COMP8760 Lecture - 1

Introduction and Maths Revision

Sanjay Bhattacherjee

University of Kent

Lecturers:

Budi Arief B.Arief@kent.ac.uk

Sanjay Bhattacherjee S.Bhattacherjee@kent.ac.uk (Convener)

Class Supervisors:

- Imad Mahaini m.i.mahaini@kent.ac.uk
- Joshua Sylvester jrs71@kent.ac.uk

iCSS

Institute of Cyber Security for Society

https://research.kent.ac.uk/cyber/

- a University-wide hub promoting interdisciplinary research and educational activities
- Academic Centre of Excellence in Cyber Security Research (ACE-CSR)
- Academic Centre of Excellence in Cyber Security Education (ACE-CSE)

Weekly Seminars

https://research.kent.ac.uk/cyber/events-2024/

COMP8760: Computer Security

Moodle

https://moodle.kent.ac.uk/2024/course/view.php?id=927

Finding a Room

https://www.kent.ac.uk/timetabling/rooms/index.html

When you click on the link for a room one of the things you will see on the page is directions to find your way from the building entrance to the teaching room.

Attendance

Remember to submit your own attendance!

https://student.kent.ac.uk/studies/presto-student

- ► Click on the above link
- Log into Presto

Today's Password

452539

Attendance Monitoring

- You may get emails and letters from the University if you missed too many sessions
- If you are holding a Tier-4 visa, this is a legal requirement

COMP8760: Computer Security

Time Table*

Lecture	Mondays	1:00 - 1:50 pm
Lecture	Thursdays	10:00 - 10:50 am

PC session Thursdays 3:00 - 4:50 pm

^{* -} subject to change

Homework and Study Material

Lecture Slides

► A printer-friendly version (without animations)

Worksheets on Lectures: For Practice, Not Graded

Solutions will be published before the next Lecture

Worksheets for Classes: working towards Assessments

Solutions will not be provided

Solve the worksheets to keep up with the lessons

COMP8760: Assessments

50% Coursework		(Based mostly on classes)
	30% Programming Assessment (On Sanjay's part)	Due on 12 November 2024
	20% Report (On Budi's part)	Due on 15 January 2025
50% Examination		May/June 2025 (Based mostly on lectures)

Mutually	Prime
452539	University of Kent

Tentative Outline: Sanjay's Part (Weeks 9-13, 15)

Tentative Outline: Budi's Part (Weeks 16-19)

Week 12 Week 12	Lecture 13 Lecture 14	User Authentication (Basic Concepts and Passwords) User Authentication (Cracking Passwords and Improving Textual Password)
Week 18 Week 18	Lecture 13 Lecture 14	User Authentication (Beyond Passwords 1) User Authentication (Beyond Passwords 2)
Week 19 Week 19	Lecture 13 Lecture 14	Non-user Authentication Access Control and Authorisation 1
Week 20 Week 20	Lecture 13 Lecture 14	Access Control and Authorisation 2 Accountability

Resources: For Sanjay's Part

Book 1 Author	Cryptography Made Simple Nigel P. Smart. Link to eBook
Book 2 Authors	A Graduate Course in Applied Cryptography Dan Boneh and Victor Shoup Link to website
Book 3 Authors	Handbook of Applied Cryptography A. Menezes, P. vanOorschot, and S. Vanstone Link to website

Book 4 Mathematics of Public Key Cryptography
Authors Steven D Galbraith
Link to website

Study Material for Lecture 1

Book 1 Cryptography Made Simple
Author Nigel P. Smart.
Link to eBook

Section 1.1 Modular Arithmetic

What is Cryptology?

Scientific study of "secure communication" in the presence of an adversary

What does "secure" mean?

Security property	Intuitive meaning	Mechanism
Confidentiality	message unintelligible	Encryption
Data Integrity	message unaltered	Hash functions
Authentication	source has not changed	Digital signatures
Non-repudiation	once committed, no way to deny	Digital signatures
Revocation	retraction of privilege	Encryption / Signatures

Symmetric Key Encryption System

First step towards confidentiality!

