ГЕОИНФОРМАЦИОННЫЕ СИСТЕМЫ И МОДЕЛИ

УДК 519.876.5, 622.232.8

ТИПОВЫЕ МОДУЛИ ДЛЯ СИНТЕЗА МОДЕЛЕЙ ТЕХНИКО-ОРГАНИЗАЦИОННЫХ ВАРИАНТОВ РАБОТЫ ОЧИСТНОГО ЗАБОЯ

П. В. ГРЕЧИШКИН Институт угля и углехимии СО РАН, г. Кемерово

Современные очистные забои угольных шахт оснащаются не серийными механизированными комплексами, а изготовленными по специальному заказу или наборными комплектами оборудования. В связи с этим рассчитать их производительность аналитически с учетом организации работ в забое весьма затруднительно, а в большинстве случаев невозможно [1, 2].

Поэтому был предложен способ воспроизведения последовательности и взаимосвязи технологических процессов и операций очистной выемки динамическими моделями [3]. Структура выемочного цикла постоянна. Переменными являются параметры оборудования (количество секций забойной крепи, крепи сопряжения, конвейера, длина комбайна и. д.), а также скоростные характеристики горных машин. В результате имитационного эксперимента определяем продолжительность цикла, затем среднецикловую производительность, по которой сопоставляются технико-организационные решения. Многовариантность организации работ в забое (>40) и многооперационность выемочного цикла определяют этот технологический процесс как большую систему. Поэтому были разработаны структурно-функциональные концептуальные модели процессов и операций очистной выемки, из которых синтезируются структуры динамических моделей с различной организацией работ. Пля моделирования был выбран аппарат сетей Петри с такими особенностями, как моделирование процессов в системах, где происходит последовательная смена дискретных состояний при выполнении разнообразных условий; наглядность модели; возможность реализации структурного подхода к построению модели, по которым разработаны модули сети Петри (таблица).

Адекватность моделей подтверждается файлом следа при многократных экспериментах и совпадением результатов динамического моделирования и планограмм, полученных графоаналитически. Проблемы ложных срабатываний переходов и ошибок в работе общей сети решаются за счет свойств подсетей и правил их соединения (таблица). Для доказательства воспользуемся фундаментальными структурными и поведенческими свойствами сетей Петри [4, 5].

Структура модулей такова, что после серии запусков маркировка стоковой позиции сети становится равной количеству маркеров в истоковой позиции при начальной маркировке $n=10,\ldots,\infty; M_1(p_3)=M_0(p_1)$ (табл., $cmpoka\ 1$). Как только один модуль соединен с другим $S^*\subseteq S^*$ (где S^* — шаг установки секций), первый становится обладателем свойства «сифон» (рис. 1, a). Сифон обладает следующим поведенческим свойством: если при некоторой маркировке он не имеет меток, то остается без меток и при последующих маркировках. После серии запусков u_n , где $n=11,\ldots,\infty$, маркировка сети остается неактивной $M_1=\{0,0,1,0\}.$

Положение оборудования в забое, а также степень завершенности технологических процессов определяются маркировкой стоковых $m(p_c)$ и истоко-

Модули сетей Петри, отображающие технологические процессы и операции очистной выемки

Маркировка РЗ — количество элементарных отрезков пути; задержка времени в Р2 — время прохождения одного отрезка; $L_{\kappa,o}$ — длина комбайна в относительных единицах; $t_{n,y}$ — время прохождения комбайном одного элементарного отрезка пути; $n_{\mathfrak{d},y}$ — количество элементарных отрезков пути комбайна

Маркировка P6 — количество секций для передвижки; задержка в P2 — передвижка одной секции, в P3 — время перемещения горнорабочего очистного забоя (ГРОЗ) до пульта следующей секции; $t_{\rm n.c.\, k.}^*$ — время перемещения горнорабочего от одного блока управления гидрораспределителями до другого и подачи команды; $t_{\rm n.c.\, k.}$ — время передвижки секции крепи; $n_{\rm n.c.}$ — количество передвинутых секций крепи

Маркировка P1, P9 — количество секций для передвижки первым и вторым ГРОЗ; задержки в P2, P5 — передвижка одной секции, в P3, P7 — время перемещения ГРОЗ до пульта следующей четной (нечетной) секции; $n_{o, \kappa l}$, $n_{o, \kappa 2}$ — количество секций для передвижки первому оператору крепи и второму соответственно

Маркировка P1, P7 — количество переходных и штрековых секций крепи сопряжения; задержки в P2, P8 — передвижка соответствующих секций; задержки в P3, P6, P10 — перемещение ГРОЗ; кратность дуги w(P5, t3) — количество переходных секций; $t_{\text{п. пер.}}$ — время передвижки переходной секции крепи сопряжения со штреком; $t_{\text{пер. c}}$ — количество переходных секций; $t_{\text{ш. пер.}}$ — время передвижки штрековой секции крепи сопряжения; $n_{\text{штр. c}}$ — количество штрековых секций крепи сопряжения

