Numerical Optimization

Unit 3: Methods That Guarantee Convergence

Che-Rung Lee

Department of Computer Science National Tsing Hua University

September 22, 2021

Line search and trust region

We will talk about two types of algorithms that guarantee convergence: Line search and trust region.

Where are we?

Three problems of Newton's method:

- Hessian matrix H may not be positive definite.
- **1** The system $\vec{p} = -H^{-1}\vec{g}$ is expensive to compute.

We will discuss methods to solve the first problem.

- The consequence of the first problem is that Newton's direction is not a descent direction.
- We need to find directions that are similar to the Newton's direction but also descent.
- Oo descent directions guarantee convergence? The answer is NO.
- Line search algorithms: descent directions+good step sizes, which guarantee convergence.

Modified Newton's method

- When the Hessian *H* is not positive definite, what can we do?
 - Use another \hat{H} , similar to H, but positive definite.
 - How can this work?

$$\vec{p} = -\hat{H}^{-1}\vec{g}$$

$$\vec{g}^T\vec{p} = -\vec{g}^T\hat{H}\vec{g} < 0$$

 \vec{p} is a descent direction.

Theorem (The convergence of the modified Newton)

If f is twice continuously differentiable in a domain D and $\nabla^2 f(\vec{x}^*)$ is positive definite. Assume \vec{x}_0 is sufficiently close to \vec{x}^* and the modified \hat{H}_k is well-conditioned. Then

$$\lim_{k\to\infty}\nabla f(\vec{x}_k)=0.$$

Conditionness of a matrix

- For a matrix, what is "well-conditioned"?
 - A matrix A's condition number is $\kappa(A) = ||A|| ||A^{-1}||$. If $\kappa(A)$ is small, we call A well-conditioned. If $\kappa(A)$ is large, we call A ill-conditioned.
- But what is the meaning of $\kappa(A)$?
 - The condition number $\kappa(A)$ measures the "sensitivity" of the matrix when solving Ax = b.

$$(A + E)\tilde{x} = b = Ax$$

$$A\tilde{x} - Ax = -E\tilde{x}$$

$$\tilde{x} - x = -A^{-1}E\tilde{x}$$

$$\|\tilde{x} - x\| = \|A^{-1}E\tilde{x}\| \le \|A^{-1}\|\|E\|\|\tilde{x}\|$$

$$\frac{\|\tilde{x} - x\|}{\|\tilde{x}\|} \le \|A\|\|A^{-1}\|\frac{\|E\|}{\|A\|} = \kappa(A)\frac{\|E\|}{\|A\|}$$

Requirements of good modifications

- Three requirements of a good modification:
 - Matrix \hat{H} is positive definite and well-conditioned, so the convergence theorem holds.
 - ② Matrix \hat{H} is similar to H, $\|\hat{H} H\|$ small, so \vec{p} is close to the Newton's direction, and the fast convergence can be hopefully preserved.
 - 3 The modification can be easily computed.
- We will see three algorithms, and each has its pros and cons.
 - Eigenvalue modification.
 - 2 Shift modification.
 - Modification with LDL decomposition.

First method: eigenvalue modification

Algorithm 1: Eigenvalue modification

- ① Compute H's eigenvalue decomposition, $H = V\Lambda V^{-1}$, $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$.
- ② Make the modification for a given small $\epsilon > 0$,

$$\hat{\lambda}_i = \left\{ \begin{array}{ll} \lambda_i, & \text{if } \lambda_i > 0 \\ \epsilon, & \text{if } \lambda_i < 0 \end{array} \right.$$

- - It satisfies requirement 1 and 2 (why?), but eigenvalue decomposition is expensive to compute: $O(n^3)$ with big constant coefficient.

