TITLE

THE STRUCTURE AND INFRASTRUCTURE OF CHINESE SCIENCE AND TECHNOLOGY

BY

Dr. Ronald N. Kostoff Office of Naval Research 875 N. Randolph St. Arlington, VA 22217 Phone: 703-696-4198 Fax: 703-696-8744

Internet: kostofr@onr.navy.mil

LTCOL Michael B. Briggs Marine Corps Warfighting Laboratory 3255 Meyers Ave Quantico, VA 22134

Mr. Robert L. Rushenberg DDL-OMNI Engineering, LLC 8260 Greensboro Drive Mclean, VA 22102

Ms. Christine A. Bowles DDL-OMNI Engineering, LLC 8260 Greensboro Drive Mclean, VA 22102

Dr. Michael Pecht University of Maryland College Park, MD 20742

(THE VIEWS IN THIS REPORT ARE SOLELY THOSE OF THE AUTHORS, AND DO NOT NECESSARILY REPRESENT THE VIEWS OF THE DEPARTMENT OF THE NAVY OR ANY OF ITS COMPONENTS, DDL-OMNI ENGINEERING, LLC, OR THE UNIVERSITY OF MARYLAND)

KEYWORDS

China; Science and Technology; Bibliometrics; Citation Analysis; Impact Factor; Computational Linguistics; Core Competencies; Research Evaluation; CLUTO; Nanotechnology; Clustering; Taxonomies.

maintaining the data needed, and c including suggestions for reducing	completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an	arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of the , 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 2006		2. REPORT TYPE N/A		3. DATES COVE	RED	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
The Structure and	Infrastructure of C	hinese Science and	Technology 5b. GRANT NUMBER		/BER	
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT	NUMBER	
	ZATION NAME(S) AND AE search Dr. Ronald F 17	` '	olph Street	8. PERFORMING REPORT NUMB	G ORGANIZATION ER	
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	AND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
13. SUPPLEMENTARY NO The original docum	otes nent contains color i	images.				
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF	18. NUMBER 19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT SAR	OF PAGES 503	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

TABLE OF CONTENTS

TABLE OF CONTENTS

1	ABSTRACT
	EXECUTIVE SUMMARY
2	BACKGROUND
3	OBJECTIVES
4	APPROACH & RESULTS
4.1	OVERVIEW
4.2	DATABASES & INFORMATION RETRIEVAL APPROACH
4.3	BIBLIOMETRICS
4.3.1	OVERALL CHINA BIBLIOMETRICS
4.3.1.1	PUBLICATION STATISTICS ON JOURNALS, & ORGANIZATIONS
4.3.1.1.1	PROLIFIC JOURNALS
4.3.1.1.2	PROLIFIC INSTITUTIONS
4.3.1.2	CITATION STATISTICS ON JOURNALS
4.3.1.2.1	MOST CITED JOURNALS
4.3.2	SELECTED TOPIC BIBLIOMETRICS
4.3.3.	COUNTRY CITATION COMPARISONS
4.3.3.1.	INDIA
4.3.3.2.	AUSTRALIA
4.4	TAXONOMIES
4.4.1	MANUAL
4.4.1.1	FULL ABSTRACT
4.4.1.2	WORD COUNT
4.4.1.3	CLARITY
4.4.1.4	RESEARCH TYPE OF ABSTRACT
4.4.2	STATISTICAL
4.4.2.1	CONCEPT CLUSTERING
4.4.2.1.1	FACTOR MATRIX CLUSTERING
4.4.2.1.1.1	FACTOR MATRIX CLUSTERING APPROACH
4.4.2.1.1.2	FACTOR MATRIX CLUSTERING RESULTS
4.4.2.1.1.2.1	WORD CLUSTERING RESULTS
4.4.2.1.1.2.2	PHRASE CLUSTERING RESULTS
4.4.2.1.2	MULTI-LINK HIERARCHICAL WORD/PHRASE CLUSTERING
4.4.2.1.2.1	MULTI-LINK CLUSTERING APPROACH
4.4.2.1.2.2	MULTI-LINK CLUSTERING RESULTS
4.4.2.1.2.2.1	WORD CLUSTERING RESULTS
4.4.2.1.2.2.2	PHRASE CLUSTERING RESULTS
4.4.2.2	DOCUMENT CLUSTERING
4.4.2.2.1	GREEDY STRING TILING (GST) CLUSTERING
4.4.2.2.1.1	GREEDY STRING TILING APPROACH
4.4.2.2.1.2	GREEDY STRING TILING RESULTS
4.4.2.2.3	PARTITIONAL CLUSTERING (CLUTO)
4.4.2.2.3.1	PARTITIONAL CLUSTERING APPROACH
4.4.2.2.3.2	PARTITIONAL CLUSTERING RESULTS
4.4.2.2.3.2.1	SCIENCE CITATION INDEX (40, 2002)

TABLE OF CONTENTS

4.4.2.2.3.2.2 4.4.2.2.3.2.3 4.4.3. 4.4.3.1. 4.5	ENGINEERING COMPENDEX (256, 2000-2003) SCIENCE CITATION INDEX (256, 2005) INVESTMENT STRATEGY COMPARISON USA OVERALL ASSESSMENT OF CHINA'S RESEARCH
5	SUMMARY & CONCLUSIONS
6	REFERENCES
7	APPENDIX
1	SELECTED TECHNOLOGY BIBLIOMETRICS
2	PARTITIONAL CLUSTERING METHOD
3	CLUTO CLUSTERS (SCI 256 2005)
4	CLUTO TAXONOMY (SCI 256 2005)
5	DTIC TAXONOMY
6	WORD FACTOR THEMES (SCI 40-FACTORS)
7	PHRASE FACTOR THEMES (SCI 40-FACTORS)
8A	MULTILINK – WORD DENDROGRAM (SCI)
8B	MULTILINK – WORD TAXONOMY (SCI)
8C	MULTILINK – PHRASE DENDROGRAM (SCI)
8D	MULTILINK – PHRASE TAXONOMY (SCI)
9A	GREEDY STRING TILING METHOD
9B	GREEDY STRING TILING CLUSTERS (SCI 68-CLUSTERS)
10A	CLUTO CLUSTERS (SCI 40-CLUSTERS 2002)
10B	CLUTO TAXONOMY (SCI 40-CLUSTERS 2002)
10C	CLUTO CLUSTERS (EC 256-CLUSTERS 2000-2003)
10D	CLUTO TAXONOMY (EC 256-CLUSTERS 2000-2003)
10E	CLUTO CLUSTERS (SCI 256 2005) (SEE APPENDIX 3)
10F	CLUTO TAXONOMY (SCI 256 2005) (SEE APPENDIX 4)
11	MANUAL CATEGORIZATION & WORD COUNTS (SCI)

1 ABSTRACT

This report identifies and analyzes the science and technology core competencies of China. The first part of the study was performed in the 2003-2004 time frame, and analyzes databases containing 2000-2003 data for China. The second part of the report was sponsored in part by ONR Global, and contains an analysis of 2005 data from China.

For the first part of the study, aggregate China publication and citation bibliometrics were obtained, and manual and statistical taxonomies were generated. The manual taxonomy was based on reading a random sample of ten percent of all China records retrieved, and included many manually-assigned attributes for each record. The statistical taxonomies were based on both word/phrase clustering and document clustering.

For the second part of the study, one hierarchical research taxonomy, based on document clustering, was generated. The second hierarchical level of this research taxonomy for 2005 records contains four categories: 1) chemistry (5841 records); 2) physics/ materials (13966 records); 3) mathematics (7162 records); life sciences (7377 records). The physics/ materials category has almost three times as many records as the chemistry category, and twice the records of the mathematics category. Detailed analysis of the taxonomy allowed four representative technical topics to be identified (nanotechnology; genetics; alloys; crops), and bibliometrics analysis was performed for each topic. Use of bibliometrics (e.g., key researchers, Centers of Excellence, core journals) allowed the infrastructure of these technical areas to be identified.

Two unique approaches were developed to compare characteristics of China's science and technology output with that of other countries. First, a novel method was used to compare the impact/ quality of all of China's research with that of two other countries, India and Australia. Second, a unique approach was used to compare China's research investment emphases/ strategy relative to that of the USA.

China's output of research articles has expanded dramatically in the last decade. In terms of sheer numbers of research articles, especially in critical technologies (e.g., nanotechnology, energetic materials), it is among the leaders. In terms of citation impact, it was higher than India in all major categories (e.g., Physical, Environmental, Materials, and Life Sciences), but was lower than Australia in all these major categories. In terms of investment strategy relative to that of the USA, China is investing more heavily in the hard science areas that underpin modern defense and commercial activities, whereas the USA is investing more heavily in the medical, psychological, and social problem (e.g., drug use) science areas that underpin improvement of individual health and comfort.

EXECUTIVE SUMMARY

BACKGROUND

Core Competencies

The core competence concept was initially promulgated in 1990 as "an area of specialized expertise that is the result of harmonizing complex streams of technology and work activity" (Hamel and Prahalad, 1990). It was developed for a business context, and reflected the collective learning and coordination skills underlying a firm's product lines. According to the original proposers, core competencies are the source of competitive advantage and enable the firm to introduce an array of new products and services. They lead to the development of core products, which are then used to develop a larger number of end user products.

Since the original core competence article, many follow-on studies have been performed. Other definitions of core competence have been advanced (e.g., Galunic and Rodan, 1998). However, common features among the different core competence definitions include the following:

- Critical mass of people
- Synergy of coordinated sub-disciplines
- High quality output
- Unique capabilities

5/503

• Substantial fraction of organization's total development investment

While the original definition, and most follow-on definitions, have applied to business organizations, the concept can be extrapolated to nations. The five features above characterize national core competencies. In the present paper, a national research core competence is defined as a technical area that 1) contains a critical mass of researchers; 2) consists of coordinated and synchronized sub-disciplines; 3) produces high quality output; 4) offers unique national capabilities; and 5) contains a visible fraction of research investment. In other words, a national research core competence is a synergy of individual expertise that is aggregated and coordinated over multiple technical disciplines, and is expressed as a national research strategic investment.

The text mining approach of the present paper will address a sub-set of the above features (identification of China's main research thrusts, volume of research output in main research thrusts, relative quality of selected major research thrusts) to assess potential Chinese research competencies. Further subjective analysis (beyond the scope of the present paper) is required to characterize the remaining necessary features of a national core competence.

This paper will not discuss the desirability of employing core competencies in managing research. The first author has consulted with companies and agencies on practical aspects of implementing core competencies in research management. Within an organization,

development of research core competencies tends to receive preferential and protected funding, which are very important in times of economic turndown. Serious employee morale problems can result for those researchers who are not associated with core competence development, since they have been placed in a more vulnerable position. The alternative, defining all the organization's development thrusts as core competencies, dilutes the purpose of utilizing core competencies to help manage research, and renders them ineffective.

Country Technology Assessments

6/503

National science and technology (S&T) core competencies represent a country's strategic capabilities in S&T. Knowledge of country core competencies is important for myriad reasons:

- a) Priority technical areas for joint commercial or military ventures
- b) Assessment of a country's military potential
- c) Knowledge of emerging areas to avoid commercial or military surprise

Obtaining such global technical awareness, especially from the literature, is difficult for multiple reasons:

- a) Much science and technology performed is not documented
- b) Much documented science and technology is not widely available
- c) Much available documented science and technology is expensive and difficult to acquire
- d) Few credible techniques exist for extracting useful information from large amounts of science and technology documentation (Kostoff, 2003a)

Most credible country technology assessments are based on a combination of personal visitations to the country of interest, supplemented by copious reading of technology reports from that country. Such processes tend to be laborious, slow, expensive, and accompanied by large gaps in the knowledge available. The more credible and complete evaluation processes will focus on selected technologies from a particular country, and provide in-depth analysis.

For the past half century, driven mainly by the Cold War, a large number of country technology assessments were performed (e.g., Bostian et al, 2000; Leneman, 1984; Stares, 1985; Hutubessy et al, 2002; Mooney and Seymour, 1996; McIntire, 2003; Campbell et al, 1985; Klinger, 1990; Gray et al, 1993; Lanzerotti et al, 1986; Duncan et al, 1988; Spencer et al, 1989; Davidson et al, 1990). The last decade has seen an expansion in focus to technologies of major economic competitors. Over the past two decades, some of the most credible of these country technology assessments have come from two organizations: World Technology Evaluation Center (WTEC-Loyola Univ) and Foreign Applied Sciences Assessment Center (FASAC-SAIC). In conducting their studies, both of these organizations would gather topical literature from the country of interest, assemble teams of experts in the topical area, have the teams review the

literature as well as conduct site visitations, and have the teams brief their findings and write a final report. The studies performed by these groups remain seminal approaches to country technology assessments.

Text Mining Technology Assessments

The first author's group has been developing text mining approaches to extract useful information from the global science and technology literature for the past decade (e.g., Kostoff, 2003a; Kostoff et al, 1997, 1998a, 1999, 2000a, 2000b, 2001a, 2001b, 2002, 2004a, 2004b, 2004c, 2005a, 2005b, 2005c, 2005d, 2006a, 2006b). These studies have typically focused on a technical discipline, and have examined global S&T efforts in this discipline. It is believed that such approaches, with slight modification, could be adapted to identifying the core S&T competencies in selected countries or regions, including estimation of the relative levels of effort in each of the core technology areas. It is also believed that coupling of the text mining approach with WTEC and FASAC approaches would amplify the strengths of each approach and reduce the limitations. The text mining component would be performed initially to identify:

- Key core competencies and technology thrusts in the country of interest
- Key interdisciplinary thrusts
- Approximate levels of efforts in technology-specific competency areas and in interdisciplinary areas
- Highly productive researchers
- Highly productive Centers of Excellence, including those not well known
- Highly cited researchers

Once the key technologies, researchers, and Centers of Excellence had been identified, then site visitation strategies could be developed. The second phase of the effort would be the actual site visitations. A key step in this hybrid process would be demonstration of the ability of text mining to identify the targets of interest with reasonable precision in a timely manner at an acceptable cost. These three driving parameters (performance, time, cost) could be traded-off against each other to provide a balance acceptable and tailored to a variety of potential customers.

China's Science and Technology Enterprise

China's R&D Expenditures

7/503

China regards basic research as the foundation of the development of future technologies, as well as a driving force for sustainable long-term development of its economy (Jiang, 1997; Peoples Daily Online, 2000; Chinese Embassy, 2005). As a developing country China's current S&T development policy requires that available resources be concentrated on the development of selected high technologies that are key to the nation's economic development. In fact, this kind of policy and strategy has been applied to many other government-funded development programs, such as China's military

modernization programs (Cox, 1999). Strengthening basic research has been a goal during the ninth and now the Tenth FYP periods. Both FYPs called for efforts to make breakthroughs in selected areas (MOST, 2005).

Since 1997-1998, China's Gross Expenditure on Research and Development (GERD) growth has been slightly higher than the Gross Domestic Product (GDP) growth, reflecting the government's accelerated effort in S&T development. China has been encouraging product-development R&D activities to make S&T contribute to its economic development. For example, in 2002, 75 percent of the nation's R&D spending went to product development and another 19 percent to applied research (MOST, 2003). In 2002, the Chinese Academy of Science (CAS) increased its spending on basic research to 40 percent of its total outlay, aiming at Nobel-level fundamental research. It has also taken measures to increase its scientists' creativity (Hsiung, 2002).

Despite this, many Chinese scientists argue that basic research is seriously under funded. In 2001, China's basic research funding in the country was 5.3 percent of total R&D expenditures, compared with a ratio of 16 to 20 percent in the United States, Western Europe, and Japan (Blanpied, 2002). In 2003 China had about 0.86 million people involved in R&D activities, compared with 1.26 million in the U.S. and about 0.67 million in Japan (Xinhua, 2003). China's R&D spending remains at a low level in terms of the GERD-GDP ratio compared with several scientifically-important developed countries, and this situation is unlikely to change significantly in the near future. In 2003 the ratio of China's GERD to its GDP was 1.3 percent compared to 2.6 percent for the US and 3.3 percent for Japan. China's goal for spending on R&D by 2005 is for 1.5 percent of GDP.

In 2004, state-owned enterprises accounted for 66.83 percent of the total R&D performed in the country, R&D institutes for 21.95 percent, and universities for 10.22 percent (MOST, 2005). China (like most developed scientific countries, including the United States and Japan) also encourages non-government sectors to support R&D from their own funds. In 2003, governments (central and provincial) contributed 29.9 percent of total R&D support in China, enterprises 60.1 percent, foreign sources 2 percent, and the remaining 8% accounted for by unspecified "other" sources. However, among the enterprises' expenditures, it was estimated that approximately half of the amount for R&D came from state-owned enterprises (SOEs), and thus indirectly from the central government. If so, then 62 percent of China's R&D expenditures in 2004 came either directly or indirectly from government and only 29 percent purely from private enterprises. In the United States, private industry accounts for over 65 percent of all R&D support, with government accounting for somewhat less than 30 percent. In Japan, private industry accounts for a slightly higher percentage of total R&D support than in the United States, and government for slightly less (NSB, 2004).

China's S&T Organizational Structure

8/503

The State Council of the central government is the highest administrative body of China. There are 6 major ministry-level administrative organizations directly under the State

Council that handle the nation's S&T development activities. A Leading Group on Science and Technology, chaired by the Prime Minister, is located organizationally between the State Council and these administrative organizations. However, most observers agree that it is relatively ineffective in setting R&D priorities. These organizations include the Ministry of Science and Technology (MOST), the Ministry of Education (MOE), the Commission of Science, Technology and Industry for National Defense (COSTIND), the Chinese Academy of Sciences (CAS), the Chinese Academy of Engineering (CAE), and the National Natural Science Foundation of China (NSFC) (Hsiung, 2002). Among those organizations, MOST, COSTIND, and MOE have policymaking authority, in addition to varying degrees of funding authority; CAS (which receives substantial funds from the government as a budget line item to support its research activities) and CAE have advisory power; and NSFC provides research funds.

APPROACH AND RESULTS

Overview

9/503

Two major types of information are required for a country S&T core competency assessment. One is technical infrastructure, which encompasses the prolific performers, journals that contain many of the papers, the prolific institutions, and the most cited papers/ authors/ journals. The other is technology thrusts, and the relationship among the thrusts. This study focused on obtaining both types of information.

Two types of results are presented, bibliometrics and taxonomies. Bibliometrics provide an indication of the technical infrastructure (prolific authors, journals, institutions, citations), while taxonomies provide an indication of major technology thrusts and their relationships.

In addition, a citation-based approach was used to identify pervasive research thrusts in China, and compare their investment and impact with those of other countries. This approach is described in detail later in this report. Basically, this approach identifies high frequency technical phrases from analysis of the retrieved China records, retrieves SCI records using selected phrases, and examines citation metrics from these records relative to those from similar countries. Physical, Environmental, Engineering, and Life Sciences records/ themes were included in this analysis.

Databases and Information Retrieval Approach

The Science Citation Index (SCI) database and the Engineering Compendex (EC) were used. The retrieved database used for analysis consists of selected journal records (including the fields of authors, titles, journals, author addresses, author keywords, abstract narratives, and references cited for each paper) obtained by searching the Web version of the SCI for articles that contained at least one author with a China address. At the time the final data was extracted for the computational linguistics component of this paper, the version of the SCI used accessed about 5600 journals (mainly in physical, engineering, and life sciences basic research), and the version of the EC used accessed

about 5000 journals (mainly in applied research, technology development, and engineering).

Sample records were extracted from the SCI for two different years, 2002 and 2005, and from the EC for years 2000-2003. There were 7780 records with Abstracts retrieved from the SCI for 2002, 34834 records with Abstracts retrieved from the SCI for 2004-2005, and 9949 records with Abstracts retrieved from the EC for 2000-2003. The Abstracts were used for the computational linguistics (phrase analyses, document clustering). For the India and Australia research impact comparisons with China, records were extracted from 1998 for each country using specific technology queries, and citations of those records compared. For the China-USA investment strategy comparison, records were extracted from the SCI for 2005 for each country for specific technology queries, and numbers of those records compared. Finally, for the aggregate China bibliometrics analysis, 2004-2005 records were extracted for the publication bibliometrics and 2002 records for the citation bibliometrics. For the selected category bibliometrics analysis, records were extracted covering the time frame 2003-early 2005.

Bibliometrics

The first group of bibliometrics results provides a summary view of the Chinese research infrastructure. The second group of bibliometrics results is for selected topics identified from the clustering of research articles by topical similarity.

Publication Statistics on Authors, Journals, and Organizations

The first group of metrics presented is counts of papers published by different entities. These metrics can be viewed as output and productivity measures. They are not direct measures of research quality, although there is some threshold quality level inferred, since these papers are published in the (typically) high caliber journals accessed by the SCI.

Aggregate China Bibliometrics

In all previous text mining studies published by the first author's group, bibliometrics were performed on the overall database retrieved. Since all these previous studies focused on essentially one technology, the resultant bibliometrics provided the technical infrastructure for that technology. In the present study, the focus is on the wide range of technologies being developed within China. In this section, approximately 35,000 records were downloaded from 2004 to early 2005.

Prolific Journals

The top twenty journals based on number of papers are listed below in Table ES1. The first column is the full journal name, the second column is the number of papers in the journal from the database, the third column is the journal's Impact Factor (the Impact Factor is the ratio of cites of recent articles to numbers of recent articles, and can be

considered one measure of a journal's ability to attract citations), and the fourth column is the journal's theme. The latter two columns will be discussed in the section on Most Cited Journals. These journals appear to be concentrated in chemistry, materials, and physics, with one journal about medicine. Many are Chinese journals.

Table ES1. Most Prolific Chinese Journals – 2004-2005

JOURNAL	#PAPERS	IMP FACT	THEME
Acta Physica Sinica PRICM 5: The Fifth Pacific Rim Int'l Conf On Advanced Mat'ls And	556	1.25	PHYS
Processing, Pts 1-	520		MATLS
Chinese Physics Letters	447	1.18	PHYS
Acta Crystallographica Section E-Structure Reports Online	443	0.49	MATLS
High-Performance Ceramics III, Pts 1 And 2	397		MATLS
Chemical Journal Of Chinese Universities-Chinese	338	0.76	CHEM
Spectroscopy And Spectral Analysis	307	0.35	PHYS
Chinese Journal Of Analytical Chemistry	265	0.41	CHEM
Chinese Physics	264	1.56	PHYS
Rare Metal Materials And Engineering	253	0.44	MATLS
Acta Chimica Sinica	253	0.9	MATLS
Materials Letters	242	1.19	MATLS
Chinese Science Bulletin	241	0.68	SCIENCE
Journal Of Rare Earths	237	0.49	MATLS
Chinese Chemical Letters	229	0.31	CHEM
Applied Physics Letters	219	4.31	PHYS
Transactions Of Nonferrous Metals Society Of China	204	0.28	MATLS
Chinese Medical Journal	201	0.46	MED
Communications In Theoretical Physics	195	0.87	PHYS
Physics Letters A	194	1.45	PHYS

Prolific Institutions

The top twenty institutions are listed below in Table ES2. The dominant institution is the Chinese Academy of Sciences, and the other nineteen institutions are universities.

Table ES2. Most Prolific Chinese Institutions – 2004-2005

INSTITUTION	# PAPERS
Chinese Acad Sci	7029
Tsing Hua Univ	1886
Zhejiang Univ	1477
Peking Univ	1391
Shanghai Jiao Tong Univ	1204
Univ Hong Kong	1098
Univ Sci & Technol China	943
Nanjing Univ	940
Fudan Univ	905
Chinese Univ Hong Kong	880
Hong Kong Polytech Univ	794

City Univ Hong Kong	683
Shandong Univ	672
Jilin Univ	650
Hong Kong Univ Sci & Technol	591
Huazhong Univ Sci & Technol	591
Harbin Inst Technol	590
Nankai Univ	581
Wuhan Univ	562
Xian Jiaotong Univ	533

Collaborative Countries

In November 2005, the SCI was accessed to identify the main collaborating countries with China on research articles, in the period 2004-2005. The results are as follows. The format is the name of the country, followed by the number of articles that contained at least one country author and one Chinese author.

China (118659); USA (9919); Japan (4247); Germany (2450); England (2295); Canada (1923); Australia (1811); France (1374); Singapore (1334); South Korea (1197); Taiwan (870); Russia (651); Italy (632); Sweden (626); India (623).

What is the citation impact of collaboration? Two cases were compared. The first case consisted of all research articles in the SCI published from 1995-1999 having at least one author with a Peoples Republic of China address. The second case consisted of all research articles in the SCI published from 1995-1999, retrieved using the following address query that essentially generates Chinese-only authored articles: (PEOPLES R CHINA NOT (USA OR JAPAN OR GERMANY OR HONG KONG OR (ENGLAND NOT NEW ENGLAND) OR CANADA OR ITALY OR FRANCE OR AUSTRALIA OR SOUTH KOREA OR TAIWAN OR NETHERLANDS OR SWEDEN OR RUSSIA OR INDIA OR SINGAPORE OR SWITZERLAND OR SPAIN OR BRAZIL OR SCOTLAND OR FINLAND OR MALAYSIA OR ROMANIA OR AUSTRIA)). These countries were the main research collaborators with China in the 1995-1999 time frame.

The first case (China and collaborators) produced the following results:

- Articles retrieved, 83689:
- Median citations of total articles retrieved, 2;
- Median citations of top ten cited articles retrieved, 604;
- Median citations of top 5% articles retrieved, 35.

The second case (China only) produced the following results:

- Articles retrieved, 62018;
- Median citations of total articles retrieved, 2;
- Median citations of top ten cited articles retrieved, 239;
- Median citations of top 5% articles retrieved, 25.

Thus, approximately one-quarter of research articles having at least one author with a China address were the result of China's collaboration with other countries. The impact of collaboration was negligible on median citations of the total. The impact of collaboration was substantial on the top ten cited articles, and was noticeable on the top 5% of cited articles.

What are the main technical areas of collaboration? Two examples will be presented, for the USA and Japan. The 2000 most recent articles for USA-China papers and for Japan-China papers were downloaded from the SCI. A phrase frequency analysis of the Abstracts was performed for each country combination, and the highest frequency high technical content phrases were extracted. The results are as follows.

1) China-USA

Single Words

Cells; Expression; Cell; Protein; Gene; Patients; Human; Cancer; Genes; Soil; Treatment; Species; Mice; Disease; DNA; Proteins; Genetic; Receptor; Tumor

Double Word Phrases

Cell Lines; Lung Cancer; Gene Expression; Electron Microscopy; Amino Acid; Cancer Cells; Cell Line; Growth Factor; Transmission Electron; Neural Network; Breast Cancer; X-Ray Diffraction; Cell Death; Increased Risk; Amino Acids; Nasopharyngeal Carcinoma; Prostate Cancer; Ovarian Cancer; Protein Expression; Risk Factors; Cancer Cell; Western Blot; Endothelial Cells; Mass Spectrometry; Neural Networks; Transcription Factor; Blood Pressure; Scanning Electron; Cancer Risk; Cell Growth; Dorsal Horn; Polymerase Chain; Cell Surface; Coronary Artery; Spinal Cord; Tibetan Plateau; Flow Cytometry; Myocardial Infarction

Triple Word Phrases

Transmission Electron Microscopy; South China Sea; Density Functional Theory; Scanning Electron Microscopy; Polymerase Chain Reaction; Risk Of Lung; MRNA And Protein; Cancer Cell Lines; Cells In Vitro; Central Nervous System; Differential Scanning Calorimetry; Enzyme-Linked Immunosorbent Assay; Severe Acute Respiratory; Squamous Cell Carcinoma; X-Ray Photoelectron Spectroscopy; Acute Respiratory Syndrome; Basic Fibroblast Growth; Breast Cancer Cells; Dorsal Horn Projection; Respiratory Syndrome SARS; Small Interfering RNA; Tumor Necrosis Factor; Atomic Force Microscopy

2) China-Japan

Single Words

Cells; Cell; Expression; Patients; Protein; Gene; Films; Particles; Treatment; Film; Soil; Human; Cancer; Mice; Tumor

Double Word Phrases

Cell Lines; X-Ray Diffraction; Magnetic Field; Electron Microscopy; Thermal Conductivity; Scanning Electron; Amino Acid; Cell Line; Gene Expression; Particle Size; Amino Acids; Thin Films; Cell Death; Epithelial Cells; Mrna Expression; Transmission Electron; Growth Factor; Neural Network; Photocatalytic Activity; Dose-Dependent Manner; Prostate Cancer; Breast Cancer; Carbon Nanotubes; Fracture Toughness; Grain Size; Heat Transfer; Atomic Force; Electron Microscope; Film Thickness; Soil Moisture

Triple Word Phrases

Scanning Electron Microscopy; Transmission Electron Microscopy; Polymerase Chain Reaction; X-Ray Diffraction XRD; Differential Scanning Calorimetry; Lattice Thermal Conductivity; Atomic Force Microscopy; East China Sea; X-Ray Photoelectron Spectroscopy; Amino Acid Sequence; Anaerobic Sludge Digester; Density Functional Theory; Green Fluorescence Protein; Chemical Vapor Deposition; Endothelial Growth Factor; Enzyme-Linked Immunosorbent Assay

Representative phrases are selected, and the phrases are ordered by frequency of occurrence. The two areas that stand out for both collaborative groups (China-USA; China-Japan) are biomedical and nanotechnology. However, when frequencies of similar phrases from each group are taken into account, for the China-USA articles, biomedical comes first and nanotechnology second. For the China-Japan articles, nanotechnology ranks higher relative to biomedical. Given China's relative (to the USA) investment strategy emphasis in nanotechnology, as will be shown later, and lesser relative investment emphasis in biomedical, the collaborative research relationship with Japan appears to be more quid pro quo than is the relationship with the USA.

Citation Statistics on Journals

The second group of metrics presented is counts of citations to papers published by different entities. While citations are ordinarily used as impact or quality metrics (Garfield, 1985), much caution needs to be exercised in their frequency count interpretation, since there are numerous reasons why authors cite or do not cite particular papers (Kostoff, 1998b; MacRoberts and MacRoberts, 1996).

The citations in all the retrieved 2002 SCI papers were aggregated. The journals cited most frequently were identified, and were presented in order of decreasing frequency.

Most Cited Journals

Approximately 2000 journals were cited 10 or more times. The top twenty most cited journals are listed below in Table ES3. The most cited journals appear to be primarily English Language journals in contrast to many of the most prolific journals being Chinese Journals. This suggests that in the 2005 time frame there may be a larger

dependence on English Language (i.e. foreign) journals than on China's own internal journals, at least for Chinese papers published in journals accessed by the SCI.

Table ES3 Most Cited Journals

I SUBNAL	" "> • > > > > • • • • • • • • • • • • • •		
JOURNAL	#PAPERS	IMP FACT	THEME
Phys Rev Lett	2592	7.22	PHYS
J Am Chem Soc	2196	6.9	CHEM
Nature	2191	32.18	SCIENCE
Phys Rev B	2027	3.08	PHYS
Science	1995	31.86	SCIENCE
Appl Phys Lett	1737	4.31	PHYS
J Appl Phys	1433	2.26	PHYS
J Chem Phys	1174	3.11	CHEM
P Natl Acad Sci USA	976	10.45	SCIENCE
Anal Chem	924	5.45	CHEM
J Biol Chem	917	6.36	BIOL
Phys Rev D	834	5.16	PHYS
Phys Rev A	779	2.9	PHYS
Inorg Chem	757	3.45	CHEM
J Phys Chem-US	738		PHYS
J Am Ceram Soc	738	1.71	MATLS
Macromolecules	714	3.9	CHEM
Angew Chem Int Edit	687	9.16	CHEM
Astrophys J	641	6.24	PHYS
J Org Chem	612	3.46	CHEM

The median Impact Factor of nineteen of the twenty journals listed in Table ES3 (one journal did not have an Impact Factor listed) is **5.45**. This is contrasted with the median Impact Factor of eighteen of the twenty journals containing the most papers and listed in Table ES1 (**0.72**). This order of magnitude difference in Impact Factor between the journals in which the Chinese researchers publish and the journals that they reference indicates Chinese researchers may not be publishing in the highest research impact journals. Since Impact Factor is discipline dependent, a discipline-based comparison of Tables ES1 and ES3 may be instructive.

The median of the Impact Factors of the seven physics journals in ES1 is 1.25, whereas the median of the Impact Factors of the seven physics journals in ES3 is 4.31, a factor of ~3.5 difference. The median of the Impact Factors of the three chemistry journals is ES1 is 0.41, whereas the median of the Impact Factors of the seven chemistry journals in ES3 is 3.46, a factor of nine difference. The median of the Impact Factors of the six materials journals in ES1 is 0.49, whereas the Impact Factor of the one materials journal in ES3 is 1.71, a factor of ~3.5 difference. The one general science journal in ES1 has an Impact Factor of 0.68, whereas the three general science journals in ES3 have a median Impact Factor of 31.86, a factor of more than forty difference. The one medical journal in ES1 has an Impact Factor of 0.46, while the one biology journal in ES3 has an Impact Factor of 6.36.

While these comparisons are for the top twenty journals only, and the Impact Factors have not been weighted by the numbers of papers in each journal, it is quite clear that, on average, the Chinese researchers are not publishing extensively in the high research impact journals they are referencing. This issue will be examined further in the nanotechnology bibliometrics section, from another perspective.

Selected Topical Bibliometrics

The approach in this section is to identify the thematic thrust areas from the clustering described later, then retrieve documents that address each theme. The bibliometrics will then be performed on a theme by theme basis. For the present study, one theme is selected as an illustrative example for the bibliometrics in the main body of the text, and three other themes' bibliometrics are shown in Appendix 1.

Based on the computational linguistics (clustering) results, nanotechnology is a thrust area of Chinese research. Starting with the words generated by the clustering algorithm for the nanotechnology cluster, an iterative feedback approach was used to generate the following comprehensive query for this research in China:

NANOPARTICLE* OR NANOTUB* OR NANOSTRUCTURE* OR NANOCOMPOSITE* OR NANOWIRE* OR NANOCRYSTAL* OR NANOFIBER* OR NANOFIBER* OR NANOSPHERE* OR NANOROD* OR NANOTECHNOLOG* OR NANOCLUSTER* OR NANOCAPSULE* OR NANOMATERIAL* OR NANOFABRICAT* OR NANOPOR* OR NANOPARTICULATE* OR NANOPHASE OR NANOPOWDER* OR NANOLITHOGRAPHY OR NANO-PARTICLE* OR NANODEVICE* OR NANODOT* OR NANOINDENT* OR NANOLAYER* OR NANOSCIENCE OR NANOSIZE* OR NANOSCALE* OR ((NM OR NANOMETER* OR NANOMETRE*) AND (SURFACE* OR FILM* OR GRAIN* OR POWDER* OR SILICON OR DEPOSITION OR LAYER* OR DEVICE* OR CLUSTER* OR CRYSTAL* OR MATERIAL* OR ATOMIC FORCE MICROSCOP* OR TRANSMISSION ELECTRON MICROSCOP* OR SCANNING TUNNELING MICROSCOP*)) OR QUANTUM DOT* OR QUANTUM WIRE* OR ((SELF-ASSEMBL* OR SELF-ORGANIZ*) AND (MONOLAYER* OR FILM* OR NANO* OR QUANTUM* OR LAYER* OR MULTILAYER* OR ARRAY*)) OR NANOELECTROSPRAY* OR COULOMB BLOCKADE* OR MOLECULAR WIRE*.

The query was inserted into the Science Citation Index, and the most recent 4030 records were recovered for the period 2003-early 2005. The bibliometrics analysis was performed on these records.

Most Prolific Nanotechnology Authors

Table ES4 – Prolific Authors

AUTHOR	# PAPERS
LiY	61
LiuY	56
WangJ	56
ZhangY	54
WangY	53
QianYT	50
ZhangJ	49

WangX	42
XuJ	41
WangL	38
LiJ	36
ZhangL	36
GaoL	35
WangH	34
ZhangLD	28
ChenJ	27
LiuZM	27
YangY	26
ChenY	25
HuangY	25

Table ES4 contains the most prolific nanotechnology authors. The results illustrate potential problems with author bibliometrics in countries like China (and India). The names are short, common, and many do not have middle initials. There could be multiple authors with the same name.

Journals Containing Most Papers

Table ES5 – Journals Containing Most Nanotechnology Papers

JOURNAL	# PAPERS
Journal Of Physical Chemistry B	125
Applied Physics Letters	124
Materials Letters	120
Chinese Journal Of Inorganic Chemistry	113
Journal Of Crystal Growth	88
Rare Metal Materials And Engineering	75
High-Performance Ceramics IIIPts 1 And 2	73
Acta Physica Sinica	73
Chemistry Letters	70
Acta Chimica Sinica	64
Physical Review B	62
Thin Solid Films	59
Materials Chemistry And Physics	56
Chemical Journal Of Chinese Universities-Chinese	53
Journal Of Inorganic Materials	52
Chinese Physics Letters	52
PRICMThe Fifth Pacific Rim International Conference On Advanced	
Materials And Processing, Pts 1-	51
Journal Of Solid State Chemistry	48
Colloids And Surfaces A-Physicochemical And Engineering Aspects	45
Applied Physics A-Materials Science & Processing	45

TABLE ES5 lists the 20 journals containing the most Nanotechnology papers. There seems to be an even mix of both applied and basic journals. Physics, Chemistry, and Materials journals dominate the list. Approximately 25% of the journals are Chinese.

To compare Impact Factors of journals in which Chinese authors publish nanotechnology papers with Impact Factors of journals in which USA authors publish nanotechnology papers, a separate retrieval was made in mid-January 2006. The most recent 2000 articles that had at least one Chinese author but no authors from Japan, USA, Germany, France, South Korea, England, Russia, Italy, India, Spain, Taiwan, or Canada were retrieved, as were the most recent 2000 articles that had at least one USA author but no authors from Japan, China, Germany, France, South Korea, England, Russia, Italy, India, Spain, Taiwan, or Canada. The countries excluded are the major producers of nanotechnology research articles (Kostoff et al, 2006a). The purpose of this comparison is to identify Impact Factors of essentially intranational nanotechnology papers.

Table ES5-USA lists the eleven journals containing the most nanotechnology papers with USA authors, whereas Table ES5-PRC lists the eleven journals containing the most nanotechnology papers with Chinese authors. The median Impact Factor of the USA journals is 3.9, whereas the median Impact Factor of the Chinese journals is 1.19, a difference of more than a factor of three.

Table ES5-USA – Journals Containing Most Nanotechnology Papers – USA Authors

JOURNAL	#PAPERS	IMP FACT
Applied Physics Letters	130	4.31
Physical Review B	102	3.08
Journal Of The American Chemical Society	86	6.9
Langmuir	85	3.3
Journal Of Physical Chemistry B	84	3.83
Nano Letters	52	8.45
Chemistry Of Materials	42	4.1
Journal Of Applied Physics	42	2.26
Physical Review Letters	41	7.22
Nanotechnology	36	3.32
Macromolecules	33	3.9

Table ES5-PRC – Journals Containing Most Nanotechnology Papers – PRC Authors

JOURNAL	#PAPERS	IMP FACT
Rare Metal Materials And Engineering	112	0.44
Materials Letters	76	1.19
Journal Of Physical Chemistry B	63	3.83
Chinese Journal Of Inorganic Chemistry	60	0.6
Nanotechnology	60	3.32

Applied Physics Letters	56	4.31
Chemical Journal Of Chinese Universities-Chinese	41	0.76
Journal Of Crystal Growth	37	1.7
Chinese Physics Letters	33	1.18
Acta Physica Sinica	30	1.25
Acta Chimica Sinica	27	0.9

All the Impact Factor comparisons lead to one inescapable conclusion. The Chinese research article authors are not publishing (on average) in the high research impact journals that they reference, or in which the USA research article authors publish (on average). It is not clear whether the Chinese articles are too applied for the high Impact Factor journals, are of insufficient quality for these journals, or have other reasons.

Most Prolific Institutions

Table ES6 – Most Prolific Nanotechnology Institutions

INSTITUTION	# PAPERS
Chinese Acad Sci	1063
Tsing Hua Univ	260
Univ Sci & Technol China	203
Nanjing Univ	185
Zhejiang Univ	184
Peking Univ	160
Jilin Univ	125
Fudan Univ	117
Shanghai Jiao Tong Univ	108
Shandong Univ	102
City Univ Hong Kong	78
Wuhan Univ	70
Nankai Univ	68
Hong Kong Univ Sci & Technol	66
Tianjin Univ	65
Harbin Inst Technol	65
Xian Jiaotong Univ	62
Hunan Univ	62
Beijing Univ Chem Technol	54
Hong Kong Polytech Univ	49

The 20 most prolific institutions are listed in Table ES6. The first institution, the Chinese Academy of Science, dominates the list. Eighteen of the institutions are universities, and the remaining two are research institutions.

Most Prolific (collaborative) Countries

Table ES7 – Most Prolific Nanotechnology Collaborating Countries

COUNTRY	# PAPERS
---------	----------

Peoples R China	4030
USA	187
Japan	95
Germany	54
Singapore	49
Australia	35
France	30
South Korea	29
England	27
Taiwan	23
Canada	22
Sweden	12
Spain	9
Russia	8
Belgium	6
India	6
Israel	6
Italy	6
Denmark	4
Malaysia	3

The USA is the dominant collaborator, followed by Japan, and by a third tier of Germany and Singapore.

How does collaboration impact the quality of the joint papers in nanotechnology. The following short analysis was performed to address this question. Three classes of nanotechnology research articles from the SCI were selected, published in 1999: 1) those with at least one China-based author, but no USA-based author; 2) those with at least one USA-based author and one China-based author. The following results were obtained (first number is total records retrieved; second number is median citations of total records retrieved; third number is median citations of top ten records; fourth number is median citations of top 5% of records):

- 1) CHINA NOT USA (1375; 4; 118; 52)
- 2) USA NOT CHINA (4142; 12; 537; 124)
- 3) USA AND CHINA (63; 10; 48; 101)

Interestingly, the ratios of the median of the top 5% parallel rather closely the ratios of the overall medians. In the USA-China collaborative group, the numbers are small. There are three articles in the top 5% of the 63 collaborative articles. They have citations of 514, 101, 76, respectively. The next three articles' citations are 49, 48, 48. For the USA-only articles, there are six articles with citations greater than the most-cited collaborative article. For the China-only articles, there is only one article with citations greater than the most-cited collaborative article. This article has five authors with Hong Kong and England addresses; two of the authors have Chinese names, and the other three have Anglo names. This phenomenon was often found in the later section of this report,

when comparing China's citations in selected research areas to those of India. The most cited papers in China or India tended to have some co-authorship with the more advanced countries.

Citation Statistics on Authors, Journals, and Documents

Most Cited First Authors

Table ES8 – Most Cited Nanotechnology First Authors

AUTHOR	#CITES
Iijima S	297
Wang J	194
Pan ZW	159
Huang MH	156
Sun YG	152
Xia YN	140
Caruso F	133
Wang ZL	126
Sheldrick GM	118
Zhang J	117
Duan XF	115
Wang X	112
Alivisatos AP	105
Wang Y	97
Hu JQ	96
Hu JT	93
Cui Y	92
Chen J	87
Decher G	87
Liu Y	84

The presence of Wang-J, Wang-Y, Wang-X, Zhang-J, and Chen-J can be correlated with their appearance as first authors in the most cited documents list.

Most Cited Journals

TABLE ES9 – Most Cited Journals

JOURNAL	# CITES
Appl Phys Lett	4217
J Am Chem Soc	3665
Science	3314
Phys Rev B	2786
Adv Mater	2506
Nature	2397
Chem Mater	2363
J Phys Chem B	2165

Langmuir	2084
Phys Rev Lett	1891
J Appl Phys	1810
Macromolecules	1467
Chem Phys Lett	1407
Angew Chem Int Edit	1258
Polymer	866
Anal Chem	853
J Mater Chem	850
Thin Solid Films	843
J Phys Chem-US	830
J Chem Phys	808

The focus is on physics and chemistry, with reasonable representation from materials journals. The physics journals are a mixture of basic and applied, while the chemistry and materials journals are at the more basic end of the spectrum. There are four journals in common with those in Table ES5 (Applied Physics Letters, Physical Review B, Journal of Physical Chemistry B, Thin Solid Films). None of the most cited journals are Chinese, and the most cited journals in aggregate are more fundamental than those in Table ES5.

Table ES9 represents journals most cited by Chinese nanotechnology researchers. To place these numbers in perspective, an analysis was done to identify the journals cited by all nanotechnology researchers globally, emphasizing obvious Chinese journals. A study of the 2003 global nanotechnology literature retrieved over 21000 articles on nanotechnology (Kostoff et al, 2006a). Over 31000 journals were referenced in these articles. The top 23 journals, and the number of times they were cited, are shown in the top section of Table ES9-CH. The referenced journals with obvious Chinese names (CHIN* or SINICA, in journal name) follow in the bottom section of Table ES9-CH.

There were 206 Chinese journals listed for the above extraction criteria. Most had one or two citations. Only those Chinese journals with ten or more citations are shown. There are a handful of Chinese journals that appear significant, and even these have two orders of magnitude less citations than the leading international journals. Even though China's research article productivity was second to that of the USA (Kostoff et al, 2006a), most of its domestic journals containing these nanotechnology papers were receiving relatively negligible numbers of citations.

Table ES9-CH – Most Cited Journals by Global Nanotechnology Community

ALL JOURNALS	#CITES
Phys Rev B	27936
Appl Phys Lett	27281
Phys Rev Lett	20000
J Am Chem Soc	17127
Science	16154
J Appl Phys	13620

Nature	13429
Langmuir	13280
J Phys Chem B	10038
Chem Mater	8415
J Chem Phys	7956
Macromolecules	7683
Adv Mater	7623
J Phys Chem-Us	6188
Chem Phys Lett	6133
Thin Solid Films	4804
Angew Chem Int Edit	4537
J Electrochem Soc	4501
Surf Sci	4024
Anal Chem	3608
Inorg Chem	3188
J Am Ceram Soc	3141
J Mater Res	3000
CHINESE JOURNALS	# CITES
Chem J Chinese U	433
Chinese Phys Lett	256
Acta Chim Sinica	145
Chinese Sci Bull	95
Chin J Inorg Chem	85
Acta Phys Sinica	61
Chinese J Chem	47
Chinese Phys	42
Sci China Ser B	40
Chinese J Polym Sci	40
Chinese Chem Lett	38
Chin J Lumin	30
Chinese J Org Chem	28
Chinese J Catal+	24
Chinese J Anal Chem	23
J Chin Chem Soc-Taip	20
Chin J Struct Chem	17
Sci China Ser A	16
Chinese J Appl Chem	16
Chem Res Chinese U	16
Chinese J Inorg Chem	15
Acta Opt Sinica	15
Chin J Mat Res	13
Chin J Appl Chem	11
Chinese J Struc Chem	10

Most Cited Documents

Table ES10 – Most Cited Documents

DOCUMENT	TIMES	TOTAL

Pan ZW, 2001, Science, V291, P1947 125 861 Nanobelts Of Semiconducting Oxides		CITED	SCI
Iijima S, 1991, Nature, V354, P56	Pan ZW, 2001, Science, V291, P1947		
Iijima S, 1991, Nature, V354, P56	Nanobelts Of Semiconducting Oxides		
Helical Microtubules Of Graphitic Carbon Huang MH, 2001, Science, V292, P1897 102 944 800m. Temperature Ultraviolet Nanowire Nanolasers 2007 2007 2008 2	, , , , , , , , , , , , , , , , , , ,		
Helical Microtubules Of Graphitic Carbon Huang MH, 2001, Science, V292, P1897 102 944 800m. Temperature Ultraviolet Nanowire Nanolasers 2007 2007 2008 2			
Huang MH, 2001, Science, V292, P1897 Room-Temperature Ultraviolet Nanowire Nanolasers Six YN, 2003, Adv Mater, V15, P353 91 556	Iijima S, 1991, Nature, V354, P56	121	4666
Room-Temperature Ultraviolet Nanowire Nanolasers Nia YN, 2003, Adv Mater, V15, P5553 91 556	Helical Microtubules Of Graphitic Carbon		
Xia YN, 2003, Adv Mater, V15, P353 91 556	Huang MH, 2001, Science, V292, P1897	102	944
One-Dimensional Nanostructures: Synthesis, Characterization, And Applications Morales AM, 1998, Science, V279, P208 77 1007 A Laser Ablation Method For The Synthesis Of Crystalline Semiconductor Nanowires Hu JT, 1999, Accounts Chem Res, V32, P435 76 679 Chemistry And Physics In One Dimension: Synthesis And Properties Of Nanowires And Nanotubes Alivisatos AP, 1996, Science, V271, P933 74 1943 Semiconductor Clusters, Nanocrystals, And Quantum Dots Hoffmann MR, 1995, Chem Rev, V95, P69 Environmental Applications Of Semiconductor Photocatalysis Sun YG, 2002, Science, V298, P2176 Shape-Controlled Synthesis Of Gold And Silver Nanoparticles Martin CR, 1994, Science, V266, P1961 Nanomaterials - A Membrane-Based Synthetic Approach Decher G, 1997, Science, V277, P1232 41 1645 Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites Kresge CT, 1992, Nature, V359, P710 41 4536 Ordered Mesoporous Molecular-Sieves Synthesized By A Liquid-Crystal Template Mechanism Peng XG, 2000, Nature, V404, P59 40 603 Shape Control Of Cdse Nanocrystals Huang Mh, 2001, Adv Mater, V13, P113 Catalytic Growth Of Zinc Oxide Nanowires By Vapor Transport Vanheusden K, 1996, J Appl Phys, V79, P7983 34 416 Mechanisms Behind Green Photoluminescence In Zno Phosphor Powders Oliver WC, 1992, J Mater Res, V7, P1564 An Improved Technique For Determining Hardness And Elastic-Modulus Using Load And Displacement Sensing Indentation Experiments Han WQ, 1997, Science, V277, P1287 Synthesis Of Gallium Nitride Nanorods Through A Carbon Nanotube-Confined Reaction Treacy MMJ, 1996, Nature, V381, P678 Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes	Room-Temperature Ultraviolet Nanowire Nanolasers		
Morales AM, 1998, Science, V279, P208	Xia YN, 2003, Adv Mater, V15, P353	91	556
Morales AM, 1998, Science, V279, P208	On Provident IN and the standard Control of Change And And And Protection		
A Laser Ablation Method For The Synthesis Of Crystalline Semiconductor Nanowires Hu JT, 1999, Accounts Chem Res, V32, P435 Chemistry And Physics In One Dimension: Synthesis And Properties Of Nanowires And Nanotubes Alivisatos AP, 1996, Science, V271, P933 Semiconductor Clusters, Nanocrystals, And Quantum Dots Hoffmann MR, 1995, Chem Rev, V95, P69 Environmental Applications Of Semiconductor Photocatalysis Sun YG, 2002, Science, V298, P2176 Sape-Controlled Synthesis Of Gold And Silver Nanoparticles Martin CR, 1994, Science, V296, P1961 Manomaterials - A Membrane-Based Synthetic Approach Decher G, 1997, Science, V277, P1232 41 1645 Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites Kresge CT, 1992, Nature, V359, P710 Ordered Mesoporous Molecular-Sieves Synthesized By A Liquid-Crystal Template Mechanism Peng XG, 2000, Nature, V404, P59 Shape Control Of Cdse Nanocrystals Huang Mh, 2001, Adv Mater, V13, P113 Sape Control Of Cdse Nanowires By Vapor Transport Vanheusden K, 1996, J Appl Phys, V79, P7983 442 Catalytic Growth Of Zinc Oxide Nanowires By Vapor Transport Vanheusden K, 1996, J Appl Phys, V79, P7983 34 416 Mechanisms Behind Green Photoluminescence In Zno Phosphor Powders Oliver WC, 1992, J Mater Res, V7, P1564 An Improved Technique For Determining Hardness And Elastic-Modulus Using Load And Displacement Sensing Indentation Experiments Han WQ, 1997, Science, V277, P1287 Synthesis Of Gallium Nitride Nanorods Through A Carbon Nanotube-Confined Reaction Treacy MMJ, 1996, Nature, V381, P678 Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes		77	1007
Hu JT, 1999, Accounts Chem Res, V32, P435 76 679 Chemistry And Physics In One Dimension: Synthesis And Properties Of Nanowires And Nanotubes Alivisatos AP, 1996, Science, V271, P933 74 1943 1943 1945	Morales AM, 1998, Science, V279, P208	//	1007
Chemistry And Physics In One Dimension: Synthesis And Properties Of Nanowires And Nanotubes Alivisatos AP, 1996, Science, V271, P933 Semiconductor Clusters, Nanocrystals, And Quantum Dots Hoffmann MR, 1995, Chem Rev, V95, P69 Environmental Applications Of Semiconductor Photocatalysis Sun YG, 2002, Science, V298, P2176 Shape-Controlled Synthesis Of Gold And Silver Nanoparticles Martin CR, 1994, Science, V266, P1961 Nanomaterials - A Membrane-Based Synthetic Approach Decher G, 1997, Science, V277, P1232 41 1645 Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites Kresge CT, 1992, Nature, V359, P710 41 4536 Ordered Mesoporous Molecular-Sieves Synthesized By A Liquid-Crystal Template Mechanism Peng XG, 2000, Nature, V404, P59 40 603 Shape Control Of Cdse Nanocrystals Huang Mh, 2001, Adv Mater, V13, P113 35 442 Catalytic Growth Of Zinc Oxide Nanowires By Vapor Transport Vanheusden K, 1996, J Appl Phys, V79, P7983 Mechanisms Behind Green Photoluminescence In Zno Phosphor Powders Oliver WC, 1992, J Mater Res, V7, P1564 An Improved Technique For Determining Hardness And Elastic-Modulus Using Load And Displacement Sensing Indentation Experiments Han WQ, 1997, Science, V277, P1287 Synthesis Of Gallium Nitride Nanorods Through A Carbon Nanotube-Confined Reaction Treacy MMJ, 1996, Nature, V381, P678 Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes	A Laser Ablation Method For The Synthesis Of Crystalline Semiconductor Nanowires		
And Nanotubes	Hu JT, 1999, Accounts Chem Res, V32, P435	76	679
Alivisatos AP, 1996, Science, V271, P933 Semiconductor Clusters, Nanocrystals, And Quantum Dots Hoffmann MR, 1995, Chem Rev, V95, P69 53 2080 Environmental Applications Of Semiconductor Photocatalysis Sun YG, 2002, Science, V298, P2176 43 289 Shape-Controlled Synthesis Of Gold And Silver Nanoparticles Martin CR, 1994, Science, V266, P1961 Nanomaterials - A Membrane-Based Synthetic Approach Decher G, 1997, Science, V277, P1232 41 1645 Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites Kresge CT, 1992, Nature, V359, P710 Ordered Mesoporous Molecular-Sieves Synthesized By A Liquid-Crystal Template Mechanism Peng XG, 2000, Nature, V404, P59 Shape Control Of Cdse Nanocrystals Huang Mh, 2001, Adv Mater, V13, P113 Catalytic Growth Of Zinc Oxide Nanowires By Vapor Transport Vanheusden K, 1996, J Appl Phys, V79, P7983 Mechanisms Behind Green Photoluminescence In Zno Phosphor Powders Oliver WC, 1992, J Mater Res, V7, P1564 An Improved Technique For Determining Hardness And Elastic-Modulus Using Load And Displacement Sensing Indentation Experiments Han WQ, 1997, Science, V277, P1287 Synthesis Of Gallium Nitride Nanorods Through A Carbon Nanotube-Confined Reaction Reaction Treacy MMJ, 1996, Nature, V381, P678 Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes			
Semiconductor Clusters, Nanocrystals, And Quantum Dots			
Hoffmann MR, 1995, Chem Rev, V95, P69 53 2080 Environmental Applications Of Semiconductor Photocatalysis 53 289 Sun YG, 2002, Science, V298, P2176 43 289 Martin CR, 1994, Science, V266, P1961 41 1071 Nanomaterials - A Membrane-Based Synthetic Approach 41 1645 Decher G, 1997, Science, V277, P1232 41 1645 Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites Kresge CT, 1992, Nature, V359, P710 41 4536 Ordered Mesoporous Molecular-Sieves Synthesized By A Liquid-Crystal Template Mechanism 40 603 Shape Control Of Cdse Nanocrystals Huang Mh, 2001, Adv Mater, V13, P113 35 442 Catalytic Growth Of Zinc Oxide Nanowires By Vapor Transport Vanheusden K, 1996, J Appl Phys, V79, P7983 34 416 Mechanisms Behind Green Photoluminescence In Zno Phosphor Powders Oliver WC, 1992, J Mater Res, V7, P1564 34 2366 An Improved Technique For Determining Hardness And Elastic-Modulus Using Load And Displacement Sensing Indentation Experiments Han WQ, 1997, Science, V277, P1287 34 585 Synthesis Of Gallium Nitride Nanorods Through A Carbon Nanotube-Confined Reaction Treacy MMJ, 1996, Nature, V381, P678 32 835 Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes		74	1943
Environmental Applications Of Semiconductor Photocatalysis Sun YG, 2002, Science, V298, P2176 Shape-Controlled Synthesis Of Gold And Silver Nanoparticles Martin CR, 1994, Science, V266, P1961 Nanomaterials - A Membrane-Based Synthetic Approach Decher G, 1997, Science, V277, P1232 41 1645 Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites Kresge CT, 1992, Nature, V359, P710 41 4536 Ordered Mesoporous Molecular-Sieves Synthesized By A Liquid-Crystal Template Mechanism Peng XG, 2000, Nature, V404, P59 40 603 Shape Control Of Cdse Nanocrystals Huang Mh, 2001, Adv Mater, V13, P113 Catalytic Growth Of Zinc Oxide Nanowires By Vapor Transport Vanheusden K, 1996, J Appl Phys, V79, P7983 34 416 Mechanisms Behind Green Photoluminescence In Zno Phosphor Powders Oliver WC, 1992, J Mater Res, V7, P1564 An Improved Technique For Determining Hardness And Elastic-Modulus Using Load And Displacement Sensing Indentation Experiments Han WQ, 1997, Science, V277, P1287 Synthesis Of Gallium Nitride Nanorods Through A Carbon Nanotube-Confined Reaction Treacy MMJ, 1996, Nature, V381, P678 Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes	· · · · · · · · · · · · · · · · · · ·		
Sun YG, 2002, Science, V298, P2176		53	2080
Shape-Controlled Synthesis Of Gold And Silver Nanoparticles Martin CR, 1994, Science, V266, P1961 Nanomaterials - A Membrane-Based Synthetic Approach Decher G, 1997, Science, V277, P1232 41 1645 Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites Kresge CT, 1992, Nature, V359, P710 Ordered Mesoporous Molecular-Sieves Synthesized By A Liquid-Crystal Template Mechanism Peng XG, 2000, Nature, V404, P59 40 603 Shape Control Of Cdse Nanocrystals Huang Mh, 2001, Adv Mater, V13, P113 Catalytic Growth Of Zinc Oxide Nanowires By Vapor Transport Vanheusden K, 1996, J Appl Phys, V79, P7983 Alechanisms Behind Green Photoluminescence In Zno Phosphor Powders Oliver WC, 1992, J Mater Res, V7, P1564 An Improved Technique For Determining Hardness And Elastic-Modulus Using Load And Displacement Sensing Indentation Experiments Han WQ, 1997, Science, V277, P1287 Synthesis Of Gallium Nitride Nanorods Through A Carbon Nanotube-Confined Reaction Treacy MMJ, 1996, Nature, V381, P678 Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes			
Martin CR, 1994, Science, V266, P1961 Nanomaterials - A Membrane-Based Synthetic Approach Decher G, 1997, Science, V277, P1232 41 1645 Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites Kresge CT, 1992, Nature, V359, P710 Ordered Mesoporous Molecular-Sieves Synthesized By A Liquid-Crystal Template Mechanism Peng XG, 2000, Nature, V404, P59 Shape Control Of Cdse Nanocrystals Huang Mh, 2001, Adv Mater, V13, P113 Catalytic Growth Of Zinc Oxide Nanowires By Vapor Transport Vanheusden K, 1996, J Appl Phys, V79, P7983 Mechanisms Behind Green Photoluminescence In Zno Phosphor Powders Oliver WC, 1992, J Mater Res, V7, P1564 An Improved Technique For Determining Hardness And Elastic-Modulus Using Load And Displacement Sensing Indentation Experiments Han WQ, 1997, Science, V277, P1287 Synthesis Of Gallium Nitride Nanorods Through A Carbon Nanotube-Confined Reaction Treacy MMJ, 1996, Nature, V381, P678 Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes		43	289
Nanomaterials - A Membrane-Based Synthetic Approach Decher G, 1997, Science, V277, P1232 41 1645 Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites Kresge CT, 1992, Nature, V359, P710 41 4536 Ordered Mesoporous Molecular-Sieves Synthesized By A Liquid-Crystal Template Mechanism Peng XG, 2000, Nature, V404, P59 40 603 Shape Control Of Cdse Nanocrystals Huang Mh, 2001, Adv Mater, V13, P113 35 442 Catalytic Growth Of Zinc Oxide Nanowires By Vapor Transport Vanheusden K, 1996, J Appl Phys, V79, P7983 34 416 Mechanisms Behind Green Photoluminescence In Zno Phosphor Powders Oliver WC, 1992, J Mater Res, V7, P1564 34 2366 An Improved Technique For Determining Hardness And Elastic-Modulus Using Load And Displacement Sensing Indentation Experiments Han WQ, 1997, Science, V277, P1287 34 585 Synthesis Of Gallium Nitride Nanorods Through A Carbon Nanotube-Confined Reaction Treacy MMJ, 1996, Nature, V381, P678 32 835 Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes			
Decher G, 1997, Science, V277, P1232		41	1071
Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites Kresge CT, 1992, Nature, V359, P710 41 4536 Ordered Mesoporous Molecular-Sieves Synthesized By A Liquid-Crystal Template Mechanism Peng XG, 2000, Nature, V404, P59 40 603 Shape Control Of Cdse Nanocrystals Huang Mh, 2001, Adv Mater, V13, P113 35 442 Catalytic Growth Of Zinc Oxide Nanowires By Vapor Transport Vanheusden K, 1996, J Appl Phys, V79, P7983 34 416 Mechanisms Behind Green Photoluminescence In Zno Phosphor Powders Oliver WC, 1992, J Mater Res, V7, P1564 34 2366 An Improved Technique For Determining Hardness And Elastic-Modulus Using Load And Displacement Sensing Indentation Experiments Han WQ, 1997, Science, V277, P1287 34 585 Synthesis Of Gallium Nitride Nanorods Through A Carbon Nanotube-Confined Reaction Treacy MMJ, 1996, Nature, V381, P678 32 835 Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes			
Kresge CT, 1992, Nature, V359, P710		41	1645
Ordered Mesoporous Molecular-Sieves Synthesized By A Liquid-Crystal Template Mechanism Peng XG, 2000, Nature, V404, P59 40 603 Shape Control Of Cdse Nanocrystals Huang Mh, 2001, Adv Mater, V13, P113 35 442 Catalytic Growth Of Zinc Oxide Nanowires By Vapor Transport Vanheusden K, 1996, J Appl Phys, V79, P7983 34 416 Mechanisms Behind Green Photoluminescence In Zno Phosphor Powders Oliver WC, 1992, J Mater Res, V7, P1564 34 2366 An Improved Technique For Determining Hardness And Elastic-Modulus Using Load And Displacement Sensing Indentation Experiments Han WQ, 1997, Science, V277, P1287 34 585 Synthesis Of Gallium Nitride Nanorods Through A Carbon Nanotube-Confined Reaction Treacy MMJ, 1996, Nature, V381, P678 32 835 Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes			
Peng XG, 2000, Nature, V404, P59		41	4536
Peng XG, 2000, Nature, V404, P59			
Shape Control Of Cdse Nanocrystals Huang Mh, 2001, Adv Mater, V13, P113 Catalytic Growth Of Zinc Oxide Nanowires By Vapor Transport Vanheusden K, 1996, J Appl Phys, V79, P7983 Mechanisms Behind Green Photoluminescence In Zno Phosphor Powders Oliver WC, 1992, J Mater Res, V7, P1564 An Improved Technique For Determining Hardness And Elastic-Modulus Using Load And Displacement Sensing Indentation Experiments Han WQ, 1997, Science, V277, P1287 Synthesis Of Gallium Nitride Nanorods Through A Carbon Nanotube-Confined Reaction Treacy MMJ, 1996, Nature, V381, P678 Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes		40	603
Huang Mh, 2001, Adv Mater, V13, P113 Catalytic Growth Of Zinc Oxide Nanowires By Vapor Transport Vanheusden K, 1996, J Appl Phys, V79, P7983 Mechanisms Behind Green Photoluminescence In Zno Phosphor Powders Oliver WC, 1992, J Mater Res, V7, P1564 An Improved Technique For Determining Hardness And Elastic-Modulus Using Load And Displacement Sensing Indentation Experiments Han WQ, 1997, Science, V277, P1287 Synthesis Of Gallium Nitride Nanorods Through A Carbon Nanotube-Confined Reaction Treacy MMJ, 1996, Nature, V381, P678 Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes	·		003
Catalytic Growth Of Zinc Oxide Nanowires By Vapor TransportVanheusden K, 1996, J Appl Phys, V79, P798334416Mechanisms Behind Green Photoluminescence In Zno Phosphor Powders342366Oliver WC, 1992, J Mater Res, V7, P1564342366An Improved Technique For Determining Hardness And Elastic-Modulus Using Load And Displacement Sensing Indentation Experiments34585Han WQ, 1997, Science, V277, P128734585Synthesis Of Gallium Nitride Nanorods Through A Carbon Nanotube-Confined Reaction32835Treacy MMJ, 1996, Nature, V381, P67832835Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes	· ·	35	442
Vanheusden K, 1996, J Appl Phys, V79, P7983 Mechanisms Behind Green Photoluminescence In Zno Phosphor Powders Oliver WC, 1992, J Mater Res, V7, P1564 An Improved Technique For Determining Hardness And Elastic-Modulus Using Load And Displacement Sensing Indentation Experiments Han WQ, 1997, Science, V277, P1287 Synthesis Of Gallium Nitride Nanorods Through A Carbon Nanotube-Confined Reaction Treacy MMJ, 1996, Nature, V381, P678 Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes		33	112
Mechanisms Behind Green Photoluminescence In Zno Phosphor Powders Oliver WC, 1992, J Mater Res, V7, P1564 An Improved Technique For Determining Hardness And Elastic-Modulus Using Load And Displacement Sensing Indentation Experiments Han WQ, 1997, Science, V277, P1287 Synthesis Of Gallium Nitride Nanorods Through A Carbon Nanotube-Confined Reaction Treacy MMJ, 1996, Nature, V381, P678 Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes			
Oliver WC, 1992, J Mater Res, V7, P1564 An Improved Technique For Determining Hardness And Elastic-Modulus Using Load And Displacement Sensing Indentation Experiments Han WQ, 1997, Science, V277, P1287 Synthesis Of Gallium Nitride Nanorods Through A Carbon Nanotube-Confined Reaction Treacy MMJ, 1996, Nature, V381, P678 Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes	Vanheusden K, 1996, J Appl Phys, V79, P7983	34	416
An Improved Technique For Determining Hardness And Elastic-Modulus Using Load And Displacement Sensing Indentation Experiments Han WQ, 1997, Science, V277, P1287 Synthesis Of Gallium Nitride Nanorods Through A Carbon Nanotube-Confined Reaction Treacy MMJ, 1996, Nature, V381, P678 Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes	Mechanisms Behind Green Photoluminescence In Zno Phosphor Powders		
An Improved Technique For Determining Hardness And Elastic-Modulus Using Load And Displacement Sensing Indentation Experiments Han WQ, 1997, Science, V277, P1287 Synthesis Of Gallium Nitride Nanorods Through A Carbon Nanotube-Confined Reaction Treacy MMJ, 1996, Nature, V381, P678 Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes	Oliver WC 1992 I Mater Res V7 P1564	3/1	2366
And Displacement Sensing Indentation Experiments Han WQ, 1997, Science, V277, P1287 Synthesis Of Gallium Nitride Nanorods Through A Carbon Nanotube-Confined Reaction Treacy MMJ, 1996, Nature, V381, P678 Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes		34	2300
Han WQ, 1997, Science, V277, P1287 Synthesis Of Gallium Nitride Nanorods Through A Carbon Nanotube-Confined Reaction Treacy MMJ, 1996, Nature, V381, P678 Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes			
Synthesis Of Gallium Nitride Nanorods Through A Carbon Nanotube-Confined Reaction Treacy MMJ, 1996, Nature, V381, P678 Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes	•		
Treacy MMJ, 1996, Nature, V381, P678 Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes 32 835		34	585
Treacy MMJ, 1996, Nature, V381, P678 Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes 32 835			
Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes	Reaction		
Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes	Treacy MMI 1996 Nature V381 P678	37	235
		32	033
Murray CB, 1993, J Am Chem Soc, V115, P8706 32 1617	1		
	Murray CB, 1993, J Am Chem Soc, V115, P8706	32	1617

Synthesis And Characterization Of Nearly Monodisperse Cde (E = S, Se, Te) **Semiconductor Nanocrystallites**

In Table ES10, the full or abbreviated document title is in 'bold', following each citation. Two citation numbers are listed for each document. The first (TimesCited) is the citations from the retrieved papers only. These can be viewed as Nanotechnologyspecific citations. The second (Total SCI) is the total citations received by the paper as listed in the SCI. The latter cover all succeeding years from the document publication date, and all disciplines.

Essentially, all the most cited nanotechnology documents were published in the last decade. Most of these documents focus on specific material geometries, nanostructure synthesis, specific applications, and methods for evaluating engineering material The fundamental documents on electronic properties, computational approaches, and crystal structure, identified in a broader study of nanotechnology seminal papers (Kostoff et al, 2006a) do not appear in the above list of China's nanotechnology most cited documents. The present references reflect nanotechnology, as opposed to nanoscience, and are in line with the impression of the very applied nature of Chinese research overall. The emphasis on methods for the synthesis of nanostructures shows that there is significant interest in developing the materials and structures to move into manufacturing and products.

Citation Comparison with India and Australia

It was desired to compare China's research with that of at least one other country. India was chosen as a country with many similar characteristics to China (large population, rapidly developing economy, rapid growth in research, etc), and was used as one basis for comparison. This comparison was published in a text mining study on India, and is reproduced here. Australia was chosen as a country located in a similar geographical region (Western Pacific), more developed nation, much smaller population, similar research output for 1998, and was used as a second basis for comparison.

Some background discussion is required to introduce the comparison approach. In evaluating research impact, there are three main criteria to consider: 'right job', 'job right', 'productivity/ progress'. 'Right job' refers to proper selection of the broadest objectives; i.e., is the right study being pursued? Addressing this metric tends to require evaluation of a country's overall investment strategy. "Job right' refers to selection of the best approaches to solving the problem to reach the desired goal. 'Productivity/ progress' refer to whether anything tangible is being accomplished.

A detailed determination of 'right job' using citation statistics would require clustering the vintage papers thematically, examining citation ranges for each cluster (theme), then assuming that those themes that had the highest citations were the 'hot' research areas. The papers that were in the 'hot' clusters would get high ratings for the 'right job' criterion. The 'job right' rating for any of the papers would be determined by its citation position within any of the clusters. However, for this China-India-Australia country

application of the new comparison approach, the first two criteria are combined, and the overall citation statistics for a number of competitive research disciplines will be compared for the two countries.

For the present comparison, 1998 was chosen as the vintage year. It was of sufficient vintage that a substantial number of citations could have had time to accumulate, but sufficiently recent to relate to current research quality. Additionally, the total SCI papers for each country for 1998 were of relatively similar magnitude (India, 16228 research articles; Australia, 20185 research articles; China, 18830 research articles). numbers of records for India, China, and Australia (3500) were downloaded from the SCI. Phrases and their frequencies were extracted from each country's download. China's and India's phrases were combined for the India study, and China's and Australia's phrases were combined separately for the present study. Identical phrases were grouped, and their ratios of frequencies were computed.

It was desired to select phrases representing important technical disciplines with similar levels of emphasis, and since the total published records for each country for 1998 in SCI were within about ten percent, a factor of about two difference in phrase frequency for a technical discipline was viewed as the outer bound of similar emphasis. Thus, those phrases with both high frequencies of occurrence and frequency ratios within a factor of two were extracted, and examined.

For the China-India comparison, different phrases were chosen to represent the four major research categories: Physical Sciences, Environmental/ Agricultural Sciences, Life Sciences, and Materials Sciences. Ordinarily, Engineering Sciences is used rather than Materials Sciences, but there were insufficient phrases with adequate frequencies to represent Engineering Sciences, so Materials Sciences was used instead.

For the China-Australia comparison, different phrases were chosen to represent the four major research categories: Physical Sciences, Environmental/ Agricultural Sciences, Life Sciences, and Engineering Sciences.

Each phrase could be perceived as representing a specific technical discipline within one of the four broader categories defined above. Each phrase was used as a query, and inserted in the SCI search engine for 1998. The total SCI citations for the retrieved records for each country for each phrase from 1998-mid 2005 were tabulated and analyzed. The results for the China-India comparison are shown in Table ES11, and the results for the China-Australia comparison are shown on Table ES12.

Table ES11 – China-India Citation Comparison

TOPIC	INDIA	INDIA	CHINA	CHINA	WINNER
1998 RECORDS	RECORDS	CITES	RECORDS	CITES	
	RETRIEVED	TOP TEN-MED	RETRIEVED	TOP TEN-MED	
PHYSICAL SCIENCES					

Crystal*	1096	68	1923	96	Chi+
Film*	665	50	1319	58	Chi
Oxidation	555	37	501	47	Chi +
Catalyst Or Catalysis Or Catalytic	468	45	615	67	Chi ++
Algorithm*	322	33	505	36	Even
Nuclear	310	35	365	48	Chi +
Laser*	301	30	680	77	Chi ++
Network*	290	28	434	54	Chi ++
Thermodynamic*	269	43	326	48	Even
Dielectric*	240	25	199	50	Chi ++
Computer*	229	24	336	41	Chi+
Magnetic Field*	211	44	273	33	Ind +
Neutron*	160	41	166	43	Even
Spectromet*	134	20	317	39	Chi ++
Sensor Or Sensors Or Sensing	134	23	244	28	Chi +
Acoustic*	102	13	119	17	Chi
Reaction*	1519	66	1997	97	Chi+
Molecular	871	65	1244	114	Chi++
Chemical*	923	46	1033	64	Chi+
Diffraction	404	42	881	56	Chi+

ENVIRONMENTAL/ AGR	ICULTURAI	SCIENCES			
Soil*	449	24	177	55	Chi ++
Rice	208	17	136	28	Chi ++
Wheat	102	21	206	19	Even
Atmospher*	266	50	250	51	Even
Sea	147	27	153	34	Chi
River*	103	17	103	33	Chi++
Sediment*	171	22	183	43	Chi++
Ocean*	125	32	87	38	Chi
Climat*	122	21	109	52	Chi++
Maize	84	17	49	18	Even

MATERIALS SCIENCES					
--------------------	--	--	--	--	--

Alloy*	359	27	848	47	Chi ++
Composites	161	23	282	35	Chi +
Materials	467	39	618	61	Chi+
Metals Or Metallic	343	49	363	52	Even
Stainless Steel*	79	10	69	16	Chi+
Polymer*	711	44	1023	100	Chi++
Copolymer*	157	18	286	35	Chi++
Ferromagnetic	66	29	111	19	Ind+
Silicon	187	18	411	73	Chi++
Doped	226	43	321	28	Ind+

LIFE SCIENCES					
Enzyme*	650	42	374	70	Chi ++
Gene Or Genes Or Genetic Or					
Genetics	607	75	815	135	Chi ++
Antibod*	292	32	247	76	Chi ++
Cancer	199	24	257	76	Chi ++
Biolog*	314	32	271	45	Chi+
Protein*	993	105	878	108	Even
Disease*	552	60	357	146	Chi++
Blood	382	40	347	125	Chi++
Liver	253	29	223	52	Chi++
Bacter*	310	30	152	48	Chi+

Before discussing the findings, the philosophy behind Table ES11 will be presented. There are a number of different metrics that could be selected for citation comparisons between the two countries. Average citations, median citations, citation distributions based on the total retrievals or a portion of the retrievals would all be candidates. However, given the nature of research, where many times only a modest fraction of projects will achieve their initial objectives, it is most important to identify those projects that generated substantial payoff. This suggests emphasis on the top layer of performing projects. This layer could be a fixed number (e.g. top ten) or a percentage of the total (e.g., top 1%). The Finland study we are presently conducting used both, and the relative standings remained the same.

Thus, the citation performance of the ten most cited papers for each technology for each country was compared. Initially, both the median citations and the citations of the two highest papers were used as metrics, to obtain multiple perspectives for comparison. However, in many cases the most cited paper was an outlier, and included authors from

other (more technologically advanced) countries (especially in India's case). Since the contribution of the authors from other countries to the quality of the target paper was unknown, it was believe that giving full weight to the outliers' citations to either India or China would distort the results. All the top ten papers were retained for computing the median, reflecting the reality that India or China did play some role in the outliers' quality, and the median of the top ten was the final metric employed.

China-India Comparison Discussion

Now, the findings in Table ES11 will be addressed. The first column in Table ES11 is the query phrase, including variants in some cases. The second column is the number of 1998 India records retrieved for the query phrase, and the fourth column is the number of 1998 China records retrieved for the query phrase. The third column is the median citations of the ten most cited Indian papers, while the fifth column contains the same type of information for China papers. The sixth column is the citation 'winner' in the technical discipline examined, with the pluses (+) denoting the strength of the lead. The patterns of winners in the different broad categories are examined, and judgments about leadership in each of the four major categories are made.

The phrases (technologies) are grouped by major category. The first group is Physical Sciences. Out of twenty phrases examined, representing diverse areas of physical sciences, China was a clear winner in fifteen, India led in one, and four were viewed as even. Clearly, China is the leader in Physical Sciences, based on top ten median numbers of citations.

The second group is Environmental Sciences. Out of ten phrases examined, China was the clear leader in seven, and three were considered even. Clearly, China is the leader in Environmental/ Agricultural Sciences.

The third group is Material Sciences. Out of ten phrases examined, China was the clear leader in seven, India was the clear leader in two, and one was considered even. Clearly, China is the leader in Material Sciences.

The fourth group is Life Sciences. Out of ten phrases examined, China was the clear leader in nine, and one was considered even. Clearly, China is the leader in Life Sciences.

Thus, China was the clear leader in each major category, although there were (isolated) instances where India led in a sub-technology area. It should be re-emphasized that this citation comparison did not examine relative investment strategies. It focused only on technical areas that had similar magnitudes of investment. It should also be emphasized that there can be many reasons why an article receives or does not receive citations (Kostoff, 1998b). These include intrinsic quality, research fundamentality (more fundamental articles receive, on average, more citations), and journal visibility. To identify which of these causation factors is operable, samples of articles would have to be

retrieved, and each article examined in detail. Such an in-depth analysis was beyond the scope of the present study.

China-Australia Comparison

30/503

Table ES12 - China-Australia Citation Comparison

TOPIC 1998 RECORDS	AUSTRALIA RECORDS RETRIEVED	AUSTRALIA CITES TEN-MED	CHINA RECORDS RETRIEVED	CHINA CITES TEN-MED	WINNER
PHYSICAL SCIENCES					
Chromatograph*	356	70	365	34	Aus++
Conductivity	120	39	297	33	Aus
Electronic	188	62	505	29	Aus++
Electrophoresis	179	72	169	35	Aus++
Finite Element*	152	28	226	26	Aus
Gravity	92	29	75	23	Aus
Isotope*	177	77	160	45	Aus+
Magnetic Field*	154	39	273	33	Aus
Mechanical	333	66	510	51	Aus+
Microscopy	458	111	726	56	Aus++
Molecular Dynamics	49	42	82	20	Aus++
Nonlinear Or Non-Linear	404	84	769	49	AUS+
Photon*	147	59	186	54	Aus
Polymer	212	58	523	50	Aus
Spectromet*	265	70	317	40	Aus++
Star Or Stars	170	98	97	35	Aus++
Superconduct*	116	32	283	32	Tie
Ligand*	419	208	475	84	Aus++

ENVIRONMENTAL/ AGRICULTURAL SCIENCES					
Climat*	282	99	109	53	Aus++
Earthquake*	18	22	31	9	Aus++
Floral	32	24	14	9	Aus++
Geochemi*	122	56	86	43	Aus+
Irrigation	57	21	17	8	Aus++
Ocean*	282	116	87	38	Aus++
Rock*	394	82	220	68	Aus+
Sea	338	94	153	34	Aus++
Seawater	55	45	24	12	Aus++
Sediment*	383	66	183	44	Aus+
Seedling*	139	38	58	21	Aus++
Tectonic	106	62	59	47	Aus+
Tomato*	41	37	14	14	Aus++
Volcan*	109	55	42	41	Aus+

Wheat	249	57	102	22	Aus++	l
-------	-----	----	-----	----	-------	---

ENGINEERING SCIENCES					
Aircraft	30	10	20	3	Aus++
Buckling	35	11	45	11	Tie
Engine*	191	50	212	20	Aus++
Heat Treatment	31	17	97	17	Tie
Sinter*	47	23	122	19	Aus
Software	133	61	74	11	Aus++
Steel*	146	30	285	19	Aus+
Wastewater*	32	16	22	11	Aus+
Weld*	41	12	52	9	Aus
Iron	267	88	323	44	Aus++
Metal*	737	102	1359	98	Aus

LIFE SCIENCES					
Antibod*	738	238	247	77	Aus++
Arterial	188	77	55	29	Aus++
Blood	968	181	347	127	Aus+
Cancer*	607	185	270	83	Aus++
Chromosome	253	205	107	52	Aus++
Clone*	272	123	168	71	Aus+
Dna	887	215	538	81	Aus++
Enzyme*	612	238	374	72	Aus++
Gene Or Genes Or Genetic	2001	347	811	137	AUS++
Liver*	352	129	226	52	Aus++
Lymphocyte*	347	191	92	47	Aus++
Peptide*	440	124	192	66	Aus++
Polymerase	319	93	140	73	Aus+
Protein*	1962	329	878	110	Aus++
Tissue*	999	183	370	86	Aus++
Tumor*	411	187	314	75	Aus++

China-Australia Comparison Discussion

Now, the findings in Table ES12 will be addressed. The first column in Table ES12 is the query phrase, including variants in some cases. The second column is the number of 1998 Australia records retrieved for the query phrase, and the fourth column is the number of 1998 China records retrieved for the query phrase. The third column is the median citations of the ten most cited Australian papers, while the fifth column contains the same type of information for China papers. The sixth column is the citation 'winner' in the technical discipline examined, with the pluses (+) denoting the strength of the lead. The patterns of winners in the different broad categories are examined, and judgments about leadership in each of the four major categories are made.

The phrases (technologies) are grouped by major category. The first group is Physical Sciences. Out of eighteen phrases examined, representing diverse areas of Physical Sciences, Australia was a clear winner in eleven, a close winner in six, and tied with China in one. Australia is clearly the leader in Physical Sciences, based on top ten median numbers of citations.

The second group is Environmental/Agricultural Sciences. Out of fifteen phrases examined, Australia was the clear leader in all fifteen. Australia was an obvious winner over China in Environmental/Agricultural Sciences.

The third group is Engineering Sciences. Out of eleven phrases examined, Australia was the clear leader in six, a close leader in three, and was tied with China in two. Although Australia is the winner in Engineering Sciences, China's foucus on engineering and applied sciences can be seen, even compared to a first world country such as Australia.

The fourth group is Life Sciences. Out of sixteen phrases examined, Australia was the clear leader in all sixteen. This result is not only expected, but is further evidence that China is currently putting relatively more research effort into engineering and applied sciences than any other category, especially Life Sciences.

Thus, Australia was the clear leader in each major category, although there were (isolated) instances where China was tied in a sub-technology area. It should be reemphasized that this comparison did not examine relative investment strategies. It focused only on technical areas that had similar magnitudes of investment.

Taxonomies

The full report contains myriad manual and statistical clustering approaches to generate the technical structure taxonomy for China. In this Executive Summary, only the partitional document clustering approach is presented for SCI articles for 2005.

Document clustering is the grouping of similar documents into thematic categories. Different approaches exist (e.g., Willett, 1988; Rasmussen, 1992; Cutting, 1992; Guha, 1998; Hearst, 1998; Zamir, 1998; Karypis, 1999; Steinbach, 2000). The approach presented in this section is based on a partitional clustering algorithm (Zhao and Karypis, 2005; Karypis, 2005) contained within a software package named CLUTO. Most of CLUTO's clustering algorithms treat the clustering problem as an optimization process that seeks to maximize or minimize a particular clustering criterion function defined either globally or locally over the entire clustering solution space. CLUTO uses a randomized incremental optimization algorithm that is greedy in nature, and has low computational requirements. Appendix 2 describes the partitional clustering approach in more detail.

Document Clustering Results

In partitional clustering, the number of clusters desired is input, and all documents in the database are included in those clusters. Clustering was done for the 2005 documents retrieved from the SCI. There were 256 clusters run for the retrieved articles, and these clusters are listed in detail in Appendix 3, in the order by which they appear on the hierarchical tree. The main keywords from each cluster (and the percentage of the cluster theme for which they account) are shown in parentheses after the number of records in each cluster, in Appendix 3. The keywords are arranged by their contribution to the cluster's theme, in descending order of importance.

Three levels of filtering were used to obtain the main keywords shown in Appendix 3. First, a trivial word list (e.g., of, the, on, etc) was applied to the raw data. Second, only the highest frequency words for each cluster were retained. Third, a manual filtering was performed on the thirty highest words. The themes of each cluster (in brief narrative form) follow the keywords shown. The 256 clusters were aggregated into a hierarchical taxonomy using a hierarchical tree generated by the CLUTO software. The first four levels of the Chinese research taxonomy for 2005 are shown in Figure ES1. The categories in the taxonomy levels, and the number of documents in each category (shown in parentheses after each category narrative), are described as follows.

Figure ES1 – 2005 Chinese Research Taxonomy

LEVEL 1	LEVEL 2	LEVEL 3	LEVEL 4
physical and engineering sciences (19807)			atomic bonds and the crystal structure of molecules (1297)
	chemical reactions,	molecular and crystal structure (1813)	crystal orientation of molecules/atoms/ visualization (516)
	molecular and atomic structure (5841)	chemical reactions and behaviors,	catalytic reactions (2270)
liquid		chemical analysis, liquid chromatography (4028)	adsorption of chemicals, analysis of chemicals by liquid chromatography (1758)
	Physics, thin	structural and	nanomaterial structure,

	films, alloys, and nanomaterials, the mechanical properties	mechanical properties of materials, materials analysis (8056)	structural visualization (2830)	
	of materials (13966)		alloys, alloy composition, composition/structure (5226)	
		Physics, thin films	thin films, thin film deposition (1274)	
		and optics (5910)	structure and properties of thin films (thickness, density function, etc) and optics and physics (4636)	
life sciences, environmental sciences, and mathematics (14539)	environmental		differential equations, equations of systems (1287)	
r a F c		mathematics: differential equations, algebraic equations (2333)	algebraic equations and functions (1046)	
		mathematical modeling and genetic	system and network modeling, large scale modeling, neural networks (3552)	
		algorithms (4829)	genetic algorithems, imaging (1277)	
	cellular and genetic biology, health, and geophysics/geology (7377)		gene expression, sequencing (1018)	
	(1311)		cellular expression	

		(2721)
	chinese geophysics; health research (3638)	chinese medical patients (1837)
		Soils, plants and rare earth elements (1801)

The first major division (first level) in the 2005 taxonomy is physical and engineering sciences (19807) and life sciences and mathematics (14539). While mathematics is applicable to physical, engineering, and life sciences, it typically is categorized with the physical sciences. It appears that the life-sciences based terminology of some branches of mathematics (genetic programming, genetic algorithms, neural networks, etc) resulted in mathematics being assigned by the clustering algorithm to the life sciences category. For purposes of this discussion, mathematics will be treated as part of the physical and engineering sciences category.

The physical and engineering sciences category (with mathematics included) has 3.66 times as many records as life sciences, which shows China's strong emphasis in physical and engineering sciences relative to life sciences. The physical and engineering sciences branch further splits into chemistry, physics/ materials, and mathematics ("chemical reactions, chemistry" (5841), "physics, thin films, alloys, and nanomaterials, the mechanical properties of materials" (13966), "mathematics, algorithm and program development, modeling (mathematical & algorithmic), system modeling" (7162)). The "physics, thin films, alloys, and nanomaterials, the mechanical properties of materials" category has almost three times as many records as the "chemical reactions, chemistry" category, and twice the records of the mathematics category. The other main branch of the tree, life sciences and mathmatics, consists only of life sciences ("cellular and genetic biology, health, and geophysics/geology" (7377)) for the present discussion.

The third level of the hierarchy offers further differentiation. The chemistry category divides into a more fundamental structural sub-category ("molecular and crystal structure" (1813)) and a more applied dynamic sub-category ("chemical reactions and behaviors, chemical analysis, liquid chromatography" (4028)), with twice the output in the applied dynamic sub-category, The physics/ materials category divides into a physics sub-category ("physics, thin films and optics" (5910) and a materials subcategory ("structural and mechanical properties of materials, materials analysis" (8056)), The physics sub-category focuses on surface phenomena (e.g., films), and much of the thin film work could be considered as overlapping with the materials category. The materials sub-category focuses on bulk material phenomena, with the exception of the nanomaterials component. Thus, the physics/ materials category has a heavy weighting toward the materials component, with attention paid to both bulk and surface phenomena. The mathematics category divides into a more fundamental mathematical analysis category ("mathematics: differential equations, algebraic equations" (2333)) and a more applied mathematical modeling sub-category ("mathmatical modeling and genetic algorithems" (4829)), with twice the output in the more applied modeling category. The life sciences category divides into a fundamental biology category ("genetic and cellular

expression" (3739)) and a combination of applied clinical medicine and environmental geobiophysics ("Chinese geophysics; health research" (3638)).

The fourth hierarchical level provides further differentiation, and specific topics begin to emerge. To define these sixteen sub-categories more definitively, the following approach was used. Based on the hierarchical tree structure, the elemental clusters (from the 256 total) that fall under each fourth level sub-category are identified, and their themes listed under each fourth-level sub-category in bulletized summary form. The order of presentation is that shown on Figure ES1, starting from the top sub-category of level 4. The one digit prefixes in the following refer to level 1 categories; the two digit prefixes refer to level 2 categories; the three digit prefixes refer to level three categories; and the four digit prefixes refer to level four categories.

Level 4 Descriptions at the Elemental Cluster Level

- 1. Physical and Engineering Sciences
 - 1.1. chemical reactions, chemistry
 - 1.1.1 the structure of molecules, crystal structure (1813)
 - 1.1.1.1. atomic bonds and the crystal structure of molecules (1297)
 - bonds between atoms and molecules, specifically hydrogen bonding, and atom interaction.
 - compounds containing intramolecular hydrogen bonds, with emphasis on their structure.
 - compounds and molecules containing rings, such as benzene rings, with emphasis on their synthesis and characterization.
 - atomic structure of molecules and compounds.
 - atomic structure concentrating on O2 and N2 atoms, with emphasis on ligands and synthesis of complexes.
 - chemistry with emphasis on chemical mechanics.
 - various metal complexes and chemical properties of materials, with emphasis on ligands.

1.1.1.2 the crystal orientation of molecules/atoms/ visualization (516)

- single crystal x-ray diffraction method for analyzing compounds and their structure.
- *characterization of crystal structures, especially space groups.*
- crystallographic structures and space groups, especially determination of unit cell dimensions: (designated as a, b, and c) in angstroms.

1.1.2 chemical reactions, liquid chromatography (4028)

1.1.2.1. catalytic reactions (2270)

36/503

• isolation of compounds and elucidation of their structures.

- glucopyranosyl, especially isolation of chemical compounds containing glucopyranosyl.
- alpha and beta cyclodextrin.
- characteristics of various molecules, such as molecular weight, degradation of the molecules, etc.
- structure and characteristics of various molecules, mainly using NMR mass spectrometry.
- various chemical compounds and their synthesis.
- kinetics of reactions.
- various chemical reactions, and the product of those reactions and the conditions needed for the reaction, more specifically reaction temperature.
- synthesis of chemicals and chemical reactions.
- various chemical reactions and specifically on their yields.
- chemical reactions with an emphasis on catalyzing agents.
- *chiral compounds, chiral ligands and enantioselectivity.*
- aldehydes, especially aromatic aldehydes, with emphasis on reactions involving them.
- ionic liquids, especially BMIM: (butyl methylimidazolium), with emphasis on its use as a reaction medium and promoter to increase reaction yields.
- catalysts and their use.
- *chemical reactions, specifically those involving catalysts.*
- molecular sieves, especially those comprised of MCMs: (mesoporous crystalline materials), with emphasis on their synthesis and characterization.
- zeolites and their formation and chemical makeup, as well as various catalysts.

1.1.2.2 adsorption of chemicals, and analysis of chemicals by liquid chromatography (1758)

- adsorption and removal of matter from various media using various adsorption media.
- *surfactants and micelles and their aggregates.*
- water, and various chemical reactions/solutions that involve/contain water. Also talks about membranes, and the properties of solutions containing water.
- acids and their uses, as well as the degradation of various compounds, either by acids or using other means.
- preservation of fruits after harvest and its relation to the concentration of CO2 in the controlled environment.
- devices containing or utilizing gold, with emphasis on electrodes, especially self-assembled monolayers: (SAMs), and biosensors.

- electrodes in electrochemical systems, especially carbon-based electrodes.
- molecular detection, as well as electrode fabrication and use.
- chemiluminescence, emphasizing issues of detection limit for detecting trace material amounts, especially at the microgram level of concentration.
- chemical separation methods, especially those based on capillary electrophoresis: (CE).
- different means of either charge or mass separation, high pressure liquid chromatography, or liquid-liquid extraction
- mass spectrometry and liquid chromatography.
- compounds and enzymes, with emphasis on their synthesis, separation, and purification, and especially the use of chromatography.
- the extraction and recovery of one physical component from another physical component.

1.2. thin films and mechanical properties of materials

1.2.1 the structural and mechanical properties of materials (8056)

1.2.1.1. nanomaterial structure, structural visualization (2830)

- polymers, their formulation, their formation, and their uses.
- various polymers, copolymers, monomers, and grafting.
- polymers, especially block copolymers, with emphasis on their synthesis.
- crystal structures of various compounds and their physical properties such as melting properties with the analysis done by differential scanning calorimetry.
- blends, especially of polymers, with emphasis on high density polyethylene as well as mechanical and melt properties.
- curing and resins, with emphasis on curing of resins.
- synthesis of nanocomposites, particularly polymer/clay nanocomposites containing montmorillonite: (MMT).
- carbon nanontubes, especially their synthesis and structure
- nanotubes, especially synthesis of carbon nanotubes.
- single-wall and multi-wall carbon nanotubes; includes studies that focus on their synthesis, characterization, and use in reactions involving other materials.
- nanowires, especially their synthesis and characterization.
- ZnO, especially ZnO nanorods, with emphasis on their synthesis and structure
- nanostructures, especially nanorods and nanobelts, and their formation and characteristics
- electron microscopy, especially transmission electron microscopy: (tem).

- nanoparticles, especially those containing gold.
- colloidal silver spheres and their self assembly.
- mesoporous silicas.
- separation of materials, pore sizes in filter media and the structure of the filter media itself.
- various suspensions, and the nanoparticles in them. Also talks about powders and the particles' surface area.
- powders and their fabrication and synthesis and mechanical properties.
- particulate matter of varying types, and its size and size distribution.
- *shells and encapsulating various compounds within them.*
- *TiO2*, especially its photocatalytic behavior.

1.2.1.2 alloys, alloy composition, composition/structure (5226)

- pressure and high pressure. Sometimes discusses chemical reactions or geologic phenomina.
- temperature and associated phenomena.
- different phases of materials as well as the effect that phase change has on the material.
- magnetic properties of materials along with feromagnets, as well as the doping of various materials to make them magnetic.
- magnetic properties of various materials, the effects of magnetization on various materials.
- magnets and magnetic fields.
- turbulent flow, especially vortex dynamics and modeling.
- *flow dynamics and fluid flow modeling.*
- heat transfer.
- heat transfer mechanics and applications, as well as heat transfer experiments.
- air cooling and heating systems, especially their energy consumption and efficiency.
- cracking, crack tip growth rates, and stress intensity factors of materials.
- mechanical properties of materials, and stresses on them, along with what happens to stressed materials. Also talks about residual stresses, and stress testing and stresses in rocks.
- mechanical properties of materials with emphasis on damage to the material, plastic deformation and fatigue life.
- deformation behavior of materials as determined through experimental investigations.
- loading of structural members along with their mechanical properties and the failure modes of various beams, laminates and other materials.
- finite element models.

- martensitic transformation temperatures, particularly of shape memory alloys
- Focus on glasses, especially metallic glasses, with emphasis on synthesis and characterization of properties such as glass transition temperature.
- characterization of alloys, especially amorphous alloys, with emphasis on high temperature and magnetic properties.
- alloy synthesis and electrochemical characterization, with emphasis on characterization of hydrogen storage and discharge capacity.
- creation/formation/evaluation of alloys and their microstructure.
- coatings, especially composite coatings.
- wear resistance of materials, especially experimental evaluation of wear resistance properties.
- composition, mechanical properties, and synthesis of various materials.
- charge and discharge capacity of various materials, and mainly their use in electrochemical/electrical charge transfers. batteries/battery cells.
- solder and solder joints, particularly lead free solder, with emphasis on solidification, structure, and properties.
- structure and properties of materials, with emphasis characterization of welds and fatigue and fracture behavior.
- corrosion and pitting resistance of metals and alloys, including steels and stainless steels.
- various steels, especially ferritic and austenitic, with an emphasis on failure modes, testing, and composition
- the grain structure of various alloys and the microstructure of such allovs.
- various sintering techniques such as spark plasma sintering, and the mechanical properties of sintered materials as well as proper sintering techniques.
- ceramics, including fabrication, doping, and mechanical properties.
- characterization of the dielectric properties of ceramics.

1.2.2 thin films and optics (5910)

thin films, thin film deposition (1274) 1.2.2.1.

- films, especially thin films, with emphasis on their synthesis and evaluation.
- thin films and their deposition.
- various films, discussing formation, doping, deposition etc.
- diamond films, including nano-structured diamond films, with emphasis on their deposition by various methods.
- films and doping agents that are embedded or placed on films, such as sensors.

films, specifically composite films and polymer films.

1.2.2.2 structure and properties of thin films (thickness, density function, etc) and optics and physics (4636)

- thin films and their substrates, and film deposition.
- etched layers, usually of silicon, and includes quantum dots as well.
- devices, especially organic light emitting devices, including light emitting diodes: (LEDs), with emphasis on their fabrication.
- black holes and black hole event horizons, with emphasis on their associated entropy.
- many different aspects of astronomy, including pulsars, gamma ray emission and luminosity.
- stars, and their relation to composition and evolution of galaxies.
- the emission properties of materials, especially photoluminescence.
- Europium ion: (Eu3+ and Eu2+) doped phosphors, especially their synthesis and characterization, with emphasis on luminescent properties.
- glasses containing Er3+, especially for upconversion laser applications.
- fluorescence of various materials/atoms/compounds and fluorescence quenching.
- chitosan, and the separation of various molecules specifically by means of absorption.
- photons: (emission/absorption/interaction) and multi-level atomic systems emphasizing the role of fields on the photon and atomic system behaviors.
- pulses from optical lasers.
- lasers and pumped lasers.
- *fiber optics and the component fibers.*
- fibers, especially fibers for composites and concrete reinforcement, with emphasis on their syntheis and characterization.
- gratings, especially fiber Bragg gratings: (FBGs), with emphasis on their development as sensors and optical elements.
- power, namely electrical power, as well as various switches and power converters.
- the resonant frequencies of various excited particles.
- antennas, particularly patch antennas, with emphasis on their design and characterization.
- waveguides along with Finite Difference Time Domain analysis of the waveguides.
- electromagnetic, gravitational, and other waves, and their propagation.
- beams, especially Gaussian beams.

- optics, both biological: (human eye) and mechanical: (optical crystals etc, with some emphasis on solitons).
- spectra of various molecules and how the spectra was obtained, especially ion absorption and laser optics
- various crystals and their light carrying/other optical properties, as well as defects in them.
- doped materials, especially crystals and their various parameters that fall in different bands. Also emphasizes optical band gaps.
- structure of various molecules and atoms or clusters of atoms. Also discusses the orbit of electrons, and the density and structure based on density functional theory.
- bonds between atoms and molecules, with emphasis on their electron transfer.
- reactions, especially their energy and transition states.
- the energy states of various charged particles.
- the states of various systems, and their synchronization and coupling.
- various topics in astrophysics, and physics in general.
- quantum particules, and quantum dots, and the spin of electrons.
- quantum entanglement and entanglement states.
- decays of subatomic particles, especially those involving branching fractions.
- quarks and quark models.
- energy levels in the GeV range; especially energies related to the motion and interaction of sub-atomic particles.
- cross sections, especially related to quantum reactions/interactions.
- various experiments that probe the nucleus, emphasizing detection of protons and neutrons.

2. life sciences and mathematics

- 2.1. mathematics, algorithm and program development, modeling (mathematical & algorithmic)
 - 2.1.1 mathematics and differential equations (2333)
 - 2.1.1.1. differential equations, equations of systems (1287)
 - mathematics: boundary conditions, equations, etc.
 - numerical equations, especially solution of numerical equations for fluid flows, such as the navier stokes equation.
 - differential equations to describe various systems
 - mathematics, especially solution techniques for mathematical equations.
 - exact solutions, including solitary wave solutions, to various equations and functions.
 - *solitons:* (waves), especially equations and solutions related to them.
 - evaluations of systems, especially those involving limit cycles, homoclinic loops or orbits, and oscillation or oscillators.

- bifurcation, especially Hopf bifurcation.
- positive periodic solutions to system equations.
- existence of positive solutions to equations, especially those involving a fixed point theorem.
- mathematical equations and mathematical models and systems.

2.1.1.2 algebraic equations and functions (1046)

- mathematical investigations, with emphasis on solutions to equations and functions.
- graphs and curves, especially theories and proofs involving them
- algebras, especially Lie algebra and loop algebra.
- system symmetries, especially Lie symmetries and non-Noether conserved quantities.
- mathematical theorems.
- mathematics, with emphases on spaces and manifolds.
- mathematics, with a strong emphasis on matrices.
- various functions of finite element models, and the mathematics associated with them.
- computer optimization of data sets, along with optimization functions.

2.1.2 mathematical modeling and algorithms (4829)

2.1.2.1. genetic algorithms, imaging (1277)

- algorithm development, especially modeling, convergence, and optimization.
- various computer algorithms.
- algorithms, especially search algorithms, development for specific problems of interest.
- algorithms, with an emphasis on clustering algorithms.
- wavelets.
- speech, voice, and written or typed character characterization and classification, with emphasis on feature/word extraction.
- face recognition algorithms.
- imaging, both the instruments used and the mechanics behind taking images.

2.1.2.2 system and network modeling, large scale modeling, neural networks (3552)

- *video, especially sports video, with emphasis on watermarking.*
- caching schemes and caches, especially proxy caches, as they relate to media streaming on networks and servers
- coding over channels, with emphasis on errors and fading.
- *estimation, and the error associated with estimation.*

- *filters, especially those designed to reduce noise.*
- chaotic systems, especially their control and synchronization.
- various control systems and the controllers themselves.
- mathematically fuzzy concepts, including fuzzy control, fuzzy models, fuzzy logic, etc.
- control of linear systems, especially related to time delay and feedback control.
- stability of delayed neural networks, particularly cellular neural networks, with emphasis on global exponential stability
- neural networks, especially artificial neural networks: (ANNs).
- networks, specifically computer networks, and the various nodes in a network.
- traffic, mainly on internet and electronic traffic.
- signature and signature schemes, including proxy signature schemes, for data encryption
- security, especially system and protocol security.
- resource management, especially as it relates to computer networks, with emphasis on mobile agents and digital libraries
- *Grid Computing, a system for computer resource sharing.*
- web services, especially focused on semantic Web aspects.
- systems for storing and sharing data, especially peer to peer (P2P) systems
- peer to peer: (P2P) networks and file-sharing systems, with emphasis on their topology and topological mismatches.
- economics, specifically different markets, firms, and the price of goods in different economies.
- business structure and business modeling and supply chains, including the role of linguistics in the decision support systems.
- various construction projects, mainly in china.
- the design of new components, systems, and structures.
- systems, with minor emphasis on operating systems and software.
- machine scheduling and optimization, with emphasis on algorithms that deal with these subjects.
- support vector machines.
- environmental forcasting and modeling.
- data aquisition and system modeling.
- models, especially their parametric analyses.
- simulations, especially of fluid dynamical systems.

2.2. gene expression and cellular biology

- 2.2.1 Chinese geophyics and chinese citizens and their health problems (3638)
- 2.2.1.1. gene expression, sequencing (1018)
 - isolates and strains of micro-organisms or genes, especially rRNA.

- *DNA*, particularly the immobilization of *DNA*, and enzymes.
- DNA, specifically on detection, characterization, mutation, sequencing.
- *dna and genomic sequencing.*
- genes, especially cDNA.
- transgenic experiments, especially those involving transgenic plants.
- genes, and gene expression and genetic sequencing.

2.2.1.2 cellular expression (2721)

- various forms of cancer and possible treatments, and cellular expression.
- tumors, including tumor growth, metastases, treatment, and inhibition, with emphasis on experiments involving cells in mice or cell lines.
- various kinds of cells and their attributes, along with cellular expression.
- various kinds of cells, expression of those cells, and gene expression.
- multiple types of cells and what affects them, emphasizing apoptosis.
- kinase and receptor activation, and the signaling of the cells between the receptors.
- various chemicals or molecules/compounds that have an effect on the body (activation or inhibition) or the body's reaction to various stimuli.
- calcium ion, Ca+2, particulary as it relates to cells and cellular functions.
- neurons.
- experiments performed on rats, especially impacts on their brain.
- cellular expresson and tumor necrosis factor alpha and transforming growth factor.
- use of mice in medical experiments.
- antibodies, vaccines, and immunity.
- proteins and their characterization and use.
- proteins, and protein separation, and protein analysis.
- proteins, viruses, antibodies and vaccines related to SARS: (Severe Acute Respiratory Syndrome)
- SARS: (Severe Acute Respiratory Syndrome), particularly studies involving SARS patients, cases and outbreaks.

2.2.2 genetic expression, and cells, mainly cancer cells (3739)

2.2.2.1. Chinese medical patients (1837)

- the circulatory system, emphasizing arteries and stents, and clinical problems associated with various patients.
- the renal system, and patients who have renal problems and some of their treatments.

- medical patients and their medical problems.
- medical/biological experiments, and talks about the different groups in the experiment.
- interaction of insects and their predators, and what influences the mortality of insects/fish.
- various clinical medical studies, usually involving women.
- sexually transmitted diseases such as HIV. Also smoking and its health problems, as well as other respiratory ailments.
- health problems among Chineese citizens, especially in Hong Kong.
- various social and health characteristics and behaviours of Chinese citizens and children.
- *Chinese families, with emphasis on genetics and medicine.*
- cancer risk and control.
- specific types of genes, especially polymorphs, and their functions.
- genetic diversity in populations.
- chromosomes and genes, especially genetic markers and traits.

2.2.2.2 Soils, plants and rare earth elements (1801)

- rock and mantle beneath North China, with emphasis on isotope dating.
- geological formations in China, with emphasis on determination of geologic age.
- seismic activity, including earthquakes.
- wind, both solar wind and lower atmospheric wind; includes wind modeling, and wind damage, as well as particulates in the wind such as dust and aerosols.
- creating climate models, especially over water or near coasts, and various ways to determine moisture concentrations and ways of measuring various quantities that affect climate, such as moisture etc.
- climate analysis (especially monsoons) and indoor air pollutant studies, mainly in china and the surrounding areas.
- sediments and sediment tracking and contamination in various water sources; lakes, rivers, estuaries, seas, etc.
- soil, especially the effects of soil properties on plants, in China
- plants, and plant roots. Includes waste remediation using plants, various health benefits of plants, and plant characterization and analysis.
- all matter of plants, both food plants and non-food plants, including seeds and their properties, such as germination rate
- various species of organisms and plants, and their characteristics. Also talks about DNA and comparing it between species.
- the identification of mainly zoological and entomological species in China.
- plant species.

An expanded version of this level 4 taxonomy that includes the raw data for each elemental cluster is listed and summarized in Appendix 4, which can also be viewed as a flat taxonomy from a Level 4 perspective.

Comparison of China's and USA's Investment Strategies

In the section on comparing China's research citations with those of India and Australia, the three criteria of 'right job', 'job right', and productivity/ progress were described. In any research evaluation, the first criterion to consider is 'right job'. If the research unit being evaluated is not aiming at the right target, the highest quality approach will not provide results useful to the organization's mission.

A major component of 'right job' is the research investment strategy. This includes the allocation of resources among the components of the research portfolio, and the rationale for that allocation. The taxonomy shown in the previous section reflects the present research investment strategy of China (based on published output). Of particular interest is how this investment strategy compares with that of other countries, and which particular areas China has chosen to emphasize.

One approach to performing such a comparison would be to compare taxonomies of different countries at different hierarchical levels. This requires that categories defined by the clustering algorithms would have similar content and theme, for those categories to be compared directly.

Another approach is based on the philosophy that very specific sub-technology areas should be compared, to identify precisely where different countries emphasize their investment. These critical sub-technologies emphasized by each country become the 'dots' to be connected for understanding the overall country research strategy.

How specific should the technology areas be? Let us follow the chain of dis-aggregation, starting from the top. At the highest level would be the research articles for all of China. One could compare the number of research articles in a given year with that of, say, the USA, and draw very general conclusions about overall research output. This was essentially the approach of King, in comparing research output from 31 different countries (King, 2004). Very limited information can be obtained from this level of resolution.

At the next level would be research articles for each technology area for a country. The first author has proposed that making comparisons at this level for critical technologies provides a much more strategically important view of each country's capabilities (Kostoff, 2004d). Recent text mining studies on nanotechnology (Kostoff et al, 2006a) and energetic materials [unpublished] show that China is advancing rapidly in its research article production in these two critical technologies, and is second only to the USA in research article production. However, even these results aggregated at the critical technology level may be too aggregated for critical investment strategy emphasis

analyses. If China is second to the USA, for example, in nanotechnology in general, might there be sub-areas of nanotechnology (e.g., nanocomposites, nanorods, etc) where China is actually leading the USA? And what would be the strategic implications of China heavily emphasizing research investment in such areas?

Thus, at the next level would be sub-critical technology areas, such as nanocomposites or nanorods in the nanotechnology example above. Further levels of dis-aggregation are possible, such as 'metal nanocomposites' or 'heavy metal nanocomposites'. The terminal level of resolution used for the comparison depends on the objectives of the study, and the numbers of articles available at the different levels.

This latter approach was used to compare the relative investment strategies of China and the USA for the present study, with a resolution at about the critical sub-technology level. The approach used was as follows. Ten thousand articles each of USA and China were downloaded from the SCI for 2005. At the time the download occurred, the total number of USA articles was 233,936 and the total number of China articles was 58,044. Thus, the USA had approximately four times the total number of research articles for 2005 as China.

A phrase frequency analysis was performed on each download, and the phrases were then combined. The ratio of frequencies for each phrase was tabulated. Phrases were ordered by ratio of occurrence in each country's download. Two bands were considered: phrases that had a large China/ USA frequency ratio and phrases that had a large USA/ China frequency ratio (the opposite ends of the spectrum). The phrases in these bands were inserted into the SCI, and the absolute values of numbers of records that contained these phrases (for the first 10.5 months of 2005) were obtained. The results are shown on Tables ES13 and ES14.

Table ES13 (Chinese Strengths - SCI)

QUERY PHRASE	# 2005 SCI ABSTRACTS		ABSOLUTE RATIO	NORMALIZED RATIO	
	CHINA	USA	(CHINA/USA)	(CHINA/USA)	
Neural Network	489	394	1.24	4.96	
Lyapunov	222	170	1.31	5.22	
XRD	2141	347	6.17	24.68	
Nanorods	359	117	3.07	12.27	
Nanocomposites	330	328	1.01	4.02	
Nanocrystals	451	392	1.15	4.60	
Copolymer	496	500	0.99	3.97	
Welding	102	123	0.83	3.32	
Corrosion Resistance	152	52	2.92	11.69	
Compressive Strength	76	67	1.13	4.54	

Photodegradation	67	59	1.14	4.54
Zeolite	214	230	0.93	3.72
Ceramics	750	414	1.81	7.25
Alloy	1558	962	1.62	6.48
Heat Treatment	297	224	1.33	5.30

Table ES14 (USA Strengths - SCI)

QUERY PHRASE	# 2005 SCI ABSTRACTS		ABSOLUTE RATIO	NORMALIZED RATIO
	CHINA	USA	(USA/CHINA)	(USA/CHINA)
Arthritis	51	1120	21.96	5.49
Pathology	63	1555	24.68	6.17
Health	371	11273	30.39	7.60
Cancer Risk	15	602	40.13	10.03
Psychiatric	17	1306	76.82	19.21
Cognitive	75	3123	41.64	10.41
Medication	27	1422	52.67	13.17
Galaxy	39	860	22.05	5.51
Antibiotics	80	877	10.96	2.74
Heart Failure	49	1292	26.37	6.59
Mental	63	2655	42.14	10.54
Telescope	55	846	15.38	3.85
Diabetes	123	2832	23.02	5.76
Pain	130	3216	24.74	6.18
Symptoms	171	4921	28.78	7.19

The difference in thematic emphasis between the USA and China is dramatic! China emphasizes the hard sciences that underpin defense and commercial needs. The USA emphasizes research areas focused on medical, psychological, and social problems. There are even research areas where China leads the USA in absolute numbers of research articles published. In those areas, China's relative investment strategy is greater than four times that of the USA.

A number of these detailed areas in which China places high emphasis are related to nanotechnology. A recent nanotechnology text mining study (Kostoff et al, 2006a) showed that China was second to the USA in nanotechnology research article productivity. This means that at the next level or two lower in aggregation, there could be nanotechnology sub-areas in which China was actually leading in absolute numbers of research article production, and also areas in which they were well behind the USA in

absolute numbers of research article production. The present analysis confirms that hypothesis, and suggests that the USA should pay particular attention to those areas in which China has chosen to apply substantial relative emphases.

The next two tables are similar to Tables ES13 and ES14, except that they contain common (to USA and China) high frequency phrases that were derived from the Engineering Compendex (EC), instead of the SCI. They also contain comparisions of occurence frequency for a given query term between the EC and the SCI. Both China and the USA had similar numbers of records in the EC (for those records that contained a country address), so no normalization was needed.

Table ES15 contains a set of phrases taken from the Engineering Compendex (EC) in which China had a large lead relative to the USA in terms of the ratio of record occurrences. Those terms and their ratios of occurrence were then compared to the ratio of China and USA records in the SCI.

In general, the EC is a much more applied database than the SCI, and some of the words/ phrases chosen in Tables ES15 and ES16 reflect that. Some of the phrases, such as XRD, were high frequency shared phrases not only in the China EC phrase list, but also in the China SCI phrase list. The specific number of records retrieved by a query term may be different in Tables ES13 and ES15 (e.g., XRD), and is due to the fact that the data for these tables were downloaded on different days. There are new records uploaded to the SCI and EC every day, so from day to day there can be an increase in terms of number of records that are returned from a specific query.

Table ES15 (Chinese Strengths – EC)

	# 2005 EC		ABSOLUTE	2005 SCI		ABSOLUTE
QUERY PHRASE	ABSTRACTS		RATIO EC	ABSTRACTS		RATIO SCI
	CHINA	USA	CHINA/USA	CHINA	USA	CHINA/USA
Bearing Capacity	145	12	12.08	15	13	1.15
XRD	2213	237	9.34	2582	418	6.18
Microhardness	174	22	7.91	129	53	2.43
Photoelectric	86	13	6.62	57	37	1.54
Diesel Engine	152	23	6.61	33	46	0.72
Wavelet Transform	338	54	6.26	119	90	1.32
Fiber Bragg Grating	115	19	6.05	56	19	2.95
Wear Resistance	213	37	5.76	161	63	2.56
Annealing Temperature	214	39	5.49	182	81	2.25
Impact Strength	92	19	4.84	57	27	2.11
Magnetron	285	60	4.75	292	133	2.20
Countermeasures	57	13	4.38	9	59	0.15
Intrusion Detection	100	23	4.35	33	36	0.92
Missile	100	24	4.17	6	45	0.13

Table ES16 (USA Strengths – EC)

QUERY	# 2005 EC		ABSOLUTE	2005 SCI		ABSOLUTE
PHRASE	ABSTRACTS		RATIO EC	ABSTRACTS		RATIO SCI
	CHINA	USA	USA/CHINA	CHINA	USA	USA/CHINA
Biochemistry	47	1498	31.87	42	445	10.60
Epithelial	9	182	20.22	238	5155	21.66
C-Terminal	17	308	18.12	110	1513	13.75
Microbiology	13	196	15.08	13	207	15.92
Aeronautics	13	176	13.54	1	46	46.00
Transmembrane	14	176	12.57	89	1480	16.63
Viral	10	121	12.10	241	3942	16.36
Prostate	11	136	12.36	103	3828	37.17
Cytoplasmic	13	162	12.46	107	1933	18.07
Patient	28	351	12.54	482	15699	32.57
Peptides	36	408	11.33	313	3132	10.01
Transfection	9	101	11.22	169	980	5.80
Ecosystems	15	164	10.93	82	1158	14.12
Mortality	13	127	9.77	275	8138	29.59

Tables ES15 and ES16 confirm that in the EC, as in the SCI, China's focus is on the hard sciences and especially engineering sciences, whereas the USA's relative focus is on health and biology-based research. In the overtly military-related terms (countermeasures, intrusion detection, missile), China has a commanding presence. One interesting exception is the presence of 'aeronautics' in the list of USA dominant terms. Similar anomalies have been noted in past studies. In technologies that require a large infrastructure, and therefore large investment, China has tended to be under-represented, and that probably accounts for the 'aerospace' under-emphasis.

SUMMARY AND CONCLUSIONS

Structure of Chinese Science in Technical Categories

The first major division (first level) in the 2005 taxonomy is physical and engineering sciences (19807 records) and life sciences and mathematics (14539 records). While mathematics is applicable to physical, engineering, and life sciences, it typically is categorized with the physical sciences. It appears that the life-sciences-based terminology of some branches of mathematics (genetic programming, genetic algorithms, neural networks, etc) resulted in mathematics being assigned by the clustering algorithm to the life sciences category. For purposes of this discussion, mathematics will be treated as part of the physical and engineering sciences category.

The physical and engineering sciences category (with mathematics included) has 3.66 times as many records as life sciences, which shows China's strong emphasis in physical and engineering sciences relative to life sciences. The physical and engineering sciences branch further splits into chemistry, physics/ materials, and mathematics ("chemical

reactions, chemistry" (5841), "physics, thin films, alloys, and nanomaterials, the mechanical properties of materials" (13966), "mathematics, algorithm and program development, modeling (mathematical & algorithmic), system modeling" (7162)). The "physics, thin films, alloys, and nanomaterials, the mechanical properties of materials" category has almost three times as many records as the "chemical reactions, chemistry" category, and twice the records of the mathematics category. The other main branch of the tree, life sciences and mathmatics, consists only of life sciences ("cellular and genetic biology, health, and geophysics/geology" (7377)) for the present discussion.

The third level of the hierarchy offers further differentiation. The chemistry category divides into a more fundamental structural sub-category ("molecular and crystal structure" (1813)) and a more applied dynamic sub-category ("chemical reactions and behaviors, chemical analysis, liquid chromatography" (4028)), with twice the output in the applied dynamic sub-category, The physics/ materials category divides into a physics sub-category ("physics, thin films and optics" (5910) and a materials subcategory ("structural and mechanical properties of materials, materials analysis" (8056)), The physics sub-category focuses on surface phenomena (e.g., films), and much of the thin film work could be considered as overlapping with the materials category. The materials sub-category focuses on bulk material phenomena, with the exception of the nanomaterials component. Thus, the physics/ materials category has a heavy weighting toward the materials component, with attention paid to both bulk and surface phenomena. The mathematics category divides into a more fundamental mathematical analysis category ("mathematics: differential equations, algebraic equations" (2333)) and a more applied mathematical modeling sub-category ("mathmatical modeling and genetic algorithems" (4829)), with twice the output in the more applied modeling category. The life sciences category divides into a fundamental biology category ("genetic and cellular expression" (3739)) and a combination of applied clinical medicine and environmental geobiophysics ("Chinese geophysics; health research" (3638)).

Structure of Chinese Technology in Technical Categories

These conclusions are based on EC data. The first level of the technology taxonomy has two categories: Computer Sciences (4721 records) and Physical Sciences (5228 records). Percentage-wise, this is a split of 47/53%. The second taxonomy level is generated by sub-dividing each first level category by two. Computer Sciences divides into Cybernetics & Systems Engineering (3902) and Signal Processing (819), while Physical Sciences divides into Materials Science (3477) and Chemistry & Nanotechnology (1751). The lower taxonomy levels are generated in the same manner as above. In the fourth taxonomy level, several categories stand out as receiving significantly more focus than the others. These categories are Systems Theory (23.4%) and Structural Mechanics & Materials (20.1%) with the most focus, followed by Applied Measurements (9.3%), Power/Energy Market Enterprises (8.6%), and Organic Chemistry (7.2%) as compared to the other eleven categories ranging from 1.3 – 4.9%.

Additionally, the Abstracts also cover a broad range of fields ranging from industrial to high tech electronics that are indicative of a large society growing to sustain itself and

become technologically competitive on a global scale. Examples of some key areas receiving emphasis are as follows; Energy/Power Generation, Mining, Materials & Structural Mechanics, Signal Processing, Systems Engineering, Transportation & Traffic flow, Robotics, Sensors & Diagnostics, Advanced Communications, Nanotechnology, Assessment Methods, Mathematics, Environmental & Ecological, Modeling & Simulation, and Control Theory. All of these areas have applications that can be of military significance.

Efforts in energy and power generation include hydroelectric, nuclear, and fossil fuels (such as coal), with the emphasis on the latter. Improvements are being sought for more efficient yields of energy from these resources. Power generation spans from the Power Plants to vehicles to small electronic devices. The efforts in fossil fuels are closely tied with mining and structural developments.

The efforts in mining include identifying areas of opportunity for different resources, and improving mine structures to prevent collapse. These efforts can be closely associated with other work in remote sensing to help locate resources and conduct environmental impact studies. The same efforts to improve structural developments in mines might also be applied to underground facilities. Materials and structural mechanics fields range from the macro level (geologic formations and superstructures) to the micro and nano level (e.g. particles, ligands, compounds, films, and nanowires). There are specific references of structural analyses being done for a *New-Concept Submarine* and *low noise torpedo*, as well as for solid rocket motors.

Systems, control theory, modeling, and simulation are closely associated with all other areas. They range from the macroscopic, such as improving trafficability movements of large vehicles, resources, people, and robotics to the microscopic, such as gene manipulation. They are being done for topics small and large in numbers, such as tracking and/or controlling Unmanned Aerial Vehicles (UAVs) in a dense air traffic environment. Vibrational analysis is being performed with specific applications to missile launches on naval ships. Signal processing techniques are also closely related to these fields as well and incorporate wavelets, digital signal processing and neural networks. Applications of these studies include remote detection and biometrics.

Assessments, testing, and diagnostic methods include studies of text mining, Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), Magnetic Resonnance Imaging (MRIs), and other high precision diagnostic instrumentation that can be used in high-yield weapons development. Long range plans are made that include research, such as the specific reference to a new 5-year coal mining plan.

Communications related research studies topics such as fiber optics, optical communications in seawater, digital, wireless networks, mobile networks, millimeter waveguides, blind signature schemes in cryptography, and security protocols.

Relative Research Investment Emphases between China and USA

The relative frequency of China and USA research articles in the SCI for 2005 was computed. The difference in thematic emphasis between the USA and China is dramatic! China emphasizes the hard sciences that underpin defense and commercial needs. The USA emphasizes research areas focused on medical, psychological, and social problems. There are even research areas where China leads the USA in absolute numbers of research articles published. This means that, in those areas, China's relative investment strategy is greater than four times that of the USA.

A number of these detailed areas in which China places high emphasis are related to nanotechnology. A recent nanotechnology text mining study showed that China was second to the USA in nanotechnology research article productivity. This means that at the next level or two lower in aggregation, there could be nanotechnology sub-areas in which China was actually leading in absolute numbers of research article production, and also areas in which they were well behind the USA in absolute numbers of research article production. The present analysis confirms that hypothesis, and suggests that the USA should pay particular attention to those areas in which China has chosen to apply substantial relative emphases.

Relative Technology Investment Emphases between China and the USA

In the Engineering Compendex, as in the Science Citation Index, China's focus is on the hard sciences and especially engineering sciences, whereas the USA's relative focus is on health and biology-based research. In the overtly military-related terms (countermeasures, intrusion detection, missile), China has a commanding presence in relative emphasis. One interesting exception is the presence of 'aeronautics' in the list of USA dominant terms. Similar anomalies have been noted in past studies. In technologies that require a large infrastructure, and therefore large investment, China has tended to be under-represented, and that probably accounts for the 'aerospace' underemphasis.

Country Bibliometrics

What are the most utilized journals for China as a whole? The twenty journals containing the most Chinese articles for 2004-2005 appear to be concentrated in chemistry, materials, and physics, with one medical journal. Many are Chinese journals.

What are the most prolific institutions? The twenty most prolific institutions for research articles are the Chinese Academy of Sciences in aggregate (all branches), followed by universities. The most prolific of the universities are Tsing Hua, Zhejiang, Peking, Shanghai Jiao Tong, and Hong Kong.

Which countries collaborate the most with China? The most collaborative countries with China, as reflected in the authors' country listing from SCI articles, are as follows:

China (118659); USA (9919); Japan (4247); Germany (2450); England (2295); Canada (1923); Australia (1811); France (1374); Singapore (1334); South Korea (1197); Taiwan (870); Russia (651); Italy (632); Sweden (626); India (623).

What is the citation impact of collaboration? Two cases were compared. The first case consisted of all research articles in the SCI published from 1995-1999 having at least one author with a Peoples Republic of China address. The second case consisted of all research articles in the SCI published from 1995-1999, retrieved using the following address query that essentially generates Chinese-only authored articles: (PEOPLES R CHINA NOT (USA OR JAPAN OR GERMANY OR HONG KONG OR (ENGLAND NOT NEW ENGLAND) OR CANADA OR ITALY OR FRANCE OR AUSTRALIA OR SOUTH KOREA OR TAIWAN OR NETHERLANDS OR SWEDEN OR RUSSIA OR INDIA OR SINGAPORE OR SWITZERLAND OR SPAIN OR BRAZIL OR SCOTLAND OR FINLAND OR MALAYSIA OR ROMANIA OR AUSTRIA)). These countries were the main research collaborators with China in the 1995-1999 time frame.

The first case (China and collaborators) produced the following results:

- Articles retrieved, 83689;
- Median citations of total articles retrieved, 2;
- Median citations of top ten cited articles retrieved, 604;
- Median citations of top 5% articles retrieved, 35.

The second case (China only) produced the following results:

- Articles retrieved, 62018;
- Median citations of total articles retrieved, 2;
- Median citations of top ten cited articles retrieved, 239;
- Median citations of top 5% articles retrieved, 25.

Thus, approximately one-quarter of research articles having at least one author with a China address were the result of China's collaboration with other countries. The impact of collaboration was negligible on median citations of the total. The impact of collaboration was substantial on the top ten cited articles, and was noticeable on the top 5% of cited articles.

What are the main technical areas for collaboration? Two examples were selected: China's collaboration with the USA and with Japan. The two areas that stand out for both collaborative groups (China-USA; China-Japan) are biomedical and nanotechnology. However, when frequencies of similar phrases from each group are taken into account, for the China-USA articles, biomedical comes first and nanotechnology second. For the China-Japan articles, nanotechnology ranks higher relative to biomedical. Given China's relative (to the USA) investment strategy emphasis in nanotechnology, as will be shown later, and lesser relative investment emphasis in biomedical, the collaborative research relationship with Japan appears to be more quid pro quo than is the relationship with the USA.

Which journals are cited the most? The top ones cited most appear to be primarily English Language journals in contrast to many of the top most prolific journals being Chinese Journals. This suggests that at this time there may be a larger dependence on English Language (i.e. foreign) journals than on China's own internal journals, at least for Chinese papers published in journals accessed by the SCI.

The median Impact Factor of the nineteen journals containing the most papers cited by Chinese-authored papers is 5.45. This is contrasted with the median Impact Factor of the eighteen journals containing the most Chinese-authored papers (0.72). This order of magnitude difference in Impact Factor between the journals in which the Chinese researchers publish and the journals that Chinese researchers reference indicates they may not be publishing in the highest research impact journals. Since Impact Factor is discipline dependent, a discipline-based comparison of the overall Chinese results above (confined to those journals) may be instructive.

The median of the Impact Factors of the seven top physics journals in which the Chinese authors publish is 1.25, whereas the median of the Impact Factors of the seven top physics journals that they cite is 4.31, a factor of ~3.5 difference. The median of the Impact Factors of the three top chemistry journals in which they publish is 0.41, whereas the median of the Impact Factors of the seven top chemistry journals they cite is 3.46, a factor of nine difference. The median of the Impact Factors of the six top materials journals in which they publish is 0.49, whereas the Impact Factor of the one materials journal they cite is 1.71, a factor of ~3.5 difference. The one top general science journal in which they publish has an Impact Factor of 0.68, whereas the three top general science journals they cite have a median Impact Factor of 31.86, a factor of more than forty difference. The top medical journal in which they publish has an Impact Factor of 0.46, while the top biology journal they cite has an Impact Factor of 6.36.

While these comparisons are for the top ~twenty journals only, and the Impact Factors have not been weighted by the numbers of papers in each journal, it is quite clear that, on average, the Chinese researchers are not publishing extensively in the high research impact journals they are referencing.

A slightly different journal Impact Factor comparison was made for the discipline of nanotechnology. To compare Impact Factors of journals in which Chinese authors publish nanotechnology papers with journals in which USA authors publish nanotechnology papers, a separate retrieval was made in mid-January 2006. The most recent 2000 articles that had at least one Chinese author but no authors from Japan, USA, Germany, France, South Korea, England, Russia, Italy, India, Spain, Taiwan, or Canada were retrieved, as were the most recent 2000 articles that had at least one USA author but no authors from Japan, China, Germany, France, South Korea, England, Russia, Italy, India, Spain, Taiwan, or Canada. The countries excluded are the major producers of nanotechnology research articles (Kostoff et al, 2006a). The purpose of this comparison is to identify Impact Factors of the journals containing essentially intranational nanotechnology papers. For the eleven journals containing the most nanotechnology papers with USA authors, and the eleven journals containing the most nanotechnology

56/503

papers with Chinese authors, the median Impact Factor of the USA journals is 3.9, whereas the median Impact Factor of the Chinese journals is 1.19, a difference of more than a factor of three.

To further place these numbers in perspective, an analysis was done to identify the journals cited by all nanotechnology researchers globally, emphasizing obvious Chinese journals. A study of the 2003 global nanotechnology literature retrieved over 21000 articles on nanotechnology (Kostoff et al, 2006a). Over 31000 journals were referenced in these articles.

There were 206 obvious Chinese journals listed (CHIN* or SINICA, in journal name). Most had one or two citations. There were a handful of Chinese journals that appeared significant, and even these had two orders of magnitude less citations than the leading international journals. Even though China's nanotechnology research article productivity was second to that of the USA (Kostoff et al, 2006a), most of its domestic journals in which these nanotechnology papers were published were receiving relatively negligible numbers of citations.

How does the quality of China's articles compare with that of other countries? Two examples were selected: India and Australia.

A citation comparison approach of papers published in selected technology areas was utilized. Phrases that appeared in each country's technical literature, and were of similar magnitude of occurrence, were selected.

China-India Comparison

Diverse technologies were selected to represent four major categories: Physical Sciences, Environmental Sciences, Material Sciences, Life Sciences. The phrases (technologies) were grouped by these major categories. The first group is Physical Sciences. Out of twenty phrases examined, representing diverse areas of physical sciences, China was a clear winner in fifteen (based on median number of citations of top ten cited articles), India led in one, and four were viewed as even. Clearly, China is the leader in Physical Sciences, based on top ten median numbers of citations.

The second group is Environmental Sciences. Out of ten phrases examined, China was the clear leader in seven, and three were considered even. Clearly, China is the leader in Environmental/Agricultural Sciences.

The third group is Material Sciences. Out of ten phrases examined, China was the clear leader in seven, India was the clear leader in two, and one was considered even. Clearly, China is the leader in Material Sciences.

The fourth group is Life Sciences. Out of ten phrases examined, China was the clear leader in nine, and one was considered even. Clearly, China is the leader in Life Sciences.

Thus, China was the clear leader in each major category, although there were (isolated) instances where India led in a sub-technology area. It should be re-emphasized that this comparison did not examine relative investment strategies. It focused only on technical areas that had similar magnitudes of investment. It should also be emphasized that there can be many reasons why an article receives or does not receive citations. These include intrinsic quality, research fundamentality (more fundamental articles receive, on average, more citations), and journal visibility. To identify which of these causation factors is operable, samples of articles would have to be retrieved, and each article examined in detail. Such an in-depth analysis was beyond the scope of the present study.

China-Australia Comparison

A diverse selection of phrases was made, to represent four major categories: Physical Sciences, Environmental Sciences, Engineering Sciences, Life Sciences. Out of eighteen phrases examined, representing diverse areas of Physical Sciences, Australia was a clear winner in eleven, a close winner in six, and tied with China in one. Australia is clearly the leader in Physical Sciences, based on top ten median numbers of citations.

The second group is Environmental/Agricultural Sciences. Out of fifteen phrases examined, Australia was the clear leader in all fifteen. Australia was an obvious winner over China in Environmental/Agricultural Sciences.

The third group is Engineering Sciences. Out of eleven phrases examined, Australia was the clear leader in six, a close leader in three, and was tied with China in two. Although Australia is the winner in Engineering Sciences, China's foucus on engineering and applied sciences can be seen, even compared to a first world country such as Australia.

The fourth group is Life Sciences. Out of sixteen phrases examined, Australia was the clear leader in all sixteen. This result is not only expected, but is further evidence that China is currently putting more relatively research effort into engineering and applied sciences than any other category, especially Life Sciences.

Thus, Australia was the clear leader in each major category, although there were (isolated) instances where China was tied in a sub-technology area. It should be reemphasized that this comparison did not examine relative investment strategies. It focused only on technical areas that had similar magnitudes of investment.

Final Observations

58/503

China has expanded its documented research output dramatically in the last decade. However, its citation performance, based on the present country assessment and other specific technology assessments, is competitive with that of other developing nations but not competitive with that of the developed nations. It is not clear whether this non-competitiveness is due to overly applied research, lower quality research, both, or neither.

To resolve this issue, experts are required to sample similar articles written by Chinese and non-Chinese authors in a number of disciplines, compare these article pairs for quality and level of development, and correlate them with citations. While resource intensive, this next step is required to resolve the quality/ citation issue.

59/503

2 Background

Core Competencies

The core competence concept was initially promulgated in 1990 as "an area of specialized expertise that is the result of harmonizing complex streams of technology and work activity" (Hamel and Prahalad, 1990). It was developed for a business context, and reflected the collective learning and coordination skills underlying a firm's product lines. According to the original proposers, core competencies are the source of competitive advantage and enable the firm to introduce an array of new products and services. They lead to the development of core products, which are then used to develop a larger number of end user products.

Since the original core competence article, many follow-on studies have been performed. Other definitions of core competence have been advanced (e.g., Galunic and Rodan, 1998). However, common features among the different core competence definitions include the following:

- Critical mass of people
- Synergy of coordinated sub-disciplines
- High quality output
- Unique capabilities
- Substantial fraction of organization's total development investment

While the original definition, and most follow-on definitions, have applied to business organizations, the concept can be extrapolated to nations. The five features above characterize national core competencies. In the present paper, a national research core competence is defined as a technical area that 1) contains a critical mass of researchers; 2) consists of coordinated and synchronized sub-disciplines; 3) produces high quality output; 4) offers unique national capabilities; and 5) contains a visible fraction of research investment. In other words, a national research core competence is a synergy of individual expertise that is aggregated and coordinated over multiple technical disciplines, and is expressed as a national research strategic investment.

The text mining approach of the present paper will address a sub-set of the above features (identification of China's main research thrusts, volume of research output in main research thrusts, relative quality of selected major research thrusts) to assess potential Chinese research competencies. Further subjective analysis (beyond the scope of the present paper) is required to characterize the remaining necessary features of a national core competence.

This paper will not discuss the desirability of employing core competencies in managing research. The first author has consulted with companies and agencies on practical aspects of implementing core competencies in research management. Within an organization, development of research core competencies tends to receive preferential and protected funding, which are very important in times of economic turndown. Serious employee

morale problems can result for those researchers who are not associated with core competence development, since they have been placed in a more vulnerable position. The alternative, defining all the organization's development thrusts as core competencies, dilutes the purpose of utilizing core competencies to help manage research, and renders them ineffective.

Country Technology Assessments

National science and technology (S&T) core competencies represent a country's strategic capabilities in S&T. Knowledge of country core competencies is important for myriad reasons:

- d) Priority technical areas for joint commercial or military ventures
- e) Assessment of a country's military potential
- f) Knowledge of emerging areas to avoid commercial or military surprise

Obtaining such global technical awareness, especially from the literature, is difficult for multiple reasons:

- e) Much science and technology performed is not documented
- f) Much documented science and technology is not widely available
- g) Much available documented science and technology is expensive and difficult to acquire
- h) Few credible techniques exist for extracting useful information from large amounts of science and technology documentation (Kostoff, 2003a)

Most credible country technology assessments are based on a combination of personal visitations to the country of interest, supplemented by copious reading of technology reports from that country. Such processes tend to be laborious, slow, expensive, and accompanied by large gaps in the knowledge available. The more credible and complete evaluation processes will focus on selected technologies from a particular country, and provide in-depth analysis.

For the past half century, driven mainly by the Cold War, a large number of country technology assessments were performed (e.g., Bostian et al, 2000; Leneman, 1984; Stares, 1985; Hutubessy et al, 2002; Mooney and Seymour, 1996; McIntire, 2003; Campbell et al, 1985; Klinger, 1990; Gray et al, 1993; Lanzerotti et al, 1986; Duncan et al, 1988; Spender et al, 1989; Davidson et al, 1990). The last decade has seen an expansion in focus to technologies of major economic competitors. Over the past two decades, some of the most credible of these country technology assessments have come from two organizations: World Technology Evaluation Center (WTEC-Loyola Univ) and Foreign Applied Sciences Assessment Center (FASAC-SAIC). In conducting their studies, both of these organizations would gather topical literature from the country of interest, assemble teams of experts in the topical area, have the teams review the literature as well as conduct site visitations, and have the teams brief their findings and

write a final report. The studies performed by these groups remain seminal approaches to country technology assessments.

Text Mining Technology Assessments

The first author's group has been developing text mining approaches to extract useful information from the global science and technology literature for the past decade (Kostoff, 2003a; Kostoff et al, 1997, 1998a, 1999, 2000a, 2000b, 2001a, 2001b, 2002, 2004a, 2004b, 2004c, 2005a, 2005b, 2005c, 2005d, 2006a, 2006b). These studies have typically focused on a technical discipline, and have examined global S&T efforts in this discipline. It is believed that such approaches, with slight modification, could be adapted to identifying the core S&T competencies in selected countries or regions, including estimation of the relative levels of effort in each of the core technology areas. It is also believed that coupling of the text mining approach with WTEC and FASAC approaches would amplify the strengths of each approach and reduce the limitations. The text mining component would be performed initially to identify:

- Key core competencies and technology thrusts in the country of interest
- Key interdisciplinary thrusts
- Approximate levels of efforts in technology-specific competency areas and in interdisciplinary areas
- Highly productive researchers
- Highly productive Centers of Excellence, including those not well known
- Highly cited researchers

Once the key technologies, researchers, and Centers of Excellence had been identified, then site visitation strategies could be developed. The second phase of the effort would be the actual site visitations. A key step in this hybrid process would be demonstration of the ability of text mining to identify the targets of interest with reasonable precision in a timely manner at an acceptable cost. These three driving parameters (performance, time, cost) could be traded-off against each other to provide a balance acceptable and tailored to a variety of potential customers.

China's Science and Technology Enterprise

China's R&D Expenditures

China regards basic research as the foundation of the development of future technologies, as well as a driving force for sustainable long-term development of its economy (Jiang, 1997; Peoples Daily Online, 2000; Chinese Embassy, 2005). As a developing country China's current S&T development policy requires that available resources be concentrated on the development of selected high technologies that are key to the nation's economic development. In fact, this kind of policy and strategy has been applied to many other government-funded development programs, such as China's military modernization programs (Cox, 1999). Strengthening basic research has been a goal

during the ninth and now the Tenth FYP periods. Both FYPs called for efforts to make breakthroughs in selected areas (MOST, 2005).

Since 1997-1998, China's Gross Expenditure on Research and Development (GERD) growth has been slightly higher than the Gross Domestic Product (GDP) growth, reflecting the government's accelerated effort in S&T development. China has been encouraging product-development R&D activities to make S&T contribute to its economic development. For example, in 2002, 75 percent of the nation's R&D spending went to product development and another 19 percent to applied research (MOST, 2003). In 2002, the Chinese Academy of Science (CAS) increased its spending on basic research to 40 percent of its total outlay, aiming at Nobel-level fundamental research. It has also taken measures to increase its scientists' creativity (Hsiung, 2002).

Despite this, many Chinese scientists argue that basic research is seriously under funded. In 2001, China's basic research funding in the country was 5.3 percent of total R&D expenditures, compared with a ratio of 16 to 20 percent in the United States, Western Europe, and Japan (Blanpied, 2002). In 2003 China had about 0.86 million people involved in R&D activities, compared with 1.26 million in the U.S. and about 0.67 million in Japan (Xinhua, 2003). China's R&D spending remains at a low level in terms of the GERD-GDP ratio compared with several scientifically-important developed countries, and this situation is unlikely to change significantly in the near future. In 2003 the ratio of China's GERD to its GDP was 1.3 percent compared to 2.6 percent for the US and 3.3 percent for Japan. China's goal for spending on R&D by 2005 is for 1.5 percent of GDP.

In 2004, state-owned enterprises accounted for 66.83 percent of the total R&D performed in the country, R&D institutes for 21.95 percent, and universities for 10.22 percent (MOST, 2005). China (like most developed scientific countries, including the United States and Japan) also encourages non-government sectors to support R&D from their own funds. In 2003, governments (central and provincial) contributed 29.9 percent of total R&D support in China, enterprises 60.1 percent, foreign sources 2 percent, and the remaining 8% accounted for by unspecified "other" sources. However, among the enterprises' expenditures, it was estimated that approximately half of the amount for R&D came from state-owned enterprises (SOEs), and thus indirectly from the central government. If so, then 62 percent of China's R&D expenditures in 2004 came either directly or indirectly from government and only 29 percent purely from private enterprises. In the United States, private industry accounts for over 65 percent of all R&D support, with government accounting for somewhat less than 30 percent. In Japan, private industry accounts for a slightly higher percentage of total R&D support than in the United States, and government for slightly less (NSB, 2004).

China's S&T Organizational Structure

The State Council of the central government is the highest administrative body of China. There are 6 major ministry-level administrative organizations directly under the State Council that handle the nation's S&T development activities. A Leading Group on

Science and Technology, chaired by the Prime Minister, is located organizationally between the State Council and these administrative organizations. However, most observers agree that it is relatively ineffective in setting R&D priorities. These organizations include the Ministry of Science and Technology (MOST), the Ministry of Education (MOE), the Commission of Science, Technology and Industry for National Defense (COSTIND), the Chinese Academy of Sciences (CAS), the Chinese Academy of Engineering (CAE), and the National Natural Science Foundation of China (NSFC) (Hsiung, 2002). Among those organizations, MOST, COSTIND, and MOE have policy-making authority, in addition to varying degrees of funding authority; CAS (which receives substantial funds from the government as a budget line item to support its research activities) and CAE have advisory power; and NSFC provides research funds.

Following is a brief introduction to each organization.

Ministry of Science and Technology

The predecessor of the Ministry of Science and Technology was the State Science and Technology Commission (SSTC), which was responsible for managing and organizing China's S&T activities within a centralized planning economy. After losing its original centralized authority, SSTC's name was changed to MOST in March 1998, and its basic function shifted from research activity control to policy-making and administrative management. Some key functions of MOST include:

- Formulating strategies and policies for S&T development
- Conducting research on major S&T issues related to economic and social development
- Administering national technological industry development zones
- Promoting international S&T cooperation and exchanges
- Managing and publishing S&T information

MOST also provides substantial support for research, primarily through special large-scale programs.

Ministry of Education

The Ministry of Education, founded in 1949, is the highest administrative organization in China responsible for education policymaking, education-related laws and regulations, educational development strategies, management of higher education institutions, and vocational and adult education and occupational training. It provides indirect research support by virtue of its role as the principal government supporter of the national universities. Its major functions in S&T development include:

- Promoting commercialization and application of scientific research achievements, especially on high and new technologies
- Providing guidelines to universities undertaking major national scientific research projects

Overseeing key state laboratories and research centers at higher education institutions

Commission of Science, Technology and Industry for National Defense

The Commission of Science, Technology and Industry for National Defense, was formed in August 1982 by merging the National Defense Science and Technology Commission, the National Defense Industries Office of the State Council, and the Office of the Science, Technology, and Armaments Commission of the CPC Central Military Commission. It is China's top national defense administrative organization. It incorporates some administrative functions of the Department of National Defense and various military-industrial corporations. Its functions in S&T include military research and development and military application of commercial technologies. China National Space Administration (CNSA) was established as an internal structure of COSTIND, which is responsible for enforcement and management of China's national space science policies.

Chinese Academy of Sciences

The Chinese Academy of Sciences, founded in November 1949 on the model of the Soviet Union, is China's premier natural science and technology research organization. CAS operates over a hundred research institutes nation-wide and has over 500 private S&T enterprises spun off from its institutes. Baseline support for these activities is provided by a line item in the central government's budget. However, CAS institutes are also obliged to seek additional support through contracts with enterprises, and frequently obtain revenue from their own spin-off enterprises as well. CAS has over 600 academicians elected as the foremost experts in their fields from over one million scientists and engineers in China. In addition to its primary role in scientific research and technological development, CAS offers graduate programs in natural sciences and applied research.

CAS is headquartered in Beijing, with a number of administrative offices throughout China. There are 5 divisions in CAS, forming China's highest advisory bodies on S&T development. They are mathematics and physics, chemistry, biological sciences, earth sciences, and technological sciences. CAS members and institutes serve as consultants to the government, providing S&T policy advice.

Chinese Academy of Engineering

The Chinese Academy of Engineering, founded in 1994, is China's premier advisory institute of engineering. It consists of 7 divisions, which include:

- Mechanical and vehicle engineering
- Information and electronic engineering
- Chemical, metallurgical, and materials engineering
- Energy and mining engineering
- Civil engineering, hydraulic engineering and architecture

- Agriculture, light industries, and environmental engineering
- Medicine and health engineering

It also has over 600 academicians to provide advice and guidelines on China's engineering development. However, unlike CAS, CAE does not have its own research institutes. Instead, research is carried out in engineering departments at universities throughout China.

National Natural Science Foundation of China

One of China's national-level efforts to strengthen, promote and finance basic S&T research was the launch of its National Natural Science Foundation (NSFC), headquartered in Beijing, in 1986. Unlike the National Science Foundation of the U.S., NSFC only funds the natural sciences, leaving the funding of social science and education to other organizations. It consists of 7 major departments: mathematical and physical science, chemical science, life science, earth science, engineering and materials science, information sciences, and management science. NSFC's research budget increased over 30 times from US\$9.7M in 1986 to US\$309M in 2002 much higher than China's GDP growth. The NFSC's priority under the tenth five year plan for basic research include manufacturing science and technology, advanced functional materials, basic issues of integrated semiconductor chip system and network computing and information security.

China's S&T Infrastructure

China's national network of S&T research consists of about 5,400 R&D institutions under the supervision of the central-or lower-level governments, about 3,400 research institutions affiliated with universities and colleges, about 13,000 research institutions operated by major state enterprises, and about 41,000 non-government research-oriented enterprises. In addition, there are more than 160 national academic societies under the jurisdiction of the Chinese Science and Technology Association, with branches across the country. The R&D resources include:

- CAS-operated institutes and laboratories
- R&D institutions under the various ministries and administrative agencies
- Institutes and research centers of industrial enterprises
- Universities and colleges
- Local R&D institutions
- R&D institutions affiliated with defense

CAS-operated Institutes and Laboratories

As the premier research organization in China, Chinese Academy of Sciences (CAS) operates 123 research institutes and employs about 60,000 scientists and engineers. Among these institutions, those related to electronics and microelectronics include:

- Institute of Computing Technology (location: Beijing; founded: 1956; technical personnel: 123)
- Institute of Semiconductor (location: Beijing; founded: 1960; technical personnel: 430)
- Institute of Electronics (location: Beijing; founded: 1956; technical personnel: 434)
- Microelectronics R&D Center (location: Beijing; founded: 1986; technical personnel: 310)
- Changchun Institute of Optics, Fine Mechanics and Physics (location: Changchun; founded: 1999; technical personnel: 1,615)
- Shanghai Institute of Microsystem and Information Technology (location: Shanghai; founded: 1999; technical personnel: N/A)
- Shanghai Institute of Optics and Fine Mechanics (location: Shanghai; founded: 1964; technical personnel: N/A)
- Institute of Optics and Electronics (location: Chengdu; founded: 1970; technical personnel: N/A)
- Xi'an Institute of Optics and Fine Mechanics (location: Xi'an; founded: 1962; technical personnel: 414)
- Hefei Institute of Intelligent Machines (location: Hefei; founded: 1979; technical personnel: N/A)

In addition to its own institutions, CAS also jointly builds research facilities with domestic and foreign enterprises and universities. In 1998, for example, CAS and its most successful spin-off, the Legend Group (now also called Leveno), established the Legend Central Institute for the development of computing technologies. In March 2003, CAS and China's two top universities, Peking University and Tsinghua University, announced the setup of a national nanoscience research center in Beijing, with a first-stage investment of US\$30.2M from the central government.

Universities and Colleges

China has over 2,200 institutions of higher education. Most of the top-level or first-tier universities are operated by the Ministry of Education. Regional colleges and universities are under the management of local governments. Among all the universities and colleges, the most prestigious are Peking University (PKU) and Tsinghua University. Other important research universities include Fudan University in Shanghai, Nanjing University in Nanjing, Harbin University of Technology in the Ice City of Harbin in northeast China, Shanghai Jiaotong University, Zhejiang University, University of S&T at Hefei and Xi'an Jiaotong University.

PKU was founded in 1898. It has 12 key national laboratories, with information technology, nanoscience, and nanotechnologies among its most popular research areas. It also has a nanotechnology research center jointly established by its biology, physics, and microelectronics departments.

Tsinghua University, on the other hand, founded in 1911, is home to 15 key national laboratories, with the nation's strongest programs in engineering research. In addition to its main campus in Beijing, it also recently opened a campus in Shenzhen, the most developed city in southern China (adjacent to Hong Kong), to enhance its technology transfer and professional training to meet the increasing demand for new technology and technical professionals in the region.

In 1998, the central government initiated the World Class University Program (985 Program), providing special funds to selected national universities in order to bring them up to international standards.

National Engineering Research Centers

Since the beginning of the Eighth FYP (1991-1995), the Ministry of Science and Technology has started to establish a series of National Engineering Research Centers (NERCs) to accelerate China's S&T development in electronics and microelectronics, computers, communications, automation, electronics product and process development, and other high-technology areas. Many of the centers also operate companies for commercialization and transfer of new technologies.

Through 2001, more than US\$2B has been invested and over 100 national engineering research centers have been established in China, with over one-third dedicated to the development of electronics and information technology. The major NERCs related to electronics, microelectronics, and nanotechnologies in China are the NERCs for:

- Application Specific Integrated Circuit Systems (Southeast University)
- Application Specific Integrated Circuit Design (The Institute of Automation, CAS)
- Data Communications (the Research Institute of Data Communications of the Ministry of Posts and Telecommunications)
- Flat Panel Displays (Nanjing Electronic Devices Institute)
- Parallel Computers (Institute of Computing Technology, CAS, and the Jingnan Institute of Computing Technology)
- Mobile Satellite Communication (Panda Electronics Group Company)
- Digital Switching Systems (the Information Technology Institute of the People's Liberation Army
- Computer Integrated Manufacturing Systems (Tsinghua University)
- Solid State Lasers (North China Research Institute of Electro-Optics)
- Power Automation (Nanjing Automation Research Institute of the Ministry of Electric Power)
- Specific Pumps and Valves (11th Research Institute of the China Aerospace Corporation)
- Industrial Control Devices and Systems (No. 502 Institute of China Aerospace Corporation)
- Optical Instrumentation (Zhejiang University)
- Polymer Matrix Composites (Harbin Fiber Reinforced Plastics Research Institute)
- Fiber Reinforced Moulding Compounds (Fiber Reinforced Plastics Research and

Design Institute, the State Administration of Building Material Industry)

Science Parks

Science parks have played a significant role in China's S&T development. These allow enterprises and R&D institutes to cooperate and interact in close proximity. Among all the science parks across the country, Zhongguancun Science Park (ZSP), located in Beijing close to both Peking and Tsinghua Universities, is the largest, with the highest concentration of scientific, educational, and research institutes in China. The GDP output of ZSP was about US\$5.5B in 2003 and is expected to reach US\$7.2B in 2005.

In addition to Beijing, other metropolitan cities, such as Shanghai and Xi'an, have also begun building science parks funded by the Torch Program. Till date 52 science and technology industrial parks have been approved by the State Council. Since 2000, the Ministry of Science and Technology (MOST) and the Ministry of Foreign Trade and Economic Cooperation (MOFTEC) have jointly identified 20 S&T Industrial Parks in Beijing, Tianjin, Shanghai, Shenzhen, Suzhou and other cities as 'the National High-tech Export Bases'.

The setup of High Technology Development Zones is the primary approach used by the Torch Program to accelerate the development of China's high-tech industries. In August 2002, an agreement was reached for a U.S.-China Science and Technology Innovation Park, to be established on the University of Maryland's College Park campus, and officially signed by Ministry of Science and Technology and the Technology Administration of the U.S. Department of Commerce. This is the first overseas research park initiative to be undertaken by China. China's principal partners in the initiative are the Torch High Technology Industry Development Center of MOST and the Administrative Committee of Zhongguancun Science Park, the largest research park in China.

China's Major S&T Development Programs

China's S&T development programs are implemented in 3 different tiers. In the first tier are those aimed at tackling major S&T snags in the nation's economic development. The Spark Program and the National Program for S&T for Sustainable Development, were designed to renovate China's traditional industries and agriculture and to improve labor performance. In the second tier are programs for developing emerging technologies and high-tech industries. Typical programs in this tier are the National High-Technology Research and Development Program (the 863 Program) and the Torch Program. In the third tier are those programs for basic and applied research, such as the National Basic Research Priorities Program.

In the areas of electronics, microelectronics, and nanotechnologies, China has many high-tech projects, ranging from high-speed broadband information systems to new materials development, to boost industrial sectors in the Tenth FYP period (2000-2005). The projects focus on development of new technologies and products such as the third

generation of mobile telecommunications, high-definition color television, satellites for live broadcasting, and digital products.

3 Objectives

70/503

Identify the science and technology core competencies of China. Further, generate a process that could be used efficiently and rapidly to assess the science and technology core competencies in other countries of interest. Evaluate the various metrics used in the assessment, and highlight the highest priority metrics for use in future studies.

MAIN REPORT – APPROACH AND RESULTS

4 Approach and Results

4.1 Overview

Two major types of information are required for a country science and technology core competency assessment. One is technical infrastructure, which encompasses the prolific performers, journals that contain many of the papers, the prolific institutions, and the most cited papers/ authors/ journals. The other is technology thrusts, and the relationship among the thrusts. This study focused on obtaining both types of information, using multiple approaches for identifying the thrusts and their relationships. Since the study is a proof-of-principle demonstration, many approaches were examined, and only the most efficient are recommended for future studies. Many labor-intensive manual approaches were used, to serve as benchmarks for validating the more automated approaches. Hopefully, future studies can be performed using the automated or semi-automated approaches. Human intervention will still be required, but some of the more mechanistic tasks can be handled by computer.

Two types of results are presented, bibliometrics and taxonomies. Bibliometrics provides an indication of the technical infrastructure (prolific authors, journals, institutions, citations), while taxonomies provides an indication of major technology thrusts and their relationships.

In addition, a citation-based approach was used to identify pervasive research thrusts in China, and compare their investment and impact with those of other countries. This approach is described in detail later in this report. Basically, this approach identifies high frequency technical phrases from analysis of the retrieved China records, retrieves SCI records using selected phrases, and examines citation metrics from these records relative to those from similar countries. Physical, Environmental, Engineering, and Life Sciences records/ themes were included in this analysis.

Section 4.2 describes the database used for the bibliometrics and taxonomy analyses. Section 4.3 presents the bibliometrics approaches and results, where section 4.3.1 presents the publication bibliometrics, and section 4.3.2 presents the citation bibliometrics. Section 4.4 presents the taxonomy approaches and results, where section 4.4.1 presents the manual taxonomy approaches and results, and section 4.4.2 presents the statistical taxonomy approaches and results.

4.2 Databases and Information Retrevial Approach

The Science Citation Index (SCI) database and the Engineering Compendex (EC) were used. The retrieved database used for analysis consists of selected journal records (including the fields of authors, titles, journals, author addresses, author keywords, abstract narratives, and references cited for each paper) obtained by searching the Web version of the SCI for articles that contained at least one author with an China address. At the time the final data was extracted for the computational linguistics component of the present paper, the version of the SCI used accessed about 5600 journals (mainly in

physical, engineering, and life sciences basic research), and the version of the EC used accessed about 5000 journals (mainly in applied research, technology development, and engineering).

Sample records were extracted from the SCI for two different years, 2002 and 2005, and from the EC for years 2000-2003. There were 7780 records with Abstracts retrieved from the SCI for 2002, 34834 records with Abstracts retrieved from the SCI for 2004-2005, and 9949 records with Abstracts retrieved from the EC for 2000-2003. The Abstracts were used for the computational linguistics (phrase analyses, document clustering). For the India and Australia research impact comparisons with China, records were extracted from 1998 for each country for specific technology queries, and citations of those records compared. For the China-USA investment strategy comparison, records were extracted from the SCI for 2005 for each country for specific technology queries, and numbers of those records compared. Finally, for the aggregate China bibliometrics analysis, records were extracted for 2004-2005 for the publicartion bibliometrics and 2002 for the citation bibliometrics, and for the selected category bibliometrics analysis, records were extracted covering the time frame 2003-early 2005.

The SCI and EC databases selected represent a fraction of the available China (mainly research) literature, that in turn represents a fraction of the China S&T actually performed (Kostoff, 2000c). The articles contained within the SCI and EC databases do not include the large body of classified literature, or company proprietary technology literature, although the SCI and EC articles could reference these literatures. The SCI and EC articles do not include technical reports, books, or patents from China S&T, but could again reference these literatures. The SCI and EC data selected cover a finite slice of time (2002 and 2000-2003, respectively). The databases used represent the bulk of the peer-reviewed high quality China research literature, and is a representative sample of all China research in recent times.

4.3 Bibliometrics

The 7780 records retrieved from the 2002 SCI dataset, and the 35706 records retrieved from the 2005 SCI dataset, were imported into an ACCESS template, and the bibliometrics data were extracted using specially developed macros. The 2005 records, which did not contain cited references, were used for publication bibliometrics only, while the 2002 records, which did contain cited references, were used for citation bibliometrics. The first group of bibliometrics results provides a summary view of the Chinese research infrastructure. The second group of bibliometrics results is for selected topics identified from the clustering of research articles by topical similarity.

4.3.1 Overall China Bibliometrics

4.3.1.1 Publication Statistics on Journals, and Organizations

The first group of metrics presented is counts of papers published by different entities. These metrics can be viewed as output and productivity measures. They are not direct

measures of research quality, although there is some threshold quality level inferred, since these papers are published in the (typically) high caliber journals accessed by the SCI.

In all previous text mining studies published by the first author's group, bibliometrics were performed on the overall database retrieved. Since all these previous studies focused on a technology, the resultant bibliometrics provided the technical infrastructure for that technology. In the present case, the focus is on the wide range of technologies being developed within a country. In this section, approximately 35,000 records were downloaded from 2004 to early 2005, and subject to analyses.

4.3.1.1.1 Prolific Journals

The top twenty journals based on number of papers are listed below in Table 1. The first column is the full journal name, the second column is the number of papers in the journal from the database, the third column is the journal's Impact Factor (the Impact Factor is the ratio of cites of recent articles to numbers of recent articles, and can be considered one measure of a journal's ability to attract citations), and the fourth column is the journal's theme. The latter two columns will be discussed in the section on Most Cited Journals. These journals appear to be concentrated in chemistry, materials, and physics, with one journal about medicine. Many are Chinese journals.

Table 1. Most Prolific Journals – 2004-2005

JOURNAL	#PAPERS	IMP FACT	THEME
Acta Physica Sinica PRICM 5: The Fifth Pacific Rim Int'l Conf On Advanced Mat'ls And	556	1.25	PHYS
Processing, Pts 1-	520		MATLS
Chinese Physics Letters	447	1.18	PHYS
Acta Crystallographica Section E-Structure Reports Online	443	0.49	MATLS
High-Performance Ceramics III, Pts 1 And 2	397		MATLS
Chemical Journal Of Chinese Universities-Chinese	338	0.76	CHEM
Spectroscopy And Spectral Analysis	307	0.35	PHYS
Chinese Journal Of Analytical Chemistry	265	0.41	CHEM
Chinese Physics	264	1.56	PHYS
Rare Metal Materials And Engineering	253	0.44	MATLS
Acta Chimica Sinica	253	0.9	MATLS
Materials Letters	242	1.19	MATLS
Chinese Science Bulletin	241	0.68	SCIENCE
Journal Of Rare Earths	237	0.49	MATLS
Chinese Chemical Letters	229	0.31	CHEM
Applied Physics Letters	219	4.31	PHYS
Transactions Of Nonferrous Metals Society Of China	204	0.28	MATLS
Chinese Medical Journal	201	0.46	MED
Communications In Theoretical Physics	195	0.87	PHYS
Physics Letters A	194	1.45	PHYS

4.3.1.1.2 Prolific Institutions

The top twenty institutions are listed below in Table 2.

Table 2. Most Prolific Institutions – 2004-2005

INSTITUTE	#PAPERS
Chinese Acad Sci	7029
Tsing Hua Univ	1886
Zhejiang Univ	1477
Peking Univ	1391
Shanghai Jiao Tong Univ	1204
Univ Hong Kong	1098
Univ Sci & Technol China	943
Nanjing Univ	940
Fudan Univ	905
Chinese Univ Hong Kong	880
Hong Kong Polytech Univ	794
City Univ Hong Kong	683
Shandong Univ	672
Jilin Univ	650
Hong Kong Univ Sci & Technol	591
Huazhong Univ Sci & Technol	591
Harbin Inst Technol	590
Nankai Univ	581
Wuhan Univ	562
Xian Jiaotong Univ	533

4.3.1.1.3 Collaborative Countries

In November 2005, the SCI was accessed to identify the main collaborating countries with China on research articles, in the period 2004-2005. The results are as follows. The format is the name of the country, followed by the number of articles that contained at least one country author and one Chinese author.

China (118659); USA (9919); Japan (4247); Germany (2450); England (2295); Canada (1923); Australia (1811); France (1374); Singapore (1334); South Korea (1197); Taiwan (870); Russia (651); Italy (632); Sweden (626); India (623).

What is the citation impact of collaboration? Two cases were compared. The first case consisted of all research articles in the SCI published from 1995-1999 having at least one author with a Peoples Republic of China address. The second case consisted of all research articles in the SCI published from 1995-1999, retrieved using the following address query that essentially generates Chinese-only authored articles: (PEOPLES R CHINA NOT (USA OR JAPAN OR GERMANY OR HONG KONG OR (ENGLAND NOT NEW ENGLAND) OR CANADA OR ITALY OR FRANCE OR AUSTRALIA OR SOUTH KOREA OR TAIWAN OR NETHERLANDS OR SWEDEN OR RUSSIA OR INDIA OR SINGAPORE OR SWITZERLAND OR SPAIN OR BRAZIL OR

SCOTLAND OR FINLAND OR MALAYSIA OR ROMANIA OR AUSTRIA)). These countries were the main research collaborators with China in the 1995-1999 time frame.

The first case (China and collaborators) produced the following results:

- Articles retrieved, 83689;
- Median citations of total articles retrieved, 2;
- Median citations of top ten cited articles retrieved, 604;
- Median citations of top 5% articles retrieved, 35.

The second case (China only) produced the following results:

- Articles retrieved, 62018;
- Median citations of total articles retrieved, 2;
- Median citations of top ten cited articles retrieved, 239;
- Median citations of top 5% articles retrieved, 25.

Thus, approximately one-quarter of research articles having at least one author with a China address were the result of China's collaboration with other countries. The impact of collaboration was negligible on median citations of the total. The impact of collaboration was substantial on the top ten cited articles, and was noticeable on the top 5% of cited articles.

What are the main technical areas of collaboration? Two examples will be presented, for the USA and Japan. The 2000 most recent articles for USA-China papers and for Japan-China papers were downloaded from the SCI. A phrase frequency analysis of the Abstracts was performed for each country combination, and the highest frequency high technical content phrases were extracted. The results are as follows.

1) China-USA

Single Words

Cells; Expression; Cell; Protein; Gene; Patients; Human; Cancer; Genes; Soil; Treatment; Species; Mice; Disease; DNA; Proteins; Genetic; Receptor; Tumor

Double Word Phrases

Cell Lines; Lung Cancer; Gene Expression; Electron Microscopy; Amino Acid; Cancer Cells; Cell Line; Growth Factor; Transmission Electron; Neural Network; Breast Cancer; X-Ray Diffraction; Cell Death; Increased Risk; Amino Acids; Nasopharyngeal Carcinoma; Prostate Cancer; Ovarian Cancer; Protein Expression; Risk Factors; Cancer Cell; Western Blot; Endothelial Cells; Mass Spectrometry; Neural Networks; Transcription Factor; Blood Pressure; Scanning Electron; Cancer Risk; Cell Growth; Dorsal Horn; Polymerase Chain; Cell Surface; Coronary Artery; Spinal Cord; Tibetan Plateau; Flow Cytometry; Myocardial Infarction

Triple Word Phrases

Transmission Electron Microscopy; South China Sea; Density Functional Theory; Scanning Electron Microscopy; Polymerase Chain Reaction; Risk Of Lung; MRNA And

Protein; Cancer Cell Lines; Cells In Vitro; Central Nervous System; Differential Scanning Calorimetry; Enzyme-Linked Immunosorbent Assay; Severe Acute Respiratory; Squamous Cell Carcinoma; X-Ray Photoelectron Spectroscopy; Acute Respiratory Syndrome; Basic Fibroblast Growth; Breast Cancer Cells; Dorsal Horn Projection; Respiratory Syndrome SARS; Small Interfering RNA; Tumor Necrosis Factor; Atomic Force Microscopy

2) China-Japan

Single Words

Cells; Cell; Expression; Patients; Protein; Gene; Films; Particles; Treatment; Film; Soil; Human; Cancer; Mice; Tumor

Double Word Phrases

Cell Lines; X-Ray Diffraction; Magnetic Field; Electron Microscopy; Thermal Conductivity; Scanning Electron; Amino Acid; Cell Line; Gene Expression; Particle Size; Amino Acids; Thin Films; Cell Death; Epithelial Cells; Mrna Expression; Transmission Electron; Growth Factor; Neural Network; Photocatalytic Activity; Dose-Dependent Manner; Prostate Cancer; Breast Cancer; Carbon Nanotubes; Fracture Toughness; Grain Size; Heat Transfer; Atomic Force; Electron Microscope; Film Thickness; Soil Moisture

Triple Word Phrases

Scanning Electron Microscopy; Transmission Electron Microscopy; Polymerase Chain Reaction; X-Ray Diffraction XRD; Differential Scanning Calorimetry; Lattice Thermal Conductivity; Atomic Force Microscopy; East China Sea; X-Ray Photoelectron Spectroscopy; Amino Acid Sequence; Anaerobic Sludge Digester; Density Functional Theory; Green Fluorescence Protein; Chemical Vapor Deposition; Endothelial Growth Factor; Enzyme-Linked Immunosorbent Assay

Representative phrases are selected, and the phrases are ordered by frequency of occurrence. The two areas that stand out for both collaborative groups (China-USA; China-Japan) are biomedical and nanotechnology. However, when frequencies of similar phrases from each group are taken into account, for the China-USA articles, biomedical comes first and nanotechnology second. For the China-Japan articles, nanotechnology ranks higher relative to biomedical. Given China's relative (to the USA) investment strategy emphasis in nanotechnology, as will be shown later, and lesser relative investment emphasis in biomedical, the collaborative research relationship with Japan appears to be more quid pro quo than is the relationship with the USA.

4.3.1.2 Citation Statistics on Journals

The second group of metrics presented is counts of citations to papers published by different entities. While citations are ordinarily used as impact or quality metrics [Garfield, 1985], much caution needs to be exercised in their frequency count interpretation, since there are numerous reasons why authors cite or do not cite particular papers [Kostoff, 1998b; MacRoberts and MacRoberts, 1996].

The citations in all the retrieved 2002 SCI papers were aggregated. The journals cited most frequently were identified, and were presented in order of decreasing frequency. Only the 2002 database was used for citations.

4.3.1.2.1 Most Cited Journals

Approximately 2000 journals were cited 10 or more times. The top twenty most cited journals are listed below in Table 3. The most cited journals appear to be primarily English Language journals in contrast to the many of the most prolific journals being Chinese Journals. This suggests that in the 2005 time frame there may be a larger dependence on English Language (i.e. foreign) journals than on China's own internal journals, at least for Chinese papers published in journals accessed by the SCI.

