UNIT 1

Overview of Supervised Machine Learning

Institute for Machine Learning

Copyright statement:

This material, no matter whether in printed or electronic form, may be used for personal and non-commercial educational use only. Any reproduction of this material, no matter whether as a whole or in parts, no matter whether in printed or in electronic form, requires explicit prior acceptance of the authors.

Lecture Supervised Techniques: Planned Topics

- UNIT 1: Overview of Supervised Machine Learning
- UNIT 2: Basics of Supervised Machine Learning
- UNIT 3: Support Vector Machines
- UNIT 4: Random Forests and Gradient Boosting
- UNIT 5: Logistic Regression
- UNIT 6: Artificial Neural Networks
- UNIT 7: Special Network Architectures

Planned topics for UNIT 1

- Introductory examples
- Basic terminology
- The formal setup
- Practical hints

Supervised Machine Learning

How to solve these tasks?

- Prediction of trajectory of a space shuttle
- Translation of one language into another
- Prediction of protein function
- Classification of an image
- **...**

Explicit models

Traditional approach: Explicit model

- Use explicit knowledge to design model deductively
- Pros:
 - Knowledge about behavior of model and environment/problem
 - Knowledge about restrictions of model and reasons for design choices
- Cons:
 - Sometimes problem is too complex to model
 - Consequences of simplifications of problem/model hard to assess
 - □ Insufficient knowledge about problem/environment

Machine Learning

Machine Learning: Inductive Learning

- Use previously observed data to create model inductively
- Pros:
 - Problem can be solved without (exhaustive) knowledge about problem
 - Predictions/Insights are created directly from data
 - Can handle complex problems and profits from big data
- Cons:
 - Data is required (sometimes a lot of data!)
 - Complex models (deep learning) can end up being a black box
 - □ Naive application might lead to biases

Supervised Machine Learning

Supervised Machine Learning:

- Learning a function that maps an input to an output (=farget).
- Learning is based on example input values with corresponding target values (also called supervisory signals)
 - □ E.g. image + object type, DNA sequence + phenotype, . . .
- Typical usage: predictive modeling
 - Train model on dataset with input+target values
 - Use trained model to predict target values for other (new) inputs
- Classification: target value is class label (discrete attribute, e.g. integer, letter, word)
- Regression: target value is numerical value (real number)

Example data for Supervised ML (1)

Example data for Supervised ML (2)

0.99516	0.890813	0.933726	0.793397	0.826405	0.236946	-1
0.853206	0.611647	0.317486	0.633609	0.411492	0.985231	+1
0.387494	0.459847	0.815049	0.394526	0.678227	0.031886	-1
0.733515	0.640438	1.19068	0.639685	0.0793674	0.160503	+1
0.274817	0.261054	1.20056	0.689895	0.401913	0.277955	-1
0.329943	0.241299	0.848705	0.721673	0.973852	0.795238	-1
0.334784	0.350487	0.315131	0.928277	0.816343	0.558292	- 1
0.481578	0.738839	0.0925513	0.294667	0.612725	0.573062	- 1
0.0940846	0.278992	0.451819	0.900141	0.220497	0.541176	+1
0.360569	0.638554	1.0307	0.260456	0.00658296	0.380672	+1
0.0857518	0.3775	0.386551	0.570562	0.15437	0.102717	+1
0.755808	0.1362	0.544536	0.848888	0.874862	0.307479	- 1
0.421025	0.785714	0.449038	0.920612	0.420418	0.749187	-1
0.939446	0.0468747	0.15846	0.625944	0.198894	0.176125	+1
0.845362	0.767883	0.824993	0.725803	0.808218	0.63495	-1
0.484793	0.129329	0.0783719	0.465347	0.291457	0.254278	+1
0.399041	0.751829	0.763511	0.894785	0.47902	0.15156	- 1
0.643232	0.615629	0.430261	0.0458972	0.446513	0.844081	+1

