

FIG. 1

#### FIG. 2-A

1/1 31/11 CAA AAC TIC CTA ATT TCT CAA TGT ATT ACT AAT TAA TAG AAA GTT TGT TTT ATT TTC ATG gln asn phe leu ile ser gln cys ile thr asn OCH AMB lys val cys phe ile phe met 91/31 TGG ATA AAT GAA TTA TTT TCT CTA TAC CGG CAT TTG CAT GCA ATT TTG TAT GAC TAA AAT trp ile asn glu leu phe ser leu tyr arg his leu his ala ile leu tyr asp OCH asn 121/41 151/51 GTA AAT AAT TAT TTG CAT GCA ATT ATG TGG GCA TGT CAT AGT TTT TCA AGA ATA ATA ATA val asn asn tyr leu his ala ile met trp ala cys his ser phe ser arg ile ile ile 181/61 211/71 AGA TGA CAT GAC AAG ATA TTC AAA AAA ATT TGA TGA TTA TAT GTT GAA GTT AAT TGA ACT arg OPA his asp lys ile phe lys lys ile OPA OPA leu tyr val glu val asn OPA thr 241/81 271/91 AAA AAG TAA TTA AGT AAA ATG GAC ATA GGA AAC AAC GTG GAA GAA CAT CAG GAA TAT ATT lys lys OCH leu ser lys met asp ile gly asn asn val glu glu his gln glu tyr ile 301/101 331/111 TCT GGA CCA TAC ATT GCA TTA ATT AAT GGC ACT AAT CAA CAA AGG GAA CCG AAT AAA AAG ser gly pro tyr ile ala leu ile asn gly thr asn gln gln arg glu pro asn lys lys 361/121 391/131 TTG AAA AAC ATA ATA ATT GCA ACG TTG ATT GCA ATC TTT ATA GTT TTG GTT GCT GTA leu lys asn ile ile ile ala thr leu ile ala ile phe ile val leu val val thr val 451/151 TCT TTG TAT ATT ACT AAT AAC ACC AGT GAC AAA ATT GAC GAT TTC GTA CCT GGT GAT TAT ser leu tyr ile thr asn asn thr ser asp lys ile asp asp phe val pro gly asp tyr 511/171 GTT GAT CCA GCA ACT AGG GAG TAT AGA AAG AGT TTT GAG GAG TTC AAA AAG AAA TAC CAC val asp pro ala thr arg glu tyr arg lys ser phe glu glu phe lys lys lys tyr his 541/181 571/191 AAA GTA TAT AGC TCT ATG GAG GAG GAA AAT CAA AGA TTT GAA ATT TAT AAG CAA AAT ATG lys val tyr ser ser met glu glu glu asn gln arg phe glu ile tyr lys gln asn met 601/201 631/211 AAC TIT ATT AAA ACA ACA AAT AGC CAA GGA TTC AGT TAT GTG TTA GAA ATG AAT GAA TTT ash phe ile lys thr thr ash ser qln qly phe ser tyr val leu qlu met ash qlu phe 661/221 691/231 GGT GAT TTG TCG AAA GAA GAG TTT ATG GCA AGA TTC ACA GGA TAT ATA AAA GAT TCC AAA gly asp leu ser lys glu glu phe met ala arg phe thr gly tyr ile lys asp ser lys 721/241 751/251 GAT GAT GAA AGG GTA TIT AAG TCA AGT AGA GTC TCA GCA AGC GAA TCA GAA GAG GAA TTT asp asp glu arg val phe lys ser ser arg val ser ala ser glu ser glu glu glu phe 781/261 811/271 GTT CCC CCA AAT TCT ATT AAT TGG GTG GAA GCT GGA TGC GTG AAC CCA ATA AGA AAT CAA val pro pro asn ser ile asn trp val glu ala gly cys val asn pro ile arg asn gln 841/281 871/291 AAG AAT TGT GGG TCA TGT TGG GCT TTC TCT GCT GTT GCA GCT TTG GAG GGA GCA ACG TGT lys asn cys gly ser cys trp ala phe ser ala val ala ala leu glu gly ala thr cys 931/311 GCT CAA ACA AAC CGA GGA TTA CCA AGC TTG AGT GAA CAG CAA TTT GTT GAT TGC AGT AAA ala gln thr asn arg gly leu pro ser leu ser glu gln gln phe val asp cys ser lys

