Pre-Matching Gambles

Hanzhe Zhang

Michigan State University

August 29, 2017

http://www.hanzhezhang.net/

1. Introduction

Pre-Matching Gambles

- ► Risky investments (gambles) before a matching market.
 - ► <u>Gambling phase</u>: Players make investments with stochastic returns to change their matching characteristics.
 - ► <u>Matching phase</u>: They match and divide their surplus based on the realized matching characteristics in a matching market.
- ► Examples of pre-matching gambles
 - ightharpoonup College majors ightharpoonup workers-firms labor market
 - ightharpoonup Careers ightarrow men-women marriage market
 - ightharpoonup Financial portfolios ightharpoonup entrepreneurs-investors market

1. Introduction

Main Results

- 1. The competitive organization of the matching market encourages gambles.
 - ► The gamble-inducing effect is independent of the shape of the surplus function (e.g. surplus supermodularity), degree of utility transferability, and the distributions of matching characteristics.
- 2. There could be multiple equilibria.
 - ► An efficient equilibrium with income inequality.
 - ▶ An inefficient equilibrium with income equality.
 - ► A carefully designed tax scheme yields a unique efficient equilibrium with reduced income inequality.
- 3. Explains gender differences in occupational choices and marriage timing.

1. Introduction

Contributions

- 1. The first to study equilibrium pre-matching investments with stochastic returns.
 - ► Cole et al. (2001, JET), Dizdar (2013), Nöldeke and Samuelson (2015, Ecta); Chade and Lindenlaub (2015).
- 2. Provides a new reason for gambling: matching market.
 - Smith (1776), Friedman and Savage (1948, JPE),
 Friedman (1953, JPE), Rubin and Paul (1979, EI),
 Robson (1992, Ecta), Robson (1996, GEB), Rosen (1997, JoLE), Becker et al. (2005, JPE).
- 3. Applications to efficiency, inequality, and tax, and to occupational choices and the marriage market.

A Motivating Example

- ▶ Mass 1 of men, $x_m \sim \text{Unif}[0,1]$
- ▶ Mass 1 of women, $x_w \sim \text{Unif}[0, 1]$
- Surplus $s(x_m, x_w) = x_m x_w$
- ► Stable outcome (stable matching and payoffs)

$$v_m(x_m) + v_w(x_w) = x_m x_w$$
 if x_m and x_w are matched $v_m(x_m) + v_w(x_w) \ge x_m x_w$ for any x_m and x_w

Four-Player Stable Outcome

- ► Four players: A type 1 man and a type 2 man, a type 1 woman and a type 2 woman.
- ▶ Surplus is $x_m x_w$ (e.g. a type 1 man and a type 1 woman generate surplus $1 \times 1 = 1$).
- ► Stable outcome
 - ▶ Matching: 2 matches with 2, 1 matches with 1
 - ▶ Payoffs: 2s get 2 and 1s get 0.5
 - ► The type 2 man and the type 1 woman who are not married to each other do not want to marry each other,

$$v_m(2) + v_w(1) = 2 + 0.5 > 2 \times 1 = s(2, 1).$$

Gambles Preferred

- ▶ Stable Matching: Each x_m man is matched with $x_w = x_m$ woman.
- ▶ Stable Payoffs: x_m and $x_w = x_m$ produce and divide surplus x_m^2 , $v_m(x) = v_w(x) = \frac{x^2}{2}$.
- ► The payoff functions are convex.
 - 1. .5 prefers gamble $\frac{1}{2} \circ .4 + \frac{1}{2} \circ .6$ $(u = \frac{1}{2} \cdot \frac{.4^2}{2} + \frac{1}{2} \cdot \frac{.6^2}{2} = .13)$ to no gamble $(u = \frac{.5^2}{2} = .125)$.
 - 2. .5 doubles utility by switching to an extreme gamble $\frac{1}{2} \circ 0 + \frac{1}{2} \circ 1$ ($u = \frac{1}{2} \frac{1^2}{2} + \frac{1}{2} \frac{0^2}{2} = .25$) from no gamble.
 - 3. Moderately risk-averse agents prefer to take unfair gambles.

