Assumptions (color-coded)

Only the following items are assumptions (colored blue) — everything else is data.

- ▶ Room temperature: $T_{\text{room}} = 25^{\circ}\text{C}$
- ▶ n-BuLi molarity (batch): $c_{\text{nBuLi, batch}} = 2.0 \text{ M}$
- ▶ n-BuLi molarity (flow): $c_{\text{nBuLi, flow}} = 1.1 \text{ M}$
- ightharpoonup Yield (batch): $Y_{\text{batch}} = 0.70$
- ightharpoonup Yield (flow): $Y_{\text{flow}} = 0.85$
- ▶ Initial temperature of liquid N₂: $T_{i,LN2} = -195.8^{\circ}C$
- ▶ Initial temperature of steam: $T_{i,\text{steam}} = 100^{\circ}\text{C}$
- ▶ Latent heats: $\Delta H_{\rm vap, LN2} = 200 \text{ kJ/kg}$, $\Delta H_{\rm vap, steam} = 2260 \text{ kJ/kg}$
- Average heat capacity (mixture): $C_p = 2 \text{ kJ/kg-K}$
- \triangleright Exchange rate: 1 \$ = 85
- ► Labour cleaning: Batch = \$200/cycle, Flow = \$150/cycle
- ► Estimated CapEx (setup): \$25,000,000

Given Data (symbol list)

- ▶ Heat of reaction: $\Delta H_r = 375 \text{ kJ/mol.}$
- ▶ Substrate: $m_{\text{sub}} = 100 \text{ kg}$, $M_{\text{sub}} = 400 \text{ g/mol}$, price = \$50/kg.
- ▶ Product molecular weight: $M_{\text{prod}} = 350 \text{ g/mol.}$
- ▶ n-Butyl lithium (given): $V_{\text{nBuLi}} = 250 \text{ L}$, $M_{\text{nBuLi}} = 64.06 \text{ g/mol}$, price = \$10/kg.
- ► Solvents (volumes, densities, prices, recoveries):

THF: $V_{\rm THF} = 2000 \; \rm L, \; \rho_{\rm THF} = 0.889 \; kg/L, \; $3/kg.$

MeOH: $V_{\text{MeOH}} = 1000 \text{ L}$, $\rho_{\text{MeOH}} = 0.792 \text{ kg/L}$, \$0.33/kg, rec = 70%.

DCM: $V_{DCM} = 2000 \text{ L}$, $\rho_{DCM} = 1.33 \text{ kg/L}$, \$0.4/kg, rec = 70%.

MEK: $V_{\text{MEK}} = 500 \text{ L}$, $\rho_{\text{MEK}} = 0.805 \text{ kg/L}$, \$0.9/kg, rec = 70%.

Hexane: $V_{\text{hex}} = 1500 \text{ L}$, $\rho_{\text{hex}} = 0.665 \text{ kg/L}$, \$1.2/kg, rec = 70%.

▶ Utilities: Liquid N₂: 12/kg. Steam: 5/kg.

Costs — Substrate Solvents

Substrate cost:

$$\mathsf{Cost}_{\mathrm{sub}} = m_{\mathrm{sub}} \times \mathsf{Price}_{\mathrm{sub}} \quad \Rightarrow \quad \mathsf{Cost}_{\mathrm{sub}} = 100 \, \, \mathrm{kg} \times \$50/\mathrm{kg} = \boxed{\$5000}$$

Solvent cost line items:

THF: 2000 L × 0.889 kg/L × \$3/kg = \$5334 \$ MeOH (net after 70% recovery): 1000 L × 0.792 kg/L × \$0.33/kg ×
$$(1-0.7)$$
 = \$78.41 DCM (net): 2000 L × 1.33 kg/L × \$0.4/kg × $(1-0.7)$ = \$319.20 MEK (net): 500 L × 0.805 kg/L × \$0.9/kg × $(1-0.7)$ = \$108.67 Hexane (net): 1500 L × 0.665 kg/L × \$1.2/kg × $(1-0.7)$ = \$353.70

Total solvent cost :
$$$5334 + $78.41 + $319.20 + $108.67 + $353.70 =$$

n-Butyl Lithium — Batch vs Flow

General:
$$N = c \times V$$
, $m = N \times \frac{M}{1000}$, $Cost = m \times $10/kg$.

