概述:

JT3026是一款高性能峰值电流模式 PWM控制器,采用了创新的专利拓扑结构,适用于构成简洁的反激式AC/DC变换器。以高性价比将一个700V功率开关管、PWM控制电路、振荡器、防过载防饱和等电路集成到芯片中,并采用高性价比的双极型制作工艺,降低了产品的成本。该产品在85VAC到265VAC的宽输入电压范围内功率可达12W。在适配器、电

池充电器、机顶盒等电子设备中具有广泛的应用。

特点:

集成700V高压功率开关管,无需外接功率管;

内置斜坡补偿功能,保证输出大占空 比情况下系统的稳定;

利用内部功率管的放大作用完成启动,减少启动电阻的功耗:

独立上限电流检测控制器,实时处理 控制器的过流、过载;

电源电压欠压锁定、过压保护;

集成热保护、斜坡电流驱动电路;

内置具有温度补偿的电流限制电阻, 精确电流限制;

关断周期发射极偏压输出,提高了功率管的耐压;

低启动电流和工作电流;

低输出功耗,无输出功耗可低于 0.35W

框图:

引脚功能描述:

管脚	符号	管脚定义描述		
1	СВ	功率管基极驱动,启动电流输入		
2	VCC	正电源端		
3	GND	接地端		
4	OSC	振荡器电容输入端		
5	FB	反馈输入端		
6	SE	开关电流取样与限制设定端		
7	CC	输出端		
8	CC	输出端		

注:PCB板的Pin6与Pin7之间保留1mm以上的安全距离,以免放电发生。

原理描述:

芯片上电后,初始 VCC 电压较低, 芯片内部电路不工作,处于启动阶段;当 VCC 电压超过电路的启动电压后,电路 内部产生基准电压,为芯片内部电路提供 基准电压,芯片开始正常工作。因此,芯 片的工作分为启动和正常工作两个阶段。

一、启动阶段

上电时,FB上拉电流源关闭,经功率管的CE端给VCC端输入启动电流,待VCC端电压上升到8.8V,启动阶段结束,进入正常工作阶段。

在启动阶段,通过CB控制功率管的基极电流,限制功率管集电极电流,即芯片启动接受电流,从而保证功率管的安全。

二、正常工作阶段

- 1、正常工作阶段,VCC电压应保持在4.8-9.0V;OSC端输出60kHz左右的锯齿波信号;FB上拉电流源开启;振荡器输出OSC1决定驱动信号的最大占空比,OSC2触发电源进入开周期及屏蔽功率管开启尖峰电流。
- 2、开周期,CB为功率管提供基极电流,CE下拉功率管的发射极到SE,若SE检测到FB指定电流则进入关周期;关周期,CB下拉,功率管不会立即关断,但

CE箝位1.5V;功率管关断后基极反向偏置,提高了耐压。

- 3、振荡器周期随FB端电压变化。若FB小于1.8V(约在1.2-1.8V之间),振荡器周期将随之增加,FB越小振荡器周期越宽,直至振荡器停振,此特性降低了开关电源的待机功耗。
- 4、若外围反馈试图使VCC大于9.6V,则内电路反馈到FB,使VCC稳压在9.6V(利用此特性可以不采用外围反馈电路,由内电路稳定输出电压,但稳压精度较低);若VCC降到4.3V左右,振荡器停振,电源保持关周期;VCC继续下降到3.6V左右,芯片重新进入启动阶段。
- 5、为防止功率管和变压器损坏,芯片进行逐周期限流检测。在每一个开或关周期,如果SE端检测到流过功率管的电流超过上限电流,则上限电流触发器优先置位,强制FB下降,占空比变小,从而保护功率管和变压器;在下一个关周期开始沿或FB小于1.8V,上限电流触发器复位。另外,芯片内置热保护,使芯片温度不超过150 ;内置斜坡补偿,减少了芯片在大占空输出的时候可能产生的谐波振荡。

电参数定义:

振荡器周期:是 OSC 外接电容 OSC 的函数,约 OSC*24000 秒。

CC 上限电流: FB=6V, FB 端开始有下拉电流时的最小 CC 电流。

启动接受电流:启动阶段 CB 输入

0.5mA 电流时 CC 点电流。

启动静态电流:VCC 接滤波电容和可

调电流源, OSC 接 680PF, 其它引脚悬空, 能使 OSC 振荡时(即能完成JT3026启动的)最小电流源电流。

启动电压:上述能使 OSC 振荡的最小 VCC 值。

再启动电压:上述能使 OSC 振荡的最小 VCC 值。

振荡器关闭电压:上述 OSC 振荡下降

沿,使振荡器停振的 VCC 值。

静态电流:正常阶段 FB 由 1.0K 电阻

接地, VCC 电源电流。

振荡器上拉/下拉电流:正常阶段

FB=2.5V, OSC=1.25V, OSC 处上拉/

下拉电流。

FB 上拉电流:正常阶段 FB=2.5V, SE=0V 时,FB 处上拉电流。

FB 防上限电流:正常阶段 FB=2.5V,

SE=0.3V, FB 处下拉电流。

内反馈电源电压:无外围待机反馈电路的 JT3026 电源,正常阶段时 VCC

值。

电参数:

