Теория потенциалов II, интегральные преобразования

"Уравнения математической физики"

Скопинцев Артур Маркович

Поверхность Ляпунова

Поверхность S называется поверхностью Ляпунова, если выполняются следующие условия:

- 1. В каждой точке поверхности S существует определённая нормаль (касательная плоскость);
- Существует такое положительное число d, что прямые, параллельные нормали в любой точке P поверхности S, пересекают не более одного раза окрестность Пяпунова — ту часть поверхности S, которая лежит внутри сферы радиуса d с центром P;
- Угол γ между нормалями в двух разных точках, находящихся внутри одной окрестности Ляпунова, удовлетворяет следующему условию: γ ≤ Ar^δ, где r расстояние между этими точками, A некоторая конечная постоянная и 0<δ≤1.

Свойства поверхности Ляпунова:

- **1**. Если ∂G поверхность Ляпунова, тогда справедливо $\partial G \in C^1$, обратное, вообще говоря, не верно.
- 2. Если $\partial G \in C^2$, тогда ∂G является поверхностью Ляпунова с δ =1.

Решение задачи Дирихле

3.1.2. Решение задачи Дирихле в пространстве. Рассмотрим внутреннюю задачу Дирихле для области V, ограниченной поверхностью S. Будем искать ее решение в виде потенциала двойного слоя:

$$u(A) = \iint_{S} \rho(P) \frac{\cos(\mathbf{r}, \mathbf{n})}{r^2} dS, \qquad r = |AP|, \tag{29}$$

где $\mathbf{r} = \overrightarrow{AP}$, \mathbf{n} — направление внешней нормали в точке P поверхности. Искомой является плотность $\rho(P)$. Согласно (23) внутренняя задача Дирихле с краевым значением $u|_S = f(P)$ равносильна следующему интегральному уравнению для плотности $\rho(P)$:

$$f(A) = \iint_{S} \rho(P) \frac{\cos(\mathbf{r}, \mathbf{n})}{r^2} dS + 2\pi \rho(A), \quad \mathbf{r} = \vec{AP}.$$

Вводя ядро

$$K(A;P)=-\frac{1}{2\pi}\frac{\cos(\mathbf{r},\mathbf{n})}{r^2},$$

можно переписать последнее уравнение в виде

$$\rho(A) = \frac{1}{2\pi} f(A) + \iint_{S} \rho(P) K(A; P) dS.$$
 (30)

$$u_{+}(A) = \iint_{S} \rho(P) \frac{\cos(\mathbf{r}, \mathbf{n})}{r^{2}} dS + 2\pi \rho(A), \qquad (23)$$

Отметим, что ядро K(A; P) несимметрично, поскольку нормаль берется в точке P и \mathbf{r} обозначает направление \overrightarrow{AP} . Интегральное ядро сопряженного уравнения определится, таким образом, формулой

$$K^*(A; P) = K(P; A) = \frac{\cos(\mathbf{r}, \mathbf{n})}{2\pi r^2}.$$

Нахождение $\rho(A)$ сводится, следовательно, к решению интегрального уравнения Фредгольма второго рода (30).

Аналогично, решение внешней задачи Дирихле сводится к решению интегрального уравнения

$$\rho(A) = -\frac{1}{2\pi} f(A) - \iint_{S} \rho(P) K(A; P) dS.$$
 (31)

В качестве примера рассмотрим первую краевую задачу для уравнения Лапласа в полупространстве $z \ge 0$ с краевым условием $u|_S = f(P)$, где $S = \{(x, y, 0)\}$. Будем искать ее решение в виде потенциала двойного слоя

$$u(x, y, z) = \int_{-\infty}^{+\infty} \rho(\xi, \eta) \frac{\cos(\mathbf{r}, \mathbf{n})}{r^2} d\xi d\eta, \quad r^2 = (x - \xi)^2 + (y - \eta)^2 + z^2.$$

В данном случае $\cos(\mathbf{r}, \mathbf{n})/r^2 = z/r^2$, так что ядро интегрального уравнения (30) равно нулю, поскольку значения берутся на границе z = 0. Значит, плотность потенциала двойного слоя $\rho(P) = f(P)/(2\pi)$ и искомое решение равно

$$u(x, y, z) = \frac{z}{2\pi} \iint_{-\infty}^{\infty} \frac{f(\xi, \eta)}{[(\xi - x)^2 + (\eta - y)^2 + z^2]^{3/2}} d\xi d\eta.$$
 (32)

Решение задачи Дирихле, интеграл Пуассона

3.1.3. Решение задачи Дирихле на плоскости. Рассматривается задача Дирихле $\Delta u = 0$, $u|_L = f$. Подобно рассуждениям предыдущего пункта, ее решение ищется в виде потенциала двойного слоя

$$u(A) = \int_{I} \rho(P) \frac{\cos(\mathbf{r}, \mathbf{n})}{r} dl.$$

Для плотности потенциала р получается интегральное уравнение

$$\pi \rho(A) = f(A) + \int_{L} \rho(P)K(A; P) dl. \tag{33}$$

Уравнение Фредгольма (33) соответствует внутренней задаче Дирихле, а при смене знака правой части — внешней задаче Дирихле. Здесь \mathbf{n} — переменная нормаль, восставленная в точке P, $\mathbf{r} = \vec{AP}$, $K(A; P) = -(\cos(\mathbf{r}, \mathbf{n}))/r$. Уравнение (33) может быть записано в виде

$$\pi \rho(l_0) = f(l_0) + \int_0^{|L|} \rho(l) K(l_0; l) dl, \tag{34}$$

где l и l_0 — длины дуг LP и LA контура L, отсчитываемые от какойлибо фиксированной точки L в определенном направлении, а |L| — длина контура L.

