Chapter 2

Boolean Algebra and Logic Gates

Chapter Overview

- 2-1 Introduction
- 2-2 Basic Definitions
- 2-3 Axiomatic Definition of Boolean Algebra
- 2-4 Basic Theorems and Properties of Boolean Algebra
- 2-5 Boolean Functions
- 2-6 Canonical and Standard Forms
- 2-7 Other Logic Operations
- 2-8 Digital Logic Gates
- 2-9 Integrated Circuits 補充資料: Technology Parameters

Standard form

Canonical form

Non-Standard form

2-1 Introduction

- Important factor of digital circuit design:
 - the cost of the circuit
 - ⇒ Find simpler and cheaper, but equivalent, realizations of a circuit

Boolean algebra:

 Mathematical methods that simplify circuits rely primarily on Boolean algebra.

2-2 Basic Definitions

- A deductive mathematical system may be defined with
 - a set of elements: S
 - a set of operators: binary/unary operator
 - a number of unproven axioms or postulates:
 - > Form the basic assumptions from which it is possible to deduce the rules, theorems, and properties of the system

Common Postulates

- elements: $\in S$
- operators
- axioms or postulates

For algebraic structures:

1. Closure

- E.g.: the set of natural numbers $N = \{1, 2, 3, 4, ...\}$ is closed w.r.t. "+" (arithmetic addition), but not to "-" (arithmetic subtraction)
- 2. Associative law: (x * y) * z = x * (y * z)
- 3. Commutative law: x * y = y * x
- 4. Identity element: e, e * x = x * e = x
 - ► E.g.: 0 is an identity element w.r.t. "+" on the set of integers $I = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- 5. Inverse: x * y = e
 - E.g.: In the set of integers, I, and the operator +, with e = 0, the inverse of an element a is (-a).
- 6. Distributive law: x * (y z) = (x * y) (x * z)

2-3 Axiomatic Definition of Boolean Algebra

- 1854 George Boole: Boolean algebra
- 1904 E. V. Huntington: postulates

https://en.wikipedia.org/wiki/Edward_Vermilye_Huntington

■ 1938 C. E. Shannon: 2-valued Boolean algebra (switching algebra, binary logic)

George Boole
(1815~1864)
https://en.wikipedia.org/wiki/George_Boole

C.E. Shannon (1916~2001)

Boolean Algebra

- Boolean algebra: an algebra structure
 - a set of elements: B
 - a set of operators: 2 binary operators: +, •
 - (Huntington) postulates

Huntington Postulates

(Huntington) postulates:

- 1. (a) Closure w.r.t the operator +.
 - (b) Closure w.r.t the operator •.
- 2. (a) An identity element w.r.t. +: 0, x + 0 = 0 + x = x
 - (b) An identity element w.r.t. •: 1, x 1 = 1 x = x
- 3. (a) Commutative w.r.t. +: x + y = y + x
 - (b) Commutative w.r.t. : x y = y x
- 4. (a) is distributive over +: x (y + z) = (x y) + (x z)
 - (b) + is distributive over •: $x + (y \cdot z) = (x + y) \cdot (x + z)$
- 5. Complement: x', (a) x + x' = 1 (b) $x \cdot x' = 0$
- 6. There exists at least two elements $x, y \in \mathbf{B}$ s.t. $x \neq y$.
- * Associative law: can be derived from the other postulates J.J. Shann 2-9

Two-Valued Boolean Algebra

- Set of elements: $\mathbf{B} = \{0, 1\}$
- Set of operators: 2 binary operators: +, •

xy	$x \cdot y$		xy	x+y		X	x'
0 0	0		00	0		0	1
0 1	0		0 1	1		1	0
10	0		10	1			*
1 1	1		1 1	1			
A	ND	· '	0	R	•	N(TC

(Postulate 5)

• (Huntington) postulates:

			_
_			

xy	$x \cdot y$	xy	x+y	$\boldsymbol{\mathcal{X}}$	x'
0 0	0	0 0	0	0	1
0 1	0	0 1	1	1	0
10	0	10	1		
1 1	1	1 1	1		

(Huntington) postulates:

- 1. Closure
- 2. Identity elements: two; 0 for +, 1 for x + 0 = 0 + x = x, $x \cdot 1 = 1 \cdot x = x$
- 3. Commutative laws: x + y = y + x, $x \cdot y = y \cdot x$
- 4. (a) is distributive over +: x (y + z) = (x y) + (x z)(b) + is distributive over • : x + (y • z) = (x + y) • (x + z)
- 5. Complement:

(a)
$$x + x' = 1$$
: $0 + 0' = 0 + 1 = 1$, $1 + 1' = 1 + 0 = 1$

(b)
$$x \cdot x' = 0$$
: $0 \cdot 0' = 0 \cdot 1 = 0$, $1 \cdot 1' = 1 \cdot 0 = 0$

6.
$$\mathbf{B} = \{0,1\}, 0 \neq 1$$
.

Proof by Truth Table

* **Prove 4(b)!**

Proof> 4(a) $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$

xyz	y+z	$x \bullet (y+z)$	<i>x</i> • <i>y</i>	<i>x</i> • <i>z</i>	$(x \bullet y) + (x \bullet z)$
000	0	0	0	0	0
001	1	0	0	0	0
010	1	0	0	0	О
011	1	0	0	0	О
100	0	0	0	0	0
101	1	1	0	1	1
110	1	1	1	0	1
111	1	1	1	1	1 ,

2-4 Basic Theorems and Properties of Boolean Algebra

Duality:

Every algebraic expression deducible from the postulates of Boolean algebra (or truth table) remains valid if the operators and identity elements are interchanged

 $(OR \leftrightarrow AND, 0 \leftrightarrow 1)$

* Positive vs. Negative Logic (p.2-74~2-76)

_ E.g.:

4.(a)
$$x \cdot (y + z) = (x \cdot y) + (x \cdot z)$$

(b) $x + (y \cdot z) = (x + y) \cdot (x + z)$ dual
5.(a) $x + x' = 1$
(b) $x \cdot x' = 0$ dual

A. Basic Theorems

- Postulates and theorems of Boolean algebra:
 - Postulates: basic axioms, need no proof
 - Theorems: must be proven
 - i. From the postulates and proven theorems
 - ii. From truth table

dual

Postulate/Theorem	(a)	(b)
Postulate 2, identity element	x + 0 = x	$x \cdot 1 = x$
Postulate 5, complement	x + x' = 1	$x \cdot x' = 0$
Postulate 3, commutative	x + y = y + x	x y = y x
Postulate 4, distributive	x(y+z) = xy + xz	x + (y z) = (x + y) (x + z)
Theorem 1	x + x = x	$x \cdot x = x$
Theorem 2	x + 1 = 1	$x \cdot 0 = 0$
Theorem 3, involution	(x')' = x	
Theorem 4, associative	x + (y + z) = (x + y) + z	x(yz) = (xy)z
Theorem 5, DeMorgan	$(x+y)'=x'\ y'$	(xy)' = x' + y'
Theorem 6, absorption	x + xy = x	$x\left(x+y\right) =x$
Theorem *, consensus	xy + x'z + yz = xy + x'z	(x + y) (x' + z) (y + z) = (x + y) (x' + z)