Example data for Supervised ML (3)

Terminology

Model: parameterized function/method with specific parameter values (e.g. a trained neural network)

Model class: the class of models in which we search for the model (e.g. neural networks, SVMs, etc)

Parameters: representations of concrete models inside the given model class (e.g. network weights)

Hyperparameters: parameters controlling model complexity or the training procedure (e.g. network learning rate, the number of hidden layers, etc)

Model selection/training: process of finding a model from the model class

Question/Task + Data

Prior Knowledge

Introductory example: Fish recognition

- Example borrowed from
 - R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. 2nd edition. John Wiley & Sons, 2001. ISBN 0-471-05669-3.
- Automated system to sort fish in a fish-packing company: salmons must be distinguished from sea bass optically
- Given: a set of pictures with fish labels
- Goal: distinguish between salmons and sea bass
- → Classification task with two labels:
 - "salmon" (0) vs. "sea bass" (1)

Our data (two sample images)

Salmon:

Sea bass:

How can we distinguish these two kinds of fish?

Our data (two sample images)

Salmon:

Sea bass:

How can we distinguish these two kinds of fish?

First step: Let's take a look at our data!

Preprocessing & Feature Selection

Feature selection:

- What data do we have?
- Removal of redundant features
- Removal of features the model class cannot utilize
- (Deep Learning: Feature selection mainly done by neural network)

Preprocessing:

- Contrast and brightness correction
- Segmentation
- Alignment
- Normalization
- **...**

Salmon:

Sea bass:

... assume we use length and brightness as features

Salmon:

... assume we use length and brightness as features

→ How do we express/represent these features?

Input representation

We can represent each object by a vector of feature values (i.e. feature vectors) of length d

$$\mathbf{x} = (x^{(1)}, \dots, x^{(d)})^T$$

- \square Example: each fish is represented as feature vector with two values: $x^{(1)} = \text{length}$ and $x^{(2)} = \text{brightness}$ (i.e. d=2)
- An object described by a feature vector is also referred to as sample
- Individual $x^{(j)}$ may be
 - \square group descriptions: *categorical variables/features* (e.g. $x^{(3)} = \text{name of the boat with which the fish was caught)}$
 - numbers: numerical variables/features (e.g. fish length in cm)

Input representation (2)

- Assume our dataset consists of l objects with feature vectors x₁,...,x_l
- Each feature vector is of length d
- Then we can write the feature vectors of all objects in a matrix of feature vectors X:

$$\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_l) = \begin{pmatrix} x_1^{(1)} & \dots & x_l^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(d)} & \dots & x_l^{(d)} \end{pmatrix}$$

 $\blacksquare x_i^{(j)}$ is the *j*-th feature value of fish *i*

*

Input and output representation

- Assume we are given a target value $y_i \in \mathbb{R}$ for each sample \mathbf{x}_i
- Then all target values constitute the target/label vector:

$$\mathbf{y} = (y_1, \dots, y_l)^T$$

Often we write our dataset, including input features and targets, as data matrix Z:

$$\mathbf{Z} = \begin{pmatrix} \mathbf{X} \\ \mathbf{y}^T \end{pmatrix} = \begin{pmatrix} x_1^{(1)} & \dots & x_l^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(d)} & \dots & x_l^{(d)} \\ y_1 & \dots & y_l \end{pmatrix}$$

Note that if a vector of target values is given for each sample, then we get a target value matrix Y

Salmon:

■ We now know how to represent our data (i.e. fish features and labels) and will take a look at it via histograms

Length:

Length:

- Assume we want to use a simple threshold as model class to classify our data
 - □ i.e. a model with 1 parameter (threshold value)
 - □ we have to decide on a single feature (e.g. brightness)
 - we have to choose the model parameter(s)

Length:

- Assume we want to use a simple threshold as model class to classify our data
 - i.e. a model with 1 parameter (threshold value)
 - we have to decide on a single feature (e.g. brightness)
 - we have to choose the model parameter(s)

Length:

- Assume we want to use a simple threshold as model class to classify our data
 - □ i.e. a model with 1 parameter (threshold value)
 - ☐ we have to decide on a single feature (e.g. brightness)
 - we have to choose the model parameter(s)

Length:

- How do we get the "best" model?
 - 1. How does our model perform on our data?
 - 2. How will it perform on (unseen) future data? I.e. how will it generalize?

