A Formal Power Series Approach to Multiplicative Dynamic Feedback Interconnection

Subbarao Venkatesh Guggilam

UiT, Tromsø, Norway.

NORCOM 2025 Reykjavik, Iceland.

*work with Kurusch Ebrahimi-Fard (arXiv:2301.04949 [math.OC]).

Some Preliminary Facts

- $X = \{x_0, x_1, x_2, \dots, x_m\}$: non-commutative alphabet.
- X^* : free monoid of X (empty word: 1).
- $\mathbb{R}^n \langle X \rangle$: n-tuple of non-commutative polynomials over X.
- $(\mathbb{R}\langle X\rangle, \Delta_{\sqcup \sqcup}, \emptyset)$ is a cofiltered connected coalgebra.
- $\Delta_{\sqcup \sqcup}$ is primitive on X and extended multiplicatively (along catenation product)

$$\Delta \coprod (x_i) = x_i \otimes \mathbf{1} + \mathbf{1} \otimes x_i$$

- The convolution algebra of linear maps from $(\mathbb{R}\langle X\rangle, \Delta_{\sqcup})$ to \mathbb{R} , is given by the space of formal power series denoted by $\mathbb{R}\langle\langle X\rangle\rangle$.
- $\mathbb{R}_p \langle \langle X \rangle \rangle := \{ c \in \mathbb{R} \langle \langle X \rangle \rangle : c(\mathbf{1}) = 0 \}$
- The dual basis is given by $\{\emptyset\} \cup X^+$, such that $\eta(\xi) = 1$ if $\eta = \xi$ in X^+ , and zero else.
- An element $c \in \mathbb{R}\langle\langle X \rangle\rangle$ is represented by

$$c = c(\mathbf{1})\emptyset + \sum_{\eta \in X^+} c(\eta)\eta.$$

• The convolution product on $\mathbb{R}\langle\langle X\rangle\rangle$ is the shuffle product, which is defined for all $c, d \in \mathbb{R}\langle\langle X\rangle\rangle$ and $p \in \mathbb{R}\langle X\rangle$ by

$$(c \sqcup d)(p) = m_{\mathbb{R}} \circ (c \otimes d) \circ \Delta \sqcup (p).$$

Chen-Fliess series

• Given a word $\eta = x_{i_1} x_{i_2} \cdots x_{i_k}$ and an *m*-vector of integrable inputs $u = (u_1, u_2, \cdots, u_m)$ on [0, T], then for $t \leq T$:

$$F_{\eta}[u](t) := \int_0^t d\tau_1 u_{i_1}(\tau_1) \int_0^{\tau_1} d\tau_2 u_{i_2}(\tau_2) \cdots \int_0^{\tau_{k-1}} d\tau_k u_{i_k}(\tau_k),$$

where $u_0 := 1$ and $F_{\emptyset}[u](t) := 1$.

Then for all $c \in \mathbb{R}\langle\langle X \rangle\rangle$ and an integrable function u the corresponding Chen–Fliess series F_c is : (Fliess 1981)

$$y(t) = F_c[u](t) = c(\mathbf{1}) + \sum_{\eta \in X^+} c(\eta) F_{\eta}[u](t).$$

• Chen-Fliess series are input-output maps for nonlinear dynamical systems and provide some key intuitions about interconnections of nonlinear systems (Fliess, Reutenauer, Gray, Duffaut Espinosa, Ebrahimi-Fard, Thitsa, V etc..)

Shuffle Product

• The shuffle product of two words $x_i \eta \sqcup x_j \gamma$ is defined as

$$x_i \eta \sqcup x_j \gamma = x_i (\eta \sqcup x_j \gamma) + x_j (x_i \eta \sqcup \gamma),$$

 $\eta \sqcup \emptyset = \eta \sqcup \emptyset = \eta.$

• Examples:

$$x_1 \sqcup x_0 = x_1 x_0 + x_0 x_1.$$

 $x_1^2 \sqcup x_0 = x_0 x_1^2 + x_1^2 x_0 + x_1 x_0 x_1.$
 $x_1 x_0 \sqcup x_0 x_1 = 2x_1 x_0 x_1 x_0 + 4x_1^2 x_0^2.$

• $F_{\eta}.F_{\gamma}[u] = F_{\eta \sqcup \gamma}[u]$. This relation encodes integration by parts rule.

