test area

Table of contents

- · test area
 - load
 - pls
 - barshisto
 - box
 - pie
 - join
 - sankey
 - tbl
 - print_summary()
 - describe_df()
 - descr_db()
 - show num
 - venn
 - hlp

load

```
2. 3.12.9 | ↑ matplotlib_venn: 0.11.10 | ↑ dataframe_image: 0.2.7 | ↑ plotly: 6.2.0 | ↑ kaleido: 1.0.0 | ↑ seaborn: 0.13.2 | ↑ pandas: 2.3.1 | ↑ numpy: 1.26.4 | ↑ duckdb: 1.3.2 | ↑ pandas-plots: 0.20.1 | ↑ connection-helper: 0.13.1 | True
```

```
con = ddb.connect(file_db_clin, read_only=True)
```

pls

bars

```
- = pls.plot_bars(
    db_delay.to_df().iloc[:,:2],
    # height=400,
    # width=1000,
    # wise_ci=True,
    # ci_agg='median',
)
- = pls.plot_bars(
    db_delay.to_df().iloc[:,:2],
    height=600,
    use_ci=True,
    ci_agg='median',
)
```

[z_first_treatment_after_days] by [z_kkr_label], n=1_724 (68_426)

$[z_first_treatment_after_days] \ by \ [z_kkr_label], \ NULL \ excluded, \ n=1_724)$

ci(95) on medians


```
_df = db_delay.filter("left(z_kkr_label,2)::int8 in (2,5,9,15)").to_df().iloc[:,[0,2,1]]
display(_df)
pls.plot_stacked_bars(
    _df,
    height=600,
    width=1600,
    orientation="h",
    relative=True,
    show_pot_bar=frue,
    kkr_col="z_kkr_label",
    # renderer="png",
    )
}
```

	z_kkr_label	z_first_treatment	z_first_treatment_after_days
0	15-ST	sy	22
1	09-BY	sy	2
2	05-NW	ор	0
3	05-NW	sy	20
4	05-NW	st	130
656	02-HH	ор	0
657	05-NW	sy	28
658	09-BY	sy	14
659	05-NW	ор	0
660	09-BY	sy	17

661 rows × 3 columns

[z_kkr_label] by [z_first_treatment], n=48 (26_713)

	z_dy	tu	z_kkr_label	cnt
0	2020	06	13-MV	1
1	2020	30	13-MV	1
2	2020	###	13-MV	21
3	2020	18	11-BE	1
4	2020	18.	13-MV	1
16352	2023	S37	14-SN	1
16353	2023	S72	11-BE	1
16354	2023	Z22	14-SN	1
16355	2023	Z85	14-SN	1
16356	2023	Z96	14-SN	1

16357 rows × 4 columns

```
z_dy int64
tu object
z_kkr_label object
cnt int64
dtype: object
```

[z_dy] TOP 5 [tu] [z_kkr_label] , n=16_357 (600_156)

histo

```
=pls.plot_histogram_large(
    df.distance,
    # nbins=50,
    height=300,
    summary=True
)
```



```
| column | count | min | lower | q25 | median | mean | q75 | upper | max | std | cv | sum | distance | 6_433 | 0.000 | 0.000 | 0.980 | 1.640 | 3.025 | 3.210 | 6.550 | 36.700 | 3.828 | 1.266 | 19_457.360
```

```
# caption="test lol xd-lmao",
# )
```

box

```
# _=pls.plot_box(
#  # df["distance"],
#  df[df["dropoff_borough"].isna()].distance,
#  height=200,
#  # violin=True,
#  # use_log=True,
# )
```

```
df = df[["dropoff_borough","distance"]]
print(_df)
_=pls.plot_boxes_large(
_df,
    width=600,
    # violin=True,
    # use_log=True,
)
_=pls.plot_boxes(
_df,
    width=600,
    # violin=True,
    # use_log=True,
)
```

```
dropoff_borough distance

Manhattan 1.60
Manhattan 0.79
Manhattan 1.37
Manhattan 1.37
Manhattan 7.70
Manhattan 2.16
...
Manhattan 0.75
Manhattan 0.70
Manhat
```


