j}$$

Algorithm:

- 1. choose indicative features
- 2. fit parameters $\mu_1, \mu_2, \dots, \mu_n$ and $\sigma_1^2, \sigma_2^2, \dots, \sigma_n^2$
- 3. calculate p(x)
- 4. mark as anomaly if $p(x) < \varepsilon$

For the evaluation using labeled training data, move all anomalous (y=1) examples to the cross validation and test set; only retain normal examples (y=0) in the training set (split usually 60/20/20). Evaluate using precision, recall and F1 Score (accuracy is not indicative due to the skewed distribution of y). Consider finding parameter ε using cross validation (usually 0.05 or 0.01).

The features being used should be normal distributed (plot with Octave: hist(x, nBins)). Consider deriving new $(x_3 = \frac{x_1}{x_2})$ or transforming existing features $(x_i = log(x_i + C))$ in order to get normally distributed features.

8.1 Multivariate Gaussian Distribution

If single variables do not qualify a training example as an outlier, but only a combination thereof, using a multivariate Gaussian distribution can help to detect those correctly. With Σ being the covariance matrix, $|\Sigma|$ its determinant, and Σ^{-1} its inverse, the model is defined as:

$$p(x; \mu, \Sigma) = \frac{1}{\sqrt{2\pi}^n |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

If the projection of a two-dimensional univariate Gaussian distribution from the top looks like a circle, a multivariate Gaussian distribution enables to model correlations (elliptic shape denoting the positive or negative correlation).