Chapter 5: Euclidean spaces, quadratic forms

Lecturer: Assoc. Prof. Nguyễn Duy Tân email: tan.nguyenduy@hust.edu.vn

School of Applied Mathematics and Informatics, HUST

December, 2023

Contents

- 1 5.1. Euclidean spaces
 - 5.1.1. Inner products
 - 5.1.2. Gram-Schmidt orthonormalization process
 - 5.1.3. Orthogonal diagonalization

- 2 5.2. Quadratic forms
 - 5.2.1. Quadratic forms
 - 5.2.2. Reduction of quadratic forms

5.1.1. Inner products

Let V be a vector space over \mathbb{R} .

Definition

An *inner product* on V is a map $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$ that satisfies the following conditions: for all $u, v, w \in V$, and for all $k \in \mathbb{R}$, we have

- $\langle u, u \rangle \ge 0$ and $\langle u, u \rangle = 0$ if and only if u = 0.

A vector space together with an inner product is called an inner product space.

A finite dimensional vector space together with an inner product is called a Euclidean space.

Standard inner product on \mathbb{R}^n

On \mathbb{R}^n we consider the following inner product defined as follows: if $u=(x_1,\ldots,x_n)$ and $v=(y_1,\ldots,y_n)$, then

$$\langle u, v \rangle := x_1 y_1 + \cdots + x_n y_n.$$

Can check that this is indeed an inner product on \mathbb{R}^n .

This inner product on \mathbb{R}^n is called the *Euclidean* (or *standard*, or *canonical*, or *usual*) inner product, or the *dot product* on \mathbb{R}^n .

Another inner product on \mathbb{R}^2

On \mathbb{R}^2 , consider

$$\langle u, v \rangle := x_1y_1 + 2x_2y_2.$$

This defines an inner product on \mathbb{R}^2 .

Examples

On \mathbb{R}^2 , consider

$$\langle u, v \rangle := x_1y_1 - 2x_2y_2.$$

This is not an inner product on \mathbb{R}^2 .

Basic properties

Let V be an inner product space with the inner product $\langle \; , \; \rangle$.

Properties

For all $u, v, w \in V$ and all $c \in \mathbb{R}$:

- $\langle 0, u \rangle = \langle u, 0 \rangle = 0$.
- $\bullet \ \langle u, cv \rangle = c \langle u, v \rangle.$

Length and distance

Definition

- **1** The *length* or *norm* of a vector u is $||u|| = \sqrt{\langle u, u \rangle}$.
- ② The *distance* between two vectors $u, v \in V$ is d(u, v) = ||u v||.

Example: In \mathbb{R}^n with the Euclidean inner product (the dot product), the length of $u=(x_1,x_2,\ldots,x_n)$ is

$$||u|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

Theorem (Cauchy – Schwarz inequality)

For all $u, v \in V$, we have $|\langle u, v \rangle| \le ||u|| ||v||$.

The equality holds if and only if u and v are linearly dependent.

Example: Consider \mathbb{R}^n with the dot product, the Cauchy–Schwarz inequality becomes

$$|x_1y_1+\cdots+x_ny_n| \leq \sqrt{x_1^2+x_2^2+\cdots+x_n^2}\sqrt{y_1^2+y_2^2+\cdots+y_n^2}.$$

Some properties of lengths and distances

Proposition

- $||v|| \ge 0$, for all $v \in V$.
- $\|v\| = 0 \Leftrightarrow v = 0.$

•
$$||av|| = |a| ||v||$$
, $\forall a \in \mathbb{R}, v \in V$.

• $||u + v|| \le ||u|| + ||v||$, $\forall u, v \in V$.

Proposition

- $d(u, v) \ge 0$, for all $u, v \in V$.
- $d(u, v) = 0 \Leftrightarrow u = v$.

- $d(u, v) = d(v, u), \forall u, v \in V$.
- $d(u, v) \leq d(u, w) + d(w, v)$, $\forall u, v, w \in V$.

Angle

Definition

• The angle of two non-zero vectors u, v is an angle θ ($0 \le \theta \le \pi$) such that

$$\cos\theta = \frac{\langle u, v \rangle}{\|u\| \|v\|}.$$

② Two vectors u, v are said to be *orthogonal* (or *perpendicular*), denoted $u \perp v$, if $\langle u, v \rangle = 0$.