Table 3 Most Cited Journals

JOURNAL	#PAPERS	IMP FACT	THEME
Phys Rev Lett	2592	7.22	PHYS
J Am Chem Soc	2196	6.9	CHEM
Nature	2191	32.18	SCIENCE
Phys Rev B	2027	3.08	PHYS
Science	1995	31.86	SCIENCE
Appl Phys Lett	1737	4.31	PHYS
J Appl Phys	1433	2.26	PHYS
J Chem Phys	1174	3.11	CHEM
P Natl Acad Sci USA	976	10.45	SCIENCE
Anal Chem	924	5.45	CHEM
J Biol Chem	917	6.36	BIOL
Phys Rev D	834	5.16	PHYS
Phys Rev A	779	2.9	PHYS
Inorg Chem	757	3.45	CHEM
J Phys Chem-US	738		PHYS
J Am Ceram Soc	738	1.71	MATLS
Macromolecules	714	3.9	CHEM
Angew Chem Int Edit	687	9.16	CHEM
Astrophys J	641	6.24	PHYS
J Org Chem	612	3.46	CHEM

The median Impact Factor of nineteen of the twenty journals listed in Table 3 (one journal did not have an Impact Factor listed) is **5.45**. This is contrasted with the median Impact Factor of eighteen of the twenty journals containing the most papers and listed in Table 1 (**0.72**). This order of magnitude difference in Impact Factor between the journals in which the Chinese researchers publish and the journals that they reference indicates

Chinese researchers may not be publishing in the highest research impact journals. Since Impact Factor is discipline dependent, a discipline-based comparison of Tables 1 and 3 may be instructive.

The median of the Impact Factors of the seven physics journals in Table 1 is 1.25, whereas the median of the Impact Factors of the seven physics journals in Table 3 is 4.31, a factor of ~3.5 difference. The median of the Impact Factors of the three chemistry journals is Table 1 is 0.41, whereas the median of the Impact Factors of the seven chemistry journals in Table 3 is 3.46, a factor of nine difference. The median of the Impact Factors of the six materials journals in Table 1 is 0.49, whereas the Impact Factors of the one materials journal in Table 3 is 1.71, a factor of ~3.5 difference. The one general science journal in Table 1 has an Impact Factor of 0.68, whereas the three general science journals in Table 3 have a median Impact Factor of 31.86, a factor of more than forty difference. The one medical journal in Table 1 has an Impact Factor of 0.46, while the one biology journal in Table 3 has an Impact Factor of 6.36.

While these comparisons are for the top twenty journals only, and the Impact Factors have not been weighted by the numbers of papers in each journal, it is quite clear that, on average, the Chinese researchers are not publishing extensively in the high research impact journals they are referencing. This issue will be examined further in the nanotechnology bibliometrics section, from another perspective.

4.3.2 Selected Topic Bibliometrics

In all previous text mining studies published by the first author's group (with the exception of (Kostoff et al, 2005b)), bibliometrics were performed on the overall database retrieved. Since all these previous studies focused on a technology, the resultant bibliometrics provided the technical infrastructure for that technology. In the present case, the focus is on the wide range of technologies being developed within a country. Applying the bibliometrics analysis to the total retrieved database for that country only provides part of the total picture. Visitation strategies (one desired application) are typically developed for a specific technology using a group of experts for that technology.

The approach taken in this section is to identify the thematic thrust areas for the clustering performed in the latter part of this report, then retrieve documents that address each theme. The bibliometrics will then be performed on a theme by theme basis. For the present study, one theme is selected as an illustrative example for the bibliometrics in the main body of the text, and three other themes' bibliometrics are shown in Appendix 1.

Based on the computational linguistics (clustering) results, nanotechnology is a thrust area of Chinese research. Starting with the words generated by the clustering algorithm for the nanotechnology cluster, an iterative feedback approach was used to generate the following comprehensive query for this research in China (based on 2003-2005 data):

"NANOPARTICLE* OR NANOTUB* OR NANOSTRUCTURE* NANOCOMPOSITE* OR NANOWIRE* OR NANOCRYSTAL* OR NANOFIBER* OR NANOFIBRE* OR NANOSPHERE* OR NANOROD* OR NANOTECHNOLOG* OR NANOCLUSTER* OR NANOCAPSULE* OR NANOMATERIAL* NANOFABRICAT* OR NANOPOR* OR NANOPARTICULATE* OR NANOPHASE OR NANOPOWDER* OR NANOLITHOGRAPHY OR NANO-PARTICLE* OR NANODEVICE* OR NANODOT* OR NANOINDENT* OR NANOLAYER* OR NANOSCIENCE OR NANOSIZE* OR NANOSCALE* OR ((NM OR NANOMETER* OR NANOMETRE*) AND (SURFACE* OR FILM* OR GRAIN* OR POWDER* OR SILICON OR DEPOSITION OR LAYER* OR DEVICE* OR CLUSTER* OR CRYSTAL* OR MATERIAL* OR ATOMIC FORCE MICROSCOP* TRANSMISSION ELECTRON MICROSCOP* OR SCANNING TUNNELING MICROSCOP*)) OR OUANTUM DOT* OR OUANTUM WIRE* OR ((SELF-ASSEMBL* OR SELF-ORGANIZ*) AND (MONOLAYER* OR FILM* OR NANO* OR OUANTUM* OR LAYER* OR MULTILAYER* OR ARRAY*)) NANOELECTROSPRAY* OR COULOMB BLOCKADE* OR MOLECULAR WIRE*".

The query was inserted into the Science Citation Index, and the most recent 4030 records were recovered for the period 2003-early 2005. The bibliometrics analysis was performed on these records.

4.3.2.1 Most Prolific Authors

Table 4 – Most Prolfic Nanotechnology Authors– 2003-2005

AUTHOR	#PAPERS
LiY	61
LiuY	56
WangJ	56
ZhangY	54
WangY	53
QianYt	50
ZhangJ	49
WangX	42
XuJ	41
WangL	38
LiJ	36
ZhangL	36
GaoL	35
WangH	34
ZhangLd	28
ChenJ	27
LiuZm	27
YangY	26
ChenY	25
HuangY	25

Table 4 contains the most prolific Chinese nanotechnology authors. The results illustrate potential problems with author bibliometrics in countries like China (and India). The names are short, common, and many do not have middle initials. There could be multiple authors with the same name.

4.3.2.2. Journals Containing Most Nanotechnology Papers

TABLE 5 lists the 20 journals containing the most nanotechnology papers. There seems to be an even mix of both applied and basic journals. Physics, Chemistry, and Materials journals dominate the list. Approximately 25% of the journals are Chinese.

Table 5 – Journals Containing the Most Nanotechnology Papers – 2003-2005

JOURNAL	#PAPERS
Journal Of Physical Chemistry B	125
Applied Physics Letters	124
Materials Letters	120
Chinese Journal Of Inorganic Chemistry	113
Journal Of Crystal Growth	88
Rare Metal Materials And Engineering	75
High-Performance Ceramics III, Pts 1 And 2	73
Acta Physica Sinica	73
Chemistry Letters	70
Acta Chimica Sinica	64
Physical Review B	62
Thin Solid Films	59
Materials Chemistry And Physics	56
Chemical Journal Of Chinese Universities-Chinese	53
Journal Of Inorganic Materials	52
Chinese Physics Letters	52
PRICM 5: The Fifth Pacific Rim International Conference On	
Advanced Materials And Processing, Pts 1-	51
Journal Of Solid State Chemistry	48
Colloids And Surfaces A-Physicochemical And Engineering Aspects	45
Applied Physics A-Materials Science & Processing	45

To compare Impact Factors of journals in which Chinese authors publish nanotechnology papers with Impact Factors of journals in which USA authors publish nanotechnology papers, a separate retrieval was made in mid-January 2006. The most recent 2000 articles that had at least one Chinese author but no authors from Japan, USA, Germany, France, South Korea, England, Russia, Italy, India, Spain, Taiwan, or Canada were retrieved, as were the most recent 2000 articles that had at least one USA author but no authors from Japan, China, Germany, France, South Korea, England, Russia, Italy, India, Spain, Taiwan, or Canada. The countries excluded are the major producers of nanotechnology research articles (Kostoff et al, 2006a). The purpose of this comparison is to identify Impact Factors of essentially intranational nanotechnology papers.

Table 5-USA lists the eleven journals containing the most nanotechnology papers with USA authors, whereas Table 5-PRC lists the eleven journals containing the most nanotechnology papers with Chinese authors. The median Impact Factor of the USA journals is 3.9, whereas the median Impact Factor of the Chinese journals is 1.19, a difference of more than a factor of three.

Table 5-USA – Journals Containing Most Nanotechnology Papers – USA Authors

JOURNAL	#PAPERS	IMP FACT
Applied Physics Letters	130	4.31
Physical Review B	102	3.08
Journal Of The American Chemical Society	86	6.9
Langmuir	85	3.3
Journal Of Physical Chemistry B	84	3.83
Nano Letters	52	8.45
Chemistry Of Materials	42	4.1
Journal Of Applied Physics	42	2.26
Physical Review Letters	41	7.22
Nanotechnology	36	3.32
Macromolecules	33	3.9

Table 5-PRC – Journals Containing Most Nanotechnology Papers – PRC Authors

JOURNAL	#PAPERS	IMP FACT
Rare Metal Materials And Engineering	112	0.44
Materials Letters	76	1.19
Journal Of Physical Chemistry B	63	3.83
Chinese Journal Of Inorganic Chemistry	60	0.6
Nanotechnology	60	3.32
Applied Physics Letters	56	4.31
Chemical Journal Of Chinese Universities-Chinese	41	0.76
Journal Of Crystal Growth	37	1.7
Chinese Physics Letters	33	1.18
Acta Physica Sinica	30	1.25
Acta Chimica Sinica	27	0.9

All the Impact Factor comparisons lead to one inescapable conclusion. The Chinese research article authors are not publishing (on average) in the high research impact journals that they reference, or in which the USA research article authors publish (on average). It is not clear whether the Chinese articles are too applied for the high Impact Factor journals, are of insufficient quality for these journals, or have other reasons.

4.3.2.3. Most Prolific Institutions

Table 6 – Most Prolific Nanotechnology Institutions – 2003-2005

INSTITUTIONS	#PAPERS
--------------	----------------

Chinese Acad Sci	1063
Tsing Hua Univ	260
Univ Sci & Technol China	203
Nanjing Univ	185
Zhejiang Univ	184
Peking Univ	160
Jilin Univ	125
Fudan Univ	117
Shanghai Jiao Tong Univ	108
Shandong Univ	102
City Univ Hong Kong	78
Wuhan Univ	70
Nankai Univ	68
Hong Kong Univ Sci & Technol	66
Tianjin Univ	65
Harbin Inst Technol	65
Xian Jiaotong Univ	62
Hunan Univ	62
Beijing Univ Chem Technol	54
Hong Kong Polytech Univ	49

The 20 most prolific institutions are listed in Table 6. The first institution, The Chinese Academy of Science, dominates the list. Eighteen of the institutions are universities, and the remaining two are research institutions.

4.3.2.4. Most Prolific Countries

Table 7 – Most Prolific (Collaborative) Nanotechnology Countries – 2003-2005

COUNTRY	#PAPERS
Peoples R China	4030
USA	187
Japan	95
Germany	54
Singapore	49
Australia	35
France	30
South Korea	29
England	27
Taiwan	23
Canada	22
Sweden	12
Spain	9
Russia	8
Belgium	6
India	6
Israel	6
Italy	6

Denmark	4
Malaysia	3

The USA is the dominant collaborator, followed by Japan, and by a third tier of Germany and Singapore.

How does collaboration impact the quality of the joint papers in nanotechnology. The following short analysis was performed to address this question. Three classes of nanotechnology research articles from the SCI were selected, published in 1999: 1) those with at least one China-based author, but no USA-based author; 2) those with at least one USA-based author and one China-based author. The following results were obtained (first number is total records retrieved; second number is median citations of total records retrieved; third number is median citations of top ten records; fourth number is median citations of top 5% of records):

- 1) CHINA NOT USA (1375; 4; 118; 52)
- 2) USA NOT CHINA (4142; 12; 537; 124)
- 3) USA AND CHINA (63; 10; 48; 101)

Interestingly, the ratios of the median of the top 5% parallel rather closely the ratios of the overall medians. In the USA-China collaborative group, the numbers are small. There are three articles in the top 5% of the 63 collaborative articles. They have citations of 514, 101, 76, respectively. The next three articles' citations are 49, 48, 48. For the USA-only articles, there are six articles with citations greater than the most-cited collaborative article. For the China-only articles, there is only one article with citations greater than the most-cited collaborative article. This article has five authors with Hong Kong and England addresses; two of the authors have Chinese names, and the other three have Anglo names. This phenomenon was often found in the later section of this report, when comparing China's citations in selected research areas to those of India. The most cited papers in China or India tended to have some co-authorship with the more advanced countries.

4.3.2.5. Citation Statistics on Authors, Journals, and Documents

4.3.2.5.1. Most Cited First Authors

Table 8 – Most Cited Nanotechnology First Authors – 2003-2005

AUTHOR	#CITES
Iijima S	297
Wang J	194
Pan ZW	159
Huang MH	156
Sun YG	152
Xia YN	140
Caruso F	133

Wang ZL	126
Sheldrick GM	118
Zhang J	117
Duan XF	115
Wang X	112
Alivisatos AP	105
Wang Y	97
Hu JQ	96
Hu JT	93
Cui Y	92
Chen J	87
Decher G	87
Liu Y	84

The presence of Wang-J, Wang-Y, Wang-X, Zhang-J, and Chen-J can be correlated with their appearance as first authors in the most cited documents list.

4.3.2.5.2. Most Cited Journals

Table 9 – Most Cited Nanotechnology Journals – 2003-2005

JOURNAL	#CITES
Appl Phys Lett	4217
J Am Chem Soc	3665
Science	3314
Phys Rev B	2786
Adv Mater	2506
Nature	2397
Chem Mater	2363
J Phys Chem B	2165
Langmuir	2084
Phys Rev Lett	1891
J Appl Phys	1810
Macromolecules	1467
Chem Phys Lett	1407
Angew Chem Int Edit	1258
Polymer	866
Anal Chem	853
J Mater Chem	850
Thin Solid Films	843
J Phys Chem-US	830
J Chem Phys	808

The focus is on physics and chemistry, with reasonable representation from materials journals. The physics journals are a mixture of basic and applied, while the chemistry and materials journals are at the more basic end of the spectrum. There are four journals in common with those in Table 5 (Applied Physics Letters, Physical Review B, Journal of

Physical Chemistry B, Thin Solid Films). None of the most cited journals are Chinese, and the most cited journals in aggregate are more fundamental than those in Table 5.

Table 9 represents journals most cited by Chinese nanotechnology researchers. To place these numbers in perspective, an analysis was done to identify the journals cited by all nanotechnology researchers globally, emphasizing obvious Chinese journals. A study of the 2003 global nanotechnology literature retrieved over 21000 articles on nanotechnology (Kostoff et al, 2006a). Over 31000 journals were referenced in these articles. The top 23 journals, and the number of times they were cited, are shown in the top section of Table 9-CH. The referenced journals with obvious Chinese names (CHIN* or SINICA in journal name) follow in the bottom section of Table 9-CH.

There were 206 Chinese journals listed for the above extraction criteria. Most had one or two citations. Only those Chinese journals with ten or more citations are shown. There are a handful of Chinese journals that appear significant, and even these have two orders of magnitude less citations than the leading international journals. Even though China's research article productivity was second to that of the USA (Kostoff et al, 2006a), most of its journals were receiving negligible numbers of relative citations.

Table 9-CH – Most Cited Journals by Global Nanotechnology Community

ALL JOURNALS	#CITES
Phys Rev B	27936
Appl Phys Lett	27281
Phys Rev Lett	20000
J Am Chem Soc	17127
Science	16154
J Appl Phys	13620
Nature	13429
Langmuir	13280
J Phys Chem B	10038
Chem Mater	8415
J Chem Phys	7956
Macromolecules	7683
Adv Mater	7623
J Phys Chem-Us	6188
Chem Phys Lett	6133
Thin Solid Films	4804
Angew Chem Int Edit	4537
J Electrochem Soc	4501
Surf Sci	4024
Anal Chem	3608
Inorg Chem	3188
J Am Ceram Soc	3141
J Mater Res	3000
CHINESE JOURNALS	# CITES
Chem J Chinese U	433
Chinese Phys Lett	256

Acta Chim Sinica	145
Chinese Sci Bull	95
Chin J Inorg Chem	85
Acta Phys Sinica	61
Chinese J Chem	47
Chinese Phys	42
Sci China Ser B	40
Chinese J Polym Sci	40
Chinese Chem Lett	38
Chin J Lumin	30
Chinese J Org Chem	28
Chinese J Catal+	24
Chinese J Anal Chem	23
J Chin Chem Soc-Taip	20
Chin J Struct Chem	17
Sci China Ser A	16
Chinese J Appl Chem	16
Chem Res Chinese U	16
Chinese J Inorg Chem	15
Acta Opt Sinica	15
Chin J Mat Res	13
Chin J Appl Chem	11
Chinese J Struc Chem	10

4.3.2.5.3. Most Cited Documents

Table 10 – Most Cited Nanotechnology Documents

DOCUMENT	TIMES CITED	TOTAL SCI
Pan ZW, 2001, Science, V291, P1947	125	861
	123	001
Nanobelts Of Semiconducting Oxides		
Iijima S, 1991, Nature, V354, P56	121	4666
Helical Microtubules Of Graphitic Carbon		
Huang MH, 2001, Science, V292, P1897	102	944
Room-Temperature Ultraviolet Nanowire Nanolasers		
Xia YN, 2003, Adv Mater, V15, P353	91	556
One-Dimensional Nanostructures: Synthesis, Characterization, And		
Applications		
Morales AM, 1998, Science, V279, P208	77	1007
A Laser Ablation Method For The Synthesis Of Crystalline Semiconductor		
Nanowires		
Hu JT, 1999, Accounts Chem Res, V32, P435	76	679
Chemistry And Physics In One Dimension: Synthesis And Properties Of		
Nanowires And Nanotubes		
Alivisatos AP, 1996, Science, V271, P933	74	1943
Semiconductor Clusters, Nanocrystals, And Quantum Dots		
Hoffmann MR, 1995, Chem Rev, V95, P69	53	2080

Environmental Applications Of Semiconductor Photocatalysis		
Sun YG, 2002, Science, V298, P2176	43	289
Shape-Controlled Synthesis Of Gold And Silver Nanoparticles		
Martin CR, 1994, Science, V266, P1961	41	1071
Nanomaterials - A Membrane-Based Synthetic Approach		
Decher G, 1997, Science, V277, P1232	41	1645
Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites		
Kresge CT, 1992, Nature, V359, P710	41	4536
Ordered Mesoporous Molecular-Sieves Synthesized By A Liquid-Crystal Template Mechanism		
Peng XG, 2000, Nature, V404, P59	40	603
Shape Control Of Cdse Nanocrystals		
Huang Mh, 2001, Adv Mater, V13, P113	35	442
Catalytic Growth Of Zinc Oxide Nanowires By Vapor Transport		
Vanheusden K, 1996, J Appl Phys, V79, P7983	34	416
Mechanisms Behind Green Photoluminescence In Zno Phosphor Powders		
Oliver WC, 1992, J Mater Res, V7, P1564	34	2366
An Improved Technique For Determining Hardness And Elastic-Modulus		
Using Load And Displacement Sensing Indentation Experiments		
Han WQ, 1997, Science, V277, P1287	34	585
Synthesis Of Gallium Nitride Nanorods Through A Carbon Nanotube- Confined Reaction		
Treacy MMJ, 1996, Nature, V381, P678	32	835
Exceptionally High Young's Modulus Observed For Individual Carbon Nanotubes		
Murray CB, 1993, J Am Chem Soc, V115, P8706	32	1617
Synthesis And Characterization Of Nearly Monodisperse Cde (E = S, Se, Te) Semiconductor Nanocrystallites		

In Table ES10, the full or abbreviated document title is in 'bold', following each citation. Two citation numbers are listed for each document. The first (TimesCited) is the citations from the retrieved papers only. These can be viewed as Nanotechnology-specific citations. The second (Total SCI) is the total citations received by the paper as listed in the SCI. The latter cover all succeeding years from the document publication date, and all disciplines.

Essentially, all the most cited nanotechnology documents were published in the last decade. Most of these documents focus on specific material geometries, nanostructure synthesis, specific applications, and methods for evaluating engineering material properties. The fundamental documents on electronic properties, computational approaches, and crystal structure, identified in a broader study of nanotechnology seminal papers (Kostoff et al, 2006a) do not appear in the above list of China's nanotechnology most cited documents. The present references reflect nanotechnology, as opposed to nanoscience, and are in line with the impression of the very applied nature of Chinese

research overall. The emphasis on methods for the synthesis of nanostructures shows that there is significant interest in developing the materials and structures to move into manufacturing and products.

4.3.3. Citation Comparison with India and Australia

It was desired to compare China's research with that of at least one other country. India was chosen as a country with many similar characteristics to China (large population, rapidly developing economy, rapid growth in research, etc), and was used as one basis for comparison. This comparison was published in a text mining study on India, and is reproduced here. Australia was chosen as a country located in a similar geographical region (Western Pacific), more developed nation, much smaller population, similar research output for 1998, and was used as a second basis for comparison.

Some background discussion is required to introduce the comparison approach. In evaluating research impact, there are three main criteria to consider: 'right job', 'job right', 'productivity/ progress'. 'Right job' refers to proper selection of the broadest objectives; i.e., is the right study being pursued? Addressing this metric tends to require evaluation of a country's overall investment strategy. "Job right' refers to selection of the best approaches to solving the problem to reach the desired goal. 'Productivity/ progress' refer to whether anything tangible is being accomplished.

A detailed determination of 'right job' using citation statistics would require clustering the vintage papers thematically, examining citation ranges for each cluster (theme), then assuming that those themes that had the highest citations were the 'hot' research areas. The papers that were in the 'hot' clusters would get high ratings for the 'right job' criterion. The 'job right' rating for any of the papers would be determined by its citation position within any of the clusters. However, for this China-India-Australia country application of the new comparison approach, the first two criteria are combined, and the overall citation statistics for a number of competitive research disciplines will be compared for the two countries.

For the present comparison, 1998 was chosen as the vintage year. It was of sufficient vintage that a substantial number of citations could have had time to accumulate, but sufficiently recent to relate to current research quality. Additionally, the total SCI papers for each country for 1998 were of relatively similar magnitude (India, 16228 research articles; Australia, 20185 research articles; China, 18830 research articles). Equal numbers of records for India, China, and Australia (3500) were downloaded from the SCI. Phrases and their frequencies were extracted from each country's download. China's and India's phrases were combined for the India study, and China's and Australia's phrases were combined separately for the present study. Identical phrases were grouped, and their ratios of frequencies were computed.

It was desired to select phrases representing important technical disciplines with similar levels of emphasis, and since the total published records for each country for 1998 in SCI were within about ten percent, a factor of about two difference in phrase frequency for a

technical discipline was viewed as the outer bound of similar emphasis. Thus, those phrases with both high frequencies of occurrence and frequency ratios within a factor of two were extracted, and examined.

For the China-India comparison, different phrases were chosen to represent the four major research categories: Physical Sciences, Environmental/ Agricultural Sciences, Life Sciences, and Materials Sciences. Ordinarily, Engineering Sciences is used rather than Materials Sciences, but there were insufficient phrases with adequate frequencies to represent Engineering Sciences, so Materials Sciences was used instead.

For the China-Australia comparison, different phrases were chosen to represent the four major research categories: Physical Sciences, Environmental/ Agricultural Sciences, Life Sciences, and Engineering Sciences.

Each phrase could be perceived as representing a specific technical discipline within one of the four broader categories defined above. Each phrase was used as a query, and inserted in the SCI search engine for 1998. The total SCI citations for the retrieved records for each country for each phrase from 1998-mid 2005 were tabulated and analyzed. The results for the China-India comparison are shown in Table 11, and the results for the China-Australia comparison are shown on Table 12.

Table 11 – China-India Citation Comparison

TOPIC 1998 RECORDS	INDIA	INDIA	CHINA	CHINA	WINNER
1996 RECORDS	RECORDS	CITES	RECORDS	CITES	_
	RETRIEVED	TOP TEN-MED	RETRIEVED	TOP TEN-MED	
PHYSICAL SCIENCES					
Crystal*	1096	68	1923	96	Chi+
Film*	665	50	1319	58	Chi
Oxidation	555	37	501	47	Chi +
Catalyst Or Catalysis Or Catalytic	468	45	615	67	Chi ++
Algorithm*	322	33	505	36	Even
Nuclear	310	35	365	48	Chi +
Laser*	301	30	680	77	Chi ++
Network*	290	28	434	54	Chi ++
Thermodynamic*	269	43	326	48	Even
Dielectric*	240	25	199	50	Chi ++
Computer*	229	24	336	41	Chi+
Magnetic Field*	211	44	273	33	Ind +
Neutron*	160	41	166	43	Even
Spectromet*	134	20	317	39	Chi ++

Sensor Or Sensors Or Sensing	134	23	244	28	Chi +
Acoustic*	102	13	119	17	Chi
Reaction*	1519	66	1997	97	Chi+
Molecular	871	65	1244	114	Chi++
Chemical*	923	46	1033	64	Chi+
Diffraction	404	42	881	56	Chi+

ENVIRONMENTAL/ AGR	ICULTURAI	SCIENCES			
Soil*	449	24	177	55	Chi ++
Rice	208	17	136	28	Chi ++
Wheat	102	21	206	19	Even
Atmospher*	266	50	250	51	Even
Sea	147	27	153	34	Chi
River*	103	17	103	33	Chi++
Sediment*	171	22	183	43	Chi++
Ocean*	125	32	87	38	Chi
Climat*	122	21	109	52	Chi++
Maize	84	17	49	18	Even

MATERIALS SCIENCES					
Alloy*	359	27	848	47	Chi ++
Composites	161	23	282	35	Chi +
Materials	467	39	618	61	Chi+
Metals Or Metallic	343	49	363	52	Even
Stainless Steel*	79	10	69	16	Chi+
Polymer*	711	44	1023	100	Chi++
Copolymer*	157	18	286	35	Chi++
Ferromagnetic	66	29	111	19	Ind+
Silicon	187	18	411	73	Chi++
Doped	226	43	321	28	Ind+

LIFE SCIENCES					
Enzyme*	650	42	374	70	Chi ++

Gene Or Genes Or Genetic Or					
Genetics	607	75	815	135	Chi ++
Antibod*	292	32	247	76	Chi ++
Cancer	199	24	257	76	Chi ++
Biolog*	314	32	271	45	Chi+
Protein*	993	105	878	108	Even
Disease*	552	60	357	146	Chi++
Blood	382	40	347	125	Chi++
Liver	253	29	223	52	Chi++
Bacter*	310	30	152	48	Chi+

Before discussing the findings, the philosophy behind Table 11 will be presented. There are a number of different metrics that could be selected for citation comparisons between the two countries. Average citations, median citations, citation distributions based on the total retrievals or a portion of the retrievals would all be candidates. However, given the nature of research, where many times only a modest fraction of projects will achieve their initial objectives, it is most important to identify those projects that generated substantial payoff. This suggests emphasis on the top layer of performing projects. This layer could be a fixed number (e.g., top ten) or a percentage of the total (e.g., top 1%). The Finland study we are presently conducting used both, and the relative standings remained the same.

Thus, the citation performance of the ten most cited papers for each technology for each country was compared. Initially, both the median citations and the citations of the two highest papers were used as metrics, to obtain multiple perspectives for comparison. However, in many cases the most cited paper was an outlier, and included authors from other (more technologically advanced) countries (especially in India's case). Since the contribution of the authors from other countries to the quality of the target paper was unknown, it was believe that giving full weight to the outliers' citations to either India or China would distort the results. All the top ten papers were retained for computing the median, reflecting the reality that India or China did play some role in the outliers' quality, and the median of the top ten was the final metric employed.

China-India Comparison Discussion

Now, the findings in Table 11 will be addressed. The first column in Table 11 is the query phrase, including variants in some cases. The second column is the number of 1998 India records retrieved for the query phrase, and the fourth column is the number of 1998 China records retrieved for the query phrase. The third column is the median citations of the ten most cited Indian papers, while the fifth column contains the same type of information for China papers. The sixth column is the citation 'winner' in the technical discipline examined, with the pluses (+) denoting the strength of the lead. The

patterns of winners in the different broad categories are examined, and judgments about leadership in each of the four major categories are made.

The phrases (technologies) are grouped by major category. The first group is Physical Sciences. Out of twenty phrases examined, representing diverse areas of Physical Sciences, China was a clear winner in fifteen, India led in one, and four were viewed as even. Clearly, China is the leader in Physical Sciences, based on top ten median numbers of citations.

The second group is Environmental Sciences. Out of ten phrases examined, China was the clear leader in seven, and three were considered even. Clearly, China is the leader in Environmental/Agricultural Sciences.

The third group is Material Sciences. Out of ten phrases examined, China was the clear leader in seven, India was the clear leader in two, and one was considered even. Clearly, China is the leader in Material Sciences.

The fourth group is Life Sciences. Out of ten phrases examined, China was the clear leader in nine, and one was considered even. Clearly, China is the leader in Life Sciences.

Thus, China was the clear leader in each major category, although there were (isolated) instances where India led in a sub-technology area. It should be re-emphasized that this citation comparison did not examine relative investment strategies. It focused only on technical areas that had similar magnitudes of investment. It should also be emphasized that there can be many reasons why an article receives or does not receive citations (Kostoff, 1998b). These include intrinsic quality, research fundamentality (more fundamental articles receive, on average, more citations), and journal visibility. To identify which of these causation factors is operable, samples of articles would have to be retrieved, and each article examined in detail. Such an in-depth analysis was beyond the scope of the present study.

China-Australia Comparison

Table 12 - China-Australia Citation Comparison

TOPIC 1998 RECORDS	AUSTRALIA RECORDS RETRIEVED	AUSTRALIA CITES TEN-MED	CHINA RECORDS RETRIEVED	CHINA CITES TEN-MED	WINNER
PHYSICAL SCIENCES	RETRIEVED	TEN-MED	RETRIEVED	TEN-MED	
Chromatograph*	356	70	365	34	Aus++
Conductivity	120	39	297	33	Aus
Electronic	188	62	505	29	Aus++
Electrophoresis	179	72	169	35	Aus++
Finite Element*	152	28	226	26	Aus
Gravity	92	29	75	23	Aus
Isotope*	177	77	160	45	Aus+

Magnetic Field*	154	39	273	33	Aus
Mechanical	333	66	510	51	Aus+
Microscopy	458	111	726	56	Aus++
Molecular Dynamics	49	42	82	20	Aus++
Nonlinear Or Non-Linear	404	84	769	49	AUS+
Photon*	147	59	186	54	Aus
Polymer	212	58	523	50	Aus
Spectromet*	265	70	317	40	Aus++
Star Or Stars	170	98	97	35	Aus++
Superconduct*	116	32	283	32	Tie
Ligand*	419	208	475	84	Aus++

ENVIRONMENTAL/ AGRICULTURAL SCIENCES							
Climat*	282	99	109	53	Aus++		
Earthquake*	18	22	31	9	Aus++		
Floral	32	24	14	9	Aus++		
Geochemi*	122	56	86	43	Aus+		
Irrigation	57	21	17	8	Aus++		
Ocean*	282	116	87	38	Aus++		
Rock*	394	82	220	68	Aus+		
Sea	338	94	153	34	Aus++		
Seawater	55	45	24	12	Aus++		
Sediment*	383	66	183	44	Aus+		
Seedling*	139	38	58	21	Aus++		
Tectonic	106	62	59	47	Aus+		
Tomato*	41	37	14	14	Aus++		
Volcan*	109	55	42	41	Aus+		
Wheat	249	57	102	22	Aus++		

ENGINEERING SCIENCES					
Aircraft	30	10	20	3	Aus++
Buckling	35	11	45	11	Tie
Engine*	191	50	212	20	Aus++
Heat Treatment	31	17	97	17	Tie
Sinter*	47	23	122	19	Aus
Software	133	61	74	11	Aus++
Steel*	146	30	285	19	Aus+
Wastewater*	32	16	22	11	Aus+
Weld*	41	12	52	9	Aus
Iron	267	88	323	44	Aus++
Metal*	737	102	1359	98	Aus

LIFE SCIENCES

Antibod*	738	238	247	77	Aus++
Arterial	188	77	55	29	Aus++
Blood	968	181	347	127	Aus+
Cancer*	607	185	270	83	Aus++
Chromosome	253	205	107	52	Aus++
Clone*	272	123	168	71	Aus+
Dna	887	215	538	81	Aus++
Enzyme*	612	238	374	72	Aus++
Gene Or Genes Or Genetic	2001	347	811	137	AUS++
Liver*	352	129	226	52	Aus++
Lymphocyte*	347	191	92	47	Aus++
Peptide*	440	124	192	66	Aus++
Polymerase	319	93	140	73	Aus+
Protein*	1962	329	878	110	Aus++
Tissue*	999	183	370	86	Aus++
Tumor*	411	187	314	75	Aus++

China-Australia Comparison Discussion

Now, the findings in Table 12 will be addressed. The first column in Table 12 is the query phrase, including variants in some cases. The second column is the number of 1998 Australia records retrieved for the query phrase, and the fourth column is the number of 1998 China records retrieved for the query phrase. The third column is the median citations of the ten most cited Australian papers, while the fifth column contains the same type of information for China papers. The sixth column is the citation 'winner' in the technical discipline examined, with the pluses (+) denoting the strength of the lead. The patterns of winners in the different broad categories are examined, and judgments about leadership in each of the four major categories are made.

The phrases (technologies) are grouped by major category. The first group is Physical Sciences. Out of eighteen phrases examined, representing diverse areas of physical sciences, Australia was a clear winner in eleven, a close winner in six, and tied with China in one. Australia is clearly the leader in Physical Sciences, based on top ten median numbers of citations.

The second group is Environmental/Agricultural Sciences. Out of fifteen phrases examined, Australia was the clear leader in all fifteen. Australia was an obvious winner over China in Environmental/Agricultural Sciences.

The third group is Engineering Sciences. Out of eleven phrases examined, Australia was the clear leader in six, a close leader in three, and was tied with China in two. Although Australia is the winner in Engineering Sciences, China's foucus on engineering and applied sciences can be seen, even compared to a first world country such as Australia.

The fourth group is Life Sciences. Out of sixteen phrases examined, Australia was the clear leader in all sixteen. This result is not only expected, but is further evidence that

China is currently putting relatively more research effort into engineering and applied sciences than any other category, especially Life Sciences.

Thus, Australia was the clear leader in each major category, although there were (isolated) instances where China was tied in a sub-technology area. It should be reemphasized that this comparison did not examine relative investment strategies. It focused only on technical areas that had similar magnitudes of investment.

4.4 Taxonomies

Taxonomies, as used in the present document, are technical categories structured hierarchically. Two types of taxonomies are presented, manual and statistical. The manual taxonomies require mainly hand-classification of Abstracts, journals, and keywords into categories, whereas the statistical approaches use more computer-based pre-classification. In both approaches, strong human input is required for final categorization.

4.4.1 Manual

A manual taxonomy was generated for a random ten percent sample from the full database of 2002 records. The taxonomy, and additional attributes assigned to each record, included: (1) manually reading the selected abstracts and classifying them with a Theme and Sub-Theme from the DTIC taxonomy (see Appendix 5); (2) counting the number of words for each selected abstract; (3) counting the number of Keywords for each selected abstract; (4) counting the number of Author Keywords for each selected abstract; (5) assigning a number to each selected record to represent a level of clarity of the abstract to assign to a particular theme and sub-theme; and (6) classifying the type of research of each abstract (e.g. 6.1, 6.2, or 6.3 for Basic Research, Applied Research, or Advance Technology Development, respectively). An indepth analysis of the correlation between the word counts and clarity was also performed. A complete spreadsheet of all the above mentioned records is contained in Appendix 11.

4.4.1.1 Full Abstract

A sample consisting of every tenth Abstract was extracted from the full 2002 SCI database, read, and categorized. The taxonomy that the Defense Technical Information Center (DTIC) uses to classify its archival reports/ records, also known as the DTIC taxonomy (See Appendix 5), was used for classification. Only one theme and corresponding sub-theme were assigned to each Abstract. In cases where there were multiple themes and sub-themes associated with each Abstract, an attempt was made to assign the most appropriate one. The Themes ranked in order of number of Abstracts per theme are shown below in Table 13. A complete listing of the Themes and Sub-Themes is contained in Appendix 11.

Table 13. Manual Classification of Abstract Themes based on DTIC Taxonomy

# ABS per	% ABS per	ТНЕМЕ
THEME	THEME	
195	26.2	BIOLOGICAL & MEDICAL SCIENCES
165	22.2	CHEMISTRY
120	16.1	PHYSICS
76	10.2	MATERIALS
71	9.5	MATHEMATICAL & COMPUTER SCIENCES
21	2.8	EARTH SCIENCES & OCEANOGRAPHY
19	2.6	ELECTROTECHNOLOGY & FLUIDICS
16	2.2	ENVIRONMENTAL POLLUTION & CONTROL
12	1.6	MECHANICAL, INDUSTRIAL, CIVIL & MARINE
	0.0	ENGINEERING
7	0.9	AGRICULTURE
7	0.9	NAVIGATION, DETECTION & COUNTERMEASURES
6	0.8	ASTRONOMY & ASTROPHYSICS
6	0.8	NUCLEAR SCIENCE & TECHNOLOGY
5	0.7	POWER PRODUCTION & ENERGY CONVERSION (NON-PROPULSIVE)
5	0.7	PROPULSION, ENGINES & FUELS
3	0.4	ATMOSPHERIC SCIENCES
3	0.4	BEHAVIORAL & SOCIAL SCIENCES
3	0.4	COMMNICATIONS
2	0.3	BIOTECHNOLOGY
2	0.3	TEST EQUIPMENT, RESEAERCH FACILITIES & REPROGRAPHY
744		Total Abstracts Manually Classified

4.4.1.2 Word Count

Word counts were performed on the sample Abstracts manually categorized for number of keywords, author keywords, and number of abstract words. The results for each record are listed in Appendix 11. There are strong differences in the numbers of Abstract words among different thematic areas. Some thematic areas with high median numbers of Abstract words include:

- **Biological and Medical Sciences** (Abs Word Avg: 174)
 - o Toxicology (Abs Word Avg: 159)
 - o Medicine and Medical Research (Abs Word Avg: 204)
 - o Anatomy and Physiology (Abs Word Avg: 197)
- Agriculture (Abs Word Avg: 264)
 - o Agricultural Engineering (Abs Word Avg: 264)
 - o Agronomy, Horticulture, and Aquaculture (Abs Word Avg: 270)
 - o Animal Husbandry and Veterinary Medicine (Abs Word Avg: 201)

- Earth Sciences and Oceanography (Abs Word Avg: 166)
 - o Soil Mechanisms (Abs Word Avg: 175)
 - o Mining Engineering (Abs Word Avg: 260)
 - o Geology, Geochemistry, and Mineralogy (Abs Word Avg. 160)

These areas focus on Life and Environmental Sciences. Many of the journals in these areas, especially those of the Life and related sciences, require Structured Abstracts, which are more complete and longer, on average, than those articles in journals that do not require Structured Abstracts.

And some thematic areas with low median numbers of Abstract words include:

- Mathematics and Computer Science (Abs Word Avg: 96)
 - o Theoretical Mathmatics (Abs Word Avg: 78)
 - o Statistics and Probability (Abs Word Avg: 87)
 - o Numerical Mathematics (Abs Word Avg: 91)
- **Physics** (Abs Word Avg: 95)
 - o Optics (Abs Word Avg: 72)
 - o Nuclear Physics and Elementary Particle Physics (Abs Word Avg: 82)
 - o Atomic and Molecular Physics and Spectroscopy (Abs Word Avg: 90)
- Chemistry (Abs Word Avg: 114)
 - o Physical Chemistry (Abs Word Avg: 112)
 - o Organic Chemistry (Abs Word Avg: 136)
 - o Inorganic Chemistry (Abs Word Avg: 106)

These areas focus on the Mathematical and Physical Sciences, whose journals do not require Structured Abstracts.

4.4.1.3 Clarity of Abstract

A subjective assessment of the clarity of the sample Abstracts manually categorized was performed. Clarity was based upon the ease which the Abstracts could be manually categorized with a main theme and sub-theme from the DTIC taxonomy. A scale of one to five was used for the level of clarity, with one being the hardest to assess and five being the easiest (i.e. most clear). The percentages of records receiving each of the grades are as follows; 5 (59.7%), 4 (35.5%), 3 (4.6%), 2 (0.3%), and 1 (0%). The results for each record are listed in Appendix 11. The clarity of the Abstracts correlates directly with the number of Abstract words. The more words that an Abstract contains, the clearer is the Abstract. For example, the median clarity score for the twenty highest number of word Abstracts is five, whereas the median clarity score for the twenty lowest is four.

4.4.1.4 Research Type of Abstract

Each of the sample Abstracts manually reviewed was also manually classified for the level of development (e.g. 6.1; 6.2; or 6.3; the USA military terminology for Basic

Research, Applied Research, or Advanced Technology Development, respectively). The percentage of records categorized as 6.1 was 77.8%, 6.2 was 15.9%, and 6.3 was 5%. The results for each record are listed in Appendix 11. The average clarity value for 6.3 research was 4.81/5, for 6.2 research it was 4.58/5, and for 6.1 research it was 4.52/5. In terms of the relation between number of words and level of development, the twenty highest number of word Abstracts contained one 6.3, six 6.2, and thirteen 6.1, whereas the twenty lowest contained one 6.2, and the remainder 6.1.

4.4.2 Statistical

Two generic types of statistical clustering were used, concept clustering and document clustering. In concept clustering, words or phrases are clustered based on their co-occurrence in the same text unit. In document clustering, documents are clustered based on their overall text similarity.

4.4.2.1 Concept Clustering

Two statistically-based concept clustering methods were used to develop taxonomies, factor matrix clustering and multi-link clustering. Both offer different perspectives on taxonomy category structure from the document clustering approach described later. None of the clustering approaches included here is inherently superior.

In this section, a synergistic combination of factor matrix and multi-link clustering is described that offers substantial improvement in the quality of the resultant clusters. Once the appropriate factor matrix has been generated, the factor matrix can then be used as a filter to identify the significant technical words for further analysis. Specifically, the factor matrix can complement a basic trivial word list (e.g., a list containing words that are trivial in almost all contexts, such as 'a', 'the', 'of', 'and', 'or', etc) to select context-dependent high technical content words for input to a clustering algorithm. The factor matrix pre-filtering will improve the cohesiveness of clustering by eliminating those words that are trivial words operationally in the application context (Kostoff, 2005e).

In addition, the present application compares the use of single words with the use of multi-word phrases for factor generation. There are positives and negatives associated with each approach. Some technical detail is lost by excluding the ordering information contained in multi-word phrases. Conversely, inclusion of all single words compensates for the elimination of some multi-word phrases due to the selection algorithm of the Natural Language Processor. It was desired to examine the trade-off of single words vs. multi-word phrases for factor generation.

4.4.2.1.1 Factor Matrix Clustering

4.4.2.1.1.1 Factor Matrix Clustering Approach

Figure 1 is a truncated five factor matrix, shown for illustrative purposes only.

Figure 1. Truncated Five Factor Matrix

FACTOR	1	2	3	4	5
plasma	-0.047	-0.261	0.012	-0.042	-0.03
velocity	0.021	-0.255	0.021	0.035	0.02
source	-0.014	-0.218	0	0.152	-0.05
flux	-0.004	-0.217	0.009	0.033	0.002
gas	0.053	-0.217	0.006	-0.012	-0.03
flow	-0.041	-0.215	0.017	0.018	-0.097
pressure	0.064	-0.215	-0.027	-0.006	-0.001
profile	0.017	-0.206	0.019	0.044	0.022
distribution	0.009	-0.203	-0.034	0.073	-0.018
mass	0.021	-0.203	-0.01	0.055	-0.043
heat	-0.009	-0.196	0.012	-0.027	0.035
density	-0.009	-0.19	0.021	0.051	0
surface	0.041	-0.176	0.093	0.008	0.031

In this illustrative factor matrix, the rows are the words/phrases and the columns are the factors. Each factor represents a technical theme. The matrix elements Mij are the factor loadings, or the contribution of word/ phrase i to the theme of factor j. In the example above, the factor loading of the first word (plasma) to the first factor is -0.047. The theme is determined by those words/ phrases that have the largest absolute values of factor loading. When the matrix elements were ordered numerically for a given factor, the factor had a positive value tail and negative value tail. For each factor, most of the time, one of the tails dominated in terms of absolute value magnitude. This dominant tail was used to determine the central theme of each factor. In those few cases where the tails were of very similar absolute value magnitude, a theme was extracted from each tail.

To generate the words/ phrases input to the factor matrix, the highest frequency high technical content words were identified. A factor analysis was performed using the TechOasis statistical package,

After the factor matrices were generated, the word factor matrix was then used for word filtering and selection. In the present study, the words in the factor matrix had to be culled to the approximately 250 allowed by the Excel-based clustering package, WINSTAT. The 250 word limit is an artifact of Excel (i.e. the maximum number of columns in an Excel Spreadsheet). Other software packages may allow more or less words to be used for clustering, but all approaches perform culling to reduce dimensionality. The filtering process presented here is applicable to any level of filtered words desired.

The factor loadings in the factor matrix were converted to absolute values. Then, a simple algorithm was used to automatically extract those high factor loading words at the tail of each factor. If word variants were on this list (e.g., singles and plurals), and their factor loadings were reasonably close (Kostoff, 2003b), they were conflated (e.g., 'agent' and 'agents' were conflated into 'agents', and their frequencies were added). A few

words were eliminated manually, based on factor loading and estimate of technical content.

4.4.2.1.1.2 Factor Matrix Clustering Results

A list of single words and a list of phrases were generated from the Abstracts using the TechOasis Natural Language Processor. For each list, 1146 high frequency high technical content items were extracted. A factor analysis words/ phrases was performed using the TechOasis statistical package. In each case, a factor matrix consisting of 40 factors resulted. Appendix 6 contains a brief description of each factor in the word factor matrix. Appendix 7 contains a brief description of each factor in the phrase factor matrix.

In the following two flat taxonomies (generated by manually assigning the factors to categories), the words in capital letters represent main themes, and the bullets underneath them are descriptions of the factors that are contained within that category. The number in front of the description is the Factor number taken from either Appendix 6 or 7.

Flat Taxonomy from Appendix 6

MEDICAL SCIENCE

- (1) the biological sciences of cell physiology, primarily using cells from rats.
- (6) medical studies of humans for cancer research and potential causes and risk factors.
- (27) cancer research for humans by studying the physiology of cancer cells and tumors
- (34) in vivo physiology studies of livers, tissues, and blood of mice and rats PHYSICS
 - (2) the physical properties of plasmas and gases related their flow and distribution
 - (15) physical properties of spectroscopy such as emissions, spectra, absorption, fluorescence in the red, blue, and UV wavelength regions of the energy spectrum
 - (18) the physical properties of quantum physics theory associated with energy such as energy states, energy levels, bonding energy, energy densities, and excitation energies
 - (25) synthesizing Nuclear Magnetic Resonance (NMR) and IR imaging techniques
 - (28) physical properties used to characterize lasers using Nd crystals, such as optical properties, wavelengths, frequency, power, and pulse generation
 - (36) spectroscopic techniques such as X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) used in morphology studies
 - (38) characterizing image processing algorithms feature recognition and extraction
 - (39) the properties of nuclear physics

CHEMISTRY

- (3) atomic physics, specifically the interactions and bonding on atoms, molecules, ligands, crystals, primarily those of hydrogen and oxygen
- (10) the synthesis and reactions of polymers, copolymers, and solvents
- (12) properties of physical chemistry such as catalysts, oxidation, reactions, and reduction of CO
- (19) the physical chemistry properties used to characterize electrodes
- (23) spectroscopy techniques such as FTIR (Fourier Transform InfraRed), XPS, and Raman spectroscopy
- (24) properties and uses of chromatography to separate mixtures of elements
- (32) Mechanic properties of physics such as kinetics, reactions, equilibrium and diffusion

MATHEMATICS AND MODELING

- (5) the metric properties of detection such as limits, ranges, mathematical statistics, and sensitivities
- (16) applied numerical mathematics of the chemistry of rare earth elements
- (26) algorithm design for simulations of control systems engineering using neural networks and optimization techniques
- (29) linear modeling techniques for regression, correlation, and prediction
- (40) modeling and simulations of the physical properties of proteins

ENGINEERING AND MATERIALS

- (7) the physical properties of composite materials
- (9) physical properties to define crystal structures
- (11) the growth, deposition, and thickness of thin films and substrates, primarily with the material Si
- (17) the change in physical properties of material composition of grains due to changes in temperature
- (14) the study of microstructures such as nanoparticles, powders using techniques like X-ray diffraction, TEM, and sol-gel
- (21) the atomic interactions of heavy ions and photoelectrons of various elements such rare earth elements and metals using X-Ray Photoelectron Spectroscopy (XPS)
- (22) the physical properties of materials science used to characterize the effects of deformation such as stress, strain, cracks, elasticity, and boundaries
- (31) the sintering and ferroelectric properties of dielectrics and ceramic materials
- (33) the material properties of aluminum microstructures
- (35) microstructures of alloy materials to include their grains and deformation
- (37) characterizing properties of crystallization and glass using Differential Scanning Calorimetry (DSC)

BIOLOGICAL SCIENCES

- (8) genetic sequencing biology
- (13) molecular biology properties associated with mRNA such as binding, affinity, and purity

• (30) Polymerase Chain Reactions (PCR) and Reverse Transcription PCR (RT-PCR) used to detect DNA

ENVIRONMENTAL SCIENCES / GEOGRAPHICAL SCIENCES

- (4) the temporal (early and late) and location (middle, upper) divisions of regions and processes (eg. Stages)
- (20) the environmental impacts on plants & soils growth, concentrations, and production

Flat Taxonomy from Appendix 7

MEDICAL SCIENCES

- (7) physiology studies of organs (heart, liver, kidney, lung, brain, testis), blood and tissues of rats and mice
- (8) correlating backgrounds of patients and methods to identify specific symptoms with the appropriate disease diagnosis of diseases and treatments for the patients
- (13) study of cells and proteins of rats (IL-6, Tumor Necrosis Factor-alpha (TNF-alpha), and LPS)
- (24) physiology of cells and genes and their effects on hepatocellular carcinoma (HCC)
- (30) the risks to humans of smoking tobacco based on gender, age and pregnancy
- (38) both in vivo and in vitro physiology studies of mice cells to characterize the effects of inhibitors and cytotoxicity on cell proliferation using immunohistochemical staining techniques

PHYSICS

- (3) the elemental materials (Gd, Sm, Pr, La, Nd, ER, Tb, HO, Eu) identified in proton Nuclear Magnetic Resonance (H-1 NMR) spectra
- (5) the spectroscopic techniques such as Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier Transforms that exploit Rutherford scattering to characterize laser deposition of films and substrates that contain carbon
- (14) elemental analysis by synthesizing Nuclear Magnetic Resonance (NMR) and IR imaging techniques
- (26) spectroscopic techniques used to characterize thermal stability. These include: Differential Scanning Calorimetry (DSC), Fourier Transfor Infra Red (FTIR), Themogravimetric Analysis (TGA), and C-13 Nuclear Magnetic Resonnance (NMR)v
- (27) the detection properties used in assaying antibodies, antigens, serums, and urine which include sensitivity, specificity, mobile phase, flow rates, accuracy, and separation capabilities
- (28) spectroscopy techniques such as X-ray Diffraction (XRD), Tomographic Electron Microscopy (TEM), XPS, SEM, BET, FR-IR, and FTIR

CHEMISTRY

- (4) physical chemistry properties such as catalysts, oxidation, reactions, and activities of propylene and H2O2
- (9) characterizing the physical properties of isomers
- (11) the physical properties of TiO2 particles
- (18) the study of fuels such as methane, alcohols, ethanol, acetic acid, methanol, and ammonia which includes their release of carbon dioxide and flow rates
- (22) the physical properties of TiO2 particles
- (23) the elements used in Temperature Programmed Reduction/Reaction (TPR) experiments, such as Nitrogen, Oxygen, oxides (eg. Copper & Nitrous Oxide), Hydrogen, CH4, and Argon
- (36) spectroscopic techniques such as XPS, FTIR, TEM, and XRD to characterize the hydrolysis of elements such as hydrogen and methane

ENGINEERING AND MATERIALS

- (1) the physical properties to define crystal structures
- (6) changes in morphology and crystallization between different blends of Polypropylene (PP) fibers
- (10) the mechanical properties and strengths of composite materials
- (12) the detection characteristics of sensors using Na, Li, hydrogen peroxide, such as limits, linear range, and oxidation
- (15) the characterization of wear resistance and surface morphology of coatings and films using atomic force microscopy (AFM)
- (17) the characterization of the material properties of dielectrics and ceramics
- (19) properties used to define crystal structures
- (20) studies involving the following Transition Metal elements; Zn, Mn, Cu, Ni, Pb, CR, Mg, Ti, CO, and Cd
- (21) characterizing the morphology of aluminum and silver material nanowires using transmission electron microscopy (TEM) and X-ray Diffraction (XRD) techniques
- (32) characterizing the electrochemical behavior of electrodes (gold and ZnO) using XRD
- (33) absorbance properties of metals, such as zinc, iron, copper, nickel, and calcium
- (35) characterizing the properties and microstructures of alloys, such as grains, grain boundaries, and grain size using TEM and SEM techniques
- (37) characterizing the material properties of films and surfaces using atomic force microscopy (AFM)
- (39) TGA, DSC, and NMR techniques to characterizes swelling of glass, membranes, and hydrogels used in the Chemical Industry
- (40) material composition of solid state surfaces using CuO

BIOLOGICAL SCIENCES

- (2) the gene onotoly of Bcl-2 associated X-proteins (BAX) and caspase-3 genes
- (16) the study of genetic defects in cells and proteins resulting from tobacco use based on assessment techniques such as immunohistochemistry and RT-PCR

- (29) the lifespan of animals based sex and weight
- (34) determining the presence of E. coli and bacteria in chitosan, supernatants, enzymes, proteins, and copolymers using techniques such as PCR, FTIR, and NMR

AGRICULTURAL AND ENVIRONMENTAL SCIENCES

• (25) plant (eg. wheat) and soil toxicity studies and their effects on roots, germination and related treatments

In Appendices 6 and 7, the phrases in parentheses represent high factor loading phrases for the factor described, and are presented in inverse order of absolute factor loading value. The decrease in factor loading values is not linear, and the theme of each factor is strongly determined by the first few words/phrases.

(In the next section, a taxonomy is generated using the multi-link hierarchical clustering approach. The factors in each case above are assigned to the appropriate categories in the taxonomy, providing good coverage and an excellent match.)

4.4.2.1.2 Multi-Link Hierarchical Word/ Phrase Clustering

4.4.2.1.2.1 Multi-Link Clustering Approach

A symmetrical co-occurrence matrix of the highest frequency high technical content words/ phrases was generated. The matrix elements were normalized using the Equivalence Index (Eij=Cij^2/Ci*Cj, where Ci is the total occurrence frequency of the ith word/ phrase, and Cj is the total occurrence frequency of the jth word/ phrase, for the matrix element ij), and a multi-link clustering analysis was performed using the WINSTAT statistical package. The Complete Linkage hierarchical aggregation method was used. A description of the final word dendrogram (a hierarchical tree-like structure), and the aggregation of its branches into a taxonomy of categories, follows in the results section.

Figure 2 is a word-based dendrogram, shown for illustrative purposes. One axis is the words, and the other axis ('distance') reflects their similarity. The lower the value of 'distance' at which words, or word groups, are linked together, the closer their relation. As an extreme case of illustration for the dendrogram, words that tend to appear as members of multi-word phrases, such as 'x-ray diffraction', appear adjacent on the dendrogram with very low values of 'distance' at their juncture. In the cluster descriptions that follow, the capitalized phrases in parentheses represent cluster boundary words for each category.

Figure 2. Word-Based Dendrogram (32 High Frequency Phrases)

4.4.2.1.2.2 Multi-Link Clustering Results

In the previous focused discipline text mining studies, the average link hierarchical aggregation clustering method was used. In those cases, a hierarchical structure could be discerned, and each level of the hierarchy (proceeding downward) described the discipline at increasingly higher levels of detail. In the present country assessment, the clusters are different technologies. A rational hierarchical aggregation at the highest level should not be expected.

A description of the final word and phrase dendrograms (a hierarchical tree-like structure), and the aggregation of their branches into a taxonomy of categories, follows. See Appendices 8A and 8C for the respective word and phrase dendrograms, and Appendices 8B and 8D for the respective word and phrase taxonomies based on a hierarchical aggregation. One axis is the words, and the other axis ('distance') reflects their similarity. The lower the value of 'distance' at which words, or word groups, are linked together, the closer their relation.

In contradistinction to past topical studies, complete link clustering was used rather than average link clustering. Because the technologies are very diverse, a hierarchical clustering is not applicable. The top level clusters form a flat set. Some of the clusters have a distinct hierarchical structure into sub-clusters, where a technology area can be divided into its specific sub-technologies. In the cluster descriptions that follow, the capitalized phrases in parentheses represent cluster boundary words for each category. Appendix 4E contains the taxonomies used for comparative purposes with other classification methods used in this study such as the Greedy String Tiling (GST) clustering. This taxonomy was derived from a flat set vice a hierarchal aggregation, which was found to break out themes and subthemes in a more representative manner. Hence, there are no cluster boundary words denoted for each category, as many themes crossed boundaries. This was derived with some consideration from the analysis of the other clustering techniques from the same original data set (SCI) used in this study, such as the CLUTO Partitional Clustering algorithm.

The next section describes the clusters at different levels of the hierarchy, for clusters based on words and based on phrases from the 2002 SCI data set.

4.4.2.1.2.2.1 Word Clustering Results

The 253 words in the dendrogram are grouped into top level clusters. At this level, four broad topics can be discerned. These include material sciences, environmental sciences, organic chemistry, and clinical medical research. Each of these highest level clusters will be divided into smaller clusters, as follows.

1) Material Science

There are two main groupings: inorganic chemistry (ABSORPTION – SPACE); and powders, thin films, substrates, & glass (GROUPS – THERMAL).

2) Environmental & Material Sciences

There are two main groupings: ceramic composites & nanoparticles (TEMPERATURE – NANOPARTICLES); and environmental sciences (FIELD – CONTROLS).

3) Organic Chemistry

There are two main groupings: copolymers (SYSTEMS – POLYMERIZATION); and polymers (POLYMERS – CHAINS).

4) Clinical Medical Research

There are two main groupings: biological mechanisms or cancer and diseases (REACTION – CELLS); and medical treatments (BLOOD – INCREASING).

See Figure-3 below for the Multilink-Word taxonomy, levels 0-4.

Figure 3. Multi-link Word Taxonomy (SCI, Levels 0-4)

LEVEL 0	LEVEL 1	LEVEL 2	LEVEL 3	LEVEL 4
		Clinical Medical	Medical treatments using different concentrations of plasma & blood	Changes in Concentrations, Treatments & Rates Blood & Plasma
	m. 1 . 16 .	Research	Biological mechanisms of cancer and diseases	Biologic studies of cancer and diseases
	Biological Sciences			Reactions
			Polymers	Polymer Chains
		Oi- Chi-t	rolymers	Polymer Catalysts
		Organic Chemistry	Copolymers	Copolymer & Solvents
Science			Copolymers	Systems
(Biological, Environmental, & Material)	Environmental & Material Sciences	Environmental Sciences	Environmental Sciences	Epidemiology, Agronomy, & Physics Detection & Characterization of Trace
		& Material Science (Ceramic Composites & Nanoparticles)	Ceramic Composites & Nanoparticles	amounts of substances Properties of ceramic composites, nanoparticles, & alloy microstructures Porous templates & pore
			Powders, Thin Films, Substrates, & Glass	temperatures Characterization of Powders, Thin Films, and Substrates
		Material Science	Substitutes, Co Gauss	Characterization of Glass
		(Powders, Thin Films, Substrates, & Glass)	Inorganic Chemistry	Chemistry of atoms, molecules, ligands, & compounds
				Absorption

A more representative flat-based taxonomy of themes and sub-themes is depicted in Appendix 8E. There are six main themes; Biological & Medical Sciences, Chemistry, Computer Science & Systems, Environmental Sciences, Materials Science, and Physics & Mathematics. There associated sub-themes are as follows:

1) Biological & Medical Sciences

There are four sub-themes: Cancer & Disease Research; Clinical Medical Treatments; Epidemiology; and Genetics.

2) Chemistry

There are four sub-themes: Inorganic Chemistry; Organic Chemistry; Physical Chemistry; and Polymer & Copolymer Chemistry.

3) Computer Sciences & Systems

There are four sub-themes: Algorithms; Modeling & Simulation; Signal & Image Processing; and Systems.

4) Environmental Sciences

There are two sub-themes: Agronomy; and Ecology.

5) Materials Science

There are six sub-themes: Ceramics & Composites; Crystals; Glass; Nanoparticles & Microstructures; Powders; and Thin Films & Substrates.

6) Physics & Mathematics

There are four sub-themes: General Physics; Lasers & Optics; Mathematics; and Spectroscopy.

4.4.2.2 Document Clustering

Document clustering is the grouping of similar documents into thematic categories. Different approaches exist (e.g., Willett, 1988; Rasmussen, 1992; Cutting, 1992; Guha, 1998; Hearst, 1998; Zamir, 1998; Karypis, 1999; Steinbach, 2000). Two approaches were examined in this report: Greedy String Tiling, and Partitional Clustering.

4.4.2.2.1 Greedy String Tiling

4.4.2.2.1.1 Greedy String Tiling Approach

The approach presented in this section is based on a Greedy String Tiling (GST) text matching algorithm (Wise, 1992; Prechelt et al, 2002). It is described in some detail in Appendix 9A. Basically, GST clustering forms groups of documents based on the cumulative sum of shared strings of words. Each group is termed a cluster, and the number of records in each cluster, and the highest frequency technical keywords in each cluster, are two outputs central to this analysis.

4.4.2.2.1.2 Greedy String Tiling Results

A seven percent similarity threshold produced a total of 908 clusters. Ninety-three percent of the clusters contained nineteen abstracts or less. The 68 largest clusters, containing, 3329 Abstracts (i.e. 42.8% of the 7780 original abstracts), were extracted, and are listed in Appendix 9B. The main keywords from each cluster (and their frequencies of occurrence within the cluster) are shown in parentheses after the cluster number, and the number of records (number of abstracts in this case) in each cluster is shown in brackets next to the cluster number. The keywords are arranged in frequency of appearance, in descending order. Three levels of filtering were used to obtain the main keywords shown below. First, a trivial word list (e.g., of, the, on, etc) was applied to the raw data. Second, only the highest frequency words for each cluster were retained. Third, a manual filtering was performed on the thirty highest words. The themes of each cluster are defined by the keywords shown. The taxonomy based on these themes follows the theme keyword listings.

The taxonomy defined by the word and phrase clustering algorithms includes all the clusters in the document clustering. Each cluster was assigned to the most appropriate category in the taxonomy defined by the WINSTAT-generated dendrogram of the last section, based on the theme suggested by the highest frequency technical keywords. The number of records in each taxonomy category from all the clusters in the category was calculated, and is shown in Table 14.

Table 14. Assignment of GST Clusters to Multi-Link (Word) Main Themes (Categories)

	# OF	MULTI-LINK (WORD) THEMES								
CLUSTER#	RECORDS IN CLUSTER	BIO & MED SCI	СНЕМ	COMP SCI & SYS	ENV SCI	MAT'L SCI	PHYS & MATH			
1	234					234				
2	230		230							
3	190					190				
4	119		119							
5	117					117				
6	112		112							
7	111	111								
8	94			94						
9	86			86						
10	86					86				
11	76		76							
12	74						74			
13	68						68			
14	66	66								
15	66			66						
16	64						64			
17	62		62							
18	57					57				
19	49						49			
20	46					46				
21	45			45						
22	43					43				
23	41		41							
24	38	38								
25	38					38				
26	37					37				
27	34					34				
28	33		33							
29	33		33							
30	33					33				
31	32					32				
32	31					31				
33	31		31							
34	30		30							
35	29					29				
36	29					29				
37	29	29								
38	29		29							
39	28					28				
40	28		28							
41	28		28							
42	27		27							
43	27					27				
44	27	27								
45	26		26							
46	26					26				
47	26	26								
48	26						26			

SUM (NORM	()	0.103	0.305	0.095	0.007	0.354	0.136
SUM	3329	343	1014	315	23	1181	453
Uð	20						20
68	20				1		20
67	20		20				
66	20						20
65	20		20				
64	20						20
63	20						20
62	20					20	
61	21						21
60	21	21					
59	21						21
58	21					21	
57	21		21				
56	23					23	
55	23				23		
54	24		24				
53	24			24			
52	24		24				
51	24						24
50	25	25					
49	26						26

4.4.2.2.3 Partitional Clustering

4.4.2.2.3.1 Partitional Clustering Approach

The approach presented in this section is based on a partitional clustering algorithm (Zhao and Karypis, 2005; Karypis, 2005) contained within a software package named CLUTO. Most of CLUTO's clustering algorithms treat the clustering problem as an optimization process that seeks to maximize or minimize a particular clustering criterion function defined either globally or locally over the entire clustering solution space. CLUTO uses a randomized incremental optimization algorithm that is greedy in nature, and has low computational requirements. Appendix 2 describes the partitional clustering approach in more detail.

4.4.2.2.3.2 Partitional Clustering Results

In partitional clustering, the number of clusters desired is input, and all documents in the database are included in those clusters. The results for the cases run with different number of clusters and data sets are all listed in Appendices 10B, 10D, & 10F. The main keywords from each cluster (and the percentage of the cluster theme for which they account) are shown in parentheses after the cluster number, and the number of records in each cluster is shown in parenthesis before the cluster number. The keywords are arranged in theme contribution, in descending order. The procedure was performed for the following data sets; SCI (7780 of 41,953 records from 2002) with 40 clusters, the Engineering Compendex (9949 of 86,479 records from 2000 - 2003) with 256 clusters, and the SCI (34834 records from 2005).

Three levels of filtering were used to obtain the main keywords shown in the Appendices. First, a trivial word list (e.g., of, then, on, etc) was applied to the raw data. Second, only the highest frequency words for each cluster were retained. Third, a manual filtering was

performed on the thirty highest words. The themes of each cluster (in brief narrative form) follow the keywords shown. The clusters were aggregated into a hierarchical taxonomy using a hierarchical tree generated by the CLUTO software. The detailed taxonomies are shown in Appendices 10C, 10E, & 10G, where the first number in the each cell represents that particular cell cluster identification, and the second number in the parenthesis represents the number of records (abstracts) associated with that cluster. The taxonomy descriptions in each cell were derived manually starting from the elemental clusters at the lowest hierarchical level and working up to the highest level. They were based on the key words in that particular cluster and a review of many of the abstracts associated with the particular cluster to gain a better understanding of the context of the cluster keywords. The categories in the taxonomy levels, and the number of documents in each category, are described as follows.

4.4.2.2.3.2.1 Science Citation Index (40 Clusters, year 2002)

The 7780 records from this data set were run through the CLUTO algorithm using 40 clusters. This resulted in generating 78 total clusters aggregated into the hierarchical tree with eight levels based on the 40 elemental clusters. In Figure 4 below, the columns represent the taxonomy levels. The top four of the eight levels are depicted in this taxonomy. The highest level (Level-1 with two categories) is the first column, and the lowest level shown (Level-4 with sixteen categories) is the last column. The numbers in parentheses represent the number of records assigned to the category. The numbers in brackets represent the percentage of the number of records in that category to the total number of records.

Figure 4. Partitional Document Clustering (CLUTO) Taxonomy Levels 1-4 (SCI, 40 Clusters, year 2002)

LEVEL 1	LEVEL 2	LEVEL 3	LEVEL 4
	(865) -	(501) - Animal & Human	(217) - Animal Physiology [2.8%]
	Laboratory Medical	Physiology [6.4%]	(284) - Human Physiology [3.7%]
	Research	(364) - Genetic & Molecular Biology	(165) - Molecular Biology [2.1%]
(1711) -	[11.1%]	[4.7%]	(199) - Genetics [2.6%]
Bio-Medical Sciences	(0.4.6)	(389) - Clinical Medicine	(210) - Clinical Chronic Disease Treatment [2.7%]
[22%]	(846) - Clinical	[5.0%]	(179) - Cancer Risk Factors [2.3%]
	Medicine [10.9%]	(457) - Geology & Environmental	(210) - Geology of Chinese Regions [2.7%]
		Sciences [5.9%]	(247) - Seasonal & climate induced changes on environment [3.2%]
	(2544) - Physics, Mechanics & Mathematics [32.7%]	(1180) - Algorithms &	(713) - Algorithms of control systems, models, & networks [9.2%]
		Mathematics [15.2%]	(467) - Mathematics [6.0%]
(6069) -		(1364) - Physics & Mechanics	(737) - Mechanics & Magnetics [9.5%]
Physical &	[32.770]	[17.5%]	(627) - Physics [8.1%]
Engineering Sciences [78%]	(3525) - Chemistry & Materials Science [45.3%]	(2026) - Materials Science	(1664) - Physics of Materials & Nanomaterials [21.4%] (362) - Physical properties of thin films
		[26%]	& substrates [4.7%]
		(1499) - Chemistry	(1173) - Chemistry of Organic & Inorganic Materials [15.1%]
		[19.3%]	(326) - Chemistry of Crystals [4.2%]

The first level has two categories: Biomedical Sciences (1711) and Physical & Engineering Sciences (6069). Percentage-wise, this is a split of 22/78%. In Table 12 (the manual assignment of GST clusters to categories defined by the word clustering approach), combining Biological & Medical Sciences, and Environmental Sciences categories is equivalent to the Bio-Medical Sciences category in Figure 4. Also, combining the Chemistry, Computer Sciences & Systems, Materials Sciences, and Physics & Mathematics categories in Table 12 is equivalent to the Physical & Engineering Sciences category in Figure 4. In Table 12, the category split of 11/89% compares roughly with the 22/78% split of Figure 4.

The second taxonomy level is generated by sub-dividing each first level category by two. Biomedical Sciences divides into Laboratory Medical Research (865) and Clinical Medicine (846), while Physical & Engineering Sciences divides into Physics, Mechanics, & Mathematics (2544) and Chemistry & Material Science (3525).

Again, comparing Figure 4 with Table 12, Laboratory Medical Research (from Figure 4) is roughly equivalent to Biological & Medical Sciences (from Table 12), and Clinical Medicine (from Figure 4) which splits into Geology & Environmental Sciences at the third taxonomy level is partially equivalent to Environmental Sciences (from Table 12). The term 'roughly' is used because sometimes allocation to Biology vs Medicine is not overly clear, or assignment to Biology vs Environment is not overly clear. The (Laboratory Medical Research)/(Clinical Medicine) ratio from Figure 4 (1.02) compares

poorly with the (Biological & Medical Sciences)/(Environmental Sciences) ratio from Table 12 (14.9). The definitional uncertainties are reflected in quantitative differences. Inspection of the GST clusters vs their partitional clustering counterparts shows that these quantitative differences represent manual assignment of clusters to categories vs computer assignment of cluster to categories, more than any intrinsic cluster differences.

Further, Physics, Mechanics & Mathematics (from Figure 4) is roughly equal to Physics & Mathematics combined with Computer Sciences & Systems (from Table 12), and Chemistry & Materials Science (from Figure 4) is roughly equal to the combination of Chemistry and Materials Science (from Table 12). The term 'roughly' is used here because sometimes the allocation to Chemistry vs Physics is not overly clear, especially for materials projects, where the physics of materials and the chemistry of materials are sometimes indistinguishable. The (Physics, Mechanics & Mathematics)/(Chemistry & Materials Science) ratio from Figure 4 (.72) compares moderately with the (Physics & Mathematics combined with Computer Sciences & Systems)/(Chemistry combined with Materials Science) ratio from Table 12 (.35).

The lower taxonomy levels are generated in the same manner as above. It can be seen in Figure 4 in the fourth taxonomy level that several categories stand out as receiving significantly more focus than the others. These categories are Physics of Materials & Nanomaterials (21.4%) and Chemistry of Organic & Inorganic Materials (15.1%) with the most focus, followed by Mechanics & Magnetics (9.5%), Algorithms of Control Systems, Models & Networks (9.2%), Physics (8.1%), and Mathematics (6.0%) as compared to the other ten categories ranging from 2.1-4.7%.

Several other observations can be made from an analysis of this data set. These abstracts are research oriented as would be expected from those obtained in the SCI database. Most of the major research areas appear to be represented, but engineering science (other than materials engineering) does not play a prominent role at the upper taxonomy levels. Using 40 clusters allows a reasonable picture to be drawn about broad areas of research. If detailed program thrusts were desired, however, many more clusters than 40 would be required. The specific number depends on the degree of focus desired.

4.4.2.2.3.2.2 Engineering Compendex (256 Clusters, 2000 - 2003)

The 9949 records from this data set were run through the CLUTO algorithm using 256 clusters. This resulted in generating 510 total clusters aggregated into the hierarchical tree with thirteen levels based on the 256 elemental clusters. In Figure 5 below, the columns represent the taxonomy levels. The top four of the thirteen levels are depicted in this taxonomy. The highest level (Level-1 with two categories) is the second column, and the lowest level shown (Level-4 with sixteen categories) is the last column. The numbers in parentheses represent the number of records assigned to the category. The numbers in brackets represent the percentage of the number of records in that category to the total number of records.

Figure 5. Partitional Document Clustering (CLUTO) Taxonomy Levels 1-4 (Engineering Compendex, 256 Clusters, year 2000-2003)

LEVEL 0	LEVEL 1	LEVEL 2	LEVEL 3	LEVEL 4
	(3902) -		(3178) - Power & Systems	(852) - Power/Energy Market Enterprises [8.6%]
		Cybernetics &	Engineering [31.9%]	(2326) - Systems Theory [23.4%]
	(4721) -	Systems Engineering [39%]	(724) - Networks & algorithms (neural, comms, mobile, wireless, genetic) [7.3%]	(387) - networks neural, communications, mobile, wireless [3.9%] (337) - algorithms - genetic, (adaptable, learning, smart) [3.4%]
	Computer Sciences [47%]	(819) - Signal	(511) - Image Processing (detection & embedding)	(339) - image processing (reconstruction, matching, retrieval, & segmentation) [for similarities] [3.4%]
	Processing (image, digital,		[recognition, matching, retrieval, segmentation] [5.1%]	(172) - image processing and watermarks (detecting & embedding) [for differences] [1.7%]
(9949) - Physical and		wavelets) [8%]	(308) - Signal Processing (wavelets & digital signal	(182) - wavelets in imaging & non-imaging signals [1.8%]
Computer			processing) [3.1%]	(126) - digital signal processing to extract signals [1.3%]
Sciences [100%]		(3477) -	(474) - Mathematics (Solutions & Equations)	(209) - Solutions (Periodic & Non-periodic) [2.1%]
		Materials	(Solutions & Equations) [4.8%]	(265) - Equations [2.7%]
	(5228) -	Science & Mathematics	(3003) - Physics of Structural Mechanics &	(921) - Applied Measurements (with Optics & Lasers) [9.3%]
	Physical Sciences	[35%]	Materials [30.2%]	(2082) - Structural Mechanics & Materials [20.1%]
	[sub-		(747) - Nano-technology	(285) - Nanostructures [2.9%]
	systems] [53%]	(1751) - Chemistry &	(Nano-structures & Materials) [7.5%]	(462) - Crystals, Glass, Lasers, Plasmas, and Magnetic & Piezoelectric Compounds [4.9%]
		Nanotechnology [18%]	(1004) - Chemistry (Organic	(285) - Inorganic Chemistry (Solid & Liquid Material Dopping) [2.9%]
			& Inorganic) [10.1%]	(719) - Organic Chemistry [7.2%]

The first level has two categories: Computer Sciences (4721) and Physical Sciences (5228). Percentage-wise, this is a split of 47/53%. The second taxonomy level is generated by sub-dividing each first level category by two. Computer Sciences divides into Cybernetics & Systems Engineering (3902) and Signal Processing (819), while Physical Sciences divides into Materials Science (3477) and Chemistry & Nanotechnology (1751). The lower taxonomy levels are generated in the same manner as above. It can be seen in Figure 5 in the fourth taxonomy level that several categories stand out as receiving significantly more focus than the others. These categories are Systems Theory (23.4%) and Structural Mechanics & Materials (20.1%) with the most focus, followed by Applied Measurements (9.3%), Power/Energy Market Enterprises (8.6%), and Organic Chemistry (7.2%) as compared to the other eleven categories ranging from 1.3 – 4.9%.

Several other observations can be made from an analysis of this data set. These abstracts are more applied research, advanced technology development and engineering oriented as compared to the SCI data, as would be expected from those obtained in the Engineering Compendex database. They also cover a broad range of fields ranging from industrial to high tech electronics that are indicative of a large society growing to sustain itself and become technologically competitive on a global scale.

Examples of some key areas receiving emphasis (not necessarily evident in Figure 5) are as follows; Energy/Power Generation, Mining, Materials & Structural Mechanics, Signal

Processing, Systems Engineering, Transportation & Traffic flow, Robotics, Sensors & Diagnostics, Advanced Communications, Nanotechnology, Assessment Methods, Mathematics, Environmental & Ecological, Modeling & Simulation, and Control Theory. All of these areas have applications that can be of military significance.

Efforts in energy and power generation include hydroelectric, nuclear, and fossil fuels (such as coal), with the emphasis on the later. Improvements are being sought for more efficient yields of energy from these resources. Power generation spans from the Power Plants to vehicles to small electronic devices. The efforts in fossil fuels are closely tied with mining and structural developments.

The efforts in mining include identify areas of opportunity for different resources, improving mine structures to prevent collapse. These efforts can be closely associated with other work in remote sensing to help locate resources and conduct environmental impact studies. The same efforts to improve structural developments in mines might also be applied to underground facilities. Materials and structural mechanics fields range from the macro level (geologic formations and superstructures) to the micro and nano level (e.g. particles, ligands, compounds, films, and nanowires). There are specific references of structural analyses being done for a *New-Concept Submarine* and *low noise torpedo*, as well as for solid rocket motors.

Systems, control theory, modeling, and simulation are closely associated with all other areas. They range from the macroscopic, such as improving trafficability movements of large vehicles, resources, people, and robotics to the microscopic, such as gene manipulation. They are being done for things small and large in numbers, such as tracking and/or controlling Unmanned Aerial Vehicles (UAVs) in a dense air traffic environment. Vibrational analysis is being performed with specific applications to missile launches on naval ships. Signal processing techniques are also closely related to these fields as well and incorporate wavelets, digital signal processing and neural networks. Applications of these studies include remote detection and biometrics.

Assessments, testing, and diagnostic methods include studies of text mining, Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), Magnetic Resonnance Imaging (MRI's), and other high precision diagnostic instrumentation that can be used in nuclear weapons development. Long range plans are made that include research, such as the specific reference to a new 5-year coal mining plan.

Communications related research studies things such as fiber optics, optical comms in seawater, digital, wireless networks, mobile networks, millimeter waveguides, blind signature schemes in cryptography, and security protocols.

This EC data set can not be directly compared to the GST data set as was done in the previous section with the CLUTO partitional clustering of the SCI 40-cluster because it is a different set of data. However, some observations can still be made comparing Figures 4 & 5. The EC taxonomy in Figure 5 roughly aligns with the Physical & Engineering Sciences portion of the SCI taxonomy in Figure 4, but does not include the Bio-Medical

Sciences half. The Geology & Environmental Sciences theme in the SCI's third level (Figure 4) roughly matches up with some lower levels in Appendix 6E that are not reflected in Figure 5.

4.4.2.2.3.2.3 Science Citation Index (256 Clusters, 2005)

Figure 6 – 2005 Chinese Research Taxonomy

LEVEL 1	LEVEL 2	LEVEL 3	LEVEL 4
			atomic bonds and the crystal structure of molecules (1297)
	chemical reactions,	molecular and crystal structure (1813)	crystal orientation of molecules/atoms/ visualization (516)
	structure (5841)	chemical reactions and behaviors,	catalytic reactions (2270)
physical and engineering sciences		chemical analysis, liquid chromatography (4028)	adsorption of chemicals, analysis of chemicals by liquid chromatography (1758)
(19807)	Physics, thin films, alloys, and nanomaterials, the mechanical properties of materials (13966)	structural and mechanical properties	nanomaterial structure, structural visualization (2830)
		of materials, materials analysis (8056)	alloys, alloy composition, composition/structure (5226)
		Physics, thin films	thin films, thin film deposition (1274)
		and optics (5910)	structure and properties of thin films (thickness, density function, etc) and optics and physics (4636)

			differential equations, equations of systems (1287)
life sciences, environmental sciences, and mathmatics (14539)	mathematics, algorithm and program development, modeling (mathematical &	mathematics: differential equations, algebraic equations (2333)	algebraic equations and functions (1046)
	algorithmic), system modeling (7162)	mathematical modeling and genetic	system and network modeling, large scale modeling, neural networks (3552)
		algorithms (4829)	genetic algorithems, imaging (1277)
		genetic and cellular expression (3739)	gene expression, sequencing (1018)
	cellular and genetic biology, health, and geophysics/geology	enpression (3737)	cellular expression (2721)
	(7377)	chinese geophysics; health research	chinese medical patients (1837)
		(3638)	Soils, plants and rare earth elements (1801)

The first major division (first level) in the 2005 taxonomy is physical and engineering sciences (19807) and life sciences and mathematics (14539). While mathematics is applicable to physical, engineering, and life sciences, it typically is categorized with the physical sciences. It appears that the life-sciences based terminology of some branches of mathematics (genetic programming, genetic algorithms, neural networks, etc) resulted in mathematics being assigned by the clustering algorithm to the life sciences category. For purposes of this discussion, mathematics will be treated as part of the physical and engineering sciences category.

The physical and engineering sciences category (with mathematics included) has 3.66 times as many records as life sciences, which shows China's strong emphasis in physical and engineering sciences relative to life sciences. The physical and engineering sciences branch further splits into chemistry, physics/ materials, and mathematics ("chemical

reactions, chemistry" (5841), "physics, thin films, alloys, and nanomaterials, the mechanical properties of materials" (13966), "mathematics, algorithm and program development, modeling (mathematical & algorithmic), system modeling" (7162)). The "physics, thin films, alloys, and nanomaterials, the mechanical properties of materials" category has almost three times as many records as the "chemical reactions, chemistry" category, and twice the records of the mathematics category. The other main branch of the tree, life sciences and mathmatics, consists only of life sciences ("cellular and genetic biology, health, and geophysics/geology" (7377)) for the present discussion.

The third level of the hierarchy offers further differentiation. The chemistry category divides into a more fundamental structural sub-category ("molecular and crystal structure" (1813)) and a more applied dynamic sub-category ("chemical reactions and behaviors, chemical analysis, liquid chromatography" (4028)), with twice the output in The physics/ materials category divides into a the applied dynamic sub-category, physics sub-category ("physics, thin films and optics" (5910) and a materials subcategory ("structural and mechanical properties of materials, materials analysis" (8056)), The physics sub-category focuses on surface phenomena (e.g., films), and much of the thin film work could be considered as overlapping with the materials category. The materials sub-category focuses on bulk material phenomena, with the exception of the nanomaterials component. Thus, the physics/ materials category has a heavy weighting toward the materials component, with attention paid to both bulk and surface phenomena. The mathematics category divides into a more fundamental mathematical analysis category ("mathematics: differential equations, algebraic equations" (2333)) and a more applied mathematical modeling sub-category ("mathmatical modeling and genetic algorithems" (4829)), with twice the output in the more applied modeling category. The life sciences category divides into a fundamental biology category ("genetic and cellular expression" (3739)) and a combination of applied clinical medicine and environmental geobiophysics ("Chinese geophysics; health research" (3638)).

The fourth hierarchical level provides further differentiation, and specific topics begin to emerge. To define these sixteen sub-categories more definitively, the following approach was used. Based on the hierarchical tree structure, the elemental clusters (from the 256 total) that fall under each fourth level sub-category are identified, and their themes listed under each fourth-level sub-category in bulletized summary form. The order of presentation is that shown on Figure 1, starting from the top sub-category of level 4. The one digit prefixes in the following refer to level 1 categories; the two digit prefixes refer to level 2 categories; the three digit prefixes refer to level three categories; and the four digit prefixes refer to level four categories.

Level 4 Descriptions at the Elemental Cluster Level

- 1. Physical and Engineering Sciences
- 1.1. chemical reactions, chemistry
- 1.1.1 the structure of molecules, crystal structure (1813)
- 1.1.1.1. atomic bonds and the crystal structure of molecules (1297)

- · the bonds between atoms and molecules, specifically hydrogen bonding, and atom interaction.
- · compounds containing intramolecular hydrogen bonds, with emphasis on their structure.
- · compounds and molecules containing rings, such as benzene rings, with emphasis on their synthesis and characterization.
- the atomic structure of molecules and compounds.
- atomic structure concentrating on O2 and N2 atoms, with emphasis on ligands and synthesis of complexes.
- · chemistry with emphasis on chemical mechanics.
- · various metal complexes and chemical properties of materials, with emphasis on ligands.

1.1.1.2 the crystal orientation of molecules/atoms/ visualization (516)

- · single crystal x-ray diffraction method for analyzing compounds and their structure.
- the characterization of crystal structures, especially space groups.
- · crystallographic structures and space groups, especially determination of unit cell dimensions: (designated as a, b, and c) in angstroms.

1.1.2 chemical reactions, liquid chromatography (4028)

1.1.2.1. catalytic reactions (2270)

- · isolation of compounds and elucidation of their structures.
- · glucopyranosyl, especially isolation of chemical compounds containing glucopyranosyl.
- · alpha and beta cyclodextrin.
- \cdot the characteristics of various molecules, such as molecular weight, degradation of the molecules, etc.
- the structure and characteristics of various molecules, mainly using NMR mass spectrometry.
- · various chemical compounds and their synthesis.
- · kinetics of reactions.
- · various chemical reactions, and the product of those reactions and the conditions needed for the reaction, more specifically reaction temperature.
- · synthesis of chemicals and chemical reactions.
- · various chemical reactions and specifically on their yields.
- · chemical reactions with an emphasis on catalyzing agents.
- · chiral compounds, chiral ligands and enantioselectivity.
- \cdot aldehydes, especially aromatic aldehydes, with emphasis on reactions involving them.
- · ionic liquids, especially BMIM: (butyl methylimidazolium), with emphasis on its use as a reaction medium and promoter to increase reaction yields.
- · catalysts and their use.
- · chemical reactions, specifically those involving catalysts.

- · molecular sieves, especially those comprised of MCMs: (mesoporous crystalline materials), with emphasis on their synthesis and characterization.
- · zeolites and their formation and chemical makeup, as well as various catalysts.
 - 1.1.2.2 adsorption of chemicals, and analysis of chemicals by liquid chromatography (1758)
- · adsorption and removal of matter from various media using various adsorption media.
- · surfactants and micelles and their aggregates.
- water, and various chemical reactions/solutions that involve/contain water. Also talks about membranes, and the properties of solutions containing water.
- \cdot acids and their uses, as well as the degradation of various compounds, either by acids or using other means.
- the preservation of fruits after harvest and its relation to the concentration of CO2 in the controlled environment.
- devices containing or utilizing gold, with emphasis on electrodes, especially self-assembled monolayers: (SAMs), and biosensors.
- electrodes in electrochemical systems, especially carbon-based electrodes.
- · molecular detection, as well as electrode fabrication and use.
- · chemiluminescence, emphasizing issues of detection limit for detecting trace material amounts, especially at the microgram level of concentration.
- · chemical separation methods, especially those based on capillary electrophoresis: (CE).
- different means of either charge or mass separation, high pressure liquid chromatography, or liquid-liquid extraction
- · mass spectrometry and liquid chromatography.
- compounds and enzymes, with emphasis on their synthesis, separation, and purification, and especially the use of chromatography.
- \cdot the extraction and recovery of one physical component from another physical component.
- 1.2. thin films and mechanical properties of materials
- 1.2.1 the structural and mechanical properties of materials (8056)
- 1.2.1.1. nanomaterial structure, structural visualization (2830)
- · polymers, their formulation, their formation, and their uses.
- · various polymers, copolymers, monomers, and grafting.
- polymers, especially block copolymers, with emphasis on their synthesis.
- the crystal structures of various compounds and their physical properties such as melting properties with the analysis done by differential scanning calorimetry.
- blends, especially of polymers, with emphasis on high density polyethylene as well as mechanical and melt properties.
- · curing and resins, with emphasis on curing of resins.
- synthesis of nanocomposites, particularly polymer/clay nanocomposites containing montmorillonite: (MMT).

- · carbon nanontubes, especially their synthesis and structure
- · nanotubes, especially synthesis of carbon nanotubes.
- · single-wall and multi-wall carbon nanotubes; includes studies that focus on their synthesis, characterization, and use in reactions involving other materials.
- · nanowires, especially their synthesis and characterization.
- · ZnO, especially ZnO nanorods, with emphasis on their synthesis and structure
- · nanostructures, especially nanorods and nanobelts, and their formation and characteristics
- electron microscopy, especially transmission electron microscopy: (tem).
- · nanoparticles, especially those containing gold.
- · colloidal silver spheres and their self assembly.
- · mesoporous silicas.
- the separation of materials, pore sizes in filter media and the structure of the filter media itself.
- · various suspensions, and the nanoparticles in them. Also talks about powders and the particles' surface area.
- · powders and their fabrication and synthesis and mechanical properties.
- · particulate matter of varying types, and its size and size distribution.
- · shells and encapsulating various compounds within them.
- · TiO2, especially its photocatalytic behavior.

1.2.1.2 alloys, alloy composition, composition/structure (5226)

- · pressure and high pressure. Sometimes discusses chemical reactions or geologic phenomina.
- · % temperature and associated phenomena.
- the different phases of materials as well as the effect that phase change has on the material.
- the magnetic properties of materials along with feromagnets, as well as the doping of various materials to make them magnetic.
- · magnetic properties of various materials, the effects of magnetization on various materials.
- · magnets and magnetic fields.
- turbulent flow, especially vortex dynamics and modeling.
- · flow dynamics and fluid flow modeling.
- · heat transfer.
- heat transfer mechanics and applications, as well as heat transfer experiments.
- · air cooling and heating systems, especially their energy consumption and efficiency.
- · cracking, crack tip growth rates, and stress intensity factors of materials.
- the mechanical properties of materials, and stresses on them, along with what happens to stressed materials. Also talks about residual stresses, and stress testing and stresses in rocks.
- · mechanical properties of materials with emphasis on damage to the material, plastic deformation and fatigue life.
- the deformation behavior of materials as determined through experimental investigations.

- the loading of structural members along with their mechanical properties and the failure modes of various beams, laminates and other materials.
- · finite element models.
- · martensitic transformation temperatures, particularly of shape memory alloys
- Focus on glasses, especially metallic glasses, with emphasis on synthesis and characterization of properties such as glass transition temperature.
- characterization of alloys, especially amorphous alloys, with emphasis on high temperature and magnetic properties.
- · alloy synthesis and electrochemical characterization, with emphasis on characterization of hydrogen storage and discharge capacity.
- the creation/formation/evaluation of alloys and their microstructure.
- · coatings, especially composite coatings.
- · wear resistance of materials, especially experimental evaluation of wear resistance properties.
- the composition, mechanical properties, and synthesis of various materials.
- the charge and discharge capacity of various materials, and mainly their use in electrochemical/electrical charge transfers. Basically it batteries/battery cells.
- \cdot solder and solder joints, particularly lead free solder, with emphasis on solidification, structure, and properties.
- the structure and properties of materials, with emphasis on characterization of welds and fatigue and fracture behavior.
- · corrosion and pitting resistance of metals and alloys, including steels and stainless steels.
- · various steels, especially ferritic and austenitic, with an emphasis on failure modes, testing, and composition
- the grain structure of various alloys and the microstructure of such alloys.
- · various sintering techniques such as spark plasma sintering, and the mechanical properties of sintered materials as well as proper sintering techniques.
- · ceramics, including fabrication, doping, and mechanical properties.
- · characterization of the dielectric properties of ceramics.
 - 1.2.2 thin films and optics (5910)
 - 1.2.2.1. thin films, thin film deposition (1274)
- · films, especially thin films, with emphasis on their synthesis and evaluation.
- · thin films and their deposition.
- · various films, discussing formation, doping, deposition etc.
- · diamond films, including nano-structured diamond films, with emphasis on their deposition by various methods.
- · films and doping agents that are embedded or placed on films, such as sensors.
- · films, specifically composite films and polymer films.
 - 1.2.2.2 structure and properties of thin films (thickness, density function, etc) and optics and physics (4636)

- · thin films and their substrates, and film deposition.
- etched layers, usually of silicon, and includes quantum dots as well.
- devices, especially organic light emitting devices, including light emitting diodes: (LEDs), with emphasis on their fabrication.
- black holes and black hole event horizons, with emphasis on their associated entropy.
- · many different aspects of astronomy, including pulsars, gamma ray emission and luminosity.
- stars, and their relation to composition and evolution of galaxies.
- the emission properties of materials, especially photoluminescence.
- Europium ion: (Eu3+ and Eu2+) doped phosphors, especially their synthesis and characterization, with emphasis on luminescent properties.
- glasses containing Er3+, especially for upconversion laser applications.
- the fluorescence of various materials/atoms/compounds and fluorescence quenching.
- \cdot chitosan, and the separation of various molecules specifically by means of absorption.
- photons: (emission/absorption/interaction) and multi-level atomic systems emphasizing the role of fields on the photon and atomic system behaviors.
- pulses from optical lasers.
- · lasers and pumped lasers.
- · fiber optics and the component fibers.
- \cdot fibers, especially fibers for composites and concrete reinforcement, with emphasis on their synthesis and characterization.
- · gratings, especially fiber Bragg gratings: (FBGs), with emphasis on their development as sensors and optical elements.
- power, namely electrical power, as well as various switches and power converters.
- the resonant frequencies of various excited particles.
- · antennas, particularly patch antennas, with emphasis on their design and characterization.
- waveguides along with Finite Difference Time Domain analysis of the waveguides.
- · electromagnetic, gravitational, and other waves, and their propagation.
- · beams, especially Gaussian beams.
- optics, both biological: (human eye) and mechanical: (optical crystals etc, with some emphasis on solitons).
- the spectra of various molecules and how the spectra was obtained, especially ion absorption and laser optics
- \cdot various crystals and their light carrying/ other optical properties, as well as defects in them.
- doped materials, especially crystals and their various parameters that fall in different bands. Also emphasizes optical band gaps.
- the structure of various molecules and atoms or clusters of atoms. Also discusses the orbit of electrons, and the density and structure based on density functional theory.
- the bonds between atoms and molecules, with emphasis on their electron transfer.
- · reactions, especially their energy and transition states.
- the energy states of various charged particles.
- the states of various systems, and their synchronization and coupling.

- · various topics in astrophysics, and physics in general.
- · quantum particules, and quantum dots, and the spin of electrons.
- · quantum entanglement and entanglement states.
- · decays of subatomic particles, especially those involving branching fractions.
- · quarks and quark models.
- energy levels in the GeV range; especially energies related to the motion and interaction of sub-atomic particles.
- · cross sections, especially related to quantum reactions/interactions.
- · various experiments that probe the nucleus, emphasizing detection of protons and neutrons.
- 2. life sciences and mathematics
- 2.1. mathematics, algorithm and program development, modeling (mathematical & algorithmic)
- 2.1.1 mathematics and differential equations (2333)
- 2.1.1.1. differential equations, equations of systems (1287)
- · mathematics: boundary conditions, equations, etc.
- · numerical equations, especially solution of numerical equations for fluid flows, such as the navier stokes equation.
- · differential equations to describe various systems
- · mathematics, especially solution techniques for mathematical equations.
- · exact solutions, including solitary wave solutions, to various equations and functions.
- · solitons: (waves), especially equations and solutions related to them.
- evaluations of systems, especially those involving limit cycles, homoclinic loops or orbits, and oscillation or oscillators.
- · bifurcation, especially Hopf bifurcation.
- · positive periodic solutions to system equations.
- the existence of positive solutions to equations, especially those involving a fixed point theorem.
- · mathematical equations and mathematical models and systems.

2.1.1.2 algebraic equations and functions (1046)

- mathematical investigations, with emphasis on solutions to equations and functions.
- · graphs and curves, especially theories and proofs involving them
- · algebras, especially Lie algebra and loop algebra.
- · system symmetries, especially Lie symmetries and non-Noether conserved quantities.
- mathematical theorems.
- · mathematics, with emphases on spaces and manifolds.
- · mathematics, with a strong emphasis on matrices.
- the various functions of finite element models, and the mathematics associated with them.

- · computer optimization of data sets, along with optimization functions.
- 2.1.2 mathematical modeling and algorithms (4829)
- 2.1.2.1. genetic algorithms, imaging (1277)
- · algorithm development, especially modeling, convergence, and optimization.
- · various computer algorithms.
- · algorithems, especially search algorithms, development for specific problems of interest.
- · algorithms, with an emphasis on clustering algorithms.
- wavelets.
- speech, voice, and written or typed character characterization and classification, with emphasis on feature/ word extraction.
- · face recognition algorithms.
- · imaging, both the instruments used and the mechanics behind taking images.
 - 2.1.2.2 system and network modeling, large scale modeling, neural networks (3552)
- · video, especially sports video, with emphasis on watermarking.
- caching schemes and caches, especially proxy caches, as they relate to media streaming on networks and servers
- · coding over channels, with emphasis on errors and fading.
- · estimation, and the error associated with estimation.
- · filters, especially those designed to reduce noise.
- · chaotic systems, especially their control and synchronization.
- · various control systems and the controllers themselves.
- \cdot mathematically fuzzy concepts, including fuzzy control, fuzzy models, fuzzy logic, etc.
- · control of linear systems, especially related to time delay and feedback control.
- the stability of delayed neural networks, particularly cellular neural networks, with emphasis on global exponential stability
- · neural networks, especially artificial neural networks: (ANNs).
- networks, specifically computer networks, and the various nodes in a network.
- traffic, mainly on internet and electronic traffic.
- · signature and signature schemes, including proxy signature schemes, for data encryption
- · security, especially system and protocol security.
- \cdot $\,$ resource management, especially as it relates to computer networks, with emphasis on mobile agents and digital libraries
- · Grid Computing, a system for computer resource sharing.
- · web services, especially focused on semantic Web aspects.
- systems for storing and sharing data, especially peer to peer (P2P) systems
- peer to peer: (P2P) networks and file-sharing systems, with emphasis on their topology and topological mismatches.

- · economics, specifically different markets, firms, and the price of goods in different economies.
- business structure and business modeling and supply chains, including the role of linguistics in the decision support systems.
- · various construction projects, mainly in china.
- the design of new components, systems, and structures.
- · systems, with minor emphasis on operating systems and software.
- · machine scheduling and optimization, with emphasis on algorithms that deal with these subjects.
- support vector machines.
- · environmental forcasting and modeling.
- · data aquisition and system modeling.
- · models, especially their parametric analyses.
- · simulations, especially of fluid dynamical systems.
- 2.2. gene expresion and cellular biology
- 2.2.1 Chinese geophyics and Chinese citizens and their health problems (3638)
- 2.2.1.1. gene expression, sequencing (1018)
- isolates and strains of micro-organisms or genes, especially rRNA.
- DNA, particularly the immobilization of DNA, and enzymes.
- dna, specifically on detection, characterization, mutation, sequencing.
- dna and genomic sequencing.
- · genes, especially cDNA.
- transgenic experiments, especially those involving transgenic plants.
- · genes, and gene expression and genetic sequencing.

2.2.1.2 cellular expression (2721)

- · various forms of cancer and possible treatments, and cellular expression.
- tumors, including tumor growth, metastases, treatment, and inhibition, with emphasis on experiments involving cells in mice or cell lines.
- · various kinds of cells and their attributes, along with cellular expression.
- · various kinds of cells, expression of those cells, and gene expression.
- · multiple types of cells and what affects them, emphasizing apoptosis.
- · kinase and receptor activation, and the signaling of the cells between the receptors.
- various chemicals or molecules/compounds that have an effect on the body (activation or inhibition) or the body's reaction to various stimuli.
- the calcium ion, Ca+2, particulary as it relates to cells and cellular functions.
- · neurons.
- · experiments performed on rats, especially impacts on their brain.
- · cellular expresson and tumor necrosis factor alpha and transforming growth factor.
- · the use of mice in medical experiments.
- · antibodies, vaccines, and immunity.
- proteins and their characterization and use.

- · proteins, and protein separation, and protein analysis.
- · proteins, viruses, antibodies and vaccines related to SARS: (Severe Acute Respiratory Syndrome)
- · SARS: (Severe Acute Respiratory Syndrome), particularly studies involving SARS patients, cases and outbreaks.
- 2.2.2 genetic expression, and cells, mainly cancer cells (3739)
- 2.2.2.1. Chinese medical patients (1837)
- the circulatory system, emphasizing arteries and stents, and clinical problems associated with various patients.
- \cdot the renal system, and patients who have renal problems and some of their treatments.
- · medical patients and their medical problems.
- \cdot medical/ biological experiments, and talks about the different groups in the experiment.
- the interaction of insects and their predators, and what influences the mortality of insects/fish.
- · various clinical medical studies, usually involving women.
- sexually transmitted diseases such as HIV. Also smoking and its health problems, as well as other respiratory ailments.
- health problems among Chineese citizens, especially in Hong Kong.
- · various social and health characteristics and behaviours of Chinese citizens and children.
- · Chinese families, with emphasis on genetics and medicine.
- · cancer risk and control.
- · specific types of genes, especially polymorphs, and their functions.
- · genetic diversity in populations.
- · chromosomes and genes, especially genetic markers and traits.

2.2.2.2 Soils, plants and rare earth elements (1801)

- · rock and mantle beneath North China, with emphasis on isotope dating.
- geological formations in China, with emphasis on determination of geologic age.
- · seismic activity, including earthquakes.
- wind, both solar wind and lower atmospheric wind; includes wind modeling, and wind damage, as well as particulates in the wind such as dust and aerosols.
- · creating climate models, especially over water or near coasts, and various ways to determine moisture concentrations and ways of measuring various quantities that affect climate, such as moisture etc.
- · climate analysis (especially monsoons) and indoor air pollutant studies, mainly in china and the surrounding areas.
- · sediments and sediment tracking and contamination in various water sources; lakes, rivers, estuaries, seas, etc.
- · soil, especially the effects of soil properties on plants, in China

- · plants, and plant roots. Includes waste remediation using plants, various health benefits of plants, and plant characterization and analysis.
- \cdot all matter of plants, both food plants and non-food plants, including seeds and their properties, such as germination rate
- various species of organisms and plants, and their characteristics. Also talks about DNA and comparing it between species.
- the identification of mainly zoological and entomological species in China.
- · plant species.

The specific sub-thrusts (elemental clusters) in each of the above Level 4 categories, including the raw data for each elemental cluster, are listed and summarized in Appendix 4, which can also be viewed as a flat taxonomy from a Level 4 perspective.

Comparison of China's and USA's Investment Strategies

In the section on comparing China's research citations with those of India and Australia, the three criteria of 'right job', 'job right', and productivity/ progress were described. In any research evaluation, the first criterion to consider is 'right job'. If the research unit being evaluated is not aiming at the right target, the highest quality approach will not provide results useful to the organization's mission.

A major component of 'right job' is the research investment strategy. This includes the allocation of resources among the components of the research portfolio, and the rationale for that allocation. The taxonomy shown in the previous section reflects the present research investment strategy of China (based on published output). Of particular interest is how this investment strategy compares with that of other countries, and which particular areas China has chosen to emphasize.

One approach to performing such a comparison would be to compare taxonomies of different countries at different hierarchical levels. This requires that categories defined by the clustering algorithms would have similar content and theme, for those categories to be compared directly.

Another approach is based on the philosophy that very specific sub-technology areas should be compared, to identify precisely where different countries emphasize their investment. These critical sub-technologies emphasized by each country become the 'dots' to be connected for understanding the overall country research strategy.

How specific should the technology areas be? Let us follow the chain of dis-aggregation, starting from the top. At the highest level would be the research articles for all of China. One could compare the number of research articles in a given year with that of, say, the USA, and draw very general conclusions about overall research output. This was essentially the approach of King, in comparing research output from 31 different countries (King, 2004). Very limited information can be obtained from this level of resolution.

At the next level would be research articles for each technology area for a country. The first author has proposed that making comparisons at this level for critical technologies provides a much more strategically important view of each country's capabilities (Kostoff, 2004d). Recent text mining studies on nanotechnology (Kostoff et al, 2006a) and energetic materials [unpublished] show that China is advancing rapidly in its research article production in these two critical technologies, and is second only to the USA in research article production. However, even these results aggregated at the critical technology level may be too aggregated for critical investment strategy emphasis analyses. If China is second to the USA, for example, in nanotechnology in general, might there be sub-areas of nanotechnology (e.g., nanocomposites, nanorods, etc) where China is actually leading the USA? And what would be the strategic implications of China heavily emphasizing research investment in such areas?

Thus, at the next level would be sub-critical technology areas, such as nanocomposites or nanorods in the nanotechnology example above. Further levels of dis-aggregation are possible, such as 'metal nanocomposites' or 'heavy metal nanocomposites'. The terminal level of resolution used for the comparison depends on the objectives of the study, and the numbers of articles available at the different levels.

This latter approach was used to compare the relative investment strategies of China and the USA for the present study, with a resolution at about the critical sub-technology level. The approach used was as follows. Ten thousand articles each of USA and China were downloaded from the SCI for 2005. At the time the download occurred, the total number of USA articles was 233,936 and the total number of China articles was 58,044. Thus, the USA had approximately four times the total number of research articles for 2005 as China.

A phrase frequency analysis was performed on each download, and the phrases were then combined. The ratio of frequencies for each phrase was tabulated. Phrases were ordered by ratio of occurrence in each country's download. Two bands were considered: phrases that had a large China/ USA frequency ratio and phrases that had a large USA/ China frequency ratio (the opposite ends of the spectrum). The phrases in these bands were inserted into the SCI, and the absolute values of numbers of records that contained these phrases (for the first 10.5 months of 2005) were obtained. The results are shown on Tables 15 and 16.

Table 15 (Chinese Strengths - SCI)

QUERY PHRASE	# 2005 SCI ABSTRACTS		ABSOLUTE RATIO	NORMALIZED RATIO
	CHINA	USA	(CHINA/USA)	(CHINA/USA)
Neural Network	489	394	1.24	4.96
Lyapunov	222	170	1.31	5.22
XRD	2141	347	6.17	24.68
Nanorods	359	117	3.07	12.27

Nanocomposites	330	328	1.01	4.02
Nanocrystals	451	392	1.15	4.60
Copolymer	496	500	0.99	3.97
Welding	102	123	0.83	3.32
Corrosion Resistance	152	52	2.92	11.69
Compressive Strength	76	67	1.13	4.54
Photodegradation	67	59	1.14	4.54
Zeolite	214	230	0.93	3.72
Ceramics	750	414	1.81	7.25
Alloy	1558	962	1.62	6.48
Heat Treatment	297	224	1.33	5.30

Table 16 (USA Strengths - SCI)

QUERY PHRASE	# 2005 SCI ABSTRACTS		ABSOLUTE RATIO	NORMALIZED RATIO
	CHINA	USA	(USA/CHINA)	(USA/CHINA)
Arthritis	51	1120	21.96	5.49
Pathology	63	1555	24.68	6.17
Health	371	11273	30.39	7.60
Cancer Risk	15	602	40.13	10.03
Psychiatric	17	1306	76.82	19.21
Cognitive	75	3123	41.64	10.41
Medication	27	1422	52.67	13.17
Galaxy	39	860	22.05	5.51
Antibiotics	80	877	10.96	2.74
Heart Failure	49	1292	26.37	6.59
Mental	63	2655	42.14	10.54
Telescope	55	846	15.38	3.85
Diabetes	123	2832	23.02	5.76
Pain	130	3216	24.74	6.18
Symptoms	171	4921	28.78	7.19

The difference in thematic emphasis between the USA and China is dramatic! China emphasizes the hard sciences that underpin defense and commercial needs. The USA emphasizes research areas focused on medical, psychological, and social problems. There are even research areas where China leads the USA in absolute numbers of

<u>research articles published.</u> In those areas, China's relative investment strategy is greater than four times that of the USA.

A number of these detailed areas in which China places high emphasis are related to nanotechnology. A recent nanotechnology text mining study (Kostoff et al, 2006a) showed that China was second to the USA in nanotechnology research article productivity. This means that at the next level or two lower in aggregation, there could be nanotechnology sub-areas in which China was actually leading in absolute numbers of research article production, and also areas in which they were well behind the USA in absolute numbers of research article production. The present analysis confirms that hypothesis, and suggests that the USA should pay particular attention to those areas in which China has chosen to apply substantial relative emphases.

The next two tables are similar to Tables 15 and 16, except that they contain common (to USA and China) high frequency phrases that were derived from the Engineering Compendex (EC), instead of the SCI. They also contain comparisions of occurence frequency for a given query term between the EC and the SCI. Both China and the USA had similar numbers of records in the EC (for those records that contained a country address), so no normalization was needed.

Table 17 contains a set of phrases taken from the Engineering Compendex (EC) in which China had a large lead relative to the USA in terms of the ratio of record occurrences. Those terms and their ratios of occurrence were then compared to the ratio of China and USA records in the SCI.

In general, the EC is a much more applied database than the SCI, and some of the words/ phrases chosen in Tables 17 and 18 reflect that. Some of the phrases, such as XRD, were high frequency shared phrases not only in the China EC phrase list, but also in the China SCI phrase list. The specific number of records retrieved by a query term may be different in Tables 15 and 17 (e.g., XRD), and is due to the fact that the data for these tables were downloaded on different days. There are new records uploaded to the SCI and EC every day, so from day to day there can be an increase in terms of number of records that are returned from a specific query.

Table 17 (Chinese Strengths – EC)

QUERY PHRASE	# 2005 EC ABSTRACTS		ABSOLUTE RATIO EC	2005 SCI ABSTRACTS		ABSOLUTE RATIO SCI
	CHINA	USA	CHINA/USA	CHINA	USA	CHINA/USA
Bearing Capacity	145	12	12.08	15	13	1.15
XRD	2213	237	9.34	2582	418	6.18
Microhardness	174	22	7.91	129	53	2.43
Photoelectric	86	13	6.62	57	37	1.54
Diesel Engine	152	23	6.61	33	46	0.72
Wavelet Transform	338	54	6.26	119	90	1.32
Fiber Bragg Grating	115	19	6.05	56	19	2.95

Wear Resistance	213	37	5.76	161	63	2.56
Annealing Temperature	214	39	5.49	182	81	2.25
Impact Strength	92	19	4.84	57	27	2.11
Magnetron	285	60	4.75	292	133	2.20
Countermeasures	57	13	4.38	9	59	0.15
Intrusion Detection	100	23	4.35	33	36	0.92
Missile	100	24	4.17	6	45	0.13

Table 18 (USA Strengths – EC)

QUERY	# 2005 EC		ABSOLUTE	2005 SCI		ABSOLUTE
PHRASE	ABSTRACTS		RATIO EC	ABSTRACTS		RATIO SCI
	CHINA	USA	USA/CHINA	CHINA	USA	USA/CHINA
Biochemistry	47	1498	31.87	42	445	10.60
Epithelial	9	182	20.22	238	5155	21.66
C-Terminal	17	308	18.12	110	1513	13.75
Microbiology	13	196	15.08	13	207	15.92
Aeronautics	13	176	13.54	1	46	46.00
Transmembrane	14	176	12.57	89	1480	16.63
Viral	10	121	12.10	241	3942	16.36
Prostate	11	136	12.36	103	3828	37.17
Cytoplasmic	13	162	12.46	107	1933	18.07
Patient	28	351	12.54	482	15699	32.57
Peptides	36	408	11.33	313	3132	10.01
Transfection	9	101	11.22	169	980	5.80
Ecosystems	15	164	10.93	82	1158	14.12
Mortality	13	127	9.77	275	8138	29.59

Tables 17 and 18 confirm that in the EC, as in the SCI, China's focus is on the hard sciences and especially engineering sciences, whereas the USA's relative focus is on health and biology-based research. In the overtly military-related terms (countermeasures, intrusion detection, missile), China has a commanding presence. One interesting exception is the presence of 'aeronautics' in the list of USA dominant terms. Similar anomalies have been noted in past studies. In technologies that require a large infrastructure, and therefore large investment, China has tended to be under-represented, and that probably accounts for the 'aerospace' under-emphasis.

Summary and Conclusions

Structure of Chinese Science in Technical Categories

5

The first major division (first level) in the 2005 taxonomy is physical and engineering sciences (19807 records) and life sciences and mathematics (14539 records). While mathematics is applicable to physical, engineering, and life sciences, it typically is categorized with the physical sciences. It appears that the life-sciences based terminology of some branches of mathematics (genertic programming, genetic algorithms, neural networks, etc) resulted in mathematics being assigned by the clustering algorithm to the life sciences category. For purposes of this discussion, mathematics will be treated as part of the physical and engineering sciences category.

The physical and engineering sciences category (with mathematics included) has 3.66 times as many records as life sciences, which shows China's strong emphasis in physical and engineering sciences relative to life sciences. The physical and engineering sciences branch further splits into chemistry, physics/ materials, and mathematics ("chemical reactions, chemistry" (5841), "physics, thin films, alloys, and nanomaterials, the mechanical properties of materials" (13966), "mathematics, algorithm and program development, modeling (mathematical & algorithmic), system modeling" (7162)). The "physics, thin films, alloys, and nanomaterials, the mechanical properties of materials" category has almost three times as many records as the "chemical reactions, chemistry" category, and twice the records of the mathematics category. The other main branch of the tree, life sciences and mathmatics, consists only of life sciences ("cellular and genetic biology, health, and geophysics/geology" (7377)) for the present discussion.

The third level of the hierarchy offers further differentiation. The chemistry category divides into a more fundamental structural sub-category ("molecular and crystal structure" (1813)) and a more applied dynamic sub-category ("chemical reactions and behaviors, chemical analysis, liquid chromatography" (4028)), with twice the output in The physics/ materials category divides into a the applied dynamic sub-category, physics sub-category (physics, thin films and optics" (5910) and a materials sub-category ("structural and mechanical properties of materials, materials analysis" (8056)), The physics sub-category focuses on surface phenomena (e.g., films), and much of the thin film work could be considered as overlapping with the materials category. The materials sub-category focuses on bulk material phenomena, with the exception of the nanomaterials component. Thus, the physics/ materials category has a heavy weighting toward the materials component, with attention paid to both bulk and surface phenomena. The mathematics category divides into a more fundamental mathematical analysis category ("mathematics: differential equations, algebraic equations" (2333)) and a more applied mathematical modeling sub-category ("mathmatical modeling and genetic algorithems" (4829)), with twice the output in the more applied modeling category. The life sciences category divides into a fundamental biology category ("genetic and cellular expression" (3739)) and a combination of applied clinical medicine and environmental geobiophysics ("Chinese geophysics; health research" (3638)).

Structure of Chinese Technology in Technical Categories

These conclusions are based on EC data. The first level of the technology taxonomy has two categories: Computer Sciences (4721 records) and Physical Sciences (5228 records). Percentage-wise, this is a split of 47/53%. The second taxonomy level is generated by sub-dividing each first level category by two. Computer Sciences divides into Cybernetics & Systems Engineering (3902) and Signal Processing (819), while Physical Sciences divides into Materials Science (3477) and Chemistry & Nanotechnology (1751). The lower taxonomy levels are generated in the same manner as above. In the fourth taxonomy level, several categories stand out as receiving significantly more focus than the others. These categories are Systems Theory (23.4%) and Structural Mechanics & Materials (20.1%) with the most focus, followed by Applied Measurements (9.3%), Power/Energy Market Enterprises (8.6%), and Organic Chemistry (7.2%) as compared to the other eleven categories ranging from 1.3 – 4.9%.

Additionally, the Abstracts also cover a broad range of fields ranging from industrial to high tech electronics that are indicative of a large society growing to sustain itself and become technologically competitive on a global scale. Examples of some key areas receiving emphasis are as follows; Energy/Power Generation, Mining, Materials & Structural Mechanics, Signal Processing, Systems Engineering, Transportation & Traffic flow, Robotics, Sensors & Diagnostics, Advanced Communications, Nanotechnology, Assessment Methods, Mathematics, Environmental & Ecological, Modeling & Simulation, and Control Theory. All of these areas have applications that can be of military significance.

Efforts in energy and power generation include hydroelectric, nuclear, and fossil fuels (such as coal), with the emphasis on the later. Improvements are being sought for more efficient yields of energy from these resources. Power generation spans from the Power Plants to vehicles to small electronic devices. The efforts in fossil fuels are closely tied with mining and structural developments.

The efforts in mining include identify areas of opportunity for different resources, improving mine structures to prevent collapse. These efforts can be closely associated with other work in remote sensing to help locate resources and conduct environmental impact studies. The same efforts to improve structural developments in mines might also be applied to underground facilities. Materials and structural mechanics fields range from the macro level (geologic formations and superstructures) to the micro and nano level (e.g. particles, ligands, compounds, films, and nanowires). There are specific references of structural analyses being done for a *New-Concept Submarine* and *low noise torpedo*, as well as for solid rocket motors.

Systems, control theory, modeling, and simulation are closely associated with all other areas. They range from the macroscopic, such as improving trafficability movements of large vehicles, resources, people, and robotics to the microscopic, such as gene manipulation. They are being done for topics small and large in numbers, such as

tracking and/or controlling Unmanned Aerial Vehicles (UAVs) in a dense air traffic environment. Vibrational analysis is being performed with specific applications to missile launches on naval ships. Signal processing techniques are also closely related to these fields as well and incorporate wavelets, digital signal processing and neural networks. Applications of these studies include remote detection and biometrics.

Assessments, testing, and diagnostic methods include studies of text mining, Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), Magnetic Resonnance Imaging (MRI's), and other high precision diagnostic instrumentation which can be used in nuclear weapons development. Long range plans are made that include research, such as the specific reference to a new 5-year coal mining plan.

Communications related research studies topics such as fiber optics, optical comms in seawater, digital, wireless networks, mobile networks, millimeter waveguides, blind signature schemes in cryptography, and security protocols.

Relative Research Investment Emphases between China and USA

The relative frequency of China and USA research articles in the SCI for 2005 was computed. The difference in thematic emphasis between the USA and China is dramatic! China emphasizes the hard sciences that underpin defense and commercial needs. The USA emphasizes research areas focused on medical, psychological, and social problems. There are even research areas where China leads the USA in absolute numbers of research articles published. This means that, in those areas, China's relative investment strategy is greater than four times that of the USA.

A number of these detailed areas in which China places high emphasis are related to nanotechnology. A recent nanotechnology text mining study [Kostoff et al, 2006a] showed that China was second to the USA in nanotechnology research article productivity. This means that at the next level or two lower in aggregation, there could be nanotechnology sub-areas in which China was actually leading in absolute numbers of research article production, and also areas in which they were well behind the USA in absolute numbers of research article production. The present analysis confirms that hypothesis, and suggests that the USA should pay particular attention to those areas in which China has chosen to apply substantial relative emphases.

Relative Technology Investment Emphases between China and the USA

In the Engineering Compendex, as in the Science Citation Index, China's focus is on the hard sciences and especially engineering sciences, whereas the USA's relative focus is on health and biology-based research. In the overtly military-related terms (countermeasures, intrusion detection, missile), China has a commanding presence. One interesting exception is the presence of 'aeronautics' in the list of USA dominant terms. Similar anomalies have been noted in past studies. In technologies that require a large infrastructure, and therefore large investment, China has tended to be under-represented, and that probably accounts for the 'aerospace' under-emphasis.

Country Bibliometrics

What are the most utilized journals for China as a whole? The twenty journals containing the most Chinese articles for 2004-2005 appear to be concentrated in chemistry, materials, and physics, with one medical journal. Many are Chinese journals.

What are the most prolific institutions? The twenty most prolific institutions for research articles are the Chinese Academy of Sciences in aggregate (all branches), followed by universities. The most prolific of the universities are Tsing Hua, Zhejiang, Peking, Shanghai Jiao Tong, and Hong Kong.

Which countries collaborate the most with China? The most collaborative countries with China, as reflected in the authors' country listing from SCI articles, are as follows:

China (118659); USA (9919); Japan (4247); Germany (2450); England (2295); Canada (1923); Australia (1811); France (1374); Singapore (1334); South Korea (1197); Taiwan (870); Russia (651); Italy (632); Sweden (626); India (623).

What is the citation impact of collaboration? Two cases were compared. The first case consisted of all research articles in the SCI published from 1995-1999 having at least one author with a Peoples Republic of China address. The second case consisted of all research articles in the SCI published from 1995-1999, retrieved using the following address query that essentially generates Chinese-only authored articles: (PEOPLES R CHINA NOT (USA OR JAPAN OR GERMANY OR HONG KONG OR (ENGLAND NOT NEW ENGLAND) OR CANADA OR ITALY OR FRANCE OR AUSTRALIA OR SOUTH KOREA OR TAIWAN OR NETHERLANDS OR SWEDEN OR RUSSIA OR INDIA OR SINGAPORE OR SWITZERLAND OR SPAIN OR BRAZIL OR SCOTLAND OR FINLAND OR MALAYSIA OR ROMANIA OR AUSTRIA)). These countries were the main research collaborators with China in the 1995-1999 time frame.

The first case (China and collaborators) produced the following results:

- Articles retrieved, 83689;
- Median citations of total articles retrieved. 2:
- Median citations of top ten cited articles retrieved, 604;
- Median citations of top 5% articles retrieved, 35.

The second case (China only) produced the following results:

- Articles retrieved, 62018;
- Median citations of total articles retrieved, 2;
- Median citations of top ten cited articles retrieved, 239;
- Median citations of top 5% articles retrieved, 25.

Thus, approximately one-quarter of research articles having at least one author with a China address were the result of China's collaboration with other countries. The impact of collaboration was negligible on median citations of the total. The impact of

collaboration was substantial on the top ten cited articles, and was noticeable on the top 5% of cited articles.

What are the main technical areas for collaboration? Two examples were selected: Chinese collaboration with the USA and with Japan. The two areas that stand out for both collaborative groups (China-USA; China-Japan) are biomedical and nanotechnology. However, when frequencies of similar phrases from each group are taken into account, for the China-USA articles, biomedical comes first and nanotechnology second. For the China-Japan articles, nanotechnology ranks higher relative to biomedical. Given China's relative (to the USA) investment strategy emphasis in nanotechnology, as will be shown later, and lesser relative investment emphasis in biomedical, the collaborative research relationship with Japan appears to be more quid pro quo than is the relationship with the USA.

Which journals are cited the most? The top ones cited most appear to be primarily English Language journals in contrast to many of the top most prolific journals being Chinese Journals. This suggests that at this time there may be a larger dependence on English Language (i.e. foreign) journals than on China's own internal journals, at least for Chinese papers published in journals accessed by the SCI.

The median Impact Factor of the nineteen journals containing the most papers cited by Chinese-authored papers is 5.45. This is contrasted with the median Impact Factor of the eighteen journals containing the most Chinese-authored papers (0.72). This order of magnitude difference in Impact Factor between the journals in which the Chinese researchers publish and the journals that they reference indicates Chinese researchers may not be publishing in the highest research impact journals. Since Impact Factor is discipline dependent, a discipline-based comparison of the overall Chinese results above (confined to those journals) may be instructive.

The median of the Impact Factors of the seven top physics journals in which the Chinese authors publish is 1.25, whereas the median of the Impact Factors of the seven top physics journals that they cite is 4.31, a factor of ~3.5 difference. The median of the Impact Factors of the three top chemistry journals in which they publish is 0.41, whereas the median of the Impact Factors of the seven top chemistry journals they cite is 3.46, a factor of nine difference. The median of the Impact Factors of the top six materials journals in which they publish is 0.49, whereas the Impact Factor of the top materials journal they cite is 1.71, a factor of ~3.5 difference. The top general science journal in which they publish has an Impact Factor of 0.68, whereas the three top general science journals they cite have a median Impact Factor of 31.86, a factor of more than forty difference. The top medical journal in which they publish has an Impact Factor of 0.46, while the top biology journal they cite has an Impact Factor of 6.36.

While these comparisons are for the top ~twenty journals only, and the Impact Factors have not been weighted by the numbers of papers in each journal, it is quite clear that, on average, the Chinese researchers are not publishing extensively in the high research impact journals they are referencing.

A slightly different journal Impact Factor comparison was made for the discipline of To compare Impact Factors of journals in which Chinese authors nanotechnology. publish nanotechnology papers with journals in which USA authors publish nanotechnology papers, a separate retrieval was made in mid-January 2006. The most recent 2000 articles that had at least one Chinese author but no authors from Japan, USA, Germany, France, South Korea, England, Russia, Italy, India, Spain, Taiwan, or Canada were retrieved, as were the most recent 2000 articles that had at least one USA author but no authors from Japan, China, Germany, France, South Korea, England, Russia, Italy, India, Spain, Taiwan, or Canada. The countries excluded are the major producers of nanotechnology research articles (Kostoff et al, 2006a). The purpose of this comparison is to identify Impact Factors of journals containing essentially intranational nanotechnology papers. For the eleven journals containing the most nanotechnology papers with USA authors, and the eleven journals containing the most nanotechnology papers with Chinese authors, the median Impact Factor of the USA journals is 3.9, whereas the median Impact Factor of the Chinese journals is 1.19, a difference of more than a factor of three.

To further place these numbers in perspective, an analysis was done to identify the journals cited by all nanotechnology researchers globally, emphasizing obvious Chinese journals. A study of the 2003 global nanotechnology literature retrieved over 21000 articles on nanotechnology (Kostoff et al, 2006a). Over 31000 journals were referenced in these articles.

There were 206 obvious Chinese journals listed (CHIN* or SINICA, in journal name). Most had one or two citations. There were a handful of Chinese journals that appeared significant, and even these had two orders of magnitude less citations than the leading international journals. Even though China's nanotechnology research article productivity was second to that of the USA (Kostoff et al, 2006a), most of its domestic journals in which these nanotechnology articles were published were receiving relatively negligible numbers of citations.

How does the quality of China's articles compare with that of other countries? Two examples were selected: India and Australia.

A citation comparison approach of papers published in selected technology areas was utilized. Phrases that appeared in each country's technical literature, and were of similar magnitude of occurrence, were selected.

China-India Comparison

Diverse technologies were selected to represent four major categories: Physical Sciences, Environmental Sciences, Material Sciences, Life Sciences. The phrases (technologies) were grouped by these major categories. The first group is Physical Sciences. Out of twenty phrases examined, representing diverse areas of physical sciences, China was a clear winner in fifteen (based on median number of top ten cited articles), India led in

one, and four were viewed as even. Clearly, China is the leader in Physical Sciences, based on top ten median numbers of citations.

The second group is Environmental Sciences. Out of ten phrases examined, China was the clear leader in seven, and three were considered even. Clearly, China is the leader in Environmental/Agricultural Sciences.

The third group is Material Sciences. Out of ten phrases examined, China was the clear leader in seven, India was the clear leader in two, and one was considered even. Clearly, China is the leader in Material Sciences.

The fourth group is Life Sciences. Out of ten phrases examined, China was the clear leader in nine, and one was considered even. Clearly, China is the leader in Life Sciences.

Thus, China was the clear leader in each major category, although there were (isolated) instances where India led in a sub-technology area. It should be re-emphasized that this comparison did not examine relative investment strategies. It focused only on technical areas that had similar magnitudes of investment. It should also be emphasized that there can be many reasons why an article receives or does not receive citations (Kostoff, 1998b). These include intrinsic quality, research fundamentality (more fundamental articles receive, on average, more citations), and journal visibility. To identify which of these causation factors is operable, samples of articles would have to be retrieved, and each article examined in detail. Such an in-depth analysis was beyond the scope of the present study.

China-Australia Comparison

A diverse selection of phrases was made, to represent four major categories: Physical Sciences, Environmental Sciences, Engineering Sciences, Life Sciences. Out of eighteen phrases examined, representing diverse areas of Physical Sciences, Australia was a clear winner in eleven, a close winner in six, and tied with China in one. Australia is clearly the leader in Physical Sciences, based on top ten median numbers of citations.

The second group is Environmental/Agricultural Sciences. Out of fifteen phrases examined, Australia was the clear leader in all fifteen. Australia was an obvious winner over China in Environmental/Agricultural Sciences.

The third group is Engineering Sciences. Out of eleven phrases examined, Australia was the clear leader in six, a close leader in three, and was tied with China in two. Although Australia is the winner in Engineering Sciences, China's foucus on engineering and applied sciences can be seen, even compared to a first world country such as Australia.

The fourth group is Life Sciences. Out of sixteen phrases examined, Australia was the clear leader in all sixteen. This result is not only expected, but is further evidence that

China is currently putting relatively more research effort into engineering and applied sciences than any other category, especially Life Sciences.

Thus, Australia was the clear leader in each major category, although there were (isolated) instances where China was tied in a sub-technology area. It should be reemphasized that this comparison did not examine relative investment strategies. It focused only on technical areas that had similar magnitudes of investment.

MAIN REPORT - REFERENCES

6. References

Blanpied, W. (ed.), "Proceedings of the Sino-US Forum on Basic Research for the Next Fifteen Years". 2002.

Bostian CW, Brandon WT, Mac Rae AU, Mahle CE, Townes SA. Key technology trends - Satellite systems. SPACE COMMUNICATIONS. 16 (2-3): 97-124 2000.

Campbell, R., H.D. Balzer, J. Berliner, R. Dobson, and P. Gregory. "Soviet Science and Technology," Foreign Applied Sciences Assessment Center, October 15, 1985. Chinese Embassy, "Science and Technology Policy.".

Cox Report, House Report 105-851, "Report of the Select Committee on U.S. National Security and Military/Commercial Concerns with the People's Republic of China," Rep.Christopher Cox of California, Chairman, United States Congress, 14 June 1999, http://www.access.gpo.gov/congress/house/hr105851.

Cutting DR, Karger DR, Pedersen JO, Tukey JW. Scatter/Gather: A cluster-based approach to browsing large document collections. In *Proceedings of the 15th International ACM SIGIR Conference on Research and Development in Information Retrieval* (SIGIR'92). 1992. 318-329.

Davidson, R.C., M.A. Abdou, L.A. Berry, C.W. Horton, J.F. Lyon, and P.H. Rutherford, <u>Japanese Magnetic Confinement Fusion Research</u>, Foreign Applied Sciences Assessment Center Technical Assessment Report, Science Applications International Corporation, 1990.

Duncan, L.M., F.T. Djuth, J.A. Fejer, N.C. Gerson, t. Hagfors, D.B. Newman, Jr., R.L. Showen "Soviet Ionospheric Modification Research," with, Foreign Applied Sciences Assessment Center, Technical Assessment Report 4040, 1988.

Garfield E. History of citation indexes for chemistry - a brief review. JCICS. 1985; 25(3): 170-174.

Gray, EM (Ed.), M. Cohn, L.W. Craver, A. Gersho, T. Lookabaugh, F. Pollara, and M. Vetterli *Non-US Data Compression and Coding Research*, , November 1993. A Foreign Applied Sciences Assessment Center (FASAC) report prepared for Science Applications International Corporation (SAIC) under U.S. Government sponsorship.

Guha S, Rastogi R, Shim K. CURE: An efficient clustering algorithm for large databases. In *Proceedings of the ACM-SIGMOD 1998 International Conference on Management of Data* (SIGMOD'98). 1998. 73-84.

Hearst MA. The use of categories and clusters in information access interfaces. In T. Strzalkowski (ed.), Natural Language Information Retrieval. Kluwer Academic Publishers. 2000.

Hsiung, D.I., "An Evaluation of China's Science and Technology System and its Impact on the Research Community.". 2002.

Hutubessy RCW, Hanvoravongchai P, Edejer TTT. Diffusion and utilization of magnetic resonance imaging in Asia. INTERNATIONAL JOURNAL OF TECHNOLOGY ASSESSMENT IN HEALTH CARE. 18 (3): 690-704 SUM 2002.

Jiang, Z., "Hold High the Great Banner of Deng Xiaoping Theory for An All-round Advancement of the Cause of Building Socialism with Chinese Characteristics into the 21st Century," Report delivered at the 15th National Congress of the Communist Party of China, 12 September 1997.

MAIN REPORT - REFERENCES

- Karypis G, Han EH, Kumar V. Chameleon: A hierarchical clustering algorithm using dynamic modeling. IEEE Computer: Special Issue on Data Analysis and Mining. 1999. 32(8). 68--75.
- Karypis G. CLUTO—A clustering toolkit. http://www.cs.umn.edu/~cluto. 2005. King DA, The scientific impact of nations. Nature 430 (6997): 311-316. July 15 2004.
- Klinger, A., editor, Klinger, A., et. al., "Soviet Image Pattern Recognition Research," Jan. 1990, Foreign Applied Sciences Assessment Center, *Science Applications International Corp.*, 10260 Campus Point Drive, San Diego, CA 92121, and 1710 Goodridge Drive, McLean VA 22102.
- Kostoff, R. N., "Database Tomography for Technical Intelligence: Comparative Analysis of the Research Impact Assessment Literature and the Journal of the American Chemical Society:, Scientometrics, 40:1, 1997.
- Kostoff, R. N., Eberhart, H. J., and Toothman, D. R. "Database Tomography for Technical Intelligence: A Roadmap of the Near-Earth Space Science and Technology Literature". Information Processing and Management. 34:1. 1998a.
- Kostoff RN. The use and misuse of citation analysis in research evaluation. Scientometrics 1998b; 43:1: 27-43.
- Kostoff, R. N., Eberhart, H. J., and Toothman, D. R. "Hypersonic and Supersonic Flow Roadmaps Using Bibliometrics and Database Tomography". Journal of the American Society for Information Science. 50:5. 427-447. 15 April 1999.
- Kostoff, R. N., Braun, T., Schubert, A., Toothman, D. R., and Humenik, J. "Fullerene Roadmaps Using Bibliometrics and Database Tomography". Journal of Chemical Information and Computer Science. 40:1. 19-39. Jan-Feb 2000a.
- Kostoff, R. N., Green, K. A., Toothman, D. R., and Humenik, J. "Database Tomography Applied to an Aircraft Science and Technology Investment Strategy". Journal of Aircraft, 37:4. 727-730. July-August 2000b.
- Kostoff, R. N. "The Underpublishing of Science and Technology Results". The Scientist. 14:9. 6-6. 1 May 2000c.
- Kostoff, R. N., and DeMarco, R. A. "Science and Technology Text Mining". Analytical Chemistry. 73:13. 370-378A. 1 July 2001a.
- Kostoff, R. N., Del Rio, J. A., García, E. O., Ramírez, A. M., and Humenik, J. A. "Citation Mining: Integrating Text Mining and Bibliometrics for Research User Profiling". JASIST. 52:13. 1148-1156. 52:13. November 2001b.
- Kostoff, R. N., Tshiteya, R., Pfeil, K. M., and Humenik, J. A. "Electrochemical Power Source Roadmaps using Bibliometrics and Database Tomography". Journal of Power Sources. 110:1. 163-176. 2002.
- Kostoff, R. N. "Text Mining for Global Technology Watch". In Encyclopedia of Library and Information Science, Second Edition. Drake, M., Ed. Marcel Dekker, Inc. New York, NY. 2003a. Vol. 4. 2789-2799.
- Kostoff, R. N. "The Practice and Malpractice of Stemming". JASIST. 54: 10. June 2003b.
- Kostoff, R. N., Shlesinger, M., and Malpohl, G. "Fractals Roadmaps using Bibliometrics and Database Tomography". Fractals. 12:1. 1-16. March 2004a.

MAIN REPORT - REFERENCES

- Kostoff, R. N., Shlesinger, M., and Tshiteya, R. "Nonlinear Dynamics Roadmaps using Bibliometrics and Database Tomography". International Journal of Bifurcation and Chaos. 14:1. 61-92. January 2004b.
- Kostoff, R.N., Bedford, C.W., Del Rio, J. A., Cortes, H., and Karypis, G. "Macromolecule Mass Spectrometry: Citation Mining of User Documents". Journal of the American Society for Mass Spectrometry. 15:3. 281-287. March 2004c.
- Kostoff, R.N. "Scientific Impact of Nations". The Scientist. 27 September 2004d. Kostoff, R. N., Buchtel, H., Andrews, J., and Pfeil, K. "The hidden structure of neuropsychology: Text Mining of the Journal *Cortex*: 1991-2001". Cortex. 41:2. 103-115. April 2005a.
- Kostoff, R. N., Del Rio, J. A., Smith, C., Smith, A., Wagner, C.S., Malpohl, G., Karypis, G., and Tshiteya, R. "The Structure and Infrastructure of Mexico's Science and Technology". Technological Forecasting and Social Change. 72:7. August 2005b.
- Kostoff, R. N., Karpouzian, G., and Malpohl, G. "Text Mining the Global Abrupt Wing Stall Literature". Journal of Aircraft. 42:3. 661-664. 2005c.
- Kostoff, R. N., Tshiteya, R., Pfeil, K.M., Humenik, J. A., and Karypis, G. "Power Source Roadmaps Using Database Tomography and Bibliometrics". Energy. 30:5. 709-730. 2005d.
- Kostoff, R. N., and Block, J. A. "Factor Matrix Text Filtering and Clustering." JASIST. 56:9. 946-968. July. 2005e.
- Kostoff, R. N., Stump, J.A., Johnson, D., Murday, J., Lau, C., and Tolles, W. "The Structure and Infrastructure of the Global Nanotechnology Literature". Journal of Nanoparticle Research. 8:1. 2006a.
- Kostoff, R. N., Murday, J., Lau, C., and Tolles, W. "The Seminal Literature of Global Nanotechnology Research". Journal of Nanoparticle Research. 8:1. 2006b.
- Lanzerotti, L.J., R. C. Henry, H. P. Klein, H. Masursky, G. A. Paulikas, F. L. Scarf, G. A. Soffen, and Y. Terzian, "Soviet Space Science Research," FASAC Technical Assessment Report FASAC-TAR-3060, Foreign Applied Sciences Assessment Center, 1986.
- Leneman B . Automation In Soviet Industry, 1970-1983 An Assessment Of The Present State Of Robot-Technology. Revue D Etudes Comparatives Est-Ouest. 15 (1): 75-112 1984.
- MacRoberts M, MacRoberts B. Problems of citation analysis. Scientometrics 1996; 36(3): 435-444.
- McIntire LV. WTEC panel report on tissue engineering (Reprinted). TISSUE ENGINEERING. 9 (1): 3-7 FEB 2003.
 - Mooney B, Seymour R. WTEC panels survey Russian maritime technologies.
- MARINE TECHNOLOGY SOCIETY JOURNAL. 30 (1): 71-72 SPR 1996.
 - MOST, "China's 10th Five Year Plan for Science and Technology.".
 - MOST, China Science and Technology Statistics Data Book 2003,
- http://www.most.gov.cn/eng/ statistics/2003/index.htm]
- MOST, Science and Technology Indicators, 2002, Beijing: Scientific and Technical Documents Publishing House, 2005.
 - National Science Board (NSB), Science and Engineering Indicators 2004.
- People's Daily Online, "Chinese President on Development of Science and
- Technology," People's Daily Online, 18 June 2000, http://english.peopledaily.com.cn/.

MAIN REPORT - REFERENCES

<u>Prahalad CK</u>, <u>Hamel G</u>. The core competence of the corporation. Harvard Business Review 68 (3): 79-91. May-Jun 1990.

Prechelt L, Malpohl G, Philippsen M. Finding plagiarisms among a set of programs with JPlag. Journal of Universal Computer Science. 2002. 8(11). 1016-1038.

Rasmussen E. Clustering Algorithms. In W. B. Frakes and R. Baeza-Yates (eds.). Information Retrieval Data Structures and Algorithms. 1992. Prentice Hall, N. J.

<u>Rodan S</u>, <u>Galunic C</u>. More than network structure: How knowledge heterogeneity influences managerial performance and innovativeness. Strategic Management Journal 25 (6): 541-562. 2004

Spencer, W.J., J.Y. Chen, A. Chiang, W. Frieman, E.S. Kuh, J.L. Moll, R.F. Pease, and K.C. Saraswat, "Chinese Microelectronics," Foreign Applied Sciences Assessment Center Technical Assessment Report, Science Applications International Corporation, April 1989.

Stares P. United-States And Soviet Military Space Programs - A Comparative-Assessment. Daedalus. 114 (2): 127-145 1985.

Steinbach M, Karypis G, Kumar V. A comparison of document clustering techniques. Technical Report #00--034. 2000. Department of Computer Science and Engineering. University of Minnesota.

Willet P. Recent trends in hierarchical document clustering: A critical review. Information Processing and Management. 1988. 24:577-597.

Wise MJ. String similarity via greedy string tiling and running Karb-Rabin matching. ftp://ftp.cs.su.oz.au/michaelw/doc/RKR_GST.ps, 1992. Dept. of CS, University of Sidney.

Xinhua, "China Rises to Third in Research, Development Spending," 3 November 2003, http://www1.chinadaily.com.cn/en/doc/2003-11/03/content_277967.htm.

Zamir O, Etzioni O. Web document clustering: A feasibility demonstration. In: Proceedings of the 19th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'98). 1998. 46-54.

Zhao Y, Karypis G. <u>Hierarchical clustering algorithms for document datasets</u> Data Mining and Knowledge Discovery 10 (2): 141-168. 2005.

Appendicies

Appendix 1 – Selected Technology Bibliometrics

A1.1. Genetics

Based on the computational linguistics (document clustering) results, Genetics is an important area of Chinese research. The following simple query (Gene or genes or genetic NOT (genetic algor* or genetic programming)) was inserted into the Science Citation Index search engine, and 3996 records were retrieved for the period 2003-2005 (August). The bibliometrics analysis was performed on these retrieved records.

A1.1.1. Publication Statistics on Authors, Journals, Institutions, Countries

A1.1.1.1. Most Prolific Authors

Table A1-1 – Most Prolific Genetics Authors

AUTHOR	#PAPERS
LiY	86
WangJ	82
WangY	68
ZhangY	64
ZhangJ	56
LiJ	55
ChenJ	46
WangH	46
ZhangL	46
WangL	44
LiH	43
LiuY	40
LiN	39
LiuJ	38
LiL	37
ZhangX	35
HeL	33
DengHW	32
LiuB	32
ChenY	31

Because these names are short (all one syllable), and all but one have only a first initial, there tend to be multiple individuals/ institutions associated with each name. Therefore, little analyses of performers' names have been conducted in this report.

A1.1.1.2. Journals Containing Most Papers

Table A1-2 – Journals Containing Most Genetics Papers

JOURNAL	#PAPERS
Progress In Biochemistry And Biophysics	128
Chinese Medical Journal	98
Biochemical And Biophysical Research Communications	96
Chinese Science Bulletin	84
Acta Biochimica Et Biophysica Sinica	69
Journal Of Biological Chemistry	55
Acta Pharmacologica Sinica	44
Plant Science	42
International Journal Of Systematic And Evolutionary Microbiology	42
Journal Of Integrative Plant Biology	41
Science In China Series C-Life Sciences	38
Theoretical And Applied Genetics	32
Journal Of Forensic Sciences	31
Febs Letters	31
Acta Botanica Sinica	30
Protein Expression And Purification	30
Neuroscience Letters	27
Fems Microbiology Letters	26
Nucleic Acids Research	25
Cell Research	25

Six of the top 20 journals are Chinese. Most of the journals are fundamental research journals.

A1.1.1.3. Most Prolific Institutions

Table A1-3 – Most Prolific Genetics Institutions

INSTITUTION	#PAPERS
Chinese Acad Sci	763
Peking Univ	228
Zhejiang Univ	226
Univ Hong Kong	225
Fudan Univ	223
Chinese Acad Med Sci	145
Chinese Univ Hong Kong	141
Shanghai Jiao Tong Univ	121
China Agr Univ	116
Chinese Acad Agr Sci	106
Peking Union Med Coll	102
Sichuan Univ	90
Wuhan Univ	82
Huazhong Agr Univ	81
Tsing Hua Univ	78

Huazhong Univ Sci & Technol	66
Sun Yat Sen Univ	66
Shanghai Med Univ 2	62
Cent S Univ	62
Nanjing Med Univ	59

Seventeen of the top twenty institutions are universities, with the other three being variants of the Chinese Academy of Sciences. Four of these institutions are medical, and three are agricultural, reflecting the split between plant genetics and medical genetics.

A1.1.4. Most Prolific Countries

Table A1-4 – Most Prolific (Collaborative) Countries

COUNTRY	#ofPapers
Peoples R China	3996
USA	773
Japan	186
England	115
Germany	111
Canada	80
France	65
Australia	48
Netherlands	41
Singapore	38
Sweden	38
South Korea	35
Italy	21
Taiwan	20
Belgium	18
Switzerland	18
India	17
Denmark	16
Mexico	14
Finland	13

The USA stands out as the major collaborator, co-authoring almost twenty percent of the genetics articles. The next tier consists of Japan, England, and Germany.

A1.1.2. Citation Statistics on Authors, Journals, Documents

A1.1.2.1. Most Cited First Authors

Table A1-5 – Most Cited Genetics First Authors

AUTHOR	#CITES
Sambrook J	381

Thompson JD	223
Nei M	141
Chou KE	130
Felsenstein J	128
Altschul SF	125
Kumar S	109
Bradford MM	95
Saitou N	89
Swofford DL	81
Wang J	76
Li Y	75
Kimura M	73
Laemmli UK	69
Zhang Y	68
Deng HW	68
Wang L	67
Lander ES	65
Zhu J	61
Li J	60

This is a much different list from the most prolific authors. Less than half the names on this list are Chinese.

A1.1.2.2. Most Cited Journals

Table A1-6 – Most Cited Journals

JOURNAL	#CITES
P Natl Acad Sci USA	4592
J Biol Chem	3967
Nature	2886
Science	2853
Cancer Res	1913
Nucleic Acids Res	1867
Cell	1681
Theor Appl Genet	1312
J Virol	1234
Plant Physiol	1160
Plant Cell	1071
Biochem Bioph Res Co	1041
Mol Cell Biol	897
Oncogene	856
Nat Genet	847
Embo J	829
J Bacteriol	792
Genetics	788
Am J Hum Genet	776
Plant J	760

Most of these journals are front-line basic research journals, divided again into plant and medical genetics. In contrast to the journals containing the most articles, which contained six Chinese listings, none of the most cited journals are Chinese.

A1.1.2.3. Most Cited Documents

Table A1-7 – Most Cited Genetics Documents

DOCUMENT	TIMES CITED	TOTAL SCI
Sambrook J, 1989, Mol Cloning Lab Manu	226	291
Molecular Cloning Handbook		
Thompson JD, 1994, Nucleic Acids Res, V22, P4673	113	16654
Clustal-W - Improving The Sensitivity Of Progressive Multiple Sequence Alignment Through Sequence Weighting, Position-Specific Gap Penalties And Weight Matrix Choice		
Thompson JD, 1997, Nucleic Acids Res, V25, P4876	103	5958
The Clustal_X Windows Interface: Flexible Strategies For Multiple Sequence Alignment Aided By Quality Analysis Tools		
Bradford MM, 1976, Anal Biochem, V72, P248	92	> 65535
Rapid And Sensitive Method For Quantitation Of Microgram Quantities Of Protein Utilizing Principle Of Protein-Dye Binding		
Saitou N, 1987, Mol Biol Evol, V4, P406	87	12584
The Neighbor-Joining Method - A New Method For Reconstructing Phylogenetic Trees		
Altschul SF, 1997, Nucleic Acids Res, V25, P3389	79	14806
Gapped Blast And Psi-Blast: A New Generation Of Protein Database Search Programs		
Laemmli UK, 1970, Nature, V227, P680	66	> 65535

Cleavage Of Structural Proteins During Assembly Of Head Of Bacteriophage-T4		
Felsenstein J, 1985, Evolution, V39, P783	53	8766
Confidence-Limits On Phylogenies - An Approach Using The Bootstrap		
Kumar S, 2001, Bioinformatics, V17, P1244	52	1791
Mega2: Molecular Evolutionary Genetics Analysis Software		
Kimura M, 1980, J Mol Evol, V16, P111	47	4945
A Simple Method For Estimating Evolutionary Rates Of Base Substitutions Through Comparative Studies Of Nucleotide-Sequences		
Murashige T, 1962, Physiol Plantarum, V15, P473	46	22627
A Revised Medium For Rapid Growth And Bio Assays With Tobacco Tissue Cultures		
Chomczynski P, 1987, Anal Biochem, V162, P156	40	54550
Single-Step Method Of RNA Isolation By Acid Guanidinium Thiocyanate Phenol Chloroform Extraction		
Murray MG, 1980, Nucleic Acids Res, V8, P4321	39	2309
Rapid Isolation Of High Molecular-Weight Plant Dna		
Vos P, 1995, Nucleic Acids Res, V23, P4407	37	2856
Aflp - A New Technique For DNA-Fingerprinting		
Elbashir SM, 2001, Nature, V411, P494	35	2055
Duplexes Of 21-Nucleotide RNAs Mediate RNA Interference In Cultured Mammalian Cells		
Jefferson RA, 1987, Embo J, V6, P3901	32	3469
Gus Fusions - Beta-Glucuronidase As A Sensitive And Versatile Gene Fusion Marker In Higher-Plants		
Lander ES, 1987, Genomics, V1, P174	32	50

Identification Of Polymorphic Simple Sequence Repeats In The Genome Of The Zebrafish		
Eisen MB, 1998, P Natl Acad Sci USA, V95, P14863	31	3148
Cluster Analysis And Display Of Genome-Wide Expression Patterns		

In Table A1-7, the full or abbreviated document title is in '**bold**', following each citation. Two citation numbers are listed for each document. The first (TimesCited) is the total number of citations from the retrieved papers only. These can be viewed as Genetics-specific citations. The second (Total SCI) is the total number of citations received by the paper as listed in the SCI. They cover all succeeding years from the document publication date, and all disciplines.

None of these documents have a Chinese first author. Five of the documents are from 1980 or earlier. The more recent documents seem to focus on genetic mapping, while the older documents address the identification and growth of various organisms and their genetic makeup.

A1.1.2.4. Country Citation Comparisons.

Table A1-8 – Country Citation Comparisons

COUNTRY	#ARTICLES	MED TOT CITES	MED TOP TEN CITES	MED TOP 3% CITES
CHINA	766	4	140	85
USA	27362	20	1309	235
JAPAN	7764	12	731	152
INDIA	565	4	78	58

A comparison of citations was made between China's genetics papers and those of selected countries. In Table A1-8, the first column is the country of interest, the second column is the number of articles published in the SCI in the vintage year selected (1998), the third column is the median citations of all the articles published in the vintage year, the fourth column is the median number of citations of the top ten cited articles, and the fifth column is the median citations of the top three percent of articles. The last column was added to provide some level of normalization, given the large disparity of numbers of articles published among the different countries.

China is obviously far below the two advanced countries, but ahead of India, confirming the results of the country comparison with India shown in the main text. The reasons for

the differences are unclear. They could range from poor quality to more emphasis on narrower applications.

A1.2. ALLOYS

Based on the computational linguistics (document clustering) results, Alloys is an important area of Chinese research. The following simple query (alloy* OR alloys OR steel OR steels) was inserted into the Science Citation Index search engine, and 3994 records were retrieved for the period 2003-2005 (August). The bibliometrics was performed on these retrieved records.

A1.2.1. Publication Statistics on Authors, Journals, Institutions, Countries

A1.2.1.1. Most Prolific Authors

Table A1-9 – Most Prolific Alloys Authors

AUTHOR	#PAPERS
WangY	49
LiuY	48
HuZQ	43
ZhangJ	43
Du—YW	42
ZhangY	37
LiQ	35
WangL	34
Wang—XL	33
WuGH	33
LiY	32
WangWH	32
FuHZ	31
LiuL	31
LiL	30
WangJ	30
WangQ	30
BianXF	29
ShenJ	29
LiuWM	28

A1.2.1.2. Journals Containing Most Papers

Table A1-10 – Journals Containing Most Alloys Papers

JOURNAL	#PAPERS
Rare Metal Materials And Engineering	254
Transactions Of Nonferrous Metals Society Of China	232

PRICM 5: The Fifth Pacific Rim International Conference	
On Advanced Materials And Processing, Pts 1-	228
Acta Metallurgica Sinica	190
Journal Of Alloys And Compounds	179
Materials Science And Engineering A-Structural	
Materials Properties Microstructure And Processing	178
Journal Of Materials Science & Technology	119
Materials Letters	98
Surface & Coatings Technology	94
Journal Of Rare Earths	79
Acta Physica Sinica	77
Intermetallics	66
Scripta Materialia	58
Journal Of Iron And Steel Research International	58
Materials Science And Technology	49
Journal Of Magnetism And Magnetic Materials	48
Journal Of Materials Science	48
Journal Of University Of Science And Technology	
Beijing	47
Applied Physics Letters	44
Physical Review B	42

Five of the journals are Chinese. Most are materials-oriented and mainly applied, with a few Physics journals appearing lower on the list. The second and third listings appear to be proceedings from Chinese conferences.

A1.2.1.3. Most Prolific Institutions

Table A1-11 – Most Prolific Alloys Institutions

INSTITUTION	#PAPERS
Chinese Acad Sci	735
Harbin Inst Technol	275
Tsing Hua Univ	263
Shanghai Jiao Tong Univ	245
Univ Sci & Technol Beijing	187
Xian Jiaotong Univ	141
Zhejiang Univ	139
Northwestern Polytech Univ	134
Shandong Univ	112
Northeastern Univ	108
Dalian Univ Technol	108
Cent Iron & Steel Res Inst	94
Hong Kong Polytech Univ	93
City Univ Hong Kong	89
Nanjing Univ	83
Shanghai Univ	77
Cent S Univ Technol	72
Beijing Univ Aeronaut & Astronaut	71

Jilin Univ	67
Huazhong Univ Sci & Technol	55

Out of 20 institutions listed, seventeen are universities.

A1.2.1.4. Most Prolific Countries

Table A1-12 – Most Prolific (Collaborative) Countries

COUNTRY	#PAPERS
Peoples R China	3994
Japan	182
USA	132
Germany	77
England	62
Australia	47
France	46
South Korea	40
Canada	27
India	27
Singapore	23
Sweden	17
Belgium	15
Italy	15
Netherlands	14
Russia	14
Taiwan	13
New Zealand	12
Austria	10
Spain	6

Japan and the USA are the two major collaborators. In contrast to the genetics discipline analyzed previously, the USA's share of joint papers decreases from almost twenty percent in genetics to less than four percent for alloys. Japan's share of joint papers in the two disciplines remains the same, at slightly under five percent.

A1.2.2. Citation Statistics on Authors, Journals, and Documents

A1.2.2.1. Most Cited First Authors

Table A1-13 – Most Cited First Alloys Authors

AUTHOR	TIMES CITED
Inoue A	470
Wang WH	129
Zhu YH	126

Sakai T	103
Kadir K	87
Zhang J	86
Li Y	79
Buschow KHJ	78
Lu K	77
Lu ZP	77
Liu Y	75
Pan HG	74
Zhang Y	74
Yerokhin AL	73
Kresse G	73
Gesmundo F	68
Chen J	67
Kim YW	67
Li Q	64
Massalski TH	64

A1.2.2.2. Most Cited Journals

Table A1-14 – Most Cited Alloys Journals

JOURNAL	#CITES
Mat Sci Eng A-Struct	2494
Phys Rev B	1989
J Alloy Compd	1975
Appl Phys Lett	1710
Acta Mater	1501
Surf Coat Tech	1365
J Appl Phys	1273
Scripta Mater	1109
Phys Rev Lett	818
Wear	799
J Mater Sci	794
J Electrochem Soc	787
Metall Mater Trans A	766
Acta Metall	745
J Magn Magn Mater	665
J Mater Res	579
Corros Sci	550
Mater T Jim	546
Metall Trans A	543
J Mater Process Tech	522

While there are still a relatively large number of materials journals listed as most cited, some physics journals do appear, especially Phys Rev B (the leader), J Appl Phys, Appl Phys Lett, and Phys Rev Lett. The top tier of most cited journals is at the applied end of the spectrum.

A1.2.2.3. Most Cited Documents

Table A1-15 – Most Cited Alloys Documents

D. DVD	TIMES	TOTAL SCI
PAPER	CITED	TIMES CITED
Inoue A, 2000, Acta Mater, V48, P279	61	571
Stabilization Of Metalic Supercooled Liquid And Bulk		
Amorphous Alloys		
Kohno T, 2000, J Alloy Compd, V311, L5	37	67
Hydrogen Storage Properties Of New Ternary System		
Alloys: La2mgni9, La5mg2ni23, La3mgni14		
Peker A, 1993, Appl Phys Lett, V63, P2342	31	917
A Highly Processable Metallic-Glass		
Willems JJG, 1984, Philips J Res S1, V39, P1	30	?
Unknown		
Johnson WL, 1999, Mrs Bull, V24, P42	30	315
Bulk Glass-Forming Metallic Alloys: Science And		
Technology		
Oliver WC, 1992, J Mater Res, V7, P1564	27	2366
An Improved Technique For Determining Hardness And		
Elastic-Modulus Using Load And Displacement Sensing		
Indentation Experiments		
Yerokhin AL, 1999, Surf Coat Tech, V122, P73	26	101
Plasma Electrolysis For Surface Engineering		
Sakai T, 1990, J Less-Common Met, V161, P193	26	183
Come Feetons Affecting The Corela Lines Of Louis Daged		
Some Factors Affecting The Cycle Lives Of Lani5-Based Alloy Electrodes Of Hydrogen Batteries		
Turnbull D, 1969, Contemp Phys, V10, P473	26	534
Under What Conditions Can A Glass Be Formed		
Mordike BL, 2001, Mat Sci Eng A-Struct, V302, P37	26	129
Magnesium – Properties – Applications - Potential		

In Table A1-15, the full or abbreviated document title is in Bold, following each citation. Two citation numbers are listed for each document. The first (TimesCited) is the citations from the retrieved papers only. These can be viewed as Alloys-specific citations. The second (Total SCI) is the total citations received by the paper as listed in the SCI. They cover all succeeding years from the document publication date, and all disciplines.

Most of the highly-cited documents are very applied and material-specific.

There are a number of documents that deal with glass formation, and metal-glass formation and its processing. They are also much more recent than the other main research areas, with all but two of the Alloys papers being post-1990.

A1.2.2.4. Country Citation Comparisons

Table 1-16A – Alloys Country Citation Comparison

COUNTRY	#ARTICLES	MED TOT CITES	MED TOP TEN CITES	MED TOP 3% CITES
CHINA	1071	2	47	29
USA	2852	5	188	80
JAPAN	1994	3	128	50
INDIA	521	2	29	25

Again, China does not have the citation performance of the advanced countries, but outperforms India.

A1.3. CROPS

Based on the computational linguistics (clustering) results, Crops is a thrust area of Chinese research. Starting with the words generated by the clustering algorithm for the Crops cluster, an iterative feedback approach was used to generate the following comprehensive query for this research in China:

"(crop or crops or rice or wheat or (irrigation and soil) or sorghum or groundnut or maize or soybean or intercropping or sowing or grain yield or planting or tillage or millet or fruit or farmyard or agricultur* or potato) not (diet or diets or sensory or meals or dessert or fat* or frying or fried or (dried and fruit) or liver or diabetes or metabolism or arthritis or enteritis or fermentation or cancer or (heart and disease))"

The query was inserted into the Science Citation Index, and the most recent 3757 records were recovered for the period 2002-early 2005. The bibliometrics analysis was performed on these records.

A1.3.1. Publication Statistics on Authors, Journals, Institutions, Countries

A1.3.1.1. Most Prolific Authors

Table A1-17 – Most Prolific Crops Authors

AUTHOR	#PAPERS
WangJ	62
LiY	54
SunXF	52
ZhangY	50
ZhangFS	46
SunRC	45

ChenSY	39
ZhuYG	37
ZhangJH	35
ZhangL	34
ChenJ	32
HuangY	32
LiL	32
LiJ	31
LiuB	31
ZhuLH	31
WangY	29
ChristieP	28
WangH	27
WuP	26

The appearance of the non-Chinese surname Christie is interesting, and reflects a researcher at Queens University in Belfast who appears to work closely with Chinese researchers.

A1.3.1.2. Journals Containing Most Papers

Table A1-18 – Journals Containing Most Crops Papers

JOURNAL	#PAPERS
Acta Botanica Sinica	233
Chinese Science Bulletin	128
Theoretical And Applied Genetics	101
Journal Of Environmental Sciences-China	67
Pedosphere	64
Plant Science	62
Euphytica	61
Plant And Soil	60
Journal Of Plant Nutrition	55
Science In China Series C-Life Sciences	50
Chemosphere	48
Agricultural Water Management	45
Spectroscopy And Spectral Analysis	40
Journal Of Agricultural And Food Chemistry	38
Journal Of Integrative Plant Biology	34
Field Crops Research	32
Communications In Soil Science And Plant	
Analysis	32
Plant Breeding	31
Photosynthetica	30

Nutrient Cycling In Agroecosystems	28

Table A1-18 lists the 20 journals containing the most Crops papers. The top three journals stand out. Two of the top three top journals are Chinese. Both journals appear to be fundamental in nature. The rest of the journals appear to be much more applied in nature (e.g. Plant and Soil, Journal of Plant Nutrition, Agricultural Water Management, etc.)

A1.3.1.3. Most Prolific Institutions

Table A1-19 – Most Prolific Crops Institutions

INSTITUTION	#PAPERS
Chinese Acad Sci	1235
Zhejiang Univ	363
China Agr Univ	279
Chinese Acad Agr Sci	190
Nanjing Agr Univ	160
Wuhan Univ	119
Huazhong Agr Univ	111
Peking Univ	105
Lanzhou Univ	96
Fudan Univ	79
Univ Hong Kong	75
S China Agr Univ	75
Nanjing Univ	63
Tsing Hua Univ	61
S China Univ Technol	56
Beijing Normal Univ	56
Int Rice Res Inst	50
Hong Kong Baptist Univ	50
Nw Sci Tech Univ Agr & Forestry	44
China Natl Rice Res Inst	44

The 20 most prolific institutions are listed in Table A1-19. Most dominant is the Chinese Academy of Science. Sixteen of the institutions are universities, and the remaining four are research institutions. Five of the sixteen universities are agricultural universities specifically.

A1.3.1.4. Most Prolific Countries

Table A1-20 – Most Prolific (Collaborative) Countries

COUNTRY	#PAPERS
Peoples R China	3757
USA	471
Japan	249

Germany	120
Australia	110
Canada	90
England	64
Philippines	59
Netherlands	52
France	43
North Ireland	34
Israel	32
India	27
South Korea	26
Wales	26
Mexico	22
Sweden	19
Italy	16
Belgium	15
Switzerland	13

The USA is the dominant collaborator by far, followed by a second tier of Japan, Germany, Austrailia, and Canada.

A1.3.2. Citation Statistics on Authors, Journals, and Documents

A1.3.2.1. Most Cited First Authors

Table A1-21 – Most Cited Crops First Authors

AUTHOR	CITES
Sambrook J	241
Sun RC	158
Bradford MM	135
*Sas I	113
Lander ES	107
Zhu J	101
Mccouch SR	96
Li Y	95
Wang J	92
Feng MG	91
Yu J	87
Laemmli UK	81
Liu B	81
Li ZK	80
*Fao	80
Gao LZ	79
Zhang J	75
Murray MG	73
Murashige T	73

Altschul SF	72
-------------	----

The presence of Sun-RC, Li-Y, Wang-J, and Lui-B can be correlated with their appearance as first authors in the most cited documents list. However, unlike the most prolific authors list, where all but one of the surnames are Chinese, only about half the most cited authors have Chinese surnames.

A1.3.2.2. Most Cited Journals

Table A1-22 – Most Cited Crops Journals

JOURNAL	CITES
Plant Physiol	2753
Theor Appl Genet	2681
P Natl Acad Sci USA	1720
Plant Cell	1482
Science	1447
Nature	1271
Plant Soil	1194
Plant Mol Biol	1134
Crop Sci	1134
Plant J	1123
Soil Sci Soc Am J	906
Genetics	863
Planta	730
Physiol Plantarum	723
Annu Rev Plant Phys	680
Nucleic Acids Res	670
Acta Bot Sin	666
J Biol Chem	653
Soil Biol Biochem	619
J Environ Qual	617

There are no Chinese journals listed among the top 20 journals. There is a reasonable mix of basic and applied research journals, split between more general research journals such as Science and Nature, and more plant-oriented journals.

A1.3.2.3. Most Cited Documents

Table A1-23 – Most Cited Crops Documents

DOCUMENT	TIMES CITED	TOTAL SCI
Sambrook J, 1989, Mol Cloning Lab Manu	161	291
Molecular Cloning Manual		
Bradford MM, 1976, Anal Biochem, V72, P248	133	> 65535

Rapid And Sensitive Method For Quantitation Of Microgram Quantities Of Protein Utilizing Principle Of Protein-Dye Binding		
Yu J, 2002, Science, V296, P79	70	628
A Draft Sequence Of The Rice Genome (Oryza Sativa L. Ssp Indica)		
i i i i i i i i i i i i i i i i i i i	69	2309
Murray MG, 1980, Nucleic Acids Res, V8, P4321	09	2309
Rapid Isolation Of High Molecular-Weight Plant Dna		
Lander ES, 1987, Genomics, V1, P174	69	3224
Mapmaker: An Interactive Computer Package For Constructing Primary Genetic Linkage Maps Of Experimental And Natural Populations.		
Laemmli UK, 1970, Nature, V227, P680	68	> 65535
Cleavage Of Structural Proteins During Assembly Of Head Of Bacteriophage-T4		
Murashige T, 1962, Physiol Plantarum, V15, P473	63	22627
A Revised Medium For Rapid Growth And Bio Assays With Tobacco Tissue Cultures		
Goff SA, 2002, Science, V296, P92	59	639
A Draft Sequence Of The Sequence Of The Rice Genome (Oryza Sativa L. Ssp		
Japonica)		
Temnykh S, 2000, Theor Appl Genet, V100, P697	49	160
Maping And Genome Organization Of Microsatellite Sequences In Rice (Oryza Sativa L.)		
Altschul SF, 1997, Nucleic Acids Res, V25, P3389	48	14806
Gapped Blast And Psi-Blast: An New Generation Of Protein Database Search		
Programs	4.5	220
Harushima Y, 1998, Genetics, V148, P479	45	328
A High Density Rice Genetic Linkage Map With 2275 Markers Using A Single F-2 Population		
Causse MA, 1994, Genetics, V138, P1251	39	438
Saturated Molecular Map Of The Rice Genome Based On An Interspecific Backcross Population		
Blakeney AB, 1983, Carbohyd Res, V113, P291	39	984
A Simple And Rapid Preparation Of Alditol Acetates For Monosaccharide Analysis		
Hiei Y, 1994, Plant J, V6, P271	39	590
Efficient Transformation Of Rice (Oryza-Sativa L) Mediated By Agrobacterium And Sequence-Analysis Of The Boundaries Of The T-Dna		
Roder MS, 1998, Genetics, V149, P2007	37	439
A Microsatellite Map Of Wheat		
Vos P, 1995, Nucleic Acids Res, V23, P4407	35	2856
AFLP - A New Technique For DNA-Fingerprinting		
Doyle JJ, 1990, Focus, V12, P13	35	1625
Isolation Of Plant DNA From Fresh Tissue		

In Table A1-23, the full or abbreviated document title is in Bold, following each citation. Two citation numbers are listed for each document. The first (TimesCited) is the citations from the retrieved papers only. These can be viewed as Crop-specific citations. The second (Total SCI) is the total citations received by the paper as listed in the SCI. They cover all succeeding years from the document publication date, and all disciplines.

Three of the seventeen documents listed are pre-1980, and two more are very early 80's. The basic thrust of current research is focused on plant genomics and the DNA structure of plants, possibly for genetically- engineered plants.

A1.3.2.4. Country Citation Comparisons

Table AI-24 – Most Cited Crops Countries

COUNTRY	#ARTICLES	MED TOT CITES	MED TOP TEN CITES	MED TOP 3% CITES
CHINA	328	4	35	35
USA	4510	5	293	82
JAPAN	1014	5	89	55
INDIA	780	1	29	21

Again, China under-performs the advanced nations in citations, but out-performs India, even with India having more than double the publications output.

Appendix 2 – Partitional Clustering Method

CLUTO (Karypis, 2002) is a software package that implements various algorithms for clustering low- and high-dimensional datasets and for analyzing the characteristics of the various clusters. CLUTO implements three different classes of clustering algorithms that can operate either directly in the object's feature space or in the object's similarity space. The clustering algorithms provided by CLUTO are based on the partitional, agglomerative, and graph-partitioning paradigms. CLUTO's partitional and agglomerative algorithms are able to find clusters that are primarily globular, whereas its graph-partitioning and some of its agglomerative algorithms are capable of finding transitive clusters.

In this study, documents were clustered using the partitional clustering algorithms provided by CLUTO. Partitional clustering algorithms find the clusters by partitioning the entire document collection into a predetermined number of disjoint sets, each corresponding to a single cluster. This partitioning is achieved by treating the clustering process as an optimization procedure that tries to create high quality clusters according to a particular function that reflects the underlying definition of the "goodness" of the clusters. This function is referred to as the *clustering criterion function*. CLUTO implements seven such criterion functions that measure various aspects of intra-cluster similarity, inter-cluster dissimilarity, and their combinations, and have been shown to produce high-quality clusters in low- and high-dimensional datasets (Zhao and Karypis, 2005).

CLUTO uses two different methods for computing the partitioning clustering solution. The first method computes a k-way clustering solution via a sequence of repeated bisections, whereas the second method computes the solution directly (in a fashion similar to traditional K-means-based algorithms). These methods are often referred to as repeated bisecting and direct k-way clustering, respectively. CLUTO computes a direct k-way clustering as follows. Initially, a set of k objects is selected from the datasets to act as the seeds of the k clusters. Then, for each object, its similarity to these k seeds is computed, and it is assigned to the cluster corresponding to its most similar seed. This forms the initial k-way clustering. This clustering is then repeatedly refined so that it optimizes a desired clustering criterion function. This optimization is performed using a randomized incremental optimization algorithm that is greedy in nature, has low computational requirements, and produces high-quality solutions (Zhao and Karypis, 2005). A k-way partitioning via repeated bisections is obtained by recursively applying the above algorithm to compute 2-way clustering (i.e., bisections). Initially, the objects are partitioned into two clusters, then one of these clusters is selected and is further bisected, and so on. This process continues k-1 times, leading to k clusters. Each of these bisections is performed so that the resulting two-way clustering solution optimizes a particular criterion function.

The actual documents were represented with the widely-used vector-space model. The various terms present in the documents were used to define a high-dimensional space and each document was considered to be a vector in that space. However, unlike the

traditional vector-space representation, which relies entirely on single terms, all consecutive two- and three-word combinations were taken into account, resulting in a representation that is capable of capturing the phrases commonly occurring in the documents. In addition, Porter's stemming algorithm was used to pre-process the various terms of each document prior to obtaining their vector-space representation. The weight of each dimension was computed using the TF-IDF model in which terms that occur many times within a document are given higher weight (TF) and terms that occur across many documents were given lower weight (IDF) (Zhao and Karypis, 2005). The similarity between two documents was measured using the cosine of their corresponding document

Appendix 3 – Cluto Clusters

- -Science Citation Index
- -256 Clusters
- -2005 Data

There were 34834 records with Abstracts downloaded from the SCI for 2005. They were clustered into 256 groups by the CLUTO document clustering algorithm. The following summary of each cluster includes: cluster number, followed by number of Abstracts in that cluster (in parentheses), followed by the phrase roots with the highest numerical weighting, followed by a short summary description of the main cluster theme. Generally, the ordering of the clusters is by cohesiveness, the most cohesive being first.

