Session 3: The rank

Optimization and Computational Linear Algebra for Data Science

Léo Miolane

Contents

- 1. Subspaces
- Linear dependency
- 3. Properties of the dimension
- 4. Coordinates
- 5. Why do we care about all these things?
 Application to data science: image compression

The rank

The rank 1/15

Recap of the videos

Definition

We define the rank of a family x_1, \ldots, x_k of vectors of \mathbb{R}^n as the dimension of its span:

$$\operatorname{rank}(x_1,\ldots,x_k) \stackrel{\text{def}}{=} \dim(\operatorname{Span}(x_1,\ldots,x_k)).$$

Definition

Let
$$M \in \mathbb{R}^{n \times m}$$
. Let $c_1, \dots, c_m \in \mathbb{R}^n$ be its columns. We define $\operatorname{rank}(M) \stackrel{\text{def}}{=} \operatorname{rank}(c_1, \dots, c_m) = \dim(\operatorname{Im}(M))$.

Proposition

Let $M \in \mathbb{R}^{n \times m}$. Let $r_1, \dots, r_n \in \mathbb{R}^m$ be the rows of M and $c_1, \dots, c_m \in \mathbb{R}^n$ be its columns. Then we have $\operatorname{rank}(r_1, \dots, r_n) = \operatorname{rank}(c_1, \dots, c_m) = \operatorname{rank}(M)$.

The rank 2/

How do we compute the rank?

For $v_1, \ldots, v_k \in \mathbb{R}^n$, and $\alpha \in \mathbb{R} \setminus \{0\}$, $\beta \in \mathbb{R}$ we have

$$rank(v_1,...,v_k) = rank(v_1,...,v_{i-1}, \alpha v_i, v_{i+1},...,v_k)$$

= rank(v_1,..., v_{i-1}, v_i + \beta v_j, v_{i+1},...,v_k)

As a consequence, the Gaussian elimination method keeps the rank of a matrix unchanged!

Example

Let's compute the rank of $A = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 2 & 0 & 1 & -1 \\ -1 & 5 & 2 & 0 \end{pmatrix}$

4/15

The rank

Example

The rank

												_

The rank-nullity Theorem

The rank-nullity Theorem 6/15

Rank-nullity Theorem

Theorem

Let $L: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation. Then

$$\operatorname{rank}(L) + \dim(\operatorname{Ker}(L)) = m.$$

Proof sketch on an example

Let us solve the linear system Ax = 0.

$$\begin{pmatrix} 1 & -1 & 0 & 1 & 0 \\ 2 & 0 & 1 & -1 & 0 \\ -1 & 5 & 2 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & -1 & 0 & 1 & 0 \\ 0 & 2 & 1 & -3 & 0 \\ 0 & 4 & 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} R_1 \\ (R_2) - 2(R_1) \\ (R_3) + (R_1) \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 & 0 & 1 & 0 \\ 0 & 2 & 1 & -3 & 0 \\ 0 & 0 & 0 & 7 & 0 \end{pmatrix} \begin{pmatrix} (R_1) \\ (R_2) \\ (R_3) - 2(R_2) \end{pmatrix}$$

The rank-nullity Theorem

Invertible matrices

Invertible matrices 9/15

Invertible matrices

Definition (Matrix inverse)

A **square** matrix $M \in \mathbb{R}^{n \times n}$ is called *invertible* if there exists a matrix $M^{-1} \in \mathbb{R}^{n \times n}$ such that

$$MM^{-1} = M^{-1}M = \mathrm{Id}_n.$$

Such matrix M^{-1} is unique and is called the *inverse* of M.

Exercise: Let $A, B \in \mathbb{R}^{n \times n}$. Show that if $AB = \mathrm{Id}_n$ then $BA = \mathrm{Id}_n$.

Invertible matrices 10/15

Invertible matrices

Theorem

Let $M \in \mathbb{R}^{n \times n}$. The following points are equivalent:

- 1. *M* is invertible.
- 2. For all $y \in \mathbb{R}^n$, there exists a unique $x \in \mathbb{R}^n$ such that Mx = y.
- 3. $\operatorname{rank}(M) = n$.
- 4. $Ker(M) = \{0\}.$

Invertible matrices

PI	ro	O	Γ_											

Invertible matrices

PI	ro	O	Γ_											

Invertible matrices

Pľ	00)T											

Invertible matrices

Pľ	00)T											

What do we mean by « structure »?

Invertible matrices 13/15

A toy example

Consider n=2, that is images $v\in\mathbb{R}^2$ with only 2 pixels.

Invertible matrices 14/15

Examples of good bases

Fourier bases (used in .jpeg, .mp3)

```
./fourier.jpeg ./fourier_dec.jpg
```

- JPEG2000 uses wavelet bases, and achieves better performance than JPEG.
- In **Homework 4**, you will use wavelets to compress/denoise images.

Invertible matrices 15/1

Questions?