ELECTROMAGNETISMO I

CLAVE: 0419 MODALIDAD: Curso CUARTO SEMESTRE CARÁCTER: Obligatorio

CRÉDITOS: 12 REQUISITOS: Mecánica Vectorial, Cálculo Diferencial e

Integra I, Cálculo Diferencial e Integral II, Cálculo

Diferencial e Integral III

HORAS POR CLASE TEÓRICAS: 2 HORAS POR SEMANA TEÓRICAS: 6 HORAS POR SEMESTRE TEÓRICAS: 96

Objetivos

A partir de la descripción de resultados experimentales sobre los fenómenos electromagnéticos se identifican los conceptos clave, se formulan los principios básicos, se desarrollan métodos de análisis y se estudian sus aplicaciones.

Metodología de la enseñanza

La temática del curso es desarrollada por el profesor. Dado que existe un curso de Laboratorio de Electromagnetismo, se recomienda que el profesor de teoría y el del laboratorio estén en constante comunicación de forma que se pueda desarrollar un curso teórico-experimental.

Se debe establecer un programa de simulaciones numéricas que permitan al estudiante dominar este campo.

Evaluación d el curso

Exámenes, tareas, lecturas y reportes de ellas.

Temario

- 1. FUERZAS ENTRE CUERPOS ELÉCTRICAMENTE CARGADOS EN REPOSO 10 hrs
 - 1.1 Formas de electrización. Aislantes y conductores.
 - 1.2 Ley de Coulomb.
 - 1.3 Principio de superposición.
 - 1.4 Campo eléctrico.
 - 1.5 Líneas de campo eléctrico.
 - 1.6 Flujo eléctrico.
 - 1.7 Ley de Gauss.
 - 1.8 Divergencia de una función vectorial.
 - 1.9 Teorema de Gauss y la forma diferencial de la Ley de Gauss.
- 2. ENERGÍA DE CUERPOS ELÉCTRICAMENTE CARGADOS EN REPOSO 8 hrs
 - 2.1 Energía potencial de una carga en presencia de una distribución de cargas.
 - 2.2 Potencial electrostático. Superficies equipotenciales.
 - 2.4. Gradiente de una función escalar y obtención del campo eléctrico a partir del potencial eléctrico.

- 2.5 Energía de una distribución de cargas.
- 2.6 Densidad de energía electrostática.
- 2.7 Conductores cargados.
- 2.8 Condensadores. Capacitancia.

3. CAMPOS ELECTROSTÁTICOS EN MEDIOS DIELÉCTRICOS 8 hrs

- 3.1 Dieléctricos.
- 3.2 Momentos de una distribución de carga.
- 3.3 Momentos dipolares inducidos y permanentes.
- 3.4 Polarización y susceptibilidad eléctrica. Densidades de carga libre y polarización.
- 3.5 Ley de Gauss en medios dieléctricos.
- 3.6 Desplazamiento eléctrico. Constante dieléctrica.
- 3.7 Condensadores con dieléctricos.
- 3.8 Densidad de energía electrostática en medios dieléctricos.

4. CARGAS EN MOVIMIENTO 10 hrs

- 4.1 Movimiento de cargas eléctricas en campos eléctricos externos.
- 4.2 Corriente eléctrica y densidad de corriente.
- 4.3 Ley de conservación de la carga eléctrica.
- 4.4 Resistencia eléctrica. Ley de Ohm.
- 4.5 Efecto Joule.
- 4.6 Circuitos eléctricos. Leyes de Kirchhoff.
- 4.7 Circuitos RC.

5. INTERACCIONES ENTRE IMANES, ENTRE IMANES Y CORRIENTES Y ENTRE CORRIENTES 10 hrs

- 5.1 Campo magnético y líneas de campo.
- 5.2 Flujo de campo magnético. Ley de Gauss del magnetismo o la inexistencia de monopolos magnéticos.
- 5.3 Momento dipolar magnético.
- 5.4 Fuerza de un campo magnético sobre cargas eléctricas en movimiento.
- 5.5 Torca de un campo magnético sobre un momento magnético.
- 5.6 Ley de Biot Savart.
- 5.7 Ley de Ampère.
- 5.8 Rotacional de una función vectorial.
- 5.9 Teorema de Stokes y forma diferencial de la Ley de Ampère
- 5.8 Electroimanes.

