수업계획서

2019년 2학기

○ 과목명 : 인공지능확률통계 ○ 담당강사 : 서용덕 교수

○ 강의실 :○ 조 교 :

1. 교과목표

- 인공지능, 머신러닝 및 데이터 분석 분야에서 사용하는 다양한 확률통계 이론을 이해하고 연구하기 위하여 필요한 기본적인 확률통계의 개념을 학습한다.

- 확률분포 모델 및 각 확률분포모델의 파라메터 추정 방법에 대한 개념과 계산 방법에 대하여 학습한다.
- 확률론적 모델링 및 분석 이론의 기반이 되는 베이즈 추론 방법에 대한 기본 개념을 학습한다.

2. 수업형태

강의의 구성 형태에 대하여 기술합니다.

강의 : 70% 실험 : 30%

3. 강의계획

가. 교과 개요 (대면, 비대면 수업은 요청 및 합의에 따라 변경될수있음)

주	교수내용	수업형태	비	고
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	확률분포, 확률공간의 개념 Discrete probability models Continuous probability models Sum rule, product rule, and Bayes' theorem Summary statistics & Independence Gaussian distribution Conjugacy & Bayes' statistics 중간고사 (Midterm) Exponential family Transformation of random variables & change of variables Bayesian Statistics Parameter estimation (MLE, MAP) Parameter estimation for linear regression Bayesian parameter estimation (linear regression) Probabilistic programming 기말시험	수업, Zoom 수업, Zoom 수업, Zoom 수업, Zoom 수업, 대면 수업, 대면 수업, 대면 수업, 대면 수업, 대면 수업, Zoom 수업, Zoom 수업, Zoom 수업, Zoom 수업, 대면 수업, 대면		

나. 교과내용

- 1. Probability density models
- 2. Statistics
- 3. Probabilistic modeling and parameter estimation

4. 교재 및 참고문헌

- 1. Mathematics for Machine Learning
 - https://mml-book.github.io/
- 2. Probabilistic Machine Learning: An Introduction
 - https://probml.github.io/pml-book/book1.html
- 3. Fundamentals of applied probability and random processes by Oliver C. Ibe
 - https://library.sogang.ac.kr/eds/detail/nlebk_194964
- 4. Think Bayes 2 by Allen Downey
 - https://allendowney.github.io/ThinkBayes2/

5. 평 가

출	결	10%
과	제	25%
중간	·고사	30%
기말	·고사	35%

6. 기타

- python 환경에서 수행하는 과제가 있음