Remark: The zero vector 0 is orthogonal to every vector.

Orthogonal and orthonormal sets

Let $S = \{v_1, \dots, v_k\}$ be a set of vectors in V.

Definition

• S is said to be *orthogonal* if any two vectors in S are orthogonal, that means

$$\langle v_i, v_j \rangle = 0, \forall i \neq j;$$

• S is said to be *orthonormal* if S is orthogonal and every vector in S has length 1, that means $\langle v_i, v_j \rangle = \begin{cases} 0 & \forall i \neq j \\ 1 & \forall i = j. \end{cases}$

Proposition

Let $S = \{v_1, \dots, v_k\}$ be an orthogonal set of nonzero vectors in V. Then

- is linearly independent,
- The set $\{\frac{v_1}{\|v_1\|}, \dots, \frac{v_k}{\|v_k\|}\}$ is orthonormal.

Orthogonal and orthonormal bases

Defintion

- An orthogonal basis for V is a basis for V that is also an orthogonal set.
- An orthonormal basis for V is a basis for V that is also an orthonormal set.

Remark: If dim V = n then any orthonormal set of n vectors of V is automatically a(n orthonormal) basis for V.

Example: Consider \mathbb{R}^2 with the standard inner product.

- $\{(1,1),(1,-1)\}$ is an orthogonal basis,
- $\{(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})\}$ is an orthonormal basis,
- $\{(1,0),(0,1)\}$ is an orthonormal basis.

Coordinates of a vector relative to an orthogonal basis

Theorem

Let $S = \{v_1, \dots, v_n\}$ be an orthogonal basis for an Eulcidean vector space V and v a vector in V. Then

$$v = \frac{\langle v, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 + \cdots + \frac{\langle v, v_n \rangle}{\langle v_n, v_n \rangle} v_n.$$

In particular, if S is orthonormal if

$$v = \langle v, v_1 \rangle v_1 + \cdots + \langle v, v_n \rangle v_n.$$

Example: In \mathbb{R}^2 , find the coordinates of v = (1,1) relative to the basis $S = \{(1,2),(2,-1)\}$.

Consider \mathbb{R}^2 with the standard inner product. Then S is an orthogonal basis. The coordinate vector of v relative to S is $(v)_S = (c_1, c_2)$, where

$$c_1 = rac{\langle (1,1), (1,2)
angle}{||(1,2)||^2} = rac{3}{5}, \quad c_2 = rac{\langle (1,1), (2,-1)
angle}{||(2,-1)||^2} = rac{1}{5}.$$

Thus,
$$(v)_S = (\frac{3}{5}, \frac{1}{5})$$
.

5.1.2. Gram-Schmidt orthonormalization process

- Let $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ be a basis for a Euclidean vector space V.
- Construct $\mathcal{B}' = \{w_1, w_2, \dots, w_n\}$ as follows:

$$\begin{split} w_1 &= v_1 \\ w_2 &= v_2 - \frac{\langle v_2, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 \\ w_3 &= v_3 - \frac{\langle v_3, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 - \frac{\langle v_3, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2 \\ \dots \\ w_n &= v_n - \frac{\langle v_n, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 - \frac{\langle v_n, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2 - \dots - \frac{\langle v_n, w_{n-1} \rangle}{\langle w_{n-1}, w_{n-1} \rangle} w_{n-1}. \end{split}$$

Theorem (Gram-Schmidt orthonormalization)

- Then \mathcal{B}' is an orthogonal basis for V.
- Set $u_i = \frac{w_i}{\|w_i\|}$, $1 \le i \le n$. Then $\mathcal{B}'' = \{u_1, u_2, \dots, u_n\}$ is an orthonormal basis for V.
- Morever, span $\{v_1, \ldots, v_k\} = \text{span}\{u_1, \ldots, u_k\}$, for every $1 \le k \le n$.

The process of calculating the orthonormal basis $\{u_1, \ldots, u_n\}$ from a basis $\{v_1, \ldots, v_n\}$ as above is called the Gram-Schmidt orthonormalization (process).

