On operational properties of quantitative extensions of λ -calculus

Michele ALBERTI

Aix-Marseille Université Institut de Mathématiques de Marseille

Università di Bologna Dipartimento di Informatica

Marseille - December 5th, 2014

Semantics

• Reasoning about program behaviours and properties,

Operational Semantics

- Reasoning about program behaviours and properties,
- Abstract descriptions of program executions,

Quantitative Operational Semantics

- Reasoning about program behaviours and properties,
- Abstract descriptions of program executions,
- Provide/Handle fine-grained information about computation.

Some Motivations

New computational models with quantitative aspects,

Room for fundamental, operationally based investigations.

- Most of research focus is on:
 - Denotational semantics of programming languages,
 - Programming constructs and applications.

Non-deterministic computation:

Non-deterministic computation:

Qualitative is about what.

Quantitative semantics as a refinement of qualitative one.

Probabilistic computation:

Quantitative semantics as a refinement of qualitative one.

Probabilistic computation:

Quantitative is about how {much,many}.

Contributions: Algebraic λ -calculus

- Λ_{Σ} :untyped Λ with finite R-valued linear combinations,
- Purpose:
 - Framework for {quantum, probabilistic, etc. } operational theory.

Contributions: Algebraic λ -calculus

- Λ_{Σ} :untyped Λ with finite R-valued linear combinations,
- Purpose:
 - Framework for {quantum, probabilistic, etc. } operational theory.
- No normal forms in presence of $-1 \in R$
 - No irreducible terms,
 - Every term reduces to every other term (collapse of \equiv).

Contributions: Algebraic λ -calculus

- Λ_{Σ} :untyped Λ with finite R-valued linear combinations,
- Purpose:
 - Framework for {quantum, probabilistic, etc. } operational theory.
- No normal forms in presence of $-1 \in R$
 - No irreducible terms,
 - Every term reduces to every other term (collapse of \equiv).

Contributions:

- Normalisation scheme for the whole (untyped) Λ_{Σ} (previously, Vaux for a simply typed setting)
 - First notion of normal form for Λ_Σ,

 - Reduction relation characterising these normal forms.
- Factorisation theorem.

Contributions: Probabilistic λ -calculus

- Λ_{\oplus} : untyped Λ with probabilistic choice operator,
- Purpose:
 - Program equality in H-O probabilistic functional languages.

Contributions: Probabilistic λ -calculus

- Λ_{\oplus} : untyped Λ with probabilistic choice operator,
- Purpose:
 - Program equality in H-O probabilistic functional languages.
- Bisimulation for proving observational equivalence
 - Bisimilarity need to be a congruence relation,
 - Sound w.r.t observational equivalence.

Contributions: Probabilistic λ -calculus

- Λ_{\oplus} : untyped Λ with probabilistic choice operator,
- Purpose:
 - Program equality in H-O probabilistic functional languages.
- Bisimulation for proving observational equivalence
 - Bisimilarity need to be a congruence relation,
 - Sound w.r.t observational equivalence.

Contributions:

- Probabilistic applicative bisimulation for Λ_⊕,
- Proof of congruence for probabilistic applicative bisimilarity
 - Along the lines of Howe's method,
 - Non-trivial "disentangling" properties for sets of real numbers.
- Full abstraction on pure λ -terms.

Part I

Normal forms for the algebraic λ -calculus

Definition

$$M, N ::= x \mid \lambda x.M \mid (M) N \mid \sum_{i=1}^{n} a_i M_i$$

subject to (algebraic) linearity:

- 1. $\lambda x. \left(\sum_{i=1}^{n} a_i M_i\right) = \sum_{i=1}^{n} a_i \lambda x. M_i$
- 2. $\left(\sum_{i=1}^{n} a_{i} M_{i}\right) N = \sum_{i=1}^{n} a_{i} (M_{i}) N$

Definition (Λ_{Σ})

```
{Simple terms: \Delta_R} s, t := x \mid \lambda x.s \mid (s) T
```

{Terms:
$$R\langle \Delta_R \rangle$$
} $S, T ::= \sum_{i=1}^n a_i s_i$

where $a_i \in R$ and R a semiring.

[Vau09]

Definition (Λ_{Σ})

```
{Simple terms: \Delta_R} s, t := x \mid \lambda x.s \mid (s) T
```

{Terms:
$$R\langle \Delta_R \rangle$$
} $S, T ::= \sum_{i=1}^n a_i s_i$

where $a_i \in R$ and R a semiring.

β -reduction $(\widetilde{\rightarrow})$:

- revised β -rule: $(\lambda x.s) T \rightarrow s[T/x]$,
- extended to linear combinations:

$$au + V \xrightarrow{\sim} aU' + V$$
 as soon as $a \neq 0$ and $u \rightarrow U'$.

