Chapter Three

Preferences

Rationality in Economics

Behavioral Postulate:

A decisionmaker always chooses its most preferred alternative from its set of available alternatives.

So to model choice we must model decisionmakers' preferences.

Comparing two different consumption bundles, x and y:

- strict preference: x is more preferred than is y.
- -weak preference: x is as at least as preferred as is y.
- indifference: x is exactly as preferred as is y.

Strict preference, weak preference and indifference are all preference relations.

Particularly, they are ordinal relations; *i.e.* they state only the order in which bundles are preferred.

- ~ denotes indifference; x ~ y means x and y are equally preferred.

- ~ denotes indifference; x ~ y means x and y are equally preferred.
- \succeq denotes weak preference; $x \succeq y$ means x is preferred at least as much as is y.

 $x \succeq y$ and $y \succeq x$ imply $x \sim y$.

 $x \succeq y$ and $y \succeq x$ imply $x \sim y$.

 $x \succeq y$ and (not $y \succeq x$) imply $x \succeq y$.

Assumptions about Preference Relations

Completeness: For any two bundles x and y it is always possible to make the statement that either

or

Assumptions about Preference Relations

Reflexivity: Any bundle x is always at least as preferred as itself; *i.e.*

$$x \succeq x$$
.

Assumptions about Preference Relations

Transitivity: If

x is at least as preferred as y, and y is at least as preferred as z, then x is at least as preferred as z; *i.e.*

 $x \succeq y$ and $y \succeq z \longrightarrow x \succeq z$.

Take a reference bundle x'. The set of all bundles equally preferred to x' is the indifference curve containing x'; the set of all bundles y ~ x'. Since an indifference "curve" is not always a curve a better name might be an indifference "set".


```
WP(x), the set of
bundles weakly
 preferred to x.
    WP(x)
      includes
 I(x)
             I(x).
```

```
SP(x), the set of
\ bundles strictly
  preferred to x,
    does not
        include
  I(x)
```

Indifference Curves Cannot Intersect

Indifference Curves Cannot Intersect

When more of a commodity is always preferred, the commodity is a good. If every commodity is a good then indifference curves are negatively sloped.

Good 2

If less of a commodity is always preferred then the commodity is a bad.

Good 2

Extreme Cases of Indifference Curves; Perfect Substitutes

If a consumer always regards units of commodities 1 and 2 as equivalent, then the commodities are perfect substitutes and only the total amount of the two commodities in bundles determines their preference rank-order.

Extreme Cases of Indifference Curves; Perfect Substitutes

Extreme Cases of Indifference Curves; Perfect Complements

If a consumer always consumes commodities 1 and 2 in fixed proportion (e.g. one-to-one), then the commodities are perfect complements and only the number of pairs of units of the two commodities determines the preference rank-order of bundles.

Extreme Cases of Indifference Curves; Perfect Complements

Extreme Cases of Indifference Curves; Perfect Complements

Preferences Exhibiting Satiation

A bundle strictly preferred to any other is a satiation point or a bliss point.

What do indifference curves look like for preferences exhibiting satiation?

Indifference Curves Exhibiting Satiation

Indifference Curves Exhibiting Satiation

Indifference Curves Exhibiting Satiation

Indifference Curves for Discrete Commodities

A commodity is infinitely divisible if it can be acquired in any quantity; e.g. water or cheese.

A commodity is discrete if it comes in unit lumps of 1, 2, 3, ... and so on; e.g. aircraft, ships and refrigerators.

Indifference Curves for Discrete Commodities

Suppose commodity 2 is an infinitely divisible good (gasoline) while commodity 1 is a discrete good (aircraft). What do indifference "curves" look like?

Indifference Curves With a Discrete Good

Well-Behaved Preferences

A preference relation is "well-behaved" if it is

-monotonic and convex.

Monotonicity: More of any commodity is always preferred (*i.e.* no satiation and every commodity is a good).

Well-Behaved Preferences

Convexity: Mixtures of bundles are (at least weakly) preferred to the bundles themselves. E.g., the 50-50 mixture of the bundles x and y is z = (0.5)x + (0.5)y. z is at least as preferred as x or y.

Well-Behaved Preferences --Convexity.

Well-Behaved Preferences --Convexity.

Well-Behaved Preferences --Convexity.

Well-Behaved Preferences --- Weak Convexity.

Preferences are weakly convex if at least one mixture z is equally preferred to a component bundle.

Non-Convex Preferences

More Non-Convex Preferences

The mixture z is less preferred than x or y.

Slopes of Indifference Curves

The slope of an indifference curve is its marginal rate-of-substitution (MRS).

How can a MRS be calculated?

Marginal Rate of Substitution

Marginal Rate of Substitution

Marginal Rate of Substitution

Good 2

Good 2

Good 2

