Artificial Neural Networks Applied as Molecular Wavefunction Solvers

Peng-Jian Yang,*,† Mahito Sugiyama,*,‡,⊥ Koji Tsuda,*,¶,§,# and Takeshi Yanai*,∥,†,⊥

†Department of Chemistry, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan ‡National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

¶ Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8561, Japan

§RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan ||Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan

⊥JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

#Research and Services Division of Materials Data and Integrated System, National Institute for Materials
Science, Ibaraki 305-0047, Japan

E-mail: pj.yang_lester@berkeley.edu; mahito@nii.ac.jp; tsuda@k.u-tokyo.ac.jp; yanait@chem.nagoya-u.ac.jp

1 Indocyanine Green

Geometric information of indocyanine green (ICG).

The following cartesian coordinates are below in Å.

```
{\overset{{\rm C}}{{\rm C}}}
     -4.92157956
                      0.0000000
                                     -0.38353212
      4.92157956
                      0.0000000
                                     -0.38353212
C
C
H
H
                      0.0000000
      -3.68982383
                                      0.26035610
      3.68982383
                      0.0000000
                                      0.26035610
      -3.69891585
                      0.0000000
                                      1.35075428
                                      1.35075428
      3.69891585
                      0.0000000
      -2.43392077
C
C
H
                      0.0000000
                                     -0.35212041
      2.43392077
                      0.00000000
                                     -0.35212041
     -2.36219457
                      0.0000000
                                     -1.44140401
H
C
C
H
H
      2.36219457
                      0.0000000
                                     -1.44140401
      -1.23445439
                      0.0000000
                                      0.34845573
                      0.0000000
      1.23445439
                                      0.34845573
     -1.25820279
                      0.0000000
                                      1.44143873
                      0.0000000
      1.25820279
                                      1.44143873
C
H
      0.0000000
                      0.0000000
                                     -0.29583746
      0.00000000
                      0.00000000
                                     -1.39062126
      6.07815258
                      0.0000000
                                      0.30616006
```

```
0.0000000
                                    0.30616006
     -6.07815258
00000000000
     -5.23795288
                     0.0000000
                                   -1.88074059
      5.23795288
                     0.0000000
                                   -1.88074059
     -6.75866976
                     0.0000000
                                   -1.86628572
      6.75866976
                     0.0000000
                                   -1.86628572
     -7.18920017
                     0.00000000
                                   -0.56005095
      7.18920017
                     0.0000000
                                   -0.56005095
     -4.68582825
                     1.27180284
                                   -2.54553645
      4.68582825
                     1.27180284
                                   -2.54553645
     -4.68582825
                    -1.27180284
                                   -2.54553645
      4.68582825
                    -1.27180284
                                   -2.54553645
Н
                                   -2.49395633
     -3.59206051
                     1.30800374
Η
      3.59206051
                     1.30800374
                                   -2.49395633
Η
     -3.59206051
                    -1.30800374
                                   -2.49395633
Η
                    -1.30800374
                                   -2.49395633
      3.59206051
Н
     -4.97642624
                     1.30680353
                                   -3.60190181
Η
                     1.30680353
                                   -3.60190181
      4.97642624
Η
     -4.97642624
                    -1.30680353
                                   -3.60190181
Η
      4.97642624
                    -1.30680353
                                   -3.60190181
Н
                     2.17255029
                                   -2.05612490
     -5.07555240
Η
      5.07555240
                     2.17255029
                                   -2.05612490
Η
     -5.07555240
                    -2.17255029
                                   -2.05612490
Η
      5.07555240
                    -2.17255029
                                   -2.05612490
C
     -6.16433317
                     0.0000000
                                    1.75433713
C
      6.16433317
                     0.00000000
                                    1.75433713
Η
     -5.67643344
                    -0.89249247
                                    2.16544172
Η
      5.67643344
                    -0.89249247
                                    2.16544172
Н
     -5.67643344
                     0.89249247
                                    2.16544172
Η
      5.67643344
                     0.89249247
                                    2.16544172
Η
     -7.21354079
                     0.0000000
                                    2.05505060
Η
                     0.00000000
      7.21354079
                                    2.05505060
C
     -7.70415822
                     0.0000000
                                   -2.92443976
                     0.0000000
      7.70415822
                                   -2.92443976
     -8.54885597
CCCCCCC
                     0.00000000
                                   -0.19358428
      8.54885597
                     0.0000000
                                   -0.19358428
     -9.47478127
                     0.0000000
                                   -1.20340429
      9.47478127
                     0.0000000
                                   -1.20340429
     -9.08978513
                     0.0000000
                                   -2.57009467
      9.08978513
                     0.0000000
                                   -2.57009467
     -7.36692541
                     0.0000000
                                   -4.30746846
                     0.0000000
      7.36692541
                                   -4.30746846
C
    -10.07179899
                     0.0000000
                                   -3.59440088
     10.07179899
                     0.0000000
                                   -3.59440088
Н
                                   -3.30578536
                     0.0000000
    -11.12407245
Н
     11.12407245
                     0.0000000
                                   -3.30578536
С
     -8.34329908
                     0.0000000
                                   -5.27097731
C
      8.34329908
                     0.0000000
                                   -5.27097731
Η
     -8.06094841
                     0.0000000
                                   -6.32388059
Н
                     0.0000000
                                   -6.32388059
      8.06094841
C
C
     -9.71203297
                     0.0000000
                                   -4.91642240
      9.71203297
                     0.0000000
                                   -4.91642240
Η
                                   -5.69545938
    -10.47414568
                     0.0000000
Н
     10.47414568
                     0.0000000
                                   -5.69545938
Н
     -6.32269021
                     0.0000000
                                   -4.61207778
Η
                     0.0000000
                                   -4.61207778
      6.32269021
Η
    -10.53880823
                     0.0000000
                                   -0.96448775
Η
                     0.0000000
     10.53880823
                                   -0.96448775
Η
     -8.86327452
                     0.0000000
                                    0.84809704
Η
      8.86327452
                     0.0000000
                                    0.84809704
```