Definition (Λ_{Σ})

```
{Simple terms: \Delta_R} s, t := x \mid \lambda x.s \mid (s) T
```

{Terms:
$$R\langle \Delta_R \rangle$$
} $S, T ::= \sum_{i=1}^n a_i s_i$

where $a_i \in R$ and R a semiring.

β -reduction $(\widetilde{\rightarrow})$:

- revised β -rule: $(\lambda x.s) T \rightarrow s[T/x]$,
- extended to linear combinations:

$$au + V \xrightarrow{\sim} aU' + V$$
 as soon as $a \neq 0$ and $u \rightarrow U'$.

Theorem ([Vau09])

Reduction $\widetilde{\rightarrow}$ enjoys confluence.

Factorisation in Pure λ -calculus

Head β -reduction as the essential part of a computation.

Theorem ([Tak95])

Any reduction $s \to^* t$ can be reorganised so that $s \to^*_h \to^*_{\neg h} t$.

Takahashi's proof: $decompose \Rightarrow and then swap reductions$.

Factorisation in Pure λ -calculus

Head β -reduction as the essential part of a computation.

Theorem ([Tak95])

Any reduction $s \to^* t$ can be reorganised so that $s \to^*_h \to^*_{\neg h} t$.

Takahashi's proof: decompose ⇒ and then swap reductions.

Theorem ([Bar84])

- Leftmost Reduction (hence, Head normalisability),
- Standardisation.

Factorisation in Λ_{Σ}

 $\widetilde{\to_h}$ does not commute with $\widetilde{\to_{\neg h}}.$

Factorisation in Λ_{Σ}

$$\widetilde{\rightarrow}_h$$
 does not commute with $\widetilde{\rightarrow}_{\neg h}$.

Function/Argument decomposition

$$\widetilde{\rightarrow} = \widetilde{\rightarrow_{\mathbf{f}}} \cup \widetilde{\rightarrow_{\mathbf{a}}}$$

- $\widetilde{\rightarrow}_a$ argument reduction: $\widetilde{\rightarrow}$ in argument position,
- $\widetilde{\rightarrow}_f$ function reduction: $\widetilde{\rightarrow}$ in function position.

Factorisation in Λ_{Σ}

 $\widetilde{\rightarrow}_h$ does not commute with $\widetilde{\rightarrow}_{\neg h}$.

Function/Argument decomposition

$$\widetilde{\rightarrow} = \widetilde{\rightarrow_{\mathbf{f}}} \cup \widetilde{\rightarrow_{\mathbf{a}}}$$

- $\widetilde{\rightarrow}_a$ argument reduction: $\widetilde{\rightarrow}$ in argument position,
- $\widetilde{\rightarrow_{\mathtt{f}}}$ function reduction: $\widetilde{\rightarrow}$ in function position.

Theorem

Any reduction $S \xrightarrow{\sim}^* T$ can be reorganised so that $S \xrightarrow{\sim}_{\mathtt{f}}^* \xrightarrow{\sim}_{\mathtt{a}}^* T$.

Proof. Takahashi's with some technical adaptations.

Head Normalisability

Simple terms exhibit the structure of pure λ -terms.

Definition (Head normal form)

Let HNF_R the set of simple head normal forms:

$$\lambda x_1 \dots \lambda x_m \cdot ((y) T_1) \dots) T_n$$

with $m, n \geq 0$ and $T_1, \ldots, T_n \in \mathbb{R}\langle \Delta_{\mathbb{R}} \rangle$.

Hence, $R\langle HNF_R \rangle$ is the set of head normal forms.

Head Normalisability

Simple terms exhibit the structure of pure λ -terms.

Definition (Head normal form)

Let HNF_R the set of simple head normal forms:

$$\lambda x_1 \dots \lambda x_m \cdot ((y) T_1) \dots) T_n$$

with $m, n \geq 0$ and $T_1, \ldots, T_n \in \mathbb{R}\langle \Delta_{\mathbb{R}} \rangle$.

Hence, $R\langle HNF_R \rangle$ is the set of head normal forms.

Reduction $\widetilde{\rightarrow}_{\mathbf{f}}$ is head normalising:

Theorem

If $S \in P(\Delta_P)$ has head normal form, then $S \xrightarrow{\sim_f}^* HNF(S)$.

Normalisability (issues)

• Delicate rewriting property in Λ_{Σ} : it depends on the semiring R.

Normalisability (issues)

- Delicate rewriting property in Λ_{Σ} : it depends on the semiring R.
- If $-1 \in R$, so that 1 + (-1) = 0, reduction collapses.

Proposition [Vau09]

If R is not positive, i.e. $a, b \in R^{\bullet}$ such that a + b = 0, S reduces.

In general, $R\langle \Delta_R \rangle$ has no normal forms.

Normalisability (issues)

- Delicate rewriting property in Λ_{Σ} : it depends on the semiring R.
- If $-1 \in R$, so that 1 + (-1) = 0, reduction collapses.