### FIG. 2-B

| 961/321                     |           |          |          | 991/331     |          |           |                               |
|-----------------------------|-----------|----------|----------|-------------|----------|-----------|-------------------------------|
| CAA AAT GGC AAG             | TTT GGA   | TGT GAT  | GGA GGA  | ACA ATG GGA | TTG GCT  | TTT CAG   | TAT GCA ATT                   |
| gln asn gly asr             | n phe gly | cys asp  | gly gly  | thr met gly | leu ala  | phe gln   | tyr ala ile                   |
| 1021/341                    |           |          |          | 1051/351    |          |           |                               |
| AAG AAC AAA TAT             | TTA TGT   | ACT AAT  | GAT GAT  | TAC CCT TAC | TTT GCT  | GAG GAA   | AAA ACA TGT                   |
| lys asn lys tyr             | leu cys   | thr asn  | asp asp  | tyr pro tyr | phe ala  | glu glu   | lys thr cys                   |
| 1081/361                    |           |          |          | 1111/371    |          |           |                               |
| ATG GAT TCA TTT             | TGC GAG   | AAT TAT  | ATA GAG  | ATT CCT GTA | AAA GCC  | TAC AAA   | TAT GTA TTT                   |
| met asp ser phe             | e cys glu | asn tyr  | ile glu  | ile pro val | lys ala  | tyr lys   | tyr val phe                   |
| 1141/381                    |           |          |          | 1171/391    |          |           |                               |
| CCG AGA AAT ATT             |           |          |          |             |          |           |                               |
| pro arg asn ile             | e asn ala | leu lys  | thr ala  | leu ala lys | tyr gly  | pro ile   | ser val ala                   |
| 1201/401                    |           |          |          | 1231/411    |          |           |                               |
| ATT CAG GCC GAT             |           |          |          |             |          |           |                               |
| ile gln ala asp             | gln thr   | pro phe  | gln phe  |             | gly val  | phe asp   | ala pro cys                   |
| 1261/421                    |           |          |          | 1291/431    |          |           |                               |
| GGA ACC AAG GTT             |           |          |          |             |          |           |                               |
| gly thr lys val             | asn nis   | gly val  | val leu  |             | asp met  | asp glu   | asp thr asn                   |
| 1321/441                    |           | ACA AAT  | ACC TCC  | 1351/451    | TCC CCA  | CAC AAA   | 004 740 470                   |
| AAA GAA TAT TGG             |           |          |          |             |          |           |                               |
| lys glu tyr trp<br>1381/461 | i leu val | ary asn  | ser trp  |             | trp gry  | giu iys   | gly tyr 11e                   |
| AAA CTA GCT CTT             | CAT TOT   |          | AAC CCA  | 1411/471    | ΛΤΛ ΤΤΟ  | CTT CAC   | CCA CTC TAT                   |
| lys leu ala leu             |           |          |          |             |          |           |                               |
| 1441/481                    | 1112 261  | gly lys  | iys giy  | 1471/491    | ile leu  | vai giu   | pro var tyr                   |
| CCA GTG AAT AAT             | CAA TCA   | ΔΤΔ ΤΔΔ  | GCA TTT  | ,           | ACT AAG  | TAA TTC   | TAA TAT ATT                   |
| pro val ile asr             |           |          |          |             |          |           |                               |
| 1501/501                    | 9111 501  | 110 0011 | ara piic | 1531/511    | ciii iys | och phe   | och cyr ric                   |
| TCA GCA TTC TCA             | GAG ATA   | ATT TTA  | GTT CAA  |             | CTA TTC  | ΑΤΑ ΤΑΤ   | ATA AGC ATT                   |
| ser ala phe ser             |           |          |          |             |          |           |                               |
| 1561/521                    | J         |          |          | 1591/531    | rea pire | , ie ej i | 110 301 110                   |
| CCA TAC TTA ATT             | ATT TAT   | TGA TTT  | TAA TAA  | ,           | CTA AAG  | AAA GCA   | ATC AAG ATA                   |
| pro tyr leu ile             |           |          |          |             |          |           |                               |
| 1621/541                    | 3         | ,        |          | 1651/551    |          | J =       | - · <b>J</b> - · · · <b>O</b> |
| ATT TAT GGA CGT             | TCT ATT   | GTT CTT  | ACT TCA  |             | CTT      |           |                               |
| ile tyr gly arg             |           |          |          |             |          |           |                               |

