INTEGRAL COHOMOLOGY OF $K^2(A)$

SIMON KAPFER

ABSTRACT. What we know already

1. Chomology of Hilbert schemes of points on a torus surface

Let A be a complex projective torus of dimesion 2. Its first cohomology $H^1(A, \mathbb{Z})$ is freely generated by four elements a_1, a_2, a_3, a_4 , corresponding to the four different circles on the torus. The cohomology ring is isomorphic to the exterior algebra:

$$H^*(A, \mathbb{Z}) = \Lambda^* H^1(A, \mathbb{Z}).$$

We abbreviate for the products $a_i \cdot a_j =: a_{ij}$ and $a_i \cdot a_j \cdot a_k =: a_{ijk}$. We write $a_1 \cdot a_2 \cdot a_3 \cdot a_4 =: x$ for the class corresponding to a point on A. We choose the a_i such that $\int_A x = 1$. The bilinear form, given by the integral $\int_A a_{ij} a_{kl}$ gives $H^2(A, \mathbb{Z})$ the structure of a unimodular lattice, isomorphic to $U^{\oplus 3}$, three copies of the hyperbolic lattice.

Let $A^{[n]}$ the Hilbert scheme of n points on the torus, *i.e.* the moduli space of finite subschemes of A of length n. We now describe their rational cohomology in terms of Nakajima's operators. First consider the direct sum

$$\mathbb{H} := \bigoplus_{n=0}^{\infty} H^*(A^{[n]}, \mathbb{Q})$$

This space is bigraded by cohomological degree and the weight, which is given by the number of points n. The unit element in $H^0(A^{[0]}, \mathbb{Q}) \cong \mathbb{Q}$ is denoted by $|0\rangle$, called the vacuum.

There are linear operators $\mathfrak{p}_m(\alpha)$, for each $m \in \mathbb{Z}$, $\alpha \in H^*(A,\mathbb{Q})$, acting on \mathbb{H} which have the following properties: They depend linearly on α , and if $\alpha \in H^k(A,\mathbb{Q})$ is homogeneous, the operator $\mathfrak{p}_{-m}(\alpha)$ is bihomogeneous of degree k+2m and weight m:

$$\mathfrak{p}_{-m}(\alpha):H^l(A^{[n]})\to H^{l+k+2m}(A^{[n+m]})$$

They satisfy the following commutation relations for $\alpha \in H^k(A, \mathbb{Q}), \ \beta \in H^{k'}(A, \mathbb{Q})$:

$$\mathfrak{p}_{m}(\alpha)\mathfrak{p}_{m'}(\beta) - (-1)^{k \cdot k'}\mathfrak{p}_{m'}(\beta)\mathfrak{p}_{m}(\alpha) = -m \,\delta_{m,-m'} \int_{A} \alpha \cdot \beta.$$

Every element in \mathbb{H} can be decomposed uniquely as a linear combination of products of operators $\mathfrak{p}_m(\alpha)$, m < 0, acting on the vacuum.

For the study of integral cohomology we cite:

Theorem 1.1. [?] The following operators map integral classes in \mathbb{H} to integral classes:

•
$$\mathfrak{p}_{-\lambda}(\alpha)$$
 for $\alpha \in H^*(A,\mathbb{Z})$

Date: September 2, 2015.

- $\frac{1}{z_{\lambda}}\mathfrak{p}_{-\lambda}(1)^n$
- $\mathfrak{m}_{\lambda}(\alpha)$ for $\alpha \in H^2(A, \mathbb{Z})$

Here, \mathfrak{m}_{λ} is defined as $\mathfrak{m}_{\lambda}(\alpha) := \sum_{\mu} c_{\lambda\mu} \mathfrak{p}_{-\mu}(\alpha)$ and $c_{\lambda\mu}$ are the coefficients of the transition matrix between monomial symmetric functions and power sum symmetric functions.

For a classes $\alpha_1, \ldots, \alpha_r \in H^*(A)$ and a partitions $\lambda_1, \ldots, \lambda_r$ we write $\alpha_1^{\lambda_1} \ldots \alpha_r^{\lambda_r}$ for the class $\mathfrak{p}_{-\lambda_1}(\alpha_1) \ldots \mathfrak{p}_{-\lambda_r}(\alpha_r)|0\rangle$.

