

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C12N 15/31, A61K 39/102 C12N 1/21, C07K 13/00 // (C12N 1/21, C12R 1:19)

(11) International Publicati n Number:

WO 93/08283

(43) International Publication Date:

8S3 (CA).

29 April 1993 (29.04.93)

(21) International Application Number:

PCT/CA92/00460

A1

(22) International Filing Date:

21 October 1992 (21.10.92)

(30) Priority data:

780,912 961,522 22 October 1991 (22.10.91) US 15 October 1992 (15.10.92) US (81) Designated States: AU, BG, CA, CS, JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, SE).

(71) Applicant: UNIVERSITY OF SASKATCHEWAN [CA/CA]; 124 Veterinary Road, Saskatoon, Saskatchewan

S7N 0W0 (CA).

(72) Inventors: POTTER, Andrew, A.; 521 Dalhousie Crescent, Saskatoon, Saskatchewan S7H 3S5 (CA). GERLACH, Gerald, F.; 10-621 Spadina Crescent East, Saskatoon, Saskatchewan S7K 3G8 (CA). WILLSON, Philip, J.; 3 Oliver Crescent, Saskatoon, Saskatchewan S7H 3C7 (CA). ROSSI-CAMPOS, Amalia; 90 Schwager Crescent, Saskatoon, Saskatchewan S7H 5C2 (CA). **Published**

With international search report.

(74) Agent: ERRATT, Judy, A.; Gowling, Strathy & Henderson, 160 Elgin Street, Suite 2600, Ottawa, Ontario KIN

(54) Title: VACCINES FOR ACTINOBACILLUS PLEUROPNEUMONIAE

(57) Abstract

Novel vaccines for use against Actinobacillus pleuropneumoniae are disclosed. The vaccines contain at least one A. pleuropneumoniae transferrin binding protein and/or one A. pleuropneumoniae cytolysin and/or one A. pleuropneumoniae APP4. Also disclosed are DNA sequences encoding these proteins, vectors including these sequences and host cells transformed with these vectors. The vaccines can be used to treat or prevent porcine respiratory infections.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
		GB	United Kingdom	NL	Netherlands
BB	Barbados	GN	Guinea	NO	Norway
BE	Belgium	GR	Greece	NZ	New Zealand
BF	Burkina Faso	HU	Hungary	PL	Poland
BG	Bulgaria	IE.	Ireland	PT	Portugal
BJ	Benin	IT		RO	Romania
BR	Brazil		Italy	RU	Russian Federation
CA	Canada	JP	Japan	SD	Sudan
CF	Central African Republic	KP	Democratic People's Republic	SE	Sweden
CG	Congo	*	of Korea	SK	Slovak Republic
CH	Switzerland	KR	Republic of Korea	SN	Senegal
CI	Côte d'Ivoire	Lt	Liechtenstein		Soviet Union
CM	Cameroon	LK	Sri Lanka	. SU	
cs	Czechoslovakia	LU	Luxembourg	TD	Chad
cz	Czech Republic	MC	Monaco	TG	Togo
DE	Germany	MG	Madagascar	UA	Ukraine
DK	Denmark	ML	Mali	US	United States of America
		MN	Mongolia	VN	Viet Nam
ES	Spain	17414			
FI	Finland				

VACCINES FOR ACTINOBACILLUS PLEUROPNEUMONIAE

Technical Field

The instant invention relates generally to the prevention of disease in swine. More particularly, the present invention relates to subunit vaccines for Actinobacillus pleuropneumoniae.

Background

Actinobacillus (formerly Haemophilus)

pleuropneumoniae is a highly infectious porcine
respiratory tract pathogen that causes porcine
pleuropneumonia. Infected animals develop acute
fibrinous pneumonia which leads to death or chronic lung
lesions and reduced growth rates. Infection is

transmitted by contact or aerosol and the morbidity in
susceptible groups can approach 100%. Persistence of the
pathogen in clinically healthy pigs also poses a constant
threat of transmitting disease to previously uninfected
herds.

The rapid onset and severity of the disease often causes losses before antibiotic therapy can become effective. Presently available vaccines are generally composed of chemically inactivated bacteria combined with oil adjuvants. However, whole cell bacterins and surface protein extracts often contain immunosuppressive components which make pigs more susceptible to infection. Furthermore, these vaccines may reduce mortality but do not reduce the number of chronic carriers in a herd.

There are at least 12 recognized serotypes of

35 A. pleuropneumoniae with the most common in North America

10

15

being serotypes 1, 5 and 7. Differences among ser types generally coincide with variations in the electrophoretic mobility of outer membran proteins and enzymes thus indicating a clonal origin of isolates from the same serotype. This antigenic variety has made the development of a successful vaccination strategy difficult. Protection after parenteral immunization with a killed bacterin or cell free extract is generally serotype specific and does not prevent chronic or latent Higgins, R., et al., Can. Vet. J. (1985) infection. 26:86-89; MacInnes, J.I. and Rosendal, S., Infect. Immun. (1987) 55:1626-1634. Thus, it would be useful to develop vaccines which protect against both death and chronicity and do not have immunosuppressive properties. One method by which this may be accomplished is to develop subunit vaccines composed of specific proteins in pure or semipure form.

A. pleuropneumoniae strains produce several See, e.g. Rycroft, A.N., et al., J. Gen. cytolysins. Microbiol. (1991) 137:561-568 (describing a 120 kDa 20 cytolysin from A. pleuropneumoniae); Chang, Y.F., et al., DNA (1989) 8:635-647 (describing a cytolysin isolated from A. pleuropneumoniae serotype 5); Kamp, E.M., et al., Abstr. CRWAD (1990) 1990:270 (describing the presence of 103, 105 and 120 kDa cytolysins in A. pleuropneumoniae 25 strains) and Welch, R.A., Mol. Microbiol. (1991) 5:521-528 (reviewing cytolysins of gram negative bacteria including cytolysins from A. pleuropneumoniae). One of these cytolysins appears to be homologous to the alphahemolysin of E. coli and another to the leukotoxin of 30 Pasteurella haemolytica. Welch, R.A., Mol. Microbiol. (1991) 5:521-528. These proteins have a molecular mass of approximately 105 kDa and are protective in mouse and pig animal models against challenge with the homologous serotype. However, cross-serotype protection is limited 35

15

20

35

at best (Higgins, R., et al., Can. J. Vet. (1985) 26:86-89; MacInnes, J.I., et al., Infect. Immun. (1987) 55:1626-1634. The genes for two of these proteins have been cloned and expressed in E. coli and their nucleotide sequence determined. Chang, Y.F., et al., J. Bacteriol. (1991) 173:5151-5158 (describing the nucleotide sequence for an A. pleuropneumoniae serotype 5 cytolysin); and Frey, J., et al., Infect. Immun. (1991) 59:3026-3032 (describing the nucleotide sequence for an A.

10 pleuropneumoniae serotype 1 cytolysin).

Transferrins are serum glycoproteins that function to transport iron from the intestine where it is absorbed, and liver, where it is stored, to other tissues of the body. Cell surface receptors bind ferrotransferrin (transferrin with iron) and the complex enters the cell by endocytosis. A. pleuropneumoniae,

under iron restricted growth conditions, can use porcine

transferrin as its sole iron source, but it cannot utilize bovine or human transferrin (Gonzalez, G.C., et al., Mol. Microbiol. (1990) 4:1173-1179; Morton, D.J., and Williams, P., J. Gen. Microbiol. (1990) 136:927-933). The ability of other microorganisms to bind and utilize transferrin as a sole iron source as well as the

correlation between virulence and the ability to scavenge.

iron from the host has been shown (Archibald, F.S., and DeVoe, I.W., FEMS Microbiol. Lett. (1979) 6:159-162; Archibald, F.S., and DeVoe, I.W., Infect. Immun. (1980) 27:322-334; Herrington, D.A., and Sparling, F.P., Infect. Immun. (1985) 48:248-251; Weinberg, E.D., Microbiol. Rev.

30 (1978) 42:45-66).

It has been found that A. pleuropneumoniae possesses several outer membrane proteins which are expressed only under iron limiting growth conditions (Deneer, H.G., and Potter, A.A., Infect. Immun. (1989) 57:798-804). Three of these proteins have been isolated

25

30

from A. pleuropneumoniae serotypes 1, 2 and 7 using affinity chromatography. These proteins have molecular masses of 105, 76 and 56 kDa. (Gonzalez, G.C., et al., Mol. Microbiol. (1990) 4:1173-1179). The 105 and 56 kDa proteins have been designated porcine transferrin binding protein 1 (pTfBP1) and porcine transferrin binding protein 2 (pTfBP2), respectively. (Gonzalez, G.C., et al., Mol. Microbiol. (1990) 4:1173-1179). At least one of these proteins has been shown to bind porcine transferrin but not transferrin from other species 10 (Gonzalez, G.C., et al., Mol. Microbiol. (1990) 4:1173-1179). It is likely that one of these proteins, either alone or in combination with other iron regulated outer membrane proteins, is involved in the transport of iron. The protective capacity of these proteins has not 15 heretofore been demonstrated.

Disclosure of the Invention

The instant invention is based on the discovery of novel subunit antigens from A. pleuropneumoniae which show protective capability in pigs.

Accordingly, in one embodiment, the subject invention is directed to a vaccine composition comprising a pharmaceutically acceptable vehicle and a subunit antigen composition. The subunit antigen composition includes at least one amino acid sequence substantially homologous and functionally equivalent to an immunogenic polypeptide of an Actinobacillus pleuropneumoniae protein or an immunogenic fragment thereof. The immunogenic protein is selected from the group consisting of Actinobacillus pleuropneumoniae transferrin binding protein, Actinobacillus pleuropneumoniae cytolysin and Actinobacillus pleuropneumoniae APP4.

In other embodiments, the instant invention is directed to a nucleotide sequences encoding

10

15

20

25

Actinobacillus pl uropneumoniae transferrin binding proteins and nucleotide s quences encoding Actinobacillus pleuropneumoniae APP4 proteins, or proteins substantially homologous and functionally equivalent thereto.

In yet other embodiments, the subject invention is directed to DNA constructs comprising an expression cassette comprised of:

- (a) a DNA coding sequence for a polypeptide containing at least one epitope of an Actinobacillus pleuropneumoniae transferrin binding protein; and
- (b) control sequences that are operably linked to the coding sequence whereby the coding sequence can be transcribed and translated in a host cell, and at least one of the control sequences is heterologous to the coding sequence.

In another embodiment, the subject invention is directed to a DNA construct comprising an expression cassette comprised of:

- (a) a DNA coding sequence for a polypeptide containing at least one epitope of an Actinobacillus pleuropneumoniae cytolysin; and
 - (b) control sequences that are operably linked to the coding sequence whereby the coding sequence can be transcribed and translated in a host cell, and at least one of the control sequences is heterologous to said coding sequence.

In still another embodiment, the invention is directed to a DNA construct comprising an expression cassette comprised of:

- (a) a DNA coding sequence for a polypeptide containing at least one epitope of an Actinobacillus pleuropneumoniae APP4; and
- (b) control sequences that are operably linked to the coding sequence whereby the coding sequence can be transcribed and translated in a host cell, and at least

30

35

one of the control sequences is heterologous to the coding sequence.

In still further embodiments, the instant invention is directed to expression cassettes comprising the DNA constructs, host cells transformed with these expression cassettes, and methods of recombinantly producing the subject Actinobacillus pleuropneumoniae proteins.

In another embodiment, the subject invention is directed to methods of treating or preventing pneumonia in swine comprising administering to the swine a therapeutically effective amount of a vaccine composition as described above.

In still other embodiments, the invention is directed to isolated and purified Actinobacillus pleuropneumoniae serotype 7 60 kDa transferrin binding protein, serotype 5 62 kDa transferrin binding protein, serotype 1 65 kDa transferrin binding protein and serotypes 1 and 5 APP4.

These and other embodiments of the present invention will readily occur to those of ordinary skill in the art in view of the disclosure herein.

Brief Description of the Figures

Figure 1 depicts the nucleotide sequence and deduced amino acid sequence of A. pleuropneumoniae serotype 7 60 kDa transferrin binding protein as well as the nucleotide sequence for the flanking regions.

Figure 2 shows the nucleotide sequence and deduced amino acid sequence of A. pleuropneumoniae serotype 1 65 kDa transferrin binding protein as well as the nucleotide sequence for the flanking regions.

Figure 3 is a comparison of the amino acid sequences of A. pleuropneumoniae serotype 7 60 kDa transferrin binding protein (designated "TF205" therein)

10

15

20

25

30

35

the state of the state of

and the A. pleuropneumoniae serotype 1 65 kDa transferrin binding protein (designated "TF37" therein). Dots indicate positions of identity.

Figure 4 shows the partial nucleotide sequence of A. pleuropneumoniae serotype 7, 103 kDa cytolysin. The BglII site is the fusion point between the vector pGH432 lacI and the A. pleuropneumoniae derived sequence.

Figure 5 shows restriction endonuclease cleavage maps of A. pleuropneumoniae serotype 7 cytolysin clones. The cyA region contains the structural gene for the cytolysin while cyC codes for an activator protein.

Figure 6 shows restriction endonuclease cleavage maps for recombinant plasmids coding for A. pleuropneumoniae serotype 1 antigens. 6.1 = rAPP4, 6.2 = pTF37/E1. The heavy line indicates the vector sequence and the coordinates are 0.01 Kb.

Figure 7 shows a physical map and the translational activity of plasmid pTF205/E1 and its deletion derivative, pTF205/E2. (A) The thick line represents DNA of the cloning vehicle (pGH433); tac indicates the location of the tac promoter, and the asterisk indicates stop codons in all three reading frames. The horizontal arrow indicates the location and direction of transcription of the encoded protein; as indicated, this DNA fragment was also used as a probe. (B) Depiction of an SDS gel of the IPTG induced aggregate proteins produced by pTF205/E1 (lane 1) and pTF205/E2 (lane 2); the molecular weight standards (lane 3) are phosphorylase b (97,400), bovine serum albumin (66.20), ovalbumin (45,000), and carbonic anhydrase (31,000).

Figure 8 shows the mean ELISA titers (log) from serum collected from pigs prior to vaccination with fractions from the hot saline extracts from Example 1, at day 24 and day 34 after vaccination. Mean values wer

10

15

20

calculated for each vaccine group. The background level of 2.5-3.0 is normal for Actinobacillus free pigs.

Figure 9 shows the mean clinical scores of pigs given fractions from the hot saline extracts described in Example 1. Data for the first three days post challenge are shown. Clinical scores range from 0-4 with 4 indicating death.

Figure 10 depicts the mean body temperature of pigs given fractions from the hot saline extracts described in Example 1. Data for the first three days post challenge are shown. The values presented are degrees centigrade above 39°C.

Figure 11 depicts the mean lung scores of pigs given fractions from the hot saline extracts described in Example 1. Lungs were removed at necropsy and scored for the number and size of Porcine Haemophilus Pleuropneumonia lesions. Results are presented as percent of lung area.

Figure 12 shows the means of clinical response (12A) and body temperature (12B) of pigs challenged with A. pleuropneumoniae serotype 7 in trial 1 of Example 6. The numbers on top of the bars represent the number of animals from which the values were obtained.

Figure 13 shows the means of clinical response (13A) and body temperature (13B) of pigs challenged with A. pleuropneumoniae serotype 7 in trial 2 of Example 6. The numbers on top of the bars represent the number of animals from which the values were obtained.

Figure 14 shows the nucleotide sequence of the flanking regions of the repeats on λCY76/5. cytA marks the position of the cytA gene, and the sequence at the XbaI site and upstream is identical to that described by Chang, Y.F., et al., DNA (1989) 8:635-647.

Figure 15 depicts the nucleotide sequence of the inverted repeats of Figure 14 located on either end

4.

-9-

of the direct repeats. Complementary bases are connected with a vertical dash.

Figure 16 depicts the nucleotide s quence of the BamHI-BglII fragment of λ CY76 Δ 1/1. BamHI, KpnI, and BglII indicate the position of the restriction enzyme sites. The position and direction of the open reading frame is indicated by "MET" and "**". "SD" marks the Shine-Dalgarno consensus sequence. The ends of the repeat are comprised of 26 bp long inverted repeats also emphasized by bold print.

Detailed Description

The practice of the present invention will employ, unless otherwise indicated, conventional 15 techniques of molecular biology, microbiology, virology, recombinant DNA technology, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory 20 Manual, Second Edition (1989); DNA Cloning, Vols. I and II (D.N. Glover ed. 1985); Oligonucleotide Synthesis (M.J. Gait ed. 1984); Nucleic Acid Hybridization (B.D. Hames & S.J. Higgins eds. 1984); Animal Cell Culture (R.K. Freshney ed. 1986); Immobilized Cells and Enzymes 25 (IRL press, 1986); Perbal, B., A Practical Guide to Molecular Cloning (1984); the series, Methods In Enzymology (S. Colowick and N. Kaplan eds., Academic Press, Inc.); and Handbook of Experimental Immunology, Vols. I-IV (D.M. Weir and C.C. Blackwell eds., 1986, 30 Blackwell Scientific Publications).

All patents, patent applications and publications cited herein, whether supra or infra, are hereby incorporated by reference in their entirety.

10

10

15

20

25

30

35

A. Definitions

In describing the present invention, the following terms will b employed, and ar intended to be defined as indicated below.

An "antigen" refers to a molecule containing one or more epitopes that will stimulate a host's immune system to make a humoral and/or cellular antigen-specific response. The term is also used interchangeably with "immunogen."

By "subunit antigen" is meant an antigen entity separate and discrete from a whole bacterium (live or killed). Thus, an antigen contained in a cell free extract would constitute a "subunit antigen" as would a substantially purified antigen.

A "hapten" is a molecule containing one or more epitopes that does not stimulate a host's immune system to make a humoral or cellular response unless linked to a carrier.

The term "epitope" refers to the site on an antigen or hapten to which a specific antibody molecule binds. The term is also used interchangeably with "antigenic determinant" or "antigenic determinant site."

An "immunological response" to a composition or vaccine is the development in the host of a cellular and/ or antibody-mediated immune response to the composition or vaccine of interest. Usually, such a response consists of the subject producing antibodies, B cells, helper T cells, suppressor T cells, and/or cytotoxic T cells directed specifically to an antigen or antigens included in the composition or vaccine of interest.

The terms "immunogenic polypeptide" and "immunogenic amino acid sequence" refer to a polypeptide or amino acid sequence, respectively, which elicits antibodies that neutralize bacterial infectivity, and/or mediate antibody-complement or antibody dependent cell

WO 93/08283 PCT/CA92/00460

-11-

cytotoxicity to provide protection of an immunized host. An "immunogenic polypeptide" as used herein, includes the full length (or near full length) sequence of th d sired A. pleuropneumoniae protein or an immunogenic fragment 5 thereof. By "immunogenic fragment" is meant a fragment of a polypeptide which includes one or more epitopes and thus elicits antibodies that neutralize bacterial infectivity, and/or mediate antibody-complement or antibody dependent cell cytotoxicity to provide 10 protection of an immunized host. Such fragments will usually be at least about 5 amino acids in length, and preferably at least about 10 to 15 amino acids in length. There is no critical upper limit to the length of the fragment, which could comprise nearly the full length of 15 the protein sequence, or even a fusion protein comprising fragments of two or more of the A. pleuropneumoniae subunit antigens.

The term "polypeptide" is used in its broadest sense, i.e., any polymer of amino acids (dipeptide or greater) linked through peptide bonds. Thus, the term "polypeptide" includes proteins, oligopeptides, protein fragments, analogs, muteins, fusion proteins and the like.

"Native" proteins or polypeptides refer to

25 proteins or polypeptides recovered from a source
occurring in nature. Thus, the term "native transferrin
binding protein", "native cytolysin" or "native APP4"
would include naturally occurring transferrin binding
protein, cytolysin or APP4, respectively, and fragments
of these proteins. "Recombinant" polypeptides refer to
polypeptides produced by recombinant DNA techniques;
i.e., produced from cells transformed by an exogenous DNA
construct encoding the desired polypeptide. "Synthetic"
polypeptides are those prepared by chemical synthesis.