Example: In \mathbb{R}^3 , with the standard inner product, consider a basis

$$\mathcal{B} = \{v_1, v_2, v_3\} = \{(1, 1, 0), (1, 2, 0), (0, 1, 2)\}.$$

We have

$$w_{1} = v_{1} = (1, 1, 0)$$

$$w_{2} = v_{2} - \frac{\langle v_{2}, w_{1} \rangle}{\|w_{1}\|^{2}} w_{1} = \left(-\frac{1}{2}, \frac{1}{2}, 0\right)$$

$$w_{3} = v_{3} - \frac{\langle v_{3}, w_{1} \rangle}{\|w_{1}\|^{2}} w_{1} - \frac{\langle v_{3}, w_{2} \rangle}{\|w_{2}\|^{2}} w_{2} = (0, 0, 2)$$

Then $B' = \{w_1, w_2, w_3\}$ in an orthogonal basis for \mathbb{R}^3 .

• Normalize vectors in \mathcal{B}' :

$$u_1 = \frac{w_1}{\|w_1\|} = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right)$$

$$u_2 = \frac{w_2}{\|w_2\|} = \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right)$$

$$u_3 = \frac{w_3}{\|w_3\|} = (0, 0, 1)$$

 $\mathcal{B}'' = \{u_1, u_2, u_3\}$ is an orthogonal basis for \mathbb{R}^3 .

Example

In \mathbb{R}^3 with the standard inner product, consider $v_1 = (0, 1, 0)$, $v_2 = (1, 1, 1)$. Find an orthonormal basis for span $\{v_1, v_2\}$.

• Orthogonalize $\{v_1, v_2\}$ we obtain

$$w_1 = v_1 = (0, 1, 0)$$

 $w_2 = v_2 - \frac{\langle v_2, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 = (1, 1, 1) - (0, 1, 0) = (1, 0, 1).$

• Normalize w_1, w_2 we obtain an orthonormal basis for $\mathrm{span}\,\{v_1, v_2\}$

$$\left\{(0,1,0), \left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)\right\}.$$

Example

In \mathbb{R}^3 , consider the followin inner product

$$\langle u, v \rangle = 2x_1y_1 + 3x_2y_2 + 2x_3y_3 - 2x_1y_2 - 2x_2y_1 + x_1y_3 + x_3y_1 - x_2y_3 - x_3y_2,$$

với $u=(x_1,x_2,x_3)$, $v=(y_1,y_2,y_3)$. Find an orthonormal basis for \mathbb{R}^3 relative to this inner product by using the Gram-Schmidt orthonormalization process on the standard basis for \mathbb{R}^3 .

We have

$$w_{1} = e_{1} = (1,0,0)$$

$$w_{2} = e_{2} - \frac{\langle e_{2}, w_{1} \rangle}{\|w_{1}\|^{2}} w_{1} = (0,1,0) - \frac{-2}{2} (1,0,0) = (1,1,0)$$

$$w_{3} = e_{3} - \frac{\langle e_{3}, w_{1} \rangle}{\|w_{1}\|^{2}} w_{1} - \frac{\langle e_{3}, w_{2} \rangle}{\|w_{2}\|^{2}} w_{2} = (0,0,1) - \frac{1}{2} (1,0,0) - \frac{0}{1} (1,1,0)$$

$$= (-1/2,0,1).$$

- $\mathcal{B}' = \{w_1, w_2, w_3\}$ is an orthogonal basis for \mathbb{R}^3 .
- Normalize vectors in \mathcal{B}' :

$$u_1 = \frac{w_1}{\|w_1\|} = (\frac{1}{\sqrt{2}}, 0, 0)$$

$$u_2 = \frac{w_2}{\|w_2\|} = (1, 1, 0)$$

$$u_3 = \frac{w_3}{\|w_3\|} = \frac{1}{\sqrt{6}}(-1, 0, 2).$$

• $\mathcal{B}'' = \{u_1, u_2, u_3\}$ is an orthonormal basis for \mathbb{R}^3 with respect to $\langle \cdot, \cdot \rangle$.

Remark

Normalizing of vectors can be done right after orthogonalizing each vector as follows:

$$\begin{aligned} u_1 &= \frac{w_1}{\|w_1\|} \text{ where } w_1 = v_1 \\ u_2 &= \frac{w_2}{\|w_2\|} \text{ where } w_2 = v_2 - \langle v_2, u_1 \rangle u_1 \\ u_3 &= \frac{w_3}{\|w_3\|} \text{ where } w_3 = v_3 - \langle v_3, u_1 \rangle u_1 - \langle v_3, u_2 \rangle u_2 \\ & \dots \\ u_n &= \frac{w_n}{\|w_n\|} \text{ where } w_n = v_n - \langle v_n, u_1 \rangle u_1 - \dots - \langle v_n, u_{n-1} \rangle u_{n-1} \end{aligned}$$

Corollary

Every Euclidean vector space has an orthonormal basis.

