本节内容

Cache-主存

映射方式

有待解决的问题

注意:每次被访问的主存块, 一定会被立即调入Cache

主存的地址共22位:

块号	块内地址
12位	10位

 $4M=2^{22}$, $1K=2^{10}$ 整个主存被分为 212 = 4096 块

- 如何区分 Cache 与 主存 的数据块对应关系?
- Cache 很小,主存很大。如果Cache满了怎么办?
- CPU修改了Cache中的数据副本,如何确保主存中数据母本的一致性? ——Cache写策略
- ——Cache和主存的映射方式
- ——替换算法

本节总览

如何区分Cache中存 放的是哪个主存块?

主存块可以放在 Cache的任意位置 每个主存块只能放到一个特定的位置: Cache块号=主存块号% Cache总块数 Cache块分为若干组,每个主存块可放 到特定分组中的任意一个位置 组号=主存块号%分组数

假设某个计算机的主存<u>地址空间</u>大小为256MB,按**字节**编 址,其数据Cache有8个Cache行,行长为64B。

即Cache块,与主存块的大小相等

256M=228 主存的地址共28位:

主存块号	块内地址
22位	6位

	Cache	
0		
1		
2		
2 3 4	20	
4		
5 6 7		
6		
7		

Cache: $8 \times 64B = 512B$

块号	主存	每个主存块的地址范围
0		0000000000000000000000000000000000
1	E	$00001000000 \sim 00001111111$
2		$000100000000 \sim 00010111111$
.dis	Figure 5	
2 ²² -3	· ·	$111010000000 \sim 111011111111$
$2^{22}-2$		$111100000000 \sim 111101111111$
2 ²² -1		$111110000000 \sim 111111111111$

假设某个计算机的主存地址空间大小为256MB,按**字节**编址,其数据Cache有8个Cache行,行长为64B。

即Cache块,与主存块的大小相等

主存块号	块内地址
22位	6位

	Cache	
0	64B	**************************************
1	64B	
2	64B	
3	64B	以"块"为交换单位
4	64B	父拱甲位
5	64B	
6	64B	
7	64B	

Cache:	$8 \times 64B = 512B$	

块号	主存	每个主存块的地址范围
0	64B	0000000000000000000000000000000000
1	64B	$00001000000 \sim 00001111111$
2	64B	$00010000000 \sim 00010111111$
	•	
$2^{22}-3$	64B	$11101000000 \sim 11101111111$
$2^{22}-2$	64B	$111100000000 \sim 111101111111$
2 ²² -1	64B	$11111000000 \sim 11111111111$

假设某个计算机的主存地址空间大小为256MB,按**字节**编址,其数据Cache有8个Cache行,行长为64B。

即Cache块,与主存块的大小相等

256M=228 主存的地址共28位:

主存块号	块内地址
22位	6位

有效位	标记(22位)	Cache
0	0	
0	1	
0	2	
0	3	(2)
0	4	
0	5	
0	6	
0	7	

Cache: $8 \times 64B = 512B$

块号	主存	每个主存块的地址范围
0		0000000000000000000000000000000000
1	(3	$00001000000 \sim 00001111111$
2		$00010000000 \sim 00010111111$
2 ²² -3		$11101000000 \sim 11101111111$
2 ²² -2		$111100000000 \sim 111101111111$
2 ²² -1		$111110000000 \sim 111111111111$

假设某个计算机的主存地址空间大小为256MB,按**字节**编址,其数据Cache有8个Cache行,行长为64B。

即Cache块,与主存块的大小相等

主存块号	块内地址
22位	6位

有效位	标记(22位)	Cache		块号_	主存	每个主存块的地址范围
0	0			0		000000000000 ·0000111111
0	1		,o`	1	(3	$00001000000 \sim 00001111111$
0	2			2	A FIRM	$000100000000 \sim 000101111111$
0	3	20				
0	4					
0	5			$2^{22}-3$		$11101000000 \sim 11101111111$
0	6			$2^{22}-2$		$111100000000 \sim 111101111111$
0	7			2^{22} -1		$111110000000 \sim 111111111111$
	Cache	e: 8×64B =	512B	主	存 : 256MB	

