Chemical	lcinetics - 10

64	Chemical Kinetics-10
	Effect of Temperature on Rate of Reaction
	For Most of the Chemical reactions, it is found
	For Most of the Chemical Greactions, it is found that on increasing Temperature by 10°C Rate of Reaction doubles (Ox nearly doubles) Approx Dependency; Temp coefferient = Kathoric
<u>.</u>	Rate a Konstant Temp Coefferient = (Rate) ++10°C (Rate a K) Rate Constant Temp Coefferient = (Rate) ++10°C (Rote) + 10°C
	(1011)
	To find Temp Coeffecient (how nony times Kinereases on 10°C suse in temperature), texen any value of t (most commonly £=25°C) Temp Coeffecient & [2,3]
	Oi) If Temp. Coeffecient for a reaction rale is 2, Find the Rate of Reaction at 60°C if rate at 20°C is x.
So	Win Rate X 2X 42 8X 16X

Exact Dependency: Arrhenius Equation K= A. P-ENRT K -> Rate Constant A -> Archenius factor/frequency factor Pre - exponential facter e -> exponential constant Joule mole Ea -> Activation Energy R -> Universal Gras Constant T-> Temperature in Kelvin Collision Theory Explanation: Azt proper orientation (Head-on Collision) Threshold Energy Potential A2+ B2 (R) Reaction Co-ordinale For Threshold Reactant Energy

Taking log on both sider loge K = loge (A. e-EalRT) loge K = loge A + loge e EalRT logek = logeA - Ea loge E logeK = - Ea + loge A =-mx+C Slope=ten0=-Ea R loge OR 2.303 log, K = - Fa + 2303 log, A 10910 K = - Ea + 10910 A 2.303RT logio A Slope=tand

(min-1) (min-1) (min-1) The scale constant for a first order reaction is given as
03) The scale constant got a first
is gill as
1 12 12 104
$log_{10}k = 10 - 1.2 \times 10^4$
1 alor A'
Find i) value of sortherine jactes
ii) Temperation at which half life to
Find i) value of Arrhenius factor A' ii) remperature at which half life of yeaction is 70 mins
Solution
$\frac{1}{10000000000000000000000000000000000$
A = 10/10
ii) $K = 0.693$ (first order)
tV_2
C103.
$= 0.693 = 0.70 = 10^{-2}$
70 70
$log_{10}(10^{-2}) = 10 - 1-2 \times 10^{4}$
T
$-2 - 10 - 1.2 \times 104$
$-2 = 10 - 1.2 \times 10^{9}$
$\frac{1.2 \times 104}{7} = 12$
$T = \frac{1/2 \times 10^4 - 10^3 = 100015}{12 \times 10}$
12×10

The decomposition of A into foroduct has scate constant 1.5 × 1048-1 at 27°C and 1.5 × 1058-1 at 127°C. Find the activation $\frac{\log_{10}\left(\mathbb{K}_{1}\right) - \mathbb{F}a}{\mathbb{R}_{1}} \left(\frac{\mathbb{T}_{2} - \mathbb{T}_{1}}{\mathbb{T}_{1}\mathbb{T}_{2}}\right)$ Solution 10910 (1.5×105) = Ea (400-300) 1.5×104) = 2-303×8.314 (400×300) Ea = 3×400 x 2.303 x 8.314 5 mole Remember Rate & K Note: So if relation between two Rates is given => relation between K