China Clusters

Cluster 0: (59) sar 32.3%, cov 19.5%, sar.cov 16.0%, protein 3.2%, coronaviru 2.3% Focuses on proteins, viruses, antibodies and vaccines related to SARS: (Severe Acute Respiratory Syndrome)

Cluster 1: (47) delai 10.2%, neural 9.5%, neural.network 8.8%, network 6.4%, exponenti 4.4%, exponenti.stabil 3.9%, global 3.1%, stabil 3.1%, global.exponenti 2.9%, global.exponenti.stabil 2.1%, time.delai 1.8%, lyapunov 1.4%, inequ 1.4%, suffici.condit 1.3%, suffici 1.2%, cellular.neural 1.1%, neural.network.time 1.0%, cellular.neural.network 1.0%, condit 1.0%, network.time 1.0%

Focuses on the stability of delayed neural networks, particularly cellular neural networks, with emphasis on global exponential stability

Cluster 2: (50) cnt 66.1%, nanotub 4.3%, carbon.nanotub 3.6%, carbon 3.2%, nanotub.cnt 3.1%, carbon.nanotub.cnt 3.0%

Focuses on carbon nanontubes, especially their synthesis and structure

Cluster 3: (27) cach 51.8%, proxi 4.2%, video 3.2%, scheme 2.7%, proxi.cach 2.3%, server 2.2%, stream 2.0%, multicast 1.5%, vod 1.5%, client 1.2%, stream.media 1.0%, multimedia 1.0%

Focuses on caching schemes and caches, especially proxy caches, as they relate to media streaming on networks and servers

Cluster 4: (54) signatur 33.9%, scheme 25.3%, signatur.scheme 6.9%, proxi 2.6%, secur 2.6%, signer 2.4%, messag 2.3%, proxi.signatur 2.0%, blind.signatur 1.1% Focuses on signature and signature schemes, including proxy signature schemes, for data encryption

Cluster 5: (57) black.hole 26.7%, black 21.2%, hole 16.2%, entropi 4.6%, horizon 3.1%, scalar 1.1%, quasinorm 1.0%, brick.wall 1.0% Focuses on black holes and black hole horizons, with emphasis on their associated entropy.

Cluster 6: (33) solder 40.1%, undercool 12.1%, imc 4.1%, alloi 2.1%, solidif 1.9%, eutect 1.9%, dendrit 1.7%, solder.alloi 1.5%, solder.joint 1.5%, reflow 1.3%, interfac 1.1%

Focuses on solder and solder joints, particularly lead free solder, with emphasis on solidification, structure, and properties.

Cluster 7: (35) video 63.7%, text 2.4%, segment 1.7%, sport 1.6%, sport.video 1.6%, watermark 1.4%, mpeg 1.2%

Focuses on video, especially sports video, with emphasis on watermarking.

Cluster 8: (72) bifurc 56.8%, hopf 7.0%, hopf.bifurc 5.4%, delai 2.1%, period 2.1%, period.solut 1.1%

Focuses on bifurcation, especially Hopf bifurcation.

Cluster 9: (50) ionic.liquid 26.6%, ionic 17.9%, liquid 9.7%, bmim 5.8%, liquid.bmim 2.3%, ionic.liquid.bmim 2.3%, reaction 1.9%, bf4 1.7%, methylimidazolium 1.3%, yield 1.1%, butyl.methylimidazolium 1.0%, pf6 1.0%

Focuses on ionic liquids, especially BMIM: (butyl methylimidazolium), with emphasis on its use as a reaction medium and promoter to increase reaction yields.

Cluster 10: (40) peer 29.6%, p2p 10.4%, network 8.2%, topolog 6.7%, peer.peer 6.0%, overlai 2.8%, p2p.network 2.1%, search 1.5%, node 1.5%, chord 1.3%, rout 1.3%, queri 1.2%, peer.network 1.0%, peer.peer.network 1.0%

Focuses on peer to peer: (P2P) networks and file-sharing systems, with emphasis on their topology and topological mismatches.

Cluster 11: (67) zno 62.2%, nanorod 5.1%, zno.nanorod 3.4%, zno.nanostructur 3.0%, nanostructur 2.3%, zinc 1.1%

Focuses on ZnO, especially ZnO nanorods, with emphasis on their synthesis and structure

Cluster 12: (67) martensit 21.6%, transform 9.6%, martensit.transform 8.4%, alloi 8.2%, shape.memori 5.7%, memori 4.1%, shape.memori.alloi 2.9%, memori.alloi 2.9%, transform.temperatur 2.8%, temperatur 2.8%, shape 1.9%, sma 1.4%, martensit.transform.temperatur 1.3%, phase 1.1%, phase.transform 1.1%, tini 1.0% Focuses on martensitic transformation temperatures, particularly of shape memory alloys

Cluster 13: (104) fuzzi 72.8%, control 2.6%, fuzzi.control 2.3%, system 1.3% Focuses on mathematically fuzzy concepts, including fuzzy control, fuzzy models, fuzzy logic, etc.

Cluster 14: (103) grid 56.6%, resourc 7.2%, comput 4.4%, grid.comput 2.7%, servic 2.0%, schedul 1.5%, architectur 1.0%

Focuses on Grid Computing, a system for computer resource sharing.

Cluster 15: (111) entangl 58.8%, state 6.4%, entangl.state 4.3%, quantum 4.2%, scheme 1.3%, teleport 1.2%

Focuses on quantum entanglement and entanglement states.

Cluster 16: (83) graph 56.5%, vertic 7.7%, bar 3.2%, vertic.bar.vertic 2.0%, bar.vertic.bar 2.0%, bar.vertic 2.0%, edg 1.9%, vertex 1.4%, conjectur 1.2%, connect 1.0%

Focuses on graphs and curves, especially theories and proofs involving them.

Cluster 17: (229) angstrom 62.1%, degre 3.5%, crystal 2.1%, beta 2.0%, angstrom.beta 1.9%, monoclin 1.7%, space.group 1.6%, ref 1.5%

Focuses on crystallographic structures and space groups, especially determination of unit cell dimensions: (designated as a, b, and c) in angstroms.

Cluster 18: (59) beta 22.9%, glucopyranosyl 8.1%, beta.glucopyranosyl 7.5%, glucopyranosid 7.4%, beta.glucopyranosid 5.1%, isol 3.6%, glycosid 1.9%, compound 1.5%, spectroscop 1.5%, hydroxi 1.3%, new 1.3%, elucid 1.3%, alpha 1.3%, beta.glucopyranosyl.beta 1.2%, glucopyranosyl.beta 1.2%, glucosid 1.2%, structur.elucid 1.1%

Focuses on glucopyranosyl, especially isolation of chemical compounds containing glucopyranosyl.

Cluster 19: (66) symmetri 14.5%, conserv 10.4%, invari 9.3%, lie 5.0%, lie.symmetri 4.1%, noether 3.8%, form.invari 3.6%, equat 3.0%, system 2.7%, infinitesim 2.4%, infinitesim.transform 2.3%, hojman 1.7%, noether.conserv 1.6%, non.noether 1.5%, conserv.law 1.5%, non.noether.conserv 1.2%, transform 1.1%, law 1.1% Focuses on system symmetries, especially Lie symmetries and non-Noether conserved quantities.

Cluster 20: (116) crack 58.6%, stress 3.4%, intens.factor 2.2%, crack.tip 1.9%, tip 1.5%, stress.intens 1.2%, stress.intens.factor 1.2%, fractur 1.0%, load 1.0% Focuses on cracking, crack tip growth rates, and stress intensity factors of materials.

Cluster 21: (125) nanotub 59.2%, carbon.nanotub 14.8%, carbon 9.1% *Focuses on nanotubes, especially synthesis of carbon nanotubes.*

Cluster 22: (46) antenna 34.3%, microstrip 5.7%, bandwidth 5.6%, patch 3.0%, slot 2.5%, patch.antenna 2.1%, ebg 1.9%, band 1.7%, ground.plane 1.7%, radiat 1.6%, imped 1.3%, imped.bandwidth 1.2%, frequenc 1.1%, ground 1.0%, pbg 1.0% Focuses on antennas, particularly patch antennas, with emphasis on their design and characterization.

Cluster 23: (80) sar 37.1%, patient 6.0%, acut 3.5%, syndrom 3.0%, respiratori 2.7%, acut.respiratori 2.5%, sever.acut.respiratori 2.3%, sever.acut 2.3%, acut.respiratori.syndrom 2.1%, respiratori.syndrom 2.1%, sar.patient 2.0%, sever 1.8%,

cov 1.6%, outbreak 1.4%, syndrom.sar 1.4%, respiratori.syndrom.sar 1.4%, infect 1.3%, coronaviru 1.1%, sar.cov 1.1%, flap 1.0%

Focuses on SARS: (Severe Acute Respiratory Syndrome), particularly studies involving SARS patients, cases and outbreaks.

Cluster 24: (87) alloi 35.0%, hydrogen 6.7%, hydrogen.storag 4.1%, capac 3.5%, discharg 3.3%, electrochem 2.6%, mill 2.5%, storag 2.3%, discharg.capac 1.8%, hydrid 1.7%, phase 1.7%, storag.alloi 1.1%, hydrogen.storag.alloi 1.1%, cycl 1.0% Focuses on alloy synthesis and electrochemical characterization, with emphasis on characterization of hydrogen storage and discharge capacity.

Cluster 25: (66) grate 32.8%, fiber 8.6%, bragg 6.0%, bragg.grate 5.2%, fbg 5.1%, wavelength 4.0%, fiber.bragg.grate 3.3%, fiber.bragg 3.3%, sensor 1.4% Focuses on gratings, especially fiber Bragg gratings: (FBGs), with emphasis on their development as sensors and optical elements.

Cluster 26: (69) nanocomposit 36.4%, clai 8.9%, mmt 7.1%, ommt 4.6%, montmorillonit 4.0%, intercal 2.5%, exfoli 2.1%, clai.nanocomposit 1.2% Focuses on synthesis of nanocomposites, particularly polymer/clay nanocomposites containing montmorillonite: (MMT).

Cluster 27: (55) corros 62.6%, steel 2.7%, corros.resist 1.7%, pit 1.5%, eros 1.3%, resist 1.3%, implant 1.1%, stainless.steel 1.1%, stainless 1.0% Focuses on corrosion and pitting resistance of metals and alloys, including steels and stainless steels.

Cluster 28: (75) eu3 31.9%, phosphor 19.6%, emiss 3.5%, luminesc 3.3%, excit 2.4%, eu2 2.2%, dope 1.7%, eu3.ion 1.5%, ion 1.4%

Focuses on Europium ion: (Eu3+ and Eu2+) doped phosphors, especially their synthesis and characterization, with emphasis on luminescent properties.

Cluster 29: (143) speci 35.2%, new.speci 19.2%, genu 8.4%, china 6.2%, new 6.1%, speci.genu 1.8%, new.scienc 1.0%

Focuses on the identification of mainly zoological and entomological species in China.

Cluster 30: (71) chaotic 32.9%, synchron 11.3%, chaotic.system 9.0%, system 5.8%, chao 4.0%, control 3.7%, feedback 1.7%, chua 1.3%

Focuses on chaotic systems, especially their control and synchronization.

Cluster 31: (166) nanowir 68.2%, arrai 2.1%, nanowir.arrai 1.6%, diamet 1.6% Focuses on nanowires, especially their synthesis and characterization.

Cluster 32: (78) ring 31.3%, titl 5.9%, titl.compound 5.8%, dihedr.angl 4.0%, dihedr 4.0%, compound 3.6%, benzen.ring 2.8%, conform 2.1%, molecul 1.9%, angl 1.8%, benzen 1.8%, boat 1.3%, bond 1.1%

Focuses on compounds and molecules containing rings, such as benzene rings, with emphasis on their synthesis and characterization.

Cluster 33: (56) mcm 38.9%, molecular.siev 6.2%, siev 5.5%, mesopor 4.4%, catalyst 4.1%, sapo 3.5%, acid 1.6%, molecular 1.5%, select 1.3%, catalyt 1.2% Focuses on molecular sieves, especially those comprised of MCMs: (mesoporous crystalline materials), with emphasis on their synthesis and characterization.

Cluster 34: (68) ca2 57.2%, channel 3.0%, intracellular 1.8%, calcium 1.3%, cell 1.2% Focuses on the calcium ion, Ca+2, particulary as it relates to cells and cellular functions.

Cluster 35: (114) er3 13.1%, upconvers 8.8%, emiss 6.9%, glass 6.4%, yb3 5.4%, dope 3.6%, excit 2.2%, luminesc 1.7%, laser 1.5%, tm3 1.4%, absorpt 1.3%, crystal 1.2%, er3.dope 1.1%, fluoresc 1.1%, tellurit 1.1%, intens 1.0%, lifetim 1.0% *Focuses on glasses containing Er3+*, *especially for upconversion laser applications*.

Cluster 36: (91) face 30.5%, recognit 27.6%, face.recognit 5.0%, featur 2.7%, imag 1.9%, discrimin 1.9%, face.imag 1.1%, gabor 1.1% Focuses on face recognition algorithms.

Cluster 37: (81) quark 48.8%, meson 5.8%, nucleon 3.4%, mass 3.3%, gluon 1.6%, chiral 1.4%, qcd 1.0% Focuses on quarks and quark models.

Cluster 38: (255) atom 22.4%, ligand 5.4%, titl 5.0%, two.atom 3.8%, coordin 2.9%, atom.two 2.6%, two 2.4%, distort 2.3%, geometri 2.2%, titl.compound 2.1%, molecul 2.0%, octahedr 1.6%, h2o 1.2%, bond 1.2%, compound 1.1%, water.molecul 1.0%, distort.octahedr 1.0%, complex 1.0%, carboxyl 1.0%

Focuses on the atomic structure of molecules and compounds.

Cluster 39: (69) diamond 27.1%, deposit 13.4%, diamond.film 10.9%, film 9.4%, substrat 3.0%, cvd 1.4%

Focuses on diamond films, including nano-structured diamond films, with emphasis on their deposition by various methods.

Cluster 40: (66) schedul 30.5%, algorithm 8.1%, job 5.8%, time 4.7%, machin 3.2%, process.time 2.5%, minim 2.5%, process 2.0%, makespan 1.4%, schedul.algorithm 1.0%, optim 1.0%

Focuses on machine scheduling and optimization, with emphasis on algorithms that deal with these subjects.

Cluster 41: (101) soliton 37.1%, soliton.solut 7.9%, equat 5.4%, solut 5.3%, nonlinear 2.1%, dimension 1.7%, variabl.separ 1.3%, variabl 1.2%, perturb 1.0% Focuses on solitons: (waves), especially equations and solutions related to them.

Cluster 42: (79) delai 4.9%, matrix.inequ 4.2%, robust 4.1%, system 4.0%, inequ 3.8%, stabil 3.1%, linear.matrix.inequ 3.1%, linear.matrix 3.0%, linear 2.6%, feedback 2.6%, control 2.4%, design 2.3%, lmi 1.8%, matrix 1.8%, output 1.7%, suffici 1.5%, suffici.condit 1.5%, feedback.control 1.5%, time.delai 1.5%, output.feedback 1.4%, close.loop 1.2%, uncertainti 1.1%, time 1.1%, loop 1.0%, condit 1.0% Focuses on control of linear systems, especially related to time delay and feedback control.

Cluster 43: (89) alloi 32.7%, amorph 15.3%, amorph.alloi 7.3%, magnet 5.3%, glass 3.2%, glass.form 2.2%, crystal 1.3%

Focuses on characterization of alloys, especially amorphous alloys, with emphasis on high temperature and magnetic properties.

Cluster 44: (62) glass 50.0%, bmg 3.4%, metal.glass 2.2%, glass.transit 1.7%, bulk.metal 1.4%, bulk.metal.glass 1.4%, crystal 1.2%, nucleat 1.0% Focus on glasses, especially metallic glasses, with emphasis on synthesis and characterization of properties such as glass transition temperature.

Cluster 45:: (66) fiber 60.4%, concret 5.8%, strength 1.8%, reinforc 1.2% Focuses on fibers, especially fibers for composites and concrete reinforcement, with emphasis on their syntheis and characterization.

Cluster 46: (155) dielectr 33.1%, ceram 12.8%, dielectr.constant 6.5%, dielectr.properti 4.0%, sinter 3.3%, constant 3.0%, microwav 1.8%, temperatur 1.4%, microwav.dielectr 1.2%, properti 1.2%

Focuses on characterization of the dielectric properties of ceramics.

Cluster 47: (52) dna 29.4%, immobil 17.4%, nucleic 5.2%, nucleic.acid 4.7%, enzym 2.0%, acid 1.3%, immobil.enzym 1.0%, calf.thymu 1.0% Focuses on DNA, particularly the immobilization of DNA, and enzymes.

Cluster 48:: (79) cancer 18.8%, risk 18.4%, genotyp 6.4%, polymorph 4.5%, escc 1.6%, gastric 1.4%, lung.cancer 1.4%, lung 1.3%, control 1.1%, case 1.1%, cancer.risk 1.0%, allel 1.0%

Focuses on cancer risk and control.

Cluster 49: (113) period 12.1%, period.solut 10.8%, posit.period 4.2%, exist 3.9%, posit.period.solut 3.7%, delai 3.0%, solut 2.9%, predat 2.8%, prei 2.2%, equat 2.1%, impuls 1.8%, differenti.equat 1.7%, coincid.degre 1.5%, suffici.condit 1.5%, theorem 1.4%, suffici 1.4%, differenti 1.1%, posit 1.0%, exist.posit.period 1.0%, continu.theorem 1.0%, predat.prei 1.0%, stabil 1.0%

Focuses on positive periodic solutions to system equations.

Cluster 50:: (144) titl.compound 15.3%, titl 13.2%, compound 9.5%, intermolecular 5.4%, bond 5.1%, molecul 5.0%, hydrogen 4.5%, hydrogen.bond 3.2%, intermolecular.hydrogen 2.8%, crystal 1.8%, crystal.structur 1.5%,

intermolecular.hydrogen.bond 1.3%, intramolecular 1.2%, interact 1.1%, intramolecular.hydrogen 1.0%

Focuses on compounds containing intramolecular hydrogen bonds, with emphasis on their structure.

Cluster 51: (116) web 26.7%, semant 15.6%, servic 13.9%, ontolog 11.6%, web.servic 3.6%, inform 2.1%

Focuses on web services, especially focused on semantic Web aspects.

Cluster 52: (91) mwnt 13.3%, swnt 12.9%, carbon 11.4%, nanotub 8.6%, carbon.nanotub 6.7%, wall.carbon 5.2%, wall.carbon.nanotub 4.8%, wall 3.2%, singl.wall.carbon 2.0%, singl.wall 2.0%, mwcnt 1.3%, tube 1.3%

Focuses on single-wall and multi-wall carbon nanotubes; includes studies that focus on their synthesis, characterization, and use in reactions involving other materials.

Cluster 53: (104) polymorph 10.9%, genotyp 10.4%, allel 10.3%, snp 4.3%, haplotyp 4.3%, schizophrenia 4.0%, gene 3.8%, chines 3.0%, popul 2.1%, hypertens 1.8%, han 1.7%, subject 1.5%, bmd 1.1%, frequenc 1.1%, patient 1.0% Focuses on specific types of genes, especially polymorphs, and their functions.

Cluster 54: (76) gold 17.8%, sam 8.7%, electrod 5.7%, assembl 3.0%, self.assembl 2.8%, monolay 2.7%, immunosensor 2.6%, surfac 2.2%, gold.nanoparticl 2.1%, electrochem 1.9%, gold.electrod 1.7%, assembl.monolay 1.7%, self.assembl.monolay 1.7%, nanoparticl 1.6%, self 1.5%, immobil 1.3%, antibodi 1.1% Focuses on devices containing or utilizing gold, with emphasis on electrodes, especially self-assembled monolayers: (SAMs), and biosensors.

Cluster 55: (135) solut 17.7%, wave 9.0%, equat 8.4%, wave.solut 7.6%, exact 3.1%, nonlinear 3.0%, solitari 2.8%, ellipt 2.8%, solitari.wave 2.7%, ellipt.function 2.6%, exact.solut 2.1%, jacobi.ellipt 1.9%, jacobi 1.6%, solitari.wave.solut 1.6%, jacobi.ellipt.function 1.4%, function 1.3%, period 1.1%

Focuses on exact solutions, including solitary wave solutions, to various equations and functions.

Cluster 56:: (76) devic 12.7%, emit 6.2%, layer 5.9%, light.emit 4.0%, alq 3.7%, ito 3.3%, ol 3.1%, hole 2.8%, organ 2.7%, npb 2.3%, light 2.3%, organ.light 2.2%, organ.light.emit 2.0%, lumin 1.2%, emiss 1.2%, light.emit.devic 1.0%, emit.devic 1.0%, effici 1.0%

Focuses on devices, especially organic light emitting devices, including light emitting diodes: (LEDs), with emphasis on their fabrication.

Cluster 57: (147) rock 9.9%, zircon 7.1%, ag 5.3%, mantl 4.5%, granit 3.8%, metamorph 3.5%, isotop 2.6%, basalt 1.9%, similar 1.5%, north 1.4%, crust 1.4%, geochem 1.3%, magma 1.1%, date 1.1%, subduct 1.1%, ree 1.1%, gneiss 1.0%, magmat 1.0%

Focuses on rock and mantle beneath North China, with emphasis on isotope dating.

Cluster 58: (235) soil 70.6%, fertil 1.4% Focuses on soil, especially the effects of soil properties on plants, in China

Cluster 59: (90) transgen 25.3%, plant 11.8%, gene 11.4%, express 4.0%, transgen.plant 2.0%, tobacco 1.9%, gu 1.8%, transform 1.5% Focuses on transgenic experiments, especially those involving transgenic plants.

Cluster 60: (43) wavelet 52.9%, signal 2.3%, denois 1.4%, wavelet.transform 1.4%, multiresolut 1.4%, frame 1.3%, fault 1.2%, transform 1.0% *Focuses on wavelets*.

Cluster 61: (147) wear 41.9%, friction 8.9%, wear.resist 3.0%, steel 2.7%, slide 2.2%, surfac 1.6%, lubric 1.6%, composit 1.6%, resist 1.6%, coat 1.1%, friction.coeffici 1.0%

Focuses on wear resistance of materials, especially experimental evaluation of wear resistance properties.

Cluster 62: (120) film 19.9%, thin.film 8.5%, thin 7.3%, ferroelectr 6.4%, dielectr 4.2%, bst 3.4%, pzt 3.3%, anneal 2.4%, temperatur 1.2%, deposit 1.1% Focuses on films, especially thin films, with emphasis on their synthesis and evaluation.

Cluster 63:: (138) neural.network 22.4%, neural 21.8%, network 16.7%, ann 5.7%, artifici.neural.network 2.0%, artifici.neural 2.0%, model 2.0%, train 1.6%, artifici 1.4%, network.ann 1.0%

Focuses on neural networks, especially artificial neural networks: (ANNs).

Cluster 64: (82) capillari 11.6%, separ 8.3%, buffer 5.3%, electrophoresi 3.8%, detect 3.3%, mmol 3.2%, capillari.electrophoresi 2.3%, analyt 2.1%, acid 1.5%, chiral 1.3%, run.buffer 1.3%, voltag 1.2%, concentr 1.1%, electrokinet 1.0%, run 1.0% Focuses on chemical separation methods, especially those based on capillary electrophoresis: (CE).

Cluster 65: (59) cure 24.3%, resin 16.1%, epoxi 5.0%, flame.retard 4.7%, retard 3.6%, flame 3.5%, thermal 2.1%, epoxi.resin 1.5%, thermal.degrad 1.1%, degrad 1.1% Focuses on curing and resins, with emphasis on curing of resins.

Cluster 66: (69) resourc 42.2%, agent 7.1%, digit 3.9%, mobil.agent 3.2%, librari 2.7%, digit.librari 2.3%, system 2.2%, architectur 1.8%, mobil 1.7%, inform 1.1% Focuses on resource management, especially as it relates to computer networks, with emphasis on mobile agents and digital libraries

Cluster 67:: (67) gev 14.4%, collis 8.0%, pion 4.1%, hadron 3.5%, parton 3.1%, transvers 2.6%, momentum 2.3%, product 2.2%, collid 2.0%, transvers.momentum 1.9%, quark 1.6%, gluon 1.4%, bar 1.3%, lhc 1.3%, pseudorapid 1.2%, jet 1.0%

Focuses on energy levels in the GeV range; especially energies related to the motion and interaction of sub-atomic particles.

Cluster 68: (174) tio2 54.3%, photocatalyt 6.3%, anatas 2.2%, photocatalyst 1.7%, photocatalyt.activ 1.6%, sol 1.3%, dope 1.0%, gel 1.0% *Focuses on TiO2, especially its photocatalytic behavior.*

Cluster 69: (96) secur 43.6%, protocol 9.3%, attack 4.5%, authent 4.0%, scheme 2.0%, kei 1.4%, encrypt 1.2%, commun 1.2%, messag 1.0% Focuses on security, especially system and protocol security.

Cluster 70: (171) crystal 9.8%, space.group 7.6%, space 3.7%, angstrom 3.4%, degre 3.0%, group 2.9%, beta 2.5%, monoclin 2.4%, complex 2.3%, system.space.group 2.1%, system.space 2.1%, compound 1.8%, structur 1.7%, 000 1.6%, singl.crystal 1.5%, rai 1.4%, crystal.structur 1.4%, diffract.crystal 1.3%, diffract 1.0% Focuses on the characterization of crystal structures, especially space groups.

Cluster 71: (78) aldehyd 30.2%, aromat.aldehyd 7.0%, aromat 5.6%, keton 3.6%, yield 3.1%, condens 2.2%, reaction 2.2%, solvent.free 1.5%, aldehyd.keton 1.4%, synthesi 1.2%

Focuses on aldehydes, especially aromatic aldehydes, with emphasis on reactions involving them.

Cluster 72: (115) algebra 56.1%, lie 2.8%, lie.algebra 2.2%, modul 2.0%, loop.algebra 1.4%, hierarchi 1.4%, let 1.3%

Focuses on algebras, especially Lie algebra and loop algebra.

Cluster 73: (111) copolym 40.7%, poli 6.3%, block 3.9%, block.copolym 2.7%, polymer 1.8%

Focuses on polymers, especially block copolymers, with emphasis on their synthesis.

Cluster 74: (325) coat 68.6%, sprai 1.6%, oxid 1.3%, composit.coat 1.2%, composit 1.0%

Focuses on coatings, especially composite coatings.

Cluster 75: (118) exist 13.5%, posit.solut 6.9%, solut 6.8%, boundari 5.3%, point 4.7%, theorem 4.6%, fix.point 4.1%, equat 3.7%, point.theorem 2.7%, fix.point.theorem 2.6%, posit 2.4%, fix 2.1%, differenti.equat 1.7%, differenti 1.5%, exist.multipl 1.2%, singular 1.1%, nonlinear 1.1%, exist.posit 1.0%, infin 1.0% Focuses on the existence of positive solutions to equations, especially those involving a fixed point theorem.

Cluster 76: (108) popul 24.8%, genet 16.3%, divers 4.2%, polymorph 2.7%, genet.divers 2.6%, allel 1.9%, primer 1.8%, haplotyp 1.8%, ssr 1.8%, microsatellit 1.6%, speci 1.3%, china 1.2%, marker 1.1%, sequenc 1.0%, loci 1.0% Focuses on genetic diversity in populations.

Cluster 77: (56) weld 36.0%, crack 7.4%, fatigu 3.6%, carbid 2.5%, joint 1.8%, fractur 1.7%, heat 1.4%, stress 1.3%

Focuses on the structure and properties of materials, with emphasis on characterization of welds and fatigue and fracture behavior.

Cluster 78: (75) late 6.7%, basin 5.8%, permian 3.7%, rock 3.1%, triassic 3.0%, earli 2.9%, jurass 2.8%, format 2.7%, cretac 2.3%, china 1.9%, middl 1.8%, sourc.rock 1.8%, south 1.6%, belt 1.6%, volcan 1.5%, sourc 1.3%, zone 1.3%, oil 1.3%, southern 1.1%, mesozo 1.1%

Focuses on geological formations in China, with emphasis on determination of geologic age.

Cluster 79: (82) vaccin 9.9%, antibodi 9.8%, immun 9.1%, antigen 5.7%, epitop 4.7%, viru 2.8%, assai 1.9%, mab 1.8%, mice 1.6%, elisa 1.5%, respons 1.5%, protein 1.4%, infect 1.3%, peptid 1.3%, dna.vaccin 1.2%, dna 1.1%, influenza 1.0% Focuses on antibodies, vaccines, and immunity.

Cluster 80: (157) nanoparticl 64.5%, gold 2.4%, gold nanoparticl 1.4%, size 1.4% *Focuses on nanoparticles, especially those containing gold.*

Cluster 81: (168) decai 29.2%, bar 8.4%, psi 5.9%, branch 2.5%, branch.fraction 2.2%, gamma 2.2%, detector 2.0%, meson 1.4%, fraction 1.3%, measur 1.1%, violat 1.0%, x10 1.0%

Focuses on decays of subatomic particles, especially those involving branching fractions.

Cluster 82: (60) cool 8.7%, air 8.3%, heat 6.8%, rvr 5.8%, build 4.1%, energi.consumpt 3.8%, energi 3.6%, heat.cool 3.4%, ventil 3.3%, consumpt 2.6%, citi 2.0%, indoor 1.3%, energi.effici 1.2%

Focuses on air cooling and heating systems, especially their energy consumption and efficiency.

Cluster 83: (114) code 24.0%, channel 6.9%, scheme 4.3%, error 2.6%, symbol 2.5%, estim 1.9%, ofdm 1.8%, bit 1.8%, fade 1.6%, antenna 1.3%, cdma 1.2%, decod 1.1%, ber 1.1%, channel.estim 1.1%, multipl 1.0%

Focuses on coding over channels, with emphasis on errors and fading.

Cluster 84: (80) cross.section 14.1%, section 12.0%, cross 9.2%, scatter 3.8%, momentum 3.5%, isospin 2.7%, energi 2.7%, calcul 2.0%, differenti.cross 1.1%, differenti.cross.section 1.0%, neutron 1.0%

Focuses on cross sections, especially related to quantum reactions/interactions.

Cluster 85: (117) reaction 18.4%, transit.state 5.8%, energi 3.4%, b3lyp 2.7%, transit 2.0%, state 1.9%, 311 1.6%, mp2 1.5%, theori 1.3%, barrier 1.3%, calcul 1.2%, pathwai 1.2%, radic 1.2%, ch3 1.2%, product 1.1%, level 1.1%, energi.surfac 1.1%, potenti.energi 1.0%, potenti.energi.surfac 1.0%

Focuses on reactions, especially their energy and transition states.

Cluster 86: (107) qtl 13.4%, chromosom 11.4%, marker 5.2%, trait 5.1%, rice 3.8%, map 2.7%, genet 2.7%, hybrid 2.3%, genom 1.9%, seed 1.8%, parent 1.5%, line 1.3%, loci 1.2%, gene 1.1%, resist 1.1%, popul 1.0%

Focuses on chromosomes and genes, especially genetic markers and traits.

Cluster 87: (70) peer 14.8%, queri 9.3%, xml 8.3%, storag 5.1%, server 3.6%, file 3.1%, data 3.0%, system 1.6%, document 1.6%, peer.peer 1.6%, stream 1.6%, disk 1.5%, web 1.4%, servic 1.2%, node 1.1%, distribut 1.0%

Focuses on systems for storing and sharing data, especially peer to peer (P2P) systems.

Cluster 88: (100) deform 22.5%, strain 9.2%, strain.rate 5.4%, roll 5.0%, stress 2.1%, microstructur 2.0%, compress 1.8%, superplast 1.8%, tensil 1.6%, cold.roll 1.5%, alloi 1.4%, rate 1.3%, temperatur 1.2%, textur 1.1%, hot 1.1%, grain 1.1%, cold 1.0%, recrystal 1.0%, plastic 1.0%

Focuses on the deformation behavior of materials as determined through experimental investigations.

Cluster 89: (97) filter 47.0%, nois 18.4%, signal 2.6% Focuses on filters, especially those designed to reduce noise.

Cluster 90: (76) star 30.9%, galaxi 10.3%, mass 2.9%, cluster 2.8%, stellar 2.6%, ngc 1.6%, outflow 1.5%, binari 1.3%, luminos 1.2%, circl.dot 1.1% Focuses on stars, and their relation to composition and evolution of galaxies.

Cluster 91: (70) kinet 18.5%, reaction 8.4%, decomposit 2.5%, hydrolysi 2.3%, activ 2.2%, kinet.model 1.8%, rate 1.6%, kinet.paramet 1.6%, activ.energi 1.5%, enthalpi 1.2%, rate.constant 1.2%, mol 1.1%, paramet 1.1%, constant 1.0% *Focuses on kinetics of reactions*.

Cluster 92: (193) gene 13.0%, cdna 7.4%, express 7.2%, sequenc 4.4%, protein 4.1%, amino.acid 3.6%, encod 3.2%, amino 3.1%, clone 2.6%, human 1.9%, acid 1.6%, testi 1.5%, transcript 1.3%, pcr 1.0% *Focuses on genes, especially cDNA*.

Cluster 93: (53) chines 26.2%, famili 14.7%, mutat 8.8%, popul 4.2%, hear 2.4%, medicin 1.6%, genet 1.5%, diseas 1.3%, chines.medicin 1.2%, unrel 1.2%, gene 1.1%, chines.famili 1.0%

Focuses on Chinese families, with emphasis on genetics and medicine.

Cluster 94: (145) isol 10.6%, compound 9.5%, spectroscop 6.8%, elucid 5.6%, structur.elucid 5.3%, nmr 4.4%, new 4.0%, structur 2.2%, two.new 1.7%, elucid.basi 1.3%, basi 1.2%, elucid.spectroscop 1.2%, new.compound 1.2%, diterpenoid 1.2%, hydroxi 1.1%, name 1.1%, structur.elucid.spectroscop 1.1%, spectral 1.0% Focuses on isolation of compounds and elucidation of their structures.

Cluster 95: (110) strain 20.6%, isol 6.5%, 16 5.9%, sequenc 4.2%, rrna 3.8%, phylogenet 3.1%, 16.rrna 3.0%, speci 2.7%, rrna.gene 2.5%, rdna 2.1%, 16.rrna.gene 2.1%, genu 2.0%, gene.sequenc 1.6%, rrna.gene.sequenc 1.6%, gene 1.4%, dna 1.2%, type.strain 1.0%

Focuses on isolates and strains of micro-organisms or genes, especially rRNA.

Cluster 96: (107) neuron 49.9%, receptor 2.2%, neuroprotect 1.4%, induc 1.3%, gaba 1.3%, activ 1.1%, rat 1.1%, glutam 1.0% Focuses on neurons.

Cluster 97: (84) chromatographi 11.5%, enzym 3.5%, purifi 3.1%, hsccc 2.8%, ethyl.acet 2.6%, acet 2.5%, purif 2.3%, ethyl 1.7%, crude 1.3%, puriti 1.3%, extract 1.2%, counter.current.chromatographi 1.2%, current.chromatographi 1.2%, counter.current 1.2%, gel 1.2%, prepar 1.1%, high.speed.counter 1.1%, speed.counter 1.1%, solvent.system 1.0%, separ 1.0% Focuses on compounds and enzymes, with emphasis on their synthesis, separation, and purification, and especially the use of chromatography.

Cluster 98: (144) equal 30.2%, let 13.1%, equal.equal 5.0%, element 4.3%, integ 3.7%, infin 3.4%, sigma 2.7%, subset 1.6%, mod 1.4%, prove 1.3%, delta 1.2%, posit.integ 1.0%, equal.equal.equal 1.0%

Focuses on mathematical investigations, with emphasis on solutions to equations and functions.

Cluster 99: (66) limit.cycl 11.6%, homoclin 7.8%, bifurc 5.4%, orbit 4.9%, cycl 4.1%, system 3.8%, limit 3.0%, oscil 2.4%, perturb 2.3%, period 2.2%, homoclin.orbit 1.9%, lyapunov.expon 1.5%, motion 1.4%, point 1.4%, chao 1.3%, lyapunov 1.2%, number.limit.cycl 1.2%, number.limit 1.2%, expon 1.0%, heteroclin 1.0% Focuses on evaluations of systems, especially those involving limit cycles, homoclinic loops or orbits, and oscillation or oscillators.

Cluster 100: (170) tumor 37.3%, cell 13.1%, tumor.cell 2.8%, cell.line 2.1%, mice 1.9%, express 1.7%, line 1.3%, carcinoma 1.2%, cancer 1.0% Focuses on tumors, including tumor growth, metastases, treatment, and inhibition, with emphasis on experiments involving cells in mice or cell lines.

Cluster 101: (147) beam 60.2%, gaussian 3.0%, gaussian.beam 1.7%, propag 1.3% Focuses on beams, especially Gaussian beams.

Cluster 102: (108) traffic 20.8%, network 8.2%, rout 7.1%, qo 4.3%, packet 3.9%, bandwidth 2.7%, scheme 2.4%, multicast 2.1%, delai 1.6%, internet 1.6%, congest 1.5%, protocol 1.5%, node 1.4%, hoc 1.1%, wireless 1.0% Focuses on traffic, mainly on internet and electronic traffic.

Cluster 103: (127) grain 46.9%, grain.size 4.7%, boundari 4.1%, grain.boundari 3.5%, size 2.2%, microstructur 1.5%, alloi 1.5%, deform 1.3%, refin 1.1%, grain.refin 0.7%,

twin 0.7%, ribbon 0.7%, grain.growth 0.6%, recrystal 0.6%, phase 0.6%, temperatur 0.5%, ecap 0.4%, surfac 0.4%, anneal 0.4%, cast 0.3%, growth 0.3%, textur 0.3%, averag.grain 0.3%, plastic 0.3%, dendrit 0.3%

Focuses on the grain structure of various alloys and the microstructure of such alloys.

Cluster 104: (351) film 31.3%, thin.film 22.0%, thin 19.1%, substrat 1.8%, deposit 1.5%, temperatur 0.7%, anneal 0.5%, sputter 0.5%, zno 0.4%, tio2 0.3%, optic 0.3%, electron 0.3%, orient 0.3%, layer 0.2%, film.deposit 0.2%, grown 0.2%, silicon 0.2%, structur 0.2%, sol 0.2%, surfac 0.2%, crystal 0.2%, resist 0.2%, magnetron 0.2%, magnetron.sputter 0.2%, dope 0.2%

Focuses on thin films and their deposition.

Cluster 105: (126) aryl 21.6%, catalyz 8.0%, reaction 5.5%, palladium 5.0%, alkyn 3.8%, coupl 3.6%, palladium.catalyz 3.6%, coupl.reaction 3.4%, yield 3.2%, cross.coupl 2.1%, stereoselect 2.0%, afford 1.3%, regioselect 1.1%, suzuki 1.1%, synthesi 0.9%, substitut 0.9%, aryl.halid 0.8%, termin.alkyn 0.7%, halid 0.7%, phosphin 0.7%, cross 0.7%, cross.coupl.reaction 0.7%, sonogashira 0.5%, termin 0.4%, iodid 0.4%

Focuses on chemical reactions with an emphasis on catalyzing agents.

Cluster 106: (77) waveguid 26.8%, fdtd 7.0%, differ.time.domain 2.3%, finit.differ 2.3%, time.domain 2.3%, differ.time 2.3%, finit.differ.time 2.1%, index 1.6%, optic 1.5%, finit 1.3%, domain 1.3%, differ 1.2%, domain.fdtd 1.0%, time.domain.fdtd 1.0%, coupl 1.0%, mode 0.9%, mmi 0.8%, multimod 0.8%, photon 0.7%, simul 0.7%, band 0.6%, propag 0.6%, caviti 0.6%, electromagnet 0.6%, numer 0.6% Focuses on waveguides along with Finite Difference Time Domain analysis of the waveguides.

Cluster 107: (131) column 9.1%, mobil.phase 7.0%, separ 5.8%, phase 4.5%, mobil 4.1%, chromatograph 2.6%, acid 2.0%, hplc 1.9%, stationari.phase 1.9%, detect 1.9%, high.liquid 1.8%, liquid 1.7%, chromatographi 1.6%, methanol 1.5%, min 1.4%, chiral 1.4%, stationari 1.3%, csp 1.3%, revers.phase 1.1%, liquid.chromatographi 1.0%, acetonitril 0.9%, high.liquid.chromatographi 0.8%, flow.rate 0.7%, mug 0.7%, recoveri 0.7%

Focuses on different means of either charge or mass separation, high pressure liquid chromatography, or liquid-liquid extraction

Cluster 108: (97) equat 21.0%, differenti.equat 15.5%, differenti 11.8%, partial.differenti 3.7%, partial.differenti.equat 3.0%, stochast 2.5%, partial 2.0%, solut 1.3%, nonlinear 1.2%, numer 1.0%, viscoelast 0.9%, ordinari.differenti 0.9%, ordinari.differenti.equat 0.9%, ordinari 0.7%, stochast.differenti 0.6%, linear 0.6%, dynam 0.5%, gener 0.4%, govern 0.4%, stochast.differenti.equat 0.4%, system 0.4%, function 0.4%, deriv 0.3%, plate 0.3%, non 0.3%

Focuses on differential equations to describe various systems

Cluster 109: (120) chiral 21.4%, enantioselect 11.8%, asymmetr 9.5%, allyl 3.9%, ligand 3.5%, keton 3.2%, reaction 2.4%, aldehyd 2.1%, yield 1.5%, synthesi 1.4%, alcohol 1.3%, catalyz 1.2%, catalyt 1.1%, addit 0.7%, catalyz.asymmetr 0.5%, asymmetr.addit 0.5%, aromat 0.5%, deriv 0.5%, beta 0.4%, oxazolin 0.4%, catalyt.asymmetr 0.4%, new.chiral 0.3%, catalyst 0.3%, absolut.configur 0.3%, unsatur 0.3%

Focuses on chiral compounds, chiral ligands and enantioselectivity.

Cluster 110: (204) cell 32.9%, apoptosi 13.7%, induc 3.6%, bcl 2.0%, caspas 2.0%, inhibit 1.4%, apoptot 1.4%, express 1.3%, activ 1.2%, prolifer 1.1%, induc.apoptosi 1.0%, cell.cycl 0.9%, death 0.8%, protein 0.7%, cell.death 0.7%, cell.apoptosi 0.6%, k562 0.6%, dna 0.5%, arrest 0.5%, cell.line 0.5%, cycl 0.5%, bax 0.5%, inhibitor 0.4%, ro 0.4%, regul 0.4%

Focuses on multiple types of cells and what affects them, emphasizing apoptosis.

Cluster 111: (80) nanorod 37.0%, nanobelt 8.5%, nanostructur 3.0%, synthes 1.7%, growth 1.6%, length 1.6%, singl.crystallin 1.3%, hydrotherm 1.2%, singl 1.1%, crystallin 1.1%, diamet 1.0%, crystal 0.9%, templat 0.7%, format 0.7%, mum 0.7%, surfact 0.5%, nanorod.synthes 0.5%, step 0.5%, singl.crystal 0.5%, mechan 0.5%, growth.mechan 0.5%, morpholog 0.4%, oxid.nanorod 0.4%, xrd 0.3%, structur 0.3% *Focuses on nanostructures, especially nanorods and nanobelts, and their formation and characteristics*

Cluster 112: (135) steel 38.7%, ferrit 6.3%, austenit 5.1%, grain 2.0%, roll 1.8%, martensit 1.7%, microstructur 1.2%, transform 1.0%, strength 1.0%, deform 0.9%, carbon 0.9%, precipit 0.8%, bainit 0.8%, temperatur 0.7%, low.carbon 0.6%, stainless.steel 0.6%, stainless 0.6%, hard 0.6%, disloc 0.5%, carbon.steel 0.5%, cool 0.4%, boundari 0.4%, low 0.4%, tough 0.4%, size 0.4%

Focuses on various steels, especially ferritic and austenitic, with an emphasis on failure modes, testing, and composition

Cluster 113: (98) beta 43.3%, cyclodextrin 9.8%, alpha 2.8%, beta.cyclodextrin 2.8%, inclus 2.3%, complex 1.4%, inclus.complex 1.4%, benzoyl 1.0%, acid 1.0%, nmr 0.8%, glcp 0.8%, beta.beta 0.7%, bind 0.7%, acetyl 0.6%, alpha.beta 0.5%, trichloroacetimid 0.5%, cyclodextrin.beta 0.4%, guest 0.4%, residu 0.4%, beta.glcp 0.4%, beta.cyclodextrin.beta 0.4%, benzoyl.beta 0.4%, caviti 0.3%, cd 0.3%, bi.beta 0.3%

Focuses on alpha and beta cyclodextrin.

Cluster 114: (338) catalyst 53.8%, catalyt 2.8%, activ 2.5%, oxid 2.2%, select 1.5%, al2o3 1.4%, hydrogen 1.3%, support 1.2%, reaction 1.1%, methan 1.0%, convers 1.0%, methanol 0.7%, sio2 0.6%, al2o3.catalyst 0.5%, gamma.al2o3 0.5%, reduct 0.5%, oxygen 0.5%, promot 0.5%, surfac 0.5%, impregn 0.4%, carbon 0.4%, catalyt.activ 0.4%, temperatur 0.4%, zro2 0.4%, speci 0.4%

Focuses on chemical reactions, specifically those involving catalysts.

Cluster 115: (106) heat 36.8%, heat.transfer 8.9%, transfer 6.0%, fin 1.9%, heat.flux 1.7%, flux 1.6%, cycl 1.4%, convect 1.2%, refriger 1.1%, temperatur 0.9%, model 0.9%, exergi 0.8%, cool 0.8%, flow 0.7%, mass.transfer 0.7%, heat.exchang 0.6%, compressor 0.5%, heat.pump 0.4%, irrevers 0.4%, coeffici 0.4%, experiment 0.4%, transfer.coeffici 0.4%, tube 0.3%, mass 0.3%, power 0.3% *Focuses on heat transfer*.

Cluster 116: (80) search 37.1%, algorithm 11.4%, tree 2.1%, search algorithm 2.1%, heurist 2.0%, constraint 1.9%, queri 1.3%, tabu 1.0%, optim 1.0%, local search 0.9%, distanc 0.8%, mine 0.8%, set 0.7%, genet 0.7%, graph 0.7%, comput 0.7%, genet algorithm 0.6%, tabu search 0.6%, model 0.4%, local 0.4%, search space 0.4%, benchmark 0.4%, line search 0.4%, pattern 0.3%, train 0.3% Focuses on algorithems, especially search algorithms, development for specific problems of interest.

Cluster 117: (112) polymer 32.5%, graft 6.0%, monom 5.1%, initi 2.6%, polym 2.1%, acryl 1.6%, molecular.weight 1.3%, raft 1.2%, methacryl 1.2%, radic.polymer 1.1%, radic 1.1%, mma 1.0%, weight 1.0%, atrp 0.9%, copolymer 0.9%, methyl 0.8%, poli 0.8%, styren 0.7%, copolym 0.7%, molecular 0.6%, vinyl 0.6%, convers 0.6%, transfer 0.6%, atom.transfer 0.5%, transfer.radic.polymer 0.5% *Focuses on various polymers, copolymers, monomers, and grafting.*

Cluster 118: (77) machin 36.7%, svm 4.8%, tool 2.8%, support.vector 2.7%, cut 2.5%, support.vector.machin 2.2%, vector.machin 2.2%, grind 1.8%, vector 1.3%, error 1.1%, pl 1.0%, kernel 0.9%, machin.tool 0.9%, support 0.8%, speed 0.8%, model 0.7%, classif 0.6%, optim 0.6%, case 0.5%, manufactur 0.5%, micro 0.4%, learn 0.4%, descriptor 0.4%, surfac 0.4%, machin.svm 0.4% *Focuses on support vector machines*.

Cluster 119: (86) neutron 13.1%, proton 8.9%, nuclei 8.7%, band 3.4%, nucleon 2.5%, energi 2.1%, gamma 1.8%, relativist 1.6%, mev 1.4%, state 1.3%, nuclear 1.1%, detector 1.1%, calcul 1.1%, mean.field 1.1%, nucleu 1.0%, triaxial 1.0%, relativist.mean.field 1.0%, relativist.mean 1.0%, rmf 0.9%, odd 0.8%, deform 0.8%, superdeform 0.6%, model 0.6%, nuclear.matter 0.6%, moment.inertia 0.6% Focuses on various experiments that probe the nucleus, emphasizing detection of protons and neutrons.

Cluster 120: (78) matric 26.1%, matrix 13.6%, rank 3.4%, invers 3.3%, eigenvalu 3.2%, singular 3.1%, condit 1.4%, element 1.4%, condit.number 1.3%, nonsingular 1.2%, suffici.condit 1.1%, suffici 1.0%, bound 0.9%, multilinear 0.9%, oper 0.9%, commut 0.8%, represent 0.8%, number 0.7%, vandermond 0.7%, kernel 0.6%, displac.structur 0.5%, drazin 0.5%, space 0.5%, singular.integr 0.5%, integr 0.5% *Focuses on mathematics, with a strong emphasis on matrices*.

Cluster 121: (129) fiber 25.6%, wavelength 11.0%, optic 6.2%, gain 2.7%, pump 2.4%, laser 1.6%, puls 1.5%, power 1.5%, amplifi 1.4%, birefring 1.4%, dispers 1.1%, fibr

1.0%, polar 0.9%, erbium 0.9%, tunabl 0.8%, output 0.8%, pcf 0.7%, signal 0.7%, erbium.dope 0.6%, modul 0.6%, mode 0.6%, raman 0.6%, optic.fiber 0.5%, dope 0.5%, dope.fiber 0.4%

Focuses on fiber optics and the component fibers.

Cluster 122: (181) adsorpt 60.1%, adsorb 6.2%, adsorpt.capac 1.8%, surfac 1.5%, capac 1.2%, resin 1.1%, isotherm 1.0%, acid 0.5%, remov 0.5%, ion 0.5%, adsorpt.isotherm 0.4%, water 0.4%, langmuir 0.4%, carbon 0.4%, exchang 0.4%, solut 0.3%, activ.carbon 0.3%, zeolit 0.3%, metal 0.3%, soil 0.3%, concentr 0.3%, activ 0.2%, chitosan 0.2%, group 0.2%, mol 0.2%

Focuses on adsorption and removal of matter from various media using various adsorption media.

Cluster 123: (102) mass 8.9%, spectrometri 7.8%, mass.spectrometri 7.3%, chromatographi 4.3%, ioniz 4.2%, ion 3.0%, esi 2.9%, electrosprai 2.5%, liquid.chromatographi 2.4%, liquid 2.3%, electrosprai.ioniz 1.5%, fragment 1.2%, tandem.mass 1.1%, tandem 1.0%, hplc 0.9%, high.liquid 0.9%, extract 0.8%, high.liquid.chromatographi 0.8%, separ 0.8%, chromatographi.mass 0.7%, chromatographi.mass.spectrometri 0.7%, ga.chromatographi 0.7%, ga 0.7%, tandem.mass.spectrometri 0.6%, ioniz.mass 0.6%

Focuses on mass spectrometry and liquid chromatography.

Cluster 124: (88) jet 10.6%, grb 5.6%, radio 4.5%, pulsar 4.3%, gamma.rai 3.6%, burst 2.9%, sourc 2.4%, rai 2.4%, emiss 2.2%, disk 2.0%, gamma 2.0%, line 1.6%, accret 1.6%, flare 1.5%, agn 1.5%, afterglow 1.3%, luminos 1.3%, compon 1.2%, gamma.rai.burst 1.1%, rai.burst 1.0%, galact 0.9%, similar 0.9%, model 0.8%, accret.disk 0.7%, light.curv 0.6%

Focuses on many different aspects of astronomy, including pulsars, gamma ray emission and luminosity.

Cluster 125: (71) switch 20.0%, power 19.4%, voltag 5.4%, convert 4.0%, output 2.0%, diod 1.4%, oper 1.3%, devic 1.3%, current 1.2%, circuit 1.0%, optic 0.9%, power.factor 0.9%, optic.switch 0.9%, modul 0.8%, zv 0.7%, oper.principl 0.6%, mode 0.6%, rectifi 0.5%, control 0.4%, design 0.4%, power.consumpt 0.4%, input 0.3%, system 0.3%, oscil 0.3%, high 0.3%

Focuses on power, namely electrical power, as well as various switches and power converters.

Cluster 126: (188) sinter 44.3%, powder 3.2%, sinter.temperatur 2.7%, grain 2.0%, ceram 2.0%, temperatur 1.7%, composit 1.4%, sp 1.3%, sampl 1.3%, plasma.sinter 1.1%, spark 1.0%, spark.plasma 0.9%, spark.plasma.sinter 0.9%, microstructur 0.8%, press 0.8%, properti 0.7%, phase 0.7%, sinter.sp 0.6%, densiti 0.6%, materi 0.6%, thermoelectr 0.5%, sic 0.4%, plasma.sinter.sp 0.4%, fabric 0.4%, size 0.4% Focuses on various sintering techniques such as spark plasma sintering, and the mechanical properties of sintered materials as well as proper sintering techniques.

Cluster 127: (152) puls 49.1%, laser 10.8%, laser.puls 3.7%, optic 1.4%, femtosecond 1.1%, gener 0.7%, plasma 0.6%, pump 0.5%, chirp 0.5%, phase 0.4%, durat 0.4%, power 0.4%, modul 0.3%, radiat 0.3%, frequenc 0.3%, nonlinear 0.3%, puls.durat 0.3%, intens 0.3%, ultrashort 0.3%, signal 0.3%, time 0.3%, harmon 0.3%, group.veloc 0.3%, field 0.3%, numer 0.3%

Focuses on pulses from optical lasers.

Cluster 128: (149) extract 51.8%, spme 3.0%, acid 1.9%, solvent 1.9%, sampl 1.2%, solid.phase 1.1%, liquid 1.1%, phase 1.0%, phase.microextract 0.9%, microextract 0.9%, solid 0.8%, chromatographi 0.7%, hplc 0.6%, extract.effici 0.5%, solid.phase.microextract 0.5%, ga.chromatographi 0.4%, water 0.4%, detect 0.4%, extract.time 0.4%, organ 0.4%, headspac 0.3%, sfe 0.3%, compound 0.3%, ga 0.3%, volatil 0.3%

Focuses on the extraction and recovery of one physical component from another physical component.

Cluster 129: (151) network 60.6%, node 5.6%, connect 1.3%, topolog 0.9%, model 0.7%, sensor 0.7%, scale.free 0.6%, sensor.network 0.5%, dynam 0.4%, simul 0.4%, scale 0.4%, algorithm 0.4%, distribut 0.3%, system 0.3%, small.world 0.3%, world 0.3%, link 0.3%, rout 0.3%, architectur 0.3%, complex.network 0.3%, processor 0.2%, scale.free.network 0.2%, free.network 0.2%, data 0.2%, commun 0.2% Focuses on networks, specifically computer networks, and the various nodes in a network.

Cluster 130: (173) laser 30.6%, pump 15.4%, power 5.1%, output 3.0%, optic 1.7%, diod 1.6%, output.power 1.6%, caviti 1.3%, lock 1.1%, puls 1.0%, pump.power 0.8%, yag 0.8%, mode 0.8%, switch 0.8%, mode.lock 0.6%, laser.diod 0.6%, modul 0.4%, effici 0.4%, repetit 0.4%, frequenc 0.4%, intens 0.4%, signal 0.4%, satur 0.3%, beam 0.3%, rate 0.3%

Focuses on lasers and pumped lasers.

Cluster 131: (228) magnet 58.2%, magnet.field 5.8%, field 5.1%, magnet.properti 1.7%, temperatur 1.5%, coerciv 0.7%, anisotropi 0.7%, phase 0.7%, properti 0.6%, grain 0.4%, sampl 0.3%, ribbon 0.3%, ferrit 0.3%, structur 0.3%, coupl 0.3%, magnet.measur 0.2%, particl 0.2%, materi 0.2%, ferromagnet 0.2%, measur 0.2%, transit 0.2%, electr 0.2%, exchang.coupl 0.2%, magnetostrict 0.2%, compound 0.2% *Focuses on magnetic properties of various materials, the effects of magnetization on various materials.*

Cluster 132: (231) electron.microscopi 7.9%, microscopi 6.9%, transmiss.electron 6.4%, transmiss.electron.microscopi 6.3%, electron 6.2%, transmiss 5.0%, diffract 3.2%, rai 3.2%, electron.microscopi.tem 2.8%, microscopi.tem 2.8%, tem 2.8%, diffract.xrd 1.6%, xrd 1.3%, rai.diffract 1.3%, powder 1.1%, rai.diffract.xrd 1.0%, synthes 0.8%, xrd.transmiss.electron 0.8%, diffract.xrd.transmiss 0.7%, xrd.transmiss 0.7%, rai.powder 0.7%, rai.powder.diffract 0.6%, powder.diffract 0.6%, morpholog 0.6%

Focuses on electron microscopy, especially transmission electron microscopy: (tem).

Cluster 133: (166) cancer 20.2%, cell 12.6%, express 5.7%, cancer.cell 4.6%, breast 3.0%, gastric 2.9%, p53 2.8%, tissu 2.4%, mmp 2.0%, breast.cancer 1.6%, carcinoma 1.5%, cell.line 1.5%, tumor 1.5%, apoptosi 1.1%, line 1.0%, protein 1.0%, gastric.cancer 0.8%, human 0.7%, gene 0.7%, mrna 0.7%, invas 0.5%, activ 0.5%, cancer.cell.line 0.5%, normal 0.4%, mcf 0.4%

Focuses on various forms of cancer and possible treatments, and cellular expression.

Cluster 134: (109) atom 43.7%, oxygen.atom 3.6%, nitrogen.atom 2.5%, oxygen 1.8%, ligand 1.5%, nitrogen 1.4%, complex 1.2%, coordin 1.2%, two 1.2%, distort 1.0%, structur 0.9%, ion 0.8%, bridg 0.7%, two.oxygen 0.7%, two.oxygen.atom 0.7%, atom.two 0.7%, tin 0.6%, tin.atom 0.6%, geometri 0.6%, crystal 0.5%, site 0.5%, on 0.5%, molecul 0.4%, atom.on 0.3%, bipyramid 0.3%

Focuses on atomic structure concentrating on O2 and N2 atoms, with emphasis on ligands and synthesis of complexes.

Cluster 135: (84) decis 36.1%, suppli.chain 3.8%, custom 3.6%, inform 3.2%, suppli 2.3%, linguist 1.7%, risk 1.3%, system 1.3%, product 1.3%, oper 1.2%, model 1.2%, decis.support 1.2%, decis.support.system 1.0%, support.system 1.0%, chain 0.9%, select 0.9%, decis.maker 0.8%, decis.model 0.7%, attribut 0.7%, support 0.7%, maker 0.7%, integr 0.6%, cost 0.6%, onlin 0.6%, new.product 0.6%

Focuses on business structure and business modeling and supply chains, including the role of linguistics in the decision support systems.

Cluster 136: (116) crystal 8.4%, singl.crystal 7.7%, rai 6.0%, singl.crystal.rai 6.0%, crystal.rai 5.8%, diffract 5.2%, crystal.rai.diffract 3.9%, singl 3.0%, structur 2.9%, compound 2.8%, rai.diffract 2.5%, synthes 2.1%, hydrotherm 1.4%, crystal.structur 1.1%, h2o 1.0%, angstrom 0.9%, hpo3 0.8%, complex 0.8%, bpy 0.7%, element 0.7%, nmr 0.6%, structur.singl.crystal 0.6%, structur.singl 0.5%, new 0.5%, framework 0.5%

Focuses on single crystal x-ray diffraction method for analyzing compounds and their structure.

Cluster 137: (124) blend 39.9%, hdpe 4.2%, mechan.properti 1.6%, melt 1.6%, crystal 1.1%, starch 1.1%, lldpe 1.1%, graft 1.1%, properti 1.0%, polyethylen 0.9%, mechan 0.8%, peo 0.7%, phase 0.7%, tensil 0.7%, shear 0.7%, temperatur 0.6%, strength 0.6%, morpholog 0.6%, densiti.polyethylen 0.6%, content 0.6%, epdm 0.6%, ldpe 0.6%, vibrat 0.5%, nylon 0.5%, copolym 0.5%

Focuses on blends, especially of polymers, with emphasis on high density polyethylene as well as mechanical and melt properties.

Cluster 138: (109) kong 13.4%, hong 13.3%, hong.kong 12.7%, health 5.4%, sar 4.4%, care 2.4%, chines 1.1%, women 1.0%, practic 1.0%, risk 0.7%, psycholog 0.5%, ag 0.5%, medic 0.5%, social 0.5%, perceiv 0.5%, health.care 0.5%, influenza 0.4%, nurs

0.4%, respond 0.4%, popul 0.4%, singapor 0.4%, worker 0.4%, hospit 0.4%, diseas 0.4%, peopl 0.4%

Focuses on health problems among Chineese citizens, especially in Hong Kong.

Cluster 139: (112) surfact 30.5%, micel 7.1%, vesicl 3.2%, sd 2.9%, sodium 2.4%, ctab 2.0%, concentr 2.0%, cmc 1.5%, anion 1.2%, water 1.0%, oil 0.9%, anion.surfact 0.9%, mix 0.9%, interact 0.9%, triton 0.8%, triton.100 0.8%, aggreg 0.8%, cation 0.7%, tension 0.7%, biodegrad 0.7%, hydrophob 0.6%, micellar 0.6%, solubil 0.6%, microemuls 0.5%, solut 0.5%

Focuses on surfactants and micelles and their aggregates.

Cluster 140: (180) ceram 50.0%, zro2 2.4%, sinter 2.3%, glass.ceram 1.6%, composit 1.3%, strength 1.3%, glass 1.3%, fractur 1.2%, al2o3 1.0%, materi 0.8%, mechan.properti 0.8%, green 0.7%, microstructur 0.7%, gelcast 0.7%, properti 0.7%, green.bodi 0.7%, tough 0.6%, slurri 0.6%, temperatur 0.5%, fractur.tough 0.5%, mechan 0.5%, powder 0.5%, grind 0.4%, si3n4 0.4%, grain 0.4% Focuses on ceramics, including fabrication, doping, and mechanical properties.

Cluster 141: (100) preval 12.0%, hiv 9.2%, smoke 5.0%, sexual 4.3%, risk 3.1%, china 2.2%, infect 1.8%, health 1.5%, smoker 1.4%, femal 1.4%, drug 1.3%, ag 1.3%, women 1.2%, rural 1.2%, chines 1.2%, male 1.2%, year 1.0%, survei 0.9%, sex 0.9%, hiv.aid 0.9%, aid 0.9%, diseas 0.9%, worker 0.9%, men 0.8%, popul 0.8% Focuses on sexually transmitted diseases such as HIV. Also focuses on smoking and its health problems, as well as other respiratory ailments.

Cluster 142: (121) sediment 26.5%, lake 10.7%, river 6.6%, water 4.4%, estuari 3.2%, coastal 1.9%, concentr 1.2%, china 0.8%, sea 0.8%, bai 0.8%, season 0.7%, pcb 0.7%, pah 0.6%, pearl.river 0.6%, pearl 0.6%, area 0.6%, river.estuari 0.6%, nutrient 0.6%, tidal 0.5%, level 0.5%, fish 0.4%, phosphoru 0.4%, tide 0.4%, pearl.river.estuari 0.4%, reef 0.4%

Focuses on sediments and sediment tracking and contamination in various water sources; lakes, rivers, estuaries, seas, etc.

Cluster 143: (114) sequenc 28.3%, genom 9.3%, dna 6.8%, chromosom 3.1%, dna.sequenc 2.7%, clone 2.6%, gene 2.1%, nucleotid 2.1%, isol 1.5%, viru 1.4%, rna 1.0%, strain 0.8%, fragment 0.8%, region 0.6%, code 0.5%, amino.acid 0.5%, pcr 0.5%, rice 0.5%, ident 0.5%, amino 0.5%, hybrid 0.4%, protein 0.4%, mrna 0.4%, replic 0.3%, segment 0.3%

Focuses on dna and genomic sequencing.

Cluster 144: (138) electrod 39.1%, electrochem 3.3%, carbon 2.9%, oxid 2.0%, current 1.3%, biosensor 1.1%, glucos 1.0%, carbon.electrod 0.9%, potenti 0.9%, peak 0.8%, surfac 0.8%, platinum 0.8%, mwnt 0.8%, detect 0.8%, voltammetri 0.6%, cnt 0.6%, gce 0.6%, cyclic 0.6%, mol 0.6%, amperometr 0.6%, glassi.carbon 0.5%, peak.current 0.5%, electrocatalyt 0.5%, glassi.carbon.electrod 0.5%, detect.limit 0.5% Focuses on electrodes in electrochemical systems, especially carbon-based electrodes.

Cluster 145: (142) algorithm 29.8%, converg 10.3%, iter 4.3%, optim 2.6%, program 2.3%, solv 1.8%, global 1.6%, newton 1.5%, constraint 1.5%, linear 1.2%, numer 1.1%, trust.region 1.0%, linear.program 0.9%, function 0.9%, new 0.8%, algorithm.solv 0.8%, trust 0.7%, comput 0.7%, smooth 0.7%, global.converg 0.6%, point 0.6%, object.function 0.6%, solut 0.5%, quadrat 0.5%, genet.algorithm 0.5% Focuses on algorithm development, especially modeling, convergence, and optimization.

Cluster 146: (82) photon 10.3%, atom 7.7%, field 6.6%, three.level 2.8%, coher 2.7%, level 2.6%, state 2.6%, caviti 2.4%, excit 2.1%, quantum 1.8%, level.atom 1.7%, two.photon 1.4%, detun 1.2%, two 1.1%, reson 0.9%, probe 0.9%, popul 0.9%, three.level.atom 0.8%, electromagnet.induc.transpar 0.8%, electromagnet.induc 0.8%, induc.transpar 0.7%, magnon 0.7%, mode 0.7%, absorpt 0.7%, caviti.field 0.6% Focuses on photons: (emission/absorption/interaction) and multi-level atomic systems emphasizing the role of fields on the photon and atomic system behaviors.

Cluster 147: (102) turbul 29.6%, flow 7.0%, vortex 3.9%, vortic 3.2%, veloc 2.3%, reynold 1.8%, fire 1.6%, model 1.6%, pressur 1.5%, bubbl 1.3%, particl 1.2%, simul 1.1%, number 0.9%, reynold.number 0.7%, wall 0.7%, combust 0.7%, flame 0.6%, eddi 0.6%, turbul.flow 0.6%, scale 0.6%, vent 0.5%, street 0.5%, turbul.model 0.5%, numer 0.5%, fluctuat 0.4%

Focuses on turbulent flow, especially vortex dynamics and modeling.

Cluster 148: (99) theorem 49.9%, semigroup 2.9%, prove 2.7%, regular 2.3%, subgroup 2.0%, space 1.3%, finit 1.0%, finit.group 0.9%, convex 0.7%, congruenc 0.7%, condit 0.7%, group 0.6%, proof 0.6%, class 0.5%, set 0.5%, point 0.5%, oper 0.5%, order 0.5%, fan 0.4%, topolog 0.4%, prime 0.4%, theori 0.4%, limit.theorem 0.4%, maxim 0.4%, isomorph 0.4%

Focuses on mathematical theorems.

Cluster 149: (142) discharg 11.1%, capac 6.9%, cathod 6.7%, electrochem 6.4%, cycl 3.5%, electrolyt 3.5%, lithium 3.2%, batteri 2.6%, materi 2.4%, charg.discharg 2.2%, mah 2.0%, lifepo4 2.0%, charg 1.7%, composit 1.3%, oxid 1.2%, discharg.capac 1.1%, licoo2 1.1%, cathod.materi 1.0%, electrod 1.0%, lithium.ion 0.9%, polym.electrolyt 0.8%, ion 0.7%, spinel 0.5%, conduct 0.5%, powder 0.5% Focuses on the charge and discharge capacity of various materials, and mainly their use in electrochemical/electrical charge transfers. Basically it focuses on batteries/battery cells.

Cluster 150: (126) fluoresc 41.5%, bind 4.0%, quench 2.9%, fluoresc.intens 2.4%, bsa 1.6%, hsa 1.5%, intens 1.3%, fluoresc.quench 0.9%, complex 0.9%, ion 0.8%, mol 0.7%, bind.constant 0.6%, emiss 0.6%, albumin 0.6%, dna 0.6%, spectra 0.6%, serum.albumin 0.5%, constant 0.5%, serum 0.5%, fluoresc.spectra 0.4%, concentr 0.4%, protein 0.4%, interact 0.4%, detect 0.4%, sensit 0.4% *Focuses on the fluorescence of various materials/atoms/compounds and fluorescence quenching*.

Cluster 151: (144) piezoelectr 9.7%, ceram 8.7%, ferroelectr 6.7%, dope 6.0%, dielectr 4.1%, pzt 3.7%, phase 2.2%, properti 1.7%, electr 1.5%, composit 1.3%, piezoelectr.properti 1.3%, relaxor 1.0%, crystal 0.9%, oxygen.vacanc 0.8%, tetragon 0.8%, temperatur 0.8%, pmn 0.8%, perovskit 0.8%, vacanc 0.8%, grain 0.7%, bi4ti3o12 0.6%, sampl 0.6%, constant 0.6%, polar 0.6%, 3nb2 0.5% Focuses on the piezoelectric and dielectric properties of various materials, including ceramics.

Cluster 152: (128) film 35.5%, electrod 5.3%, multilay.film 3.1%, multilay 2.8%, tio2 2.1%, electrochem 1.5%, layer 1.3%, tio2.film 1.1%, biosensor 1.1%, assembl 0.9%, glucos 0.8%, layer.layer 0.7%, cyclic 0.7%, voltammetri 0.7%, film.electrod 0.5%, carbon 0.5%, deposit 0.5%, self.assembl 0.5%, cyclic.voltammetri 0.5%, surfac 0.5%, redox 0.4%, solut 0.4%, carbon.electrod 0.4%, mol 0.4%, oxid 0.4% *Focuses on films and doping agents that are embedded or placed on films, such as sensors*.

Cluster 153: (99) children 15.2%, chines 10.5%, social 8.0%, school 7.4%, cultur 4.0%, adolesc 2.6%, moral 1.7%, parent 1.2%, teacher 1.1%, kong 1.0%, hong 1.0%, hong.kong 1.0%, child 0.8%, self 0.7%, ag 0.7%, depress 0.7%, belief 0.7%, peer 0.7%, compet 0.6%, dental 0.6%, score 0.6%, perceiv 0.5%, person 0.5%, year 0.5%, support 0.4%

Focuses on various social and health characteristics and behaviours of Chinese citizens and children.

Cluster 154: (132) dna 33.9%, mutat 9.8%, pcr 4.5%, gene 3.7%, detect 3.2%, primer 1.7%, sequenc 1.4%, methyl 1.2%, mutant 0.9%, genom 0.8%, probe 0.6%, microarrai 0.6%, oligonucleotid 0.6%, polymeras 0.6%, hybrid 0.5%, hbv 0.5%, cell 0.4%, plasmid 0.4%, promot 0.4%, sampl 0.4%, assai 0.4%, tumor 0.4%, sensit 0.4%, point.mutat 0.4%, cancer 0.4%

Focuses on dna, specifically on detection, characterization, mutation, sequencing.

Cluster 155: (88) mice 49.8%, induc 1.7%, dose 1.6%, express 1.5%, level 1.2%, group 0.7%, treat 0.7%, increas 0.6%, activ 0.5%, protect 0.5%, inhibit 0.5%, administr 0.5%, liver 0.5%, control 0.4%, receptor 0.4%, brain 0.4%, mrna 0.4%, tissu 0.3%, anim 0.3%, morphin 0.3%, decreas 0.3%, histamin 0.3%, infect 0.3%, acid 0.3%, mous 0.2%

Focuses on the use of mice in medical experiments.

Cluster 156: (113) seismic 14.3%, fault 5.4%, earthquak 5.0%, basin 4.5%, veloc 4.0%, crust 3.0%, mantl 2.3%, river 2.0%, wave 2.0%, reservoir 1.7%, crustal 1.6%, moho 1.5%, zone 1.4%, area 1.3%, tecton 1.3%, geolog 1.1%, belt 0.9%, wave.veloc 0.8%, depth 0.7%, region 0.7%, seismic.wave 0.6%, rock 0.6%, upper 0.6%, beneath 0.6%, uplift 0.5%

Focuses on seismic activity, including earthquakes.

Cluster 157: (138) chemiluminesc 5.2%, detect.limit 4.7%, mug 3.7%, sampl 3.6%, detect 3.1%, rel.standard 3.0%, limit 2.9%, rel.standard.deviat 2.8%, standard 2.7%, standard.deviat 2.5%, deviat 2.0%, trace 1.9%, inject 1.7%, flow.inject 1.6%, rsd 1.6%, formaldehyd 1.5%, flow 1.4%, recoveri 1.3%, linear.rang 1.3%, preconcentr 1.3%, rel 1.2%, selenium 1.1%, rang 1.1%, reaction 0.8%, digest 0.7% Focuses on chemiluminescence, emphasizing issues of detection limit for detecting trace material amounts, especially at the microgram level of concentration.

Cluster 158: (445) film 64.8%, deposit 2.6%, substrat 1.4%, thick 1.0%, anneal 0.7%, surfac 0.5%, film.thick 0.5%, zno 0.5%, film.deposit 0.5%, temperatur 0.5%, properti 0.4%, sputter 0.4%, structur 0.3%, electron 0.3%, zno.film 0.3%, rai 0.3%, optic 0.3%, spectroscopi 0.2%, magnet 0.2%, amorph 0.2%, dlc 0.2%, carbon 0.2%, microscopi 0.2%, orient 0.2%, measur 0.2%

Focuses on various films, discussing formation, doping, deposition etc.

Cluster 159: (90) seed 14.2%, germin 9.8%, forest 7.5%, seedl 3.8%, cotton 3.3%, season 3.1%, leaf 3.0%, biomass 2.8%, wheat 2.3%, canopi 2.2%, cultivar 1.7%, plant 1.5%, tree 1.1%, seed.germin 0.9%, year 0.9%, veget 0.8%, tea 0.7%, grassland 0.7%, grow.season 0.6%, china 0.6%, growth 0.5%, npp 0.5%, rice 0.5%, area 0.5%, stand 0.4%

Focuses on all matter of plants, both food plants and non-food plants, including seeds and their properties, such as germination rate

Cluster 160: (119) stress 50.0%, shear 5.4%, rock 2.4%, residu.stress 1.6%, residu 1.1%, deform 0.9%, plastic 0.8%, strain 0.8%, fractur 0.7%, shear.stress 0.7%, model 0.7%, compress 0.5%, mine 0.4%, element 0.4%, strength 0.4%, stress.field 0.4%, stress.state 0.3%, simul 0.3%, materi 0.3%, load 0.3%, specimen 0.3%, failur 0.3%, tension 0.3%, yield 0.3%, concret 0.3%

Focuses on the mechanical properties of materials, and stresses on them, along with what happens to stressed materials. Also talks about residual stresses, and stress testing and stresses in rocks.

Cluster 161: (78) egg 10.9%, diet 8.8%, larva 6.3%, feed 6.3%, fed 4.9%, fish 4.0%, dietari 3.0%, toxic 1.2%, femal 1.0%, reproduct 1.0%, growth 1.0%, fertil 1.0%, mmt 1.0%, dai 0.9%, rate 0.9%, larval 0.9%, lipid 0.9%, level 0.7%, embryo 0.7%, exposur 0.7%, weight 0.7%, adult 0.6%, shrimp 0.6%, hatch 0.6%, bodi 0.6% Focuses on the interaction of insects and their predators, and what influences the mortality of insects/fish.

Cluster 162: (122) solut 9.0%, global 8.1%, exist 5.4%, infin 4.6%, asymptot 3.8%, equat 3.6%, nonlinear 2.1%, suffici.condit 1.9%, system 1.8%, suffici 1.8%, condit 1.8%, blow 1.5%, posit 1.4%, prove 1.2%, uniqu 1.2%, attractor 1.2%, equal 1.0%, boundari 1.0%, global.exist 0.9%, cauchi 0.8%, differ.equat 0.8%, oscil 0.8%, exist.uniqu 0.8%, asymptot.behavior 0.7%, element.infin 0.7% Focuses on mathematical equations and mathematical models and systems.

Cluster 163: (149) strain 22.0%, damag 8.1%, plastic 5.9%, stress 5.3%, deform 3.2%, model 2.9%, strain.rate 2.2%, fatigu 2.0%, stress.strain 1.8%, constitut 1.8%, materi 1.8%, load 1.3%, constitut.model 1.0%, solder 0.9%, rate 0.8%, test 0.7%, plastic.strain 0.7%, harden 0.7%, simul 0.7%, dynam 0.6%, compress 0.5%, concret 0.5%, shear 0.4%, failur 0.4%, finit.element 0.4%

Focuses on mechanical properties of materials with emphasis on damage to the material, plastic deformation and fatigue life.

Cluster 164: (100) algorithm 22.4%, cluster 11.9%, learn 5.0%, data 4.2%, mine 3.0%, set 2.2%, classif 1.6%, rule 1.2%, classifi 1.1%, data.set 1.0%, cluster.algorithm 0.8%, train 0.8%, accuraci 0.8%, data.mine 0.7%, fuzzi 0.7%, pattern 0.6%, discrimin 0.6%, network 0.6%, learn.algorithm 0.6%, kernel 0.6%, recognit 0.5%, model 0.5%, neural 0.5%, text 0.4%, object 0.4%

Focuses on algorithems, with an emphasis on clustering algorithems.

Cluster 165: (170) speci 60.3%, genu 1.1%, plant 1.1%, china 1.0%, phylogenet 0.9%, sequenc 0.8%, genera 0.7%, collect 0.7%, morpholog 0.6%, habitat 0.5%, region 0.4%, taxa 0.4%, tree 0.4%, group 0.3%, two 0.3%, asia 0.3%, two.speci 0.3%, plant.speci 0.3%, forest 0.3%, fungi 0.2%, domin 0.2%, taxonom 0.2%, clade 0.2%, charact 0.2%, divers 0.2%

Focuses on various species of organisms and plants, and their characteristics. Also talks about DNA and comparing it between species.

Cluster 166: (95) wind 30.0%, dust 10.4%, solar 3.1%, storm 2.2%, latitud 1.9%, region 1.0%, aerosol 0.8%, radiat 0.8%, satellit 0.8%, model 0.8%, cloud 0.8%, dust.storm 0.8%, ionospher 0.6%, build 0.6%, data 0.6%, solar.activ 0.5%, sunspot 0.5%, transport 0.5%, atmospher 0.5%, particl 0.5%, period 0.5%, lightn 0.5%, forc 0.4%, summer 0.4%, pollut 0.4%

Focuses on wind, both solar wind and lower atmospheric wind; includes wind modeling, and wind damage, as well as particulates in the wind such as dus and aerosols.

Cluster 167: (466) patient 62.1%, diseas 1.2%, year 1.1%, treatment 1.0%, group 1.0%, clinic 1.0%, month 0.7%, surviv 0.6%, score 0.5%, therapi 0.5%, control 0.5%, ag 0.4%, tumor 0.4%, hospit 0.4%, outcom 0.4%, cancer 0.4%, recurr 0.3%, symptom 0.3%, rate 0.3%, 001 0.3%, risk 0.3%, level 0.3%, mean 0.3%, chines 0.3%, serum 0.2%

Focuses on medical patients and their medical problems.

Cluster 168: (179) bond 7.3%, b3lyp 6.7%, energi 6.1%, isom 6.1%, 31g 2.5%, vibrat 1.9%, geometri 1.6%, densiti.function 1.5%, dft 1.3%, theori 1.2%, level 1.2%, b3lyp.31g 1.2%, hydrogen 1.2%, structur 1.2%, dissoci 1.2%, molecul 1.1%, atom 1.0%, basi.set 1.0%, densiti 0.9%, complex 0.9%, mp2 0.9%, densiti.function.theori 0.9%, function.theori 0.9%, electron 0.9%, stabl 0.8%

Focuses on the bonds between atoms and molecules, with emphasis on their electron transfer.

Cluster 169: (243) bond 16.2%, hydrogen.bond 13.8%, hydrogen 12.9%, molecul 4.5%, anion 4.2%, cation 2.6%, interact 1.9%, compound 1.6%, water 1.6%, titl 1.5%, water.molecul 1.3%, dimension 1.1%, structur 1.1%, titl.compound 1.1%, chain 1.0%, h2o 0.9%, form 0.8%, bond.interact 0.7%, hydrogen.bond.interact 0.6%, three.dimension 0.6%, atom 0.6%, link 0.6%, two 0.5%, center 0.5%, crystal 0.5% *Focuses on the bonds between atoms and molecules, specifically hydrogen bonding, and atom interaction.*

Cluster 170: (95) featur 19.9%, word 12.4%, svm 5.3%, classif 5.3%, classifi 2.3%, charact 2.1%, segment 1.8%, featur.select 1.8%, extract 1.8%, speech 1.4%, select 1.3%, chines 1.0%, vector 0.9%, recognit 0.8%, retriev 0.8%, sentenc 0.7%, machin 0.7%, learn 0.7%, support.vector 0.6%, train 0.5%, support.vector.machin 0.5%, vector.machin 0.5%, string 0.5%, discrimin 0.5%, inform 0.5% *Focuses on speech, voice, and written or typed character characterization and classification, with emphasis on feature/ word extraction.*

Cluster 171: (144) kinas 9.6%, receptor 7.6%, activ 6.1%, phosphoryl 5.9%, induc 4.6%, signal 3.3%, protein 2.6%, inhibit 2.1%, cell 1.8%, protein.kinas 1.7%, kappab 1.7%, pathwai 1.5%, regul 1.5%, mapk 1.4%, inhibitor 1.3%, mediat 1.2%, express 1.1%, pka 0.9%, pkc 0.9%, camp 0.9%, p38 0.8%, erk 0.6%, beta 0.6%, tyrosin 0.5%, stimul 0.5%

Focuses on kinase and receptor activation, and the signaling of the cells between the receptors.

Cluster 172: (174) quantum 37.0%, spin 9.7%, quantum.dot 2.9%, dot 2.3%, phonon 1.8%, state 1.7%, coupl 1.7%, gate 1.4%, electron 1.1%, field 1.0%, qubit 1.0%, system 0.9%, current 0.9%, exciton 0.6%, gaa 0.5%, magnet 0.5%, classic 0.5%, energi 0.4%, decoher 0.4%, mesoscop 0.4%, charg 0.4%, reson 0.4%, two 0.4%, interact 0.3%, magnet.field 0.3%

Focuses on quantum particules, and quantum dots, and the spin of electrons.

Cluster 173: (327) gene 47.6%, express 10.0%, gene.express 2.1%, transcript 2.0%, protein 1.2%, cell 1.1%, regul 0.9%, promot 0.9%, sequenc 0.9%, mutant 0.6%, strain 0.6%, genom 0.6%, pcr 0.5%, rna 0.5%, mutat 0.5%, cancer 0.4%, activ 0.4%, recombin 0.4%, clone 0.4%, function 0.4%, human 0.4%, microarrai 0.4%, coli 0.3%, mrna 0.3%, tumor 0.3%

Focuses on genes, and gene expression and genetic sequencing.

Cluster 174: (177) wave 52.3%, propag 2.0%, frequenc 1.8%, refract 1.3%, electromagnet.wave 1.0%, electromagnet 0.9%, neg.refract 0.8%, field 0.8%, numer 0.7%, spiral 0.6%, crystal 0.5%, mode 0.5%, dispers 0.5%, acoust 0.5%, photon.crystal 0.5%, harmon 0.4%, spiral.wave 0.4%, photon 0.4%, wave.propag 0.4%, amplitud 0.4%, dimension 0.4%, neg 0.4%, groov 0.3%, gap 0.3%, guid 0.3% Focuses on electromagnetic, gravitational, and other waves, and their propagation.

Cluster 175: (101) space 27.0%, manifold 10.4%, metric 4.3%, oper 2.8%, map 2.3%, riemannian 2.0%, banach 1.5%, compact 1.4%, invari 1.0%, bergman 1.0%, prove 1.0%, riemannian.manifold 1.0%, banach.space 0.9%, curvatur 0.9%, sphere 0.9%, theorem 0.7%, function 0.6%, isometr 0.6%, norm 0.6%, let 0.6%, hardi 0.6%, bloch 0.6%, sitter 0.5%, dimension 0.5%, local 0.5%

 $Focuses\ on\ mathematics,\ with\ emphases\ on\ spaces\ and\ manifolds.$

Cluster 176: (137) express 8.1%, tgf 7.3%, tnf 4.0%, tnf.alpha 3.1%, tgf.beta 3.1%, mrna 3.1%, alpha 2.9%, mmp 2.3%, vegf 1.6%, beta 1.5%, level 1.5%, cytokin 1.4%, beta1 1.2%, lung 1.2%, cell 1.2%, activ 1.2%, tgf.beta1 1.1%, protein 1.0%, rat 1.0%, induc 1.0%, factor 1.0%, receptor 1.0%, growth.factor 0.9%, macrophag 0.9%, bone 0.9%

Focuses on cellular expresson and tumor necrosis factor alpha and transforming growth factor.

Cluster 177: (222) protein 58.4%, bind 1.5%, sequenc 0.7%, proteom 0.6%, express 0.6%, interact 0.6%, human 0.6%, cell 0.5%, membran 0.5%, amino.acid 0.5%, amino 0.5%, bind.protein 0.4%, function 0.4%, electrophoresi 0.4%, membran.protein 0.4%, gel 0.4%, mass 0.4%, spot 0.3%, serum 0.3%, regul 0.3%, domain 0.3%, protein.protein 0.3%, acid 0.3%, hsa 0.3%, detect 0.3%

Focuses on proteins, and protein separation, and protein analysis.

Cluster 178: (223) cell 40.1%, express 3.0%, mice 1.8%, prolifer 1.6%, stem.cell 1.4%, lymphocyt 1.2%, stem 1.2%, differenti 1.2%, bone 1.1%, cd4 0.7%, human 0.7%, activ 0.7%, marrow 0.6%, immun 0.6%, msc 0.6%, cd8 0.6%, induc 0.6%, transplant 0.6%, bone.marrow 0.6%, cultur 0.6%, cytokin 0.5%, progenitor 0.5%, stimul 0.5%, vitro 0.5%, regul 0.4%

Focuses on various kinds of cells and their attributes, along with cellular expression.

Cluster 179: (177) catalyst 41.5%, reaction 3.3%, catalyt 2.6%, polymer 1.8%, activ 1.4%, yield 1.2%, complex 1.0%, reus 0.8%, ionic.liquid 0.8%, ethylen 0.7%, epoxid 0.7%, copolymer 0.6%, liquid 0.6%, acid 0.6%, catalyz 0.6%, aldehyd 0.6%, carbon 0.5%, catalyst.system 0.5%, ionic 0.5%, polyethylen 0.5%, alcohol 0.5%, oxid 0.5%, palladium 0.5%, condit 0.4%, temperatur 0.4% Focuses on catalysts and their use.

Cluster 180: (161) market 26.1%, firm 10.4%, price 8.5%, econom 4.1%, economi 2.9%, trade 2.3%, innov 1.8%, bid 1.2%, institut 1.0%, stock 0.9%, model 0.9%, enterpris 0.8%, china 0.7%, social 0.6%, product 0.6%, reform 0.6%, privat 0.5%, moral 0.5%, equilibrium 0.5%, system 0.5%, polit 0.5%, portfolio 0.5%, cost 0.4%, govern 0.4%, decis 0.4%

Focuses on economics, specifically different markets, firms, and the price of goods in different economies.

Cluster 181: (79) colloid 8.4%, silver 7.9%, assembl 5.1%, hollow 4.9%, nanoparticl 4.2%, self.assembl 2.4%, sphere 1.8%, templat 1.7%, shell 1.7%, silica 1.6%, particl

1.5%, self 1.4%, nanospher 1.2%, surfac 1.2%, colloid.crystal 1.0%, silver.nanoparticl 0.9%, aggreg 0.8%, poli 0.8%, diamet 0.8%, hollow.sphere 0.8%, nanopl 0.8%, layer 0.7%, spheric 0.7%, crystal 0.7%, ctab 0.6%

Focuses on colloidal silver spheres and their self assembly.

Cluster 182: (353) alloi 56.8%, microstructur 2.4%, phase 1.5%, cast 1.4%, oxid 1.1%, temperatur 0.9%, strength 0.7%, precipit 0.6%, layer 0.5%, grain 0.5%, properti 0.4%, gamma 0.4%, surfac 0.4%, content 0.4%, ag 0.4%, addit 0.4%, eutect 0.3%, magnesium.alloi 0.3%, melt 0.3%, mechan 0.3%, magnesium 0.3%, rate 0.3%, form 0.3%, titanium 0.3%, mechan.properti 0.3%

Focuses on the creation/formation/evaluation of alloys and their microstructure.

Cluster 183: (116) boundari 12.5%, equat 7.5%, solut 3.9%, boundari.condit 3.8%, numer 3.8%, integr 2.6%, integr.equat 2.3%, crack 1.9%, function 1.8%, condit 1.6%, singular 1.3%, stress 1.2%, displac 1.2%, domain 1.0%, wave 1.0%, accuraci 0.6%, quadratur 0.6%, differenti.quadratur 0.6%, deriv 0.6%, green.function 0.6%, point 0.6%, singular.integr 0.5%, singular.integr.equat 0.5%, piezoelectr 0.5%, orthotrop 0.5%

Focuses on mathematics: boundary conditions, equations, etc.

Cluster 184: (142) estim 28.6%, error 17.8%, regress 1.9%, likelihood 1.8%, model 1.7%, sampl 1.6%, data 1.3%, asymptot 1.3%, statist 0.9%, maximum.likelihood 0.9%, paramet 0.9%, simul 0.9%, bootstrap 0.8%, distribut 0.7%, test 0.7%, varianc 0.6%, calibr 0.6%, linear 0.6%, squar 0.5%, parametr 0.5%, outlier 0.5%, nonparametr 0.5%, empir 0.5%, accuraci 0.5%, likelihood.estim 0.4% Focuses on estimation, and the error associated with estimation.

Cluster 185: (122) numer 8.0%, equat 6.9%, solut 4.5%, finit 3.4%, converg 3.0%, stoke 2.9%, scheme 2.8%, navier 2.6%, navier.stoke 2.5%, approxim 2.3%, finit.element 1.9%, stoke.equat 1.6%, element 1.6%, order 1.6%, navier.stoke.equat 1.6%, discret 1.5%, solv 0.8%, flow 0.7%, second.order 0.7%, linear 0.7%, interpol 0.7%, second 0.6%, accuraci 0.6%, error 0.6%, numer.solut 0.6% Focuses on numerical equations, especially solution of numerical equations for fluid flows, such as the navier stokes equation.

Cluster 186: (128) finit.element 15.5%, element 12.7%, finit 10.5%, model 2.5%, roll 2.5%, element.model 1.7%, finit.element.model 1.6%, simul 1.6%, rail 1.3%, fem 1.2%, dam 0.8%, strip 0.8%, forc 0.8%, stress 0.8%, contact 0.7%, rotor 0.6%, calcul 0.6%, deform 0.6%, materi 0.6%, numer 0.6%, plate 0.6%, bridg 0.5%, elast 0.5%, field 0.5%, shape 0.5%

Focuses on finite element models.

Cluster 187: (196) control 43.8%, system 7.0%, control.system 2.2%, model 1.4%, disturb 1.3%, pid 1.2%, nonlinear 1.1%, design 1.0%, simul 1.0%, robot 1.0%, dynam 1.0%, pid.control 0.9%, stabil 0.7%, loop 0.7%, optim 0.7%, robust 0.5%, time 0.5%,

track 0.4%, paramet 0.4%, control.scheme 0.4%, algorithm 0.4%, scheme 0.4%, oper 0.4%, output 0.3%, actuat 0.3%

Focuses on various control systems and the controllers themselves.

Cluster 188: (123) polym 33.7%, solvent 3.4%, monom 2.5%, solubl 2.2%, poli 1.7%, imprint 1.4%, membran 1.3%, polymer 1.1%, synthes 1.1%, chain 1.0%, nmr 1.0%, organ.solvent 0.9%, polycondens 0.8%, acid 0.8%, imprint.polym 0.7%, ether 0.7%, polyimid 0.7%, molecular 0.6%, hyperbranch 0.6%, organ 0.5%, chromophor 0.5%, templat 0.5%, weight 0.4%, thermal 0.4%, properti 0.4% *Focuses on polymers, their formulation, their formation, and their uses.*

Cluster 189: (400) imag 59.4%, algorithm 1.8%, pixel 1.3%, segment 1.3%, color 1.1%, reconstruct 1.0%, data 0.6%, object 0.6%, textur 0.6%, wavelet 0.5%, featur 0.5%, nois 0.5%, process 0.5%, model 0.5%, fingerprint 0.5%, watermark 0.4%, detect 0.4%, transform 0.4%, resolut 0.4%, system 0.4%, match 0.4%, spatial 0.3%, extract 0.3%, inform 0.3%, robust 0.3%

Focuses on imaging, both the instruments used and the mechanics behind taking images.

Cluster 190: (132) crystal 17.3%, melt 4.9%, differenti.scan 3.2%, differenti.scan.calorimetri 2.9%, scan.calorimetri 2.9%, calorimetri 2.8%, dsc 2.6%, scan 1.8%, temperatur 1.7%, crystallin 1.6%, differenti 1.5%, phase 1.5%, thermal 1.1%, scan.calorimetri.dsc 1.1%, calorimetri.dsc 1.1%, polym 1.1%, copolym 0.8%, pcl 0.7%, isotherm 0.7%, crosslink 0.7%, poli 0.7%, ipp 0.6%, waxd 0.5%, cholester 0.5%, isotherm.crystal 0.5%

Focuses on the crystal structures of various compounds and their physical properties such as melting properties with the analysis done by differential scanning calorimetry.

Cluster 191: (83) band 14.4%, dope 9.1%, electron 6.2%, gap 3.3%, energi 2.4%, state 2.2%, electron.structur 1.8%, surfac 1.6%, band.gap 1.5%, densiti 1.3%, atom 1.3%, valenc 1.2%, orbit 1.2%, structur 1.1%, densiti.state 1.1%, valenc.band 1.0%, fermi 0.6%, photoemiss 0.6%, phonon 0.6%, semiconductor 0.6%, do 0.6%, gaa 0.5%, conduct 0.5%, band.structur 0.5%, calcul 0.5%

Focuses on doped materials, especially crystals and their various parameters that fall in different bands. Also emphasizes optical band gaps.

Cluster 192: (132) crystal 34.6%, grown 2.7%, optic 2.6%, linbo3 2.6%, defect 2.5%, pwo 1.8%, photon.crystal 1.8%, absorpt 1.7%, photon 1.6%, dope 1.6%, singl.crystal 1.2%, growth 1.2%, crystal.grown 1.2%, band 0.9%, singl 0.9%, pwo.crystal 0.8%, structur 0.8%, linbo3.crystal 0.7%, spectra 0.7%, caf2 0.5%, kdp 0.4%, face 0.4%, domain 0.3%, diffract 0.3%, trap 0.3%

Focuses on various crystals and their light carrying/other optical properties, as well as defects in them.

Cluster 193: (176) powder 34.8%, size 3.3%, particl 2.9%, precursor 1.7%, particl.size 1.5%, combust 1.5%, calcin 1.5%, temperatur 1.4%, xrd 1.3%, phase 1.1%, synthes 1.0%, precipit 0.8%, nano 0.7%, gel 0.7%, synthesi 0.7%, tem 0.7%, powder.synthes

0.6%, mill 0.5%, product 0.5%, sem 0.5%, nanos 0.5%, la2o3 0.5%, rai 0.5%, oxid 0.4%, sol 0.4%

Focuses on powders and their fabrication and synthesis and mechanical properties.

Cluster 194: (109) zeolit 24.7%, catalyt 10.4%, activ 4.4%, oxid 3.4%, zsm 1.9%, acid.site 1.7%, acid 1.7%, catalyt.activ 1.6%, catalyst 1.6%, site 1.3%, select 1.0%, reaction 0.9%, hzsm 0.8%, methanol 0.8%, cobalt 0.8%, tpd 0.7%, oxygen 0.7%, co2 0.7%, zeolit.beta 0.6%, adsorpt 0.5%, hydrogen 0.5%, reactor 0.5%, membran 0.4%, base 0.4%, complex 0.4%

Focuses on zeolites and their formation and chemical makeup, as well as various catalysts.

Cluster 195: (153) temperatur 6.9%, spin 5.8%, magnet 5.7%, ferromagnet 5.1%, dope 4.8%, field 3.4%, transit 2.9%, magnetoresist 2.4%, resist 1.9%, sampl 1.4%, insul 1.3%, phase 1.3%, electr 1.3%, superconduct 1.3%, temperatur.depend 1.0%, state 0.9%, depend 0.9%, antiferromagnet 0.8%, metal 0.8%, electron 0.7%, transport 0.7%, electr.field 0.7%, paramagnet 0.6%, ion 0.6%, la0 0.6%

Focuses on the magnetic properties of materials along with feromagnets, as well as the doping of various materials to make them magnetic.

Cluster 196: (91) optic 22.7%, soliton 11.0%, beam 3.0%, modul 2.1%, nonlinear 1.6%, america 1.5%, phase 1.4%, detector 1.3%, dark 1.1%, superresolut 1.0%, system 1.0%, photorefract 1.0%, intens 0.8%, light 0.7%, trap 0.7%, spatial.soliton 0.7%, filter 0.7%, theoret 0.7%, phase.shift 0.6%, spatial 0.6%, shift 0.6%, incoher 0.6%, numer 0.5%, apertur 0.5%, vortex 0.5%

Focuses on optics, both biological: (human eye) and mechanical: (optical crystals etc, with some emphasis on solitons).

Cluster 197: (144) plant 18.1%, root 16.7%, rice 3.7%, shoot 3.2%, leaf 3.1%, leav 2.0%, water 1.6%, concentr 1.2%, uptak 1.1%, nutrient 0.9%, stomat 0.8%, toler 0.8%, medium 0.7%, content 0.7%, cultivar 0.7%, growth 0.7%, treatment 0.6%, biomass 0.6%, irrig 0.6%, wheat 0.5%, increas 0.5%, photosynthet 0.5%, stem 0.5%, ecotyp 0.5%, stress 0.4%

Focuses on plants, and plant roots. Includes waste remediation using plants, various health benefits of plants, and plant characterization and analysis.

Cluster 198: (326) algorithm 67.6%, comput 1.9%, new 0.6%, model 0.6%, time 0.6%, simul 0.5%, effici 0.5%, new.algorithm 0.4%, path 0.4%, data 0.4%, system 0.3%, optim 0.3%, network 0.3%, algorithm.algorithm 0.3%, adapt 0.3%, rout 0.3%, parallel 0.3%, nois 0.2%, match 0.2%, point 0.2%, gener 0.2%, complex 0.2%, multipl 0.2%, scheme 0.2%, two 0.2%

Focuses on various computer algorithems.

Cluster 199: (93) field 5.8%, spin 5.7%, dark 4.8%, theori 4.1%, dark.energi 4.0%, cosmolog 3.7%, univers 2.4%, energi 2.1%, field.theori 1.6%, inflat 1.6%, model 1.4%, matter 1.4%, gravit 1.3%, fermion 1.2%, scalar 1.2%, dark.matter 1.1%,

constant 1.1%, cosmolog.constant 1.0%, cosmic 0.9%, scalar.field 0.9%, brane 0.9%, formula 0.8%, perturb 0.7%, paramet 0.7%, particl 0.7% *Focuses on various topics in astrophysics, and physics in general.*

Cluster 200: (202) h2o 14.1%, ligand 8.7%, coordin 6.3%, bridg 4.1%, complex 3.2%, coordin.polym 2.9%, chain 2.5%, polym 2.1%, ion 2.0%, clo4 1.7%, structur 1.6%, no3 1.3%, center 1.3%, dimension 1.1%, magnet 1.1%, synthes 1.1%, compound 1.0%, bi 0.9%, two 0.9%, bipi 0.7%, anion 0.6%, pyridyl 0.6%, interact 0.5%, crystal 0.5%, phen 0.5%

Focuses on chemistry with emphasis on chemical mechanics.

Cluster 201: (84) model 8.7%, inform 6.7%, forecast 6.2%, data 4.5%, land 4.2%, gi 3.0%, climat 2.5%, spatial 2.0%, ionospher 1.5%, flood 1.5%, map 1.2%, area 1.2%, npp 0.9%, river 0.9%, system 0.8%, knowledg 0.8%, hydrolog 0.8%, rough.set 0.7%, set 0.7%, integr 0.7%, climat.model 0.6%, rainfal 0.6%, time.seri 0.6%, inform.system 0.6%, gp 0.6%

Focuses on environmental forcasting and modeling.

Cluster 202: (128) state 25.8%, coupl 5.1%, synchron 3.5%, coher.state 3.1%, coher 2.4%, oscil 1.8%, wave 1.7%, vibrat 1.7%, squeez 1.5%, quantum 1.3%, phase 1.2%, ground 1.0%, transit 1.0%, mode 1.0%, energi 0.9%, system 0.9%, excit 0.7%, two 0.6%, spin 0.6%, trap 0.6%, band 0.6%, ground.state 0.5%, hamiltonian 0.5%, even.odd 0.5%, odd 0.5%

Focuses on the states of various systems, and their synchronization and coupling.

Cluster 203: (112) arteri 11.5%, stent 5.8%, lesion 4.7%, patient 4.1%, coronari 2.5%, year.old 1.8%, case 1.8%, year 1.6%, tumour 1.6%, aortic 1.6%, old 1.4%, pain 1.3%, left 1.3%, carotid 1.0%, stenosi 1.0%, blood 1.0%, right 0.9%, vessel 0.9%, diagnosi 0.8%, coronari.arteri 0.8%, group 0.8%, angiographi 0.7%, month 0.7%, diseas 0.7%, aneurysm 0.7%

Focuses on the circulatory system, emphasizing arteries and stents, and clinical problems associated with various patients.

Cluster 204: (136) emiss 23.9%, luminesc 6.7%, photoluminesc 3.3%, excit 2.5%, dope 2.2%, peak 1.6%, band 1.5%, zno 1.5%, zn 1.5%, intens 1.5%, nanocryst 1.4%, spectra 1.3%, blue 1.2%, temperatur 1.1%, emiss.peak 0.8%, nanoparticl 0.7%, fluoresc 0.7%, spectrum 0.6%, cdte 0.6%, pbwo4 0.6%, size 0.5%, dy3 0.5%, exciton 0.5%, room 0.5%, sio2 0.5%

Focuses on the emission properties of materials, especially photoluminescence.

Cluster 205: (266) complex 44.7%, ligand 5.8%, phen 1.9%, iii 1.5%, coordin 1.0%, metal 1.0%, ion 0.9%, eta 0.9%, synthes 0.9%, phenanthrolin 0.7%, structur 0.7%, dna 0.7%, bi 0.7%, bpy 0.6%, spectra 0.6%, bind 0.5%, lanthanid 0.5%, copper 0.5%, two 0.5%, nmr 0.4%, luminesc 0.4%, bridg 0.4%, atom 0.4%, reaction 0.4%, fluoresc 0.3%

Focuses on various metal complexes and chemical properties of materials, with emphasis on ligands.

Cluster 206: (88) shell 10.2%, particl 8.4%, caco3 5.1%, core 5.0%, microspher 4.1%, sio2 2.8%, dust 2.1%, nano 1.9%, core.shell 1.8%, polymer 1.5%, composit 1.5%, surfac 1.3%, emuls 1.3%, graft 1.1%, size 0.9%, concentr 0.8%, monodispers 0.8%, dispers 0.6%, sphere 0.6%, polystyren 0.6%, magnetit 0.6%, floc 0.6%, composit.particl 0.5%, calcium 0.5%, silica 0.5%

Focuses on shells and encapsulating various compounds within them.

Cluster 207: (130) compound 35.7%, activ 3.2%, synthes 2.6%, nmr 2.3%, methyl 2.0%, substitut 1.7%, deriv.synthes 1.3%, new.compound 1.2%, structur 1.1%, spectra 1.0%, nmr.spectra 1.0%, element 0.9%, deriv 0.9%, herbicid 0.8%, seri 0.8%, target.compound 0.8%, compound.nmr 0.7%, new 0.7%, acid 0.6%, group 0.6%, structur.activ 0.6%, bioassai 0.5%, spectra.element 0.5%, nmr.spectra.element 0.5%, biolog 0.4%

Focuses on various chemical compounds and their synthesis.

Cluster 208: (267) particl 50.6%, size 6.9%, particl.size 5.8%, size.distribut 1.0%, composit 0.9%, dispers 0.8%, distribut 0.8%, surfac 0.8%, nano 0.5%, nanoparticl 0.5%, silica 0.4%, temperatur 0.4%, concentr 0.4%, particl.size.distribut 0.3%, spheric 0.3%, fine 0.3%, increas 0.3%, water 0.2%, content 0.2%, morpholog 0.2%, phase 0.2%, nano.particl 0.2%, polymer 0.2%, diamet 0.2%, precipit 0.2% *Focuses on particulate matter of varying types, and its size and size distribution.*

Cluster 209: (171) china 9.5%, climat 4.6%, monsoon 4.5%, summer 4.0%, sea 2.3%, east 1.7%, urban 1.6%, region 1.6%, warm 1.5%, land 1.4%, south 1.3%, winter 1.2%, glacial 1.2%, asian 1.1%, north 1.1%, dust 1.0%, summer.monsoon 1.0%, ic 1.0%, area 0.9%, site 0.9%, plateau 0.9%, loess 0.8%, season 0.8%, basin 0.8%, delta 0.7%

Focuses on climate analysis (especially monsoons) and indoor air pollutant studies, mainly in china and the surrounding areas.

Cluster 210: (223) flow 43.5%, veloc 2.9%, fluid 2.5%, model 2.1%, jet 1.8%, ga 1.5%, pressur 1.2%, bubbl 0.9%, bed 0.9%, simul 0.8%, flow.rate 0.8%, channel 0.7%, particl 0.7%, liquid 0.6%, nozzl 0.6%, numer 0.6%, convect 0.5%, experiment 0.5%, flow.field 0.5%, field 0.5%, flow.pattern 0.5%, rate 0.5%, wall 0.4%, paramet 0.4%, air 0.4%

Focuses on flow dynamics and fluid flow modeling.

Cluster 211: (100) suspens 5.5%, nano 5.3%, surfac.area 4.9%, dispers 4.6%, surfac 3.7%, slurri 3.3%, calcin 2.4%, zirconia 2.4%, area 2.3%, zro2 1.9%, al2o3 1.9%, powder 1.5%, alumina 1.4%, aqueou 1.3%, solid 1.2%, aln 1.2%, stabil 1.1%, size 1.0%, particl 0.8%, viscos 0.8%, high.surfac.area 0.8%, oxid 0.7%, high.surfac 0.7%, solid.load 0.6%, bet 0.6%

Focuses on various suspensions, and the nanoparticles in them. Also talks about powders and the particles' surface area.

Cluster 212: (122) design 50.6%, system 2.0%, gear 1.3%, model 1.0%, simul 0.9%, assembl 0.8%, architectur 0.7%, circuit 0.7%, optim 0.6%, manufactur 0.6%, product 0.4%, power 0.4%, softwar 0.4%, manipul 0.4%, design.system 0.4%, chip 0.4%, construct 0.4%, gener 0.4%, modul 0.4%, dynam 0.4%, applic 0.3%, regist 0.3%, pile 0.3%, new 0.3%, oper 0.3%

Focuses on the design of new components, systems, and structures.

Cluster 213: (161) mol 17.7%, electrod 7.1%, detect.limit 2.5%, detect 2.3%, peak 2.0%, ion 1.9%, rang 1.8%, limit 1.7%, absorpt 1.5%, complex 1.4%, linear 1.2%, iii 1.2%, concentr 1.1%, rang.mol 1.0%, detect.limit.mol 1.0%, limit.mol 1.0%, sensit 0.9%, solut 0.8%, buffer 0.8%, reaction 0.8%, select 0.8%, buffer.solut 0.7%, acid 0.6%, voltammetri 0.6%, mol.detect.limit 0.6%

Focuses on molecular detection, as well as electrode fabrication and use.

Cluster 214: (204) layer 18.2%, film 8.5%, substrat 5.0%, thick 4.4%, deposit 2.8%, gan 2.8%, anneal 2.6%, aln 1.9%, silicon 1.7%, multilay 1.3%, buffer.layer 1.0%, surfac 0.9%, layer.thick 0.9%, temperatur 0.8%, sputter 0.8%, buffer 0.8%, grown 0.7%, zno 0.7%, epitaxi 0.6%, gan.film 0.6%, lcmo 0.5%, interfac 0.5%, growth 0.5%, nitrid 0.5%, tin 0.5%

Focuses on thin films and their substrates, and film deposition.

Cluster 215: (113) patient 6.7%, group 4.8%, renal 4.7%, transplant 3.3%, treatment 3.1%, month 3.0%, postop 2.5%, liver 2.4%, case 1.9%, mmf 1.7%, graft 1.4%, donor 1.3%, implant 1.3%, outcom 1.3%, clinic 1.1%, surviv 1.0%, year 0.9%, surgic 0.8%, nerv 0.8%, complic 0.8%, liver.transplant 0.8%, surgeri 0.8%, rate 0.8%, blood 0.7%, laparoscop 0.7%

Focuses on the renal system, and patients who have renal problems and some of their treatments.

Cluster 216: (141) group 40.5%, control.group 2.4%, control 2.1%, treatment 1.2%, group.group 1.2%, diet 1.1%, rat 0.9%, serum 0.8%, pig 0.7%, dose 0.6%, dai 0.6%, subject 0.6%, week 0.6%, children 0.6%, placebo 0.5%, supplement 0.5%, level 0.5%, fed 0.5%, blood 0.5%, femal 0.5%, group.control 0.5%, male 0.5%, plasma 0.4%, egg 0.4%, administr 0.4%

Focuses on medical/biological experiments, and talks about the different groups in the experiment.

Cluster 217: (140) heat 35.7%, temperatur 4.4%, heat.transfer 4.1%, thermal 2.7%, transfer 2.6%, tube 1.9%, cool 1.8%, refriger 1.3%, water 0.9%, boil 0.8%, heat.capac 0.8%, conduct 0.7%, thermal.conduct 0.7%, capac 0.6%, heat.treatment 0.5%, moistur 0.5%, phase 0.5%, experiment 0.5%, liquid 0.5%, surfac 0.4%, evapor 0.4%, condens 0.4%, degreesc 0.4%, treatment 0.3%, ga 0.3%

Focuses on heat transfer mechanics and applications, as well as heat transfer experiments.

Cluster 218: (147) sea 6.3%, ocean 4.1%, model 2.8%, season 2.3%, climat 2.1%, tidal 1.9%, permafrost 1.8%, enso 1.7%, data 1.3%, surfac 1.2%, circul 1.2%, pacif 1.2%, sediment 1.2%, anomali 1.0%, cloud 1.0%, water 1.0%, warm 1.0%, east 1.0%, front 1.0%, summer 0.9%, transport 0.9%, rainfal 0.9%, atmospher 0.8%, north 0.8%, ic 0.8%

Focuses on creating climate models, especially over water or near coasts, and various ways to determine moisture concentrations and ways of measuring various quantities that affect climate, such as moisture etc.

Cluster 219: (198) protein 13.6%, peptid 3.9%, bind 3.3%, activ 3.1%, fusion 3.1%, express 2.7%, purifi 2.7%, coli 2.5%, mutant 2.0%, domain 2.0%, recombin 2.0%, fusion.protein 1.9%, enzym 1.7%, termin 1.1%, refold 1.0%, residu 0.9%, escherichia.coli 0.8%, human 0.8%, escherichia 0.8%, cell 0.8%, pollen 0.8%, mutat 0.7%, gst 0.6%, site 0.6%, subunit 0.5%

Focuses on proteins and their characterization and use.

Cluster 220: (225) equat 52.0%, solut 5.0%, wave 1.1%, nonlinear 0.9%, deriv 0.9%, linear 0.6%, system 0.6%, paramet 0.6%, schroding 0.5%, matrix 0.4%, schroding.equat 0.4%, matrix.equat 0.4%, theori 0.4%, potenti 0.4%, function 0.4%, space 0.4%, condit 0.4%, motion 0.4%, model 0.3%, boltzmann 0.3%, initi 0.3%, integr 0.3%, relat 0.3%, order 0.3%, term 0.3%

Focuses on mathematics, especially solution techniques for mathematical equations.

Cluster 221: (359) cell 62.4%, cultur 1.3%, express 1.2%, human 0.7%, protein 0.6%, activ 0.6%, membran 0.5%, cell.line 0.4%, concentr 0.4%, inhibit 0.4%, growth 0.4%, endotheli 0.4%, transfect 0.3%, line 0.3%, tissu 0.3%, assai 0.3%, infect 0.3%, prolifer 0.3%, gene 0.3%, embryo 0.3%, cytoplasm 0.2%, endotheli.cell 0.2%, control 0.2%, regul 0.2%, product 0.2%

Focuses on various kinds of cells, expression of those cells, and gene expression.

Cluster 222: (137) layer 9.0%, gan 6.8%, etch 3.8%, quantum 3.7%, quantum.dot 2.8%, dot 2.7%, gaa 2.2%, ina 2.0%, qd 1.7%, grown 1.3%, epitaxi 1.3%, electron 1.2%, algan 1.1%, implant 1.1%, photoluminesc 1.0%, silicon 1.0%, surfac 1.0%, sige 0.8%, fabric 0.8%, peak 0.6%, thick 0.6%, tunnel 0.6%, heterostructur 0.6%, molecular.beam.epitaxi 0.5%, beam.epitaxi 0.5%

Focuses on etched layers, usually of silicon, and includes quantum dots as well.

Cluster 223: (198) cluster 11.1%, molecul 3.9%, atom 3.9%, electron 3.4%, orbit 3.0%, densiti.function 2.9%, structur 2.8%, densiti 2.7%, molecular 2.5%, densiti.function.theori 2.2%, function.theori 2.2%, energi 2.0%, state 1.6%, calcul 1.2%, theori 1.2%, bond 1.2%, function 1.2%, dft 1.1%, charg 0.8%, electron.structur 0.7%, ground.state 0.7%, absorpt 0.6%, molecular.orbit 0.6%, compound 0.6%, ground 0.6%

Focuses on the structure of various molecules and atoms or clusters of atoms. Also discusses the orbit of electrons, and the density and structure based on density functional theory.

Cluster 224: (161) film 33.3%, surfac 3.3%, composit.film 3.1%, polym 2.1%, monolay 1.9%, optic 1.3%, composit 1.1%, light 1.0%, langmuir 0.8%, polar 0.7%, shg 0.6%, water 0.6%, poli 0.6%, blodgett 0.6%, graft 0.5%, langmuir.blodgett 0.5%, grate 0.4%, fabric 0.4%, properti 0.4%, amphiphil 0.4%, subphas 0.4%, afm 0.3%, angl 0.3%, surfac.pressur 0.3%, pmma 0.3%

Focuses on films, specifically composite films and polymer films.

Cluster 225: (107) nmr 15.7%, acid 10.8%, synthes 2.6%, methyl 2.1%, spectra 1.8%, compound 1.3%, calix 1.3%, carboxyl.acid 1.2%, deriv 1.2%, carboxyl 1.2%, structur 1.1%, amino 1.1%, nmr.nmr 1.1%, spectroscopi 1.0%, aren 0.9%, ester 0.8%, recognit 0.8%, chemic 0.7%, nmr.spectra 0.7%, calix.aren 0.6%, macrocycl 0.6%, spirobenzopyran 0.6%, methyl.ester 0.6%, fluoresc 0.6%, element 0.6% *Focuses on the structure and characteristics of various molecules, mainly using NMR mass spectrometry*.

Cluster 226: (92) molecular 14.2%, molecular.weight 6.4%, weight 5.2%, degrad 2.7%, fraction 2.5%, group 1.4%, polysaccharid 1.2%, averag.molecular 1.2%, nmr 1.0%, acid 0.9%, molecular.recognit 0.9%, chain 0.9%, solubl 0.7%, water 0.6%, lignin 0.6%, crosslink 0.6%, recognit 0.6%, structur 0.5%, averag.molecular.weight 0.5%, oil 0.5%, averag 0.5%, residu 0.5%, biodegrad 0.4%, eta 0.4%, synthes 0.4% Focuses on the characteristics of various molecules, such as molecular weight, degradation of the molecules, etc.

Cluster 227: (195) yield 23.9%, reaction 8.9%, afford 4.3%, mild 1.8%, acid 1.8%, alpha 1.7%, high.yield 1.6%, react 1.6%, product 1.5%, substitut 1.4%, correspond 1.0%, catalyt 1.0%, condit 0.9%, amin 0.9%, ester 0.8%, compound 0.8%, mild.condit 0.7%, catalyz 0.6%, reagent 0.6%, thf 0.6%, moder 0.6%, stereoselect 0.6%, high 0.6%, moder.yield 0.6%, alcohol 0.5%

Focuses on various chemical reactions and specifically on their yields.

Cluster 228: (260) rat 31.4%, brain 2.8%, dose 2.2%, inject 1.7%, induc 1.6%, express 1.6%, administr 1.4%, receptor 1.2%, drug 1.1%, group 1.0%, ischemia 1.0%, liver 0.9%, reperfus 0.8%, level 0.8%, injuri 0.7%, mrna 0.7%, diabet 0.7%, activ 0.7%, heart 0.5%, blood 0.5%, treatment 0.5%, protein 0.5%, oral 0.5%, cell 0.5%, myocardi 0.4%

Focuses on experiments performed on rats, especially impacts on their brain.

Cluster 229: (129) pressur 24.6%, high.pressur 4.1%, miner 3.5%, hydrat 3.5%, ga 3.1%, gpa 3.0%, oxygen 2.6%, temperatur 1.7%, ga.hydrat 1.1%, iron 1.0%, high 1.0%, water 0.7%, phase 0.6%, quartz 0.6%, content 0.5%, rock 0.5%, plagioclas 0.5%, fluid 0.5%, zone 0.5%, transit 0.4%, pressur.gpa 0.4%, nanocryst 0.4%, resist 0.4%, format 0.4%, silic 0.4%

Focuses on pressure and high pressure. Sometimes discusses chemical reactions or geologic phenomina.

Cluster 230: (121) chitosan 12.5%, absorpt 4.9%, fluoresc 4.6%, photon 3.6%, radic 3.2%, two.photon 2.7%, aggreg 1.7%, spectra 1.7%, excit 1.5%, porphyrin 1.5%, state 1.2%, phenyl 1.1%, scaveng 1.1%, molecular 1.0%, two 0.7%, bi 0.7%, antioxid 0.7%, solvent 0.6%, group 0.6%, complex 0.6%, phthalocyanin 0.6%, excit.state 0.6%, emiss 0.6%, dye 0.6%, triplet 0.5%

Focuses on chitosan, and the separation of various molecules specifically by means of absorption.

Cluster 231: (251) composit 36.1%, sic 3.8%, materi 2.3%, strength 2.1%, matrix 1.9%, fibr 1.5%, fractur 1.3%, properti 1.3%, reinforc 1.1%, mechan 0.9%, mechan.properti 0.8%, fabric 0.7%, particl 0.7%, carbon 0.7%, oxid 0.6%, powder 0.6%, al2o3 0.6%, fiber 0.6%, properti.composit 0.5%, interfac 0.5%, tough 0.5%, microstructur 0.4%, bend 0.4%, metal 0.4%, thermal 0.4%

Focuses on the composition, mechanical properties, and synthesis of various materials.

Cluster 232: (168) women 11.9%, ag 5.6%, subject 4.5%, male 2.5%, pregnanc 1.6%, risk 1.5%, serum 1.4%, blood 1.4%, femal 1.3%, level 1.3%, year 1.3%, infant 1.2%, chines 1.1%, men 1.0%, bmd 0.9%, bodi 0.9%, group 0.9%, intak 0.9%, obes 0.9%, birth 0.8%, bone 0.7%, sex 0.7%, injuri 0.7%, bmi 0.6%, cadmium 0.6% Focuses on various clinical medical studies, usually involving women.

Cluster 233: (136) pore 7.9%, materi 7.0%, scaffold 6.7%, dentin 3.9%, porou 3.8%, adhes 2.7%, cement 1.8%, membran 1.8%, poros 1.7%, strength 1.6%, ldh 1.4%, surfac 1.4%, pore.size 1.0%, hap 1.0%, etch 1.0%, sem 0.9%, calcium 0.8%, composit 0.8%, water 0.8%, bone 0.7%, foam 0.7%, chitosan 0.7%, structur 0.6%, size 0.6%, properti 0.5%

Focuses on the separation of materials, pore sizes in filter media and the structure of the filter media itself.

Cluster 234: (113) mesopor 6.0%, silica 4.0%, electron 3.2%, surfac 3.1%, microscopi 2.6%, morpholog 2.2%, templat 2.2%, electron.microscopi 1.7%, mesopor.silica 1.7%, membran 1.7%, scan 1.6%, pore 1.4%, transmiss.electron 1.4%, transmiss 1.3%, surfact 1.0%, diamet 1.0%, scan.electron 0.9%, aerogel 0.8%, spectroscopi 0.8%, synthes 0.8%, rai 0.7%, sem 0.7%, structur 0.7%, crystal 0.6%, transmiss.electron.microscopi 0.6%

Focuses on mesoporous silicas.

Cluster 235: (155) synthesi 12.3%, reaction 6.4%, alkyl 3.5%, synthes 3.4%, compound 2.8%, step 2.5%, substitut 2.4%, methyl 1.2%, total.synthesi 1.1%, yield 1.1%, cycliz 1.1%, kei 1.0%, wittig 0.9%, ether 0.9%, alpha 0.8%, on 0.8%, product 0.8%, synthet 0.8%, kei.step 0.7%, reduct 0.7%, deriv 0.7%, pot 0.6%, nmr 0.6%, on.pot 0.6%, regioselect 0.6%

Focuses on synthesis of chemicals and chemical reactions.

Cluster 236: (165) reaction 44.8%, product 4.0%, condit 0.9%, reaction.temperatur 0.8%, solvent 0.8%, oxid 0.7%, temperatur 0.7%, reaction.rate 0.6%, catalyz 0.6%, mechan 0.5%, ga 0.5%, yield 0.5%, methanol 0.5%, reaction.mechan 0.5%, intermedi 0.5%, reaction.condit 0.4%, rate 0.4%, polymer 0.4%, reactor 0.4%, reaction.time 0.3%, radic 0.3%, ratio 0.3%, synthesi 0.3%, supercrit 0.3%, chain 0.3% Focuses on various chemical reactions, and the product of those reactions and the conditions needed for the reaction, more specifically reaction temperature.

Cluster 237: (173) load 12.8%, beam 3.3%, buckl 2.9%, lamin 2.6%, bend 2.5%, forc 2.3%, deform 1.9%, plate 1.7%, dynam 1.6%, elast 1.6%, axial 1.4%, model 1.4%, displac 1.2%, wall 1.2%, vibrat 1.1%, section 1.0%, curv 1.0%, stiff 1.0%, column 0.9%, indent 0.8%, numer 0.8%, cut 0.7%, test 0.7%, plastic 0.7%, stiffen 0.7% Focuses on the loading of structural members along with their mechanical properties and the failure modes of various beams, laminates and other materials.

Cluster 238: (130) function 11.7%, element 7.8%, inequ 6.7%, finit 4.2%, polynomi 3.3%, interpol 3.0%, formula 2.7%, set 1.7%, finit.element 1.3%, order 1.2%, class 1.1%, math 1.1%, bound 1.0%, ident 0.7%, sum 0.7%, asymptot 0.7%, proof 0.7%, converg 0.7%, oper 0.7%, type.inequ 0.6%, integr 0.6%, prove 0.6%, minim 0.5%, theori 0.5%, gener 0.5%

Focuses on the various functions of finite element models, and the mathmatics associated with them.

Cluster 239: (195) field 23.5%, magnet 17.5%, magnet.field 5.8%, current 1.8%, electr 1.6%, model 1.1%, flux 1.1%, electromagnet 0.9%, ground 0.8%, reconnect 0.7%, electr.field 0.6%, ht 0.5%, geomagnet 0.5%, numer 0.5%, cme 0.4%, densiti 0.4%, forc 0.4%, power 0.4%, dipol 0.4%, plasma 0.3%, acceler 0.3%, two 0.3%, levit 0.3%, system 0.3%, magnet.flux 0.3%

Focuses on magnets and magnetic fields.

Cluster 240: (142) energi 18.0%, state 5.1%, calcul 3.2%, potenti 2.0%, ground.state 1.9%, interact 1.8%, ground 1.7%, model 1.5%, theori 1.5%, orbit 1.4%, excit 1.0%, transit 1.0%, function 0.8%, pair 0.7%, electron 0.7%, potenti.energi 0.6%, system 0.6%, two 0.6%, paramet 0.6%, correl 0.5%, correct 0.5%, charg 0.5%, level 0.5%, experiment 0.5%, basi.set 0.5%

Focuses on the energy states of various charged particles.

Cluster 241: (155) project 8.4%, build 6.1%, construct 4.5%, environment 4.3%, kong 2.6%, hong 2.5%, china 2.4%, hong.kong 2.4%, plan 1.5%, articl 1.3%, sustain 1.3%, survei 1.2%, partner 0.9%, social 0.8%, environ 0.8%, disput 0.7%, scienc 0.7%, practic 0.7%, air 0.6%, system 0.6%, tunnel 0.6%, urban 0.6%, factor 0.6%, product 0.6%, commun 0.6%

Focuses on various construction projects, mainly in china.

Cluster 242: (174) frequenc 16.1%, mode 11.7%, reson 9.3%, nois 3.1%, reson.frequenc 1.6%, oscil 1.6%, acoust 0.9%, caviti 0.9%, band 0.9%, vibrat 0.9%, measur 0.7%, signal 0.7%, harmon 0.6%, nonlinear 0.6%, amplitud 0.5%, voltag 0.5%, defect 0.5%, metamateri 0.5%, coupl 0.4%, devic 0.4%, two 0.4%, field 0.4%, time 0.4%, low.frequenc 0.4%, drive 0.4%

Focuses on the resonant frequencies of various excited particles.

Cluster 243: (265) model 54.4%, data 2.0%, system 1.0%, model.model 0.9%, simul 0.8%, paramet 0.6%, dynam 0.5%, test 0.4%, new 0.4%, languag 0.4%, qsar 0.4%, new.model 0.4%, uml 0.3%, gener 0.3%, inform 0.3%, fit 0.3%, construct 0.3%, set 0.3%, mathemat 0.3%, experiment 0.3%, structur 0.3%, statist 0.3%, time 0.3%, comfa 0.2%, predict 0.2%

Focuses on data aquisition and system modeling.

Cluster 244: (150) china 11.1%, pollen 4.2%, speci 2.8%, new 2.0%, genu 1.7%, fossil 1.5%, morpholog 1.3%, stamen 1.3%, provinc 1.2%, cirri 1.1%, pollin 1.1%, genera 1.0%, taxa 1.0%, flower 0.9%, ventral 0.9%, type 0.9%, earli 0.8%, ornament 0.8%, var 0.8%, corolla 0.8%, kineti 0.7%, male 0.7%, femal 0.7%, scienc 0.7%, pollen.grain 0.6%

Focuses on plant species.

Cluster 245: (154) activ 10.5%, inhibit 9.1%, induc 3.9%, antioxid 3.1%, oocyt 2.6%, inhibitor 2.6%, stimul 1.2%, cell 1.1%, concentr 1.1%, no 1.0%, glucos 0.9%, oxid 0.8%, depend 0.7%, ach 0.7%, platelet 0.6%, dose 0.6%, mumol 0.6%, scaveng 0.6%, inhibitori 0.6%, vitro 0.6%, cultur 0.5%, manner 0.5%, melatonin 0.5%, depend.manner 0.5%, h2o2 0.5%

Focuses on various chemicals or molecules/compounds that have an effect on the body (activation or inhibition) or the body's reaction to various stimuli.

Cluster 246: (136) ion 6.6%, absorpt 6.6%, laser 6.4%, optic 4.2%, spectra 2.5%, raman 2.4%, implant 2.2%, peak 1.8%, waveguid 1.8%, surfac 1.4%, irradi 1.3%, electron 1.3%, spectrum 1.2%, infrar 1.1%, refract 0.9%, sampl 0.8%, scatter 0.8%, anneal 0.7%, temperatur 0.7%, refract.index 0.6%, plasma 0.6%, reson 0.6%, beam 0.6%, energi 0.6%, ion.implant 0.6%

Focuses on the spectra of various molecules and how the spectra was obtained, especially ion absorption and laser optics

Cluster 247: (105) co2 7.4%, concentr 5.4%, fruit 5.1%, cultur 3.7%, sludg 3.5%, growth 1.7%, product 1.2%, rate 1.1%, compost 1.0%, control 1.0%, water 0.8%, cultiv 0.7%, sucros 0.7%, dai 0.7%, inocul 0.6%, co2.concentr 0.6%, fresh 0.6%, aerat 0.6%, condit 0.6%, cordycep 0.6%, batch 0.6%, higher 0.5%, dry 0.5%, level 0.5%, glucos 0.5%

Focuses on the preservation of fruits after harvest and its relation to the concentration of co2 in the controlled environment.

Cluster 248: (138) water 16.0%, solut 5.4%, membran 4.2%, solvent 2.8%, concentr 2.4%, aqueou 2.0%, enthalpi 1.7%, molar 1.5%, acid 1.4%, ionic 1.2%, solubl 1.1%, mixtur 1.1%, aqueou.solut 1.0%, anion 0.9%, mol 0.9%, h2o 0.8%, interact 0.7%, molar.volum 0.7%, rang 0.6%, ion 0.6%, standard 0.5%, standard.molar 0.4%, temperatur 0.4%, releas 0.4%, dilut 0.4%

Focuses on water, and various chemical reactions/solutions that involve/contain water. Also talks about membranes, and the properties of solutions containing water.

Cluster 249: (201) phase 22.3%, liquid 4.0%, temperatur 2.9%, transit 2.7%, diffus 2.2%, phase.transit 2.1%, solid 1.9%, diagram 1.1%, phase.diagram 1.0%, simul 0.9%, system 0.9%, structur 0.7%, phase.region 0.7%, atom 0.7%, interfac 0.7%, molecular.dynam 0.7%, crystal 0.7%, molecular.dynam.simul 0.7%, energi 0.7%, growth 0.6%, dynam.simul 0.6%, concentr 0.5%, densiti 0.5%, state 0.5%, properti 0.5%

Focuses on the different phases of materials as well as the effect that phase change has on the material.

Cluster 250: (161) acid 18.7%, concentr 7.4%, degrad 4.1%, rate 1.7%, remov 1.6%, metal 1.5%, solut 1.1%, kinet 1.1%, oxid 1.0%, product 1.0%, radic 1.0%, dye 0.9%, initi 0.9%, wastewat 0.8%, h2o2 0.7%, humic 0.6%, reaction 0.6%, ion 0.6%, organ 0.6%, chlorin 0.5%, amino 0.5%, increas 0.5%, rate.constant 0.5%, amino.acid 0.4%, decreas 0.4%

Focuses on acids and their uses, as well as the degradation of various compounds, either by acids or using other means.

Cluster 251: (177) simul 7.3%, fluid 2.9%, scale 2.6%, critic 2.5%, dynam 2.3%, model 2.0%, carlo 1.7%, mont 1.7%, motion 1.6%, mont.carlo 1.6%, theori 1.6%, forc 1.3%, distribut 1.1%, potenti 1.0%, densiti 0.9%, expon 0.9%, function 0.9%, direct 0.8%, eo 0.8%, state 0.7%, fluctuat 0.6%, paramet 0.6%, probabl 0.6%, univers 0.6%, two 0.6%

Focuses on simulations, especially of fluid dynamical systems.

Cluster 252: (230) optim 16.0%, set 3.6%, comput 3.5%, function 2.4%, constraint 2.3%, point 2.2%, converg 1.8%, gener 1.6%, linear 1.5%, convex 1.4%, program 1.4%, inequ 1.2%, iter 1.1%, new 1.0%, design 0.9%, data 0.7%, minim 0.7%, variabl 0.7%, object 0.7%, class 0.6%, mesh 0.6%, space 0.6%, random 0.6%, approxim 0.6%, scheme 0.6%

Focuses on computer optimization of data sets, along with optimization functions.

Cluster 253: (246) system 18.7%, oper 3.7%, softwar 2.9%, time 1.8%, reliabl 1.5%, test 1.5%, model 1.4%, data 1.3%, simul 1.2%, machin 1.2%, monitor 1.1%, tool 1.0%, inform 0.9%, environ 0.9%, integr 0.9%, fault 0.9%, applic 0.8%, real 0.8%, new 0.6%, power 0.6%, virtual 0.6%, comput 0.6%, control 0.6%, real.time 0.6%, visual 0.6%

Focuses on systems, with minor emphasis on operating systems and software.

Cluster 254: (308) temperatur 33.0%, thermal 1.8%, high temperatur 1.5%, high 1.4%, degreesc 1.0%, surfac 0.9%, room 0.8%, room.temperatur 0.8%, increas 0.7%, decreas 0.7%, combust 0.7%, concentr 0.7%, low 0.7%, composit 0.6%, pressur 0.6%, rang 0.6%, conduct 0.6%, temperatur.rang 0.6%, rate 0.5%, melt 0.5%, densiti 0.5%, temperatur.depend 0.5%, fuel 0.5%, oxid 0.5%, coeffici 0.5% *Focuses on temperature and associated phenomena.*

Cluster 255: (258) model 16.3%, paramet 2.9%, analyt 2.8%, numer 2.2%, coeffici 1.7%, veloc 1.6%, simul 1.0%, equat 0.9%, experiment 0.9%, diffus 0.9%, data 0.8%, measur 0.8%, system 0.7%, two 0.7%, energi 0.5%, linear 0.5%, solut 0.5%, correl 0.5%, experiment.data 0.5%, curv 0.5%, instabl 0.5%, three 0.4%, mean 0.4%, time 0.4%, function 0.4%

Focuses on models, especially their parametric analyses.

Appendix 4 – Cluto Taxonomy (SCI 256 2005)

- -Science Citation Index
- -256 Clusters
- -2005 Data

The following flat taxonomy can be generated from the Level 4 categories of Figure 6. The bullets under each category represent the 256 elemental cluster themes. The parentheses contain the number of records associated with the bullet (cluster).

1. Physical and Engineering Sciences

- 1.1. chemical reactions, chemistry
 - 1.1.1. the structure of molecules, crystal structure (1813)
 - 1.1.1.1. atomic bonds and the crystal structure of molecules (1297)
 - Cluster 169: (243) bond 16.2%, hydrogen.bond 13.8%, hydrogen 12.9%, molecul 4.5%, anion 4.2%, cation 2.6%, interact 1.9%, compound 1.6%, water 1.6%, titl 1.5%, water.molecul 1.3%, dimension 1.1%, structur 1.1%, titl.compound 1.1%, chain 1.0%, h2o 0.9%, form 0.8%, bond.interact 0.7%, hydrogen.bond.interact 0.6%, three.dimension 0.6%, atom 0.6%, link 0.6%, two 0.5%, center 0.5%, crystal 0.5% Focuses on the bonds between atoms and molecules, specifically hydrogen bonding, and atom interaction.
 - Cluster 50: (144) titl.compound 15.3%, titl 13.2%, compound 9.5%, intermolecular 5.4%, bond 5.1%, molecul 5.0%, hydrogen 4.5%, hydrogen.bond 3.2%, intermolecular.hydrogen 2.8%, crystal 1.8%, crystal.structur 1.5%, intermolecular.hydrogen.bond 1.3%, intramolecular 1.2%, interact 1.1%, intramolecular.hydrogen 1.0% Focuses on compounds containing intramolecular hydrogen bonds, with emphasis on their structure.
 - Cluster 32: (78) ring 31.3%, titl 5.9%, titl.compound 5.8%, dihedr.angl 4.0%, dihedr 4.0%, compound 3.6%, benzen.ring 2.8%, conform 2.1%, molecul 1.9%, angl 1.8%, benzen 1.8%, boat 1.3%, bond 1.1% Focuses on compounds and molecules containing rings, such as benzene rings, with emphasis on their synthesis and characterization.
 - Cluster 38: (255) atom 22.4%, ligand 5.4%, titl 5.0%, two atom 3.8%, coordin 2.9%, atom.two 2.6%, two 2.4%, distort 2.3%, geometri 2.2%, titl.compound 2.1%, molecul 2.0%, octahedr 1.6%, h2o 1.2%, bond 1.2%, compound 1.1%, water.molecul 1.0%, distort.octahedr 1.0%, complex 1.0%, carboxyl 1.0% Focuses on the atomic structure of molecules and compounds.
 - Cluster 134: (109) atom 43.7%, oxygen.atom 3.6%, nitrogen.atom 2.5%, oxygen 1.8%, ligand 1.5%, nitrogen 1.4%, complex 1.2%, coordin 1.2%, two 1.2%, distort 1.0%, structur 0.9%, ion 0.8%, bridg 0.7%, two.oxygen 0.7%, two.oxygen.atom 0.7%, atom.two 0.7%, tin 0.6%, tin.atom 0.6%, geometri 0.6%, crystal 0.5%, site

- 0.5%, on 0.5%, molecul 0.4%, atom.on 0.3%, bipyramid 0.3% Focuses on atomic structure concentrating on O2 and N2 atoms, with emphasis on ligands and synthesis of complexes.
- Cluster 200: (202) h2o 14.1%, ligand 8.7%, coordin 6.3%, bridg 4.1%, complex 3.2%, coordin.polym 2.9%, chain 2.5%, polym 2.1%, ion 2.0%, clo4 1.7%, structur 1.6%, no3 1.3%, center 1.3%, dimension 1.1%, magnet 1.1%, synthes 1.1%, compound 1.0%, bi 0.9%, two 0.9%, bipi 0.7%, anion 0.6%, pyridyl 0.6%, interact 0.5%, crystal 0.5%, phen 0.5% Focuses on chemistry with emphasis on chemical mechanics.
- Cluster 205: (266) complex 44.7%, ligand 5.8%, phen 1.9%, iii 1.5%, coordin 1.0%, metal 1.0%, ion 0.9%, eta 0.9%, synthes 0.9%, phenanthrolin 0.7%, structur 0.7%, dna 0.7%, bi 0.7%, bpy 0.6%, spectra 0.6%, bind 0.5%, lanthanid 0.5%, copper 0.5%, two 0.5%, nmr 0.4%, luminesc 0.4%, bridg 0.4%, atom 0.4%, reaction 0.4%, fluoresc 0.3% Focuses on various metal complexes and chemical properties of materials, with emphasis on ligands.

1.1.1.2. the crystal orientation of molecules/atoms/ visualization (516)

- Cluster 136: (116) crystal 8.4%, singl.crystal 7.7%, rai 6.0%, singl.crystal.rai 6.0%, crystal.rai 5.8%, diffract 5.2%, crystal.rai.diffract 3.9%, singl 3.0%, structur 2.9%, compound 2.8%, rai.diffract 2.5%, synthes 2.1%, hydrotherm 1.4%, crystal.structur 1.1%, h2o 1.0%, angstrom 0.9%, hpo3 0.8%, complex 0.8%, bpy 0.7%, element 0.7%, nmr 0.6%, structur.singl.crystal 0.6%, structur.singl 0.5%, new 0.5%, framework 0.5% Focuses on single crystal x-ray diffraction method for analyzing compounds and their structure.
- Cluster 70: (171) crystal 9.8%, space.group 7.6%, space 3.7%, angstrom 3.4%, degre 3.0%, group 2.9%, beta 2.5%, monoclin 2.4%, complex 2.3%, system.space.group 2.1%, system.space 2.1%, compound 1.8%, structur 1.7%, 000 1.6%, singl.crystal 1.5%, rai 1.4%, crystal.structur 1.4%, diffract.crystal 1.3%, diffract 1.0% Focuses on the characterization of crystal structures, especially space groups.
- Cluster 17: (229) angstrom 62.1%, degre 3.5%, crystal 2.1%, beta 2.0%, angstrom.beta 1.9%, monoclin 1.7%, space.group 1.6%, ref 1.5% Focuses on crystallographic structures and space groups, especially determination of unit cell dimensions: (designated as a, b, and c) in angstroms.

1.1.2. chemical reactions, liquid chromatography (4028) 1.1.2.1. catalytic reactions (2270)

- Cluster 94: (145) isol 10.6%, compound 9.5%, spectroscop 6.8%, elucid 5.6%, structur.elucid 5.3%, nmr 4.4%, new 4.0%, structur 2.2%, two.new 1.7%, elucid.basi 1.3%, basi 1.2%, elucid.spectroscop 1.2%, new.compound 1.2%, diterpenoid 1.2%, hydroxi 1.1%, name 1.1%, structur.elucid.spectroscop 1.1%, spectral 1.0% Focuses on isolation of compounds and elucidation of their structures.
- Cluster 18: (59) beta 22.9%, glucopyranosyl 8.1%, beta.glucopyranosyl 7.5%, glucopyranosid 7.4%, beta.glucopyranosid 5.1%, isol 3.6%, glycosid 1.9%, compound 1.5%, spectroscop 1.5%, hydroxi 1.3%, new 1.3%, elucid 1.3%, alpha 1.3%, beta.glucopyranosyl.beta 1.2%, glucopyranosyl.beta 1.2%, glucopyranosyl.beta 1.2%, glucopyranosyl, especially isolation of chemical compounds containing glucopyranosyl.
- Cluster 113: (98) beta 43.3%, cyclodextrin 9.8%, alpha 2.8%, beta.cyclodextrin 2.8%, inclus 2.3%, complex 1.4%, inclus.complex 1.4%, benzoyl 1.0%, acid 1.0%, nmr 0.8%, glcp 0.8%, beta.beta 0.7%, bind 0.7%, acetyl 0.6%, alpha.beta 0.5%, trichloroacetimid 0.5%, cyclodextrin.beta 0.4%, guest 0.4%, residu 0.4%, beta.glcp 0.4%, beta.cyclodextrin.beta 0.4%, benzoyl.beta 0.4%, caviti 0.3%, cd 0.3%, bi.beta 0.3% Focuses on alpha and beta cyclodextrin.
- Cluster 226: (92) molecular 14.2%, molecular.weight 6.4%, weight 5.2%, degrad 2.7%, fraction 2.5%, group 1.4%, polysaccharid 1.2%, averag.molecular 1.2%, nmr 1.0%, acid 0.9%, molecular.recognit 0.9%, chain 0.9%, solubl 0.7%, water 0.6%, lignin 0.6%, crosslink 0.6%, recognit 0.6%, structur 0.5%, averag.molecular.weight 0.5%, oil 0.5%, averag 0.5%, residu 0.5%, biodegrad 0.4%, eta 0.4%, synthes 0.4% Focuses on the characteristics of various molecules, such as molecular weight, degradation of the molecules, etc.
- Cluster 225: (107) nmr 15.7%, acid 10.8%, synthes 2.6%, methyl 2.1%, spectra 1.8%, compound 1.3%, calix 1.3%, carboxyl.acid 1.2%, deriv 1.2%, carboxyl 1.2%, structur 1.1%, amino 1.1%, nmr.nmr 1.1%, spectroscopi 1.0%, aren 0.9%, ester 0.8%, recognit 0.8%, chemic 0.7%, nmr.spectra 0.7%, calix.aren 0.6%, macrocycl 0.6%, spirobenzopyran 0.6%, methyl.ester 0.6%, fluoresc 0.6%, element 0.6% Focuses on the structure and characteristics of various molecules, mainly using NMR mass spectrometry.
- Cluster 207: (130) compound 35.7%, activ 3.2%, synthes 2.6%, nmr 2.3%, methyl 2.0%, substitut 1.7%, deriv.synthes 1.3%, new.compound 1.2%, structur 1.1%, spectra 1.0%, nmr.spectra 1.0%, element 0.9%, deriv 0.9%, herbicid 0.8%, seri 0.8%, target.compound 0.8%, compound.nmr 0.7%, new 0.7%, acid 0.6%, group 0.6%, structur.activ 0.6%, bioassai 0.5%,

- spectra.element 0.5%, nmr.spectra.element 0.5%, biolog 0.4% Focuses on various chemical compounds and their synthesis.
- Cluster 91: (70) kinet 18.5%, reaction 8.4%, decomposit 2.5%, hydrolysi 2.3%, activ 2.2%, kinet.model 1.8%, rate 1.6%, kinet.paramet 1.6%, activ.energi 1.5%, enthalpi 1.2%, rate.constant 1.2%, mol 1.1%, paramet 1.1%, constant 1.0% *Focuses on kinetics of reactions*.
- Cluster 236: (165) reaction 44.8%, product 4.0%, condit 0.9%, reaction.temperatur 0.8%, solvent 0.8%, oxid 0.7%, temperatur 0.7%, reaction.rate 0.6%, catalyz 0.6%, mechan 0.5%, ga 0.5%, yield 0.5%, methanol 0.5%, reaction.mechan 0.5%, intermedi 0.5%, reaction.condit 0.4%, rate 0.4%, polymer 0.4%, reactor 0.4%, reaction.time 0.3%, radic 0.3%, ratio 0.3%, synthesi 0.3%, supercrit 0.3%, chain 0.3% Focuses on various chemical reactions, and the product of those reactions and the conditions needed for the reaction, more specifically reaction temperature.
- Cluster 235: (155) synthesi 12.3%, reaction 6.4%, alkyl 3.5%, synthes 3.4%, compound 2.8%, step 2.5%, substitut 2.4%, methyl 1.2%, total.synthesi 1.1%, yield 1.1%, cycliz 1.1%, kei 1.0%, wittig 0.9%, ether 0.9%, alpha 0.8%, on 0.8%, product 0.8%, synthet 0.8%, kei.step 0.7%, reduct 0.7%, deriv 0.7%, pot 0.6%, nmr 0.6%, on.pot 0.6%, regioselect 0.6% *Focuses on synthesis of chemicals and chemical reactions*.
- Cluster 227: (195) yield 23.9%, reaction 8.9%, afford 4.3%, mild 1.8%, acid 1.8%, alpha 1.7%, high.yield 1.6%, react 1.6%, product 1.5%, substitut 1.4%, correspond 1.0%, catalyt 1.0%, condit 0.9%, amin 0.9%, ester 0.8%, compound 0.8%, mild.condit 0.7%, catalyz 0.6%, reagent 0.6%, thf 0.6%, moder 0.6%, stereoselect 0.6%, high 0.6%, moder.yield 0.6%, alcohol 0.5% Focuses on various chemical reactions and specifically on their yields.
- Cluster 105: (126) aryl 21.6%, catalyz 8.0%, reaction 5.5%, palladium 5.0%, alkyn 3.8%, coupl 3.6%, palladium.catalyz 3.6%, coupl.reaction 3.4%, yield 3.2%, cross.coupl 2.1%, stereoselect 2.0%, afford 1.3%, regioselect 1.1%, suzuki 1.1%, synthesi 0.9%, substitut 0.9%, aryl.halid 0.8%, termin.alkyn 0.7%, halid 0.7%, phosphin 0.7%, cross 0.7%, cross.coupl.reaction 0.7%, sonogashira 0.5%, termin 0.4%, iodid 0.4% Focuses on chemical reactions with an emphasis on catalyzing agents.
- Cluster 109: (120) chiral 21.4%, enantioselect 11.8%, asymmetr 9.5%, allyl 3.9%, ligand 3.5%, keton 3.2%, reaction 2.4%, aldehyd 2.1%, yield 1.5%, synthesi 1.4%, alcohol 1.3%, catalyz 1.2%, catalyt 1.1%, addit 0.7%, catalyz.asymmetr 0.5%, asymmetr.addit 0.5%, aromat 0.5%, deriv 0.5%, beta 0.4%, oxazolin 0.4%, catalyt.asymmetr 0.4%, new.chiral 0.3%, catalyst 0.3%, absolut.configur 0.3%, unsatur 0.3% Focuses on chiral compounds, chiral ligands and enantioselectivity.

- Cluster 71: (78) aldehyd 30.2%, aromat.aldehyd 7.0%, aromat 5.6%, keton 3.6%, yield 3.1%, condens 2.2%, reaction 2.2%, solvent.free 1.5%, aldehyd.keton 1.4%, synthesi 1.2% Focuses on aldehydes, especially aromatic aldehydes, with emphasis on reactions involving them.
- Cluster 9: (50) ionic.liquid 26.6%, ionic 17.9%, liquid 9.7%, bmim 5.8%, liquid.bmim 2.3%, ionic.liquid.bmim 2.3%, reaction 1.9%, bf4 1.7%, methylimidazolium 1.3%, yield 1.1%, butyl.methylimidazolium 1.0%, pf6 1.0% Focuses on ionic liquids, especially BMIM: (butyl methylimidazolium), with emphasis on its use as a reaction medium and promoter to increase reaction yields.
- Cluster 179: (177) catalyst 41.5%, reaction 3.3%, catalyt 2.6%, polymer 1.8%, activ 1.4%, yield 1.2%, complex 1.0%, reus 0.8%, ionic.liquid 0.8%, ethylen 0.7%, epoxid 0.7%, copolymer 0.6%, liquid 0.6%, acid 0.6%, catalyz 0.6%, aldehyd 0.6%, carbon 0.5%, catalyst.system 0.5%, ionic 0.5%, polyethylen 0.5%, alcohol 0.5%, oxid 0.5%, palladium 0.5%, condit 0.4%, temperatur 0.4% Focuses on catalysts and their use.
- Cluster 114: (338) catalyst 53.8%, catalyt 2.8%, activ 2.5%, oxid 2.2%, select 1.5%, al2o3 1.4%, hydrogen 1.3%, support 1.2%, reaction 1.1%, methan 1.0%, convers 1.0%, methanol 0.7%, sio2 0.6%, al2o3.catalyst 0.5%, gamma.al2o3 0.5%, reduct 0.5%, oxygen 0.5%, promot 0.5%, surfac 0.5%, impregn 0.4%, carbon 0.4%, catalyt.activ 0.4%, temperatur 0.4%, zro2 0.4%, speci 0.4% Focuses on chemical reactions, specifically those involving catalysts.
- Cluster 33: (56) mcm 38.9%, molecular.siev 6.2%, siev 5.5%, mesopor 4.4%, catalyst 4.1%, sapo 3.5%, acid 1.6%, molecular 1.5%, select 1.3%, catalyt 1.2% Focuses on molecular sieves, especially those comprised of MCMs: (mesoporous crystalline materials), with emphasis on their synthesis and characterization.
- Cluster 194: (109) zeolit 24.7%, catalyt 10.4%, activ 4.4%, oxid 3.4%, zsm 1.9%, acid.site 1.7%, acid 1.7%, catalyt.activ 1.6%, catalyst 1.6%, site 1.3%, select 1.0%, reaction 0.9%, hzsm 0.8%, methanol 0.8%, cobalt 0.8%, tpd 0.7%, oxygen 0.7%, co2 0.7%, zeolit.beta 0.6%, adsorpt 0.5%, hydrogen 0.5%, reactor 0.5%, membran 0.4%, base 0.4%, complex 0.4% Focuses on zeolites and their formation and chemical makeup, as well as various catalysts.

1.1.2.2. adsorption of chemicals, and analysis of chemicals by liquid chromatography (1758)

• Cluster 122: (181) adsorpt 60.1%, adsorb 6.2%, adsorpt.capac 1.8%, surfac 1.5%, capac 1.2%, resin 1.1%, isotherm 1.0%, acid 0.5%, remov 0.5%, ion 0.5%, adsorpt.isotherm 0.4%, water 0.4%, langmuir 0.4%, carbon 0.4%, exchang 0.4%, solut 0.3%, activ.carbon 0.3%, zeolit 0.3%, metal 0.3%, soil 0.3%, concentr

- 0.3%, activ 0.2%, chitosan 0.2%, group 0.2%, mol 0.2% Focuses on adsorption and removal of matter from various media using various adsorption media.
- Cluster 139: (112) surfact 30.5%, micel 7.1%, vesicl 3.2%, sd 2.9%, sodium 2.4%, ctab 2.0%, concentr 2.0%, cmc 1.5%, anion 1.2%, water 1.0%, oil 0.9%, anion.surfact 0.9%, mix 0.9%, interact 0.9%, triton 0.8%, triton.100 0.8%, aggreg 0.8%, cation 0.7%, tension 0.7%, biodegrad 0.7%, hydrophob 0.6%, micellar 0.6%, solubil 0.6%, microemuls 0.5%, solut 0.5% Focuses on surfactants and micelles and their aggregates.
- Cluster 248: (138) water 16.0%, solut 5.4%, membran 4.2%, solvent 2.8%, concentr 2.4%, aqueou 2.0%, enthalpi 1.7%, molar 1.5%, acid 1.4%, ionic 1.2%, solubl 1.1%, mixtur 1.1%, aqueou.solut 1.0%, anion 0.9%, mol 0.9%, h2o 0.8%, interact 0.7%, molar.volum 0.7%, rang 0.6%, ion 0.6%, standard 0.5%, standard.molar 0.4%, temperatur 0.4%, releas 0.4%, dilut 0.4% Focuses on water, and various chemical reactions/solutions that involve/contain water. Also talks about membranes, and the properties of solutions containing water.
- Cluster 250: (161) acid 18.7%, concentr 7.4%, degrad 4.1%, rate 1.7%, remov 1.6%, metal 1.5%, solut 1.1%, kinet 1.1%, oxid 1.0%, product 1.0%, radic 1.0%, dye 0.9%, initi 0.9%, wastewat 0.8%, h2o2 0.7%, humic 0.6%, reaction 0.6%, ion 0.6%, organ 0.6%, chlorin 0.5%, amino 0.5%, increas 0.5%, rate.constant 0.5%, amino.acid 0.4%, decreas 0.4% Focuses on acids and their uses, as well as the degradation of various compounds, either by acids or using other means.
- Cluster 247: (105) co2 7.4%, concentr 5.4%, fruit 5.1%, cultur 3.7%, sludg 3.5%, growth 1.7%, product 1.2%, rate 1.1%, compost 1.0%, control 1.0%, water 0.8%, cultiv 0.7%, sucros 0.7%, dai 0.7%, inocul 0.6%, co2.concentr 0.6%, fresh 0.6%, aerat 0.6%, condit 0.6%, cordycep 0.6%, batch 0.6%, higher 0.5%, dry 0.5%, level 0.5%, glucos 0.5% Focuses on the preservation of fruits after harvest and its relation to the concentration of co2 in the controlled environment.
- Cluster 54: (76) gold 17.8%, sam 8.7%, electrod 5.7%, assembl 3.0%, self.assembl 2.8%, monolay 2.7%, immunosensor 2.6%, surfac 2.2%, gold.nanoparticl 2.1%, electrochem 1.9%, gold.electrod 1.7%, assembl.monolay 1.7%, self.assembl.monolay 1.7%, nanoparticl 1.6%, self 1.5%, immobil 1.3%, antibodi 1.1% Focuses on devices containing or utilizing gold, with emphasis on electrodes, especially self-assembled monolayers: (SAMs), and biosensors.
- Cluster 144: (138) electrod 39.1%, electrochem 3.3%, carbon 2.9%, oxid 2.0%, current 1.3%, biosensor 1.1%, glucos 1.0%, carbon.electrod 0.9%, potenti 0.9%, peak 0.8%, surfac 0.8%,

- platinum 0.8%, mwnt 0.8%, detect 0.8%, voltammetri 0.6%, cnt 0.6%, gce 0.6%, cyclic 0.6%, mol 0.6%, amperometr 0.6%, glassi.carbon 0.5%, peak.current 0.5%, electrocatalyt 0.5%, glassi.carbon.electrod 0.5%, detect.limit 0.5% Focuses on electrodes in electrochemical systems, especially carbon-based electrodes.
- Cluster 213: (161) mol 17.7%, electrod 7.1%, detect.limit 2.5%, detect 2.3%, peak 2.0%, ion 1.9%, rang 1.8%, limit 1.7%, absorpt 1.5%, complex 1.4%, linear 1.2%, iii 1.2%, concentr 1.1%, rang.mol 1.0%, detect.limit.mol 1.0%, limit.mol 1.0%, sensit 0.9%, solut 0.8%, buffer 0.8%, reaction 0.8%, select 0.8%, buffer.solut 0.7%, acid 0.6%, voltammetri 0.6%, mol.detect.limit 0.6% Focuses on molecular detection, as well as electrode fabrication and use.
- Cluster 157: (138) chemiluminesc 5.2%, detect.limit 4.7%, mug 3.7%, sampl 3.6%, detect 3.1%, rel.standard 3.0%, limit 2.9%, rel.standard.deviat 2.8%, standard 2.7%, standard.deviat 2.5%, deviat 2.0%, trace 1.9%, inject 1.7%, flow.inject 1.6%, rsd 1.6%, formaldehyd 1.5%, flow 1.4%, recoveri 1.3%, linear.rang 1.3%, preconcentr 1.3%, rel 1.2%, selenium 1.1%, rang 1.1%, reaction 0.8%, digest 0.7% Focuses on chemiluminescence, emphasizing issues of detection limit for detecting trace material amounts, especially at the microgram level of concentration.
- Cluster 64: (82) capillari 11.6%, separ 8.3%, buffer 5.3%, electrophoresi 3.8%, detect 3.3%, mmol 3.2%, capillari.electrophoresi 2.3%, analyt 2.1%, acid 1.5%, chiral 1.3%, run.buffer 1.3%, voltag 1.2%, concentr 1.1%, electrokinet 1.0%, run 1.0% Focuses on chemical separation methods, especially those based on capillary electrophoresis: (CE).
- Cluster 107: (131) column 9.1%, mobil.phase 7.0%, separ 5.8%, phase 4.5%, mobil 4.1%, chromatograph 2.6%, acid 2.0%, hplc 1.9%, stationari.phase 1.9%, detect 1.9%, high.liquid 1.8%, liquid 1.7%, chromatographi 1.6%, methanol 1.5%, min 1.4%, chiral 1.4%, stationari 1.3%, csp 1.3%, revers.phase 1.1%, liquid.chromatographi 1.0%, acetonitril 0.9%, high.liquid.chromatographi 0.8%, flow.rate 0.7%, mug 0.7%, recoveri 0.7% Focuses on different means of either charge or mass separation, high pressure liquid chromatography, or liquid-liquid extraction
- Cluster 123: (102) mass 8.9%, spectrometri 7.8%, mass.spectrometri 7.3%, chromatographi 4.3%, ioniz 4.2%, ion 3.0%, esi 2.9%, electrosprai 2.5%, liquid.chromatographi 2.4%, liquid 2.3%, electrosprai.ioniz 1.5%, fragment 1.2%, tandem.mass 1.1%, tandem 1.0%, hplc 0.9%, high.liquid 0.9%, extract 0.8%, high.liquid.chromatographi 0.8%, separ 0.8%, chromatographi.mass 0.7%, chromatographi.mass.spectrometri 0.7%, ga.chromatographi 0.7%, ga 0.7%, tandem.mass.spectrometri 0.6%, ioniz.mass 0.6% Focuses on mass spectrometry and liquid chromatography.

- Cluster 97: (84) chromatographi 11.5%, enzym 3.5%, purifi 3.1%, hsccc 2.8%, ethyl.acet 2.6%, acet 2.5%, purif 2.3%, ethyl 1.7%, crude 1.3%, puriti 1.3%, extract 1.2%, counter.current.chromatographi 1.2%, current.chromatographi 1.2%, counter.current 1.2%, gel 1.2%, prepar 1.1%, high.speed.counter 1.1%, speed.counter 1.1%, speed.counter.current 1.1%, solvent.system 1.0%, separ 1.0% Focuses on compounds and enzymes, with emphasis on their synthesis, separation, and purification, and especially the use of chromatography.
- Cluster 128: (149) extract 51.8%, spme 3.0%, acid 1.9%, solvent 1.9%, sampl 1.2%, solid.phase 1.1%, liquid 1.1%, phase 1.0%, phase.microextract 0.9%, microextract 0.9%, solid 0.8%, chromatographi 0.7%, hplc 0.6%, extract.effici 0.5%, solid.phase.microextract 0.5%, ga.chromatographi 0.4%, water 0.4%, detect 0.4%, extract.time 0.4%, organ 0.4%, headspac 0.3%, sfe 0.3%, compound 0.3%, ga 0.3%, volatil 0.3% Focuses on the extraction and recovery of one physical component from another physical component.

1.2. thin films and mechanical properties of materials 1.2.1. the structural and mechanical properties of materials (8056) 1.2.1.1. nanomaterial structure, structural visualization (2830)

- Cluster 188: (123) polym 33.7%, solvent 3.4%, monom 2.5%, solubl 2.2%, poli 1.7%, imprint 1.4%, membran 1.3%, polymer 1.1%, synthes 1.1%, chain 1.0%, nmr 1.0%, organ.solvent 0.9%, polycondens 0.8%, acid 0.8%, imprint.polym 0.7%, ether 0.7%, polyimid 0.7%, molecular 0.6%, hyperbranch 0.6%, organ 0.5%, chromophor 0.5%, templat 0.5%, weight 0.4%, thermal 0.4%, properti 0.4% Focuses on polymers, their formulation, their formation, and their uses.
- Cluster 117: (112) polymer 32.5%, graft 6.0%, monom 5.1%, initi 2.6%, polym 2.1%, acryl 1.6%, molecular.weight 1.3%, raft 1.2%, methacryl 1.2%, radic.polymer 1.1%, radic 1.1%, mma 1.0%, weight 1.0%, atrp 0.9%, copolymer 0.9%, methyl 0.8%, poli 0.8%, styren 0.7%, copolym 0.7%, molecular 0.6%, vinyl 0.6%, convers 0.6%, transfer 0.6%, atom.transfer 0.5%, transfer.radic.polymer 0.5% Focuses on various polymers, copolymers, monomers, and grafting.
- Cluster 73: (111) copolym 40.7%, poli 6.3%, block 3.9%, block.copolym 2.7%, polymer 1.8% Focuses on polymers, especially block copolymers, with emphasis on their synthesis.
- Cluster 190: (132) crystal 17.3%, melt 4.9%, differenti.scan 3.2%, differenti.scan.calorimetri 2.9%, scan.calorimetri 2.9%, calorimetri 2.8%, dsc 2.6%, scan 1.8%, temperatur 1.7%, crystallin 1.6%, differenti 1.5%, phase 1.5%, thermal 1.1%, scan.calorimetri.dsc

- 1.1%, calorimetri.dsc 1.1%, polym 1.1%, copolym 0.8%, pcl 0.7%, isotherm 0.7%, crosslink 0.7%, poli 0.7%, ipp 0.6%, waxd 0.5%, cholester 0.5%, isotherm.crystal 0.5% Focuses on the crystal structures of various compounds and their physical properties such as melting properties with the analysis done by differential scanning calorimetry.
- Cluster 137: (124) blend 39.9%, hdpe 4.2%, mechan.properti 1.6%, melt 1.6%, crystal 1.1%, starch 1.1%, lldpe 1.1%, graft 1.1%, properti 1.0%, polyethylen 0.9%, mechan 0.8%, peo 0.7%, phase 0.7%, tensil 0.7%, shear 0.7%, temperatur 0.6%, strength 0.6%, morpholog 0.6%, densiti.polyethylen 0.6%, content 0.6%, epdm 0.6%, ldpe 0.6%, vibrat 0.5%, nylon 0.5%, copolym 0.5% Focuses on blends, especially of polymers, with emphasis on high density polyethylene as well as mechanical and melt properties.
- Cluster 65: (59) cure 24.3%, resin 16.1%, epoxi 5.0%, flame.retard 4.7%, retard 3.6%, flame 3.5%, thermal 2.1%, epoxi.resin 1.5%, thermal.degrad 1.1%, degrad 1.1% Focuses on curing and resins, with emphasis on curing of resins.
- Cluster 26: (69) nanocomposit 36.4%, clai 8.9%, mmt 7.1%, ommt 4.6%, montmorillonit 4.0%, intercal 2.5%, exfoli 2.1%, clai.nanocomposit 1.2% Focuses on synthesis of nanocomposites, particularly polymer/clay nanocomposites containing montmorillonite: (MMT).
- Cluster 2: (50) cnt 66.1%, nanotub 4.3%, carbon.nanotub 3.6%, carbon 3.2%, nanotub.cnt 3.1%, carbon.nanotub.cnt 3.0% Focuses on carbon nanontubes, especially their synthesis and structure
- Cluster 21: (125) nanotub 59.2%, carbon.nanotub 14.8%, carbon 9.1% Focuses on nanotubes, especially synthesis of carbon nanotubes.
- Cluster 52: (91) mwnt 13.3%, swnt 12.9%, carbon 11.4%, nanotub 8.6%, carbon.nanotub 6.7%, wall.carbon 5.2%, wall.carbon.nanotub 4.8%, wall 3.2%, singl.wall.carbon 2.0%, singl.wall 2.0%, mwcnt 1.3%, tube 1.3% Focuses on single-wall and multi-wall carbon nanotubes; includes studies that focus on their synthesis, characterization, and use in reactions involving other materials.
- Cluster 31: (166) nanowir 68.2%, arrai 2.1%, nanowir.arrai 1.6%, diamet 1.6% Focuses on nanowires, especially their synthesis and characterization.
- Cluster 11: (67) zno 62.2%, nanorod 5.1%, zno.nanorod 3.4%, zno.nanostructur 3.0%, nanostructur 2.3%, zinc 1.1% Focuses on ZnO, especially ZnO nanorods, with emphasis on their synthesis and structure
- Cluster 111: (80) nanorod 37.0%, nanobelt 8.5%, nanostructur 3.0%, synthes 1.7%, growth 1.6%, length 1.6%, singl.crystallin 1.3%, hydrotherm 1.2%, singl 1.1%, crystallin 1.1%, diamet 1.0%, crystal 0.9%, templat 0.7%, format 0.7%, mum 0.7%, surfact 0.5%,

- nanorod.synthes 0.5%, step 0.5%, singl.crystal 0.5%, mechan 0.5%, growth.mechan 0.5%, morpholog 0.4%, oxid.nanorod 0.4%, xrd 0.3%, structur 0.3% Focuses on nanostructures, especially nanorods and nanobelts, and their formation and characteristics
- Cluster 132: (231) electron.microscopi 7.9%, microscopi 6.9%, transmiss.electron 6.4%, transmiss.electron.microscopi 6.3%, electron 6.2%, transmiss 5.0%, diffract 3.2%, rai 3.2%, electron.microscopi.tem 2.8%, microscopi.tem 2.8%, tem 2.8%, diffract.xrd 1.6%, xrd 1.3%, rai.diffract 1.3%, powder 1.1%, rai.diffract.xrd 1.0%, synthes 0.8%, xrd.transmiss.electron 0.8%, diffract.xrd.transmiss 0.7%, xrd.transmiss 0.7%, nanorod 0.7%, rai.powder 0.7%, rai.powder.diffract 0.6%, powder.diffract 0.6%, morpholog 0.6% Focuses on electron microscopy, especially transmission electron microscopy: (tem).
- Cluster 80: (157) nanoparticl 64.5%, gold 2.4%, gold.nanoparticl 1.4%, size 1.4% Focuses on nanoparticles, especially those containing gold.
- Cluster 181: (79) colloid 8.4%, silver 7.9%, assembl 5.1%, hollow 4.9%, nanoparticl 4.2%, self.assembl 2.4%, sphere 1.8%, templat 1.7%, shell 1.7%, silica 1.6%, particl 1.5%, self 1.4%, nanospher 1.2%, surfac 1.2%, colloid.crystal 1.0%, silver.nanoparticl 0.9%, aggreg 0.8%, poli 0.8%, diamet 0.8%, hollow.sphere 0.8%, nanopl 0.8%, layer 0.7%, spheric 0.7%, crystal 0.7%, ctab 0.6% Focuses on colloidal silver spheres and their self assembly.
- Cluster 234: (113) mesopor 6.0%, silica 4.0%, electron 3.2%, surfac 3.1%, microscopi 2.6%, morpholog 2.2%, templat 2.2%, electron.microscopi 1.7%, mesopor.silica 1.7%, membran 1.7%, scan 1.6%, pore 1.4%, transmiss.electron 1.4%, transmiss 1.3%, surfact 1.0%, diamet 1.0%, scan.electron 0.9%, aerogel 0.8%, spectroscopi 0.8%, synthes 0.8%, rai 0.7%, sem 0.7%, structur 0.7%, crystal 0.6%, transmiss.electron.microscopi 0.6% Focuses on mesoporous silicas.
- Cluster 233: (136) pore 7.9%, materi 7.0%, scaffold 6.7%, dentin 3.9%, porou 3.8%, adhes 2.7%, cement 1.8%, membran 1.8%, poros 1.7%, strength 1.6%, ldh 1.4%, surfac 1.4%, pore.size 1.0%, hap 1.0%, etch 1.0%, sem 0.9%, calcium 0.8%, composit 0.8%, water 0.8%, bone 0.7%, foam 0.7%, chitosan 0.7%, structur 0.6%, size 0.6%, properti 0.5% Focuses on the separation of materials, pore sizes in filter media and the structure of the filter media itself.
- Cluster 211: (100) suspens 5.5%, nano 5.3%, surfac.area 4.9%, dispers 4.6%, surfac 3.7%, slurri 3.3%, calcin 2.4%, zirconia 2.4%, area 2.3%, zro2 1.9%, al2o3 1.9%, powder 1.5%, alumina 1.4%, aqueou 1.3%, solid 1.2%, aln 1.2%, stabil 1.1%, size 1.0%, particl 0.8%, viscos 0.8%, high.surfac.area 0.8%, oxid 0.7%, high.surfac 0.7%, solid.load 0.6%, bet 0.6% Focuses on various

- suspensions, and the nanoparticles in them. Also talks about powders and the particles' surface area.
- Cluster 193: (176) powder 34.8%, size 3.3%, particl 2.9%, precursor 1.7%, particl.size 1.5%, combust 1.5%, calcin 1.5%, temperatur 1.4%, xrd 1.3%, phase 1.1%, synthes 1.0%, precipit 0.8%, nano 0.7%, gel 0.7%, synthesi 0.7%, tem 0.7%, powder.synthes 0.6%, mill 0.5%, product 0.5%, sem 0.5%, nanos 0.5%, la2o3 0.5%, rai 0.5%, oxid 0.4%, sol 0.4% Focuses on powders and their fabrication and synthesis and mechanical properties.
- Cluster 208: (267) particl 50.6%, size 6.9%, particl.size 5.8%, size.distribut 1.0%, composit 0.9%, dispers 0.8%, distribut 0.8%, surfac 0.8%, nano 0.5%, nanoparticl 0.5%, silica 0.4%, temperatur 0.4%, concentr 0.4%, particl.size.distribut 0.3%, spheric 0.3%, fine 0.3%, increas 0.3%, water 0.2%, content 0.2%, morpholog 0.2%, phase 0.2%, nano.particl 0.2%, polymer 0.2%, diamet 0.2%, precipit 0.2% Focuses on particulate matter of varying types, and its size and size distribution.
- Cluster 206: (88) shell 10.2%, particl 8.4%, caco3 5.1%, core 5.0%, microspher 4.1%, sio2 2.8%, dust 2.1%, nano 1.9%, core.shell 1.8%, polymer 1.5%, composit 1.5%, surfac 1.3%, emuls 1.3%, graft 1.1%, size 0.9%, concentr 0.8%, monodispers 0.8%, dispers 0.6%, sphere 0.6%, polystyren 0.6%, magnetit 0.6%, floc 0.6%, composit.particl 0.5%, calcium 0.5%, silica 0.5% Focuses on shells and encapsulating various compounds within them.
- Cluster 68: (174) tio2 54.3%, photocatalyt 6.3%, anatas 2.2%, photocatalyst 1.7%, photocatalyt.activ 1.6%, sol 1.3%, dope 1.0%, gel 1.0% Focuses on TiO2, especially its photocatalytic behavior.