假设某个计算机的主存地址空间大小为256MB,按**字节**编址,其数据Cache有8个Cache行,行长为64B。

即Cache块,与主存块的大小相等

主存块号	块内地址
22位	6位

假设某个计算机的主存地址空间大小为256MB,按**字节**编址,其数据Cache有8个Cache行,行长为64B。

即Cache块,与主存块的大小相等

主存块号	块内地址
22位	6位

假设某个计算机的主存地址空间大小为256MB,按**字节**编址,其数据Cache有8个Cache行,行长为64B。

即Cache块,与主存块的大小相等

主存块号	块内地址
22位	6位

"全相联映射"如何访存?

假设某个计算机的主存地址空间大小为256MB,按**字节**编址,其数据Cache有8个Cache行,行长为64B。

Cache: $8 \times 64B = 512B$

即Cache块,与主存块的大小相等

256M=228 主存的地址共28位:

主存块号	块内地址
22位	6位

有效位	标记(22位)		Cache
0		0	
1	11101	1	
0		2	
1	00000	3	3) *
0		4	
0		5	
0		6	
0		7	

CPU 访问主存地址 1...1101001110:

- ①主存地址的前22位,对比Cache中所有块的标记;
- ②若标记匹配且有效位=1,则Cache命中,访问块内地址为001110的单元。
- ③若未命中或有效位=0,则正常访问主存

 块号
 主存
 每个主存块的地址范围

 0
 0...00000000000~ 0...0000111111

 1
 0...0001000000~ 0...0001111111

 2
 0...0010000000~ 0...0010111111

 :
 :

 2²²-3
 1...11010000000~ 1...110111111

 2²²-2
 1...1110000000~ 1...1110111111

 1...111100000000~ 1...11111111111

假设某个计算机的主存地址空间大小为256MB,按**字节**编 址, 其数据Cache有8个Cache行, 行长为64B。

直接映射,主存块在Cache中的<mark>位置=主存块号%Cache总块数</mark>

256M=228 主存的地址共28位:

主存块号	块内地址
22位	6位

		Cache	
	0		
	1		
	2		
	DAN	(2) * The state of	
	4		
	5		
	567		
	7		

Cache: $8 \times 64B = 512B$

块号	主存	
0		
1	(Č	
2		
2 ²² -3 2 ²² -2		
$2^{22}-2$		
2 ²² -1		

每个主存块的地址范围 $0...00010000000 \sim 0...00011111111$ $0...00100000000 \sim 0...00101111111$ $1...11010000000 \sim 1...1101111111$

 $1...11100000000 \sim 1...11101111111$ $1...11110000000 \sim 1...11111111111$

假设某个计算机的主存地址空间大小为256MB,按字节编址,其数据Cache有8个Cache行,行长为64B。

直接映射,主存块在Cache中的<mark>位置=主存块号%Cache总块数</mark>

主存块号	块内地址
22位	6位

有效位	标记(22位)	Cache		Ţ	央号.	主存	每个主存块的地址范围
1	00000 0		<u> </u>		0		0000000000000000000000000000000000
0	1				1	Œ	$00001000000 \sim 00001111111$
0	2				2		$00010000000 \sim 00010111111$
0	3	2)					
0	4				-:0	•	
0	5			2	22-3		$11101000000 \sim 11101111111$
0	6			2	22-2		$11110000000 \sim 11110111111$
0	7			2	2 ²² -1		$111110000000 \sim 111111111111$
	Cach	e: 8×64B = 1	512B		主	存: 256MB	

假设某个计算机的主存地址空间大小为256MB,按字节编址,其数据Cache有8个Cache行,行长为64B。

直接映射,主存块在Cache中的<mark>位置=主存块号%Cache总块数</mark>

主存块号	块内地址
22位	6位

假设某个计算机的主存地址空间大小为256MB,按**字节**编 址, 其数据Cache有8个Cache行, 行长为64B。

直接映射,主存块在Cache中的<mark>位置=主存块号%Cache总块数</mark>

256M=228 主存的地址共28位:

主存块号	块内地址
22位	6位

每个主存块的地址范围 $0...00010000000 \sim 0...00011111111$ $0...00100000000 \sim 0...0010111111$

 $1...11010000000 \sim 1...1101111111$ $1...11100000000 \sim 1...11101111111$ $1...11110000000 \sim 1...11111111111$

假设某个计算机的主存地址空间大小为256MB,按**字节**编 址, 其数据Cache有8个Cache行, 行长为64B。

直接映射,主存块在Cache中的<mark>位置=主存块号%Cache总块数</mark>

256M=228 主存的地址共28位:

假设某个计算机的主存地址空间大小为256MB,按**字节**编 址, 其数据Cache有8个Cache行, 行长为64B。

直接映射,主存块在Cache中的<mark>位置=主存块号%Cache总块数</mark>

256M=228 主存的地址共28位: 块内地址 主存块号 6位

22位

					13 S			
有效位	标记(19位))	Cache		主存块号%23,	块号	主存	每个主存块的地址范围
1	001	0		000	相当于留下最后 三位二进制数	0		00000000000000000001111111
0		1	45/11/2/27	001	二述二处的数	1	(3	$000010000000 \sim 000011111111$
0	看这里	2		010		2		$000100000000 \sim 000101111111$
0	看这里	3	- - 	011	若Cache总块数=2n			0 1000000000 0 1000111111
0		4		100	则 <mark>主存块号末尾n位</mark> 直接反映它在Cache	8		01000000000000000000000000000000000
0		5			中的位置	$2^{22}-3$		$111010000000 \sim 111011111111$
0		6		110		2 ²² -2		$111100000000 \sim 111101111111$
0		7			将主存块号的其余 位作为标记即可	2 ²² -1		$111110000000 \sim 111111111111$
	C	ache	e: 8×64B =		TI / 7 // 100 / 1	主	 存:256MB	

"直接映射"如何访存

假设某个计算机的主存地址空间大小为256MB,按字节编址,其数据Cache有8个Cache行,行长为64B。

Cache: $8 \times 64B = 512B$

直接映射,主存块在Cache中的<mark>位置=主存块号%Cache总块数</mark>

有效位	标记(19位)		Cache
1	001	0	000
0		1	001
0		2	010
0		3	011
0		4	100
0		5	101
0		6	110
0		7	111

CPU 访问主存地址
0...01000 001110:
①根据主存块号的后3位确定Cache行
②若主存块号的前19位与Cache标记匹配且有效位=1,则Cache命中,访问块内地址为001110的单元。
③若未命中或有效位=0,则正常访问主存

 块号
 主存

 0
 1

 2
 8

 2²²-3
 2²²-2

 2²²-1
 2²²-1

256M=228 主存的地址共28位:

主存	块号	块内地址
22	位	6位
19位	3位	6位块内
标记	行号	地址

Cache 共2³ 行

每个主存块的地址范围

 $0...0001000000 \sim 0...00011111111$

 $0...0010000000 \sim 0...0010111111$

 $1...1101000000 \sim 1...1101111111$

 $1...11100000000 \sim 1...11101111111$

 $1...1111000000 \sim 1...1111111111$

假设某个计算机的主存地址空间大小为256MB,按字节编址,其数据Cache有8个Cache行,行长为64B。

组相联映射,所属分组=主存块号%分组数

	Cache	
0		
1		,
2		
- (m)	(2) * · ·	
4		
5		
4 5 6 7		
7		

Cache: $8 \times 64B = 512B$

2路组相联映射——2块为一组,分四组

主存块号	块内地址
22位	6位

块号	主存	每个主存块的地址范围
0		0000000000000000000000000000000000
1	(3	$00001000000 \sim 00001111111$
2		$00010000000 \sim 00010111111$
<i>-</i> :0		
2 ²² -3		$111010000000 \sim 111011111111$
2 ²² -2		$111100000000 \sim 111101111111$
2 ²² -1		$111110000000 \sim 1111111111111$

假设某个计算机的主存地址空间大小为256MB,按字节编址,其数据Cache有8个Cache行,行长为64B。

组相联映射,所属分组=主存块号%分组数

	Cache	
0		第0组
1		为0纪
2		第1组
3		为土组
4		第2组
5		万分2组
6		经 247
7		第3组
		_

Cache: $8 \times 64B = 512B$

2路组相联映射——2块为一组,分四组

256M=228 主存的地址共28位:

