Generell Topologi

Richard Williamson May 27, 2013

11 Tuesday 19th Febuary

11.1 Separation axioms, continued

Definition 11.1. Let (X, \mathcal{O}) be a topological space.

- (0) If (X, \mathcal{O}) satisfies (T0) we refer to (X, \mathcal{O}) as a $T\theta$ topological space.
- (1) If (X, \mathcal{O}) satisfies (T1) we refer to (X, \mathcal{O}) as a T1 topological space.
- (2) If (X, \mathcal{O}) satisfies (T2) we refer to (X, \mathcal{O}) as a Hausdorff topological space.
- (3) If (X, \mathcal{O}) satisfies both (T1) and (T3) we refer to (X, \mathcal{O}) as a regular topological space.
- $(3\frac{1}{2})$ If (X, \mathcal{O}) satisfies both (T1) and $(T3\frac{1}{2})$ we refer to (X, \mathcal{O}) as a completely regular topological space.
- (4) If (X, \mathcal{O}) satisfies both (T1) and (T4) we refer to (X, \mathcal{O}) as a *normal* topological space.
- (6) If (X, \mathcal{O}) satisfies both (T1) and (T6) we refer to (X, \mathcal{O}) as a perfectly normal topological space.

11.2 T0 and T1 topological spaces

Examples 11.2.

(1) Let < be a pre-order on a set X. Let \mathcal{O} denote the corresponding topology on X defined in Question 8 of Exercise Sheet 1.

A partial order is a pre-order < such that if both x < x' and x' < x then x = x'. In other words there is at most one arrow between every pair of elements of X. For instance the pre-orders

and

are partial orders. The pre-orders

 $0 \longrightarrow 1$

and

are not partial orders.

The topological space (X, \mathcal{O}) is a T0 topological space if and only if < is a partial order. Let us prove this.

By definition a subset U of X belongs to \mathcal{O} if and only if for all $x, x' \in X$ we have that if $x \in X$ and x < x' then $x' \in X$.

Suppose that < is not a partial order. Then for some $x, x' \in X$ with $x \neq x'$ we have that x < x' and x' < x. By the previous paragraph, every neighbourhood of x in (X, \mathcal{O}) will contain x', and every neighbourhood of x' in (X, \mathcal{O}) will contain x. Hence (X, \mathcal{O}) is not a T0 topological space.

Suppose instead that < is a partial order. Then for every $x, x' \in X$ with $x \neq x'$ we have either:

- (i) x < x' and $x' \not< x$
- (ii) x' < x and $x \not< x'$.

Without loss of generality — we may simply relabel x and x' — let us assume that (i) holds. Then the neighbourhood $U^x = \{x'' \in X \mid x < x''\}$ of x in (X, \mathcal{O}) contains x but not x'. We conclude that (X, \mathcal{O}) is T0.

In Question 10 of Exercise Sheet 2 we saw that Alexandroff topological spaces correspond exactly to pre-orders. In this way we obtain a characterisation of T0 Alexandroff topological spaces.

(2) Let X be a set, and let $\mathcal{O}^{\text{indis}}$ denote the indiscrete topology on X. Then (X, \mathcal{O}) is not T0. Let us prove this.

Let $x, x' \in X$. The only neighbourhood of x in $(X, \mathcal{O}^{\text{indisc}})$ is X itself, which contains x'. Similarly the only neighbourhood of x' in $(X, \mathcal{O}^{\text{indisc}})$ is X itself, which contains x.

(3) Let \mathcal{O} denote the topology on \mathbb{R}^2 generated in the sense of Question 5 of Exercise Sheet 2 by straight lines parallel to the x-axis. Then $(\mathbb{R}^2, \mathcal{O})$ is not T0.

Let us prove this. Let $(x,y) \in \mathbb{R}^2$ and $(x',y) \in \mathbb{R}^2$ be such that x < x'.

Every neighbourhood of (x,y) in $(\mathbb{R}^2,\mathcal{O})$ contains the straight line

$$L = \{ (x'', y \mid x'' \in \mathbb{R} \}.$$

Moreover L is contained in every neighbourhood of (x',y) in $(\mathbb{R}^2, \mathcal{O}_{\mathbb{R}^2})$. Thus there is no neighbourhood of (x,y) in $(\mathbb{R}^2,\mathcal{O})$ which does not contain (x',y), and no neighbourhood of (x',y) in $(\mathbb{R}^2,\mathcal{O})$ which does not contain (x,y).