"Adorned" Shuffle Product

- For $\ell \geq 2$, $\mathbb{R}^{\ell}\langle\langle X \rangle\rangle$ can also inherit associative (but not commutative) algebra structure via "adorned" shuffle products, \bigsqcup_k where the subscript $k = 1, 2, \ldots, \ell$ (Foissy 2016).
- For $c, d \in \mathbb{R}^{\ell} \langle \langle X \rangle \rangle$

$$c \sqcup_k d = egin{pmatrix} c_1 \sqcup_l d_k \ c_2 \sqcup_l d_k \ dots \ c_\ell \sqcup_l d_k \end{pmatrix}.$$

• In general, for a given $\mathbf{a} = (a_1, a_2, \dots, a_\ell) \in \mathbb{R}^\ell$; define $c \coprod_{\mathbf{a}} d = \sum_{i=1}^\ell a_i (c \coprod_i d)$, then $(\mathbb{R}^\ell \langle \langle X \rangle \rangle, \coprod_{\mathbf{a}})$ is an associative algebra. For all $c, d, e \in \mathbb{R}^\ell \langle \langle X \rangle \rangle$:

$$c \coprod_i (d \coprod_j e) = (c \coprod_i d) \coprod_j e = (c \coprod_j e) \coprod_i d.$$

Multiplicative Dynamic Feedback

Figure 1: F_c in multiplicative output feedback with F_d

- The notion that feedback can be described in mathematical terms as a transformation group acting on the plant is well established in control theory due to Brockett (1978).
- Strictly speaking, the right statement as the recent works reveal, is that associated with every feedback there is a pre/post group and the transformation group for the feedback is its Grossman-Larson group.

Multiplicative feedback group

- Let $M^m := \{ \mathbb{I} + c : c \in \mathbb{R}_p^m \langle \langle X \rangle \rangle \}$, where $\mathbb{I} = (1\emptyset, 1\emptyset, \dots, 1\emptyset)$. Note that $(M^m, \, \sqcup \,, \, \mathbb{I})$ is an Abelian group.
- (M^m, \star, \mathbb{I}) is the transformation group associated with multiplicative dynamic feedback where

$$c \star d := d \sqcup (c \curvearrowleft d)$$

• For all $c, d, e \in M^m$

$$(c \land d) \land e = c \land (d \star e)$$
$$(c \sqcup d) \land e = (c \land e) \sqcup (d \land e)$$

• (M^m, \star) is the Grossman-Larson group of the pre-group $(M^m, \sqcup, \curvearrowleft)$

2. Hopf Algebra of Coordinate functions

- The vector space V of coordinate maps on $\mathbb{R}^m \langle \langle X \rangle \rangle$ is spanned by a_{η}^j , where $\eta \in X^*$ and j = 1, 2, ..., m.
- For $c \in \mathbb{R}^m \langle \langle X \rangle \rangle$

$$a_{\eta}^{j}(c) = c_{j}(\eta), \quad \forall j = 1, 2, \dots, m.$$

- The vector space $V = \bigoplus_{n\geq 0} V_n$ is graded, where V_n is spanned by $a_{\eta}^j, j = 1, 2, \ldots, m, |\eta| = n.$
- For all k = 0, 1, 2, ..., m define a linear endomorphism $\theta_k : V \longrightarrow V$ such that $\theta_k(a^j_\eta) = a^j_{x_k\eta}$, for all j = 1, 2, ..., m.

- \mathcal{B} := graded symmetric algebra with grading induced by V and product is denoted by m and the unit is 1.
- \mathcal{B} is a bialgebra with the cocommutative coproduct $\Delta_{\perp \perp}$ defined as: for all $c, d \in \mathbb{R}^m \langle \langle X \rangle \rangle$

$$\Delta \coprod (a_{\eta}^{j}) (c \otimes d) = (c \coprod d)_{j} (\eta) = (c_{j} \coprod d_{j}) (\eta).$$

• By extending the usual unshuffle coproduct on words, $\Delta \coprod (\eta) = \sum_{(\eta)} \eta' \otimes \eta'' \text{ (employing Sweedler's notation), it is understood that for all } a_{\eta}^{j} \in V,$

$$\Delta \coprod \left(a_{\eta}^{j} \right) = \sum_{(\eta)} a_{\eta'}^{j} \otimes a_{\eta''}^{j}.$$