Proposition [Vau09]

If R is not positive, i.e. $a, b \in R^{\bullet}$ such that a + b = 0, S reduces.

In general, $R\langle \Delta_R \rangle$ has no normal forms.

However:

Theorem ([Vau09])

 $\mathbb{N}\langle \Delta_\mathbb{N} \rangle$ is conservative with respect to pure $\lambda\text{-calculus}.$

 \Rightarrow (strongly) normalisable terms and normal forms.

The Semiring \mathbb{P}

Definition

 \mathbb{P} is $\mathbb{N}[\Xi]$: the semiring of polynomials over a set of indeterminates Ξ , with non-negative integer coefficients.

- \mathbb{P} exploitable as representation for every R (e.g. $\mathbb{N}, \mathbb{Q}, etc.$),
- $\mathbb{P}\langle\Delta_{\mathbb{P}}\rangle$ inherits the good normalisability properties of $\mathbb{N}\langle\Delta_{\mathbb{N}}\rangle$.

The Semiring \mathbb{P}

Definition

 \mathbb{P} is $\mathbb{N}[\Xi]$: the semiring of polynomials over a set of indeterminates Ξ , with non-negative integer coefficients.

- \mathbb{P} exploitable as representation for every R (e.g. $\mathbb{N}, \mathbb{Q}, etc.$),
- $\mathbb{P}\langle \Delta_{\mathbb{P}} \rangle$ inherits the good normalisability properties of $\mathbb{N}\langle \Delta_{\mathbb{N}} \rangle$.

Idea

Characterise normal forms in $R\langle \Delta_R \rangle$ in terms of those in $\mathbb{P}\langle \Delta_\mathbb{P} \rangle$.

 $\mathbb{P}\langle \Delta_{\mathbb{P}} \rangle$ as representation of any $R\langle \Delta_R \rangle.$

How can we relate the two?

• Term evaluation $[\![\cdot]\!]$: morphism from $\mathbb{P}\langle\Delta_{\mathbb{P}}\rangle$ to $\mathsf{R}\langle\Delta_{\mathsf{R}}\rangle$,

Sibling terms are notations for the same term •.

• Term evaluation $[\![\cdot]\!]:$ morphism from $\mathbb{P}\langle\Delta_{\mathbb{P}}\rangle$ to $R\langle\Delta_R\rangle,$

 $\mathbb{P}\langle \Delta_{\mathbb{P}} \rangle$ exhibits normal forms.

- Term evaluation $[\cdot]$: morphism from $\mathbb{P}\langle \Delta_{\mathbb{P}} \rangle$ to $R\langle \Delta_{R} \rangle$,
- Normal forms in $R(\Delta_R)$: terms admitting a redex-free writing.

NF(sibling terms) are notations for the same term: $\bullet = NF(\bullet)$.

Abstract Construction

- Term evaluation $[\![\cdot]\!]$: morphism from $\mathbb{P}\langle\Delta_{\mathbb{P}}\rangle$ to $R\langle\Delta_{R}\rangle$,
- Normal forms in $R(\Delta_R)$: terms admitting a redex-free writing.

NF of $\mathbb{P}\langle \Delta_{\mathbb{P}} \rangle$ induces NF of $\mathbb{R}\langle \Delta_{\mathbb{R}} \rangle$ via $[\cdot]$.

Abstract Construction

- Term evaluation $[\![\cdot]\!]$: morphism from $\mathbb{P}\langle\Delta_{\mathbb{P}}\rangle$ to $R\langle\Delta_{R}\rangle$,
- Normal forms in $R(\Delta_R)$: terms admitting a redex-free writing.

Strong normalisability:

Theorem

Let $S, T \in \mathbb{P}\langle \Delta_{\mathbb{P}} \rangle$ be SN. If $\llbracket S \rrbracket = \llbracket T \rrbracket$, then $\llbracket \mathsf{NF}(S) \rrbracket = \llbracket \mathsf{NF}(T) \rrbracket$.

Myddy Normalisability:

Theorem

Let $S, T \in \mathbb{P}\langle \Delta_{\mathbb{P}} \rangle$ be N. If $\llbracket S \rrbracket = \llbracket T \rrbracket$, then $\llbracket \mathsf{NF}(S) \rrbracket = \llbracket \mathsf{NF}(T) \rrbracket$.

Mormalisability:

Theorem

Let
$$S, T \in \mathbb{P}\langle \Delta_{\mathbb{P}} \rangle$$
 be N. If $\llbracket S \rrbracket = \llbracket T \rrbracket$, then $\llbracket \mathsf{NF}(S) \rrbracket = \llbracket \mathsf{NF}(T) \rrbracket$.

Unique normal form:

Definition

Let $T \in \mathbb{P}\langle \Delta_{\mathbb{P}} \rangle$ be N with $[\![T]\!] = S \in \mathbb{R}\langle \Delta_{\mathbb{R}} \rangle$: $NF(S) = [\![NF(T)]\!]$.