1.2.1.2. alloys, alloy composition, composition/structure (5226)

- Cluster 229: (129) pressur 24.6%, high.pressur 4.1%, miner 3.5%, hydrat 3.5%, ga 3.1%, gpa 3.0%, oxygen 2.6%, temperatur 1.7%, ga.hydrat 1.1%, iron 1.0%, high 1.0%, water 0.7%, phase 0.6%, quartz 0.6%, content 0.5%, rock 0.5%, plagioclas 0.5%, fluid 0.5%, zone 0.5%, transit 0.4%, pressur.gpa 0.4%, nanocryst 0.4%, resist 0.4%, format 0.4%, silic 0.4% Focuses on pressure and high pressure. Sometimes discusses chemical reactions or geologic phenomina.
- Cluster 254: (308) temperatur 33.0%, thermal 1.8%, high.temperatur 1.5%, high 1.4%, degreesc 1.0%, surfac 0.9%, room 0.8%, room.temperatur 0.8%, increas 0.7%, decreas 0.7%, combust 0.7%, concentr 0.7%, low 0.7%, composit 0.6%, pressur 0.6%, rang 0.6%, conduct 0.6%, temperatur.rang 0.6%, rate 0.5%, melt 0.5%, densiti 0.5%, temperatur.depend 0.5%, fuel 0.5%, oxid 0.5%, coeffici 0.5% *Focuses on temperature and associated phenomena*.

- Cluster 249: (201) phase 22.3%, liquid 4.0%, temperatur 2.9%, transit 2.7%, diffus 2.2%, phase.transit 2.1%, solid 1.9%, diagram 1.1%, phase.diagram 1.0%, simul 0.9%, system 0.9%, structur 0.7%, phase.region 0.7%, atom 0.7%, interfac 0.7%, molecular.dynam 0.7%, crystal 0.7%, molecular.dynam.simul 0.7%, energi 0.7%, growth 0.6%, dynam.simul 0.6%, concentr 0.5%, densiti 0.5%, state 0.5%, properti 0.5% Focuses on the different phases of materials as well as the effect that phase change has on the material.
- Cluster 195: (153) temperatur 6.9%, spin 5.8%, magnet 5.7%, ferromagnet 5.1%, dope 4.8%, field 3.4%, transit 2.9%, magnetoresist 2.4%, resist 1.9%, sampl 1.4%, insul 1.3%, phase 1.3%, electr 1.3%, superconduct 1.3%, temperatur.depend 1.0%, state 0.9%, depend 0.9%, antiferromagnet 0.8%, metal 0.8%, electron 0.7%, transport 0.7%, electr.field 0.7%, paramagnet 0.6%, ion 0.6%, la0 0.6% Focuses on the magnetic properties of materials along with feromagnets, as well as the doping of various materials to make them magnetic.
- Cluster 131: (228) magnet 58.2%, magnet.field 5.8%, field 5.1%, magnet.properti 1.7%, temperatur 1.5%, coerciv 0.7%, anisotropi 0.7%, phase 0.7%, properti 0.6%, grain 0.4%, sampl 0.3%, ribbon 0.3%, ferrit 0.3%, structur 0.3%, coupl 0.3%, magnet.measur 0.2%, particl 0.2%, materi 0.2%, ferromagnet 0.2%, measur 0.2%, transit 0.2%, electr 0.2%, exchang.coupl 0.2%, magnetostrict 0.2%, compound 0.2% Focuses on magnetic properties of various materials, the effects of magnetization on various materials.
- Cluster 239: (195) field 23.5%, magnet 17.5%, magnet.field 5.8%, current 1.8%, electr 1.6%, model 1.1%, flux 1.1%, electromagnet 0.9%, ground 0.8%, reconnect 0.7%, electr.field 0.6%, ht 0.5%, geomagnet 0.5%, numer 0.5%, cme 0.4%, densiti 0.4%, forc 0.4%, power 0.4%, dipol 0.4%, plasma 0.3%, acceler 0.3%, two 0.3%, levit 0.3%, system 0.3%, magnet.flux 0.3% Focuses on magnets and magnetic fields.
- Cluster 147: (102) turbul 29.6%, flow 7.0%, vortex 3.9%, vortic 3.2%, veloc 2.3%, reynold 1.8%, fire 1.6%, model 1.6%, pressur 1.5%, bubbl 1.3%, particl 1.2%, simul 1.1%, number 0.9%, reynold.number 0.7%, wall 0.7%, combust 0.7%, flame 0.6%, eddi 0.6%, turbul.flow 0.6%, scale 0.6%, vent 0.5%, street 0.5%, turbul.model 0.5%, numer 0.5%, fluctuat 0.4% Focuses on turbulent flow, especially vortex dynamics and modeling.
- Cluster 210: (223) flow 43.5%, veloc 2.9%, fluid 2.5%, model 2.1%, jet 1.8%, ga 1.5%, pressur 1.2%, bubbl 0.9%, bed 0.9%, simul 0.8%, flow.rate 0.8%, channel 0.7%, particl 0.7%, liquid 0.6%, nozzl 0.6%, numer 0.6%, convect 0.5%, experiment 0.5%, flow.field 0.5%, field 0.5%, flow.pattern 0.5%, rate 0.5%, wall

- 0.4%, paramet 0.4%, air 0.4% Focuses on flow dynamics and fluid flow modeling.
- Cluster 115: (106) heat 36.8%, heat.transfer 8.9%, transfer 6.0%, fin 1.9%, heat.flux 1.7%, flux 1.6%, cycl 1.4%, convect 1.2%, refriger 1.1%, temperatur 0.9%, model 0.9%, exergi 0.8%, cool 0.8%, flow 0.7%, mass.transfer 0.7%, heat.exchang 0.6%, compressor 0.5%, heat.pump 0.4%, irrevers 0.4%, coeffici 0.4%, experiment 0.4%, transfer.coeffici 0.4%, tube 0.3%, mass 0.3%, power 0.3% *Focuses on heat transfer*.
- Cluster 217: (140) heat 35.7%, temperatur 4.4%, heat.transfer 4.1%, thermal 2.7%, transfer 2.6%, tube 1.9%, cool 1.8%, refriger 1.3%, water 0.9%, boil 0.8%, heat.capac 0.8%, conduct 0.7%, thermal.conduct 0.7%, capac 0.6%, heat.treatment 0.5%, moistur 0.5%, phase 0.5%, experiment 0.5%, liquid 0.5%, surfac 0.4%, evapor 0.4%, condens 0.4%, degreesc 0.4%, treatment 0.3%, ga 0.3% Focuses on heat transfer mechanics and applications, as well as heat transfer experiments.
- Cluster 82: (60) cool 8.7%, air 8.3%, heat 6.8%, rvr 5.8%, build 4.1%, energi.consumpt 3.8%, energi 3.6%, heat.cool 3.4%, ventil 3.3%, consumpt 2.6%, citi 2.0%, indoor 1.3%, energi.effici 1.2% Focuses on air cooling and heating systems, especially their energy consumption and efficiency.
- Cluster 20: (116) crack 58.6%, stress 3.4%, intens.factor 2.2%, crack.tip 1.9%, tip 1.5%, stress.intens 1.2%, stress.intens.factor 1.2%, fractur 1.0%, load 1.0% Focuses on cracking, crack tip growth rates, and stress intensity factors of materials.
- Cluster 160: (119) stress 50.0%, shear 5.4%, rock 2.4%, residu.stress 1.6%, residu 1.1%, deform 0.9%, plastic 0.8%, strain 0.8%, fractur 0.7%, shear.stress 0.7%, model 0.7%, compress 0.5%, mine 0.4%, element 0.4%, strength 0.4%, stress.field 0.4%, stress.state 0.3%, simul 0.3%, materi 0.3%, load 0.3%, specimen 0.3%, failur 0.3%, tension 0.3%, yield 0.3%, concret 0.3% Focuses on the mechanical properties of materials, and stresses on them, along with what happens to stressed materials. Also talks about residual stresses, and stress testing and stresses in rocks.
- Cluster 163: (149) strain 22.0%, damag 8.1%, plastic 5.9%, stress 5.3%, deform 3.2%, model 2.9%, strain.rate 2.2%, fatigu 2.0%, stress.strain 1.8%, constitut 1.8%, materi 1.8%, load 1.3%, constitut.model 1.0%, solder 0.9%, rate 0.8%, test 0.7%, plastic.strain 0.7%, harden 0.7%, simul 0.7%, dynam 0.6%, compress 0.5%, concret 0.5%, shear 0.4%, failur 0.4%, finit.element 0.4% Focuses on mechanical properties of materials with emphasis on damage to the material, plastic deformation and fatigue life.
- Cluster 88: (100) deform 22.5%, strain 9.2%, strain.rate 5.4%, roll 5.0%, stress 2.1%, microstructur 2.0%, compress 1.8%, superplast

- 1.8%, tensil 1.6%, cold.roll 1.5%, alloi 1.4%, rate 1.3%, temperatur 1.2%, textur 1.1%, hot 1.1%, grain 1.1%, cold 1.0%, recrystal 1.0%, plastic 1.0% *Focuses on the deformation behavior of materials as determined through experimental investigations*.
- Cluster 237: (173) load 12.8%, beam 3.3%, buckl 2.9%, lamin 2.6%, bend 2.5%, forc 2.3%, deform 1.9%, plate 1.7%, dynam 1.6%, elast 1.6%, axial 1.4%, model 1.4%, displac 1.2%, wall 1.2%, vibrat 1.1%, section 1.0%, curv 1.0%, stiff 1.0%, column 0.9%, indent 0.8%, numer 0.8%, cut 0.7%, test 0.7%, plastic 0.7%, stiffen 0.7% Focuses on the loading of structural members along with their mechanical properties and the failure modes of various beams, laminates and other materials.
- Cluster 186: (128) finit.element 15.5%, element 12.7%, finit 10.5%, model 2.5%, roll 2.5%, element.model 1.7%, finit.element.model 1.6%, simul 1.6%, rail 1.3%, fem 1.2%, dam 0.8%, strip 0.8%, forc 0.8%, stress 0.8%, contact 0.7%, rotor 0.6%, calcul 0.6%, deform 0.6%, materi 0.6%, numer 0.6%, plate 0.6%, bridg 0.5%, elast 0.5%, field 0.5%, shape 0.5% Focuses on finite element models.
- Cluster 12: (67) martensit 21.6%, transform 9.6%, martensit.transform 8.4%, alloi 8.2%, shape.memori 5.7%, memori 4.1%, shape.memori.alloi 2.9%, memori.alloi 2.9%, transform.temperatur 2.8%, temperatur 2.8%, shape 1.9%, sma 1.4%, martensit.transform.temperatur 1.3%, phase 1.1%, phase.transform 1.1%, tini 1.0% Focuses on martensitic transformation temperatures, particularly of shape memory alloys
- Cluster 44: (62) glass 50.0%, bmg 3.4%, metal.glass 2.2%, glass.transit 1.7%, bulk.metal 1.4%, bulk.metal.glass 1.4%, crystal 1.2%, nucleat 1.0% Focus on glasses, especially metallic glasses, with emphasis on synthesis and characterization of properties such as glass transition temperature.
- Cluster 43: (89) alloi 32.7%, amorph 15.3%, amorph.alloi 7.3%, magnet 5.3%, glass 3.2%, glass.form 2.2%, crystal 1.3% Focuses on characterization of alloys, especially amorphous alloys, with emphasis on high temperature and magnetic properties.
- Cluster 24: (87) alloi 35.0%, hydrogen 6.7%, hydrogen.storag 4.1%, capac 3.5%, discharg 3.3%, electrochem 2.6%, mill 2.5%, storag 2.3%, discharg.capac 1.8%, hydrid 1.7%, phase 1.7%, storag.alloi 1.1%, hydrogen.storag.alloi 1.1%, cycl 1.0% Focuses on alloy synthesis and electrochemical characterization, with emphasis on characterization of hydrogen storage and discharge capacity.
- Cluster 182: (353) alloi 56.8%, microstructur 2.4%, phase 1.5%, cast 1.4%, oxid 1.1%, temperatur 0.9%, strength 0.7%, precipit 0.6%, layer 0.5%, grain 0.5%, properti 0.4%, gamma 0.4%, surfac 0.4%, content 0.4%, ag 0.4%, addit 0.4%, eutect 0.3%, magnesium.alloi 0.3%, melt 0.3%, mechan 0.3%, magnesium 0.3%, rate 0.3%, form

- 0.3%, titanium 0.3%, mechan.properti 0.3% Focuses on the creation/formation/evaluation of alloys and their microstructure.
- Cluster 74: (325) coat 68.6%, sprai 1.6%, oxid 1.3%, composit.coat 1.2%, composit 1.0% Focuses on coatings, especially composite coatings.
- Cluster 61: (147) wear 41.9%, friction 8.9%, wear.resist 3.0%, steel 2.7%, slide 2.2%, surfac 1.6%, lubric 1.6%, composit 1.6%, resist 1.6%, coat 1.1%, friction.coeffici 1.0% Focuses on wear resistance of materials, especially experimental evaluation of wear resistance properties.
- Cluster 231: (251) composit 36.1%, sic 3.8%, materi 2.3%, strength 2.1%, matrix 1.9%, fibr 1.5%, fractur 1.3%, properti 1.3%, reinforc 1.1%, mechan 0.9%, mechan.properti 0.8%, fabric 0.7%, particl 0.7%, carbon 0.7%, oxid 0.6%, powder 0.6%, al2o3 0.6%, fiber 0.6%, properti.composit 0.5%, interfac 0.5%, tough 0.5%, microstructur 0.4%, bend 0.4%, metal 0.4%, thermal 0.4% *Focuses on the composition, mechanical properties, and synthesis of various materials*.
- Cluster 149: (142) discharg 11.1%, capac 6.9%, cathod 6.7%, electrochem 6.4%, cycl 3.5%, electrolyt 3.5%, lithium 3.2%, batteri 2.6%, materi 2.4%, charg.discharg 2.2%, mah 2.0%, lifepo4 2.0%, charg 1.7%, composit 1.3%, oxid 1.2%, discharg.capac 1.1%, licoo2 1.1%, cathod.materi 1.0%, electrod 1.0%, lithium.ion 0.9%, polym.electrolyt 0.8%, ion 0.7%, spinel 0.5%, conduct 0.5%, powder 0.5% Focuses on the charge and discharge capacity of various materials, and mainly their use in electrochemical/electrical charge transfers. Basically it focuses on batteries/battery cells.
- Cluster 6: (33) solder 40.1%, undercool 12.1%, imc 4.1%, alloi 2.1%, solidif 1.9%, eutect 1.9%, dendrit 1.7%, solder.alloi 1.5%, solder.joint 1.5%, reflow 1.3%, interfac 1.1% Focuses on solder and solder joints, particularly lead free solder, with emphasis on solidification, structure, and properties.
- Cluster 77: (56) weld 36.0%, crack 7.4%, fatigu 3.6%, carbid 2.5%, joint 1.8%, fractur 1.7%, heat 1.4%, stress 1.3% Focuses on the structure and properties of materials, with emphasis on characterization of welds and fatigue and fracture behavior.
- Cluster 27: (55) corros 62.6%, steel 2.7%, corros.resist 1.7%, pit 1.5%, eros 1.3%, resist 1.3%, implant 1.1%, stainless.steel 1.1%, stainless 1.0% Focuses on corrosion and pitting resistance of metals and alloys, including steels and stainless steels.
- Cluster 112: (135) steel 38.7%, ferrit 6.3%, austenit 5.1%, grain 2.0%, roll 1.8%, martensit 1.7%, microstructur 1.2%, transform 1.0%, strength 1.0%, deform 0.9%, carbon 0.9%, precipit 0.8%, bainit 0.8%, temperatur 0.7%, low.carbon 0.6%, stainless.steel 0.6%, stainless 0.6%, hard 0.6%, disloc 0.5%, carbon.steel 0.5%, cool 0.4%, boundari 0.4%, low 0.4%, tough 0.4%, size 0.4%

- Focuses on various steels, especially ferritic and austenitic, with an emphasis on failure modes, testing, and composition
- Cluster 103: (127) grain 46.9%, grain.size 4.7%, boundari 4.1%, grain.boundari 3.5%, size 2.2%, microstructur 1.5%, alloi 1.5%, deform 1.3%, refin 1.1%, grain.refin 0.7%, twin 0.7%, ribbon 0.7%, grain.growth 0.6%, recrystal 0.6%, phase 0.6%, temperatur 0.5%, ecap 0.4%, surfac 0.4%, anneal 0.4%, cast 0.3%, growth 0.3%, textur 0.3%, averag.grain 0.3%, plastic 0.3%, dendrit 0.3% Focuses on the grain structure of various alloys and the microstructure of such alloys.
- Cluster 126: (188) sinter 44.3%, powder 3.2%, sinter.temperatur 2.7%, grain 2.0%, ceram 2.0%, temperatur 1.7%, composit 1.4%, sp 1.3%, sampl 1.3%, plasma.sinter 1.1%, spark 1.0%, spark.plasma 0.9%, spark.plasma.sinter 0.9%, microstructur 0.8%, press 0.8%, properti 0.7%, phase 0.7%, sinter.sp 0.6%, densiti 0.6%, materi 0.6%, thermoelectr 0.5%, sic 0.4%, plasma.sinter.sp 0.4%, fabric 0.4%, size 0.4% Focuses on various sintering techniques such as spark plasma sintering, and the mechanical properties of sintered materials as well as proper sintering techniques.
- Cluster 140: (180) ceram 50.0%, zro2 2.4%, sinter 2.3%, glass.ceram 1.6%, composit 1.3%, strength 1.3%, glass 1.3%, fractur 1.2%, al2o3 1.0%, materi 0.8%, mechan.properti 0.8%, green 0.7%, microstructur 0.7%, gelcast 0.7%, properti 0.7%, green.bodi 0.7%, tough 0.6%, slurri 0.6%, temperatur 0.5%, fractur.tough 0.5%, mechan 0.5%, powder 0.5%, grind 0.4%, si3n4 0.4%, grain 0.4% Focuses on ceramics, including fabrication, doping, and mechanical properties.
- Cluster 46: (155) dielectr 33.1%, ceram 12.8%, dielectr.constant 6.5%, dielectr.properti 4.0%, sinter 3.3%, constant 3.0%, microway 1.8%, temperatur 1.4%, microway.dielectr 1.2%, properti 1.2% Focuses on characterization of the dielectric properties of ceramics.

1.2.2. thin films and optics (5910)

1.2.2.1. thin films, thin film deposition (1274)

- Cluster 62: (120) film 19.9%, thin.film 8.5%, thin 7.3%, ferroelectr 6.4%, dielectr 4.2%, bst 3.4%, pzt 3.3%, anneal 2.4%, temperatur 1.2%, deposit 1.1% Focuses on films, especially thin films, with emphasis on their synthesis and evaluation.
- Cluster 104: (351) film 31.3%, thin.film 22.0%, thin 19.1%, substrat 1.8%, deposit 1.5%, temperatur 0.7%, anneal 0.5%, sputter 0.5%, zno 0.4%, tio2 0.3%, optic 0.3%, electron 0.3%, orient 0.3%, layer 0.2%, film.deposit 0.2%, grown 0.2%, silicon 0.2%, structur 0.2%, sol 0.2%, surfac 0.2%, crystal 0.2%, resist 0.2%, magnetron 0.2%,

- magnetron.sputter 0.2%, dope 0.2% Focuses on thin films and their deposition.
- Cluster 158: (445) film 64.8%, deposit 2.6%, substrat 1.4%, thick 1.0%, anneal 0.7%, surfac 0.5%, film.thick 0.5%, zno 0.5%, film.deposit 0.5%, temperatur 0.5%, properti 0.4%, sputter 0.4%, structur 0.3%, electron 0.3%, zno.film 0.3%, rai 0.3%, optic 0.3%, spectroscopi 0.2%, magnet 0.2%, amorph 0.2%, dlc 0.2%, carbon 0.2%, microscopi 0.2%, orient 0.2%, measur 0.2% Focuses on various films, discussing formation, doping, deposition etc.
- Cluster 39: (69) diamond 27.1%, deposit 13.4%, diamond.film 10.9%, film 9.4%, substrat 3.0%, cvd 1.4% Focuses on diamond films, including nano-structured diamond films, with emphasis on their deposition by various methods.
- Cluster 152: (128) film 35.5%, electrod 5.3%, multilay.film 3.1%, multilay 2.8%, tio2 2.1%, electrochem 1.5%, layer 1.3%, tio2.film 1.1%, biosensor 1.1%, assembl 0.9%, glucos 0.8%, layer.layer 0.7%, cyclic 0.7%, voltammetri 0.7%, film.electrod 0.5%, carbon 0.5%, deposit 0.5%, self.assembl 0.5%, cyclic.voltammetri 0.5%, surfac 0.5%, redox 0.4%, solut 0.4%, carbon.electrod 0.4%, mol 0.4%, oxid 0.4% Focuses on films and doping agents that are embedded or placed on films, such as sensors.
- Cluster 224: (161) film 33.3%, surfac 3.3%, composit.film 3.1%, polym 2.1%, monolay 1.9%, optic 1.3%, composit 1.1%, light 1.0%, langmuir 0.8%, polar 0.7%, shg 0.6%, water 0.6%, poli 0.6%, blodgett 0.6%, graft 0.5%, langmuir.blodgett 0.5%, grate 0.4%, fabric 0.4%, properti 0.4%, amphiphil 0.4%, subphas 0.4%, afm 0.3%, angl 0.3%, surfac.pressur 0.3%, pmma 0.3% Focuses on films, specifically composite films and polymer films.

1.2.2.2. structure and properties of thin films (thickness, density function, etc) and optics and physics (4636)

- Cluster 214: (204) layer 18.2%, film 8.5%, substrat 5.0%, thick 4.4%, deposit 2.8%, gan 2.8%, anneal 2.6%, aln 1.9%, silicon 1.7%, multilay 1.3%, buffer.layer 1.0%, surfac 0.9%, layer.thick 0.9%, temperatur 0.8%, sputter 0.8%, buffer 0.8%, grown 0.7%, zno 0.7%, epitaxi 0.6%, gan.film 0.6%, lcmo 0.5%, interfac 0.5%, growth 0.5%, nitrid 0.5%, tin 0.5% Focuses on thin films and their substrates, and film deposition.
- Cluster 222: (137) layer 9.0%, gan 6.8%, etch 3.8%, quantum 3.7%, quantum.dot 2.8%, dot 2.7%, gaa 2.2%, ina 2.0%, qd 1.7%, grown 1.3%, epitaxi 1.3%, electron 1.2%, algan 1.1%, implant 1.1%, photoluminesc 1.0%, silicon 1.0%, surfac 1.0%, sige 0.8%, fabric 0.8%, peak 0.6%, thick 0.6%, tunnel 0.6%, heterostructur 0.6%, molecular.beam.epitaxi 0.5%, beam.epitaxi 0.5% Focuses on etched layers, usually of silicon, and includes quantum dots as well.

- Cluster 56: (76) devic 12.7%, emit 6.2%, layer 5.9%, light.emit 4.0%, alq 3.7%, ito 3.3%, ol 3.1%, hole 2.8%, organ 2.7%, npb 2.3%, light 2.3%, organ.light 2.2%, organ.light.emit 2.0%, lumin 1.2%, emiss 1.2%, light.emit.devic 1.0%, emit.devic 1.0%, effici 1.0% Focuses on devices, especially organic light emitting devices, including light emitting diodes: (LEDs), with emphasis on their fabrication.
- Cluster 5: (57) black.hole 26.7%, black 21.2%, hole 16.2%, entropi 4.6%, horizon 3.1%, scalar 1.1%, quasinorm 1.0%, brick.wall 1.0% Focuses on black holes and black hole event horizons, with emphasis on their associated entropy.
- Cluster 124: (88) jet 10.6%, grb 5.6%, radio 4.5%, pulsar 4.3%, gamma.rai 3.6%, burst 2.9%, sourc 2.4%, rai 2.4%, emiss 2.2%, disk 2.0%, gamma 2.0%, line 1.6%, accret 1.6%, flare 1.5%, agn 1.5%, afterglow 1.3%, luminos 1.3%, compon 1.2%, gamma.rai.burst 1.1%, rai.burst 1.0%, galact 0.9%, similar 0.9%, model 0.8%, accret.disk 0.7%, light.curv 0.6% Focuses on many different aspects of astronomy, including pulsars, gamma ray emission and luminosity.
- Cluster 90: (76) star 30.9%, galaxi 10.3%, mass 2.9%, cluster 2.8%, stellar 2.6%, ngc 1.6%, outflow 1.5%, binari 1.3%, luminos 1.2%, circl.dot 1.1% Focuses on stars, and their relation to composition and evolution of galaxies.
- Cluster 204: (136) emiss 23.9%, luminesc 6.7%, photoluminesc 3.3%, excit 2.5%, dope 2.2%, peak 1.6%, band 1.5%, zno 1.5%, zn 1.5%, intens 1.5%, nanocryst 1.4%, spectra 1.3%, blue 1.2%, temperatur 1.1%, emiss.peak 0.8%, nanoparticl 0.7%, fluoresc 0.7%, spectrum 0.6%, cdte 0.6%, pbwo4 0.6%, size 0.5%, dy3 0.5%, exciton 0.5%, room 0.5%, sio2 0.5% Focuses on the emission properties of materials, especially photoluminescence.
- Cluster 28: (75) eu3 31.9%, phosphor 19.6%, emiss 3.5%, luminesc 3.3%, excit 2.4%, eu2 2.2%, dope 1.7%, eu3.ion 1.5%, ion 1.4% Focuses on Europium ion: (Eu3+ and Eu2+) doped phosphors, especially their synthesis and characterization, with emphasis on luminescent properties.
- Cluster 35: (114) er3 13.1%, upconvers 8.8%, emiss 6.9%, glass 6.4%, yb3 5.4%, dope 3.6%, excit 2.2%, luminesc 1.7%, laser 1.5%, tm3 1.4%, absorpt 1.3%, crystal 1.2%, er3.dope 1.1%, fluoresc 1.1%, tellurit 1.1%, intens 1.0%, lifetim 1.0% Focuses on glasses containing Er3+, especially for upconversion laser applications.
- Cluster 150: (126) fluoresc 41.5%, bind 4.0%, quench 2.9%, fluoresc.intens 2.4%, bsa 1.6%, hsa 1.5%, intens 1.3%, fluoresc.quench 0.9%, complex 0.9%, ion 0.8%, mol 0.7%, bind.constant 0.6%, emiss 0.6%, albumin 0.6%, dna 0.6%, spectra 0.6%, serum.albumin 0.5%, constant 0.5%, serum 0.5%,

- fluoresc.spectra 0.4%, concentr 0.4%, protein 0.4%, interact 0.4%, detect 0.4%, sensit 0.4% *Focuses on the fluorescence of various materials/atoms/compounds and fluorescence quenching.*
- Cluster 230: (121) chitosan 12.5%, absorpt 4.9%, fluoresc 4.6%, photon 3.6%, radic 3.2%, two.photon 2.7%, aggreg 1.7%, spectra 1.7%, excit 1.5%, porphyrin 1.5%, state 1.2%, phenyl 1.1%, scaveng 1.1%, molecular 1.0%, two 0.7%, bi 0.7%, antioxid 0.7%, solvent 0.6%, group 0.6%, complex 0.6%, phthalocyanin 0.6%, excit.state 0.6%, emiss 0.6%, dye 0.6%, triplet 0.5% Focuses on chitosan, and the separation of various molecules specifically by means of absorption.
- Cluster 146: (82) photon 10.3%, atom 7.7%, field 6.6%, three.level 2.8%, coher 2.7%, level 2.6%, state 2.6%, caviti 2.4%, excit 2.1%, quantum 1.8%, level.atom 1.7%, two.photon 1.4%, detun 1.2%, two 1.1%, reson 0.9%, probe 0.9%, popul 0.9%, three.level.atom 0.8%, electromagnet.induc.transpar 0.8%, electromagnet.induc 0.8%, induc.transpar 0.7%, magnon 0.7%, mode 0.7%, absorpt 0.7%, caviti.field 0.6% Focuses on photons: (emission/absorption/interaction) and multi-level atomic systems emphasizing the role of fields on the photon and atomic system behaviors.
- Cluster 127: (152) puls 49.1%, laser 10.8%, laser.puls 3.7%, optic 1.4%, femtosecond 1.1%, gener 0.7%, plasma 0.6%, pump 0.5%, chirp 0.5%, phase 0.4%, durat 0.4%, power 0.4%, modul 0.3%, radiat 0.3%, frequenc 0.3%, nonlinear 0.3%, puls.durat 0.3%, intens 0.3%, ultrashort 0.3%, signal 0.3%, time 0.3%, harmon 0.3%, group.veloc 0.3%, field 0.3%, numer 0.3% Focuses on pulses from optical lasers.
- Cluster 130: (173) laser 30.6%, pump 15.4%, power 5.1%, output 3.0%, optic 1.7%, diod 1.6%, output.power 1.6%, caviti 1.3%, lock 1.1%, puls 1.0%, pump.power 0.8%, yag 0.8%, mode 0.8%, switch 0.8%, mode.lock 0.6%, laser.diod 0.6%, modul 0.4%, effici 0.4%, repetit 0.4%, frequenc 0.4%, intens 0.4%, signal 0.4%, satur 0.3%, beam 0.3%, rate 0.3% Focuses on lasers and pumped lasers.
- Cluster 121: (129) fiber 25.6%, wavelength 11.0%, optic 6.2%, gain 2.7%, pump 2.4%, laser 1.6%, puls 1.5%, power 1.5%, amplifi 1.4%, birefring 1.4%, dispers 1.1%, fibr 1.0%, polar 0.9%, erbium 0.9%, tunabl 0.8%, output 0.8%, pcf 0.7%, signal 0.7%, erbium.dope 0.6%, modul 0.6%, mode 0.6%, raman 0.6%, optic.fiber 0.5%, dope 0.5%, dope.fiber 0.4% Focuses on fiber optics and the component fibers.
- Cluster 45: (66) fiber 60.4%, concret 5.8%, strength 1.8%, reinforc 1.2% Focuses on fibers, especially fibers for composites and concrete reinforcement, with emphasis on their synthesis and characterization.
- Cluster 25: (66) grate 32.8%, fiber 8.6%, bragg 6.0%, bragg.grate 5.2%, fbg 5.1%, wavelength 4.0%, fiber.bragg.grate 3.3%,

- fiber.bragg 3.3%, sensor 1.4% Focuses on gratings, especially fiber Bragg gratings: (FBGs), with emphasis on their development as sensors and optical elements.
- Cluster 125: (71) switch 20.0%, power 19.4%, voltag 5.4%, convert 4.0%, output 2.0%, diod 1.4%, oper 1.3%, devic 1.3%, current 1.2%, circuit 1.0%, optic 0.9%, power.factor 0.9%, optic.switch 0.9%, modul 0.8%, zv 0.7%, oper.principl 0.6%, mode 0.6%, rectifi 0.5%, control 0.4%, design 0.4%, power.consumpt 0.4%, input 0.3%, system 0.3%, oscil 0.3%, high 0.3% Focuses on power, namely electrical power, as well as various switches and power converters.
- Cluster 242: (174) frequenc 16.1%, mode 11.7%, reson 9.3%, nois 3.1%, reson.frequenc 1.6%, oscil 1.6%, acoust 0.9%, caviti 0.9%, band 0.9%, vibrat 0.9%, measur 0.7%, signal 0.7%, harmon 0.6%, nonlinear 0.6%, amplitud 0.5%, voltag 0.5%, defect 0.5%, metamateri 0.5%, coupl 0.4%, devic 0.4%, two 0.4%, field 0.4%, time 0.4%, low.frequenc 0.4%, drive 0.4% *Focuses on the resonant frequencies of various excited particles*.
- Cluster 22: (46) antenna 34.3%, microstrip 5.7%, bandwidth 5.6%, patch 3.0%, slot 2.5%, patch.antenna 2.1%, ebg 1.9%, band 1.7%, ground.plane 1.7%, radiat 1.6%, imped 1.3%, imped.bandwidth 1.2%, frequenc 1.1%, ground 1.0%, pbg 1.0% Focuses on antennas, particularly patch antennas, with emphasis on their design and characterization.
- Cluster 106: (77) waveguid 26.8%, fdtd 7.0%, differ.time.domain 2.3%, finit.differ 2.3%, time.domain 2.3%, differ.time 2.3%, finit.differ.time 2.1%, index 1.6%, optic 1.5%, finit 1.3%, domain 1.3%, differ 1.2%, domain.fdtd 1.0%, time.domain.fdtd 1.0%, coupl 1.0%, mode 0.9%, mmi 0.8%, multimod 0.8%, photon 0.7%, simul 0.7%, band 0.6%, propag 0.6%, caviti 0.6%, electromagnet 0.6%, numer 0.6% Focuses on waveguides along with Finite Difference Time Domain analysis of the waveguides.
- Cluster 174: (177) wave 52.3%, propag 2.0%, frequenc 1.8%, refract 1.3%, electromagnet.wave 1.0%, electromagnet 0.9%, neg.refract 0.8%, field 0.8%, numer 0.7%, spiral 0.6%, crystal 0.5%, mode 0.5%, dispers 0.5%, acoust 0.5%, photon.crystal 0.5%, harmon 0.4%, spiral.wave 0.4%, photon 0.4%, wave.propag 0.4%, amplitud 0.4%, dimension 0.4%, neg 0.4%, groov 0.3%, gap 0.3%, guid 0.3% Focuses on electromagnetic, gravitational, and other waves, and their propagation.
- Cluster 101: (147) beam 60.2%, gaussian 3.0%, gaussian.beam 1.7%, propag 1.3% Focuses on beams, especially Gaussian beams.
- Cluster 196: (91) optic 22.7%, soliton 11.0%, beam 3.0%, modul 2.1%, nonlinear 1.6%, america 1.5%, phase 1.4%, detector 1.3%, dark 1.1%, superresolut 1.0%, system 1.0%, photorefract 1.0%, intens 0.8%, light 0.7%, trap 0.7%, spatial.soliton 0.7%, filter

- 0.7%, theoret 0.7%, phase.shift 0.6%, spatial 0.6%, shift 0.6%, incoher 0.6%, numer 0.5%, apertur 0.5%, vortex 0.5% Focuses on optics, both biological: (human eye) and mechanical: (optical crystals etc, with some emphasis on solitons).
- Cluster 246: (136) ion 6.6%, absorpt 6.6%, laser 6.4%, optic 4.2%, spectra 2.5%, raman 2.4%, implant 2.2%, peak 1.8%, waveguid 1.8%, surfac 1.4%, irradi 1.3%, electron 1.3%, spectrum 1.2%, infrar 1.1%, refract 0.9%, sampl 0.8%, scatter 0.8%, anneal 0.7%, temperatur 0.7%, refract.index 0.6%, plasma 0.6%, reson 0.6%, beam 0.6%, energi 0.6%, ion.implant 0.6% Focuses on the spectra of various molecules and how the spectra was obtained, especially ion absorption and laser optics
- Cluster 192: (132) crystal 34.6%, grown 2.7%, optic 2.6%, linbo3 2.6%, defect 2.5%, pwo 1.8%, photon.crystal 1.8%, absorpt 1.7%, photon 1.6%, dope 1.6%, singl.crystal 1.2%, growth 1.2%, crystal.grown 1.2%, band 0.9%, singl 0.9%, pwo.crystal 0.8%, structur 0.8%, linbo3.crystal 0.7%, spectra 0.7%, caf2 0.5%, kdp 0.4%, face 0.4%, domain 0.3%, diffract 0.3%, trap 0.3% Focuses on various crystals and their light carrying/other optical properties, as well as defects in them.
- Cluster 191: (83) band 14.4%, dope 9.1%, electron 6.2%, gap 3.3%, energi 2.4%, state 2.2%, electron.structur 1.8%, surfac 1.6%, band.gap 1.5%, densiti 1.3%, atom 1.3%, valenc 1.2%, orbit 1.2%, structur 1.1%, densiti.state 1.1%, valenc.band 1.0%, fermi 0.6%, photoemiss 0.6%, phonon 0.6%, semiconductor 0.6%, do 0.6%, gaa 0.5%, conduct 0.5%, band.structur 0.5%, calcul 0.5% Focuses on doped materials, especially crystals and their various parameters that fall in different bands. Also emphasizes optical band gaps.
- Cluster 223: (198) cluster 11.1%, molecul 3.9%, atom 3.9%, electron 3.4%, orbit 3.0%, densiti.function 2.9%, structur 2.8%, densiti 2.7%, molecular 2.5%, densiti.function.theori 2.2%, function.theori 2.2%, energi 2.0%, state 1.6%, calcul 1.2%, theori 1.2%, bond 1.2%, function 1.2%, dft 1.1%, charg 0.8%, electron.structur 0.7%, ground.state 0.7%, absorpt 0.6%, molecular.orbit 0.6%, compound 0.6%, ground 0.6% Focuses on the structure of various molecules and atoms or clusters of atoms. Also discusses the orbit of electrons, and the density and structure based on density functional theory.
- Cluster 168: (179) bond 7.3%, b3lyp 6.7%, energi 6.1%, isom 6.1%, 31g 2.5%, vibrat 1.9%, geometri 1.6%, densiti.function 1.5%, dft 1.3%, theori 1.2%, level 1.2%, b3lyp.31g 1.2%, hydrogen 1.2%, structur 1.2%, dissoci 1.2%, molecul 1.1%, atom 1.0%, basi.set 1.0%, densiti 0.9%, complex 0.9%, mp2 0.9%, densiti.function.theori 0.9%, function.theori 0.9%, electron 0.9%, stabl 0.8% Focuses on the bonds between atoms and molecules, with emphasis on their electron transfer.

- Cluster 85: (117) reaction 18.4%, transit.state 5.8%, energi 3.4%, b3lyp 2.7%, transit 2.0%, state 1.9%, 311 1.6%, mp2 1.5%, theori 1.3%, barrier 1.3%, calcul 1.2%, pathwai 1.2%, radic 1.2%, ch3 1.2%, product 1.1%, level 1.1%, energi.surfac 1.1%, potenti.energi 1.0%, potenti.energi.surfac 1.0% Focuses on reactions, especially their energy and transition states.
- Cluster 240: (142) energi 18.0%, state 5.1%, calcul 3.2%, potenti 2.0%, ground.state 1.9%, interact 1.8%, ground 1.7%, model 1.5%, theori 1.5%, orbit 1.4%, excit 1.0%, transit 1.0%, function 0.8%, pair 0.7%, electron 0.7%, potenti.energi 0.6%, system 0.6%, two 0.6%, paramet 0.6%, correl 0.5%, correct 0.5%, charg 0.5%, level 0.5%, experiment 0.5%, basi.set 0.5% Focuses on the energy states of various charged particles.
- Cluster 202: (128) state 25.8%, coupl 5.1%, synchron 3.5%, coher.state 3.1%, coher 2.4%, oscil 1.8%, wave 1.7%, vibrat 1.7%, squeez 1.5%, quantum 1.3%, phase 1.2%, ground 1.0%, transit 1.0%, mode 1.0%, energi 0.9%, system 0.9%, excit 0.7%, two 0.6%, spin 0.6%, trap 0.6%, band 0.6%, ground.state 0.5%, hamiltonian 0.5%, even.odd 0.5%, odd 0.5% *Focuses on the states of various systems, and their synchronization and coupling.*
- Cluster 199: (93) field 5.8%, spin 5.7%, dark 4.8%, theori 4.1%, dark.energi 4.0%, cosmolog 3.7%, univers 2.4%, energi 2.1%, field.theori 1.6%, inflat 1.6%, model 1.4%, matter 1.4%, gravit 1.3%, fermion 1.2%, scalar 1.2%, dark.matter 1.1%, constant 1.1%, cosmolog.constant 1.0%, cosmic 0.9%, scalar.field 0.9%, brane 0.9%, formula 0.8%, perturb 0.7%, paramet 0.7%, particl 0.7% Focuses on various topics in astrophysics, and physics in general.
- Cluster 172: (174) quantum 37.0%, spin 9.7%, quantum.dot 2.9%, dot 2.3%, phonon 1.8%, state 1.7%, coupl 1.7%, gate 1.4%, electron 1.1%, field 1.0%, qubit 1.0%, system 0.9%, current 0.9%, exciton 0.6%, gaa 0.5%, magnet 0.5%, classic 0.5%, energi 0.4%, decoher 0.4%, mesoscop 0.4%, charg 0.4%, reson 0.4%, two 0.4%, interact 0.3%, magnet.field 0.3% Focuses on quantum particules, and quantum dots, and the spin of electrons.
- Cluster 15: (111) entangl 58.8%, state 6.4%, entangl.state 4.3%, quantum 4.2%, scheme 1.3%, teleport 1.2% Focuses on quantum entanglement and entanglement states.
- Cluster 81: (168) decai 29.2%, bar 8.4%, psi 5.9%, branch 2.5%, branch.fraction 2.2%, gamma 2.2%, detector 2.0%, meson 1.4%, fraction 1.3%, measur 1.1%, violat 1.0%, x10 1.0% Focuses on decays of subatomic particles, especially those involving branching fractions.
- Cluster 37: (81) quark 48.8%, meson 5.8%, nucleon 3.4%, mass 3.3%, gluon 1.6%, chiral 1.4%, qcd 1.0% Focuses on quarks and quark models.

- Cluster 67: (67) gev 14.4%, collis 8.0%, pion 4.1%, hadron 3.5%, parton 3.1%, transvers 2.6%, momentum 2.3%, product 2.2%, collid 2.0%, transvers.momentum 1.9%, quark 1.6%, gluon 1.4%, bar 1.3%, lhc 1.3%, pseudorapid 1.2%, jet 1.0% Focuses on energy levels in the GeV range; especially energies related to the motion and interaction of sub-atomic particles.
- Cluster 84: (80) cross.section 14.1%, section 12.0%, cross 9.2%, scatter 3.8%, momentum 3.5%, isospin 2.7%, energi 2.7%, calcul 2.0%, differenti.cross 1.1%, differenti.cross.section 1.0%, neutron 1.0% Focuses on cross sections, especially related to quantum reactions/interactions.
- Cluster 119: (86) neutron 13.1%, proton 8.9%, nuclei 8.7%, band 3.4%, nucleon 2.5%, energi 2.1%, gamma 1.8%, relativist 1.6%, mev 1.4%, state 1.3%, nuclear 1.1%, detector 1.1%, calcul 1.1%, mean.field 1.1%, nucleu 1.0%, triaxial 1.0%, relativist.mean.field 1.0%, relativist.mean 1.0%, rmf 0.9%, odd 0.8%, deform 0.8%, superdeform 0.6%, model 0.6%, nuclear.matter 0.6%, moment.inertia 0.6% Focuses on various experiments that probe the nucleus, emphasizing detection of protons and neutrons.

2. life sciences and mathematics

- 2.1. mathematics, algorithm and program development, modeling (mathematical & algorithmic)
 - 2.1.1. mathematics and differential equations (2333)
 - 2.1.1.1. differential equations, equations of systems (1287)
 - Cluster 183: (116) boundari 12.5%, equat 7.5%, solut 3.9%, boundari.condit 3.8%, numer 3.8%, integr 2.6%, integr.equat 2.3%, crack 1.9%, function 1.8%, condit 1.6%, singular 1.3%, stress 1.2%, displac 1.2%, domain 1.0%, wave 1.0%, accuraci 0.6%, quadratur 0.6%, differenti.quadratur 0.6%, deriv 0.6%, green.function 0.6%, point 0.6%, singular.integr 0.5%, singular.integr.equat 0.5%, piezoelectr 0.5%, orthotrop 0.5% Focuses on mathematics: boundary conditions, equations, etc.
 - Cluster 185: (122) numer 8.0%, equat 6.9%, solut 4.5%, finit 3.4%, converg 3.0%, stoke 2.9%, scheme 2.8%, navier 2.6%, navier.stoke 2.5%, approxim 2.3%, finit.element 1.9%, stoke.equat 1.6%, element 1.6%, order 1.6%, navier.stoke.equat 1.6%, discret 1.5%, solv 0.8%, flow 0.7%, second.order 0.7%, linear 0.7%, interpol 0.7%, second 0.6%, accuraci 0.6%, error 0.6%, numer.solut 0.6% Focuses on numerical equations, especially solution of numerical equations for fluid flows, such as the navier stokes equation.
 - Cluster 108: (97) equat 21.0%, differenti.equat 15.5%, differenti 11.8%, partial.differenti 3.7%, partial.differenti.equat 3.0%, stochast 2.5%, partial 2.0%, solut 1.3%, nonlinear 1.2%, numer 1.0%, viscoelast 0.9%, ordinari.differenti 0.9%, ordinari.differenti.equat

- 0.9%, ordinari 0.7%, stochast.differenti 0.6%, linear 0.6%, dynam 0.5%, gener 0.4%, govern 0.4%, stochast.differenti.equat 0.4%, system 0.4%, function 0.4%, deriv 0.3%, plate 0.3%, non 0.3% Focuses on differential equations to describe various systems
- Cluster 220: (225) equat 52.0%, solut 5.0%, wave 1.1%, nonlinear 0.9%, deriv 0.9%, linear 0.6%, system 0.6%, paramet 0.6%, schroding 0.5%, matrix 0.4%, schroding.equat 0.4%, matrix.equat 0.4%, theori 0.4%, potenti 0.4%, function 0.4%, space 0.4%, condit 0.4%, motion 0.4%, model 0.3%, boltzmann 0.3%, initi 0.3%, integr 0.3%, relat 0.3%, order 0.3%, term 0.3% Focuses on mathematics, especially solution techniques for mathematical equations.
- Cluster 55: (135) solut 17.7%, wave 9.0%, equat 8.4%, wave.solut 7.6%, exact 3.1%, nonlinear 3.0%, solitari 2.8%, ellipt 2.8%, solitari.wave 2.7%, ellipt.function 2.6%, exact.solut 2.1%, jacobi.ellipt 1.9%, jacobi 1.6%, solitari.wave.solut 1.6%, jacobi.ellipt.function 1.4%, function 1.3%, period 1.1% Focuses on exact solutions, including solitary wave solutions, to various equations and functions.
- Cluster 41: (101) soliton 37.1%, soliton.solut 7.9%, equat 5.4%, solut 5.3%, nonlinear 2.1%, dimension 1.7%, variabl.separ 1.3%, variabl 1.2%, perturb 1.0% Focuses on solitons: (waves), especially equations and solutions related to them.
- Cluster 99: (66) limit.cycl 11.6%, homoclin 7.8%, bifurc 5.4%, orbit 4.9%, cycl 4.1%, system 3.8%, limit 3.0%, oscil 2.4%, perturb 2.3%, period 2.2%, homoclin.orbit 1.9%, lyapunov.expon 1.5%, motion 1.4%, point 1.4%, chao 1.3%, lyapunov 1.2%, number.limit.cycl 1.2%, number.limit 1.2%, expon 1.0%, heteroclin 1.0% Focuses on evaluations of systems, especially those involving limit cycles, homoclinic loops or orbits, and oscillation or oscillators.
- Cluster 8: (72) bifurc 56.8%, hopf 7.0%, hopf.bifurc 5.4%, delai 2.1%, period 2.1%, period.solut 1.1% *Focuses on bifurcation, especially Hopf bifurcation.*
- Cluster 49: (113) period 12.1%, period.solut 10.8%, posit.period 4.2%, exist 3.9%, posit.period.solut 3.7%, delai 3.0%, solut 2.9%, predat 2.8%, prei 2.2%, equat 2.1%, impuls 1.8%, differenti.equat 1.7%, coincid.degre 1.5%, suffici.condit 1.5%, theorem 1.4%, suffici 1.4%, differenti 1.1%, posit 1.0%, exist.posit.period 1.0%, continu.theorem 1.0%, predat.prei 1.0%, stabil 1.0% Focuses on positive periodic solutions to system equations.
- Cluster 75: (118) exist 13.5%, posit.solut 6.9%, solut 6.8%, boundari 5.3%, point 4.7%, theorem 4.6%, fix.point 4.1%, equat 3.7%, point.theorem 2.7%, fix.point.theorem 2.6%, posit 2.4%, fix 2.1%, differenti.equat 1.7%, differenti 1.5%, exist.multipl 1.2%, singular 1.1%, nonlinear 1.1%, exist.posit 1.0%, infin 1.0%

- Focuses on the existence of positive solutions to equations, especially those involving a fixed point theorem.
- Cluster 162: (122) solut 9.0%, global 8.1%, exist 5.4%, infin 4.6%, asymptot 3.8%, equat 3.6%, nonlinear 2.1%, suffici.condit 1.9%, system 1.8%, suffici 1.8%, condit 1.8%, blow 1.5%, posit 1.4%, prove 1.2%, uniqu 1.2%, attractor 1.2%, equal 1.0%, boundari 1.0%, global.exist 0.9%, cauchi 0.8%, differ.equat 0.8%, oscil 0.8%, exist.uniqu 0.8%, asymptot.behavior 0.7%, element.infin 0.7% Focuses on mathematical equations and mathematical models and systems.

2.1.1.2. algebraic equations and functions (1046)

- Cluster 98: (144) equal 30.2%, let 13.1%, equal.equal 5.0%, element 4.3%, integ 3.7%, infin 3.4%, sigma 2.7%, subset 1.6%, mod 1.4%, prove 1.3%, delta 1.2%, posit.integ 1.0%, equal.equal 1.0% Focuses on mathematical investigations, with emphasis on solutions to equations and functions.
- Cluster 16: (83) graph 56.5%, vertic 7.7%, bar 3.2%, vertic.bar.vertic 2.0%, bar.vertic.bar 2.0%, bar.vertic 2.0%, edg 1.9%, vertex 1.4%, conjectur 1.2%, connect 1.0% Focuses on graphs and curves, especially theories and proofs involving them
- Cluster 72: (115) algebra 56.1%, lie 2.8%, lie.algebra 2.2%, modul 2.0%, loop.algebra 1.4%, hierarchi 1.4%, let 1.3% Focuses on algebras, especially Lie algebra and loop algebra.
- Cluster 19: (66) symmetri 14.5%, conserv 10.4%, invari 9.3%, lie 5.0%, lie.symmetri 4.1%, noether 3.8%, form.invari 3.6%, equat 3.0%, system 2.7%, infinitesim 2.4%, infinitesim.transform 2.3%, hojman 1.7%, noether.conserv 1.6%, non.noether 1.5%, conserv.law 1.5%, non.noether.conserv 1.2%, transform 1.1%, law 1.1% Focuses on system symmetries, especially Lie symmetries and non-Noether conserved quantities.
- Cluster 148: (99) theorem 49.9%, semigroup 2.9%, prove 2.7%, regular 2.3%, subgroup 2.0%, space 1.3%, finit 1.0%, finit.group 0.9%, convex 0.7%, congruenc 0.7%, condit 0.7%, group 0.6%, proof 0.6%, class 0.5%, set 0.5%, point 0.5%, oper 0.5%, order 0.5%, fan 0.4%, topolog 0.4%, prime 0.4%, theori 0.4%, limit.theorem 0.4%, maxim 0.4%, isomorph 0.4% *Focuses on mathematical theorems*.
- Cluster 175: (101) space 27.0%, manifold 10.4%, metric 4.3%, oper 2.8%, map 2.3%, riemannian 2.0%, banach 1.5%, compact 1.4%, invari 1.0%, bergman 1.0%, prove 1.0%, riemannian.manifold 1.0%, banach.space 0.9%, curvatur 0.9%, sphere 0.9%, theorem 0.7%, function 0.6%, isometr 0.6%, norm 0.6%, let 0.6%, hardi 0.6%, bloch 0.6%, sitter 0.5%, dimension 0.5%, local 0.5% Focuses on mathematics, with emphases on spaces and manifolds.

- Cluster 120: (78) matric 26.1%, matrix 13.6%, rank 3.4%, invers 3.3%, eigenvalu 3.2%, singular 3.1%, condit 1.4%, element 1.4%, condit.number 1.3%, nonsingular 1.2%, suffici.condit 1.1%, suffici 1.0%, bound 0.9%, multilinear 0.9%, oper 0.9%, commut 0.8%, represent 0.8%, number 0.7%, vandermond 0.7%, kernel 0.6%, displac.structur 0.5%, drazin 0.5%, space 0.5%, singular.integr 0.5%, integr 0.5% Focuses on mathematics, with a strong emphasis on matrices.
- Cluster 238: (130) function 11.7%, element 7.8%, inequ 6.7%, finit 4.2%, polynomi 3.3%, interpol 3.0%, formula 2.7%, set 1.7%, finit.element 1.3%, order 1.2%, class 1.1%, math 1.1%, bound 1.0%, ident 0.7%, sum 0.7%, asymptot 0.7%, proof 0.7%, converg 0.7%, oper 0.7%, type.inequ 0.6%, integr 0.6%, prove 0.6%, minim 0.5%, theori 0.5%, gener 0.5% Focuses on the various functions of finite element models, and the mathematics associated with them.
- Cluster 252: (230) optim 16.0%, set 3.6%, comput 3.5%, function 2.4%, constraint 2.3%, point 2.2%, converg 1.8%, gener 1.6%, linear 1.5%, convex 1.4%, program 1.4%, inequ 1.2%, iter 1.1%, new 1.0%, design 0.9%, data 0.7%, minim 0.7%, variabl 0.7%, object 0.7%, class 0.6%, mesh 0.6%, space 0.6%, random 0.6%, approxim 0.6%, scheme 0.6% Focuses on computer optimization of data sets, along with optimization functions.

2.1.2. mathematical modeling and algorithms (4829)

2.1.2.1. genetic algorithms, imaging (1277)

- Cluster 145: (142) algorithm 29.8%, converg 10.3%, iter 4.3%, optim 2.6%, program 2.3%, solv 1.8%, global 1.6%, newton 1.5%, constraint 1.5%, linear 1.2%, numer 1.1%, trust.region 1.0%, linear.program 0.9%, function 0.9%, new 0.8%, algorithm.solv 0.8%, trust 0.7%, comput 0.7%, smooth 0.7%, global.converg 0.6%, point 0.6%, object.function 0.6%, solut 0.5%, quadrat 0.5%, genet.algorithm 0.5% Focuses on algorithm development, especially modeling, convergence, and optimization.
- Cluster 198: (326) algorithm 67.6%, comput 1.9%, new 0.6%, model 0.6%, time 0.6%, simul 0.5%, effici 0.5%, new.algorithm 0.4%, path 0.4%, data 0.4%, system 0.3%, optim 0.3%, network 0.3%, algorithm.algorithm 0.3%, adapt 0.3%, rout 0.3%, parallel 0.3%, nois 0.2%, match 0.2%, point 0.2%, gener 0.2%, complex 0.2%, multipl 0.2%, scheme 0.2%, two 0.2% Focuses on various computer algorithms.
- Cluster 116: (80) search 37.1%, algorithm 11.4%, tree 2.1%, search.algorithm 2.1%, heurist 2.0%, constraint 1.9%, queri 1.3%, tabu 1.0%, optim 1.0%, local.search 0.9%, distanc 0.8%, mine 0.8%, set 0.7%, genet 0.7%, graph 0.7%, comput 0.7%, genet.algorithm 0.6%, tabu.search 0.6%, model 0.4%, local 0.4%, search.space 0.4%, benchmark 0.4%, line.search 0.4%, pattern

- 0.3%, train 0.3% Focuses on algorithms, especially search algorithms, development for specific problems of interest.
- Cluster 164: (100) algorithm 22.4%, cluster 11.9%, learn 5.0%, data 4.2%, mine 3.0%, set 2.2%, classif 1.6%, rule 1.2%, classifi 1.1%, data.set 1.0%, cluster.algorithm 0.8%, train 0.8%, accuraci 0.8%, data.mine 0.7%, fuzzi 0.7%, pattern 0.6%, discrimin 0.6%, network 0.6%, learn.algorithm 0.6%, kernel 0.6%, recognit 0.5%, model 0.5%, neural 0.5%, text 0.4%, object 0.4% Focuses on algorithms, with an emphasis on clustering algorithms.
- Cluster 60: (43) wavelet 52.9%, signal 2.3%, denois 1.4%, wavelet.transform 1.4%, multiresolut 1.4%, frame 1.3%, fault 1.2%, transform 1.0% Focuses on wavelets.
- Cluster 170: (95) featur 19.9%, word 12.4%, svm 5.3%, classif 5.3%, classifi 2.3%, charact 2.1%, segment 1.8%, featur.select 1.8%, extract 1.8%, speech 1.4%, select 1.3%, chines 1.0%, vector 0.9%, recognit 0.8%, retriev 0.8%, sentenc 0.7%, machin 0.7%, learn 0.7%, support.vector 0.6%, train 0.5%, support.vector.machin 0.5%, vector.machin 0.5%, string 0.5%, discrimin 0.5%, inform 0.5% Focuses on speech, voice, and written or typed character characterization and classification, with emphasis on feature/word extraction.
- Cluster 36: (91) face 30.5%, recognit 27.6%, face.recognit 5.0%, featur 2.7%, imag 1.9%, discrimin 1.9%, face.imag 1.1%, gabor 1.1% Focuses on face recognition algorithms.
- Cluster 189: (400) imag 59.4%, algorithm 1.8%, pixel 1.3%, segment 1.3%, color 1.1%, reconstruct 1.0%, data 0.6%, object 0.6%, textur 0.6%, wavelet 0.5%, featur 0.5%, nois 0.5%, process 0.5%, model 0.5%, fingerprint 0.5%, watermark 0.4%, detect 0.4%, transform 0.4%, resolut 0.4%, system 0.4%, match 0.4%, spatial 0.3%, extract 0.3%, inform 0.3%, robust 0.3% Focuses on imaging, both the instruments used and the mechanics behind taking images.

2.1.2.2. system and network modeling, large scale modeling, neural networks (3552)

- Cluster 7: (35) video 63.7%, text 2.4%, segment 1.7%, sport 1.6%, sport.video 1.6%, watermark 1.4%, mpeg 1.2% Focuses on video, especially sports video, with emphasis on watermarking.
- Cluster 3: (27) cach 51.8%, proxi 4.2%, video 3.2%, scheme 2.7%, proxi.cach 2.3%, server 2.2%, stream 2.0%, multicast 1.5%, vod 1.5%, client 1.2%, stream.media 1.0%, multimedia 1.0% Focuses on caching schemes and caches, especially proxy caches, as they relate to media streaming on networks and servers
- Cluster 83: (114) code 24.0%, channel 6.9%, scheme 4.3%, error 2.6%, symbol 2.5%, estim 1.9%, ofdm 1.8%, bit 1.8%, fade 1.6%, antenna 1.3%, cdma 1.2%, decod 1.1%, ber 1.1%, channel.estim

- 1.1%, multipl 1.0% Focuses on coding over channels, with emphasis on errors and fading.
- Cluster 184: (142) estim 28.6%, error 17.8%, regress 1.9%, likelihood 1.8%, model 1.7%, sampl 1.6%, data 1.3%, asymptot 1.3%, statist 0.9%, maximum.likelihood 0.9%, paramet 0.9%, simul 0.9%, bootstrap 0.8%, distribut 0.7%, test 0.7%, varianc 0.6%, calibr 0.6%, linear 0.6%, squar 0.5%, parametr 0.5%, outlier 0.5%, nonparametr 0.5%, empir 0.5%, accuraci 0.5%, likelihood.estim 0.4% Focuses on estimation, and the error associated with estimation.
- Cluster 89: (97) filter 47.0%, nois 18.4%, signal 2.6% Focuses on filters, especially those designed to reduce noise.
- Cluster 30: (71) chaotic 32.9%, synchron 11.3%, chaotic.system 9.0%, system 5.8%, chao 4.0%, control 3.7%, feedback 1.7%, chua 1.3% Focuses on chaotic systems, especially their control and synchronization.
- Cluster 187: (196) control 43.8%, system 7.0%, control.system 2.2%, model 1.4%, disturb 1.3%, pid 1.2%, nonlinear 1.1%, design 1.0%, simul 1.0%, robot 1.0%, dynam 1.0%, pid.control 0.9%, stabil 0.7%, loop 0.7%, optim 0.7%, robust 0.5%, time 0.5%, track 0.4%, paramet 0.4%, control.scheme 0.4%, algorithm 0.4%, scheme 0.4%, oper 0.4%, output 0.3%, actuat 0.3% Focuses on various control systems and the controllers themselves.
- Cluster 13: (104) fuzzi 72.8%, control 2.6%, fuzzi.control 2.3%, system 1.3% Focuses on mathematically fuzzy concepts, including fuzzy control, fuzzy models, fuzzy logic, etc.
- Cluster 42: (79) delai 4.9%, matrix.inequ 4.2%, robust 4.1%, system 4.0%, inequ 3.8%, stabil 3.1%, linear.matrix.inequ 3.1%, linear.matrix 3.0%, linear 2.6%, feedback 2.6%, control 2.4%, design 2.3%, lmi 1.8%, matrix 1.8%, output 1.7%, suffici 1.5%, suffici.condit 1.5%, feedback.control 1.5%, time.delai 1.5%, output.feedback 1.4%, close.loop 1.2%, uncertainti 1.1%, time 1.1%, loop 1.0%, condit 1.0% Focuses on control of linear systems, especially related to time delay and feedback control.
- Cluster 1: (47) delai 10.2%, neural 9.5%, neural.network 8.8%, network 6.4%, exponenti 4.4%, exponenti.stabil 3.9%, global 3.1%, stabil 3.1%, global.exponenti 2.9%, global.exponenti.stabil 2.1%, time.delai 1.8%, lyapunov 1.4%, inequ 1.4%, suffici.condit 1.3%, suffici 1.2%, cellular.neural 1.1%, neural.network.time 1.0%, cellular.neural.network 1.0%, condit 1.0%, network.time 1.0% Focuses on the stability of delayed neural networks, particularly cellular neural networks, with emphasis on global exponential stability
- Cluster 63:: (138) neural.network 22.4%, neural 21.8%, network 16.7%, ann 5.7%, artifici.neural.network 2.0%, artifici.neural 2.0%,

- model 2.0%, train 1.6%, artifici 1.4%, network.ann 1.0% Focuses on neural networks, especially artificial neural networks: (ANNs).
- Cluster 129: (151) network 60.6%, node 5.6%, connect 1.3%, topolog 0.9%, model 0.7%, sensor 0.7%, scale.free 0.6%, sensor.network 0.5%, dynam 0.4%, simul 0.4%, scale 0.4%, algorithm 0.4%, distribut 0.3%, system 0.3%, small.world 0.3%, world 0.3%, link 0.3%, rout 0.3%, architectur 0.3%, complex.network 0.3%, processor 0.2%, scale.free.network 0.2%, free.network 0.2%, data 0.2%, commun 0.2% Focuses on networks, specifically computer networks, and the various nodes in a network.
- Cluster 102: (108) traffic 20.8%, network 8.2%, rout 7.1%, go 4.3%, packet 3.9%, bandwidth 2.7%, scheme 2.4%, multicast 2.1%, delai 1.6%, internet 1.6%, congest 1.5%, protocol 1.5%, node 1.4%, hoc 1.1%, wireless 1.0% Focuses on traffic, mainly on internet and electronic traffic.
- Cluster 4: (54) signatur 33.9%, scheme 25.3%, signatur.scheme 6.9%, proxi 2.6%, secur 2.6%, signer 2.4%, messag 2.3%, proxi.signatur 2.0%, blind.signatur 1.1% Focuses on signature and signature schemes, including proxy signature schemes, for data encryption
- Cluster 69: (96) secur 43.6%, protocol 9.3%, attack 4.5%, authent 4.0%, scheme 2.0%, kei 1.4%, encrypt 1.2%, commun 1.2%, messag 1.0% Focuses on security, especially system and protocol security.
- Cluster 66: (69) resourc 42.2%, agent 7.1%, digit 3.9%, mobil.agent 3.2%, librari 2.7%, digit.librari 2.3%, system 2.2%, architectur 1.8%, mobil 1.7%, inform 1.1% Focuses on resource management, especially as it relates to computer networks, with emphasis on mobile agents and digital libraries
- Cluster 14: (103) grid 56.6%, resourc 7.2%, comput 4.4%, grid.comput 2.7%, servic 2.0%, schedul 1.5%, architectur 1.0% Focuses on Grid Computing, a system for computer resource sharing.
- Cluster 51: (116) web 26.7%, semant 15.6%, servic 13.9%, ontolog 11.6%, web.servic 3.6%, inform 2.1% – Focuses on web services, especially focused on semantic Web aspects.
- Cluster 87: (70) peer 14.8%, queri 9.3%, xml 8.3%, storag 5.1%, server 3.6%, file 3.1%, data 3.0%, system 1.6%, document 1.6%, peer.peer 1.6%, stream 1.6%, disk 1.5%, web 1.4%, servic 1.2%, node 1.1%, distribut 1.0% Focuses on systems for storing and sharing data, especially peer to peer (P2P) systems
- Cluster 10: (40) peer 29.6%, p2p 10.4%, network 8.2%, topolog 6.7%, peer.peer 6.0%, overlai 2.8%, p2p.network 2.1%, search 1.5%, node 1.5%, chord 1.3%, rout 1.3%, queri 1.2%, peer.network 1.0%, peer.peer.network 1.0% Focuses on peer to peer: (P2P) networks and file-sharing systems, with emphasis on their topology and topological mismatches.

- Cluster 180: (161) market 26.1%, firm 10.4%, price 8.5%, econom 4.1%, economi 2.9%, trade 2.3%, innov 1.8%, bid 1.2%, institut 1.0%, stock 0.9%, model 0.9%, enterpris 0.8%, china 0.7%, social 0.6%, product 0.6%, reform 0.6%, privat 0.5%, moral 0.5%, equilibrium 0.5%, system 0.5%, polit 0.5%, portfolio 0.5%, cost 0.4%, govern 0.4%, decis 0.4% Focuses on economics, specifically different markets, firms, and the price of goods in different economies.
- Cluster 135: (84) decis 36.1%, suppli.chain 3.8%, custom 3.6%, inform 3.2%, suppli 2.3%, linguist 1.7%, risk 1.3%, system 1.3%, product 1.3%, oper 1.2%, model 1.2%, decis.support 1.2%, decis.support.system 1.0%, support.system 1.0%, chain 0.9%, select 0.9%, decis.maker 0.8%, decis.model 0.7%, attribut 0.7%, support 0.7%, maker 0.7%, integr 0.6%, cost 0.6%, onlin 0.6%, new.product 0.6% Focuses on business structure and business modeling and supply chains, including the role of linguistics in the decision support systems.
- Cluster 241: (155) project 8.4%, build 6.1%, construct 4.5%, environment 4.3%, kong 2.6%, hong 2.5%, china 2.4%, hong.kong 2.4%, plan 1.5%, articl 1.3%, sustain 1.3%, survei 1.2%, partner 0.9%, social 0.8%, environ 0.8%, disput 0.7%, scienc 0.7%, practic 0.7%, air 0.6%, system 0.6%, tunnel 0.6%, urban 0.6%, factor 0.6%, product 0.6%, commun 0.6% Focuses on various construction projects, mainly in china.
- Cluster 212: (122) design 50.6%, system 2.0%, gear 1.3%, model 1.0%, simul 0.9%, assembl 0.8%, architectur 0.7%, circuit 0.7%, optim 0.6%, manufactur 0.6%, product 0.4%, power 0.4%, softwar 0.4%, manipul 0.4%, design.system 0.4%, chip 0.4%, construct 0.4%, gener 0.4%, modul 0.4%, dynam 0.4%, applic 0.3%, regist 0.3%, pile 0.3%, new 0.3%, oper 0.3% Focuses on the design of new components, systems, and structures.
- Cluster 253: (246) system 18.7%, oper 3.7%, softwar 2.9%, time 1.8%, reliabl 1.5%, test 1.5%, model 1.4%, data 1.3%, simul 1.2%, machin 1.2%, monitor 1.1%, tool 1.0%, inform 0.9%, environ 0.9%, integr 0.9%, fault 0.9%, applic 0.8%, real 0.8%, new 0.6%, power 0.6%, virtual 0.6%, comput 0.6%, control 0.6%, real.time 0.6%, visual 0.6% Focuses on systems, with minor emphasis on operating systems and software.
- Cluster 40: (66) schedul 30.5%, algorithm 8.1%, job 5.8%, time 4.7%, machin 3.2%, process.time 2.5%, minim 2.5%, process 2.0%, makespan 1.4%, schedul.algorithm 1.0%, optim 1.0% Focuses on machine scheduling and optimization, with emphasis on algorithms that deal with these subjects.
- Cluster 118: (77) machin 36.7%, svm 4.8%, tool 2.8%, support.vector 2.7%, cut 2.5%, support.vector.machin 2.2%, vector.machin 2.2%, grind 1.8%, vector 1.3%, error 1.1%, pl

- 1.0%, kernel 0.9%, machin.tool 0.9%, support 0.8%, speed 0.8%, model 0.7%, classif 0.6%, optim 0.6%, case 0.5%, manufactur 0.5%, micro 0.4%, learn 0.4%, descriptor 0.4%, surfac 0.4%, machin.svm 0.4% Focuses on support vector machines.
- Cluster 201: (84) model 8.7%, inform 6.7%, forecast 6.2%, data 4.5%, land 4.2%, gi 3.0%, climat 2.5%, spatial 2.0%, ionospher 1.5%, flood 1.5%, map 1.2%, area 1.2%, npp 0.9%, river 0.9%, system 0.8%, knowledg 0.8%, hydrolog 0.8%, rough.set 0.7%, set 0.7%, integr 0.7%, climat.model 0.6%, rainfal 0.6%, time.seri 0.6%, inform.system 0.6%, gp 0.6% Focuses on environmental forcasting and modeling.
- Cluster 243: (265) model 54.4%, data 2.0%, system 1.0%, model.model 0.9%, simul 0.8%, paramet 0.6%, dynam 0.5%, test 0.4%, new 0.4%, languag 0.4%, qsar 0.4%, new.model 0.4%, uml 0.3%, gener 0.3%, inform 0.3%, fit 0.3%, construct 0.3%, set 0.3%, mathemat 0.3%, experiment 0.3%, structur 0.3%, statist 0.3%, time 0.3%, comfa 0.2%, predict 0.2% Focuses on data aguisition and system modeling.
- Cluster 255: (258) model 16.3%, paramet 2.9%, analyt 2.8%, numer 2.2%, coeffici 1.7%, veloc 1.6%, simul 1.0%, equat 0.9%, experiment 0.9%, diffus 0.9%, data 0.8%, measur 0.8%, system 0.7%, two 0.7%, energi 0.5%, linear 0.5%, solut 0.5%, correl 0.5%, experiment.data 0.5%, curv 0.5%, instabl 0.5%, three 0.4%, mean 0.4%, time 0.4%, function 0.4% Focuses on models, especially their parametric analyses.
- Cluster 251: (177) simul 7.3%, fluid 2.9%, scale 2.6%, critic 2.5%, dynam 2.3%, model 2.0%, carlo 1.7%, mont 1.7%, motion 1.6%, mont.carlo 1.6%, theori 1.6%, forc 1.3%, distribut 1.1%, potenti 1.0%, densiti 0.9%, expon 0.9%, function 0.9%, direct 0.8%, eo 0.8%, state 0.7%, fluctuat 0.6%, paramet 0.6%, probabl 0.6%, univers 0.6%, two 0.6% Focuses on simulations, especially of fluid dynamical systems.

2.2. gene expression and cellular biology

2.2.1. Chinese geophyics and Chinese citizens and their health problems (3638) 2.2.2.1. gene expression, sequencing (1018)

- Cluster 95: (110) strain 20.6%, isol 6.5%, 16 5.9%, sequence 4.2%, rrna 3.8%, phylogenet 3.1%, 16.rrna 3.0%, speci 2.7%, rrna.gene 2.5%, rdna 2.1%, 16.rrna.gene 2.1%, genu 2.0%, gene.sequenc 1.6%, rrna.gene.sequenc 1.6%, gene 1.4%, dna 1.2%, type.strain 1.0% Focuses on isolates and strains of microorganisms or genes, especially rRNA.
- Cluster 47: (52) dna 29.4%, immobil 17.4%, nucleic 5.2%, nucleic.acid 4.7%, enzym 2.0%, acid 1.3%, immobil.enzym 1.0%,

- calf.thymu 1.0% Focuses on DNA, particularly the immobilization of DNA, and enzymes.
- Cluster 154: (132) dna 33.9%, mutat 9.8%, pcr 4.5%, gene 3.7%, detect 3.2%, primer 1.7%, sequenc 1.4%, methyl 1.2%, mutant 0.9%, genom 0.8%, probe 0.6%, microarrai 0.6%, oligonucleotid 0.6%, polymeras 0.6%, hybrid 0.5%, hbv 0.5%, cell 0.4%, plasmid 0.4%, promot 0.4%, sampl 0.4%, assai 0.4%, tumor 0.4%, sensit 0.4%, point.mutat 0.4%, cancer 0.4% *Focuses on dna, specifically on detection, characterization, mutation, sequencing.*
- Cluster 143: (114) sequenc 28.3%, genom 9.3%, dna 6.8%, chromosom 3.1%, dna.sequenc 2.7%, clone 2.6%, gene 2.1%, nucleotid 2.1%, isol 1.5%, viru 1.4%, rna 1.0%, strain 0.8%, fragment 0.8%, region 0.6%, code 0.5%, amino.acid 0.5%, pcr 0.5%, rice 0.5%, ident 0.5%, amino 0.5%, hybrid 0.4%, protein 0.4%, mrna 0.4%, replic 0.3%, segment 0.3% Focuses on dna and genomic sequencing.
- Cluster 92: (193) gene 13.0%, cdna 7.4%, express 7.2%, sequenc 4.4%, protein 4.1%, amino.acid 3.6%, encod 3.2%, amino 3.1%, clone 2.6%, human 1.9%, acid 1.6%, testi 1.5%, transcript 1.3%, pcr 1.0% Focuses on genes, especially cDNA.
- Cluster 59: (90) transgen 25.3%, plant 11.8%, gene 11.4%, express 4.0%, transgen.plant 2.0%, tobacco 1.9%, gu 1.8%, transform 1.5% Focuses on transgenic experiments, especially those involving transgenic plants.
- Cluster 173: (327) gene 47.6%, express 10.0%, gene.express 2.1%, transcript 2.0%, protein 1.2%, cell 1.1%, regul 0.9%, promot 0.9%, sequenc 0.9%, mutant 0.6%, strain 0.6%, genom 0.6%, pcr 0.5%, rna 0.5%, mutat 0.5%, cancer 0.4%, activ 0.4%, recombin 0.4%, clone 0.4%, function 0.4%, human 0.4%, microarrai 0.4%, coli 0.3%, mrna 0.3%, tumor 0.3% *Focuses on genes, and gene expression and genetic sequencing*.

2.2.1.2. cellular expression (2721)

- Cluster 133: (166) cancer 20.2%, cell 12.6%, express 5.7%, cancer.cell 4.6%, breast 3.0%, gastric 2.9%, p53 2.8%, tissu 2.4%, mmp 2.0%, breast.cancer 1.6%, carcinoma 1.5%, cell.line 1.5%, tumor 1.5%, apoptosi 1.1%, line 1.0%, protein 1.0%, gastric.cancer 0.8%, human 0.7%, gene 0.7%, mrna 0.7%, invas 0.5%, activ 0.5%, cancer.cell.line 0.5%, normal 0.4%, mcf 0.4% Focuses on various forms of cancer and possible treatments, and cellular expression.
- Cluster 100: (170) tumor 37.3%, cell 13.1%, tumor.cell 2.8%, cell.line 2.1%, mice 1.9%, express 1.7%, line 1.3%, carcinoma 1.2%, cancer 1.0% Focuses on tumors, including tumor growth,

- metastases, treatment, and inhibition, with emphasis on experiments involving cells in mice or cell lines.
- Cluster 178: (223) cell 40.1%, express 3.0%, mice 1.8%, prolifer 1.6%, stem.cell 1.4%, lymphocyt 1.2%, stem 1.2%, differenti 1.2%, bone 1.1%, cd4 0.7%, human 0.7%, activ 0.7%, marrow 0.6%, immun 0.6%, msc 0.6%, cd8 0.6%, induc 0.6%, transplant 0.6%, bone.marrow 0.6%, cultur 0.6%, cytokin 0.5%, progenitor 0.5%, stimul 0.5%, vitro 0.5%, regul 0.4% Focuses on various kinds of cells and their attributes, along with cellular expression.
- Cluster 221: (359) cell 62.4%, cultur 1.3%, express 1.2%, human 0.7%, protein 0.6%, activ 0.6%, membran 0.5%, cell.line 0.4%, concentr 0.4%, inhibit 0.4%, growth 0.4%, endotheli 0.4%, transfect 0.3%, line 0.3%, tissu 0.3%, assai 0.3%, infect 0.3%, prolifer 0.3%, gene 0.3%, embryo 0.3%, cytoplasm 0.2%, endotheli.cell 0.2%, control 0.2%, regul 0.2%, product 0.2% Focuses on various kinds of cells, expression of those cells, and gene expression.
- Cluster 110: (204) cell 32.9%, apoptosi 13.7%, induc 3.6%, bcl 2.0%, caspas 2.0%, inhibit 1.4%, apoptot 1.4%, express 1.3%, activ 1.2%, prolifer 1.1%, induc.apoptosi 1.0%, cell.cycl 0.9%, death 0.8%, protein 0.7%, cell.death 0.7%, cell.apoptosi 0.6%, k562 0.6%, dna 0.5%, arrest 0.5%, cell.line 0.5%, cycl 0.5%, bax 0.5%, inhibitor 0.4%, ro 0.4%, regul 0.4% Focuses on multiple types of cells and what affects them, emphasizing apoptosis.
- Cluster 171: (144) kinas 9.6%, receptor 7.6%, activ 6.1%, phosphoryl 5.9%, induc 4.6%, signal 3.3%, protein 2.6%, inhibit 2.1%, cell 1.8%, protein.kinas 1.7%, kappab 1.7%, pathwai 1.5%, regul 1.5%, mapk 1.4%, inhibitor 1.3%, mediat 1.2%, express 1.1%, pka 0.9%, pkc 0.9%, camp 0.9%, p38 0.8%, erk 0.6%, beta 0.6%, tyrosin 0.5%, stimul 0.5% Focuses on kinase and receptor activation, and the signaling of the cells between the receptors.
- Cluster 245: (154) activ 10.5%, inhibit 9.1%, induc 3.9%, antioxid 3.1%, oocyt 2.6%, inhibitor 2.6%, stimul 1.2%, cell 1.1%, concentr 1.1%, no 1.0%, glucos 0.9%, oxid 0.8%, depend 0.7%, ach 0.7%, platelet 0.6%, dose 0.6%, mumol 0.6%, scaveng 0.6%, inhibitori 0.6%, vitro 0.6%, cultur 0.5%, manner 0.5%, melatonin 0.5%, depend.manner 0.5%, h2o2 0.5% Focuses on various chemicals or molecules/compounds that have an effect on the body (activation or inhibition) or the body's reaction to various stimuli.
- Cluster 34: (68) ca2 57.2%, channel 3.0%, intracellular 1.8%, calcium 1.3%, cell 1.2% Focuses on the calcium ion, Ca+2, particulary as it relates to cells and cellular functions.
- Cluster 96: (107) neuron 49.9%, receptor 2.2%, neuroprotect 1.4%, induc 1.3%, gaba 1.3%, activ 1.1%, rat 1.1%, glutam 1.0% *Focuses on neurons*.

- Cluster 228: (260) rat 31.4%, brain 2.8%, dose 2.2%, inject 1.7%, induc 1.6%, express 1.6%, administr 1.4%, receptor 1.2%, drug 1.1%, group 1.0%, ischemia 1.0%, liver 0.9%, reperfus 0.8%, level 0.8%, injuri 0.7%, mrna 0.7%, diabet 0.7%, activ 0.7%, heart 0.5%, blood 0.5%, treatment 0.5%, protein 0.5%, oral 0.5%, cell 0.5%, myocardi 0.4% Focuses on experiments performed on rats, especially impacts on their brain.
- Cluster 176: (137) express 8.1%, tgf 7.3%, tnf 4.0%, tnf.alpha 3.1%, tgf.beta 3.1%, mrna 3.1%, alpha 2.9%, mmp 2.3%, vegf 1.6%, beta 1.5%, level 1.5%, cytokin 1.4%, beta1 1.2%, lung 1.2%, cell 1.2%, activ 1.2%, tgf.beta1 1.1%, protein 1.0%, rat 1.0%, induc 1.0%, factor 1.0%, receptor 1.0%, growth.factor 0.9%, macrophag 0.9%, bone 0.9% Focuses on cellular expresson and tumor necrosis factor alpha and transforming growth factor.
- Cluster 155: (88) mice 49.8%, induc 1.7%, dose 1.6%, express 1.5%, level 1.2%, group 0.7%, treat 0.7%, increas 0.6%, activ 0.5%, protect 0.5%, inhibit 0.5%, administr 0.5%, liver 0.5%, control 0.4%, receptor 0.4%, brain 0.4%, mrna 0.4%, tissu 0.3%, anim 0.3%, morphin 0.3%, decreas 0.3%, histamin 0.3%, infect 0.3%, acid 0.3%, mous 0.2% Focuses on the use of mice in medical experiments.
- Cluster 79: (82) vaccin 9.9%, antibodi 9.8%, immun 9.1%, antigen 5.7%, epitop 4.7%, viru 2.8%, assai 1.9%, mab 1.8%, mice 1.6%, elisa 1.5%, respons 1.5%, protein 1.4%, infect 1.3%, peptid 1.3%, dna.vaccin 1.2%, dna 1.1%, influenza 1.0% Focuses on antibodies, vaccines, and immunity.
- Cluster 219: (198) protein 13.6%, peptid 3.9%, bind 3.3%, activ 3.1%, fusion 3.1%, express 2.7%, purifi 2.7%, coli 2.5%, mutant 2.0%, domain 2.0%, recombin 2.0%, fusion.protein 1.9%, enzym 1.7%, termin 1.1%, refold 1.0%, residu 0.9%, escherichia.coli 0.8%, human 0.8%, escherichia 0.8%, cell 0.8%, pollen 0.8%, mutat 0.7%, gst 0.6%, site 0.6%, subunit 0.5% Focuses on proteins and their characterization and use.
- Cluster 177: (222) protein 58.4%, bind 1.5%, sequenc 0.7%, proteom 0.6%, express 0.6%, interact 0.6%, human 0.6%, cell 0.5%, membran 0.5%, amino.acid 0.5%, amino 0.5%, bind.protein 0.4%, function 0.4%, electrophoresi 0.4%, membran.protein 0.4%, gel 0.4%, mass 0.4%, spot 0.3%, serum 0.3%, regul 0.3%, domain 0.3%, protein.protein 0.3%, acid 0.3%, hsa 0.3%, detect 0.3% *Focuses on proteins, and protein separation, and protein analysis.*
- Cluster 0: (59) sar 32.3%, cov 19.5%, sar.cov 16.0%, protein 3.2%, coronaviru 2.3% Focuses on proteins, viruses, antibodies and vaccines related to SARS: (Severe Acute Respiratory Syndrome)
- Cluster 23: (80) sar 37.1%, patient 6.0%, acut 3.5%, syndrom 3.0%, respiratori 2.7%, acut.respiratori 2.5%, sever.acut.respiratori 2.3%, sever.acut 2.3%, acut.respiratori.syndrom 2.1%,

respiratori.syndrom 2.1%, sar.patient 2.0%, sever 1.8%, cov 1.6%, outbreak 1.4%, syndrom.sar 1.4%, respiratori.syndrom.sar 1.4%, infect 1.3%, coronaviru 1.1%, sar.cov 1.1%, flap 1.0% Focuses on SARS: (Severe Acute Respiratory Syndrome), particularly studies involving SARS patients, cases and outbreaks.

2.2.2. genetic expression, and cells, mainly cancer cells (3739) 2.2.2.1. Chinese medical patients (1837)

- Cluster 203: (112) arteri 11.5%, stent 5.8%, lesion 4.7%, patient 4.1%, coronari 2.5%, year.old 1.8%, case 1.8%, year 1.6%, tumour 1.6%, aortic 1.6%, old 1.4%, pain 1.3%, left 1.3%, carotid 1.0%, stenosi 1.0%, blood 1.0%, right 0.9%, vessel 0.9%, diagnosi 0.8%, coronari.arteri 0.8%, group 0.8%, angiographi 0.7%, month 0.7%, diseas 0.7%, aneurysm 0.7% Focuses on the circulatory system, emphasizing arteries and stents, and clinical problems associated with various patients.
- Cluster 215: (113) patient 6.7%, group 4.8%, renal 4.7%, transplant 3.3%, treatment 3.1%, month 3.0%, postop 2.5%, liver 2.4%, case 1.9%, mmf 1.7%, graft 1.4%, donor 1.3%, implant 1.3%, outcom 1.3%, clinic 1.1%, surviv 1.0%, year 0.9%, surgic 0.8%, nerv 0.8%, complic 0.8%, liver.transplant 0.8%, surgeri 0.8%, rate 0.8%, blood 0.7%, laparoscop 0.7% Focuses on the renal system, and patients who have renal problems and some of their treatments.
- Cluster 167: (466) patient 62.1%, diseas 1.2%, year 1.1%, treatment 1.0%, group 1.0%, clinic 1.0%, month 0.7%, surviv 0.6%, score 0.5%, therapi 0.5%, control 0.5%, ag 0.4%, tumor 0.4%, hospit 0.4%, outcom 0.4%, cancer 0.4%, recurr 0.3%, symptom 0.3%, rate 0.3%, 001 0.3%, risk 0.3%, level 0.3%, mean 0.3%, chines 0.3%, serum 0.2% Focuses on medical patients and their medical problems.
- Cluster 216: (141) group 40.5%, control.group 2.4%, control 2.1%, treatment 1.2%, group.group 1.2%, diet 1.1%, rat 0.9%, serum 0.8%, pig 0.7%, dose 0.6%, dai 0.6%, subject 0.6%, week 0.6%, children 0.6%, placebo 0.5%, supplement 0.5%, level 0.5%, fed 0.5%, blood 0.5%, femal 0.5%, group.control 0.5%, male 0.5%, plasma 0.4%, egg 0.4%, administr 0.4% Focuses on medical/biological experiments, and talks about the different groups in the experiment.
- Cluster 161: (78) egg 10.9%, diet 8.8%, larva 6.3%, feed 6.3%, fed 4.9%, fish 4.0%, dietari 3.0%, toxic 1.2%, femal 1.0%, reproduct 1.0%, growth 1.0%, fertil 1.0%, mmt 1.0%, dai 0.9%, rate 0.9%, larval 0.9%, lipid 0.9%, level 0.7%, embryo 0.7%, exposur 0.7%, weight 0.7%, adult 0.6%, shrimp 0.6%, hatch 0.6%, bodi 0.6% Focuses on the interaction of insects and their predators, and what influences the mortality of insects/fish.

- Cluster 232: (168) women 11.9%, ag 5.6%, subject 4.5%, male 2.5%, pregnanc 1.6%, risk 1.5%, serum 1.4%, blood 1.4%, femal 1.3%, level 1.3%, year 1.3%, infant 1.2%, chines 1.1%, men 1.0%, bmd 0.9%, bodi 0.9%, group 0.9%, intak 0.9%, obes 0.9%, birth 0.8%, bone 0.7%, sex 0.7%, injuri 0.7%, bmi 0.6%, cadmium 0.6% Focuses on various clinical medical studies, usually involving women.
- Cluster 141: (100) preval 12.0%, hiv 9.2%, smoke 5.0%, sexual 4.3%, risk 3.1%, china 2.2%, infect 1.8%, health 1.5%, smoker 1.4%, femal 1.4%, drug 1.3%, ag 1.3%, women 1.2%, rural 1.2%, chines 1.2%, male 1.2%, year 1.0%, survei 0.9%, sex 0.9%, hiv.aid 0.9%, aid 0.9%, diseas 0.9%, worker 0.9%, men 0.8%, popul 0.8% Focuses on sexually transmitted diseases such as HIV. Also focuses on smoking and its health problems, as well as other respiratory ailments.
- Cluster 138: (109) kong 13.4%, hong 13.3%, hong.kong 12.7%, health 5.4%, sar 4.4%, care 2.4%, chines 1.1%, women 1.0%, practic 1.0%, risk 0.7%, psycholog 0.5%, ag 0.5%, medic 0.5%, social 0.5%, perceiv 0.5%, health.care 0.5%, influenza 0.4%, nurs 0.4%, respond 0.4%, popul 0.4%, singapor 0.4%, worker 0.4%, hospit 0.4%, diseas 0.4%, peopl 0.4% Focuses on health problems among Chinese citizens, especially in Hong Kong.
- Cluster 153: (99) children 15.2%, chines 10.5%, social 8.0%, school 7.4%, cultur 4.0%, adolesc 2.6%, moral 1.7%, parent 1.2%, teacher 1.1%, kong 1.0%, hong 1.0%, hong.kong 1.0%, child 0.8%, self 0.7%, ag 0.7%, depress 0.7%, belief 0.7%, peer 0.7%, compet 0.6%, dental 0.6%, score 0.6%, perceiv 0.5%, person 0.5%, year 0.5%, support 0.4% Focuses on various social and health characteristics and behaviours of Chinese citizens and children.
- Cluster 93: (53) chines 26.2%, famili 14.7%, mutat 8.8%, popul 4.2%, hear 2.4%, medicin 1.6%, genet 1.5%, diseas 1.3%, chines.medicin 1.2%, unrel 1.2%, gene 1.1%, chines.famili 1.0% Focuses on Chinese families, with emphasis on genetics and medicine.
- Cluster 48:: (79) cancer 18.8%, risk 18.4%, genotyp 6.4%, polymorph 4.5%, escc 1.6%, gastric 1.4%, lung.cancer 1.4%, lung 1.3%, control 1.1%, case 1.1%, cancer.risk 1.0%, allel 1.0% Focuses on cancer risk and control.
- Cluster 53: (104) polymorph 10.9%, genotyp 10.4%, allel 10.3%, snp 4.3%, haplotyp 4.3%, schizophrenia 4.0%, gene 3.8%, chines 3.0%, popul 2.1%, hypertens 1.8%, han 1.7%, subject 1.5%, bmd 1.1%, frequenc 1.1%, patient 1.0% Focuses on specific types of genes, especially polymorphs, and their functions.
- Cluster 76: (108) popul 24.8%, genet 16.3%, divers 4.2%, polymorph 2.7%, genet.divers 2.6%, allel 1.9%, primer 1.8%, haplotyp 1.8%, ssr 1.8%, microsatellit 1.6%, speci 1.3%, china

- 1.2%, marker 1.1%, sequenc 1.0%, loci 1.0% Focuses on genetic diversity in populations.
- Cluster 86: (107) gtl 13.4%, chromosom 11.4%, marker 5.2%, trait 5.1%, rice 3.8%, map 2.7%, genet 2.7%, hybrid 2.3%, genom 1.9%, seed 1.8%, parent 1.5%, line 1.3%, loci 1.2%, gene 1.1%, resist 1.1%, popul 1.0% Focuses on chromosomes and genes, especially genetic markers and traits.

2.2.2.2. Soils, plants and rare earth elements (1801)

- Cluster 57: (147) rock 9.9%, zircon 7.1%, ag 5.3%, mantl 4.5%, granit 3.8%, metamorph 3.5%, isotop 2.6%, basalt 1.9%, similar 1.5%, north 1.4%, crust 1.4%, geochem 1.3%, magma 1.1%, date 1.1%, subduct 1.1%, ree 1.1%, gneiss 1.0%, magmat 1.0% Focuses on rock and mantle beneath North China, with emphasis on isotope dating.
- Cluster 78: (75) late 6.7%, basin 5.8%, permian 3.7%, rock 3.1%, triassic 3.0%, earli 2.9%, jurass 2.8%, format 2.7%, cretac 2.3%, china 1.9%, middl 1.8%, sourc.rock 1.8%, south 1.6%, belt 1.6%, volcan 1.5%, sourc 1.3%, zone 1.3%, oil 1.3%, southern 1.1%, mesozo 1.1% Focuses on geological formations in China, with emphasis on determination of geologic age.
- Cluster 156: (113) seismic 14.3%, fault 5.4%, earthquak 5.0%, basin 4.5%, veloc 4.0%, crust 3.0%, mantl 2.3%, river 2.0%, wave 2.0%, reservoir 1.7%, crustal 1.6%, moho 1.5%, zone 1.4%, area 1.3%, tecton 1.3%, geolog 1.1%, belt 0.9%, wave.veloc 0.8%, depth 0.7%, region 0.7%, seismic.wave 0.6%, rock 0.6%, upper 0.6%, beneath 0.6%, uplift 0.5% Focuses on seismic activity, including earthquakes.
- Cluster 166: (95) wind 30.0%, dust 10.4%, solar 3.1%, storm 2.2%, latitud 1.9%, region 1.0%, aerosol 0.8%, radiat 0.8%, satellit 0.8%, model 0.8%, cloud 0.8%, dust.storm 0.8%, ionospher 0.6%, build 0.6%, data 0.6%, solar.activ 0.5%, sunspot 0.5%, transport 0.5%, atmospher 0.5%, particl 0.5%, period 0.5%, lightn 0.5%, forc 0.4%, summer 0.4%, pollut 0.4% Focuses on wind, both solar wind and lower atmospheric wind; includes wind modeling, and wind damage, as well as particulates in the wind such as dust and aerosols.
- Cluster 218: (147) sea 6.3%, ocean 4.1%, model 2.8%, season 2.3%, climat 2.1%, tidal 1.9%, permafrost 1.8%, enso 1.7%, data 1.3%, surfac 1.2%, circul 1.2%, pacif 1.2%, sediment 1.2%, anomali 1.0%, cloud 1.0%, water 1.0%, warm 1.0%, east 1.0%, front 1.0%, summer 0.9%, transport 0.9%, rainfal 0.9%, atmospher 0.8%, north 0.8%, ic 0.8% Focuses on creating climate models, especially over water or near coasts, and various ways to

- determine moisture concentrations and ways of measuring various quantities that affect climate, such as moisture etc.
- Cluster 209: (171) china 9.5%, climat 4.6%, monsoon 4.5%, summer 4.0%, sea 2.3%, east 1.7%, urban 1.6%, region 1.6%, warm 1.5%, land 1.4%, south 1.3%, winter 1.2%, glacial 1.2%, asian 1.1%, north 1.1%, dust 1.0%, summer.monsoon 1.0%, ic 1.0%, area 0.9%, site 0.9%, plateau 0.9%, loess 0.8%, season 0.8%, basin 0.8%, delta 0.7% Focuses on climate analysis (especially monsoons) and indoor air pollutant studies, mainly in china and the surrounding areas.
- Cluster 142: (121) sediment 26.5%, lake 10.7%, river 6.6%, water 4.4%, estuari 3.2%, coastal 1.9%, concentr 1.2%, china 0.8%, sea 0.8%, bai 0.8%, season 0.7%, pcb 0.7%, pah 0.6%, pearl.river 0.6%, pearl 0.6%, area 0.6%, river.estuari 0.6%, nutrient 0.6%, tidal 0.5%, level 0.5%, fish 0.4%, phosphoru 0.4%, tide 0.4%, pearl.river.estuari 0.4%, reef 0.4% Focuses on sediments and sediment tracking and contamination in various water sources; lakes, rivers, estuaries, seas, etc.
- Cluster 58: (235) soil 70.6%, fertil 1.4% Focuses on soil, especially the effects of soil properties on plants, in China
- Cluster 197: (144) plant 18.1%, root 16.7%, rice 3.7%, shoot 3.2%, leaf 3.1%, leav 2.0%, water 1.6%, concentr 1.2%, uptak 1.1%, nutrient 0.9%, stomat 0.8%, toler 0.8%, medium 0.7%, content 0.7%, cultivar 0.7%, growth 0.7%, treatment 0.6%, biomass 0.6%, irrig 0.6%, wheat 0.5%, increas 0.5%, photosynthet 0.5%, stem 0.5%, ecotyp 0.5%, stress 0.4% Focuses on plants, and plant roots. Includes waste remediation using plants, various health benefits of plants, and plant characterization and analysis.
- Cluster 159: (90) seed 14.2%, germin 9.8%, forest 7.5%, seedl 3.8%, cotton 3.3%, season 3.1%, leaf 3.0%, biomass 2.8%, wheat 2.3%, canopi 2.2%, cultivar 1.7%, plant 1.5%, tree 1.1%, seed.germin 0.9%, year 0.9%, veget 0.8%, tea 0.7%, grassland 0.7%, grow.season 0.6%, china 0.6%, growth 0.5%, npp 0.5%, rice 0.5%, area 0.5%, stand 0.4% Focuses on all matter of plants, both food plants and non-food plants, including seeds and their properties, such as germination rate
- Cluster 165: (170) speci 60.3%, genu 1.1%, plant 1.1%, china 1.0%, phylogenet 0.9%, sequenc 0.8%, genera 0.7%, collect 0.7%, morpholog 0.6%, habitat 0.5%, region 0.4%, taxa 0.4%, tree 0.4%, group 0.3%, two 0.3%, asia 0.3%, two.speci 0.3%, plant.speci 0.3%, forest 0.3%, fungi 0.2%, domin 0.2%, taxonom 0.2%, clade 0.2%, charact 0.2%, divers 0.2% Focuses on various species of organisms and plants, and their characteristics. Also talks about DNA and comparing it between species.
- Cluster 29: (143) speci 35.2%, new.speci 19.2%, genu 8.4%, china 6.2%, new 6.1%, speci.genu 1.8%, new.scienc 1.0% Focuses on the

- identification of mainly zoological and entomological species in China.
- Cluster 244: (150) china 11.1%, pollen 4.2%, speci 2.8%, new 2.0%, genu 1.7%, fossil 1.5%, morpholog 1.3%, stamen 1.3%, provinc 1.2%, cirri 1.1%, pollin 1.1%, genera 1.0%, taxa 1.0%, flower 0.9%, ventral 0.9%, type 0.9%, earli 0.8%, ornament 0.8%, var 0.8%, corolla 0.8%, kineti 0.7%, male 0.7%, femal 0.7%, scienc 0.7%, pollen.grain 0.6% Focuses on plant species.

Appendix 5 – DTIC Taxonomy

SUBJECT	SUB-SUBJ
SUBJECT	
	Aerodynamics
	Military Aircraft Operations
	Aircraft
	Helicopters
	Bombers
	Attack & Fighter Aircraft
	Patrol & Reconnaissance Aircraft
	Transport Aircraft
AVIATION	Training Aircraft
	V/STOL
	Gliders & Parachutes
	Civilian Aircraft
	Pilotless Aircraft, RPV, Drones
	Lighter-than-air Aircraft
	Research & Experimental Aircraft
	Flight Control & Instrumentation
	Terminal Flight Facilities
	Commercial & General Aviation
	Agricultural Chemistry
	Agricultural Economics
AGRICULTURE	Agricultural Engineering
AGRICULTURE	Agronomy, Horticulture & Aquiculture
	Animal Husbandry & Veterinary Medicine
	Forestry
	Astronomy
ASTRONOMY & ASTROPHYSICS	Astrophysics
	Celestial
ATMOSPHERIC SCIENCES	Atmospheric Physics
ATWOSFIERIC SCIENCES	Meteorology
BEHAVIORAL & SOCIAL SCIENCES	Administration & Management
	Information Science
	Economics & Cost Analysis
	Government & Political Science
	Sociology & Law
	Humanities & History
	Linguistics
	Psychology
	Personnel Management & Labor Relations
BIOLOGICAL & MEDICAL SCIENCES	Biochemistry

	Genetic Engineering & Molecular Biology Biology Anatomy & Physiology Medicine & Medical Research Ecology
	Radiobiology Food, Food Service & Nutrition Hygiene & Sanitation Stress Physiology Toxicology Medical Facilities, Equipment & Supplies Microbiology Weapons Effects (Biological)
	Pharmacology
CHEMISTRY	Industrial Chemistry & Chemical Processing Inorganic Chemistry Organic Chemistry Physical Chemistry Radiation & Nuclear Chemistry Polymer Chemistry
EARTH SCIENCES & OCEANOGRAPHY	Biological Oceanography Cartography & Aerial Photography Physical & Dynamic Oceanography Geomagnetism Geodesy Geography Geology, Geochemistry & Mineralogy Hydrology, Limnology & Potamology Mining Engineering Soil Mechanics Seismology Snow, Ice, & Permafrost
ELECTROTECHNOLOGY & FLUIDICS	Electrical & Electronic Equipment Fluidics & Fluerics Lasers & Masers Line, Surface & Bulk Acoustic Wave Devices Electrooptical & Optoelectronic Devices Acoustooptic & Optoacoustic Devices Electromagnetic Shielding
POWER PRODUCTION & ENERGY CONVERSION (NON-PROPULSIVE)	Non-electrical Energy Conversion Electric Power Production & Distribution Electrochemical Energy Storage

	Energy Storage
MATERIALS	Adhesives, Seals & Binders
	Ceramics, Refractories & Glass
	Refractory Fibers
	Coatings, Colorants & Finishes
	Laminates & Composite Materials
	Textiles
	Metallurgy & Metallography
	Properties of Metals & Alloys
	Fabrication Metallurgy
	Miscellaneous Materials
	Lubricates & Hydraulic Fluids
	Plastics
	Elastomers & Rubber
	Solvents, Cleaners & Abrasives
	Wood, Paper & Related Forestry Products
	Numerical Mathematics
	Theoretical Mathematics
	Statistics & Probability
	Operations Research
MATHEMATICAL & COMPUTER	Computer Programming & Software
SCIENCES	Computer Hardware
	Computer Systems
	Computer Systems Management & Standards
	Cybernetics
	Air Conditioning, Lighting, Heating, & Ventilating
	Civil Engineering
	Construction Equipment, Materials & Supplies
	Containers & Packaging
	Couplers, Fasteners & Joints
	Surface Transportation & Equipment
MECHANICAL, INDUSTRIAL, CIVIL &	Surface Effect Vehicles & Amphibious Vehicles
MARINE ENGINEERING	Hydraulic & Pneumatic Equipment
	Manufacturing & Industrial Engineering & Control
	of Production Systems
	Machinery & Tools
	Marine Engineering
	Submarine Engineering
	Pumps, Filters, Pipes, Tubing, Fittings & Valves
	Safety Engineering
	Structural Engineering & Building Technology
TEST EQUIPMENT, RESEARCH	
FACILITIES & REPROGRAPHY	Holography
TACILITIES & REI ROORAI II I	Trotography

	Test Facilities, Equipment & Methods
	Recording & Playback Devices
	Photography
	Printing & Graphic Arts
	Military Forces & Organizations
	Civil Defense
	Defense Systems
	Antimissile Defense Systems
	Antiaircraft Defense Systems
	Antisatellite Defense Systems
	Military Intelligence
MILITARY SCIENCES	Logistics, Military Facilities & Supplies
	Military Operations, Strategy & Tactics
	Naval Surface Warfare
	Undersea & Antisubmarine Warfare Chamical Biological & Radiological Warfare
	Chemical, Biological & Radiological Warfare Nuclear Warfare
	Space Warfare
	Land Mine Warfare
	Unconventional Warfare
	Chech ventional Warrance
-	Guided Missile Launching & Basing Support
	Guided Missile Trajectories, Accuracy & Ballistics
	Guided Missile Dynamics, Configurations &
	Control Surfaces
CHIDED MISSILE TECHNOLOGY	Guided Missile Warheads & Fuzes
L GUIDED MISSILE LECHNOLOGY	Cuided Missiles
GUIDED MISSILE TECHNOLOGY	Guided Missiles
GUIDED MISSILE TECHNOLOGY	Air- & Space-Launched Guided Missiles
GUIDED MISSILE TECHNOLOGY	Air- & Space-Launched Guided Missiles Surface-Launched Guided Missiles
GUIDED MISSILE TECHNOLOGY	Air- & Space-Launched Guided Missiles Surface-Launched Guided Missiles Underwater-Launched Guided Missiles
GUIDED MISSILE TECHNOLOGY	Air- & Space-Launched Guided Missiles Surface-Launched Guided Missiles
	Air- & Space-Launched Guided Missiles Surface-Launched Guided Missiles Underwater-Launched Guided Missiles Guided Missile Reentry Vehicles
NAVIGATION, DETECTION & COUNTERMEASURES	Air- & Space-Launched Guided Missiles Surface-Launched Guided Missiles Underwater-Launched Guided Missiles Guided Missile Reentry Vehicles Acoustic Detection & Detectors
NAVIGATION, DETECTION &	Air- & Space-Launched Guided Missiles Surface-Launched Guided Missiles Underwater-Launched Guided Missiles Guided Missile Reentry Vehicles Acoustic Detection & Detectors Non-acoustic & Non-magnetic Submarine Detection
NAVIGATION, DETECTION &	Air- & Space-Launched Guided Missiles Surface-Launched Guided Missiles Underwater-Launched Guided Missiles Guided Missile Reentry Vehicles Acoustic Detection & Detectors
NAVIGATION, DETECTION &	Air- & Space-Launched Guided Missiles Surface-Launched Guided Missiles Underwater-Launched Guided Missiles Guided Missile Reentry Vehicles Acoustic Detection & Detectors Non-acoustic & Non-magnetic Submarine Detection Direction Finding
NAVIGATION, DETECTION &	Air- & Space-Launched Guided Missiles Surface-Launched Guided Missiles Underwater-Launched Guided Missiles Guided Missile Reentry Vehicles Acoustic Detection & Detectors Non-acoustic & Non-magnetic Submarine Detection Direction Finding Countermeasures
NAVIGATION, DETECTION &	Air- & Space-Launched Guided Missiles Surface-Launched Guided Missiles Underwater-Launched Guided Missiles Guided Missile Reentry Vehicles Acoustic Detection & Detectors Non-acoustic & Non-magnetic Submarine Detection Direction Finding Countermeasures Radio Countermeasures
NAVIGATION, DETECTION &	Air- & Space-Launched Guided Missiles Surface-Launched Guided Missiles Underwater-Launched Guided Missiles Guided Missile Reentry Vehicles Acoustic Detection & Detectors Non-acoustic & Non-magnetic Submarine Detection Direction Finding Countermeasures Radio Countermeasures Acoustic Countermeasures Radar Countermeasures Optical Countermeasures
NAVIGATION, DETECTION &	Air- & Space-Launched Guided Missiles Surface-Launched Guided Missiles Underwater-Launched Guided Missiles Guided Missile Reentry Vehicles Acoustic Detection & Detectors Non-acoustic & Non-magnetic Submarine Detection Direction Finding Countermeasures Radio Countermeasures Acoustic Countermeasures Radar Countermeasures Optical Countermeasures Optical Detection & Detectors
NAVIGATION, DETECTION &	Air- & Space-Launched Guided Missiles Surface-Launched Guided Missiles Underwater-Launched Guided Missiles Guided Missile Reentry Vehicles Acoustic Detection & Detectors Non-acoustic & Non-magnetic Submarine Detection Direction Finding Countermeasures Radio Countermeasures Acoustic Countermeasures Radar Countermeasures Optical Countermeasures Optical Detection & Detectors Infrared Detection & Detectors
NAVIGATION, DETECTION &	Air- & Space-Launched Guided Missiles Surface-Launched Guided Missiles Underwater-Launched Guided Missiles Guided Missile Reentry Vehicles Acoustic Detection & Detectors Non-acoustic & Non-magnetic Submarine Detection Direction Finding Countermeasures Radio Countermeasures Acoustic Countermeasures Radar Countermeasures Optical Countermeasures Optical Detection & Detectors Infrared Detection & Detectors Ultraviolet Detection and Detectors
NAVIGATION, DETECTION &	Air- & Space-Launched Guided Missiles Surface-Launched Guided Missiles Underwater-Launched Guided Missiles Guided Missile Reentry Vehicles Acoustic Detection & Detectors Non-acoustic & Non-magnetic Submarine Detection Direction Finding Countermeasures Radio Countermeasures Acoustic Countermeasures Radar Countermeasures Optical Countermeasures Optical Detection & Detectors Infrared Detection & Detectors Ultraviolet Detection and Detectors Magnetic & Electric Field Detection & Detectors
NAVIGATION, DETECTION &	Air- & Space-Launched Guided Missiles Surface-Launched Guided Missiles Underwater-Launched Guided Missiles Guided Missile Reentry Vehicles Acoustic Detection & Detectors Non-acoustic & Non-magnetic Submarine Detection Direction Finding Countermeasures Radio Countermeasures Acoustic Countermeasures Radar Countermeasures Optical Countermeasures Optical Detection & Detectors Infrared Detection & Detectors Ultraviolet Detection and Detectors

	Underwater & Marine Navigation & Guidance
	Air Navigation & Guidance
	Space Navigation & Guidance
	Miscellaneous Detection & Detectors
	Active & Passive Radar Detection Equipment
	Seismic Detection & Detectors
	Target Direction, Range & Position Finding
_	Fusion Devices (Thermonuclear)
	Isotopes
	Nuclear Explosions & Devices (Non-Military)
	Nuclear Instrumentation
	Nuclear Power Plants & Fission Reactor
	Engineering Nuclear Fiscian Pagetons (Payer)
NUCLEAR SCIENCE & TECHNOLOGY	Nuclear Fission Reactors (Power)
	Nuclear Fission Reactors (Non-Power)
	Nuclear Radiation Shielding, Protection & Safety
	Radioactivity, Radioactive Wastes & Fission
	Products SNAP (Systems for Nysleer Appliers Person)
	SNAP (Systems for Nuclear Auxiliary Power)
	Fission Reactor Physics
	Fission Reactor Materials
	A '.' 0 F 1 '
	Ammunition & Explosives
	Pyrotechnics
	Aerial Bombs
	Combat Vehicles
	Armor
	Fire Control & Bombing Systems
	Guns
ORDANCE	Rockets
	Underwater Ordance
	Torpedoes
	Explosions
	Ballistics
	Nuclear Weapons
	Directed Energy Weapons
	Guided Munitions
PHYSICS	Acoustics
	Crystallography
	Electricity & Magnetism
	Fluid Mechanics
	Atomic & Molecular Physics & Spectroscopy
	Optics
	Fiber Optics & Integrated Optics
	Particle Accelerators
	Nuclear Physics & Elementary Particle Physics
<u> </u>	, y

	Plasma Physics & Magneto-hydrodynamics
	Quantum Theory & Relativity Mechanics
	2.20 022412200
	Solid State Physics
	Thermodynamics
	Radiofrequency Wave Propagation
	Electromagnetic Pulses
	Air Breathing Engines
	Combustion & Ignition
	Electric & Ion Propulsion
	Fuels
	Jet & Gas Turbine Engines
	Nuclear Propulsion
PROPULSION, ENGINES & FUELS	Reciprocating & Rotating Engines
,	Rocket Engines
	Liquid Propellant Rocket Engines
	Solid Propellant Rocket Engines
	Rocket Propellants
	Liquid Rocket Propellants
	Solid Rocket Propellants
	Solid Rocket Fropellants
	Astronautics
	Unmanned Spacecraft Spacecraft Trainctories & Beauty
SPACE TECHNOLOGY	Spacecraft Trajectories & Reentry
	Ground Support Systems & Facilities for Space
	Vehicles Manual Space of the second for the second
	Manned Spacecraft
	Diomodical Instrumentation & Disconsinguis
	Biomedical Instrumentation & Bioengineering
	Human Factors Engineering & Man Machine
DIOTECHNIOLOGY	Systems
BIOTECHNOLOGY	Bionics
	Protective Equipment
	Life Support Systems
	Escape, Rescue & Survival
	Air Pollution & Control
ENVIRONMENTAL POLLUTION & CONTROL	Noise Pollution & Control
	Solid Wastes Pollution & Control
	Water Pollution & Control
	Pesticides, Pollution & Control
	Radiation Pollution & Control
	Environmental Health & Safety
COMMUNICATIONS	Telemetry
	Radio Communications
	Non-Radio Communications
<u> </u>	

Voice Communications
Command, Control & Communications Systems

Appendix 6 – Word Factor Themes

- -Science Citation Index
- -40 Factors
- -2002 Data

A factor analysis with forty factors was conducted on the retrieved Abstracts from the 2002 database. A phrase frequency analysis of the retrieved Abstracts was performed, and the high frequency, highly technical words were selected. A correlation matrix of these words was generated by the TechOasis software, followed by a factor matrix. Each factor from the factor matrix was analyzed. Each factor is summarized in this Appendix. The format is the factor number, followed by the high factor loading words in the factor matrix for the factor being analyzed, followed by a brief descriptive summary of the factor's theme. Table A6-1 (below) contains a summary of the factor descriptions.

Factor 1

(inhibited, cells, rat, inhibitor, manner, induced, inhibition, inhibitory, receptor, cell, apoptosis, mediated)

Focuses on the biological sciences of cell physiology, primarily using cells from rats.

Factor 2

(plasma, velocity, source, flux, gas, flow, pressure, profile, distribution, mass, heat, density)

Focuses on the physical properties of plasmas and gases related their flow and distribution.

Factor 3

(bonds, hydrogen, atoms, coordination, interactions, ligand, atom, ligands, O, molecules, complex, bonding, bond, crystal, network)

Focuses on atomic physics, specifically the interactions and bonding on atoms, molecules, ligands, crystals, primarily those of hydrogen and oxygen.

Factor 4

(early, late, middle, upper, region, zone, stage)

Focuses on the temporal (early and late) and location (middle, upper) divisions of regions and processes (eg. stages).

Factor 5

(detection, determination, limit, deviation, standard, ranged, linear, sensitive)

Focuses on the metric properties of detection such as limits, ranges, mathematical statistics, and sensitivities.

Factor 6

(patients, risk, age, patient, P, disease, background, population, association, cases, controls, cancer, interval, incidence, diagnosis)

Focuses on medical studies of humans for cancer research and potential causes and risk factors.

Factor 7

(strength, composites, fracture, mechanical, tensile, crack, composite, modulus, matrix)

Focuses on the physical properties of composite materials.

Factor 8

(cDNA, protein, amino, expressed, gene, expression, sequence)

Focuses on genetic sequencing biology.

Factor 9

(Z, beta, V, monoclinic, space, gamma, alpha)

Focuses on physical properties to define crystal structures.

Factor 10

(polymerization, polymer, polymers, copolymer, solvent, reaction, aqueous, molecular, radical)

Focuses on the synthesis and reactions of polymers, copolymers, and solvents.

Factor 11

(film, films, substrates, thin, deposition, deposited, substrate, --- grown, thickness, Si)

Focuses on the growth, deposition, and thickness of thin films and substrates, primarily with the material Si.

Factor 12

(catalyst, catalysts, catalytic, selectivity, activity, conversion, oxidation, co, reaction, active, reduction)

Focuses on properties of physical chemistry such as catalysts, oxidation, reactions, and reduction of CO.

Factor 13

Tail [-.288 to -.224] – (binding, affinity, recombinant, purified, vitro, antibody, activity)

Tail [.213 to .163] – (mRNA, blot, Northern)

Focuses on molecular biology properties associated with mRNA such as binding, affinity, and purity.

Factor 14

(particles, particle, powders, size, XRD, powder, TEM, --- sol-gel, nanoparticles, tiO2)

Focuses on the study of microstructures such as nanoparticles, powders using techniques like X-ray diffraction, TEM, and sol-gel.

Factor 15

(emission, spectra, absorption, fluorescence, excitation, blue, excited, red, intensity, wavelength, band, spectrum, UV, light)

Focuses on physical properties of spectroscopy such as emissions, spectra, absorption, fluorescence in the red, blue, and UV wavelength regions of the energy spectrum.

Factor 16

(equations, solutions, elements, earth, rare, element, solving, existence, nonlinear, solution, numerical)

Focuses on applied numerical mathematics of the chemistry of rare earth elements.

Factor 17

(increasing, decreases, increases, increases, decrease, increased, content, decreased, decreasing, temperature, size, higher, maximum, grain, ratio, rate)

Focuses on the change in physical properties of material composition of grains due to changes in temperature.

Factor 18

(energies, energy, ground, states, theory, bond, state, excited, quantum, density, level)

Focuses on the physical properties of quantum physics theory associated with energy such as energy states, energy levels, bonding energy, energy densities, and excitation energies.

Factor 19

(electrode, electrochemical, cyclic, impedance, solution, surface, potential, pH, modified)

Focuses on the physical chemistry properties used to characterize electrodes.

Factor 20

(plant, soil, plants, dry, root, --- concentrations, accumulation, matter, grown, environmental, culture, growth, production, total)

Focuses on the environmental impacts on plants & soils growth, concentrations, and production.

Factor 21

Tail [.318 to .148] (earth, rare, elements, XPS, heavy, photoelectron, ion, ions, trace, atomic, measured, Nd, compositions contents, metal)

Tail [-.267 to -.236] (equations, existence, solutions)

Focuses on the atomic interactions of heavy ions and photoelectrons of various elements such rare earth elements and metals using X-Ray Photoelectron Spectroscopy (XPS).

Factor 22

(stress, finite, numerical deformation, element, strain, solved, crack, elastic, shear, boundary)

Focuses on the physical properties of materials science used to characterize the effects of deformation such as stress, strain, cracks, elasticity, and boundaries.

Factor 23

(Fourier, transform, infrared, spectroscopy, FTIR, photoelectron, Raman, XPS, --- bonds, spectra, X-ray, bands, temperatures)

Focuses on spectroscopy techniques such as FTIR (Fourier Transform – InfraRed), XPS, and Raman spectroscopy.

Factor 24

(chromatography, column, separation, capillary, separated, buffer, liquid, pH, extraction, determination, purified)

Focuses on properties and uses of chromatography to separate mixtures of elements.

Factor 25

(NMR, H-1, elemental, IR, --- complexes, synthesized, spectra)

Focuses synthesizing Nuclear Magnetic Resonance (NMR) and IR imaging techniques.

Factor 26

(design, algorithm, simulation, control, system, systems, optimization, neural)

Focuses on algorithm design for simulations of control systems engineering using neural networks and optimization techniques.

Factor 27

(carcinoma, tumor, cell, cells, cancer, human, proliferation, staining, expression, apoptosis)

Focuses on cancer research for humans by studying the physiology of cancer cells and tumors.

Factor 28

(laser, optical, wave, Nd, output, wavelength, frequency, power, pulse, crystals, propagation, generation, crystal, width)

Focuses on physical properties used to characterize lasers using Nd crystals, such as optical properties, wavelengths, frequency, power, and pulse generation.

Factor 29

(regression, model, correlation, data, models, prediction, coefficient, coefficients, quantitative, linear, relationship)

Focuses on linear modeling techniques for regression, correlation, and prediction.

Factor 30

(polymerase, PCR, chain, gene, DNA, genetic, detected, reverse, genes, detect, reaction, RT-PCR, assay, controls)

Focuses on Polymerase Chain Reactions (PCR) and Reverse Transcription PCR (RT-PCR) used to detect DNA.

Factor 31

(dielectric, ceramics, sintering, ferroelectric, ceramic, --- electric constant, properties)

Focuses on the sintering and ferroelectric properties of dielectrics and ceramic materials.

Factor 32

(kinetics, kinetic, rate, reaction, equilibrium, constants, diffusion, reactions)

Focuses on Mechanic properties of physics such as kinetics, reactions, equilibrium and diffusion.

Factor 33

(pore, template, porous, diameter, aluminum, ordered, channels, adsorption, channel, area)

Focuses on the material properties of aluminum microstructures.

Factor 34

(rats, liver, tissue, aim, blood, groups, serum, group, vivo, treated, mice)

Focuses on in vivo physiology studies of livers, tissues, and blood of mice and rats.

Factor 35

(alloy, grain, alloys, microstructure, grains, deformation)

Focuses on microstructures of alloy materials to include their grains and deformation.

Factor 36

(microscopy, electron, transmission, scanning, diffraction, X-ray, TEM, microscope, photoelectron, SEM, spectroscopy, morphology)

Focuses on spectroscopic techniques such as X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) used in morphology studies.

Factor 37

(DSC, thermal, differential, crystallization, temperature, --- glass, scanning, melting, heating, temperatures, crystalline, transition)

Focuses on characterizing properties of crystallization and glass using Differential Scanning Calorimetry (DSC).

Factor 38

(image, algorithm, images, algorithms, accuracy, feature, recognition, technique, extraction, resolution)

Focuses on characterizing image processing algorithms feature recognition and extraction.

Factor 39

(field, magnetic, coupling, electric, spin, external, state, strong, dynamics, dependence, interaction, exchange, ferroelectric)

Focuses on the properties of nuclear physics.

Factor 40

(role, plays, models, simulations, processes, simulated defects, physical, structural, proteins, dynamics, molecular, genetic, model, cause, mechanism)

Focuses on modeling and simulations of the physical properties of proteins.

Table A6-1. Summary of Factor Matrix – Word Cluster Analysis (SCI, 40 Clusters)

Based On ==>	FACTOR MATRIX (WORD)
DATA SOURCE =>	SCI INDEX
# ITEMS ==>	40 FACTORS
CLUSTER#	DESCRIPTION
0	n/a

32	Mechanic properties of physics such as kinetics, reactions, equilibrium and diffusion.
31	sintering and ferroelectric properties of dielectrics and ceramic materials.
30	Polymerase Chain Reactions (PCR) and Reverse Transcription PCR (RT-PCR) used to detect DNA.
29	linear modeling techniques for regression, correlation, and prediction.
28	properties, wavelengths, frequency, power, and pulse generation.
	physical properties used to characterize lasers using Nd crystals, such as optical
27	cancer research for humans by studying the physiology of cancer cells and tumors.
26	algorithm design for simulations of control systems engineering using neural networks and optimization techniques.
25	synthesizing Nuclear Magnetic Resonance (NMR) and IR imaging techniques.
24	properties and uses of chromatography to separate mixtures of elements.
23	spectroscopy techniques such as FTIR (Fourier Transform – InfraRed), XPS, and Raman spectroscopy .
22	physical properties of materials science used to characterize the effects of deformation such as stress, strain, cracks, elasticity, and boundaries.
21	atomic interactions of heavy ions and photoelectrons of various elements such rare earth elements and metals using X-Ray Photoelectron Spectroscopy (XPS).
20	environmental impacts on plants & soils growth, concentrations, and production.
19	physical chemistry properties used to characterize electrodes.
18	physical properties of quantum physics theory associated with energy such as energy states, energy levels, bonding energy, energy densities, and excitation energies.
17	change in physical properties of material composition of grains due to changes in temperature.
16	applied numerical mathematics of the chemistry of rare earth elements.
15	physical properties of spectroscopy such as emissions, spectra, absorption, fluorescence in the red, blue, and UV wavelength regions of the energy spectrum.
14	diffraction, TEM, and sol-gel.
13	purity. study of microstructures such as nanoparticles, powders using techniques like X-ray
12	CO. molecular biology properties associated with mRNA such as binding, affinity, and
10	properties of physical chemistry such as catalysts, oxidation, reactions, and reduction of
11	growth, deposition, and thickness of thin films and substrates, primarily with the material Si.
10	synthesis and reactions of polymers, copolymers, and solvents.
9	physical properties to define crystal structures.
8	genetic sequencing biology.
7	physical properties of composite materials.
6	medical studies of humans for cancer research and potential causes and risk factors.
5	metric properties of detection such as limits, ranges, mathematical statistics, and sensitivities.
4	temporal (early and late) and location (middle, upper) divisions of regions and processes (eg. stages).
3	atomic physics, specifically the interactions and bonding on atoms, molecules, ligands, crystals, primarily those of hydrogen and oxygen.
2	physical properties of plasmas and gases related their flow and distribution.
1	biological sciences of cell physiology, primarily using cells from rats.

33	material properties of aluminum microstructures.
34	vivo physiology studies of livers, tissues, and blood of mice and rats.
35	microstructures of alloy materials to include their grains and deformation.
36	spectroscopic techniques such as X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) used in morphology studies.
37	characterizing properties of crystallization and glass using Differential Scanning Calorimetry (DSC).
38	characterizing image processing algorithms feature recognition and extraction.
39	properties of nuclear physics.
40	modeling and simulations of the physical properties of proteins.

Appendix 7 – Phrase Factor Themes (SCI Index, 40 Factors)

The same format as in Appendix 6 was used in this Appendix. The main difference is that phrases were used for the present analysis. Table A7-1 (below) contains a summary of the factor descriptions.

Factor 1

(Z, D-c, beta, C, crystal structure, M-r, monoclinic system, gamma, R-1)

Focuses on the physical properties to define crystal structures.

Factor 2

(Bcl-2, Bax, apoptosis, caspase-3, cytosol, molecular mechanism, --- treatment, cleavage, mitochondria, p53, activation, cell proliferation, induction)

Focuses on the gene onotoly of Bcl-2 associated X-proteins (BAX) and caspase-3 genes.

Factor 3

(Gd, Sm, Pr, La, Nd, ER, Tb, --- HO, Eu, Curie Temperature, H-1 NMR spectra)

Focuses on the elemental materials (Gd, Sm, Pr, La, Nd, ER, Tb, HO, Eu) identified in proton - Nuclear Magnetic Resonance (H-1 NMR) spectra.

Factor 4

(catalyst, catalysts, catalytic activity, selectivity, reaction conditions, catalytic properties, high activity, --- reaction, propylene, H2O2, activity)

Focuses on physical chemistry properties such as catalysts, oxidation, reactions, and activities of propylene and H2O2.

Factor 5

(Raman spectroscopy, Rutherford, laser deposition, films, spectroscopy, X-ray photoelectron spectroscopy, carbon, Fourier, substrates)

Focuses on the spectroscopic techniques such as Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier Transforms that exploit Rutherford scattering to characterize laser deposition of films and substrates that contain carbon.

Factor 6

(PP, polypropylene PP, blends, differential, calorimetry DSC, crystallinity, fibers, DSC, crystallization, morphology)

Focuses on changes in morphology and crystallization between different blends of Polypropylene (PP) fibers.

Factor 7

(heart, liver, kidney, lung, brain, --- tissues, rats, blood, testis, mice)

Focuses on physiology studies of organs (heart, liver, kidney, lung, brain, testis), blood and tissues of rats and mice.

Factor 8

(patients, methods, background, diagnosis, symptoms, specificity, disease, treatment, P)

Focuses on correlating backgrounds of patients and methods to identify specific symptoms with the appropriate disease diagnosis of diseases and treatments for the patients.

Factor 9

(isomers, energies, reactants, electronic structures, MP2, potential energy surface, ab initio calculations, CH3, vibrational frequencies, CL, calculation, dissociation, frequencies, energy, electronic structure)

Focuses on characterizing the physical properties of isomers.

Factor 10

(mechanical properties, fracture toughness, flexural strength, composites, tensile strength)

Focuses on the mechanical properties and strengths of composite materials.

Factor 11

Tail [-.583 to -.154] (R-gt(F, wR(ref)(F-2, beta, Z, gamma, C, alpha, crystal data, R-1)

Tail [.429 to .228] (photocatalytic activity, anatase, rutile, sol-gel method, TiO2, specific surface area, particle size)

Focuses on the physical properties of TiO2 particles.

Factor 12

(detection limit, linear range, sensor, oxidation, Na, hydrogen peroxide, Li, detection limits)

Focuses on the detection characteristics of sensors using Na, Li, hydrogen peroxide, such as limits, linear range, and oxidation.

Factor 13

(IL-6, TNF-alpha, LPS, --- ELISA, rats, dose-dependent manner, cells, activation, RT-PCR, production)

Focuses on study of cells and proteins of rats (IL-6, Tumor Necrosis Factor-alpha (TNF-alpha), and LPS).

Factor 14

(IR, elemental analyses, elemental analysis, H-1 NMR, UV, H-1 NMR spectra)

Focuses elemental analysis by synthesizing Nuclear Magnetic Resonance (NMR) and IR imaging techniques.

Factor 15

(wear resistance, wear, atomic force microscopy AFM, surface morphology, coatings, films, coating)

Focuses on the characterization of wear resistance and surface morphology of coatings and films using atomic force microscopy (AFM).

Factor 16

(cytoplasm, protein, situ hybridization, nucleus, transgenic plants, genome, gene, immunohistochemistry, RT-PCR, antibodies, cDNA, tobacco, molecular mass, virus, Escherichia coli, genomic DNA, infection, PCR, western blot)

Focuses on the study of genetic defects in cells and proteins resulting from tobacco use based on assessment techniques such as immunohistochemistry and RT-PCR.

Factor 17

(dielectric constant, dielectric properties, dielectric loss, temperature dependence, temperature, ceramics, dielectric, temperature range, room temperature, sol-gel process, ferroelectric properties, Curie temperature)

Focuses on the characterization of the material properties of dielectrics and ceramics.

Factor 18

(carbon dioxide, methane, alcohols, ethanol, acetic acid, methanol, flow rate, ammonia, mobile phase)

Focuses on the study of fuels such as methane, alcohols, ethanol, acetic acid, methanol, and ammonia which includes their release of carbon dioxide and flow rates.

Factor 19

(*D-c*, *Z*, *beta*, *M-r*, *C*, *crystal structure*, *space group P 1*, *cell parameters*, *gamma*)

Focuses on properties used to define crystal structures.

Factor 20

(Zn, Mn, Cu, Ni, Pb, CR, elements, Mg, Ti, CO, Cd)

Focuses on studies involving the following Transition Metal elements; Zn, Mn, Cu, Ni, Pb, CR, Mg, Ti, CO, and Cd.

Factor 21

(morphology, nanowires, diameter, transmission electron microscopy TEM, --- aluminum, transmission electron microscopy, nanotubes, pores, X-ray diffraction, silver)

Focuses on characterizing the morphology of aluminum and silver material nanowires using transmission electron microscopy (TEM) and X-ray Diffraction (XRD) techniques.

Factor 22

(*R*-gt(*F*, w*R*(ref)*F*-2, photocatalytic activity, anatase, beta, --- Z, TiO2, sol-gel method, specific surface area, rutile, C, gamma, particle size, alpha)

Focuses on the physical properties of TiO2 particles.

Factor 23

(N-2, O-2, oxides, H-2, CuO, TPR, atmosphere, CH4, Ar, NiO)

Focuses on the elements used in Temperature Programmed Reduction/Reaction (TPR) experiments, such as Nitrogen, Oxygen, oxides (eg. Copper & Nitrous Oxide), Hydrogen, CH4, and Argon.

Factor 24

(HCC, hepatocellular carcinoma HCC, gene expression, tumors, metastasis, molecular mechanism, cell proliferation, tumor)

Focuses on physiology of cells and genes and their effects on hepatocellular carcinoma (HCC).

Factor 25

(plants, soil, concentrations, toxicity, root, germination, treatments, soils, plant, wheat)

Focuses on plant (eg. wheat) and soil toxicity studies and their effects on roots, germination and related treatments.

Factor 26

(differential, Fourier, calorimetry, calorimetry DSC, thermogravimetric analysis, infrared spectroscopy, thermal stability, optical microscopy, infrared FTIR spectroscopy, C-13 NMR)

Focuses on spectroscopic techniques used to characterize thermal stability. These include: Differential Scanning Calorimetry (DSC), Fourier Transfor Infra Red (FTIR), Themogravimetric Analysis (TGA), and C-13 Nuclear Magnetic Resonance (NMR).

Factor 27

(sensitivity, specificity, high sensitivity, detection, antibodies, mobile phase, separation, urine, flow rate, antibody, antigen, accuracy, assay, serum samples, serum)

Focuses on the detection properties used in assaying antibodies, antigens, serums, and urine which include sensitivity, specificity, mobile phase, flow rates, accuracy, and separation capabilities.

Factor 28

(XRD, TEM, XPS, FR-IR, TPR, SEM, BET, FTIR)

Focuses on spectroscopy techniques such as X-ray Diffraction (XRD), Tomographic Electron Microscopy (TEM), XPS, SEM, BET, FR-IR, and FTIR.

Factor 29

(females, males, sexes, age, weight, animals, gestation, death, sex, specimens)

Focuses on the lifespan of animals based sex and weight.

Factor 30

(smoking, men, women, gender, risk factors, tobacco, increased risk, age, pregnancy)

Focuses on the risks to humans of smoking tobacco based on gender, age and pregnancy.

Factor 31

(Ba, Mo, SR, organisms, W, Eu, Na, HF, precursors, CR, Au)

Focuses primarily on transition metals (Mo, W, Na, HF, CR, Au) and organisms used as precursors.

Factor 32

Tail [-.323 to -.214] (detection limit, electrochemical behavior, cyclic voltammetry, linear range, gold electrode, modified electrode, concentration, electrode)

Tail [.203 to .161] (XRD results, ZnO, regeneration, sulfur)

Focuses on characterizing the electrochemical behavior of electrodes (gold and ZnO) using XRD.

Factor 33

(zinc, iron, copper, calcium, nickel, absorbance)

Focuses on absorbance properties of metals, such as zinc, iron, copper, nickel, and calcium.

Factor 34

(E. coli, bacteria, Escherichia coli, chitosan, supernatant, enzyme, PCR, molecular weight, FTIR, NMR, pH values, protein, precipitation, purification, HPLC, copolymer, MS, H2O2, western blot, solid)

Focuses on determining the presence of E. coli and bacteria in chitosan, supernatants, enzymes, proteins, and copolymers using techniques such as PCR, FTIR, and NMR.

Factor 35

(alloy, microstructure, grains, microstructures, transmission electron microscopy TEM, grain boundaries, electron microscopy SEM, annealing, grain boundary, grain size)

Focuses on characterizing the properties and microstructures of alloys, such as grains, grain boundaries, and grain size using TEM and SEM techniques.

Factor 36

Tail [-.24 to -.16] (X-ray photoelectron spectroscopy XPS, hydrolysis, infrared FTIR spectroscopy, transmission electron microscopy TEM, Fourier, TEM images, X-ray powder diffraction XRD)

Tail [.235 to .164] (H-2, methane, CH4)

Focuses on spectroscopic techniques such as XPS, FTIR, TEM, and XRD to characterize the hydrolysis of elements such as hydrogen and methane.

Factor 37

(resistivity, films, atomic force microscopy, surface roughness, hardness, roughness, electrical properties, surface morphology)

Focuses on characterizing the material properties of films and surfaces using atomic force microscopy (AFM).

Factor 38

(inhibition, inhibitory effect, cytotoxicity, compounds, cells, vitro, inhibitors, biological activity, mice, activity, nitric oxide, inhibitory effects, inflammation, vivo, immunohistochemical staining, cell proliferation, supernatant, assay)

Focuses on both in vivo and in vitro physiology studies of mice cells to characterize the effects of inhibitors and cytotoxicity on cell proliferation using immunohistochemical staining techniques.

Factor 39

(TGA, DSC, swelling, NMR, Chemical Industry, --- glass transition temperature, IR, membranes, hydrogels)

Focuses on TGA, DSC, and NMR techniques to characterizes swelling of glass, membranes, and hydrogels used in the Chemical Industry.

Factor 40

(holes, lattice, recombination, hole, CuO, electron, surface modification)

Focuses on material composition of solid state surfaces using CuO.

Table A7-1. Summary of Factor Matrix – Phrase Analysis (SCI, 40 clusters)

Based On ==>	FACTOR MATRIX (PHRASE)					
DATA SOURCE =>	SCI INDEX					
# ITEMS ==>	40 FACTORS					
CLUSTER#	DESCRIPTION					
0	n/a					
1	physical properties to define crystal structures.					
2	gene onotolgy of Bcl-2 associated X-proteins (BAX) and caspase-3 genes.					
3	elemental materials (Gd, Sm, Pr, La, Nd, ER, Tb, HO, Eu) identified in proton - Nuclear Magnetic Resonance (H-1 NMR) spectra.					
4	physical chemistry properties such as catalysts, oxidation, reactions, and activities of propylene and H2O2.					
5	spectroscopic techniques such as Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier Transforms that exploit Rutherford scattering to characterize laser deposition of films and substrates that contain carbon.					
6	morphology and crystallization between different blends of Polypropylene (PP) fibers.					
7	physiology studies of organs (heart, liver, kidney, lung, brain, testis), blood and tissues of rats and mice.					
8	correlating backgrounds of patients and methods to identify specific symptoms with the appropriate disease diagnosis of diseases and treatments for the patients.					
9	characterizing the physical properties of isomers.					
10	mechanical properties and strengths of composite materials.					
11	physical properties of TiO2 particles.					
12	detection characteristics of sensors using Na, Li, hydrogen peroxide, such as limits, linear range, and oxidation.					
13	study of cells and proteins of rats (IL-6, Tumor Necrosis Factor-alpha (TNF-alpha), and LPS).					
14	elemental analysis by synthesizing Nuclear Magnetic Resonance (NMR) and IR imaging techniques.					
15	characterization of wear resistance and surface morphology of coatings and films using atomic force microscopy (AFM).					
16	study of genetic defects in cells and proteins resulting from tobacco use based on assessment techniques such as immunohistochemistry and RT-PCR.					
17	characterization of the material properties of dielectrics and ceramics.					
18	study of fuels such as methane, alcohols, ethanol, acetic acid, methanol, and ammonia which includes their release of carbon dioxide and flow rates.					
properties used to define crystal structures.						
studies involving the following Transition Metal elements; Zn, Mn, C Mg, Ti, CO, and Cd.						
21	characterizing the morphology of aluminum and silver material nanowires using transmission electron microscopy (TEM) and X-ray Diffraction (XRD) techniques.					
22	physical properties of TiO2 particles.					

23	elements used in Temperature Programmed Reduction/Reaction (TPR) experiments, such as Nitrogen, Oxygen, oxides (eg. Copper & Nitrous Oxide), Hydrogen, CH4, and Argon.
24	physiology of cells and genes and their effects on hepatocellular carcinoma (HCC).
25	plant (eg. wheat) and soil toxicity studies and their effects on roots, germination and related treatments.
26	spectroscopic techniques used to characterize thermal stability. These include: Differential Scanning Calorimetry (DSC), Fourier Transfor Infra Red (FTIR), Themogravimetric Analysis (TGA), and C-13 Nuclear Magnetic Resonnance (NMR).
27	detection properties used in assaying antibodies, antigens, serums, and urine which include sensitivity, specificity, mobile phase, flow rates, accuracy, and separation capabilities.
28	spectroscopy techniques such as X-ray Diffraction (XRD), Tomographic Electron Microscopy (TEM), XPS, SEM, BET, FR-IR, and FTIR.
29	lifespan of animals based sex and weight.
30	risks to humans of smoking tobacco based on gender, age and pregnancy.
31	primarily on transition metals (Mo, W, Na, HF, CR, Au) and organisms used as precursors.
32	characterizing the electrochemical behavior of electrodes (gold and ZnO) using XRD.
33	absorbance properties of metals, such as zinc, iron, copper, nickel, and calcium.
34	determining the presence of E. coli and bacteria in chitosan, supernatants, enzymes, proteins, and copolymers using techniques such as PCR, FTIR, and NMR.
35	characterizing the properties and microstructures of alloys, such as grains, grain boundaries, and grain size using TEM and SEM techniques.
36	spectroscopic techniques such as XPS, FTIR, TEM, and XRD to characterize the hydrolysis of elements such as hydrogen and methane.
37	characterizing the material properties of films and surfaces using atomic force microscopy (AFM).
38	both in vivo and in vitro physiology studies of mice cells to characterize the effects of inhibitors and cytotoxicity on cell proliferation using immunohistochemical staining techniques.
39	TGA, DSC, and NMR techniques to characterizes swelling of glass, membranes, and hydrogels used in the Chemical Industry.
40	material composition of solid state surfaces using CuO.

Appendix 8A MultiLink - Word Dendogram

- -Science Citation Index
- -2002 Database

A word frequency analysis was performed on the Abstracts from the 2002 SCI database. The highest frequency high technical content words were selected, and a co-occurrence matrix was generated. It was normalized using the mutual information index. Word clustering was generated using the WINSTAT statistical package, and the following dendrogram was produced. Figure A8A-1 below shows the entire dendogram. Figure A8A-2 shows the entire dendogram in a larger readable version in pieces over the following 5 pages. This dendrogram was the basis for the taxonomy used in the text, and shown in detail in Appendix 8B.

Figure A8A-1 Entire MultiLink - Word Dendogram (small scale)

Figure A8A-2. Entire MultiLink - Word Dendogram (large scale)
-- shown in following 5 pages

Appendix 8B MultiLink - Word Taxonomy (SCI)

- -Science Citation Index
- -2002 Database

This is the taxonomy that resulted from the dendrogram in Appendix 8A. Figure A8B-1 (also Figure 3 in the text) shows the top-level taxonomy (Levels 0-4).

Figure A8B-1. Multi-link Word Taxonomy (SCI, Levels 0-4)

LEVEL 0	LEVEL 1	LEVEL 2	LEVEL 3	LEVEL 4
			Medical treatments using different concentrations of	Changes in Concentrations, Treatments & Rates
		Clinical Medical Research	plasma & blood	Blood & Plasma
			Biological mechanisms	Biologic studies of cancer and diseases
	Biological Sciences		of cancer and diseases	Reactions
			Polymers	Polymer Chains
		Organic Chemistry	Tolymers	Polymer Catalysts
		Organic Chemistry	Copolymers	Copolymer & Solvents
Science			Copoly mers	Systems
(Biological, Environmental,	Environmental & Material Sciences		Environmental	Epidemiology, Agronomy, & Physics
& Material)		Environmental Sciences & Material Science	Sciences	Detection & Characterization of Trace amounts of substances
		(Ceramic Composites & Nanoparticles)	Ceramic Composites &	Properties of ceramic composites, nanoparticles, & alloy microstructures
			Nanoparticles	Porous templates & pore temperatures
			Powders, Thin Films, Substrates, & Glass	Characterization of Powders, Thin Films, and Substrates
		Material Science (Powders, Thin Films,		Characterization of Glass
		Substrates, & Glass)	Inorganic Chemistry	Chemistry of atoms, molecules, ligands, & compounds
				Absorption

Figure A8B-2. Multi-link Word Taxonomy (SCI, All Levels)

SC!)	Changes Chan	Blots of charry cells, etc. Blots of charry cells, etc. Inducting things like DNA, and a state of cells, etc. Elements of PCR (Polymerase Chain Reaction) such as lines.	Inhibiting Proliferation Inhibiting Proliferation Inhibiting Proliferation Inhibiting In	Survival of Diseases & Patients & Turnors Disease & Gracer & Cancer of Survival & & Cancer of Survival & & Serum		- Amino - Am	reaction chains chains Polymers activity	
Multi-Li L4 LEVEL 5 LEVEL 6 LEVEL 7 LEVEL 8 LEVEL 9 LEVEL 10	- Medical treatments using different concentrations of plasma & blood	ulasti og 9	penes and genes and cells	dispasses	· Level & Vivo		n e e e e e e e e e e e e e e e e e e e	
EVEL 0 vel 1 level 2 level 3 level 4 level 5 level 6 level	A Clinical Medical g . Can and and and and and and and and and a							

3CI) L. 11 LEVEL 12 LEVEL 13 LEVEL 14 LEVEL 15 LEVEL 18 LEVEL 17 LEVEL 19 LEVEL 20	contalysts conversion selectivity oxidation active co co polymerizati polymerizati copolymer solvent	Systems a Simulation argorithms Simulation and Networks Optimizati Networks Optimizati Networks Optimizati Networks Optimizati	Epidemiol ogical Studies	Stages & Zones of Plants & Stages Accumulat - Dry soil Soil things in the souls and things in things in things in things in the souls and things in the souls are souls as a second and the second and the souls are souls as a second and the souls are souls as a second and the second and	- States of Activation & Kinetics of Activation & Kinetics of Ground & Cinetics (Ground & Cinetics of Cinetics)	Properties associated with Lesers Waveleng Have a Control on to the American Phenome Ince & Incresce Phenome Ince & Incresce Phenome Ince & Incresce Phenome Ince & Incresce I
3 LEVEL 1	xri - Polymer Catalysts		Epidemiol ogy	Адгоноту	Kinetics & Nuclear Physics	Lasers
PLEVEL 1.	Polymers xi · Polymers e · Copolymers		Epidemiol ogy (humans) & A Agronomy (plants & soils) Studies			Physics
4.				viii - Epidemiology, Argonomy, & Physics		
Multi-Lit LEVEL 10					d - Erwironm ental	88900000000000000000000000000000000000
MUNELE TEVEL 6VELT LEVEL 2 LEVEL 3 LEVEL 6 LEVEL 6 LEVEL 7 LEVEL 8 LEVEL 9 LEVEL 10	رن - Organic Chemistry					

(12S)

CL 11 LEVEL 12 LEVEL 13 LEVEL 14 LEVEL 15 LEVEL 16 LEVEL 17 LEVEL 19 LEVEL 19	Cha Zing pow	thickness with of films with a persition thin films & thickness with a persition thin films & thickness with a persition thin thin films & thickness with a persition thin thin a persition thin a persition thin thin thin thin a persition thin thin thin thin thin thin thin thi	TIO2 & Spectrums spectrum	es - Synthesized absorption - Synthesized absorption - Intered - Intered - Intered - Intered - Intered - Intered - Intered - Intered - I	DSC Glass melting heating heating droups	Characteri Compoun (monoclini saturate) Characteri Compoun (monoclini da compound da compound (monoclini da thems) Characteri Char
LEVEL 8 LEVEL 9 LEVEL 16	Characteri Characteri 21ng zing powders, powders, thin films thin films substrates	substrates	· TiO2 &	Spectracopy Techniques	- Characterization of Glass	
	O 10 20 40 40	(h - Characteri zation of Powders, Thin Films, and Substrate		ਲ ਲ	/// - Characte	- Inorganic Chemistry
LEVEL 6 LEVE		b - Powders, Thin Flims, Flims, Substrate		Material Science of Science of Thin Films, Substrate s, & Glass		ii.
LEVEL 6, vel 1 LEVEL 2 LEVEL 3 LEVEL 4 LEVEL 5 LEVEL 6 LEVEL 7				→ ∠ OJ LL }→ LL CJ 45		

Appendix 8C MultiLink – Phrase Dendogram (SCI)

- -Science Citation Index
- -2002 Database

This dendrogram is the phrase equivalent of Appendix 8A. A phrase frequency analysis was performed on the Abstracts from the 2002 SCI database. The highest frequency high technical content phrases were selected, and a co-occurrence matrix was generated. It was normalized using the mutual information index. Phrase clustering was generated using the WINSTAT statistical package, and the following dendrogram was produced. Figure A8C-1 below shows the entire dendogram. Figure A8C-2 shows the entire dendogram in a larger readable version in pieces over the following 5 pages. This dendrogram was the basis for the taxonomy shown in detail in Appendix 8D.

Figure A8C-1. Entire MultiLink-Phrase Dendogram (small scale)

Figure A8C-2. MultiLink-Phrase Dendogram (large scale) -- shown over next 5 pages.

Appendix 8D MultiLink - Phrase Taxonomy (SCI)

- -Science Citation Index
- -2002 Database

This Appendix is the phrase equivalent of Appendix 8B. This is the taxonomy that resulted from the dendrogram in Appendix 8C. Figure A8D-1 shows the top-level taxonomy (Levels 0-4).

Figure A8D-1 Multilink – Phrase Taxonomy (SCI, Levels 0-4)

LEVEL 0	LEVEL 1	LEVEL 2	LEVEL 3		LEVEL 4
		Organic	Measurements of carbon crystals & cell structures	struct R[gt](urements of carbon crystals & cell tures (F) & wR[ref](F^2) [Note: gt and e subscripts]
	Physical Sciences (Organic	Chemistry	Pyridines		
	Chemistry)		Elemental	Eleme	ental analysis of ligands
		Elemental	Analysis (e.g. Ligands)	C-13	NMR
		Anaysis	Electronic Spectra	ı	
Physical & Biological Sciences	Physical (Materials, Nanotechnology & Inorganic Chemistry) & Biological	Material Science, Nanotechnology, & Biologic Cancer Studies	Material Science & Nanotechnologies		Using cyclic voltammetry to detect salts & ammonias to assess reactions & catalysts properties when reacting with isomers Material Science of Microstructures (particles, nanotubes, nanowires, films, substrates, crystals, organic fibers, polymers, copolymers, glass, ceramics, composites, & coatings)
			Biologic studies of cancer		Genetic physiology of cells from cancer patients (rats - organs & tissues) looking at cells to determine effects of altering tobacco with transgenic plants (maybe wheat) antibodies to assess risks of smoking on males, females and gestation
	Sciences				Sensitivity & Specificity Elements (Cu, Mn, Zn, Mg, CO, Ni,
			Elements (Inorgai Chemistry)	nic	Pb, Cd, Ti, Mo, W, Ba, Au, HF) Cr (SR - organisms)
		Inorganic	Chemistry)		Elements (Iron & Calcium)
		Chemistry	Elements (Inorganic Chemistry)		Elements (Nd, La, Pr, Sm, Gd, Tb, HO, Eu, ER {Endoplasic Reficulum =>I.e. cell membrane)
					Currie Temperature

Figure A8D-2 Multilink – Phrase Taxonomy (SCI, All Levels)

		LEVE
	8 - Physical Sciences (Chemistry)	VEL1 LEVEL 2 LEVEL 3 LEVEL 4 LEVEL 5 LEVEL 6 LEVEL 7
	√ . Organic Chemistry	LEVEL 3
282328923505	h - Measurem ents of carbon carbon crystals & structures structures	LEVEL 4
illi - sing yelic ollammet ollammet / to elect alts & actions sactions	d - R[gt](F	LEVEL 5
14 - Cyclic Vyto detect salts & ammonias reactions & catalysts	20 ·	LEVEL 6
9 P C	F/2) [Note:	LEVEL 7
Catalytic properties of CuO		Multi-I
	subscrip	Multi-Link " "e
- R	f - Elemental Analysis (e.g. Ligands) Electronic Spectra	-e (SCI)
Looking at flow rates and phases to sense ammonias and salts - Catalytic of properties as and salts Reaction- (temperature, conditions)	x - ental Elemental analysis of si ligands ds) lx - C-13 NMA	EL 11/LEVI
g at ites s to Catalytic properties	is of # # # # # # # # # # # # # # # # # #	EL 12 LEVE
Selectivity of		L 13 LEVE
Na & CI (Salts) Catalysts		L 12 LEVEL 13 LEVEL 14 LEVEL 15
	carbon beta Z gamma D-c iM-r cyrstal st monoclin space gro R-1 R-1 R-1 F8 - R-gtt f7 - wR(r pyridine elemental IR H-1-NMR UV ligand C-13 NMR	.15
concentrations detection limits linear range oxidation hydrogen peroxide propylene cyclic voltammetry electrochemical behavior modified electrode gold electrode gold electrode acetic acid sensor ammonia flow rate mobile phase catalysts catalytic activity selectivity catalytic properties activity reaction temperature reaction conditions hydrogenation	carbon beta 2 gemma D-c IM-r cyrstal structure monoclinic system space group P2(1)/o R-1 R cell parameters space group P-1 cyrstal data crystal f-8 - R-gt(F f-7 - wR(ref)(F-2 pyridine elemental analysis IR H-1-NMR UV ligand C-13 NMR	LEVEL 16
avior		6

LEVEL 18 LEVEL 14 LEVEL 18 LEVEL 18	oxides TPR CuO	ethanol atschora methanol carbon dicode	H-3 Idhogen 0-2 abrotphere	analyse controllers ab into controllers APZ Abritons frequencies	potential energy surface of actions of actions of the provident on the surface of	A TIM to 19 (4) Instrumentation electron microscopy control co	sol-gai method photocatalytic activity analyse TIGS	apedito surface area SET	abor of Meles	Manage parts parts Parts	Hinns attentic tones misroscopy surface mosphalogy surface coughness X-ray photoscopy spectroscopy amosting	Substrates Remain spectroscopy Insertition Retherists Retherists Retherists
(CVEL 19] LEVEL 14] LEVEL 13] LEVEL 13] LEVEL 14] LEVEL 15]		Albahols & CC2 offectiving actions in the assessment			1	Using XIID & TEM to analyse morphology of taings	Particles (TOCs) erralysis Particles (TOCs)			Narowine & Manokabes (of all all all all all all all all all al	Fire & Aurtice Fire & Aurtice Surface y analysis with AFM Analysis	Bublance analysis with specifics appy
WINDS TEVEL 7 LEVEL 8 LET		Allomois & CO2 effect					Material Source (Portula)	Nancoulos A Nancoulos		Nanosines Nanosiste s, Films, & Substitute	Pirro & Substante	
WELS LEVELS LEVE	properties wiren medina	ocusers screens		13 - 6001655							Agorial Reservo Seservo Particion Marcovite	R, Flints, Solutioner, Crystal, Rojersex, Ecpolyme
AND ALL LEWIS 20 LEWIS 20 LEWEL AT LEWIS 2011.	o.d	atta Poor								d - National Ecomos & Nanonelhologies		
WW. WE												

	EVEL 10 LEVEL 11 LEVEL 12 LEVEL 13 LEVEL 14 LEVEL 15	thermal stability thermal stability Fourier Fourier Infared spectroscopy thermogravimetric analysis optical microscopy crystalization crystalization crystalization phase separation phase separation phase separation phase separation phase separation phase separation glass transition temperature	Using FTIR to look at e.coli polymer polymer and chitosans on polymer surfaces polymer surfaces bacteria chitosan	Properties of Alloy microstructures grain boundary grains	Strangth properties of coatings	Treatments of patients with cancer & tumors (hepatocellular carcinoma HCC)) treatments tesions tumors cancer hepatocellular carcinoma HCC
i Š	2000	Crystals, Polymers, & Glass e e e ers, Glass)	Using bacter polym	Prope	Composit es, Costings, & Alloy of Microstruc composite s & coatings	cancer & tum
Multi-Link	LEVEL 8 LE	Material Science (Crystals, Polymers, Coploymers, & Glass)			è «	(patients with ccc)
	17	Glass)			ff - Material properties of alloy composites and ceramic coatings	Treatments of pati carcinoma [HCC])
		vii - Material Science of Microstructures (particles, nanotubes, nanowires, films, substrates, crystals, organic fibers, polymers, copolymers, corpolymers, corposites, & coratings)				
	LEVEL 3 LEVEL 4 LEVEL 5 LEVEL					
	VEL 1 LEVEL 2	2 - Material	Science, Nanotech nology, & Biologic Cancer Studies			
	:VEL 1				Physical (Materials, Nanotech nology & Inorganic Chemistry) \$\) \$\) \$\) \$\) \$\) \$\) \$\) \$\) \$\) \$\	
	LEVL		i. Gas			

(JS)	OLEVEL 11 LEVEL 12 LEVEL 13 LEVEL 14 LEVEL 15	ndria.	The factor of the control of the con	District feature of emerician as animals and state and s
	VEL 5 LEVEL 6			
	LEVEL 4 LEVEL 5	v/ - Genetic 10 physiology of cells from center	patients (rats - organs & tissues) looking at cells to determine effects of altering altering plants (maybe wheat) antibodies to assess risks of smoking on males, females and gestation	
	LEVEL 2 LEVEL 3		Biologic studies of cancer	_
	VEL 1 LEV			_
	LEVE			

EL 13 LEVEL 14 LEVEL 15 LEVEL 16 smoking animals gestation	8 - sensitivity 7 - specificity	Copper Mn Zinc Mg CO CO CD Ti No W W BB SB SB Organisms Au HF Au HF Sm Sm EB Curle temperature
Multi-Link C (SCI) EVEL 5 LEVEL 6 LEVEL 7 LEVEL 8 LEV. (epidimiology of smoking)	- Sensitivity & Specificity	Elements (Cu. Mn, Zn. Mg, Co. Ni, Elements Mo, W, (Inorganisms Ba, Au, Chemistry HF) Cr (SR - organisms for Chemistry HO, Eu, Elements (Inon & Calcium)
VEL 1 LEVEL 2 LEVEL 3 LEVEL 4 LEVEL 5 LEVEL	y - Sensitivity	7 - Inorganic Chemistry

Appendix 8E – MultiLink – Word Flat Taxonomy

Figure A8E-1 – Multi-Word Flat Taxonomy

MULTI-LINK (WORD) - FLAT TAXONOMY							
THEME	SUB-THEME						
	Cancer & Disease Research						
BIOLOGICAL & MEDICAL	Clinical Medical Treatments						
SCIENCES	Epidemiology						
	Genetics						
	Inorganic Chemistry						
CHEMISTRY	Organic Chemistry						
CILLANDINI	Physical Chemistry						
	Polymers & Copolymer Chemistry						
	Algorithms						
COMPUTER SCIENCES &	Modeling & Simulation						
SYSTEMS	Signal & Image Processing						
	Systems						
ENVIRONMENTAL SCIENCES	Agronomy						
	Ecology						
	Commission & Commission						
	Ceramics & Composites						
	Crystals Glass						
MATERIAL SCIENCES							
	Nanoparticles & Microstructures Powders						
	Thin Films & Substrates						
	Tilli Tillis & Substrates						
	General Physics						
	Lasers & Optics						
PHYSICS & MATHEMATICS	Mathematics						
	Spectroscopy						
	1 Specificscopy						

Appendix 9A – Greedy String Tiling (GST) Method

Greedy String Tiling clustering is a method of grouping text or text character documents (files) by similarity. All documents to be grouped are placed in a database. Each pair of documents is compared by GST, an algorithm originally used to detect plagiarism (Wise, 1993; Prechelt et al, 2002), and a similarity score is assigned to the pair. Then hierarchical aggregation clustering (Rasmussen, 1992; Steinbach, 2000) is performed on all the documents, using the similarity score for group assignment.

Greedy String Tiling computes the similarity of a pair of documents in two phases. First, all documents to be compared are parsed, and converted into token strings (words or characters). Second, these token strings are compared in pairs for determining the similarity of each pair. During each comparison, the GST algorithm attempts to cover one token string (document) with sub-strings ('tiles') taken from the other string. These sub-strings are not allowed to overlap, resulting in a one to one mapping of tokens. The attribute greedy stems from the fact that the algorithm matches the longest sub-strings first.

A number of similarity metrics can be defined once the tiling is completed. One similarity metric is the percentage of both token strings that is covered. Another similarity metric is the absolute number of shared tokens. A third similarity metric is the mutual information index. Depending on the purpose of the matching, additional weightings can be used for the similarity matrix to increase the ranking precision. For example, if plagiarism is one study objective, additional weighting could be given to shared string length. All similarity metrics have positive and negative features, and the choice of metric is somewhat influenced by the study objectives and the structure of the database.

Once the document similarity matrix has been generated, myriad clustering techniques can be used to produce a classification scheme (taxonomy). In the present study, multilink hierarchical aggregation was used. Three clustering variants were actually generated, although the extension to other clustering schemes is straight-forward. Single-link, average-link, and complete-link variants are implemented. The variants differ in how the decision of merging to clusters is made. Single-link requires that the similarity of at least two documents is higher than a certain threshold, while complete-link requires that the similarity between all documents in both clusters be higher than a threshold. Average-link requires that the average pair-wise similarity between the documents of both clusters exceed the threshold. For the present study, complete-link appeared to give good results, and was the clustering method used.

Appendix 9B – Greedy String Tiling Clusters 68 Clusters (SCI)

A summary of the cluster analysis is shown below in Table A9-1. Each cluster is shown in more detail immediately after Table A9-1. The format for each cluster is cluster number, followed by number of Abstracts in cluster (in parentheses), followed by phrases and their frequencies. Clusters are ordered by number of Abstracts in cluster, largest first.

Table A9-1. Summary Listing of GST Cluster analysis

Based On ==>		GST
DATA SOURCE ==>		SCI INDEX
# ITEMS ==>		68 CLUSTERS
CLUSTER	#	
#	RECORDS	DESCRIPTION
0	n/a	n/a
1	234	studies involving the growth of crystals and their associated material properties characteristics. The key words "(C) Elsevier Science B. V." is a publisher often referenced in the original reference data library.
2	230	size metrics such as angstroms, nm, and degrees that are associated in characterizing atom elements, crystal structures, compounds, cells, and groups.
3	190	characterizing of thin films and substrates using various spectroscopic techniques such as xrd, afm, xps, ftir, TEM, SEM, and sol-gel method.
4	119	physical chemistry properties of catalysts and reactions of various elements and compounds.
5	117	characterization of microstructure materials such as nanoparticles, nanowires, powders, and crystals using various spectroscopic techniques that include TEM, SEM, and XRD tio2, aluminum oxide??
6	112	different methods for determining and/or detecting concentrations of different solutions along with their detection limitations.
7	111	physiology of cells, genes, and human proteins to detect and treat cancers with emphasis on gastric cancer, anterior polar cataracts, and epithelial cells.
8 94		control system theory and feedback methods for applied applications using neural networks, fuzzy logic, in the following systems such as power, time, chaotic, closed loop, and control.
9	86	on methods and treatments of Chinese patients with various diseases such as nasopharyngeal carcinoma, acute cholangitis, acute testicular torsion, by comparing the different doses, and various other factors.
10	86	on low temperature effects on sintering & dielectric properties of ceramics (ferroelectric, and glass) and piezoelectric materials using XRD to analyze these properties.
11	76	study of atomic and molecular properties of b3lyp (benzoylcyclohexanedione).
12	74	mathematics symbol notations commonly associated with statistics.
13	68	terminology associated with applied mathematic boundary value problems such as those used in neural networks.
14	66	genetic sequencing and molecular biology of proteins, genes, amino acids, cells including those of human fetal brains, plants and escherichia coli.
15	66	modeling algorithms used in fluid dynamics, and ecosystems.
16	64	on linear and non-linear numerical methods for applied mathematics such as finite element analysis, least squares, navier stokes, time domain method, and stochastic averaging method.
17	62	characterization of glucopyranosyl-like compounds and structures using spectroscopic techniques.

10		techniques such as sol-gel and piezoelectric quartz crystals used to characterize surface
18	57	properties of electrodes.
19	49	properties of lasers and optics, emphasizing nd yag lasers.
20	46	characterizing the properties of Titanium dioxide (TiO2) microstructure materials such as particles, powders, crystallines, and thin films using sol-gel and XRD techniques.
21	45	algorithms such as adaptive genetic, neural network, fuzzy logic, and winc .
22	43	effects of temperature on various magnetic properties associated with compounds.
23	41	the properties and effects of polymerization and polymers.
24	38	physiology of cells, proteins, and tissues and their relation to various forms of cancer in humans such as gastric cancer, hepatocellular carcinoma, breast cancer, liver cancer.
25	38	effects of ion implantation into silicon layers using metal vapor vacuums and analyzing the effects via FTIR and UV visible spectroscopic techniques.
26	37	characterizing emission properties that occur in the study of photoluminescence devices.
27	34	material properties of various alloys (s, h, ti, fe, co, zn, b2, nb, cu).
28	33	detecting and measuring the properties of nuclear particles, such as decay schemes and branching ratios.
29	33	modeling methods for the kinetic behavior various physical properties.
30	33	microstructure properties of al203, composites, particles, powders, and ceramics.
31	32	characterizing the corrosion resistance properties on surfaces, coatings, and films of various steel alloys.
32	31	dielectric properties of microstructures such as fullerenes, powders, and nanoparticles of the following materials, si, gd, ni, carbon, and coal.
33	31	characterizing the properties of various polymer and copolymer complexes from their fluorescence spectra.
34	30	characterizing the mechanical properties of polypropylene (pp) polymer and copolymer blends, composites and other structures using techniques such as DSC and SEM,
35	29	microstructure properties of alloy materials consisting of ti, ni, sr, nb, mg, al.
36	29	mechanical properties, such as strength, of polyethylene magnesium hydroxide composites, fibers, concrete, woodceramics, and polysilicon.
37	29	physiology of rat cells to determine the effects on blood flow from maotai liquor and white wine.
38	29	characterizing physical properties of various compounds for different temperature ranges.
39	28	characterizing the thermal properties and crystalline structures of glass and polymers using techniques such as xrd, dsc, and ftir.
40	28	modeling the properties and interactions of molecular compounds and structures.
41	28	characterizing electron quantum physics properties of various elements.
42	27	models of physical properties of nuclear particles such as energy states, spins, antiferromagnetic coupling, and magnetic fields.
43	27	characterizing the magnetic properties of iron (fe) films and nanocomposite microstructures.
44	27	using fluorescence methods to characterize dna binding abilities resulting from dna interactions with other compounds.
45	26	various methods and modeling of the effects of physical properties related to temperature.
46	26	studying the effects of surface area related to adsorption of such powder materials as tio2 and al2o3 using xrd and xps techniques.

		studying changes in gene expression of cells, proteins, and tissues due to hepatocellular
47	26	carcinoma (HCC).
48	26	components of mathematics equations, solutions and techniques.
49	26	various studies using the technique of scanning tunneling microscopy (STM) to image surfaces.
50	25	studying the concentration dependent physiology of cells and membranes from rats.
51	24	study of magnetic fields and their effects.
52	24	reactions and synthesis of organic compounds.
53	24	signal processing algorithms for feature extraction in images and speech recognition using such techniques as fractals, wavelets, and neural networks.
54	24	heat transfer properties applied to refrigeration systems.
55	23	characterizing soil properties such as soil moisture and their effects.
56	23	material properties such as deformation and strain on the grains of alloy microstructures.
57	21	adsorption properties of organic compounds such as bovine serum albumin (BSA) proteins.
58	21	ferroelectric, dielectric, and pyroelectric properties of thin films, to include their effects on polarization and coupling.
59	21	sciences with second and third order processes such as harmonics, wave generation, phases, and order primarily associated with the physics of non-linear optics, and crystal structures.
60	21	effects of the polymorphism of genes on different human diseases.
61	21	gaussian beam propagation properties in applications with lasers and optics.
62	20	material properties (such as mechanical, toughness, and strength) of ceramics, glass and composites.
63	20	lasers used to study plasma and nuclear physics properties.
64	20	characterizing black hole properties using techniques such as the brick wall method.
65	20	characterizing properties of nuclear and elementary particles such as cross-sectional energies, isospin fractination, and energy states.
66	20	principles of Plasma Physics in various applications, such as the tokamak reactor and superconducting.
67	20	reaction properties and conditions of alcohols such as ketones, bromides, and aldehydes for improving yields.
68	20	physical properties of materials (e.g. piezoelectric) that characterize strength such as crack growth, stress, strain, and fatigue.

GST Clustering Results (Type: AVR, group average), Clusters for 7.0% Threshold

Cluster 1 [234]

"v" (289) "c" (269) "b" (243) "science" (218) "n" (109) "k" (87) "method" (85) "paper" (65) "e" (63) "growth" (62) "x" (59) "s" (58) "two" (55) "p", "g" (54) "system" (48) "field", "crystals" (47) "time" (45) "h" (43) "based" (42) "crystal" (39) "fuzzy" (38) "temperature", "state", "equal", "model" (37) "process", "number" (36) "systems", "new" (35) "experimental" (33) "high" (32) "d", "single" (31) "phase", "size", "order" (30) "properties", "structure" (29) "c science" (217) "science b" (209) "b v" (208) "carbon nanotubes" (17) "n pentane" (11) "crystal growth", "c e" (10) "single crystals", "k n", "n n", "experimental data", "lead tungstate" (8) "fuzzy systems", "equivalent mod", "tungstate crystals", "e degree", "electric field", "k k", "k c", "v v", "i v" (7) "science b v", "c science b" (208) "lead tungstate crystals" (7) "v equivalent mod" (5) "method c science", "single crystals grown", "systems based genuine", "grey tone mask", "fuzzy n cell", "ggg polycrystalline material", "based genuine valued", "i v curve", "mechanism c science", "c e degree", "d e f", "c e degrees", "alpha moc1 x", "c d e", "b c d", "wall carbon nanotubes" (4)

Focuses primarily on studies involving the growth of crystals and their associated material properties characteristics. The key words "(C) Elsevier Science B. V." is a publisher often referenced in the original reference data library.

Cluster 2 [230]

"c" (353) "angstrom" (274) "n" (219) "two" (218) "o" (216) "b" (196) "crystal" (193) "structure" (189) "r" (180) "x" (173) "degrees" (167) "complex" (165) "nm" (162) "v" (143) "group" (134) "mu" (131) "compound", "ray" (130) "beta", "atoms" (128) "co", "z" (122) "cu" (119) "h2o" (114) "space" (113) "ii" (111) "i" (105) "h" (102) "complexes" (100) "d", "diffraction" (94) "m" (89) "three", "f" (85) "one", "title" (83) "atom" (80) "synthesized" (79) "reaction" (77) "x ray" (130) "space group" (112) "ray diffraction" (82) "crystal structure", "degrees v" (62) "title compound" (59) "f 000", "single crystal" (52) "d c" (47) "angstrom z" (46) "group p2", "angstrom c", "c science" (42) "g cm", "crystal x" (40) "hydrogen bonds", "angstrom b" (39) "angstrom beta" (38) "nm b" (34) "nm c" (33) "b v", "science b", "z d" (32) "2h o" (31) "system space" (29) "cell parameters" (28) "nm beta", "oxygen atoms", "three dimensional", "z r" (26) "x ray diffraction" (82) "space group p2" (41) "crystal x ray" (40) "single crystal x" (39) "science b v" (32) "c science b" (31) "system space group" (29) "monoclinic space group" (25) "z d c" (23) "group p2 n", "cm f 000" (20) "g cm f" (17) "monoclinic system space", "space group p", "nm z d", "angstrom z r" (16) "pi pi stacking", "unit cell parameters" (15)

Focuses on the size metrics such as angstroms, nm, and degrees that are associated in characterizing atom elements, crystal structures, compounds, cells, and groups.

Cluster 3 [190]

"films" (595) "film" (217) "c" (189) "thin" (184) "x" (163) "temperature" (154) "deposition" (112) "ray" (111) "substrate" (100) "surface" (96) "substrates" (94) "v", $"deposited" \ (92) \ "si" \ (91) \ "structure" \ (90) \ "annealing" \ (87) \ "properties" \ (84) \ "high"$ (77) "diffraction" (76) "n" (75) "pzt" (74) "electron" (70) "b" (67) "science" (66) "spectroscopy" (65) "degreesc" (60) "microscopy", "nm" (57) "100" (56) "spectra" (55) "phase", "sputtering" (51) "plasma", "optical" (50) "layer" (49) "method", "carbon" (48) "increasing", "h" (47) "thin films" (141) "x ray" (110) "c science" (65) "ray diffraction" (64) "b v", "science b" (53) "sol gel", "films deposited" (41) "thin film" (39) "room temperature" (33) "ray photoelectron" (32) "atomic force", "magnetron sputtering" (29) "electron microscopy" (28) "force microscopy" (26) "diffraction xrd", "annealing temperature" (22) "photoelectron spectroscopy", "substrate temperature" (21) "pulsed laser" (20) "si substrates", "lb films", "vapor deposition", "chemical vapor", "films grown", "films x" (19) "laser deposition", "dielectric constant", "scanning electron" (17) "x ray diffraction" (64) "science b v" (53) "c science b" (52) "x ray photoelectron" (32) "ray diffraction xrd", "atomic force microscopy" (22) "ray photoelectron spectroscopy" (21) "chemical vapor deposition" (19) "pulsed laser deposition" (17) "photoelectron spectroscopy xps" (15) "scanning electron microscopy", "sol gel method", "fourier transform infrared" (14) "composite thin films", "transmission electron microscopy" (12) "force microscopy afm", "films x ray" (11) "si 100 substrates", "air water interface" (9)

Focuses on the characterizing of thin films and substrates using various spectroscopic techniques such as xrd, afm, xps, ftir, TEM, SEM, and sol-gel method.

