CBB 752 Final Project 1.2 Yale University

Compare the variants in Carl's genome with those found in the GTEx database. Use the results to predict gene expression in various tissues and better estimate the impact of noncoding variants in Carl's genome.

Writing

Describe eQTLs and the GTEx database.

How was the data present in GTEx
generated and what scientific questions
does it help answer?

C Local regulatory variation

Cis-regulatory (allele-specific)

Neighbouring gene (trans)

Autoregulation (trans)

Distant regulatory variation

Identifying eQTLs in the Zimmerome

- Combine genetic information (SNPs) and known eQTL sites (GTEx)
- Determine whether Carl possesses any of the variants of interest, which could influence protein amounts
- Generate predictions Not confirmed without individual RNA-seq data

Brief Introduction: Coding

- Read in Zimmerome SNPs
- Find the overlapping SNP-gene-tissue pairs between Zimmerome SNPs and GTEx eQTL database
- Print out the overlapping SNP-gene-tissue pairs, intersection and statistics
- Final1-2.2.py, final1-2.2.3.py, final1-2.x.py

Result example

hr po:	s r	ef alt	gene_id	tss_distance	pval_nominal	slope	slope_se	slope_fpkm	slope_fpkm_se	pval_nominal_threshold	min_pval_nominal	pval_beta	tissue
1	739210 A	G	ENSG00000237491.4	25060	9.96E-08	-0.612927	0.112207	-0.0328812	0.00614083	7.76E-05	4.83E-13	4.89E-09	Whole Blood
1	739528	i A	ENSG00000237491.4	25378	1.04E-11	-0.831361	0.117406	-0.0464057	0.00638987	7.76E-05	4.83E-13	4.89E-09	Whole Blood
1	752894 T	С	ENSG00000237491.4	38744	1.83E-05	-0.354281	0.0813353	-0.0186668	0.00445322	7.76E-05	4.83E-13	4.89E-09	Whole Blood
1	739528	i A	ENSG00000225880.4	-23374	7.99E-07	-0.504767	0.100086	-0.2397	0.0440575	7.68E-05	4.35E-11	2.42E-07	Whole Blood
1	752566	i A	ENSG00000225880.4	-10336	9.46E-10	-0.416138	0.0658176	-0.1583	0.0296727	7.68E-05	4.35E-11	2.42E-07	Whole Blood
1	752721 A	G	ENSG00000225880.4	-10181	8.74E-10	-0.410651	0.064808	-0.157076	0.0292041	7.68E-05	4.35E-11	2.42E-07	Whole Blood
1	752894 T	C	ENSG00000225880.4	-10008	8.50E-08	-0.360696	0.0656582	-0.136818	0.0294824	7.68E-05	4.35E-11	2.42E-07	Whole Blood
1	753474	G	ENSG00000225880.4	-9428	4.62E-09	-0.389212	0.064442	-0.148809	0.028996	7.68E-05	4.35E-11	2.42E-07	Whole Blood
1	754503	i A	ENSG00000225880.4	-8399	3.28E-09	-0.398022	0.0652317	-0.150661	0.0293869	7.68E-05	4.35E-11	2.42E-07	Whole Blood
1	754964	T	ENSG00000225880.4	-7938	4.44E-08	-0.383144	0.0681893	-0.140034	0.0307209	7.68E-05	4.35E-11	2.42E-07	Whole Blood
1	755775 A	G	ENSG00000225880.4	-7127	2.88E-09	-0.392338	0.0640578	-0.1468	0.0288912	7.68E-05	4.35E-11	2.42E-07	Whole Blood
1	756604 A	G	ENSG00000225880.4	-6298	2.29E-05	-0.308974	0.0718018	-0.10253	0.0322449	7.68E-05	4.35E-11	2.42E-07	Whole Blood
1	758144 A	G	ENSG00000225880.4	-4758	1.09E-07	-0.37022	0.0679944	-0.134632	0.0306125	7.68E-05	4.35E-11	2.42E-07	Whole Blood
1	759700 T	С	ENSG00000225880.4	-3202	1.11E-08	-0.385592	0.0655761	-0.1492	0.0294526	7.68E-05	4.35E-11	2.42E-07	Whole Blood
1	760912	T	ENSG00000225880.4	-1990	1.13E-08	-0.396459	0.0674781	-0.149974	0.0303642	7.68E-05	4.35E-11	2.42E-07	Whole Blood
1	761147 T	C	ENSG00000225880.4	-1755	4.52E-09	-0.40802	0.0675114	-0.153101	0.0304275	7.68E-05	4.35E-11	2.42E-07	Whole Blood
1	787685	i T	ENSG00000225880.4	24783	1.26E-06	-0.328816	0.0664608	-0.119808	0.0298362	7.68E-05	4.35E-11	2.42E-07	Whole Blood
1	886788	i A	ENSG00000187961.9	-9179	1.19E-05	0.187878	0.0421644	0.197147	0.0491114	7.19E-05	3.47E-06	0.00829706	Whole Blood
1	886817	T	ENSG00000187961.9	-9150	8.99E-06	0.19027	0.0421037	0.197754	0.0490751	7.19E-05	3.47E-06	0.00829706	Whole Blood
1	891021	i A	ENSG00000187961.9	-4946	6.35E-05	0.200311	0.0493664	0.211351	0.0574275	7.19E-05	3.47E-06	0.00829706	Whole Blood
1	894573	i A	ENSG00000187961.9	-1394	3.47E-06	0.20854	0.0440844	0.208635	0.0515295	7.19E-05	3.47E-06	0.00829706	Whole Blood
1	895706	i A	ENSG00000187961.9	-261	1.57E-05	0.194408	0.0442652	0.201694	0.0515803	7.19E-05	3.47E-06	0.00829706	Whole Blood
1	901559	i A	ENSG00000187961.9	5592	7.27E-06	0.203817	0.0446296	0.198985	0.0521976	7.19E-05	3.47E-06	0.00829706	Whole Blood
1	902997	i A	ENSG00000187961.9	7030	1.02E-05	0.189483	0.0422019	0.176451	0.0494474	7.19E-05	3.47E-06	0.00829706	Whole Blood

