Problem 1: Let

$$A = \left(\begin{array}{cc} 0 & 1\\ -1 & 0 \end{array}\right)$$

- a) Find A's characteristic polynomial, real eigenvalues, and bases for their associated eigenspaces.
 - $\lambda^2 + 1 = 0$, no real eigenvalues.
- b) What is the row-reduced echelon form of A? For rref(A), find the characteristic polynomial, real eigenvalues, and bases for their associated eigenspaces?
 - $(\lambda 1)^2$, eigenvalue is 1, any basis for \mathbb{R}^2 works.

Problem 2:Define:

- a) Inner Product: An inner product on V is a function (written (\cdot, \cdot)) from V^2 to \mathbb{R} such that for all $u, v, w \in V$, $c \in \mathbb{R}$:
 - 1) $(u, u) \ge 0$, (u, u) = 0 if and only if $u = 0_V$
 - 2) (v, u) = (u, v)
 - 3) (u + v, w) = (u, w) + (v, w)
 - 4) (cu, v) = c(u, v)
- b) Orthonormal: A set of vectors, S, in V is orthonormal if each pair of vectors is orthogonal and ||u|| = 1 for all $u \in S$.
- c) Eigenvalue: We say that λ is an eigenvalue of a matrix (or linear transformation) if $Ax = \lambda x$ (or $T(x) = \lambda x$ for some vector x.
- d) Eigenvector: The eigenvectors associated with an eigenvalue, la, are the vectors x satisfying $Ax = \lambda x$ (or $T(x) = \lambda x$).

Anything close to "the definition in the book" gets points.

Problem 3: Must a matrix with real entries have any real eigenvalues?

No. See problem 1.