

						E	pide Exist	mical nce	bjetiv Mode Theor lation	i y										
Cont																				
	<u>m</u>	m			 4	0 —			- 6	0 =		- 8	0=		-10	00 –		- 12	20 –	_
1	Mot	iva [.]	tion																	_
2	OL,	0 iv	e																	_
	Epic																			_
	• N						tro													_
4	Exis	ten	ce T	Γhe	ory															_
 5	Sim 8	ulat	ion	s																_
	8	0 —																		_
				G	briel	∆ d riá	n Sa	lce do	Varel											_

O bjetive Epidemical Model Existence Theory Simulations Tomato Leaf Curl Virus Gabriel Adrián Salcedo Varela

Motivatio n

Motivation

Model without control Controlled Model

Plant Model without control

Tomato I mm irl V rus D 40 se Using an 60 emiological 8

Hypothesis:

- infection by infeted plants and vectors,
- output and input for plants and vectors.

$$\begin{split} \frac{dS_{p}}{dt} &= -\beta_{p}S_{p}I_{v} + r(L_{p} + I_{p}), \\ \frac{dL_{p}}{dt} &= \beta_{p}S_{p}I_{v} - bL_{p} - rL_{p}, \\ \frac{dI_{p}}{dt} &= bL_{p} - rI_{p}, \\ \frac{dS_{v}}{dt} &= -\beta_{v}S_{v}I_{p} - \gamma S_{v} - (1 - \theta)\mu, \\ \frac{dI_{v}}{dt} &= \beta_{v}S_{v}I_{p} - \gamma I_{v} - \theta\mu, \\ S_{p}(0) &= S_{p_{0}}, L_{p}(0) = L_{p_{0}}, I_{p}(0) = I_{p_{0}}, \\ S_{v}(0) &= S_{v_{0}}, I_{v}(0) = I_{v_{0}}. \end{split}$$

Par. Value Descrip. **%**1 blant latent rate 0.01 plant remove rate plant infectious rate 0.075vector die or depar rate 0.060.3 mmigration rate nfected vectors arrival 0.003 vector infected rate

		0	bjetiv	e
ľ	pide	nicai	Mode	1
	Existe	nce .	Theor	
		Simu	lation	8

Model without control Controlled Model

Plant Model with control

$$\frac{dS_{p}}{dt} = -\beta_{p}S_{p}I_{V} + (r + u_{1})L_{p} + (r + u_{2})I_{p},
\frac{dL_{p}}{dt} = \beta_{p}S_{p}I_{V} \quad bL_{p} \quad (r + u_{1})L_{p},
\frac{dI_{p}}{dt} = bL_{p} - (r + u_{2})I_{p},$$

 $\frac{dI_{\nu}}{dt} = \beta_{\nu} S_{\nu} I_{p} + (\gamma + u_{3}) I_{\nu} + \theta \mu,$

$$\frac{dS_{\nu}}{dt} = -\beta_{\nu} S_{\nu} I_{p} - (\gamma + u_{B}) S_{\nu} - (1 - \theta) \mu,$$

Motivation

Model without control

Minimize $J(u_1, u_2, u_3) = \int_0^{T_40} A_1 I_p(t) + A_2 L_p(t) + A_3 I_v(t) + c_1 u_1(t)^2 + c_2 u_2(t)^2$ $+ c_3 u_3(t)^2 dt$ subject to $\frac{dS_{\rho}}{dt} = -\beta_{\rho}S_{\rho}I_{\nu} + (r+u_1)L_{\rho} + (r+u_2)I_{\rho},$ $\frac{dL_p}{dt} = \beta_p S_p I_v - bL_p - (r + u_1)L_p,$ $\frac{dI_p}{dt} = bL_p - (r + u_2)I_p,$ $\frac{dS_v}{dt} = -\beta_v S_v I_p - (\gamma + u_3) S_v - (1 - \theta) \mu,$ $\left|\frac{dI_{v}}{dt}\right| = \left|\beta_{v}S_{v}\right|_{p} - \left(\gamma + \mu_{3}\right)I_{v} - \theta\mu$ $|S_p(0)| = |S_{pq}, L_p(0)| = |L_{pq}| I_p(0) + |I_{pq}, S_v(0)| = |S_{vq}, I_v(0)| = |I_{vq}|$ Gabriel Adrián Salcedo Varela

Let (C1)-(C3) hold. Then problem $(OC)^T$ admits at least one optimal pair.												
1	ne optimal pai											

Pontryagin's Maximum Principle

If $u^*(t)$ and $x^*(t)$ are optimal for the problem $(OC)^T$, then there exists a piecewise differentiable adjoint variable $\lambda(t)$ s.t.

$$H(t,x^*(t),u(t),\lambda(t)) \leq H(t,x^*(t),u^*(t),\lambda(t))$$

 $\forall u \text{ at } t$,

$$\lambda'(t) = -\frac{\partial H(t, x^*(t), u^*(t), \lambda(t))}{\partial x},$$

$$\lambda(T) = 0.$$

Motivation Objetive Epidemical Model Existence Theory Simulations

The most popular

mm	40	60	8	30	- 100 	120 —
Algorithm 2 Forward	Backward Swe	ep		ı —		TT 170
-		-F				+
Input: t_0, t_f, x_0, h						
Output: x^*, μ^*, λ						
procedure Forwar		$_{\mathtt{SWEEP}}(g,$	$\lambda_{\text{function}}, u, x_0$	(λ_f, h, n_{max})		
$ \mathbf{wh_{ile}} \epsilon > \text{tol do}$						
40 ld ← u						
$x_{\text{old}} \leftarrow x$						
$x \leftarrow \text{RUNGE}_{_}$	KUTTA_FORWA	$RD(g, u, x_0, \dots)$	h)			
$\lambda_{\mathrm{old}} \leftarrow \lambda$						
	KUTTA_BACKV		$_{\mathrm{on}},x ,\lambda_{f}, h)$			
 $u_1 \leftarrow \text{OPTIMA}$	LITY_CONDITI	$\mathrm{ON}(u,x,\lambda)$				
$u \leftarrow \alpha u_1 + (1$	$-\alpha u_{old}$, α	$\alpha \in [0,1]$			convex com	bination
$00 + u - u_0 $	ld					
$u \leftarrow \alpha u_1 + (1 \\ 60 \\ \epsilon_u \leftarrow \frac{ u - u_0 }{ u }$ $\epsilon_x \leftarrow \frac{ x - x_0 }{ x }$	<u>ld </u>				⊳ relat	ive error
x	14					
$\epsilon_{\lambda} \leftarrow \frac{11}{11} \frac{\lambda_0}{11}$	1011					
$\begin{array}{c} \epsilon_{\lambda} \leftarrow & x \\ \epsilon_{\lambda} \leftarrow & \lambda - \lambda_{0} \\ \hline = & \max \left\{ \epsilon_{n}, \right. \\ \text{end while} \\ \text{return } x^{*}, u^{*}, \lambda \end{array}$	em. 6\}					
erm while						
notyme * * * \					l h Onti	mal main
					→ Opti	mal pair
end procedure						
G	briel Adrián Salce	do Varela				

