	Compito	1	Prima	Parte
--	---------	---	-------	-------

Nome	
Cognome	
Matricola	

Architettura degli Elaboratori

Corso di Laurea in Informatica Prima Parte Prova Finale - 25 Luglio 2014

<u>ATTENZIONE</u>: scrivere le risposte su questo foglio; la vicinanza di borse o astucci e l'uso di calcolatrici e cellulari sono motivo di esclusione dalla prova.

1. (2 punti) Determinare l'intero (in base 10) rappresentato dalla sequenza di bit 10100001 nelle codifiche in complemento a 2 e in modulo e segno.

Modulo e segno	
Complemento a due	
1	

 $2. \ (1.5 \ \mathrm{punti})$ Convertire da base 2a base 8il seguente numero intero.

1101011110₂ <u>1536</u>

3. (1.5 punti) Convertire da base 16 a base 2 il seguente numero intero.

 $5BC_{16}$ 0101 1011 1100

4. (6 punti) Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di veritá utilizzando il metodo delle mappe di Karnaugh:

x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$
0	0	0	0	1
0	0	0	1	0
0	0	1	0	-
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	-
1	0	0	1	0
1	0	1	0	-
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

 $_{\text{SOP}}$ $_{\text{TX3-TX4}} * \text{x1} + \text{x4} + _{\text{TX1}}$

1	0	1	1
0	1	0	0
0	1	0	0
-	1	0	-

5. (6 punti) Disegnare il circuito combinatorio che realizza la funzione $f(x_1, x_2, x_3, x_4) = \overline{x_1} \cdot x_2 \overline{x_3} \cdot \overline{x_4} + x_2 \cdot (\overline{x_4} \cdot \overline{x_1} \cdot \overline{x_3})$ facendo uso di un solo multiplexer con 3 linee di controllo (selezione).

6. (7 punti) Disegnare di seguito il diagramma di stato di una Rete Sequenziale a singolo ingresso (x) e singola uscita (z) tale che agli istanti $4, 8, 12, 16, \ldots$ e in generale j=4i per $i\geq 1, z_j=1$ se e solo se tra gli ultimi 4 bit letti x_{j-3} x_{j-2} x_{j-1} x_j almeno un bit é uguale a 0, mentre in tutti gli altri istanti $z_j=0$.

7. (6 punti) Progettare la rete sequenziale corrispondente al seguente diagramma di stato (avente gli stati giá codificati), utilizzando flip-flop di tipo D. In particolare determinare tutte le funzioni booleane e disegnare la rete sequenziale corrispondente.

x	y_1	y_2	Y_1	Y_2	d_1	d_2	z
0	0	0	0	1	0	1	1
0	0	1	1	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	0
1	0	1	0	1	0	1	0
1	1	0	1	1	1	1	1
1	1	1	0	0	0	0	1

$d_1 : $	Y1	
	y1y2	
z:	1 1	

 d_2 : Y2

Disegno della rete: