Lógica

05 - Axiomatização

Marcos Roberto Ribeiro

Introdução

- A axiomatização é o sistema dedutivo mais antigo que se conhece
- Também conhecida como sistema de Hilbert
- A Axiomatização possui dois tipos de elementos:
 - Os axiomas, que são fórmulas da lógica com status de verdade básicas
 - As regras de inferência, que permitem inferir novas fórmulas a partir das fórmulas já existentes

Substituições

- A substituição de uma sub-fórmula p por uma sub-fórmula q em uma fórmula H, denotado por H[p/q] ocorre da seguinte maneira:
 - Se H = p então H[p/q] = q
 - Se H=q então H[p/q]=q
 - Se $H = \neg G$ então $H[p/q] = \neg G[p/q]$
 - Se $H=G\theta E$ então $H[p/q]=G[p/q]\theta E[p/q]$ para $\theta\in\{\vee,\wedge,\rightarrow,\leftrightarrow\}$
- Exemplo: $H = (p \to (p \land q))$, substituição $H[p/(r \lor s)]$ $(p \to (p \land q))[p/(r \lor s)] = (p[p/(r \lor s)] \to (p \land q)[p/(r \lor s)])$ $= ((r \lor s) \to (p[p/(r \lor s)] \land q[p/(r \lor s)]))$ $= ((r \lor s) \to ((r \lor s) \land q))$

 Quando G é o resultado da substituição de uma ou mais sub-fórmulas de H, dizemos que G é uma instância de H

Axiomatização

- Podem existir diversas axiomatizações
- A seguir temos um grupo de axiomas que definem o comportamento dos conectivos ¬, ∨, ∧ e →:

Thus
$$\neg$$
, \lor , \land $e \rightarrow$:
$$(\rightarrow_1): p \rightarrow (q \rightarrow p)$$

$$(\rightarrow_2): (p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$$

$$(\land_1): (p \rightarrow (q \rightarrow (p \land q)))$$

$$(\land_2): (p \land q) \rightarrow p$$

$$(\land_3): (p \land q) \rightarrow q$$

$$(\lor_1): (p \rightarrow (p \lor q))$$

$$(\lor_2): (q \rightarrow (p \lor q))$$

$$(\lor_3): (p \rightarrow r) \rightarrow ((q \rightarrow r) \rightarrow ((p \lor q) \rightarrow r))$$

$$(\lnot_1): (p \rightarrow q) \rightarrow ((p \rightarrow \lnot q) \rightarrow \lnot p)$$

$$(\lnot_2): \lnot \lnot p \rightarrow p$$

• Consideramos também a regra de inferência modus ponens onde, dado $H \to G$ e H, podemos inferir G

Dedução e Teoremas

- Os axiomas podem ser instanciados, ou seja, seus átomos podem ser uniformemente substituídos por qualquer fórmula
- Com estes conceitos podemos definir o que é dedução
- Dedução é uma sequência de fórmulas H₁,..., H_n tal que cada fórmula da sequência ou é uma instância de um axioma ou é obtida por meio de regras de inferência
- Dizemos que a fórmula H é dedutível a partir do conjunto de fórmulas Γ , se há uma dedução, ou seja, uma sequência de fórmulas $H_1, ..., H_n = H$ tal que cada fórmula H_i na sequência:
 - Ou é uma fórmula $H_i \in \Gamma$
 - Ou é uma instância de um axioma
 - Ou é obtida de fórmulas anteriores por meio de *modus ponens*
- Quando $\Gamma = \{\}$, dizemos que H é um teorema e denotamos por $\vdash H$
- Observe que a substituição não pode ser aplicada nas fórmulas de Γ, mas apenas nos axiomas