Observation 11.3. Every T1 topological space is a T0 topological space.

Examples 11.4.

(1) Let X be a set, and let < be a pre-order on X. Let \mathcal{O} denote the corresponding topology on X defined in Question 8 of Exercise Sheet 1.

The topological space (X, \mathcal{O}) is T1 if and only < is equality, by which we mean that x < x' if and only if x = x'. Let us prove this.

Suppose that < is not equality. Then there is a pair (x, x') of elements of X such that x < x' but $x \neq x'$. By definition of \mathcal{O} , which we recalled in Examples 11.2 (1), every neighbourhood of x contains x'. Thus (X, \mathcal{O}) is not T1.

Suppose instead that < is equality. Then \mathcal{O} is the discrete topology on X. In particular, for any pair (x, x') of elements of X, the singleton set $\{x\}$ is a neighbourhood of x in (X, \mathcal{O}) which does not contain x'. Thus (X, \mathcal{O}) is T1.

Let us summarise.

- (a) If < is not a partial order, then (X, \mathcal{O}) is not a T0 topological space.
- (b) If < is a partial order which is not equality then (X, \mathcal{O}) is a T0 topological space but is not a T1 topological space.
- (c) If < is equality, then (X, \mathcal{O}) is a T1 topological space and in particular a T0 topological space.
- (2) Let \mathcal{O} be the topology on \mathbb{R} generated by

$$\mathcal{O}' = \{(a, \infty) \mid a < 0\} \cup \{(-\infty, b) \mid b > 0\}.$$

Then $(\mathbb{R}, \mathcal{O})$ is a T0 topological space. Let us prove this.

Suppose that $x, x' \in X$ and that $x \neq x'$. Without loss of generality — we may relabel x and x' if necessary — suppose that x < x'. We have the following two cases.

(a) If x' > 0 then for any $b \in \mathbb{R}$ such that x < b and 0 < b < x' we have that $(-\infty, b)$ is a neighbourhood of x in $(\mathbb{R}, \mathcal{O})$ which does not contain x'.

(b) If $x' \leq 0$ then for any x < a < x' we have that (a, ∞) is a neighbourhood of x' in $(\mathbb{R}, \mathcal{O})$ which does not contain x.

In each case we have a neighbourhood of either x or x' in $(\mathbb{R}, \mathcal{O})$ which does not contain both x and x'. Thus $(\mathbb{R}, \mathcal{O})$ is T0.

However $(\mathbb{R}, \mathcal{O})$ is not T1. For any $x \in \mathbb{R}$ we have that every neighbourhood of x in $(\mathbb{R}, \mathcal{O})$ contains 0. Thus for any $x \in \mathbb{R}$ with $x \neq 0$ we cannot find a neighbourhood of x in $(\mathbb{R}, \mathcal{O})$ which does not contain 0.

Proposition 11.5. Let (X, \mathcal{O}) be a topological space. The following are equivalent.

- (1) (X, \mathcal{O}) is T1.
- (2) The singleton set $\{x\}$ is closed in X for every $x \in X$.
- (3) Every finite subset A of X is a closed subset of X.

(4) For every subset A of X we have that

$$A = \bigcap_{U \in \mathcal{O} \text{ and } A \subset U} U.$$

Proof. It suffices to prove the following implications.

- (1) \Rightarrow (2) Suppose that (X, \mathcal{O}) is T1. Let $x' \in X$ be such that $x \neq x'$. Since (X, \mathcal{O}) is T1 there is a neighbourhood U of x' in (X, \mathcal{O}) which does not contain x. Thus x' is not a limit point of $\{x\}$ in (X, \mathcal{O}) .
- $(2) \Rightarrow (3)$ Suppose that (2) holds. Let A be a finite subset of X. Let $x \in X \setminus A$. For each $a \in A$ there is by (2) a neighbourhood U_a of x in (X, \mathcal{O}) such that $a \notin U_x$.

Let $U = \bigcap_{a \in A} U_a$. Since A is finite we have U is open in X. Moreover we have that $x \in U$ and that $U \cap A = \emptyset$. Thus x is not a limit point of A in (X, \mathcal{O}) .

