Phase limit set of linear spaces and discriminants

AMS Special Session on Non-Archimedean, Algebraic, Tropical Geometry and applications

Fall Central Section Meeting, San Antonio, 14 September 2024

Frank Sottile

Texas A&M University sottile@tamu.edu

Work with Mounir Nisse

Supported by NSF grant DMS-2201005

Amoebas and coamoebas

The amoeba $\mathcal{A}(X)$ of a very affine variety $X \subset (\mathbb{C}^{\times})^n$ is the set of lengths in X and its $coamoeba\ co\mathcal{A}(X)$ is its set of arguments.

Formally, $e^r\theta \mapsto (r,\theta)$ identifies \mathbb{C}^\times with $\mathbb{R} \times \mathbb{T}$, where $\mathbb{T} = S^1$ is the unit complex numbers. This induces maps $(\text{Log}, \text{Arg}) \colon (\mathbb{C}^\times)^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{T}^n$. Then $\mathcal{A}(X)$ is the projection of X to \mathbb{R}^n and $co\mathcal{A}(X)$ is its projection to \mathbb{T}^n .

Example: The amoeba and coamoeba of the line $\ell := \mathcal{V}(x+y+1) \subset (\mathbb{C}^{\times})^2$ are

Phase limit set

Tropical variety $\mathcal{T}(X)$ is the logarithmic limit set; the cone over limiting directions of $\mathcal{A}(X)$.

It encodes the nonempty initial schemes of X,

$$\mathcal{T}(X) = \{w \in \mathbb{R}^n \mid \operatorname{in}_w X \neq \emptyset\}.$$

It has a (non-unique) fan structure with initial schemes constant on (rel. interiors of) cones.

The phase limit set $\mathcal{P}^{\infty}(X)$ is the collection of accumulation points of sequences $\{\operatorname{Arg}(x_i) \mid i \in \mathbb{N}\}$ of arguments of unbounded sequences $\{x_i \mid i \in \mathbb{N}\} \subset X$.

We have $coA(X) \cup \mathcal{P}^{\infty}(X) = \overline{coA(X)}$.

Theorem. (Nisse-S.) For any fan structure on T(X),

$$\mathcal{P}^{\infty}(X) = \bigcup_{\rho \in \mathsf{ray}(\mathcal{T}(X))} \mathrm{Arg}(\mathrm{in}_{\rho} X) .$$

The line

Recall the line $\ell = \mathcal{V}(x+y+1)$, its tropical variety, and coamoeba:

The dashed lines are the phase limit set of ℓ . They are translates of the three subtori in the directions of rays of the tropical variety.

In fact, they are coamoebae of the initial schemes of ℓ .

The plane $\Pi := \mathcal{V}(x+y+z+1)$

The tropical variety $\mathcal{T}(\Pi)$ of the plane has four rays:

Each ray ρ has a corresponding subtorus $\mathbb{C}_{\rho}^{\times}$ which acts freely on the initial scheme $in_{\rho} \Pi$, with the quotient isomorphic to a line V(x+y+1).

A consequence is that $\mathcal{P}^{\infty}(\Pi)$ has four components, each a prism over the coamoeba of a line.

 $co\mathcal{A}(\operatorname{in}_{(-1,\,-1,\,-1)}(\Pi))$

Their union is the closure of the coamoeba $coA(\Pi)$ of the plane, covering a typical point twice. Note the striking polyhedral structure.

Hyperplane complements

A set $B \subset \mathbb{C}^d$ of linear forms gives a hyperplane arrangement $\mathcal{H}_B := \bigcup \{ \mathcal{V}(b) \mid b \in B \} \subset \mathbb{C}^d$,

and a map
$$\lambda_B \colon \mathbb{C}^d \to \mathbb{C}^B$$
 where $\mathbb{C}^d \ni v \mapsto (b(v) \mid b \in B)$.

Intersections of hyperplanes are *flats* of \mathcal{H}_B , inducing a matroid structure on the set B.