column cour	nt min	lower	q25	mediar	n mean	q75	upper	max	std	cv	sum	
distance 6_43	33 0.00	0.00	0.98	1.64	4 3.02	3.21	6.55	36.70	3.83	1.27	19_457.36	5
column	l count l	min	l lower l	g25	median	l mean	l q75	upper	l max	l std	l cv l	sum
Bronx	137	0.00		2.36	4.31	 6.61	9.44			+	1 0.90	905.88
Brooklyn	501	0.00	0.00	1.53	3.63	5.03	7.30	15.70	26.92	4.49	0.89	2_519.28
Manhattan Queens	5_206 542	0.00	0.00 0.00	0.91 1.34	1.50 3.56	2.39 5.96	2.60 9.89	5.13 22.51	30.23 36.70	2.91		12_447.68 3 230.13
Staten Island	2	15.51	15.51	15.68	15.86	15.86	16.03	16.20	16.20	0.49	0.03	31.71
nan	45	0.00	0.00	0.00	0.90	7.17	12.60	26.35	36.66	10.71	1.49	322.68

[dropoff_borough] by [distance], $n=6_433$


```
column
            | count | min | lower | q25 | median | mean | q75 | upper | max | std | cv |
distance | 6_433 | 0.00 | 0.00 | 0.98 | 1.64 | 3.02 | 3.21 | 6.55 | 36.70 | 3.83 | 1.27 | 19_457.36
                                                           q25
                                                                  | median | mean
                                                                                              q75
column
                    | count |
                                   min
                                           | lower |
                                                                                                     | upper |
                                                                                                                                std
                                                                                                                     max
                                                                                                                                            CV
                                                                                                                                                         sum
                                                                                                                   24.20
26.92
30.23
36.70
                                   0.00
0.00
0.00
0.00
                                               0.00
0.00
0.00
0.00
                                                          2.36
1.53
0.91
1.34
                                                                                  6.61
5.03
2.39
5.96
                                                                                              9.44
7.30
2.60
9.89
                                                                                                       19.62
15.70
5.13
22.51
                                                                                                                                5.95
4.49
2.91
5.89
                                                                                                                                          0.90
0.89
1.21
0.99
                                                                                                                                                    905.88
2_519.28
12_447.68
3_230.13
                         137
501
                                                                        4.31
Bronx
                                                                       3.63
1.50
3.56
Brooklyn
                       5_206
542
Manhattan
Queens
Staten Island
                                  15.51
                                             15.51
                                                         15.68
                                                                      15.86
                                                                                  15.86
7.17
                                                                                             16.03
12.60
                                                                                                        16.20
26.35
                                                                                                                   16.20
                                                                                                                               0.49
10.71
                                                                                                                                          0.03
                                                                                                                                                         31.71
322.68
                           45
nan
                                  0.00
```

```
# annotations=False,
# precision=4,
#)
```

pie

```
df["payment"]
pls.plot_pie(
    data=df["payment"],
    caption="test lol",
    donut_size=0.3,
    # precision=3,
)
```

#test lol, payment, n=6_433

join

```
_df = df[["fare", "passengers"]]
# pls.plot_joint(_df, precision=0, size=15, kind="reg", caption="")
# pls.plot_joint(_df, precision=0, size=15, kind="hex", png_path=Path(".local/box6.png"))
pls.plot_joint(_df, precision=0, size=5, kind="kde",)
# pls.plot_joint(_df, precision=0, size=5, kind="hist",)
# pls.plot_joint(_df, precision=0, size=5, kind="kde", png_path=Path(".local/box7.png"))
```

[fare] vs [passengers], n=6_433

sankey

```
pls.plot_sankey(
    width=2000,
    font_size=15,
    # renderer="png",
)
```

[tumor-id] over [treatment], n=12 id (26 events)

tbl

print_summary()

```
_=tbl.print_summary(df)
```

column	count	min	lower	q25	median	mean	q75	upper	max	std	cv	sum
passengers distance fare tip tolls total	6_433 6_433 6_433 6_433	0.000	0 0.000 1.000 0.000 0.000 1.300	6.500 0.000 0.000	1.640 9.500 1.700 0.000	1.539 3.025 13.091 1.979 0.325	3.210 15.000 2.800 0.000	6.550 27.540 6.960 0.000	36.700 150.000 33.200 24.020 174.820	3.828 11.552 2.449 1.415	0.882 1.237 4.351	19_457.360 84_214.870 12_732.320

describe_df()