Second method: shift modification

Algorithm 2: Shift modification

- **1** Let $H_0 = H$.
- ② For k = 0, 1, 2, ...
 - **1** If H_k can have Cholesky decomposition, then return $\hat{H} = H_k$.
 - ② Otherwise, $H_{i+1} = H_i + \mu I$ for some small $\mu > 0$.
 - Why does that work?

$$H + \mu I = V \Lambda V^{-1} + \mu I = V \Lambda V^{-1} + \mu V V^{-1} = V (\Lambda + \mu I) V^{-1}$$

$$\Lambda + \mu I = \begin{pmatrix} \lambda_1 + \mu & & \\ & \lambda_2 + \mu & \\ & & \ddots & \\ & & & \lambda_n + \mu \end{pmatrix}, \quad \mu > 0$$

- Matrix H_k is symmetric positive definite if and only if its Cholesky definition exists. (See note 2.)
- Which requirements this method satisfies?

Third method: using LDL^T decomposition

Algorithm 3: Modified *LDL*^T Decomposition

- Compute $H = LDL^T$.
- ② Update D to \hat{D} so that all \hat{d}_i are positive. (If $d_i < 0$, replace it by $\epsilon > 0$.)
- $\hat{H} = L \hat{D} L^T.$
 - The LDL decomposition of a symmetric matrix H is $H = LDL^T$, where L is lower triangular and D is diagonal.
 - Additional advantage of LDL decomposition: we can use that to solve $\hat{H}\vec{p} = -\vec{g}$.

$$\vec{p} = -L^{-T}\hat{D}^{-1}L^{-1}\vec{g}$$
.

• But it is not numerically stable (the updates can be very large).

Some properties of descent direction

Why are we so obsessed with the "descent direction"?

- Let $\phi_k(\alpha) = f(\vec{x}_k + \alpha \vec{p}_k)$.
- Since \vec{p}_k is a decent direction, $\phi_k(\varepsilon) < \phi_k(0)$ for some small $\varepsilon > 0$.
- $\phi'_k(0) = \nabla f_k^T \vec{p_k}$. (Why?)
- $\phi'_k(\alpha) = \nabla f_k(\vec{x}_k + \alpha \vec{p}_k)^T \vec{p}_k$. (Why?)

Problems of descent directions

- The descent directions guarantee that $f(\vec{x}_{k+1}) < f(\vec{x}_k)$, which however do not guarantee to converge to the optimal solution.
- Here are two examples.

Figure 6.3.2 Monotonically decreasing sequences of iterates that don't converge to the minimizer

•
$$f(x) = x^2$$
, $x_0 = 2$, $p_k = (-1)^{k+1}$ and $\alpha_k = 2 - 3 \times 2^{-k-1}$, $\{x_k\} = \{2, -3/2, 5/4, -9/8...\} = \{(-1)^k (1 + 2^{-k})\}$.
• $f(x) = x^2$, $x_0 = 2$, $p_k = -1$ and $\alpha_k = 2^{-k-1}$, $\{x_k\} = \{2, 3/2, 5/4, 9/8...\} = \{1 + 2^{-k}\}$.

¹Example and figures are from chapter 6 of *Numerical Methods for Unconstrained Optimization and Nonlinear Equations* by J. Dennis and R. Schnabel

First example

- What's the problem of the first example?
 - The *relative decrease* is $\frac{|\phi_k(\alpha_k) \phi_k(0)|}{\alpha_k} \approx 2^{-k}$ which becomes too small before reaching the optimal solution.
 - The relative decrease is the absolute value of the slope of the line segment $(\vec{x}_k, f(\vec{x}_k)), (\vec{x}_{k+1}, f(\vec{x}_{k+1}))$.
 - How large should the relative decrease be? The slope of the tangent line at $\alpha=0$ provides good information about f's trend. (What is $\phi'(0)$? What is the sign of $\phi'(0)$?)
 - The sufficient decrease condition:

Sufficient decrease condition

$$f(\vec{x}_k + \alpha \vec{p}_k) \leq f(\vec{x}_k) + c_1 \alpha \vec{g}_k^T \vec{p}_k,$$

for some $c_1 \in (0,1)$.