J.J. Shann 2-15

Theorem 1

■ 1(a):
$$x + x = x$$

$$x + x = (x + x) \cdot 1$$

$$= (x + x) (x + x')$$

$$= x + xx'$$

$$= x + 0$$

$$= x$$

■ 1(b):
$$x \bullet x = x$$

 $x \bullet x = x x + 0$
 $= x x + x x'$
 $= x (x + x')$
 $= x \bullet 1$
 $= x$

Postulate/Theorem	(a)	(b)
Postulate 2, identity element	x + 0 = x	$x \cdot 1 = x$
Postulate 5, complement	x + x' = 1	$x \cdot x' = 0$
Postulate 3, commutative	x + y = y + x	x y = y x
Postulate 4, distributive	x(y+z) = xy + xz	x + (y z) = (x + y) (x + z)
Theorem 1	x + x = x	$x \cdot x = x$
Theorem 2	x + 1 = 1	$x \cdot 0 = 0$
Theorem 3, involution	(x')' = x	
Theorem 4, associative	x + (y+z) = (x+y) + z	x(yz) = (xy)z
Theorem 5, DeMorgan	$(x+y)'=x'\ y'$	(xy)' = x' + y'
Theorem 6, absorption	x + xy = x	x(x+y) = x
Theorem *, consensus	xy + x'z + yz = xy + x'z	(x + y) (x' + z) (y + z) = (x + y) (x' + z)

by postulate: 2(b)

		₁ 5(a)
X	x + x	4(b)
0	0 + 0 = 0	5(b)
1	1 + 1 = 1	2(a)

by postulate: 2(a)

		5(b
x	$x \cdot x$	4(a)
0	$0 \cdot 0 = 0$	5(a)
1	$1 \cdot 1 = 1$	2(b

J.J. Shann 2-17

Theorem 2

Postulate/Theorem	(a)	(b)
Postulate 2, identity element	x + 0 = x	$x \cdot 1 = x$
Postulate 5, complement	x + x' = 1	$x \cdot x' = 0$
Postulate 3, commutative	x+y=y+x	x y = y x
Postulate 4, distributive	x(y+z) = xy + xz	x + (y z) = (x + y) (x + z)
Theorem 1	x + x = x	$x \cdot x = x$
Theorem 2	x + 1 = 1	$x \cdot 0 = 0$
Theorem 3, involution	(x')' = x	
Theorem 4, associative	x + (y+z) = (x+y) + z	x(yz) = (xy)z
Theorem 5, DeMorgan	$(x+y)'=x'\ y'$	(xy)' = x' + y'
Theorem 6, absorption	x + xy = x	$x\left(x+y\right) =x$
Theorem *, consensus	xy + x'z + yz = xy + x'z	(x+y)(x'+z)(y+z) = (x+y)(x'+z)

■ 2(a):
$$x + 1 = 1$$

 $x + 1 = 1 \cdot (x + 1)$
 $= (x + x')(x + 1)$
 $= x + x' \cdot 1$
 $= x + x'$
 $= 1$

$$x$$
 $x + 1$

 0
 $0 + 1 = 1$

 1
 $1 + 1 = 1$

by postulate:

5(a)

2(b), 3(b)

■ 2(b):
$$x \cdot 0 = 0$$

 $x + 1 = 1$ is proven
by duality principal

$$x + 1 = 1$$
 is proven
by duality principle (OR \leftrightarrow AND, 0 \leftrightarrow 1)
 $x \cdot 0 = 0$

Theorem 3: Involution

Postulate/Theorem	(a)	(b)
Postulate 2, identity element	x + 0 = x	$x \cdot 1 = x$
Postulate 5, complement	x + x' = 1	$x \cdot x' = 0$
Postulate 3, commutative	x+y=y+x	x y = y x
Postulate 4, distributive	x(y+z) = xy + xz	x + (y z) = (x + y) (x + z)
Theorem 1	x + x = x	$x \cdot x = x$
Theorem 2	x + 1 = 1	$x \cdot 0 = 0$
Theorem 3, involution	(x')' = x	
Theorem 4, associative	x + (y+z) = (x+y) + z	x(yz) = (xy)z
Theorem 5, DeMorgan	$(x+y)'=x'\ y'$	(xy)' = x' + y'
Theorem 6, absorption	x + xy = x	x(x+y) = x
Theorem *, consensus	xy + x'z + yz = xy + x'z	(x+y)(x'+z)(y+z) = (x+y)(x'+z)

$$(x')' = x$$

Postulate 5 defines the complement of x:

$$x + x' = 1$$
 and $x x' = 0$

The complement of x' is x and is also (x')'. Since the complement is unique $\Rightarrow (x')' = x$.

x	x'	(x')'
0	1	0
1	0	1

Theorem 5: DeMorgan

Postulate/Theorem (b) (a) x + 0 = xPostulate 2, identity element $x \cdot 1 = x$ x + x' = 1 $x \cdot x' = 0$ Postulate 5, complement Postulate 3, commutative x + y = y + xx y = y xPostulate 4, distributive x(y+z) = xy + xzx + (y z) = (x + y) (x + z)x + x = xTheorem 1 $x \cdot x = x$ x + 1 = 1 $x \cdot 0 = 0$ Theorem 2 Theorem 3, involution (x')' = xx + (y + z) = (x + y) + z x + (y + z) = (x + y) + zTheorem 4, associative Theorem 5, DeMorgan (x+y)' = x' y'(xy)' = x' + y'x + xy = xx(x+y)=xTheorem 6, absorption (x + y) (x' + z) (y + z) = (x + y) (x' + z)Theorem *, consensus xy + x'z + yz = xy + x'z

• 5(a): (x + y)' = x' y'

x y	x + y	(x+y)'	x'	y'	x'y'
0 0	0	1	1	1	1
0 1	1	0	1	0	0
1 0	1	0	0	1	0
1 1	1	0	0	0	0
		†	:		

- 5(b): (x y)' = x' + y'
- * Prove Theorem 5 by using Postulate 5!

