

Lucas Mesz

Portfólio Exploratório: Efeitos da Guerra de Atrito e Revelação da Informação

Dissertação de Mestrado

Orientador : Prof. Luiz Eduardo Teixeira Brandão Co-orientador: Prof. Marco Antônio Guimarães Dias

Portfólio

Figura 4.22: Modelo - Único Bloco

$$V = qBP$$

$$V = qBP$$

Volume Recuperável (Mbbl)

$$V = qBP$$

Qualidade econômica [0,1]

$$V = qBP$$

Preço do petróleo \$/bbl

$$V = qBP$$

$$VPL = V - I_d$$

$$V = qBP$$

$$VPL = V - I_d$$

$$I_d(B) = K_f + K_v B$$

$$V = qBP$$

$$VPL = V - I_d$$

$$I_d(B) = K_f + K_v B$$

$$VME = FC(V - I_d) - I_w$$

$$VPL$$

$$V = qBP$$

$$VPL = V - I_d$$

$$I_d(B) = K_f + K_v B$$

$$VME = FC(V-I_d) - I_w$$
 Fator de Sucesso - %

$$V = qBP$$

$$VPL = V - I_d$$

$$\frac{dP}{P} = \alpha(P,t)dt + \sigma(P,t)dz \qquad I_d(B) = K_f + K_v B$$

$$dz \sim N(0,dt).$$

$$VME = FC(V - I_d) - I_w$$

$$VPL$$

$$VPL$$

Caso em Guerra de Atrito e Barganha Cooperativa

Figura 4.11: Modelo Geral - Blocos Exploratórios

Denominação	Propriedade	$B\ (mbbl)$	q (%)	FC (%)	I_w (M\$)
DogFish	0	620	20.00	30.00	80.00
Feather	0	310	21.00	25.00	60.00
Head	1	950	18.00	20.00	80.00

Figura 4.11: Modelo Geral - Blocos Exploratórios

Denominação	Propriedade	$B\ (mbbl)$	q (%)	FC (%)	I_w (M\$)
DogFish	0	620	20.00	30.00	80.00
Feather	0	310	21.00	25.00	60.00
Head	1	950	18.00	20.00	80.00

$$I_d(B) = 650 + 5.35B$$
 $(R^2 = 0.628)$

Figura 4.11: Modelo Geral - Blocos Exploratórios

Denominação	Propriedade	$B\ (mbbl)$	q (%)	FC (%)	I_w (M\$)
DogFish	0	620	20.00	30.00	80.00
Feather	0	310	21.00	25.00	60.00
Head	1	950	18.00	20.00	80.00

Figura 4.11: Modelo Geral - Blocos Exploratórios

$$I_d(B) = 650 + 5.35B$$
 $(R^2 = 0.628)$

ho	DogFish	Feather	Head
$\operatorname{DogFish}$	1		_
Feather	0.6	1	_
Head	0.5	0.6	1

Tabela 4.4: Correlação dos prospectos da bacia

Denominação	Propriedade	$B \ (mbbl)$	q (%)	FC (%)	I_w (M\$)
DogFish	0	620	20.00	30.00	80.00
Feather	0	310	21.00	25.00	60.00
Head	1	950	18.00	20.00	80.00

Figura 4.11: Modelo Geral - Blocos Exploratórios

$$I_d(B) = 650 + 5.35B$$
 $(R^2 = 0.628)$

ho	DogFish	Feather	Head
DogFish	1		_
Feather	0.6	1	_
Head	0.5	0.6	1

Tabela 4.4: Correlação dos prospectos da bacia

r~(%)	$\delta~(\%)$	σ (%)
3.00	3.80	30.00

Tabela 4.2: Parâmetros Exógenos Estimados

Caso - Stand-Alone

Figura 4.22: Modelo - Único Bloco

Caso – DogFish + Head

Figura 4.16: Único Bloco - DogFish e Head

Caso – DogFish + Feather

Figura 4.20: Bloco A- DogFish e Feather

Caso – Unitização

Figura 4.22: Modelo - Único Bloco

Opções existentes

$$VME = FC(V - I_d) - I_w$$

$$VME(P,t) = FC*R(P,t)-Iw$$

$$VME = FC(V - I_d) - I_w$$

Caso - Stand-Alone - DogFish

Figura 4.22: Modelo - Único Bloco

E(P,t)

