ECE 459/559 Secure & Trustworthy Computer Hardware Design

True Random Number Generators

Garrett S. Rose Spring 2017

Random Numbers in Cryptography

- The keystream in a one-time pad
- The secret key in DES encryption
- The prime numbers p, q in the RSA encryption
- The private key in digital signal algorithm (DSA)
- The initialization vectors used in many ciphers

Pseudo-Random Number Generator

- Pseudo-Random Number Generator (PRNG) A polynomial-time function f(x) that expands a short random string x into a long string f(x) that *appears* random
- Not truly random in that:
 - Deterministic algorithm
 - Dependent on initial values (seed)
- Objectives:
 - Fast
 - Secure

True-Random Number Generator (TRNG) Sources

 Only truly random number sources are those related to physical phenomena such as rate of radioactive decay of an element or thermal noise of a semiconductor

- True randomness bound to natural phenomena
- Impossible to algorithmically generate truly random numbers

Good TRNG Design

- Entropy source:
 - Randomness present in physical processes
 - Examples: thermal and shot noise in circuits, brownian motion, nuclear decay
- Harvesting mechanism:
 - Mechanism shouldn't disturb the physical process but collects as much entropy as possible
- Post-processing (optional):
 - Apply to mask imperfections in entropy sources or harvesting mechanism to provide tolerance in presense of environmental changes and tampering

Set of Requirements

- Sunar et al. advocate for purely digital TRNG design
- Harvesting mechanism should be simple
 - Unpredictability of TRNG shouldn't be based on complexity of harvesting mechanism
 - Unpredictability solely based on entropy source
- No correction circuits are allowed
- Compact and efficient design (high throughput per area and energy consumed)
- Simplicity of design should sufficient to allow rigorous analysis

Example Method: Clock Jitter

- Jitter is variation in the significant transitions of a clock
- Jitter is non-deterministic (random)
- Sources of jitter:
 - Semiconductor noise
 - Cross-talk
 - Power supply variations
 - Electromagnetic fields

- LFSR: Generate random patterns, causing random noise
- The LFSR "seeds" the TRNG

 Ring Oscillators – Provide process variations & environmental variations; also random phase jitter

 Selection & Operation Unit – Translates random phase of ROs into digital; could use XOR operation

 Capture Unit – Make sure digital value sampled with frequency of required true random number

Example TRNG Output

