Support Vector Machine

Fish

2019年6月30日

Content

第一章	章	percep	ption	1										
1.	1	concep	t	1										
1.	2	linearly separable dataset												
1.	3	loss function												
1.	4	origina	original form of perception algorithm											
1.	5	dual fo	dual form of perception algorithm											
第二章	章	Convex function												
2.	1	Convex	x collection and Convex function	5										
	2	.1.1	Convex function	5										
	2	.1.2	Convex collection	5										
2.	2	affine t	ransformation	6										
	2	.2.1	concept	6										
	2	.2.2	theory	6										
2.	3	perspe	ctive collineation	7										
	2	.3.1	concept	7										
	2	.3.2	direct significance $\dots \dots \dots \dots \dots \dots$	7										
	2	.3.3	summary	7										
2.	4	segmen	ntation plane	7										
	2	.4.1	concept	7										
	2	.4.2	segmentation plane	8										
	2	.4.3	the structure of sefmentation plane	8										
	2	.4.4	support hyperplane	9										
	2	.4.5	question	9										
2.	5	proper	ty of convex function	10										
	2	.5.1	concept	10										

CONTENT 2

	2.5.2	first-order derivative of convex function	10					
	2.5.3	second-order derivative of convex function	10					
2.6	examples of convex function							
第三章	Coı	nvex Optimization	12					
3.1	opti	mization problem	12					
3.2	con	vex optimization	13					
	3.2.1	basic form	13					
	3.2.2	Lagrange 乘子法	13					
	3.2.3	Lagrange 函数的极小极大最优值 $\min_{x} \max_{\lambda,\nu:\lambda_i\geq 0} L(x,\lambda,\nu)$ 和						
		原问题的最优值 p^*	14					
	3.2.4	Lagrange 对偶函数 (dual function)	15					
第四章	SV	M	19					
4.1	line	ar separable support vector machine and hard margin maxi-						
	mizati	on	19					
	4.1.1	question?	19					
	4.1.2	input data	19					
	4.1.3	linear separable support vector machine	20					
	4.1.4	list symbol	20					
	4.1.5	derivation target function	20					
	4.1.6	Linear divisible support Vector Machine Learning algorithm	25					
4.2	line	ar supprot vector machine and soft margin maximization	27					
	4.2.1	${\rm concept}\ \dots$	27					
	4.2.2	derivation target function	28					
	4.2.3	dual property	28					
	4.2.4	Linear support vector machine learning algorithm	29					
	4.2.5	KKT of soft margin	30					
	4.2.6	support vector	30					
	4.2.7	loss function	32					
4.3	kerr	nel function	34					
	4.3.1	define directily reflect function	34					
	4.3.2	kernel function	35					
4.4	sequ	nential minimal optimization algorithm	40					

4.4.1	concept															40
4.4.2	process															40

第一章 perception

1.1 concept

- 1. 感知机是二类分类的线性分类模型, 其输入空间为实例的特征向量, 输出为实例的类别, 取 +1 和-1 二值.
- 2. 感知机对应于输入控件((特征空间)中将实例划分为正负两类的分离超平面,是一种线性分类模型,属于判别模型.
- 3. 感知机学习旨在求出将训练数据进行线性划分的分离超平面.
- 4. 导入基于误分类的损失函数, 利用梯度下降法对损失函数进行极小化, 求得感知机模型.
- 5. $f(x) = sign(w \cdot x + b)$

1.2 linearly separable dataset

给定数据集 $T = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$, 其中, $x_i \in \chi = \mathbb{R}^n$, $y_i \in \gamma = \{+1, -1\}$, i = 1, 2, ..., N.

如果存在某个超平面 S: $w \cdot x + b = 0$ 将数据集的正负实例点完全正确划分到超平面的两侧:

对所有 $y_i = +1$ 的实例 i, 有 $w \cdot x_i + b > 0$

对所有 $y_i = -1$ 的实例 i, 有 $w \cdot x_i + b < 0$

则数据集 T 为线性数据可分数据集, 否则称数据集 T 线性不可分

1.3 loss function

假设训练数据集是线性可分的,为了找出可将训练集正负实例点完全正确分开的分离超平面,即确定参数 w,b,需要确定一个学习策略,即定义 (经验) 损失函数并将损失函数极小化

两种选择:

- 1. 选择误分类点的总数, 但这样的损失函数不是参数 w, b 的连续可导函数, 不易优化
- 2. 选择误分类点到超平面 S 的总距离

定义输入空间 R^n 中任一点 x_0 到超平面 S 的距离:

$$\frac{1}{\parallel w \parallel} |w \cdot x_0 + b| \tag{1.1}$$

这里 ||w|| 是 w 的 L_2 范数.

对于误分类的数据 (x_i, y_i) 来说:

$$-y_i(w \cdot w_i + b) > 0 \tag{1.2}$$

成立.

因此, 误分类点 x_i 到超平面 S 的距离是

$$-\frac{1}{\parallel w \parallel} y_i(w \cdot x_i + b) \tag{1.3}$$

这样,假设超平面 S 的误分类点集合为 M,则所有误分类点到超平面 S 的总距离为

$$-\frac{1}{\|w\|} \sum_{x_i \in M} y_i (w \cdot x_i + b)$$
 (1.4)

不考虑 $\frac{1}{\|w\|}$, 得到感知机 $sign(w \cdot x + b)$ 在训练集 T 的损失函数定义为

$$L(w,b) = -\sum_{x_i \in M} y_i(w \cdot x_i + b)$$
(1.5)

1.4 original form of perception algorithm

关键: 感知机算法是误分类驱动的, 当误分类点位于分离超平面的错误一侧时, 调整 w,b 的值, 使分离超平面向该误分类点的一侧移动, 以减少该误分类点与超平面间的距离, 直至超平面越过该误分类点使其被正确分类.

输入: 训练数据集 $T = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$, 其中, $x_i \in \chi = \mathbb{R}^n$, $y_i \in \gamma = \{+1, -1\}, i = 1, 2, ..., N$; 学习率 η $(0 < \eta \le 1)$.

输出: w, b; 感知机模型 $f(x) = sign(w \cdot x + b)$.

1. 选取初值 w_0, b_0

- 2. 在训练集中选取数据 (x_i, y_i)
- 3. 如果 $y_i(w_i + b) \le 0$

(a) 损失函极小化
$$\min_{w,b} L(w,b) = -\sum_{x_i \in M} y_i(w \cdot x_i + b)$$

(b) 梯度

$$\nabla_w L(w, b) = -\sum_{x_i \in M} y_i x_i \tag{1.6}$$

$$\nabla_b L(w, b) = -\sum_{x_i \in M} y_i \tag{1.7}$$

(c) 随机选取一个误分类点 (x_i, y_i) , 更新参数 w, b

$$w \leftarrow w + \eta y_i x_i \tag{1.8}$$

$$b \leftarrow b + \eta y_i \tag{1.9}$$

4. 转至(2),直至训练集中没有误分类点。

1.5 dual form of perception algorithm

基本思路: 将w和b表示为实例 x_i 和标记 y_i 的线性组合的形式,通过求解其系数而求得w和b.

输入: 训练数据集 $T = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$, 其中, $x_i \in \chi = \mathbb{R}^n$, $y_i \in \gamma = \{+1, -1\}, i = 1, 2, ..., N$; 学习率 η $(0 < \eta \le 1)$.

输出:
$$\alpha, b$$
; 感知机模型 $f(x) = sign\left(\sum_{j=1}^{N} \alpha_j y_j x_j \cdot x + b\right)$

其中, $\alpha=(\alpha_1,\alpha_2,...,\alpha_N)^T$,注意这里是一个向量, 所以后面更新时, α 直接定义步长更新

- 1. $\alpha \leftarrow 0, b \leftarrow 0$
- 2. 在训练集中选取数据 (x_i, y_i)

3. 如果
$$y_i \left(\sum_{j=1}^N \alpha_j y_j x_j \cdot x_i + b \right)$$

(a) 损失函极小化
$$\min_{w,b} L(w,b) = \min_{\alpha,b} L(\alpha,b) = -\sum_{x_i \in M} y_i (\alpha_j y_j x_j \cdot x_i + b)$$

(b) 梯度

$$\nabla_b L(w, b) = -\sum_{x_i \in M} y_i \tag{1.10}$$

(c) 随机选取一个误分类点 (x_i,y_i) , 更新参数 w,b

$$\alpha \leftarrow \alpha + \eta \tag{1.11}$$

$$b \leftarrow b + \eta y_i \tag{1.12}$$

4. 转至 (2) 直到没有误分类数据.

注意: 对偶形式中训练实例仅以内积的形式出现.

为了方便, 预先将训练集中实例间的内积计算出来并以矩阵的形式存储, 即 Gram 矩阵

$$G = [x_i \cdot x_j] \tag{1.13}$$

第二章 Convex function

2.1 Convex collection and Convex function

2.1.1 Convex function

 $y = x^2$ 是凸函数, 函数图像上位于 $y = x^2$ 上方的区域构成凸集.

