ECE 250 Midterm November 7, 2014

SOLUTION

1. Let X_k , k = 1, 2, ..., be independent and identically-distributed with common density

$$f_X(x) = \begin{cases} e^{-x}, & x \ge 0 \\ 0, & x < 0 \end{cases} \quad E[X_{\mathbf{k}}] = \begin{cases} \infty & \overline{e}^{\chi} & \overline{e}^{\chi} \\ 0 & x < 0 \end{cases} = 1$$

Consider the sum $Z_n = \sum_{k=1}^n X_k$. Prove that for any $\varepsilon > 0$, $\lim_{n \to \infty} P(|\frac{Z_n}{n} - 1| \ge \varepsilon) = 0$.

An answer not supported by appropriate reasoning will not receive any credit.

$$E[Z_{n}] = E\left[\sum_{k=1}^{n} X_{k}\right] = \sum_{k=1}^{n} E[X_{k}] = N$$

$$E\left[\frac{Z_{n}}{n} - 1\right] = O \quad Var\left[\left(\frac{Z_{n}}{n} - 1\right)\right] = Var\left[X_{k-1}\right]$$

$$= \frac{1}{n^{2}} \sum_{k=1}^{n} Var\left[X_{k-1}\right]$$

$$= \frac{1}{n} Var\left[X_{k-1}\right]$$

$$= \frac{1}{n} E\left[\left(X_{k-1}\right)^{2}\right]$$

$$= \frac{1}{n} E\left[\left(X_{k-1}\right)^{2}\right]$$

$$P\left(\left[\frac{Z_{n}}{n} - 1\right] \ge E\right) \le \frac{Var\left[\frac{Z_{n}}{n} - 1\right]}{E^{2}} = \frac{E\left[\left(X_{k-1}\right)^{2}\right]}{n E^{2}} \longrightarrow 0$$

The terms $E[(X_{k-1})^2]$ are identical for each k and need not be evaluated However $E[(X_{k-1})^2] = 1$

this establishes two desired result

2. The random variables X and Y are independent with probabilities

$$P(X = n) = (\frac{1}{2})^{n+1}$$
 and $P(Y = m) = (\frac{1}{2})^{m+1}$, m, n=0, 1... Evaluate the probability $P(X = Y)$.

In answer not supported by appropriate reasoning will not receive any credit.

$$P(X = Y) = \sum_{n=0}^{\infty} P(X = n) Y = n$$

$$= \sum_{n=0}^{\infty} P(X = n) P(Y = n) \qquad \text{and } Y \text{ and } Y$$

3. The random variables X and Y are jointly Gaussian with E(X) = E(Y) = 0, $Var(X) = \sigma_X^2$, $Var(Y) = \sigma_Y^2$, and correlation coefficient ρ . Evaluate $P(X \ge Y)$.

An answer not supported by appropriate reasoning will not receive any credit.

$$P(Z \ge \overline{Y}) = P(X - \overline{Y} \ge 0)$$
Define $Z = X - \overline{Y}$ and evaluate $P(Z \ge 0)$

a linear combination of jointly Gaussian variables is a Gaussian variable.

$$\int_{2}^{2} = \int_{Z}^{2} + \int_{\overline{Z}}^{2} - 2 \int_{\overline{Z}} \int_{\overline{Z}} \rho$$

$$\rho(Z \ge 0) = \begin{cases} f_{Z}(z) dz = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\frac{z^{2}}{2\sqrt{2}}} dz = \frac{1}{2}$$

It is also sufficient to observe that I is a zero-mean Gaussian variable and is an even function of z. Therefore P(Zzo) = 1

$$P(X \ge Y) = \frac{1}{2}$$

250 Final Exam **December 18, 2014**

SOLUTION

1. The random variable X has the density

$$f_X(x) = \begin{cases} \alpha e^{-\alpha x} & x \ge 0 \\ 0, & x < 0. \end{cases}$$

A new random variable, Y, is given by $Y = e^{-X}$.

Obtain an expression for the n-th moment of Y.

An answer not supported by appropriate reasoning will not receive any credit.

$$E[Y^n] = E[e^{-nX}] = \int_0^\infty e^{-nx} dx$$

$$= \int_0^\infty e^{-(x+n)x} dx$$

$$E[Y^n] = \frac{\alpha}{\alpha + n}$$

2. Consider the independent, binomial random variables X and Y with probabilities

$$P(X = k) = {n \choose k} p^k (1-p)^{n-k}, k = 0, 1, ..., n.$$

$$P(Y = r) = {m \choose r} p^r (1-p)^{m-r}, r = 0, 1, ..., m$$

With 0 and n and m different, positive integers. Evaluate the probability <math>P(X + Y = q). Clearly indicate the values that q may have. [HINT: You may find the characteristic function useful.]

An answer not supported by appropriate reasoning will not receive any credit. $\Phi_{\mathbf{X}}(u) = \mathbb{E}\left[e^{\bar{\imath} u X}\right] = \sum_{k=0}^{n} \binom{n}{k} e^{\bar{\imath} u k} p^{k} (1-p)^{n-k} \\
= \sum_{k=0}^{n} \binom{n}{k} \left(p e^{\bar{\imath} u}\right)^{k} (1-p)^{n-k} \\
= \sum_{k=0}^{n} \binom{n}{k} \left(p e^{\bar{\imath} u}\right)^{n} (1-p)^{$

$$P(X+Y=q)= \binom{n+m}{q} p^{2} (1-p)^{n+m-q}, q=0,1,---,n+m$$

3. The two classic Poisson processes $N_1(t)$ and $N_2(t)$ are independent and have a common rate λ . Let $M(t) = N_1(t) - N_2(t)$. Obtain a closed form expression for P(M(t) = m).

An answer not supported by appropriate reasoning will not receive any credit.

This has the same form as problem 4 on problem set 1. $P(Mlt) = m = \frac{1}{2\pi} \begin{cases} 2\pi \\ D_{Mlt} \end{pmatrix} \begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} u \\ d \end{pmatrix}$

$$P(Mlt) = m) = \frac{1}{2\pi} \begin{cases} 2\pi \\ D_{Mlt} = 0 \end{cases}$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} \begin{cases} 2\pi \\ 2\pi \end{cases}$$

$$= e^{-2\lambda t} \int_{-2\lambda t}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\lambda t}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\lambda t}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\lambda t}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\lambda t}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\lambda t}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\lambda t}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda t} \int_{-2\pi}^{2\pi} (2\lambda t \cos u - ium)$$

$$= e^{-2\lambda$$

$$P(M(t) = m) = I_m(2\lambda t)e^{-2\lambda t}$$

This problem was suggested in class 4. Let X(t) be a possibly non-wide sense stationary process and let $Rx(\tau)$ be the "averaged" correlation function of X(t). You may assume $E[|X(t)|^2] \le M < \infty$. Prove that

$$|\overline{R}_X(\tau)| \leq \overline{R}_X(0)$$

$$\begin{split} \left| \overrightarrow{R}_{\mathbf{X}}(t) \right| &= \left| \lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t+T,t) dt \right| \leq \lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t+T,t) dt \\ \leq \operatorname{chwary} \int_{-T}^{T} \operatorname{Now} \left| \overrightarrow{R}_{\mathbf{X}}(t+T,t) \right| \leq \left(\overrightarrow{R}_{\mathbf{X}}(t+T,t+T) \right)^{1/2} \left(\overrightarrow{R}_{\mathbf{X}}(t,t) \right)^{1/2} \left(\overrightarrow{R}_{\mathbf{X}}(t,t) \right)^{1/2} \\ \left| \overrightarrow{R}_{\mathbf{X}}(t) \right| &\leq \lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \left(\overrightarrow{R}_{\mathbf{X}}(t+T,t+T) dt \right)^{1/2} \left(\overrightarrow{R}_{\mathbf{X}}(t,t) \right)^{1/2} dt \\ \leq \operatorname{chwary} \int_{-T}^{T} \left(\overrightarrow{R}_{\mathbf{X}}(t+T,t+T) dt \right)^{1/2} \left(\overrightarrow{R}_{\mathbf{X}}(t,t) \right)^{1/2} dt \\ \leq \operatorname{chwary} \int_{-T}^{T} \left(\overrightarrow{R}_{\mathbf{X}}(t+T,t+T) dt \right)^{1/2} \left(\overrightarrow{R}_{\mathbf{X}}(t,t) \right)^{1/2} dt \\ = \left(\lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t,t+T,t+T) dt \right)^{1/2} \left(\overrightarrow{R}_{\mathbf{X}}(t,t) dt \right)^{1/2} \\ = \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t,t) dt \\ = \frac{1}{2\tau} \int_{-T}^{T} \left(\overrightarrow{R}_{\mathbf{X}}(t,t) dt \right) dt \\ = \frac{1}{2\tau} \int_{-T}^{T} \left(\overrightarrow{R}_{\mathbf{X}}(t,t) dt \right) dt \\ = \frac{1}{2\tau} \int_{-T}^{T} \left(\overrightarrow{R}_{\mathbf{X}}(t,t) dt \right) dt \\ = \lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t,t) dt \\ = \lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t,t) dt \\ = \lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t,t) dt \\ = \lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t,t) dt \\ = \lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t,t) dt \\ = \lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t,t) dt \\ = \lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t,t) dt \\ = \lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t,t) dt \\ = \lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t,t) dt \\ = \lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t,t) dt \\ = \lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t,t) dt \\ = \lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t,t) dt \\ = \lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t,t) dt \\ = \lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t,t) dt \\ = \lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t,t) dt \\ = \lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t,t) dt \\ = \lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t,t) dt \\ = \lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t,t) dt \\ = \lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t,t) dt \\ = \lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t,t) dt \\ = \lim_{t \to \infty} \frac{1}{2\tau} \int_{-T}^{T} \overrightarrow{R}_{\mathbf{X}}(t,t) dt \\ = \lim$$

Consider the shot processX(t)

$$X(t) = \sum_{t_k} h(t - t_k).$$

The t_k s are the event times of a classical Poisson process with rate λ and h(t) is absolutely integrable on $(-\infty,\infty)$. Prove that X(t) is <u>strictly</u> stationary.

An answer not supported by appropriate reasoning will not receive any credit.

Consider the characteristic function of $X(t_1), X(t_2), \dots, X(t_n)$ (*) $\mathbb{Z}_{X(t_1), \dots, X(t_n)} = \mathcal{O}_{X(t_1), \dots, X(t_n)} =$

The characteristic functions (*) and (**) are identical, so then are there associated joint distributions (i.e. invariant under a time shift). This is the definition of strictly stationary

6. Consider the shot process

$$X(t) = \sum_{t_n} h(t - t_n)$$

The process is clearly wide sense stationary

No

where the $t_n s$ are the event times of a Poisson process with constant rate λ . The function h(t) is given by

$$h(t) = \begin{cases} t^{-1/4}, & 0 \le t \le 1 \\ 0, & otherwise. \end{cases}$$

IsX(t) mean square differentiable?

An answer not supported by appropriate reasoning will not receive any credit.

from class $R_{X}(t) = E[X(t+t)X|t)]$ $= \lambda \int_{-\infty}^{\infty} h(t+t)h(t)dt + (\lambda \int_{-\infty}^{\infty} h(t)dt)$ The process will be m.s. differentiable iff $R_{X}^{"}(0) \text{ is well defined. Pitting in the given hlt})$ $= \lambda \int_{-\infty}^{\infty} h''(t+t)h(t)dt \qquad \text{General expression}$ $= \lambda \int_{-\infty}^{\infty} h''(t+t)h(t)dt = \lambda \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h''(t+t)h(t)dt = \lambda \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}$

Differentiable? (Circle One)

Yes

ECE 250 Midterm February 12, 2014

SOLUTION

1. The independent random variables X₁ and X₂ have the densities

$$f_{X_1}(x) = \begin{cases} \lambda_1 e^{-\lambda_1 x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

$$f_{X_2}(x) = \begin{cases} \lambda_2 e^{-\lambda_2 x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$
with $\lambda_1 \ne \lambda_2$. Evaluate the probability $P(X_1 > X_2)$.

$$P(X_1 > X_2) = \iint_{X_1} (\chi_1) f_{X_2}(\chi_2) d\chi_1 d\chi_2 \qquad (X_1 \text{ and } X_2 \text{ ave } \chi_1 > \chi_2)$$

$$= \iint_{X_1} (\chi_1) d\chi_1 \iint_{X_2} (\chi_2) d\chi_2$$

$$= \int_{X_1} \lambda_1 \chi_1 \int_{X_2} \lambda_2 \int_{X_1 + \lambda_2} d\chi_2$$

$$= \int_{X_1 + \lambda_2} \lambda_1 \chi_2 \int_{X_1 + \lambda_2} d\chi_2$$

$$= \int_{X_1 + \lambda_2} \lambda_1 \chi_2 \int_{X_1 + \lambda_2} d\chi_2$$

$$P(X_1 > X_2) = \left[-\frac{\lambda_1}{\lambda_1 + \lambda_2} \right] = \frac{\lambda_2}{\lambda_1 + \lambda_2}$$

2. Let X_k , k = 1, 2, ..., be independent, identically-distributed random variables with common density

$$f_X(x) = \begin{cases} 2e^{-2x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

Consider the new random variable $Z_n = \prod_{k=1}^n X_k$. Show that, for $\varepsilon > 0$, $\lim_{n \to \infty} P(Z_n \ge \varepsilon) = 0$

clearly
$$Z_n \ge 0$$
 so that using the Markov inequality

$$P(Z_n \ge \epsilon) \le \frac{E[Z_n]}{\epsilon}$$
but $E[Z_n] = E[\prod_{k=i}^n X_k] = (E[X_k])^{nk} X_k = \frac{1}{2}$

$$E[X_k] = 2 \int_0^\infty e^{-2x} dx = \frac{1}{2}$$

$$E[Z_n] = (\frac{1}{2})^n$$
and $P(Z_k \ge \epsilon) \le \frac{1}{\epsilon} (\frac{1}{2})^n \xrightarrow{n \to \infty} 0$

3. The process Z(t) is given by $Z(t) = X(t)\cos\omega_0 t + Y(t)\sin\omega_0 t$ where X(t) and Y(t) are independent, zero-mean, Gaussian, W.S.S. processes with identical correlation functions $R(\tau)$. Is Z(t) wide sense stationary? Is it strictly stationary? clearly E[Z(t)] = 0

A proof not supported by appropriate reasoning will not receive any credit.

Note that Z(t) is a linear combination of Gaussian processes and is, itself, Gaussian. For a Gaussian process, wide sense stationarity implies strict sense stationarity. (The joint

density or characteristic function depends only

on the correlation function.)

ECE 250 Final Exam. March 17, 2014

SOLUTION

1. Can the following function be the characteristic function of a real random variable? $\Phi(u) = \exp\left[e^{-u^2/2} - 1\right]$

An answer not supported by appropriate reasoning will not receive any credit.

$$\Phi(u) = e^{-1} e^{-\frac{\pi}{2}} = e^{-\frac{\pi}{2}} \sum_{n=0}^{\infty} \frac{1}{n!} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}}$$

$$\frac{1}{2\pi} \int_{\infty}^{\infty} \Phi(u) e^{-\frac{\pi}{2}} du = e^{-\frac{\pi}{2}} \sum_{n=0}^{\infty} \frac{1}{n!} \frac{1}{2\pi} \int_{\infty}^{\infty} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} du$$

Note:

$$e^{-\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\infty} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}}$$
Note:

$$e^{-\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\infty} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}}$$

$$e^{-\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\infty} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}}$$
So that

$$e^{-\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\infty} \Phi(u) e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}}$$
So that

$$e^{-\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\infty} \Phi(u) e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}}$$

$$e^{-\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\infty} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}}$$
The inverse transform of $e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}}$

Finally the inverse transform of $e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}}$

Finally the inverse transform of Alu) is non-negative and integrates to 1.

D(u) is the ch.f. of a real random variable

2. Let the discrete-valued process N(t) be characterized by the probabilities

$$P(N(t) = n) = \frac{t^n}{(1+t)^{n+1}}, \quad n = 0,1,...$$

Define T_m as the time to m - th occurrence (event) with $T_0 = 0$. Obtain an expression for the probability density of T_m .

$$P(T_{m} \leq t) = \sum_{k=m}^{\infty} P(N(t) = k)$$

$$= \sum_{k=m}^{\infty} \frac{t^{k}}{(1+t)^{k+1}}$$

$$f_{T_{m}}(t) = \frac{d}{dt} P(T_{m} \leq t) = \sum_{k=m}^{\infty} k \frac{t^{k-1}}{(1+t)^{k+1}} - \sum_{k=m}^{\infty} (k+1) \frac{t^{k}}{(1+t)^{k+2}}$$

$$= \sum_{l=m}^{\infty} \frac{t^{k-1}}{(1+t)^{k+1}} - \sum_{l=m+1}^{\infty} \frac{t^{l-1}}{(1+t)^{l+1}}$$

$$m \frac{t^{m-1}}{(1+t)^{m+1}}$$

$$f_{Tm}(t) = m \frac{t^{m-1}}{(1+t)^{m+1}}$$

3. It is desired to estimate the rate, λ , of a classical Poisson process N(t). Prove that

$$\begin{array}{ll} \textit{l.i.m.} & \frac{N(T)}{T} = \lambda. \end{array}$$

to show
$$\lambda : i \cdot m - \frac{N(T)}{T} = \lambda$$
 it is necessary to show $T \rightarrow \infty$

$$\begin{bmatrix} \lim_{t \to \infty} E\left[\left(\frac{N(T)}{T} - \lambda\right)^2\right] = 0 \\ T \rightarrow \infty
\end{bmatrix}$$

$$\begin{bmatrix} \lim_{t \to \infty} E\left[\left(\frac{N(T)}{T} - \lambda\right)^2\right] = 0 \\ \lim_{t \to \infty} \left\{\frac{E\left[N^2(T)\right]}{T^2} - 2\frac{\lambda}{T}E\left[N(T)\right] + \lambda^2\right\} = 0$$

$$\begin{bmatrix} \lim_{t \to \infty} \left\{\frac{\lambda T + (\lambda T)^2}{T^2} - \frac{2\lambda(\lambda T)}{T} + \lambda^2\right\} = 0
\end{bmatrix}$$

$$\begin{bmatrix} \lim_{t \to \infty} \left\{\frac{\lambda T}{T^2} - \frac{2\lambda(\lambda T)}{T} + \lambda^2\right\} = 0
\end{bmatrix}$$

$$\begin{bmatrix} \lim_{t \to \infty} \left\{\frac{\lambda T}{T^2} - \frac{2\lambda(\lambda T)}{T} + \lambda^2\right\} = 0$$

$$\begin{bmatrix} \lim_{t \to \infty} \left\{\frac{\lambda T}{T^2} - \frac{2\lambda(\lambda T)}{T} + \lambda^2\right\} = 0
\end{bmatrix}$$

$$\begin{bmatrix} \lim_{t \to \infty} \left\{\frac{\lambda T}{T^2} - \frac{2\lambda(\lambda T)}{T} + \lambda^2\right\} = 0$$

$$\begin{bmatrix} \lim_{t \to \infty} \left\{\frac{\lambda T}{T^2} - \frac{2\lambda(\lambda T)}{T} + \lambda^2\right\} = 0
\end{bmatrix}$$

No credit given for
$$Simply$$
 observing $E[N(T)] = \lambda$

4. Let X(t) be the shot process

$$X(t) = \sum_{t_k} h(t - t_k)$$

where the t_k s are the "event" times of a classical Poisson process with constant rate λ , and

$$h(t) = \begin{cases} e^{-t} - 2e^{-2t}, & t \ge 0 \\ 0, & t < 0. \end{cases}$$

Is X(t) mean square differentiable?

From closs notes
$$X(t)$$
 is stationary and $R_X(t) = \lambda \int_{-\infty}^{\infty} h(t+t)h(t)dt + \left(\lambda \int_{-\infty}^{\infty} h(t)dt\right)^2$

note $\int_{-\infty}^{\infty} h(t+t)h(t)dt$

and $\int_{-\infty}^{\infty} (t) = \lambda \int_{-\infty}^{\infty} h(t+t)h(t)dt$

and $\int_{-\infty}^{\infty} (u) = \lambda |H(iu)|^2$ with $H(iu) = \int_{-\infty}^{\infty} h(t)e^{-iwt}dt$

Now $X(t)$ is $m.s.differentiable iff = \frac{-iw}{(1+iw)(2+iw)}$

but $\int_{-\infty}^{\infty} \frac{\omega^4}{(1+w^2)(4+w^2)}dw \neq \infty$

and $X(t)$ is NoT differentiable

5. Consider the Brownian motion process X(t). It is desired to obtain an estimate of X(t) as a linear combination of three earlier estimates. That is

$$\hat{X}(t) = AX(t-t_1) + BX(t-t_2) + CX(t-t_3)$$

where $0 < t_1 < t_2 < t_3 < t$. Determine the values of A, B, C that minimize

$$\mathbf{E} = E \left[(X(t) - \hat{X}(t))^2 \right].$$

An answer not supported by appropriate reasoning will not receive any credit Using independent increments and $E[(X(t)-X(s))^2]=K|t-s|$ we have $R_X(t,s)=Km[t,s]$, $t,s\geq 0$ positive constand we have Rx(t,5) = km[t,5], t,5 ≥0

The orthogonality princible states that $E[(X(t)-\hat{X}(t))\hat{X}(t)]=0$ for minimum E

1)
$$E[(X(t) - \hat{X}(t)) X(t-t)] = 0$$

$$E[(X(t)-X(t))X(t-t_2)] = 0$$

$$\frac{1}{11} = \left[(X(t) - AX(t-t_1) - BX(t-t_2) - CX(t-t_3)) X(t-t_1) \right] = 0$$

$$Z(t-t_1) - BX(t-t_2) - CX(t-t_3)X(t-t_3) = 0$$

1)
$$E[X(t) - AX(t-t_1) - BX(t-t_2) - CX(t-t_3)/X(t-t_3)] = 0$$

2) $E[X(t) - AX(t-t_1) - BX(t-t_2) - CX(t-t_3)/X(t-t_3)] = 0$
3) $E[X(t) - AX(t-t_1) - BX(t-t_2) - CX(t-t_3)/X(t-t_3)] = 0$

ECE 250 Midterm Exam November 6, 2013

SOLUTION

1. Consider the independent random variables X and Y with densities

$$f_X(x) = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & otherwise \end{cases} \qquad f_Y(y) = \begin{cases} -lny, & 0 \le y \le 1 \\ 0, & otherwise. \end{cases}$$

Evaluate the probability density of the product Z = X Y.

An answer not supported by appropriate reasoning will not receive any credit.

