COMS W4771: Machine Learning (sec:001) -Homework #3

Name: Geraldi Dzakwan (gd2551). Discussants: Deka (da2897), Patricia (pk2618)

November 6, 2019

Problem 1

- a. Function name: <code>compute_min_euclidean_norm_solution</code> in file a1.py. This function will take feature matrix A, shape: (32, 256), and b, shape: (32), as the input. Thus, the feature map needs to be applied to the original A, shape: (32,1), before the function takes A as its input. Then, it computes the minimum Euclidean norm solution using the Moore Penrose inverse. This is as suggested in Problem 4. This function is called in a bigger function <code>compute_w_euclid</code> that also does other things like plotting the solution on test data. List of subfunctions/subroutines and external software libraries used:
 - 1. To transform the feature vector A of shape (32,1) to shape (32,256), subfunction $transform_feature$ is used. This subfunction basically takes A and transform each row in A from dimension 1 to dimension 256 using the feature map described in the problem.
 - 2. Next, compute the Moore Penrose inverse of matrix A using the library **numpy.linalg.pinv**, numpy version: 1.15.1.
 - 3. Finally, return the minimum Euclidean solution as the multiplication (using numpy.dot) between the Moore Penrose inverse of A and the label vector b.

Additional note:

- 1. Since A has full row rank, I also try to use another way to find the minimum Euclidean norm by using *numpy.lstsq* and it yields the same result. The differences of the Euclidean norm of the solution and the error rate on training data for both methods are less than 1e-10.
- 2. To use numpy lstsq, two inputs are needed, which are A^TA of shape (256, 256) and A^Tb of shape (256). They are respectively the left hand side (excluding the solution w) and the right hand side of the normal equation.

- 3. But, the default method used in the function <code>compute_min_euclidean_norm_solution</code> is the Moore Penrose inverse as it can accommodate all types of matrices, including those that don't have full row rank. This is implemented in the function as default param: <code>use_pinv=True</code>.
- b. The plot for $(\tilde{x}_i, \hat{f}_{Euclid}(\tilde{x}_i))$ for i = 1, ..., m is as below (Figure 1). The points are depicted as dots with black edge and white fill. The pink lines connect consecutive dots/points, e.g. $(\tilde{x}_1, \hat{f}_{Euclid}(\tilde{x}_1))$ to $(\tilde{x}_2, \hat{f}_{Euclid}(\tilde{x}_2))$. The plotted points are very scattered.

Figure 1: Minimum Euclidean Plot

- c. To get the weighted minimum Euclidean norm, I use the same function as the function used in Part (a): **compute_min_euclidean_norm_solution**. The difference is that I make some changes to the input feature matrix A, shape: (32, 256), and b, shape: (32). The changes are as below:
 - 1. I create a diagonal matrix of shape (256, 256) in which the diagonal element represent the square root of the weights, i.e. the diagonal element at row j, j starts from zero, will have the value of $\lceil (j+1)/2 \rceil$. Denote this by V.
 - 2. Matrix A will be stacked with the diagonal matrix with the diagonal matrix is being placed at the bottom. The new matrix A, say \tilde{A} , will have the shape of (32+256, 256). This is done using np.vstack.
 - 3. The label vector b is padded with zero vectors of size 256 so that the shape becomes (32+256). Call this \tilde{b} .

When those changes are applied, we will obtain a new covariance matrix, say $\tilde{A}^T \tilde{A}$, where:

$$\tilde{A}^T \tilde{A} = (A^T A + V^2)$$

 V^2 is a diagonal matrix in which the diagonal element represent the weights, i.e. the diagonal element at row $j,\ j$ starts from zero, will have the value of $\lceil (j+1)/2 \rceil^2$. This is inspired by ridge regression where the regularization is done by padding A with $\sqrt{\lambda}I$. The difference in this case is we use weighted diagonal matrix to replace the diagonal matrix $\sqrt{\lambda}I$.

