

SEM 2 - 5 (RC 07-08)

F.E. (Semester – II) (Revised in 2007-08) Examination, Nov./Dec. 2017 BASIC ELECTRONICS ENGINEERING

Duration: 3 Hours Total Marks: 100

Instructions: 1) Answer 5 questions choosing atleast one from each Module.

2) Assume data if necessary.

MODULE-I

1. a) Determine the output waveform for the following circuit assuming RC time constant is very large and diode is ideal.

- b) Using Zener diode approximations find current through the diode of fig. when load resistance $R_{\rm L}$ is
 - i) $30 k\Omega$
 - ii) 5 kΩ.

 $R = 3 \text{ k}\Omega$ $V_z = 30 \text{ V}$ $R_L = 5-30 \text{ k}\Omega$

- c) What is a diode and how is the depletion region formed?
- d) In a center tap full wave rectifier, $R_L = 1\,k\Omega$ and each diode has a forward biased dynamic resistance $r_f = 10\,\Omega$. The voltage across each half of the secondary winding is 220 sinwt. Determine I_m , I_{dc} , I_{rms} and Ripple factor.

6

4

6

5

5

4

6

5

5

5

7

- a) Explain the working of Half wave rectifier and derive the expression for Ripple factor and Efficiency.
 - b) Why is a Filter required in a dc power supply? Draw the circuit of a C filterand explain the output waveform.
 - c) Draw and explain the operation of a Half wave voltage doubler.

MODULE-II

- 3. a) What do you mean by stabilization of operating point? Explain the reasons why stabilization of Q point is necessary.
 - b) Explain Fixed Bias BJT biasing configuration. 6
 - c) Explain CE configuration of NPN transistor. Draw the input and output characteristics.
 - d) Explain working of transistor as a switch.
- 4. a) Explain Transistor loadline analysis. 5
 - b) Determine V_{CF} and I_C for the voltage divider configuration.

- c) With the help of circuit diagram and waveforms explain how a transistor works as an amplifier.
- d) Explain basic transistor construction.

MODULE - III

5. a) Draw and explain the drain to source characteristics of P-channel JFET. Also explain how transfer curve is obtained from the output characteristics.

7

8

5

7

- b) For Fixed bias configuration given below, determine the following:
 - i) V_{GSQ}

ii) I_{DQ}

iii) V_{DS}

iv) V

V) VG

vi) V_S.

- c) Explain the basic construction of n-channel JFET. Apply proper drain to source voltage and sketch the depletion region for $V_{GS} = 0$ and V_{DS} at some positive voltages.
- 6. a) Explain construction of n-channel Enhancement type MOSFET. Also draw its drain characteristics.
 - b) Explain how CMOS can be used as an inverter.
 - c) For the n-channel depletion-type MOSFET shown below determine :
 - i) Ipo

ii) V_{GSQ}

iii) V_{DS}.

MODULE-IV

7.	a)	Explain the working of dynamic scattering LCD.	7
	b)	Explain the working of photo conductive cell.	5
	c)	Explain the working of photodiode. Draw its symbol and characteristics and also give one application of the same.	8
8.	a)	Explain the operation of SCR.	7
	b)	Draw and explain Electron gun assembly used in CRO.	5
	c)	Write a short note on (any 2):	8
		i) IR Emitters	
		ii) Solar cell	
		iii) Thermistor.	