General Expression $F_{2}(3) = P(XY \leq 3) = \begin{cases} \int_{X} \int_{X} (x, y) dx dy = \int_{-\infty}^{\infty} \int_{X} (y) dy \int_{-\infty}^{\infty} \int_{X} (x) dx \\ xy \leq 3 \end{cases}$ $f_{2}(3) = \frac{d}{d3} F_{2}(3) = \frac{d}{d3} \int_{-\infty}^{\infty} \int_{X} (x) dy \int_{-\infty}^{\infty} \int_{X} (x) dx = \int_{-\infty}^{\infty} \int_{X} (y) \int_{X} (\frac{3}{y}) dy dy$ $f_{2}(3) = \frac{d}{d3} F_{2}(3) = \frac{d}{d3} \int_{-\infty}^{\infty} \int_{X} (x) dy \int_{X} \int_{X} (x) dx = \int_{-\infty}^{\infty} \int_{X} (x) dy dy$ $f_{2}(3) = \int_{-\infty}^{\infty} \int_{X} f_{2}(3) \int_{X} f_{3}(3) dy \int_{X} f_{3}(3) dy \int_{X} f_{3}(3) dy dy$ $f_{3}(3) = \int_{-\infty}^{\infty} \int_{X} f_{3}(3) \int_{X} f_{3}(3) dy \int_{X} f_{3}(3) dy \int_{X} f_{3}(3) dy \int_{X} f_{3}(3) dy dy$ $f_{3}(3) = \int_{X} f_{3}(3) \int_{X} f_{3}(3) dy \int_{X} f_{3}(3)$

$$f_Z(z) = \frac{1}{2} \left(\ln \gamma \right)^2$$

2. Can the following function be the characteristic function of a probability density?

$$\Phi(u) = \frac{1+iu}{1+4u^2}$$
 Clearly $\Phi(o) = 1$ and $|\Phi(u)| \leq 1$

Find inverse transform
$$\overline{\mathbb{Q}(u)} = \frac{1+iu}{1+4u^2} = \frac{1}{\theta} \frac{1}{\frac{1}{2}+iu} + \frac{3}{\theta} \frac{1}{\frac{1}{2}-iu}$$
From Transform pairs: $\frac{1}{\frac{1}{2}+iu} \longrightarrow e^{\chi_{2u}}(-x)$

$$\frac{1}{\frac{1}{2}-\bar{\iota}u} \rightarrow e^{-\chi/2}$$

:. the density (inverse transform) of
$$\Phi(u)$$
 is
$$f(x) = \begin{cases} \frac{1}{8}e^{x/2}, & x < 0 \\ \frac{3}{8}e^{-x/2}, & x > 0 \end{cases}$$
thus is clearly non-negative and a valid density

ECE 250 Final Exam. December 12, 2013

SOLUTION

1. Prove that if

$$Z = \prod_{k=1}^{n} X_{k}$$

where the $X_k s$ are i.i.d. with common density

$$f_X(x) = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & otherwise \end{cases}$$

then $f_Z(z) = \frac{1}{(n-1)!} (-\ln z)^{n-1}, \quad n = 2, 3, ... \quad 0 \le z \le 1$

General Expression
Z=X·Y (independent)

An answer not supported by appropriate reasoning will not receive any credit.

let
$$n=2$$

$$f_{Z}(z) = \begin{cases} f_{\overline{x}}(x)f_{\overline{x}}(\frac{z}{x})dx = \int \frac{dx}{x} = -\ln z \end{cases}$$
Also proved in class

Let the proposition hold for $n \ge 2$ and show it holds for n+1From (*) with $f_{\overline{X}}(x) = \frac{1}{(n-1)!} (-\ln x)$ and $f_{\overline{X}}(y) = \{1, 0 \le y \le 1\}$

for n+1
$$f_{\frac{1}{2}(3)} = \int_{\frac{1}{2}(n-1)!}^{\frac{1}{2}(-hx)^{n-1}} \frac{dx}{x}$$

 $= \frac{-1}{(n-1)!} \int_{\frac{1}{2}}^{1} (-hx)^{n-1} (d-hx) = \frac{1}{n!} (-hx)^{n}$
end of proof

2. A random process has the correlation function

$$R_x(t,s) = \sum_{n=1}^{\infty} \lambda_n \cos n\omega_0 t \cos n\omega_0 s \quad with \ \lambda_n = 4 \left(\frac{\sin(n\pi/2)}{(n\pi/2)} \right)^2$$

Evaluate the average correlation function $\bar{R}_X(\tau)$.

$$\vec{R}_{X}(t) = \lim_{t \to \infty} \frac{1}{2T} \int_{T} \vec{R}_{X}(t+t), t) dt$$

$$= \lim_{t \to \infty} \frac{1}{2T} \int_{T} \vec{n} \cdot \lambda \cdot n \cos n \omega_{0}(t+t) \cos n \omega_{0}t dt$$

$$= \lim_{t \to \infty} \frac{1}{2T} \int_{T} \vec{n} \cdot \lambda \cdot n \cos n \omega_{0}(t+t) \cos n \omega_{0}t dt$$

$$= \lim_{t \to \infty} \frac{1}{2T} \int_{T} \vec{n} \cdot \frac{1}{2} \cos n \omega_{0}t dt$$

$$+ \frac{1}{2T} \int_{T} \vec{n} \cdot \frac{1}{2} \cos (2n \omega_{0}t + n \omega_{0}t) dt$$

$$= \frac{1}{2} \int_{T} \vec{n} \cdot n \cos n \omega_{0}t + \frac{1}{2} \int_{T} \vec{n} \cdot n \sin \frac{1}{2T} \cos (2n \omega_{0}t + n \omega_{0}t) dt$$

$$\vec{R}_{X}(t) = \frac{1}{2} \int_{T} \vec{n} \cdot n \cos n \omega_{0}t + \frac{1}{2} \int_{T} \vec{n} \cdot n \sin \frac{1}{2T} \cos (2n \omega_{0}t + n \omega_{0}t) dt$$

$$\vec{R}_{X}(t) = \frac{1}{2} \int_{T} \vec{n} \cdot n \cos n \omega_{0}t + \frac{1}{2} \int_{T} \vec{n} \cdot n \sin \frac{1}{2T} \cos (2n \omega_{0}t + n \omega_{0}t) dt$$

$$\vec{R}_{X}(t) = \frac{1}{2} \int_{T} \vec{n} \cdot n \cos n \omega_{0}t + \frac{1}{2} \int_{T} \vec{n} \cdot n \sin \frac{1}{2T} \cos \frac{1}{2T} \cos$$

$$\bar{R}_X(\tau) = \frac{1}{2} \sum_{n=1}^{\infty} \lambda_n \cos n w_{\theta} \hat{l}$$

3. Let X be the compound Poisson random variable

$$X = \begin{cases} \sum_{k=1}^{0} A_k, & N > 0 \end{cases} \qquad E\left[e^{SX}\right] = \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} \left(E\left[e^{SA_n}\right]\right)^n e^{-\lambda}$$

$$= e^{-\lambda} \left(\frac{1}{1-S} - 1\right), \quad S < 1$$
for convergence

where $P(N=n) = \frac{\lambda^n}{n!} e^{-\lambda}$, n=0, 1, ..., and the A_ks are independent, identically

distributed and are, themselves, independent of N. The Aks have common densities

$$f_A(\alpha) = \begin{cases} e^{-\alpha}, & \alpha \ge 0 \\ 0, & \alpha < 0. \end{cases}$$

Obtain an upper bound on the probability $P(X \ge \mu \lambda)$ that decreases at least exponentially as $\mu \to \infty$.

Charnoff Bound
$$P(X \ge \mu\lambda) \in e^{-s\mu\lambda} E[e^{sx}]$$
, $s \ge 0$

$$P(X \ge \mu\lambda) \stackrel{!}{=} e^{\lambda} (-\mu s + \frac{1}{1-s} - 1) \quad \text{choose } s \ge 0 \quad \text{to minimize exponent}$$

$$0 = \frac{d}{ds} (-\mu s + \frac{1}{1-s} - 1) |_{s=s_0} = -\mu + \frac{1}{(1-s_0)^2}; S_0 = 1 + \frac{1}{\sqrt{\mu}} \quad \text{must use } \frac{1}{\sqrt{s_0}} = \frac$$

$$P(X \ge \mu\lambda) \le e^{-\mu\lambda\left(1 - \frac{1}{\sqrt{\mu}}\right)^2}$$

4. A random process, X(t), is defined by X(t) = u(t-T). The random variable T has the distribution $F_T(\tau)$ and

$$\mathbf{u}(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0. \end{cases}$$

It is desired to estimate $X(t_3)$ using two prior observations, $X(t_1)$ and $X(t_2)$, to form the estimate

$$\hat{X}(t_3) = AX(t_1) + BX(t_2)$$
, with $0 < t_1 < t_2 < t_3$.

Determine A and B that will minimize the mean square error

$$\varepsilon = E[(X(t_3) - \hat{X}(t_3)^2],$$

and obtain an expression for ε_{min} .

An answer not supported by appropriate reasoning will not receive any credit.

$$R_{\mathbf{x}}(t,s) = E[\mathbf{X}(t)\mathbf{X}(s)] = \int_{-\infty}^{\infty} u(t-t)u(s-t)f_{\mathbf{x}}(t)dt = F_{\mathbf{x}}(u(t-t)u(s-t)f_{\mathbf{x}}(t)dt = F_{\mathbf{x}}(u(t-t)u(s-t)f_{\mathbf{x}}(u(t-t)u(s-t)u(s-t)f_{\mathbf{x}}(u(t-t)u(s-t)u(s-t)f_{\mathbf{x}}(u(t-t)u(s-t)u(s-t)u(s-t)u(s-t)f_{\mathbf{x}}(u(t-t)u(s-t)$$

Orthogonality Principle

$$O = E[(X(t_3) - \hat{X}(t_3))X(t_1)] = F_1(t_1) - AF_1(t_1) - BF_1(t_1)$$

$$O = E[(X(t_3) - \hat{X}(t_3))X(t_2)] = F_1(t_2) - AF_1(t_1) - BF_1(t_2)$$
Solution: $A = 0$, $B = 1$

$$\mathcal{E}_{min} = E[(X(t_3) - \hat{X}(t_3))X(t_3)] = E[(X(t_3) - X(t_2))X(t_3)]$$

$$= F_T(t_3) - F_T(t_2) = \int_{t_2}^{t_3} f_T(\hat{x}) d\hat{x}$$

$$A = O \qquad E_{min} = F_T(t_3) - F_T(t_2)$$

5. A shot process is defined by

$$X(t) = \sum_{t_k} h(t - t_k)$$

where the t_k s are the event times of a classical Poisson process (constant rate λ). The function h(t) is given by

(t) is given by
$$h(t) = \begin{cases} e^{-t} - 2e^{-2t}, & t \ge 0. \\ 0, & t < 0, \end{cases}$$

$$H(iw) = \begin{cases} h(t)e^{-iwt} & dt \\ -iw & t < 0. \end{cases}$$

$$= \frac{-iw}{(1+iw)(2+iw)}$$

Is the process X(t) mean square differential?

An answer not supported by appropriate reasoning will not receive any credit.

$$\frac{1}{2} (u, v) = e^{\lambda} \int_{-\infty}^{\infty} (e^{iu h(t-t')+iv h(s-t')}) dt'$$

$$R_{X}(t) = E[X(t+t)X(t)] = \lambda \int_{-\infty}^{\infty} h(t+a)h(a)da + \lambda^{2} (\int_{-\infty}^{\infty} h(a)da)^{2} dt$$

$$S_{X}(w) = \int_{-\infty}^{\infty} R_{X}(t)e^{-iwt} dt = \lambda |H(iw)|^{2}$$

$$= \lambda \frac{w^{2}}{(1+w^{2})(4+w^{2})}$$
If
$$\int_{-\infty}^{\infty} w^{2}S_{X}(w)dw dw dw + \int_{-\infty}^{\infty} \frac{w^{2}}{(1+w^{2})(4+w^{2})} dw + \int_{-\infty}^{\infty} \frac{w^{2}}{(1+w^{2})(1+w^{2})} dw + \int_{-\infty}^{\infty} \frac{w^{2}}{(1+w^{2})} dw +$$

Differentiable? (circle one)

Yes

Name: SOLUTION

1. The random variable X has the density

Chebyshev Inequality
$$P(X \ge \lambda) \le \min_{S \ge 0} e^{-S\lambda} E[e^{SX}]$$

and state any restrictions on λ . Find an upper bound on the probability $P(X \ge \lambda)$ that decreases exponentially as $\lambda \to \infty$

and state any restrictions on
$$\Lambda$$
.

$$E\left[e^{SX}\right] = D_{X}(-is) = \left(\frac{1}{1-5}\right)^{n+1} \left(\frac{F_{rom}}{F_{rom}}\right)^{n} \underbrace{V_{Seful}}_{C}$$

$$P\left(X \ge \lambda\right) \le \min_{S \ge 0} e^{-S\lambda} \left(\frac{1}{1-5}\right)^{n+1} \min_{S \ge 0} e^{-S\lambda - (n+1)m(1-5)}$$

$$|etS_{>20}| = \min_{S \ge 0} \sup_{S \ge 0} \inf_{S \ge 0} e^{-S\lambda - (n+1)m(1-5)}$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text{set}}{=} O$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text{set}}{=} O$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text{set}}{=} O$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text{set}}{=} O$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text{set}}{=} O$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text{set}}{=} O$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text{set}}{=} O$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text{set}}{=} O$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text{set}}{=} O$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text{set}}{=} O$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text{set}}{=} O$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text{set}}{=} O$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text{set}}{=} O$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text{set}}{=} O$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text{set}}{=} O$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text{set}}{=} O$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text{set}}{=} O$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text{set}}{=} O$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text{set}}{=} O$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text{set}}{=} O$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text{set}}{=} O$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text{set}}{=} O$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text{set}}{=} O$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text{set}}{=} O$$

$$\frac{d}{ds} \left[-S\lambda - (n+1)m(1-s)\right] = -\lambda + (n+1)\frac{1}{1-5e} \stackrel{\text$$

$$P(X \ge \lambda) \le e^{-\lambda} \left\{ i - \left(\frac{\kappa_{+}}{2} \right) \left[i - m \left(\frac{\kappa_{+}}{2} \right) \right] \right\}$$

2 A Poisson process is observed over an interval of random length T. For T fixed at au, the probability of k events in the interval is

$$P(N = k | T = \tau) = \frac{(\lambda \tau)^k}{k!} e^{-\lambda \tau}, k = 0, 1, ...$$

The probability density of T is

$$f_{T}(\tau) = \begin{cases} \sigma e^{-\sigma \tau}, & \tau \geq 0 \\ 0, & \tau < 0. \end{cases}$$

Find the probability $P(N \ge m)$.

$$P(N=k) = \begin{cases} P(N=k|T=T)f_{T}(T)dT \\ = \begin{cases} \frac{(\lambda T)^{k}}{k!} e^{-\lambda T} e^{-\delta T} dT \\ \sqrt{k!} e^{-\lambda T} e^{-\delta T} dT \end{cases}$$

$$= \frac{\sigma}{(\lambda+\sigma)} \left(\frac{\lambda}{\lambda+\sigma}\right)^{k} \left(\begin{cases} From & \text{"Useful Formulas" Equation } T \\ \text{with slight modification } T \end{cases}\right)$$

Now

$$P(N \ge m) = \left(\frac{\lambda}{\lambda + 0}\right)^{m}$$

3. A random process is defined by X(t) = u(t-T) where

$$\mathbf{u}(\mathbf{t}) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

stationary. Evaluate the averaged correlation function and T is a continuous random variable with $E[|T|] < \infty$. The process is not wide sense

$$\overline{R}_{X}(\tau) = \lim_{N \to \infty} \frac{1}{2\Lambda} \int_{A}^{R} R_{X}(t+\tau,t)dt.$$

$$\overline{R}_{X}(\tau+\tau,t) = E[X(t+\tau-\tau)X(t-\tau)] = \begin{cases}
\int_{A}^{t} f_{\tau}(t)dt' = \overline{F}_{\tau}(t), C20
\end{cases}$$

$$\overline{R}_{X}(\tau) = \lim_{A \to \infty} \frac{1}{2\Lambda} \int_{A}^{A} F_{\tau}(t)dt = \lim_{A \to \infty} \frac{1}{2\Lambda} \left\{ t\overline{F}_{\tau}(t) - \int_{A}^{t} f_{\tau}(t)dt' = \overline{F}_{\tau}(t+\tau), C20
\end{cases}$$

$$= \lim_{A \to \infty} \left\{ \frac{1}{2} F_{\tau}(t) - \frac{1}{2} F_{\tau}(t) - \frac{1}{2} F_{\tau}(t) - \int_{A}^{t} f_{\tau}(t)dt' + \int_{A}^{t} f_{\tau}(t)dt' +$$

$$\overline{R}_X(\tau) = \frac{1}{2}$$

ECE 250 Final Exam.

Name: SOLUTION

March 18, 2013

1. The random variables X₁, X₂, X₃, and X₄ are independent, identically distributed, Gaussian [HINT: You may find the characteristic function useful.] and have zero mean and unit variance. Evaluate the density of $Z = X_1X_2 + X_3X_4$.

$$\Phi_{tr}(u) = \mathbb{E}\left[e^{iuX_{i}X_{2}}\right] = \mathbb{E}\left[\mathbb{E}\left[e^{iuX_{i}X_{2}}\right]\right] = \mathbb{E}\left[\mathbb{E}\left[e^{iuX_{i}X_{2}}\right]\right]$$

$$\Phi_{U(u)} = \frac{1}{\sqrt{2\pi}} \int_{\infty}^{\infty} e^{-\frac{1}{2}u^{2}x_{1}^{2} - \frac{1}{2}x_{2}^{2}} dx_{2} = \frac{1}{\sqrt{2\pi}} \int_{\infty}^{\infty} e^{-\frac{1}{2}(u^{2}+1)x_{2}^{2}} dx_{2}$$

$$= \frac{\mathbb{Q}_{z(u)} = \mathbb{E}[e^{iu(U+V)}] = \mathbb{E}[e^{iuV}] \times \mathbb{E}[e^{iuV}]}{1+u^{z}}$$

$$f_{Z(z)} = \frac{1}{2} e^{-|z|}$$

2. The process X(t) is defined by X(t) = $\sum_{n=-\infty}^{\infty} a_n g(t - n\pi)$

following relationship helpful g(t) = sint/t. Evaluate the mean and correlation function of X(t). [HINT: You may find the the a_n s are independent, identically distributed with zero mean and variance σ^2 and In general, such processes are neither stationary nor wide sense stationary. For this problem,

$$\sum_{n=-\infty}^{\infty} g(t - nT_0)g(s - nT_0) = \frac{1}{2\pi T_0} \int_{-\infty}^{\infty} e^{i\omega(t-s)} G(i\omega) \sum_{n=-\infty}^{\infty} e^{in2\pi s/T_0} G(i\omega - in2\pi/T_0) d\omega$$

where $G(i\omega)$ is the Fourier transform of g(t).

$$E[X(t)] = E[\sum_{n=-\infty}^{\infty} a_n q(t-n\pi)] = \sum_{n=-\infty}^{\infty} E[a_n]q(t-n\pi) = 0$$

$$E[X(t)X(s)] = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} q(t-n\pi)q(s-m\pi)$$

$$= C^{-2} \sum_{n=-\infty}^{\infty} q(t-n\pi)q(s-n\pi) \left(E[a_{n}a_{m}] = \begin{cases} C_{n}^{2}u=m \\ 0, n \neq m \end{cases} \right)$$

Using hint (with
$$T_0=\Pi$$
)
$$E[X(t)X(s)] = \frac{\sigma^2}{2\pi^2} \int_{\infty}^{\infty} e^{i\omega(t-s)} \int_{\infty}^{\infty} e^{i2\pi s} G(i\omega-i2n) d\omega$$

Now
$$G(i\omega) \geq e^{i2nS}G(i\omega-i2n) = G^{2}(i\omega)$$

Because the product is

gero far all summands except n =0

And
$$E[X(t)X(s)] = \frac{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{iw(t-s)} dw}{2\pi^{2}}$$

$$= \frac{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{iw(t-s)} dw}{\int_{-\infty}^{\infty} e^{iw(t-s)}}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{iw(t-s)} dw$$

$$E[X(t) X(s)] = 0^{2} \frac{1}{(t-s)}$$

ယ Let N(t) be a classical Poisson process (N (0) = 0, independent increments, constant rate λ) Define T_M as the time to the M-th event (occurrence). Determine the average and variance of

$$F_{T_{m}}(t) = P(T_{m} \leq t) = \sum_{n=m}^{\infty} P(N(t) = n)$$

$$= \sum_{n=m}^{\infty} \frac{(\lambda t)^{n}}{n!} e^{-\lambda t}$$

$$f_{T_{m}}(t) = \frac{d}{dt} F_{T_{m}}(t) = \lambda \frac{(\lambda t)^{m-1}}{(m-1)!} e^{-\lambda t}$$

$$f_{T_{m}}(t) = \frac{d}{dt} F_{T_{m}}(t) = \lambda \frac{(\lambda t)^{m-1}}{(m-1)!} e^{-\lambda t}$$

$$\mathbb{E}_{\mathsf{Tm}(u)} = \left(\frac{\lambda}{\lambda - \bar{\iota}u}\right)^{\mathsf{M}}$$

$$\left(\frac{\mathsf{Vsoful} \; \mathsf{Formulas}}{\mathsf{relation} \; \mathsf{II}}\right)^{\mathsf{M}}$$

$$E[T_{m}] = \left(\frac{1}{t}\right)\frac{du}{du}\Phi_{T_{m}}(u)\Big|_{u=0} = \frac{M}{\lambda}$$

$$E[T_{m}] = \left(\frac{1}{t}\right)\frac{du}{du}\Phi_{T_{m}}(u)\Big|_{u=0} = \frac{M(m+1)}{\lambda^{2}}$$

$$Var[T_{m}] = \frac{M}{\lambda^{2}}$$

$$E[T_M] = \mathcal{M}$$

$$Var[T_M] = \frac{M}{\lambda^2}$$

Let X(t) be a real, zero mean, wide sense stationary Gaussian process. It is desired to estimate X(t) using a single earlier observation $X(t-t_0)$. The estimate is

$$\widetilde{X}(t) = AX(t - t_o) + BX^2(t - t_o)$$
 and is not necessarily a linear estimate.

Determine the values of A and B that minimize $\mathcal{E} = E[(X(t) - X(t))^2]$ and evaluate the $E(X_1X_2X_3) = 0.$ minimum value of ε . [HINT: If X_1, X_2, X_3 are jointly Gaussian with zero mean

$$E(X_{1}X_{2}X_{3}) = 0.1$$

$$E(X_{1}(t)X_{1}(t)) - AX(t-t_{0}) - BX^{2}(t-t_{0})^{2}$$

$$= E[X^{2}(t)] + A^{2}E[X^{2}(t-t_{0})] + B^{2}E[X^{2}(t-t_{0})] + 2ABE[X^{2}(t-t_{0})]$$

$$-2AE[X_{1}(t)X_{1}(t-t_{0})] - 2BE[X_{1}(t)X_{2}(t-t_{0})] + 2ABE[X_{1}(t-t_{0})]$$

$$E[X^{*}(t-t\omega)] = 3(E[X^{*}(t-t\omega)]) \leftarrow (From homework problem)$$

$$E[X(t)X^{*}(t-t\omega)] = E[X^{*}(t-t\omega)] = 0 \qquad (From above hin t)$$

$$\frac{\partial \mathcal{E}}{\partial A} = 2AR_{x}(a) - 2R_{x}(t_{u}) \stackrel{\text{set}}{=} 0$$

$$\frac{\partial \mathcal{E}}{\partial B} = 6R_{x}(a) \stackrel{\text{set}}{=} 0$$

$$\therefore A = \frac{R_{x}(t_{u})}{R_{x}(a)} \quad B = 0$$

$$A = \frac{R \chi(t_0)}{R \chi(0)}$$

$$\varepsilon_{\min} = \frac{1}{R_{\mathbf{x}}(\sigma)} \left\{ R_{\mathbf{x}}^{2}(\sigma) - R_{\mathbf{x}}^{2}(\varepsilon_{0}) \right\}$$

5. A random process X(t) is defined by

$$X(t) = \sum_{n} A_{n} h(t - t_{n})$$

underlying Poisson process. The density of the $A_n s$ is where the delays, t_n , are event times of a classical Poisson process (constant rate λ), the $A_{n}s$ are independent, identically distributed random variables and are independent of the

$$f_A(\alpha) = \begin{cases} 2e^{-2a}, & \alpha \ge 0 \\ 0, & \alpha < 0 \end{cases} \qquad \begin{array}{l} \text{E[A]} = \frac{1}{2} \\ \text{E[A^2]} = \frac{1}{2} \\ 0, & \text{otherwise.} \end{cases}$$
 and
$$h(t) = \begin{cases} 1 - (1/2)|t|, & |t| \le 2 \\ 0, & \text{otherwise.} \end{cases}$$

Is X(t) mean square differentiable? An answer not supported by appropriate reasoning will

From Class
$$\sum E[X(t)X(s)] = \lambda E[A^2] \int h(t-s+a)h(a)da$$

$$+ (\lambda E[A]) \int h(a)da$$

$$+ (\lambda E[A]$$

November 5, 2012 ECE 250 Midterm Exam.

Name: SOLUTION

1. Is the following function a valid characteristic function of a real random variable?

$$\Phi(u) = 2 \frac{2-u^2}{4+5u^2+u^4}$$
 Clearly (i) $\Phi(o) = 1$

An answer not supported by appropriate reasoning will not receive any credit.

Make partial fraction expansion
$$\Phi(u) = 2 \frac{2-u^2}{(4+u^2)(1+u^2)} = \frac{2}{1+u^2} - \frac{4}{4+u^2}$$

$$f(x) = \frac{1}{2\pi} \int_{0}^{\infty} \Phi(u) e^{-iux} du$$

$$From Fourier
$$= e^{-|x|} = e^{-|x|} (1 - e^{-|x|})$$

$$= e^{-|x|} (1 - e^{-|x|})$$

$$= e^{-|x|} \int_{0}^{\infty} f(x) dx = 4$$

$$= f(x) \text{ is a valid density}$$$$

Valid Characteristic Function?

Yes

Z

(circle one)

Let X_1 and X_2 be independent, identically-distributed, Gaussian random variables with zero mean and unit variance. Evaluate the probability density of $Z = {X_1}^2 + {X_2}^2$. [HINT: You may find the characteristic function a useful tool.]

may find the characteristic function a section poor,
$$\frac{f_{\mathbf{X}}(x) = f_{\mathbf{X}}(x) = \frac{\chi^{2}}{f_{\mathbf{X}}(x)} = \frac{\chi^{2}}{\int_{\mathbb{R}^{2}}^{2\pi} \left\{ \frac{\chi^{2}}{f_{\mathbf{X}}(x)} \right\} = E[e^{iuX^{2}}] = \frac{\chi^{2}}{\int_{\mathbb{R}^{2}}^{2\pi}} \left\{ e^{-\frac{1}{2}x^{2}} - \frac{\chi^{2}}{2\pi} \right\} = E[e^{iuX^{2}}] = \frac{1}{\sqrt{1-2iu}} \left\{ e^{-\frac{1}{2}x^{2}} - \frac{\chi^{2}}{2\pi} \right\} = \frac{1}{\sqrt{1-2iu}} \left\{ e^{-\frac{1}{2}x^{2}} - \frac{\chi^{2}}{2\pi} \right\} = \frac{1}{\sqrt{1-2iu}} = \frac{1}{\sqrt{1-2iu}}$$

$$f_{Z(z)} = \begin{cases} \frac{1}{2} e^{-\frac{1}{2}} / 2 \\ \frac{1}{2} e^{-\frac{1}{2}} / 2 \end{cases}$$

Let X_1 and X_2 be independent, identically-distributed, Gaussian random variables with zero mean and unit variance. Evaluate the probability density of $Z = X_1^2 + X_2^2$. [HINT: You may find the characteristic function a useful tool.]

$$F_{\pm}(3) = P(\pm \pm 3) = P(X_1^2 + X_2^2 \pm 3)$$

$$C(early 320) = \begin{cases} \begin{cases} f_{\pm}(x_1) f_{\pm}(x_2) dx_1 dx_2 \\ f_{\pm}(x_1) f_{\pm}(x_2) dx_2 dx_3 \end{cases}$$

$$= \begin{cases} f_{\pm}(x_1) f_{\pm}(x_2) f_{\pm}(x_2) dx_1 dx_2 \\ f_{\pm}(x_1) f_{\pm}(x_2) f_$$

$$\begin{array}{ll}
0 > k & 0 \\
0 > k & 2 \\
0 \neq 0
\end{array}$$

The random variable Θ is uniformly distributed on $[0, 2\pi]$.

$$f_{\Theta}(\Theta) = \begin{cases} \frac{1}{2\pi}, & 0 \le \Theta \le 2\pi \\ 0, & otherwise. \end{cases}$$

[XnYm] = E[Xn]E[Ym] If X and Y are independent, the $h_1 m = 0, 1, 2, ----$

Consider the auxiliary random variables

 $Y = \sin\Theta$.