(1)
$$(p \to (q \to r)) \to ((p \to q) \to (p \to r))$$
 (\to_2)
(2) $(H \to ((H \to H) \to H)) \to ((H \to (H \to H)) \to (H \to H))$ ($1)[p/H][q/(H \to H)][r/H]$
(3) $p \to (q \to p)$ (\to_1)
(4) $H \to ((H \to H) \to H)$ ($3)[p/H/[q/(H \to H)]$
(5) $((H \to (H \to H)) \to (H \to H))$ modus ponens, (2), (4)
(6) $p \to (q \to p)$ (\to_1)
(7) $H \to (H \to H)$ (6) $[p/H/[q/H]$

```
(1) (p \to (q \to r)) \to ((p \to q) \to (p \to r))

(2) (H \to ((H \to H) \to H)) \to ((H \to (H \to H))) \to (H \to H))

(3) p \to (q \to p)

(4) H \to ((H \to H) \to H)

(5) ((H \to (H \to H)) \to (H \to H))

(6) p \to (q \to p)

(7) H \to (H \to H)

(8) H \to H

(9) (p \to r)

(1) (p/H)[q/(H \to H)][r/H]

(3) (p/H/[q/(H \to H)]

(4) (r/H)

(5) (r/H)

(6) (r/H)

(7) (r/H)

(8) (r/H)

(9) (r/H)

(1) (r/H)

(1) (r/H)

(2) (r/H)

(3) (r/H)

(4) (r/H)

(6) (r/H)

(6) (r/H)

(7) (r/H)

(8) (r/H)

(9) (r/H)

(9) (r/H)

(1) (r/H)

(1) (r/H)

(1) (r/H)

(2) (r/H)

(3) (r/H)

(4) (r/H)

(6) (r/H)

(7) (r/H)

(8) (r/H)

(9) (r/H)

(9) (r/H)

(1) (r/H)

(1) (r/H)

(1) (r/H)

(2) (r/H)

(3) (r/H)

(4) (r/H)

(5) (r/H)

(6) (r/H)

(7) (r/H)

(8) (r/H)

(9) (r/H)

(9) (r/H)

(1) (r/H)

(1) (r/H)

(1) (r/H)

(2) (r/H)

(3) (r/H)

(4) (r/H)

(4) (r/H)

(5) (r/H)

(6) (r/H)

(7) (r/H)

(8) (r/H)

(9) (r/H)

(9) (r/H)

(1) (r/H)

(1) (r/H)

(1) (r/H)

(1) (r/H)

(1) (r/H)

(1) (r/H)

(2) (r/H)

(3) (r/H)

(4) (r/H)

(5) (r/H)
```

(1)
$$(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$$
 (\rightarrow_2)
(2) $(H \rightarrow ((H \rightarrow H) \rightarrow H)) \rightarrow ((H \rightarrow (H \rightarrow H))) \rightarrow (H \rightarrow H))$ $(1)[p/H][q/(H \rightarrow H)][r/H]$
(3) $p \rightarrow (q \rightarrow p)$ (\rightarrow_1) $(3)[p/H/[q/(H \rightarrow H)]$
(4) $H \rightarrow ((H \rightarrow H) \rightarrow H)$ $(3)[p/H/[q/(H \rightarrow H)]]$
(5) $((H \rightarrow (H \rightarrow H)) \rightarrow (H \rightarrow H))$ $(modus ponens, (2), (4))$
(6) $p \rightarrow (q \rightarrow p)$ (\rightarrow_1) $(6)[p/H/[q/H]]$

(1)
$$(p \to (q \to r)) \to ((p \to q) \to (p \to r))$$
 (\to_2)
(2) $(H \to ((H \to H) \to H)) \to ((H \to (H \to H))) \to (H \to H))$ $(1)[p/H][q/(H \to H)][r/H]$
(3) $p \to (q \to p)$ (\to_1)
(4) $H \to ((H \to H) \to H)$ $(3)[p/H/[q/(H \to H)]]$
(5) $((H \to (H \to H)) \to (H \to H))$ (\to_1) (\to_2) (\to_1) $(\to_$

```
(1) (p \to (q \to r)) \to ((p \to q) \to (p \to r)) (\to_2)

(2) (H \to ((H \to H) \to H)) \to ((H \to (H \to H)) \to (H \to H)) (1)[p/H][q/(H \to H)][r/H]

(3) p \to (q \to p) (\to_1)

(4) H \to ((H \to H) \to H) (3)[p/H/[q/(H \to H)]

(5) ((H \to (H \to H)) \to (H \to H)) (0)[p/H/[q/H] (0)[p/H/[q/H]
```

```
(1) (p \to (q \to r)) \to ((p \to q) \to (p \to r)) (\to_2)

(2) (H \to ((H \to H) \to H)) \to ((H \to (H \to H))) \to (H \to H)) (1)[p/H][q/(H \to H)][r/H]

(3) p \to (q \to p) (\to_1) (3)[p/H/[q/(H \to H)]

(4) H \to ((H \to H) \to H) (3)[p/H/[q/(H \to H)] modus ponens, (2), (4)

(6) p \to (q \to p) (\to_1) (\oplus_1)[p/H/[q/H]
```

```
(1) (p \to (q \to r)) \to ((p \to q) \to (p \to r)) (\to_2) (2) (H \to ((H \to H) \to H)) \to ((H \to (H \to H))) \to (H \to H)) (1)[p/H][q/(H \to H)][r/H] (3) p \to (q \to p) (\to_1) (3)[p/H/[q/(H \to H)] (5) ((H \to (H \to H)) \to (H \to H)) (B)[p/H/[q/(H \to H)]] (B)[p/H/[q/(H \to H)]]
```

```
(1) (p \to (q \to r)) \to ((p \to q) \to (p \to r)) (\to_2) (2) (H \to ((H \to H) \to H)) \to ((H \to (H \to H))) \to (H \to H)) (1)[p/H][q/(H \to H)][r/H] (3) p \to (q \to p) (\to_1) (3)[p/H/[q/(H \to H)]] (5) ((H \to (H \to H)) \to (H \to H)) (6) p \to (q \to p) (\to_1) (7) H \to (H \to H) (6) p \to (H \to H)
```