	pickup	dropoff	passengers	distance	fare	tip	tolls	total	color	payment	pickup_zone	dropoff_zone	pickup_borough	dropoff_borough	lol	xd
0	2019-03-23 20:21:09	2019-03-23 20:27:24	1	1.60	7.0	2.15	0.0	12.95	yellow	credit card	Lenox Hill West	UN/Turtle Bay South	Manhattan	Manhattan	NaN	2027
1	2019-03-04 16:11:55	2019-03-04 16:19:00	1	0.79	5.0	0.00	0.0	9.30	yellow	cash	Upper West Side South	Upper West Side South	Manhattan	Manhattan	NaN	2027
2	2019-03-27 17:53:01	2019-03-27 18:00:25	1	1.37	7.5	2.36	0.0	14.16	yellow	credit card	Alphabet City	West Village	Manhattan	Manhattan	NaN	2027
3	2019-03-10 01:23:59	2019-03-10 01:49:51	1	7.70	27.0	6.15	0.0	36.95	yellow	credit card	Hudson Sq	Yorkville West	Manhattan	Manhattan	NaN	2027
4	2019-03-30 13:27:42	2019-03-30 13:37:14	3	2.16	9.0	1.10	0.0	13.40	yellow	credit card	Midtown East	Yorkville West	Manhattan	Manhattan	NaN	2027
6428	2019-03-31 09:51:53	2019-03-31 09:55:27	1	0.75	4.5	1.06	0.0	6.36	green	credit card	East Harlem North	Central Harlem North	Manhattan	Manhattan	NaN	2027
6429	2019-03-31 17:38:00	2019-03-31 18:34:23	1	18.74	58.0	0.00	0.0	58.80	green	credit card	Jamaica	East Concourse/Concourse Village	Queens	Bronx	NaN	2027
6430	2019-03-23 22:55:18	2019-03-23 23:14:25	1	4.14	16.0	0.00	0.0	17.30	green	cash	Crown Heights North	Bushwick North	Brooklyn	Brooklyn	NaN	2027
6431	2019-03-04 10:09:25	2019-03-04 10:14:29	1	1.12	6.0	0.00	0.0	6.80	green	credit card	East New York	East Flatbush/Remsen Village	Brooklyn	Brooklyn	NaN	2027
6432	2019-03-13 19:31:22	2019-03-13 19:48:02	1	3.85	15.0	3.36	0.0	20.16	green	credit card	Boerum Hill	Windsor Terrace	Brooklyn	Brooklyn	NaN	2027

6433 rows × 16 columns

```
*** df: <unknown> ***
shape: (6_433, 16)
duplicates: 0
     column stats numeric
                   | count | min
column
                                              | lower |
                                                                      a25
                                                                                       median
                                                                                                                                     q75
                                                                                                                                                  | upper
                                                                                                                                                                                        std
                                                                                                              mean
                                                                                                                                                                        max
                                                                                                                                                                                                        CV
                                                                                                                                                                                                                            sum
                                                                                                                                                                                                                      9_902
19_457.360
                       6_433
                                                                        1.000
                                                                                             1.000
                                                                                                                  1.539
                                                                                                                                       2.000
                                                                                                                                                                                        1.204
                                                                                                                                                                                                      0.782
passengers
                     6_433 |
6_433 |
6_433 |
6_433 |
6_433 |
6_433 |
                                                                                                                3.025
13.091
1.979
0.325
18.518
                                    0.000
                                                   0.000
                                                                                                                                       3.210
                                                                                                                                                       6.550
                                                                                                                                                                       36.700
distance
                                                                        0.980
                                                                                             1.640
                                                                                                                                                                                         3.828
                                                                                                                                                                                                      1.266
                                   1.000
0.000
0.000
1.300
2_027
                                                                                                                                     3.210
15.000
2.800
0.000
20.300
                                                                                                                                                     6.550
27.540
6.960
0.000
34.550
2_027
                                                                                                                                                                                      3.828
11.552
2.449
1.415
13.816
                                                                                                                                                                                                      1.266
0.882
1.237
4.351
0.746
N/A
                                                                                                                                                                                                                    19_457.360
84_214.870
12_732.320
2_092.480
119_124.970
                                                  1.000
                                                                       6.500
0.000
fare
                                                                                             9.500
                                                                                                                                                                     150.000
                                                                                                                                                                     33.200
24.020
174.820
2_027
tip
                                                                                             1.700
                                                  0.000
1.300
2_027
tolls
total
                                                                                             0.000
                                                                        0.000
                                                                10.800 | 14.160
2_027.000 | 2_027.000
                                                                                                           2 027.000 | 2 027.000
                                                                                                                                                                                                                      13 039 691
xd
                                                                                                                                                                                       0.000
```