Gambling Phase

- ▶ Measure $\widehat{\mu}_m$ of men's innate $\widehat{x}_m \in \widehat{X}_m \subset \mathbb{R}^{N_m}$.
- ▶ Measure $\widehat{\mu}_w$ of women's innate $\widehat{x}_w \in \widehat{X}_w \subset \mathbb{R}^{N_w}$.
- $\widehat{x} \in \widehat{X}_m \cup \widehat{X}_w$ chooses a gamble γ from the given set $\Gamma(\widehat{x})$,
 - $\gamma(\cdot|\hat{x})$ represents probability measure of a gamble.
 - ▶ Degenerate gamble $\gamma_0(\widehat{x}|\widehat{x}) = 1$ is always available.
 - Fair gambles: $\int x d\gamma(x|\widehat{x}) = \widehat{x}$.
- ▶ $\sigma_m(\widehat{x}_m)$ and $\sigma_w(\widehat{x}_w)$ represent gambling choices.

Matching Phase

- ▶ Gambles σ_m and σ_w induce μ_m and μ_w .
- ▶ Surplus function $s(x_m, x_w)$; singles produce zero.
- ► Matching market outcome
 - Matching measure μ describes the measure of matches.
 - ▶ Payoff functions $v_m: X_m \to \mathbb{R}_+$ and $v_w: X_w \to \mathbb{R}_+$.
- ► Stable outcome
 - 1. μ has marginals μ_m and μ_w .
 - 2. $v_m(x_m) + v_w(x_w) = s(x_m, x_w)$ if $(x_m, x_w) \in \text{supp}(\mu)$.
 - 3. $v_m(x_m) + v_w(x_w) \ge s(x_m, x_w)$ for any x_m and x_w .

Equilibrium

- ▶ Primitives of the model: $(\widehat{\mu}_m, \widehat{\mu}_w, \Gamma(\cdot), s)$.
- $\blacktriangleright \ (\sigma_m^*,\sigma_w^*,\mu_m^*,\mu_w^*,\mu^*,v_m^*,v_w^*)$ is an equilibrium if
 - ▶ Equilibrium strategies σ_m^* and σ_w^* maximize the agents' expected payoffs,
 - ▶ Equilibrium measures of characteristics μ_m^* and μ_w^* are induced by equilibrium strategies σ_m^* and σ_w^* , and
 - ► Equilibrium outcome (μ^*, v_m^*, v_w^*) is a stable outcome of equilibrium matching market (μ_m^*, μ_w^*) .

Equilibrium Existence

► Construct a correspondence

$$\Phi: (v_m, v_w) \mapsto (\sigma_m, \sigma_w) \mapsto (\mu_m, \mu_w) \rightrightarrows (\mu, v_m', v_w').$$

- ▶ An equilibrium exists if $(v_m, v_w) = (v'_m, v'_w)$.
- ▶ By Glicksberg, an equilibrium exists if the set of stable payoff functions (v_m, v_w) is compact, convex, and non-empty valued, and Φ is upper-hemicontinuous, non-empty valued, convex-valued, and compact-valued.
 - ► Stable payoff functions are uniformly bounded and equicontinuous and use the Arzela-Asocli Theorem.
 - ▶ The map from (v_m, v_w) to (σ_m, σ_w) is continuous.

Stochastically Dominated Gambles

Proposition

Suppose that $s(x_m, x_w)$ is linear in x_m . Then, each man prefers a second-order stochastically dominated gamble.

Claim

In general, a person can prefer a second-order stochastically dominated investment gamble with lower expected matching characteristics. (This result helps to rationalize observed seemingly irrational/risk-loving career choice, for example, entrepreneurship).

Link between Stability and Competition

 $ightharpoonup x_m$ and x_w share the entire surplus,

$$v_m(x_m) = s(x_m, x_w) - v_w(x_w)$$
 if $(x_m, x_w) \in \text{supp}(\mu)$.

• x_m does not want to marry any woman other than x_w ,

$$v_m(x_m) \ge s(x_m, x_w) - v_w(x_w) \quad \forall x_w \in \text{supp}(\mu_w).$$

▶ x_m marries woman $x_w(x_m)$ that gives him highest payoff,

$$\mathbf{x}_w(x_m) \in \operatorname{argmax}_{x_w \in \operatorname{supp}(\mu_w)} [s(x_m, x_w) - v_w(x_w)].$$

