Data Mining - HW 1

Evaluation of Search Engines and Near Duplicates Detection Simone Marretta 1911358 Luca Scofano 1762509

1 Part 1 - Search Engines evaluation

1.1 Description of all Search Engines

Remark: We used **Field booster** and **Multifield Parsers** only for The *Cranfield Dataset* since 'Title' field will have an impact on the scoring as well

TypeDescriptionField BoosterIt gives a higher (x1.5) score if the query is present in a certain field (Title in our case).StemmingComposes a RegexTokenizer with a lower case filter, an optional stop filter, and a stemming filter.Simple AnalyzerComposes a RegexTokenizer with a LowercaseFilter.StandardComposes a RegexTokenizer with a LowercaseFilter and optional StopFilter.NgramComposes an NgramTokenizer and a LowercaseFilter.

Table 1: Description of the Analyzers

Table 2: Description of the Scoring functions

Number	Type	Description
1	BM25F	It ranks a set of documents based on the query terms appearing in each document, regardless of their proximity within the document.
2	Frequency	It computes the frequency of a term in the document.
3	PL2	Scoring function created by Terrier, an open source search engine.
4	TFIDF	Based on the TFIDF scoring method, where Term Frequency and Inverse Document Frequency are computed.
5	posScore	It score documents based on the earliest position of the query term in the document. (Whoosh's documentation)

1.2 Number of indexed documents and number of queries

The assignment has to be carried out on two different data-sets, one is called Cranfield and the other one Time. Doc = Number of documents, Queries = Number of queries, GT = Number of queries in Ground Truth.

1.3 MRR Table for all Search Engines

The Mean Reciprocal Rank or MRR is not defined on a single query but it's defined on a group of queries.

$$MRR(Q) = \frac{1}{|Q|} \sum_{\forall q \in Q}^{Q} \frac{1}{index(FirstRelevantResult)}$$

Weak spot: We are loosing information on how many relevant results are shown in top k positions, it only shows the First relevant Result.

Figure 1: Cranfield dataset

se_1_Standard.csv 0.517755 se_2_Stemming.csv 0.320245 se_3_Stemming.csv 0.508782 se_2_Standard.csv 0.310600 se_1_Stemming.csv 0.507855 se_5_Stemming.csv 0.310600 se_3_Standard.csv 0.482964 se_5_Standard.csv 0.288064 se_1_Field Booster.csv 0.476545 se_5_Standard.csv 0.230400 se_1_Simple Analyzer.csv 0.474518 se_5_Simple Analyzer.csv 0.216764 se_3_Ngram.csv 0.439600 se_5_Field Booster.csv 0.216764 se_3_Field Booster.csv 0.429418 se_5_Ngram.csv 0.19636 se_4_Stemming.csv 0.404618 se_4_Field Booster.csv 0.169164 se_3_Simple Analyzer.csv 0.404400 se_4_Simple Analyzer.csv 0.165527 se_4_Standard.csv 0.065264 se_2_Field Booster.csv 0.065264	Search Engine	Score	<u>-</u>	Search Engine	Score
(a) Top 12	se_1_Standard.csv se_3_Stemming.csv se_1_Stemming.csv se_1_Standard.csv se_1_Field Booster.csv se_1_Simple Analyzer.csv se_3_Ngram.csv se_1_Ngram.csv se_3_Field Booster.csv se_4_Stemming.csv se_3_Simple Analyzer.csv se_4_Standard.csv	0.517755 0.508782 0.507855 0.482964 0.476545 0.474518 0.439600 0.429418 0.422591 0.404618 0.404400 0.387827		se_2_Standard.csv se_5_Stemming.csv se_5_Standard.csv se_4_Ngram.csv se_5_Simple Analyzer.csv se_5_Field Booster.csv se_5_Ngram.csv se_4_Field Booster.csv se_2_Ngram.csv se_4_Simple Analyzer.csv	0.313791 0.310600 0.288064 0.230400 0.216764 0.196636 0.194545 0.169164 0.165527

Figure 2: Search engines based on MRR score

Figure 3: Time Dataset

Search Engine	Score	Search Engine	Score
se_1_Stemming.csv	0.696300	se_5_Stemming.csv	0.455750
se_1_Standard.csv	0.679250	se_2 _Stemming.csv	0.425400
se_1_Simple Analyzer.csv	0.668588	$se_3_Ngram.csv$	0.419625
se_3_Stemming.csv	0.635225	$se_5_Ngram.csv$	0.387600
se_3_Standard.csv	0.613538	se_3_Simple Analyzer.csv	0.309387
se_1_Ngram.csv	0.558588	se_5_Simple Analyzer.csv	0.265912
se_4_Standard.csv	0.536425	se_4_Ngram.csv	0.257400
se_4_Stemming.csv	0.502863	se_4_Simple Analyzer.csv	0.240263
se_2_Standard.csv	0.460538	se_2_Ngram.csv	0.214600
$se_5_Standard.csv$	0.458325	se_2_Simple Analyzer.csv	0.154362
(a) Top	10	(b) Last	10

