FINAL: 180 Minutes

Last Name:	
First Name:	
RIN:	
Section:	

Answer ALL questions. You may use **two** double sided $8\frac{1}{2} \times 11$ crib sheets. NO COLLABORATION or electronic devices. Any violations result in an F. NO questions allowed during the test. Interpret and do the best you can.

GOOD LUCK!

1	2	3	4	5	Total
150	50	50	50	50	350

1 Circle at most one answer per question. 10 points for each correct answer.

- (1) The **negation** of "All Malik's friends are big and strong" is
 - A None of Malik's friends are big and strong.
 - B Malik has a friend who is either small or weak (or both).
 - C All Malik's friends are small and weak.
 - D All Malik's friends are either small or weak (or both).
 - E Malik has no friends who are small or weak.
- (2) What is the <u>most accurate</u> order relation between $3^{\log_2 n}$ and n^2 ?
 - $\boxed{\mathbf{A}} \ 3^{\log_2 n} \in o(n^2).$
 - $\boxed{\mathbf{B}} \ 3^{\log_2 n} \in O(n^2).$
 - $\boxed{\mathbb{C}} \ 3^{\log_2 n} \in \Theta(n^2).$
 - $\boxed{\mathbf{D}} \ 3^{\log_2 n} \in \Omega(n^2).$
 - $\boxed{\mathrm{E}} \ 3^{\log_2 n} \in \omega(n^2).$
- (3) Compute the summation $\sum_{i=1}^{20} (-1)^i i^2$
 - A 190.
 - B 200.
 - C 210.
 - D 220.
 - E 230.
- (4) Let $f(n) = \sum_{i=1}^{n} i$ and $g(n) = 4^{\log_2 n}$. What is the <u>most accurate</u> order relationship between f and g? A $f \in o(g)$.
 - $\boxed{\mathrm{B}} f \in O(g).$
 - $\boxed{\mathbf{C}} \ f \in \Theta(g).$
 - $\boxed{\mathbf{D}}\,f\in\Omega(g).$
 - $\boxed{\mathrm{E}} f \in \omega(g).$
- (5) Let f(n) be a function satisfying the recurrence f(0) = 0; $f(n) = f(n-1) + \sqrt{n}$. Which order relationship describes f.
 - $\boxed{\mathbf{A}} \ f \in \Theta(n).$
 - $\boxed{\mathbf{B}} \ f \in \Theta(n \log n).$
 - $\boxed{\mathbf{C}} f \in \Theta(n\sqrt{n}).$
 - $\boxed{\mathbf{D}} \ f \in \Theta(n^2).$
 - $\boxed{\mathbf{E}} f \in \Theta(n^3).$

(6)	A class with 10 students needs to choose a president, vice-president and secretary (a student \underline{cannot} fill multiple roles). In how many ways can this be done?
	A 1000.
	B 720.
	$\boxed{ extbf{C}}$ 120.
	D 10!
	$\boxed{\mathbb{E}} \binom{10}{3}$.
(7)	A fraternity orders 5 pizzas (eg. 2 with sausage and 3 with meatballs & onion). There are 5 toppings. A pizza can have 0.1 or 2 toppings. How many ways are there for the fraternity to make its order?
	A 16.
	$oxed{B}$ 16 ⁵ .
	C $\binom{16}{5}$.
	$\boxed{\mathrm{D}}\binom{20}{15}$.
	$\boxed{\mathrm{E}}$ 16 × 15 × 14 × 13 × 12.
(8)	A friendship network has 6 people $\textcircled{A} \textcircled{B} \textcircled{C} \textcircled{D} \textcircled{E} \textcircled{F}$. If you add up the number of friends of each person, you get a total of 26. How many <i>different</i> social network graphs could correspond to this friendship network. (Two graphs are different if they don't have exactly the same edges.)
	$oxed{A}$ 0.
	B 95.
	C 105.
	D 115.
	E 125.
(9)	You are thinking of a graph with 5 nodes $\textcircled{A} \textcircled{B} \textcircled{C} \textcircled{D} \textcircled{E}$. <u>Approximately</u> how many such graphs are there?
	A 100.
	B 500.
	C 1000.
	D 5000.
	E 10000.
(10)	X and Y are random variables (not necessarily independent). Which of the following is an expression for $Var(X+Y)$ (variance of the sum)?
	$\boxed{\mathbf{A}} \ Var(X) + Var(Y).$
	$\boxed{\mathrm{B}} \ \mathbb{E}[(X+Y)^2].$
	$\boxed{\mathbb{C}} \ \mathbb{E}[X^2] + \mathbb{E}[Y^2] - \mathbb{E}[X]^2 - \mathbb{E}[Y]^2.$
	$\boxed{\mathbb{D}} \ Var(X) + Var(Y) + 2 \ \mathbb{E} \left[XY \right] - 2 \ \mathbb{E} \left[X \right] \mathbb{E} \left[Y \right].$
	$\boxed{\mathbb{E}} \ Var(X) + Var(Y) - 2Var(XY).$