Algorithms / Computer Programs

- ► A set of instructions that execute on a computing device (laptop, mobile phone, et cetera).
- Data fed as input to the algorithm and provided as output by the algorithm

Key (A special kind of input to a cryptographic algorithm) 1011000110101011... (randomly generated 0's and 1's - bits)

Kerckhoffs's Principle

Nigel Smart's book (Section 10.1):

Any cryptographic system should be secure even if everything about the system, except the secret key, is public knowledge.

Asymmetric Key Encryption System

Confidentiality with two different keys (k_s and k_p) of Bob (recipient)!

Symmetric vs Asymmetric Encryption

Symmetric

- 1. Same secret key k_s is used for encryption and decryption
- 2. To encrypt and send, the secret key k_s has to be known

Asymmetric

- 1. Public key k_p of recipient is used for encryption
- 2. Secret key k_s of recipient is used for decryption
- 3. To encrypt and send, the public key k_p has to be known

A collection of elements

Let us denote this set of dogs by the letter A

Set Membership

Cardinality

The number of elements in a set

We denote the cardinality of A by

|A|

Subset

A sub-collection of elements from the set

$$B \subset A$$

$$|B| = 6$$

$$|A| = 10$$

Integers: Z

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

Division Theorem

Let *n*, *d* be positive integers.

If we divide *n* (dividend) by *d* (divisor), we get a unique quotient-remainder pair.

$$n = \underbrace{\mathbf{q} \times \mathbf{d}}_{\text{quotient}} + \underbrace{\mathbf{r}}_{\text{remainder}}$$

and

$$0 < r < d$$
.

Division Theorem: Examples

$$13 = \underbrace{2 \times 5}_{\text{quotient}} + \underbrace{3}_{\text{remainder}}$$

$$112 = 16 \times 7 + 0$$
quotient remainder

Division Theorem: Negative n

If *n* is negative, *q* is taken to be negative, so that $0 \le r < d$.

$$-13 = -3 \times 5 + 2$$
quotient remainder

$$-112 = -16 \times 7 + 0$$
quotient remainder

Clock Arithmetic / Modular Arithmetic

Hour {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} (mod 12)

Set of Remainders

\mathbb{Z}_N : set of remainders of N

$$\mathbb{Z}_N = \{0, 1, 2, 3, \dots, N-1\}$$

Some examples:

```
\begin{array}{l} \mathbb{Z}_2 = \{0,1\} \\ \mathbb{Z}_7 = \{0,1,2,3,4,5,6\} \\ \mathbb{Z}_{11} = \{0,1,2,3,4,5,6,7,8,9,10\} \\ \mathbb{Z}_{1001} = \{0,1,\ldots,1000\} \end{array}
```

The (mod) operator

We define

$$a \pmod{N} = \underline{r}$$
remainder

This operator gives the remainder on dividing the integer a with N.

Examples

- ▶ $13 \pmod{5} = 3$
- ▶ $112 \pmod{7} = 0$

Congruent (mod N)

When x - y is a multiple of N, we define

$$x = y \pmod{N}$$
.

In other words, integers x and y both have the same remainder on dividing with N.

Examples

- $ightharpoonup 8 = 13 \pmod{5}$
- ightharpoonup 21 = 112 (mod 7)

Modular Addition

We define

$$(x + y) \pmod{N} = z \pmod{N} = \underline{r} \in \mathbb{Z}_N$$

This operator gives the remainder on dividing z = (x + y) with N.

$$(6+7) \pmod{5} = 13 \pmod{5} = 3 \in \mathbb{Z}_5$$

$$(62+50) \pmod{7} = 112 \pmod{7} = 0 \in \mathbb{Z}_7$$

Modular Addition in \mathbb{Z}_5

For any two integers x and y,

$$x + y \pmod{N} \in \{0, 1, 2, 3, 4\}.$$

The following table shows the results of additions \pmod{N} of all elements of \mathbb{Z}_5 with each other.