- Two variables: (x + y)' = x' y', (x y)' = x' + y'
- Three or more variables:

$$(A + B + C)' = (A + X)'$$
 let $B + C = X$
 $= A' X'$ by DeMorgan's
 $= A' (B + C)'$ substitute $B + C = X$
 $= A' (B' C')$ by DeMorgan's
 $= A' B' C'$ associative

Generalized form:

$$(A + B + C + ... + G)' = A' B' C' ... G'$$

 $(A B C ... G)' = A' + B' + C' + ... + G'$
 $\Rightarrow AND \leftrightarrow OR$ and complement each literal

Theorem 6: Absorption

Postulate/Theorem	(a)	(b)
Postulate 2, identity element	x + 0 = x	$x \cdot 1 = x$
Postulate 5, complement	x + x' = 1	$x \cdot x' = 0$
Postulate 3, commutative	x+y=y+x	x y = y x
Postulate 4, distributive	x(y+z) = xy + xz	x + (y z) = (x + y) (x + z)
Theorem 1	x + x = x	$x \cdot x = x$
Theorem 2	x + 1 = 1	$x \cdot 0 = 0$
Theorem 3, involution	(x')' = x	
Theorem 4, associative	x + (y+z) = (x+y) + z	x(yz) = (xy)z
Theorem 5, DeMorgan	$(x+y)'=x'\ y'$	(xy)' = x' + y'
Theorem 6, absorption	x + xy = x	x(x+y) = x
Theorem *, consensus	xy + x'z + yz = xy + x'z	(x + y) (x' + z) (y + z) = (x + y) (x' + z)

•
$$6(a)$$
: $x + xy = x$

i.
$$x + xy = x \cdot 1 + xy$$

$$= x (1 + y)$$

$$= x (y + 1)$$

$$= x \cdot 1$$

$$= x$$

ii. Truth table:

X	У	xy	x + xy
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

J.J. Shann 2-22

- 6(a): x + xy = x
 - * Venn diagram:

Theorem *: Consensus

Postulate/Theorem	(a)	(b)
Postulate 2, identity element	x + 0 = x	$x \cdot 1 = x$
Postulate 5, complement	x + x' = 1	$x \cdot x' = 0$
Postulate 3, commutative	x + y = y + x	x y = y x
Postulate 4, distributive	x(y+z) = xy + xz	x + (y z) = (x + y) (x + z)
Theorem 1	x + x = x	$x \cdot x = x$
Theorem 2	x + 1 = 1	$x \cdot 0 = 0$
Theorem 3, involution	(x')' = x	
Theorem 4, associative	x + (y+z) = (x+y) + z	x(yz) = (xy)z
Theorem 5, DeMorgan	$(x+y)'=x'\ y'$	(xy)' = x' + y'
Theorem 6, absorption	x + xy = x	x(x+y) = x
Theorem *, consensus	xy + x'z + yz = xy + x'z	(x+y)(x'+z)(y+z) = (x+y)(x'+z)

$$xy + x'z + yz = xy + x'z$$

$$(x + y) (x' + z) (y + z) = (x + y) (x' + z)$$

$$xy + x'z + yz$$

= $xy + x'z + (x + x') yz$... P2(b), P3(b), P5(a)
= $xy + x'z + xyz + x'yz$... P4(a)
= $xy + x'z + x'z + x'z + x'z + x'z$... P3(a), P4(a)
= $xy + x'z$... T2(a), P2(b)

- can be used to eliminate redundant terms from Boolean expressions.
- can be used to generate redundant terms for further simplification.
 * Venn diagram

J.J. Shann 2-24

- xy + x'z + yz = xy + x'z
 - * Venn diagram:

B. Operator Precedence

- Operator precedence for evaluating Boolean expression:
 - parenthesis
 - NOT
 - AND
 - OR

Example:

$$(x+y)' + x'y$$

2-5 Boolean Functions

Boolean algebra:

- is an algebra dealing w/ binary variables and logic ops
 - binary variables: are designated by letters of the alphabet
 - logic ops: AND, OR, NOT

Boolean expression:

an algebraic expression formed by using binary variables,
 the constants 0 and 1,
 the logic op symbols, and parentheses.

- E.g.:
$$X \cdot (\overline{Y} + Z) + Z \cdot 1$$

Boolean Function

- Boolean function:
 - can be described by
 - a Boolean equation,
 - a truth table, or
 - a logic ckt diagram

Boolean Equation

Boolean equation:

- consists of a binary variable identifying the function followed by an equal sign and a Boolean expression.
- expresses the logical relationship b/t binary variables
- can be expressed in a variety of ways
 - * Obtain a simpler expression for the same function.
- _ E.g.:

$$F(W, X, Y, Z) = X\overline{YZ} + \overline{YZ} + \overline{WXYZ} + WXY + \overline{WXYZ}$$

$$= (X) + (\overline{YZ})$$
terms

Truth Table

Truth table for a function: is unique

a list of all combinations of 1's and 0's that can be assigned to the binary variables and a list that shows the value of the function for each binary combination.

_ E.g.:

$$F(X,Y,Z) = X + \overline{Y}Z$$

•	
XYZ	F
0 0 0	0
0 0 1	1
0 1 0	0
0 1 1	0
1 0 0	1
1 0 1	1
1 1 0	1
1 1 1	1

J.J. Shann 2-30

Logic Circuit Diagram

Logic circuit diagram:

- An algebraic expression for a Boolean function
 - ⇒ A ckt diagram composed of logic gates
- Circuit gates are interconnected by wires that carry logic signals.
- E.g.: $F(x, y, z) = x + \overline{y}z$

* Combinational logic circuits

Example

Present a set of requirements under which an insurance policy will be issued:

The applicant must be

- 1. a married female 25 years old or over, or
- 2. a female under 25, or
- 3. a married male under 25 who has not been involved in a car accident, or
- 4. a married male who has been involved in a car accident, or
- 5. a married male 25 years or over who has not been involved in a car accident.

- > Define input variables: 4; w, x, y, z
 - w = 1 if applicant has been involved in a car accident
 - x = 1 if applicant is married
 - y = 1 if applicant is a male
 - z = 1 if applicant is under 25
- > Find a Boolean expression which assumes the value 1 whenever the policy should be issued:
- x y' z' 1. a married female 25 years old or over
- y'z 2. a female under 25
- w' x y z 3. a married male under 25 who has not been involved in a car accident
- $\mathbf{w} \mathbf{x} \mathbf{y}$ 4. a married male who has been involved in a car accident
- w' x y z' 5. a married male 25 years or over who has not been involved in a car accident

$$\Rightarrow F = x y' z' + y' z + w' x y z + w x y + w' x y z'$$
 J.J. Shann 2-33

> Simplify the expression and suggest a simpler set of requirements:

Insurance policy

w = 1 if applicant has been involved in a car accident

x = 1 if applicant is married

y = 1 if applicant is a male

z = 1 if applicant is under 25

The applicant must be

- 1. married or
- 2. a female under 25.

> Draw the logic circuit diagram:

$$F = x y' z' + y' z + w' x y z + w x y + w' x y z'$$

$$= x + y' z$$

Simplification of Boolean Functions

 Boolean algebra is a useful tool for simplifying digital ckts.

