Building a Spanish/Catalan Health Records Corpus with Very Sparse Protected Information Labelled LREC 2018

Salvador Medina and Jordi Turmo

Universitat Politècnica de Catalunya Talp Research Center

Carrer de Jordi Girona, 1-3, 08034 Barcelona {smedina, turmo}@cs.upc.edu

Contents

- 1 Introduction
 - Overview
 - Motivation
- 2 Methodoloty
 - The iterative method
- 3 Evaluation
 - Evaluation Framework
 - Evaluation Results

Contents

- 1 Introduction
 - Overview
 - Motivation
- 2 Methodoloty
 - The iterative method
- 3 Evaluation
 - Evaluation Framework
 - Evaluation Results

Overview

About this project

- Build Health Record Corpora with labeled Protected Health Information
 - Unstructured health notes
 - High sparsity of Protected Health Information
 - Multilingual: Spanish and Catalan
- Identification based on manual rules
 - Rules defined by non-programmers
 - Rules can be understood by health experts
 - Implemented using Augmented Transition Networks
- Iterative and interactive process:
 - Inspired by active learning
 - Expert evaluator defines new rules each iteration
 - The algorithm selects relevant examples to build such rules

Overview

About this project

- Build Health Record Corpora with labeled Protected Health Information
 - Unstructured health notes
 - High sparsity of Protected Health Information
 - Multilingual: Spanish and Catalan
- Identification based on manual rules
 - Rules defined by non-programmers
 - Rules can be understood by health experts
 - Implemented using Augmented Transition Networks
- Iterative and interactive process:
 - Inspired by active learning
 - Expert evaluator defines new rules each iteration
 - The algorithm selects relevant examples to build such rules

Overview

About this project

- Build Health Record Corpora with labeled Protected Health Information
 - Unstructured health notes
 - High sparsity of Protected Health Information
 - Multilingual: Spanish and Catalan
- Identification based on manual rules
 - Rules defined by non-programmers
 - Rules can be understood by health experts
 - Implemented using Augmented Transition Networks
- Iterative and interactive process:
 - Inspired by active learning
 - Expert evaluator defines new rules each iteration
 - The algorithm selects relevant examples to build such rules

Contents

- 1 Introduction
 - Overview
 - Motivation
- 2 Methodoloty
 - The iterative method
- 3 Evaluation
 - Evaluation Framework
 - Evaluation Results

Available Corpora

Several Electronic Health Record (EHR) corpora for Protected Health Information (PHI) can be retrieved from multiple sources:

- Shared Tasks
 - 2006 and 2014 *i2b2* Challenges [Uzuner et al., 2007]
 [Stubbs and Uzuner, 2015]
 - 2016 CEGS N-GRID Shared Tasks [Stubbs et al., 2017]
- Re-purposed EHR corpora
 - Intelligent Monitoring for Intensive Care (MIMIC-II) [Neamatullah et al., 2008]
- ⇒ Most corpora is in **English**, multi-lingual corpora is needed

Available Corpora

Several Electronic Health Record (EHR) corpora for Protected Health Information (PHI) can be retrieved from multiple sources:

- Shared Tasks
 - 2006 and 2014 *i2b2* Challenges [Uzuner et al., 2007] [Stubbs and Uzuner, 2015]
 - 2016 CEGS N-GRID Shared Tasks [Stubbs et al., 2017]
- Re-purposed EHR corpora
 - Intelligent Monitoring for Intensive Care (MIMIC-II) [Neamatullah et al., 2008]
- ⇒ Most corpora is in **English**, multi-lingual corpora is needed

Introduction

∟ Motivation

Motivation

Regulations and directives

- Different countries have different regulations:
 - Spain: Ley Orgánica de Protección de Datos
- Legislation imposes restrictions to
 - Who can access non-anonyzed EHR
 - The kinds of entities that must be anonymized
 - The level of protection of different kinds of EHR

Introduction

∟ Motivation

Motivation

Regulations and directives

- Different countries have different regulations:
 - Spain: Ley Orgánica de Protección de Datos
- Legislation imposes restrictions to
 - Who can access non-anonyzed EHR
 - The kinds of entities that must be anonymized
 - The level of protection of different kinds of EHR

Manual labelling costs

- Health notes usually have a very density of PHI
 - \blacksquare In our corpus, $\sim 0.4\%$ of tokens are people's names
- PHI classes are very unbalanced
 - \blacksquare In our corpus, <0.01% of telephone numbers vs $\sim1\%$ of locations
- Labelling has to be done by experts
- Labels should be consensuated among various evaluators