Cluster 4 [119]

"catalyst" (256) "reaction" (152) "catalysts" (134) "activity" (120) "catalytic" (96) "co" (92) "c" (89) "selectivity" (74) "h" (69) "v", "n" (65) "b" (61) "temperature" (60) "al2o3" (58) "high" (57) "science", "surface", "conversion", "fe" (52) "oxidation" (48) "ni" (47) "acid", "reduction", "mo" (46) "higher" (45) "active", "ratio" (43) "hydrogenation" (41) "o", "carbon", "pd" (39) "conditions", "cu" (37) "amount", "gas", "sulfur" (34) "phase" (33) "sio2" (32) "oxygen", "xrd" (31) "c science" (50) "b v", "science b" (42) "catalytic activity" (40) "gamma al2o3" (27) "al2o3 catalyst". "reaction conditions" (17) "activity selectivity" (16) "molar ratio" (15) "sio2 catalyst" (13) "x ray" (12) "temperature programmed", "acetic acid" (11) "reaction temperature", "high activity" (10) "mo v", "fixed bed", "carbon dioxide", "lattice oxygen", "bed reactor" (9) "activated carbon", "ni b", "surface area", "selective oxidation", "partial oxidation", "amorphous catalyst", "c c" (8) "science b v" (42) "c science b" (40) "fixed bed reactor" (9) "x ray diffraction" (7) "mo v sio2", "p mo v", "gamma al2o3 catalyst", "na p mo" (6) "pd gamma al2o3", "ray diffraction xrd", "n2h4 h2o v2o5", "selective oxidation propane", "supercritical carbon dioxide", "maleic anhydride ma" (5)

Focuses on the physical chemistry properties of catalysts and reactions of various elements and compounds.

Cluster 5 [117]

"electron" (155) "diffraction" (116) "microscopy" (108) "x" (107) "ray" (101) "transmission" (78) "structure" (69) "high" (63) "c" (58) "nm" (52) "tem" (50) "phase" (49) "nanowires" (42) "particles", "powder" (40) "method", "size" (39) "xrd" (38) "tio2" (35) "temperature" (34) "growth", "crystal" (33) "scanning", "science" (32) "diameter", "synthesized" (29) "v", "spectroscopy" (28) "b" (27) "resolution" (26) "reaction", "nano" (25) "single" (24) "solution" (23) "energy", "mechanism" (22) "nanoparticles" (21) "x ray" (101) "electron microscopy" (92) "transmission electron" (76) "ray diffraction" (65) "c science" (31) "microscopy tem" (29) "electron diffraction", "diffraction xrd" (27) "high resolution" (24) "b v", "science b", "scanning electron" (22) "electron microscope" (19) "ray powder" (15) "area electron", "energy dispersive", "powder diffraction" (14) "resolution transmission" (13) "single crystal" (12) "diffraction transmission", "ray photoelectron", "dispersive x", "nanowire arrays", "xrd transmission" (11) "aluminum oxide", "room temperature", "anodic aluminum", "microscopy sem", "nano sized" (9) "transmission electron microscopy" (67) "x ray diffraction" (65) "electron microscopy tem" (29) "science b v", "c science b" (22) "ray diffraction xrd" (20) "scanning electron microscopy", "x ray powder" (15) "ray powder diffraction", "area electron diffraction" (14) "high resolution transmission", "resolution transmission electron" (13) "x ray photoelectron", "energy dispersive x", "diffraction xrd transmission", "diffraction transmission electron", "dispersive x ray", "xrd transmission electron" (11) "ray diffraction transmission" (10) "anodic aluminum oxide" (9)

Focuses on the characterization of microstructure materials such as nanoparticles, nanowires, powders, and crystals using various spectroscopic techniques that include TEM, SEM, and XRD -- tio2, aluminum oxide??

Cluster 6 [112]

"l" (189) "method" (173) "determination" (138) "detection" (134) "x" (130) "mol" (96) "ml" (91) "v" (87) "range" (82) "limit" (68) "mug", "linear" (61) "c" (59) "concentration", "ph" (57) "samples", "mg" (50) "sample" (48) "acid", "solution" (47) "water" (45) "b" (44) "similar", "standard" (43) "electrode", "peak" (42) "based" (41) "reaction" (39) "science", "relative" (38) "s" (37) "n" (36) "fluorescence" (34) "buffer" (33) "system", "conditions", "deviation" (32) "injection" (31) "sensitive", "complex" (28) "mol l" (83) "method determination" (55) "x mol" (54) "detection limit" (53) "mg l" (40) "b v", "science b", "c science" (38) "relative standard" (35) "standard deviation", "mug ml" (31) "mug l" (25) "ng ml" (24) "linear range", "detection limits" (22) "g ml", "x g" (17) "range x" (16) "flow injection", "determination trace", "x x", "l

detection" (14) "limit x", "v v", "concentration range", "method based" (13) "water samples", "l method" (12) "limit detection" (11) "x mol l" (52) "science b v", "c science b" (38) "relative standard deviation" (28) "l detection limit" (14) "detection limit x" (13) "x g ml", "mol l detection" (11) "x x mol", "method determination trace", "mg l mg" (9) "range x x", "l method determination", "l mg l" (8) "relative standard deviations", "limit x mol" (7) "x similar x", "ion exclusion chromatography", "0x10 g ml", "glycerol propylene glycol" (6)

Focuses on different methods for determining and/or detecting concentrations of different solutions along with their detection limitations.

Cluster 7 [111]

"cells" (400) "cell" (259) "expression" (185) "apoptosis" (145) "induced" (124) "activity" (111) "gene" (108) "human" (97) "protein" (95) "c" (80) "growth" (70) "tumor" (66) "treatment" (63) "dna", "proliferation" (62) "cancer" (55) "l" (54) "h" (53) "p", "bcl" (50) "activation", "mrna" (49) "assay" (46) "dependent", "receptor" (45) "increased", "binding", "activated" (44) "inhibited", "anti", "transfected" (42) "factor", "level", "promoter" (41) "apoptotic" (39) "lines" (38) "mediated" (37) "inhibition" (36) "g", "role" (35) "cell lines" (33) "cell line" (29) "nf kappab" (27) "cell death", "dependent manner", "induced apoptosis" (25) "mkn 45" (24) "gastric cancer", "cell proliferation" (23) "c science" (21) "cell cycle" (20) "cancer cells", "western blot", "tumor cells" (19) "cytochrome c", "cell growth", "endothelial cells" (18) "apoptosis induced", "gene expression", "p 01", "p 05" (17) "epithelial cells", "cancer cell", "telomerase activity", "mg l" (16) "mol l", "sgc7901 vcr", "rt pcr", "dose dependent", "45 cells" (14) "mkn 45 cells" (14) "dose dependent manner" (11) "gastric cancer cells", "anterior polar cataracts" (9) "tpa vp 16", "green tea polyphenols", "nasopharyngeal epithelial cells", "apoptotic cell death", "agarose gel electrophoresis", "time dependent manner", "nf kappab activation", "hl 60 cells" (7)

Focuses on the physiology of cells, genes, and human proteins to detect and treat cancers with emphasis on gastric cancer, anterior polar cataracts, and epithelial cells.

Cluster 8 [94]

303/503

"system", "control" (159) "systems" (113) "power" (70) "time" (67) "paper" (63) "method" (59) "controller" (57) "optimal" (49) "based" (48) "stability", "state" (45) "design" (44) "linear" (40) "chaotic" (36) "model" (35) "feedback" (34) "two" (33) "robust" (30) "new", "scheme" (28) "simulation", "discrete" (26) "neural" (25) "c", "network" (24) "fuzzy" (23) "output" (22) "conditions", "solution", "adaptive" (21) "numerical", "algorithm", "voltage", "learning" (19) "power system" (22) "neural network" (16) "c science" (15) "optimal control", "h infinity" (13) "state feedback", "control system", "time varying", "chaotic systems" (11) "power systems", "time delay" (10) "control scheme", "dynamical systems", "closed loop", "impulsive

control" (9) "chaos control", "linear matrix", "control systems" (8) "control law", "feedback control", "chaotic system", "discrete time" (7) "closed loop system", "science b v", "c science b", "copyright c sons" (6) "neural network models", "mr fluid damper", "linear matrix inequality" (5) "semi active control", "impulsive control systems", "robust h infinity", "time varying delays", "h infinity control", "matrix inequality lmi", "machine power system", "h infinity controller", "multi machine power", "two block l" (4)

Focuses on control system theory and feedback methods for applied applications using neural networks, fuzzy logic, in the following systems such as power, time, chaotic, closed loop, and control.

Cluster 9 [86]

"patients" (526) "p" (132) "treatment" (130) "group" (95) "methods" (72) "mean" (69) "two" (58) "c" (55) "n" (54) "months" (53) "groups", "mg" (50) "one" (48) "patient" (47) "disease" (46) "survival" (45) "acute" (41) "rate" (40) "surgery" (39) "l", "age" (38) "chinese" (37) "objective", "years", "dose" (36) "type", "days" (35) "function", "vs", "12" (34) "s", "duration" (33) "15", "13" (32) "levels" (31) "range", "cancer", "follow" (30) "p 001" (27) "p 05" (24) "hong kong" (21) "p 01" (19) "mean age" (18) "peritoneal dialysis", "acute cholangitis" (14) "patients received", "one patient" (12) "chinese patients", "long term", "esmolol infusion" (11) "urea clearance", "ldl c" (10) "six patients", "creatinine clearance", "laryngeal function", "ambulatory peritoneal", "continuous ambulatory", "seizure duration", "four patients", "nasopharyngeal carcinoma", "months range", "three patients", "two patients", "peg el" (9) "ambulatory peritoneal dialysis", "continuous ambulatory peritoneal" (9) "recurrent acute cholangitis" (8) "bone uptake rate", "sm 153 edtmp" (7) "beta blocker nitrate", "peg el solution", "laryngeal function preserved", "acute testicular torsion" (6) "weighted magnetic resonance", "dose maintenance phase", "peritoneal dialysis capd", "diffusion weighted magnetic", "magnetic resonance imaging", "overall response rate", "tonic clonic signs", "atorvastatin mg d", "bell s palsy" (5)

Focuses on methods and treatments of Chinese patients with various diseases such as nasopharyngeal carcinoma, acute cholangitis, acute testicular torsion, by comparing the different doses, and various other factors.

Cluster 10 [86]

"dielectric" (172) "temperature" (130) "ceramics" (122) "phase" (112) "properties" (88) "constant" (63) "x" (57) "transition", "high", "field" (49) "o", "low" (48) "piezoelectric" (46) "sintering" (45) "ferroelectric" (44) "structure" (40) "sintered" (32) "doped", "t" (30) "content" (29) "electric" (28) "samples" (27) "pb", "induced", "ceramic", "loss" (26) "frequency" (24) "material", "r", "glass" (23) "system", "c", "epsilon", "batio3" (22) "based", "increasing", "tetragonal" (21) "phases", "room", "materials" (20) "dielectric constant" (58) "dielectric properties" (50) "phase

transition" (38) "dielectric loss", "electric field" (20) "room temperature" (19) "3nb2 o", "x ray" (17) "ray diffraction" (16) "low dielectric" (15) "sintering temperature" (14) "low temperature", "dc bias" (12) "mg1 3nb2", "bias field", "field induced" (11) "glass ceramics" (10) "epsilon r", "electrical properties", "piezoelectric properties", "hydrostatic pressure" (9) "microwave dielectric", "constant dielectric", "pb mg1", "high temperature", "phase boundary", "ceramics sintered", "ferroelectric ceramics", "temperature coefficient" (8) "x ray diffraction" (16) "mg1 3nb2 o" (11) "pb mg1 3nb2", "dielectric constant dielectric" (8) "low dielectric constant", "constant dielectric loss" (7) "equal toxless equal", "structure dielectric properties", "dc bias field", "microwave dielectric properties", "low dielectric loss", "toxless equal to0" (6) "ray diffraction xrd", "dielectric properties samples", "bias field induced", "dielectric constant low", "pb zn1 3nb2" (5)

Focuses on low temperature effects on sintering & dielectric properties of ceramics (ferroelectric, and glass) and piezoelectric materials using XRD to analyze these properties.

Cluster 11 [76]

"n" (92) "reaction" (91) "c" (88) "energy" (84) "b3lyp" (56) "mol", "clusters" (52) "structures" (51) "level" (50) "basis" (46) "calculations" (45) "stable" (44) "structure" (42) "potential", "theory" (40) "energies" (39) "density", "bond" (37) "transition", "31g", "isomers" (35) "state" (34) "g" (33) "d" (32) "two" (31) "b", "v" (30) "method" (29) "science", "o", "vibrational", "h", "mp2" (28) "s", "surface", "kj" (27) "states", "functional" (26) "hydrogen" (25) "c science" (28) "b v", "science b", "kj mol" (27) "density functional", "ab initio" (24) "potential energy" (23) "kcal mol", "basis set" (22) "311 g" (21) "energy surface", "ground state" (19) "functional theory" (18) "basis sets" (17) "transition states" (16) "vibrational frequencies", "n n" (15) "b3lyp 31g", "d p" (13) "qcisd t", "global minimum" (11) "31g level", "b3lyp 311", "single point" (10) "c s", "good agreement", "n clusters" (9) "science b v", "c science b" (27) "potential energy surface" (19) "density functional theory" (18) "b3lyp 311 g" (10) "ab initio calculations" (8) "311g d p", "d p level", "functional theory dft" (7) "o delta g" (6) "b3lyp 31g level", "311 g 3df", "311 g level", "c2h3 o delta" (5)

Focuses on the study of atomic and molecular properties of b3lyp (benzoylcyclohexanedione).

Cluster 12 [74]

305/503

"x" (183) "n" (182) "t" (164) "f" (110) "m" (83) "k" (77) "r" (76) "i" (69) "p" (67) "equal" (60) "s", "c" (56) "u" (50) "z" (43) "d", "bar" (41) "h" (37) "element", "g" (36) "l", "b", "paper" (33) "sigma", "let" (32) "infinity" (29) "solutions", "j" (26) "two", "e", "tau" (24) "science" (23) "equation", "y" (22) "function", "space", "set", "lambda" (21) "v", "q", "theta" (20) "c science" (23) "x t" (22) "r n" (20) "n n" (18) "x n" (17) "t x"

(16) "t t", "i n", "f x" (15) "n equal", "m bar", "x x" (14) "n bar" (13) "x y" (12) "p n", "t k", "u u" (11) "n p", "sigma i", "m theta" (10) "u t", "equal n" (9) "k x", "n x", "theta z", "x m", "f i" (8) "s m circle", "m circle minus", "t x t" (7) "m theta z", "c science usa", "t equal t", "sigma i n" (6) "n n n", "n p n", "s r n", "n x n", "i n i" (5)

Focuses on mathematics symbol notations commonly associated with statistics.

Cluster 13 [68]

"solutions" (55) "equations", "existence" (48) "paper" (41) "c" (37) "science" (35) "boundary" (32) "conditions" (31) "stability" (30) "solution", "global" (29) "t" (25) "sufficient", "u" (24) "differential" (23) "nonlinear" (22) "system" (21) "n" (20) "positive" (19) "method" (18) "value" (17) "order", "periodic", "exponential" (16) "systems" (15) "asymptotic" (14) "equilibrium" (13) "theory", "class", "delays" (12) "condition", "established", "model", "equation" (11) "c science" (35) "sufficient conditions" (20) "differential equations" (17) "boundary value" (15) "exponential stability" (12) "positive solutions", "science usa" (10) "existence uniqueness" (9) "asymptotic stability", "neural networks" (8) "u t", "u u", "periodic solutions" (7) "second order", "existence solutions", "activation functions", "global exponential", "t t" (6) "closed loop", "necessary sufficient", "existence positive", "n equal", "conditions existence", "difference systems", "upper lower", "global asymptotic", "equal n", "global existence", "partial differential", "order differential" (5) "c science usa" (10) "global exponential stability" (6) "sufficient conditions existence", "global asymptotic stability" (5) "closed loop system", "order differential equations", "upper lower solutions", "u t t", "partial differential equations" (4)

Focuses on the terminology associated with applied mathematic boundary value problems such as those used in neural networks.

Cluster 14 [66]

306/503

"protein" (129) "gene" (80) "human" (74) "expression" (72) "sequence" (69) "amino" (64) "cdna" (60) "expressed" (57) "acid" (50) "c" (42) "recombinant" (38) "n" (37) "terminal" (34) "activity" (33) "proteins", "fusion" (31) "purified" (30) "domain" (28) "isolated", "cells" (27) "coli" (26) "binding" (25) "two", "cloned", "brain", "plants" (23) "molecular" (22) "pcr", "plasmid" (21) "e", "acids" (20) "genes", "gst" (19) "first", "bp" (18) "amino acid" (39) "n terminal" (23) "acid sequence", "fusion protein" (20) "amino acids" (19) "e coli" (15) "full length", "c science" (14) "rt pcr" (12) "escherichia coli", "cdna library" (11) "expression vector", "zinc finger" (10) "gmp reductase", "northern blot" (9) "sds page", "pgex 4t" (8) "amino acid sequence" (20) "amino acid residues", "camphor fe sod", "c science usa" (7) "expressed escherichia coli", "human fetal brain", "n terminal amino", "open reading frame", "deduced amino acid", "full length cdna" (6) "science b v", "c science b", "human gmp

reductase", "c albicans mvd", "ig v c", "gsk 3alpha 3beta", "hb7 ig v", "terminal amino acid" (5)

Focuses on genetic sequencing and molecular biology of proteins, genes, amino acids, cells including those of human fetal brains, plants and escherichia coli.

Cluster 15 [66]

"model" (270) "models" (71) "flow" (56) "data" (39) "c" (37) "paper" (33) "two" (32) "traffic" (29) "based", "turbulence" (28) "s", "large", "numerical" (27) "scale", "linear", "simulation" (25) "science" (24) "method" (23) "time" (22) "non" (21) "one", "experimental" (20) "size", "structure", "noise" (19) "three", "velocity" (18) "new" (17) "v", "distribution", "algorithm", "simulate", "combustion" (16) "complex", "transport", "sediment" (15) "c science" (23) "traffic flow" (14) "b v", "science b" (11) "food web", "large eddy", "model simulate" (9) "linear models", "experimental data" (8) "soil respiration", "balance model" (7) "ecosystem models", "size distribution", "tangent linear", "three dimensional", "eddy simulation", "non linear", "subgrid scale", "numerical model" (6) "science b v" (11) "c science b" (10) "large eddy simulation" (6) "eddy simulation les" (5) "necessary sufficient conditions", "sensitivity soil respiration", "temperature sensitivity soil", "k epsilon model", "m s model", "heavy metal vaporization", "three species food", "copyright c sons" (4)

Focuses on modeling algorithms used in fluid dynamics, and ecosystems.

Cluster 16 [64]

307/503

"method" (122) "numerical" (56) "linear" (50) "equations" (47) "non" (42) "solution" (39) "equation" (37) "solutions" (34) "two" (33) "boundary", "paper" (31) "system", "c" (30) "science" (26) "element" (25) "model" (24) "domain" (23) "time" (22) "finite", "algorithm", "elastic" (21) "based", "new" (20) "s", "order" (18) "methods", "solving", "nonlinear" (17) "type" (16) "conditions", "response", "wave", "integral" (15) "one", "energy", "dimensional", "fluid" (14) "non linear", "c science" (25) "finite element" (13) "element method" (12) "least squares" (10) "degenerate scale", "numerical examples" (9) "boundary conditions" (8) "method solving", "b v", "science b" (7) "sneddon muki", "time domain", "numerical method", "one dimensional" (6) "domain method", "method solve", "numerical experiments", "trust region", "two dimensional", "boundary integral", "good agreement", "two phase", "optimal error", "navier stokes", "artificial boundary", "linear evolution" (5) "science b v", "finite element method", "c science b" (7) "time domain method" (5) "order non linear", "navier stokes equations", "copyright c sons", "stochastic averaging method", "stationary probability density" (4)

Focuses on linear and non-linear numerical methods for applied mathematics such as finite element analysis, least squares, navier stokes, time domain method, and stochastic averaging method.

Cluster 17 [62]

"d" (106) "beta" (94) "o" (82) "new" (66) "isolated" (59) "structures", "compounds" (37) "c", "alpha", "elucidated" (34) "glucopyranosyl" (33) "spectroscopic" (31) "b" (30) "I" (29) "two" (28) "spectral", "nmr" (23) "basis", "structure", "methods", "acid" (20) "h", "chemical", "glucopyranoside" (19) "compound" (17) "2d" (15) "xylopyranosyl" (14) "12", "rhamnopyranosyl" (13) "x", "ray", "ic50", "named" (12) "beta d" (90) "o beta" (42) "d glucopyranosyl" (31) "two new" (21) "alpha l" (20) "d glucopyranoside" (19) "structures elucidated" (18) "d xylopyranosyl", "2d nmr" (14) "x ray", "xylopyranosyl beta", "l rhamnopyranosyl", "spectroscopic methods" (12) "glucopyranosyl beta" (11) "o alpha", "mug ml" (10) "c science", "28 o", "rhamnopyranosyl beta" (9) "nmr techniques", "elucidated basis", "alpha d" (8) "basis spectroscopic", "d galactopyranosyl", "structure elucidated", "basis spectral", "b isolated", "d galactopyranoside" (7) "o beta d" (41) "beta d glucopyranosyl" (30) "beta d glucopyranoside" (17) "beta d xylopyranosyl" (14) "alpha l rhamnopyranosyl", "xylopyranosyl beta d", "d xylopyranosyl beta" (12) "glucopyranosyl beta d", "d glucopyranosyl beta" (11) "rhamnopyranosyl beta d" (9) "I rhamnopyranosyl beta", "28 o beta", "o alpha l" (8) "2d nmr techniques", "beta d galactopyranosyl" (7) "o benzoyl alpha", "26 o beta", "beta d galactopyranoside", "benzoyl alpha d" (6)

Focuses on the characterization of glucopyranosyl-like compounds and structures using spectroscopic techniques.

Cluster 18 [57]

308/503

"electrode" (116) "surface" (52) "x" (49) "c" (48) "modified" (45) "v" (40) "b" (38) "science" (37) "gold" (33) "response" (32) "l", "m" (30) "method" (29) "electrochemical" (28) "s", "solution" (26) "mol" (25) "adsorption", "concentration" (23) "rate", "range", "detection", "ph" (22) "films" (21) "electron", "ion", "self", "quartz" (20) "crystal", "k", "process", "sensor", "assembled" (19) "two", "potential", "transfer", "acid", "binding", "reduction" (17) "c science" (37) "b v", "science b" (32) "mol l" (20) "modified electrode" (19) "self assembled", "quartz crystal" (17) "electron transfer" (15) "gold electrode" (14) "x mol" (13) "electrode surface" (12) "detection limit", "fe cn" (11) "cyclic voltammetry", "modified gold", "x m" (10) "new method" (8) "constant k", "assembled monolayers", "piezoelectric quartz", "aqueous solution", "transfer rate", "sol gel", "x cm" (7) "science b v", "c science b" (32) "x mol l" (10) "piezoelectric quartz crystal", "modified gold electrode", "electron transfer rate" (7) "self assembled monolayers", "quartz crystal microbalance", "x cm s", "glassy carbon electrode" (6) "detection limit x", "x x mol", "rate constant k" (5)

"dhp pdda films", "quartz crystal impedance", "fe cn fe", "cn fe cn", "self assembled monolayer", "pair redox waves" (4)

Focuses on techniques such as sol-gel and piezoelectric quartz crystals used to characterize surface properties of electrodes.

Cluster 19 [49]

"laser" (94) "optical" (52) "power", "wavelength" (41) "nm" (36) "c" (34) "fiber" (28) "nd", "output" (24) "pumped" (23) "frequency", "single", "pump" (20) "mode" (19) "science", "conversion", "yag" (18) "absorption", "efficiency", "diode" (17) "pulse" (16) "temperature", "crystal", "mw" (15) "two", "experimental", "emission", "mum" (14) "n", "cm", "w", "signal", "cavity", "lasing" (13) "light", "v", "high", "measured", "dye", "pulses" (12) "c science" (18) "nd yag", "yag laser" (12) "b v", "science b" (11) "nd yvo4" (9) "optical america", "output power", "c optical", "laser diode" (8) "two photon", "diode pumped", "frequency doubling", "conversion efficiency" (7) "optical parametric", "532 nm", "q switched" (6) "wavelength conversion", "photon absorption", "yvo4 laser", "experimental c", "pump power", "semiconductor optical", "frequency doubled", "fabry perot", "periodically poled", "single pass", "laser induced", "nm wavelength" (5) "science b v", "nd yag laser", "c science b" (11) "c optical america" (8) "nd yvo4 laser" (5) "x 20 cm", "two photon absorption", "experimental c science" (4)

Focuses on properties of lasers and optics, emphasizing nd yag lasers.

Cluster 20 [46]

309/503

"size", "tio2" (59) "particle" (44) "gel" (43) "phase", "temperature" (37) "surface" (36) "sol" (32) "powders", "powder" (30) "xrd" (26) "photocatalytic" (25) "activity", "process" (24) "method" (23) "films", "structure", "crystalline" (19) "degreesc", "nm", "area", "anatase" (17) "reaction", "phosphor" (16) "x", "properties", "sio2", "ray", "tem", "glass", "combustion" (15) "high", "synthesized" (14) "specific", "particles", "precursor", "water" (13) "particle size", "sol gel" (28) "photocatalytic activity" (17) "surface area" (16) "x ray" (15) "specific surface" (12) "c science", "gel process", "gel method" (10) "pore size", "b v", "science b" (9) "thin films", "ray diffraction" (8) "citric acid", "diffraction xrd", "tio2 thin" (7) "solid state", "state reaction", "ft ir", "grain size" (6) "specific surface area" (12) "sol gel process" (10) "science b v", "c science b", "sol gel method" (9) "x ray diffraction" (8) "solid state reaction", "ray diffraction xrd" (6) "differential thermal dta", "synthesized sol gel" (5) "tio2 thin films", "x ray photoelectron", "titanyl organic compound", "bi4 xlax ti3o12", "powders sol gel" (4)

Focuses on characterizing the properties of Titanium dioxide (TiO2) microstructure materials such as particles, powders, crystallines, and thin films using sol-gel and XRD techniques.

Cluster 21 [45]

"algorithm" (129) "based" (41) "method" (40) "paper" (39) "algorithms" (36) "new", "fuzzy" (24) "model" (22) "optimization" (21) "genetic" (19) "line", "data" (18) "c", "solution" (17) "science", "variables", "simulation" (16) "set", "network", "variable" (15) "one", "efficient" (14) "function" (13) "process", "search" (12) "dynamic", "methods", "objective", "local", "adaptive", "learning" (11) "v", "time", "linear", "lines", "matching", "clustering" (10) "c science" (15) "genetic algorithm" (11) "b v", "science b", "algorithm based" (9) "new algorithm" (7) "coalbed methane" (6) "algorithms based", "genetic algorithms", "hidden variables", "methane reservoirs" (5) "neural network", "clustering algorithms", "paper proposes", "feature point", "switching regression", "fuzzy clustering", "fuzzy decision", "input variable", "invisible lines", "least squares", "point matching", "optimization algorithm", "winc algorithm", "sensitive input", "quasi dense" (4) "science b v", "c science b" (9) "coalbed methane reservoirs" (5) "feature point matching" (4) "quasi dense matching", "recursive least squares", "finite element method", "fuzzy decision method", "algorithm c science", "sensitive input variable", "fuzzy clustering algorithms" (3)

Focuses on algorithms such as adaptive genetic, neural network, fuzzy logic, and winc.

Cluster 22 [43]

310/503

"magnetic" (94) "temperature" (93) "x" (88) "t" (60) "c" (51) "transition" (46) "field" (40) "phase" (37) "k" (32) "compounds" (28) "increasing" (25) "ferromagnetic", "magnetization" (24) "properties", "dependence" (22) "electron", "v", "low", "temperatures" (19) "s", "spin", "content", "mn", "resistivity" (18) "samples", "transitions" (17) "magnetoresistance" (16) "b", "induced", "decreases", "fe" (15) "state", "volume", "n", "structural", "co", "mr", "curie" (14) "t c" (18) "magnetic field" (15) "magnetic properties" (14) "temperature t", "c science" (13) "temperature dependence", "curie temperature" (12) "t n" (11) "magnetic phase", "b v", "science b" (10) "temperature range", "phase transitions" (9) "american physics", "c american", "field induced", "compounds x" (8) "low temperatures", "spin reorientation", "phase transition", "room temperature", "first order" (7) "t p", "magnetic entropy", "magnetoresistance mr", "fe mn", "magnetic fields", "m s", "martensitic transformation" (6) "science b v", "c science b" (10) "c american physics" (8) "temperature t c", "magnetic phase transitions" (7) "curie temperature t" (5) "mn based alloys" (4) "increasing v content", "fe mn based", "temperature dependence resistivity", "lafe11 5si1 5h1", "gd si1 xgex", "unit cell volume", "t n decreases", "increasing magnetic field", "fm clusters co", "transition temperature t" (3)

Focuses on the effects of temperature on various magnetic properties associated with compounds.

Cluster 23 [41]

"polymerization" (113) "weight" (47) "molecular" (46) "reaction" (43) "monomer" (39) "c" (37) "temperature" (31) "polymer" (30) "n" (29) "coupling", "catalyst" (28) "concentration" (26) "g", "initiator" (24) "graft" (23) "ratio", "synthesized" (22) "high", "st" (21) "p", "efficiency" (20) "copolymer", "conversion" (19) "activity", "h", "grafting" (18) "x", "ps", "nmr" (17) "rate", "m", "radical" (16) "higher", "pp" (15) "process", "time", "co", "poly", "styrene", "copolymerization" (14) "molecular weight" (37) "c science", "metallocene catalyst", "average molecular", "coupling efficiency" (10) "monomer conversion" (9) "g ps", "h nmr", "reaction temperature", "radical polymerization" (8) "polymerization temperature", "coupling reaction" (7) "molecular weights", "methyl methacrylate", "reaction time", "graft polymerization", "branching number", "glass transition", "emulsion polymerization", "polymerization rate", "microemulsion polymerization" (6) "average molecular weight" (7) "psf g ps", "atom transfer radical", "c 13 nmr" (5) "c science b", "ultrasonically initiated emulsion", "weight average molecular", "glass transition temperature", "initiated emulsion polymerization", "differential scanning calorimetry", "molecular weight distribution", "science b v" (4)

Focuses on the properties and effects of polymerization and polymers.

Cluster 24 [38]

"expression" (131) "p", "hcc" (97) "cells" (77) "cancer" (75) "patients", "tumor" (74) "vegf" (73) "cell" (51) "gastric" (49) "05" (37) "cases" (34) "positive", "carcinoma", "mrna" (31) "normal" (30) "tissues" (29) "human" (28) "higher", "liver" (27) "factor" (26) "stage" (25) "protein", "serum", "detected", "lines" (24) "levels", "survival" (23) "methods", "tissue" (22) "growth", "metastasis", "staining", "beta" (20) "non", "assay" (19) "grade", "tgf" (18) "p 05" (35) "cell lines" (24) "tgf beta" (17) "hepatocellular carcinoma" (16) "hcc patients" (15) "breast cancer", "p 01", "colorectal cancer" (14) "lymph node", "gastric cancer", "carcinoma hcc" (13) "vegf expression", "growth factor", "non cancer" (12) "inos vegf", "cik cells", "hcc cell", "p28 gankyrin", "free survival" (11) "cell line" (10) "p 001", "cancer cell", "cancer patients" (9) "erbeta protein", "effector cells", "bone formation", "vascular endothelial", "expression vegf", "gastric carcinoma", "western blot" (8) "hepatocellular carcinoma hcc" (13) "lymph node metastasis", "cancer cell lines", "disease free survival", "hcc cell lines" (7) "expression p28 gankyrin", "human breast cancer", "ifn alpha 2b", "endothelial growth factor", "growth factor vegf", "vascular endothelial growth" (6) "class i antigens", "expressions inos vegf", "hla class i", "peripheral blood mononuclear", "non cancer patients", "blood mononuclear cells", "p28 gankyrin mrna" (5)

Focuses on the physiology of cells, proteins, and tissues and their relation to various forms of cancer in humans such as gastric cancer, hepatocellular carcinoma, breast cancer, liver cancer.

Cluster 25 [38]

"ion" (74) "implantation" (56) "x" (48) "ions" (47) "cm" (42) "c", "irradiation" (35) "energy" (31) "implanted" (25) "science", "v", "dose" (23) "b", "surface" (22) "samples", "high" (21) "annealing" (19) "temperature", "irradiated" (18) "nm", "vacuum" (17) "silicon", "loss", "fluence" (16) "electron", "formation", "electronic", "layer", "absorption", "mev" (15) "range", "sample", "si", "spectroscopy", "glass", "kev", "pet" (13) "ion implantation" (35) "c science" (23) "b v", "science b" (22) "ions cm" (16) "energy loss", "electronic energy" (14) "refractive index" (11) "room temperature" (10) "mua cm", "ion flux" (9) "ion dose", "x 17" (8) "17 cm", "x 16", "x ray", "neutron irradiation" (7) "x 12", "uv vis", "kev nm", "ultraviolet visible" (6) "science b v", "c science b" (22) "electronic energy loss" (14) "x 17 cm" (7) "12 ions cm", "x 16 x", "fourier transform infrared", "x 12 ions", "transform infrared ftir" (5) "x 15 ions", "x ray diffraction", "vapor vacuum arc", "metal vapor vacuum", "silicon insulator soi", "range straggling lateral", "15 ions cm", "x x 12", "transmission electron microscopy", "50 mua cm" (4)

Focuses on effects of ion implantation into silicon layers using metal vapor vacuums and analyzing the effects via FTIR and UV visible spectroscopic techniques.

Cluster 26 [37]

"emission" (43) "two" (34) "c" (33) "pl" (32) "n" (29) "excitation" (28) "light" (27) "v" (24) "b" (23) "alq" (22) "spectra", "nm", "layer", "efficiency", "red" (21) "science", "state" (19) "quantum", "luminescence", "device" (18) "energy", "transfer", "blue" (17) "temperature", "dcm" (16) "photoluminescence", "excited", "emitting" (15) "doped", "fluorescence", "cd" (14) "properties" (13) "films" (12) "one", "states", "j", "peak", "devices" (11) "c science" (19) "b v", "science b" (18) "photoluminescence pl", "light emitting" (12) "cd m", "excited state", "energy transfer", "light emission" (9) "american physics", "c american" (8) "red emission", "n n", "quantum efficiency", "pl spectra" (7) "organic light", "emitting diodes", "sol gel" (6) "upconverted luminescence", "blue light", "quantum wells", "nh ch2", "ph nh", "blue red", "ch2 group", "transfer process", "room temperature" (5) "science b v", "c science b" (18) "c american physics" (8) "light emitting diodes", "organic light emitting" (6) "nh ch2 group", "ph nh ch2" (5) "tris hydroxyquinoline aluminum", "blue light emission", "n n bis", "energy transfer process" (4) "two photons excitation", "intramolecular charge transfer", "n n diphenyl", "device blue red", "blue red emission", "pl spectra gainnas", "hydroxyquinoline aluminum alq", "polymer light emitting", "multiple quantum wells" (3)

Focuses on characterizing emission properties that occur in the study of photoluminescence devices.

Cluster 27 [34]

"phase" (99) "temperature" (40) "alpha" (35) "alloy" (32) "transformation" (19) "structure" (17) "degreesc", "aging" (16) "electron", "martensite" (15) "ti", "high", "thermal", "precipitation" (14) "beta" (13) "transition", "matrix", "shape", "amorphous" (12) "s", "c", "h", "fe", "co", "xrd", "milling", "zn", "b2" (11) "m", "fraction", "cu", "memory", "nb" (10) "increase", "microscopy", "science", "temperatures", "grain", "solution" (9) "alpha phase", "shape memory" (10) "phase transition", "c science", "electron microscopy" (8) "x ray" (7) "grain size", "room temperature", "transmission electron", "memory alloy" (6) "b2 feal", "b v", "science b", "feal co", "amorphous phase", "strength elongation", "co matrix", "solid solution" (5) "shape memory alloy" (6) "b2 feal co", "science b v", "c science b" (5) "supersaturated solid solution", "diffusion solution zone", "feal co matrix", "solution zone alpha", "transmission electron microscopy" (4) "phase boundary sliding", "solid solution amorphous", "stress strain cycling", "n load indentation", "lost foam casting", "alpha phase alpha", "tensile strength elongation", "x ray diffraction" (3)

Focuses on the material properties of various alloys (s, h, ti, fe, co, zn, b2, nb, cu).

Cluster 28 [33]

"b" (56) "gamma" (47) "c" (44) "s" (42) "pi" (40) "phi", "decay" (34) "d" (32) "measured", "data", "detector" (21) "two", "mass", "decays" (20) "x", "e", "eta", "branching" (18) "model" (17) "gev", "quark" (16) "v", "sample", "j" (15) "state" (14) "k", "new", "ratio" (13) "collected", "chi" (12) "science", "find", "r", "psi", "bar", "mesons", "syst", "stat" (11) "mixing", "br" (10) "b v", "science b", "c science", "pi pi" (11) "pi gamma" (10) "j psi", "d s", "br phi" (9) "branching ratio" (8) "data sample", "decay widths", "b d", "b c", "e e" (7) "k pi", "d d", "e collider" (6) "standard model", "phi eta", "s 1535", "branching fractions", "k s", "phi etagamma", "s pi", "eta gamma", "chi c0", "final state" (5) "science b v", "c science b" (11) "e e collider" (6) "phi eta gamma" (5) "br phi pi", "pi pi gamma", "belle detector kekb" (4)

Focuses on detecting and measuring the properties of nuclear particles, such as decay schemes and branching ratios.

Cluster 29 [33]

"model" (69) "data" (49) "experimental" (34) "method" (22) "kinetic" (19) "reaction" (18) "good" (15) "pressure", "phase", "agreement" (14) "theoretical" (13)

"parameters", "speed" (12) "c" (11) "based", "system", "high", "comparison", "cos", "boiling" (10) "s", "mechanism", "hydrate" (9) "temperature", "measured", "distribution", "conversion", "source", "vessel", "concrete" (8) "experimental data" (19) "good agreement" (10) "agreement experimental" (8) "c science" (7) "relaxor ferroelectrics", "kinetic model", "theoretical model", "finite element" (6) "htr pressure", "cos hydrolysis", "experiment data", "pressure vessel", "methane hydrate", "neural network" (5) "reverberation data", "bistatic reverberation", "thermal conversion", "o ring", "model fit" (4) "good agreement experimental", "htr pressure vessel" (5) "nmr chemical shift", "coating optical fiber", "agreement experimental data", "strength concrete triaxial", "triaxial monotonic cyclic", "differential phase shift", "high strength concrete", "monotonic cyclic compressions", "flow reaction processes", "concrete triaxial monotonic" (3)

Focuses on modeling methods for the kinetic behavior various physical properties.

Cluster 30 [33]

"al2o3" (55) "sic" (48) "sintering" (43) "composites" (35) "temperature" (24) "composite", "particles" (20) "phase", "grain" (19) "matrix" (18) "properties", "density" (17) "strength", "powder" (15) "ceramics", "sintered", "tic" (14) "system", "c", "high", "addition", "time", "microstructure" (13) "mechanical", "reinforced", "wt" (12) "structure", "relative", "zro2", "aln" (11) "situ", "method", "dielectric", "boundary", "sem", "toughness" (10) "sintering temperature" (10) "mechanical properties" (9) "grain boundary", "relative density" (8) "al2o3 particles" (6) "situ al2o3", "al2o3 sic", "plasma sintering", "beta sialon", "fracture toughness", "functionally graded", "aln sic", "matrix composites", "spark plasma", "al2o3 matrix", "properties al2o3" (5) "spark plasma sintering" (5) "sic wt tic", "functionally graded materials", "aln sic solid", "sic solid solution" (4) "grain boundary phase", "adiabatic shear instability", "continuous casting bonding", "iron base composite", "mechanical properties al2o3", "second phase particle", "metal matrix composites", "casting bonding method", "situ al2o3 platelets", "r curve behavior" (3)

Focuses on the microstructure properties of al203, composites, particles, powders, and ceramics.

Cluster 31 [32]

"corrosion" (122) "solution" (31) "alloy" (30) "steel" (26) "resistance",
"electrochemical" (22) "ph" (18) "pitting" (17) "polarization", "film", "coating" (16)
"stress", "nacl", "passive" (14) "rate", "surface", "potential", "impedance" (13)
"inhibition", "value" (12) "loss", "anodic", "erosion", "ss", "scc" (11) "formed", "acid",
"weight", "fe", "inhibitor", "hcl" (10) "corrosion resistance" (16) "corrosion rate", "ph
value", "weight loss" (10) "passive film" (8) "carbon steel", "mild steel", "pitting

corrosion", "nacl solution", "corrosion potential" (7) "electrochemical impedance", "corrosion behavior", "c science", "erosion corrosion", "sulphate solutions", "impedance spectroscopy", "inhibition efficiency", "pani tr" (6) "corrosion induced", "anodic polarization", "type 316l", "potentiodynamic polarization", "a3 steel", "underfilm corrosion", "dislocation emission" (5) "electrochemical impedance spectroscopy" (6) "pani tr composite", "stress corrosion cracking", "dislocation emission motion", "fe 30mn 6si" (4) "corrosion cracking scc", "science b v", "c science b", "ph value simulated", "corrosion induced stress", "simulated rain increasing", "induced tensile stress", "corrosion resistance alloy", "hcl aq surfactant", "oxidation hot corrosion", "corrosion potential e", "polarization electrochemical impedance", "type 316l ss", "impedance spectroscopy eis", "316l uns s31603" (3)

Focuses on characterizing the corrosion resistance properties on surfaces, coatings, and films of various steel alloys.

Cluster 32 [31]

"c" (152) "60" (54) "temperature" (28) "n", "t" (22) "fullerenes" (15) "s", "high", "coal" (14) "dielectric", "si" (13) "v", "gd" (12) "based", "method", "degreesc", "potential" (11) "science", "experimental", "nano", "ni" (10) "properties", "coefficient", "70", "powders", "loss" (9) "m", "frequency", "h", "process", "separation", "82", "equivalent" (8) "c 60" (54) "t c" (15) "c n", "c science", "si c" (10) "c 82", "high temperature" (8) "n nano" (7) "60 c", "b v", "science b", "c 80", "dielectric loss", "uv vis", "c 70", "tb3n c" (6) "temperature t", "gd c", "60 adducts", "vis nir", "equivalent tosi" (5) "si c n" (10) "c n nano" (7) "science b v", "c 60 c", "c science b", "60 c 70", "tb3n c 80" (6) "uv vis nir", "gd c 82", "c 60 adducts" (5) "c 60 films", "temperature t c", "alanine c 60", "n nano powder", "beta alanine c" (4)

Focuses on the dielectric properties of microstructures such as fullerenes, powders, and nanoparticles of the following materials, si, gd, ni, carbon, and coal.

Cluster 33 [31]

315/503

"complexes" (56) "spectra" (36) "n" (29) "fluorescence", "uv" (25) "synthesized" (22) "elemental" (21) "ir", "coordination" (20) "l", "h", "eu" (19) "ions" (17) "polymers" (15) "x", "nmr" (14) "polymer", "o", "complex", "acid" (13) "c", "temperature", "new", "co" (11) "copolymer", "fluorescent", "ligand" (10) "intensity", "m", "dna", "ii", "solution", "reaction", "cu2" (9) "concentration", "ion", "pa", "ph", "ft", "epu" (8) "h nmr" (11) "coordination polymer" (9) "eu pa", "n n" (7) "ir h", "coordination polymers", "room temperature", "ir uv", "d f", "fluorescence spectra", "ft ir", "pa complexes" (6) "mol l", "rare earth", "complexes elemental", "nmr spectra" (5) "eu pa complexes", "ir h nmr" (6) "h nmr spectra" (5) "d f transition", "concentration eu pa", "tc binary complex" (4) "p n ligands", "science b v", "c science b", "elemental ir

uv", "lncl nh o", "ir uv h", "pa complexes situ", "uv h nmr", "complexes situ synthesized" (3)

Focuses on characterizing the properties of various polymer and copolymer complexes from their fluorescence spectra.

Cluster 34 [30]

"pp" (81) "blends" (77) "g" (36) "composites" (32) "eva" (27) "gma", "content" (26) "properties" (24) "sebs" (23) "mechanical", "phase" (22) "scanning", "c", "matrix" (20) "morphology", "high", "structure", "strength", "ma" (19) "tensile" (18) "periodicals", "poe" (17) "impact" (16) "sem", "hdpe" (15) "s", "microscopy", "method" (14) "particles", "copolymer", "interfacial", "dsc", "styrene", "pmma" (13) "c periodicals" (17) "eva blends" (16) "g gma" (15) "g ma" (13) "tensile strength", "mechanical properties" (11) "electron microscopy" (10) "scanning calorimetry", "pp g", "sebs g", "scanning electron", "polypropylene pp", "radiation crosslinking", "differential scanning" (9) "sgf sebs", "ldpe eva" (8) "maleic anhydride", "hdpe eva", "density polyethylene", "injection molding" (7) "pesi m", "gma co", "microscopy sem", "viscosity pmma", "poe baso4", "interfacial interaction", "pp sf", "co st", "sf composites", "hips g" (6) "scanning electron microscopy", "differential scanning calorimetry" (9) "ldpe eva blends", "sebs g ma" (8) "pp g gma", "pp sf composites", "gma co st", "g gma co", "hdpe eva blends" (6) "scanning calorimetry dsc", "electron microscopy sem", "hips g gma", "packing injection molding" (5) "angle x ray", "size dispersed phase", "low density polyethylene", "epr g gma", "high viscosity pmma", "sgf sebs g" (4)

Focuses on characterizing the mechanical properties of polypropylene (pp) polymer and copolymer blends, composites and other structures using techniques such as DSC and SEM,

Cluster 35 [29]

316/503

"alloys" (81) "alloy" (70) "phase" (32) "temperature" (31) "ti", "microstructure" (26) "alpha", "oxidation" (25) "ni" (22) "al4sr" (21) "properties", "sr", "coating" (20) "tial" (19) "c", "high", "degreesc", "tensile", "gamma" (18) "x", "mg" (17) "process", "addition", "melt" (15) "science", "spun", "wt", "nb", "ageing" (14) "mechanical", "two", "cast" (13) "b", "v", "strength", "room", "resistance", "microstructures", "zn" (12) "c science" (13) "mechanical properties" (11) "b v", "science b", "melt spun", "room temperature" (10) "tial based", "based alloys" (9) "high temperature", "tensile properties", "sr alloy" (8) "cast ageing", "two phase", "23 sr", "ageing process" (7) "mah g", "tial alloys", "wt pct", "oxidation resistance", "nitrided alloys", "hall petch", "spun 23", "yield strength", "5ti 1b" (6) "c science b", "science b v" (10) "tial based alloys" (9) "23 sr alloy", "cast ageing process", "melt spun 23" (6) "2cr 2nb 25nd", "5ti 1b master", "46 5al 2cr", "1b master alloy", "spun 23 sr", "ti 46 5al", "5al 2cr

2nb" (5) "10cr 11al 8ti", "ni 10cr 11al", "ni 3cr 20al", "mah g x", "2nb 25nd alloy", "high temperature oxidation" (4)

Focuses on the characterization of microstructure properties of alloy materials consisting of ti, ni, sr, nb, mg, al.

Cluster 36 [29]

"strength" (70) "properties" (55) "mechanical" (53) "composites" (46) "temperature" (38) "content" (28) "high" (27) "tensile" (26) "fibers" (21) "composite", "damping". "modulus" (20) "c" (17) "increasing", "concrete" (15) "matrix" (14) "higher", "w", "woodceramics" (13) "bending", "flexural" (12) "increased", "increase", "surface", "size", "maa", "zk60a" (11) "magnesium", "fracture", "polyethylene", "gpa", "polysilicon" (10) "mechanical properties" (41) "tensile strength" (19) "flexural strength" (11) "bending strength" (10) "ssps k" (9) "c science", "wcms zk60a", "magnesium hydroxide", "surface roughness" (7) "high temperature", "mg maa", "elevated temperature", "jute fibers", "sbr vulcanizates", "polyethylene magnesium" (6) "solid loading", "temperature strength", "zrc w", "zk60a composite", "crosslinking agent", "mm length", "strength flexural", "strength concrete", "decreased increasing", "mole ratio" (5) "polyethylene magnesium hydroxide" (6) "wcms zk60a composite", "strength flexural strength" (5) "mg maa content", "high strength concrete", "young s modulus", "content ssps k", "maa mole ratio", "magnesium hydroxide composites", "mgo maa mole", "flexural strength toughness" (4)

Focuses on the mechanical properties, such as strength, of polyethylene magnesium hydroxide composites, fibers, concrete, woodceramics, and polysilicon.

Cluster 37 [29]

317/503

"group" (149) "p" (129) "rats" (65) "05" (61) "g" (56) "l" (51) "01" (48) "groups", "control" (46) "hsc" (41) "apoptosis" (39) "proliferation" (38) "cells" (31) "hours" (30) "higher" (29) "48", "cell", "maotai" (27) "h" (26) "24", "expression", "normal", "12" (24) "flow" (23) "rate", "mg", "methods", "treatment" (22) "ml", "hepatic", "rhgh" (21) "lower", "increased", "decreased", "lps" (20) "p 05" (59) "p 01" (44) "control group" (28) "group p" (27) "p 001" (19) "g l" (17) "flow cytometry", "maotai liquor", "rhgh gin" (13) "hsc proliferation" (11) "mumol l" (10) "mug ml", "normal group", "99 99", "higher control" (9) "smmc 7721", "ng g", "yigan decoction", "mg kg", "portal vein", "parts thousand", "blood flow" (8) "group p 05" (13) "control group p", "group p 01" (10) "99 99 99" (8) "maotai liquor group" (7) "24 48 72", "higher control group", "smmc 7721 cells" (6) "cell cycle distribution", "gin supplemented pn", "g l maotai", "ordinary white wine", "direct version intracardiac", "18 g l" (5)

Focuses on the physiology of rat cells to determine the effects on blood flow from maotai liquor and white wine.

Cluster 38[29]

"temperature" (95) "k" (52) "range" (32) "mol" (31) "pressure" (26) "c", "activation", "kj" (21) "thermal", "oxidation", "h2o" (20) "energy", "ala" (18) "reaction" (17) "high", "fe" (15) "degreesc", "conductivity" (14) "rate", "increases", "value" (13) "b", "injection" (12) "two", "method", "science", "phase", "solid", "clo4" (11) "o", "increasing", "measured", "j" (10) "properties", "e", "decomposition", "complex", "time", "iii", "synthesized" (9) "temperature range" (28) "kj mol" (21) "activation energy", "ala h2o" (16) "c science", "h2o clo4" (11) "b v", "science b" (7) "peak temperature", "increasing temperature", "electrical conductivity", "fe iii", "high temperature" (6) "temperature dependence", "ho2 ala", "j k", "ery ala", "k peak", "h2o cl", "injection pressure", "heat capacities", "high pressure", "k mol" (5) "ala h2o clo4" (11) "science b v", "c science b" (7) "ery ala h2o", "k peak temperature", "j k mol", "ala h2o cl", "ho2 ala h2o" (5) "activation energy e", "o sialon zro2", "calorimeter temperature range" (4)

Focuses on characterizing physical properties of various compounds for different temperature ranges.

Cluster 39 [28]

"thermal" (33) "temperature" (31) "glass" (24) "t" (22) "structure" (21) "c" (20) "stability", "transition" (19) "amorphous" (17) "x", "high" (16) "scanning", "dsc" (15) "g", "differential" (14) "properties", "higher", "calorimetry", "poly" (13) "s", "phase", "ray" (11) "science", "temperatures", "diffraction", "weight", "crystallization" (10) "based", "samples", "molecular", "co", "alloy" (9) "glass transition" (18) "thermal stability" (17) "differential scanning" (14) "transition temperature", "scanning calorimetry" (13) "x ray", "t g" (11) "c science", "ray diffraction" (9) "calorimetry dsc" (7) "temperature t", "weight loss", "crystalline structure" (5) "thermal properties", "t m", "second order", "ether ketone", "molecular weight", "gfa thermal", "temperatures t", "c periodicals", "km min", "ketone s", "supercooled liquid" (4) "differential scanning calorimetry", "glass transition temperature" (13) "x ray diffraction" (9) "scanning calorimetry dsc" (7) "gfa thermal stability", "ether ketone s" (4) "transition temperature t", "weight loss temperature", "fourier transform infrared", "angle x ray", "wide angle x", "supercooled liquid region", "t g t", "high glass transition", "temperature t g" (3)

Focuses on characterizing the thermal properties and crystalline structures of glass and polymers using techniques such as xrd, dsc, and ftir.

Cluster 40 [28]

"molecular" (52) "models" (34) "model" (32) "compounds" (30) "structure" (27) "binding" (26) "activity", "linear" (22) "three" (20) "based", "r" (19) "regression", "descriptors" (18) "indices", "comfa" (17) "properties", "qspr", "qsar" (16) "v", "new", "relationship", "multiple", "interactions" (15) "quantitative", "structures" (14) "correlation" (13) "c", "energies", "inhibitors", "comsia" (12) "s", "cross", "science", "chemical", "structural", "group", "set", "atomic", "log", "comparative" (11) "quantitative structure" (14) "linear regression" (12) "c science", "comparative molecular" (11) "multiple linear" (10) "3d qsar", "free energies" (8) "molecular descriptors", "log k", "binding free", "quantum chemical" (7) "physical properties", "gspr models", "cross validation", "structure property", "structure activity", "gsar models", "der waals", "van der", "field comfa", "molecular size", "molecular field" (6) "multiple linear regression" (10) "binding free energies" (7) "molecular field comfa", "comparative molecular field", "van der waals" (6) "linear regression mlr", "log k oa", "quantitative structure property" (5) "quantitative structure retention", "science b v", "root mean square", "three dimensional quantitative", "c science b", "dimensional quantitative structure", "comparative molecular similarity" (4)

Focuses on modeling the properties and interactions of molecular compounds and structures.

Cluster 41 [28]

"quantum" (65) "state" (33) "electron" (28) "field" (22) "magnetic" (19) "two" (18) "energy" (17) "phonon" (16) "dot" (14) "system" (13) "temperature" (12) "method", "states" (10) "b", "spin", "modes", "current", "numerical", "electric" (9) "interaction", "coupling", "time", "mass", "external", "calculation", "discrimination", "cds" (8) "spectra", "single", "theory", "strength", "dependent", "optical", "noise", "circuit", "dots", "io" (7) "quantum dot" (12) "magnetic field" (10) "electric field" (8) "cds hgs", "electron hole", "numerical calculation", "quantum dots" (6) "c science", "ground state", "f center", "phonon modes", "shot noise", "set discrimination", "electron phonon" (5) "science b", "state quantum", "density matrix", "excitation energy", "phonon interaction", "magnetic fields", "low lying", "valence bond", "current fluctuation", "optical phonon", "quantum chemistry", "io phonon", "b v" (4) "c science b", "optical phonon modes", "science b v" (4) "density matrix negativity", "two uncoupled oscillators", "quantum dot molecules", "dynamic current fluctuation" (3)

Focuses on characterizing electron quantum physics properties of various elements.

Cluster 42 [27]

"state" (30) "energy", "spin" (29) "b" (28) "c" (27) "coupling", "exchange" (22) "magnetic", "antiferromagnetic" (19) "field", "j" (17) "s", "states", "t", "model" (14) "science", "v", "interaction", "n" (12) "experimental", "structure", "covalent" (11) "system", "ground" (10) "method", "epsilon", "symmetry" (9) "theoretical", "mean", "density", "bias", "excited" (8) "two", "range", "iii", "cu", "angle", "calculations", "theta", "ferromagnetic" (7) "b v", "science b", "c science" (12) "ground state" (10) "mean field" (7) "exchange coupling", "exchange interaction", "symmetry state", "exchange bias" (6) "fe iii", "excited states", "cu ii", "broken symmetry" (5) "reversion energy", "magnetic field", "energy broken", "antiferromagnetic coupling", "epsilon epsilon", "magnetic exchange", "ii b", "iii cu" (4) "c science b", "science b v" (12) "reversion energy broken", "energy broken symmetry", "broken symmetry state", "iii cu ii", "fe iii cu", "cu ii b" (4) "cytochrome c oxidase", "coupling parameter j", "monte carlo hamiltonian", "high t c", "exchange coupling parameter", "rotation angle theta", "thermal radiation state", "t j model", "squeezed thermal radiation", "ground state excited" (3)

Focuses on models of physical properties of nuclear particles such as energy states, spins, antiferromagnetic coupling, and magnetic fields.

Cluster 43 [27]

"fe" (47) "c", "magnetic" (39) "b" (30) "properties" (23) "phase" (22) "high", "alpha" (21) "films", "h" (20) "grain", "size" (19) "s", "structure" (18) "x", "microstructure" (17) "m" (16) "coercivity" (15) "nanocomposite" (14) "samples", "temperature" (13) "phases", "n", "si" (12) "grains", "sample", "exchange", "alloy" (11) "v", "degreesc", "annealing", "gamma", "wc", "melted" (10) "magnetic properties" (21) "alpha fe" (16) "grain size" (13) "exchange coupling" (9) "c science" (8) "x ray", "b v", "science b", "hard magnetic" (7) "plasma arc", "fe n" (6) "zr doping", "nd9fe85 xb6mnx", "h c", "bh max", "m s" (5) "science b v", "c science b" (7) "exchange coupling interaction", "electric resistance furnace", "nd9fe85 xb6mnx nanocomposite", "x ray diffraction", "melted electric resistance", "fe n films" (4) "r m s", "plasma arc melting", "m r m", "structure magnetic properties", "alpha fe grains", "sm co si", "soft magnetic properties", "reduction grain size" (3)

Focuses on characterizing the magnetic properties of iron (fe) films and nanocomposite microstructures.

Cluster 44 [27]

320/503

"dna" (170) "binding" (28) "interaction" (25) "cleavage" (17) "fluorescence", "cu" (15) "c", "complex" (14) "calf", "ssdna", "dsdna" (13) "base", "double", "iii", "electrode", "intercalation", "thymus" (12) "method", "phen" (11) "system", "science", "potential", "tau" (10) "i", "based", "b", "three", "complexes", "reaction", "sensor", "gold", "blm" (9) "dna cleavage" (13) "calf thymus" (12) "thymus dna" (11) "c science" (10) "plant

dna" (8) "dna binding" (7) "gold electrode", "double helix" (6) "base pairs", "b v", "science b", "cu edta", "interaction dna", "ct dna", "cu en" (5) "cu phen", "ssdna dsdna", "helix dna", "dna sensor", "bind dna", "metal ions", "en cu", "ions dna", "cyclic voltammetry", "stranded dna" (4) "calf thymus dna" (11) "science b v", "c science b" (5) "cu en cu", "en cu edta", "metal ions dna" (4) "potential modulated dna", "cl h2o ch3ch2oh", "high liquid chromatography", "dna cleavage cu", "cl l bis", "noble metal ions", "modulated dna cleavage", "t t dimer", "double helix dna", "phen cl h2o", "liquid chromatography hplc", "three noble metal" (3)

Focuses on using fluorescence methods to characterize dna binding abilities resulting from dna interactions with other compounds.

Cluster 45 [26]

"method" (51) "temperature" (44) "field" (28) "numerical" (27) "heat" (22) "transfer" (19) "model", "data" (18) "inverse" (17) "time" (15) "based", "function", "paper" (13) "coupled", "fields", "radiative" (12) "surface", "boundary", "electric" (11) "scattering", "distribution" (10) "pressure", "c", "three", "internal", "solution", "seepage", "finite", "stresses", "averaged", "dam" (9) "heat transfer" (10) "time averaged" (9) "c science" (8) "inherent strain", "thin film", "radiative transfer" (6) "concrete dam", "temperature field", "good agreement", "finite element", "temperature fields", "averaged temperature" (5) "boundary intensity", "tidal currents", "electric field", "three dimensional", "field data", "internal tidal", "residual stresses", "piezoelectric thin" (4) "time averaged temperature" (5) "internal tidal currents", "piezoelectric thin film" (4) "surface heat transfer", "heat transfer coefficient", "inherent strain field", "temperature fields concrete", "initial geometric imperfections", "seepage temperature fields", "fields concrete dam" (3)

Focuses on various methods and modeling of the effects of physical properties related to temperature.

Cluster 46 [26]

"surface" (86) "area" (42) "adsorption" (33) "k", "tio2" (25) "al2o3" (24) "temperature", "sample", "pore" (23) "activity", "high", "g" (21) "specific" (19) "degreesc", "tin" (17) "co", "zirconia" (16) "increased", "x", "o", "spectroscopy" (15) "m", "electron", "samples", "content", "ray", "oxide", "catalyst" (14) "h" (13) "nitrogen", "alumina" (12) "energy", "calcination", "mesostructured" (11) "surface area" (42) "specific surface" (19) "x ray" (14) "m g" (12) "mesostructured tin" (10) "tio2 al2o3" (8) "pore size", "ray diffraction", "nitrogen adsorption", "rh 100", "tin oxide", "high surface" (7) "smox rh", "c science" (6) "surface areas", "mmol g", "pd al2o3", "adsorption desorption", "calcination temperature" (5) "specific surface area" (17) "x ray diffraction", "mesostructured tin oxide" (7) "high surface area",

"smox rh 100" (6) "activity pd al2o3", "rh 100 surface", "surface area alumina", "mnox tio2 al2o3", "x ray photoelectron", "high specific surface" (4)

Focuses on studying the effects of surface area related to adsorption of such powder materials as tio2 and al2o3 using xrd and xps techniques.

Cluster 47 [26]

"genes" (106) "expression" (83) "gene" (41) "expressed", "cdna", "regulated" (26) "hcc" (21) "cell", "cells", "tumor" (20) "human", "clones" (19) "two" (18) "metastasis", "pcr" (17) "protein", "tissue" (16) "blot" (15) "molecular", "sequence", "differential" (14) "carcinoma", "trkc" (13) "specific", "positive", "down" (12) "northern", "liver", "normal", "gastric", "rt", "array", "est" (11) "gene expression" (29) "rt pcr", "down regulated" (11) "northern blot" (10) "expression genes", "positive clones" (9) "hepatocellular carcinoma", "differentially expressed" (8) "expression profiles", "expression patterns", "polymerase chain", "adipose tissue", "chain reaction" (7) "cdna array", "differential expression", "reverse transcription", "visceral adipose", "molecular mechanism", "genes down", "regulated genes" (6) "polymerase chain reaction" (7) "visceral adipose tissue" (6) "genes down regulated", "reverse transcription polymerase", "transcription polymerase chain", "differential expression genes", "reaction rt pcr", "gene expression profiles", "chain reaction rt", "gene expression patterns" (5) "genes high expression", "subtractive hybridization ssh", "expression p77pmc rats", "suppression subtractive hybridization", "blot positive clones", "dot blot positive", "rats low expression", "hepatocellular carcinoma hcc" (4)

Focuses on studying changes in gene expression of cells, proteins, and tissues due to hepatocellular carcinoma (HCC).

Cluster 48 [26]

"solutions", "equation" (42) "wave" (32) "nonlinear" (23) "soliton" (20) "method" (19) "equations", "dimensional" (18) "solitary" (15) "functions", "new" (13) "solution" (12) "transformation" (11) "system", "special" (10) "b", "integrable" (9) "c", "model", "extended", "structures", "localized", "waves" (8) "science", "arbitrary", "periodic", "solitons", "gordon" (7) "wave solutions", "solitary wave" (11) "c science" (7) "soliton solution", "soliton solutions", "coherent structures", "arbitrary functions", "b v", "science b", "gordon equation", "backlund transformation" (6) "balance method", "higher order", "homogeneous balance", "nonlinear schrodinger", "localized coherent" (5) "broer kaup", "sine gordon", "nonlinear evolution", "nonlinear dispersion", "variable separation", "solitary waves", "extended homogeneous", "envelope solitary", "periodic solutions" (4) "solitary wave solutions" (7) "science b v", "c science b" (6) "localized coherent structures", "homogeneous balance method"

(5) "sine gordon equation", "extended homogeneous balance" (4) "dimensional broer kaup", "nonlinear evolution equation" (3)

Focuses on the components of mathematics equations, solutions and techniques.

Cluster 49 [26]

"surface" (69) "c" (42) "111" (27) "energy", "stm" (22) "molecules" (19) "science", "b", "v" (18) "cu" (16) "surfaces" (14) "tunneling" (13) "atoms" (12) "scanning", "co2" (11) "method", "h", "20", "bond", "ni" (10) "microscopy", "film", "molecular", "low" (9) "s", "interaction", "t", "atomic", "images", "ice", "pvoh" (8) "i", "based", "temperature", "experimental", "order", "metal", "co", "cluster" (7) "c science" (17) "b v", "science b" (15) "scanning tunneling" (11) "c 20" (10) "tunneling microscopy", "cu 111" (9) "111 surface", "stm images" (7) "microscopy stm" (6) "metal surfaces" (5) "ru 0001", "t c", "ni 111", "pvoh molecules" (4) "science b v", "c science b" (15) "scanning tunneling microscopy" (9) "tunneling microscopy stm" (6) "cu 111 surface" (4) "111 ru 0001", "surface solid target", "s o c", "111 cu 111", "h o ti" (3)

Focuses on various studies using the technique of scanning tunneling microscopy (STM) to image surfaces.

Cluster 50 [25]

"i" (133) "ca2" (85) "cells" (53) "l" (35) "current" (27) "concentration", "receptor", "mum" (26) "c", "induced", "potential" (23) "cell" (22) "myocytes" (21) "membrane", "increase", "k", "dependent" (20) "mumol", "na" (19) "rat", "neurons", "ht" (18) "inhibited", "mv", "gaba" (17) "protein", "channels" (16) "rate", "decreased", "action" (15) "increased", "dopamine" (14) "kinase", "intracellular", "clamp", "ks" (13) "ca2 i" (36) "mumol I" (19) "i na" (14) "i ks", "protein kinase" (13) "current i" (12) "i to1", "whole cell", "i kr" (11) "concentration dependent", "ventricular myocytes", "patch clamp" (10) "i oscillations", "kinase c", "sa i", "i ach", "action potential" (9) "membrane stretch", "c science", "dependent manner", "membrane potential", "hyposmotic membrane" (8) "ht neurons", "receptor agonist", "cytochalasin d", "hypertrophied cells", "cell patch" (7) "ca2 i oscillations", "protein kinase c" (9) "hyposmotic membrane stretch" (8) "whole cell patch", "cell patch clamp" (7) "concentration dependent manner" (6) "action potential duration" (5) "mumol l 95", "k current i", "activating component i", "membrane potential 60", "l 95 confidence", "concentration ca2 i", "patch clamp technique", "i i l", "frequency spontaneous epscs", "i kr i", "potassium current i" (4)

Focuses on studying the concentration dependent physiology of cells and membranes from rats.

Cluster 51 [24]

"magnetic" (111) "field" (66) "current" (22) "flux" (16) "intensity", "electric" (13) "surface" (12) "transmission" (11) "two", "structure", "optical" (10) "model", "solar" (9) "properties", "high", "paper", "fields", "radio" (8) "force", "region", "process", "active", "sand", "double", "strength", "photosphere" (7) "one", "increase", "map", "equations", "density", "axial", "separation", "negative", "wave", "barrier", "eolian" (6) "magnetic field" (47) "magnetic fields" (8) "magnetic flux" (7) "eolian sand" (6) "surface finish", "sand beds" (5) "electric field", "nickel electroforms", "x g", "radio map", "magnetic electric", "2d arrays", "field strength", "hybrid magnetic", "fms process", "bose einstein", "active regions", "transmission intensity", "delta function", "axial magnetic", "einstein condensations", "flux tube" (4) "eolian sand beds" (5) "axial magnetic field", "magnetic field strength", "hybrid magnetic electric", "bose einstein condensations" (4) "fe tpp cl", "northern southern hemisphere", "optical phase conjugated", "x g cm" (3)

Focuses on the study of magnetic fields and their effects.

Cluster 52 [24]

"c" (25) "science" (24) "reaction", "yields" (7) "synthesis" (6) "derived", "general", "solar" (5) "s", "high", "conditions", "systems", "new", "case", "amino", "catalyzed", "building" (4) "properties", "method", "china", "group", "series", "design", "good", "formula", "velocity", "ethyl", "asymmetric", "ligands", "enantioselective", "aryl" (3) "c science" (22) "good yields" (3) "null controllable", "hydroxy methyl", "solar control", "ethyl cyano", "new azo", "china c", "cospar science", "group velocity", "baylis hillman", "amino pyridone", "aryl halo", "halo dienes", "cyano hydroxy", "room temperature", "conditions c", "controllable regions", "motion curve", "methyl amino", "c cospar", "azo dyes", "dithianes dithiolanes" (2) "conditions c science", "null controllable regions", "hydroxy methyl amino", "methyl amino pyridone", "ethyl cyano hydroxy", "cyano hydroxy methyl", "new azo dyes", "aryl halo dienes", "c cospar science" (2)

Focuses on the reactions and synthesis of organic compounds.

Cluster 53 [24]

"method" (45) "based" (26) "new" (20) "feature" (18) "algorithm", "image" (15) "paper" (14) "domain", "noise" (13) "experimental", "information" (12) "features", "fractal", "wavelet", "segmentation" (10) "traditional", "extraction" (9) "c", "time", "methods", "transform", "images", "recognition", "fault" (8) "two", "encoding", "background", "accuracy", "alignment", "tumors" (7) "system", "parameters", "sequence", "contrast", "target", "vector", "spatial", "enhancement", "speech", "palmprint" (6) "feature extraction" (8) "wavelet transform", "gear fault", "c

science" (5) "spatial domain", "new method", "encoding time", "sublingual veins", "continuous wavelet", "fault diagnosis" (4) "acceleration signals", "neural network", "word spotting", "computation complexity", "paper new", "speech recognition", "gaze direction", "new algorithm", "pairwise alignment", "support vector", "frequency domain", "low contrast", "signal noise", "shaft centre", "maxima lines" (3) "continuous wavelet transform" (4)

Focuses on signal processing algorithms for feature extraction in images and speech recognition using such techniques as fractals, wavelets, and neural networks.

Cluster 54 [24]

"heat" (91) "transfer" (50) "system" (26) "cooling" (23) "water" (20) "recovery" (19) "temperature", "air" (18) "tube" (17) "mass" (16) "c", "science", "refrigeration" (15) "coefficient" (14) "thermal" (13) "flow", "experimental" (12) "energy", "conditions", "model", "heating" (11) "paper", "cycle", "working", "ruwct" (10) "rate", "two", "specific", "phase", "characteristics" (9) "method", "process", "flux" (8) "heat transfer" (38) "c science" (15) "transfer coefficient", "heat recovery" (12) "mass transfer" (10) "specific heat" (8) "heat flux" (7) "evaporative cooling", "convective heat", "roll worked", "boiling heat" (6) "narrow spaces", "water cooling", "worked tube", "refrigeration cycle" (5) "heat constant", "transfer coefficients", "refrigeration system", "cooling capacity", "cooling tower", "working conditions", "transfer characteristics", "heat mass" (4) "heat transfer coefficient" (11) "boiling heat transfer", "convective heat transfer" (6) "roll worked tube" (5) "water cooling tower", "specific heat constant", "heat mass transfer" (4)

Focuses on heat transfer properties applied to refrigeration systems.

Cluster 55 [23]

"soil" (164) "soils" (36) "n" (30) "water" (27) "k" (26) "c" (25) "model" (22) "two", "pb" (21) "rare", "plant", "log" (20) "p", "ha" (16) "g", "total", "organic" (15) "low", "concentrations", "red", "earths" (14) "concentration", "content", "moisture", "solute" (13) "increased", "decreased", "m", "species" (12) "s", "science", "china", "root", "earth", "kg", "cu2", "forest", "tailings" (11) "rare earths" (13) "log k" (12) "c science" (11) "k oc" (9) "mug g", "soil moisture" (8) "organic matter", "red soil", "rare earth" (7) "soil water", "k soil", "soil ph", "soil drying" (6) "rar soil", "req soil", "water characteristic", "soil column", "forest ecosystems", "griffith soil", "content dehydrogenase", "c n", "atp content", "pb zn", "e g", "soil organic" (5) "atp content dehydrogenase" (5) "dehydrogenase urease activities", "soil bulk density", "log k oc", "m s b", "science b v", "c science b", "content dehydrogenase urease" (4)

Focuses on characterizing soil properties such as soil moisture and their effects.

Cluster 56 [23]

"deformation" (56) "strain" (50) "grain" (27) "degreesc", "alloy" (25) "stress", "tial" (24) "rate" (23) "microstructure" (21) "s" (20) "temperature" (19) "dislocation" (18) "region", "process", "ferrite" (16) "low", "stage" (15) "high", "hot", "cyclic" (14) "loading" (13) "electron", "behavior", "ni" (12) "x", "intersection" (11) "rates", "slip", "dislocations" (10) "strain rate" (18) "degreesc strain" (11) "x s" (10) "strain rates" (9) "beta phase", "phase region", "c science" (7) "grain boundaries", "b v", "science b", "superplastic deformation", "hot deformation", "tial alloys", "transmission electron", "grain boundary", "css curve", "grain growth", "activation energy" (6) "nanocrystalline ferrite", "dislocation glide", "cyclic loading", "deformation behavior", "tial based", "high strain", "grain size", "based alloy", "controlled cyclic", "hot deformability" (5) "degreesc strain rate" (8) "beta phase region" (7) "science b v" (6) "tial based alloy", "c science b", "controlled cyclic loading" (5) "alpha beta phase", "grain boundary sliding" (4)

Focuses on material properties such as deformation and strain on the grains of alloy microstructures.

Cluster 57 [21]

"adsorption" (114) "bsa" (23) "diffusion" (19) "x", "equilibrium" (17) "model" (15) "protein" (14) "n" (13) "water", "ii" (12) "ph", "isotherms", "cb" (11) "c", "ion", "acid", "ionic", "strength", "capacity" (10) "ethylene", "bovine", "g", "pore", "pcb", "isotherm" (9) "two", "concentration", "science", "surface", "carbon", "gamma", "langmuir", "241", "hap", "humic" (8) "ionic strength" (10) "adsorption capacity" (9) "humic acid", "c science" (8) "bovine serum" (7) "b v", "science b", "serum albumin", "adsorption kinetics", "adsorption equilibrium" (6) "n ar", "adsorption capacities", "albumin bsa", "carbon dioxide", "pore diffusion", "gamma globulin", "phenolic compounds", "spectral correction" (5) "science b v", "c science b", "bovine serum albumin" (6) "serum albumin bsa" (5) "adsorption spectral correction", "phase ionic strength" (4) "spectral correction mpasc", "pore diffusion model", "clay humic acid", "four phenolic compounds", "liquid phase ionic", "correction mpasc technique", "oxygen carbon dioxide", "cb coupling density", "ionic strength cb", "microphase adsorption spectral", "poly ethylene oxide" (3)

Focuses on the adsorption properties of organic compounds such as bovine serum albumin (BSA) proteins.

Cluster 58 [21]

"ferroelectric" (35) "polarization" (28) "temperature" (26) "coupling" (20) "range" (19) "dielectric", "films", "pyroelectric" (18) "susceptibility" (17) "thin",

"interaction", "field" (15) "phase", "transition" (14) "long" (13) "coefficient", "stress", "model" (12) "structure" (11) "properties", "doped", "spontaneous" (10) "theory", "interfacial", "sbn" (9) "increase", "transverse", "magnetic", "interface" (8) "materials", "magnetoelectric" (7) "size", "find", "mean", "increases", "electric", "bilayer", "curie" (6) "long range", "thin films" (13) "pyroelectric coefficient" (12) "phase transition" (11) "interfacial coupling" (9) "spontaneous polarization", "range interaction" (8) "transition temperature" (7) "curie temperature", "dielectric susceptibility" (6) "mean field" (5) "susceptibility ferroelectric", "ferroelectric properties", "dielectric constant", "ising model", "transverse ising", "sandwich structure", "coefficient susceptibility", "coefficient dielectric", "field theory", "transverse field", "polarization susceptibility" (4) "long range interaction" (8) "phase transition temperature" (6) "pyroelectric coefficient susceptibility", "transverse ising model", "pyroelectric coefficient dielectric", "coefficient dielectric susceptibility", "mean field theory" (4) "ferroelectric interfacial coupling", "interfacial coupling transverse", "susceptibility ferroelectric bilayer", "long range coupling", "ferroelectric thin films", "average spontaneous polarization", "polarization curie temperature" (3)

Focuses on ferroelectric, dielectric, and pyroelectric properties of thin films, to include their effects on polarization and coupling.

Cluster 59 [21]

"second" (36) "optical" (27) "harmonic" (23) "generation" (20) "nonlinear" (19) "phase" (18) "structure", "order" (16) "frequency" (15) "c" (14) "method", "nm", "superlattice" (9) "parametric", "conversion", "quasi", "wave", "periodic", "shg" (8) "crystal", "efficiency", "metal", "processes", "matching" (7) "polymer", "based", "two", "three", "example", "third", "signal", "quasiperiodic" (6) "second harmonic" (18) "harmonic generation" (16) "second order" (11) "nonlinear optical" (8) "quasi phase", "phase matching" (7) "order nonlinear" (5) "optical parametric", "american physics", "frequency generation", "second harmonics", "pek c", "c american", "metal cluster", "phase matched", "sum frequency", "conversion efficiency" (4) "second harmonic generation" (13) "quasi phase matching", "c american physics" (4) "second order optical", "sum frequency generation", "c science b", "third harmonic generation", "quasi phase matched", "second order nonlinear", "nonlinear second order", "science b v", "harmonic generation shg" (3)

Focuses on sciences with second and third order processes such as harmonics, wave generation, phases, and order primarily associated with the physics of non-linear optics, and crystal structures.

Cluster 60 [21]

"gene" (58) "patients" (42) "p" (33) "genotype" (28) "controls" (26) "mrna" (25) "polymorphism" (24) "higher" (22) "pcr" (21) "allele" (20) "group" (19) "levels" (17) "c", "frequencies", "reaction", "chain", "polymerase", "vegf" (16) "cells", "genotypes" (15) "expression" (14) "i", "control", "igf" (13) "cases", "risk" (12) "s", "frequency", "chinese", "ad", "blood", "pd", "95", "methylation", "hanf" (11) "factor", "disease", "alcohol", "detected" (10) "polymerase chain", "chain reaction" (16) "p 05" (9) "ink4b gene", "tgf beta1", "p15 ink4b" (8) "trabecular meshwork", "rt pcr" (7) "gene polymorphism", "meshwork cells", "p 01", "patients controls" (6) "sle patients", "mrna levels", "gene transfer", "95 ci", "vegf mrna", "c science", "alcohol dependent", "c 509t", "growth factor", "odds ratio" (5) "polymerase chain reaction" (16) "p15 ink4b gene" (8) "trabecular meshwork cells" (6) "reaction rt pcr", "c 509t t869c", "chain reaction rt", "reverse transcriptase polymerase", "transcriptase polymerase chain", "tgf beta1 gene" (4)

Focuses on the effects of the polymorphism of genes on different human diseases.

Cluster 61 [21]

"beam" (48) "gaussian" (27) "beams" (25) "propagation" (20) "optical" (15) "phase", "derived" (13) "intensity", "shift" (12) "order", "formula", "laser", "paraxial" (10) "c", "elliptical" (9) "spatial" (8) "system", "method", "science", "factor", "focal", "flattened" (7) "m", "non", "new", "solution", "pulsed", "shifts" (6) "gaussian beam", "gaussian beams" (12) "c science" (7) "beam propagation", "focal shift", "elliptical gaussian" (6) "flattened gaussian" (5) "system derived", "relative focal", "m factor", "b v", "science b", "optical systems", "laser beam", "axis intensity", "pulsed beam", "nonlinear phase", "beam solution", "hermite gaussian", "paraxial optical" (4) "elliptical gaussian beam" (5) "c science b", "science b v" (4) "propagation factor m", "flattened gaussian beams", "gaussian beam misaligned", "annular focusing system", "relative focal shift", "hermite gaussian beams", "beam propagation factor", "factor m factor" (3)

Focuses on gaussian beam propagation properties in applications with lasers and optics.

Cluster 62 [20]

"ceramics" (38) "properties" (31) "materials" (25) "mechanical" (24) "toughness" (23) "fracture" (22) "strength", "bn" (19) "ceramic" (18) "phase" (17) "composite", "al2o3", "crack" (15) "sic" (14) "m" (13) "laminated" (12) "composites", "microstructure", "sintering", "zirconia" (11) "interface", "hot" (10) "high", "glass", "ha", "mpa" (9) "based", "samples", "containing", "si3n4", "bending", "toughening" (8) "mechanical properties" (20) "fracture toughness" (13) "si3n4 bn", "bending strength", "hot pressing" (6) "20 vol", "mpa m", "microwave sintering", "metallic inclusions", "crack deflection" (5) "work fracture", "strength fracture", "glass ceramics", "ti composite", "phase ceramics", "b o", "multi phase" (4) "strength

fracture toughness", "multi phase ceramics" (4) "y alpha sialon", "laminated si3n4 bn", "20 vol ti", "ha 20 vol", "b o n", "si3n4 bn ceramics", "bn interface layers", "samples microwave sintering", "vol ti composite", "si b o" (3)

Focuses on the material properties (such as mechanical, toughness, and strength) of ceramics, glass and composites.

Cluster 63 [20]

"laser" (50) "electron" (23) "cm" (17) "intensity", "x" (15) "high", "energy", "plasma", "w" (14) "electrons" (13) "density" (12) "beam" (11) "temperature", "ions", "plasmas" (10) "pulse" (9) "system", "target", "simulation", "kev", "fel" (8) "c", "physics", "ray", "generation", "hot", "atomic" (7) "two", "molecular", "measured", "length", "interaction", "free", "channel", "vacuum", "krf", "pulses", "acceleration", "code" (6) "w cm" (14) "x ray" (7) "laser pulse", "laser intensity", "plasma channel", "laser pulses" (5) "ultrashort laser", "perfect synchronism", "hard x", "femtosecond laser", "laser plasma", "laser system", "17 w", "b v", "science b", "c science", "hot electron" (4) "science b v", "17 w cm", "c science b" (4) "pulsed laser deposition", "14 w cm", "molecular beam epitaxy", "hard x ray", "charged fragmental ions", "c american physics", "singly charged fragmental" (3)

Focuses on lasers used to study plasma and nuclear physics properties.

Cluster 64 [20]

"black" (43) "entropy" (36) "hole" (31) "horizon" (25) "model" (20) "wall", "brick" (18) "s" (17) "spin" (15) "field", "q" (13) "method", "holes" (12) "energy", "event", "quantum", "scalar", "kerr", "newman" (11) "particles", "ext" (10) "temperature", "term", "area", "hawking" (9) "new", "proportional", "fields" (8) "membrane", "radiation", "thermal" (7) "time" (6) "black hole" (29) "brick wall" (18) "black holes" (12) "wall model", "kerr newman", "event horizon" (11) "ext q" (10) "s ext" (9) "membrane model", "wall method" (7) "q s" (6) "thermal radiation", "proportional area" (5) "dirac particles", "temperature event", "newman ads", "entropy black", "scalar field", "spin fields", "extensive energy", "spherically symmetric", "coordinate transformation", "b v", "science b", "c science", "entropy scalar", "tortoise coordinate", "method membrane", "newman ds" (4) "brick wall model" (11) "s ext q" (9) "brick wall method" (7) "q s ext", "ext q s" (5) "tortoise coordinate transformation", "temperature event horizon", "kerr newman ds", "method membrane model", "science b v", "c science b", "kerr newman ads", "entropy scalar field", "wall method membrane" (4)

Focuses on characterizing black hole properties using techniques such as the brick wall method.

Cluster 65 [20]

"cross" (29) "isospin" (25) "energy" (24) "n" (22) "nuclear" (20) "section" (18) "potential", "model" (16) "dependence" (15) "parameters", "reaction" (14) "experimental", "sections" (12) "two", "nucleon" (11) "body", "u", "mev" (10) "c", "18", "momentum" (9) "x", "state", "medium", "heavy", "projectile" (8) "ion", "quantum", "proton", "intermediate", "mean", "17", "dependent", "12", "nuclei", "symmetry", "collisions", "ne" (7) "cross section" (18) "cross sections" (11) "isospin dependence" (8) "symmetry potential" (7) "isospin dependent", "quantum molecular", "mev u", "two body", "heavy ion", "momentum dependence", "molecular dynamics" (6) "f 17", "intermediate energy", "ion collisions", "equation state", "17 ne", "differential cross", "mean field" (5) "nucleon nucleon", "nuclear reaction", "dependence interaction", "nuclear stopping", "optical potential", "n n", "high energy", "experimental data" (4) "quantum molecular dynamics" (6) "heavy ion collisions", "f 17 ne" (5) "differential cross section", "momentum dependence interaction" (4) "optical potential parameters", "intermediate energy heavy", "nucleon cross section", "nucleon nucleon cross", "dependent quantum molecular", "molecular dynamics iqmd", "17 ne 18", "nn cross section", "medium nucleon nucleon", "isospin dependent quantum", "molecular dynamics model", "isospin dependent medium" (3)

Focuses on characterizing properties of nuclear and elementary particles such as cross-sectional energies, isospin fractination, and energy states.

Cluster 66 [20]

330/503

"plasma" (46) "current" (35) "tokamak" (22) "density" (21) "field", "power" (18) "v" (17) "ht" (16) "system" (15) "temperature", "magnetic", "higher" (12) "design", "hl", "pf" (11) "superconducting" (10) "electron", "experiments", "beam", "ions", "ion", "confinement", "wave", "7u" (9) "pressure", "b", "emission", "progress", "control", "pellet", "g", "hybrid", "discharge", "pulse", "plasmas", "coils", "poloidal", "fueling", "lhcd" (8) "ht 7u", "plasma density" (9) "v g" (8) "current drive", "poloidal field", "optical emission", "hl 2a" (7) "lower hybrid", "plasma current", "heavy ions", "magnetic field" (6) "steady state", "pf coils", "rf power", "control system" (5) "field pf", "superconducting tokamak", "v v", "fwg antenna", "g equal", "toroidal field", "50 v", "electron temperature", "current density", "hl 1m", "beam injection", "implantation current", "current profile" (4) "implantation current density", "v v g", "v g equal" (4) "steady state operation", "poloidal field pf", "current drive lhcd", "radio frequency rf", "ht 7u superconducting", "optical emission strength" (3)

Focuses on the principles of Plasma Physics in various applications, such as the tokamak reactor and superconducting.

Cluster 67 [20]

"conditions", "yields" (14) "good", "mild" (11) "corresponding", "oxidation" (8) "alcohols", "aryl" (7) "ketones" (6) "c", "science", "high", "alpha", "compounds", "secondary", "bromide", "aldehydes", "azo" (5) "first", "paper", "substituted", "diaryl", "nano2" (4) "n", "simple", "water", "new", "time", "primary", "efficient", "free", "eight", "beta", "agent", "solvent", "neutral", "unsaturated", "acyl", "amides", "diallylated" (3) "good yields" (9) "mild conditions" (8) "c science", "azo compounds" (5) "secondary alcohols", "yields mild" (4) "solvent free", "free conditions", "aryl substituted", "unsaturated acyl", "alpha beta", "high yields", "aldehydes ketones", "beta unsaturated", "compounds nano2", "conditions good", "first time", "neutral conditions" (3) "good yields mild", "conditions good yields", "solvent free conditions", "azo compounds nano2", "beta unsaturated acyl", "alpha beta unsaturated" (3)

Focuses on reaction properties and conditions of alcohols such as ketones, bromides, and aldehydes for improving yields.

Cluster 68 [20]

"crack" (86) "stress" (31) "field" (30) "tip" (25) "material", "infinity" (21) "fracture" (20) "growth" (19) "fatigue" (17) "interface" (16) "intensity", "strain", "electric" (14) "paper", "displacement" (11) "piezoelectric" (10) "mechanical", "dynamic", "model" (9) "c", "energy", "conditions", "boundary", "y" (8) "rate", "two", "science", "factor", "zone", "theory", "factors", "plane", "sigma", "integral", "toughness" (7) "crack tip" (23) "crack growth" (14) "stress intensity" (13) "fatigue crack" (11) "y infinity" (8) "intensity factors", "tip field", "intensity factor", "c science" (7) "electric field", "electric displacement" (6) "strain energy", "fracture toughness", "interface crack" (5) "energy density", "infinity epsilon", "dynamic stress", "boundary conditions", "integral equation", "stress electric" (4) "stress intensity factor" (7) "crack tip field", "stress intensity factors" (6) "fatigue crack growth" (5) "dynamic stress intensity" (4) "stress electric displacement", "zone crack tip", "elastic piezoelectric dielectric", "strain energy density" (3)

Focuses on the physical properties of materials (e.g. piezoelectric) that characterize strength such as crack growth, stress, strain, and fatigue.

Appendix 10A – Partitional Clustering Results

- -CLUTO
- -Science Citation Index
- -40 Clusters

The format for each of the forty clusters is as follows. The cluster number is presented first, followed by cluster size and cohesiveness metrics (in parentheses), followed by weighted phrases. The Descriptive weightings represent the contribution of each phrase to the cluster's theme, and the Discriminating weightings represent the contribution of each phrase to the cluster's uniqueness from other clusters. At the end of each cluster is a brief summary of the main theme. Table A10A-1 below shows a summary of all the clusters analyzed.

Cluster 0 (Size: 154, ISim: 0.073, ESim: 0.005)

<u>Descriptive</u>: angstrom 23.9%, crystal 4.8%, degre 4.4%, space.group 3.1%, titl 2.8%, compound 2.8%, atom 2.7%, titl.compound 2.1%, group 1.8%, beta 1.8%, space 1.7%, monoclin 1.4%, structur 1.2%, complex 1.1%, bond 0.9%, crystal.structur 0.9%, h2o 0.9%, molecul 0.8%, rai 0.8%, coordin 0.7%, angstrom.beta 0.7%, ring 0.7%, ligand 0.6%, diffract 0.6%, hydrogen.bond 0.6%, 000 0.6%, unit 0.6%, two 0.5%, rai.diffract 0.5%, system.space 0.5%

Discriminating: angstrom 15.8%, degre 2.3%, space.group 2.0%, titl 1.8%, crystal 1.6%, titl.compound 1.4%, compound 1.0%, atom 1.0%, monoclin 0.9%, model 0.7%, film 0.7%, space 0.7%, temperatur 0.6%, method 0.5%, crystal.structur 0.5%, increas 0.5%, beta 0.5%, angstrom.beta 0.5%, phase 0.4%, activ 0.4%, high 0.4%, surfac 0.4%, h2o 0.4%, field 0.4%, time 0.4%, process 0.3%, measur 0.3%, paper 0.3%, group 0.3%, base 0.3%

Focuses on the physical characterization of crystal structures and compounds.

Cluster 1 (Size: 80, ISim: 0.056, ESim: 0.004)

<u>Descriptive</u>: rock 6.0%, metamorph 4.0%, ag 3.1%, zircon 2.1%, china 2.1%, north 1.9%, zone 1.7%, earli 1.4%, basin 1.4%, late 1.4%, eclogit 1.4%, south 1.3%, mantl 1.1%, granit 1.1%, volcan 1.0%, tecton 1.0%, fault 0.9%, belt 0.8%, dabi 0.8%, block 0.8%, miner 0.8%, deposit 0.7%, uhp 0.7%, orogen 0.7%, faci 0.6%, continent 0.6%, fauna 0.6%, upper 0.6%, dyke 0.6%, middl 0.6%

Discriminating: rock 3.7%, metamorph 2.5%, ag 1.4%, zircon 1.3%, north 1.2%, china 0.9%, eclogit 0.9%, zone 0.8%, basin 0.8%, late 0.8%, earli 0.7%, south 0.7%, mantl 0.7%, granit 0.7%, method 0.7%, volcan 0.7%, tecton 0.6%, film 0.6%, model 0.6%, cell 0.6%, temperatur 0.5%, fault 0.5%, dabi 0.5%, belt 0.5%, system 0.4%, orogen 0.4%, phase 0.4%, uhp 0.4%, faci 0.4%, miner 0.4%

Focuses on geological changes to different regions of China.

Cluster 2 (Size: 104, ISim: 0.056, ESim: 0.007)

<u>Descriptive</u>: magnet 41.5%, field 3.9%, temperatur 2.4%, magnet.field 2.0%, magnet.properti 1.7%, transit 1.7%, spin 1.5%, ferromagnet 1.4%, magnetoresist 0.9%, properti 0.8%, phase 0.7%, superconduct 0.7%, coupl 0.6%, antiferromagnet 0.6%, coerciv 0.5%, curi 0.5%, increas 0.5%, electr 0.5%, microspher 0.5%, compound 0.5%, structur 0.4%, curi.temperatur 0.4%, electron 0.4%, electr.field 0.4%, sampl 0.4%, insul 0.3%, dope 0.3%, depend 0.3%, decreas 0.3%, state 0.2%

Discriminating: magnet 29.1%, field 1.3%, magnet.field 1.3%, magnet.properti 1.3%, ferromagnet 1.0%, spin 0.8%, magnetoresist 0.7%, film 0.6%, system 0.6%, transit 0.6%, method 0.5%, cell 0.5%, activ 0.5%, model 0.5%, solut 0.4%, reaction 0.4%, superconduct 0.4%, antiferromagnet 0.4%, complex 0.4%, coerciv 0.4%, group 0.4%, control 0.4%, curi 0.3%, new 0.3%, base 0.3%, acid 0.3%, microspher 0.3%, condit 0.3%, time 0.3%, two 0.3%

Focuses on the electromagnetic properties of superconductors.

Cluster 3 (Size: 181, ISim: 0.052, ESim: 0.006)

<u>Descriptive</u>: catalyst 43.7%, catalyt 4.7%, activ 4.2%, oxid 1.8%, reaction 1.8%, select 1.4%, catalyt.activ 1.3%, al2o3 1.1%, polymer 1.0%, hydrogen 0.9%, support 0.8%, convers 0.8%, sio2 0.5%, temperatur 0.4%, carbon 0.4%, sulfur 0.4%, ethylen 0.4%, acid 0.4%, gamma.al2o3 0.4%, complex 0.4%, surfac 0.4%, reduct 0.4%, yield 0.3%, high 0.3%, zeolit 0.3%, oxygen 0.3%, tpr 0.3%, promot 0.3%, speci 0.3%, ratio 0.2%

Discriminating: catalyst 30.9%, catalyst 3.1%, activ 1.3%, catalyst.activ 0.9%, film 0.7%, model 0.7%, select 0.6%, cell 0.6%, oxid 0.6%, al2o3 0.6%, system 0.5%, method 0.5%, polymer 0.4%, field 0.4%, two 0.4%, convers 0.4%, support 0.3%, energi 0.3%, structur 0.3%, crystal 0.3%, control 0.3%, paper 0.3%, patient 0.3%, function 0.3%, gamma.al2o3 0.3%, reaction 0.3%, measur 0.3%, group 0.3%, hydrogen 0.3%, solut 0.3%

Focuses on the physical chemistry properties of catalyst and reactions of materials such as polymers, al2o3, hydrogen, sio2, ethylene, oxygen, and zeolite.

Cluster 4 (Size: 76, ISim: 0.053, ESim: 0.006)

<u>Descriptive</u>: implant 14.3%, ion 12.1%, ion.implant 4.8%, diamond 3.5%, anneal 3.2%, irradi 1.7%, gan 1.7%, film 1.6%, dose 1.5%, layer 1.5%, waveguid 1.2%, deposit 1.0%, substrat 0.9%, surfac 0.9%, fluenc 0.8%, nucleat 0.7%, inp 0.5%, sampl 0.5%, laser 0.5%, profil 0.5%, temperatur 0.5%, electron 0.4%, energi 0.4%, diffus 0.4%, epitaxi 0.4%, electron.energi 0.4%, energi.loss 0.3%, electron.energi.loss 0.3%, diamond.film 0.3%, ion.dose 0.3%

<u>Discriminating</u>: implant 10.5%, ion 7.0%, ion.implant 3.7%, diamond 2.5%, anneal 1.8%, gan 1.2%, irradi 1.0%, dose 0.9%, system 0.8%, waveguid 0.8%, method 0.6%, cell 0.6%, fluenc 0.6%, model 0.6%, two 0.5%, activ 0.5%, solut 0.4%, layer 0.4%, inp 0.4%, nucleat 0.4%, field 0.4%, complex 0.4%, structur 0.3%, acid 0.3%, new 0.3%, reaction 0.3%, substrat 0.3%, phase 0.3%, express 0.3%, paper 0.3%

Focuses on the methods of ion implantation on substrates and films and characterizing their physical properties.

Cluster 5 (Size: 210, ISim: 0.044, ESim: 0.004)

<u>Descriptive</u>: patient 49.3%, group 2.1%, arteri 1.5%, diseas 1.2%, month 1.0%, treatment 1.0%, case 0.7%, lesion 0.7%, tumor 0.7%, diagnosi 0.6%, surgeri 0.5%, score 0.4%, year 0.4%, symptom 0.4%, cancer 0.4%, surviv 0.4%, dai 0.3%, mean 0.3%, acut 0.3%, ag 0.3%, breast 0.3%, therapi 0.3%, method 0.3%, ey 0.3%, rate 0.3%, chines 0.3%, outcom 0.3%, recurr 0.3%, test 0.2%, on 0.2%

<u>Discriminating</u>: patient 32.0%, arteri 1.0%, temperatur 0.8%, model 0.7%, film 0.7%, diseas 0.7%, structur 0.7%, month 0.6%, system 0.5%, group 0.4%, crystal 0.4%, lesion 0.4%, surfac 0.4%, solut 0.4%, phase 0.4%, field 0.4%, surgeri 0.3%, reaction 0.3%, properti 0.3%, cell 0.3%, paper 0.3%, process 0.3%, complex 0.3%, energi 0.3%, state 0.3%, diagnosi 0.3%, electron 0.3%, high 0.3%, treatment 0.3%, increas 0.3%

Focuses on the symptoms, diagnosis, and success of treatments in Chinese patients with diseases and cancer, primarily associated with the breast, eyes, and arteries.

Cluster 6 (Size: 198, ISim: 0.045, ESim: 0.006)

<u>Descriptive</u>: ceram 14.7%, dielectr 13.8%, ferroelectr 5.7%, sinter 4.3%, phase 3.0%, temperatur 2.8%, dielectr.constant 1.7%, piezoelectr 1.5%, dielectr.properti 1.3%, properti 1.2%, constant 1.0%, phase.transit 1.0%, domain 1.0%, electr 0.9%, materi 0.8%, relaxor 0.8%, transit 0.8%, composit 0.7%, pmn 0.6%, polar 0.6%, pbtio3 0.5%, dope 0.5%, structur 0.5%, pyrochlor 0.5%, field 0.5%, 3nb2 0.4%, tetragon 0.4%, batio3 0.4%, increas 0.4%, sinter.temperatur 0.4%

<u>Discriminating</u>: ceram 10.6%, dielectr 10.1%, ferroelectr 4.0%, sinter 2.9%, dielectr.constant 1.3%, dielectr.properti 1.0%, piezoelectr 0.9%, phase 0.7%, relaxor 0.6%, phase.transit 0.6%, film 0.6%, cell 0.6%, model 0.6%, method 0.5%, pmn 0.5%, system 0.4%, reaction 0.4%, temperatur 0.4%, group 0.4%, activ 0.4%, pyrochlor 0.4%, pbtio3 0.4%, solut 0.4%, domain 0.4%, two 0.3%, constant 0.3%, 3nb2 0.3%, surfac 0.3%, scienc 0.3%, acid 0.3%

Focuses on the physical properties of ceramic materials.

Cluster 7 (Size: 362, ISim: 0.045, ESim: 0.006)

<u>Descriptive</u>: film 47.5%, thin.film 4.8%, thin 4.6%, deposit 2.6%, substrat 2.1%, anneal 0.9%, pzt 0.8%, surfac 0.7%, thick 0.7%, layer 0.6%, sputter 0.6%, temperatur 0.5%, structur 0.4%, properti 0.4%, rai 0.4%, composit 0.4%, ferroelectr 0.3%, increas 0.3%, grain 0.3%, orient 0.3%, film.deposit 0.3%, polar 0.3%, electron 0.2%, sol 0.2%, dope 0.2%, stress 0.2%, tio2 0.2%, coat 0.2%, spectroscopi 0.2%, microscopi 0.2%

<u>Discriminating</u>: film 35.6%, thin.film 3.7%, thin 3.3%, deposit 1.5%, substrat 1.3%, system 0.7%, model 0.7%, pzt 0.6%, cell 0.5%, method 0.5%, activ 0.5%, anneal 0.5%, two 0.5%, complex 0.4%, sputter 0.4%, reaction 0.4%, group 0.4%, patient 0.3%, express 0.3%, acid 0.3%, thick 0.3%, function 0.3%, paper 0.3%, new 0.3%, base 0.3%, gene 0.3%, control 0.3%, time 0.3%, product 0.3%, equat 0.2%

Focuses on the physical properties of thin films and substrates.

Cluster 8 (Size: 155, ISim: 0.043, ESim: 0.006)

<u>Descriptive</u>: algorithm 47.5%, schedul 1.5%, method 1.0%, optim 0.9%, comput 0.8%, model 0.8%, paper 0.8%, converg 0.7%, genet.algorithm 0.7%, simul 0.6%, base 0.6%, machin 0.6%, object 0.5%, genet 0.5%, job 0.5%, new 0.5%, line 0.4%, fuzzi 0.4%, minim 0.4%, iter 0.4%, code 0.4%, network 0.4%, search 0.3%, system 0.3%, solv 0.3%, approxim 0.3%, complex 0.3%, program 0.3%, time 0.3%, effici 0.3%

<u>Discriminating</u>: algorithm 35.6%, schedul 1.1%, temperatur 0.8%, film 0.8%, cell 0.6%, crystal 0.5%, genet.algorithm 0.5%, increas 0.5%, activ 0.5%, structur 0.5%, phase 0.5%, reaction 0.4%, group 0.4%, job 0.4%, converg 0.4%, high 0.4%, field 0.4%, electron 0.4%, acid 0.3%, surfac 0.3%, machin 0.3%, patient 0.3%, energi 0.3%, comput 0.3%, composit 0.3%, ion 0.3%, mechan 0.3%, state 0.3%, magnet 0.2%, genet 0.2%

Focuses on the efficiencies of genetic modeling, simulations and algorithms using techniques such as fuzzy logic.

Cluster 9 (Size: 199, ISim: 0.042, ESim: 0.005)

<u>Descriptive</u>: gene 31.5%, dna 5.3%, express 5.2%, pcr 2.0%, genom 1.8%, sequenc 1.7%, plant 1.4%, transgen 1.4%, chromosom 1.2%, mutat 1.1%, clone 1.1%, tumor 0.9%, gene.express 0.8%, transcript 0.8%, genet 0.7%, cell 0.7%, rice 0.7%, protein 0.6%, promot 0.5%, detect 0.5%, region 0.4%, allel 0.4%, regul 0.4%, human 0.4%, tissu 0.4%, line 0.4%, cdna 0.4%, intron 0.4%, polymorph 0.3%, viru 0.3%

<u>Discriminating</u>: gene 21.6%, dna 3.0%, express 2.4%, pcr 1.3%, genom 1.2%, transgen 1.0%, chromosom 0.8%, film 0.7%, mutat 0.7%, temperatur 0.7%, sequenc 0.7%, model 0.7%, clone 0.7%, plant 0.6%, structur 0.6%, gene.express 0.6%, phase 0.5%, system 0.5%, crystal 0.5%, transcript 0.5%, surfac 0.5%, solut 0.5%, genet 0.4%, rice 0.4%, measur 0.4%, state 0.4%, field 0.4%, tumor 0.4%, method 0.4%, paper 0.3%

Focuses on dna sequencing of plants such as rice (and possibily human cells & tissues) to detect and assess the genetic effects of cloning.

Cluster 10 (Size: 131, ISim: 0.041, ESim: 0.005)

<u>Descriptive</u>: beta 27.8%, compound 6.6%, alpha 3.8%, cyclodextrin 2.9%, nmr 2.8%, beta.cyclodextrin 1.8%, isol 1.7%, elucid 1.5%, glucopyranosyl 1.3%, beta.glucopyranosyl 1.2%, structur.elucid 1.2%, structur 1.2%, inclus 1.0%, spectroscop 0.9%, new 0.9%, synthes 0.7%, acid 0.6%, glucopyranosid 0.6%, inclus.complex 0.6%, new.compound 0.5%, alpha.beta 0.5%, glycosid 0.5%, methyl 0.5%, aryl 0.4%, deriv 0.4%, two.new 0.4%, 3beta 0.4%, alpha.beta.unsatur 0.4%, unsatur 0.4%, beta.unsatur 0.4%

Discriminating: beta 17.0%, compound 3.2%, cyclodextrin 2.0%, alpha 1.7%, nmr 1.6%, beta.cyclodextrin 1.2%, elucid 0.9%, glucopyranosyl 0.9%, beta.glucopyranosyl 0.8%, structur.elucid 0.8%, isol 0.7%, model 0.7%, film 0.7%, system 0.6%, temperatur 0.6%, inclus 0.5%, spectroscop 0.5%, increas 0.4%, cell 0.4%, glucopyranosid 0.4%, surfac 0.4%, inclus.complex 0.4%, field 0.4%, new.compound 0.4%, glycosid 0.3%, time 0.3%, method 0.3%, alpha.beta 0.3%, phase 0.3%, high 0.3%

Focuses on the effects of compounds and enzymes for immunology studies using nmr and spectroscopic techniques.

Cluster 11 (Size: 145, ISim: 0.042, ESim: 0.006)

<u>Descriptive</u>: control 17.8%, system 11.6%, chaotic 7.0%, chao 2.7%, synchron 2.3%, feedback 1.7%, power 1.7%, dynam 1.3%, control.system 0.9%, attractor 0.9%, oscil 0.8%, chaotic.system 0.8%, design 0.8%, adapt 0.7%, power.system 0.7%, fuzzi 0.7%, nonlinear 0.7%, paramet 0.6%, paper 0.6%, coupl 0.6%, lorenz 0.6%, time 0.5%, voltag 0.5%, simul 0.5%, optim 0.5%, bifurc 0.5%, linear 0.5%, numer 0.4%, output 0.4%, delai 0.4%

<u>Discriminating</u>: control 11.0%, chaotic 5.5%, system 4.9%, chao 2.1%, synchron 1.7%, feedback 1.2%, temperatur 0.9%, film 0.8%, power 0.8%, control.system 0.7%, chaotic.system 0.7%, attractor 0.6%, power.system 0.5%, cell 0.5%, crystal 0.5%, increas 0.5%, structur 0.5%, dynam 0.5%, reaction 0.5%, adapt 0.5%, lorenz 0.5%, surfac 0.4%, group 0.4%, phase 0.4%, oscil 0.4%, fuzzi 0.4%, field 0.4%, acid 0.3%, bifurc 0.3%, energi 0.3%

Focuses on modeling and simulation of control system theory for dynamic feedback to power systems using fuzzy logic, linear and non-linear techniques.

Cluster 12 (Size: 123, ISim: 0.041, ESim: 0.005)

<u>Descriptive</u>: state 14.3%, quantum 8.0%, entangl 4.9%, hole 3.9%, black.hole 3.4%, black 3.3%, field 2.8%, coher 2.0%, spin 1.9%, entropi 1.6%, coupl 1.3%, squeez 1.0%, entangl.state 1.0%, horizon 0.9%, oscil 0.8%, atom 0.7%, coher.state 0.6%, mode 0.5%, teleport 0.5%, brick.wall 0.5%, two 0.5%, ground.state 0.5%, oper 0.4%, brick 0.4%, dot 0.4%, theori 0.4%, quantum.mechan 0.4%, photon 0.4%, ground 0.4%, trap 0.4%

<u>Discriminating</u>: state 7.7%, quantum 5.1%, entangl 3.6%, hole 2.6%, black.hole 2.6%, black 2.4%, coher 1.3%, spin 1.0%, entropi 1.0%, squeez 0.8%, field 0.7%, entangl.state 0.7%, structur 0.7%, cell 0.7%, horizon 0.6%, film 0.6%, activ 0.5%, reaction 0.5%, temperatur 0.4%, coher.state 0.4%, surfac 0.4%, high 0.4%, crystal 0.4%, coupl 0.4%, teleport 0.4%, complex 0.4%, method 0.4%, increas 0.4%, brick.wall 0.4%, oscil 0.4%

Focuses on the quantum states and properties of atomic particles and their interactions in black holes.

Cluster 13 (Size: 165, ISim: 0.040, ESim: 0.005)

<u>Descriptive</u>: protein 22.6%, sequenc 4.7%, amino.acid 2.8%, amino 2.7%, express 2.4%, acid 1.5%, human 1.4%, gene 1.4%, cdna 1.2%, fusion 1.2%, isol 1.2%, bind 1.0%, peptid 1.0%, recombin 1.0%, activ 0.8%, residu 0.8%, encod 0.8%, strain 0.8%, termin 0.8%, purifi 0.8%, plasmid 0.8%, hcv 0.8%, antibodi 0.7%, enzym 0.7%, clone 0.6%, fusion.protein 0.6%, coli 0.5%, domain 0.5%, viru 0.5%, mutant 0.4%

<u>Discriminating</u>: protein 15.1%, sequenc 2.6%, amino.acid 1.9%, amino 1.7%, cdna 0.9%, fusion 0.8%, temperatur 0.8%, express 0.8%, film 0.8%, model 0.8%, system 0.7%, peptid 0.6%, human 0.6%, recombin 0.6%, hcv 0.5%, plasmid 0.5%, phase 0.5%, isol 0.5%, encod 0.5%, purifi 0.5%, bind 0.5%, termin 0.5%, fusion.protein 0.5%, antibodi 0.4%, surfac 0.4%, solut 0.4%, crystal 0.4%, field 0.4%, residu 0.4%, state 0.4%

Focuses on sequencing of proteins and amino acids.

Cluster 14 (Size: 157, ISim: 0.040, ESim: 0.006)

<u>Descriptive</u>: nanowir 9.2%, nanotub 5.0%, electron 4.5%, microscopi 3.5%, electron.microscopi 3.4%, transmiss.electron 2.6%, transmiss.electron.microscopi 2.3%, diamet 2.3%, nanorod 2.2%, transmiss 2.1%, carbon.nanotub 2.0%, diffract

1.8%, carbon 1.7%, cnt 1.4%, growth 1.3%, rai 1.2%, nanoparticl 1.1%, tem 0.8%, electron.diffract 0.8%, nanocryst 0.8%, crystal 0.6%, structur 0.6%, templat 0.6%, nanostructur 0.5%, rai.diffract 0.5%, oxid 0.5%, arrai 0.5%, microscopi.tem 0.4%, electron.microscopi.tem 0.4%, hrtem 0.4%

<u>Discriminating</u>: nanowir 7.2%, nanotub 3.8%, electron.microscopi 2.4%, microscopi 2.2%, electron 1.9%, transmiss.electron 1.8%, nanorod 1.8%, transmiss.electron.microscopi 1.7%, carbon.nanotub 1.5%, diamet 1.5%, transmiss 1.2%, cnt 1.1%, diffract 0.8%, system 0.8%, film 0.7%, carbon 0.7%, cell 0.7%, electron.diffract 0.6%, nanoparticl 0.6%, model 0.6%, activ 0.6%, nanocryst 0.6%, tem 0.5%, two 0.4%, group 0.4%, growth 0.4%, method 0.4%, templat 0.4%, complex 0.4%, nanostructur 0.4%

Focuses on the study of nanotechnology such as nanowires, carbon nanotubes using transmission electron microscopy.

Cluster 15 (Size: 127, ISim: 0.038, ESim: 0.005)

<u>Descriptive</u>: decai 8.7%, quark 6.6%, gamma 2.6%, model 2.0%, energi 1.7%, detector 1.7%, gev 1.5%, meson 1.4%, collis 1.4%, branch 1.3%, data 1.2%, phi 1.2%, cross.section 1.1%, neutron 1.0%, hadron 1.0%, isospin 1.0%, measur 1.0%, state 1.0%, baryon 1.0%, branch.ratio 1.0%, section 0.9%, mass 0.9%, gluon 0.8%, mev 0.8%, pion 0.8%, cross 0.8%, relativist 0.7%, nucleon 0.7%, proton 0.7%, qcd 0.6%

<u>Discriminating</u>: decai 6.0%, quark 4.8%, gamma 1.2%, detector 1.1%, gev 1.1%, meson 1.0%, collis 0.9%, branch 0.8%, hadron 0.8%, isospin 0.7%, phi 0.7%, film 0.7%, neutron 0.7%, cross.section 0.7%, baryon 0.7%, temperatur 0.7%, branch.ratio 0.7%, cell 0.7%, structur 0.7%, method 0.6%, gluon 0.6%, pion 0.6%, mev 0.5%, nucleon 0.5%, relativist 0.5%, activ 0.5%, surfac 0.5%, qcd 0.5%, section 0.5%, asymmetri 0.4%

Focuses on particle physics modeling & characterizing of the energy states of such elementary particles as protons, neutrons, gamma rays, quarks, mesons, darons, baryons, and gluons.

Cluster 16 (Size: 130, ISim: 0.036, ESim: 0.004)

<u>Descriptive</u>: speci 26.9%, china 5.2%, new.speci 3.6%, genu 2.7%, popul 2.5%, nov 1.7%, new 1.5%, genet 0.9%, fungal 0.8%, yunnan 0.7%, sequenc 0.7%, male 0.6%, two 0.6%, fungi 0.6%, fern 0.6%, specimen 0.6%, famili 0.6%, diploid 0.5%, genera 0.5%, provinc 0.5%, polymorph 0.5%, femal 0.4%, speci.genu 0.4%, chines 0.4%, three 0.4%, commun 0.4%, group 0.3%, type 0.3%, marker 0.3%, divers 0.3%

<u>Discriminating</u>: speci 16.9%, china 2.9%, new.speci 2.5%, genu 1.8%, popul 1.4%, nov 1.2%, model 0.7%, film 0.7%, temperatur 0.6%, system 0.6%, method 0.6%, fungal 0.5%, phase 0.5%, structur 0.5%, cell 0.5%, yunnan 0.5%, crystal 0.4%, genet 0.4%, surfac 0.4%, fungi 0.4%, solut 0.4%, fern 0.4%, activ 0.4%, increas 0.4%, reaction 0.4%, male 0.4%, diploid 0.4%, genera 0.3%, state 0.3%, energi 0.3%

Focuses on Chinese species of fungi.

Cluster 17 (Size: 172, ISim: 0.036, ESim: 0.006)

<u>Descriptive</u>: complex 19.3%, ligand 6.8%, coordin 4.1%, h2o 2.7%, structur 1.9%, crystal 1.6%, atom 1.5%, bond 1.3%, bridg 1.3%, spectra 1.2%, synthes 1.1%, copper 1.0%, ion 1.0%, hydrogen.bond 0.9%, iii 0.9%, clo4 0.9%, eta 0.8%, rai 0.8%, dimension 0.7%, two 0.7%, hydrogen 0.7%, interact 0.7%, element 0.6%, phen 0.6%, fluoresc 0.6%, bi 0.6%, group 0.6%, carboxyl 0.6%, crystal.structur 0.5%, nmr 0.5%

<u>Discriminating</u>: complex 12.0%, ligand 4.9%, coordin 2.8%, h2o 1.7%, bridg 0.8%, model 0.8%, film 0.8%, cell 0.7%, clo4 0.7%, method 0.7%, system 0.6%, hydrogen.bond 0.6%, copper 0.5%, surfac 0.5%, eta 0.5%, temperatur 0.5%, increas 0.5%, phase 0.5%, bond 0.5%, iii 0.4%, atom 0.4%, spectra 0.4%, phen 0.4%, field 0.4%, activ 0.4%, pph3 0.4%, control 0.3%, paper 0.3%, carboxyl 0.3%, time 0.3%

Focuses on synthesizing and characterizing the bonding properties of complex microstructures such as ligands, crystals of copper, hydrogen, and carboxyl.

Cluster 18 (Size: 284, ISim: 0.036, ESim: 0.005)

<u>Descriptive</u>: cell 44.5%, express 2.7%, apoptosi 2.5%, tumor 2.1%, cultur 1.3%, activ 1.1%, cell.line 1.0%, human 0.9%, cancer 0.9%, protein 0.8%, line 0.7%, inhibit 0.7%, prolifer 0.6%, induc 0.6%, tissu 0.6%, carcinoma 0.5%, stain 0.5%, hcc 0.5%, growth 0.5%, cytotox 0.3%, telomeras 0.3%, gene 0.3%, assai 0.3%, mrna 0.3%, tumor.cell 0.3%, detect 0.3%, regul 0.3%, dna 0.3%, product 0.3%, level 0.3%

<u>Discriminating</u>: cell 29.4%, apoptosi 1.8%, tumor 1.2%, express 1.0%, cultur 0.8%, temperatur 0.8%, film 0.8%, cell.line 0.7%, system 0.6%, model 0.6%, structur 0.5%, cancer 0.5%, crystal 0.5%, human 0.4%, prolifer 0.4%, solut 0.4%, surfac 0.4%, method 0.4%, reaction 0.4%, phase 0.4%, paper 0.3%, base 0.3%, state 0.3%, properti 0.3%, stain 0.3%, carcinoma 0.3%, two 0.3%, field 0.3%, complex 0.3%, measur 0.3%

Focuses on cell physiology of human tissues, proteins, and genes for cancer/tumors.

Cluster 19 (Size: 216, ISim: 0.037, ESim: 0.006)

<u>Descriptive</u>: alloi 31.1%, microstructur 2.8%, grain 2.6%, corros 2.1%, steel 1.9%, deform 1.8%, disloc 1.4%, melt 1.2%, phase 1.1%, temperatur 1.1%, tial 1.0%, precipit 1.0%, increas 0.9%, strain 0.7%, stress 0.6%, heat 0.6%, degreesc 0.6%, boundari 0.6%, martensit 0.6%, gamma 0.6%, alpha 0.6%, eutect 0.6%, hydrogen 0.6%, cast 0.6%, ag 0.5%, mechan 0.5%, grain.boundari 0.5%, resist 0.5%, process 0.5%, rate 0.4%

<u>Discriminating</u>: alloi 24.8%, microstructur 1.8%, grain 1.5%, corros 1.5%, steel 1.3%, deform 1.1%, disloc 1.0%, tial 0.9%, system 0.8%, method 0.7%, film 0.7%, melt 0.7%, model 0.7%, cell 0.6%, precipit 0.6%, martensit 0.5%, group 0.4%, eutect 0.4%, reaction 0.4%, two 0.4%, complex 0.4%, function 0.4%, activ 0.4%, field 0.4%, cast 0.4%, acid 0.3%, grain.boundari 0.3%, patient 0.3%, weld 0.3%, crystal 0.3%

Focuses on the microstructure and material properties of steel alloys.

Cluster 20 (Size: 144, ISim: 0.032, ESim: 0.006)

<u>Descriptive</u>: cluster 5.8%, isom 5.4%, bond 3.5%, energi 3.4%, structur 3.0%, orbit 2.0%, atom 1.9%, molecul 1.6%, aren 1.3%, ring 1.3%, b3lyp 1.2%, state 1.1%, porphyrin 1.0%, dissoci 1.0%, stabl 1.0%, molecular 0.9%, calcul 0.9%, spectra 0.8%, calix 0.8%, 31g 0.8%, calix.aren 0.7%, kcal 0.7%, ci 0.6%, mol 0.6%, geometri 0.6%, stabil 0.6%, kcal.mol 0.6%, stm 0.6%, reaction 0.6%, densiti.function 0.5%

<u>Discriminating</u>: isom 4.5%, cluster 3.9%, bond 1.9%, orbit 1.4%, energi 1.3%, aren 1.1%, b3lyp 1.0%, porphyrin 0.8%, model 0.8%, film 0.8%, molecul 0.8%, dissoci 0.7%, cell 0.7%, ring 0.7%, temperatur 0.7%, calix 0.7%, atom 0.7%, 31g 0.6%, calix.aren 0.6%, kcal 0.6%, kcal.mol 0.5%, structur 0.5%, stm 0.5%, system 0.5%, ci 0.5%, stabl 0.5%, increas 0.4%, field 0.4%, control 0.4%, densiti.function 0.4%

Focuses on the atomic and molecular properties of isomers.

Cluster 21 (Size: 161, ISim: 0.031, ESim: 0.006)

<u>Descriptive</u>: polymer 7.1%, copolym 4.4%, polym 4.3%, chitosan 3.9%, graft 3.4%, poli 2.9%, molecular.weight 2.7%, monom 2.4%, molecular 2.3%, weight 2.0%, micel 1.5%, hydrogel 1.0%, radic 1.0%, methyl 1.0%, concentr 0.9%, aggreg 0.9%, methacryl 0.9%, crosslink 0.8%, solvent 0.8%, water 0.8%, initi 0.7%, solut 0.7%, acid 0.7%, increas 0.6%, group 0.5%, reaction 0.5%, chain 0.5%, temperatur 0.5%, acryl 0.5%, copolymer 0.4%

<u>Discriminating</u>: polymer 5.4%, copolym 3.4%, chitosan 3.2%, polym 2.7%, graft 2.6%, molecular.weight 2.1%, poli 2.1%, monom 1.9%, micel 1.2%, molecular 1.1%, weight 1.0%, hydrogel 0.8%, methacryl 0.7%, model 0.7%, crosslink 0.6%, cell

0.6%, radic 0.6%, aggreg 0.6%, methyl 0.5%, film 0.5%, method 0.4%, system 0.4%, solvent 0.4%, field 0.4%, two 0.4%, acryl 0.4%, copolymer 0.4%, lldpe 0.4%, patient 0.3%, express 0.3%

Focuses on characterizing the properties and reactions of polymers.

Cluster 22 (Size: 184, ISim: 0.031, ESim: 0.006)

<u>Descriptive</u>: wave 22.6%, field 8.5%, magnet 5.1%, magnet.field 1.7%, crack 1.5%, electr 1.0%, plate 1.0%, equat 0.9%, current 0.7%, soliton 0.7%, theori 0.7%, propag 0.7%, electr.field 0.6%, numer 0.6%, dipol 0.6%, instabl 0.5%, reflect 0.5%, plasma 0.5%, frequenc 0.5%, displac 0.5%, dimension 0.4%, stress 0.4%, method 0.4%, piezoelectr 0.4%, two 0.4%, dispers 0.4%, shell 0.4%, system 0.3%, surfac 0.3%, mode 0.3%

<u>Discriminating</u>: wave 18.9%, field 4.9%, magnet 3.0%, magnet.field 1.3%, crack 0.9%, film 0.9%, temperatur 0.8%, plate 0.7%, activ 0.6%, cell 0.6%, soliton 0.6%, reaction 0.6%, dipol 0.5%, increas 0.5%, electr 0.5%, acid 0.4%, group 0.4%, process 0.4%, electr.field 0.4%, instabl 0.4%, propag 0.4%, structur 0.4%, phase 0.4%, complex 0.4%, crystal 0.4%, patient 0.3%, displac 0.3%, new 0.3%, gene 0.3%, compound 0.3%

Focuses on waves & magnetic field properties associated with plasmas and piezoelectric surfaces.

Cluster 23 (Size: 245, ISim: 0.030, ESim: 0.005)

<u>Descriptive</u>: equat 14.4%, solut 8.9%, condit 2.3%, nonlinear 1.9%, boundari 1.8%, exist 1.7%, suffici.condit 1.7%, suffici 1.5%, system 1.5%, stabil 1.4%, linear 1.2%, paper 1.2%, differenti.equat 1.0%, method 1.0%, global 1.0%, function 0.9%, infin 0.8%, delai 0.7%, differenti 0.7%, converg 0.7%, integr 0.7%, asymptot 0.6%, boundari.valu 0.6%, order 0.6%, solv 0.6%, iter 0.5%, singular 0.5%, numer 0.5%, bound 0.5%, equal 0.5%

<u>Discriminating</u>: equat 9.4%, solut 4.5%, suffici.condit 1.3%, suffici 1.1%, nonlinear 1.0%, temperatur 0.9%, boundari 0.8%, film 0.8%, differenti.equat 0.8%, exist 0.7%, condit 0.7%, cell 0.7%, structur 0.6%, global 0.6%, increas 0.6%, phase 0.6%, crystal 0.5%, stabil 0.5%, infin 0.5%, activ 0.5%, reaction 0.5%, boundari.valu 0.4%, delai 0.4%, linear 0.4%, high 0.4%, asymptot 0.4%, converg 0.4%, surfac 0.4%, group 0.4%, acid 0.4%

Focuses on the elements of numerical mathematics such equations, conditions, and solutions associated with boundary value problems of system stability.

Cluster 24 (Size: 177, ISim: 0.030, ESim: 0.006)

<u>Descriptive</u>: flow 14.6%, veloc 4.6%, turbul 4.1%, heat 3.1%, model 2.5%, fluid 2.2%, scale 1.4%, pressur 1.4%, ga 1.1%, simul 1.1%, convect 1.0%, equat 0.9%, particl 0.9%, numer 0.8%, experiment 0.8%, number 0.7%, transfer 0.6%, heat.transfer 0.6%, combust 0.6%, flux 0.6%, water 0.5%, measur 0.5%, field 0.5%, comput 0.5%, bed 0.5%, region 0.5%, layer 0.4%, coeffici 0.4%, air 0.4%, dimension 0.4%

<u>Discriminating</u>: flow 12.1%, turbul 3.8%, veloc 3.7%, heat 2.0%, fluid 1.6%, convect 0.8%, film 0.8%, scale 0.7%, cell 0.7%, pressur 0.6%, ga 0.6%, reaction 0.5%, heat.transfer 0.5%, activ 0.5%, crystal 0.5%, group 0.4%, acid 0.4%, electron 0.4%, bed 0.4%, structur 0.4%, combust 0.4%, patient 0.4%, model 0.3%, complex 0.3%, properti 0.3%, composit 0.3%, flux 0.3%, reynold 0.3%, numer 0.3%, gene 0.3%

Focuses on modeling and simulation of the fluid dynamic and thermodynamic properties of particles in water and air.

Cluster 25 (Size: 245, ISim: 0.028, ESim: 0.006)

<u>Descriptive</u>: electrod 11.5%, mol 4.9%, determin 4.3%, detect 2.6%, electrochem 1.7%, acid 1.6%, detect.limit 1.5%, dna 1.5%, ion 1.4%, method.determin 1.2%, sampl 1.2%, rang 1.1%, modifi 1.0%, limit 1.0%, method 1.0%, solut 0.9%, sensor 0.9%, concentr 0.8%, oxid 0.8%, surfac 0.7%, linear 0.7%, reaction 0.7%, potenti 0.6%, sensit 0.6%, voltammetri 0.6%, immobil 0.5%, peak 0.5%, fluoresc 0.5%, cyclic 0.4%, buffer 0.4%

<u>Discriminating</u>: electrod 9.1%, mol 3.4%, determin 3.3%, detect 1.3%, electrochem 1.2%, detect.limit 1.2%, method.determin 1.0%, model 0.8%, temperatur 0.7%, structur 0.7%, dna 0.6%, cell 0.6%, sensor 0.6%, field 0.5%, system 0.5%, voltammetri 0.5%, limit 0.5%, modifi 0.5%, film 0.4%, two 0.4%, increas 0.4%, ion 0.4%, acid 0.4%, energi 0.4%, immobil 0.3%, modifi.electrod 0.3%, express 0.3%, patient 0.3%, ecl 0.3%, linear.rang 0.3%

Focuses on detection methods and limitations of using eclectrodes to exploit the ectrochemical properties of dna.

Cluster 26 (Size: 210, ISim: 0.028, ESim: 0.006)

<u>Descriptive</u>: imag 8.2%, network 6.8%, neural 3.6%, error 3.3%, neural.network 3.2%, model 2.9%, method 2.4%, estim 2.2%, recognit 1.6%, inform 1.6%, data 1.4%, wavelet 1.4%, base 1.3%, reconstruct 1.2%, accuraci 1.2%, fuzzi 1.0%, paper 0.8%, algorithm 0.7%, paramet 0.7%, comput 0.6%, featur 0.6%, new 0.6%, train 0.6%, nois 0.5%, techniqu 0.5%, simul 0.5%, optim 0.5%, scheme 0.4%, extract 0.4%, object 0.4%

<u>Discriminating</u>: imag 6.2%, network 5.1%, neural 3.0%, neural.network 2.7%, error 2.4%, estim 1.5%, recognit 1.3%, wavelet 1.2%, inform 1.0%, temperatur 1.0%, reconstruct 0.9%, film 0.9%, accuraci 0.8%, cell 0.8%, fuzzi 0.7%, crystal 0.6%, reaction 0.5%, increas 0.5%, phase 0.5%, model 0.5%, train 0.5%, activ 0.4%, field 0.4%, state 0.4%, solut 0.4%, structur 0.4%, electron 0.4%, data 0.4%, energi 0.4%, group 0.3%

Focuses on image processing techniques and reconstruction algorithms using neural networks, wavelets, and fuzzy logic to extract features and objects.

Cluster 27 (Size: 219, ISim: 0.028, ESim: 0.006)

<u>Descriptive</u>: composit 9.7%, coat 5.2%, sic 4.7%, strength 4.0%, crack 2.3%, al2o3 1.9%, fractur 1.7%, fiber 1.5%, materi 1.3%, interfac 1.3%, properti 1.2%, tough 1.2%, mechan.properti 1.2%, matrix 1.1%, mechan 1.0%, reinforc 0.9%, layer 0.9%, sinter 0.9%, ceram 0.8%, microstructur 0.8%, tensil 0.7%, mpa 0.7%, tic 0.6%, stress 0.6%, grain 0.6%, particl 0.6%, lamin 0.6%, surfac 0.5%, temperatur 0.5%, fractur.tough 0.5%

<u>Discriminating</u>: composit 6.4%, sic 3.9%, coat 3.7%, strength 2.8%, crack 1.6%, fractur 1.3%, al203 1.3%, tough 1.0%, fiber 1.0%, mechan.properti 0.9%, film 0.8%, model 0.8%, cell 0.8%, interfac 0.7%, reinforc 0.7%, tensil 0.5%, matrix 0.5%, activ 0.5%, system 0.5%, method 0.5%, tic 0.5%, mpa 0.5%, sinter 0.5%, field 0.5%, group 0.5%, fractur.tough 0.4%, state 0.4%, lamin 0.4%, complex 0.4%, sialon 0.4%

Focuses on the material properties of al2o3, coatings, fibers, ceramics, laminates and microstructures.

Cluster 28 (Size: 217, ISim: 0.026, ESim: 0.004)

<u>Descriptive</u>: rat 8.4%, activ 4.5%, induc 3.6%, inhibit 3.0%, ca2 2.8%, receptor 2.5%, express 2.0%, neuron 1.9%, cell 1.6%, protein 1.4%, mrna 1.4%, stimul 1.2%, increas 0.9%, concentr 0.9%, mice 0.8%, level 0.7%, inject 0.7%, lp 0.6%, kinas 0.6%, regul 0.5%, mediat 0.5%, antagonist 0.5%, treatment 0.5%, decreas 0.5%, depend 0.4%, inhibitor 0.4%, hsc 0.4%, dai 0.4%, cultur 0.4%, membran 0.4%

<u>Discriminating</u>: rat 6.0%, ca2 2.0%, inhibit 1.8%, induc 1.8%, receptor 1.7%, activ 1.5%, neuron 1.3%, mrna 0.9%, temperatur 0.8%, stimul 0.8%, film 0.8%, structur 0.7%, model 0.6%, express 0.6%, system 0.6%, phase 0.5%, mice 0.5%, crystal 0.5%, surfac 0.5%, lp 0.5%, method 0.4%, two 0.4%, kinas 0.4%, field 0.4%, protein 0.4%, solut 0.4%, reaction 0.4%, base 0.4%, antagonist 0.4%, electron 0.4%

Focuses on the study of manipulating the structure and functions of biological macromolecules such as neurons, cells, proteins, and mRNA from rats and mice for genetic research.

Cluster 29 (Size: 196, ISim: 0.026, ESim: 0.005)

<u>Descriptive</u>: reaction 26.9%, yield 4.8%, product 1.5%, synthes 1.3%, synthesi 1.1%, aldehyd 1.0%, aryl 0.9%, coupl 0.9%, alcohol 0.8%, chiral 0.7%, acid 0.7%, good.yield 0.7%, good 0.7%, catalyz 0.7%, solvent 0.6%, condit 0.6%, allyl 0.6%, reaction.mechan 0.6%, radic 0.5%, mechan 0.5%, high 0.5%, carbon 0.5%, temperatur 0.5%, rate 0.5%, energi 0.5%, reagent 0.4%, alkyl 0.4%, compound 0.4%, methyl 0.4%, rate.constant 0.4%

<u>Discriminating</u>: reaction 17.6%, yield 3.0%, film 0.8%, aldehyd 0.8%, cell 0.7%, aryl 0.7%, model 0.6%, structur 0.6%, system 0.6%, good.yield 0.6%, synthesi 0.5%, alcohol 0.5%, catalyz 0.4%, chiral 0.4%, field 0.4%, synthes 0.4%, allyl 0.4%, reaction.mechan 0.4%, product 0.4%, two 0.4%, surfac 0.4%, crystal 0.4%, method 0.4%, measur 0.3%, coupl.reaction 0.3%, control 0.3%, patient 0.3%, phase 0.3%, increas 0.3%, reagent 0.3%

Focuses on the reactions, synthesis, and properties of organic compounds.

Cluster 30 (Size: 222, ISim: 0.024, ESim: 0.004)

<u>Descriptive</u>: algebra 4.7%, theorem 3.5%, paper 3.4%, let 3.1%, equal 3.0%, prove 2.8%, graph 2.5%, function 2.3%, conjectur 2.1%, space 1.9%, number 1.6%, gener 1.5%, set 1.4%, bound 1.3%, inequ 1.3%, class 1.2%, polynomi 1.0%, regular 1.0%, formula 1.0%, exist 0.8%, finit 0.8%, invari 0.8%, connect 0.7%, oper 0.7%, vertic 0.6%, construct 0.5%, case 0.5%, sigma 0.5%, equival 0.5%, lambda 0.5%

<u>Discriminating</u>: algebra 3.4%, theorem 2.5%, let 2.3%, prove 1.9%, graph 1.8%, equal 1.6%, conjectur 1.5%, paper 1.1%, inequ 0.9%, space 0.9%, temperatur 0.8%, film 0.8%, polynomi 0.7%, bound 0.7%, class 0.7%, cell 0.6%, model 0.6%, regular 0.6%, function 0.6%, set 0.6%, number 0.6%, activ 0.6%, phase 0.5%, formula 0.5%, increas 0.5%, invari 0.5%, crystal 0.5%, method 0.4%, gener 0.4%, reaction 0.4%

Focuses on mathematical theories of algebra.

Cluster 31 (Size: 179, ISim: 0.024, ESim: 0.004)

<u>Descriptive</u>: risk 3.7%, women 3.3%, ag 3.0%, group 2.9%, chines 1.8%, cancer 1.7%, genotyp 1.4%, week 1.3%, control 1.2%, year 1.1%, popul 1.0%, rat 0.8%, hpv 0.8%, diseas 0.7%, blood 0.7%, case 0.7%, health 0.7%, kong 0.7%, incid 0.7%, hong 0.7%, pregnanc 0.7%, hong.kong 0.7%, abort 0.6%, men 0.6%, preval 0.6%, smoke 0.6%, cervic 0.6%, infant 0.6%, polymorph 0.5%, allel 0.5%

<u>Discriminating</u>: risk 2.7%, women 2.5%, ag 1.7%, chines 1.1%, cancer 1.0%, genotyp 0.9%, group 0.9%, week 0.8%, temperatur 0.8%, film 0.8%, structur 0.7%,

hpv 0.6%, system 0.6%, cell 0.6%, model 0.6%, year 0.6%, crystal 0.5%, abort 0.5%, health 0.5%, phase 0.5%, pregnanc 0.5%, popul 0.5%, men 0.4%, solut 0.4%, surfac 0.4%, infant 0.4%, kong 0.4%, hong 0.4%, cervic 0.4%, incid 0.4%

Focuses on the health risks that smoking has on men and women, and in particular to pregnant women in China & Hong Kong, and the incident rates related to infants, miscarriages/abortions, diseases, and cancer such as cervical cancer.

Cluster 32 (Size: 264, ISim: 0.024, ESim: 0.006)

<u>Descriptive</u>: laser 8.6%, optic 6.5%, beam 6.1%, mode 3.6%, frequenc 2.9%, puls 2.3%, pump 2.2%, wavelength 1.5%, power 1.5%, waveguid 0.9%, switch 0.8%, harmon 0.8%, shift 0.7%, effici 0.7%, propag 0.7%, measur 0.6%, light 0.6%, nonlinear 0.6%, theoret 0.6%, phase 0.5%, output 0.5%, field 0.5%, photon 0.5%, signal 0.5%, period 0.5%, wave 0.5%, radiat 0.4%, intens 0.4%, diod 0.4%, system 0.4%

<u>Discriminating</u>: laser 6.7%, beam 4.9%, optic 4.8%, mode 2.4%, pump 1.8%, puls 1.7%, frequenc 1.6%, wavelength 1.1%, film 0.9%, temperatur 0.8%, power 0.8%, waveguid 0.7%, harmon 0.6%, reaction 0.6%, cell 0.6%, activ 0.5%, switch 0.5%, increas 0.5%, model 0.4%, propag 0.4%, acid 0.4%, complex 0.4%, patient 0.4%, shift 0.4%, photon 0.4%, gaussian.beam 0.4%, output 0.3%, diod 0.3%, second.harmon 0.3%, gene 0.3%

Focuses on the physics of lasers, optics, and waveguides.

Cluster 33 (Size: 203, ISim: 0.024, ESim: 0.006)

<u>Descriptive</u>: system 7.5%, design 4.2%, servic 2.4%, paper 2.4%, scheme 2.2%, cost 1.7%, model 1.6%, base 1.4%, custom 1.3%, process 1.0%, product 1.0%, manag 1.0%, compon 0.9%, agent 0.9%, optim 0.8%, user 0.7%, construct 0.7%, method 0.7%, time 0.7%, build 0.7%, simul 0.6%, environ 0.6%, polici 0.6%, oper 0.6%, protocol 0.6%, inform 0.5%, implement 0.5%, resourc 0.5%, issu 0.5%, nois 0.5%

Discriminating: system 3.0%, design 2.8%, servic 2.2%, scheme 1.4%, cost 1.4%, custom 1.2%, temperatur 0.9%, film 0.8%, paper 0.8%, manag 0.7%, cell 0.7%, reaction 0.6%, user 0.6%, crystal 0.5%, surfac 0.5%, agent 0.5%, phase 0.5%, build 0.5%, polici 0.5%, activ 0.5%, protocol 0.5%, resourc 0.4%, electron 0.4%, field 0.4%, compon 0.4%, issu 0.4%, properti 0.4%, demand 0.4%, acid 0.4%, environ 0.3%

Focuses on system design, service, cost, modeling of process, and management.

Cluster 34 (Size: 247, ISim: 0.023, ESim: 0.005)

<u>Descriptive</u>: soil 14.3%, plant 4.5%, root 1.8%, concentr 1.7%, china 1.5%, water 1.2%, climat 1.0%, sediment 1.0%, wheat 1.0%, dai 1.0%, increas 0.9%, year 0.7%, season 0.7%, veget 0.7%, summer 0.7%, growth 0.6%, crop 0.6%, seed 0.6%, total 0.6%, forest 0.6%, winter 0.6%, rice 0.5%, seedl 0.5%, isol 0.5%, monsoon 0.5%, rate 0.5%, area 0.5%, land 0.5%, biomass 0.4%, organ 0.4%

<u>Discriminating</u>: soil 11.6%, plant 3.1%, root 1.3%, film 0.9%, china 0.8%, climat 0.8%, cell 0.7%, wheat 0.7%, sediment 0.7%, structur 0.6%, system 0.6%, method 0.6%, crystal 0.6%, season 0.6%, phase 0.5%, model 0.5%, summer 0.5%, reaction 0.5%, veget 0.5%, crop 0.5%, concentr 0.5%, dai 0.5%, winter 0.5%, forest 0.5%, seedl 0.4%, temperatur 0.4%, monsoon 0.4%, state 0.4%, properti 0.4%, seed 0.4%

Focuses on how seasonal environmental changes of water affect the growth rates and production of agricultural crops such as wheat and rice, plant vegetation, and forests in different areas of China.

Cluster 35 (Size: 247, ISim: 0.022, ESim: 0.006)

<u>Descriptive</u>: particl 6.3%, powder 6.1%, blend 3.9%, surfac 2.5%, size 2.4%, tio2 2.1%, coal 2.0%, nano 1.7%, materi 1.3%, temperatur 1.1%, calcin 1.1%, phase 1.0%, particl.size 0.9%, zro2 0.9%, crystal 0.9%, xrd 0.8%, nanocomposit 0.7%, morpholog 0.7%, nanoparticl 0.7%, crystallin 0.7%, structur 0.7%, thermal 0.7%, coat 0.6%, nanomet 0.6%, composit 0.6%, content 0.6%, increas 0.6%, dispers 0.6%, zn 0.6%, zno 0.6%

<u>Discriminating</u>: powder 5.1%, particl 4.4%, blend 3.7%, coal 1.8%, tio2 1.6%, nano 1.5%, size 1.2%, calcin 1.0%, film 0.9%, cell 0.8%, system 0.8%, particl.size 0.8%, model 0.8%, zro2 0.7%, surfac 0.7%, nanocomposit 0.6%, nanomet 0.6%, zn 0.5%, two 0.5%, xrd 0.5%, complex 0.5%, crystallin 0.5%, nanoparticl 0.5%, zno 0.4%, materi 0.4%, patient 0.4%, morpholog 0.4%, group 0.4%, express 0.4%, surfac.area 0.4%

Focuses on characterizing material properties of nanoparticles, powders, coatings, and crystal structures comprised of tio2, zro2, zn, and zno using X-ray diffraction (xrd).

Cluster 36 (Size: 287, ISim: 0.021, ESim: 0.006)

<u>Descriptive</u>: temperatur 9.6%, crystal 8.1%, dope 2.5%, electron 1.9%, emiss 1.3%, pressur 1.3%, sampl 1.2%, phase 1.1%, measur 1.0%, laser 1.0%, glass 1.0%, high 0.9%, transit 0.9%, state 0.9%, linbo3 0.9%, intens 0.9%, increas 0.8%, conduct 0.8%, spectra 0.8%, anneal 0.7%, excit 0.7%, energi 0.7%, thermal 0.7%, grown 0.6%, peak 0.6%, absorpt 0.5%, rang 0.5%, materi 0.5%, oxygen 0.4%, electr 0.4%

<u>Discriminating</u>: temperatur 5.7%, crystal 5.6%, dope 2.1%, film 1.0%, linbo3 0.9%, cell 0.9%, emiss 0.9%, model 0.8%, glass 0.7%, electron 0.7%, pressur 0.7%,

group 0.6%, grown 0.5%, method 0.5%, reaction 0.5%, complex 0.5%, patient 0.5%, intens 0.5%, activ 0.4%, laser 0.4%, system 0.4%, excit 0.4%, control 0.4%, express 0.4%, gene 0.4%, acid 0.4%, conduct 0.4%, solut 0.4%, anneal 0.4%, luminesc 0.3%

Focuses on characterizing material properties of crystals.

Cluster 37 (Size: 272, ISim: 0.020, ESim: 0.006)

<u>Descriptive</u>: model 18.8%, simul 3.4%, data 1.4%, predict 1.3%, test 1.3%, numer 1.1%, experiment 1.0%, crack 0.9%, stress 0.9%, dynam 0.9%, method 0.9%, paramet 0.8%, load 0.8%, theoret 0.7%, element 0.7%, coeffici 0.6%, agreement 0.6%, indent 0.6%, finit 0.6%, field 0.5%, finit.element 0.5%, traffic 0.5%, base 0.5%, paper 0.5%, distribut 0.4%, process 0.4%, measur 0.4%, comput 0.4%, structur 0.4%, linear 0.4%

<u>Discriminating</u>: model 14.8%, simul 2.3%, film 1.2%, cell 1.0%, predict 1.0%, crystal 0.7%, test 0.7%, system 0.6%, numer 0.6%, crack 0.6%, traffic 0.6%, indent 0.5%, finit.element 0.5%, reaction 0.5%, temperatur 0.5%, load 0.5%, acid 0.5%, data 0.5%, patient 0.5%, increas 0.5%, stress 0.4%, agreement 0.4%, control 0.4%, dynam 0.4%, electron 0.4%, catalyst 0.3%, theoret 0.3%, finit 0.3%, oxid 0.3%, rotor 0.3%

Focuses on refining modeling and simulations of structural damage.

Cluster 38 (Size: 233, ISim: 0.020, ESim: 0.006)

<u>Descriptive</u>: energi 3.2%, calcul 2.4%, theori 1.8%, mass 1.7%, densiti 1.5%, star 1.4%, model 1.4%, function 1.2%, interact 1.2%, potenti 1.1%, correl 1.1%, galaxi 0.9%, paramet 0.8%, state 0.8%, line 0.8%, two 0.8%, perturb 0.8%, bodi 0.8%, rotat 0.7%, orbit 0.7%, system 0.7%, band 0.6%, time 0.6%, region 0.6%, equat 0.6%, distribut 0.5%, observ 0.5%, method 0.5%, approxim 0.5%, particl 0.4%

Discriminating: calcul 1.7%, energi 1.6%, star 1.6%, mass 1.2%, film 1.1%, galaxi 1.1%, cell 1.0%, theori 1.0%, densiti 0.8%, temperatur 0.7%, perturb 0.7%, reaction 0.6%, rotat 0.6%, correl 0.6%, crystal 0.6%, orbit 0.6%, acid 0.5%, control 0.5%, bodi 0.5%, patient 0.5%, interact 0.5%, complex 0.4%, composit 0.4%, potenti 0.4%, ira 0.4%, gene 0.4%, opac 0.4%, structur 0.4%, solut 0.4%, surfac 0.3%

Focuses on astropyhsics theory and calculations of stars and galaxies and their physical properties and motions.

Cluster 39 (Size: 259, ISim: 0.019, ESim: 0.006)

<u>Descriptive</u>: acid 6.9%, adsorpt 6.5%, water 4.9%, extract 4.1%, membran 1.5%, phase 1.3%, surfact 1.3%, solvent 1.3%, solut 1.2%, concentr 1.1%, aqueou 1.0%, carbon 1.0%, separ 1.0%, liquid 0.8%, salt 0.8%, organ 0.8%, surfac 0.6%,

mixtur 0.6%, adsorb 0.6%, capac 0.5%, pore 0.5%, resin 0.5%, oil 0.5%, equilibrium 0.5%, amino.acid 0.5%, amino 0.4%, temperatur 0.4%, ion 0.4%, column 0.4%, isotherm 0.4%

Discriminating: adsorpt 6.0%, acid 4.6%, extract 3.3%, water 3.2%, surfact 1.1%, film 1.0%, membran 1.0%, solvent 0.9%, aqueou 0.7%, cell 0.7%, salt 0.6%, field 0.5%, separ 0.5%, structur 0.4%, adsorb 0.4%, model 0.4%, patient 0.4%, paper 0.4%, resin 0.4%, liquid 0.4%, mixtur 0.4%, carbon 0.4%, gene 0.3%, oil 0.3%, crystal 0.3%, base 0.3%, pore 0.3%, function 0.3%, microemuls 0.3%, express 0.3%

Focuses on physical chemistry properties and interactions of various elements on films, membranes, resins, and crystal surfaces to include water, acids, oils, salts, carbon.

 Table A10A 1	Page Clustons of Clute 40 Cluston Applysis (SCI Index)	

Based On ==> CLUTO					
	CLUTO				
: ==>	SCI INDEX				
	40 CLUSTERS				
# RECORDS	DESCRIPTION				
154	physical characterization of crystal structures and compounds.				
80	geological changes to different regions of China.				
104	electromagnetic properties of superconductors.				
181	physical chemistry properties of catalyst and reactions of materials such as polymers, al2o3, hydrogen, sio2, ethylene, oxygen, and zeolite.				
76	methods of ion implantation on substrates and films and characterizing their physical properties.				
210	symptoms, diagnosis, and success of treatments in Chinese patients with diseases and cancer, primarily associated with the breast, eyes, and arteries.				
198	physical properties of ceramic materials.				
362	physical properties of thin films and substrates.				
155	efficiencies of genetic modeling, simulations and algorithms using techniques such as fuzzy logic.				
199	dna sequencing of plants such as rice (and possibily human cells & tissues) to detect and assess the genetic effects of cloning.				
131	effects of compounds and enzymes for immunology studies using nmr and spectroscopic techniques.				
145	modeling and simulation of control system theory for dynamic feedback to power systems using fuzzy logic, linear and non-linear techniques.				
123	quantum states and properties of atomic particles and their interactions in black holes.				
165	sequencing of proteins and amino acids .				
157	study of nanotechnology such as nanowires, carbon nanotubes using transmission electron microscopy.				
127	particle physics modeling & characterizing of the energy states of such elementary particles as protons, neutrons, gamma rays, quarks, mesons, darons, baryons, and gluons.				
130	Chinese species of fungi.				
	# RECORDS 154 80 104 181 76 210 198 362 155 199 131 145 123 165 157				

17	172	synthesizing and characterizing the bonding properties of complex microstructures such as ligands, crystals of copper, hydrogen, and carboxyl.
18	284	cell physiology of human tissues, proteins, and genes for cancer/tumors.
19	216	microstructure and material properties of steel alloys.
20	144	atomic and molecular properties of isomers.
21	161	characterizing the properties and reactions of polymers.
22	184	waves & magnetic field properties associated with plasmas and piezoelectric surfaces.
23	245	elements of numerical mathematics such equations, conditions, and solutions associated with boundary value problems of system stability.
24	177	modeling and simulation of the fluid dynamic and thermodynamic properties of particles in water and air.
25	245	detection methods and limitations of using eclectrodes to exploit the ectrochemical properties of dna.
26	210	image processing techniques and reconstruction algorithms using neural networks, wavelets, and fuzzy logic to extract features and objects.
27	219	material properties of al2o3, coatings, fibers, ceramics, laminates and microstructures.
28	217	study of manipulating the structure and functions of biological macromolecules such as neurons, cells, proteins, and mRNA from rats and mice for genetic research.
29	196	reactions, synthesis, and properties of organic compounds.
30	222	mathematical theories of algebra.
31	179	health risks that smoking has on men and women, and in particular to pregnant women in China & Hong Kong, and the incident rates related to infants, miscarriages/abortions, diseases, and cancer such as cervical cancer.
32	264	physics of lasers, optics, and waveguides.
33	203	system design, service, cost, modeling of process, and management.
34	247	how seasonal environmental changes of water affect the growth rates and production of agricultural crops such as wheat and rice, plant vegetation, and forests in different areas of China.
35	247	characterizing material properties of nanoparticles, powders, coatings, and crystal structures comprised of tio2, zro2, zn, and zno using X-ray diffraction (xrd).
36	287	characterizing material properties of crystals.
37	272	refining modeling and simulations of structural damage.
38	233	astropyhsics theory and calculations of stars and galaxies and their physical properties and motions.
39	259	physical chemistry properties and interactions of various elements on films, membranes, resins, and crystal surfaces to include water, acids, oils, salts, carbon.

Hierarchical Tree that optimizes the I2 criterion function.

This section shows the hierarchical tree that defines the taxonomy. The numbers listed are the cluster numbers. The elemental clusters above are at the rightmost boundary of the tree.

