CS 70 Discrete Mathematics and Probability Theory
Spring 2018 Babak Ayazifar and Satish Rao

DIS 11B

1 Why Is It Gaussian?

Let X be a normally distributed random variable with mean μ and variance σ^2 . Let Y = aX + b, where a and b are non-zero real numbers. Show explicitly that Y is normally distributed with mean $a\mu + b$ and variance $a^2\sigma^2$. The PDF for the Gaussian Distribution is $\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$.

Solution:

Problem and solution taken from A First Course in Probability by Sheldon Ross, 8th edition. Let a > 0.

We start with the cumulative distribution function (CDF) of Y, F_Y .

$$F_Y(x) = \mathbb{P}[Y \le x]$$
 By definition of CDF
 $= \mathbb{P}[aX + b \le x]$ Plug in $Y = aX + b$
 $= \mathbb{P}\left[X \le \frac{x - b}{a}\right]$ Because $a > 0$ (1)
 $= F_X\left(\frac{x - b}{a}\right)$ By definition of CDF. F_X denotes the CDF of X .

Let f_Y denote the probability density function (PDF) of Y.

$$f_{Y}(x) = \frac{d}{dx} F_{Y}(x)$$
The PDF is the derivative of the CDF.
$$= \frac{d}{dx} F_{X}\left(\frac{x-b}{a}\right)$$
Plug in the result from (??)
$$= \frac{1}{a} \cdot f_{X}\left(\frac{x-b}{a}\right)$$
PDF is the derivative of CDF.
Apply chain rule, $\frac{d}{dx}\left(\frac{x-b}{a}\right) = \frac{1}{a}$.
$$= \frac{1}{a} \cdot \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-((x-b)/a-\mu)^{2}/(2\sigma^{2})}$$

$$= \frac{1}{a\sigma\sqrt{2\pi}} \cdot e^{-(x-b-a\mu)^{2}/(2\sigma^{2}a^{2})}$$

$$= \frac{1}{a} (x-b-a\mu)$$

$$= \frac{1}{a} (x-b-a\mu)$$

We have shown that f_Y equals the probability density function of a normal random variable with mean $b + a\mu$ and variance $\sigma^2 a^2$. So, Y is normally distributed with mean $b + a\mu$ and variance $\sigma^2 a^2$. The proof is done for a > 0. The proof for a < 0 is similar.

2 Sum of Independent Gaussians

In this question, we will introduce an important property of the Gaussian distribution: the sum of independent Gaussians is also a Gaussian.

Let *X* and *Y* be independent standard Gaussian random variables. Recall that the density of the standard Gaussian is

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right).$$

- (a) What is the joint density of *X* and *Y*?
- (b) Observe that the joint density of X and Y, $f_{X,Y}(x,y)$, only depends on the quantity $x^2 + y^2$, which is the distance from the origin. In other words, the Gaussian is *rotationally symmetric*. Next, we will try to find the density of X + Y. To do this, draw a picture of the Cartesian plane and draw the region $x + y \le c$, where c is a real number of your choice.
- (c) Now, rotate your picture clockwise by $\pi/4$ so that the line X + Y = c is now vertical. Redraw your figure. Let X' and Y' denote the random variables which correspond to the $\pi/4$ clockwise rotation of (X,Y) and express the new shaded region in terms of X' and Y'.
- (d) By rotational symmetry of the Gaussian, (X',Y') has the same distribution as (X,Y). Argue that X+Y has the same distribution as $\sqrt{2}Z$, where Z is a standard Gaussian. This proves the following important fact: the sum of independent Gaussians is also a Gaussian. Notice that $X \sim \mathcal{N}(0,1)$, $Y \sim \mathcal{N}(0,1)$ and $Z \sim \mathcal{N}(0,2)$. In general, if X and Y are independent Gaussians, then X+Y is a Gaussian with mean $\mu_X + \mu_Y$ and variance $\sigma_X^2 + \sigma_Y^2$.
- (e) Recall the CLT:

If $\{X_i\}_{i\in\mathbb{N}}$ is a sequence of i.i.d. random variables with mean $\mu\in\mathbb{R}$ and variance $\sigma^2<\infty$, then:

$$\frac{X_1 + \dots + X_n - n\mu}{\sigma \sqrt{n}} \xrightarrow{\text{in distribution}} \mathcal{N}(0,1) \quad \text{as } n \to \infty.$$

Prove that the CLT holds for the special case when the X_i are i.i.d. $\mathcal{N}(0,1)$.

