# Olimpíada Brasileira de Informática 2016

Nível Sênior – Fase 2: Upsolving

Prof. Dr. Vinícius R. P. Borges - CiC/UnB 2020

# Sumário

1. Jardim de Infância

Jardim de Infância

#### Problema

Vívian é uma professora do jardim de infância. Todos os dias, ao final da aula, ela tem que olhar os desenhos que seus alunos fizeram naquele dia e fazer algum comentário. Esta é uma tarefa muito repetitiva, já que as crianças costumam desenhar coisas semelhantes, portanto Vívian decidiu automatizar o processo. Ela fez um programa capaz de processar a imagem e procurar padrões conhecidos para fazer comentários predeterminados. Em particular, ela percebeu que na maioria dos desenhos as crianças incluem um pinheiro. Porém, ela está tendo dificuldades para reconhecê-los e pediu sua ajuda. O programa dela já é capaz de reconhecer uma figura que pode ser um pinheiro e transformá-la em sete pontos  $P_1, P_2, ... P_7$ . O candidato a pinheiro seria a região interna do polígono  $P_1P_2P_4P_6P_7P_5P_3$ , como mostra a figura a seguir de um pinheiro válido.

# Problema



#### Entrada e saída

#### **Entrada**

A entrada contém sete linhas. A i-ésima da entrada contém dois inteiros  $X_i$  e  $Y_i$ , indicando as coordenadas cartesianas do ponto  $P_i$ .

#### Saída

Seu programa deve produzir uma única linha, contendo uma única letra, "S" se os pontos formam um pinheiro pelas condições descritas e "N", caso contrário.

#### Entrada e saída

#### Restrições

- $-2 \times 10^4 < X_i, Y_i < 2 \times 10^4$ .
- · Todos os pontos são diferentes.

#### Informações sobre a pontuação

- Em um conjunto de casos de teste somando 40 pontos,  $N \leq 1000\,$ 

#### Entrada

2 -4

5 3

-1 3

3 3

1 3

#### Saída

S

| Entrada |
|---------|
| 2 -1    |
| 5 45    |
| -43 9   |
| -11 33  |
| -27 21  |
| -20 45  |
| -36 33  |

#### Saída

# Entrada -1 -3 11 -23 11 17 11 -7 11 1 19 -7 19 1

#### Saída

Ν

| ntra | da   |
|------|------|
|      |      |
|      | ntra |

2 4

18 22

-14 22

6 24

-2 20

6 26

-2 22

#### Saída

Ν

#### Entrada

4 1

-36 -4

-12 -36

-30 -12

-18 -28

-39 -25

-27 -41

#### Saída

Ν

#### Estratégia de resolução

- Não tem segredo... temos que utilizar nossos conhecimentos de geometria e implementar um código que receba os dados da entrada, verificando condição por condição;
  - · Podemos ter uma condicional beeeeem longa...
- · Codificar blocos if-else (se-então) aninhados.

# Estratégia de resolução

- Elaborar cada condicional verificando se ela n\u00e3o satisfaz uma determinada condi\u00e7\u00e3o do "pinheiro v\u00e1lido":
  - Se a condicional for verdadeira, imprime "N" e finaliza o programa;
  - Caso contrário, analisa-se a próxima condição.
- No final, se todas as verificações falharem, temos um pinheiro válido: a resposta é "S";

- Condição 1: O ângulo  $P_2P_1P_3$  é agudo (vértice em P1);
- Como verificar se um ângulo entre dois segmentos de reta consecutivos (ponto em comum) é agudo?
- · Lei dos cossenos!

