Mixed Precision 1/32

Newton's Method in Mixed Precision

C. T. Kelley
NC State University
tim_kelley@ncsu.edu
Supported by ARO, DOE, NSF

Copper Mountain, April 5, 2022

Mixed Precision 2/32

Outline

- 1 Nonlinear Equations and Backward Error
 - Newton's Method
 - Inexact function and Jacobian
- 2 Linear Solver Woes
 - This Talk's Problem
 - The Backward Error Bites You
- 3 Examples: you figure it out.
- 4 Summary

Mixed Precision 3 / 32

-Nonlinear Equations and Backward Error

Newton's Method

Nonlinear Equations

Objective: solve

$$F(x) = 0$$

where

$$F = (f_1, f_2, \dots, f_N)^T$$
.

Newton's method is

$$x_{+} = x_{c} - F'(x_{c})^{-1}F(x_{c}).$$

Jacobian:

$$(\mathsf{F}')_{ij} = \partial f_i / \partial x_j$$

Local Convergence to distinguished root x*

Standard assumptions for local convergence:

There is $x^* \in D$ such that

- $F(x^*) = 0$,
- F'(x*) is nonsingular, and
- F'(x) is Lipschitz continuous with Lipschitz constant γ , i. e.

$$\|F'(x) - F'(y)\| \le \gamma \|x - y\|,$$

for all $x, y \in D$.

Mixed Precision 5 / 32

-Nonlinear Equations and Backward Error

Newton's Method

Rules for talking about Newton's method

- x* is the solution in SA which may not be the one you want
- \bullet e = x x* is the error
- Convergence theorems in terms of change from
 - current iteration x_c to
 - next iteration x₊

Mixed Precision 6 / 32

- Nonlinear Equations and Backward Error

└Newton's Method

Famous local convergence theorem

$$SA + small \|e_0\|$$
 imply

$$\|\mathbf{e}_{+}\| = O(\|\mathbf{e}_{c}\|^{2}).$$

Local quadratic convergence.

Mixed Precision 7 / 32

-Nonlinear Equations and Backward Error

└Newton's Method

What does this mean?

In an ideal world where

- precision is infinite,
- derivatives are analytic,
- linear solvers are exact,

Newton's method works great with good initial data.

But . . .

Inexact function and Jacobian

... you'll be doing it wrong.

In practice, you get

$$x_{+} = x_{c} - J_{c}^{-1}(F(x_{c}) + E_{c})$$

where

- $J_c \approx F'(x_c)$ (maybe badly)
- \blacksquare E_c is the (usually small) error in F

Mixed Precision 9 / 32

—Nonlinear Equations and Backward Error

Inexact function and Jacobian

A less famous theorem

Same assumptions as for Newton plus $\|J_c - F'(x_c)\|$ not too large imply

$$||e_+|| = O(||e_c||^2 + ||J_c - F'(x_c)|| ||e_c|| + \epsilon_F)$$

where $\|\mathsf{E}_c\| \leq \epsilon_F\|$.

Local improvement.

The theorem does not predict convergence, rather stagnation.

C. T. Kelley

Mixed Precision 10 / 32

- Nonlinear Equations and Backward Error

Inexact function and Jacobian

Examples

- \bullet $\epsilon_F = 0$, $J_n = F(x_n)$: Newton
- ullet $\epsilon_F > 0$, floating point error: Newton in practice
- \bullet $\epsilon_F > 0$, J_n finite difference Jacobian, step h
 - Use optimal $h = \sqrt{\epsilon_F}$ and
 - $\|\mathbf{e}_{n+1}\| = O(\|\mathbf{e}_n\|^2 + h\|\mathbf{e}_n\| + \epsilon_F)$
 - Same behavior as Newton until stagnation.
- \bullet $\epsilon_F > 0$, $J_n = F'(x_0)$, chord method

Mixed Precision 11/32

-Nonlinear Equations and Backward Error

Inexact function and Jacobian

Implementation: ignore ϵ_F

```
Intialize x_0, n = 0, termination criteria while Not happy do

Evaluate F(x_n); terminate?

Evaluate J_n \approx F'(x_n)

Solve J_n s = -F(x_n)

x_{n+1} = x_n + s

end while
```

Mixed Precision 12/32

Nonlinear Equations and Backward Error

☐Inexact function and Jacobian

Genius Idea!

