Exercise (Alternative NM-CPA security definition). Prove that the standard non-malleability definition specified by the games

$$\begin{array}{lll} \mathcal{Q}_0 & \mathcal{Q}_0 \\ & \left[(\mathsf{sk},\mathsf{pk}) \leftarrow \mathsf{Gen} \right. \\ & \mathcal{M}_0 \leftarrow \mathcal{B}(\mathsf{pk}) \\ & m \leftarrow \mathcal{M}_0 \\ & c \leftarrow \mathsf{Enc}_{\mathsf{pk}}(m) \\ & \pi, \hat{c}_1, \dots, \hat{c}_n \leftarrow \mathcal{B}(c) \\ & \text{if } c \in \{\hat{c}_1, \dots, \hat{c}_n\} \text{ then } \textit{return } 0 \\ & \hat{m}_1 \leftarrow \mathsf{Dec}_{\mathsf{sk}}(\hat{c}_1), \dots, \hat{m}_n \leftarrow \mathsf{Dec}_{\mathsf{sk}}(\hat{c}_n) \\ & \textit{return } \pi(m, \hat{m}_1, \dots, \hat{m}_n) \end{array} \right.$$

is equivalent to the simplified definition specified by the following games

Solution. For clarity we split the proof into three smaller steps.

FIRST STEP. Show that standard definition is equivalent to the definition specified by the following games

$$\begin{aligned} \mathcal{G}_0 & \qquad \qquad \mathcal{G}_0 \\ \left[(\mathsf{sk}, \mathsf{pk}) \leftarrow \mathsf{Gen} & \qquad \qquad \left[(\mathsf{sk}, \mathsf{pk}) \leftarrow \mathsf{Gen} \\ (m_0, m_1) \leftarrow \mathcal{A}(\mathsf{pk}) & \qquad \qquad \left((m_0, m_1) \leftarrow \mathcal{A}(\mathsf{pk}) \\ i \leftarrow \{0, 1\} & \qquad \qquad i \leftarrow \{0, 1\}, j \leftarrow \{0, 1\} \\ c \leftarrow \mathsf{Enc}_{\mathsf{pk}}(m_i) & \qquad \qquad c \leftarrow \mathsf{Enc}_{\mathsf{pk}}(m_j) \\ \pi, \hat{c}_1, \dots, \hat{c}_n \leftarrow \mathcal{B}(c) & \qquad \qquad \pi, \hat{c}_1, \dots, \hat{c}_n \leftarrow \mathcal{B}(c) \\ \text{if } c \in \{\hat{c}_1, \dots, \hat{c}_n\} \text{ then return } 0 & \qquad \qquad \text{if } c \in \{\hat{c}_1, \dots, \hat{c}_n\} \text{ then return } 0 \\ \hat{m}_1 \leftarrow \mathsf{Dec}_{\mathsf{sk}}(\hat{c}_1), \dots, \hat{m}_n \leftarrow \mathsf{Dec}_{\mathsf{sk}}(\hat{c}_n) \\ \text{return } \pi(m_i, \hat{m}_1, \dots, \hat{m}_n) & \qquad \text{return } \pi(m_i, \hat{m}_1, \dots, \hat{m}_n) \end{aligned}$$

SECOND STEP. Show that the alternative definition is equivalent to the definition specified by the following

games

$$\begin{array}{ll} \mathcal{G}_0 & \mathcal{G}_0 \\ \\ \left((\mathsf{sk}, \mathsf{pk}) \leftarrow \mathsf{Gen} \right. \\ \left((m_0, m_1) \leftarrow \mathcal{A}(\mathsf{pk}) \right. \\ c \leftarrow \mathsf{Enc}_{\mathsf{pk}}(m_1) \\ \\ \pi, \hat{c}_1, \dots, \hat{c}_n \leftarrow \mathcal{A}(c) \\ \text{if } c \in \{\hat{c}_1, \dots, \hat{c}_n\} \text{ then } \mathbf{return} \ 0 \\ \hat{m}_1 \leftarrow \mathsf{Dec}_{\mathsf{sk}}(\hat{c}_1), \dots, \hat{m}_n \leftarrow \mathsf{Dec}_{\mathsf{sk}}(\hat{c}_n) \\ \\ \mathbf{return} \ \pi(m_1, \hat{m}_1, \dots, \hat{m}_n) & \mathbf{g}_0 \\ \end{array} \right. \\ \begin{array}{ll} \left((\mathsf{sk}, \mathsf{pk}) \leftarrow \mathsf{Gen} \\ \left((m_0, m_1) \leftarrow \mathcal{A}(\mathsf{pk}) \\ \\ c \leftarrow \mathsf{Enc}_{\mathsf{pk}}(m_0) \\ \\ \pi, \hat{c}_1, \dots, \hat{c}_n \leftarrow \mathcal{A}(c) \\ \\ \text{if } c \in \{\hat{c}_1, \dots, \hat{c}_n\} \text{ then } \mathbf{return} \ 0 \\ \\ \hat{m}_1 \leftarrow \mathsf{Dec}_{\mathsf{sk}}(\hat{c}_1), \dots, \hat{m}_n \leftarrow \mathsf{Dec}_{\mathsf{sk}}(\hat{c}_n) \\ \\ \mathbf{return} \ \pi(m_1, \hat{m}_1, \dots, \hat{m}_n) \\ \end{array} \right.$$

THIRD STEP. Show that the results obtained in the second and third step are sufficient to conclude the desired result.