• Condição 1: O ângulo  $P_2P_1P_3$  é agudo (vértice em P1);



$$\overline{P2P3}^2 = \overline{P1P2}^2 + \overline{P1P3}^2 - 2\overline{P1P2P1P3}\cos(\alpha) \tag{1}$$

• Condição 1: O ângulo  $P_2P_1P_3$  é agudo (vértice em P1);

$$\overline{P2P3}^2 = \overline{P1P2}^2 + \overline{P1P3}^2 - 2\overline{P1P2P1P3}\cos(\alpha)$$
 (2)

• Como  $0 \le \cos(\alpha) < 90^o$ , o termo  $-2\overline{P}1\overline{P}2\overline{P}1P\overline{3}\cos(\alpha)$  será negativo. Reescrevendo:

$$\overline{P2P3}^2 < \overline{P1P2}^2 + \overline{P1P3}^2 \tag{3}$$

• Condição 1: O ângulo  $P_2P_1P_3$  é agudo (vértice em P1);

$$\overline{P2P3}^2 = \overline{P1P2}^2 + \overline{P1P3}^2 - 2\overline{P1P2P1P3}\cos(\alpha)$$
 (4)

• Como  $0 \le \cos(\alpha) < 90^o$ , o termo  $-2\overline{P}1P2P1P3\cos(\alpha)$  será negativo. Reescrevendo:

$$\overline{P2P3}^2 < \overline{P1P2}^2 + \overline{P1P3}^2 \tag{5}$$

• Por isso, precisamos verificar se  $\overline{P2P3}^2 < \overline{P1P2}^2 + \overline{P1P3}^2$  para que o ângulo  $P_2P_1P_3$  seja agudo!

- Condição 2: Os segmentos  $\overline{P1P2}$  e  $\overline{P1P3}$  têm o mesmo comprimento;
- Basta verificar se  $dist(P_1, P_2) \neq dist(P_1, P_3)$ ;

- Condição 3: Os pontos  $P_2$ ,  $P_3$ ,  $P_4$  e  $P_5$  são colineares;
- Vamos verificar se  $P_2$ ,  $P_3$  e  $P_4$  são colineares e depois o mesmo para  $P_2$ ,  $P_3$  e  $P_5$ ;















- Condição 3: Os pontos  $P_2$ ,  $P_3$ ,  $P_4$  e  $P_5$  são colineares;
- Seja  $\alpha$  o ângulo formado entre os vetores  $\overrightarrow{P_2P_3}$  e  $\overrightarrow{P_2P_4}$ ;



- Condição 3: Os pontos  $P_2$ ,  $P_3$ ,  $P_4$  e  $P_5$  são colineares;
- Seja  $\alpha$  o ângulo formado entre os vetores  $\overrightarrow{A}=\overrightarrow{P_2P_3}$  e  $\overrightarrow{B}=\overrightarrow{P_2P_4}$ ;
- Podemos calcular o produto vetorial como:

$$|\overrightarrow{A} \times \overrightarrow{B}| = |\overrightarrow{A}| \times |\overrightarrow{B}| \sin(\alpha) \tag{6}$$

- Para que esses pontos sejam colineares, consideramos que  $\alpha=0^{o}$ , logo  $\sin(\alpha)=0$ ;
- Portanto, a colinearidade é verificada se  $|\overrightarrow{A} \times \overrightarrow{B}| = 0$ .

- Condição 3: Os pontos  $P_2$ ,  $P_3$ ,  $P_4$  e  $P_5$  são colineares;
- Na nossa implementação, como queremos saber se  $P_2$ ,  $P_3$  e  $P_4$  não são colineares, verifica-se se  $|\overrightarrow{A} \times \overrightarrow{B}| \neq 0$ ;
- Deve-se verificar também que  $P_2$ ,  $P_3$  e  $P_5$  não são colineares;
  - $\overrightarrow{A} = \overrightarrow{P_2P_3}$  e  $\overrightarrow{C} = \overrightarrow{P_2P_5}$
  - Logo, verifica-se se  $|\overrightarrow{A} \times \overrightarrow{C}| \neq 0$ .

• Condição 4: Os pontos médios dos segmentos  $P_2P_3$  e  $P_4P_5$  são coincidentes.



• Condição 4: Os pontos médios dos segmentos  $P_2P_3$  e  $P_4P_5$  são coincidentes.



