Lesson 10. Poisson Processes - Decomposition and Superposition

0 Warm up

Example 1. A radioactive source emits particles according to a Poisson process with interarrival times (in minutes) distributed exponentially with parameter $\lambda = 2$.

	What is the probability that the first particle appears some time after 3 minutes but before 5 minutes What is the probability that exactly one particle is emitted in the interval from 3 to 5 minutes?

1 Overview

- Last time: a **Poisson process** is a renewal arrival counting process with interarrival times ~ Exponential (λ)
 - \Rightarrow Expected time between arrivals = $1/\lambda$
 - We say that the Poisson process has an **arrival rate** λ
 - \circ $T_n \sim \text{Erlang}(\lambda, n)$
 - \circ $Y_t \sim \text{Poisson}(\lambda t)$
 - o Properties: independent-increments, stationary-increments, memoryless
- Today:
 - When is the Poisson process a good model?
 - o Decomposing a Poisson process into two arrival counting subprocesses
 - o Superposing (combining) two Poisson processes into one arrival counting process

2 When is the Poisson process a good model?

- Last time: any arrival-counting process in which arrivals occur one-at-a-time and has independent and stationary increments must be a Poisson process
- Independent increments
 ⇔ number of arrivals in nonoverlapping intervals of time are independent
 - Reasonable when the arrival-counting process is formed by a large number of customers making individual, independent decisions about when to arrive
 - o e.g. arrival of telephone calls to a cellular tower
- Stationary increments \Leftrightarrow expected number of arrivals = constant rate \times length of time interval
 - Reasonable when arrival rate is approximately constant over time
 - o e.g. arrivals of cars at a toll booth during evening rush hour

3 Decomposition of Poisson processes

- Let's think back to the Darker Image case:
 - Two types of customers: full-service and self-service
- Suppose that:
 - All customers arrive at the copy shop according to a Poisson process with arrival rate $\lambda = 1/6$
 - o 40% of these customers are full-service, 60% self-service
- Let's consider the following model of the arrival process
- Let's model the customer type as a **Bernoulli process** $\{B_1, B_2, \dots\}$ with success probability $\gamma = 0.4$:

$$B_n = \begin{cases} 0 & \text{if } n \text{th customer is self-service - with probability } 1 - \gamma = 0.6 \\ 1 & \text{if } n \text{th customer is full-service - with probability } \gamma = 0.4 \end{cases}$$

- In other words, B_n is a Bernoulli random variable with success probability $\gamma = 0.4$
- \circ B_1, B_2, \ldots are independent (and time-stationary)
- Let's assume:
 - \circ B_1, B_2, \ldots are also independent of the interarrival times G_1, G_2, \ldots with common cdf F_G
 - The common cdf of B_1, B_2, \ldots is F_B
- State variables:

 S_n = total number of customers right after nth system event

 $S_{0,n}$ = total number of self-service customers right after nth system event

 $S_{1,n}$ = total number of full-service customers right after *n*th system event

• System events:

$$e_0()$$
: (initialization)

1: $S_0 \leftarrow 0$ (no customers at start)

2: $S_{0,0} \leftarrow 0$ (no self-service customers at start)

3: $S_{1,0} \leftarrow 0$ (no full-service customers at start)

4: $C_1 \leftarrow F_G^{-1}(\text{random}())$ (set clock for first arrival)

 $e_1()$: (customer arrival)

1: $S_{n+1} \leftarrow S_n + 1$ (one more customer)

2: $B_{n+1} \leftarrow F_B^{-1}(\text{random}())$ (determine customer type)

3: **if** $\{B_{n+1} = 1\}$ **then**

4: $S_{1,n+1} \leftarrow S_{1,n} + 1$ (one more full-service customer)

5: **else**

6: $S_{0,n+1} \leftarrow S_{0,n} + 1$ (one more self-service customer)

7: **end if**

8: $C_1 \leftarrow T_{n+1} + F_G^{-1}(\text{random}())$ (set clock for next arrival)

• Output process:

$$\mathbf{Y}_t = \begin{pmatrix} Y_t \\ Y_{0,t} \\ Y_{1,t} \end{pmatrix} =$$

- $\{Y_t; t \ge 0\}$ is a Poisson process with arrival rate λ by construction
- What about $\{Y_{0,t}; t \ge 0\}$ and $\{Y_{1,t}; t \ge 0\}$?
- The **decomposition property**: $\{Y_{0,t}: t \ge 0\}$ and $\{Y_{1,t}: t \ge 0\}$ are <u>independent Poisson subprocesses</u> with arrival rates $\lambda_0 = (1 \gamma)\lambda$ and $\lambda_1 = \gamma\lambda$ respectively
- This works because the Poisson process is decomposed by a (independent) Bernoulli process
- Other methods of decomposition do not necessarily lead to Poisson subprocesses
- Proof on p. 111 of Nelson

Examp	le 2.							
S	a. What is the probability that fewer than 3 self-service customers arrive during any 60-minute period the shop is open?							
b. What is the expected number of full-service customers to arrive during any 60-minute peri								
	le 3. Suppose we know that 12 customers arrived during the last hour. What is the probability that 3 overe self-service customers?							

4 Superposition of Poisson processes

- We can also do this in reverse
- Suppose that:
 - self-service customers arrive as a Poisson process with arrival rate $\lambda_0 = 1/9$ and interarrival time cdf F_{G_0}
 - full-service customers arrive according to a Poisson process with arrival rate $\lambda_1 = 1/15$ and interarrival time cdf F_{G_1}
- We can model this arrival process as follows
- Let's use the same state variables as before
- System events:

```
e_0(): (initialization)
  1: S_0 \leftarrow 0
                                                            (no customers at start)
 2: S_{0,0} \leftarrow 0
                                                            (no self-service customers at start)
 3: S_{1,0} \leftarrow 0

4: C_1 \leftarrow F_{G_1}^{-1}(\text{random()})

5: C_2 \leftarrow F_{G_0}^{-1}(\text{random()})
                                                            (no full-service customers at start)
                                                            (set clock for next full-service arrival)
                                                            (set clock for next self-service arrival)
e_1(): (full-service arrival)
  1: S_{1,n+1} \leftarrow S_{1,n} + 1
                                                            (one more full-service customer)
 2: S_{n+1} \leftarrow S_n + 1
                                                            (one more customer, period)
 3: C_1 \leftarrow T_{n+1} + F_{G_1}^{-1}(\operatorname{random}())
                                                            (set clock for next full-service arrival)
e_2(): (self-service arrival)
 1: S_{0,n+1} \leftarrow S_{1,n} + 1
                                                            (one more self-service customer)
 2: \ S_{n+1} \leftarrow S_n + 1
                                                            (one more customer, period)
 3: C_2 \leftarrow T_{n+1} + F_{G_0}^{-1}(\text{random}())
                                                            (set clock for next self-service arrival)
```

- Now by construction, $\{Y_{0,t}; t \ge 0\}$ and $\{Y_{1,t}; t \ge 0\}$ are Poisson processes
- What about $\{Y_t; t \ge 0\}$?
- The **superposition property**: two independent Poisson processes with arrival rates λ_0 and λ_1 that are superposed form a Poisson process with arrival rate $\lambda = \lambda_0 + \lambda_1$
- This works because of the two Poisson processes are independent
- Proof on pp. 111-112 of Nelson

has a separa processes a	ate ATM where c	ustomers arrive ses. What is the	at a rate of 20 probability that	per hour. Suppo at the number o	rate of 10 per hour ose we approxima of customers arriv	te these arrival
-						