Theorem

Let
$$S, T \in \mathbb{P}\langle \Delta_{\mathbb{P}} \rangle$$
 be N. If $\llbracket S \rrbracket = \llbracket T \rrbracket$, then $\llbracket \mathsf{NF}(S) \rrbracket = \llbracket \mathsf{NF}(T) \rrbracket$.

Unique normal form:

Definition

Let
$$T \in \mathbb{P}\langle \Delta_{\mathbb{P}} \rangle$$
 be N with $[T] = S \in \mathbb{R}\langle \Delta_{\mathbb{R}} \rangle$: $NF(S) = [NF(T)]$.

Partial, but consistent, term equivalence:

Definition

$$S \stackrel{.}{=} T$$
 if there are normalisable terms $U, V \in \mathbb{P}\langle \Delta_{\mathbb{P}} \rangle$ such that $[\![U]\!] = S$, $[\![V]\!] = T$ and $[\![NF(U)]\!] = [\![NF(V)]\!]$.

Is it possible to directly compute these normal forms?

Is it possible to directly compute these normal forms?

- Parallel β -reduction \Rightarrow ,
- extended to canonical terms only:

$$\sum_{i=1}^n a_i s_i \widehat{\Rightarrow} \sum_{i=1}^n a_i T_i \text{ where, } s_i \neq s_j \text{ and } s_i \Rightarrow T_i.$$

Is it possible to directly compute these normal forms?

- Parallel β -reduction \Rightarrow ,
- extended to canonical terms only:

$$\sum_{i=1}^n a_i s_i \widehat{\Rightarrow} \sum_{i=1}^n a_i T_i \text{ where, } s_i \neq s_j \text{ and } s_i \Rightarrow T_i.$$

Theorem

For all normalisable $S \in \mathbb{P}\langle \Delta_{\mathbb{P}} \rangle$, $[S] \widehat{\Rightarrow}^* [NF(S)]$.

Is it possible to directly compute these normal forms?

- Parallel β -reduction \Rightarrow ,
- extended to canonical terms only:

$$\sum_{i=1}^n a_i s_i \widehat{\Rightarrow} \sum_{i=1}^n a_i T_i \text{ where, } s_i \neq s_j \text{ and } s_i \Rightarrow T_i.$$

Theorem

For all normalisable $S \in \mathbb{P}\langle \Delta_{\mathbb{P}} \rangle$, $\llbracket S \rrbracket \ \widehat{\Rightarrow}^* \ \llbracket \mathsf{NF}(S) \rrbracket$.

Non-parallel version characterises strong normalisability only,

Is it possible to directly compute these normal forms?

- Parallel β -reduction \Rightarrow ,
- extended to canonical terms only:

$$\sum_{i=1}^n a_i s_i \widehat{\Rightarrow} \sum_{i=1}^n a_i T_i \text{ where, } s_i \neq s_j \text{ and } s_i \Rightarrow T_i.$$

Theorem

For all normalisable $S \in \mathbb{P}\langle \Delta_{\mathbb{P}} \rangle$, $\llbracket S \rrbracket \ \widehat{\Rightarrow}^* \ \llbracket \mathsf{NF}(S) \rrbracket$.

- Non-parallel version characterises strong normalisability only,
- Relations on canonical terms exhibit bad rewriting properties.

Part II

Coinductive equivalences in a probabilistic scenario

Higher-Order Program Equivalence

How can we establish M equivalent to N?

Higher-Order Program Equivalence

How can we establish M equivalent to N?

Context equivalence

As soon as their observable behaviour is the same in every context:

if $Obs(C\langle M\rangle, C\langle N\rangle)$ then $M \simeq N$.

Higher-Order Program Equivalence

How can we establish M equivalent to N?

Context equivalence

As soon as their observable behaviour is the same in every context:

if
$$\mathrm{Obs}(C\langle M\rangle,C\langle N\rangle)$$
 then $M\simeq N$.

Observational equivalences:

- Subsume compositional reasonings (congruence),
- Involve universal quantification (hard),
- Amenable to coinductive formulations (bisimulation).

Definition

```
{Terms: \Lambda} M, N ::= x \mid \lambda x.M \mid (M) N
```

{Values: V} $V, W ::= \lambda x.M$ (closed)

Lazy operational semantics (Weak CbN):

$$\frac{1}{V \Downarrow V} \text{ (val)} \qquad \frac{M \Downarrow \lambda x. L \quad L[N/x] \Downarrow V}{(M) N \Downarrow V} \text{ (term)}$$

Definition

{Terms:
$$\Lambda$$
} $M, N ::= x \mid \lambda x.M \mid (M) N$

{Values: V} $V, W ::= \lambda x.M$ (closed)

Lazy operational semantics (Weak CbN):

$$\frac{1}{V \Downarrow V} \text{ (val)} \qquad \frac{M \Downarrow \lambda x. L \quad L[N/x] \Downarrow V}{(M) N \Downarrow V} \text{ (term)}$$

Labelled Transition System:

Terms Values
$$M \xrightarrow{eval} V$$

$$L[N/x] \leftarrow N \quad \lambda x.L$$

Applicative (Bi)Simulation

[Abr90]

When is R a simulation?