В качестве примера решим задачу Дирихле для круга K_R радиуса R с центром в нуле. Если точки A и P находятся на окружности, то $(\cos(\mathbf{r}_{AP},\mathbf{n}))/r_{AP}=1/(2R)$. Интегральное уравнение (34) принимает вид

$$\rho(l_0) + \frac{1}{\pi} \int_{K_R} \frac{1}{2R} \rho(l) \, dl = \frac{1}{\pi} f(l_0),$$

а его решением является функция

$$\rho(l) = \frac{1}{\pi} f(l) - \frac{1}{4\pi^2 R} \int_{K_R} f(l) \, dl.$$

Соответствующее решение - потенциал двойного слоя - равно

$$u(\rho,\theta) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} f(t) \frac{R^2 - \rho^2}{R^2 - 2\rho R \cos(t - \theta) + \rho^2} dt.$$
 (35)

Решение задачи Неймана

3.1.4. Решение задачи Неймана. Краевая задача Неймана задается уравнением

$$\Delta u(A) = 0, \quad A \in V, \tag{36}$$

и краевым условием

$$\left. \frac{\partial u}{\partial n} \right|_{S} = f,$$
 (37)

где n — внешняя нормаль к S.

В отличие от задачи Дирихле решение задачи Неймана (36), (37) ищется в виде потенциала простого слоя

$$u(A) = \iint_{S} \frac{\rho(P)}{r} dS.$$

Пользуясь формулами (18), (19), приходим к интегральному уравнению, равносильному поставленной внутренней задаче:

$$2\pi\rho(A) = f(A) - \iint_{S} \rho(P)K^{*}(A;P) dS,$$

где

$$K^*(A; P) = \frac{\cos(\mathbf{r}, \mathbf{n})}{r^2},$$

$$\left(\frac{\partial u}{\partial n}\right)_{A_{+}} = \iint\limits_{S} \rho(P) \frac{\cos(\mathbf{r}, \mathbf{n})}{r^{2}} dS + 2\pi\rho(A), \tag{18}$$

$$\left(\frac{\partial u}{\partial n}\right)_{A_{-}} = \iint_{S} \rho(P) \frac{\cos(\mathbf{r}, \mathbf{n})}{r^{2}} dS - 2\pi\rho(A), \tag{19}$$

 ${\bf n}$ — фиксированная внешняя нормаль в точке A, ${\bf r}=\vec{AP}$. Правая часть интегрального уравнения для внешней задачи Неймана имеет обратный знак.

Если S есть *поверхность Ляпунова*, причем угол Θ между нормалями в любых двух точках поверхности, расстояние между которыми r, не превышает величины $\Theta \leq Cr$, то ядра интегральных уравнений удовлетворяют оценке $|K(A;P)| \leq C/r$ и для этих интегральных уравнений справедливы теоремы Фредгольма.

Что касается решения задачи Неймана на плоскости, то оно ищется в виде потенциала простого слоя

$$u(A) = \int_{L} \rho(P) \ln \frac{1}{r} \, dl,$$

и для искомой плотности р для внутренней задачи получается интегральное уравнение

$$\pi \rho(A) = f(A) - \int_{I} \rho(P) K^{*}(A; P) dl,$$

а для внешней его правая часть меняет знак. Здесь

$$K^*(A; P) = \frac{\cos(\mathbf{r}, \mathbf{n})}{r},$$

где $\mathbf{r} = \vec{AP}$, \mathbf{n} — фиксированная внешняя нормаль к L, восстановленная в точке A.

Аналогично уравнению (34) может быть записано соответствующее уравнение Фредгольма второго рода для нахождения плотности потенциала простого слоя.

Краевая задача для уравнения Пуассона

3.1.6. Решение краевой задачи для уравнения Пуассона. Рассмотрим уравнение Пуассона

$$-\Delta u = f. \tag{41}$$

Для того чтобы свести решение краевой задачи для уравнения Пуассона к задаче для уравнения Лапласа, достаточно найти его какое-нибудь непрерывное частное решение v. Положим u = v + w и получим краевую задачу для гармонической функции w, которую решаем одним из вышеописанных способов в зависимости от типа краевых условий. Отметим, что краевые условия для функции w зависят от значений (u/или их производных), которые принимает вспомогательная функция v. Искомым частным вспомогательным решением уравнения (41) является объемный потенциал

$$\nu(A) = -\frac{1}{4\pi} \iiint_{V} f(P) \frac{1}{r} dV,$$

а для плоской задачи — логарифмический потенциал

$$v(A) = -\frac{1}{2\pi} \iint_{S} f(P) \ln \frac{1}{r} dS.$$

сона		

Краевая задача для уравнения теплопроводности

4.2.1. Потенциалы для одномерного уравнения теплопроводности. Рассмотрим одномерное уравнение теплопроводности

$$u_t = a^2 u_{xx} \tag{87}$$

и положим, что для промежутка $0 \le x \le l$ поставлена краевая задача с краевыми условиями

$$u|_{x=0} = \omega_1, \quad u|_{x=l} = \omega_2(t)$$
 (88)

