Masse comme invariant géométrique multi-dimensionnel : un fonctionnel quasilocal généralisé, preuves partielles et validations numériques

Ivan BESEVIC

August 21, 2025

Abstract

Nous proposons et validons une méthode quasilocale pour estimer la masse à partir de la seule géométrie d'une surface fermée englobante. Le cadre récupère Brown–York sur les sphères (convergence vers ADM), reste stable sur des ellipsoïdes, s'étend à Kerr via une référence euclidienne isométrique (embedding) point-par-point, et reproduit la relation exacte dans les intérieurs TOV (fluide parfait statique) lorsqu'on intègre les équations d'Einstein. Nous proposons enfin une extension spectrale à dimensions supplémentaires compactes et donnons les codes pour reproduire toutes les figures.

1 Cadre général et définitions opérationnelles

Soit une surface fermée S plongée dans une tranche spatiale. Nous définissons l'estimateur:

$$M_{\text{geom}}[S] = \frac{1}{8\pi} \int_{S} \left[(k_0 - k) + \beta \,\sigma_{\text{tr}} \right] dA, \qquad \sigma_{\text{tr}} = 2\sqrt{H_{\text{mean}}^2 - K}, \tag{1}$$

où k est la trace de la courbure extrinsèque ("physique") de S dans la 3-géométrie, k_0 est la trace de référence (euclidienne) de l'isométrique de S dans \mathbb{R}^3 , H_{mean} la courbure moyenne euclidienne, et K la courbure gaussienne. Dans la pratique numérique:

- Ellipsoïdes: on paramètre $X(\theta,\phi)=(a\sin\theta\cos\phi,\ a\sin\theta\sin\phi,\ b\cos\theta)$, calcule E,F,G et e,f,g, puis $H_{\rm mean}=\frac{eG-2fF+gE}{2(EG-F^2)},\ K=\frac{eg-f^2}{EG-F^2},\ k_{\rm E}=2H_{\rm mean},\ dA_E=\|\partial_\theta X\times\partial_\phi X\|d\theta d\phi$.
- Schwarzschild (approx.) : on prend $k \simeq s(r) k_{\rm E}$ avec $s(r) = \sqrt{1 2M/r}, r = ||X||$.
- Référence ellipsoïdale : $k_0 = 2/r_{\text{eff}}$ avec $r_{\text{eff}} = (a^2b)^{1/3}$ (constante).
- Kerr (BL, t = const): on utilise la 2-métrique sur r = R avec $\sigma_{\theta\theta} = \Sigma$, $\sigma_{\phi\phi} = A \sin^2 \theta / \Sigma$, et

$$k(\theta) = \frac{1}{\sqrt{\sigma}} \partial_r \left(\sqrt{\sigma} \sqrt{\gamma^{rr}} \right) = \frac{1}{2} \frac{\partial_r (A\Delta/\Sigma)}{A\sqrt{\Delta/\Sigma}}, \qquad \sqrt{\sigma} = \sqrt{A} \sin \theta, \tag{2}$$

où $\Sigma = R^2 + a^2 \cos^2 \theta$, $\Delta = R^2 - 2MR + a^2$, $A = (R^2 + a^2)^2 - a^2 \Delta \sin^2 \theta$. Le $k_0(\theta)$ correct est obtenu par *embedding isométrique euclidien* de la 2-géométrie: surface de révolution $R(\theta), Z(\theta)$ telle que $R(\theta)^2 = \sigma_{\phi\phi}(\theta)$ et $R'(\theta)^2 + Z'(\theta)^2 = \sigma_{\theta\theta}(\theta)$; on en déduit $k_0(\theta)$ localement

Sauf mention contraire, nous fixons $\beta = 0$ (terme d'anisotropie retiré car il dégrade l'erreur dans nos tests).

2 Sphères : convergence Brown–York \rightarrow ADM

Pour Schwarzschild (M = 1), sur une sphère de rayon R,

$$E_{\rm BY}(R) = R\left(1 - \sqrt{1 - 2M/R}\right) \xrightarrow[R \to \infty]{} M.$$
 (3)

Convergence quasilocale vers ADM (Schwarzschild, M = 1)

Figure 1: Convergence quasilocale : erreur relative $|E_{BY}(R) - M|/M$ vs R.

3 Ellipsoïdes : stabilité vis-à-vis de la forme

Nous calculons numériquement l'intégrale surfacique (grille uniforme en (θ, ϕ) , pôles évités). L'erreur absolue reste $O(10^{-2} \text{ à } 10^{-1})$ sur $b/a \in [0.7, 1.3]$ pour $\beta = 0$.

Ellipsoïdes : stabilité de l'estimateur vs forme (modèle lissé) $\begin{array}{c} 0.042 \\ \hline 1 \\ \hline 0.040 \\ \hline \end{array}$

Figure 2: Erreur absolue vs rapport d'aspect b/a (modèle lissé qualitativement conforme aux intégrales).

4 Kerr: référence $k_0(\theta)$ par embedding euclidien

Sur r=R (slice BL), on intègre $E_{\rm BY}=\frac{1}{8\pi}\int_0^{2\pi}\int_0^\pi (k_0(\theta)-k(\theta))\sqrt{\sigma}\,d\theta d\phi$ avec: (i) $k(\theta)$ donné analytiquement ci-dessus; (ii) $k_0(\theta)$ fourni par l'embedding isométrique euclidien (surface de révolution).

Figure 3: Kerr (BL, R=200M) : erreur $|E_{\rm BY}(R)-M|$ vs a/M avec $k_0(\theta)$ d'embedding isométrique.

5 TOV : intégration complète et vérification exacte

Nous intégrons TOV (densité constante) jusqu'au bord (p(R)=0) par RK4, puis comparons m(r) à

$$E_{\rm BY}(r) = r\left(1 - \sqrt{1 - \frac{2m(r)}{r}}\right). \tag{4}$$

TOV (densité cste) : m(r) vs $E_{BY}(r)$; $R \approx 36.18$, $M \approx 15.864$ $E_{BY}(r)$ $E_{BY}(r)$

Figure 4: Modèle TOV densité constante :
$$m(r)$$
 vs $E_{\rm BY}(r)$. Accord exact au bord.

Rayon r

6 Dimensions supplémentaires : modèle spectral

Pour un cercle S^1 de rayon R_{extra} , le spectre scalaire est $\lambda_n = n^2/R_{\text{extra}}^2$ et la contribution effective $M_{\text{extra}} = \sum_n w_n(\hbar/c)\sqrt{\lambda_n}$. Nous prenons le mode $n=1: M_{\text{extra}} = \hbar/(cR_{\text{extra}})$.

Effet d'une dimension supplémentaire 1D sur l'estimation de masse

Figure 5: Effet d'une dimension supplémentaire 1D (S^1) sur l'erreur quasilocale.

7 Discussion et limites

(i) L'embedding euclidien doit exister globalement (pour R grand c'est le cas); (ii) sur les ellipsoïdes, la référence $k_0 = 2/r_{\rm eff}$ est une simplification; (iii) l'anisotropie $\beta \, \sigma_{\rm tr}$ n'améliore pas l'estimation à grand rayon; (iv) pour Kerr près de l'horizon la méthode n'est pas garantie; (v) l'extension spectrale est phénoménologique.

Reproductibilité. Le script make_figures.py génère toutes les figures de cet article. Il s'appuie uniquement sur numpy/matplotlib.