# DISTRIBUTED SYSTEMS

**MODULE IV** 

#### Introduction

A distributed system is one in which components located at networked computers communicate and coordinate their actions only by passing messages.

A collection of independent computers that appear to its users as a single coherent system significant characteristics of distributed systems:

- concurrency of components,
- lack of a global clock and
- independent failures of components.

The Prime motivation is *to share resources* 

Example: Internet

#### **Examples**

#### 1. Web Search

- 10 billion searches per calendar month
- 63 billion pages in the web
- One trillion unique web addresses
- Example: Google search engine (largest and most complex distributed system infrastructure)

#### 2. Massively multiplayer online games (MMOGs)

- Large numbers of users interact through the Internet with a persistent virtual world
- 5ok simultaneous online players

#### Challenges:

- Need for fast response times to preserve the user experience of the game
- Real-time propagation of events to the many players and maintaining a consistent view of the shared world

#### Preferable architecture: Client-server or distributed

### **Examples**

#### 3. Financial Trading

distributed event-based systems

#### An example financial trading system



### **Examples**

#### 4. Automatic Teller Machine



#### 1. Emergence of pervasive networking and modern Internet

Figure A typical portion of the Internet



#### 2. Mobile and ubiquitous computing

Integration of small and portable computing devices into distributed systems. These devices include:

- Laptop computers.
- Handheld devices, including mobile phones, smart phones, GPS-enabled devices, pagers, personal digital assistants (PDAs), video cameras and digital cameras.
- Wearable devices, such as smart watches with functionality similar to a PDA.
- Devices embedded in appliances such as washing machines, hi-fi systems, cars and refrigerators.

Ubiquitous computing is the harnessing of many small, cheap computational devices that are present in users' physical environments, including the home, office and even natural settings.

#### 2. Mobile and ubiquitous computing

Portable and handheld devices in a distributed system



#### 3. Distributed multimedia systems

- ability to support a range of media types in an integrated manner
- to support the storage, transmission and presentation of discrete media types, such as pictures or text messages
- able to store and locate audio or video files, to transmit them across the network
- video-on-demand services, access to music libraries, the provision of audio and video conferencing facilities, etc.

Example: Webcasting is the ability to broadcast continuous media, typically audio or video, over the Internet.

#### Hotstar?

#### 4. Distributed computing as a utility

Resources are provided by appropriate service suppliers and effectively rented rather than owned by the end user

Example: cloud computing

Clouds are generally implemented on cluster computers to provide the necessary scale and performance required by such services.

A cluster computer is a set of interconnected computers that cooperate closely to provide a single, integrated high performance computing capability.

### **Challenges**

- 1. Heterogeneity
- 2. Openness
- 3. Security
- 4. Scalability
- 5. Failure Handling
- 6. Concurrency
- 7. Transparency Access, Location, Concurrency, Replication, Failure, Mobility, Performance and Scaling
- 8. Quality of Service

### 1. Heterogeneity

- Variety and differences in
  - Networks
  - Computer hardware
  - Operating systems
  - Programming languages
  - Implementations by different developers
- *Middleware* as software layers to provide a programming abstraction as well as masking the heterogeneity of the underlying networks, hardware, OS, and programming languages (e.g., CORBA).
- *Mobile Code* to refer to code that can be sent from one computer to another and run at the destination (e.g., Java applets and Java *virtual machine*).

### Heterogeneity



### 2. Openness

- Openness is concerned with extensions and improvements of distributed systems.
- Detailed interfaces of components need to be published.
- New components have to be integrated with existing components.
- Differences in data representation of interface types on different processors (of different vendors) have to be resolved.

### 3. Security

- Security for information resources has three components:
  - confidentiality, integrity and availability
- In a distributed system, clients send requests to access data managed by servers, resources in the networks:
  - Doctors requesting records from hospitals
  - Users purchase products through electronic commerce
- Security is required for:
  - Concealing the contents of messages: security and privacy
  - Identifying a remote user or other agent correctly (authentication)
- New challenges:
  - Denial of service attack
  - Security of mobile code

### 4. Scalability

- Adaptation of distributed systems to
  - accommodate more users
  - respond faster (this is the hard one)
- Usually done by adding more and/or faster processors.
- Components should not need to be changed when scale of a system increases.
- Design components to be scalable!

### 5. Failure Handling

- Hardware, software and networks fail!
- Distributed systems must maintain *availability* even at low levels of hardware/software/network *reliability*.
- Fault tolerance is achieved by
  - recovery
  - redundancy

#### The following techniques are available for dealing with failures:

Detecting failure, masking failure, Tolerating from failure, Recovery from failure, Redundancy

### 6. Concurrency

- Components in distributed systems are executed in concurrent processes.
- Components access and update shared resources (e.g. variables, databases, device drivers).
- Integrity of the system may be violated if concurrent updates are not coordinated.
  - Lost updates
  - Inconsistent analysis

### 7. Transparency

- Distributed systems should be perceived by users and application programmers as a whole rather than as a collection of cooperating components.
- Transparency has different aspects.
- These represent various properties that distributed systems should have.

### 7. Transparency Types

- Access transparency enables local and remote resources to be accessed using identical operations.
- Location transparency enables resources to be accessed without knowledge of their physical or network location
- Concurrency transparency enables several processes to operate concurrently using shared resources without interference between them.
- Replication transparency enables multiple instances of resources to be used to increase reliability and performance without knowledge of the replicas by users or application programmers.
- Failure transparency enables the concealment of faults, allowing users and application programs to complete their tasks despite the failure of hardware or software components.
- Mobility transparency allows the movement of resources and clients within a system without affecting the operation of users or programs.
- Performance transparency allows the system to be reconfigured to improve performance as loads vary.
- Scaling transparency allows the system and applications to expand in scale without change to the system structure or the application algorithms.

## 8. Quality of Service

Factors affecting QoS

- Reliability
- Security
- Performance
- Adoptability
- Resource availability