2. Generalized Kummer varieties

Definition 2.1. Let A be a complex projective torus of dimesion 2 and $A^{[n]}$ the corresponding Hilbert scheme of points. Denote $\Sigma:A^{[n]}\to A$ the summation morphism. Then the generalized Kummer $K^{n-1}A$ is defined as the fiber over 0:

$$\begin{array}{ccc} K^{n-1}A & \stackrel{\theta}{\longrightarrow} & A^{[n]} \\ \downarrow & & \downarrow_{\Sigma} \\ \{0\} & \stackrel{}{\longrightarrow} & A \end{array}$$

By [?], $\theta^*: H^2(A^{[n]}) \to H^2(K^{n-1}A)$ is surjective. We have injections $j: H^2(A) \to H^2(A^{[n]})$ and $i = \theta^*j$. The cohomology $H^*(A^{[n]})$ is described in terms of vertex operators in [?] and [?].

We describe now the image of θ^* in the case n=3:

• We know $j(a) = \frac{1}{2}\mathfrak{p}_{-1}(a)\mathfrak{p}_{-1}(1)^2|0\rangle$, because the two are must be linearly dependent and

$$\int_{A^{[3]}} j(a)^6 = 15q(a)^3, \quad \left(\frac{1}{2}\mathfrak{p}_{-1}(a)\mathfrak{p}_{-1}(1)^2|0\rangle\right)^3 = 15q(a)^3\mathfrak{p}_{-1}(x)^3|0\rangle.$$

• By [?, p. 8], we have for $\alpha = j(a) = \frac{1}{2}\mathfrak{p}_{-1}(a)\mathfrak{p}_{-1}(1)^2|0\rangle$:

$$\int_{A^{[3]}} \alpha^6 = \frac{5}{3} q(a) \int_{K^2} \theta^* \alpha^4$$

On the other hand.

$$\alpha^4 = 3q(a)^2 \mathfrak{p}_{-1}(x)^2 \mathfrak{p}_{-1}(0)|0\rangle + 3q(a)\mathfrak{p}_{-1}(x)\mathfrak{p}_{-1}(a)^2|0\rangle,$$

so if the image of both summands under $\int \theta^*$ is positive, then

$$\int \theta^* \mathfrak{p}_{-1}(x)^2 \mathfrak{p}_{-1}(0) |0\rangle = \int \theta^* \frac{1}{2} \mathfrak{p}_{-1}(x) \mathfrak{p}_{-1}(a)^2 |0\rangle = 1.$$

Proposition 2.2. The class of $K^2(A)$ in $H^4(A^{[3]}, \mathbb{Q})$ is given by

$$a_1^{(1)} \cdot a_2^{(1)} \cdot a_3^{(1)} \cdot a_4^{(1)}$$
.

Proof. We know that for all i and all $\beta \in H^7(A^{[3]})$, we have $\int_{K^2(A)} \theta^*(\alpha_i \cdot \beta) = \int_{A^{[3]}} \alpha_i \cdot \beta \cdot [K^2(A)] = 0$ and for a basis (γ_i) of $H^2(A^{[3]})$,

$$\int_{A^{[3]}} \gamma_i \cdot \gamma_j \cdot \gamma_k \cdot \gamma_l \cdot [K^2(A)] = 3 \left(\langle \gamma_i, \gamma_j \rangle \langle \gamma_k, \gamma_l \rangle + \langle \gamma_i, \gamma_k \rangle \langle \gamma_j, \gamma_l \rangle + \langle \gamma_i, \gamma_l \rangle \langle \gamma_j, \gamma_k \rangle \right)$$

These equations admit a unique solution.

Let $\{a_i\}_{i=1...6}$ be a hyperbolic basis of $H^2(A, \mathbb{Z})$.

Proposition 2.3. The classes $\theta^*(\mathfrak{p}_{-2}(a_i)\mathfrak{p}_{-1}(1)|0\rangle)$ and $\theta^*(\mathfrak{p}_{-2}(1)\mathfrak{p}_{-1}(a_i)|0\rangle)$ are linearly dependent.