20

A "replicon" is any genetic element (e.g., plasmid, chromosome, virus) that functions as an autonomous unit of DNA replication in vivo; i.e., capable of replication under its own control.

A "vector" is a replicon, such as a plasmid, phage, or cosmid, to which another DNA segment may be attached so as to bring about the replication of the attached segment.

A "double-stranded DNA molecule" refers to the polymeric form of deoxyribonucleotides (bases adenine, 10 guanine, thymine, or cytosine) in a double-stranded helix, both relaxed and supercoiled. This term refers only to the primary and secondary structure of the molecule, and does not limit it to any particular Thus, this term includes double-stranded tertiary forms. 15 DNA found, inter alia, in linear DNA molecules (e.g., restriction fragments), viruses, plasmids, and In discussing the structure of particular chromosomes. double-stranded DNA molecules, sequences may be described herein according to the normal convention of giving only 20 the sequence in the 5' to 3' direction along the nontranscribed strand of DNA (i.e., the strand having the sequence homologous to the mRNA).

sequence encoding" a particular protein, is a DNA sequence which is transcribed and translated into a polypeptide in vivo when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a translation stop codon at the 3' (carboxy) terminus. A coding sequence can include, but is not limited to, procaryotic sequences, cDNA from eucaryotic mRNA, genomic DNA sequences from eucaryotic (e.g., mammalian) DNA, and even synthetic DNA sequences.

WO 93/08283 PCT/CA92/00460

A transcription termination sequence will usually be located 3' to the coding sequence.

5

10

15

20

25

30

35

A "promoter sequence" is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. For purposes of defining the present invention, the promoter sequence is bound at the 3' terminus by the translation start codon (ATG) of a coding sequence and extends upstream (5' direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter sequence will be found a transcription initiation site (conveniently defined by mapping with nuclease S1), as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase. Eucaryotic promoters will often, but not always, contain "TATA" boxes and "CAT" boxes. Procaryotic promoters contain Shine-Dalgarno sequences in addition to the -10 and -35 consensus sequences.

DNA "control sequences" refers collectively to promoter sequences, ribosome binding sites, polyadenylation signals, transcription termination sequences, upstream regulatory domains, enhancers, and the like, which collectively provide for the transcription and translation of a coding sequence in a host cell.

"Operably linked" refers to an arrangement of elements wherein the components so described are configured so as to perform their usual function. Thus, control sequences operably linked to a coding sequence are capable of effecting the expression of the coding sequence. The control sequences need not be contiguous with the coding sequence, so long as they function to direct the expression thereof. Thus, for example, intervening untranslated yet transcribed sequences can be

15

20

25

30

35

present between a promoter sequence and the coding sequence and the promoter sequenc can still be considered "operably linked" to the coding sequence.

A control sequence "directs the transcription" of a coding sequence in a cell when RNA polymerase will bind the promoter sequence and transcribe the coding sequence into mRNA, which is then translated into the polypeptide encoded by the coding sequence.

A "host cell" is a cell which has been transformed, or is capable of transformation, by an exogenous DNA sequence.

A cell has been "transformed" by exogenous DNA when such exogenous DNA has been introduced inside the cell membrane. Exogenous DNA may or may not be integrated (covalently linked) into chromosomal DNA making up the genome of the cell. In procaryotes and yeasts, for example, the exogenous DNA may be maintained on an episomal element, such as a plasmid. With respect to eucaryotic cells, a stably transformed cell is one in which the exogenous DNA has become integrated into the chromosome so that it is inherited by daughter cells through chromosome replication. This stability is demonstrated by the ability of the eucaryotic cell to establish cell lines or clones comprised of a population of daughter cells containing the exogenous DNA.

A "clone" is a population of cells derived from a single cell or common ancestor by mitosis. A "cell line" is a clone of a primary cell that is capable of stable growth in vitro for many generations.

Two DNA or polypeptide sequences are "substantially homologous" when at least about 80% (preferably at least about 90%, and most preferably at least about 95%) of the nucleotides or amino acids match over a defined length of the molecule. As used herein, substantially homologous also refers to sequences showing

WO 93/08283 PCT/CA92/00460

-15-

identity to the specified DNA or polypeptide sequence. DNA sequences that are substantially homologous can be identified in a Southern hybridization experiment und r, for example, stringent conditions, as defined for that particular system. Defining appropriate hybridization conditions is within the skill of the art. See, e.g., Sambrook et al., supra; DNA Cloning, vols I & II, supra; Nucleic Acid Hybridization, supra.

The term "functionally equivalent" intends that the amino acid sequence of the subject protein is one that will elicit an immunological response, as defined above, equivalent to the specified A. pleuropneumoniae immunogenic polypeptide.

A "heterologous" region of a DNA construct is an identifiable segment of DNA within or attached to another DNA molecule that is not found in association with the other molecule in nature. Thus, when the heterologous region encodes a bacterial gene, the gene will usually be flanked by DNA that does not flank the bacterial gene in the genome of the source bacteria. Another example of the heterologous coding sequence is a construct where the coding sequence itself is not found in nature (e.g., synthetic sequences having codons different from the native gene). Allelic variation or naturally occurring mutational events do not give rise to a heterologous region of DNA, as used herein.

A composition containing A is "substantially free of" B when at least about 85% by weight of the total of A + B in the composition is A. Preferably, A comprises at least about 90% by weight of the total of A + B in the composition, more preferably at least about 95%, or even 99% by weight.

The term "treatment" as used herein refers to either (i) the prevention of infection or reinfection

5

10

15

20

25

30

(prophylaxis), or (ii) the reduction or elimination of symptoms of the disease of interest (therapy).

B. General Methods

Central to the instant invention is the 5 discovery of certain A. pleuropneumoniae proteins able to elicit an immune response in an animal to which they are The antigens, or immunogenic fragments administered. thereof, are provided in subunit vaccine_compositions_and_ thus problems inherent in prior vaccine compositions, 10 such as localized and systemic side reactions, as well as the inability to protect against chronic disease, are avoided. The vaccine compositions can be used to treat or prevent A. pleuropneumoniae induced respiratory diseases in swine such as porcine pleuropneumonia. 15 antigens or antibodies thereto can also be used as diagnostic reagents to detect the presence of A. pleuropneumoniae infection in a subject. Similarly, the genes encoding the subunit antigens can be cloned and used to design probes for the detection of A. 20 pleuropneumoniae in tissue samples as well as for the detection of homologous genes in other bacterial strains. The subunit antigens are conveniently produced by recombinant techniques, as described herein. proteins of interest are produced in high amounts in 25 transformants, do not require extensive purification or processing, and do not cause lesions at the injection site or other ill effects.

It has now been found that A. pleuropneumoniae

possesses proteins able to bind transferrin.

Specifically, two transferrin binding proteins have been identified in cell free extracts from A. pleuropneumoniae serotype 7. These proteins have molecular masses of approximately 60 kDa and 100 kDa, respectively, as determined by SDS PAGE. The 100 kDa protein is seen only

WO 93/08283 PCT/CA92/00460

in cells grown under iron restriction and appears to be present in substantial amounts in the outer membrane. The 60 kDa protein is detectable in whole cell lysates and culture supernatants from bacteria grown under iron restricted conditions. This protein is not seen in outer membranes prepared by SDS solubilization. The protein does not appear to be expressed under conditions of heat, ethanol, or oxidative stress. The 60 kDa protein, when separated by nondenaturing PAGE, binds alkaline phosphatase labeled porcine transferrin and exhibits species-specific binding in competitive ELISAs. Congo Red and hemin are able to bind this protein, thereby inhibiting the transferrin binding activity. Southern and Western blot analysis shows that this, or a related protein is also likely present in A. pleuropneumoniae serotypes 2, 3, 4, 8, 9, 10 and 11 in addition to serotype 7. A functionally related protein is present in serotypes 1, 5 and 12. The 60 kDa tranferrin binding protein is effective in protecting pigs against A. pleuropneumoniae infections. The presence of this protein in culture supernatants and its absence from purified outer membranes indicates that it is different from the iron regulated outer membrane proteins previously described by Deneer and Potter (Deneer, H.G., and Potter, A.A., Infect. Immun. (1989) 57:798-804).

The gene encoding the A. pleuropneumoniae serotype 7 60 kDa transferrin binding protein has been isolated and the sequence is depicted in Figure 1. The nucleotide sequence including the structural gene and flanking regions consists of approximately 2696 base pairs. The open reading frame codes for a protein having approximately 547 amino acids. The putative amino acid sequence of the 60 kDa protein is also depicted in Figure 1. The recombinantly produced protein is able

or it is not been

5

10

15

20

25

30

to protect pigs from subsequent challenge with A. pleuropneumoniae.

The gene encoding an A. pleuropneumoniae serotype 5 transferrin binding protein has also been identified and cloned. This gene was cloned by screening 5 an A. pleuropneunomiae serotype 5 genomic library with DNA probes from a plasmid which encodes the serotype 7 60 kDa transferrin binding protein (thus suggesting at least partial homology to this protein). When transformed into E. coli HB101, the recombinant plasmid expressing the 10 serotype 5 transferrin binding protein gene produced a polypeptide of approximately 62 kDa which reacted with convalescent serum from an A. pleuropneumoniae serotype 5-infected pig. The serotype 5 recombinant transferrin binding protein is also able to protect pigs from 15 subsequent challenge with A. pleuropneumoniae, as described further below.

A. pleuropneumoniae serotype 1 has also been found to possess a protein which shows 58.3% homology with the serotype 7 60 kDa transferrin binding protein (Figure 3). The nucleotide sequence and deduced amino acid sequence of the serotype 1 transferrin binding protein is shown in Figure 2. The nucleotide sequence including the structural gene and flanking sequences consists of approximately 1903 base pairs. The open reading frame codes for a protein having about 593 amino acids. This protein has a molecular mass of approximately 65 kDa, as determined by SDS PAGE.

As is apparent, the transferrin binding
proteins appear to perform the same function (iron
scavenging) and exhibit homology between serotypes.
Vaccination with one serotype does not always provide
cross-protection against another serotype. However, when
these transferrin binding proteins are combined with

20

25

10

15

20

25

other subunit antigens, as d scribed below, crossprotection against clinical symptoms becomes possible.

It has also been found that A. pleuropneumoniae serotype 7 possesses at least one cytolysin with protective capability. This cytolysin has a molecular mass of approximately 103 kDa, as determined by SDS-PAGE. The gene for this cytolysin has been cloned and a partial nucleotide sequence determined (Figure 4). The partial sequence shows identity with part of the sequence determined for a cytolysin isolated from A. pleuropneumoniae serotype 5 (Chang, Y.F., et al., DNA (1989) 8:635-647). A carboxy-terminal fragment of this cytolysin, containing 70% of the protein, has been found protective in an experimental pig model.

A. pleuropneumoniae serotypes also possess another protective protein, designated APP4, having a molecular mass of approximately 60 kDa. The genes encoding the proteins from serotypes 1 and 5, respectively, have been cloned. A restriction endonuclease cleavage map for a recombinant plasmid coding for recombinant A. pleuropneumoniae serotype 1 APP4 (rAPP4) is shown in Figure 6.1. The gene coding a serotype 5 homolog of APP4 has been cloned from a library screened with DNA probes from the above plasmid. Both the serotype 5 and serotype 1 APP4 proteins afford protection in pigs from a subsequent challenge with A. pleuropneumoniae. Other APP4 proteins useful in the present vaccines include immunogenic APP4 polypeptides from additional A. pleuropneumoniae serotypes.

The described proteins, or immunogenic fragments thereof, or cell free extracts including the same, can be used either alone or in combination vaccine compositions. Such compositions can contain any combination of the described antigens, such as one or more A. pleuropneumoniae transferrin binding proteins

and/or one or more A. pleuropneumoniae cytolysins and/or one or more A. pleuropneumoniae APP4s. Combination vaccines containing antigens from more than one serotype will provide broad spectrum protection. However, since it has been found that there is little cross-protection 5 against heterologous serotypes when single antigens are used, for best results, serotype 7 antigens should be used for protection against A. pleuropneumoniae serotype 7 infections, serotype 1 antigens for protection against serotype 1 infections, serotype 5 antigens for protection 10 against serotype 5 infections, and so on. Furthermore, based on genetic and antigenic differences of the 60 kDa proteins in strains studied, as well as the presence of two different cytolysins in certain serotypes (described further below), vaccines containing more than one of the 15 cytolysins as well as the serotype specific 60 kDa proteins are particularly attractive for providing crossprotection against clinical symptoms.

employed, the subunit antigen can be a single polypeptide encoding several epitopes from just one of the A. pleuropneumoniae proteins or several epitopes from more than one of the proteins (e.g., a fusion protein). Synthetic and recombinant subunit antigens can also comprise two or more discrete polypeptides encoding different epitopes.

The above described antigens can be produced by a variety of methods. Specifically, the antigens can be isolated directly from A. pleuropneumoniae, as described below. Alternatively, the antigens can be recombinantly produced as described herein. The proteins can also be synthesized, based on the described amino acid sequences, using techniques well known in the art.

For example, the antigens can be isolated from bacteria which express the same. This is generally

WO 93/08283 PCT/CA92/00460

accomplished by first preparing a crude extract which lacks cellular components and several extraneous proteins. The desired antigens can then be further purified i.e. by column chromatography, HPLC, immunoadsorbent techniques or other conventional methods well known in the art.

5

10

15

20

25

30

35

Purification of the above proteins as described herein permits the sequencing of the same by any of the various methods known to those skilled in the art. For example, the amino acid sequences of the subject proteins can be determined from the purified proteins by repetitive cycles of Edman degradation, followed by amino acid analysis by HPLC. Other methods of amino acid sequencing are also known in the art. Furthermore, fragments of the proteins can be tested for biological activity and active fragments, as described above, used in compositions in lieu of the entire protein.

Once the amino acid sequences are determined, oligonucleotide probes which contain the codons for a portion of the determined amino acid sequences can be prepared and used to screen DNA libraries for genes encoding the subject proteins. The basic strategies for preparing oligonucleotide probes and DNA libraries, as well as their screening by nucleic acid hybridization, are well known to those of ordinary skill in the art.

See, e.g., DNA Cloning: Vol. I, supra; Nucleic Acid Hybridization, supra; Oligonucleotide Synthesis, supra; T. Maniatis et al., supra.

First, a DNA library is prepared. The library can consist of genomic DNA from A. pleuropneumoniae.

Once the library is constructed, oligonucleotides to probe the library are prepared and used to isolate the gene encoding the desired protein. The oligonucleotides are synthesized by any appropriate method. The particular nucleotide sequences selected are chosen so as

35

to correspond to the codons encoding a known amino acid sequence from the desired protein. Since the genetic code is d generate, it will often be necessary to synthesize several olig nucleotides to cover all, or a reasonable number, of the possible nucleotide sequences which encode a particular region of the protein. it is generally preferred in selecting a region upon which to base the probes, that the region not contain amino acids whose codons are highly degenerate. certain circumstances, one of skill in the art may find 10 it desirable to prepare probes that are fairly long, and/or encompass regions of the amino acid sequence which would have a high degree of redundancy in corresponding nucleic acid sequences, particularly if this lengthy and/or redundant region is highly characteristic of the 15 protein of interest. It may also be desirable to use two probes (or sets of probes), each to different regions of the gene, in a single hybridization experiment. Automated oligonucleotide synthesis has made the preparation of large families of probes relatively straight-20 forward. While the exact length of the probe employed is not critical, generally it is recognized in the art that probes from about 14 to about 20 base pairs are usually effective. Longer probes of about 25 to about 60 base pairs are also used. 25

with a marker, such as a radionucleotide or biotin using standard procedures. The labeled set of probes is then used in the screening step, which consists of allowing the single-stranded probe to hybridize to isolated ssDNA from the library, according to standard techniques. Either stringent or permissive hybridization conditions could be appropriate, depending upon several factors, such as the length of the probe and whether the probe is derived from the same species as the library, or an

10

15

.20

ί.

evolutionarily close r distant species. The selection of the appropriate conditions is within the skill of the art. See, generally, Nucleic Acid hybridization, supra. The basic requirement is that hybridization conditions be of sufficient stringency so that selective hybridization occurs; i.e., hybridization is due to a sufficient degree of nucleic acid homology (e.g., at least about 65%), as opposed to nonspecific binding. Once a clone from the screened library has been identified by positive hybridization, it can be confirmed by restriction enzyme analysis and DNA sequencing that the particular insert contains a gene coding for the desired protein.

Alternatively, DNA sequences encoding the proteins of interest can be prepared synthetically rather than cloned. The DNA sequence can be designed with the appropriate codons for the particular amino acid sequence. In general, one will select preferred codons for the intended host if the sequence will be used for expression. The complete sequence is assembled from overlapping oligonucleotides prepared by standard methods and assembled into a complete coding sequence. See, e.g., Edge (1981) Nature 292:756; Nambair et al. (1984) Science 223:1299; Jay et al. (1984) J. Biol. Chem. 259:6311.

Once coding sequences for the desired proteins have been prepared or isolated, they can be cloned into any suitable vector or replicon. Numerous cloning vectors are known to those of skill in the art, and the selection of an appropriate cloning vector is a matter of choice. Examples of recombinant DNA vectors for cloning and host cells which they can transform include the bacteriophage \(\lambda\) (E. coli), pBR322 (E. coli), pACYC177 (E. coli), pKT230 (gram-negative bacteria), pGV1106 (gram-negative bacteria), pLAFR1 (gram-negative bacteria), bacteria), pME290 (non-E. coli gram-negative bacteria),

25

30

35

pHV14 (E. coli and Bacillus subtilis), pBD9 (Bacillus), pIJ61 (Streptomyces), pUC6 (Streptomyces), YIp5 (Saccharomyces), YCp19 (Saccharomyces) and bovine papilloma virus (mammalian cells). See, generally, DNA Cloning: Vols. I & II, supra; T. Maniatis et al., supra; B. Perbal, supra.

The gene can be placed under the control of a promoter, ribosome binding site (for bacterial expression) and, optionally, an operator (collectively referred to herein as "control" elements), so that the 10 DNA sequence encoding the desired protein is transcribed into RNA in the host cell transformed by a vector containing this expression construction. The coding sequence may or may not contain a signal peptide or leader sequence. The subunit antigens of the present 15 invention can be expressed using, for example, the E. coli tac promoter or the protein A gene (spa) promoter and signal sequence. Signal sequences can be removed by the bacterial host in post-translational processing. See, e.g., U.S. Patent Nos. 4,431,739; 4,425,437; 20 4,338,397.

In addition to control sequences, it may be desirable to add regulatory sequences which allow for regulation of the expression of the protein sequences relative to the growth of the host cell. Regulatory sequences are known to those of skill in the art, and examples include those which cause the expression of a gene to be turned on or off in response to a chemical or physical stimulus, including the presence of a regulatory compound. Other types of regulatory elements may also be present in the vector, for example, enhancer sequences.

An expression vector is constructed so that the particular coding sequence is located in the vector with the appropriate r gulatory sequences, the positioning and orientation of the coding sequence with respect to the

WO 93/08283 PCT/CA92/00460

5

10

15

20

25

30

35

control sequences being such that the coding sequence is transcribed under the "control" of the control sequences (i.e., RNA polymerase which binds to the DNA molecule at the control sequences transcribes the coding sequence).

the control sequences transcribes the coding sequence). Modification of the sequences encoding the particular antigen of interest may be desirable to achieve this end. For example, in some cases it may be necessary to modify the sequence so that it may be attached to the control sequences with the appropriate orientation; i.e., to maintain the reading frame. The control sequences and other regulatory sequences may be ligated to the coding sequence prior to insertion into a vector, such as the cloning vectors described above. Alternatively, the coding sequence can be cloned directly into an expression vector which already contains the control sequences and

In some cases, it may be desirable to add sequences which cause the secretion of the polypeptide from the host organism, with subsequent cleavage of the secretory signal. It may also be desirable to produce mutants or analogs of the antigens of interest. Mutants or analogs may be prepared by the deletion of a portion of the sequence encoding the protein, by insertion of a sequence, and/or by substitution of one or more nucleotides within the sequence. Techniques for modifying nucleotide sequences, such as site-directed mutagenesis, are well known to those skilled in the art. See, e.g., T. Maniatis et al., supra; DNA Cloning, Vols. I and II, supra; Nucleic Acid Hybridization, supra.

an appropriate restriction site.

