# Laboratório 5 - CPU µRISC-V PIPELINE -

Vinicius Lima Passos Marcelo Junqueira Ferreira Davi de Moura Amaral

1.1)

1.2)Implementados nos arquivos.

1.3)

Vídeo: https://www.youtube.com/watch?v=jIC1phGN6P0

Frequência máxima utilizável: 5.26 MHz (190 ns)

1.4)

Vídeo: https://www.youtube.com/watch?v=OjALsW5Z8OY

Em cada caso foi utilizado uma medição com ms e com us para os tempos, para permitir uma medição mais exata.

Instruções = 4519

#### i)Apenas colocando nops

| Traced Signals: |      |        |           | 1        | 725 mS   |        |        |       | , [t   | 726 mS |        |        |        |        | 1.727 mS |        |        |        |       | 1.728 n | s,    |        |       |        | 1.72   | 9mS    |        |       |        | 1.    | 73 mS  |       |        |        |        | 1.731 mS |         |       |
|-----------------|------|--------|-----------|----------|----------|--------|--------|-------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|-------|---------|-------|--------|-------|--------|--------|--------|--------|-------|--------|-------|--------|-------|--------|--------|--------|----------|---------|-------|
|                 |      |        |           |          |          |        |        |       |        |        |        |        |        |        |          |        |        |        |       |         |       |        |       |        |        |        |        |       |        |       |        |       |        |        |        |          |         |       |
| Reset (s>       |      | L      |           |          |          |        |        |       |        |        |        |        |        |        |          |        |        |        |       |         |       |        |       |        |        |        |        |       |        |       |        |       |        |        |        |          |         |       |
| Clock           |      | H L    | 770       | 79       | 180      | 101    | ,05    | 183   | '04 .  | '05    | 186    | 107    | 100    | 100    | '90      | 791 .  | 196    | 93     | '94   | '35     | '96   | 197    | '98   | '99 .  | 00     | 3101   | '02    | 9103  | '04    | 9105  | '05    | 9107  | 3100   | 100    | 9110   | 9111     | 1112 3  | 113   |
| ₩ ⊕ PC_L        | e He | (015   | СЬ (0160  | h (0164  | h (0168h | (016Ch | (0170h | 0174h | (0178h | 0158h  | 015Ch  | 0160h  | 0164h  | 0168h  | 016Ch    | (0170h | (0174h | 0178h  | 0158h | 015Ch   | 0160h | 0164h  | 0168h | (016Ch | (0170h | 0174h  | 0178h  | 0158h | 015Ch  | 0160h | 0164h  | 0168h | 016Ch  | (0170h | 0174h  | 0178h \  | 0158h ( | 015Ch |
| # ⊕ PC_H        | # He | 004    | 0h        |          |          |        |        |       |        |        |        |        |        |        |          |        |        |        |       |         |       |        |       |        |        |        |        |       |        |       |        |       |        |        |        |          |         |       |
| ∰ ⊕ Instrucao_L | e He | ) (00° | 13h (A50  | 3h \8393 | h (8293) | (0013h | 05B3H  | F06Fh | (0013h | 8263h  | (0013h | (A503h | 8393h  | (8293h | 0013h    | (0583h | F06Fh  | (0013h | 8263h | (0013h  | A503h | (8393h | 8293h | (0013h | √05B3h | F06Fh  | (0013h | 8263h | (0013h | A503h | (8393h | 8293h | (0013h | 05B3h  | F06Fh  | 0013h    | 8263h   | 0013h |
| # ⊕ Instrucao_H | # Ho | ¥ )(00 | 00h (000) | h (0013  | h (0042) | (0000h | 0070   | FE5Fh | (0000h | 0263h  | 0000h  | (0002h | (0013h | (0042h | ) 0000h  | (0070h | (FE5Fh | (0000h | 0263h | 0000h   | 0002h | (0013h | 0042h | (0000h | (0070h | (FE5Fh | (0000h | 0263h | 0000h  | 0002h | (0013h | 0042h | (0000h | (0070h | (FE5Fh | 0000h    | 0263h   | 0000h |
| ## ⊕ a0_L       | e He | 003    | 6h        |          |          |        |        |       |        |        |        |        |        |        | )(0      | 037h   |        |        |       |         |       |        |       | )(0    | 841h   |        |        |       |        |       |        |       | (0     | 04Eh   |        |          |         |       |
| ## ⊕ a0_H       | e Ho | 000    | 0h        |          |          |        |        |       |        |        |        |        |        |        |          |        |        |        |       |         |       |        |       |        |        |        |        |       |        |       |        |       |        |        |        |          |         |       |

Ciclos: 9115

CPI média= 2.017 Período = 190ns

Frequência = 5.26 MHz

Tempo previsto a partir da equação = 1731.8 us

Tempo medido usando ms = 2 ms Tempo medido usando us = 1732 us

# ii)Colocando nops e com unidade de forward



Ciclos: 7007 CPI média = 1.55 Período = 190ns

Frequência = 5.26 MHz

Tempo previsto a partir da equação = 1330.8 us Tempo medido usando ms = 2 ms Tempo medido usando us = 1331 us

Ao observar as medições e comparações foi possível perceber que a previsão é bem próxima do tempo medido e que as diferenças se dão pela precisão da medição.

# 1.5)

Formas de onda:

## i)Uniciclo:



### ii)Multiciclo:



## iii)Pipeline:



A partir das medições, é possível perceber que o pipeline, quando devidamente corrigido e implementado, apresenta um desempenho bem mais eficiente que o multiciclo e que o uniciclo, enquanto que a perda de desempenho do multiciclo quando comparado ao uniciclo foi relativamente grande, sendo pouco mais que 2x menos eficiente.

Também é possível observar que apesar de o desempenho teórico do pipeline ser acelerado 5 vezes em relação ao uniciclo, devido aos 5 estágios, há uma redução dessa otimização por conta da presença de hazards.