	pickup	dropoff	passengers	distance	fare	tip	tolls	total	color	payment	pickup_zone	dropoff_zone	pickup_borough	dropoff_borough	lol	xd
Ī	2019-03-23 20:21:09	2019-03-23 20:27:24	1	1.60	7.0	2.15	0.0	12.95	yellow	credit card	Lenox Hill West	UN/Turtle Bay South	Manhattan	Manhattan	NaN	2027
	2019-03-04 16:11:55	2019-03-04 16:19:00	1	0.79	5.0	0.00	0.0	9.30	yellow	cash	Upper West Side South	Upper West Side South	Manhattan	Manhattan	NaN	2027
[2019-03-27 17:53:01	2019-03-27 18:00:25	1	1.37	7.5	2.36	0.0	14.16	yellow	credit card	Alphabet City	West Village	Manhattan	Manhattan	NaN	2027

descr_db()

tbl.descr_db(db_delay, caption="delay", width=200)

delay 1_724, 3 ("z_kkr_label, z_first_treatment_after_days, z_first_treatment")

z_kkr_label	z_first_treatment_after_days	z_first_treatment
varchar	int32	varchar
03-NI	14	sy
05-NW	13	op
14-SN	90	sy

	id	bl	label	cnt
0	0	01-SH	7 - Histologie Primärtumor	14351
1	22	01-SH	3 - Todesbescheinigung (DCO)	1004
2	23	01-SH	5 - Zytologie	146

```
"label",
    "cnt",
]
].sort_values("bl")

= pls.plot_stacked_bars(
    _df,
    # swap=True,
    orientation="h",
    # show_total=True,
    # normalize=True,
    # relative=True,
    height=600,
    # top_n_color=5,
    # sort_values_color=True,
    # top_n_index=3,
    # precision=2,
    # show_other=True,
    # top_n_index=2,
    # show_other=True,
    # top_n_index=2,
    # show_other=True,
    # top_n_index=2,
    # kkr_col="bl",
)
```

[bl] by [label], n=160 (188_481)

$[z_kkr_label]$ by TOP10 $[z_dy]$, n=50 (600_156)

[cnt] by [z_kkr_label], n=16_357 (600_156)


```
_df = df[["color","payment","pickup_borough","total"]]
_df
# _=pls.plot_stacked_bars(_df[["color","payment","total"]],)
tbl.describe_df(_df, "taxis")
```

```
*** df: taxis ***
shape: (6_433, 4)
duplicates: 4_803
column stats all (dtype | uniques | missings) [values]
- index [0, 1, 2, 3, 4,]
- color (object | 2 | 0 (0%)) ['green', 'yellow',]
- payment (object | 3 | 44 (1%)) ['<NA>', 'cash', 'credit card',]
```

		color	payment	pickup_borough	total
I	0	yellow	credit card	Manhattan	12.95
	1	yellow	cash	Manhattan	9.30
ı	2	yellow	credit card	Manhattan	14.16


```
db = con.from_df(df)
tbl.descr_db(db, caption="taxis",)
```

taxis 6_433, 16 ("pickup, dropoff, passengers, distance, fare, tip, tolls, total, color, payment, pickup_zone, dropoff_zone, pickup_borough, dropoff_borough, lol, xd")

pickup timestamp_ns	dropoff timestamp_ns	passengers int64	distance double	fare double		pickup_borough varchar	dropoff_borough varchar	lol double	xd int64
2019-03-23 20:21:09 2019-03-04 16:11:55 2019-03-27 17:53:01	2019-03-23 20:27:24 2019-03-04 16:19:00 2019-03-27 18:00:25	1 1 1	1.6 0.79 1.37	7.0 5.0 7.5		Manhattan Manhattan Manhattan	Manhattan Manhattan Manhattan	NULL NULL NULL	2027 2027 2027
3 rows 16 columns (9 shown)									