Competitive Rematching Effect

$$\mathbb{E}\left[v_{m}\left(x_{m}\right)\right] - v_{m}\left(\widehat{x}_{m}\right)$$

$$= \mathbb{E}\left[s\left(x_{m}, \mathbf{x}_{w}\left(x_{m}\right)\right) - v_{w}\left(\mathbf{x}_{w}\left(x_{m}\right)\right)\right] - \left[s\left(\widehat{x}_{m}, \widehat{x}_{w}\right) - v_{w}\left(\widehat{x}_{w}\right)\right]$$

$$-\mathbb{E}\left[s\left(x_{m}, \widehat{x}_{w}\right) - v_{w}\left(\widehat{x}_{w}\right)\right] + \mathbb{E}\left[s\left(x_{m}, \widehat{x}_{w}\right) - v_{w}\left(\widehat{x}_{w}\right)\right]$$

$$= \mathbb{E}\left[s\left(x_{m}, \widehat{x}_{w}\right) - v_{w}\left(\widehat{x}_{w}\right)\right] - \left[s\left(\widehat{x}_{m}, \widehat{x}_{w}\right) - v_{w}\left(\widehat{x}_{w}\right)\right]$$
surplus contribution effect
$$+ \mathbb{E}\left\{\left[s\left(x_{m}, \mathbf{x}_{w}\left(x_{m}\right)\right) - v_{w}\left(\mathbf{x}_{w}\left(x_{m}\right)\right)\right] - \left[s\left(x_{m}, \widehat{x}_{w}\right) - v_{w}\left(\widehat{x}_{w}\right)\right]\right\}$$

Competitive Rematching Effect under ITU

$$\mathbb{E}\left[v_{m}\left(x_{m}\right)\right] - v_{m}\left(\widehat{x}_{m}\right)$$

$$=$$

$$\mathbb{E}\phi\left(x_{m}, \mathbf{x}_{w}\left(x_{m}\right), v_{w}\left(\mathbf{x}_{w}\left(x_{m}\right)\right)\right) - \phi\left(\widehat{x}_{m}, \widehat{x}_{w}, v_{w}\left(\widehat{x}_{w}\right)\right)$$

$$-\mathbb{E}\phi\left(x_{m}, \widehat{x}_{w}, v_{w}\left(\widehat{x}_{w}\right)\right) + \mathbb{E}\phi\left(x_{m}, \widehat{x}_{w}, v_{w}\left(\widehat{x}_{w}\right)\right)$$

$$=$$

$$\mathbb{E}\phi\left(x_{m}, \widehat{x}_{w}, v_{w}\left(\widehat{x}_{w}\right)\right) - \phi\left(\widehat{x}_{m}, \widehat{x}_{w}, v_{w}\left(\widehat{x}_{w}\right)\right)$$
surplus contribution effect
$$+$$

$$\mathbb{E}\left\{\phi\left(x_{m}, \mathbf{x}_{w}\left(x_{m}\right), v_{w}\left(\mathbf{x}_{w}\left(x_{m}\right)\right)\right) - \phi\left(x_{m}, \widehat{x}_{w}, v_{w}\left(\widehat{x}_{w}\right)\right)\right\}$$

competitive rematching effect≥0

Relation to Becker et al. (2005, JPE)

- ▶ Becker et al. (2005, JPE) claim two indispensable factors that drive gambling in hedonic markets. Both factors are shown to be dispensable in two-sided gambling and matching.
 - 1. Complementarity between money and status.
 - 2. Fixed supply of status goods (one-sidedness).
- ► Another implication is that efficiency leads to inevitable inequality.

An Example with Two Equilibria

- ▶ Mass 1 of characteristics 2 men.
- ▶ Mass 1 of characteristics 2 women.
- ▶ Gambling options: 2 vs $\frac{1}{2} \circ 1 + \frac{1}{2} \circ 3$ (or equivalently in equilibrium, any fair gamble with realization between 1 and 3).
- Surplus $s(x_m, x_w) = x_m x_w$.

Two Equilibria

- 1. No-Gambling Equilibrium: No one gambles
 - \blacktriangleright Mass 1 of (2,2) matches.
 - $v^*(1) = 0, v^*(2) = 2, v^*(3) = 4.$
 - $SW^* = (1)(2)(2) = 4.$
- 2. Gambling Equilibrium: Everyone gambles
 - ▶ Mass 0.5 of (1,1) matches and mass 0.5 of (3,3) matches.
 - $v^*(1) = 0.5, v^*(2) = 1.5, v^*(3) = 4.5.$
 - $SW^* = (0.5)(3)(3) + (0.5)(1)(1) = 5.$

Problems

1. The no-gambling equilibrium is inefficient.

2. The gambling equilibrium creates inequality.

3. The government has no revenue.

Remedy 1: Tax on Matching Payoffs

A remedy: [0,1) to 1; [1,3) no tax; tax 2/3 on $[3,\infty)$.