- Store J in reduced precision.
- Solve in reduced precision.
 - Cut $O(N^2)$ storage by factor of 2 (single)
 - Cut $O(N^3)$ work by factor of 2 (single)
- How can you lose? Why isn't this in all the books?

☐ This Talk's Problem

The case in this talk

- \bullet ϵ_F floating point double precision roundoff
- $J_c = J_N + \Delta_{be}$ where
- Solver is double, single, or half precision *LU*
 - J_N is the nominal approximation you give the linear solver $F'(x_c)$ in double or finite-difference approximation
 - The solver returns the solution of $(J_N + \Delta_{be})s = -F(x_c) E_c$

So the less famous theorem says ...

$$\|\mathbf{e}_{n+1}\| = O\bigg(\|\mathbf{e}_n\|^2 + (\|\mathbf{J}_{Nn} - \mathbf{F}'(\mathbf{x}_n)\| + \|\Delta_{be}\|)\|\mathbf{e}_n\| + \epsilon_F\bigg).$$

The Jacobian you think you have is harmless

- Analytic Jacobian: $\|J_{Nn} F'(x_n)\| = O(\epsilon_F)$
- Difference Jacobian: $\|J_{Nn} F'(x_n)\| = O(\epsilon_F^{1/2})$
- But what about the backward error?
- Large backward error → slow nonlinear convergence. Can we see this numerically?

The Backward Error Bites You

What is that backward error for Ax = b?

Begin with componentwise backward error

NICHOLAS J. HIGHAM, <u>Accuracy and Stability of Numerical Algorithms</u>, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1996.

Page 175-177: Componentwise backward error (ignore permutation matrix)

$$|\delta \mathsf{A}| \le 2\gamma_{\mathsf{N}} |\hat{L}| |\hat{U}|$$

where $\hat{L}\hat{U} = A + \delta A$ and

$$\gamma_{N} = \frac{N\epsilon_{S}}{1 - N\epsilon_{S}}$$

Short story, each element in LU is O(N) work.

The Backward Error Bites You

Worse case bounds

The growth factor (Demmel) is

$$\hat{g}_{PP} = \frac{\max|\hat{U}_{ij}|}{\max|A_{ij}|}$$

The estimate you see in books is

$$\|\delta \mathbf{A}\| \le 2\hat{\mathbf{g}}_{PP} N^2 \gamma_N = \frac{2\hat{\mathbf{g}}_{PP} N^3 \epsilon_S}{1 - N \epsilon_S} \|\mathbf{A}\|$$

Then the text books say this is silly and rarely observed.

The Backward Error Bites You

Optimistic Estimates: $\|A\| = O(1)$

The optimistic estimate is

$$\|\delta A\| = O(N\epsilon_S)$$
?

Higham-Mary 2019 say even more . . .

If rounding errors are independent, then with with high probability for most desktop-sized problems and Newton's method

$$\|\Delta_{be}\|_{\infty} = O(\epsilon_{S}\sqrt{N})$$

What should we observe if \sqrt{N} is the right thing?

- \blacksquare Trouble (slow nonlinear convergence) when $\sqrt{N}\epsilon_{S}\geq .1$
 - Double: $N \approx 10^{30}$. Not on my computer.
 - Single: $N \approx 10^{14}$. Not on my computer.
 - Half: $N \approx 10^6$. Maybe if we push it.
- Expectation: Single just as good as double.
- Expect to see deterioration with N for half.

Examples and Solvers from ...

- C. T. Kelley, <u>Newton's method in mixed precision</u>, SIAM Review, 64 (2022), pp. 191–211.
- C. T. Kelley, <u>Notebook for Solving Nonlinear Equations</u> with Iterative Methods: Solvers and Examples in Julia, SIAM, 2022(3).

