

ČASOPIS PRO RADIOTECHNIKU A AMATÉRSKÉ VYSÍLÁNÍ ROČNÍK XXII/1973 ČÍSLO 10

V TOMTO SEŠITĚ

Náš interview	361
Přispějme ke zdaru V. sjezdů	
Svazarmu	362
Na výstavě v Moskvě	363
III. letní spartakiáda spřátele-	
ných armád	363
Letní výcvikový tábor radio-	
amatérské mládeže	364
Usņesení celostátní konference	
ÚRK Svazarmu	364
Celostátní setkání radioamatérů	
- Olomouc 1973	365
Expedice AR k V. sjezdu Svazar-	
mu ČSSR	
Jak na to?	368
R 15	369
Tranzistorový budík	371
Sdružený palubní otáčkoměr a	
voltampérmetr	372
Tuner UKV	374
_Mf zosilňovač 10,7 MHz s IO	375
Keramické kondenzátory (dokon-	
čení)	383
Zapojení s operačními zesilovači	
(dokončení)	386
Škola amatérského vysílání	389
Úprava rozhlasového přijímače	
na transceiver pro 144 MHz	391
Nad námi stále OSCAR 6	392
Soutěže a závody	396
Amatérská televize	397
Naše předpověď	
DX	
Nezapomeňte, že; Četli jsme	
Inzerce	399
•	

Na str. 379 až 382 jako vyjímatelná příloha "Malý katalog tranzistorů".

AMATÉRSKÉ RADIO

AMATÉRSKÉ RADIO

Vydává FV Svazarmu ve vydavatelství MAGNET, Vladislavova 26, PSČ 113 66 Praha 1, telefon 260651-7. Šéfredaktor ing. František Smolik, zástupce Luboš Kalousek. Redakčni rada: K. Bartoš, V. Brzák, ing. J. Čermák, CSc., J. Dlouhý, K. Donát, I. Harminc, K. Hlinský, ing. L. Hloušek, A. Hofhans, Z. Hradiský, ing. J. T. Hyan, ing. J. Jaroš, ing. F. Králik, ing. J. Navrátil, K. Novák, ing. O. Petráček, A. Pospíšil, ing. J. Vackář, CSc., laureát st. ceny KG, J. Ženišek. Redakce Lublaňská 57, PSČ 120 00 Praha 2, tel. 296900. Ročně vyjde 12 čísel. Cena výtisku 5 Kčs, pololetní předplatné 30 Kčs. Rozšíruje PNS, v jednotkách ozbrojených sil vydavatelství MAGNET, administrace Vladislavova 26, Praha 1. Objednávky přijímá každá pošta i doručovatel. Dohlédací pošta Praha 07. Objednávky do zahraničí vyřizuje PNS, vývoz tisku, Jindřišská 14, Praha 1. Tiskne Polygrafia 1, n. p., Praha. Inzercí přijímá vydavatelství MAGNET, Vladislavova 26, PSČ 113 66 Praha 1, tel. 260651-7, linka 294. Za původnost přispěvku ručí autor. Redakce rukopis vráti, bude-li vyžádán a bude-li připojena frankovaná obálka se zpětnou adresou.

Toto číslo vyšlo 10. října 1973 © Vydavatelství MAGNET, Praha

generálmajorem ing. Ladislavem Stachem, náčelníkem spojovacího vojska MNO, k oslavám Dne čs. armády.

Soudruhu generále, v těchto dnech sla-ví naše armáda "Den československé lidové armády". Mohl byste říci čtená-řům několik slov k těmto oslavám?

6. října již tradičně slavíme Den československé lidové armády, který je spjat s 6. říjnem 1944, kdy příslušníci československého armádního sboru v SSSR po boku Sovětské armády ovládli Dukelský průsmyk a vstoupili na pů-du naší vlasti. U příležitosti Dne Československé lidové armády se příslušníci ČSLA i pracující naší vlasti hrdě hlásí k revolučním a bojovým tradicím našich národů. Pro nás vojáky je příležitostí nejen k oslavě této významné historické události, ale i k hodnocení dosažených úspěchů v neustá-lém zvyšování bojové a politické připravenosti ČSLA, kterými v duchu révolučního odkazu vytváříme novodobě tradice naší armády. V neposlední řadě je i příležitostí k zamyšlení a přijetí závazků i předsevzetí, jak na základě dosažených výsledků a zkušeností hu dosažených výsledků a zkušeností bu-deme plnit úkoly, které před námi vytyčil XIV sjezd KSČ.