 $M \mathcal{R} N$

Applicative (Bi)Simulation

[Abr90]

Applicative (Bi)Simulation

[Abr90]

When is \mathcal{R} a simulation?

Bisimulation: \mathcal{R} and \mathcal{R}^{op} are simulations.

- Similarity \lesssim : union of all simulations,
- Bisimilarity \sim : union of all bisimulations.

[Abr90]

When is \mathcal{R} a simulation?

Bisimulation: \mathcal{R} and \mathcal{R}^{op} are simulations.

- Similarity ≤: union of all simulations,
- Bisimilarity ∼: union of all bisimulations.

Theorem (Applicative bisimilarity is context equivalence)

$$M \sim N \iff M \simeq N$$

Same language of terms of the non-deterministic λ -calculus [dP95].

Same language of terms of the non-deterministic λ -calculus [dP95].

Definition

Non-deterministic meaning of a term:

A set of values

$$M \mapsto \{V, W\},$$

• Potentially infinite (Θ and \oplus).

Same language of terms of the non-deterministic λ -calculus [dP95].

Definition

```
\{\text{Terms: } \Lambda_{\oplus}\} M, N ::= x \mid \lambda x.M \mid (M) N \mid M \oplus N
```

 $\{Values: V\Lambda_{\oplus}\} \quad V, W ::= \lambda x.M \quad (closed)$

Probabilistic meaning of a term:

• A value distribution $\mathscr{D}: \mathsf{V}\Lambda_{\oplus} \to \mathbb{R}_{[0,1]}$

$$M \mapsto \{V^p, W^q\},$$

• Bounded by 1: $\sum_{V \in V \Lambda_{\oplus}} \mathscr{D}(V) \leq 1$.

Same language of terms of the non-deterministic λ -calculus [dP95].

Definition

```
\{\mathsf{Terms:}\ \Lambda_{\oplus}\}\qquad M,N::=x\ |\ \lambda x.M\ |\ (M)\ N\ |\ M\oplus N
```

 ${\text{Values: V}} \Lambda_{\oplus} V, W ::= \lambda x. M$ (closed)

Probabilistic meaning of a term:

• A value distribution $\mathscr{D}: \mathsf{V}\Lambda_{\oplus} \to \mathbb{R}_{[0,1]}$

$$M \mapsto \{V^p, W^q\},$$

• Bounded by 1: $\sum_{V \in V \Lambda_{\oplus}} \mathscr{D}(V) \leq 1$.

Problem: no finitary operational semantics suffices.

DL and Zorzi's idea: limit of approximated value distributions.

DL and Zorzi's idea: limit of approximated value distributions.

Approximation CbN operational semantics [DLZ12]:

$$\frac{1}{M \Downarrow \emptyset} \text{ (be)} \quad \frac{1}{V \Downarrow \{V^1\}} \text{ (bv)} \quad \frac{M \Downarrow \mathscr{D} \quad N \Downarrow \mathscr{E}}{M \oplus N \Downarrow \frac{1}{2} \mathscr{D} + \frac{1}{2} \mathscr{E}} \text{ (bs)}$$

$$\frac{\textit{M} \Downarrow \mathscr{D} \quad \{\textit{P} [\textit{N}/\textit{x}] \Downarrow \mathscr{E}_{\textit{P},\textit{N}}\}_{\lambda x.\textit{P} \in \mathsf{Supp}(\mathscr{D})}}{(\textit{M}) \textit{N} \Downarrow \sum_{\lambda x.\textit{P} \in \mathsf{Supp}(\mathscr{D})} \mathscr{D}(\lambda x.\textit{P}) \cdot \mathscr{E}_{\textit{P},\textit{N}}} \text{ (ba)}$$

DL and Zorzi's idea: limit of approximated value distributions.

Approximation CbN operational semantics [DLZ12]:

$$\frac{1}{M \Downarrow \emptyset} \text{ (be)} \quad \frac{1}{V \Downarrow \{V^1\}} \text{ (bv)} \quad \frac{M \Downarrow \mathscr{D} \quad N \Downarrow \mathscr{E}}{M \oplus N \Downarrow \frac{1}{2} \mathscr{D} + \frac{1}{2} \mathscr{E}} \text{ (bs)}$$

$$\frac{\textit{M} \Downarrow \mathscr{D} \quad \{\textit{P} [\textit{N}/\textit{x}] \Downarrow \mathscr{E}_{\textit{P},\textit{N}}\}_{\lambda x.\textit{P} \in \mathsf{Supp}(\mathscr{D})}}{(\textit{M}) \textit{N} \Downarrow \sum_{\lambda x.\textit{P} \in \mathsf{Supp}(\mathscr{D})} \mathscr{D}(\lambda x.\textit{P}) \cdot \mathscr{E}_{\textit{P},\textit{N}}} \text{ (ba)}$$

Definition (Semantics)

CbN semantics of $M \in \Lambda_{\oplus}$: $\llbracket M \rrbracket = \sup_{M \downarrow \mathscr{D}} \mathscr{D}$.

