CS154

Finishing up DFA Minimization,
The Myhill-Nerode Theorem,
and Streaming Algorithms

Theorem

For every regular language L, there is a unique (up to re-labeling of the states) minimal-state DFA M* such that L = L(M*).

Furthermore, there is an efficient algorithm which, given any DFA M, will output this unique M*.

Extending the transition function δ

Given DFA M = (Q, Σ , δ , q₀, F), we extend δ to a function $\Delta : \mathbb{Q} \times \Sigma^* \to \mathbb{Q}$ as follows:

$$\Delta(\mathbf{q}, \, \boldsymbol{\varepsilon}) = \mathbf{q}$$

$$\Delta(\mathbf{q}, \, \boldsymbol{\sigma}) = \, \delta(\mathbf{q}, \, \boldsymbol{\sigma})$$

$$\Delta(\mathbf{q}, \, \boldsymbol{\sigma}_1 \, \dots \, \boldsymbol{\sigma}_{k+1}) = \, \delta(\, \Delta(\mathbf{q}, \, \boldsymbol{\sigma}_1 \, \dots \, \boldsymbol{\sigma}_k \,), \, \boldsymbol{\sigma}_{k+1} \,)$$

Note: $\Delta(q_0, w) \in F \iff M$ accepts w

Def. $w \in \Sigma^*$ distinguishes states q_1 and q_2 iff $\Delta(q_1, w) \in F \iff \Delta(q_2, w) \notin F$

Extending the transition function δ

Given DFA M = (Q, Σ , δ , q₀, F), we extend δ to a function $\Delta : \mathbb{Q} \times \Sigma^* \to \mathbb{Q}$ as follows:

$$\Delta(\mathbf{q}, \, \mathbf{\epsilon}) = \mathbf{q}$$

$$\Delta(\mathbf{q}, \, \mathbf{\sigma}) = \, \delta(\mathbf{q}, \, \mathbf{\sigma})$$

$$\Delta(\mathbf{q}, \, \mathbf{\sigma}_1 \dots \mathbf{\sigma}_{k+1}) = \, \delta(\, \Delta(\mathbf{q}, \, \mathbf{\sigma}_1 \dots \mathbf{\sigma}_k), \, \mathbf{\sigma}_{k+1})$$

Note: $\Delta(q_0, w) \in F \iff M$ accepts w

Def. $w \in \Sigma^*$ distinguishes states q_1 and q_2 iff exactly *one* of $\Delta(q_1, w)$, $\Delta(q_2, w)$ is a final state

Fix M = (Q, Σ , δ , q_0 , F) and let p, $q \in Q$

Definition:

State p is *distinguishable* from state q iff there is $w \in \Sigma^*$ that distinguishes p and q iff there is $w \in \Sigma^*$ so that exactly *one* of $\Delta(p, w)$, $\Delta(q, w)$ is a final state

State p is *indistinguishable* from state q iff p is not distinguishable from q iff for all $w \in \Sigma^*$, $\Delta(p, w) \in F \Leftrightarrow \Delta(q, w) \in F$ Pairs of indistinguishable states are redundant...

Fix M = (Q, Σ, δ, q_0 , F) and let p, q, $r \in Q$

Define a binary relation ~ on the states of M:

p ~ q iff p is indistinguishable from qp ≁ q iff p is distinguishable from q

Proposition: ~ is an equivalence relation

$$p \sim q \Rightarrow q \sim p$$
 (symmetric)

$$p \sim q$$
 and $q \sim r \Rightarrow p \sim r$ (transitive)

Fix M = (Q, Σ , δ , q₀, F) and let p, q, r \in Q

Proposition: ~ is an equivalence relation

As a consequence, the relation ~ partitions Q into disjoint equivalence classes

Algorithm: MINIMIZE-DFA

Input: DFA M

Output: DFA M_{MIN} such that:

 $L(M) = L(M_{MIN})$

M_{MIN} has no *inaccessible* states

M_{MIN} is *irreducible*

For all states $p \neq q$ of M_{MIN} , p and q are distinguishable

Theorem: M_{MIN} is the unique minimal DFA that is equivalent to M

The Table-Filling Algorithm

Input: DFA M = (Q, Σ , δ , q_0 , F)

Output: (1) $D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \neq q \}$

(2) $EQUIV_M = \{ [q] | q \in Q \}$

The Table-Filling Algorithm

Input: DFA M = (Q, Σ , δ , q_0 , F)