и, без ущерба общности, однородным начальным условием

$$u|_{t=0} = 0 \quad (0 \le x \le l). \tag{89}$$

Фундаментальным решением, соответствующим источнику, помещенному в момент $t = \tau$ в точке $x = \xi$, является тепловой потенциал

$$u = \frac{1}{2a\sqrt{\pi(t-\tau)}} \exp\left\{-\frac{(\xi-x)^2}{4a^2(t-\tau)}\right\}.$$
 (90)

Аналогично построению потенциала диполя продифференцируем фундаментальное решение по ξ (по «нормальной» производной), что приводит к другому сингулярному решению — тепловому потенциалу «диполя». Умножая его на плотность потенциала $\varphi(\tau)$ и интегрируя, получаем решение (87), соответствующее диполю в точке $x = \xi$, действующему от момента $\tau = 0$ с интенсивностью $\varphi(\tau)$, в виде (см. [83])

$$u(x,t) = \int_{0}^{t} \frac{\varphi(\tau)}{2a\sqrt{\pi}(t-\tau)^{3/2}} (x-\xi) \exp\left\{-\frac{(\xi-x)^{2}}{4a^{2}(t-\tau)}\right\} d\tau, \qquad (91)$$

Если x стремится к ξ слева или справа (ср. с (23), (24)), то функция (91) удовлетворяет следующим краевым соотношениям:

$$u(\xi + 0, t) = \varphi(t), \quad u(\xi - 0, t) = -\varphi(t).$$
 (92)

Кроме того, решение (91) удовлетворяет, очевидно, однородному начальному условию

$$u|_{t=0} = 0. (93)$$

Решение начально-краевой задачи (87), (88) следует искать в виде суммы двух потенциалов: одного, помещенного в точке x = 0, и другого — в точке x = l; искомую плотность первого обозначим через $\phi(\tau)$, а второго — через $\psi(\tau)$:

$$u(x,t) = \int_{0}^{t} \frac{x\varphi(\tau)}{2a\sqrt{\pi}(t-\tau)^{3/2}} \exp\left\{-\frac{x^{2}}{4a^{2}(t-\tau)}\right\} d\tau + \int_{0}^{t} \frac{(x-l)\psi(\tau)}{2a\sqrt{\pi}(t-\tau)^{3/2}} \exp\left\{-\frac{(l-x)^{2}}{4a^{2}(t-\tau)}\right\} d\tau. \quad (94)$$

Краевые условия (88), в силу (92), запишутся в виде

$$\varphi(t) - l \int_{0}^{t} \frac{\psi(\tau)}{2a\sqrt{\pi}(t-\tau)^{3/2}} \exp\left\{-\frac{l^{2}}{4a^{2}(t-\tau)}\right\} d\tau = \omega_{1}(t),$$

$$-\psi(t) + l \int_{0}^{t} \frac{\varphi(\tau)}{2a\sqrt{\pi}(t-\tau)^{3/2}} \exp\left\{-\frac{l^{2}}{4a^{2}(t-\tau)}\right\} d\tau = \omega_{2}(t).$$
(95)

Эти уравнения представляют собой систему интегральных уравнений Вольтерра для $\phi(\tau)$ и $\psi(\tau)$, и ядра этих уравнений зависят только от разности $t-\tau$. Таким образом, в данном случае метод потенциалов приводит к решению системы двух интегральных уравнений.

Если на одном из концов задана не сама функция u, а ее производная $\partial u/\partial x$, то потенциал, порожденный этим краевым условием, следует искать на основании запаздывающего потенциала (90), а не его производной. В этих рассуждениях несложно усмотреть сходство с анализом задачи Дирихле, решение которой ищется в виде потенциала двойного слоя, и задачи Неймана с решением в виде потенциала простого слоя.