Proposition

Let V be an Euclidean vector space with an orthonormal basis \mathcal{B} . Let $u, v \in V$. Let $(u)_{\mathcal{B}} = (x_1, x_2, \dots, x_n)$ and $(v)_{\mathcal{B}} = (y_1, y_2, \dots, y_n)$. Then

- $\langle u,v\rangle = x_1y_1 + x_2y_2 + \cdots + x_ny_n;$
- $||u|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2};$
- $d(u,v) = \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2 + \cdots + (x_n-y_n)^2}$.

Orthogonal subspaces

Consider a Euclidean vector space V with inner product \langle , \rangle and $\dim(V) = n$.

Definition

Giả sử U là một không gian con của V và $v \in V$. We say that v is orthogonal (or perpendicular) to U, and write $v \perp U$, if $v \perp w$, $\forall w \in U$, i.e., $\langle v, w \rangle = 0$, $\forall w \in U$.

Remark: $v \perp U \Leftrightarrow v$ is orthognal to every vector in a basis (of a spanning set) for U.

Definition

Two vector subspaces U, W of V are said to be *orthogonal* (or *perpendicular*), written $U \perp W$, if for every $u \in U$ and every $w \in W$, we have that u and v are orthogonal.

Remark: If $U \perp W$ then $U \cap W = \{0\}$.

Example: In \mathbb{R}^3 (with the standard inner product), consider $U = \text{span}\{(0,1,-1),(1,1,0)\}$, $w = (-1, 1, 1), W = \operatorname{span}\{w\}.$

We have $w \perp U$ và $U \perp W$.

Orthogonal complements

Definition

The orthogonal complement of a vector subspace U (of V), denoted by U^{\perp} , is defined as

$$U^{\perp} = \{ v \in V \mid v \perp U \} = \{ v \in V \mid \langle v, u \rangle = 0, \forall u \in U \} .$$

Example: In \mathbb{R}^4 (with the standard inner product), find the orthogonal complement of $U = \text{span} \{v_1 = (1, 2, 1, 0), v_2 = (0, 0, 0, 1)\}.$

We have
$$v = (x_1, x_2, x_3, x_4) \in U^{\perp} \Leftrightarrow \begin{cases} \langle v, v_1 \rangle = 0 \\ \langle v, v_2 \rangle = 0 \end{cases} \Leftrightarrow \begin{cases} x_1 + 2x_2 + x_3 = 0 \\ x_4 = 0 \end{cases}$$

Solve this system we obtain $U^{\perp} = \text{span}\{u_1, u_2\}$ where $u_1 = (-2, 1, 0, 0), u_2 = (-1, 0, 1, 0).$

Exercise (CK20183-N2)

In \mathbb{R}^4 with the standard inner product, let $u_1 = (-1, -2, 1, 0)$, $u_2 = (1, -1, 2, 3)$, $u_3 = (-3, -2, 0, 1)$. The vectors in \mathbb{R}^4 that are orthogonal to these there vectors form a vector subspace U of \mathbb{R}^4 . Find a basis for U.

Orthogonal decomposition

Theorem

Cho U là một không gian véc tơ con của V và dim V = n. Khi đó

- U^{\perp} là một không gian véc tơ con của V.
- $U + U^{\perp} = V$ và dim $U + \dim U^{\perp} = n$.
- $(U^{\perp})^{\perp} = U$.

Remark: V is a direct sum of U and U^{\perp} . That means every vector $v \in V$ has a unique representation v = u + w, where $u \in U$, $w \in U^{\perp}$.

Orthogonal projection

Definition

Let U be a subspace of V and $v \in V$. Let

$$v = u + w$$
, với $u \in U$, $w \in U^{\perp}$,

be the unique representation of v as a sum of a vector in U and a vector in U^{\perp} . We say that u is the *orthogonal projection* of v onto the subspace U, and denoted by $\operatorname{pr}_{U}(v) = u$.