A number of procaryotic expression vectors are known in the art. See, e.g., U.S. Patent Nos. 4,440,859; 4,436,815; 4,431,740; 4,431,739; 4,428,941; 4,425,437; 4,418,149; 4,411,994; 4,366,246; 4,342,832; see also U.K. Patent Applications GB 2,121,054; GB 2,008,123; GB 2,007,675; and European Patent Application 103,395.

10

15

20

25

30

35

Yeast expression vectors are also known in the art. See, e.g., U.S. Patent Nos. 4,446,235; 4,443,539; 4,430,428; see also European Patent Applications 103,409; 100,561; 96,491.

Depending on the expression system and host selected, the proteins of the present invention are produced by growing host cells transformed by an expression vector described above under conditions whereby the protein of interest is expressed. The protein is then isolated from the host cells and purified. If the expression system secretes the protein into growth media, the protein can be purified directly from the media. If the protein is not secreted, it is isolated from cell lysates. The selection of the appropriate growth conditions and recovery methods are within the skill of the art.

An alternative method to identify proteins of the present invention is by constructing gene libraries, using the resulting clones to transform *E. coli* and pooling and screening individual colonies using polyclonal serum or monoclonal antibodies to the desired antigen.

The proteins of the present invention may also be produced by chemical synthesis such as solid phase peptide synthesis, using known amino acid sequences or amino acid sequences derived from the DNA sequence of the genes of interest. Such methods are known to those skilled in the art. Chemical synthesis of peptides may be preferable if a small fragment of the antigen in question is capable of raising an immunological response in the subject of interest.

The proteins of the present invention or their fragments can be used to produce antibodies, both polyclonal and monoclonal. If polyclonal antibodies are desired, a selected mammal, (e.g., mouse, rabbit, goat,

horse, etc.) is immunized with an antigen of the present invention, or its fragment, or a mutated antigen. Serum from the immunized animal is collected and treated according to known procedures. If serum containing polyclonal antibodies is used, the polyclonal antibodies can be purified by immunoaffinity chromatography, using known procedures.

Monoclonal antibodies to the proteins of the present invention, and to the fragments thereof, can also 10 be readily produced by one skilled in the art. general methodology for making monoclonal antibodies by using hybridoma technology is well known. Immortal antibody-producing cell lines can be created by cell fusion, and also by other techniques such as direct 15 transformation of B lymphocytes with oncogenic DNA, or transfection with Epstein-Barr virus. See, e.g., M. Schreier et al., Hybridoma Techniques (1980); Hammerling et al., Monoclonal Antibodies and T-cell Hybridomas (1981); Kennett et al., Monoclonal Antibodies (1980); see 20 also U.S. Patent Nos. 4,341,761; 4,399,121; 4,427,783; 4,444,887; 4,452,570; 4,466,917; 4,472,500, 4,491,632; and 4,493,890. Panels of monoclonal antibodies produced against the antigen of interest, or fragment thereof, can be screened for various properties; i.e., for isotype, epitope, affinity, etc. Monoclonal antibodies 25 are useful in purification, using immunoaffinity techniques, of the individual antigens which they are directed against.

Animals can be immunized with the compositions
of the present invention by administration of the protein
of interest, or a fragment thereof, or an analog thereof.
If the fragment or analog of the protein is used, it will
include the amino acid sequence of an epitope which
interacts with the immune system to immunize the animal
to that and structurally similar epitopes. If

Programme .

30

35

and the second

combinations of the described antigens are used, the antigens can be administered together or provided as parate entities.

Prior to immunization, it may be desirable to increase the immunogenicity of the particular protein, or 5 an analog of the protein, or particularly fragments of the protein. This can be accomplished in any one of several ways known to those of skill in the art. example, the antigenic peptide may be administered linked to a carrier. For example, a fragment may be conjugated 10 with a macromolecular carrier. Suitable carriers are typically large, slowly metabolized macromolecules such as: proteins; polysaccharides, such as sepharose, agarose, cellulose, cellulose beads and the like; polymeric amino acids such as polyglutamic acid, 15 polylysine, and the like; amino acid copolymers; and inactive virus particles. Especially useful protein substrates are serum albumins, keyhole limpet hemocyanin, immunoglobulin molecules, thyroglobulin, ovalbumin, and other proteins well known to those skilled in the art. 20

The protein substrates may be used in their native form or their functional group content may be modified by, for example, succinylation of lysine residues or reaction with Cys-thiolactone. A sulfhydryl group may also be incorporated into the carrier (or antigen) by, for example, reaction of amino functions with 2-iminothiolane or the N-hydroxysuccinimide ester of 3-(4-dithiopyridyl propionate. Suitable carriers may also be modified to incorporate spacer arms (such as hexamethylene diamine or other bifunctional molecules of similar size) for attachment of peptides.

Other suitable carriers for the proteins of the present invention include VP6 polypeptides of rotaviruses, or functional fragments thereof, as disclosed in U.S. Patent No. 5,071,651, and incorporated

10

25

30

35

herein by reference. Also useful is a fusion product of a viral protein and the subject immunogens made by methods disclosed in U.S. Patent No. 4,722,840. other suitable carriers include cells, such as lymphocytes, since presentation in this form mimics the natural mode of presentation in the subject, which gives rise to the immunized state. Alternatively, the proteins of the present invention may be coupled to erythrocytes, preferably the subject's own erythrocytes. Methods of coupling peptides to proteins or cells are known to those of skill in the art.

The novel proteins of the instant invention can also be administered via a carrier virus which expresses the same. Carrier viruses which will find use with the 15 instant invention include but are not limited to the vaccinia and other pox viruses, adenovirus, and herpes virus. By way of example, vaccinia virus recombinants expressing the novel proteins can be constructed as follows. The DNA encoding the particular protein is 20 first inserted into an appropriate vector so that it is adjacent to a vaccinia promoter and flanking vaccinia DNA sequences, such as the sequence encoding thymidine kinase This vector is then used to transfect cells which are simultaneously infected with vaccinia. Homologous recombination serves to insert the vaccinia promoter plus the gene encoding the instant protein into the viral genome. The resulting TK recombinant can be selected by culturing the cells in the presence of 5bromodeoxyuridine and picking viral plaques resistant thereto.

It is also possible to immunize a subject with a protein of the present invention, or a protective fragment thereof, or an analog thereof, which is administered alone, or mixed with a pharmaceutically acceptable vehicle or excipient. Typically, vaccines are

25

30

35

prepared as inj ctables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. The preparation may also be emulsified or the active ingredient encapsulated in liposome vehicles. The active immunogenic ingredient is often mixed with vehicles containing excipients which are pharmaceutically acceptable and compatible with the active ingredient. Suitable vehicles are, for example,

water, saline, dextrose, glycerol, ethanol, or the like, and combinations thereof. In addition, if desired, the vehicle may contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents, or adjuvants which enhance the effectiveness of the vaccine. Adjuvants may include for example, muramyl dipeptides, avridine, aluminum hydroxide, oils, saponins and other substances known in the art. Actual methods of preparing such dosage forms are known, or will be appar-

ent, to those skilled in the art. See, e.g., Remington's

Pharmaceutical Sciences, Mack Publishing Company, Easton,

Pennsylvania, 15th edition, 1975. The composition or

formulation to be administered will, in any event,

contain a quantity of the protein adequate to achieve the

desired immunized state in the individual being treated.

Additional vaccine formulations which are suitable for other modes of administration include suppositories and, in some cases, aerosol, intranasal, oral formulations, and sustained release formulations. For suppositories, the vehicle composition will include traditional binders and carriers, such as, polyalkaline glycols, or triglycerides. Such suppositories may be formed from mixtures containing the active ingredient in the range of about 0.5% to about 10% (w/w), preferably about 1% to about 2%. Oral vehicles include such normally employed excipients as, for example,

10

15

30

35

pharmaceutical grades of mannitol, lactose, starch, magnesium, stearat, sodium saccharin cellulose, magnesium carbonate, and the like. These oral vaccine compositions may be taken in the form of solutions, suspensions, tablets, pills, capsules, sustained release formulations, or powders, and contain from about 10% to about 95% of the active ingredient, preferably about 25% to about 70%.

Intranasal formulations will usually include vehicles that neither cause irritation to the nasal mucosa nor significantly disturb ciliary function. Diluents such as water, aqueous saline or other known substances can be employed with the subject invention. The nasal formulations may also contain preservatives such as, but not limited to, chlorobutanol and benzalkonium chloride. A surfactant may be present to enhance absorption of the subject proteins by the nasal mucosa.

are made by incorporating the protein into carriers or vehicles such as liposomes, nonresorbable impermeable polymers such as ethylenevinyl acetate copolymers and Hytrel® copolymers, swellable polymers such as hydrogels, or resorbable polymers such as collagen and certain polyacids or polyesters such as those used to make resorbable sutures. The proteins can also be delivered using implanted mini-pumps, well known in the art.

Furthermore, the proteins (or complexes thereof) may be formulated into vaccine compositions in either neutral or salt forms. Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the active polypeptides) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and

10

15

20

25

30

the like. Salts formed from free carboxyl groups may also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, histidine, procaine, and the like.

procaine, and the like. To immunize a subject, the polypeptide of interest, or an immunologically active fragment thereof, is administered parenterally, usually by intramuscular injection in an appropriate vehicle. Other modes of administration, however, such as subcutaneous, intravenous injection and intranasal delivery, are also Injectable vaccine formulations will contain an effective amount of the active ingredient in a vehicle, the exact amount being readily determined by one skilled in the art. The active ingredient may typically range from about 1% to about 95% (w/w) of the composition, or even higher or lower if appropriate. quantity to be administered depends on the animal to be treated, the capacity of the animal's immune system to synthesize antibodies, and the degree of protection desired. With the present vaccine formulations, 5 μg to 1 mg of active ingredient, more preferably 10 μ g to 500 μ g, of active ingredient, should be adequate to raise an immunological response when a dose of 1 to 2 ml of vaccine per animal is administered. Other effective dosages can be readily established by one of ordinary skill in the art through routine trials establishing dose response curves. The subject is immunized by administration of the particular antigen or fragment thereof, or analog thereof, in at least one dose, and preferably two doses. Moreover, the animal may be

administered as many doses as is required to maintain a

state of immunity to pneumonia.

An alternative route of administration involves gene therapy or nucleic acid immunization. nucleotide sequences (and accompanying regulatory elements) encoding the subject proteins can be 5 administered directly to a subject for in vivo translation thereof. Alternatively, gene transfer can be accomplished by transfecting the subject's cells or tissues ex vivo and reintroducing the transformed material into the host. DNA can be directly introduced into the host organism, i.e. by injection (see 10 International Publication No. WO/90/11092; and Wolff et al., <u>Science</u> (1990) <u>247</u>:1465-1468). Liposome-mediated gene transfer can also be accomplished using known methods. See, e.g., Hazinski et al., Am. J. Respir. Cell 15 Mol. Biol. (1991) 4:206-209; Brigham et al., Am. J. Med. Sci. (1989) 298:278-281; Canonico et al., Clin. Res. (1991) 39:219A; and Nabel et al., Science (1990) 249:1285-1288. Targeting agents, such as antibodies directed against surface antigens expressed on specific 20 cell types, can be covalently conjugated to the liposomal surface so that the nucleic acid can be delivered to specific tissues and cells susceptible to A. pleuropneumoniae infection.

Below are examples of specific embodiments for carrying out the present invention. The examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way.

Deposits of Strains Useful in Practicing the Invention

A deposit of biologically pure cultures of the following strains was made with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland.

The accession number indicated was assigned after successful viability testing, and the requisite fees were

paid. Access to said cultures will be available during pendency of the patent application to on det rmined by the Commissioner to be ntitled th reto und r 37 CFR 1.14 and 35 USC 122. All restriction on availability of said cultures to the public will be irrevocably removed upon the granting of a patent based upon the application.

Moreover, the designated deposits will be maintained for a period of thirty (30) years from the date of deposit, or for five (5) years after the last request for the

deposit; or for the enforceable life of the U.S. patent, whichever is longer. Should a culture become nonviable or be inadvertently destroyed, or, in the case of plasmid-containing strains, lose its plasmid, it will be replaced with a viable culture(s) of the same taxonomic description.

These deposits are provided merely as a convenience to those of skill in the art, and are not an admission that a deposit is required under 35 USC §112. The nucleic acid sequences of these plasmids, as well as the amino sequences of the polypeptides encoded thereby, are incorporated herein by reference and are controlling in the event of any conflict with the description herein. A license may be required to make, use, or sell the deposited materials, and no such license is hereby granted.

20

25

WO 93/08283 PCT/CA92/00460

-35-

	Strain	<u>Deposit Date</u>	ATCC No.
	pTF37/El (in E. coli)	10/19/91	68823
	pTF205/E1 (in E. coli)	10/19/91	68821
5	pTF205/E2 (in E. coli)	10/19/91	68822
	pTF213/E6 (in E. coli)	10/8/92	69084
	pCY76/503 (in E. coli)	10/19/91	68820
	p#4-213-84 (in E. coli)	10/8/92	69082
	prAPP4 (in E. coli)	4/7/92	68955
10	A. pleuropneumoniae serotype 7 strain AP37	10/19/91	55242

C. Experimental

15

20

25

35

Materials and Methods

Enzymes were purchased from commercial sources, and used according to the manufacturers' directions. Radionucleotides and nitrocellulose filters were also purchased from commercial sources.

In the cloning of DNA fragments, except where noted, all DNA manipulations were done according to standard procedures. See Sambrook et al., supra. Restriction enzymes, T₄ DNA ligase, E. coli, DNA polymerase I, Klenow fragment, and other biological reagents were purchased from commercial suppliers and used according to the manufacturers' directions. Double stranded DNA fragments were separated on agarose gels.

30 Bacterial Strains, Plasmids and Media

A. pleuropneumoniae serotype 7 strain AP205 was a Nebraska clinical isolate obtained from M.L. Chepok, Modern Veterinary Products, Omaha, Nebraska. A. pleuropneumoniae serotype 1 strain AP37, A. pleuropneumoniae serotype 5 strain AP213 and A.

pleuropneumoniae serotype 7 strain AP76, were isolated from the lungs of diseased pigs giv n to the Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada. A. pleuropneumoniae strains were field isolates from 5 herds in Saskatchewan. The E. coli strain HB101 (hsdM, hsdR, recA) was used in all transformations using plasmid DNA. E. coli strains NM538 (supF, hsdR) and NM539 (supF, hsdR, P2cox) served as hosts for the bacteriophage \lambda library. The plasmids pGH432 and pGH433 are expression 10 vectors containing a tac promoter, a translational start site with restriction enzyme sites allowing ligation in all three reading frames followed by stop codons in all reading frames.

A. pleuropneumoniae strains were grown on PPLO medium (Difco Laboratories, Detroit, MI) supplemented with 1% IsoVitalex (BBL Microbiology Systems, Becton Dickinson & Co., Cockeysville, MD 21030). Plate cultures were incubated in a CO₂-enriched (5%) atmosphere at 37°C.

Liquid cultures were grown with continuous shaking at 37°C without CO₂ enrichment.

Iron restriction was obtained by adding 2,2 dipyridyl to a final concentration of 100 µmol. Heat stress was induced by transferring cultures to 45°C for 2 hours. Ethanol stress was exerted by the addition of 10% (vol/vol final concentration) of absolute ethanol to cultures in mid log phase. Oxidative stress was induced by the addition of 1% (vol/vol final concentration) of 30% H₂O₂ to the cultures. *E. coli* transformants were grown in Luria medium (Maniatis, T., et al., Molecular Cloning: A Laboratory Manual (1982) Cold Spring Harbor Laboratory, Cold Spring Harbor, NY) supplemented with ampicillin (100 mg/l).

25

15

20

25

hydrochloride.

the Control of the Control

Preparation and Analysis of Culture Supernatants, Outer Membranes and Protein Aggregates.

Cultur supernatants were mixed with two volumes of absolute ethanol and kept at -20°C for 1 h. Precipitates were recovered by centrifugation and 5 resuspended in water. Outer membranes were prepared by sarkosyl solubilization as previously described (Deneer, H.G., and Potter, A.A., Infect. Immun. (1989) 57:798-804). For the preparation of protein aggregates, broth cultures (50 ml) in mid log phase (OD660 of 0.6) were induced by the addition of 1 mmol isopropylthiogalactoside (IPTG; final concentration). After 2 hours of vigorous shaking at 37°C, cells were harvested by centrifugation, resuspended in 2 ml of 25% sucrose, 50 mmol Tris/HCl buffer pH 8, and frozen at -70°C. Lysis was achieved by the addition of 5 μ g of lysozyme in 250 mmol Tris/HCl buffer pH 8 (5 min on ice), addition of 10 ml detergent mix (5 parts 20 mmol Tris/HCl buffer pH 8 (5 min on ice), addition of 10 ml detergent mix (5 parts 20 mmol Tris/HCl buffer pH 7.4, 300 mmol NaCl, 2% deoxycholic acid, 2% NP-40, and 4 parts of 100 mmol Tris/HCl buffer pH 8, 50 mmol ethylenediamine tetraacetic acid, 2% Triton X-100), and by sonication. aggregates were harvested by centrifugation for 30 min at 15,000 g. Aggregate protein was resuspended in H₂O to a concentration of 5-10 mg/ml and solubilized by the addition of an equal volume of 7 molar guanidine

Proteins were analyzed by discontinuous sodium 30 dodecylsulfate polyacrylamide gel electrophoresis (SDS PAGE) according to the method of Laemmli (Laemmli, M.K., Nature (1970) 227:680-685). The protein concentration was determined using a modified Lowry protein assay which prevents reaggregation of the protein. Bovine serum 35 albumin (Pierce Chemical Co., Rockford, IL) was used as a

standard. Briefly, samples were taken up in 0.5 ml of 1% sodium dodecyl sulfate (SDS), 0.1 mol NaOH, and 1.5 ml of 0.2 mol Na₂CO₃, 0.07 mol NaKC₄H₄O₆·4H₂O, 0.1 mol NaOH, 0.001 mol CuSO₄·5H₂O wer added. After 15 min incubation at 20°C, 0.15 ml of phenol reagent, diluted 1:2 with distilled water, was added. Samples were incubated at 55°C for 15 min, and the optical density at 660 nm was determined.

Electrophoretic transfer onto nitrocellulose membranes was performed essentially as described by 10 Towbin et al. (Towbin et al., Proc. Natl. Acad. Sci. U.S.A. (1979) 76:4350-4354). Nonspecific binding was blocked by incubation in 0.5% gelatine in washing buffer (150 mmol saline, 30 mmol Tris-HCl, 0.05% Triton-X100). Antibody and alkaline phosphatase conjugate (Kirkegaard & 15 Perry Laboratories, Inc., Gaithersburg, MD) were added in washing buffer, and each incubated for 1 h at room temperature. Blots were developed with a substrate containing 5-bromo-4-chloro-3-indolyl phosphate (BCIP) and nitro blue tetrazolium (NBT); ImmunoSelect, BRL, 20 Gaithersburg, MD) in 100 mmol Tris/HCl buffer pH 9.5, 50 mmol NaCl, 5 mmol MgCl₂.

Preparation of Antisera

10 Company 1941

25 Convalescent serum was obtained as follows.

Pigs were given 10³ A. pleuropneumoniae intranasally and were challenged 2 weeks later with 2 LD50. Serum against the recombinant protein was raised in mice by intraperitoneal injection of 30 μg of solubilized

30 aggregate in complete Freund's adjuvant and a subcutaneous boost with 30 μg protein in incomplete / Freund's adjuvant two weeks later.