For full implementation of the above description, see function *compute_w_weighted*. To check the correctness of the procedure, I print the first and last 16 elements of the solution and check their values. They are as below:

- 1. First 16 elements: $\begin{bmatrix} 0.4032034 0.06122629 0.23717626 0.19003089 0.19338498 \\ 0.12254494 & 0.05226381 & 0.27718176 & -0.05410099 & 0.00179812 & -0.10968115 & -0.07202143 & -0.07760895 & 0.0042153 & 0.0720863 & 0.04318911 \end{bmatrix}$
- 2. Last 16 elements: $[-8.04757022e-05\ 1.50789327e-06\ 2.09760474e-05\ -3.10685887e-04\ -1.22647149e-04\ -4.49403833e-05\ -5.42573418e-05\ 4.60438734e-05\ 2.82446691e-05\ 8.82269746e-06\ 1.32173310e-05\ -8.67592810e-06\ 2.37082353e-05\ 1.22843870e-06\ -6.58580580e-05\ -4.84817254e-05]$

We can see that the last 16 elements are way smaller than the first 16 elements. This makes sense since we try to minimize the weighted Euclidean norm and the last 16 elements have way bigger weights: $\lceil 240/2 \rceil, ..., \lceil 256/2 \rceil$, than the first 16 elements: $\lceil 1/2 \rceil, ..., \lceil 16/2 \rceil$.

d. The plot for $(\tilde{x}_i, \hat{f}_{weighted}(\tilde{x}_i))$ for i = 1, ..., m is as below (Figure 2). The plotted points form dense lines, they don't scatter much like the plot for minimum Euclidean norm. The pink lines are not visible because consecutive points are very close to each other.

Figure 2: Minimum Weighted Euclidean Plot

e. The plot for $(\tilde{x}_i, \hat{f}_{Dantzig}(\tilde{x}_i))$ for i = 1, ..., m is as below (Figure 3). This looks like the plot for the minimum weighted Euclidean norm, except that this plot somewhat represents higher polynomial order with its curves. The lines are also not as dense as the minimum weighted Euclidean norm, especially for $\tilde{x} < 0$, i.e. the left half of the plot. Thus, we can still see the pink lines there.

Figure 3: Dantzig Selector Euclidean Plot

- f. When counting non-zero entries, I consider entries which absolute value is less than 1e-15 to be zero entries.
 - 1. Number of non-zero entries in \hat{w}_{Euclid} : 0
 - 2. Number of non-zero entries in $\hat{w}_{weighted}$: 0
 - 3. Number of non-zero entries in $\hat{w}_{Dantzig}$: 222

For Dantzig selector, the number of non-zero entries may differ for different parameters used when calling **scipy.optimize.linprog**. In my experiment, I use **scipy version 1.3.1** and "revised simplex" as the optimization method. But, the number of nonzero entries are generally above 200. See function *compute_w_dantzig* for the details.

g.

a. The performance of the 20-class Naive Bayes classifier \hat{f} on the full 20 Newsgroup data set is as below.

1. Training error rate: **0.21581329310497827**

2. Test error rate: **0.3769487008660893**

b. The performance of the binary Naive Bayes classifier on the modified 20 Newsgroup data set is as below.

1. Training error rate: 0.05779392338177015

2. Test error rate: **0.13138324243926625**

c. The ordered lists are listed in Table 1 and Table 2 below. Both are sorted descendingly based on their weight absolute value. *vocab_index* is in range [0,61188).

1. Most positive words (top 20) and their weights descendingly sorted.

no	$vocab_index$	word	weight
1	38732	firearms	4.684503228539178
2	20611	occupied	4.5486749575136685
3	48903	israelis	4.407062712835207
4	49311	serdar	4.394416055789522
5	49312	argic	4.394416055789522
6	49313	ohanus	4.230244601288161
7	49314	appressian	4.230244601288161
8	49316	sahak	4.230244601288161
9	49317	melkonian	4.230244601288161
10	45378	villages	4.215395293623014
11	49216	cramer	4.054622073035262
12	49315	armenia	4.038936035689443
13	50290	cpr	4.037155106460034
14	49252	sdpa	4.019401259954519
15	39353	optilink	4.001350538635606
16	28710	handgun	4.001350538635606
17	45016	palestine	4.001350538635606
18	47918	firearm	3.9829924168960074
19	12178	budget	3.906254594442897
20	47471	arabs	3.854840727802684

Table 1: Top 20 Positive Words

2. Most negative words (top 20) and their weights descendingly sorted.

no	$vocab_index$	word	weight
1	45948	athos	-5.181568936831565
2	2	atheism	-4.795686699947933
3	877	atheists	-4.7642014773182675
4	46033	clh	-4.7318384934967765
5	2234	teachings	-4.419101733948125
6	2604	revelation	-4.213637631942487
7	3548	testament	-4.178305464858287
8	896	livesey	-4.160199181208549
9	9	atheist	-4.152563313255224
10	897	solntze	-4.123053546615284
11	898	wpd	-4.123053546615284
12	7886	scriptures	-4.084586757943714
13	1973	theology	-4.06482656579093
14	2883	believers	-4.044696989331064
15	7017	alink	-3.9819409279865594
16	7018	ksand	-3.9819409279865594
17	1880	benedikt	-3.93796287361363
18	1923	jesus	-3.934746865891957
19	3919	prophet	-3.8920946802110823
20	3301	mozumder	-3.8920946802110823

Table 2: Top 20 Negative Words

See function $calculate_weights$ in file a2.py for the procedure to get each word weight from Naive Bayes prior and likelihood probabilities.

