1) Data
$$f \in L^2(\mathbb{R})$$
, dinostrare che

$$\int_{-\infty}^{+\infty} dt f^{2}(t) = \int_{-\infty}^{+\infty} d\omega \hat{f}(-\omega) f(\omega)$$
(6 on ale se $f(t) \in \mathbb{R} + t$)

Dato che
$$\mathcal{F}[g*g] = \sqrt{2\pi} \mathcal{F}[g]^2$$

con $\hat{f}:=\mathcal{F}[f]=g$ attege:

$$\mathcal{F} \left[\hat{\mathcal{F}} + \hat{\mathcal{F}} \right] = \sqrt{2\pi} \mathcal{F} \left[\hat{\mathcal{F}} \right]^2$$

$$\Rightarrow \hat{f} * \hat{f} = \int_{ZTT} f^{-1} \left[\mathcal{F} \left[\hat{f} \right]^{2} \right]$$

$$f\left(f\left(f\right)\right) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(x) e^{-ikx} e^{-iky} dx dx$$

$$= \int_{-\infty}^{+\infty} d(x+y) f(x) dx = f(-y)$$

$$\mathcal{F}^{-1} \mathcal{F} (f) = f(y) \implies \mathcal{F}^{-1} = R \cdot \mathcal{F}$$

$$= \mathcal{F} \cdot R$$

$$\begin{array}{l}
\mathcal{F}^{-1}\left[\mathcal{F}\left[\hat{f}\right]^{2}\right] = \left(\mathcal{F} \cdot \mathcal{R}\right)\left(\mathcal{R}\left(\hat{f}\right)^{2}\right) \\
= \mathcal{F}\left[\mathcal{F}^{2}\right] \\
= \mathcal{F}\left[\mathcal{F}\left[\mathcal{F}^{2}\right] \\
= \mathcal{F}\left[\mathcal{F}\left[\mathcal{F}\right] \\
= \mathcal{$$

Sia ana $G(t) \in L^{2}(IR)$ con $\frac{dG}{dt} \in L^{2}(IR)$, mostrare che $S[G] = \int_{-\infty}^{+\infty} \left(\frac{dG}{dt}\right)^{2} + \frac{1}{T^{2}}G^{2}dt$ prò essere risaitta come:

S[G] =
$$\int_{-\infty}^{\infty} (\omega^2 + \frac{1}{T^2}) \hat{G}(-\omega) \hat{G}(\omega) \frac{d\omega}{d\omega}$$

• Uso la relaz. prec. per $\int_{-\infty}^{+\infty} \frac{1}{G(t)} dt$
poi woo: $(\frac{dG}{dt})^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} i\omega \hat{G}(-\omega) \cdot (-i\omega) \hat{G}(\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} i\omega \hat{G}(-\omega) \cdot (-i\omega) \hat{G}(\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} i\omega \hat{G}(-\omega) \cdot (-i\omega) \hat{G}(\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} i\omega \hat{G}(-\omega) \cdot (-i\omega) \hat{G}(\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} i\omega \hat{G}(-\omega) \cdot (-i\omega) \hat{G}(\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} i\omega \hat{G}(-\omega) \cdot (-i\omega) \hat{G}(\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} i\omega \hat{G}(-\omega) \cdot (-i\omega) \hat{G}(\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} i\omega \hat{G}(-\omega) \cdot (-i\omega) \hat{G}(\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} i\omega \hat{G}(-\omega) \cdot (-i\omega) \hat{G}(\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} i\omega \hat{G}(-\omega) \cdot (-i\omega) \hat{G}(\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} i\omega \hat{G}(-\omega) \cdot (-i\omega) \hat{G}(\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} i\omega \hat{G}(-\omega) \cdot (-i\omega) \hat{G}(\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} i\omega \hat{G}(-\omega) \cdot (-i\omega) \hat{G}(\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} i\omega \hat{G}(-\omega) \cdot (-i\omega) \hat{G}(\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} i\omega \hat{G}(-\omega) \cdot (-i\omega) \hat{G}(\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} i\omega \hat{G}(-\omega) \cdot (-i\omega) \hat{G}(-\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} i\omega \hat{G}(-\omega) \cdot (-i\omega) \hat{G}(-\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} i\omega \hat{G}(-\omega) \cdot (-i\omega) \hat{G}(-\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} i\omega \hat{G}(-\omega) \cdot (-i\omega) \hat{G}(-\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} i\omega \hat{G}(-\omega) \cdot (-i\omega) \hat{G}(-\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} i\omega \hat{G}(-\omega) \cdot (-i\omega) \hat{G}(-\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} i\omega \hat{G}(-\omega)$

per la relaz, prec.

determinare Ĝ(W) e poi S[G].