Show that X and Y are uncorrelated but not independent.

$$E[X] = \frac{1}{2\pi} \begin{cases} \cos \theta d\theta = 0 & E[Y] = \frac{1}{2\pi} \begin{cases} \sin \theta d\theta = 0 \\ \cos \theta d\theta = 0 \end{cases}$$

$$E[XY] = \frac{1}{2\pi} \begin{cases} \cos \theta \sin \theta d\theta = 0 \\ \cos \theta \sin \theta d\theta = 0 \end{cases}$$

$$E[XY] = \frac{1}{2\pi} \begin{cases} \cos \theta \sin \theta d\theta = 0 \\ \cos \theta \sin \theta d\theta = 0 \end{cases}$$

$$E[XY] = E[X] \cdot E[Y] \Rightarrow uncorrelated$$

Useful E[X2Y] = & + E[X2] E[Y2] not independent E[X27] = = = (05205111 gd8 Now Consider E182] = = = = 21 / SIM36d6 = 411 / [1-0526]d0 >= 1617 [[1-0540]d6 = 8 = \frac{1}{211} \int \left(\frac{1}{2} Aln 26 \right) d6

December 13, 2012 ECE 250 Final Exam.

Name: SOLUTION

PID:

The random variable X has a continuous density. The median of X is the value M that satisfies

$$F_X(M) = 1 - F_X(M).$$

Let X₀ be the value that minimizes

$$E[|X-X_o|].$$
 Set $\mathcal{E} = E[|X-X_o|]$

Show that $X_o = M$.

$$\mathcal{E} = -\int_{X_{o}}^{X_{o}} (x) \frac{1}{2} \left(x - X_{o} \right) \int_{X_{o}}^{X_{o}} (x) dx + \int_{X_{o}}^{X_{o}} (x - X_{o}) \int_{X_{o}}^{X_{o}} (x) dx$$

$$\mathcal{E} = -\int_{X_{o}}^{X_{o}} (x - X_{o}) \int_{X_{o}}^{X_{o}} (x) dx + \int_{X_{o}}^{X_{o}} (x - X_{o}) \int_{X_{o}}^{X_{o}} (x) dx$$

$$-(x-X_0)f_{\overline{X}}(x)\Big|_{X=X_0}-\frac{1}{X_0}f_{\overline{X}}(x)dy$$

$$O = F_{\mathbf{X}}(\mathbf{X}_{\theta}) - (1 - F_{\mathbf{X}}(\mathbf{X}_{\theta}))$$

clearly \mathbf{X}_{θ} satisfies the definition
of a median so that

PID:

2. A random process is defined by X(t) = u(t-T) where

$$\mathbf{u}(\mathbf{t}) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

and T is a random variable with density

 $f_{\rm T}(t) = \frac{1}{2} e^{-|t|}$

sity
$$F_{\tau}(t') = \begin{cases} \pm e' \\ 1 - \pm e' \end{cases}$$
, $t < 0$

The process X(t) is not wide sense stationary. Evaluate the averaged correlation function

$$R_{X}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} R_{X}(t+\tau,t)dt.$$

$$R_{X}(t+\tau,t) = E\left[X(t+\tau-T)X(t-T)\right] = \int u(t+t-t')u(t-t') \int_{T}^{t} (t')dt'$$

$$= \int_{\infty}^{\infty} \int_{T}^{T} (t')dt' = F(t+t') \int_{T}^{T} t' \geq 0$$

$$= \int_{\infty}^{\infty} \int_{T}^{T} (t')dt' = F(t+t') \int_{T}^{T} t' \geq 0$$

$$= \int_{T}^{T} \int_{T}^{T} \left(m_{1}m_{1}^{T} (t+\tau,t) \right) - m \cdot \tau \cdot \tau \cdot \infty$$

$$R_{X}(t') = \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} R_{X}(t+\tau,t) dt = \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} \left(m_{1}m_{1}^{T} t+\tau,t \right) dt + \lim_{T \to$$

$$\overline{R}_X(\tau) = \frac{1}{2}$$

Name: SOLUTION

PID:

Can the function

m(t) =

$$= \begin{cases} 8t - 3 + 3e^{-t}, & t \ge 0 \\ 0, & t < 0 \end{cases} \quad M(5) = \frac{8}{5^2} - \frac{3}{5} + \frac{3}{5+1} = \frac{5 \le \pm 8}{5^2(5+1)}$$

From LaPlace Trans. pairs

reasoning will not receive any credit. be the mean value of a renewal process N(t)? An answer not supported by appropriate

notes, the transform of the interevent times is

$$F_{A}(5) = \frac{5M(5)}{1+5M(5)} = \frac{55+8}{5^2+65+8} = \frac{55+8}{(5+4)(5+2)}$$

$$\frac{1}{m \text{ LaPlace}} f_{\mathbf{A}}(t) = \begin{cases} 6e^{-4t} - e^{-2t}, t \ge 0 \\ 0, t \le 0 \end{cases}$$

Frans- pars =
$$\{e^{-2t}(6e^{-2t}-1), t \ge 0\}$$

If tils sufficiently large, falt) <0 which cannot happen for a valid probability density

Ħ |

4. Consider the random process

$$X(t) = \cos(\pi N(t))$$

function $R_X(t, s)$. Where N(t) is a classical Poisson process (N(0) = 0, constant rate λ). Evaluate the correlation

$$R_{\mathbf{X}}(t,s) = E[X(t)X(s)] = E[\cos(\pi N(t)\cos(\pi N(s))]$$

$$|\underbrace{t} \quad \cos(\pi N(s)) = \frac{1}{2}\cos(\pi(N(t)-N(s)))$$

$$+ \frac{1}{2}\cos(\pi(N(t)+N(s)))$$

Note that N(t)+N(5) = N(t)-N(5)+2N(6)
and
$$\cos(\pi(N(t)+N(6))) = \cos(\pi(N(t)-N(6))+2\pi N(6))$$

$$\left(\cos(2\pi N(\zeta)) = 1\right) = \cos(\pi(N(\zeta) - N(\zeta)))$$

$$-\frac{1}{2} R_{x}(t,s) = \mathbb{E}[\cos(\pi(n(t) - n(s)))] = \frac{1}{2} \mathbb{E}[e^{i\pi(n(t) - n(s))}] + \frac{1}{2} \mathbb{E}[e^{i\pi(n(t) - n(s))}] + \frac{1}{2} \mathbb{E}[e^{i\pi(n(t) - n(s))}]$$

$$-2\lambda(t-s) = C$$

 $-2\lambda(t-s) = C$
 $5 \le t$
 $5 \le t$
 $5 \le t$
 $5 \le t$
 $6 \le t$
 $6 \le t$
 $6 \le t$
 $6 \le t$
 $7 \le t$
 $7 \le t$
 $7 \le t$

$$R_{X}(t,5) = e^{-2\lambda|t-5|}$$

$$R_{X}(t,s) = e^{-2\lambda |t-5|}$$

A random signal X(t) has zero mean and correlation function $R_X(\tau) = e^{-|\tau|}$. During transmission, this signal is corrupted by additive noise N(t). The noise is a shot process

$$N(t) = \sum_{t_{\kappa}} A_{\kappa} h(t - t_{\kappa})$$

where the t_K S are the "event" times of a classical Poisson process with a constant rate λ and

$$h(t) = \begin{cases} e^{-t}, & t \ge 0 \\ 0, & t < 0. \end{cases}$$

The $A_{\kappa}S$ are i.i.d., independent of the $t_{\kappa}S$ and have density

 $f_A(\alpha) = \frac{1}{2}e^{-|\alpha|}, -\infty < \alpha < \infty.$

whose output X(t) is intended to be an estimate of X(t). Determine the impulse response The sum X(t) + N(t) is the input to a linear, time invariant filter with impulse response g(t)

 $g_0(t)$ that will minimize the mean square error $E = E[(X(t) - X(t))^2]$. We know (from class notes) that N(t) is stationary and $R_N(\mathfrak{E}) = \lambda E[A^2] \int_{0}^{\mathfrak{E}} h(\mathfrak{E}+\mathfrak{F}) h(\mathfrak{F}) d\mathfrak{F} + \left(E[A] \int_{0}^{\mathfrak{F}} h(\mathfrak{F}) d\mathfrak{F}\right)^2$ = $\lambda e^{-|\mathfrak{E}|^{-\mathfrak{F}}}$

transform > Thos
$$S_N(\omega) = \frac{2\lambda}{1+\omega^2}$$
 and $S_X(\omega) = \frac{2}{1+\omega^2}$

Now from class the optimum (possibly unrealizable) transfer function is $G_{o}(i\omega) = \frac{S_{X}(\omega)}{S_{X}(\omega) + S_{N}(\omega)} = \frac{1}{1+\lambda}$

ransform tables

$$g_0(t) = \frac{1}{1+\lambda} \int_{-\infty}^{\infty} f(t)$$

ECE 250 Midterm February 10, 2012

Name: Solution

The random variable Θ is uniformly distributed on $[0, 2\pi)$. Consider the related random

$$X = \cos^2\Theta$$
 $Y = \sin^2\Theta$

Are X and Y independent? An answer without appropriate reasoning will not receive any

have
$$E[XY] = E[X] \cdot E[Y]$$
 (nacessary not sufficient)

$$\begin{aligned} & \text{Frig.} \\ & \text{E[X]} = \text{E[} \text{Cos}^2 \text{A} \text{]} = \text{E[} \frac{1}{2} + \frac{1}{2} \text{cos}_2 \text{A} \text{]} \\ & \text{identities} \\ & \text{From hander} \end{aligned} \end{aligned} = \frac{1}{2\pi} \begin{cases} \frac{1}{2} + \frac{1}{2} \text{cos}_2 \text{A} \text{]} \text{d} = \frac{1}{2} \\ & \text{E[XY]} = \text{E[} \text{Sin}^3 \text{A} \text{Cos}^3 \text{]} \end{aligned} = \frac{1}{2\pi} \begin{cases} \frac{1}{2} - \frac{1}{2} \text{cos}_2 \text{A} \text{]} \text{d} = \frac{1}{2} \\ & \text{E[} \text{XY]} = \text{E[} \text{Sin}^3 \text{Cos}^3 \text{]} \end{aligned} = \frac{1}{2\pi} \left[\frac{1}{2} - \frac{1}{2} \text{cos}_2 \text{A} \text{]} \text{d} = \frac{1}{2} \\ & = \frac{1}{4} \frac{1}{2\pi} \left\{ \frac{1}{2} - \frac{1}{2} \text{cos}_3 \text{A} \text{]} \text{d} = \frac{1}{2} \\ & = \frac{1}{4} \frac{1}{2\pi} \left\{ \frac{1}{2} - \frac{1}{2} \text{cos}_3 \text{A} \text{]} \text{d} = \frac{1}{2} \\ & = \frac{1}{4} \frac{1}{2\pi} \left\{ \frac{1}{2} - \frac{1}{2} \text{cos}_3 \text{A} \text{]} \text{d} = \frac{1}{2} \\ & = \frac{1}{4} \frac{1}{2\pi} \left\{ \frac{1}{2} - \frac{1}{2} \text{cos}_3 \text{A} \text{]} \text{d} = \frac{1}{2} \end{cases} \end{aligned}$$

$$\therefore \quad \text{E[} \text{XY]} \neq \text{E[} \text{X]} \text{E[} \text{Y]}$$

$$\text{NOT INDEDENDENT}$$

2. The characteristic function of a real random variable X is given by

$$\Phi(u) = (\cos u)^{10}.$$

those probabilities. Determine those integer values for which the probability of X is NOT zero and evaluate

$$\Phi(u) = \left(\frac{e^{\frac{1}{2}u} + e^{\frac{1}{2}u}}{2}\right)^{10} = \left(\frac{1}{2}\right)^{10} \sum_{k=0}^{10} {\binom{10}{k}} e^{\frac{10}{2}u} e^{-\frac{1}{2}u(10-k)}$$

$$= \left(\frac{1}{2}\right)^{10} \sum_{k=0}^{10} {\binom{10}{k}} e^{\frac{10}{2}u(2k-10)}$$

$$= \left(\frac{1}{2}\right)^{10} \sum_{k=0}^{10} {\binom{10}{k}} e^{\frac{10}{2}u(2k-10)}$$

$$= \left(\frac{1}{2}\right)^{10} \sum_{k=0}^{10} {\binom{10}{2}} e^{\frac{10}{2}u}$$

$$= \left(\frac{1}{2}\right)^{10} \left(\frac{10}{2} + 5\right)$$

$$P(X=n) = \begin{cases} (\frac{1}{2})^{10} \left(\frac{10}{1/2 + 5} \right), & n = 0, \pm 2, \pm 4, ---, \pm 10 \\ 0, & o + \text{herwise} \end{cases}$$

A real, zero-mean, wide sense stationary Gaussian process X(t) has the power spectral density

$$S_{X}(\omega) = \frac{2}{1+\omega^2}$$
. $E[Y(t)] = E[X(t)] = R_{X}(0)$ = constant

Define a new process $Y(t) = X^{2}(t)$. Evaluate the power spectral density of Y(t).

$$R_{\mathcal{Z}}(\mathcal{C}) = \mathbb{E}[X(t+\mathcal{C})Y(t)] = \mathbb{E}[X^{7}(t+\mathcal{C})X^{7}(t)]$$

$$U_{\mathcal{L}}\mathcal{C} = \mathbb{E}[X_{1}X_{2}X_{3}X_{4}] = \mathbb{E}[X_{1}X_{2}]\mathbb{E}[X_{3}X_{4}] + \mathbb{E}[X_{1}X_{2}]\mathbb{E}[X_{2}X_{4}]$$

$$+ \mathbb{E}[X_{1}X_{2}]\mathbb{E}[X_{2}X_{3}] + \mathbb{E}[X_{1}X_{2}]\mathbb{E}[X_{2}X_{4}]$$

$$+ \mathbb{E}[X_{1}X_{4}]\mathbb{E}[X_{2}X_{2}] + \mathbb{E}[X_{1}X_{2}]\mathbb{E}[X_{2}X_{4}]$$

$$+ \mathbb{E}[X_{1}X_{4}]\mathbb{E}[X_{2}X_{2}] + \mathbb{E}[X_{1}X_{2}]\mathbb{E}[X_{2}X_{4}]$$

$$+ \mathbb{E}[X_{1}X_{4}]\mathbb{E}[X_{2}X_{2}] + \mathbb{E}[X_{1}X_{2}]\mathbb{E}[X_{2}X_{4}]$$

$$+ \mathbb{E}[X_{1}X_{2}]\mathbb{E}[X_{2}X_{2}] + \mathbb{E}[X_{1}X_{2}]\mathbb{E}[X_{2}X_{2}]$$

$$+ \mathbb{E}[X_{1}X_{2}]\mathbb{E}[X_{2}X_{2}] + \mathbb{E}[X_{1}X_{2}] + \mathbb{E}[X_{1}X_{2}]$$

$$+ \mathbb{E}[X_{1}X_{2}]\mathbb{E}[X_{2}X_{2}] + \mathbb{E}[X_{1}X_{2}] + \mathbb{E}[X_{1}X_{2}] + \mathbb{E}[X_{1}X_{2}]$$

$$+ \mathbb{E}[X_{1}X_{2}] + \mathbb{E}[X_{1}X_{2}] + \mathbb{E}[X_{1}X_{2}] + \mathbb{E}[X_{1}X_{2}]$$

$$+ \mathbb{E}[X_{1}X_{2}] + \mathbb{E}[X_{1}X_$$

$$S_{Y}(\omega) = 2\pi \delta(\omega) + \frac{8}{4+\omega^2}$$

ECE 250 Final March 19, 2012

Name: Solution

Let N(t) be a classical Poisson process (N(0)=0, constant rate λ). It is desired to estimate the rate by observing a realization of the process over a large time interval. Consider the estimate

$$M(T) = \frac{1}{T} \int_{0}^{T} \frac{N(t)}{t} dt.$$

Show that for $\epsilon > 0$

$$\lim_{T \to \infty} P(|M(T) - \lambda| \ge \epsilon) = 0$$

From class notes
$$E[N(t)] = \lambda t$$

$$E[N^{2}(t)] = \lambda t + \lambda^{2}t^{2}$$

$$E[N(t)N(5)] = \lambda \min\{5,t\} + \lambda^{2}t^{2}$$

HINT: You may find the equivalent limits $\lim \epsilon \ln \epsilon = 0$ and $\lim (\ln T)/T = 0$ useful.

$$P(|M(T)-\lambda|z\epsilon) \leq \frac{\mathbb{E}[(M(T)-\lambda)^{2}]}{\mathbb{E}[M(T)-\lambda]^{2}} \left(\frac{\mathbb{E}[M(T)-\lambda]^{2}}{\mathbb{E}[M(T)-\lambda]^{2}}\right) \left(\frac{\mathbb{E}[M(T)-\lambda]^{2}}{\mathbb{E}[M(T)-\lambda]^{2}}\right) = \frac{1}{\tau} \int_{0}^{\tau} \frac{\mathbb{E}[M(T)-\lambda]^{2}}{\mathbb{E}[M(T)-\lambda]^{2}} \left(\frac{1}{\tau} + \frac{\mathbb{E}[M(T)-\lambda]^{2}}{\mathbb{E}[M(T)-\lambda]^{2}}\right) = \frac{1}{\tau} \int_{0}^{\tau} \frac{\mathbb{E}[M(T)-\lambda]^{2}}{\mathbb{E}[M(T)-\lambda]^{2}} dS$$

$$= \frac{1}{\tau} \int_{0}^{\tau} \frac{\mathbb{E}[M(T)-\lambda]^{2}}{\mathbb{E}[M(T)-\lambda]^{2}} dS + \frac{1}{\tau} \int_{0}^{\tau} \frac{\mathbb{E}[M(T)-\lambda]^{2}}{\mathbb{E}[M(T)-\lambda]^{2}} dS$$

$$= \frac{1}{\tau} \int_{0}^{\tau} \frac{\mathbb{E}[M(T)-\lambda]^{2}}{\mathbb{E}[M(T)-\lambda]^{2}} dS + \frac{1}{\tau} \int_{0}^{\tau} \frac{\mathbb{E}[M(T)-\lambda]^{2}}{\mathbb{E}[M(T)-\lambda]^{2}} dS$$

$$= \frac{1}{\tau} \int_{0}^{\tau} \frac{\mathbb{E}[M(T)-\lambda]^{2}}{\mathbb{E}[M(T)-\lambda]^{2}} dS + \frac{1}{\tau} \int_{0}^{\tau} \frac{\mathbb{E}[M(T)-\lambda]^{2}}{\mathbb{E}[M(T)-\lambda]^{2}} dS$$

$$= \frac{1}{\tau} \int_{0}^{\tau} \frac{\mathbb{E}[M(T)-\lambda]^{2}}{\mathbb{E}[M(T)-\lambda]^{2}} dS + \frac{1}{\tau} \int_{0}^{\tau} \frac{\mathbb{E}[M(T)-\lambda]^{2}}{\mathbb{E}[M(T)-\lambda]^{2}} dS$$

$$= \frac{1}{\tau} \int_{0}^{\tau} \frac{\mathbb{E}[M(T)-\lambda]^{2}}{\mathbb{E}[M(T)-\lambda]^{2}} dS + \frac{1}{\tau} \int_{0}^{\tau} \frac{\mathbb{E}[M(T)-\lambda]^{2}}{\mathbb{E}[M(T)-\lambda]^{2}} dS$$

$$= \frac{1}{\tau} \int_{0}^{\tau} \frac{\mathbb{E}[M(T)-\lambda]^{2}}{\mathbb{E}[M(T)-\lambda]^{2}} dS + \frac{1}{\tau} \int_{0}^{\tau} \frac{\mathbb{E}[M(T)-\lambda]^{2}}{\mathbb{E}[M(T)-\lambda]^{2}} dS$$

$$= \frac{1}{\tau} \int_{0}^{\tau} \frac{\mathbb{E}[M(T)-\lambda]^{2}}{\mathbb{E}[M(T)-\lambda]^{2}} dS + \frac{1}{\tau} \int_{0}^{\tau} \frac{\mathbb{E}[M(T)-\lambda]^{2}}{\mathbb{E}[M(T)-\lambda]^{2}} dS$$

$$= \frac{1}{\tau} \int_{0}^{\tau} \frac{\mathbb{E}[M(T)-\lambda]^{2}}{\mathbb{E}$$

The input, X(t), and output, Y(t), of a linear system are related via the differential equation

$$\frac{d^2}{dt^2}Y(t) + 2\frac{d}{dt}Y(t) + Y(t) = 2\frac{d}{dt}X(t) + 2X(t). \quad \text{H($\tilde{\iota}$w)} = \frac{2 + 2(\tilde{\iota}\text{w})}{1 + 2(\tilde{\iota}\text{w}) + (\tilde{\iota}\text{w})^2}$$

If the input is a zero-mean, wide sense stationary process with correlation

$$R_X(\tau) = \frac{3}{4}e^{-2|\tau|}$$
, $S_X(\omega) = \frac{3}{4+\omega^2} \leftarrow From handout$

determine the correlation function of Y(t).

$$|H(iw)| = \frac{2}{(1+iw)} |H(iw)|^2 = \frac{4}{1+w^2}$$

$$S_{X}(w) = |H(iw)|^2 S_{X}(w) = \frac{12}{(1+w^2)(4+w^2)}$$

$$\frac{4}{(1+w^2)(4+w^2)} = \frac{4}{(1+w^2)(4+w^2)}$$

$$\frac{2}{2}e^{-|\hat{U}|} = \frac{2}{2}e^{-|\hat{U}|} = \frac{2|\hat{U}|}{2}$$

$$From handowt$$

$$\frac{2}{2}e^{-|\hat{U}|} = \frac{2}{2}e^{-|\hat{U}|} = \frac{2|\hat{U}|}{2}$$

$$R_Y(\tau) = 2 e^{-|\mathcal{E}|} - e^{-2|\mathcal{E}|}$$

The random process X(t) is given by X(t) = u(t - W). Here u(t) is the unit step

$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t \ge 0 \end{cases}$$

moments. The process X(t) is not wide sense stationary. Evaluate the average and W is a random variable with a continuous density and finite first and second

correlation function $\bar{R}X(\tau)$.

$$\bar{R}_X(\tau) = \frac{1}{2}$$

Name: Solution

Consider the shot process

he shot process
$$X(t) = \sum_{t_n} h(t-t_n) \qquad \bigoplus_{X(t), X(t)} (u, v) = \bigcup_{x_n} \int_{-\infty}^{\infty} (e^{-\lambda}uh(t-\alpha)+ivh(s-\alpha)) d\alpha$$
The same occurrence times of a classical Poisson process defined on $(-\infty, \infty)$ with

constant rate λ . Here h(t) is given by where the $t_n s$ are occurrence times of a classical Poisson process defined on $(-\infty,\infty)$ with

$$h(t) = \begin{cases} e^{-at}, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

Is X(t) mean square differentiable? An answer not supported by appropriate reasoning will not receive any credit.

not receive any credit.

$$R_{Z}(\mathcal{E}) = E[X(t+\mathcal{E})X(t)] = \overline{(i)}\frac{\partial^{2}}{\partial u\partial v} \underbrace{\nabla_{Z(t+\mathcal{E}),Z(t)}}_{Z(t+\mathcal{E}),Z(t)}]_{u=v=0}^{u=v=0}$$

$$= \lambda \int_{0}^{\infty} h(\mathcal{E}+\beta)h(\beta)d\beta + \lambda^{2} \left(\int_{0}^{\infty} h(\beta)d\beta \right)^{2}$$

$$= \lambda \int_{0}^{\infty} h(\mathcal{E}+\beta)h(\beta)d\beta + \lambda^{2} \left(\int_{0}^{\infty} h(\beta)d\beta \right)^{2}$$

$$S_{Z}(w) = \int_{0}^{\infty} R_{Z}(\mathcal{E}) \underbrace{\partial^{2}}_{0} \underbrace{\partial \mathcal{E}}_{0} + \lambda^{2} \left(\int_{0}^{\infty} h(\beta)d\beta \right)^{2} + 2\pi |H(io)|^{2} + 2\pi |H(io$$

Name: Solution

S observation of X(t). For a fixed value of $t_0 > 0$, determine the value of α that minimizes the The process X(t) is a real, zero-mean, wide sense stationary, Gaussian process with correlation $R(\tau)$. Define $Y(t) = X^3(t)$. It is desired to estimate Y(t) with an earlier

$$\mathcal{E} = E[(Y(t) - \alpha X(t-t_0))^2]$$

mean Gaussian variable X useful and evaluate the minimum value of ε . You may find the following relationship for a zero-

$$C = E[(Y|t) - \alpha X|t - t_o)X(t - t_o)] \qquad \begin{cases} 0, & n \text{ odd} \\ 0 = E[(Y|t) - \alpha X|t - t_o)X(t - t_o)] & n \text{ even.} \end{cases}$$

$$C = E[(Y|t) X(t - t_o)] - \alpha E[X^2(t - t_o)] \qquad \begin{cases} P \text{ princip b} \\ P \text{ princip b} \end{cases}$$

$$C = \frac{E[Y|t)X(t - t_o)]}{E[X^2(t + t_o)]} = \frac{E[X^2(t - t_o)]}{E[X^2(t - t_o)]} \qquad \begin{cases} P \text{ princip b} \\ P \text{ princip b} \end{cases}$$

$$R_{\text{princip b}} = \frac{E[Y|t)X(t - t_o)}{E[X^2(t - t_o)]} = \frac{E[X^3(t)X(t - t_o)]}{E[X^3(t - t_o)]} = R(o)$$

$$E[X^3(t)X(t - t_o)] = 3R(o)R(t_o) + R(t_o) = R(o)$$

$$E[X^3(t)] - 3R(t_o)X(t - t_o) = R(o)R^2(t_o)$$

$$E[X^3(t)] - R(o)R^2(t_o)$$

$$E[X$$

ECE 250 Midterm October 24, 2011

Name: Solution

1. The characteristic function of a random variable X is given by

$$\Phi_{X}(u) = 2e^{-|u|} - e^{-2|u|}$$
. $E_{X}(u)$ is a valid characteristic function

Evaluate the first two moments of X.

$$\Phi_{\mathbf{X}}(u) = 2 \sum_{n=0}^{\infty} \frac{(-1u)^n}{n!} - \sum_{n=0}^{\infty} \frac{(-2|u|)^n}{n!}$$

$$= 1 - u^2 + (\text{terms in } |u| \text{ and higher powers of } |u|)$$

$$= [X] + (\frac{1}{2} \text{ and } 2 \text{ and } 2 \text{ and higher powers of } |u|)$$

$$= [X] = \frac{1}{2} \frac{d}{du} \Phi_{\mathbf{X}}(u) |_{u=0} = C$$

$$= [X^2] = (\frac{1}{2})^2 \frac{d^2}{du^2} \Phi_{\mathbf{X}}(u) |_{u=0} = C$$

$$\begin{cases}
\text{While not required as part} \\
\text{of the problem}_{j}
\end{cases}$$

$$\begin{cases}
\text{While not required as part}
\end{cases}$$

$$E[X^2] = 2$$

2. Let the random variables X and Y be independent and have the densities

$$f_X(x) = \begin{cases} e^{-x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$
 $f_Y(y) = \begin{cases} e^{-y}, & y \ge 0 \\ 0, & y < 0 \end{cases}$

Determine the probability density of
$$Z = |X - Y|$$
. Consider $W = X - Y$.

