

BERKELEY LAB

U.S. DEPARTMENT OF ENERGY

LAWRENCE BERKELEY NATIONAL LABORATORY

Measurements during beam loss

Levon and Greg

Tune Measurements during RF failure

22 April 2015

Things to consider during RF caused beam loss

- Beam loss happens very fast
 - Only a few hundred turns available to analyze
 - Further limited by FFT resolution
- Beam energy loss
 - Energy deviation causes a tune shift

•
$$Q = Q_0 + \xi_1(\frac{\Delta p}{p}) + \xi_2(\frac{\Delta p}{p})^2 + \dots$$

- Beam excitation
 - Can't measure tune without beam excitation

Footer

Turns with shift

Energy with shift

Footer

Qx vs Qy vs amplitude vs time

Simulated tune shift with RF dump

Qx vs Qy vs amplitude vs time

Real tune shift with RF dump

Qx vs Qy vs amplitude vs time

What's next?

- Measurements with strung together BPMs
 - Allows for tune measurements with less turns

Any suggestions or advice would be greatly appreciated!

Thank you!

