Lineare Algebra 2 — Lösung zu Übungsblatt 10

Sommersemester 2020

AOR Dr. D. Vogel P. Gräf, R. Steingart

Abgabe: Do 09.07.2020 um 9:15 Uhr

36. Aufgabe: (4 Punkte, Äußere Potenzen von Abbildungen) Seien

$$A = \begin{pmatrix} 0 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 3 & 2 \end{pmatrix} \in M_{3,3}(\mathbb{R})$$

und f_A die lineare Abbildung $\mathbb{R}^3 \xrightarrow{A} \mathbb{R}^3$. Man berechne die Darstellungsmatrix der linearen Abbildung $\bigwedge^2 f_A \colon \bigwedge^2 \mathbb{R}^3 \to \bigwedge^2 \mathbb{R}^3$ bezüglich der Basis $(e_1 \land e_2, e_1 \land e_3, e_2 \land e_3)$ von $\bigwedge^2 \mathbb{R}^3$, wobei (e_1, e_2, e_3) die Standardbasis von \mathbb{R}^3 bezeichnet.

Lösung: Um die Darstellungsmatrix von $\bigwedge^2 f_A$ bezüglich $\mathcal{B} = (e_1 \wedge e_2, e_1 \wedge e_3, e_2 \wedge e_3)$ zu bestimmen, muss man Bilder von \mathcal{B} unter $\bigwedge^2 f_A$ bestimmen, also

$$\left(\bigwedge^{2} f_{A}\right) (e_{1} \wedge e_{2}) \stackrel{9.11}{=} f_{A}(e_{1}) \wedge f_{A}(e_{2}) = (A \cdot e_{1}) \wedge (A \cdot e_{2}) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = e_{2} \wedge (2e_{1} + e_{2} + 3e_{3}),$$

$$= -2e_{1} \wedge e_{2} + e_{2} \wedge e_{2} + 3e_{2} \wedge e_{3} = -2e_{1} \wedge e_{2} + 3e_{2} \wedge e_{3} = \Phi_{\mathcal{B}} \begin{pmatrix} -2 \\ 0 \\ 3 \end{pmatrix}$$

$$\left(\bigwedge^{2} f_{A}\right) (e_{1} \wedge e_{3}) \stackrel{9.11}{=} f_{A}(e_{1}) \wedge f_{A}(e_{3}) = (A \cdot e_{1}) \wedge (A \cdot e_{3}) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \wedge \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = e_{2} \wedge (e_{2} + 2e_{3})$$

$$= e_{2} \wedge e_{2} + 2e_{2} \wedge e_{3} = 2e_{2} \wedge e_{3} = \Phi_{\mathcal{B}} \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix},$$

$$\left(\bigwedge^{2} f_{A}\right) (e_{2} \wedge e_{3}) \stackrel{9.11}{=} f_{A}(e_{2}) \wedge f_{A}(e_{3}) = (A \cdot e_{2}) \wedge (A \cdot e_{3}) = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \wedge \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = (2e_{1} + e_{2} + 3e_{3}) \wedge (e_{2} + 2e_{3})$$

$$= 2e_{1} \wedge e_{2} + 4e_{1} \wedge e_{3} + e_{2} \wedge e_{2} + 2e_{2} \wedge e_{3} - 3e_{2} \wedge e_{3} + 6e_{3} \wedge e_{3}$$

$$= 2e_{1} \wedge e_{2} + 4e_{1} \wedge e_{3} - e_{2} \wedge e_{3} = \Phi_{\mathcal{B}} \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}.$$

Damit folgt dann

$$M_{\mathcal{B}}^{\mathcal{B}}\left(\bigwedge^{2}f_{A}\right) = \begin{pmatrix} -2 & 0 & 2\\ 0 & 0 & 4\\ 3 & 2 & -1 \end{pmatrix}.$$

Definition: Seien R ein Ring und M ein R-Modul. Dann heißt M flach, wenn für alle injektiven R-Modulhomomorphismen $\varphi \colon N \to L$ mit R-Moduln N, L auch $\varphi \otimes \mathrm{id}_M \colon N \otimes_R M \to L \otimes_R M$ (oder äquivalent $\mathrm{id}_M \otimes \varphi \colon M \otimes_R N \to M \otimes_R L$) injektiv ist.