_ E.g.:

Postulate/Theorem	(a)	(b)
Postulate 2, identity element	x + 0 = x	$x \cdot 1 = x$
Postulate 5, complement	x + x' = 1	$x \cdot x' = 0$
Postulate 3, commutative	x + y = y + x	x y = y x
Postulate 4, distributive	x(y+z) = xy + xz	x + (yz) = (x+y)(x+z)
Theorem 1	x + x = x	$x \cdot x = x$
Theorem 2	x + 1 = 1	$x \cdot 0 = 0$
Theorem 3, involution	(x')' = x	
Theorem 4, associative	x + (y+z) = (x+y) + z	x(yz) = (xy)z
Theorem 5, DeMorgan	$(x+y)'=x'\ y'$	(xy)' = x' + y'
Theorem 6, absorption	x + xy = x	x(x+y) = x
Theorem *, consensus	xy + x'z + yz = xy + x'z	(x+y)(x'+z)(y+z) = (x+y)(x'+z)

$$F_2 = x'y'z + x'yz + xy'$$

 $= x'z (y' + y) + xy'$... Postulate 4(a)
 $= x'z \cdot 1 + xy'$... Postulate 5(a)
 $= x'z + xy'$... Postulate 2(b)

$$F_2 = x'y'z + x'yz + xy'$$
 (a)
= $x'z + xy'$ (b)

$$F_2 = x'z + xy'$$

x y z	F_2
0 0 0	0
0 0 1	1
010	0
0 1 1	1
100	1
1 0 1	1
1 1 0	0
1 1 1	0

A. Algebraic Manipulation

- Implementation of Boolean function w/ gates:
 - each term is implemented w/ a gate
 - each literal designates an input to a gate
 - > literal: a primed or unprimed variable

- E.g.:
$$F_2 = x'y'z + x'yz + xy'$$
 ... 3 terms & 8 literal
= $x'z + xy'$... 2 terms & 4 literals

- Criterion of equipment minimization:
 - Minimize the # of "literals"
 - Minimize the # of "terms"
- Algebraic manipulation: literal minimization
 - Method: cut-and-try (hard)
 - employ the postulates, basic theorem, ...

Example 2-1

Simplify the following Boolean functions to a minimum # of literals:

= x + y 3 \rightarrow 2 (or by duality from 1)

1.
$$x(x' + y)$$

$$= xx' + xy$$

$$= 0 + xy$$

$$= xy$$

$$= xy$$

2.	x + x'y
	= (x + x')(x + y)
	= 1 (x + y)

Postulate/Theorem	(a)	(b)
Postulate 2, identity element	x + 0 = x	$x \cdot 1 = x$
Postulate 5, complement	x + x' = 1	$x \cdot x' = 0$
Postulate 3, commutative	x + y = y + x	x y = y x
Postulate 4, distributive	x(y+z) = xy + xz	x + (yz) = (x+y)(x+z)
Theorem 1	x + x = x	$x \cdot x = x$
Theorem 2	x + 1 = 1	$x \cdot 0 = 0$
Theorem 3, involution	(x')' = x	
Theorem 4, associative	x + (y+z) = (x+y) + z	x(yz) = (xy)z
Theorem 5, DeMorgan	$(x+y)'=x'\ y'$	(xy)' = x' + y'
Theorem 6, absorption	x + xy = x	x(x+y) = x
Theorem *, consensus	xy + x'z + yz = xy + x'z	(x + y) (x' + z) (y + z) = (x + y) (x' + z)

3.
$$(x + y)(x + y')$$

 $= xx + xy + xy' + yy'$
 $= x + xy + xy' + 0$
 $= x(1 + y + y')$
 $= x 4 \rightarrow 1$

Postulate/Theorem	(a)	(b)
Postulate 2, identity element	x + 0 = x	$x \cdot 1 = x$
Postulate 5, complement	x + x' = 1	$x \cdot x' = 0$
Postulate 3, commutative	x + y = y + x	x y = y x
Postulate 4, distributive	x(y+z) = xy + xz	x + (yz) = (x+y)(x+z)
Theorem 1	x + x = x	$x \cdot x = x$
Theorem 2	x + 1 = 1	$x \cdot 0 = 0$
Theorem 3, involution	(x')' = x	
Theorem 4, associative	x + (y+z) = (x+y) + z	x(yz) = (xy)z
Theorem 5, DeMorgan	$(x+y)'=x'\ y'$	(xy)' = x' + y'
Theorem 6, absorption	x + xy = x	x(x+y) = x
Theorem *, consensus	xy + x'z + yz = xy + x'z	(x + y) (x' + z) (y + z) = (x + y) (x' + z)

* 4 & 5

4.
$$xy + x'z + yz$$

$$= xy + x'z + yz(x+x')$$

$$= xy + x'z + xyz + x'yz$$

$$= xy(1+z) + x'z(1+y)$$

$$= xy + x'z + 6 \rightarrow 4$$

5.
$$(x+y)(x'+z)(y+z)$$

= $(x+y)(x'+z)$ 6 \longrightarrow 4 (duality from 4)

J.J. Shann 2-40

B. Complement of a Function

- Complement of a function F:
 - E.g.: p.2-30 (Insurance Policy)
 F = 1 whenever the insurance policy should be issued
 ⇒ G = F' = 1 whenever the insurance policy should *not* be issued
 - i. interchange of 1's to 0's and 0's to 1's for the values of F in the truth table
 - ii. can be derived algebraically by applying DeMorgan's theorem ⇒ interchange AND and OR ops and complement each variable and constant

$$\overline{X + Y} = \overline{X} \cdot \overline{Y}$$
 $\overline{X \cdot Y} = \overline{X} + \overline{Y}$

iii. take the dual (OR \leftrightarrow AND, 0 \leftrightarrow 1) of the function eq & complement each literal

Example 2.2
$$\overline{X+Y} = \overline{X} \cdot \overline{Y}$$
 $\overline{X \cdot Y} = \overline{X} + \overline{Y}$

- Complementing functions by applying DeMorgan's theorem:
 - _ E.g.s:

$$F_{1} = \overline{X}Y\overline{Z} + \overline{X}\overline{Y}Z \qquad \overline{F}_{1} = (\overline{X}Y\overline{Z} + \overline{X}\overline{Y}Z)'$$

$$= (\overline{X}Y\overline{Z})' \cdot (\overline{X}\overline{Y}Z)'$$

$$= (X + \overline{Y} + Z) \cdot (X + Y + \overline{Z})$$

$$\begin{split} F_2 &= X(\overline{Y}\ \overline{Z} + YZ) \qquad \overline{F}_2 = (X(\overline{Y}\ \overline{Z} + YZ))' \\ &= \overline{X} + (\overline{Y}\ \overline{Z} + YZ)' \\ &= \overline{X} + (\overline{Y}\ \overline{Z})' \cdot (YZ)' \\ &= \overline{X} + (Y + Z) \cdot (\overline{Y} + \overline{Z}) \\ \text{. Shape} \end{split}$$