符号	参数	测试条件	Min	TYP	Max	单位
BIAS	BIAS 基准电压	OSC=680PF, SE=0.5Ω		2.48		V
OSC	振荡器周期	OSC*24000 , SE=0.5Ω		14.8		us
	振荡器上拉电流	OSC=1.25V		63.55		uA
	振荡器下拉电流	OSC=1.25V		1.827		mA
	最大占空比	OSC=680PF , SE=0.5Ω		61.2		%
I_{CS}	启动接受电流		1.6	2.0	2.4	mA
	启动静态电流			55	80	uA
I_{CC}	静态电流	VCC=8V		4		mA
VCC	启动电压		8.71	8.75	8.73	V
	振荡器关闭电压		4.30	4.33	4.35	V
	再启动电压		3.45	3.58	3.65	V
	内反馈电源电压		9.2	9.6	10	V
FB	FB 反馈电压	SE=0.5V , OSC=0.6V		3.3		V
	FB 上拉电流	FB=2.5V , SE=0V		547		uA
	FB 防上限电流	FB=2.5V, SE=0.8V		300		uA
CB	CB 开电流	SE=0.5V	102	120	140	mA
	CB 开电流	SE=0.0V	62	66	68	mA
	CB 关电流	CB-SE=1V	-145	-210	-230	mA
	CB 关电流	CB-SE=0.25V		-10	-6	mA
CE	CE 箝位电压	CE=0.001~1.2A		1.6		V
	CE 输出电流	CE-SE=0.6V		-1.2	-1	A
SE	SE 上限电压	$R_{SE-GND}=0.75\Omega$	0.54	0.58	0.62	V

应用描述(参见应用例):

反激式 AC/DC 变换器设计,不连续(或低压浅连续)电流工作模式。

启动电流

电源启动电流选择为 0.5-3mA, 功率

管的放大倍数按 10 计算,选择适当的启动电阻(如图 3 中的 R2),保证电源启动时功率管基极电流为 0.05-0.3mA,则减小了启动电阻的功耗,从而降低了待机功

耗。

工作频率

振荡器内部电流对 OSC 端外接电容进行充放电形成振荡信号。充电电流为100uA,放电电流为1.9mA。一个时钟周期约为:

$$T_S = OSC*24000 (s)$$

 $F_S = 1/T_S (Hz)$

通常比较适合双极功率开关的工作频率在 70KHz 以下。可以通过调整 OSC 端外接电容来控制。如图 3 中 C11=680PF,则芯片工作频率约 60KHz。

电压保护与温度保护

芯片具有迟滞的欠压保护功能。在 VCC 达到 8.8V 开始启动,若 VCC 电压下降到 4.3V,则振荡器关闭,VCC 进一步降到 3.6V 时,芯片开始重新启动。若 VCC 试图大于 9.6V,则芯片内部的上限电压比较器工作将 VCC 锁定在 9.6V,从而保障负载的安全。因此,VCC 的设计应该保持在合适的范围(推荐为 6V)。

芯片具有过温保护功能。当芯片内部 温度上升到 140 时,热保护电路工作, 降低开关频率,从而降低功耗。随温度上 升,开关频率降低直至振荡器关闭。

开关电流限制

应用例:

芯片具有逐周期电流限制功能。每个 开关周期芯片均检测开关电流。一旦达到 FB 端的上限电流值,则进入关周期。

芯片允许的最大开关电流为 0.8A, 在 220Vac、140V 退磁电压时,考虑电源效率等因素最大可用输出功率为 22W; 若宽压或 110Vac、90V 退磁电压,在低于 95 Vac 采用浅连续电流模式,则最大输出功率可达 18W。

PCB 板散热

尽管 JT3026 有热保护,但在需要高输出功率时,如不考虑加大 JT3026 的PCB 板散热面积,则可能会降低输出功率和输出电压。

功率管驱动与耐压

功率管采用斜坡电流驱动,驱动电流随输出功率增加而增加。小输出时的驱动功耗得到了明显的降低,如在 FB=0V时,CB 电流为 40mA;在 FB=6V时,CB 电流为 120mA。

JT3026 内部集成了独特的偏置技术。功率管关断时,反向偏置发射结,加速集电极电流的下降速度,扩展了功率管的有效安全工作区。使得开关管达到700V的耐压。

图 3、12W 开关电源

12W开关电源,输出电压由R10、R12分压比决定,但需考虑开关变压器U3变比。

元器件清单:

元件名称	标号	规格/型号	封装	说明
二极管	D1 ~ D4	1N4007	DIODE0.4	整流二极管
	D5	FR107	DIODE0.4	JF,肖特基二极管
	D6	4148		
	D7	GW5822		
	D8	FR107	DIODE0.4	JF,肖特基二极管
	D9	FR107	DIODE0.4	JH,肖特基二极管
电阻	R1	1M/1W	AXIAL-0.3	
	R2	100K/1W	AXIAL-0.4	
	R3	9.5K	AXIAL-0.4	
	R4	10K	AXIAL-0.4	
	R5	220	AXIAL-0.3	
	R6	410	AXIAL-0.3	
	R7	100	AXIAL-0.3	
	R11	0	AXIAL-0.3	直接用铁丝连接
	R12	1.2	AXIAL-0.3	
电容	C1	6.8uF/400V		电解电容
	C2	103/1KV		103/1KV
	C3	47uF/50V		电解电容
	C5	104		104
	C6	470uF/16V		电解电容
	C7	1000uF/10V		电解电容
	C8	220uF/16V		电解电容
	C9	220uF/16V		电解电容
	C10	220uF/16V		电解电容
	C11	2A681J		2A681J
	C12	2A223J		2A223J
	CY1	CD222M		222M/400V
电感	L1	3.3mH		工型电感
	L2	1.5mH		工型电感
	L3	1.5mH		工型电感
JT3026 芯片	U1	JT3026	DIP8	开关电源管理芯片
光电耦合器	U2	PC817	DIP4	光电耦合器
高频变压器	U3			
调整器	U4	TL431	TO-92B	可调式精密并联稳压源
保险丝	J1		*BAOXIANSI	
电源接口	JP1		*DIANYUAN	
输出接口	JP2		SIP7	

注:带*的表示非标准封装。