Prosody Prediction

August 16, 2017

Hansjörg Mixdorff

Beuth University Berlin

mixdorff@beuth-hochschule.de

http://public.beuth-hochschule.de/~mixdorff/thesis/index.html

Overview

- 1) Introduction
- 2) Models in Prosody Research
- 3) Linguistic Background of Approach
- 4) Parameter Extraction
- 5) Statistical Modeling
- 6) Superpositional vs. Autosegmental Modeling of F0
- 7) Discussion

1) Introduction: Prosody

Working definition: "The principles underlying the organisation of an utterance into a structure."

The most important prosodic features of speech and their measurable correlates:

- pitch -> fundamental frequency F0
- •quantity -> durations of phones, syllables words (...) **D**
- •loudness -> intensity I
- -> suprasegmental by nature

Measuring prosodic features

F0 contour *f0(t)* und intensity *l(t)* (,envelope ') can be extracted directly from the speech signal, measuring durations presupposes the segmentation of the speech signal into *(phonetically or phonemically defined)* portions.

The estimation of a <u>duration contour</u> **D(t)** requires the establishment of the relationship between the duration of a particular segment and the durations of segments of the same type in the entire data base, the z-score, for instance.

$$z_i = (Dur_i - \mu_i) / \sigma_i$$

Information Coded in Prosodic Features

- Linguistic information
 - –word accent / syllabic tone in tone languages
 - -segmentation (Phrasing, pausing)
 - –sentence mode (question vs. non-question)
 - -focus (prominence), "accentuation"
- Para-linguistic information
 - -attitude and intention of a speaker
 - -sociolect, dialect

Consciously controlled

Information Coded in Prosodic Features (continued)

- Non-linguistic information
 - Age
 - •Sex
 - health condition
 - emotional condition
 - •Speech of a single, human speaker

Not consciously controlled

Word Accent Distinction

Broad vs. narrow focus

University of Applied Sciences

Sentence mode

August 2017

Manifestation of Multi-Dimensional Information in the Single-dimensional F0 Contour

lexical accent, sentence mode, delimitation, focus...

2) Models in Prosody Research

2) Models in Prosody Research>

What we expect from a quantitative description of F0 contours

segmental tier

Process of information coding (Fujisaki 1994)

We are also interested in the reversed process!

2) Models in Prosody Research>

The Fujisaki Model

$$Ga(t) = \begin{cases} \min[1 - (1 + \beta t) \exp(-\beta t), \gamma], \text{ for } t \ge 0, \\ 0, \text{ for } t < 0 \end{cases}$$

Characteristics of Phrase Component

2) Models in Prosody Research>

Characteristics of Accent Component

2) Models in Prosody Research>

Accent Command Amplitude vs. Semi tone scale

2) Models in Prosody Research>
The Fujisaki model and its physiological interpretation: The structure of the larynx

University of Applied Sciences

2) Models in Prosody Research> Two degrees of freedom in the movement around the crico-thyroid joint

Translation ⇒phrase component

3) Linguistic Background (D.Eng. thesis, 1998)

- Phonologically relevant tone switches (Isačenko, 1964)
- Perception experiments using simplified F0 contours

'pitch interrupters' (//) at phrase boundaries

```
arbeitet //
                             \operatorname{dient}
Peter
                       ver
                                     aber wenig
                                          "Peter
                                                                                           little."
                                                       works.
                                                                      but
                                                                               earns
die Zeit
          schriften //
                          bringen Ar
                                        tikel und A
                                                       nnoncen
                        "The journals carry articles and advertisements."
```

3) Linguistic Background>

Linguistic Background (D.Eng. thesis, 1998)

Information intoneme I↓	Declarative-final accents, falling tone switch. Conveying a message.	
Contact intoneme C↑	Question-final accents, rising tone switch. Establishing contact.	
Non-terminal intoneme N↑	Non-final accents, rising tone switch. Signaling non-finality	
Boundary tone B↑	Question-final boundary tone. Rising tone switch not necessarily connected to an accented syllable	

3) Linguistic Background>

Combining tone switches and Fujisaki model

3) Linguistic Background>

Examples of Intoneme Assignment

August 2017

University of Eastern Finland

2) Models in Prosody Research>

A Few Examples in Finnish

4) Parameter Extraction

Stage 1

4) Parameter Extraction>

4) Parameter Extraction>

5) Statistical Modeling

5) Statistical Modeling>

FFNN structure (Oliver Jokisch)

August 2017

University of Eastern Finland

5) Statistical Modeling>

Input and Output Parameters of Prosodic Model

Output Parameter out of Model	Predictor Variable in of Model	r (out,in)	N
syllable duration	sum of duration means of phone classes in syllable	.640	13151
	boundary depth (right), 0=clitic, 1=word,	.464	13151
	2=phrase, 3=sentence, 4=paragraph		L
	strength (0=unstressed, 1=stressed, 2=accented)	.349	13151
	nucleus schwa/non-schwa	191	13151
Aa	type of intoneme (tone switch class)	.257	3022
	part-of-speech	.128	3022
	phrase index in sentence	115	3022
$T1_{dist} = T1-t_{on}$	type of intoneme	.508	3022
	number of phones in syllable onset	.154	3022
$T2_{dist} = T2 - t_{off}$	type of intoneme	.384	3022
	number of phones in syllable rhyme	198	3022
Ap	boundary depth (left)	.696	1047
	index of phrase in sentence	507	1047
	duration of preceding phrase	.320	1047
	Ap of preceding phrase command	184	1047
	duration of current phrase	.110	1047
$TO_{dist} = t_{on}$ - TO	distance from preceding phrase command	.256	1047
intensity (mean frame power	index of phrase in sentence	206	13151
rms in syllable)	coda voiced	.141	13151
	index of syllable in phrase	124	13151
pause	boundary depth (left)	.622	1047
	index of phrase in syllable	376	1047

6) Superpositional vs. Autosegmental Modeling of F0> **Results of Comparision**

Accentuation: Distribution of accent label types

tone label type

 $H^*L \Leftrightarrow I \downarrow -intoneme$ $L^*H \Leftrightarrow N \uparrow -intoneme$

6) Superpositional vs. Autosegmental Modeling of F0> Results of Comparision

Accentuation: Tone Labels and T1/T2

6) Superpositional vs. Autosegmental Modeling of F0>

Results of Comparision

Phrasing: Bls vs. Phrase Commands

- •BI4: 97 % aligned with phrase command, mean *Ap*: 1.32
- •BI3: 57 % aligned with phrase command, mean *Ap:* 0.67
- only sentence boundaries: 100 %
- •mean Ap for paragraph onset, sentence onset, intra-sentence boundaries: 2.28, 1.68, 0.8

7) Discussion and Conclusions

- The Fujisaki is applicable to any language as it is production-oriented and has a physiological interpretation
- The choice of parameters and threshholds needs to be guided by linguistic theory
- The quantitative model preserves the macro-intonation
- Can be used to perform unbiased first guess of ToBI accent labels or intoneme types
- Minor phrase boundaries require evaluation of additional cues, such as pre-boundary lengthening and short pauses