10

Iron Compounds

Transferrins from different species were obtained commercially (porcine transferrin from The Binding Site, Birmingham, UK; human and bovine transferrin from Sigma Chemical Co.). Porcine transferrin was iron depleted as described by Mazurier and Spik (Mazurier, J., and G. Spik, Biochim. Biophys. Acta (1980) 629:399-408). The resulting porcine apotransferrin as well as the commercially obtained bovine and human apotransferrins were iron repleted as described by Herrington and Sparling (Herrington, D.A., and F.P. Sparling, Infect. Immun. (1985) 48:248-251).

Transferrin Binding Assays

15 To assess the possible transferrin binding ability of recombinant proteins, a Western blot-like transferrin binding assay was performed essentially as described by Morton and Williams (Morton, D.J., and P. Williams, J. Gen. Microbiol. (1990) 136:927-933). During 20 the entire procedure the temperature was kept below 37°C. Blots were developed using biotinylated transferrin (Biotin-XX-NHS Ester Labeling Kit, Clontech Laboratories, Palo Alto, CA) coupled to streptavidin phosphatase and purified by gel filtration using a G-100 column. 25 order to determine species specificity of transferrin binding, a competitive ELISA was developed. ELISA plates (Immulon 2, Dynatech Laboratories, McLean, Virginia) were coated with 100 μ l of porcine transferrin at a concentration of 100 μ g/ml in carbonate buffer at 4°C 30 over night. All subsequent steps were performed at room temperature. Plates were blocked with 0.5% gelatine in washing buffer. Solubilized protein at a concentration of approximately 5 μ g/ml was incubated in washing buffer for 1 hour with an qual volume of serial two fold 35 dilutions of porcine, bovine, and human transferrin.

Subsequently, 200 μ l of this solution were added to the coated and washed wells and incubated for one hour. The assay was developed using a mouse serum raised against the recombinant protein, an alkaline phosphatase labeled conjugate and p-nitrophenyl phosphate in 1 mol diethanolamine, pH 9.5, 5 mmol MgCl₂ as substrate. The plates were read at 405 nm in a Biorad plate reader, and 50% inhibition values were determined for the various transferring.

10

5

EXAMPLES

Example 1

Fractionation of Hot Saline Extracts

Vaccination of pigs with cell free extracts 15 reduces mortality following experimental challenge. However, the presence of an uncharacterized immunosuppressive component can interfere with the induction of protective immunity in a dose dependent fashion. 20 fore, an attempt was made to remove this component by preparative isoelectrofocusing. Cell free extracts were prepared as follows. Actinobacillus pleuropneumoniae serotype 1 strain AP37 was grown to mid log phase in PPLO broth supplemented with Isovitalex and the bacteria harvested by pelleting cells by centrifugation at 25 8,000 x q for 15 minutes. Cells were resuspended in 1/10 volume of 0.85% sodium chloride and the mixture was shaken with glass beads at 60°C for 1 hour. Cells were removed by centrifugation as described above and the supernatant material filter sterilized. This material 30 was dialyzed against distilled water to remove the sodium chloride, mixed with Biorad ampholytes (pH range 3-11) and loaded in a Rotafor isoelectrofocusing cell. mixture was focused at 12 watts constant power for 4-6 Fractions were pooled into four samples according 35

WO 93/08283 PCT/CA92/00460

-41-

to pH as shown below. This material was used to vaccinate groups of 6 pigs as shown below.

Group 1: Fraction A, pH = 10.4

Group 2: Fraction B, pH = 6.1

Group 3: Fraction C, pH = 5.2

Group 4: Fraction D, pH = 2.4

Group 5: Mixture, Fraction A-D

Group 6: Same as Group 5.

Group 7: Placebo (no antigen)

15

20

25

30

Marcol-52 was used as an adjuvant, and all pigs were boosted with the appropriate vaccine formulation after 3 weeks. After an additional week, all pigs were exposed to an aerosol of Actinobacillus pleuropneumoniae strain AP37 and clinical data plus body temperatures were recorded daily. In addition, serum samples collected at days 0, 21 and 34 of the trial were used to determine the serological response to vaccination by an enzyme linked immunosorbent assay (ELISA). The results are summarized in Figures 8 through 11. Pigs in Groups 1, 4, 5 and 6 all had significantly increased ELISA titers compared to the control group while those in Group 2 and 3 were only marginally better. These results were reflected in the mean clinical scores (Figure 9), mean temperatures (Figure 10) and mean lung scores (Figure 11). those pigs which received Fraction D or the mixture of all four Fractions were protected against experimental challenge. Furthermore, it appeared that these vaccine preparations reduced colonization of the lung, which can be a measure of chronicity.

Each of the above fractions was analyzed by polyacrylamide gel electrophoresis and Western blotting using sera collected from each pig prior to challenge.

35 Fractions A and B contained little protein but a

10

substantial quantity of lipopolysaccharide and lipoprotein. Fraction C contained a small quantity of protein, largely four components with molecular weights ranging from 100,000 to 14,000. Fraction D, which exhibited the greatest protective capacity, had the largest quantity of protein and contained at least 22 different components. However, only 7 proteins were present in significant amounts. Western blots revealed the presence of four strongly reactive proteins in Fractions C and D. These proteins had molecular weights of approximately 20 kDa, 40 kDa, 75 kDa and 100 kDa.

Example 2

Cloning of Genes Coding for Serotype 1 Protective Proteins

15 All restriction enzyme digests were done in T4 DNA polymerase buffer (Maniatis, T., et al., Molecular Cloning: A Laboratory Manual (1982) Cold Spring Harbor Laboratory, Cold Spring Harbor, NY) containing 1 mmol dithiothreitol and 3 mmol spermidine. 20 A. pleuropneumoniae AP37 genomic DNA was prepared as previously described (Stauffer, G.V., et al., Gene (1981) 14:63-72) and partially digested with the restriction endonuclease Sau3AI. Fragments of 3000 to 8000 Bp were isolated by sucrose density gradient centrifugation 25 (Maniatis, supra) and ligated into pGH432 and pGH433 which had been digested with BamHI and/or BglII. ligated DNA was used to transform E. coli strain JM105. The colonies were transferred to nitrocellulose membranes, induced with IPTG and screened for reaction 30 with serum from pigs vaccinated with Fraction D of the hot saline extract (above). Three positive clones which expressed Actinobacillus proteins were selected for further study. The restriction endonuclease maps of the three plasmids are shown in Figure 6. One clone, prAPP4 35

(Figure 6.1), codes for the serotype 1 APP4. Another clone (pTF37/E1, Figure 6.3) codes for a putative serotype 1 transferrin binding pr tein, based n homology with its serotype 7 homolog (see below and Figure 3). 5 The nucleotide sequence of the gene coding for this protein was determined using the chain termination method as described by Sanger, F., et al., Proc. Natl. Acad. Sci. USA (1977) 74:5463-5467. Nested deletions were prepared by exonuclease III treatment, and specific 10 primers were prepared using a Pharmacia Gene Assembler. Sequences were analyzed using the IBI/Pustell program and the Genbank network. The nucleotide sequence and deduced amino acid sequence are depicted in Figure 2.

15

Example 3

Cloning of Actinobacillus pleuropneumoniae
Serotype 7 60 kDa Transferrin Binding Protein

As above, all restriction enzyme digests were done in T4 DNA polymerase buffer (Maniatis, supra) 20 containing 1 mmol dithiothreitol and 3 mmol spermidine. Genomic DNA libraries of A. pleuropneumoniae serotype 7 strain AP205 were prepared as previously described (Stauffer, supra) and partially digested with the restriction endonuclease Sau3AI. Fragments of 1500 to 25 2500 Bp were isolated by sucrose density gradient centrifugation (Maniatis, supra) and ligated into pGH432 and pGH433. E. coli HB101 transformants were replica plated onto nitrocellulose membranes, induced for 2 hours on plates containing 1 mM IPTG and screened for reaction 30 with serum from pigs infected with serotype 7 A. pleuropneumoniae. Positive transformants were replated, induced with IPTG and whole cell proteins were analyzed by Western blotting. A whole cell lysate of A. pleuropneumoniae grown under iron limiting conditions 35 was used as a control.

10

15

20

25

30

35

Of approximately 6000 transformants screened by immunoblotting, 22 reacted with convalescent serum and showed an immun reactive band in the Western blot analysis. One transformant expressed a protein with the same electrophoretic mobility as an A. pleuropneumoniae polypeptide present only under iron limiting growth The plasmid present in this transformant was conditions. designated pTF205/E1 (Figure 7A). The recombinant polypeptide produced by this strain had a molecular weight of 60,000 (Figure 7B) and was produced as inclusion bodies, indicating that it was under the control of the tac promoter. Aggregated protein prepared from pTF205/E2 (a BamHI/BglII deletion derivative of the original plasmid) was used to immunize mice. resulting serum reacted with a single polypeptide in the whole cell lysates and in culture supernatants from A. pleuropneumoniae serotype 7 strain AP205 grown under iron limiting conditions. Outer membranes prepared by sarkosyl solubilization (Deneer, H.G., and Potter, A.A., Infect. Immun. (1989) 57:798-804) of cells grown under iron limiting conditions did not react with the antiserum. Likewise, whole cell lysates, culture supernatants and outer membranes from cells grown in iron replete media did not react with the antibody.

The recombinant protein separated by non-reducing polyacrylamide gel electrophoresis was found to bind alkaline phosphatase-labeled porcine transferrin. This binding was shown to be species specific in a competitive ELISA, where the binding of the solubilized protein to iron replete porcine transferrin could be inhibited completely only by iron replete porcine transferrin. Porcine apotransferrin also inhibited binding, but a higher concentration was necessary. Using human and bovine iron-deplete and -replete transferrins, 50% inhibition could not be obtained even with

concentrations 40 times higher than the inhibitory dose for porcine transferrin. In addition, relatively high concentrations of both hemin and Congo Red could inhibit transferrin-binding of the 60 kDa protein, whereas porcine hemoglobin, EDDA, dipyridyl, and ferric citrate failed to do so (Table 1).

Congo Red and hemin binding by $E.\ coli$ transformants expressing this protein at low levels was detected by supplementing the ampicillin containing Luria agar with 1-10 μ mol IPTG and 0.003% Congo Red or 0.02% hemin.

15

10

20

25

5	the	2000 TO		
10	Affinity of	Values ² [μmol ₁ 0.3	1.8 >12.5 >12.5	6.0
15	Competitive ELISA Showing the Differences in Affinity of the Recombinant 60 kDa Protein Toward Transferring of Warions	50% Inhibition Values ² [\muq/ml] [\munoline] 25 ³ 0.3	150 >1000' >1000'	20 4 25
20	<u>Tal</u> howing the otein Towan	ญ -ญ	F IF ATF	in
25	titive ELISA S nant 60 kDa Pr	Competitive Substances' porcine	porcine aTF human TF/aTF bovine TF/aTF	porcine TF, NH ₂ -terminus bovine hemin Congo Red
30	Compe Recombi	has	porcine transferrin (TF)	
25		Solid Pl Antigen	porcine transfe	

(100 μmol, iron-saturated), Dipyridyl (100 μmol, iron-saturated), and ferric citrate Also tested and completely noninhibitory were porcine hemoglobin (14 μ mol), EDDA

Inhibition values state the concentration of transferrin necessary in the preincubation step in order to obtain an inhibition of 50% in the reaction between recombinant protein and solid phase transferrin.

The value varied between different experiments between 12.5 and 100 $\mu g/ml;$ however, the relative difference in inhibitory activity between the various substances was constant.

This concentration had an inhibitory effect, but it was below 50%.

10

15

Chromosomal DNA was prepared from 27 different clinical isolates of A. pleuropneumoniae belonging to 6 different serotypes digested with the restriction endonucleases BglII and EcoRV, and separated on an agarose gel. This fragment was chosen because the functional activity of the deletion plasmid pTF205/E2 localized the position of the serotype 7 60 kDa gene upstream of the BglII site. A Southern blot analysis using the EcoRV/BglII fragment of pTF205/E1 as a probe detected a fragment identical in size in all of the above A. pleuropneumoniae serotype 2, 4 and 7 strains as well as in one serotype 3 strain. In contrast, none of the serotype 1 and 5 strains reacted with the probe. did the E. coli HB101 and Pasteurella haemolytica controls.

The nucleotide sequence of the gene coding for the transferrin binding protein was determined by the chain termination method as described in Example 2 and is shown in Figure 1.

20

Example 4

Cloning of A. pleuropneumonia Serotype 7 Cytolysin Gene A recombinant plasmid containing the carboxyterminal 70% of the 103 kDa serotype 7 cytolysin gene (cytA) was constructed as follows. A gene library of A. pleuropneumoniae serotype 7 strain AP76 was constructed in the phage vector \$2001. Plagues were screened by hybridization using the Pasteurella haemolytica lktA gene as a probe (see Lo, R.Y.C., et al., Infect. Immun. (1987) 55:1987-1996 for a description of 30 this gene). Positive plaques were purified and a 16 kb EcoRI fragment was subcloned into the plasmid vector pACYC184 (plasmid pCY76/5, Figure 5). A 3.5 kb BglII fragment from pCY76/5 was further subcloned into the 35 BgIII site of the expression vector pGH432 lacI which

7 m . 1961

provides a 5 amino acid leader peptide and an IPTG inducible promoter (pCY76/503, Figure 5). Nucleotide sequence analysis of th fusion site reveal d s quence identity with the cytolysin from A. pleuropneumoniae serotype 5 (Figure 4; Chang, Y.F., et al., DNA (1989) 5 8:635-647). Further analysis of the A. pleuropneumoniae cytolysin type II genes by Southern blotting revealed that the B and D genes are not located immediately downstream from the cyth gene on the Actinobacillus chromosome. This is unusual, as the cytolysin C, A, B 10 and D genes are clustered in the A. pleuropneumoniae cytolysin type I (Frey, J., and Nicolet, J., J. Clin. Microbiol. (1990) 28:232-236), P. haemolytica leukotoxin (Strathdee, C.A. and Lo, R.Y.C., Infect. Immun. (1989) 171:916-928), and the E. coli alpha hemolysin (Welch, 15 R.A. and Pellet, S.A. J. Bacteriol. (1988) 170:1622-1630).

expressed the recombinant cytolysin (CytA) as inclusion
bodies upon induction with IPTG. The protein made up 30%
of the total protein content in the pCY76/503
transformants. Isolated protein aggregates were
estimated to be 75% pure. The resulting protein could be
detected by A. pleuropneumoniae convalescent serum and by
antibodies raised against the A. pleuropneumoniae type 1
cytolysin-containing culture supernatant. Restriction
endonuclease maps of the cytolysin gene and sequence data
are shown in Figures 5 and 4.

30

Burgara Santa

Example 5

Isolation and Characterization of Spontaneous Mutants of th cytA Gene

Spontaneous deletions of the cytA gene from the 5 A. pleuropneumoniae chromosome occur at high frequency (approximately 1/10,000 colonies), as determined by reaction with monospecific antisera against the In order to isolate and characterize the spontaneous mutants, A. pleuropneumoniae strains AP76 and 10 AP205 were subcultured twice from single colonies. independent serial dilutions were made for each strain. and from each approximately 10,000 colonies were plated. After replica-plating onto nitrocellulose, three independent cytolysin-negative colonies were detected by immunoblot and designated AP76 Δ 1, AP205 Δ 1, and AP205 Δ 2. 15 Western blot analysis of whole cell lysates revealed that these colonies lacked the cytolysin whereas the Coomassie blue stained total protein profile appeared to be identical with the wildtype. Southern blot analysis of restricted DNA from AP76 Δ 1 and AP205 Δ 1 with λ CY76/5-20 derived probes revealed that the BglII fragment was absent, although hybridization was observed after using the BglII fragment as a probe. Hybridization with the BglII-EcoRI fragments located on either end of λ CY76/5 25 resulted in the appearance of strong bands in the cytolysin-negative mutants, and the hybridizing EcoRI fragment appeared to be approximately 7 kb smaller than that in the wildtype.

In order to characterize the cytA excision

30 site, a genomic library was prepared from AP76Δ1 and probed with the EcoRI fragment derived from λCY76/5. Several clones were isolated, and initial characterization revealed that one clone had a BamHI-KpnI fragment identical in size to that of λCY76/5. This

35 clone was designated as λCY76Δ1/1. Also, the nucleotide

25

30

35

sequence of the BamHI-KpnI fragment of this clone was identical to the corresponding region of λ CY76/5. of this sequence was present a second time on λ CY76/5 starting 358 bp downstream fr m the end of cytA (Figures 14 and 15). Further analysis showed that cytA is flanked 5 by two identical direct repeats each being 1201 bp in length, and that one repeat is completely conserved in λ CY76/ Δ 1. The sequence flanking the direct repeats located on either site of the cytA gene in $\lambda CY76/5$ is TTAATG---AATATT, and this sequence does not comprise part-10 of an apparent longer reading frame (Figure 16). initial analysis of the repeat sequence revealed that its ends form complementary repeats with 4 mismatches over a length of 26 bp. They also contain one open reading frame going in the opposite direction than cytA. 15 open reading frame is 1038 nucleotides long and preceded by a Shine-Dalgarno consensus sequence.

Example 6

The Protective Capacity of Serotype 7

Recombinant Proteins

E. coli HB101 strains expressing the transferrin binding protein and the 103 kDa cytolysin were grown to mid log phase in 50 ml broth cultures and induced by the addition of 2 mM IPTG. After two hours of vigorous shaking at 37°C, cells were harvested by centrifugation and resuspended in 2 ml 50 mM of Tris-HCl, pH 8, 25% sucrose, and frozen at -70°C. The cell suspension was thawed, 5 μg of lysozyme added and after 5 min on ice, 10 ml of detergent mix was added to lyse cells. The lysed cell suspension was sonicated to reduce viscosity and protein aggregates were harvested by centrifugation for 30 min at 15,000 g. The aggregated protein was resuspended in double distilled water to a concentration of 5-10 mg/ml and solubilized by the

WO 93/08283 PCT/CA92/00460

addition of an equal volume of 7 M guanidine hydrochloride. The solubilized protein was diluted in distilled water to 1 mg/ml and emulsified in Amphigen (Smith-Kline Beecham, Lincoln, NE) with Tween80 (Sigma Chemical Co., St. Louis, MO) and Span (Sigma Chemical Co., St. Louis, MO) using a Polytron homogenizer (Kinematica GmbH, Littau, Switzerland). Each 2 ml dose of vaccine contained Amphigen (100 μ l), Tween80 (28 μ l), Span (12 μ l), guanidine hydrochloride (20 mmol), and protein as indicated below.

5

10

15

20

Trial 1: 48 pigs were randomly assigned to 8 groups and immunized by intramuscular injection in the neck muscle twice (on days 1 and 21) as follows: 2 groups received 25 µg of recombinant CytA, 2 groups received 25 µg of recombinant A. pleuropneumoniae serotype 7 60 kDa protein, 2 groups received both proteins, and 2 groups (unimmunized controls) received the adjuvant only. One set of 4 groups was subsequently challenged on day 32 with A. pleuropneumoniae serotype 1 strain AP37 (4.1 x 10⁵ CFU/ml), the other one with A. pleuropneumoniae serotype 7 strain AP205 (1.4 x 10⁸ CFU/ml).

Trial 2: 24 pigs were randomly assigned to 4 groups, and the groups twice received 0, 12.5, 50, or 25 200 µg recombinant A. pleuropneumoniae serotype 7 60 kDa protein. Subsequently, all groups were challenged with 7 x 108 CFU/ml of A. pleuropneumoniae serotype 7 strain AP205.

Clinical data plus body temperatures were
recorded daily for 3 days post challenge and each animal received a daily average clinical score. The scoring system is defined as follows: 0 - clinically normal;
1 - slight increase in respiratory rate and effort, slight depression; 2 - marked increase in respiratory
rate and effort, marked depression; 3 - severe increase

in respiratory rate and effort, severe depression, mouth breathing and/or cyanotic. Animals with a clinical score f 3 were euthanized.

