Status Update on High-Frequency Cantilever Design for Fluid Operation

Joey Doll, June 2008

Overview

- Cantilevers in Fluid
 - Analytical modeling
 - Implications for design
- Numerical optimization of epitaxial cantilevers
 - Comparison with Previous Approaches
 - Numerical model
 - Comparison with experimental data (Harley)
 - Implementation
 - Results
- Piezoelectric Actuation Model
- Summer and Future Work

- Oscillations of a thin blade on fluid
 - W. Chu, 1963
- Extended to cantilevers for AFM
 - J. Sader, 1993 Ongoing
- Analytical approximations for frequency spectra of cantilevers in fluid

- Assumptions
 - t << w << L
 - Rectangular, uniform cross-section
 - Vibrations smaller than any dimensions
 - Fluid damping dominates internal dissipation
 - Incompressible, infinite viscous fluid
- Variations on this analysis exist (e.g. inviscid)

High-speed atomic force microscopy in liquid, Sulcheck, Hsieh, Adams, Minne, Quate, Adderton, Rev. Sci. Instr. (2000)

Rheological measurements using microcantilevers, Boskovic, Chon, Mulvaney, Sader, Soc. Of Rheology (2002)

$$Re = \frac{\rho \omega w^2}{\eta} \qquad \kappa = C_n \frac{w}{L}$$

$$\omega_{damped} = \omega_{vac} \left[1 + \frac{\pi \rho_f w}{4\rho_c h} \Gamma_r(\omega_{damped}, n) \right]^{-1/2}$$

$$Q_n = \frac{\frac{4\rho_c h}{\pi \rho_f w} + \Gamma_r(\omega_{damped}, n)}{\Gamma_i(\omega_{damped}, n)}$$

Hydrodynamic Function

Hydrodynamic Function

Vacuum vs. Liquid Frequencies

Damped Natural Frequency

Damped Natural Frequency

Quality Factor

Quality Factor

Damped Natural Frequency

Damped Natural Frequency

Quality Factor

Quality Factor

Frequency Response (SHO)

Frequency Response (SHO)

Open-Loop Step Response

Open-Loop Step Response

Fluid Modeling Conclusions

- Flat frequency response to 100 kHz requires damped natural frequency ~500 kHz
- Width matters in fluid. Reducing width:
 - Increases first resonant mode frequency
 - Reduces quality factor
- But won't want to reduce w/t too much
- Microsecond rise time is feasible, independent of Q
- Cantilever near a surface
 - Surface doesn't matter if gap > cantilever width
 - If gap < cantilever width, dissipation increases dramatically

Overview

- Cantilevers in Fluid
 - Analytical modeling
 - Implications for design
- Numerical optimization of epitaxial cantilevers
 - Comparison with Previous Approaches
 - Numerical model
 - Comparison with experimental data (Harley)
 - Implementation
 - Results
- Piezoelectric Actuation Model
- Summer and Future Work

Comparison with Other Approaches

- Normal process
 - Pick a thickness
 - Choose length and width based upon natural frequency constraints
 - Choose piezoresistor dimensions from Harley analysis of 1/f noise considerations or Sung-Jin's work for ion implantation
 - Choose doping & maximize bias voltage

Comparison with Other Approaches

- Can we write the problem more generally?
- Problem statement: Minimize force resolution given
 - Frequency span of signal to be measured
 - Fabrication constraints
 - Power dissipation (quasi-constraint)
- Other optimizations
 - Minimize rise time
 - Maximize effective bandwidth (e.g. < 5% frequency response deviation)
 - Minimize noise at a particular frequency

Model and Goal

- Optimize cantilever inputs to maximize performance
 - Cantilever geometry
 - Piezoresistor Geometry
 - Piezoresistor doping
 - Bias voltage
- Constants
 - Fluid media
 - Cantilever mechanical properties
- Constraints
 - Resonant frequency
 - Power dissipation
- Goals
 - Force resolution

Electrical Modelling

Piezoresistor

- Epitaxial only (for now, see conclusions)
- Concencentration dependent mobility
- Piezoresistive coefficient from Harley data
- Voltage drop completely across the piezoresistor (reasonable for metal lines)

Noise

- 1/f, Johnson, amplifier (no thermomechanical, fluid yet)
- $\alpha=10^{-5}$ (approximated from Harley data)

How Well does the Model Fit?