show num

```
from pathlib import Path
   _df=df.pivot_table(index="color", columns="payment", values="fare", aggfunc="sum", dropna=False)
tbl.show_num_df(
   _df,
   total_mode="sum",
   total_axis="y",
   data_bar_axis="",
   pct_axis="xy",
   precision=0,
   heatmap_axis="xy",
   # Kpi_mode='max_min_x",
   total_exclude=Irue,
   # kpi_mode='min_max_xy'',
   kpi_mode='min_max_xy'',
   kpi_rag_list=(100, 1000),
   # swap=True,
   font_size_td=12,
   font_size_td=12,
   font_size_td=12,
   font_size_td=12+therefore
)
```

payment	cash	credit car	d nar	n Total
color				
green	3_995 (4.7%)	9_774 (11.6%)	20 (0.0%)	13_788 (16.4%)
yellow	17_012 (20.2%)	52_907 (62.8%)	508 (0.6%)	70_427 (83.6%)
_df=df[["colo	r", "payment", "fare"]]			

```
df=df[["color", "payment", "fare"]]
tbl.pivot_df(
    _df,
    total_mode="sum",
    data_bar_axis="xy",
    pct_axis="xy",
    precision=0,
    heatman_axis="",
    kpi_mode="min_max_xy",
    # kpi_mode="min_max_xy",
    # kpi_mode="may_abs",
    # kpi_mode="rag_abs",
    # kpi_rag_list=(100, 1000),
}
```

payment	nan	cash	credit card	Total
color				
green	20 (0.0%)	3_995 (4.7%)	9_774 (11.6%)	13_788 (16.4%)

payment	nan	cash	credit card	Total
color				
yellow	508 (0.6%)	17_012 (20.2%)	52_907 (62.8%)	70_427 (83.6%)
Total	528 (0.6%)	21_006 (24.9%)	62_681 (74.4%)	84_215 (100.0%)

```
_df = df[["distance", "fare", "tip", "tolls"]][:5]
tbl.show_num_df(
   _df,
   data_bar_axis="x",
   pct_axis="xy",
   precision=3,
   total_mode="sum",
)
# _df['distance'].mean()
```

	distance	fare	tip	tolls	Total
0	1.600 (2.0%)	7.000 (8.7%)	2.150 (2.7%)	0	10.750 (13.3%)
1	0.790 (1.0%)	5.000 (6.2%)	0	0	5.790 (7.2%)
2	1.370 (1.7%)	7.500 (9.3%)	2.360 (2.9%)	0	11.230 (13.9%)
3	7.700 (9.5%)	27.000 (33.4%)	6.150 (7.6%)	0	40.850 (50.5%)
4	2.160 (2.7%)	9.000 (11.1%)	1.100 (1.4%)	0	12.260 (15.2%)
Total	13.620 (16.8%)	55.500 (68.6%)	11.760 (14.5%)	0	80.880 (100.0%)

venn

```
set_a = {'ford','ferrari','mercedes', 'bmw'}
set_b = {'opet','bmw','bentley','audi'}
_df, _details = ven.show_venn2(
    title="taxis",
    a_set=set_a,
    a_label="cars1",
    b_set=set_b,
    b_label="cars2",
    verbose=0,
    size=8,
}
```

```
ab \longrightarrow cars1 | cars2 \longrightarrow len: 7
```



```
\begin{array}{c} \text{abc} \longrightarrow \text{cars1} \mid \text{cars2} \mid \text{cars3} \longrightarrow \text{len: 11} \\ \text{ab} \longrightarrow \text{cars1} \mid \text{cars2} \longrightarrow \text{len: 7} \end{array}
```

 $ac \longrightarrow cars1 \mid cars3 \longrightarrow len: 8$ $bc \longrightarrow cars2 \mid cars3 \longrightarrow len: 9$

hlp

ops varchar	cnt_ops int32
NULL 5-401.11 - Exzision einzelner Lymphknoten und Lymphgefäße: Axillär: Mit Radionuklidmarkierung (Sentinel 5-573.40 - Transurethrale Inzision, Exzision, Destruktion und Resektion von (erkranktem) Gewebe der Harn 5-987.0 - Anwendung eines OP-Roboters: Komplexer OP-Roboter 5-870.a1 - Partielle (brusterhaltende) Exzision der Mamma und Destruktion von Mammagewebe: Partielle Res 5-870.a2 - Partielle (brusterhaltende) Exzision der Mamma und Destruktion von Mammagewebe: Partielle Res 5-984 - Mikrochirurgische Technik 5-604.52 - Radikale Prostatovesikulektomie: Laparoskopisch, gefäß- und nervenerhaltend: Mit regionaler L 5-895.14 - Radikale und ausgedehnte Exzision von erkranktem Gewebe an Haut und Unterhaut: Ohne primären 5-573.41 - Transurethrale Inzision, Exzision, Destruktion und Resektion von (erkranktem) Gewebe der Harn	165429 135826 94266 82761 65040 52410 47640 39369 35085 34869
10 rows	2 columns

