Algorithms for Dynamic Right-Sizing in Data Centers

Kevin Kappelmann

Chair for Theoretical Computer Science, Technical University of Munich

May 10, 2017

Contents

L	Introduction
	1.1 Model description
	1.2 Problem statement
2	Preliminaries
	Optimal offline scheduling
	3.1 Graph for an optimal schedule
	3.2 A pseudo-polynomial minimum cost algorithm
	3.2.1 Runtime analysis
	3.2.2 A memory optimized algorithm

1 Introduction

TODO: Hardware prices vs. energy costs in data centres and purpose of this paper (offline algorithm, approximation algorithm,...).

1.1 Model description

We want to address the issue of above-mentioned ever-growing energy consumption by examing a scheduling problem that commonly arises in data centres. More specifically, we consider a model consisting of a fixed amount of homogeneous servers denoted by $m \in \mathbb{N}$ and a fixed amount of time slots denoted by $T \in \mathbb{N}$. In turn, each server possesses two power states, i.e. each server is either powered on (active state) or powered off (sleep state).

of Setter name than sleep state?

Need to describe what a time slot means?

For any time slot $t \in [T]$, we have a mean arrival rate denoted by λ_t , i.e. the amount of expected load to process in time slot t. We expect the arrival rates to be normalised such that each server can handle a load between zero and one in any time slot. We denote the assigned load for server i in time slot t by $\lambda_{i,t} \in [0,1]$. Consequently, for any time slot t, we expect an arrival rate between zero and m, that is $\lambda_t \in [0,m]$; otherwise, the servers would not be able to process the given load in time.

The costs incurred by a single machine are described by the sum of the machine's operating costs, specified by $f:[0,1] \to \mathbb{R}$, as well as its (power state) switching costs, specified by $\beta \in \mathbb{R}_{\geq 0}$. The operating costs f may not exclusively consider energy costs. For example, f may also allow for costs incurred by delays, such as lost revenue caused by users waiting for their responses. Similarly, β may also allow for delay costs, wear and tear costs or the like. [1]

We assume that a sleeping server does not incur any costs. Note that f(0) describes the costs incurred by an idle server, not a sleeping one; in particular, f(0) may be non-zero. Further, we assume convexity for f. This may seem like a notable restriction at first, but it indeed captures the behaviour of most modern server models. Since we are dealing with homogeneous servers, f and β are the same for all machines.

For convenience, we assume all machines sleeping at time t=0 and force all machines to sleep after the scheduling process, i.e. at times t>T. This justifies the consolidation of power up and power down costs into β because it allows us to model both costs as being incurred when powering up a server; that is, a model with power up costs β_{\uparrow} and power down costs β_{\downarrow} can be simply transferred to our model by setting $\beta := \beta_{\uparrow} + \beta_{\downarrow}$.

1.2 Problem statement

Using above definitions, we can define the input of our model by setting $\mathcal{I} := (m, T, \Lambda, \beta, f)$ where $\Lambda = (\lambda_1, \dots, \lambda_T)$ is the sequence of arrival rates. We will subsequently identify a problem instance by its input \mathcal{I} . Naturally, given a problem instance \mathcal{I} , we want to schedule our servers in such a way that we minimise the sum of incurred costs while warranting that we are processing the given loads in time.

For this, consider for each server $i \in [m]$ the sequence of its states S_i and the sequence of its assigned loads L_i ; that is

$$S_i := (s_{i,1}, \dots, s_{i,T}) \in \{0, 1\}^T$$

 $L_i := (\lambda_{i,1}, \dots, \lambda_{i,T}) \in [0, 1]^T$

where $s_{i,t} \in \{0,1\}$ denotes whether server i at time t is sleeping (0) or active (1). Recall that we assume all machines sleeping at times $t \notin [T]$; consequently, for $t \notin [T]$ and $i \in [m]$, we have $s_{i,t} = 0$.

Using these sequences S_i and L_i , we can now define the sequence of all state changes and the sequence of all assigned loads:

good sentence? $\in (\{0,1\}^m)^T$

$$S := (S_1, \dots, S_m)$$
$$\mathcal{L} := (L_1, \dots, L_m)$$

We will subsequently call a pair $\Sigma := (\mathcal{S}, \mathcal{L})$ a *schedule*. Finally, we are ready to define our problem statement.

