

CS598PS - Machine Learning for Signal Processing

Sparsity, Compressive Sensing and Random Projections

29 October 2020

Today's lecture

Sparsity

Compressive sensing

Quantization, randomness and high dimensions

What is sparsity?

Depends who you ask

 Basic idea: We want most numbers in a collection to be zero

Too many ways to express that

A starting point

Linear equation with multiple solutions:

$$y = \mathbf{a} \cdot \mathbf{x} \Rightarrow 2 = \begin{bmatrix} 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• Which solution would you pick?

$$\mathbf{x} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$$

A sparse answer

What most software gives

This one is fine too!

Infinite solutions

All solutions lie on a line

- Which one do we pick?
 - Why does most software pick

$$x = [1, 1]?$$

Does it make a difference?

The generic answer

• Least squares problem:

$$y = \mathbf{A} \cdot \mathbf{x} \Rightarrow \mathbf{x} = \mathbf{A}^{+} \cdot \mathbf{y}$$

$$\Rightarrow \underset{\mathbf{x}}{\operatorname{arg\,min}} \left(\left\| \mathbf{A} \cdot \mathbf{x} - \mathbf{y} \right\|_{2} + \left\| \mathbf{x} \right\|_{2} \right)$$

- Find the minimum-norm x that minimizes the error
 - But why $\|\mathbf{x}\|_2$?

Least squares, pseudoinverse, and ℓ_2

• Use Langrangian multipliers:

$$\left\|\mathbf{x}\right\|_{2}^{2} + \lambda^{\top} \cdot \left(\mathbf{A} \cdot \mathbf{x} - \mathbf{y}\right) \Rightarrow \hat{\mathbf{x}} = -\frac{1}{2} \mathbf{A}^{\top} \cdot \lambda$$

Put back in original equation:

$$\mathbf{A} \cdot \hat{\mathbf{x}} = -\frac{1}{2} \mathbf{A} \cdot \mathbf{A}^{\top} \cdot \lambda = \mathbf{y} \Rightarrow \lambda = -2 \left(\mathbf{A} \cdot \mathbf{A}^{\top} \right)^{-1} \cdot \mathbf{y}$$
$$\Rightarrow \hat{\mathbf{x}} = \mathbf{A}^{\top} \cdot \left(\mathbf{A} \cdot \mathbf{A}^{\top} \right)^{-1} \cdot \mathbf{y} = \mathbf{A}^{+} \cdot \mathbf{y}$$

7

Many more norms

• p-Norm (or Lp / L $_p$ / ℓ_p)

$$\|\mathbf{x}\|_p = \sqrt{\sum_i |x_i|^p}$$

- ℓ_2 norm is the Euclidean norm
- ℓ_1 norm is sum of absolute values
- ℓ_0 norm is the number of non-zero values
- ℓ_{∞} norm is max of all values

How do they look?

Unit norms in 2D

Unit norms in 3D

l2-based pseudoinverse

- All possible solutions lie on a hyperplane
 - Minimum ℓ_2 solution will be the point where the smallest possible ℓ_2 -ball touches the solutions hyperplane

Other ℓ_p -norm solutions

- With different norms the chosen solution will change
 - Larger p will produce a "busier" solution
 - Smaller p will produce sparser solution

Which one to use?

- ullet For sparsity we ideally we want minimum ℓ_0
 - Directly results in smallest number of non-zero values
- But, this is an inconvenient form ...

$$\ell_0(\mathbf{x}) = \sum_i \left[x_i \neq 0 \right]$$
 if content evaluates to true return 1 otherwise return 0

Iverson bracket:

• Discontinuous, no derivative, not convex, etc ...

$$\frac{\partial \|\mathbf{x}\|_{0}}{\mathbf{x}} = ? \longrightarrow \|\mathbf{x}\|_{0} + \lambda^{\top} \cdot (\mathbf{A} \cdot \mathbf{x} - \mathbf{y})$$

Let's try something simpler then

- How about using the ℓ_1 instead?
 - Seems to produce the same solution

Why does this work?