- 1. 凸函数图像的上方区域, 一定是凸集
- 2. 一个函数图像的上方区域为凸集,则该函数是凸函数

2.1.2 Convex collection

- 1. Affine set 仿射集
 - (a) define: 通过集合 C 中任意两个不同点的直线仍然在集合 C 内, 则称集合 C 为仿射集.

$$\forall x_1, x_2 \in C, \forall \theta \in R, \ \mathbb{M} \ x = \theta \cdot x_1 + (1 - \theta) \cdot x_2 \in C$$
 (2.1)

- (b) 仿射集的例子: 直线、平面、超平面 n 维空间的 n-1 维仿射集为 n-1 维超平面
- 2. Convex 凸集

两种表述 (可以思考其内涵一样吗):

(a) 集合 C 内任意两点间的线段均在集合 C 内,则称集合 C 为凸集.

$$\forall x_1, x_2 \in C, \forall \theta \in [0, 1], \ \mathbb{M} \ x = \theta \cdot x_1 + (1 - \theta) \cdot x_2 \in C$$
 (2.2)

(b) k 个点的版本:

$$\forall x_1, x_2, ..., x_k \in C, \theta_i \in [0, 1] \coprod \sum_{i=1}^k \theta_i x_i \in C$$
 (2.3)

- 3. 因为仿射集的条件比凸集的条件强, 所以, 仿射集必然是凸集
- 4. judgement of convex collection

Fig 2.1: convex collection

2.2 affine transformation

2.2.1 concept

函数 f(x) = Ax + b 的形式, 称函数是放射的: 即线性函数加常数的形式

2.2.2 theory

- 1. 仿射变换 $f(x) = Ax + b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$
 - (a) 伸缩、平移、投影
- 2. 若 f 是仿射变换, $f: \mathbb{R}^n \to \mathbb{R}^m$ $f(S) = \{f(x) | x \in S\}$
 - (a) 若 S 为凸集, 则 f(x) 为凸集;
 - (b) 若 f(S) 为凸集,则 S 为凸集.
- 3. 两个凸集的和为凸集

$$S_1 + S_2 = \{x + y | x \in S_1, y \in S_2\}$$
(2.4)

4. 两个凸集的笛卡尔积 (直积) 为凸集

$$S_1 \times S_2 = \{(x_1, x_2) | x \in S_1, x_2 \in S_2\}$$
 (2.5)

5. 两个集合的部分和为凸集 (分配率)

$$S = \{(x, y_1 + y_2) | (x, y_1) \in S_1, (x, y_2) \in S_2\}$$
(2.6)

2.3 perspective collineation

2.3.1 concept

透视函数对向量进行伸缩 (规范化), 使得最后一维的分量为 1 并舍弃之.

$$P: \mathbb{R}^{n+1} \to \mathbb{R}^n, \ P(z,t) = z/t$$
 (2.7)

2.3.2 direct significance

小孔成像

Fig 2.2: significance of perspective collineation

2.3.3 summary

凸集的透视变换仍然是凸集

2.4 segmentation plane

2.4.1 concept

设 C 和 D 为两不相交的凸集, 则存在超平面 P, P 可以将 C 和 D 分离.

$$\forall x \in C, a^T x \le b \perp \forall x \in D, a^T x \ge b$$
 (2.8)

2.4.2 segmentation plane

Fig 2.3: segmentation plane

2.4.3 the structure of sefmentation plane

- 1. 两个集合的距离, 定义为两个集合间元素的最短距离
- 2. 做集合 C 和集合 D 最短线段的垂直平分线
- 3. picture

Fig 2.4: the distance of segmentation plane

2.4.4 support hyperplane

Fig 2.5: hyperplane

- 1. 设集合 C, x_0 为 C 边界上的点. 若存在 $a \neq 0$, 满足对任意 $x \in C$, 都有 $a^T x \leq a^T x_0$ 成立, 则称超平面 $\{x | a^T x = a^T x_0\}$ 为集合 C 在点 x_0 处的支撑 超平面.
- 2. 凸集边界上任意一点, 均存在支撑超平面
- 3. 反之, 若在一个闭的非中空 (内部点不为空) 集合, 在边界上的任意一点存在支撑超平面, 则该集合为凸集

2.4.5 question

- 1. 如何定义两个集合的"最优"分割超平面?
 - (a) 找到集合"边界"上的若干点,以这些点为"基础"计算超平面的方向;以两个集合边界上的这些点的平均作为超平面的"截距"
 - (b) 支持向量: support vector
 - (c) optimal segmentation plane

Fig 2.6: optimal segmentation plane

- 2. 若两个集合有部分相交, 如何定义超平面, 使得两个集合"尽量"分开?
 - (a) 注: 上述 "集合" 不一定是凸集, 可能是由若干离散点组成. 若一组集合为 (x,1), 另一组集合为 (x,2), 则为机器学习中的分类问题.

2.5 property of convex function

2.5.1 concept

若函数 fx(x) 的定义域 domf 为凸集, 且满足

$$\forall x, y \in \text{dom } f, \ 0 \le \theta \le 1, \ \vec{q} \tag{2.9}$$

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) \tag{2.10}$$

Fig 2.7: convex function

2.5.2 first-order derivative of convex function

若 f(x) 一阶可微, 则函数 f 为凸函数当前仅当 f 的定义域 domf 为凸集, 且

$$\forall x, y \in \text{dom } f, \ f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 (2.11)

Fig 2.8: first-order derivative of convex function

对于凸函数, 其一阶 Taylor 近似本质上是该函数的全局下估计

2.5.3 second-order derivative of convex function

1. 若函数 f 二阶可微, 则函数 f 为凸函数当前仅当 dom 为凸集, 且

$$\nabla^2 f(x) \succ = 0 \tag{2.12}$$

- 2. 若 f 是一元函数, 上式表示二阶导大于等于 0
- 3. 若 f 是多元函数, 上式表示二阶导 Hessian 矩阵半正定

2.6 examples of convex function

- 指数函数 $f(x) = e^{ax}$
- 幂函数 $f(x)=x^a, x\in R^+, a\geq 1$ 或 $a\leq 0$
- 负对数函数 $f(x) = -\ln x$
- 负熵函数 $f(x) = x \ln x$
- 范数函数 $f(\vec{x}) = ||x||$
- 最大值函数 $f(\vec{x}) = \max(x_1, x_2, ..., x_n)$
- 指数线性函数 $f(\vec{x}) = \log(e^{x_1} + e^{x_2} + \dots + e^{x_n})$

第三章 Convex Optimization

3.1 optimization problem

1. common format

minimize
$$f_0(x), x \in \mathbb{R}^n$$

subject to $g_i(x) \leq 0, i = 1, ..., m$
 $h_j(x) = 0, j = 1, ..., p$
优化变量 $x \in \mathbf{R}^n$ (3.1)
不等式约束 $g_i(x) \leq 0$
等式约束 $h_j(x) = 0$
无约束优化 $m = p = 0$

2. domain of optimal problem

$$D = \bigcap_{i=0}^{m} \operatorname{dom} g_i \cap \bigcup_{j=1}^{p} \operatorname{dom} h_j$$
 (3.2)

- 3. feasible dot (solution)
 - $x \in D$, 满足式 3.1 中约束条件
- 4. feasible domain (feasible collection)
 - 所有可行点的集合
- 5. optimization value

$$p^* = \inf\{f_0(x)|g_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, j = 1, ..., p\}$$
(3.3)

6. optimization solution

$$p^* = f_0(x^*) (3.4)$$

3.2 convex optimization

3.2.1 basic form

minimize
$$f_0(x), x \in \mathbb{R}^n$$

subject to $g_i(x) \le 0, i = 1, ..., m$ (3.5)
 $h_j(x) = 0, j = 1, ..., p$

- 1. among, $g_i(x)$ 为凸函数, $h_i(x)$ 为仿射函数
- 2. important property of convex optimization problem
 - (a) 凸优化问题的可行域为凸集
 - (b) 凸优化问题的局部最优解即为 全局最优解

3.2.2 Lagrange 乘子法

在支持向量机模型 (SVM) 的推导中一步很关键的就是利用 Lagrange 对偶性将原问题转化为对偶问题.

1. theoty:

- 一般的求极值问题, 求导等于 0. 但是如果不但要求极值, 还要求一个满足
- 一定约束条件的极值,那么此时就可以构造 Lagrange 函数,其实就是 把约束项添加到原函数上,然后对构造的新函数求导

2. example picture

Fig 3.1: Lagrange multiplier method

3. analysis:

对于一个要求极值的函数 f(x,y), 图上的蓝圈就是这个函数的等高图, 就是说 $f(x,y) = c_1, c_2, ..., c_n$ 分别代表不同的数值 (每个值代表一圈,等高图), 我要找到一组 (x,y), 使它的 c_i 值越大越好, 但是这点必须满足约束条件 g(x,y) (在黄线上)

4. conclusion:

就是说 f(x,y) 和 g(x,y) 相切, 或者说它们的梯度 ∇f 和 ∇g 平行, 因此它们的梯度 (偏导) 成倍关系; 那我们就假设为 λ 倍, 然后把约束条件加到原函数后再对它求导, 其实就等于满足了图上的式子了.