Name: Geraldi Dzakwan (gd
2551). Discussants: Deka (da
2897), Patricia (pk
2618) $\,$ 8

- a. The number of iterations T needed to reach zero training rate is **1194**. In this case, the iteration starts from zero, i.e. when t = 0, $w = w^{(0)} = 0$.
- b. Test error rate of $w^{(T)}$, i.e $w^{(1194)}$ is **0.08329201784828955**.
- c. The ordered lists are listed in Table 3 and Table 4 below. Both are sorted descendingly based on their weight absolute value. $vocab_index$ is in range [0,61188).
 - 1. Most positive words (top 20) and their weights descendingly sorted.

no	$vocab_index$	word	weight
1	4751	israel	1.1811551891717107
2	1144	gun	1.0983107882823702
3	5687	clinton	0.930665329319725
4	2183	politics	0.9289544423611378
5	87	american	0.9057536874334365
6	2227	government	0.8737978481876671
7	3831	news	0.8362673178451754
8	2190	guns	0.8233855149924485
9	32214	kaldis	0.788478406105581
10	1738	rights	0.7847489417090874
11	5116	israeli	0.7713478327943094
12	9054	theodore	0.7353256505192912
13	1505	mr	0.6656585405248127
14	1160	getting	0.6512600848339959
15	266	white	0.6419091028730181
16	9930	weapons	0.6362051644909561
17	3384	president	0.6301780205108527
18	1501	country	0.6263872024735501
19	2294	jews	0.6234934161118683
20	38732	firearms	0.6227264471566076

Table 3: Top 20 Positive Words

2. Most negative words (top 20) and their weights descendingly sorted.

no	$vocab_index$	word	weight
1	315	god	-1.8612543247469517
2	94	bible	-1.4021643477777477
3	425	christian	-1.3916783336359537
4	1923	jesus	-1.3227597977024164
5	16	religion	-1.1053169910011855
6	892	keith	-1.0913660874572892
7	45	christians	-1.0091501586855463
8	1931	lord	-0.9952944263553888
9	275	church	-0.9893978622339166
10	118	james	-0.9518221157839706
11	45948	athos	-0.8934685984660959
12	363	christianity	-0.892301384230667
13	488	christ	-0.8499905829531106
14	2	atheism	-0.7755878085259651
15	1095	kent	-0.7443617468611161
16	900	jon	-0.7400024779543952
17	768	mathew	-0.7323655192354515
18	3424	koresh	-0.729462198687837
19	592	religious	-0.7208049814283887
20	853	jim	-0.7027838278194898

Table 4: Top 20 Negative Words

a. We know that λ is the non-zero eigenvalue of A^TA with the corresponding eigenvector v. Then, the suitable equation would be:

$$A^T A v = \lambda v$$

Multiply both side by A:

$$AA^TAv = A\lambda v$$

$$AA^{T}(Av) = \lambda(Av) \dots \text{ Eq. } 1$$

The above equation shows that λ is also the non-zero eigenvalue of AA^T with the corresponding eigenvector Av.

b. We need to proof that v is in the null space of A. It means that we need to proof the following:

$$Av = 0$$

Let's inspect the length $(l_2 \text{ norm})$ of vector Av:

$$||Av||_2^2 = (Av)^T Av$$

$$||Av||_2^2 = v^T A^T A v$$

$$||Av||_2^2 = v^T (A^T A v)$$

We know that v is the eigenvector of A^TA , then we can replace A^TAv with λv :

$$||Av||_2^2 = v^T(\lambda v)$$
 ... Eq. 2

Since $\lambda = 0$ in this case, then:

$$||Av||_2^2 = 0$$

We know that only zero vector has l_2 norm of zero, then it is proved that:

$$Av = 0$$

c. We know from Part (a) that any non-zero eigenvalues of A^TA are also the eigenvalues of AA^T . So, to proof that A^TA has the same eigenvalues as AA^T , then we also need to proof that any non-zero eigenvalues of AA^T are also the eigenvalues of A^TA . Suppose v is the eigenvector of AA^T that corresponds with non-zero eigenvalue λ . We first start the following equation:

$$AA^Tv = \lambda v$$

Multiply both side with A^T :

$$A^T A A^T v = A^T \lambda v$$

$$A^T A (A^T v) = \lambda (A^T v)$$

The above equation shows that λ is also the non-zero eigenvalue of A^TA with the corresponding eigenvector A^Tv . Thus, from the above proof and proof in Part(a), it is proven that A^TA has the same eigenvalues of AA^T .

d. Let's rewrite u_i as below:

$$u_j = \frac{Av_j}{\|Av_j\|_2} = \frac{Av_j}{\sqrt{v_i^T A^T A v_j}} = \frac{Av_j}{\sqrt{v_i^T (A^T A v_j)}}$$

Since all λ_i are strictly positive (non-zero), then we can use it as our denominator:

$$u_j = \frac{Av_j}{\sqrt{v_j^T(\lambda_j v_j)}} = \frac{Av_j}{\sqrt{\lambda_j(v_j^T v_j)}} = \frac{Av_j}{\sqrt{\lambda_j(\|v_j\|_2^2)}}$$

Because v_i is a normal vector, then:

$$u_j = \frac{Av_j}{\sqrt{\lambda_j(1)}} = \frac{Av_j}{\sqrt{\lambda_j}} \dots \text{ Eq. } 3$$

Suppose k follows $1 \le j < k \le r$. Then, using Equation 3, for all pairs of (j, k), we will have the dot product of $u_j^T u_k$ as:

$$u_j^T u_k = \left(\frac{(Av_j)^T}{\sqrt{\lambda_j}}\right) \left(\frac{Av_k}{\sqrt{\lambda_k}}\right) = \frac{v_j^T (A^T A v_k)}{\sqrt{\lambda_j \lambda_k}}$$

$$u_j^T u_k = \frac{v_j^T \lambda_k v_k}{\sqrt{\lambda_j \lambda_k}} = \frac{\lambda_k (v_j^T v_k)}{\sqrt{\lambda_j \lambda_k}}$$

We know that $v_1, ..., v_d$ are orthonormal, then $v_1, ..., v_r$ are also orthonormal since it is a subset of $v_1, ..., v_d$. Hence, for all pairs of (j, k), the dot product $v_j^T v_k$ is zero and that makes:

$$u_j^T u_k = \frac{\lambda_k(0)}{\sqrt{\lambda_j \lambda_k}} = 0$$

Since for all pairs of (j, k), we have $u_j^T u_k = 0$, then it is proved that $u_1, ..., u_r$ are orthonormal.

e. Suppose that for i = 1, ..., d:

$$Mq_i = M'q_i = q'_i$$
, where $q'_i \in \mathcal{R}^N$

Assume that matrix M is nonsingular, then using the fact that $q_1, ..., q_d$ is a set of linearly independent vector, we know that $q'_1, ..., q'_d$ as a result of linear transformation, is also a set of linearly independent vector.

Finally, since $q'_1, ... q'_d$ is a set of linearly independent vector, then each *i*-th column in matrix M and M' will need to correspond to (have the same element values as) vector q'_i . Thus, it is proven that M = M'.

f. Using claim in Part (e), we need to show that:

$$Aq_{i} = (\sum_{j=1}^{r} \sqrt{\lambda_{j}} u_{j} v_{j}^{T}) q_{i} \text{ for all } i = 1, ..., d$$

If the above equation is proved, then A is proved to be the same as its decomposed value $\sum_{j=1}^{r} \sqrt{\lambda_j} u_j v_j^T$. $q_1, ..., q_d$ is a set of a linearly independent vector. In this case, we can use the set of orthonormal eigenvectors $v_1, ..., v_d$ as our $q_1, ..., q_d$ since it is a set of linearly independent vector by definition of orthonormal eigenvectors.

We first start checking the left term $Aq_i \to Av_i$. For each i, there will be two cases:

- 1. For nonzero eigenvalues, i.e. for $1 \le i \le r$. From Equation 3 in Part(d), we will have $u_i = \frac{Av_i}{\sqrt{\lambda_i}} \to Av_i = \sqrt{\lambda_i}u_i$.
- 2. For zero eigenvalues, i.e. for $r < i \le d$. We will have $Av_i = 0$.

