INF221 – Algoritmos y Complejidad

Clase #12 Subsecuencia común más larga

Aldo Berrios Valenzuela

Miércoles 7 de septiembre de 2016

1. Subsecuencia común más larga

En inglés conocido como Longest Common Subsequence, LCS. La *idea* consiste en que tenemos dos archivos: X e Y, y queremos hacer \mathtt{diff}^1 sobre ellos, es decir:

diff X Y

Para ello:

- Hallar la subsecuencia común más larga (LCS) entre ellos.
- Marcar líneas agregadas/borradas

Ejemplo 1.1. Supongamos que tenemos dos archivos: X e Y, cuyo contenido se muestra en el cuadro 1. En con-

X	Y
foo	bar
bar	xyzzy
baz	plugh
quux	baz
windows	foo
	quux
	linux

Cuadro 1: Contenido de los archivos *X* e *Y*. Note que cada fila de la tabla representa una línea del archivo correspondiente.

secuencia, si hacemos un

diff X Y

obtenemos como resultado, la columna "Resultado" del Cuadro 2.

Explicamos con más detalle cómo funciona el algoritmo acorde a lo arrojado por el Cuadro 2:

- Comenzamos leyendo ambos archivos. Como podemos observar en el Cuadro 1, la primera línea de *Y* es bar. Por lo tanto, buscamos en *X* la primera línea que tenga bar. En *X*, la línea bar se encuentra en la línea 2, así que tendremos que eliminar el contenido de la línea 1 de *X*. Por lo tanto, en la columna "Resultado" agregamos -bar.
- En este momento, ambos archivos comienzan con bar, así que no realizamos ningún cambio y agregamos esto a "Resultado". El Cuadro 3 muestra nuestra dónde estamos ubicados actualmente.

¹pruebe man diff para ver qué es lo que hacer

Línea	X	Y	Resultado	
1	foo	bar	-	foo
2	bar	xyzzy		bar
3	baz	plugh	+	xyzzy
4	quux	baz	+	plugh
5	windows	foo		baz
6		quux	+	foo
7		linux		quux
			-	windows
			+	linux

Cuadro 2: La columna "Resultado" se obtiene a través de: "Partiendo de X, ¿cómo obtengo Y". Los (-) significa que debemos remover la línea asociada para construir Y a partir de X y los (+) es que debemos agregarla.

Línea	X	Y	Resultado
1	foo	bar	- foo
2	bar	xyzzy	bar
3	baz	plugh	
4	quux	baz	
5	windows	foo	
6		quux	
7		linux	

Cuadro 3: Las celdas azules representan dónde estamos ya sea para el archivo X e Y. Por otro lado, las celdas remarcadas con color rojo representan nuestra siguiente coincidencia.

■ Iteramos hasta encontrar la siguiente coincidencia (en este punto nos encontramos en la línea 2 de *X* y 1 de *Y*). La siguiente coincidencia es la línea baz. Como podemos observar en el Cuadro 3, para poder construir *Y* a partir de *X* agregamos las líneas xyzzy y plugh. Luego, nos ubicamos en las líneas donde se produjo dicha coincidencia para ambos archivos y aprovechamos a de agregarlos (ver Cuadro 4).

Línea	X	Y	Resultado	
1	foo	bar	-	foo
2	bar	xyzzy		bar
3	baz	plugh	+	xyzzy
4	quux	baz	+	plugh
5	windows	foo		baz
6		quux		
7		linux		

Cuadro 4: Siga la misma convención de colores del Cuadro 3. Por otro lado, agregamos xyzzy y plugh a "Resultado".

- La siguiente coincidencia es quux.
 - En *X*, quux está inmediatamente después de la línea que tiene baz.
 - En Y, para llegar a la línea que tiene quux desde baz tendremos que pasar foo.

Dado lo anterior, en X tendremos que agregar la línea foo para poder construir Y. Los resultados se pueden apreciar en el Cuadro f.

Línea	X	Y	Resultado	
1	foo	bar	-	foo
2	bar	xyzzy		bar
3	baz	plugh	+	xyzzy
4	quux	baz	+	plugh
5	windows	foo		baz
6		quux	+	foo
7		linux		quux

Cuadro 5: Siga la misma convención de colores del Cuadro 3. Por otro lado, agregamos foo a "Resultado".

Como podemos apreciar en el Cuadro 5, ya no tenemos más coincidencias. Por lo tanto, para terminar simplemente eliminamos windows y agregamos linux². La tabla resultante puede verse a través del Cuadro 2.

1.1. Aspectos formales

Arreglos X[1,...,n], Y[1,...,m], palabras sobre un alfabeto ("símbolo" es una línea). Hallar la secuencia de pares de índices (x_1,y_1) , (x_2,y_2) ,..., (x_q,y_q) tales que /* DUDA: ¿los x_i e y_i es el número de línea? */:

$$x_1 < x_2 < \dots < x_q \qquad ; \forall x_i \in \mathbb{N}$$
$$y_1 < y_2 < \dots < y_q \qquad ; \forall x_i \in \mathbb{N}$$
$$X[x_i] = Y[y_i] \qquad \text{para } 1 \le i \le q$$

Interesa la secuencia más larga (máximo q, correspondiente a la cantidad coincidencias). Para ello, consideremos X[n], Y[m]. Tres opciones:

- 1. X[n] queda fuera de la subsecuencia. En consecuencia, lo marcamos con (-)
- 2. Y[m] queda fuera de la subsecuencia. Para efectos de diff marcamos con (+)
- + O ambos
- 3. Si X[n] = Y[m], hacer $x_q = n$, $y_q = m$.

Notar que si $X[n] \neq Y[m]$ no pueden pertenecer ambos a la LCS.

Tres opciones. Subproblemas:

- 1. X[1,...,n-1], Y
- 2. X, Y[1, ..., m-1]
- 3. $X[1,...,n-1], Y[1,...,m-1] \leftarrow X[n] = Y[m]$

Sea LCS(A, B) la subsecuencia común más larga entre A y B. Entonces /* hasta el momento sólo nos interesa el largo de la subsecuencia óptima, después vemos como encontrar la secuencia */:

$$\begin{split} |LCS(X,Y)| &= \max\{|LCS(X[1,...,n-1],Y)| + 0, |LCS(X,Y[1,...,m-1])| + 0, \\ &|LCS(X[1,...,n-1],Y[1,...,m-1]) + 0|\} \end{split}$$

 \rightsquigarrow Arreglo L[i, j]:

$$L[i,j] = |LCS(X[1,...,i]), Y[1,...,j]|$$

$$(1.1)$$

²No nos arrepentimos de nada.

Sabemos $L\left[0,j\right]=L\left[i,0\right]=0$. Para calcular $L\left[i,j\right]$ necesitamos $L\left[i-1,j\right],L\left[i,j-1\right],L\left[i-1,j-1\right]$ (posiblemente). Llenar el arreglo, calculando $L\left[i,k\right]$ para i de 1 a n, llenando los j de 1 a m.

 \rightsquigarrow Costo total es $O(n \cdot m)$