#### Linear geostatistical models

Dr Emanuele Giorgi Lancaster University e.giorgi@lancaster.ac.uk

Toowoomba 21-25 October 2019

### Where we observe matters



 $ightharpoonup Y_i = ext{lead concentration in a moss sample (ppm)}$ 

 $Y_i$  = lead concentration in a moss sample (ppm)

$$Y_i = \alpha + S(x_i) + Z_j$$

2 / 29

 $ightharpoonup Y_i = \text{lead concentration in a moss sample (ppm)}$ 

$$Y_i = \alpha + S(x_i) + Z_j$$

 $ightharpoonup Z_i \sim N(0, \tau^2)$ 

 $ightharpoonup Y_i = \text{lead concentration in a moss sample (ppm)}$ 

$$Y_i = \alpha + S(x_i) + Z_i$$

- $ightharpoonup Z_i \sim N(0, \tau^2)$
- ▶ We assume that S(x) is a stationary and isotropic Gaussian process, i.e.

$$Cov(S(x), S(x')) = \sigma^2 \rho(u), \quad u = ||x - x'||.$$

 $ightharpoonup Y_i = \text{lead concentration in a moss sample (ppm)}$ 

$$Y_i = \alpha + S(x_i) + Z_j$$

- $ightharpoonup Z_i \sim N(0, \tau^2)$
- ▶ We assume that S(x) is a stationary and isotropic Gaussian process, i.e.

$$Cov(S(x), S(x')) = \sigma^2 \rho(u), \quad u = ||x - x'||.$$

▶ How do we choose  $\rho(\cdot)$ ?

 $ightharpoonup Y_i = \text{lead concentration in a moss sample (ppm)}$ 

$$Y_i = \alpha + S(x_i) + Z_j$$

- $ightharpoonup Z_i \sim N(0, \tau^2)$
- We assume that S(x) is a stationary and isotropic Gaussian process, i.e.

$$Cov(S(x), S(x')) = \sigma^2 \rho(u), \quad u = ||x - x'||.$$

- ▶ How do we choose  $\rho(\cdot)$ ?
- Example:  $\rho(u) = \exp\{-u/\phi\}$

# The theoretical variogram (continued)

$$v(u) = \tau^2 + \sigma^2(1 - \rho(u))$$

# The theoretical variogram (continued)

$$v(u) = \tau^2 + \sigma^2(1 - \rho(u))$$



# The scale of the spatial correlation



# The scale of the spatial correlation



# The scale of the spatial correlation



$$\rho(u) = 2^{\kappa - 1} (u/\phi)^{\kappa} K_{\kappa}(u/\phi)$$

$$\rho(u) = 2^{\kappa - 1} (u/\phi)^{\kappa} K_{\kappa}(u/\phi)$$

•  $K_{\kappa}(\cdot)$  : modified Bessel function of order  $\kappa$ 

$$\rho(u) = 2^{\kappa - 1} (u/\phi)^{\kappa} K_{\kappa}(u/\phi)$$

- $K_{\kappa}(\cdot)$ : modified Bessel function of order  $\kappa$
- Interpretation

$$\rho(u) = 2^{\kappa - 1} (u/\phi)^{\kappa} K_{\kappa}(u/\phi)$$

- $K_{\kappa}(\cdot)$ : modified Bessel function of order  $\kappa$
- ► Interpretation
  - $\triangleright$   $\kappa$  determines smoothness of underlying Gaussian process

$$\kappa > r o S(x)$$
 is  $r$  times differentiable

$$\rho(u) = 2^{\kappa - 1} (u/\phi)^{\kappa} K_{\kappa}(u/\phi)$$

- $K_{\kappa}(\cdot)$  : modified Bessel function of order  $\kappa$
- ► Interpretation
  - $\triangleright$   $\kappa$  determines smoothness of underlying Gaussian process

$$\kappa > r \to S(x)$$
 is  $r$  times differentiable

lacktriangledown  $\phi$  determines scale of the spatial correlation

$$\rho(u) = 2^{\kappa - 1} (u/\phi)^{\kappa} K_{\kappa}(u/\phi)$$

- $K_{\kappa}(\cdot)$ : modified Bessel function of order  $\kappa$
- ► Interpretation
  - $\triangleright$   $\kappa$  determines smoothness of underlying Gaussian process