78 (Size: 7780, ISim: 6.20e-003, XSim: 0.00e+000, Gain: -8.24e+001)

system 1.1%, temperatur 1.1%, method 1.1%, model 1.1%, structur 1.0%, film 1.0%, cell 0.9%, two 0.8%, phase 0.7%, increas 0.7%, activ 0.7%, surfac 0.7%, crystal 0.6%, high 0.6%, reaction 0.6%, solut 0.6%, time 0.6%, base 0.6%, field 0.6%, measur 0.5%, group 0.5%, process 0.5%, new 0.5%, state 0.5%, complex 0.5%, paper 0.5%, properti 0.5%, scienc 0.5%, energi 0.5%

75 (Size: 1711, ISim: 1.12e-002, XSim: 3.77e-003, Gain: -3.50e+001)

cell 6.8%, patient 4.2%, gene 3.5%, express 2.5%, protein 2.5%, activ 1.6%, group 1.2%, sequenc 1.0%, speci 0.9%, dna 0.8%, plant 0.8%, china 0.8%, tumor 0.8%, human 0.7%, rat 0.7%, concentr 0.7%, induc 0.6%, level 0.6%, soil 0.6%, treatment 0.6%, ag 0.6%, increas 0.6%, dai 0.6%, cancer 0.6%, inhibit 0.5%, control 0.5%, isol 0.5%, detect 0.5%, cultur 0.4%

67 (Size: 865, ISim: 1.92e-002, XSim: 6.26e-003, Gain: -2.05e+001)

cell 14.4%, gene 6.6%, express 5.5%, protein 5.3%, activ 2.2%, dna 1.4%, sequenc 1.2%, induc 1.2%, human 1.1%, tumor 1.1%, inhibit 1.0%, rat 1.0%, apoptosi 0.8%, mrna 0.6%, cultur 0.6%, pcr 0.6%, receptor 0.6%, detect 0.6%, tissu 0.6%, regul 0.5%, level 0.5%, isol 0.5%, acid 0.4%, clone 0.4%, plant 0.4%, mice 0.4%, concentr 0.4%, assai 0.4%, bind 0.4%

53 (Size: 501, ISim: 2.36e-002, XSim: 1.21e-002, Gain: -1.20e+001)

cell 27.4%, express 3.2%, activ 2.9%, rat 2.0%, induc 2.0%, inhibit 1.9%, apoptosi 1.7%, protein 1.4%, cultur 1.2%, tumor 1.1%, receptor 1.0%, mrna 0.9%, neuron 0.7%, ca2 0.7%, human 0.6%, concentr 0.6%, level 0.6%, mice 0.6%, increas 0.6%, stimul 0.5%, tissu 0.5%, prolifer 0.5%, regul 0.5%, cell.line 0.5%, cancer 0.4%, growth 0.4%, assai 0.4%, stain 0.4%, line 0.4%

28 (Size: 217, ISim: 2.62e-002, XSim: 1.46e-002, Gain: +0.00e+000)

rat 8.4%, activ 4.5%, induc 3.6%, inhibit 3.0%, ca2 2.8%, receptor 2.5%, express 2.0%, neuron 1.9%, cell 1.6%, protein 1.4%, mrna 1.4%, stimul 1.2%, increas 0.9%, concentr 0.9%, mice 0.8%, level 0.7%, inject 0.7%, lp 0.6%, kinas 0.6%, regul 0.5%, mediat 0.5%, antagonist 0.5%, treatment 0.5%, decreas 0.5%, depend 0.4%, inhibitor 0.4%, hsc 0.4%, dai 0.4%, cultur 0.4%

18 (Size: 284, ISim: 3.58e-002, XSim: 1.46e-002, Gain: +0.00e+000)

cell 44.5%, express 2.7%, apoptosi 2.5%, tumor 2.1%, cultur 1.3%, activ 1.1%, cell.line 1.0%, human 0.9%, cancer 0.9%, protein 0.8%, line 0.7%, inhibit 0.7%, prolifer 0.6%, induc 0.6%, tissu 0.6%, carcinoma 0.5%, stain 0.5%, hcc 0.5%, growth 0.5%, cytotox 0.3%, telomeras 0.3%, gene 0.3%, assai 0.3%, mrna 0.3%, tumor.cell 0.3%, detect 0.3%, regul 0.3%, dna 0.3%, product 0.3%

47 (Size: 364, ISim: 3.03e-002, XSim: 1.21e-002, Gain: -1.02e+001)

gene 17.7%, protein 8.7%, express 5.1%, sequenc 3.9%, dna 2.9%, pcr 1.4%, genom 1.2%, clone 1.2%, amino.acid 1.0%, human 1.0%, amino 1.0%, cdna 0.9%, plant 0.9%, mutat 0.8%, chromosom 0.8%, isol 0.7%, cell 0.7%, encod 0.6%, transgen 0.6%, strain 0.6%, transcript 0.6%, acid 0.6%, bind 0.6%, activ 0.6%, detect 0.5%, viru 0.5%, region 0.5%, fusion 0.5%, plasmid 0.5%

13 (Size: 165, ISim: 3.98e-002, XSim: 1.95e-002, Gain: +0.00e+000)

protein 22.6%, sequenc 4.7%, amino.acid 2.8%, amino 2.7%, express 2.4%, acid 1.5%, human 1.4%, gene 1.4%, cdna 1.2%, fusion 1.2%, isol 1.2%, bind 1.0%, peptid 1.0%, recombin 1.0%, activ 0.8%, residu 0.8%, encod 0.8%, strain 0.8%, termin 0.8%, purifi 0.8%, plasmid 0.8%, hcv 0.8%, antibodi 0.7%, enzym 0.7%, clone 0.6%, fusion.protein 0.6%, coli 0.5%, domain 0.5%, viru 0.5%

9 (Size: 199, ISim: 4.17e-002, XSim: 1.95e-002, Gain: +0.00e+000)

gene 31.5%, dna 5.3%, express 5.2%, pcr 2.0%, genom 1.8%, sequenc 1.7%, plant 1.4%, transgen 1.4%, chromosom 1.2%, mutat 1.1%, clone 1.1%, tumor 0.9%, gene.express 0.8%, transcript 0.8%, genet 0.7%, cell 0.7%, rice 0.7%, protein 0.6%, promot 0.5%, detect 0.5%, region 0.4%, allel 0.4%, regul 0.4%, human 0.4%, tissu 0.4%, line 0.4%, cdna 0.4%, intron 0.4%, polymorph 0.3%

70 (Size: 846, ISim: 1.29e-002, XSim: 6.26e-003, Gain: -2.34e+001)

patient 11.5%, speci 2.4%, china 2.4%, group 2.2%, soil 2.1%, ag 1.7%, year 1.0%, chines 0.9%, popul 0.9%, treatment 0.8%, plant 0.8%, dai 0.8%, control 0.7%, diseas 0.6%, concentr 0.5%, month 0.5%, total 0.5%, rate 0.5%, case 0.5%, two 0.5%, increas 0.5%, genotyp 0.5%, risk 0.4%, region 0.4%, cancer 0.4%, level 0.4%, arteri 0.4%, higher 0.4%, root 0.4%

50 (Size: 389, ISim: 2.45e-002, XSim: 5.90e-003, Gain: -1.05e+001)

patient 28.5%, group 3.3%, ag 1.4%, diseas 1.4%, cancer 1.1%, risk 1.1%, treatment 1.0%, month 1.0%, case 1.0%, chines 1.0%, arteri 0.9%, year 0.9%, women 0.9%, control 0.7%, week 0.7%, score 0.6%, lesion 0.5%, dai 0.5%, genotyp 0.5%, blood 0.5%, diagnosi 0.4%, breast 0.4%, outcom 0.4%, bone 0.4%, serum 0.4%, mean 0.4%, test 0.4%, object 0.3%, surgeri 0.3%

5 (Size: 210, ISim: 4.37e-002, XSim: 1.37e-002, Gain: +0.00e+000)

patient 49.3%, group 2.1%, arteri 1.5%, diseas 1.2%, month 1.0%, treatment 1.0%, case 0.7%, lesion 0.7%, tumor 0.7%, diagnosi 0.6%, surgeri 0.5%, score 0.4%, year 0.4%, symptom 0.4%, cancer 0.4%, surviv 0.4%, dai 0.3%, mean 0.3%, acut 0.3%, ag 0.3%, breast 0.3%, therapi 0.3%, method 0.3%, ey 0.3%, rate 0.3%, chines 0.3%, outcom 0.3%, recurr 0.3%, test 0.2%

31 (Size: 179, ISim: 2.37e-002, XSim: 1.37e-002, Gain: +0.00e+000)

risk 3.7%, women 3.3%, ag 3.0%, group 2.9%, chines 1.8%, cancer 1.7%, genotyp 1.4%, week 1.3%, control 1.2%, year 1.1%, popul 1.0%, rat 0.8%, hpv 0.8%, diseas 0.7%, blood 0.7%, case 0.7%, health 0.7%, kong 0.7%, incid 0.7%, hong 0.7%, pregnanc 0.7%, hong.kong 0.7%, abort 0.6%, men 0.6%, preval 0.6%, smoke 0.6%, cervic 0.6%, infant 0.6%, polymorph 0.5%

57 (Size: 457, ISim: 1.65e-002, XSim: 5.90e-003, Gain: -1.27e+001)

speci 6.5%, soil 5.7%, china 4.9%, plant 2.2%, popul 0.9%, ag 0.8%, root 0.8%, concentr 0.8%, rock 0.8%, south 0.7%, sediment 0.7%, new.speci 0.6%, north 0.6%, climat 0.6%, water 0.6%, region 0.6%, genu 0.6%, new 0.6%, area 0.5%, sequenc 0.5%, two 0.5%, metamorph 0.5%, dai 0.5%, wheat 0.5%, isol 0.5%, earli 0.4%, increas 0.4%, year 0.4%, season 0.4%

45 (Size: 210, ISim: 2.64e-002, XSim: 8.61e-003, Gain: -9.53e+000)

speci 14.4%, china 6.1%, new.speci 1.9%, rock 1.8%, genu 1.6%, popul 1.3%, ag 1.2%, metamorph 1.2%, north 1.1%, south 1.0%, nov 1.0%, sequenc 0.9%, new 0.9%, earli 0.9%, provinc 0.7%, zircon 0.7%, zone 0.6%, late 0.6%, basin 0.5%,

yunnan 0.5%, genet 0.5%, region 0.5%, two 0.5%, type 0.4%, eclogit 0.4%, middl 0.4%, fungal 0.4%, block 0.4%, specimen 0.4%

16 (Size: 130, ISim: 3.62e-002, XSim: 9.36e-003, Gain: +0.00e+000)

speci 26.9%, china 5.2%, new.speci 3.6%, genu 2.7%, popul 2.5%, nov 1.7%, new 1.5%, genet 0.9%, fungal 0.8%, yunnan 0.7%, sequenc 0.7%, male 0.6%, two 0.6%, fungi 0.6%, fern 0.6%, specimen 0.6%, famili 0.6%, diploid 0.5%, genera 0.5%, provinc 0.5%, polymorph 0.5%, femal 0.4%, speci.genu 0.4%, chines 0.4%, three 0.4%, commun 0.4%, group 0.3%, type 0.3%, marker 0.3%

1 (Size: 80, ISim: 5.59e-002, XSim: 9.36e-003, Gain: +0.00e+000)

rock 6.0%, metamorph 4.0%, ag 3.1%, zircon 2.1%, china 2.1%, north 1.9%, zone 1.7%, earli 1.4%, basin 1.4%, late 1.4%, eclogit 1.4%, south 1.3%, mantl 1.1%, granit 1.1%, volcan 1.0%, tecton 1.0%, fault 0.9%, belt 0.8%, dabi 0.8%, block 0.8%, miner 0.8%, deposit 0.7%, uhp 0.7%, orogen 0.7%, faci 0.6%, continent 0.6%, fauna 0.6%, upper 0.6%, dyke 0.6%

34 (Size: 247, ISim: 2.27e-002, XSim: 8.61e-003, Gain: +0.00e+000)

soil 14.3%, plant 4.5%, root 1.8%, concentr 1.7%, china 1.5%, water 1.2%, climat 1.0%, sediment 1.0%, wheat 1.0%, dai 1.0%, increas 0.9%, year 0.7%, season 0.7%, veget 0.7%, summer 0.7%, growth 0.6%, crop 0.6%, seed 0.6%, total 0.6%, forest 0.6%, winter 0.6%, rice 0.5%, seedl 0.5%, isol 0.5%, monsoon 0.5%, rate 0.5%, area 0.5%, land 0.5%, biomass 0.4%

77 (Size: 6069, ISim: 7.18e-003, XSim: 3.77e-003, Gain: -6.96e+001)

temperatur 1.4%, film 1.4%, model 1.3%, system 1.3%, structur 1.2%, method 1.1%, phase 1.0%, crystal 0.9%, surfac 0.8%, solut 0.8%, reaction 0.8%, two 0.7%, field 0.7%, state 0.7%, properti 0.7%, paper 0.6%, process 0.6%, high 0.6%, electron 0.6%, energi 0.6%, base 0.6%, measur 0.6%, complex 0.6%, time 0.6%, increas 0.6%, scienc 0.5%, equat 0.5%, new 0.5%, condit 0.5%

74 (Size: 2544, ISim: 9.67e-003, XSim: 5.05e-003, Gain: -3.35e+001)

model 3.9%, system 2.7%, paper 1.6%, method 1.5%, equat 1.5%, algorithm 1.4%, field 1.4%, state 1.2%, magnet 1.1%, function 1.1%, simul 1.0%, base 0.8%, two 0.8%, energi 0.8%, solut 0.8%, wave 0.7%, time 0.7%, paramet 0.7%, theori 0.7%, control 0.7%, numer 0.6%, data 0.6%, new 0.6%, gener 0.6%, order 0.6%, dynam 0.5%, structur 0.5%, comput 0.5%, flow 0.5%

69 (Size: 1180, ISim: 1.35e-002, XSim: 6.93e-003, Gain: -2.23e+001)

system 4.7%, algorithm 4.2%, paper 3.1%, control 1.8%, method 1.8%, equat 1.7%, model 1.5%, solut 1.4%, network 1.2%, function 1.1%, base 1.0%, design 1.0%, optim 0.9%, gener 0.9%, new 0.8%, imag 0.8%, condit 0.8%, error 0.8%, scheme 0.7%, exist 0.7%, linear 0.7%, time 0.6%, equal 0.6%, construct 0.6%, set 0.6%, integr 0.6%, fuzzi 0.6%, oper 0.6%, comput 0.6%

60 (Size: 713, ISim: 1.76e-002, XSim: 8.49e-003, Gain: -1.42e+001)

algorithm 8.0%, system 5.7%, control 3.0%, model 2.4%, network 2.3%, paper 1.9%, method 1.9%, design 1.6%, base 1.6%, imag 1.5%, optim 1.2%, scheme 1.1%, error 1.0%, simul 1.0%, fuzzi 0.9%, neural 0.8%, new 0.8%, time 0.8%, comput 0.8%, chaotic 0.8%, neural.network 0.7%, process 0.7%, data 0.6%, inform 0.6%, paramet 0.6%, dynam 0.6%, power 0.5%, estim 0.5%, machin 0.5%

44 (Size: 348, ISim: 2.19e-002, XSim: 1.19e-002, Gain: -9.36e+000)

system 13.1%, control 8.0%, design 3.1%, chaotic 2.3%, paper 1.9%, scheme 1.6%, power 1.3%, model 1.3%, base 1.1%, dynam 0.9%, chao 0.9%, optim 0.9%, servic 0.9%, synchron 0.9%, time 0.8%, simul 0.8%, process 0.8%, method 0.7%, feedback 0.7%, cost 0.7%, new 0.5%, oper 0.5%, custom 0.5%, paramet 0.4%, fuzzi 0.4%, compon 0.4%, product 0.4%, construct 0.4%, control.system 0.4%

33 (Size: 203, ISim: 2.35e-002, XSim: 1.36e-002, Gain: +0.00e+000)

system 7.5%, design 4.2%, servic 2.4%, paper 2.4%, scheme 2.2%, cost 1.7%, model 1.6%, base 1.4%, custom 1.3%, process 1.0%, product 1.0%, manag 1.0%, compon 0.9%, agent 0.9%, optim 0.8%, user 0.7%, construct 0.7%, method 0.7%, time 0.7%, build 0.7%, simul 0.6%, environ 0.6%, polici 0.6%, oper 0.6%, protocol 0.6%, inform 0.5%, implement 0.5%, resourc 0.5%, issu 0.5%

11 (Size: 145, ISim: 4.19e-002, XSim: 1.36e-002, Gain: +0.00e+000)

control 17.8%, system 11.6%, chaotic 7.0%, chao 2.7%, synchron 2.3%, feedback 1.7%, power 1.7%, dynam 1.3%, control.system 0.9%, attractor 0.9%, oscil 0.8%, chaotic.system 0.8%, design 0.8%, adapt 0.7%, power.system 0.7%, fuzzi 0.7%, nonlinear 0.7%, paramet 0.6%, paper 0.6%, coupl 0.6%, lorenz 0.6%, time 0.5%, voltag 0.5%, simul 0.5%, optim 0.5%, bifurc 0.5%, linear 0.5%, numer 0.4%, output 0.4%

46 (Size: 365, ISim: 2.47e-002, XSim: 1.19e-002, Gain: -9.97e+000)

algorithm 19.2%, imag 4.0%, network 3.7%, model 2.4%, method 2.2%, error 2.0%, neural 1.7%, neural.network 1.4%, base 1.3%, paper 1.1%, data 1.0%, comput 1.0%, estim 1.0%, fuzzi 0.9%, optim 0.9%, reconstruct 0.8%, new 0.8%, simul 0.7%, inform 0.7%, recognit 0.7%, machin 0.7%, object 0.6%, accuraci 0.6%, wavelet 0.6%, paramet 0.5%, system 0.5%, schedul 0.5%, time 0.4%, set 0.4%

26 (Size: 210, ISim: 2.79e-002, XSim: 1.57e-002, Gain: +0.00e+000)

imag 8.2%, network 6.8%, neural 3.6%, error 3.3%, neural.network 3.2%, model 2.9%, method 2.4%, estim 2.2%, recognit 1.6%, inform 1.6%, data 1.4%, wavelet 1.4%, base 1.3%, reconstruct 1.2%, accuraci 1.2%, fuzzi 1.0%, paper 0.8%, algorithm 0.7%, paramet 0.7%, comput 0.6%, featur 0.6%, new 0.6%, train 0.6%, nois 0.5%, techniqu 0.5%, simul 0.5%, optim 0.5%, scheme 0.4%, extract 0.4%

8 (Size: 155, ISim: 4.34e-002, XSim: 1.57e-002, Gain: +0.00e+000)

algorithm 47.5%, schedul 1.5%, method 1.0%, optim 0.9%, comput 0.8%, model 0.8%, paper 0.8%, converg 0.7%, genet.algorithm 0.7%, simul 0.6%, base 0.6%, machin 0.6%, object 0.5%, genet 0.5%, job 0.5%, new 0.5%, line 0.4%, fuzzi 0.4%, minim 0.4%, iter 0.4%, code 0.4%, network 0.4%, search 0.3%, system 0.3%, solv 0.3%, approxim 0.3%, complex 0.3%, program 0.3%, time 0.3%

54 (Size: 467, ISim: 1.92e-002, XSim: 8.49e-003, Gain: -1.20e+001)

equat 6.4%, solut 4.2%, paper 2.8%, function 2.0%, equal 1.9%, algebra 1.8%, exist 1.8%, condit 1.7%, theorem 1.5%, prove 1.5%, system 1.2%, gener 1.1%, bound 1.1%, class 1.0%, space 1.0%, let 1.0%, nonlinear 0.9%, boundari 0.9%, linear 0.9%, set 0.9%, suffici 0.8%, integr 0.7%, inequ 0.7%, suffici.condit 0.7%, number 0.7%, order 0.7%, graph 0.7%, finit 0.7%, stabil 0.7%

30 (Size: 222, ISim: 2.39e-002, XSim: 1.12e-002, Gain: +0.00e+000)

algebra 4.7%, theorem 3.5%, paper 3.4%, let 3.1%, equal 3.0%, prove 2.8%, graph 2.5%, function 2.3%, conjectur 2.1%, space 1.9%, number 1.6%, gener 1.5%, set 1.4%, bound 1.3%, inequ 1.3%, class 1.2%, polynomi 1.0%, regular 1.0%, formula 1.0%, exist 0.8%, finit 0.8%, invari 0.8%, connect 0.7%, oper 0.7%, vertic 0.6%, construct 0.5%, case 0.5%, sigma 0.5%, equival 0.5%

23 (Size: 245, ISim: 2.99e-002, XSim: 1.12e-002, Gain: +0.00e+000)

equat 14.4%, solut 8.9%, condit 2.3%, nonlinear 1.9%, boundari 1.8%, exist 1.7%, suffici.condit 1.7%, suffici 1.5%, system 1.5%, stabil 1.4%, linear 1.2%, paper 1.2%, differenti.equat 1.0%, method 1.0%, global 1.0%, function 0.9%, infin 0.8%, delai 0.7%, differenti 0.7%, converg 0.7%, integr 0.7%, asymptot 0.6%, boundari.valu 0.6%, order 0.6%, solv 0.6%, iter 0.5%, singular 0.5%, numer 0.5%, bound 0.5%

66 (Size: 1364, ISim: 1.15e-002, XSim: 6.93e-003, Gain: -1.98e+001)

model 4.8%, magnet 3.1%, field 3.1%, state 2.3%, energi 1.9%, wave 1.6%, calcul 1.0%, simul 0.9%, theori 0.9%, flow 0.9%, two 0.8%, experiment 0.8%, method 0.7%, structur 0.7%, equat 0.7%, paramet 0.7%, measur 0.7%, data 0.6%,

quantum 0.6%, function 0.6%, numer 0.6%, system 0.6%, coupl 0.6%, interact 0.6%, veloc 0.6%, densiti 0.5%, mass 0.5%, potenti 0.5%, time 0.5%

63 (Size: 737, ISim: 1.52e-002, XSim: 8.13e-003, Gain: -1.66e+001)

magnet 6.9%, model 6.7%, field 4.5%, wave 3.6%, flow 2.2%, simul 1.8%, numer 1.1%, veloc 0.9%, experiment 0.8%, equat 0.8%, method 0.8%, magnet.field 0.7%, temperatur 0.7%, crack 0.7%, stress 0.6%, data 0.6%, heat 0.6%, dynam 0.6%, measur 0.5%, turbul 0.5%, fluid 0.5%, structur 0.5%, paramet 0.5%, electr 0.5%, scale 0.5%, pressur 0.5%, surfac 0.5%, distribut 0.5%, two 0.4%

43 (Size: 449, ISim: 1.75e-002, XSim: 9.38e-003, Gain: -9.27e+000)

model 12.9%, flow 4.7%, simul 2.9%, veloc 1.5%, numer 1.3%, turbul 1.2%, experiment 1.2%, data 1.2%, heat 1.0%, scale 0.9%, predict 0.8%, method 0.8%, dynam 0.8%, pressur 0.7%, coeffici 0.7%, field 0.7%, equat 0.7%, measur 0.6%, fluid 0.6%, comput 0.6%, test 0.6%, paramet 0.6%, stress 0.6%, ga 0.5%, distribut 0.5%, agreement 0.5%, theoret 0.5%, load 0.5%, time 0.4%

24 (Size: 177, ISim: 2.98e-002, XSim: 1.19e-002, Gain: +0.00e+000)

flow 14.6%, veloc 4.6%, turbul 4.1%, heat 3.1%, model 2.5%, fluid 2.2%, scale 1.4%, pressur 1.4%, ga 1.1%, simul 1.1%, convect 1.0%, equat 0.9%, particl 0.9%, numer 0.8%, experiment 0.8%, number 0.7%, transfer 0.6%, heat.transfer 0.6%, combust 0.6%, flux 0.6%, water 0.5%, measur 0.5%, field 0.5%, comput 0.5%, bed 0.5%, region 0.5%, layer 0.4%, coeffici 0.4%, air 0.4%

37 (Size: 272, ISim: 1.97e-002, XSim: 1.19e-002, Gain: +0.00e+000)

model 18.8%, simul 3.4%, data 1.4%, predict 1.3%, test 1.3%, numer 1.1%, experiment 1.0%, crack 0.9%, stress 0.9%, dynam 0.9%, method 0.9%, paramet 0.8%, load 0.8%, theoret 0.7%, element 0.7%, coeffici 0.6%, agreement 0.6%, indent 0.6%, finit 0.6%, field 0.5%, finit.element 0.5%, traffic 0.5%, base 0.5%, paper 0.5%, distribut 0.4%, process 0.4%, measur 0.4%, comput 0.4%, structur 0.4%

41 (Size: 288, ISim: 2.79e-002, XSim: 9.38e-003, Gain: -9.04e+000)

magnet 23.3%, wave 10.7%, field 8.9%, magnet.field 2.5%, electr 1.1%, temperatur 0.8%, electr.field 0.7%, crack 0.7%, ferromagnet 0.6%, current 0.6%, superconduct 0.6%, spin 0.6%, plate 0.5%, transit 0.5%, coupl 0.5%, magnet.properti 0.5%, theori 0.4%, equat 0.4%, properti 0.4%, phase 0.4%, electron 0.4%, structur 0.3%, propag 0.3%, soliton 0.3%, plasma 0.3%, numer 0.3%, two 0.3%, reflect 0.3%, extern 0.3%

22 (Size: 184, ISim: 3.12e-002, XSim: 1.70e-002, Gain: +0.00e+000)

wave 22.6%, field 8.5%, magnet 5.1%, magnet.field 1.7%, crack 1.5%, electr 1.0%, plate 1.0%, equat 0.9%, current 0.7%, soliton 0.7%, theori 0.7%, propag 0.7%, electr.field 0.6%, numer 0.6%, dipol 0.6%, instabl 0.5%, reflect 0.5%, plasma 0.5%, frequenc 0.5%, displac 0.5%, dimension 0.4%, stress 0.4%, method 0.4%, piezoelectr 0.4%, two 0.4%, dispers 0.4%, shell 0.4%, system 0.3%, surfac 0.3%

2 (Size: 104, ISim: 5.63e-002, XSim: 1.70e-002, Gain: +0.00e+000)

magnet 41.5%, field 3.9%, temperatur 2.4%, magnet.field 2.0%, magnet.properti 1.7%, transit 1.7%, spin 1.5%, ferromagnet 1.4%, magnetoresist 0.9%, properti 0.8%, phase 0.7%, superconduct 0.7%, coupl 0.6%, antiferromagnet 0.6%, coerciv 0.5%, curi 0.5%, increas 0.5%, electr 0.5%, microspher 0.5%, compound 0.5%, structur 0.4%, curi.temperatur 0.4%, electron 0.4%, electr.field 0.4%, sampl 0.4%, insul 0.3%, dope 0.3%, depend 0.3%, decreas 0.3%

58 (Size: 627, ISim: 1.44e-002, XSim: 8.13e-003, Gain: -1.30e+001)

state 5.4%, energi 4.1%, calcul 1.6%, quantum 1.4%, model 1.3%, theori 1.3%, cluster 1.3%, decai 1.2%, mass 1.1%, two 0.9%, orbit 0.9%, interact 0.8%, potenti 0.8%, densiti 0.8%, atom 0.8%, function 0.8%, quark 0.8%, field 0.8%, isom 0.7%, structur 0.7%, spin 0.7%, bond 0.7%, paramet 0.6%, entangl 0.6%, gamma 0.6%, system 0.6%, level 0.5%, coupl 0.5%, measur 0.5%

51 (Size: 250, ISim: 2.41e-002, XSim: 9.11e-003, Gain: -1.09e+001)

state 9.3%, decai 3.9%, quantum 3.8%, quark 2.7%, entangl 2.0%, hole 1.6%, field 1.6%, energi 1.4%, black.hole 1.4%, black 1.4%, model 1.3%, gamma 1.2%, spin 1.1%, coher 0.9%, measur 0.8%, coupl 0.7%, mass 0.7%, detector 0.7%, entropi 0.6%, gev 0.6%, branch 0.6%, two 0.6%, theori 0.6%, meson 0.6%, collis 0.6%, paramet 0.5%, data 0.5%, neutron 0.5%, phi 0.5%

12 (Size: 123, ISim: 4.07e-002, XSim: 8.72e-003, Gain: +0.00e+000)

state 14.3%, quantum 8.0%, entangl 4.9%, hole 3.9%, black.hole 3.4%, black 3.3%, field 2.8%, coher 2.0%, spin 1.9%, entropi 1.6%, coupl 1.3%, squeez 1.0%, entangl.state 1.0%, horizon 0.9%, oscil 0.8%, atom 0.7%, coher.state 0.6%, mode 0.5%, teleport 0.5%, brick.wall 0.5%, two 0.5%, ground.state 0.5%, oper 0.4%, brick 0.4%, dot 0.4%, theori 0.4%, quantum.mechan 0.4%, photon 0.4%, ground 0.4%

15 (Size: 127, ISim: 3.84e-002, XSim: 8.72e-003, Gain: +0.00e+000)

decai 8.7%, quark 6.6%, gamma 2.6%, model 2.0%, energi 1.7%, detector 1.7%, gev 1.5%, meson 1.4%, collis 1.4%, branch 1.3%, data 1.2%, phi 1.2%, cross.section 1.1%, neutron 1.0%, hadron 1.0%, isospin 1.0%, measur 1.0%, state 1.0%, baryon 1.0%, branch.ratio 1.0%, section 0.9%, mass 0.9%, gluon 0.8%, mev 0.8%, pion 0.8%, cross 0.8%, relativist 0.7%, nucleon 0.7%, proton 0.7%

,] **42** (Size: 377, ISim: 1.72e-002, XSim: 9.11e-003, Gain: -9.05e+000)

energi 4.6%, cluster 2.7%, calcul 2.3%, orbit 1.7%, isom 1.6%, bond 1.5%, structur 1.5%, state 1.3%, theori 1.3%, densiti 1.2%, interact 1.0%, function 0.9%, mass 0.9%, potenti 0.9%, atom 0.9%, two 0.7%, spectra 0.7%, b3lyp 0.7%, model 0.7%, molecular 0.7%, molecul 0.7%, correl 0.6%, star 0.6%, electron 0.6%, band 0.6%, charg 0.5%, densiti.function 0.5%, level 0.5%, order 0.5%

38 (Size: 233, ISim: 1.96e-002, XSim: 1.06e-002, Gain: +0.00e+000)

energi 3.2%, calcul 2.4%, theori 1.8%, mass 1.7%, densiti 1.5%, star 1.4%, model 1.4%, function 1.2%, interact 1.2%, potenti 1.1%, correl 1.1%, galaxi 0.9%, paramet 0.8%, state 0.8%, line 0.8%, two 0.8%, perturb 0.8%, bodi 0.8%, rotat 0.7%, orbit 0.7%, system 0.7%, band 0.6%, time 0.6%, region 0.6%, equat 0.6%, distribut 0.5%, observ 0.5%, method 0.5%, approxim 0.5%

20 (Size: 144, ISim: 3.22e-002, XSim: 1.06e-002, Gain: +0.00e+000)

cluster 5.8%, isom 5.4%, bond 3.5%, energi 3.4%, structur 3.0%, orbit 2.0%, atom 1.9%, molecul 1.6%, aren 1.3%, ring 1.3%, b3lyp 1.2%, state 1.1%, porphyrin 1.0%, dissoci 1.0%, stabl 1.0%, molecular 0.9%, calcul 0.9%, spectra 0.8%, calix 0.8%, 31g 0.8%, calix.aren 0.7%, kcal 0.7%, ci 0.6%, mol 0.6%, geometri 0.6%, stabil 0.6%, kcal.mol 0.6%, stm 0.6%, reaction 0.6%

76 (Size: 3525, ISim: 8.96e-003, XSim: 5.05e-003, Gain: -5.25e+001)

film 3.1%, temperatur 2.3%, crystal 1.8%, reaction 1.5%, phase 1.4%, structur 1.4%, surfac 1.1%, catalyst 0.9%, electron 0.9%, composit 0.9%, increas 0.8%, acid 0.8%, complex 0.8%, high 0.8%, oxid 0.8%, properti 0.8%, alloi 0.7%, ion 0.7%, beta 0.6%, rai 0.6%, materi 0.6%, compound 0.6%, process 0.5%, sampl 0.5%, solut 0.5%, atom 0.5%, synthes 0.5%, mechan 0.5%, layer 0.5%

73 (Size: 2026, ISim: 1.21e-002, XSim: 5.76e-003, Gain: -3.16e+001)

film 6.5%, temperatur 3.1%, phase 1.8%, crystal 1.5%, composit 1.5%, alloi 1.4%, electron 1.3%, surfac 1.1%, ceram 1.0%, properti 1.0%, increas 1.0%, materi 0.9%, structur 0.9%, laser 0.9%, high 0.8%, dielectr 0.8%, layer 0.7%, particl 0.7%, powder 0.7%, optic 0.7%, grain 0.7%, thin 0.7%, size 0.6%, coat 0.6%, deposit 0.6%, thin.film 0.6%, process 0.6%, measur 0.6%, anneal 0.6%

71 (Size: 1664, ISim: 1.14e-002, XSim: 1.01e-002, Gain: -2.58e+001)

temperatur 3.7%, phase 2.2%, alloi 2.0%, crystal 1.9%, composit 1.6%, ceram 1.5%, electron 1.5%, laser 1.2%, materi 1.2%, high 1.0%, increas 1.0%, properti 1.0%, powder 1.0%, surfac 0.9%, dielectr 0.9%, particl 0.9%, structur 0.9%, optic

0.7%, sampl 0.7%, size 0.7%, process 0.7%, mechan 0.7%, sinter 0.7%, coat 0.7%, grain 0.6%, measur 0.6%, beam 0.6%, microstructur 0.6%, layer 0.6%

65 (Size: 825, ISim: 1.45e-002, XSim: 7.86e-003, Gain: -1.93e+001)

temperatur 4.7%, ceram 3.1%, laser 3.1%, crystal 2.8%, dielectr 2.8%, phase 2.3%, optic 2.0%, beam 1.6%, frequenc 1.1%, ferroelectr 1.1%, electron 1.1%, dope 1.1%, mode 1.0%, measur 0.9%, ion 0.9%, sinter 0.9%, sampl 0.9%, high 0.9%, transit 0.8%, properti 0.6%, materi 0.6%, electr 0.6%, glass 0.6%, puls 0.6%, increas 0.6%, field 0.6%, wavelength 0.6%, structur 0.6%, polar 0.5%

59 (Size: 627, ISim: 1.50e-002, XSim: 8.93e-003, Gain: -1.39e+001)

laser 5.1%, temperatur 3.5%, crystal 3.4%, optic 3.2%, beam 2.5%, mode 1.5%, ion 1.3%, electron 1.3%, measur 1.1%, frequenc 1.1%, phase 1.0%, puls 1.0%, wavelength 0.9%, dope 0.9%, pump 0.9%, high 0.9%, intens 0.9%, implant 0.8%, sampl 0.8%, emiss 0.8%, anneal 0.7%, light 0.7%, energi 0.7%, power 0.6%, waveguid 0.6%, pressur 0.5%, state 0.5%, effici 0.5%, irradi 0.5%

32 (Size: 264, ISim: 2.39e-002, XSim: 9.13e-003, Gain: +0.00e+000)

laser 8.6%, optic 6.5%, beam 6.1%, mode 3.6%, frequenc 2.9%, puls 2.3%, pump 2.2%, wavelength 1.5%, power 1.5%, waveguid 0.9%, switch 0.8%, harmon 0.8%, shift 0.7%, effici 0.7%, propag 0.7%, measur 0.6%, light 0.6%, nonlinear 0.6%, theoret 0.6%, phase 0.5%, output 0.5%, field 0.5%, photon 0.5%, signal 0.5%, period 0.5%, wave 0.5%, radiat 0.4%, intens 0.4%, diod 0.4%

40 (Size: 363, ISim: 1.90e-002, XSim: 9.13e-003, Gain: -8.62e+000)

temperatur 7.8%, crystal 6.0%, ion 2.7%, dope 1.9%, electron 1.9%, implant 1.7%, anneal 1.7%, sampl 1.3%, laser 1.2%, emiss 1.1%, irradi 1.0%, pressur 1.0%, measur 0.9%, phase 0.9%, high 0.9%, glass 0.8%, increas 0.8%, layer 0.8%, intens 0.8%, energi 0.8%, transit 0.7%, state 0.7%, grown 0.7%, linbo3 0.6%, spectra 0.6%, ion.implant 0.6%, conduct 0.6%, peak 0.5%, rang 0.5%

4 (Size: 76, ISim: 5.25e-002, XSim: 1.14e-002, Gain: +0.00e+000)

implant 14.3%, ion 12.1%, ion.implant 4.8%, diamond 3.5%, anneal 3.2%, irradi 1.7%, gan 1.7%, film 1.6%, dose 1.5%, layer 1.5%, waveguid 1.2%, deposit 1.0%, substrat 0.9%, surfac 0.9%, fluenc 0.8%, nucleat 0.7%, inp 0.5%, sampl 0.5%, laser 0.5%, profil 0.5%, temperatur 0.5%, electron 0.4%, energi 0.4%, diffus 0.4%, epitaxi 0.4%, electron.energi 0.4%, energi.loss 0.3%, electron.energi.loss 0.3%, diamond.film 0.3%

36 (Size: 287, ISim: 2.06e-002, XSim: 1.14e-002, Gain: +0.00e+000)

temperatur 9.6%, crystal 8.1%, dope 2.5%, electron 1.9%, emiss 1.3%, pressur 1.3%, sampl 1.2%, phase 1.1%, measur 1.0%, laser 1.0%, glass 1.0%, high 0.9%, transit 0.9%, state 0.9%, linbo3 0.9%, intens 0.9%, increas 0.8%, conduct 0.8%, spectra 0.8%, anneal 0.7%, excit 0.7%, energi 0.7%, thermal 0.7%, grown 0.6%, peak 0.6%, absorpt 0.5%, rang 0.5%, materi 0.5%, oxygen 0.4%

6 (Size: 198, ISim: 4.46e-002, XSim: 8.93e-003, Gain: +0.00e+000)

ceram 14.7%, dielectr 13.8%, ferroelectr 5.7%, sinter 4.3%, phase 3.0%, temperatur 2.8%, dielectr.constant 1.7%, piezoelectr 1.5%, dielectr.properti 1.3%, properti 1.2%, constant 1.0%, phase.transit 1.0%, domain 1.0%, electr 0.9%, materi 0.8%, relaxor 0.8%, transit 0.8%, composit 0.7%, pmn 0.6%, polar 0.6%, pbtio3 0.5%, dope 0.5%, structur 0.5%, pyrochlor 0.5%, field 0.5%, 3nb2 0.4%, tetragon 0.4%, batio3 0.4%, increas 0.4%

64 (Size: 839, ISim: 1.54e-002, XSim: 7.86e-003, Gain: -1.82e+001)

alloi 5.4%, composit 2.6%, particl 2.0%, powder 1.8%, coat 1.6%, temperatur 1.4%, surfac 1.4%, phase 1.2%, materi 1.2%, size 1.2%, electron 1.2%, microstructur 1.2%, strength 1.0%, grain 1.0%, mechan 1.0%, increas 0.9%, properti 0.8%, nanowir 0.8%, oxid 0.8%, microscopi 0.8%, process 0.8%, structur 0.8%, electron.microscopi 0.7%, high 0.7%, corros 0.7%, sic 0.7%, blend 0.6%, crystal 0.6%, carbon 0.6%

56 (Size: 435, ISim: 2.25e-002, XSim: 9.47e-003, Gain: -1.25e+001)

alloi 13.2%, composit 3.9%, microstructur 2.4%, coat 2.3%, strength 2.3%, grain 2.1%, corros 1.7%, sic 1.5%, crack 1.2%, steel 1.2%, temperatur 1.1%, phase 1.1%, mechan 1.0%, increas 1.0%, properti 0.9%, stress 0.9%, materi 0.9%, melt 0.8%, deform 0.8%, mechan.properti 0.8%, fractur 0.8%, matrix 0.8%, disloc 0.7%, process 0.7%, tensil 0.7%, al203 0.6%, degreesc 0.6%, surfac 0.6%, resist 0.6%

27 (Size: 219, ISim: 2.77e-002, XSim: 1.29e-002, Gain: +0.00e+000)

composit 9.7%, coat 5.2%, sic 4.7%, strength 4.0%, crack 2.3%, al203 1.9%, fractur 1.7%, fiber 1.5%, materi 1.3%, interfac 1.3%, properti 1.2%, tough 1.2%, mechan.properti 1.2%, matrix 1.1%, mechan 1.0%, reinforc 0.9%, layer 0.9%, sinter 0.9%, ceram 0.8%, microstructur 0.8%, tensil 0.7%, mpa 0.7%, tic 0.6%, stress 0.6%, grain 0.6%, particl 0.6%, lamin 0.6%, surfac 0.5%, temperatur 0.5%

19 (Size: 216, ISim: 3.65e-002, XSim: 1.29e-002, Gain: +0.00e+000)

alloi 31.1%, microstructur 2.8%, grain 2.6%, corros 2.1%, steel 1.9%, deform 1.8%, disloc 1.4%, melt 1.2%, phase 1.1%, temperatur 1.1%, tial 1.0%, precipit 1.0%, increas 0.9%, strain 0.7%, stress 0.6%, heat 0.6%, degreesc 0.6%, boundari

0.6%, martensit 0.6%, gamma 0.6%, alpha 0.6%, eutect 0.6%, hydrogen 0.6%, cast 0.6%, ag 0.5%, mechan 0.5%, grain.boundari 0.5%, resist 0.5%, process 0.5%

52 (Size: 404, ISim: 2.00e-002, XSim: 9.47e-003, Gain: -1.11e+001)

powder 3.6%, particl 3.5%, nanowir 2.8%, electron 2.3%, size 1.7%, nanotub 1.7%, blend 1.7%, microscopi 1.6%, surfac 1.6%, electron.microscopi 1.5%, nanoparticl 1.3%, diffract 1.1%, diamet 1.1%, crystal 1.1%, transmiss.electron 1.1%, tio2 1.0%, coal 1.0%, structur 0.9%, temperatur 0.9%, rai 0.9%, carbon 0.9%, nano 0.9%, materi 0.9%, transmiss 0.9%, transmiss.electron.microscopi 0.8%, tem 0.8%, phase 0.7%, oxid 0.7%, growth 0.7%

35 (Size: 247, ISim: 2.22e-002, XSim: 1.18e-002, Gain: +0.00e+000)

particl 6.3%, powder 6.1%, blend 3.9%, surfac 2.5%, size 2.4%, tio2 2.1%, coal 2.0%, nano 1.7%, materi 1.3%, temperatur 1.1%, calcin 1.1%, phase 1.0%, particl.size 0.9%, zro2 0.9%, crystal 0.9%, xrd 0.8%, nanocomposit 0.7%, morpholog 0.7%, nanoparticl 0.7%, crystallin 0.7%, structur 0.7%, thermal 0.7%, coat 0.6%, nanomet 0.6%, composit 0.6%, content 0.6%, increas 0.6%, dispers 0.6%, zn 0.6%

14 (Size: 157, ISim: 4.00e-002, XSim: 1.18e-002, Gain: +0.00e+000)

nanowir 9.2%, nanotub 5.0%, electron 4.5%, microscopi 3.5%, electron.microscopi 3.4%, transmiss.electron 2.6%, transmiss.electron.microscopi 2.3%, diamet 2.3%, nanorod 2.2%, transmiss 2.1%, carbon.nanotub 2.0%, diffract 1.8%, carbon 1.7%, cnt 1.4%, growth 1.3%, rai 1.2%, nanoparticl 1.1%, tem 0.8%, electron.diffract 0.8%, nanocryst 0.8%, crystal 0.6%, structur 0.6%, templat 0.6%, nanostructur 0.5%, rai.diffract 0.5%, oxid 0.5%, arrai 0.5%, microscopi.tem 0.4%, electron.microscopi.tem 0.4%

7 (Size: 362, ISim: 4.47e-002, XSim: 1.01e-002, Gain: +0.00e+000)

film 47.5%, thin.film 4.8%, thin 4.6%, deposit 2.6%, substrat 2.1%, anneal 0.9%, pzt 0.8%, surfac 0.7%, thick 0.7%, layer 0.6%, sputter 0.6%, temperatur 0.5%, structur 0.4%, properti 0.4%, rai 0.4%, composit 0.4%, ferroelectr 0.3%, increas 0.3%, grain 0.3%, orient 0.3%, film.deposit 0.3%, polar 0.3%, electron 0.2%, sol 0.2%, dope 0.2%, stress 0.2%, tio2 0.2%, coat 0.2%, spectroscopi 0.2%

72 (Size: 1499, ISim: 1.19e-002, XSim: 5.76e-003, Gain: -3.03e+001)

reaction 4.4%, catalyst 3.4%, complex 2.8%, acid 2.7%, beta 2.0%, compound 1.8%, angstrom 1.7%, water 1.2%, structur 1.1%, crystal 1.1%, activ 1.0%, synthes 1.0%, mol 0.9%, oxid 0.8%, group 0.8%, electrod 0.8%, adsorpt 0.8%, atom 0.7%, solut 0.7%, ligand 0.7%, polymer 0.7%, hydrogen 0.7%, ion 0.7%, h2o 0.7%, polym 0.6%, catalyt 0.6%, yield 0.6%, solvent 0.6%, concentr 0.6%

68 (Size: 1173, ISim: 1.22e-002, XSim: 7.55e-003, Gain: -2.17e+001)

reaction 5.4%, catalyst 5.3%, acid 3.5%, beta 1.7%, activ 1.5%, water 1.3%, electrod 1.3%, adsorpt 1.2%, mol 1.2%, oxid 1.2%, polymer 1.0%, compound 1.0%, catalyt 0.9%, solut 0.9%, yield 0.9%, concentr 0.8%, solvent 0.8%, carbon 0.7%, synthes 0.7%, surfac 0.7%, select 0.6%, method 0.6%, temperatur 0.6%, polym 0.6%, extract 0.6%, determin 0.6%, methyl 0.5%, phase 0.5%, product 0.5%

61 (Size: 665, ISim: 1.45e-002, XSim: 7.88e-003, Gain: -1.48e+001)

acid 4.5%, electrod 3.1%, water 2.6%, adsorpt 2.3%, mol 1.9%, solut 1.6%, concentr 1.6%, determin 1.4%, extract 1.3%, polymer 1.1%, ion 0.9%, surfac 0.9%, polym 0.9%, detect 0.9%, solvent 0.8%, reaction 0.8%, method 0.8%, membran 0.7%, modifi 0.7%, rang 0.7%, phase 0.7%, copolym 0.6%, sampl 0.6%, chitosan 0.6%, poli 0.6%, separ 0.6%, aqueou 0.6%, molecular 0.5%, electrochem 0.5%

25 (Size: 245, ISim: 2.83e-002, XSim: 8.92e-003, Gain: +0.00e+000)

electrod 11.5%, mol 4.9%, determin 4.3%, detect 2.6%, electrochem 1.7%, acid 1.6%, detect.limit 1.5%, dna 1.5%, ion 1.4%, method.determin 1.2%, sampl 1.2%, rang 1.1%, modifi 1.0%, limit 1.0%, method 1.0%, solut 0.9%, sensor 0.9%, concentr 0.8%, oxid 0.8%, surfac 0.7%, linear 0.7%, reaction 0.7%, potenti 0.6%, sensit 0.6%, voltammetri 0.6%, immobil 0.5%, peak 0.5%, fluoresc 0.5%, cyclic 0.4%

49 (Size: 420, ISim: 1.63e-002, XSim: 8.92e-003, Gain: -1.05e+001)

acid 4.8%, water 3.7%, adsorpt 3.4%, polymer 2.2%, extract 1.9%, solvent 1.5%, polym 1.5%, concentr 1.4%, solut 1.3%, copolym 1.3%, chitosan 1.1%, membran 1.1%, molecular 1.0%, graft 1.0%, poli 0.9%, molecular.weight 0.9%, phase 0.9%, surfact 0.9%, weight 0.9%, aqueou 0.7%, monom 0.7%, micel 0.7%, increas 0.6%, temperatur 0.6%, surfac 0.6%, separ 0.6%, organ 0.5%, aggreg 0.5%, methyl 0.5%

39 (Size: 259, ISim: 1.88e-002, XSim: 9.55e-003, Gain: +0.00e+000)

acid 6.9%, adsorpt 6.5%, water 4.9%, extract 4.1%, membran 1.5%, phase 1.3%, surfact 1.3%, solvent 1.3%, solut 1.2%, concentr 1.1%, aqueou 1.0%, carbon 1.0%, separ 1.0%, liquid 0.8%, salt 0.8%, organ 0.8%, surfac 0.6%, mixtur 0.6%, adsorb 0.6%, capac 0.5%, pore 0.5%, resin 0.5%, oil 0.5%, equilibrium 0.5%, amino.acid 0.5%, amino 0.4%, temperatur 0.4%, ion 0.4%, column 0.4%

21 (Size: 161, ISim: 3.15e-002, XSim: 9.55e-003, Gain: +0.00e+000)

polymer 7.1%, copolym 4.4%, polym 4.3%, chitosan 3.9%, graft 3.4%, poli 2.9%, molecular.weight 2.7%, monom 2.4%, molecular 2.3%, weight 2.0%, micel 1.5%, hydrogel 1.0%, radic 1.0%, methyl 1.0%, concentr 0.9%, aggreg 0.9%,

methacryl 0.9%, crosslink 0.8%, solvent 0.8%, water 0.8%, initi 0.7%, solut 0.7%, acid 0.7%, increas 0.6%, group 0.5%, reaction 0.5%, chain 0.5%, temperatur 0.5%, acryl 0.5%

62 (Size: 508, ISim: 1.97e-002, XSim: 7.88e-003, Gain: -1.60e+001)

catalyst 16.7%, reaction 10.4%, beta 4.7%, activ 2.6%, catalyt 2.3%, yield 2.0%, compound 1.8%, oxid 1.4%, acid 1.1%, alpha 1.0%, synthes 0.9%, select 0.9%, product 0.8%, synthesi 0.8%, hydrogen 0.7%, carbon 0.6%, nmr 0.6%, temperatur 0.5%, aryl 0.5%, methyl 0.5%, support 0.5%, high 0.5%, structur 0.5%, catalyt.activ 0.5%, al203 0.4%, complex 0.4%, polymer 0.4%, convers 0.4%, cyclodextrin 0.4%

3 (Size: 181, ISim: 5.20e-002, XSim: 1.07e-002, Gain: +0.00e+000)

catalyst 43.7%, catalyt 4.7%, activ 4.2%, oxid 1.8%, reaction 1.8%, select 1.4%, catalyt.activ 1.3%, al2o3 1.1%, polymer 1.0%, hydrogen 0.9%, support 0.8%, convers 0.8%, sio2 0.5%, temperatur 0.4%, carbon 0.4%, sulfur 0.4%, ethylen 0.4%, acid 0.4%, gamma.al2o3 0.4%, complex 0.4%, surfac 0.4%, reduct 0.4%, yield 0.3%, high 0.3%, zeolit 0.3%, oxygen 0.3%, tpr 0.3%, promot 0.3%, speci 0.3%

55 (Size: 327, ISim: 1.99e-002, XSim: 1.07e-002, Gain: -1.22e+001)

reaction 14.4%, beta 10.4%, compound 3.7%, yield 2.8%, alpha 2.0%, synthes 1.6%, aryl 1.1%, nmr 1.1%, acid 1.1%, cyclodextrin 1.0%, product 1.0%, synthesi 0.9%, methyl 0.7%, deriv 0.6%, beta.cyclodextrin 0.6%, isol 0.6%, new 0.6%, elucid 0.5%, structur 0.5%, aldehyd 0.5%, alcohol 0.5%, chiral 0.5%, coupl 0.5%, activ 0.5%, good 0.5%, substitut 0.4%, glucopyranosyl 0.4%, good.yield 0.4%, beta.glucopyranosyl 0.4%

29 (Size: 196, ISim: 2.62e-002, XSim: 8.09e-003, Gain: +0.00e+000)

reaction 26.9%, yield 4.8%, product 1.5%, synthes 1.3%, synthesi 1.1%, aldehyd 1.0%, aryl 0.9%, coupl 0.9%, alcohol 0.8%, chiral 0.7%, acid 0.7%, good.yield 0.7%, good 0.7%, catalyz 0.7%, solvent 0.6%, condit 0.6%, allyl 0.6%, reaction.mechan 0.6%, radic 0.5%, mechan 0.5%, high 0.5%, carbon 0.5%, temperatur 0.5%, rate 0.5%, energi 0.5%, reagent 0.4%, alkyl 0.4%, compound 0.4%, methyl 0.4%

10 (Size: 131, ISim: 4.11e-002, XSim: 8.09e-003, Gain: +0.00e+000)

beta 27.8%, compound 6.6%, alpha 3.8%, cyclodextrin 2.9%, nmr 2.8%, beta.cyclodextrin 1.8%, isol 1.7%, elucid 1.5%, glucopyranosyl 1.3%, beta.glucopyranosyl 1.2%, structur.elucid 1.2%, structur 1.2%, inclus 1.0%, spectroscop 0.9%, new 0.9%, synthes 0.7%, acid 0.6%, glucopyranosid 0.6%, inclus.complex 0.6%, new.compound 0.5%, alpha.beta 0.5%, glycosid 0.5%, methyl

0.5%, aryl 0.4%, deriv 0.4%, two.new 0.4%, 3beta 0.4%, alpha.beta.unsatur 0.4%, unsatur 0.4%

48 (Size: 326, ISim: 3.86e-002, XSim: 7.55e-003, Gain: -1.03e+001)

angstrom 10.8%, complex 8.6%, crystal 4.3%, ligand 3.4%, atom 2.9%, coordin 2.6%, h2o 2.1%, structur 2.1%, degre 2.0%, compound 1.9%, group 1.6%, titl 1.5%, space.group 1.5%, bond 1.5%, rai 1.0%, titl.compound 1.0%, crystal.structur 1.0%, hydrogen.bond 0.9%, beta 0.9%, molecul 0.9%, space 0.9%, two 0.8%, synthes 0.8%, monoclin 0.7%, hydrogen 0.7%, bridg 0.7%, dimension 0.6%, diffract 0.6%, phen 0.5%

0 (Size: 154, ISim: 7.26e-002, XSim: 2.45e-002, Gain: +0.00e+000)

angstrom 23.9%, crystal 4.8%, degre 4.4%, space.group 3.1%, titl 2.8%, compound 2.8%, atom 2.7%, titl.compound 2.1%, group 1.8%, beta 1.8%, space 1.7%, monoclin 1.4%, structur 1.2%, complex 1.1%, bond 0.9%, crystal.structur 0.9%, h2o 0.9%, molecul 0.8%, rai 0.8%, coordin 0.7%, angstrom.beta 0.7%, ring 0.7%, ligand 0.6%, diffract 0.6%, hydrogen.bond 0.6%, 000 0.6%, unit 0.6%, two 0.5%, rai.diffract 0.5%

17 (Size: 172, ISim: 3.65e-002, XSim: 2.45e-002, Gain: +0.00e+000)

complex 19.3%, ligand 6.8%, coordin 4.1%, h2o 2.7%, structur 1.9%, crystal 1.6%, atom 1.5%, bond 1.3%, bridg 1.3%, spectra 1.2%, synthes 1.1%, copper 1.0%, ion 1.0%, hydrogen.bond 0.9%, iii 0.9%, clo4 0.9%, eta 0.8%, rai 0.8%, dimension 0.7%, two 0.7%, hydrogen 0.7%, interact 0.7%, element 0.6%, phen 0.6%, fluoresc 0.6%, bi 0.6%, group 0.6%, carboxyl 0.6%, crystal.structur 0.5%

Appendix 10B - Cluto Taxonomy

- -Science Citation Index
- -40 Clusters

2002 Database

The taxonomy of this SCI 2002 data set was derived from the data shown in Appendix 10A (Cluto 40-cluster run). Figure A10B-1 (also Figure 4 of the Text) below, shows the top level taxonomy of levels 1-4. In the figure below, the numbers in parentheses represent the number of records (abstracts) associated with that particular cell. The number in brackets represents the percentage of the number of records of the particular cell to the overall number of records (7780 possible).

Figure A10B-1. Partitional Document Clustering (CLUTO) Taxonomy Levels 1-4 (SCI, 40 Clusters, year 2002)

LEVEL 1	LEVEL 2	LEVEL 3	LEVEL 4
(1711) - Bio-Medical Sciences [22%]	(865) - Laboratory Medical Research [11.1%]	(501) - Animal & Human Physiology [6.4%]	(217) - Animal Physiology [2.8%]
			(284) - Human Physiology [3.7%]
		(364) - Genetic & Molecular Biology [4.7%]	(165) - Molecular Biology [2.1%]
			(199) - Genetics [2.6%]
	(846) - Clinical Medicine [10.9%]	(389) - Clinical Medicine [5.0%]	(210) - Clinical Chronic Disease Treatment [2.7%]
			(179) - Cancer Risk Factors [2.3%]
		(457) - Geology & Environmental Sciences [5.9%]	(210) - Geology of Chinese Regions [2.7%]
			(247) - Seasonal & climate induced changes on environment [3.2%]
(6069) - Physical & Engineering Sciences [78%]	(2544) - Physics, Mechanics & Mathematics [32.7%]	(1180) - Algorithms & Mathematics [15.2%]	(713) - Algorithms of control systems, models, & networks [9.2%]
			(467) - Mathematics [6.0%]
		(1364) - Physics & Mechanics [17.5%]	(737) - Mechanics & Magnetics [9.5%]
			(627) - Physics [8.1%]
	(3525) - Chemistry & Materials Science [45.3%]	(2026) - Materials Science [26%]	(1664) - Physics of Materials & Nanomaterials [21.4%]
			(362) - Physical properties of thin films & substrates [4.7%]
		(1499) - Chemistry [19.3%]	(1173) - Chemistry of Organic & Inorganic Materials [15.1%]
			(326) - Chemistry of Crystals [4.2%]

Figure A10B-2. Partitional Document Clustering (CLUTO) Taxonomy All Levels (SCI, 40 Clusters, year 2002)

BLANK - CLUTO SCI-40

Appendix 10C – Partitional Clusters

- -CLUTO
- -Engineering Compendex
- -256-Clusters
- -2000-2003 Database

This Appendix presents the CLUTO results for the Engineering Compendex 2000-2003 database. There were 256 clusters selected. The format is the same as for the forty cluster results reported in Appendix 10A. Table A10C-1 below, contains a summary of the base 256 clusters (the lowest level).

Cluster 0,

Size: 27, ISim: 0.297, ESim: 0.005

<u>Descriptive:</u> watermark 68.7%, imag 3.2%, digit 3.0%, embed 1.7%, robust 1.6%, digit.watermark 1.6%, imag.watermark 1.1%, watermark.imag 0.9%, wavelet 0.8%, emb 0.5%, watermark.system 0.5%, robust.watermark 0.4%, digit.imag 0.4%, wavelet.transform 0.3%, invis 0.3%

<u>Discriminating:</u> watermark 39.0%, sub 2.3%, system 1.3%, digit 1.1%, model 1.1%, digit.watermark 0.9%, embed 0.8%, measur 0.8%, control 0.7%, robust 0.7%, imag.watermark 0.6%, time 0.5%, watermark.imag 0.5%, sup 0.5%, structur 0.5%

Focuses on imaging watermarks (embedding & detecting).

Cluster 1.

Size: 11, ISim: 0.276, ESim: 0.003

<u>Descriptive:</u> flashov 16.4%, trap 13.5%, trap.distribut 8.3%, alumina 8.0%, alumina.ceram 2.6%, insul 2.6%, starch 2.6%, vacuum 1.8%, surfac.flashov 1.7%, ceram 1.6%, sinter 1.5%, alumina.insul 1.5%, tapioca 1.4%, tapioca.starch 1.4%, distribut.alumina 1.4%

<u>Discriminating:</u> flashov 8.9%, trap 7.0%, trap.distribut 4.5%, alumina 4.2%, sub 2.2%, system 1.6%, alumina.ceram 1.4%, starch 1.3%, insul 1.3%, model 1.0%, surfac.flashov 0.9%, vacuum 0.8%, alumina.insul 0.8%, tapioca 0.8%, tapioca.starch 0.8%

Focuses on surface flashover phenomena & trap distribution associated with alumina ceramics for insulators.

Cluster 2.

Size: 23, ISim: 0.216, ESim: 0.005

<u>Descriptive:</u> fluidiz 20.5%, bed 18.7%, fluidiz.bed 12.2%, separ 10.3%, coal 3.3%, medium 1.5%, jig 1.5%, dens.medium 0.9%, magnet 0.8%, dens 0.8%, densiti 0.7%, coal.separ 0.6%, air 0.6%, air.dens 0.6%, air.dens.medium 0.6%

<u>Discriminating:</u> fluidiz 11.8%, bed 10.4%, fluidiz.bed 7.0%, separ 4.9%, sub 2.3%, system 1.6%, coal 0.9%, jig 0.9%, measur 0.8%, algorithm 0.8%, model 0.8%, imag 0.7%, control 0.7%, medium 0.7%, paper 0.6%

Focuses on characteristics associated with fluidization studies of beds, separation, coal, mediums, jig, densities.

Cluster 3,

Size: 15, ISim: 0.213, ESim: 0.006

<u>Descriptive:</u> gi 35.1%, geograph 6.0%, inform 5.2%, inform.system 5.2%, geograph.inform 3.7%, geograph.inform.system 3.1%, spatial 3.0%, data 2.0%, spatial.data 1.8%, geotherm 1.5%, map 1.1%, system 1.1%, inform.system.gi 0.9%, system.gi 0.9%, gi.geograph 0.8%

<u>Discriminating:</u> gi 20.7%, geograph 3.6%, inform.system 2.9%, sub 2.4%, geograph.inform 2.2%, geograph.inform.system 1.9%, inform 1.7%, spatial 1.4%, spatial.data 1.0%, measur 0.9%, geotherm 0.9%, control 0.8%, algorithm 0.8%, imag 0.6%, inform.system.gi 0.5%

Focuses on GIS (Geographic Information Systems) example uses for mapping of geothermal resources.

Cluster 4,

Size: 16, ISim: 0.210, ESim: 0.004

<u>Descriptive:</u> nanowir 58.7%, nanowhisk 1.1%, cd 1.1%, diamet 1.1%, sic.nanowir 0.9%, nanofib 0.9%, crystallin 0.8%, synthes 0.8%, sic 0.7%, length 0.6%, nanostructur 0.6%, growth 0.6%, cd.nanowir 0.6%, tic 0.5%, reaction 0.5% <u>Discriminating:</u> nanowir 33.1%, sub 2.0%, system 1.6%, model 1.1%, algorithm

0.8%, measur 0.8%, control 0.7%, paper 0.7%, nanowhisk 0.6%, imag 0.6%, cd 0.5%, sic.nanowir 0.5%, new 0.5%, nanofib 0.5%, data 0.5%

Focuses on nanowires.

Cluster 5,

Size: 17, ISim: 0.201, ESim: 0.005

<u>Descriptive:</u> outburst 22.8%, coal 15.8%, em 6.1%, methan 4.9%, emr 4.1%, rock 3.2%, burst 2.9%, rock.burst 2.4%, coal.ga 2.3%, fractur 2.2%, ga.outburst 2.1%, coal.ga.outburst 2.1%, ga 1.7%, methan.outburst 1.1%, coal.methan 1.1%

<u>Discriminating:</u> outburst 13.3%, coal 6.9%, em 3.5%, methan 2.6%, emr 2.4%, sub 2.2%, burst 1.6%, system 1.6%, rock.burst 1.4%, coal.ga 1.3%, rock 1.3%, coal.ga.outburst 1.2%, ga.outburst 1.2%, fractur 1.0%, model 0.8%

Focuses on studies predicting outbursts of rocks (coal) & gases (methane) by monitoring Electromagnetic Emissions/Radiation (EME/EMR).

Cluster 6.

Size: 15, ISim: 0.199, ESim: 0.005

<u>Descriptive:</u> bolt 50.9%, rock 2.7%, surround 1.7%, roadwai 1.7%, abut 1.7%, deform 1.3%, arch 1.3%, anchor 1.3%, arch.dam 1.1%, truss 1.1%, dam 1.1%, rock.bolt 0.9%, mantl 0.8%, strength 0.8%, rock.surround 0.7%

<u>Discriminating:</u> bolt 29.2%, sub 2.3%, system 1.6%, rock 1.0%, abut 0.9%, roadwai 0.9%, model 0.9%, surround 0.9%, algorithm 0.8%, imag 0.7%, anchor 0.7%, arch 0.7%, measur 0.7%, arch.dam 0.7%, truss 0.6%

Focuses on deformation of bolts and anchoring them to rocks & trusses (applications - mines & bridges).

Cluster 7,

Size: 132, ISim: 0.185, ESim: 0.009

<u>Descriptive:</u> sub 36.6%, sub.sub 31.4%, sub.sub.sub 21.9%, temperatur 0.3%, dope 0.2%, magnet 0.2%, superconduct 0.2%, sup 0.2%, crystal 0.2%, delta 0.2%, sub.delta 0.1%, sub.sub.delta 0.1%, transit 0.1%, glass 0.1%, structur 0.1%

<u>Discriminating:</u> sub.sub 17.9%, sub.sub.sub 14.3%, sub 13.5%, system 1.8%, model 1.3%, algorithm 0.9%, imag 0.9%, control 0.9%, measur 0.7%, paper 0.7%, time 0.6%, new 0.5%, data 0.5%, simul 0.5%, network 0.5%

Focuses on properties of compounds such as crystals and glass, such as temperature, magnetic, superconductivity and structures.

Cluster 8,

Size: 16, ISim: 0.176, ESim: 0.005

<u>Descriptive:</u> suppli.chain 24.4%, suppli 12.1%, chain 11.9%, scm 6.9%, enterpris 4.8%, manufactur 2.0%, decis 1.3%, cooper 0.6%, hierarchi 0.6%, share 0.6%, chain.scm 0.5%, suppli.chain.scm 0.5%, agil 0.5%, inform 0.5%, sustain 0.5% <u>Discriminating:</u> suppli.chain 14.3%, suppli 6.5%, chain 6.2%, scm 4.0%, enterpris 2.3%, sub 2.2%, system 1.1%, measur 0.9%, manufactur 0.9%, algorithm 0.8%, imag 0.7%, control 0.6%, time 0.5%, decis 0.5%, sup 0.5%

Focuses on supply chain manufacturing (scm) and enterprising.

Cluster 9.

Size: 13. ISim: 0.174. ESim: 0.005

<u>Descriptive:</u> crystal 11.0%, nucleat 8.1%, isotact 5.4%, ipp 4.8%, pom 3.1%, crystallin 2.7%, polypropylen 1.8%, nucleat.agent 1.6%, crystal.rate 1.4%, attapulgit

1.3%, differenti.scan 1.2%, crystal.kinet 1.2%, calcium 1.0%, differenti.scan.calorimetri 1.0%, scan.calorimetri 1.0%

<u>Discriminating:</u> crystal 5.0%, nucleat 4.6%, isotact 3.2%, ipp 2.8%, pom 1.8%, sub 1.7%, system 1.7%, crystallin 1.4%, model 1.1%, polypropylen 1.0%, nucleat.agent 0.9%, measur 0.8%, crystal.rate 0.8%, control 0.8%, algorithm 0.8%

Focuses on characterizing the effects of nucleation on the crystalization behavior of polymer materials such as polypropylene (PP) and polyoxymethylene (POM).

Cluster 10,

Size: 23, ISim: 0.172, ESim: 0.006

<u>Descriptive:</u> roof 22.4%, coal 9.1%, cave 7.4%, top.coal 7.1%, support 6.2%, top 4.2%, mine 3.3%, coal.cave 2.4%, top.coal.cave 2.2%, rock 1.7%, face 1.5%, support.resist 1.3%, deform 1.1%, strata 0.8%, broken 0.8%

<u>Discriminating:</u> roof 13.6%, cave 4.4%, top.coal 4.3%, coal 3.8%, support 3.0%, top 2.4%, sub 2.3%, system 1.6%, coal.cave 1.5%, top.coal.cave 1.3%, mine 1.2%, algorithm 0.8%, support.resist 0.8%, face 0.7%, imag 0.7%

Focuses on support of roofs in mines (coal) and caves.

Cluster 11,

Size: 31, ISim: 0.167, ESim: 0.005

<u>Descriptive:</u> posit.solut 24.4%, posit 10.0%, solut 9.2%, exist 5.7%, boundari 3.3%, suffici 2.4%, suffici.condit 2.0%, condit 1.8%, multipl.posit.solut 1.5%, multipl.posit 1.5%, theorem 1.4%, exist.posit.solut 1.4%, nonlinear 1.2%, exist.posit 1.1%, fix.point 1.0%

<u>Discriminating:</u> posit.solut 14.3%, posit 4.5%, solut 2.9%, exist 2.6%, sub 2.1%, system 1.4%, boundari 1.3%, model 1.1%, suffici 1.1%, suffici.condit 0.9%, multipl.posit.solut 0.9%, multipl.posit 0.9%, measur 0.9%, exist.posit.solut 0.8%, control 0.8%

Focuses on solutions related to position, such as existence, boundaries, and nonlinear solutions.

Cluster 12,

Size: 23, ISim: 0.167, ESim: 0.005

<u>Descriptive:</u> nanotub 29.4%, carbon 20.5%, carbon.nanotub 13.4%, cnt 1.3%, mwnt 1.1%, wall.carbon.nanotub 1.0%, wall.carbon 1.0%, electron 0.9%, wall 0.6%, singl.wall 0.5%, singl.wall.carbon 0.5%, nanotub.cnt 0.5%, carbon.nanotub.cnt 0.5%, methan 0.5%, nanotub.electron 0.5%

<u>Discriminating:</u> nanotub 17.2%, carbon 11.0%, carbon.nanotub 7.9%, system 1.7%, sub 1.6%, model 1.2%, algorithm 0.8%, cnt 0.8%, measur 0.7%, imag 0.6%, paper 0.6%, mwnt 0.6%, wall.carbon.nanotub 0.6%, wall.carbon 0.6%, control 0.5%

Focuses on carbon nanotubes.

Cluster 13,

Size: 26, ISim: 0.165, ESim: 0.006

<u>Descriptive:</u> ann 20.3%, artifici.neural.network 10.7%, artifici.neural 10.5%, artifici 8.3%, neural 5.9%, neural.network 5.8%, network 4.5%, network.ann 3.8%, neural.network.ann 3.8%, model 1.0%, weight 0.6%, ann.model 0.5%, dfa 0.4%, applic.artifici.neural 0.4%, synaps 0.3%

<u>Discriminating:</u> ann 12.4%, artifici.neural.network 6.5%, artifici.neural 6.4%, artifici 4.8%, neural.network 2.7%, neural 2.6%, sub 2.5%, network.ann 2.3%, neural.network.ann 2.3%, network 1.1%, system 1.0%, imag 0.8%, measur 0.6%, sup 0.5%, solut 0.5%

Focuses on artificial neural networks (ANN).

Cluster 14.

Size: 15, ISim: 0.163, ESim: 0.004

<u>Descriptive:</u> gear 35.4%, tooth 10.1%, contact 6.1%, worm 3.1%, involut 2.9%, toroid 2.0%, reliabl.design 1.0%, load 0.9%, basi.set 0.8%, forc 0.7%, proton 0.7%, spheric 0.6%, gear.tooth 0.5%, wheel 0.5%, contact.forc 0.5%

<u>Discriminating:</u> gear 19.9%, tooth 5.8%, contact 3.2%, sub 2.3%, worm 1.8%, system 1.7%, involut 1.6%, toroid 1.1%, model 0.8%, control 0.8%, algorithm 0.8%, imag 0.7%, measur 0.7%, reliabl.design 0.6%, time 0.5%

Focuses on loading on gears and gear teeth.

Cluster 15,

Size: 22, ISim: 0.162, ESim: 0.005

<u>Descriptive:</u> flame 13.4%, retard 12.7%, flame.retard 10.6%, thermal.degrad 2.0%, thermal 1.9%, degrad 1.8%, loi 1.8%, oxygen 1.8%, phosphoru 1.7%, blend 1.6%, char 1.4%, oxygen.index 1.1%, polyethylen 1.0%, hffr 0.9%, coal 0.9%

<u>Discriminating:</u> flame 7.7%, retard 7.4%, flame.retard 6.3%, sub 2.1%, system 1.7%, thermal.degrad 1.2%, model 1.1%, loi 1.0%, phosphoru 1.0%, degrad 0.9%, char 0.8%, control 0.8%, algorithm 0.8%, imag 0.7%, oxygen 0.7%

Focuses on characterizing flame retardants and thermal degradation.

Cluster 16,

Size: 20, ISim: 0.164, ESim: 0.007

<u>Descriptive:</u> sub 12.7%, magnet 9.5%, mno.sub 4.2%, sub.sub 4.1%, mno 4.1%, sub.sub.mno 3.9%, sub.mno 3.9%, sub.mno.sub 3.9%, stiffen 2.5%, charg.order 2.3%, temperatur 1.8%, sound.veloc 1.4%, magnet.field 1.2%, phase 1.0%, teller 0.8% <u>Discriminating:</u> magnet 4.8%, mno.sub 2.7%, mno 2.6%, sub.sub.mno 2.5%, sub.mno.sub 2.5%, sub.mno 2.5%, sub.mno 2.5%, sub.mno 2.5%, sub.mno 2.5%, sub.sub 1.0%, sound.veloc 0.9%, control 0.9%, algorithm 0.9%

Focuses on phenomena (non-mechanical) such as magnetic fields that cause changes in properties of materials (e.g. MnO).

Cluster 17,

Size: 20, ISim: 0.160, ESim: 0.004

<u>Descriptive:</u> dye 44.7%, adsorpt 12.4%, adsorb 3.2%, tea 2.5%, desorpt 1.4%, dye.dye 0.9%, sup 0.9%, polyest 0.9%, cyanin 0.7%, cyanin.dye 0.7%, laser 0.6%, rate 0.5%, properti 0.5%, adsorpt.rate 0.5%, rhenium 0.4%

<u>Discriminating:</u> dye 25.7%, adsorpt 6.7%, adsorb 1.8%, system 1.7%, sub 1.6%, tea 1.4%, model 1.1%, control 0.8%, algorithm 0.8%, desorpt 0.7%, imag 0.7%, measur 0.7%, paper 0.6%, dye.dye 0.5%, polyest 0.5%

Focuses on the adsorption, adsorbtion, and desorption properties of dyes and tea.

Cluster 18,

Size: 29, ISim: 0.161, ESim: 0.005

<u>Descriptive:</u> molecular.weight 10.7%, polymer 9.0%, molecular 6.6%, weight 6.2%, copolym 2.4%, molecular.weight.distribut 2.1%, weight.distribut 2.1%, initi 1.9%, pthf 1.9%, poli 1.5%, nmr 1.4%, acryl 1.2%, ring.open 1.1%, methyl 1.0%, narrow 1.0%

<u>Discriminating:</u> molecular.weight 6.2%, polymer 4.6%, molecular 3.4%, weight 3.0%, system 1.7%, molecular.weight.distribut 1.3%, sub 1.2%, weight.distribut 1.2%, model 1.2%, copolym 1.1%, pthf 1.1%, measur 0.8%, algorithm 0.8%, imag 0.7%, initi 0.7%

Focuses on the primary properties used to characterize copolymers such as molecular weight distribution.

Cluster 19.

Size: 23, ISim: 0.160, ESim: 0.007

<u>Descriptive:</u> rbf 20.9%, network 11.1%, neural 5.5%, basi.function 4.9%, radial.basi 4.5%, rbf.network 4.3%, radial.basi.function 3.6%, radial 2.6%, neural.network 2.5%, train 1.8%, basi.function.neural 1.8%, basi 1.6%, function.neural 1.5%, function 1.2%, learn 1.1%

<u>Discriminating:</u> rbf 13.3%, network 4.1%, basi.function 3.1%, radial.basi 2.9%, rbf.network 2.7%, sub 2.5%, neural 2.5%, radial.basi.function 2.3%, radial 1.5%,

system 1.3%, basi.function.neural 1.1%, neural.network 1.0%, measur 1.0%, function.neural 0.9%, train 0.8%

Focuses on radial basis function (rbf) and neural networks.

Cluster 20.

Size: 21, ISim: 0.158, ESim: 0.006

<u>Descriptive:</u> wavelet.packet 20.1%, packet 18.0%, wavelet 12.9%, signal 2.6%, fault 2.3%, wavelet.packet.transform 2.1%, packet.transform 2.0%, vibrat.signal 1.3%, denois 1.0%, decomposit 0.8%, transform 0.8%, wpt 0.8%, featur.vector 0.8%, rotor 0.8%, extract 0.7%

<u>Discriminating:</u> wavelet.packet 12.4%, packet 10.8%, wavelet 5.8%, sub 2.4%, system 1.4%, wavelet.packet.transform 1.3%, packet.transform 1.3%, model 1.1%, measur 0.9%, fault 0.8%, control 0.8%, vibrat.signal 0.8%, imag 0.6%, denois 0.5%, signal 0.5%

Focuses on wavelet packet transform.

Cluster 21,

Size: 34, ISim: 0.147, ESim: 0.004

<u>Descriptive:</u> nanocomposit 24.5%, intercal 11.2%, clai 4.7%, mmt 3.5%, graphit 2.5%, montmorillonit 2.2%, rai 1.3%, graphit.oxid 1.1%, rai.diffract 1.1%, clai.nanocomposit 1.1%, diffract 0.9%, mmt.nanocomposit 0.9%, thermal 0.8%, intercal.graphit 0.7%, exfoli 0.6%

<u>Discriminating:</u> nanocomposit 13.8%, intercal 6.4%, clai 2.6%, sub 2.2%, mmt 2.0%, system 1.7%, graphit 1.3%, montmorillonit 1.2%, model 1.1%, measur 0.8%, control 0.8%, algorithm 0.8%, paper 0.7%, graphit.oxid 0.6%, clai.nanocomposit 0.6%

Focuses on studies of types of nanocomposites such as clay, Montmorillonite [MMT], and graphite oxides.

Cluster 22,

Size: 30, ISim: 0.146, ESim: 0.006

<u>Descriptive:</u> sar 26.5%, imag 11.4%, sar.imag 11.0%, speckl 6.4%, wavelet 2.7%, filter 2.7%, apertur.radar 1.8%, radar 1.4%, apertur 1.3%, edg 0.9%, polarimetr 0.7%, azimuth 0.7%, radar.imag 0.6%, transform 0.5%, radar.sar.imag 0.5%

<u>Discriminating:</u> sar 16.6%, sar.imag 7.0%, speckl 3.9%, imag 3.3%, sub 2.5%, system 1.9%, model 1.1%, apertur.radar 1.1%, measur 1.0%, filter 0.9%, control 0.9%, wavelet 0.8%, apertur 0.7%, radar 0.7%, sup 0.5%

Focuses on synthetic aperature radar (SAR) imaging.

Cluster 23.

Size: 15, ISim: 0.143, ESim: 0.004

<u>Descriptive:</u> signatur 24.5%, scheme 16.1%, signatur.scheme 7.4%, blind.signatur 3.8%, blind.signatur.scheme 3.1%, blind 2.1%, fan.lei 1.2%, lei 1.2%, proxi 1.1%, distanc 1.0%, phylogeni 1.0%, scheme.effici 1.0%, target 1.0%, attack 0.8%, new 0.7%

<u>Discriminating:</u> signatur 13.9%, scheme 7.1%, signatur.scheme 4.2%, sub 2.3%, blind.signatur 2.2%, blind.signatur.scheme 1.8%, system 1.5%, model 1.1%, blind 1.1%, measur 0.8%, control 0.8%, imag 0.7%, fan.lei 0.7%, lei 0.7%, proxi 0.6%

Focuses on blind signature schemes in cryptographic communications.

Cluster 24,

Size: 19, ISim: 0.141, ESim: 0.005

<u>Descriptive:</u> transform 14.1%, detect 3.9%, transform.edg.detect 3.4%, edg 3.3%, wavelet.transform.edg 3.3%, transform.edg 3.2%, current 3.1%, fault 2.5%, edg.detect 2.0%, wavelet 1.9%, current.transform 1.7%, wavelet.transform 1.7%, new.wavelet.transform 1.1%, satur 1.1%, satur.current 1.0%

<u>Discriminating:</u> transform 6.2%, sub 2.4%, transform.edg.detect 2.1%, wavelet.transform.edg 2.0%, transform.edg 1.9%, system 1.6%, edg 1.5%, detect 1.2%, model 1.2%, edg.detect 1.2%, current 1.1%, current.transform 1.0%, fault 0.9%, control 0.8%, measur 0.7%

Focuses on wavelet transforms applied tp edge detection.

Cluster 25,

Size: 23, ISim: 0.139, ESim: 0.003

<u>Descriptive:</u> deink 42.1%, pulp 4.1%, deink.pulp 2.8%, onp 1.9%, ink 1.8%, treatment 1.5%, bright 1.3%, pac 1.3%, wastewat 1.1%, sludg 1.0%, decolor 0.8%, bleach 0.8%, deink.agent 0.7%, uptak 0.7%, deink.condit 0.6%

<u>Discriminating:</u> deink 23.3%, sub 1.9%, pulp 1.8%, system 1.5%, deink.pulp 1.5%, model 1.1%, onp 1.0%, ink 1.0%, measur 0.8%, algorithm 0.8%, imag 0.7%, pac 0.7%, bright 0.7%, control 0.6%, wastewat 0.6%

Focuses on deinking of pulp and newsprint applied to papermaking process (the process of deconvolving discrete states).

Cluster 26,

Size: 29, ISim: 0.139, ESim: 0.005

<u>Descriptive:</u> differenti.equat 11.6%, differenti 11.2%, equat 8.9%, impuls 7.4%, oscil 4.9%, oscillatori 2.7%, second.order 2.2%, function.differenti 2.2%, order 1.9%, criteria 1.8%, solut 1.5%, second 1.5%, argument 1.3%, impuls.differenti 1.1%, class 1.1%

<u>Discriminating:</u> differenti.equat 6.3%, differenti 5.5%, impuls 4.2%, equat 2.9%, sub 2.4%, oscil 2.3%, oscillatori 1.5%, system 1.3%, function.differenti 1.2%, second.order 1.1%, model 1.1%, criteria 0.9%, measur 0.9%, algorithm 0.8%, imag 0.7%

Focuses on differential equations such as impulse, oscillatory, and 2nd-order equations.

Cluster 27,

Size: 33, ISim: 0.139, ESim: 0.007

<u>Descriptive:</u> imag 25.7%, retriev 15.2%, imag.retriev 10.6%, color 7.3%, textur 3.9%, color.imag 1.8%, featur 1.3%, algorithm 1.3%, textur.imag 0.9%, similar 0.8%, feedback 0.7%, object 0.6%, coars 0.6%, region 0.6%, databas 0.5%

<u>Discriminating:</u> imag 10.6%, retriev 9.6%, imag.retriev 6.9%, color 4.3%, textur 2.3%, sub 2.0%, system 1.4%, color.imag 1.1%, model 1.0%, control 0.8%, time 0.6%, textur.imag 0.6%, sup 0.6%, measur 0.5%, solut 0.5%

Focuses on content & object-based image retrieval techniques.

Cluster 28,

Size: 25, ISim: 0.139, ESim: 0.008

<u>Descriptive:</u> edg 37.8%, imag 11.8%, edg.detect 4.3%, detect 4.2%, extract 2.2%, edg.extract 1.5%, filter 1.2%, nois 1.1%, edg.imag 0.8%, caption 0.7%, transform 0.7%, algorithm 0.6%, pixel 0.6%, histogram 0.5%, imag.edg 0.5%

<u>Discriminating:</u> edg 23.9%, imag 3.8%, edg.detect 2.8%, sub 2.5%, detect 1.5%, system 1.4%, model 1.0%, edg.extract 1.0%, extract 0.9%, control 0.9%, measur 0.6%, sup 0.6%, solut 0.5%, edg.imag 0.5%, design 0.5%

Focuses on edge detection imaging techniques.

Cluster 29,

Size: 19, ISim: 0.136, ESim: 0.006

<u>Descriptive:</u> imag 11.8%, compress 8.1%, code 7.9%, fractal 7.1%, fractal.imag 5.4%, imag.compress 3.3%, block 3.2%, imag.code 3.1%, fractal.imag.code 3.0%, error 2.6%, jpeg 2.3%, lossless 1.5%, quantiz 1.2%, distort 0.8%, mean.squar.error 0.8%

<u>Discriminating:</u> compress 4.2%, fractal 3.8%, code 3.8%, imag 3.5%, fractal.imag 3.4%, sub 2.1%, imag.compress 2.0%, imag.code 2.0%, fractal.imag.code 1.9%, block 1.5%, jpeg 1.4%, system 1.4%, model 1.1%, lossless 0.9%, control 0.8%

Focuses on types of image encoding and decoding techniques such as compression and fractals.

Cluster 30.

Size: 20, ISim: 0.133, ESim: 0.005

<u>Descriptive:</u> blast 21.1%, strata 15.7%, mine 8.0%, movement 5.1%, subsid 3.6%, strata.movement 2.4%, pillar 1.6%, coal 1.5%, seam 0.9%, cap 0.8%, surfac.subsid 0.7%, ground 0.7%, precaut 0.7%, surfac 0.6%, cast 0.6%

<u>Discriminating:</u> blast 12.5%, strata 9.5%, mine 3.6%, movement 2.9%, sub 2.2%, subsid 2.1%, system 1.9%, strata.movement 1.5%, pillar 1.0%, algorithm 0.8%, imag 0.8%, measur 0.7%, control 0.7%, sup 0.5%, cap 0.5%

Focuses on blasting and its effects on the strata movement of structures in mines.

Cluster 31.

Size: 30, ISim: 0.127, ESim: 0.005

<u>Descriptive:</u> ship 40.3%, hull 6.2%, moment 3.6%, bend.moment 3.0%, girder 2.5%, bend 2.3%, wave 1.5%, ship.hull 1.4%, hull.girder 1.2%, strength 1.1%, load 0.8%, slam 0.7%, model 0.7%, bow 0.6%, longitudin 0.5%

<u>Discriminating:</u> ship 24.5%, hull 3.8%, sub 2.4%, moment 2.0%, bend.moment 1.8%, system 1.7%, girder 1.5%, bend 1.3%, ship.hull 0.9%, measur 0.8%, hull.girder 0.7%, algorithm 0.7%, control 0.7%, imag 0.6%, new 0.5%

Focuses on bending moments to ship hulls and girders.

Cluster 32,

Size: 22, ISim: 0.124, ESim: 0.004

<u>Descriptive:</u> inequ 36.2%, map 8.2%, variat.inequ 2.8%, variat 2.4%, relax 1.9%, banach 1.7%, class 1.5%, multivalu 1.4%, space 0.9%, vector.variat 0.9%, gener.form 0.9%, refin.holder 0.9%, holder.inequ 0.9%, refin.holder.inequ 0.9%, vector 0.8% <u>Discriminating:</u> inequ 20.4%, map 4.1%, sub 2.3%, system 1.7%, variat.inequ 1.6%, variat 1.3%, banach 1.0%, relax 1.0%, model 0.9%, measur 0.9%, multivalu 0.8%, algorithm 0.8%, imag 0.7%, control 0.7%, class 0.5%

Focuses on mapping of inequality spaces such as multivalue, multivariant, and Banach Spaces.

Cluster 33.

Size: 18. ISim: 0.124. ESim: 0.004

<u>Descriptive:</u> algebra 33.2%, lie 4.7%, algebra.surfac 2.5%, subspac.lattic 2.2%, lattic 2.1%, linear 2.1%, subspac 1.9%, functor 1.8%, space 1.7%, script 1.4%, lowen 1.2%, lowen.functor 1.2%, script.sign 1.1%, preserv 0.9%, lattic.algebra 0.9% <u>Discriminating:</u> algebra 18.6%, lie 2.6%, sub 2.1%, algebra.surfac 1.4%, system 1.3%, subspac.lattic 1.3%, model 1.1%, subspac 1.0%, lattic 1.0%, functor 1.0%, measur 0.9%, script 0.8%, imag 0.7%, algorithm 0.7%, lowen 0.7%

Focuses on elements of algebra such as Lowen functors and Lie-algebra that are used in mapping and joining of subspace lattices.

Cluster 34,

Size: 50, ISim: 0.124, ESim: 0.004

<u>Descriptive:</u> entangl 32.1%, state 13.6%, entangl.state 6.8%, quantum 3.6%, atom 2.3%, scheme 1.9%, bell 1.6%, caviti 1.6%, photon 1.3%, teleport 1.2%, qubit 1.1%, horn 1.0%, two 0.8%, greenberg.horn.zeiling 0.8%, zeiling 0.8%

<u>Discriminating:</u> entangl 18.6%, state 6.0%, entangl.state 4.0%, sub 2.3%, quantum 1.6%, system 1.5%, model 1.1%, atom 1.0%, bell 0.9%, algorithm 0.8%, caviti 0.8%, imag 0.7%, teleport 0.7%, control 0.7%, qubit 0.6%

Focuses on entangled (or mixed) states of elements that can be decomposed from systems such as quantum states of atoms and photons.

Cluster 35,

Size: 35, ISim: 0.123, ESim: 0.005

<u>Descriptive:</u> web 44.8%, xml 6.1%, document 3.8%, inform 2.8%, page 2.1%, internet 1.8%, wrapper 1.5%, web.applic 1.5%, data 1.2%, semant 1.0%, queri 0.9%, schema 0.9%, web.page 0.9%, applic 0.8%, commerc 0.7%

<u>Discriminating:</u> web 26.7%, xml 3.7%, sub 2.4%, document 2.2%, page 1.2%, internet 0.9%, web.applic 0.9%, wrapper 0.9%, measur 0.9%, imag 0.8%, inform 0.7%, control 0.7%, algorithm 0.6%, system 0.6%, semant 0.6%

Focuses on elements of the web/internet.

Cluster 36,

Size: 25, ISim: 0.124, ESim: 0.006

<u>Descriptive:</u> reconstruct 44.5%, imag 7.5%, slice 2.1%, reconstruct.imag 2.0%, imag.reconstruct 1.6%, project 1.3%, vessel 1.1%, tomographi 0.9%, resolut 0.9%, algorithm 0.7%, medic 0.7%, model 0.6%, imag.model 0.6%, hologram 0.5%, reconstruct.algorithm 0.4%

<u>Discriminating:</u> reconstruct 27.5%, sub 2.5%, imag 1.8%, system 1.4%, slice 1.3%, reconstruct.imag 1.3%, imag.reconstruct 1.0%, measur 1.0%, control 0.8%, vessel 0.6%, sup 0.5%, project 0.5%, tomographi 0.5%, paper 0.5%, solut 0.5%

Focuses on image reconstruction used in fields like tomography and holography.

Cluster 37,

Size: 40, ISim: 0.122, ESim: 0.005

<u>Descriptive:</u> enterpris 63.1%, coal.enterpris 1.8%, market 1.3%, partner 1.2%, virtual.enterpris 1.1%, competit 1.0%, coal 0.9%, virtual 0.7%, cooper 0.7%,

competit.power 0.7%, benefit 0.7%, knowledg 0.5%, innov 0.5%, economi 0.5%, organ 0.4%

<u>Discriminating:</u> enterpris 37.3%, sub 2.4%, coal.enterpris 1.1%, system 0.9%, measur 0.9%, algorithm 0.8%, partner 0.7%, imag 0.7%, virtual.enterpris 0.7%, control 0.6%, market 0.6%, competit 0.5%, sup 0.5%, time 0.5%, temperatur 0.4% Enterprises & its elements - such as virtual, coal - marketing, partners, competition, cooperation, benefits, knowledge, innovation, economics

Focuses on the elements of enterprises, such as virtual, coal, marketing, partners, competition, cooperation, benefits, knowledge, innovation, and economics.

Cluster 38.

Size: 26, ISim: 0.122, ESim: 0.005

<u>Descriptive:</u> train 28.5%, railwai 11.1%, passeng 7.0%, yard 3.2%, speed 2.6%, passeng.train 2.0%, logist 1.5%, freight 1.5%, path 1.3%, optim 1.1%, tree 0.9%, china 0.9%, decis 0.8%, departur 0.8%, carri.capac 0.7%

<u>Discriminating:</u> train 16.2%, railwai 6.5%, passeng 4.2%, sub 2.3%, yard 1.9%, system 1.5%, passeng.train 1.3%, freight 0.9%, speed 0.9%, logist 0.9%, measur 0.9%, control 0.8%, imag 0.8%, path 0.6%, algorithm 0.5%

Focuses on aspects related to trains, such as railways, cargo (freight, passenger), optimization, and speed.

Cluster 39.

Size: 39, ISim: 0.121, ESim: 0.005

<u>Descriptive:</u> oscil 17.7%, equat 10.2%, differ equat 9.1%, differ 7.8%, delai 4.9%, delai.differ 3.5%, delai.differ.equat 2.1%, oscil.criteria 2.0%, condit.oscil 1.7%, oscil.solut 1.6%, criteria 1.6%, suffici 1.4%, suffici.condit 1.3%, solut 1.3%, suffici.condit.oscil 1.1%

<u>Discriminating:</u> oscil 9.5%, differ.equat 5.4%, differ 3.8%, equat 3.6%, sub 2.4%, delai 2.3%, delai.differ 2.1%, system 1.2%, delai.differ.equat 1.2%, oscil.criteria 1.2%, model 1.1%, condit.oscil 1.0%, oscil.solut 1.0%, measur 0.9%, control 0.8%

Focuses on aspects related to oscillation such as delay difference equations, criteria, and conditions.

Cluster 40,

Size: 23, ISim: 0.120, ESim: 0.005

<u>Descriptive:</u> transport 24.7%, traffic 11.5%, forecast 11.5%, urban 6.9%, urban.transport 2.2%, traffic.safeti 1.7%, china 1.6%, countri 1.6%, contain 1.6%, road 1.6%, traffic.demand 0.8%, plan 0.8%, demand 0.8%, railwai 0.7%, citi 0.7%

<u>Discriminating:</u> transport 13.9%, forecast 6.4%, traffic 6.3%, urban 4.0%, sub 2.2%, urban.transport 1.3%, system 1.2%, traffic.safeti 1.0%, road 0.9%, countri 0.9%, contain 0.9%, control 0.8%, imag 0.8%, algorithm 0.7%, measur 0.6%

Focuses on elements of transportation (urban, country) in China, such as traffic, safety studies, roads, plan, and demand.

Cluster 41.

Size: 53, ISim: 0.120, ESim: 0.005

<u>Descriptive:</u> period 20.1%, period.solut 15.4%, exist 7.8%, solut 7.4%, theorem 2.2%, equat 2.1%, exist.period 1.5%, coincid.degre 1.4%, posit.period 1.3%, posit.period.solut 1.3%, exist.period.solut 1.3%, coincid 0.9%, nonlinear 0.8%, differenti 0.8%, posit 0.8%

<u>Discriminating:</u> period 10.8%, period.solut 9.5%, exist 4.0%, sub 2.4%, solut 2.3%, measur 0.9%, theorem 0.9%, exist.period 0.9%, coincid.degre 0.9%, algorithm 0.8%, posit.period 0.8%, posit.period.solut 0.8%, control 0.8%, exist.period.solut 0.8%, imag 0.8%

Focuses on periodic solutions, such as existence, theorem, coincident, and nonlinear periodic solutions.

Cluster 42,

Size: 21, ISim: 0.120, ESim: 0.005

<u>Descriptive:</u> bound 26.3%, invers 3.3%, upper.bound 3.3%, drazin.invers 2.9%, drazin 2.9%, error.bound 2.5%, perturb 2.5%, error 2.3%, linear 2.2%, upper 2.1%, vertic.bar 2.1%, linear.system 1.5%, bar 1.3%, condit.number 1.1%, perman 0.8% <u>Discriminating:</u> bound 15.0%, sub 2.2%, upper.bound 1.9%, drazin.invers 1.8%, drazin 1.8%, invers 1.7%, error.bound 1.5%, perturb 1.3%, vertic.bar 1.2%, model 1.2%, upper 1.0%, linear.system 0.8%, measur 0.8%, algorithm 0.8%, imag 0.8%

Focuses on methods for establishing bounds (such as Drazin inverse, upper, and lower) of linear systems.

Cluster 43,

Size: 25, ISim: 0.119, ESim: 0.005

<u>Descriptive:</u> soil 49.8%, settlement 3.2%, ground 3.0%, pile 2.8%, foundat 1.0%, soil.water 1.0%, sea 0.8%, frost.heav 0.7%, water 0.6%, frost 0.6%, layer 0.6%, soft.soil 0.6%, heav 0.6%, veget 0.5%, salt 0.5%

<u>Discriminating:</u> soil 29.3%, sub 2.4%, settlement 1.9%, pile 1.6%, system 1.5%, ground 1.5%, algorithm 0.8%, imag 0.8%, control 0.7%, model 0.6%, soil.water 0.6%, paper 0.6%, measur 0.5%, new 0.5%, foundat 0.5%

Focuses on settlements of soils (ground, piles, foundations, water, sea, frost/frozen soil).

Cluster 44,

Size: 26, ISim: 0.121, ESim: 0.006

<u>Descriptive:</u> segment 50.9%, imag 2.5%, palmprint 1.9%, algorithm 1.8%, handwrit 1.5%, featur 1.4%, segment.algorithm 1.3%, imag.segment 1.2%, line 1.2%, video 1.1%, line.segment 1.0%, color 0.7%, extract 0.6%, word 0.5%, scene 0.5% <u>Discriminating:</u> segment 31.3%, sub 2.6%, system 1.5%, palmprint 1.2%, handwrit 1.0%, measur 0.9%, model 0.8%, segment.algorithm 0.8%, imag.segment 0.7%, control 0.7%, line.segment 0.6%, video 0.5%, solut 0.5%, sub.sub 0.5%, sup 0.4%

Focuses on segmentation imaging primarily associated with lines, such as palmprints & handwritting identification.

Cluster 45,

Size: 26, ISim: 0.120, ESim: 0.005

<u>Descriptive:</u> crack 30.2%, damag 25.6%, fatigu 1.3%, stress.intens.factor 1.1%, intens.factor 1.1%, stress.intens 1.1%, stress 1.1%, tip 1.0%, crack.tip 0.9%, repair 0.7%, materi 0.7%, creep 0.6%, blast 0.5%, fatigu.damag 0.5%, crack.size 0.5% <u>Discriminating:</u> crack 17.8%, damag 15.1%, sub 2.5%, system 1.7%, control 0.8%, imag 0.8%, model 0.7%, fatigu 0.7%, stress.intens.factor 0.7%, algorithm 0.7%, intens.factor 0.7%, stress.intens 0.6%, crack.tip 0.6%, new 0.6%, measur 0.6%

Focuses on damage from cracks and fatigue.

Cluster 46,

Size: 31, ISim: 0.119, ESim: 0.005

<u>Descriptive:</u> blend 30.5%, cure 17.6%, epoxi 3.9%, resin 2.3%, polyurethan 1.4%, epoxi.resin 1.1%, epdm 1.0%, crosslink 0.9%, compatibil 0.9%, polyest 0.8%, org 0.7%, cyanat 0.6%, properti 0.6%, org.mmt 0.5%, acryl 0.5%

<u>Discriminating:</u> blend 17.8%, cure 10.4%, epoxi 2.2%, sub 1.4%, system 1.3%, resin 1.2%, model 1.1%, algorithm 0.8%, polyurethan 0.8%, measur 0.8%, control 0.7%, imag 0.7%, paper 0.7%, epoxi.resin 0.7%, epdm 0.6%

Focuses on mechanics, kinetics, and properties of preparing blends like epoxys & resins of poly-based materials (e.g. curing, crosslinking).

Cluster 47,

Size: 19. ISim: 0.119. ESim: 0.006

<u>Descriptive:</u> heat 7.7%, phase 4.3%, melt 4.2%, paraffin 4.1%, solid 3.4%, phase.transit 3.0%, shape.stabil 2.0%, pcm 1.8%, phase.materi 1.7%, heat.transfer

1.6%, temperatur 1.6%, materi 1.5%, npg 1.5%, solid.solid 1.4%, solid.solid.phase 1.4%

<u>Discriminating:</u> heat 3.4%, paraffin 2.6%, melt 2.3%, sub 2.1%, phase.transit 1.8%, solid 1.6%, system 1.4%, phase 1.3%, shape.stabil 1.3%, pcm 1.1%, phase.materi 1.1%, model 1.0%, npg 0.9%, solid.solid 0.9%, solid.solid.phase 0.9%

Focuses on characterizing the thermal conductivity of shape stabilized Phase Change Materials (PCM's) such as paraffin.

Cluster 48,

Size: 25, ISim: 0.120, ESim: 0.007

<u>Descriptive:</u> intellig 20.5%, control 18.3%, intellig.control 7.5%, control.system 5.6%, intellig.control.system 2.2%, control.intellig 1.7%, system 1.4%, agent 0.9%, hierarch 0.7%, multi 0.7%, activ.vibrat 0.6%, temperatur.control 0.6%, fusion 0.6%, inform.fusion 0.6%, vibrat.control 0.5%

<u>Discriminating:</u> intellig 12.4%, control 6.6%, intellig.control 4.9%, control.system 3.0%, sub 2.5%, intellig.control.system 1.5%, control.intellig 1.1%, model 1.0%, imag 0.8%, measur 0.7%, sup 0.6%, algorithm 0.6%, solut 0.5%, time 0.5%, sub.sub 0.5%

Focuses on intelligent control systems.

Cluster 49,

Size: 25, ISim: 0.116, ESim: 0.004

<u>Descriptive:</u> coat 34.4%, sprai 6.6%, grain 4.7%, bone 4.1%, arc.sprai 2.9%, arc 2.7%, binder 2.2%, grain.size 2.0%, size 1.0%, alloi 1.0%, implant 0.9%, hva 0.9%, hard 0.8%, coat.substrat 0.7%, metal 0.6%

<u>Discriminating:</u> coat 19.6%, sprai 3.9%, grain 2.6%, bone 2.4%, sub 2.2%, system 1.8%, arc.sprai 1.7%, arc 1.4%, binder 1.2%, grain.size 1.2%, model 1.1%, control 0.8%, algorithm 0.8%, imag 0.8%, measur 0.7%

Focuses on Methods of applying coatings to larger items such as grains, bones, and alloys (e.g. arc-spraying & implantation).

Cluster 50,

Size: 29, ISim: 0.117, ESim: 0.006

<u>Descriptive:</u> face 29.2%, recognit 9.3%, facial 6.6%, featur 2.9%, face.recognit 2.9%, face.imag 1.6%, imag 1.5%, view 1.1%, eigenfac 1.0%, svm 0.9%, face.detect 0.8%, local 0.8%, tast 0.8%, pattern.recognit 0.7%, match 0.7%

<u>Discriminating:</u> face 18.0%, recognit 5.2%, facial 4.2%, sub 2.6%, face.recognit 1.8%, system 1.5%, face.imag 1.0%, featur 1.0%, measur 0.8%, control 0.8%, eigenfac 0.6%, sup 0.5%, face.detect 0.5%, sym 0.5%, view 0.5%

Focuses on image pattern recognition primarily associated with facial recognition (biometrics).

Cluster 51,

Size: 34, ISim: 0.116, ESim: 0.005

<u>Descriptive:</u> mode 12.0%, dielectr 6.8%, antenna 4.0%, guid 3.5%, mode.match 2.7%, wave 2.0%, multimod 2.0%, period.structur 1.7%, nrd 1.7%, multimod.network 1.7%, period 1.5%, match 1.5%, multimod.network.theori 1.4%, combin.multimod 1.4%, combin.multimod.network 1.4%

<u>Discriminating:</u> mode 6.0%, dielectr 3.9%, antenna 2.2%, sub 2.1%, guid 1.9%, mode.match 1.7%, system 1.6%, multimod 1.2%, model 1.2%, period.structur 1.1%, multimod.network 1.0%, nrd 1.0%, measur 0.9%, multimod.network.theori 0.9%, combin.multimod 0.9%

Focuses on Multimode Network Theory applied to dielectric & millimeter antenna wave guides.

Cluster 52,

Size: 26, ISim: 0.116, ESim: 0.007

<u>Descriptive:</u> grate 45.6%, measur 7.2%, angl 3.1%, error 1.4%, diffract 1.3%, moir 0.9%, accuraci 0.7%, diffract.grate 0.7%, angl.measur 0.5%, scanner 0.5%, system 0.5%, topographi 0.5%, temperatur.strain 0.5%, fe 0.5%, encod 0.4%

<u>Discriminating:</u> grate 29.4%, sub 2.7%, angl 1.5%, measur 1.5%, model 1.3%, algorithm 0.9%, control 0.8%, system 0.7%, moir 0.6%, sup 0.6%, time 0.6%, imag 0.5%, solut 0.5%, diffract 0.5%, network 0.5%

Focuses on types of error measurements (caused by interference) such as angle, error, diffraction, Moire.

Cluster 53,

Size: 31, ISim: 0.114, ESim: 0.005

<u>Descriptive:</u> code 39.6%, decod 10.4%, turbo 2.3%, turbo.code 1.7%, encod 1.3%, error 0.8%, channel 0.7%, solomon 0.7%, reed.solomon 0.7%, algorithm 0.7%, cdma 0.6%, code.rate 0.6%, reed 0.6%, uep 0.5%, punctur 0.5%

<u>Discriminating:</u> code 22.3%, decod 6.2%, sub 2.3%, turbo 1.4%, turbo.code 1.0%, model 1.0%, system 1.0%, measur 0.9%, imag 0.7%, control 0.7%, encod 0.7%, temperatur 0.4%, two 0.4%, sup 0.4%, solut 0.4%

Focuses on encoding and decoding (turbo-code, Reed-Solomon codes, CDMA).

Cluster 54,

Size: 50, ISim: 0.112, ESim: 0.003

<u>Descriptive:</u> pulp 51.4%, bleach 10.0%, kappa.number 1.7%, kappa 1.6%, effluent 1.2%, treatment 1.0%, kraft 0.9%, bright 0.8%, kraft.pulp 0.8%, mill 0.8%, straw 0.7%, cook 0.6%, retent 0.5%, papermak 0.5%, wheat.straw 0.4%

<u>Discriminating:</u> pulp 29.0%, bleach 5.6%, sub 1.9%, system 1.5%, model 1.0%, kappa.number 0.9%, kappa 0.9%, algorithm 0.8%, imag 0.7%, effluent 0.7%, measur 0.6%, control 0.6%, kraft 0.5%, data 0.5%, kraft.pulp 0.4%

Focuses on pulp and bleach as applied to the papermaking process. Representative of specific elements used in decomposing.

Cluster 55,

Size: 22, ISim: 0.114, ESim: 0.006

<u>Descriptive:</u> tissu 10.1%, tomographi 7.4%, imag 6.7%, ultrasound 2.0%, photoacoust 1.6%, cerebr 1.6%, resolut 1.4%, depth 1.3%, optic 1.2%, signal 1.1%, sonoluminesc 1.0%, dura 0.9%, dura.mater 0.9%, confoc 0.9%, biolog 0.8% <u>Discriminating:</u> tissu 6.1%, tomographi 4.6%, sub 2.5%, imag 1.4%, system 1.4%, model 1.2%, ultrasound 1.1%, photoacoust 1.0%, cerebr 1.0%, measur 0.9%, sonoluminesc 0.7%, depth 0.7%, control 0.6%, dura 0.5%, dura.mater 0.5%

Focuses on imaging tissue using tomographic imaging, ultrasound, and photoacoustic techniques.

Cluster 56,

Size: 30, ISim: 0.112, ESim: 0.005

<u>Descriptive:</u> land 14.6%, veget 10.1%, oasi 8.5%, desertif 5.2%, land.cover 2.9%, desert 2.9%, arid 2.9%, cover 2.8%, area 2.4%, region 1.8%, ecolog 1.1%, landscap 1.0%, sandi 0.8%, china 0.8%, ndvi 0.8%

<u>Discriminating:</u> land 8.6%, veget 5.9%, oasi 5.2%, desertif 3.1%, sub 2.3%, land.cover 1.7%, desert 1.7%, arid 1.7%, cover 1.5%, system 1.4%, area 0.9%, measur 0.8%, algorithm 0.8%, control 0.6%, ecolog 0.6%

Focuses on elements affecting land cover, such as vegetation, oasis (Kenya), desertification, arid, and ecology.

Cluster 57,

Size: 38, ISim: 0.112, ESim: 0.005

<u>Descriptive:</u> soliton 17.8%, equat 12.3%, solut 11.1%, wave 3.7%, exact 3.2%, wave.solut 3.2%, nonlinear 1.8%, tanh 1.7%, soliton.solut 1.6%, solitari.wave 1.4%, solitari 1.4%, exact.solut 1.2%, kdv 1.1%, evolut 1.1%, travel 0.9%

<u>Discriminating:</u> soliton 10.7%, equat 4.6%, solut 3.9%, sub 2.4%, wave.solut 1.9%, exact 1.8%, system 1.5%, wave 1.3%, model 1.1%, tanh 1.0%, soliton.solut 1.0%, measur 0.9%, solitari.wave 0.9%, control 0.8%, algorithm 0.8%

Focuses on equations and soliton solutions (e.g. waves, exact, and nonlinear solutions).

Cluster 58,

Size: 30, ISim: 0.113, ESim: 0.006

<u>Descriptive:</u> calibr 58.7%, error 2.7%, log 1.2%, linear.error 0.8%, measur 0.8%, sensor 0.7%, new.calibr 0.6%, instrument 0.5%, precis 0.5%, mutual.coupl 0.5%, ccd 0.5%, radiomet 0.4%, autocollim 0.4%, adc 0.4%, distort 0.3%

<u>Discriminating:</u> calibr 36.9%, sub 2.5%, system 1.2%, model 1.0%, error 0.8%, control 0.8%, algorithm 0.7%, log 0.7%, sup 0.5%, linear.error 0.5%, network 0.5%, imag 0.5%, sub.sub 0.5%, solut 0.5%, paper 0.4%

Focuses on error measurement calibration.

Cluster 59,

Size: 26, ISim: 0.112, ESim: 0.006

<u>Descriptive:</u> drive 18.0%, motor 7.6%, control 7.5%, control.rod 4.7%, rod 4.6%, drive.system 2.0%, motor.drive 1.5%, system 1.4%, reluct 1.3%, speed 1.3%, suspens 1.2%, reluct.motor 1.1%, induct 1.1%, induct.motor 1.0%, switch.reluct 1.0%

<u>Discriminating:</u> drive 11.0%, motor 4.6%, control.rod 3.1%, rod 2.7%, sub 2.6%, control 1.7%, drive.system 1.3%, motor.drive 0.9%, imag 0.8%, reluct 0.8%, measur 0.8%, algorithm 0.8%, model 0.8%, suspens 0.7%, reluct.motor 0.7%

Focuses on types of drive, such as systems, motors (reluctance & induction), and controls.

Cluster 60,

Size: 35, ISim: 0.112, ESim: 0.007

<u>Descriptive:</u> sub 14.9%, sio.sub 14.6%, sio 14.3%, tio.sub 7.2%, tio 7.1%, coat 1.7%, rutil 1.0%, sub.coat 0.7%, gel 0.7%, cao 0.7%, composit 0.6%, surfac 0.6%, sub.sio 0.6%, sub.sio.sub 0.6%, sub.composit 0.6%

<u>Discriminating:</u> sio.sub 9.8%, sio 9.6%, tio.sub 4.8%, tio 4.8%, sub 2.5%, system 2.0%, model 1.2%, algorithm 0.9%, control 0.9%, coat 0.8%, imag 0.8%, paper 0.7%, rutil 0.7%, measur 0.6%, data 0.5%

Focuses on property studies of SiO & TiO (rutile) substance coatings.

Cluster 61.

Size: 32, ISim: 0.112, ESim: 0.007

<u>Descriptive:</u> wavelet 21.1%, imag 20.6%, wavelet.transform 5.9%, transform 4.7%, compress 3.2%, imag.compress 1.7%, coder 1.4%, wavelet.coeffici 0.8%, match

0.7%, coeffici 0.7%, subband 0.6%, nois 0.6%, filter 0.5%, wavelet.imag 0.5%, high.frequenc 0.5%

<u>Discriminating:</u> wavelet 11.4%, imag 8.2%, wavelet.transform 3.3%, sub 2.4%, transform 1.8%, system 1.7%, compress 1.6%, model 1.2%, imag.compress 1.1%, measur 1.0%, coder 0.9%, control 0.9%, sup 0.6%, time 0.5%, wavelet.coeffici 0.5%

Focuses on image compression techniques, primarily wavelets, and coder, coefficient matching.

Cluster 62,

Size: 41, ISim: 0.111, ESim: 0.006

<u>Descriptive:</u> sup 21.9%, time.sup 18.1%, sup.time.sup 3.9%, time 3.6%, sup.time 3.6%, mol 3.1%, sup.mol 3.1%, mol.sup 2.7%, time.sup.time 2.7%, time.sup.mol 2.4%, sup.mol.sup 1.9%, sup.sup 1.1%, time.sup.sup 0.9%, detect.limit 0.6%, oxygen 0.5%

<u>Discriminating:</u> time.sup 11.6%, sup 9.8%, sup.time.sup 2.6%, sup.time 2.4%, sup.mol 2.0%, mol 1.9%, system 1.8%, sub 1.8%, mol.sup 1.8%, time.sup.time 1.8%, time.sup.mol 1.6%, model 1.3%, sup.mol.sup 1.3%, algorithm 0.9%, imag 0.8%

Focuses on grammatical constructs annotated with the words "times" (meaning multiplication) & "sup" (textual description to denote that a number as a superscript), that are primarily associated with MOLs in chemical concentration formulas.

Cluster 63.

Size: 38, ISim: 0.111, ESim: 0.006

<u>Descriptive:</u> fault 33.2%, diagnosi 13.5%, fault.diagnosi 8.4%, fuzzi 2.7%, wind 1.9%, network 1.3%, stator 1.1%, stator.wind 0.9%, system 0.8%, neural.network 0.6%, neural 0.6%, expert.system 0.6%, gener 0.5%, line 0.5%, expert 0.5% <u>Discriminating:</u> fault 19.6%, diagnosi 8.1%, fault.diagnosi 5.3%, sub 2.6%, wind 1.0%, fuzzi 0.9%, measur 0.9%, imag 0.8%, control 0.8%, stator 0.7%, stator.wind 0.6%, algorithm 0.6%, sup 0.6%, model 0.5%, design 0.5%

Focuses on neural network methods used in expert systems fault diagnositics.

Cluster 64.

Size: 18, ISim: 0.108, ESim: 0.004

<u>Descriptive:</u> birefring 4.0%, omega 3.6%, pah 3.0%, laser 2.5%, dope 2.2%, pmma 1.8%, contamin 1.8%, fiber 1.6%, erbium 1.4%, azobenzen 1.3%, polym.optic 1.3%, induc 1.3%, green.laser 1.2%, pump 1.2%, 532 1.2%

<u>Discriminating:</u> sub 2.4%, birefring 2.3%, omega 2.0%, pah 1.8%, system 1.7%, model 1.2%, dope 1.0%, contamin 1.0%, pmma 1.0%, erbium 0.8%, control 0.8%, algorithm 0.8%, azobenzen 0.8%, polym.optic 0.8%, imag 0.7%

Focuses on properties of lasers & fiber optic materials, such as birefringence (light refraction in an anisotropic material) and polycyclic aromatic hydrocarbons (PAHs).

Cluster 65,

Size: 20, ISim: 0.109, ESim: 0.005

<u>Descriptive:</u> schedul 10.2%, coal.plant 7.6%, product 5.3%, machin 4.8%, plant 3.8%, coal 3.0%, plan 2.6%, product.schedul 1.6%, model 1.5%, changeov 1.4%, line 1.2%, credit 1.2%, cost 1.1%, anti 1.0%, bank 1.0%

<u>Discriminating:</u> schedul 6.0%, coal.plant 4.7%, sub 2.5%, machin 2.2%, plant 1.9%, product 1.7%, plan 1.3%, system 1.2%, product.schedul 1.0%, measur 1.0%, coal 0.9%, changeov 0.9%, imag 0.8%, control 0.8%, credit 0.7%

Focuses on scheduling of coal plants, production, and machines. Operating characteristics to enable the use of these systems.

Cluster 66,

Size: 34, ISim: 0.108, ESim: 0.005

<u>Descriptive:</u> fiber 21.3%, dispers 6.7%, pump 3.2%, gain 2.6%, amplifi 2.3%, raman 2.0%, dope.fiber 1.9%, order.dispers 1.9%, power 1.9%, erbium.dope 1.5%, erbium 1.5%, edfa 1.4%, dope 1.2%, fiber.raman 1.1%, puls 1.1%

<u>Discriminating:</u> fiber 11.0%, dispers 3.5%, sub 2.4%, pump 1.6%, system 1.4%, gain 1.3%, amplifi 1.2%, dope.fiber 1.2%, order.dispers 1.2%, model 1.1%, raman 1.1%, erbium.dope 0.9%, erbium 0.9%, edfa 0.9%, control 0.9%

Focuses on methods to improve the gain of fiber optics (i.e. pumping, raman amplifiers, doping, and reducing dispersion).

Cluster 67,

Size: 24, ISim: 0.108, ESim: 0.005

<u>Descriptive:</u> antenna 25.4%, patch 5.4%, microstrip 4.8%, micromachin 3.3%, patch.antenna 3.1%, radiat 2.3%, frequenc 2.2%, radiat.pattern 1.3%, arrai 1.3%, dd 1.3%, filter 1.2%, microstrip.antenna 1.0%, direct 0.9%, coupl.microstrip 0.9%, circular 0.8%

<u>Discriminating:</u> antenna 15.2%, patch 3.3%, microstrip 3.0%, sub 2.5%, micromachin 2.0%, patch.antenna 1.9%, system 1.7%, model 1.2%, radiat 1.1%, radiat.pattern 0.8%, imag 0.8%, dd 0.8%, algorithm 0.8%, control 0.6%, microstrip.antenna 0.6%

Focuses on types of micro antennas (Patch & Microstrip) and micromachining techniques.

Cluster 68.

Size: 20, ISim: 0.107, ESim: 0.004

<u>Descriptive:</u> bezier 11.6%, bezier.curv 9.3%, curv 6.1%, weakest.bound 2.8%, weakest 2.5%, bound.electron 2.4%, weakest.bound.electron 2.4%, approxim 2.2%, bound 1.8%, tournament 1.6%, interv.bezier.curv 1.5%, interv.bezier 1.5%, sto 1.4%, electron.potenti 1.4%, excit 1.0%

<u>Discriminating:</u> bezier 6.9%, bezier.curv 5.5%, curv 2.8%, sub 2.2%, weakest.bound 1.6%, weakest 1.5%, bound.electron 1.4%, weakest.bound.electron 1.4%, system 1.4%, tournament 0.9%, approxim 0.9%, interv.bezier 0.9%, interv.bezier.curv 0.9%, measur 0.9%, sto 0.8%

Focuses on methods for establishing bounds of non-linear relationships, e.g. Bezier curve, and weakest bound electron potentials.

Cluster 69,

Size: 25, ISim: 0.108, ESim: 0.005

<u>Descriptive:</u> ceram 22.9%, sinter 9.0%, lubric 4.2%, compact 3.7%, powder 3.1%, mechan 1.8%, warm.compact 1.3%, materi 1.2%, mechan.properti 1.2%, composit 1.1%, piezoelectr 1.1%, warm 1.0%, alumina 0.8%, properti 0.8%, osteoblast 0.7% <u>Discriminating:</u> ceram 13.4%, sinter 5.2%, lubric 2.4%, sub 2.0%, compact 2.0%, system 1.9%, powder 1.4%, measur 0.9%, model 0.9%, algorithm 0.8%, warm.compact 0.8%, imag 0.8%, control 0.7%, paper 0.6%, warm 0.6%

Focuses on mechanical properties of ceramics such as sintering, and powder lubrication.

Cluster 70,

Size: 22, ISim: 0.109, ESim: 0.006

<u>Descriptive:</u> coal 31.9%, mine 8.7%, china 2.1%, flotat 1.7%, coal.mine 1.6%, resourc 1.6%, coal.resourc 1.3%, boiler 1.1%, econom 1.1%, chines 0.9%, advanc 0.9%, crush 0.9%, column 0.8%, system 0.7%, surfac.mine 0.7%

<u>Discriminating:</u> coal 17.6%, mine 4.4%, sub 2.6%, flotat 1.0%, coal.mine 0.9%, algorithm 0.9%, coal.resourc 0.8%, imag 0.8%, model 0.8%, china 0.8%, control 0.7%, resourc 0.7%, measur 0.7%, boiler 0.6%, sup 0.6%

Focuses on studies for advancing China's coal mining capacity (New 5yr Plan), such as identifying coal resources, systems (flotation, crushing, machines), and economics.

Cluster 71.

Size: 42, ISim: 0.108, ESim: 0.006

<u>Descriptive:</u> film 29.3%, thin.film 17.6%, thin 17.3%, substrat 1.5%, deposit 0.8%, ferroelectr 0.8%, thick 0.5%, silicon 0.5%, temperatur 0.5%, film.thick 0.5%, lubric 0.4%, resist 0.4%, layer 0.4%, electr 0.4%, ferroelectr.thin 0.3%

<u>Discriminating:</u> film 15.8%, thin.film 11.0%, thin 10.3%, system 1.9%, sub 1.6%, model 1.0%, algorithm 0.9%, imag 0.8%, control 0.7%, measur 0.7%, substrat 0.7%, paper 0.7%, new 0.5%, design 0.5%, network 0.5%

Focuses on characterization of thin films.

Cluster 72,

Size: 28, ISim: 0.106, ESim: 0.005

<u>Descriptive:</u> fire 32.0%, ignit 3.9%, catastroph 3.7%, backdraft 2.8%, fire.spread 1.8%, flame 1.4%, combust 1.3%, spread 1.3%, compart 1.0%, airflow 0.9%, ventil 0.8%, smoke 0.8%, rate 0.7%, fuel 0.7%, geometri 0.5%

<u>Discriminating:</u> fire 19.1%, sub 2.5%, ignit 2.4%, catastroph 2.3%, backdraft 1.8%, system 1.3%, fire.spread 1.2%, algorithm 0.9%, imag 0.7%, flame 0.7%, measur 0.7%, control 0.7%, spread 0.7%, combust 0.6%, compart 0.6%

Focuses on characterizing the ignition & spread of fire.

Cluster 73,

Size: 46, ISim: 0.105, ESim: 0.006

<u>Descriptive:</u> sup 35.3%, sup.sup 27.3%, sup.sup.sup 9.9%, beta 0.4%, ion 0.4%, yag 0.4%, dope 0.4%, pump 0.3%, laser 0.3%, chlorophyl 0.3%, pigment 0.3%, sampl 0.2%, zinc 0.2%, garnet 0.2%, extrus 0.2%

<u>Discriminating:</u> sup 17.4%, sup.sup 17.2%, sup.sup.sup 6.4%, sub 1.9%, system 1.7%, model 1.1%, algorithm 0.9%, imag 0.8%, control 0.7%, paper 0.6%, new 0.6%, design 0.5%, network 0.5%, measur 0.5%, simul 0.5%

Focuses on grammatical constructs annotated with the words BETA & SUP (textual description to denote that a number as a superscript), primarily associated with characterization studies of ion-doped materials using laser pumps (i.e. quantities that cause action).

Cluster 74.

Size: 24. ISim: 0.105, ESim: 0.006

<u>Descriptive:</u> wave 5.0%, groov 4.8%, helic.groov 2.8%, helic 2.5%, coupl.imped 2.0%, fdtd 1.9%, pstd 1.8%, imped 1.5%, time.domain 1.4%, lattic 1.4%, differ.time.domain 1.4%, finit.differ.time 1.4%, bandgap 1.3%, differ.time 1.3%, rectangular 1.3%

<u>Discriminating:</u> groov 3.0%, sub 2.6%, wave 2.0%, helic.groov 1.8%, system 1.6%, helic 1.5%, coupl.imped 1.3%, fdtd 1.2%, pstd 1.2%, model 1.1%, differ.time.domain 0.9%, finit.differ.time 0.9%, bandgap 0.8%, time.domain 0.8%, measur 0.8%

Focuses on types of millimeter wave guides (e.g. Helical-grooved).

Cluster 75,

Size: 31, ISim: 0.103, ESim: 0.005

<u>Descriptive:</u> combust 22.9%, releas 6.3%, heat 5.7%, heat.releas 3.9%, rate 2.6%, burn 2.6%, char 2.6%, releas.rate 2.1%, heat.releas.rate 2.0%, fire 2.0%, ignit 1.8%, flux 1.6%, radiat 1.0%, wood 1.0%, materi 0.8%

<u>Discriminating:</u> combust 13.7%, releas 3.7%, heat 2.4%, heat.releas 2.4%, sub 2.1%, system 1.7%, char 1.6%, burn 1.6%, releas.rate 1.3%, heat.releas.rate 1.3%, ignit 1.1%, fire 0.9%, algorithm 0.8%, flux 0.8%, control 0.8%

Focuses on characterizing combustion properties, such as heat release and burn rates.

Cluster 76,

Size: 26, ISim: 0.103, ESim: 0.005

<u>Descriptive:</u> membran 45.6%, blood 3.3%, cell 1.8%, lactat 1.3%, electrod 1.2%, sup 1.0%, plasma 0.8%, protein 0.8%, photosensit 0.6%, activ 0.6%, separ 0.6%, biosensor 0.5%, protein.kinas 0.5%, lipid 0.5%, kinas 0.5%

<u>Discriminating:</u> membran 27.7%, sub 2.0%, blood 1.9%, system 1.6%, model 1.1%, algorithm 0.9%, lactat 0.8%, imag 0.7%, cell 0.7%, control 0.6%, paper 0.6%, electrod 0.5%, structur 0.5%, measur 0.5%, design 0.5%

Focuses on analyses and effects on membranes associated with blood & cell studies, and biosensors.

Cluster 77,

Size: 32, ISim: 0.102, ESim: 0.005

<u>Descriptive:</u> wear 31.8%, friction 6.8%, surfac 3.9%, composit 2.4%, fret 1.8%, cuticl 1.2%, brake 1.2%, resist 1.2%, friction.wear 1.1%, wire 1.1%, wear.resist 1.0%, friction.coeffici 0.9%, abras 0.8%, steel 0.8%, layer 0.7%

<u>Discriminating:</u> wear 19.0%, friction 3.9%, sub 2.0%, system 1.9%, model 1.2%, fret 1.1%, surfac 1.0%, algorithm 0.8%, control 0.8%, imag 0.8%, composit 0.8%, cuticl 0.8%, brake 0.7%, measur 0.7%, friction.wear 0.7%

Focuses on the wear of surfaces of composites and steel, primarily from friction.

Cluster 78.

Size: 24, ISim: 0.104, ESim: 0.006

<u>Descriptive:</u> signal 11.2%, digit 10.4%, digit.signal 4.8%, dsp 4.8%, process 4.3%, signal.process 4.2%, voic 3.0%, digit.signal.process 2.1%, sampl 1.3%, fpga 1.3%, high.speed 1.3%, circuit 1.0%, speed 1.0%, processor 1.0%, digit.signal.processor 0.8%

<u>Discriminating:</u> digit 5.5%, signal 4.8%, digit.signal 3.1%, dsp 3.0%, sub 2.6%, signal.process 2.6%, voic 1.9%, process 1.8%, digit.signal.process 1.4%, model 1.3%, system 0.8%, fpga 0.8%, imag 0.7%, algorithm 0.7%, high.speed 0.7%

Focuses on digital signal processing for applications with voice, fpga, and high-speed processes.

Cluster 79.

Size: 22, ISim: 0.102, ESim: 0.005

<u>Descriptive:</u> chain 17.8%, polym 4.2%, adsorpt 3.5%, solvent 3.4%, coil 2.7%, molecular 2.1%, conform 1.9%, associ 1.6%, polysaccharid 1.3%, phase 1.2%, side.chain 1.0%, pblg 0.9%, copolym 0.8%, helix 0.7%, sticker 0.7%

<u>Discriminating:</u> chain 10.3%, sub 2.4%, polym 2.0%, adsorpt 1.9%, solvent 1.8%, coil 1.6%, system 1.5%, conform 1.1%, molecular 1.0%, associ 0.9%, algorithm 0.9%, model 0.8%, polysaccharid 0.8%, imag 0.8%, measur 0.7%

Focuses on chains, (primarily polymer and molecular chains) and phenomena associated with them such as adsorption, solvents, and coils (their shapes).

Cluster 80.

Size: 25, ISim: 0.103, ESim: 0.006

<u>Descriptive:</u> corba 20.1%, server 12.0%, client 6.6%, architectur 4.6%, client.server 3.7%, internet 3.5%, system 1.8%, librari 1.5%, paper.corba 1.2%, web 1.1%, digit.librari 0.9%, remot 0.9%, end 0.8%, embed 0.7%, api 0.6%

<u>Discriminating:</u> corba 12.8%, server 7.4%, client 4.1%, sub 2.5%, client.server 2.3%, architectur 2.3%, internet 2.0%, librari 0.9%, algorithm 0.8%, paper.corba 0.7%, imag 0.7%, measur 0.6%, digit.librari 0.6%, sup 0.5%, web 0.5%

Focuses on corba servers, clients, architectures (applications) related to the internet.

Cluster 81.

Size: 37. ISim: 0.101. ESim: 0.004

<u>Descriptive:</u> ellipt 15.6%, solut 9.1%, exist 6.8%, ellipt.equat 6.2%, semilinear 5.1%, equat 3.8%, semilinear.ellipt 2.1%, nonlinear 1.8%, boundari 1.7%, uniqu 1.7%, exist.uniqu 1.6%, dirichlet 1.2%, semilinear.ellipt.equat 1.2%, multipl.solut 1.1%, theorem 0.9%

<u>Discriminating:</u> ellipt 9.3%, ellipt.equat 3.7%, exist 3.3%, semilinear 3.1%, solut 2.9%, sub 2.3%, system 1.4%, semilinear.ellipt 1.3%, model 1.1%, exist.uniqu 0.9%, measur 0.9%, uniqu 0.9%, equat 0.8%, dirichlet 0.7%, semilinear.ellipt.equat 0.7%

Focuses on aspects associated with elliptical solutions such as semilinear equations, existence, and uniqueness.

Cluster 82.

Size: 34, ISim: 0.101, ESim: 0.005

<u>Descriptive:</u> deposit 20.2%, diamond 9.0%, film 4.8%, diamond.film 4.0%, vapor.deposit 2.5%, chemic.vapor.deposit 2.3%, chemic.vapor 2.3%, chemic 2.2%, filament 2.1%, vapor 2.0%, substrat 1.7%, coat 1.7%, hot.filament 1.5%, hot 0.9%, cvd 0.9%

<u>Discriminating:</u> deposit 11.9%, diamond 5.6%, diamond.film 2.5%, film 1.8%, system 1.7%, vapor.deposit 1.5%, sub 1.5%, chemic.vapor 1.4%, chemic.vapor.deposit 1.4%, filament 1.3%, vapor 1.2%, model 1.1%, hot.filament 1.0%, control 0.9%, algorithm 0.9%

Focuses on methods of deposition on smaller structures such as diamond films, filaments, and substrates (e.g. chemical vapor deposition).

Cluster 83,

Size: 30, ISim: 0.100, ESim: 0.004

<u>Descriptive:</u> secur 26.2%, protocol 23.6%, attack 3.2%, kei 2.1%, public.kei 2.0%, authent 1.8%, public 1.7%, system 1.4%, signatur 1.2%, formal 0.8%, audit 0.8%, monitor 0.7%, electron.commerc 0.7%, inform 0.6%, ban 0.6%

<u>Discriminating:</u> secur 15.2%, protocol 13.7%, sub 2.4%, attack 1.8%, public.kei 1.2%, authent 1.1%, public 1.0%, measur 0.9%, kei 0.8%, imag 0.8%, algorithm 0.7%, signatur 0.6%, sup 0.5%, control 0.5%, audit 0.5%

Focuses on security, such as protocols against attack(er) and public keying for authentication.

Cluster 84.

Size: 56, ISim: 0.101, ESim: 0.005

<u>Descriptive:</u> rock 59.4%, stress 2.9%, rock.mass 1.9%, damag 1.9%, fractur 0.9%, mass 0.8%, deform 0.8%, fractal 0.7%, strain 0.7%, failur 0.6%, burst 0.6%, kaiser 0.5%, strength 0.4%, blast 0.4%, discontinu 0.4%

<u>Discriminating:</u> rock 36.3%, sub 2.4%, system 1.7%, rock.mass 1.2%, stress 1.1%, damag 0.9%, algorithm 0.9%, control 0.8%, imag 0.7%, model 0.7%, sup 0.5%, measur 0.5%, solut 0.5%, new 0.5%, sub.sub 0.5%

Focuses on strength and fracture characteristics of rock masses (for use in mining applications).

Cluster 85,

Size: 40, ISim: 0.102, ESim: 0.007

<u>Descriptive:</u> sub 20.1%, dot.sub 3.5%, center.dot.sub 3.5%, sub.center.dot 3.1%, center.dot 3.1%, sub.center 3.1%, dot 2.9%, reaction 2.1%, center 1.9%, crystal 1.5%, sub.sub 1.5%, format 1.2%, morpholog 1.0%, hydrotherm 1.0%, degre 1.0%

<u>Discriminating:</u> sub 4.6%, center.dot.sub 2.4%, dot.sub 2.4%, sub.center.dot 2.1%, sub.center 2.1%, center.dot 1.9%, system 1.9%, dot 1.7%, model 1.4%, measur 1.1%, algorithm 0.9%, center 0.9%, control 0.8%, paper 0.8%, reaction 0.7%

Focuses on crystal formation and morphology.

Cluster 86.

Size: 25, ISim: 0.100, ESim: 0.005

<u>Descriptive:</u> tube 20.2%, fin 14.0%, deton 6.0%, fin.tube 2.6%, pin.fin 2.2%, draft.tube 2.2%, draft 1.7%, pin 1.3%, transfer 1.3%, heat.transfer 1.2%, pin.fin.tube 0.9%, plough 0.7%, heat 0.7%, reactor 0.7%, splice 0.7%

<u>Discriminating:</u> tube 11.8%, fin 8.5%, deton 3.6%, sub 2.4%, fin.tube 1.6%, pin.fin 1.3%, draft.tube 1.3%, system 1.3%, draft 1.0%, control 0.8%, algorithm 0.8%, imag 0.8%, pin 0.8%, measur 0.8%, model 0.7%

Focuses on structural heat transfer mechanisms such as tubes and fins.

Cluster 87.

Size: 23, ISim: 0.100, ESim: 0.005

<u>Descriptive:</u> ga 13.8%, basin 9.0%, oil 6.3%, reservoir 5.7%, ga.field 4.0%, reserv 1.9%, accumul 1.3%, jurass 1.2%, coal 1.1%, field 1.0%, upper.corner 1.0%, geochem 0.9%, rock 0.7%, upper 0.7%, hillock 0.7%

<u>Discriminating:</u> ga 7.2%, basin 5.4%, reservoir 3.5%, oil 3.4%, ga.field 2.5%, sub 2.4%, system 1.7%, reserv 1.1%, model 1.0%, algorithm 0.9%, imag 0.8%, jurass 0.8%, accumul 0.7%, measur 0.7%, upper.corner 0.7%

Focuses on associations with gas and accumulating it, such as fields (reservoirs, basins), Jurassic periods, coal, and geochemistry.

Cluster 88,

Size: 53, ISim: 0.100, ESim: 0.006

<u>Descriptive:</u> agent 46.7%, multi.agent 4.7%, agent.system 3.9%, multi 2.1%, system 2.1%, model 1.9%, ma 1.7%, multi.agent.system 1.5%, mobil.agent 1.5%, architectur 1.2%, intent 0.8%, intellig 0.8%, distribut 0.8%, mobil 0.7%, object 0.7%

<u>Discriminating:</u> agent 28.6%, multi.agent 3.0%, agent.system 2.5%, sub 2.5%, ma 1.1%, measur 1.0%, multi.agent.system 1.0%, mobil.agent 0.9%, imag 0.8%, multi 0.7%, algorithm 0.6%, control 0.6%, intent 0.5%, sup 0.5%, temperatur 0.5%

Focuses on multi-agent systems.

Cluster 89,

Size: 28, ISim: 0.099, ESim: 0.005

<u>Descriptive:</u> nuclear 8.8%, nuclear.power 6.1%, core 3.4%, fuel 3.3%, advanc 2.8%, power 2.5%, nuclear.power.plant 2.3%, reactor 2.2%, month 2.1%, record 1.9%, design 1.7%, pwr 1.6%, fuel.cycl 1.6%, month.fuel.cycl 1.6%, month.fuel 1.6% <u>Discriminating:</u> nuclear 5.1%, nuclear.power 3.8%, sub 2.4%, fuel 1.8%, core 1.7%, nuclear.power.plant 1.5%, advanc 1.4%, month 1.3%, reactor 1.0%, month.fuel 1.0%, month.fuel.cycl 1.0%, fuel.cycl 1.0%, pwr 1.0%, power.plant 0.9%, measur 0.9%

Focuses on items associated with nuclear power plants and reactors, such as fuel cycles, accidents, and design.

Cluster 90,

Size: 26, ISim: 0.098, ESim: 0.005

<u>Descriptive:</u> market 31.6%, electr.market 5.7%, electr 5.5%, contract 2.2%, risk 2.0%, stock 1.6%, gener 1.6%, stock.market 1.6%, custom 1.1%, transact 0.9%, transmiss 0.8%, schedul 0.8%, gener.market 0.8%, truck 0.8%, power 0.7% <u>Discriminating:</u> market 18.8%, electr.market 3.5%, electr 2.5%, sub 2.5%, system 1.4%, contract 1.3%, risk 1.2%, stock.market 1.0%, stock 0.9%, measur 0.9%, model 0.8%, imag 0.8%, control 0.7%, custom 0.6%, sup 0.5%

Focuses on elements of a market, such as contracts, risk, stocks, generation, customs, schedules, transactions, and transmission. Note, taxonomy similiar in electric & stock markets, but emphasis is on power generation.

Cluster 91,

Size: 81, ISim: 0.101, ESim: 0.008

<u>Descriptive:</u> sub 27.1%, sub.sub 6.5%, rai 3.7%, nanorod 3.0%, powder 2.4%, transmiss.electron 2.3%, diffract 2.2%, electron 2.1%, electron.microscopi 1.5%, microscopi 1.5%, transmiss 1.5%, transmiss.electron.microscopi 1.2%, product 1.2%, rai.powder.diffract 0.9%, rai.powder 0.9%

<u>Discriminating:</u> sub 8.2%, sub.sub 2.3%, system 2.1%, nanorod 2.1%, rai 1.8%, transmiss.electron 1.4%, model 1.4%, powder 1.2%, diffract 1.1%, algorithm 1.0%, measur 1.0%, control 0.9%, electron.microscopi 0.9%, paper 0.8%, transmiss.electron.microscopi 0.8%

Focuses on nanorods.

Cluster 92,

Size: 45, ISim: 0.101, ESim: 0.008

<u>Descriptive:</u> film 29.6%, sub 17.1%, deposit 3.5%, thin.film 3.5%, thin 2.7%, substrat 2.4%, sub.film 1.4%, sub.sub 1.3%, temperatur 0.6%, anneal 0.6%, sputter 0.5%, conduct 0.5%, film.deposit 0.4%, substrat.temperatur 0.4%, phase 0.4% <u>Discriminating:</u> film 18.1%, sub 3.6%, thin.film 2.2%, system 2.1%, deposit 2.0%, thin 1.5%, substrat 1.4%, model 1.4%, sub.film 1.0%, algorithm 1.0%, imag 0.9%, paper 0.8%, control 0.8%, measur 0.7%, new 0.6%

Focuses on methods of growing films and depositing them on substrates.

Cluster 93.

Size: 39, ISim: 0.099, ESim: 0.006

<u>Descriptive:</u> stabil 15.4%, delai 12.9%, system 3.0%, time.delai 2.4%, lyapunov 2.4%, asymptot.stabil 2.2%, asymptot 2.0%, delai.depend 1.6%, linear 1.5%, system.time.delai 1.5%, time 1.4%, criteria 1.4%, lmi 1.3%, system.time 1.2%, criterion 1.0%

<u>Discriminating:</u> stabil 7.9%, delai 7.2%, sub 2.1%, lyapunov 1.5%, time.delai 1.5%, asymptot.stabil 1.4%, asymptot 1.1%, delai.depend 1.1%, model 1.0%, system.time.delai 0.9%, measur 0.9%, algorithm 0.8%, lmi 0.8%, imag 0.8%, system.time 0.8%

Focuses on stabilization analysis (e.g. system stability, asymptotic stability, time delays).

Cluster 94,

Size: 31, ISim: 0.097, ESim: 0.005

<u>Descriptive:</u> quantum 45.8%, state 4.5%, hyperspher 1.4%, quantum.state 1.1%, quantum.kei 0.9%, bound 0.8%, positronium 0.8%, orbit 0.7%, quantum.system 0.7%, clone 0.7%, qkd 0.6%, eavesdrop 0.6%, kei.distribut 0.6%, quantum.kei.distribut 0.6%, momentum 0.6%

<u>Discriminating:</u> quantum 26.8%, sub 2.3%, state 1.5%, system 1.2%, hyperspher 0.9%, measur 0.8%, imag 0.8%, control 0.8%, algorithm 0.7%, quantum.state 0.6%, paper 0.6%, model 0.6%, quantum.kei 0.6%, data 0.5%, sup 0.5%

Focuses on quantum states of hyperspheres, systems, orbits, and quantum key distribution (qkd). Note, these are representative of concepts that can be decomposed into discrete states.

Cluster 95.

Size: 77, ISim: 0.100, ESim: 0.008

<u>Descriptive:</u> sup 31.6%, sub 24.9%, sup.sub 9.1%, sub.sup 7.8%, sup.sup 1.3%, sub.sub 0.8%, sub.sup.sub 0.6%, sup.sub.sup 0.5%, state 0.4%, ion 0.4%, transit 0.4%, sub.sub.sup 0.3%, sub.sup.sup 0.3%, sup.ion 0.3%, band 0.2%

<u>Discriminating:</u> sup 17.5%, sub 7.3%, sup.sub 6.5%, sub.sup 5.5%, system 1.8%, model 1.1%, control 0.9%, algorithm 0.9%, imag 0.8%, measur 0.8%, paper 0.7%, sup.sup 0.7%, network 0.5%, new 0.5%, data 0.5%

Focuses on grammatical constructs annotated with the words SUP & SUB (textual descriptions to denote that numbers as subscripts & superscripts), primarily associated with the characterization of states/transition states of elements (e.g. ions/ionization).

Cluster 96,

Size: 30, ISim: 0.097, ESim: 0.005

<u>Descriptive:</u> bifurc 36.9%, hopf.bifurc 3.6%, hopf 3.5%, stochast 2.4%, numer 1.7%, period 1.6%, nonlinear 1.3%, system 1.0%, chao 1.0%, bifurc.period 0.9%, steadi 0.9%, limit.cycl 0.8%, discret.model 0.8%, oscil 0.7%, stabil 0.7%

<u>Discriminating:</u> bifure 23.3%, sub 2.5%, hopf.bifure 2.3%, hopf 2.2%, stochast 1.3%, measur 1.0%, imag 0.8%, algorithm 0.7%, control 0.7%, bifure.period 0.6%, sup 0.5%, limit.cycl 0.5%, structur 0.5%, chao 0.5%, data 0.5%

Focuses on chaos theory used in bifurcation, stocastic, and non-linear problems.

Cluster 97.

Size: 64, ISim: 0.097, ESim: 0.006

<u>Descriptive:</u> genet 28.4%, genet.algorithm 20.7%, algorithm 14.9%, optim 3.1%, converg 1.6%, popul 1.4%, search 1.1%, crossov 0.6%, divers 0.5%, prematur 0.5%, mutat 0.5%, function 0.4%, prematur.converg 0.4%, solut 0.4%, individu 0.3% <u>Discriminating:</u> genet 18.3%, genet.algorithm 13.4%, algorithm 5.2%, sub 2.6%, system 1.5%, measur 0.9%, optim 0.9%, popul 0.8%, control 0.7%, converg 0.7%, imag 0.6%, sup 0.5%, search 0.5%, structur 0.5%, temperatur 0.5%

Focuses on genetic algorithms.

Cluster 98.

Size: 21. ISim: 0.097. ESim: 0.005

<u>Descriptive:</u> explos 10.7%, electrolyt 4.7%, conduct 4.5%, black 4.4%, carbon.black 3.3%, carbon 2.7%, thermal 2.7%, composit 2.6%, temperatur 2.2%, fuel.cell 1.8%, thermal.conduct 1.4%, composit.electrolyt 1.3%, rubber 1.3%, fuel 1.0%, sbr 1.0%

<u>Discriminating:</u> explos 6.3%, electrolyt 2.8%, black 2.6%, conduct 2.2%, carbon.black 2.0%, sub 1.9%, system 1.7%, carbon 1.3%, fuel.cell 1.2%, thermal

1.0%, model 1.0%, composit 0.9%, thermal.conduct 0.9%, control 0.9%, algorithm 0.9%

Focuses on characterizing the thermal conductivity of electrolyte composite materials during explosions.

Cluster 99.

Size: 23, ISim: 0.096, ESim: 0.004

<u>Descriptive:</u> project 18.6%, safeti 15.9%, accid 5.5%, hydropow 2.7%, construct 2.2%, china 2.2%, capit 1.4%, fire 1.3%, gorg.project 1.0%, three.gorg.project 1.0%, wash 0.9%, econom 0.9%, scienc 0.9%, record 0.9%, gorg 0.9%

<u>Discriminating:</u> project 10.2%, safeti 9.0%, accid 3.2%, sub 2.4%, hydropow 1.6%, system 1.3%, model 1.0%, algorithm 0.8%, capit 0.8%, imag 0.8%, china 0.7%, measur 0.7%, construct 0.7%, gorg.project 0.6%, three.gorg.project 0.6%

Focuses on major project elements associated with safety from accidents, fire, hydropower construction (eg. Three Gorges Project), economics, and capital.

Cluster 100,

Size: 22, ISim: 0.095, ESim: 0.004

<u>Descriptive:</u> oil 22.3%, content 2.8%, coal 2.5%, organ 2.3%, lubric.oil 2.1%, crude 1.8%, extract 1.6%, desalt 1.5%, acid 1.4%, lubric 1.1%, tea 1.1%, crude.oil 1.0%, chemic 1.0%, macer 0.9%, petroleum 0.9%

<u>Discriminating:</u> oil 12.6%, sub 2.1%, system 1.6%, lubric.oil 1.3%, model 1.2%, content 1.2%, crude 1.1%, organ 1.1%, desalt 0.9%, measur 0.9%, algorithm 0.8%, imag 0.8%, control 0.8%, paper 0.7%, tea 0.6%

Focuses on oil uses (lubrication, desalting, petrochemical industry - organic), contents, extraction, and types (crude, tea).

Cluster 101,

Size: 22, ISim: 0.095, ESim: 0.004

<u>Descriptive:</u> landslid 21.6%, earthquak 9.8%, slope 5.0%, unload 3.3%, landslid.stabil 2.4%, tecton 1.6%, reliabl 1.3%, drill 1.3%, taiwan 1.2%, stabil 1.2%, strait 1.1%, high.slope 1.1%, factor 1.0%, upwel 1.0%, initi.unload.slope 0.9% <u>Discriminating:</u> landslid 12.9%, earthquak 5.8%, slope 2.8%, sub 2.3%, unload 1.9%, system 1.6%, landslid.stabil 1.5%, tecton 0.9%, model 0.9%, imag 0.7%, algorithm 0.7%, control 0.7%, taiwan 0.7%, drill 0.7%, strait 0.7%

Focuses 0n phenomena that cause landslides, such as earthquakes, tectonic shifts, slope, and drilling.

Cluster 102,

Size: 37, ISim: 0.096, ESim: 0.006

<u>Descriptive:</u> knowledg 33.2%, reason 6.2%, rule 3.5%, cbr 3.0%, system 2.7%, base 2.6%, expert 2.2%, text 1.8%, decis 1.8%, languag 1.3%, knowledg.base 1.3%, expert.system 1.2%, knowledg.system 1.0%, decis.support 0.9%, intellig 0.9% <u>Discriminating:</u> knowledg 20.3%, reason 3.7%, sub 2.6%, cbr 1.9%, rule 1.8%, expert 1.3%, base 1.2%, text 1.1%, measur 0.9%, decis 0.9%, imag 0.8%, knowledg.base 0.8%, control 0.8%, languag 0.7%, expert.system 0.7%

Focuses on mechanisms of knowledge based systems (Cased-Based Reasoning, Rule-Based Reasoning).

Cluster 103,

Size: 38, ISim: 0.097, ESim: 0.006

<u>Descriptive:</u> control 17.8%, feedback 13.5%, feedback.control 7.6%, stabil 4.3%, system 2.7%, chao 2.1%, nonlinear 1.6%, close.loop 1.0%, control.law 1.0%, output.feedback 1.0%, robust 0.9%, state.feedback 0.9%, close 0.8%, output 0.8%, chaotic 0.8%

<u>Discriminating:</u> feedback 8.5%, control 6.6%, feedback.control 5.1%, sub 2.6%, stabil 1.7%, chao 1.3%, imag 0.9%, algorithm 0.8%, measur 0.8%, model 0.8%, output.feedback 0.7%, control.law 0.7%, close.loop 0.7%, sup 0.6%, state.feedback 0.6%

Focuses on Feedback Control Systems (chaotic, non-linear, closed loop).

Cluster 104,

Size: 30, ISim: 0.095, ESim: 0.005

<u>Descriptive:</u> suffici 14.1%, suffici.condit 13.0%, condit 5.7%, stabil 2.9%, global 2.7%, suffici.condit.global 1.4%, condit.global 1.3%, exponenti.stabil 1.3%, attract 1.3%, system.suffici.condit 1.2%, singular 1.2%, system.suffici 1.1%, system 1.0%, delai 0.9%, global.asymptot 0.8%

<u>Discriminating:</u> suffici 8.0%, suffici.condit 7.4%, sub 2.4%, condit 1.8%, global 1.3%, stabil 0.9%, suffici.condit.global 0.9%, measur 0.8%, condit.global 0.8%, exponenti.stabil 0.8%, imag 0.8%, algorithm 0.8%, system.suffici.condit 0.7%, model 0.7%, attract 0.7%

Focuses on systems that rely on sufficient conditions, such as systems stability & control systems.

Cluster 105,

Size: 46, ISim: 0.095, ESim: 0.006

<u>Descriptive:</u> coal 51.9%, ga 3.0%, gasif 3.0%, seam 1.6%, coal.seam 1.5%, mine 1.3%, combust 1.2%, underground.coal 0.7%, coal.mine 0.7%, coal.gasif 0.6%, ash 0.6%, underground.coal.gasif 0.5%, ucg 0.5%, seepag 0.5%, underground 0.5% <u>Discriminating:</u> coal 30.7%, sub 2.5%, gasif 1.9%, system 1.5%, ga 1.3%, coal.seam 1.0%, seam 1.0%, algorithm 0.9%, imag 0.8%, model 0.7%, combust 0.6%, control 0.6%, structur 0.5%, network 0.5%, time 0.5%

Focuses on the study of coal gasification in mines, underground and seams.

Cluster 106,

Size: 25, ISim: 0.094, ESim: 0.005

<u>Descriptive:</u> reactor 14.7%, chlorin 6.7%, reaction 4.9%, cellulos 3.3%, liquid 3.1%, pvc 3.1%, hydrolysi 2.7%, pyrolysi 2.0%, product 1.9%, liquid.product 1.7%, ozon 1.5%, biomass 1.2%, ga 1.1%, liquefact 1.1%, dechlorin 0.9%

<u>Discriminating:</u> reactor 8.6%, chlorin 4.2%, sub 2.4%, cellulos 2.0%, system 2.0%, reaction 1.9%, pvc 1.9%, hydrolysi 1.6%, liquid 1.5%, pyrolysi 1.2%, liquid.product 1.1%, ozon 0.9%, control 0.9%, algorithm 0.9%, imag 0.8%

Focuses on properties of reactors primarily associated with chloration and dechlorination processes used to remove pollutants from water/liquids. Representative of liquid reactions.

Cluster 107,

Size: 32, ISim: 0.093, ESim: 0.006

<u>Descriptive:</u> bid 27.4%, price 8.4%, power 4.1%, cost 3.7%, unit 3.2%, market 2.2%, gener 1.6%, reserv 1.3%, plant 1.2%, exergi 1.2%, gener.bid 1.1%, power.market 1.1%, constraint 0.8%, margin 0.8%, ancillari 0.7%

<u>Discriminating:</u> bid 17.9%, price 5.3%, sub 2.2%, cost 1.8%, unit 1.6%, power 1.2%, market 1.1%, measur 0.9%, imag 0.8%, reserv 0.8%, exergi 0.8%, algorithm 0.7%, gener.bid 0.7%, power.market 0.7%, control 0.6%

Focuses on elements of bids/bidding (eg. power generation), such as price/cost, unit, market, reserve, constraints, and margins.

Cluster 108,

Size: 31, ISim: 0.092, ESim: 0.005

<u>Descriptive:</u> glass 46.9%, dissolut 3.8%, phosphat.glass 1.2%, phosphat 1.1%, cpe 0.9%, fulleren 0.9%, glass.bead 0.8%, temperatur 0.8%, melt 0.7%, dissolut.rate 0.6%, heat 0.6%, bloom 0.6%, surfac 0.6%, bead 0.5%, fragil 0.5%

<u>Discriminating:</u> glass 28.0%, dissolut 2.3%, sub 2.1%, system 1.8%, model 1.2%, algorithm 0.9%, imag 0.8%, phosphat.glass 0.7%, phosphat 0.7%, paper 0.6%, cpe 0.6%, control 0.6%, fulleren 0.5%, glass.bead 0.5%, measur 0.5%

Focuses on characterization of glass, such as phosphate glass and glass beads.

Cluster 109,

Size: 21, ISim: 0.092, ESim: 0.005

<u>Descriptive:</u> compress 16.7%, bit 12.0%, video 4.3%, code 3.4%, queri 2.1%, codec 1.5%, scheme 1.5%, scalabl 1.5%, error 1.2%, bit.rate 1.2%, wet.compress 1.1%, multigrid 1.0%, bitstream 1.0%, data 0.8%, audio 0.8%

<u>Discriminating:</u> compress 9.2%, bit 7.1%, sub 2.4%, video 2.3%, system 1.8%, code 1.4%, queri 1.3%, codec 1.0%, measur 1.0%, model 0.9%, scalabl 0.9%, control 0.9%, bit.rate 0.7%, wet.compress 0.7%, multigrid 0.6%

Focuses on elements of encoding/decoding to be compressed (e.g. bits, video, code).

Cluster 110,

Size: 23, ISim: 0.093, ESim: 0.006

<u>Descriptive:</u> circuit 25.2%, arc 4.8%, arc.discharg 2.4%, filter 2.3%, power 1.6%, discharg 1.6%, circuit.model 1.2%, simul 1.1%, current 1.1%, hspice 0.9%, lowpass 0.8%, pinch 0.8%, wash 0.7%, dac 0.7%, cmo 0.7%

<u>Discriminating:</u> circuit 14.3%, arc 2.9%, sub 2.6%, arc.discharg 1.6%, system 1.4%, measur 1.0%, control 0.9%, algorithm 0.9%, discharg 0.9%, imag 0.8%, filter 0.8%, circuit.model 0.8%, hspice 0.6%, lowpass 0.6%, pinch 0.5%

Focuses on types of circuits (e.g. arc-discharging, models).

Cluster 111,

Size: 23, ISim: 0.092, ESim: 0.005

<u>Descriptive:</u> transact 11.7%, workflow 10.1%, cooper 8.5%, support 3.5%, languag 2.9%, mainten 2.6%, cscw 2.2%, system 2.0%, mainten.support 1.8%, environ 1.7%, agent 1.6%, concurr 1.6%, cooper.work 1.3%, mainten.time 1.1%, transact.model 1.0%

<u>Discriminating:</u> transact 7.1%, workflow 6.3%, cooper 5.0%, sub 2.5%, languag 1.6%, support 1.5%, mainten 1.5%, cscw 1.4%, mainten.support 1.1%, measur 0.9%, concurr 0.9%, cooper.work 0.8%, imag 0.8%, algorithm 0.8%, mainten.time 0.7%

Focuses on enablers of the use of systems, such as transactions, workflow, and cooperation.

Cluster 112.

Size: 66, ISim: 0.092, ESim: 0.006

<u>Descriptive:</u> fuzzi 65.5%, fuzzi.neural 1.1%, set 0.9%, neural 0.8%, cluster 0.8%, model 0.8%, fuzzi.set 0.7%, fuzzi.number 0.6%, network 0.5%, logic 0.5%,

neural.network 0.4%, paper.fuzzi 0.4%, fuzzi.neural.network 0.4%, optim 0.4%, topolog 0.4%

<u>Discriminating:</u> fuzzi 40.1%, sub 2.5%, system 1.0%, imag 0.8%, measur 0.8%, fuzzi.neural 0.7%, control 0.6%, solut 0.5%, sub.sub 0.5%, sup 0.5%, fuzzi.set 0.5%, equat 0.4%, temperatur 0.4%, high 0.4%, fuzzi.number 0.4%

Focuses on fuzzy neural network theory.

Cluster 113,

Size: 43, ISim: 0.090, ESim: 0.004

<u>Descriptive:</u> catalyst 47.4%, catalyt 7.0%, adduct 1.7%, boran 1.3%, reaction 1.3%, activ 1.3%, acid 0.9%, oxid 0.6%, coke 0.5%, oxim 0.5%, olefin 0.4%, catalyt.crack 0.4%, palladium 0.4%, synthesi 0.4%, catalyt.system 0.4% <u>Discriminating:</u> catalyst 27.6%, catalyt 4.0%, sub 2.2%, system 1.5%, model 1.1%,

<u>Discriminating:</u> catalyst 27.6%, catalyt 4.0%, sub 2.2%, system 1.5%, model 1.1% adduct 1.0%, measur 0.8%, algorithm 0.8%, boran 0.8%, control 0.8%, imag 0.8%, paper 0.7%, time 0.5%, design 0.4%, network 0.4%

Focuses on principles of catalysts and catalytic processes/materials.

Cluster 114,

Size: 51, ISim: 0.093, ESim: 0.007

<u>Descriptive:</u> control 30.0%, fuzzi 14.8%, fuzzi.control 8.8%, pid 5.2%, pid.control 2.1%, self 1.3%, algorithm 0.9%, system 0.8%, tune 0.7%, neuron 0.7%, simul 0.7%, self.tune 0.6%, model 0.6%, control.algorithm 0.6%, plant 0.5%

<u>Discriminating:</u> control 13.7%, fuzzi 8.3%, fuzzi.control 6.1%, pid 3.6%, sub 2.3%, pid.control 1.4%, measur 1.0%, imag 0.9%, sup 0.6%, self 0.6%, system 0.5%, sub.sub 0.5%, data 0.5%, tune 0.4%, equat 0.4%

Focuses on control system algorithms (Fuzzy Control, Proportional Integral Derivative [PID] Control).

Cluster 115,

Size: 49, ISim: 0.090, ESim: 0.005

<u>Descriptive:</u> alloi 52.8%, cast 3.5%, microstructur 3.1%, sme 1.1%, temperatur 0.9%, properti 0.9%, bond 0.8%, martensit 0.7%, strength 0.6%, resist 0.6%, mechan 0.6%, tensil 0.5%, composit 0.5%, shape.memori 0.5%, shape 0.4%

<u>Discriminating:</u> alloi 31.9%, cast 2.0%, sub 2.0%, system 1.7%, microstructur 1.7%, model 1.1%, algorithm 0.9%, imag 0.8%, control 0.7%, sme 0.7%, paper 0.7%, measur 0.6%, new 0.6%, simul 0.5%, network 0.5%

Focuses on characterizing the microstructure properties of alloys, such as shape memory effect (SME), bonding, and strength.

Cluster 116,

Size: 23, ISim: 0.090, ESim: 0.005

<u>Descriptive:</u> ecolog 11.2%, sustain 8.9%, forest 4.1%, environment 3.8%, mine 3.4%, area 3.4%, environ 2.3%, region 2.3%, econom 2.2%, restor 1.5%, mine.area 1.3%, soil 1.3%, land 1.3%, ecolog.environ 1.2%, china 1.0%

<u>Discriminating:</u> ecolog 6.7%, sustain 5.4%, forest 2.5%, sub 2.5%, environment 2.1%, system 1.5%, area 1.3%, mine 1.3%, econom 1.1%, model 0.9%, environ 0.9%, restor 0.8%, control 0.8%, mine.area 0.8%, region 0.8%

Focuses on sustaining the ecology/environment of forests and soils due to mining.

Cluster 117,

Size: 22, ISim: 0.090, ESim: 0.004

<u>Descriptive:</u> corros 14.0%, crack 9.2%, hot 6.5%, steel 3.5%, tritium 3.3%, crack.growth 2.8%, roll 2.7%, stainless 2.3%, stainless.steel 1.7%, 316l 1.4%, fatigu 1.2%, bar 1.1%, hot.crack 1.0%, desulphur 1.0%, join 0.9%

<u>Discriminating:</u> corros 8.2%, crack 4.9%, hot 3.6%, sub 2.3%, tritium 2.0%, system 1.7%, steel 1.7%, crack.growth 1.7%, roll 1.4%, stainless 1.4%, stainless.steel 1.0%, model 1.0%, 316l 0.9%, control 0.8%, algorithm 0.8%

Focuses on fatigue damage (corrosion & cracks), primarily to stainless steel from tritium. Applications to nuclear power reactors.

Cluster 118.

Size: 30, ISim: 0.090, ESim: 0.005

<u>Descriptive:</u> waveguid 32.2%, plasma 3.9%, field 2.9%, mode 1.9%, clad 1.8%, microwav 1.7%, awg 1.7%, slot 1.5%, coupl 1.4%, field.distribut 1.3%, dielectr 1.2%, guid 0.9%, dielectr.waveguid 0.9%, cross 0.7%, wave 0.7%

<u>Discriminating:</u> waveguid 20.5%, sub 2.6%, plasma 2.0%, system 1.8%, model 1.3%, clad 1.1%, awg 1.1%, microwav 1.0%, slot 0.9%, control 0.9%, algorithm 0.9%, imag 0.8%, measur 0.8%, field.distribut 0.8%, field 0.7%

Focuses on elements and properties of dielectric waveguides.

Cluster 119.

Size: 32, ISim: 0.089, ESim: 0.004

<u>Descriptive:</u> theorem 43.3%, exist 1.8%, theorem.prove 1.5%, convex 1.3%, inclus 1.2%, space 1.2%, prove 1.1%, noncompact 1.0%, number 1.0%, decomposit.theorem 0.8%, fuzzi 0.8%, exist.theorem 0.8%, point.theorem 0.8%, fix.point.theorem 0.8%, fix.point 0.8%

<u>Discriminating:</u> theorem 24.8%, sub 2.3%, system 1.4%, model 1.0%, theorem.prove 0.9%, imag 0.8%, algorithm 0.8%, convex 0.7%, exist 0.7%, inclus 0.6%, noncompact 0.6%, measur 0.6%, time 0.6%, control 0.5%, prove 0.5%

Focuses on theorems used in mapping spaces (existance, fix-point).

Cluster 120,

Size: 25, ISim: 0.090, ESim: 0.005

<u>Descriptive:</u> video 17.3%, color 11.7%, object 10.9%, contour 2.5%, detect 2.3%, motion 1.7%, frame 1.5%, inform 1.0%, charact 1.0%, imag 0.8%, optic.inform 0.8%, metamorphosi 0.8%, text 0.8%, decompos 0.8%, shot 0.8%

<u>Discriminating:</u> video 10.5%, color 6.9%, object 5.6%, sub 2.5%, contour 1.5%, system 1.1%, measur 1.0%, control 0.9%, model 0.8%, motion 0.8%, frame 0.7%, algorithm 0.6%, detect 0.6%, sup 0.5%, optic.inform 0.5%

Focuses on detecting objects, contours, & motion in video and color images.

Cluster 121,

Size: 22, ISim: 0.090, ESim: 0.006

<u>Descriptive:</u> neutron 12.2%, sup 8.2%, center 2.1%, time.sup 1.8%, neutron.flux 1.8%, densiti 1.7%, center.dot 1.6%, dot 1.5%, grassland 1.4%, sup.center.dot 1.2%, sup.center 1.1%, center.dot.sup 1.0%, dot.sup 1.0%, heavi.metal 1.0%, graviti.center 0.8%

<u>Discriminating:</u> neutron 7.8%, sup 2.6%, sub 1.9%, system 1.8%, model 1.2%, neutron.flux 1.2%, time.sup 1.0%, center 0.9%, grassland 0.9%, algorithm 0.9%, center.dot 0.9%, control 0.8%, imag 0.8%, dot 0.8%, sup.center.dot 0.8%

Focuses on studies of neutron flux density behaviors in different mediums.

Cluster 122,

Size: 43, ISim: 0.089, ESim: 0.005

<u>Descriptive:</u> mobil 16.1%, qo 10.8%, network 10.1%, wireless 7.8%, packet 2.9%, servic 2.7%, protocol 2.1%, tcp 1.7%, mobil.agent 1.5%, handov 1.1%, agent 0.9%, scheme 0.9%, access 0.9%, node 0.8%, handoff 0.8%

<u>Discriminating:</u> mobil 9.6%, qo 6.9%, wireless 4.7%, network 3.6%, sub 2.5%, packet 1.7%, servic 1.6%, system 1.3%, protocol 1.1%, tcp 1.0%, mobil.agent 0.9%, measur 0.9%, imag 0.8%, model 0.7%, handov 0.7%

Focuses on mobile networks (wireless), protocols, and quality of service.

Cluster 123,

Size: 75, ISim: 0.090, ESim: 0.007

<u>Descriptive:</u> wavelet 31.2%, wavelet.transform 18.9%, transform 13.9%, signal 2.6%, frequenc 2.3%, detect 1.5%, time.frequenc 0.5%, code 0.4%, fault 0.4%, time 0.4%, scheme 0.4%, nois 0.4%, lift 0.3%, detect.wavelet 0.3%, scale 0.3% <u>Discriminating:</u> wavelet 18.5%, wavelet.transform 12.4%, transform 7.3%, sub 2.7%, system 1.7%, model 1.2%, control 0.8%, measur 0.8%, imag 0.7%, frequenc 0.7%, signal 0.6%, sup 0.5%, sub.sub 0.5%, solut 0.5%, temperatur 0.5%

Focuses on wavelet transform used in signal detection and frequency & time applications (primarily non-imagery).

Cluster 124,

Size: 29, ISim: 0.089, ESim: 0.006

<u>Descriptive:</u> strain 17.9%, strain.rate 10.5%, stress 6.5%, shear 3.7%, rate 3.2%, steel 2.0%, harden 1.2%, fractur 1.2%, beryllium 0.9%, materi 0.9%, hard 0.9%, hydrogen 0.8%, soften 0.7%, wall.stress 0.7%, test 0.7%

<u>Discriminating:</u> strain 10.7%, strain.rate 6.8%, stress 3.1%, sub 2.2%, shear 2.0%, system 2.0%, rate 1.0%, steel 1.0%, algorithm 0.9%, control 0.8%, model 0.8%, imag 0.8%, harden 0.7%, measur 0.6%, new 0.6%

Focuses on strain and strain rate of materials, steel, and walls (also shear stress).

Cluster 125,

Size: 34, ISim: 0.089, ESim: 0.006

<u>Descriptive:</u> turbul 13.5%, flow 5.3%, propel 4.9%, wake 4.1%, free.surfac 3.0%, free 1.7%, turbul.model 1.6%, veloc 1.4%, numer 1.3%, surfac 1.1%, reynold 1.0%, rotat 0.9%, dimension 0.9%, flow.field 0.9%, number 0.8%

<u>Discriminating:</u> turbul 8.7%, propel 3.1%, wake 2.7%, sub 2.6%, flow 2.2%, free.surfac 2.0%, system 1.7%, turbul.model 1.1%, free 0.8%, control 0.8%, imag 0.8%, reynold 0.6%, algorithm 0.6%, veloc 0.6%, paper 0.6%

Focuses on characterization of turbulence, primarily wake flow turbulence.

Cluster 126,

Size: 29, ISim: 0.090, ESim: 0.006

<u>Descriptive:</u> power 13.4%, switch 13.0%, convert 5.5%, phase 3.6%, voltag 1.9%, power.convert 1.9%, igbt 1.9%, circuit 1.3%, drive 1.2%, soft.switch 1.1%, harmon 1.1%, motor 1.0%, switch.reluct 0.9%, reluct 0.9%, current 0.8%

<u>Discriminating:</u> switch 7.9%, power 6.2%, convert 3.2%, sub 2.5%, power.convert 1.3%, igbt 1.3%, phase 1.1%, algorithm 0.9%, model 0.9%, imag 0.9%, system 0.8%, voltag 0.8%, soft.switch 0.7%, measur 0.6%, switch.reluct 0.6%

Focuses on elements of power switches and power converters.

Cluster 127,

Size: 107, ISim: 0.090, ESim: 0.007

<u>Descriptive:</u> neural 25.3%, neural.network 23.5%, network 21.6%, learn 2.2%, algorithm 1.0%, train 0.9%, recurr 0.7%, model 0.7%, recurr.neural 0.6%, recurr.neural.network 0.5%, network.model 0.4%, global 0.4%, neural.network.model 0.3%, function 0.3%, layer 0.3%

<u>Discriminating:</u> neural 16.3%, neural.network 15.3%, network 11.0%, sub 2.7%, learn 1.2%, system 1.1%, imag 0.9%, measur 0.8%, sup 0.6%, sub.sub 0.5%, recurr 0.5%, equat 0.5%, temperatur 0.4%, solut 0.4%, recurr.neural 0.4%

Focuses on aspects of neural networks, such as learning, recurring, training, and algorithms.

Cluster 128,

Size: 38, ISim: 0.088, ESim: 0.005

<u>Descriptive:</u> polymer 35.6%, monom 6.2%, mma 3.0%, radic 2.9%, monolay 2.6%, initi 1.4%, cation 1.4%, synthes 0.9%, pda 0.9%, methyl 0.7%, radic.polymer 0.6%, surfac.pressur 0.6%, emuls 0.6%, methacryl 0.6%, methyl.methacryl 0.5% <u>Discriminating:</u> polymer 21.2%, monom 3.8%, mma 1.9%, radic 1.6%, sub 1.6%, monolay 1.6%, system 1.5%, model 1.0%, algorithm 0.9%, imag 0.8%, cation 0.8%, control 0.7%, paper 0.7%, measur 0.7%, initi 0.5%

Focuses on polymers and polymerization (e.g. Methyl Methacrylate [MMA]), primarily methods used to create copolymers.

Cluster 129,

Size: 23, ISim: 0.088, ESim: 0.005

<u>Descriptive:</u> phenol 18.2%, extract 7.4%, wastewat 2.7%, water 2.6%, organ 1.8%, improv 1.5%, pollut 1.4%, resin 1.4%, alpha.solid 1.3%, solvent 1.2%, amin 1.2%, formaldehyd 1.1%, treatment 1.0%, alpha.solid.solut 1.0%, effluent 0.9% <u>Discriminating:</u> phenol 11.3%, extract 3.5%, sub 1.7%, wastewat 1.5%, system 1.3%, model 1.2%, improv 0.9%, measur 0.9%, control 0.9%, algorithm 0.9%, alpha.solid 0.8%, organ 0.8%, imag 0.8%, pollut 0.8%, paper 0.7%

Focuses on extraction and degradation of phenol solutions from wastewater, resins, and pollution.

Cluster 130,

Size: 56, ISim: 0.089, ESim: 0.007

<u>Descriptive:</u> mine 50.1%, data 3.6%, data.mine 3.1%, system 2.4%, coal 1.4%, databas 1.3%, decis 1.2%, coal.mine 1.2%, geolog 0.7%, system.mine 0.6%, model 0.6%, inform 0.5%, mine.system 0.4%, applic 0.4%, fuzzi 0.4%

<u>Discriminating:</u> mine 32.5%, sub 2.5%, data.mine 2.2%, imag 0.8%, data 0.8%, coal.mine 0.7%, databas 0.6%, measur 0.6%, decis 0.6%, sup 0.5%, temperatur 0.5%, sub.sub 0.5%, solut 0.5%, equat 0.5%, algorithm 0.5%

Focuses on types of mining, such as coal, data, and information mining.

Cluster 131,

Size: 25, ISim: 0.087, ESim: 0.005

<u>Descriptive:</u> deform 35.3%, shear.deform 2.1%, frozen.wall 1.7%, shear 1.7%, frozen 1.4%, plastic 1.3%, leakag 1.1%, excav 1.0%, displac 0.9%, deform.theori 0.9%, back 0.8%, plastic.deform 0.7%, extrus 0.7%, flang 0.7%, profil.extrus 0.7% <u>Discriminating:</u> deform 20.5%, sub 2.5%, system 1.7%, shear.deform 1.3%, frozen.wall 1.1%, measur 0.9%, frozen 0.9%, control 0.8%, algorithm 0.8%, shear 0.8%, imag 0.8%, plastic 0.6%, leakag 0.6%, excav 0.6%, deform.theori 0.5%

Focuses on modeling and characterization of shear and plastic deformation, primarily with frozen walls.

Cluster 132,

Size: 48, ISim: 0.089, ESim: 0.006

<u>Descriptive:</u> remot.sens 12.1%, remot 10.9%, imag 10.2%, sens 10.1%, land 3.5%, sens.imag 2.7%, remot.sens.imag 2.7%, classif 2.3%, spectral 1.8%, band 1.6%, data 1.5%, hyperspectr 1.5%, inform 0.8%, pixel 0.8%, cover 0.8%

<u>Discriminating:</u> remot.sens 8.0%, remot 6.9%, sens 6.3%, imag 3.1%, sub 2.5%, land 2.2%, sens.imag 1.8%, remot.sens.imag 1.8%, system 1.8%, classif 1.2%, spectral 1.0%, hyperspectr 1.0%, control 0.9%, model 0.7%, band 0.7%

Focuses on remote sensing imaging (classification, spectral bands, hyperspectral, information, and pixels) of land.

Cluster 133,

Size: 22, ISim: 0.089, ESim: 0.007

<u>Descriptive:</u> learn 5.8%, classif 3.2%, perceptron 2.4%, neural 2.1%, multilay.perceptron 2.1%, power 1.9%, neural.network 1.9%, weld 1.6%, transient.stabil 1.4%, multilay 1.4%, adapt 1.3%, network 1.1%, learn.rule 1.1%, load.forecast 1.1%, load 1.0%

<u>Discriminating:</u> learn 3.4%, sub 2.6%, classif 1.8%, perceptron 1.6%, multilay.perceptron 1.4%, system 1.0%, transient.stabil 1.0%, measur 0.9%, weld 0.9%, model 0.9%, imag 0.9%, multilay 0.9%, neural 0.8%, neural.network 0.7%, learn.rule 0.7%

Focuses on learning, perceptron, classification, and neural networks.

Cluster 134,

Size: 35, ISim: 0.087, ESim: 0.005

<u>Descriptive:</u> receiv 15.7%, channel 11.6%, cdma 3.4%, estim 2.2%, rake 2.0%, blind 1.7%, code 1.5%, ber 1.3%, channel.estim 1.3%, divers 1.2%, blind.adapt 1.2%, rake.receiv 1.2%, adapt 1.1%, antenna 1.1%, cdma.system 1.0%

<u>Discriminating:</u> receiv 9.6%, channel 6.2%, sub 2.5%, cdma 2.0%, rake 1.2%, estim 1.0%, blind 1.0%, measur 0.9%, model 0.9%, ber 0.8%, channel.estim 0.8%, imag 0.8%, control 0.8%, blind.adapt 0.7%, rake.receiv 0.7%

Focuses on channels and receivers (CDMA, Estimation, Rake Receiver, Blind Adaptation).

Cluster 135,

Size: 33, ISim: 0.086, ESim: 0.004

<u>Descriptive:</u> matric 36.0%, sequenc 8.2%, matrix 5.9%, nonsingular 2.3%, linear 1.4%, clutter 1.2%, condit 1.0%, rank 0.9%, nonsingular.matric 0.7%, polynomi 0.7%, quaternion 0.6%, expon 0.6%, dioid 0.6%, comput.sensit.matric 0.5%, comput.sensit 0.5%

<u>Discriminating:</u> matric 21.5%, sequenc 4.2%, matrix 2.7%, sub 2.4%, system 1.4%, nonsingular 1.4%, model 1.0%, measur 0.9%, control 0.8%, imag 0.8%, clutter 0.7%, algorithm 0.7%, paper 0.5%, sup 0.5%, rank 0.5%

Focuses on terms associated with matrices (e.g. sequencing, non-singular, linear, rank).

Cluster 136,

Size: 49, ISim: 0.088, ESim: 0.006

<u>Descriptive:</u> differenti.equat 18.6%, differenti 16.9%, equat 16.5%, ordinari.differenti 3.4%, ordinari.differenti.equat 3.0%, ordinari 2.7%, partial.differenti 1.6%, partial.differenti.equat 1.4%, solut 1.0%, partial 1.0%, nonlinear 0.9%, boundari 0.7%, order.ordinari.differenti 0.4%, order.ordinari 0.4%, gild 0.4%

<u>Discriminating:</u> differenti.equat 11.8%, differenti 9.8%, equat 7.4%, sub 2.6%, ordinari.differenti 2.2%, ordinari.differenti.equat 2.0%, ordinari 1.7%, system 1.4%, partial.differenti 1.1%, measur 0.9%, partial.differenti.equat 0.9%, imag 0.8%, model 0.7%, algorithm 0.7%, control 0.5%

Focuses on differential equations (ordinary, partial).

Cluster 137,

Size: 55, ISim: 0.087, ESim: 0.006

<u>Descriptive:</u> nois 47.9%, signal 12.8%, signal.nois 1.8%, wavelet 1.0%, threshold 0.8%, signal.nois.ratio 0.7%, nois.ratio 0.7%, detect 0.7%, weak 0.6%, nois.signal 0.6%, snr 0.6%, lna 0.5%, ratio 0.4%, filter 0.4%, interfer 0.4%

<u>Discriminating:</u> nois 29.6%, signal 5.9%, sub 2.4%, signal.nois 1.2%, system 1.1%, imag 0.7%, control 0.7%, sup 0.5%, model 0.5%, solut 0.5%, measur 0.5%, sub.sub 0.5%, nois.ratio 0.5%, signal.nois.ratio 0.5%, algorithm 0.4%

Focuses on signal to noise ratios (SNR).

Cluster 138,

Size: 49, ISim: 0.085, ESim: 0.006

<u>Descriptive:</u> electron 7.1%, microscopi 6.8%, electron.microscopi 6.6%, rai 5.6%, diffract 3.5%, transmiss.electron 3.4%, transmiss.electron.microscopi 3.2%, transmiss 2.1%, powder 1.6%, rai.diffract 1.5%, product 1.3%, scan.electron 1.0%, nanostructur 0.9%, tem 0.9%, spectroscopi 0.9%

<u>Discriminating:</u> electron.microscopi 4.0%, microscopi 3.9%, electron 3.2%, rai 2.7%, transmiss.electron 2.0%, transmiss.electron.microscopi 2.0%, system 1.8%, sub 1.8%, diffract 1.7%, model 1.3%, algorithm 0.9%, transmiss 0.8%, paper 0.8%, rai.diffract 0.8%, control 0.7%

Focuses on the use of transmission electron microscopy (TEM) primarily used to characterize grain diffraction, powders, and nanostructures.

Cluster 139,

Size: 58, ISim: 0.085, ESim: 0.006

<u>Descriptive:</u> fiber 42.8%, optic.fiber 11.5%, optic 10.2%, fiber.optic 1.2%, grate 1.1%, sensor 0.9%, laser 0.7%, light 0.4%, fiber.grate 0.4%, detect 0.4%, coupl 0.4%, distribut 0.4%, probe 0.4%, mode 0.3%, filter 0.3%

<u>Discriminating:</u> fiber 26.6%, optic.fiber 7.7%, optic 4.9%, sub 2.6%, system 1.1%, model 1.0%, algorithm 0.9%, fiber.optic 0.8%, imag 0.8%, control 0.8%, grate 0.5%, solut 0.5%, data 0.5%, sub.sub 0.5%, measur 0.5%

Focuses on uses of fiber optics and lasers, such as fiber optic sensors, fiber lasers, and lasers.

Cluster 140,

Size: 38, ISim: 0.086, ESim: 0.007

<u>Descriptive:</u> control 17.5%, adapt 10.4%, adapt.control 5.5%, system 2.8%, robust 2.3%, predict 2.1%, predict.control 2.0%, delai 1.9%, time.delai 1.6%, track 1.6%, chaotic 1.4%, nonlinear 1.2%, algorithm 1.0%, control.system 0.9%, decentr 0.9% <u>Discriminating:</u> control 6.9%, adapt 6.2%, adapt.control 4.0%, sub 2.7%, predict.control 1.4%, predict 1.4%, robust 1.3%, time.delai 1.1%, measur 1.1%, imag 0.9%, delai 0.8%, chaotic 0.8%, track 0.8%, decentr 0.6%, sup 0.6%

Focuses on adaptive control system, primarily predictive, robust, and non-linear systems.

Cluster 141,

Size: 41, ISim: 0.085, ESim: 0.006

<u>Descriptive:</u> robot 45.4%, control 4.9%, teleoper 2.1%, trajectori 1.8%, motion 1.4%, track 1.4%, path 1.3%, weld 1.1%, system 0.8%, control.robot 0.7%, space.robot 0.6%, robot.system 0.6%, mobil 0.6%, avoid 0.5%, joint 0.5% <u>Discriminating:</u> robot 29.2%, sub 2.7%, teleoper 1.4%, trajectori 1.1%, control 0.8%, imag 0.8%, measur 0.7%, path 0.7%, algorithm 0.7%, motion 0.6%, track 0.6%, weld 0.6%, sup 0.6%, temperatur 0.5%, sub.sub 0.5%

Focuses on robotic control.

Cluster 142,

Size: 22, ISim: 0.084, ESim: 0.005

<u>Descriptive:</u> surfac 12.7%, fractal 6.7%, sphere 5.6%, rough 4.5%, mass 1.7%, cut 1.5%, rough.surfac 1.5%, dimens 1.4%, fractal.dimens 1.3%, legendr 1.3%, fractal.dimens.scale 1.2%, dimens.scale 1.2%, surfac.rough 1.1%, spheric.surfac 1.1%, hausdorff 1.0%

<u>Discriminating:</u> surfac 5.4%, fractal 3.6%, sphere 3.4%, rough 2.6%, sub 2.4%, system 1.8%, rough.surfac 1.0%, algorithm 0.9%, legendr 0.8%, mass 0.8%, cut 0.8%, fractal.dimens 0.8%, dimens.scale 0.8%, fractal.dimens.scale 0.8%, control 0.7%

Focuses on characterizing surface roughness, primarily spherical surfaces.

Cluster 143,

Size: 28, ISim: 0.083, ESim: 0.005

<u>Descriptive:</u> size 9.1%, nano 7.5%, powder 7.2%, pore 4.7%, size.distribut 2.9%, particl 2.7%, liposom 2.1%, membran 2.0%, dispers 1.8%, pore.size 1.4%, mesopor 1.2%, metal 1.2%, ultrafin.metal 1.1%, particl.size 1.1%, nano.powder 1.1% <u>Discriminating:</u> nano 4.5%, size 4.3%, powder 3.8%, pore 2.7%, sub 1.9%, system 1.9%, size.distribut 1.8%, liposom 1.3%, model 1.2%, particl 1.0%, membran 1.0%, measur 0.9%, pore.size 0.9%, algorithm 0.9%, imag 0.8%

Focuses on characteristics associated with size and size distribution, primarily related to small particles (e.g. nanoparticles, powders, pores, liposomes, & membranes).

Cluster 144,

Size: 50, ISim: 0.083, ESim: 0.005

<u>Descriptive:</u> abstract.record 11.3%, abstract 11.2%, edit 10.9%, edit.abstract 10.3%, edit.abstract.record 9.5%, record 7.9%, alcatel 2.3%, firm 1.0%, market 0.8%, pcc 0.7%, asia.pacif 0.7%, knowledg 0.6%, pacif 0.6%, compani 0.6%, china 0.6% <u>Discriminating:</u> abstract.record 6.9%, edit 6.6%, abstract 6.5%, edit.abstract 6.3%, edit.abstract.record 5.9%, record 3.7%, sub 2.4%, alcatel 1.5%, system 1.1%, algorithm 0.9%, imag 0.7%, firm 0.6%, measur 0.6%, control 0.6%, model 0.6%

Focuses on companies doing marketing research for knowledge development, such as Alcatel, and Asia-Pacific. Some relation to PCC (Passive Containment Cooling).

Cluster 145,

Size: 98, ISim: 0.086, ESim: 0.008

<u>Descriptive:</u> sub 57.5%, sub.sub 18.9%, crystal 1.0%, sub.sub.sub 0.8%, temperatur 0.5%, degre 0.2%, reaction 0.2%, compound 0.2%, room 0.2%, alpha 0.2%, sup 0.2%, composit 0.1%, phase 0.1%, optic 0.1%, beta 0.1%

<u>Discriminating:</u> sub 27.1%, sub.sub 10.6%, system 1.9%, model 1.3%, algorithm 1.1%, imag 1.0%, control 0.9%, paper 0.9%, measur 0.9%, network 0.6%, time 0.5%, design 0.5%, new 0.5%, data 0.5%, simul 0.5%

Focuses on environmental parameters that affect the reactions of compounds and crystals such as temperature.

Cluster 146,

Size: 27, ISim: 0.082, ESim: 0.005

<u>Descriptive:</u> element 23.8%, plate 4.4%, thick.plate 1.4%, thick 1.3%, shear 1.2%, bem 0.9%, thin.plate 0.8%, quadrilater 0.7%, mesh 0.7%, tall.build 0.7%, satw 0.7%, 9000 0.7%, elast 0.7%, thin 0.6%, plate.bend 0.6%

<u>Discriminating:</u> element 12.9%, sub 2.6%, plate 2.3%, system 1.9%, thick.plate 0.9%, measur 0.9%, imag 0.8%, control 0.8%, algorithm 0.7%, model 0.6%, bem 0.6%, thick 0.5%, thin.plate 0.5%, shear 0.5%, quadrilater 0.5%

Focuses on mechanical behavior of thick and thin plate elements.

Cluster 147,

Size: 29, ISim: 0.082, ESim: 0.006

<u>Descriptive:</u> fluid 22.3%, flow 9.0%, car 4.9%, traffic 4.5%, pedestrian 2.8%, traffic.flow 2.2%, model 2.2%, pressur 1.4%, veloc 1.3%, fluid.flow 1.1%, porou.media 0.8%, jam 0.7%, asphalt 0.7%, mantl 0.6%, densiti 0.5%

<u>Discriminating:</u> fluid 13.9%, flow 4.2%, car 3.1%, traffic 2.6%, sub 2.3%, pedestrian 1.9%, system 1.5%, traffic.flow 1.5%, algorithm 0.8%, control 0.7%, measur 0.7%, imag 0.7%, fluid.flow 0.7%, new 0.6%, sup 0.6%

Focuses on flow quantities, such as fluid, cars, traffic, and pedestrians.

Cluster 148,

Size: 47, ISim: 0.081, ESim: 0.004

<u>Descriptive:</u> copolym 39.7%, graft 4.9%, swell 1.7%, copolymer 1.3%, methacryl 1.1%, poli 1.1%, styren 1.0%, water 0.9%, block 0.9%, nonwoven 0.8%, micel 0.8%, block.copolym 0.8%, ethylen 0.7%, dvb 0.7%, crosslink 0.7%

<u>Discriminating:</u> copolym 23.6%, graft 2.9%, sub 2.3%, system 1.8%, model 1.1%, swell 1.0%, algorithm 0.8%, copolymer 0.8%, imag 0.8%, control 0.8%, paper 0.7%, measur 0.7%, methacryl 0.6%, styren 0.6%, time 0.5%

Focuses on studies of types of copolymers, such as the grafting processes used to create them.

Cluster 149,

Size: 46, ISim: 0.081, ESim: 0.005

<u>Descriptive:</u> fiber 22.5%, composit 7.8%, reinforc 5.0%, strength 3.9%, interfaci 2.7%, matrix 2.4%, properti 2.2%, polypropylen 2.1%, fiber.reinforc 1.5%, mechan.properti 1.5%, concret 1.4%, tensil 1.2%, glass 1.0%, mechan 0.9%, matrix.composit 0.8%

<u>Discriminating:</u> fiber 12.1%, composit 3.7%, reinforc 3.0%, sub 2.4%, strength 1.8%, interfaci 1.7%, system 1.7%, polypropylen 1.3%, model 1.2%, matrix 1.0%, fiber.reinforc 1.0%, algorithm 0.9%, measur 0.8%, imag 0.8%, mechan.properti 0.8%

Focuses on the physics of reinforcement for fibers, composites, polypropylene, concrete, and glass.

