Facultatea de Automatica si Calculatoare, Universitatea Politehnica din Bucuresti

Examen Partial MN

/12

Student:		Grupa:	
Descriere curs:	MN, An I, Semestrul II	Rezultate Examen	
Titlu curs:	Metode Numerice	Subject	Punctaj
Profesor:	Florin POP, George POPESCU	1	/3
Durata examenului:	90 minute	2	/2
Tip Examen:	"Closed Book"	3	/3
Materiale Aditionale:	Nu! (!Fara telefoane mobile!)		/ 3
NT	,	4	/2
Numar pagini:		5	/0
		U	/2

Subjecte (Numarul α)

3	puncte	
.)	Duncte	

- 1. Fie $A_{n-1} \in R^{(n-1)\times(n-1)}$ nesingulara. Se cunoaste factorizarea LU: $A_{n-1} = L_{n-1}U_{n-1}$.
 - a) Determinati factorizarea LU a matricei nesingulare $A_n \in R^{n \times n}$ (se dau $b, c \in R^{n-1}$ si $a_{nn} \in R$ si se cer $l, u \in R^{n-1}$ si $u_{nn} \in R$) in care:

$$A_n = \begin{pmatrix} A_{n-1} & b \\ c^T & a_{nn} \end{pmatrix} = \begin{pmatrix} L_{n-1} & 0 \\ l^T & 1 \end{pmatrix} \cdot \begin{pmatrix} U_{n-1} & u \\ 0 & u_{nn} \end{pmatrix}$$

- b) Scrieti o functie MATLAB recursiva de factorizare LU, pornind de la factorizarea unui bloc LU, 2×2 .
- 2 puncte
- **2.** Se considera vectorii $u, v \in R^n$ ortonormati $(||u||_2 = 1, ||v||_2 = 1, u^T v = v^T u = 0)$. Se formeaza vectorul x = u + v. a) Sa se dea un exemplu numeric de doi vectori ortonormati. b) Sa se calculeze $||x||_2$. c) Se formeaza matricea $H = I_n xx^T$. Sa se calculeze Hu, Hv, $||H||_2$. d) Daca $A = uv^T$, calculati $B = H^{-n}AH^n$, n > 1.
- 3 puncte
- 3. Fie functia f(x) data prin x = a, 0, 1, b si $f(x) = y_a, y_0, y_1, y_b$. a) Calculati polinomul Newton de interpolare si scrieti expresia erorii. b) Ce devin diferentele divizate cand $a \to 0$ si $b \to 1$? c) Scrieti o functie MATLAB pentru calculul polinomului Newton intr-un punct a.
- 2 puncte
- **4.** Calculati functiile spline polinomiale de ordin 2, $s_0(x)$ si $s_1(x)$, unde $s_0''(1) = 2$, $s_1''(2) = -1$, pentru functia f(x) cunoscuta prin: $x = [1 \ 2 \ 4]$, $f = [3 \ 4 \ 6]$.
- 2 puncte
- 5. Cum se alege solutia aproximativa initiala pentru rezolvarea sistemelor de ecuatii lineare prin metodele iterative studiate? Explicati.