TD n° 3

Exercice 1. Dans le groupe abélien (Z/16Z,+)

- 1) Quel est le sous groupe engendré par 1 ?
- 2) Quel est le sous groupe engendré par $\bar{2}$?
- 3) Quel est le sous groupe engendré par $\bar{3}$?

Exercice 2. On note (Ω_{12}, \times) le groupe des racines $12^{\text{ème}}$ de l'unité

- a) Quel est le sous groupe engendré par 1 ?
- b) Quel est le sous groupe engendré par j où $j = e^{\frac{2i\pi}{3}}$?

Exercice 3.

Soit $A = \{x \in \mathbb{R} / \exists n \in \mathbb{Z}, x = 3^n\}$ montrez que (A, \times) est un sous-groupe cyclique de (\mathbb{R}^*, \times) puis donnez un exemple de sous-groupe non trivial de A.

Exercice 4

- 1) Soit $a \in \{0,1,\ldots,9\}$, montrer que $\begin{array}{ccc} f_a: Z/10Z & \to & Z/10Z \\ \hline z & \to & a \end{array}$ est un morphisme de groupes.
- 2) Pour quelles valeurs de $a \in \{0,1,\ldots,9\}$, on a $\ker(f_a) = \{\overline{0}\}$
- 3) Le code de la carte bancaire de M. Dupont est formé de 4 chiffres de l'ensemble $\{0,1,\ldots,9\}$. En utilisant la bijection canonique de Z/10Z dans $\{0,1,\ldots,9\}$, quels sont les morphismes f_a qui permettent de chiffrer/déchiffrer le code bancaire de M. Dupont ?

Exercice 5

 $\left(\Omega_{\scriptscriptstyle n}\,,\!\!\!\times\right)$ désigne le groupe des racines $n^{i\grave{e}me}$ complexes de l'unité.

On considère l'application $f:\Omega_4 \to C^*$ définie par $f(z)=z^2$.

- 1) Montrez que f est un morphisme de groupes de (Ω_4,\times) dans (C^*,\times)
- 2) Montrer que $(f(\Omega_4),\times)$ est un groupe cyclique et dérerminer un générateur du groupe $(f(\Omega_4),\times)$
- 3) Montrer que $(Ker(f), \times)$ est un groupe cyclique

Exercice 6

- 1) Déterminer tous les sous-groupes de (Ω_{13},\times) où $\Omega_{13} = \{z \in \mathbb{C} / z^{13} = 1\}$
- 2) Déterminer tous les sous-groupes de (Z/6Z,+)