Zadanie 6

Rozwiąż zależnośći rekrencyjne:

•
$$y_0 = y_1 = 1$$
, $y_n = \frac{y_{n-1}^2 + y_{n-2}}{y_{n-1} + y_{n-2}}$
• $z_0 = 1$, $z_1 = 2$, $z_n = \frac{z_{n-1}^2 - 1}{z_{n-2}}$

•
$$z_0 = 1$$
, $z_1 = 2$, $z_n = \frac{z_{n-1}^2 - 1}{z_{n-2}}$

•
$$t_0 = 0$$
, $t_1 = 1$, $t_n = \frac{(t_{n-1} - t_{n-2} + 3)^2}{4}$

Rozwiązanie: Bedziemy zgadywać rozwiązania, a potem dowodzić ich indukcyjnie.

 $\bullet \ y_n = 1$

Dowód. Niech $X = \{n \in \mathbb{N} \mid y_n = 1. \text{ Zauważmy, że } 0, 1 \in X. \text{ Weźmy dowolnego } n \in \mathbb{N}. \text{ Załóżmy, że } 1$ dla dowolnego k mniejszego od n zachodzi $k \in X$. Pokażmy, że $n \in X$.

Obliczmy $y_n = \frac{y_{n-1}^2 + y_{n-2}}{y_{n-1} + y_{n-2}} = \frac{1+1}{1+1} = 1$. Zatem $n \in X$. Na mocy zasady indukcji $X = \mathbb{N}$, czyli żądana własność zachodzi dla dowolnego $n \in \mathbb{N}$.

• $z_n = n + 1$.

Dowód. Niech $X = \{n \in \mathbb{N} \mid z_n = n+1$. Zauważmy, że $0, 1 \in X$. Weźmy dowolnego $n \in \mathbb{N}$. Załóżmy, że dla dowolnego k mniejszego od n zachodzi $k \in X$. Pokażmy, że $n \in X$.

Obliczmy
$$z_n = \frac{z_{n-1}^2 - 1}{z_{n-2}} = \frac{n^2 - 1}{n - 2 + 1} = \frac{(n-1)(n+1)}{n-1} = n + 1.$$

Zatem $n \in X$. Na mocy zasady indukcji $X = \mathbb{N}$, czyli żądana własność zachodzi dla dowolnego $n \in \mathbb{N}$.

 $\bullet \ t_n = n^2.$

Dowód. Niech $X = \{n \in \mathbb{N} \mid t_n = n^2$. Zauważmy, że $0, 1 \in X$. Weźmy dowolnego $n \in \mathbb{N}$. Załóżmy, że dla dowolnego k mniejszego od n zachodzi $k \in X$. Pokażmy, że $n \in X$.

Obliczmy
$$t_n = \frac{(t_{n-1} - t_{n-2} + 3)^2}{4} = \frac{((n-1)^2 - (n-2)^2 + 3)^2}{4} = \frac{4n^2}{4} = n^2$$

Zatem $n \in X$. Na mocy zasady indukcji $X = \mathbb{N}$, czyli żądana własność zachodzi dla dowolnego $n \in \mathbb{N}$.