$$\kappa > r \to S(x)$$
 is  $r$  times differentiable

- $ightharpoonup \phi$  determines scale of the spatial correlation
- Special cases
  - = 0.5 gives  $\rho(u) = \exp\{u/\phi\}$
  - $k \to \infty$  gives  $\rho(u) = \exp\{(u/\phi)^2\}$

$$\rho(u) = 2^{\kappa - 1} (u/\phi)^{\kappa} K_{\kappa}(u/\phi)$$

- $K_{\kappa}(\cdot)$ : modified Bessel function of order  $\kappa$
- ► Interpretation
  - $\triangleright$   $\kappa$  determines smoothness of underlying Gaussian process

$$\kappa > r \to S(x)$$
 is  $r$  times differentiable

- $ightharpoonup \phi$  determines scale of the spatial correlation
- Special cases
  - = 0.5 gives  $\rho(u) = \exp\{u/\phi\}$
  - $k \to \infty$  gives  $\rho(u) = \exp\{(u/\phi)^2\}$
- ▶ Often sufficient to choose amongst  $\kappa = 0.5, 1.5, 2.5$





1. Measurement error

- 1. Measurement error
- 2. Small scale spatial correlation

- 1. Measurement error
- 2. Small scale spatial correlation

$$Y_{i} = \alpha + S(x_{i}) + Z(x_{i})$$

$$cor\{Z(x), Z(x')\} = \begin{cases} \delta & \text{if } ||x - x'|| < u^{*} \\ 0 & \text{if } ||x - x'|| \ge u^{*} \end{cases}$$

- 1. Measurement error
- 2. Small scale spatial correlation

$$Y_{i} = \alpha + S(x_{i}) + Z(x_{i})$$

$$cor\{Z(x), Z(x')\} = \begin{cases} \delta & \text{if } ||x - x'|| < u^{*} \\ 0 & \text{if } ||x - x'|| \ge u^{*} \end{cases}$$

If  $u^* < u_{min}$  then  $Z(x_i)$  is pure noise.

### The canonical geostatistical problem

Given a set of measurements  $Y_i$ :  $i=1,\ldots,n$  at locations  $x_i$  in a spatial region A, presumed to be (noisy) measurements of a spatially continuous phenomenon  $S(x_i)$ , what can we say about the realisation of S(x) throughout A?



## Getting initial parameter estimates

- Widely used, but not recommended except for initial analysis.
- $\bullet \ \theta = (\sigma^2, \phi, \tau^2)$
- Weighted least squares criterion:

$$W(\theta) = \sum_{k} n_{k} [\hat{v}(u_{k}) - v(u_{k}; \theta)]^{2}$$

## Getting initial parameter estimates

- Widely used, but not recommended except for initial analysis.
- $\bullet \ \theta = (\sigma^2, \phi, \tau^2)$
- ▶ Weighted least squares criterion:

$$W(\theta) = \sum_{k} n_{k} [\hat{v}(u_{k}) - v(u_{k}; \theta)]^{2}$$

▶ Arbitrary binning and upper limit for  $u_k$ .

## Getting initial parameter estimates

- ▶ Widely used, but not recommended except for initial analysis.
- $\bullet \ \theta = (\sigma^2, \phi, \tau^2)$
- ▶ Weighted least squares criterion:

$$W(\theta) = \sum_{k} n_{k} [\hat{v}(u_{k}) - v(u_{k}; \theta)]^{2}$$

- ▶ Arbitrary binning and upper limit for  $u_k$ .
- Standard errors not available.

### Maximum likelihood estimation

Linear geostatsitical models

#### Maximum likelihood estimation

- ▶ Multivariate Gaussian distribution:  $Y \sim MVN(D\beta, \sigma^2 + \tau^2 I)$ .
  - ▶ D matrix of covariates:  $[D]_{ik} = d_k(x_i)$
  - ▶ R matrix of spatial correlation:  $[R]_{ij} = \rho(u_{ij})$ , with  $u_{ij} = ||x_i x_j||$ .

#### Maximum likelihood estimation

- ▶ Multivariate Gaussian distribution:  $Y \sim MVN(D\beta, \sigma^2 + \tau^2 I)$ .
  - ▶ D matrix of covariates:  $[D]_{ik} = d_k(x_i)$
  - R matrix of spatial correlation:  $[R]_{ij} = \rho(u_{ij})$ , with  $u_{ij} = ||x_i x_j||$ .
- ► Fitting process
  - 1. Initialise  $\beta$ , e.g. using ordinary least squares.
  - 2. Initialise  $\theta$ , e.g. using the empirical variogram
  - 3. Maximize

$$I(\theta) = \log\{f(y; \beta, \theta)\}\$$

where  $f(\cdot; \beta; \theta)$  denotes the density of the multivariate Gaussian distribution.

