Assymment 4

Samgar Tristian, Matthew Chu, Alberto Mantin Lionardi

1a.
$$f(x) = x^2 - 5x + 6$$

5 fanting point $x^{(0)} = 4$
5 tep 5120 = 0,3

$$\int_{1}^{1}(x)=2x-5 \qquad 0 = 5$$

$$\int_{1}^{1}(y)=2.(y)-5$$

$$\chi_2 = 3.1 - (0.3 \cdot (1.2))$$

b. Yes, it is slowly going towards the point x=2,5 as shown in 4 Analyse the minimum like f'(x) = 0 <=> == 2.5 >> 0.5 the Xy and it will gradually gets lower. c. the step 5120 of 1 is too high. The value of x will go up and down countless times. I don't quite understand what does "method" imply as from I know you could only change the step size either make it higher on lower. In the question it's stated that the step ine is 1. My answer is to lower the step size as changing the start value doesn't really give any helping information and also with the assumption that convergence point=2,5 $2,5 = 1 - a((2 \cdot 1) - 5)$ $= 1 - \alpha(2-5)$ = 1+3a 1,5 = 30 7 = 0 0,5= a Sep 5128=0,5 / 1 1.2 a. too high b. aboul night / C. 400 low 🗸 d. too high / c> reasoning; thy is it too high? => -1

=> Exercise 7: 5.5

	2.	Cros	s - Val	idaluov	1									
	7	No.	1 1001	i II	nan Inc	imanc	e and	QN V/	ar Ibu	5 (1)	h (. I.M	stan	lls.	
			as in											
	b.		in each									<u> </u>	iûly	
			inte if t			1		· · ·	_					
			leave.									the	at U	
		_	e fime											
		will	also us	e the	same (lata:	The re	sulf	as the	at sho		les ho	Tho	ENMO
		05	before	>	1 have	60 1	Cabe U	r Wor	st &	plution	if yo	u don	£ 009	GUMO E It Out
		100/ 3	wally,	h-fold	dividu	e it's	s dato	into	sub	015	while	lanvs	-0M.	-out-
	-	Acti,	the da	la all	al the	Sami	2 time	1.						
		Add	(tio ^		Source	- :	(SLF			Lho	wa	nts l	0 61	timate
No			CV						bu	A 110	(7) cy l'	.4 (4) Wra	
			NSt)	Olota N	100	in	valid	aho	n se	of fr	ing t	zu ni	re data
No	h	ß												
100	0.													h-CV)
Yes	C .	Pa	da	dala	ر اال	L John	- Hac		rlidad	JAM	spł	(In	Hhis	case) enat)
		exa	ctly or	M CD	with	its	CA M	COan	dia	400)Om (lcha	થ	enant)
Vo														
110	d.	10	OCV	Ne	eds	to	trai	1	and	fit	n	Hn	nes.	
			- fold										,7	
		الما	CU	More		mp	uta ti	onal	ly	ex	nsn	~		
				6	Zxcek)+	K=	h					1	
		0	4		•									
=> E3	ereis	e 2;	4											

```
3. KNN Classifion
a. (2,3)
   d ([X1, X2], [Y1, Y2]) = | X1- Y1 | + [X2-Y2]
  (1,1)=(-) (3,3)=(+) | |2-1|+|3-1|=3(-) |2-1|+|3-4|=2(-)
 (1,4)=(-) (3,1)=(-) |2-3|+|3-1|=3(-) |2-2|+|3-4|=1(+)
 (2, 4) = (1) (5,1) = (1) |2-5| + |3-1| = 5(1) |2-3| + |3-3| = 1(1)
                         (3,3) = (1) (2,11) = (1)

(2,3) = (1) (3,3) = (1)

(1,11) = (-1)
                                    (2,2) = (+)
```

b. the decision might be field, for example at the same distance but the values are different.

thus we need to add additional decision (normally type 1/type 11)

c. A problem that comes in mind is for data of range 0 and 1. Where the distances become so close that it no longer holds any significat meaning in KNU classifier

euclidean norm only works great in R?, R?

Performs worse in higher R > compatationally more expansive

U. Bacupropagation

Thereise 3: 4 , nice!

f= b+z <u>df</u> = 1 db f=(a*y)+z Of = Of Ob = 1.y-y
da ob da