• The counit ν is defined as

$$\nu(h) = \begin{cases} 1; & \text{if } h = 1, a_1^1, a_1^2, \dots, a_1^m \\ 0; & \text{otherwise.} \end{cases}$$

Theorem 1: (Foissy 2015) On V

$$\Delta \coprod \circ \theta_k = (\theta_k \otimes \mathbf{id} + \mathbf{id} \otimes \theta_k) \circ \Delta \coprod$$
,

for all $k = 0, 1, 2, \dots, m$.

• Observe that $(\mathcal{B}, \boldsymbol{m}, 1, \Delta_{\perp \! \! \perp}, \nu)$ is not a connected graded bialgebra as the elements $a_1^j, j = 1, 2, \ldots, m$, are group-like but not invertible.

Denote $\mathfrak{s}_i := a_1^i - 1$ for i = 1, 2, ..., m. The ideal $(\mathfrak{s}_1, \mathfrak{s}_2, ..., \mathfrak{s}_m)$, is a bi-ideal. Define $\mathcal{H} = \mathcal{B}/(\mathfrak{s}_1, \mathfrak{s}_2, ..., \mathfrak{s}_m)$.

Theorem 2: $(\mathcal{H}, m, 1, \Delta_{\sqcup}, \nu)$ is a graded connected bialgebra. The character group of $(\mathcal{H}, \Delta_{\sqcup}, \nu)$ is isomorphic to the shuffle group $(M^m, \sqcup) \cong (M, \sqcup) \times (M, \sqcup) \times \cdots \times (M, \sqcup)$.

• There is another coalgebra compatible with the graded augmented algebra of \mathcal{H} (dualizing multiplicative feedback group product)

2.1 Multiplicative Feedback Bialgebra

• Define an unital algebra map $\rho: \mathcal{B} \longrightarrow \mathcal{B} \otimes \mathcal{B}$ such that

$$\rho\left(a_{\eta}^{j}\right)\left(c\otimes d\right)=\left(c\wedge d\right)_{j}\left(\eta\right)=\left(c_{j}\wedge d\right)\left(\eta\right),$$

for all $c, d \in \mathbb{R}^m \langle \langle X \rangle \rangle$.

• The map ρ is not coassociative.

Theorem 3: For all i = 0, 1, 2, ..., m and j = 1, 2, ..., m;

- (i) $\rho\left(a_{\mathbf{1}}^{i}\right) = a_{\mathbf{1}}^{i} \otimes 1.$
- (ii) $\rho \circ \theta_0 = (\theta_0 \otimes \mathbf{id}_{\mathcal{B}}) \circ \rho$.
- (iii) $\rho \circ \theta_k(a^j_{\eta}) = (\theta_k \otimes \boldsymbol{m}) \circ (\rho \otimes \mathbf{id}_{\mathcal{B}}) \circ \sum_{(\eta)} a^j_{\eta'} \otimes a^k_{\eta''},$ for all $j, k = 1, 2, \dots, m$ and $\eta \in X^*.$

• The coproduct $\Delta: \mathcal{B} \longrightarrow \mathcal{B} \otimes \mathcal{B}$ is defined such that

$$\Delta\left(a_{\eta}^{j}\right)\left(c\otimes d\right)=\left(c\star d\right)_{j}\left(\eta\right),$$

for all $c, d \in \mathbb{R}^m \langle \langle X \rangle \rangle$. Since the product, \star , is associative, the map Δ is coassociative.

Theorem 4: The coproduct on V is defined as

$$\Delta = (\mathbf{id}_{\mathcal{B}} \otimes \boldsymbol{m}) \circ (\rho \otimes \mathbf{id}_{\mathcal{B}}) \circ \Delta \perp \!\!\! \perp .$$

Theorem 5: For all $n \geq 0$;

$$\Delta\left(\mathcal{V}_{n}\right)\subseteq\bigoplus_{i+j=n}\mathcal{V}_{i}\otimes\mathcal{B}_{j}$$

Remark: Theorem 5 asserts that the graded bialgebra (\mathcal{B}, Δ) is right-handed.