 $W(u) = E[e^{iuW}] = E[e^{iuX}]E[e^{-iuY}] = \frac{1}{1-iu} \cdot \frac{1}{1+iu}$
 $Wep. \} = E[e^{iuX}]E[e^{-iuY}] = \frac{1}{1-iu} \cdot \frac{1}{1+iu}$

Transform

, Z=W

The random variables X₁, X₂, ..., X₁₀ are independent and identically distributed with

$$P(X_k = 1) = P(X_k = -1) = \frac{1}{2}, k = 1, 2, ..., 10$$

Consider the sum

 $\sum_{k=1}^{\infty} X_{k}$

$$E[e^{iuX_{\mathbf{k}}}] = \pm (e^{iu} + e^{iu})$$

$$b = 1, 2, ..., u$$

Evaluate the probabilities $P(Y_n = 6)$ and $P(Y_n = 7)$. [HINT: You may find the characteristic function helpful.]

Innotion neighbor.

$$\frac{\mathbb{E}_{\mathbf{z}_{n}}(u) = \mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[\prod_{k=1}^{10} e^{iuX_{k}}\right]$$

$$\frac{\mathbb{E}_{\mathbf{z}_{n}}(u) = \mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[\prod_{k=1}^{10} e^{iuX_{k}}\right]$$

$$\frac{\mathbb{E}_{\mathbf{z}_{n}}(u) = \mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[\prod_{k=1}^{10} e^{iuX_{k}}\right]$$

$$\frac{\mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[\prod_{k=1}^{10} e^{iuX_{k}}\right]$$

$$\frac{\mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[\prod_{k=1}^{10} e^{iuX_{k}}\right]$$

$$\frac{\mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[\prod_{k=1}^{10} e^{iuX_{n}}\right]$$

$$\frac{\mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[\prod_{k=1}^{10} e^{iuX_{k}}\right]$$

$$\frac{\mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[\prod_{k=1}^{10} e^{iuX_{n}}\right]$$

$$\frac{\mathbb{E}\left[\prod_{k=1}^{10} e^{iuX_{n}}\right] = \mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[\prod_{k=1}^{10} e^{iuX_{n}}\right]$$

$$\frac{\mathbb{E}\left[\prod_{k=1}^{10} e^{iuX_{n}}\right] = \mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[\prod_{k=1}^{10} e^{iuX_{n}}\right]$$

$$\frac{\mathbb{E}\left[\prod_{k=1}^{10} e^{iuX_{n}}\right] = \mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[e^{iuX_{n}}\right]$$

$$\frac{\mathbb{E}\left[\prod_{k=1}^{10} e^{iuX_{n}}\right] = \mathbb{E}\left[\prod_{k=1}^{10} e^{iuX_{n}}\right]$$

$$\frac{\mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[e^{iuX_{n}}\right]$$

$$\frac{\mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[e^{iuX_{n}}\right]$$

$$\frac{\mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb{E}\left[e^{iuX_{n}}\right] = \mathbb$$

 $P(Y_n = 6) = \frac{1}{210} (\frac{10}{8}) = \frac{45}{210}$

 $P(Y_n = 7) =$

ECE 250 Final Exam December 8, 2011

Name: Solution

The random variable X is uniformly distributed on $(0, \pi)$. A new random variable, Y, is formed from X as follows formed from X as follows

Y = cos X.

Determine the density of Y.

The transformation is one-to-one so that

$$f_{x(x)} = \frac{1}{|s_{inx}|} f_{x(x)}|_{x=cos^{2}y}$$
 = $\frac{1}{|s_{inx}|} f_{x(x)}|_{x=cos^{2}x} = \frac{1}{|s_{inx}|} f_{x(x)}|_{x=cos^{2}x} = \frac{1}{|s_{inx}|} f_{x(x)}|_{x=cos^{2}x}$

$$f_{Y}(y) = \begin{cases} \frac{1}{\pi \sqrt{1-y^2}}, & -1 \leq y \leq 1 \\ 0, & \text{otherwise} \end{cases}$$

2. Let X_k , k = 1, 2, ... be independent, identically distributed random variables with $P(X_k = 1) = \frac{1}{2} = P(X_k = 0)$. Consider the sum

$$=\sum_{k=1}^{n}x_{k}.\qquad \qquad \mathbb{E}\left[e^{iu\mathbf{X}_{k}}\right]=\frac{1}{2}(1+e^{iu})$$

Find the Edgeworth expansion of the centered, normalized random variable \hat{Y}_n where

$$E[Y_n] = \frac{Y_n - E[Y_n]}{\sqrt{Var[Y_n]}} \qquad E[Y_n] = \sum_{k=1}^n Var[X_k] = \frac{p}{4}$$

Keep correction terms up to and including those that decrease as
$$\frac{1}{2}$$
. You do not need to explicitly evaluate any polynomials involved.

$$\Phi_{\mathcal{C}_{\mathbf{u}}}(\mathbf{u}) = \mathbb{E}\left[e^{\frac{1}{2}\mathbf{u}\sqrt{\frac{1}{N_{\mathbf{u}}}-\mathbb{E}[Y_{\mathbf{u}}]}}\right] = e^{-\frac{1}{2}\mathbf{u}\sqrt{\frac{1}{N_{\mathbf{u}}}}} \left[e^{\frac{1}{2}\frac{2}{N_{\mathbf{u}}}}\right]$$

$$= e^{-\frac{1}{2}\mathbf{u}\sqrt{\frac{1}{N_{\mathbf{u}}}}} + \mathbb{E}\left[e^{\frac{1}{2}\frac{2}{N_{\mathbf{u}}}}\right] = e^{-\frac{1}{2}\mathbf{u}\sqrt{\frac{1}{N_{\mathbf{u}}}}} \left(\Phi_{\mathbf{z}}(\frac{2}{N_{\mathbf{u}}})\right)^{N}$$

$$= \left(e^{\frac{1}{2}\frac{N_{\mathbf{u}}}{N_{\mathbf{u}}}} + \frac{1}{2}e^{\frac{1}{2}\frac{N_{\mathbf{u}}}{N_{\mathbf{u}}}}\right) = e^{-\frac{1}{2}\mathbf{u}\sqrt{\frac{1}{N_{\mathbf{u}}}}} \left(\Phi_{\mathbf{z}}(\frac{2}{N_{\mathbf{u}}})\right)^{N}$$

$$= \left(e^{\frac{1}{2}\frac{N_{\mathbf{u}}}{N_{\mathbf{u}}}} + \frac{1}{2}e^{\frac{1}{2}\frac{N_{\mathbf{u}}}{N_{\mathbf{u}}}}\right) + \frac{1}{2}e^{-\frac{1}{2}\frac{N_{\mathbf{u}}}{N_{\mathbf{u}}}} + \frac{1}{2}e^{-\frac{1}{2}\frac{N_{\mathbf{u}}}{N_{\mathbf{u}}}}\right)$$

$$\Phi_{\mathcal{C}_{\mathbf{u}}}(\mathbf{u}) = e^{\frac{1}{2}\frac{N_{\mathbf{u}}}{N_{\mathbf{u}}}} + e^{\frac{1}{2}\frac{N_{\mathbf{u}}}{N_{\mathbf{u}}}} + \frac{1}{2}e^{-\frac{1}{2}\frac{N_{\mathbf{u}}}{N_{\mathbf{u}}}} + \frac{1}{2}e^{-\frac{1}{2}\frac{N_{\mathbf$$

$$f_{\hat{Y}_n}(y) = \frac{1}{\sqrt{2\pi}} \hat{\mathcal{C}}^{\frac{2}{2}} \left\{ 1 - \frac{1}{12N} \mathcal{H}_4(\gamma) + \cdots \right\}$$

Name:

3. Let N(t) be a classical Poisson process (N(0) = 0, independent increments, constant rate λ). Define T_M as the time to the M-th event. Determine the mean value of T_M .

METHOD I

E[T_M(u) =
$$\frac{\lambda C}{\lambda - iu}$$
]

METHOD I

E[T_M(u) = $\frac{\lambda}{\lambda - iu}$]

METHOD I

METHOD I

METHOD I

METHOD I

METHOD II

$$E[T_{m}] = \begin{cases} \mathcal{L}f^{m-1} \\ \frac{1}{N} \\ \frac{1}{N}$$

ormulas

$$E(T_{M}) = \bigwedge$$

The probability density of the random variable Z is continuous, non-negative (for $|z| < \infty$) and contains no unit impulse. The random process X(t) is defined by X(t) = u(t - Z) where

$$\mathbf{u}(\mathbf{t}) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0. \end{cases}$$

argument will receive no credit Does X(t) have independent increments? An answer that is not supported by an appropriate

Let
$$5 \le t$$
 then $E[X(t)X(s)] = E[u(t-2)u(s-2)] = \int_{\infty}^{\infty} f_{z}(z)dz$

Let
$$S \leq u \leq t$$

 $E[(X(t)-X(u))(X(u)-X(s))] = F_{Z}(u)-F_{Z}(s)-F_{Z}(u)+F_{Z}(s)$
 $B_{0}t$
 $E[X(t)-X(u)] = \begin{cases} f_{Z}(z)dg = F_{Z}(t)-F_{Z}(u)\\ f_{Z}(z)dg = F_{Z}(t)-F_{Z}(u)\\ f_{Z}(u)-X(s) = \begin{cases} f_{Z}(z)dg = F_{Z}(u)-F_{Z}(u)\\ f_{Z}(u)-X(u)\end{pmatrix}and(X(u)-X(u))-F_{Z}(s))and(X(u)-X(u))-F_{Z}(s)) = E[X(u)-X(u)]-E[X(u)-X(s)]$
 $E[(X(t)-X(u))(X(u)-X(s))] = E[X(t)-F_{Z}(u)]-F_{Z}(s)$
 $f_{L}(x)-F_{L}(u)-F_{L}(u)$
 $f_{L}(x)-F_{L}(u)-F_{L}(u)$
 $f_{L}(x)-F_{L}(u)-F_{L}(u)$
 $f_{L}(u)-F_{L}(u)-F_{L}(u)$

The probability density of the random variable Z is continuous, non-negative (for $|z| < \infty$) and contains no unit impulse. The random process X(t) is defined by X(t) = u(t - Z) where

$$u(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0. \end{cases}$$

argument will receive no credit. Does X(t) have independent increments? An answer that is not supported by an appropriate

Define
$$D_{R} = X(t_{RH1}) - X(t_{RH1}) = \mathcal{U}(t_{RH1} - 2) - \mathcal{U}(t_{R-2}) - \mathcal{U}(t_{R-2})$$
 $= \begin{cases} 1 \\ 0 \\ 0 \end{cases}$ otherwise

 $D_{R} = (t_{R}) = (t_{$

Independent Increments?

(circle one)

Consider the shot process

$$X(t) = \sum_{t_n} h(t - t_n)$$

The function h(t) is given by where the events t_n are determined by a classical Poisson process (N(0) = 0, constant rate λ).

$$h(t) = \begin{cases} -\ln t, & 0 \le t \le 1 \\ 0, & otherwise. \end{cases}$$

Obtain an explicit, closed-form expression for the probability density of
$$X(t)$$
.

$$\Phi_{X(t)}(u) = E[e^{iuX(t)}] = e^{\lambda} \int_{\infty}^{\infty} (e^{iuh(t)} - i)dt$$

$$= e^{\lambda} \int_{0}^{\infty} (e^{iuh(t)} - i)dt$$

$$= e^{$$

$$|f_{X(i)}(x)| = e^{-\lambda} \left\{ \delta(x) + \sqrt{\frac{\lambda}{\pi}} \sum_{i} (2\sqrt{\lambda}x) \right\}$$

February 18, 2011

The Poisson processes N₁(t) and N₂(t) are independent and identically distributed with probabilities

$$P[N_1(t) = m] = P[N_2(t) = m] = \frac{(t/2)^m}{m!} e^{-t/2}$$

Obtain a closed-form expression for the probability

$$P(N_{v}(t) - N_{2}(t) = 0).$$

$$P(N_{v}(t) - N_{2}(t) = 0) = P(N_{v}(t) = N_{2}(t))$$

$$(N_{v}(t) \neq N_{2}(t)) \longrightarrow = \sum_{m=0}^{\infty} P(N_{v}(t) = m) P(N_{2}(t) = m)$$

$$= \sum_{m=0}^{\infty} \frac{(t/2)^{m}}{m!} e^{-(t/2)} \frac{(t/2)^{m}}{m!} e^{-(t/2)}$$

$$= \sum_{m \geq 0} \frac{(t/4)^{m}}{m! m!} e^{-t/2}$$

$$= \sum_{q \geq 0} \frac{(t/4)^{m}}{m! m!} e^{-t/2}$$

$$P[N_1(t)-N_2(t)=0] = L_0(t)e^{-t}$$

2 Let $\{X_k\}$ be a collection of independent identically distributed random variables with common probabilities

robabilities
$$E[e^{iuX_k}] = e^{\nu}$$

$$P(X_k = p) = \frac{v^p}{p!} e^{-v}, k = 1, 2, ...$$

$$E[Y_n] = n E[X_k] = n \cdot \nu$$

$$V_{av}[Y_n] = n V_{av}[X_k] = n \cdot \nu$$

Consider the sum

 $\operatorname{Yn} = \sum_{k=1}^{n} X_{k}.$

$$\hat{\chi} = \frac{\hat{\chi}_{n} - n\nu}{\sqrt{n\nu}}$$

$$E[e^{iu}\hat{\chi}_{n}] = (E[e^{iu}\hat{\chi}_{n}]^{n} = e^{n\nu}(e^{-1})$$

The normalized centered sum is

 $= \frac{Yn - E[Yn]}{\sqrt{Var[Yn]}}$

Obtain the Edgeworth expansion of the density of \hat{Y}_n and include correction terms up to

order n¹. You do not need to explicitly evaluate any polynomials.

$$\begin{bmatrix}
\begin{bmatrix}
ell & \nabla v & \nabla v \\
ell & \nabla v & \nabla v
\end{bmatrix} = e^{n\nu} \left(e^{\frac{i}{\nu}} \left(\frac{\partial v}{\partial n\nu}\right) - \frac{i}{\nu} \left(\frac{\partial v}{\partial n\nu}\right) - \frac{i}{\nu}\right) \\
= e^{n\nu} \sum_{n=2}^{\infty} \frac{1}{2n} \frac{(in)^{n}}{(n\nu)^{n}} = e^{\frac{i}{\nu}} \frac{1}{2n} \frac{1}{2n} (n\nu)^{n} \\
= e^{\frac{i}{\nu}} \frac{1}{2n} \frac{1}{2n$$

Consider the process $X(t) = A\cos\Omega t$. Here A is a positive constant and Ω is a Gaussian Evaluate the averaged correlation function $\overline{R}(\tau)$. variable with zero mean and unit variance. This process is not wide sense stationary

$$R(t+T,t) = E[A\cos\Omega(t+T)A\cos\Omega t]$$

$$= \underbrace{A^2}E[\cos\Omega T] + \underbrace{A^2}E[\cos\Omega(z+R)]$$

$$\frac{f_{\Delta}(w) = \frac{1}{\sqrt{2\pi}} e^{-\frac{\omega^{2}}{2}}}{E[\cos \Delta C]} = \frac{1}{2}E[e^{i\Delta C}] + \frac{1}{2}E[e^{i\Delta C}] = e^{-\frac{1}{2}C^{2}}$$

$$\frac{E[\cos \Delta(2t+C)]}{E[\cos \Delta(2t+C)]} = e^{-\frac{1}{2}(2t+C)^{2}}$$

$$\frac{E[\cos \Delta(2t+C)]}{E[\cos \Delta(2t+C)]} = e^{-\frac{1}{2}(2t+C)^{2}}$$

$$\frac{A^{2}e^{\frac{1}{2}C^{2}}A^{2}lim_{\Delta ZT}}{I-3m_{\Delta T}} R[t+C,t]dt$$

$$= \frac{A^{2}e^{\frac{1}{2}C^{2}}A^{2}lim_{\Delta ZT}}{I-3m_{\Delta T}} e^{-\frac{1}{2}(2t+C)^{2}}$$

$$\frac{A^{2}e^{\frac{1}{2}C^{2}}A^{2}lim_{\Delta ZT}}{I-3m_{\Delta T}} e^{-\frac{1}{2}(2t+C)^{2}}$$

$$\frac{A^{2}e^{\frac{1}{2}C^{2}}A^{2}lim_{\Delta ZT}}{I-3m_{\Delta T}} e^{-\frac{1}{2}(2t+C)^{2}}$$

$$\frac{A^{2}e^{\frac{1}{2}C^{2}}A^{2}lim_{\Delta T}}{I-3m_{\Delta T}} e^{\frac{1}{2}C^{2}}$$

$$\frac{A^{2}e^{\frac{1}{2}C^{2}}A^{2}lim_{\Delta T}}{I-3m_{\Delta T}} e^{\frac{1}{2$$

$$\overline{R}(\tau) = \frac{\Lambda^2 \mathcal{C}}{2} \mathcal{C}^2$$

ECE 250 Final Exam

March 14, 2011

Name: SOLUTION

1. A discrete random variable has the probabilities

$$P(X=m)=\frac{\beta}{(1+\beta)^{m+1}}, m=0, 1, ...$$

with
$$\beta > 0$$
. Evaluate the mean and variance of X .

$$\begin{split}
& \left[\left[X \right] \right] = \left(\frac{1}{i} \right) \frac{d}{du} \left[\left[\frac{\beta}{i} \right] \right]_{u=0}^{m+1} \left[\left(\frac{\beta}{i} \right) \frac{\beta}{u} \right]_{u=0}^{i} = \frac{\beta e^{iu}}{(1+\beta-e^{iu})^{2}} \right]_{u=0}^{u=0} = \frac{1}{\beta} \\
& E\left[X^{2} \right] = \left(\frac{1}{i} \right) \frac{d^{2}}{du^{2}} \left[\frac{\partial}{\partial x} (u) \right]_{u=0}^{u=0} = \frac{\beta e^{iu} (1+\beta+e^{iu})}{(1+\beta-e^{iu})^{2}} \right]_{u=0}^{u=0} = \frac{1}{\beta^{2}} \\
& V_{ar}(X) = E\left[X^{2} \right] - \left(E(X) \right)^{2} = \frac{1+\beta}{\beta^{2}} \end{aligned}$$

$$m = E[X] = \frac{1}{\beta}$$

$$\sigma^2 = \text{Var}[X] = \frac{1+\beta}{\beta^2}$$

2. If α is a real constant, prove that

$$\Phi(\mathbf{u}) = e^{-u^2 + \alpha u^3}$$

conditions that a valid characteristic function must satisfy. is the characteristic function of a real random variable only if $\alpha = 0$. [HINT: Consider the

satisfy necessary (but not sufficient) that a characteristic function

Clearly the above ch.f. satisfies (1)
In order that it satisfy (2) it is necessary that

MPN. «u>1, we will contradict(*)

3. Let N be a Poisson variable with the probabilities

$$P(N = n) = \frac{2^n}{n!} e^{-2}, n = 0, 1, ...$$

Consider the new random variable

$$\mathbf{M} = \begin{cases} 0, & N = 0 \\ \sum_{k=1}^{N} a_k & N > 0 \end{cases}$$

 $= \left[\frac{\cos 2u+1}{2} \right]$

Here the aks are i.i.d. with probabilities

$$P(a_k = 1) = P(a_k = -1) = 1/4$$
. $P(a_k = 0) = 1/2$.

Determine the probabilities
$$P(M=m)$$
 for all integers.

$$P(N=o) + \sum_{n=1}^{\infty} P(N=n) E \left[e^{-\frac{1}{k^{n-1}}} \right]$$

$$= e^{-\frac{1}{k^{n-1}}} \left(\frac{\cos u + 1}{2} \right) e^{-\frac{1}{k^{n-1}}} e^{-\frac{1}{k^{n-1}}} \left(\frac{1}{k^{n-1}} \right) \left(\frac{\sin u + 1}{2} \right) e^{-\frac{1}{k^{n-1}}} e^$$

$$P(M=m) = \mathcal{C}^{-1} \sum_{m} (1)$$

$$X(t) = X(0) (-1)^{N(t)}$$

where P [X(0) = 1] = 1/2. N(t) is a classical Poisson process (constant rate ν) and is independent of X(0). Consider the moving average process

$$Y(t) = \frac{1}{T} \int_{t-T}^{t} X(\tau) d\tau.$$

$$E[X(\tau)] = C$$

$$E[X(\tau)] = C$$

$$X(t) = C$$

response.]
$$Y(t) = \pm \int X(\tau)d\tau = \pm \int X(t-\alpha)d\alpha = \int h(\alpha)X(t-\alpha)d\alpha$$
where $h(\alpha) = \int + \int x(\tau)d\tau = \pm \int x(\tau-\alpha)d\alpha = \int h(\alpha)X(t-\alpha)d\alpha$

$$Y(t) = \int \int x(\tau)d\tau = \int x(\tau)d\tau = \int x(\tau-\alpha)d\alpha = \int x(\tau)d\alpha = \int x(\tau)d\alpha$$

$$Y(t) = \int x(\tau)d\tau = \int x(\tau)d\tau = \int x(\tau)d\alpha = \int x(\tau)d\alpha = \int x(\tau)d\alpha$$

$$= \int x(\tau)d\tau = \int x(\tau)d\tau = \int x(\tau)d\alpha = \int x(\tau)d\alpha = \int x(\tau)d\alpha$$

$$= \int x(\tau)d\tau = \int x(\tau)d\alpha = \int x(\tau)d$$

M.S. Differentiable? (Circle One)

Consider the shot process

$$X(t) = \sum A_K h(t - t_K). \qquad f_A(\alpha) = \frac{1}{2} \delta(\alpha - 1) + \frac{1}{2} \delta(\alpha + 1)$$

independent of the event times with probabilities $P(A_K = 1) = 1/2$ and Here the $t_K s$ are the event times of a Poisson process with constant rate v = 2, the $A_K s$ are

 $P(A_K = -1) = 1/2$. The function h(t) is given by

$$h(t) = \begin{cases} e^{-t}, & t \ge 0 \\ 0, & t < 0. \end{cases} \quad \left[\frac{1}{t(i\omega)} = \int_{\omega}^{\infty} h(t) e^{-t} dt = \frac{1}{1+i\omega} \right]$$

and correlation In transmission this process is corrupted by additive Gaussian noise, N(t), with zero mean

$$R_n(\tau) = e^{-4|\tau|}$$
 $S_N(\omega) = \frac{8}{16+\omega^2}$

Determine the impulse response, $h_o(t)$, of the optimum (possibly non-realizable) linear filter

to obtain the best mean square estimate of X(t) from the sum X(t)+N(t).

$$\Phi_{X(t+t),X(t)} = \frac{2}{2} \int_{\infty}^{\infty} \left\{ e^{i\omega t} h(t+t-t') + iv\alpha h(t-t') \right\} f_{A}(x) dx dt'$$
From this $E[X(t)] = 0$, $\Omega_{X}(t) = 2$, $h(t+t') h(t') dt'$

$$S_{X(u)} = \int_{\infty}^{\infty} R_{X}(t) e^{i\omega t} dt = 2 |H(i\omega)|^{2} = \frac{2}{1+\omega^{2}}$$

$$Ho[i\omega] = \frac{S_{X(u)} + S_{N(u)}}{S_{X(u)} + S_{N(u)}} = \frac{1}{5} \frac{16+\omega^{2}}{4+\omega^{2}} = \frac{1}{5} + \frac{3}{5} \frac{2\cdot 2}{2^{2}+\omega^{2}}$$

$$h_{\sigma}(t) = \frac{1}{5} S(t) + \frac{3}{5} e^{-21t}$$

$$h_o(t) = \frac{1}{5} \delta(t) + \frac{3}{5} e^{-2|t|}$$

ECE 250 Midterm

October 27, 2010

Name: SOLUTION

1. The Cauchy random variable X has density

$$f_X(x) = \frac{1}{\pi(1+x^2)}$$
.

