《计算机算法设计与分析》

第三章 分治法

马丙鹏 2020年09月29日

第三章 分治法

- 3.1 一般方法
- 3.2 二分检索
- 3.3 找最大和最小元素
- 3.4 归并排序
- 3.5 快速排序
- 3.6 选择问题
- 3.7 斯特拉森矩阵乘法

■ 概述

- □任何一个基于比较来确定两个元素相对位置的排序算 法需要 $\Omega(nlogn)$ 计算时间。
- □如果我们能设计一个需要O(nlogn)时间的排序算法, 则在渐近的意义上,这个排序算法就是最优的。
- □许多排序算法都是追求这个目标。
- ■快速排序的定义
 - □快速排序是一种基于划分的排序方法;
 - □通过反复地对待排序集合进行划分达到排序目的的排 序算法。
 - □快速排序在平均情况下需要O(nlogn)时间。

- ■快速排序的定义
 - □划分:选取待排序集合A中的某个元素t,按照与t的大小关系重新整理A中元素,使得整理后的序列中所有在t以前出现的元素均小于等于t,而所有出现在t以后的元素均大于等于t。这一元素的整理过程称为划分(Partitioning)。

划分元素t

▶元素t称为划分元素。

 A[1]
 A[2]
 ...
 A[s-1]
 A[s]
 A[s+1]
 ...
 A[n]

 每个元素都小于或等于t
 划分后
 每个元素都大于或等于t

 A[1]
 A[2]
 ...
 A[j]
 t
 A[k]
 ...
 A[n]

■算法描述

- \Box //将A(m), A(m+1), ...,A(p-1)中的元素按如下方式重新 排列:如果最初t=A(m),则在重排完成之后,对于m 和p-1之间的某个q,有A(q)=t,并使得对于m $\leq k < q$,有 $A(k) \leq t$,而对于q < k < p,有 $A(k) \geq t //$
- □//退出时,p置为划分元素所在的下标位置//
- □注: 算法对集合A(m:p-1)进行划分。并使用待划分区 间的第一个元素A(m)作为划分元素
- □A(p)不在划分区间内,但被定义,且A(p)≥A(m),用 于限界

```
算法3.2 用A(m)划分集合A(m:p-1)
procedure PARTITION(m, p)
  integer m, p, i; global A(m:p-1)
  v←A(m); i←m //A(m)是划分元素//
  loop
    loop i←i+1 until A(i)≥v repeat // i由左向右移//
    loop p←p-1 until A(p)≤v repeat //p由右向左移//
    if i<p then
      call INTERCHANGE(A(i), A(p))
    else exit
   endif
  repeat
  A(m)\leftarrow A(p);
```

A(p)←v //划分元素在位置p//

end PARTITION

中国科学院大学 University of Chinese Academy of Sciences 6

■实例

■ 快速排序

- □经过一次"划分"后,实现了对集合元素的调整:其 中一个子集合的所有元素均小于等于另外一个子集合 的所有元素。
- □按同样的策略对两个子集合进行排序处理。
- □当子集合排序完毕后,整个集合的排序也完成了。
- □这一过程避免了子集合的归并操作。
- □通过反复使用划分过程PARTITION实现对集合元素 排序的算法称为快速排序。

■ 3.5 快速排序

算法3.13 快速排序

```
procedure QUICKSORT(p, q)

//将数组A(1:n)中的元素A(p),...A(q)按递增的方式排序。
A(n+1)有定义,且假定A(n+1)←+∞//
integer p, q;
global n, A(1: n)

if p<q then
    j←q+1 //进入时,A(j)定义了划分区间[p,q]的上界,初次调用时j=n+1
    call PARTITION(p, j) //出口时,j带出此次划分后划分元素所在的坐标位置/
call QUICKSORT(p, j-1) //前一子集合上递归调用
call QUICKSORT(j+1, q) //后一子集合上递归调用
endif
```

end QUICKSORT

	1	2	3	4	5	6	7	8	9
1	[65	70	75	80	85	60	55	50	45]
2	[60	45	50	55]	65	[85	80	75	70]
3	[55	45	50]	60	65	[85	80	75	70]
4	[50	45]	55	60	65	[85	80	75	70]
5	[45]	50	55	60	65	[85	80	75	70]
6	45	50	55	60	65	[85	80	75	70]
7	45	50	55	60	65	[70	80	75]	85
8	45	50	55	60	65	70	[80	75]	85
9	45	50	55	60	65	70	[75]	80	85
10	45	50	55	60	65	70	75	80	85