Output: (1)
$$D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \neq q \}$$

(2)
$$EQUIV_M = \{ [q] | q \in Q \}$$

Base Case: For all (p, q) such that p accepts and q rejects \Rightarrow p \not q

Iterate: If there are states p, q and symbol $\sigma \in \Sigma$ satisfying:

Repeat until no more D's can be added

Claim: If (p, q) is marked D by the Table-Filling algorithm, then p ≁ q

Claim: If (p, q) is not marked D by the Table-Filling algorithm, then $p \sim q$

Proof (by contradiction):

Suppose the pair (p, q) is not marked D by the algorithm, yet p ≁ q (call this a "bad pair")

Of all such bad pairs, let p, q be a pair with the shortest distinguishing string w

 $\Delta(p, w) \in F$ and $\Delta(q, w) \notin F$ (Why is |w| > 0?)

We have $\mathbf{w} = \sigma \mathbf{w}'$, for some string \mathbf{w}' and some $\sigma \in \Sigma$

Let $p' = \delta(p,\sigma)$ and $q' = \delta(q,\sigma)$

Then (p', q') is also a bad pair, but with a SHORTER w'!

Algorithm MINIMIZE

Input: DFA M

Output: Equivalent minimal-state DFA M_{MIN}

- 1. Remove all inaccessible states from M
- 2. Run Table-Filling algorithm on M to get: EQUIV_M = { [q] | q is an accessible state of M }
- 3. Define: $M_{MIN} = (Q_{MIN}, \Sigma, \delta_{MIN}, q_{0 MIN}, F_{MIN})$

$$Q_{MIN} = EQUIV_{M}$$
, $q_{0 MIN} = [q_0]$, $F_{MIN} = \{ [q] \mid q \in F \}$

$$\delta_{MIN}([q], \sigma) = [\delta(q, \sigma)]$$

Claim: $L(M_{MIN}) = L(M)$

MINIMIZE

Thm: M_{MIN} is the unique minimal DFA equivalent to M

Claim: Suppose $L(M')=L(M_{MIN})$ and M' has no inaccessible states and M' is irreducible. Then there is an *isomorphism* between M' and M_{MIN}

Suppose for now the Claim is true.

If M' is a minimal DFA, then M' has no inaccessible states and is irreducible (why?)

So the Claim implies:

If M' is a minimal DFA for M, then there is an isomorphism between M' and M_{MIN} .

Therefore the Thm holds!

Thm: M_{MIN} is the unique minimal DFA equivalent to M

Claim: Suppose $L(M')=L(M_{MIN})$ and M' has no inaccessible states and M' is irreducible. Then there is an *isomorphism* between M' and M_{MIN}

Proof: We recursively construct a map from the states of M_{MIN} to the states of M'

Base Case:
$$q_{0 \text{ MIN}} \mapsto q_0'$$

Recursive Step: If
$$p \mapsto p'$$

$$\downarrow \sigma \qquad \downarrow \sigma$$

$$q \qquad q'$$

Base Case: $q_{0 \text{ MIN}} \mapsto q_0'$ Recursive Step: If $p \mapsto p'$ $\downarrow \sigma \qquad \downarrow \sigma$ $q \qquad q'$

Base Case:
$$q_{0 \text{ MIN}} \mapsto q_{0}'$$
Recursive Step: If $p \mapsto p'$

$$\downarrow \sigma \qquad \downarrow \sigma$$

$$q \qquad q'$$
Then $q \mapsto q'$

We need to prove:

The map is defined everywhere

The map is well defined

The map is a bijection

The map preserves all transitions:

If
$$p \mapsto p'$$
 then $\delta_{MIN}(p, \sigma) \mapsto \delta'(p', \sigma)$

(this follows from the definition of the map!)

Base Case:
$$q_{0 \, MIN} \mapsto q_0'$$
Recursive Step: If $p \mapsto p'$

$$\downarrow \sigma \qquad \downarrow \sigma$$

$$q \qquad q'$$

The map is defined everywhere

That is, for all states q of M_{MIN} there is some state q' of M' such that $q \mapsto q'$

If
$$q \in M_{MIN}$$
, there is a string w such that $\Delta_{MIN}(q_{0 MIN}, w) = q$ (Why?)

Let
$$q' = \Delta'(q_0', w)$$
. Then $q \mapsto q'$

Base Case:
$$q_{0 \, MIN} \mapsto q_0'$$
Recursive Step: If $p \mapsto p'$

$$\downarrow \sigma \qquad \downarrow \sigma$$

$$q \qquad q'$$
Then $q \mapsto q'$

The map is well defined

Suppose there are states q' and q'' such that $q \mapsto q'$ and $q \mapsto q''$

We show that q' and q'' are indistinguishable, so it must be that q' = q''

Suppose there are states q' and q'' such that $q \mapsto q'$ and $q \mapsto q''$

Now suppose q' and q'' are distinguishable...