6. CAMPOS MAGNETOSTÁTICOS EN MEDIOS MATERIALES 8 hrs.

- 6.1 Movimiento de cargas eléctricas en campos magnéticos y eléctricos.
- 6.2 Momentos magnéticos permanentes e inducidos.
- 6.3 Magnetización y susceptibilidad magnética.
- 6.4 Ferromagnetismo, paramagnetismo y diamagnetismo.
- 6.5 Corrientes libres y de magnetización.
- 6.6 Ley de Ampère en medios materiales.
- 6.7 Campo de intensidad magnética. Permeabilidad.
- 6.8 Efecto Hall.

7. INDUCCIÓN ELECTROMAGNÉTICA 10 hrs

- 7.1 Ley de Lenz Faraday Henry.
- 7.2 Forma diferencial de la Ley de Lenz Faraday Henry.
- 7.2 Generadores y transformadores.
- 7.3 Energía de un conjunto de circuitos de corriente.
- 7.4 Autoinductancia e Inductancias mutuas.
- 7.5 Densidad de energía magnética.
- 7.6 Circuitos RL.
- 7.7 Oscilaciones de un circuito LC.
- 7.8 Circuitos RCL. Impedancia.
- 7.9 Circuitos de corriente alterna. Transformador.

8. ECUACIONES DE MAXWELL 6 hrs

- 8.1 Ley de Ampère Maxwell. Corriente de desplazamiento.
- 8.2 Propiedades dinámicas del campo electromagnético.
- 8.3 Ecuaciones de Maxwell.
- 8.4 La ecuación de onda.

9. ONDAS ELECTROMAGNÉTICAS 8 hrs

- 9.1 Ondas electromagnéticas en el vacío. Superposición de ondas.
- 9.2 Velocidad de propagación. Espectro electromagnético.
- 9.3 Transversalidad. Polarización.
- 9.4 Teorema de Poynting.
- 9.5 Densidades de energía y de flujo de energía.
- 9.6 Ondas electromagnéticas en medios dieléctricos.
- 9.7 Índice de refracción.
- 9.8 Sistemas radiantes.

10. TEORÍA DE LA RELATIVIDAD Y ELECTRODINÁMICA 18 hrs

- 10.1 Las ecuaciones de Maxwell y las transformaciones de Galileo.
- 10.2 Experimento de Michelson Morley.
- 10.3 Postulados de la Teoría Especial de la Relatividad.
- 10.4 Transformaciones de Lorentz.
- 10.5 Algunas consecuencias de las transformaciones de Lorentz. Ejemplos y paradojas.
- 10.6 Cinemática relativista: Adición de velocidades; efecto Doppler.
- 10.7 Cuadrivectores. Tensores. Operaciones tensoriales y tensor de Faraday.
- 10.8 Dinámica relativista: cuadrivectores de cantidad de movimiento- energía.
- 10.9 Campo de una carga puntual en movimiento uniforme. Interdependencia del campo eléctrico y magnético.

Bibliografía básica

- Halliday, Resnick, Walker. **Fundamentos de Física. Vol. II,** 8ª. Edición, Grupo Editorial Patria, (2011).
- Lorrain P., Corson, D.R., 1990, **Electromagnetism: principles and applications**, W.H. Freeman and Company, (1990).
- Purcell E.M., Electricidad y Magnetismo. Berkeley Physics Course, Vol. 2, Editorial Reverté, (2001).
- Resnick R., Halliday, D., Krane, S.K., Física, Vol. II, 5a. edición, Compañía Edito-

- rial Continental, México. (1996).
- Serway R. A. & Jewett J. W, **Física II**, 3^a. Edición, Thomson Learning, México (2004).
- Serway, R. A., **Electricidad y Magnetismo**, Thomson Learning, México (2004).
- Taylor and Wheeler, **Space Time Physics**, 1966.
- Resnick R. Introducción a la Teoría Especial de la Relatividad, Limusa, México (1977).

Bibliografía complementaria

- Alonso, M., Finn, E.J., Física, Vol. II: Campos y ondas, AddisonWesley Iberoamericana, México (1995).
- Ohanian H. C & Markert J. T., **Física para Ingeniería y Ciencias, Vol. 2**, 3ª. Edición, Mc-Graw Hill (2009).
- Sears F. W., Zemansky M. W., Young H. D., Freedman R. A., **Física Universitaria**, **Vol. 2**, novena edición, Pearson Education, México (1999).

Historia del Electromagnetismo

- Gamow G., Biografía de la Física. Alianza Editorial. Madrid (1983).
- Ordoñez J., Navarro V. y Sánchez Ron J. M. Historia de la Ciencia. Colección Austral. Editorial Espasa. Madrid (2003).
- Segrè E. De los Rayos X a los Quarks. Folios Ediciones S. A. México (1983).
- Whittaker E. A History of the Theories of Aether and Electricity. Dover. New York (1989).