Unsupervised learning Lecture 13

David Sontag
New York University

Slides adapted from Carlos Guestrin, Dan Klein, Luke Zettlemoyer, Dan Weld, Vibhav Gogate, and Andrew Moore

Gaussian Mixture Models

- P(Y): There are k components
- P(X|Y): Each component generates data from a **multivariate** Gaussian with mean μ_i and covariance matrix Σ_i

Each data point is sampled from a generative process:

- 1. Choose component i with probability P(y=i) [Multinomial]
- 2. Generate datapoint $\sim N(m_i, \Sigma_i)$

$$P(X = \mathbf{x}_{j} \mid Y = i) = \frac{1}{(2\pi)^{m/2} \|\boldsymbol{\Sigma}_{i}\|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}_{j} - \boldsymbol{\mu}_{i})^{T} \boldsymbol{\Sigma}_{i}^{-1}(\mathbf{x}_{j} - \boldsymbol{\mu}_{i})\right]$$

ML estimation in supervised setting

Univariate Gaussian

$$\mu_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i \qquad \sigma_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \widehat{\mu})^2$$

• *Mixture* of *Multi*variate Gaussians

ML estimate for each of the Multivariate Gaussians is given by:

$$\mu_{ML}^{k} = \frac{1}{n} \sum_{j=1}^{n} x_{n} \qquad \sum_{ML}^{k} = \frac{1}{n} \sum_{j=1}^{n} (\mathbf{x}_{j} - \mu_{ML}^{k}) (\mathbf{x}_{j} - \mu_{ML}^{k})^{T}$$

Just sums over x generated from the k'th Gaussian

What about with unobserved data?

- Maximize marginal likelihood:
 - $\operatorname{argmax}_{\theta} \prod_{j} P(x_{j}) = \operatorname{argmax} \prod_{j} \sum_{k=1}^{K} P(Y_{j}=k, x_{j})$

- Almost always a hard problem!
 - Usually no closed form solution
 - Even when IgP(X,Y) is convex, IgP(X) generally isn't...
 - For all but the simplest P(X), we will have to do gradient ascent, in a big messy space with lots of local optimum...

1977: Dempster, Laird, & Rubin

The EM Algorithm

- A clever method for maximizing marginal likelihood:
 - $\operatorname{argmax}_{\theta} \prod_{j} P(x_{j}) = \operatorname{argmax}_{\theta} \prod_{j} \sum_{k=1}^{K} P(Y_{j}=k, x_{j})$
 - Based on coordinate descent. Easy to implement (eg, no line search, learning rates, etc.)
- Alternate between two steps:
 - Compute an expectation
 - Compute a maximization
- Not magic: still optimizing a non-convex function with lots of local optima
 - The computations are just easier (often, significantly so!)

EM: Two Easy Steps

Objective: $argmax_{\theta} \lg \prod_{j} \sum_{k=1}^{K} P(Y_j = k, x_j; \theta) = \sum_{j} \lg \sum_{k=1}^{K} P(Y_j = k, x_j; \theta)$

Data: $\{x_j | j=1 .. n\}$

- **E-step**: Compute expectations to "fill in" missing y values according to current parameters, θ
 - For all examples j and values k for Y_j , compute: $P(Y_j=k \mid x_j; \theta)$
- M-step: Re-estimate the parameters with "weighted" MLE estimates
 - Set $\theta^{\text{new}} = \operatorname{argmax}_{\theta} \sum_{j} \sum_{k} P(Y_j = k \mid x_j; \theta^{\text{old}}) \log P(Y_j = k, x_j; \theta)$

Particularly useful when the E and M steps have closed form solutions

Gaussian Mixture Example: Start

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Simple example: learn means only!

