Assignment 4

Course Lecturer: Yizheng Zhao

May 16, 2023

* This assignment, which is due on May 31st, contributes to 10% of the final marks for this course. Moreover, the last three questions present an opportunity for students to secure up to three additional bonus marks. The bonus marks can potentially increase a student's overall marks but are subject to a maximum total of 100 for the course.

Question 1. ALC-Worlds Algorithm

Use the \mathcal{ALC} -Worlds algorithm to decide the satisfiability of the concept name B_0 w.r.t. the simple TBox:

$$\mathcal{T} := \begin{cases} B_0 \equiv B_1 \sqcap B_2 \\ B_1 \equiv \exists r.B_3 \\ B_2 \equiv B_4 \sqcap B_5 \\ B_3 \equiv P \\ B_4 \equiv \exists r.B_6 \\ B_5 \equiv B_7 \sqcap B_8 \\ B_6 \equiv Q \\ B_7 \equiv \forall r.B_4 \\ B_8 \equiv \forall r.B_9 \\ B_9 \equiv \forall r.B_{10} \\ B_{10} \equiv \neg P \end{cases}$$

Draw the recursion tree of a successful run and of an unsuccessful run. Does the algorithm return a positive or negative result on this input?

Question 2. Entailment Checking

Fix two concept names A and B as well as some role name r. Does the entailment

$$\{\forall r.A \sqsubseteq \exists r.A\} \models \forall r.B \sqsubseteq \exists r.B$$

hold true?

Question 3. Finite Boolean Games

Determine whether Player 1 has a winning strategy in the following finite Boolean games, where in both cases $\Gamma_1 := \{x_1, x_3\}$ and $\Gamma_2 := \{x_2, x_4\}$.

$$-\psi := ((x_1 \wedge x_3) \to \neg x_2) \wedge (\neg x_1 \to x_1) \wedge (\neg x_2 \to (x_3 \vee x_4))$$

$$-\psi := (x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (\neg x_3 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_2 \vee x_3 \vee x_4)$$

Question 4. Infinite Boolean Games

Determine whether Player 2 has a winning strategy in the following infinite Boolean games where the initial configuration t_0 assigns *false* to all variables.

- $\psi:=(x_1\wedge x_2\wedge \neg y_1)\vee (x_3\wedge x_4\wedge \neg y_2)\vee (\neg (x_1\vee x_4)\wedge y_1\wedge y_2)$ provided that: $\Gamma_1:=\{x_1,x_2,x_3,x_4\}$ and $\Gamma_2:=\{y_1,y_2\}$ - $\psi:=((x_1\leftrightarrow \neg y_1)\wedge (x_2\leftrightarrow \neg y_2)\wedge (x_1\leftrightarrow x_2))\vee ((x_1\leftrightarrow y_1)\wedge (x_2\leftrightarrow y_2)\wedge (x_1\leftrightarrow \neg x_2))$ provided that: $\Gamma_1:=\{x_1,x_2\}$ and $\Gamma_2:=\{y_1,y_2\}$

Question 5. Complexity of Concept Satisfiability in ALC Extensions

The universal role is a role u such that its extension is fixed as $\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ in any interpretation \mathcal{I} . Let \mathcal{ALC}^u be a DL extending \mathcal{ALC} with the universal role.

- Show that concept satisfiability in \mathcal{ALC}^u without TBoxes is EXPTIME-complete.

Question 6. Conservative Extension

Let \mathcal{T}_1 be an \mathcal{EL} TBox, with C and D as \mathcal{EL} concepts. Let us further consider $\mathcal{T}_2 := \mathcal{T}_1 \cup \{A \sqsubseteq C, D \sqsubseteq B\}$, wherein A and B are new concept names (as in Lemma 6.1).

- Show that \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 .
- Is this still the case after adding $A \sqsubseteq B$ to \mathcal{T}_2 ?
- What about adding $B \sqsubseteq A$?

Question 7. Subsumption in \mathcal{EL}

Consider the following \mathcal{EL} TBox:

$$\mathcal{T} := \left\{ \begin{array}{c} A \sqsubseteq B \sqcap \exists r.C \\ B \sqcap \exists r.B \sqsubseteq C \sqcap D \\ C \sqsubseteq (\exists r.A) \sqcap B \\ (\exists r.\exists r.B) \sqcap D \sqsubseteq \exists r.(A \sqcap B) \end{array} \right\},$$

where A, B, C, D are concept names.

Use the classification procedure for \mathcal{EL} to check whether the following subsumptions hold w.r.t. \mathcal{T} .