Given an input \mathcal{I} , our goal is to find a schedule Σ that satisfies the following optimisation:

Definition of $c(\Sigma)$ too hidden?

minimise
$$c(\Sigma) \coloneqq \sum_{i=1}^{n}$$

$$c(\Sigma) := \underbrace{\sum_{t=1}^{T} \sum_{i=1}^{m} \left(f(\lambda_{i,t}) * s_{i,t} \right)}_{\text{operating costs}} + \underbrace{\beta * \sum_{t=1}^{T} \sum_{i=1}^{m} \min\{0, s_{i,t} - s_{i,t-1}\}}_{\text{switching costs}} \tag{1}$$

subject to
$$\sum_{i=1}^{m} (\lambda_{i,t} * s_{i,t}) = \lambda_t, \quad \forall t \in [T]$$
 (2)

We call a schedule feasible if it satisfies (2) and optimal if it satisfies (1) and (2).

2 Preliminaries

In this section, we conduct the prepratory work needed for our algorithms and proofs.

This sounds strange...What should be written here?

Proposition 2.1. Given a problem instance \mathcal{I} and a feasible schedule Σ , there exists a feasible schedule Σ' such that

- (i) $c(\Sigma') < c(\Sigma)$ and
- (ii) Σ' never powers on and shuts down servers at the same time slot, i.e. Σ' satisfies the following formula:

$$\forall t \in [T] \left[\left(\forall i \in [m] (s_{i,t} - s_{i,t-1} \ge 0) \right) \lor \left(\forall i \in [m] (s_{i,t} - s_{i,t-1} \le 0) \right) \right]$$
(3)

Proof. Let $\Sigma = (\mathcal{S}, \mathcal{L})$ be a feasible schedule for \mathcal{I} . We give a procedure that repeatedly modifies Σ such that it satisfies (3) and reduces or retains its costs.

Let $t \in [T]$ be the first time slot falsifying (3). If there does not exist such a t, we are done. Otherwise, we can obtain $i, j \in [m]$ such that $s_{i,t} - s_{i,t-1} = 1$ and $s_{j,t} - s_{j,t-1} = -1$. WLOG we may assume i < j.

First, since all servers are sleeping at time t = 0, we have

$$s_{k,1} - s_{k,0} = s_{k,1} - 0 = s_{k,1} \ge 0, \quad \forall k \in [m]$$

Thus, we may assume t > 1. Now consider the state sequences S_i and S_i :

$$S_i = (s_{i,1}, \dots, s_{i,t-1} = 0, s_{i,t} = 1, \dots, s_{i,T})$$

 $S_i = (s_{i,1}, \dots, s_{i,t-1} = 1, s_{i,t} = 0, \dots, s_{i,T})$

We modify S_i and S_j by swapping their states for time slots $\geq t$, that is we set

$$S'_i := (s_{i,1}, \dots, s_{i,t-1} = 0, s_{j,t} = 0, \dots, s_{j,T})$$

 $S'_i := (s_{j,1}, \dots, s_{j,t-1} = 1, s_{i,t} = 1, \dots, s_{i,T})$

Similarly, we need to swap the assigned loads:

$$L'_{i} := (\lambda_{i,1}, \dots, \lambda_{i,t-1}, \lambda_{j,t}, \dots, \lambda_{j,T})$$

$$L'_{j} := (\lambda_{j,1}, \dots, \lambda_{j,t-1}, \lambda_{i,t}, \dots, \lambda_{i,T})$$

Finally, we construct a new schedule $\Sigma' := (S', \mathcal{L}')$ given by

$$S' := (S_1, \dots, S'_i, \dots, S'_j, \dots, S_T)$$

$$\mathcal{L}' := (L_1, \dots, L'_i, \dots, L'_j, \dots, L_T)$$

We now want to verify that Σ' is a feasible schedule, that is Σ' satisfies (2). For time slots < t the schedules Σ' and Σ still coincide. For time slots $\geq t$ we only changed the order of summation (2). Thus, Σ' is feasible.

