Summer 2025 Data C100 Midterm Reference Sheet

Pandas

Suppose df is a DataFrame; s is a Series. import pandas as pd

Function	Description	
df.shape	Returns a tuple containing the number of rows and columns, in that order	
df.index	Returns the index (row labels) of df as an Index object	
df[col]	Returns the column labeled col from df as a Series	
df.index[i]	Returns the row label at position i from df's index	
df[[col1, col2]]	Returns a DataFrame containing the columns labeled col1 and col2	
s.idxmax()	Returns the index label of the first occurrence of the maximum value in Series s	
s.astype(dtype)	Returns a Series casted to the specified type dtype	
s.loc[rows] / df.loc[rows, cols]	Returns a Series/DataFrame with rows (and columns) selected by their index values	
<pre>s.iloc[rows] / df.iloc[rows, cols]</pre>	Returns a Series/DataFrame with rows (and columns) selected by their positions	
s.isnull() / df.isnull()	Returns boolean Series/DataFrame identifying missing values	
s.fillna(value) / df.fillna(value)	Returns a Series/DataFrame where missing values are replaced by value	
<pre>s.isin(values) / df.isin(values)</pre>	Returns a Series/DataFrame of booleans indicating if each element is in values.	
df.drop(labels, axis)	Returns a DataFrame without the rows or columns named labels along axis (either 0 or 1)	
<pre>df.rename(index=None, columns=None)</pre>	Returns a DataFrame with renamed columns from a dictionary index and/or columns	
<pre>df.sort_values(by, ascending=True)</pre>	Returns a DataFrame where rows are sorted by the values in columns by	
s.sort_values(ascending=True)	Returns a sorted Series	
s.unique()	Returns a NumPy array of the unique values of s in the order that they appear	
s.value_counts()	Returns the number of times each unique value appears in a Series	
<pre>left.merge(right, left_on=col1, right_on=col2)</pre>	Returns a DataFrame joining left and right on columns labeled col1 and col2	
<pre>df.pivot_table(values=None, index=None, columns=None, aggfunc='mean', fill_value=None)</pre>	Returns a DataFrame pivot table where columns are unique values from columns (column name or list), and rows are unique values from index (column name or list); cells are collected values using aggfunc. If values is not provided, cells are collected for each remaining column with multi-level column indexing.	
df.set_index(col)	Returns a DataFrame that uses the values in the column labeled col as the row index	
df.reset_index()	Returns a DataFrame that has row index 0, 1, etc., and adds the current index as a column	

Let grouped = df.groupby(by) where by can be a column label or a list of labels

Function	Description	
<pre>grouped.count()</pre>	Return a DataFrame containing the size of each group, excluding missing values	
<pre>grouped.size()</pre>	Return a Series containing size of each group, including missing values	
<pre>grouped.mean()/.min()/.max()</pre>	Return a Series/DataFrame containing mean/min/max of each group for each column, excluding missing values	
<pre>grouped.first()/.last()</pre>	Return a Series/DataFrame containing first/last entry of each group for each column, excluding missing values	
<pre>grouped.filter(f) grouped.agg(f)</pre>	Filters or aggregates using the given function f	

Function	Description	
s.str.len()	Returns a Series containing length of each string	
s.str[a:b]	Returns a Series where each element is a slice of the corresponding string indexed from a (inclusive, optional) to b (non-inclusive, optional)	
s.str.lower()/s.str.upper()	Returns a Series of lowercase/uppercase versions of each string	

Function	Description		
s.str.replace(pat, repl, regex=False)	Returns a Series that replaces occurences of substrings matching pat with string repl. When regex=False, pat is treated as a literal string; when regex=True, pat is treated as a RegEx pattern.		
s.str.contains(pat)	Returns a boolean Series indicating if a substring matching the regex pat is contained in each string		
s.str.extract(pat)	Returns a DataFrame of the first subsequence of each string that matches the regex pat. If pat contains one group, then only the substring matching the group is extracted		
s.str.startswith(pat)	Returns a Series of booleans indicating whether the given pattern matches the start of each string element.		
s.str.split(pat=" ")	Splits the strings in s at the delimiter pat (defaults to a whitespace). Returns a Series of lists, where each list contains strings of the characters before and after the split.		
s.str.findall(pat=" ")	Find all occurrences of RegEx pattern pat in the Series s. Returns a Series of lists, where each list contains all the matches found in the corresponding string.		

