Dynamic Pricing for Urban Parking Lots

Capstone Project of Summer Analytics 2025 hosted by Consulting & Analytics Club × Pathway

Background and Motivation

Urban parking spaces are a limited and highly demanded resource. Prices that remain static throughout the day can lead to inefficiencies — either overcrowding or underutilization. To improve utilization, **dynamic pricing** based on demand, competition, and real-time conditions is crucial.

This project simulates such a system: participants will create an intelligent, data-driven pricing engine for 14 parking spaces using real-time data streams, basic economic theory, and ML models built from scratch, using only numpy, pandas libraries.

Data Description

You are given data collected from 14 urban parking spaces over 73 days, sampled at 18 time points per day with 30 minutes of time difference (from 8:00 AM to 4:30 PM the same day).

Each record includes the following:

Location Information:

• Latitude and Longitude of each parking space (to calculate proximity to competitors).

Parking Lot Features:

- Capacity (maximum number of vehicles that can be parked)
- Occupancy (current number of parked vehicles)
- Queue length (vehicles waiting for entry)

Vehicle Information:

• Type of incoming vehicle: car, bike, or truck

Environmental Conditions:

- Nearby traffic congestion level
- Special day indicator (e.g., holidays, events)

Each time step reflects the state of each parking lot, and demand will fluctuate throughout the day based on these features.

Project Objective

Your goal is to build a dynamic pricing model for each parking space such that:

- The price is **realistically updated in real-time** based on:
 - Historical occupancy patterns
 - Queue length
 - Nearby traffic
 - Special events
 - Vehicle type
 - Competitor parking prices
- It starts from a base price of \$10
- The price variation is **smooth and explainable**, not erratic
- Optional: The system suggests rerouting vehicles to nearby lots if the current lot is overburdened.

Core Requirements

Pricing Logic Implementation

• You must implement all pricing models from scratch (only Python, Pandas, Numpy, Pathway).

Pricing Model Stages

You will build three models, increasing in complexity and intelligence.

Model 1: Baseline Linear Model

A simple model where the **next price** is a function of the **previous price** and **current occupancy**:

- Linear price increase as occupancy increases
- Acts as a reference point

Example:

$$Price_{t+1} = Price_t + \alpha \cdot \left(\frac{Occupancy}{Capacity} \right)$$

Model 2: Demand-Based Price Function

A more advanced model where you:

- Construct a mathematical demand function using key features:
 - Occupancy rate
 - Queue length
 - Traffic level
 - Special day
 - Vehicle type

Example demand function:

$$Demand = \alpha \cdot \left(\frac{Occupancy}{Capacity}\right) + \beta \cdot Queue Length - \gamma \cdot Traffic + \delta \cdot IsSpecialDay + \varepsilon \cdot Vehicle Type Weight$$

Use this demand value to adjust prices:

$$Price_t = BasePrice \cdot (1 + \lambda \cdot NormalizedDemand)$$

• Ensure demand is **normalized** and price variations are **smooth and bounded** (e.g., not more than 2x or less than 0.5x base).

Note: The example pricing functions provided in the models above are linear and serve as simple baselines. Participants are encouraged to design and implement more effective and sophisticated pricing strategies.

Model 3 (Optional): Competitive Pricing Model

This model adds **location intelligence** and simulates real-world competition:

- Calculate **geographic proximity** of nearby parking spaces using lat-long.
- Determine **competitor prices** and factor them into your own pricing.

Competitive logic:

- If your lot is full and nearby lots are cheaper \rightarrow suggest rerouting or reduce price
- If nearby lots are expensive \rightarrow your price can increase while still being attractive

This model encourages creativity and business thinking along with technical skills.

Real-Time Simulation with Pathway

This project must simulate real-time data ingestion.

You will use **Pathway** for:

- Ingesting data **streamed with delay**, preserving time-stamp order
- Processing features in real time
- Emitting pricing predictions continuously

Sample notebook will be provided with:

- Data simulation code using Pathway and the dataset.csv.
- Integration with Pathway's streaming features
- Hooks to insert your pricing logic

Execution Environment

• All code must be written and run in Google Colab.

Visualization Requirements

You must provide real-time visualizations using **Bokeh**. Suggested plots:

- Real-time pricing line plots for each parking space
- Comparison with competitor prices

The final output should **visually justify** pricing behavior.

Submission Guidelines

- Submit a well-commented Google Colab notebook and a report explaining all your steps, justifying them and include all the models you used.
- Include a section explaining:
 - Your demand function
 - Any assumptions
 - How your price changes with demand and competition
- Include **visualizations** and **graphs** from Bokeh in the notebook and report.
- Evaluation: Since this is a project, there is no objective metric for evaluation like in a hackathon.

Resources for Real Time Applications

- 1. Pathway. From Jupyter to Deploy. Retrieved from: https://pathway.com/developers/user-guide/deployment/from-jupyter-to-deploy/
- 2. Pathway. First Real-Time App with Pathway. Retrieved from: https://pathway.com/developers/user-guide/introduction/first_realtime_app_with_pathway/
- 3. Summer Analytics, 2025. Retreived from: https://www.caciitg.com/sa/course25/