Ótica Conjunto 3:

- 1. Um dado material dielétrico tem uma ressonância na frequência ω_0 e uma taxa de amortecimento γ . Determine a gama das frequências a volta ω_0 para qual existe uma dispersão anómala. No caso dum gás diluído e ultrafrio de sódio a transição $32S_{1/2} \rightarrow 32P_{3/2}$ ocorre no $2\pi \cdot 508.848$ 716 2(13) THz e $\gamma = 2\pi \cdot 9.795(11)$ MHz.
- 2. Em 1837 o Augustin-Louis Cauchy desenvolveu uma equação que prevê o índice de refração de materiais transparentes por um determinado comprimento de onda no visível. A "equação de Cauchy" que é puramente empírica tem a forma n = A +B/λ², onde A e B são parâmetros de ajuste. Na página de Wikipédia:

https://en.wikipedia.org/wiki/Cauchy's_equation encontrará o seguinte tabela:

Material	Α	B (µm ²)
Fused silica	1.4580	0.00354
Borosilicate glass BK7	1.5046	0.00420
Hard crown glass K5	1.5220	0.00459
Barium crown glass BaK4	1.5690	0.00531
Barium flint glass BaF10	1.6700	0.00743
Dense flint glass SF10	1.7280	0.01342

Se eu pretendo fabricar um prisma que dispersa as cores de luz solar o máximo possível qual dos vidros devo escolher?

- 3. Nos semicondutores, é comum modificar o modelo de Drude para tomar em conta a interação dos eletrões na banda de condução com a rede cristalina dos iões (os núcleos mais o eletrões interiores). No caso do semicondutor GaAs a massa efetiva é pequena apenas 0.067 da massa nominal do eletrão livre.
 - (a) Considere um pedaço de GaAs dopada com 10¹⁸ eletrões/cm³. Determine, dentro do modelo de Drude qual é a condutividade assumindo que o tempo médio entre colisões é 120 fentossegundos.
 - (b) Um outro parâmetro, usada frequentemente na comunidade de matéria condensada é a "mobilidade" μ , que é a velocidade médio dum eletrão na banda de condução sobre a amplitude do campo aplicado, i.e. $\mu = v_{med} / E_{aplicado}$. Determine a mobilidade para o pedaço de GaAs em alínea (a). Segundo a NASA (ver https://parts.jpl.nasa.gov/mmic/3-I.PDF) a mobilidade dos eletrões em GaAs sem dopagem é 8500 cm²/Vs.
- 4. Assuma que a função dielétrica de alumínio é bem descrita pelo modelo que desenvolvemos nas aulas teórica para frequências elevadas. Através o gráfico de refletividade:

Aluminum

(H. Raether, Springer Tracts in Mod. Phys. Vol 38 (1965)

- (a) Estime a frequência de plasma de alumínio em Hz.
- (b) Com este valor estime a profundidade de penetração duma onda EM com um comprimento de onda igual é 500nm.
- (c) Para frequências $v > v_p$ qual é a natureza da dispersão (normal ou anómala)?

do Livro Ótica de Hecht:

- 4.1 Work your way through an argument using dimensional analysis to establish the λ⁻⁴ dependence of the percentage of light scattered in Rayleigh Scattering. Let E_{0v} and E_{0v} be the incident and scattered amplitudes, the latter at a distance r from the scatterer. Assume E_{0v} ∝ E_{0v} and E_{0v} ∝ 1/r. Furthermore, plausibly assume that the scattered amplitude is proportional to the volume, V, of the scatterer; within limits this is reasonable. Determine the units of the constant of proportionality.
- 4.2* A beam of white light passes through a volume of air. Compare the relative amount of Rayleigh scattering for the violet (400 nm), green (550 nm), and red (700 nm) components of this light.