- $(3) \Rightarrow (2)$ Clear.
- $(2) \Rightarrow (4)$ Suppose that (2) holds. Let A be a subset of X. Let

$$A' = \bigcap_{U \in \mathcal{O} \text{ and } A \subset U} U.$$

Let $x \in X \setminus A$. By (2) we have that $\{x\}$ is closed in X. Thus $X \setminus \{x\}$ is open in X. Hence

$$A' \subset \bigcap_{x \in X \setminus A} X \setminus \{x\}.$$

We have that

$$\bigcap_{x \in X \setminus A} X \setminus \{x\} = X \setminus \bigcup_{x \in X \setminus A} \{x\}$$
$$= X \setminus (X \setminus A)$$
$$= A.$$

Thus $A' \subset A$. It is moreover clear that $A \subset A'$. We conclude that A = A'.

(4) \Rightarrow (1) Suppose that (4) holds. Let (x, x') be an ordered pair of elements of X be such that $x \neq x'$.

By (4) we have that

$$\{x\} = \bigcap_{U \in \mathcal{O} \text{ and } x \in U} U.$$

In particular we have that

$$x' \notin \bigcap_{U \in \mathcal{O} \text{ and } x \in U} U.$$

Thus there is a neighbourhood of x in (X, \mathcal{O}) which does not contain x'.

11.3 Hausdorff topological spaces

Observation 11.6. Every Hausdorff topological space is a T1 topological space. In particular every Hausdorff topological space is a T0 topological space.

Examples 11.7.

(1) $(\mathbb{R}, \mathcal{O}_{\mathbb{R}})$ is a Hausdorff topological space. Let us prove this.

Let $x, x' \in \mathbb{R}$ be such that $x \neq x'$. Without loss of generality — we may relabel x and x' — let us assume that x < x'.

Let $y, y' \in \mathbb{R}$ be such that $x < y \le y' < x'$. We then have that $x \in (-\infty, y)$, that $x' \in (y', \infty)$, and that $(-\infty, y) \cap (y', \infty) = \emptyset$.

(3) Let $\mathsf{Spec}(\mathbb{Z})$ denote the set of primes. Let \mathcal{O} denote the topology on $\mathsf{Spec}(\mathbb{Z})$ defined in Question 9 of Exercise Sheet 1. Recall that

$$\mathcal{O} = \big\{ \mathsf{Spec}(\mathbb{Z}) \setminus V(n) \mid n \in \mathbb{Z} \big\}$$

where

$$V(n) = \{ p \in \mathsf{Spec}(\mathbb{Z}) \mid p \mid n \}.$$

The topological space $(\operatorname{Spec}(\mathbb{Z}), \mathcal{O})$ is T1. Let us prove this.

For any $n \in \mathbb{Z}$ we have that V(n) is closed in $(\operatorname{Spec}(\mathbb{Z}), \mathcal{O})$. In particular for any $p \in \operatorname{Spec}(\mathbb{Z})$ we have that V(p) is closed in $(\operatorname{Spec}(\mathbb{Z}), \mathcal{O})$. Thus since $V(p) = \{p\}$ we have that $\{p\}$ is a closed subset of $(\operatorname{Spec}(\mathbb{Z}), \mathcal{O})$ for every $p \in \operatorname{Spec}(\mathbb{Z})$.

By Proposition 11.5 we conclude that $(\operatorname{Spec}(\mathbb{Z}), \mathcal{O})$ is T1. However $(\operatorname{Spec}(\mathbb{Z}), \mathcal{O})$ is not Hausdorff. Let us prove this.

Let $p, p' \in \operatorname{Spec}(\mathbb{Z})$. The neighbourhoods of p in $(\operatorname{Spec}(\mathbb{Z}), \mathcal{O})$ are the sets

$$\mathsf{Spec}(\mathbb{Z}) \setminus V(n)$$

for which $p \nmid n$. The neighbourhoods of p' in $(Spec(\mathbb{Z}), \mathcal{O})$ are the sets

$$\mathsf{Spec}(\mathbb{Z}) \setminus V(n')$$

for which $p' \not\mid n'$.

Let $n, n' \in \mathbb{Z}$ be such that $p \nmid n$ and $p' \nmid n'$. Let $p'' \in \operatorname{Spec}(\mathbb{Z})$ be such that $p'' \nmid n$ and $p'' \nmid n'$. For example, we may take p'' to be any prime larger than n and n'.

