Algebra I

September 28, 2023

Grade Weights

50% Homework + 50% Final Participation matters for pass/fail.

Office Hours

Tuesday / Thursday 11:25 - 12:00 Or by appointment (jusuh@ucsc.edu)

Recommended Text

Abstract Algebra (3e) - Dummit and Foote Finite Groups: An Introduction (2nd revised) - Jean-Pierre Serre Robert Boltje's Lecture Notes - (https://boltje.math.ucsc.edu/courses/f17/f17m200notes.pdf)

Binary Operation

Let S be a set. A binary operation on S is a function $f: S \times S \to S$. We will almost never use f for the binary operation (f(s,t)).

The usual notation for binary operations is s * t.

Example

1.
$$S = \mathbb{R}^3$$
, define $f: S \times S \to S$ as $(\vec{x}, \vec{y}) \rightsquigarrow \vec{x} + \vec{y}$.

2.
$$S = \mathbb{R}^3$$
, define $S \times S \xrightarrow{f} S$ as $(\vec{x}, \vec{y}) \rightsquigarrow \vec{x} + \vec{y}$.

- Note that $(\vec{x}, \vec{y}) \rightsquigarrow \vec{x} \cdot \vec{y}$ is not a binary operation.
- 3. $S = \mathbb{Z}$ as $(m, n) \mapsto m \cdot n$.
- 4. $S = \mathbb{R}^3$ as $(\vec{x}, \vec{y}) \rightsquigarrow \frac{\vec{x} + \vec{y}}{2}$
- 5. Let $n \ge 1$ be an interger and $S = M_{n \times n}(\mathbb{R}) = \{n \times n \text{ real matrices}\}$. Then $(A, B) \rightsquigarrow AB$.

Observations

Examples 1,3,5 are associative; examples 2,4 are not. Examples 1-4 are commutative; example 5 commutes only when n = 1. $\vec{0}$ for example 1, 1 for example 3, and I_n for example 5.

Q: What is a Group?

A group is a set equipped with a binary operation which satisfies three axioms. Let * be a binary operation on a set S.

- 1. Say * is associative if $\forall a, b, c \in S$, (a * b) * c = a * (b * c).
- 2. Say * is commutative if $\forall a, b \in S, a * b = b * a$.
- 3. An element $e \in S$ is a neutral element (with respect to *) if $\forall a \in S$, a * e = a = e * a.
 - If there exists a neutral element, then it is unique.
- 4. Suppose (S, *) has a neutral element e. Let $a \in S$. Then $b \in S$ is called an inverse of a (with respect to *) if a * b = e = b * a.

Group

A group is a set G equipped with a binary operation * such that

- 1. * is associative.
- 2. * has a neutral element e.
- 3. Every $g \in G$ has an inverse.

If, in addition, * is commutative, we say (G, *) is an abelian or commutative group.

Examples

 $(\mathbb{R}^3, +)$ is a commutative group. (\mathbb{R}^3, \times) has no neutral element. (\mathbb{Z}, \cdot) has no inverse (except ± 1). $(\mathbb{R}^3, \text{mid})$ is not associative. (the midpoint) $(M_{n \times n}(\mathbb{R}), \cdot)$ has no inverse of $0_{n \times n}$. For $n \ge 1$, $(\mathbb{R}^n, +)$ and $(\mathbb{C}^n, +)$ are abelian groups.

Proof that the Neutral Element is unique.

Let e, e' be neutral elements. Then e' = e * e' = e.

Proof that the Inverse is unique.

Left to the reader.

Subgroup

Let G be a group, and let H be a subset of G. We say that H is a subgroup of G if

- 1. $\forall h_1, h_2 \in H, h_1 * h_2 \in H$.
- $2. e \in H.$
- 3. $\forall h \in H, h^{-1} \in H$.

Examples

 $\mathbb{Z}^n \subseteq \mathbb{R}^n$ is a subgroup (* = +). $G = \{A \in M_{n \times n} : \det(A) \neq 0\}$. Then (G, \cdot) is a group.

- This is the General Linear Group on \mathbb{R} : $\mathrm{GL}_n(\mathbb{R})$.
- Recall $A^{-1} = \frac{1}{\det(A)} \left((-1)^{itj} \det(M_{\alpha_i}) \right)$.

