이름:

기 말 고 사

과 목 명: MGT2008-01 경영과학 2018/06/14

담당교수: 송용욱

* 앞 화면의 주의사항을 <u>확인</u>하시오. 주의사항을 지키지 못한 경우 <u>0 점</u>으로 처리되거나 **불이익**을 받을 수 있습니다.

1. Y 선수촌은 운동선수들이 먹을 간식을 준비하려고 한다. Y 선수촌은 심사숙고한 끝에 세 가지 상이한 제품을 배합하려고 한다. 제품 A 는 kg 당 1,800 원, 제품 B 는 kg 당 1,000 원, 제품 C는 kg 당 1,250 원의 비용이 소요된다고 한다. (계산 시 첨부 민감도보고 서를 참조하여 정확한 값을 계산하여야 함)(각 1점)

영양물	최소요구량		kg 당 기여	
3 3 호	최소요구량	제품 A	제품 B	제품 C
탄수화물	2,000 g	200 g	400 g	400 g
단백질	1,200 g	600 g	200 g	300 g

1.1. 위 표의 자료를 이용하여 비용을 최소로 하는 세 제품의 배합량을 결정하는 선형 계획모델을 다음 사항에 맞추어 작성하시오.

(1) 결정변수

$$x_1 = \mathbf{A} \mathbf{B} \mathbf{A} \mathbf{A} \mathbf{B}$$

$$x_2 = \mathbf{A} \mathbf{B} \mathbf{B}$$

$$x_3 = \mathbf{A} \mathbf{B} \mathbf{A} \mathbf{B}$$

#IIM 전 | 180 건, + 1/200건, + 10200건, + 10200Z, + 10200Z,

1.2. 위 문제를 쌍대문제로 변형하시오.

1.3. 그래프 방법을 이용하여 쌍대문제의 최적해를 구하시오.

Hint)
①②의 교점 = (1.2, 2.6)
①③의 교점 = (105/90, 235/90) = (1.167, 2.61)
②③의 교점 = (1.25, 2.5)

최적해 = 목적함수 값 = 5t. 2002, +6062, 5 1800 4002, +2002, 5 1000 4002, +3002, 5 1250

2 2 1	x, 20	7, 12	5, b	5	53 0	RHS
5, 6	2	Ь	1	0	0	18
5 6	4	2	0)	0	10
5, 6 5 ₂ 6 5 ₃ 0	4	3	G	0	1	12.5

1.4. 쌍대문제의 실행가능범위을 구하시오.

①
$$200 u_1 + 600 u_2$$

②
$$400 u_1 + 200 u_2$$

 $3400 u_1 + 300 u_2$

1.5. 원본문제의 최적범위를 구하시오.

1.6. 쌍대문제의 잠재가격을 구하시오.

①의 잠재가격:

②의 잠재가격:

③의 잠재가격:

1.7. 원본문제의 최적해를 구하시오.

1.8. 원본문제의 한계비용을 구하시오.

1.9. 쌍대문제의 최적범위를 구하시오.

1.10. 원본문제의 실행가능범위를 구하시오.

2. Y 전자는 A 냉장고를 3 개의 공장에서 생산한 후 4 개의 유통센터에 공급하고 있다. 수 송네트워크가 아래 그림과 같을 때 다음 질문에 답하시오.(각 2 점)

2.1. Y 전자의 수송네트워크를 균형화 한 후 아래 수송표를 완성하시오.

유통센터 공장	1	1 2 3		4	5	공급량
A	<i>x</i> _{A1}	<i>x</i> _{A2}	x _{A3}	x _{A4}	x _{A5}	
В	<i>x</i> _{B1}	<i>x</i> _{B2}	x _{B3}	x _{B4}	x _{B5}	
С	<i>x</i> _{C1}	x _{C2}	x _{C3}	x _{C4}	x _{C5}	
수요량						2,500

2.2. 위 수송문제를 풀기 위한 엑셀 모델을 작성하시오. 단, 수업 시간에 배운 양식을 기준으로 하고, 흰색 공란만 작성하시오.

	А	В	С	D	E	F	G	Н	I
1	수송비용	1	2	3	4	5			
2	A								
3	В								
4	С								
5									
6	수송량	1	2	3	4	5	실제공급	량	공급량
7	А						0	=	
8	В						0	=	
9	С						0	=	
10	실제수송량	0	0	0	0	0			
11		=	=	=	=	=			총수송비용
12	수요량								0

2.3. 2.2 번 문제의 표에서 위쪽과 왼쪽의 알파벳 및 숫자가 엑셀 행과 열의 이름을 나타낸다고 할 때, I12 셀에 들어갈 엑셀 수식은?

2.4. 다음의 '해 찾기 매개 변수' 대화상자에서 '제한 조건에 종속' 부분에 들어갈 제약 조건식을 모두 작성하시오. 단, 2.2 번 문제의 엑셀 모델을 기준으로 작성하시오.

