KING COUNTY

HOUSING PRICE REGRESSION

WONG ZHAO WU

Introduction

The <u>housing dataset</u> contains home sales prices and characteristics for Seattle and King County, WA (May 2014 - 2015) and its corresponding shape file with the zip code zones for King County. Additional geoJSON file which contains the shape of each zip code for King County was retrieved from King county <u>GIS Open Data</u> to facilitate EDA.

Modelling Objectives

Perform EDA and Modelling to find the optimal solution in estimating the housing prices by minimizing **Root Mean Squared Error** as the primary metrics.

REAL ESTATE

EDA SUMMARIES

EXTREMEOUTLIERS

Extreme outliers are observed for several numerical columns.

DATA SKEWNESS

Data distribution is positively skewed for most numerical columns including price.

MISSING VALUES

Missing Values are observed for yr_renovated (95.7%), sqft_renovated (60.73%).

GEOLOCATION FEATURES

Certain region has higher housing price by visualising the colored map.

WEAK STATIONARY TIME SERIES

Housing Price just fluctuating against selling date.

DATA PREPROCESSING

Dropping Columns

Drop the columns that does not review any relationship with the target variable: Id, Date, Zipcode.

Handling Missing Values

As there are more than around 95% and 60.73% of missing values from "yr_renovated", "sqft_basement", the safest approach is to drop both columns entirely.

Log Transformation

We perform log transformation to unskewed the feature columns that are highly skewed with extreme outliers.

BASELINE MODELLING & MODEL SELECTION

Baseline DummyRegressor

 train_rmse
 test_rmse
 train_mae
 test_mae
 train_r2
 test_r2

 DummyRegressor
 360601.34
 392133.02
 232484.86
 236998.42
 0.0
 -0.0

We make use of dummy regressor as baseline model by always predicting the mean of target variable. The baseline predictor serves as reference point for model selection.

Baseline Model Selection

100%| 11/11 [03:30<00:00, 19.13s/it]

	train_rmse	test_rmse	train_mae	test_mae	train_r2	test_r2
LinearRegression	208609.48	238492.38	129734.92	132924.05	0.67	0.63
Lasso	208609.48	238492.01	129733.76	132922.32	0.67	0.63
Ridge	208610.14	238485.70	129725.16	132905.07	0.67	0.63
KNeighborsRegressor	170822.37	238171.55	103394.02	130667.94	0.78	0.63
SVR	356425.83	389582.89	209723.27	216474.33	0.02	0.01
SVR	371169.29	404216.71	220433.41	227348.05	-0.06	-0.06
SVR	371169.29	404216.72	220433.41	227348.04	-0.06	-0.06
SVR	371169.31	404216.73	220433.42	227348.06	-0.06	-0.06
DecisionTreeRegressor	9131.47	176654.86	831.13	98021.70	1.00	0.80
RandomForestRegressor	47679.24	135072.55	25987.06	71090.42	0.98	0.88
Gradient Boosting Regressor	116535.90	146011.77	73628.25	81701.81	0.90	0.86

Conclusion

- Tree-based models can produce promising results after reducing overfitting. Hence, further model tuning is required to reduce overfitting.
- Linear models suffers from high biases. Hence, we can try to increase the model complexity to reduce overfitting.

Linear Models

- Does not seems to suffers from major overfitting
- Might be suffering from underfitting due to inductive biases.

$\underline{KNeighborsRegressor}$

- Suffer from major overfitting.
- Might be suffering from slight underfitting.

SVMs (linear, rbf, poly, sigmoid)

- Changing of Kernels does not seems to improve the performance of SVMs
- SVMs suffers from high biases as the train and test set errors are relatively high

Decision Tree & Ensemble Models

- Suffer as much overfitting
- Low biases and able to obtain relatively lower testing error.

MODEL IMPROVEMENT

Geo-Spatial Data Feature Engineering

Perform hierarchical clustering based on common housing features grouped by zipcode.

Preprocessing Pipeline

Using pipeline to preprocess the data before parsing it into the final model.

	ilise test_i	mse mam_	mae test_i	mae train	_r2 test_r2
Pipeline 101288.	02 123656	6.67 66135	.63 74465	.56 0.92	0.87

mean std
Root Mean Square 123158.747507 9997.993595 5-Fold CV

Hyperparams Tuning!

Model Selection w Pipeline

100%| 6/6 [03:53<00:00, 38.90s/it]

	train_rmse	test_rmse	train_mae	test_mae	train_r2	test_r2
DecisionTreeRegressor	6721.04	167194.19	523.77	98863.36	1.00	0.77
RandomForestRegressor	48663.73	123733.37	26045.14	70017.07	0.98	0.87
Gradient Boosting Regressor	101288.02	123656.67	66135.63	74465.56	0.92	0.87
BaggingRegressor	58111.96	133378.91	30201.72	75157.08	0.97	0.85
AdaBoostRegressor	286550.68	294621.11	259179.82	263169.51	0.38	0.29
ExtraTreesRegressor	6721.04	120048.43	523.79	68150.41	1.00	0.88

RandomSearchCV, 20 iters

```
pipe.steps.pop() # Remove estimator
pipe.steps.append(('estimator', GradientBoostingRegressor())) # Replace estimator with GradientBoostingRegr
    "estimator__n_estimators" : np.linspace(100,500,5, dtype = int),
    "estimator_subsample" : [0.2, 0.5, 0.8, 1.0],
    "estimator min samples leaf" : [0.01],
    "estimator random state" : [12],
    "estimator__ccp_alpha" : [0, 0.1,0.2,0.3]
random_search_cv = RandomizedSearchCV(pipe, params,scoring = 'neg_root_mean_squared_error', n_iter = 20)
random_search_cv.fit(X_train,y_train)
```


Pipeline

train_rmse	test_rmse	train_mae	test_mae	train_r2	test_r2		train_rmse	test_rmse	train_mae	test_mae	train_r2	test_r2
98402.78	122980.59	60758.43	71607.46	0.93	0.88	Pipeline	98402.78	136190.03	60758.43	75508.14	0.93	0.88

After evaluating the model with hold-out dev set, we noticed that RandomizedCV hyperparameters tuning have reduced the dev set error of a small margin at the cost of slight increase in variance of our model which can be noticed by the 2% increase of gap between train and test for the final tuned pipeline.

Due to the time constraint, I did not pursue further to try reduce the high variance caused after hyperparameters tuning.(As this is an assignment with deadline)

CONCLUSION

THANKS

Personal Learning Reflection

Through the seattle housing price prediction problem, I've learned more of Geolocation Feature Engineering without leaking the actual housing prices as well as grasp a better understanding of the Bias-Variance trade-off through countless iterations of redefining the params grid, hyperparameter tuning, model evaluation and again! Initially due to the poor design of parameter searching grid, which results in the resulting model being more overfitted than the default parameter, despite the drop in test error. By doing more research and read-up on the Gradient Boosting, I've identified several key hyperparameters that can improve the performance without increasing the variance as much. I've also decided to make use of AWS Sagemaker to host and run the entire experiment to speed up the experimenting iteration for this project.

Written By: Wong Zhao Wu Last Modified: 26 May 2021

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**.

Please keep this slide for attribution.