Length:

- How do we get the "best" model?
 - 1. How does our model perform on our data? Loss function
 - 2. How will it perform on (unseen) future data? I.e. how will it generalize?

Scoring our models: Loss function

- Assume we have a model g, parameterized by w
- $\mathbf{g}(\mathbf{x}; \mathbf{w})$ maps an input vector \mathbf{x} to an output value \hat{y}
- We want (prediction) \hat{y} to be as close as possible to the true target value y
- We can use a loss function

$$L(y, g(\mathbf{x}; \mathbf{w}))$$

to measure how close our prediction is to the true target for a given sample with $\mathbf{z}=(\mathbf{x}^T,y)^T$

The smaller the loss (cost), the better our prediction

Examples of loss functions

Zero-one loss:
$$L_{\mathbf{zo}}(y, g(\mathbf{x}; \mathbf{w})) = \begin{cases} 0 & y = g(\mathbf{x}; \mathbf{w}) \\ 1 & y \neq g(\mathbf{x}; \mathbf{w}) \end{cases}$$
 Quadratic loss: $L_{\mathbf{g}}(y, g(\mathbf{x}; \mathbf{w})) = (y - g(\mathbf{x}; \mathbf{w}))^2$

- Many other loss functions available with different justifications
- Not every loss function is suitable for every task
- Choice of loss function depends on data, task, and model class

Length:

- How do we get the "best" model?
 - How does our model perform on our data? √
 - How will it perform on (unseen) future data? I.e. how will it generalize? – Generalization error (risk)

Generalization error/risk

The generalization error or risk is the expected loss on future data for a given model $g(.; \mathbf{w})$:

$$\begin{split} R(g(.; \mathbf{w})) &= \mathrm{E}_{\mathbf{z}}[L(y, g(\mathbf{x}; \mathbf{w}))] \\ &= \int\limits_{X} \int\limits_{\mathbb{R}} L(y, g(\mathbf{x}; \mathbf{w})) \, p(\mathbf{x}, y) \, \mathrm{d}y \, \mathrm{d}\mathbf{x} \end{split}$$

- $R(g(\mathbf{x}; \mathbf{w})) = \mathrm{E}_{y|\mathbf{x}}[L(y, g(\mathbf{x}; \mathbf{w}))]$ denotes the expected loss for input \mathbf{x} (integration only over y)
- In practice, we hardly have any knowledge about $p(\mathbf{x}, y)$
- → We have to estimate the generalization error

Empirical Risk Minimization (ERM)

- We do not know the true $p(\mathbf{x}, y)$ but we have access to a subset of l data samples (i.e. our dataset)
- We estimate the (true) risk by the empirical risk $R_{\rm emp}$ on our dataset:

$$R_{\text{emp}}(g(.; \mathbf{w}), \mathbf{Z}_n) = \frac{1}{l} \sum_{i=1}^{l} L(y_i, g(\mathbf{x}_i; \mathbf{w}))$$

- Assume that the data points are i.i.d. (independent and identically distributed)
- Strong law of large numbers:

$$R_{\mathrm{emp}}(g(.;\mathbf{w})) \to R(g(.;\mathbf{w})) \text{ for } l \to \infty$$

■ Goal: Empirical Risk Minimization (ERM)

Length:

Brightness:

- How do we get the "best" model?
 - How does our model perform on our data? √
 - 2. How will it perform on (unseen) future data? I.e. how will it generalize? ✓

Length:

Brightness:

We can now optimize our model by minimizing the risk on our (training) dataset

Length:

Brightness:

We can now optimize our model by minimizing the our (training) dataset

- ...but the individual features do not separate the classes well :-(
- → Let's combine our features and use a different model class

Combined features: Linear separation

Combined features: Mildly non-linear separation

Combined features: Highly non-linear separation

Combined features: Highly non-linear separation

Seems perfect on our data, right? Are we done now?