Next, we check the right term.

$$(\sum_{j=1}^{r} \sqrt{\lambda_{j}} u_{j} v_{j}^{T}) q_{i} = (\sum_{j=1}^{r} \sqrt{\lambda_{j}} u_{j} v_{j}^{T}) v_{i} = \sum_{j=1}^{r} \sqrt{\lambda_{j}} (v_{i}^{T} v_{j}) u_{j}$$

For each i, again, there will be two cases:

1. For nonzero eigenvalues, i.e. for $1 \le i \le r$. Since $v_1, ..., v_r$ are orthonormal, then the dot product between v_i and v_j is zero except for j = i. Moreover, when j = i, $v_i^T v_i = 1^2 = 1$ since every v is a unit vector. Thus, we will have:

$$\sum_{j=1}^{r} \sqrt{\lambda_j} (v_i^T v_j) u_j = (r-1)0 + \sqrt{\lambda_i} (v_i^T v_i) u_i = \sqrt{\lambda_i} u_i$$

2. For zero eigenvalues, i.e. for $r < i \le d$. We will have $\sum_{j=1}^r \sqrt{\lambda_j} (v_i^T v_j) u_j = 0$ as v_i is a zero vector.

Finally, because $Av_i = (\sum_{j=1}^r \sqrt{\lambda_j} u_j v_j^T) v_i$ for i = 1, ..., d where $v_1, ..., v_d$ is a set of linearly independent vector, then it is proven that:

$$A = \sum_{j=1}^{r} \sqrt{\lambda_j} u_j v_j^T$$

.

a. The likelihood for θ given Y would be:

$$L(\theta|Y) = P(Y|\theta) = \frac{1}{(2\pi)^{n/2}|I|^{1/2}} \exp(-\frac{1}{2}(Y-\theta)^T I^{-1}(Y-\theta))$$

where $|I|^{1/2} = det(I)^{1/2} = 1^{1/2} = 1$ and $I^{-1} = I$. Thus:

$$L(\theta|Y) = P(Y|\theta) = \frac{1}{(2\pi)^{n/2}} \exp(-\frac{1}{2}(Y-\theta)^{T}I(Y-\theta))$$

The log likelihood:

$$\ln L(\theta|Y) = \ln(\frac{1}{(2\pi)^{n/2}} \exp(-\frac{1}{2}(Y - \theta)^T I(Y - \theta)))$$
$$\ln L(\theta|Y) = \ln(2\pi^{-n/2}) + \ln(\exp(-\frac{1}{2}(Y - \theta)^T I(Y - \theta)))$$
$$\ln L(\theta|Y) = -\frac{n}{2} \ln(2\pi) - \frac{1}{2}(Y - \theta)^T I(Y - \theta)$$

To find θ_{MLE} , we take the first derivative w.r.t to θ and find θ that makes it zero:

$$\frac{d}{d\theta} \ln L(\theta|Y) = 0$$

$$\frac{d}{d\theta} (-\frac{n}{2} \ln(2\pi) - \frac{1}{2} (Y - \theta)^T I(Y - \theta)) = 0$$

$$0 - (\frac{1}{2}) \frac{d}{d\theta} ((Y - \theta)^T I(Y - \theta)) = 0$$

$$\frac{d}{d\theta} ((Y - \theta)^T I(Y - \theta)) = 0$$

We can use the fact that $\frac{\partial \mathbf{w}^T \mathbf{A} \mathbf{w}}{\partial \mathbf{w}} = 2\mathbf{A} \mathbf{w}$ in this case since $w = (Y - \theta)$ is not dependent on A = I and I is an identity matrix that is symmetric. Then:

$$2I(Y - \theta) = 0 \rightarrow 2(Y - \theta) = 0 \rightarrow Y - \theta = 0$$

Hence, the θ_{MLE} is

$$\theta_{MLE}=Y=(y_1,y_2,...,y_n)$$

b. The prior distribution ($\mu_i = 0, \sigma_i^2 = \tau$):

$$P(\theta_i) = \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left(-\frac{(\theta_i - \mu_i)^2}{2\sigma_i^2}\right)$$

$$P(\theta_i) = \frac{1}{\sqrt{2\pi\tau}} \exp(-\frac{\theta_i^2}{2\tau})$$

The likelihood ($\mu_i = \theta_i, \, \sigma_i^2 = 1$):

$$P(y_i|\theta_i) = \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left(-\frac{(y_i - \mu_i)^2}{2\sigma_i^2}\right)$$

$$P(y_i|\theta_i) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{(y_i - \theta_i)^2}{2})$$