A new random variable Y is obtained from X via Y = u(X)

where

$$u(x) = \begin{cases} 1, & x \ge 0 \\ 0, & x < 0. \end{cases}$$

Evaluate the mean and variance of Y.

$$E[Y] = E[u(X)] = \int_{\infty}^{\infty} uxyf_{x}(x)dx = \int_{0}^{\infty} \frac{1}{\pi(i+x^{2})} dx = \frac{1}{2}$$

$$E[Y^{2}] = E[u(X)] = E[u(X)] = \frac{1}{2}$$

$$Var[Y] = E[Y^{2}] - (E[Y])^{2} = \frac{1}{4}$$

$$E[Y] = \frac{1}{2}$$

$$Var[Y] = \frac{1}{4}$$

5

$$\Phi(u) = 1 - \sin^2 u = 1 - \left(\frac{e^{iu} - e^{iu}}{2i}\right)^2$$

$$= \frac{1}{2} + \frac{1}{4}e^{i2u} + \frac{1}{4}e^{-i2u}$$
Examine if the donsity is non-negative and integrates to 1.

$$f(x) = \frac{1}{2\pi} \left\{ \Phi(u) e^{iux} du \right\}$$

$$= \frac{1}{2\pi} \left\{ \frac{1}{2} + \frac{1}{4} e^{i2u} + \frac{1}{4} e^{-i2u} \right\} e^{-iux} du$$

Denoting the associated random variable by X we have

$$P(X=0)=\frac{1}{2}$$

 $P(X=2)=\frac{1}{4}$
 $P(X=-2)=\frac{1}{4}$

3. Let X and Y be independent, identically-distributed Poisson variables with parameter (1/2).

$$P(X=n) = P(Y=n) = \frac{(1/2)^n}{n!} e^{-(1/2)}, n = 0,1,2,...$$

$$Define Z = X - Y. \text{ Find the probability that } Z = 3.$$

$$\mathbb{E}\left[e^{\overline{\iota} u Z}\right] = \mathbb{E}\left[e^{\overline{\iota} u Z}\right] = \mathbb{E}\left[e^{\overline{\iota} u Z}\right] = \mathbb{E}\left[e^{\overline{\iota} u Z}\right]$$

From H.w.#1

$$E[e^{iuX}] = e^{\frac{1}{2}(e^{iu}-1)}$$

$$E[e^{iuX}] = e^{\frac{1}{2}(e^{iu}-1)}$$

$$E[e^{iuX}] = e^{\frac{1}{2}(e^{iu}-1)}$$

$$E[e^{iuX}] = e^{\frac{1}{2}(e^{iu}-1)}$$

$$= \sum_{n=-\infty}^{\infty} P(z=n)e^{iun}$$

$$= \sum_{n=-\infty}^{\infty} P(z=n)e^{iun}$$

$$= e^{-i} \sum_{n=-\infty}^{\infty} e^{-iu3} (cau-i)$$

$$P(Z=3) = C^{-1} I_3(1)$$

ECE 250 Final Exam

December 9, 2010

Name: Solution

1. Let $\Psi(u)$ be the characteristic function of a real random variable. Show that

$$\Phi(\mathbf{u}) = \frac{1}{2 - \Psi(u)}$$

noting / www / 5 =

From "Useful Formulas

is also a valid characteristic function.

To a valid characteristic function.

$$\Phi(u) = \pm \frac{1}{1 - \pm \psi(u)} = \pm \sum_{n=0}^{\infty} (\pm)^n [\psi(u)]^n$$

 $f(x) = \frac{1}{2\pi} \int_{0}^{\infty} \mathbb{D}(u) \frac{\partial}{\partial u} = \frac{1}{2\pi} \sum_{n=0}^{\infty} (\frac{1}{2})^n \frac{1}{2\pi} \int_{0}^{\infty} \mathbb{D}(u) \frac{\partial}{\partial u} \frac{\partial}{\partial u}$ show Din) is the transform of a density - f(x)

Define $p(x) = \frac{1}{2\pi} \int \mathcal{H}u) e^{-cu} du$ clearly p(x) is a valid probability dousity

Also $[\mathcal{H}(u)]^n$ is the ch.f. of p(x) convolved with

itself in times. Define

np 2 [(n)h] == (x)ud <-

$$\frac{\sqrt{\text{alich}}}{\sqrt{\text{probability}}} = \frac{1}{2} \sum_{n=0}^{\infty} (\pm)^n \rho_n(x) = \frac{1}{2\pi} \sum_{n=0}^{\infty} (\pm)^n \rho_$$

density

Clearly each pn(x) is non-negative and integrates to 1. So f(x) is non-negative and

$$\int_{-\infty}^{\infty} f(x) dx = \pm \sum_{n=0}^{\infty} (\pm)^n \int_{\infty}^{\infty} \rho_n(x) dx = \pm \sum_{n=0}^{\infty} (\pm)^n = 1$$

Thus I(n) is a valid characteristic function

Name: Solution

2. Let $\{X_n\}$ be i.i.d. random variables with density

i.i.d. random variables with density
$$\mathbb{E}[X_{n}] = I$$
 $\mathbb{E}[X_{n}] = I$ $\mathbb{E}[X_{n$

Consider the sum $Y_n = \sum_{k=1}^n x$.

Find the Edgeworth expansion of the centered, normalized variable

$$\hat{Y}_n = (Y_n - E[Y_n]) / (Var[Y_n])^{1/2}$$
 = $\frac{Y_n - N}{\sqrt{N}}$

Keep only the first non-zero correction term. It is not required to evaluate any polynomials

appearing in the expansion.

$$\begin{array}{lll}
\bigoplus_{k=1}^{\infty}(u) = E\left[e^{i(\frac{\pi}{2n})} \prod_{k=1}^{\infty}\left(\frac{\pi}{2n}\right)\right] &= e^{-i(\frac{\pi}{2n})} \prod_{k=1}^{\infty}\left(\frac{\pi}{2n}\right) \\
&= e^{-i(\frac{\pi}{2n})} \prod_{k=1}^{\infty}\left(\frac{\pi}{2n}\right) \prod_{k=1}^{\infty}\left(\frac{\pi}{2n}\right) \\
&= e^{-i(\frac{\pi}{2n})} \prod_{k=1}^{\infty}\left(\frac{\pi}{2n}\right) \prod_{k=1}^{$$

A Gaussian process X(t) is wide-sense stationary with zero mean, unit variance and correlation function $R(\tau)$. The process Y(t) is defined by

$$Y(t) = g[X(t)]$$
 Denote transform of 9(-) by Glim)

stationary? A simple "yes" or "no" answer without the appropriate reasoning will not receive any credit. [Hint: You may want to evaluate and use the joint characteristic function of X(t) where $g(\bullet)$ is a function with a well-defined Fourier transform $G(i\omega)$. Is Y(t) wide sense

$$Y(t) = \frac{1}{2\pi} \begin{cases} G(\bar{\iota}w) e^{\bar{\iota}wX(t)} \\ dw \end{cases}$$

$$E[Y(t)] = \frac{1}{2\pi} \int_{\infty}^{\infty} G(i\omega) E[e^{i\omega X(t)}] d\omega = \frac{1}{2\pi} \int_{\infty}^{\infty} G(i\omega) e^{-\frac{i\omega^2 V}{2}} d\omega = const.$$

$$dw = \frac{1}{2\pi} \left(G(iw) \frac{\partial}{\partial w} \right) = const$$

$$E[Yit)Y(s)] = (\frac{1}{2\pi})^{2} (G(iw)dw) (G(ip)dp) E[P]$$

$$= (\frac{1}{2\pi})^{2} (G(iw)dw) (G(ip)dp) - \frac{1}{2} [w^{2}+p^{2}+2wp)R(t-s)]$$

$$(\pi)$$
 $\int_{\mathbb{R}} G(i\mu) d\mu \int_{\mathbb{R}} G(i\mu) d\mu - \frac{1}{2} [\omega^2 + \mu^2 + 2 u\mu R(t)]$

(Circle One) Y(t) W.S.S.?

Z

Name: Solution

A wide sense stationary process X(t) with correlation function $R_X(\tau) = 1/(1+\tau^2)$ is passed through a linear, time-invariant filter with impulse response $3\sin\pi t/\pi t$. Denote the output by

Y(t). Obtain an explicit expression for the output correlation.

Transfer function
$$H(iw) = \begin{cases} 3 & -\pi \leq \omega \leq \pi \\ 0 & \text{otherwise} \end{cases}$$

Now $S_{\mathcal{G}}(w) = |H(iw)|^2 S_{\mathcal{G}}(w)$

$$S_{X}(w) = \Pi e^{-|w|}$$

$$|T\rangle = \frac{1}{2\pi} \left(\frac{S_{Z}(w)}{S_{W}} \frac{C}{dw} = \frac{1}{2\pi} \right) \frac{3\pi e^{-\frac{1}{2\pi}}}{e^{-\frac{1}{2\pi}}} \frac{dw}{dw}$$

$$= \frac{3}{4} \left\{ \frac{1-6}{1-6} + \frac{3!+1}{1-6} \right\} = \frac{2}{4} \left\{ \frac{1-6}{1-6} + \frac{2}{1-6} + \frac{2}{1-6} \right\} = \frac{1}{4} \left\{ \frac{1-6}{1+1} + \frac{1}{1+1} + \frac{$$

$$= \frac{3}{1+1} \left\{ 1 + (2 \sin \pi x) - \cos \pi x) + \frac{1}{1-1} \right\}$$

$$= \frac{3}{1+1} \left\{ 1 + (2 \sin \pi x) - \cos \pi x + \frac{6}{1-1} \right\}$$

$$= \frac{3}{1+1} \left\{ 1 + (2 \sin \pi x) - \cos \pi x + \frac{6}{1-1} \right\}$$

$$R_{Y}(\tau) = \frac{9}{1+\tau^{2}} \left\{ 1 + \left(\tau \sin \pi \tau - \cos \pi \tau \right) e^{-\pi} \right\}$$

Solution

Name:

5. Consider a random telegraph signal X(t). The underlying Poisson process has rate $\lambda = 1$ and P[X(0) = 1] = P[X(0) = -1] = 1/2. During transmission this signal is corrupted by additive

From tobles noise N(t) which is wide-sense stationary with zero mean and correlation function $R_N(\tau) = e^{-4|\tau|}$. $R_N(\tau) = e^{-4|\tau|}$. $R_N(\tau) = e^{-4|\tau|}$. The signal and noise are independent processes, and their sum is passed through an ideal low-pass filter with (one-sided) bandwidth Ω . That is

$$H(i\omega) = \begin{cases} 1, & -\Omega \le \omega \le \Omega \\ 0, & otherwise \end{cases}$$

$$\begin{array}{c} & & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Determine the bandwidth that minimizes the difference

$$\varepsilon = E[(X(t) - \hat{X}(t))^2].$$

[NOTE: This is not a problem to determine the optimum filter, but only to find the optimum bandwidth Ω .]

dE set = 5 N(12) = SE(A) => 16+A= = 4+A= => 12 = 212 $E[\hat{X}^{2}(t)] = \int_{\infty}^{\infty} \int_{\infty}^{\infty} h(t')h(t'')[R_{X}(t'-t'')+R_{w}(t'-t'')]dt'dt''$ $E\times press\ correlations\ by\ inverse\ transform\ of\ spectral\ deusity$ $E = R_{X}(0) - \frac{2\pi}{2\pi} \int_{\infty}^{\infty} S_{X}(w)H^{\dagger}(iw)dw\ + \frac{1}{2\pi} \int_{\infty}^{\infty} |H(iw)|^{2} [S_{X}(w)+S_{w}(w)]dw$ $E[X(t)\hat{X}(t)] = \int_{\infty}^{\infty} h(t') R_{X}(t') dt'$ = Rx(0) + 20 (Sn(w)-5x(m)dw = Rx(0)++ (Sn(w)-5(w)dw

$$\Omega = 2\sqrt{2}$$

ECE 250 Midterm November 6, 2009

Name: SOLUTION

1. The characteristic function of a random variable, X, is

$$\Phi_{\rm X}({\rm u}) = \frac{e^{iu}}{2 - e^{iu}} = \frac{1}{2} e^{\frac{2u}{2}} \frac{1}{1 - \frac{1}{2}e^{2u}}$$

Determine P(X = 0) and P(X = 2).

$$\frac{\Phi_{\mathbf{x}}(\mathbf{u}) = \pm e^{i\mathbf{u}} \sum_{k=0}^{\infty} (\frac{1}{2})^{k} e^{i\mathbf{u}} = \sum_{n=0}^{\infty} (\frac{1}{2})^{n+1} e^{i\mathbf{u}}(n+i)}$$

$$\frac{\Phi_{\mathbf{x}}(\mathbf{u}) = \pm e^{i\mathbf{u}} \sum_{k=1}^{\infty} (\frac{1}{2})^{k} e^{i\mathbf{u}} e^{i\mathbf{u}}$$

$$\frac{\Phi_{\mathbf{x}}(\mathbf{u}) = \sum_{k=1}^{\infty} (\frac{1}{2})^{k} e^{i\mathbf{u}} e^{i\mathbf{u}}$$

$$P(\mathbf{x} = 0) = coefficient of e^{i\mathbf{u} \cdot 0} = 0$$

$$P(\mathbf{x} = 2) = coefficient of e^{i\mathbf{u} \cdot 2} = \frac{1}{4}$$

$$P(X=0) = \bigcirc$$

$$P(X=2) = \frac{1}{4}$$

Name: SOLUTION

It is observed that for all real numbers α_1 and α_2 the sum $Y = \alpha_1 X_1 + \alpha_2 X_2$ is a zero mean variables. [Hint: You may find the characteristic function useful.] Gaussian random variable. Show that X_1 and X_2 are jointly Gaussian, zero mean random

$$m_1 = E[X_1]; m_2 = E[X_2]; \overline{U_1} = Var[X_1]; \overline{U_2} = Var[X_2]$$

$$m_1 = E[X_1]_j$$
 $m_2 = E[X_2]_j$ $U_1^2 = Var[X_1]_j$ $U_2^2 = Var[X_2]$

$$\rho = E[X_1X_2] - m_1 m_2$$

Now consider

$$\mathbb{Q}_{\mathbf{X}_{1},\mathbf{X}_{2}}(u_{1},u_{2}) = \mathbb{E}\left[\mathcal{C}^{i}(u_{1}\mathbf{X}_{1} + u_{2}\mathbf{X}_{2})\right]$$

If we define of = u, and of = uz, the joint characteristic function is just E[eix] as in (*) so that

This is precisely the joint characteristic function of two zero-mean Gaussian variables.

Let $R(\tau)$ be the correlation function of a real zero-mean, wide sense stationary process. For correlation function of a real, wide-sense stationary process? Your answer must be supported by appropriate reasoning. A simple "yes" or "no" will not receive any credit. $t_0 > 0$, consider the function $\tilde{R}(\tau) = 2R(\tau) - R(\tau - t_0) - R(\tau + t_0)$. Can $\tilde{R}(\tau)$ be the

Show that R(T) is the inverse transform of a non-negative, integrable function.

S(w) = SR(T) E dT

Now examine

Now examine

$$\hat{S}(w) = \int_{\infty}^{\infty} \hat{R}(T) \frac{\partial}{\partial x} dT = 2S(w) - \frac{\partial}{\partial x} \frac{\partial}{\partial x} \frac{\partial}{\partial x} - \frac{\partial}{\partial x} \frac{\partial}{\partial x}$$

1. A random variable is defined by the probabilities

$$P(X = k) = \frac{\alpha^k}{(1+\alpha)^{k+1}}, \quad \alpha > 0, \dots$$

decreases exponentially as n increases. Evaluate any constants used. For $n \ge 1$, find an exact expression for the probability $P(X \ge n)$. Show that this probability

$$P(X \ge n) = \sum_{k=n}^{\infty} P(X=k) = \sum_{k=n}^{\infty} \frac{k}{(1+\alpha)^{k+1}}$$

$$\left\{ k = l + n \right\} \longrightarrow \sum_{l=0}^{\infty} \left(\frac{k}{1+\alpha} \right)^{l} + n \right\} \longrightarrow \sum_{l=0}^{\infty} \left(\frac{k}{1+\alpha} \right)^{l}$$

$$= \left(\frac{k}{1+\alpha} \right)^{n} + \sum_{l=0}^{\infty} \left(\frac{k}{1+\alpha} \right)^{l}$$

$$= \left(\frac{k}{1+\alpha} \right)^{n} + \sum_{l=0}^{\infty} \left(\frac{k}{1+\alpha} \right)^{l}$$

$$= \left(\frac{k}{1+\alpha} \right)^{n}$$

$$= \left(\frac{k}{1+\alpha} \right)^{$$

$$P(X \ge n) = \rho^{-3} n$$

2 Let X(t) be a zero-mean, Gaussian, white noise process with power spectral density

$$Y(t) = \int_{0}^{t} X(\tau)d\tau, \ t \ge 0 \qquad \mathbb{E}[X(\alpha)X(\beta)] = P_{\sigma}\delta(\alpha - \beta)$$

is a Brownian motion process. [This relationship is why Gaussian white noise is often regarded as the derivative of the Brownian motion process.]

Clearly Y(t) is Gaussian and Y(0)=0 It remains to show that it has independent, stationary increments tictz<t3<t4 Independent Increments

 $\mathbb{E}\left[\left(\mathbb{X}(t^{2})-\mathbb{X}(t^{2})\right)\left(\mathbb{X}(t^{2})-\mathbb{X}(t^{2})\right)\right]$: increments are independent (Gauss, tuncornelated)

Stationary Increments

Because the increments are independent, we only need show $E\left[\left(X(t_2)-X(t_1)^2\right)^2\right] = E\left[\left(X(t_2+t_0)-X(t_1+t_0)\right)^2\right]$ $E\left[\left(X(t_2)-X(t_1)^2\right)^2\right] = E\left[\left(X(t_2+t_0)-X(t_1+t_0)\right)^2\right]$ Po Sdo (5) (04) 1/3 $P_{\sigma}(t_2-t_1)$ Ε[(Σιανα (Σιβ)αβ)

τ, τη τ, ττο

ρο (α α (δια-β ΜΒ

τ, ττο τ, ττο

ρο (τ 2 - τ,)

 ω a Poisson process.] We may write for M(t)Let N(t) be a classical Poisson process with constant rate λ . A new process M(t) is formed as M(t) with probability p(0 . [This procedure is sometimes referred to as "thinning" offollows: event times from N(t) are independently and randomly chosen as event times of

$$M(t) = \begin{cases} 0, & N(t) = 0 \\ \sum_{k=1}^{N(t)} N(t) > 0 \end{cases} P(N(t) \ge N) = \frac{(\lambda t)^n}{N!} e^{\lambda t}$$

where the random variables ak are independent and identically distributed with probabilities

$$P(ak = 1) = p$$
. $P(ak = 0) = 1 - p$, $k = 1, 2, ...$

The input, X(t), and output, Y(t), of a system are related via the differential equation

$$2\frac{d^2}{dt^2}Y(t) - 2\frac{d}{dt}Y(t) + Y(t) = \frac{d^2}{dt^2}X(t) + \frac{d}{dt}X(t) + \frac{1}{2}X(t).$$

Here X(t) is a wide sense stationary process with correlation

$$R_{X}(\tau) = \begin{cases} 1 - |\tau|, & -1 \le \tau \le 1 \\ 0, & otherwise. \end{cases} \qquad S_{X}(w) = \left(\frac{S_{1}n(w/z)}{(\omega/z)}\right)^{2}$$

Determine the correlation function of Y(t).

$$H(\bar{t}w) = \frac{(\bar{t}w)^{2} + (\bar{t}w) + \frac{1}{2}}{2(\bar{t}w)^{2} - 2(\bar{t}w) + 1} = \frac{1}{2} \frac{(\bar{t}w)^{2} + (\bar{t}w) + \frac{1}{2}}{(\bar{t}w)^{2} - (\bar{t}w) + \frac{1}{2}}$$

$$= \frac{1}{2} \frac{(\frac{1}{2} - w^{2}) + \bar{t}w}{(\frac{1}{2} - w^{2}) - \bar{t}w}$$

$$|H(\bar{t}w)|^{2} = \frac{1}{4}$$

$$|S_{\chi}(w) = |H(\bar{t}w)|^{2} S_{\chi}(w) = \frac{1}{4} S_{\chi}(w)$$

$$S_{\chi}(w) = \frac{1}{4} |H(\bar{t}w)|^{2} S_{\chi}(w) = \frac{1}{4} S_{\chi}(w)$$

$$\vdots$$

$$R_{\chi}(C) = \frac{1}{4} |R_{\chi}(T)| = \begin{cases} \frac{1}{4} (1 - |T|) - 1 \le C \le 1 \\ 0 \end{cases}$$
otherwise

$$R_{Y}(\tau) = \frac{1}{4} R_{X}(\overline{L}) = \begin{cases} \frac{1}{4}(1-|\widehat{L}|), -1 \leq \widehat{L} \leq 1 \\ 0, \text{ otherwise} \end{cases}$$

5. Consider the random telegraph signal

$$X(t) = X(0) (-1)^{N(t)}$$

the process Y(t) Here $P[X(0) = 1] = P[X(0) = -1] = \frac{1}{2}$. N(t) is a classical Poisson process with constant rate λ and is independent of X(0). X(t) is passed through a linear, time-invariant filter to produce

$$\chi(t) = \int h(\alpha)X(t-\alpha)d\alpha \qquad E[X(t)] = 0 \qquad -2\lambda|t-s| \begin{cases} X(t) & s \\ -2\lambda & s \end{cases}$$

$$S_{X}(w) = \frac{4\lambda}{4\lambda^{2} + w^{2}}$$

with $h(t) = \left(\frac{\sin t}{t}\right)^2$. Is Y(t) mean square differentiable? An answer not supported by

appropriate reasoning will receive no credit.

The production from
$$\Sigma_{\omega}^{\text{propriate transforms}}$$

The mill be with able iff

$$\sum_{\omega}^{\infty} w^2 S_{\frac{\omega}{2}}(w) dw \leq \omega$$

Herewise

$$\frac{1}{2} \left\{ \pi^2 \left(1 - \frac{|\omega|}{2}\right)_{j} - 2 \leq w \leq 2 \right\}$$

Therwise

$$\frac{1}{2} \left\{ m^2 S_{\frac{\omega}{2}}(w) dw = \pi^2 \left(\frac{4\lambda w^2}{4\lambda^2 + w^2} \left(1 - \frac{|\omega|}{2} \right)^2 dw \right.$$

Therwise

$$\frac{2}{4\lambda w^2} \leq 4\lambda \quad (1 + \frac{|\omega|}{2})^2 \leq 4\lambda$$

$$\frac{4\lambda w^2}{4\lambda^2 + w^2} \leq 4\lambda \quad (1 + \frac{|\omega|}{2})^2 \leq 4\lambda$$

$$\frac{2}{4\lambda w^2} \leq 4\lambda \quad (1 + \frac{|\omega|}{2})^2 \leq 4\lambda$$

Therefore in the production of the pro

Which of the following can be moments of a real random variable?

I.
$$E[X^n] = 1, \quad n = 0, 1, ...$$

II. $E[X^n] = n, \quad n = 0, 1, ...$
III. $E[X^n] = \frac{n}{n+1}, \quad n = 0, 1, ...$

III.
$$E[X^n] = \frac{n}{n+1}, n = 0, 1, ...$$

Form characteristic function

I.
$$\mathbb{E}_{\mathbf{x}}(u) = \sum_{n=0}^{\infty} \frac{(iu)^n}{n!} \mathbb{E}[\mathbf{x}^n] = \sum_{n=0}^{\infty} \frac{(iu)^n}{n!} = e^{iu}$$

II. $\mathbb{E}_{\mathbf{x}}(u) = \sum_{n=0}^{\infty} \frac{(iu)^n}{n!} \mathbb{E}[\mathbf{x}^n] = \sum_{n=0}^{\infty} \frac{(iu)^n}{n!} = e^{iu}$

Not a characteristic function because $\mathbb{E}_{\mathbf{x}}(0) = 0$ (not 1) [No]

$$\frac{\partial N}{\partial x} = \frac{\partial N}{\partial x} \frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} = \frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} = \frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} = \frac{\partial N}{\partial x} - \frac$$

Valid Moments? (circle one)

yes) no

yes (no

yes

The random variables X and Y are independent with probabilities

$$P(X = 1) = \frac{1}{2}$$
, $P(X = -1) = \frac{1}{2}$, $P(Y = 1) = \frac{1}{2}$, $P(Y = -1) = \frac{1}{2}$.

Prove that X and Z = XY are independent.

Show
$$\left\{ \overline{\mathbb{Q}}_{X,Z}(u,v) = \overline{\mathbb{Q}}_{X}(u)\overline{\mathbb{Q}}_{Z}(v) \right\}$$

 $\left[\overline{\mathbb{Q}}_{X,Z}(u,v) = \overline{\mathbb{Q}}_{X}(u)\overline{\mathbb{Q}}_{Z}(u)\overline{\mathbb{Q}}_{Z}(u) \right]$
 $\left[\overline{\mathbb{Q}}_{X,Z}(u,v) = \overline{\mathbb{Q}}_{X}(u+iv) + \frac{1}{4}e^{-iu-iv} - \overline{\mathbb{Q}}_{u+iv} \right]$
 $\left[\overline{\mathbb{Q}}_{X,Z}(u,v) = \overline{\mathbb{Q}}_{X}(u+iv) + \frac{1}{4}e^{-iu-iv} - \overline{\mathbb{Q}}_{u+iv} \right]$
 $\left[\overline{\mathbb{Q}}_{X,Z}(u,v) = \overline{\mathbb{Q}}_{X}(u+iv) + \frac{1}{4}e^{-iu-iv} - \overline{\mathbb{Q}}_{u+iv} \right]$

Now note that
$$P(z=1) = P(X=1, \xi=1) + P(X=-1, Y=-1) = \frac{1}{2}$$
 similarly $P(Z=-1) = \frac{1}{2}$ $E(u) = \frac{1}{2} e^{iu} + \frac{1}{2} e^{iv} = coa u$

Now $\Phi_{Z}(u) = \frac{1}{2} e^{iv} + \frac{1}{2} e^{iv} = coa u$
 $\Phi_{Z}(u) = \frac{1}{2} e^{iv} + \frac{1}{2} e^{iv} = coa u$

and
$$X$$
 and Z are independent

3. Consider the process X(t)

$$X(t) = A\cos(\omega t + \Phi).$$

Here A and Φ are real constants and the radian frequency ω is a Gaussian random variable with zero mean and unit variance. This process is not W.S.S. Determine the averaged

$$\widetilde{R}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} E[X(t+\tau) X(t)] dt.$$

Chearly
$$\Gamma - C_{12}^{2}$$

$$\frac{1}{1+3} \int_{0}^{2\pi} \left\{ \frac{1}{2} + \frac{1}{2} - \frac{1}{2} \right\}_{1}^{2} \left\{ \frac{1}{2} + \frac{1}{2} - \frac{1}{2} \right\}_{2}^{2}$$

$$\frac{1}{1+3} \int_{0}^{2\pi} \left\{ \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2}$$

$$\bar{R}(\tau) = \frac{\Lambda^2 C^{-\tau}}{2}$$

Name:

The random variables X and Y are independent with densities

$$f_{\mathbf{X}}(\mathbf{x}) = \begin{cases} e^{-x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$
 $f_{\mathbf{Y}}(\mathbf{y}) = \begin{cases} e^{-y}, & y \ge 0 \\ 0, & y < 0. \end{cases}$

Find the probability density of

$$\begin{aligned}
z &= \frac{x}{x+x} & \text{clearly } 0 \leq z \leq 1 &= f_{z(z)} = 0, \\
\xi(z) &= \rho(z \leq z) = \rho(\frac{x}{z} \leq z) \\
&= \rho(x \leq z + \frac{z}{z} + \frac{z}{z}) \\
&= \int_{z=1}^{z} (-3)^{2} \int_{z=1}^{z} (-3)^{2}$$

$$f_{\mathbf{z}}(z) = \begin{cases} 1 & 0 \leq 3 \leq 1 \\ 0 & 0 \neq \text{herwise} \end{cases}$$

5 The random process X(t) is given by X(t) = u(t-T) where

$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t \ge 0 \end{cases}$$

and

$$f_{T}(\tau) = 1/2 e^{-|\tau|}$$
.

