เคมี มัธยมศึกษาปีที่ 6 Alcohol

โดย..มิสเพ็ญนภา ดีจรัส

Alcohol

Alcohol: สมบัติทางกายภาพของแอลกอฮอล์

เนื่องจากแอลกอฮอล์ประกอบด้วย C – O - H จึงทำให้แอลกอฮอล์เป็นโมเลกุลมีขั้ว

แอลกอฮอล์สามารถสร้างพันธะ
ไฮโดรเจนระหว่างโมเลกุลได้ และ
สามารถสร้างพันธะไฮโดรเจนกับ
โมเลกุลของน้ำได้เมื่อนำแอลกอฮอล์
ไปละลายน้ำ

Alcohol : จุดเดือดและสภาพการละลายได้ที่ 20 °C ของแอลกอฮอล์บางชนิด

ชื่อ	สูตรโครงสร้าง	จุดเดือด (°C)	สภาพละลายได้ในน้ำ ที่ 20 ⁰ c (g/น้ำ 100g)		
methanol	CH ₃ OH	64.6		ละลายได้ดีมาก	
ethanol	CH ₃ CH ₂ OH	78.3		ละลายได้ดีมาก	
1 - propanol	CH ₃ CH ₂ CH ₂ OH	97.2		ละลายได้ดีมาก	
2 - butanol	CH ₃ CH ₂ CH ₂ CH ₂ OH	117.7		7.7	
1 - pentanol	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH	138.0		2.2	

Alcohol: การจำแนกประเภทแอลกอฮอล์ แบ่งออกเป็น 3 กลุ่ม

1. primary alcohol

2. secondary alcohol

3. tertiary alcohol

Alcohol : การเรียกชื่อของแอลกอฮอล์

ชื่อสามัญ นิยมใช้เรียกแอลกอฮอล์โมเลกุลเล็กมีมวลโมเลกุลน้อย โดยให้เรียกชื่อ หมู่แอลคิลก่อนแล้วลงท้ายด้วยคำว่าแอลกอฮอล์ เช่น

Alcohol: การเรียกชื่อของแอลกอฮอล์

- IUPAC กำหนดตัวเลขแสดงตำแหน่งของคาร์บอนในโซ่หลัก โดยให้ตำแหน่งของคาร์บอน ที่มีหมู่ – OH เป็นตัวเลขที่น้อยที่สุด
 - เรียกโซ่หลักด้วยชื่อของแอลเคน (- ane) แต่ตัดอักษร e ออก แล้วระบุตำแหน่ง ของหมู่ – OH ตามด้วยคำลงท้าย – ol
 - การอ่านกิ่ง (คำนำหน้า) ให้อ่านเหมือนระบบอื่น ๆ

Alcohol : การเรียกชื่อของแอลกอฮอล์

Alcohol : การเรียกชื่อของแอลกอฮอล์

Alcohol: การเรียกชื่อของแอลกอฮอล์

Hydroxyl group มากกว่า 1 ให้เติมคำนำหน้า – ol เพื่อบอกจำนวน hydroxyl และชื่อของโซ่หลักต้องไม่ตัด e

1, 2 - ethanediol

โครงสร้างที่มีหมู่ฟังก์ชัน alkene หรือ alkyne กับ alcohol ต้องนับให้ตำแหน่ง hydroxyl group ที่ตำแหน่งที่น้อยที่สุด

Alcohol: การเรียกชื่อและเขียนสูตรของแอลกอฮอล์

3 - chlorobutanol

propan -1- ol

Alcohol : การเตรียมแอลกอฮอล์

1. Hydration of Alkenes : แอลคีนถูกเปลี่ยนเป็นแอลกอฮอล์ได้ โดยทำปฏิกิริยา กับกรดซัลฟิวริก

2. Reduction of acids and esters : ลิเทียมอะลูมินัมไฮไดร์ด (LiAlH $_4$) จะใช้รีดิวซ์ กรดและเอสเทอร์ แล้วให้ผลผลิตเป็นแอลกอฮอล์

$$H_3C$$
 — C — CH_3CH_2OH — CH_3CH_2OH — CH_3CH_2OH — CH_3CH_2OH — CH_3CH_2OH — CH_3CH_2OH

Alcohol : ปฏิกิริยาของแอลกอฮอล์

1. ปฏิกิริยาการเผาไหม้

$$2 \text{ CH}_3\text{OH} + 3 \text{ O}_2 \longrightarrow 2 \text{ CO}_2 + 4 \text{ H}_2\text{O}$$