Base Case:
$$q_{0 \text{ MIN}} \mapsto q_0'$$
Recursive Step: If $p \mapsto p'$

$$\downarrow \sigma \qquad \downarrow \sigma$$
Then $q \mapsto q'$

The map is onto

Want to show: For all states q' of M' there is a state q of M_{MIN} such that $q \mapsto q'$

For every q' there is a string w such that M' reaches state q' after reading in w

Let q be the state of M_{MIN} after reading in w Claim: $q \mapsto q'$

The map is one-to-one

Proof by contradiction. Suppose there are states $p \neq q$ such that $p \mapsto q'$ and $q \mapsto q'$ If $p \neq q$, then p and q are distinguishable

How can we prove that two regular expressions are equivalent?

The Myhill-Nerode Theorem

We can also define a similar equivalence relation over *strings* and *languages*:

Let
$$L \subseteq \Sigma^*$$
 and $x, y \in \Sigma^*$
 $x \equiv_L y$ iff for all $z \in \Sigma^*$, $[xz \in L \Leftrightarrow yz \in L]$

Define: x and y are indistinguishable to L iff $x \equiv_i y$

Claim: ≡ is an equivalence relation

Proof?

Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$ $x \equiv_I y$ iff for all $z \in \Sigma^*$, $[xz \in L \Leftrightarrow yz \in L]$

The Myhill-Nerode Theorem:

A language L is regular if and only if the number of equivalence classes of \equiv_{l} is finite.

Proof (\Rightarrow) Let M = (Q, Σ , δ , q_0 , F) be a min DFA for L. Define the relation: $x \sim_M y \Leftrightarrow \Delta(q_0, x) = \Delta(q_0, y)$

Claim: \sim_{M} is an equivalence relation with |Q| classes

Claim: If $x \sim_M y$ then $x \equiv_I y$

Proof: $x \sim_M y$ implies for all $z \in \Sigma^*$, xz and yz reach the *same state* of M. So $xz \in L \Leftrightarrow yz \in L$, and $x \equiv_L y$

Corollary: Number of equiv. classes of ≡ is at most the number of equiv. classes of ~ (which is |Q|)

Let
$$L \subseteq \Sigma^*$$
 and $x, y \in \Sigma^*$
 $x \equiv_L y$ iff for all $z \in \Sigma^*$, $[xz \in L \Leftrightarrow yz \in L]$

(\Leftarrow) If the number of equivalence classes of \equiv_{L} is k then there is a DFA for L with k states

Idea: Build a DFA with these equivalence classes!

Define a DFA M where

Q is the set of equivalence classes of $\equiv_{\mathbf{L}}$

$$q_0 = [\varepsilon] = \{y \mid y \equiv_L \varepsilon\}$$

 $\delta([x], \sigma) = [x \sigma]$
 $F = \{[x] \mid x \in L\}$

Claim: M accepts x if and only if $x \in L$

The Myhill-Nerode Theorem gives us a *new* way to prove that a given language is not regular:

L is not regular if and only if there are infinitely many equiv. classes of \equiv_{L}

L is not regular if and only if

Distinguishing set for L

There are infinitely many strings $w_1, w_2, ...$ so that for all $w_i \neq w_j$, w_i and w_j are distinguishable to L: there is a $z \in \Sigma^*$ such that exactly one of $w_i z$ and $w_j z$ is in L

The Myhill-Nerode Theorem gives us a *new* way to prove that a given language is not regular:

Theorem: $L = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof: Consider the infinite set of strings

$$S = \{0, 0^1, 0^2, ..., 0^n, ...\}$$

Take any pair (0^m, 0ⁿ) of distinct strings in S

Let $z = 1^m$

Then 0^m 1^m is in L, but 0ⁿ 1^m is *not* in L

That is, all pairs of strings in S are distinguishable

Hence there are infinitely many equivalence classes of \equiv_L , and L is not regular.

Streaming Algorithms

Streaming Algorithms

$L = \{x \mid x \text{ has more 1's than 0's} \}$

Read the next bit x from the stream If (C = 0) then B := x, C := 1 If $(C \neq 0)$ and (B = x) then C := C + 1 If $(C \neq 0)$ and $(B \neq x)$ then C := C - 1 When the stream stops, accept if and only if B = 1 and C > 0

B = the majority bit C = how many more times that B appears

On all strings of length n, the algorithm uses (1+log₂ n) bits of space (to store B and C)