主存块号	块内地址
22位	6位

块号	主存	每个主存块的地址范围
0		0000000000000000000000000000000000
1	(3	$00001000000 \sim 00001111111$
2		$00010000000 \sim 00010111111$
2 ²² -3		$111010000000 \sim 111011111111$
$2^{22}-2$		$111100000000 \sim 111101111111$
2 ²² -1		$111110000000 \sim 111111111111$

假设某个计算机的主存地址空间大小为256MB,按字节编址,其数据Cache有8个Cache行,行长为64B。

组相联映射, 所属分组=主存块号%分组数

256M=228 主存的地址共28位:

主存块号	块内地址
22位	6位

2路组相联映射——2块为一组,分四组

假设某个计算机的主存地址空间大小为256MB,按字节编址,其数据Cache有8个Cache行,行长为64B。

组相联映射, 所属分组=主存块号%分组数

256M=228 主存的地址共28位:

主存块号	块内地址
22位	6位

2路组相联映射——2块为一组,分四组

假设某个计算机的主存地址空间大小为256MB,按字节编址,其数据Cache有8个Cache行,行长为64B。

组相联映射, 所属分组=主存块号%分组数

256M=228 主存的地址共28位:

主存块号	块内地址
22位	6位

2路组相联映射——2块为一组,分四组

假设某个计算机的主存地址空间大小为256MB,按字节编址,其数据Cache有8个Cache行,行长为64B。

组相联映射, 所属分组=主存块号%分组数

256M=228 主存的地址共28位:

主存块号	块内地址
22位	6位

主存: 256MB

2路组相联映射——2块为一组,分四组

Cache: $8 \times 64B = 512B$

王道考研/CSKAOYAN.COM

假设某个计算机的主存地址空间大小为256MB,按**字节**编 址, 其数据Cache有8个Cache行, 行长为64B。

组相联映射,所属分组=主存块号%分组数

256M=2²⁸ 主存的地址共28位:

主存块号		块内地址
22位		6位
20 位 标记	2 位 组号	6位块内 地址

Cache 分为2²组

每个主存块的地址范围

0...0000000000000000001111111

 $0...00010000000 \sim 0...00011111111$

 $0...00100000000 \sim 0...00101111111$

 $1...11010000000 \sim 1...11011111111$

 $1...11100000000 \sim 1...11101111111$

 $1...11110000000 \sim 1...11111111111$

"组相联映射"如何访存

块号

2

 $2^{22}-3$

 $2^{22}-2$

 $2^{22}-1$

假设某个计算机的主存地址空间大小为256MB,按字节编址,其数据Cache有8个Cache行,行长为64B。

组相联映射,所属分组=主存块号%分组数

有效位	标记(20位)		Cache
0		0	00
0		1	00
1	111	2	01
1	000	3	01
0		4	10
0		5	10
0		6	11
0		7	11

CPU 访问主存地址

1...1101001110:

①根据主存块号的后2位确定所属分组号②若主存块号的前20位与分组内的某个标记匹配且有效位=1,则Cache命中,访问块内地址为001110的单元。

③若未命中或有效位 =0,则正常访问主存

主存: 256MB

主存

256M=228 主存的地址共28位:

主存块号		块内地址
22位		6位
20 位 标记	2 位 组号	6位块内 地址

Cache 分为2²组

每个主存块的地址范围

 $0...0001000000 \sim 0...00011111111$

 $0...0010000000 \sim 0...0010111111$

 $1...1101000000 \sim 1...1101111111$

 $1...11100000000 \sim 1...11101111111$

 $1...1111000000 \sim 1...1111111111$

2路组相联映射——2块为一组,分四组

Cache: $8 \times 64B = 512B$

知识回顾

结合每种地址映射方式的地址结构思考:给定一个主存地址,如何拆分地址,并查找Cache、访存?

△ 公众号: 王道在线

b站: 王道计算机教育

抖音:王道计算机考研