MA 1140: Lecture 6 Linear Transformation and Rank-Nullity Theorem

Dipankar Ghosh (IIT Hyderabad)

February 20, 2019

Linear transformation, or linear map

Definition

A transformation (or map) between vector spaces which satisfies the rule of linearity is called linear transformation (or linear map).

More precisely, let V and W be vector spaces over \mathbb{R} . A linear transformation $T:V\to W$ is a function such that

$$T(c_1v_1+c_2v_2)=c_1T(v_1)+c_2T(v_2)$$

for all $c_1, c_2 \in \mathbb{R}$ and $v_1, v_2 \in V$.

Example

Let A be an $m \times n$ matrix over \mathbb{R} . Then the map $T : \mathbb{R}^n \to \mathbb{R}^m$ defined by T(X) := AX for all $X \in \mathbb{R}^n$ is a linear transformation.

Proof.
$$T(X + Y) = A(X + Y) = AX + AY = T(X) + T(Y)$$
 and $T(cX) = A(cX) = c(AX) = cT(X)$.

An observation on matrix multiplication

•
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} =$$
• $\begin{bmatrix} 1 \\ 5 \\ 9 \end{bmatrix} + x_2 \begin{pmatrix} 2 \\ 6 \\ 10 \end{pmatrix} + x_3 \begin{pmatrix} 3 \\ 7 \\ 11 \end{pmatrix} + x_4 \begin{pmatrix} 4 \\ 8 \\ 12 \end{pmatrix}$
• $\begin{bmatrix} C1 & C2 & \cdots & Cn \end{bmatrix}_{m \times n} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} =$
• $x_1(C1) + x_2(C2) + \cdots + x_n(Cn)$, where $C1, \ldots, Cn \in \mathbb{R}^m$.

Matrix representation of a linear map $T: \mathbb{R}^n \to \mathbb{R}^m$

Theorem

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ can be represented by an $m \times n$ matrix.

Proof. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Want to construct an $m \times n$ matrix A such that T(X) = AX for all $X \in \mathbb{R}^n$. Let $\{e_1, \ldots, e_n\}$ be the standard basis of \mathbb{R}^n . Set $A := \begin{bmatrix} T(e_1) & T(e_2) & \cdots & T(e_n) \end{bmatrix}$. Clearly A is an $m \times n$ matrix. We show that T(X) = AX for every $X \in \mathbb{R}^n$.

• Consider
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$
. Then

•
$$AX = [T(e_1) \quad T(e_2) \quad \cdots \quad T(e_n)] X$$

= $x_1 T(e_1) + x_2 T(e_2) + \cdots + x_n T(e_n)$ (by the observation)
= $T(x_1 e_1 + x_2 e_2 + \cdots + x_n e_n) = T(X)$.

All linear transformations from \mathbb{R}^n to \mathbb{R}^m

Corollary

There is a one to one correspondence between the set of all linear transformations from \mathbb{R}^n to \mathbb{R}^m and the collection of all $m \times n$ matrices over \mathbb{R} .

Proof. Use the last theorem and the example.

Differentiation and integration transformation

Example (Differentiation transformation)

Let $V = \mathbb{R}[x]$, the set of all polynomials in x over \mathbb{R} . Define a map $D: V \to V$ as follows: If $f = a_0 + a_1x + a_2x^2 + \cdots + a_rx^r$, then

$$D(f) := a_1 + 2a_2x + \cdots + ra_rx^{r-1}.$$

Then *D* is a linear transformation.

Example (Integration transformation)

Let V be the set of all continuous functions from $\mathbb R$ into $\mathbb R$. Define a map $T:V\to V$ as follows: If $f\in V$, then T(f) is given by

$$T(f)(x) = \int_0^x f(t)dt$$
 for all $x \in \mathbb{R}$.

Then T is a linear transformation.

What is T(0)?

• Let $T: V \to W$ be a linear transformation. What is T(0)? Answer: T(0) = 0, because T(0) = T(0+0) = T(0) + T(0).

