Review of OLS Regression M.Sc. Politics and Policy Analysis

Francesco Mattioli

francesco.mattioli@unibocconi.it

Outline

- 1 Regression analysis
- 2 Ordinary Least Squares (OLS)
- 3 Goodness of fit
- 4 Multiple regression model
- 5 Example of OLS estimation
- **6** Dummy variables
- Interactions

Regression Analysis

Regression is a statistical tool used to study the relationship between:

- Dependent variable (y): outcome/response variable that we want to predict/explain (also called regressand or left-hand-side variable)
- Independent variable(s) (x): predictor/explanatory variable(s) used to explain the dependent variable (also called regressor or right-hand-side variable)

Goals of regression analysis:

- Formalize the relationship between dependent and independent variables (modelling)
- Explain the impact of changes of an independent variable on the dependent variable (inference)
- Predict the value of the dependent variable based on the value of, at least, one independent variable (prediction)

Linear Population Model

(Bivariate) linear population model:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

- y is a **linear** function of x (Δy is assumed to be influenced linearly by Δx)
- **Error term**, ε , accounts for other factors that affect y
- $-\beta_0$ is the **intercept**/constant term, β_1 is the **slope** parameter
- 'True' population parameters β_0 and β_1 are **theoretical**, cannot be observed
- Population parameters can be **estimated** with sample data under specific assumptions
- Estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ are **unbiased** thanks to the *mean conditional independence* assumption $(E(\varepsilon|x)=0)$

Linear Regression Model

Estimation problem: draw a **random sample** of size n from the population to estimate β_0 and β_1

Linear regression model:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

After estimation:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

- \hat{y}_i : **predicted** value of y for observation $i = \{1,...,n\}$
- $\hat{\beta}_0$, $\hat{\beta}_1$: **estimates** of intercept and slope parameters
- x_i : **observed** value of x for observation $i = \{1, ..., n\}$
- $-\hat{\beta}_0 + \hat{\beta}_1 x_i$: estimated **regression line**
- $-\hat{arepsilon}_i$: estimate of the error term, i.e. **residual** (it holds $\hat{arepsilon}_i = y_i \hat{y}_i$)

Estimation of regression line – Graphical representation

- We suspect that students' scores depend on how many hours per week they spend studying
- Simulated data for a sample of n = 500 observations

Study (x)	Score (y)
5	13
7	15
15	16
20	20
22	21
35	27
37	28
•••	•••

We want to obtain a good prediction of students' scores

- Suppose to ignore information on study hours (x)
- The regression line becomes $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 \hat{x}_i$ (i.e. slope is 0)

- The best prediction is the mean of y: $\hat{\beta}_0 = 20$
- How good is this prediction? How well does the regression line **fit** the observed data points?

- Observed data points do not fall on the regression line, but they lie either above or below it
- To evaluate how well the line fits the data we can measure the deviation from the data points to the line
- Since $\hat{\varepsilon}_i = y_i \hat{y}_i$, residuals $\hat{\varepsilon}_i$ measure such deviation
- Try to sum all residuals: the smaller the sum of residuals, the better the fit?
- Let's focus on a few data points for illustration

- Positive and negative residuals offset each other (16-16=0)
- It holds that $E(\hat{\epsilon}_i) = 0$ if β_0 is included in the regression model
- We need another summary measure of deviation from data points to the regression line to evaluate the fit of the line
- **Squaring** the residuals makes all deviations positive and emphasizes large ones

 The appropriate measure to evaluate how well the line fits the data is the Residual Sum of Squares (RSS)

- The smaller RSS, the better the fit
- The Ordinary Least Squares (OLS) method estimates the parameters of the regression line that minimize RSS

- Consider now information on study hours (x)
- The regression line becomes $\hat{y}_i = \hat{eta}_0 + \hat{eta}_1 x_i$ (i.e. slope is eq 0)

• How well does the new regression line fit the observed data points?