Den ČSLA spolu s námi vojáky osla-vuje všechen náš lid, zejména pak přátelé, s kterými v družném a soudružském úsilí úzce politicky i odborně spolupracujeme. Při této příležitosti bych chtěl podtrhnout cílevědomou, účinnou a družnou spolupráci s členy Svazarmu.

Soudruhu generále, jak jste uvedí, vyvrcholila před devětadvaceti lety v Karpatech jedna z nejúpornějších bitev druhé světové války. Mohl byste zvláště naším mladým-čtenářům říci několik slov k historickému boji na

Dukla byla vyvrcholením bojové cesty čs. vojenských jednotek, organizo-vaných v letech Velké vlastenecké války na území Svazu sovětských socialistických republik. Rozhodnutí o uskutečnění Karpatsko-dukelské operace učinilo sovětské politické a vojenské vedení krátce poté, když na Slovensku vzplálo národní povstání. Rozhodnutí uskutečnit tuto operaci bylo motivováno bratrským vztahem národů SSSR k našemu lidu. Karpatsko-dukelská operace byla urychleně připravena ve velmi krátké době čtyř dní. Byla zahájena v pátek 8. září 1944 dělostřeleckou přípravou a průlomem 38. A (SSSR) nepřátelské obrany. Operační zámysl velení 38. A sledoval rychlé rozdrcení nepřátelského uskupení v předhůří Karpat a rozvinutí úspěchu přes karpatský hřbet s tím, aby během tří až čtyř dnů došlo ke spojení s povstaleckými jednotkami. Směr hlav-ního úderu byl zvolen podél silnice Dukla – Dukelský průsmyk – Prešov.

To znamenalo, soudruhu generále, že směr hlavního úderu byl zvolen tak, aby se vojska v nejkratší době a nej-kratší cestou dostala na územi Sloven-ska. Jak víme však z historie, tento zámysl se nepodařilo uskutečnit.

Generálmajor ing. L. Stach

Máte pravdu. Německé fašistické velení si bylo vědomo, že ofenzíva sovět-ských vojsk v Karpatech představuje ve spojení s dalšími operacemi sovětských vojsk a se Slovenským národním povstáním velké nebezpečí pro celé jižní strategické křídlo hitlerovských vojsk. Proto byly urychleně přesunuty do hor všechny zálohy, kterými ještě disponovala německá skupina armád. Tak se v této oblasti v průběhu několika dní změnil poměr sil v neprospěch 38. armády. Místo rychlého průlomu podel horských cest muscla proto vojska 38. armády a společně s nimi i jednotky 1. čs. armádního sboru vést těžké boje, které se protáhly na delší dobu. Teprve zrána 6. října, celý měsíc po započetí útoku, pře-šel 1. čs. armádní sbor státní hranice a vstoupil do prvé slovenské osady; na Prešov došlo až za čtyři a půl měsíce. Nejtěžší boje vedly jednotky sboru o výšinu 534. Bez ovládnutí této výšiny nebylo možno úspěšně rozvíjet operaci. Výšina přecházela několikrát "z ruky do ruky", až byla nakonec pevně obsazena , až byla nakonec pevně obsazena praporem čs. samopalníků pod velením hrdiny Sovětského svazu nadporučíka Sochora.

Kolik dní probíhala karpatsko-dukel-ská operace a jaké celkové síly byly na obou stranách?

Karpatsko-dukelská operace vynikala svým značným rozsahem. Nepřetržitě probíhala po dobu 67 dní na ploše více než 2 000 km². Zúčastnila se jí na obou stranách vojska v celkové hodnotě asi 40 divizí (z toho téměř jedna pětina tankových), tj. téměř 300 000 osob, kolem 4 000 děl a minometů, více než 500 tanků a samohybných děl, značný počet bojových letounů a velké množství ostatní válečné techniky. Spojení bylo zabezpečováno velkým množstvím spojovacích prostředků, hlavně radiovými a linkovými prostředky i pohyblivými pojítky. Radiové stanice měly na tehdejší dobu velmi dobré technické parametry a umožňovaly zabezpečovat spojení i ve velmi těžkém, hornatém a zalesněném terénu. Od radistů tato situace vyžadovala neuvěřitelné improvizace ve stavbě antén a v dálkovém ovládání stanic, umístěných někdy i ve značné vzdálenosti od krytů. O rozsahu bojů na Dukle svědčí i následující čísla: jenom v době od 8. září do konce října

1944 ztratil v nich nepřítel asi 52 000 mužů (padlých a raněných), 185 tanků a samohybných děl, 73 obrněných transportérů, 683 aut, 483 děl, 354 minometů, 2 410 kulometů, 893 vozů s náklady aj. Karpatsko-dukelské vítězství však bylo zaplaceno 6 500 mrtvých a raněných Čechoslováků a 80 000 mrtvých a raně-

ných sovětských vojáků.

