Practical No. 6

Title: - Introduction to R Graphics and Data Importing Aim: - To understand R Graphics and how to import data.

Plot() function

plot(1,3)

plot(c(1,8),c(3,10))

$$x <- c(1,2,3,4,5)$$

plot(x,y)

Create line chart in R plot(v,type,col,xlab,tlab,main,lwd,lty)

Line graph plot(1:10,type="1")

Line Graph Width plot(1:10,type="l",lwd=4)

Line Graph Width and Color plot(1:10,type="1",lwd=4,lty=3)

Line Graph Width and Color with data plot(x,y,type="l",lwd=4,lty=3)

Line() function lines(x,type="l",lwd=4,lty=3,col="Red")

lines(y,type="l",lwd=4,lty=3,col="Red")

Pie Charts

pie(x,labels,radius,main,col,clockwise)

pie(x)

mLabel <- c("Apples","Grapes","Bananas","Mango")
pie(x,label=mLabel,main="Fruits")</pre>

colors <- c("red","yellow","blue","green")

pie(x,label=mLabel,main="Fruits",col=colors)

- Q.1. Import employees.csv file and perform following -
- 1. Display the content.
- 2. Find the dimensions of the data in the above imported dataset.
- 3. Get all the people with designation "clerk".
- 4. Get the people whose salary is greater than 55,000 and write the output in new excel file.
- 5. Summarize the above dataset

Load the required library library(readr) install.packages("openxlsx")

1. Display the content employees <- read.csv("employees.csv") view(employees)

2. Find the dimensions of the data

dimensions <- dim(employees)

cat("Dimensions of the dataset:", dimensions[1], "rows and", dimensions[2], "columns\n")

Dimensions of the dataset: 50 rows and 11 columns

3. Get all the people with designation "clerk" clerks <- subset(employees, JOB_ID == "PU_CLERK") print("People with designation 'clerk':") view(clerks)

	(,									
•	EMPLOYEE_ID *	FIRST_NAME	LAST_NAME	EMAIL =	PHONE_NUMBER	HIRE_DATE	JOB_ID [©]	SALARY	COMMISSION_PCT	MANAGER_ID	DEPARTMENT_ID
25	115	Alexander	Khoo	AKHOO	515.127.4562	18-MAY-03	PU_CLERK	3100	2	114	31
26	116	Shelli	Baida	SBAIDA	515.127.4563	24-DEC-05	PU_CLERK	2900	-	114	31
27	117	Sigal	Tobias	STOBIAS	515.127.4564	24-JUL-05	PU_CLERK	2800	=	114	31
28	118	Guy	Himuro	GHIMURO	515.127.4565	15-NOV-06	PU_CLERK	2600	=	114	31
29	119	Karen	Colmenares	KCOLMENA	515.127.4566	10-AUG-07	PU CLERK	2500		114	31

4. Get people whose salary is greater than 55,000 and write the output to a new Excel file

high_salary_employees <- subset(employees, SALARY > 3000) write.xlsx(high_salary_employees, "high_salary_employees.xlsx", row.names = FALSE)