• Residual Sum of Squares (RSS):

$$RSS = \sum_{i=1}^{n} (\hat{\varepsilon}_i)^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i))^2$$

• **OLS** estimators of parameters:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x}) (y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} = \frac{Cov(x, y)}{Var(x)}$$
$$\hat{\beta}_{0} = \overline{y} - \hat{\beta}_{1}\overline{x}$$

 Let's focus again on a few data points for illustration: fit the new regression line and compute RSS

$$\hat{\beta}_0 = 10.69$$

$$\hat{\beta}_1 = 0.462$$

RSS = 3.874

Interpretation of OLS estimates

Intercept

- $\hat{\beta}_0$ is the estimated average value of y when x=0 (e.g. studying 0 hours would lead to an exam score of 10.69/30)
- Misleading/meaningless if 0 is an unlikely/impossible value for x
- Must be included to ensure that (i) $E(\hat{\varepsilon}_i) = 0$, and that (ii) the regression line passes through the point with coordinates $(\overline{y}, \overline{x})$

Slope

- $\hat{\beta}_1$ is the estimated average change in y as a result of a one-unit change in x (e.g. studying one more hour would lead to an increase in the exam score of 0.46 units out of 30)
- Also known as marginal effect of x in a linear model, it is constant across values of x (e.g. same effect when moving from 5 to 6 hours and from 39 to 40 hours)

Goodness of fit

- A good regression line explains most of the sample variation in *y*. How to measure how much variation the line actually explains?
- Total sample variation in y can be measured through the Total Sum of Squares (TSS, i.e. a modified version of Var (y)):

$$TSS = \sum_{i=1}^{n} (y_i - \overline{y})^2 = ESS + RSS$$

 TSS can be decomposed in a part of variation that is explained by the model (Explained/Regression/Model Sum of Squares, ESS) and part attributable to factors other than x, captured by the residuals (Residual Sum of Squares, RSS):

$$ESS = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$$
 $RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

Decomposition of variation (intuition for one value of y)

Goodness of fit

 Coefficient of determination: measures the fraction of total variation in y explained by the model:

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$$

- If β_0 is included in the regression model: $0 \le R^2 \le 1$
- If only one indep. variable x is included in the regression model: $R^2 = Corr(y, x)^2$
- If k indep. variables x are included in the regression model, R^2 increases by construction without necessarily improving explanation, and should be **adjusted**:

$$\overline{R}^2 = 1 - \frac{\frac{RSS}{n-k-1}}{\frac{TSS}{n-1}} \le R^2$$

Multiple regression model

- A single independent variable x might not be sufficient to explain y (e.g. the exam score might depend on study hours, parental education, gender, etc.)
- The regression model can be improved by including other k independent variables, getting the following form:

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \dots + \beta_k x_{k,i} + \varepsilon_i$$

• $\hat{\beta}_1$ is the estimated average change in y as a result of a one-unit change in x_1 holding constant the characteristics x_2 to x_k

Estimation of a regression plane – Graphical representation

OLS estimators

 $\hat{\beta}_k$ is an **estimator** of the true population parameter β_k . As seen in Module 1, this implies:

- Sampling distribution: $\hat{eta}_k pprox N\left(eta_k, \sigma_{eta_k}^2\right)$ as $n o \infty$
- Hypothesis testing: $H_0: \beta_k = 0$ vs $H_1: \beta_k \neq 0$
- **T-statistic**: $t = \frac{\hat{\beta}_k 0}{SE(\hat{\beta}_k)} = \frac{\hat{\beta}_k 0}{\sqrt{\hat{\sigma}_{\hat{\beta}_k}^2}} \sim N(0, 1)$
- Confidence intervals: $CI_{0.95} = \hat{\beta}_k \pm 1.96 \cdot SE(\hat{\beta}_k)$

OLS estimation of: $y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \varepsilon_i$

. regress trstprt eduyrs agea if cntry=="IT"