Further, Σ' and Σ coincide in their operating costs; however, their switching costs differ in that there are no switching costs at time slot t for server i using Σ' . As we assume $\beta \geq 0$, we conclude $c(\Sigma') \leq c(\Sigma)$

Moreover, we decreased the amount of bad spots<u>at time slot t concerning (3). Hence, by repeating described process on Σ' , we obtain a terminating procedure that returns a schedule satisfying the conditions.</u>

bad spots? better description?

Corollary 2.2. Given a problem instance \mathcal{I} , there exists an optimal schedule Σ satisfying (3).

Proof. Let Σ be an optimal schedule for \mathcal{I} . Applying proposition 2.1 to Σ yields the result.

Next, we want to consider the sequence of active servers. For this, let \mathcal{X} denote the sequence of sums of active servers at each time slot t, i.e.

$$\mathcal{X} := (x_1 = \sum_{i=1}^m s_{i,1}, \dots, x_T = \sum_{i=1}^m s_{i,T}) \in \{0, \dots, m\}^T$$

Recall that we assume all machines sleeping at times $t \notin [T]$; consequently, for $t \notin [T]$ we have $x_t = 0$.

The next proposition poses the cornerstone of our subsequent works.

Proposition 2.3 (Equal load sharing). Given $x_t \in \mathbb{N}$ active servers at time slot t, an arrival rate $\lambda_t \in [0, x_t]$, and a convex cost function f, a most cost-efficient and feasible scheduling strategy is to assign each active server a load of λ_t/x_t .

This is sounds awkwardly formulated, doesn't

Proof. Let Σ be an arbitrary, feasible schedule using x_t servers at time slot t, and let A be its set of active servers at time slot t, that is $A := \{i \in [m] \mid s_{i,t} = 1\}$. Consider the operating costs of Σ given by

$$\sum_{i=1}^{m} (f(\lambda_{i,t}) * s_{i,t}) = \sum_{i \in A} f(\lambda_{i,t})$$

Since Σ is feasible (see constraint (2)), we have

$$\sum_{i \in A} \lambda_{i,t} = \lambda_t$$

Thus, we can obtain weights $\mu_1, \ldots, \mu_{x_t} \in [0,1]$ that relate $\lambda_{i,t}$ and λ_t for $i \in A$ such that

$$\sum_{i=1}^{x_t} \mu_i = 1 \quad \text{and} \quad \sum_{i \in A} f(\lambda_{i,t}) = \sum_{i=1}^{x_t} f(\mu_i \lambda_t)$$

In particular, we have $\sum_{i=1}^{x_t} \mu_i \lambda_t = \lambda_t$. Using these weights, we now consider the operating costs of a schedule Σ^* that equally distributes λ_t to its x_t active servers:

$$\sum_{i=1}^{x_t} f\left(\frac{\lambda_t}{x_t}\right) = x_t * f\left(\frac{\lambda_t}{x_t}\right) = x_t * f\left(\sum_{i=1}^{x_t} \frac{\mu_i \lambda_t}{x_t}\right)$$

Using Jensen's inequality and the fact that $\sum_{i=1}^{x_t} (1/x_t) = 1$, we can give an upper bound for the costs:

style (footnote)

$$x_t * f\left(\frac{\lambda_t}{x_t}\right) \le x_t \sum_{i=1}^{x_t} \frac{1}{x_t} f(\mu_i \lambda_t) = \frac{x_t}{x_t} \sum_{i=1}^{x_t} f(\mu_i \lambda_t) = \sum_{i=1}^{x_t} f(\mu_i \lambda_t) = \sum_{i \in A} f(\lambda_{i,t})$$

Hence, the operating costs of Σ^* give a lower bound for the operatings costs of Σ , and the claim follows.

$$f\left(\sum_{i=1}^{n} x_i \lambda_i\right) \le \sum_{i=1}^{n} x_i f(\lambda_i)$$

¹For convex $f: \mathbb{R} \to \mathbb{R}$, arbitrary $\lambda_1, \dots, \lambda_n \in \mathbb{R}$, and $x_1, \dots, x_n \in [0, 1]$ satisfying $\sum_{i=1}^n x_i = 1$ we have:

Proposition 2.3 tells us that there always exists an optimal schedule that equally distributes its arrival rate to its active servers at any time slot. As a result, we can restrict ourselves in finding such an optimal schedule. Together with corollary 2.2, this allows us to subsequently identify an optimal schedule by its sequence of active servers \mathcal{X} . Moreover, we are now able to simplify our optimisation conditions (1) and (2).