Cluster 150,

Size: 39, ISim: 0.081, ESim: 0.005

<u>Descriptive:</u> boundari 35.5%, solut 4.3%, boundari.condit 3.5%, condit 3.0%, exist 1.4%, monoton 1.2%, iter 1.2%, numer 1.1%, function 0.9%, order 0.9%, piezoelectr.materi 0.8%, order.boundari 0.7%, period.boundari 0.7%, artifici.boundari 0.7%, piezoelectr 0.6%

<u>Discriminating:</u> boundari 21.2%, sub 2.5%, boundari.condit 2.1%, system 1.7%, model 1.2%, solut 1.0%, measur 0.9%, control 0.9%, imag 0.8%, monoton 0.7%, condit 0.7%, algorithm 0.7%, time 0.6%, sup 0.6%, iter 0.5%

Focuses on aspects of boundaries, such as solutions, existence, and boundary conditions.

Cluster 151,

Size: 25, ISim: 0.081, ESim: 0.005

<u>Descriptive:</u> hydrogen 11.1%, dmc 3.8%, catalyst 3.3%, benzen 3.3%, methanol 3.2%, carbon 2.4%, carbonyl 1.9%, oxid 1.8%, reaction 1.6%, hydrocrack 1.4%, methan 1.4%, liquid 1.3%, pressur 1.3%, dimethyl.carbon 1.2%, reactor 1.0% <u>Discriminating:</u> hydrogen 6.4%, dmc 2.4%, benzen 2.0%, sub 2.0%, methanol 2.0%, catalyst 1.6%, system 1.3%, carbonyl 1.2%, carbon 1.1%, hydrocrack 0.9%, control 0.9%, algorithm 0.9%, imag 0.8%, dimethyl.carbon 0.8%, methan 0.7%

Focuses on characterizing reactions and catalyst involving hydrogen and dimethyl carbonate (DMC), i.e gas reactions.

Cluster 152,

Size: 50, ISim: 0.081, ESim: 0.005

<u>Descriptive:</u> vibrat 56.7%, wind 1.8%, engin 1.0%, theori 0.7%, vibrat.characterist 0.7%, build 0.6%, isol 0.6%, wind.pressur 0.5%, damp 0.5%, ultrason 0.5%, calcul 0.4%, frequenc 0.4%, characterist 0.4%, induc.vibrat 0.4%, model 0.4%

<u>Discriminating:</u> vibrat 35.2%, sub 2.5%, system 1.1%, wind 0.9%, algorithm 0.9%, imag 0.8%, sup 0.6%, engin 0.5%, time 0.5%, control 0.5%, measur 0.5%, network 0.5%, data 0.5%, sub.sub 0.5%, solut 0.5%

Focuses on vibrational analysis primarily due to wind and engines. Applications could include naval ships & missile launchers.

Cluster 153,

Size: 20, ISim: 0.080, ESim: 0.004

<u>Descriptive:</u> space 5.2%, class 3.9%, poisson 3.2%, multi.symplect 2.7%, motion 2.4%, parabol 2.4%, symplect 2.1%, singular 2.0%, par 1.6%, conjug 1.5%, discret 1.3%, number 1.2%, passiv.redund 1.1%, sheet 1.1%, robot 1.0%

<u>Discriminating:</u> sub 2.4%, space 2.1%, poisson 1.9%, class 1.8%, system 1.7%, multi.symplect 1.7%, parabol 1.4%, symplect 1.3%, motion 1.1%, singular 1.0%, par 1.0%, model 0.9%, measur 0.9%, control 0.8%, algorithm 0.8%

Focuses on using various mathematical methods to join items such as geometric spaces (e.g. lass, poisson, parabolic, and symplectic).

Cluster 154,

Size: 43, ISim: 0.082, ESim: 0.007

<u>Descriptive:</u> test 39.6%, test.system 10.5%, system 3.4%, automat.test.system 2.0%, automat.test 1.7%, automat 1.4%, design 1.0%, calibr 0.9%, remot.test 0.6%, precis 0.6%, high.precis 0.6%, vxibu 0.6%, paper.test 0.5%, paper 0.5%, high 0.4%

<u>Discriminating:</u> test 22.2%, test.system 7.1%, sub 2.8%, automat.test.system 1.4%, automat.test 1.2%, model 0.9%, imag 0.9%, algorithm 0.7%, control 0.7%, automat 0.6%, sup 0.6%, measur 0.6%, sub.sub 0.5%, equat 0.5%, solut 0.5%

Focuses on systems tests (primarily automated) for design, calibration, and precision.

Cluster 155,

Size: 36, ISim: 0.080, ESim: 0.005

<u>Descriptive:</u> polym 34.3%, poli 2.9%, viscos 1.7%, polycondens 1.1%, humid 1.0%, emit 0.9%, blend 0.9%, polym.polym 0.9%, acid 0.9%, interact 0.8%, melt 0.7%, styren 0.6%, dilut 0.6%, microspher 0.6%, spectra 0.6%

<u>Discriminating:</u> polym 20.3%, sub 2.0%, system 1.8%, poli 1.5%, viscos 0.9%, model 0.9%, control 0.8%, algorithm 0.8%, imag 0.7%, polycondens 0.7%, paper 0.7%, humid 0.6%, polym.polym 0.6%, emit 0.6%, time 0.5%

Focuses on characterizing polymers.

Cluster 156,

Size: 58, ISim: 0.080, ESim: 0.006

<u>Descriptive:</u> puls 46.9%, laser 6.1%, laser.puls 1.8%, reactor 1.6%, width 1.5%, puls.width 1.2%, puls.reactor 0.8%, femtosecond 0.8%, ultrashort 0.7%, durat 0.7%, experiment 0.6%, laser.system 0.6%, switch 0.6%, oper 0.5%, calcul 0.5%

<u>Discriminating:</u> puls 29.6%, sub 2.6%, laser 2.5%, laser.puls 1.2%, system 1.0%, model 1.0%, algorithm 0.9%, imag 0.9%, control 0.8%, puls.width 0.8%, width 0.8%, reactor 0.7%, paper 0.7%, puls.reactor 0.6%, measur 0.5%

Focuses on types of pulses (laser, reactor, width).

Cluster 157,

Size: 31, ISim: 0.078, ESim: 0.005

<u>Descriptive:</u> iter 18.1%, equat 8.3%, converg 5.9%, analyt 3.0%, solut 2.9%, analyt.solut 2.0%, invers 1.8%, homotopi 1.3%, variat 1.3%, nonlinear 1.2%, numer 1.0%, deriv 0.8%, aor 0.8%, approxim 0.7%, calcul 0.7%

<u>Discriminating:</u> iter 11.0%, converg 3.1%, equat 2.9%, sub 2.6%, analyt 1.5%, system 1.4%, analyt.solut 1.3%, model 1.0%, invers 1.0%, homotopi 0.9%, imag 0.8%, variat 0.7%, measur 0.7%, control 0.6%, sup 0.6%

Focuses on aspects of iterative equations and solutions, such as convergence, homotopy, and analytical & inverse solutions.

Cluster 158.

Size: 54, ISim: 0.079, ESim: 0.006

<u>Descriptive:</u> wavelet 46.2%, signal 3.6%, nois 3.0%, scale 1.7%, function 1.5%, scale.function 1.1%, coeffici 1.1%, wavelet.coeffici 1.0%, algorithm 1.0%,

multiresolut 0.8%, multiwavelet 0.7%, threshold 0.7%, mother 0.6%, mother wavelet 0.6%, orthogon 0.5%

<u>Discriminating:</u> wavelet 28.3%, sub 2.6%, system 2.0%, nois 1.2%, signal 1.1%, control 0.9%, measur 0.9%, model 0.8%, scale.function 0.8%, wavelet.coeffici 0.7%, scale 0.7%, solut 0.5%, temperatur 0.5%, multiresolut 0.5%, sub.sub 0.5%

Focuses on aspects of wavelets used in signal processing.

Cluster 159,

Size: 33, ISim: 0.077, ESim: 0.005

<u>Descriptive:</u> liquid 7.3%, flow 5.1%, shear 4.8%, pressur 4.6%, melt 3.6%, viscos 2.4%, shear viscos 2.1%, temperatur 2.0%, extrus 1.7%, critic 1.2%, condens 1.0%, kpa 1.0%, vapour 1.0%, capillari 0.9%, die 0.7%

<u>Discriminating:</u> liquid 4.0%, shear 2.7%, melt 2.1%, flow 2.0%, pressur 1.9%, sub 1.8%, system 1.7%, shear.viscos 1.4%, viscos 1.4%, extrus 1.0%, algorithm 0.9%, model 0.9%, imag 0.8%, control 0.8%, paper 0.7%

Focuses on properties of liquied and flow that can be measured and analyzed (e.g. shear, pressure, melt, and viscosity).

Cluster 160,

Size: 29, ISim: 0.077, ESim: 0.006

<u>Descriptive:</u> power 10.6%, control 4.0%, reactiv.power 2.6%, chd 2.0%, power.control 2.0%, scheme 1.9%, video 1.8%, reactiv 1.8%, polymorph 1.7%, patient 1.4%, optim 1.0%, power.optim 1.0%, genotyp 1.0%, gene 0.9%, voltag 0.9% <u>Discriminating:</u> power 4.5%, sub 2.5%, reactiv.power 1.7%, chd 1.4%, power.control 1.3%, model 1.1%, polymorph 1.1%, measur 1.0%, reactiv 1.0%, video 0.9%, system 0.9%, patient 0.9%, imag 0.8%, power.optim 0.7%, genotyp 0.7%

Focuses on power controller (eg. reactive power) for circuits primarily associated with communications.

Cluster 161,

Size: 34, ISim: 0.075, ESim: 0.004

<u>Descriptive:</u> compound 24.8%, sulfur 6.3%, rare.earth 3.7%, rare 3.3%, earth 2.8%, isol 1.7%, sulfur.compound 1.3%, synthes 1.3%, phosphon 1.0%, acid 1.0%, structur.spectroscop 0.8%, spectroscop 0.8%, solvent 0.6%, nmr 0.6%, complex 0.5% <u>Discriminating:</u> compound 13.9%, sulfur 3.7%, sub 2.3%, rare.earth 2.2%, rare 2.0%, system 1.7%, earth 1.5%, model 1.2%, isol 0.9%, measur 0.8%, algorithm 0.8%, sulfur.compound 0.8%, imag 0.8%, paper 0.7%, control 0.7%

Focuses on characterizing sulfer and rare earth compounds using spectroscopic techniques.

Cluster 162,

Size: 45, ISim: 0.077, ESim: 0.006

<u>Descriptive:</u> filter 47.4%, speech 2.9%, kalman 1.7%, detect 1.6%, kalman.filter 1.5%, covari 0.8%, digit 0.8%, outlier 0.7%, nois 0.7%, filter.bank 0.6%, digit.filter 0.6%, input 0.6%, new 0.5%, signal 0.5%, bank 0.4%

<u>Discriminating:</u> filter 29.5%, sub 2.0%, speech 1.8%, kalman 1.2%, system 1.0%, kalman.filter 1.0%, model 0.9%, control 0.8%, measur 0.7%, algorithm 0.7%, imag 0.6%, covari 0.5%, sup 0.5%, solut 0.5%, outlier 0.5%

Focuses on digital noise filters, primarily for filtering noise out of digital speech applications (eg. Kalman filter).

Cluster 163,

Size: 28, ISim: 0.076, ESim: 0.006

<u>Descriptive:</u> current 7.5%, squeez 4.3%, ground 3.3%, harmon 3.3%, grid 2.9%, oscil 2.5%, corona 2.0%, frequenc 1.8%, ground.grid 1.5%, line 1.3%, puls 1.3%, insul.corona 1.2%, insul 1.2%, insul.corona.puls 1.0%, corona.puls 1.0%

<u>Discriminating:</u> current 3.6%, squeez 2.8%, sub 2.7%, harmon 1.9%, ground 1.8%, grid 1.8%, corona 1.4%, oscil 1.1%, ground.grid 1.0%, system 1.0%, imag 0.8%, insul.corona 0.8%, algorithm 0.7%, control 0.7%, insul 0.7%

Focuses on effects of squeezing current.

Cluster 164,

Size: 42, ISim: 0.076, ESim: 0.006

<u>Descriptive:</u> featur 30.7%, extract 10.7%, featur.extract 4.2%, recognit 3.6%, textur 2.6%, imag 2.1%, fingerprint 2.1%, froth 1.4%, flotat 1.1%, audio 0.8%, gestur 0.7%, stereo 0.6%, new.featur 0.6%, detect 0.6%, paramet 0.6%

<u>Discriminating:</u> featur 18.2%, extract 6.1%, featur.extract 2.9%, sub 2.8%, recognit 2.0%, textur 1.5%, fingerprint 1.3%, system 1.3%, froth 1.0%, measur 0.9%, control 0.9%, model 0.8%, flotat 0.7%, sup 0.6%, temperatur 0.5%

Focuses on feature extraction from images and audio, such as texture, fingerprints, and froth found in coal mixtures.

Cluster 165.

Size: 30, ISim: 0.072, ESim: 0.003

<u>Descriptive:</u> beta 7.4%, synthesi 6.5%, catalyz 4.5%, alcohol 3.8%, yield 3.7%, addit 2.5%, alpha 2.4%, sulfat 2.0%, reaction 2.0%, total.synthesi 1.5%, step 1.4%, cycliz 1.4%, propyl 1.3%, palladium.catalyz 1.3%, trifluoromethyl 1.1%

<u>Discriminating:</u> beta 3.9%, synthesi 3.2%, catalyz 2.5%, sub 2.3%, alcohol 2.1%, yield 1.7%, system 1.7%, model 1.1%, sulfat 1.1%, alpha 1.1%, addit 0.9%, total.synthesi 0.9%, measur 0.8%, control 0.8%, algorithm 0.8%

Focuses on characteristics of reactions and synthesis involving alcohols and esters (primary denoted with the term "Beta.'

Cluster 166.

Size: 40, ISim: 0.074, ESim: 0.006

<u>Descriptive</u>: inform 41.2%, inform.system 9.6%, system 4.2%, share 1.0%, gp 0.8%, specif 0.8%, data 0.7%, inform.share 0.6%, share.inform 0.6%, articl 0.5%, standard 0.5%, design 0.5%, capp 0.5%, basi 0.4%, inform.model 0.4%

<u>Discriminating:</u> inform 24.2%, inform.system 6.4%, sub 2.8%, algorithm 0.9%, imag 0.8%, measur 0.8%, control 0.8%, sup 0.6%, share 0.6%, model 0.5%, gp 0.5%, simul 0.5%, temperatur 0.5%, sub.sub 0.5%, solut 0.5%

Focuses on elements of information systems such as sharing, specifications, data, standards, and design (CAPP System).

Cluster 167,

Size: 38, ISim: 0.072, ESim: 0.004

<u>Descriptive:</u> fluoresc 20.5%, dna 2.0%, naphthalimid 1.9%, donor 1.6%, bte 1.5%, electron.transfer 1.4%, molecular 1.4%, spectra 1.3%, bi 1.3%, thrombin 1.3%, beacon 1.3%, molecular.beacon 1.3%, aptam 1.3%, moieti 1.2%, compound 1.1% <u>Discriminating:</u> fluoresc 12.2%, sub 2.1%, system 1.7%, naphthalimid 1.2%, dna 1.1%, model 1.0%, donor 1.0%, bte 0.9%, electron.transfer 0.9%, algorithm 0.8%, thrombin 0.8%, molecular.beacon 0.8%, beacon 0.8%, bi 0.8%, aptam 0.8%

Focuses on characterizing fluorescence spectra resulting from electron transfer primarily from naphthalimid (acid) donor compounds.

Cluster 168,

Size: 32, ISim: 0.073, ESim: 0.006

<u>Descriptive:</u> shell 15.5%, structur 7.7%, buckl 5.2%, pressur 2.6%, cylindr.shell 2.3%, doubl 2.0%, knit 1.8%, cylindr 1.7%, axial 1.5%, ring.plate 1.0%, axial.compress 1.0%, fill.cylindr 0.7%, fill.cylindr.shell 0.7%, cylindr.shell.axial 0.7%, shell.axial 0.7%

<u>Discriminating:</u> shell 9.9%, buckl 3.4%, sub 2.7%, structur 2.4%, system 1.6%, cylindr.shell 1.5%, knit 1.2%, cylindr 1.0%, doubl 1.0%, pressur 0.9%, algorithm 0.9%, imag 0.8%, axial 0.8%, control 0.8%, ring.plate 0.7%

Focuses on types of structural damage such as buckling and axial compression caused by pressures, primarily of cylinder shell structures. Possible applications include artillery shells.

Cluster 169,

Size: 34, ISim: 0.073, ESim: 0.006

<u>Descriptive:</u> network 20.3%, optim 5.7%, path 3.2%, rout 3.1%, algorithm 2.3%, capac 2.2%, constraint 1.4%, network.plan 1.2%, model 1.2%, path.bandwidth 1.1%, node 1.0%, restor 0.9%, hen 0.8%, railwai.network 0.8%, link 0.7%

<u>Discriminating:</u> network 9.7%, sub 2.3%, optim 2.2%, path 1.9%, rout 1.8%, system 1.6%, capac 1.2%, measur 1.1%, imag 0.9%, control 0.9%, network.plan 0.9%, path.bandwidth 0.8%, constraint 0.7%, hen 0.6%, railwai.network 0.6%

Focuses on network paths and optimization algorithms.

Cluster 170,

Size: 27, ISim: 0.072, ESim: 0.005

<u>Descriptive:</u> sub 10.8%, graph 6.7%, sub.graph 4.2%, coagul 2.0%, lambda 1.7%, remov 1.7%, sub.graph.match 1.6%, graph.match 1.6%, pile 1.6%, formula 1.6%, cod.sub 1.4%, wastewat 1.2%, cod 1.1%, lambda.sub 1.1%, dye.wastewat 1.1% <u>Discriminating:</u> graph 3.9%, sub.graph 2.7%, system 1.4%, coagul 1.3%, sub 1.2%, graph.match 1.1%, sub.graph.match 1.1%, lambda 1.0%, model 1.0%, pile 1.0%, measur 1.0%, cod.sub 0.9%, imag 0.8%, remov 0.8%, algorithm 0.8%

Focuses on software sub-graph matching techniques, primarily used in wastewater removal applications and analysis.

Cluster 171,

Size: 32, ISim: 0.072, ESim: 0.006

<u>Descriptive:</u> load 25.9%, model 2.1%, pipe 1.9%, forecast 1.7%, load.model 1.1%, elast 1.0%, element 1.0%, tensil.creep 1.0%, intern 0.9%, intern.forc 0.9%, lagrangian 0.8%, plastic 0.8%, track.structur 0.8%, mechan 0.7%, tensil 0.7%

<u>Discriminating:</u> load 15.4%, sub 2.7%, system 1.5%, pipe 1.2%, control 0.9%, algorithm 0.9%, forecast 0.9%, imag 0.9%, load.model 0.8%, measur 0.7%, tensil.creep 0.7%, sup 0.6%, intern.forc 0.6%, lagrangian 0.5%, track.structur 0.5%

Focuses on modeling and forecasting of loading, primarily on pipes.

Cluster 172,

Size: 28, ISim: 0.072, ESim: 0.005

<u>Descriptive:</u> equat 11.5%, perturb 3.2%, fluid 2.2%, wave 2.1%, equat.state 2.0%, beam 1.3%, nonlinear 1.2%, deby 1.1%, model 1.0%, term 0.9%, kadomtsev 0.9%, solut 0.9%, layer.fluid 0.9%, deriv 0.9%, case 0.7%

<u>Discriminating:</u> equat 4.6%, sub 2.7%, perturb 1.9%, system 1.4%, equat.state 1.3%, fluid 1.1%, measur 1.0%, algorithm 0.9%, imag 0.8%, control 0.7%, deby 0.7%, paper 0.7%, wave 0.6%, kadomtsev 0.6%, layer.fluid 0.6%

Focuses on equations primarily associated with perturbations, fluid, wave, beam, nonlinear, and equations of state.

Cluster 173,

Size: 31, ISim: 0.070, ESim: 0.003

<u>Descriptive:</u> reaction 14.2%, keton 6.4%, alkyl 6.4%, yield 3.7%, aromat 3.6%, olefin 2.5%, substitut 2.0%, vinylphosphon 1.6%, synthes 1.4%, cyclopropan 1.3%, synthesi 1.3%, cycloaddit 1.2%, regioselect 1.2%, mild 1.1%, amin 1.0%

<u>Discriminating:</u> reaction 6.4%, keton 3.7%, alkyl 3.7%, sub 2.1%, aromat 2.0%, system 1.7%, yield 1.7%, olefin 1.5%, substitut 1.0%, model 0.9%, vinylphosphon 0.9%, algorithm 0.8%, cyclopropan 0.8%, imag 0.7%, cycloaddit 0.7%

Focuses on characteristics of reactions involving ketones, alkyls, aromatics, and olefins.

Cluster 174,

Size: 38, ISim: 0.072, ESim: 0.006

<u>Descriptive:</u> instrument 22.8%, virtual 8.5%, virtual.instrument 7.4%, system 3.4%, diagnosi 2.5%, softwar 1.9%, usb 1.4%, data 1.3%, dual 1.1%, function 0.9%, measur 0.9%, build 0.9%, driver 0.8%, monitor 0.7%, function.modul 0.6%

<u>Discriminating:</u> instrument 14.6%, virtual.instrument 5.1%, virtual 5.1%, sub 2.7%, diagnosi 1.4%, model 1.2%, usb 0.9%, imag 0.9%, algorithm 0.8%, softwar 0.8%, dual 0.6%, sup 0.6%, sub.sub 0.5%, driver 0.5%, solut 0.5%

Focuses on virtual instruments for measuring and diagnosis of systems and software.

Cluster 175,

Size: 28, ISim: 0.071, ESim: 0.005

<u>Descriptive:</u> rai 19.1%, electron 5.1%, hard.rai 3.5%, plasma 3.3%, diffract 2.1%, spin 1.6%, hard 1.5%, hot.electron 1.5%, polar 1.2%, crystallin 1.0%, crystal 0.9%, micro.electron 0.9%, rai.diffract 0.9%, scatter 0.7%, phase 0.7%

<u>Discriminating:</u> rai 10.6%, sub 2.4%, hard.rai 2.3%, electron 2.0%, system 2.0%, plasma 1.7%, model 1.2%, hot.electron 1.0%, diffract 0.9%, control 0.9%, algorithm 0.9%, spin 0.9%, hard 0.8%, imag 0.6%, paper 0.6%

Focuses on elements and properties of radiation (hard X-Rays & electrons) used to characterize items like plasmas and crystals.

Cluster 176,

Size: 72, ISim: 0.072, ESim: 0.006

<u>Descriptive:</u> film 55.5%, deposit 2.6%, substrat 1.2%, sputter 0.5%, temperatur 0.5%, sic 0.5%, peak 0.5%, rai 0.4%, surfac 0.4%, film.deposit 0.4%, crystal 0.4%, thick 0.3%, atom.forc 0.3%, atom 0.3%, diffract 0.3%

<u>Discriminating:</u> film 34.4%, system 1.9%, sub 1.8%, deposit 1.4%, model 1.1%, algorithm 0.9%, paper 0.7%, imag 0.6%, control 0.6%, substrat 0.6%, data 0.5%, new 0.5%, network 0.5%, simul 0.5%, sub.sub 0.5%

Focuses on characterization of different films.

Cluster 177,

Size: 31, ISim: 0.072, ESim: 0.006

<u>Descriptive:</u> data 20.4%, databas 10.4%, object 3.8%, model 3.0%, object.orient 2.8%, warehous 1.6%, orient 1.5%, data.warehous 1.4%, ado 1.2%, visual 0.8%, data.distribut 0.8%, schema 0.8%, landscap 0.8%, access 0.7%, clinic 0.7% <u>Discriminating:</u> data 9.4%, databas 6.5%, sub 2.8%, object.orient 1.8%, object 1.7%, warehous 1.1%, measur 1.1%, data.warehous 0.9%, imag 0.9%, control 0.9%, algorithm 0.9%, ado 0.8%, orient 0.7%, system 0.7%, data.distribut 0.5%

Focuses on elements of databases (data warehouses & object oriented databases), such as models and data distribution.

Cluster 178,

Size: 26, ISim: 0.071, ESim: 0.005

<u>Descriptive:</u> commun 11.8%, mobil 5.5%, system 3.2%, mobil.commun 2.9%, autom 2.7%, intellig 2.1%, commun.system 2.0%, fieldbu 1.9%, default 1.8%, applic 1.7%, cdma 1.7%, wireless 1.6%, distribut.autom 1.4%, mobil.commun.system 1.3%, autom.system 1.3%

<u>Discriminating:</u> commun 6.8%, mobil 3.1%, sub 2.5%, mobil.commun 1.9%, autom 1.7%, commun.system 1.3%, fieldbu 1.3%, default 1.2%, cdma 1.0%, intellig 1.0%, measur 0.9%, distribut.autom 0.9%, algorithm 0.9%, wireless 0.9%, imag 0.8%

Focuses on mobile communication systems (automatic, wireless, cdma, and distribution).

Cluster 179,

Size: 65, ISim: 0.071, ESim: 0.006

<u>Descriptive:</u> beam 51.9%, propag 2.5%, gaussian 1.4%, beam.propag 1.4%, puls 1.3%, puls.beam 0.9%, gaussian.beam 0.8%, focal 0.7%, optic 0.6%, polar 0.5%, focus 0.5%, deriv 0.5%, laser 0.4%, intens 0.4%, paraxi 0.4%

<u>Discriminating:</u> beam 33.0%, sub 2.6%, propag 1.4%, system 1.2%, model 1.0%, beam.propag 1.0%, control 0.9%, gaussian 0.9%, measur 0.8%, algorithm 0.8%, imag 0.7%, puls.beam 0.6%, gaussian.beam 0.6%, data 0.5%, network 0.5%

Focuses on types of beams (e.g. Gaussian, pulse and laser) and their propagation characteristics.

Cluster 180,

Size: 51, ISim: 0.070, ESim: 0.005

<u>Descriptive:</u> particl 38.6%, nanoparticl 3.6%, size 3.3%, magnet 2.8%, particl.size 1.7%, spheric 1.6%, microspher 1.5%, diamet 1.2%, electron 0.7%, composit.particl 0.6%, metal 0.5%, morpholog 0.5%, reaction 0.5%, transmiss.electron 0.5%, tem 0.4%

<u>Discriminating:</u> particl 23.5%, nanoparticl 2.2%, sub 2.0%, system 1.8%, size 1.3%, model 1.2%, magnet 1.1%, particl.size 1.1%, microspher 1.0%, algorithm 0.9%, spheric 0.9%, control 0.8%, paper 0.7%, imag 0.7%, new 0.6%

Focuses on types of particles (e.g. nano, magnetic, composite, and microspheres).

Cluster 181,

Size: 35, ISim: 0.070, ESim: 0.006

<u>Descriptive:</u> reaction 26.9%, enzym 2.3%, electrod 2.1%, activ 1.7%, hydrolysi 1.4%, solvent 1.3%, kinet 1.1%, acid 1.1%, chemic 1.1%, pgme 1.0%, temperatur 0.9%, rate 0.9%, concentr 0.9%, degre 0.8%, reaction.temperatur 0.8%

<u>Discriminating:</u> reaction 15.5%, system 1.5%, enzym 1.5%, sub 1.3%, electrod 1.2%, measur 1.0%, algorithm 0.9%, hydrolysi 0.9%, imag 0.9%, model 0.8%, paper 0.7%, pgme 0.7%, solvent 0.6%, activ 0.6%, kinet 0.6%

Focuses on properties and characteristics associated with electro and chemical reactions (e.g. hydrolysis) of catalysts like enzymes.

Cluster 182,

Size: 30, ISim: 0.071, ESim: 0.006

<u>Descriptive:</u> sub 15.1%, oxid 8.6%, catalyst 7.6%, sub.sub 5.5%, tape 1.7%, sub.catalyst 1.6%, sub.sub.catalyst 1.3%, activ 1.1%, temperatur 1.0%, adsorpt 0.8%, green 0.6%, cpd 0.6%, lamin 0.5%, tile.bodi 0.5%, shape.memori 0.5%

<u>Discriminating:</u> oxid 4.8%, catalyst 4.5%, sub 2.6%, system 2.0%, sub.sub 1.7%, model 1.3%, tape 1.2%, sub.catalyst 1.1%, measur 1.1%, algorithm 1.0%, sub.sub.catalyst 0.9%, imag 0.9%, control 0.8%, paper 0.7%, time 0.6%

Focuses on catalysts, especially associated with oxidation/oxides.

Cluster 183,

Size: 39, ISim: 0.070, ESim: 0.006

<u>Descriptive:</u> shock 19.7%, vortex 7.2%, numer 6.5%, wave 5.5%, shock.wave 4.4%, flow 2.5%, explos 1.7%, model 1.3%, numer.simul 1.3%, numer.model 1.0%, dskaw 1.0%, cyclon 0.8%, swirl 0.8%, pressur 0.7%, flow.field 0.7%

<u>Discriminating:</u> shock 13.3%, vortex 4.8%, shock.wave 3.0%, numer 3.0%, sub 2.8%, wave 2.5%, system 2.1%, explos 0.9%, algorithm 0.9%, imag 0.9%, flow 0.8%, numer.simul 0.7%, dskaw 0.7%, control 0.7%, paper 0.6%

Focuses on characteristics of shock and vortexes (primarily from explosions and over pressures).

Cluster 184,

Size: 47, ISim: 0.069, ESim: 0.005

<u>Descriptive:</u> stress 45.4%, fractur 6.2%, shaft 1.2%, inclus 1.1%, stress.field 0.9%, calcul.stress 0.9%, field 0.7%, bridg 0.5%, strain 0.5%, situ.stress 0.4%, shaft.line 0.4%, elast 0.4%, failur 0.4%, stress.relax 0.4%, relax 0.3%

<u>Discriminating:</u> stress 27.7%, fractur 3.7%, sub 2.7%, system 1.8%, algorithm 0.9%, shaft 0.7%, imag 0.7%, inclus 0.6%, stress.field 0.6%, calcul.stress 0.6%, measur 0.6%, control 0.6%, sup 0.6%, time 0.5%, network 0.5%

Focuses on calculations of stress for fracture analysis and prediction (applied to mine shafts, bridges, etc.).

Cluster 185,

Size: 39, ISim: 0.071, ESim: 0.007

<u>Descriptive:</u> sub 14.7%, sup 5.5%, center.dot 4.0%, pbwo 3.9%, pbwo.sub 3.9%, dot 3.9%, center 3.9%, omega 2.0%, omega.sub 1.5%, yvo.sub 1.4%, yvo 1.4%, center.dot.sup 1.1%, dot.sup 1.1%, sub.omega 1.0%, laser 1.0%

<u>Discriminating:</u> pbwo 2.9%, pbwo.sub 2.9%, sub 2.6%, center.dot 2.6%, dot 2.5%, center 2.2%, system 2.0%, sup 1.6%, omega 1.3%, omega.sub 1.1%, model 1.1%, control 1.0%, yvo 1.0%, yvo.sub 1.0%, algorithm 0.9%

Focuses on grammatical constructs primarily annotated with the words "omega", "center dot," and "sub" (textual description to denote that a number as a subscript), primarily associated with characterization studies of crystals such as PbWO & YVO.

Cluster 186,

Size: 34, ISim: 0.070, ESim: 0.006

<u>Descriptive:</u> virtual 21.8%, assembl 7.6%, track 4.5%, system 2.2%, environ 2.1%, train 1.5%, walk 1.4%, human 1.3%, realiti 1.2%, platform 0.9%, virtual.realiti 0.9%, parallel 0.8%, mechan 0.7%, screw 0.7%, human.comput 0.6%

<u>Discriminating:</u> virtual 14.2%, assembl 4.8%, sub 2.7%, track 2.6%, environ 0.9%, walk 0.9%, measur 0.9%, realiti 0.8%, imag 0.8%, train 0.7%, human 0.7%, algorithm 0.6%, virtual.realiti 0.6%, sup 0.5%, temperatur 0.5%

Focuses on applications of virtual reality systems, such as assembly, tracking, and training.

Cluster 187,

Size: 70, ISim: 0.069, ESim: 0.006

<u>Descriptive:</u> finit.element 21.9%, finit 21.3%, element 15.8%, fem 1.5%, model 1.1%, field 0.9%, finit.element.model 0.9%, element.model 0.8%, variat 0.7%, mesh 0.6%, structur 0.6%, numer 0.5%, finit.element.fem 0.5%, element.fem 0.5%, design 0.4%

<u>Discriminating:</u> finit.element 15.1%, finit 13.8%, element 9.2%, sub 2.8%, system 1.5%, fem 0.9%, control 0.8%, measur 0.7%, imag 0.7%, algorithm 0.7%, finit.element.model 0.6%, sup 0.6%, element.model 0.6%, sub.sub 0.5%, time 0.5%

Focuses on applications of finite element modeling primarily applied to structure analysis.

Cluster 188,

Size: 44, ISim: 0.070, ESim: 0.007

<u>Descriptive:</u> imag 29.9%, segment 9.1%, contour 1.8%, background 1.8%, imag.segment 1.4%, contrast 1.3%, region 1.0%, automat 1.0%, threshold 0.9%, histogram 0.9%, detect 0.8%, extract 0.8%, grai 0.7%, inform 0.7%, blood 0.7% <u>Discriminating:</u> imag 14.4%, segment 5.8%, sub 2.9%, contour 1.2%, system 1.2%, background 1.1%, imag.segment 1.0%, control 0.9%, model 0.8%, measur 0.8%, contrast 0.8%, histogram 0.6%, solut 0.6%, sup 0.5%, temperatur 0.5%

Focuses on image segmentation primarily for areas/regions.

Cluster 189,

Size: 48, ISim: 0.069, ESim: 0.005

<u>Descriptive:</u> irradi 11.8%, pb 6.5%, nanocryst 3.8%, room.temperatur 2.1%, room 2.1%, agi 2.1%, temperatur 1.7%, gamma.irradi 1.5%, tem 1.5%, size 1.4%, gamma 1.3%, morpholog 1.3%, product 1.3%, format 1.3%, nanoparticl 1.3%

<u>Discriminating:</u> irradi 7.2%, pb 4.3%, nanocryst 2.5%, system 1.7%, sub 1.6%, agi 1.4%, room.temperatur 1.2%, model 1.2%, room 1.2%, gamma.irradi 1.0%, algorithm 0.9%, tem 0.8%, measur 0.8%, sulfid 0.8%, gamma 0.7%

Focuses on the use of irradiation to fabricate nanocrystals.

Cluster 190,

Size: 104, ISim: 0.070, ESim: 0.007

<u>Descriptive:</u> imag 67.5%, process 1.1%, algorithm 0.9%, imag.process 0.8%, digit 0.7%, imag.imag 0.5%, digit.imag 0.5%, comput 0.4%, featur 0.4%, system 0.4%, detect 0.3%, inform 0.3%, imag.system 0.3%, infrar.imag 0.3%, restor 0.2%

<u>Discriminating:</u> imag 41.3%, sub 2.6%, system 0.9%, model 0.8%, measur 0.7%, control 0.7%, sup 0.6%, sub.sub 0.6%, solut 0.5%, structur 0.5%, imag.process 0.5%, temperatur 0.5%, network 0.4%, equat 0.4%, imag.imag 0.4%

Focuses on image processing.

Cluster 191,

Size: 39, ISim: 0.069, ESim: 0.006

<u>Descriptive:</u> magnet 17.7%, field 14.5%, magnet.field 6.8%, electr 2.8%, spin 2.7%, current 2.5%, kicker 1.6%, electr.field 1.4%, transistor 0.9%, beam 0.8%, turn 0.7%, polar 0.6%, emitt 0.6%, direct.field 0.5%, hl 0.5%

<u>Discriminating:</u> magnet 10.7%, field 7.2%, magnet.field 4.6%, sub 2.8%, spin 1.7%, electr 1.3%, system 1.2%, kicker 1.1%, model 1.1%, current 1.0%, electr.field 0.9%, imag 0.9%, algorithm 0.9%, transistor 0.6%, sup 0.5%

Focuses on characterizing magnetic and electric fields, primarily associated with small electronic devices.

Cluster 192,

Size: 30, ISim: 0.069, ESim: 0.006

<u>Descriptive:</u> control 13.6%, real.time 4.5%, time 4.5%, real 3.7%, traffic 3.1%, spc 1.9%, congest.control 1.4%, regul 1.4%, network 1.1%, congest 0.9%, ethernet 0.7%, cycl 0.7%, control.network 0.6%, system 0.6%, time.control 0.6%

<u>Discriminating:</u> control 4.8%, sub 2.9%, real.time 2.6%, traffic 1.9%, real 1.8%, spc 1.3%, congest.control 1.0%, time 1.0%, imag 0.9%, regul 0.8%, system 0.7%, algorithm 0.6%, congest 0.6%, solut 0.6%, sup 0.5%

Focuses on real-time control applications (traffic, networks, ethernet). Possible military applications include UAV control and tracking multiple small high speed objects.

Cluster 193,

Size: 44, ISim: 0.068, ESim: 0.006

<u>Descriptive:</u> voltag 38.8%, current 3.4%, modul 1.9%, charg 0.9%, charg.pump 0.9%, insul 0.8%, phase 0.7%, devic 0.6%, current.voltag 0.5%, light 0.5%, suppli.voltag 0.5%, oper 0.5%, low.voltag 0.5%, power 0.5%, suppli 0.4%

<u>Discriminating:</u> voltag 24.6%, sub 2.7%, system 1.5%, current 1.4%, model 1.1%, algorithm 0.9%, imag 0.8%, modul 0.7%, charg.pump 0.6%, data 0.6%, solut 0.5%, measur 0.5%, network 0.5%, sub.sub 0.5%, control 0.5%

Focuses on elements of electronic devices/equipment, primarily voltage, and others such as current, phase, modulation, and charge.

Cluster 194,

Size: 27, ISim: 0.067, ESim: 0.005

<u>Descriptive:</u> dna 7.0%, ion 4.6%, charg 3.6%, endotoxin 3.6%, trap 3.6%, anion 3.2%, assai 3.1%, detect 2.1%, inject 1.3%, sampl 1.1%, charg.state 1.0%, linac 0.9%, concentr 0.9%, state 0.9%, rl 0.9%

<u>Discriminating:</u> dna 4.4%, sub 2.4%, endotoxin 2.4%, ion 2.3%, trap 2.2%, anion 2.0%, assai 2.0%, charg 2.0%, system 1.6%, model 1.3%, algorithm 0.9%, imag 0.8%, control 0.8%, inject 0.7%, charg.state 0.7%

Focuses on methods of detecting and assaying DNA, charges, and endotoxins.

Cluster 195,

Size: 34, ISim: 0.066, ESim: 0.005

<u>Descriptive:</u> properti 8.5%, rubber 7.2%, chemic 7.0%, mechan.properti 6.3%, mechan 3.9%, phr 1.9%, polyurethan 1.7%, surfac 1.3%, vulcaniz 1.1%, physic 1.0%, strength 1.0%, lignin 0.9%, carbon.black 0.9%, crosslink 0.8%, cell 0.7%

<u>Discriminating:</u> rubber 4.5%, mechan.properti 3.8%, chemic 3.5%, properti 3.4%, sub 2.4%, system 1.5%, phr 1.3%, model 1.2%, mechan 1.2%, polyurethan 1.1%, measur 0.9%, control 0.9%, algorithm 0.9%, imag 0.8%, vulcaniz 0.7%

Focuses on characterizing chemical and mechanical properties of rubber and polyurethane materials.

Cluster 196,

Size: 38, ISim: 0.066, ESim: 0.005

<u>Descriptive:</u> test 14.3%, strain 13.0%, stress 5.3%, life 3.4%, shpb 2.2%, concret 2.2%, fatigu 2.1%, stress.strain 1.6%, strain.rate 1.6%, specimen 1.5%, prestress 1.2%, weld 0.9%, bar 0.9%, strength 0.8%, load 0.8%

<u>Discriminating:</u> strain 7.7%, test 6.2%, sub 2.7%, stress 2.4%, life 2.1%, system 1.7%, shpb 1.5%, fatigu 1.3%, concret 1.2%, stress.strain 1.0%, strain.rate 1.0%, algorithm 0.9%, imag 0.8%, specimen 0.8%, prestress 0.8%

Focuses on testing of strain and stress fatigue and their rates on e.g. concrete & welds.

Cluster 197,

Size: 38, ISim: 0.065, ESim: 0.005

<u>Descriptive:</u> foam 8.6%, resin 3.2%, group 2.2%, polym 2.0%, hyperbranch 2.0%, alkyd 1.4%, cure 1.4%, nmr 1.3%, bond 1.2%, photoiniti 1.2%, molecular 1.1%, end.group 1.1%, ester 1.0%, poli 0.9%, synthes 0.8%

<u>Discriminating:</u> foam 5.5%, sub 2.2%, system 1.9%, resin 1.9%, hyperbranch 1.3%, model 1.1%, group 0.9%, alkyd 0.9%, algorithm 0.9%, control 0.9%, polym 0.8%, imag 0.8%, photoiniti 0.8%, cure 0.7%, paper 0.7%

Focuses on tings used in nanocomposites such as foams, resin, poly-based materials and hyperbranched structures.

Cluster 198,

Size: 61, ISim: 0.067, ESim: 0.006

<u>Descriptive:</u> network 56.6%, optic 0.8%, pipe.network 0.7%, reliabl 0.7%, secur 0.7%, network.secur 0.7%, protocol 0.6%, system 0.6%, model 0.6%, traffic 0.5%, paper 0.5%, switch 0.5%, atm 0.5%, intrus 0.5%, pipe 0.4%

<u>Discriminating:</u> network 33.6%, sub 2.8%, measur 1.0%, imag 0.8%, system 0.6%, algorithm 0.6%, control 0.6%, sup 0.5%, pipe.network 0.5%, temperatur 0.5%, sub.sub 0.5%, equat 0.5%, network.secur 0.5%, time 0.4%, new 0.4%

Focuses on network security, protocols, and reliability of e.g. optic switches.

Cluster 199,

Size: 42, ISim: 0.066, ESim: 0.006

<u>Descriptive:</u> softwar 37.9%, system 2.9%, softwar.system 1.7%, design 1.6%, tool 1.1%, object 0.9%, modul 0.9%, data 0.9%, draw 0.8%, autocad 0.7%, simul.softwar 0.7%, comput 0.6%, vba 0.6%, graphic 0.6%, visual 0.6%

<u>Discriminating:</u> softwar 24.6%, sub 2.8%, softwar.system 1.1%, algorithm 0.9%, model 0.9%, imag 0.8%, measur 0.6%, solut 0.5%, control 0.5%, sup 0.5%, sub.sub 0.5%, tool 0.5%, draw 0.5%, equat 0.5%, autocad 0.5%

Focuses on software systems, such as their design and tools.

Cluster 200.

Size: 38, ISim: 0.066, ESim: 0.006

<u>Descriptive:</u> algorithm 12.4%, graph 9.8%, layout 5.0%, placement 4.3%, tree 4.2%, rout 4.1%, parallel 1.5%, time 1.0%, span.tree 1.0%, mesh 1.0%, run 0.9%, constraint 0.7%, span 0.7%, polynomi 0.7%, connect 0.7%

<u>Discriminating:</u> graph 6.3%, algorithm 4.1%, layout 3.4%, placement 3.0%, tree 2.6%, rout 2.5%, sub 2.4%, system 1.9%, measur 0.9%, imag 0.9%, control 0.9%, model 0.8%, span.tree 0.7%, parallel 0.6%, mesh 0.6%

Focuses on algorithm, graphs, layout, and placement.

Cluster 201,

Size: 71, ISim: 0.068, ESim: 0.008

<u>Descriptive:</u> control 29.2%, control.system 24.3%, system 8.1%, simul 1.0%, model 0.6%, automat 0.6%, measur.control 0.5%, dynam 0.5%, bu 0.4%, oper 0.4%, measur.control.system 0.4%, coal 0.3%, loop 0.3%, test 0.3%, dc 0.3%

<u>Discriminating:</u> control.system 18.6%, control 15.4%, sub 3.1%, system 1.1%, imag 1.0%, sup 0.7%, algorithm 0.7%, sub.sub 0.6%, solut 0.5%, structur 0.5%, measur 0.5%, equat 0.4%, surfac 0.4%, two 0.4%, function 0.4%

Focuses on control systems (e.g. simulated, measurement, and dynamic).

Cluster 202,

Size: 50, ISim: 0.066, ESim: 0.007

<u>Descriptive:</u> hardwar 13.7%, softwar 13.2%, system 6.3%, design 3.9%, embed 3.3%, hardwar.softwar 2.6%, softwar.design 1.9%, platform 1.9%, data 1.7%, hardwar.structur 1.2%, control 1.0%, softwar.hardwar 0.9%, bluetooth 0.9%, system.hardwar 0.8%, record 0.7%

<u>Discriminating:</u> hardwar 9.5%, softwar 8.2%, sub 2.3%, embed 2.1%, hardwar.softwar 1.9%, softwar.design 1.4%, model 1.1%, platform 1.1%, design 1.0%, algorithm 1.0%, imag 0.9%, hardwar.structur 0.9%, sup 0.6%, softwar.hardwar 0.6%, measur 0.6%

Focuses on hardware and software systems design.

Cluster 203,

Size: 41, ISim: 0.066, ESim: 0.006

<u>Descriptive:</u> measur 18.0%, uncertainti 16.9%, interferomet 6.7%, optic 2.3%, fiber 2.2%, uncertainti.measur 2.0%, optic.fiber 1.5%, measur.uncertainti 1.0%, principl 0.7%, point 0.5%, formula 0.4%, thermal.diffus 0.4%, index 0.4%, formula.deduc 0.4%, profil 0.4%

<u>Discriminating:</u> uncertainti 11.4%, measur 6.7%, interferomet 4.5%, sub 2.8%, uncertainti.measur 1.4%, model 1.1%, system 1.1%, optic.fiber 0.9%, algorithm 0.8%, control 0.8%, imag 0.8%, fiber 0.7%, measur.uncertainti 0.7%, optic 0.6%, solut 0.5%

Focuses on measuring uncertainties with interferometrics, and fiber optics.

Cluster 204,

Size: 49, ISim: 0.064, ESim: 0.005

<u>Descriptive:</u> water 27.5%, resoure 7.2%, water.resoure 4.3%, river 3.6%, climat 2.2%, china 1.7%, area 1.4%, wetland 1.3%, yellow 0.9%, lake 0.8%, data 0.8%, ecolog 0.8%, pollut 0.7%, fertil 0.7%, soil 0.7%

<u>Discriminating:</u> water 14.9%, resourc 4.1%, water.resourc 2.8%, sub 2.5%, river 2.2%, climat 1.4%, system 0.9%, wetland 0.8%, measur 0.8%, imag 0.7%, model 0.7%, algorithm 0.7%, yellow 0.6%, china 0.5%, lake 0.5%

Focuses on ecology effects on china water resources (rivers [Yellow River], wetlands, and lakes) from climate, pollution, and fertilizers.

Cluster 205.

Size: 47, ISim: 0.066, ESim: 0.006

<u>Descriptive:</u> signal 38.1%, frequenc 2.9%, domain 2.2%, channel 1.4%, time 1.0%, frequenc.domain 0.9%, demodul 0.9%, fault 0.9%, time.domain 0.8%, extract 0.8%, signal.gener 0.7%, coher 0.7%, denois 0.7%, photoacoust 0.7%, wavelet 0.6% <u>Discriminating:</u> signal 22.5%, sub 2.9%, system 1.7%, domain 1.1%, frequenc 1.0%, control 0.9%, model 0.9%, imag 0.7%, sup 0.6%, frequenc.domain 0.6%, demodul 0.6%, channel 0.6%, solut 0.6%, sub.sub 0.5%, time.domain 0.5%

Focuses on signals, primarily their frequency & time domains.

Cluster 206,

Size: 53, ISim: 0.065, ESim: 0.006

<u>Descriptive:</u> heat 29.8%, heat.transfer 7.0%, transfer 5.9%, air 2.0%, water 1.9%, model 1.7%, solar 1.6%, honeycomb 1.6%, heat.pump 0.9%, temperatur 0.7%, steam 0.7%, geotherm 0.6%, thermal 0.6%, pressur 0.5%, flow 0.5%

<u>Discriminating:</u> heat 18.7%, heat.transfer 4.8%, transfer 3.3%, sub 2.5%, honeycomb 1.1%, solar 1.0%, system 1.0%, air 1.0%, imag 0.9%, algorithm 0.9%, measur 0.8%, control 0.7%, heat.pump 0.6%, sup 0.5%, water 0.5%

Focuses on heat transfer methods and modeling.

Cluster 207,

Size: 38. ISim: 0.065, ESim: 0.006

<u>Descriptive:</u> instrument 24.4%, measur 13.4%, measur.instrument 4.6%, photoelectr 2.0%, signal 0.9%, belt 0.8%, instrument.measur 0.7%, carrier 0.6%, monitor 0.6%, steel.cord 0.5%, cord.belt 0.5%, steel.cord.belt 0.5%, standard 0.5%, accuraci 0.5%, cord 0.5%

<u>Discriminating:</u> instrument 16.1%, measur 4.4%, measur.instrument 3.3%, sub 2.8%, photoelectr 1.4%, model 1.4%, system 1.3%, imag 0.9%, algorithm 0.8%, control 0.8%, network 0.5%, temperatur 0.5%, sub.sub 0.5%, solut 0.5%, belt 0.5%

Focuses on instruments for measuring/monitoring accuracies.

Cluster 208,

Size: 63, ISim: 0.062, ESim: 0.005

<u>Descriptive:</u> product 51.7%, market 1.8%, manufactur 1.3%, record 1.2%, cost 1.1%, capac 0.8%, demand 0.8%, product.line 0.7%, concurr 0.7%, econom 0.6%, benefit 0.6%, introduc 0.5%, product.model 0.5%, design 0.5%, cotton 0.5%

<u>Discriminating:</u> product 29.9%, sub 2.7%, system 1.1%, market 0.9%, measur 0.9%, algorithm 0.8%, control 0.8%, imag 0.8%, manufactur 0.6%, sup 0.6%, model 0.5%, time 0.5%, sub.sub 0.5%, network 0.5%, product.line 0.4%

Focuses on elements associated with production, such as marketing, manufacturing, cost, demand, capacity, design, economics, benefits, product lines, concurrance, and models.

Cluster 209,

Size: 26, ISim: 0.063, ESim: 0.006

<u>Descriptive:</u> system 10.7%, inspect 4.3%, test 4.0%, infrar 3.8%, whitewat 2.3%, pipelin 2.2%, data.system 2.0%, vehicl 1.1%, data 0.9%, optic 0.8%, detect 0.8%, apprais 0.7%, test.system 0.7%, mine 0.6%, pictur 0.6%

<u>Discriminating:</u> sub 2.9%, inspect 2.8%, infrar 2.3%, system 1.8%, whitewat 1.7%, pipelin 1.4%, data.system 1.4%, model 1.3%, test 1.1%, algorithm 1.0%, imag 0.7%, vehicl 0.6%, sup 0.6%, measur 0.6%, network 0.5%

Focuses on systems (e.g pipelines, data, and vehicles), methods of inspecting and testing them.

Cluster 210,

Size: 38, ISim: 0.061, ESim: 0.005

<u>Descriptive:</u> strength 22.8%, starch 4.7%, properti 2.8%, silk 2.3%, creep 2.2%, materi 1.9%, cement 1.7%, slurri 1.3%, mechan 1.2%, tail 1.1%, pozzolan 1.0%, steel 0.9%, phi 0.9%, surfac 0.8%, concret 0.7%

<u>Discriminating:</u> strength 13.3%, starch 3.0%, sub 2.1%, system 1.8%, silk 1.5%, creep 1.3%, model 1.1%, cement 1.0%, algorithm 0.9%, imag 0.8%, slurri 0.8%, control 0.8%, measur 0.8%, tail 0.7%, pozzolan 0.7%

Focuses on characterizing properties (primarily strength, creep, mechanical, and pozzolanic) of composites such as starch, silk, cement, slurries, and steel.

Cluster 211,

Size: 72, ISim: 0.063, ESim: 0.007

<u>Descriptive:</u> measur 27.8%, measur.system 18.6%, system 6.5%, laser 1.3%, precis 1.2%, system.measur 1.0%, measur.system.measur 0.8%, contact 0.8%, accuraci 0.7%, non.contact 0.6%, beam 0.6%, micro 0.5%, principl 0.5%, ccd 0.5%, posit 0.4% <u>Discriminating:</u> measur.system 14.4%, measur 13.9%, sub 3.1%, algorithm 0.8%, model 0.8%, system.measur 0.7%, control 0.7%, sup 0.7%, imag 0.7%, measur.system.measur 0.6%, system 0.6%, sub.sub 0.6%, solut 0.6%, network 0.6%, time 0.5%

Focuses on measuring systems such as lasers and precision measurements.

Cluster 212,

Size: 31, ISim: 0.059, ESim: 0.005

<u>Descriptive:</u> core 4.1%, fuel 3.9%, pressur 3.4%, seal 2.4%, tunnel 2.1%, explos 1.9%, data 1.6%, ga 1.4%, experiment 1.2%, superson 1.0%, burn 1.0%, accid 1.0%, index 0.9%, depth 0.8%, vessel 0.8%

<u>Discriminating:</u> sub 2.6%, core 2.2%, fuel 2.2%, system 1.8%, seal 1.5%, pressur 1.3%, tunnel 1.1%, explos 1.0%, model 0.9%, control 0.9%, algorithm 0.9%, imag 0.8%, measur 0.7%, superson 0.7%, burn 0.6%

Focuses on key elements looked at for experimentation of nuclear power plants accidents such as core, fuels, pressure, seals, and explosions.

Cluster 213,

Size: 34, ISim: 0.060, ESim: 0.005

<u>Descriptive:</u> crystal 26.0%, zno 4.9%, format 4.2%, liquid.crystal 1.9%, liquid 1.8%, whisker 1.7%, zinc 1.5%, bicarbon 0.9%, glass 0.9%, morpholog 0.8%, hplc 0.8%, magnet 0.7%, hydrat 0.7%, powder 0.7%, peak 0.5%

<u>Discriminating:</u> crystal 14.9%, zno 3.1%, sub 2.4%, format 2.1%, system 1.8%, liquid.crystal 1.2%, whisker 1.1%, model 1.1%, zinc 0.9%, algorithm 0.9%, control 0.8%, liquid 0.8%, measur 0.7%, imag 0.7%, paper 0.7%

Focuses on characterizing the formation of zinc oxide and liquid crystals.

Cluster 214.

Size: 32, ISim: 0.060, ESim: 0.005

<u>Descriptive:</u> function 18.1%, graph 6.0%, set 4.0%, boolean.function 2.0%, scale.function 1.9%, polynomi 1.8%, interpol 1.7%, boolean 1.7%, nonlinear 1.4%, orthogon 1.0%, interpol.function 0.9%, posit.real 0.9%, case 0.8%, construct 0.8%, colour 0.8%

<u>Discriminating:</u> function 8.3%, graph 3.6%, sub 2.1%, system 1.9%, set 1.6%, boolean.function 1.4%, model 1.3%, scale.function 1.2%, boolean 1.1%, polynomi 1.0%, interpol 0.9%, control 0.9%, imag 0.7%, algorithm 0.7%, interpol.function 0.6%

Focuses on various mathematical functions and their elements used in combinatorial math (boolean, scaling, and interpolation functions).

Cluster 215,

Size: 75, ISim: 0.061, ESim: 0.006

<u>Descriptive:</u> laser 52.3%, pump 3.1%, diod 1.3%, caviti 0.9%, output 0.9%, beam 0.8%, power 0.8%, optic 0.8%, laser.beam 0.7%, amplifi 0.7%, wave 0.6%, laser.diod 0.5%, yag 0.5%, ghost 0.5%, yag.laser 0.4%

<u>Discriminating:</u> laser 33.6%, sub 2.8%, pump 1.8%, system 1.0%, algorithm 0.9%, diod 0.9%, control 0.8%, model 0.7%, imag 0.7%, measur 0.7%, paper 0.6%, network 0.5%, solut 0.5%, sub.sub 0.5%, laser.beam 0.5%

Focuses on types of lasers (pump, diode, beam, and optic).

Cluster 216,

Size: 35, ISim: 0.060, ESim: 0.005

<u>Descriptive:</u> materi 25.2%, composit 13.2%, surfac 1.9%, properti 1.2%, metal 1.0%, composit.materi 1.0%, cathod.materi 0.9%, cathod 0.9%, ferrit 0.9%, damp 0.6%, limit 0.6%, nano 0.6%, particl 0.5%, fine 0.5%, magnet 0.5%

<u>Discriminating:</u> materi 14.4%, composit 7.3%, sub 2.1%, system 2.1%, model 1.2%, measur 1.0%, control 1.0%, algorithm 1.0%, imag 0.9%, paper 0.7%, composit.materi 0.7%, cathod.materi 0.6%, cathod 0.6%, ferrit 0.6%, data 0.6%

Focuses on characterization of composite material properties.

Cluster 217,

Size: 37, ISim: 0.059, ESim: 0.006

<u>Descriptive:</u> photon 5.9%, optic 5.9%, aerosol 3.7%, wavelength 3.7%, correl 2.8%, ultrasound 2.1%, optic.element 1.8%, two.photon 1.6%, bar.code 1.5%, grate 1.4%, modul 1.3%, diffract 1.0%, scatter 1.0%, auto.correl 0.9%, doe 0.9% <u>Discriminating:</u> photon 3.7%, sub 2.8%, aerosol 2.5%, optic 2.4%, wavelength 2.1%, correl 1.4%, model 1.4%, ultrasound 1.4%, optic.element 1.3%, system 1.2%,

two.photon 1.1%, bar.code 1.0%, algorithm 0.9%, measur 0.8%, control 0.8%

Focuses on properties of elements that go thru ontics such as photons (wavelength

Focuses on properties of elements that go thru optics such as photons (wavelength, diffraction, scatter) and aerosols.

Cluster 218,

Size: 45, ISim: 0.060, ESim: 0.006

<u>Descriptive:</u> cmo 10.4%, circuit 8.4%, power 3.9%, chip 3.5%, design 3.0%, clock 2.6%, architectur 1.7%, input 1.7%, microprocessor 1.2%, low.power 1.1%, cach 1.1%, bit 1.0%, logic 0.9%, unit 0.9%, low 0.8%

<u>Discriminating:</u> cmo 7.3%, circuit 4.7%, sub 2.9%, chip 2.2%, clock 1.8%, model 1.4%, power 1.2%, measur 1.0%, system 1.0%, imag 0.9%, input 0.9%, architectur 0.8%, microprocessor 0.8%, cach 0.8%, low.power 0.8%

Focuses on elements of CMOS, circuits and microprocessors architectures.

Cluster 219,

Size: 49, ISim: 0.058, ESim: 0.005

<u>Descriptive:</u> solut 36.9%, asymptot 3.7%, exist 2.6%, blow 1.4%, approxim 1.1%, approxim.solut 0.9%, asymptot.behavior 0.8%, gener.solut 0.8%, equat 0.7%, nonlinear 0.7%, initi 0.6%, program 0.5%, construct 0.5%, circular.plate 0.5%, behavior 0.5%

<u>Discriminating:</u> solut 19.0%, sub 2.7%, asymptot 2.2%, exist 1.2%, system 1.1%, measur 1.0%, blow 0.9%, control 0.9%, imag 0.9%, algorithm 0.8%, approxim.solut 0.6%, model 0.6%, structur 0.6%, asymptot.behavior 0.5%, gener.solut 0.5%

Focuses on solutions (primarily asymptotic) such as existence, approximate, general, nonlinear.

Cluster 220,

Size: 34, ISim: 0.059, ESim: 0.006

<u>Descriptive:</u> phase 7.3%, fring 5.5%, surfac 4.3%, measur 4.3%, pattern 2.3%, accuraci 1.4%, signal 1.4%, two 1.1%, fring.pattern 1.0%, caviti 1.0%, fourier.transform 0.9%, shift 0.9%, interferomet 0.9%, phase.shift 0.8%, fourier 0.8% <u>Discriminating:</u> fring 3.9%, phase 3.2%, sub 3.0%, system 1.5%, surfac 1.4%, pattern 1.0%, control 0.9%, model 0.8%, fring.pattern 0.8%, imag 0.7%, sup 0.6%, paper 0.6%, phase.shift 0.6%, caviti 0.6%, measur 0.6%

Focuses on quantities such as phase, fringe patterns, and surfaces that can be measured for their interference errors.

Cluster 221.

Size: 46, ISim: 0.059, ESim: 0.006

<u>Descriptive:</u> optic 31.4%, light 3.4%, field.optic 1.5%, len 1.4%, storag 1.3%, polar 1.2%, field 1.1%, sil 0.8%, Cluster 0.7%, spectrum 0.6%, birefring 0.6%, magneto.optic 0.6%, solid.immers 0.6%, solid.immers.len 0.6%, immers.len 0.6%

<u>Discriminating:</u> optic 19.2%, sub 3.0%, light 1.7%, field.optic 1.1%, len 0.9%, algorithm 0.9%, system 0.9%, model 0.8%, storag 0.7%, imag 0.7%, polar 0.6%, sil 0.6%, solut 0.6%, sup 0.6%, measur 0.5%

Focuses on optic and optical properties solids.

Cluster 222,

Size: 29, ISim: 0.058, ESim: 0.005

<u>Descriptive:</u> formula 9.3%, forc 4.6%, movement 2.8%, calcul 2.6%, turn.mill 2.3%, calcul.formula 2.3%, garment 1.9%, mill 1.9%, rotat 1.9%, bodi 1.4%, hairpin 1.3%, liposom 1.2%, ag 1.2%, motion 1.2%, women 1.1%

<u>Discriminating:</u> formula 5.4%, sub 2.7%, forc 2.4%, system 1.8%, movement 1.7%, turn.mill 1.6%, calcul.formula 1.5%, garment 1.3%, mill 1.1%, rotat 1.0%, hairpin 0.9%, imag 0.9%, algorithm 0.8%, calcul 0.8%, liposom 0.8%

Focuses on formulas to calculate changes in body shapes due to force and movement.

Cluster 223,

Size: 41, ISim: 0.058, ESim: 0.005

<u>Descriptive:</u> oxid 13.2%, silicon 10.6%, substrat 3.7%, wafer 2.3%, oxygen 2.0%, layer 1.8%, surfac 1.3%, porou 1.1%, afm 0.8%, anneal 0.8%, crystal 0.8%, temperatur 0.8%, voltag 0.8%, sige 0.7%, fabric 0.7%

<u>Discriminating:</u> oxid 7.7%, silicon 6.8%, sub 2.5%, substrat 2.1%, system 2.1%, wafer 1.6%, model 1.1%, oxygen 1.0%, algorithm 0.9%, control 0.7%, paper 0.7%, porou 0.6%, data 0.6%, layer 0.5%, imag 0.5%

Focuses on properties of silicon and oxide materials used in substrates and wafers.

Cluster 224,

Size: 61, ISim: 0.058, ESim: 0.006

<u>Descriptive:</u> control 54.6%, control.control 1.8%, model 0.8%, system 0.8%, loop.control 0.7%, paper 0.6%, applic 0.6%, roll 0.5%, model.control 0.5%, tesc 0.5%, control.model 0.4%, machin 0.4%, loop 0.3%, automat 0.3%, design 0.3% <u>Discriminating:</u> control 30.1%, sub 3.0%, control.control 1.2%, imag 0.9%, measur 0.8%, algorithm 0.7%, sup 0.6%, system 0.6%, data 0.5%, sub.sub 0.5%, equat 0.5%, loop.control 0.5%, solut 0.5%, network 0.4%, new 0.4%

Focuses on non-real-time control applications (e.g. assessing control models & systems).

Cluster 225,

Size: 44, ISim: 0.056, ESim: 0.004

<u>Descriptive:</u> acid 15.4%, protein 10.1%, cell 7.4%, lignin 2.6%, concentr 2.2%, straw 1.7%, extract 1.2%, alkaloid 1.2%, iron 1.2%, cell.wall 1.1%, gallston 0.9%, fatti 0.9%, yield 0.8%, compon 0.7%, gfp 0.7%

<u>Discriminating:</u> acid 8.9%, protein 6.3%, cell 3.9%, sub 2.2%, system 1.7%, lignin 1.6%, model 1.1%, straw 1.1%, algorithm 0.9%, measur 0.9%, concentr 0.9%, control 0.8%, alkaloid 0.8%, imag 0.7%, paper 0.7%

Focuses on analyses of effects of acids, proteins, and lignans on cell walls, to include concentrations and extraction methods.

Cluster 226,

Size: 76, ISim: 0.056, ESim: 0.006

<u>Descriptive:</u> flow 50.8%, veloc 1.5%, vortex 1.4%, flow.field 1.3%, pump 1.0%, ga 0.9%, flow.rate 0.6%, phase.flow 0.6%, numer 0.6%, field 0.5%, model 0.5%, flowmet 0.5%, two.phase.flow 0.4%, pressur 0.4%, turbul 0.4%

<u>Discriminating:</u> flow 33.5%, sub 2.8%, system 1.4%, algorithm 1.0%, flow.field 0.9%, vortex 0.9%, control 0.8%, imag 0.8%, veloc 0.7%, sup 0.6%, new 0.6%, network 0.5%, sub.sub 0.5%, pump 0.5%, paper 0.5%

Focuses on methods of flow (rates & phase) analysis.

Cluster 227,

Size: 83, ISim: 0.057, ESim: 0.006

<u>Descriptive:</u> sensor 52.6%, measur 3.5%, circuit 0.8%, sensor.measur 0.7%, principl 0.7%, detect 0.6%, signal 0.5%, wavefront 0.5%, output 0.4%, displac 0.4%, accuraci 0.4%, test 0.4%, fiber 0.4%, dynam 0.4%, strain 0.3%

<u>Discriminating:</u> sensor 36.6%, sub 2.9%, system 1.2%, algorithm 1.0%, imag 1.0%, model 0.9%, sup 0.6%, sub.sub 0.6%, sensor.measur 0.5%, control 0.5%, network 0.5%, data 0.5%, solut 0.5%, equat 0.5%, function 0.4%

Focuses on sensor measurements.

Cluster 228,

Size: 36, ISim: 0.055, ESim: 0.005

<u>Descriptive:</u> net 7.9%, design 6.0%, petri 5.3%, fuze 3.3%, system 2.8%, petri.net 2.8%, model 2.5%, reliabl 2.1%, concurr 2.0%, integr.system 1.4%, net.model 1.0%, fuze.system 0.9%, asynchron 0.9%, asic 0.9%, convert 0.7%

<u>Discriminating:</u> net 5.1%, petri 3.7%, sub 2.6%, fuze 2.2%, petri.net 1.9%, design 1.8%, concurr 1.3%, integr.system 1.0%, reliabl 0.9%, algorithm 0.9%, imag 0.9%, measur 0.8%, net.model 0.7%, control 0.7%, fuze.system 0.7%

Focuses on net design, for example the Petri-Net Model (P-Net) used for system analysis & design.

Cluster 229,

Size: 60, ISim: 0.055, ESim: 0.006

<u>Descriptive:</u> sup 49.0%, ion 3.0%, sup.ion 1.9%, atom 0.9%, energi 0.6%, sup.sup 0.6%, activ 0.5%, beam 0.5%, state 0.5%, excit 0.4%, radioact 0.4%, gene 0.4%, zeolit 0.4%, chemic 0.4%, surfac 0.4%

<u>Discriminating:</u> sup 28.3%, sub 2.0%, system 2.0%, ion 1.6%, sup.ion 1.3%, algorithm 0.9%, imag 0.9%, measur 0.8%, paper 0.8%, model 0.8%, control 0.7%, network 0.5%, sub.sub 0.5%, design 0.5%, function 0.4%

Focuses on grammatical constructs annotated with the word "sup" (textual description to denote that a number as a superscript), but primarily measurable phenomena such as ionization & activation energies of atoms (i.e phenomena that are affected by actions).

Cluster 230,

Size: 43, ISim: 0.054, ESim: 0.006

<u>Descriptive:</u> fusion 10.2%, inform 9.5%, decis 5.3%, data 4.1%, robot 4.0%, locat 3.0%, sensor 2.2%, multi 1.8%, monitor 1.3%, data.fusion 1.3%, inform.fusion 1.3%, speech 0.9%, model 0.8%, system 0.8%, multisensor 0.7%

<u>Discriminating:</u> fusion 6.8%, inform 4.6%, decis 3.3%, sub 2.7%, robot 2.2%, locat 1.6%, data 1.0%, inform.fusion 0.9%, data.fusion 0.9%, imag 0.8%, sensor 0.7%, measur 0.6%, algorithm 0.6%, control 0.6%, multi 0.6%

Focuses on data fusion, its elements (information, decisions, data), systems (sensors), models, and applications (monitoring, locating, robotics, speech recognition).

Cluster 231,

Size: 38, ISim: 0.054, ESim: 0.005

<u>Descriptive:</u> chaotic 5.8%, invari 4.9%, chao 3.7%, system 3.6%, dynam 3.3%, poincar 1.8%, attractor 1.7%, birkhoffian 1.6%, perturb 1.6%, numer 1.6%, dimension 1.2%, map 1.2%, period 1.1%, topolog 1.1%, form.invari 1.1%

<u>Discriminating:</u> chaotic 3.8%, invari 3.2%, sub 2.5%, chao 2.4%, poincar 1.2%, birkhoffian 1.2%, attractor 1.1%, dynam 1.1%, measur 1.0%, perturb 0.9%, imag 0.9%, algorithm 0.9%, form.invari 0.8%, expon 0.7%, birkhoffian.system 0.6%

Focuses on chaotic theory (e.g. Poincare Map & Birkhoffian models).

Cluster 232,

Size: 50, ISim: 0.054, ESim: 0.006

Descriptive: algorithm 15.1%, fingerprint 5.3%, comput 4.1%, search 3.6%, optim 3.2%, match 2.6%, match.algorithm 1.7%, recognit 1.6%, fusion 1.6%, reduc.comput 1.4%, atr 1.1%, reduc 1.0%, parallel 0.9%, local 0.8%, comput.complex 0.8%
Discriminating: algorithm 5.8%, fingerprint 3.9%, sub 2.7%, search 2.3%, system 1.6%, comput 1.5%, match 1.4%, match.algorithm 1.3%, optim 1.1%, reduc.comput 1.1%, measur 1.0%, fusion 0.9%, control 0.9%, atr 0.8%, recognit 0.8%

Focuses on algorithms such as optimized matching algorithms, used in searching fingerprint databases.

Cluster 233,

Size: 53, ISim: 0.054, ESim: 0.006

<u>Descriptive:</u> equat 15.6%, solut 4.3%, dimension 4.1%, numer 3.1%, stoke 1.8%, stoke.equat 1.6%, scheme 1.6%, navier.stoke 1.3%, navier 1.3%, navier.stoke.equat 1.2%, three.dimension 1.0%, finit 0.9%, numer.solut 0.9%, flow 0.8%, cylind 0.8% <u>Discriminating:</u> equat 7.6%, sub 3.0%, dimension 2.2%, system 1.5%, stoke 1.3%, stoke.equat 1.2%, numer 1.2%, measur 1.1%, solut 1.1%, navier.stoke 0.9%, navier 0.9%, navier.stoke.equat 0.9%, imag 0.8%, paper 0.7%, numer.solut 0.6%

Focuses on navier stokes equations and solutions used in turbulence flow analysis.

Cluster 234,

Size: 47, ISim: 0.053, ESim: 0.006

<u>Descriptive:</u> simul 23.4%, model 4.8%, simul.system 3.2%, system 3.1%, mathemat 2.2%, mathemat.model 1.3%, simul.model 1.3%, applic 1.1%, power.system 1.0%, basic.concept 0.9%, mpi 0.9%, fuze 0.9%, parallel 0.9%, power 0.8%, construct 0.8%

<u>Discriminating:</u> simul 12.8%, sub 2.9%, simul.system 2.4%, mathemat 1.1%, measur 1.0%, simul.model 0.9%, imag 0.8%, algorithm 0.8%, mpi 0.7%, control 0.7%, mathemat.model 0.7%, basic.concept 0.7%, fuze 0.6%, sup 0.6%, temperatur 0.6%

Focuses on modeling & simulation.

Cluster 235,

Size: 39, ISim: 0.051, ESim: 0.006

<u>Descriptive:</u> sub 15.6%, laser 7.9%, absorpt 2.3%, sub.laser 1.9%, jpe 1.7%, plasma 1.4%, ligand 1.2%, max 1.0%, sub.max 0.9%, fluoresc 0.8%, sub.theta 0.7%, theta 0.6%, lsb 0.6%, lsb.sub 0.6%, electrod 0.6%

<u>Discriminating:</u> laser 3.9%, sub 3.1%, system 2.2%, sub.laser 1.5%, jpe 1.3%, absorpt 1.3%, model 1.3%, algorithm 1.0%, control 0.8%, ligand 0.8%, imag 0.8%, measur 0.8%, plasma 0.8%, max 0.7%, paper 0.7%

Focuses on uses of lasers and plasmas to help extract or absorb elements.

Cluster 236,

Size: 60, ISim: 0.051, ESim: 0.007

<u>Descriptive:</u> imag 21.7%, camera 4.1%, match 4.0%, ccd 2.7%, scene 1.9%, object 1.8%, vision 1.7%, correct 1.6%, process 1.3%, imag.match 1.3%, system 1.0%, virtual 1.0%, measur 1.0%, real 0.9%, grid 0.8%

<u>Discriminating:</u> imag 10.7%, camera 3.1%, sub 3.1%, match 2.5%, ccd 1.9%, scene 1.4%, vision 1.2%, imag.match 1.0%, control 0.9%, correct 0.8%, object 0.8%, sup 0.7%, model 0.6%, sub.sub 0.6%, grid 0.5%

Focuses on image cameras and image matching for change detection analysis applications.

Cluster 237,

Size: 80, ISim: 0.050, ESim: 0.006

<u>Descriptive:</u> design 50.0%, system 2.1%, architectur 1.3%, robot 0.8%, product 0.8%, model 0.7%, compon 0.7%, system.design 0.6%, paper 0.6%, parallel 0.6%, platform 0.6%, framework 0.5%, object 0.4%, collabor.design 0.4%, design.design 0.4%

<u>Discriminating:</u> design 30.9%, sub 2.6%, measur 1.0%, imag 0.9%, control 0.7%, sup 0.6%, architectur 0.6%, algorithm 0.6%, temperatur 0.6%, sub.sub 0.5%, equat 0.5%, solut 0.4%, system.design 0.4%, surfac 0.4%, network 0.4%

Focuses on design, primarily that of systems and architectures.

Cluster 238,

Size: 119, ISim: 0.050, ESim: 0.006

<u>Descriptive:</u> algorithm 62.2%, vector 0.7%, comput 0.7%, algorithm.algorithm 0.6%, learn 0.6%, fast 0.6%, new 0.4%, aft 0.4%, paper 0.4%, signal 0.3%, imag 0.3%, process 0.3%, speed 0.3%, algorithm.comput 0.3%, rule 0.2%

<u>Discriminating:</u> algorithm 38.4%, sub 3.1%, system 1.3%, measur 1.0%, model 0.9%, control 0.8%, sub.sub 0.6%, solut 0.6%, temperatur 0.5%, structur 0.5%, algorithm.algorithm 0.5%, equat 0.5%, sup 0.4%, surfac 0.4%, design 0.4%

Focuses on algorithms such as vector, computation, and learning.

Cluster 239,

Size: 66, ISim: 0.050, ESim: 0.006

<u>Descriptive:</u> algorithm 36.0%, new.algorithm 5.9%, converg 3.0%, new 2.9%, estim 1.7%, iter 1.7%, sort 1.3%, error 1.1%, paper.new 0.5%, model 0.5%, bin 0.4%, linear 0.4%, simul 0.4%, paramet 0.4%, paper 0.4%

<u>Discriminating:</u> algorithm 19.1%, new.algorithm 4.4%, sub 2.7%, converg 1.7%, system 1.7%, measur 1.0%, iter 1.0%, sort 1.0%, estim 1.0%, imag 0.7%, control 0.7%, solut 0.6%, sub.sub 0.6%, sup 0.5%, equat 0.5%

Focuses on algorithms (new & convergence) primarily used for estimation.

Cluster 240,

Size: 48, ISim: 0.049, ESim: 0.006

<u>Descriptive:</u> frequenc 12.3%, reson 8.9%, wave 4.5%, caviti 3.2%, reson.frequenc 2.9%, scatter 1.7%, coupl 1.4%, nois 1.1%, imped 1.0%, modul 0.9%, mode 0.7%, vibrat 0.7%, sourc 0.7%, stand 0.7%, elast 0.7%

<u>Discriminating:</u> frequenc 6.6%, reson 5.8%, sub 2.8%, reson.frequenc 2.1%, wave 2.1%, caviti 2.1%, system 1.3%, algorithm 1.0%, control 0.9%, scatter 0.9%, imag 0.7%, sup 0.6%, measur 0.6%, coupl 0.6%, model 0.6%

Focuses on applications and characterization of resonance frequency and wave analysis.

Cluster 241,

Size: 61, ISim: 0.047, ESim: 0.004

<u>Descriptive:</u> china 39.8%, year 2.7%, technolog 1.9%, countri 1.2%, advanc 1.2%, scienc 1.0%, paper 0.9%, applic 0.8%, bauxit 0.7%, product 0.7%, introduc 0.7%, summar 0.6%, batteri 0.5%, logist 0.5%, develop 0.5%

<u>Discriminating:</u> china 24.0%, sub 2.5%, system 1.5%, year 1.5%, technolog 1.0%, algorithm 0.9%, measur 0.9%, model 0.8%, imag 0.8%, control 0.8%, countri 0.8%, advanc 0.6%, sup 0.5%, data 0.5%, time 0.5%

Focuses on elements of transportation (urban, country) in China, such as traffic, safety studies, roads, plans, and demand.

Cluster 242,

Size: 39, ISim: 0.048, ESim: 0.005

<u>Descriptive:</u> rocket 8.6%, bear 5.7%, wave 5.6%, motor 4.5%, projectil 2.5%, thrust 1.8%, structur 1.2%, layer 1.1%, veloc 1.0%, acceler 0.9%, materi 0.8%, rocket.motor 0.8%, ultrason 0.7%, helix 0.6%, section 0.6%

<u>Discriminating:</u> rocket 6.2%, bear 3.8%, motor 3.0%, sub 2.9%, wave 2.6%, projectil 1.7%, system 1.3%, thrust 1.3%, algorithm 1.0%, measur 0.9%, imag 0.8%, control 0.6%, sup 0.6%, rocket.motor 0.6%, time 0.6%

Focuses on items (e.g. rocket motors, thrust, acceleration, ultrasonics) that produce waves causing damage and/or requiring compensation to structures and materials.

Cluster 243,

Size: 37, ISim: 0.048, ESim: 0.006

<u>Descriptive:</u> machin 14.0%, oper 6.1%, system 4.6%, paper 3.8%, part 2.6%, machin.system 1.4%, postal 1.3%, gener 1.0%, precis 1.0%, straighten 1.0%, evacu 1.0%, seek 0.9%, machin.tool 0.8%, burr 0.8%, biomateri 0.8%

<u>Discriminating:</u> machin 9.0%, sub 3.0%, oper 2.7%, part 1.3%, machin.system 1.0%, postal 1.0%, imag 0.8%, algorithm 0.8%, straighten 0.7%, evacu 0.7%, sup 0.6%, control 0.6%, seek 0.6%, machin.tool 0.6%, burr 0.6%

Focuses on applications of machine system operations.

Cluster 244,

Size: 47, ISim: 0.048, ESim: 0.006

<u>Descriptive:</u> acceleromet 12.1%, compens 6.1%, voltag 2.9%, capacit 2.8%, measur 2.6%, test 2.2%, circuit 2.1%, micro 1.2%, rocket 1.1%, sensit 1.0%, frequenc 0.9%, high 0.9%, linear 0.8%, precis 0.8%, vibrat 0.8%

<u>Discriminating:</u> acceleromet 9.5%, compens 4.2%, sub 3.2%, capacit 2.0%, system 1.5%, voltag 1.5%, algorithm 1.1%, imag 1.0%, circuit 0.8%, rocket 0.8%, control 0.7%, model 0.7%, micro 0.7%, sub.sub 0.6%, solut 0.6%

Focuses on precision measurements and testing (using accelerometers) for compensation. Possible applications with rockets and microcircuits.

Cluster 245,

Size: 78, ISim: 0.046, ESim: 0.007

<u>Descriptive:</u> error 26.6%, measur 10.3%, precis 4.6%, accuraci 2.7%, posit 2.5%, probe 1.3%, system 0.9%, error.measur 0.8%, motion 0.7%, estim 0.7%, posit.error 0.6%, micromet 0.6%, round.error 0.6%, principl 0.5%, test 0.5%

<u>Discriminating:</u> error 18.7%, measur 3.5%, sub 3.1%, precis 2.8%, accuraci 1.4%, posit 1.1%, algorithm 1.1%, model 0.9%, probe 0.8%, sup 0.7%, control 0.7%, error.measur 0.6%, sub.sub 0.6%, network 0.6%, equat 0.6%

Focuses on precision measurements to reduce measuring errors.

Cluster 246,

Size: 67, ISim: 0.045, ESim: 0.006

<u>Descriptive:</u> temperatur 35.1%, heat 3.8%, degre 2.7%, dry 2.3%, low.temperatur 1.6%, high.temperatur 1.6%, cool 1.1%, transit 0.9%, low 0.8%, thermal 0.8%, materi 0.7%, breakdown 0.6%, ga 0.6%, rate 0.5%, high 0.5%

<u>Discriminating:</u> temperatur 20.8%, sub 2.3%, system 2.0%, heat 1.8%, dry 1.5%, low.temperatur 1.1%, high.temperatur 1.1%, algorithm 1.0%, degre 1.0%, imag 0.9%, model 0.9%, control 0.9%, paper 0.8%, cool 0.7%, data 0.5%

Focuses on elements of temperature such as heat, degree, rates, and high/low thresholds.

Cluster 247,

Size: 51, ISim: 0.045, ESim: 0.006

<u>Descriptive:</u> equat 26.6%, matrix 1.6%, boundari 1.5%, solv 1.3%, integr.equat 1.2%, implicit 1.2%, nonlinear 1.2%, deriv 0.8%, solut 0.8%, linear 0.7%, potenti 0.7%, constrict 0.6%, dynam.equat 0.6%, non 0.6%, boundari.integr.equat 0.6% <u>Discriminating:</u> equat 15.2%, sub 3.1%, system 1.2%, measur 1.0%, imag 1.0%, control 0.9%, implicit 0.9%, integr.equat 0.8%, solv 0.8%, matrix 0.7%, sup 0.7%, boundari 0.6%, model 0.6%, sub.sub 0.6%, time 0.5%

Focuses on equations, primarily associated with matrices, boundaries, and nonlinear.

Cluster 248,

Size: 44, ISim: 0.044, ESim: 0.006

<u>Descriptive:</u> carlo 4.7%, mont 4.6%, mont.carlo 4.0%, distribut 3.0%, model 2.4%, mean.field 1.9%, simul 1.6%, surfac 1.4%, carlo.simul 1.3%, mont.carlo.simul 1.3%, densiti 1.3%, transport 1.2%, paramet 1.2%, mean 1.2%, mean.field.theori 1.0% <u>Discriminating:</u> carlo 3.6%, mont 3.5%, sub 3.0%, mont.carlo 3.0%, system 1.6%, mean.field 1.5%, control 1.0%, imag 1.0%, carlo.simul 1.0%, mont.carlo.simul 1.0%, distribut 1.0%, algorithm 0.9%, measur 0.9%, mean.field.theori 0.8%, transport 0.7%

Focuses on elements of monte carlo simulations, such as random samples for probablistic/statistical calculations.

Cluster 249,

Size: 51, ISim: 0.044, ESim: 0.007

<u>Descriptive:</u> sub 25.5%, delta 3.3%, crack 2.1%, delta.sub 1.5%, pressur 0.9%, coal 0.8%, piezoelectr.materi 0.8%, element 0.5%, sampl 0.5%, photosynthesi 0.5%, fractal 0.5%, creep 0.5%, sub.infin 0.5%, area 0.4%, loss 0.4%

<u>Discriminating:</u> sub 8.3%, delta 2.4%, system 2.3%, crack 1.3%, delta.sub 1.2%, algorithm 1.2%, imag 1.1%, model 0.9%, control 0.7%, paper 0.6%, piezoelectr.materi 0.6%, design 0.6%, sup 0.5%, new 0.5%, structur 0.5%

Focuses on characterization of delta's (changes) of phenomena such as cracks, pressure, and creep in materials (e.g. piezoelectric materials).

Cluster 250,

Size: 59, ISim: 0.043, ESim: 0.007

<u>Descriptive:</u> system 9.7%, bu 3.6%, modul 3.2%, devic 2.6%, speed 2.3%, channel 2.2%, high 1.9%, circuit 1.8%, pci 1.6%, data 1.6%, signal 1.5%, design 1.5%, high.speed 1.2%, fpga 1.1%, mpeg 1.1%

<u>Discriminating:</u> sub 3.4%, bu 2.8%, modul 1.8%, system 1.7%, model 1.5%, devic 1.4%, pci 1.4%, channel 1.2%, speed 1.1%, imag 0.9%, mpeg 0.9%, fpga 0.9%, cdma 0.8%, high.speed 0.8%, algorithm 0.8%

Focuses on elements of a system controlled by power (e.g. buses, modules, devices).

Cluster 251,

Size: 92, ISim: 0.042, ESim: 0.007

<u>Descriptive:</u> sub 53.6%, reaction 0.6%, maa.sub 0.5%, sub.sub 0.5%, temperatur 0.5%, beta 0.5%, phase 0.5%, water 0.5%, maa 0.5%, molecular 0.4%, polymer 0.3%, surfac 0.3%, compound 0.3%, structur 0.3%, alloi 0.3%

<u>Discriminating:</u> sub 27.9%, system 2.1%, model 1.1%, imag 1.1%, algorithm 0.9%, paper 0.8%, control 0.7%, measur 0.7%, network 0.6%, design 0.6%, data 0.6%, equat 0.5%, maa.sub 0.5%, function 0.5%, signal 0.5%

Focuses on reaction properties of compounds.

Cluster 252,

Size: 49, ISim: 0.041, ESim: 0.006

<u>Descriptive:</u> model 21.0%, system 8.3%, brush 1.1%, amsaa 1.0%, amsaa.bise 0.7%, bise 0.7%, concept 0.7%, inositol 0.7%, optim 0.6%, queue.model 0.6%, characterist 0.6%, railwai 0.6%, nutrient 0.6%, structur 0.6%, cosmo 0.6% <u>Discriminating:</u> model 8.6%, sub 3.0%, measur 1.2%, system 1.1%, imag 1.0%, brush 0.9%, control 0.8%, amsaa 0.8%, algorithm 0.8%, sup 0.6%, amsaa.bise 0.6%, bise 0.6%, sub.sub 0.6%, equat 0.5%, two 0.5%

Focuses on modeling systems such as AMSAA-BISE growth model for multiple systems.

Cluster 253,

Size: 90, ISim: 0.038, ESim: 0.006

<u>Descriptive:</u> measur 46.8%, test 0.8%, system 0.8%, machin 0.7%, circuit 0.7%, principl 0.7%, displac 0.6%, new 0.5%, veloc 0.4%, accuraci 0.4%, high 0.4%, paramet 0.4%, explos 0.3%, piv 0.3%, time 0.3%

<u>Discriminating:</u> measur 28.4%, sub 3.4%, algorithm 1.1%, imag 1.0%, control 0.9%, model 0.9%, sup 0.7%, sub.sub 0.6%, system 0.6%, solut 0.5%, structur 0.5%, network 0.5%, design 0.4%, equat 0.4%, distribut 0.3%

Focuses on measurements.

Cluster 254.

Size: 61, ISim: 0.037, ESim: 0.006

<u>Descriptive:</u> model 17.7%, simul 8.4%, mathemat.model 2.9%, mathemat 2.5%, experiment 1.1%, fractal 1.0%, test 1.0%, numer 1.0%, thermal 0.9%, model.simul 0.8%, experi 0.7%, droplet 0.7%, car 0.7%, set 0.6%, data 0.6%

<u>Discriminating:</u> model 6.9%, simul 3.6%, sub 3.3%, mathemat.model 1.9%, mathemat 1.4%, system 1.4%, imag 1.1%, algorithm 1.0%, control 1.0%, measur 0.6%, network 0.6%, sub.sub 0.6%, solut 0.6%, model.simul 0.6%, design 0.6%

Focuses on math modeling & flow simulation.

Cluster 255,

Size: 54, ISim: 0.036, ESim: 0.006

<u>Descriptive:</u> calcul 11.4%, energi 3.1%, test 2.7%, theori 2.3%, basi 2.0%, dynam 1.8%, paramet 1.7%, consumpt 1.4%, pss 1.3%, model 1.3%, point 1.3%, engin 1.2%, curv 1.0%, energi.consumpt 1.0%, theoret 0.8%

<u>Discriminating:</u> calcul 6.8%, sub 3.2%, energi 1.3%, system 1.1%, pss 1.1%, imag 1.0%, basi 0.9%, consumpt 0.9%, measur 0.9%, control 0.9%, energi.consumpt 0.8%, engin 0.8%, algorithm 0.7%, theori 0.7%, piston 0.6%

Focuses on calculations, applied to energy, theory, dynamics, and models.

Table A10C-1. Base Clusters of Cluto 256-Cluster Analysis (EC 2000-2003)

Based On ==>		CLUTO			
DATA SOURCE ==>		ENG COMPENDEX			
# ITEMS ==>		256 CLUSTERS			
CLUSTER#	# RECORDS	DESCRIPTION			
0	27	imaging watermarks (embedding & detecting).			
1	11	surface flashover phenomena & trap distribution associated with alumina ceramics for insulators.			
2	23	characteristics associated with fluidization studies of beds, separation, coal, mediums, jig, densities.			
3	15	GIS (Geographic Information Systems) example uses for mapping of geothermal resources.			
4	16	nanowires.			
5	17	studies predicting outbursts of rocks (coal) & gases (methane) by monitoring Electromagnetic Emissions/Radiation (EME/EMR).			
6	15	deformation of bolts and anchoring them to rocks & trusses (applications - mines & bridges).			
7	132	properties of compounds such as crystals and glass, such as temperature, magnetic, superconductivity and structures.			
8	16	supply chain manufacturing (scm) and enterprising.			
9	13	characterizing the effects of nucleation on the crystalization behavior of polymer			

		materials such as polypropylene (PP) and polyoxymethylene (POM).			
10	23	support of roofs in mines (coal) and caves.			
		solutions related to position, such as existence, boundaries, and nonlinear			
11	31	solutions.			
12	23	carbon nanotubes.			
13	26	artificial neural networks (ANN).			
14	15	loading on gears and gear teeth.			
15	22	characterizing flame retardants and thermal degradation.			
16	20	things (non-mechanical) such as magnetic fields that cause changes in properties of materials (e.g. MnO).			
17	20	adsorption, adsorbtion, and desorption properties of dyes and tea.			
18	29	primary properties used to characterize copolymers such as molecular weight distribution.			
19	23	radial basis function (rbf) and neural networks.			
20	21	wavelet packet transform.			
21	34	studies of types of nanocomposites such as clay, Montmorillonite [MMT], and graphite oxides.			
22	30	synthetic aperature radar (SAR) imaging.			
23	15	blind signature schemes in cryptographic communications.			
24	19	wavelet transforms applied tp edge detection.			
25	23	deinking of pulp and newsprint applied to papermaking process (the process of deconvolving discrete states).			
26	29	differential equations such as impulse, oscillatory, and 2nd-order equations.			
27	33	content & object-based image retrieval techniques.			
28	28	edge detection imaging techniques.			
29	19	types of image encoding and decoding techniques such as compression and fractals.			
30	20	blasting and its effects on the strata movement of structures in mines.			
31	30	bending moments to ship hulls and girders.			
32	22	mapping of inequality spaces such as multivalue, multivariant, and Banach Spaces.			
33	18	elements of algebra such as Lowen functors and Lie-algebra that are used in mapping and joining of subspace lattices.			
34	50	entangled (or mixed) states of elements that can be decomposed from systems such as quantum states of atoms and photons.			
35	35	elements of the web/internet.			
36	25	image reconstruction used in fields like tomography and holography.			
37	40	elements of enterprises, such as virtual, coal, marketing, partners, competition, cooperation, benefits, knowledge, innovation, and economics.			
38	26	aspects related to trains, such as railways, cargo (freight, passenger), optimization, and speed.			
39	39	aspects related to oscillation such as delay difference equations, criteria, and conditions.			

	1	_		
40	23	elements of transportation (urban, country) in China, such as traffic, safety studies, roads, plan, and demand.		
41	53	periodic solutions, such as existence, theorem, coincident, and nonlinear periodic solutions.		
		methods for establishing bounds (such as Drazin inverse, upper, and lower) of		
42	21	linear things.		
43	25	settlements of soils (ground, piles, foundations, water, sea, frost/frozen soil).		
44	26	segmentation imaging primarily associated with lines, such as palmprints & handwritting identification.		
45	26	damage from cracks and fatigue.		
46	31	mechanics, kinetics, and properties of preparing blends like epoxys & resins of poly-based materials (e.g. curing, crosslinking).		
47	19	characterizing the thermal conductivity of shape stabilized Phase Change Materials (PCM's) such as paraffin.		
48	25	intelligent control systems.		
49	25	Methods of applying coatings to larger things such as grains, bones, and alloys (e.g. arc-spraying & implantation).		
50	29	image pattern recognition primarily associated with facial recognition (biometrics).		
51	34	Multimode Network Theory applied to dielectric & millimeter antenna wave guides.		
52	26	types of error measurements (caused by interference) such as angle, error, diffraction, Moire.		
53	31	encoding and decoding (turbo-code, Reed-Solomon codes, CDMA).		
54	50	pulp and bleach as applied to the papermaking process. Representative of specific elements used in decomposing.		
55	22	imaging tissue using tomographic imaging, ultrasound, and photoacoustic techniques.		
56	30	elements affecting land cover, such as vegetation, oasis (Kenya), desertification, arid, and ecology.		
57	38	equations and soliton solutions (e.g. waves, exact, and nonlinear solutions).		
58	30	error measurement calibration.		
59	26	types of drive, such as systems, motors (reluctance & induction), and controls.		
60	35	property studies of SiO & TiO (rutile) substance coatings.		
61	32	image compression techniques, primarily wavelets, and coder, coefficient matching.		
62	41	things annotated with the words "times" (meaning multiplication) & "sup" (textual description to denote that a number as a superscript), that are primarily associated with MOLs in chemical concentration formulas.		
63	38	neural network methods used in expert systems fault diagnositics.		

	1			
64	18	properties of lasers & fiber optic materials, such as birefringence (light refraction in an anisotropic material) and polycyclic aromatic hydrocarbons (PAHs).		
65	20	scheduling of coal plants, production, and machines. Operating characteristics & things to enable the use of these systems.		
		methods to improve the gain of fiber optics (i.e. pumping, raman amplifiers,		
66	34	doping, and reducing dispersion).		
	31			
67	24	types of micro antennas (Patch & Microstrip) and micromachining techniques.		
68	20	methods for establishing bounds of non-linear things, e.g. Bezier curve, and weakest bound electron potentials.		
69	25	mechanical properties of ceramics such as sintering, and powder lubrication.		
70	22	studies for advancing China's coal mining capacity (New 5yr Plan), such as identifying coal resources, systems (flotation, crushing, machines), and economics.		
71	42	characterization of thin films.		
72	28	characterizing the ignition & spread of fire.		
		things annotated with the words BETA & SUP (textual description to denote that a number as a superscript), primarily associated with characterization		
73	46	studies of ion-doped materials using laser pumps (i.e. things that cause action).		
74	24	types of millimeter wave guides (e.g. Helical-grooved).		
/ -	24	types of manneter wave gardes (e.g. menear greeved).		
75	31	characterizing combustion properties, such as heat release and burn rates.		
76	26	analyses and effects on membranes associated with blood & cell studies, and biosensors.		
77	77	the wear of surfaces of composites and steel, primarily from friction.		
78	24	digital signal processing for applications with voice, fpga, and high-speed processes.		
79	22	chains, (primarily polymer and molecular chains) and things associated with them such as adsorption, solvents, and coils (their shapes).		
80	25	corba servers, clients, architectures (applications) related to the internet.		
81	37	aspects associated with elliptical solutions such as semilinear equations, existence, and uniqueness.		
	31	-		
82	34	methods of deposition on smaller things such as diamond films, filaments, and substrates (e.g. chemical vapor depostion).		
83	30	security, such as protocols against attack(er) and public keying for authentication.		
84	56	strength and fracture characteristics of rock masses (for use in mining applications).		
85	40	crystal formation and morphology.		
86	25	structural heat transfer mechanisms such as tubes and fins.		
	43	Structural near transfer incommissing such as tubes and fine.		

		associations with gas and accumulating it, such as fields (reservoirs, basins),		
87	23	Jurassic periods, coal, and geochemistry.		
88	53	multi-agent systems.		
89	28	things associated with nuclear power plants and reactors, such as fuel cycles, accidents, and design.		
90	26	elements of a market, such as contracts, risk, stocks, generation, customs, schedules, transactions, and transmission. Note, taxonomy similiar in electric & stock markets, but emphasis is on power generation.		
91	81	nanorods.		
92	45	methods of growing films and depositing them on substrates.		
93	39	things associated with stabilization analysis (e.g. system stability, asymptotic stability, time delays).		
94	31	quantum states of hyperspheres, systems, orbits, and quantum key distribution (qkd). Note, these are representative of things that can be decomposed into discrete states.		
95	77	things annotated with the words SUP & SUB (textual descriptions to denote that numbers as subscripts & superscripts), primarily associated with the characterization of states/transition states of elements (e.g. ions/ionization).		
96	30	chaos theory used in bifurcation, stocastic, and non-linear problems.		
97	64	genetic algorithms.		
98	21	characterizing the thermal conductivity of electrolyte composite materials durin explosions.		
99	23	major project elements associated with safety from accidents, fire, hydropower construction (eg. Three Gorges Project), economics, and capital.		
100	22	oil uses (lubrication, desalting, petrochemical industry - organic), contents, extraction, and types (crude, tea).		
101	22	things that cause landslides, such as earthquakes, tectonic shifts, slope, and drilling.		
102	37	mechanisms of knowledge based systems (Cased-Based Reasoning, Rule-Based Reasoning).		
103	38	Feedback Control Systems (chaotic, non-linear, closed loop).		
104	30	things that rely on sufficient conditions, such as systems stability & control systems.		
105	46	study of coal gasification in mines, underground and seams.		
106	25	properties of reactors primarily associated with chloration and dechlorination processes used to remove pollutants from water/liquids. Representative of liquid reactions.		
107	32	elements of bids/bidding (eg. power generation), such as price/cost, unit, market, reserve, constraints, and margins.		
108	31	characterization of glass, such as phosphate glass and glass beads.		
109	21	elements of encoding/decoding to be compressed (e.g. bits, video, code).		

110	23	types of circuits (e.g. arc-discharging, models).			
		things to enable the use of systems, such as transactions, workflow, and			
111	23	cooperation.			
112	66	fuzzy neural network theory.			
113	43	principles of catalysts and catalytic processes/materials.			
114	51	control system algorithms (Fuzzy Control, Proportional Integral Derivative [PID] Control).			
115	49	characterizing the microstructure properties of alloys, such as shape memory effect (SME), bonding, and strength.			
116	23	sustaining the ecology/environment of forests and soils due to mining.			
117	22	fatigue damage (corrosion & cracks), primarily to stainless steel from tritium. Applications to nuclear power reactors.			
118	30	elements and properties of dielectric waveguides.			
119	32	theorems used in mapping spaces (existance, fix-point).			
120	25	detecting objects, contours, & motion in video and color images.			
121	22	studies of neutron flux density behaviors in different mediums.			
122	43	mobile networks (wireless), protocols, and quality of service.			
122	1.5	wavelet transform used in signal detection and frequency & time applications			
123	75	(primarily non-imagery).			
124	29	strain and strain rate of materials, steel, and walls (also shear stress).			
125	34	characterization of turbulence, primarily wake flow turbulence.			
126	29	elements of power switches and power converters.			
127	107	aspects of neural networks, such as learning, recurring, training, and algorithms.			
128	38	polymers and polymerization (e.g. Methyl Methacrylate [MMA]), primarily things used to create copolymers.			
129	23	extraction and degradation of phenol solutions from wastewater, resins, and pollution.			
130	56	types of mining, such as coal, data, and information mining.			
131	25	modeling and characterization of shear and plastic deformation, primarily with frozen walls.			
	<u> </u>	remote sensing imaging (classification, spectral bands, hyperspectral,			
132	48	information, and pixels) of land.			
133	22	learning, perceptron, classification, and neural networks.			
134	35	channels and receivers (CDMA, Estimation, Rake Receiver, Blind Adaptation).			
135	33	terms associated with matrices (e.g. sequencing, non-singular, linear, rank).			
136	49	differential equations (ordinary, partial).			
137	55	signal to noise ratios (SNR).			
138	49	the use of transmission electron microscopy (TEM) primarily used to characterize grain diffraction, powders, and nanostructures.			
139	58	uses of fiber optics and lasers, such as fiber optic sensors, fiber lasers, and lasers.			

140	20	adaptive control system, primarily predictive, robust, and non-linear systems.		
140	38 41	robotic control.		
142	22	characterizing surface roughness, primarily spherical surfaces.		
143	28	characteristics associated with size and size distribution, primarily related to small particles (e.g. nanoparticles, powders, pores, liposomes, & membranes).		
144	50	companies doing marketing research for knowledge development, such as Alcatel, and Asia-Pacific. Some relation to PCC (Passive Containment Cooling).		
145	98	things that affect the reactions of compounds and crystals such as temperature.		
146	27	mechanical behavior of thick and thin plate elements.		
147	29	things that flow such as fluid, cars, traffic, and pedestrians.		
148	47	studies of types of copolymers, such as the grafting processes used to create them.		
149	46	physics of reinforcement for fibers, composites, polypropylene, concrete, and glass.		
150	39	aspects of boundaries, such as solutions, existence, and boundary conditions.		
151	25	characterizing reactions and catalyst involving hydrogen and dimethyl carbonate (DMC), i.e gas reactions.		
152	50	vibrational analysis primarily due to wind and engines. Applications could include naval ships & missile launchers.		
153	20	using various mathematical methods to join things such as geometric spaces (e.g. lass, poisson, parabolic, and symplectic).		
154	43	systems tests (primarily automated) for design, calibration, and precision.		
155	36	characterizing polymers.		
156	58	types of pulses (laser, reactor, width).		
157	31	aspects of iterative equations and solutions, such as convergence, homotopy, and analytical & inverse solutions.		
158	54	aspects of wavelets used in signal processing.		
159	33	properties of liquied and flow that can be measured and analyzed (e.g. shear, pressure, melt, and viscosity).		
160	29	power controller (eg. reactive power) for circuits primarily associated with communications.		
161	34	characterizing sulfer and rare earth compounds using spectroscopic techniques.		
162	45	digital noise filters, primarily for filtering noise out of digital speech applications (eg. Kalman filter).		
163	28	effects of squeezing current.		
164	42	feature extraction from images and audio, such as texture, fingerprints, and froth found in coal mixtures.		

165	30	characteristics of reactions and synthesis involving alcohols and esters (prindenoted with the term "Beta.'		
166	40	elements of information systems such as sharing, specifications, data, standards, and design (CAPP System).		
167	38	characterizing fluorescence spectra resulting from electron transfer primarily from naphthalimid (acid) donor compounds.		
168	32	types of structural damage such as buckling and axial compression caused by pressures, primarily of cylinder shell structures. Possible applications include artillery shells.		
169	34	network paths and optimization algorithms.		
170	27	software sub-graph matching techniques, primarily used in wastewater removal applications and analysis.		
171	32	modeling and forecasting of loading, primarily on pipes.		
172	28	equations primarily associated with perturbations, fluid, wave, beam, nonlinear, and equations of state.		
173	31	characteristics of reactions involving ketones, alkyls, aromatics, and olefins.		
174	38	virtual instruments for measuring and diagnosis of systems and software.		
175	28	elements and properties of radiation (hard X-Rays & electrons) used to characterize things like plasmas and crystals.		
176	72	characterization of different films.		
177	31	elements of databases (data warehouses & object oriented databases), such as models and data distribution.		
178	26	mobile communication systems (automatic, wireless, cdma, and distribution).		
179	65	types of beams (e.g. Gaussian, pulse and laser) and their propagation characteristics.		
180	51	types of particles (e.g. nano, magnetic, composite, and microspheres).		
181	35	properties and characteristics associated with electro and chemical reactions (e.g. hydrolysis) of catalysts like enzymes.		
182	30	things that occur with oxidation/oxides such as catalysts.		
183	39	characteristics of shock and vortexes (primarily from explosions and over pressures).		
184	47	calculations of stress for fracture analysis and prediction (applied to mine shaf bridges, etc.).		
185	39	things primarily annotated with the words "omega", "center dot," and "sub" (textual description to denote that a number as a subscript), primarily associated with characterization studies of crystals such as PbWO & YVO.		
186	34	applications of virtual reality systems, such as assembly, tracking, and training.		
187	70	applications of finite element modeling primarily applied to structure analysis.		
188	44	image segmentation primarily for areas/regions.		

189	48	use of irradiation to fabricate nanocrystals.			
190	104	image processing.			
191	39	characterizing magnetic and electric fields, primarily associated with small electronic devices.			
192	30	real-time control applications (traffic, networks, ethernet). Possible military applications include UAV control and tracking multiple small high speed objects.			
193	44	elements of electronic devices/equipment, primarily voltage, and others such as current, phase, modulation, and charge.			
194	27	methods of detecting and assaying DNA, charges, and endotoxins.			
195	34	characterizing chemical and mechanical properties of rubber and polyurethane materials.			
196	38	testing of strain and stress fatigue and their rates on things like concrete & welds.			
197	38	tings used in nanocomposites such as foams, resin, poly-based materials and hyperbranched structures.			
198	61	network security, protocols, and reliability of things such as optic switches.			
199	42	software systems, such as their design and tools.			
200	38	algorithm, graphs, layout, and placement.			
201	71	control systems (e.g. simulated, measurement, and dynamic).			
202	50	hardware and software systems design.			
203	41	measuring uncertainties with interferometrics, and fiber optics.			
204	49	ecology effects on china water resources (rivers [Yellow River], wetlands, and lakes) from climate, pollution, and fertilizers.			
205	47	signals, primarily their frequency & time domains.			
206	53	heat transfer methods and modeling.			
207	38	instruments for measuring/monitoring accuracies.			
208	63	elements associated with production, such as marketing, manufacturing, cost, demand, capacity, design, economics, benefits, product lines, concurrance, and models.			
209	26	systems (e.g pipelines, data, and vehicles), methods of inspecting and testing them.			
210	38	characterizing properties (primarily strength, creep, mechanical, and pozzolanic) of composites such as starch, silk, cement, slurries, and steel.			
211	72	measuring systems such as lasers and precision measurements.			
212	31	key elements looked at for experimentation of nuclear power plants accidents such as core, fuels, pressure, seals, and explosions.			
213	34	characterizing the formation of zinc oxide and liquid crystals.			
214	32	various mathematical functions and their elements used in combinatorial math (boolean, scaling, and interpolation functions).			
215	75	types of lasers (pump, diode, beam, and optic).			
216	35	characterization of composite material properties.			

217	37	properties of elements that go thru optics such as photons (wavelength, diffraction, scatter) and aerosols.			
218	45	elements of CMOS, circuits and microprocessors architectures.			
219	49	solutions (primarily asymptotic) such as existence, approximate, general, nonlinear.			
220	34	things such as phase, fringe patterns, and surfaces that can be measured for their interference errors.			
221	46	optic and optical properties solids.			
222	29	formulas to calculate changes in body shapes due to force and movement.			
223	41	properties of silicon and oxide materials used in substrates and wafers.			
224	61	non-real-time control applications (e.g. assessing control models & systems).			
225	44	analyses of effects of acids, proteins, and lignans on cell walls, to include concentrations and extraction methods.			
226	76	methods of flow (rates & phase) analysis.			
227	83	sensor measurements.			
228	36	net design, for example the Petri-Net Model (P-Net) used for system analysis & design.			
229	60	things annotated with the word "sup" (textual description to denote that a number as a superscript), but primarily things that are measured such as ionization & activation energies of atoms (i.e things that are affected by actions)			
230	43	data fusion, its elements (information, decisions, data), systems (sensors), models, and applications (monitoring, locating, robotics, speech recognition).			
231	38	chaotic theory (e.g. Poincare Map & Birkhoffian models).			
232	50	algorithms such as optimized matching algorithms, used in searching fingerprint databases.			
233	53	navier stokes equations and solutions used in turbulence flow analysis.			
234	47	modeling & simulation.			
235	39	uses of lasers and plasmas to help extract or absorb elements.			
236	60	image cameras and image matching for change detection analysis applications.			
237	80	design, primarily that of systems and architectures.			
238	119	algorithms such as vector, computation, and learning.			
239	66	algorithms (new & convergence) primarily used for estimation.			
240	48	applications and characterization of resonance frequency and wave analysis.			
241	61	elements of transportation (urban, country) in China, such as traffic, safety studies, roads, plans, and demand.			
242	39	things (e.g. rocket motors, thrust, acceleration, ultrasonics) that produce wave causing damage and/or requiring compensation to structures and materials. Potential application to a New Concept Submarine}			

243	37	applications of machine system operations.		
244	47	precision measurements and testing (using accelerometers) of things for compensation. Possible applications with rockets and microcircuits.		
245	78	precision measurements to reduce measuring errors.		
246	67	elements of temperature such as heat, degree, rates, and high/low thresholds.		
247	51	equations, primarily associated with matrices, boundaries, and nonlinear.		
248	44	elements of monte carlo simulations, such as random samples for probablistic/statistical calculations.		
249	51	characterization of delta's (changes) of things such as cracks, pressure, and creep in materials (e.g. piezoelectric materials).		
250	59	elements of a system controlled by power (e.g. buses, modules, devices).		
251	92	reaction properties of compounds.		
252	49	modeling systems such as AMSAA-BISE growth model for multiple systems.		
253	90	things requiring measurements (tests, systems, & machines), for example high.		
254	61	math modeling & simulation (for applications) for flow of things.		
255	54	things calculated such as energy, theory, dynamics, and models.		

Appendix 10D – Cluto Taxonomy

- -Engineering Compendex
- -256 Clusters

454/503

-2000-2003 Database

The taxonomy of this EC 2000-2003 data set was derived from the data shown in Appendix 10C (Cluto EC 256-cluster run). Figure A10D-1 (also Figure 5 of the Text) below, shows the top level taxonomy of levels 0-4. In the figure below, the numbers in parentheses represent the number of records (abstracts) associated with that particular cell. The number in brackets represents the percentage of the number of records of the particular cell to the overall number of records 9949 possible).

Figure A10D-1. Partitional Document Clustering (CLUTO) Taxonomy Levels 0-4 (Engineering Compendex, 256 Clusters, year 2000-2003)

LEVEL 0	LEVEL 1	LEVEL 2	LEVEL 3	LEVEL 4
(9949) - Engineering Sciences		(3902) - Cybernetics	(3178) - Power & Systems Engineering	(852) - Power/Energy Market Enterprises [8.6%]
[100%]			[31.9%]	(2326) - Systems Theory [23.4%]
		& Systems Engineering [39%]	(724) - Networks & algorithms (neural, comms, mobile, wireless, genetic)	(387) - networks neural, communications, mobile, wireless [3.9%]
	(4721) - Computer	[37/0]	[7.3%]	(337) - algorithms - genetic, (adaptable, learning, smart) [3.4%]
	Sciences [47%]	(819) - Signal Processing (image, digital, wavelets) [8%]	(511) - Image Processing (detection & embedding) [recognition, matching, retrieval,	(339) - image processing (reconstruction, matching, retrieval, & segmentation) [for similarities] [3.4%]
			segmentation] [5.1%]	(172) - image processing and watermarks (detecting & embedding) [for differences] [1.7%]
			(308) - Signal Processing (wavelets & digital	(182) - wavelets in imaging & non-imaging signals [1.8%]
			signal processing) [3.1%]	(126) - digital signal processing to extract signals [1.3%]
	(5228) - Physical	Sciences [sub- ystems] 53%] (3477) - Materials Science & Mathematics [35%] (1751) - Chemistry &	(474) - Mathematics (Solutions & Equations) [4.8%]	(209) - Solutions (Periodic & Non-periodic) [2.1%]
	systems]			(265) - Equations [2.7%]
	[53%]		(3003) - Physics of Structural Mechanics & Materials [30.2%]	(921) - Applied Measurements (with Optics & Lasers) [9.3%]
				(2082) - Structural Mechanics & Materials [20.1%]
			(747) - Nano-technology (Nano-structures &	(285) - Nanostructures [2.9%]
		Nanotechnology [18%]	Materials) [7.5%]	(462) - Crystals, Glass, Lasers, Plasmas, and Magnetic & Piezoelectric Compounds [4.9%]

	(1004) - Chemistry (Organic & Inorganic)	(285) - Inorganic Chemistry (Solid & Liquid I [2.9%]	Material Dopping)
	[10.1%]	(719) - Organic Chemistry	[7.2%]

Figure A10D-2. Partitional Document Clustering (CLUTO) Taxonomy All Levels (Engineering Compendex, 256 Clusters, year 2000-2003)

455/503

tur. I		-			1		yr 2000-12/19/03			acts from En	gineering	Compendex)		Larre
EVEL	0	1	2	3	4	5	4	7	0	9	10	11	12	13	CLUSTE
										313 (59) - Designing Nuclear power plant/leactors	212 (31) - I power plants	ay elements looked at accidents - core, tuets,	for experimentation pressure, seeks,	on of nuclear explosions	212
								466 (252) - Ashanced	414 (106) - Advanced Huciser Reactor Dealgn	for monitoring & minimizing accidents (the select)	89 (28) - Ni advances,der & burn	uclear power plants/hea sign, burn // supensonic	ctors, fuel cycle combustion asso	ns, accidents, solated w/ fuels	69
								Nuclear Power Reactor Business Enterprises		144 (50) - Compar Asia-Pacific - some r	les doing mark elation to PCC	ating research for know (Passive Containment	vledge developme Cooling) (who's o	ent - Alcatel, daing)	144
									423 (103) - Business Enterprise & Production	demand, capacity, di	reign, economi	of Production - market os, benefits, product lin	es, concumanos,	models.	200
									Elements	37 (40) - Enterprise competition, coopera	in & its elemen tion, banetits, it	ts - such as virtual, oce mowledge, innovation, r	el - marketing, per economics	rinors,	37
							475 (425) - Electric power market enterprises			200 (58) - Electric Market	stock markets	ments of a market, (tax k, but emphasis on pow ation, customs, schedu	er generation) - o	ontracts, risk,	80
									420 (107) - Economic sepects of Railway Transportsilan on	1		famenta of bids/bidding it, market, reserve, con			107
						487 (800) - Hon Fassil Fuel energy market			Electric Market	341 (40) - Train	38 (26) - 14 speed	ins, railways, cargo (Inc	eight, passenger).	optimization,	38
						enterprisee & anvironmental Impects		451 (213) - Economica		Transportation	40 (23) - sis traffic, safety	ments of transportation studies, roads, plan, de	n (urban, country) mand	in China	40
								of the electric market		241 (61) - Chinose industry of things like	technology ach of beastle, pap	vances to reduce power rer	consumption in t	the production	241
									382 (106) -	317 (45) - Salany	99 (23) - Ma accidents, fine economics, co	ijor Project elements as i, hydropower construct spital	ssociated with Sa tion (eg. Three Go	fety - orgos Project),	99
					494 (952) - Power/Energy Mericet Enterprises				Economic affects of \$317 (99) - Seately production flucture (e.g. Satisty) on electric market (such as a hydrogover) 132 (68) - remote sensing imaging (classification)			nings that cause landsii drilling,	idas - eerthquakes	s, tectoréc	101
								396 (101) - Assessing	132 (48) - remote ser	sing Imaging (classific	ation, spectral	bands, hyperspectral, i	information, pixels	i) of land	132
								land & vegetation acology with remote	258 (53) - Ecology	56 (30) - elements	of land cover -	vegetation, ossis (Kerry	N), desertification	, arid, ecology	56
							439 (175) - Assessing teater resources & soll interactions on land &		of land it regetation	118 (23) - sustainin aconomic effects	g the ecology/s	erwironsment of forcets,	solis, due to mini	ng, &	116
							remote sensing imagery	309 (74) - Weler	204 (40) - acology ati fertilizers,	acta on china water re	sources (rivers)	(Yollow Rivor), wetlands	is, lakes) from clin	nate, pollution,	204
								Resources & Soil Interactions/Relationshi [*] ps	43 (25) - settlements	of soils (ground, plice,	foundations, w	eler, see, frost/frozen s	oli)		43
								407 (68) - Separating	261 (45) - Accumulating Fuel (oil, coal, gas)	100 (22) - oil uses (crui	Subrication, de de, tea), organi	estling, petrochemical i c, desalt	industry - organic), contents,	100
								Fuels (eg. Oil, coal, gas) Resources from their sources	Resources (basins, reservoirs, source rock)	87 (25) - association periods, cost, geoche	e with CAS an mical	d sccumulating it - field	de (reservoirs, bas	sins), Jurassic	87
							428 (153) - Identifying & predicting problems		2 (23) - characteristic	s associated with Suid	ization studies	beds, separation, coal	l, mediums, jig. d	ensities	2
						461 (252) - Identifying/Pre	separating Fuels (oil, coal, gas) from their sources		5 (17) - studies for pre Emissions/Radiation (E	dicting authorate of ro ME/EMR)	olos (cossi) & gas	eas (methene) by more	toring Electromag	prietic	5
						dicting Problems of Obtaining Fassil Fuels		310 (85) - Coal Mining - Predicting Problems (genWication, & rock authursts)	256 (68) - Coal Mining - Gasification	105 (46) - study of seepage	coal gasification	n in mines/underground	d and seams - oor	nbustion,	105
						(eg. Coal Mining)			Problem & Improving systems	70 (22) - studies to coal resources, syste	advancing chi me (flotation, c	na's coal mining capac rushing, machines), eco	ity (New Syr Plan onomics) - identifyling	70
							402 (56) - Assessing/Modelling	298 (43) - Stability of east mine roofs	10 (23) - Support of	roofs in mines (coal	Vosvee				10
							Stability of coal mine roofs from Information/date	1000	30 (20) - bissting - st	nete movement, min	se, pillare, – s	upport			30
							The second second	130 (56) - Mining of cou	il, data, & Information						130
										362 (96) -	systems (sens	ata fusion - elements (i lors), models, applicati ch recognition)	information, decisions (monitoring, l	ions, data), ocating,	230
										Information Systems (GIS) , its elements and data fusion (Non Web Deseut 17)	272 (55) - Information	168 (40) - informat sharing, specificatio (GATY System)	fon systems elem ns, data, stander	sents - ds, design	166

## DEG - State of the Control of the	LEVEL,	0	1	2	3	4	5	6	7			10	11	12	I	13	CLUSTER
## 1997 - Button ## 1997 - Bu										448 (208) - Systems (Roberto, Multi-		392 (114) - Systems (Res		Ivirtual realit	ty systems	-	186
## 2017 - Review Plantage of P										agent, Virtual)	417 (155) - Robotic Systems	& Virtusij	Systems (Real) - Machine systems (production/sche	plants, prod (Operating things to e	duction, ma character stable the	chines istles &	65
## 1990 1990													operations)	243 (37) - machine sy	Application relem opera	s of tions	243
20 CRD								484 (997) - Macro				141 (41) - rob	otic control				141
At 1971 - California Automotive of Formation Planes California A								opomia raeny			237 (80) - Deelgnii	ng of systems,	woh/tectures				237
## CODIO - Processor Process												290 (92) -	199 (42) - software	o systems -	design, too	ia	199
Software & Statement of Spreams o										Deelgning,	416 (161) -	systems & integration into hardware	202 (50) - hardwa (applications)	re & software	e systeme -	design	202
## 1903 - Systems All 1903 - Systems Description All 1903 - Systems Description All 1903 - Systems Description Desc										Software & Hardware	Handware Systems, applications, and	Systems tests	154 (43) - system calibration, precisio	s bests, zulice n (fygues of	mated - for o	foeign, to 77)	154
Control Cont												- types & applications	vehicles, & method	inspections s (applicatio	i & tests - pi ons of ayus	ipelines, lerna	209
At 1903 - Systems Theory (Exercised a Structure) Theory (Exerc							General Systems Theory (Mecro & Micro					Modeling & Simulation - for System	used for system and				220
AND CONTROL (Control of Systems o							(Systems)		Theory (Software Deelgn, Modeling &		Modeling & Simulation -	Net design (Petri-Net	234 (47) - modelin	g & simulati	ion (applife)	itions)	234
Engineering ASO (150) - All (160) - All (Power &						Net Design & Multiple Systems	Alockeling & Simulation - for growth	growth model for	multiple sy	AMSAA-Di sleese (100	ise del	252
SA (18) - Monthly described and standard production of the company of the production of the company of the comp					Engineering					Modeling & Sinulation - (Systems Analysis & Statistical Modeling		multiple systems (AMSAA	applications) - nu	odeling & sir nerical, fract	mulation (Yo	r wal	254
418 (188) - Modeling & Simulation Tools (Implications of Memberical & Checket Theory) Specimen (Charter Theory) Specimen (Tools)		Modeling & Simulation	samples for probabl	ario simulati Istic/statistic	ions (randor al calculatio	1 (100)	248
Character Theory Character T											Modeling &	Calculations)	255 (54) - things o dynamics, models)	alculated (er (application	nergy, theor	y.	255
SM (2002) - Cybernestics a Systems a Engineering Engineering (Control Systems (Engineering)) 123 (44) - Elements of Power Switches & Power Convention) 124 (146) - Oritrol Systems (Engineering) 125 (24) - Elements of Power Switches & Power Convention) 126 (25) - Elements of Power Switches & Power Convention) 126 (26) - Elements of Power Switches & Power Convention) 126 (26) - Elements of Power Switches & Power Convention) 126 (26) - Elements of Power Switches & Power Convention) 126 (26) - Elements of Power Switches & Power Convention) 127 (26) - Elements of Power Switches & Power Convention) 128 (27) - Power Convention) 1											/Statistical &	Modeling & Simulation	231 (38) - chaotic Birithoffian models)	fleory - (e.g.	. Poincare 8	Asp.	231
504 (3002) - Cyclementalize & Systeme Engineering 450 (259) - Electronic Control Systeme Engineering 450 (259) - Electronic Control Systeme Engineering 450 (259) - Electronic Control Systeme Engineering things 560 (21) - Option 560 (21)												BYNnestion				lores,	96
SOU (236) - Cydermelics a Systems Engineering 415 (145) - Drive & Control Systems 450 (256) - Electronic Control Systems (Control Systems Business												50 (26) - drive	i (itystiems, motors (re	fuctance & i	induction], c	(alorano).	59
Control Systems 450 (258) - Electronic Control Systems [Sereening Ifvings] 476 (450) - Alicro Systems Control Theory (Electronic & Date) 476 (450) - Alicro Systems Control Theory (Electronic & Date) 477 (450) - Alicro Systems Control Theory (Electronic & Date) 478 (450) - Alicro Systems Control Theory (Electronic & Date) 478 (450) - Alicro Systems Control Theory (Electronic & Date) 479 (450) - Alicro Systems Control Theory (Electronic & Date) 470 (450) - Ali				Cybernetics & Systems							Imploy power	126 (29) - EN (ELEMENTS)	wreents of Power Su	ritches & Po	ower Conve	sriara)	126
Control Systeme [Sersening things] Selectors for comparation adjustments of class of comparation adjustments at testing (using sociolators of comparation adjustments) of thega for comparation adjustments at testing (using sociolators of class of the comparation adjustments) of the comparation adjustments at testing (using sociolators) of the comparation adjustments of class of the comparation adjustme									450 7950s - Electronic	415 (146) - Drive 8 Control Systems	348 (91) - precision	(primarily VO)	TAGE, and others s	with an cur	ulpment rent, phas		183
Systems Centre Theory (Electronic & Date) Sol (2326) Systems Systems									Control Systems		testing of electronic devices for compensation	accelerometer	ii) of things for comp.	& testing (u ensation (app	ning plications -	rockets,	244
501 (2336) - Miscroprocessor Grounds (110 (23) Circuits (e.g. are-discharging, medals) (TYPES) 316								Systems Control Theory		409 (113) - Digital	Microprocessor	218 (45) Elen architectures	sente of CMOS, circl (ELEMENTS)	olta & micro	processor		218
Theory 102 (45) - Digital Noise Filters - primarily for filtering noise out of digital speech										Microprocessor	effects						110

LEVEL	0	1	2	3	4	5	4	7	0	9	10	- 11	12	13	CLUSTE
								388 (298) - Control Systems (Applications, Algorithms, Simulated		295 (91) - Control	224 (61) - No control models	on-Real-time Contr & systems)	ral application	or (e.g. assessing	224
								& Intelligent)	355 (142) - Control Systems	Systems Applications	192 (30) - Re	rei-time Control ap FE: Military Applic	přícetione (ht	ffic, networks,	192
									(Applications & Algorithms)		multiple small	high speed object	fsc)		1952
										114 (51) - Control Derivative (PID) Co.	Systems Algor ntrol)	ithms (Fuzzy Cont	trol, Proportio	nul Integral	114
										112 (96) - FUZZY	neuzeř neteork	theory			112
							Applications FAZZY Mount Mistoric Tipe Knowledge	452 (141) - Applications of Fuzzy Heural Natwork Theory to	395 (75) - Expert	FAULT diagno	ral network metho sala (NOTE: differ orde) [-applying t	rent worded di	uplicates? - 6401	63	
								Systems & Feat	Knowledge Based Systems & Fault Diagnosis	(Cased-Based 6998txt - acqui	nchaniame of KNO Researcing, Rule- iring military knew cyclopedia of Chin	Based Ressor riedge from te	ring/ (NOTE: sts in the	102	
									329 (58) -	93 (39) - Thin nestorn stability	ngs associated with , asymptotic stabilit	Stabilization /	Analysis (e.g.	93	
								Sou Con Alge		Conditions (Stability 4 Sufficient)	104 (30) - Th	ings that rely on Su	Minient Condi	Yorra, such as	104
											systems stabilit	y & control systems 135 (33) - Term		with matrices	
												(e.g. sequencing.	non-singular, li	near, rank)	135
											374 (74) - Principles of Metriz	296 (41) - Methemetical	42 (21) - M establishing things (Dra- lower)	ethode for Bounds of lineer rin inverse, upper,	42
											Operations	methods for establishing Bounds	68 (20) - N establishing Unear thing curve, wask electron pole	Bounds of non- s, e.g. Bepler ast bound	68
						487 (876) - Control Systems (Precise) Theory precise) Theory	481 (562) - Mon-preolee Control Systems Theory		458 (267) - Boundary Conditions & Linear Algebra Theory	455 (196) - Appylier Linear Algalond filatric Theory		338 (90) - Biapping of Enequality	285 (28) - Algobra - Symplectic Mapping	153 (20) - theing surform and them are methods to join things such as geometric species - joins, polson, parabolio, symplectic - plute: geodesic symplectic - geodesic symplectic - symplectic - symplec	153
											404 (124) - Mapping/Tran stomation Theory	Spaces		20 (18) - Elements of algebra that used in mapping/join ing such as subspace lattices, Lower functors, Lie- algebra	23
													32 (22) - M inequality s 6 multivariar Spaces)	paces (multivalue	32
													119 (32) - In mapping (existance, R	Theorems used spaces x-point)	119
								De Grand Control (Control (Con				332 (84) - Mapping Theorems & Functions	their eleme	el functions and ste used in lal meth (Boolean	214
									S62 (B1) - Deconvolving of Quantum (discrete) &	94 (31) - quantum : systems of things to glid-quantum key dis	o be decompos	states - decompo ed) - of hyperspher	eing these, eu es, systems, or	perposition - bits.	94
									Entengled (mixed) States [Deconvolving Atomic particles)	34 (50) - entangled decomposed) - of q			of the system i	o be	34
									360 (73) - Decomplying - Elements of papermaking	25 (23) - dwinking o states) applied to pa just words changed	permaking proce	I — (Breaking thing Iss — [ref: 994926	ps out/decome & 27 records (ohving discrete isplicate, but	25
									(bleaching & deinking pulp) - [Decorwolving compound materials]	54 (50) - pulp, ble the pepermaking p	ach (specific el rocess	ementa used in de	composing) -	as applied to	54

LEVEL	0	1	2	3	- 4		G	7	8	9	10	11	12	13	CLUSTER
				conves, mobile, wireless,		207 (178) -	neterrics - radial basis function, training almostitus	networks	19 (23) - redisi besis	function (rbt), neuro	si neterorka		-		19
				genetic)		neteroris	algorithms	127 (107) - neural netu	rorks - learn, recurring,	train, - algorithms					127
							13 (26) - artWcial neural	networks (AMN)							13
						97 (64) - gene	dic algorithms								97
								239 (66) - algorithms (ner, convergence) - set	Swatson					239
							312 (185) - algorithms (convergence, estimation, learning)								
					455 (337) - elgorithms - genetic, (sclaptoble,	401 (273) - algorithms -		238 (119) - algorithms	vector, computation, le	MINT					238
					Jeaning, smert)	learning, restching, optimization	335 (80) - algorithms	200 (36) - sigurithm - g	r apha, layout, placema	ne					200
						log-e-mazarovi	(matching, optimization, graphs, leyouts) - eg application is								
							fingerprinting	202 (50) - algorithms -	fingerprints, optimized	matching algorithm					232
			-					55 (22) - thrave, tomogr	raphic imaging, ultraso	und, photoscoustic					55
							304 (47) - Image reconstruction of								
						406 (211) - lmage	tomography, ultrasound, photoscoustic model/lies (applied to tissues)	36 (25) - Image reconsti	ruction						36
						processing (reconstruction & matching)									
					432 (336) - image		336 (164) - Image	236 (90) - Image camer	se & metching -						236
					processing (reconstruction , matching,		processing for scence matching	190 (104) - littage procu	ssing -					-	190
					retrieval, å segmentation) (for similarities)			188 (44) - image segme	sciation – for areasing	ione			-		188
			471 (511) -			263 (70) - Image segmentation	44 (26) - segmentation	Imaging — for lines, sur	th as painsprints & h	andwritting Id				44	
				image processing (detection &		386 (128) - Image retrieval & segmentation		120 (25) - detecting obji	ects, contours, & motion	n in video and color	lmingee				120
				(recognition, matching,			320 (58) - Image retrieval of objects in video & color Images								
				retrieval, segmentation				27 (33) - Imaga retrievoi	(content based/object	based) –					27
								50 (29) - image pattern	recognition - facial reco	ognition (biometrics))				50
						447 (145) - Image	333 (71) - Image patiern recognition & feature extraction	164 (42) - Realure autras	tion from Grassea, such	pl – feetures (testur	n, financarinta, t	hoth fin east mist	turnel etcl		164
			490 (819) -		462 (172) -	processing (edge detection,					or resident her resident	TOUR PER COM THE	areay, ency		104
	510 (2940) -		Signal Processing (image,		processing and scattermarks (detecting &	petiens recognition, & feature		282 (44) - image	24 (19) - wavelet trend ABSTRACTS NV DWFE	forms applied to edge WENT #7	distaction JW	TE: CLUSTER H	AD 3 DUPLICAT	E	24
	Engineering Sciences		oligital, servolete)		ombedding) (for differences)	extraction) - of biometrics & SAR Images	375 (74) - Image proceeoing edge detection techniques in SAR Imaging	processing - edge detection techniques	28 (25) - adge delecti	ion imaging –					28
							ann inaging	22 (30) - SAR imaging -							22
						0 (27) - Imagin	y watermarks (embedding &								0
						279 (107) -	61 (32) - wavelet transfor	m - Image compression, o	oder, coefficient matchi	ng					61
						transform (images & non-									
						image algnals) for image compression &	123 (75) - everywhet transels	um - signal detection - fra	quency & time (primaril)	y non-imagery)					123
					363 (162) - wavelets in Imaging & non-	signel detection (freq å time)									
				473 (308) -	imaging eignale	014 (35)	158 (54) - wavelets - must	Sveveleto							158
				8/gnel Processing (wavelets &		301 (75) - varialet & multiwavalet									
				digital signal processing)		packet transforms - 2777	20 (21) - wasvelet packet t	transform -							20
						197 (60) 010	Indicated to confere and a								
						nor (and - SNP)	(signal to noise ratio)								137

LEVEL	0	1	2	3	4	8	6	7		0	10	11	12	13	CLUSTER
						Differential)	(differential)	136 (49) - equations (cit	Merential (ordinary, part	ai[) -					136
					456 (265) - Equations		57 (38) - equations (soli)	on solutions) - waves, sn	sct, nontinear						57
						394 (148) - Equations		157 (31) - equations (illa	retive, integral) solution	vs - convergent, analyt	tical, inverse, ho	molopy			157
						(soliton solutions, Neretive, &	301 (110) - Equations (Herstive, Integral, &		247 (51) - equations	matrices, boundaries	, solving, nonlin	NORT NORT			247
						nonlinear)	nontinear)	285 (70) - Equations (nonlinear)	172 (28) - equations	perturbations, Ruid, s	ravo, equation o	of state, beam, nonti	noor		172
						-				217 (37) - Proper	ties of element			(wavelength,	217
								426 (148) - Physics of	322 (83) - Properties of optics & elements in optics	diffraction, scatter) - 221 (46) - Preper		anticol Nata Act 1	and in a first		
							463 (291) - Physics of	Optica		L					221
							Optice & Leseve		179 (85) - Types of			claristics (propaga	ston, gaussian	i, pulse, laser)	179
						474 (391) - Optics & Leeers		413 (133) - Jasers (pulsed & pumped)	156 (S8) - Types of s	whee (laser, reactor,	width)				156
									215 (75) - Types of	score (pump, dods,	beam, optic) - u	ise in cavities ??			215
								270 (52) - Filter Optio	64 (18) - Properties material) - Polycyclic s	of lasers & fiber opt romatic hydrocarbons	ilo musteriala - b (PAHs)	sirafringanca (light r	efraction in an	anisotropic	64
							358 (110) - Filter Optics & Lesers	& Laser Characteristics	66 (34) - Methods to dispersion)	improve the gain of	fiber optics (i.e	e. pumping, remen	amplitiers, dop	ping, reducing	66
								130 (58) - Uses of Fibre	r Optica & Lasera - (fib	er optic sensors, fib	er lasers, and i	iesers)			139
										174 (38) - Hirtual I	instruments for	r measuring (syste	ms, software)	- disgnosis	174
					496 (921) -				281 (76) - Instruments for measuring	207 (38) - linetrum	ants for mass	uteatmontariae	iconnectes	rane-	
					Applied Measurements (with Optics 5				scurscles/dlagnos/ s (resi & virtuel)	99494293txt - optic sensing/comms)					207
					Loserej			441 (279) - Mexicurements (Principles &		203 (41) - measur	ing unoscinius	ine with debutere	notice entire	St. or	
								Assessments/Diagnostis)		200 (41) - Messor	T				203
									357 (203) - measurements of (precision &	337 (182) -	measurements high explosis	roosuring - what you o (bests, systems, m vee (Ref: 994910)	schines) - s.	g. application	253
						467 (530) - Measurement	A43 (447) - Mechanics/Principles of Measurements		uncertain)	measurements - pracise	possible neu	tron detector)			
						Science					211 (72) - mo	amotaya gartuaso	lasers, precisio	on measurements	211
										318 (90) - Error Measurements due	52 (26) - 7)q Interference) grating, integra	pes of Error Meas - angle, error, diffre ste, migrate)	urementa (ca ction, Moire -	used by - (Note: grate =>	52
									379 (138) - Error Measurements of (precision &	to interference (diffraction) - of things causing errors			Isrference en	ors are measured	
								405 (168) - Error Measurements	Interference [uncertainty])	(uncertainties)	phase, tringe p	patiems, surfaces			220
										245 (78) - Precisi	on measuremen	nts to reduce mea	suring errors		245
									58 (30) - Error Mess	urement Callbretion					58
							227 (83) - Sensor Measu	etnemts							227
											334 (52) - Physics of	163 (20) - E%	ects of SQUE	Егіна сиялент	163
										261 /2007 - 25	Antennas (Antenna	67 (24) - T)ros	e of micro Al	NTENNAS (Patch	
										361 (100) - Milero Antense Theory	Patches & Microstrips)	Alicrostrip) & re	vicromachinin	ng Rechniques	67
									430 (188) - Small		FREQUENCY	pplications and ci and wave analysi	la .	or RESONANCE	240
									Antenna Design Theory		-	74 (24) - Type		er wave guidea	
								480 (365) - Flow In Microstructures (e.g.		377 (88) - Dielectric &	300 (54) - Physics of dielectric &	(e.g. Helical-gri	soved)		74
							flow of electromagnetics in amali waveguides)		Millimeter Waseguide Antenna Theory	millimeter waveguides	118 (30) - Elen dielectric wave		sperties of	118	
									- mory	51 (34) - Mu millimeter an	stimode Network tenne wave guide	Theory applie	ed to dielectric &	51	
									411 (80) - Structure Analysis	engines (NO	18/64/10/6AL anal TE: Applications	ysis primaril) - Naval ships	y due to wind and & missile	152	
									465 (177) - Domege	due to Bending Moments and	(30) - Ba	anding moments to	SHIP hulls i	and girders	31
							483 (522) - Flow In Structures (Microstructures -		Analysis of Structures	314 (97) -	146 (27) - 8	Sechanical behavio	or of thick & t		
							weveguides, Macrostructures -			Structure Analysis of Elemente & Finite Element	-	and term "Elemen		fortification action in	146

Chate (EC - 284) MAIN REPORT _ APPENDIX 11

LEVEL	0	1	2	5	4	5	6	7	8	9	10	11	12	T	13	CLUSTI
						495 (1256) - Fluid Dynamics					340 (71) - Applications of Shock	168 (32) - Types by pressures sus STRUCTURES (8 compression) [A	nh au CYLN NJCKLING	NDER S & axlel	HELL	168
				506 (3003) - Physics of					429 (197) - Mechanica of Shock Weves & Turbulence	384 (110) - Effects of Shock Wisvex & Vorteces	Warre d. Vortexes (rocket motors & cylindrical shell structures)	242 (39) - Thing ceusing demage atrustures & mat thrust, eccelerati - New Concept Si motors)	hequiring i erials (e.g. lon, ultrasc	rompen ROCKE mics) (F	setion to T MOTORS, Ref - 420.txt	242
				Structurel Mechanics & Materials				459 (335) - Flow Mechanics of Shock			183 (30) - CR (primerily from	uracteristics of SN n explosions, over	IOCK some pressures	a ili vorii j	lexes	183
								Waves & Turbulence		349 (87) - Waka Flow Turbulence	233 (53) - AV In turbulence	IVIER STOKES EQ Row enelysis	MATIONS I	8 SOLU	TIONS used	233
										Analyala	125 (34) - <i>C</i> 2 furbulence)	sarecterization of T	WASULEN	CE (WA)	KE FLOW	125
										229 (76) - Method	is of FLOW (rate	s, phase) analysis				226
									368 (138) - Flow Machanics	330 (62) -	147 (29) - 7h pedestrians	ings that FLOW aux	ch as FLUI	D, care,	traffic,	147
							486 (636) - Flow			Applications of Flow Mechanics		operties of LIGUID I snalyzed (ahear, p				159
							Mechanics & Thermodynamics			345 (78) - Mechanisms of	86 (25) - Stri TUBES & FIVE	octured heat transfe	r mechani	ever swo	oh eus	.06
										Heat Transfer	206 (53) - HE	AT TRANSFER me	thods and	modelli	ng	206
											245 (67) - 53 rates, and hig	wrents of TEMPER	ATURE ou	ich as he	est, degree,	246
					502 (2082) - Structural Mechanics & Meterials			464 (301) - Applied	442 (220) - Heet Trensfer	391 (142) - Properties of Heat	328 (75)	273 (40) - Characterization of thermal conductivity of composite	thermal of shape sti	conducti sibilized Weterlals	Phase (PCM's)	47
								Thermodynamics (Flow of Heat)		Transfer	Thermal Properties of Composite Materials	moteriole (PCM's & electrolyte composites)	thermal of electrolys	conducti te comp		9.0
												216 (35) - Charac MATERIAL prope	cterization vties	of COM	POSITE	216
										15 (22) - Characte	rizing FLAME R	ETARDAWTS and 8	hermal deg	pradatica	n	15
		500 (5220) -							370 (81) - Minimizing Fire & Thermal Degradation	299 (58) - Physics of Fire &	75 (31) - Che burn reles	rectarizing COMBU	ISTIONS a	nd heet	release &	75
		Physical Sciences (sub-								Combustion	72 (28) - Cha	racterizes the ignit	llan å spre	ad of Fit	RE	72
		systems]									371 (83) -	280 (51) - Surface	222 (29) calculate shapes d movemey	change lue to for	ns in body	222
										421 (131) - Fatigue Demage (Surface West,	Surface Wear due to Friction	Roughness & Shapes	142 (22) surface n (primaril) surfaces)	oughne: r spheric	50	142
										Cracks & Corrosion)		77 (32) - WEAR steel, primarily to	af surfscer om Sistian	a of com	sposites &	77
									457 (249) - Fracture Mechanics/Strength & Feligue of Material		254 (48) - Fetigue Damage	117 (22) - Fetigui Cracku) primarily tritium (Applicate	to atainies	sa atleed t	frate	117
									Composites/Compou nate		(Cracks & Corrosion)	45 (26) - Fatigue	demage (CRACKS	S)	45
								470 (357) - Mechanica of Composite & Compound Materials			149 (45) - Ph polypropylene	ystics of neinforces , concrete, and gla	neni for FN es	NERS, co	omposites,	149
									3/6 (118) - Strength Properties of Composites/Comp ound Materials	319 (72) - Material Properties (Strength, Mechanical &	210 (38) - Chara STRENGTH, cree, pozzolanic) of co- cement, sturries,	p, mechani mposites (lost, and	1	210	
											Mechanical & Chemical) of Compounds	195 (34) - Chara mechanical propa polyurathana mai	erties of ru	hemical i bbor ä	á	195
									427 (108) - Things	115 (40) - Charact memory effect [SMI	terizes the micro E), bonding,and	etructure propertie strength)	es of ALLO	7YS (BUG	th as shape	115
							483 (585) - Meterial Mechanics (Composites, Compounds, & Costings)		to compensate for fractures/damage in Alloys (Composite &	366 (59) -	49 (25) - Med such as greini implentation)	hode of applying C , bones, and alloys	CATINGS I s (e.g. arc-	to larger spraying	things g-&	49
						490 (824) - Surface Aleterials &			Compound Materials)	Applying Coatings & Depositions	82 (34) - Met dlemand films deposition)	hode of deposition , Blaments, and su	on amade batretes (s	r shings .g. chen	such as tical vapor	82
						Mechanics					90 (35) + Proj	verty studies of 3%	7 & TIO (FU	sille) sub	retance	60

Child (REC - 2500) MAIN REPORT _ APPENDIX 11

LEVEL	9	1	2	3	4	5	6	7	8	9	10	11	12	13	CLUSTER
										Substrates & Waters	223 (41) - Pro substrates and	parties of SILICON Leafers	V & CXIDE ma	teriels as	223
								259 (87) - Thin Films d	71 (42) - Cherecteriz	etion of THIN FILMS					71
							316 (159) - Materials (Films & Substrates)	Substrates	92 (45) - Methods of	growing FILMS and	i depositing the	n on substrates			92
								176 (72) - Characteriza	ation of different FILMS						176
								12 (23) - CARBON NAA	votuses						12
						419 (164) - Nanostructures	346 (39) - Longitudinal Nenostractures (Nenostras, Cerbon Nenosubes)	4 (16) - AANOWIRES							4
						(Nanowives, Nanotubea, Nanocrystels)		189 (48) - Use of NVUN	DIATION to Subvicate na	mocrystele					189
					446 (285) - Alanostructures		381 (125) - Nanocrystale	315 (77) - Principles &	175 (28) - Elements like pleemes & crysts	& properties of RAD	KATION (hard X-	Rays & electrona) i	used to chare	ctorice things	175
								Methods of Racilation to Characterize nanocrystals	138 (49) - The use o	TRANSMISSION E	LECTRON MICRO	PROOPE (TEM) pris	marify used to	characterise	130
						-	85 (40) - Crystal Formatic		grain diffraction, pos-			characters used to	formulas)		
				432 (747) - Nano- Ischnology		303 (121) - Manorods						characters daed to	romnulas)		85
				(Nano- structures & Materials)	-		91 (S1) - MANORODS (N		ss subscripts in math s	nd chemical notatio	ne)				91
				and the same		7 (132) - Propi	erties of compounds such a	s crystain and glass							7
							307 (220) - Heactions &	284 (126) - Colde/Coldation Cetalysts of	145 (36) - Things th	at atlact the reaction	s of compounds	& erystal (e.g tem	pensture)		145
					444 (462) - Cryatais, Gleas,	380 (330) - Reactions &	Catalysts of Crystel & Compounds	Compounds & Crystals	182 (30) - Things th	el occur with exidat	low/oxidee such	es CATALYSTS			182
					Lasera, Pissmas, and Magnetic &	Catalysis of Crystrals, Compounds		251 (92) - Reaction pro	_						281
					Piszoelectric Compounds	(Magnetie & Piezoelectric), Lesere &		323 (71) - Mechanical & Non-Mechanical	16 (20) - Things suc Mechanical - things th	h as MAGNETIC FIE at effect]	LDs that cause o	hanges in materia	la (e.g. MnO) i	diffen (Non-	16
						Piesmas	344 (110) - Hagnetic & Pieroelectric Materials, Lasers & Piesmas	Change Behavior in Materials (Plezoelectric & Magnetic)	249 (51) - Character materiale (e.g. piezoe	ization of DELTA's (lactric materials) (\$	changes) of thing lechanical - thing	ps such as crecks, ps that occur]	pressure, and	f creep in	249
								235 (39) - Unite of Institu	s and plasmas to help	extract or absorb al	www.is [properti	ies]			235
						372 (138) -	276 (S1) - Motoriale	121 (22) - Studies of his Activation uses]	EUTRON Flux Densities	s behaviors in differ	A) amulbam tree	pplications: Nucle	er Power & No	utron	121
						Solid Material Compound Dopping	(Crystals & Heutrons)	185 (30) - Things prima as a subscript), primaril)	arily annotated with the y associated with chara	words OMEGA, CE scientzation studies	NTER DOT & SUE of crystals such	3 (textual description of PSWO & YVO	on to denote t	hat a number	185
					434 (285) - Inorganic Chemistry	(Crystals)	95 (77) - Things primority associated with the charac	annotated with the words terization of STATES/tran	s SUP & SUB (textual of nation states of elector	Sescriptions to deno rts (e.g. ione/ionizat	to that numbers lon)	as subscripts & su	spersoripts), p	rimarily	95
					(Solid & Liquid Meterial Dopping)		287 (106) - Materiale (lon	229 (60) - Things prime things that are measured	rily annotated with the d such as lonization &	word SUP (textuel d activation energies	lescription to der of atoms (things	note that a number that are affected	as a supersor by actions]	ripti), primarily	229
						373 (147) - Liquid Meterial Compound	Dopping & Laser Interactions)	73 (46) - Things primer primarily associated with	By annotated with the to cheracterization stud	rords BETA & SUP lies of ion-doped ma	(lexitual descript	ion to denote that arr pumpe [things	a number as a that cause act	superscript), tion)	73
						Dopping	62 (41) - Things primarily primarily associated with i		is TIMES (meening mu						62
								21 (34) - Studies of typ	ee of NAHOCOMPOSIT	ES (Clay, Montmort)	Vonite (MMT), Gn	sphite Oxides)			21
			505 (1751) - Chemistry & Nanotechnol				424 (100) - Meteriele (Manocomposites)	347 (89) - Physics of	46 (31) - Mechanics, materials (e.g. curing	kinetics, and prope	rties of preparin	g SLENDs like epo	uys & resins	of poly-based	46
			ogy			469 (217) - Meterials (Nanocomposit	J. maracanapananay	Nerocomposite Materials	197 (38) - Things on	ed in nanocomposit	ive such au FOAI	WS, resin, poly-bus	sed materials	and	197
						es, Polymers & Copolymers)		14E (67) - Studies of ty	hyperbranched struct		se used to creat	Dan			148
						(COMPOSITE MATERIALS)	300 (114) - Materiale		18 (20) - Primary pri	operties used to the		mere such se MOE	EOULAR WER	GNT	
							(Polymers & Capolymers)	309 (67) - Physics of Polymers & Polymerization	DISTRIBUTION 128 (38) - POLYMER	RS & PCK YMERIZAT	ION (a.a. Mathyl	Methacrolata (MISC)	D (Things up	and to create	18
									copolymers]						128
								113 (43) - Principles of	CATALYSTS and catal	yttc processes/meti		unistration	ns and	d families	113
									324 (85) -	267 (50) - Characterizing	HYDROGEN &	nactivizae reactios Dimethyl Carbonel	to (DREC) (Gas	Reactions]	151
				SED (1004) - Chemistry (Organic & Inorganic)			412 (189) - Organic Meteriale Reactions & Cetalysis	393 (146) - Reactions	Reactions - Electro- Chemical of Gas & Liquide	Reactions of Liquids & Gas	chioration & de pollutants from	serties of REACTO schiorinstion proce syster/liquids [Lic	nuses used to quid Reaction	e]	106
								of Organic Materials		181 (35) - Propert REACTIONS (e.g. h	lies & Charecteris sydirolysis) of cat	stics associated w alysts like enzyme	ith Electro & C a	Thereical	181
									274 (61) - Reactions of Organic Materials (AUCONNIA, RATINIA)			TROWS involving R	ETONES, ALI	CYLS,	173

Clute (EC - 256

LEVEL	0	1	2	3	4	5	6	7	6	9	10	11	12	13	CLUSTER
									359 (74) - Reactions of Polymer Chains	278 (38) - Chains (polymer & molecular, and	79 (22) - polymer and molecular chains				79
										aupply chein	B (16) - supply chain manufacturing (som) and enterprising			interprising	8

Appendix 11 Manual Categorization - Word Counts (SCI)

#	# of AUTH OR KEYW ORDS	# of KEY WOR DS	# ABST WDS	Abstract	Title	Year	AuthorKeywords	Keywords	Journal	THEME CATEGORIZATION	SUB-THEME	RESEARCH TYPE	CLARITY (1-5BEST)
1	12	4	173		Effects	0000	sweet cherry;	VEGETABLES;	ACTA BOTANICA	BIOLOGICAL & MEDICAL	OTDEOG DI IVOIGI GOV	0.0	_
				Sweet cher	Investiga		physiological pigment indices;	QUALITY; REFLECTANCE	SINICA ACTA BOTANICA	SCIENCES BIOLOGICAL & MEDICAL	STRESS PHYSIOLOGY	6.3	5
2	19	16	212	To extract			pigment	RED EDGE;	SINICA	SCIENCES	STRESS PHYSIOLOGY	6.3	5
3	5	7	84		Assignm			CARBON-	ACTA CHIMICA				
3	3	′	04	The highly		2002		DIOXIDE;	SINICA	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
4	11	3	178	The reaction	One-	2002	one-dimensional chain; crown	COORDINATION; CATION:	ACTA CHIMICA SINICA	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
				The reaction	The first	2002	ionic liquids;	HYDROGEN-	ACTA CHIMICA	CHEMISTRY	PHISICAL CHEMISTRY	0.1	4
5	5	11	37	Carbonylat		2002	carbonylation;	DEUTERIUM	SINICA	CHEMISTRY	ORGANIC CHEMISTRY	6.1	4
6	8	0	273		Coupling		butadiene;		ACTA POLYMERICA				
<u> </u>	Ů		210	The couplir			styrene; anionic		SINICA	CHEMISTRY	POLYMER CHEMISTRY	6.1	5
7	6	1	268	The nanoc	Studies		phenol resin; intercalation:	RESIN	ACTA POLYMERICA SINICA	MATERIALS	PLASTICS	6.1	5
				THE Harlock	Study of	2002		PROTEINS;	ACTA POLYMERICA	WATERWES	Lichec	0.1	3
8	11	2	238	The native	,	2002	HP model;	MODEL	SINICA	CHEMISTRY	POLYMER CHEMISTRY	6.1	4
9	0	5	64		Preparati			CERAMIC	ADVANCED		CERAMICS,		
Ľ	Ů		•	High-tempe		2002		FIBERS;	COMPOSITES ANIMAL	MATERIALS BIOLOGICAL & MEDICAL	REFRACTORIES & GLASS GENETIC ENGINEERING &	6.1	4
10	0	1	101	Quail and p	Cloning	2002		PROTEIN	BIOTECHNOLOGY	SCIENCES	MOLECULAR BIOLOGY	6.2	5
44	7	_	0.5	Quan ana p	A ratio-		predator-prey		APPLIED	MATHEMATICAL &		0.2	Ü
11	7	0	95	In this pape			model; global		MATHEMATICS AND	COMPUTER SCIENCES	OPERATIONS RESEARCH	6.2	5
12	13	0	72	D	Researc		petroleum; drilling		APPLIED	DI IVOICO	NUCLEAR PHYSICS &		4
		-		By means	h of Existenc	2002	fluid; shaker; Delta- neutral difference		MATHEMATICS AND APPLIED	MATHEMATICAL &	ELEMENTARY PARTICLE	6.2	4
13	5	1	103	In this pape		2002	equations;	OSCILLATIONS	MATHEMATICS	COMPUTER SCIENCES	NUMERICAL MATHEMATICS	6.2	4
14	19	5	216		NGC		galaxies : active;	SEYFERT-	ASTRONOMY &	ASTRONOMY &		-	
14	19	ິບ	210	NGC 3628		2002	galaxies :	GALAXIES; LEO	ASTROPHYSICS	ASTROPHYSICS	ASTRONOMY	6.1	5
15	8	9	177	Cephalexin	Enzymati	2002	aqueous two- phase systems;	PENICILLIN-G ACYLASE: 2-	BIOCHEMICAL ENGINEERING	BIOLOGICAL & MEDICAL SCIENCES	BIOCHEMISTRY	6.1	4
				Серпанехії	Possible	2002	animal cell culture:	OXYGEN-	BIOCHEMICAL	BIOLOGICAL & MEDICAL	DIOCI IEIVIIO I K I	0.1	4
16	15	11	83	The system		2002	bioreactions; fed-	CONSUMPTION	ENGINEERING	SCIENCES	BIOCHEMISTRY	6.2	5
17	0	0	116		Synthesi				BIOORGANIC &	BIOLOGICAL & MEDICAL			
L''	U	0	110	Two kinds		2002	numariaal		MEDICINAL	SCIENCES	BIOCHEMISTRY	6.1	4
18	8	1	111	An efficient	An	2002	numerical simulation;	FLOWS	BUILDING AND ENVIRONMENT	MECHANICAL, INDUSTRIAL, CIVIL & MARINE	STRUCTURAL ENGINEERING & BUILDING	6.2	4
—	_			VII EIIICIEIII	A neutral	2002	polysaccharides;	LOWS	CARBOHYDRATE	OIVIL & WANINL	LINGHALLINING & BUILDING	0.2	4
19	5	0	81	Polysaccha		2002	Phoenix dactylifera		RESEARCH	CHEMISTRY	PHYSICAL CHEMISTRY	6.2	4
20	0	2	47	A novel sor	Mechani sm of	2002		SONOCHEMICAL SYNTHESIS	CHEMICAL COMMUNICATIONS	CHEMISTRY	INORGANIC CHEMISTRY	6.2	5

21	0											
	0	9	95	Synthesi	2002		R NANOWIRES:	CHEMICAL PHYSICS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
				- 3 - 7 - 0 0 0			PERMEATION;	LETTERS CHEMISTRY	CHEMISTRY	PHYSICAL CHEMISTRY	0.1	5
22	0	4	28	Preparati An ANA-tylon and	2002		ANALCIME:		CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
				Instability				LETTERS CHINESE ANNALS OF		THEORETICAL	0.1	4
23	5	5	49	Consider a of			SOLUTIONS:		COMPUTER SCIENCES	MATHEMATICS	6.1	3
						carbonyl transition-		MATHEMATICS CHINESE JOURNAL	COMPUTER SCIENCES	MATHEMATICS	0.1	3
24	5	5	85	Synthese			CYCLODEXTRIN:	OF INORGANIC	CHEMISTRY	INORGANIC CHEMISTRY	6.1	5
							SEMICONDUCTO	CHINESE JOURNAL	CHEMISTRY	INORGAINIC CHEMISTRY	0.1	5
25	6	5	59	Preparati					CHEMISTRY	INORGANIC CHEMISTRY	6.1	5
				The crystal on of		synthesis; sulfide; microwave	HIGH-SPEED:	OF INORGANIC	CHEMISTRY	INORGANIC CHEMISTRY	0.1	5
26	6	2	36	Microwa			,	CHINESE JOURNAL	CLIEMICTRY	ODGANIG GUENNGTDV	0.4	-
				Microwave ve	2002	irradiation; N-alkyl-		OF ORGANIC	CHEMISTRY	ORGANIC CHEMISTRY	6.1	5
27	0	7	49	Realizati	0000		LOGIC GATES;	CHINESE PHYSICS	DI IVOICO	ATOMIC & MOLECULAR		4
	-			We have e on of the	2002		COMPUTATION;	LETTERS	PHYSICS	PHYSICS &	6.2	4
28	0	3	64	Centralit	0000		COLLECTIVE	CHINESE PHYSICS	DI IVOIGO	NUCLEAR PHYSICS &		_
				Directed floy	2002		FLOW; FEMTOSECOND	LETTERS	PHYSICS	ELEMENTARY PARTICLE	6.1	5
29	0	11	107	Optical				CHINESE PHYSICS	51370100	ATOMIC & MOLECULAR		
					2002		SPECTROSCOPY	LETTERS	PHYSICS	PHYSICS &	6.1	4
30	0	6	97	Kinetics			BULK METALLIC-	CHINESE PHYSICS	OLIEMIOTE)/	DUNGIONI OUENNOTOY		
		-		Droplets of of the	2002		GLASS; HIGH-	LETTERS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
31	0	7	51	Mean-			HIGH-TC	CHINESE PHYSICS	D. 1) (0100	NUCLEAR PHYSICS &		
•	Ů	·		The electrofield	2002		SUPERCONDUC	LETTERS	PHYSICS	ELEMENTARY PARTICLE	6.1	4
32	13	1	72	sigma-		static random		CHINESE SCIENCE		NUCLEAR PHYSICS &		
<u></u>		·		sigma-LET LET		,,	SINGLE	BULLETIN	PHYSICS	ELEMENTARY PARTICLE	6.1	4
33	6	5	156	Decreasi		,	DRONNING-	CHINESE SCIENCE	EARTH SCIENCES &	GEOLOGY,		
		•				,	MAUD-LAND; ICE-	BULLETIN	OCEANOGRAPHY	GEOCHEMISTRY &	6.3	5
34	10	0	139	Thermal		lead zirconate		CHINESE SCIENCE		CERAMICS,		
5 4	10	0	100	The volum expansio					MATERIALS	REFRACTORIES & GLASS	6.1	5
35	15	3	150	High		biodegradation;	TEMPERATURE	0	ENVIRONMENTAL	WATER POLLUTION &		
33	10	0	100	With wax c molecula			GAS-	BULLETIN	POLLUTION & CONTROL	CONTROL	6.3	4
36	17	0	277	Vibration		FEA model;		COMPUTERS &	BIOLOGICAL & MEDICAL	MEDICAL FACILITIES,		
30	17	U	211		2002	ANSYS; printed		STRUCTURES	SCIENCES	EQUIPMENT & SUPPLIES	6.2	5
37	0	11	139	Anomalo			GRAPHITIZED	ELECTROCHEMICAL				
31	U	11	139	Electroche us	2002		MESOCARBON	AND SOLID STATE	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
38	0	4	68	Persiste			EXISTENCE;	ERGODIC THEORY				
30	U	4	00	We presen nce of	2002		INTEGRABILITY;		PHYSICS	FLUID MECHANICS	6.2	4
39	6	0	99	Sludge		aerated lagoon;		FRESENIUS	ENVIRONMENTAL	WATER POLLUTION &		
39	o	U	99	The aerate accumul		sludge		ENVIRONMENTAL	POLLUTION & CONTROL	CONTROL	6.3	5
40	6	0	25	Optimize		optimized data		HIGH ENERGY		NUCLEAR PHYSICS &		
40	6	U	35	A method i d BES	2002	taking time; BES;		PHYSICS AND	PHYSICS	ELEMENTARY PARTICLE	6.2	3

				Descripti		RMF theory;	SUPERHEAVY	HIGH ENERGY	1	NUCLEAR PHYSICS &		
41	9	4	152	The new nion of the		superheavy	ELEMENTS:	PHYSICS AND	PHYSICS	ELEMENTARY PARTICLE	6.1	4
				Atypical		acquired renal	CELL	PHYSICS AND	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL	0.1	
42	17	9	171	Acquired repithelial		cystic disease;	CARCINOMA;	HUMAN PATHOLOGY	SCIENCES	RESEARCH	6.3	5
				Synthesi	2002	cystic disease,	OXYGEN-ATOM	INORGANIC	SCIENCES	RESEARCH	0.3	
43	0	21	183	Complexes and	2002		TRANSFER: RAY	CHEMISTRY	CHEMISTRY	INORGANIC CHEMISTRY	6.1	5
				Complexess and		flow damage;	FRACTURED	INTERNATIONAL	EARTH SCIENCES &	GEOLOGY,	0.1	
44	4	5	167	Rock is a hanalysis		heterogeneous;	ROCK:		OCEANOGRAPHY	GEOCHEMISTRY &	6.1	5
				Electron	2002	neterogeneous;	SEMIINSULATIN	JOURNAL OF ROCK	OCEANOGRAPHY	GEOCHEMISTRY &	0.1	5
45	0	5	91		2002		G GAAS:		PHYSICS	SOLID STATE PHYSICS	6.1	5
				A +/-100 V emission		articular cartilage;	PHYSIOLOGICAL		BIOLOGICAL & MEDICAL	SOLID STATE PHYSICS	6.1	5
46	13	8	282	Ultrasou						ANIATONIA A BUNGIOLOGY	0.0	_
-				We studied nd		proteoglycans;	LOADING RATES;	AND MINERAL	SCIENCES	ANATOMY & PHYSIOLOGY	6.3	5
47	6	4	127	Germani		defects; single	NITROGEN-	JOURNAL OF	CHEMICEDY	INCREANIC CHEMICTRY	0.4	_
	-	-		The effect um		crystal growth;	DOPED SILICON;		CHEMISTRY	INORGANIC CHEMISTRY	6.1	5
48	9	6	66	Polyol-		crystal	NANOWIRES;	JOURNAL OF	D. N. C. C.	000/07444 000 40494		
<u> </u>				Single crys mediated	2002	morphology; low	GROWTH;	CRYSTAL GROWTH		CRYSTALLOGRAPHY	6.1	4
49	9	0	78	Impleme		COTS; image		JOURNAL OF	NAVIGATION, DETECTION &			_
		•		This paper ntation of				INFRARED AND	COUNTERMEASURES	DETECTORS	6.3	5
50	8	1	87	Multireso		mathematic		JOURNAL OF	MATHEMATICAL &			
		·	<u> </u>	A new unsulution		morphology;	SEGMENTATION	INFRARED AND	COMPUTER SCIENCES	CYBERNETICS	6.2	5
51	5	3	167	Efficient		total RNA;	MYCOBACTERIU	JOURNAL OF	BIOLOGICAL & MEDICAL			
Ŭ.	•	Ů		RNA extracisolation		isolation;	M;		SCIENCES	MICROBIOLOGY	6.2	5
52	10	8	134	Novel		characterization;	LOW-DENSITY	JOURNAL OF				
J2	10	Ü	104	Based on a characte		segment	POLYETHYLENE	. 021111211 00121102	CHEMISTRY	POLYMER CHEMISTRY	6.1	5
53	8	5	118	Quantitat		capillary zone	BINDING	JOURNAL OF	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
55	0	3	110	Capillary zeive		electrophoresis;	ASSAYS; DNA-	SEPARATION	SCIENCES	MOLECULAR BIOLOGY	6.1	4
54	13	0	157	Existenc		V(m;t) vector;		JOURNAL OF	MATHEMATICAL &			
34	2	U	137	A V(m, t) lee of V(m,		orthogonal Latin		STATISTICAL	COMPUTER SCIENCES	STATISTICS & PROBABILITY	6.1	4
55	7	4	148	Characte		calorimetry;	REVERSIBLE-	JOURNAL OF		THEORETICAL		
33		4	140	According ristic		characteristic	REACTIONS;	THERMAL ANALYSIS		MATHEMATICS	6.1	5
56	11	5	91	Combine		Fokker-Planck	PLANCK	MATHEMATICS OF	MATHEMATICAL &			
30	11	5	91	The conveid	2002	equation;	EQUATION;	COMPUTATION	COMPUTER SCIENCES	NUMERICAL MATHEMATICS	6.1	5
E-7	0	_	1.10	Effects				MICROELECTRONICS	ELECTROTECHNOLOGY &	ELECTRICAL &		
57	0	0	146	The effects of	2002			RELIABILITY	FLUIDICS	ELECTRONIC EQUIPMENT	6.1	4
	0	0	400	Laser-			MOLECULES;	MOLECULAR		ATOMIC & MOLECULAR		
58	0	2	136	Laser-indu induced	2002		ABSORPTION	PHYSICS	PHYSICS	PHYSICS &	6.1	5
	_	40		A novel			TRANSITION-	NEW JOURNAL OF				
59	0	10	57	Reaction of one-	2002		METAL	CHEMISTRY	CHEMISTRY	POLYMER CHEMISTRY	6.1	5
	_	_		Simple		cyclic radial	FOURIER-	OPTICAL			-	-
60	8	3	196	Two new it algorithm			TRANSFORM	ENGINEERING	PHYSICS	OPTICS	6.2	5
		1				- ·······			1	1	¥	

							STEREOSELECTI	I	I			
61	0	9	33	Tuning	2002		VE SYNTHESIS:	ORGANIC LETTERS	CHEMISTRY	ORGANIC CHEMISTRY	6.1	-
-				Substituen the	2002		VE SYNTHESIS;	DUIVOIONI DEVIENA	CHEMISTRY	NUCLEAR PHYSICS &	6.1	5
62	0	1	77	First			DADTICI EC	PHYSICAL REVIEW	DI IVOICO		0.4	-
	-			We observe observa			PARTICLES	LETTERS	PHYSICS	ELEMENTARY PARTICLE	6.1	5
63	0	9	118	Nonclas			RESONANT	PHYSICS LETTERS A		QUANTUM THEORY &		_
	Ů	ŭ		We have ir ical	2002		TRANSPORT;		PHYSICS	RELATIVITY	6.1	5
64	0	0	143	All-plant				POLYMER		LAMINATES & COMPOSITE		
07	Ü	Ü	140	Benzylatior fiber	2002			COMPOSITES	MATERIALS	MATERIALS	6.2	5
65	0	5	164	An			MAXIMUM-		BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
03	U	3	104	The geneticimprove	d 2002		LIKELIHOOD;	THE NATIONAL	SCIENCES	MOLECULAR BIOLOGY	6.2	5
66	7	4	147	Identifica	a	xenotransplantatio	ENDOTHELIAL-	PROGRESS IN	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
90	1	4	147	To identify tion of	2002	n; rejection;	CELLS;	NATURAL SCIENCE	SCIENCES	MOLECULAR BIOLOGY	6.2	5
		40	400	Burial of			ELEMENTAL	QUATERNARY	EARTH SCIENCES &	GEOLOGY,		
67	0	12	166	Total organ different	2002		CARBON; BLACK	RESEARCH	OCEANOGRAPHY	GEOCHEMISTRY &	6.2	5
	40	0.4	004	Mortality		finless porpoise;	ASIAN COASTAL	RAFFLES BULLETIN	ENVIRONMENTAL	ENVIRONMENTAL HEALTH		
68	16	21	291	Data on ca and			WATERS;	OF ZOOLOGY	POLLUTION & CONTROL	& SAFETY	6.3	5
		_		Complet		difference set;	- /		MATHEMATICAL &	THEORETICAL		-
69	14	0	98	In this papee settling				SERIES A-	COMPUTER SCIENCES	MATHEMATICS	6.1	3
				Modeling		friction; voltage;		SCIENCE IN CHINA	00 01.211.00.2110.20	ELECTRICITY &		
70	4	0	124	A phenome of the		control; model		SERIES A-	PHYSICS	MAGNETISM	6.1	4
				Mimic-		crack; self-		SCIENCE IN CHINA				
71	6	0	85	Modeling n biology	2002	recovering;		SERIES E-	MATERIALS	PLASTICS	6.1	5
				Resamp			BOOTSTRAP		MATHEMATICAL &	1 2 10 1 100	0.1	
72	10	4	122	Testing hyring			METHODS:	STATISTICA SINICA	COMPUTER SCIENCES	NUMERICAL MATHEMATICS	6.1	5
				A A	2002		QUANTITATIVE	THEORETICAL	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &	0.1	
73	13	15	227	Polyploids bivalent	2002	full-sib family;	TRAIT LOCUS:	POPULATION	SCIENCES	MOLECULAR BIOLOGY	6.1	5
				Retrieva			COMPUTER-	ULTRASOUND IN	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL	0.1	3
74	5	12	226	We evalua techniqu			AIDED		SCIENCES	RESEARCH	6.3	5
				Structure			3-DIMENSIONAL	MEDICINE AND ACTA	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &	0.3	<u> </u>
75	0	6	207	Val45 is a Is of	2002		STRUCTURE;			MOLECULAR BIOLOGY	6.1	5
_					2002		NB ORE	CRYSTALLOGRAPHIC	SCIENCES		6.1	5
76	12	12	129	Geoche			_	ACTA PETROLOGICA		GEOLOGY,	0.4	-
				According mistry of	2002	- 3 3 ,	DEPOSIT; INNER-		OCEANOGRAPHY	GEOCHEMISTRY &	6.1	5
77	13	2	232	Primary	1	3 3	BOUNDARY;	ACTA PETROLOGICA		GEOLOGY,		_
Li.	.0	_		Up to now, investiga		,	SEARCH	SINICA	OCEANOGRAPHY	GEOCHEMISTRY &	6.2	5
78	13	5	152	Study or		quantum	CORRELATION-	ACTA PHYSICO-				
	10	J	102	The metho high			ENERGY;	CHIMICA SINICA	CHEMISTRY	PHYSICAL CHEMISTRY	6.2	5
79	7	0	86	Electroc		Er-Ni-Co alloy film;		ACTA PHYSICO-		METALLURGY &		
19	1	U	00	The cyclic hemical	2002	rare earths;			MATERIALS	METALLOGRAPHY	6.1	5
90	0	0	1/0	Retrieva	-		TOPOGRAPHIC	ANNALS OF	EARTH SCIENCES &			
80	U	ğ	148	We develo of snow	2002		NORMALIZATION	GLACIOLOGY, VOL	OCEANOGRAPHY	SNOW, ICE & PERMAFROST	6.3	5
80	0	8	148		-					SNOW, ICE & PERMAFROST		6.3