2. ปฏิกิริยาแทนที่ด้วยโลหะ ปฏิกิริยานี้เกิดขึ้นเหมือนปฏิกิริยาของน้ำ คือ โปรตอนของ แอลกอฮอล์ถูกดึงด้วยโลหะ เช่น Na K

$$_{2}$$
 \longrightarrow O-Na⁺ + H

Alcohol : ปฏิกิริยาของแอลกอฮอล์

2º alcohol

3. ปฏิกิริยาการกำจัด แอลกอฮอล์เกิดปฏิกิริยาการกำจัดได้เหมือนแอลคีน และเป็นการกำจัด โมเลกุลของน้ำออกจากแอลกอฮอล์จึงเรียกปฏิกิริยานี้ว่า Dehydration

$$\begin{array}{c} CH_{3} \\ H_{3}C - C - CH_{3} \\ \hline OH \\ 3^{\circ} \text{ alcohol} \end{array} \xrightarrow{H_{2}SO_{4}/\text{ heat}} \begin{array}{c} CH_{3} \\ H_{3}C - C = CH_{2} \\ \hline H_{3}C - C = CH_{2} \\ \hline H_{3}C - C = CH_{3} \\ \hline H_{3}C - C = CH_{2} \\ \hline OH \end{array} + \begin{array}{c} H_{2}O \\ H_{3}C - C = CH_{2} \\ \hline H_{3}C - C = CH_{2} \\ \hline OH \end{array}$$

ความว่องไวในการ เกิดปฏิกิริยา พบว่า $3^{\circ} > 2^{\circ} > 1^{\circ}$

Alcohol: อุตสาหกรรมแอลกอฮอล์

เมทานอล (CH₃OH) แต่เดิมสังเคราะห์ได้จากการกลั่นไม้ชนิดหนึ่งเรียกว่า ไม้แอลกอฮอล์ (Wood alcohol) เมื่อไม่มีอากาศอยู่ด้วย ปัจจุบันสังเคราะห์ขึ้นจากปฏิกิริยาระหว่าง แก๊สคาร์มอนมอนนอกไซด์กับแก๊สไฮโดรเจนที่อุณหภูมิสูง ภายใต้ความดันและมีตัวเร่งปฏิกิริยา ด้วยแต่เมทานอลประมาณ 50 % ที่ได้ถูกออกซิไดซ์เป็นฟอร์มาลดีไฮด์

ใช้เป็นสารตั้งต้นในการผลิต พลาสติก ยา และสารประกอบอินทรีย์อื่น ๆ

มือันตราย ถ้าเข้าสู่ร่างกายจะถูกออกซิไดส์เป็นฟอร์มาลดีไฮด์ ทำให้ปวดศรีษะ ตาบอด หรือเป็นอันตรายถึงชีวิต

Alcohol : อุตสาหกรรมแอลกอฮอล์

เอทานอล (CH₃CH₂OH) สังเคราะห์ได้จากปฏิกิริยาการเติมน้ำลงในเอทิลีน โดยมี กรดเป็นตัวเร่งปฏิกิริยา

$$H_2C$$
= CH_2 + H_2O $\xrightarrow{H^+}$ CH_3CH_2OH

- ใช้เป็นตัวทำละลายในการผลิตน้ำหอม ยา ใช้เป็นสารฆ่าเชื้อ
- ผสมกับน้ำมันเบนซิน ได้เป็นแก๊สโซฮอล์ใช้เป็นเชื้อเพลิง
- สารตั้งต้นในการผลิตสีย้อม ยา เครื่องสำอาง และสารประกอบอินทรีย์ เช่น

Alcohol: อุตสาหกรรมแอลกอฮอล์

เอทานอล (CH₃CH₂OH) สังเคราะห์จากกระบวนการหมักแป้งและน้ำตาล (fermentation)

เอทานอลได้จากกระบวนการหมักประมาณ 12% ดังนั้นการทำวิสกี รัม วอดก้า และอื่น ๆ ซึ่งมีปริมาณ แอลกอฮอล์ 40-60% ต้องนำผลผลิตที่ได้จากการหมักทั้งหมดมากลั่นเพื่อเพิ่มปริมาณเอทานอล เอทานอล ที่ใช้เป็นตัวทำละลายมักจะเป็น 95% ของเอทานอล และ 5% ของน้ำ