For this, given a problem instance \mathcal{I} , we define the operating costs function $c_{op}(x,\lambda)$ that describes the costs incurred by equally distributing λ on x active servers using f:

$$c_{op}: \{0, \dots, m\} \times [0, m] \to \mathbb{R}, \quad c_{op}(x, \lambda) = \begin{cases} 0, & \text{if } x = 0\\ x * f(\lambda/x), & \text{if } x \neq 0 \land \lambda \leq x\\ \infty, & \text{otherwise} \end{cases}$$

Further, we define the switching costs function $c_{sw}(x_{t-1}, x_t)$ describing the costs that incur by changing the amount of active server x_{t-1} to x_t :

$$c_{sw}(x_{t-1}, x_t) := \beta * \max\{0, x_t - x_{t-1}\}$$

Lastly, we can define the costs function $c(x_{t-1}, x_t, \lambda_t)$ that describes the incurring costs for a single time step using an equal distribution of loads:

$$c(x_{t-1}, x_t, \lambda_t) := c_{op}(x_t, \lambda_t) + c_{sw}(x_{t-1}, x_t)$$

The optimisation conditions for a schedule Σ now simplify to one single minimalisation:

minimise
$$c(\Sigma) = \sum_{t=1}^{T} c(x_{t-1}, x_t, \lambda_t)$$

3 Optimal offline scheduling

In this section, we derive an optimal offline algorithm based on our preliminary work. We reduce our problem specified \mathcal{I} to a shortest path problem of a level structured graph G. We then use a dynamic programming approach to find a shortest path of G and thereby an optimal schedule for \mathcal{I} in pseudo-polynomial time.

3.1 Graph for an optimal schedule

Let \mathcal{I} be a problem instance. Thanks our preliminary work, we know that there exists an optimal schedule which is identifiable by its sequence of active servers \mathcal{X} . In order to find this sequence \mathcal{X} , consider the weighted, level structured graph G defined as follows:

In order to warrant that there are at least $\lceil \lambda_t \rceil$ active servers $\forall t \in [T-1]$, we define an auxiliary function which calculates the costs for handling an arrival rate λ with x active servers: Then, $\forall t \in [T-2]$ and $i, j \in \{0, \dots, m\}$, we add edges from (t, i) to (t+1, j) with weight. Finally, for $0 \le i \le m$ we add edges from (0, 0) to (1, i) with weight $d(0, i, \lambda_1)$ and from (T-1, i) to (T, 0) with weight $d(i, 0, \lambda_T) = 0$.

$$V := \{v_{i,t} \mid i \in \{0, \dots, m\}, t \in \{0, \dots, T+1\}\}$$

$$E := \{(v_{i,t}, v_{j,t+1}) \mid i, j \in \{0, \dots, m\}, t \in \{0, \dots, T\}, v_{i,t}, v_{j,t+1} \in V\}$$

$$c_G(v_{i,t}, v_{j,t+1}) := c(i, j, \lambda_{t+1})$$

$$G := (V, E, c_G)$$

For any possible amount of active servers i and any time slot t we add a node $v_{i,t}$. Moreover, we add a start node $v_{0,0}$ as well as an end node $v_{0,T+1}$. Next, we connect all nodes with their direct successors with respect to time.

Figure 1: Level structured graph for an optimal offline algorithm.

Note: All edges from (t,i) to (t+1,j) have weight $d(i,j,\lambda_{t+1})$

Proposition 3.1. Any given optimal schedule \mathcal{X} corresponds to a shortest path P from (0,0) to (T,0) with $costs(\mathcal{X}) = costs(P)$ and vice versa.