In addition, serum samples collected at days 0, 21 and 28 of the trial were used to determine the 5 serological response to vaccination by an enzyme linked immunosorbent assay (ELISA). All serum samples were titrated in the ELISA against the recombinant serotype 7 60 kDa transferrin binding protein, the recombinant cytolysin protein, as well as against an 10 A. pleuropneumoniae serotype 7 and serotype 1 extract (Willson, P.J., et al., Can. Vet. J. (1988) 29:583-585). Briefly, plates were coated overnight at 4°C with 100 μ l of a solution containing either 1 μ g/ml of recombinant protein or 10 μ g/ml of extract protein in carbonate 15 Plates were blocked for 1 h at room temperature with 0.5% gelatine in washing buffer (150 mmol saline, 30 mmol Tris-HCl, 0.05% Tween20). An internal standard consisted of a pool of equal volumes of swine antisera to A. pleuropneumoniae serotype 1 and serotype 7 that was 20 diluted 1:100 in washing buffer. Serum dilutions and goat-anti-pig alkaline phosphatase conjugate (Kirkegaard & Perry Laboratories, Inc., Gaithersburg, MD) were each left to incubate for 1 h at room temperature. Plates were developed at 37°C with 100 μ l p-nitrophenyl 25 phosphate (3 g/l) in 1 mol diethanolamine, 50 mmol MgCl2, pH 9.8. The development time was varied for the different coating antigens such that the control serum had a titer between 1:800 and 1:1600 (10 min for the cytolysin, 20 min for the A. pleuropneumoniae serotype 1 30 extract, 45 min for the 60 kDa protein, 90 min for the

A. pleuropneumoniae 7 extract).

The trials were terminated on day 40, and all surviving pigs were euthanized. The injection sites were examined, and lungs were scored to determine the

14 4, 1

percentage of pulmonary ar a affected by lesions using a computerized digitizer. Lungs were cultured to determine the presence of A. pleuropneumoniae and to confirm its serotype.

The significance of the difference in mortality rates among the different groups was determined using a G² likelihood ratio test (Dixon, W.J., et al., BMDP Statistical Software Manual, University of California Press, 1988, pp. 229-273.

10 The results are summarized in Tables 2 and 3. As can be seen, all pigs in Trial 1 developed a strong antibody response to the recombinant antigen with which they had been immunized (Table 2). There was a significant difference (p < 0.03) in mortality among the 15 8 groups. After challenge with A. pleuropneumoniae serotype 7 (strain AP205), the mortality in all immunized groups was lower than in the control group (p < 0.1). Also, the damage to the lungs of immunized pigs may be less extensive than that seen in the control pigs (Table 20 2). This outcome was reflected by a generally milder course of disease shown by lower body temperature and clinical scores during the first 3 days after challenge (Figures 12A and 12B). Pigs that developed an antibody response against both recombinant antigens showed a 25 particularly mild course of disease (Figures 12A and 12B), and damage to their lungs was minimal (Table 2).

All pigs in trial 2 developed a strong antibody response to the 60 kDa protein, and the titers were independent of the dose (Table 3). The immunized groups had a lower mortality than the control group (p = 0.14), and the lesion score of the lungs from pigs in group H was also reduced for immunized pigs (Table 2). These results are supported by the clinical data obtained in the first 3 days after challenge (Figures 13A and 13B).

10

15

20

Both mortality and clinical data do not show an increased efficacy of th higher antigen dose.

In both trials, the injection sites were free of macroscopically detectable alterations. In all pigs, A. pleuropneumoniae was isolated from the lungs 1 week after challenge.

In agreement with previous findings, our results show a lack of protection against a heterologous serotype despite an appreciable serum titer in the animals (Table 2). This lack of cross-protection could be explained by two observations:

- challenge strain not only expressed the 103 kDa cytolysin but, in addition, expressed a serologically distinct 105 kDa cytolysin. This is in accordance with the results of Kamp, E.M, et al., Abstr. CRWAD (1990) 1990:270, who described the presence of these two cytolysins in an A. pleuropneumoniae serotype 1 strain. Therefore, the lack of protection against heterologous challenge could not only be caused by serotype-specific differences of the 103 kDa cytolysin, but it could also indicate that the activity of one cytolysin is sufficient to allow subsequent colonization by the pathogen.
- challenge strains express different 60 kDa proteins.

 Thus, Southern hybridization of chromosomal DNA from the A. pleuropneumoniae serotype 1 challenge strain with the tfbA probe did not result in binding under high stringency conditions, and serum raised against the 60 kDa protein did not react strongly with A. pleuropneumoniae serotype 1 grown under iron-restricted conditions. The observations concerning the genetic and antigenic differences of the 60 kDa proteins in A. pleuropneumoniae serotype 1 and 7 strains, as well as the presence of two different cytolysins in

A. pleuropneumoniae serotype 1 strains, explain th se results. Therefore, thes findings suggest that a vaccine containing at least two serologically and functionally distinct A. pleuropneumoniae cytolysins, as well as serotype-specific 60 kDa proteins, might offer cross-protection against clinical symptoms.

5	ith	Clinical Score		1.75	0.625	1.0	0.25		2.0	1.875	1.5	1.75	
5	inated W	Body Temperature'	6 7)			+,	 +	1)		+	l +	ı +ı	
10	IS Vacc		(serotype	40.7	40.1	40.4	39.7	(serotype	41.4	41.8	41.4	41.2	
	ise of Pigs tein (Trial	rotiter ⁾ 60K-protein	AP 205 (<200	<200	0096	19.200	AP 37 (8	<200	<200	19.200	6400	
15	al Response c 1 60K-protein	Serotiter ⁾ Cytolysin 60K-pro	8train:	<200	2400	<200	800	Strain:	<200	1600	<200	1600	
20	Table 2 ung Damage, and Serological Response of Pigs Vaccinated With Recombinant Cytolysin and 60K-protein (Trial 1)	% Lung Damage' Cyto	A. pleuropneumoniae Challenge	17.5 ± 10.4	14.1 ± 15.5	26.5 ± 26.4	3.7 ± 4.5	ae Challenge	!	ŀ	l	·	
25	<u>Damage, a</u> ombinant	Mortality'	pneumonia	4/6 1	0/6 1	1/6 2	1/6³	A. pleuropneumoniae	4/6	9/9	4/6	4/6	es)
30	Mortality, Lung Rec	Antigen for Vaccination Mo	A. pleure	None	Cytolysin	60 kDa Protein	Cytolysin and 60 kDa Protein	A. pleur	None	Cytolysin	60 kDa Protein	Cytolysin and 60 kDa Protein	<pre>(see next page for notes)</pre>
35		Group		7	7	င	4		S	9	7	∞	u əəs)

and Serological Response of Pigs Vaccinated With 5 Recombinant Cytolysin and 60K-protein (Trial 1) 10 15 Table 2 (cont.) Mortality, Lung Damage,

' Number of pigs that died or were euthanized <u>in extremis</u> over the total in the

' The lung damage was assessed only for pigs surviving until day 7 after challenge. date of 'The serotiter is the median of the individual titers determined at the challenge.

' Arithmetic mean body temperature (c) for survivors on the second day after challenge.

The dead pig did not develop a serotiter against the cytolysin.

30

20

5	<u>Vaccinated</u> <u>Trial 2</u>)	lage' Serotiter ²	1 <200 9 51.200 0 25.600	assessed only for pigs surviving until day 7 after challenge.
10	nse of Pigs	% Lung Damage	8.6 ± 6.1 7.0 ± 4.9 11.9 ± 15.0 7.3 ± 10.2	until day 7 determined
15	Table 3 rological Respo	f Mortality'	3/6 1/6 1/6 0/6	s surviving dual titers
20	Mortality, Lung Damage, and Serological Response of Pigs Vaccinated With Different Amounts of Recombinant 60 kDa Protein (Trial 2)	Amount [µg] of Antigen for Vaccination	None 200 50 12.5	ssessed only for pigs surviving median of the individual titers
25	'. Lung Damad ifferent Amo	1		vas assessed the median
30	Mortality With D	A. <u>pleuropneumoniae</u> Challenge Strain	AP205 (serotype 7)	The serotiter is the challenge.
35	et aller to a transition	C. C.		cha

Example 7

Cloning of A. Pleuropneumoniae Serotype 5 Protective Proteins

A genomic library of A. pleuropneumoniae serotype 5 strain AP213 was prepared by partially 5 digesting chromosomal DNA with Sau3AI and ligating into the BamHI site of the phage vector \2001 as described in Example 4. The library was screened under low stringency conditions with an NsiI-KpnI fragment from plasmid 10 pTF205/E1, which encodes the serotype 7 transferrin binding protein (tfbA), and with probes from the gene encoding the APP4 protein from serotype 1. The DNA from positive plaques of each type was purified and subcloned into expression vectors as follows. For the rAPP4 gene, 15 recombinant λ2001 DNA was partially digested with Sau3AI and ligated into a BamHI-digested pGH432. The ligation mix was transformed into E. coli HB101. For the tfbA gene, an NsiI fragment from the recombinant phage was subcloned into the NsiI site of plasmid pTF205/E1, in 20 front of the serotype 7 tfbA gene. This ligation mix was also transformed into E. coli HB101. This construct was trimmed by digesting the plasmid completely with BamHI and partially with Sau3AI and religating. This eliminated the A. pleuropneumoniae serotype 7 tfbA gene and non-coding DNA at the 3% end of serotype 5 tfbA the 25 gene.

The recombinant plasmids expressing the serotype 5 tfb gene (pTF213/E6) and the rAPP4 gene (p#4-213-84) were shown to produce polypeptides of approximately 62 kDa and 60 kDa, respectively, which reacted with convalescent serum from an A. pleuropneumoniae serotype 5-infected pig. In addition, serum raised against the recombinant tfbA protein reacted specifically with a 62 kDa protein of A. pleuropneumoniae serotype 5.

Example 8

The Protective Capacity of Serotype 5

Recombinant Proteins

Serotype 5 r combinant transferrin binding

protein and recombinant APP4 were prepared as described in Example 7. Vaccines containing these recombinant proteins were prepared by solubilizing the proteins with guanidine hydrochloride and combining the resultant solution with the adjuvant Emulsigen Plus such that each

10 2 ml dose contained 25 μ g protein and 30% adjuvant, as described in Example 6.

described in Example 6 with the recombinant vaccines and three pigs were immunized with a placebo containing adjuvant only. All animals were boosted three weeks later, and after seven days all pigs were challenged with A. pleuropneumoniae serotype 5 strain AP213 (8 x 10⁵ CFU/ml) by aerosol as described in Example 6. Clinical signs of disease were monitored daily for three days post challenge, and one week after challenge. All surviving pigs were euthanized and their lungs were examined for pneumonic lesions.

As shown in Table 4, vaccination with either antigen eliminated mortality associated with A.

25 pleuropneumoniae infection and reduced clinical signs of disease.

15

Table 4

Mortality and Clinical Signs of Disease in Pigs
Vaccinated with Recombinant Serotype 5
Transferrin Binding Protein or APP4

5	Grp	Antigen for Vaccination	Mortality ¹	S	Clinica Score Day 2		% Lung Damage ²
	1 Placebo	Placebo	3/3	1.33	1.58	2.13	ND
	2	Tfb ³	0/4	0.87	0.75	0.38	8.13
10	3	rAPP4	0/4	1.31	1.25	1.37	18.73

Number of pigs that died or were euthanized in extremis over the total in the group.

35

15

Example 9

The Protective Capacity of Serotype 1 APP4 Protein

Serotype 1 recombinant APP4 was prepared as described in Example 7. Vaccines containing the APP4 protein were prepared by solubilizing the protein with guanidine hydrochloride and combining the resultant solution with the adjuvant Amphigen such that each 2 ml dose contained 25 μ g protein and 30% adjuvant, as described in Example 6.

Groups of four pigs were vaccinated as described in Example 6 with the recombinant vaccine and three pigs were immunized with a placebo containing adjuvant only. All animals were boosted three weeks later, and after seven days all pigs were challenged with

The lung score was assessed only for pigs surviving until day 7 after challenge.

³ Transferrin binding protein

A. pleuropneumoniae serotype 1 strain AP37 by aerosol as described in Example 6. Clinical signs of disease wer monitored daily for three days post challenge, and one week after challenge. All surviving pigs were uthanized and their lungs were examined for pneumonic lesions.

As shown in Table 5, vaccination with APP4 reduced mortality associated with A. pleuropneumoniae infection and reduced clinical signs of disease.

10 <u>Table 5</u>

Mortality and Clinical Signs of Disease in Pigs
Vaccinated with Recombinant Serotype 1 APP4

15	Gro	up	Mortality ¹	Cli Day 1			
	1	Placebo	3/5	2.20	1.00	0.75	
	2	APP4	1/6	0.58	1.00	0.30	

¹ Number of pigs that died or were euthanized in extremis over the total in the group.

Thus, subunit vaccines for use against

A. pleuropneumoniae are disclosed, as are methods of making and using the same. Although preferred embodiments of the subject invention have been described in some detail, it is understood that obvious variations can be made without departing from the spirit and the scope of the invention as defined by the appended claims.

CLAIMS

- pharmaceutically acceptable vehicle and a subunit antigen composition, said subunit antigen composition comprising at least one amino acid sequence substantially homologous and functionally equivalent to an immunogenic polypeptide of an Actinobacillus pleuropneumoniae protein, said Actinobacillus pleuropneumoniae protein selected from the group consisting of an Actinobacillus pleuropneumoniae transferrin binding protein, an Actinobacillus pleuropneumoniae cytolysin and an Actinobacillus pleuropneumoniae APP4.
- 2. The vaccine composition of claim 1 wherein said immunogenic polypeptide is an Actinobacillus pleuropneumoniae transferrin binding protein, or an immunogenic fragment thereof.
- 3. The vaccine composition of claim 2 wherein said immunogenic polypeptide is an Actinobacillus pleuropneumoniae serotype 7 transferrin binding protein having a molecular mass of approximately 60 kDa, as determined by SDS PAGE.
 - 4. The vaccine composition of claim 3 wherein said transferrin binding protein has an amino acid sequence substantially as depicted in Figure 1.
- 5. The vaccine composition of claim 2 wherein said immunogenic polypeptide is an Actinobacillus pleuropneumoniae serotype 5 transferrin binding protein having a molecular mass of approximately 62 kDa, as determined by SDS PAGE.

15

20

35

- 6. The vaccine composition of claim 2 wherein said immunogenic polypeptide is an Actinobacillus pleuropneumoniae serotype 1 transferrin binding protein having a molecular mass of approximately 65 kDa, as determined by SDS PAGE.
- 7. The vaccine composition of claim 6 wherein said transferrin binding protein has an amino acid sequence substantially as depicted in Figure 2.

8. The vaccine composition of claim 1 wherein said immunogenic polypeptide is an Actinobacillus pleuropneumoniae cytolysin, or an immunogenic fragment

thereof.

9. The vaccine composition of claim 8 wherein said immunogenic polypeptide is an Actinobacillus pleuropneumoniae serotype 7 cytolysin having a molecular mass of approximately 103 kDa, as determined by SDS PAGE.

10. The vaccine composition of claim 1 wherein said immunogenic polypeptide is an Actinobacillus pleuropneumoniae APP4.

- 25 11. The vaccine composition of claim 10 wherein said immunogenic polypeptide is an Actinobacillus pleuropneumoniae serotype 1 APP4.
- 12. The vaccine composition of claim 10
 30 wherein said immunogenic polypeptide is an Actinobacillus pleuropneumoniae serotype 5 APP4.
 - 13. The vaccine composition of claim 1 wherein said subunit antigen composition comprises an Actinobacillus pleuropneumoniae transferrin binding

WO 93/08283 PCT/CA92/00460

-65-

protein, or an immunogenic fragment thereof, and an Actinobacillus pleuropneumoniae cytolysin, or an immunogenic fragment thereof.

- 5 14. The vaccine composition of claim 13 further comprising an Actinobacillus pleuropneumoniae APP4.
- 15. The vaccine composition of claim 1 further 10 comprising an adjuvant.
- 16. A nucleotide sequence encoding an Actinobacillus pleuropneumoniae transferrin binding protein or a protein substantially homologous and functionally equivalent thereto.
- 17. The nucleotide sequence of claim 16
 wherein said transferrin binding protein comprises an
 amino acid sequence substantially as depicted in Figure
 20 1.
- 18. The nucleotide sequence of claim 16 wherein said transferrin binding protein comprises an amino acid sequence substantially as depicted in Figure 25 2.
- 19. The nucleotide sequence of claim 16 wherein said transferrin binding protein comprises an amino acid sequence substantially as encoded by the
 30 nucleotide sequence present in recombinant plasmid pTF213/E6.

35

20. A nucleotide sequence encoding an Actinobacillus pleuropneumoniae APP4 protein or a protein

substantially homologous and functionally equivalent thereto.

5

21. The nucleotide sequence of claim 20 wherein said APP4 protein comprises an amino acid sequence substantially as encoded by the nucleotide sequence present in recombinant plasmid prAPP4.

10

22. The nucleotide sequence of claim 20 wherein said APP4 protein comprises an amino acid sequence substantially as encoded by the nucleotide sequence present in recombinant plasmid p#4-213-84.

15

20

25

30

- 23. A DNA construct comprising an expression cassette comprised of:
- (a) a DNA coding sequence for a polypeptide containing at least one epitope of an Actinobacillus pleuropneumoniae transferrin binding protein; and
- (b) control sequences that are operably linked to said coding sequence whereby said coding sequence can be transcribed and translated in a host cell, and at least one of said control sequences is heterologous to said coding sequence.
- 24. The DNA construct of claim 23 wherein said DNA coding sequence encodes at least one epitope of an Actinobacillus pleuropneumoniae serotype 7 60 kDa transferrin binding protein.
- 25. The DNA construct of claim 23 wherein said DNA coding sequence encodes at least one epitope of an Actinobacillus pleuropneumoniae serotype 5 62 kDa transferrin binding protein.

26. The DNA construct f claim 23 wherein said DNA coding sequence ncodes at least one epitope of an Actinobacillus pleuropneumoniae serotyp 1 65 kDa transferrin binding protein.

5

. 10

15

20

30

1.5

- 27. A DNA construct comprising an expression cassette comprised of:
- (a) a DNA coding sequence for a polypeptide containing at least one epitope of an Actinobacillus pleuropneumoniae cytolysin; and
- (b) control sequences that are operably linked to said coding sequence whereby said coding sequence can be transcribed and translated in a host cell, and at least one of said control sequences is heterologous to said coding sequence.
- 28. The DNA construct of claim 27 wherein said DNA coding sequence encodes at least one epitope of an Actinobacillus pleuropneumoniae serotype 7 103 kDa cytolysin.
- 29. A DNA construct comprising an expression cassette comprised of:
- (a) a DNA coding sequence for a polypeptide containing at least one epitope of an Actinobacillus pleuropneumoniae APP4; and
 - (b) control sequences that are operably linked to said coding sequence whereby said coding sequence can be transcribed and translated in a host cell, and at least one of said control sequences is heterologous to said coding sequence.
- 30. The DNA construct of claim 29 wherein said DNA coding sequence encodes at least one epitope of an Actinobacillus pleuropneumoniae serotype 1 APP4.

31. The DNA construct of claim 29 wherein said DNA coding sequence encodes at 1 ast one epitope of an Actinobacillus pleuropneumoniae serotype 5 APP4.

5

- 32. A host cell stably transformed by a DNA construct according to any of claims 23-31.
- 33. A method of producing a recombinant polypeptide comprising:
- (a) providing a population of host cells according to claim 32; and
- (b) growing said population of cells under conditions whereby the polypeptide encoded by said expression cassette is expressed.
- 34. A method of treating or preventing pneumonia in swine comprising administering to said swine a therapeutically effective amount of a vaccine composition according to any of claims 1-15.
- 35. Isolated and purified Actinobacillus pleuropneumoniae serotype 7 60 kDa transferrin binding protein.