DEPARTME	MANAGER	COMMISSI	SALARY	JOB_ID	HIRE_DATI	PHONE_N	EMAIL	LAST_NAM	FIRST_NAM	EMPLOYER
10	101	-	4400	AD_ASST	17-SEP-03	515.123.44	JWHALEN	Whalen	Jennifer	200
20	100	-	13000	MK_MAN	17-FEB-04	515.123.55	MHARTSTE	Hartstein	Michael	201
20	201	-	6000	MK_REP	17-AUG-05	603.123.66	PFAY	Fay	Pat	202
40	101	-	6500	HR_REP	07-JUN-02	515.123.77	SMAVRIS	Mavris	Susan	203
70	101	-	10000	PR_REP	07-JUN-02	515.123.88	HBAER	Baer	Hermann	204
110	101	-	12008	AC_MGR	07-JUN-02	515.123.80	SHIGGINS	Higgins	Shelley	205
110	205	-	8300	AC_ACCOL	07-JUN-02	515.123.81	WGIETZ	Gietz	William	206
90	- -	-	24000	AD_PRES	17-JUN-03	515.123.45	SKING	King	Steven	100
90	100	-	17000	AD_VP	21-SEP-05	515.123.45	NKOCHHA	Kochhar	Neena	101
90	100	-	17000	AD_VP	13-JAN-01	515.123.45	LDEHAAN	De Haan	Lex	102
60	102	-	9000	IT_PROG	03-JAN-06	590.423.45	AHUNOLD	Hunold	Alexander	103
60	103	-	6000	IT_PROG	21-MAY-07	590.423.45	BERNST	Ernst	Bruce	104
60	103	-	4800	IT_PROG	25-JUN-05	590.423.45	DAUSTIN	Austin	David	105
60	103	-	4800	IT_PROG	05-FEB-06	590.423.45	VPATABAL	Pataballa	Valli	106
60	103	-	4200	IT_PROG	07-FEB-07	590.423.55	DLORENTZ	Lorentz	Diana	107
100	101	-	12008	FI_MGR	17-AUG-02	515.124.45	NGREENBI	Greenberg	Nancy	108
100	108		9000	FI_ACCOU	16-AUG-02	515.124.41	DFAVIET	Faviet	Daniel	109
400	400		0200	EL ACCOU	20 CED OF	E4E 404 41	ICLIEN	CI	1 15	440

5. Summarize the dataset

summary_data <- summary(employees)
print("Summary of the dataset:")</pre>

print(summary_data)

EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL PHON E NUMBER HIRE_DATE JOB_ID

Min. :100.0 Length:50 Length:50 Length:50 Length:50 Length:50 Length:50

1st Qu.:112.2 Class :character Class :ch

Median:124.5 Mode:character Mode:cha

Mean :134.8

3rd Qu.:136.8

Max. :206.0

SALARY COMMISSION_PCT MANAGER_ID DEPARTMENT_ID

Min.: 2100 Length:50 Length:50 Min.: 10.0 1st Qu.: 2725 Class: character Class: character 1st Qu.: 50.0 Median: 4600 Mode: character Mode: character Median: 50.0

 Mean : 6182
 Mean : 57.6

 3rd Qu.: 8150
 3rd Qu.: 60.0

 Max. :24000
 Max. :110.0

```
Q.2 The age and speed of 12 cars observed on day 1 are age1(5,7,8,7,2,2,9,4,11,12,9,6), speed1(99,86,87,88,111,103,87,94,78,77,85,86) and on day 2 following values are observed age2(2,2,8,1,15,8,12,9,7,3,11,4,7,14,12), speed2(100,105,84,105,90,99,90,95,94,100,79,112,91,80,85). Write a R program to draw a scatterplot that compares observations of the two days.
```

```
# Age and speed data for day 1
age1 < c(5, 7, 8, 7, 2, 2, 9, 4, 11, 12, 9, 6)
speed1 < c(99, 86, 87, 88, 111, 103, 87, 94, 78, 77, 85, 86)
# Age and speed data for day 2
age2 \le c(2, 2, 8, 1, 15, 8, 12, 9, 7, 3, 11, 4, 7, 14, 12)
speed2 < -c(100, 105, 84, 105, 90, 99, 90, 95, 94, 100, 79, 112, 91, 80, 85)
# Make sure the vectors have the same length
min length <- min(length(age1), length(speed1), length(age2), length(speed2))
# Create a data frame
data <- data.frame(
 Day = rep(c("Day 1", "Day 2"), each = min length),
 Age = c(age1[1:min length], age2[1:min length]),
 Speed = c(speed1[1:min length], speed2[1:min length])
# Draw a scatterplot
plot(
 Speed \sim Age,
                     # y-axis \sim x-axis
 data = data,
                   # Data frame
 col = as.factor(data$Day), # Color points by Day
 pch = 16,
                  # Use solid circles as points
 main = "Scatterplot of Age and Speed on Day 1 and Day 2",
 xlab = "Age",
 ylab = "Speed"
# Add a legend
legend("topright", legend = levels(as.factor(data$Day)), col = 1:2, pch = 16, title =
"Day")
```