Visualization

 $Matplotlib: x \ and \ y \ are \ sequences \ of \ values. \ import \ matplotlib.pyplot \ as \ plt$

Function	Description	
plt.plot(x, y)	Creates a line plot of x against y	
plt.scatter(x, y)	Creates a scatter plot of x against y	
<pre>plt.hist(x, bins=None)</pre>	Creates a histogram of x; bins can be an integer or a sequence	
plt.bar(x, height)	Creates a bar plot of categories x and corresponding heights height	

Seaborn: x and y are column names in a DataFrame data. import seaborn as sns

Function	Description
<pre>sns.countplot(data=None, x=None)</pre>	Create a barplot of value counts of variable x from data
<pre>sns.histplot(data=None, x=None, stat='count', kde=False) sns.displot(data=None, x=None, kind='hist', rug=False)</pre>	Creates a histogram of x from data, where bin statistics stat is one of 'count', 'frequency', 'probability', 'percent', and 'density'; optionally overlay a kernel density estimator. displot is similar but can optionally overlay a rug plot and/or a KDE plot
<pre>sns.kdeplot(data=None, x=None, y=None)</pre>	Creates a contour plot of the 2D distribution of variables x and y from data. If only x or y is provided, creates a 1D KDE plot of the provided variable instead.
<pre>sns.boxplot(data=None, x=None, y=None) sns.violinplot(data=None, x=None, y=None)</pre>	Create a boxplot of a numeric feature (e.g., y), optionally factoring by a category (e.g., x), from data. violinplot is similar but also draws a kernel density estimator of the numeric feature
<pre>sns.scatterplot(data=None, x=None, y=None)</pre>	Create a scatterplot of x versus y from data
<pre>sns.lmplot(data=None, x=None, y=None, fit_reg=True)</pre>	Create a scatterplot of $\mathbf x$ versus $\mathbf y$ from $data$, and by default overlay a least-squares regression line
<pre>sns.jointplot(data=None, x=None, y=None, kind='scatter')</pre>	Combine a bivariate scatterplot of x versus y from data, with univariate density plots of each variable overlaid on the axes; kind determines the visualization type for the distribution plot, can be scatter, kde, hist or hex.

Regular Expressions

Operator	Description	Operator	Description
	Matches any character except \n	*	Matches preceding character/group zero or more times
١	Escapes metacharacters	?	Matches preceding character/group zero or one times
I	Matches expression on either side of expression; has lowest priority of any operator	+	Matches preceding character/group one or more times
\d, \w, \s	Predefined character group of digits (0-9), alphanumerics (a-z, A-Z, 0-9, and underscore), or whitespace, respectively	^, \$	Matches the beginning and end of the line, respectively
\D, \W, \S	Inverse sets of \d, \w, \s, respectively	()	Capturing group used to create a sub-expression

Operator	Description	Operator	Description
{m}	Matches preceding character/group exactly m times	[]	Character class used to match any of the specified characters or range (e.g. [abcde] is equivalent to [a-e])
{m, n}	Matches preceding character/group at least m times and at most n times. If either m or n are omitted, set lower/upper bounds to 0 and ∞ , respectively	[^]	Invert character class; e.g. [^a-c] matches all characters except a, b, c

Modified lecture example for capture groups:

```
import re
lines = '169.237.46.168 - - [26/Jan/2014:10:47:58 -0800] "GET ... HTTP/1.1"'
re.findall(r'\[\d+\/(\w+)\/\d+:\d+:\d+:\d+ .+\]', lines) # returns ['Jan']
```

Function	Description	
re.match(pattern, string)	Returns a match if zero or more characters at beginning of string matches pattern, else None	
re.search(pattern, string)	Returns a match if zero or more characters anywhere in string matches pattern, else None	
re.findall(pattern, string)	Returns a list of all non-overlapping matches of pattern in string (if none, returns empty list)	
re.sub(pattern, repl, string)	Returns string after replacing all occurrences of pattern with repl	

Modeling

Concept	Formula	Concept	Formula		
Variance, σ_x^2	$\frac{1}{n}\sum_{i=1}^n(x_i-\bar{x})^2$	Correlation ${\it r}$	$r = rac{1}{n} \sum_{i=1}^{n} rac{x_i - ar{x}}{\sigma_x} rac{y_i - ar{y}}{\sigma_y}$		
L_1 loss	$L_1(y,\hat{y}) = \mid y - \hat{y} \mid$	Linear regression estimate of \ensuremath{y}	$\hat{y}=\theta_0+\theta_1 x$		
L_2 loss	$L_2(y,\hat{y}) = (y-\hat{y})^2$	Least squares linear regression	$\hat{ heta}_0 = ar{y} - \hat{ heta}_1 ar{x} \qquad \hat{ heta}_1 = r rac{\sigma_y}{\sigma_x}$		

Empirical risk with loss ${\cal L}$

$$R(heta) = rac{1}{n} \sum_{i=1}^n L(y_i, \hat{y_i})$$