功能描述

DK124 是一款离线式开关电源芯片,最大输出功率达到 24W。不同于 PWM 控制器和外部分立功率 MOS 组合的解决方案,DK124 内部集成了 PWM 控制器、700V 功率管和初级峰值电流检测电路,并采用了可以省略辅助供电绕组的专利自供电技术,因此极大地简化了外围应用电路,减少了原件数量,电路尺寸和重量,特别适用于成本敏感的反激式开关电源。

产品特点

- 全电压输入 85V-265V
- 内置 700V 高压功率管
- 内部集成了高压启动电路,无需外部启动电阻
- 内置 16mS 软启动电路
- 内置高低压功率补偿电路,使高低压最大输出功率保持一致
- 专利的自供电技术,无需外部辅助绕组供电
- 内置频率调制电路,简化了外围 EMI 设计成本
- 完整的过压、过温、过流、过载、输出开路/短路保护

应用领域

- DVD, VCR, STB 电源
- 适配器,充电器电源
- LED 电源

功率范围

输入电压	85-165V	185-265V	85-265V
最大输出功率	24W	24W	18W

封装与引脚定义(DIP-8)

引脚	符号 功能描述		
1	GND 芯片地		
2	C GND 芯片地		
3	FB 反馈控制输入引脚		
4	VCC 芯片供电引脚		
5, 6, 7, 8	OC	D 功率管输出引脚	

内部框图

DK124 - 24W 离线式开关电源

极限参数

电气参数

项目	测试条件	最小	典型	最大	单位
VCC工作电压	AC 输入85V265V	4.65	4. 95	5. 25	V
VCC启动电压	AC 输入85V265V	4. 75	5. 05	5. 35	V
VCC重启电压	AC 输入85V265V	3. 30	3. 60	3. 90	V
VCC保护电压	AC 输入85V265V	6. 25	6. 55	6.85	V
VCC工作电流	VCC=5V, FB=1.5V			50	mA
高压启动电流	AC 输入85V265V	0.3	0.6	1.2	mA
启动时间	AC 输入85V			500	ms
功率管耐压	Ioc=1mA	700			V
功率管保护电压	测量0C电压	540	600	660	V
峰值电流保护	VCC=5V, FB=1.5V2.8V	1100	1300	1500	mA
DWM绘山岳玄	VCC=5V, FB=1.5V2.5V	61	65	69	Khz
PWM输出频率	VCC=5V, FB=2.5V-2.8V	20	22	24	Khz
调制步进频率	VCC=5V, FB=1.5V-2.5V		0.5		Khz
短路保护阀值	测量FB电压	1. 15	1. 33	1.50	V
变频阀值电压	测量FB电压	2. 3	2. 5	2. 7	V
突发模式阀值	测量FB电压	2.6	2.8	3.0	V
温度保护	结温	120	130	140	$^{\circ}$
前沿消隐时间	VCC=5V, FB=1.5V-2.5V		250		ns
最小开通时间	VCC=5V, FB=2.6V		500		ns
占空比	VCC=5V, FB=1.5V-2.5V	5		70	%
待机功耗	AC 输入265V, 空载		240		mW

功能描述

上电启动

上电启动时,芯片通过内部连接 OC 和 VCC 引脚的高压电流源,对外部的 VCC 储能电容充电,当 VCC 电压升高到 5V 的时候,关闭高压电流源,启动过程结束,控制逻辑开始输出 PWM 脉冲。

软启动

上电启动后,芯片开始输出 PWM 脉冲。为防止瞬时的输出电压过冲,变压器磁芯饱和,功率管和次级整流管应力过大,芯片内置 16mS 软启动电路,在 16mS 内,会逐渐增加 PWM 的开通时间,使功率管的峰值电流从 100mA 线性增加到最大峰值电流。

反馈控制

芯片采用逐周期限值峰值电流的 PWM 控制方式,通过侦测 FB 的反馈电压来调节限制电流。当 PWM 开通后,芯片检测功率管输出电流,直到功率管输出电流达到当前的限制电流后关断功率管,等待下一个 PWM 开通周期。 FB 电压在 1.5V-2.5V 之间会线性的调节限制电流。1.5V 对应最大限制电流,2.5V 对应最小限制电流。当负载加重时,FB 电压会逐渐降低;反之则 FB 电压会逐渐升高。当负载过重,FB 电压小于 1.5V 时,芯片会进入短路或者过载保护的判定。当负载很轻,FB 电压大于 2.5V 时,控制电路会将 PWM 的开关频率由 65KHz 减小到 22KHz, 并以最小开通时间开通。当负载更轻时,FB 电压会继续升高;当 FB 电压高于 2.8V 时,控制电路停止 PWM 输出,芯片进入待机突发模式。