- ■快速排序分析
 - □统计的对象:元素的比较次数,记为:C(n)
 - □两点假设
 - ▶参加排序的n个元素各不相同
 - ▶PARTITION中的划分元素v是随机选取的(针对平均情况的分析)
 - □随机选取划分元素:
 - Arr 产在划分区间[m, p]随机生成某一坐标: i←RANDOM(m, p-1); 调换A(m)与A(i):v←A(i); A(i) ←A(m); i←m
 - ▶作用:将随机指定的划分元素的值依旧调换到 A(m)位置。之后,算法主体不变,仍从A(m)开始 执行划分操作

■递归层次

- □设在任一级递归调用上,调用PARTITION处理的所有元素总数为r,则初始时r=n,以后的每级递归上,由于删去了上一级的划分元素,故r比上一级至少少1:
- □理想情况,
 - ▶第一级少1,第二级少2,第三级少4,...;
- □最坏情况
 - ➤每次仅减少1(如集合元素已经按照递增或递减顺序排列)

k	0	1	2	3	4	•••	n-1	n	n+1
a[k]		n	1	2	3	• • •	n-2	n-1	∞

- ■最坏情况分析
 - 口记最坏情况下的元素比较次数是 $C_{w}(n)$;
 - □PARTITION一次调用中的元素比较数是p-m+1
 - □最坏情况下(第i次调用Partition所得的划分元素恰好是第i小元素),每级递归调用的元素总数仅比上一级少1,故C_w(n)是r由n到2的累加和。
 - 即: $C_w(n) = \sum_{2 \le r \le n} r = O(n^2)$

■最坏情况分析

k	0	1	2	3	4	•••	n-1	n	n+1
a[k]		n	1	2	3	•••	n-2	n-1	∞

$$C_{W}(n) = \begin{cases} 3 & n = 2 \\ n+1+C_{W}(n-1) & n > 2 \end{cases}$$
渐近时间复杂度
$$C_{W}(n) = O(n^{2})$$
中国科

$$C_W(n) = \mathcal{O}(n^2)$$

- ■最好情况分析
 - □在最好情况下,每次划分所取的划分元素恰好为中值,即每次划分都产生两个大小为n/2的区域

$$C_{B}(n) = \begin{cases} 3 & n = 2 \\ 2C_{B}((n-1)/2) + n + 1 & n > 2 \end{cases}$$
 渐近时间复杂度

 $C_R(n) = O(n \log n)$

- ■平均情况分析
 - □平均情况是指集合中的元素以任意一种顺序排列,且 任选所有可能的元素作为划分元素进行划分和排序, 在这些所有可能的情况下,算法执行性能的平均值。

■平均情况分析

口设调用PARTITION(m, p)时,所选取划分元素v恰好是A(m:p-1)中的第i小元素($1 \le i \le p-m$)的概率相等。则经过一次划分,所留下的待排序的两个子文件恰好是A(m:j-1)和A(j+1:p-1)的概率是:1/(p-m), $m \le j < p$ 。记平均情况下的元素比较次数是 $C_A(n)$;则有,

$$C_A(n) = n + 1 + \frac{1}{n} \sum_{1 \leq k \leq n} (C_A(k-1) + C_A(n-k))$$

□其中

▶n+1是PARTITION第一次调用时所需的元素比较次数。

$$> C_A(0) = C_A(1) = 0$$

■平均情况分析

化简上式可得:

$$\begin{split} C_A(n)/(n+1) &= C_A(n-1)/n + 2/(n+1) \\ &= C_A(n-2)/(n-1) + 2/n + 2/(n+1) \\ &= C_A(n-3)/(n-2) + 2/(n-1) + 2/n + 2/(n+1) \\ &\cdots \\ &= C_A(1)/2 + 2\sum_{3 \leq k \leq n+1} 1/k \end{split}$$

由于

$$\sum_{\substack{3 \le k \le n+1 \\ 1}} 1/k \le \int_{2}^{n+1} \frac{dx}{x} < \log_{e}(n+1)$$

所以得, $C_A(n) < 2(n+1)\log_e(n+1) = O(n\log n)$

- ■空间分析
 - □最坏情况下,
 - ▶递归的最大深度为n-1
 - ▶需要栈空间: O(n)
 - □使用一个迭代模型可以将栈空间总量减至O(logn)

