Antenas Eléctricamente Pequeñas

Marcelo Peruzzi

¿Qué es una antena ESA?

Efectos de miniaturizar las antenas

Disminuye la R y aumenta la X

Redes de adaptación

Dispositivos más voluminosos

Menor eficiencia (Ganancia)

Menor alcance o baterías más grandes

Aumenta el Q (Disminuye el AB) 4

Menores prestaciones

Mojones RFID en ambientes sin GPS

- ✓ Constructivamente simple
- / Impedancia muy inductiva (18 +j 180 Ω)

La medición de la antena de un tag RFID

Corrientes de malla

Medición imprecisa

¿Cómo se mide la impedancia de la antena del tag?

Medición con balun

$$\Gamma_a = \frac{\Gamma_e - S_{11}}{S_{22}(\Gamma_e - S_{11}) + S_{12}^2}$$

Balun PCB

Dimensionamiento del balun

- ✓ Impedancia de línea balanceada de 180 Ω .
- ✓ Longitud de línea balanceada 3/8 λ.
- ✓ Línea microstrip de 50 Ω y longitud mínima.

$$|\Gamma_e| = \left| \frac{\Gamma + \Gamma_a e^{-2j\theta_b}}{1 + \Gamma \Gamma_a e^{-2j\theta_b}} \right|$$

Diseño con simulador del balun

Medición de parámetros del balun

Medición de impedancia con balun

Evaluación de las corrientes de malla

Antena con polarización circular para un tag

- ✓ Esquema constructivo simple.
- ✓ Polarización circular.
- ✓ Impedancia inductiva (18 + j180 Ω).

Los dipolos cruzados

$$\vec{E} = E_x \cos(\omega t - kz - \phi_x)\vec{x} + E_y \cos(\omega t - kz - \phi_y)\vec{y}$$

Los dipolos cruzados

- ✓ Las fases de las corrientes deben diferir en 90°.
- ✓ Ambos dipolos deben irradiar igual potencia.

$$R_y = X_y = R_x = X_x = R$$

La impedancia de los dipolos cruzados es R

La red de adaptación

La red de adaptación

Modelo final

Simulación de los dipolos vertical y horizontal

Simulación de los dipolos vertical y horizontal

Z vertical = 31.7+j31.2 Ω

Z horizontal = 27-j 26.7Ω

Simulación de los dipolos cruzados

Dimensiones de la red de adaptación

Depende de L y W

Depende de L

Dimensionamiento de la red de adaptación

Impedancia para W fijo y L variable (área del lazo).

Dimensionamiento de la red de adaptación

Impedancia para L fijo y W variable (α variable).

Dimensiones de la red de adaptación

ure 6: Antenna input resistance for different matching strips dimensions.

Wm=3.8 mm LMv=16.6 mm LMh=17 mm W=4 mm LMv=LMh=17 mm

Dimensiones de la red de adaptación

Evaluación de la antena

Medición de la impedancia

Figura 6.3: Impedancia de entrada de la antena en función de la frecuencia por medición diferencial (rojo a trazos), por simulación (azul) y por medición con balun (verde en punto y trazos).

Medición de la relación axial

Medición del AB de la relación axial

Medición del rango con un lector comercial

$$r = d\sqrt{\frac{EIRP}{P_{min}G_tL}}$$

Comparación con antenas similares

Rango (m)	-3 dB AR (MHz)	-10 dB S (MHz)	Dim. mm.	EIRP W
-	900-930 2	890-940 1	120x120	-
6.5	903-934 1	_ 3	68x68	4
7.6	905.2-916.6 1	890-929	35.6x35.6	3.28
15.5	892-932 1	884-941 1	95.8x95.8	4
12.8	910-940	886-924	64x64	1
	(m) - 6.5 7.6 15.5	(m) (MHz) - 900-930 ² 6.5 903-934 ¹ 7.6 905.2-916.6 ¹ 15.5 892-932 ¹	(m) (MHz) (MHz) - 900-930 ² 890-940 ¹ 6.5 903-934 ¹ - ³ 7.6 905.2-916.6 ¹ 890-929 15.5 892-932 ¹ 884-941 ¹	(m) (MHz) (MHz) mm. - 900-930 ² 890-940 ¹ 120x120 6.5 903-934 ¹ - ³ 68x68 7.6 905.2-916.6 ¹ 890-929 35.6x35.6 15.5 892-932 ¹ 884-941 ¹ 95.8x95.8

¹ Por simulación

² Medición indirecta

³ 894-929 MHz a -3 dB

Panorama actual y futuro

Panorama actual y futuro

Compact Ultra-Wideband Printed Inverted-F Antenna for Location Systems

Desarrollo de una antena para vehículos con el fin de lograr una conexión de datos con satélites geoestacionarios.

Proyecto Fase Cero Fundación Sadoski

Panorama actual y futuro

Desarrollo de biosensores de Escherichia Coli para envasado inteligente de productos cárnicos.

PIP 2021-2023 (en evaluación)

9618

IEEE SENSORS JOURNAL VOL 20 NO 17 SEPTEMBER 1 20

Potential Chipless RFID Sensors for Food Packaging Applications: A Review

DESARROLLO DE PELÍCULAS PLÁSTICAS CON CAPACIDAD DE CAPTURA Y ALMACENAMIENTO DE ENERGÍA PICT 2020 (en evaluación)

¿Preguntas?

