Progress Report

Victor Huang

November 29, 2020

Overview:

Concerned variables and underlying Monte-Carlo model:

```
nSims: Number of simulations to run for each groups of parameter.
N: Size of population.
p: Probablity an observation is sampled.
sigma_e2: Variance of Model error e.
sigma_epi2: variance of unpredicted error epislon.
yi: Dependent variable without unpredicted error.
xi: Independent variable.
cap_y: Dependent variable with unpredicted error.
```

Simulation2: A function that randomly draws samples from population given. Each observation \\ has probability p of being samapled. It repeats this operation nSims times and will output a \\ vector of beta, the empirical value for an OLS fitting model based on cap_y and xi.

```
# setting parameters
sigma_e2<-1
N<-10000
beta<-2
nSims<-10000

p<-c(0.01,0.1,0.5,0.9,0.99)
sigma_epi2<-c(0,1,2)

x_para<-set_para(0,1)
e_para<-set_para(0,sigma_e2)

# generating population
xi<-pop_gen(x_para,N,'normal')
ei<-pop_gen(e_para,N,'normal')
yi<-xi*beta+ei</pre>

# for each group of simulations, generate one population with
```

```
# independent error epislon.
for (j in c(1:length(sigma epi2))){
    epi_para<- set_para(0,sigma_epi2[j])</pre>
    epi<-pop_gen(epi_para,N,'normal')</pre>
    cap_y<-yi+epi
# sample from the population with probability p and return the
# variance of the beta.
 for (i in c(1:length(p))){
    start.time.small<-Sys.time()</pre>
    var_beta<-var(simulation2(cap_y,xi,p[i],nSims))</pre>
    theo_var<-sigma_epi2[j]/(sum(xi**2))+((1-p[i])/p[i])*
      ((sum(xi**2*ei**2))/((sum(xi**2))**2)+sigma_epi2[j]/(sum(xi**2)))
    end.time.small<-Sys.time()</pre>
# rearranging the data for presentation and making graph
    out<-cbind(obs=var_beta,theo=theo_var,prob=sprintf('p = %f ',p[i]),</pre>
                sigma=sprintf('sigma_epi2 = %f',sigma_epi2[j]),
                time=end.time.small-start.time.small)
    result <-rbind(result,out)
  }
}
```


Observation with sigma= 0.000000

Observation with sigma= 1.000000

Observation with sigma= 2.000000

prob	sigma	obs	theo
p = 0.010000	$sigma_epi2 = 0.000000$	0.0105500840337253	0.0101093961864815
p = 0.100000	$sigma_epi2 = 0.000000$	0.000901481187646336	0.000919036016952866
p = 0.500000	$sigma_epi2 = 0.000000$	0.000102662362139251	0.000102115112994763
p = 0.900000	$sigma_epi2 = 0.000000$	1.1466816865127e-05	1.13461236660848e-05
p = 0.990000	$sigma_epi2 = 0.000000$	9.92683646015324e-07	1.03146578782589e-06
p = 0.010000	$sigma_epi2 = 1.000000$	0.0212336539129811	0.0201427301533014
p = 0.100000	$sigma_epi2 = 1.000000$	0.00192197993445238	0.00192236941363486
p = 0.500000	$sigma_epi2 = 1.000000$	0.00021171437794942	0.000302781792331161
p = 0.900000	$sigma_epi2 = 1.000000$	2.31220067686445e-05	0.000122827612186306
p = 0.990000	$sigma_epi2 = 1.000000$	2.12221880482516e-06	0.000102378273533482
p = 0.010000	$sigma_epi2 = 2.000000$	0.0311268197717426	0.0301760641201214
p = 0.100000	$sigma_epi2 = 2.000000$	0.00275301807570909	0.00292570281031685
p = 0.500000	$sigma_epi2 = 2.000000$	0.000302215103249437	0.000503448471667559
p = 0.900000	$sigma_epi2 = 2.000000$	3.43376580837948e-05	0.000234309100706527
p = 0.990000	$sigma_epi2 = 2.000000$	3.02338995876932e-06	0.000203725081279137

prob	sigma	time
p = 0.010000	$sigma_epi2 = 0.000000$	3.84671401977539
p = 0.100000	$sigma_epi2 = 0.000000$	4.10406088829041
p = 0.500000	$sigma_epi2 = 0.000000$	4.93380403518677
p = 0.900000	$sigma_epi2 = 0.000000$	4.83507204055786
p = 0.990000	$sigma_epi2 = 0.000000$	4.82805800437927
p = 0.010000	$sigma_epi2 = 1.000000$	3.88757801055908
p = 0.100000	$sigma_epi2 = 1.000000$	4.23616790771484
p = 0.500000	$sigma_epi2 = 1.000000$	4.98786616325378
p = 0.900000	$sigma_epi2 = 1.000000$	4.85099601745605
p = 0.990000	$sigma_epi2 = 1.000000$	4.81013679504395
p = 0.010000	$sigma_epi2 = 2.000000$	3.90356206893921
p = 0.100000	$sigma_epi2 = 2.000000$	4.0661609172821
p = 0.500000	$sigma_epi2 = 2.000000$	5.04550719261169
p = 0.900000	$sigma_epi2 = 2.000000$	4.82110381126404
p = 0.990000	$sigma_epi2 = 2.000000$	4.83707118034363
time in total	time in total	1.16278588374456