- **37. Aufgabe:** (2+2+2 *Punkte, Flache Moduln*) Seien *R* ein Ring und *M* ein *R*-Modul.
 - (a) Man zeige: Ist *M* endlich erzeugt und frei, so ist *M* flach.

- (b) Seien M flach und N ein weiterer flacher R-Modul. Sei $\varphi \colon M \to N$ ein injektiver R-Modulhomomorphismus. Man zeige, dass $\varphi \otimes \varphi \colon M \otimes_R M \to N \otimes_R N$ injektiv ist. **Hinweis:** Man schreibe $\varphi \otimes \varphi = (\mathrm{id}_N \otimes \varphi) \circ (\varphi \otimes \mathrm{id}_M)$.
- (c) Man gebe ein Beispiel eines Ringes R und eines R-Moduls M, der nicht flach ist.

Lösung:

- (a) Seien N,L zwei weitere R-Moduln mit einem injektiven R-Modulhomomorphismus $\varphi\colon N\to L$. Betrachte dann $\varphi\otimes\operatorname{id}_M\colon N\otimes_R M\to L\otimes_R M$. Da φ und id_M Homomorphismen sind, ist es $\varphi\otimes\operatorname{id}_M$ nach 8.11 auch und ist eindeutig gegeben durch $(\varphi\otimes\operatorname{id}_M)(x\otimes y)=\varphi(x)\otimes y$ für $x\in N,\ y\in M$. Um zu zeigen, dass $\varphi\otimes\operatorname{id}_M$ injektiv ist, zeigen wir zunächst die folgende Aussage:
 - (*) Sei $\mathcal{B} = (b_1, \dots, b_n)$ eine Basis von M. Dann lässt sich jedes Element in $N \otimes_R M$ eindeutig schreiben als $\sum_{i=1}^n x_i \otimes b_i$ mit $x_i \in N$ (und analog für $L \otimes_R M$).

Zunächst lässt sich jedes Element in $N \otimes_R M$ von als Linearkombination von Elementen der Form $x \otimes b_i$, $x \in N$, $i \in \{1, \dots, n\}$ schreiben, da N ein Erzeugendensystem von N und \mathcal{B} ein Erzeugendensystem von M ist. Wegen $r(x \otimes b_i) = (rx) \otimes b_i$ und $x_1 \otimes b_i + x_2 \otimes b_i = (x_1 + x_2) \otimes b_i$ für $r \in R$, $x, x_1, x_2 \in N$ lässt sich jedes Element von der gegebenen Form darstellen. Zu zeigen bleibt also die Eindeutigkeit. Dazu betrachten wir den Isomorphismus

$$\Phi_{\mathcal{B}} \colon R^n \to M,$$

$$\sum_{i=1}^n r_i e_i \mapsto \sum_{i=1}^n r_i b_i,$$

wobei (e_1, \ldots, e_n) die Standardbasis von R^n bezeichnet. Wir erhalten einen induzierten Isomorphismus $\Psi_{\mathcal{B}} := \mathrm{id}_N \otimes \Phi_{\mathcal{B}} \colon N \otimes_R R^n \to N \otimes_R M$. Nach 8.14 haben wir einen weiteren Isomorphismus

$$f: N \otimes_R R^n \to N^n,$$

 $x \otimes \left(\sum_{i=1}^n r_i e_i\right) \mapsto (r_1 x, \dots, r_n x)$

Wir betrachten nun den Isomorphismus $g := f \circ \Psi_{\mathcal{B}}^{-1} \colon N \otimes_{\mathbb{R}} M \to N^n$. Dann ist

$$g(x_i \otimes b_i) = f(x_i \otimes e_i) = (0, \dots, 0, x_i, 0, \dots, 0),$$

wobei x_i an der i-ten Stelle steht. Somit ergibt sich

$$g(\sum_{i=1}^n x_i \otimes b_i) = (x_1, \dots, x_n).$$

Da die Komponenten von Elementen in N^n eindeutig sind und g ein Isomorphismus ist folgt damit die Eindeutigkeit der Darstellung in (*).

