Exercise 1

TDT4137

$\begin{array}{c} {\bf Simon~Bor \hbox{\it øy-Johnsen}} \\ {\bf MTDT} \end{array}$

September 14, 2015

a

Assuming eye movement is not necessary, as one normally will detect that the brake lights are lit without looking directly at them.

Event	Time passed
Break light turns red	$\tau = 0.00$
Perceptual processor fetches the image	$ au = au_p$
into VIS and WM	
Cognitive processor generates the	$\tau = \tau_p + \tau_c$
motor command to press the brakes	
Motor processor executes the command	$\tau = \tau_p + \tau_c + \tau_m$
DONE	$\tau = \tau_p + \tau_c + \tau_m$
	$\tau = 100ms + 70.0ms + 70.0ms$
	$\tau = 240ms$

b

Assuming eye movement is not necessary.

Event	Time passed
Flag appears on monitor	$\tau = 0.00$
Perceptual processor fetches the	$ au = au_p$
image into VIS and WM	
Fetching the semantic name from	$\tau = \tau_p + \tau_c$
LTM to WM	
Fetching that the flag is	$\tau = \tau_p + \tau_c + \tau_c$
Scandinavian from LTM	
DONE	$\tau = \tau_p + \tau_c + \tau_c$
	$\tau = 100ms + 70.0ms + 70.0ms$
	$\tau = 240ms$

\mathbf{c}

The Index of Difficulty describes the difficulty of performing a movement task accurately. According to Fitts, the Index of Difficulty is $log_2(D/S+0.5)$, where D is the distance to the target and S is the size of the target.

Using Shannon's version of Fitts' law to calculate the duration of moving the cursor to the menu bar, we get the following results:

Windows: $50.0 + 150 * log_2(80.0/5.00 + 1.00) = 663ms$ Machintosh: $50.0 + 150 * log_2(80.0/50.0 + 1.00) = 257ms$

\mathbf{d}

To create an illusion of continuity in time, there has be be more images than perceptual cycles per time unit. Frame rate (fr) has to be bigger than $1/\tau_p$. This way the stream of perceptual images 'melts' together to one continuous impression.

```
fr > 1.00/\tau_p = 1.00/100ms = 10.0/s
```

The frame rate has to be larger than 10 frames per seconds.