Remark:

- The orthogonal projection $\operatorname{pr}_U(v)$ of v onto the subspace U is the unique vector u such that $u \in U$ and $v u \perp U$.
- If v = u + w, where $u \in U$ and $w \in U^{\perp}$, then $w = \operatorname{pr}_{U^{\perp}}(v)$. In other words, $v \operatorname{pr}_{U}(v)$ is the orthogonal projection of v onto the subspace U^{\perp} .

$$v = \operatorname{pr}_{U}(v) + \operatorname{pr}_{U^{\perp}}(v).$$

Theorem

Let U be a subspace of a Euclidean space V and $v \in V$. Then

$$\|v - \operatorname{pr}_U(v)\| \le \|v - w\|, \quad \forall w \in U,$$

and the "=" holds $\Leftrightarrow w = \operatorname{pr}_U(v)$.

Among all the vector in the subspace U, the vector $\operatorname{pr}_{U}(v)$ is the closet vector to v.

Finding orthogonal projection

Định lý

If $S = \{u_1, u_2, \dots, u_k\}$ is an orthogonal basis for the subspace U of V then for every $v \in V$, we have

$$\operatorname{pr}_{U}(v) = \frac{\langle v, u_{1} \rangle}{\langle u_{1}, u_{1} \rangle} u_{1} + \frac{\langle v, u_{2} \rangle}{\langle u_{2}, u_{2} \rangle} u_{2} + \cdots + \frac{\langle v, u_{k} \rangle}{\langle u_{k}, u_{k} \rangle} u_{k}.$$

In particular, if S is an orthonormal basis for U then

$$\operatorname{pr}_{U}(v) = \langle v, u_{1} \rangle u_{1} + \langle v, u_{2} \rangle u_{2} + \cdots + \langle v, u_{k} \rangle u_{k}.$$

Particular case

If $U = \text{span}\{u\}$ where $u \neq 0$, then we also call the orthogonal projection of v onto U as theorthogonal projection of v onto the vector u, and we have

$$\operatorname{pr}_{u}(v) := \operatorname{pr}_{U}(v) = \frac{\langle v, u \rangle}{\langle u, u \rangle} u$$

Example

In \mathbb{R}^3 with the standard inner product, consider $U = \text{span}\{v_1 = (1, 2, 2), v_2 = (1, 1, 0)\}$ and v = (1, 1, 3). Find $\text{pr}_U(v)$.

Using Gram-Schmidt process on the basis $\{w_1, w_2\}$ for U, we find an orthonormal basis for U:

$$u_1 = (\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$$
$$u_2 = (\frac{2}{3}, \frac{1}{3}, -\frac{2}{3})$$

Hence

$$\operatorname{pr}_{U}(v) = \langle v, u_{1} \rangle u_{1} + \langle v, u_{2} \rangle u_{2} = (\frac{1}{3}, \frac{5}{3}, \frac{8}{3}).$$

Solution 2:

- Let $u = \operatorname{pr}_U(v)$. Then $u \in U$ and $v u \perp U$.
- Since $u \in U$, one has $u = c_1v_1 + c_2v_2$, for some $c_1, c_2 \in \mathbb{R}$.

• We have
$$v - u \perp U \Leftrightarrow \begin{cases} v - u \perp v_1 \\ v - u \perp v_2 \end{cases} \Leftrightarrow \begin{cases} \langle v - u, v_1 \rangle = 0 \\ \langle v - u, v_2 \rangle = 0 \end{cases} \Leftrightarrow \begin{cases} \langle v, v_1 \rangle = \langle u, v_1 \rangle \\ \langle v, v_2 \rangle = \langle u, v_2 \rangle \end{cases} \Leftrightarrow \begin{cases} c_1 \langle v_1, v_1 \rangle + c_2 \langle v_2, v_1 \rangle = \langle v, v_1 \rangle \\ c_1 \langle v_1, v_2 \rangle + c_2 \langle v_2, v_2 \rangle = \langle v, v_2 \rangle \end{cases} \Leftrightarrow \begin{cases} 9c_1 + 3c_2 = 9 \\ 3c_1 + 2c_2 = 2 \end{cases} \Leftrightarrow \begin{cases} c_1 = 4/3 \\ c_2 = -1 \end{cases}$$

• Thus $u = \frac{4}{3}(1,2,2) + (-1)(1,1,0) = (\frac{1}{3}, \frac{5}{3}, \frac{8}{3}).$

Another way to find orthogonal projections (optional)