General Linear Subgroups

 $S = \{A \in GL_n(\mathbb{R}) : a_{ij} \in \mathbb{Z}, \ \forall 1 \le i, j \le n\}.$ S is closed under \cdot and $I_n \in S$, but for example

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{-1} = \frac{1}{1 \cdot 4 - 2 \cdot 3} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$

so S is not a subgroup.

However, $T = \{A \in S : \det(A) = \pm 1\} \subseteq GL_n(\mathbb{R}).$

• Note that if $AA' = I_n$ then det(A) det(A') = 1.

Additive Groups

For groups like \mathbb{Z}^n , \mathbb{R}^n and \mathbb{C}^n , we will use + for the binary operation and say that they are additive groups. The Neutral Element is denoted as 0.

3

The inverse is denoted as -g.

For $m \ge 1$ and $g \in G$, $mg = g + \cdots + g$ and (-m)g = -(mg).

Multiplicative Groups

For groups like $\mathrm{GL}_n(\mathbb{C})$ or $\mathrm{GL}_n(\mathbb{Z})$, we say that the group is multiplicative.

Denote the neutral element as 1.

Denote the inverse of g as g^{-1} .

For
$$m \ge 1$$
, $g^m = g \stackrel{m}{\cdots} g$.

$$g^0 = 1.$$

$$g^{-m} = (g^m)^{-1}$$

Group Element Order

Let G be a group, $g \in G$, and $m \ge 1$.

Say g has order m if $g^m = 1$ and $g^k \neq 1$, $\forall k$ such that $1 \leq k \leq m$.

An element has infinite order if $g^m \neq 1$, $\forall m \in \mathbb{Z}^+$.

Examples

In D_{10} , I_2 has order 1, rotations have order 5 and reflections have order 2.

Groups from Geometry

Pentagon

Consider the regular pentagon P.

$$H = \{ T \in \operatorname{GL}_2(\mathbb{R}) : T(P) = P \}.$$

This is the symmetry group of P or D_{10} (sometimes D_5)

 $H \leq \mathrm{GL}_2(\mathbb{R}).$

• Proof of closure. Suppose $T_1, T_2 \in H$. Then $T_1(P) = P$, $T_2(P) = P$ and $(T_1 \circ T_2)(P) = T_1(T_2(P)) = T_1(P) = P$.

Therefore H is closed under \circ .

- Proof of identity. $Id_{GL_2} = I_2$ does satisfy $I_2(P)$.
- Proof of inverse. If $T \in H$ (i.e. $T \in GL_2(\mathbb{R})$ and T(P) = P, apply T^{-1} and get $T^{-1}(T(P)) = T^{-1}(P)$. Therefore $P = T^{-1}(P)$.

Tetrahedron

Let X be the regular tetrahedron and $A = \{\text{rotational symmetries of } X\}$.

Then A contains

- The identity: 1.
- $2 \cdot 4 = 8$ rotations by 120° .
- 3 rotations of 180°.

So we have a bijection $r: \{B, P, W, Y\} \rightarrow \{B, P, W, Y\}$ where

$$\mathbf{B} \longrightarrow \mathbf{B}$$

$$\begin{array}{c} P & P \\ W & Y \end{array}$$

$$\mathbf{W} \nearrow \mathbf{W}$$

Symmetric Group

Let S be a set (e.g. $E = \{B, P, W, Y\}$). The Symmetric Group Sym(E) is the set of bijections $f : E \to E$ equipped with the binary operation • (composition).

October 3, 2023

Homework

First homework should be released this Thursday, October 5th. Next lecture will be on group actions.

Symmetric Group

Let X be a set.

When |X| = n denote the elements $\{1, 2, ..., n\}$.

 $\operatorname{Sym}(X) = \{f : X \to X | f \text{ is bijective} \}.$

With \circ (composition of functions) as a binary operation, Sym(X) is a group.

Symmetric Group Order

If |X| = n, then |Sym(X)| = n!

• Proof Let $X = \{1, 2, ..., n\}$. A bijection f consists of f(1), f(2), ..., f(n). For f(1), we have n choices; for f(2) we have n-1 choices. This continues until only 1 choice remains for f(n)

Therefore the choices are $(n)(n-1)\cdots(1)=n!$

Example

For the symmetric group on four letters $\{a, b, c, d\}$, |Sym(4)| = 4! = 24