Batch:

$$N_{\mathrm{nBuLi,batch}} = 2.0~\mathrm{M} \times 250~\mathrm{L} = \boxed{500~\mathrm{mol}}$$

$$m_{\mathrm{nBuLi,batch}} = 500 \ \mathrm{mol} \times 0.064 \ \mathrm{kg/mol} = \boxed{32 \ \mathrm{kg}}$$

$$\mathsf{Cost}_{\mathrm{nBuLi},\mathrm{batch}} = 32~\mathrm{kg} \times \$10/\mathrm{kg} = \boxed{\$320}$$

Flow:

$$N_{\mathrm{nBuLi,flow}} = 1.1 \ \mathrm{M} \times 250 \ \mathrm{L} = \boxed{275 \ \mathrm{mol}}$$

$$m_{\mathrm{nBuLi,flow}} = 275 \ \mathrm{mol} \times 0.064 \ \mathrm{kg/mol} = \left| \ 17.61 \ \mathrm{kg} \right|$$

$$\mathsf{Cost}_{\mathrm{nBuLi},\mathrm{flow}} = 17.61~\mathrm{kg} \times \$10/\mathrm{kg} = \boxed{\$176.10}$$

Product Mass

Assume 1:1 stoichiometry substrate \rightarrow product. Moles of substrate:

$$N_{\mathrm{sub}} = \frac{m_{\mathrm{sub}} \times 1000}{M_{\mathrm{sub}}} \quad \Rightarrow \quad N_{\mathrm{sub}} = \frac{100 \text{ kg} \times 1000}{400 \text{ g/mol}} = \boxed{250 \text{ mol}}$$

Theoretical product mass:

$$m_{\mathrm{prod,th}} = N_{\mathrm{sub}} \times \frac{M_{\mathrm{prod}}}{1000} \quad \Rightarrow \quad m_{\mathrm{prod,th}} = 250 \text{ mol} \times \frac{350 \text{ g/mol}}{1000} = \boxed{87.50 \text{ kg}}$$

Yields:

$$m_{\mathrm{prod,batch}} = m_{\mathrm{prod,th}} \times 0.70 = \boxed{61.25 \text{ kg}}$$
 $m_{\mathrm{prod,flow}} = m_{\mathrm{prod,th}} \times 0.85 = \boxed{74.37 \text{ kg}}$

Cryogenics (Liquid N₂) and Steam Costs

Liquid N₂ — calculations:

Cooling mass required:

$$\frac{\left(m_{\rm sub} + m_{\rm THF}\right) C_p \, \Delta T}{\Delta H_{\rm vap, LN2}} \quad \Rightarrow \quad \frac{\left(100 + \left(2000 \times 0.889\right)\right) \times 2 \times 100}{200} = \boxed{1878 \ \rm kg}$$

Maintenance:

$$\frac{\Delta H \times N_{\mathrm{sub}}}{\Delta H_{\mathrm{vap,LN2}}} \quad \Rightarrow \quad \frac{375 \times 250}{200} = \boxed{465 \text{ kg}}$$

Total LN₂ mass:

$$m_{\rm LN2,total} = 1878 + 465 = 2343 \, \, {\rm kg}$$

Cost (conversion):

$$\mathsf{Cost}_{\mathrm{LN2}} = \mathsf{2343} \ \mathrm{kg} \times \mathsf{12/kg} = \boxed{28,\!116 = \frac{28,\!116}{85} = \$330.77}$$

Steam — calculations:

Mass of steam:

$$m_{\rm steam} = \frac{1894 \times 2 \times 25}{2260} + \frac{2686 \times 2 \times 75}{2260} + \frac{500 \times 2 \times 20}{2260} = \boxed{230.96~\rm kg}$$

Cost:

$$Cost_{steam} = 230.96 \text{ kg} \times 5/\text{kg} = \boxed{1,154.80 = $13.58}$$

