Reevaluation of RubA in *Synechococcus* PCC 7002 Confirms Its Essential Role in Photosystem II

<u>Clayton Robinson¹</u>, Brandon P. Russell^{1,2}, Nicholas Ferrari¹, Terry Rodney¹, K. V. Lakshmi², and David J. Vinyard¹

Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
Department of Chemistry, Rensselaer Polytechnic Institute, Troy, NY, USA

The maturation of photosynthetic reaction centers requires multiple assembly factors. RubA in *Synechocystis* sp. PCC 6803 and its homolog RBD1 in *Chlamydomonas reinhardtii* and *Arabidopsis thaliana* are required for Photosystem II (PSII) assembly, likely by stabilizing the non-heme iron (Calderon et al. 2013; García-Cerdán et al. 2019). In contrast, Bryant and coworkers reported that RubA was essential for Photosystem I (PSI) assembly in the cyanobacterium *Synechococcus* (*Picosynechococcus*) sp. PCC 7002 (Shen et al. 2002). To clarify the role of RubA specifically in PCC 7002, we performed whole-genome sequencing of the original $\Delta rubA$ mutant generated in the Bryant laboratory. This revealed the expected rubA insertional inactivation along with an unrecognized deletion of psaC. We then reconstructed a clean $\Delta rubA$ mutation in a wild-type PCC 7002 background and analyzed photosystem function. The new $\Delta rubA$ strain retained functional PSI but had low levels of PSII, consistent with the role of RubA/RBD1 in other photosynthetic organisms. Our results resolve a long-standing discrepancy regarding RubA function and illustrate the utility of modern whole-genome sequencing in reassessing historical mutants.