25

20

15

- 36. Isolated and purified Actinobacillus pleuropneumoniae serotype 5 62 kDa transferrin binding protein.
- 37. Isolated and purified Actinobacillus pleuropneumoniae serotype 1 65 kDa transferrin binding protein.
- 38. Isolated and purified Actinobacillus pleuropneumoniae serotype 1 APP4.

A CONTRACTOR

39. Isolated and purified Actinobacillus pleuropneumoniae serotyp 5 APP4.

FIGURE 1

99 ° ^ 1,4 °	A1	AA al >	TT AA
	620 6AC G CTG C Asp A	710 TAT 6: ATA C. Tyr V.	
T RE T	1	X X X X	8 8 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
+ 25 5 E	# 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1	* 858 *	¥ ∓ ¥ +
- E E E	CT T	0 50 10 10 10 10 10 10 10 10 10 10 10 10 10	
2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	610 AAC 66A TT6 CC1 Asn 61y	700 TT CG(73 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
Bu Tak	+ 14 F	* 25 F	- AR
NA TT A	AA TI A	76 T	M 60 17 C 61
88 37 A	600 # TG # TG	690 TT CA AA 61	780 780 CA AN 11 [1]
1A 6 AT C Bu 6	AA 6 TT C	# CT	⊋C6
A6 T TC A In L	AT G AT C Le 6	E 13	2 2 2
AA C. 11 6	590 6AT A CTA T Asp I	680 # 6AT TI CTA ASP SI	70 A1 10 Sn Si
AA 6 717 C 75 6 1-a	CA 6 CA 6 Fer A	AA 6 TT C ys A	7 GT A Iy A
AA AA AATT T	AA AA AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAA	CA A GT T HE L	AA 6: 77 C
AA 6 TT C ys 6	0 4 AI A 1A 1 5p I 6 FR	0 * AA A TT T ys t 6 FR	0 # A1 A Yr L
A6 A TC T TC T ys L ys L ADIN	580 * TT 6A1 AA CT al Asg	670 # TA AAA TA TTI AT TTI IE LYS	76 AT TA AT TY TY TY TY
# # # # # # # # # # # # # # # # # # #	AA 6 TT C Ys V	ATA TATA SPI	+ TG T
164 6 167 0 18 A	146 A 17C 1 17S L	CA 6 16T C 10 A	AT 6 yr V
A H H	570 	660 * AT CC TA 66 Yr Pr	750 # #GA T #GA T
# 14 6 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	# # # # # # # # # # # # # # # # # # #	# TAC T	# #6 6 70 0 10 0 ys 6
SAT 6	TTT 6	IAT A 1	MA A A 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
# 446 6 77 7 7 7 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4	560 TCT 1 A6A /	650 AAA 1 TTT / Lys 1	740 147 6 178 (
TAC /	AGT 1	f CT / AGA	TCT /
6A6 CTC Slu	EAC Val	A61 Ser	36T 1
BAS CTC CTC Slu (550 CC6 666 Pro	AAT TTA Asn Asn a a	30 + ICT (MGA (
MAA (TTT)	STT CAA VAI I	6 EGT Ala	7. CAC 616 / 1is 9
AGA Ser Ser	AAA I	AAG 17TC TTC Lys	GAA (CTT (
ACA 66C 616 1CT AAA 6A6 6A6 1AC AA6 6A7 61A 6AA ACA 6CC AA6 AAA 6AA 6AA CA6 1TA 666 GAA 1TA ATG GAA CCT 6CT TT6 6G6 TGT CCG CAC AGA TTT CTC CTC ATG TTC CTA CAT CTT TTT CTT TTT CTT GTC AAT CCC CTT AAT TAC CTT GGA CAA AAC CCC Thr 61y Val Ser Lys 61u 61u Tyr Lys Asp Val 61u Thr Ala Lys Lys 61u Lys 61u 61n Leu 61y 61u Leu Met 61u Pro Ala Leu 61y >	540 550 560 570 580 590 600 610 620 # # # # # # # # # # # # # # # # # # #	630 640 650 650 670 680 690 700 710 "	720 730 740 750 760 770 780 780 800 + + + + + + + + + + + + + + + + + +
660 to 613 de 61	540 611 61 CAA CA Val Va	630 CCG 14 66C A1 Pro 1)	72 EAT (CTA (Isp (
ACA 1	AIA Iyr	216 CAC	# NIT (TAA (

1		
	1	
į	_	

			- 4
A TY	AA A	986 33.50 11.50	ATA ()
8 + 14 + 17 + 18 + 18 + 18 + 18 + 18 + 18 + 18	80 AT TA 7 TA 7 Sp F	70 66 6 66 6	TTC AAG
8 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +	6 9 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 IT A AA T Te T	11 66 7 19 9 19 8
• 66.64 • AST 25.64	+ 6 2 3 +		* 99 <u>*</u>
GA G CT A As	A C B C B C B C B C B C B C B C B C B C	A 60	
# # # # # # # # # # # # # # # # # # #	02 + T & 4 E	1060 C AA F TT F TT	1150 4 644 17 CT1
E A H	CAC GIL	99 1	A AA
ATA Tyr	A60 TCE	AG Arg	TC A6
AAT TTA Asn	So ACT ACT TEA	ATT AATT TAA	1140 f CT CAE 16A 6T(3er 61r
CCT CCT 666A Pro	1AC AT6	1050 6	11 TCT A6A Ser
AGA TCT Arg	A A A TITI	ect ceA Ala	6AT CTA Asp
SGA CCT Sly	CAT 6TA His	1040 1050 1060 1070 5	1130 1140 1150 1 * * * * * * * * * * * * * * * * * * *
360 346 110 110	950 AA6 TTC Lys	040 eff eff cA6 val	1130 A6T TCA Ser
A E I	SCA 264 11a	ACA ACA Thr	AAA Bara Bara Bara Bara Bara Bara Bara B
820 830 890 890 870 890 890 870 890 890 890 890 890 890 890 890 890 89	910 920 930 940 950 960 970 980 980 66T AAA CE AAA CE AAA CE AAA CA AAA AAA AAA	1000 1010 1020 1030 1040 1050 1050 1060 1070 ** * * * * * * * * * * * * * * * * *	1090 1100 1110 1120 1130 1140 1150 1160 4
0 4 AT A TA T 5n A 6 FR	0 + AA C 111 8 ys P	10 + 177 18A 11e	20 # 1AC 1TG NS F
85 FA A AT T Bu A ADIN	94 CG A GC 1 Ia L ADIN	103 CG / CG / CG / CB / CADIN	1120 F TAT AAC ATA TTE Tyr Asn
* 51 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	AT GITA C	AAAA TT T ys T	CA 1 IGT A Ier 1
	JA 69 OPE	N6 A TC T Lu L	AA TT AT A
840 T 60 A C6	930	1020 HA 6 FT C FT C	1110 # # 360 6A 50 6 01 51 9 61
C AA 6 TT 6 T	A A6	A T A T D T D T D T D T D T D T D T D T	1
A A6	# 66 GT	- 48 55 E	56 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
1 4 4 F	6 AA	A TC T A6 U Se	S = 1 & + 0
B30 AAA	926	101 A TT T AA T AA	1100 1 A A TT 1 A TT 1 Lys
6AT CTA Asp	6T6 CAC	A TT	# AA A TT TT TT S AS:
166 ACC 1rp	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	667	A TT
A6T A6T TCA Ser	AAA TTT Lys	ACA Thr	1090 # II 6A1 IA CT/
66A CCT 61y	66T CCA 61y	ATG TAC TAC	A6T TCA Ser
ACA 161 1hr	ATA TATE	AAA TTT Lys	606 060 060 060 060
O TAT ATA	AAA Phe	990 \$CA ACT AAA AAA \$CGT TGA TTT TTT \$1a Thr Lys Lys	ACA Thr
810 + ACT T/ TGA A/ Thr T/	900 # AAA TT TTT AA Lys Ph	ACT ACT TEA Thr	10g GCT CGA Ala
810 11A ACT TAT ACA AAT TGA ATA TGT Leu Thr Tyr Thr daga	900 # # # ACT AAA TTT ATA GO TGA TTT AAA TAT CO Thr Lys Phe IIe Gi	990 6CA ACT AAA AAA 6GT TGA TTT TTT Ala Thr Lys Lys	1080 *

AAT TTA Asn >	1260 1270 1280 1290 1300 1310 1320 1320 1340 the state of the state o	1350 1360 1370 1380 1390 1400 1410 1420 1430 TA ATT ATT GAT GGG AMA AMA ATA AMG CTA GCT GGG TTT ACA AMT AMG CAC ACT ATT GAA ATC AMT GGC AMA ACA ATG GTA GCC AMT TAA TAA TAA CTA CCC TTT TTT TAT TGC TCC AMA TCG CCC AMA TGG TTA TTC GTG TGG TGG TTA CAT GGG TTT TGT TAC CAT CGG TTT TGT TAC TAA TAA TAA TAA CTA CCC TTT TTT TGT TAC CAT CGG TTT TAC TAC CAT CGG TTT TGT TAC CAT CGG TTT TAC TAC CAT CGG TTT TAC TAC CAT CGG TTT TAC TAC CGG TTT TAC TAC CAT CGG TTT TAC TAC CGG TTT TAC TAC CAT CGG TTT TAC TAC CGG TTT TAC CGG TTT TAC TAC CGG TTT TAC CGG TTT TAC TAC CGG TTT TAC CGG T
.50 	340 # TCC A66 Ser	430 FIA CAT Vai
12 166 166 11 18 18	f f f f f f f f f f f	ATG TAC
NAT E	6AT CTA Asp	ACA TGT Thr
AC /	30 # 66T CCA 61y	AAA TTT
MAA (MAA) (M	13 AAA Phe	14 66C CC6 61y 61y
ECA CGT Ala	AAT TTA Asn	AAT TTA Asn
TCA AGT	AAC TT6 Asn	ATC TAG
123 AAA Phe	CTT CTT GAA LEW	141 CTT 61u
CAA Val	6AA CTT 61u	ATT TAA TIE
ecc 1993 1993 1993	TCA AGT Ser	ACT TGA Thr
AAA Phe	1310 ATT TAA TAA 11e	1400
CTT CTT CAN CTT	A6C TC6 Ser	AA6 TTC Lys
TCT AGA Ser FRAMI	TTC AAG Phe FRAM	AAT TTA Asn FRAH
AAA TTT TTT Lys	300 AAT ATTA TTA Asn ING	390 + - ACA - Thr - Thr
17 GAC CTG ASP READ	1 ACT TGA Thr	AAA Phe REAI
AAC TTG TTG Asn	TTA AAT Leu	C 66(10 C)
00 ect ceA Ala	e Asp	380 + T A60 A TCO
GTA GTA CAT	12 1 A A I I I A A I I I A A I I E B I I E B I I E B A I	1 68 T
AAAA Phe	A AAAA TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	A 60.
AAA TTT	6 A6	6 CT 6 6 CT 8 CT 8 CT 8 CT 8 CT 8 CT 8 C
1190 1 666 1 CCC	128(T 6C(A C6)	137 A AA II TE e Ly
\$ 60.00 \$ 60.00 \$ 81.00 \$ 81.00	T GA T GA T GA T GA	14 AT 15 11 11 11 11 11 11 11 11 11 11 11 11
A ATE	T AT A TA	A AA
1180 A 6A/ U 61-	1270 i6 AT iC TA g II	1360 4 56 A4 57 Ly Ly
A GAL	+ C6 + 6C + A 6C	ੂ ਹਟ ਲ a ≥ ≺ +
A 66. T 66 S Al	20 eg	AA CI
A AA A	1260 4C AC AC AC 16 TE 5n Th	1350 * * * * * * * * * * * * * * * * * * *
# # # # # # # # # # # # # # # # # # #	AN TI AN I	1350 1360 1370 1380 1390 1400 1410 1420 1430 THE ATT ATT GAT GGG AAA AAA ATA AAG CTA GCT GGG TTT ACA AAT AAG CAC ACT ATT GAA ATC AAT GGC AAA ACA ATG GTA GCC AAT TAA TAA CCC TTT TTT TAT TAC CAT TAA TAA
66 50 10 10	- 623 i	F P →

1	_)
	Y	
	-	/

22 gg ^}	≴	· E 5 3 1	₹
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- + + 66 5 C C C	0 C TC G A6
152 T TT A AA	161 A AA I TT I Ly	170 A A6 I TC I Se	179 1 AC
+ T AG A TC A TC	A AG	A AA	A T T
TAN TAN I A SI	S GT	AAI TT/ Asn	6C1
		- 69 * VY E 5	
E CT CT	A1.4	AAC TTE Asn	666 667 617
23.5	6A1 CTA Asp	66C CC6	ACT Thr
AAA	90 4 TG6 ACC Trp	80 TTT AAA Phe	AAA Phe
664 664 617	15 ACT TGA Thr	16 6AT CTA Asp	CC 4 661 77
+ 660 617 617	# 66T CCA 61y	ETT CAA	AAT ASn
6A6 CTC 61u	ATT TAA 11e	GAT CTA Asp	661 CCA 617
1490 6CA 6CA 6BT Alla	1580 TAT ATA Tyr	670 TTT AAA Phe	760 # 6AT CTA CTA ASP
CAA GTT GBn	AAA TTT	esh CTT Giu	ATT ATT TAB
CAA 61T 61n	TAT ATA Tyr RAME	ACA 161 Thr RAME	AAA TTT Lys Rame
50 1460 1470 1480 1490 1500 1510 1520 4	1570 # 6GA AAC CCT TTG 51y ASD	1640 1650 1660 1670 1680 1690 1700 1700 1690 1700 1700 1690 1700	50 6CA 6CA CGT Ala
14 TTA AAT Leu KEADI	15 66A CCT 61y EADI	16 TAT ATA Tyr Tyr	17 GAT CTA ASP ASP
CAA GTT GIN	66C CCG 61y EN F	66C CCG CCG 61y EN R	6TA CAT Val
0 4 4 61y 61y	AAA 1711 1711 1.05	60 60 60 60 60 60 60 60 60 60 60 60 60 6	0 ACC T66 Thr
AAA Phe	1560 CCA AAV 66T TT Pro Lys	AAA TTT Lys	174 TTT AAA Phe
AAG TTC Lys	ATG TAC TAC Het	AGA TCT Arg	ETG CAC Val
ATG TAC Tet	AAG TTC Lys	GAT CTA Asp	100 66A Pro
460 TAT ATA Tyr	1550 # 6AT T CTA T ASP	640 6AT CTA Asp	730 ************************************
6AA CTT 6Iu	ACA ACA TGT Thr	f 6AT CTA ASp ASp	STA STA CAT /al
CTG GAC Leu	6CA CGT Ala	50.A 56.T 31.a	BGT CA
AAT TTA ASn	1540 # # ACC :A TGG 9 Thr	30 # ACG TBC	20 # #AC (FTG (Sn (
14 AGT TCA Ser Ser	15 CGT GCA Arg	16 301 06A 11a	17. IAA / ITT Ys /
ACA Cys	6AA CTT Slu	STT (SAT # 17A 1
0 1 TGC ACG Cys	6650 6650 613 (F. C. (17)	ITT (IAA ('he A
144 6CC C66 Ala	1530 CAA 66 6TT CC 6In 6I	162 AAC TT6 /	171(
# # # # # # # # # # # # # # # # # # #	1530 1540 1550 1560 1570 1580 1590 1600 1610 * * * * * * * * * * * * * * * * * * *	1620 1630 1640 1650 1660 1670 1680 1690 1690 1700 ** * * * * * * * * * * * * * * * * *	# # # # # # # # # # # # # # # # # # #
	_ _ ·		

<u>~</u> .	_	L CCA	CAA TCA CCA CCG AAG ATA CCA GGT	Ala Val Ser 61y 61y Phe Tyr 61y Pro>	~	_	_	A AA	111	Lys Gln Gln Val Lys Lys>	^ _		2090	•	TGCCGTACAAAGCTATGCAGAACAAGCGGTGCAATTGAACGATGTTTATGTCACAGG	ATT ATTCCTTAAACGTTACTTTTTAATTTAGACTAATCGGAACGAGATCGSAGAACGGCATGTTTCGATACGTCTTGTTCGCCACGTTAACTTGCTACAAATACAGTGTCC		
1880	_	25	23	6	٠.	1970		A A	Ε	<u> </u>	~	İ		*	IA16	ATAC		
	•	ĭ.	3 AT	<u>}</u>	٠ ۔		•	19 4	GTT_CAT	٧ع)	æ	İ	ಜ	•	1191	ACA		
		66T 66C TTC TAT 66T	6 AA	Ē	٦			AAA CAA CAA 6TA AAA	1 61	3	ro		2080	•	ACGA	1901		
1870	•	1 66) W	19	٦	1960	-	A CA	1 611	6	70	:			116A	AACT		-
) A	3	اً ج		•	A A	_=		~		2070	•	GCAA	C611		
		T AGT	A TC	Se	إم			66T 6CA	A CGT	y Al	го	; ,		•	C661	ecc.		
1860	•	A 61	₹	a Va	ام	1950	•	₹ 66	ANA CCA	e 61	~	;	2060	•	CAA6	9119		
		A 60	1 661	I A	70	· 1 - 1 -		11 3	₩ 9	- -	~	;	-2		AGAA	1121		
	•	AAC GAT GTA GCA GTT	TTG CTA CAT	eV di			-	SCT STC	3A CAG	P A	7	! !	_	_	TATEC	ATACE		
8	•	29	[] 9	A C	~	2	•	31 66	5	×	æ	i !	2020		AAGC	1106		
1850		₩ <u></u>	A T	le As	٦	1940		₹ 6.	A	. e	70	i !		•	TACA	ATGT		
	•	₩ T	T A	Ys P	꾶		•	6T 6	ა გ	er V	AME	ı	2040	+	9339	2993		
0	•	CTA GAT ICA GGT AGT ICA CGT TAT GAG AAT GTG AAA	AAG CGA SAT CTA AST CCA TCA AST SCA ATA CTC TTA CAC TTT AAA	1	a_OPEN READING FRAME_	0	•	. 66C AGT 6TA 65T	CIT ITA CCG TCA CAT CCA CGA	1. S	a a OPEN READING FRAME		2	•	_	6AAA		
1840		AT 6	TAC	SA	ADIN	1930		A1 6	₹	Sn 6	ADIN		9		1339	C65A		
	•	AG A	2	A	32		•	AA A		A 1	N 88		2030	_	CITA	6AA1		
	_	A1 6	IA C	, t	, E	_	_	S A	A6T (er 6	P.	!		_	3101	HEA(
1830	-	15	SCA A	19]	~	1920		IAA 1		. 35	70		2020	•	7160	SAAC		
		S	191	jer /	~		-	GGC GGA CAA TTC CAC CAT AAA TCA GAA AAT	AAG GTG GTA TTT	is (æ		•	•	TAGCCTTGCTCTGCTTAGCCTCT	ATCE		
		1.5	1CA .	Ser C	٦			JAC (919	15.1	æ		2	•		ACTA		
1820	•	199	23	33,	٦	1910	•	110	AA6		æ	}	2010	•	TAAATCTGAT	TTA6		
=	•	1CA	AGT	Ser	~	<u></u>		CAA	119	61n	TO					TAAT		
		6AT	CTA	Asp	٦			66A	23	61 y	~	•	2000	•	TGCAATGAAAAATAAA	TAT		
1810	+	CTA	GAT	re Fe	_	1900	•	<u> </u>	CIC GAA CCG CCT	61,	~			•	AAA	E		
81		139	CGA	A a	اً	- 2		E	6AA	Leu Leu	_		1990	•	AATE	TTA(
	•	110 601	AA6	Phe	ٳۜ		•	6A 6		61 u		•	5	•	-	AAAC		
2	•	6AA 66C	93	Asp Glu Gly Phe Ala Leu Asp Ser Gly Ser Ser Arg Tyr Glu Asn Val Lys Phe Asn Asp Val	ٳٞ	۶	•	ACG GCA GCA GAG CTT	CET CET	Ala Ala Glu Leu Gly Gly Gly Gln Phe His His Lys Ser Glu Asn Gly Ser Val Gly Ala Val Phe Gly Ala	æ	1		_	TAA TAAGGAAT	200		
1800		GAA	E	n 19	ٳ	1830		6 CA			æ		1980	_	TAA	ATT.	<u>م</u> ،	^.
	•	6AT	CTA	Asp			•	AC6	160	Ę				•	TAA	EA.	End	i