The problem of overfitting

- With ERM we can optimize our model by minimizing the risk on our (training) dataset
- Problem: We might fit our parameters to noise specific to our training dataset (i.e. overfitting)
- lacksquare ightarrow We need to get a better estimate for the (true) risk

Risk estimation: Test set method

- Assume our data samples are i.i.d.
- We can split our dataset of *l* samples into 2 subsets:

Training set: a subset with m samples we perform ERM on (i.e. optimize parameters on)

Test set: a subset with l-m samples we use to estimate the risk

Our estimate $R_{\rm emp}$ on the test set will show if we overfit to noise in training set

Test set method: Practical hints

- No overlap between training and test set samples
- Random sampling of training and test set samples (i.i.d.)
- Test set samples are not to be used for preprocessing, feature selection, model selection, etc.
- We might want to use 3 separate subsets:

Training set: subset used to train a model, i.e. to optimize/fit model parameters

Validation set: subset used to find the best hyperparameters

Test set: subset used to estimate risk

- For small datasets, the requirement that training and test set must not overlap is painful
- Solution: Cross Validation (CV)
 - \square Split dataset into n disjoint folds
 - $\ \square$ Use n-1 folds as training set, left-out fold as test set
 - □ Train n times, every time leaving out a different fold as test set
 - Average over n estimated risks on test sets to get better estimate of generalization capability

5-fold Cross Validation

T: Training set; V: Test set

5-fold Cross Validation

T: Training set; V: Test set

5-fold Cross Validation

T: Training set; V: Test set

- Nested Cross Validation
 - We can apply another (inner) CV procedure within each training-set of the original (outer) CV
 - → allows for evaluation of model selection procedure
- Getting a risk estimate on selected model:
 - 1. Apply cross validation on training set (withhold test set)
 - Use test set to estimate risk for the model selected via CV
- In practice, the found model is often trained further or re-trained on complete dataset for best performance

- Now we know that we can use ERM to optimize a model on our training dataset (optionally via CV)
- A held-out test set will allow us to get an estimate of the risk, i.e. about the performance on future data (optionally via CV)

- Now we know that we can use ERM to optimize a model on our training dataset (optionally via CV)
- A held-out test set will allow us to get an estimate of the risk, i.e. about the performance on future data (optionally via CV)

Done!:)

Common pitfalls

Underfitting: model is too simple/coarse to fit training or test data (too low model complexity)

Overfitting: model fits (too) well to training data but not well to future/test data (too high model complexity)

Unbalanced datasets: datasets biased toward a single class need to be evaluated properly (balanced accuracy, ROC AUC, loss weighting, ...)

Hints

- Separate the test set as soon as possible (no feature selection on test set data)
- Inspect your dataset (clusters/peculiarities due to data creation, artefacts, ...)
- Which CV/training/evaluation method should be used depends on what you want to show/achieve (method comparison, winning a challenge, . . .)
 - Example:
 - Your data was recorded by 5 different labs
 - You want the algorithm to generalize to new labs
 - $\:\:\to\:$ If CV folds do not share the same labs, we get an estimate for generalization to new labs (cluster cross validation)

Summary

- 1. Acquire labeled dataset (input features + target values)
- 2. Divide dataset into training and test set
- 3. Select preprocessing pipeline, features, and model class based on training set
- 4. Optimize the model parameters on the training set
- Optionally use validation set or CV to determine best model architecture (hyperparameters)
- Go back to step 3 if evaluation on validation/training set gave new insights
- Use test set to calculate estimate for generalization error/risk

Done!:)