Second example

- What's the problem of the second example?
 - The *relative decrease* of the second problem is $\frac{|\phi_k(\alpha_k) \phi_k(0)|}{\alpha_k} \approx 1$ is large enough, but *the step is too small*.
 - How large should the step size at least to be? Remember that α should be shrunken as f converges to the optimal solution. $\Rightarrow f'$ converges to 0.
 - So the step size should be proportional to the change of ϕ' , which leads to the curvature condition:

Curvature condition

$$\phi'_k(\alpha_k) = \nabla f(\vec{x}_k + \alpha_k \vec{p}_k)^T \vec{p}_k \ge c_2 \nabla f_k^T \vec{p}_k = c_2 \phi'_k(0)$$

for some $c_2 \in (c_1, 1)$.

Wolfe conditions

• Condition 1 and condition 2 together are called the Wolfe conditions.²

- Typical values: $c_1 = 0.1$ and $c_2 = 0.9$.
- Can both conditions be satisfied simultaneously for any smooth function?

²Figure is also from D&S's book.

Existence of feasible region for the Wolfe conditions

- **1** The function $\phi_k(\alpha)$ must be bounded below, which means it will go up eventually (why?). Therefore, the line $y = \phi_k(0) + c_1 \phi_k'(0) \alpha$ must intersect with $y = \phi_k(\alpha)$, say at α_1 .
- ② Since \vec{p}_k is a descent direction, $\phi_k'(0) < c_1 \phi_k'(0) < 0$ for some $c_1 \in (0,1)$.
- **3** By the mean value theorem, $\exists \alpha_2 \in [0, \alpha_1]$, such that

$$c_1\phi'_k(0) = \frac{\phi_k(\alpha_1) - \phi_k(0)}{\alpha_1 - 0} = \phi'_k(\alpha_2).$$

• Since the curvature condition requires $c_2 > c_1$, between $[\alpha_2, \alpha_1]$, there must be some regions in which there exists α_3 such that $\phi_k'(\alpha_3) \geq c_2 \phi_k'(0)$. (why?)

Convergence guarantee

• Do Wolfe conditions guarantee convergence?

Theorem

If \vec{p}_k is a descent direction, α_k satisfies Wolfe conditions, f is bounded below and continuously differentiable, and ∇f is Lipschitz continuous, then

$$\sum_{k\geq 0}\cos^2\theta_k\|\nabla f_k\|^2<\infty$$

where
$$\cos \theta_k = \frac{-\nabla f_k^T \vec{p}_k}{\|\nabla f_k\| \|\vec{p}_k\|}$$
.

Definition (Lipschitz continuous)

A vector function $f: \mathbb{R}^n \to \mathbb{R}^m$ is Lipschitz continuous if

$$||f(\vec{x}) - f(\vec{y})|| < L||\vec{x} - \vec{y}||$$
 for some constant $L > 0$.

Implications of the theorem

- The convergence theorem implies $\lim_{k\to\infty}\cos^2\theta_k\|\nabla f_k\|^2=0$. (why?)
- To show the convergence, we need to show that $|\cos \theta_k| > \delta > 0$ when $k \to \infty$.
- For the steepest descent method, this condition satisfies automatically since \vec{p}_k is parallel to \vec{g}_k .
- How about the Newton's method or the modified Newton's method? For them, $\vec{p}_k = -H_k^{-1}\vec{g}_k$ or $\vec{p}_k = -\hat{H}_k^{-1}\vec{g}_k$.

$$\vec{g}_{k}^{T}\vec{p}_{k} = -\vec{g}_{k}^{T}H_{k}^{-1}\vec{g}_{k}.$$

One can show that if H_k is well-conditioned, $\kappa(H) < M$, then $|\cos \theta_k| > 1/M$.