- 3.2.3 Lagrange 函数的极小极大最优值 $\min_{x}\max_{\lambda,\nu:\lambda_i>0}L(x,\lambda,\nu)$ 和原问题的最优值 p^*
 - 1. 一般优化问题的 Lagrange 乘子法

minimize
$$f_0(x), x \in \mathbb{R}^n$$

subject to $g_i(x) \le 0, i = 1, ..., m$ (3.6)
 $h_j(x) = 0, j = 1, ..., p$

2. Lagrange 函数

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \nu_j h_j(x)$$
 (3.7)

对固定的 x, Lagrange 函数 $L(x,\lambda,\nu)$ 为关于 λ 和 ν 的仿射函数, 这里, $x=(x^1,x^2,...,x^n)^T\in\mathbb{R}^n,\lambda,\nu$ 是 Lagrange 乘子, $\lambda\geq 0$

3. Lagrange 函数的极小极大最优值 $\min_{x}\max_{\lambda,\nu:\lambda_i\geq 0}L(x,\lambda,\nu)$ 和原问题的最优值 p^* 之间的关系

考虑 x 的函数:

$$f(x) = \max_{\lambda,\nu:\lambda>0} L(x,\lambda,\nu)$$
 (3.8)

即原问题 f(x) 与 Lagrange 函数在乘子变量最大化时的值是等价的

4. 证明上式: 假设给定某个 x, 如果 x 违反原始问题的约束条件, 即存在某个 i 使得 $g_i(x) > 0$ 或者存在某个 j 使得 $h_j(x) \neq 0$, 那么就有

$$\phi_P(x) = \max_{\lambda, \nu: \lambda \ge 0} \left[f(x) + \sum_{i=1}^m \lambda_i g_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right] = +\infty$$
 (3.9)

这里, 下标 P 表示原始问题

5. 因为若某个 i 使约束 $g_i(x) > 0$, 则可令 $\lambda_i \to +\infty$, 若某个 j 使 $h_j(x) \neq 0$, 则可令 ν_i 使 $\nu_i h_i(x) \to +\infty$, 而将其余各 λ_i, ν_i 均取为 0

如果 x 满足约束条件, 则由式 3.7 和式 3.8 可知, $\phi_P(x) = f(x)$

6. summary:

$$\phi_P(x) = \begin{cases} f(x), & x 满足原始问题约束\\ +\infty, & 其他 \end{cases}$$
 (3.10)

所以如果考虑极小化问题

$$\min_{x} \phi_{P}(x) = \min_{x} \max_{\lambda, \nu: \lambda > 0} L(x, \lambda, \nu)$$
(3.11)

它是与原始最优化问题 3.1 等价的, 即它们有相同的解

此时将原始最优化问题表示为广义 Lagrange 函数的极小极大问题.

为了方便, 定义原始问题的最优值

$$p^* = \min_{x} \phi_P(x) = \min f(x)$$
 (3.12)

称为原始问题的值

3.2.4 Lagrange 对偶函数 (dual function)

1. Lagrange 对偶函数, 注意此处 下式中 x 需不需要改成 \tilde{x}

$$\Gamma(\lambda, \nu) = \inf_{x \in D} L(x, \lambda, \nu) = \inf_{x \in D} (f_0(x) + \sum_{i=1}^m \lambda_i g_i(x) + \sum_{i=1}^p \nu_i h_i(x))$$
 (3.13)

2. 若 $\tilde{x} \in \mathbb{D}$ 为主问题 3.1 可行域中的点, 则对任意 ν 和 $\lambda \succeq 0$ 都有

$$\sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{i=1}^{n} \nu_j h_j(x) \le 0$$
 (3.14)

进而有

$$\Gamma(\lambda, \nu) = \inf_{x \in D} L(x, \lambda, \nu) \le \inf L(\widetilde{x}, \lambda, \nu) \le f(\widetilde{x})$$
(3.15)

3. 若没有下确界, 定义 主问题下界:

$$\Gamma(\lambda, \nu) = -\infty \tag{3.16}$$

4. 根据定义, 显然有: 对 $\forall \lambda > 0$, $\forall \nu$, 若原优化问题有最优值 p^* , 则

$$\Gamma(\lambda, \nu) \le p^* \tag{3.17}$$

即对偶函数给出了主问题的最优值的下界, 显然, 这个下界取决于 λ 和 ν 的值. 于是, 一个很自然的问题是: 基于对偶函数能获得的最好下界是什么?

5. 上述引出了 对偶优化问题

$$\max \Gamma(\lambda, \nu)$$
 s.t. $\lambda \succ 0$ (3.18)

式 3.18 就是主问题 3.1 的对偶问题, 其中 λ 和 ν 称为"对偶变量" (dual variable)

- 6. 进一步: 无论主问题的 3.1 的凸性如何, 对偶问题 Lagrange 对偶函数 3.18 始终是凹函数
- 7. 假设式 3.18 的最优值为 $d^* = \max_{\lambda,\nu} \Gamma(\lambda,\nu)$, 也即主问题 3.1 中最优值 p^* 的下界
- 8. 显然有 $d^* = \max_{\lambda,\nu} \Gamma(\lambda,\nu) \leq p^*$, 这称为"弱对偶性" (weak duality) 成立; 若 $d^* = \max_{\lambda,\nu} \Gamma(\lambda,\nu) = p^*$, 则称为"强对偶性" (strong duality) 成立, 此时由对偶问题能获得主问题的最优下界.
- 9. 对于一般优化问题,强对偶性通常不成立. 但是,若主问题为凸优化问题,如式 3.1 + f(x) 和 $g_j(x)$ 均为凸函数, $h_i(x)$ 为仿射函数,且其可行域中至少有一点使不等式约束严格成立,此时强对偶性成立. 注意: 在强对偶性成立时,将 Lagrange 函数对原变量求导,并令导数等于 0,即可得到原变量与对偶变量的数值关系.
- 10. 上述分析, 若满足强对偶性的 KKT 条件, 此时:

$$d^* = \max_{\lambda,\nu:\lambda_i \ge 0} \min_x L(x,\lambda,\nu) = \min_x \max_{\lambda,\nu:\lambda_i \ge 0} L(x,\lambda,\nu)$$
$$= p^* = \min f(x) \quad \{x \text{ subject to 约束条件}\}$$
 (3.19)

11. prove:

若原始问题和对偶问题都有最优值,则 $d^* = \max_{\lambda,\nu:\lambda_i \geq 0} \min_x L(x,\lambda,\nu) \leq \min_x \max_{\lambda,\nu:\lambda_i \geq 0} L(x,\lambda,\nu) = p^* = \min f(x)$ {x subject to 约束条件}

process:

对任意的 λ, ν 和 x, 有

$$L(x,\lambda,\nu) \le \max_{\lambda,\nu:\lambda \ge 0} L(x,\lambda,\nu)$$
 (3.20)

$$\therefore \quad \Gamma_D(\lambda, \nu) = \min_{x} L(x, \lambda, \nu) \le L(x, \lambda, \nu) \le \max_{\lambda, \nu : \lambda \ge 0} L(x, \lambda, \nu) = \phi_P(x)$$
(3.21)

'即:

$$\Gamma_D(\lambda, \nu) \le \phi_P(x) \tag{3.22}$$

由于原始问题和对偶问题均有最优值

$$\therefore \max_{\lambda,\nu:\lambda \ge 0} \Gamma_D(\lambda,\nu) \le \min_x \phi_P(x) \tag{3.23}$$

即:

$$d^* = \max_{\lambda,\nu:\lambda_i \ge 0} \min_x L(x,\lambda,\nu) \le \min_x \max_{\lambda,\nu:\lambda_i \ge 0} L(x,\lambda,\nu)$$
$$= p^* = \min f(x) \quad \{x \text{ subject to 约束条件}\}$$
 (3.24)

12. KKT 条件:

$$g_i(x^*) \le 0, \quad i = 1, 2, ..., k$$
 (3.25)

$$\lambda_i^* \ge 0, \quad i = 1, 2, ..., k$$
 (3.26)

$$\lambda_i^* g_i(x^*) = 0, \quad i = 1, 2, ..., k$$
 (3.27)

$$h_j(x^*) = 0, \quad j = 1, 2, ..., l$$
 (3.28)

$$\nabla L(x^*, \lambda^*, \nu^*) = \nabla f(x^*) + \sum_{i=1}^k \lambda_i^* \nabla g_i(x^*) + \sum_{i=1}^l \nu_i^* \nabla h_j(x^*) = 0$$
 (3.29)

上式中 3.29 等价于

$$\begin{cases} \nabla_x L(x^*, \lambda^*, \nu^*) = 0 \\ \nabla_\lambda L(x^*, \lambda^*, \nu^*) = 0 \\ \nabla_\nu L(x^*, \lambda^*, \nu^*) = 0 \end{cases}$$
(3.30)

特别指出, 式 3.27 称为 KKT 的对偶互补条件. 由此条件可知: 若 $\lambda_i^* > 0$, 则 $g_i(x^*) = 0$

上式中, x^* 是原始变量的解, λ^*, ν^* 是对偶变量的解, 并且 $p^* = d^* = L(x^*, \lambda^*, \nu^*)$

13. 左侧是原函数,右侧为对偶函数

Fig 3.2: dual problem

SVM 里的 w,b 看做是 Lagrange 函数里的变量 x

第四章 SVM

4.1 linear separable support vector machine and hard margin maximization

4.1.1 question?