	2360 * * * CCTCAAGCGGTG	2370 * * 6CCATTAATGA 5GGTAATTACTT	2380 * * * AATAGAATACG	2390 * * * AAAATCTGCG	2400 * * * ITCGATCCAA	2410 4 4 ATTAGTAAK	2420 * * * 36AGCTAGIT: CCTCGATCAA	2430 * * CTTCTGAGT GAAGACTCA/	2440 1166CASTG 14CCSTCACT) 2360 2370 2380 2390 2400 2410 2420 2430 2440 2450 2450 2660 2450 2450 2450 2450 2450 2450 2450 245
2340 2350 * * * * GTCAATATTCACGTTC CAGTTATAAGTGCAAG										
2450 2470	2480 * * AAAGAGGTAAE	2490	2480 2490 2500 2510 2520 2530 2540 2550 2560 2570 * * * * * * * * * * * * * * * * * * *	2510 * * * ATCTTGGGA TAGAACCCT	2520 * * * CTAGATACCA GATCTATGGT	2530 * * * AAAGTGCCT/ TTTCACGSA1	2540 # # ACAGCAGCAA IGTCGTCGTT	2550 # # # AAATCAACA TTTAGTTGT	2560 * * * ATGGTTAAA	2480 2490 2500 2510 2520 2530 2540 2550 2560 2570 * * * * * * * * * * * * * * * * * * *
2580 2590	2600	2610	2620	2630	2640	2650	2660	2670	2680	7690

_			~	~ .	_				~	^ .	_				^	^					_	_
9	ξ -	6AA	3		98	•	I	AAT		<u></u>	230	-	AAT	Ī	Asn		20	2	99	53	61	_
		. ¥ ;	7 E 2				GAA	EI	630				A 66	12	Arg			•	AA T	II	Asn	Ĭ
		6A1	A S	· "			BAA	13	200	٦			AA	Ε	- 75	1			¥	¥	3	٣.
9		. E \$, a	70	٥		JA6	2		•	9	-	¥6	2	=	70	<	> =	. 92	2		7
_		19	5 5	70	=		5	61	- -		28		6A 6	5		-	ř.	3	A 6	TA C	5 6	~
	•	Y 5	- S	, ~ ¦		•	A6 A	<u></u>	75]	~		•	9 %	::	-	~		•	•) -	¥ =	ر ا
		9 č	- w	-			¥	<u>-</u>		ا ا			¥	<u>=</u>	=	~ i			=	A	ي د	~
70	•	. ₹ F	V	-	160	•	¥ 9	= 3	s Lj	~	220	-	79 ₩	2	<u> </u>	-	340	·	. S	A 61	Ξ̈	-
		38 2	3 6				6 AA	□	<u>ر</u>	-			A AC	18	==	~			ຮ	98	4	4
	-	99 5	3 25	~ !		-	A AC	<u> </u>	ਵ	~!		•	¥		, T	-e		•	A	₹	Ξ	_
_	_	10	28	_	_		. 6A	5	<u>=</u>	-	_		ຮ	39	<u>=</u>	70	_		A	₹-	≡	٦
3		<u> </u>	2 5	_ i	150	-	6A6	5	<u></u>	يا م	240	•	90	89	A	_	330	•	GA	<u></u>	3	
	•	29 2	2	_;		-	6A1	€	Asp	_		•	AA6	1	Lys] .		•	6TA	CAT	۲a]	_
		61C	Za.	_]			CAA	E	<u> </u>				AAT	ĭ	Asn	_			AGT	<u>₹</u>	Ser	<u> </u>
20	-	CTT SAA	E 3		4	•	TAT	ATA	Ţ		30	-	CGA	53	Arg	<u></u>	20	-	646	23	19	٦.
		TTT	F.	1	_		101	A6A	Şe	~	.,		993	ည္ဟ	Arg	٦	•	,	CAA	119	5	ື:
	•	CT6 FAC] [E	l		•	AC C	<u> </u>	₹			•	¥	¥	쿲			+	ξ	91	<u>}</u>	į
0	_	92	ja Ze	F		_	Z.	<u>.</u>	<u>E</u>	~; 	_			AA]e (~	_		Ĭ.	AT A	_ a	~
~		134	<u>=</u>	70	13		2		_ 	78	22	_	AA	Ξ	=	~	310	_	AA J	▼ . =	, ,	~
	-	W	Ę	~		_	AA 6	= =	, ys	~			5	9 8	₽.	~		_	C6 A	도 . 윤 .	_ ≥	~
		F 92 9	- L	70			AA A		֡֞֞֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֜֟֝֟֝֟֝֟֝֟֝֟֝ ֡	~			A A	=======================================	==	ج'			¥	= : = :	= •	~! -
20	-	9 E	¥ 7	~!	2	•	9 ×	ن <u>ا</u>	9 '	• ່	<u>o</u>	•	5	ວ •		اً ج	9	-	A A	≃ :	<u>,</u>	~
		¥ ب پو	<u>ب</u>	~	=		¥ .	ະ -	¥.	•	71		≱	CA	, T	~¦	ä		⊢ AA	⊑ .	ָ בָּ	₽.
	•	25 A	T A	~;		•	AA	<u>.</u> 1	۳.	•!		•	99 9	ິ	n 61	~¦		•	A SA	5	A AS	إ
		C 1A	0 T	~			39 1	<u>ප</u>	₹ ,	•!			Ē	¥	<u> </u>	٠			₹.	5 8	5	
20	•	2 2	4	-	110	*	Y Y	<u> </u>	፷ ,		200	-	2	9	¥.	"i	290	•	5	A 66	אפי	ļ
		¥ E	ASC	~			3	5	₫,	j			Ξ	66	£				Ξ.	AAT	록 .	
	_	E &	Ę	_		-	A I	≝ .	£ ,			•	6A6	ິ	3	_		•	6A6	ນ		_
≘	•	AA II	Lys	_	8	•	23 S	99	P. 70	_	9	-	A 16	₹	둁		9	•	119	₹ :	ĭē,	Ì
		E &			=		993	글.	Arg.		13		116	AAC	Leu	7	38		611	ZA -	Ę, '	•
	•	CAT 6TA	H: S	7		-	219	.	Va!	"		-	AA6	2	. ys.	e .		-	16A	5		!
		ATG CAT TIT AAA CIT AAT CCC TAT GCG TTA GCG TTT ACT TCG CTG TTT CTT GTC GCT TGT TCT GGC GGA AAA GGA AGT TTT GAT TTA TAT TAT GAT TTA GAA TTA GGG ATA GGC AAT CGC AAA GGA AGG GAC AAA GAA GAA GAA GAA	Met His Phe Lys Leu Asn Pro Tyr Ala Leu Ala Phe Thr Ser Leu Phe Leu Val Ala Cys Ser Gly Gly Lys Gly Ser Phe Asp Leu Glu					<u> </u>	Asp Val Arg Pro Asn 6in Thr Ala Lys Ala 6iu Lys Ala Thr Thr Ser Tyr 6in Asp 6iu 6iu Thr Lys Lys Lys Thr Lys 6iu 6iu Leu>	o `	190 200 210 220 230 240 250 260 270		3AT .	¥	l q21	"			46 A	CIC TCI CAA CAA CIC AAI AGG CIT CIA ITI TAA IGC TIT AAI AIG GIT CIC ICA CAI CIT TAI TAG GGA GIA AAI CIA CIC GAT ITA CCI	֝֟֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞	,
			_	•		,	_ (- '	•	•				_	•	•			9	ں د	0	•

FIGURE 2

430 440 450 10 AAA TAT 617 C67 TCA 667 TAT 677 10 TTT ATA CAA 6CA A67 CCA ATA CAA 11 Lys Tyr Val Arg Ser 61y Tyr Val >	540 # 666A CCT CCT	20 630 FTA 6A6 CGT 6AA AAT CTC 6CA CTT Leu 61u Arg 61u>	0 = 4 _ ^ ^
AT 6 TA C yr V	!	630 # 1 6AA # CTT 9 61u	720 # 6AA CTT
67 T 67 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T	+ 3.9.1	# B C6	667 CCA 61y
	A A I	65.7	61T CAA Val
4 - 4 - 4 - 2 - 2	10 520 530 6 667 ATA 6AT 66C TAT 6TC TAT TAC CT C CCA TAT CTA CC6 ATA CA6 ATA AT6 6A n 61y 11e Asp 61y Tyr Val Tyr Le	610 620 * * * * * * A6T AAC ATC AAT TTA GAG TCA TTG TA& TTA AAT CTC Ser Asn Ile Asn Leu 61u	700 710 710 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1 61 Va	AA1 ASn	CAT GTA His
T 61 A CA	AT AT	ATC 116	GAT CTA
430 A TA A TA S Ty	520 # T 66(A CC6	AAC AAC TTG Asn	700 # 1 CGA 1 GCT 1 Arg
A TT	6AT CTA Asp	A6T TCA Ser	70 AAT TTA ASn
+ E 88 = 1	ATA TATA	6TA CAT Val	£ 6TC CA6 Val
CTA ASP	661 CCA 61y	AAA Phe	ACT 16A Thr
420 * * * * * * * * * * * * * * * * * * *		600 156 6AT 166 6AT ACC CTA 17p Asp	690 BAA ACT CTT TGA Glu Thr
AAT TTA Asn	AAA TTT Lys	166 7rp	ACA 6
AA6 TTC Lys	AAA Phe	ACT F6A Thr	AA T
410	500	590 * AAA 661 ACT T TTT CCA 16A A Lys 61y Thr T	680 * ACA TCT ATT (16T AGA TAA 1 Thr Ser Ile 1
CTT GAA Leu	CAT GTA His	AAA HTT C	68 A 16 A 16 A 16 A 16 A 16 A 16 A 16 A
A66 7CC Arg	TTC AAG Phe	TAT VTA Tyr	6CA A CGT T Ala T
400 + + + : 6AT AGT AAA A : CTA TCA TTT TI : ASP Ser. Lys A	490 * TCA 66A 1 A6T CCT A Ser 61y F	580 F ATA AGT TAT ATA TAT TCA ATA TATA TATA T	<u></u>
A6T TCA Ser	45 AGT Ser	580 4 41A A(1AT TC	670 67A TC CAT A6 Val Se
6AT CTA Asp	480 * * * * * * * * * * * * * * * * * * *	570 • 66A AAA 6TC A CCT TTT CAG 1 61y Lys Val 1	AAT GTA TTA CAT I Asn Val
CAC 616 His	AAT TTA Asn	MAA (AAA A TIT T Lys A
# # TCT CAC HS HIS HIS HIS HIS HIS HIS HIS HIS HIS	480 * CGA 6CT Arg	570 66A / 6CT 1 61y L	660 66T A CCA T 61y L
CAT CAT 61A 61A His	c6A 6CT Arg	AAA 6 TTT C Lys 8	6AT G CTA CC Asp G
TAT CAT ATA GTA I	ATA TAT TAT TIE	6 CCA AAA 6GT TTT 1 Pro Lys	61 6 5 CA C 1y A
380 # 6TT CAA Val	470 GAA ATA CTT TAT GIU IIE	. <- = "	650 # # # # # # # # # # # # # # # # # # #
GAT CTA Asp	AAT TA S	56 76 7 70 A 10 L	650 + CI TC/ SA A61
AAT TTA TTA Asn	TTC AAT AA6 TTA Phe Asn	560 * * * AAA GAG TTA TTT CTC AAT LYS GIU LEU	6AC AI CTG TO Asp TI
70 # A6C TC6 Sera	O TCT AGA Ser	CA A 61 T er L	25 56 66 67 67 68 68 68 68 68 68 68 68 68 68 68 68 68
370 # ACG A TGC 11 Thr S	460 # 666 TC CC A6	550 * * * * * * * * * * * * *	640 # # # 34 TT 37 AA
37 AAA ACA ACG TTT TGT TGC Lys Thr Thr Lys Thr Thr	6AT 15p (6	fCT C GA 6 hr P	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
370 380 AAA ACA ACG AGC AAT GAT GTT T. TIT TGT TGC TCG TTA CTA CAA A: Lys Thr Thr Ser Asn Asp Val T;	460 • • • TAT GAT GGG TCT T ATA CTA CCC AGA A Tyr Asp Gly Ser P	550 560 * * * * * * * * * * * * * * * * * * *	640 * * * * * * * * * * * * * * * * * * *
· — •		ا حت ت	TA T

2	ATA ()	8 * 8 5 1 1	990 + ATG TAC Met)	1080
0	TA TA TA TA TA TA TA TA TA TA TA TA TA T	68 68 67 77 77 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	AA A	11C / A6 1
		11 A + 1 A +	6AA GAA CTT CTT Glu Glu	6A A 6CT T T T T T T T T T T T T T T T T T T
	- 4. 4. 4	7. A P. T. B. 0 CT 6 Ia 6	AA C	
		25 5 6 E	98 11 C A 11 C A	1070 # CA GAA 67 CTT hr 61u
	TTG ACA 6GT AGT TTA AAC TGT CCA TCA AAT / Leu Thr 61y Ser Leu	# # # # # # # # # # # # # # # # # # #	- E = E = E = E = E = E = E = E = E = E	# 28 C #
	A TI AA II S Le	4 E E	970 *	1000 1010 1020 1030 1040 1050 1060 1070 1080 1060 1070 1060 1070 1060 1070 1060 1070 1060 1070 1060 1070 1060 1070 1060 1070 107
	A AA 1 11 5 Ly	880 + + 66 - A 166	970 # 166 17 61	1060 # !AG AC :TC TG
	C A T E E E E E E E E E E E E E E E E E E	A TA		
	T AA TT A P As	T GA A CT	A T A A	200 E
	F GA CT	0 A 6C T C6	0 6 6 6 6 7 7 8 19 19 19	
•	P Ph	1 6A A CT	950 960 TCA AAT TAT CTT GAA GGG GGA AGT TTA ATA GAA CTT CCC CCT Ser Asn Tyr Leu Glu Gly Gly	1050. 4 1 GAA A CTT r 61u
	4 6A 1 CT(C AT	+ T 6A CT u 61	* * * * * * * * * * * * * * * * * * *
	CA1	T AG	T CT	T AA A TT a Ly
•	* 759 - E	B60 1 A 1 A 1	950	1040 +
	AAA Phe	900 800	AA TT/	1 60 A
	ead ctt	850 860 f f f f f f f f f f f f f f f f f f f	7C/ A61	AAA Phe
;	A61 TCA Ser	50 ACB 160 Thr	940 # ACT GAT 1 TGA CTA / Thr Asp ² ^a ^a ^a ^a	1030 + 6CA 6T/ CGT CA1 A1a Va1
	TCT A6A Ser	8 6TA CAT Val	ACI TGA Thr	91 92 FER .
	CAT GTA His	eAA CTT 61u	AAA Phe	AAA Phe
	GCT CGA Ala	CAA 611 611	ATC TAG 11e	CTC 6A6 Leu
	6TA CAT Val	840 666 666	930 660 660 870	1020 4 1 TCT 1 AGA 5 Ser
	666 CCC 613	AAA TTT	6AT CTA ASp	AAA TTT Lys
	AAA TTT Lys	AAT TTA Asn	661 CCA 61y	AAT TTA Asn
2	6TT CAA VAI	A6A A6A TCT	20 • 666A 667 Ala	1010 + A AAT IT TTA
•	GAA CTT 61u	AAC TT6 Asn	AAA TIT	167 167 167
	AAT GAA GTT AAA GGG GTA GCT CAT TCT AGT GAA TTT GCA GTA GAT TTT GAT AAC, AAA AAA TTA CTT CAA TTT CCC CAT CGA GTA AGA TCA CTT AAA CGT CAT CTA AAA CTA TTG TTT TTT ASA GTU VAI Lys G1y Val Ala His Ser Ser G1u Phe Ala Val Asp Phe Asp Asni Lys Lys Lagan and a ser	ATC TAG 11e	6AA CTT 63u	TTC AA6 Phe
	# # # # # # # # # # # # # # # # # # #	# # # # # # # # # # # # # # # # # # #	910 920 930 950 950 960 970 990 990 990 990 990 990 990 990 99	1000 1010 1020 1030 1040 1050 1050 1060 1070 1080 4
•	20 (SE	82 667 50A 613	91 AAA TTT TTT Lys	1000 # AAG TI TTC AA
	TA (# NAT (17A (15n (# 600 166 Ala	998 907 118
	AAA C ITT 6 Lys L	191 / SGT /	AAA GCC TTT CGG Lys Ala	66A (

170	AAA TTT Lys>	# # # # # # # # # # # # # # # # # # #	1270 1280 1390 1310 1320 1320 1330 1350 1350 1350 1350 1350 1350 135
_	A F I	1 AAT TA ASIN ASIN	ACT TGA Thr
	CT 664	MGT CA	SCA Arg
0	# AT 6 TA C 5p 6	65T A	1 1 1 4 4 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1
116	71 6 AA C 1e A	125 66 T 66 A 75 C	134 6T 6 CA C
	* L & B	GA A S	* W = 1
	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TA 6	TA C AT 6 eu 6
150	* E & 5 a	240 36 C 6	1330 FC C NG GG
	15 E E	14 66	E A A A
	- 38 AB	# C 0 3 #	A T A T I
0	T 60 A 66 P A1	A A A A A A A A A A A A A A A A A A A	A A A
114	T GA A CT y As	123 A AC 1 T6 5 Th	132 T AA T A T T P As
	* 60 E	C AA 6 TT y Ly -a-	A 6A T CT 5 A 5
	TT YAA	66 5 CC 19 1 19 1	1 AA 11 A 11 A 11 A 11 A 11 A 11 A 11
130	AA) TT/ TS/	1220 * * * * * * * * * * * * * * * * * * *	1310 # 6T # 6T T CA
_	AAC TTG	TAC TAC	A CA 161
	CTC 6A6 GA6	6AA CTT	611 F
20	6AA CTT 61u	10 # GTT CAA Val	AAA TTT
Ξ	AAA TTT Lys	12 ACG TGC Thr	13 660 CC6 61y
	6CT CGA Ala	AAA III Lys	6A6 CTC 61u
	AAT TTA Asn	A6T TCA Ser	AAA TTT Lys
110	TTT AAA Phe	AAT TTA ASI	CAA CAA GTT G1n
	CAA GTT GIn	AAA TTT Lys	# 166 ACC
	ACC TGG Thr	AAA Phe	AAC Leu
8	TTA AAT Leu	90 # AAT TTA A5n	CAA GII GII
Ξ	6AT CTA Asp Asp	11 GTC CA5 Va1	12 661 CCA 613
-	ATT TAA 11e	667 CCA 61y	AAA Phe
	AAA ITT Lys	6CA 6CA Ala Ala	AAA TTT Lys
109	ACT I	CTA SAT Leu	127 ATG TAC Het
	# 36A /	6AT (TA)	# TAT ATA Tyr
	6AT 6CA ACT AAA ATT GAT ITA ACC CAA ITT AAT 6CT AAA 6AA CTC AAC AAT ITT 66T 6AT 6CC ICT 6TT ITA ATT ATT 6AT 6GA CAA AAA CTA CGT 16A ITT TAA CTA AAT 16G 6TT AAA ITA CGA ITT CTT 6AG 11G TTA AAA CCA CTA CGG AGA CAA AAT TAA TAA CTA CCT 6TT ITT ASSA ATA TAT LYS ITE ASSA Leu TAT 6TN Phe Asn Ata Asn Ata Lys 6Tu Leu Asn Asn Phe 6TY ASP ATA Ser Val Leu Ite Ite Asp 6TY 6TN LYS)	ATA FAT (GAA CTT 61u
	904 1	~ - 1	