 O Teorema da Dedução relaciona o conectivo da implicação (→) com a dedução lógica (⊢)

Teorema da Dedução

 $\Gamma, H \vdash G$ se e somente se $\Gamma \vdash H \rightarrow G$

- (1) $H \rightarrow G$ premissa
 - (2) E o H premissa
 - 3) E premissa
- (4) H modus ponens, (2), (3)
- (5) G modus ponens, (1), (4)

 O Teorema da Dedução relaciona o conectivo da implicação (→) com a dedução lógica (⊢)

Teorema da Dedução

 $\Gamma, H \vdash G$ se e somente se $\Gamma \vdash H \rightarrow G$

- (1) $H \rightarrow G$ premissa
- (2) $E \rightarrow H$ premissa
- (3) E premissa
- (4) *H* modus ponens, (2), (3)
- (5) G modus ponens, (1), (4)

 O Teorema da Dedução relaciona o conectivo da implicação (→) com a dedução lógica (⊢)

Teorema da Dedução

$$\Gamma, H \vdash G$$
 se e somente se $\Gamma \vdash H \rightarrow G$

- (1) $H \rightarrow G$ premissa
- (2) $E \rightarrow H$ premissa
- (3) E premissa
- (4) H modus ponens, (2), (3)
- **(5)** *G modus ponens*, (1), (4

 O Teorema da Dedução relaciona o conectivo da implicação (→) com a dedução lógica (⊢)

Teorema da Dedução

$$\Gamma, H \vdash G$$
 se e somente se $\Gamma \vdash H \rightarrow G$

- (1) $H \rightarrow G$ premissa
- (2) $E \rightarrow H$ premissa
- (3) E premissa
- (4) H modus ponens, (2), (3)
- (5) G modus ponens, (1), (4)

Exercícios

Demonstre os seguintes teoremas:

a)
$$(H \rightarrow (G \rightarrow E)) \rightarrow (G \rightarrow (H \rightarrow E))$$

b)
$$(H \rightarrow (H \rightarrow G)) \rightarrow (H \rightarrow G)$$

c)
$$(\neg p \rightarrow q) \rightarrow ((\neg p \rightarrow \neg q) \rightarrow p)$$

$$\mathsf{d)} \ \ (p \to q) \to (\neg q \to \neg p)$$

e)
$$(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow q)$$

$$\mathsf{f})\ (p \land \neg p) \to q$$

g)
$$p \rightarrow \neg \neg p$$

Referências I

de Souza, J. N. (2008).

Lógica para ciência da computação: uma introdução concisa. Elsevier. Rio de Janeiro. 2 edition.

Huth, M. and Ryan, M. (2008).

Lógica em ciência da computação: modelagem e argumentação sobre sistemas.

LTC, Rio de Janeiro, 2 edition.

Silva, F. S. C., Finger, M., and Melo, A. C. V. (2010). Lógica para computação.

Cengage Learning, São Paulo, 2 edition.