EECS 428 Computer Communications Networks II:

Software-Defined Networking and Emerging Applications

An Wang

Introduction

• Research Interest: software-defined networking, data center and cloud security, IoT and edge computing, distributed machine learning

• Research Goal: address security and scalability issues through innovation in network architecture, cloud and data center systems

Class Information

- Instructor: An Wang
- Office: Olin 407
- Email: axw474@case.edu
- Office hours: by appointment
- Course page: All materials and assignments will be updated in Canvas
- Prerequisite: CSDS 425/325 (or equivalent)
- We will use emails for communications; you must have a Case account and check the account for messages periodically, if not daily.

Tentative Course Topics

• SDN Techniques:

- API between Control Plane and Data Plane
- Controller Design
 - ONOS, ONIX, POX, Floodlight and OpenDayLight
 - Frenetic and Maple
- SDN Abstraction
 - Protocol Independent Forwarding
 - Verification & Network Update
 - Composition

SDN Applications

- Measurement in Networks
- SDN Security
- SDN Middleboxes and NFV

Textbooks & Resources

- Recommended: Kurose & Ross, Computer Networking A Top-Down Approach Featuring the Internet, Wesley
- Software & Tutorial Resources
 - o <u>VirtualBox</u> Environment
 - Course virtual machine image
 - ➤ Hints on VM Setup
 - o Mininet: Virtual network emulation environment
 - ➤ Mininet Walkthrough
 - Ryu: open-sourced Network Operating System (NOS) that supports OpenFlow
 ➤ Getting Started on Ryu
 - Pyretic: Python-based SDN programming language
 - o Kinetic: Event-driven network control
- Readings
 - o Christian Lumezanu's SDN Reading List

Important Dates

- First class: Aug 26th
- Last day to drop/register: Sep 6th
- Fall break: Oct 21th/22th
- Proposal due: Oct 20th (Tentative)
- Last class: Dec 6th
- Final project presentation: Dec 12th (8:00 -11:00 am)

Grading

- Programming assignments 25%
 - *NO credit* if your code does not compile
 - Unless under prearranged conditions, late homework/projects lose 10% credit within 3 days after the respective deadlines and will not be accepted 3 days after due
- Paper reviews 25%
 - About 12 papers. You are excused of 2 reviews
- Presentation & Participation 20% (10% each)
- Final Project 30%
 - In teams of 1 to 2 team members
- Grading is proficiency-based. Cutoffs will be in the vicinity of, but not higher than:

$$A \ge 90\%$$
, $B \ge 80\%$, $C \ge 70\%$, $D \ge 60\%$, $F < 60\%$

Paper Reviews

The reviews may contain:

Novel Idea	Describe the new ideas presented in the paper
Main Results	Describe the main results obtained in the paper
Impact	What is the importance of these results. What impact might they have on theory or practice of Computer Systems
Evidence	What reasoning, demonstration, analytical or empiricial analysis did they use to establish their results
Prior Work	What previously established results does it build upon and how
Competitive Work	How to the compare their results to related prior or contemporary work
Question	A question about the work to discuss in class
Criticism	A criticism of the work that merits discussion
Ideas for further work	Did this paper give you ideas for future work, projects, or connections to other work? (Hint: this is not the paper's Future Work section, write here IF the paper inspired any ideas in you!)

Here are tips for becoming a more efficient reader

Paper Discussions

- Each student will lead the discussion on two of the papers during the semester
- Talk to me before the class in which you will lead a discussion. Submit a summary of the discussions after the class
- Prepare slides for the presentation and discussions (~30 min for paper)
 - o for guidelines on how to prepare your discussion, check Prof. Randy Katz' notes [pdf]

Research Project

- Precisely define the research problem
- Understand related work
- Propose novel techniques or systems
- System implementation
- Evaluate your solution, e.g. performance, scalability
- Write up and present your project (~10 pages)