Total energies of ICG for CAS(4,4) calculated with the deterministic approach.

	Hidden	Total energies (in $E_{\rm h}$)		
Model	nodes			Speed=3000
CMO				
RBM	1	-1512.87947	-1512.87937	-1512.87947
RBM	2	-1512.87977	-1512.87962	-1512.87977
RBM	3	-1512.88011	-1512.88001	-1512.88040
RBM	4	-1512.88041	-1512.88042	-1512.88036
RBM	5	-1512.88042	-1512.88042	-1512.88042
RBM	6	-1512.88042	-1512.88042	-1512.88042
RBM	7	-1512.88042	-1512.88042	-1512.88042
RBM	8	-1512.88042	-1512.88042	-1512.88042
RBM	9	-1512.88042	-1512.88042	-1512.88042
RBM	10	-1512.88042	-1512.88042	-1512.88042
RBM	20	-1512.88042	-1512.88042	-1512.88042
RBM	40	-1512.88042	-1512.88042	-1512.88042
BM2	0	-1512.87983	-1512.87983	-1512.87983
BM3	0	-1512.88041	-1512.88041	-1512.88041
LMO				
RBM	1	-1512.87351	-1512.87360	-1512.87518
RBM	2	-1512.87831	-1512.87755	-1512.87845
RBM	3	-1512.87993	-1512.88023	-1512.88023
RBM	4	-1512.88038	-1512.88016	-1512.88039
RBM	5	-1512.88042	-1512.88036	-1512.88041
RBM	6	-1512.88042	-1512.88042	-1512.88041
RBM	7	-1512.88042	-1512.88042	-1512.88042
RBM	8	-1512.88042	-1512.88042	-1512.88042
RBM	9	-1512.88042	-1512.88042	-1512.88042
RBM	10	-1512.88042	-1512.88042	-1512.88042
RBM	20	-1512.88042	-1512.88042	-1512.88042
RBM	40	-1512.88042	-1512.88042	-1512.88042
BM2	0	-1512.87937	-1512.87937	-1512.87937
BM3	0	-1512.88010	-1512.88010	-1512.88010
CASCI		-1512.88042		
HF		-1512.87513		

Total energies of ICG for CAS(4,4) calculated with the stochastic approach.

	Hidden	MO			Standard
Model	nodes	type	Seed	E (in $E_{\rm h}$)	deviation
RBM	5	CMO	1000	-1512.88041	4.6E-07
			2000	-1512.88037	1.3E-06
			3000	-1512.88025	9.8E-09
	5	LMO	1000	-1512.88040	4.7E-07
			2000	-1512.88040	4.8E-07
			3000	-1512.88004	2.5E-06
	10	CMO	1000	-1512.88042	3.9E-08
			2000	-1512.87794	5.2E-09
			3000	-1512.88033	5.4E-09
	10	LMO	1000	-1512.88042	1.3E-07
			2000	-1512.88042	8.0E-08
			3000	-1512.88042	2.3E-09

Canonical and localized forms of active orbitals of ICG used for CAS(4e,4o)

Figure 1: Plots of canonical and localized forms of active orbitals of ICG used for CAS(4e,4o). Pipek-Mezey method were used for orbital localization.

