KIET Group of Institutions, Ghaziabad Electronics and Communication Engineering

Control System Lab Report

Submitted to: Mr Vipin Verma and Dr. Himanshu Chaudhary

(2023-24)

Submitted By: Ira Nafees

Course: Btech Branch: ECE Semester: 6th

Sec: B

Roll No: 2100290310072

INDEX

Experiment Number	Aim of experiment	Page number
2	Determine transpose, inverse	3-4
	value of given matrix	
3	Plot pole zero configuration in s-plane for given transfer function	5-6
4	Determine the transfer function for the closed loop system in the block diagram representation.	7-9
5	Determine the time response of the given system subjected to any arbitrary input.	10-11
6	Plot unit step response of the given transfer function and find delay time, rise time, peak time, peak tovershoot and settling time.	12-13
7	Determine the steady state error of a given transfer function	14-15
8	Plot root locus of a given transfer function, locate closed loop pole for the different value of K	16-17
9	Plot Bode plot of given transfer function. Also determine gain and phase margins	18-19
10	Plot Nyquist plot for given transfer function. Also determine the relative stability by measuring gain and phase margin.	20-21

OBJECTIVE: Determine transpose, inverse value of given matrix.

SOFTWARE REQUIRED: MATLAB

PROGRAM:

TRANSPOSE OF MATRIX

clc;

clear all;

close all;

A=[231;451;231]

B = transpose(A)

INVERSE OF MATRIX

clc;

clear all;

A=[12;34]

B = det(A)

for i = 1:2

for j = 1:2

$$D(i, j) = ((-1) ^ (i+j)) *(A(3-i,3-j));$$

E(i, j) = transpose(D(i, j))

$$I(i, j) = (E(i, j))$$

end

end

WORKSPACE:

COMMAND WINDOW:

A=1 2

3 4

B=-2

E = 4

C=-2

E = 4 -3

C = -2.0000

1.5000

E = 4 -3

-2 0

C = -2.0000 1.0000

1.5000 0

E = 4 -3

-2 1

C = -2.0000 1.0000

1.5000 -0.5000

A = 2 3 1

4 5 1

2 3 1

B = 2 4 2

3 5 3

1 1 1

OBJECTIVE: PLOT POLE-ZERO CONFIGURATION IN S-PLANE FOR THE GIVEN TRANSFER FUNCTION USING MATLAB

SOFTWARE REQUIRED: MATLAB

PROGRAM:

clc;

clear all;

H = tf ([3 2 1 2 1], [6 6 2 6 2 1])

Y = zpk (1, [-2, -3], 6)

subplot (2,1,1);

pzmap (H);

grid on;

subplot (2,1,2);

pzmap(Y);

WORKSPACE:

:: Name	:: Value	∷ Size	:: Class
⊗ H	1x1 tf	1x1	tf
⊗ Y	1x1 zpk	1x1	zpk

COMMAND WINDOW:

 $H = 3 s^4 + 2 s^3 + s^2 + 2 s + 1$

 $6 s^5 + 6 s^4 + 2 s^3 + 6 s^2 + 2 s + 1$

Continuous-time transfer function.

Y = 6 (s-1)

(s+2)(s+3)

Continuous-time zero/pole/gain model.

OBJECTIVE: Determine the transfer function for the closed loop system in the block diagram representation.

SOFTWARE REQUIRED: MATLAB

PROGRAM:

clc;

close all;

clear all;

%for system1

G1 = tf ([1 0], [1 1])

H1 = tf ([1], [1 0])

G2 = tf ([1 4], [1 3 1])

H2 = tf([1 0], [1 2])

F1 = feedback (G1, H1)

F2 = feedback (G2, H2)

A = series (F1, F2)

H = tf([10], [13])

F3 = feedback (A, H)

f =F3(step);

WORKSPACE:

:: Name	∷ Value	∷ Size	:: Class
⊗ A	1x1 tf	1x1	tf
☞ F1	1x1 tf	1x1	tf
	1x1 tf	1x1	tf
☞ F3	1x1 tf	1x1	tf
⊚ G1	1x1 tf	1x1	tf
© G2	1x1 tf	1x1	tf
⊗ H	1x1 tf	1x1	tf
	1x1 tf	1x1	tf
	1x1 tf	1x1	tf

COMMAND WINDOW:

G1 = s---s + 1 Continuous-time transfer function. H1=1 Continuous-time transfer function. G2 = s + 4 $s^2 + 3s + 1$ Continuous-time transfer function. H2 = s---s + 2Continuous-time transfer function. $F1 = s^2$ ---- $s^2 + 2s$ Continuous-time transfer function. $F2 = s^2 + 6s + 8$ $s^3 + 6 s^2 + 11 s + 2$ Continuous-time transfer function.

 $A = s^4 + 6 s^3 + 8 s^2$

Continuous-time transfer function.

s^5 + 8 s^4 + 23 s^3 + 24 s^2 + 4 s

H = s

s + 3

Continuous-time transfer function.

$$F3 = s^5 + 9 s^4 + 26 s^3 + 24 s^2$$

s Continuous-time transfer function.

num = 0 -0.1022 0.0316 0.1934 -0.1795 0.1620

den = 1.0000 6.2190 50.6538 222.7866 359.5180 162.7478

OBJECTIVE: Determine the time response of the given system subjected to any arbitrary input.