- Complementing functions by using duals:
 - E.g.s: (dual: $OR \leftrightarrow AND$, $0 \leftrightarrow 1$)

$$F_{1} = \overline{X}Y\overline{Z} + \overline{X}\overline{Y}Z$$

$$\text{dual of } F_{1} \Rightarrow (\overline{X} + Y + \overline{Z}) \cdot (\overline{X} + \overline{Y} + Z)$$

$$\text{complement each literal} \Rightarrow (X + \overline{Y} + Z) \cdot (X + Y + \overline{Z})$$

$$= \overline{F_{1}}$$

$$F_{2} = X(\overline{Y} \ \overline{Z} + YZ)$$

$$\text{dual of } F_{2} \Rightarrow X + (\overline{Y} + \overline{Z}) \cdot (Y + Z)$$

$$\text{complement each literal} \Rightarrow \overline{X} + (Y + Z) \cdot (\overline{Y} + \overline{Z})$$

$$= \overline{F_{2}}$$

$$\text{The Short 2.42}$$

J.J. Shann 2-43

2-6 Canonical & Standard Forms

Boolean expressions:

- an expression formed w/:
 - binary variables
 - > constants 0 and 1
 - binary operators OR and AND
 - unary operator NOT
 - parentheses
 - equal sign
- Special forms:
 - Canonical forms
 - Standard forms

Standard form Canonical form

A. Canonical Forms

Canonical forms:

- special forms of Boolean expression being expressed directly from truth tables
- Two types:

```
i. sum-of-minterms form
(minterm) + ... + (minterm)
```

ii. product-of-maxterms form

(*max*term) • ... • (*max*term)

X	y	Z	$ F_2 $
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

minterms

- \blacksquare minterm: standard product, m_j
 - an AND term of the *n* variables, w/ each variable being
 primed if the corresponding bit is 0 and unprimed if a 1.
 - -n variables $\rightarrow 2^n$ minterms
 - E.g.: minterms for 3 variables

x y z	minterm		m_0	m_1	m_2	m_3	m_4	m_5	m_6	m_7
0 0 0	x'y'z'	(m_0)	1	0	0	0	0	0	0	0
0 0 1	x'y'z	(m_1)	0	1	0	0	0	0	0	0
010	x'yz'	(m_2)	0	0	1	0	0	0	0	0
0 1 1	x'yz	(m_3)	0	0	0	1	0	0	0	0
100	xy'z'	(m_4)	0	0	0	0	1	0	0	0
101	xy'z	(m_5)	0	0	0	0	0	1	0	0
110	xyz'	(m_6)	0	0	0	0	0	0	1	0
1 1 1	xyz	(m_7)	0	0	0	0	0	0	0	1

Maxterms

- *Maxterm*: standard sum, M_j (= m_j')
 - an OR term of the *n* variables, w/ each variable being unprimed if the corresponding bit is 0 and primed if a 1.
 - -n variables $\rightarrow 2^n$ Maxterms
 - E.g.: Maxterms for 3 variables

x y z	Maxterm		M_0	M_1	M_2	M_3	M_4	M_5	M_6	M_7
0 0 0	x + y + z	(M_0)	0	1	1	1	1	1	1	1
0 0 1	x+y+z'	(M_1)	1	0	1	1	1	1	1	1
010	x + y' + z	(M_2)	1	1	0	1	1	1	1	1
011	x + y' + z'	(M_3)	1	1	1	0	1	1	1	1
100	x' + y + z	(M_4)	1	1	1	1	0	1	1	1
101	x' + y + z'	(M_5)	1	1	1	1	1	0	1	1
110	x' + y' + z	(M_6)	1	1	1	1	1	1	0	1
1 1 1	x' + y' + z'	(M_7)	1	1	1	1	1	1	1	0

minterms vs. Maxterms

■ E.g.: for 3 binary variables $(* M_j = m_j')$

x y z	minterm		Maxterm	
000	x'y'z'	(m_0)	x + y + z	(M_0)
001	x'y'z	(m_1)	x + y + z'	(M_1)
010	x'yz'	(m_2)	x + y' + z	(M_2)
011	x'yz	(m_3)	x + y' + z'	(M_3)
100	xy'z'	(m_4)	x' + y + z	(M_4)
101	xy'z	(m_5)	x' + y + z'	(M_5)
110	xyz'	(m_6)	x' + y' + z	(M_6)
111	xyz	(m_7)	x' + y' + z'	(M_7)

$$m_3 = \overline{x}yz$$

$$= x + \overline{y} + \overline{z}$$

$$= M_3$$

Canonical Forms

Canonical forms:

 A Boolean function can be expressed algebraically from a given truth table by

i. Sum-of-minterms form:

$$(minterm) + ... + (minterm)$$

form a minterm for each combination of the variables that produces a 1 in the function, and then take the OR of all those terms

ii. Product-of-Maxterms form:

$$(maxterm) \bullet \dots \bullet (maxterm)$$

form a maxterm for each combination of the variables that produces a 0 in the function, and then take the AND of all those terms

Example

Given the truth table of two functions, f_1 and f_2 :

x y z	f_1	f_2
0 0 0	0	0
0 0 1	1	0
0 1 0	0	0
0 1 1	0	1
1 0 0	1	0
1 0 1	0	1
1 1 0	0	1
1 1 1	1	1

Sum of minterms:

$$f_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7 = \sum m(1, 4, 7)$$

$$f_2 = x'yz + xy'z + xyz' + xyz = m_3 + m_5 + m_6 + m_7$$

$$= \sum m(3, 5, 6, 7)$$
J.J. Shann 2-50

Example (cont'd)
$$f_1 = x'y'z + xy'z' + xyz$$

$$= m_1 + m_4 + m_7 = \sum m(1,4,7)$$

$$f_2 = x'yz + xy'z + xyz' + xyz$$

$$= m_3 + m_5 + m_6 + m_7 = \sum m(3,5,6,7)$$

x y z	f_1	f_2
0 0 0	0	0
0 0 1	1	0
0 1 0	0	0
0 1 1	0	1
1 0 0	1	0
1 0 1	0	1
1 1 0	0	1
1 1 1	1	1

