PHASE-RESETTING IN THE YAMADA MODEL OF A Q-SWITCHING LASER

PHASE RESPONSE FROM AN INDUCED PERTURBATION

JACOB NGAHA, NEIL G. R. BRODERICK, AND BERND KRAUSKOPF

OPTICAL PHYSICS

Q-SWITCHING LASERS

All optical Q-switched laser based spiking neuron

Keshia Mekemeza-Ona, Baptiste Routier and Benoît Charbonnier*

Université Grenoble-Alpes, CEA, Leti, Grenoble, France

Excitability in an all-fiber laser with a saturable

Optical frequency combs more important, for timing need to know how they return to equilibrium when perturbed Need phase stability for optical clock, need precision, can't miss a cycle, Need to study how optical clocks return to equilubrium

Journal of the

Optical Society

Will start with Q switch lasers, but can be applied to others

Communications require high bitrate periodic pulses, if you peturb there will be a changed response

Been well studied in domain of neruo physics, q switch analogue to neurons

More physical terms How does a perturbed laser return to equilibirum How does a clock return to equilibrium?

- Optical neural computers
- Excitability
- Self pulsations like neurons

THE YAMADA MODEL

$$\dot{G} = \gamma (A - G - G I)$$

$$\dot{Q} = \gamma (B - Q - a Q I)$$

$$\dot{I} = (1 - G - Q) I$$

- *G* Gain
- Q Absorption
- I Intensity

Parameters

- γ Photon loss rate
- A Pump current to gain
- B Absorption coefficient
- a Relative absorption vs. gain

Taken from J. L. A. Dubbeldam and B. Krauskopf "Self-pulsations of lasers with saturable absorber: Dynamics and bifurcations", Opt. Commun., **159** (4-6), 325 (1999).

THE YAMADA MODEL: BIFURCATION DIAGRAM

- Different dynamics split by bifurcations:
 - Hopf, homoclinic, saddle
- Objects in phase space
 - o Stable equilibrium ('off state')
 - p Saddle with two unstable and one stable eigenvalues
 - q Spiral source
 - Attracting periodic orbit
 - Saddle periodic orbit

Taken from R. Otupiri, B. Krauskopf, N. G. R. Broderick "The Yamada Model for a Self-Pulsing Laser: Bifurcation Structure for Non Identical Decay Times of Gain and Absorber", Int. J. Bifurc. Chaos Appl. Sci. Eng., **30** (14) (2020).

THE YAMADA MODEL: BIFURCATION DIAGRAM

- Different dynamics split by bifurcations:
 - Hopf, homoclinic, saddle
- Objects in phase space
 - o Stable equilibrium ('off state')
 - p Saddle with two unstable and one stable eigenvalues
 - q Spiral source
 - Attracting periodic orbit
 - Saddle periodic orbit

Taken from R. Otupiri, B. Krauskopf, N. G. R. Broderick "The Yamada Model for a Self-Pulsing Laser: Bifurcation Structure for Non Identical Decay Times of Gain and Absorber", Int. J. Bifurc. Chaos Appl. Sci. Eng., 30 (14) (2020).

THE YAMADA MODEL: ATTRACTING PERIODIC ORBIT

THE YAMADA MODEL: ATTRACTING PERIODIC ORBIT

- Attracting periodic orbit (green)
- "Off" state (red circle)
- Saddle (blue star)
 - 1-D stable manifold (blue)

- Induced perturbation
 - $A_{\rm p}$ amplitude
 - $d_{\rm p} = (\cos \theta_{\rm p}, \sin \theta_{\rm p})$ direction
 - $\theta_{
 m old}$ phase perturbation is applied
- When does the perturbed segment return?
 - $\theta_{
 m new}$ phase perturbation returns
- Boundary value problem (BVP)
 - Numerical continuation in AUTO and COCO

- Induced perturbation
 - $A_{\rm p}$ amplitude
 - $d_{\rm p} = (\cos \theta_{\rm p} \, , \sin \theta_{\rm p}) {\rm direction}$
 - $heta_{
 m old}$ phase perturbation is applied
- When does the perturbed segment return?
 - $\theta_{
 m new}$ phase perturbation returns
- Boundary value problem (BVP)
 - Numerical continuation in AUTO and COCO

- Induced perturbation
 - $A_{\rm p}$ amplitude
 - $d_{\rm p} = (\cos \theta_{\rm p} \, , \sin \theta_{\rm p}) {\rm direction}$
 - $heta_{
 m old}$ phase perturbation is applied
- When does the perturbed segment return?
 - $heta_{
 m new}$ phase perturbation returns
- Boundary value problem (BVP)
 - Numerical continuation in AUTO and COCO

- Induced perturbation
 - A_p amplitude
 - $d_{\rm p} = (\cos \theta_{\rm p} \, , \sin \theta_{\rm p}) {\rm direction}$
 - $heta_{
 m old}$ phase perturbation is applied
- When does the perturbed segment return?
 - $heta_{
 m new}$ phase perturbation returns
- Boundary value problem (BVP)
 - Numerical continuation in AUTO and COCO

A Continuation Approach to Computing Phase Resetting Curves

Peter Langfield^{1,2}, Bernd Krauskopf³, and Hinke M. Osinga^{3(⊠)}

Phase response to arbitrary perturbations: Geometric insights and resetting surfaces

Kyoung H. Lee¹, Neil G. R. Broderick², Bernd Krauskopf¹ and Hinke M. Osinga¹

SIAM J. APPLIED DYNAMICAL SYSTEMS Vol. 14, No. 3, pp. 1418–1453 © 2015 Society for Industrial and Applied Mathematics

Forward-Time and Backward-Time Isochrons and Their Interactions*

Peter Langfield[†], Bernd Krauskopf[†], and Hinke M. Osinga[†]

SIAM J. APPLIED DYNAMICAL SYSTEMS Vol. 9, No. 4, pp. 1201–1228

© 2010 Society for Industrial and Applied Mathematics

Continuation-based Computation of Global Isochrons*

Hinke M. Osinga[†] and Jeff Moehlis[‡]

PHASE-RESETTING: YAMADA MODEL

- Perturbations in (G-I) plane
 - $d_{\rm p} = (\cos \theta_{\rm p}, 0, \sin \theta_{\rm p})$
- Cause a phase shift ('lag') in intensity pulses.
- Relationship between $A_{\rm p}$, $\theta_{\rm old}$, and $\theta_{\rm new}$?

- Positive-G perturbations (intensity "kick")
 - $d_{p} = (0, 0, 1)$
- Weak perturbations "reset" to the same phase
 - $\theta_{\rm p} \approx \theta_{\rm p}$
- Stronger perturbations ...

CONCLUSIONS

Phase-Resetting is a powerful tool in studying the response of periodic solutions to induced perturbations

- Discontinuities in PTC when perturbation approaches stable manifold of spiral source
- Can technically consider perturbation in any "direction".
- Something else here too...

CONCLUSIONS

- Phase-Resetting is a powerful tool in studying the response of periodic solutions to induced perturbations
- Discontinuities in PTC when perturbation approaches stable manifold of spiral source
- Can technically consider perturbation in any "direction".
- Something else here too...

