Statistics primer & exponential families

"Algebraic & Geometric Methods in Statistics"

Sonja Petrović Created for Math/Stat 561

Jan 30, 2023.

Objective

- Review some statistics fundamentals;
- understand the setup of exponential families.

Material:

Sourced from chapters 5 ("Statistics primer") and 6 ("exponential families") of the textbook. Other resources provided in subsequent links.

Parametric models: self-review

- What is a parametric statistical model?
- What is an implicit statistical model?
- What does it mean for random variables X_1, \ldots, X_n to be *iid* (independent and identically distributed)?
- What does it mean for random variables to be exchangable?
- What is an *iid* sample?

Task:

Look up, write down, and adopt these definitions. See Sections 5.1. and 5.2. of the textbook (handout).

The running example

Example 5.3.2.: Binomial random variable: r + 1 states, $0, \ldots, r$.

• The model consists of all distributions of the form

$$\{\left(\pi^r, r\pi^{r-1}(1-\pi), \ldots, (1-\pi)^r\right) : \pi \in [0,1]\}.$$

In other words, the model is the set $\{p_{\pi}\}\subset \mathbb{R}^{r+1}$ where each p_{π} has the above form.

- Data collected from an *iid* sample of size $n: X^{(1)}, \ldots, X^{(n)}$, from an underlying distribution p_{π_0} .
- π_0 is the unknown but fixed parameter we would like to estimate using the data.

Statistics vs. parameters

Parameter [Definition 5.3.1.]

Let \mathcal{M}_{θ} be a parametric statistical model with parameter space Θ . A parameter of a statistical model is a function $s: \Theta \to \mathbb{R}$.

Statistic [Definition 5.1.5.]

A statistic is a function from the state space to some other set.

• A statistic T(X) is sufficient for the model if $P(X = x | T(X) = t, \theta) = P(X = x | T(X) = t)$.

Estimator [Definition 5.3.1.]

An estimator $\hat{\theta}$ is a function from the data space D to \mathbb{R} .

- An estimator is consistent if $\hat{\theta} \to_P \theta$. \leftarrow it converges to the true parameter as the sample size $\to \infty$.
 - There are many ways to compute an estimator.

Three simulations, one parametric model, one unknown parameter

- \rightarrow The parametric model: $Bin(10000, \pi)$
 - Histogram 1: data simulated with $\pi = 1/2$.
 - Histogram 2: data simulated with $\pi = 1/4$.
 - Histogram 3: data simulated with $\pi = 7/8$.

What is the parameter estimation problem on this example?

Write it out.

(What is X, θ or π , r, n, a statistic, an estimator of a parameter?)

The parameter estimation problem

- There are many ways to compute estimatores.
 - See Math 563, for starters; Method of moments, for example
 - READ Examples in the book re: binomial r.v.: 5.3.2, 5.3.4, 5.3.6.

Maximum likelihood estimation [Defn. 5.3.5.]

Let D be data from some model w/ parameter space Θ . Likelihood function:

$$L(\theta|D) := p_{\theta}(D) \text{ or } L(\theta|D) := f_{\theta}(D).$$

• L is a function of the parameter(s)! Data is *fixed* in the likelihood function.

The maximum likelihood estimate (MLE) $\hat{\theta}$ is the maximizer of the likelihood function:

$$\hat{\theta} = \arg\max_{\theta \in \Theta} L(\theta|D).$$

• MLE = the particular value $\hat{\theta}$ of the parameter that makes D most likely to have been observed udner the model.

Let's look at the Binomial example again.

- The data $D = X^{(1)}, \dots, X^{(n)}$ is summarized by a vector of counts $u = (u_0, \dots, u_r)$, where $u_i = |\{j : X(j) = i\}|$.
- In the case of discrete data, this likelihood function is thus only a function of the vector of counts *u*:

$$L(\theta|D) = \prod_{j} p_{\theta}(j)^{u_{j}}.$$

* It is common to study the log-likelihood function $\ell(\theta|D) = \log L(\theta|D)$.

Binomial likelihood

Go over **Example 5.3.6**.

- What is the likelihood function?
- What is the MLE?

MLE for $\mathcal{M}_{1 \perp \!\!\! \perp 2}$.

Go over Proposition 5.3.8. and proof.

Exponential families

- definition [book. example w/ A and h.]
- binomial distribution as an expo family
- discrete. examples 6.2.6 and 6.2.7.
- log-linear models.

under construction

Unfortunately, I didnot have time to re-type these notes, so for now I will switch to lecture notes by Prof. Kaie Kubjas, who is also using the same textbook!

go to pdf

Other resources

- Check out this lovely tutorial on MLE by Prof. Andrew Moore.
- Larry Wasserman's intermediate statistics notes on likelihood and sufficiency: read this and this.
- Eliana Duarte's summer school lectures include these slides on [exponential families: an algebraic statistics perspective], see page 13-18. link will be provided ASAP.
- Michael I. Jordan's chapter on exponential families provides another resource equivalent to the background in Chapter 6.

License

This document is created for Math/Stat 561, Spring 2023, at Illinois Tech.

All materials posted on this page are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.