Dans ce cours, on préconise de rédiger les preuves par récurrence et induction selon le schéma présenté dans ce document.

Les raisonnements par récurrence/induction sont similaires.

Dans les deux cas on commence par écrire la propriété à prouver : Soit $P(\mathbf{n})=$ "bla bla bla bla bla bla'"

Ensuite il y a 3 étapes "étiquetées".

Pour les raisonnements par récurrence :

- 1. Base : Montrer que $P(\mathbf{n_0})$ est vraie pour un certain $\mathbf{n_0} \in \mathbb{N}$ que vous aurez déterminé
- 2. **Récurrence** : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant n_0$ **H**ypothèse de **R**écurrence (**HR**) : on suppose que P(n) est vraie pour un $n \geqslant n_0$ bla bla bla bla bla donc P(n+1) est vraie
- 3. Conclusion : on a montré que $P(n_0)$ est vraie et que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant n_0$, donc par le principe de récurrence on a P(n) vraie $\forall n \geq n_0$

Pour les raisonnements par induction, peu de changements :

- 1. Base : Montrer que $P(\mathbf{n_0})$ est vraie pour un certain $\mathbf{n_0} \in \mathbb{N}$ que vous aurez déterminé
- 2. **Induction**: Montrons que $(\forall k \in [n_0..n]P(k)) \Rightarrow P(n+1) \ \forall n \geqslant n_0$. **H**ypothèse d'Induction (**HI**): On suppose que P(k) est vraie $\forall k \in [n_0..n]$ pour un $n \geqslant n_0$ bla bla bla bla bla donc P(n+1) est vraie
- 3. Conclusion : on a montré que $P(n_0)$ est vraie et que $(\forall k \in [n_0..n]P(k)) \Rightarrow P(n+1) \ \forall n \geq n_0$, donc par le principe d'induction on a P(n) vraie $\forall n \geq n_0$