Total Manufacturing Costs

Batch Reactor — total cost:

$$\begin{split} \mathsf{Total_{batch}} &= \mathsf{Cost_{sub}} + \mathsf{Cost_{solvents}} + \mathsf{Cost_{nBuLi,batch}} \\ &\quad + \mathsf{Cost_{LN2}} + \mathsf{Cost_{steam}} + \mathsf{Labour\&Cleaning_{batch}} \\ &= \$5000 + \$6193.98 + \$320 + \$330.77 + \$13.58 + \$200 \\ &= \boxed{\$12,058.33} \end{split}$$

Cost per kg of product (batch):

$$c_{\mathrm{batch}} = \frac{\mathsf{Total_{batch}}}{m_{\mathrm{prod,batch}}} = \frac{\$12,058.33}{61.25 \mathrm{\ kg}} = \boxed{\$196.87/\mathrm{kg}}$$

Scale to 100 metric tonnes:

$$Cost_{100~{
m MT,\,batch}} = 100,000 \times \$196.87 = | \$19,687,000$$

Flow Reactor — totals savings

Flow Reactor — total cost:

$$\begin{aligned} \mathsf{Total}_{\mathrm{flow}} &= \$5000 + \$6193.98 + \$176.10 + \$330.77 + \$13.58 + \$150 \\ &= \boxed{\$11,864.43} \end{aligned}$$

Cost per kg of product (flow):

$$c_{\text{flow}} = \frac{\text{Total}_{\text{flow}}}{m_{\text{prod},\text{flow}}} = \frac{\$11,864.43}{74.37 \text{ kg}} = \boxed{\$159.53/\text{kg}}$$

Scale to 100 metric tonnes:

$$\mathsf{Cost}_{100~\mathrm{MT, flow}} = 100,000 \times \$159.53 = \boxed{\$15,953,000}$$

Annual saving (batch \rightarrow flow):

Annual Saving =
$$$19,687,000 - $15,953,000 = $3,734,000$$

ROI (per-kg and Annual with CapEx)

Per-kg ROI formula:

$$\mathrm{ROI}_{\mathrm{per}\ \mathrm{kg}} = \frac{\mathsf{Selling\ price} - \mathsf{Manufacturing\ cost}}{\mathsf{Manufacturing\ cost}} \times 100\%$$

Using Selling price = \$200/kg:

$$\mathrm{ROI_{batch}} = \frac{200 - 196.87}{196.87} \times 100\% = \boxed{1.58\%}$$

$$\mathrm{ROI_{flow}} = \frac{200-159.53}{159.53} \times 100\% = \boxed{25.36\%}$$

 $CapEx = $25,000,000 \text{ amortized over } 10 \text{ years} \Rightarrow Annual amortization} = $2,500,000.$

Net Profit:

$$\mathsf{Net}\;\mathsf{Profit} = \mathsf{Annual}\;\mathsf{Revenue} - (\mathsf{Production}\;\mathsf{Cost}_{\mathrm{flow}} + \mathsf{Annual}\;\mathsf{Amortization})$$

Substitute:

Net Profit =
$$20,000,000 - (15,953,000 + 2,500,000) = 51,547,000$$

Annual ROI:

$$ROI_{annual} = \frac{\$1,547,000}{\$25,000,000} \times 100\% = \boxed{6.18\%}$$

Summary — Part A (cost items)

Item	Final value
Substrate cost	\$5000
Total solvent cost	\$6193.98
n-BuLi cost (batch)	\$320
n-BuLi cost (flow)	\$176.10
Liquid N ₂ cost	INR 28,116 = \$330.77
Steam cost	INR 1,154.80 = \$13.58
Total cost (batch)	\$12,058.33

Summary — Part B (yields, unit economics, ROI)

Item	Final value
Product mass (batch)	61.25 kg
Cost/kg (batch)	\$196.87/kg
Total cost (flow)	\$11,864.43
Product mass (flow)	74.37 kg
Cost/kg (flow)	\$159.53/kg
100 MT cost (batch)	\$19,687,000
100 MT cost (flow)	\$15,953,000
Annual saving (batch \rightarrow flow)	\$3,734,000
Per-kg ROI (batch / flow)	1.58%; 25.36%
Annual ROI (flow, w/CapEx)	6.18%