

RDDPM: Robust Denoising Diffusion Probabilistic Model for Unsupervised Anomaly Segmentation

Mehrdad Moradi¹, Kamran Paynabar¹

1: H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology

DDPM as a nonlinear regression

- > Learning the backward diffusion process can be interpreted as noise prediction.
- > Training can be viewed as a nonlinear regression between U-Net input and output with an effectively infinite number of training pairs.
- The MSE loss used in training is sensitive to outliers.

Robust diffusion models

- Instead of MSE loss, we use robust losses to improve generation and anomaly detection performance.
- > Least Trimmed Squares (LTS) loss: in each batch, we select the top s samples with the lowest MSE loss.
- Huber loss: for large residuals, we use a linear penalty instead of a quadratic one.

RDDPM-LTS

while Not converged do

end while

 $x_0 \sim q(x_0)$ $t \sim \text{Uniform}(\{1, \dots, T\})$ $\epsilon \sim \mathcal{N}(0,I)$

Take gradient descent step on

$$abla_{ heta}$$
 Huber $_{\delta}$ $\left(\epsilon - \epsilon_{ heta} \left(\sqrt{ar{lpha}_t} x_0 + \sqrt{1 - ar{lpha}_t} \epsilon, t
ight)
ight)$

 $ext{where} \quad ext{Huber}_{\delta}(r) = egin{cases} rac{1}{2}r^2 & ext{if } |r| \leq \delta \ \delta\left(|r| - rac{1}{2}\delta
ight) & ext{if } |r| > \delta \end{cases}$

RDDPM-Huber

while Not converged do $x_0 \sim q(x_0)$

 $t \sim \text{Uniform}(\{1, \dots, T\})$ $\epsilon \sim \mathcal{N}(0,I)$

Take gradient descent step on

$$\nabla_{\theta} LTS(\left\|\epsilon - \epsilon_{\theta} \left(\sqrt{\bar{\alpha}_{t}} x_{0} + \sqrt{1 - \bar{\alpha}_{t}} \epsilon, t\right)\right\|^{2})$$

$$= \sum_{i=1}^{s=\lambda \times B} \nabla_{\theta} \left\|\epsilon_{i} - \epsilon_{\theta} \left(\sqrt{\bar{\alpha}_{t_{i}}} x_{0_{i}} + \sqrt{1 - \bar{\alpha}_{t_{i}}} \epsilon_{i}, t_{i}\right)\right\|^{2}$$

Where $s \in \{1, ..., B\}$ and $\lambda \in (0, 1]$

end while

Training Data Training Gaussian Noise $\epsilon_{ heta}(x_t,t)$ $L = \operatorname{Huber}_{\delta}(|\epsilon - \hat{\epsilon}|)$ Binary Mask

Performance

AUROC	AUPRC	MSE
0.6373	0.1803	0.0896
0.4734	0.0121	0.2188
0.5565	0.0766	0.0863
AUROC	AUPRC	MSE
0.5673	0.0362	0.1246
0.4650	0.0234	0.2115
0.4909	0.0268	0.1199
AURO	DC-ID A	UROC-OOD
0.	78	0.71
0.	76	0.69
	0.6373 0.4734 0.5565 AUROC 0.5673 0.4650 0.4909 AURO 0.	0.6373 0.1803 0.4734 0.0121 0.5565 0.0766 AUROC AUPRC 0.5673 0.0362 0.4650 0.0234 0.4909 0.0268

Example reconstructions by DDPM and RDDPM-Huber

> RDDPM-Huber has cleaner reconstructions when trained under 20% contamination.

Anomalous

DDPM