- Compare model to epi cantilever experimental data
 - Harley's 89nm thick cantilever

Cantilever

Thickness	89 nm
Width	44 um
Length	300 um

Piezoresistor

Thickness	30 nm	
Width	44 um	
Length	45 um	
Gap	3 um	

Other

Freq Min	10 Hz	
Freq Max	1 kHz	
Bias	5 V	
Doping	4e19/cm ³	
Alpha	1e-5	

How Well does the Model Fit?

	Calculated	Measured
Force Resolution (pN)	0.35	0.5
Resistance (Ohms)	2003	-
Integrated Noise (V)	5.2e-7	1.14e-6
Stiffness (N/m)	4.8e-5	3e-5
Knee Frequency (Hz)	1534	1000
Piezo Factor (m^2/N)	3.7e-10	4e-10
Johnson Noise Density (V)	5.7e-9	1.5e-8
Power Dissipation (mW)	12.5	-
Natural Freq, Vacuum (Hz)	1359	-
Natural Freq, Water (Hz)	34	-
Quality Factor	0.5	

Pretty good

The Optimization Problem

- Optimization characteristics
 - Smooth functions
 - Suggest single global optimum (proof?)
- Constraints
 - Simple boundaries on geometry, doping dictated by fabrication capabilities
 - Nonlinear constraints (e.g. frequency, power, other)
- Options
 - Brute force global (10ⁿ = infeasible)
 - Guess-and-check (heuristics)
 - Constrained, nonlinear optimization

Optimization Problems

- Fixed f_{min}, varying f_{max} (resonance and noise integration)
 - $f_{min} = 100 Hz$
 - $-t_{min} = 1um$
 - $w_{min} = 1um$
 - $N_{max} = 1e20/cc$
 - $-V_{max} = 5V$
- Fixed f_{max}, varying f_{min}
 - $f_{max} = 100 \text{ kHz}$
 - Rest same as above
- Both optimizations performed for vacuum
- ~100 iterations per data point => 30 minutes
- Very early results, from the last few days

Force Resolution

Power and Resistance

Johnson and Hooge Noise

Roughly comparable Johnson and 1/f noise (need to prove that it's the global minimum and not just the local minimum)

Knee Frequency and Doping

Compare knee frequency and f_{max} . High doping levels.

Cantilever Geometry

Piezoresistor Geometry

Not the design parameters described by Harley

Force Resolution

Power and Resistance

Johnson and Hooge Noise

Little change in integrated 1/f noise by changing piezoresistor dimensions.

Knee Frequency and Doping

Cantilever Geometry

Piezoresistor Geometry

Again, not the design parameters described by Harley

Optimization Conclusions

- High doping is preferred
 - Even without taking TCF into account
 - Based upon Harley fit to experimental data
- Maximize piezoresistor width
- Piezoresistor thickness and length ratios don't agree with prior optimizations
 - Still need to definitively prove that these global optima (in progress)
- Model agrees with ultra thin epitaxial cantilevers
- Numerical optimization is more flexible and simple than heuristic design
- More on extending the optimization at the end

Future Design Work

Optimization

- Thermal model rather than power dissipation
- Integration with TSUPREM for ion implantation, won't need lookup tables
- Integration with Comsol for complete model
- Optimize rise time, useful frequency range

Modeling

 Complete electromechanical model (e.g. piezoelectric charging, power electronics)

Optimization Code and Model

- Originally written in Python using SciPy (March)
 - Optimizers did not reliably converge, lots of headaches
- Switched to Matlab using object oriented features introduced in R2008a (May)
- Uses local, nonlinear constrainted optimization
 - L-BFGS-B (fmincon)
- Code is online
 - http://microsystems.stanford.edu/git/cantilever optimization.git
 - http://microsystems.stanford.edu/wiki/Version Control with Git
 - Reasonably clean code, will have README soon

Overview

- Cantilevers in Fluid
 - Analytical modeling
 - Implications for design
- Numerical optimization of epitaxial cantilevers
 - Comparison with Previous Approaches
 - Numerical model
 - Comparison with experimental data (Harley)
 - Implementation
 - Results
- Piezoelectric Actuation Model
- Summer and Future Work