Mit diesen Vorbereitungen zeigen wir nun die Injektivität von $\varphi \otimes id_M$. Sei dazu $y = \sum_{i=1}^n x_i \otimes b_i \in N \otimes_R M$ mit $(\varphi \otimes id_M)(y) = 0$. Dann folgt

$$0 = (\varphi \otimes \mathrm{id}_M)(y) = \sum_{i=1}^n (\varphi \otimes \mathrm{id}_M)(x_i \otimes b_i) = \sum_{i=1}^n \varphi(x_i) \otimes b_i.$$

Aber wegen der Eindeutigkeit der Darstellung in (*) in $L \otimes_R M$ folgt damit $\varphi(x_i) = 0$ für alle i = 1, ..., n. Wegen der Injektivität von φ ist dann $x_i = 0$ für alle i = 1, ..., n und somit $y = \sum_{i=1}^n 0 \otimes b_i = 0$, also ist $\varphi \otimes \mathrm{id}_M$ injektiv.

(b) Seine M, N flache R-Moduln und $\varphi \colon M \to N$ ein injektiver R-Modulhomomorphismus. Dann ist $\varphi \otimes \mathrm{id}_M \colon M \otimes_R M \to N \otimes_R M$ injektiv, da M flach ist. Ebenso ist $\mathrm{id}_N \otimes \varphi \colon N \otimes_R M \to N \otimes_R N$ injektiv, da N flach ist. Zusammen ist dann

$$\varphi \otimes \varphi \colon M \otimes_R M \xrightarrow{\varphi \otimes \mathrm{id}_M} N \otimes_R M \xrightarrow{\mathrm{id}_N \otimes \varphi} N \otimes_R N$$

als Komposition von injektiven Abbildungen auch wieder injektiv.

(c) 8.12 aus dem Skript liefert hier ein Beispiel: $\mathbb{Z}/2\mathbb{Z}$ ist kein flacher \mathbb{Z} -Modul, denn für den injektiven Modulhomomorphismus $\varphi \colon \mathbb{Z} \to \mathbb{Z}$, $a \mapsto 2a$ ergibt sich

$$\varphi \otimes \mathrm{id}_{\mathbb{Z}/2\mathbb{Z}} \colon \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$$
$$a \otimes b \mapsto 2a \otimes b = a \otimes 2b = a \otimes 0 = 0$$

und da $\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \neq 0$ nach 8.5 gilt, ist $\varphi \otimes \mathrm{id}_{\mathbb{Z}/2\mathbb{Z}}$ nicht injektiv.

- **38. Aufgabe:** (3+3+2 *Punkte, Die Determinante und Injektivität*) Seien *R* ein Ring und *M* ein endlich erzeugter freier *R*-Modul. Man zeige:
 - (a) Seien N ein weiterer endlich erzeugter freier R-Modul und $\varphi \colon M \to N$ ein injektiver R-Modulhomomorphismus. Dann ist $\bigwedge^2 \varphi \colon \bigwedge^2 M \to \bigwedge^2 N$ injektiv. **Hinweis:** Man verwende Aufgabe 35 und Aufgabe 37.
 - (b) Seien $m_1, m_2 \in M$. Dann sind die folgenden Aussagen äquivalent:
 - (i) Die Familie (m_1, m_2) ist linear unabhängig.
 - (ii) Aus $r(m_1 \wedge m_2) = 0$ in $\bigwedge^2 M$ mit $r \in R$ folgt bereits r = 0.

Hinweis: Für die Implikation (i) \Rightarrow (ii) betrachte man den *R*-Modulhomomorphismus $\psi \colon R^2 \to M$ mit $\psi(e_i) = m_i$ für i = 1, 2, wobei (e_1, e_2) die Standardbasis von R^2 bezeichnet.

- (c) Seien nun Rang(M) = 2 und $\varphi \in \text{End}_R(M)$. Dann sind die folgenden Aussagen äquivalent:
 - (i) φ ist injektiv.
 - (ii) $det(\varphi) \in R$ ist kein Nullteiler.