- $A \sqsubset B$
- $A \sqsubseteq \exists r. \exists r. A$
- $B \sqcap \exists r.A \sqsubseteq \exists r.C$

Question 8. Simulation

We consider simulations, which are "one-sided" variants of bisimulations. Given interpretations \mathcal{I} and \mathcal{J} , the relation $\sigma \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ is a simulation from \mathcal{I} to \mathcal{J} if

- whenever $d \sigma d'$ and $d \in A^{\mathcal{I}}$, then $d' \in A^{\mathcal{I}}$, for all $d \in \Delta^{\mathcal{I}}$, $d' \in \Delta^{\mathcal{I}}$, and $A \in \mathbb{C}$;
- whenever $d \sigma d'$ and $(d, e) \in r^{\mathcal{I}}$, then there exists an $e' \in \Delta^{\mathcal{I}}$ such that $e \sigma e'$ and $(d', e') \in r^{\mathcal{I}}$, for all $d, e \in \Delta^{\mathcal{I}}$, $d' \in \Delta^{\mathcal{I}}$, and $r \in \mathbb{R}$.

We write $(\mathcal{I}, d) = (\mathcal{J}, d')$ if there is a simulation σ from \mathcal{I} to \mathcal{J} such that $d \sigma d'$.

- (a) Show that $(\mathcal{I},d) \sim (\mathcal{J},d')$ implies $(\mathcal{I},d) \approx (\mathcal{J},d')$ and $(\mathcal{J},d') \approx (\mathcal{I},d)$.
- (b) Is the converse of the implication above also true?
- (c) Show that, if $(\mathcal{I}, \mathsf{d}) \approx (\mathcal{J}, \mathsf{d}')$, then $\mathsf{d} \in C^{\mathcal{I}}$ implies $\mathsf{d}' \in C^{\mathcal{I}}$ for all \mathcal{EL} concept descriptions C.
- (d) Which of the constructors disjunction, negation, or value restriction (aka universal restriction) can be added to \mathcal{EL} without losing the property in (c)?
- (e) Show that \mathcal{ALC} is more expressive than \mathcal{EL} .

Question 9. \mathcal{EL} Extension

We consider the DL \mathcal{EL}_{si} extending \mathcal{EL} by concept descriptions of the form $\exists^{sim}(\mathcal{I}, \delta)$ where \mathcal{I} is a finite interpretation and $d \in \Delta^{\mathcal{I}}$. Their semantics is defined as follows.

$$(\exists^{\mathsf{sim}}(\mathcal{I},\mathsf{d}))^{\mathcal{I}} := \{\mathsf{d}' \mid \mathsf{d}' \in \Delta^{\mathcal{I}} \text{ and } (\mathcal{I},\mathsf{d}) \eqsim (\mathcal{I},\mathsf{d}')\}$$

Concept inclusions are then defined as usual.

- Show that each \mathcal{EL}_{si} concept description is equivalent to some concept descriptions of the form $\exists^{sim}(\mathcal{I},d)$.
- Show that \mathcal{EL}_{si} is more expressive than \mathcal{EL} .
- Show that checking subsumption in \mathcal{EL}_{si} without any TBox can be done in polynomial time.

Question 10 (with 1 bonus mark). ALC-Elim Algorithm

Use the ALC-Elim algorithm to decide satisfiability of:

- the concept name A w.r.t. $\mathcal{T} := \{ A \sqsubseteq \exists r.A, \top \sqsubseteq A, \forall r.A \sqsubseteq \exists r.A \}$
- the concept description $\forall r. \forall r. \neg B \text{ w.r.t. } \mathcal{T} := \{ \neg A \sqsubseteq B, A \sqsubseteq \neg B, \top \sqsubseteq \neg \forall r. A \}$

Give the constructed type sequence Γ_0 , Γ_1 , In the case of satisfiability, also give the satisfying model constructed in the proof of Lemma 5.10.

Question 11 (with 1 bonus mark). ALCI-Elim algorithm

Extend the \mathcal{ALC} -Elim algorithm to \mathcal{ALCI} . Prove the correctness (soundness) of the extended algorithm.

Question 12 (with 1 bonus mark). Subsumption in \mathcal{ELI}

Consider the following \mathcal{ELI} TBox:

$$\mathcal{T} := \left\{ \begin{array}{c} A_1 \sqcap A_2 \sqsubseteq \exists r.B \\ \exists r^-.A_2 \sqsubseteq C \\ A \sqsubseteq A_1 \sqcap A_2 \\ \exists r.(B \sqcap C) \sqsubseteq D \end{array} \right\},$$

where A, A_1 , A_2 , B, C, D are concept names.

Use the classification procedure for \mathcal{ELI} to check whether the following subsumptions hold w.r.t. \mathcal{T} .

- $A \sqsubseteq D$
- $\exists r.A \sqsubseteq \exists r.D$
- $A \sqsubseteq \exists r.A$