Если, например, краевые условия имеют вид

$$u|_{x=0} = \omega_1(t), \quad \frac{\partial u}{\partial x}\Big|_{x=t} = \omega_2(t),$$
 (96)

то решение задачи с однородными начальными условиями следует искать в виде суммы двух потенциалов вида

$$u(x,t) = \int_{0}^{t} \frac{x\phi(\tau)}{2a\sqrt{\pi}(t-\tau)^{3/2}} \exp\left\{-\frac{x^{2}}{4a^{2}(t-\tau)}\right\} d\tau + \int_{0}^{t} \frac{a\psi(\tau)}{\sqrt{\pi}\sqrt{t-\tau}} \exp\left\{-\frac{(l-x)^{2}}{4a^{2}(t-\tau)}\right\} d\tau. \quad (97)$$

Первое из условий (96) даст

$$\varphi(t) + \int_0^t \frac{a\psi(\tau)}{\sqrt{\pi}\sqrt{t-\tau}} \exp\left\{-\frac{l^2}{2a^2(t-\tau)}\right\} d\tau = \omega_1(t).$$

Дифференцируя формулу (97) по x и устремляя x к l, получим, в силу (92) и второго из условий (96),

$$\psi(t) + \int_{0}^{t} \frac{\varphi(\tau)}{2a\sqrt{\pi}(t-\tau)^{3/2}} \exp\left\{-\frac{l^{2}}{4a^{2}(t-\tau)}\right\} d\tau - \\ -l^{2} \int_{0}^{t} \frac{\varphi(\tau)}{4a^{3}(t-\tau)^{5/2}} \exp\left\{-\frac{l^{2}}{4a^{2}(t-\tau)}\right\} d\tau = \omega_{2}(t),$$

так что снова для $\varphi(\tau)$ и $\psi(\tau)$ возникает система интегральных уравнений с ядрами, зависящими от разности $t-\tau$. Отметим, что подобный вид ядер (в виде свертки) свидетельствует о целесообразности использования преобразования Лапласа для решения системы интегральных уравнений.

Интегральные преобразования

Общая схема применения интегральных преобразований.

$$\begin{cases} \mathcal{F}[f] = F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) \, e^{-i\omega x} \, dx & \text{Преобразование Фурье} \\ \mathcal{F}^{-1}[F] = f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} F(\omega) \, e^{i\omega x} \, d\omega & \text{Обратное преобразование Фурье} \end{cases}$$

$$\mathcal{L}[f] = F(s) = \int_{0}^{\infty} f(t) \, e^{-st} \, dt & \text{Преобразование Лапласа} \\ \mathcal{L}^{-1}[F] = f(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(s) \, e^{st} \, ds & \text{Обратное преобразование Лапласа} \end{cases}$$

$$\begin{cases} \mathcal{F}_s[f] = F(\omega) = \frac{2}{\pi} \int\limits_0^\infty f(t) \sin(\omega t) dt & \text{Синус-преобразование} \\ \mathcal{F}_s^{-1}[F] = f(t) = \int\limits_0^\infty F(\omega) \sin(\omega t) d\omega & \text{Обратное синус-преобразование} \\ \mathcal{F}_s[f] = F(\omega) = \frac{2}{\pi} \int\limits_0^\infty f(t) \cos(\omega t) dt & \text{Косинус-преобразование} \\ \mathcal{F}_c^{-1}[F] = f(t) = \int\limits_0^\infty F(\omega) \cos(\omega t) d\omega & \text{Обратное косинус-преобразование} \\ \mathcal{F}_s[f] = S_n = \frac{2}{L} \int\limits_0^L f(x) \sin(n\pi x/L) dx & \text{Конечное синус-преобразованиe} \\ \mathcal{F}_s^{-1}[F_n] = f(x) = \sum_{n=1}^\infty S_n \sin(n\pi x/L) & \text{Обратное конечное синус-преобразованиe} \\ \mathcal{F}_c[f] = C_n = \frac{2}{L} \int\limits_0^L f(x) \cos(n\pi x/L) dx & \text{Конечное косинус-преобразованиe} \\ \mathcal{F}_c^{-1}[F_n] = f(x) = \frac{2}{L} \int\limits_0^L f(x) \cos(n\pi x/L) dx & \text{Конечное косинус-преобразованиe} \\ \mathcal{F}_c^{-1}[F_n] = f(x) = \frac{2}{L} \int\limits_0^L f(x) \cos(n\pi x/L) dx & \text{Конечное косинус-преобразованиe} \\ \mathcal{F}_c^{-1}[F_n] = f(x) = \frac{2}{L} \int\limits_0^L f(x) \cos(n\pi x/L) dx & \text{Конечное косинус-преобразованиe} \\ \mathcal{F}_c^{-1}[F_n] = f(x) = \frac{2}{L} \int\limits_0^L f(x) \cos(n\pi x/L) dx & \text{Конечное косинус-преобразованиe} \\ \mathcal{F}_c^{-1}[F_n] = f(x) = \frac{2}{L} \int\limits_0^L f(x) \cos(n\pi x/L) dx & \text{Конечное косинус-преобразованиe} \\ \mathcal{F}_c^{-1}[F_n] = f(x) = \frac{2}{L} \int\limits_0^L f(x) \cos(n\pi x/L) dx & \text{Конечное косинус-преобразованиe} \\ \mathcal{F}_c^{-1}[F_n] = f(x) = \frac{2}{L} \int\limits_0^L f(x) \cos(n\pi x/L) dx & \text{Конечное косинус-преобразованиe} \\ \mathcal{F}_c^{-1}[F_n] = f(x) = \frac{2}{L} \int\limits_0^L f(x) \cos(n\pi x/L) dx & \text{Конечное косинус-преобразованиe} \\ \mathcal{F}_c^{-1}[F_n] = f(x) = \frac{2}{L} \int\limits_0^L f(x) \cos(n\pi x/L) dx & \text{Конечное косинус-преобразованиe} \\ \mathcal{F}_c^{-1}[F_n] = f(x) = \frac{2}{L} \int\limits_0^L f(x) \cos(n\pi x/L) dx & \text{Конечное косинус-преобразованиe} \\ \mathcal{F}_c^{-1}[F_n] = f(x) = \frac{2}{L} \int\limits_0^L f(x) \cos(n\pi x/L) dx & \text{Конечное косинус-преобразованиe} \\ \mathcal{F}_c^{-1}[F_n] = f(x) = \frac{2}{L} \int\limits_0^L f(x) \cos(n\pi x/L) dx & \text{Конечное косинус-преобразованиe} \\ \mathcal{F}_c^{-1}[F_n] = f(x) = \frac{2}{L} \int\limits_0^L f(x) \cos(n\pi x/L) dx & \text{Конечное} Kocunychiller} \\ \mathcal{F}_c^{-1}[F_n] = f(x) = \frac{2}{L} \int\limits_0^L f(x) \cos(n\pi x/L) dx & \text{Konevinoe} f(x) = \frac{2}{L} \int\limits_0^L f(x) dx & \text{Konevinoe} f(x) & \text{Konevinoe} f(x) & \text{Konevinoe} f(x) & \text{Konevinoe$$

