Logika dla Informatyków (zaawansowana) Lista zadań nr 13

1 Punkty stałe

Zadanie 1. Rozwiąż Zadanie 580 z MdZ.

Zadanie 2. Rozwiąż Zadanie 581 z MdZ.

Zadanie 3. Rozwiaż Zadanie 582 z MdZ.

Zadanie 4. Rozwiąż Zadanie 583 z MdZ.

Zadanie 5. Rozwiąż Zadanie 584 z MdZ.

Zadanie 6. Pokaż, że ciąg $\{A_{\alpha}\}_{{\alpha}<{\beta}}$, który pojawił się w dowodzie twierdzenia o punkcie stałym, jest rzeczywiście monotoniczny, to znaczy jeśli ${\alpha}'<{\alpha}$ to $A_{{\alpha}'}< A_{\alpha}$.

Zadanie 7. Na wykładzie rozważano scenariusz, w którym mamy:

- pewną sygnaturę relacyjną Σ oraz unarny symbol relacyjny $Y \notin \Sigma$;
- strukturę relacyjną M nad Σ , ze zbiorem elementów M;
- formułę logiki pierwszego rzędu $\psi(Y,x)$ z jedną zmienną wolną x nad sygnaturą $\Sigma \cup \{Y\}$.

Formuła ψ w naturalny sposób definiuje funkcję $F_{\psi}: \mathcal{P}(M) \to \mathcal{P}(M)$. Dokładnej mówiąc: $F_{\psi}(Y) = \{x \in M: [\mathbb{M}, Y] \models \psi(Y, x)\}$. Pokaż, że jeśli Y występuje pozytywnie w ψ to funkcja F_{ψ} jest monotoniczna.

2 Filtry

Rodzinę $\mathcal{Y} \subset \mathcal{P}(A)$ nazywamy ultrafiltrem na A, jeśli jest ona filtrem (to znaczy nie zawiera zbioru pustego, oraz jest zamknięta ze względu na operację brania nazdbiorów i operację skończonego przecięcia) oraz jeśli jest maksymalna, ze względu na inkluzję, w rodzinie wszystkich filtrów zawartych w $\mathcal{P}(A)$.

Niech of teraz \mathcal{F} będzie ustalonym niegłównym filtrem na \mathbb{N} .

Dla danych dwóch ciągów $\bar{a}, \bar{b} \in \mathbb{N}^{\mathbb{N}}$ niech $\bar{a} \cong_{\mathcal{F}} \bar{b}$ wtedy i tylko wtedy gdy $\{i : a_i = b_i\} \in \mathcal{F}$. Zbiór $\bar{\mathbb{N}} = \mathbb{N}^{\mathbb{N}} / \cong_{\mathcal{F}}$ nazywamy zbiorem niestandardowych liczb naturalnych. Dla $\bar{a}, \bar{b} \in \mathbb{N}^{\mathbb{N}}$ zdefiniujmy $[\bar{a}]_{\cong_{\mathcal{F}}} \leq_{\mathcal{F}} [\bar{b}]_{\cong_{\mathcal{F}}}$ wtedy i tylko wtedy gdy $\{i : a_i \leq b_i\} \in \mathcal{F}$.

Zadanie 8. Pokaż, że powyższa definicja relacji $\leq_{\mathcal{F}}$ jest poprawna.

Zadanie 9. Pokaż, że $\leq_{\mathcal{F}}$ jest liniowym porządkiem, kazdy element ma w nim następnik, istnieje element najmniejszy, oraz każdy element oprócz najmniejszego ma poprzednik.

Zadanie 10. W sposób analogiczny do porządku $\leq_{\mathcal{F}}$ zdefiniuj na zbiorze niestandardowych liczb naturalnych funkcje $+_{\mathcal{F}}$ i $\times_{\mathcal{F}}$, to znaczy mnożenie i dodawanie elementów. Pokaż, że tak zdefiniowane dodawanie i mnożenie spełniają prawa łączności, przemienności i rozdzielności mnożenia względem dodawania.

Zadanie 11. Czy w porządku $\leq_{\mathcal{F}}$ istnieją nieskończone ciągi zstępujące? Czy każdy podzbiór zbioru niestandardowych liczb naturalnych ma element najmniejszy?

Zadanie 12. Gdzie w rozwiązaniach Zadań 4-8 korzystamy istotnie z założenia że ultrafiltr \mathcal{F} jest niegłówny?