Product of maxterms:

$$f_1' = m_0 + m_2 + m_3 + m_5 + m_6 = x'y'z' + x'yz' + xy'z + xyz'$$

$$f_1 = (f_1')' = (x+y+z)(x+y'+z)(x+y'+z')(x'+y+z')(x'+y+z')$$

$$= M_0 M_2 M_3 M_5 M_6 = \Pi M(0, 2, 3, 5, 6)$$

$$f_2 = (x+y+z)(x+y+z')(x+y'+z)(x'+y+z)$$

$$= M_0 M_1 M_2 M_4 = \Pi M(0, 1, 2, 4)$$

Conversion to Sum of Minterms Form

- Express a Boolean function in its sum-of-minterms form:
 - i. Expand the expression into a sum of AND terms by using the distributive law, x (y + z) = xy + xz. Any missing variable x in each AND term is ANDed with (x + x').
 - E.g.: F(A, B, C) = A + B'C

- E.g.: F(A, B, C) = A + B'C

$$A = A (B+B') (C+C')$$

$$= (AB +AB') (C+C')$$

$$= AB (C+C') + AB'(C+C')$$

$$= ABC +ABC' + AB'C' + AB'C'$$

$$B'C = (A+A') B'C$$
$$= AB'C + A'B'C$$

$$F(A, B, C) = A'B'C + AB'C' + AB'C' + ABC' + ABC'$$

$$= m1 + m4 + m5 + m6 + m7$$

$$= \Sigma m(1, 4, 5, 6, 7)$$

ii. Obtain the truth table of the function directly from the algebraic expression and then read the minterms from the truth table.

- E.g.:
$$F(A, B, C) = A + B'C$$

A B C	\boldsymbol{F}
0 0 0	0
0 0 1	1
0 1 0	0
0 1 1	0
1 0 0	1
1 0 1	1
1 1 0	1
1 1 1	1

$$F(A, B, C)$$

$$= A'B'C + AB'C' + AB'C'$$

$$+ABC' + ABC$$

$$= \sum m(1, 4, 5, 6, 7)$$

Conversion to Product-of-Maxterms Form

- Express a Boolean function in its product-of-maxterms form:
 - i. Convert the function into OR terms by using the distributive law, x + yz = (x + y)(x + z).

Any missing variable x in each OR term is ORed with xx'.

- E.g.:
$$F(x,y,z) = xy + x'z$$

- E.g.: F(x,y,z) = xy + x'z

$$F = xy + x'z$$
= $(xy + x') (xy + z)$
= $(x+x') (y+x') (x+z) (y+z)$
= $(x'+y) (x+z) (y+z)$

$$x'+y = x' + y + zz'$$

= $(x'+y+z)(x'+y+z')$

$$x+z = x + z + yy'$$
$$= (x+y+z)(x+y'+z)$$

$$y+z = y + z + xx'$$
$$= (x+y+z)(x'+y+z)$$

$$F = (x+y+z)(x+y'+z)(x'+y+z)(x'+y+z')$$

$$= M_0 M_2 M_4 M_5$$

$$= \Pi M(0, 2, 4, 5)$$
J.J. Shann 2-56

ii. Use the truth table and the canonical conversion procedure.

- E.g.:
$$F = xy + x'z$$

x y z	F
0 0 0	0
0 0 1	1 1
0 1 0	0
0 1 1	1
1 0 0	0
1 0 1	0
1 1 0	1
1 1 1	1

$$F(x, y, z)$$
= $(x+y+z)(x+y'+z)$
 $(x'+y+z)(x'+y+z')$
= $\Pi M(0, 2, 4, 5)$

Conversion b/t Canonical Forms

- To convert from one canonical form to another:
 - Interchange the symbols Σ and Π & list those numbers missing from the original form
 - E.g.: F = xy + x'z

x y z	$oldsymbol{F}$
0 0 0	0
0 0 1	1
0 1 0	0
0 1 1	1
1 0 0	0
1 0 1	0
1 1 0	1
1 1 1	1

$$F(x, y, z)$$
=\Sigma m(1, 3, 6, 7)
= \Pi M(0, 2, 4, 5)

B. Standard Forms

- Canonical forms: special cases of standard forms
 - sum of *minterms* & product of *maxterms*
 - the basic forms that one obtains from reading a function from the truth table.
 - Each terms must contain all the variables
 - Seldom w/ the least # of literals (not minimized)
- Standard forms:
 - Sum of *products* & product of *sums*(*AND* terms)(*OR* terms)
 - The terms may contain any number of literals

Sum of Products (SOP)

SOP:

(AND term) + ... + (AND term)

is a Boolean expression containing AND terms (product terms) of one or more literals each.

There *AND* terms are *OR*ing together.

 \rightarrow 2-level gating structure

(if the complements of the input variables are available)

- E.g.: $F_1 = y' + xy + x'yz'$ $\begin{array}{cccc}
y' & & & \\
x & & & \\
y & & & \\
x' & & & \\
y' & & & \\
\end{array}$

Product of Sums (POS)

POS:

 $(OR \ term) \bullet \dots \bullet (OR \ term)$

is a Boolean expression containing *OR* terms (*sum* terms)
 of one or more literals each.

These *OR* terms are *AND*ing together.

 \rightarrow 2-level gating structure

(if the complements of the input variables are available)

- E.g.:
$$F_2 = x(y'+z)(x'+y+z')$$

C. Nonstandard Form

Nonstandard form:

- E.g.:
$$F = AB + C(D + E)$$
 → 3-level

- Nonstandard form → Standard form:
 - By using the distributive laws

- E.g.:
$$F = AB + C(D + E)$$

= $AB + CD + DE \rightarrow 2$ -level

Standard form
vs
Nonstandard form

$$AB + CD + CE$$
 J.J. Shann 2-62

2-7 Other Logic Operations

- Basic logic operations: AND, OR, NOT
- All possible functions of *n* binary variables:

n binary variables $\rightarrow 2^n$ distinct minterms

 $\rightarrow 2^{2^n}$ possible functions

■ E.g.: $n = 2 \rightarrow 4$ minterms $\rightarrow 16$ possible functions

x y	F_0	F_1	F_2	F_3	F_4	F_5	F_6	F_7	F_8	F_9	F_{10}	F_{11}	F_{12}	F_{13}	F_{14}	F_{15}
0.0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0 1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
10	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
11	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

x y	$\boldsymbol{F_0}$	$\boldsymbol{F_1}$	$\boldsymbol{F_2}$	F_3	F_4	$\boldsymbol{F_5}$	F_6	$\boldsymbol{F_7}$	F_8	F_9	$\boldsymbol{F_{10}}$	\boldsymbol{F}_{11}	\boldsymbol{F}_{12}	\boldsymbol{F}_{13}	\boldsymbol{F}_{14}	F_{15}
0 0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0 1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
10	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1 1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

$$F_0 = 0$$

Null

 $F_{15} = 1$ Identity

$$y$$
 AND, $x \cdot y$

 $F_{14} = (xy)'$

NAND, $x \uparrow y$

$$F_1 = xy$$

$$F_2 = xy'$$

Inhibition, x/y

$$F_2 = xy'$$

Transfer

OR, x+y

 $F_{13} = x' + y$

 $F_{12} = x'$

Implication, $x \supset y$

 $F_3 = x$

 $F_5 = y$

 $F_6 = xy' + x'y$

 $F_7 = x + y$

Transfer

Exclusive-OR, $x \oplus y$

Inhibition, y/x

 $F_{11} = x + y'$

 $F_{10} = y'$

 $F_0 = xy + x'y'$

 $F_8 = (x + y)'$ NOR, $x \downarrow y$

Complement, x'