	ops varchar	cnt_ops int32
5 5 5	ULL 5-401.11 - Exzision einzelner Lymphknoten und Lymphgefäße: Axillär: Mit Radionuklidmarkierung (Senti 5-573.40 - Transurethrale Inzision, Exzision, Destruktion und Resektion von (erkranktem) Gewebe der 5-987.0 - Anwendung eines OP-Roboters: Komplexer OP-Roboter 5-870.a1 - Partielle (brusterhaltende) Exzision der Mamma und Destruktion von Mammagewebe: Partielle	165429 135826 94266 82761 65040

```
5-870.a2 - Partielle (brusterhaltende) Exzision der Mamma und Destruktion von Mammagewebe: Partielle 5-984 - Mikrochirurgische Technik 47640 5-604.52 - Radikale Prostatovesikulektomie: Laparoskopisch, gefäß- und nervenerhaltend: Mit regional 39369 5-895.14 - Radikale und ausgedehnte Exzision von erkranktem Gewebe an Haut und Unterhaut: Ohne primä 35085 5-573.41 - Transurethrale Inzision, Exzision, Destruktion und Resektion von (erkranktem) Gewebe der 34869 10 rows
```

df.pickup.to_series()

```
0 2019-03-23 20:21:09
1 2019-03-04 16:11:55
2 2019-03-27 17:53:01
3 2019-03-30 01:23:59
4 2019-03-30 13:27:42
...
6428 2019-03-31 19:51:53
6429 2019-03-31 17:38:00
6430 2019-03-23 22:55:18
6431 2019-03-04 10:09:25
6432 2019-03-13 19:31:22
Name: pickup, Length: 6433, dtype: datetime64[ns]
```

hlp.get_tum_details("df6bc655-e0ca-47f1-900c-ff2c749b3c7d", con)

pat

z_pat_id varchar	z_sex varchar	z_age double	z_ag05 varchar	 Geburtsdatum date	Geburtsdatum_Genau varchar	DatumVitalStatus date	DatumVitalStatus_G varchar
450b0462-3c82-411a	W	83.25	a80b84	 1939-12-15	Т	2023-06-15	Т
1 rows							9 columns (8 shown)

tod

TodesursacheId	Code	Version	IsGrundleiden						
varchar	varchar	varchar	boolean						
0 rows									

tum1

z_kkr_label varchar	z_icd10 varchar	Diagnosedatum date	Diagnosedatum_Gena varchar	 z_tum_sy_count int16	z_tum_fo_count int16	z_first_treatment varchar	z_first_treatment int32
15-ST	C44.2	2023-03-15	Т	 0	5	ор	0
1 rows	10 columns (8 shown)						

tum2

z_event_order varchar	z_events varchar	Anzahl_Tage_Diagno int32		z_period_diag_psa int64	z_last_tum_status varchar	z_class_hpv varchar	z_tum_order int8		
fo-op-fo-op-fo	fo-op-fo-op-fo op fo NULL			NULL	V - Vollremission	NULL	4		
1 rows 9 columns (7 shown)									

ор

OPId varchar	Intention varchar	Lokale_Beurteilung varchar	Anzahl_Tage_Diagno int32		Datum_OP_Genauigkeit varchar	z_period_diag_op_day int32	z_op_order int64				
b9336bec-c334-412d 17ed629d-0f14-4dbe da08a401-df47-4ae5 a6b2e505-5d59-460c ab1e8069-adf8-46aa	К К К К	R1 R1 R1 R1 R0	0 1 29 50 78		T T T T	0 1 29 50 78	1 2 3 4 5				
5 rows	5 rows 8 columns (7 shown)										

