计算方法作业 #13

陈文轩

KFRC

更新: June 15, 2025

1 题目

1. (6pts) 用图解法求解下列线性规划问题,并指出问题是否有唯一最优解、无穷多最优解、无 界解还是无可行解?

$$\max z = 2x_1 + 3x_2$$
s. t.
$$x_1 + 2x_2 \le 8$$

$$2x_1 + x_2 \ge 1$$

$$x_2 \le 3$$

$$x_1, x_2 \ge 0$$

2. (6pts) 将下列线性规划问题化为标准形式,并列出初始单纯形表.

min
$$z = -x_1 + 2x_2 - 3x_3 + 2x_4$$

s. t. $4x_1 - x_2 + 2x_3 - x_4 = -2$
 $x_1 + x_2 - x_3 + 2x_4 \le 14$
 $-2x_1 + 3x_2 + x_3 - x_4 \ge 2$
 $x_1, x_2, x_3 \ge 0, x_4$ 无约束

3. (6pts) 求下列线性规划问题中满足约束条件的所有基解,并指出哪些是基可行解,并代入目标函数,确定哪一个是最优解。

max
$$z = 2x_1 - x_2 + 3x_3 + 2x_4$$

s.t. $2x_1 + 3x_2 - x_3 - 4x_4 = 8$
 $x_1 - 2x_2 + 6x_3 - 7x_4 = -3$
 $x_1, x_2, x_3, x_4 \ge 0$

4. (6pts) 用单纯形方法求解以下线性规划问题:

$$\max \quad z = 3x_1 - 2x_2 + 5x_3$$

s. t.
$$3x_1 + 2x_3 \le 13$$
$$x_2 + 3x_3 \le 17$$
$$2x_1 + x_2 + x_3 \le 13$$
$$x_1, x_2, x_3 \ge 0$$

5. (6pts) 用大 M 法求解下列线性规划问题:

min
$$z = 3x_1 - x_2$$

s. t. $3x_1 + x_2 \ge 3$
 $2x_1 - 3x_2 \ge 1$
 $x_1, x_2 \ge 0$

- 6. (6pts) 分别用最速下降法与牛顿法求函数 $f(x) = x_1^2 x_1x_2 + x_2^2 + x_1x_3 + x_3^2 2x_1 + 4x_2 + 2x_3 2, x = (x_1, x_2, x_3)^{\top} \in \mathbb{R}^3$ 的极小点, 初始点 $x_0 = (0, 0, 0)^{\top}$,要求:
 - (a). 最速下降法进行 2 次迭代, 并验证相邻两步的搜索方向正交;
 - (b). 牛顿法进行 1 次迭代。

Deadline:2025.6.22

2 解答

1. 图像如下图所示:

直线对应约束条件,橙色区域为可行域。可行基解为(0.5,0),(8,0),(2,3),(0,3),(0,1),对应值为1,16,13,9,3,因此最优解为(8,0),对应目标函数值为16,存在唯一最优解。

2. 令 $x_4 = x_5 - x_6, x_5, x_6 \ge 0$,对后两个不等式约束添加松弛变量 x_7, x_8 ,则标准形式为:

$$\begin{aligned} &\max \quad z = x_1 - 2x_2 + 3x_3 - 2x_5 + 2x_6\\ &\text{s. t.} & -4x_1 + x_2 - 2x_3 + x_5 - x_6 = 2\\ & x_1 + x_2 - x_3 + 2x_5 - 2x_6 + x_7 = 14\\ & -2x_1 + 3x_2 + x_3 - x_5 + x_6 - x_8 = 2\\ & x_1, x_2, x_3, x_5, x_6, x_7, x_8 \ge 0 \end{aligned}$$

容易得到一组初始基可行解为 $(x_1, x_2, x_3, x_5, x_6, x_7, x_8) = (0, 2, 0, 0, 0, 12, 4)$,

对应目标函数值为 -4, 初始单纯形表如下:

	$c_j o$			-2	3	-2	2	0	0
c_B	x_B	b	x_1	x_2	x_3	x_5	x_6	x_7	x_8
-2	x_2	2	-4	1	-2	1	-1	0	0
0	x_7	12	1	1	-1	2	-2	1	0
0	x_8	4	-2	3	1	-1	1	0	-1
	σ_{j}		-7	0	-1	0	0	0	0

3. 有 2 个等式约束和 4 个变量,因此需要令除基变量的 2 个变量为 0,以下为结果:

基变量	解向量	是否可行	目标函数值
x_1, x_2	(1, 2, 0, 0)	是	0
x_1, x_3	$\left(\frac{45}{13}, 0, -\frac{14}{13}, 0\right)$	否	N/A
x_1, x_4	$(\frac{34}{5},0,0,\frac{7}{5})$	是	$\frac{82}{5}$
x_2, x_3	$(0,\frac{45}{16},\frac{7}{16},0)$	是	$-\frac{3}{2}$
x_2, x_4	$(0, \frac{68}{29}, 0, -\frac{7}{29})$	否	N/A
x_2, x_3	$(0,0,-\frac{68}{31},-\frac{45}{31})$	否	N/A

因此最优解是 $\left(\frac{34}{5},0,0,\frac{7}{5}\right)$,对应目标函数值为 $\frac{82}{5}$ 。

4. 对约束条件添加松弛变量 x_4, x_5, x_6 ,则标准形式为:

$$\max \quad z = 3x_1 - 2x_2 + 5x_3$$

s. t.
$$3x_1 + 2x_3 + x_4 = 13$$

$$x_2 + 3x_3 + x_5 = 17$$

$$2x_1 + x_2 + x_3 + x_6 = 13$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

一组初始基可行解为 $(x_1, x_2, x_3, x_4, x_5, x_6) = (0, 0, 0, 13, 17, 13)$,初始单纯形表如下:

	$c_j \rightarrow$		3	-2	5	0	0	0
c_B	x_B	b	x_1	x_2	x_3	x_4	x_5	x_6
0	x_4	13	3	0	2	1	0	0
0	x_5	17	0	1	3	0	1	0
0	x_6	13	2	1	1	0	0	1
σ_j			3	-2	5	0	0	0

以下进行单纯形表迭代:

	$c_j \rightarrow$		3	-2	5	0	0	0
c_B	x_B	b	x_1	x_2	x_3	x_4	x_5	x_6
0	x_4	$\frac{5}{3}$	3	$-\frac{2}{3}$	0	1	$-\frac{2}{3}$	0
5	x_3	$\frac{17}{3}$	0	$\frac{1}{3}$	1	0	$\frac{1}{3}$	0
0	x_6	$\frac{22}{3}$	2	$\frac{2}{3}$	0	0	$-\frac{1}{3}$	1
	σ_j		3	$-\frac{11}{3}$	0	0	$-\frac{5}{3}$	0

	$c_j \rightarrow$		3	-2	5	0	0	0
c_B	x_B	b	x_1	x_2	x_3	x_4	x_5	x_6
3	x_1	$\frac{5}{9}$	1	$-\frac{2}{9}$	0	$\frac{1}{3}$	$-\frac{2}{9}$	0
5	x_3	$\frac{17}{3}$	0	$\frac{1}{3}$	1	0	$\frac{1}{3}$	0
0	x_6	$\frac{56}{9}$	0	$\frac{10}{9}$	0	$-\frac{2}{3}$	$\frac{1}{9}$	1
	σ_{j}		0	-3	0	-1	-1	0

因此最优解为 $\left(\frac{5}{9},0,\frac{17}{3},0,0,\frac{56}{9}\right)$,对应目标函数值为 30。

5. 对约束条件添加松弛变量 x_3, x_4 , 并添加人工变量 x_5, x_6 , 则标准形式为:

$$\max \quad z = -3x_1 + x_2 - Mx_5 - Mx_6$$
 s. t.
$$3x_1 + x_2 - x_3 + x_5 = 3$$

$$2x_1 - 3x_2 - x_4 + x_6 = 1$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