Consider:

- 1D data
- Mixture of k=2
 Gaussians
- Variances fixed to $\sigma=1$
- Distribution over classes is uniform
- Just need to estimate μ_1 and μ_2

EM for GMMs: only learning means

Iterate: On the t'th iteration let our estimates be

$$\lambda_t = \{ \mu_1^{(t)}, \mu_2^{(t)} \dots \mu_K^{(t)} \}$$

E-step

Compute "expected" classes of all datapoints

$$P(Y_j = k | x_j, \mu_1 ... \mu_K) \propto \exp\left(-\frac{1}{2\sigma^2} ||x_j - \mu_k||^2\right) P(Y_j = k)$$

M-step

Compute most likely new μ s given class expectations

$$\mu_k = \frac{\sum_{j=1}^m P(Y_j = k | x_j) x_j}{\sum_{j=1}^m P(Y_j = k | x_j)}$$

E.M. for General GMMs

 $p_k^{(t)}$ is shorthand for estimate of P(y=k) on t'th iteration

Iterate: On the *t*'th iteration let our estimates be

$$\lambda_t = \{ \mu_1^{(t)}, \mu_2^{(t)} \dots \mu_K^{(t)}, \sum_{i=1}^{L} (t), \sum_{i=1}^{L} (t), \sum_{i=1}^{L} (t), p_1^{(t)}, p_2^{(t)} \dots p_K^{(t)} \}$$

E-step

Compute "expected" classes of all datapoints for each class

$$P(Y_j = k | x_j; \lambda_t) \propto p_k^{(t)} p(x_j; \mu_k^{(t)}, \Sigma_k^{(t)})$$
Just evaluate a Gaussian at x_j

M-step

Compute weighted MLE for μ given expected classes above

$$\mu_{k}^{(t+1)} = \frac{\sum_{j} P(Y_{j} = k \big| x_{j}; \lambda_{t}) x_{j}}{\sum_{j} P(Y_{j} = k \big| x_{j}; \lambda_{t})} \qquad \sum_{k} P(Y_{j} = k \big| x_{j}; \lambda_{t}) \left[x_{j} - \mu_{k}^{(t+1)} \right] \left[x_{j} - \mu_{k}^{(t+1)} \right]^{T}} \sum_{j} P(Y_{j} = k \big| x_{j}; \lambda_{t})$$

$$p_{k}^{(t+1)} = \frac{\sum_{j} P(Y_{j} = k \big| x_{j}; \lambda_{t})}{m} \qquad m = \text{\#training examples}$$

What if we do hard assignments?

Iterate: On the t'th iteration let our estimates be

$$\lambda_t = \{ \mu_1^{(t)}, \mu_2^{(t)} \dots \mu_K^{(t)} \}$$

E-step

Compute "expected" classes of all datapoints

$$P(Y_j = k | x_j; \mu_1 ... \mu_K) \propto \exp\left(-\frac{1}{2\sigma^2} ||x_j - \mu_k||^2\right) P(Y_j = k)$$

M-step

Compute most likely new μ s given class expectations

 δ represents hard assignment to "most likely" or nearest cluster

$$\mu_{k} = \frac{\sum_{j=1}^{m} P(Y_{j} = k | x_{j}) x_{j}}{\sum_{j=1}^{m} P(Y_{j} = k | x_{j})} \qquad \mu_{k} = \frac{\sum_{j=1}^{m} \delta(Y_{j} = k, x_{j}) x_{j}}{\sum_{j=1}^{m} \delta(Y_{j} = k, x_{j})}$$

Equivalent to k-means clustering algorithm!!!

Properties of EM

- We will prove that
 - EM converges to a local maxima
 - Each iteration improves the log-likelihood
- How? (Same as k-means)
 - E-step can never decrease likelihood
 - M-step can never decrease likelihood

The general learning problem with missing data

Marginal likelihood: X is observed,

Z (e.g. the class labels **Y**) is missing:

$$\ell(\theta : \mathcal{D}) = \log \prod_{j=1}^{m} P(\mathbf{x}_{j} | \theta)$$

$$= \sum_{j=1}^{m} \log P(\mathbf{x}_{j} | \theta)$$

$$= \sum_{j=1}^{m} \log \sum_{\mathbf{z}} P(\mathbf{x}_{j}, \mathbf{z} | \theta)$$

- Objective: Find $argmax_{\theta} I(\theta:Data)$
- Assuming hidden variables are missing completely at random (otherwise, we should explicitly model why the values are missing)