_						I d	T		INITIOL EAD COLENOE 9	IDADIOACTIVITY		
81	4	0	117	A decay		decay; gamma-			NUCLEAR SCIENCE &	RADIOACTIVITY,	0.4	_
-				The excited study of	2002	ray; level;	OLIANITITICO:	AND ISOTOPES	TECHNOLOGY BIOLOGICAL & MEDICAL	RADIOACTIVE WASTES &	6.1	5
82	11	2	242	Purificati	0000		QUANTITIES; RESISTANCE	ARCHIVES OF		DIOLOGY	0.4	4
				A simple at on and			FREQUENCY-	INSECT	SCIENCES MATHEMATICAL &	BIOLOGY	6.1	4
83	9	7	151	Closed-	1			AUTOMATICA		CTATIOTICS & PROPARII ITY	0.4	_
				This paper loop	2002		DOMAIN DATA;		COMPUTER SCIENCES	STATISTICS & PROBABILITY	6.1	5
84	13	7	85	Cluster		relative	USAGE BIAS;	BIOSYSTEMS	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		_
-		-		The relative analysis	2002	synonymous	ARABIDOPSIS-		SCIENCES	MOLECULAR BIOLOGY	6.1	5
85	10	5	270	Seedling		,	FLOWERING	CANADIAN JOURNAL		AGRONOMY,		_
				Chickpea (emergen		fertile pods; seed	TIME;		AGRICULTURE	HORTICULTURE &	6.3	5
86	9	3	129	Synthesi		5 -	SRBI2TA2O9	CERAMICS		CERAMICS,		
	Ŭ	_	0	Nanocrysta's and	2002	techniquec; C.	THIN-FILMS;	INTERNATIONAL	MATERIALS	REFRACTORIES & GLASS	6.1	5
87	10	2	218	Applicati		coal gasification;		CHEMICAL	ENVIRONMENTAL	AIR POLLUTION &		
Ŭ.		_	2.0	Typical flue on of	2002		SULFUR; SO2	ENGINEERING	POLLUTION & CONTROL	CONTROL	6.2	5
88	8	3	79	Chaos		,	SYSTEMS;	CHINESE JOURNAL				
-00	Ů	Ŭ		The adapti synchron	2002	synchronization;	OSCILLATORS;	OF CHEMISTRY	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
89	0	0	61	Wave				CHINESE JOURNAL		QUANTUM THEORY &		
03	O .	Ŭ	01	The time e packets	2002			OF PHYSICS	PHYSICS	RELATIVITY	6.1	4
90	5	0	66	An	1	unconstrained		COMPUTERS &	MATHEMATICAL &			
30	J	Ŭ		The proble unconstr	2002	optimization;		OPERATIONS	COMPUTER SCIENCES	OPERATIONS RESEARCH	6.2	5
91	7	12	111	Measure		,	COLUMN	ELECTROPHORESIS	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
31	'	12	111	A method I ment of		capillary	AMPEROMETRIC		SCIENCES	MOLECULAR BIOLOGY	6.3	5
92	9	12	85	New		styrene; late	TRANSFER	EUROPEAN				
32	9	12	00	Neutral nic neutral	2002		RADICAL	POLYMER JOURNAL	CHEMISTRY	POLYMER CHEMISTRY	6.1	5
93	7	0	214	An		performance-		FIRE TECHNOLOGY	- , - ,	STRUCTURAL		
93	,	U	214	Traditional investiga	2002	based code;		TIKE TECHNOLOGI	CIVIL & MARINE	ENGINEERING & BUILDING	6.2	5
94	0	0	226	Detectio				GEOPHYSICS	EARTH SCIENCES &			
34	U	U	220	We presen n of	2002				OCEANOGRAPHY	MINING ENGINEERING	6.3	5
95	5	14	76	Effects			HIGH		NUCLEAR SCIENCE &	FUSION DEVICES		·
95	၂ ၁	14	76	Electrode tof	2002		CONFINEMENT	ON PLASMA SCIENCE	TECHNOLOGY	(THERMONUCLEAR)	6.1	4
96	10	3	122	Theoreti			FINITE	INTERNATIONAL				
96	10	3	122	In this papecal		material; strain	THICKNESS	JOURNAL OF	MATERIALS	PLASTICS	6.1	5
0.7	7	0	120	Microstru		Pb1-xGexTe; film;		JAPANESE JOURNAL				
97	7	0	139	Pb1-xGexTcture	2002	microstructure;		OF APPLIED PHYSICS	CHEMISTRY	INORGANIC CHEMISTRY	6.1	4
00	_	0	440	Phase				JOURNAL OF		CERAMICS,		
98	0	0	110	Phase tran transition	2002			APPLIED PHYSICS	MATERIALS	REFRACTORIES & GLASS	6.1	5
	_	_	40=	Permo-		Permo-	YUNNAN;	JOURNAL OF ASIAN	EARTH SCIENCES &	GEOLOGY,		
99	7	3	137	In southwe Carbonif	2002	Carboniferous;	AFRICA; TIBET	EARTH SCIENCES	OCEANOGRAPHY	GEOCHEMISTRY &	6.2	4
4.5.5		_		Nonlinea		nonlinear analysis;	,	JOURNAL OF COLD				
100	10	0	115	In this paper		mathematical			PHYSICS	THERMODYNAMICS	6.2	5
					,	1						

				Δ.	new		mathematical	BILEVEL	JOURNAL OF	MATHEMATICAL &			
101	14	5	107	in order to bra				MATHEMATICAL		COMPUTER SCIENCES	CYBERNETICS	6.1	4
	_	_			new		Collembola;		JOURNAL OF	BIOLOGICAL & MEDICAL			
102	8	2	29	A new Chir sp		2002	Entomobryidae;	GENUS SINELLA	ENTOMOLOGICAL	SCIENCES	ANATOMY & PHYSIOLOGY	6.1	4
		_			henolic		phenolic resin	IRREVERSIBLE	JOURNAL OF	POWER PRODUCTION &	ELECTROCHEMICAL		
103	9	2	113	Phosphoru res	sin	2002	carbon;	CAPACITY	INORGANIC	ENERGY CONVERSION	ENERGY STORAGE	6.1	4
404	_		0.5	Re	esearc		bonding; Al; die-		JOURNAL OF				
104	5	1	65	After gettin h	of the	2002	casting-bonding	SYSTEM	INORGANIC	CHEMISTRY	INORGANIC CHEMISTRY	6.1	5
105	4.4	2	63	Sy	ynthesi		CuS particulate	LANGMUIR	JOURNAL OF				
105	11	2	63	A simple ms of	of CuS		film; rod-like CuS	MONOLAYERS	INORGANIC	CHEMISTRY	INORGANIC CHEMISTRY	6.1	5
106	8	0	128		neural		Si/C/N nano		JOURNAL OF				
100	0	U	120	High tempene		2002	powder; dielectric		INORGANIC	CHEMISTRY	INORGANIC CHEMISTRY	6.1	4
107	0	5	86		lectroc			TEMPLATE-	JOURNAL OF				
107	U	5	00	Aligned miche	emical	2002		SYNTHESIS;		CHEMISTRY	POLYMER CHEMISTRY	6.1	4
108	15	19	190		xposur			PROGRAMMED	JOURNAL OF	BIOLOGICAL & MEDICAL			
100	10	13	130	Exposure t e t		2002		CELL-DEATH;	NEUROTRAUMA	SCIENCES	ANATOMY & PHYSIOLOGY	6.3	5
109	0	15	246		hibition			ISCHEMIC-	JOURNAL OF	BIOLOGICAL & MEDICAL			
103		10	240	Previously by		2002		HEART-DISEASE;	PHARMACOLOGY	SCIENCES	PHARMACOLOGY	6.2	5
110	0	18	202		issociat			NITRIC-OXIDE	JOURNAL OF THE				
110		10	202	The first twior		2002		SYNTHASE;	AMERICAN	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
111	0	8	292		rotectiv			SMOOTH-	JOURNAL OF	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
• • • •		Ŭ		Objectives e		2002		MUSCLE;	THORACIC AND	SCIENCES	RESEARCH	6.1	5
112	6	1	165		ransfer		,	MAMMALIAN-	LIFE SCIENCES	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
		·		Electropora of				CELLS		SCIENCES	MOLECULAR BIOLOGY	6.2	5
113	7	15	163		oncentr		,	HEAVY-METAL		ENVIRONMENTAL	PESTICIDES, POLLUTION &		
	•			The concerati			1 - 7	CONTAMINATIO	BULLETIN	POLLUTION & CONTROL	CONTROL	6.3	4
114	9	4	113		lectroc			CADMIUM-	MATERIALS	OUEL WOEDY	DUNGOLO AL GUIENNOTEN		_
		-		We have s he				SULFIDE;		CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
115	7	9	171		hibitory			GLIAL	NEUROSCIENCE	BIOLOGICAL & MEDICAL	ANIATOMY & BUIVEIN SOY		_
		_					carrageenan; c-	ACTIVATION;	LETTERS	SCIENCES	ANATOMY & PHYSIOLOGY	6.1	5
116	7	1	72		ropagat		elliptical Gaussian	MATRICEO	OPTICS AND LASER	DI IVOIGO	OPTION	0.4	_
				The propagior		2002		MATRICES SURFACE-	TECHNOLOGY	PHYSICS	OPTICS METALLURGY &	6.1	5
117	0	6	117		hermop	2002			PHILOSOPHICAL	MATERIALS		6.4	-
				The surfac hy		2002		TENSION; ISLAND	MAGAZINE LETTERS	ELECTROTECHNOLOGY &	METALLOGRAPHY	6.1	5
118	0	4	83		onte	2002		GROWTH:	PHYSICAL REVIEW B	FLUIDICS	LACEDO & MACEDO	6.1	5
				Using the NCa		2002		GROWIT;	PHYSICS IN	MATHEMATICAL &	LASERS & MASERS	0.1	5
119	0	0	126	1		2002				COMPUTER SCIENCES	CYBERNETICS	6.2	5
				Based on t ac	ccurate pidemic		percolation;	DIFFUSION-	IVIEDICINE AND	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL	0.2	5
120	6	10	148	Epidemic s sp				LIMITED	PHYSICS LETTERS A	SCIENCES	RESEARCH	6.1	4
				Epideinic SSP	readin	2002	correlation;	LIMITED		SCIENCES	RESEARON	0.1	4

				Measure		e(+)e(-) collisions;	DHENOMENOI O	I	I	NUCLEAR PHYSICS &		
121	8	8	92	We have ment of			GICAL	PHYSICS LETTERS B	PHYSICS	ELEMENTARY PARTICLE	6.1	5
-				In vitro		5-fluorouracil; drug		POLYMERS FOR	BIOLOGICAL & MEDICAL	ELEWENTART PARTICLE	0.1	3
122	7	8	173	In this papestudy on			E POLYMERS:	ADVANCED	SCIENCES	PHARMACOLOGY	6.1	4
				Cinphori		cinnamomin:	E POLTIVIERO,	PROGRESS IN	BIOLOGICAL & MEDICAL	PHARIVIACOLOGI	0.1	4
123	6	1	126	Cinphon Cinnamom n: a			SEEDS	BIOCHEMISTRY AND		BIOLOGY	6.1	5
				Genome-			SEQUENCES:	PROGRESS IN	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &	0.1	3
124	15	3	157				DNA; FRACTALS			MOLECULAR BIOLOGY	6.1	5
				By using fo scale			AVIDIN-BIOTIN:	BIOCHEMISTRY AND PROGRESS IN	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL	0.1	Э
125	10	2	115	Develop			AMPLIFICATION	BIOCHEMISTRY AND		RESEARCH	6.3	5
				On the bas ment of	2002	substrate recycle	AMPLIFICATION		EARTH SCIENCES &		6.3	5
126	0	1	118	Elasto-	0000		FLOW		OCEANOGRAPHY	GEOLOGY, GEOCHEMISTRY &	0.4	_
				This paper viscoplas			FLOW	AND ROCK	MATHEMATICAL &	GEOCHEMISTRY &	6.1	5
127	8	0	182	Geometr		division ring;		00.202 0		NUMBER OF A STATE OF ASTRON		_
	_	-		Let D be a y of 2 x 2			LII TO ALLIOLI	02.112071	COMPUTER SCIENCES	NUMERICAL MATHEMATICS	6.1	5
128	8	15	283	Geochro			ULTRAHIGH-	00.202 0	EARTH SCIENCES &	GEOLOGY,		_
\vdash	-	_		Regional a nological			PRESSURE	SERIES D-EARTH	OCEANOGRAPHY	GEOCHEMISTRY &	6.2	5
129	10	2	133	Raman			SCATTERING;	SOLID STATE	OUT WOTO	DUNGLON OUT WOTON		_
				A micro-Raanalysis	2002		HYDROGEN	0011111011101110	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
130	0	10	89	Synthesi			SPECTROSCOPI	SYNTHESIS AND	OUEL HOTEL	DUNGO AL OLIENDO DI		_
				Two sets o s and	2002		C PROPERTIES;	REACTIVITY IN	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
131	8	4	41	Solvent		oxidation;	CHROMIC-ACID;	TETRAHEDRON				
				The oxidati free	2002	alcohols;	ALDEHYDES;	LETTERS	CHEMISTRY	INORGANIC CHEMISTRY	6.1	4
132	0	4	70	Novel			PHOTOINDUCED	TRANSITION METAL		METALLURGY &		
.02		•		5-(p-Carbo complex			ELECTRON-	OFFERMIOTICS	MATERIALS	METALLOGRAPHY	6.1	5
133	6	7	166	Seroepid			HONG-KONG; A	VETERINARY	BIOLOGICAL & MEDICAL			
100	0	'	100	Pig serum emiologi	2002	viruses; pig	VIRUSES;	MICROBIOLOGY	SCIENCES	MICROBIOLOGY	6.2	4
134	0	16	364	Clinical					BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
104	0	10	504	AIM: To stushort-	2002		MICROWAVE	GASTROENTEROLOG		RESEARCH	6.3	5
135	0	12	326	Clinical			INTERFERON-		BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
133	U	14	320	AIM: To ev observati	2002		GAMMA;	GASTROENTEROLOG		RESEARCH	6.2	5
136	0	14	317	Effects			SMOOTH-		BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
130	U	14	317	AIM: Hepat of the	2002		MUSCLE CELLS;	GASTROENTEROLOG	SCIENCES	RESEARCH	6.1	5
137	7	0	138	Effect of		thermal-shocking;		ACTA		METALLURGY &		
137	1	U	130	The mechahigh		precipitation-			MATERIALS	METALLOGRAPHY	6.1	5
138	7	0	96	High		MoSi2-SiC		ACTA		LAMINATES & COMPOSITE		
136	1	U	90	The compr temperat	2002	composite;		METALLURGICA	MATERIALS	MATERIALS	6.1	4
139	7	2	156	Structure		FC magnetization;		ACTA		METALLURGY &		
139	1		150	Sr1-xCaxR and	2002		BEHAVIOR	METALLURGICA	MATERIALS	METALLOGRAPHY	6.1	5
4.40	-	2	175	Acetazol		acetazolamide;	AQUAPORIN-1;	ACTA	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
140	5	2	175	AIM: To stuamide	2002	neoplasm	CELLS	PHARMACOLOGICA	SCIENCES	RESEARCH	6.2	5
				, , , , , , , , , , , , , , , , , , , ,					•			

				A new	1	atomic beam;		ACTA PHYSICA	TEST EQUIPMENT,			
141	4	0	63	A new met method		interferometry;		SINICA	RESEAERCH FACILITIES &	HOLOGRAPHY	6.1	4
				Experim		laser plasma;		ACTA PHYSICA	ELECTROTECHNOLOGY &	I I I I I I I I I I I I I I I I I I I	0.1	
142	5	0	124	The depen ental		holhraum;		SINICA	FLUIDICS	LASERS & MASERS	6.1	4
				Alternati		disordered		ACTA PHYSICA	1 2012100	ATOMIC & MOLECULAR	0.1	•
143	7	1	174	A electron-ng			CHAIN	SINICA	PHYSICS	PHYSICS &	6.1	4
				A high			GIANT	ACTA PHYSICA		METALLURGY &		-
144	12	5	139	By using hi resolution	2002		MAGNETORESIS	SINICA	MATERIALS	METALLOGRAPHY	6.1	4
	_			Entropy		black hole;	NERNST	ACTA PHYSICA	-	NUCLEAR PHYSICS &		
145	9	4	55	Starting fro of a		entropy; thin film	THEOREM;	SINICA	PHYSICS	ELEMENTARY PARTICLE	6.1	4
	_	_		Usefulne			OUTCOMES:		BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
146	0	2	49	The preserss of	2002		GROWTH	OF CARDIOLOGY	SCIENCES	RESEARCH	6.1	5
				Phase II			FRONT-LINE	ANTI-CANCER	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
147	5	11	204	The efficac study of		epirubicin;	TREATMENT;	DRUGS	SCIENCES	RESEARCH	6.3	4
				Post		boride; gaseous	,	APPLIED SURFACE		METALLURGY &		
148	5	1	91	This article boronizir	2002		BORIDE	SCIENCE	MATERIALS	METALLOGRAPHY	6.1	5
			050	Glacioch			CHEMICAL-	ATMOSPHERIC				
149	11	8	250	Glaciochen emical	2002	core; dust	COMPOSITION:	ENVIRONMENT	ATMOSPHERIC SCIENCES	METEOROLOGY	6.3	5
	_		000	Breastfe		,	,	BIRTH-ISSUES IN	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
150	0	1	282	Backgroun eding	2002		DURATION	PERINATAL CARE	SCIENCES	RESEARCH	6.2	4
151	40		000	Use of		angle of repose;	GAS	CHEMICAL				
151	13	4	226	The angle angle of	2002	bulk densities; gas	FLUIDIZATION;	ENGINEERING	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
450	40	_	57	Correlati		quantum-chemical		CHEMICAL JOURNAL				
152	10	0	5/	The quantuon	2002	descriptors;		OF CHINESE	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
153	7	4	31	Studies		aromatic fused		CHEMICAL JOURNAL	BIOLOGICAL & MEDICAL			
153	1	1	31	The photod on	2002		FLUORESCENCE	OF CHINESE	SCIENCES	BIOCHEMISTRY	6.1	4
154	7	13	215	The UBI	-	CO2 activation;	RESOLVED	CHEMICAL JOURNAL	ENVIRONMENTAL	AIR POLLUTION &		
154	1	13	215	The convei QEP	2002	UBI-QEP method;	PHOTOEMISSIO	OF CHINESE	POLLUTION & CONTROL	CONTROL	6.1	4
155	7	0	100	The		nucleating agent;		CHEMICAL JOURNAL				
100	1	U	106	The influen influence	2002			OF CHINESE	CHEMISTRY	POLYMER CHEMISTRY	6.1	4
156	0	12	126	Density			RESONANCE	CHEMICAL PHYSICS		METALLURGY &		
156	U	12	126	The ground functions	2002		RAMAN-	LETTERS	MATERIALS	METALLOGRAPHY	6.1	4
157	7	4	20	One-pot		1;4-diaryloxyacetyl		CHINESE CHEMICAL				
15/	1	Т	29	The 1-arylc synthesi	2002	thiosemicarbazide;	DERIVATIVES	LETTERS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
158	8	_	F.0	Two nev	/	Selaginella		CHINESE CHEMICAL				
158	ğ	0	53	Two new c chromor		uncinata;		LETTERS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	3
159	6	6	1.40	Adsorpti			MOLECULAR-	CHINESE CHEMICAL				
159	О	О	148	The Zn-Cu on	2002		SIEVE	LETTERS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
160	-	_	100	An		gold self-	ARRAY	CHINESE JOURNAL	NAVIGATION, DETECTION &	MISCELLANEOUS		
100	5	3	133	An immune immune	2002	assembled	IMMUNOSENSOR	OF ANALYTICAL	COUNTERMEASURES	MATERIALS	6.1	4

						Veronica	ı	OLUNIEGE IGUIDAIAI	BIOLOGICAL & MEDICAL			1
161	7	0	68	Analysis The essent of		linariifolia:		0	SCIENCES	BIOCHEMISTRY	6.1	5
				Voltamm		ethambutol; glassy	LIOLIID	OF ANALYTICAL	SCIENCES	BIOCHEMISTRY	0.1	5
162	6	1	107				CHROMATOGRA	CHINESE JOURNAL	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
				The anodic etric		benzene; selective		OF ANALYTICAL CHINESE JOURNAL	CHEMISTRY	PHYSICAL CHEMISTRY	0.1	4
163	9	5	187	Study on		· '			CHEMICTRY	DUVOICAL CUENICEDY	0.4	5
				The selecti operatio			SOLUTION;	OF CATALYSIS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
164	7	0	124	Study on		carbonyl sulfide;		CHINESE JOURNAL	OUENIOTEV	DUNGIONI OUENIOTOY	0.4	-
				A microrea reaction		hydrolysis;	014411 0511	OF CATALYSIS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
165	5	11	249	Tissue		glioma; tissue	SMALL CELL-	CLINICAL	BIOLOGICAL & MEDICAL			_
				Backgroun factor			CARCINOMA;	BIOCHEMISTRY	SCIENCES	ANATOMY & PHYSIOLOGY	6.2	5
166	9	11	206	CVD		microwave plasma		DIAMOND AND				
.00			200			chemical vapor	VAPOR-	RELATED	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
167	10	0	176	Habitat		geographic		ECOLOGICAL	BIOLOGICAL & MEDICAL			
,,,,	10	J	170	We evalua evaluatio	2002			RESEARCH	SCIENCES	ECOLOGY	6.2	5
168	0	16	180	Formatio			PHOTOCATALYTI	ENVIRONMENTAL	ENVIRONMENTAL	WATER POLLUTION &		
100		10	100	The photod n and	2002		С	SCIENCE &	POLLUTION & CONTROL	CONTROL	6.1	5
169	18	12	128	Role of			INFERIOR	HIPPOCAMPUS	BIOLOGICAL & MEDICAL			
103	10	12	120	The role of medial			PREFRONTAL		SCIENCES	ANATOMY & PHYSIOLOGY	6.1	5
170	4	1	52	Anticontr		anticontrol; chaos;		IEICE	MATHEMATICAL &			
170	4	'	32	This paper ol of			FEEDBACK		COMPUTER SCIENCES	CYBERNETICS	6.2	5
171	7	0	138	Survey		China;		INTERNATIONAL	ENVIRONMENTAL	ENVIRONMENTAL HEALTH		
171	,	U	130	A survey w and		environmental		JOURNAL OF	POLLUTION & CONTROL	& SAFETY	6.2	4
172	10	0	47	Multi-		submillimeter		INTERNATIONAL	ELECTROTECHNOLOGY &			
1/2	10	U	47	Based on s Raman		wave laser		JOURNAL OF	FLUIDICS	LASERS & MASERS	6.1	5
173	7	14	119	5-			INDUCED	INTERNATIONAL	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
1/3	1	14	119	With currer Aminolev	2002	detection;	PORPHYRIN	JOURNAL OF	SCIENCES	RESEARCH	6.2	5
174	6	0	166	Chemica		astragalosides;		JOURNAL OF	BIOLOGICAL & MEDICAL			
1/4	0	U	100	Radix Astral analysis	2002			AGRICULTURAL AND	SCIENCES	PHARMACOLOGY	6.1	5
175	2	7	159	Effect of		crystallization;	POLY(PARA-	JOURNAL OF				
1/5	2	/	159	The crystal PMR-	2002		PHENYLENE	APPLIED POLYMER	CHEMISTRY	POLYMER CHEMISTRY	6.1	5
470	^		45	A		nonlinear	DYNAMICAL-	JOURNAL OF	MATHEMATICAL &			
176	6	4	15	Chua's circ chemical	2002	dynamics;	SYSTEMS;	CHEMICAL	COMPUTER SCIENCES	STATISTICS & PROBABILITY	6.2	3
477	_	4		Two-			FREE-	JOURNAL OF	MATHEMATICAL &	THEORETICAL		
177	5	1	58	Both one-d phase	2002	undercooling;	BOUNDARY	DIFFERENTIAL	COMPUTER SCIENCES	MATHEMATICS	6.1	4
4-6	40	40	056	Electroc		hybrid copper-	CHEMICALLY	JOURNAL OF				
178	10	19	256	Hybrid cop hemical			DERIVATIZED	ELECTROANALYTICA	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
				Robust		robust estimator;		JOURNAL OF	MATHEMATICAL &			
179	9	1	82	A new robu estimator			MODELS	GEODESY	COMPUTER SCIENCES	NUMERICAL MATHEMATICS	6.1	4
		_		Polyester			PHENYLMALEIMI	JOURNAL OF			-	
180	8	5	162	A novel polimide-			DE-STYRENE	MACROMOLECULAR	MATERIALS	PLASTICS	6.1	5
		1		i i i i i i i i i i i i i i i i i i i		1				1. =		

181							NACTAL NAATON					
	9	10	359	Compute		indentation creep	METAL-MATRIX	JOURNAL OF	===	DI 407100		_
	-			A systemat r		,	COMPOSITES;	MATERIALS SCIENCE	MATERIALS	PLASTICS	6.2	5
182	7	5	102	Hydroge		austenitic stainless		JOURNAL OF		METALLURGY &		_
	·			For 308L a n-		steel; hydrogen		MATERIALS SCIENCE	MATERIALS	METALLOGRAPHY	6.1	5
183	11	6	114	Ab initio			CHEMICAL-	JOURNAL OF				
	• •			Total of six study on			SHIFTS; C60O;	MOLECULAR	CHEMISTRY	ORGANIC CHEMISTRY	6.1	4
184	12	1	227	Saponin		Platycodi radix;		JOURNAL OF	BIOLOGICAL & MEDICAL			
104	12	'	221	We examir's from	2002		STORAGE	NUTRITION	SCIENCES	ANATOMY & PHYSIOLOGY	6.1	5
185	0	5	184	Phase			POLYMER-	JOURNAL OF				
103	U	3	104	In this pape separatio	2002		POLYMER		CHEMISTRY	POLYMER CHEMISTRY	6.1	5
186	0	4	140	Study on				JOURNAL OF THE	ELECTROTECHNOLOGY &	LINE, SURFACE & BULK		
100	U		140	Based on t the	2002		MOTOR	ACOUSTICAL	FLUIDICS	ACOUSTIC WAVE DEVICES	6.1	5
407		44	044	N-methyl-		glutamate;	RAT-BRAIN;	JOURNAL OF THE	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
187	6	11	244	The N-met D-	2002	excitotoxicity;	NMDA	NEUROLOGICAL	SCIENCES	RESEARCH	6.2	5
	_	_	400	A six-		•		LASER AND	ELECTROTECHNOLOGY &			
188	2	0	100	A six-beam beam	2002	KrF laser		PARTICLE BEAMS	FLUIDICS	LASERS & MASERS	6.1	5
	_	_		Efficient		activators;		MACROMOLECULAR				-
189	8	1	55	Aluminium activator	2002	catalysts: late	COBALT	RAPID	CHEMISTRY	POLYMER CHEMISTRY	6.1	5
				The first		4(++) glueball	J/PSI RADIATIVE	MODERN PHYSICS		NUCLEAR PHYSICS &		
190	6	5	54	Under the calculati	2002	state; Monte Carlo	DECAYS:		PHYSICS	ELEMENTARY PARTICLE	6.1	5
				The			CALCIUM-	LETTEROX	BIOLOGICAL & MEDICAL		0.1	
191	9	16	298	Previous st influence		hippocampus; long		NEUROSCIENCE	SCIENCES	TOXICOLOGY	6.1	5
				Mathem	2002	ppoodpdo, iong	0.0.0.0.0	NUOVO CIMENTO	00:2:1020	ATOMIC & MOLECULAR	0.1	
192	0	0	39	Problems attical	2002				PHYSICS	PHYSICS &	6.1	4
				Retrogra	2002				BIOLOGICAL & MEDICAL	11110100 u	0.1	
193	0	1	151	The parotic de	2002		EXPANSION	HEAD AND NECK	SCIENCES	ANATOMY & PHYSIOLOGY	6.2	5
				Rate	2002		TI-NI ALLOYS;	PHILOSOPHICAL	COLLIVOES	//// CIVIT QTTTTOIOEOGT	0.2	
194	0	3	129	The rate-dedepende	2002		MARTENSITIC-	MAGAZINE A-	CHEMISTRY	INORGANIC CHEMISTRY	6.1	5
				Memory	2002		MOLECULAR-	MAGAZINE A-	CHEWISTKT	INORGANIC CHEWISTRY	0.1	
195	0	14	243		2002		DYNAMICS	PHYSICAL REVIEW B	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
				In this pape effect in	2002		MANY-BODY		CHEMISTRY	ATOMIC & MOLECULAR	0.1	5
196	0	9	52	Exact	2000		-	PHYSICAL REVIEW B	DI IVOICO		0.4	_
				By constru solution	2002		PROBLEM; ONE-		PHYSICS	PHYSICS &	6.1	5
197	0	15	136	Improve	0000		GLOBAL QCD	PHYSICAL REVIEW D	DI IVOIGO	NUCLEAR PHYSICS &		_
	-			We have md W	2002		ANALYSIS; TOP-		PHYSICS	ELEMENTARY PARTICLE	6.1	5
198	6	1	80	An XPS		polystyrene;		POLYMER	l			_
	Ü			X-ray photostudy of			FIRE	DEGRADATION AND	CHEMISTRY	POLYMER CHEMISTRY	6.1	5
199	3	18	115	Recent		photocatalysis;	VISIBLE-LIGHT	PROGRESS IN				
. 33	3	10	113	Fundamen advance			IRRADIATION;	CHEMISTRY	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
200	15	0	214	Chinese		Chinese		PSYCHOPATHOLOGY	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
200	10	U	214	The CCMD classifica	2002	classification of		FSTOROFATROLOGY	SCIENCES	RESEARCH	6.2	5

				1 1		central retinal	HUMAN LAMINA-	DETINIA TUE	BIOLOGICAL & MEDICAL	1	1	
201	10	11	270	Luminal		artery; central	CRIBROSA: AGE-	RETINA-THE	SCIENCES	ANATOMY & PHYSIOLOGY	6.1	5
				Purpose: T characte	2002	artery, central	SINE-GORDON	JOURNAL OF STUDIES IN APPLIED		ANATONIT & PHISIOLOGI	0.1	5
202	0	8	144	Envelop	2002		EQUATION:		PHYSICS	MECHANICS	6.1	5
							CRYSTAL-	MATHEMATICS SYNTHETIC	PH13IC3	RADIATION & NUCLEAR	0.1	5
203	5	5	23	Rapid					CLIEMICTOV		0.4	4
				The microv microwa			STRUCTURE;	COMMUNICATIONS	CHEMISTRY	CHEMISTRY	6.1	4
204	8	10	134	Chemilu		chemiluminescenc		TALANTA	BIOLOGICAL & MEDICAL	DI LA DATA COL COV	0.0	-
				A new cherminesce	2002		OMETRIC		SCIENCES	PHARMACOLOGY	6.2	5
205	4	8	118	Frictional		,	FINITE-ELEMENT	THIN SOLID FILMS		METALLURGY &		_
		-		The friction contact	2002		ANALYSIS;		MATERIALS	METALLOGRAPHY	6.1	5
206	10	2	121	Effects			GAMMA-	TRANSACTIONS OF		METALLURGY &		_
		_		By using th of can		thermal	TITANIUM	NONFERROUS	MATERIALS	METALLOGRAPHY	6.1	5
207	5	0	159	Effect of		nickel aluminides;		TRANSACTIONS OF		METALLURGY &		_
		Ŭ		The effect coating		coatings; aero-		NONFERROUS	MATERIALS	METALLOGRAPHY	6.1	5
208	13	8	249	Effect of		surface state;	VISIBLE-LIGHT	TRANSACTIONS OF		METALLURGY &		
		Ů		With an att surface			IRRADIATION;	NONFERROUS	MATERIALS	METALLOGRAPHY	6.1	5
209	7	3	131	Sliding			HIGH-	TRANSACTIONS OF		METALLURGY &		
203	'	J	101	A ZA-27 all wear and			STRENGTH;	NONFERROUS	MATERIALS	METALLOGRAPHY	6.1	5
210	5	0	28	Oscillatio		difference			MATHEMATICAL &			
210	3	U	20	In this papens for	2002	equations; positive			COMPUTER SCIENCES	NUMERICAL MATHEMATICS	6.1	4
211	7	4	81	Pulmona		,	FUNCTION	ACTA	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
211	,	7	01	Lung functiry iron	2002	small airway	ABNORMALITIES;	HAEMATOLOGICA	SCIENCES	RESEARCH	6.2	5
212	0	16	262	On-line			PLASMA-MASS	ANALYTICAL	BIOLOGICAL & MEDICAL			
212	U	10	202	A novel hyr coupling	2002		SPECTROMETRY	CHEMISTRY	SCIENCES	TOXICOLOGY	6.2	5
213	0	9	105	Binary			SYMMETRY	ANZIAM JOURNAL	MATHEMATICAL &			
213	U	9	105	In contrast constrain			CONSTRAINT;	ANZIAWI JOURNAL	COMPUTER SCIENCES	NUMERICAL MATHEMATICS	6.1	5
214	13	6	138	Periodic		laser-induced	SURFACE-	APPLIED SURFACE				
214	13	О	136	Relatively I microstr	2002		STRUCTURES;	SCIENCE	CHEMISTRY	POLYMER CHEMISTRY	6.1	5
215	0	5	255	Use of			APNEA;	ARCHIVES OF	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
215	U	5	∠55	Aims: (1) T tonsil	2002		CHILDREN;	DISEASE IN	SCIENCES	RESEARCH	6.2	5
246	0	10	220	Identifica		novel zinc finger	TRANSCRIPTION	BIOCHEMICAL AND	BIOLOGICAL & MEDICAL			
216	9	12	230	Transcriptiction and	2002	genes; heart	FACTORS;	BIOPHYSICAL	SCIENCES	ANATOMY & PHYSIOLOGY	6.1	5
04-	-	0	070	Characte		analgesia;		DDAIN DECEARCH	BIOLOGICAL & MEDICAL			
217	5	2	270	The preser ristics of	2002	electroacupunctur	MORPHINE; RAT	BRAIN RESEARCH	SCIENCES	ANATOMY & PHYSIOLOGY	6.1	5
240	-	_		Unexpec		neighboring group	HIGHLY	CARBOHYDRATE	BIOLOGICAL & MEDICAL			
218	7	6	56	In an effort ted alpha			EFFICIENT;	RESEARCH	SCIENCES	ANATOMY & PHYSIOLOGY	6.1	4
-15	_			A			SYNTHETIC	CHEMISTRY &	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
219	0	14	136	Glutathionesemisynt	2002		ORGANOSELENI	BIOLOGY	SCIENCES	MOLECULAR BIOLOGY	6.1	5
		_		A new		progressive			MATHEMATICAL &		-	-
220	20	0	93	In this pape Adaptive				OF ELECTRONICS	COMPUTER SCIENCES	CYBERNETICS	6.2	5
				papy, taaptive		1	l .	3. LLL3111311100	155 5.255.2520	10.22.00	V.=	~

221 12 2 96 222 8 5 89 223 13 0 197 224 11 7 80 225 6 3 85 226 8 3 212 227 7 0 157 228 0 0 52 229 11 9 124 230 8 7 213 231 0 0 81 232 12 7 183 233 0 0 84 234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76 238 0 4 76								1			
222 8 5 89 223 13 0 197 224 11 7 80 225 6 3 85 226 8 3 212 227 7 0 157 228 0 0 52 229 11 9 124 230 8 7 213 231 0 0 81 232 12 7 183 233 0 0 84 234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	96		Neighte		direct sequence		CHINESE JOURNAL				
223 13 0 197 224 11 7 80 225 6 3 85 226 8 3 212 227 7 0 157 228 0 0 52 229 11 9 124 230 8 7 213 231 0 0 81 232 12 7 183 233 0 0 44 234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	- 00	In this paped				CDMA SYSTEMS	0. 2220000	COMMNICATIONS	TELEMETRY	6.2	5
223 13 0 197 224 11 7 80 225 6 3 85 226 8 3 212 227 7 0 157 228 0 0 52 229 11 9 124 230 8 7 213 231 0 0 81 232 12 7 183 233 0 0 84 234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	89		Digital			SECURE	CHINESE JOURNAL				
224 11 7 80 225 6 3 85 226 8 3 212 227 7 0 157 228 0 0 52 229 11 9 124 230 8 7 213 231 0 0 81 232 12 7 183 233 0 0 84 234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	0.5					COMMUNICATIO		COMMNICATIONS	TELEMETRY	6.2	4
224 11 7 80 225 6 3 85 226 8 3 212 227 7 0 157 228 0 0 52 229 11 9 124 230 8 7 213 231 0 0 81 232 12 7 183 233 0 0 84 234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	197		nvesteg		diethyl aluminum		CHINESE JOURNAL				
225 6 3 85 226 8 3 212 227 7 0 157 228 0 0 52 229 11 9 124 230 8 7 213 231 0 0 81 232 12 7 183 233 0 0 84 234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	107	Diethyl alur a			azide (DEAA);			CHEMISTRY	INORGANIC CHEMISTRY	6.1	5
225 6 3 85 226 8 3 212 227 7 0 157 228 0 0 52 229 11 9 124 230 8 7 213 231 0 0 81 232 12 7 183 233 0 0 84 234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	80		Γheoreti			SURFACE	CHINESE JOURNAL				
226 8 3 212 227 7 0 157 228 0 0 52 229 11 9 124 230 8 7 213 231 0 0 81 232 12 7 183 233 0 0 84 234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	00	Ab initio op o				ELECTROSTATIC		CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
226 8 3 212 227 7 0 157 228 0 0 52 229 11 9 124 230 8 7 213 231 0 0 81 232 12 7 183 233 0 0 84 234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	85	1 -	Гwo-		balanced sampling			MATHEMATICAL &			
227 7 0 157 228 0 0 52 229 11 9 124 230 8 7 213 231 0 0 81 232 12 7 183 233 0 0 84 234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	00	A balanced			p	DIVISIBLE		COMPUTER SCIENCES	STATISTICS & PROBABILITY	6.1	5
227 7 0 157 228 0 0 52 229 11 9 124 230 8 7 213 231 0 0 81 232 12 7 183 233 0 0 84 234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	212		Karyotypi			HUMAN-	CYTOMETRY	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
228 0 0 52 229 11 9 124 230 8 7 213 231 0 0 81 232 12 7 183 233 0 0 84 234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	212	Backgroun			3	CHROMOSOMES		SCIENCES	MOLECULAR BIOLOGY	6.2	4
228 0 0 52 229 11 9 124 230 8 7 213 231 0 0 81 232 12 7 183 233 0 0 84 234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	157		ntelligen		FACTS; intelligent			POWER PRODUCTION &	ELECTRIC POWER		
229 11 9 124 230 8 7 213 231 0 0 81 232 12 7 183 233 0 0 84 234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	101	A multi-taret		2002	control; optimal			ENERGY CONVERSION	PRODUCTION &	6.2	4
229 11 9 124 230 8 7 213 231 0 0 81 232 12 7 183 233 0 0 84 234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	52		A novel					BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
230 8 7 213 231 0 0 81 232 12 7 183 233 0 0 84 234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	02	A new DRE		2002				SCIENCES	MOLECULAR BIOLOGY	6.1	5
230 8 7 213 231 0 0 81 232 12 7 183 233 0 0 84 234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	124		Adsorpti		,	GROUNDWATER;	ELLIVOIDE	ENVIRONMENTAL	WATER POLLUTION &		
231 0 0 81 232 12 7 183 233 0 0 84 234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	124	Adsorption c	on and			ALUMINUM;		POLLUTION & CONTROL	CONTROL	6.1	5
231 0 0 81 232 12 7 183 233 0 0 84 234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	213	F	Α			IN-VITRO		BIOLOGICAL & MEDICAL			
232 12 7 183 233 0 0 84 234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	213	BACKGRO	orospecti	2002	conscious	FERTILIZATION;	REPRODUCTION	SCIENCES	ANATOMY & PHYSIOLOGY	6.3	5
232 12 7 183 233 0 0 84 234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	01	Ι.	Γhe				IIE TRANSACTIONS	MATHEMATICAL &			
233 0 0 84 234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	01	In this papei		2002				COMPUTER SCIENCES	STATISTICS & PROBABILITY	6.1	5
233 0 0 84 234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	102		Discorda			LYMPH-NODE		BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	103	This study r	.00	2002	Kawasaki disease;	SYNDROME;	000.111.12.01	SCIENCES	RESEARCH	6.2	5
234 0 0 190 235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	9.4	-	Protein-F				INTERNATIONAL	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	04	The MRF de	e MR	2002			JOURNAL OF	SCIENCES	MOLECULAR BIOLOGY	6.1	5
235 9 1 139 236 6 3 162 237 0 5 135 238 0 4 76	100		Floral					BIOLOGICAL & MEDICAL			
236 6 3 162 237 0 5 135 238 0 4 76	190	Floral orga	organog	2002			, 000	SCIENCES	BIOLOGY	6.1	5
236 6 3 162 237 0 5 135 238 0 4 76	130		nteractio		interaction		000	BIOLOGICAL & MEDICAL			
237 0 5 135 238 0 4 76	139	A method f			,	SENSOR	DIOCHENIONETHO	SCIENCES	BIOCHEMISTRY	6.1	5
237 0 5 135 238 0 4 76	162		Antibact			CELL-WALL;	JOURNAL OF	BIOLOGICAL & MEDICAL			
238 0 4 76	102	The antimice	erial	2002		RECOVERY;		SCIENCES	MICROBIOLOGY	6.2	5
238 0 4 76	125		terative			STRONG-		MATHEMATICAL &	THEORETICAL		
	135	Let E be ar a	approxim	2002		CONVERGENCE;		COMPUTER SCIENCES	MATHEMATICS	6.1	4
	76	-	ive new			TU-JIN-PI; ACID-		BIOLOGICAL & MEDICAL			
40 47 400	70	Five new d	diterpen	2002		B;		SCIENCES	BIOLOGY	6.1	4
	102		Fluid			ULTRAHIGH-		EARTH SCIENCES &	GEOLOGY,		
239 12 17 193	193	The Dabie	evolution	2002	metamorphism;	PRESSURE	PETROLOGY	OCEANOGRAPHY	GEOCHEMISTRY &	6.1	5
240 0 1 66	66	F	Preparati				JOURNAL OF		METALLURGY &		
240 0 1 66	об	A method f	on of Pd-	2002		IMPLANTATION	RADIOANALYTICAL	MATERIALS	METALLOGRAPHY	6.1	5

				Surfacta	1		ANIONIC		I			
241	0	13	177	We syntheint-	2002		AMPHIPHILES:	LANGMUIR	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
				Multi-	2002	glasses: ceramics:		MATERIALS	CHEWICT IV	CERAMICS.	0.1	
242	4	2	119	Multi-color color	2002	3,	LASER	RESEARCH	MATERIALS	REFRACTORIES & GLASS	6.1	5
		_		Simulation		computer	COMPUTER-	MATERIALS SCIENCE	_			
243	10	9	128	The morph n of	2002		SIMULATION;	AND ENGINEERING A	PHYSICS	CRYSTALLOGRAPHY	6.1	4
				On the		Harper-Dorn	HARPER-DORN	MATERIALS SCIENCE				
244	11	13	103	The conditi transition	2002	creep; grain	CREEP; POWER-	AND ENGINEERING A	PHYSICS	CRYSTALLOGRAPHY	6.1	4
245	7	0		The mult	į	QHD-I model;	DERIVATIVE	MODERN PHYSICS		NUCLEAR PHYSICS &		
245	1	3	60	From the L value of	2002	effective nucleon	COUPLING	LETTERS A	PHYSICS	ELEMENTARY PARTICLE	6.1	5
246	6	0	31	A new		banana;		MYCOTAXON	BIOLOGICAL & MEDICAL			
240	О	U	31	A new spec Dictyosp	2002	hyphomycete;			SCIENCES	BIOLOGY	6.1	5
247	8	1	126	Transmi		heavy-metal oxide		NUCLEAR	NUCLEAR SCIENCE &	NUCLEAR		
241	0	'	120	In this work ssion	2002		METAL	INSTRUMENTS &	TECHNOLOGY	INSTRUMENTATION	6.1	5
248	10	9	168	The		Morinda officinalis;		PHARMACOLOGY	BIOLOGICAL & MEDICAL			
240	10	9	100	The preser effect of	2002	desipramine;	SECOND	BIOCHEMISTRY AND	SCIENCES	PHARMACOLOGY	6.2	5
249	0	7	78	Thermal			ZERO-POINT	PHYSICAL REVIEW A		QUANTUM THEORY &		
243	0	'	70	We analyze propertie			ENERGY;	T TITO ONE INE VIEW /	PHYSICS	RELATIVITY	6.1	4
250	0	9	102	Kawasak			ANISOTROPIC	PHYSICAL REVIEW E				
230	0	3	102	In this Briefi-type	2002		ELASTIC	T TITO ONE INE VIEW E	PHYSICS	CRYSTALLOGRAPHY	6.1	4
251	6	15	114	Crossov			BIAXIAL SPIN	PHYSICS LETTERS A		ELECTRICITY &		
		.0		Crossover er from	2002		SYSTEM;			MAGNETISM	6.1	4
252	5	1	176	Develop		bridges; noise; rail			MECHANICAL, INDUSTRIAL,	SURFACE		
		·		The Kowlo ment of	2002	track design	NOISE	THE INSTITUTION OF	CIVIL & MARINE	TRANSPORTATION &	6.2	5
253	0	2	168	Cyclic				SOLAR VARIABILITY		1. T. 400 D. 1. T. 100 D. 1. 100 D.		_
		_		The Ca II K variation	2002		SPACED DATA		ATMOSPHERIC SCIENCES	ATMOSPHERIC PHYSICS	6.1	5
254	0	4	30	Conveni			SCHIFFS BASES;	SYNTHETIC	OUEL HOTEL	DUNGOLO AL GUIENMOTENZA		
		-		2-Arylbenz ent	2002		POLY <styrene(< th=""><th>COMMUNICATIONS</th><th>CHEMISTRY</th><th>PHYSICAL CHEMISTRY</th><th>6.1</th><th>4</th></styrene(<>	COMMUNICATIONS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
255	7	10	190	Covalent	0000		PLASMA; FILMS;	THIN SOLID FILMS	CHEMICEDY	DOLVMED OLIEMISTRY	0.4	_
		-		Graft polyn attachme	2002		POLYETHYLENE;		CHEMISTRY	POLYMER CHEMISTRY	6.1	5
256	15	7	233	Expressi	0000		SUGAR-BEET;	ACTA BOTANICA	BIOLOGICAL & MEDICAL	DIOLOGY	0.4	_
	_			It has been on of	2002	Poncirus trifoliata;	ORYZA-SATIVA	SINICA	SCIENCES BIOLOGICAL & MEDICAL	BIOLOGY GENETIC ENGINEERING &	6.1	5
257	7	12	124	Gene	2002	,	-	ACTA BOTANICA			6.4	_
				Green fluor transfer	2002	GFP; Oryza sativa;	L; IIVIIVIA I UKE	SINICA ACTA	SCIENCES	MOLECULAR BIOLOGY	6.1	5
258	0	0	84	Tetra-n-	2002				CHEMISTRY	POLYMER CHEMISTRY	6.1	5
				The crystal butylam			POLYPYRIDYL	CRYSTALLOGRAPHIC ACTA	CHEINIGIKI	FOLTIVIER CHEIVIISTRY	0.1	Э
259	0	4	84	The Zn-II a 6,8-	2002		BRIDGING	ACTA CRYSTALLOGRAPHIC	CHEMISTRY	POLYMER CHEMISTRY	6.1	5
				2.2 '-	2002		טאווטטואט	ACTA	CHEWISTRI	FOLINIER CHEINIOTRY	0.1	υ
260	0	1	62	The title co diamino-	2002		DNA	CRYSTALLOGRAPHIC	CHEMISTRY	POLYMER CHEMISTRY	6.1	5
				The title equiamino-	2002	l	אווען	ICK 13 I ALLOGRAPHIC	CHEWIOTKI	FOLINIER CHEINIOTRY	0.1	ບ

					Ob		Doramon angeses:		ACTA MATUEMATICA	IMATHEMATICAL 9			
261	7	0	32	Chara satin	Sharp		Bergman spaces; Besov spaces;		ACTA MATHEMATICA	COMPUTER SCIENCES	NUMERICAL MATHEMATICS	6.1	5
				Sharp estir				ITERATED	SINICA-ENGLISH ACTA MATHEMATICA		NUMERICAL MATHEMATICS	0.1	5
262	9	3	154	1 -4 (V V /	LIL and			LOGARITHM:		COMPUTER SCIENCES	NUMERICAL MATUEMATICS	6.1	5
				Let {X, X-(r				SWEEP	SINICA-ENGLISH		NUMERICAL MATHEMATICS	6.1	5
263	7	4	116	A411 :	Voltamm		- · · · · · · · · · · · · · · · · · · ·	-		BIOLOGICAL & MEDICAL	ANIATOMY & BUIVEIOLOGY	0.4	_
				A method i	Influence			POLAROGRAPHY REGENERATIVE	ACTA	SCIENCES	ANATOMY & PHYSIOLOGY	6.1	5
264	0	6	188			2002		LOSSES;	APPLIED ENERGY	PHYSICS	THERMODYNAMICS	6.1	5
				An irrevers	_		soliton; peakson;	SHALLOW-	ADDITED	EARTH SCIENCES &	PHYSICAL & DYNAMIC	6.1	5
265	7	2	78	Th - 4	The			WATER	APPLIED		OCEANOGRAPHY	0.4	,
				The traveling		2002		STRONTIUM		OCEANOGRAPHY		6.1	4
266	0	2	120	0 4414400	Anomalo	2002			APPLIED PHYSICS	MATERIALS	CERAMICS, REFRACTORIES & GLASS	0.4	_
	-			Sr4Al14O2				ALUMINATE QUANTITATIVE	LETTERS	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &	6.1	5
267	11	11	125		Construc		,	TRAIT LOCI:	ASIAN-	SCIENCES		0.0	_
				In aiming to				FIELDS:	AUSTRALASIAN	ASTRONOMY &	MOLECULAR BIOLOGY	6.2	5
268	10	3	209		Collapsin			- /	ASTRONOMY &		A CTP CNICANY	0.4	_
				It is shown			accretion disks;	TURBULENCE; HYPOGLYCEMIC	ASTROPHYSICS	ASTROPHYSICS	ASTRONOMY	6.1	5
269	7	5	124	- .	Mulberro				BIOLOGICAL &	BIOLOGICAL & MEDICAL SCIENCES	DI IA DAMA COL COV	0.4	_
				The curren				ACTIVITY;	PHARMACEUTICAL	BIOLOGICAL & MEDICAL	PHARMACOLOGY	6.1	5
270	10	9	331	O	Relation		organophosphorus		BIOMEDICAL AND		ANIATOMY & BUIVEIOLOGY	0.4	_
				Objective T	ship	2002		STRESS;	ENVIRONMENTAL	SCIENCES BIOLOGICAL & MEDICAL	ANATOMY & PHYSIOLOGY	6.1	5
271	0	5	179	F:	Compari	2000		SOGATELLA-	BULLETIN OF		DIOLOGY	0.4	_
	-	_		Field bioas		2002		FURCIFERA;	ENTOMOLOGICAL	SCIENCES	BIOLOGY	6.1	5
272	0	4	65		Photolu			QUANTUM DOTS:	CANADIAN JOURNAL	OUENIOTEV	DUNGIONI OUENIOTEN		
	-			Photolumin		2002		,	OF PHYSICS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
273	0	7	106		Chemica			BELOUSOV-	CHEMICAL PHYSICS	OUENIOTEV	DUNGIONI OUENIOTEN	0.4	_
	-			In this stud		2002		ZHABOTINSKY	LETTERS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
274	9	7	206	-	Study on			POSITIONING	CHINESE JOURNAL	EARTH SCIENCES &	GEOLOGY,	0.4	_
				The eastwa				SYSTEM	OF GEOPHYSICS-	OCEANOGRAPHY	GEOCHEMISTRY &	6.1	5
275	6	5	237	O	Mechani		liver neoplasms; 5-			BIOLOGICAL & MEDICAL	ANIATONIA O BUNGIOLOGIA	0.0	_
					sm of		fluourouracil; nitric		JOURNAL	SCIENCES	ANATOMY & PHYSIOLOGY	6.2	5
276	7	3	152		Diagnosi			CERVICOMEDUL	CHINESE MEDICAL	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		_
	-	-		Objective T	s and	2002		LARY JUNCTION;	JOURNAL	SCIENCES	RESEARCH	6.2	5
277	10	12	275	Q	Recombi		human	TUMOR		BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		_
				Objective T	nant			MEMBRANE	JOURNAL	SCIENCES	MOLECULAR BIOLOGY	6.1	5
278	5	4	316		Samariu			SKELETAL	CHINESE MEDICAL	BIOLOGICAL & MEDICAL	ANIATONIA O BUNGIOLOGIA		_
				Objective T		2002	EDTMP;	METASTASES;	JOURNAL	SCIENCES	ANATOMY & PHYSIOLOGY	6.2	4
279	0	1	82		Isotopic	0000			CHINESE PHYSICS	PLIVOIGO	NUCLEAR PHYSICS &		
	-	•		We presen		2002		AL-27	LETTERS	PHYSICS	ELEMENTARY PARTICLE	6.1	4
280	0	5	78		Effects	0000		RECORDING	CHINESE PHYSICS	TEST EQUIPMENT,	LIGUAGRAPUN		_
	ŭ	Ŭ	. •	The princip	of	2002		MEDIA;	LETTERS	RESEAERCH FACILITIES &	HOLOGRAPHY	6.1	5

					Transitio			FEW-ELECTRON	CHINESE PHYSICS		QUANTUM THEORY &		
281	0	4	123	Low-lying s		2002		QUANTUM:	LETTERS	PHYSICS	RELATIVITY	6.1	5
				Low lying 3	Modulati	2002		FRANZ-KELDYSH	CHINESE PHYSICS	11110100	KEE/(IIVIII	0.1	
282	0	6	107	Contactles		2002		OSCILLATIONS:	LETTERS	PHYSICS	SOLID STATE PHYSICS	6.1	4
					Preparati			CAPILLARY GAS-			COLID CITALETTICIOS	0.1	•
283	7	10	96	Poly (meth			chromatography;	CHROMATOGRA	CHROMATOGRAPHIA	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
				(Test of			QUANTUM	COMMUNICATIONS		ATOMIC & MOLECULAR		
284	5	6	65	We propos				NONLOCALITY:		PHYSICS	PHYSICS &	6.1	5
					Nuclear		K-factor; Drell-Yan	INELASTIC	COMMUNICATIONS		NUCLEAR PHYSICS &		
285	9	14	95	A consister	effect	2002	process; deep	MUON	IN THEORETICAL	PHYSICS	ELEMENTARY PARTICLE	6.1	5
200	_	_	0.4		Analytica		supercurrent;	TRANSPORT;	COMMUNICATIONS				
286	3	3	64	We presen		2002	superconductor/qu	STATES;	IN THEORETICAL	PHYSICS	SOLID STATE PHYSICS	6.1	5
00-			04		Some			GOSS GAMMA-		MATHEMATICAL &	THEORETICAL		
287	0	2	81	In this work	transcen	2002		FUNCTION	MATHEMATIQUE	COMPUTER SCIENCES	MATHEMATICS	6.1	5
288	0	_	404		Studies		calcineurin;	PROTEIN	DRUG	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
288	9	3	161	Calcineurin	of	2002	regulatory subunit;	PHOSPHATASE;	DEVELOPMENT	SCIENCES	MOLECULAR BIOLOGY	6.2	5
289	10	9	171		Correlate		maternal	BREAST-	EUROPEAN	BIOLOGICAL & MEDICAL			
289	10	9	171	The objecti	s of	2002	characteristics;	CANCER RISK;	JOURNAL OF	SCIENCES	ANATOMY & PHYSIOLOGY	6.2	5
290		4	66		Second-		far infrared;		FERROELECTRICS	ELECTROTECHNOLOGY &	ELECTROOPTICAL &		
290	6	' '	00	Second an	order	2002	ferroelectric	FILMS	FERRUELEC I RICS	FLUIDICS	OPTOELECTRONIC	6.1	4
291	5	0	71		Structure		Fritillaria		FITOTERAPIA	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
291	Э	U	7 1	A new diter	of a	2002	hupehensis;		FITOTERAPIA	SCIENCES	MOLECULAR BIOLOGY	6.1	4
292	6	6	121		Metachr			BREAST	HUMAN PATHOLOGY	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
292	О	ь	121	Mammary	onous		carcinoma;	CARCINOMAS;	HUMAN PATHOLOGY	SCIENCES	RESEARCH	6.2	5
293	8	3	93		Enhance			RESOLUTION;	IEEE PHOTONICS	ELECTROTECHNOLOGY &	ELECTROOPTICAL &		
293	0	3	93	A novel sch				SYSTEM;	TECHNOLOGY	FLUIDICS	OPTOELECTRONIC	6.2	4
294	21	11	162		Automati		3,	SKEW ANGLE	IEEE TRANSACTIONS				
294	21	11	102	We presen			classifier	DETECTION;	ON IMAGE	COMPUTER SCIENCES	CYBERNETICS	6.3	5
295	10	2	150		Bidirectio			RECOGNITION;	IEEE TRANSACTIONS				
293	10		100	To achieve			segmentation;	TEMPLATES	ON PATTERN	COMPUTER SCIENCES	CYBERNETICS	6.3	5
296	10	8	108		Helical		. , ,	DIMENSIONAL	INORGANICA				
230	10	U	100	The self as				COORDINATION	CHIMICA ACTA	CHEMISTRY	INORGANIC CHEMISTRY	6.1	4
297	15	0	133		A novel		dynamic voltage		INTERNATIONAL	ELECTROTECHNOLOGY &	ELECTRICAL &		
231	10	U	100	A novel dyr			restorer; PWM		JOURNAL OF	FLUIDICS	ELECTRONIC EQUIPMENT	6.1	5
298	10	10	174		Random		, ,	RANDOM	INTERNATIONAL	MATHEMATICAL &			
230	10	10	117	In this stud			integrable Duhem	VIBRATION;	JOURNAL OF NON-	COMPUTER SCIENCES	STATISTICS & PROBABILITY	6.1	4
299	9	0	135		Preparati		electrostatic spray;		JAPANESE JOURNAL				
233	,	Ü	100	A Pb(Zr, Ti		2002	lead zirconate		OF APPLIED PHYSICS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
300	0	0	158		The				JOURNAL OF		ATOMIC & MOLECULAR		
550	3	3	100	Compton s	converge	2002			APPLIED PHYSICS	PHYSICS	PHYSICS &	6.1	5

301				Quar	titot	wogonin; wogonin-	71 ITDHENI:	JOURNAL OF	BIOLOGICAL & MEDICAL			
	3	2	161	This study ion o			CANCER	CHROMATOGRAPHY		ANATOMY & PHYSIOLOGY	6.1	5
				Influe		biomonitor;	NATURAL	JOURNAL OF	BIOLOGICAL & MEDICAL	/ WYTOWIT WITH CICEOUT	0.1	<u> </u>
302	7	13	267	The aim of of sta		2 biomonitoring;	FACTORS	EXPERIMENTAL	SCIENCES	ECOLOGY	6.1	5
				Num		_ biointonitoning,	7701010	JOURNAL OF	MATHEMATICAL &	2002001	0.1	
303	0	1	72	In this papeal	200		ALGORITHM	GLOBAL	COMPUTER SCIENCES	CYBERNETICS	6.1	5
				Rese		carbon steel:	ALCORUTTIVI	JOURNAL OF IRON	COM CTER COLLINGEC	METALLURGY &	0.1	
304	6	0	161	Much reseth on		2 continuous		AND STEEL	MATERIALS	METALLOGRAPHY	6.1	5
				Ident		B lymphocytes;	SYSTEMIC-	JOURNAL OF	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &	0.1	<u> </u>
305	6	16	169	TALL-1 is ation of		2 autoimmunity; IL-	LUPUS-	LEUKOCYTE	SCIENCES	MOLECULAR BIOLOGY	6.1	5
				Wea		L datominanty, iL	HIGH-	JOURNAL OF	COLLINGES	CERAMICS,	0.1	
306	0	5	88	The wear beha			PRESSURE:	MATERIALS	MATERIALS	REFRACTORIES & GLASS	6.1	5
				Effec			SURFACE	JOURNAL OF	BIOLOGICAL & MEDICAL	112.10.10.10.10.10.10.00	0.1	
307	0	9	260	Films madelipas		2	MODIFICATION:	MATERIALS SCIENCE		ANATOMY & PHYSIOLOGY	6.1	4
				High	, 200.	optical bistable	TEMPERATURE:	JOURNAL OF	00:2:1020	FIBER OPTICS &	0.1	•
308	7	2	103	A novel optaccu	acy 200	devices; March-	STRAIN	NONLINEAR OPTICAL	PHYSICS	INTEGRATED OPTICS	6.2	4
				Exan		crystal fields;	D-ORBITAL	JOURNAL OF			0.2	·
309	8	8	75	In this papetion of		optical properties:	THEORY: SPIN-	PHYSICS AND	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
	_			Beho		Chinese; Behcet's		JOURNAL OF	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
310	5	12	334	Objective. disea	se 200	disease;	TEST; BRITISH	RHEUMATOLOGY	SCIENCES	RESEARCH	6.2	5
	_			Stock		,	RANDOM	JOURNAL OF SOUND	MATHEMATICAL &		-	-
311	0	4	136	The respor c	200	2	VIBRATION;	AND VIBRATION	COMPUTER SCIENCES	STATISTICS & PROBABILITY	6.1	4
240	0	4	405	Prep	arati		POLYANILINE;	MACDOMOLECULES				
312	0	4	125	Hydroquind on ar	id 200	2	INCLUSION;	MACROMOLECULES	CHEMISTRY	POLYMER CHEMISTRY	6.1	5
313	40	_	0.5	Magr	eto-	Faraday effect;		MEASUREMENT	ELECTROTECHNOLOGY &	ELECTROOPTICAL &		
313	10	1	85	In this desi optic	al 200	2 critical angle	IMPROVEMENT	SCIENCE &	FLUIDICS	OPTOELECTRONIC	6.1	5
314	11	12	157	Chro	nos	nasopharyngeal	PERIPHERAL-	MUTATION	BIOLOGICAL & MEDICAL			
314	11	12	157	Nasophary omal	200	2 cancer;	BLOOD	RESEARCH-	SCIENCES	RADIOBIOLOGY	6.2	5
315	0	12	150	Rota	ion		EXTRA	NUCLEAR RUVEICE R		NUCLEAR PHYSICS &		
315	U	12	150	First order al	200	2	DIMENSION;	NUCLEAR PHYSICS B	PHYSICS	ELEMENTARY PARTICLE	6.1	5
316	9	3	63	Theo		theoretical model;	SELF-PHASE	OPTICS				
316	9	3	63	A theoretic cal		2 active mode-	MODULATION;		PHYSICS	OPTICS	6.1	4
317	0	6	122	Theo			LIGHT-EMITTING-					
317	U	O	122	Conformati cal s			DIODES;	CHEMISTRY	CHEMISTRY	POLYMER CHEMISTRY	6.1	5
318	16	14	94	Optir		effective potential;		PHYSICS LETTERS B		QUANTUM THEORY &		
310	10	14	94	An optimized		2 functional	FIELD METHOD;		PHYSICS	RELATIVITY	6.1	4
319	7	2	174	Flora		Chloranthaceac;	ANGIOSPERMS;	PLANT	BIOLOGICAL & MEDICAL			
313	'	_	174	Floral orga	- 3	Chloranthus; floral	ORIGIN	0.0.2	SCIENCES	BIOLOGY	6.1	5
320	11	1	126	Imag		scanning near-		PROGRESS IN	BIOLOGICAL & MEDICAL			
323		r	120	By using sof	200	field optical	FORCE	NATURAL SCIENCE	SCIENCES	ANATOMY & PHYSIOLOGY	6.1	4

					Ol-1-I		delay differential		OLIADTEDI V OF	BIOLOGICAL & MEDICAL			1
321	10	0	51		Global attractivit				40/11/12/12/	SCIENCES	ANATOMY & PHYSIOLOGY	6.1	3
					Effects	2002		BEET SEED;	APPLIED SEED SCIENCE AND	SCIENCES	AGRICULTURAL	0.1	3
322	0	6	180			2002				AGRICULTURE	CHEMISTRY	6.1	_
				The effects		2002		GROWTH; YIELD;	TECHNOLOGY		CHEMISTRY	6.1	5
323	9	8	111		Ionic			IN-SITU RAMAN;	SOLID STATE IONICS	DI IVOIGO	COLUB OTATE BUNGLOO	0.0	_
				In order to				NEGATIVE			SOLID STATE PHYSICS	6.2	5
324	7	0	109		Simultan		quality control;		STATISTICAL	MATHEMATICAL &	07.47.07.00.0 0000.00.00.00.00.00.00.00.00.00.00		_
	·	Ů		This paper			joint confidence		PAPERS	COMPUTER SCIENCES	STATISTICS & PROBABILITY	6.1	5
325	10	8	161		A new			LIQUID-	TALANTA	BIOLOGICAL & MEDICAL			
020	10	Ů	101	Bisphenol I			F)	CHROMATOGRA	77.27.4417.4	SCIENCES	BIOCHEMISTRY	6.3	4
326	11	1	245		The		stream; benthic		WATER RESEARCH	ENVIRONMENTAL	WATER POLLUTION &		
320	11	'	4				macroinvertebrate			POLLUTION & CONTROL	CONTROL	6.2	5
327	7	12	177		Analysis			CYCLIN-		BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
321	1	12	177	PCL6, PCL				DEPENDENT	BIOPHYSICA SINICA		MOLECULAR BIOLOGY	6.1	5
220	11	3	124		Conform		arrowhead	FLUORESCENCE	ACTA BIOCHIMICA ET	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
328	11	3	124	The relation	ation	2002	protease	; MUTAGENESIS;	BIOPHYSICA SINICA	SCIENCES	MOLECULAR BIOLOGY	6.1	5
200	•	40	450		Underco		rare earth alloys;	PHASE	ACTA MATERIALIA		METALLURGY &		
329	9	13	150	Bulk Nd14F	oling-	2002	rapid solidification;	SELECTION;	ACTA MATERIALIA	MATERIALS	METALLOGRAPHY	6.1	4
200	10	_	4.40		Ion		ion replacement		ACTA PHYSICO-				
330	10	0	140	Alginate-Cl	replacem	2002	gels; alginate;		CHIMICA SINICA	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
204	_	_	404		Preparati		polyaniline; barium		ACTA PHYSICO-				
331	6	0	101	Polyaniline	on and	2002	titanate; in situ;		CHIMICA SINICA	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
	_				The		spring monsoon;		ADVANCES IN				
332	6	1	157	In this pape	spring	2002	seasonal variation;	FIELD		ATMOSPHERIC SCIENCES	METEOROLOGY	6.2	5
	_	_			Definabl		finite basis;			MATHEMATICAL &	THEORETICAL		_
333	8	0	111	For varietie	e	2002	congruence		UNIVERSALIS	COMPUTER SCIENCES	MATHEMATICS	6.1	5
					As-cast		aluminum alloys;		ALUMINUM ALLOYS		METALLURGY &		
334	8	0	244				as-cast ageing;			MATERIALS	METALLOGRAPHY	6.1	5
					Genome			COMPLEX		BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
335	0	15	269	Cleft lip wit		2002		SEGREGATION	OF HUMAN	SCIENCES	MOLECULAR BIOLOGY	6.2	4
					Corrosio		autoclave; shear	02011207111011	APPLIED SURFACE	00:2:1020	METALLURGY &	0.2	
336	6	1	223	The interfa			,	METALLIZATION		MATERIALS	METALLOGRAPHY	6.2	5
				o iiitoita	Δ	_552		GENERAL	COILITOL	MATHEMATICAL &	THEORETICAL	0.2	
337	0	5	20	In this note	counter-	2002		LINEAR-	MATHEMATIK	COMPUTER SCIENCES	MATHEMATICS	6.1	3
					Immuno	2002	immunosensors:	MURINE	BIOSENSORS &	NAVIGATION. DETECTION &		J.1	
338	6	16	170	Immunosei		2002	,	MONOCLONAL-	BIOELECTRONICS	COUNTERMEASURES	MATERIALS	6.1	4
					Establish			ONCOGENES:		BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL	0.1	-
339	0	2	290	The establi		2002		CANCER	AND CYTOGENETICS		RESEARCH	6.1	4
				THE ESTABLE	Phase	2002		AMINO-ACID	CHEMICAL PAPERS-	JOILINGLO	RESEARCH	0.1	4
340	0	2	119	The solubil		2002		COMPLEXES		CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
\Box				THE SOLUBIL	chemistr	2002		COMPLEXES	CHEINIUNE ZVESTI	CHEMISTRI	FRISICAL CHEMISTRY	0.1	ິນ

				Tracheo		stents; therapeutic	HONG-KONG		BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
341	6	9	166	We review bronchial			EXPERIENCE:	CHEST	SCIENCES	RESEARCH	6.3	5
				Reductiv			DIMERIZATION	CHINESE JOURNAL	00:2:1020	1.2027.11.01.1	0.0	
342	7	11	20	The interm e			CYCLIZATION:	OF CHEMISTRY	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
				Synthesi		alpha-		CHINESE JOURNAL				
343	9	1	134	The title cos, crystal		hydroxyphosphinic	ESTERS	OF STRUCTURAL	CHEMISTRY	ORGANIC CHEMISTRY	6.1	5
				Ab initio		3-hydroxy acrolein;		CHINESE JOURNAL				
344	8	2	112				TRANSFER;		CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
				Recurren			PHOTODETACH	0.01.100.01		ELECTRICITY &		
345	11	13	119	We presence	2002	theory; recurrence	MENT CROSS-	CHINESE PHYSICS	PHYSICS	MAGNETISM	6.1	5
		_		Optically		photorefractive	NONVOLATILE				_	
346	11	6	68	An optically fixed	2002	effect; two-centre	HOLOGRAPHIC	CHINESE PHYSICS	PHYSICS	OPTICS	6.1	5
	_			Adsorpti		Bacillus		CHINESE SCIENCE	BIOLOGICAL & MEDICAL		_	
347	9	1	145	Preliminary on and	2002	licheniformis;	BIOMASS	BULLETIN	SCIENCES	BIOCHEMISTRY	6.1	4
				Chronolo		Dali Man;		CHINESE SCIENCE	BIOLOGICAL & MEDICAL		_	
348	4	0	223	The field in gy of the	2002	stratigraphy;		BULLETIN	SCIENCES	ANATOMY & PHYSIOLOGY	6.1	5
	_	_	4.40	Quantitat		quantitative		COLLOID AND				
349	8	0	146	The quantitive	2002	structure-property		POLYMER SCIENCE	CHEMISTRY	POLYMER CHEMISTRY	6.1	4
	0	_	7.	Formatio				COMMUNICATIONS	MATHEMATICAL &	THEORETICAL		
350	0	0	75	Let format n	2002			IN ALGEBRA	COMPUTER SCIENCES	MATHEMATICS	6.1	5
351	9	_	187	Hierarchi		slicing; topological		COMPUTERS IN	MATHEMATICAL &			
331	9	0	107	This paper cal slice	2002	hierarchy; multiple-		INDUSTRY	COMPUTER SCIENCES	CYBERNETICS	6.1	4
352	4	17	326	Morphol		hepatocyte;	ADULT-RAT	DIGESTIVE SURGERY	BIOLOGICAL & MEDICAL			
332	4	17	320	Backgroun ogy,	2002	culture; bioartificial	HEPATOCYTES;	DIGESTIVE SURGERY	SCIENCES	ANATOMY & PHYSIOLOGY	6.1	5
353	0	0	129	The				ENERGY & FUELS		LUBRICATES & HYDRAULIC		
333	U	U	129	The effect effect of	2002				MATERIALS	FLUIDS	6.1	5
354	13	10	178	Enhance			SUSPENSION-	ENZYME AND	BIOLOGICAL & MEDICAL			
334	13	10	170	In conventi d taxane			CULTURES;	MICROBIAL	SCIENCES	MICROBIOLOGY	6.1	5
355	6	5	197	Nonshiv			HEAT-	FOLIA ZOOLOGICA	BIOLOGICAL & MEDICAL			
333	U	J	191	We examir ering		3	PRODUCTION;	1 OLIA ZOOLOGICA	SCIENCES	ANATOMY & PHYSIOLOGY	6.2	5
356	4	15	366	Localizati		mutant mice;	GENE-RELATED-	HEARING RESEARCH	BIOLOGICAL & MEDICAL			
330	7	10	300	Naturally o on of			PEPTIDE; GABA-		SCIENCES	ANATOMY & PHYSIOLOGY	6.1	5
357	9	3	98	A			GRADIENT COIL		BIOLOGICAL & MEDICAL			
337	9	J	30	A novel me method	2002	gradient fields;	DESIGN	ON APPLIED	SCIENCES	RADIOBIOLOGY	6.1	5
358	0	7	95	Schur			FREQUENCY-	IEEE TRANSACTIONS				
330	U	'	90	The neces stability	2002		DOMAIN	ON CIRCUITS AND	COMPUTER SCIENCES	NUMERICAL MATHEMATICS	6.1	4
359	0	0	19	A new				INDIAN JOURNAL OF				
333	0	U	10	Amines reamethod	2002			CHEMISTRY	CHEMISTRY	ORGANIC CHEMISTRY	6.1	3
360	4	0	120	A		CORBA; CSCW;			MATHEMATICAL &			
300	7	Ū	120	There exist CORBA-	2002	dynamic alliance		JOURNAL OF	COMPUTER SCIENCES	COMPUTER SYSTEMS	6.2	4

				Effects	1		SUPERADIABATI	INTERNATIONAL	PROPULSION, ENGINES &			
361	0	3	139	The effects of	2002		C COMBUSTION:		FUELS	COMBUSTION & IGNITION	6.1	5
				Streptos			DNA:	INTERNATIONAL	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &	0.1	
362	7	4	89	A strain of porangiu			CLASSIFICATION	JOURNAL OF	SCIENCES	MOLECULAR BIOLOGY	6.1	5
				The	2002		FLEXIBLE	JOURNAL OF	00:2:1020		0	
363	10	13	123	In this artic external	2002	- 1 - 37,	POLYMERS:		CHEMISTRY	POLYMER CHEMISTRY	6.1	5
				New		Echinops grijisii;	, , , , , , , , , , , , , , , , , , , ,		BIOLOGICAL & MEDICAL		.	
364	6	1	50	A new thior thiophen	2002		ROOTS	NATURAL	SCIENCES	BIOLOGY	6.1	4
		_		Three		Huperzia serrata;		JOURNAL OF ASIAN	BIOLOGICAL & MEDICAL			
365	13	0	49	Phlegmariu new	2002	Lycopodium		NATURAL	SCIENCES	BIOLOGY	6.1	4
	-	_	444	Purificati		Epimedium		JOURNAL OF	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
366	5	0	111	Icariin was on of	2002	segittatum;		CHROMATOGRAPHY	SCIENCES	RESEARCH	6.1	3
207	7	_	450	An		feedback control;		JOURNAL OF	MATHEMATICAL &			
367	/	0	158	As a scalar effective	2002	DiffServ; fairness;		COMPUTER SCIENCE	COMPUTER SCIENCES	CYBERNETICS	6.2	5
368	7	0	126	A hybrid		particle system;		JOURNAL OF	ENVIRONMENTAL	AIR POLLUTION &		-
368	1	U	126	A smoke si model	2002	density function;		COMPUTER SCIENCE	POLLUTION & CONTROL	CONTROL	6.2	5
369	7	15	147	Effects		natural	PARTICLE	JOURNAL OF	BIOLOGICAL & MEDICAL			-
309	′	15	147	Regional lu of	2002		DEPOSITION;	ENVIRONMENTAL	SCIENCES	RADIOBIOLOGY	6.1	5
370	10	0	264	Agricultu		Loess Plateau;		JOURNAL OF		AGRICULTURAL		
3/0	10	U	204	Loess Plateral		sustainable		ENVIRONMENTAL	AGRICULTURE	ENGINEERING	6.2	5
371	8	0	100	Reverse		chlorine dioxide;		JOURNAL OF	ENVIRONMENTAL	WATER POLLUTION &		1
3/1	0	U	100	A novel, sird flow		chlorophenol red;		ENVIRONMENTAL	POLLUTION & CONTROL	CONTROL	6.1	5
372	0	0	176	Processi				JOURNAL OF		CERAMICS,		Į.
312	0	U	170	Glasses of ng	2002			MATERIALS SCIENCE	MATERIALS	REFRACTORIES & GLASS	6.1	5
373	10	13	157	Structure		,	CARBON	JOURNAL OF		ATOMIC & MOLECULAR		ļ
3/3	10	10	137	Ab initio mes and			NITROGEN	MOLECULAR	PHYSICS	PHYSICS &	6.1	5
374	8	21	193	Neural			CENTRAL-	JOURNAL OF	BIOLOGICAL & MEDICAL			Į.
0.4			100	Aberrant m (N-)			NERVOUS-	NEUROSCIENCE	SCIENCES	ANATOMY & PHYSIOLOGY	6.2	5
375	8	16	159	Synthesi		clusters; crystal	NONLINEAR-	JOURNAL OF				_ !
	Ŭ		.00	4,4'-Bipyrids,	2002	structures;	OPTICAL	0.10,11011121712210	CHEMISTRY	ORGANIC CHEMISTRY	6.1	5
376	0	2	125	Fisher			PHYSICS;	JOURNAL OF		QUANTUM THEORY &		_ !
		_	.20	By interpolainformati	2002		SYSTEMS	PHYSICS A-	PHYSICS	RELATIVITY	6.1	5
377	6	0	252	Effect of	1	Winter wheat;		JOURNAL OF PLANT		AGRICULTURAL		_ !
<u> </u>		Ů		A pot expe molybde	2002	molybdenum; free	201 42174215	NUTRITION	AGRICULTURE	CHEMISTRY	6.1	5
378	0	11	269	Α			POLARIZABLE	JOURNAL OF THE	0.151.1055.7	BUNGOO AL GUELMOTEN		_ '
				Various lev theoretic			CONTINUUM	CHEMICAL SOCIETY-	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
379	0	9	153	Substrat			CHEMICAL-	JOURNAL OF	OUENIOTDY	DUNGLON OUT NOT DY		_
	-	_		TiN films we bias	2002		VAPOR-	VACUUM SCIENCE &		PHYSICAL CHEMISTRY	6.1	5
380	0	0	122	Gear	0000				MECHANICAL, INDUSTRIAL,	LAA OLUMEDY A TOOLS		_
التتا	-	_		A new app fault	2002			SYSTEMS AND	CIVIL & MARINE	MACHINERY & TOOLS	6.3	5

								DEDMANIENT		I			
381	0	14	125		Atomistic	0000		PERMANENT-	MODELLING AND	OUEN HOTEL	DUIVOLONI OLIFANOTOV	0.4	_
				Pair potent		2002		MAGNET	SIMULATION IN	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
382	0	11	22		[NiL](3)[0000		METAL-ORGANIC	NEW JOURNAL OF	OLIEMIOTES/	DOLVATED OLIFATIOTES	0.4	
				Reaction of				FRAMEWORKS;	CHEMISTRY	CHEMISTRY	POLYMER CHEMISTRY	6.1	4
383	5	3	262		Chemica		,	OPTICAL-	NUCLEAR	NUCLEAR SCIENCE &	NUCLEAR		
	·	-		Polymer file	•		. , ,	ABSORPTION;	INSTRUMENTS &	TECHNOLOGY	INSTRUMENTATION	6.1	4
384	18	5	143	I I	New		bit	WDM	OPTICAL		FIBER OPTICS &		
		-		A novel str		2002	synchronization;	NETWORKS;	ENGINEERING	PHYSICS	INTEGRATED OPTICS	6.2	4
385	0	3	90		Phospho			AQUEOUS-	ORIGINS OF LIFE				
-	•	Ů		The phosp		2002		SOLUTION;	AND EVOLUTION OF	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
386	3	12	249		Magnetic-			ENTROPY	PHYSICA B				
300	3	12	243	We have s		2002		CHANGE; RTIGE		PHYSICS	CRYSTALLOGRAPHY	6.1	5
387	0	3	83		Measure			MESON SYSTEM;	PHYSICAL REVIEW		NUCLEAR PHYSICS &		
301	U	J	03	We report a	ment of	2002		VIOLATION	LETTERS	PHYSICS	ELEMENTARY PARTICLE	6.1	5
388	0	12	246		Targetin			CATHARANTHUS-	PLANT PHYSIOLOGY	BIOLOGICAL & MEDICAL			
300	U	12	240	Tryptophar	g	2002		ROSEUS;		SCIENCES	BIOLOGY	6.1	5
389	7	6	208		Morphol		latex particles;	POLY(METHYL	POLYMER				
389	1	ь	208	Heterogene	ogies of	2002	morphology;	METHACRYLATE	INTERNATIONAL	CHEMISTRY	POLYMER CHEMISTRY	6.1	5
	_	40	000		Protectiv			ACTIVATED	DEDOV DEDODT	BIOLOGICAL & MEDICAL			
390	0	12	208	Green tea	e effects	2002		PROTEIN-	REDOX REPORT	SCIENCES	PHARMACOLOGY	6.1	5
204	40	4	470		Ab initio		isocyanic acid;		SCIENCE IN CHINA				
391	10	1	176	Ab initio UN	study on	2002	radical reaction;	NITROGEN	SERIES B-	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
	45		040		Preparati		carbon nanotube;	CHEMICAL-	SCIENCE IN CHINA				
392	15	9	213	The well-al			silicon nanowire;	VAPOR-	SERIES B-	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
	_		400		Magneto		aluminum;	MAGNETIC-	SCIENCE IN CHINA		PLASMA PHYSICS &		
393	5	4	132	Magnetohy		2002	inclusions;	FIELD:	SERIES E-	PHYSICS	MAGNETOHYDRODYNAMIC	6.1	5
					Paleope		agricultural loess	NORTH-			AGRICULTURAL	_	
394	8	4	239	Paleopedo				ATLANTIC:	SOIL SCIENCE	AGRICULTURE	ENGINEERING	6.2	4
					Single-		,	TRIVACANT	SYNTHESIS AND				-
395	0	21	177	The rationa		2002		HETEROPOLYTU	REACTIVITY IN	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
					Identifica		HLA:	TIETEROI GETTO		BIOLOGICAL & MEDICAL	TTTTOTO/AE GITEIMIGTTAT	0.1	
396	2	0	90	A novel pol			polymorphism		TISSUE ANTIGENS	SCIENCES	ANATOMY & PHYSIOLOGY	6.1	5
					Symmetr		symmetry; binary	MIRROR		BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL	0.1	
397	7	5	157	Recent res				SYMMETRY:	VISION RESEARCH	SCIENCES	RESEARCH	6.1	5
					y Surface			CHROMATIC	ACTA CHIMICA	SCILINGES	RESEARCH	0.1	ບ
398	8	6	86	I I						CHEMISTRY	DUVEICAL CHEMISTRY	6.4	4
				The surfac			anphiphiles; mixed	TRANSITION;	SINICA	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
399	6	1	104		Preparati		sol-gel method;	MINIDOMO	ACTA CHIMICA	CHEMICTRY	DUNCIONI CHEMICEDY		-
	-			Electrochro				WINDOWS	SINICA	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
400	9	3	149	I I	Synthesi			INTERMOLECUL	ACTA CHIMICA		DUNGLO AL OLIENBOTO		
	v	Ŭ		Supramole	s, crystal	2002	complex;	AR	SINICA	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4

401					1	DEDT TTE						
	4	2	171	Synthesi	1	, , , , ,	ORGANIC	ACTA CHIMICA	DI IVOICO	SOLID STATE DUNGS	0.4	-
	-			A new BEDs,	2002	-, ,	SUPERCONDUC	SINICA	PHYSICS	SOLID STATE PHYSICS	6.1	5
402	8	0	83	Higher		asymptotic; V-		ACTA MECHANICA	D. 1) (0) 00			_
				The higher order		notch; higher order		SOLIDA SINICA	PHYSICS	MECHANICS	6.1	5
403	11	4	75	The	1		DYNAMIC	ACTA MECHANICA				
-00	• •			The almost probability	t 2002		STABILITY;	SOLIDA SINICA	PHYSICS	MECHANICS	6.1	4
404	6	1	37	The		integrable model;		ACTA PHYSICA		QUANTUM THEORY &		
707	U		01	Utlizing the Gaudin			XXZ	SINICA	PHYSICS	RELATIVITY	6.1	4
405	14	1	97	Analysis		cascaded second-			ELECTROTECHNOLOGY &	ELECTROOPTICAL &		
403	14	'	91	The charac of all-	2002	order nonlinearity;	PHASE-SHIFTS		FLUIDICS	OPTOELECTRONIC	6.1	5
406	7	0	100	The		lattice dynamics;		ACTA PHYSICA				
400	′	U	102	By using th harmond	2002	harmonon; soft		SINICA	PHYSICS	CRYSTALLOGRAPHY	6.1	5
407	0	40	400	Thermal		dielectric	STRETCHED-	ACTA PHYSICA				
407	8	10	120	Kohlrausch behaviou	2002	relaxation;	EXPONENTIAL	SINICA	CHEMISTRY	POLYMER CHEMISTRY	6.1	5
400	_	_	470	Experim	İ	extrusion; island-		ADVANCES IN				
408	6	7	173	With the vicental	2002	sea melting model;	EXTRUDERS	POLYMER	CHEMISTRY	POLYMER CHEMISTRY	6.1	5
	_		.=-	Develop		sensor;	CHEMI-	ANALYTICA CHIMICA	NAVIGATION, DETECTION &	MISCELLANEOUS		
409	7	11	172	A novel intement of	2002	adrenaline:	LUMINESCENCE:	ACTA	COUNTERMEASURES	MATERIALS	6.2	4
	_	_		Existenc		initial value	,	APPLIED	MATHEMATICAL &		-	
410	7	0	27	The exister e and	2002	problems; periodic		MATHEMATICS AND	COMPUTER SCIENCES	OPERATIONS RESEARCH	6.1	3
				Transmi			CUPRATE 2212-	APPLIED PHYSICS				
411	0	15	153	The growth ssion	2002		TO-2223	LETTERS	PHYSICS	CRYSTALLOGRAPHY	6.1	4
				Suppres				ARCHIVES OF	ENVIRONMENTAL	SOLID WASTES POLLUTION	0	
412	0	2	243	One of the sion of	2002		MINE DRAINAGE	ENVIRONMENTAL	POLLUTION & CONTROL	CONTROL	6.1	5
				Reduction			CHILDREN;		BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL	0	
413	8	4	285	Objective In in			DESMOPRESSIN:	BJU INTERNATIONAL	SCIENCES	RESEARCH	6.2	5
				Upper	2002		EIGENVALUE	CALCULUS OF	001214020	112027111011	0.2	
414	0	7	70	The effect critical	2002		PROBLEMS:	VARIATIONS AND	PHYSICS	SOLID STATE PHYSICS	6.1	4
				A novel	2002					SOLID STATE TITISIES	0.1	-
415	12	6	101	Pt/CoAl2O catalyst	2002		PROGRAMMED	CATALYSIS LETTERS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
				Studies		polythermal	FROGRAMMED	CHEMICAL JOURNAL	EARTH SCIENCES &	GEOLOGY.	0.1	J
416	8	0	90	The isother on the		solubility diagram;		OF CHINESE	OCEANOGRAPHY	GEOCHEMISTRY &	6.1	5
				Compres			ULTRAVIOLET-	CHEMICAL JOURNAL		GLOCITEIVIISTRTA	0.1	υ
417	5	5	103	The evalua sibility		compression;	VISIBLE	OF CHINESE	COMPUTER SCIENCES	CYBERNETICS	6.1	5
						12-	VIOIDLE		CONFUTER SCIENCES	O I DEKINE I ICO	0.1	Э
418	5	0	54	Enantios				CHEMICAL JOURNAL	OUEN HOTOV	ODOANIO OUENIOTOV	0.4	
\vdash				The enanti elective	2002	carboxyeudesma-		OF CHINESE	CHEMISTRY	ORGANIC CHEMISTRY	6.1	4
419	6	0	158	Liquid-	0000	palladium; polymer		CHEMICAL JOURNAL	OUENIOTEV	DOLVIMED OLIENMOTOL		_
	-	-		Three kind phase		supported catalyst;	MODO	OF CHINESE	CHEMISTRY	POLYMER CHEMISTRY	6.1	5
420	4	3	69	Studies		,	MICRO-	CHEMICAL JOURNAL	0.151.4055.4	DOLLARD OLIENWOTEL		_
	•	ŭ		Nearly tran on the	2002	microemulsion;	EMULSION	OF CHINESE	CHEMISTRY	POLYMER CHEMISTRY	6.1	5

					Engineer			SITE-DIRECTED	CHEMISTRY				
421	0	6	62	We have e	ing a	2002		MUTAGENESIS:	LETTERS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
				Wo navo o	Self-	2002		BUILDING-	CHEMISTRY OF	CHEWICT IVI	THI GIONE OF LEWISTRY	0.1	•
422	0	5	175	Multilayer u		2002		BLOCKS;	MATERIALS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
					1.3-		1;3-dipolar	,	CHINESE CHEMICAL				-
423	7	1	44	Several iso	, -	2002	, ·	DERIVATIVES	LETTERS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
l l	_	_			An acidic		Tribulus terrestris		CHINESE CHEMICAL			-	
424	6	0	107	An aqueou	polysacc	2002	L.;		LETTERS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
405	•		-00	·	Rapid in-		portable		CHINESE CHEMICAL				
425	9	0	90	Diphenylca	situ	2002	photometer; Cr		LETTERS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
400		-	٥.		Preparati		porous alumina	SELF-	CHINESE CHEMICAL				
426	6	5	65	Self-ordering	on of	2002	film; anodization;	ORGANIZED	LETTERS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
427	9	0	93		Structure		high aluminum		CHINESE JOURNAL				
421	9	0	93	According t	direction	2002	zeolites; NaA;		OF INORGANIC	CHEMISTRY	INORGANIC CHEMISTRY	6.1	5
428	7	4	148		Studies			BASIC	CHINESE JOURNAL				
420	,	4	140	Layered Do	on			PROPERTIES;	OF INORGANIC	CHEMISTRY	INORGANIC CHEMISTRY	6.1	5
429	9	6	165		Periodic			ELASTIC	CHINESE SCIENCE		METALLURGY &		
429	9	U	103	The energy	DFT		metal azides; DFT;		BULLETIN	MATERIALS	METALLOGRAPHY	6.2	4
430	10	6	169		Phase			AL EUTECTOID	CHINESE SCIENCE		METALLURGY &		
430	10	U	103	With scann				ALLOY; STRESS;	BULLETIN	MATERIALS	METALLOGRAPHY	6.1	5
431	11	9	63		Probabili			2-PARTICLE	COMMUNICATIONS		QUANTUM THEORY &		
731		9	00	A scheme t				ENTANGLED		PHYSICS	RELATIVITY	6.1	5
432	8	5	103		Detailed		interacting boson	NUCLEI;	COMMUNICATIONS		NUCLEAR PHYSICS &		
732	0	J	100	We have in				ISOTOPES; PD;	IN THEORETICAL	PHYSICS	ELEMENTARY PARTICLE	6.1	5
433	7	12	130		Numeric			PARTIAL-	COMPUTATIONAL	MATHEMATICAL &	l		
00			100	This paper			functions; triphasic		MECHANICS	COMPUTER SCIENCES	NUMERICAL MATHEMATICS	6.1	4
434	10	3	156		Entropy		quantum statistics;		CZECHOSLOVAK	ASTRONOMY &			_
-0-	10	Ů	100	By using th			brick-wall method;	D; GEOMETRY;	JOURNAL OF	ASTROPHYSICS	ASTRONOMY	6.2	5
435	15	1	160	_, ,	The		antimony;		ELECTROANALYSIS	EARTH SCIENCES &	GEOLOGY,		_
				The underp		2002	underpotential	SB		OCEANOGRAPHY	GEOCHEMISTRY &	6.2	4
436	0	1	49		Dynamic	0000		00415	ENGINEERING		STRUCTURAL	0.0	_
	-			Full-scale		2002		SCALE	STRUCTURES	CIVIL & MARINE	ENGINEERING & BUILDING	6.2	5
437	8	13	211		Transloc			MOUSE		BIOLOGICAL & MEDICAL	ANATONY & BUNGIOLOGY		_
				Protein kina				OOCYTES; CELL-	RESEARCH	SCIENCES	ANATOMY & PHYSIOLOGY	6.1	5
438	8	6	102	Th - 44	Tautome			SUPERCRITICAL	FLUID PHASE	CLIENICTOV	DUVOIGAL OUEMICTRY		4
	-	_		The tautor				CARBON-	EQUILIBRIA	CHEMISTRY	PHYSICAL CHEMISTRY NUCLEAR PHYSICS &	6.1	4
439	3	0	148		Structure		Pomeron; glueball;		HIGH ENERGY	DUVEICE		6.4	_
				In this pape			non-perturbative		PHYSICS AND	PHYSICS NUCLEAR SCIENCE &	ELEMENTARY PARTICLE NUCLEAR	6.1	5
440	8	0	90		Energy		dark matter;		HIGH ENERGY		INSTRUMENTATION	6.1	_
Ш				it is importa	calibratio	2002	CsI(TI) crystal;		PHYSICS AND	TECHNOLOGY	INSTRUMENTATION	0.1	5

				Deno	drito	hepatocellular	CANCER	IMMUNOLOGY	BIOLOGICAL & MEDICAL			
441	8	14	167	Mature der mas	200	carcinoma:	VACCINES:	LETTERS	SCIENCES	ANATOMY & PHYSIOLOGY	6.1	5
				Mole		casein kinase	CASEIN KINASE-	INTERNATIONAL	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
442	10	9	119	We isolate r clos		family; CK1	1:	JOURNAL OF	SCIENCES	MOLECULAR BIOLOGY	6.1	5
l l	_			Anal		thermal cycling;	,	INTERNATIONAL	NAVIGATION, DETECTION &	MISCELLANEOUS	_	_
443	5	1	50	Based on t of		micro PCR chip	AMPLIFICATION	JOURNAL OF	COUNTERMEASURES	MATERIALS	6.1	5
	_	_		Struc		micromachined	MICROMACHINE	INTERNATIONAL	ELECTROTECHNOLOGY &	ELECTRICAL &		
444	8	3	99	Micromach I failu	re 200	accelerometer;	D INERTIAL	JOURNAL OF	FLUIDICS	ELECTRONIC EQUIPMENT	6.1	5
		_		Num	eric	microelectromech		INTERNATIONAL	ELECTROTECHNOLOGY &	ELECTRICAL &		
445	14	0	67	A bulk micral	200	2 anical system		JOURNAL OF	FLUIDICS	ELECTRONIC EQUIPMENT	6.2	5
	_	_		Micro		,		INTERNATIONAL				
446	0	0	206	Bolder-bun macl	hine 200	2		JOURNAL OF	CHEMISTRY	PHYSICAL CHEMISTRY	6.2	4
4.4-			407	Lubr		thin film	SURFACE;	INTERNATIONAL				
447	8	2	134	In this papeon th	eory 200	lubrication;	CONTACT	JOURNAL OF	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
	_			Nano		nanofriction;		INTERNATIONAL			_	
448	5	1	68			silicon; roughness;	ROUGHNESS	JOURNAL OF	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
	_	_		The		pumping effect;		INTERNATIONAL	MECHANICAL, INDUSTRIAL,	PUMPS, FILTERS, PIPES,		
449	5	0	111	A simplified pum	pina 200	phase transition;		JOURNAL OF	CIVIL & MARINE	TUBING, FITTINGS &	6.1	5
	_			Char		transient		INTERNATIONAL		,		
450	5	1	90	In this paperizati		2 measurements:	GAAS	JOURNAL OF	PHYSICS	SOLID STATE PHYSICS	6.1	4
				Elec		poly-Si1-xGex;		INTERNATIONAL				-
451	7	0	156	In this papeprop		resistivity; Hall		JOURNAL OF	PHYSICS	SOLID STATE PHYSICS	6.1	5
	_	_		The		inner pressure;		INTERNATIONAL		ATOMIC & MOLECULAR	_	_
452	6	0	25	The relationinner	200	2 TFD theory;		JOURNAL OF	PHYSICS	PHYSICS &	6.1	4
		_		The		multilayered	GREEN-	INTERNATIONAL				
453	15	2	152	The state v state	200	2 piezoelectric	FUNCTIONS;	JOURNAL OF SOLIDS	PHYSICS	SOLID STATE PHYSICS	6.2	4
				H inf		H-infinity control;			MATHEMATICAL &			-
454	10	1	96	This paper PID		2 optimal control;	SYSTEMS	ISA TRANSACTIONS	COMPUTER SCIENCES	CYBERNETICS	6.1	5
				SiGe				JOURNAL OF				
455	0	0	93	A SiGe/Si r reso		2			PHYSICS	SOLID STATE PHYSICS	6.1	5
				Com		F-18-2-	GLUCOSE	JOURNAL OF	BIOLOGICAL & MEDICAL			
456	14	7	223	Purpose: Ang w		2 deoxyglucose:	ANALOG: PET:		SCIENCES	RADIOBIOLOGY	6.2	5
				Num		fixed bottom: 2D	RAYLEIGH-	JOURNAL OF	EARTH SCIENCES &	PHYSICAL & DYNAMIC	J	Ŭ
457	12	14	147	The motion al		2 surface wave;	TAYLOR	COMPUTATIONAL	OCEANOGRAPHY	OCEANOGRAPHY	6.1	5
				Grov		optical	LASER:	JOURNAL OF	002,00		· · ·	
458	13	5	98	Single crys and		microscopy;	SPECTROSCOPY		PHYSICS	CRYSTALLOGRAPHY	6.1	5
				Reta		titanium dioxide;	SOL-GEL	JOURNAL OF			V. 1	Ŭ
459	7	6	109	By pre-hyd g eff		transformation;	METHOD; PHASE-		CHEMISTRY	INORGANIC CHEMISTRY	6.1	5
				Elas		MgO-Al2O3-SiO2-	///02, / ///02	JOURNAL OF		CERAMICS.	0.1	
460	11	0	113			TiO2-Y2O3 glass;		INORGANIC	MATERIALS	REFRACTORIES & GLASS	6.1	5
				11190 / 1120111100	un 01 200.	- 1.102 1200 glass,	I.	INONOAINO	IND CLEICH LEO	INC. TO TOTALE & SEASS	0.1	<u> </u>

				Prepara	ti	CuCl14PC: zeolite:	IRON-	JOURNAL OF				
461	5	4	106	Well-crysta on.			PHTHALOCYANI	INORGANIC	CHEMISTRY	INORGANIC CHEMISTRY	6.1	5
	_			Experin			CALCIUM-	JOURNAL OF				
462	5	1	60	Hydroxyap ental		synthesis;	PHOSPHATE	INORGANIC	CHEMISTRY	INORGANIC CHEMISTRY	6.1	5
	_			Evidend	:e	resistivity; heat		JOURNAL OF				
463	5	0	66	The tempe for	2002	conductivity;		MAGNETISM AND	PHYSICS	SOLID STATE PHYSICS	6.1	4
404	40		400	The		nylon; near-field	ABSORPTION	JOURNAL OF		METALLURGY &		
464	12	4	133	In this pape coordin	at 2002	scanning optical	FINE-	MOLECULAR	MATERIALS	METALLOGRAPHY	6.1	5
465	4	0	0.4	The		purification;	PODOLSKY-	JOURNAL OF OPTICS		NUCLEAR PHYSICS &		
465	4	8	64	We presen entangl	e 2002	POVM; entangled	ROSEN	B-QUANTUM AND	PHYSICS	ELEMENTARY PARTICLE	6.1	4
466	0	14	62	Infinitely	/		RELATIVISTIC	JOURNAL OF	MATHEMATICAL &			
400	U	14	62	In this papemany	2002		VOLTERRA	PHYSICS A-	COMPUTER SCIENCES	NUMERICAL MATHEMATICS	6.1	4
467	5	2	131	Fukui-		traffic flow; cellular	CELLULAR-	JOURNAL OF THE	NAVIGATION, DETECTION &			
407	э		131	We propos Ishibas	ni 2002	automaton models	AUTOMATON	PHYSICAL SOCIETY	COUNTERMEASURES	NAVIGATION & GUIDANCE	6.2	4
468	5	0	83	Improve		steelmaking; EAF;		JOURNAL OF		METALLURGY &		
400	5	U	03	According ment of	2002	high impedance;		UNIVERSITY OF	MATERIALS	METALLOGRAPHY	6.1	5
469	11	0	108	Applica	ti	plate mill; work		JOURNAL OF		METALLURGY &		
409	11	U	100	Employing on of	2002	roll; wear;		UNIVERSITY OF	MATERIALS	METALLOGRAPHY	6.3	4
470	9	8	81	Freque	1	complex	BATIO3	MATERIALS		CERAMICS,		
4/0	9	0	01	Electrical p cy	2002	impedance;	CERAMICS;	CHEMISTRY AND	MATERIALS	REFRACTORIES & GLASS	6.1	5
471	0	0	70	Failure				MATERIALS	, ,	SURFACE		
4/1	U	U	70	This article avoidar	c 2002			PERFORMANCE	CIVIL & MARINE	TRANSPORTATION &	6.2	5
472	7	13	333	Deform		· · · · · · · · · · · · · · · · · · ·	DEFORMED TI-	MATERIALS SCIENCE		METALLURGY &		
4/2	,	13	333	This paper tion	2002		45AL-10NB	AND ENGINEERING A	MATERIALS	METALLOGRAPHY	6.1	5
473	12	5	154	An			CHANNELING	MATERIALS SCIENCE		METALLURGY &		
4/3	12	5	154	Microstruct electror	2002	superplastic	CONTRAST;	AND ENGINEERING A	MATERIALS	METALLOGRAPHY	6.1	5
474	6	0	64	XPS		merocyanine;		MOLECULAR				
4/4	O	U	04	Thin film of study o	2002	vacuum		CRYSTALS AND	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
475	8	15	82	Multi-		71 ,	MESON	NUICI EAR DUVEICE A		NUCLEAR PHYSICS &		
4/5	0	15	02	We apply t strange	2002	strange objects;	COUPLING	NUCLEAR PHYSICS A		ELEMENTARY PARTICLE	6.1	5
476	0	7	278	Materna			HONG-KONG;	PAEDIATRIC AND	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
4/6	U	,	210	The effects,	2002		HEALTH;	PERINATAL	SCIENCES	RESEARCH	6.2	5
477	0	10	148	Quantu			PAUL TRAP;	PHYSICAL REVIEW A		QUANTUM THEORY &		
4//	U	10	140	We propos comput	at 2002		LOGIC; STATE;	FITT SICAL REVIEW A	PHYSICS	RELATIVITY	6.1	4
478	0	14	79	Crossh			ANOMALOUS	PHYSICAL REVIEW B				
4/0	U	14	19	The morph ching o	1 2002		STRAIN	PHISICAL REVIEW B	PHYSICS	SOLID STATE PHYSICS	6.1	5
479	0	13	76	Electro			T-C	DHASICVI DEVIEW D				
413	U	13	70	Based on a c	2002		SUPERCONDUC	PHYSICAL REVIEW B	PHYSICS	SOLID STATE PHYSICS	6.1	5
480	0	6	80	Extende			FULLY-	DHASICVI DEVIEW E				
400	U	Ö	80	We show tld self-	2002		DEVELOPED	PHYSICAL REVIEW E	PHYSICS	FLUID MECHANICS	6.1	5

					The				PHYSICS IN	MATHEMATICAL &	THEORETICAL		
481	0	1	63	The theore		2002		EEG	MEDICINE AND	COMPUTER SCIENCES	MATHEMATICS	6.1	4
					a-	2002		Q-COHERENT		00 01211001211020	QUANTUM THEORY &	0	•
482	0	6	68	In the fram		2002		STATES:	PHYSICS LETTERS B	PHYSICS	RELATIVITY	6.1	5
					Synthese			X-RAY					
483	10	11	161	Reactions			complexes;	STRUCTURE; C-	POLYHEDRON	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
					Singulari		singular Jacobi	, -	SCIENCE IN CHINA	MATHEMATICAL &			
484	5	0	37	This paper			form; cusp form		SERIES A-	COMPUTER SCIENCES	NUMERICAL MATHEMATICS	6.1	5
		_			Measure		optical tweezers;	SPHERICAL-	SCIENCE IN CHINA				
485	4	3	50	A high-stat	ments of	2002	displacement;	ABERRATION;	SERIES A-	PHYSICS	OPTICS	6.1	5
		_		Ŭ	Genetic		semi-dwarf gene	ASYMMETRIC	SCIENCE IN CHINA	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
486	19	9	139	Application	mapping	2002	sd-t(t); simple	INTERLACED	SERIES C-LIFE	SCIENCES	MOLECULAR BIOLOGY	6.1	5
	_				Function		coordination		SCIENCE IN CHINA				
487	7	0	100	On the bas		2002	polyhedron;			PHYSICS	CRYSTALLOGRAPHY	6.1	5
	_		101		Polarime		chirality; non-		SCIENCE IN CHINA		ATOMIC & MOLECULAR		
488	6	0	131	To measur	tric	2002	spherical particle;		SERIES F	PHYSICS	PHYSICS &	6.1	4
	•	40	400		Electrical		mesostructured tin	MESOPOROUS	SENSORS AND		METALLURGY &		
489	9	12	168	In this stud	and gas-	2002	oxide; surface	MOLECULAR-	ACTUATORS B-	MATERIALS	METALLOGRAPHY	6.1	4
	-	-	400		Determin		beta-cyclodextrin	ATOMIC-	SUPRAMOLECULAR				
490	7	7	193	The chrom	ation of	2002	polymer; polymer	ABSORPTION	CHEMISTRY	CHEMISTRY	POLYMER CHEMISTRY	6.1	5
404	40	40	450		Microsco		titanium alloy;	NI-AL BRONZE;	SURFACE &				
491	10	13	159	The micros	pic			WEAR-	COATINGS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
492	8	13	32		Formatio		samarium diiodide;		TETRAHEDRON				
492	0	13	32	Transforma	n of 1,2-	2002	reductive coupling;	CONSTANTS;	LETTERS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
493		0	100		cBN		cBN films; ECR;	CUBIC BORON-	VACUUM				
493	6	8	108	BN films w	Films	2002	CVD; hot filament	NITRIDE; BN	VACUUM	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
494	0	0	35		Crystal				ZEITSCHRIFT FUR				
494	U	0	35	BGaH3KO	structure	2002			KRISTALLOGRAPHIE-	PHYSICS	CYRSTALLOGRAPHY	6.1	5
495	9	11	217		Compute		breast neoplasms;	TEXTURE	ACADEMIC	BIOLOGICAL & MEDICAL			
495	9	11	217	Rationale a	r-aided		diagnosis; breast	ANALYSIS;	RADIOLOGY	SCIENCES	RADIOBIOLOGY	6.3	5
496	6	5	127		Ultrastru		Hypericum	ANTIRETROVIRA	ACTA BOTANICA	BIOLOGICAL & MEDICAL			
496	ь	5	127	With the de	cture of	2002		L ACTIVITY;	SINICA	SCIENCES	BIOLOGY	6.1	5
497	7	44	100		Molecula			MARKER-	ACTA BOTANICA	BIOLOGICAL & MEDICAL			
497	1	11	166	Seedling cl	r			ASSISTED	SINICA	SCIENCES	BIOLOGY	6.2	5
498	6	2	260		Relation		conformation;		ACTA POLYMERICA		MISCELLANEOUS		
498	ь	2	260	Relations b	s	2002	strength; elastic	FIBROIN; FIBERS	SINICA	MATERIALS	MATERIALS	6.1	5
499	7	0	352		Characte		hexamethylenediis		ACTA POLYMERICA				
499	- 1	U	332	Isocyanura	rization	2002	ocyanate(HDI);		SINICA	CHEMISTRY	ORGANIC CHEMISTRY	6.1	4
500	-	2	107		Self-		fullerols;		ACTA POLYMERICA				
500	6	2	197	Fullerols w	assembl	2002	polycation; self-	C-60; POLYMERS	SINICA	CHEMISTRY	POLYMER CHEMISTRY	6.1	5

				Т	raining		multilayer	BACKPROPAGAT	ADVANCES IN	MATHEMATICAL &			
501	7	5	108	Motivated to				ION ALGORITHM:		COMPUTER SCIENCES	CYBERNETICS	6.1	5
					The	2002		NUCLEIC-ACIDS:	ANALYTICAL	BIOLOGICAL & MEDICAL	O I BERRIE TICO	0.1	
502	0	8	161	It has receir		2002		INDUCED	SCIENCES	SCIENCES	ANATOMY & PHYSIOLOGY	6.1	5
					Asympto		viscous	INDOOLD	APPLIED	MATHEMATICAL &	7.W. COMT & TITICIOLOGI	0.1	
503	7	1	175	This paper ti			conservation laws;	STABILITY	MATHEMATICS	COMPUTER SCIENCES	NUMERICAL MATHEMATICS	6.1	5
					Discrimin	2002	conscivation laws,	OTABILITY	ARTHRITIS AND	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL	0.1	
504	0	2	209			2002		MEDIAN NERVE	RHEUMATISM	SCIENCES	RESEARCH	6.3	5
-					Collabor		hypermedia;	WEDDAY NEICVE	AUTOMATION IN	MATHEMATICAL &	REGEARCH	0.0	
505	4	0	110	Collaborati			collaborative		CONSTRUCTION	COMPUTER SCIENCES	OPERATIONS RESEARCH	6.2	4
					Highly			ELECTRODES:	BIOELECTROCHEMIS		BIOMEDICAL	0.2	
506	5	3	156	A novel tyres			,	PHENOLS; PH	TRY	BIOTECHNOLOGY	INSTRUMENTATION &	6.3	5
-				-	An			ELECTRODES;	BIOTECHNOLOGY	BIOTECTINOEGGT	BIOMEDICAL	0.5	
507	9	2	56	An ampero a				SENSOR	LETTERS	BIOTECHNOLOGY	INSTRUMENTATION &	6.3	5
					Study on		GBFS; fly ash;	OLINOOK	CEMENT AND	BIOTECTINOEOGT	CERAMICS.	0.5	
508	8	0	100	It is one of h			blended cement;		CONCRETE	MATERIALS	REFRACTORIES & GLASS	6.2	5
					Theoreti	2002		MOLECULAR-		WATERIALS	INELLINACTORIES & GEASS	0.2	
509	0	15	169	The gas pho		2002		BEAM METHOD:	CHEMICAL PHYSICS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
					Equilibriu		succinic acid:	TRI-N-	CHINESE JOURNAL	CHEMISTRY	TITISICAL CITEWISTICT	0.1	
510	12	11	222	Extraction in			,	OCTYLAMINE:	OF CHEMICAL	CHEMISTRY	ORGANIC CHEMISTRY	6.1	4
					Study on		fluorine expulsion;	OOTTE/WIINE,	CHINESE JOURNAL	OTEMIOTICI	CERAMICS,	0.1	
511	8	0	124	The firing tell			fluorine retention;		OF CHEMICAL	MATERIALS	REFRACTORIES & GLASS	6.2	5
					Studies			NUCLEAR-	CHINESE JOURNAL	WATERIALS	RETRACTORIES & SEASS	0.2	
512	6	1	119	The self-dit o				MAGNETIC-	OF POLYMER	CHEMISTRY	POLYMER CHEMISTRY	6.1	4
 					Epstein-			CELLULAR	CHINESE MEDICAL	BIOLOGICAL & MEDICAL	I GETWEN CHEWIGTKT	0.1	
513	7	13	196	Objective TB				SENESCENCE:	JOURNAL	SCIENCES	ANATOMY & PHYSIOLOGY	6.1	5
-					Contrace		contraceptive	OLINEOCLINOL,		BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL	0.1	
514	8	0	247	_			behavior;		JOURNAL	SCIENCES	RESEARCH	6.3	5
				, ,	Relation			INSULIN-	CHINESE MEDICAL	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL	0.5	
515	4	5	225					RESISTANCE:	JOURNAL	SCIENCES	RESEARCH	6.2	5
				Objective 18	nip V			NUCLEAR-	JOURNAL	EARTH SCIENCES &	GEOLOGY,	0.2	3
516	6	12	133	Bentonite sn	\ niorootr			MAGNETIC-	CLAY MINERALS	OCEANOGRAPHY	GEOCHEMISTRY &	6.1	5
					Develop		DSP-based	INIAGINE LIG-	COMPUTER	BIOLOGICAL & MEDICAL	MEDICAL FACILITIES.	0.1	
517	10	1	183	This paper m				TIME	METHODS AND	SCIENCES	EQUIPMENT & SUPPLIES	6.3	4
\vdash					Tempera			CYCLE	ECOLOGICAL	BIOLOGICAL & MEDICAL	LQUIFIVIENT & SUFFLIES	0.3	4
518	13	12	328	Nonlinearit tu				FEEDBACKS:	MODELLING	SCIENCES	ECOLOGY	6.1	4
\vdash					ure Electroc			FULLERENES; C-	ELECTROCHEMISTR	SCILINGES	LCOLOGI	0.1	4
519	7	4	67						Y COMMUNICATIONS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
				Cyclic voltah				WATER	EUROPEAN	BIOLOGICAL & MEDICAL	FRI TOICAL CREWIOTRY	0.1	5
520	7	6	199		Determin		3 - 1 ,	PARTITION-		SCIENCES	DHA BMA COLOCY	6.1	4
				The objecti a	ation of	2002	ciprofloxacin;	PAKTITION-	JOURNAL OF	SCIENCES	PHARMACOLOGY	0.1	4

				Synthetic		hypertrophic			BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
521	5	2	106	Wound heaTGF-			MODEL: MICE	FASEB JOURNAL	SCIENCES	RESEARCH	6.3	5
				Successi		colonisation:	SUBUNIT		BIOLOGICAL & MEDICAL	RESEARCH	0.3	3
522	9	14	44	Various as on:		,	RIBOSOMAL-	FUNGAL DIVERSITY	SCIENCES	MICROBIOLOGY	6.1	3
-				A note		Markov chains:	KIBUSUWAL-	IEEE TRANSACTIONS		MICROBIOLOGT	0.1	3
523	8	1	97	This note son the			POTENTIALS	ON AUTOMATIC	COMPUTER SCIENCES	CYBERNETICS	6.1	4
				Diagnos		diagnosability;	TOPOLOGICAL	IEEE TRANSACTIONS		CIBERNETICS	0.1	4
524	10	4	188				PROPERTIES:		COMPUTER SCIENCES	CYBERNETICS	6.1	4
				Preparati			INDIUM-TIN-	INORGANIC	COMPOTER SCIENCES	CIBERNETICS	0.1	4
525	5	7	71	Corundum on of		, -,	OXIDE; SOL-GEL	CHEMISTRY	CHEMISTRY	INORGANIC CHEMISTRY	6.1	4
-				Complex			SMALL-WORLD		MATHEMATICAL &	INORGANIC CHEWISTRY	0.1	4
526	5	19	99	Dramatic a networks			NETWORKS;	JOURNAL OF	COMPUTER SCIENCES	COMPUTER SYSTEMS	6.1	4
-				On the			DIFFERENCE-		MATHEMATICAL &	COMPUTER STSTEMS	0.1	4
527	5	7	110	We investignathen			EQUATIONS:	JOURNAL OF	COMPUTER SCIENCES	CYBERNETICS	6.1	5
\vdash				Anticanc			ACTIVATOR	INTERNATIONAL	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL	0.1	υ
528	10	18	259	To uncoverer effect		activator protein-1;	-	JOURNAL OF	SCIENCES	RESEARCH	6.2	5
-				Estimatin			DISPLACEMENT	INTERNATIONAL	EARTH SCIENCES &	RESEARCH	0.2	5
529	13	4	294	The stabilit g the			BACK ANALYSIS:		OCEANOGRAPHY	MINING ENGINEERING	6.3	5
-				Structure-	2002		ETHYLENE-	JOURNAL OF ROCK	OCLANOGRAFIII	WIINING ENGINEERING	0.3	<u> </u>
530	9	7	140	The mechaproperty	2002		PROPYLENE	APPLIED POLYMER	CHEMISTRY	POLYMER CHEMISTRY	6.1	5
-				Qualitati			REACTION-	JOURNAL OF	BIOLOGICAL & MEDICAL	I GETWER CHEWISTRY	0.1	<u> </u>
531	9	8	64	Applying que			DIFFUSION	BIOLOGICAL	SCIENCES	ANATOMY & PHYSIOLOGY	6.1	4
				Volatile			SECRETION;	JOURNAL OF	BIOLOGICAL & MEDICAL	ANATOWI &TITISIOEOOT	0.1	
532	13	2	194			0	ERMINEA	CHEMICAL ECOLOGY		ANATOMY & PHYSIOLOGY	6.1	5
				Study on			DILUTE	JOURNAL OF	COLLINGES	7110/110/011 0111110/02001	0.1	
533	12	2	200			laminar shear flow;	-	COLLOID AND	CHEMISTRY	POLYMER CHEMISTRY	6.1	4
				Crystal			HIGH-TC	JOURNAL OF	OTEMIOTICI	I GETWER GREWIGTER	0.1	-
534	12	7	70	La2CuO4 agrowth of			SUPERCONDUC		PHYSICS	CRYSTALLOGRAPHY	6.1	5
-				Large	2002		HUMAN COLON-	JOURNAL OF	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL	0.1	J
535	0	17	232	Autoantibo scale	2002		CANCER; MAGE	IMMUNOLOGY	SCIENCES	RESEARCH	6.1	5
-				The	2002		SYSTEM;	JOURNAL OF	MATHEMATICAL &	TCOE/TCOTT	0.1	0
536	0	3	91	This paper exponent	2002		CHAOS: LIGHT	MATHEMATICAL	COMPUTER SCIENCES	NUMERICAL MATHEMATICS	6.1	4
				Induction			ANTIBODY-		BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL	0.1	-
537	9	17	183	Macrophagof		3,,,	MEDIATED	ONCOLOGY	SCIENCES	RESEARCH	6.1	5
\vdash				Integrate	2002		FERROELECTRI	JOURNAL OF	ELECTROTECHNOLOGY &	LINE. SURFACE & BULK	0.1	
538	0	12	112	In this paped	2002		C DOMAIN-	PHYSICS D-APPLIED		ACOUSTIC WAVE DEVICES	6.1	4
				Synthesi			ZINC	JOURNAL OF SOLID	1 2012100	TOOCSTIO WITTE DEVICES	0.1	-
539	8	13	122	A new two-s and			PHOSPHATE:		CHEMISTRY	INORGANIC CHEMISTRY	6.1	5
\vdash				Synthesi	2002	, ,	INTERMOLECUL	JOURNAL OF THE	OTILIMOTICI	INTORGANIO OFFICIALISTICI	0.1	3
540	0	6	148		2002		AR	CHEMICAL SOCIETY-	CHEMISTRY	INORGANIC CHEMISTRY	6.1	4
		l		in noverierja, crystal	2002		/ u v	OF ILIVITOAL SOCIETY-	TO I E MIOTICI	INTOROANTO OFFICIORY	0.1	7

0			Quantum			MINIMUM-	JOURNAL OF THE		1		
U	9	103	A photon b effects of			UNCERTAINTY		PHYSICS	OPTICS	6.1	4
			Block-	2002		CONNECTED	01 110/12 0001211	11110100	Of fied	0.1	
0	21	233		2002			MACROMOLECULES	CHEMISTRY	POLYMER CHEMISTRY	6.1	5
							MICROCHEMICAL		. GETTIER GITEMBERK	0	
5	12	66		2002				CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
•		405	One-step		,	SELF-			METALLURGY &		
0	8	105	A simple of synthesi	2002		ORGANIZATION;	NANO LETTERS	MATERIALS	METALLOGRAPHY	6.1	4
7	7	171	Influence		,		NUCLEAR		NUCLEAR PHYSICS &		
7	1	171	The influen of	2002	irradiation; optical		INSTRUMENTS &		ELEMENTARY PARTICLE	6.1	4
0	0	55	Results						NUCLEAR PHYSICS &		
U	9	33	DAMA exp with the	2002			PROCEEDINGS	PHYSICS	ELEMENTARY PARTICLE	6.2	3
0	Ω	7/	Can			-,-	ORGANIC I ETTERS				
U	U	/4	In contrast bridged			METHANO<10>A		CHEMISTRY	ORGANIC CHEMISTRY	6.1	4
10	0	105	A study								
10	Ŭ	100		2002				CHEMISTRY		6.1	4
0	9	65				-					
•		- 00		2002						6.1	4
0	17	199					PHYSICAL REVIEW D	D. W.O.O.O.			
				2002				PHYSICS	ELEMENTARY PARTICLE	6.1	4
0	9	35					PHYSICAL REVIEW D				
	_							COMPUTER SCIENCES	STATISTICS & PROBABILITY	6.1	4
5	14	133				,	PHYSICS LETTERS A	DI IVOIGO	ODVOTALLOOD A DUIV		_
								PHYSICS	CRYSTALLOGRAPHY	6.1	5
9	3	143				-	POLYHEDRON	DUVEICE	CRYSTALL OCRAPHY	0.4	5
			7			TRANSITIONS;	DDOOFFDINGS OF			6.1	5
6	0	39	J				I ROOLLDINGO OI		1	6.1	4
				2002		EVDEDIMENTAL	THE AMERICAN		IVIATHEWIATICS	0.1	4
0	14	98		2002			SCIENCE		ANATOMY & PHYSIOLOGY	6.1	4
					magnetically		SOLID STATE	SCIENCES		0.1	4
7	3	144						MATERIALS		6.1	4
							COMMUNICATIONS	IWATERIALO	IVILTALLOGICATITI	0.1	7
11	3	131					SURFACE SCIENCE	PHYSICS	CRYSTALLOGRAPHY	6.1	4
				2002			TETRAHEDRON	11110100	OKTOTALEOGRATITI	0.1	
0	22	105		2002				PHYSICS	CRYSTALLOGRAPHY	6.1	4
						20.2, /1001			552255101111	J.1	•
9	0	99			,			CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
_	_		Tetraagu			CRYSTAL;	ACTA				-
0	3	90		2002		MANGANESE:		PHYSICS	CRYSTALLOGRAPHY	6.1	5
	0 5 9 6 0 7	5 12 0 8 7 7 0 9 0 8 10 0 0 9 0 17 0 9 5 14 9 3 6 0 0 14 7 3 11 3 0 22 9 0	5 12 66 0 8 105 7 7 171 0 9 55 0 8 74 10 0 105 0 9 65 0 17 199 0 9 35 5 14 133 9 3 143 6 0 39 0 14 98 7 3 144 11 3 131 0 22 105 9 0 99	0 21 233 Noncovale copolym 5 12 66 The electrd electroch One-step One-step One-step Influence 7 7 171 The influence of Results Influence of Can East With the With the With the One Can In contrast bridged 0 8 74 In contrast bridged A study The boron on Fatigue Problems Dynamic The two local Fourth The randor order Researc Magnetic p h on the Crystal The crystal structure On We consided Stable Identifica 9 3 143 The crystal structure On The The The magne effect of Surface Surface Surface Surface The surface Structure A new A new Method 9 0 99 Reduction of Tetragou	0 21 233 Noncovale copolym 2002 5 12 66 The electrd electroch 2002 2002 0 8 105 A simple of synthesi 2002 2002 7 7 171 The influen of 2002 2002 0 9 55 DAMA exp with the 2002 2002 0 8 74 In contrast bridged 2002 2002 10 0 105 The boron on 2002 2002 0 9 65 The fatigue problems 2002 2002 0 17 199 The two lod al 2002 2002 5 14 133 Magnetic ph on the 2002 2002 9 3 143 The crystal structure 2002 2002 6 0 39 We consid stable 2002 2002 7 3 144 The magne effect of 2002 11 3 131 The surfac structure 2002 0 22 105 A now met method 2002	0 21 233 Noncovalet copolym 2002 electrochemical properties; 5 12 66 The electrd electroch electroch one-step of synthesis of large of synthesis. 2002 electrochemical properties; 7 7 171 The influen of properties; 2002 rutile; neutron irradiation; optical irradiation;	12 233 Noncovale Copolym 2002 POLYMERIC	12	12 233	12 233 Noncovale Copolym 2002 POLYMERIC MACROMOLECULES CHEMISTRY	12 233 Noncovale Copcylim 2002 Study of Study

								1		1			
561	0	0	39		2-Cyano-				ACTA	0.1514055)	000000000000000000000000000000000000000		
		·		In the title of		2002		II ID LIGED	CRYSTALLOGRAPHIC	CHEMISTRY	ORGANIC CHEMISTRY	6.1	4
562	9	4	135		Microstru			INDUCED	ACTA		METALLURGY &		_
		·		Microstruct			enhanced	FERRITE;		MATERIALS	METALLOGRAPHY	6.1	5
563	7	1	258		Effects		puerarin;		ACTA	BIOLOGICAL & MEDICAL	L		_
	·	·		AIM: To stu				HUPERZINE-A		SCIENCES	PHARMACOLOGY	6.1	4
564	8	4	160		GM-CSF			MEMBRANE	ACTA	BIOLOGICAL & MEDICAL			
304	O	7	100	AIM: To de		2002		STRUCTURES;		SCIENCES	ANATOMY & PHYSIOLOGY	6.1	5
565	0	11	102		Ultrahigh-	1		ZERMATT-SAAS	AMERICAN	EARTH SCIENCES &	GEOLOGY,		
303	U	'''	102	Inclusions		2002		ZONE;	MINERALOGIST	OCEANOGRAPHY	GEOCHEMISTRY &	6.1	5
566	0	4	49		Focus			TALBOT	APPLIED OPTICS				
300	U	4	49	Focus retro	retrocolli	2002		INTERFEROMET	APPLIED OFFICS	PHYSICS	OPTICS	6.1	5
567	,	7	152		Does		braces; fatigue;	PROPRIOCEPTIO	ARCHIVES OF	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
207	6	/	152	Objective:	wearing	2002	knee; ligaments;	N;	PHYSICAL MEDICINE	SCIENCES	RESEARCH	6.3	5
ECC	0	6	191		Ophthal			INCREASED	BRITISH JOURNAL	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
568	U	О	191	Aims: To s	mopathy	2002		INTRAOCULAR-	OF	SCIENCES	RESEARCH	6.2	5
	40	40	000		Overexpr		heme oxygenase;	CARBON-	CELL RESEARCH	BIOLOGICAL & MEDICAL			
569	12	10	203	To investig	ession of	2002	retroviral vector;	MONOXIDE;	CELL RESEARCH	SCIENCES	ANATOMY & PHYSIOLOGY	6.1	5
	_	_	07	Ĭ	Fabricati			POTASSIUM-	CHEMICAL		METALLURGY &		
570	0	7	37	Co3O4 nar	on of	2002		SULFATE FLUX;	COMMUNICATIONS	MATERIALS	METALLOGRAPHY	6.1	4
		_	400		Hybrid				CHEMICAL PHYSICS				
571	0	0	128	The recent	density-	2002			LETTERS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
	_				Enantio		microchip-based	CAPILLARY-	CHINESE JOURNAL			-	
572	9	3	94	The chiral		2002	electrophoresis;	ELECTROPHORE		CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
	_	_			Flow		flow injection	ION		ENVIRONMENTAL	WATER POLLUTION &		
573	9	9	125	In pH 2.76	injection-	2002	analysis;	CHROMATOGRA	OF ANALYTICAL	POLLUTION & CONTROL	CONTROL	6.1	4
					Extractio		extraction; kinetic		CHINESE JOURNAL				
574	7	1	92	An extraction			spectrophotometry	TRACE		CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
					Smooth			INTERNAL-	CLINICAL AND	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL	.	-
575	23	13	200	1. Various	muscle			MAMMARY-	EXPERIMENTAL	SCIENCES	RESEARCH	6.2	5
					Biologica			CELL-GROWTH:	COLLOIDS AND	BIOLOGICAL & MEDICAL	1		
576	7	2	196	Studies on			vibration: Actinidia		SURFACES B-	SCIENCES	STRESS PHYSIOLOGY	6.1	5
				2.00.00 011	In-situ			ENGINEERING	EARTH SURFACE	EARTH SCIENCES &	GEOLOGY.	J	
577	10	2	229	In-situ gam				PROPERTIES	PROCESSES AND	OCEANOGRAPHY	GEOCHEMISTRY &	6.1	5
				ona gam	Clean		coal; plasma;	or Ellineo		PROPULSION, ENGINES &	ozoonzimoriki w	0.1	
578	4	0	83	In order to			pyrolysis;		ENERGY SOURCES	FUELS	FUELS	6.2	5
				oraci to	Laser-		assisted hatching;	1.48-MU-M	FERTILITY AND	BIOLOGICAL & MEDICAL	1. 5225	0.2	
579	8	12	241	Objective:				DIODE-LASER:	STERILITY	SCIENCES	ANATOMY & PHYSIOLOGY	6.2	4
				Objective.	Clonality			COMPARATIVE		BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL	0.2	
580	9	15	271	Oligoastro				GENOMIC	HUMAN PATHOLOGY	SCIENCES	RESEARCH	6.1	5
\Box			1	Unguasifut	UI	2002	cionality, 1055 01	OLIVOIVIIC		DOILINGLO	INLOCANOII	0.1	

				Circulati			MUCOSAL		BIOLOGICAL & MEDICAL			
581	0	17	258	Antigen-sping	2002		IMMUNOLOGICA	IMMUNOLOGY	SCIENCES	ANATOMY & PHYSIOLOGY	6.1	5
	_			Mechani		disassembly;	GENERATION;	INTERNATIONAL	MATHEMATICAL &		-	
582	8	2	177	A feature-b cal	2002	geometric	SYSTEM	JOURNAL OF	COMPUTER SCIENCES	OPERATIONS RESEARCH	6.1	3
	_	45	70	Dynamic		interaction of spike	SINGULAR	JAPAN JOURNAL OF	MATHEMATICAL &			
583	8	15	79	In this papes of	2002	solutions; Gierer-	PERTURBATION	INDUSTRIAL AND	COMPUTER SCIENCES	STATISTICS & PROBABILITY	6.1	4
584	0	3	127	Exchang			HIGH-	JOURNAL OF		METALLURGY &		
584	U	3	127	Nanocomp e-	2002		REMANENCE;	APPLIED PHYSICS	MATERIALS	METALLOGRAPHY	6.1	4
585	11	2	86	Determin		Ni-Re-Hf ternary		JOURNAL OF		METALLURGY &		
202	11	2	80	The phase ation of	2002	system; diffusion	NICKEL; PHASE	CENTRAL SOUTH	MATERIALS	METALLOGRAPHY	6.1	4
586	7	4	95	Researc		coupling; multi-		JOURNAL OF	BEHAVIORAL & SOCIAL			
200	1	1	95	Understanch on	2002		AGENTS	CENTRAL SOUTH	SCIENCES	LINGUISTICS	6.1	4
587	7	9	31	Synthesi		allylic esters; allylic		JOURNAL OF				
367	1	9	31	The treatm s of	2002	ethers; polymer-	SYNTHESIS;	CHEMICAL	CHEMISTRY	POLYMER CHEMISTRY	6.1	4
588	0	14	179	Catheter-			CORYNEBACTER	JOURNAL OF	BIOLOGICAL & MEDICAL			
200	U	14	179	We describ related	2002		IUM-	CLINICAL	SCIENCES	MICROBIOLOGY	6.1	5
589	7	9	155	Characte		, -	PULSED-LASER	JOURNAL OF		METALLURGY &		
209	,	9	155	The micros rization			DEPOSITION;	ELECTRON	MATERIALS	METALLOGRAPHY	6.1	4
590	14	2	101	Numeric		small blunt reentry		JOURNAL OF				
290	14	2	101	The flow fie al		bodies; high	LAYER	INFRARED AND	PHYSICS	OPTICS	6.1	4
591	10	0	71	Up-		electron trapping		JOURNAL OF		NUCLEAR PHYSICS &		
391	10	0	7 1	According conversi	2002	materials; CaS:		INFRARED AND	PHYSICS	ELEMENTARY PARTICLE	6.1	4
592	0	10	75	Highly			ALUMINUM-	JOURNAL OF				
332	U	10	73	Highly ordered	2002		OXIDE	MATERIALS	PHYSICS	CRYSTALLOGRAPHY	6.1	5
593	8	12	231	Prevalen			GENITAL HUMAN-		BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
333	0	12	231	Controvers ce and		1 - 1	PAPILLOMAVIRU		SCIENCES	RESEARCH	6.2	5
594	7	17	120	Adsorpti			EFFECTIVE	JOURNAL OF				
394	,	17	120	Ni-B alloy i on of	2002		CORE	MOLECULAR	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
595	0	7	95	Matrix			SOLID ARGON;	JOURNAL OF				
333	U	,	93	Laser ablatisolation	2002		SPECTRA;	PHYSICAL	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
596	9	0	178	Compari		pitting; general		JOURNAL OF THE				
390	9	U	170	The effect son of		corrosion; passive		SERBIAN CHEMICAL	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
597	8	14	230	Activatio			CELL-NUCLEAR	LIVER	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
331	O	14	230	Backgroun n of			ANTIGEN; P53		SCIENCES	RESEARCH	6.1	5
598	15	14	296	Dislocati		Cu single crystal;	CYCLIC	MATERIALS SCIENCE				
330	15	14	250	The disloca on			DEFORMATION-	AND ENGINEERING A		CRYSTALLOGRAPHY	6.1	5
599	13	7	102	The			ITERATED		MATHEMATICAL &			
333	13	′	102	Let (Sigma pressure		of matrices; Gibbs			COMPUTER SCIENCES	NUMERICAL MATHEMATICS	6.1	5
600	11	10	106	Synthesi		. 5	ORGANIC	MICROPOROUS AND				
300	1.1	10	100	Periodic m s of	2002	hybrid material;	GROUPS;	MESOPOROUS	CHEMISTRY	ORGANIC CHEMISTRY	6.1	5

				01 1			IGONADOTROPIN-	MOLEOULAR	BIOLOGICAL & MEDICAL	T T		
601	0	12	217	Characte						ANIATONY & BUNGOLOGY	0.4	_ !
				GnRH has rization	2002		RELEASING-	ENDOCRINOLOGY	SCIENCES	ANATOMY & PHYSIOLOGY	6.1	5
602	0	6	97	Combust	0000		DIFFUSION	NUMERICAL HEAT	OLIEMIOTES/	DUNGIONI OLIFANOTOV		_ !
		_		Field mode ion and	2002		FLAMES;		CHEMISTRY	PHYSICAL CHEMISTRY	6.2	5
603	8	0	81	Coupled-		self-frequency-		OPTICS	ELECTROTECHNOLOGY &			
-		Ŭ	· · ·	CW single-cavity,		doubling; single-		COMMUNICATIONS	FLUIDICS	LASERS & MASERS	6.1	4
604	6	4	120	Photosyn			GEOGRAPHICAL-	PHOTOSYNTHETICA	BIOLOGICAL & MEDICAL			ŀ
00.			120	Photosynth thetic	2002		DISTRIBUTION;	THOTOGINITETION	SCIENCES	STRESS PHYSIOLOGY	6.1	4
605	0	17	131	Density			CONTINUOUS	PHYSICAL REVIEW E		QUANTUM THEORY &		
003		''	131	A system o matrix	2002		VARIABLE	TITIOICALILLIUL	PHYSICS	RELATIVITY	6.1	3
606	0	8	119	Directed			SELF-AVOIDING	PHYSICAL REVIEW E	MATHEMATICAL &			Į.
606	U	٥	119	The investi random	2002		WALKS;	PHISICAL REVIEW E	COMPUTER SCIENCES	OPERATIONS RESEARCH	6.2	3
607	6	2	0.1	A fast			ENCRYPTION;	PHYSICS LETTERS A	MATHEMATICAL &			
607	6	2	81	We propos chaotic	2002		SYSTEMS	FRISIOS LETTERS A	COMPUTER SCIENCES	CYBERNETICS	6.2	4
200	8	4	115	Atomic		molecular	MOLECULAR-	PROGRESS IN		ATOMIC & MOLECULAR		
608	Ø	4	145	The classic stick-slip	2002	dynamics	DYNAMICS	NATURAL SCIENCE	PHYSICS	PHYSICS &	6.1	4
		_	70	Identifica		green fluorescent	GENE-	PROGRESS IN	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
609	7	1	79	A mutant s tion and	2002	protein; gfpK79R	EXPRESSION	NATURAL SCIENCE	SCIENCES	MOLECULAR BIOLOGY	6.1	4
		_		Liquid		permanent		RARE METAL		METALLURGY &		
610	9	0	122	Base on themetal	2002	magnet; magnetic		MATERIALS AND	MATERIALS	METALLOGRAPHY	6.1	4
				Preparati			NANOCRYSTALLI	RARE METAL		METALLURGY &	-	
611	6	4	83	CeO2 nancon of		hydrosol; colloidal	NE; CERIUM(IV);	MATERIALS AND	MATERIALS	METALLOGRAPHY	6.1	5
				A		differential	, ,,	SENSORS AND	ELECTROTECHNOLOGY &	ELECTRICAL &		
612	14	1	170	This paper differenti	2002	capacitance	SENSOR	ACTUATORS A-	FLUIDICS	ELECTRONIC EQUIPMENT	6.2	4
				Wavelen		zinc isoelectronic		SPECTROSCOPY		ATOMIC & MOLECULAR	-	
613	7	1	88	In this paperaths and	2002	sequence;	Li	AND SPECTRAL	PHYSICS	PHYSICS &	6.1	5
1				FTIR		lanthanum;		SPECTROSCOPY		ATOMIC & MOLECULAR		
614	5	0	88	FTIR and Fand FT-		galactitol: FTIR:		AND SPECTRAL	PHYSICS	PHYSICS &	6.1	4
				Cetyltrim		fluorescence		SPECTROSCOPY		ATOMIC & MOLECULAR		-
615	9	0	70	Fluorescen ethylam		enhancement;		AND SPECTRAL	PHYSICS	PHYSICS &	6.1	4
				Determin		ICP-AES:		SPECTROSCOPY		ATOMIC & MOLECULAR	· · ·	
616	5	0	90	The metho ation of		tranexamic acid:		AND SPECTRAL	PHYSICS	PHYSICS &	6.1	4
				Determin		arsenic; atomic		SPECTROSCOPY	BIOLOGICAL & MEDICAL		0.1	
617	6	0	63	An atmoic lation of		fluorescence		AND SPECTRAL	SCIENCES	TOXICOLOGY	6.1	4
				Crystal	2002	1140103001100	HUMAN-		BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL	0.1	
618	0	18	134	We report structure	2002		IMMUNODEFICIE	STRUCTURE	SCIENCES	RESEARCH	6.1	5
				Synthesi	2002		STEREOCHEMIC	TETRAHEDRON-	001214020	TLOE/TION	0.1	
619	0	3	36	The reactions of	2002		ALLY	ASYMMETRY	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
\vdash				The reactions of	2002		PHOTODEGRAD	ASTIVIIVIETKY	CHLWIGTKT	FITI SICAL CHEWISTRY	0.1	4
620	0	5	198		2002		ATION:	WATER RESEARCH	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
				The reactic mechani	2002		IATION;		CHEMISTRY	FRI SICAL CHEWISTRY	0.1	4

				1 1-	r		bismuth-vanadium-	DDODVI ENE	ACTA CLUBALCA	PROPULSION, ENGINES &			
621	8	6	133	The structus	Γhe			OXIDATION:	ACTA CHIMICA SINICA	FUELS	FUELS	6.1	5
					, a o t a . o		bacteriostatic	OXIDATION;		BIOLOGICAL & MEDICAL	FUELS	0.1	5
622	5	0	138		Studies		mechanism; rare		ACTA CHIMICA	SCIENCES	MICROBIOLOGY	6.1	5
				Rare earth o				MOLECULAR-	SINICA ACTA CHIMICA	SCIENCES	MICROBIOLOGY	0.1	5
623	8	2	83	Different Sign	mprove		,			DI IVOICO	CDVCTALL CCDADUV	0.4	4
						2002		SIEVES;	SINICA	PHYSICS	CRYSTALLOGRAPHY	6.1	4
624	8	0	83		Elastic	0000	impact; wave		ACTA MECHANICA	DI IVOIGO	NUCLEAR PHYSICS &	0.4	
	-			In this papeir	_		propagation;		SINICA	PHYSICS	ELEMENTARY PARTICLE	6.1	4
625	10	1	94	1 -	Γhe		sodium dodecyl		ACTA PHYSICO-		L		
020			<u> </u>	Photoindud fl				ASSEMBLIES	CHIMICA SINICA	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
626	15	3	152		Synthesi			ANTICANCER	ACTA PHYSICO-	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
020	10	J	102	The effective			mide (HMBA); 3;3	AGENTS;	CHIMICA SINICA	SCIENCES	RESEARCH	6.1	4
627	7	0	135	1 1	New		arthropods;		ALCHERINGA	BIOLOGICAL & MEDICAL			
627	,	U	133	A single sp	occurren	2002	Sidneyia;		ALCHERINGA	SCIENCES	BIOLOGY	6.1	5
628	0	7	181	P	Applicati			QUANTUM	ANALYST	NAVIGATION, DETECTION &	MISCELLANEOUS		
020	U	'	101	Nanometer	on of	2002		DOTS; DNA;	ANALISI	COUNTERMEASURES	MATERIALS	6.1	4
200	4.4	44	040	N	Monitorin		monitoring;	ACOUSTIC-	ANALYTICAL	ELECTROTECHNOLOGY &	LINE, SURFACE & BULK		
629	14	11	213	A new metlo	and	2002	binding process;	WAVE SENSOR;	BIOCHEMISTRY	FLUIDICS	ACOUSTIC WAVE DEVICES	6.1	5
	_		405	Č	Organic-			EFFICIENT;	APPLIED PHYSICS	ELECTROTECHNOLOGY &	ELECTROOPTICAL &		
630	0	9	125	An organic fi		2002		DEVICES:	LETTERS	FLUIDICS	OPTOELECTRONIC	6.1	5
	_				Enhance		lysosome;	ERYTHROCYTE-	ARCHIVES OF	BIOLOGICAL & MEDICAL			
631	7	12	150	Effects of pin	ment of	2002	membrane thiol	MEMBRANE;	BIOCHEMISTRY AND	SCIENCES	BIOCHEMISTRY	6.1	4
	_				Genetic		Alligator sinensis;	BIOLOGICAL	BIOLOGICAL	BIOLOGICAL & MEDICAL			
632	8	10	324	Chinese all v				CONSERVATION:	CONSERVATION	SCIENCES	BIOLOGY	6.1	5
					nfluence		condensers: heat		BUILDING AND		AIR CONDITIONING.	0	
633	7	2	238	Due to the				CFD: FLOWS	ENVIRONMENT	CIVIL & MARINE	LIGHTING, HEATING, &	6.2	5
					Novel			MESOPOROUS	-		2.3(3, 1.2, 1.1.13, 6	0.2	
634	5	4	163	W-doped Nh				MOLECULAR-	CATALYSIS LETTERS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
					Quantum	2002		DISCRETE		OTIENIOTICI	THI GIOAL CHEWIGHT	0.1	
635	0	18	208	Employing of		2002		VARIABLE	CHEMICAL PHYSICS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
				Employing 6	aynamic		fluorescence;	LIQUID-		CHEMISTRY	PH 13ICAL CHEWISTRY	0.1	4
636	3	3	50	This goodly	١				CHEMPHYSCHEM	CHEMISTRY	DOLYMED CHEMISTRY	6.1	5
							polymers; self-	CRYSTALS;	OLUNA OOFAN	_	POLYMER CHEMISTRY	b.1	5
637	6	0	142		Trial and		seabed pipeline;		CHINA OCEAN		PUMPS, FILTERS, PIPES,	0.4	_
		_					large deflection;	00 11 11 15 4000	ENGINEERING	CIVIL & MARINE	TUBING, FITTINGS &	6.1	5
638	10	13	119	-	_ine			26 JUNE 1992;		ASTRONOMY &			_
300	.0			The line prob	oroadeni	2002	atmospheric	IMPULSIVE	OF ASTRONOMY AND		ASTRONOMY	6.1	5
639	0	0	53		4					BEHAVIORAL & SOCIAL	ECONOMICS & COST		
333	U	U	33	The origin (p		2002			LETTERS	SCIENCES	ANALYSIS	6.2	5
640	0	3	93	1 1 -	Metallic			CRYSTALS;	CHINESE PHYSICS				
040	U	၂ ၁	93	A metallic p	hotonic	2002		DIPOLE: MPBG	LETTERS	COMMNICATIONS	TELEMETRY	6.2	5

		1		D			ELECTRONIC-	CHINESE PHYSICS	T	IMETALLURGY &		
641	0	8	97	Rb-3 C-60 on and	2002		PROPERTIES:	LETTERS	MATERIALS	METALLOGRAPHY	6.1	4
-				Effect of	2002		CHEMICAL-	CHINESE PHYSICS	WATERIALS	METALLOGRAFIII	0.1	4
642	0	2	146	The influen N-2	2002		VAPOR-	LETTERS	PHYSICS	SOLID STATE PHYSICS	6.1	5
				Identifica		coriander; leaf	LEAF		BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &	0.1	<u> </u>
643	6	8	135	Senescenction of a		senescence;	SENESCENCE:	BULLETIN	SCIENCES	MOLECULAR BIOLOGY	6.1	4
				Renorma	2002	Jerieseeriee,	PARTICLE-	CLASSICAL AND	COLLINGES	QUANTUM THEORY &	0.1	-
644	0	7	126	The renorn lization	2002		PRODUCTION:		PHYSICS	RELATIVITY	6.1	5
				The	2002		TROBOOTION,		MATHEMATICAL &	TCE TTTT	0.1	-
645	0	0	23	In the pres ranges	2002			IN ALGEBRA	COMPUTER SCIENCES	NUMERICAL MATHEMATICS	6.1	2
				A		location; routing;	OPTIMIZATION:	COMPUTERS &	BEHAVIORAL & SOCIAL	ADMINISTRATION &	0	_
646	7	2	167	A telecomr location-		threshold	ALGORITHM	INDUSTRIAL	SCIENCES	MANAGEMENT	6.3	4
				Inverse		uniqueness;	OBSTACLE	COMPUTERS &	MATHEMATICAL &			-
647	10	3	36			transmission	SCATTERING:		COMPUTER SCIENCES	CYBERNETICS	6.2	4
	_			Micro-			ELECTRON-		BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
648	5	16	355	Objectives tensile	2002	sclerotic dentin;	MICROSCOPIC	DENTAL MATERIALS	SCIENCES	RESEARCH	6.1	4
240	47	_	440	Voltamm		salicylate;	CARBONYL-	EL ECTRO ANALYCIC	ELECTROTECHNOLOGY &	ELECTRICAL &		
649	17	6	112	The voltam etric	2002	cinnamate;	COMPOUNDS;	ELECTROANALYSIS	FLUIDICS	ELECTRONIC EQUIPMENT	6.1	4
050	0	-	87	Controlli			AREA-	EUROPEAN	MATHEMATICAL &			
650	U	6	87	A method (ng global	2002		PRESERVING	PHYSICAL JOURNAL	COMPUTER SCIENCES	STATISTICS & PROBABILITY	6.1	5
651	5	3	171	Promotio		ferrous sulfate;	IRON;	FUEL	PROPULSION, ENGINES &			
001	э	3	171	Sulfur relean of	2002	sulfur; coal	LIQUEFACTION;	FUEL	FUELS	FUELS	6.1	5
652	4	5	75	Controlle		methane;	TEMPERATURE-	FUEL	PROPULSION, ENGINES &			
032	4	5	75	The non-cad partial		methanol;	PROGRAMMED		FUELS	FUELS	6.1	5
653	8	0	93	Liquid		liquid metal		FUSION SCIENCE	NUCLEAR SCIENCE &	FUSION DEVICES		
033	0	U	93	In the last (metal	2002	blanket; MHD		AND TECHNOLOGY	TECHNOLOGY	(THERMONUCLEAR)	6.2	4
654	9	4	175	Numeric		case history;	NEGATIVE SKIN	GEOTECHNIQUE	EARTH SCIENCES &			
034	9	7	173	Negative slal		numerical	FRICTION;		OCEANOGRAPHY	SOIL MECHANICS	6.2	5
655	10	1	214	Concurre		real-time		IEEE TRANSACTIONS				
000	10	'	Z 1+	Many receincy		databases;	SYSTEMS		COMPUTER SCIENCES	CYBERNETICS	6.2	4
656	5	1	55	A simple		Huffman code;		IEEE TRANSACTIONS				
550	3		55	Upper boulupper		prefix code;	BINARY	0.11.11.01.11.11.11.11.11	COMPUTER SCIENCES	CYBERNETICS	6.1	5
657	16	5	210	Preparati		solvent diffusion	INTRAVENOUS		BIOLOGICAL & MEDICAL			_
001		Ŭ	2.0	Solid lipid r on of	2002	method in	FAT EMULSIONS;	JOURNAL OF	SCIENCES	PHARMACOLOGY	6.1	4
658	0	6	62	Normal			SHARING	ISRAEL JOURNAL OF				_
	ŭ		V-	Let F be a families	2002	DI OF	VALUES; PICARD	MATHEMATICS	COMPUTER SCIENCES	NUMERICAL MATHEMATICS	6.1	4
659	5	0	99	Ferroele		BLSF;		JAPANESE JOURNAL		CERAMICS,		_
	ŭ			The dielect ctric,	2002	ferroelectrics;	DDOTEIN	OF APPLIED PHYSICS		REFRACTORIES & GLASS	6.1	5
660	0	12	213	Positive	0000		PROTEIN-	JOURNAL OF	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		_
		·-		Akt2 is a m feedback	2002		KINASE-B;	BIOLOGICAL	SCIENCES	MOLECULAR BIOLOGY	6.1	5

				100		officity a dearboote	ION EVOLUNIOE	IOUDNIAL OF	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
661	14	15	161	Steric		affinity adsorbents;		JOURNAL OF			0.4	4
		_		The steric mass-			CHROMATOGRA	CHROMATOGRAPHY	SCIENCES	MOLECULAR BIOLOGY	6.1	4
662	12	6	241	A		parallel computing;		JOURNAL OF	OUEL HOTOL	DUNGOLO AL OLIENNOTEN		
		·		We conside multiple-			DYNAMICS;		CHEMISTRY	PHYSICAL CHEMISTRY	6.2	3
663	10	18	154	Inorganic		. 3 3	FILM-MODIFIED	JOURNAL OF				_
				A kind of in organic	2002	hybrid;		ELECTROANALYTICA		PHYSICAL CHEMISTRY	6.1	4
664	0	2	144	A new			CLASSIFICATION	JOURNAL OF	BIOLOGICAL & MEDICAL			
00.	•	-		A new species	2002		; PHYLOGENY	HERPETOLOGY	SCIENCES	BIOLOGY	6.1	5
665	9	13	136	A model		chemical potential;		JOURNAL OF				
000	3	10	100	A model is for		J	DIFFUSION;		PHYSICS	CRYSTALLOGRAPHY	6.1	5
666	0	1	115	Low-fired			MICROSTRUCTU	JOURNAL OF		CERAMICS,		
000	U	'	113	The microv microwa	2002		RE	MATERIALS SCIENCE	MATERIALS	REFRACTORIES & GLASS	6.1	5
667	_	1.1	234	Cytoskel		Bifidobacterium;	LACTIC-ACID	JOURNAL OF	BIOLOGICAL & MEDICAL			
007	5	14	234	Bifidobacte eton	2002		BACTERIA;	MICROBIOLOGY AND		ANATOMY & PHYSIOLOGY	6.1	4
668	6	8	116	Determin			PERFORMANCE	JOURNAL OF	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
668	О	0	110	A new simpation of	2002	DNA; pyrimidine	LIQUID-	PHARMACEUTICAL	SCIENCES	MOLECULAR BIOLOGY	6.1	3
	_	40	000	Cytoskel			PRESSURE-	JOURNAL OF	BIOLOGICAL & MEDICAL			
669	0	16	298	The duratic etal actin	2002		OVERLOAD	PHYSIOLOGY-	SCIENCES	ANATOMY & PHYSIOLOGY	6.1	4
	_	40	007	Kinetics			ELECTRON-	JOURNAL OF THE				
670	0	19	307	The kinetic and	2002		TRANSFER	CHEMICAL SOCIETY-	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
	_			Wind-		wind-induced	LATERAL-	JOURNAL OF WIND	MECHANICAL, INDUSTRIAL,	STRUCTURAL		
671	8	3	203	A wind tunninduced	2002	responses;	TORSIONAL	ENGINEERING AND	CIVIL & MARINE	ENGINEERING & BUILDING	6.2	4
	_	_		Crystal				MAIN GROUP METAL				
672	0	0	86		2002				PHYSICS	CRYSTALLOGRAPHY	6.1	3
				Repressi		Xenopus;	SKELETAL-		BIOLOGICAL & MEDICAL			
673	17	12	250	The develoon	2002	myogenesis; myf-	MUSCLE:	DEVELOPMENT	SCIENCES	ANATOMY & PHYSIOLOGY	6.1	4
				Divergen		divergence	NEWMAN BLACK-	MODERN PHYSICS		QUANTUM THEORY &		
674	11	4	87	We considice			HOLE: QUANTUM		PHYSICS	RELATIVITY	6.1	4
				A		square-root barrier		221121071	MATHEMATICAL &			
675	9	3	180	The max-b determini			NETWORKS:	NEURAL NETWORKS	COMPUTER SCIENCES	CYBERNETICS	6.1	4
				Novel	2002		PHOTOINDUCED	NEW JOURNAL OF	COM CTERCOLEROES	RADIATION & NUCLEAR	0.1	
676	0	15	120		2002		ELECTRON-	CHEMISTRY	CHEMISTRY	CHEMISTRY	6.1	4
\vdash				Theoreti			METAL-	NUCLEAR	OTENIOTICI	NUCLEAR PHYSICS &	0.1	7
677	9	10	110	A theoretic cal study			SURFACES;	INSTRUMENTS &	PHYSICS	ELEMENTARY PARTICLE	6.1	4
				Theoreti			WAVELENGTH	OPTICS AND LASER	11110100	LLLIVILIA TARTICLE	0.1	7
678	11	3	90	All-optical 2cal			CONVERSION:	TECHNOLOGY	PHYSICS	OPTICS	6.1	4
				The			BELL THEOREM;	TEOTINOLOGI	11110100	ATOMIC & MOLECULAR	0.1	7
679	9	4	130				QUANTUM:	PHYSICA A	PHYSICS	PHYSICS &	6.1	4
\vdash							HEAVY-ION		FITIOIGO	NUCLEAR PHYSICS &	0.1	4
680	11	12	151	Energy		multiplicity;	COLLISIONS:	PHYSICS LETTERS B	PHYSICS	ELEMENTARY PARTICLE	6.1	_
Ш				Using a haland	2002	muniplicity;	COLLISIONS;		JEU 1 2102	ELEWENTART PARTICLE	0.1	5

					_			TDITIOUM		DIOLOGICAL A MEDICAL	1		
681	8	17	211		Respons		aluminum;	TRITICUM-	PLANT AND CELL	BIOLOGICAL & MEDICAL	PIOLOGY	0.4	•
	-			Rice (Oryza				AESTIVUM L;	PHYSIOLOGY	SCIENCES	BIOLOGY	6.1	3
682	7	0	160		Simulatio		two-fluid model;		POWDER				_
				A two-fluid-			gas-particle flows;		TECHNOLOGY	PHYSICS	FLUID MECHANICS	6.1	2
683	10	1	168		Effect of		NAG7 gene; cell		PROGRESS IN	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
000	10		100	In order to			transfection; gene		BIOCHEMISTRY AND		MOLECULAR BIOLOGY	6.1	4
684	10	4	127		Preparati		rETIa; high cell	TISSUE	PROGRESS IN	BIOLOGICAL & MEDICAL			
004	10	4	121	Being cultu	on of	2002		PLASMINOGEN-	BIOCHEMISTRY AND		BIOCHEMISTRY	6.1	3
685	7	5	127		Localizati		p75 neurotrophin	NERVE GROWTH		BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
000	'	Э	127	The low-aft	on of low-	2002	receptor; retina;	FACTOR; CELL-	BIOCHEMISTRY AND	SCIENCES	MOLECULAR BIOLOGY	6.1	3
		_			A study		anesthesia;	VOLATILE	REGULATORY	BIOLOGICAL & MEDICAL			
686	11	8	154	n-Alkanes	of the	2002	partition; n-	ORGANIC-	TOXICOLOGY AND	SCIENCES	TOXICOLOGY	6.2	4
					Sr		,	STRUCTURAL	SUPERCONDUCTOR				
687	0	10	140	We have in	doping	2002		TRANSITION;	SCIENCE &	PHYSICS	SOLID STATE PHYSICS	6.1	4
					Structure			TITANIUM-OXIDE	SURFACE &		COATINGS, COLORANTS &	· · ·	•
688	11	6	264	Titanium m			,	FILMS:	COATINGS	MATERIALS	FINISHES	6.1	3
					Anthragu			PERFORMANCE		IW/ CI EICH/LEG	THUGHEO	0.1	0
689	8	7	164	A new sulfo			sulfonvl chloride:	LIQUID-	TALANTA	CHEMISTRY	INORGANIC CHEMISTRY	6.1	3
					Newcastl			HEMAGGLUTININ	VETERINARY	CHEWISTRY	ANIMAL HUSBANDRY &	0.1	3
690	9	6	201					NEURAMINIDASE		AGRICULTURE	VETERINARY MEDICINE	0.0	4
				Twelve Ne		2002		CELL LUNG-	MICROBIOLOGY		GENETIC ENGINEERING &	6.2	4
691	0	15	331		P53					BIOLOGICAL & MEDICAL			
	-			AIM: To co		2002		CANCER;	GASTROENTEROLOG		MOLECULAR BIOLOGY	6.2	4
692	0	15	296		DNA					BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
	ŭ			AIM: Both I		2002		EPITOPES;	GASTROENTEROLOG		MOLECULAR BIOLOGY	6.2	4
693	0	14	437		Expressi					BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
033	U	17	431	AIM: To ob	on of	2002			GASTROENTEROLOG		MOLECULAR BIOLOGY	6.1	4
694	0	2	117		Expressi			SULFOLOBUS-	ACTA	BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
094	U	2	117	A small DN	on,	2002			CRYSTALLOGRAPHIC	SCIENCES	MOLECULAR BIOLOGY	6.1	5
695	4.4		450		Multi-		flow injection	REGRESSION;	ANALYTICA CHIMICA	BIOLOGICAL & MEDICAL			
695	14	2	159	A multi-con	compone	2002	analysis; CCD-	WATER	ACTA	SCIENCES	TOXICOLOGY	6.1	4
	_	_			Electroc			MONOLAYERS:	ANALYTICAL				
696	0	2	141	The metalle	atalytic	2002		OXIDATION	SCIENCES	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
					Some		accretive mapping;	OPERATOR-	APPLIED	MATHEMATICAL &		-	
697	17	5	35	Some nece				EQUATIONS;		COMPUTER SCIENCES	NUMERICAL MATHEMATICS	6.1	3
\vdash					Role of		blast-resistant	, , , , , , , , , , , , , , , ,	APPLIED		STRUCTURAL	· · ·	
698	10	0	87				structure; dynamic			CIVIL & MARINE	ENGINEERING & BUILDING	6.2	4
\vdash					Perform		stratification;				AIR CONDITIONING,	0.2	-
699	9	0	151	Accurate m			partitioned storage		ENGINEERING	CIVIL & MARINE	LIGHTING, HEATING, &	6.2	4
							galaxies : Seyfert;	LINE SEVEEDT 1	ASTRONOMICAL	ASTRONOMY &	LIGITING, REATING, &	0.2	4
700	10	19	245		Spectros						ASTRONOMY	6.4	4
	-	-		We perforn	copic	2002	quasars : emission	GALAXIES;	JOURNAL	ASTROPHYSICS	ASTRONOMY	6.1	4

		1			0 1		a a a a a da a r	AMINO-ACID-	DIGOLIEMIONI AND	BIOLOGICAL & MEDICAL			
701	10	5	115	A4 mraaant	Seconda			SEQUENCE:	D.00.12.11.07.127.11.12	SCIENCES	BIOCHEMISTRY	6.2	5
				At present,				SPECTROSCOPY	BIOPHYSICAL	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL	6.2	5
702	12	3	190	Secondary	Structura				BIOPHYSICAL	SCIENCES	RESEARCH	6.2	3
				Secondary		2002	structural change;	; MECHANISMS;	CHEMISTRY	BIOLOGICAL & MEDICAL	RESEARCH	6.2	3
703	0	0	28		Pseudep	0000			BRYOLOGIST		DIOLOGY	0.4	
				Pseudephe		2002		LVAADUA DENIODA	0411055	SCIENCES	BIOLOGY	6.1	3
704	6	3	316	D 4 O1 (O D O	Cytologic			LYMPHADENOPA	CANCER	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL	0.4	
				BACKGRO			c; T-cell	THY-LIKE	CYTOPATHOLOGY	SCIENCES	RESEARCH	6.1	3
705	17	9	125		M/BCS		,	SELECTIVE	CATALYSIS LETTERS	OUT NOTES	DUNGUE AL CUELMOTEN		_
		_		The M (M =				OXIDATION;	0, 11, 12, 10, 10	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
706	7	4	193		Glucose		9 ,	SELECTIVE	CATALYSIS TODAY				
	•	·	100	The Ni-B/S			hydrogenation; Ni-		CATALTOIC TODAT	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
707	11	15	136		Methane			FEITKNECHT	CATALYSIS TODAY				
. 01	• •		.50	An alumina				COMPOUND		CHEMISTRY	ORGANIC CHEMISTRY	6.1	4
708	8	1	125		Isolation		endohedral		CHEMICAL JOURNAL				
, 00		•	120	The endoh				HIGH-YIELD	OF CHINESE	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
709	8	5	74		The			GLASS CHIPS;	CHEMICAL JOURNAL				
103			/ -	On the hon				MICROCHIP;	OF CHINESE	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	4
710	6	6	80		Compute		iodothyronine	CONTAINING	0	BIOLOGICAL & MEDICAL			
710	U	U	0	Iodothyroni			deiodinase; single-	CATALYTIC	OF CHINESE	SCIENCES	ANATOMY & PHYSIOLOGY	6.1	4
711	11	0	70		Applicati		rare-earth ion;		0.1207.12.0007.12	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
711	11	U	70	The effect			hemoglobin;		OF CHINESE	SCIENCES	RESEARCH	6.1	3
712	10	12	122		Preparati			PTFE O-2-FED	CHEMICAL JOURNAL	ENVIRONMENTAL	WATER POLLUTION &		
/ 12	10	12	122	The metho	on of the		,	CATHODE;	OF CHINESE	POLLUTION & CONTROL	CONTROL	6.1	4
713	8	0	85		Relation		silazane		CHEMICAL JOURNAL				
/ 13	0	U	65	Relationshi	ships	2002	compound;		OF CHINESE	CHEMISTRY	INORGANIC CHEMISTRY	6.1	3
714	0	5	100		Double			MATERIALS	CHEMICAL PHYSICS	POWER PRODUCTION &	ELECTROCHEMICAL		
/14	U	э	100	Double wal	wall	2002		SCIENCE;	LETTERS	ENERGY CONVERSION	ENERGY STORAGE	6.1	3
715	0	1	104		Preparati				0	POWER PRODUCTION &	ELECTROCHEMICAL		
/13	U	'	104	In this work	on of	2002		LITHIUM		ENERGY CONVERSION	ENERGY STORAGE	6.1	4
716		4	24		Fabricati				CHEMISTRY				
/16	0	1	34	Fibrous and	on of	2002		SYSTEMS	LETTERS	CHEMISTRY	INORGANIC CHEMISTRY	6.1	3
74-	40	-	000		Evaluatio		Pb/Zn mine;	ROOT	CHEMOCONIESE	ENVIRONMENTAL	SOLID WASTES POLLUTION		
717	10	5	330	The residue	n of	2002	toxicity; root	ELONGATION;	CHEMOSPHERE	POLLUTION & CONTROL	CONTROL	6.2	3
-46	40		40=		Laborato		Jupiter's Great	,	CHINESE	ASTRONOMY &			
718	12	1	167	A series of	ry	2002	Red Spot; rotating	MODEL	ASTRONOMY AND	ASTROPHYSICS	ASTRONOMY	6.1	5
		_			Effect of		anthraquinone;		CHINESE JOURNAL				
719	11	2	106	Pd/gamma				CU: MODEL	OF CATALYSIS	CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
		_		3	In-situ		formaldehyde;	, -	CHINESE JOURNAL	-		-	-
720	8	0	166	The synthe			acetaldehyde;			CHEMISTRY	PHYSICAL CHEMISTRY	6.1	5
		1		0,	1. 1 113			1	51 6/1/1E1010	1		V.,	

				De	etermin			PERFORMANCE	CLINICAL	BIOLOGICAL & MEDICAL	MEDICINE & MEDICAL		
721	0	13	275	Backgroun atio		2002		LIQUID-	CHEMISTRY	SCIENCES	RESEARCH	6.1	3
					/aluatio		analytical	WEAVE FABRIC	COMPOSITES PART	00:2:1020	LAMINATES & COMPOSITE	0	
722	9	7	84	A homoger n c				COMPOSITES:	B-ENGINEERING	MATERIALS	MATERIALS	6.1	3
					survev		maximum distance			MATHEMATICAL &			
723	7	17	62	Maximum on				STEINER	MATHEMATICS	COMPUTER SCIENCES	NUMERICAL MATHEMATICS	6.1	4
				Or				STAR	DISCRETE	MATHEMATICAL &			
724	6	2	90	In 1993, Br inc	cidenc		incidence coloring;	ARBORICITY	MATHEMATICS	COMPUTER SCIENCES	NUMERICAL MATHEMATICS	6.1	4
		_			avelet-		stator ground fault		ELECTRIC POWER	POWER PRODUCTION &	ELECTRIC POWER		
725	10	0	68	A new stateba	sed	2002	protection;		SYSTEMS	ENERGY CONVERSION	PRODUCTION &	6.1	4
					elineati		2;4-dinitrobenzene	INFLAMMATORY	EUROPEAN	BIOLOGICAL & MEDICAL			
726	18	13	258	The protec on	of the	2002	sulfonic acid	BOWEL-	JOURNAL OF	SCIENCES	PHARMACOLOGY	6.1	5
					ternate			XYLEM SAP ABA;	FIELD CROPS		AGRICULTURAL		
727	12	10	270	A new met wa		2002	efficiency; soil	STOMATAL	RESEARCH	AGRICULTURE	ENGINEERING	6.1	5
	_	40			naracte			RECEPTOR		BIOLOGICAL & MEDICAL	GENETIC ENGINEERING &		
728	6	13	297	Members criza		2002	binding protein;	MESSENGER-	GENE	SCIENCES	MOLECULAR BIOLOGY	6.1	5
	4.4	_		Qu	uantum		reflection of		HIGH ENERGY		ATOMIC & MOLECULAR		
729	11	0	92	The experiex	planati	2002	laser(photons);		PHYSICS AND	PHYSICS	PHYSICS &	6.1	4
	4.4	_	70		udies		deformed HF		HIGH ENERGY		ATOMIC & MOLECULAR		
730	11	0	78	Using mod on	the	2002	state; angular		PHYSICS AND	PHYSICS	PHYSICS &	6.1	5
704	•	_	70	Lo			low-sintering		HIGH-		CERAMICS,		
731	6	0	79	Crystallizat die	electric	2002	temperature; high		PERFORMANCE	MATERIALS	REFRACTORIES & GLASS	6.1	5
700	5	40	400		fect of		PbxSr1-xTiO3	POSITIVE	HIGH-		CERAMICS,		
732	5	10	100	SrLi1/4Nb3 Srl	Li1/4N	2002	ceramics; NTCR;	TEMPERATURE-	PERFORMANCE	MATERIALS	REFRACTORIES & GLASS	6.1	5
733	40	_	400		nalysis		multilayer		HIGH-		CERAMICS,		
733	12	0	129	This paper an	id :	2002	piezoelectric		PERFORMANCE	MATERIALS	REFRACTORIES & GLASS	6.1	4
734	9	7	125	Su	perion		solid electrolyte;	AUXILIARY	HIGH-		CERAMICS,		
734	9	/	125	The solid e ic	· :	2002	sulphur sensor;	ELECTRODE;	PERFORMANCE	MATERIALS	REFRACTORIES & GLASS	6.1	4
735	4	0	155		eparati		sol-gel; phosphor;		HIGH-		CERAMICS,		
735	4	U	155	SrCO3, Al(on	of	2002	afterglow; spectra		PERFORMANCE	MATERIALS	REFRACTORIES & GLASS	6.1	4
736	4	4	147	Inv	vestiga		sialon refractory;	ELEVATED	HIGH-		CERAMICS,		
736	4	4	147	Based on t tion	n of			NITROGEN	PERFORMANCE	MATERIALS	REFRACTORIES & GLASS	6.1	5
737	7		400	Mic	crostru		Al2O3/SiC; spark		HIGH-		CERAMICS,		
131	1	1	100	microstruct ctu	ure :	2002	plasma sintering;	CERAMICS	PERFORMANCE	MATERIALS	REFRACTORIES & GLASS	6.1	5
700	4	_	4.40	Eff	fects		laminated		HIGH-		LAMINATES & COMPOSITE		
738	4	0	142	The effects of		2002	ceramics; Si3N4;		PERFORMANCE	MATERIALS	MATERIALS	6.1	5
739	7	_	88	Eff	fect of		fluorine content;		HIGH-		CERAMICS,		
739	1	0	88	Two glasseflue	orine	2002	crystallization;		PERFORMANCE	MATERIALS	REFRACTORIES & GLASS	6.1	5
740		10	FC	Sy	nthesi/		mesoporous	MOLECULAR-	HIGH-		CERAMICS,		
740	6	10	56	This paper s,	:	2002	materials; nano-	SIEVES;	PERFORMANCE	MATERIALS	REFRACTORIES & GLASS	6.1	5

744	_	4	400		Distributi		MgO-ZrO2		HIGH-		METALLURGY &		
741	5	1	130	Mg-Zr amo	on of	2002	powder;	ZIRCONIA	PERFORMANCE	MATERIALS	METALLOGRAPHY	6.1	5
742	,	0	93		An		static combustion		HIGH-		COATINGS, COLORANTS &		
/42	О	0	93	Alumina co	experime	2002	synthesis; ceramic		PERFORMANCE	MATERIALS	FINISHES	6.1	5
740		_	405		Study on		slip casting; sialon;	BETA-SIALON;	HIGH-		CERAMICS,		
743	ь	5	125	Reaction s	slip	2002	rheology; shear	CERAMICS;	PERFORMANCE	MATERIALS	REFRACTORIES & GLASS	6.1	5
744	0	4			Heteroge		pulse electric	MICROSTRUCTU	HIGH-		CERAMICS,		
744	ð	1	113	Pulse elect	neous of	2002	current sintering;	RE	PERFORMANCE	MATERIALS	REFRACTORIES & GLASS	6.1	5