_		_		~	~ .	_	_	_	_	~	^ .	_			 	~	<u>~</u> .
1440	_	28	9	A	٠,	153(_	198	2	3	٠	162(_	₩	5	ASF	•
	•	6A	5	E	_		•	99	ខ	9	ا		•	E	AAT	Ę	, i
		929	8	Ala				AAA	Ε	Lys				139	2	Ala	-
8	•	ATA	IAT	≡		220	•	GAT	CTA	Asp		019	•	Ε	AA	Phe	
<u>~</u>		166	ACC	Ţ		==		Ε	AAA	Phe	_	=		399	93	61 y	
	**	AAC	116	Asn	_i		•	IA	AAT	Leu	_;		**	AGT	ICA	Ser	_
1420		ACG	<u> 1</u> 92	Ē	_	٥	_	AA6	≟	Lys	_;	8	•	6AT	CTA	Asp	_
142		999	ឌ	61 y	~ }	15		661	5	61 y	~	166		15	AGA	Ser	٦
	+	A.	E	l,ys	"		-	A C	116	Ş.			•	2	166	Ξ	
		121	A6A	Ser	~ ;			61A	CAT	Val				AAA	Е	Lys	٦
\$	•	ETA	Œ	Val	7	200	-	AAA	E	Lys	7	590	•	939	99	Ala	70
	•	25	9¥9	Le	~			AAA	Ε	Lys	٣.		_	AGT	2	Ser	7
		₽	193	A] a	~			6A1	£13	Asp	~			399	23	61 y	~
8	•	GAT	3	Asp	~	8	-	AGT	7	Ser	۳.	8	+	ATC	TA6	116	7
Ξ		166	ACC	Ţ	~	=		Ξ	AAA		٦	51		Ш	AAA	Phe	~;
	•	ACT	16A	큠			**	AAT	Ι¥	Asn	i		•	3 99	93	61 y	į
9	_	66A	23	61 y	ື:	9	_	119	CAA	Val	~:			AAT	II	Asn	٣.
33		E11	CAA	Val	"	148		6AT	CTA	Asp	٣;	157		661	SS	61 y	٦;
	•	IAT	ATA	Ţ	~ ;		-	Ε	AAA	吊	ຶ		+	AAT	TIA	Asn	ີ;
		AA6	11	Lys	~			GAA	5	9] F	~ ;			AII	TAA	I le	":
380	•	TAT	ATA	Tyr	~:	470	•	P C	16A	¥	~	260	•	ACA	161	Ħ	~ ;
-	-	AAC	116	Asn	ຶ	_		38	929	Arg	~ ;	-		939	ည္တ	Ala	7
		199	CCA	61 y	۳:	,		TA1	ATA	ĭ	"			6AT	CIA	Asp	ື່
2	•	66A	ដ	617	~ ;	9	•	399	9	61,	~ ;	20	+	6TA	CA1	Val	٦
==		6CA	5	Ala	7	7		921	AGC	Ser	ື:	15		ACC	166	Ĭ	٣:
	•	ස	999	Pro	٦.		*	GAA	Ξ	9] n	ື:		+	Ξ	AAA	Phe	٣.
0		A16	TAC.	Æ	~:	0		C6A	139	Arg	7			6TA	CA.	Val	~
136		AAA	Ξ	Lys	~	145		AAT	II	Asn	8	154		당	66A	P L	7
	-	EA .	CIA C	Asp	70		-	AA1	X.	Asn .			-	AM	II.	Asn	70
		9	<u>چ</u>	Thr Asp Lys Met Pro Ala 61y 61y Asn Tyr Lys Tyr Val 61y Thr Trp Asp Ala Leu Val Ser Lys 61y Thr Asn Trp 11e Ala 61u Ala)	~	1450 1460 1470 1480 1490 1500 1510 1520 1530		SAT	T.	4sb	d.d.d.d.d.d.d.d.d.d.d.d.d.d.d.d.d.d.d.	1540 1550 1560 1570 1580 1590 1600 1610 1620		STA .	ZAT.	Zai V	~

1710	•	66 66A	נפ נכו	1y 61y>	^ P	_	-	AAATAAT	TITATITA			
700	•	GAA CTT 6	CTT GAA C	Ala Gly Ser Ser Gin His Gly Asn Ala Val Phe Ser Asp Ile Lys Val Asn Gly Gly Phe Tyr Gly Pro Thr Ala Gly Glu Leu Gly Gly		1720 1730 1740 1750 1760 1770 1780 1790 1800	*	TTECTATGAA	MACGATACTT			
_=		-29	- 5	Ē	-	 -∞		-₹	≟			
	-	E GCT	3 C6A	r Ala	~		•	ATAAGE	FATTCC			
8	•	¥	3	₽	_ i	8	-	Z	F	_	_	_
39		I CCA	199	y Pro	7	17		A AAA	H	l Lys	7	1900
	•	99	ຮ	15	_		•	₹9	5	<u>=</u>	_	•
6	-	C TAT	B ATA	e Tyr	~		_	A ATA	TAT	n 11e	70	1890
1680		E	¥	5		177		S	E	3		
	-	J99 J	933 1	, 61 y	2		+	A CGA	6 CT	S Arg	8	1880
		99	2	9	_i			₩	Ε	ج	_	靈
1670	+	AAT	ITA	Asn	٦	760	•	6CA	C6T	Ala		
		1	ž	R _A	į	_		99	3	<u> </u>	_i	1870
	•	AAA	E	Lys	2		•	E	AAA	Phe	, a	
0	-	A	IAI	116		0	_	219	CA6	٧a	i	
1660		6AT	CTA	Asp	۾ ا	175		139	CGA	Ala	e -	1860
	•	A6T	₹	Ser			•	899	25	9	:	
		Ε	AAA	Phe	e .			611	CAA	Val	re	1850
1650	**	61 A	FA.	٧a١	-	740	•	A6.T	5	Ser	-	_
_	•	939	393	Ala	7		_	399	933	61 y		1840
		AA I	I	Asn				AA1	Ι¥	1sn		184
1640	•	65A	133	61 y	ا ا	730	-	6AC	CT6	Asp	7	
=		SAC.	316	<u> </u>		_		5	191	ě	1	1830
	-	CAA (119	61n			•	AAA	E	Lys (- F	
_		38	9	ě	٦,	_	_	AT	Ţ	E	1	
1630	_	101	AGA 1	Ser S		1720	•	CAT (6TA 6	His t		1820
	-	39	5	3	٦,			2	¥9		٣,	
		6CA 6	CGT. C	Ala 6	7			CAA 1	GTT A	61n F	6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1810

TAAATCTGATTAGCCTTGCTCTTCTTAGCCTATTTGCCGTACAAGCTATGCGGAACAAGCGGTACAATTAAATGATGTTTATGTCAGGGTACC ATTTAGACTAATCGGAACGAGAAGAATCGGATAAACGGCATGTTTCGATACGTCTTGTTCGCCATGTTAATTTACTACAAATACAGTGTCCATGG

14/26

TF37	- 1	MHFKLNPYALAFTSLFLVACSGGKGSFDLEDVRPNQTAKAEKATTSYQDE	-50
TF20 5	- 1	HHFKLNPYALAFTSLFLVACSGGKGSFDLEDVRPNKTTGVSKEEYKDV	-48
TF37	- 1	etkkktkeeldkimepalgyetqilrrnkapktetgekrnervvelsedk	-100
TF2 05	- 1	:: :: :: :: ::::::::::::::::::::::::::	-73
TF37	- :	ITKLYQESVEIIPHLDELNGKTTSNDVYHSHDSKRLD	-137
TF20 5		vssfenkkvdisdievitngnld	-96
TF37		snrdlkyvrsgyvydgsfneirrndsgfh	-166
TF205	- I	DVPYKANSSKYNYPDIKTKDSSLQYVRSGYVIDGEHSGSNE	-137
TF37	- v	vfkqgidgyvyylgvtpskelpkgkvisykgtwdfvsninlereidgfdt	-216
TF-205	- -	KGYVYYKGNSPAKELPVNQLLTYTGSWDFTSNANL	-172
TF37	- s	SGDGKNVSATSITETVNRDHKVGEKLGDNEVKGVAH	-252
TF205		·ineegrpnylnddyytkfigkr	-194
T F37		ssefavdfdnkkligslyrngyinrnkaqevikry	-287
TF205	- v	GLVSGDAKPAKHKYTSQFEVDFATKKMTGKLSDKEKTIY	-234
TF37	- s	SIEADIAGNRFRGKAKAEKAGDPIFTDSNYLEGGFYGPKAEEM	-330
TF2 05	- T		-284
T F37	- λ	GKFFTNNKSLFAVFAAKSENGETTTERIIDATKIDLTQFNAKELNNFGD	-380
TF205	- À	GKFVANDKSLFAVFSAKHNGSNVNTVRIIDASKIDLTNFSISELNNFGD	-334
TF37	- X	SVLIIDGQKIDLAGVNFKNSKTVEINGKTMVAVACCSNLEYMKFGQLWQ	-430
TF20 5	- À	SVLIIDGKKIKLAGSGFTNKHTIEINGKTMVAVACCSNLEYMKFGQLWQ	-384
TF37	- K	egkqqvkdnslflqgertatdkmpaggnykyvgtwdalvskgtnwiaea	-480
TF205	~ Q	AEGGKPENNSLFLQGERTATDKMPKGGNYKYIGTWDAQVSKENNWVATA	-434
TF37	- Di	NNRESGYRTEFDVNFSDKKVNGKLFDKGGVNPVFTVDATINGNGFIGSA	-530
TF205	- Di	: ::::::::::::::::::::::::::::::::::::	-484
TF37	- K	TSDSGFALDAGSSQHGNAVFSDIKVNGGFYGPTAGELGGQFHHKSDNGS	-580
TF205	- K	::::::::::::::::::::::::::::::::::::::	-534
TF37		GAVFGAKRQIEK -593	
TF205		::::::: : : : : : : : : : : : : : : :	

FIGURE 3

CTGTTATAGA TCTAGGAAAA GCAAGTTTAG GTTTGGACAT TATCTCTGGT
Bglii
TTACTTTCTG GAGCATCTGC AGGTCTCATT TTAGCAGATA AAGAGGCTTC
AACAGAAAAG AAAGCTGCCG CAGGTGTAGA ATTTGCTAAC CAAATTATAG
GTAATGTAAC AAAAGCGGTC TCATCTTACA TTCTTGCCCA ACGAGTCGCT
TCAGGTTTGT CTTCAACTGG TCCTGTCGCT GCATTAATCG CATCTACAGT
TGCACTAGCT GTTAG

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 8

FIGURE 9

FIGURE 10

FIGURE 11

23/26

Clinical Response After Challenge

Body Temperature After Challenge

Clinical Response After Challenge

Body Temperature After Challenge

a

FIGURE 14

b

diverging sequence

diverging sequence

FIGURE 15

3

26/26

1 GGATCCTGTT CTTGGTGAAA GTGTGGAACT TAAAGTTAAC TTATGTTTAG AGAAAAAAGG Benfil 61 ATGGTATCTA GAGCAAGGTC CAGTGTGTGA AGAAAAATAC GTATGGAATG AACCGGAATG 121 TATTANATGG CGAGCANAT ATAGTANGCC ANATGTGCAN CCTTGGGGAT ANTAGTCATT 181 TAAGTGTTTT AAAAATTTAA TTTCAGAAAT TTGTAATGGA TACAATGAAT ACAGAAAATA 241 ATTANIGITI ANANICANGO ACTANNIGHT TITGIANIGG CACTITAGCI GGGGITATAT 301 GAAGTAAATT CTTAATGTGT AGAAAATCAA ACCTAATCTG ACAGTTCCCG TTTAAAATTA invested repeat 361 CCGTGTCTGT CAGATTAATT TGAGCTTAAA TTCTTTTCTG CCCAAATCCG TTTTCCATCA - end of open reading frame *** <-421 AGTANTGTTG CCATCGGTGT TCTGCCACAG CACACTTTTC CTTGATGTGT TCGATGGTGA 481 TTATAATACA TTAACCACTC ATCTAAATCA GCTTGTAATG TCGCTAAATC CGTATATATT 541 TTCTTCCTAA ATGCGACTTG GTAAAATTCT TGTAAGATAG TCTTATGAAA ACGTTCACAG 601 ATACCATTCG TCTGTGGATG CTTCACTTTC GTTTTAGTAT GCTCTATGTC ATTTATCGCT 661 AAATAAAGCT CATAATCGTG ATTITCCACT TTGCCACAAT ATTCACTGCC ACGGTCGGTG 721 AGAATACGCA ACATCGGTAA TCCTTGGGCT TCAAAGAACG GCAGTACTTT ATCATTGAGC 781 ATATCTGCAG CGGCAATTGC GGTTTTCATT GTGTAGAGCT TTGCAAAAGC AACCTTACTA 841 TAAGTATCAA CAAATGTTTG CTGATAAATG CGTCCAACAC CTTTTAAATT ACCTACATAA 901 AAGGTATCTT GTGAACCTAA ATAGCCCGGA TGAGCGGTTT CAATTTCTCC ACTCGATATA 961 TCATCCTCTT TCTTACGTTC TAGGGCTTGG ACTTGACTTT CATTTAGAAT AATGCCTTTC 1021 TCAGCCACTT CTTTCTCTAG TGCATTTAAA CGCTGTTTAA AGTTAGTAAG ATTATGACGT 1081 AGCCAAATGG AACGAACACC ACCGGCTGAA ACAAACACAC CTTGCTTGCG AAGTTCGTTA 1141 CTCACTCGAA CTTGTCCGTA AGCTGGARAA TCTAGAGCAA ATTTTACAAC AGCTTGCTCA 1201 ATGTGCTCGT CTACTCGATT TTTGATATTC GGTACCCGAC GAGTTTGCTT AACTAATGCT **Fon I** 1261 TCAACACCGC CTTGCGCTAC GGCTTGTTGA TAĞCGATAGA ATGTATCTCG GCTCATTCCC 1321 ATCGCTTTAC AAGCTTGAGA AATGTTTCCG AGTTCTTCTG CTAAATTGAG TAAACCGGTC 1381 TTGTGTTTAA TGAGCGGATT GTTAGAATAA AACATGAGAG TTTCCTTTTT TGTTTAGATT start of open reading frame <--- MET £ 1441 GAATTTTAGA CACTCATATT CTAAACGGGA AACTCTCATT TTTATAATGA TTTGTCAGAT 1501 CAAGTCTGAT CTTCTACAAA TATTATCCCC ATTTATGGAG TTCGTCTTTT AGATGAACTC inverted repeat 1561 CTATTGTTTA TAATTCGATA AAATTAGCTT TCTCACAGCA ACTCAGCAAT GGGTTGCTTT 1621 TITATTIGAC AGAAAAACAA CGTAGATCT

FIGURE 16

BglII

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all)⁶

According to International Patent Classification (IPC) or to both National Classification and IPC

Int.Cl. 5 Cl2N15/31; A61K39/102; Cl2N1/21; C07K13/00

//(Cl2N1/21, Cl2R1:19)

II. FIELDS SEARCHED

Minimum Documentation Searched?

Classification System Classification Symbols

Int.Cl. 5 C07K; C12N; A61K

Documentation Searched other than Minimum Documentation to the Extent that such Documents are included in the Fields Searched⁸

Category °	Citation of Document, 11 with indication, where appropriate, of the relevant passages 12	Relevant to Claim No.13
x	WO,A,9 106 653 (THE TEXAS A&M UNIVERSITY SYSTEM) 16 May 1991	1,8-9, 15, 27-28, 32-34
Υ	see figure 1	12
(DNA vol. 8, no. 9, November 1989, NEW YORK, USA pages 635 - 647 CHANG, YF. ET AL. 'Cloning and characterization of a hemolysin gene from Actinobacillus (Haemophilus) pleuropneumoniae' cited in the application see the whole document	27-28, 32-33
	-/	
"A" docum	regories of cited documents: 10 "T" later document published after the int or priority date and not in conflict with cited to understand the principle or the red to be of particular relevance "T" later document published after the int or priority date and not in conflict with cited to understand the principle or the red to be of particular relevance	h the application but

- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

O7 JANUARY 1993

International Searching Authority

EUROPEAN PATENT OFFICE

Date of Mailing of this International Search Report

2.2.01.93

Signature of Authorized Officer

ANDRES S.M.

` '	٠	
		Inter

	and the field of the second of the selection of the selec	Relevant to Claim No.
Category °	Citation of Document, with indication, where appropriate, of the relevant passages	
x	WO,A,9 012 591 (UNIVERSITY TECHNOLOGIES INTERNATIONAL INC.) 1 November 1990	1-2,15,
Y A	see the whole document	12 1-7, 35-37
x	EP,A,O 420 743 (RHÔNE MERIEUX) 3 April 1991 see the whole document	1,8,15
x	INFECTION AND IMMUNITY vol. 59, no. 9, September 1991, WASHINGTON US pages 3026 - 3032 FREY, J. ET AL. 'Nucleotide sequence of the hemolysin I gene from Actinobacillus pleuropneumoniae' cited in the application see the whole document	27,32-33
P,X	INFECTION AND IMMUNITY vol. 60, no. 8, August 1992, WASHINGTON US pages 3253 - 3261 GERLACH, GF. ET AL. 'Characterization of two genes encoding distinct transferrin-binding proteins in different Actinobacillus pleuropneumoniae isolates' see the whole document	16-18, 23-26, 32-33, 35,37
P,X	INFECTION AND IMMUNITY vol. 60, no. 3, March 1992, WASHINGTON US pages 892 - 898 GERLACH, GF. ET AL. 'Cloning and expression of a transferrin-binding protein from Actinobacillus pleuropneumoniae' see the whole document	16-17, 23-24, 32-33,35
P,X	VACCINE vol. 10, no. 8, 1992, GUILDFORD GB pages 512 - 518 ROSSI-CAMPOS, A. ET AL. 'Immunization of pigs against Actinobacillus pleuropneumoniae with two recombinant protein preparations' see the whole document -/	1-4,8-9, 13, 15-17, 23-24, 27-28, 32-34
	et of setting them.	

Internation III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET) Category o Citation of Document, with indication, where appropriate, of the relevant passages Relevant to Claim No. P,X INFECTION AND IMMUNITY 27-28, vol. 59, no. 11, November 1991, WASHINGTON 32-33 US pages 4110 - 4116 ANDERSON, C. ET AL. 'Isolation and molecular characterization of spontaneously occuring cytolysin-negative mutants of Actinobacillus pleuropneumoniae serotype 7' see the whole document

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first succes)	
This inv	ernational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	
ι. 🗴	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claim 34 is directed to a method of treatment of the human/animal body the search has been carried out and based on the alleged effects of the compound/composition.	;
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:	
3.	Claims Nos.: because they are dependent claims and are not drasted in accordance with the second and third sentences of Rule 6.4(a).	•
Pay II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This Int	ernational Searching Authority found multiple inventions in this international application, as follows:	
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.	
2.	As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
з. [As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:	
4. 🔲	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	,
		Ş
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.	

ANNEX-TO-THE INTERNATIONAL SEARCH REPORT-ON INTERNATIONAL PATENT APPLICATION NO. CA SA

9200460 65461

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 07/01/93

Patent document cited in search report	Publication date	1	Patent family member(s)		Publication date
WO-A-9106653	16-05-91	AU-A- EP-A-	6751390 0500736		1-05-91 2-09-92
WO-A-9012591	01-11-90	AU-A- US-A-	5526190 5141743		5-11-90 5-08-92
EP-A-0420743	03-04-91	FR-A- AU-A- CA-A- WO-A- JP-T-	2652266 6523090 2035474 9104747 4502018	28 27 18	9-03-91 8-04-91 7-03-91 8-04-91 9-04-92