Evaluate the correlation

$$R_{X}(t, s) = E[X(t) X(s)].$$

$$\frac{\mathbb{R}_{\mathbf{x}}(t,s) = \mathbb{E}[\mathbf{X}(t)\mathbf{X}(s)]}{\mathbf{x}} = \frac{\mathbf{x}}{\mathbb{E}[\mathbf{x}(t)\mathbf{x}(s)]} = \frac{\mathbf{x}}{\mathbb$$

(2-4)n = (3-5)n(3-4)n

(2-s)n(s-s)=n(s-s)

$$\frac{t \leq s}{T} |R_{x}(t,s) = E[u(t-T)u(s-t)] = \sqrt{\frac{t}{t}} |C_{x}(t)dt - F_{t}(t)dt -$$

$$R_{X}(t,s) = F_{T}(min[S,t]) = \begin{cases} \frac{1}{2} e^{min[S,t]} & min[S,t] \ge 0 \\ 1-\frac{1}{2} e^{min[S,t]} & min[S,t] \ge 0 \end{cases}$$

 \dot{n} probability of an increment is given by An integer-valued random process M(t) has independent increments, M(0) = 0 and the

P
$$(M(t) - M(s) = n) = \frac{(t-s)^n}{\left[1 + (t-s)\right]^{n+1}}, n = 0, 1, ...$$

A new process is formed from M(t) as follows

$$X(t) = X(0) (-1)^{M(t)}$$

Here X(0) is independent of M(t) and assumes the values +1 and -1 with equal probability. Obtain an expression for the correlation function $R_X(t, s) = E[X(t)X(s)]$.

$$\frac{\sum \pm t}{R_{X}(t,5)} = E[X(t)X(s)] = E[X(0)(-1)^{M(t)}M(t)] = E[X(0)(-1)^{M(t)}M(t)] = E[X(0)(-1)^{M(t)}M(s)] = E[X(0)$$

A random process is defined by the sum

$$X(t) = \sum_{n=-\infty}^{\infty} X_n g(t-nT_0).$$

variables X_n are zero mean and satisfy Here g(t) is a real, non-random function that is square integrable over $(-\infty,\infty)$. The random

$$E[X_nX_m] = \begin{cases} \sigma^2, & n = m \\ 0, & n \neq m. \end{cases}$$

process is, however, wide sense cyclostationary, that is In general, processes of this sort are neither stationary nor wide sense stationary. The

$$E[X(t+T_0)] = E[X(t)]$$
 and $E[X(t+T_0)X(s+T_0)] = E[X(t)X(s)].$

Define a new process by Y(t) = X(t+W)

where W is a random variable that is independent of the
$$X_n$$
 s with density
$$f_{\mathbf{W}}(\mathbf{w}) = \begin{cases} \frac{1}{T_0} & 0 \le w \le T_0 \\ 0, & \text{otherwise.} \end{cases}$$
 $= \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \left[W \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[X(t+\tau) \right] \right] = \sum_{n=-\infty}^{\infty} \left[\left[$

Show that Y(t) is wide sense stationary.

$$E[Y(t+c)Y(t)|W] = E\left[\sum_{m=-\infty}^{\infty} Y(t+c+w-m_0)\sum_{m=-\infty}^{\infty} y(t+w-m_0)\right]$$

$$= \int_{-\infty}^{\infty} \sum_{m=-\infty}^{\infty} Y(t+c+w-m_0)y(t+w-m_0)$$

$$= \int_{-\infty}^{\infty} \sum_{m=-\infty}^{\infty} Y(t+c+w-m_0)y(t+w-m_0)$$

5. Consider the shot process (shot noise)

$$X(t) = \sum_{k} h(t-t_{k}).$$

Here the t_k s are governed by a classical Poisson process (constant rate λ , N(0) = 0) and h(t)

is the non-random function
$$\begin{array}{lll}
\text{Examine the correlation} \\
\text{h(t)} = e^{-|t|} & \text{Function} \\
\text{Is } X(t) \text{ m.s. differentiable?}
\end{array}$$

$$\begin{array}{lll}
\text{Is } X(t) \text{ m.s. differentiable?} \\
\text{D}_{X(t)} \chi_{(u)} \chi_{($$

Is
$$X(t)$$
 m.s. differentiable?
$$\bigoplus_{\mathbf{X}[t],\mathbf{X}[u]} (u,v) = \left(\sum_{\mathbf{w}} \sum_{\mathbf{w}} \left[e^{i\mathbf{w}h(t-\alpha)+i} v h(s-\epsilon) \right] dv$$

$$R_{\mathbf{X}}(t,s) = \left(\frac{1}{i}\right)^{2} \frac{\partial^{2}}{\partial u \partial v} \Phi_{\mathbf{X}(t),\mathbf{X}(s)} | u=v=0$$

$$(*) = \lambda \int_{a}^{b} h(t-s+a)h(a) + (\lambda \int_{a}^{b} h(a)da)^{2}$$

From (*)
$$S_{\mathbf{X}}(w) = \lambda |H(\tilde{\iota}w)|^2 + \lambda^2 \left(\frac{\delta}{2}h(\kappa)d\sigma\right)^2 \pi \delta(w)$$

$$\int_{\infty} w^{2} S_{\chi}(w) = 4\lambda \left(\frac{\omega^{2}}{(l+w^{2})^{2}}dw + 2\pi\lambda^{2}\left(\int_{w}^{w} h(\omega)d\omega\right)\right) \left(w^{2} \delta(w)dw\right)$$

$$= 4\lambda \left(\frac{\omega^{2}}{(l+w^{2})^{2}}dw + 2\pi\lambda^{2}\left(\int_{w}^{w} h(\omega)d\omega\right)\right)$$

m.s. differentiable?

February 12, 2007

Name: SOLUTION

The random variable X is uniformly distributed on [0,1). Define

$$Y = X - X^{\perp}$$

Prove that X and Y are uncorrelated but not independent.

$$E[X] = \begin{cases} x dx = \frac{1}{2} \\ (x-x^2)dx = \frac{1}{2} \end{cases}$$

$$E[XY] = \begin{cases} (x^2x^3)dx = \frac{1}{2} \end{cases}$$
Clearly $E[XY] = E[X]E[Y]$ and so are

If X and Y are independent

$$E[X^nY^m] = E[X^n] \cdot E[Y^m]$$
 for any n, m

Try
$$n=2$$
, $m=1$

$$E[X^{2}] = \frac{1}{3}; E[Y] = \frac{1}{5} (from above)$$

$$E[X^{2}Y] = \int_{0}^{1} (x^{3}-x^{4})dx = \frac{1}{20}$$

$$clearly$$

$$E[X^{2}Y] \neq E[X^{2}]E[Y]$$
and X and Y are NoT independent

The random variables X_1, X_2, \dots, X_n are independent with common density

$$f_{X_k}(x) = \begin{cases} 0, & x < 0 & k = 1, 2, ..., n, \\ e^{-x}, & x \ge 0 \end{cases}$$

For fixed n form the sum

$$Y = \sum_{k=1}^{n} X_k$$

Find a bound on the probability $P(Y \ge \lambda)$ that decreases at least exponentially as $\lambda \to \infty$.

$$P(\tilde{X} \geq \lambda) \leq e^{-S\lambda} E[e^{S\tilde{X}}]_{S>0} Chernoff bound$$

$$E[e^{S\tilde{X}}]_{S} = [e^{S\tilde{X}}]_{S>0} Chernoff bound$$

$$E[e^{S\tilde{X}}]_{S} = [e^{S\tilde{X}}]_{S>0} Chernoff bound$$

$$E[e^{S\tilde{X}}]_{S} = [e^{S\tilde{X}}]_{S} = [e^{S$$

The probability of k "events" of a Poisson process in the interval [0, t) is given by

$$P(N(t) = k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}, k = 0,1,2,...$$

with $\lambda > 0$. Define T_n as the time to the n-th "event." Determine the probability density of T_n . [Hint: relate the <u>distribution</u> of T_n to a probability involving N(t).]

$$F_{T_{n}}(t) = P(T_{n} \leq t) = P(N(t) \geq n)$$

$$f_{T_{n}}(t) = \frac{d}{dt} F_{T_{n}}(t) = \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t}$$

$$= \lambda \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t} - \lambda \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t}$$

$$= \lambda \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t} - \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t}$$

$$= \lambda \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t} - \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t}$$

$$= \lambda \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t} - \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t}$$

$$= \lambda \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t} - \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t}$$

$$= \lambda \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t} - \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t}$$

$$= \lambda \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t} - \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t}$$

$$= \lambda \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t} - \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t}$$

$$= \lambda \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t} - \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t}$$

$$= \lambda \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t} - \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t}$$

$$= \lambda \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t} - \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t}$$

$$= \lambda \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t} - \sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t}$$

$$f_{T_n}(t) = \lambda \frac{(\lambda +)^{n-1}}{(n-1)!} e^{-\lambda t}$$

Let X(t) be a zero-mean, wide sense stationary, Gaussian process with correlation function $R(\tau) = \cos(\tau)$. A new process, Y(t) is obtained by squaring X(t)

$$Y(t) = X^2(t).$$

The process Y(t) is passed through a linear, time invariant filter with impulse response

$$h(t) = \begin{cases} e^{-t}, t \ge 0 \\ 0, t < 0. \end{cases}$$

Find the correlation function of the output of this filter, Z(t)

$$\begin{split} & \mathbb{E}[Y(t)Y(s)] = \mathbb{E}[X(t)] = R_{X}(0) = 1 \\ & \mathbb{E}[Y(t)Y(s)] = \mathbb{E}[X(t)X(t)X(s)X(s)] = R_{X}^{2}(c) + 2R_{X}^{2}(t - 5) \\ & \vdots Y(t +) = w.5.5. \\ & S_{Y}(w) = \int_{0}^{\infty} [R_{X}(u) + 2R_{X}^{2}(c)] e^{-i\omega t} \\ & = \int_{0}^{\infty} [1 + 2\cos^{2}t] e^{-i\omega t} \\ & = \int_{0}^{\infty} [1 + 2\cos^{2}t] e^{-i\omega t} \\ & = \int_{0}^{\infty} [1 + 2\cos^{2}t] e^{-i\omega t} \\ & = \int_{0}^{\infty} [1 + 2\cos^{2}t] e^{-i\omega t} \\ & = \int_{0}^{\infty} [1 + \cos^{2}t] e^{-i\omega t} \\ & = \int_{0}^{\infty} [1 + \cos^{2}t] e^{-i\omega t} \\ & = \int_{0}^{\infty} [1 + \cos^{2}t] e^{-i\omega t} \\ & = \int_{0}^{\infty} e^{-i\omega t} e^{-i\omega t} \\ & = \int_{0}^{\infty} [1 + \cos^{2}t] e^{-i\omega t} \\ & = \int_{0}^{\infty} e^{-i\omega t} e^{-i\omega t} \\ & = \int_{0}^{\infty} [1 + \cos^{2}t] e^{-i\omega t} \\ & = \int_{0}^{\infty} [1 + \cos^{2}t] e^{-i\omega t} \\ & = \int_{0}^{\infty} e^{-i\omega t} e^{-i\omega t} e^{-i\omega t} \\ & = \int_{0}^{\infty} e^{-i\omega t} e^{-i\omega t} e^{-i\omega t} \\ & = \int_{0}^{\infty} e^{-i\omega t} e^{-i\omega t} e^{-i\omega t} \\ & = \int_{0}^{\infty} e^{-i\omega t} e^{-i\omega t} e^{-i\omega t} e^{-i\omega t} \\ & = \int_{0}^{\infty} e^{-i\omega t} e^{-i\omega t} e^{-i\omega t} e^{-i\omega t} e^{-i\omega t} \\ & = \int_{0}^{\infty} e^{-i\omega t} e$$

? The random processes X(t) and Y(t) are independent and wide sense stationary with

$$\mathbb{E}[X(t)] = \mathbb{E}[Y(t)] = m \neq 0$$

$$R_{X}(\tau) = R_{Y}(\tau) = R(\tau)$$
. $\neq (t)$ is NOT W.S.S.

A new process is formed by

$$Z(t) = X(t)\cos 2\pi t + Y(t)\sin 2\pi t.$$

This new process is passed through a linear, time-invariant filter with impulse response

$$h(t) = \begin{cases} 1, 0 \le t \le 1 \\ 0, \text{ otherwise.} \end{cases} \quad \nabla f(t) = \begin{cases} \infty \\ -\infty \\ 0 \end{cases} \quad Z(t-\alpha)h(\alpha)d\alpha$$
$$= \begin{cases} 0 \\ 0 \end{cases} \quad Z(t-\alpha)d\alpha$$

entagration is over periods because the Output W.S.S.? $\frac{N_{\text{ew}}}{E[w(t)]} = m \begin{cases} \frac{1}{2} \cos 2\pi (t-\alpha) + \sin 2\pi (t-\alpha) \right\} d\alpha d\beta$ $E[\tilde{w}(t)\tilde{w}(s)] = \begin{cases} \frac{1}{2} R_{\frac{1}{2}}(t-\alpha, s-\beta) d\alpha d\beta$ Is the filter output wide sense stationary? No credit will be given for an answer that is not supported by appropriate reasoning. (USing appropriate for an answer that is not true; supported by appropriate reasoning.

<math display="block">(USing appropriate for an answer that is not true; supported by appropriate reasoning.

<math display="block">(USing appropriate for an answer that is not true; supported by appropriate reasoning.(circle one) E[W(+)W(5)] = Also E[Z(t)] = m{cosznt + sinznt} = $\int_{0}^{\infty} \Re(t-s+\beta-\alpha)\cos 2\pi(t-s+\beta-\alpha)d\alpha d\beta$ + m { | sin 211 (++5-13-0) drds (R(t-5+B-4) COSZT (t-SAB-d) dodB chearly a function No

The characteristic function of a real random variable satisfies the relationship

$$\Phi(\beta \nu) = [\Phi(\nu)]^{|\beta|} - \infty < \beta < \infty$$

Clearly $\Phi(\upsilon)=1$ satisfies this relationship. In addition to $\Phi(\upsilon)=1$, what other non-trivial characteristic functions satisfy this relationship and what is the functional form of the associated probability density, f(x).

Obviously
$$\mathbb{Q}(-\kappa) = \mathbb{Q}^{*}(\kappa)$$

letting $\beta = -1$
 $\mathbb{Q}(-\nu) = \mathbb{Q}(\nu) = \mathbb{Q}^{*}(\nu)$ is real

$$|\mathcal{A}| \quad \mathcal{V} = [\underline{\mathcal{T}}(1)]^{|\beta|} \quad \text{this holk for}$$

(1) 15 real, non-negative and < 1

(1) (1) (1) < 0, then
$$\Phi(\pm) = \sqrt{\Phi(1)}$$

which cannot happen-because

 $\Phi(\nu)$ is real

$$\frac{1}{f(x)} = \frac{1}{2\pi} \int_{\infty}^{\infty} e^{-k|\beta|} \int_{0}^{\infty} e^{-k|\beta|} \int_$$

$$f(x) = \frac{k}{\prod (k^2 + \chi^2)} k$$

The wide sense stationary process X(t) is bound limited (i.e., its power spectral density vanishes for $|\omega| \ge \Omega$). Show that X(t) has mean square derivatives of all orders.

Now note
$$E[X^{(1)}(t)X^{(2)}(s)] = \frac{\partial^2}{\partial t\partial s} E[X(t)X(s)] = -R_X^{(2)}(t-s)$$

$$X^{(2)}(t)$$
 exists iff $R_{X}^{(4)}(0)$ is well-defined

Using this same reasoning, we conclude that
$$X^{(n)}(t)$$
 exists iff $R_{\chi}^{(2n)}(0)$ is well-defined

Now
$$R_{X}^{(2n)}(v) = \frac{(-1)^{n}}{2\pi} \int_{-\infty}^{\infty} \omega^{2n} S(w) dw$$
but $S(w) = 0$ when

$$R_{\mathbf{x}}^{(2n)}(0) = \frac{(-1)^n}{2\pi} \int_{-\infty}^{\Omega} \omega^{2n} S_{\mathbf{x}}(\omega) d\omega$$

the intogrand is bounded by 12m S(w) (i.e. w=nS(w) = 12m S(w)

$$R_{x}^{(2n)}(0) \leq \frac{\Omega^{2n}}{2\pi} \int_{\Omega} S_{x}(u) du = \frac{\Omega^{2n}}{2u} R_{x}(0) co$$

5. Let N(t) be a classical Poisson process with constant rate v

$$P(N(t) = k) = \frac{(vt)^k}{k!}e^{-rt}.$$

Let X_n , $n=1,\,2,\,\dots$ be a sequence of independent, identically-distributed random variables with probabilities

$$P(X_n = 1) = \rho$$
 $P(X_n = 0) = 1 - \rho$

with $0 < \rho < 1$. N(t) and the X_n s are independent. For fixed t form the process

$$Y(t) = \begin{cases} 0, N(t) = 0 \\ \sum_{k=1}^{N(t)} X_k, N(t) > 0. \end{cases}$$

Find an upper bound on the probability

$$P(Y(t) \ge \lambda)$$

that decreases more rapidly than $e^{-k\lambda}$ as $\lambda \to \infty$ (k is any positive constant). [Hint: You may find the use of conditional expectations helpful in deriving the bound.]

Using the Chernoff bound
$$P(Y(t) \geq \lambda) \leq e^{-S\lambda} E[e^{SY(t)}] = P(N(t) = 0) + \sum_{n=1}^{\infty} P(N(t) = n) E[e^{S\sum_{k=1}^{\infty} X_{k}}] = E[\prod_{i=1}^{\infty} e^{SX_{k}}] = (E[e^{SX_{k}}])^{n}$$

$$E[e^{S\sum_{k=1}^{\infty} X_{k}}] = E[\prod_{i=1}^{\infty} e^{SX_{k}}] = (E[e^{SX_{k}}])^{n}$$

$$P(Y(t) \geq \lambda) \leq e^{-\lambda m} \left(\frac{\lambda}{\rho \nu t}\right) - \rho \nu t + \lambda = e^{-\lambda m \lambda} \left[1 - \frac{m \rho \nu t}{m \lambda} + \frac{\rho \nu t}{\lambda m \lambda} - \frac{1}{m \lambda}\right]$$

Problem 5 continued

So that for any Szo minimize this exponent (denote by So) $P(\Sigma(t) \geq \chi) \in e^{-\lambda M(\frac{\lambda}{p + 1})} - \rho \nu t + \lambda$ or so= ln put clearly for substituting s=so into (*) above yields E[estit)] = P(NI+)=0)+ \sum_{n=1}^{\infty} P(NI+)=n)(1-p+pe)" 0 = PV+ e30 - > < (-> m) [1- movt + out -1] = ppt(es-1) = \sum_{n=0}^{\infty} (\nutatter)^{n} (1-\rho+\rho\rho)^{n} \end{array} e^{-\nutau t} = 520 C-5>+pvt(es-1) 22 put

The random variable X and Y are independent and they are Gaussian with zero mean and unit variance. Define

$$V = \max [X, Y], \quad W = \min [X, Y].$$

Find the probability density of Z = V - W[Hint: express Z in terms of the original variables X and Y.]

If
$$X \ge Y$$
 $V = X$, $W = Y$; $Z = X - Y$
If $Y > X$ $V = Y$, $W = X$; $Z = Y - X$
... $Z = |X - Y|$ in all cases

But $X - Y$ is Gaussian with

$$E[X - Y] = 0$$

$$V_{av}[X - Y] = 2$$

$$V_{$$

2 following can be valid autocorrelations of this process? The process X(t) is a real, second order process. Which of the

(I)
$$R_{\rm x}(\tau) = e^{-\cos \tau - 1}$$

(II)
$$R_{\rm x}(\tau) = e^{\cos \tau - 1}$$

(III)
$$R_{\rm x}(\tau) = 2e^{-3|\tau|} - e^{-|\tau|}$$

valid reasoning. A simple "yes" or "no" will receive no credit unless supported by

Case(I)
$$R_{\mathbf{Z}}(\sigma) = C$$
; $R_{\mathbf{Z}}(\pi) = C = 4$
 $R_{\mathbf{Z}}(\pi) | > R_{\mathbf{Z}}(\sigma) = C = 4$
 $Case(\Pi)$ $Case(\Pi) | > R_{\mathbf{Z}}(\sigma) = R_{\mathbf{Z}}(\sigma) = 0$ an autocorrelation $Case(\Pi)$ $Case(\Pi)$ $Case(\Pi) | > 0$ $Case(\Pi$

77		(ase (II)
W/ 3</td <td>=(m)ZG</td> <td>R_Z(1)=</td>	=(m)ZG	R _Z (1)=
If IWIN SE(W)<0 :. NOT an autocorrelation	19+10-11-W2	Rx(0)=20-0 -101 -0 ->5x(w)= 12-12-12
· ton	1 (E) (E)	$C \rightarrow S^{\infty}(m)$
n autocorrel	•)= 4+62-1
ztwy		EIN

(circle one)	Valid autocorrelation?
yes (no)	(I)
(yes) no	(II)
yes (no)	

 $\dot{\omega}$ Let N(t) be a classical Poisson process (stationary, independent increments, N(0) = 0; constant rate v). Consider the new process

$$P(N(t) = k) = \frac{(\nu t)^{k} - \nu t}{k!} e^{-\nu t}$$

$$0, N(t) = odd$$

Find the expected value of
$$M(t)$$

ttrom class notos

Find the expected value of
$$M(t)$$
.

$$P(m(t)=0) = P(N(t)=odd) = \frac{1}{2}(1-e^{-2\nu t})$$

$$P(m(t)=2) = P(N(t)=2) = \frac{(\nu t)^{2}}{(2\nu)!} e^{-\nu t}$$

$$E[M(t)] = \sum_{k=0}^{\infty} l P(M(t) = l) = \sum_{k=1}^{\infty} l \frac{[\nu t]^{2l}}{(2l)!} e^{-\nu t}$$

$$= \frac{1}{2} \sum_{k=1}^{\infty} 2l \frac{[\nu t]^{2l}}{(2l)!} e^{-\nu t}$$

$$= \frac{1}{2} \sum_{k=1}^{\infty} \frac{[\nu t]}{(2l)!} e^{-\nu t}$$

$$= \frac{1}{2} \sum_{k=1}^{\infty} \frac{[\nu t]^{2l}}{(2l-1)!} e^{-\nu t}$$

$$= \frac{1}{2} \sum_{k=1}^{\infty} \frac{[\nu t]^{2l}}{(2l-1)!} e^{-\nu t}$$

$$E[M(t)] = \frac{\nu t}{4} \left(1 - e^{-2\nu t} \right)$$

ECE 250 FINAL EXAMINATION

March 20, 2006

Name: SOLUTION

A random process is defined by

vith
$$X(t) = A + Bt, t \ge 0$$

$$\begin{cases}
clearly & X(t) \ge 0 \\
clearly & X(t) \ge 0
\end{cases}$$

$$\begin{cases}
clearly & X(t) \ge 0 \\
clearly & X(t) \ge 0
\end{cases}$$

$$\begin{cases}
clearly & X(t) \ge 0 \\
clearly & X(t) \ge 0
\end{cases}$$

$$\begin{cases}
clearly & X(t) \ge 0 \\
clearly & X(t) \ge 0
\end{cases}$$

$$\begin{cases}
clear$$

of t. That is, determine $f_{X(t)}(x)$. Determine the first-order probability density of X(t) as a function

$$F_{X(t)}(x) = P(X(t) \le x) = P(A+Bt \le x)$$

$$= \begin{cases} \begin{cases} f_{A,B}(a,\beta)dad\beta = \int d\beta \int f_{A,B}(a,\beta)da \\ \alpha+\beta t \le x \end{cases} \end{cases} = \begin{cases} \begin{cases} f_{A,B}(x) = \int f_{A,B}(x-\beta t,\beta)d\beta \\ f_{A,B}(x) = \int f_{A,B}(x-\beta t,\beta) = \end{cases} \end{cases} \begin{cases} \begin{cases} f_{A,B}(x-\beta t,\beta)d\beta \\ f_{A,B}(x-\beta t,\beta) = \end{cases} \end{cases} \begin{cases} f_{A,B}(x-\beta t,\beta)d\beta \end{cases} = f_{A,B}(x-\beta t,\beta)d\beta \end{cases}$$

$$= f_{X(t)}(x) = \begin{cases} f_{A,B}(x-\beta t,\beta) = f_{A,B}(x-\beta t,\beta)d\beta \\ f_{A,B}(x-\beta t,\beta) = f_{A,B}(x-\beta t,\beta) = f_{A,B}(x-\beta t,\beta)d\beta \end{cases}$$

$$= f_{X(t)}(x) = f_{A,B}(x) = f_{A,B}(x-\beta t,\beta)d\beta = f_{A,B}(x-\beta t,\beta)d\beta$$

$$f_{X(0)}(x) = \begin{cases} \frac{1}{4} \left(e^{-\frac{x}{1+4}} - e^{-x} \right), & x < 0 \end{cases}$$