Proof.

" \Rightarrow ": We construct a feasible path in our graph from $\mathcal X$ as follows:

First set
$$e_t := ((t, \mathcal{X}(t)), (t+1, \mathcal{X}(t+1))), \quad \forall t \in \{0, \dots, T-1\}$$

then set $P := (e_0, \dots, e_{T-1})$

As each edge e_t in our graph has weight $d(\mathcal{X}(t-1), \mathcal{X}(t), \lambda_t)$, it corresponds to the costs of switching from $\mathcal{X}(t-1)$ to $\mathcal{X}(t)$ servers and processing λ_t with $\mathcal{X}(t)$ active servers. Hence, it directly follows that P is a shortest path of the graph with $costs(P) = costs(\mathcal{X})$.

```
"\Leftarrow": Let P = ((0,0) = v_0, \ldots, v_T = (T,0)) with v_t \in \{(t,i) \mid 0 \le i \le m\} be a shortest path of the graph.
```

We can construct an optimal schedule from P by setting $\mathcal{X} := (v_0(1), \dots, v_T(1))$ By definition (2) it is guaranteed that P only traverses edges such that there are enough active servers $\forall t \in [T]$. Therefore, the created schedule is feasible. Its optimality directly follows from the definition of the edges' weights and so does the equality $costs(\mathcal{X}) = costs(P)$.

3.2 A pseudo-polynomial minimum cost algorithm

```
Algorithm 1 Calculate costs for m homogeneous servers
```

```
Require: Convex cost function f, \lambda_0 = \lambda_T = 0, \forall t \in [T-1] : \lambda_t \in [0, m]
 1: function SCHEDULE(m, T, \beta, \lambda_1, \dots, \lambda_{T-1})
         if T < 2 then return
         let p[2 \dots T-1, m] and M[1 \dots T-1, m] be new arrays
 3:
         for j \leftarrow 0 to m do
 4:
             M[1,j] \leftarrow d(0,j,\lambda_1)
 5:
         for t \leftarrow 1 to T-2 do
 6:
 7:
             for j \leftarrow 0 to m do
                  opt \leftarrow \infty
 8:
                  for i \leftarrow 0 to m do
 9:
                      M[t+1,j] \leftarrow M[t,i] + d(i,j,\lambda_{t+1})
10:
                      if M[t+1,j] < opt then
11:
                          opt \leftarrow M[t+1,j]
12:
                          p[t+1,j] \leftarrow i
13:
                  M[t+1,j] \leftarrow opt
14:
         return p and M
15:
```

Algorithm 2 Extract schedule for m homogeneous servers

```
1: function EXTRACT(m, p, M, T)

2: | let x[0...T] be a new array

3: x[0] \leftarrow x[T] \leftarrow 0

4: if T < 2 then return x > Trivial solution

5: x[T-1] \leftarrow \underset{0 \le i \le m}{arg min} \{M[T-1,i]\}

6: for t \leftarrow T - 2 to 1 do

7: | x[t] \leftarrow p[t+1, x[t+1]]

8: return x
```

3.2.1 Runtime analysis

The algorithm visits every vertex and every edge of the graph exactly once. As the number of vertices is bounded by $\mathcal{O}(Tm)$ and the number of edges is bounded by $\mathcal{O}(Tm^2)$ the running time is given by:

$$\mathcal{O}(Tm + Tm^2) = \mathcal{O}(Tm^2)$$

As we need $\log_2(m)$ bits to encode m, the running time is polynomial in the numeric value of the input but exponential in the length of the input. Hence, the algorithm is pseudo-polynomial.

3.2.2 A memory optimized algorithm

TODO: use only array with size 2m

4 A polynomial 4-approximation algorithm for monotonically increasing convex f

We consider a modification of the problem discussed in chapter 3. Assuming that f is convex and monotonically increasing, we can modify our algorithm to obtain a polynomial time 4-approximation algorithm.