Fig 4.1: linear classifier

4.1.2 input data

- 1. 假设给定有一个特征空间上的训练数据集 $T=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\}$ 其中, $x_i\in\mathbb{R}^n,y_i\in\{+1,-1\}$,i=1,2,...,N
- 2. x_i 为第 i 个实例 (若 $n > 1, x_i$ 为向量)
- $3. y_i$ 为 x_i 的类标记
 - (a) 当 y = +1 时, 称 x_i 为正例
 - (b) 当 y = -1 时, 称 x_i 为负例
- 4. (x_i, y_i) 称为样本点

4.1.3 linear separable support vector machine

1. 给定线性可分训练数据集, 通过 间隔最大化 得到的分离超平面为

$$y(x) = w^T \phi(x) + b \tag{4.1}$$

相应的分类决策函数

$$f(x) = sign(w^{T}\phi(x) + b)$$
(4.2)

该决策函数称为线性可分支持向量机

- 2. $\phi(x)$ 是某个确定的特征空间转换函数, 它的作用是将 x 映射到 (更高的) 维度
 - (a) 最简单直接的: $\phi(x) = x$
- 3. 求解分离超平面问题可以等价为求解相应的 凸二次规划问题

4.1.4 list symbol

- 1. 分割平面: $y(x) = w^{T} \phi(x) + b$
- 2. 训练集: $x_1, x_2, ..., x_n$
- 3. 目标值: $y_1, y_2, ..., y_n$, $y_i \in \{-1, +1\}$
- 4. 新数据的分类: sign(y(x))

4.1.5 derivation target function

- 1. 根据题设 $y(x) = w^{T} \phi(x) + b$
- 2. 有:

$$\begin{cases} y(x_i) > 0 \Leftrightarrow y_i = +1 \\ y(x_i) < 0 \Leftrightarrow y_i = -1 \end{cases} \Rightarrow y_i \cdot y(x_i) > 0$$
 (4.3)

3. functional margin and geometric margin

Fig 4.2: functional margin and geometric margin

在图 4.2 中,有 A,B,C 三个点,表示 3 个实例,均在分离超平面的正类侧,预测它们的类,点 A 距分离超平面较远,若预测该点为正类,就比较确信预测是正确的,点 C 距分离超平面较劲,若预测该点为正类就不么确信,点 B 介于点 A 与 C 之间,预测其为正类的确信度也在 A 与 C 之间

• 函数间隔:一般来说,一个点距离分离超平面的远近可以表示分类预测的确信程度. 在超平面 $w^T \phi(x) + b = 0$ 确定的情况下, $|w^T \phi(x) + b|$ 能够相对地表示点 x 距离超平面的远近, 而 $w^T \phi(x) + b$ 的符号与类标记 y 的符号是否一致能够表示分类是否正确. 所以可用量 $y_i \cdot (w^T \cdot \phi(x_i) + b)$ 来表示分类的正确性及确信度.

定义超平面 (w,b) 关于样本点 (x_i,y_i) 的函数间隔为

$$\hat{\gamma}_i = y_i(w \cdot x_i + b) \tag{4.4}$$

• 几何间隔: 函数间隔可以表示分类预测的正确性及确信度. 但是选择分离超平面时, 只有函数间隔还不够, 因为只要成比例的缩放 w 和 b, 例如将它们改为 2w 和 2b, 超平面并没有改变, 但函数间隔却成为原来的 2 倍, 这一事实启示我们, 可以对分离超平面的法向量 w 加某些约束, 如规范化, || w ||= 1, 使得间隔是确定的. 这是函数间隔称为几何间隔.

w, b 等比例缩放,则 $y_i * y$ 的值同样缩放,从而:

$$\gamma_i = \frac{y_i \cdot y(x_i)}{\| w \|} = \frac{y_i \cdot (w^T \cdot \phi(x_i) + b)}{\| w \|}$$
(4.5)

4. maximum margin to select separable hyperplane

assume minimum functional margin and geometric margin
 定义函数间隔平面 (w, b) 关于 T 中所有样本点 (x_i, y_i) 的函数间隔之最小值, 即

$$\hat{\gamma} = \min_{i=1,\dots,N} \hat{\gamma}_i \tag{4.6}$$

定义几何间隔平面 (w,b) 关于 T 中所有样本点 (x_i,y_i) 的几何间隔之最小值,即

$$\gamma = \min_{i=1,\dots,N} \gamma_i \tag{4.7}$$

• original target function

$$\underset{w,b}{\operatorname{arg\,max}} \gamma = \underset{w,b}{\operatorname{arg\,max}} \frac{\hat{\gamma}}{\parallel w \parallel} \Rightarrow \tag{4.8}$$

$$\underset{w,b}{\operatorname{arg\,max}} \left\{ \frac{1}{\parallel w \parallel} \min_{i} \left[y_i \cdot (w^T \cdot \phi(x_i) + b) \right] \right\}$$
 (4.9)

s.t.
$$\frac{y_i \cdot (w^T \cdot \phi(x_i) + b)}{\parallel w \parallel} \ge \gamma$$
 (4.10)

Fig 4.3: maximum margin

• optimal problem

函数间隔 $\hat{\gamma} = y(w \cdot x + b)$ 不影响最优化问题的解. 事实上, 假设将 w 和 b 按比例改变为 λw λb , 这时函数间隔成为 $\lambda \hat{\gamma}$.

函数间隔的改变对上面最优化问题的不等式约束没有影响,对目标函数的优化也没有影响.即它产生一个等价的优化问题.

取函数间隔最小值 $\hat{\gamma} = 1$. 将 $\hat{\gamma} = 1$ 代入上面的最优化问题, 注意到最大化 $\frac{1}{\|w\|}$ 和最小化 $\frac{1}{2}$ $\|w\|^2$ 是等价的. 则得到下面的 线性可分支持向量机 的最优化问题:

$$\min_{w,b} \quad \frac{1}{2} \parallel w \parallel^2 \tag{4.11}$$

s.t.
$$y_i(w \cdot x_i + b) - 1 \ge 0$$
, $i = 1, 2, ..., N$ (4.12)

这是一个凸二次规划 (convex quadratic programming) 问题: 目标函数 f(x) 是二次函数且约束函数 $g_i(w)$ 是仿射函数时, 约束最优化问题 (凸优化问题) 成为凸二次规划问题

5. dual algorithm

(a) Lagrange multiplier method to build Lagrange function

$$L(w, b, \alpha) = \frac{1}{2} \| w \|^2 - \sum_{i=1}^{n} \alpha_i (y_i(w^T \cdot \phi(x_i) + b) - 1)$$
 (4.13)

among, $\alpha = (\alpha_1, \alpha_2, ..., \alpha_N)^T$ is Lagrange multiplier vector.

(b) 原问题是极小极大问题

$$\min_{w,b} \max_{\alpha} L(w,b,\alpha)$$

原始问题的对偶问题, 是极大极小问题

$$\max_{\alpha} \min_{w,b} L(w,b,\alpha)$$

- (c) 得到对偶问题的解

将拉格朗日函数 $L(w,b,\alpha)$ 分别对 w,b 求偏导数并令其等于 0.

$$\nabla_w L(w, b, \alpha) = w - \sum_{i=1}^N \alpha_i y_i x_i = 0$$
 (4.14)

$$\nabla_b L(w, b, \alpha) = \sum_{i=1}^N \alpha_i y_i = 0$$
(4.15)

$$(4.16)$$

$$w = \sum_{i=1}^{N} \alpha_i x_i y_i \tag{4.17}$$

$$\sum_{i=1}^{N} \alpha_i y_i = 0 \tag{4.18}$$

(2) 将式 4.17 代入 Lagrange 函数 4.13, 并利用式 4.18, 即得

$$L(w, b, \alpha) = \frac{1}{2} \| w \|^{2} - \sum_{i=1}^{n} \alpha_{i} (y_{i}(w^{T} \cdot \phi(x_{i}) + b) - 1)$$

$$= \frac{1}{2} w^{T} w - w^{T} \sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i}) - b \sum_{i=1}^{n} \alpha_{i} y_{i} + \sum_{i=1}^{n} \alpha_{i}$$

$$= \frac{1}{2} w^{T} \sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i}) - w^{T} \sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i}) - b \cdot 0 + \sum_{i=1}^{n} \alpha_{i}$$

$$= \sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i}) - \sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i}) - \sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i})$$

$$= \sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i}) - \sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i})$$

$$= \sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i}) - \sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i})$$

$$= \sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i}) - \sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i})$$

$$= \sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i}) - \sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i})$$

$$= \sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i}) - \sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i})$$

$$= \sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i}) - \sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i})$$

$$= \sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i}) - \sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i})$$

$$= \sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i}) - \sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i})$$

$$= \sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i}) - \sum_{i=1}^{n} \alpha_{i$$

$$= \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \left(\sum_{i=1}^{n} \alpha_i y_i \phi(x_i) \right)^T \sum_{i=1}^{n} \alpha_i y_i \phi(x_i)$$
 (4.22)

$$= \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \phi^T(x_i) \phi(x_j)$$

$$(4.23)$$

即

$$\min_{w,b} L(w,b,\alpha) = -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \phi^T(x_i) \phi(x_j) + \sum_{j=1}^{N} \alpha_i \quad (4.24)$$

(3) 求 $\min_{w,b} L(w,b,\alpha)$ 对 α 的极大, 即是对偶问题

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \left(\phi(x_i) \phi(x_j) \right)$$
 (4.25)

s.t.
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
 (4.26)

$$\alpha_i \ge 0, \quad i = 1, 2, ..., n$$
 (4.27)

(4) 整理目标函数: 添加负号

$$\min_{\alpha} \quad \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \left(\phi(x_i) \phi(x_j) \right) - \sum_{i=1}^{n} \alpha_i$$
 (4.28)

s.t.
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
 (4.29)

$$\alpha_i \ge 0, \quad i = 1, 2, ..., n$$
 (4.30)

4.1.6 Linear divisible support Vector Machine Learning algorithm

1. 构造并求解约束最优化问题

$$\min_{\alpha} \quad \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \left(\phi(x_i) \phi(x_j) \right) - \sum_{i=1}^{n} \alpha_i$$
 (4.31)

s.t.
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
 (4.32)

$$\alpha_i \ge 0, \quad i = 1, 2, ..., n$$
 (4.33)

- 2. 求得最优解 α^* , $\alpha^* = (\alpha_1^*, \alpha_1^*, ..., \alpha_1^*)^T$
- 3. 计算

$$w^* = \sum_{i=1}^{N} \alpha_i^* y_i \phi(x_i)$$
 (4.34)

$$b^* = y_i - \sum_{i=1}^{N} \alpha_i^* y_i (\phi(x_i) \cdot \phi(x_j))$$
 (4.35)