- The ℓ_1 case is (sort of) convex
 - ℓ_1 is minimized as we move towards the ideal sparse solution
 - There is one ill-defined scenario,
 but it is not a big problem
 - Which is it?

So let's solve that instead

The problem to solve

• We now have:

$$\underset{\mathbf{x}}{\operatorname{arg\,min}} \left(\left\| \mathbf{A} \cdot \mathbf{x} - \mathbf{y} \right\|_{2} + \left\| \mathbf{x} \right\|_{1} \right)$$

• Minor glitch: We can't differentiate the absolute values in the ℓ_1 norm!

$$\sum |x_i| + \lambda^\top \cdot (\mathbf{A} \cdot \mathbf{x} - \mathbf{y})$$

But we can use other tools

Linear programming

A linear program is defined as:

$$\begin{array}{lll} \text{minimize} & \mathbf{c}^\top \cdot \mathbf{x} \\ \text{subject to} & \mathbf{A} \cdot \mathbf{x} \leq \mathbf{y} \\ \text{and} & \mathbf{x} > 0 \\ \end{array}$$

 A Nobel-prize staple of optimization theory, resource allocation, economics, etc.

Doesn't exactly match the ℓ_1 problem

 We would like to change our problem definition to fit the linear programming formulation

What we have What we can solve minimize |x| subject to $\mathbf{A} \cdot \mathbf{x} = \mathbf{y}$

minimize $\mathbf{c}^{\mathsf{T}} \cdot \mathbf{x}$ subject to $A \cdot x \leq y$

With some shuffling around

 We rewrite the unknown vector x as a difference of positive-valued vectors:

$$\mathbf{x} = \mathbf{u} - \mathbf{v}, \ \mathbf{u}_i, \mathbf{v}_i \ge 0, \ \mathbf{z} = \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix}$$

Now our problem can written as:

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \Rightarrow \begin{bmatrix} \mathbf{A}, & -\mathbf{A} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} = \mathbf{y} \Rightarrow \begin{bmatrix} \mathbf{A}, & -\mathbf{A} \end{bmatrix} \cdot \mathbf{z} = \mathbf{y}$$

Now it is a linear program

And we can solve our problem

Minimum ℓ_1 problem

minimize | x | 1

subject to $\mathbf{A} \cdot \mathbf{x} = \mathbf{y}$

$$\|\mathbf{x}\|_1$$

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{y}$$

Equivalent linear program

minimize
$$\|\mathbf{z}\|_{1} = 1^{\top} \cdot \mathbf{z}$$

subject to
$$[A, -A] \cdot z = y$$

and

$$z \ge 0$$

A simple example

- Suppose you measure this sinusoid
 - Can you recover the original signal using only the small number of measurements that we made?

Key observation

- The original signal is sparse in the frequency domain
 - How about we use that to construct a problem?

The problem to solve

• Find a set of small coefficients x in the DCT domain, and make sure that they explain all our data y, i.e.:

$$\mathbf{A} \cdot \mathbf{C}^{-1} \cdot \mathbf{x} = \mathbf{y}$$

- Where matrix A selects only the indices that we observe
- ullet Simple least squares problem using minimum ℓ_2 ${\bf x}$

$$\mathbf{x} = \left(\mathbf{A} \cdot \mathbf{C}^{-1}\right)^{+} \cdot \mathbf{y}$$

And it doesn't really do much

But you expected that!

What happened?

- Minimizing the ℓ_2 resulted in adding more frequencies in the signal
 - ℓ_2 doesn't give sparsity
 - Small coefficients \neq min ℓ_2

- We instead should find a minimal ℓ_1 solution
 - Because it actually enforces sparsity

And the result

A much better reconstruction

Arealization

 According to the rules of sampling this is impossible!

- What is the magic taking place here?
 - Why is sparsity special?

Why sparsity?