1. Obtain  $\theta$ .

- 1. Obtain  $\theta$ .
- 2. Simulate a large enough number of data-sets (e.g. 1,000) from the fitted model.

- 1. Obtain  $\theta$ .
- 2. Simulate a large enough number of data-sets (e.g. 1,000) from the fitted model.
- 3. Fit a non-spatial mixed model (i.e.  $S(x_i)$  is replaced by unstructured random effects  $U_i$ ).

- 1. Obtain  $\theta$ .
- 2. Simulate a large enough number of data-sets (e.g. 1,000) from the fitted model.
- 3. Fit a non-spatial mixed model (i.e.  $S(x_i)$  is replaced by unstructured random effects  $U_i$ ).
- 4. Compute the variogram using the estimated random effects associated with a location (i.e.  $\hat{U}_i$ ).

- 1. Obtain  $\theta$ .
- 2. Simulate a large enough number of data-sets (e.g. 1,000) from the fitted model.
- 3. Fit a non-spatial mixed model (i.e.  $S(x_i)$  is replaced by unstructured random effects  $U_i$ ).
- 4. Compute the variogram using the estimated random effects associated with a location (i.e.  $\hat{U}_i$ ).
- 5. Repeat 3 to 4, for all the simulated data-sets.

- 1. Obtain  $\theta$ .
- 2. Simulate a large enough number of data-sets (e.g. 1,000) from the fitted model.
- 3. Fit a non-spatial mixed model (i.e.  $S(x_i)$  is replaced by unstructured random effects  $U_i$ ).
- 4. Compute the variogram using the estimated random effects associated with a location (i.e.  $\hat{U}_i$ ).
- 5. Repeat 3 to 4, for all the simulated data-sets.
- 6. Summarize the results by computing the 95% confidence intervals for each distance u.

- 1. Obtain  $\theta$ .
- 2. Simulate a large enough number of data-sets (e.g. 1,000) from the fitted model.
- 3. Fit a non-spatial mixed model (i.e.  $S(x_i)$  is replaced by unstructured random effects  $U_i$ ).
- 4. Compute the variogram using the estimated random effects associated with a location (i.e.  $\hat{U}_i$ ).
- 5. Repeat 3 to 4, for all the simulated data-sets.
- 6. Summarize the results by computing the 95% confidence intervals for each distance u.

The generated 95% bandwidth from the last step indicates the band of variation for the variogram under the assumed model.

## Examples



### The canonical geostatistical problem

Given a set of measurements  $Y_i$ :  $i=1,\ldots,n$  at locations  $x_i$  in a spatial region A, presumed to be (noisy) measurements of a spatially continuous phenomenon  $S(x_i)$ , what can we say about the realisation of S(x) throughout A?



### Prediction

The answer to any prediction problem is a probability distribution

Peter McCullagh, FRS

- ightharpoonup T = any quantity of scientific interest
- ightharpoonup Y = data that can tell us something about T.

The predictive distribution of  $\mathcal{T}$  is the conditional probability distribution of  $\mathcal{T}$  given  $\mathcal{Y}$ 

## Geostatistical prediction

Let 
$$S^* = \{S(x_1^*),...,S(x_M^*)\}$$
 for any set of locations  $\{x_1^*,...,x_M^*\}$ 

- ► Y ~ multivariate Normal
- for the Gaussian linear model  $S^*|Y \sim$  multivariate Normal
- ▶ hence simulate samples of S\* conditional on Y
- corresponding  $T^* = \mathcal{T}(S^*)$  are samples from predictive distribution of T

## Minimum mean square error prediction

#### Model

- $ightharpoonup [S^*] = probability distribution of underlying spatial process$
- ▶  $[Y|S^*]$  = probability distribution of data conditional on underlying spatial process
- ▶ Bayes' theorem then gives us the predictive distribution  $[S^*|Y]$

### Mean square error

- $\hat{T} = t(Y)$  is a point predictor
- ▶  $MSE(\hat{T}) = E[(\hat{T} T)^2]$  is the mean square error