Source	SS	df	MS		r of obs	=	2,483
Model Residual	144.747683 12563.2878	2,480	72.3738417 5.06584184	R-squ	> F ared	= =	14.29 0.0000 0.0114 0.0106
Total	12708.0354	2,482	5.12007874	-	-squared MSE	=	2.2507
trstprt	Coefficient	Std. err.	t	P> t	[95% con	f.	interval]
eduyrs agea _cons	.0473376 0041704 2.712842	.011471 .0026174 .2349016	4.13 -1.59 11.55	0.000 0.111 0.000	.0248439 009303 2.252218		.0698312 .0009622 3.173465

$$R^2 = \frac{ESS}{TSS} = \frac{144.75}{12708} = 0.0114$$

$$\overline{R}^2 = 1 - \frac{RSS}{n-k-1} / \frac{TSS}{n-1} = 1 - \frac{12563}{2483 - 2 - 1} / \frac{12708}{2483 - 1} = 0.0106$$

OLS estimation of: $y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \varepsilon_i$

. regress trstprt eduyrs agea if cntry=="IT"

c-...-

55	αŤ	MS			=	2,483
			. ,	•	=	14.29
144.747683	2	72.373841	7 Prob	> F	=	0.0000
12563.2878	2,480	5.0658418	1 R-squ	ared	=	0.0114
			- Adj R	-squared	=	0.0106
12708.0354	2,482	5.1200787	4 Root	MSE	=	2.2507
Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
.0473376	.011471	4.13	0.000	.02484	39	.0698312
						.0009622
2.712842	.2349016	11.55	0.000			3.173465
	144.747683 12563.2878 12708.0354 Coefficient .0473376 0041704	144.747683 2 12563.2878 2,480 12708.0354 2,482 Coefficient Std. err. .0473376 .0114710041704 .0026174	144.747683	F(2, 144.747683 2 72.3738417 Prob	F(2, 2480) F(2	F(2, 2480) = 144.747683

$$t_{\hat{\beta}_1} = \frac{\hat{\beta}_1 - 0}{SE(\hat{\beta}_1)} = \frac{0.047}{0.0115} = 4.13 > 1.96 \Rightarrow \text{Reject } H_0$$

$$CI_{0.95,\hat{\beta}_1} = \hat{\beta}_1 \pm 1.96 \cdot SE(\hat{\beta}_1) = 0.047 \pm 1.96 \cdot 0.0115 = [0.0248; 0.0698]$$

Dummy variables

- A dummy variable is a binary variable taking value 0 or 1, used to indicate the absence/presence of an individual characteristic (e.g. female/male, employed/unemployed)
- Suppose that in the model $y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \varepsilon_i$, $x_{2,i}$ is a gender dummy variable equal to 0 if i is male or to 1 if i is female
- $\hat{\beta}_2$ is the estimated average change in y as a result of the characteristic x_2 being present, compared to when x is absent
- The estimated regression model becomes:
 - $-\hat{y}_i = \hat{eta}_0 + \hat{eta}_1 x_{1,i} + \hat{eta}_2$ if i is male
 - $\hat{y}_i = \hat{eta}_0 + \hat{eta}_1 x_{1,i} + \hat{eta}_2$ if i is female
- We can visualize two separate regression lines with same slope but different intercept, the difference corresponding to the value $\hat{\beta}_2$

Dummy variables - Graphical representation

$$\hat{y}_i = 2.467 + 0.055 \cdot x_{1,i} - 0.104 \cdot x_{2,i}$$

Dummy variable trap

- Suppose we want to evaluate whether, in Italy, trust in political parties differs across residents in the North (N), Center (C), or South (S)
- We create 3 dummy variables, each taking value 1 if i lives in the respective area N, C, or S and 0 otherwise (i.e. x_N, x_C, x_S), and estimate the model: $y_i = \beta_0 + \beta_N x_{N,i} + \beta_C x_{C,i} + \beta_S x_{S,i} + \varepsilon_i$
- **Dummy variable trap**: including all 3 dummies at the same time determines **perfect multicollinearity**; the information provided by any two dummies is sufficient to determine the value of the third dummy, which becomes redundant