PROGRAM: clc; close all; clear all; h1 = tf ([9], [1 6 9]) t = linspace (1,15,50); %step response Subplot (3,2,1) step(h1) %impulse response Subplot (3,2,2) impulse(h1) %sinusoidal r =sin(t); %ramp s=2*t; %parabolic q = 5*(t.^2); subplot (3,2,3); lsim (h1, r, t); subplot (3,2,4); lsim (h1, s, t); subplot (3,2,5); lsim (h1, q, t);

SOFTWARE REQUIRED: MATLAB

WINDOWSPACE:

∷ Name	∷ Value	:: Size	:: Class
	1x1 tf	1x1	tf
⊞ q	1x50 double	1x50	double
⊞ r	1x50 double	1x50	double
⊞ s	1x50 double	1x50	double
⊞ t	1x50 double	1x50	double

COMMAND WINDOW:

$$h1 = 9$$
 $s^2 + 6 + 9$

Continuous-time transfer function.

OBJECTIVE: Plot unit step response of the given transfer function and find delay time, rise time, peak time, peak time, peak overshoot and settling time.

SOFTWARE REQUIRED: MATLAB

PROGRAM:

clc

clear all

close all

g = tf ([25], [1 6 25])

wn = 5

zt = 6/(wn*2)

wd = wn*sqrt(1-(zt*zt))

tp =pi/wd

mp = exp((-1*zt*pi)/sqrt(1-(zt*zt)))

po = (2*pi)/wd

st = 4/(zt*wn)

a = acos(zt);

rt = (pi-a)/wd

t = 0:0.01:10;

[y, t] = step(g);

Plot (t, y)

WINDOWSPACE:

:: Name	∷ Value	:: Size	:: Class
⊞a	0.9273	1x1	double
 g	1x1 tf	1x1	tf
⊞ mp	0.0948	1x1	double
⊞ ро	1.5708	1x1	double
⊞ rt	0.5536	1x1	double
⊞ st	1.3333	1x1	double
⊞ t	104x1 double	104x1	double
∰ tp	0.7854	1x1	double
₩d	4	1x1	double
₩n	5	1x1	double
⊞ у	104x1 double	104x1	double
⊞ zt	0.6000	1x1	double

COMMAND WINDOW:

g = 25

 $s^2 + 6s + 25$

Continuous-time transfer function.

wn = 5

zt = 0.6000

wd = 4

tp = 0.7854

mp = 0.0948

po = 1.5708

st = 1.3333

rt = 0.5536

OBJECTIVE: Determine the steady state error of a given transfer function.

SOFTWARE REQUIRED: MATLAB

PROGRAM:

clc

close all

clear all

a = step(g);

$$[y, t] = step(g);$$

i=length(y)

$$z = y(i)$$

c = y(end)

sserror = abs(1-c)

WINDOWSPACE:

:: Name	∷ Value	:: Size	:: Class
⊞a	139x1 double	139x1	double
С	0.9999	1x1	double
⊚ g	1x1 tf	1x1	tf
⊞ i	139	1x1	double
sserror	1.1622e-04	1x1	double
⊞ t	139x1 double	139x1	double
 у	139x1 double	139x1	double
₩ z	0.9999	1x1	double

COMMAND WINDOW:

 $s^2 + 3s + 4$

Continuous-time transfer function.

i = 139

z = 0.9999

c = 0.9999

sserror = 1.1622e-04

OBJECTIVE: Plot root locus of a given transfer function, locate closed loop pole for the different value of K

clc
close all
g = tf ([1 3 5], [1 5 8 4]);
w = linspace(1,1000,1000);
for i = 1:1:1000
mag(i) = 2/sqrt(25+w(i).^2);
magdb(i) = 20*log(mag(i));
phase(i) = -atan(w(i)/5);
end
subplot(2,2,1)
semilogx(w,magdb)
subplot(2,2,2)
semilogx(w,phase)
subplot(2,2,3)

SOFTWARE REQUIRED: MATLAB

COMMAND WINDOW:

bodeplot(g)

```
g = \\ s^2 + 3 s + 5 \\ \dots \\ s^3 + 5 s^2 + 8 s + 4
Continuous-time transfer function.
```


OBJECTIVE: Plot Bode plot of given transfer function. Also determine gain and phase margins

```
SOFTWARE REQUIRED: MATLAB
```

PROGRAM:

```
clc;
clear all;
close all;
w = linspace(0,1000,1000);
for i=1:1:1000
    mag(i) = 20/(w(i)*(sqrt(4+(w(i)*w(i)))) *(sqrt(25+(w(i)*w(i)))));
    magdb(i) = 20*log(mag(i));
    phase(i) = ((-atan(w(i)/5)-atan(w(i)/2))*180/pi) -90;
end
gh = tf(20,[1 7 10 0])
[pm,gm,wcg,wcp] = margin(gh)
margin(gh)
subplot(2,1,1)
semilogx(w,magdb)
subplot(2,1,2)
semilogx(w,phase)
COMMAND WINDOW:
gh =
          20
  s^3 + 7 s^2 + 10 s
Continuous-time transfer function.
Model Properties
pm =
    3.5000
gm =
   35.7873
wcg =
    3.1623
wcp =
    1.5224
```


OBJECTIVE: Plot Nyquist plot for given transfer function. Also determine the relative stability by measuring gain and phase margin.

SOFTWARE REQUIRED: MATLAB

PROGRAM:

```
gshs1 = tf([2],[14]) % order 1
figure
subplot(2,2,1)
nyquist(gshs1);
gshs2 = tf([4], [1 6 8]) %order 2
subplot(2,2,2)
nyquist(gshs2);
gshs3 = tf([2],[1 4 2 6]) % order 3
subplot(2,2,3)
nyquist(gshs3);
gshs4 = tf([4],[1 4 0]) \% order 2 type 1
[R,I,w] = nyquist(gshs4);
Mag = abs(R+I*i);
Phi = angle(R+I*i);
for j=1:1:length(R)
       mag1(j) = Mag(j);
       phi1(j) = Phi(j);
end
subplot(2,2,4)
nyquist(gshs4)
figure
polar(phi1,mag1)
```


Real Axis

Real Axis