Then $p'' \in \operatorname{\mathsf{Spec}}(\mathbb{Z}) \setminus V(n)$ and $p'' \in \operatorname{\mathsf{Spec}}(\mathbb{Z}) \setminus V(n')$. Hence

$$(\operatorname{\mathsf{Spec}}(\mathbb{Z})\setminus V(n))\cap (\operatorname{\mathsf{Spec}}(\mathbb{Z})\setminus V(n'))\neq\emptyset.$$

We have shown that for every neighbourhood U of p in $(\operatorname{Spec}(\mathbb{Z}), \mathcal{O})$ and every neighbourhood U' of p' in $(\operatorname{Spec}(\mathbb{Z}), \mathcal{O})$ we have that $U \cap U' \neq \emptyset$. Thus $(\operatorname{Spec}(\mathbb{Z}), \mathcal{O})$ is not Hausdorff.

Notation 11.8. Let X be a set. We denote by $\Delta(X)$ the subset

$$\{(x,x) \in X \times X \mid x \in X\}$$

of $X \times X$.

Proposition 11.9. Let (X, \mathcal{O}_X) be a topological space. Then (X, \mathcal{O}_X) is Hausdorff if and only if $\Delta(X)$ is closed in $(X \times X, \mathcal{O}_{X \times X})$.

Proof. Suppose that (X, \mathcal{O}_X) is Hausdorff. Let $(x, x') \in (X \times X) \setminus \Delta(X)$. By definition of $\Delta(X)$, we have that $x \neq x'$. Since (X, \mathcal{O}) is Hausdorff there is a neighbourhood U of x in (X, \mathcal{O}) and a neighbourhood U' of x' in (X, \mathcal{O}) such that $U \cap U' = \emptyset$.

We have that $\Delta(X) \cap (U \times U') = \underline{\Delta(U \cap U')} = \emptyset$. Hence (x, x') is not a limit point of $\Delta(X)$. We deduce that $\Delta(X) = \overline{\Delta(X)}$. By Proposition 5.7 we conclude that $\Delta(X)$ is closed in $(X \times X, \mathcal{O}_{X \times X})$.

Suppose instead that $\Delta(X)$ is closed in $(X \times X, \mathcal{O}_{X \times X})$. For any $x, x' \in X$ with $x \neq x'$ we have by Proposition 5.7 that (x, x') is not a limit point of $\Delta(X)$. Hence there is a neighbourhood U of x in (X, \mathcal{O}_X) and a neighbourhood U' of x' in (X, \mathcal{O}_X) such that $\Delta(X) \cap (U \times U') = \emptyset$.

Appealing again to the fact that $\Delta(X) \cap (U \times U') = \Delta(U \cap U')$ we deduce that $\Delta(U \cap U') = \emptyset$. Hence $U \cap U' = \emptyset$. We conclude that (X, \mathcal{O}) is Hausdorff.

Proposition 11.10. Let (X, \mathcal{O}_X) be a Hausdorff topological space. Let A be a subset of X, and let \mathcal{O}_A denote the subspace topology \mathcal{O}_A on A with respect to (X, \mathcal{O}_X) . Then (A, \mathcal{O}_A) is a Hausdorff topological space.

Proof. Exercise. \Box

Proposition 11.11. Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be topological spaces. Then

$$(X \times Y, \mathcal{O}_{X \times Y})$$

is Hausdorff if and only if (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) are both Hausdorff.

Proof. Exercise. \Box

Examples 11.12. By Examples 11.7 (1) we have that $(\mathbb{R}, \mathcal{O}_{\mathbb{R}})$ is Hausdorff. By Proposition 11.10 and Proposition 11.11 we deduce that all the topological spaces of Examples 1.38 are Hausdorff.

Proposition 11.13. Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be topological spaces. Let

$$X \xrightarrow{f} Y$$

be a bijection which is an open map. If (X, \mathcal{O}_X) is Hausdorff then (Y, \mathcal{O}_Y) is Hausdorff.

Proof. Exercise.

Corollary 11.14. Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be topological spaces. Let

$$X \xrightarrow{f} Y$$

be a homeomorphism. If (X, \mathcal{O}_X) is Hausdorff then (Y, \mathcal{O}_Y) is Hausdorff.

Proof. Follows immediately from Proposition 11.13 since a homeomorphism is in particular a bijection which is an open map. \Box

Proposition 11.15. Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be topological spaces. Then $(X \sqcup Y, \mathcal{O}_{X \sqcup Y})$ is Hausdorff if and only if (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) are both Hausdorff.

Proof. Exercise.