4. 求得分离超平面

$$w^*\phi(x) + b^* = 0 (4.36)$$

5. 分类决策函数

$$f(x) = sign(w^*\phi(x) + b^*) \tag{4.37}$$

6. example

举例

- □ 给定3个数据点: 正例点 x_1 =(3,3)^T, x_2 ==(4,3)^T, 负例点 x_3 =(1,1)^T, 求线性可分支持向量机。
- □ 目标函数:

$$\min_{\alpha} \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) - \sum_{i=1}^{n} \alpha_{i}$$

$$= \frac{1}{2} (18\alpha_{1}^{2} + 25\alpha_{2}^{2} + 2\alpha_{3}^{2} + 42\alpha_{1}\alpha_{2} - 12\alpha_{1}\alpha_{3} - 14\alpha_{2}\alpha_{3}) - \alpha_{1} - \alpha_{2} - \alpha_{3}$$
s.t. $\alpha_{1} + \alpha_{2} - \alpha_{3} = 0$

$$\alpha_{i} \ge 0, \quad i = 1, 2, 3$$

将约束带入目标函数, 化简计算

- □ 带入目标函数,得到关于 α_1 , α_2 的函数; $s(\alpha_1,\alpha_2) = 4\alpha_1^2 + \frac{13}{2}\alpha_2^2 + 10\alpha_1\alpha_2 2\alpha_1 2\alpha_2$
- □ 对 α_1 , α_2 求偏导并令其为0, 易知 $s(\alpha_1,\alpha_2)$ 在点(1.5,-1)处取极值。而该点不满足条件 $\alpha_2 \ge 0$,所以,最小值在边界上达到。
- □ 当α₁=0时,最小值s(0,2/13)=-2/13=-0.1538
- □ **当**α₂=0 时,最小值s(1/4,0)=-1/4=-0.25
- □ 于是, $s(\alpha_1,\alpha_2)$ 在 α_1 =1/4, α_2 =0 射达到最小,此时, α_3 = α_1 + α_2 =1/4

分离超平面

- □ $\alpha_1 = \alpha_3 = 1/4$ 对应的点 x_1, x_3 是支持向量。
- □ 帯入公式: $_{w^*} = \sum_{i=1}^{N} \alpha_i^* y_i \Phi(x_i)$ $b^* = y_i \sum_{i=1}^{N} \alpha_i^* y_i (\Phi(x_i) \cdot \Phi(x_j))$ □ 得到 $\mathbf{w}_1 = \mathbf{w}_2 = 0.5$, b = -2□ 因此,分离超平面为 $\frac{1}{2} x_1 + \frac{1}{2} x_2 2 = 0$ □ 分离决策函数为 $f(x) = sign(\frac{1}{2} x_1 + \frac{1}{2} x_2 2)$

Fig 4.4: the example of solve lagest margin separable hyperplane with svm method

linear supprot vector machine and soft margin maximization

4.2.1 concept

- 1. 不一定分类完全正确的超平面就是最好的
- 2. 样本数据本身线性不可分
- 3. picture

Fig 4.5: non separable dataset

4.2.2 derivation target function

1. 若数据线性不可分, 则增加松弛因子 $\xi \ge 0$, 使函数间隔加上松弛变量大于等于 1. 这样, 约束条件变成

$$y_i(w \cdot x_i + b) \ge 1 - \xi \tag{4.38}$$

2. target function with adding slack variable ξ :

$$\min_{w,b} \frac{1}{2} \| w \|^2 + C \sum_{i=1}^{N} \xi_i$$
 (4.39)

3. this moment, the target function of linear sym

$$\min_{w,b,\xi} \quad \frac{1}{2} \parallel w \parallel^2 + C \sum_{i=1}^{N} \xi_i$$
 (4.40)

s.t.
$$y_i(w \cdot x_i + b) \ge 1 - \xi_i$$
, $i = 1, 2, ..., n$ (4.41)

$$\xi_i \ge 0, \quad i = 1, 2, ..., n$$
 (4.42)

4.2.3 dual property

1. Lagrange 函数

$$L(w, b, \xi, \alpha, \mu) = \frac{1}{2} \| w \|^2 + C \sum_{i=1}^{n} \xi_i - \sum_{i=1}^{n} \alpha_i (y_i(w \cdot x_i + b) - 1 + \xi_i) - \sum_{i=1}^{n} \mu_i \xi_i$$
(4.43)

2. 对 w, b, ξ 求偏导

$$\frac{\partial L}{\partial w} = 0 \Rightarrow w = \sum_{i=1}^{n} \alpha_i y_i \phi(x_n) \tag{4.44}$$

$$\frac{\partial L}{\partial b} = 0 \Rightarrow 0 = \sum_{i=1}^{n} \alpha_i y_i \tag{4.45}$$

$$\frac{\partial L}{\partial \xi} = 0 \Rightarrow C - \alpha_i - \mu_i = 0 \tag{4.46}$$

3. 将式 4.44、式 4.45、式 4.46代入式 4.43中, 得到

$$\min w, b, \xi L(w, b, \xi, \alpha, \mu) = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j (x_i \cdot x_j) + \sum_{i=1}^{n} \alpha_i$$
 (4.47)

4. 对上式 4.47 求关于 α 的极大, 得到

$$\max_{\alpha} -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) + \sum_{i=1}^{n} \alpha_{i}$$
 (4.48)

s.t.
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
 (4.49)

$$C - \alpha_i - \mu_i = 0 \tag{4.50}$$

$$\alpha_i \ge 0 \tag{4.51}$$

$$\mu_i \ge 0, \quad i = 1, 2, ..., n$$
 (4.52)

5. 将对偶问题 $4.48 \sim 4.52$ 进行变换: 利用等式约束 4.50 消去 μ_i , 从而只留下变量 α_i , 并将约束 $4.50 \sim 4.52$ 写成

$$0 \le \alpha_i \le C \tag{4.53}$$

6. 整理, 得到对偶问题:

$$\min_{\alpha} \quad \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) - \sum_{i=1}^{n} \alpha_{i}$$
 (4.54)

s.t.
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
 (4.55)

$$0 \le \alpha_i \le C, \quad i = 1, 2, ..., n$$
 (4.56)

4.2.4 Linear support vector machine learning algorithm

1. 构造并求解约束最优化问题

$$\min_{\alpha} \quad \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j (x_i \cdot x_j) - \sum_{i=1}^{n} \alpha_i$$
 (4.57)

s.t.
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
 (4.58)

$$0 \le \alpha_i \le C, \quad i = 1, 2, ..., n$$
 (4.59)

- 2. 求得最优解 α^* , $\alpha^* = (\alpha_1^*, \alpha_2^*, ..., \alpha_n^*)^T$
- 3. 计算

$$w^* = \sum_{i=1}^n \alpha_i^* y_i x_i \tag{4.60}$$

计算 b 的值有两种方式:

• 选择 α^* 的一个分量 α_j^* 适合条件 $0 < \alpha_j^* < C$, 计算

$$b^* = y_j - \sum_{i=1}^n y_i \alpha_i^* (x_i \cdot x_j)$$
 (4.61)

• 实践中往往取支持向量的所有值取平均, 作为 b*

$$b^* = \frac{\max_{i:y_i = -1} w^* \cdot x_i + \min_{i:y_i = 1} w^* \cdot x_i}{2}$$
(4.62)

4. 求得分离超平面

$$w^*x + b^* = 0 (4.63)$$

5. 分类决策函数

$$f(x) = sign(w^*x + b^*) \tag{4.64}$$

4.2.5 KKT of soft margin

$$\nabla_w L(w^*, b^*, \xi^*, \alpha^*, \mu^*) = w^* - \sum_{i=1}^N \alpha_i^* y_i x_i = 0$$
(4.65)

$$\nabla_b L(w^*, b^*, \xi^*, \alpha^*, \mu^*) = -\sum_{i=1}^N \alpha_i^* y_i = 0$$
(4.66)

$$\nabla_{\xi} L(w^*, b^*, \xi^*, \alpha^*, \mu^*) = C - \alpha^* - \mu^* = 0 \tag{4.67}$$

$$\alpha_i^*(y_i(w^* \cdot x_i + b^*) - 1 + \xi_i^*) = 0 \tag{4.68}$$

$$\mu_i^* \xi_i^* = 0 \tag{4.69}$$

$$y_i(w^*x_i + b^*) - 1 + \xi^* \ge 0 (4.70)$$

$$\xi_i^* \ge 0 \tag{4.71}$$

$$\alpha_i^* \ge 0 \tag{4.72}$$

$$\mu_i^* \ge 0, \quad i = 1, 2, ..., N$$
 (4.73)

4.2.6 support vector

1. 在线性不可分的情况下, 将对偶问题 $4.57 \sim 4.59$ 的解 $\alpha^* = (\alpha_1^*, \alpha_2^*, ..., \alpha_n^*)^T$ 中对应于 $\alpha_i^* > 0$ 的样本点 (x_i, y_i) 的实例 x_i 称为支持向量 (软间隔的支持向量).

Fig 4.6: support vector soft margin linear sym

这时的支持向量要比线性可分时的情况复杂一些. 图中, 分离超平面由实线表示, 间隔边界由虚线表示, 正例点由"。"表示, 负例点由"×"表示. 图中还标出了实例 x_i 到间隔边界的距离 $\frac{\xi}{\|y_i\|}$

软间隔的支持向量 x_i 或者在间隔边界上,或者在间隔边界与分离超平面之间,或者在分离超平面误分一侧.

