4. laboratorní práce

Téma: Kapilární elevace

Úkol: Změřte, do jaké výšky vystoupá voda při kapilární elevaci a vypočtěte povrchové napětí vody.

Pomůcky: kapilára, kádinky, milimetrové měřítko, mikrometr, jehla, voda

Teorie: Povrchovou sílu F_p lze vypočítat vztahem $F_p = \sigma \cdot l$ z čehož lze odvodit, že

$$\sigma = \frac{F_p}{I}$$

kde F_p je povrchová síla a l je délka okraje povrchové vrstvy.

nahoru působí reakce k povrchové síle $(F_p = F)$

$$F = \sigma \cdot l = \sigma \cdot 2\pi r = \sigma \cdot \pi d$$

dolů působí tíhová síla F_G

$$F_G = \rho \cdot V \cdot g = \rho \cdot \pi \frac{d^2}{4} \cdot h \cdot g$$

$$F = F_G$$

$$\sigma \cdot \pi \cdot d = \rho \cdot \pi \cdot d^2 \cdot 4^{-1} \cdot h \cdot g$$

$$\sigma = \rho \cdot d \cdot h \cdot g \cdot 4^{-1}$$

$$\sigma = \frac{\rho \cdot d \cdot h \cdot g}{4}$$

Postup:

- 1. Zasuneme do kapiláry jehlu a pomocí její tloušťky v bodě kde se zasekne určíme tloušťku vnitřní části kapiláry.
- 2. Kapiláru ponoříme do kádinky a smočíme její stěny.
- 3. Kapiláru vytáhneme tak, aby byl dolní konec těsně pod hladinou vody.
- 4. Naměříme výšku hladiny v kapiláře.
- 5. Kroky 2. až 4. opakujeme až do získání patřičného počtu měření.

Teorie výpočtu odchylky:

 $\underline{\underline{d}}$ je naměřená hodnota

 \boldsymbol{d} je aritmetický průměr \boldsymbol{d}

 Δd je absolutní chyba, což je odchylka daného měření od \overline{d} δd je relativní chyba($\frac{\Delta d}{\overline{d}})$

Naměřené hodnoty a výsledky měření:¹

č. měřen	ιí	d[mm]	$\Delta d [\mathrm{mm}]$	h[mm]	$\Delta h[\mathrm{mm}]$
	1	0,75	0,01	37	0
	2	0,75	0,01	36	1
	3	0,72	0,02	38	1
průmě	r	0,740	0,01	37,0	1

$$\begin{split} d &= (0,74 \pm 0,01) \cdot 10^{-3} m, \delta d = 1,4\% \\ h &= (37 \pm 1) \cdot 10^{-3} m, \delta h = 2,7\% \\ \sigma &= \frac{\rho \cdot d \cdot h \cdot g}{4} \\ \sigma &= \frac{\rho = 998 kg \cdot m^{-3} \cdot 0,74 \cdot 10^{-3} m \cdot 37 \cdot 10^{-3} m \cdot 9,81 m \cdot s^{-2}}{4} \\ \sigma &= 67 \cdot 10^{-3} N \cdot m^{-1} \\ \delta \sigma &= \delta \rho + \delta d + \delta h + \delta g = 0\% + 1,4\% + 2,7\% + 0\% \\ \delta \sigma &\doteq 4,1\% \\ \Delta \sigma &= \frac{\sigma}{100} \cdot \delta \sigma = \frac{67 \cdot 10^{-3} N \cdot m^{-1}}{100} \cdot 4,1\% \\ \Delta \sigma &\doteq 3 \cdot 10^{-3} N \cdot m^{-1} \end{split}$$

Závěr: Hodnota σ , kterou jsme naměřili, byla $(67\pm3)\cdot 10^{-3}N\cdot m^{-1}$. Tato hodnota je nižší, než hodnota tabulková $(73\cdot 10^{-3}N\cdot m^{-1})$, což je zaviněno především znečištěním vody.

Sazba byla provedena programem LATEX

¹Průměrné hodnoty jsou již zaokrouhleny na platný počet desetinných míst.