Piezoelectric Actuation Model

	Stiffness (10 ¹⁰ N / m ²)	Strain Coefficient (10 ⁻¹² C / N)	Relative Permittivity	Coupling Coefficient K ² (%)	Velocity (m / s)	Density (kg / m ₃)
Aluminum Nitride (AIN)	33.0	5.6 (d ₃₃)	8.6	6.0	11,300	3.26
Barium Titanate (BaTiO ₃) *	11.0 - 27.5	82-145 (d ₃₃)	625-1350	39 – 46	4460	5.85
Lithium Niobate (LiNbO ₃)	24.5	19.2 (d ₃₃)	44	17.2 †	4379 [†]	4.64
Lithium Tantalate (LiTaO ₃)	23.3	8.0 (d ₃₃)	41	4.7 [†]	4112 [†]	7.64
P(VDF–TrFE)	0.3	-12.0 (d ₃₁)	13	0.18	2400	1.88
Quartz (SiO ₂)	10.7	2.3 (d ₁₁)	4.5	0.11 [†]	3948 [†]	2.65
PZT (PbZrTiO3)*	4.8 – 13.5	240-550 (d ₃₃)	1100-3200	66 - 73	4600	7.55
Zinc Oxide (ZnO)	21.0	10-12 (d ₃₃)	8.5	7.5	6,080	5.60

Thickness mode, thin film

Ferroelectric ceramic, bulk material

Ferroelectric polymer

X-Ray Diffraction

 Diffraction occurs only when the distance travelled by the rays reflected from successive planes differs by a complete number n of wavelengths:

$$n\lambda = 2d \sin\theta$$

- By varying the angle θ, the Bragg's Law conditions are satisfied by different d-spacings in polycrystalline materials.
- A perfect crystal would give peaks that were delta functions.

λ is the x-ray wavelength

 $\boldsymbol{\theta}$ is the angle between the incident ray and crystal surface

d is the spacing between the layers of atoms

Borrowed from Justin Black, UC Berkeley

Aluminum Nitride

Counts per second

- A normal coupled scan gives the stochiometry (relative composition) of different crystal orientations (e.g. (002), (110))
- For AIN, the piezoelectric (002) crystal peak orientation occurs at 36.1°
- A rocking curve measures the alignments of the (002) crystallites

θ -2 θ Scan (or normal coupled)

Theta (°)

Borrowed from Justin Black, UC Berkeley

d₃₁ and d₃₃ Measurement

Commercial versions cost \$3500 +

Stress induced charge collected from the sample surface

This charge is capacitively divided between piezoelectric sample and C_{in} of the oscillopscope

Current plan is to actuate cantilevers and measure tip displacement with LDV (indirect), but other methods include applying a force with a conducting AFM tip and collecting the charge

Piezoelectric Actuation Model

117 nm (want 500 nm) static tip deflection for:

•
$$d_{31} = 3 pC/N$$

•
$$W_{cantilever} = W_{piezoelectric} = 10um$$

•
$$t_{cantilever} = 1$$
um, $t_{piezoelectric} = 500$ nm

•
$$V_{bias} = 5V$$

$$\delta(x) = \frac{x^2 d_{31} \mathbf{E}_p(t_e + t_p) A_e E_e A_p E_p}{(t_e + t_p)^2 A_e E_e A_p E_p + 4(A_e E_e + A_p E_p)(E_e I_e + E_p I_p)}$$

More complicated for multimorphs, electrode and insulating layers can drastically change things (also in their paper)

Overview

- Cantilevers in Fluid
 - Analytical modeling
 - Implications for design
- Numerical optimization of epitaxial cantilevers
 - Comparison with Previous Approaches
 - Numerical model
 - Comparison with experimental data (Harley)
 - Implementation
 - Results
- Piezoelectric Actuation Model
- Summer and Future Work

Plan for the Summer

- XRD on aluminum nitride for process optimization
- ASML mask design
- Fabrication of actuating cantilevers to characterize mechanical resonance, d₃₁ (July/August)
- Mask design again
- Fabrication of actuating, sensing cantilevers (August/September)
- Arsenic piezoresistors (July?)

Arsenic Piezoresistors

- Arsenic Piezoresistors
 - Lower modulus in <100> versus <110>
 - Higher mobility for N-type dopants (lower R for fixed N)
 - Higher piezoresistive coefficient (from Kanda, limited experimental data)
 - Lower diffusivity in silicon (300nm junctions achievable via ion implantation)
 - Would like to test with the class cantilever process to get P(N) and alpha(sqrt(Dt)), expected results...