淇江一中 2023 届高三卓越班 NLXF2023-17

高三数学限时训练 45——数列求和 2

子勺: 姓石:

一、单选题

1. 已知数列 $\{a_n\}$ 的前n 项和为 S_n ,且 $a_1=1$, $a_{n+1}+a_n=2n+1(n\in N_+)$,则数列 $\{\frac{1}{S_n}\}$ 的前 **2020** 项的和为(

- $\frac{2020}{2021}$
- c. $\frac{4039}{2020}$

2. 已知数列 $\{a_n\}$ 的前n 项和 S_n 满足 $S_n=n^2$,记数列 $\left\{\frac{1}{a_na_{n+1}}\right\}$ 的前n 项和为 T_n , $n\in N^*$.则使得 T_{20} 的值为()

- c. $\frac{38}{30}$ D. $\frac{40}{41}$

3. 已知数列 $\left\{a_{n}\right\}$ 满足 $a_{1}=2$, $a_{2}=3$ 且 $a_{n+2}-a_{n}=1+(-1)^{n},n\in N^{*}$,则该数列的前 9 项之和为()

- A. 32

4. 数列 $\{a_n\}$ 满足 $a_1 = \frac{4}{3}$, $a_{n+1} - 1 = a_n^2 - a_n (n \in N^*)$, 数列 $\{\frac{1}{a_n}\}$ 的前n项和为 S_n , 则()

- **A.** $1 < S_{2021} < 2$ **B.** $2 < S_{2021} < 3$ **C.** $3 < S_{2021} < 4$ **D.** $4 < S_{2021} < 5$

5. 设 S_n 为数列 $\{a_n\}$ 的前n 项和, $2a_n - a_{n-1} = 3 \cdot 2^{n-1} (n \ge 2)$,且 $3a_1 = 2a_2$.记 T_n 为数列 $\left\{\frac{1}{a_n + S_n}\right\}$ 的前n 项和,若对任

 $\hat{\mathbf{n}} \in \mathbf{N}^*$, $T_n < m$, 则m的最小值为(

- A. 3
- B. $\frac{1}{3}$ C. 2 D. $\frac{1}{2}$

6. 记数列 $\{a_n\}$ 的前n项和为 S_n ,若 $a_1=1$, $a_n(S_{n+1}-S_n)=\frac{1}{2^n}$,则 $S_{2021}=($)

- **A.** $3 + \frac{1}{2^{1009}}$ **B.** $3 \frac{1}{2^{1009}}$ **C.** $3 + \frac{1}{2^{1010}}$ **D.** $3 \frac{1}{2^{1010}}$

7. 数列 $\{a_n\}$ 是正项等比数列,满足 $a_n a_{n+1} = 4^n$,则数列 $\left\{\frac{1}{\log_2 a_n \cdot \log_2 a_{n+1}}\right\}$ 的前n 项和 $T_n = ($)

- B. $\frac{4n}{2n-1}$ C. $\frac{n}{2n+1}$ D. $\frac{n}{2n-1}$

8. 数列 $\{a_n\}$ 满足 $a_1=1$,且 $a_{n+1}=a_1+a_n+n$ ($n \in \mathbb{N}^*$),则 $\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_{2017}}=$ ()

- **c.** $\frac{4028}{2015}$ **D.** $\frac{2015}{1008}$

9. 已知等比数列 $\{a_n\}$ 满足 $a_5=16$, $a_4-a_3=4$,若 $b_n=na_n$, S_n 是数列 $\{b_n\}$ 的前n项和,对任意 $n \in \mathbb{N}^*$,不等式

 $S_n - mb_n \le 1$ 恒成立,则实数 m 的取值范围为(

A. $[4,+\infty)$ **B.** $[3,+\infty)$ **C.** $[2,+\infty)$

D. $[1,+\infty)$

10. 设[x]为不超过 x 的最大整数, a_n 为 $[x[x]](x\in[0,n))$ 可能取到所有值的个数, S_n 是数列 $\left\{\frac{1}{a_n+2n}\right\}$ 前 n 项的和,

则下列结论正确个数的有(

(1) $a_3 = 4$ (2) 190是数列 $\{a_n\}$ 中的项 (3) $S_{10} = \frac{5}{6}$ (4) 当n = 7时, $\frac{a_n + 2}{n}$ 取最小值

A. 1个

c. 3个

11. 已知数列 $\left\{a_{n}\right\}$ 满足 $a_{1}=\frac{1}{2}$, $a_{n+1}=a_{n}^{2}+a_{n}+1$,若 $S_{n}=\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}$,对任意的 $n\in\mathbb{N}^{*}$, $S_{n}< M$ 恒成立,则 M的最小值为(

A. $\frac{8}{3}$

B. $\frac{26}{9}$

c. $\frac{26}{27}$

12. 已知数列 $\{a_n\}$ 的前 n 项和为 S_n ,满足 $a_n = \frac{1}{n^{p+1}(n^p+1)}$,则下列说法正确的是()

A. 当 p = -1时,则 $S_{2019} < \pi$

B. 当 p = 0时,则 $S_{2019} > \pi$

C. 当 $p = \frac{1}{2}$ 时,则 $S_{2019} > 1$

D. 当 p=1时,则 $S_{2019}>1$

二、填空题

13. 已知正项数列 $\{a_n\}$ 满足 $a_1=1$, $a_n^2-(a_{n-1}+2)a_n-a_{n-1}-3=0, (n\geq 2, n\in N^+)$,则 $\frac{1}{a_1a_2}+\frac{1}{a_2a_3}+\cdots+\frac{1}{a_{2000}a_{2021}}=$

14. 设 $f(x) = \frac{4^x}{4^x + 2}$,则 $f\left(\frac{1}{2020}\right) + f\left(\frac{2}{2020}\right) + f\left(\frac{3}{2020}\right) + L + f\left(\frac{2019}{2020}\right) = \underline{\qquad}$

15. 数列 $\{a_n\}$ 的前n项和为 S_n ,且 $S_3=1,S_4=-1$,且 $a_{n+3}=2a_n \left(n\in N^*\right)$,则 $S_{2017}=$ ________.

16. 已知正项数列 $\{a_n\}$ 的前n项和为 S_n ,且 $2S_n = a_n^2 + a_n$.若 $b_n = (-1)^n \frac{2n+1}{2S_n}$,则数列 $\{b_n\}$ 的前 **2021** 项和为_____

17. 已知数列 $\{a_n\}$ 的各项均为正数, $a_1=3$, $\frac{a_{n+1}^2}{a}=6a_n+a_{n+1}\left(n\in\mathbf{N}^*\right)$, $b_n=\frac{2a_n}{(a_n+1)(a_{n+1}+1)}$,数列 $\{b_n\}$ 的前n项和

为 S_n , 若 $\lambda < S_n < \mu$ 对任意正整数n都成立,则 $\lambda - \mu$ 的取值范围是_______.

18. 设 S_n 为数列 $\{a_n\}$ 的前 n 项和,满足 $S_1 = 1$, $S_{n+1} = \frac{n}{n+2} S_n$,其中 $n \in \mathbb{N}^*$,数列 $\{S_n\}$ 的前 n 项和为 T_n ,则 $T_{20} = \underline{\hspace{1cm}}$