소속: 학번: 대학

학부/학과

이름:

수요량

Χ

Χ

Χ

(학년)

2.5. 해 찾기 결과 최적해가 다음 표와 같을 때 각 공장에서 각 유통센터로 갈 물량을 아래 수송네트워크로 정리하고, 불균형 물량에 대한 처리 방법도 밝히시오.

수송비용 2 3 5 4 Α Χ Χ Χ Χ Χ В Χ Χ Χ Χ Χ C Χ Χ Χ Χ Χ 공급량 수송량 2 3 5 실제공급량 1 4 700 0 0 0 0 700 Α Χ 0 0 500 100 800 В 200 Χ C 0 0 Χ 300 500 200 1000 실제수송량 900 500 400 500 200 총수송비용 = =

공급량 (2,500) (2,300) (2,300) (2,300) (2,300) (1 900 700 A 2 500 800 B 3 400 1,000 C 4 500

Χ

Χ

17300

소속: 학번: 대학

학부/학과 (학년)

이름:

[참조 1] 민감도 보고서 (원본문제)

변수 셀						
셀	이름	계산	한계	목표 셀	허용 가능	허용 가능
ë	이금	값	비용	계수	증가치	감소치
\$B\$11	배합량 제품 A	0	50	1800	1E+30	50
\$C\$11	배합량 제품 B	3	0	1000	250	11.11111111
\$D\$11	배합량 제품 C	2	0	1250	10	250

제한 조	제한 조건											
	이름	계산	잠재	제한 조건	허용 가능	허용 가능						
岂	이늄	값	가격	우변	증가치	감소치						
\$E\$7	탄수화물 LHS	2000	1.25	2000	400	400						
\$E\$8	단백질 LHS	1200	2.5	1200	300	200						

[참조 2] 민감도 보고서 (쌍대문제)

제품 A LHS

제품 B LHS

제품 C LHS

]	(0 11 2	")			
변수 셀						
셀	이름	계산	한계	목표 셀	허용 가능	허용 가능
띝	이금	값	비용	계수	증가치	감소치
\$B\$12	u1	1.25	0	2000	400	400
\$C\$12	u2	2.5	0	1200	300	200
제한 조	.건					
М	OL E	계산	잠재	제한 조건	허용 가능	허용 가능
셀	이름	값	가격	우변	증가치	감소치

1800

1000

1250

1E+30

250

10

50

250

11.11111111

(유의사항)

\$D\$7

\$D\$8

\$D\$9

- 1. 민감도 보고서는 참조용이므로, 정답 작성 시 인용하면 안 됩니다.
- 2. 본인의 계산값이 올바른지 확인용으로만 사용하기 바랍니다.

1750 0

1000 3

1250 2

3. 이 페이지를 뜯어서 사용하고, 답안지 제출 시에는 같이 제출할 필요가 없습니다.

이름:

기 말 고 사 (정답)

과 목 명: MGT2008-01 경영과학 2018/06/14

담당교수: 송용욱

* 앞 화면의 주의사항을 <u>확인</u>하시오. 주의사항을 지키지 못한 경우 <u>0 점</u>으로 처리되거나 <u>불이익</u>을 받을 수 있습니다.

1. Y 선수촌은 운동선수들이 먹을 간식을 준비하려고 한다. Y 선수촌은 심사숙고한 끝에 세 가지 상이한 제품을 배합하려고 한다. 제품 A 는 kg 당 1,800 원, 제품 B 는 kg 당 1,000 원, 제품 C 는 kg 당 1,250 원의 비용이 소요된다고 한다.(각 1점)

영양물	최소요구량		kg 당 기여	
3 3 골	최소요구량	제품 A	제품 B	제품 C
탄수화물	2,000 g	200 g	400 g	400 g
단백질	1,200 g	600 g	200 g	300 g

1.1. 위 표의 자료를 이용하여 비용을 최소로 하는 세 제품의 배합량을 결정하는 선형 계획모델을 다음 사항에 맞추어 작성하시오.

(1) 결정변수

 x_1 = 제품 A 의 배합량 (또는, 구매량, 원료량)

 x_2 = 제품 B의 배합량 (또는, 구매량, 원료량)

 x_3 = 제품 C의 배합량 (또는, 구매량, 원료량)

(2) 선형계획모델

$$min \ Z = 1800 \ x_1 + 1000 \ x_2 + 1250 \ x_3$$

s.t.

$$200 \ x_1 + 400 \ x_2 + 400 \ x_3 \ \ge 2000$$

600
$$x_1 + 200 x_2 + 300 x_3 \ge 1200$$

 $x_1, x_2, x_3 \ge 0$

1.2. 위 문제를 쌍대문제로 변형하시오.