Figura 4.14: Opção de Explorar - DogFish

E(P,t)

Figura 4.14: Opção de Explorar - DogFish

Figura 4.15: Métricas de Avaliação Exploratória - Dog
Fish - $\tau=3$ anos

E(P,t)

Figura 4.14: Opção de Explorar - DogFish

Figura 4.13: Curvas de Gatilho - DogFish

DogFish	M\$	%
VME(P)	523.08	-
VME(P,t)	558.23	6.72
E(P,t)	581.28	11.13

Métrica	DogFish		
	M	%	
VME(P)	523.08	-	
VME(P,t)	558.23	6.72	
E(P,t)	581.28	11.13	
	\$/bbl		
P^*	64.875	_	
P^{**}	69.625	-	

Tabela 4.6: Avaliação das opor

Métrica	DogFish		Feat	her		
	M	%	M	%		
VME(P)	523.08	-	150.68	-		
VME(P,t)	558.23	6.72	182.23	20.94		
E(P,t)	581.28	11.13	206.14	36.81		
	\$/bbl \$/bbl					
P^*	64.875	-	72.125	-		
P^{**}	69.625	-	79.875	-		

Tabela 4.6: Avaliação das oportunidades $stant\epsilon$

Métrica	Dog I	Fish	Feat	her	Hee	ad
	M	%	M	%	M	%
VME(P)	523.08	-	150.68	-	425.12	-
VME(P,t)	558.23	6.72	182.23	20.94	471.13	10.82
E(P,t)	581.28	11.13	206.14	36.81	497.71	17.08
	\$/bbl		\$/bbl		\$/bbl	
P^*	64.875	-	72.125	-	68.125	-
P^{**}	69.625	-	79.875	-	73.125	-

Tabela 4.6: Avaliação das oportunidades stant
d-alone - $\tau = 3$ anos

Métrica	Dog I	Fish	Feat	her	Hee	ad
	M	%	M	%	M	%
VME(P)	523.08	-	150.68	-	425.12	-
VME(P,t)	558.23	6.72	182.23	20.94	471.13	10.82
E(P,t)	581.28	11.13	206.14	36.81	497.71	17.08
	\$/bbl		\$/bbl		\$/bbl	
P^*	64.875	-	72.125	-	68.125	-
P^{**}	69.625	_	79.875	_	73.125	-

Tabela 4.6: Avaliação das oportunidades stant
d-alone - $\tau = 3$ anos

Métrica	Dog I	Fish	Feat	her	Hee	ad
	M	%	M	%	M	%
VME(P)	523.08	-	150.68	-	425.12	-
VME(P,t)	558.23	6.72	182.23	20.94	471.13	10.82
E(P,t)	581.28	11.13	206.14	36.81	497.71	17.08
	\$/bbl		\$/bbl		\$/bbl	
P^*	64.875	-	72.125	-	68.125	-
P^{**}	69.625	-	79.875	-	73.125	-

Tabela 4.6: Avaliação das oportunidades stant
d-alone - $\tau = 3$ anos

Correlação e FC

$$VME(P,t) = FC*R(P,t)-Iw$$

$$VME = FC(V - I_d) - I_w$$

FC= [0% 100%]

FC e VME

FC e VME

6 Prospectos

Correlação =50%

FC incondicional = 30%

6 Prospectos

Correlação =50%

FC incondicional = 30%

Investimentos	Média	Desvio Padrão	Cenários
1	0,3	0,0	1
2	0,3	0,23	2
3	0,3	0,30	4
4	0,3	0,35	8
5	0,3	0,38	16
6	0,3	0,40	32

Tabela 3.2: Simulação: Bernoulli Bivariada

6 Prospectos

Correlação =50%

FC incondicional = 30%

Investimentos	Média	Desvio Padrão	Cenários
1	0,3	0,0	1
2	0,3	0,23	2
3	0,3	0,30	4
4	0,3	0,35	8
5	0,3	0,38	16
6	0,3	0,40	32