Manual labelling costs

- Health notes usually have a very density of PHI
 - \blacksquare In our corpus, $\sim 0.4\%$ of tokens are people's names
- PHI classes are very unbalanced
 - \blacksquare In our corpus, <0.01% of telephone numbers vs $\sim1\%$ of locations
- Labelling has to be done by experts
- Labels should be consensuated among various evaluators

Manual labelling costs

- Health notes usually have a very density of PHI
 - lacktriangle In our corpus, $\sim 0.4\%$ of tokens are people's names
- PHI classes are very unbalanced
 - lacksquare In our corpus, < 0.01% of telephone numbers vs $\sim 1\%$ of locations
- Labelling has to be done by experts
- Labels should be consensuated among various evaluators

Contents

- 1 Introduction
 - Overview
 - Motivation
- 2 Methodoloty
 - The iterative method
- 3 Evaluation
 - Evaluation Framework
 - Evaluation Results

- Potential PHI in EHR are identified by using a set of rules
- Rules are implemented using Augmented Transition Networks (ATN)
- The rule set is iteratively updated
 - New rules are added
 - Existing ones are updated and grow in complexity
- New EHR are added to the training set in each iteration

- Potential PHI in EHR are identified by using a set of rules
- Rules are implemented using Augmented Transition Networks (ATN)
- The rule set is iteratively updated
 - New rules are added
 - Existing ones are updated and grow in complexity
- New EHR are added to the training set in each iteration

L Methodoloty

The iterative method

The Iterative Method

- Potential PHI in EHR are identified by using a set of rules
- Rules are implemented using Augmented Transition Networks (ATN)
- The rule set is iteratively updated
 - New rules are added
 - Existing ones are updated and grow in complexity
- New EHR are added to the training set in each iteration

- Potential PHI in EHR are identified by using a set of rules
- Rules are implemented using Augmented Transition Networks (ATN)
- The rule set is iteratively updated
 - New rules are added
 - Existing ones are updated and grow in complexity
- New EHR are added to the training set in each iteration

- 1 Run against C_{tr}
- 2 Define new rule so that $F_1'(C_{tr}) \ge F_1(C_{tr})$
- \blacksquare Evaluate against C_{val}
- 4 Repeat from 2 unless
 - $r' \le r$ and $F'_1 < F_1$ \Rightarrow Discard rule
 - p' < p and $F'_1 < F_1$ \Rightarrow Update rule (p' > p)
- **5** Run against C_{unl}
- 6 Rank and select $f(C_{unl})$

- \blacksquare Run against C_{tr}
- 2 Define new rule so that $F'_1(C_{tr}) \geq F_1(C_{tr})$
- \blacksquare Evaluate against C_{val}
- 4 Repeat from 2 unless
 - $r' \le r$ and $F'_1 < F_1 \Rightarrow$ Discard rule
 - p' < p and $F'_1 < F_1$ \Rightarrow Update rule (p' > p)
- **5** Run against C_{unl}
- 6 Rank and select $f(C_{unl})$

- \blacksquare Run against C_{tr}
- 2 Define new rule so that $F'_1(C_{tr}) \ge F_1(C_{tr})$
- 3 Evaluate against C_{val}
- 4 Repeat from 2 unless
 - $r' \le r$ and $F'_1 < F_1$ \Rightarrow Discard rule
- **5** Run against C_{unl}
- 6 Rank and select $f(C_{unl})$

- 1 Run against C_{tr}
- 2 Define new rule so that $F_1'(C_{tr}) \ge F_1(C_{tr})$
- $\mathbf{3}$ Evaluate against C_{val}
- 4 Repeat from 2 unless
 - $r' \le r$ and $F'_1 < F_1$ \Rightarrow Discard rule
- **5** Run against C_{unl}
- 6 Rank and select $f(C_{unl})$

- \blacksquare Run against C_{tr}
- 2 Define new rule so that $F_1'(C_{tr}) \ge F_1(C_{tr})$
- \blacksquare Evaluate against C_{val}
- 4 Repeat from 2 unless
 - $r' \le r$ and $F'_1 < F_1$ \Rightarrow Discard rule
- **5** Run against C_{unl}
- 6 Rank and select $f(C_{unl})$