Remarks on linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$

Theorem

Consider the standard basis $\{e_1, \ldots, e_n\}$ of \mathbb{R}^n .

Then any linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is uniquely determined by $T(e_i)$ for all $1 \le i \le n$.

Proof. Every vector
$$v = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$
 has a unique expression:

$$v = x_1 \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \dots + x_n \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} = x_1 e_1 + x_2 e_2 + \dots + x_n e_n.$$

Hence, by linearity, $T(v) = x_1 T(e_1) + \cdots + x_n T(e_n)$, which has a unique choice, once $T(e_i)$ is given for every i.

Another approach. Since $T \sim A$, $T(e_i) \sim$ the *i*th column of A.

Remarks on linear transformation $T: V \rightarrow W$

Theorem

Let V be finite dimensional, and $\{v_1, \ldots, v_n\}$ be a basis of V. Then any linear transformation $T: V \to W$ is uniquely determined by $T(v_i)$ for all $1 \le i \le n$.

Proof. Every vector $v \in V$ has a unique expression:

$$v = c_1 v_1 + c_2 v_2 + \cdots + c_n v_n$$
, because if

$$v = d_1v_1 + d_2v_2 + \cdots + d_nv_n$$
 is another expression, then

$$(c_1-d_1)v_1+\cdots+(c_n-d_n)v_n=0 \implies c_i=d_i \text{ for all } i.$$

Hence, by linearity, $T(v) = c_1 T(v_1) + \cdots + c_n T(v_n)$, which has a unique choice, once $T(v_i)$ is given for every i.

Some remarks on linear transformations

Theorem

Let V be finite dimensional, and $\{v_1, \ldots, v_n\}$ be a basis of V. Let $\{w_1, \ldots, w_n\}$ be any collection of n vectors in W. Then there is EXACTLY one linear transformation $T: V \to W$ such that $T(v_i) = w_i$ for all $1 \le i \le n$.

Proof. Once we show the existence, uniqueness follows from the last theorem. We define a map as follows: Every vector $v \in V$ has a UNIQUE expression: $v = c_1v_1 + \cdots + c_nv_n$ as before. Define $T(v) := c_1w_1 + \cdots + c_nw_n$. Then

- $T: V \to W$ is a linear map because:
 - If $v = c_1v_1 + \cdots + c_nv_n$ and $u = d_1v_1 + \cdots + d_nv_n$, then $v + u = (c_1 + d_1)v_1 + \cdots + (c_n + d_n)v_n$. Hence T(v + u) = T(v) + T(u).
 - If $v = c_1v_1 + \cdots + c_nv_n$, then $cv = (cc_1)v_1 + \cdots + (cc_n)v_n$. Hence T(cv) = cT(v).

Null space and nullity of a linear transformation

- Let $T:V \to W$ be a linear transformation. Then
- $Null(T) := \{v \in V : T(v) = 0\}$ is a subspace of V, because:
- It is non-empty as $0 \in \text{Null}(T)$.
- If $u, v \in \text{Null}(T)$ and $c, d \in \mathbb{R}$, then T(cu + dv) = cT(u) + dT(v) = 0, hence $cu + dv \in \text{Null}(T)$.

Definition (Null space and nullity)

- $Null(T) := \{v \in V : T(v) = 0\}$ is called the **null space** of T.
- The **nullity** of T is the dimension of the null space of T.

Range (or Image) of a linear transformation, and rank

- Let $T: V \to W$ be a linear transformation. Then
- Image(T) := { $w \in W : w = T(v)$ for some $v \in V$ } is a subspace of W, because:
- It is non-empty as $0 \in \operatorname{Image}(T)$.
- If $w_1, w_2 \in \text{Image}(T)$ and $c_1, c_2 \in \mathbb{R}$, then $w_1 = T(v_1)$ and $w_2 = T(v_2)$ for some $v_1, v_2 \in V$, hence $c_1w_1 + c_2w_2 = T(c_1v_1 + c_2v_2) \in \text{Image}(T)$.

Definition (Range space and rank)

- Image(T) := { $w \in W : w = T(v)$ for some $v \in V$ } is called the **range space** of T.
- The rank of T is the dimension of the range space of T.

