线性代数 I(A)参考答案

一、填空题(1-12小题,每小题5分,共60分)

1.
$$4(y-x)(z-x)(z-y)$$
. **2.** $(4-a)(6-bc)$ **3.** $A = \begin{pmatrix} 61 & 0 \\ 3 & 0 \end{pmatrix}$ **4.** $\begin{pmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$

5.
$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$
 6.
$$P = \begin{pmatrix} 2 & 3 & 4 \\ 0 & -1 & 0 \\ -1 & 0 & -1 \end{pmatrix}$$
 7.
$$(1,1,-1)$$
 8.
$$k(1,1,1)$$

- 9. $\alpha_3 = -\alpha_1 + 2\alpha_2$ 10. -288 11. 20 12. 是
- 二、解答题(13-14 小题,每小题 12 分,共 24 分)

13. 讨论方程组
$$\begin{cases} \lambda x_1 + x_2 + x_3 = \lambda - 3 \\ x_1 + \lambda x_2 + x_3 = -2 \end{cases}$$
 解的情况并在有无穷多解的情况求出通解。
$$x_1 + x_2 + \lambda x_3 = -2$$

解:

$$\begin{pmatrix} 1 & 1 & \lambda & | & -2 \\ 1 & \lambda & 1 & | & -2 \\ \lambda & 1 & 1 & | & \lambda - 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & \lambda & | & -2 \\ 0 & \lambda - 1 & 1 - \lambda & | & 0 \\ 0 & 1 - \lambda & 1 - \lambda^2 & | & 3\lambda - 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & \lambda & | & -2 \\ 0 & \lambda - 1 & 1 - \lambda & | & 0 \\ 0 & 0 & 2 - \lambda - \lambda^2 & | & 3\lambda - 3 \end{pmatrix}$$

......4分

当 $2-\lambda-\lambda^2\neq 0$,即 $\lambda\neq -2$ 且 $\lambda\neq 1$ 时,rank(Ab)=rank(A)=3,此时方程组有唯一解;

当 $\lambda = 1$ 时, rank(Ab) = rank(A) = 1 < 3,方程组有无穷多解。继续上述初等行变换得

$$\begin{pmatrix} 1 & 1 & 1 & | -2 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}, 故方程组的通解为
$$\begin{pmatrix} -2 \\ 0 \\ 0 \end{pmatrix} + k \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + l \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
 4 分$$

14. 求可逆矩阵
$$P$$
,将 $\begin{pmatrix} 2023 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ 相似对角化。 $\begin{vmatrix} 2023 - \lambda & 0 & 0 \end{vmatrix}$

解:
$$|A - \lambda E| = \begin{vmatrix} 2023 - \lambda & 0 & 0 \\ 1 & -\lambda & 0 \\ 1 & 0 & -\lambda \end{vmatrix} = \lambda^2 (2023 - \lambda)$$

解方程组
$$(A-2023E)x=0$$
 得: $p_1=(2023,1,1)^T$.

令
$$P = \begin{pmatrix} 2023 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
,则 $P^{-1}AP = diag(2023, 0, 0)$ 3 分

三、证明题(15-16小题,每小题8分,共16分)

15. 证明:若向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,则向量组 $\alpha_1,\alpha_1+\alpha_2,\alpha_1+\alpha_2+2\alpha_3$ 线性无关.

证明:
$$(\alpha_1, \alpha_1 + a_2, \alpha_1 + \alpha_2 + 2\alpha_3) = (\alpha_1, a_2, \alpha_3) \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

又
$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
可逆,所以向量组 α_1 , $\alpha_1 + a_2$, $\alpha_1 + \alpha_2 + 2\alpha_3$ 线性无关。

16. 设 $A=(a_{ij})$ 为三阶实对称矩阵,证明:若A正定,则对角元 $a_{22}>0$

证明: 因
$$A$$
 正定,故 $(0,1,0)A(0,1,0)^T > 0$, 4分