1. A bullet is fired from a gun at the speed of 280 m/s in the direction 30° above the horizontal. The maximum height attained by the bullet is

 $(g = 9.8 \text{ ms}^{-2}, \sin 30^{\circ} = 0.5)$ 

[NEET 2023]

- (1) 3000 m
- (2) 2800 m
- (3) 2000 m
- (4) 1000 m
- A ball is projected with a velocity, 10 ms<sup>-1</sup>, at an 2. angle of 60° with the vertical direction. Its speed at the highest point of its trajectory will be:

[NEET 2022]

- (1)  $10 \text{ ms}^{-1}$
- (3)  $5\sqrt{3} \text{ ms}^{-1}$
- 3. A particle moving in a circle of radius R with a uniform speed takes a time T to complete one revolution. If this particle were projected with the same speed at an angle ' $\theta$ ' to the horizontal, the maximum height attained by it equals 4R. The angle of projection,  $\theta$ , is then given by:

**INEET 20211** 

- (1)  $\theta = \cos^{-1} \left( \frac{\pi^2 R}{\sigma T^2} \right)^{1/2}$
- $(2) \quad \theta = \sin^{-1} \left( \frac{\pi^2 R}{\sigma T^2} \right)^{1/2}$
- (3)  $\theta = \sin^{-1} \left( \frac{2gT^2}{\pi^2 R} \right)^{1/2}$
- $(4) \quad \theta = \cos^{-1} \left( \frac{gT^2}{\pi^2 R} \right)^{1/2}$
- A car starts from rest and accelerates at 5 m/s<sup>2</sup>. At 4. t = 4s, a ball is dropped out of a window by a person sitting in the car. What is the velocity and acceleration of the ball at t = 6s? **INEET 20211** 
  - (1) 20 m/s, 0
  - (2)  $20\sqrt{2}$  m/s, 0
  - (3)  $20\sqrt{2}$  m/s, 10 m/s<sup>2</sup>
  - (4)  $20 \text{ m/s}, 5 \text{ m/s}^2$

A projectile is fired from the surface of the earth with a velocity of 5 ms<sup>-1</sup> and angle  $\theta$  with the horizontal. Another projectile fired from another planet with a velocity of 3 ms<sup>-1</sup> at the same angle follows a trajectory which is identical with the trajectory of the projectile fired from the earth. The value of the acceleration due to gravity on the planet is (in ms<sup>-2</sup>) is: (given  $g = 9.8 \text{ ms}^{-2}$ )

[NEET 2014]

- (1) 3.5
- (2) 5.9
- (3) 16.3
- (4) 110.8
- The velocity of a projectile at the initial point A  $(2\hat{i} + 3\hat{j})$  m/s. Its velocity (in m/s) at point B is:

[NEET 2013]



- (1)  $2\hat{i} + 3\hat{j}$
- (3)  $-2\hat{i} + 3\hat{j}$
- 7. The horizontal range and the maximum height of a projectile are equal. The angle of projection of the projectile is: [2012 Pre]
  - (1)  $\theta = \tan^{-1} \left( \frac{1}{4} \right)$  (2)  $\theta = \tan^{-1} (4)$
  - (3)  $\theta = \tan^{-1}(2)$  (4)  $\theta = 45^{\circ}$
- A missile is fired for maximum range with an initial velocity of 20 m/s. If g = 10 m/s<sup>2</sup>, the range of the missile is: [2011 Pre]
  - (1) 40 m
- (2) 50 m
- (3) 60 m
- (4) 20 m



| 9. | A projectile is fired at an angle of 45° with the       |
|----|---------------------------------------------------------|
|    | horizontal. Elevation angle of the projectile at its    |
|    | highest point as seen from the point of projection, is: |

## [2011 Mains]

- (2)  $\tan^{-1}\frac{1}{2}$
- (3)  $\tan^{-1} \left( \frac{\sqrt{3}}{2} \right)$  (4)  $45^{\circ}$
- 10. The speed of a projectile at its maximum height is half of its initial speed. The angle of projection is:

## [2010 Mains]

- $(1) 60^{\circ}$
- (2) 15°
- $(3) 30^{\circ}$
- (4) 45°
- A particle of mass m is projected with velocity v11. making an angle of 45° with the horizontal. When the particle lands on the level ground the magnitude of the change in its momentum will be

## [NEET 2008]

- (1)  $\sqrt{2}mv$
- (2) Zero
- (3) 2 mv
- 12. For angles of projection of a projectile at angles  $(45^{\circ} - \theta)$  and  $(45^{\circ} + \theta)$ , the horizontal ranges described by the projectile are in the ratio of:

## [NEET 2006]

- (1) 1:1
- (2) 2:3
- (3) 1:2
- (4) 3:2
- 13. Particle (A) is dropped from a height and another particle (B) is projected in horizontal direction with speed of 5 m/s from the same height, then correct statement is: [NEET 2002]
  - (1) Particle (A) will reach at ground first with respect to particle (B)
  - (2) Particle (B) will reach at ground first with respect to particle (A)
  - will (3) Both particles reach ground at simultaneously
  - (4) Both particles will reach at ground with same speed.

- A particle is projected making angle 45° with horizontal having kinetic energy K. The kinetic energy at highest point will be: [NEET 2001]
- (3) 2K
- (4) K
- 15. Two projectiles of same mass and with same velocity are thrown at an angle 60° and 30° with the horizontal, then which quantity will remain same:

[NEET 2000]

- (1) Time of flight
- (2) Horizontal range of projectile
- (3) Max height acquired
- (4) All of them
- **16.** Two particles are projected with same initial velocity one makes angle  $\theta$  with horizontal while other makes an angle  $\theta$  with vertical. If their common range is R then product of their time of flight is direction proportional to: [NEET 1999]
  - (1) R
- (2)  $R^2$
- (3) 1/R
- (4)  $R^0$
- 17. If a body A of mass M is thrown with velocity v at an angle of  $30^{\circ}$  to the horizontal and another body B of the same mass is thrown with the same speed at an angle of 60° to the horizontal, the ratio of horizontal range of A to B will be: [NEET 1992, 90]
  - (1) 1:3
- (2) 1:1
- (3)  $1:\sqrt{3}$
- (4)  $\sqrt{3}:1$
- 18. The maximum range of a gun of horizontal terrain is 16 km. If  $g = 10 \text{ ms}^{-2}$ , then muzzle velocity of a shell must be: [NEET 1990]
  - (1)  $160 \text{ ms}^{-1}$
- (2)  $200\sqrt{2} \text{ ms}^{-1}$
- $(3) 400 \text{ ms}^{-1}$
- (4)  $800 \text{ ms}^{-1}$



| ANSWER KEY |     |         |  |  |
|------------|-----|---------|--|--|
| 1.         | (4) | 10. (1) |  |  |
| 2.         | (3) | 11. (1) |  |  |
| 3.         | (3) | 12. (1) |  |  |
| 4.         | (3) | 13. (3) |  |  |
| 5.         | (1) | 14. (2) |  |  |
| 6.         | (4) | 15. (2) |  |  |
| 7.         | (2) | 16. (1) |  |  |
| 8.         | (1) | 17. (2) |  |  |
| 9.         | (2) | 18. (3) |  |  |