Addition (mod 5) in \mathbb{Z}_5

	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3		4	0	1	2
4	4	0	1	2	3

Modular Multiplication

We define

$$(x \times y) \pmod{N} = z \pmod{N} = \underline{r} \in \mathbb{Z}_N$$

This operator gives the remainder on dividing $z = (x \times y)$ with N.

$$(6 \times 7) \pmod{5} = 42 \pmod{5} = 2 \in \mathbb{Z}_5$$

$$(62 \times 50) \pmod{7} = 3100 \pmod{7} = 6 \in \mathbb{Z}_7$$

Modular Multiplication in \mathbb{Z}_5

For any two integers x and y,

$$x \times y \pmod{N} \in \{0, 1, 2, 3, 4\}.$$

The following table shows the results of multiplications \pmod{N} of all elements of \mathbb{Z}_5 with each other.

Multiplication (mod 5) in \mathbb{Z}_5

	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Prime Numbers

Definition:

A positive integer p is prime if it is only divisible by 1 and p.

Some prime numbers:

```
2, 3, 5, 7, 11, 13, 17, 19, 23, . . .
```

Algorithm: Check if *n* is prime or composite

```
For each divisor 2 \le d \le \sqrt{n}: {

If n \mod d = 0, then n is not a prime: {

hence, break the loop.
}
```

If the above loop was not broken, then n is prime, else it is composite.

Note: \sqrt{n} is a positive number such that $(\sqrt{n})^2 = n$

Prime Numbers

Is 56 a prime number?

No, *d* = 2

Is 57 a prime number?

No, d=3

Is 59 a prime number?

Yes

Prime Numbers ≤ 100

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Prime Factorisation

Definition:

The prime factorisation of a positive integer n is defined as

$$n = p_1^{\alpha_1} \times p_2^{\alpha_2} \times \ldots \times p_k^{\alpha_k}$$

where

- $ightharpoonup p_1, \ldots, p_k$ are prime numbers and
- $ightharpoonup \alpha_1, \ldots, \alpha_k$ are positive integers

Examples:

```
\begin{array}{rcl}
2 & = 2^{1} \\
13 & = 13^{1} \\
26 & = 2^{1} \times 13^{1} \\
3468 & = ?
\end{array}
```

Prime Factorisation: Algorithm

Algorithm to find $n = p_1^{\alpha_1} \times p_2^{\alpha_2} \times \ldots \times p_k^{\alpha_k}$:

- $ightharpoonup n_1 \leftarrow n$
- For each step i, choose a prime $p_i \leq n_i$
 - ▶ Divide n_i with p_i as many times as possible to find α_i
 - Find n_{i+1} as:

$$n_{i+1} \leftarrow \frac{n_i}{p_i^{\alpha_i}}$$

Example:

n_i	p_i	α_i		n_{i+1}
$n_1 = 3468$	$p_1 = 2$	$\alpha_1 = 2$	$3468 = 2^2 \times 867$	$n_2 = 867$
$n_2 = 867$	$p_2 = 3$	$lpha_{ extsf{2}}= extsf{1}$	$867 = 3^1 \times 289$	$n_3 = 289$
$n_3 = 289$	$p_3 = 5$	$\alpha_3 = 0$	$289 = 5^0 \times 289$	$n_4 = 289$
$n_4 = 289$	$p_4 = 7$	$\alpha_4 = 0$	$289 = 7^0 \times 289$	$n_5 = 289$
$n_5 = 289$	$p_5 = 11$	$\alpha_{5} = 0$	$289 = 11^{0} \times 289$	$n_6 = 289$
$n_6 = 289$	$p_6 = 13$	$lpha_{ m 6}={ m 0}$	$289 = 13^{0} \times 289$	$n_7 = 289$
$n_7 = 289$	$p_7 = 17$	$\alpha_7 = 2$	$289 = 17^2 \times 1$	$n_8 = 1$

