Theory of Automata and Formal Language Lecture-19

Dharmendra Kumar (Associate Professor) Department of Computer Science and Engineering United College of Engineering and Research, Prayagraj May 4, 2021

Determination of regular expression from finite automata

The following assumptions are made regarding the transition system:-

- (i) The transition graph does not contain ϵ move.
- (ii) It has only one initial state, say q_1 .
- (iii) Let all the states are q_1 , q_2 , q_3 ,...., q_n ,
- (iv) Let α_{ij} denotes the regular expression representing the set of labels of edges from q_i to q_j . When there is no such edge, $\alpha_{ij} = \phi$.

In this process to find regular expression, initially we make n equations as the following:-

$$q_1 = q_1\alpha_{11} + q_2\alpha_{21} + q_3\alpha_{31} + \dots + q_n\alpha_{n1} + \epsilon$$
 $q_2 = q_1\alpha_{12} + q_2\alpha_{22} + q_3\alpha_{32} + \dots + q_n\alpha_{n2}$
 $\dots + q_n = q_1\alpha_{1n} + q_2\alpha_{2n} + q_3\alpha_{3n} + \dots + q_n\alpha_{nn}$

We solve these equations by using ARDEN's theorem . The regular expression will be the union of regular expressions corresponding to each final states.

Some Examples