5 sequence of times t_n by Let N(t) be a classical Poisson process with rate λ . Define the

$$t_n = 2 \frac{n}{n+1}, n = 1, 2, ...,$$

Consider the new random variable

$$M = \sum_{n=1}^{\infty} N(t_{n+1}) - N(t_n)$$

Obtain an explicit expression for

$$P(M=m) \quad m=0, 1, 2, \dots$$

$$M = [N(t_2) - N(t_1)] + [N(t_3) - N(t_2)] + [N(t_4) - N(t_3)]$$

$$\rho(M=m) = \rho(N(2)-N(1)=m)$$

$$P(M=m) = \frac{\lambda^m}{m!} e^{-\lambda}, m=0,1,\dots$$

3. Let X(t) be the random telegraph signal

$$X(t) = X(0) (-1)^{N(t)}$$

(0, T) is given by and $P(X(0) = -1) = \frac{3}{4}$. The time average of X(t) over an interval random variable X(0) is independent of N(t) with $P(X(0) = +1) = \frac{1}{4}$ where N(t) is a Poisson process with constant rate v and the

$$M(T) = \frac{1}{T} \int_{0}^{T} X(t)dt.$$

Show that for $\varepsilon > 0$

$$\lim_{T \to \infty} P(|M(T)| > \varepsilon) = 0$$

that 0 s T s T Clearly then lim P(IM(T) >6) = / 20 = (1-6-20T) = 0 P(1M(T)1>6) = 古王[1M(丁)]]=古王[(十{xt+)dt/(井/xcsds)] [Hint: Chebyshev Inequality] < ET } { E[&(t)&(s)]dtds}

< ET } { E[&(t)&(s)]dtds}

< ET } { E[&(t)&(s)]dtds}

< ET } 12 P O[121-1] \$[T-7] E2226 (of integrand)

4. Consider the random process $X(t) = \sum_{n=0}^{\infty} X_n \cos n\pi t + Y_n \sin n\pi t$

The coefficients Xn and Yn are i.i.d. sequences with densities

$$f_{\chi_n}(x) = \frac{n}{\sqrt{2\pi}} e^{-\frac{n^2 x^2}{2}}; f_{\gamma_n}(y) = \frac{n}{\sqrt{2\pi}} e^{-\frac{n^2 y^2}{2}}$$

differentiable? You must prove your answer. A simple "yes" or independent for any choice of n and m). Is X(t) mean square In addition the sequences are independent (i.e., Xn and Yn are "no" unaccompanied by appropriate reasoning will not receive any

$$\mathbb{E}[X(t)X(s)] = \sum_{n=1}^{\infty} \mathbb{E}[(X_{n}\cos n\pi t + Y_{n}\sin nt)(X_{m}\cos n\pi t + Y_{m}\sin nt)]$$

Note that: E[XnXm] = E[InIm] = n= on, m $E[X,Y_m] = E[Y,X_m] = 0$

$$E[X(t)X(s)] = \sum_{n=1}^{\infty} \frac{1}{n^{2}} (csn\pi t cosn\pi s + sinn\pi t sinn\pi s)$$

$$R(t) = \sum_{n=1}^{\infty} \frac{1}{n^{2}} cosn\pi t (t-s)$$

$$R(t) = \sum_{n=1}^{\infty} \frac{1}{n^{2}} cosn\pi t$$

$$X(t) = \sum_{n=1}^{\infty} \frac{1}{n^{2}} cosn\pi t$$

$$\frac{1}{dt^{2}} R(t) = \pi^{2} \sum_{n=1}^{\infty} cosn\pi t \Rightarrow \frac{1}{dt^{2}} R(t) = \pi^{2} \sum_{n=1}^{\infty} 1$$

$$\frac{1}{dt^{2}} R(t) |_{t=0}^{\infty} \text{ is not well-defined and } X(t) \text{ is Not}$$

$$\frac{1}{dt^{2}} R(t) |_{t=0}^{\infty} \text{ is not defined and } X(t) \text{ is Not}$$

part of the problem

R(T+2)=R(C) and R(C)= 王[[2/3)-1tl[2-1tl]],-15+51

Differentiable? (circle one)

Yes

Ċ Consider the process $X(t) = \sum_{n=0}^{\infty} X_n g(t - nTo)$.

distributed with zero mean, variance σ^2 and let g(t) be band limited the following, formal relationship useful the process X(t) will be wide sense stationary. Hint: you may find sense stationary. Show that in the special case for which $\Omega < \pi/To$, $\geq \Omega$). In general such processes are neither stationary nor wide with bandwidth Ω (i.e., its Fourier transform, $G(i\omega)$, vanishes if $|\omega|$ For this problem let the X_n s be independent and identically Such processes commonly arise in digital transmission schemes.

$$\sum_{n=-\infty}^{\infty} \frac{\sum_{n=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \delta(u-n\frac{2\pi}{T_o})}{\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \delta(u-n\frac{2\pi}{T_o})}.$$

$$\mathbb{E}\left[X(t)X^*(s)\right] = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \mathbb{E}\left[X_{m}X_{m}\right] q(t-nT_{o}) q^*(s-nT_{o})$$

=
$$\sigma^{2} \leq g(t-n\pi e)g^{*}(s-n\pi e)$$

= $\sigma^{2} + \int_{-\infty}^{\infty} G(i\omega)e^{i\omega t} d\omega \frac{1}{2\pi} G(i\nu)e^{i(\nu)}e^{i($

$$= \frac{\sigma^2}{2\pi} \left(\frac{1}{G(iw)} \frac{\partial u}{\partial w} \frac{\partial u}{\partial w} \right) \frac{\partial u}{\partial v} \frac{\partial u}{\partial$$

$$\rightarrow = \frac{\sigma^2}{2\pi T_0} \left\{ G(i\omega) e^{-i\omega t} d\omega \right\} G(i\omega) e^{-i\omega t} \frac{SS(\omega-\nu-n2\pi)}{T_0}$$

$$= \frac{\sigma^2}{2\pi T_0} \left\{ G(i\omega) e^{-i\omega (t-s)} d\omega \right\} e^{-in2\pi t} \frac{SS(\omega-\nu-n2\pi)}{T_0}$$

$$= \frac{\sigma^2}{2\pi T_0} \left\{ G(i\omega) e^{-i\omega (t-s)} d\omega \right\} e^{-in2\pi t} \frac{SS(\omega-\nu-n2\pi)}{T_0}$$

n=w-v

E[X1+)X15)]= 170) [G(in)] 2 dw Now note that if ILX Tho all terms in the above infinite som, except the n=0 term, will be shifted outside the interval Clearly W.S.S.

Let X be a real random variable with a finite second moment. Can the following be characteristic functions for X?

(I)
$$\Phi(u) = \frac{\sin 2u}{u} e^{iu}$$

(II)
$$\Phi(\mathbf{u}) = e^{-u^2 + u}$$

(III)
$$\Phi(u) = e^{iu^2}$$

No credit will be given for an answer not supported by a correct argument.

(III)
$$E[X^2] = \frac{1}{i^2} \frac{d^2}{du^2} \mathcal{D}(u) \Big|_{u=0} = -2i$$
, but
the second moment of a real
random variable must be real and
non-negative. Ans: NO

Valid	(1)		(II)		(III)	
Characteristic Function?	Yes	No	Yes	No	Yes	N ₀

SOLUTION

Let X and Y be independent, identically-distributed random variables. Form the new random variables.

$$Z_1 = \frac{X}{Y} \qquad \qquad Z_2 = \frac{Y}{X} \quad .$$

Using a symmetry argument, it is reasonable to conjecture that

(i)
$$f_{Z_1}(z) = f_{Z_2}(z)$$

On the other hand, since $Z_2 = \frac{1}{Z_1}$, it is also reasonable to conjecture that

(II)
$$f_{Z_1}(z) \neq f_{Z_2}(z)$$

Are either or both of these conjectures true? No credit will be given for an answer not Consider Zi. Fix Yey and examine the conditional density $f_{Z_1}(3|Y=y)$ In this case $Z_1=(\frac{1}{y})X$, a constant times the variable X $f_{Z,(\overline{3}|\widetilde{Y}=y)} = \frac{1}{|d\widetilde{X}|} f_{\overline{X}}(x) \Big|_{X=\overline{3}y} = |y| f_{\overline{X}}(\overline{3}y)$ Averaging over \overline{Y} we have

$$f_{z}(3) = \int_{\infty}^{\infty} f_{y}(y) f_{x}(3y) |y| dy$$

These densities are identical (change the integration variable from x to y in the expression for fz, (3).

Conjecture (1) True False	Conjecture (II) True False

Name SOLUTION

3. A complex random process is defined by

$$X(t) = A e^{i(V_t + \theta)}$$
 Clearly $E[X(t)] = Q$ where A, V and θ are independent random variables with densities [Because $E[e^{i\theta}] = Q$]

$$f_{\mathbf{A}}(a) = \begin{cases} 0, & a < 0; & f_{\mathbf{V}}(v) = \frac{1}{\sqrt{2\pi}} e^{-\frac{v^2}{2}}; f_{\theta}(\theta) = \begin{cases} \frac{1}{2\pi}, & 0 \le \theta \le 2\pi \\ e^{-\alpha}, & a \ge 0 \end{cases}$$

Show that X (i) is wide sense stationary and find its power spectral density.

$$R_{\mathbf{X}}(t+1,t) = E[\mathbf{X}(t+1)\mathbf{X}(t)] = E[\mathbf{A} e^{i(\mathbf{V}t+\mathbf{V}(t+6))}\mathbf{A} e^{i(\mathbf{V}t+6)}]$$

$$= E[\mathbf{A}^{2}e^{i\mathbf{V}(t)}] = \int_{0}^{\infty} a^{2}e^{-i\mathbf{Q}}da \cdot \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-i\mathbf{V}(t-2)}d\mathbf{V}$$

$$R_{\mathbf{X}}(t) = 2 e^{-\frac{1}{2}t^{2}}$$

$$S_{\mathbf{X}}(\omega) = \int_{0}^{\infty} e^{-i\omega t} R_{\mathbf{X}}(t)dt = 2 \int_{0}^{\infty} e^{-i\omega t} e^{-\frac{t^{2}}{2}}dt$$

$$= 2\sqrt{2\pi} \left\{ \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-i\omega t} e^{-\frac{t^{2}}{2}}dt \right\}$$

$$= 2\sqrt{2\pi} e^{-\frac{1}{2}\omega^{2}}$$

$$s_{X}(\omega) = 2\sqrt{2\pi} e^{-\frac{1}{2}\omega^{2}}$$

ECE 250. FINAL EXAMINATION

December 8, 2004

SOLUTION

1. A random process is defined by

$$X(t) = u(t-T)$$

where u (t) is the unit step

$$u(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

and T is a random variable with a continuous probability density $f_T(\tau)$. Does X(t) have orthogonal increments? No credit will be given for an answer that is not supported by an appropriate argument.

Let
$$t_1 \leq t_2 \leq t_3 \leq t_4$$

 $X(t_2) - X(t_1) = u(t_2 - T) - u(t_1 - T) = \begin{cases} 1, t_1 < T \leq t_2 \\ 0, \text{ otherwise} \end{cases}$

$$X(t_4)-X(t_3)=u(t_4-T)-u(t_3-T)= \begin{cases} 1, t_3 < T \le t_4 \\ 0, otherwise \end{cases}$$

$$\left\{X(t_4)-X(t_2)\right\}\cdot\left\{X(t_2)-X(t_1)\right\}=0$$

the increments are orthogonal

2. In many digital communication systems data is transmitted via a pulse train appearing as

$$\sum_{n=-\infty}^{\infty} X_n g(t-nTo)$$

where g(t) is a real, non-random pulse, the X_n s are real, independent, identically-distributed random variables (binary, quarternary, etc.) and T_0 is the spacing between adjacent pulses. For this problem assume that

$$E[X_n] = 0; \qquad E[X_n X_m] = \begin{cases} \sigma^2, n=m \\ 0, n=m \end{cases}$$

in practice timing errors often result in random spacing between adjacent pulses. Consider the following pulse train.

$$X(t) = \sum_{n=-\infty}^{\infty} X_n g (t - nT_0 + \tau_n)$$

where g(t) and the X_n s are as above and the τ_n s are independent of the X_n s and are themselves independent and identically-distributed with common probability density

$$f_{T}(\tau) = \begin{cases} \frac{1}{T_{0}}, -\frac{T_{0}}{2} \le \tau \le \frac{T_{0}}{2} \\ 0, \text{ otherwise } . \end{cases}$$

Show that X(t) is wide sense stationary and find its power spectral density.

(1)
$$E[X|t)] = \frac{1}{T_0} \int_{0}^{T_0/2} dT_n \sum_{n=-\infty}^{\infty} E[X_n] q(t-nT_0+\hat{l}_n) = 0$$
 $R_X(t+T,t) = \frac{1}{T_0} \int_{0}^{T_0/2} d\hat{l}_m \int_{0}^{T_0/2} d\hat{l}_m$
 $\int_{0}^{\infty} \sum_{n=-\infty}^{\infty} E[X_n X_m] q(t+\hat{l}_n-nT_0+\hat{l}_n) q(t-mT_0+\hat{l}_m)$
 $\int_{0}^{\infty} \int_{0}^{T_0/2} dT_n \int_{0}^{T_0/2} q(t+\hat{l}_n-nT_0+\hat{l}_n) q(t-nT_0+\hat{l}_n)$
 $\int_{0}^{\infty} \int_{0}^{T_0/2} d\hat{l}_n \int_{0}^{T_0/2} q(t+\hat{l}_n-nT_0+\hat{l}_n) q(t-nT_0+\hat{l}_n)$
 $\int_{0}^{\infty} \int_{0}^{T_0/2} d\hat{l}_n \int_{0}^{\infty} q(t+\hat{l}_n-nT_0+\hat{l}_n) q(t-nT_0+\hat{l}_n)$
 $\int_{0}^{\infty} \int_{0}^{T_0/2} d\hat{l}_n \int_{0}^{\infty} q(t+\hat{l}_n-nT_0+\hat{l}_n) q(t-nT_0+\hat{l}_n)$

$$S_{x}(\omega) = \frac{C}{10} \left| C(i\omega) \right|^{2}$$

Problem 2 (continued)

Interchange summation and the integral
$$R_X(t+t,t) = \Gamma^2 \sum_{n=-\infty}^{\infty} \frac{1}{T_0} \int_{0}^{T_0} dt n g(t+t-nt_0+tn) g(t-nt_0+tn)$$
 $R_X(t+t,t) = \Gamma^2 \sum_{n=-\infty}^{\infty} \frac{1}{T_0} \int_{0}^{T_0} dt n g(t+t-nt_0+tn) g(t-nt_0+tn)$
 $R_X(t) = \Gamma^2 \sum_{n=-\infty}^{\infty} \frac{1}{T_0} \int_{0}^{T_0} g(a+t) g(a) da$
 $R_X(t) = \Gamma^2 \sum_{n=-\infty}^{\infty} \frac{1}{T_0} \int_{0}^{T_0} g(a+t) da$
 $R_X(t) = \Gamma^2 \sum_{n=-\infty}^{\infty} \frac{1}{T_0} \int_{0}^{T_0} g(a+t) da$
 $R_X(t) = \Gamma^2 \sum_{n=-\infty}^{\infty} \frac{1}{T_0} \int_{0}^{T_0} g(a+t) da$
 $R_X(t) \in \Gamma^2 \int_{0}^{\infty} \left\{ \int_{-\infty}^{\infty} g(a) g(a+t) da \right\} e^{-t} dt$
 $R_X(t) = \Gamma^2 \int_{0}^{\infty} \left\{ \int_{-\infty}^{\infty} g(a) g(a+t) da \right\} e^{-t} dt$
 $R_X(t) = \Gamma^2 \int_{0}^{\infty} \left\{ \int_{-\infty}^{\infty} g(a) g(a+t) da \right\} e^{-t} dt$
 $R_X(t) = \Gamma^2 \int_{0}^{\infty} \left\{ \int_{-\infty}^{\infty} g(a) g(a+t) da \right\} e^{-t} dt$
 $R_X(t) = \Gamma^2 \int_{0}^{\infty} \left\{ \int_{-\infty}^{\infty} g(a) g(a+t) da \right\} e^{-t} dt$
 $R_X(t) = \Gamma^2 \int_{0}^{\infty} \left\{ \int_{-\infty}^{\infty} g(a) g(a+t) da \right\} e^{-t} dt$
 $R_X(t) = \Gamma^2 \int_{0}^{\infty} \left\{ \int_{-\infty}^{\infty} g(a) g(a+t) da \right\} e^{-t} dt$
 $R_X(t) = \Gamma^2 \int_{0}^{\infty} \left\{ \int_{-\infty}^{\infty} g(a) g(a+t) da \right\} e^{-t} dt$
 $R_X(t) = \Gamma^2 \int_{0}^{\infty} \left\{ \int_{-\infty}^{\infty} g(a) g(a+t) da \right\} e^{-t} dt$
 $R_X(t) = \Gamma^2 \int_{0}^{\infty} \left\{ \int_{-\infty}^{\infty} g(a) g(a+t) da \right\} e^{-t} dt$
 $R_X(t) = \Gamma^2 \int_{0}^{\infty} \left\{ \int_{-\infty}^{\infty} g(a) g(a+t) da \right\} e^{-t} dt$
 $R_X(t) = \Gamma^2 \int_{0}^{\infty} \left\{ \int_{-\infty}^{\infty} g(a) g(a+t) da \right\} e^{-t} dt$
 $R_X(t) = \Gamma^2 \int_{0}^{\infty} \left\{ \int_{0}^{\infty} g(a) g(a+t) da \right\} e^{-t} dt$
 $R_X(t) = \Gamma^2 \int_{0}^{\infty} \left\{ \int_{0}^{\infty} g(a) g(a+t) da \right\} e^{-t} dt$
 $R_X(t) = \Gamma^2 \int_{0}^{\infty} \left\{ \int_{0}^{\infty} g(a) g(a+t) da \right\} e^{-t} dt$
 $R_X(t) = \Gamma^2 \int_{0}^{\infty} \left\{ \int_{0}^{\infty} g(a) g(a+t) da \right\} e^{-t} dt$
 $R_X(t) = \Gamma^2 \int_{0}^{\infty} \left\{ \int_{0}^{\infty} g(a) g(a+t) da \right\} e^{-t} dt$
 $R_X(t) = \Gamma^2 \int_{0}^{\infty} \left\{ \int_{0}^{\infty} g(a) g(a+t) da \right\} e^{-t} dt$
 $R_X(t) = \Gamma^2 \int_{0}^{\infty} \left\{ \int_{0}^{\infty} g(a) g(a+t) da \right\} e^{-t} dt$
 $R_X(t) = \Gamma^2 \int_{0}^{\infty} \left\{ \int_{0}^{\infty} g(a) g(a+t) da \right\} e^{-t} dt$
 $R_X(t) = \Gamma^2 \int_{0}^{\infty} \left\{ \int_{0}^{\infty} g(a) g(a+t) da \right\} e^{-t} dt$

3. Let X(t) be a shot process given by

$$X(t) = \sum X_n u(t-t_n)$$

where the t_n s are the event times of a Poisson process with constant rate λ , $\mu(t)$ is the unit step

$$u(t) = \begin{cases} 1, & t > 0 \\ 0, & t < 0 \end{cases}$$

and the X_n s are independent and identically distributed with common probabilities

$$P(X_n - 1) = p$$
, $P(X_n - 0) = (1-p)$, $0 .$

The random variables $\{X_n\}$ and the event times $\{t_n\}$ are independent of each other. Find an explicit, closed-form expression for the probability

$$P(X(t)-X(s)=m)$$
, $s \le t$

where m is an integer.

$$\overline{X}(t) - \overline{X}(s) = \sum_{n} \overline{X}_{n} [u(t-t_{n}) - u(s-t_{n})]$$

From class notes:

$$\Phi_{\mathbf{X}(t)-\mathbf{X}(s)} = E[e^{iu[\mathbf{X}(t)-\mathbf{X}(s)]}] = e^{\lambda \int_{\mathbf{x}} \left[e^{iu\mathbf{X}[\mathbf{x}(t-\tau)-\mathbf{u}(s-\tau)]} - 1 \right] f_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} d\tau}$$

 $= e^{p\lambda(t-s)[e^{iu}-1]}$ $= e^{p\lambda(t-s)[e^{iu}$

$$P(X(t)-X(s)=m) = \frac{\left[\rho \cdot \lambda \cdot (t-s)\right]^m}{m!} e^{-\rho \cdot \lambda \cdot (t-s)}$$

4. A real random signal A (t) is corrupted by a real additive noise N (t). The processes A(t) and N (t) are orthogonal and wide sense stationary with respective correlation functions

$$R_{A}(\tau) = 2 \cos \omega_{\alpha} \tau \frac{\sin \omega_{\alpha} \tau}{\pi \tau};$$
 $R_{N}(\tau) = 2$

the sum A (t) + N (t) is passed through a linear, time-invariant filter that is chosen to minimize the mean square error between the filter output. $Y_{\alpha}(t)$, and A(t)

$$E[IY_0(t) - A(t)P]$$
.

Determine the impulse response of the optimum filter (i.e., the one that minimizes the above mean square error)

$$\int_{-\infty}^{\infty} \frac{\sin \Omega \tau}{\Omega \tau} e^{-i\omega \tau} = \begin{cases} \frac{11}{2} & |\omega| \leq \Omega \\ 0 & \text{otherwise} \end{cases}$$

From class notes the optimum transfer function is given by
$$H(\bar{\iota}w) = \frac{S_A(w)}{S_A(w) + S_N(w)}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 1, \frac{w}{2} < |w| \le 2w \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \\ 0, 0 \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \end{cases}$$

$$= \begin{cases} \frac{1}{3}, 0 \le |w| \le \frac{w}{2} \end{cases}$$

$$= \begin{cases} \frac{1}{3},$$

$$h(t) = \frac{1}{2\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{3} e^{i\omega t} d\omega + \frac{1}{2\pi} \int_{-\frac{\pi}{2}}^{\infty} \frac{1}{3} e^{i\omega t} d\omega$$

5. A wide sense stationary process has the correlation function

$$R_x(\tau) = \frac{2}{3}e^{-|\tau|} - \frac{1}{3}e^{-2|\tau|}$$

Is this process mean square differentiable? No credit will be given for an answer not supported by

Make power series expansion for RI(E)

$$R_{\mathbf{x}}(\tau) = \frac{2}{3} \left\{ 1 + (-171) + \frac{1}{2} (-171)^2 + \frac{1}{6} (-171)^3 - \cdots \right\} \\ - \frac{1}{3} \left\{ 1 + (-2171) + \frac{1}{2} (-2171)^2 + \frac{1}{6} (-2171)^3 - \cdots \right\}$$

$$= \frac{1}{3} \left\{ \left(- \hat{v}^2 + |\hat{v}|^3 \cdots \right) \right\}$$

Clearly $R_{\chi}''(t)|_{\tau=0}$ is well-defined $\left(=-\frac{2}{3}\right)$ and so $\chi(t)$ is mean square differentiable

Alternatively ____

$$S_{\mathbf{x}}(w) = \int_{-\infty}^{\infty} R_{\mathbf{x}}(\tau) e^{-\tau w \tau} d\tau$$

$$= \frac{4}{(1+\omega^2)(4+\omega^2)}$$

Obviously
$$\int_{-\infty}^{\infty} w^{2} S_{Z}(w) dw = \int_{-\infty}^{\infty} \frac{4w^{2}}{(1+w^{2})(4+w^{2})} dw < \infty$$

ECE 250

Quiz No. 1

October 17, 2003

ECE 250

Quiz No. 2

October 31, 2003

Let X and Y be independent random variables with probability densities

$$f_{X}(x) = \begin{cases} e^{-x}, x \ge 0 \\ 0, x < 0 \end{cases}$$
 $f_{Y}(y) = \begin{cases} e^{-y}, y \ge 0 \\ 0, y < 0 \end{cases}$

Find the probability density of

$$F_{Z}(3) = P(\frac{X}{X+Y} \leq 3) = P(X \leq (\frac{1}{1-3})Y)$$

$$= \begin{cases} f_{X}, y(x, y) dx dy = \int dy \\ f_{X}, y(x, y) dx dy \end{cases} = \begin{cases} f_{X}, y(x, y) dx \\ f_{X}(3) = \frac{d}{dy} f_{X}(3) = \frac{1}{(1-3)^{2}} \int_{0}^{\infty} f_{X}, y(3) dy \end{cases}$$

$$f_{Z}(3) = \frac{d}{dy} f_{Z}(3) = \frac{1}{(1-3)^{2}} \int_{0}^{\infty} f_{X}(x, y) dy$$

$$f_{Z}(3) = \begin{cases} f_{X}(3) = \int_{0}^{\infty} f_{X}(x, y) f_{X}(y) dy \\ f_{X}(3) = \int_{0}^{\infty} f_{X}(x, y) f_{X}(y) dy \end{cases}$$

$$= \frac{1}{(1-3)^{2}} \int_{0}^{\infty} e^{-\frac{1}{1-3}y} dy = 1$$

$$f_{Z}(3) = \begin{cases} f_{X}(3) = f_$$

The real, second-order process X (t) is wide-sense stationary and its correlation function, $R_{\chi}(\tau)$, is differentiable. Show that for the process to have orthogonal increments it is necessary and sufficient that $R_X(\tau)$ = constant. [HINT. For necessity, use the assumed orthogonality to examine the derivative of $R_X(\tau)$ and its relationship to the derivative of $R_X(\tau)$ at the origin. Sufficiency Let Rx(2) = C = constant and let s=ust $(*) E [\{X(t) - X(u)\}\{X(u) - X(s)\}] = R_X(t-u) - R_X(t-s) - R_X(0) + R_X(u-s)$ \If R=(0) = 9 = C-C-C+C = 0 N-ecessity Let X(t) have orthogonal increments and set $\alpha = t - u$; $\beta = u - s$. Then from (*) $0 = R_{\mathbf{x}}(\alpha) - R_{\mathbf{x}}(\alpha + \beta) - R_{\mathbf{x}}(0) + R_{\mathbf{x}}(\beta)$ equivalently $R_{\mathbf{x}}'(\alpha+\beta)-R_{\mathbf{x}}(\alpha) = R_{\mathbf{x}}(\beta)-R_{\mathbf{x}}(0)$ divide by B and let B ->0 $R_{\mathbf{x}}(\alpha) = \lim_{\beta \to 0} \frac{R_{\mathbf{x}}(\alpha+\beta) - R_{\mathbf{x}}(\alpha)}{\beta} = \lim_{\beta \to 0} \frac{R_{\mathbf{x}}(\beta) - R_{\mathbf{x}}(0)}{\beta} = R_{\mathbf{x}}(0)$ But since X(t) is real RX(-T) = RX(T), which implies (because IRX(0) = RX(0)) that RX(0) = 0. Thus from (**) we have $R_{\overline{r}}(\alpha) = 0$ => Rx(2) = constant

ECE 250

Quiz No. 3

November 19, 2003

Let X_1 (t) and X_2 (t) be independent random telegraph signals whose underlying classical Poisson processes have the same constant rate. Also let

$$P(X_1(0) = 1) = P(X_2(0) = 1) = p, 0$$

Let F(t) be the fraction of time that $X_1(t) = X_2(t)$ in the interval $\{0,t\}$. Find the expected Value of F(t). [Hint. You may find it convenient to define a new process Y(t) by setting Y(t) = 1 when $X_1(t) = X_2(t)$ and Y(t) = 0 when $X_1(t) \neq X_2(t)$.]

$$Y(t) = \begin{cases} 1 & X_1(t) = X_2(t) \\ 0 & \text{otherwise} \end{cases}$$
 Rate = λ

 $P(X(t)=1) = P(X_1(t)=1,X_2(t)=1) + P(X_1(t)=-1,X_2(t)=-1)$ clearly both $X_1(t) \notin X_2(t)$ have identical distribution and, from class $P(X_1(t)=1) = \frac{1}{2} + \binom{2p-1}{2} p^{-2} t$

$$P(Y(t)=1) = \frac{1}{2} + \frac{1}{2}(2p-1)^{2}e^{-4t}$$

Now $F(t) = \frac{1}{t} \int \overline{Y}(t) dt'$ and $E[F(t)] = \frac{1}{t} \int E[Y(t')] dt'$ with $E[Y(t')] = P(Y(t) = 1) = \frac{1}{2} + \frac{1}{2}(2p-1)^{2} O$ and finally $E[F(t)] = \frac{1}{2} + \frac{(2p-1)^{2}}{2} \left(\frac{1-Q-A}{A}\right)^{2}$

$$E[F(t)] = \frac{1}{2} + \frac{(2\rho - 1)^2}{2} \left(\frac{1 - \rho^{-4} \lambda t}{4 \lambda t} \right)$$

ECE 250 FINAL EXAMINATION

December 10, 2003

Name: SOLUTION

1. A random variable, X, has a continuous probability density $f_X(x)$ and corresponding, distribution $F_X(x)$. Define a nonlinear function G(w) by

$$G(w) = F_X(w)$$
. Clearly $0 \le Z \le 1$

Consider the new random variable

$$F_{z(3)} = \{0, 3<0 \}$$

Derive a general expression for the probability density of Z.