- 1. Eliminates the inefficient equilibrium
 - $\quad \bullet \ v^{\tau}(1) = 1, \, v^{\tau}(2) = 2, \, v^{\tau}(3) = 3\frac{1}{3}.$
- 2. Reduces inequality
 - $v^{\tau}(1) = 1, v^{\tau}(2) = 2, v^{\tau}(3) = 3.5.$
- 3. Government generates positive tax revenue

Remedy 2: Tax on Matching Types (Incomes)

A remedy: income 1 tax-free; tax income 2 at 15% to 1.7; tax income 3 at 16.66...% to 2.5.

- 1. Eliminates the inefficient equilibrium
 - $\begin{array}{l} \bullet \ \, v_m^\tau(1) = 1 \times 1.7 v_w^\tau(1.7), \, v_m^\tau(2) = 1.7 \times 1.7 v_w^\tau(1.7), \\ v_m^\tau(3) = 2.5 \times 1.7 v_w^\tau(1.7). \end{array}$
- 2. Reduces inequality

$$v_m^{\tau}(1) = 0.5, v^{\tau}(1.7) = 1.445, v^{\tau}(3) = 3.125.$$

- 3. Government generates positive tax revenue
 - $\tau = \frac{1}{2} \cdot (0.5) + \frac{1}{2} \cdot (0.5) = 1.$

Concave Equilibrium Payoff Functions

The equilibrium payoff functions are weakly concave on equilibrium support and weakly convex outside the equilibrium support.

Conclusion

- ► People (men/women, college students, hedge fund managers) gamble due to matching concerns.
- ► Two-sided gambling could be socially efficient but cause inequality; could be equal but socially inefficient.

 (Carefully designed) taxation could eliminate inefficiency, mitigate inequality, and generate positive revenue.
- ► Explain gender differences in occupational choices and marital timing.

Gambling in Equilibrium Two-Sided Matching

A new idea

Gary S. Becker <gbecker@uchicago.edu>
To: Hanzhe Zhang <hanzhe@uchicago.edu>

Sat, Feb 22, 2014 at 2:44 PM

Hanzhe,

Looked over your paper on gambling. Nicely done.

In my discussion in 301 of gambling, I often use a marriage example. Suppose a good and bad marriage, and by gambling you get the resources to go into a good marriage. The assumption I make is that the net utility from a bad marriage (net of all transfers to spouse, etc) is better when I have low incomes, but worse when I have high incomes. Then I would take a fair gamble; if I lose I get the bad marriage and if I win I get the good marriage. The shift from bad to good marriage makes the net utility function convex.

I believe there is a similarity of this discussion to what you do, but I like that you put it into an equilibrium twosided matching framework. That is a significant advance over the literature.

I will read more carefully. Gary Becker

THANK YOU!

References I

- Becker, Gary S., Kevin M. Murphy, and Ivan Werning, "The Equilibrium Distribution of Income and the Market for Status," *Journal of Political Economy*, April 2005, 113 (2), 282–310.
- Chade, Hector and Ilse Lindenlaub, "Risky Matching," July 2015. Mimeo.
- Cole, Harold L., George J. Mailath, and Andrew Postlewaite, "Efficient Non-Contractible Investments in Large Economies," *Journal of Economic Theory*, 2001, 101, 333–373.
- **Dizdar, Deniz**, "Two-Sided Investments and Matching with Multi-Dimensional Types and Attributes," October 2013. Mimeo.

References II

- **Friedman, Milton**, "Choice, Chance, and the Personal Distribution of Income," *Journal of Political Economy*, August 1953, 61 (4), 277 290.
- and Leonard J. Savage, "Utility Analysis of Choices Involving Risk," Journal of Political Economy, August 1948, 56 (4), 279–304.
- Nöldeke, Georg and Larry Samuelson, "Investment and Competitive Matching," *Econometrica*, May 2015, 83 (3), 835–896.
- **Robson, Arthur J.**, "Status, the Distribution of Wealth, Private and Social Attitudes to Risk," *Econometrica*, July 1992, 60 (4), 837–857.

References III

- _ , "The Evolution of Attitudes to Risk: Lottery Tickets and Relative Wealth," Games and Economic Behavior, 1996, 14, 190–207.
- Rosen, Sherwin, "Manufactured Inequality," Journal of Labor Economics, April 1997, 15 (2), 189–196.
- Rubin, Paul H. and Chris W. Paul, "An Evolutionary Model of Taste for Risk," *Economic Inquiry*, October 1979, 17 (4), 585–596.
- Smith, Adam, An Inquiry into the Nature and Causes of the Wealth of Nations, London: W. Strahan and T. Cadell, 1776.