4.1 Graph for a 4-optimal schedule

We modify our graph from chapter 3.1 to the reduce the number of vertices. For this, we stop adding m vertices for each timestep, but use vertices that approximate the number of active servers instead. First, let $b := \lceil \log_2(m) \rceil$. We add vertices (t,0) and $(t,2^i), \forall t \in [T-1], 0 \le i \le b$. All edges and weights are added analogous to chapter 3.1.

Figure 2: Graph for a 4-approximation algorithm

Definition 4.1. Let $\mathcal{X} = (x_0, \dots, x_T)$ be a schedule and t > 0. We say that \mathcal{X} changes its **state** at time t if

$$x_t \neq x_{t-1}$$

and that \mathcal{X} changes its **2-state** at time t if

$$x_t = 0$$
 or $x_t \notin (2^{\lfloor \log_2(x_{t-1}) \rfloor}, 2^{\lceil \log_2(x_{t-1}) \rceil})$

Proposition 4.2.

- 1. Any given optimal schedule \mathcal{X} can be transformed to a 4-optimal schedule \mathcal{X}' which corresponds to a path P from (0,0) to (T,0) with $costs(\mathcal{X}') = costs(P)$.
- 2. Any shortest path P from (0,0) to (T,0) corresponds to a 4-optimal schedule \mathcal{X} with $costs(P) = costs(\mathcal{X})$.

Proof.

1. Assume we have an optimal schedule identified by $\mathcal{X} = (x_0, \dots, x_T)$. For $0 \le t < T$ we inductively set:

$$x'_{0} \coloneqq 0, \qquad x'_{t+1} \coloneqq \begin{cases} \min\{2^{\lfloor \log_{2}(2x_{t+1}) \rfloor}, 2^{b}\}, & \text{if } 0 < x_{t} \le x_{t+1} \\ 2^{\lceil \log_{2}(2x_{t+1}) \rceil}, & \text{if } 0 < x_{t+1} < x_{t} \text{ and } x'_{t} \ge 4x_{t+1} \\ x'_{t}, & \text{if } 0 < x_{t+1} < x_{t} \text{ and } x'_{t} < 4x_{t+1} \\ 0, & \text{otherwise} \end{cases}$$
(4)

Then let $\mathcal{X}' := (x'_0, \dots, x'_T)$ be the modified sequence of active servers. Notice that $x_t \le x'_t \le 4x_t$ holds as x'_t is at most the smallest power of two larger than $2x_t$ which

implies that \mathcal{X}' is feasible.

We can now construct a feasible path in our graph from \mathcal{X}' as follows:

First set
$$e_t := (t, \mathcal{X}'(t)), (t+1, \mathcal{X}'(t+1)), \quad \forall t \in \{0, \dots, T-1\}$$

then set $P := (e_0, \dots, e_{T-1})$

By the definition of the edges' weights it follows that $costs(\mathcal{X}') = costs(P)$. Next, let $(t_0 = 0, t_1, \dots, t_n = 0)$ be the sequence of times where the optimal schedule \mathcal{X} changes its 2-state. Notice that the modified schedule \mathcal{X}' changes its state only at times t_i and that $2x_{t_i} \leq x'_{t_i}$ holds (TODO: only if not discrete but continuous time steps). This can be seen exemplarily in figure 3 by obvserving that \mathcal{X}' changes its state only if \mathcal{X} crosses or touches a bordering power of two.

Figure 3: Adaption of an optimal schedule

For this reason, we now only have to consider the fraction of costs of \mathcal{X}' and \mathcal{X} between time steps t_{i-1} and t_i

$$\frac{costs(\mathcal{X}', t_{i-1}, t_i)}{costs(\mathcal{X}, t_{i-1}, t_i)}$$
(5)