Implication, $x \subset y$

Complement, y'

Eauivalence, $(x \oplus y)'$

J.J. DHaHH ∠-U4

 $F_4 = x'y$

$F_0 = 0$	Null	$F_{15} = 1$	Identity
$F_1 = xy$	AND, x⋅y	$F_{14} = (xy)'$	NAND, $x \uparrow y$
$F_2 = xy'$	Inhibition, x/y	$F_{13} = x' + y$	Implication, $x \supset y$
$F_3 = x$	Transfer	$F_{12} = x'$	Complement, x'
$F_4 = x'y$	Inhibition, y/x	$F_{11} = x + y'$	Implication, $x \subset y$
$F_5 = y$	Transfer	$F_{10} = y'$	Complement, y'
$F_6 = xy' + x'y$	Exclusive-OR, $x \oplus y$	$F_9 = xy + x'y'$	Eauivalence, $(x \oplus y)'$
$F_7 = x + y$	OR, <i>x</i> + <i>y</i>	$F_8 = (x+y)'$	NOR, $x \downarrow y$

- The 16 functions can be subdivided into 3 categories:
 - 1. 2 functions that produce a constant 0 or 1.
 - 2. 4 functions w/ unary operations complement (NOT) and transfer.
 - 3. 10 functions w/ binary operators that define eight different operations AND, OR, NAND, NOR, exclusive-OR, equivalence, inhibition, and implication.

2-8 Digital Logic Gates

- Boolean expression:
 - AND, OR and NOT operations
 - It is easier to implement a Boolean function in these types of gates.
- Factors in considering the construction of other types of logic gates:
 - the feasibility and economy of implementing the gate w/ electronic components
 - the possibility of extending the gate to more than two inputs
 - the basic properties of the binary operator
 - > E.g.: commutativity, associativity, ...
 - the ability of the gate to implement Boolean functions
 alone or in conjunction w/ other gates

$F_0 = 0$	Null
$F_1 = xy$	AND, $x \cdot y$
$F_2 = xy'$	Inhibition, x/y
$F_2 = \gamma$	Transfer

$F_{15} = 1$	Identity
$F_{14} = (xy)'$	NAND, $x \uparrow y$
$F_{13} = x' + y$	Implication, $x \supset y$
$F_{12} = x'$	Complement, x'
$F_{11} = x + y'$	Implication, $x \subset y$
$F_{10} = v'$	Complement, v'

Consider the 16 functions

two are equal toa constant 0, 1

$F_3 = x$	Transfer
$F_4 = x'y$	Inhibition, y/x
$F_5 = y$	Transfer
$F_6 = xy' + x'y$	Exclusive-OR, $x \oplus y$
$F_7 = x + y$	OR, <i>x</i> + <i>y</i>

$$F_9 = xy + x'y'$$
 Eauivalence, $(x \oplus y)'$

$$F_8 = (x + y)'$$
 NOR, $x \downarrow y$

four are repeated twice

Transfer, Complement, Inhibition, Implication

- inhibition and implication are not commutative or associative (x)
- complement, transfer, AND, OR, NAND, NOR, XOR,
 and equivalence (XNOR) are used as standard gates
 - complement: inverter, NOT
 - transfer: buffer (drive strength)
 - * NAND and NOR gates are far more popular than the AND and OR gates.

AND, OR

AND

$$x - F$$

$$F = xy$$

x y	\boldsymbol{F}
0 0	0
0 1	0
1 0	0
1 1	1

OR

$$F = x + y$$

x y	F
0 0	0
0 1	1
1 0	1
1 1	1

Inverter, Buffer

Inverter

$$F = x'$$

x	F
0	1
1	0

Buffer

$$F = x$$

\boldsymbol{x}	F
0	1
1	0

NAND, NOR

NAND

$$F = (xy)'$$

x y	F
0 0	1
0 1	1
1 0	1
1 1	0

NOR

$$F = (x + y)'$$

x y	\boldsymbol{F}
0 0	1
0 1	0
1 0	0
1 1	0

XOR, NXOR

XOR

$$F = xy' + x'y$$
$$= x \oplus y$$

x y	F
0 0	0
0 1	1
1 0	1
1 1	0

XNOR

$$F = xy + x'y'$$
$$= (x \oplus y)'$$

x y	F
0 0	1
0 1	0
1 0	0
1 1	1

Extension to Multiple Inputs

- Extension to multiple inputs
 - A gate can be extended to multiple inputs if its binary operation is commutative and associative.
- AND, OR: commutative and associative:

$$x + y = y + x$$

$$(x + y) + z = x + (y + z)$$

$$x \cdot y = y \cdot x$$

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

■ NAND (\uparrow) , NOR (\downarrow) :

- commutative but not associative \Rightarrow not extendable
- $\text{ E.g.: } (x \downarrow y) \downarrow z \neq x \downarrow (y \downarrow z)$ $(x \downarrow y) \downarrow z = [(x+y)' + z]' = (x+y) z' = xz' + yz'$ $x \downarrow (y \downarrow z) = [x + (y+z)']' = x' (y+z) = x'y + x'z$

 $\Sigma m(1, 2, 3)$ J.J. S

J.J. Shann 2-74

— Modification of the definition:

The multiple NOR (or NAND) gate is a complement OR (or AND) gate.

$$x \downarrow y \downarrow z = (x + y + z)'$$
$$x \uparrow y \uparrow z = (x \cdot y \cdot z)'$$

$$\begin{array}{c} x \\ y \\ z \end{array} \longrightarrow (x + y + z)'$$

3-input NOR gate

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \longrightarrow (xyz)'$$

3-input NAND gate

- In writing cascaded NOR and NAND operations:
 - Use the correct parentheses to signify the proper sequence of the gates.
 - > E.g.: Cascaded NAND gates

$$F = [(ABC)' \cdot (DE)']' = ABC + DE$$

$$G = (ABCDE)'$$

$$= A' + B' + C' + D' + E'$$

-

■ Exclusive-OR (⊕) and Equivalence:

- are commutative and associative
- Modification of the definition of multiple-input XOR:
 - > an odd function: = 1, if the input variables have an odd # of 1's

$\begin{array}{c} x \\ y \\ 7 \end{array}$	$F = x \oplus y \oplus z$
~	Using 3-input gate

