

DEPARTMENT OF MATHEMATICS

Course: NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS	TEST-II	Maximum marks: 50
Course code: 22MA21C	Second semester 2022-2023 Physics Cycle Branch: AI, BT, CD, CS, CY, IS, SPARK-C	Time: 10:00AM-11:30AM Date: 21-08-2023

Scheme and Solutions

1 1 2
2
3
$-\cos(x)$ 2
$(x) + \tan(x)$
instant coefficients by $D_1 = \frac{d}{dz}$
2, -2
2
$=\frac{e^z}{9}\left(z-\frac{2}{3}\right)$ $1+3+1$
1
1
1

3(b)	21k + 15	
3(0)	$21 6x - 5 \Rightarrow 6x - 15 = 21k \Rightarrow x = \frac{21k + 16}{6}$	1
	$x = 6 \pmod{21}, \qquad x = 13 \pmod{21}, \qquad x = 20 \pmod{21}$	3
	$3997 = 1 \times 2947 + 1050$	
4(a)	$2947 = 2 \times 1050 + 847$	
	$1050 = 1 \times 847 + 203$	
	$847 = 4 \times 203 + 35$	
	$203 = 5 \times 35 + 28$	
	$35 = 1 \times 28 + 7$	
	$28 = 4 \times 7 + 0$	
	gcd(2947,3997) = 7	
	Linear combination:	
	$7 = 1 \times 35 - 1 \times 28$	
	$7 = 1 \times 35 - 1 \times (203 - 5 \times 35)$	
	$7 = -1 \times 203 + 6 \times 35$	
	$7 = -1 \times 203 + 6 \times (847 - 4 \times 203)$	
	$7 = 6 \times 847 - 25 \times 203$	
	$7 = 6 \times 847 - 25 \times (1050 - 1 \times 847)$	
	$7 = -25 \times 1050 + 31 \times 847$	
	$7 = -25 \times 1050 + 31 \times (2947 - 2 \times 1050)$	
	$7 = 31 \times 2947 - 87 \times 1050$	
	$7 = 31 \times 2947 - 87 \times (3997 - 1 \times 2947)$	
	$7 = -87 \times 3997 + 118 \times 2947$	
	$7 = -87 \times 3997 + 118 \times (2947 + 0 \times 3997)$	
	$7 = 118 \times 2947 - 87 \times 3997$	3
	7 = 2947(118) + 3997(-87)	3
	x = 118, y = -87	
4(b)	gcd(87,100) = 1	
	By Euler's theorem, $87^{\phi(100)} \equiv 1 \pmod{100} \Rightarrow 87^{40} \equiv 1 \pmod{100}$	1
	$87^{440} \equiv 1 \ (mod100)$	1
	$87^3 \equiv 3 \ (mod100)$	
	$87^{33} \equiv 47 \pmod{100}$	2
	$87^{474} \equiv 1 \times 47 \times 87 \ (mod \ 100)$	
	$87^{474} \equiv 89 \ (mod \ 100)$	
5	$e = 11, \qquad n = 65, \qquad p = 5, \qquad q = 13$	1
	$\phi(65) = 48$	1
	$c_J = 11^{11} (mod \ 65) = 6$	2
	$C_B = 3^{11} (mod \ 65) = 22$	2
	$C_E = 6^{11} \pmod{65} = 11$	2
	$de \equiv 1 \pmod{48}$	2
	d = 35	