Yunkai Zhang

♦ London, UK ✓ yunkaizhang233@gmail.com ♦ YunkaiZhang233

Education

Imperial College London

London, UK

MEng in Computing (Computer Science)

Sept 2022 - present

- Current Grade: First Class Honours
- Modules: Formalising Mathematics, Type Systems, Seminar in Effect Handlers, Concurrent Programming
- Awards: 2022-23 Computing Entrance Scholarship (10/250+)

Research Experience

Proof Engineer Intern (Industrial Placement)

Paris, France

Formal Land

Supervisor: Dr Guillaume Claret

Apr 2025 - Sept 2025

- Developed Garden, an open-source Rocq framework for formally verifying zero-knowledge circuits.
- Structured the translation of blake3 hash function AIR (originally written in Plonky3, a cryptographic toolkit written in Rust for STARK-based zkVMs) into Rocq specification
- Formulated the formalisation of finite field skeleton in Rocq, and designed various monadic primitives for effectful operations.
- Formally verified the soundness and correctness of the blake3 hash function using number theory and customised reasoning tools, covering 1k+ lines of Rust code in the original implementation.
- Collaborated with an international team of researchers and engineers from other organisations to communicate
 about ongoing developments in zero-knowledge proof systems and formal verification.

Projects

Seminar in Computational Effects and Effect Handlers

Imperial College London

Coursework Project for Computing Research Collective (CRC)

Autumn 2024

Supervisor: Omar Tahir

- Participated in research-intensive seminar led by PhD student, engaging with primary literature in computational effects and handlers.
- Studied foundational literature including Moggi's "Notions of Computation and Monads," Bauer's categorical tutorials, and additional research papers on higher order effects, algebraic effects, and temporal logic.
- Authored systematic literature review synthesizing the research trajectory of mathematical foundations for effects, analyzing theoretical developments across multiple seminal papers.
- Presented critical analysis of "Modular Models of Monoids with Operations," examining a possible mathematical framework for higher-order effect systems with better expressivity and modularity.

Category Theory in Lean 4

Imperial College London

Coursework and beyond for Formalising Mathematics*

Spring 2025

Supervisor: Dr Bhavik Mehta

- Formalised several small projects in category theory using Lean 4, including
 - (co)algebras of endofunctors, and the proof of Lambek's Lemma
 - factorisation categories, their characterisation in terms of initial and terminal objects, and their equivalent form as iterated comma categories
 - monads, monad composition via distributive laws, and several instances of such monads
- Contributed several merged pull requests to <u>mathlib4</u>.

Talks

Category Theory Meets Computing: A Story of Computational Effects

London, UK Feb 2025

Talk delivered at Imperial College Mathematics Student Colloquium

• Targeted undergraduate students from department of mathematics, introducing how category theory can be used by computer scientists through the lens of computational effects.

Rust 101 London, UK Autumn 2024

2-session workshop at Department of Computing Society (DocSoc)

- Introduced the basics of Rust programming language, including immutability, ownership, and borrowing.
- Guided students through hands-on exercises and live-coding sessions to reinforce learning.
- Provided an overview of benefits, origins, and innovations the language and its ecosystem, including Cargo, crates.io, and Rust documentation.

Teaching Experience

Undergraduate Teaching Assistant (Maths Tutor)

London, UK

Imperial College London

Sept 2024 - present

Personal Maths Tutor (PMT) for first-year computing students

- Responsible for leading weekly small-group tutorial sessions, marking and providing feedback on tutorial sheets
- Illustrated the structure and system of natural deduction and formal proofs using proof assistants.
- Relevant Modules: Discrete Mathematics, Logic, Reasoning about Programs, Graph & Algorithms

Teaching Assistant in Computer Science

London, UK

David Game College

Jan 2025 - Apr 2025

Teaching Placement in High School for module Communicating CS in Schools

- Taught Python programming and functional programming concepts to high school students
- Delivered lessons on theoretical computer science: Turing machines, finite state machines, regular expressions, context-free grammars, and complexity
- Conducted live Haskell coding demonstrations for advanced/extension work
- Provided individualized student support and assisted with coursework across multiple classes

Academic Development

Oregon Programming Languages Summer School

University of Oregon, US

Awarded OPLSS 2025 Fellowship

June 2025 - July 2025

- Studied several advanced topics in programming languages, including Martin-Löf Type Theory, Proof Theory, Effect and Handlers, and Metaprogramming.
- Participated in student-led discussions including Separation Logic, Categorical Semantics, Agda & Introduction to HoTT.
- Undertook fellowship responsibilities for collaboratively taking notes for Introduction to Logical Foundations and Introduction to Type Theories lectures.

Midlands Graduate School in the Foundations of Computer Science MGS 2025

University of Sheffield, UK

• Courses: Coalgebra, Linear Logic, Category Theory, Curry-Howard Correspondence, Proof-theoretic Semantics, Linear Logic, Refinement Types in Haskell

Skills

Preferred Languages: Rocq/Coq, Lean 4, Haskell, OCaml, Rust, C, C++, Java, Kotlin, Python

Languages with Experience in: Agda, Prolog, SQL, JavaScript, HTML/CSS, Bash

Frameworks: Z3, Dafny, Zero Knowledge Circuits, Parser Combinators, Lean EDSL

Tools: Git, CI/CD (GitLab / GitHub Actions), Docker, LaTeX, Typst, VSCode

Natural Languages: English (fluent, TOEFL: 117/120), Mandarin (native), Japanese (beginner)

Other: Competitive Programming, Public Transport Systems, Piano