1.3. 그래프 방법을 이용하여 쌍대문제의 최적해를 구하시오.

```
Hint)
①②의 교점 = (1.2, 2.6)
①③의 교점 = (105/90, 235/90) = (1.167, 2.61)
②③의 교점 = (1.25, 2.5)
```


최적해 = (u_1, u_2) = (1.25, 2.5)목적함수 값 = $2000 \ u_1 + 1200 \ u_2 = 2000 \cdot 1.25 + 1200 \cdot 2.5 = 5,500$

1.4. 쌍대문제의 실행가능범위을 구하시오.

①
$$200~u_1+600~u_2$$
 상한 한 $=\infty$ 하한(1.25, 2.5) = $200(1.25)+600(2.5)=1750$

즉, 1750 $\leq b_1 \leq \infty$

②
$$400$$
 $u_1 + 200$ u_2 상한(125/40, 0) = $400(125/40) + 200(0) = 1,250$ 하한(105/90, 235/90) = $400(105/90) + 200(235/90) = 8,900/9 = 988.89$

즉, 988.89 $\leq b_2 \leq 1250$

> ③ 400 $u_1 + 300$ u_2 상한(1.2, 2.6) = 400(1.2) +300(2.6) = 1,260 하한(2.5, 0) = 400(2.5) +300(0) = 1,000

즉, $1000 \le b_3 \le 1260$

1.5. 원본문제의 최적범위를 구하시오.

원본문제의 최적범위는 쌍대문제의 실행가능범위와 같으므로,

 $1750 \le C_1 \le \infty$ $988.89 \le C_2 \le 1250$

1.6. 쌍대문제의 잠재가격을 구하시오.

①의 잠재가격:

①번 제약조건식이 비속박제약식이므로

잠재가격 = 0

②의 잠재가격:

400
$$u_1 + 200$$
 $u_2 = 1001$
400 $u_1 + 300$ $u_2 = 1250$

목적함수 값 = 2000
$$u_1 + 1200$$
 $u_2 = 2000(503/400) + 1200(249/100) = 2515 + 2988 = 5503$

잠재가격 = 5503 - 5500 = 3

③의 잠재가격:

$$400 \ u_1 + 200 \ u_2 = 1000$$

400
$$u_1 + 300 u_2 = 1251$$

최적해 = (249/200, 251/100)

목적함수 값 = 2000
$$u_1 + 1200$$
 $u_2 = 2000(249/200) + 1200(251/100) = 2490 + 3012 = 5502$

잠재가격 = 5502 - 5500 = 2

소속: 대학 학부/학과 (학년) 학번: 이름:

1.7. 원본문제의 최적해를 구하시오.

원본문제의 최적해는 쌍대문제의 잠재가격과 같으므로, 최적해 = $(x_1, x_2, x_3) = (0, 3, 2)$

1.8. 원본문제의 한계비용을 구하시오.

원본문제 목적함수 계수 - 원본문제 한계비용 = 쌍대문제 좌변식의 값 이 성립하고,

쌍대문제 최적해 $(u_1, u_2) = (1.25, 2.5)$ 로부터 쌍대문제 좌변식의 값은,

- ① 200 $u_1 + 600$ $u_2 = 200(1.25) + 600(2.5) = 1750$
- ② $400 \ u_1 + 200 \ u_2 = 400(1.25) + 200(2.5) = 1000$
- ③ 400 $u_1 + 300$ $u_2 = 400(1.25) + 300(2.5) = 1250$

이므로,

원본문제 한계비용은,

- C_1 : 1800 1750 = 50
- C_2 : 1000 1000 = 0
- C_3 : 1250 1250 = 0

1.9. 쌍대문제의 최적범위를 구하시오.

제약조건식의 기울기가 $-\frac{4}{2} < -\frac{4}{3} < -\frac{2}{6}$ 이고, 목적함수식의 기울기가 $-\frac{5}{3}$ 로서, $-\frac{4}{2} < -\frac{5}{3} < -\frac{4}{3} < -\frac{2}{6}$ 가 성립하므로,

 C_1 의 최적범위는, $-\frac{4}{2} < -\frac{C_1}{1200} < -\frac{4}{3}$ 로부터, $1600 < C_1 < 2400$

 C_2 의 최적범위는,

$$-\frac{4}{2} < -\frac{2000}{C_2} < -\frac{4}{3}$$

로부터,

 $1000 < C_2 < 1500$

1.10. 원본문제의 실행가능범위를 구하시오.

