Specyfikacja wymagań dla procesu biznesowego Naprawa Samolotów

1. Ogólny opis procesu biznesowego

a)

Proces naprawy samolotów przebiega następująco: Samolot z awarią zostaje zgłoszony do serwisu. Mechanik wstępnie ocenia stan samolotu i wprowadza do systemu informacje na temat stanu samolotu. Następnie podejmowana jest decyzja o rozpoczęciu naprawy samolotu lub też nie (w przypadku nieopłacalności naprawy). W przypadku podjętej naprawy samolot zostaje poddany procesowi naprawy. Po jego zakończeniu samolot zostaje poddany testom, które oceniają skuteczność naprawy. Raport z procesu naprawy samolotu zostaje wprowadzony do systemu historii serwisowej danego samolotu. W raporcie znajdziemy informację na temat: typu, modelu oraz ID samolotu poddanego naprawie, czasu naprawy, stanu poszczególnych części przed oraz po naprawie, wyników testu po naprawie (pozytywny bądź negatywny),

Spadek ilość napraw wszystkich samolotów w danym miesiącu jest na poziomie nie mniejszym niż 1% w stosunku do zeszłego miesiąca Spadek średniego czasu naprawy samolotu w danym miesiącu jest na poziomie nie mniejszym niż 1% w stosunku do zeszłego miesiąca.

b)
Jaki jest średni czas naprawy danej części w samolocie?
Jaki rodzaj samolotów miewa najczęściej problemy techniczne?
Porównanie części samolotów pod względem awaryjności.

Porównanie modeli samolotów pod względem awaryjności. Częstotliwość napraw poszczególnych typów samolotów. Stosunek czasu spędzonego w serwisie do czasu użytkowania różnych modeli samolotów.

Informuje o ilości napraw poszczególnych samolotów w ostatnim roku llość napraw wszystkich samolotów w danym miesiącu.

Stosunek udanych napraw względem napraw nieudanych w ciągu ostatniego roku.

Ranking modeli samolotów od najmniej do najbardziej awaryjnych. Ranking mechaników pod względem średniego czasu naprawy samolotu w ostatnich 3 miesiącach.

c)

Wszystkie dane możemy pobrać z systemu historii serwisowej samolotów "RepairArchive". System ten przechowuje informację o: typie modelu oraz ID naprawianego samolotu, datach rozpoczęcia i zakończenia danej naprawy, stanie samolotu przed naprawą, częściach które podlegały naprawie, wynikach testów samolotu po naprawie. Dodatkowo w systemie zbierane są dane na temat mechaników wykonujących daną naprawę. Dopełniające dane o mechanikach i samolotach przechowywane są w pliku excel (csv).

2. Struktury źródeł danych

System historii serwisowej samolotów "RepairArchive"

parts				
Nazwa	Klucz główny	Typ/Dziedzina	Opis	
part_id	Tak	int	PK, identificator of a part	
part_model	Nie	varchar	Model of certain part	
part_type	Nie	varchar	type or part like: wing,engine,etc	
part_cost	Nie	double	market value of a part	
production_date	Nie	date	day when the part was created	

tests				
Nazwa	Klucz główny	Typ/Dziedzina	Opis	
code_of_test	Tak	int	PK, unique code of the test	
test_name	Nie	varchar	test subject of certain area of reapir	
date_of_test	Nie	date	date of the test	
result	Nie	"success" or "failure" result of the test (success or failur		
description	Nie	varchar detailed description of the taken te		
code_of_reapir	Nie	int foreign key repairs, part of primary ke		

repairs				
Nazwa	Klucz główny	Typ/Dziedzina	Opis	
code_of_repair	Tak	int	PK, code of repair	
start_date	Nie	datetime	date and time when the repair has started	
end_date	Nie	datetime	date and time when the repair has ended	
repair_time	Nie	double	how long did the repair last	
repair_costs	Nie	double	how much did the repair cost	

plane_id	Nie	int	foreign key planes, part of primary key

parts_used_in_repair				
Nazwa Klucz główny Typ/Dziedzina Opis				
code_of_repair	Tak	int	foreign key repairs, part of primary key	
part_id	Tak	int	foreign key parts, part of primary key	

