Flattening to a 1D Array

Pre-work: Computer Vision

This file is meant for personal use by rajatshah2006@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.

Agenda

- What is Flattening?
- Why is it required?

What is Flattening?

Flattening

- After completing multiple iterations of the convolution and pooling operations on the image, we get feature maps of reduced dimensionality, also having multiple channels.
- This is a 3D Array of size (Width, Height, Channels).
- The number of units or values in this 3D array will be Units (U) = W x H x C
- Our task here is to flatten this 3D array into a 1D array of size (WxHxC, 1) = (Units, 1)

Procedure for Flattening a 3D array:

- 1. We read row-by-row for each channel starting from the first channel.
- 2. **Each row is appended** to the 1D flattened array.

Flattening

• For example:

- The initial size after the Convolution and Pooling Operations: 10x10x24
- Here we have height and width as 10, and 24 channels.
- Size after Flattening this 3D Matrix: (2400, 1)

This file is meant for personal use by rajatshah2006@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.

Why is it required?

Requirement

 Since the output from the Convolution and Pooling operations is a 3D array, we can't directly use them in the fully connected layers of Neural Networks, which only accept 1D arrays of values.

• This is the main reason we have to flatten the output from Convolutions and Pooling

into a 1D array.

This file is meant for personal use by rajatshah2006@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.

Thank You