ops

OPSId	Code	Version	OP_TypId
varchar	varchar	varchar	varchar
1081731c-9595-41ac-9f31-90c1117fe47c	5-181.1	2023	da08a401-df47-4ae5-bfbc-67790d50bdfc
48e2ac46-268f-4cd3-9773-372f176a5afd	5-182.1	2023	a6b2e505-5d59-460c-a271-eafa9e392f18
6910a319-976a-4749-af8a-85f12864c473	5-925.24	2023	ab1e8069-adf8-46aa-adcc-a4ffb8c00b75
cb135ccc-7c90-4658-8a28-48d0e2bd838d	5-181.1	2023	b9336bec-c334-412d-93b5-79b8b23fba90
52be54a2-a0a2-4ba9-a907-1d59506d9f5e	5-182.0	2023	ab1e8069-adf8-46aa-adcc-a4ffb8c00b75
741c8ace-2bdd-4c40-a5b5-e3fac0a8c60b	5-181.4	2023	17ed629d-0f14-4dbe-9d88-610ab6b2a291
93f1b8fe-df4f-4ab6-be4d-b0e217776797	5-903.54	2023	17ed629d-0f14-4dbe-9d88-610ab6b2a291
f58dd5f5-fd6c-481a-9fd7-069e6b0a99b2	5-916.74	2023	b9336bec-c334-412d-93b5-79b8b23fba90

st

STId	Intention	Stellung_OP				
varchar	varchar	varchar				
	0 rows					

be

BestrahlungId varchar	Anzahl_Tage_Diagno int32	Anzahl_Tage_ST_Dauer int32	Datum_Beginn_Bestr… date		STId varchar	z_period_diag_best int32	z_bestr_order int64		
θrows									

app

BestrahlungId varchar	TypeOfST_TypBestra varchar	Seite_Zielgebiet varchar	 Stereotaktisch varchar	Atemgetriggert varchar	CodeVersion2014 varchar	CodeVersion2021 varchar
			0 rows			

syst

SYSTId varchar	Intention varchar	Stellung_OP varchar	Therapieart varchar	 Datum_Beginn_SYST date	Datum_Beginn_SYST varchar	z_period_diag_syst int32	z_syst_order int64
				0 rows			

fo

FolgeereignisId varchar	Gesamtbeurteilung varchar	Verlauf_Lokaler_Tu varchar	 Datum_Folgeereigni… varchar	z_fo_order int64	z_period_diag_fo_day int32
1e58d32d-06a5-4a06 fbd74efe-266c-430c 13a7ccd4-9133-409d 04ed157d-787b-419a 927c89f6-d53e-4783	T T T X V	T T T NULL K	 T T T T	1 2 3 4 5	0 0 31 31 92
5 rows					9 columns (6 shown)

${\tt fo_tnm}$

TNMId	FolgeereignisId	Version	y_Symbol	r_Symbol		L	V	Pn	S	UICC_Stadium						
varchar	varchar	varchar	varchar	varchar		varchar	varchar	varchar	varchar	varchar						
fbd74efe-266c-430c	fbd74efe-266c-430c	NULL	NULL	NULL		NULL	NULL	NULL	NULL	NULL						
927c89f6-d53e-4783	927c89f6-d53e-4783	NULL	NULL	NULL		NULL	NULL	NULL	NULL	NULL						
13a7ccd4-9133-409d	13a7ccd4-9133-409d	NULL	NULL	NULL		NULL	NULL	NULL	NULL	NULL						
04ed157d-787b-419a	04ed157d-787b-419a	Item8	NULL	r		LO	VO	Pn0	NULL	NULL						
1e58d32d-06a5-4a06	1e58d32d-06a5-4a06	NULL	NULL	NULL		NULL	NULL	NULL	NULL	NULL						
5 rows					5 rows 18 columns (10											

fo_fm

FolgeereignisId	FernmetastaseId	Lokalisation
varchar	varchar	varchar
	0 rows	

fo_weitere

WeitereKlassifikationId	Name	Stadium	FolgeereignisId
varchar	varchar	varchar	varchar
	0 rows		

${\tt diag_fm}$

FernmetastaseId	Lokalisation
varchar	varchar
0 ro	NS

diag_weitere

WeitereKlassifikationId	Name	Stadium
varchar	varchar	varchar
0 rows		

 $\verb|hlp.add_measures_to_pyg_config(".local/pygwalker_spec_.json", strict=False)| \\$

```
from pandas_plots import hlp
url="https://github.com/robert-koch-institut/Bundesweiter_klinischer_Krebsregisterdatensatz-Datenschema_und_Klassifikationen"
# url="http://google.com"
# hlp.create_barcode_from_url(
# url=url,
# output_path=".local/zfkd-repo.png",
# show_image=True,
# )
```

```
hlp.find_cols(df, [
"Tot",
"DIS",
])
```

```
['total', 'distance']
```

```
# df
# from pandas_plots import hlp
```

```
hlp.add_datetime_columns(df,"dropoff")
# df
```