待机突发模式

待机时,FB 电压会升高到 2.8V 以上,芯片停止 PWM 输出。当输出电压略微下降,FB 电压低于 2.8V 时,芯片会重新输出一些 PWM 脉冲来维持设定的输出电压;这种突发的输出方式,可以实现较低的待机功耗。

频率调制

为了满足EMI的设计要求,降低EMI的设计复杂度和成本,芯片内设有一个频率调制电路,PWM 的频率将以65KHz为中心,以0.5KHz 的步进频率在16个频率点上运行。

自供电

芯片使用了专利的自供电技术,控制VCC的电压在5V左右,提供芯片自身的电流消耗,这样可以省略外部变压辅助绕组,简化变压器的设计。

峰值电流保护

任何时候芯片检测到内部功率管的峰值电流超过1.3A时,立即关断功率管,保护功率管和相应器件免于破坏。

恒定功率控制

为了防止高压时输出过功率,芯片内置了高低压功率补偿电路,使不同电网电压输入时的最大输出功率基本一致。

电源异常

因外部异常导致VCC电压低于3.6V时,芯片将关断功率管,进行重新启动。 因外部异常导致VCC电压高于6.5V时,立即启动VCC过压保护,停止输出脉冲,直到VCC 过压状况解除。

功率管过压保护

次级开路,输入母线电压过高,变压器漏感过大,都会引起功率管 0C 较高的尖峰电压;为保护功率管不被破坏,当电路检测到功率管 0C 电压超过 600V 时,会立即拉高 FB 电压,停止输出 PWM 脉冲,直到功率管过压状况解除。

短路和过载保护

次级输出短路或者过载时,FB 电压会低于 1.3V; 在某些应用中,由于电机等感性负载在启动时需要较高的启动电流,可能导致电路短时间的过载,因此芯片第一次过载保护的判定时间是 512mS。如果 FB 电压在 512mS 内恢复正常,芯片不会判定过载或短路; 如果 FB 电压在 512mS 内始终低于 1.3V,则判定为次级输出短路,立即启动短路保护,并将短路保护判定时间缩短为 32mS,直到短路状况解除。

过温保护

任何时候检测到芯片温度超过 130℃,立即启动过温保护,停止输出脉冲,直到过温状况解除。

典型应用电路(12V2A反激式开关电源)

元器件清单

序号	元件名称	规格/型号	位号	数量
1	保险丝	F2A/AC250V	F1	1
2		IN4007	D1-D4	4
3	二极管	FR107	D5	1
4		HER504	D7	1
5		100uF/16V	EC3	1
6	电解电容	1000uF/25V	EC4	1
7		470uF/25V	EC5	1
8	电解电容	33uF/400V	EC1	1
9	涤纶电容	2A223J	C1	1
10	瓷片电容	10nF	C2	1
11	Y电容	1nF/400V	Y1	1
12		68k/0.5W	R1	1
13	电阻	470R	R3	1
14		4.7K	R6	1
15	稳压管	11V	ZD1	1
16	工字电感	10uH	L2	1
17	光耦	PC817C	IC2	1
18	IC	DK124	IC1	1
19	变压器	EE25	T1	1

封装尺寸(DIP-8)

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
Α	3. 710	4. 310	0. 146	0. 170
A1	0. 510		0. 020	
A2	3. 200	3. 600	0. 126	0. 142
В	0. 380	0. 570	0.015	0. 022
B1	1. 524 (BSC)		0. 060 (BSC)	
С	0. 204	0.360	0.008	0.014
D	9. 000	9. 400	0. 354	0. 370
Е	6. 200	6. 600	0. 244	0. 260
E1	7. 320	7. 920	0. 288	0. 312
е	2. 540 (BSC)		0. 100	O (BSC)
L	3. 000	3. 600	0. 118	0. 142
E2	8. 400	9.000	0. 331	0. 354