Tabela 3.2: Simulação: Bernoulli Bivariada

Figura 3.1: Revelação no Sexto Investimento - FC e Probabilidade

Caso – DogFish + Head

Figura 4.16: Único Bloco - DogFish e Head

Caso – DogFish + Head

$\Pi(P,t)$	1092.98
$\sum E(P,t)$	1078.99
VOI(P,t)	13.99
	\$/bb
P^{**}	71.50

Tabela 4.7: Avaliação dos

Caso – DogFish + Feather

Figura 4.20: Bloco A- DogFish e Feather

Caso – DogFish + Feather

	<u> </u>	L <u> </u>
$\Pi(P,t)$	796.60	
$\sum E(P,t)$	787.42	
VOI(P,t)	9.18	_
		Ъ
D**		
P^{rr}	73.25	L_

ela 4.7: AvalPortfólios

Figura 4.22: Modelo - Único Bloco

$M\'etrica$	D+H	D+F	D+F+H		
\$ Milhões					
$\pi(P)$	948.20	673.76	1129.69		
$\sum VME(P)$	948.20	673.76	1098.88		
VOI(P)	-	-	30.81		

Figura 4.22: Modelo - Único Bloco

$M\'etrica$	D+H	D+F	D+F+H			
	\$ Milhões					
$\pi(P)$	948.20	673.76	1129.69			
$\sum VME(P)$	948.20	673.76	1098.88			
VOI(P)	-	-	30.81			
$\Pi(P,t)$	1092.98	796.60	1309.54			
$\sum E(P,t)$	1078.99	787.42	1285.13			
VOI(P,t)	13.99	9.18	24.41			
\$/bbl						
P^{**}	71.50	73.25	72-74.75			

Fabela 4.7: Avaliação dos Portfólios - $\tau{=}3$ anos

Figura 4.22: Modelo - Único Bloco

Anexos

Possible seismic hydrocarbon indicators in offshore Cyprus and Lebanon

Per Helge Semb

Figure 2: Exploration blocks 1 to 13 in offshore Cyprus, Mediterranian Sea, are shown together with the location of the 2006 PGS multi-client 2-D seismic survey in the offshore of Cyprus. Two 3-D surveys were also acquired in 2006 and 2007 in offshore Cyprus and Lebanon.

Possible seismic hydrocarbon indicators in offshore Cyprus and Lebanon

Per Helge Semb

Figure 2: Exploration blocks 1 to 13 in offshore Cyprus, Mediterranian Sea, are shown together with the location of the 2006 PGS multi-client 2-D seismic survey in the offshore of Cyprus. Two 3-D surveys were also acquired in 2006 and 2007 in offshore Cyprus and Lebanon.

Figure 6: Seismic flat spot and two bright spots identified in the PGS 2-D in offshore Cyprus. These DHIs are believed to occur in the same interval as in Shell's dicovery in the Nile Delta

Estimam Para as duas oportunidades:

Volume (B)

Qualidade de produção, do óleo, do reservatório (q)

Fator de Sucesso (FC)

Figure 6: Seismic flat spot and two bright spots identified in the PGS 2-D in offshore Cyprus. These DHIs are believed to occur in the same interval as in Shell's dicovery in the Nile Delta

Caso Total Perfurar antes (Líder):

Fator de Sucesso da Exxon vai alterar, pois haverá informação do sucesso ou fracasso

Isso acontece pois há correlação entre as oportunidades

Figure 6: Seismic flat spot and two bright spots identified in the PGS 2-D in offshore Cyprus. These DHIs are believed to occur in the same interval as in Shell's dicovery in the Nile Delta

Incerteza:

- Preço do Petróleo (P)
- Incerteza Técnica (FC)
- Incerteza Estratégica (Atrito entre Exxon xTotal)

Apresentação do Problema da Dissertação

Parâmetros

Endógenos:

- -B[1:n] Volume Recuperável (bbl)
- -q[1:n] Qualidade da Reserva (%)
- -FC[1:n] Fator de Chance dos prospectos (%)
- $\rho[n\ge n]$ Matriz de correlação dos prospectos (%)
- $dummy_1[1:n]$ Dummy de propriedade [0,1]
- I_w Investimento no poço pioneiro (MM\$)
- I_d Investimento em desenvolvimento função do Volume Recuperável(MM\$)

Parâmetros

Exógenos:

- $-P(\alpha,\sigma)$ hiperparâmetros dos Preço do petróleo (%a.a, %a.a.)
- δ taxa de conveniência (%a.a)
- -r Taxa livre de risco (%a.a.)
- $-\tau$ Tempo do contrato de exploração comum em todos os blocos (anos)