REPORTE PRÁCTICA 1 Introducción al Microcontrolador PIC18F45K50

Objetivos:

Implementar un sistema básico para operar el microcontrolador PIC 18F45K50. Utilizar el entorno gráfico MPLAB X IDE para editar, compilar y depurar los primeros programas en lenguaje para programar el PIC 18F45K50.

Componentes:

- 1 Microcontrolador PIC 18f45K50
- 8 LEDS
- 8 resistores de 220Ω

Equipo:

- 1 Fuente de +5V
- 1 Punta lógica
- 1 Multímetro
- 1 Plantilla
- 1 Equipo de cómputo con paquete de software MPLAB X IDE
- 1 Programador para el PIC18F45K50
- 1 Hoja de datos del PIC18F45K50

1.3 Ejercicios en el laboratorio (para incluir en el reporte de la práctica)

1. Si se quiere generar la salida del LED por el pin RA1 del puerto A (pin 3), escriba las instrucciones que se tienen que cambiar en la sección de configuración del microcontrolador y en la sección del ciclo infinito. Cambie el código, compile y reprograme el microcontrolador. Muestre el cambio al profesor.

void main(void){

Figura 1. Simulación del ejercicio 1 en el microcontrolador.

2. Modifique el código anterior y, que en lugar de un LED que este prendiendo y apagando, en las salidas del puerto A se presente una secuencia de valores en binario descendente de forma continua (FF, FE, FD...00, FF, FE...), para observar el funcionamiento de la secuencia esta se debe mostrar mediante 8 LEDs conectados a dicho puerto. Utilice, de preferencia una variable tipo char que lleve el valor descendente. Presente el comportamiento del microcontrolador al profesor.

```
void main(void){
    TRISA= 0;
    ANSELA=0;
    char contador =15;
    while(1){
        LATA = contador;
        contador -=1;
        __delay_ms(500);
    }
    return;
}
```


Figura 2. Simulación sobre el microcontrolador.

3. ¿Como cambia el comportamiento del programa si, en el programa principal se agrega, inmediatamente después de la función "__delay_ms(500);" la misma función "__delay_ms(500);"? Determine la diferencia reprogramando el microcontrolador y mostrándole el nuevo comportamiento al profesor.

Ahora hay un retraso extra de 500ms lo cual nos da un total de un segundo por ciclo de operación.

1.4 Ejercicios de tarea (para incluir en el reporte de la práctica)

En la hoja de datos del microcontrolador busque la siguiente información:

1. Complete la siguiente tabla que indica el número de pin del microcontrolador que está ligado con cada canal analógico (incluir los 25 canales analógicos con que cuenta el microcontrolador).

Canal analógico	PIN
AN0	2
AN1	3 4
AN2	4
AN3	5
AN4	7
AN5	8
AN6	9
AN7	10
AN8	35
AN9	36
AN10	34
AN11	37
AN12	33
AN13	38
AN14	17
AN18	25
AN19	26
AN20	19
AN21	20
AN22	21
AN23	22
AN24	27
AN25	28
AN27	30
AN26	29

2. Escriba todas las frecuencias de reloj que se pueden utilizar para el CPU con los osciladores internos.

HF-16 MHz

HF-8 MHz

HF-4 MHz

HF-2 MHz

HF-1 MHz

HF-500 kHz

HF-250 kHz

HF-31.25 kHz

3. Encuentre en la hoja de especificaciones y reporte la corriente que consume el microcontrolador en modo Sleep.

En modo sleep consume 20nA.