planes				
	141	- 10 to 1 to 1		
Nazwa	Klucz głowny	Typ/Dziedzina	Opis	
plane_id	Tak	int	PK, identificator of a plane	
model	Nie	varchar	model of a plane	
type	Nie	varchar	type of plane (jet, propeller)	
capacity	Nie	int	number of people capable of flying on one flight	
number_of_reapirs	Nie	int	number of repairs this plane had	
year_of_production	Nie	date	year in which plane was created	

mechanics				
Nazwa	Klucz główny	Typ/Dziedzina	Opis	
mechanic_id	Tak	int	PK, identificator number of mechanic	
name	Nie	name	name of worker	
surname	Nie	surname	surname of worker	
age	Nie	int	age of worker	
employment_date	Nie	date	date of employment	
number_of_repairs_done	Nie	int	how many repairds this mechanic did	

making_repairs				
Nazwa Klucz główny Typ/Dziedzina Opis				
code_of_repair	Tak	int	foreign key repairs , part of primary key	
mechanic_id	Tak	int	foreign key mechanics, part of primary key	

CEO Excel

Arkusz 1 (Informacje o mechanikach)

Column A - mechanic_id (integer)

Column B - mechanic name(text)

Column C - mechanic surname(text)

Column D - mechanic_salary(numeric, 2 decimal precision)

Column E - mechanic date of birth(in format year - month - day)

Column F - mechanic company position (text)

Column G - mechanic phone number(in format XXX-XXX-XXX)

Column H - mechanic e-mail(in e-mail format e.g. example@domain.countryID)

Arkusz 2 (Informacje o samolotach)

Column A - plane id(integer)

Column B - plane type(text)

Column C - plane model(text)

Column D - place of production(text)

Column E - manufacturing_company(text), name of the company which has created the plane

Column F - time_of_use(Day(Datetime)), how long the company is using this plane

3. Scenariusze problemów analitycznych

Dlaczego występują wzrosty i spadki liczby napraw w tym miesiącu?

- 1. Porównaj częstotliwość napraw poszczególnych typów samolotów w tym miesiącu z ich częstotliwością w poprzednich 24 miesiącach.
- 2. Zbadaj wpływ poszczególnych mechaników na średni czas naprawy samolotów.
- Która część ulegała awariom najczęściej podczas ostatnich 3 miesięcy, a która najmniej?
- 4. Dla każdego mechanika wylicz stosunek jego pensji do średniego czasu wykonanych przez niego napraw w ostatnim miesiącu.

- 5. Zbadaj trend sumy czasu spędzonego na naprawach przez wszystkie samoloty z miesiąca na miesiąc uwzględniając ostatni rok.
- 6. Dla każdego modelu samolotu zbadaj stosunek ilości części, z których się składa do ilości wykonanych na nim napraw od początku jego użytkowania przez firmę. (+ przebudowa bazy)

Jak zredukować koszty napraw samolotów?.

- Porównaj sumy kosztów części potrzebnych do napraw w poszczególnych miesiącach w ostatnim roku.
- 2. Dla każdej liczby mechaników uczestniczących w naprawach zbadaj średni stosunek ich liczby do czasu trwania napraw w ostatnim roku.
- 3. Dla każdego mechanika wylicz ile procent napraw, w których uczestniczył zakończyło się sukcesem?
- 4. Zbadaj korelacje między rokiem produkcji samolotu, a sumą kosztów jego napraw od początku jego użytkowania przez firmę.
- 5. Dla każdego samolotu wylicz ile procent jego napraw zakończyło się sukcesem?
- Dla każdego mechanika zbadaj korelacje między poziomem zadowolenia mechanika z pracy, a średnim procentem wykonanych przez niego napraw, które zakończyły się sukcesem. (+ dodatkowe info od mechaników)

4. Dane potrzebne do problemów analitycznych

Dlaczego występują wzrosty i spadki liczby napraw w tym miesiącu?

- 1. Porównaj częstotliwość napraw poszczególnych typów samolotów w tym miesiącu z ich częstotliwością w poprzednich 24 miesiącach.
 - typ samolotu RepairArchive, tabela planes, kolumna plane_type
 - ilość napraw RepairArchive, tabela repairs, kolumna plane_id
 - data naprawy RepairArchive, tabela repairs, kolumna start_date
- 2. Zbadaj wpływ poszczególnych mechaników na średni czas naprawy samolotów w ciągu ostatnich 6 miesięcy.
 - **mechanicy** RepairArchive, tabela mechanics kolumny id,name,surname
 - czas naprawy RepairArchive, tabela repairs, kolumna repair time
 - data naprawy RepairArchive, tabela repairs, kolumna start date

