1 10va Scritta di Algorithi e Strutture Dati con Laboratorio Martedì 8 febbraio 2022 – Prof. Guido Proietti (Modulo di Teoria)

Scrivi i tuoi dati \Longrightarrow	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	

ESERCIZIO 1: Domande a risposta multipla

Premessa: Questa parte è costituita da 10 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la × erroneamente apposta (ovvero, in questo modo ⊗) e rifare la x sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0.

- 1. L'algoritmo Insertion Sort, nel caso medio costa:
 - a) O(n)
- b) $o(n^2)$
- *c) $\Omega(n^2)$
- d) $\Theta(n \log n)$
- 2. Sia dato in input l'array A = [3, 5, 2, 1, 8]; quanti confronti tra elementi esegue l'algoritmo INSERTIONSORT2 per ordinare in ordine non decrescente A?
 - a) 10 b) 5 c) 25
- 3. Un algoritmo ha una complessità temporale O(f(n)) se:
 - a) Il tempo di esecuzione T(n) dell'algoritmo su uno specifico input di dimensione n verifica T(n) = O(f(n))
 - *b) Il tempo di esecuzione T(n) dell'algoritmo su ogni input di dimensione n verifica T(n) = O(f(n))
 - c) Il tempo di esecuzione medio T(n) dell'algoritmo su un input di dimensione n verifica $T(n) = \Theta(f(n))$
 - d) Nel caso migliore, il tempo di esecuzione T(n) dell'algoritmo su un input di dimensione n verifica T(n) = o(f(n))
- 4. Dato un min-heap binario di n elementi rappresentato mediante un albero binario, quale delle seguenti affermazioni è
 - *a) La procedura di fixHeap su un nodo foglia può essere eseguita in O(1) b) L'altezza dell'albero è $\lceil \log n \rceil 1$
 - c) Le foglie sull'ultimo livello sono $\Theta(\log n)$ d) Il numero di nodi interni è sempre minore del numero di foglie
- 5. Quali sono, rispettivamente, i costi per implementare le operazioni di Insert, Delete, e Search, in un dizionario di n elementi implementato utilizzando una lista ordinata?
 - a) $O(n), O(1), \Theta(n)$
- b) $\Theta(n), O(1), O(n)$
- c) O(n), O(n), O(n)
- *d) O(n), O(1), O(n)
- 6. Dato il grafo in figura, si applichi su di esso l'algoritmo di Bellman&Ford, con nodo sorgente A. Se gli archi vengono letti ad ogni iterazione in ordine da destra a sinistra, quante iterazione sono necessarie per trovare tutte le distanze da A?

- a) 1 b) 2 c) 3 *d) 4
- 7. Dato il grafo in figura, quale dei seguenti non è un suo ordinamento topologico?
 - a) $\{A, B, G, C, D, E, F\}$
- *b) $\{A, G, D, B, C, E, F\}$
- c) $\{A, G, B, C, D, E, F\}$
- d) $\{A, B, G, D, C, E, F\}$
- 8. Dato il grafo in figura 7, quale delle seguenti affermazioni è falsa?
 - a) Il grafo è aciclico b) Il grado uscente del grafo è 3
 - *c) Il grafo è fortemente connesso rispetto ad A d) La distanza tra $A \in G \stackrel{.}{e} + \infty$
- 9. Dato un grafo connesso di n nodi ed m archi, per quali valori (asintotici) di m si ha che l'implementazione di Prim con heap di Fibonacci <u>non è</u> strettamente più efficiente dell'implementazione di Kruskal con alberi QuickUnion con euristica di bilanciamento union by size?
 - a) $m = \Theta(n \log n)$
- b) tutti
- c) nessuno
- *d) $m = \Theta(n)$
- 10. Dato un grafo pesato con n vertici ed m archi, l'algoritmo di Borůvka alla prima passata aggiunge alla soluzione un numero massimo di archi pari a:
 - *a) n-1
- b) $\log n$
- c) 1
- d) $\lceil n/2 \rceil$

Griglia Risposte

	Domanda									
Risposta	1	2	3	4	5	6	7	8	9	10
a										
b										
$^{\mathrm{c}}$										
d										