UNIVERSITATEA DE STAT DIN MOLDOVA FACULTATEA MATEMATICĂ ŞI INFORMATICĂ DEPARTAMENTUL INFORMATICĂ

CEMÎRTAN CRISTIAN

Lucrare de laborator nr. 2

La disciplina Probabilități și statistică

Coordonator: Topală Oleg, dr., conf. univ.

CUPRINS

I. CERINȚA DE REALIZAT	3
II. DESCRIEREA ALGORITMULUI	4
III. COD SURSĂ	5
IV. REZULTATELE PROGRAMULUI	6
CONCLUZII	7

I. CERINȚA DE REALIZAT

1. Să se calculeze integrala, utilizând metoda Monte Carlo:

$$\iint_{G} \frac{dxdy}{\sqrt{24 + x^2 + y^2}}, G: x^2 + y^2 \le 25$$

Unde rezultatul așteptat este: $2\pi(7-\sqrt{24})=\pi(14-\sqrt{96})\approx 13,20110123$.

II. DESCRIEREA ALGORITMULUI

1. Știind că G reprezintă un cerc cu raza 5, calculăm aria pătratului cu latura 2 · 5:

$$(2 \cdot 5)^2 = 100;$$

- 2. $S \leftarrow 0$;
- 3. n ← un număr introdus de utilizator de la tastatură, ce reprezintă nr. de experimente;
- 4. Pentru $\forall i \in \mathbb{N} \cap [1, n]$:
 - 1. $x \leftarrow$ un număr luat la întâmplare din intervalul [-5, 5];
 - 2. $y \leftarrow$ un număr luat la întâmplare din intervalul [-5, 5];
 - 3. Dacă $x^2 + y^2 \le 25$, atunci:

$$S \leftarrow S + \frac{1}{\sqrt{24 + x^2 + y^2}}$$

- 5. $I \leftarrow \frac{A \cdot S}{n}$;
- 6. Se afișează la ecran valoarea lui I;
- 7. Programul se termină cu succes.

III. COD SURSĂ

```
#include <iostream>
#include <iomanip>
#include <random>
#include <cmath>
auto f(double x, double y) { return 1 / std::sqrt(24 + x * x + y * y); }
auto G(double x, double y) { return x * x + y * y <= 25; }</pre>
int main()
{
    size_t n;
    std::cin >> n;
    std::uniform_real_distribution<> di(-5, 5);
    std::mt19937 rnd(std::random_device{}());
    auto S = 0.;
    for (size_t i = 0; i < n; ++i)</pre>
        if (auto x = di(rnd), y = di(rnd); G(x, y))
            S += f(x, y);
    constexpr auto A = (5. * 2) * (5 * 2);
    std::cout << std::fixed << std::setprecision(8) << A * S / n;</pre>
}
```

IV. REZULTATELE PROGRAMULUI

Rulând programul de 32 de ori, cu n = 50000000, am obținut următorul tabel:

Tabela 1

	Valoarea I
	13,20097043
	13,20270923
	13,20042778
	13,19964656
	13,20173185
	13,19885855
	13,20112865
	13,19875339
	13,20190367
	13,20146569
	13,20071146
	13,20230245
	13,20112397
	13,20099716
	13,20073317
	13,2013716
	13,20206142
	13,19864999
	13,20033503
	13,20094003
	13,20104449
	13,20018817
	13,2014061
	13,20051623
	13,20030723
	13,20256139
	13,1998979
	13,19943894
	13,20324008
	13,20192755
	13,2016669
	13,20282554
Mediana	13,20102083

Calculăm eroarea medianului, față de valoarea așteptată de enunțul sarcinii:

$$\frac{|13,20102083-13,20110123|}{13,20110123} \cdot 100\% \approx 6,08812845 \cdot 10^{-4}\%$$

CONCLUZII

Acest program a fost elaborat în limbajul de programare C++17, utilizând doar bibliotecile prevăzute de membrii comitetului C++. Pentru a aplica metoda Monte Carlo în practică, am utilizat următorul generator de numere pesudo-aleatorie: **Mersenne Twister**¹, dezvoltat în anul 1997, de către cercetătorii *Makoto Matsumoto* și *Takuji Nishimura*.

¹ https://en.wikipedia.org/wiki/Mersenne_Twister