```
search(Node) :- goal(Node).
search(Node) :- arc(Node,Next), search(Next).
```

```
search(Node) :- goal(Node).
search(Node) :- arc(Node,Next), search(Next).
More than one Next may satisfy arc(Node, Next)

→ non-determinism

      Choose Next closest to goal (heuristic: best-first),
               keeping track of costs (min cost, A*)
Available choices depend on arc
               - actions specified by Turing machine (graph)
```

```
search(Node) :- goal(Node).
search(Node) :- arc(Node,Next), search(Next).
More than one Next may satisfy arc(Node, Next)

→ non-determinism

      Choose Next closest to goal (heuristic: best-first),
               keeping track of costs (min cost, A*)
Available choices depend on arc
               - actions specified by Turing machine (graph)
Computation eliminates non-determinism (determinization)
```

```
search(Node) :- goal(Node).
search(Node) :- arc(Node,Next), search(Next).
More than one Next may satisfy arc(Node, Next)

→ non-determinism

      Choose Next closest to goal (heuristic: best-first),
               keeping track of costs (min cost, A*)
Available choices depend on arc
               - actions specified by Turing machine (graph)
Computation eliminates non-determinism (determinization)
Bound number of calls to arc (iterations of search)
```

Cobham's Thesis

A problem is feasibly solvable iff some deterministic Turing machine (dTm) solves it in polynomial time.

 $P = \{\text{problems a dTm solves in polynomial time}\}$

Cobham's Thesis

A problem is feasibly solvable iff some deterministic Turing machine (dTm) solves it in polynomial time.

```
P = \{\text{problems a dTm solves in polynomial time}\}
```

 $NP = \{ problems \ a \ non-deterministic \ Tm \ solves \ in \ polynomial \ time \}$

Cobham's Thesis

A problem is feasibly solvable iff some deterministic Turing machine (dTm) solves it in polynomial time.

 $P = \{\text{problems a dTm solves in polynomial time}\}$

 $NP = \{ problems a non-deterministic Tm solves in polynomial time \}$

Clearly, $P \subseteq NP$.

Cobham's Thesis

A problem is feasibly solvable iff some deterministic Turing machine (dTm) solves it in polynomial time.

 $P = \{\text{problems a dTm solves in polynomial time}\}$

 $NP = \{ \text{problems a non-deterministic Tm solves in polynomial time} \}$

Clearly, $P \subseteq NP$.

Whether P = NP is the most celebrated open mathematical problem in computer science.

Cobham's Thesis

A problem is feasibly solvable iff some deterministic Turing machine (dTm) solves it in polynomial time.

 $P = \{\text{problems a dTm solves in polynomial time}\}$

 $NP = \{ \text{problems a non-deterministic Tm solves in polynomial time} \}$

Clearly, $P \subseteq NP$.

Whether P = NP is the most celebrated open mathematical problem in computer science.

 $P \neq NP$ would mean non-determinism wrecks feasibility.

Cobham's Thesis

A problem is feasibly solvable iff some deterministic Turing machine (dTm) solves it in polynomial time.

 $P = \{\text{problems a dTm solves in polynomial time}\}$

 $\textit{NP} = \{ \text{problems a non-deterministic Tm solves in polynomial time} \}$

Clearly, $P \subseteq NP$.

Whether P = NP is the most celebrated open mathematical problem in computer science.

 $P \neq NP$ would mean non-determinism wrecks feasibility.

P = NP says non-determinism makes no difference to feasibility.

Given a set L of strings, and a Tm M.

Given a set L of strings, and a Tm M.

M solves *L* in time n^k if there is a fixed integer c > 0 such that for every string *s* of size n,

 $s \in L$ iff M accepts s within $c \cdot n^k$ steps.

Given a set L of strings, and a Tm M.

M solves *L* in time n^k if there is a fixed integer c > 0 such that for every string *s* of size n,

 $s \in L$ iff M accepts s within $c \cdot n^k$ steps.

 $TIME(n^k) := \{L \mid \text{some dTm solves } L \text{ in time } n^k\}$ e.g. TIME(n) includes every regular language

Given a set L of strings, and a Tm M.

M solves *L* in time n^k if there is a fixed integer c > 0 such that for every string *s* of size n,

 $s \in L$ iff M accepts s within $c \cdot n^k$ steps.

$$\mathsf{TIME}(n^k) := \{L \mid \mathsf{some} \; \mathsf{dTm} \; \mathsf{solves} \; L \; \mathsf{in} \; \mathsf{time} \; n^k \}$$

$$\mathsf{e.g.} \; \mathsf{TIME}(n) \; \mathsf{includes} \; \mathsf{every} \; \mathsf{regular} \; \mathsf{language}$$

$$P := \bigcup_{k>1} \mathsf{TIME}(n^k)$$

Given a set L of strings, and a Tm M.