원본문제의 실행가능범위는 쌍대문제의 최적범위와 같으므로,

 $1600 < b_1 < 2400$

 $1000 < b_2 < 1500$

2. Y 전자는 A 냉장고를 3 개의 공장에서 생산한 후 4 개의 유통센터에 공급하고 있다. 수 송네트워크가 아래 그림과 같을 때 다음 질문에 답하시오.(각 2 점)

2.1. Y 전자의 수송네트워크를 균형화 한 후 아래 수송표를 완성하시오.

유통센터 공장	1	1		2	3	3		1		5	공급량
A	x_{A1}	8	x_{A2}	9	x_{A3}	11	x_{A4}	16	x_{A5}	0	700
В	<i>x</i> _{B1}	12	x_{B2}	7	x_{B3}	5	$\chi_{ m B4}$	8	$x_{ m B5}$	0	800
С	<i>x</i> _{C1}	14	<i>x</i> _{C2}	10	<i>x</i> _{C3}	6	x _{C4}	7	<i>x</i> _{C5}	0	1,000
수요량	9(00	50	00	4(00	50	00	200		2,500

이름:

2.2. 위 수송문제를 풀기 위한 엑셀 모델을 작성하시오. 단, 수업 시간에 배운 양식을 기준으로 하고, 흰색 공란만 작성하시오.

	Α		В		С		D		E		F	G	Н	I
1	수송비용	1		2		3		4		5				
2	A		8		9		11		16		0			
3	В		12		7		5		8		0			
4	С		14		10		6		7		0			
5		-										•		
6	수송량	1		2		3		4		5		실제공급	량	공급량
7	A											0	=	700
8	В											0	=	800
9	С											0	=	1000
10	실제수송량		0		0		0		0		0	•		
11		=		=		=		=		=				총수송비용
12	수요량		900		500		400		500		200			0

2.3. 2.2 번 문제의 표에서 위쪽과 왼쪽의 알파벳 및 숫자가 엑셀 행과 열의 이름을 나타낸다고 할 때,I12 셀에 들어갈 엑셀 수식은?

=SUMPRODUCT(B2:F4,B7:F9)

2.4. 다음의 '해 찾기 매개 변수' 대화상자에서 '제한 조건에 종속' 부분에 들어갈 제약 조건식을 모두 작성하시오. 단, 2.2 번 문제의 엑셀 모델을 기준으로 작성하시오.

G7:G9 = I7:I9

B10:F10 = B12:F12

이름:

2.5. 해 찾기 결과 최적해가 다음 표와 같을 때 각 공장에서 각 유통센터로 갈 물량을 아래 수송네트워크로 정리하고, 불균형 물량에 대한 처리 방법도 밝히시오.

수송비용	1		2		3		4		5				
Α		Χ		Х		Χ		Χ		Х			
В		Χ		Х		Χ		Х		Х			
С		Χ		Х		Χ		Х		Χ			
											•		
수송량	1		2		3		4		5		실제공급량		공급량
Α		700		0		0		0		0	700	=	Х
В		200		500		100		0		0	800	=	Х
С		0		0		300		500		200	1000	=	X
실제수송량		900		500		400		500		200	•		
	_	=		=		=		=		=			총수송비용
수요량		Χ	Ī	Χ		Χ		Х		Χ			17300

* 아래 내용으로 어떤 방식으로든지 기술하면 됨

소속: 학번: 대학

학부/학과 (학년)

이름:

[참조 1] 민감도 보고서 (원본문제)

변수 셀						
셀	이름	계산	한계	목표 셀	허용 가능	허용 가능
ë	이금	값	비용	계수	증가치	감소치
\$B\$11	배합량 제품 A	0	50	1800	1E+30	50
\$C\$11	배합량 제품 B	3	0	1000	250	11.11111111
\$D\$11	배합량 제품 C	2	0	1250	10	250

제한 조건									
셀	이름	계산	잠재	제한 조건	허용 가능	허용 가능			
		값	가격	우변	증가치	감소치			
\$E\$7	탄수화물 LHS	2000	1.25	2000	400	400			
\$E\$8	단백질 LHS	1200	2.5	1200	300	200			

[참조 2] 민감도 보고서 (쌍대문제)

제품 A LHS

제품 B LHS

제품 C LHS

변수 셀									
셀	이름	계산	한계	목표 셀	허용 가능	허용 가능			
		값	비용	계수	증가치	감소치			
\$B\$12	u1	1.25	0	2000	400	400			
\$C\$12	u2	2.5	0	1200	300	200			
제한 조건									
셀	이름	계산	잠재	제한 조건	허용 가능	허용 가능			
		값	가격	우변	증가치	감소치			

1800

1000

1250

1E+30

250

10

50

250

11.11111111

(유의사항)

\$D\$7

\$D\$8

\$D\$9

- 1. 민감도 보고서는 참조용이므로, 정답 작성 시 인용하면 안 됩니다.
- 2. 본인의 계산값이 올바른지 확인용으로만 사용하기 바랍니다.

1750 0

1000 3

1250 2

3. 이 페이지를 뜯어서 사용하고, 답안지 제출 시에는 같이 제출할 필요가 없습니다.