

Image Segmentation

Graph Cuts

Scientific Visualization Professor Eric Shaffer

Segmentation with Graph Cuts

Another approach to segmentation in general is to use a graph cut method

Represent image as a fully-connected graph

- node for every pixel
- link between every pair of pixels, pi pi
- similarity **w**_{ii} for each link

Segmentation by Graph Cuts

Idea: break graph into segments by deleting links

- Break links that have low cost (low similarity)
 - similar pixels should be in the same segment
 - dissimilar pixels should be in different segment

Do We Need All those Edges?

Fully connected:

- Captures all pairwise similarities
- Infeasible for most images

Neighboring pixels (4 or 8 connected)

- Very fast to compute
- Only captures very local interactions

Local neighborhood (...more than 8)

Reasonably fast, graph still very sparse

How to Calculate Weights?

$$affinity(p_i, p_j) = e^{-\frac{\|f(p_i) - f(p_j)\|^2}{2\sigma^2}}$$

- p_i , p_j are pixels
- $f(p_i)$ metric for a pixel we can use in a distance function
- $2\sigma^2$ is "normalization" factor...a tweakable parameter

Metrics for Distance Measurement

Distance:

$$f(x) = location(x)$$

Color:

$$f(x) = color(x)$$

$$f(x) = intensity(x)$$

Texture:

$$f(x) = filterbank(x)$$

Cuts in a Graph

Definition: Cut

- set of links whose removal makes a graph disconnected
- cost of a cut: $cut(A,B) = \sum_{p \in A, q \in B} c_{p,q}$

Many approaches to finding a cut:

- Spectral clustering (use eigenvalues/vectors to find a cut)
- Optimization problem (minimize an energy function related to affinities)
- Minimum cut using combinatorial optimization algorithm
- Normalized cuts

Cuts in a Graph

Definition: Cut

- set of links whose removal makes a graph disconnected
- cost of a cut: $cut(A,B) = \sum_{p \in A, q \in B} c_{p,q}$

One idea: find minimum cut

- gives you a segmentation
- fast algorithms exist for doing this
- max flow min cut algorithms
 - Ford-Fulkerson
 - Push-Relabel
 - Boykov-Komolgorov

