

Solving the Nuclear Decay Equation with Physics Informed Neural Networks

PSI FoKo Poster Event

G. Pacifico¹, A. Albà¹, R. Boiger¹, D. Rochman², and A. Adelmann¹

7th December 2022 ¹Laboratory for Simulation and Modelling, SCD; ²Laboratory for Reactor Physics and Thermal-Hydraulics, NES

Burn-up calculation of Ringhals-2 PWR [1].

 10^{5}

→ PU241

→ PU242

Radioactive decay and transmutation in nuclear fuel is governed by the decay equation:

 10^4

$$\frac{d\mathbf{N}(t)}{dt} = A\mathbf{N}(t)$$
, with $\mathbf{N}(t=0) = \mathbf{N}_0$,

where

0.02

• $N(t) \in \mathbb{R}^n$ isotopic concentrations.

 10^2

 10^{1}

 10^{3}

Cooling Time [years]

- $\bullet A \in \mathbb{R}^{n \times n}$ stiff matrix containing uncertain nuclear data (e.g. decay rates, cross-sections,...).
- Number of isotopes up to n = 4000.

Computationally demanding to solve [2] due to stiffness

$$||A|| = \frac{|\lambda_{max}|}{|\lambda_{min}|} \sim 10^{20}.$$

Decay equation is used for

- Reactor core simulations
- Calculation of isotopic concentration in spent fuel
- Criticality safety of spent fuel repository [3]

Physics Informed Neural Networks (PINNs) [4]

- Neural networks can approximate any continuous function (Universal Approximation Theorem)
- PINNs are neural networks, that take into account underlying physics described by differential equations
- PINN is used to solve the decay equation by approximating the solution N(t)
- Loss function for training the neural network:

$$\mathcal{L} = w_{ODE} \left\| \sum_{i=1}^T rac{d ilde{oldsymbol{N}}(t_i)}{dt} - A ilde{oldsymbol{N}}(t_i)
ight\|_2^2 + w_{IC} \| ilde{oldsymbol{N}}(t_0) - oldsymbol{N}_0\|_2^2,$$

where \tilde{N} is a neural network, w_{ODE} , $w_{IC} \in \mathbb{R}$ are weights and Tthe time steps.

Ongoing and Future Work

- Adaptive weight w_{IC}
- Solve large systems, $A \in \mathbb{R}^{4000 \times 4000}$
- Include transmutation matrix
- Compare to state-of-the-art methods
- Uncertainty quantification $A \pm \Delta A$ (e.g. with transfer learning)
- Publication

Conclusions

Correct choice of weights and number of time steps is important for solving stiff problems.

Acknowledgements

Thanks to J. Krepel for the insights on the topic. This project is partially sponsored by Swissnuclear.

- [1] F. Sturek, L. Agrenius, and O. Osifo. Measurements of decay heat in spent nuclear fuel at the Swedish interim storage facility, Clab. Technical Report R-05-62, Svensk Kärnbränslehantering AB, December 2006.
- [2] M. Pusa and J. Leppänen. Computing the Matrix Exponential in Burnup Calculations. *Nuclear Science and Engineering*, 164(2):140–150, February 2010.
- [3] Geologische Tiefenlager ENSI, December 2020. https://www.ensi.ch/de/dokumente/richtlinie-ensi-g03-deutsch/.
- [4] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378:686–707, February 2019.