• for each $f:A\to B$ $\operatorname{domain:} A = \operatorname{dom}(f)$ $\operatorname{codomain:} B = \operatorname{cod}(f)$ $\bullet \ \mbox{ for } f:A\rightarrow B, g:B\rightarrow C \mbox{ with } cod(f)=dom(g)$ composite of f and $g: g \circ f: A \to C$ • for each object A: identity arrow: $1_A:A\to A$ • Unit: $f \circ 1_A = f = 1_B \circ f$ Def. concrete Categories Categories in which Objects are Sets, possibly equipped with some structure, and arrows are $certain,\ possibly\ structure-perserving,\ functions.$ Def. functor Let \mathbf{C}, \mathbf{D} be categories, then $F: \mathbf{C} \to \mathbf{D}$ is a functor with: 1. $F(f:A \rightarrow B) = F(f): F(A) \rightarrow F(B)$ $2. \ F(g \circ f) = F(g) \circ F(f)$ 3. $F(1_A) = 1_{F(A)}$ Def. discrete categories categories with only the identity arrows $\,$ Def. monoid

Category Theory Anki Study Document

Denis Erfurt

3. Januar 2018

Def. Category

 \bullet Objects: A, B, C, ...

 \bullet Arrows: f, g, h, ...

A set M with an associative binary operation

Def. isomorphism

In any category ${\bf C},$ an arrof $f:A\to B$ is an isomorphism, if there is an arrow $g:B\to A$ in ${\bf C}$ such that. $g \circ f = 1_A$ and $f \circ g = 1_B$ we write $f^{-1} = g$. A is isomorphic to B $(A \cong B)$ if there exists an isomorphism between them.