Q.3 Write a R program to create a vector with numerical values in a sequence from 1 to 10 and draw a blue colored dotted line of width 2 for the above vector.

```
# Create a vector with numerical values from 1 to 10
my_vector <- 1:10
# Create a plot with a blue-colored dotted line of width 2
                      # x-axis values
 my_vector,
 type = "l",
                     # "l" indicates a line plot
 col = "blue",
                      # Line color is blue
 1ty = 2,
                   # Dotted line style
 1wd = 2,
                    # Line width is 2
 main = "Blue Dotted Line Plot",
 xlab = "Index",
 ylab = "Values"
```


Q.4 Write a R program to read the excel file "input.xlsx" and perform following

- 1. Display the content.
- 2. Find the dimensions of the data in the above imported dataset.
- 3. Get all the people working in IT department
- 4. Get the people who joined on or after 2014 and write the output in new excel file.
- 5. Summarize the above dataset

1. Display the content input_data <- read_excel("input.xlsx") print("Content of the dataset:") view(input_data)

^	id	name	salary	start_date =	dept
1	1	Rick	623.30	40909	IT
2	2	Dan	515.20	41540	Operations
3	3	Michelle	611.00	41958	IT
4	4	Ryan	729.00	41770	HR
5	5	Gary	843.25	42090	Finance
6	6	Nina	578.00	41415	IT
7	7	Simon	632.80	41485	Operations
8	8	Guru	722.50	41807	Finance

2. Find the dimensions of the data dimensions <- dim(input_data) cat("Dimensions of the dataset:", dimensions[1], "rows and", dimensions[2], "columns\n")

Dimensions of the dataset: 8 rows and 5 columns

3. Get all the people working in IT department it_department <- subset(input_data, Department == "IT") print("People working in IT department:") view(it department)

•	id	name	salary	start_date	dept
1	1	Rick	623.3	40909	IT
3	3	Michelle	611.0	41958	IT
6	6	Nina	578.0	41415	IT

4. Get people who joined on or after 2014 and write the output to a new Excel file joined_after_2014 <- subset(input_data, Joining_Year >= 2014) write.xlsx(joined_after_2014, "joined_after_2014_output.xlsx", row.names = FALSE)

-24	Α	В	C	D	E
1	id	name	salary	start_date	dept
2	1	Rick	623.3	40909	IT
3	2	Dan	515.2	41540	Operations
4	3	Michelle	611	41958	IT
5	4	Ryan	729	41770	HR
6	5	Gary	843.25	42090	Finance
7	6	Nina	578	41415	IT
8	7	Simon	632.8	41485	Operations
9	8	Guru	722.5	41807	Finance
10					

5. Summarize the dataset summary_data <- summary(input_data) print("Summary of the dataset:") print(summary data)

```
> summary_data <- summary(input_data)
> print("Summary of the dataset:")
[1] "Summary of the dataset:"
> print(summary_data)
                   name
                                        salary
      id
                                                      start_date
                                                                         dept
       :1.00
               Length:8
                                    Min. :515.2
                                                    Min. :40909
                                                                     Length:8
                                    1st Qu.:602.8
                                                    1st Qu.:41468
1st Qu.:2.75
                Class :character
                                                                     Class :character
                                    Median:628.0
Median:4.50
                Mode :character
                                                    Median :41655
                                                                     Mode :character
Mean :4.50
                                    Mean :656.9
                                                    Mean :41622
3rd Qu.:6.25
                                    3rd Qu.:724.1
                                                    3rd Qu.:41845
Max.
        :8.00
                                    Max.
                                           :843.2
                                                    Max.
                                                            :42090
```