Subjectul D.OPTICĂ

Nr. item	Soluţie/Rezolvare
III.a.	
	$v = \frac{c}{\lambda}$
	$v = \frac{c}{\lambda}$ $L_{01} = \frac{hc}{\lambda_{01}}$
	Rezultat final: $L_{01} \cong 5,48 \cdot 10^{-19} J$
b.	$L = h v_0$
	$\lambda_{02} = rac{hc}{L_{02}}$
	Rezultat final: $\lambda_{02} \cong 550 nm$
C.	$\frac{hc}{\lambda_{01}} = L_{02} + \frac{mv_{\text{max}}^2}{2}$
	$v_{\text{max}} = \left[\frac{2}{m} \left(\frac{hc}{\lambda_{01}} - L_{02}\right)\right]^{\frac{1}{2}}$
	Rezultat final: $v_{\text{max}} \cong 6,24 \cdot 10^5 \text{m/s}$
d.	$eU_s = \frac{mv^2}{2}$ $U_s = \frac{mv^2}{2e}$
	$U_{s} = \frac{mv^2}{2e}$
	Rezultat final: $U \cong 1,1V$