Интегральные преобразования и спектр функции тесно связаны. И в самом деле, интегральное преобразование можно трактовать как разложение функции в некоторый спектр компонент. Этот спектр зависит от выбранного преобразования, но каждая функция обладает определенным спектром относительно данного преобразования.

Разложение периодической функции в ряд по синусам и косинусам; последовательность прямоугольных импульсов аппроксимируется синусами и косинусами.

И хотя непериодическую функцию нельзя разложить в бесконечный ряд по синусам и косинусам, мы можем попытаться написать непрерывный аналог ряда Фурье:

$$f(x) = \int_{-\infty}^{+\infty} [C(\omega)\cos(\omega x) + S(\omega)\sin(\omega x)] d\omega,$$

где функции $S(\omega)$ и $C(\omega)$ служат мерой спектральной плотности синуса и косинуса в функции f(x), а величина

$$V\overline{S^2(\omega)+C^2(\omega)}$$

служит мерой полного вклада частоты ω в функцию f(x) и называется спектром (непрерывным) функции f(x). Опираясь теперь на приведенное выше интуитивное определение спектра функции, разберем «по винтикам» интегральные преобразования. Сначала выпишем те несколько свойств этих преобразований, которые будем широко использовать.

Решение диффузионной задачи на полупрямой

Синус- и косинус-преобразования производных

1. $\mathcal{F}_{s}[f'] = -\omega \mathcal{F}_{c}[f]$ (доказывается интегрированием по частям).

2. $\mathcal{F}_s[f''] = \frac{2}{\pi} \omega f(0) - \omega^2 \mathcal{F}_s[f]$.

(10.1) 3. $\mathscr{F}_{o}[f'] = \frac{2}{\pi} f(0) + \omega \mathscr{F}_{s}[f]$.

4. $\mathcal{F}_{c}[f'') = -\frac{2}{\pi}f(0) - \omega^{2}\mathcal{F}_{c}[f]$.

(УЧП) $u_t = \alpha^2 u_{xx}$, $0 < x < \infty$, $0 < t < \infty$,

 $(\Gamma Y) \qquad u(0, t) = A, \quad 0 < t < \infty,$

(HY) u(x, 0) = 0, $0 \le x < \infty$.

ШАГ 1. Решение задачи разобьем на три достаточно простых шага. Будем действовать согласно следующему плану. На первом шаге выполним синус-преобразование Фурье по переменной к, тогда мы получим обыкновенное дифференциальное уравнение по переменной t. Для реализации этого плана применим синуспреобразование к обеим частям уравнения с частными производными. В результате получаем

$$\mathcal{F}_s[u_t] = \alpha^2 \mathcal{F}_s[u_{xx}].$$

Рассмотрим каждую часть этого соотношения.

 $\mathcal{F}_s[u_t]$: частную производную u_t в этой задаче можно назвать внешней производной, поскольку мы применяем преобразование по х. В этом случае можно написать

$$\mathcal{F}_{s}\left[u_{t}\right] = \frac{2}{\pi} \int_{0}^{\infty} u_{t}(x, t) \sin(\omega x) dx =$$

$$= \frac{\partial}{\partial t} \left[\frac{2}{\pi} \int_{0}^{\infty} u(x, t) \sin(\omega x) dx \right] =$$

$$= \frac{d}{dt} \mathcal{F}_{s}\left[u\right] =$$

$$= \frac{d}{dt} U(t).$$

Здесь мы вынесли операцию дифференцирования за знак интеграла, воспользовавшись соответствующей теоремой интегрального исчисления. Заметим, что исходная функция и зависит от переменных x и t, а ее образ

$$\mathcal{F}_s[u] = U(\omega, t)$$

зависит от переменных ω и t. Новая переменная ω будет играть роль параметра в новой задаче и, следовательно, можно считать, что образы функций зависят только от одной переменной t:

$$\mathcal{F}_s[u] = U(t).$$

 ${\mathcal F}_s[u_{xx}]$: Для этого члена справедливы следующие равенства:

$$\mathcal{F}_{s}[u_{xx}] = \frac{2}{\pi} \omega u \ (0, t) - \omega^{2} \mathcal{F}_{s}[u] =$$

$$= \frac{2}{\pi} \omega u \ (0, t) - \omega^{2} U \ (t) =$$

$$= \frac{2A\omega}{\pi} - \omega^{2} U \ (t).$$

Отметим, что при выводе соотношений (10.1) мы считали функцию f функцией одной переменной x. Здесь же несколько иной случай, поскольку u(x, t) зависит и от x, и от t. Однако можно пользоваться теми же формулами, если преобразование проводить по одной переменной, а остальные считать константами.

В нашем случае преобразование ведется по переменной x, а значит, переменную t можно считать константой. Обратим внимание и на то, что уже на этом этапе решения задачи используется граничное условие u(0, t) = A. Подставляя найденные выражения в уравнение $u_t = \alpha^2 u_{xx}$, мы получим обыкновенное дифференциальное уравнение

$$\frac{dU}{dt} = \alpha^2 \left[-\omega^2 U(t) + \frac{2A\omega}{\pi} \right].$$

Единственное, чего там нет, это начального условия для функции U(t). Мы получим его, применив преобразование к начальному условию u(x, 0) = 0:

$$\mathcal{F}_{s}[u(x, 0)] = U(0) = 0.$$

Этим завершается первый шаг построения решения методом интегрального преобразования—вместо исходной смешанной задачи мы получили задачу Коши для обыкновенного дифференциального уравнения:

(10.2)
$$\frac{dU}{dt} + \omega^2 \alpha^2 U = \frac{2A\omega \alpha^2}{\pi},$$
(НУ)
$$U(0) = 0.$$

ШАГ 2. Для решения получившейся задачи Коши можно воспользоваться любым из элементарных методов решения обыкновенных дифференциальных уравнений. В результате получаем

$$U(t) = \frac{2A}{\pi\omega} (1 - e^{-\omega^2 \alpha^2 t}).$$

Итак, перед нами — результат применения синус-преобразования к искомой функции u(x, t). Осталось совершить последний шаг — применить обратное преобразование к функции U(t) и получить искомое решение u(x, t):

$$u(x, t) = \mathcal{F}_{s}^{-1}[U].$$

ШАГ 3. Для того чтобы получить решение, можно либо непосредственно вычислить интеграл, входящий в обратное преобразование, либо воспользоваться таблицами преобразований. Воспользовавшись таблицами, находим

$$u(x, t) = A \operatorname{erfc}(x/2\alpha \sqrt{t}),$$

где erfc(x) — функция, дополнительная к интегралу вероятности и определяемая соотношением

$$\operatorname{erfc}(x) = \frac{2}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-t^{2}} dt.$$

 Γ рафики функций erf (x) и erfc (x).

Задача Коши для уравнения теплопроводности

(12.6)
$$(Y\Pi\Pi) \ u_t = \alpha^2 u_{xx}, \quad -\infty < x < \infty, \quad 0 < t < \infty,$$
 (12.6) $(HY) \ u(x, 0) = \varphi(x), \quad -\infty < x < \infty.$

ШАГ 1 (Преобразование задачи).

Поскольку пространственная переменная x изменяется в пределах от $-\infty$ до $+\infty$, мы подвергнем уравнение и начальное условие (12.6) преобразованию Фурье по переменной $x^{(1)}$ (x—переменная интегрирования в преобразовании). Сделав это, получим

$$\mathcal{F}[u_t] = \alpha^2 \mathcal{F}[u_{xx}],$$
$$\mathcal{F}[u(x, 0)] = \mathcal{F}[\varphi(x)].$$

Воспользуемся свойствами преобразования Фурье. Тогда

$$\frac{\frac{dU(t)}{dt} = -\alpha^2 \xi^2 U(t),}{U(0) = \Phi(\xi)} = 0 \text{ (здесь } \Phi - \text{фурье-образ функции } \phi),$$

где $U(t) = \mathcal{F}[u(x, t)]$. Читатель должен обратить внимание на то, что функция U(t) на самом деле зависит не только от t, но и от ξ , но, поскольку в дифференциальном уравнении (12.7) величина ξ играет роль константы, мы не будем записывать ее в число аргументов, т. е. будем считать, что U = U(t).

ШАГ 2 (Решение преобразованной задачи).