Probabilistic (Bi)Simulation

[LS91]

• Probabilistic LTS: Labelled Markov Chains,

Probabilistic LTS: Labelled Markov Chains,

Definition

A probabilistic bisimulation is an equivalence relation $\mathcal R$ on $\mathcal S$ such that $s \ \mathcal R \ t$ implies: for every $\ell \in \mathcal L$ and $E \in \mathcal S/\mathcal R$,

$$\mathcal{P}(s,\ell,E) = \mathcal{P}(t,\ell,E).$$

Probabilistic simuation is required to be a preorder.

Probabilistic LTS: Labelled Markov Chains,

Definition

A probabilistic bisimulation is an equivalence relation $\mathcal R$ on $\mathcal S$ such that $s \ \mathcal R$ t implies: for every $\ell \in \mathcal L$ and $E \in \mathcal S/\mathcal R$,

$$\mathcal{P}(s,\ell,E) = \mathcal{P}(t,\ell,E).$$

Probabilistic simuation is required to be a preorder.

Similarity (\lesssim) and Bisimilarity (\sim) can always be formed.

Proposition (Bisimilarity is similarity equivalence)

$$\sim = \lesssim \cap \lesssim^{op}$$

Λ_⊕ as a Labelled Markov Chain

• States: terms and values,

Λ_⊕ as a Labelled Markov Chain

- States: terms and values,
- Transitions:
 - M evaluates to V with $[\![M]\!](V)$ probability,

Λ_⊕ as a Labelled Markov Chain

- States: terms and values,
- Transitions:
 - M evaluates to V with [M] (V) probability,
 - Values get a term in input.

Terms Values $L[N/x] \leftarrow N, 1 \qquad \lambda x. L$

 ${\cal R}$ bisimulation whenever equivalence relation and

• on values: for every L,

 $\lambda x.M \mathcal{R} \lambda x.N$

R bisimulation whenever equivalence relation and

• on values: for every L,

R bisimulation whenever equivalence relation and

on values: for every L,

• on terms: for every $E \in V\Lambda_{\oplus}/\mathcal{R}$,

$$M \mathcal{R} N$$

R bisimulation whenever equivalence relation and

• on values: for every *L*,

 \bullet on terms: for every $E\in V\Lambda_{\oplus}/\mathcal{R}$,

$$\stackrel{\text{eval}}{\overbrace{\hspace{1.5cm} M \hspace{1.5cm} \mathbb{R} \hspace{1.5cm} \mathbb{N}}} \mathbb{\llbracket} M \mathbb{\rrbracket}$$

R bisimulation whenever equivalence relation and

• on values: for every L,

ullet on terms: for every $E\in V\Lambda_\oplus/\mathcal{R}$,

R bisimulation whenever equivalence relation and

• on values: for every *L*,

 \bullet on terms: for every $E\in V\Lambda_{\oplus}/\mathcal{R}$,

R bisimulation whenever equivalence relation and

• on values: for every *L*,

ullet on terms: for every $E\in V\Lambda_\oplus/\mathcal{R}$,

R bisimulation whenever equivalence relation and

• on values: for every *L*,

 \bullet on terms: for every $E\in V\Lambda_{\oplus}/\mathcal{R}$,

Context Equivalence vs. Bisimilarity

Definition

Contexts $C\Lambda_{\oplus}$:

$$C ::= \langle \cdot \rangle \mid \lambda x.C \mid (C) M \mid (M) C \mid C \oplus M \mid M \oplus C$$

Context equivalence:
$$M \simeq N \iff \sum [C \langle M \rangle] = \sum [C \langle N \rangle].$$

Is \sim included in \sim ?

Context Equivalence vs. Bisimilarity

Definition

Contexts $C\Lambda_{\oplus}$:

$$C ::= \langle \cdot \rangle \mid \lambda x.C \mid (C)M \mid (M)C \mid C \oplus M \mid M \oplus C$$

Context equivalence: $M \simeq N \iff \sum [C \langle M \rangle] = \sum [C \langle N \rangle]$.

It is sufficient to show \sim congruence:

$$M \sim N \implies C \langle M \rangle \sim C \langle N \rangle$$

$$\implies \sum_{M \sim N} [C \langle M \rangle] = \sum_{M \sim N} [C \langle N \rangle]$$

Context Equivalence vs. Bisimilarity

Definition

Contexts $C\Lambda_{\oplus}$:

$$C ::= \langle \cdot \rangle \mid \lambda x.C \mid (C)M \mid (M)C \mid C \oplus M \mid M \oplus C$$

Context equivalence: $M \simeq N \iff \sum [C \langle M \rangle] = \sum [C \langle N \rangle]$.

