COMP 474/6741 Intelligent Systems (Winter 2024)

Worksheet #4: Recommender Systems

Task 1. Let's take some movies that have been #tagged (or categorized) as follows:

	Action	Comedy	Sci-Fi	Horror	Drama	Romance	length
Movie 1	4	8	6	3	0	0	11.18
Movie 2	0	5	0	8	5	0	10.68
Movie 3	1	4	0	3	0	10	11.22

So, each movie becomes a 6-dimensional vector of tags t_i , e.g., $\overrightarrow{\text{Movie}_1} = \langle 4, 8, 6, 3, 0, 0 \rangle$. Compute the *length* of each movie vector, which is defined as $\|\vec{n}\| = \sqrt{t_1^2 + \ldots + t_n^2}$ (rounded to two significant digits).

Task 2. Now you can normalize the vectors, by dividing the raw count of each tag t_i by the length $\frac{t_i}{||\vec{m}||}$:

	Action	Comedy	Sci-Fi	Horror	Drama	Romance
Movie 1	4 / 11.18 = 0.3578	0.7156	0.5367	0.2683	0	0
Movie 2	0	0.4682	0	0.7491	0.4682	0
Movie 3	0.0891	0.3565	0	0.2674	0	0.8913

Use 4 significant digits for this table (protip: the length of each movie vector must now be 1).

Task 3. We can now compute how *similar* the movies are, by computing their *cosine similarity*. Since the vectors are normalized, this is simply their dot product: $sim(\vec{m}, \vec{n}) = cos(\vec{m}, \vec{n}) = \vec{m} \cdot \vec{n} = \sum_i m_i \cdot n_i$:

0 + (0.7156)(0.4682) + 0 + (0.2683)(0.7491) = 0.536	Movie 1	Movie 2	Movie 3	
•	Movie 1		0.536	0.3587
	Movie 2		1	0.3672
	Movie 3	0.3587	0.3672	1

This is the information we need for an *item-to-item recommendation engine*: Now we can answer the question, which movie is interesting to (buy, watch) for a customer who (bought, watched) Movie 1? Movie 2 = 0.536

Task 4. Now we want to *personalize* the recommendations. We collected the following profiles about the movies watched (bought) by our users in the past:

	Action	Comedy	Sci-Fi	Horror	Drama	Romance	length
Jane	1	2	1	1	1	0	2.83
Joe	0	1	0	1	0	1	1.73

Compute the length of each user vector and normalize it like before:

	Action	Comedy	Sci-Fi	Horror	Drama	Romance
Jane	1 / 2.83 = 0.3533	0.7067	0.3533	0.3533	0.3533	0
Joe	0	0.5780	0	0.5780	0	0.5780

Task 5. Now we can answer the question which movie a user is interested in. Compute the cosine similarities between the user vectors and the movie vectors:

(0.3578)(0.3533) + (0.7156)(0.7067) + (0.536) (0.2683)(0.3533) + 0 + 0 = 0.9165	67)(0.3533) +	Movie 1	Movie 2	Movie 3
- 0.9100	Jane	0.9165	0.7609	0.37789
	Joe	0.5689	0.7036	0.8764

[prec@(1)* rel(1) + ...] = 0.333

Task 6. Consider the results from three different recommender systems below: Here, X1-X5 are the items (movies, photos, songs, ...) that the systems should have recommended as relevant for a specific user. The remaining 495 instances are not relevant for the user. A checkmark indicates that a system recommended this item to the user (the first *Target* column is the ground truth):

Target	system 1	system 2	system 3
X1 √	X1 ×	X1 √	X1 √
X2 √	X2 ×	X2 ×	X2 √
X3 √	X3 ×	X3 √	X3 √
X4 √	X4 ×	X4 √	X4 √
X5 √	X5 ×	X5 ×	X5 √
X6 ×	X6 ×	X6 ×	X6 √
X7 ×	X7 ×	X7 ×	X7 √
×	×	×	×
×	×	×	×
X500 ×	X500 ×	X500 ×	X500 ×

Evaluate the performance of the three systems using the measures *Precision* and *Recall*:

	Precision	Recall
system 1	0	0/5
system 2	3/3	3/5
system 3	5/7	5/5

Quality vs Relevancy precision =
$$\frac{\#\text{correct system recommendations}}{\#\text{all system recommendations}}$$

$$\text{recall} = \frac{\#\text{correct system recommendations}}{\#\text{all correct recommendations}}$$

Task 7. Now we're looking at ranked results. Based on the output below, compute precision@k = $\frac{1}{k} \cdot \sum_{i=1}^{k} \operatorname{rel}(c)$ for the three recommender systems (for k = 1, 2, 3): rel(c) tells us if item at rank c was relevant (1) or not (0)

1 _ [rel(1)] = 1		$\operatorname{rel}(k)$		precision@k				AF 1	
1		1	2	3	1	2	3	AP@3	3
$\frac{1}{2} [rel(1) + rel(2)] = 0.5$	system 1	1	0	0	1	0.5	0.3333	0.333	
1	system 2	0	1	0	0	0.5	0.3333	0.1667	
$\frac{1}{3}$ [rel(1) + rel(2) + rel(3)] = 0.3	33 system 3	0	0	1	0	0	0.3333	0.111111	_

That is, here each system got exactly one recommendation right, but in a different position.

AP "rewards" (gives a higher score to) higher-ranked, correct recommendations NTask 8. Moving on to the average precision, $AP@N = \frac{1}{m} \sum_{k=1}^{m} \operatorname{precision}@k \cdot \operatorname{rel}(k)$. Compute the AP@3 and add it to the table above. Here, assume m=3 (i.e., there could have been 3 correct recommendations in the top-3). Note the difference in the AP@3 for the three systems!

Task 9. Create a content vector for the movie description $m_1 = \text{``A comedy with zombies.''}$ Start by filling in the tf values below. Then compute $\mathrm{idf} = \log_{10} \frac{N}{\mathrm{df}}$ (assume N = 10,000,000) and tf-idf = $(1 + \log \mathrm{tf}_{t,d}) \times \mathrm{idf}$. Finally, compute the normalized vector \vec{q} as before (in Tasks 1&2) from the tf-idf vector and its length:

		m	1		length = 0^2 + 3^2 + 2^2 + 0^2	
token	tf	df	idf	tf-idf	q_i	= 3.61
action	0	50,000	2.301	0	0	
comedy	1	10,000	3	3	= 3 / 3.61	= 0.83
zombies	1	100,000	2	2	0.55	
romantic	0	10,000	3	0	0	

You can now use these vectors for cosine similarity calculations to find recommendations as before, but this time based on the *content* of an item (like a movie description).