Prime Factorisation

$$n = p_1^{\alpha_1} \times p_2^{\alpha_2} \times \ldots \times p_k^{\alpha_k}$$

Algorithm output:

$$3468 = 2^{2} \times 867$$

$$= 2^{2} \times 3^{1} \times 289$$

$$= 2^{2} \times 3^{1} \times 5^{0} \times 289$$

$$= 2^{2} \times 3^{1} \times 5^{0} \times 7^{0} \times 289$$

$$= 2^{2} \times 3^{1} \times 5^{0} \times 7^{0} \times 11^{0} \times 289$$

$$= 2^{2} \times 3^{1} \times 5^{0} \times 7^{0} \times 11^{0} \times 13^{0} \times 289$$

We omit the primes with exponent 0 to write it in compact form:

$$3468 = 2^2 \times 3^1 \times 17^2$$
.

LCM and GCD

Let a, b be positive integers such that

$$a = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}, \alpha_i \geq 0$$

and

$$b=p_1^{\beta_1}p_2^{\beta_2}\dots p_k^{\beta_k}, \beta_i\geq 0$$

Then,

$$\mathit{lcm}(a,b) = p_1^{\max(\alpha_1,\beta_1)} p_2^{\max(\alpha_2,\beta_2)} \cdots p_k^{\max(\alpha_k,\beta_k)}$$

and

$$\gcd(a,b) = p_1^{\min(\alpha_1,\beta_1)} p_2^{\min(\alpha_2,\beta_2)} \cdots p_k^{\min(\alpha_k,\beta_k)}.$$

Lowest Common Multiple (LCM)

Definition

For positive integers a, b, it is the smallest positive integer that is divisible by both a and b.

Algorithm 1:

- Find the prime factorisation of both a and b

$$lcm(a,b) = p_1^{\max(\alpha_1,\beta_1)} p_2^{\max(\alpha_2,\beta_2)} \cdots p_k^{\max(\alpha_k,\beta_k)}$$

Example: *lcm*(20, 12)

- ightharpoonup 12 = $2^2 \times 3^1$
- $ightharpoonup 20 = 2^2 \times 5^1$
- $\qquad \qquad \text{lcm}(20,12) = 2^{\text{max}(2,2)} \times 3^{\text{max}(1,0)} \times 5^{\text{max}(0,1)} = 2^2 \times 3^1 \times 5^1 = 60$

Greatest Common Divisor (GCD)

Definition

For positive integers a, b, it is the largest positive integer that divides both a and b.

Algorithm 1:

- Find the prime factorisation of both a and b

$$gcd(a,b) = p_1^{\min(\alpha_1,\beta_1)} p_2^{\min(\alpha_2,\beta_2)} \cdots p_k^{\min(\alpha_k,\beta_k)}.$$

Example: gcd(20, 12)

- ightharpoonup 12 = $2^2 \times 3^1$
- $ightharpoonup 20 = 2^2 \times 5^1$
- ightharpoonup gcd(20, 12) = $2^{\min(2,2)} \times 3^{\min(1,0)} \times 5^{\min(0,1)} = 2^2 \times 3^0 \times 5^0 = 4$

Reminder: Homework

Worksheet: For Practice, Not Graded

- Available on Moodle
- Solutions will be published before Lecture 2

Interesting Reads:

- Nigel Smart's book, Part 2: Historical Ciphers
- D. Kahn. The Codebreakers: The Comprehensive History of Secret Communication from Ancient Times to the Internet. Scribner, 1996.
- S. Singh. The Codebook: The Evolution of Secrecy from Mary, Queen of Scots to Quantum Cryptography. Doubleday, 2000.

Summary

- ► Introduction to COMP8760
- ► Introduction to Cryptography
- Sets
- Modular Arithmetic
- ► Prime Numbers, GCD and LCM

Thank you for your kind attention!