

Implementing VLANs and Trunks

Issues in a Poorly Designed Network

- Unbounded failure domains
- Large broadcast domains
- Large amount of unknown
 MAC unicast traffic
- Unbounded multicast traffic
- Management and support challenges
- Possible security vulnerabilities

VLAN Overview

Vlan 1	F0/1 F0/2 F0/3	F0/1 F0/2 F0/3	Switch 1
Vlan 2	F0/4 F0/5	F0/4 F0/5	Switch 2
Vlan 3	F0/6 F0/7	F0/6 F0/7	Switch 3
Vlan 4	F0/24	F0/24	Switch 4

Switch A Switch A

VLAN Overview

Vlan on Switching Network: 1 broadcast-domain

VLAN Overview

- Segmentation
- Flexibility
- Security

VLAN = Broadcast Domain = Logical Network (Subnet)

Network Traffic Types

Traffic types to consider when designating VLANs:

- Network management
- IP telephony
- IP Multicast
- Normal data
- Scavenger class

Designing VLANs for an Organization

- VLAN design must take into consideration the implementation of a hierarchical network addressing scheme.
- The benefits of hierarchical addressing are:
 - Ease of management and troubleshooting
 - Minimization of errors
 - Reduced number of routing table entries

Guidelines for Applying IP Address Space

- Allocate one IP subnet per VLAN.
- Allocate IP address spaces in contiguous blocks.

VLAN Creation Guidelines

- The maximum number of VLANs is switch-dependent.
- Most Cisco Catalyst desktop switches support 128 separate spanningtree instances, one per VLAN.
- VLAN 1 is the factory default Ethernet VLAN.
- Cisco Discovery Protocol and VTP advertisements are sent on VLAN 1.
- The Cisco Catalyst switch IP address is in the management VLAN (VLAN 1 by default).
- If using VTP, the switch must be in VTP server or transparent mode to add or delete VLANs.

Adding a VLAN

```
SwitchX# configure terminal
SwitchX(config)# vlan vlan-id
SwitchX(config-vlan)# name vlan-name
```

Verifying a VLAN

SwitchX# show vlan [brief | id vlan-id || name vlan-name]

```
SwitchX# show vlan id 2
                                Status Ports
VLAN Name
                                active Fa0/2, Fa0/12
2 switchlab99
VLAN Type SAID MTU Parent RingNo BridgeNo Stp
BrdgMode Trans1 Trans2
2 enet 100002 1500 - - -
SwitchX#
```

Assigning Switch Ports to a VLAN

```
SwitchX(config-if)# switchport access [vlan vlan# | dynamic]
```

Verifying VLAN Membership

SwitchX# show vlan brief

	chX# show vlan brief Name	Status	Ports
1	default	active	Fa0/1
2	switchlab99	active	Fa0/2, Fa0/3, Fa0/4
3	vlan3	active	
4	vlan4	active	
1002	fddi-default	act/unsup	
1003	token-ring-default	act/unsup	
VLAN	Name	Status	Ports
	fddinet-default	act/unsup	
1005	trnet-default	act/unsup	

Verifying VLAN Membership (Cont.)

SwitchX(config-if)# show interfaces interface switchport

```
SwitchX# show interfaces fa0/2 switchport
Name: Fa0/2
Switchport: Enabled
Administrative Mode: dynamic auto
Operational Mode: static access
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: native
Negotiation of Trunking: On
Access Mode VLAN: 2 (switchlab99)
Trunking Native Mode VLAN: 1 (default)
--- output omitted ---
```

802.1Q Trunking

Trunking

Switch A

Switch B

802.1Q Frame

ISL Encapsulation

Understanding Native VLANs

802.1Q Trunking Issues

- Make sure that the native VLAN for an 802.1Q trunk is the same on both ends of the trunk link.
- Note that native VLAN frames are untagged.
- A trunk port cannot be a secure port.
- All 802.1Q trunking ports in an EtherChannel group must have the same configuration.

Configuring 802.1Q Trunking

```
SwitchX(config-if)#
switchport mode {access| dynamic{auto|desirable}| trunk}
```

Configures the trunking characteristics of the port

```
SwitchX(config-if)#switchport trunk encapsulation {dot1q
  | is1}
SwitchX(config-if)#switchport mode trunk
```

Configures the port as a VLAN trunk

Verifying a Trunk

SwitchX# show interfaces interface [switchport | trunk]

```
SwitchX# show interfaces fa0/11 switchport
Name: Fa0/11
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: down
Administrative Trunking Encapsulation: dot1q
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
. . . .
```

```
SwitchX# show interfaces fa0/11 trunk

Port Mode Encapsulation Status Native vlan fa0/11 desirable 802.1q trunking 1

Port Vlans allowed on trunk fa0/11 1-4094

Port Vlans allowed and active in management domain fa0/11 1-13
```

VTP Features

VTP Modes

VTP Operation

- VTP advertisements are sent as multicast frames.
- VTP servers and clients are synchronized to the latest revision number.
- VTP advertisements are sent every 5 minutes or when there is a change.

VTP Pruning

VTP Configuration Guidelines

- VTP defaults for the Cisco Catalyst switch:
 - VTP domain name: None
 - VTP mode: Server mode
 - VTP pruning: Enabled or disabled (model specific)
 - VTP password: Null
 - VTP version: Version 1
- A new switch can automatically become part of a domain once it receives an advertisement from a server.
- A VTP client can overwrite a VTP server database if the client has a higher revision number.
- A domain name cannot be removed after it is assigned; it can only be reassigned.

Creating a VTP Domain

```
SwitchX# configure terminal
SwitchX(config)# vtp mode [server | client | transparent]
SwitchX(config)# vtp domain domain-name
SwitchX(config)# vtp password
SwitchX(config)# end
```

Configuring VLANs and Trunks

- 1. Configure and verify VTP.
- 2. Configure and verify 802.1Q trunks.
- 3. Create or modify a VLAN on the VTP server switch.
- 4. Assign switch ports to a VLAN and verify.
- Execute adds, moves, and changes.
- Save the VLAN configuration.

VTP Configuration and Verification Example

```
SwitchX(config) # vtp domain ICND
Changing VTP domain name to ICND
SwitchX(config) # vtp mode transparent
Setting device to VTP TRANSPARENT mode.
SwitchX(config)# end
SwitchX# show vtp status
VTP Version
Configuration Revision
Maximum VLANs supported locally: 64
Number of existing VLANs
                          : Transparent
VTP Operating Mode
VTP Domain Name
                               : ICND
                          : Disabled
VTP Pruning Mode
VTP V2 Mode
                              : Disabled
VTP Traps Generation
                             : Disabled
                             : 0x7D 0x6E 0x5E 0x3D 0xAF 0xA0 0x2F
MD5 digest
0xAA
Configuration last modified by 10.1.1.4 at 3-3-93 20:08:05
SwitchX#
```

Executing Adds, Moves, and Changes for VLANs

- When using VTP, the switch must be in VTP server or transparent mode to add, change, or delete VLANs.
- When you make VLAN changes from a switch in VTP server mode, the change is propagated to other switches in the VTP domain.
- Changing VLANs typically implies changing IP networks.
- After a port is reassigned to a new VLAN, that port is automatically removed from its previous VLAN.
- When you delete a VLAN, any ports in that VLAN that are not moved to an active VLAN will be unable to communicate with other stations.

#