Dummy variable trap

- Suppose we want to evaluate whether, in Italy, trust in political parties differs across residents in the North (N), Center (C), or South (S)
- We create 3 dummy variables, each taking value 1 if i lives in the respective area N, C, or S and 0 otherwise (i.e. x_N, x_C, x_S), and estimate the model: $y_i = \beta_0 + \beta_N x_{N,i} + \beta_C x_{C,i} + \beta_S x_{S,i} + \varepsilon_i$
- **Dummy variable trap**: including all 3 dummies at the same time determines **perfect multicollinearity**; the information provided by any two dummies is sufficient to determine the value of the third dummy, which becomes redundant
- If i doesn't live neither in the North $(x_{N,i}=0)$ nor in the Center $(x_{C,i}=0)$, then i lives necessarily in the South $(x_{S,i}=1)$ and there is no need to include x_S in the model
- The redundant dummy excluded from estimation represents the reference category to interpret the parameter estimates of the included dummies

Dummy variable trap - OLS estimation

course 1

. regress trstprt eduyrs north center south if cntry=="IT"
note: south omitted because of collinearity.

	Source	55	a t	M2	Numi	per or obs	=	2,510
_					- F(3	, 2512)	=	12.00
	Model	182.209659	3	60.7365531	L Prol) > F	=	0.0000
	Residual	12710.0272	2,512	5.05972421	L R-so	quared	=	0.0141
_					- Adj	R-squared	=	0.0130
	Total	12892.2369	2,515	5.12613793	Roo [†]	MSE	=	2.2494
	trstprt	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
	eduyrs	. 056178	.0105909	5.30	0.000	.03541	02	.0769458
	north	.2937215	.0996418	2.95	0.003	. 0983	33	.4891099
	center	.1344463	.1332165	1.01	0.313	1267	79	.3956716
	south	0	(omitted)					
	_cons	2.228934	.1532395	14.55	0.000	1.9284	46	2.529423

- Although we tried to include x_S , STATA excluded it to avoid the dummy variable trap: South is the reference category
- $\hat{\beta}_N$ is the difference in political trust between the North and the reference, i.e. the South, holding education constant; $\hat{\beta}_C$ is the difference between the Center and the South

Interactions

- The relationship between x_k and y might differ depending on the level of another independent variable x_j where $k \neq j$: in such cases, **interactions** must be added to the model
- Interacting means **multiplying** two or more variables, thus generating additional parameters whose estimates require careful interpretation
- The regression model with an interaction between x_1 and x_2 is:

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 (x_{1,i} \times x_{2,i}) + \varepsilon_i$$

- When including an **interaction term**, $x_1 \times x_2$, it's important to include also the **main terms** separately, x_1 and x_2
- Three forms of interaction are possible, depending on the variables involved (continuous or categorical)

Interaction #1: continuous \times continuous

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 A g e_i + \hat{\beta}_2 Education_i + \hat{\beta}_3 \left(A g e_i \times Education_i \right)$$

. regress polintr agea eduyrs c.agea#c.eduyrs

Source	SS	df	MS	Number of obs	=	36,613
Model	3423.22592	3	1141.07531	F(3, 36609) Prob > F	=	1514.81 0.0000
Residual	27576.7646	36,609	.753278282	R-squared	=	0.1104 0.1104
Total	30999.9905	36,612	.846716665	Adj R-squared Root MSE	=	.86792

polintr	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
agea eduyrs	.0046829	.0008267 .0036624	5.66 11.90	0.000 0.000	.0030625 .0363891	.0063034 .0507461
c.agea#c.eduyrs	.0004698	.0000635	7.40	0.000	.0003454	.0005942
_cons	.1558196	.0496646	3.14	0.002	. 0584756	.2531635

- $\hat{\beta}_1$: 1 more year of age increases interest in politics by 0.004 when education = 0
- $\hat{\beta}_2$: 1 more year of education increases interest in politics by 0.043 when age = 0
- $\hat{\beta}_3$: 1 more year of age increases interest in politics by 0.0004 for every additional year of education (or viceversa)

Interaction #1: continuous \times continuous – Graph

- Plot a line showing the relationship between y and one of the interacted continuous variable for each chosen level of the other interacted continuous variable
- Interest in politics increases with age at any level of education, but the increase is larger for people with more education years

Interaction #2: categorical \times continuous

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 Female_i + \hat{\beta}_2 Education_i + \hat{\beta}_3 (Female_i \times Education_i)$$