## FIG. 3-A

| met<br>1 | asp        | ile | gly | asn<br>5    | asn  | val   | glu   | glu  | his<br>10  | gln | glu   | tyr   | ile  | ser<br>15  |
|----------|------------|-----|-----|-------------|------|-------|-------|------|------------|-----|-------|-------|------|------------|
| gly      | pro        | tyr | ile | ala<br>20   | leu  | ile   | asn   | gly  | thr<br>25  | asn | gln   | gln   | arg  | glu<br>30  |
| pro      | asn        | lys | lys | leu<br>35   | lys  | asn   | ile   | ile  | ile<br>40  | ala | thr   | leu   | ile  | ala<br>45  |
| ile      | phe        | ile | val | 50          |      |       |       |      | 55         |     |       |       |      | 60         |
|          | thr        |     |     | 65          |      |       | ·     |      | val<br>70  |     |       |       |      | val<br>75  |
|          | pro        |     |     | 80          |      |       |       |      | 85         |     |       |       |      | 1ys<br>90  |
|          | lys        |     |     | 95          |      |       |       |      | 100        |     |       |       |      | 105        |
|          | phe        |     |     | 110         |      |       |       |      | 115        |     |       |       |      | 120        |
|          | ser        |     |     | 125         |      |       |       |      | 130        |     |       |       |      | 135        |
| ·        | leu        |     |     | 140         | _    | ·     |       | ala  | 145        | •   |       |       | tyr  | 150        |
| _        | asp        |     |     | 155         |      |       |       |      | 160        | -   |       | ser   |      | val<br>165 |
|          | ala        |     |     | 170         |      |       |       |      | 175        | •   | ·     | asn   |      | ile<br>180 |
|          | trp        |     |     | 185         |      |       |       |      | 190        |     |       |       |      | lys<br>195 |
|          | cys        |     |     | 200         |      |       |       |      | 205        |     |       |       |      | glu<br>210 |
|          | ala        |     |     | 215         |      |       |       |      | 220<br>gln |     |       |       |      | 225        |
| •        | gln<br>asp | Ť   | ,   | 230         |      |       |       |      | 235        |     |       |       |      | 240        |
| -        | lys        |     |     | 245         |      |       |       |      | 250        |     |       |       |      | 255        |
|          | lys        | -   |     | 260         |      |       |       |      | 265        |     |       |       |      | 270        |
|          | val        |     |     | 275         |      |       |       |      | 280        |     |       |       |      | 285        |
|          | lys        |     |     | 290         |      |       |       |      | 295        |     |       |       |      | 300        |
|          | ala        |     |     | 305         |      |       |       |      | 310        |     |       |       |      | 315        |
|          | ala        |     |     | 320         |      |       |       |      | 325        |     |       |       |      | 330        |
| αsμ      | uid        | μισ | суз | $g \cdot y$ | CIII | ı y s | v a i | usii | 1113       | 913 | · u i | , u i | , cu | * U. I     |

### FIG. 3-B

|             | 335               | 340                 | 345          |
|-------------|-------------------|---------------------|--------------|
| glu tyr asp | met asp glu asp   | thr asn lys glu tyr | trp leu val  |
|             | 350               | 355                 | 360          |
| arg asn ser | r trp gly glu ala | trp gly glu lys gly | tyr ile lys  |
|             | 365               | 370                 | 375          |
| leu ala leu | u his ser gly lys | lys gly thr cys gly | ile leu val  |
|             | 380               | 385                 | 390          |
| glu pro val | l tyr pro val ile | asn gln ser ile     |              |
|             | 395               | 400 403             | SEQ ID NO: 4 |