Example. The column vectors B of $\begin{pmatrix} 1 & 0 & 0 & 1 & -2 & 0 \\ 0 & 1 & 0 & 2 & -1 & -2 \\ 0 & 0 & 1 & 0 & -2 & 1 \end{pmatrix}$ defines a line arrangement in \mathbb{P}^2 :

The hyperplane complement $\mathcal{H}_B^c := \lambda_B(\mathbb{C}^d) \cap (\mathbb{C}^\times)^B \simeq \mathbb{C}^d \setminus \mathcal{H}_B$ is a very affine variety. We study its coamoeba and phase limit set.

Structure of $\mathcal{P}^{\infty}(\mathcal{H}^c)$

Using that $\mathcal{P}^{\infty}(\mathcal{H}^c)=$ accumulation points of arguments,

$$\underline{\mathsf{Theorem}}. \ \mathcal{P}^{\infty}(\mathcal{H}^c) \ = \ \bigcup_L \ \overline{\mathit{coA}(\mathcal{H}/L)^c} \times \mathit{coA}(\mathcal{H}|_L)^c,$$

the union over all flats L of \mathcal{H} .

We refine this. Given a flag \mathcal{L} : $L_1 \subset \cdots \subset L_k \subset \mathbb{C}^d$ of flats, set

$$\mathcal{H}(\mathcal{L})^{c} := (\mathcal{H}|_{L_{1}})^{c} \times \cdots \times ((\mathcal{H}/L_{i-1})|_{L_{i}})^{c} \times \cdots \times (\mathcal{H}/L_{k})^{c}.$$

$$\underline{\text{Corollary}}. \ \overline{coA(\mathcal{H}^c)} = \bigcup_{\mathcal{L} \text{ a flag of flats}} coA(\mathcal{H}(\mathcal{L})^c).$$

Flags of flats \longleftrightarrow cones in $\mathcal{T}(\mathcal{H}^c)$, with $\mathrm{in}_{\mathcal{L}}\,\mathcal{H}^c=\mathcal{H}(\mathcal{L})^c$, recovering the tropical decomposition of the phase limit set. We also relate this to the Bergman fan, which is a different fan structure on $\mathcal{T}(\mathcal{H}^c)$.

(Reduced) Discriminants

When $B\subset \mathbb{Z}^d$, Kapranov showed that the rational map

$$\pi_B : \mathbb{C}^d \ni z \longmapsto \prod_{b \in B} b(z)^b \in \mathbb{P}^{d-1}$$

has image the (reduced) discriminant $D_B \subset \mathbb{P}^{d-1}$.

This monomial map $(x_b \mid b \in B) \mapsto \prod x_b^b$ restricted to the hyperplane complement $\mathcal{H}_B^c \subset (\mathbb{C}^\times)^B$ has been used to study discriminants and their tropicalizations.

$$\underline{\mathsf{Fact}}. \ \ co\mathcal{A}(D_B) = \pi_B(co\mathcal{A}(\mathcal{H}_B^c), \ \mathsf{and} \ \mathcal{P}^\infty(D_B) = \mathcal{P}^\infty(co\mathcal{A}(\mathcal{H}_B^c).$$

Passare and I used this to (re)prove a strong structure theorem when d=2, which motivated this work with Nisse.

Nisse and I have many technical structural results about $\mathcal{P}^{\infty}(D_B)$.

With the conjecture: $coA(D_B) \subset \mathcal{P}^{\infty}(D_B)$, they imply $coA(D_B)$ has a recursive polyhedral structure, as we saw for the plane.

The plane $\Pi := \mathcal{V}(x+y+z+1)$ (reprised)

The plane $\Pi := \mathcal{V}(x+y+z+1)$ is a discriminant. Its tropical variety $\mathcal{T}(\Pi)$ has four rays:

The initial scheme $in_{\rho} \Pi$ of a ray has a \mathbb{C}_{q}^{\times} -action with quotient a line $\mathcal{V}(r+s+1)$.

Consequently, $\mathcal{P}^{\infty}(\Pi)$ has four components, each a prism over the coamoeba of a line.

 $coA(in_{(-1,-1,-1)}(\Pi))$

Their union is the closure of the coamoeba $coA(\Pi)$ of the plane, covering a typical point twice.

