

Sharing and Binding for General Circuits

Benedikt Lipinski

- Einleitung (Problemstellung)
- Begriff klärung
 - Allokierung (Allocation)
 - Bindung (Binding)
 - Ressourcen-Teilung (Sharing)
- Kompatiblitätsgraphen
- Ähnl. Resource Dominated Circuits
- Genral Circuits
- Sharing and Binding for General Circuits

09 07 2021

09.07.2021

Ablaufplan

$$\tau(v_i) \ge \tau(v_j) + d_j \quad \forall (v_i, v_j) \in E$$

Latenz L

$$L = \max_{v_i \in V} \{\tau(v_i) + d_i\} - \min_{v_i \in V} \{\tau(v_i)\}$$

Problemgraph G(V,E) $Startzeit = \tau(v_i)$ $Knoten V_i \in E$ $Funktion \tau: V \rightarrow \mathbb{Z}_0^+$

Allokation

(Allocation)

Definition:

Funktion $\alpha: V_T \to \mathbb{Z}_0^+$ die angibt Wie viele $\alpha(r_k)$ verschiedene Ressourcentypen $r_k \in V_T$ vorhanden sind

- Betrachtung unter begrenzten Ressourcen
- z.B aus gründen:
 - Verfügbarkeit
 - Bestand
 - Platz

Allokation

Beispiel 1

Benötigte Ressourcen

- 4 Multiplizierer
- 2 Addierer

Allokierungsfunktion

- $\alpha(r_{mul}) = 4$
- $\alpha(r_{add}) = 2$

Latenz

$$L = \tau(v_5) + d_5 - \tau(v_1) = (3+1) - 0 = 4$$

Bild 3: Ablaufplan ohne Einschränkung

Allokation

Beispiel 2

Benötigte Ressourcen

- 1 Multiplizierer
- 1 Addierer

Allokierungsfunktion

- $\alpha(r_{mul}) = 1$
- $\alpha(r_{add}) = 1$

Latenz

$$L = \tau(v_9) + d_9 - \tau(v_1) = (6+1) - 0 = 7$$

Bindung

(Binding)

Definition: $\beta \colon V \to V_T \ mit \ \beta(v_i) = r_k \in \\ V_T \ und \ (v_i, \beta(v_i)) E_R \\ \gamma \colon V \to \mathbb{Z}^+ \ mit \ \gamma(v_i) \le \alpha \big(\beta(v_i)\big).$

- $\beta(v_i) = Ressourcentyp$
- $\gamma(v_i) = Instanz \ eines \ Ressourcentyps$

Bindung Beispiel

Dezidiert:

8 Addieren, Subtrahieren, Vergleichen

3 Multiplikationen

Optimiert:

3 Addieren, Subtrahieren, Vergleich

1 Multiplikation

Zeit Slot	ADD,SUB ,CMP	MUL
1	3	1
2	2	1
3	2	0
4	1	0
5	0	1

Ressourcen-Teilung

(Sharing)

- Bindet mehrere Operationen an eine instanz
- Bei größeren schaltung nicht im kopf lösbar
- Deswegen werden Hilfsmittel benutzt
- Regeln:
 - Vom gleichen typ
 - Nicht im gleichen Zeit Slot o. alternativ

Kompatiblitäts- und Konflik – Graph Kompatiblitätsgraph

Definition:

- Ungerichteter Graph $\mathbf{E} = \left\{ \{v_i, v_j\} : v_i \sim v_j, v_i, v_j \in \mathbf{V}, i \neq j \right\}$
 - -V = Knotenmenge = Operationen
 - -E = Kantenmenge = kompatible Operationspaare
- Eine maximale menge an paaren heißt: Clique
 - Ist eine optimale mehrfach nutzung
 - Werden farblich makiert

Kompatiblitätsgraph

Beispiel

Dezidiert:

8 Addieren, Subtrahieren, Vergleichen

3 Multiplikationen

Optimiert:

3 Addieren, Subtrahieren, Vergleich

1 Multiplikation

Zeit Slot	ADD,SUB ,CMP	MUL
1	3	1
2	2	1
3	2	0
4	1	0
5	0	1

Kompatiblitätsgraph

Beispiel

• Einzeichnen von Cliquen

ALU: Blau

- MUL1: Gelb

MUL2: Grün

MUL3: Rot

Kompatiblitäts- und Konflik – Graph Konfliktgraph

- Komukigiapii
- Komplement zum Kompatiblitätsgraph
- Möglichst wenig versch. Farben
 - Chromatische Zahl

Ressourcen dominierte Schaltkreise

(Resource dominated Circuits)

09.07.2021

Generelle Schaltkreise

(General Circuits)

Verteilung und Bindung von Generellen Schaltkreisen

(Sharing and Binding for General Circuits)

09.07.2021