$Name-Samrath preet\ Singh\ Randhawa$

Roll no. – 1801CS43

<u>CS226 Lab – 11</u>

Q1)

C0 C1

- 0 0 Stop counting
- 0 1 Count up by one
- 1 0 Count down by two
- 1 1 Count up by three

Q2) Design Mealy Moore sequence detector for 1101.

T-Flip flop Moore

Cu	vrrent s	tate	Input	Nex	t S	tate	Flip flop Input	· Output
C2	C, (Co	I.	N ₂	N,	No	T2 T, T.	0
0	0	0	0 ,	0	0	0	0 0 0	
b	0 0		ł	0	0	1	0 0 1	0
D	0	ı	0	0	0	D	0 0 1	0
0	0	ľ	l .	0	1	0	0 1 1	0
0	1 0)	0	0	1	l	0 0 1	0
0	1 0	,	1	0	1	0	0 0 0	0
0	; 1		0	0	0	0	0 1 1	Ö
0	1 1		1	1	O	0	1 1	0
1	0 0	0	0	0	0	0	1 0 0	1
1	0 (0	1	0	1	O	1 1 0	1

Colo	5 0	01	_tı_	10
-34	0	0	0	0
01	0	0	(1)	0
11	X	×	×	A
10	1	,	×	×

T2 = C2 + C.C, I.

Tp= Co+ QC, Io+ C, Io

T, = C, C, +C, I, + C, I,

0.0	ð	0	٥	၁
01	อ	0	D	o
",	X	X	X	×
10	(1	1	×	×)

J-K flip flop Moore

Mealy -

T flip flop mealy -

T flip flop.

	C.	I.	٨,	N.	Τ,	τ_{o}	0
0	0	0	0	0	0	O	
0		02	D	1	0	1	0
	- (0	0	0	0	1	0
	1		1	0	t	1	0
1	0	0	t	1	٥	1	0
1	0	124	1	0	0	O	O
1	1	0	0	0	1	1	O
J.	E 18		0	1	-1	0	- 1
1 1							

T, = C, Co+ Co I 6

	0	G
1	1	+
('\	10	الم

70 = C, ID + C, Co + C, Io

0	1
0	O
0	1
0	0

0 = C, C. I.

Circuit of t flip flop mealy

J-K Mealy –

Circuit of j-k mealy

JK flip flop.

C,	Co	Io	N,	N.	J,	K,	J,	k,	0
		O		D		X			0
0	o	•	O	1	0	×	1	×	0
0	ı	o	, 0	O	0	X	×	1	0
0	1		1	0	L	X	×	1	6
١	0	0	1	1	X	0	ţ	X	0
1	0	1	1	0	×	0	D	×	0
1	1	0	0	D	×	1	×	١	0
		1							1

00	×	×
01	X	×
11	1	1)
10	0	0

C100 F	0	
	0	1
01.	*	×
	(X)	×
10	U	0
T		I3+ Ī.
	= (CO I.

$$K_{o} = \overline{C_{i}} + \overline{I}_{o}$$

$$O = C_{i} C_{o} I_{o}$$

Q3) Design Average temperature calculator using history of 4 temperatures.

Enter temperature values in this one by one the last 4 states will remain stored in registers from where output will go into adders and after that net sum of four temperatures will be divided by 4 to get required output.