Lösung:

(a) Es seien $f: \wedge^2 M \to M \otimes_R M$, sowie $g: \wedge^2 N \to N \otimes_R N$ die Abbildungen aus Aufgabe 35. Da M und N endlich erzeugt und frei sind, sind g und f injektiv. Wir betrachten nun das folgende Diagramm:

Dieses Diagramm ist kommutativ, denn für $m, n \in M$ gilt

$$\varphi \otimes \varphi(f(m \wedge n)) = \varphi \otimes \varphi(m \otimes n - n \otimes m)$$

$$= \varphi(m) \otimes \varphi(n) - \varphi(n) \otimes \varphi(m)$$

$$= g(\varphi(m) \wedge \varphi(n))$$

$$= g\left(\bigwedge^{2} \varphi(m \wedge n)\right)$$

Da M und N endlich erzeugt und frei sind, sind sie flach nach Aufgabe 37a), und nach Aufgabe 37 b) ist $\varphi \otimes \varphi$ injektiv. Da zudem f injektiv ist, ist also die Verkettung

$$(\varphi \otimes \varphi) \circ f$$

injektiv. Wegen

$$(\varphi \otimes \varphi) \circ f = g \circ \bigwedge^2 \varphi$$

muss dann auch $\bigwedge^2 \varphi$ injektiv sein.

(b) Wir zeigen zunächst die Implikation (i) \Longrightarrow (ii). Sei hierfür (m_1, m_2) linear unabhängig. Betrachte nun den R-Modulhomomorphismus $\psi \colon R^2 \to M$ mit $\psi(e_i) = m_i$ für i = 1, 2. Dieser existiert eindeutig nach der universellen Eigenschaft freier Moduln. Da (m_1, m_2) linear unabhängig sind, ist ψ injektiv (Für $x = \lambda_1 e_1 + \lambda_2 e_2 \in \ker \psi$ folgt $\lambda_1 m_1 + \lambda_2 m_2 = 0$, also $\lambda_1 = \lambda_2 = 0$ und somit x = 0).

nach Teil a) ist nun $\wedge^2 \psi$ ebenfalls injektiv. Sei nun $r \in R$ mit $r(m_1 \wedge m_2) = 0$. Dann ist $0 = \bigwedge^2 \psi(r(e_1 \wedge e_2))$. Also ist wegen der Injektiviät $r(e_1 \wedge e_2) = 0$. Da $e_1 \wedge e_2$ nach Vorlesung eine Basis von $\bigwedge^2 R^2$ und inbesondere linear unabhängig ist, folgt r = 0.

Die Rückrichtung (ii) \implies (i) zeigen wir durch Kontraposition: Ist (m_1, m_2) linear abhängig, dann gibt es $r_1, r_2 \in R$ mit $r_1m_1 = r_2m_2$ und r_1, r_2 nicht beide Null. Sei o.E. $r_1 \neq 0$. Es folgt

$$r_1(m_1 \wedge m_2) = (r_1m_1) \wedge m_2 = (r_2m_2) \wedge m_2 = r_2(m_2 \wedge m_2) = 0.$$

(c) Nach Vorlesung existiert ein $r \in R$ sodass $\bigwedge^2 \varphi(x) = rx$ für alle $x \in \bigwedge^2 M$ und es ist $r = \det(\varphi)$. Für eine Basis (m_1, m_2) von M ist zudem $(m_1 \wedge m_2)$ eine Basis von $\bigwedge^2 M$.

Für die Richtung (i) \implies (ii) sei nun r ein Nullteiler. Dann existiert ein $a \in R \setminus \{0\}$ mit ra = 0. Da $(m_1 \land m_2)$ als Basis linear unabhängig ist, ist $a(m_1 \land m_2) \neq 0$, aber

$$\bigwedge^2 \varphi(a(m_1 \wedge m_2)) = ra(m_1 \wedge m_2) = 0.$$

Damit ist $\bigwedge^2 \varphi$ nicht injektiv und nach Teil a) auch φ nicht injektiv.

Die Richtung (ii) \implies (i) zeigen wir ebenfalls durch Kontraposition. Sei φ also nicht injektiv. Da m_1, m_2 eine Basis von M ist, muss dann $(\varphi(m_1), \varphi(m_2))$ linear abhängig sein. Nach Teil b) existiert dann ein $a \in R \setminus \{0\}$ mit $a(\varphi(m_1) \land \varphi(m_2)) = 0$. Nun ist

$$\varphi(m_1) \wedge \varphi(m_2) = \bigwedge^2 \varphi(m_1 \wedge m_2) = r(m_1 \wedge m_2)$$

und somit $ar(m_1 \land m_2) = 0$. Nach b) muss ra = 0 sein, also ist r ein Nullteiler, da $a \neq 0$.