M solves *L* in time n^k if there is a fixed integer c > 0 such that for every string *s* of size n,

 $s \in L$ iff M accepts s within $c \cdot n^k$ steps.

$$\mathsf{TIME}(n^k) \ := \ \{L \mid \mathsf{some} \ \mathsf{dTm} \ \mathsf{solves} \ L \ \mathsf{in} \ \mathsf{time} \ n^k\}$$

$$\mathsf{e.g.} \ \mathsf{TIME}(n) \ \mathsf{includes} \ \mathsf{every} \ \mathsf{regular} \ \mathsf{language}$$

$$P \ := \ \bigcup_{k \geq 1} \mathsf{TIME}(n^k)$$

$$\mathsf{NTIME}(n^k) \ := \ \{L \mid \mathsf{some} \ \mathsf{nTm} \ \mathsf{solves} \ L \ \mathsf{in} \ \mathsf{time} \ n^k\}$$

$$\mathit{NP} \ := \ \bigcup_{k \geq 1} \mathsf{NTIME}(n^k)$$

SAT. Given a Boolean expression φ with variables x_1, \ldots, x_n , can we make φ true by assigning true/false to x_1, \ldots, x_n ?

e.g.,
$$(x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee \overline{x_3})$$

SAT. Given a Boolean expression φ with variables x_1, \ldots, x_n , can we make φ true by assigning true/false to x_1, \ldots, x_n ?

Checking that a particular assignment makes φ true is easy (P).

e.g.,
$$(x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee \overline{x_3})$$

SAT. Given a Boolean expression φ with variables x_1, \ldots, x_n , can we make φ true by assigning true/false to x_1, \ldots, x_n ?

Checking that a particular assignment makes φ true is easy (P). Non-determinism (guessing the assignment) puts SAT in NP.

e.g.,
$$(x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee \overline{x_3})$$

SAT. Given a Boolean expression φ with variables x_1, \ldots, x_n , can we make φ true by assigning true/false to x_1, \ldots, x_n ?

Checking that a particular assignment makes φ true is easy (P). Non-determinism (guessing the assignment) puts SAT in NP. But is SAT in P? There are 2^n assignments to try.

e.g.,
$$(x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee \overline{x_3})$$

SAT. Given a Boolean expression φ with variables x_1, \ldots, x_n , can we make φ true by assigning true/false to x_1, \ldots, x_n ?

Checking that a particular assignment makes φ true is easy (P). Non-determinism (guessing the assignment) puts SAT in NP. But is SAT in P? There are 2^n assignments to try.

Cook-Levin Theorem. *SAT is in* P *iff* P = NP.

e.g.,
$$(x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee \overline{x_3})$$

SAT. Given a Boolean expression φ with variables x_1, \ldots, x_n , can we make φ true by assigning true/false to x_1, \ldots, x_n ?

Checking that a particular assignment makes φ true is easy (P). Non-determinism (guessing the assignment) puts SAT in NP. But is SAT in P? There are 2^n assignments to try.

Cook-Levin Theorem. *SAT is in* P *iff* P = NP.

e.g.,
$$(x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee \overline{x_3})$$

CSAT: φ is a conjunction of clauses, where a *clause* is an OR of literals, and a *literal* is a variable x_i or negated variable $\overline{x_i}$

SAT. Given a Boolean expression φ with variables x_1, \ldots, x_n , can we make φ true by assigning true/false to x_1, \ldots, x_n ?

Checking that a particular assignment makes φ true is easy (P). Non-determinism (guessing the assignment) puts SAT in NP. But is SAT in P? There are 2^n assignments to try.

Cook-Levin Theorem. *SAT is in* P *iff* P = NP.

e.g.,
$$(x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee \overline{x_3})$$

CSAT: φ is a conjunction of clauses, where a *clause* is an OR of literals, and a *literal* is a variable x_i or negated variable $\overline{x_i}$

k-SAT: every clause has exactly k literals 3-SAT is as hard as SAT, 2-SAT is in P

SAT. Given a Boolean expression φ with variables x_1, \ldots, x_n , can we make φ true by assigning true/false to x_1, \ldots, x_n ?

Checking that a particular assignment makes φ true is easy (P). Non-determinism (guessing the assignment) puts SAT in NP. But is SAT in P? There are 2^n assignments to try.

Cook-Levin Theorem. *SAT is in* P *iff* P = NP.

e.g.,
$$(x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee \overline{x_3})$$

CSAT: φ is a conjunction of clauses, where a *clause* is an OR of literals, and a *literal* is a variable x_i or negated variable $\overline{x_i}$

k-SAT: every clause has exactly *k* literals 3-SAT is as hard as SAT. 2-SAT is in *P*

Horn-SAT: every clause has at most one positive literal — linear

```
Prolog KB (definite clauses) x1 := x2,x4. x2 := x3. \leadsto [[x1,x2,x4],[x2,x3],[x4]] x4.
```

```
Prolog KB (definite clauses) x1 := x2,x4. x2 := x3. \rightsquigarrow [[x1,x2,x4],[x2,x3],[x4]] x4. CSAT-input x1 \lor \overline{x2} \lor \overline{x4} x2 \lor \overline{x3} \rightsquigarrow [[1,-2,-4],[2,-3],[4]] x4.
```

The assignment making all variables TRUE satisfies all CSAT-inputs in which every clause has a positive literal. (All definite clause KBs are satisfiable.)

x4.

Prolog KB (definite clauses) x1 := x2,x4. x2 := x3. \rightsquigarrow [[x1,x2,x4],[x2,x3],[x4]] x4. CSAT-input $x1 \lor \overline{x2} \lor \overline{x4}$ $x2 \lor \overline{x3}$ \rightsquigarrow [[1,-2,-4],[2,-3],[4]]

The assignment making all variables TRUE satisfies all CSAT-inputs in which every clause has a positive literal. (All definite clause KBs are satisfiable.)

From proofs to unsatisfiability:

$$\underbrace{\textit{KB proves } \varphi}_{\text{Prolog}} \quad \text{iff} \quad \underbrace{\textit{KB}, \overline{\varphi}}_{\text{Horn (linear SAT)}} \text{is not satisfiable}$$