Théorème 1 (divison euclidienne dans IN):

Soient deux entiers  $a, b \in \mathbb{N}$ . Si b est non-nul, alors

$$\exists ! (q,r) \in \mathbb{N}^2, \qquad a = bq + r \quad \text{et} \quad 0 \leqslant r < b.$$

$$\begin{array}{c|c} \mathbb{N} & & \mathbb{N}^* \\ & \cap & \\ a & & b \\ \hline & r & \\ & \uparrow & \\ \text{reste} & \text{quotient} \end{array}$$

Exercice 2: 1. On a

2. On veut montrer que le réel x possède un développement limité implique qu'il est rationnel. On prend pour exemple  $0,\overline{147} = 0,147147147...$  On a

$$0,\overline{147} = 147 \times \left(10^{-3} + 10^{-6} + 10^{-9} + \cdots\right)$$
$$= 147 \times 10^{-3} \left(1 + 10^{-3} + 10^{-6} + \cdots\right)$$
$$= \frac{147}{100} \times \sum_{k=0}^{\infty} (10^{-3})^k = \frac{147}{100} \times \frac{1}{1 - 10^{-3}}$$

D'où  $0,\overline{147}=\frac{147}{999}=\frac{49}{333}\in\mathbb{Q}.$  On démontre maintenant montrer le "sens inverse." On prend pour exemple  $49\div333$ :

Il n'y a pas, par contre, unicité du développement décimal :  $1=1,\overline{0}=0,\overline{9}.$ 

Théorème 3:

Soient deux polynômes A et  $B \in \mathbb{K}[X]$ . Si B est non-nul,

$$\exists ! (Q,R) \in \mathbb{K}[X]^2, \qquad A = BQ + R \quad \text{et} \quad \deg R < \deg B.$$
 
$$\mathbb{K}[X] \ni A \quad \frac{B}{Q} \in \mathbb{K}[X] \setminus \{0\}$$

Exercice 4:

Soit  $n \in \mathbb{N}$ . On va calculer  $R_n(X)$  sans calculer  $Q_n(X)$ .

$$\begin{array}{c|c}
X^n \\
R_n = ? & Q_n
\end{array}$$

On sait, d'après le théorème de la division euclidienne, que deg  $R_n < 2$  d'où  $R_n = \alpha_n X + \beta_n$ . De plus,  $X^n = (X^2 - (n-2)X - (n-1))Q_n(X) + R_n(X)$ . On sait que, pour un polynôme de la forme  $X^2 - sX + p$ , s est la somme des racines de ce polynôme et p est le produit des racines. On en déduit que les racines de  $X^2 - (n-2)X - (n-1)$  sont n-1 et -1. D'où,  $X^n = (X - (n-1))(X+1)Q_n(X) + \alpha_n X + \beta_n$ . On choisit des valeurs de X qui permettent de calculer  $\alpha_n$  et  $\beta_n$ . Par exemple, avec X = n-1, on a  $(n-1)^n = \alpha_n(n-1) + \beta_n$ ; et, avec X=-1, on a  $(-1)^n=-\alpha_n+\beta_n$ . On résout ce système d'équations :

$$(n-1)^n = \alpha_n(n-1) + \beta_n$$

$$(-1)^n = \beta_n - \alpha_n$$

$$\Leftrightarrow \begin{cases} (n-1)^n + (n-1)(-1)^n = \beta_n + (n-1)^n \beta_n \\ \dots \end{cases}$$

$$\Leftrightarrow \begin{cases} \alpha_n = \dots \\ \beta_n = \dots \end{cases}$$

Remarque: — Exemples de groupes:  $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{Q}^*, \times), (S_n, \circ), (\mathcal{M}_{n,m}(\mathbb{K}), +), (GL_n(\mathbb{K}), \times).$ 

- $(A, +, \times)$  est un anneau si
  - -(A, +) est un groupe commutatif
  - × est associative
  - le neutre de  $\times$  est  $1_A$
  - x est distributive par rapport à + (dans les deux sens) :

$$(a+b) \times c = a \times c + b \times c$$
 et  $c \times (a+b) = c \times a + c \times b$ .

