LOGIC GATES

Introduction

 Computers are electronic devices. The basic elements of a computer control the flow of electricity.

 Controlling the flow of electricity in a computer allows us to make decisions and perform calculations

A Gate

- A gate is a device that performs a basic operation on electrical signals.
- A gate accepts one or more input signals and produces a single output signal.
 - A low voltage signal is shown as a 0 (zero)
 - A high voltage signal is shown as a 1 (one)
- Gates are combined into circuits to perform tasks such as arithmetic and store values.

Notation when describing Gates

- Boolean Expressions
 - is an expression that results in a boolean value, that is, in a value of either true or false.
- Logic diagrams
 - This is a graphical version of a circuit
- Truth tables
 - Defines the function of a gate by listing all the possible input combinations along with the corresponding output

6 Types of Gates

- NOT
- AND
- OR
- XOR
- NAND
- NOR

NOT Gate

 A NOT gate accepts one input signal and produces one output signal.

Boolean Expression

Logic Diagram Symbol

Truth Table

Α	Х
0	1
1	0

A NOT gate is sometimes referred to as an **inverter** because it inverts (reverses) the input value

AND Gate

 An AND gate accepts two input signals and produces one output signal.

Boolean Expression

$$X = A \cdot B$$

Logic Diagram Symbol

Truth Table

Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

The values of both input signals determine what the output signal will be.

OR Gate

 An OR gate accepts two input signals and produces one output signal.

Boolean Expression

X = A + B

Truth Table

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	1

The values of either signals determine what the output signal will be.

XOR Gate

 An XOR (exclusive OR) gate accepts two input signals and produces one output signal.

Boolean Expression

 $X = A \oplus B$

....

Logic Diagram Symbol

Truth Table

Α	В	Х
0	0	0
0	1	1
1	0	1
1	1	0

An XOR gate produces a 0 if its two inputs are the same and an 1 when inputs are mixed, ie 0 and 1.

OR versus XOR Gate

 The only difference between an OR gate and an XOR gate is when both input signals are 1.

Truth Table (OR)

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	1

Truth Table (XOR)

Α	В	Х
0	0	0
0	1	1
1	0	1
1	1	0

NAND Gate

 A NAND (Not AND) gate is the opposite of the AND gate.

Boolean Expression

$$X = (A \cdot B)'$$

Truth Table

Α	В	Х
0	0	1
0	1	1
1	0	1
1	1	0

The output of NAND gate is equal to the output of an AND gate which is put through a NOT gate.

The output of NAND gate is equal to the output of an AND gate which is put through a NOT gate.

AND Gate **NOT Gate inverts signal NAND Gate** B X A X X B Α

NOR Gate

A NOR (Not OR) gate is the opposite of the OR gate.

Boolean Expression

X = (A + B)'

Logic Diagram Symbol

Truth Table

	102=1	100-101
Α	В	X
0	0	1
0	1	0
1	0	0
1	1	0

The output of NOR gate is equal to the output of an OR gate which is put through a NOT gate.

The output of NOR gate is equal to the output of an OR gate which is put through a NOT gate.

Overview of Gates

- A NOT gate inverts its single input value.
- An AND gate produces 1 if both values are 1
- An OR gate produces 1 if either input is 1 or both inputs are 1.
- An XOR gate produces 1 if either input (but not both) inputs are 1
- A NAND gate produces the opposite results of an AND gate
- A NOR gate produces the opposite results of an OR gate.

Logic gate simulator

- http://logic.ly/demo/
- http://www.bbc.co.uk/schools/gcsebitesize/d esign/electronics/logicrev2.shtml