• Condição 4: Os pontos médios dos segmentos  $P_2P_3$  e  $P_4P_5$  são coincidentes.

$$P_M = \frac{P_2 + P_5}{2} \tag{7}$$

$$P_M = \frac{P_3 + P_4}{2} \tag{8}$$

$$\frac{P_2 + P_5}{2} = \frac{P_3 + P_4}{2} \tag{9}$$

• Condição 4: Os pontos médios dos segmentos  $P_2P_3$  e  $P_4P_5$  são coincidentes.

$$\frac{P_2 + P_5}{2} = \frac{P_3 + P_4}{2} 
P_2 + P_5 = P_3 + P_4$$
(10)

• Na nossa implementação, temos que verificar se  $P_2 + P_5 \neq P_3 + P_4$ .

- Condição 5: O segmento  $P_2P_3$  tem comprimento maior que o segmento  $P_4P_5$ .
- De maneira simples, tal condição é verificada se  $dist(P_2,P_3)>dist(P_4,P_5)$  ;
- Na nossa implementação, temos que verificar se dist(P<sub>2</sub>, P<sub>3</sub>) ≤ dist(P<sub>4</sub>, P<sub>5</sub>).

• Condição 6: Os segmentos  $P_4P_6$  e  $P_5P_7$  são perpendiculares ao segmento  $P_2P_3$ .



- Condição 6: Os segmentos  $P_4P_6$  e  $P_5P_7$  são perpendiculares ao segmento  $P_2P_3$ .
- Como já verificamos que  $P_4$  está no segmento  $P_2P_3$ , devemos verificar se o ângulo  $\alpha$  formado entre  $P_4P_6$  e  $P_2P_3$  é igual a  $90^o$ ;
- · Pela lei do Cosseno:

$$\overline{P2P6}^2 = \overline{P2P4}^2 + \overline{P4P6}^2 - 2\overline{P2P4} \quad \overline{P4P6}\cos(\alpha) \tag{11}$$

• Fazendo-se  $\alpha=90^o$ ,  $\cos(90^o)=0$ , obtendo-se:

$$\overline{P2P6}^2 = \overline{P2P4}^2 + \overline{P4P6}^2 \tag{12}$$

- Condição 6: Os segmentos  $P_4P_6$  e  $P_5P_7$  são perpendiculares ao segmento  $P_2P_3$ .
- Para que  $P_4P_6$  seja perpendicular a  $P_2P_3$ , devemos verificar se:

$$dist(P2, P6)^2 = dist(P2, P4)^2 + dist(P4, P6)^2$$
 (13)

• Na nossa implementação, queremos que:

$$dist(P2, P6)^2 \neq dist(P2, P4)^2 + dist(P4, P6)^2$$
 (14)

• ou

$$dist(P3, P7)^2 \neq dist(P3, P5)^2 + dist(P5, P7)^2$$
 (15)

- Condição 7: Os segmentos  $P_4P_6$  e  $P_5P_7$  têm o mesmo comprimento.
- De maneira simples, tal condição é verificada se  $dist(P_4,P_6)=dist(P_5,P_7)$  ;
- Na nossa implementação, temos que verificar se dist(P<sub>4</sub>, P<sub>6</sub>) ≠ dist(P<sub>5</sub>, P<sub>7</sub>).











- Condição 8: Os pontos  $P_1$  e  $P_6$  devem estar separados pela reta que contém o segmento  $P_2P_3$ . Formalmente, o segmento  $P_1P_6$  deve interceptar a reta que contém o segmento  $P_2P_3$  em um único ponto.
- Calcula-se o sinal  $s_1$  do produto vetorial de  $P_3P_2P_1$ ;
- Calcula-se o sinal  $s_2$  do produto vetorial de  $P_3P_2P_6$ ;
- Para que os pontos  $P_1$  e  $P_6$  sejam divididos pelo segmento  $P_2P_3$ ,  $s_1 \neq s_2$ .
- Na nossa implementação, basta verificar se  $s_1=s_2$  para que o polígono não forme um pinheiro.