Exemple d'anneau :  $(\mathbb{K}[X], +, \times)$  est un anneau *commutatif* (car  $\times$  est commutative);  $(\mathcal{M}_n(\mathbb{K}), +, \times)$  est un anneau non-commutatif.

- $(K, +, \times)$  est un corps si  $(A, +, \times)$  est un anneau commutatif et tout élément différent de  $0_K$  est inversible.
  - Exemple de corps :  $(\mathbb{Q}, +, \times)$ ,  $(\mathbb{R}, +, \times)$ ,  $(\mathbb{C}, +, \times)$  mais  $(\mathrm{GL}_n(\mathbb{K}), +, \times)$  n'est pas un corps (et ce n'est pas un anneau non plus).
- La définition d'un espace vectoriel n'est pas *vraiment* à connaître... On utilisera, en général, plus la définition d'un sous-espace vectoriel.
- $(M, +, \times, \cdot)$  est une K-algèbre si
  - $-(M, +, \times)$  est un anneau;
  - $(M, +, \cdot)$  est un K-espace vectoriel;
  - prop3

Par exemple,  $(\mathbb{R}^2, +, \cdot)$  est un espace vectoriel. + est une opération interne (vecteur + vecteur = vecteur) mais  $\cdot$  est une opération externe  $(\mathcal{M}_n(\mathbb{K}, +, \cdot))$  est un espace vectoriel. + est interne (matrice + matrice = matrice),  $\cdot$  est externe (rel  $\cdot$  matrice = matrice), et  $\times$  est interne (matrice  $\times$  matrice = matrice). On dit alors que  $(\mathcal{M}_n(\mathbb{K}), +, \times, \cdot)$  est une K-algèbre.



Figure 1 – Structure d'un sous-groupe  $H \subset G$ 

Définition (Sous-groupe):

Soit H une partie de G  $(H \subset G)$  et H est <u>stable</u> par +  $(\forall x, y \in H, x + y \in H)$  et avec la loi + <u>induite</u> sur H, (H, +) est un groupe. Dans ce cas, H est un sous-groupe de (G, +).

Dans la pratique, on montre

$$(H,+) \text{ est un sous-groupe } \iff \begin{cases} H \subset G \\ H \text{ stable par } + \\ 0_G \in H \\ \forall x \in H, \, -x \in H \end{cases} \iff \begin{cases} \varnothing \neq H \subset G \\ \forall x,y \in H, \, x-y \in H. \end{cases}$$

Exercice 5:

On va montrer que H est un sous-groupe de  $(\mathbb{Z}, +)$  si et seulement s'il existe un entier  $n \in \mathbb{Z}$ , tel que  $H = n\mathbb{Z} = \{n \times k \mid k \in \mathbb{Z}\}.$ 

1. Soit  $H=n\mathbb{Z}$ . On veut montrer que H est un sous-groupe de  $(\mathbb{Z},+)$ . On a bien  $H\subset G$  et, pour tout  $x,y\in\mathbb{Z}$ , on a

$$\underbrace{nx}_{\in H} + \underbrace{ny}_{\in H} = \underbrace{n(x+y)}_{\in H}.$$

On a aussi  $0 \in H$  car  $0 = 0 \times n$ . Enfin, pour tout entier  $x \in \mathbb{Z}$ , on a  $-(nx) = n \times (-x) \in$ H.

On en conclut que (H, +) est un sous groupe de  $(\mathbb{Z}, +)$ .

2. Soit H un sous-groupe de  $(\mathbb{Z}, +)$ . Si  $H = \{0\}$  alors  $H = 0\mathbb{Z}$ . Si  $H \neq \{0\}$ , alors il existe  $n \in \mathbb{Z}, n \in H$ . D'où  $-n \in H$ , et d'où, il existe un élément positif dans H. On considère sans perte de généralité qu'il s'agit de n. On en déduit que  $n\mathbb{Z} \subset H$ .

On choisit, à présent, le plus petit n. On procède par l'absurde : on suppose qu'il existe  $x \in H$  tel que  $x \notin n\mathbb{Z}$ . On fait la division euclidienne de x par n: x = nq + r et r < n. D'où, x-nq=r < n. Or, x et nq sont deux éléments de H. On en conclut que  $r \in H.$ C'est absurde car r < n et n est le plus petit.



