Modélisation numérique et physique de la chaîne de récupération de l'énergie de la houle par un dispositif bord à quai

Sixtine NEUVEGLISE, Doctorante
François MARIN, Directeur de thèse (LOMC)
Hassan SMAOUI, Co-directeur (Lab. Roberval/LHN)
Gaële PERRET, Co-encadrante (LOMC)
Philippe SERGENT, Resp. Scientifique (CEREMA)

Plan

- I. Objectifs du Projet
- II. Modèle Analytique Linéaire
- III. Modèle Numérique
- IV. Modèle Expérimental
- V. Résultats

I. Objectifs du projet

Objectif

• Modéliser la chaine de récupération de l'énergie de la houle par un dispositif bord à quai

Méthodologie

- Modélisation physique et numérique
- Comparer les modèles physiques et numériques du système
- Étudier l'impact sur les franchissements de digue

Site d'étude : port d'Esquibien (Bretagne)

In
$$f_{a,\sigma^2}(\xi_1) = \frac{(\xi_1 - a)}{\sigma^2} f_{a,\sigma^2}(\xi_1) = \frac{1}{h_{a,\sigma^2}} \int_{\mathbb{R}^n} T(x) \cdot \frac{\partial}{\partial \theta} f(x,\theta) dx = M \left(T(\xi) \cdot \frac{\partial}{\partial \theta} \ln L(\xi,\theta) \right)$$

II. Modèle Analytique Linéaire

$$MT(\xi) = \frac{\partial}{\partial \theta} \int_{\mathbb{R}^n} T(x) f(x,\theta) dx = \int_{\mathbb{R}^n} T(x) f(x) dx = \int_{\mathbb{R}^n} T$$

II. Résolution analytique puis numérique

Expression de l'équation différentielle

$$(m + C_M(\omega))\ddot{z} + C_A(\omega)\dot{z} + K_{Ar}z = F_{ex}(\omega)\sin(\omega t)$$

- Résolution analytique
 - Conditions aux limites
 - Relation de continuité en pression et en vitesse
 - Ecriture des potentiels sous forme de sommes infinies
 - Résolution d'un système matriciel

III. Modèle Numérique

III. Modèle Numérique sous ANSYS Fluent

Modèle utilisé

- Résolution du modèle de Navier-Stokes
- Utilisation des fonctions Open Channel
- Utilisation d'une houle d'Airy
- Turbulence résolue par k-ε

Données traitées

- Mouvements du flotteur
- Amplitude de houle à proximité du flotteur
- Calcul des coefficients Hydrodynamiques

Exemple de simulation Fluent

Flotteurs calculés

1:15	F1	F2	F3	F4	F5
Tirant d'eau (m)	0.75	1.50	2.25	3.00	3.75
Hauteur totale (m)	3.00	3.75	3.75	6.00	6.00

IV. Modèle Expérimental

IV. Conditions des essais

- Conditions des essais (à échelle réelle)
 - Canal de l'UTC (échelle 1:20)
 - Canal du LOMC (échelle 1:15) :
 - o 34m x 0.90m x 1.20m (L x l x H)

• Largeur du flotteur : 1.5m

• Dégagement : 0.15m

• Deux tirants d'eau testés : 0.75m et 3.75m

//				FLOAT	
7/				S9 • t DIKE	
	S1	S2	S3	S4	
-	•	•	•	• [(.))
PROBES S5 S6 S7 S8					LPUMP
11				S10 •	
7/-					
				CAMERA	

Maquette du LOMC

V. Résultats

V. Impact du tirant d'eau

Résultats

• Confirmation de la présence d'un terme visqueux

Le terme visqueux dépend du tirant d'eau du flotteur.

Analytical ResultsExperimental ResultsNumerical Results

V. Interaction Digue/Flotteur

- Analytical Results Without dike
- Analytical Results With dike
- ■■■ Experimental Results

Observations

- La présence de la digue modifie la période de résonance du flotteur
- Les mouvements du flotteur sont plus importants avec la présence de la digue.

V. Interaction Digue/Flotteur

V. Correction du modèle analytique

Définition de la correction

- Calcul de l'erreur entre les coefficients numériques et analytiques.
- Définition de la fonction de correction grâce à l'erreur :

$$f_c(\omega) = a\omega^2 + b\omega + c$$

$$C_{R-corr}(\omega) = \frac{C_{R-init}(\omega)}{f_c(\omega)}$$

Seuls les coefficients de radiation sont corrigés. Il n'y a pas de terme visqueux sur les forces de diffraction.

Analytical Results CorrectedExperimental ResultsNumerical Results

Conclusion

- Sur les effets visqueux :
 - Le flotteur est impacté par des effets visqueux.
 - Ces effets ne dépendent pas de la profondeur, mais dépendent du tirant d'eau.
 - Il est possible de corriger le modèle analytique. La correction se fait sur les coefficients de radiation uniquement.
- Sur l'impact de la digue :
 - La digue modifie les paramètres de résonance du flotteur (période et amplitude).
 - La digue a également un impact sur les coefficients hydrodynamiques.

Perspectives

- Partie électromécanique :
 - Réaliser une maquette physique du convertisseur
 - Réaliser des tests expérimentaux
- Sur l'ensemble du système de production d'énergie :
 - Tester le système en canal
 - Etudier les rendements
 - Etudier les franchissements de digue
- Sur les franchissements :
 - Vérifier l'impact du dégagement sur l'atténuation

Merci de votre attention