SRM Institute of Science and Technology Department of Mathematics

18MAB102T-Advanced Calculusand Complex Analysis 2020-2021 Even

Unit – II: Vector Calculus Tutorial Sheet - I

S.No	Questions	Answers
Part – A [3 Marks]		
1	If $\phi(x, y, z) = x^2y + y^2x + z^2$, find $\nabla \phi$ at the point (1,1,1).	$3\vec{i} + 3\vec{j} + 2\vec{k}$
2	Find the directional derivative of $f(x, y, z) = x^2 - 2y^2 + 4z^2$	8
	at the point (1,1,-1) in the direction of $2\vec{i} + \vec{j} - \vec{k}$	$\sqrt{6}$
3	Find the angle between the surfaces $x^2 + yz = 2$ and	$\frac{\pi}{3}$
	x + 2y - z = 2 at $(1,1,1)$	
4	The temperature of points in space is given by	$\nabla \mathbf{T} = 2\vec{\mathbf{i}} + 2\vec{\mathbf{j}} - \vec{\mathbf{k}}$
	$T(x,y,z) = x^2 + y^2 - z$. A mosquito located at $(1,1,2)$	
	desires to fly in such a direction that it will get warm as	
	soon as possible .In what direction should it move?	
5	If $\vec{F} = (x + y + 1)\vec{i} + \vec{j} - (x + y)\vec{k}$ show that \vec{F} .curl $\vec{F} = 0$	\vec{F} .curl $\vec{F} = 0$
Part – B[6 Marks]		
6	Find the constants a,b,c so that	a = 4, b = 2, c = -1
	$\vec{F} = (x + 2y + az)\vec{i} + (bx - 3y - z)\vec{j} + (4x + cy + 2z)\vec{k}$ may be	$\phi = \frac{x^2}{2} - 3\frac{y^2}{2} + z^2 + 2xy$
	irrotational. For these values of a,b,c find its scalar	
	potential.	+4zx-yz+c
7	Prove that $\operatorname{div}(\mathbf{r}^{n}\mathbf{r}) = (n+3)\mathbf{r}^{n}$. Deduce that $\mathbf{r}^{n}\mathbf{r}$ is solenoidal	
	if and only if n= -3	
8	i) If \vec{A} and \vec{B} are irrotational, Prove that $\vec{A} \times \vec{B}$ is	i) $\nabla . (\overrightarrow{A} \times \overrightarrow{B}) = 0$
	solenoidal	$\phi = x^2 + 2y^2 - 3z^2$
	ii) Prove that $\vec{A} = (2x + yz)\vec{i} + (4y + zx)\vec{j} - (6z - xy)\vec{k}$	+xyz+a
	is solenoidal as well as irrotational. Also find	
	the scalar potential of \vec{A} .	
9	Find the angle between the normals to the surface	$\theta = \cos^{-1}(13)$
	$x^2 = yz$ at the points (1,1,1) and (2,4,1)	$\theta = \cos^{-1}\left(\frac{13}{3\sqrt{22}}\right)$ $a = \frac{5}{2}, b = 1$
10	Find a and b so that the surfaces $ax^2 - byz = (a+2)x$ and	$a = \frac{5}{100}, b = 1$
	$4x^2y + z^3 = 4$ cut orthogonally at $(1,-1,2)$	2