Proposition 2.4. $\theta^*(\mathfrak{p}_{-3}(x)|0\rangle) = 0$

Corollary 2.5.
$$\theta^*(\mathfrak{p}_{-2}(a_i)\mathfrak{p}_{-1}(1)|0\rangle) = \frac{1}{4}\theta^*(\mathfrak{p}_{-2}(1)\mathfrak{p}_{-1}(a_i)|0\rangle)$$

Proof. Let a_j be complementary, *i.e.* $a_i a_j = 1$. Let $\operatorname{ch}_1(a_j) = -\frac{1}{2} \mathfrak{p}_{-2}(a_j) \mathfrak{p}_{-1}(1) |0\rangle$ be the chern character in the vertex algebra description of $H^*(A^{[3]})$. Then:

$$\theta^* \left(-\frac{1}{2} \operatorname{ch}_1(a_j) \cdot \mathfrak{p}_{-2}(a_i) \mathfrak{p}_{-1}(1) |0\rangle \right) = \theta^* \left(\mathfrak{p}_{-3}(1) |0\rangle + \frac{1}{2} \mathfrak{p}_{-1}(x)^2 \mathfrak{p}_{-1}(1) |0\rangle \right)$$

But on the other hand, $\delta \cdot j(a) = \frac{1}{2}\mathfrak{p}_{-2}(1)\mathfrak{p}_{-1}(a_i)|0\rangle + \mathfrak{p}_{-2}(a_i)\mathfrak{p}_{-1}(1)|0\rangle$, and

$$\theta^* \left(\operatorname{ch}_1(a_j) \cdot \delta \cdot j(a) \right) = \theta^* \left(-3 \mathfrak{p}_{-3}(1) |0\rangle - 3 \mathfrak{p}_{-1}(x)^2 \mathfrak{p}_{-1}(1) |0\rangle \right).$$

Corollary 2.6. $\theta^*(\delta \cdot j(a_i)) = \theta^*(\frac{3}{4}\mathfrak{p}_{-2}(1)\mathfrak{p}_{-1}(a_i)|0\rangle)$ is divisible by 3.

Proposition 2.7. The classes $\theta^* \left(j(a_i)^2 - \frac{1}{3} j(a_i) \cdot \delta \right)$ are divisible by 2.

Proof. By [?], the classes $\frac{1}{2}\mathfrak{p}_{-1}(a_i)^2\mathfrak{p}_{-1}(1)|0\rangle - \frac{1}{2}\mathfrak{p}_{-2}(a_i)\mathfrak{p}_{-1}(1)|0\rangle$ are integral in $H^4(A^{[n]})$. But $j(a_i)^2 = \mathfrak{p}_{-1}(a_i)^2\mathfrak{p}_{-1}(1)|0\rangle$ and $\theta^*\left(\frac{1}{3}j(a_i)\cdot\delta\right) = \theta^*\left(\mathfrak{p}_{-2}(a_i)\mathfrak{p}_{-1}(1)|0\rangle\right)$.

Proposition 2.8. The class δ^2 is divisible by 2.

Proof. By [?, Prop. 4.1], $\operatorname{Sym}^2 H^2 \oplus \left(\operatorname{Sym}^2 H^2\right)^{\perp} = H^4$. We want to show that $\delta^2 \cdot \operatorname{Sym}^2 H^2 = 2\mathbb{Z}$. We know a \mathbb{Q} -basis of $\operatorname{Sym}^2 H^2$ with at most one class divisible by 2, given by $j(a_i)j(a_j)$, δ^2 and the above proposition. By computation, $\int \delta^4$ is divisible by 4 and $\int \delta^2 j(a_i)j(a_j)$ and $\int \delta^3 j(a_i)$ are all divisible by 2. So $\delta^2 \cdot H^4 = 2\mathbb{Z}$ and therefore δ^2 is divisible by 2, since H^4 is unimodular.

Proposition 2.9. The class θ^* $\left(\delta^2 - j(a_1) \cdot j(a_2) - j(a_3) \cdot j(a_4) - j(a_5) \cdot j(a_6)\right)$ is divisible by 3.

Proof. It is equal to
$$\theta^* \left(\mathfrak{p}_{-3}(1)|0\rangle + \frac{3}{2}\mathfrak{p}_{-1}(x)\mathfrak{p}_{-1}(1)^2|0\rangle \right).$$

References

SIMON KAPFER, LABORATOIRE DE MATHÉMATIQUES ET APPLICATIONS, UMR CNRS 6086, UNIVERSITÉ DE POITIERS, TÉLÉPORT 2, BOULEVARD MARIE ET PIERRE CURIE, F-86962 FUTUROSCOPE CHASSENEUIL

 $E\text{-}mail\ address{:}\ \mathtt{simon.kapfer@math.univ-poitiers.fr}$