KKT 条件中式 4.68、4.69、4.70 得出目标函数中 α_i 取值的意义:

(a) 在两条间隔线外面的点, 对应前面的系数 α_i 为 0,

$$\xi = 0, y_i(w^*x + b) - 1 + \xi > 0 \Leftrightarrow \alpha_i = 0$$
 (4.74)

- (b) 在两条间隔线里面的对应 α_i 为 C,
 - 支持向量落在间隔边界和分离超平面之间

$$0 < \xi < 1 \Leftrightarrow$$

$$\mu = 0, \alpha_i = C, y_i(w^*x + b) - 1 + \xi = 0, 0 < y_i(w^*x + b) < 1$$
(4.75)

• 支持向量落在分离超平面上

$$\xi = 1 \Leftrightarrow$$

$$\mu = 0, \alpha_i = C, y_i(w^*x + b) - 1 + \xi = 0, y_i(w^*x + b) = 0 \quad (4.76)$$

• 支持向量位于分离超平面误分一侧

$$\xi > 1 \Leftrightarrow$$

$$\mu = 0, \alpha_i = C, y_i(w^*x + b) - 1 + \xi = 0, y_i(w^*x + b) < 0 \quad (4.77)$$

(c) 在两条间隔线上的对应的系数 α_i 在 0 和 C 之间

$$\xi = 0, y_i(w^*x + b) - 1 = 0 \Leftrightarrow$$

$$0 \le \mu \le C, 0 \le \alpha \le C, y_i(w^*x + b) - 1 + \xi = 0$$
(4.78)

4.2.7 loss function

1. $l_{0/1}$ loss function

在软间隔允许某些样本不满足约束

$$y_i(w^T x_i + b) \ge 1 \tag{4.79}$$

在最大化间隔时,不满足的样本应尽可能少,则优化目标为

$$\min_{w,b} \frac{1}{2} \| w \|^2 + C \sum_{i=1}^{m} l_{0/1}(y_i(w^T x_i + b) - 1)$$
 (4.80)

其中, C > 0 是一个常数, $l_{0/1}$ 是"0/1 损失函数"

$$l_{0/1}(z) = \begin{cases} 1, & \text{if } z < 0; \\ 0, & \text{otherwise} \end{cases}$$
 (4.81)

显然, 当 C 为无穷大时, 式 4.80 迫使所有样本满足约束 4.79, 于是式 4.80 等价于式 4.11; 当 C 取有限制时, 式 4.80 允许一些样本不满足约束

2. surrogate loss 替代损失

因为 $l_{0/1}$ 非凸、非连续, 数学性质不好, 使得式 4.80 不易直接求解.

于是, 通常用其他一些函数来代替 10/1, 称为"替代损失"

替代损失函数一般具有较好的数学性质, 如它们通常是凸的连续函数且是 $l_{0/1}$ 的上届.

3. $l_{0/1}$ 损失函数、hinge 损失函数、指数损失函数、对率损失函数

图 6.5 三种常见的替代损失函数: hinge损失、指数损失、对率损失 Fig 4.7: three surrogate loss function

4. hinge 损失:

$$l_{hinge}(z) = \max(0, 1 - z)$$
 (4.82)

指数损失函数:

$$l_{exp}(z) = \exp(-z) \tag{4.83}$$

对率损失:

$$l_{log}(z) = \log(1 + \exp(-1)) \tag{4.84}$$

5. 若采用 hinge 损失, 则式 4.80 变成

$$\min_{w,b} \frac{1}{2} \parallel w \parallel^2 + C \sum_{i=1}^m \max(0, 1 - y_i(w^T x_i + b))$$
 (4.85)

6. 引入松弛变量 $\xi_i \geq 0$, 可将式 4.85 重写为

$$\min_{w,b,\xi_i} \frac{1}{2} \| w \|^2 + C \sum_{i=1}^m \xi_i$$
 (4.86)

7. 图 4.7 中, 横轴是函数间隔 $y(w \cdot x + b)$, 纵轴是损失.

0-1 损失函数是二分类问题的真正的损失函数,而合页损失函数是 0-1 损失函数的上界.

Fig 4.8: hinge loss function

图 4.8 中虚线显示的是感知机的损失函数 $[-y_i(w \cdot x_i + b)]_+$.

当样本点 (x_i, y_i) 点被分类正确时, 损失是 0, 否则损失是 $-y_i(w \cdot x_i + b)$.

相比之下, 合页损失函数不仅要分类正确, 而且确信度足够高时损失才是 0. 也就是说, 合页损失函数对学习有更高的要求.

4.3 kernel function

如果样本线性不可分, 通过 $\phi: X \to F$ 函数映射将输入样本映射到另外一个高维空间并使其线性可分.

将内积 $< x_i, x_j >$ 变成 $< \phi(x_i), \phi(x_j) >$ 求解 $< \phi(x_i), \phi(x_j) >$ 有两种方法:

- 1. 先找到这种映射 $\phi(x)$, 然后将输入空间中的样本映射到新的空间中, 最后在新空间中取求内积 $< \phi(x_i), \phi(x_j) >$
- 2. 核技巧:不显示的定义映射函数 $\phi(x)$, 值定义核函数 $K(x_i,x_j)$

4.3.1 define directily reflect function

以多项式 $x_1 + x_2 + x_1^2 + x_2^2 + c = 0$ 为例

将其进行变换, $c_1 = x_1$, $c_2 = x_2$, $c_3 = x_1^2$, $c_4 = x_2^2$, 得到: $c_1 + c_2 + c_3 + c_4 = 0$, 也就是说通过把输入空间从二维向四维映射后, 样本有线性不可分变成了线性可分, 但是这种转化带来的直接问他是维度变高了, 这意味着, 首先可能导致后续计算变复杂, 其次可能出现维度灾难.

对于学习器而言就是:特征空间维数可能最终无法计算,而它的泛化能力 (学习器对训练样本以外数据的适应性) 会随着维度的增大而大大降低,这也违反了"奥坎姆剃刀",最终可能使内积 $<\phi(x_i),\phi(x_j)>$ 无法求出,于是也就失去这种转化的优势了

4.3.2 kernel function

1. concept

definition one: 核是一个函数 K, 对于所有的 $x_1, x_2 \in X$ 满足, $K < x_1, x_2 > = < \phi(x_1), \phi(x_2) >$, 这里的 ϕ 为从 X 到内积特征空间 F 的映射

2. picture

Fig 4.9: reflect kernel function

3. condition

K(x,y) 什么时候才是核函数呢?

假设有输入有输入空间 $X = x_1, x_2, ..., x_n$ 且 K(x, y) 为对称函数, 那么对于所有样本得到下面矩阵: $k = K(x_i, x_j)(i, j = 0, ..., n)$, 显然, 这个是对称矩阵, 那么对于对称矩阵一定存在一个正交矩阵, 使得 $P^TkP = \Lambda$, 这

里 Λ 是包含 k 的特征值 λ_i 的对角矩阵, 特征值 λ_i 对应的特征向量为 $\nu_i = (\nu_{i1}, \nu_{i2}, ..., \nu_{in})^T$, 其中 n 为样本数, 对输入空间做如下映射 ϕ

$$\phi(x_i) \Rightarrow (\sqrt{\lambda_1}\nu_{1i}, \sqrt{\lambda_2}\nu_{2i}, ..., \sqrt{\lambda_n}\nu_n i)^T \in R^n(i = 1, 2, ..., n)$$

$$(4.87)$$

$$\phi(x) = (\phi(x_1), \phi(x_2), ..., \phi(x_n)) \tag{4.88}$$

$$K(x_i, x_j) = \phi(x_i)^T \phi(x_j) \tag{4.89}$$

于是有 $<\phi(x_i),\phi(x_j)>=\sum_{t=1}^n \lambda_t \nu_{ti} \nu_{tj}=(V\Lambda V^T)_{i,j}=k_{i,j}=K(x_i,x_j)$ (其中 V 为特征向量组成的矩阵, Λ 为相应特征值组成的三角矩阵), 也就是说 K 是对应于映射的核函数.

4. example

有
$$k = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 1 & 3 \end{bmatrix}$$
, 由 $|k - \lambda E| = 0$ 解得特征值: $\lambda_1 = \lambda_2 = 4$, $\lambda_3 = 2$,

对 2 重特征根 4 求 (A - 4E)x = 0 的基础解系、正交化、单位化后得到特征向量: $\nu_1 = (1,0,0)^T$ 和 $\nu_2 = (0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})^T$, 对 λ_3 的特征向量单位化

后得到
$$\nu_3 = (0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})^T$$
,于是有 $V = (\nu_1, \nu_2, \nu_3) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{vmatrix}$ 满足

$$V^{-1}kV = \Lambda = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
, 对所有输入样本做映射得:

$$\phi(x_1) = (\sqrt{4} \times 1, \sqrt{4} \times 0, \sqrt{2} \times 0)^T = (2, 0, 0)^T; \tag{4.90}$$

$$\phi(x_2) = (\sqrt{4} \times 0, \sqrt{4} \times \frac{1}{\sqrt{2}}, \sqrt{2} \times -\frac{1}{\sqrt{2}})^T = (0, \sqrt{2}, -1)^T; \tag{4.91}$$

$$\phi(x_3) = (\sqrt{4} \times 0, \sqrt{4} \times \frac{1}{\sqrt{2}}, \sqrt{2} \times \frac{1}{\sqrt{2}})^T = (0, \sqrt{2}, 1)^T$$
 (4.92)

随便选两个做内积, 如 $<\phi(x_2),\phi(x_3)>=0\times 0+\sqrt{2}\times\sqrt{2}+(-1)\times 1=1=k(x_2,x_3)$

由此可见: K(x,y) 就是对应于特征映射 $\phi(x)$ 的核函数

5. conclusion

名称 表达式 参数 线性核 $\kappa(x_i, x_j) = x_i^T x_j$ 多项式核 $\kappa(x_i, x_j) = (x_i^T x_j)^d$ $d \ge 1$ 为多项式的次数 高斯核 $\kappa(x_i, x_j) = \exp(-\frac{\|x_i - x_j\|^2}{2\sigma^2})$ $\sigma > 0$ 为高斯核的带宽 (width) 拉普拉斯核 $\kappa(x_i, x_j) = \exp(-\frac{\|x_i - x_j\|}{\sigma})$ $\sigma > 0$ Sigmoid 核 $\kappa(x_i, x_j) = \tanh(\beta x_i^T x_j + \theta)$ \tanh 为双曲正切函数, $\beta > 0$, $\theta < 0$

