Análise Matemática II C

 $2022/23 \ (2^{\circ} \text{ semestre})$

Lista 6 - Extremos

1. Determine, caso existam, os extremos das seguintes funções:

(a)
$$f(x,y) = x^2 + y^2 + 6x - 4y + 13$$
;

(b)
$$f(x,y) = x^2 + xy^2 + y^4$$
;

(c)
$$f(x,y) = x^5y + xy^5 + xy$$
;

(d)
$$f(x,y) = e^{1+x^2-y^2}$$
:

(e)
$$f(x,y) = \log(x^2 + y^2 + 1)$$
;

(f)
$$f(x,y) = x \operatorname{sen} y$$
.

2. Calcule, caso existam, os extremos (relativos e absolutos) da função $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = x^2 + xy + y^2$, quando:

(a)
$$D = \mathbb{R}^2$$
;

(b)
$$D = \{(x, y) \in \mathbb{R}^2 : y \le x \land 0 \le x \le 1 \land y \ge 0\};$$

(c)
$$D$$
 é o conjunto dos pontos que satisfazem a equação $x^2 + y^2 = 1$.

3. Averigue a existência de pontos estacionários para a função f(x,y) e caso existam, indique a sua natureza. Justifique a resposta.

(a)
$$f(x,y) = x^3 + xy^2 - x$$
.

(b)
$$f(x,y) = \frac{x^4}{2} - x^2y + y^2 - 4y$$
.

4. Determine o mínimo da função h(x,y,z)=x+y+z condicionada ao elipsoide de \mathbb{R}^3 definido por

$$\frac{x^2}{4} + y^2 + z^2 = 1.$$

5. Determine a distância mínima da origem (0,0,0) à superfície de equação $z=\frac{1}{xy}.$

6. Determine o mínimo e o máximo (globais) da função f(x,y) em D:

(a)
$$f(x,y) = x^2 + y$$
, $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$;

- (b) $f(x,y) = x^2 + y^2 x y + 1$, $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$;
- (c) f(x,y) = xy(3-x-y), $D = \{(x,y) \in \mathbb{R}^2 : 0 \le x, 0 \le y, x+y \le 3\}$;
- (d) $f(x,y) = 2x^2 y + y^2 + 5$, $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$;
- (e) $f(x,y) = 9 2x^2 3y^2$, $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$;
- (f) $f(x,y) = 4x^2 + 10y^2$, $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$;
- (g) $f(x,y) = x^2 + y^2 4x + 5$, $D = \{(x,y) \in \mathbb{R}^2 : (x-1)^2 + y^2 \le 4\}$.