Politecnico di Bari

Analisi Matematica – II modulo– Laurea in Ingegneria Informatica e dell'Automazione A.A. 2015/2016 Appello 13 giugno 2016 Traccia A

Cognomo	Nome	_Nº Matricola
Cognome	_Nome	_N° Matricola

1) Stabilire il carattere della seguente serie:

$$\sum_{k=2}^{\infty} \left(\frac{1}{k(\log k)^{3/2}} - \frac{\sin k}{k^{5/4}} \right).$$

8 pts.

2) Stabilire se la funzione $f(x,y) = \frac{x^2 e^{x-y}}{x-y}$ ha derivata direzionale nel punto (1,0) secondo la direzione del versore $v = (-\frac{\sqrt{3}}{2}, \frac{1}{2})$ e, in caso affermativo, calcolarla.

7 pts.

3) Determinare la soluzione del problema di Cauchy:

$$\begin{cases} y' = -2xy + x^2 e^{-x^2} \\ y(1) = 1 \end{cases}$$

7 pts.

4) Calcolare

$$\int_D \frac{y}{x^2 + y^2} dx dy,$$

dove D è il dominio rappresentato in grigio in figura:

Politecnico di Bari

Cognome	Nome	Nº Matricola
- 6		

1) Stabilire il carattere della seguente serie:

$$\sum_{k=2}^{\infty} \left(\frac{1}{k(\log k)^{5/2}} - \frac{\cos k}{k^{4/3}} \right).$$

8 pts.

2) Stabilire se la funzione $f(x,y) = \frac{(y+1)e^{x^2-y}}{y}$ ha derivata direzionale nel punto (0,1) secondo la direzione del versore $v = (-\frac{\sqrt{3}}{2}, \frac{1}{2})$ e, in caso affermativo, calcolarla.

7 pts.

3) Determinare la soluzione del problema di Cauchy:

$$\begin{cases} y' = xy + xe^{\frac{3}{2}x^2} \\ y(1) = 0 \end{cases}$$

7 pts.

4) Calcolare

$$\int_{D} \frac{x}{x^2 + y^2} dx dy,$$

dove D è il dominio rappresentato in grigio in figura:

8 pts.