Goldstein condition

Problems of the Wolfe conditions are the need to evaluate

$$\phi'(\alpha_k) = \nabla f(\vec{x}_k + \alpha_k \vec{p}_k)^T \vec{p}_k.$$

Another frequently used conditions is the Goldstein condition:

Goldstein condition

$$f(\vec{x}_k) + (1 - c)\alpha_k \nabla f_k^T \vec{p}_k \le f(\vec{x}_k + \alpha \vec{p}_k) \le f(\vec{x}_k) + c\alpha_k \nabla f_k^T \vec{p}_k$$
 for $c \in [0, 1/2]$.

Examples of Wolfe conditions and Goldstein condition

Line search method

Algorithm 4: Backtracking line search algorithm

- **①** Guess an initial α_0 (For Newton's method, usually $\alpha_0 = 1$.)
- ② For k = 1, 2, ... until α_k satisfies the required conditions.
 - Using interpolation methods to model function $\phi(\alpha)$ in the desired interval and then search the feasible solution of the model function.

What is the interpolation method?

- Initially, we know $\phi(0) = f(\vec{x}_k)$, $\phi'(0) = \nabla f(\vec{x}_k)^T \vec{p}_K$, and $\phi(1)$. We can use that build a quadratic polynomial $q_0(\alpha)$ such that $q_0(0) = \phi(0)$, $q_0'(0) = \phi'(0)$ and $q_0(1) = \phi(1)$.
- Use q_0 to find a solution α_1 . Check if α_1 satisfies the required conditions.
- Now we know four things: $\phi(0) = f(\vec{x}_k)$, $\phi'(0) = \nabla f(\vec{x}_k)^T \vec{p}_K$, $\phi(1)$, and $\phi(\alpha_1)$. Use them to build a cubic polynomial $q_1(\alpha)$ such that $q_1(0) = \phi(0)$, $q_1'(0) = \phi'(0)$, $q_1(\alpha_1) = \phi(\alpha_1)$ and $q_1(1) = \phi(1)$.
- Use q_1 to find a solution α_2 . Check if α_2 satisfies the required conditions.

Trust region method

- The line search method finds a descent direction $\vec{p_k}$ first, and then search a suitable step length α_k that satisfies some conditions.
- The idea of the trust region method is to build a model for the function, and then specifies a region in which this model works. It then solves constrained model problem.

Algorithm 5: The trust region framework

- **1** Guess an initial trust region Δ_0 and an initial \vec{x}_0 .
- ② For $k = 0, 1, 2, \dots$ until convergence
 - ① Build a model m_k of f at \vec{x}_k
 - ② Solve the constrained minimization problem: $\min_{\vec{p}} m_k(\vec{p})$ s.t. $\|\vec{p}\| \leq \Delta_k$.
 - **3** Evaluate the trust region Δ_k . If not satisfied, update Δ_k and goto (2-2).
 - **3** Set $\vec{x}_{k+1} = \vec{x}_k + \vec{p}_k$ where \vec{p}_k is the solution of the model problem.

Details of the trust region method

- How to build a model for a function $f(\vec{x})$?
 - Most are based on the Taylor expansions. For example, the quadratic model

$$m_k(\vec{p}) = f_k + \vec{g}_k^T \vec{p} + \frac{1}{2} \vec{p}^T H_k \vec{p}.$$

- How to evaluate and update the trust region Δ_k ?
 - The trust region is evaluated by the given $\vec{p}_k \neq \vec{0}$. Let

$$\rho_k = \frac{f(\vec{x}_k) - f(\vec{x}_k + \vec{p}_k)}{m_k(\vec{0}) - m_k(\vec{p}_k)}.$$

- If $\rho_k < 0$, reject the solution, and let $\Delta_k = \sigma_k \Delta_k$ for some $0 < \sigma_k < 1$.
- If ρ_k is close to 1, increase $\Delta_k = \tau_k \Delta_k$ for some $\tau_k > 1$.
- The trust region method is also guaranteeing convergence.