- 3. Która część ulegała awariom najczęściej podczas ostatnich 3 miesięcy, a która najmniej?
 - części RepairArchive, tabela parts, kolumny ipart_id, part_model, part_type
 - data naprawy RepairArchive, tabela repairs, kolumna start_date
- 4. Dla każdego mechanika wylicz stosunek jego pensji do średniego czasu wykonanych przez niego napraw w ostatnim miesiącu.
 - **mechanicy** RepairArchive, tabela mechanics kolumny id,name,surname
 - **pensja mechanika** excel, arkusz 1, mechanic_salary
 - data naprawy RepairArchive, tabela repairs, kolumna start date
 - czas naprawy RepairArchive, tabela repairs, kolumna repair_time
- 5. Zbadaj trend sumy czasu spędzonego na naprawach przez wszystkie samoloty z miesiąca na miesiąc uwzględniając ostatni rok.
 - czas naprawy RepairArchive, tabela repairs, kolumna repair_time(suma)
 - data naprawy RepairArchive, tabela repairs, kolumna start_date
 - samoloty RepairArchive, tabela planes, kolumna plane_id
- 6. Dla każdego modelu samolotu zbadaj stosunek ilości części, z których się składa do ilości wykonanych na nim napraw od początku jego użytkowania przez firmę. (+ przebudowa bazy)
 - **samoloty** RepairArchive, tabela planes, kolumny plane_id, model
 - ilość napraw samolotu RepairArchive, tabela planes, kolumna number of repairs
 - <-> rozbudowa : nowe pole w tabeli planes <number_of_parts>
 - ilość części RepairArchive, tabela planes, kolumna number_of_parts

Jak zredukować koszty napraw samolotów?.

1. Porównaj sumy kosztów części potrzebnych do napraw w poszczególnych miesiącach w ostatnim roku.

- data naprawy RepairArchive, tabela repairs, kolumna start date
- **koszt części** RepairArchive, tabela parts, kolumna part_cost(suma)
- id części RepairArchive, tabela parts, kolumna part_id
- 2. Dla każdej liczby mechaników uczestniczących w naprawach zbadaj średni stosunek ich liczby do czasu trwania napraw w ostatnim roku.
 - ilość mechaników RepairArchive, tabela making_repairs,kolumna mechanic_id(count)
 - naprawy RepairArchive, tabela making_repairs, kolumna code of repair
 - data naprawy RepairArchive, tabela repairs, kolumna start date
 - czas naprawy RepairArchive, tabela repairs, kolumna repair time(średnia)
- 3. Dla każdego mechanika wylicz ile procent napraw, w których uczestniczył zakończyło się sukcesem?
 - **mechanicy** RepairArchive, tabela mechanics kolumny id,name,surname
 - kod naprawy RepairArchive, tabela tests, kolumna code_of_repair
 - kod testu RepairArchive, tabela tets, kolumna code of test
 - wynik testu RepairArchive, tabela tests, kolumna result
- 4. Zbadaj korelacje między rokiem produkcji samolotu, a sumą kosztów jego napraw od początku jego użytkowania przez firmę.
 - **samoloty** RepairArchive, tabela planes, kolumna type,model, plane id
 - rok produkcji samolotu RepairArchive, tabela planes, kolumna, year_of_production
 - **koszt napraw** RepairArchive, tabela repairs, kolumna repair_costs
 - data naprawy RepairArchive, tabela repairs, kolumna start date
- 5. Dla każdego samolotu wylicz ile procent jego napraw zakończyło się sukcesem?
 - **samoloty** RepairArchive, tabela planes, kolumna type, model, plane id
 - kod naprawy RepairArchive, tabela tests, kolumna code of repair
 - wynik testu RepairArchive, tabela repairs, kolumna result
- 6. Dla każdego mechanika zbadaj korelacje między poziomem zadowolenia mechanika z pracy, a średnim procentem wykonanych

przez niego napraw, które zakończyły się sukcesem. (+ dodatkowe informacje z ankiety)

- **mechanicy** RepairArchive, tabela mechanics kolumny id,name,surname
- **kod naprawy** RepairArchive, tabela tests, kolumna code_of_repair
- wynik testu RepairArchive, tabela repairs, kolumna result
- <-> Informacje o poziomie zadowolenia mechanika z jego pracy zbierzemy za pomocą ankiety, którą przeprowadzimy.