自觉遵守考场纪律 如考试作弊 此答卷无效

东南大学考试卷 (A卷)

课程名称 高等数学A(下)期末 考试学期 <u>17-18-3</u> 适用专业 选学高数A的各类专业 考试形式 闭卷 考试时间长度 150分钟

题号	_	_	Ξ	四	五	六
得分						
评阅人						

一、 填空题(本题共9小题,每题4分,共36分)

- 1. 设函数 $u = \ln \sqrt{x^2 + y^2 + z^2}$, 则 $\operatorname{div}(\mathbf{grad}\ u)|_{(1,1,1)} = \underline{\hspace{1cm}}$.
- 2. 已知 $f(x) = \begin{cases} 1, & 0 < x < 1, \\ x 1, & 1 \le x \le 2. \end{cases}$ 设 S(x) 是 f(x) 的以 4 为周期的正弦级

数的和函数,则 S(7) =_____

- 4. 设曲线 $L: y = \sqrt{x x^2}$, 则第一型曲线积分 $\int_{L} (x^2 + y^2) ds = _____.$
- 5. 级数 $\sum_{i=1}^{\infty} (1 + \frac{1}{2} + \dots + \frac{1}{n}) x^n$ 的收敛半径为_____.
- 6. 设幂级数 $\sum_{n=0}^{\infty} a_n(x-1)^n$ 在 x=0 处收敛, 在 x=2 处发散, 则该幂级数的收

敛域为

- 8. 设 C 为圆周 |z|=2, 取逆时针方向, 则 $\oint_C \frac{2z^2-z+1}{(z-1)^2} dz =$ _______
- 9. 留数 Res $\left[\frac{z\sin z}{(1-e^z)^3}, 0\right] =$ ______.

- 二、 计算下列各题(本题共5小题,每小题7分,满分35分)
- 1. 求极限 $\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{3^k} (1 + \frac{1}{k})^{k^2}$.

2. 试判别 $\int_0^{+\infty} \frac{1}{\sqrt{x} + x^2} dx$ 的敛散性, 并说明理由.

3. 求函数
$$f(x) = \frac{3x+8}{(2x-3)(x^2+4)}$$
 的麦克劳林(Maclaurin)级数.

4. 求极限
$$\lim_{n\to\infty} 2^{\frac{1}{3}} \cdot 4^{\frac{1}{9}} \cdot 8^{\frac{1}{27}} \cdot \dots \cdot (2^n)^{\frac{1}{3^n}}$$
.

5. 计算第二型曲线积分 $I = \oint_C \frac{x \mathrm{d}y - y \mathrm{d}x}{4x^2 + y^2}$, 其中 C 是以 (1,0) 为圆心, R 为半径的圆周 $(R \neq 1)$, 取逆时针方向.

三、 (本题满分8分) 计算三重积分 $I=\iiint_{\Omega}e^{\sqrt{x^2+y^2+z^2}}\mathrm{d}V$, 其中 Ω 是单位 球 $x^2+y^2+z^2\leq 1$ 内满足 $z\geq \sqrt{x^2+y^2}$ 的部分.

四、 (本题满分8分) 计算第二型曲面积分 $\iint_{\Sigma}yz\mathrm{d}y\wedge\mathrm{d}z+(x^2+z^2)y\mathrm{d}z\wedge\mathrm{d}x+xy\mathrm{d}x\wedge\mathrm{d}y$, 其中 Σ 为曲面 $4-y=x^2+z^2$ $(y\geq0)$, 取右侧.

五、 (本题满分7分) 计算第一型曲面积分 $\iint_{\Sigma}(x^2+y^2+z^2)\mathrm{d}S$, 其中 Σ 为球面 $x^2+y^2+z^2=2az~(a>0)$.

六、 (本题满分6分) 试判断级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \left(\sqrt{n} \ln \frac{2\sqrt{n}+1}{2\sqrt{n}-1} - 1 \right)$ 的敛散性. 若收敛, 是绝对收敛还是条件收敛?