- ■快速排序算法的迭代模型
 - □处理策略:
 - ➤每次在Partition将文件A(p:q)分成两个文件A(p:j-1)和A(j+1,q)后,先对其中较小的子文件进行排序。 当小的子文件排序完成后,再对较大的子文件进行排序。
 - □栈:需要一个栈空间保存目前暂不排序的较大子文件。 并在较小子文件排序完成后,从栈中退出最新的较大 子文件进行下一步排序。
 - □栈空间需要量: O(logn)
 - □算法的终止: 当栈空时,整个排序过程结束。

■快速排序算法的迭代模型


```
算法3.14 QuickSort2(p, q)
procedure QUICKSORT2(p, q)
integer STACK(1:max), top //max=2
global A(1:n); local integer j
top←0
loop
 while p<q do
   j←q+1
   call PARTITION(p, j);
   if j-p < q-j //先对较小的子文件排序,并将规模较大的子文件入栈
      then STACK(top+1) \leftarrow j+1; STACK(top+2) \leftarrow q; q \leftarrow j-1
      else STACK(top+1)\leftarrowp; STACK(top+2)\leftarrowj-1; p\leftarrowj+1
   endif
   top←top+2 //调整栈顶指针
  repeat
  if top=0 then return endif //如果栈为空,算法结束
  q←STACK(top); p←STACK(top-1); top←top-2 //从栈中退出先前保存的
                                          较大的子文件
 repeat
```

end QUICKSORT2

- ■快速排序算法的迭代模型
 - □空间分析
 - ▶算法3.14的最大空间是O(logn)
 - ▶推导: 设算法所需的最大栈空间是S(n),则有

$$S(n) = \begin{cases} 2 + S(\lfloor (n-1)/2 \rfloor) & n > 1 \\ 0 & n \le 1 \end{cases}$$

- ■快速排序与归并排序比较
 - □对排序算法应该从以下几个方面综合考虑:
 - ① 时间复杂性;
 - ② 空间复杂性;
 - ③ 稳定性;
 - ④ 算法简单性;
 - ⑤ 待排序记录个数n的大小;
 - ⑥ 记录本身信息量的大小;
 - ⑦ 关键码的分布情况

- 快速排序与归并排序比较
 - □时间复杂度:

	排序	方法		平均情况	最好情况	最坏情况
插	入	排	序	$O(n^2)$	O(n)	$O(n^2)$
	泡	排	序	$O(n^2)$	O(n)	$O(n^2)$
快	速	排	序	$O(n\log_2 n)$	$O(n\log_2 n)$	$O(n^2)$
Ja	并	排	序	$O(n\log_2 n)$	$O(n\log_2 n)$	$O(n\log_2 n)$

- □两者平均情况时间都是O(nlogn),平均情况下哪种快一些?
- □实验证明快速排序要快一些。

- ■快速排序与归并排序比较
 - □空间复杂度:

	排序	方法		辅助空间
插	入	排	序	<i>O</i> (1)
	泡	排	序	<i>O</i> (1)
快	速	排	序	$O(\log_2 n) \sim O(n)$
J3	并	排	序	O(n)

- ■快速排序与归并排序比较
 - □简单性:
 - >一类是简单算法,包括直插入排序和冒泡排序,
 - ▶另一类是改进后的算法,包括快速排序和归并排序,这些算法较复杂。
 - □待排序记录个数比较:
 - ▶n越小,采用简单排序方法越合适,
 - ▶n越大,采用改进的排序方法越合适,
 - ▶因为n越小,O(n²)同O(nlogn)的差距越小,并且输入和调试简单算法比高效算法要容易。

- ■快速排序与归并排序比较
 - □简单性数据的分布情况比较:
 - ▶当待排序数据初始有序时,插入排序和冒泡排序 能达到O(n)的时间复杂度;
 - ▶对于快速排序而言,这是最坏的情况,此时性能 蜕化为O(n²);
 - ▶归并排序的性能不受影响。

作业-课后练习6

- ■对下面的三组数据进行快速排序
 - \square (45, 36, 18, 53, 72, 30, 48, 93, 15, 36)
 - \Box (1, 1, 1, 1, 1)
 - \square (5, 5, 8, 3, 4, 3, 2)
 - □给出每一次划分后的结果。

作业-课后练习7

- ■问题描述
 - □在PARTITION(m, p)中,将语句if i<p改为if i≤p,有何优缺点?
 - □在数据集(5, 4, 3, 2, 5, 8, 9)上执行这两个算法,看看他们在执行时有何不同。

小结