#### **Theorem**

- 1.  $MSE(\hat{T})$  takes its minimum value when  $\hat{T} = E(T|Y)$ .
- 2. Var(T|Y) estimates the achieved mean square error

## Simple and ordinary kriging

$$Y \sim \text{MVN}(\mu 1, \sigma^2 V)$$
 
$$V = R + (\tau^2/\sigma^2) \qquad R_{ij} = \rho(\|x_i - x_j\|)$$

Target for prediction is T = S(x)

Write  $r = (r_1, ..., r_n)$  where

$$r_i = \rho(\|x - x_i\|)$$

Standard results on multivariate Normal then give [T|Y] as multivariate Gaussian with mean and variance

$$\hat{T} = \mu + r'V^{-1}(Y - \mu \mathbf{1})$$
$$Var(T|Y) = \sigma^2(1 - r'V^{-1}r)$$

Simple kriging:  $\hat{\mu} = \bar{Y}$  Ordinary kriging:  $\hat{\mu} = (1'V^{-1}1)^{-1}1'V^{-1}Y$ 

## Simple kriging: three examples

### 1. Varying $\kappa$ (smoothness of S(x))



### 2. Varying $\phi$ (range of spatial correlation



### 3. Varying $\tau^2/\sigma^2$ (noise-to-signal ratio)



### Trans-Gaussian models

- assume Gaussian model holds after point-wise transformation
- Box-Cox family is widely used

$$Y_i^* = h_{\lambda}(Y_i) = \begin{cases} (Y_i^{\lambda} - 1)/\lambda & \text{if } \lambda \neq 0 \\ \log(Y_i) & \text{if } \lambda = 0 \end{cases}$$

### Example: log-Gaussian kriging

- ►  $T(x) = \exp\{S(x)\}$   $\hat{T}(x) = \exp\{\hat{S}(x) + v(x)/2\}$
- ▶  $S_1, ..., S_m$  are a sample from [S|Y]
- ▶  $T_i = \exp(S_i) \Rightarrow T_1, ..., T_m$  are a sample from [T|Y]

## Reminder: Predicting non-linear functionals

- minimum mean square error prediction is not invariant under non-linear transformation
- ▶ the complete answer to a prediction problem is the predictive distribution, [T|Y]
- ► Recommended strategy:
  - draw repeated samples from  $[S^*|Y]$
  - calculate required summaries

## Bayesian inference

### Model specification

$$[Y, \theta] = [\theta][Y|\theta]$$

- $ightharpoonup [Y|\theta]$  probability distribution of Y given parameter value  $\theta$
- ▶  $[\theta]$  prior probability distribution for  $\theta$  (before you collect any data)

#### Parameter estimation

▶ Bayes' Theorem gives posterior distribution for  $\theta$  (adding information from data)

$$[\theta|Y] = [Y|\theta][\theta]/[Y]$$

where 
$$[Y] = \int [Y|\theta][\theta]d\theta$$

## Bayesian inference for geostatistical models

### Model specification

$$[Y, S, \theta] = [\theta][S|\theta][Y|S, \theta]$$

▶ [S] is an unobserved spatial stochastic process, representing the spatial phenomenon of scientific interest

#### Parameter estimation

integration gives likelihood function

$$[Y, \theta] = \int [Y, S, \theta] dS = [\theta][Y|\theta]$$

▶ as before, Bayes' Theorem gives posterior distribution

$$[\theta|Y] = [Y|\theta][\theta]/[Y]$$

where 
$$[Y] = \int [Y|\theta][\theta]d\theta$$

# Bayesian inference for geostatistical models (2)

#### Prediction

- S denotes the spatial process of interest at data-locations
- $S^*$  denotes the same process at data and prediction locations
  - expand model specification to

$$[Y, S^*, \theta] = [\theta][S|\theta][Y|S, \theta][S^*|S, \theta]$$

plug-in predictive distribution is

$$[S^*|Y,\hat{\theta}]$$

Bayesian predictive distribution is

$$[S^*|Y] = \int [S^*|Y,\theta][\theta|Y]d\theta$$

• for any target  $T = t(S^*)$ , required predictive distribution [T|Y] follows by direct calculation

### Notes

- ▶ likelihood function is central to both classical and Bayesian inference
- ightharpoonup Bayesian prediction is a weighted average of plug-in predictions, with different plug-in values of heta weighted according to their conditional probabilities given the observed data.
- ► Bayesian prediction is usually more conservative than plug-in prediction