# FIG. 4

| 60<br>AICLFVYMGL                                        | 130                                     | NKKNNSY<br>NSQGFSY                                                                         |                       | IRNQKNCGSC<br>PKDQGNCGSC | CGSC 270 | YRNTYPYEGV            | TNDDYPYFAE                       | LGDEYPY               | 340         | FDAPCGTKVD                                                                                                                           | FDGECNPELN | 410 | ENGYIRIKRG | EKGYIKLALH<br>FGGYIRIKRN |                      |     |                       |                         |              |
|---------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------|-----------------------|--------------------------|----------|-----------------------|----------------------------------|-----------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------|------------|-----|------------|--------------------------|----------------------|-----|-----------------------|-------------------------|--------------|
| 60<br>MAM IPSISKLLFV AICLFVYMGL                         |                                         | KDNLKYIDET<br>KQNMNFIKTT                                                                   |                       | NWVEAGCVNP<br>DYRSKFNFLP |          | QLVAQY.GIH YRNTYPYEGV | QYAIKNKYLC                       | LYMINN.GVC            |             | GPTAAKIDGV RQVQPINEGA LLISIANQ PVSVVLEAAG KDFQLIRGGI FVGPCGNKVD<br>NYIFIDVKAY KYVFDRNINA IKTALAKY.G PISVAIOADO TPFOFYKSGV FDAPCGIKVN | EDFVLYSGGV |     | KNSWGTGWG  | RNSWGEAWG                | RNSW                 |     |                       |                         |              |
|                                                         |                                         | YSQNDLTSTE RLIQLFESWM LKHNKIYKNI DEKIYRFEIF<br>PGDYVDPATR EYRKSFEEFK KKYHKVYSSM EEENQRFEIY | TELSYEEVLN DGDVNIPEYV | KSSRVSASES EEEFVPPNSI    |          | DCDRRSYG CNGGYPWSAL   | DCSKQNGNFG CDGGTMGLAF            | CDGGNPFYAF            |             | PVSVVLEAAG<br>PISVAIOADO                                                                                                             | PVTIAVGA.S |     |            | YWLV                     | YWLV                 |     |                       |                         |              |
| TOTAL TREE TOTAL TREE TREE TREE TREE TREE TREE TREE TRE | יייייייייייייייייייייייייייייייייייייי  | LKHNKIYKNI<br>KKYHKVYSSM                                                                   |                       | KSSRVSASES               |          | DCDRRSYG              | DCSKQNGNFG                       | DCSTENYG              |             | LLTSTANQ                                                                                                                             | LNYVG      |     |            | KYKENIKGDD               |                      |     | SEQ ID NO: 7          | A .ON UI O              |              |
|                                                         | (F. 13al 11)                            | RLIQLFESWM<br>EYRKSFEEFK                                                                   |                       | KDSKDDERVF               |          | GIIKIRTG.N LNEYSEQELL | LPSLSEQQFV                       | YLYVHTRHEM PISFSEQQMV | * OLIVACO O | KŲVŲP TNEGA<br>KYVEPRNINA                                                                                                            | DVKPNELIMA |     |            | HSUVINSH IK              | HOM PONCIN           | 433 | • • •                 | USI<br>SEO              |              |
|                                                         | ייייייייייייייייייייייייייייייייייייייי | YSQNDLTSTE<br>PGDYVDPATR                                                                   | <br>EFKEKYTGSI        | EFMARFTGYI               |          |                       | WAFSAVAALE GATCAQTNRG LPSLSEQQFV |                       | 1           | GPYAAKIDGV<br>NYTETPVKAY                                                                                                             |            |     |            | DEDTNKE                  |                      |     | TGNSYGVCGL YTSSFYPVKN | SGKKGICGI LVEPVYPVIN    |              |
| Papain                                                  | P.v., mature                            | SFGDFSI.VG<br>NTSDKIDDFV                                                                   | LNVFADMSND            | MNEFGDLSKE               |          | WAFSAVVTIE            | WAFSAVAALE                       | WAFAAIGNFE<br>WAF     |             | ŲKYC.KSKEK<br>FKTOMDSFOF                                                                                                             | EDFFCLNYRC |     | HAVAAVGYGP | HGVVLVGYDM DEDTNKE       | ייין אַרראַמּין מּלְ |     | TGNSYGVCGL            | SGKKG1CG1<br>KAGDDGECGV | * 20 10000EA |

7/9

FIG. 5





FIG. 6

FIG. 7A

- 1. AAAGGATCCT GC/TGGIA/TG/CITG C/TTGGGCITT
- 2. TTTGAATTCC CAIG/CA/TA/GTTIC/T T/GIAC/TIATCCA A/GTA
- 1. CCAGGTACCA TGGACATAGG AAAC
- 2. CCCTCTAGAT GCTTATATTG ATTG

FIG. 7B