- Let V be a Euclidean space. Suppose that $U = \operatorname{span}\{v_1, \dots, v_k\}$ is a subspace of V.
- Let $v \in V$. Set $u = \operatorname{pr}_U(v)$. Write $u = c_1v_1 + c_2v_2 + \cdots + c_kv_k$.
- Then (c_1, c_2, \ldots, c_k) is a solution of the system

$$\begin{cases} \langle v_1, v_1 \rangle c_1 + \langle v_1, v_2 \rangle c_2 + \dots + \langle v_1, v_k \rangle c_k &= \langle v, v_1 \rangle \\ \langle v_2, v_1 \rangle c_1 + \langle v_2, v_2 \rangle c_2 + \dots + \langle v_2, v_k \rangle c_k &= \langle v, v_2 \rangle \\ \vdots \\ \langle v_k, v_1 \rangle c_1 + \langle v_k, v_2 \rangle c_2 + \dots + \langle v_k, v_k \rangle c_k &= \langle v, v_k \rangle \end{cases}$$

Another way to find orthogonal projections (matrix form, optional)

Use the same notation as in the previous slide.

Furthermore, we fix an orthonormal basis \mathcal{E} for V. For simplicity, we use [u] to denote the column vector $[u]_{\mathcal{E}}$ (the coordinate of $u \in V$ relative \mathcal{E} .

- Let A be the column coordinate matrix of the set $S = \{v_1, \dots, v_k\}$ relative to \mathcal{E} .
- Set $[u] := x = [c_1 \cdots c_k]^T$. Then x satisfies the system

$$A^T A x = A^T [v].$$

- Solve x from the above system, and we find $u = c_1 v_1 + \cdots + c_k v_k$.
- In the case that S is a basis for U then A^TA is invertible and

$$[u] = A(A^T A)^{-1} A^T [v].$$

Remark: When $V = \mathbb{R}^n$ with the standard inner product, we usually use the standard basis \mathcal{E} . **Example:** In \mathbb{R}^3 with the standard inner product, consider $U = \text{span}\{v_1 = (1, 2, 2), v_2 = (1, 1, 0)\}$ and v = (1, 1, 3). Find $pr_{II}(v)$.

$$A^T = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 1 & 0 \end{bmatrix}$$
. The system $A^T A x = A^T [v] \Leftrightarrow \begin{bmatrix} 9 & 3 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 9 \\ 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 4/3 \\ -1 \end{bmatrix}$.

Some exercises

- (CK20181) Consider the system $\begin{cases} x_1 x_2 + x_3 + x_4 = 0 \\ 2x_1 x_2 + 3x_3 2x_4 = 0 \\ -x_1 + (m-3)x_2 3x_3 + 7x_4 = m \end{cases}$, (*m* is a parameter).
 - c) When m=0, the set of solutions of the system is a subspace U of \mathbb{R}^4 . Find the dimension and a basis of U.
 - d) In \mathbb{R}^4 with the standard inner product, find the orthogonal projection of v=(4,5,-6,-9) ontho the subspace U in part c.
- (CK20181-N2) In \mathbb{R}^4 with the standard inner product, consider the vectors $v_1 = (1, 1, 2, -1)$, $v_2 = (1, 2, 1, 1)$, $v_3 = (3, 4, 5, -1)$. Let $V = \text{span}\{v_1, v_2, v_3\}$.
 - a) Find the dimension and a basis of V.
 - b) Find the orthogonal projection of v = (4, 1, 0, 4) onto V.
- (CK20181-N3) In \mathbb{R}^5 with the standard inner product, consider the vectors $v_1 = (-1, 1, 1, -1, -1)$, $v_2 = (2, 1, 4, -4, 2)$, $v_3 = (5, -4, -3, 7, 1)$. Let V be the subspace spanned by v_1, v_2, v_3 .
 - a) Find an orthogonal basis for V.
 - b) Find the orthogonal projection of v = (1, 2, 3, 4, 5) onto V.