Z = G(X).

Case I
$$F_{\mathbb{Z}}(x)$$
 is monotone increasing

 $F_{\mathbb{Z}}(x) = F_{\mathbb{Z}}(x)$

pick a point 30 and

the corresponding point 30 on the X axis

$$F_{Z}(30) = P(Z = 30) = P(X = x_0) = F_{Z}(x_0) = 30,$$

$$0 \le 30 \le 1$$

$$Case II F_{Z}(x) is constant over a region$$

$$F_{Z}(x) = F_{Z}(x)$$

$$F_{z}(z_{1}) = P(Z \leq z_{1}) = P(X \leq x_{2}) = z_{1}$$
 0\(\frac{1}{2}\) $= z_{1} = z_{1} = z_{2} = z_{1}$

In either case $F_{z}(z_{2}) = z_{2} = z_{2}$

$$f_{\mathbf{Z}}(z) = \begin{cases} 0, & 3 < 0 \\ 1, & 0 \le 3 \le 1 \\ 0, & 1 < 3 \end{cases}$$

Name: SOLUTION

2. A process X(t) has monotone increasing sample functions. At intervals spaced T_0 seconds apart, the process may increase by one unit with probability p or it may remain at the same value with probability (1-p). The process is given by:

$$X(t) = \sum_{n=1}^{\infty} a_n \cdot u(t - nTo), t \ge 0$$

Here the 2ns are i. i. d. with

$$P(a_n = 1) = p$$

$$P(a_n = 0) = (1 - p), 0
$$E[\alpha_n] = p$$

$$E[\alpha_n^2] = p$$

$$E[\alpha_n \alpha_m] = \begin{cases} p, n = m \\ p^2, n \neq m \end{cases}$$$$

Find the correlation function

$$R_{X}(t,s) = E[X(t)X(s)], \qquad t,s \ge 0$$

$$R_{X}(t,s) = E\left[\sum_{n=1}^{\infty} a_{n} u(t-n\tau_{0}) \sum_{m=1}^{\infty} a_{m} u(s-m\tau_{0})\right]$$

$$= \rho\left(1-\rho\right) \sum_{n=1}^{\infty} u(t-n\tau_{0}) u(s-n\tau_{0}) + \rho^{2}\left(\sum_{n=1}^{\infty} u(t-n\tau_{0}) \sum_{m=1}^{\infty} u(s-m\tau_{0})\right)$$

$$\sum_{n=1}^{\infty} u(t-n\tau_{0}) = \sum_{n=1}^{\infty} 1 = \left[\frac{t}{t_{0}}\right]. \qquad \left[\frac{t}{t_{0}}\right] = \inf_{n=1}^{\infty} e^{t} \int_{0}^{\infty} u(s-m\tau_{0}) u(s-n\tau_{0}) = \min_{n=1}^{\infty} \left[\frac{t}{t_{0}}\right]. \qquad \left[\frac{s}{t_{0}}\right]$$

$$\sum_{n=1}^{\infty} u(s-m\tau_{0}) u(s-n\tau_{0}) = \min_{n=1}^{\infty} \left[\frac{t}{t_{0}}\right], \left[\frac{s}{t_{0}}\right]$$

$$R_{x}(l,s) = p(1-p)min\left[\begin{bmatrix} t \\ To \end{bmatrix}, \begin{bmatrix} s \\ To \end{bmatrix}\right] + p^{2}\begin{bmatrix} t \\ To \end{bmatrix}\begin{bmatrix} s \\ To \end{bmatrix}$$

3. Let the random variable X have the density

$$f_X(x) = \frac{1}{2}e^{-|x|}$$
 $-\infty < x < \infty$

and let u(w) be the unit step

$$u(w) = \begin{cases} 1, & w \ge 0 \\ 0, & w \ge 0 \end{cases}$$

Must show
$$\lim_{\epsilon \to 0} \mathbb{E}[|Y(t+\epsilon)-Y(t)|] = 0$$
Because $\epsilon \to 0$, it is
not a restriction to
assume $0 < |\epsilon| < |t|$
when $|t| > 0$.

Is the process Y(t) = u(t+x), $-\infty < t < \infty$ mean square continuous? You must support your answer with appropriate reasoning. A simple "yes" or "no" will receive no credit.

$$Y(t+\epsilon) - Y(t) = u(t+\epsilon+x) - u(t+x)$$

$$E[|Y(t+\epsilon) - Y(t)|^{2}] = \frac{1}{3} \int u(t+\epsilon+x) - u(t+x)|^{2} e^{-|x|} dx$$

$$\frac{\epsilon \geq 0}{|u(t+\epsilon+x) - u(t+x)|} = \begin{cases} 1, & -t-\epsilon \leq x < -t \\ 0, & \text{otherwise} \end{cases} - t$$

$$E[|Y(t+\epsilon) - Y(t)|^{2}] = \frac{1}{2} \int_{-t-\epsilon}^{-t} e^{-|x|} dx = \begin{cases} \frac{1}{2}(1-e^{\epsilon})e, & \text{if } t \geq 0 \\ \frac{1}{2}(e^{\epsilon}-1)e^{t}, & \text{if } t < 0 \end{cases}$$

$$E[|Y(t+\epsilon) - Y(t)|^{2}] = \frac{1}{2} \int_{-t-\epsilon}^{-t} e^{-|x|} dx = \begin{cases} \frac{1}{2}(e^{-1})e, & \text{if } t < 0 \end{cases}$$

$$E[|Y(t+\epsilon) - Y(t)|^{2}] = \frac{1}{2} \int_{-t-\epsilon}^{-t} e^{-|x|} dx = \begin{cases} \frac{1}{2}(e^{-1})e, & \text{if } t < 0 \end{cases}$$

$$E[|Y(t+\epsilon) - Y(t)|^{2}] = \frac{1}{2} \int_{-t-\epsilon}^{-t} e^{-|x|} dx = \begin{cases} \frac{1}{2}(e^{-1})e, & \text{if } t < 0 \end{cases}$$

$$E[|Y(t+\epsilon) - Y(t)|^{2}] = \frac{1}{2} \int_{-t-\epsilon}^{-t} e^{-|x|} dx = \begin{cases} \frac{1}{2}(e^{-1})e, & \text{if } t < 0 \end{cases}$$

$$E[|Y(t+\epsilon) - Y(t)|^{2}] = 0$$

Mean Square Continuous? Circle one

4. Let X(t) be a real, wide sense stationary process. This process is passed through a linear, time-invariant system with impulse response h(t). The output is Y(t)

$$Y(t) = \int_{-\infty}^{\infty} h(t-t') X(t') dt'$$

Show that a sufficient condition for Y(t) to be mean square differentiable is

$$|H(i\omega)| \leq \frac{1}{1+|\omega|}$$

where $H(i\omega)$ is the transfer function of the linear system. Do not assume X(t) is mean square differentiable.

5. The process X(t) is real and has zero mean.

$$R_X(t,s)=E[X(t)X(s)]=\frac{1}{2}A(t-s)+\frac{1}{2}A(t+s)$$

where $A(\tau)$ is a symmetric function, i.e. $A(-\tau) = A(\tau)$, which is real and periodic with period T_0 . Find a series expansion for X(t) having orthogonal random coefficients and demonstrate the orthogonality of these coefficients.

Express
$$A(t)$$
 as a Fourier series $T_0/2$

$$A(t) = \sum_{n=0}^{\infty} \lambda_n \cos n \omega_0 t \qquad \omega_0 = \frac{2\pi}{T_0} \int_{A(t)}^{T_0/2} A(t) dt$$

$$\lambda_n = \frac{z}{T_0} \int_{A(t)}^{T_0/2} A(t) \cos n \omega_0 t dt, \quad n = 1, 2, \cdots$$
Then

(1)
$$R_{\mathbf{x}}(t,5) = \frac{1}{2} \sum_{n=0}^{\infty} \lambda_{n} \cos n \omega_{0}(t-5) + \frac{1}{2} \sum_{n=0}^{\infty} \lambda_{n} \cos n \omega_{0}(t+5) = \sum_{n=0}^{\infty} \lambda_{n} \cos n \omega_{0} t \cot n \omega_{0} t \cos n \omega_{0} t \cot n \omega_{0} t \cos n \omega_{0} t \cot n \omega_{0} t$$

From (1) and (2) we will have the K-L expansion
$$X(t) = \sum_{n=0}^{\infty} X_n \cos n\omega_0 t \text{ with } X_n = \begin{cases} \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} X(t) dt \\ \frac{2}{T_0} \int_{-T_0/2}^{T_0/2} X(t) \cos n\omega_0 t dt \end{cases}, n = 1, 2, .$$

For orthogonality of the coefficients $E[X_nX_m] = \frac{2}{T_0} \int_{\text{cosnwotdt}}^{T_0/2} \frac{2^{T_0/2}}{T_0} R_x(t,s) \cos m w ds ds = \frac{2}{T_0}$ $= \frac{2}{T_0} \int_{-T_0/2}^{T_0/2} \frac{-T_0/2}{2 \log n w} \left\{ \frac{\lambda_m \cos m w dt}{2 \log n}, m \neq 0 \right\} dt$ $= 0 \quad \text{if} \quad n \neq m$

Name:

SOLUTION

November 4, 2002

1. The random variables X and Y are independent and jointly Gaussian with zero mean and unit variance. Find the probability density of $Z = X^2/Y^2$.

$$F_{z}(3) = P(Z \leq 3) = P(\frac{Z^{2}}{Y^{2}} \leq 3) = P(\overline{X}^{2} \leq 3 \overline{Y}^{2})$$

$$= \iint_{\overline{X}, \overline{Y}} (x, y) dx dy \qquad Clearly 3^{2}$$

$$= \iint_{\overline{X}, \overline{Y}} (x, y) dx dy \qquad \int_{\overline{X}} (x) dy \qquad$$

$$f_{z}(z) = \frac{1}{\prod \sqrt{3} (1+3)} , \quad 3 \geq 0$$

Name: SOLUTION

2. Let X and Y be jointly Gaussian random variables with zero mean, unit variance and covariance coefficient $\rho_{x,y}$. Do not assume $\rho_{x,y} = 0$.

Consider the complex random variables

$$U=e^{ix} \qquad \qquad V=e^{iY}$$

Express $ho_{U,V}$ (the covariance coefficient of U and V in terms of $ho_{x,y}$.

$$E[U] = E[e^{iX}] = e^{-\frac{1}{2}}$$

$$E[U]^{2} = 1$$

$$E[V] = E[e^{iY}] = e^{-\frac{1}{2}}$$

$$E[V] = E[e^{iY}] = e^{-\frac{1}{2}}$$

$$E[V]^{2} = 1$$

$$E[V]^{2$$

Name: SOLUTION

The process X(t) is real, mean square continuous and has zero mean. In addition it
has orthogonal, stationary increments with

$$E[|X(t)-X(s)|^2]=|t-s|$$
 and $X(0)=0$

A new process is defined by

$$Y(t) = e^{-bt} X(e^{+2bt})$$

with b > 0. Determine the correlation function of Y(t).

$$E[Y(t)Y(s)] = E[e^{bt}X(e^{2bt})e^{bs}X(e^{2bs})]$$

$$= e^{b(t+s)}E[X(e^{2bt})X(e^{2bs})]$$

$$= e^{b(t+s)}E[X(e^{2bt})X(e^{2bs})]$$

$$e^{2bt} \xrightarrow{2bs} = e^{b(t+s)}[X(e^{2bt})X(e^{2bs})]$$

$$e^{2bt} \xrightarrow{2bs} = e^{b(t+s)}[X(e^{2bt})-X(e^{2bs})-X(e^{2bs})]$$

$$e^{2bt} \xrightarrow{2bs} = e^{b(t+s)}[X(e^{2bs})-X(e^{2bs})]$$

$$= e^{b(t+s)}[X(e^{2bs})-X(e^{2bs})]$$

$$= e^{b(t+s)}[x^{2bt}] = e^{b(t+s)}$$

$$E[Y(t)Y(s)] = C - b \cdot |t-s|$$

ECE 250 FINAL EXAMINATION

December 9, 2002

Name SOLUTION

1. The random variables X_1, X_2, \cdots are independent and identically distributed with densities

$$f_{Xn}(x) = \frac{1}{\pi(1+x^2)}$$

Consider the new random variable

$$Y = \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n X_n .$$

 $f_{Xn}(x) = \frac{1}{\pi(1+x^2)} \qquad n = 1, 2, \cdots$ $\overline{\Phi}_{X_n}(x) = E\left[e^{iuX_n}\right]$

Find the probability density of Y . [Hint: the characteristic function may be a useful tool.]

$$\Phi_{T}(u) = E[e^{iuY}] = E[e^{iu\frac{\Sigma}{2}}]^{N}X_{n}$$

$$\frac{1}{\sqrt{1}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = E[e^{iu(\frac{1}{2})^{N}}X_{n}]$$

$$\frac{1}{\sqrt{1}} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} = \frac{1}{\sqrt{1}} = \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} = \frac{1}{\sqrt{$$

$$f_{Y}(y) = \frac{1}{\text{Tr}(1+Y^{2})}$$

Name: SOLUTION

2. The random variables X and Y are jointly Gaussian with zero mean, variances σ_x^2 and σ_Y^2 and correlation coefficient $\rho_{x,y}$. Find the correlation coefficient of

 X^2 and Y^2 . $P_{X_{1}^{2}Y^{2}} = \frac{E[X^{2}Y^{2}] - E[X^{2}]E[Y^{2}]}{\sqrt{Var[X^{2}] Var[Y^{2}]}}$ $E[X^{2}] = \sqrt{\chi^{2}} \qquad E[Y^{2}] = \sqrt{\chi^{2}}$ $Var[X^2] = E[X^4] - (E[X^2])^2 = 3\sqrt{x} + (\sqrt{x}^2)^2 = 2\sqrt{x}^4$ $V_{ar}[Y'] = E[Y'] - (E[Y'])^2 = 3\sqrt{r_Y}^4 - (\sqrt{r_Y}^2)^2 = 2\sqrt{r_Y}^4$ E[X'Y'] = E[X']E[Y'] + 2(E[XY])Using the = $(\overline{\chi}^2)^2 + 2 \rho_{\overline{\chi},\overline{Y}}^2 \sqrt{\overline{\chi}^2} \sqrt{\overline{\chi}^2}$ $(\overline{\chi}^2)^2 \sqrt{\overline{\chi}^2} \sqrt{\overline{\chi}^2$

$$\frac{2 \left(\overline{x}, \overline{y} \right) \left(\overline{y} \right)^{2}}{\sqrt{\left(2 \sqrt{\overline{y}^{4}} \right) \left(2 \sqrt{\overline{y}^{4}} \right)}} = \rho_{\overline{x}, \overline{y}}^{2}$$

It is costomary to use only the positive square root of the denominator, but an acceptable answer is $\pm P_{X,\overline{Y}}^2$

$$\rho_{X^2,Y^2} = \rho_{X,Y}^2$$

3. Let X(1) be a real, classical Brownian motion process (independent, stationary, zero-mean, Gaussian increments, X(0) = 0) with

$$E[|X(t)-X(s)|^2]=K\cdot |t-s|.$$

Define a new process by

$$Y(t) = X(t) - X(t - T_0)$$
, $T_0 > 0$.

Find the correlation function of Y(t).

Consider the case where Sit

[t-5>To] E[Y(+)Y(+)] = E[{X(+)-X(+-To)}{X(6)-X(5-To)}]

 $X(t) - X(t-T_0) = \{X(t) - X(s)\} + \{X(s) - X(t-T_0)\}$

 $X(s) - X(s-T_0) = \{X(s) - X(t-T_0)\} + \{X(t-T_0) - X(s-T_0)\}$

Noting that non-overlapping intervals have independent increments

E[Y(t)Y(s)] = E[|X(s)-X(t-To)|] = K{To-(t-s)}

Similarly for -To = t-5 <0 and t-5 <- To

so that

 $E[\Upsilon(t)\Upsilon(s)] = \begin{cases} K\{T_0 - |t-s|\}, & |t-s| \leq T_0 \\ 0, & |t-s| > T_0 \end{cases}$

$$E[Y(t+\tau)Y(t)] = \begin{cases} K\{T_o - |T|\}, & |T| \leq T_o \\ 0, & |T| > T_o \end{cases}$$

Name: _SOLUTION

4. The variables X_1, X_2, \cdots are real, independent and identically distributed with mean and variance m and σ^2 respectively. Consider the sum

$$S_n = \sum_{k=1}^n a_k X_k$$
.

The coefficients {a_k} are real and non-random. Find necessary and sufficient conditions on the coefficients for the sum S_n to converge in the mean.

It is necessary and sufficient that

This ensures thant {Sn} is a Cauchy sequence

 $E[SnSm] = E\left[\sum_{k=1}^{N} a_k \overline{X}_k \sum_{k=1}^{M} a_k \overline{X}_k\right] = \sum_{k=1}^{M} \sum_{k=1}^{M} a_k a_k E[\overline{X}_k \overline{X}_k]$

 $= m^{2} \left(\sum_{k=1}^{n} a_{k} \right) \left(\sum_{l=1}^{m} a_{l} \right) + \sqrt{1 - \sum_{l=1}^{m} a_{k}}$

Clearly if both $\lim_{n\to\infty} \sum_{k=1}^{n} a_k a_k d_k \lim_{n\to\infty} \sum_{k=1}^{n} a_k^2$ exist, then $\lim_{n\to\infty} E[S_n S_m]$ exists

Conditions: Both $\sum_{k=1}^{n} a_k$ and $\sum_{k=1}^{n} a_k^2$ converge as $n \to \infty$

SOLUTION

5. Let X(t) be a real random process satisfying

E[X(t)] = t

$$R_{\mathbf{X}}(t,s) = E[\mathbf{X}(t)\mathbf{X}(s)]$$

E[X(t)X(s)] = st + min[s, t].

This process is passed through a linear, time-invariant filter with impulse response

$$h(t) = u(t) - u(t-1) = \begin{cases} 1, & 0 \le t \le 1 \\ 0, & \text{otherwise} \end{cases}$$

Denoting the output process by Y(t), determine if Y(t) is mean square differentiable. A simple "yes" or "no" will not receive any credit. You must u

 $Y(t) = \int_{-\infty}^{\infty} h(u-\alpha)X(\alpha)d\alpha = \int_{-\infty}^{\infty} X(\alpha)d\alpha$

If, for all t, the second partial

$$\frac{\partial^2}{\partial u \partial v} E[Y(u)Y(v)] \Big|_{u=v=t} = \text{exists, the process } Y(t)$$
15 differentiable $u = v = t$

$$\frac{\partial^2}{\partial u \partial v} E[Y(u)Y(v)] = \frac{\partial^2}{\partial u \partial v} \int_{u-v-v} R_X(\alpha,\beta) d\alpha d\beta$$

=
$$R_{X}(u,v) - R_{X}(u-1,v) - R_{X}(u,v-1) + R_{X}(u-1,v-1)$$

 $= R_{X}(u,v) - R_{X}(u-1,v) - R_{X}(u,v-1) + R_{X}(u-1,v-1)$ evaluating this at u=v=t we have $\frac{\partial^{2}}{\partial u \partial v} E[Y(u)Y(v)] = 2$ |u=v=tClearly Y(t) is differentiable

$$\frac{\partial^2}{\partial u \partial v} E[Y(u)Y(v)] = 2$$

$$u = v = t$$

SOLUTION

6. The real process X(t) has zero mean and correlation function

$$E[X(t)|X(s)] = \frac{1}{2}e^{-|t-s|}$$

$$R_{\mathbf{X}}(\tau) = \frac{1}{2} e^{-|\tau|}$$

This process is used to modulate a sinusoidal carrier

$$S_{\overline{X}}(t) = \frac{1}{2}$$
ss is used to modulate a sinusoidal carrier
$$S_{\overline{X}}(\omega) = \int_{-\infty}^{\infty} R_{\overline{X}}(T) \mathcal{C} dT$$

$$= \frac{1}{1+\omega^2}$$

In general Y(t) is neither stationary nor wide sense stationary. Useful information about the spectral content of Y(t) can often be obtained from the averaged correlation

$$\overset{-}{R}_{Y}(\tau) = \lim_{A \to \infty} \frac{1}{2A} \int_{-A}^{A} E \left[Y(t+\tau) Y(t) \right] dt.$$

In effect this averaging randomizes the time origin of the process. Obtain explicit expressions for $R_Y(\tau)$ and the associated power spectral density

$$\bar{S}_{Y}(\omega) = \int_{-\infty}^{\infty} \bar{R}_{Y}(\tau) \ e^{-i\omega\tau} d\tau \ .$$

 $E[Y(t+T)Y(t)] = R_X(t) \cos w_0(t+t) \cos w_0 t$ == \(\frac{1}{2}\cos(A+B)\) + \(\frac{1}{2}\cos(A+B)\) = \(\frac{1}{2}\cos(A+B)\) (05\(\omega\) (2t+\(\text{1}\)) Ry(() = lim 1/2A SE[Y(++t))Y(+))dt = $\frac{1}{2}R_{\chi}(\tau)\cos\omega_{0}\tau + \frac{1}{2}R_{\chi}(\tau)\lim_{A\to\infty}\frac{1}{2A}\cos\omega_{0}(2t+\tau)dt$ = \frac{1}{2} R_{\overline{X}}(\overline{\chi}) coswo \overline{\chi} + \frac{1}{2} R_{\overline{X}}(\overline{\chi}) \limes \frac{1}{4A} \limes \frac{2A}{\chi \overline{\chi}} \cos wo (s+\overline{\chi}) ds

$$\frac{1}{R_{Y}(\tau)} = \frac{1}{2} R_{X}(T) \cos \omega_{0} T \qquad S_{Y}(\omega) = \frac{1}{4} \left\{ \frac{1}{1 + (\omega - \omega_{0})^{2}} + \frac{1}{1 + (\omega + \omega_{0})^{2}} \right\}$$

Now
$$\lim_{A\to\infty} \frac{1}{4A} \int_{-2A}^{2A} \cos(s+t) ds = 0$$

This can be seen by noting that the integral 5 coswo(5+2)d5

extends over an integer number of periods (= 211) of the cosine with an additional extent that cannot exceed two periods. Moreover, noting that | coswo(s+2) | =1, we have

$$\left| \int_{-2A}^{2A} \cos w_0(s+\overline{t})ds \right| \leq \frac{4\pi}{w_0}$$

$$\therefore \overline{R}_{\overline{Y}}(\overline{\iota}) = \frac{1}{2} R_{\overline{X}}(\overline{\iota}) \cos \omega_0 \overline{\iota}$$

 $\overline{S}_{\overline{Y}}(w) = \int_{-2}^{\infty} \frac{1}{2} R_{\overline{X}}(\overline{\tau}) \cos \omega_0 \overline{\tau} e^{-i\omega t} d\tau$ $= \frac{1}{4} \left\{ S_{\mathbf{X}}(\omega - \omega_{d}) + S_{\mathbf{X}}(\omega + \omega_{d}) \right\}$

$$\overline{S}_{\overline{Y}}(w) = \frac{1}{4} \left\{ \frac{1}{1 + (w - w_0)^2} + \frac{1}{1 + (w + w_0)^2} \right\}$$