Total energies of ICG for CAS(6,6) calculated with the deterministic approach.

	Hidden	Total energies (in $E_{\rm h}$)		
Model	nodes	Seed=1000	Seed=2000	$\frac{\text{Speed=3000}}{\text{Speed=3000}}$
CMO				
RBM	5	-1512.88500	-1512.88583	-1512.88568
RBM	10	-1512.88664	-1512.88675	-1512.88673
RBM	20	-1512.88681	-1512.88681	-1512.88681
RBM	40	-1512.88681	-1512.88681	-1512.88681
BM2	0	-1512.88551	-1512.88567	-1512.88560
BM3	0	-1512.88665	-1512.88663	-1512.88666
LMO				
RBM	5	-1512.87414	-1512.86314	-1512.87199
RBM	10	-1512.88473	-1512.88521	-1512.88478
RBM	20	-1512.88384	-1512.88306	-1512.88645
RBM	40	-1512.88681	-1512.88681	-1512.88681
BM2	0	-1512.87325	-1512.87325	-1512.87325
BM3	0	-1512.88491^a	N/A^b	-1512.88492^a
CASCI		-1512.88682		

a Unconverged with F_{θ} being approximately 8×10^{-4} . b Unconverged with F_{θ} above 8×10^{-3} .

Total energies of ICG for CAS(8,8) calculated with the deterministic approach.

	Hidden	Total energies (in $E_{\rm h}$)		
Model	nodes	Seed=1000	Seed=2000	Speed=3000
CMO				
RBM	10	-1512.89858	-1512.89807	-1512.89854
RBM	20	-1512.89986	-1512.89974	-1512.89981
RBM	30	-1512.90018	-1512.90023	-1512.90008
RBM	40	-1512.90026	-1512.90028	-1512.90028
RBM	50	-1512.90034	-1512.90031	-1512.90035
RBM	60	-1512.90035	-1512.90035	-1512.90030
RBM	70	-1512.90031	-1512.90031	-1512.90034
RBM	80	-1512.90032	-1512.90030	-1512.90031
RBM	90	-1512.90036	-1512.90031	-1512.90033
RBM	100	-1512.90026	-1512.90030	-1512.90038
CASCI		-1512.90055		

2 Dinitrogen

CAS(6e,6o) MOs of the dinitrogen ground state $X^1 \sum_g^+$

Figure 2: The active orbitals used for CAS-CI calculations of the N₂ molecule of the $X^1\sum_g^+$ state; $(1\sigma_g^21\sigma_u^22\sigma_g^22\sigma_u^21\pi_u^42\sigma_g^2)$; change in orbital energy and shape is shown for increased bond length. Units given in Å.

Total energies of dinitrogen for CAS(6,6) in CMO basis.

	Energy/ $E_{\rm h}$			$\Delta E / E_{ m h}$		
r / Å	CASCI	RHF	RBM (MCMC)	RBM (det)	BM2 (det)	BM3 (det)
.545	-102.33974	0.03173	< 1e-6	< 1e-6	4e-6	< 1e-6
1.09	-107.61734	0.12381	1.1e-4	< 1e-6	1.3e-4	1e-6
1.64	-107.50162	0.34717	2.0e-4	< 1e-6	1.9e-4	< 1e-6
2.18	-107.43267	0.67003	1.9e-4	3.9e-4	2.7e-3	5e-6
2.73	-107.43579	0.89174	3.8e-4	1.9e-4	3.0e-4	4.6e-5
3.27	-107.43720	1.00077	8.8e-5	5.7e-5	8.8e-5	1.6e-5

Total energies of dinitrogen for CAS(6,6) in CMO basis with RBM (det).

bond length / Å	$E / E_{\rm h}$	ΔE from CASCI
.545	-102.33974	3.24e-07
.763	-106.44497	1.34e-06
.872	-107.15464	2.02e-08
.981	-107.48673	1.47e-08
1.09	-107.61734	3.47e-11
1.20	-107.64505	6.32e-06
1.31	-107.62432	2.71e-07
1.42	-107.58443	3.64e-08
1.53	-107.54080	3.52 e-08
1.64	-107.50162	1.01e-08
1.96	-107.43935	4.63e-05
2.07	-107.43392	2.98e-04
2.18	-107.43228	3.87e-04
2.29	-107.43171	1.11e-03
2.40	-107.43288	7.21e-04
2.73	-107.43560	1.88e-04
3.27	-107.43726	5.41e-05