Theorem 6: $(\mathcal{B}, \boldsymbol{m}, 1, \Delta_{\sqcup \sqcup}, \nu)$ is a right graded comodule bialgebra of $(\mathcal{B}, \boldsymbol{m}, 1, \Delta, \nu)$ with the coaction map ρ .

- $\mathfrak{s}_i = a_1^i 1$ and the ideal $(\mathfrak{s}_1, \mathfrak{s}_2, \dots, \mathfrak{s}_m)$ is a bi-ideal of the bialgebra (\mathcal{B}, Δ) .
- Thus, $\mathcal{H} = \mathcal{B}/(\mathfrak{s}_1, \mathfrak{s}_2, \dots, \mathfrak{s}_{\mathfrak{m}})$ gives us a connected structure with $\mathcal{H}_0 \cong \mathbb{R}1$, thus making (\mathcal{H}, Δ) a Hopf algebra.

$$\rho(\mathfrak{s}_{\mathfrak{i}})\subseteq\mathfrak{s}_{\mathfrak{i}}\otimes\mathcal{B}.$$

Therefore, $\rho: \mathcal{H} \longrightarrow \mathcal{H} \otimes \mathcal{H}$ is a right coaction map on Hopf algebra $(\mathcal{H}, \Delta_{\sqcup \sqcup})$ by the Hopf algebra (\mathcal{H}, Δ) .

Summary so far

- $(\mathcal{H}, \boldsymbol{m}, 1, \Delta_{\perp \! \! \perp}, \nu)$ is a graded connected bialgebra.
- The character group of $(\mathcal{H}, \Delta_{\sqcup \sqcup}, \nu)$ is isomorphic to the group $(M^m, \sqcup \sqcup)$.
- $(\mathcal{H}, \mathbf{m}, 1, \Delta, \nu)$ is a graded connected right-handed bialgebra.
- The character group of $(\mathcal{H}, \Delta, \nu)$ is isomorphic to the group (M^m, \star) .
- $(\mathcal{H}, \boldsymbol{m}, 1, \Delta_{\sqcup \sqcup}, \nu)$ is a right graded comodule Hopf algebra of $(\mathcal{H}, \boldsymbol{m}, 1, \Delta, \nu)$ with the (graded) coaction map ρ .

3. pre-Lie Structure on $\mathbb{R}_p^m\langle X\rangle$

Let k be a field of characteristic zero and V be a k-vector space.

Definition 1: (V, \bullet) is a (right) pre-Lie algebra if the magmatic map $\bullet: V^{\otimes 2} \longrightarrow V$ satisfies for all $a, b, c \in V$ the (right) pre-Lie identity

$$(a \bullet b) \bullet c - a \bullet (b \bullet c) = (a \bullet c) \bullet b - a \bullet (c \bullet b).$$

Define $[a, b]_{\bullet} := a \bullet b - b \bullet a$, then $(V, [\cdot, \cdot]_{\bullet})$ is a Lie algebra.

Definition 2: $(V, \mathring{\delta})$ is a (right) pre-Lie coalgebra if $\mathring{\delta}: V \longrightarrow V^{\otimes 2}$ satisfies

$$(\mathbf{id}_V \otimes \mathbf{id}_V \otimes \mathbf{id}_V - \tau_{(23)}) \circ ((\mathring{\delta} \otimes \mathbf{id}_V) - (\mathbf{id}_V \otimes \mathring{\delta})) \circ \mathring{\delta} = 0,$$

where $\tau_{(23)}: V^{\otimes 3} \to V^{\otimes 3}, \ \tau_{(23)}(a \otimes b \otimes c) = a \otimes c \otimes b.$

Let S(V) be the free symmetric algebra generated by the vector space V, with \mathbf{m} denoting the symmetric product.

Theorem 1: Let $(S(V), \boldsymbol{m}, \delta, \Delta, \epsilon, \rho)$ be graded connected cointeracting bialgebra where

- (i) $(S(V), \boldsymbol{m}, \delta, \epsilon)$ is a graded connected Hopf algebra in the category of $(S(V), \boldsymbol{m}, \Delta, \epsilon)$ right comodule with coaction map ρ .
- (ii) $\Delta = (\mathbf{id} \otimes \mathbf{m}) \circ (\rho \otimes \mathbf{id}) \circ \delta$.
- (iii) $\delta'(V) \subseteq \mathcal{V} \otimes \mathcal{S}^+(V)$.
- (iv) For all $x \in V$: $\rho'(x) := \rho(x) x \otimes 1 \subseteq V \otimes S^+(V)$.