. regress polintr i.gndr eduyrs i.gndr#c.eduyrs

Source	SS	df	MS	Number of obs		36,864
Model Residual	2683.43116 28558.126	3 36,860	894.477055 .774772817	F(3, 36860) Prob > F R-squared	= = = 1 =	1154.50 0.0000 0.0859 0.0858
Total	31241.5572	36,863	.847504467	Adj R-squared Root MSE	=	.88021
polintr	Coefficient	Std. err.	. t	P> t [95%	conf.	interval]
gndr Female eduyrs	17373 .0616628	.0309238 .0016784	-5.62 36.74	0.0002343 0.000 .058		1131186 .0649526
gndr#c.eduyrs Female	0060462	. 0022606	-2.67	0.007016	1477	0016153
_cons	.596249	.0229519	25.98	0.000 .5512	2627	.6412353

- $\hat{\beta}_1$: females have lower interest in politics by 0.173 when education =0
- $\hat{\beta}_2$: 1 more year of education increases interest in politics by 0.061 for males
- $\hat{\beta}_3$: females have lower interest in politics by 0.006 for every additional year of education (or viceversa)

Interaction #2: categorical \times continuous – Graph

- Plot a line showing the relationship between y and the interacted continuous variable for each level of the interacted categorical variable
- Interest in politics increases with education for both sexes, but the increase is smaller for females

Interaction #3: categorical \times categorical

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 Female_i + \hat{\beta}_2 Non-native_i + \hat{\beta}_3 \left(Female_i \times Non-native_i\right)$$

. regress polintr i.gndr i.brncntr i.gndr#i.brncntr

Source	SS	df	MS		Number of obs F(3, 37482)		37,486 238.58
Model Residual	595.383619 31179.3323	3 37,482	198.461206 .831848148	Prob R-so	> F Juared	=	0.0000 0.0187
Total	31774.7159	37,485	.847664823	-	Adj R-squared Root MSE		0.0187 .91206
polintr	Coefficient	Std. err.	t	P> t	[95% co	onf.	interval]
gndr Female	2584995	.0098587	-26.22	0.000	277822	28	2391762
brncntr No	0267188	.0252232	-1.06	0.289	07615	57	.0227193
gndr#brncntr Female#No	. 0875409	.0344135	2.54	0.011	.020089	95	.1549923
_cons	1.399612	.0072143	194.01	0.000	1.38547	72	1.413752

- $\hat{\beta}_1$: female natives have lower interest in politics than male natives by 0.258
- $\hat{\beta}_2$: male non-natives have lower interest in politics than male natives by 0.026
- $\hat{\beta}_3$: females have higher interest in politics than males by 0.087 among non-natives compared to natives

Interaction #3: categorical \times categorical – Graph

- Plot a line showing the relationship between y and one of the interacted categorical variables for each level of the other interacted categorical variable
- Interest in politics is larger for males than females, but the gap is smaller when comparing non-natives to natives

Regressions with non-linear terms

- In linear models the marginal effect of x is constant across values of x, i.e. y changes by the same amount when a one-unit change occurs at low or high levels of x
- Good for intuition and interpretation, less good for accurate modelling and prediction
- Solution: x can also be included in the model **non-linearly** by including higher order polynomials of x (e.g. quadratic, x^2 , cubic, x^3 , quartic, x^5 , etc.)
- The marginal effect of x becomes not constant across values of x, i.e. y changes by a different amount when a one-unit change occurs at low or high levels of x

Regressions with non-linear terms – Example

Example. Let's model trust in political parties, y, as function of age, x

Estimating $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ produces a poor linear fit

Estimating $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \hat{\beta}_1 x_i^2$ produces a nice quadratic fit

OLS assumptions: summary

- Population model linear in parameters: $y = \beta_0 + \beta_1 x + \varepsilon$
- Random sampling: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
- Sample variation in the explanatory variable: $\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i \overline{x})(y_i \overline{y})}{\sum_{i=1}^n (x_i \overline{x})^2}$
- Mean conditional independence: $E(\varepsilon|x) = 0$
- Constant variance (homoskedasticity): $Var(\varepsilon|x) = \sigma^2$