Продолжение таблицы

Маркировка P1 — количество участков конвейера для передвижки; задержки в P2, P3, P8, P9 — переключение гидрораспределителей участков, в P4, P11 — передвижка участка, в P7...P12 — переключение гидрораспределителей последнего участка; $n_{\rm k}$ — количество участков конвейера, которые нужно передвинуть вслед за комбайном; $t_{\rm n,y1}$ — время переключения гидрораспределителей участка «На слив» (равно времени установки «На передвижку» и в нейтральное положение; $n_{\rm n}$ — количество рештаков в последнем участке при передвижке вслед за комбайном; $t_{\rm n,y,n}$ — время переключения гидрораспределителей последнего участка; $t_{\rm n}$ — время перемещения ГРОЗ к началу участка; $t_{\rm n}$ — время перемещения ГРОЗ одного блока управления гидрораспределителями до другого; $n_{\rm лоць}$ — количество участков конвейера при додвиге хвостовой части; $n_{\rm n,n}$ — количество рештаков в последнем участке конвейера при додвиге; $t_{\rm n,y,n,n}$ — время переключения гидрораспределителей последнего участка при додвиге хвостовой части конвейера; $n_{\rm k,y,n,x,s}$ — количество участков конвейера, которые нужно передвинуть вслед за комбайном при холостой перегонке; $n_{\rm n,x,s}$ — количество рештаков в последнем участке хвостовой части конвейера при зарубке косым заездом; $t_{\rm n,y,n,x,s}$ — время переключения гидрораспределителей участка длиной $n_{\rm n,x,s}$ — время переключения гидрораспределителей участка длиной $n_{\rm n,x,s}$

Задержка в Р1 — время выполнения вспомогательной операции

вых позиций $m(p_u)$ соответствующих модулей. Синхронизация процессов осуществляется заданием кратности выходных дуг из стоковых позиций модулей. Для отображения технологически связанных и технологически обусловленных процессов служат следующие варианты запуска и функционирования модулей:

- последовательный запуск модулей, когда запуск одного обусловлен максимальной маркировкой стоковой позиции другого (рис. $1, \delta$).
- при достижении некоторой маркировки одного производится запуск другого модуля, после чего он функционирует автономно, т. е. его маркировка не зависит от маркировки других подсетей (рис. $1, \theta$);
- запуск ведомого модуля при достижении некоторой маркировки ведущего (l на рис. 1, ι), после которой маркировка и активность ведомого (l на рис. l, ι) зависят от маркировки ведущего модуля.

Первый вариант соединения модулей (рис. $1, \delta$). Каждый модуль является k-ограниченной сетью, где k равняется начальной маркировке истоковой позиции $M_{\rm p.\,3}(p) \leq M_0(p_1),\, M \in R(M_{0\rm p.\,3}).$ Кратность выходной дуги стоковой позиции модуля, отражающего разрушение земника, задается равной начальной маркировке истоковой позиции $w(p_4,\,t_5)=M_{0\rm p.\,3}(p_1).$ Таким образом, сток t_5 сработает, когда все маркеры из истоковой p_1 перейдут в стоковую $p_4.$ При этом маркировка подсети $M_{\rm p.\,3}=\{0,0,1,0\},$ маркированных ловушек в сети нет, при последующих маркировках она будет неактивна. Следовательно, позиция p_5 безопасна.

Второй вариант соединения модулей (рис. 1, в). Если кратность выходной дуги стоковой позиции модуля в два и более раз меньше начальной маркировки истоковой позиции $w(p_4, t_5) \le 3$, то сток t_5 L2-активен, т. е. сработает более одного раза. Это устраняется использованием комплементарной позиции p_5

(рис. 1, 6), которая является минимальным сифоном. При этом сток становится L1-активным (т. е. сработает один раз). После запуска перехода минимальный сифон теряет метку — сток неактивен, следовательно, позиция p_6 безопасна.

Третий вариант соединения модулей (рис. 1, \mathfrak{z}). Кратность выходной дуги из стоковой позиции модуля I такова, что сток t_3 L2-активен. Он сработает n раз, где n определяется начальной маркировкой истоковой позиции p_1 , после чего будет неактивным при последующих маркировках — истоковая позиция p_7 модуля p_7 модуля p_7 безопасна.

Рис. 1. Функционирование модулей

Как известно, существуют 4 базовых схемы передвижки секций крепи: последовательная, групповая, паями и шахматная. Для моделирования последовательной и групповой передвижки секций используется один и тот же модуль. Только при групповой передвижке кратность выходной дуги стоковой позиции модуля работы комбайна задается равной количеству секций в группе. Имитация передвижки секций паями реализуется параллельным соединением модулей последовательной передвижки секций. Очередность паев определяется приоритетами переходов-истоков. Для моделирования шахматной передвижки секций модуль работы комбайна соединяют с модулем регулирования и соответственно модулем шахматной передвижки секций.

Таким образом, разработанные типовые модули необходимы и достаточны для синтеза динамических моделей технико-организационных вариантов работы очистного забоя. Необходимость диктуется полнотой отображения выемочного цикла при различной организации работ в очистном забое, а достаточность — безопасностью истоковых позиций модулей при синтезе общих сетей.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Нагрузки на очистные забои действующих угольных шахт при различных горно-геологических условиях и средствах механизации выемки. М.: ИГД им. А. А. Скочинского, 1996. 48 с.
- 2. Прогрессивные технологические схемы разработки пластов на угольных шахтах. Ч. 2. Пояснительная записка. М.: ИГД им. А. А. Скочинского, 1979. 243 с.
- 3. Конюх, В. Л. Компоновка оборудования очистного забоя методом имитационного моделирования / В. Л. Конюх, П. В. Гречишкин // Вестник КузГТУ. 2004. № 2. С. 77…82.
- 4. Питерсон, Дж. Теория сетей Петри и моделирование систем / Дж. Питерсон. М.: Мир, 1984. 264 с.
- 5. Мурата, Т. Сети Петри: Свойства, анализ, приложения / Т. Мурата // ТИИЭР. 1989. № 77. С. 41…85.

Поступила в редакцию 16 мая 2007 г.