Friday, May 8, 2009, 2 - 5 pm

Open Book and Notes Final grades only through PeopleSoft

YOU MUST USE THE CONSTRUCTIONS GIVEN IN CLASS

1. Construct a regular expression over {a,b,c} for the language accepted by this nfa:

	а	Ъ	С	200
$\rightarrow A$	/	В	/	1
В	В	/	A,B,C	0
C	/	B,C	/	0

2. Prove that the language L(G) is not regular where G is the following cfg:

$$G = (\{S,A,B,C\}, \{a,b,c\}, \{S \rightarrow aA|B|C, A \rightarrow Sa, B \rightarrow b, C \rightarrow a\}, S).$$
Solve: You must first determine $I(G)$

Note: You must first determine L(G).

3. Construct a reduced dfa for the following extended regular expression over $\{0,1,2\}$:

$$\left[(10^*)^* \cap \overline{1^*} \right]$$

Note: You must first determine neas for (10*)* and 1*, then do the intersection. The answer must then be

4. Construct a Chomsky normal form grammar for L(G) for the following cfg G:

$$G = (\{S,B\}, \{a,b,c,d\}, \{S \rightarrow SSbS|Ba, B \rightarrow cBd|S|\epsilon\}, S).$$

Note: You must first remove all &- and all unit productions.

5. Construct a Greibach normal form grammar for L(G) for the following CNF G:

$$G = (\{S,A\}, \{a,b\}, \{S \rightarrow AS | A, A \rightarrow SS | ab\}, S).$$

Note: You must first remove all unit productions. You must derive all the productions for S and A; indicate how the result looks for S' and A'.

- 6. Prove that the following language L is not contextfree: $L = \{0^n 1^{n+2} 0^n \mid n > 0\}$.
- $\overline{7}$. Consider the class CFL_A of all contextfree languages over the fixed alphabet A.
 - (a) Is CFL_A countable?
 - (b) Is the class NOTCFL_A countable where NOTCFL_A consists of all languages over A that are not contextfree?
 - (c) Is the class CFL_A ∩ NOTCFL_A countable?

For each question, you must give a precise argument substantiating your answer.

- &. Construct a Turing machine for the language in Question 6, $L = \{0^n 1^{n+2} 0^n \mid n>0\}$. Note: Describe first the process in English; then translate this into moves of the Turing machine.
- 9. Let L_1 and L_2 be arbitrary languages, subject to the specification in either (i) or (ii). Consider the following four questions:
 - (Q1) Does L_1-L_2 contain a given fixed word w? (Q2) Is L_1-L_2 empty?
- (Q3) Does $L_1 \cap L_2$ contain a given fixed word w? (Q4) Is $L_1 \cap L_2$ empty? For each of these four questions explain with reasons whether the problem is recursive. not recursive but r. e., or non-r. e., provided
- (i) Both L_1 and L_2 are <u>recursive</u>. (ii) Both L_1 and L_2 are <u>r. e., but not recursive</u>. Note that there are eight different questions to be answered.

Points: 1:6 2:8 3:14 4:12 5: 12 6: 12 7: 13 8: 8 9:15