

101

Fig. 1

201

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 7

Fig. 8

Fig. 11

<u>1501</u>

Fig. 15

1601

Fig. 16

volume being traversed 1801

Fig. 18

Fig. 19

```
1
        (x, y, z) = ray.startPoint
 2
 3
       Get the first run length in each projected ray path.
       r_{XY} = projection_{XY}.firstRunLength()
 4
 5
       r_{XZ} = projection_{XZ}.firstRunLength()
 б
 7
       while unterminated
 8
            if r_{XY} < r_{XZ}
                subdivision.traverseRun(r_{XY}, x, y, z)
 9
10
               Calculate the position of the next run.
11
12
               x + = r_{XY}
13
               y + +
14
15
               Shorten the corresponding XZ run.
16
               r_{XZ} - = r_{XY}
17
18
               Get the next XY run length.
               r_{XY} = projection_{XY} . nextRunLength()
19
20
21
           else if r_{XY} > r_{XZ}
22
                subdivision.traverseRun(r_{XZ}, x, y, z)
23
               Calculate the position of the next run.
24
25
               x + = r_{XZ}
26
               z + +
27
28
               Shorten the corresponding XY run.
29
               r_{XY} - = r_{XZ}
30
               Get the next XZ run length.
31
32
               r\chi z = projection\chi z.nextRunLength()
33
           elseThe XY and XZ runs have the same length.
34
                subdivision.traverseRun(r_{XZ}, x, y, z)
35
36
               Calculate position of next run.
37
38
               x + = r_{XZ}
39
               y + +
40
               z + +
41
               Get the next XY and XZ run length.
42
               r_{XY} = projection_{XY}.nextRunLength()
43
44
               r_{XZ} = projection_{XZ}.nextRunLength()
```

Fig. 20

Fig. 21

1801

Fig. 22

PCT/US03/00240

```
1 if r_{XY} < r_{XZ}
        if projection_{XY}.\beta is non-zero
 2
            No edge intersection.
 3
           subdivision.traverseRun
4
                         (r_{XY}+1,x-1,y,z)
       else
5
           Edge intersection.
б
           subdivision.traverseRun(r_{XY}, x, y, z)
 7
8
       x + = r_{XY}
9
       y + +
10
11
       r_{XZ} - = r_{XY}
       r_{XY} = projection_{XY}.nextRunLength()
12
```


1801

Fig. 24

PCT/US03/00240

```
if r_{XY} == r_{XZ}
         if projection_{XZ}.\hat{\beta} < projection_{XY}.\hat{\beta}
 2
             subdivision.traverseCell(x, y, z - 1)
 3
         else if projection_{XY}.\hat{\beta} < projection_{XZ}.\hat{\beta}
 4
             subdivision.traverseCell(x, y - 1, z)
 5
        else projection_{XY}.\hat{\beta} == projection_{XZ}.\hat{\beta}
 б
             if projection_{XY}.\hat{\beta} is zero
 7
                 No corner intersection.
 8
                subdivision.traverseRun
 9
                               (r_{XY}+1,x-1,y,z)
             else
10
                 Corner intersection.
11
                subdivision.traverseRun(r_{XY}, x, y, z)
12
13
14
        x + = r_{XY}
        r_{XY} = projection_{XY}.nextRunLength()
15
        r_{XZ} = projection_{XZ}.nextRunLength()
16
```


volume <u>1801</u>

Fig. 27

```
For each run in the list
 1
       for i = 0; i < list.length; i + +
 2
           if ray.run.end < list.run[i].start
3
               No intersection exists
4
5
              return
б
          if ray.run.start < list.run[i].end
7
8
               Intersection exists
              x_0 = \max(ray.run.start, list.run[i].start)
9
              x_1 = \min(ray.run.end, list.run[i].end)
10
              subdivision.traverseRun(x_1 - x_0, x_0, y, z)
11
 2801
```

i = 0

1

```
j = list.length
2
       if ray.run.end < list.run[i].start
            No intersection exists
 5
           return
       if ray.run.start \ge list.run[j].end
8
            No intersection exists
9
            return
10
11
       intersectRunList(i, j)
12
 1 intersectRunList(inti, intj)
         if i == j
 2
             Intersection exists
 3
            x_0 = \max(ray.run.start, list.run[i].start)
 4
            x_1 = \min(ray.run.end, list.run[i].end)
 5
            subdivision.traverseRun(x_1 - x_0, x_0, y, z)
 6
            return
 7
 8
        j' = \lfloor (i+j)/2 \rfloori' = j' + 1
 9
10
11
        if \ ray.run.start < list.run[j'].end \\ intersectRunList(i,j')
12
13
14
        if \ ray.run.end \geq list.run[i'].start
15
             intersectRunList(i', j)
16
```


Fig. 30

PCT/US03/00240

```
Assume for each run:
 I
      ray.run.length \leq partition.size
2
      for each run length
3
           if ray.run.length > partition.extent
               Handle tail of run length.
 5
              if partition is interesting
б
                   Traverse partition.extent cells.
7
8
               ray.run.length-=partition.extent
              partition.extent = partition.size
9
           Handle head of run length.
10
          if partition is interesting
11
               Traverse ray.run.length cells.
12
           partition.extent-=ray.run.length
13
```

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
(

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.