Convergence of trust region framework

Theorem (The convergence of trust region framework)

Suppose $||B_k||$ is bounded, and f is bounded below on the level set $S = \{x | f(x) \le f(x_0)\}$ and Lipschitz continuously differentiable in the neighborhood of S. If

$$m_k(\vec{0}) - m_k(\vec{p}_k) \geq c_1 \|\vec{g}_k\| \min\left(\Delta_k, rac{\vec{g}_k}{\|B_k\|}
ight)$$

and $\vec{p}_k \leq \gamma \Delta_k$ for some $c_1 \in (0,1]$ and $\gamma \geq 1$. Then

$$\lim_{k\to\infty}\inf\vec{g}_k=0.$$

Solving the model problem m_k

$$\min_{\vec{p}} m_k(\vec{p}) = f_k + \vec{g}_k^T \vec{p} + \frac{1}{2} \vec{p}^T B_k \vec{p}.$$

$$\text{s.t.} ||\vec{p}|| \le \Delta$$

- If $||B_k^{-1}\vec{g}||$ and B_k is positive definite, $\vec{p} = -B_k^{-1}g$.
- ullet Otherwise, the direction varies for different Δ .

Optimal conditions

• $\vec{p}*$ is the optimal solution if and only if it satisfies

$$(B_k + \lambda I)\vec{p}* = -\vec{g}$$

$$\lambda(\Delta - \|\vec{p}*\|) = 0$$

where $B_k + \lambda I$ is positive definite.

- $\lambda \ge 0$ is called the Largrangian modifier (chap 12).
- Assume $||B^{-1}\vec{g}|| \ge \Delta$ for $\lambda \ge 0$. Define

$$\phi(\lambda) = \| - (B + \lambda I)^{-1} \vec{g} \| - \Delta$$

and solve $\phi(\lambda) = 0$.

This is a univariable nonlinear equation. (chap 11)

Example

$$min_{x,y}f(x,y) = x^4 + 2x^3 + 24x^2 + y^4 + 12y^2$$
 s.t. $\Delta = \sqrt{x^2 + y^2} \le 1$

At (2,1),
$$f(2,1) = 141$$
, $\nabla f(2,1) = \begin{bmatrix} 152 \\ 28 \end{bmatrix}$, $\nabla^2 f(2,1) = \begin{bmatrix} 120 & 0 \\ 0 & 36 \end{bmatrix}$

The quadratic model at (2,1) is

$$m(x,y) = 60(2-x)^2 + 18(1-y)^2 + 152(2-x) + 28(1-y) + 141$$

The Newton's direction is $\vec{p}^N = -(\nabla^2 f)^{-1} \nabla f = \begin{bmatrix} -1.22 \\ -0.77 \end{bmatrix}, \|\vec{p}^N\| > \Delta$ Find λ such that $(B_k + \lambda I)\vec{p} = -\vec{g}$ and $\lambda(\Delta - \|\vec{p}\|) = 0$.

$$B + \lambda I = \begin{bmatrix} 120 + \lambda & 0 \\ 0 & 26 + \lambda \end{bmatrix}, \vec{p} = -(B + \lambda I)^{-1}\vec{g} = \begin{bmatrix} -152/(120 + \lambda) \\ -28/(26 + \lambda) \end{bmatrix}$$

Let
$$\| \vec{p} \| = \Delta = 1$$
. We can solve $\lambda^* = 42.655$ and $\vec{p}* = \begin{bmatrix} -0.93 \\ -0.36 \end{bmatrix}$

(UNIT 3)

Example: continue

Approximate solutions and scaling

- The problem $\phi(\lambda) = \|-(B+\lambda I)^{-1}\vec{g}\| \Delta = 0$ is difficult to solve. Approximate methods are used instead
 - Cauchy point
 - The dogleg method
 - Two-dimensional subspace minimization
- Poor scaled problems are sensitive to certain directions. The solution is to make the trust region elliptical (scaling).

$$\min_{\vec{p}} m_k(\vec{p}) = f_k + \vec{g}_k^T \vec{p} + \frac{1}{2} \vec{p}^T B_k \vec{p}.$$

$$\text{s.t.} ||D\vec{p}|| < \Delta$$

where D is a diagonal matrix.