Summary statistics

Tissue	#Z eQTLs	#total eQTLs	%GTEx	%Coverage	%Common
Adipose Subcutaneous	137526	1311216	10.5	3.93	15.2
Brain Cortex	125373	154580	81.1	3.59	7.4
Liver	74823	189024	39.6	2.14	11.2
Pancreas	231229	526676	43.9	6.61	5.4
Whole Blood	448413	1060536	42.2	12.8	4.3

Pipeline

Process the variants in Carl's genome to identify any eQTLs. Look at multiple tissues (make sure to include tissues that might be able to be tested in a noninvasive manner e.g. blood).

Yuyang Liu

eQTLs identified in different tissues

eQTL Chromosome Distribution

A hotspot of eQTL on Chromosome 6

Distribution of cumulative effector size

Sample GO analysis--pancreas

	Homo					
	sapiens -				upload 1	
	REFLIST	upload 1	upload 1	upload 1	(fold	upload 1
GO biological process complete	(20972)	(1661)	(expected)	(over/under)	Enrichment)	(P-value)
small molecule metabolic process	(20372)	(1001)	(expected)	(over/under)	Linicinnent	(F-value)
(GO:0044281)	1792	198	141.93	+	1.4	1.47E-02
single-organism metabolic process	1/32	198	141.93	T	1.4	1.476-02
	2502	257	202.7		1.20	1 715 02
(GO:0044710)	3582	357	283.7	+	1.26	1.71E-02
cellular metabolic process	0046		700.64			4 205 02
(GO:0044237)	8846	800	700.61	+	1.14	4.29E-03
metabolic process (GO:0008152)	9812	887	777.12	+	1.14	3.31E-04
biological_process (GO:0008150)	17266	1443	1367.48	+	1.06	2.40E-03
Unclassified (UNCLASSIFIED)	3706	218	293.52	-	0.74	0.00E+00
detection of stimulus						
(GO:0051606)	668	20	52.91	-	0.38	1.22E-03
sensory perception of chemical						
stimulus (GO:0007606)	529	14	41.9	-	0.33	3.69E-03
detection of stimulus involved in						
sensory perception (GO:0050906)	519	11	41.11	_	0.27	1.72E-04
detection of chemical stimulus						
involved in sensory perception						
(GO:0050907)	467	8	36.99	_	0.22	6.21E-05
detection of chemical stimulus						
(GO:0009593)	503	8	39.84	_	0.2	6.05E-06
sensory perception of smell						
(GO:0007608)	453	2	35.88	_	< 0.2	1.06E-09
detection of chemical stimulus						
involved in sensory perception of						
smell (GO:0050911)	423	1	33.5	_	< 0.2	5.97E-10
56 (60.0050511)	123		55.5	<u> </u>	. 0.2	3.3, 2.10

Regulome DB analysis

- First 3x10⁶ nucleotide on chromosome 1 as input dataset
- Score higher than 1f are classified as eQTL

RegulomeDB scores

Example eQTL: rs1886730

- Score 1b
- Affects expression of TNFRSF14 in lymphoblastoid

Score: 1b

Likely to affect binding and linked to expression of a gene target

- Located within the binding site of FOXO6
- Evidence from multiple ChIP-Seq experiments
- Near active RSS

ChromHMM chr1:2488600..2488800 Active TSS Blood & T-cell Primary T cells from cord blood REMC

Distribution of SNPs in genome region tested (from Regulome DB)

Correlation between eQTLs predicted by two methods

Summary

- Zimmerome SNPs are interestingly enriched in immune-related chromosome regions
- A small proportion of SNPs serve as eQTLs and regulate the expression of genes (mainly in the immune system)

Thank you!

Supplement