 Sparsity implies structure, and structure is everywhere

 Signals often exhibit sparsity after undergoing the right transformation

Sparsity in signals

- Many signals are sparse in certain domains
 - e.g. sound spectra
 - Image wavelets

•

• or to describe them easier

Vector spaces of signals

- Signals can be sparse in various ways
 - And some are "compressible"

1-sparse signal space

2-sparse signal space

Compressible signal space

Sparse approximations

Represent signals using:

$$\mathbf{f} = \sum_{k} a_{k} \mathbf{b}_{k}$$
Bases / Dictionary

- Two goals:
 - Analysis: Study ${\bf f}$ through structure of ${\bf a}$ and ${\bf b}$ (seen that already)
 - Approximation: Reconstruct f with a minimal number of terms

Exposing sparsity via dictionaries

 Can we use dictionaries that produce sparse coefficients?

 Why would they be useful and how would we implement them?

A simple example

A sinusoid with a couple of spikes

Using a generic dictionary

- Analyzed via the DCT
 - Resulting coefficients are not sparse
 - Multiple sines are used to approximate the spikes

A "better" dictionary

- Use both sinusoids and spikes!
 - Now we won't use as many sines to represent the spikes

Applying the dictionary

- Using the straightforward decomposition won't help
 - Spike elements are not utilized
 - ullet Minimal ℓ_2 cost penalizes the bases describing the loud spikes

Doing it the right way

- This time we ask for minimum ℓ_1 coefficients
 - And we get a perfect description of the input!

Overcomplete dictionaries

- Use dictionaries that contain "everything"!
 - Use compact descriptions of elements

- Some problems
 - Large size/computations
 - Lack of fast algorithms (e.g. FFT)
 - Problems with coherence
 - This is a big one

Dictionary coherence

 Make sure that the dictionary elements don't result in ambiguous coefficients

• A measure of coherence: $\mu = \max_{i,j} \left\langle \mathbf{d}_i, \mathbf{d}_j \right\rangle$

Examples of incoherent dictionaries

Getting greedy

- The linear programming approach will fail now
 - It is slow for large dictionaries
 - It looks for exact equality, not approximation

 We can instead use a greedy approach to resolving sparse approximations

Matching pursuit (MP)

- Family of many approaches based on successive fits
 - Each new fit explains what the previous ones couldn't

Measure input against dictionary
$$\left\langle \mathbf{d}_{k},\mathbf{f}\right\rangle =
ho_{k}$$

On a familiar example

- Each iteration knocks off an element
 - by 4th iteration there's nothing significant left to represent
 - Faster! For N = 1024, MP: 0.005 sec, LP: 63 sec

CoSaMP (Compressive Sensing MP)

A useful variation to get
 K non-zero coefficients

Measure input against dictionary
$$\langle \mathbf{d}_k, \mathbf{f} \rangle = \rho_k$$

Invert over support

$$\mathbf{b} = \mathbf{D}_{\Omega}^{\dagger} \cdot \mathbf{f}$$

Truncate to K and compute residual

$$T = \operatorname{supp}(b|_{K})$$

$$a = b \mid_{K}$$

$$f \leftarrow f - D \cdot a$$

43

Revisiting sampling

- Traditional acquisition samples uniformly
 - e.g. constant sample rates in audio, CCD grids in camera

- Foundation: Nyquist/Shannon sampling theory
 - Sample at twice the highest frequency
 - Projects to a complete basis that spans all the signal space

A redundancy in the loop

- Take a picture
 - Using dense sampling → lots of data

- Transform to a sparse domain and quantize
 - i.e. MPEG/JPEG compression \rightarrow fewer data

Process, transmit, view, etc.

Compressive sensing

- Why sample and then compress?
 - Do both at once!

- Sample fewer samples and use signal sparsity
 - Helps in finding a unique and plausible sparse signal

The compressive sensing pipeline

- Acquire signal using underdetermined measurements
 - e.g. linear combinations of a few samples: $\mathbf{y}_i = \mathbf{P}_i \cdot \mathbf{x}$
 - Don't sample densely, don't sample all the data

- Reconstruct signal assuming sparsity
 - Sparsity constraints signal space w.r.t. measurements
 - Allows for a plausible reconstruction

What's a good measurement matrix?