Cauchy point

- The steepest descent direction (gradient + line search)
- The solution is

$$ec{p}_k = - au_k \Delta rac{ec{g}_k}{\|ec{g}_k\|} ext{(Cauchy point)}$$

where

$$\tau_k = \begin{cases} 1 & \vec{g}_k^T B_k \vec{g}_k \leq 0 \\ \min(\|\vec{g}_k\|^3/(\Delta \vec{g}_k^T B_k \vec{g}_k), 1) & \text{otherwise} \end{cases}$$

- Pros and Cons
 - Slow convergence
 - Easy to compute
 - Use as a reference direction

Dogleg method

- Use the combination of Cauchy point and Newton's direction to approximate the optimal trajectory. (Require B_k be positive definite.)
- Find τ such that $\|\vec{p}(\tau)\|^2 = \Delta^2$

$$ec{p}(au) = egin{cases} au ec{p}^U & 0 \leq au \leq 1 \ ec{p}^U + (au - 1)(ec{p}^B - ec{p}^U) & ext{otherwise} \end{cases}$$

where

- $\vec{p}^U = -rac{ec{g}_k^T ec{g}_k}{ec{g}_k^T B_k ec{g}_k} ec{g}_k$ is Cauchy point.
- $\vec{p}^B = -B_k^{-1} \vec{g}_k$ is Newton's direction.
- If B_k is positive definite, $\|\vec{p}(\tau)\|$ is an increasing function and $m(\vec{p}(\tau))$ is a decreasing function.

Dogleg method: example

Consider
$$f(x) = \frac{1}{2}\vec{x}^T \begin{bmatrix} 1/4 & 0 \\ 0 & 1 \end{bmatrix} \vec{x} - \begin{bmatrix} 1 \\ 1 \end{bmatrix}^T \vec{x}$$
. Let $x_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.
$$\vec{p}^U = \begin{bmatrix} 1.6 \\ 1.6 \end{bmatrix}, \vec{p}^B = \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \text{ and } \vec{p}^B - \vec{p}^U = \begin{bmatrix} 2.4 \\ -0.6 \end{bmatrix}$$

Δ	λ	$\min f(x)$	au	f(p(au))	
1	.9212	-1.1478	0.625	-1.1017	
2	.2912	-1.8935	1.064	-1.7116	
3	.0998	-2.3331	1.551	-2.3193	

Two-dimensional subspace minimization

• Use the linear combination of \vec{g} and $B^{-1}\vec{g}$.

$$\min_{\vec{p}} m_k(\vec{p}) = f_k + \vec{g}_k^T \vec{p} + \frac{1}{2} \vec{p}^T B_k \vec{p}.$$

s.t.
$$\|\vec{p}\| \leq \Delta$$
 and $\vec{p} \in \operatorname{span}(\vec{g}, B^{-1}\vec{g})$

- Matrix B_k can be indefinite. In that case,
 - Find α so that $B_k + \alpha I$ is positive definite
 - If $\|(B_k + \alpha I)^{-1}\vec{g}_k\| \leq \Delta$, let $\vec{p} = (B_k + \alpha I)^{-1}\vec{g}_k + \vec{v}$ where \vec{v} satisfies $\vec{v}^T(B_k + \alpha I)^{-1}\vec{g}_k \leq 0$
 - Otherwise, let $\vec{p} \in \operatorname{span}(\vec{g}, (B + \alpha I)^{-1}\vec{g})$