Per F.T. $\omega^2 \hat{G}(\omega) + \frac{1}{T^2} \hat{G}(\omega) = 1$

1c.) sia $G \in L^2(\mathbb{R})$, $\frac{dG}{d+} \in L^2(\mathbb{R})$,

considerions: $-\frac{d^2G}{dt^2} + \frac{1}{T^2}G(t) = O(t)\sqrt{2\pi}$

 $\hat{G}(\omega) = \frac{1}{\omega^2 + \gamma_{T^2}} \left(G(t) = e^{-|t|/\tau} \right)$

 $S[G] = \int_{-\infty}^{+\infty} \frac{1}{\omega^{2} + 1/\tau^{2}} \frac{d\omega}{2\pi} = \frac{\tau}{2} \quad (wsando)$

2.) Sia
$$\phi(x) = \int_{1}^{2} \frac{1}{2} pau \times \in [-1, 1]$$

Pa $f \in L^{2}(\mathbb{R})$, sia:

 $(T_{n} f)(x) = \frac{\phi(x)}{\sqrt{n}} f(\frac{x}{n})$, $n \in \mathbb{N}$
 $M_{o}T_{n}core$ che $||T_{n}|| = ||T_{n}|| = 1 \quad \forall n$

ma ohe $T_{n} \to 0$ in senso facte

a) $||T_{n} f||_{L^{2}}^{2} = \int_{-\infty}^{+\infty} \phi^{2}(x) f^{2}(\frac{x}{n}) dx = \int_{-\infty}^{+\infty} \phi^{2}(ny) f^{2}(y) dy \leq ||f||_{L^{2}}^{2}$
 $= \int_{-\infty}^{+\infty} \phi^{2}(ny) f^{2}(y) dy \leq ||f||_{L^{2}}^{2}$

per che $||\phi(ny)|| \leq ||\Delta q_{u}|| nod ||T_{n}|| \leq ||T_{n}|| = 1$

ma $||\phi(ny)|| = 1 \quad \forall y \in [-1, 1, 1]$,

quindi mi baota o cegliere f con supporto

 $||m|| = [-1, 1, 1]$ per dimortiare $||T_{n}|| = 1$

b) $(9, T_{n} f) = (T_{n} g, f)$
 $\int_{-\infty}^{+\infty} \phi^{4}(x) \frac{\phi(x)}{\sqrt{n}} f(\frac{x}{n}) dx = \int_{-\infty}^{\infty} \phi(ny) f(y) dy$

Quindi:
$$T_n g = J_n \phi(nx)g(nx)$$

$$||T_n g|| = \int_{-\infty}^{+\infty} n \phi^{z}(nx)|g(nx)|dx = \int_{-\infty}^{+\infty} d^{z}(y) |g(y)|^{2} dy \leq ||g||_{12}^{2}$$

=
$$\int_{-\infty}^{+\infty} \phi^{2}(y) |g(y)|^{2} dy \leq ||g||_{L^{2}}^{2}$$

quindi $||T_{n}|| = 1$ come prima

conv. dominata)

Quindi
$$T_n \to 0$$
 in sensa faite.

Graire a $(g, T_n f) = (T_n g, f)$,

anche Tn >0 m senso faite.

Mostrare de
$$f_n$$
 conveye $n S'(IR)$

Valutare le loro n ame $f_n L^2(IR)$

a) x^n $f_n [-1,1] \rightarrow 0$ $q.a.$ per $n \rightarrow +\infty$
 $1(x^n, f) 1 \leq \int |x|^n |\psi(x)| dx \leq 1$
 $2 \sup |\psi(x)| \int_0^1 |x|^n dx = \frac{2}{n+1} ||\psi(x)|| dx \leq 1$

b) Nota che f_n av $|z^2(IR)| = \overline{z}$
 $||f_n||^2 = \int_0^1 |x^2|^n dx = \frac{2}{2n+1}$