Then,

- 1. $(S(V), \mathbf{m}, \Delta, \epsilon)$ is a right-handed bialgebra.
- 2. On $V: \mathring{\Delta} = \mathring{\rho} + \mathring{\delta}$, where $\mathring{v} := (\pi_V \otimes \pi_V) \circ v$ for all $v \in Hom(\mathcal{S}(V), \mathcal{S}(V) \otimes \mathcal{S}(V))$.

- The Hopf algebra $\mathcal{H} \cong \mathcal{S}(V^+)$ as \mathbb{R} -algebras where $V^+ = \bigoplus_{n>1} V_n$.
- V^+ is a graded right pre–Lie coalgebra with the pre-lie coproducts $\mathring{\Delta}$ and $\mathring{\Delta}_{\sqcup\sqcup}$ with

$$\mathring{\Delta} = \mathring{\rho} + \mathring{\Delta} \sqcup . \tag{1}$$

- The graded dual of V^+ is identified with proper polynomials $\mathbb{R}_p^m \langle X \rangle \subsetneq \mathbb{R}^m \langle \langle X \rangle \rangle$; with dual basis ηe_j where $\eta \in X^+$ and e_j for $j = 1, 2, \ldots, m$ are standard unit vectors in \mathbb{R}^m such that $a_{\eta}^j (\zeta e_k) = \delta_{\eta, \zeta} \delta_{j, k}$ for all $\zeta \in X^+$.
- The vector space $\mathbb{R}_p^m \langle X \rangle$ is equipped with a magnatic product $\triangleleft : \mathbb{R}_p^m \langle X \rangle^{\otimes 2} \longrightarrow \mathbb{R}_p^m \langle X \rangle$ such that for $c, d \in \mathbb{R}_p^m \langle X \rangle$

$$(c \triangleleft d)_i(\eta) = a^i_\eta(c \triangleleft d) = \mathring{\rho}\left(a^i_\eta\right)(c \otimes d).$$

Theorem 2: For all $c, d \in \mathbb{R}_p^m \langle X \rangle$ and $j = 1, 2, \dots, m$.

- (i) $x_0 e_j \triangleleft d = 0$
- (ii) $x_k e_j \triangleleft d = x_k d_k e_j \qquad \forall k = 1, 2, \dots, m.$
- (iii) $x_0c \triangleleft d = x_0 (c \triangleleft d)$.
- (iv) $x_k c \triangleleft d = x_k (c \triangleleft d) + x_k (c \sqcup_k d) \qquad \forall k = 1, 2, \ldots, m.$
 - Define : $\mathbb{R}_p^m \langle X \rangle^{\otimes 2} \longrightarrow \mathbb{R}_p^m \langle X \rangle$ as

$$\mathring{\Delta}a_{\eta}^{i}\left(c\otimes d\right)=\left(c\bullet d\right)_{i}\left(\eta\right)$$

Theorem 3: $(\mathbb{R}_p^m \langle X \rangle, \bullet)$ is a graded right pre–lie algebra such that

$$c \bullet d = (c \triangleleft d) + (c \sqcup d), \tag{2}$$

for all $c, d \in \mathbb{R}_p^m \langle X \rangle$.

4. com-pre-Lie Algebra on $\mathbb{R}_p^m\langle X\rangle$ associated with a linear Endomorphism

Definition 1: (Foissy 2015) $(\mathcal{A}, \emptyset, \bullet)$ is a (right) com-pre-Lie algebra if

- (i) (A, \emptyset) is an associative and commutative algebra.
- (ii) (\mathcal{A}, \bullet) is a right pre-Lie algebra.

and for all $a, b, c \in \mathcal{A}$

$$(a \oslash b) \bullet c = (a \bullet c) \oslash b + a \oslash (b \bullet c).$$

Theorem 1:

- 1. If $(\mathcal{A}, \oslash, \bullet)$ is right com-pre-Lie, then \mathcal{A} inherits another right pre-Lie product, denoted by \diamond and defined for all $a, b \in \mathcal{A}$ as $a \diamond b = a \bullet b + a \oslash b$.
- 2. $(\mathcal{A}, [\cdot, \cdot]_{\diamond})$ is the derived Lie algebra of right pre-Lie algebra (\mathcal{A}, \diamond) with $[a, b]_{\diamond} = [a, b]_{\bullet}$.