Adding datetime columns basing off of: dropoff

	pickup	dropoff	passengers	distance	fare	tip	tolls	total	color	payment	 dropoff_borough	lol	xd	үүүү	ММ	Q	үүүү- ММ	YYYYQ	YYYY- WW	DDD
0	2019-03-23 20:21:09	2019-03-23 20:27:24	1	1.60	7.0	2.15	0.0	12.95	yellow	credit card	 Manhattan	NaN	2027	2019	3	1	2019-03	2019Q1	2019- W12	Sat
1	2019-03-04 16:11:55	2019-03-04 16:19:00	1	0.79	5.0	0.00	0.0	9.30	yellow	cash	 Manhattan	NaN	2027	2019	3	1	2019-03	2019Q1	2019- W10	Mon
2	2019-03-27 17:53:01	2019-03-27 18:00:25	1	1.37	7.5	2.36	0.0	14.16	yellow	credit card	 Manhattan	NaN	2027	2019	3	1	2019-03	2019Q1	2019- W13	Wed
3	2019-03-10 01:23:59	2019-03-10 01:49:51	1	7.70	27.0	6.15	0.0	36.95	yellow	credit card	 Manhattan	NaN	2027	2019	3	1	2019-03	2019Q1	2019- W10	Sun
4	2019-03-30 13:27:42	2019-03-30 13:37:14	3	2.16	9.0	1.10	0.0	13.40	yellow	credit card	 Manhattan	NaN	2027	2019	3	1	2019-03	2019Q1	2019- W13	Sat
6428	2019-03-31 09:51:53	2019-03-31 09:55:27	1	0.75	4.5	1.06	0.0	6.36	green	credit card	 Manhattan	NaN	2027	2019	3	1	2019-03	2019Q1	2019- W13	Sun
6429	2019-03-31 17:38:00	2019-03-31 18:34:23	1	18.74	58.0	0.00	0.0	58.80	green	credit card	 Bronx	NaN	2027	2019	3	1	2019-03	2019Q1	2019- W13	Sun
6430	2019-03-23 22:55:18	2019-03-23 23:14:25	1	4.14	16.0	0.00	0.0	17.30	green	cash	 Brooklyn	NaN	2027	2019	3	1	2019-03	2019Q1	2019- W12	Sat
6431	2019-03-04 10:09:25	2019-03-04 10:14:29	1	1.12	6.0	0.00	0.0	6.80	green	credit card	 Brooklyn	NaN	2027	2019	3	1	2019-03	2019Q1	2019- W10	Mon
6432	2019-03-13 19:31:22	2019-03-13 19:48:02	1	3.85	15.0	3.36	0.0	20.16	green	credit card	 Brooklyn	NaN	2027	2019	3	1	2019-03	2019Q1	2019- W11	Wed

6433 rows × 23 columns

```
lol="""
The most important themes of the draft referendum are:
1. Improving the use of health data for research and innovation, particularly through the establishment of a National Data Access Point;
2. Enhancing the coordination and networking of different stakeholders involved in health data management;
3. Expanding the scope of the General Data Protection Regulation (GDPR) to cover all areas of healthcare;
4. Providing better access to health data for patients and researchers, including through the development of a new law on health data protection;
5. Facilitating the exchange of health data between different countries and regions, particularly within the European Union (EU);
6. Ensuring that data are used in a way that promotes sustainable development and achieves the United Nations' Sustainable Development Goals
(SDGs)."""

print(
hlp.wrap_text(
    text=lol,
    # max_items_in_line=40,
    use_sep=True,
    use_apo=True,
}
```

```
[The most important themes of the draft referendum are:
1. Improving the use of health data for research and innovation particularly through
the establishment of a National Data Access Point;
2. Enhancing the coordination and networking of different stakeholders involved
in health data management;
3. Expanding the scope of the General Data Protection Regulation (GDPR) to cover all
areas of healthcare;
4. Providing better access to health data for patients and researchers including through
the development of a new law on health data protection;
5. Facilitating the exchange of health data between different countries and regions
particularly within the European Union (EU);
6. Ensuring that data are used in a way that promotes sustainable development and achieves
the United Nations Sustainable Development Goals (SDGs).]
```