It is sufficient to show \sim congruence:

$$M \sim N \implies C \langle M \rangle \sim C \langle N \rangle$$

$$\implies \sum_{M \sim N} [C \langle M \rangle] = \sum_{M \sim N} [C \langle N \rangle]$$

How to prove it? Direct proof fails due to application.

• Howe's lifting: \lesssim preorder $\Rightarrow \lesssim^H$ precongruence and $\lesssim \subseteq \lesssim^H$,

$$\lesssim \qquad \lesssim^{F}$$

• Howe's lifting: \lesssim preorder $\Rightarrow \lesssim^H$ precongruence and $\lesssim \subseteq \lesssim^H$,

- Howe's lifting: \lesssim preorder $\Rightarrow \lesssim^H$ precongruence and $\lesssim \subseteq \lesssim^H$,
- Key Lemma: \lesssim^H is a simulation $\Rightarrow \lesssim^H \subseteq \lesssim$ (to be proved!).

Key Lemma

Key Lemma (\lesssim^H is a simulation)

If $M \lesssim^H N$, then for every $X \subseteq \Lambda_{\oplus}(x)$ it holds that $\llbracket M \rrbracket (\lambda x. X) \leq \llbracket N \rrbracket (\lambda x. (\lesssim^H(X)))$.

Proof sketch.

- For all \mathscr{D} such that $M \Downarrow \mathscr{D}$, $\mathscr{D}(\lambda x.X) \leq \llbracket N \rrbracket (\lambda x.(\lesssim^H(X)))$,
- By induction on the (finite) derivation of $M \downarrow \mathscr{D}$:
 - Value and probabilistic choice cases are easy,
 - Application case is hard: it requires probability assignments can always be disentangled (via max-flow min-cut theorem).

Key Lemma

Key Lemma (\lesssim^H is a simulation)

If $M \lesssim^H N$, then for every $X \subseteq \Lambda_{\oplus}(x)$ it holds that $\llbracket M \rrbracket (\lambda x. X) \leq \llbracket N \rrbracket (\lambda x. (\lesssim^H(X)))$.

Proof sketch.

- For all \mathscr{D} such that $M \Downarrow \mathscr{D}$, $\mathscr{D}(\lambda x.X) \leq \llbracket N \rrbracket (\lambda x.(\lesssim^H(X)))$,
- By induction on the (finite) derivation of $M \Downarrow \mathscr{D}$:
 - Value and probabilistic choice cases are easy,
 - Application case is hard: it requires probability assignments can always be disentangled (via max-flow min-cut theorem).
- \sim congruence, since $\sim = \lesssim \cap \lesssim^{op}$ and \lesssim precongruence:
 - $\lesssim \subseteq \lesssim^H$ (Howe's lifting),
 - $\lesssim \supseteq \lesssim^H$ (Key Lemma).

On Full Abstraction

- \sim is sound w.r.t. \simeq .
- Is \sim also complete?

On Full Abstraction

- \sim is sound w.r.t. \simeq .
- Is \sim also complete? No, at least in CbN.

Counterexample. Consider:

$$M = \lambda x. \lambda y. (\Omega \oplus I)$$
 $N = \lambda x. (\lambda y. \Omega) \oplus (\lambda y. I)$

Since I $\not\sim \Omega$, then

$$\lambda y.\Omega \nsim \lambda y.I \nsim \lambda y.(\Omega \oplus I)$$

which implies $M \not\sim N$.

• Same counterexample to completeness in non-deterministic Λ ,

On Full Abstraction

- \sim is sound w.r.t. \simeq .
- Is \sim also complete? No, at least in CbN.

Counterexample. Consider:

$$M = \lambda x. \lambda y. (\Omega \oplus I)$$
 $N = \lambda x. (\lambda y. \Omega) \oplus (\lambda y. I)$

Since I $\not\sim \Omega$, then

$$\lambda y.\Omega \nsim \lambda y.I \nsim \lambda y.(\Omega \oplus I)$$

which implies $M \not\sim N$.

- Same counterexample to completeness in non-deterministic Λ ,
- Nonetheless, $M \simeq N$ (via CIU-equivalence).

What about \sim vs. \simeq on pure, deterministic, λ -terms?

What about \sim vs. \simeq on pure, deterministic, λ -terms?

- Lévy-Longo trees are the lazy variant of Böhm trees:
 - $LT(\lambda x.\Omega) = \lambda x.\bot$ whereas $LT(\Omega) = \bot$,

What about \sim vs. \simeq on pure, deterministic, λ -terms?

- Lévy-Longo trees are the lazy variant of Böhm trees:
 - $LT(\lambda x.\Omega) = \lambda x.\bot$ whereas $LT(\Omega) = \bot$,
 - Induce the finest equivalence in a lazy regime.