Remark: There are two pre-Lie products, ⋄ and •, whose derived Lie algebras are identical and with the difference of a commutative product.

- Let $g \in \text{End}(\mathbb{R}X)$, where $\mathbb{R}X$ is the \mathbb{R} -span of the alphabet X.
- Let e_j for j = 1, 2, ..., m denote the set of standard unit vectors in \mathbb{R}^m .

Definition 2: Define a magmatic product \triangleleft on the vector space $\mathbb{R}_p^m \langle X \rangle$ by induction on the degree of polynomials:

$$x_i e_j \triangleleft d = g(x_i) d_i e_j$$

$$x_i c \triangleleft d = x_i (c \triangleleft d) + g(x_i) (c \sqcup_i d)$$
(3)

where $d_0 := 0$, $x_i \in X$ and $c, d \in \mathbb{R}_p^m \langle X \rangle$.

Theorem 2: For all $c, d, h \in \mathbb{R}_p^m \langle X \rangle$:

- (i) $(c \sqcup d) \triangleleft h = (c \triangleleft h) \sqcup d + c \sqcup (d \triangleleft h)$.
- (ii) $(c \sqcup_k d) \triangleleft h = (c \triangleleft h) \sqcup_k d + c \sqcup_k (d \triangleleft h)$.

Theorem 3: $(\mathbb{R}_p^m \langle X \rangle, g, \triangleleft)$ is a pre-Lie algebra if and only if g is of the form $g(x_i) = \alpha_i x_i + \beta_i x_0$, for all i = 1, 2, ..., m.

With $X = \{x_0, x_1, x_2, \dots, x_m\}$ in natural order, the matrix representation of the endomorphism g, denoted by $[g]_X$ for which $(\mathbb{R}_p^m \langle X \rangle, g, \triangleleft)$ becomes a right pre-Lie algebra is

$$[g]_X = \begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} & \dots & a_{0m} \\ a_{10} & a_{11} & 0 & 0 & \dots & 0 \\ a_{20} & 0 & a_{22} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m0} & 0 & 0 & 0 & \dots & a_{mm} \end{pmatrix}$$
(4)

where the non-zero (not necessarily zero) elements $a_{ij} \in \mathbb{R}$. The submatrix of $[g]_X$ when restricted to $X \setminus \{x_0\}$ is a diagonal matrix.

Theorem 4: For $g \in \text{End}(\mathbb{R}X)$ whose matrix representation is of the form in (4),

- (i) $(\mathbb{R}_p^m \langle X \rangle, g, \, \sqcup, \triangleleft)$ is a right com-pre-Lie algebra. Thus, $(\mathbb{R}_p^m \langle X \rangle, \bullet)$ is a right pre-Lie algebra where $c \bullet d = (c \triangleleft d) + (c \sqcup d)$ for all $c, d \in \mathbb{R}_p^m \langle X \rangle$.
- (ii) The derived Lie algebras of both right pre-Lie algebras $(\mathbb{R}_p^m \langle X \rangle, g, \triangleleft)$ and $(\mathbb{R}_p^m \langle X \rangle, \bullet)$ are identical.

References

- Ebrahimi-Fard, K., Venkatesh, G. S., A Formal Power Series Approach to Multiplicative Dynamic Feedback Interconenction, arXiv:2301.04949 [math.OC] (submmitted to Communications in Algebra).
- Foissy, L., Extension of the Product of a Post-Lie Algebra and Application to the SISO Feedback Transformation Group, Computation and Combinatorics in Dynamics, Stochastics and Control, (2016), Abel Symp. organised by Celledoni et al.
- Foissy, L., The Hopf Algebra of Fliess Operators and Its Dual Pre-Lie Algebra, *Communications in Algebra*, 43 (2015) 4528–4552.
- Brockett, R. W., Feedback Invariants for Nonlinear Systems, *IFAC Proceedings Volumes*, 11 (1978) 1115–1120.