Solution:

(a) By independence, we have

$$f_{X,Y}(x,y) = f_X(x)f_Y(y) = \frac{1}{2\pi}\exp\left(-\frac{x^2+y^2}{2}\right).$$

(b) We draw the line for c = 1.

(c) Here is the new figure after the rotation (for c = 1).

For general $c \in \mathbb{R}$, the new region is $\{X' \le c/\sqrt{2}\}$. To see why, draw the triangle: We want

to find the distance between the origin and the long side of the triangle, and we can do so by adding a diagonal:

- (d) We observe that $\mathbb{P}(X+Y\leq c)=\mathbb{P}(X'\leq c/\sqrt{2})=\mathbb{P}(\sqrt{2}X'\leq c)$, where X' is a standard Gaussian by rotational symmetry, so this proves the claim.
- (e) Here, $\mu = 0$ and $\sigma = 1$. So, by the previous part,

$$\frac{X_1+\cdots+X_n}{\sqrt{n}}\sim \frac{1}{\sqrt{n}}\mathscr{N}(0,n)\sim \mathscr{N}(0,1).$$

3 Hypothesis testing

We would like to test the hypothesis claiming that a coin is fair, i.e. P(H) = P(T) = 0.5. To do this, we flip the coin n = 100 times. Let Y be the number of heads in n = 100 flips of the coin. We decide to reject the hypothesis if we observe that the number of heads is less than 50 - c or larger than 50 + c. However, we would like to avoid rejecting the hypothesis if it is true; we want to keep the probability of doing so less than 0.05. Please determine c. (Hints: use the central limit theorem to estimate the probability of rejecting the hypothesis given it is actually true.)

You might need to use the table in the Appendix. Source: http://cosstatistics.pbworks.com/w/page/27425647/Lesson

Solution:

Let X_i be the random variable denoting the result of the *i*-th flip:

$$X_i = \begin{cases} 1 & \text{if the } i\text{-th flip is head,} \\ 0 & \text{if the } i\text{-th flip is tail.} \end{cases}$$

Then we have $Y = \sum_{i=1}^{n} X_i$. If the hypothesis is true, then $\mu = \mathbb{E}[X_i] = \frac{1}{2}$ and $\sigma^2 = \text{var}(X_i) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$. By central limit theorem, we know that

$$P\left(\frac{Y - n\mu}{\sqrt{n\sigma^2}} \le z\right) \approx \Phi(z)$$

$$P\left(\frac{Y - 100 \cdot \frac{1}{2}}{\sqrt{100 \cdot \frac{1}{4}}} \le z\right) \approx \Phi(z)$$

$$P\left(\frac{Y - 50}{5} \le z\right) \approx \Phi(z)$$

where

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \mathrm{d}x.$$

We will reject the hypothesis when |Y - 50| > c. We also want P(|Y - 50| > c) < 0.05, or equivalently $P(|Y - 50| \le c) > 0.95$. We have

$$P(|Y - 50| \le c) = P\left(\frac{|Y - 50|}{5} \le \frac{c}{5}\right) \approx 2\Phi(\frac{c}{5}) - 1.$$

The reason this is $\approx 2\Phi(\frac{c}{5})-1$ is because the probability we are looking for is the probability that Y is within $\frac{c}{5}$ standard deviations of the mean. By an area argument, we can see that this is $\Phi(\frac{c}{5})-(1-\Phi(\frac{c}{5}))=2\Phi(\frac{c}{5})-1$. Let $2\Phi(\frac{c}{5})-1=0.95$, so $\Phi(\frac{c}{5})=0.975$ or $\frac{c}{5}=1.96$. That is c=9.8 flips. So we see that if we observe more that 50+10=60 or less than 50-10=40 heads, we can reject the hypothesis.

4 Appendix

Table 1: Table of the Normal Distribution