เอทานอลที่ได้จากการหมักสารตั้งต้นต่างกัน มีชื่อเรียกต่างกัน เช่น
น้ำองุ่น (กลูโคส) -----> ไวน์
มันฝรั่ง (แป้ง) -----> วอดก้า
ข้าวบาร์เล่ย์ -----> เบียร์

ฟืนอล (Phenol)

สูตรทั่วไป: ArOH

(Ar คือหมู่แอริล)

(OH คือหมู่ไฮดรอกซิล)

ฟืนอล มีสูตร C₆H₅OH

___он

ยูจีนอล: น้ำมันหอมระเหย พบในกานพลู

อีเทอร์ (Ether)

สูตรทั่วไป R - O -R '

เมื่อ R และ R ' คือ หมู่แอลคิล หรือแอริลที่เหมือนกัน หรือต่างกัน OR คือ หมู่ แอลคอกซึ่

ชื่อ	สูตรโครงสร้าง	จุดเดือด (°C)	สภาพละลายได้ในน้ำที่ 20°C (g/น้ำ 100 g)
เมทอกซีมีเทน (methoxymethane)	CH ₃ OCH ₃	-24.9	ละลายได้
เมทอกซีอีเทน (methoxyethane)	CH ₃ CH ₂ OCH ₃	7.4	ละลายได้
เอทอกซีอีเทน (ethoxyethane)	CH ₃ CH ₂ OCH ₂ CH ₃	34.5	ละลายได้น้อย
เมทอกซีโพรเพน (methoxypropane)	CH ₃ (CH ₂) ₂ OCH ₃	39.1	ละลายได้
เมทอกซี่บิวเทน (methoxybutane)	CH ₃ (CH ₂) ₃ OCH ₃	71	/ ไม่ละลาย

้มีขั้วน้อย = จุดเดือดใกล้เคียงแอลเคน สร้างพันธะไฮโดรเจนกับน้ำได้

อีเทอร์ (Ether) : การอ่านชื่อ

กำหนดให้ด้านที่มีจำนวนคาร์บอนมากกว่าเป็นโซ่หลัก ส่วนด้านที่มีจำนวน คาร์บอนน้อยกว่าให้รวมกับออกซิเจนเป็นหมู่แทนที่ เรียกว่า alkoxy (- OR) ซึ่งเรียกชื่อตามคาร์บอนแล้วลงท้ายด้วย - oxy

$$CH_3-CH_2-O-CH_2-CH_2-CH_3$$
 $CH_3-CH_3-CH_3-CH_3$
 $CH_3-CH_3-CH_3$
 CH_3-CH_3
 CH_3
 $CH_$

อีเทอร์ (Ether) : การอ่านชื่อ

CH₃ CH (OCH₃) CH₃

1 - ethoxypentane

1 - methoxyethane

อีเทอร์ (Ether) : การใช้ประโยชน์

การใช้ประโยชน์

- เอทอกซีอีเทน ใช้เป็นยาสลบ ซึ่งนิยมเรียกสารนี้ว่า อีเทอร์ โดยสารนี้จะออก ฤทธิ์กดประสาทส่วนกลางจนทำให้หมดสตริ
- ตัวทำละลายสารในห้องปฏิบัติการ และในอุตสาหกรรม เนื่องจากอีเทอร์ สามารถละลายสารประกอบอินทรียีได้หลายชนิด เกิดปฏิกิริยากับสารอื่นได้ยาก และ แยกออกได้ง่ายเมื่อสิ้นสุดปฏิกิริยา เนื่องจากอีเทอร์มีจุดเดือดต่ำ และระเหยง่าย

อีเทอร์ (Ether) : การใช้ประโยชน์

ตัวอย่าง: เขียนสูตรโครงสร้างที่เป็นไปได้ทั้งหมดของสารที่มีสูตรโมเลกุล C₃H₈O ระบุว่ามีหมู่ฟังก์ชั่นอะไร และเป็นสารประกอบประเภทใด พร้อมเรียกชื่อ และเปรียบเทียบ จุดเดือด และคุณสมบัติในการละลายน้ำ

