Large-scale brain models and the Nengo framework

Nhat Le and Sugandha Sharma, Computational Journal Club 06/12/19

At the end of this tutorial, you will be able to...

- 1. Describe the three basic principles of the Neural Engineering Framework
 - Describe how neuronal populations can represent vector quantities
 - Design suitable decoders to implement transformations of the encoded quantities
 - Model the dynamics of a dynamical system using interactions between neuronal populations
- 2. Create simple Nengo models using the Nengo simulator interface

Nengo introduction

- A tool for creating large-scale biologically realistic neural models.
- Developed by the Centre for Theoretical Neuroscience at the University of Waterloo

Eliasmith and Anderson (2003) MIT Press

The Neural Engineering Framework (NEF)

1. Representation

 Neural representations are nonlinear encodings of vector spaces that can be linearly decoded.

2. Computation

 Linear decodings of those encodings can compute arbitrary vector functions.

3. Dynamics

 Neural representations are control theoretic state variables in a nonlinear dynamical system. The dynamics of neurobiological systems can be analysed using control theory.

Neuronal populations represent external variables

Examples:

- Directional tuning in motor cortex (Georgopoulos et al.1984, 1986, 1989, 1993)
- Horizontal eye position (Moschovakis 1997)

Demo 1/3: Representation

In the NEF, information is represented by groups of neurons

Principle 1: Representation

Encoding

preferred direction of neuron i vector to be encoded
$$a_i = G_i \left[lpha_i \left\langle \mathbf{e}_i, \mathbf{x}
ight
angle_n + J_i^{bias}
ight]$$
 non-linearity

Principle 1: Representation

Encoding

preferred direction of neuron i vector to be encoded
$$a_i = G_i \left[lpha_i \left\langle \mathbf{e}_i, \mathbf{x}
ight
angle_n + J_i^{bias}
ight]$$
 non-linearity

Decoding

$$\hat{x} = \sum_i a_i d_i$$

Q: How to find population decoders d_i?

A: Minimize $\langle (x - \hat{x})^2 \rangle_x$

Information can be 'passed' from one population to another

Stimulus vector

Transformed vector

Question: What should be decoders such that the decoded vector is $f(\mathbf{x})$?

Principle 2: Transformation

Encoding

$$a_i = G_i \left[\alpha_i \langle \mathbf{e}_i, \mathbf{x} \rangle_n + J_i^{bias} \right]$$

Decoding

$$\hat{f}(x) = \sum_{i} a_i d_i$$

Q: How to find population decoders d_i?

A: Minimize

$$\langle (f(x) - \hat{f}(x))^2 \rangle_x$$

Demo 2/3: Transformation

Represented quantities can display complex dynamics

- State transitions
- Locomotion and motor control
- Working memory

Example of dynamics: an integrator

Dynamics can arise from recurrent connections within a population

Example:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

Question: Can this dynamical system be implemented by a population of neurons?

Principle 3: Dynamics

Problem: Neuron dynamics are not perfect integrators, but have dynamics characterized by h_{syn}(t)

For
$$h(t) = \frac{1}{\tau}e^{-t/\tau}$$

 $\mathbf{A}' = \tau \mathbf{A} + \mathbf{I}$
 $\mathbf{B}' = \tau \mathbf{B}$

Demo 3/3: Dynamics

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$\dot{x}(t) = u/\tau - x/\tau$$

$$A' = \tau A + I$$
 $B' = \tau B$
'synapse'

Demo 3/3: Dynamics

Behavioural task and psychophysical performance.

V Mante et al. Nature **503**, 78-84 (2013) doi:10.1038/nature12742