Figure 4: Search engines based on MRR score

1.3.1 MRR Table for the top 5 Search Engines

Figure 5: Top 5 Search Engines based on MRR

Search Engine	Score	Search Engine	Score
se_1_Standard.csv	0.517755	se_1_Stemming.csv	0.696300
se_3 _Stemming.csv	0.508782	$se_1_Standard.csv$	0.679250
se_1 _Stemming.csv	0.507855	se_1 _Simple Analyzer.csv	0.668588
se_3 _Standard.csv	0.482964	se_3_Stemming.csv	0.635225
se_1_Field Booster.csv 0.476545		$se_3_Standard.csv$	0.613538
(a) Cranfield		(b) Ti	me

1.4 R Precision Table

When: k = GT(q) then P@k = R precision

$$R-precision = \frac{NumberOfRelevantDocumentsInFirst|GT(q)|positions}{GT(q)}$$

SE Cofiguration	Mean	Min	1st quartile	Median	3rd quartile	Max
se_1_Standard.csv	0.257713	0.0	0.0	0.25	0.428571	1.0
se_3 _Stemming.csv	0.264101	0.0	0.0	0.25	0.428571	1.0
$se_1_Stemming.csv$	0.265212	0.0	0.0	0.25	0.428571	1.0
$se_3_Standard.csv$	0.257402	0.0	0.0	0.25	0.440476	1.0
se_1_Field Booster.csv	0.244790	0.0	0.0	0.25	0.421429	1.0

Figure 6: Cranfield

SE Cofiguration	Mean	Min	1st quartile	Median	3rd quartile	Max
$se_1_Stemming.csv$	0.527260	0.0	0.191667	0.5	0.888889	1.0
$se_1_Standard.csv$	0.547587	0.0	0.321429	0.5	0.888889	1.0
se_1 _Simple Analyzer.csv	0.542006	0.0	0.321429	0.5	0.888889	1.0
$se_3_Stemming.csv$	0.482691	0.0	0.000000	0.5	0.808333	1.0
$se_3_Standard.csv$	0.475147	0.0	0.000000	0.5	0.808333	1.0

Figure 7: Time

Figure 8: R-precision table of Top 5 Search engines based on MRR score

1.5 P@k Plot

$$P@k = \frac{NumberOfRelevantDocumentsInFirstKpositions}{k}$$

numerator = is the number of relevant documents in the Ground truth that are in the first k positions of the result based on the score. denominator = number of k top documents we picked.

Can we get a better denominator, in this case we can't get 1 as a perfect score? **YES**, the **normalized** score, and this is what we've used in the homework. New formula:

$$P@k = \frac{NumberOfRelevantDocumentsInFirstKpositions}{min(k,GroundTruth(q))}$$

Figure 9: p@k plot of Top 5 Search engines based on MRR score

$1.6~\mathrm{nDCG@k~plot}$

This evaluation metrics tries to account for all the weaknesses of the previous evalution systems.

$$nDCG(query, k) = \frac{DCG(query, k)}{IDCG(query, k)}$$

IDCG is the ideal discounted cumulative gain and it's a DCG of a perfect ranking algorithm.

Components of the formula:

$$DCG(query, k) = \sum_{p=1}^{k} \frac{relevance(docID, query)}{log_2(position + 1)}$$

What is the **relevance**? relevance(docID, query) = 1 if docID belongs to GT(q) and 0 otherwise

Figure 10: nDCG@k plot of Top 5 Search engines based on MRR score

2 Part 2 - Near Duplicate detection

2.1 Number of row and number of bands

The Number of rows are 12 and the Number of bands are 25

2.2 The probability to have False-Negatives, in the set of candidate pairs, for the following Jaccard values: $0.89,\,0.9,\,0.95$ and 1

Probability to have false-negatives is:

$$(1 - J(a,b)^r)^b$$

Probability to have false-negatives for 0.89:

$$(1 - 0.89^r)^b = 0.00083$$

Probability to have false-negatives for **0.9**:

$$(1 - 0.9^r)^b = 0.00025$$

Probability to have false-negatives for **0.95**:

$$(1 - 0.95^r)^b = 3.63449e - 09$$

 $Probability\ to\ have\ false-negatives\ 1:$

$$(1-1^r)^b = 0$$

2.3 The probability to have False-Positives, in the set of candidate pairs, for the following Jaccard values: $0.85,\,0.8,\,0.75,\,0.7,\,0.65,\,0.6,\,0.55$ and 0.5

Jaccard Similarity	Probability to have False Positives
0.85	0.97842
0.8	0.83134
0.75	0.55279
0.7	0.29422
0.65	0.13290
0.6	0.05302
0.55	0.01898
0.5	0.00608

2.4 How did you reduce the probability to have False-Negatives?

We reduce the probability to have False Negatives choosing r and b so that the threshold was significantly inferior to 0.89. We know from the Mining of Massive Datasets book that the threshold is approximately

$$(1/b)^{(1/r)}$$

. We chose r and b so that:

$$(1/b)^{(1/r)} = 0.765$$

2.5 The Execution-Time of the Near-Duplicates-Detection tool

The execution time was 4 minutes and 8 seconds.

2.6 The number of Near-Duplicates couples you found

The number of Near-Duplicates was 39697.

2.7 The number of Near-Duplicates couples you found with an approximated Jaccard similarity value of at least 0.89, 0.90, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1

Jaccard Similarity	Number of Near Duplicates couples
0.89	39697
0.90	38773
0.91	37849
0.92	36961
0.93	36150
0.94	35513
0.95	34466
0.96	33786
0.97	33081
0.98	32428
0.99	31920
1	31691