- (CK20171) Consider the linear map $f: \mathbb{R}^4 \to \mathbb{R}^3$ defined by f(x, y, z, s) = (x + 2y + z - 3s, 2x + 5y + 4z - 5s, x + 4y + 5z - s).
 - a) Find the dimension and a basis of ker f.
 - b) In \mathbb{R}^4 with the standard inner product, consder u=(1,0,1,0). Find $w\in\ker f$ such that ||u-w|| < ||u-v||, for every $v \in \ker f$.
- (CK20171) Trong không gian véc tơ \mathbb{R}^4 trang bi tích vô hướng chính tắc, cho $V_1 = \text{span}\{v_1 = (1, 2, 3, 1), v_2 = (1, 3, 3, 2)\}, V_2 = \text{span}\{v_3 = (1, 2, 5, 3), v_4 = (1, 3, 4, 3)\}.$ Have tìm một cơ sở trực chuẩn của $V_1 + V_2$. Tìm hình chiếu của véc tơ w = (1, 1, 2, 0) lên $V_1 + V_2$.

c) Add more vectors into the basis for ker f founded in part (a) so that the new set is a basis for \mathbb{R}^4 .

- (CK20171-N2) In \mathbb{R}^4 with the standar inner product, consider vectors $v_1 = (1, 0, -1, 0)$, $v_2 = (1, -2m, m, 1), v_3 = (1, 1, 1, 0).$
 - a) Find m such that v_1, v_2 are orthogonal, and with such m prove that $\{v_1, v_2, v_3\}$ is linearly independent.
 - b) For m founded in part (a), find the orthogonal projection of u = (0, 2, 1, -1) onto the subspace $span\{v_1, v_2, v_3\}.$

- (CK20161) In \mathbb{R}^3 with the standar inner product, consider the vectors $u_1 = (1, 1, 0)$, $u_2 = (1, 2, 1)$, $u_3 = (3, 4, 1)$, v = (2, 2, 3) and let $H = \text{span}\{u_1, u_2, u_3\}$.
 - a) Find an orthonormal basis for H.
 - b) Find the orthogonal projection of v onto H.
- (CK20161-No7) In \mathbb{R}^3 with the standar inner product, consider the vectors u=(1,2,-1), v=(-5,-2,3), $u_3=(3,4,1)$ and let $H=\{z\in\mathbb{R}^3\mid z\perp u\}$.
 - a) Find an orthonormal basis for H.
 - b) Find the orthogonal projection of v onto H.
- (CK20193) $In\mathbb{R}^3$ with the standar inner product, consider $W = span\{(0,1,2), (3,4,5), (6,7,8)\}$.
 - a) Find an orthonormal basis foW.
 - b) Find the orthogonal projection of u = (3, 1, 5) onto W.

Orthogonal matrix

Definition

Matrix $A \in \mathcal{M}_n(\mathbb{R})$ is said to be *orthogonal* if $A^T A = I_n$.

Example:
$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$
 is an orthogonal matrix.

Proposition

Let $A \in \mathcal{M}_n(\mathbb{R})$. The following conditions are equivalent.

- A is an orthogonal matrix.
- 2 A is invertible and $A^{-1} = A^T$.
- **1** The columns of A form an orthonormal basis for $M_{n\times 1}(\mathbb{R})$ (with the standard inner product).
- The rows of A form an orthonormal basis for $M_{1\times n}(\mathbb{R})$ (with the standard inner product).

Proposition

Let V be a Euclidean space. Let P be the transition matrix from an orthonormal basis \mathcal{B} to a basis \mathcal{B}' for V. Then P is an orthogonal matrix if and only if \mathcal{B}' is an orthonormal basis.

In particular: the transition matrix from an orthonormal basis $\mathcal B$ to an orthonormal basis is an orthogonal matrix.

Orthogonal diagonalization

Problem

Let A be a square matrix. Does there exist an orthogonal matrix P such that $P^{-1}AP(=P^{T}AP)=D$ is a digonal matrix?

If such an orthogonal matrix P exists then we say that A is orthogonally diagonalizable. We also say that P orthogonally diagonalizes A. The process of finding an orthogonal matrix P and a diagonal matrix D satisfying that $P^{-1}AP = D$ is called the orthogonal diagonalization of matrix A.

Theorem (Condition for orthogonal diagonalization)

A square matrix A of size $n \times n$ is orthogonally diagonalizable if and only if A has n linearly independent eigenvectors which form an orthonormal basis for $M_{n\times 1}(\mathbb{R})$ (with the standard inner product).

Symmetric matrices - orthogonally diagonalizable matrices

Theorem

Let A be a real symmetric matrix of order n. The following statements are true.