Поскольку новая переменная играет роль константы в задаче (12.7), ее решение легко находится:

(12.8)
$$U(t) = \Phi(\xi) e^{-\alpha^2 \xi^2 t}.$$

ШАГ 3 (Нахождение обратного преобразования). Искомое решение u(x, t) находится по формуле

$$u(x, t) = \mathcal{F}^{-1}[U(\xi, t)] =$$

$$= \mathcal{F}^{-1}[\Phi(\xi) e^{-\alpha^{2}\xi^{2}t}].$$

Вот здесь нас выручит теорема о свертке (12.5). Используя эту теорему, получаем

(12.9)
$$u(x, t) = \mathcal{F}^{-1} \left[\Phi(\xi) e^{-\alpha^2 \xi^2 t} \right] =$$

 $= \mathcal{F}^{-1} \left[\Phi(\xi) \right] * \mathcal{F}^{-1} \left[e^{-\alpha^2 \xi^2 t} \right] =$
 $= \varphi(x) * \left[\frac{1}{2\alpha \sqrt{\pi t}} e^{-x^2/4\alpha^2 t} \right]$ (нашли в таблице) $=$
 $= \frac{1}{2\alpha \sqrt{\pi t}} \int_{-\infty}^{+\infty} \varphi(\xi) e^{-(x-\xi)^2/4\alpha^2 t} d\xi.$

Теперь формуле (12.9) можно дать следующую интерпретацию: начальную температуру $u(x, 0) = \varphi(x)$ можно представлять как континуальное множество точечных импульсов каждой величины $\varphi(\xi)$ (в точке $x = \xi$). Каждый точечный импульс дает распределение температуры $\varphi(\xi)$ G(x, t). Результирующее распределение находится суммированием (интегрированием) температур точечных источников по формуле (12.9).

Теплопроводность в полубесконечной среде

Схематическое изображение задачи теплопроводности: a — тепло течет внутрь, если u(0, t) < 0, и наружу, если u(0, t) > 0; δ — резервуар настолько глубок, что граничное условие на дне не влияет на решение при интересующих нас значениях x.

(13.6)
$$\begin{array}{lll} (\text{УЧП}) & u_t = u_{xx}, & 0 < x < \infty, & 0 < t < \infty, \\ (\text{ГУ}) & u_x (0, t) - u (0, t) = 0, & 0 < t < \infty, \\ (\text{НУ}) & u (x, 0) = u_0, 0 < x < \infty. \end{array}$$

Для решения этой задачи мы применим преобразование Лапласа по переменной t. Обратите внимание: мы могли бы применить преобразование Лапласа и по переменной x, поскольку она изменяется от 0 до ∞ . После применения преобразования приходим к обыкновенному дифференциальному уравнению по переменной x.

(ОДУ)
$$sU(x) - u_0 = \frac{d^2U}{dx^2}$$
, $0 < x < \infty$, (13.7) $\frac{dU}{dx}(0) = U(0)$

(мы преобразовали только уравнение и граничное условие, но не начальное условие). У нас получилось обыкновенное дифференциальное уравнение второго порядка, но только с одним граничным условием в точке x=0. На самом деле второе граничное условие тоже есть. Оно определяется физическими соображениями и записывается в виде $U(x) \to 0$ при $x \to +\infty$. Отметим, что для упрощения записи мы везде опустили параметр s из числа аргументов функции U (т. е. вместо U(x, s) пишем U(x), так как уравнение (13.7) является дифференциальным уравнением только по x).

Для решения задачи (13.7) выпишем общее решение (общее решение однородного + частное решение неоднородного) ОДУ:

$$U(x) = c_1 e^{V_{sx}} + c_2 e^{-V_{sx}} + u_0/s.$$

Подстановка этого выражения в граничное условие (13.7) позволяет определить константы c_1 и c_2 (сразу же ясно, что $c_1 = 0$, иначе температура будет неограниченно расти с ростом координаты x). Определив константу c_2 из граничного условия в точке x = 0, получаем окончательное выражение для U(x)

(13.8)
$$U(x) = u_0 \left\{ \frac{e^{-V\bar{s}x}}{s(V\bar{s}+1)} \right\} + \frac{1}{s}.$$

Осталось совершить последний шаг. Для определения температурного поля u(x, t) необходимо вычислить

$$u(x, t) = \mathcal{L}^{-1}[U(x, s)]$$

(мы вернулись к записи всех аргументов функции U(x, s)). Для обращения преобразования Лапласа воспользуемся таблицами, которые приведены в приложении. В результате получаем

(13.9)
$$u(x, t) = u_0 - u_0 \left[\text{erfc} \left(\frac{x}{2} \sqrt{t} \right) + \text{erfc} \left(\sqrt{t} + \frac{x}{2} \sqrt{t} \right) e^{x+t} \right],$$

где

$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-\xi^{2}} d\xi$$

функция, дополнительная к интегралу вероятности.

Сравнение методов преобразования Лапласа и разделения переменных

	Мет	Метод	
	Преобразование Лапласа	Разделение переменных	
Неоднородные УЧП	да	нет	
Неоднородные ГУ	да	нет	
Переменные коэффициенты Нелинейные уравнения	нет	да нет	

Преобразование Лапласа можно применять и к неоднородному уравнению с частными производными (для применения метода разделения переменных уравнение должно быть однородным), но его нельзя, вообще говоря, применять к уравнениям с переменными коэффициентами (метод разделения переменных можно применять и в случае переменных коэффициентов).

Преобразование Лапласа по переменной t можно интерпретировать как проектирование xt-плоскости на ось x, в результате которого исходные уравнения, граничные и начальные условия преобразуются в новое дифференциальное уравнение и новые граничные условия (см. приведенную выше схему).