39. Aufgabe: (3+3 *Punkte, Exakte Folgen*) Seien $N = \mathbb{Z}$ und $M = \bigoplus_{i \in \mathbb{N}} \mathbb{Z}/2\mathbb{Z}$. Seien weiterhin $f: N \to N \oplus M$ und $g: N \oplus M \to M$ gegeben durch

$$f(n) = (2n, 0)$$
 und $g(n, (\overline{m}_1, \overline{m}_2, \dots)) = (\overline{n}, \overline{m}_1, \overline{m}_2, \dots)$

für $n \in N$ und $(\overline{m}_1, \overline{m}_2, \dots) \in M$. Man zeige:

- (a) Die Folge $0 \to N \xrightarrow{f} N \oplus M \xrightarrow{g} M \to 0$ ist eine kurze exakte Folge von Z-Moduln.
- (b) Die Folge aus (a) zerfällt nicht.

Hinweis: Man betrachte das Element $x = (1, 0, 0, ...) \in M$ und verwende, dass 2x = 0 gilt.

Lösung:

(a) f ist injektiv: Sei $n \in N = \mathbb{Z}$ mit f(n) = 0, dann ist (2n, 0) = (0, 0), insbesondere 2n = 0 und damit n = 0.

g ist surjektiv: Sei $(\overline{m_1},\overline{m_2},\overline{m_3},\dots)\in M=\bigoplus_{n\in\mathbb{N}}\mathbb{Z}/2\mathbb{Z}$. Dann ist

$$(\overline{m_1}, \overline{m_2}, \overline{m_3}, \ldots) = g(m_1, (\overline{m_2}, \overline{m_3}, \ldots))$$

Nun bleibt noch im $f = \ker g$ zu zeigen.

Für die Richtung " \subseteq " zeige $g \circ f = 0$: Sei $n \in N$, dann ist

$$g(f(n)) = g((2n, (0, 0, \dots))) = (\bar{2}, \bar{0}, \bar{0}, \dots) = 0.$$

Für die Richtung " \supseteq " sei $(n, (\overline{m_1}, \overline{m_2}, \dots)) \in \ker g \subset N \oplus M$. Dann ist $g((n, (\overline{m_1}, \overline{m_2}, \dots))) = 0$, also $\overline{m_i} = 0$ für alle $i \in \mathbb{N}$ und $\bar{n} = 0$, also existiert ein $k \in \mathbb{Z}$ sodass n = 2k ist. Es folgt

$$(n, (\overline{m_1}, \overline{m_2}, \dots)) = (2k, (\bar{0}, \bar{0}, \dots)) = (2k, 0) = f(k) \in \operatorname{im} f.$$

(b) Angenommen, die Folge zerfiele. Nach 10.6 existiert dann ein $T \subset N \oplus M$ sodass

$$g|_T: T \to M$$

ein Isomorphismus ist. Betrachte nun das Element $x=(\bar{1},\bar{0},\bar{0},\dots)\in M$. Da $g\big|_T$ ein Isomorphismus ist, muss T ein Urbild von x unter g enthalten, etwa

$$y = (n, (\overline{m_1}, \overline{m_2}, \dots)) \in N \oplus M.$$

Es gilt dann $\overline{m_i} = 0$ für alle $i \in \mathbb{N}$ und $\overline{n} = \overline{1}$, also insbesondere ist $n \neq 0$. Damit ist also auch $2n \neq 0$ und somit $2y \neq 0$. Da T ein \mathbb{Z} -Modul ist, muss jedoch $2y \in T$ sein und es gilt

$$g(2y) = 2g(y) = 2x = 0$$

was wegen $2y \neq 0$ einen Widerspruch zur Injektivität darstellt. Also kann die Folge nicht zerfallen.

Die Übungsblätter sowie weitere Informationen zur Vorlesung sind über MaMpf abrufbar.