For $x_{t_i} = 0$ it follows from (??) that $costs(\mathcal{X}', t_{i-1}, t_i) = costs(\mathcal{X}, t_{i-1}, t_i) = 0$. Hence, we can restrict ourselves to $0 < t_i < T$ with $x_{t_i} \neq 0$. The costs incurred by \mathcal{X}' are given by

$$costs(\mathcal{X}', t_{i-1}, t_i) = \beta \max\{0, x'_{t_i} - x'_{t_{i-1}}\} + x'_{t_i} f(\lambda_{t_i} / x'_{t_i})$$
 by (??)
$$\leq \beta \max\{0, x'_{t_i} - x'_{t_{i-1}}\} + 4x_{t_i} f(\lambda_{t_i} / x'_{t_i})$$
 by (4)
$$\leq \beta \max\{0, x'_{t_i} - x'_{t_{i-1}}\} + 4x_{t_i} f(\lambda_{t_i} / x_{t_i})$$
 f monotonically increasing
$$costs(\mathcal{X}', t_{i-1}, t_i) \leq \beta \max\{0, x'_{t_i} - x'_{t_{i-1}}\} + 4x_{t_i} f(\lambda_{t_i} / x_{t_i})$$
 (6)

and the costs of \mathcal{X} by

$$costs(\mathcal{X}, t_{i-1}, t_i) = \beta \max\{0, x_{t_i} - x_{t_{i-1}}\} + x_{t_i} f(\lambda_{t_i} / x_{t_i})$$
(7)

W.l.o.g. we may assume $x_{t_i} f(\lambda_{t_i}/x_{t_i}) > 0$, otherwise the claim follows trivially. (TODO: is it really trivial?)

(i) $x_{t_i} \leq x_{t_{i-1}}$: From (4) it follows that $x'_{t_i} \leq x'_{t_{i-1}}$. Thus, we can simplify (5):

$$\frac{\cos ts(\mathcal{X}', t_{i-1}, t_i)}{\cos ts(\mathcal{X}, t_{i-1}, t_i)} \leq \frac{\beta \max\{0, x'_{t_i} - x'_{t_{i-1}}\} + 4x_{t_i} f(\lambda_{t_i} / x_{t_i})}{\beta \max\{0, x_{t_i} - x_{t_{i-1}}\} + x_{t_i} f(\lambda_{t_i} / x_{t_i})} \qquad \text{by (6),(7)}$$

$$= \frac{4x_{t_i} f(\lambda_{t_i} / x_{t_i})}{x_{t_i} f(\lambda_{t_i} / x_{t_i})} \qquad (x_{t_i} \leq x_{t_{i-1}} \text{ and } x'_{t_i} \leq x'_{t_{i-1}})$$

$$= 4$$

(ii) $x_{t_i} > x_{t_{i-1}}$: From (4) it follows that $x'_{t_i} \ge x'_{t_{i-1}}$. Thus, we can simplify (5):

$$\frac{\cos ts(\mathcal{X}', t_{i-1}, t_i)}{\cos ts(\mathcal{X}, t_{i-1}, t_i)} \leq \frac{\beta \max\{0, x'_{t_i} - x'_{t_{i-1}}\} + 4x_{t_i} f(\lambda_{t_i} / x_{t_i})}{\beta \max\{0, x_{t_i} - x_{t_{i-1}}\} + x_{t_i} f(\lambda_{t_i} / x_{t_i})} \qquad \text{by (6),(7)}$$

$$= \frac{\beta(x'_{t_i} - x'_{t_{i-1}}) + 4x_{t_i} f(\lambda_{t_i} / x_{t_i})}{\beta(x_{t_i} - x_{t_{i-1}}) + x_{t_i} f(\lambda_{t_i} / x_{t_i})} \qquad (x_{t_i} > x_{t_{i-1}} \text{ and } x'_{t_i} \geq x'_{t_{i-1}})$$

$$= \frac{\beta(\min\{2^{\lfloor \log_2(2x_{t_i}) \rfloor}, 2^b\} - x'_{t_{i-1}}) + 4x_{t_i} f(\lambda_{t_i} / x_{t_i})}{\beta(x_{t_i} - x_{t_{i-1}}) + x_{t_i} f(\lambda_{t_i} / x_{t_i})} \qquad \text{by (4)}$$

$$\leq \frac{\beta(2^{\lfloor \log_2(2x_{t_i}) \rfloor} - x'_{t_{i-1}}) + 4x_{t_i} f(\lambda_{t_i} / x_{t_i})}{\beta(x_{t_i} - x_{t_{i-1}}) + x_{t_i} f(\lambda_{t_i} / x_{t_i})}$$