- \blacksquare Run against C_{tr}
- 2 Define new rule so that $F_1'(C_{tr}) \ge F_1(C_{tr})$
- \blacksquare Evaluate against C_{val}
- 4 Repeat from 2 unless
 - $r' \le r$ and $F'_1 < F_1$ \Rightarrow Discard rule
- **5** Run against C_{unl}
- 6 Rank and select $f(C_{unl})$

Ranking and selection of EHR

$$f(d) = \sum_{i \in K} N_i(d) * (1 - F_1(i)) * (1 - p_i)$$

$$p_i = \frac{\sum_{t \in T} N_i(t)}{\sum_{i \in K} \sum_{t \in T} N_i(t)} \quad (1)$$

of Documents: Elbow Criterion

Threshold score is the one that corresponds to the *elbow* point of the curve defined by the document's scores sorted in decreasing order

The Iterative Method Observations

- lacktriangle Prioritizes rules that increase *recall* while F_1 is not decreased
- \blacksquare F_1 increases monotonically
- Can be applied indefinitely
- Entities of uncommon classes are prioritized
- Documents with no entities are not selected

Contents

- 1 Introduction
 - Overview
 - Motivation
- 2 Methodoloty
 - The iterative method
- 3 Evaluation
 - Evaluation Framework
 - Evaluation Results

Levaluation Framework

Evaluation Framework

Direct and Indirect Evaluation

Direct Evaluation

Goal: Optimize the manual labeling process

- Evaluate using F_1 score achieved by the rule set
- Partial evaluation for boundary identification

Indirect Evaluation

Goal: Optimize the resulting corpus

- lacktriangle Evaluate using F_1 score achieved by a tagger trained using the resulting corpus
- Strict evaluation for boundary identification

Contents

- 1 Introduction
 - Overview
 - Motivation
- 2 Methodoloty
 - The iterative method
- 3 Evaluation
 - Evaluation Framework
 - Evaluation Results

Evaluation
Evaluation Results

Evaluation Results

Direct evaluation over each Iteration

LEvaluation Results

Evaluation Results

Final direct Evaluation

	Eval.	NERC	initial	final
ALL	Recall	0.052	0.147	0.702
	Prec.	0.494	0.208	0.489
	F_1	0.094	0.172	0.576
PERSON	Recall	0.436	0.676	0.772
	Prec.	0.023	0.196	0.445
	F_1	0.044	0.304	0.564
LOCATION	Recall	0.517	0.013	0.371
	Prec.	0.064	0.127	0.809
	F_1	0.114	0.024	0.509

Table: Evaluation results in the test set for the general-purpose *Freeling* NERC module, and for the initial and final sets of hand-crafted rules.

Evaluation

Evaluation Results

Evaluation Results

Final indirect evaluation

	Eval.	Cross-Val.	Res. Corpus
ALL	Recall	0.721 (0.027)	0.699 (0.042)
	Prec.	0.839 (0.026)	0.769 (0.047)
	F_1	0.774 (0.017)	0.732 (0.039)
PERSON	Recall	0.784 (0.064)	0.759 (0.093)
	Prec.	0.909 (0.041)	0.730 (0.061)
	F_1	0.840 (0.025)	0.744 (0.057)
LOCATION	Recall	0.695 (0.040)	0.676 (0.056)
	Prec.	0.812 (0.022)	0.783 (0.061)
	F_1	0.748 (0.037)	0.726 (0.052)

Table: Mean *recall*, *precision* and F_1 score obtained by a CRF model trained using the labelled corpus obtained after 3 iterations of the method (1051 health records) compared to the *8-fold* cross validation of the test corpus (4350 health records) for the 8 testing partitions. Standard deviation is shown between brackets.

References I

Automated de-identification of free-text medical records. BMC medical informatics and decision making, 8(1):32.

Stubbs, A., Filannino, M., and Uzuner, Ö. (2017).

De-identification of psychiatric intake records: Overview of 2016 cegs n-grid shared tasks track 1.

Journal of Biomedical Informatics.

Stubbs, A. and Uzuner, Ö. (2015).

Annotating longitudinal clinical narratives for de-identification:
The 2014 i2b2/uthealth corpus.

Journal of biomedical informatics, 58:S20–S29.

Levaluation Results

References II

Uzuner, Ö., Luo, Y., and Szolovits, P. (2007). Evaluating the state-of-the-art in automatic de-identification. *Journal of the American Medical Informatics Association*, 14(5):550–563.

Evaluation Results

Thank you for your attention!

<u>Levaluation</u> Results

Questions?