

Digital Preoperative Planning for Long-Bone Fractures

Esmitt Ramírez
Ernesto Coto

esmitt.ramirez@ciens.ucv.ve
ernesto.coto@ciens.ucv.ve

Universidad Central de Venezuela

Introduction

- Nowadays, digital images are a fundamental base to medical diagnosis
- CAD (Computer Aided Diagnosis) systems provide support in preoperative surgery planning
- CAOS Computer Aided Orthopedic Surgery

Preoperative Planning

- It helps estimating the final result of the surgery
- It consists of a trace of the fracture, the steps to follow during surgery and the implant to be used
- Often the tracing is done manually in paper

Preoperative Planning

Pre-Op Plan

- 1. Supine/Arm table / Towniquet No Exsanguination
- 2. "Henry's" (Anterior) Approach to Radius
- 3. Expose by O stripping "Specials: Dental pick
- 4. Reduce → Interprogrentary screw
- 5. Neutralization plate 7 hole LCDC plate (leave central hole open)
- 6. Ulnar approach to ulna: ECWFCU interval
- 7. Reduce Make sure no comminution on interosseous membrane!
- 8. Compression Plate

Screw #1 - Hole 6 (proximal) in neutral

Screw #2 - Hole 2 (distal) in compression

Fill holes 1/3/5/7 neutral

- 9. / Flouro + bull ROM
- 10. Close subcut d skin (Drain if needed)
- 11. No splint

CAOS system

- Manual procedure (pen-paper) consumes long time
- Manual procedure is error-prone
- Instead, CAOS systems are used in many healthcare centers
- CAOS systems make digital planning possible

Then, our proposal is
Eliminate the pen-paper method
Build a low-cost CAOS solution
Special hardware must not be required

Proposed Scheme

Image Acquisition

Prerequisites

Controlled environment (lighting, distance to shoot)
Resolution of at least 800x600 pixels (0.5 megapixels)
Focus in the area of interest (i.e. the fracture)

Image Calibration

Distance between holes is configurable

Standard ISO 838 establishes this distance is 12±1 mm

Image Enhancement

- Necessary to obtain a better image contrast
- Manual window/level adjustment

Segmentation and Puzzling

- Segmentation: Extract from the image all bone segments separated by the fracture
- Puzzling: Place these bone segments in their anatomically correct positions using translations or rotations

In manual mode, the surgeon has full control over the segmentation

In semi-automatic mode, a Canny border detection algorithm is used to find the border of each bone segment

Segmentation and Puzzling

A fracture would produce many bone fragments

The measurement tool is very useful to calculate the length of the bone, the length of the implant, etc.

For a later reviewing, different annotations should be written

Not all segments fit exactly in their correct anatomical position, a very close approximation is enough for planning

Implant Placement

- When the puzzling process is completed, the surgeon decides whether to put an implant on the patient or not
- A library of implants is provided, including: plates, screws and pins
- MySql® is used to store information about implants
- Each implant is represented using a STL file which stores the 3D triangulated surface of the implant
- A complete library of

 AO² fractures is also available

Implant Deformation

- In some cases, surgeons might need to bend an implant
- The implant deformation process is useful to plan the bending operation over the implant during the surgery
- At the surgery room, the surgeon applies a deformation over the implant using a specialized groove plier
- Our system allows the digital deformation of the implant prior to the surgery

Tracing Paper and Report Generation

 Finally, the system can print out the tracing paper and a report that includes: annotations, measurements, fragments of bones, etc.

At this point, the preoperative planning is complete!

HOSPITAL CLINICO DE CARACAS
DEPARTAMENTO DE RADIOLOGIA
DR. CARLOS SANCHEZ

PACIENTE: LUIS PERRAZO EDAD: 45 PESO: 78 FECHA: 01/11/2009

Results and Conclusions

- We installed our system in a standard PC without specialized hardware at the Radiology Department of the HUC (University Hospital of Caracas) in Venezuela
- Two experts were instructed on how to use the system in a short time
- Without the system, the surgeons create a preoperative planning manually in 8 to 25 minutes approximately
- With the system the planning time varied from 2 to 5 minutes
- That represents a considerable reduction of the planning time and positive feedback about results of the system

Future works

- Implementing a better border detection algorithm, e.g. algorithms based on active contours or deformable models
- Extends our system to support others object of reference
- Take advantages of current technology to speed up the annotation process, e.g. using speech recognition tools, medical tablet PC's, etc.

PLANIFICACIÓN PREOPERATORIA

TRAUMATOLOGIA Y ORTOPEDIA VERSIÓN 1.0 - 2009

ESMITT RAMIREZ, CARLOS SANCHEZ

Realizar Planificación

Clasificación AO

Biblioteca de Implantes

Generar Reportes

Base de Datos

Configuración

Modificar

Salir

Questions

http://ccg.ciens.ucv.ve

{esmitt.ramirez | ernesto.coto}@ciens.ucv.ve