Tab 4.1: common kernel function

- 定理 1: 存在有限输入空间 X, K(x,y) 为 X 上的对称函数, 那么 K(x,y) 是核函数的冲要条件是矩阵 $k = (K(x_i, x_j))(i, j = 0, ..., n)$ 半正定, 此时相当于对输入空间想特征空间进行了 隐式 的 $\phi(x)$ 映射. 对于上面的映射 $\phi(x)$, 令 $\phi_i(x_j) = \sqrt{\lambda_i}\nu_{ij}$, 于是 $\phi(x) = (\phi_1(x), \phi_2(x), ..., \phi_n(x))$
- 令 χ 为输入空间, $\kappa(\cdot,\cdot)$ 是定义在 $\chi \times \chi$ 上的对称函数, 则 κ 是核函数当且仅当对于任意数据 $D = \{x_1, x_2, ..., x_n\}$, kernel matrix K 总是半正定的

$$\boldsymbol{K} = \begin{bmatrix} \kappa(x_1, x_1) & \cdots & \kappa(x_1, x_j) & \cdots & \kappa(x_1, x_m) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \kappa(x_i, x_1) & \cdots & \kappa(x_i, x_j) & \cdots & \kappa(x_i, x_m) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \kappa(x_m, x_1) & \cdots & \kappa(x_m, x_j) & \cdots & \kappa(x_m, x_m) \end{bmatrix}$$
(4.93)

事实证明,只要一个对称函数所对应的核矩阵半正定,它就能作为核函数使用.事实上,一个半正定核矩阵,总能找到一个与之对应的映射 ϕ ,换言之,任何一个核函数都隐式得定义了一个称为"再生核希尔伯特空间"的特征空间

6. common kernel function

7. Gussian kernel function

在实际应用中,往往依赖先验领域知识 / 交叉验证等方案才能选择有效的核函数.

没有更多先验信息,则使用高斯核函数

高斯核

- □ 粗线是分割超"平面"
- □ 其他线是y(x)的等高线
- □ 绿色圈点是支持向量点

高斯核是无穷维的 $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + R_n$

$$\begin{split} &\kappa(x_1, x_2) = e^{\frac{-\left|x_1 - x_2\right|^2}{2\sigma^2}} = e^{\frac{-\left(x_1 - x_2\right)^2}{2\sigma^2}} = e^{\frac{-\frac{x_1^2 + x_2^2 - 2x_1x_2}{2\sigma^2}}{2\sigma^2}} = e^{\frac{-\frac{x_1^2 + x_2^2}{2\sigma^2} - 2x_1x_2}{2\sigma^2}} = e^{\frac{-\frac{x_1^2 + x_2^2}{2\sigma^2} - 2x_1x_2}{2\sigma^2}} \cdot e^{\frac{x_1x_2}{\sigma^2}} \\ &= e^{\frac{-\frac{x_1^2 + x_2^2}{2\sigma^2}}{2\sigma^2}} \cdot \left(1 + \frac{1}{\sigma^2} \cdot \frac{x_1x_2}{1!} + \left(\frac{1}{\sigma^2}\right)^2 \cdot \frac{\left(x_1x_2\right)^2}{2!} + \left(\frac{1}{\sigma^2}\right)^3 \cdot \frac{\left(x_1x_2\right)^3}{3!} + \dots + \left(\frac{1}{\sigma^2}\right)^n \cdot \frac{\left(x_1x_2\right)^n}{n!} + \dots\right) \\ &= e^{\frac{-\frac{x_1^2 + x_2^2}{2\sigma^2}}{2\sigma^2}} \cdot \left(1 \cdot 1 + \frac{1}{1!} \frac{x_1}{\sigma} \cdot \frac{x_2}{\sigma} + \frac{1}{2!} \cdot \frac{x_1^2}{\sigma^2} \cdot \frac{x_2^2}{\sigma^2} + \frac{1}{3!} \cdot \frac{x_1^3}{\sigma^3} \cdot \frac{x_2^3}{\sigma^3} + \dots + \frac{1}{n!} \cdot \frac{x_1^n}{\sigma^n} \cdot \frac{x_2^n}{\sigma^n} + \dots\right) \\ &= \Phi(x_1)^T \cdot \Phi(x_2) \end{split}$$

$$\Box \# \Phi(x) = e^{-\frac{x^2}{2\sigma^2}} \left(1, \sqrt{\frac{1}{1!}} \frac{x}{\sigma}, \sqrt{\frac{1}{2!}} \frac{x^2}{\sigma^2}, \sqrt{\frac{1}{3!}} \frac{x^3}{\sigma^3}, \dots, \sqrt{\frac{1}{n!}} \frac{x^n}{\sigma^n}, \dots \right)$$

Fig 4.10: gussian kernel function

8. kernel function in sym

选定核 $K(x_i, x_j)$ 后, 原问题变成

$$\min_{\alpha} \quad \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K(x_{i} \cdot x_{j}) - \sum_{i=1}^{n} \alpha_{i}$$
 (4.94)

s.t.
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
 (4.95)

$$0 \le \alpha_i \le C, \quad i = 1, 2, ..., n$$
 (4.96)

优化问题得最优解, 核要满足 Mercer 条件, 即矩阵 $k = K(x_i, x_j), (i, j = 0, 1, ..., n)$ 在所有训练上半正定, 说明这个优化是凸优化, 这个条件保证了最大化间隔优化问题有唯一解.

最后求得 α^*, b^* , 那么从输入空间向特征空间隐式映射后所得到的最大间隔

超平面也就出来了:

$$f(x) = \sum_{i=1}^{n} \alpha^* y_i K(x_i, x_j) + b^*$$
(4.97)

且有几何间隔

$$\gamma = \frac{1}{\parallel w^* \parallel} = \left(\sum_{i \in \text{support vector}} \alpha^*\right)^{\frac{1}{2}} \tag{4.98}$$

4.4 sequential minimal optimization algorithm

4.4.1 concept

- 1. 用于 SVM 中系数的求解算法
- 2. 场合: 有多个 Lagrange multiplier
- 3. 原理:每次只选择其中两个乘子做优化,其他因子认为是常数.
 - 将 N 个解问题, 转换成两个变量的求解问题: 并且目标函数是凸的

4.4.2 process

1. 考察目标函数

$$\min_{\alpha} \quad \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) - \sum_{i=1}^{n} \alpha_{i}$$
 (4.99)

s.t.
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
 (4.100)

$$0 \le \alpha_i \le C, \quad i = 1, 2, ..., n \tag{4.101}$$

2. 假设 α_1 和 α_2 是变量, 其他是定值:

$$\min_{\alpha_{1},\alpha_{2}} W(\alpha_{1},\alpha_{2})$$

$$= \frac{1}{2}\kappa_{11}\alpha_{1}^{2} + \frac{1}{2}\kappa_{22}\alpha_{2}^{2} + y_{1}y_{2}\alpha_{1}\alpha_{2}\kappa_{12} - (\alpha_{1} + \alpha_{2})$$

$$+ y_{1}\alpha_{1}\sum_{i=3}^{N} y_{1}\alpha_{i}\kappa_{i1} + y_{2}\alpha_{2}\sum_{i=3}^{N} y_{i}\alpha_{i}\kappa_{i2}$$
(4.102)

s.t.
$$\alpha_1 y_1 + \alpha_2 y_2 = -\sum_{i=3}^{N} y_i \alpha_i = \xi$$
 (4.103)

$$0 \le \alpha_i \le C \tag{4.104}$$

其中, ξ 是常数, 目标函数中省略了不含 α_1, α_2 的常数项

3. 为了求解两个变量的二次规划问题, 首先分析约束条件, 然后在此约束条件下求极小.

由于只有两个变量,约束可以用二维空间中的图形表示

Fig 4.11: two variable optimization

4. 不等式约束 4.104 使得 (α_1, α_2) 在盒子 $[0, C] \times [0, C]$ 内, 等式约束 4.103 使 α_1, α_2 在平行于盒子 $[0, C] \times [0, C]$ 的对角线的直线上.

因此要求的是目标函数在一条平行于对角线的线段上的最优值. 这使得两个变量的最优化问题成为实质上的单变量的最优化问题, 不妨考虑为变量 α_2 的最优化问题

- 5. 假设问题 $4.102 \sim 4.104$ 的初始可行解为 α_1^{old} , α_2^{old} , 最优解为 α_1^{new} , α_2^{new} , 并且假设在沿着约束方向未经剪辑时 α_2 的最优解为 $\alpha_2^{new,unc}$. 注意: 此处最优值是在图中直线上移动的
- 6. 综合式 4.103 和 4.104 这两个约束条件, 求取 α_2^{new} 的取值范围 由于 α_2^{new} 需满足不等式约束 4.104, 所以最优值 α_2^{new} 的取值范围必须满足条件

$$L \le \alpha_2^{new} \le H \tag{4.105}$$

其中, L 和 H 是 α_2^{new} 所在的对角线段端点的界.