Definition (Lévy-Longo equality)

$$M =_{\mathsf{LL}} N \iff \mathsf{LT}(M) = \mathsf{LT}(N).$$

What about \sim vs. \simeq on pure, deterministic, λ -terms?

- Lévy-Longo trees are the lazy variant of Böhm trees:
 - $LT(\lambda x.\Omega) = \lambda x.\bot$ whereas $LT(\Omega) = \bot$,
 - Induce the finest equivalence in a lazy regime.

Definition (Lévy-Longo equality)

$$M =_{\mathsf{LL}} N \iff \mathsf{LT}(M) = \mathsf{LT}(N).$$

• $\simeq \subseteq =_{\mathsf{LL}}$ via a variation of Böhm-out technique,

What about \sim vs. \simeq on pure, deterministic, λ -terms?

- Lévy-Longo trees are the lazy variant of Böhm trees:
 - $LT(\lambda x.\Omega) = \lambda x.\bot$ whereas $LT(\Omega) = \bot$,
 - Induce the finest equivalence in a lazy regime.

Definition (Lévy-Longo equality)

$$M =_{\mathsf{LL}} \mathsf{N} \iff \mathsf{LT}(\mathsf{M}) = \mathsf{LT}(\mathsf{N}).$$

- $\simeq \subseteq =_{\mathsf{LL}}$ via a variation of Böhm-out technique,
- $=_{\mathsf{LL}} \subseteq \sim \mathsf{via}$ a notion of strict applicative bisimulation.

What about \sim vs. \simeq on pure, deterministic, λ -terms?

- Lévy-Longo trees are the lazy variant of Böhm trees:
 - $LT(\lambda x.\Omega) = \lambda x.\bot$ whereas $LT(\Omega) = \bot$,
 - Induce the finest equivalence in a lazy regime.

Definition (Lévy-Longo equality)

$$M =_{\mathsf{LL}} \mathsf{N} \iff \mathsf{LT}(\mathsf{M}) = \mathsf{LT}(\mathsf{N}).$$

- $\simeq \subseteq =_{\mathsf{LL}}$ via a variation of Böhm-out technique,
- $=_{\mathsf{LL}} \subseteq \sim \mathsf{via}$ a notion of strict applicative bisimulation.

Theorem

On pure λ -terms: \sim , \simeq and =LL all coincide.

Thanks!

 $(Q \& A^*)^*$ time.

Labelled Markov Chains

- Probabilistic labelled transition sytems,
- Discrete state space and time.

Definition

A Labelled Markov Chain is a triple $(S, \mathcal{L}, \mathcal{P})$ such that:

- S is a countable set of states;
- L is set of labels;
- \mathcal{P} is a transition probability matrix, i.e. a function $\mathcal{P}: \mathcal{S} \times \mathcal{L} \times \mathcal{S} \to \mathbb{R}_{[0,1]}$ such that for every $s \in \mathcal{S}$ and $\ell \in \mathcal{L}$:

$$\mathcal{P}(s,\ell,\mathcal{S}) = \sum_{t \in \mathcal{S}} \mathcal{P}(s,\ell,t) \leq 1.$$

- Construct \mathcal{R}^H from \mathcal{R} such that:
 - \mathcal{R}^H is a precongruence, whenever \mathcal{R} is a preorder,
 - $\mathcal{R} \subseteq \mathcal{R}^H$ and (via Key Lemma) $\mathcal{R} \supseteq \mathcal{R}^H$.

Howe's Technique

[Pit11]

- Construct \mathcal{R}^H from \mathcal{R} such that:
 - \mathcal{R}^H is a precongruence, whenever \mathcal{R} is a preorder,
 - $\mathcal{R} \subseteq \mathcal{R}^H$ and (via Key Lemma) $\mathcal{R} \supseteq \mathcal{R}^H$.
- Howe's lifting for Λ_⊕:

$$\frac{\overline{x} \vdash x \ \mathcal{R} \ M}{\overline{x} \vdash x \ \mathcal{R}^H \ M} \qquad \frac{\overline{x} \cup \{x\} \vdash M \ \mathcal{R}^H \ L}{\overline{x} \vdash \lambda x. M \ \mathcal{R}^H \ N} \qquad x \notin \overline{x}$$

$$\frac{\overline{x} \vdash M \mathcal{R}^H P \qquad \overline{x} \vdash N \mathcal{R}^H Q \qquad \overline{x} \vdash (P) Q \mathcal{R} L}{\overline{x} \vdash (M) N \mathcal{R}^H L}$$

$$\frac{\overline{x} \vdash M \mathcal{R}^H P \qquad \overline{x} \vdash N \mathcal{R}^H Q \qquad \overline{x} \vdash P \oplus Q \mathcal{R} L}{\overline{x} \vdash M \oplus N \mathcal{R}^H L}$$