(11)	You independently generate two random ten bit binary sequences and compute a new sequence using the BITWISE-OR of the two random sequences (treating 0 as FALSE and 1 as TRUE). Let X be the number of 1s in the result. What is $\mathbb{E}[X]$. (for example, 0001110010 BITWISE-OR 1000111000 = 1001111010.)
	$oxed{A}$ 2.5
	B 3.5
	$oxed{ ext{C}}$ 5
	$\boxed{\mathrm{D}}$ 6.5
	$oxed{\mathrm{E}}$ 7.5
(12)	About 1 in a 1000 people have Coeliac disease. The outcome of a test for Coeliac is random: the test makes a mistake on 1 in 10 people who have it (90% accuracy if you have Coeliac); the test makes a mistake on 1 in 100 people who do not have it (99% accuracy if you do not have Coeliac). You got tested, and the result was positive. <i>Approximately</i> what are the chances that you have Coeliac?
	$oxed{A} 0.1\%$
	lacksquare B $10%$
	$lue{ extbf{C}}$ 40%
	D 80%
	$oxed{\mathrm{E}}90\%$
(13)	Which set is <u>not countable</u> ?
	\boxed{A} {1,3,5,7}.
	$\boxed{\mathrm{B}}$ The prime numbers $\{2,3,5,7,\dots\}$.
	C All possible angles between 0 and 360.
	D All even numbers which are not a sum of two primes.
	$[E]$ All possible pairs of integers, \mathbb{Z}^2 .
(14)	A random binary string $b_1b_2\dots b_{10}$ of length 10 is the input to the automaton.
	What is the probability that the string is accepted?
	$ \begin{array}{c c} \hline A & 0.25 \\ \hline B & 0.4 \end{array} $
	$\boxed{\boxed{0}}$ 0.6
	E 0.75
(15)	Which string below is <u>not</u> in the language of the CFG: $S \longrightarrow \varepsilon \mid 0S S0 11S$
	$oxed{f A}$ $arepsilon$
	B 1111
	C 11011
	D 0011000
	E 001010

2 Positive Integer Partitions

A positive partition of n is a <u>sequence</u> of <u>positive</u> integers that add up to n. For example, (6,4), (4,6) and (2,4,2,2) are different partitions of 10. How many positive partitions of n are there? Prove your answer.

3 Proofs

(a) <u>Prove</u> that $n^2 \leq 3^n$ for integer $n \geq 0$.

(b) <u>Prove</u> that $n^3 \notin O(n^2)$. You must <u>prove</u> that there is no <u>constant</u> C for which $n^3 \leq Cn^2$ for all $n \geq 1$.

4 Counting Paths on Graphs with Holes

A grid is missing nodes at (2,2), (5,5) and (8,8). A *shortest* path from the bottom left node (0,0) to the top right node (10,10) is shown.

How many <u>different</u> shortest paths go from (0,0) to (10,10)? (Two paths are different if they do not have exactly the same edges).

You may leave your answer in the form of a combination of binomial coefficients – you do not need to compute a numerical answer.

${f 5}$ Turing Machine and Exponentiation

(a) <u>Prove</u>: the problem (language) $\mathcal{L} = \{0^n \# 1^{2^n} \mid n \geq 1\}$ <u>cannot</u> be solved (accepted) by a finite automaton.

(b) Give a high-level description of a Turing Machine that solves $\mathcal{L} = \{0^n \# 1^{2^n} \mid n \geq 1\}.$

SCRATCH

SCRATCH