(a) $y_1 \neq y_2$ 时, 根据 $\alpha_1^{new}y_1 + \alpha_2^{new}y_2 = \alpha_1^{old}y_1 + \alpha_2^{old}y_2 = \xi$ 可得 $\alpha_1^{old} - \alpha_2^{old} = \xi$, 所以有

$$L = \max(0, -\xi) = \max(0, \alpha_2^{old} - \alpha_1^{old})$$
 (4.106)

$$H = \min(C, C - \xi) = \min(C, C + \alpha_2^{old} - \alpha_1^{old})$$
 (4.107)

Fig 4.12: y1 not equal y2 smo

(b) $y_1=y_2$ 时, 根据 $\alpha_1^{new}y_1+\alpha_2^{new}y_2=\alpha_1^{old}y_1+\alpha_2^{old}y_2=\xi$ 可得 $\alpha_1^{old}+\alpha_2^{old}=\xi$, 所以有

$$L = \max(0, \xi - C) = \max(0, \alpha_2^{old} + \alpha_1^{old} - C)$$
 (4.108)

$$H = \min(C, \xi) = \min(C, \alpha_2^{old} + \alpha_1^{old})$$
 (4.109)

Fig 4.13: y1 equal y2 smo

7. 下面首先求沿着约束方向未经剪辑即未考虑不等式约束 4.104 时 α_2 的最 优解 $\alpha_2^{new,unc}$; 然后再求剪辑后 α_2 的解 α_2^{new} .

以下 smo 此时求解 α_1 和 α_2 的迭代公式

为叙述简单记, 记 (此处 g(x) 中 i 和下面 E 中所表示的 j 一致)

$$g(x) = \sum_{i=1}^{N} \alpha_2 y_i K(x_i, x) + b$$
 (4.110)

令

$$E_i = g(x_i) - y_i = \left(\sum_{j=1}^N \alpha_j y_j K(x_j, x_i) + b\right) - y_i \quad i = 1, 2$$
 (4.111)

令

$$\eta = K_{11} + K_{22} - 2K12 = \|\phi(x_1) - \phi(x_2)\|^2 \tag{4.112}$$

 $\phi(x)$ 是输入空间到特征空间的映射, E_i , i=1,2

则最优化问题 4.102~4.104 沿着约束方向未经剪辑时的解是

$$\alpha_2^{new,unc} = \alpha_2^{old} + \frac{y_2(E_1 - E_2)}{n} \tag{4.113}$$

经剪辑后 α_2 的解是

$$\alpha_2^{new} = \begin{cases} H, & \alpha_2^{new,unc} > H \\ \alpha_2^{new,unc}, & L \le \alpha_2^{new,unc} \le H \\ L, & \alpha_2^{new,unc} < L \end{cases}$$
(4.114)

由 α_2^{new} 求得 α_1^{new} 是

$$\alpha_1^{new} = \alpha_1^{old} + y_1 y_2 (\alpha_2^{old} - \alpha_2^{new}) \tag{4.115}$$

上述公式具体证明过程看博客 https://blog.csdn.net/v_JULY_v/article/details/7624837 https://www.cnblogs.com/jerrylead/archive/2011/03/18/1988419.html https://blog.csdn.net/the_lastest/article/details/78637565 结合李航的统计学和周志华的机器学习

8. 如何选择乘子 α_1 和 α_2 (参考统计学习方法, 介绍详细) SMO 算法在每个子问题中选择两个变量优化, 其中至少一个变量是违反 KKT 条件的.

- 对于 α_1 , 即第一个乘子, 可以通过 3 种不满足 KKT 的条件来找
- 对于第二个乘子 α_2 可以寻找满足条件: $\max |E_i E_i|$ 的乘子
- 9. 计算阈值 b 和差值 E_i b 在满足下述条件:

$$b = \begin{cases} b_1 & if \ 0 < \alpha_1^{new} < C \\ b_1 & if \ 0 < \alpha_1^{new} < C \\ (b_1 + b_2)/2 & otherwise \end{cases}$$
 (4.116)

下更新 b:

$$b_1^{new} = b^{old} - E_1 - y_1(\alpha_1^{new} - \alpha_1^{old})K(x_1, x_1) - y_2(\alpha_2^{new} - \alpha_2 old)K(x_1, x_2)$$
(4.117)

$$b_2^{new} = b^{old} - E_2 - y_1(\alpha_1^{new} - \alpha_1^{old})K(x_1, x_2) - y_2(\alpha_2^{new} - \alpha_2 old)K(x_2, x_2)$$

$$(4.118)$$

且每次更新完两个乘子的优化后, 都需要再重新计算 b, 及对应的 E_i 值最后更新完所有 α_i , y 和 b, 这样模型就出来了, 从而即可求出咱们开头提出的分类函数:

$$f(x) = \sum_{i=1}^{n} \alpha_i y_i < x_i, x > +b$$
 (4.119)

10. summary of smo algorithm step

输入: 训练数据集 $T = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$, 其中, $x_i \in \chi = \mathbf{R}^n$, $y_i \in \gamma = -1, +1$, i = 1, 2, ..., N, 精度 ε

输出: 近似解 $\hat{\alpha}$

- (1) 取初值 $\alpha^{(0)} = 0$, 令 k = 0
- (2) 选取优化变量 α_1^k, α_2^k , 解析求解两个变量的最优化问题 $4.102 \sim 4.104$, 求得最优解 $\alpha_1^{k+1}, \alpha_2^{k+1}$, 更新 α 为 $\alpha^{(k+1)}$
 - i. 第一步选取一对 α_i 和 α_j , 选取方法使用启发方法
 - ii. 第二步, 固定除 α_i 和 α_j 之外的其他参数, 确定 W 极值条件下的 α_i, α_j 由 α_i 表示

detail explaintation:

i. 假定在某一次迭代中, 需要更新 x_1, x_2 对应的拉格朗日乘子 α_1, α_2 , 那么这个小规模的二次规划问题写为:

$$\begin{split} L_s &= \max_{\alpha} \{ (\alpha_1 + \alpha_2) + \sum_{i=3}^n \alpha_i - \frac{1}{2} \left| \left| \alpha_1 y_1 \phi(\mathbf{x_1}) + \alpha_1 y_1 \phi(\mathbf{x_1}) + \sum_{i=3}^n \alpha_i y_i \phi(\mathbf{x_i}) \right| \right|^2 \} \\ & s.t. \, \alpha_1 y_1 + \alpha_2 y_2 = - \sum_{i=3}^n \alpha_i y_i \,, 0 < \alpha_i < C, \forall i \end{split}$$

Fig 4.14: update alpha smo summary

ii. 那么在每次迭代中,如何更新乘子呢?引用http://staff.ustc.edu.cn/~ketang/PPT/PRLec5.pdf的两张 ppt 说明下:

更新拉格朗日乘子 α_1,α_2

- 步骤1: 计算上下界L和H
 - $L = \max(0, \alpha_2^{old} \alpha_1^{old})$, $H = \min(C, C + \alpha_2^{old} \alpha_1^{old})$, if $y_1 \neq y_2$
 - $L = \max(0, \alpha_2^{old} + \alpha_1^{old} C)$, $H = \min(C, \alpha_2^{old} + \alpha_1^{old})$, if $y_1 = y_2$
- 步骤2: 计算L。的二阶导数

•
$$\eta = 2\phi(x_1)^t\phi(x_2) - \phi(x_1)^t\phi(x_1) - \phi(x_2)^t\phi(x_2)$$

- 步骤3: 更新Ls

$$\alpha_2^{new} = \alpha_2^{old} - \frac{y_2(e_1 - e_2)}{\eta}$$

$$e_i = g^{old}(\mathbf{x}_i) - y_i$$

- 步骤4: 计算变量α₂

$$\alpha^{temp} = \begin{cases} H, & \text{if } \alpha_2^{new} \ge H \\ \alpha_2^{new}, & \text{if } L \le \alpha_2^{new} \le H \\ L, & \text{if } \alpha_2^{new} \le L \end{cases}$$

- 步骤5: 更新
$$\alpha_1$$

$$\alpha_1^{new} = \alpha_1^{old} + y_1 y_2 (\alpha_2^{old} - \alpha^{temp})$$

Fig 4.15: detail update alpha smo summary

- iii. 知道了如何更新乘子, 那么选取哪些乘子进行更新呢? 具体选择方 法有以下两个步骤:
 - step1: 先"扫描"所有乘子, 把第一个违反 KKT 条件的作为 更新对象, 令为 a_1
 - step2: 在所有不违反 KKT 条件的乘子中, 选择使 $|E_1 E_2|$ 最大的 α_2 进行更新, 使得能最大限度增大目标函数的值 (类似于

梯度下降, 此外 $E_i = \mu_i - y_i$, 而 $\boldsymbol{\mu} = \vec{w} \cdot \vec{x} - b$, 求出来的 E 代表函数 μ_i 对输入 x_i 的预测值与真实输出类标记 y_i 之差)

iv. 每次更新完两个乘子的优化后, 都需要再重新计算 b, 及对应的 E_i 值

(3) 若在精度 ε 范围内满足停机条件

$$\sum_{i=1}^{N} \alpha_i y_i = 0 (4.120)$$

$$0 \le \alpha_i \le C, \quad i = 1, 2, ..., N \tag{4.121}$$

$$y_i \cdot g(x_i) = \begin{cases} \geq 1, & \{x_i | \alpha_i = 0\} \\ = 1, & \{x_i | 0 < \alpha_i < C\} \\ \leq 1, & \{x_i | \alpha_i = C\} \end{cases}$$
(4.122)

其中,

$$g(x_i) = \sum_{j=1}^{N} \alpha_j y_j K(x_j, x_i) + b$$
 (4.123)

则转 (4), 否则令 k = k + 1, 转 (2)

(4)
$$\Re \hat{\alpha} = \alpha^{(k+1)}$$

与通常的分解算法比较,尽管 SMO 可能需要更多的迭代次数,但每次迭代的计算量比较小,所以该算法表现出较好的快速收敛性,且不需要存储核矩阵,也没有矩阵运算。