Then, the joint distribution will be:

$$P(\theta_{i}, y_{i}) = P(\theta_{i}) * P(y_{i}|\theta_{i})$$

$$P(\theta_{i}, y_{i}) = \frac{1}{\sqrt{2\pi\tau}} \exp(-\frac{\theta_{i}^{2}}{2\tau}) * \frac{1}{\sqrt{2\pi}} \exp(-\frac{(y_{i} - \theta_{i})^{2}}{2})$$

$$P(\theta_{i}, y_{i}) = \frac{1}{2\pi\sqrt{\tau}} \exp(-\frac{\theta_{i}^{2}}{2\tau} - \frac{(y_{i} - \theta_{i})^{2}}{2})$$

$$P(\theta_{i}, y_{i}) = \frac{1}{2\pi\sqrt{\tau}} \exp(-\frac{\theta_{i}^{2} + \tau(y_{i} - \theta_{i})^{2}}{2\tau})$$

$$P(\theta_{i}, y_{i}) = \frac{1}{2\pi\sqrt{\tau}} \exp(-\frac{\theta_{i}^{2}(1+\tau) - 2\tau\theta_{i}y_{i} + \tau y_{i}^{2}}{2\tau})$$

$$P(\theta_{i}, y_{i}) = \frac{1}{2\pi\sqrt{\tau}} \exp(-\frac{\theta_{i}^{2} - \frac{2\tau}{(1+\tau)}\theta_{i}y_{i} + \frac{\tau}{(1+\tau)}y_{i}^{2}}{\frac{2\tau}{(1+\tau)}})$$

$$P(\theta_{i}, y_{i}) = \frac{1}{2\pi\sqrt{\tau}} \exp(-\frac{(\theta_{i} - \frac{\tau}{(1+\tau)}y_{i})^{2} + \frac{\tau}{(1+\tau)^{2}}y_{i}^{2}}{\frac{2\tau}{(1+\tau)}})$$

$$P(\theta_{i}, y_{i}) = \frac{1}{2\pi\sqrt{\tau}} \exp(-\frac{(\theta_{i} - \frac{\tau}{(1+\tau)}y_{i})^{2}}{\frac{2\tau}{(1+\tau)}}) \exp(-\frac{y_{i}^{2}}{2(1+\tau)})$$

$$P(\theta_{i}, y_{i}) = \frac{1}{\sqrt{2\pi\frac{\tau}{1+\tau}}} \exp(-\frac{(\theta_{i} - \frac{\tau}{(1+\tau)}y_{i})^{2}}{\frac{2\tau}{(1+\tau)}}) \frac{1}{\sqrt{2\pi(1+\tau)}} \exp(-\frac{y_{i}^{2}}{2(1+\tau)})$$

From the above result, the posterior distribution is given by:

$$P(\theta_i|y_i) = \frac{1}{\sqrt{2\pi \frac{\tau}{1+\tau}}} \exp\left(-\frac{\left(\theta_i - \frac{\tau}{(1+\tau)}y_i\right)^2}{\frac{2\tau}{(1+\tau)}}\right)$$

Hence, $P(\theta_i|y_i)$ is a univariate Gaussian distribution with mean $=\frac{\tau}{1+\tau}y_i$ and variance $=\frac{\tau}{1+\tau}$. Finally, $P(\theta|Y)$ is a multivariate Gaussian distribution with:

- 1. Mean vector = $\frac{\tau}{1+\tau}Y = \frac{\tau}{1+\tau}(y_1, y_2, ..., y_n)$
- 2. Covariance matrix = $\frac{\tau}{1+\tau}I$

c. Looking at the result from Part (b), the marginal distribution is given by:

$$P(y_i) = \frac{1}{\sqrt{2\pi(1+\tau)}} \exp(-\frac{y_i^2}{2(1+\tau)})$$

$$P(y_i) = \frac{1}{\sqrt{2\pi(1+\tau)}} \exp(-\frac{(y_i - 0)^2}{2(1+\tau)})$$

Hence, $P(y_i)$ is a univariate Gaussian distribution with mean = 0 and variance = $1 + \tau$. Finally, P(Y) is a multivariate Gaussian distribution with:

- 1. Mean vector = 0
- 2. Covariance matrix = $(1 + \tau)I$