$$\leq \frac{\beta(2x_{t_i} - x'_{t_{i-1}}) + 4x_{t_i} f(\lambda_{t_i} / x_{t_i})}{\beta(x_{t_i} - x_{t_{i-1}}) + x_{t_i} f(\lambda_{t_i} / x_{t_i})}$$

$$\leq \frac{\beta(2x_{t_i} - 2x_{t_{i-1}}) + 4x_{t_i} f(\lambda_{t_i} / x_{t_i})}{\beta(x_{t_i} - x_{t_{i-1}}) + x_{t_i} f(\lambda_{t_i} / x_{t_i})}$$

$$\leq 4 \frac{\frac{1}{2}\beta(x_{t_i} - x_{t_{i-1}}) + x_{t_i} f(\lambda_{t_i} / x_{t_i})}{\beta(x_{t_i} - x_{t_{i-1}}) + x_{t_i} f(\lambda_{t_i} / x_{t_i})}$$

$$\leq 4 \frac{\frac{1}{2}\beta(x_{t_i} - x_{t_{i-1}}) + x_{t_i} f(\lambda_{t_i} / x_{t_i})}{\beta(x_{t_i} - x_{t_{i-1}}) + x_{t_i} f(\lambda_{t_i} / x_{t_i})}$$

From (i) and (ii) it follows:

$$costs(\mathcal{X}') \le 4costs(\mathcal{X})$$

2. From 1 we obtain that we can construct a 4-optimal path P' from any optimal schedule. Now, let P be a shortest path. We have $costs(P) \leq costs(P') < \infty$, and since every path P with $costs(P) < \infty$ corresponds to a feasible schedule \mathcal{X} with $costs(P) = costs(\mathcal{X})$, \mathcal{X} must also be at least 4-optimal.

References

[1] Minghong Lin, Adam Wierman, Lachlan L. H. Andrew, and Eno Thereska. Dynamic right-sizing for power-proportional data centers. *IEEE/ACM Transactions on Networking (TON)*, 21:1378–1391, 2013.

Appendix

Below, we give an overview of just given definitions and conventions commonly referred to in our paper:

Good idea to have an appendix?

• Input:

- $-m \in \mathbb{N}...$ number of homogeneous servers
- $-T \in \mathbb{N}$... number of time slots
- $-\lambda_1,\ldots,\lambda_T\in[0,m]\ldots$ arrival rates
- $-\Lambda := (\lambda_1, \ldots, \lambda_T) \ldots$ sequence of arrival rates
- $-\beta \in \mathbb{R}_{\geq 0}$... switching costs of a server
- $f: [0,1] \to \mathbb{R}$...convex operating costs function of a server
- $\mathcal{I} \coloneqq (m, T, \Lambda, \beta, f)...$ input of a problem instance

• Problem statement:

- $-s_{i,t}$...state of server i at time t, i.e. sleeping (0) or active(1)
- $-S_i := (s_{i,1}, \dots, s_{i,T}) \in \{0,1\}^T \dots$ sequence of states for server i
- $-\lambda_{i,t} \in [0,1]...$ assigned load for server i at time t
- $-L_i := (\lambda_{i,1}, \dots, \lambda_{i,T}) \in [0,1]^T \dots$ sequence of assigned loads for server i
- $-\mathcal{S} := (S_1, \ldots, S_m) \ldots$ sequence of all state changes
- $-\mathcal{L} := (L_1, \dots, L_m) \dots$ sequence of all assigned loads
- $\Sigma := (\mathcal{S}, \mathcal{L})$... schedule for a problem instance \mathcal{I}

• Miscellaneous:

- $-x_t$... number of active servers at time t
- $-\mathcal{X} := (x_1, \dots, x_T) \dots$ sequence of number of active servers

• Conventions:

- $-\lambda_t = 0$ for all $t \notin [T]$, i.e. there is no load before and after the scheduling process
- $-s_{i,t}=0$ for all $t\notin [T]$, i.e. all servers are powered down before and after the scheduling process