Predicting Health Violations With NLP

Robert Cauvy

Business Problem

More than 48 million Americans per year become sick from food

Most cities' health inspections are conducted at random

Objective: Reduce time spent on spot checks at clean restaurants that have been following the rules closely — and improve health and hygiene at places where food safety issues are higher risk

Data Sources

13,061 Unique Records

9,158 Never Failed 3,903 Have Failed

NYC Open Data Portal

DOHMH New York City Restaurant
 Inspection Results

Yelp API

Yelp Fusion Phone Search

Yelp User Generated Business Reviews

Categorical Exploratory Data Analysis

Exploratory Text Data Analysis

Models

Bag-of-n-grams	Fitting & Tuning	Results
Naive Bayes	 Count Vectorized Tf-idf Transformed Stopword Removal Unigrams and Bigrams Tuned with GridsearchCV Optimized For Recall 	71% Accuracy / 22% Recall
Logistic Regression		57% Accuracy / 60% Recall
Decision Trees		53% Accuracy / 65% Recall
• SVC		58% Accuracy / 51% Recall

Best Model

DecisionTree Classifier

{'class_weight':'balanced',

'criterion': 'gini',

'max_depth': 4}

- Highest Recall
- Highly Interpretable
- Robust to overfitting
- Computationally inexpensive

Next Steps

- Revisit Target Variable
- Preprocessing methods
- Hyperparameter Tuning
- Deep NLP Methods
- Deploy model for public use
- Target Restaurant
 Stakeholders

Contact

Robert Cauvy

rcauvy@gmail.com

linkedin.com/in/robert-cauvy/

Complete analysis available at github.com/rcauvy

Appendix - Deep NLP

Word Embeddings	Preparation	Results
Empty Embedding	 Skip-gram and Continuous Bag-of-Words Embeddings 	55% Accuracy / 38% Recall
 Pre-Trained Word2Vec 		32% Accuracy / 97% Recall
Pre-Trained GLOVE		TBD