FIGURE 2 – Sous-groupe de  $(\mathbb{Z}, +)$ 

## Définition 6:

Soit  $(A, +, \times)$  un anneau commutatif. On appelle *idéal* de A tout sous-groupe I de (A, +) tel que  $\forall (i, a) \in I \times A, i \times a \in I.$ 



Figure 3 – Structure d'un idéal  $I\subset A$ 

## Remarque $(\Lambda)$ :

Un idéal n'est pas forcément un sous-anneau car on n'a pas forcément  $1_A \in I$ .

EXEMPLE 7: 1. Soit  $a \in \mathbb{K}$ . On pose  $I = \{P \in \mathbb{K}[X] \mid P(a) = 0\}$ . On vérifie aisément que (I, +) est bien un sous-groupe de  $(\mathbb{K}[X], +)$ :

 $0_{\mathbb{K}[X]}$  s'annule en a et si P(a) = 0 et Q(a) = 0 alors, (P+Q)(a) = 0 et (P-Q)(a) = 0.

Pour tout polynôme  $Q \in \mathbb{K}[X]$ , on a, si P(a) = 0, alors  $(P \times Q)(a) = 0$ . On en conclut que I est un idéal de  $(A, +, \times)$ .

2. On considère l'ensemble des suites qui tendent vers 0, I. Ce n'est pas un idéal de l'ensemble des suites,  $\mathbb{R}^{\mathbb{N}}$  : on a bien que I est un sous-groupe de  $(\mathbb{R}^{\mathbb{N}},+)$  mais, par exemple la suite  $(\frac{1}{n}) \in I$  multipliée par la suite  $(n) \in \mathbb{R}^{\mathbb{N}}$  ne donne pas une suite tendant vers 0. En effet,  $\frac{1}{n} \times n = 1 \longrightarrow 0$ . Mais, c'est bien un idéal de l'ensemble des suites bornées.

Proposition 8 (les idéaux de  $\mathbb{Z}$  et  $\mathbb{K}[X]$ ): 1. À regarder.

- 2. I est un idéal de  $\mathbb Z$  si et seulement s'il existe  $n \in \mathbb Z$  tel que  $I = n \mathbb Z$ .
- 3. I est un idéal de  $\mathbb{K}[X]$  si et seulement s'il existe un polynôme  $P(X) \in \mathbb{K}[X]$  tel que  $I = P(X) \cdot \mathbb{K}[X].$

Preuve (2.): " $\Longrightarrow$ " Soit I un idéal de Z. En particulier, (I,+) est un sous-groupe de  $(\mathbb{Z},+)$  et donc, d'après l'exercice 5, il existe un entier n tel que  $I=n\mathbb{Z}$ . "  $\Longleftarrow$  " Réciproquement, si  $I=n\mathbb{Z}$ , alors c'est un idéal car :

- - $(n\mathbb{Z}, +)$  est un sous-groupe de  $(\mathbb{Z}, +)$  d'après l'exercice 5.

$$- \underbrace{(nx)}_{\in I} \times \underbrace{y}_{\in \mathbb{Z}} = \underbrace{n(x \times y)}_{\in I}.$$

Exercice 9:

Montrer que le noyau d'un morphisme d'anneaux commutatif est idéal.

Soient  $(A,+,\times)$  et  $(B,+,\times)$  deux anneaux. Soit  $\varphi:A\to B$  un morphisme d'anneaux :

$$\varphi(a+b) = \varphi(a) + \varphi(b) \qquad \varphi(a \times b) = \varphi(a) \times \varphi(b) \qquad \varphi(1_A) = 1_B.$$

Montrons que (Ker $\varphi$ ,+) est un sous-groupe de (A,+). On sait que  $\varphi(0_A)=0_B$  donc  $0_A\in \operatorname{Ker}\varphi$  et donc Ker $\varphi\neq\varnothing$ . Soient  $a,b\in \operatorname{Ker}\varphi$ . On a  $\varphi(a-b)=\varphi(a)-\varphi(b)=0-0=0$  donc  $(a-b)\in \operatorname{Ker}\varphi$ .

Soient  $\varepsilon \in \operatorname{Ker} \varphi$  et  $b \in A$ . On a  $\varphi(\varepsilon \times b) = \varphi(\varepsilon) \times \varphi(b) = 0$ .