Rank-Nullity Theorem

Theorem

Let $T: V \to W$ be a linear transformation, where $\dim(V)$ is finite. Then $\operatorname{rank}(T) + \operatorname{nullity}(T) = \dim(V)$.

Proof. Start with a basis $\{u_1, \ldots, u_n\}$ of Null(T). Extend this to a basis $\{u_1, \ldots, u_n, v_1, \ldots, v_r\}$ of V. It is enough to prove that

$$\{T(v_1), \ldots, T(v_r)\}\$$
 is a basis of $\operatorname{Image}(T)$.

Spanning: Any vector of $\operatorname{Image}(T)$ looks like T(v) for some $v \in V$. Write $v = c_1u_1 + \cdots + c_nu_n + d_1v_1 + \cdots + d_rv_r$. Then $T(v) = c_1T(u_1) + \cdots + c_nT(u_n) + d_1T(v_1) + \cdots + d_rT(v_r) = d_1T(v_1) + \cdots + d_rT(v_r)$.

Proof of Rank-Nullity Theorem contd...

Theorem

Let $T: V \to W$ be a linear transformation, where $\dim(V)$ is finite. Then $\operatorname{rank}(T) + \operatorname{nullity}(T) = \dim(V)$.

Proof. Start with a basis $\{u_1, \ldots, u_n\}$ of $\mathrm{Null}(T)$. Extend this to a basis $\{u_1, \ldots, u_n, v_1, \ldots, v_r\}$ of V. It is enough to prove that

$$\{T(v_1),\ldots,T(v_r)\}$$
 is a basis of $\operatorname{Image}(T)$.

Lin. Independence: Let $b_1T(v_1)+\cdots+b_rT(v_r)=0$. This implies that $b_1v_1+\cdots+b_rv_r\in \operatorname{Null}(T)$. So $b_1v_1+\cdots+b_rv_r=a_1u_1+\cdots+a_nu_n$ for some $a_i\in\mathbb{R}$. Thus $b_1v_1+\cdots+b_rv_r-a_1u_1-\cdots-a_nu_n=0$. Therefore $b_1=\cdots=b_r=0$.

Row and column spaces

Definition

- Let A be an $m \times n$ matrix over \mathbb{R} .
- The subspace of \mathbb{R}^m generated by all columns (column vectors) of A is called the **column space** of A.
- The subspace of \mathbb{R}^n generated by all rows (row vectors) of A is called the **row space** of A.

Example

$$\bullet \text{ Let } A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}.$$

- Column space of A is **Span** $\left\{ \begin{pmatrix} 1 \\ 5 \\ 9 \end{pmatrix}, \begin{pmatrix} 2 \\ 6 \\ 10 \end{pmatrix}, \begin{pmatrix} 3 \\ 7 \\ 11 \end{pmatrix}, \begin{pmatrix} 4 \\ 8 \\ 12 \end{pmatrix} \right\}$.
- Column space of A is a subspace of \mathbb{R}^3 .

Examples: Row and column spaces

Example

$$\bullet \text{ Let } A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}.$$

- Row space of A is **Span** $\left\{ \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}, \begin{pmatrix} 5\\6\\7\\8 \end{pmatrix}, \begin{pmatrix} 9\\10\\11\\12 \end{pmatrix} \right\}$.
- Row space of A is a subspace of \mathbb{R}^4 .

Example

If
$$A = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
, Column Sp. is $\left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 : x_3 = 0 \right\}$.

Row rank and column rank

Definition

- Let A be an $m \times n$ matrix over \mathbb{R} .
- The dimension of the column space of A is called column rank of A.
- The dimension of the row space of A is called **row rank** of A.

Example

• Let
$$A = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 3 & 1 \end{pmatrix}$.

- Column rank of A is 2. Row rank of A is 2.
- Column rank of B is 3. Row rank of B is 3.

As a consequence of Rank-Nullity Theorem, we will prove that for an arbitrary matrix D, row rank(D) = column rank(D).

Thank You!