• We need:

$$\mathbf{P} \cdot \mathbf{x}_1 \neq \mathbf{P} \cdot \mathbf{x}_2$$
 for all *K*-sparse $\mathbf{x}_1 \neq \mathbf{x}_2$

• i.e. ensure that we can distinguish different inputs

- Necessary condition: P must have at least 2K rows
 - Assuming noiseless and well-behaved data

Example 1-sparse case

Some poor measurement matrices

Observation

$$\mathbf{P} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow$$

Example 1-sparse case

Some good measurement matrices

Observation

Restricted Isometry Property (RIP)

• A measurement matrix P has order-K RIP if:

$$\left(1 - \delta_{K}\right) \leq \frac{\left|\left|\mathbf{P} \cdot \mathbf{x}\right|\right|_{2}^{2}}{\left|\left|\mathbf{x}\right|\right|_{2}^{2}} \leq \left(1 + \delta_{K}\right), \ \forall \ K\text{-sparse } \mathbf{x}$$

- How do we check? Difficult ...
 - But we have some good choices
 - Gaussian, Bernoulli, Fourier, etc.

Embedding viewpoint

- This is similar to the subspace/manifold methods
 - Find low-rank projection that preserves cluster characteristics

- Special case: Random projection
 - For n points in p-dims there exists a q-dim projection that preserves distances by a factor of $1+\varepsilon$, $q \ge O(\varepsilon-2\log n)$

A simple compressed sensing case

- Simple 64 × 64 input
 - Take a set of masked measurements, store only average value
 - Measure using: $y_i = \mathbf{p}_i^{\mathsf{T}} \cdot \text{vec}(\mathbf{x}), \quad \mathbf{p}_i \in \{0,1\}$

Resolving via the DCT

Measure in the DCT domain instead

• Model is:

$$\mathbf{y} = \mathbf{P}^{\top} \cdot \mathbf{x} = \mathbf{P}^{\top} \cdot \left(\mathbf{C}^{\top} \cdot \mathbf{z} \right)$$

- Assume sparsity in **z**
- Resolve:

$$\min ||\mathbf{z}||_1 + ||\mathbf{y} - \mathbf{P}^\top \cdot \mathbf{C}^\top \cdot \mathbf{z}||_1$$

Reconstruct:

$$\hat{\mathbf{x}} = \mathbf{C}^{\top} \cdot \mathbf{z}$$

• Using ~2% of samples!

Putting compressive sensing to work

- The single-pixel camera
 - Measure image intensity using multiple random masks
 - Reconstruct assuming sparsity
 - In some domain ...

Other kinds of sparsity

- Up to now we talked about a simple form of sparsity
 - Sparsity over all coefficients separately

- Some problems need more elaborate definitions
 - e.g. block structure, joint structure, temporal structure, etc.

Block sparsity

- Have sparsity appear in non-overlapping blocks
 - Useful for some imaging operations

Joint sparsity

- Obtain multiple solutions with the same sparsity
 - Useful for multimodal/multichannel data

Learning and sparsity

- How about other models?
 - Add sparsity as an extra "regularizer"

- Sparse decompositions
 - Sparse NMF, sparse PCA, etc ...

ICA is already (sort of) sparse!

Recap

- Sparsity and ℓ_p norms
 - Different definition of sparsity

- Minimum- ℓ_1 coefficient algorithms
 - Linear programming
 - Greedy methods
- Compressive sensing and random projections
 - 1-pixel camera

Reading material

- Compressive Sensing page
 - http://dsp.rice.edu/cs

- Experiments with Random Projections
 - http://dimacs.rutgers.edu/Research/MMS/PAPERS/rp.pdf

Next lecture

- Deep learning!
 - aka neural nets v2.0

- Also Problem Set 4 is out
 - Optional, due at last day of classes
 - Use it to perk up your grade if you need to
 - Would also help if your final project is floundering