

## AULA 1 – VISÃO GERAL DO METABOLISMO ENERGÉTICO

### A energia nos seres vivos

### Glicose

- Combustível mais utilizado pelos seres vivos;
- Sua quebra libera a energia contida em suas ligações químicas;
- Produção: através da fotossíntese e quimiossíntese;
- Quebra da glicose: através da respiração celular e fermentação.

### Metabolismo

- Conjunto de reações químicas e transformações de energia;
- É dividido em: anabolismo (união ou síntese) e catabolismo (quebra).

# **AULA 2 - MITOCÔNDRIAS E CLOROPLASTOS**

#### Mitocôndrias

- Organelas membranosas. São dotadas de dupla membrana envolvente.
- Presente apenas em células eucarióticas.
- Apresenta DNA e ribossomos próprios.
- Função: respiração celular aeróbica.
- Morfologia de uma mitocôndria (ver esquema abaixo):



http://www.centrocienciajunior.com/miudos\_graudos/vamosfalar01.asp?id=905

#### A respiração celular

- Oxidação completa da glicose com produção de ATP.
- Consumo de gás oxigênio (O<sub>2</sub>)
- Liberação de água (H<sub>2</sub>O) e gás carbônico (CO<sub>2</sub>).

## Cloroplastos

- Organelas membranosas. São dotadas de dupla membrana envolvente.
- Presente apenas em células eucarióticas.
- Apresenta DNA e ribossomos próprios.
- Função: fotossíntese.
- Morfologia de um cloroplasto (ver esquema abaixo):



http://www.alunosonline.com.br/biologia/oscloroplastos.html

#### A fotossíntese

- Produção de matéria orgânica a partir de matéria inorgânica na presença de luz.
- Depende de pigmentos fotossintéticos como a clorofila.

# <u>Hipótese simbiótica para a origem de mitocôndrias e cloroplastos</u>



http://www.vestibulandoweb.com.br/biologia/teoria/teoria-endossimbiotica.asp



# AULA 3 – GLICOSE, ATP E TRANSFORMAÇÕES DE ENERGIA

### **Glicose**

- Combustíivel;
- Fórmula química: C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>;
- Monossacarídeo: hexose;
- Obtenção:
  - o autótrofos: fotossíntese ou quimiossíntese;
  - o heterótrofos: alimentação (dieta).

#### **ATP**

- Adenosina Trifosfato.
- Estrutura e energia:



http://educacao.globo.com/biologia/assunto/fisiologia-celular/respiracao-celular-aerobica-e-fermentacao.html

### AULA 4 - RESPIRAÇÃO AERÓBICA I: GLICÓLISE

# A glicólise

- Etapa inicial da quebra da glicose.
- Ocorre no hialoplasma ou citossol.
- Não há consumo de gás oxigênio.
- Cada glicose quebrada produz:

  o 2 piruvatos ou ácidos pirúvicos;
  - 2 ATP's;
  - o 2NADH<sub>2</sub>



http://www.rodolfo.costa.nom.br/biowiki/doku.php?id=glicoli se

# AULA 5 – RESPIRAÇÃO AERÓBICA II: CICLO DE KREBS

# Fase preparatória (oxidação do ácido pirúvico)

- Local: matriz mitocondrial.
- Eventos:
  - Entrada do ácido pirúvico;
    - Transformação em ácido acético;
  - Formação do Acetil-CoA

### O ciclo de Krebs

- Local: matriz mitocondrial.
- Início: reação entre o ácido oxalacético e o acetil-CoA formando o ácido cítrico.
- Meio: sequência de reações de oxidação do ácido cítrico formando:
  - o NADH<sub>2</sub>
  - o FADH<sub>2</sub>
  - o CO<sub>2</sub>
  - o GTP (equivalente ao ATP)



http://bioquimica.xpg.uol.com.br/Ciclo\_de\_Krebs.html



## AULA 6 – RESPIRAÇÃO AERÓBICA III: CADEIA RESPIRATÓRIA

## A cadeia respiratória ou fosforilação oxidativa

- Local: nas membranas das cristas mitocondriais.
- Eventos:
  - Oxidação do NADH<sub>2</sub> e FADH<sub>2</sub> que liberam seus H<sup>+</sup> e elétrons.
  - Transporte de elétrons pelos citocromos;
  - Liberação gradativa de energia e produção de ATP:
  - H<sup>+</sup> e elétrons são capturados pelo gás oxigênio formando água;
  - Enzima sintetase presente na membrana interna das cristas mitocondriais bombeia os H<sup>+</sup> de volta para a matriz mitocondrial produzindo energia e ATP (quimiosmose).



https://thinkbio.wordpress.com/2011/12/31/processosenergeticos-celulares/

# AULA 7 – RESPIRAÇÃO CELULAR: SALDO POR

# Glicólise:

Para cada molécula de glicose que inicia o processo, temos:

- 2 piruvatos;
- 2 NADH<sub>2</sub>;
- 2 ATP.

## Oxidação do piruvato:

Partindo-se dos 2 piruvatos produzidos na glicólise, temos:

- 2 CO<sub>2</sub>:
- 2 NADH<sub>2</sub>;

2 Acetil-CoA.

#### Ciclo de Krebs:

Partindo-se dos 2 Acetil-CoA produzidos na glicólise, temos:

- 4 CO<sub>2</sub>;
- 2 GTP (=2 ATP)
- 6 NADH<sub>2</sub>;
- 2 FADH<sub>2</sub>.

### Cadeia respiratória:

Partindo-se dos NADH<sub>2</sub> e FADH<sub>2</sub> produzidos ao longo das etapas anteriores, temos:

- 6 H₂O:
- 26 ATP.

# Saldo final de 30 ATP:

- 2 ATP (glicólise)
- 2 GTP (ciclo de Krebs)

26 ATP (cadeia respiratória)

# AULA 8 – FERMENTAÇÃO E RESPIRAÇÃO ANAERÓBICA

### A fermentação

- Processo de quebra parcial da glicose com baixa produção de energia e sem consumo de O<sub>2</sub>.
- Representa uma finalização rápida da glicólise.
- Tipos:
  - Alcólica: produção de álcool etílico e CO<sub>2</sub>;



<u>Láctica</u>: produção de ácido láctico;



# A respiração celular anaeróbica

- Processo realizado por algumas bactérias.
- Possui as mesmas etapas da respiração celular aeróbica, mas o aceptor final de H<sup>+</sup> e elétrons não é o gás oxigênio.