Equivalence: an even function

X	у	z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

(c) Truth table

Positive & Negative Logic

- Logic-value assignment: polarity assignment
 - Positive logic
 - Negative logic

Demonstration of positive & negative logic:

X	у	Z
L	L	L
L	Н	L
H	L	L
H	Н	Н

	X	у	z
	1	1	1
H = 0	1	0	1
L= 1	0	1	1
	1	0	0

Truth table with *H* and L

Truth table for positive logic

Truth table for negative logic

<i>x</i> —	Digital	7
у	gate	— <i>'</i>

Gate block diagram

<i>x</i> —	_
y —	(

Positive logic AND gate

Negative logic ✓ OR gate

* Polarity indicator 2-79

4

Conversion b/t positive and negative logic:

- Change 1's to 0's and 0's to 1's in both inputs and output of a gate (truth table)
 - \Rightarrow take the dual of a function

$$(AND \rightarrow OR, OR \rightarrow AND, 0 \rightarrow 1, 1 \rightarrow 0)$$

* Duality principle

2-9 Integrated Circuits (ICs)

- Digital ckts are constructed w/ integrated ckts.
- Integrated circuit (IC):
 - is a silicon semiconductor crystal (chip) containing the electronic components for the digital gates and storage elements.
 - The various components are interconnected on the chip.
 - The chip is mounted in a ceramic or plastic container, and connections are welded from the chip to the external pins.

A. Levels of Integration

- Levels of integration: ckt complexity(# of logic gates in a single silicon chip)
 - SSI: small-scale integration, <10 gates</p>
 - MSI: medium-scale integration, $10 \sim 100$ (Ch $4\sim 7$)
 - performs specific elementary digital functions
 - > e.g.: addition of 4 bits
 - _ LSI: large-scale integration: 100 ~ x000
 - » eg.: small processors, small memories, & programmable modules
 - VLSI: very large-scale integration, x000 ~
 - » e.g.: complex microprocessors, digital signal processing chips

B. Digital Logic Families

Digital logic families: ckt technology

TTL: transistor-transistor logic

ECL: emitter-coupled logic (speed)

MOS: metal-oxide semiconductor (density)

CMOS: complementary MOS (power)

 The basic ckt in each family is a NAND, NOR, or inverter gate. (Ch3)

Technology Parameters (補充資料)

- The most important parameters of digital logic families:
 - Fan-in: # of inputs available on a gate
 - Fan-out: # of standard loads driven by a gate output
 - > max fan-out: the fan-out that the output can drive w/o impairing gate performance
 - Noise margin: the max external noise voltage superimposed on a normal input value that will not cause an undesirable change in the ckt output
 - Cost for a gate: is usually based on the area occupied by the layout cell (

 the size of the transistors & the wiring in the gate layout)

- 4
- Propagation delay: the time required for a change in value of a signal to propagate from input to output
 - > The operating speed of a ckt is inversely related to the longest propagation delays through the gates of the ckt.
- Power dissipation: the power drawn from the power supply and consumed by the gate
 - must be considered in relation to the operating temperature and cooling

Reference:

M. Morris Mano & Charles R. Kime, *Logic and Computer Design Fundamentals*, 3rd Edition, 2004, Pearson Prentice Hall. (§3-2)

Noise Margin

 Noise margin: the max external noise voltage superimposed on a normal input value that will not cause an undesirable change in the ckt output

Propagation Delay

- 3 propagation delay parameters:
 - high-to-low propagation time t_{PHL}
 - low-to-high propagation time t_{PLH}
 - propagation delay t_{pd} : max{ t_{PHL} , t_{PLH})

4

■ E.g.: behavior of propagation delay of an AND gate

-: propagation delay = 2 ns

Fan-in

■ For high-speed technologies, fan-in is often restricted on gate primitives to ≤ 4 or 5.

■ E.g.: Implementation of a 7-input NAND gate using NAND gates w/ 4 or fewer inputs

* NAND is not associative!

Fan-Out

- *Fan-out*: # of standard loads driven by a gate output
- Max fan-out: the fan-out that the output can drive w/o impairing gate performance
- For CMOS gates:
 - The load on the output of a gate determines the time required for the output of the gate to change from L to H and from H to L. \rightarrow *transition time*

Example: Calculation of gate delay based on fan-out

A 4-input NAND gate output is attached to the inputs of the following gates w/ the given # of standard loads representing their inputs:

4-input NOR gate-- 0.80 standard load

3-input NAND gate-- 1.00 standard load

Inverter-- 1.00 standard load

The formula for the delay of the 4-input NAND gate is

$$t_{pd} = 0.07 + 0.021 \times SL \, ns$$

SL: the sum of the standard loads driven by the gate

<Ans.> Ignoring the wiring delay

$$t_{pd} = 0.07 + 0.021 \times (0.80 + 1.00 + 1.00) = 0.129 \text{ ns}$$

Example:

An integrated circuit logic family has

NAND gates with a fan-out of 4 standard loads & buffers with a fan-out of 8 standard loads.

Sketch a schematic showing how the output signal of a single NAND gate can be applied to 18 other gate inputs. Assume that each input is one standard load.

Fan-in & Fan-out:

- must be dealt w/ in the technology mapping step of the design process.
- Gate w/ fan-ins larger than available ⇒ Multiple gates
- Gate w/ fan-outs either exceed its max allowable fan-out or have too high a delay ⇒ Multiple gates or added buffers at its output

C. Computer-Aided Design (CAD) of VLSI Circuits

CAD tools:

 software programs that support computer-based representation and aid in the development of digital hardware by automating the design process.

Schematic capture tools:

- > support the drawing of blocks and interconnections at all levels of the hierarchy.
- At the level of primitives and functional blocks, libraries of graphics symbols are provided.

– Logic simulator:

verify the behavior and the timing of the hierarchical blocks and the entire ckt

– Logic synthesizer:

 optimize design being generated automatically from HDL (hardware description language) specifications in physical area or delay

J.J. Shann 2-94

* Chapter Summary

- Primitive logic ops: AND, OR, NOT
- Boolean algebra
- Canonical form: minterm & maxterm standard forms
- Standard forms: SoP and PoS \Rightarrow 2-level gate ckts
- Other logic gates:
 - NAND, NOR
 - XOR, XNOR
- Integrated circuits
 - Technology parameters

Problems & Homework (6th ed)

Sections	Exercises	Homework
§2-3	2.1	2.1(a)
§2-4	2.2~2.4, 2.24	2.3, 2.4
§2-5	2.5~2.9, 2-13	2.6
§2-6	2.10, 2.11, 2.15~2.23, 2.27, 2.29~2.31	2.17(a)*, 2.20, 2.22*, 2.30
§2-7	2.12, 2.14, 2.25	2.14, 2.25
§2-8	2.26, 2.28, 2.32, 2.33	2.28, 2.32*