Принцип Дюамеля для параболической задачи

Можно надеяться, что решить эту задачу (14.1) будет легко, поскольку мы знаем решение более простой задачи, когда температура на конце постоянна:

(14.2)
$$\begin{aligned} & (\text{УЧП}) \quad & w_t = w_{xx}, \quad 0 < x < 1, \quad 0 < t < \infty, \\ & \left(\text{ГУ} \right) \quad \begin{cases} w \ (0, \ t) = 0, \\ w \ (1, \ t) = 1, \end{cases} \quad 0 < t < \infty, \\ & (\text{НУ}) \quad w \ (x, \ 0) = 0, \quad 0 \leqslant x \leqslant 1. \end{aligned}$$

И в самом деле, если одновременно решать обе задачи ((14.1) и (14.2)) с помощью преобразования Лапласа, то мы установим замечательный результат — решение задачи (14.1) выражается через решение задачи (14.2).

Итак, решая одновременно обе задачи, получаем

Легкая задача (14.2)

(Постоянные ГУ)

Применяем преобразование Лапласа к задаче (14.2)

$$\frac{d^2W}{dx^2} - sW(x) = 0,$$

$$W(0) = 0$$
,

$$W(1) = 1/s$$
.

$$W(x, s) = \frac{1}{s} \left[\frac{\sinh(x \sqrt[4]{s})}{\sinh(\sqrt[4]{s})} \right].$$

Находим обратное преобразование

$$w(x, t) =$$

$$= x + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} e^{-(n\pi)^2 t} \times \sin(n\pi x)$$

$$\times \sin(n\pi x)$$

(решение задачи с постоянным ГУ).

Трудная задача (14.1)

(Зависящие от времени ГУ)

Применяем преобразование Лапласа к задаче (14.1)

$$\frac{d^2U}{dx^2} - sU(x) = 0,$$

$$U(0) = 0$$
,

$$U(1) = F(s)$$
.

Решение ОДУ

$$U(x, s) = F(s) \left[\frac{\sinh(x \sqrt[3]{s})}{\sinh(\sqrt[3]{s})} \right].$$

Делим и умножаем на s

$$U(x, s) = F(s) \left\{ s \left[\frac{\sinh(x \sqrt[3]{s})}{s \sinh(s)} \right] \right\}.$$

Используя соотношение

$$\mathscr{L}\left[w_{t}\right] = sW - w\left(x, 0\right),$$

получаем

$$U(x, s) = F(s) \mathcal{L}[w_t].$$

Следовательно,

$$u(x, t) = \mathcal{L}^{-1} \{ F(s) \mathcal{L}[w_t] \} =$$

$$= \mathcal{L}^{-1} [F(s)] * \mathcal{L}^{-1}[w_t] =$$

$$= f(t) * w_t(t) =$$

$$= \int_{0}^{t} w_{t}(x, t-\tau) f(\tau) d\tau =$$

(после интегрирования по частям)

$$= \int_{0}^{t} w(x, t-\tau) f'(\tau) d\tau + f(0) w(x, t).$$

(Решение задачи с зависящими от времени ГУ выражено через решение задачи с постоянными ГУ.)

Итак, мы выразили решение задачи с изменяющимися во времени граничными условиями через решение задачи с постоянными граничными условиями. Соответствующие формулы имеют вид

(14.3)
$$u(x, t) = \int_{0}^{t} w_{t}(x, t-\tau) f(\tau) d\tau =$$

$$= \int_{0}^{t} w(x, t-\tau) f'(\tau) d\tau + f(0) w(x, t)$$

Существует и другая форма принципа Дюамеля. Она позволяет выразить решение задачи

(14.4)
$$\begin{aligned} & (\text{УЧП}) \quad u_t = u_{xx}, \quad 0 < x < 1, \quad 0 < t < \infty, \\ & \left\{ \begin{array}{l} u\left(0, \ t\right) = 0, \\ u\left(1, \ t\right) = f\left(t\right), \end{array} \right. \\ & \left(\text{НУ}\right) \quad u\left(x, \ 0\right) = 0, \quad 0 \leqslant x \leqslant 1, \end{aligned}$$

через решение w(x, t) другой простой задачи

$$\begin{array}{ll} (\mathrm{У} \Pi \Pi) & w_t = w_{xx}, \quad 0 < x < 1, \quad 0 < t < \infty, \\ (14.5) & \begin{cases} w \ (0, \ t) = 0 \\ w \ (1, \ t) = \delta \ (t) \end{cases} & \text{температурный импульс при } t = \mathbf{0}, \\ (\mathrm{H} \mathrm{Y}) & w \ (x, \ 0) = 0, \quad 0 \leqslant x \leqslant 1. \end{array}$$

В этом случае соответствующая формула имеет вид

$$u(x, t) = \int_{0}^{t} w(x, t-\tau) f(\tau) d\tau$$

и позволяет найти температуру u(x, t) при произвольной граничной температуре f(t), если известен отклик системы w(x, t) на температурный импульс.