Solving Nonlinear Equations with Iterative Methods: Solvers and Examples in Julia

SIAM: Publication sometime in 2022/3

Three parts

- Print book: sequel to FA1:
 C. T. Kelley, Solving Nonlinear Equations with Newton's Method, number 1 in Fundamentals of Algorithms, SIAM, Philadelphia, 2003.
- IJulia (aka Jupyter) notebook at https://github.com/ctkelley/NotebookSIAMFANL
- Julia package with solvers+test problems+examples https://github.com/ctkelley/SIAMFANLEquations.jl

Chandrasekhar H-equation

Midpoint rule discretization

$$\mathcal{F}(H)(\mu) = H(\mu) - \left(1 - \frac{c}{2} \int_0^1 \frac{\mu H(\mu)}{\mu + \nu} d\nu\right)^{-1} = 0.$$

- Defined on *C*[0, 1]
- \mathcal{F}' nonsingular for $0 \le c < 1$. Simple fold singularity at c = 1.
- Any sensible discretization inherits the singularity structure.

C. T. Kelley

Discrete Problem

- composite midpoint rule
- function evaluation is $O(N \log N)$ for Hankel matrix-vector product
- Jacobian is $O(N^2)$ analytic
- Factorization is $O(N^3)$ in the solver precision

Experiments: from K. 22

- c = .99
- Analytic and forward difference Jacobians
 Theory predicts single as good as double
- Double, single, and half precision factor/solve
- Everything else in double
- $N = 2^p$, p = 10, ..., 14, $2^{14} = 16384$ Larger N took far too long in half.

c = .99, double and single

Mixed Precision 25 / 32

Examples: you figure it out.

c = .99, half, Wait! What?

Timings: c = .99, N = 4096

Solve phase only: memory for Jacobian preallocated.

- Analytic, double, Newton 909 ms
- Analytic, single, Newton436 ms

Speedup = 2x, storage is allocated in initialization phase.

Iterative Refinement: for Ax = b

Can half precision be saved?

- Store A in high and low precision
- Details:
 - Factor in low precision. Free lunch?
 - Scaling and promotion/demotion
 Inter-precision transfers are not free.
 - Punishment for ill-conditioning
 - Poor infrastructure for testing
- Experiment for high=single, low=half . . .

Mixed Precision 28 / 32

Iterative Refinement: Nonlinear Iteration is happy

Mixed Precision 29 / 32

Examples: you figure it out.

Details

- IR iteration count increases with
 - Nonlinear iteration, but not a lot
 No surprise, Jacobian at solution is poorly conditioned
 - Problem size (at least what I've measured)

Newton-Krylov methods

Terminate the linear iteration when

$$\|\mathsf{F}'(\mathsf{x}_n)\mathsf{d} + F(\mathsf{x}_n)\| \le \eta_n \|\mathsf{F}(\mathsf{x}_n)\|.$$

and then the estimate is

$$\|\mathbf{e}_{n+1}\| = O(\|\mathbf{e}_n\|^2 + \eta_n\|\mathbf{e}_n\| + \epsilon_F)$$

Backward error issues: loss of orthogonality in GMRES

Mixed Precision 31/32

Timings: Newton-GMRES, c = .5, N = 4096

Solve phase only: memory for basis preallocated

- analytic, single, Newton, Gaussian Elimination: 258.299 ms
- Newton-GMRES, fixed $\eta = .1$, Double: 1.776 ms
- Newton-GMRES, fixed $\eta = .1$, Single: 1.805 ms

No difference: 1 Krylov/Newton, orthogonalization/storage negligible.

Summary

- Single precision linear solvers are just fine
 - Single precision \rightarrow same nonlinear results
 - lacksquare Half precision ightarrow not recommended
 - But there is hope . . .
 - Iterative Refinement needs more support LAPACK for half precision not here
- Gaussian elimination for dense problems gives expected results Costof (single) $\approx 1/2 \times$ Costof (double)
- Newton-Krylov not so clear.