初始基可行解为 $(x_1, x_2, x_3, x_4, x_5, x_6) = (0, 0, 0, 0, 3, 1)$, 初始单纯形表如下:

c_{\cdot}	$_{j} \rightarrow$		-3	1	0	0	-M	0
c_B	x_B	b	x_1	x_2	x_3	x_4	x_5	x_6
-M	x_5	3	3	1	-1	0	1	0
-M	x_6	1	2	-3	0	-1	0	1
σ_j			5M-3	1-2M	-M	-M	0	0

以下进行单纯形表迭代:

c	$c_j o$			1	0	0	-M	0
c_B	x_B	b	x_1	x_2	x_3	x_4	x_5	x_6
-M	x_5	$\frac{3}{2}$	0	$\frac{11}{2}$	-1	$\frac{3}{2}$	1	$-\frac{3}{2}$
-3	x_1	$\frac{1}{2}$	1	$-\frac{3}{2}$	0	$-\frac{1}{2}$	0	$\frac{1}{2}$
	σ_j		0	$\frac{11M-7}{2}$	-M	$\frac{3M}{2}$	0	$\frac{3-5M}{2}$

$c_j \rightarrow$			-3	1	0	0	-M	0
c_B	x_B	b	x_1	x_2	x_3	x_4	x_5	x_6
1	x_2	$\frac{3}{11}$	0	1	$-\frac{2}{11}$	$\frac{3}{11}$	$\frac{2}{11}$	$-\frac{3}{11}$
-3	1.0		1	0	$-\frac{3}{11}$	$-\frac{1}{11}$	$\frac{3}{11}$	$\frac{1}{11}$
	σ_{j}		0	0	$-\frac{7}{11}$	$-\frac{6}{11}$	$\frac{7}{11}-M$	$\frac{6}{11} - M$

因此最优解为 $\left(\frac{10}{11}, \frac{3}{11}, 0, 0, 0, 0\right)$, 对应目标函数值为 $-\frac{27}{11}$ 。

6.
$$\nabla f = (2x_1 - x_2 + x_3 - 2, -x_1 + 2x_2 + 4, x_1 + 2x_3 + 2)^\top, \nabla^2 f = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
.

对于最速下降法,初始点为 $x_0 = (0,0,0)^{\mathsf{T}}, d_0 = \nabla f(x_0) = (-2,4,2)^{\mathsf{T}},$

$$\alpha_0 = \underset{\alpha}{\arg \min} f(x_0 + \alpha d_0) = \underset{\alpha}{\arg \min} (28\alpha^2 - 24\alpha - 2) = \frac{3}{7},$$

$$x_1 = x_0 + \alpha_0 d_0 = \left(\frac{6}{7}, -\frac{12}{7}, -\frac{6}{7}\right)^\top, d_1 = \nabla f(x_1) = \left(\frac{4}{7}, -\frac{2}{7}, \frac{8}{7}\right)^\top, \langle d_0, d_1 \rangle = 0.$$

$$\alpha_1 = -\frac{\nabla f(x_1)^\top d_1}{d_1^\top \nabla^2 f(x_1) d_1} = \frac{21}{62}, x_2 = x_1 + \alpha_1 d_1 = \left(\frac{144}{217}, -\frac{351}{217}, -\frac{270}{217}\right)^\top,$$

对于牛顿法,
$$x_1 = x_0 - \nabla^2 f(x_0)^{-1} \nabla f(x_0) = \left(1, -\frac{3}{2}, \frac{3}{2}\right)^{\top}$$
,

由于
$$\nabla^2 f \succ 0$$
, $\nabla f(x) = 0$ 时 $x^* = \left(1, -\frac{3}{2}, \frac{3}{2}\right)^\top$, 有 x^* 为全局最优解, $f(x^*) = -\frac{15}{2}$ 。