- A has n real eigenvalue (counted with multiplicities).
- Two eigenvectors x_1 and x_2 with respect to distinct eigenvalues λ_1 and λ_2 are orthogonal (with the standard inner product).
- If λ_i is an eigenvalue with multiplicity m_i (viewed as a root of the characteristic polynomial of A) then dim $E_{\lambda_i} = m_i$.

Theorem

Matrix A is orthogonally diagonalizable if and only if A is a (real) symmetric matrix.

Steps for orthogonally diagonalizing a symmetric matrix

Let A be a real symmetric $n \times n$ n.

- Solve the equation $det(A \lambda I) = 0$ (*) to find the eigenvalues of A together with their multiplicities.
- **2** For each eigenvalue λ find an orthonormal basis for the eigenspace E_{λ} .
- Take the union of all bases for eigenspaces founded in the previous step, we obtain an orthonormal basis consisting of *n* eigenvectors.
 - Let u_1, u_2, \ldots, u_n be these n linearly independent eigenvectors with corresponding eigenvalues α_1,\ldots,α_n
- Let $P = [u_1u_2 \cdots u_n]$ be the $n \times n$ matrix whose columns are u_1, \dots, u_n . Then P orthogonally diagonalizes A and

$$P^{-1}AP = \operatorname{diag}[\alpha_1, \alpha_2, \dots, \alpha_n] = D.$$

Example

Orthogonally diagonalize the matrix
$$A=\begin{bmatrix}2&2&-2\\2&-1&4\\-2&4&-1\end{bmatrix}$$
 .

- The characteristic equation: $0 = \det(A \lambda I_3) = -(\lambda 3)^2(\lambda + 6)$.
- Eigenvalues $\lambda = -6$ (with multiplicity 1) and $\lambda = 3$ (with multiplicity 2).
- For $\lambda = -6$: Solve the system $(A + 6I_3)x = 0$, and we find an eigenvector $v_1 = \begin{bmatrix} 1 & -2 & 2 \end{bmatrix}^T$. Normalize this vector, we obtain a vector of length 1: $u_1 = \begin{bmatrix} \frac{1}{3} & \frac{-2}{3} & \frac{2}{3} \end{bmatrix}^T$ and $\{u_1\}$ is an orthonormal basis for the eigenspace $E_{\lambda = -6}$.
- For $\lambda=3$: Solve the system $(A-3I_3)x=0$, and we find a basis for $E_{\lambda=3}$ consisting of two linearly independent eigevectors $v_2=\begin{bmatrix}2&1&0\end{bmatrix}^T$, $v_3=\begin{bmatrix}-2&0&1\end{bmatrix}^T$. The set $\{v_2,v_3\}$ is not orthonormal. We apply Gram-Schmidt process on this set:

$$w_{2} = v_{2} = \begin{bmatrix} 2 \ 1 \ 0 \end{bmatrix}^{T}$$

$$w_{3} = v_{3} - \frac{\langle v_{3}, w_{2} \rangle}{\langle w_{2}, w_{2} \rangle} w_{2} = \begin{bmatrix} -\frac{2}{5} \ \frac{4}{5} \ 1 \end{bmatrix}^{T}$$

$$u_{2} = \frac{w_{2}}{||w_{2}||} = \begin{bmatrix} \frac{2}{\sqrt{5}} \ \frac{1}{\sqrt{5}} \ 0 \end{bmatrix}^{T}, \quad u_{3} = \frac{w_{3}}{||w_{3}||} = \begin{bmatrix} \frac{-2}{3\sqrt{5}} \ \frac{4}{3\sqrt{5}} \ \frac{5}{3\sqrt{5}} \end{bmatrix}^{T}.$$

We obtain an orthonormal basis $\{u_2, u_3\}$ for $E_{\lambda=3}$. Use u_1, u_2, u_3 to form the orthogonal matrix P, we have

$$P = \begin{bmatrix} \frac{1}{3} & \frac{2}{\sqrt{5}} & -\frac{2}{3\sqrt{5}} \\ -\frac{2}{3} & \frac{1}{\sqrt{5}} & \frac{4}{3\sqrt{5}} \\ \frac{2}{3} & 0 & \frac{5}{3\sqrt{5}} \end{bmatrix}, \text{ and } P^{-1}AP = \begin{bmatrix} -6 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

5.2.1. Quadratic forms

5.2.2. Reduction of quadratic forms