CS289a: Great Theory Hits of 21st Century

Tingfeng Xia

Winter 2023

Notes reorganized from https://hackmd.io/@raghum/greathits.

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 4.0 International" license.

Contents

1	1 Undirected s-t Connectedness		5
	1.1	Computing Resources	5
	1.2	Problem Statement	5
	1.3	Randomized Algorithm for Connectivity	6
	1.4	Log Space USTCON	6
	1.5	Spectral Graph Theory	7
		Easy Cases	

4 CONTENTS

Chapter 1

Undirected s-t Connectedness

1.1 Computing Resources

Four main computing resources that we consider as limited (and measure the performance of our algorithms against)

- Time
- Memory
- Randomness
- Communication

1.2 Problem Statement

- **Input**: Graph G = (V, E); with source and target marked as s, t
- **Output**: YES iff *s* and *t* are connected, NO otw.

Above is the "traditional" definition of s-t connectivity which we can solve with a vanilla BFS or DFS. This will take O(|V| + |E|) and O(|V|) extra bits of space / memory. The question is then, can we solve the same problem with sub-linear extra memory usage.

Proposition 1.1 There is a randomized algorithm with $5 \log |V|$ bits of additional memory (directed and undirected graphs).

Proposition 1.2 (Omer Reingold, 2005) *There is a log space* $(O(\log |V|))$ *algorithm (deterministic) for undirected graphs.* ^{1.2.1}

^{1.2.1}first great hit ...

It is yet unknown if we can achieve log space for directed graphs (with deterministic algorithm). The best known algorithms runs with $O(\log |V|)^{3/2}$ bits of memory. Why is this so challenging?

Proposition 1.3 If divided s-t connectivity can be solved with $O(\log |V|)$ extra bits of memory (without randomness), then any randomized algorithm can be made deterministic at the expenses of a constant factor increase in memory.

1.3 Randomized Algorithm for Connectivity

Algorithm 1.1 (Random Walk Algorithm for Connectivity) Here is the algorithm

- $steps \leftarrow 0$
- $current \leftarrow s$; $target \leftarrow t$
- while steps < T
 - current ← random neighbor of current
 - if current == target return YES
- return NO

The total memory for this algorithm is

$$2\log N + \log T \le 5\log N \tag{1.3.1}$$

extra bits, assuming we can get random neighbor.

Proposition 1.4 (Alenilaus, 80s) If $T = 100N^3$ steps, then $Pr[Algorithm\ wrong] < \frac{1}{3}$

which can improved to arbitrary accuracy by repeating the algorithm. Algorithms of this nature can perform bad on graphs known as "Lollipop Graphs" and even worse a "Dumbell Graph"

1.4 Log Space USTCON

Here we highlight the progression in space complexity in various papers

- Nisan, 92: Space $O(\log^2 N)$, time $N^{O(1)}$ algorithm... improved to $O(\log^{4/3} N)$ in space.
- **Reingold, 05**: Space $O(\log N)$, time $N^{O(1)}$ algorithm.
- **Trifornov, 05**: Space $O((\log N)(\log \log N))$ algorithm.

1.5 Spectral Graph Theory

Consider an undirected graph G = (V, E),

Definition 1.1 (Degree) Degree of a vertex v is the number f edges v is connected to.

Definition 1.2 (Regular) *Graphs is "regular" if all vertices have same degree.*

Definition 1.3 (Adjacency Matrix) A(G) is a symmetric matrix where $A(G)_{ij} = 1$ if $\{i, j\}$ is an edge, 0 otw.

Definition 1.4 (Normalized Adj Matrix) *If G is regular and has degree D, then the normalized adjacency matrix is defined as*

$$M(G) \equiv \frac{A(G)}{D} \tag{1.5.1}$$

Lemma 1.1 If G is regular, then 1 is an eigenvalue of M(G). And $\mathbf{v}_1 = \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}^T$ is an eigenvector with eigenvalue 1.

Proposition 1.5 (Eigenvalues of Regular Graphs) *If G is regular, then all eigenvalues of* M(G) *have magnitude* ≤ 1 .

Proof: WLOG assume x_3 is the largest entry in the vector \mathbf{x} , then

$$\lambda |x_3| = |M_{31}x_1 + M_{32}x_2 + \dots + M_{3N}x_N| \tag{1.5.2}$$

$$\leq M_{31}|x_3| + M_{32}|x_3| + \dots + M_{3N}|x_3| \tag{1.5.3}$$

$$= (M_{31} + ...M_{3N})|x_3| (1.5.4)$$

$$=1|x_3| (1.5.5)$$

Thus, $\lambda \leq 1$.

Proposition 1.6 (Connectedness and Matrices) Regular G = (V, E) is connected if and only Might appear on exam 1 if the only eigenvector with eigenvalue 1 for M(G) is the all 1 vector.

Proposition 1.7 (Eigenvalues of a Regular Graph) If G is regular, then the eigenvalues of Might appear on exam M(G) are

$$1 = \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_N \tag{1.5.6}$$

Proposition 1.8 *G* is connected and regular if and only if

Might appear on exam 1

$$\max(|\lambda_2|, |\lambda_3|, \dots, |\lambda_N|) \le 1 \tag{1.5.7}$$

Proposition 1.9 (Eigenvalues of D-Regular Graphs) *If G is a D-regular graph, then*

- 1 is an eigenvalue of M(G), and
- all eigenvalues of M(G) are at most 1 in absolute value

Definition 1.5 (Self Loops) We add connections from each node in the graph to themselves. In the matrix representation, we set $G_{ii} = 1, \forall i$.

Definition 1.6 (Second Largest Eigenvalue) ... denoted as $\lambda(G)$ or $\lambda_2(G)$.

Lemma 1.2 *If G is D-regular and has self loops, then G is connected if and only if* $\lambda(G) < 1$.

Proof: We first show *G* is disconnected implies $\lambda(G) = 1$ (via contrapositive).

Definition 1.7 (Spectral Gap) *Spectral Gap of a D-regular graph G is defined as*

Spectral Graph
$$\equiv 1 - \lambda(G)$$
 (1.5.8)

Lemma 1.3 *If G is a D-regular connected graph with self-loops, then*

$$\lambda(G) \le 1 - \frac{1}{2D^2 \cdot N^2} \tag{1.5.9}$$

Definition 1.8 We say a graph G is (N, D, λ) if it has N vertices, D regular and $\lambda(G) \leq \lambda$.

1.6 Easy Cases

later