LISTA DE EXERCÍCIOS

Lista 0 - Parte 1/2

(Conceitos Fundamentais: Terminologia, Técnicas de Prova, Enumerabilidade)

Leitura necessária:

- Introdução à Teoria da Computação, 2ª Edição (Michael Sipser):
 - Capítulo 0.1: Autômatos, Computabilidade e Complexidade
 - Capítulo 0.2: Noções e Terminologia Matemáticas
 - Capítulo 0.3: Definições, Teoremas e Provas
 - Capítulo 0.4: Tipos de Prova
- Material suplementar:
 - Conjunto de slides: Aula 0.1 Terminologia, Técnicas de Prova, Enumerabilidade.

Revisão.

- 1. Responda formalmente às seguintes perguntas:
 - (a) O que é um conjunto enumerável?
 - (b) Dê dois exemplos de conjuntos infinitos que sejam enumeráveis, e dois exemplos de conjuntos infinitos que não sejam enumeráveis.

Exercícios.

- 2. (Sipser 0.7) Para cada item, dê uma relação que satisfaça as seguintes condições.
 - a) Reflexiva e simétrica, mas não transitiva.
 - b) Reflexiva e transitiva, mas não simétrica.
 - c) Simétrica e transitiva, mas não reflexiva.
- 3. Use uma prova direta para mostrar que o produto de dois números ímpares é ímpar.
- 4. Use uma prova por contradição para mostrar que a soma de um número irracional e um número racional é irracional.
- 5. Demonstre que $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! 1$, para $n \ge 1$. Use indução matemática.
- 6. Demonstre que 5 divide n^5-n sempre que n é um inteiro não-negativo. Use indução matemática.
- 7. Determine se cada um dos conjuntos abaixo é enumerável ou não. Para aqueles enumeráveis, exiba uma enumeração mostrando os 10 primeiros elementos.
 - (a) os inteiros maiores do que 10;
 - (b) os inteiros ímpares negativos;
 - (c) os números reais entre 0 e 2;
 - (d) os inteiros múltiplos de 10.

- 8. Dê um exemplo de dois conjuntos não-enumeráveis Ae Btais que $A\cap B$ seja:
 - (a) Finito.
 - (b) Infinito enumerável.
 - (c) Não-enumerável.
- 9. Mostre que o conjunto $\mathbb{Z}\times\mathbb{Z}$ é enumerável.