I když se nepodařilo karpatsko-dukelskou operaci uskutečnit podle původního plánu, poskytla vojska 38. armády a jednotky 1. čs. armádního sboru povstání velkou pomoc. Od září 1944 udržovalo hitlerovské velení v útočném pásmu 38. armády vojska několika divizí. Část těchto sil byla stažena z bojů proti partyzánským oddílům a jednotkám povstalecké armády na Slovensku. Až do druhé poloviny října 1944 se hitlerovci na Slovensku nezmohli na rozhodující úspěch. Teprve 20. října zahájili novou ofenzívu proti osvobozenému území. Nakonec však osvobozenecká vojska zlomila odpor nepřítele a vstoupila na půdu naší vlasti. Dukla se stala branou ke svobodě našeho lidu.

Soudruhu generále, jak využíváte tradic prvního čs. armádního sboru ve výchově vojáků – spojařů?

V naší práci výchova vojáků k lásce a úctě k revolučním bojovým tradicím naší armády zaujímá prvořadé místo. Svoji činnost zaměřujeme k tomu, abychom v podmínkách spojovacích útvarů a jednotek přitažlivě a přesvědčivě vedli vojáky k hrdosti na naši vlast, na Čs. lidovou armádu a spojovací vojska a na naši příslušnost k socialistickému společenství. Směr naší výchovy je prováděn v souladu se závěry XIV. sjezdu KSČ a závěrů červencového zasedání ÚV KSČ, které se zabývalo výchovou mlodého pokolecí v zabývalo výchovou mlodého pokolecí v zabývalo výchovou mladého pokolcní v rozvinuté socialistické společnosti. Vojáky vychováváme k uvědomělému vztahu k vojenské službě, rozvoji aktivity a iniciativy při plně-ní náročných úkolů. Klademe důraz na světonázorovou výchovu na základě marxismu-leninismu, rozvoje socialistického vlastenectví a proletářského internacionalismu. Cheme, aby naší vojáci plnili slova přísahy a základních řádů v každodenní činnosti. Vystupujeme proti všem projevům pacifismu a principiálně vysvětlujeme současnou mezinárodní a vojenskopolitickou situaci s cílem dosáhnout dalšího zvýšení mistrovství všech spojařů při zabezpečová-ní nepřetržitého a pevného spojení v složitých bojových podmínkách po vzoru našich spojařů 1. čs. armádního sboru v bojích o Duklu. Hlavní cestou všestranného zdokonalování bojového mistrovství našich spojařů je využívání spolupráce a zkušeností spojařů sovětské armády na základě rozvoje socialistické soutěže se zaměřením na výtečnou znalost spojovací techniky, její vzorné udr-žování a mistrovské ovládání.

Soudruhu generále v duchu tradic čs, armády vychováváte vojáky k vysoké-mu mistrovství. Co můžete k tomuto úkolu naším čtenářům říci?

Charakteristickým rysem současnosti je neobyčejný rozvoj sdělovacích prostředků, radioelektroniky a telekomunikačních družic. S rostoucím významem vědeckotechnické revoluce v rozvinuté socialistické společnosti roste i význam soudobé techniky a její použití v boji. Složitá vojenská spojovací technika vyžaduje od všech příslušníků spojovacího vojska mnoho úsilí, tvořivý a iniciativní přístup k jejímu dokonalému zvládnutí. Vojenská mládež se o spojovací techniku zajímá a chce ji zvládnout; proto je třeba neustále zvyšovati teoretické znalosti.

Na základě této iniciativy se rozšiřuje hnutí o získání a zvyšování třídní specia-lizace a dosažení výtečných výsledků v odborné přípravě spojovacího vojska. Mnoho mladých lidí již před nástupem vojenské základní služby aktivně pra-cuje v kroužcích radioamatérů a jsou po technické i provozní stránce připraveni pro výtečné plnění úkolů po nástupu do vojenské služby k obsluze složité vojenské radiové techniky. Tito vojáci nám plní v bojových podmínkách složité spojovací úkoly. Zvláště si vážíme těch branců, kteří

v rámci předvojenské přípravy dosahují výtečných výsledků, za něž jsou jim udělovány odznaky "Za výtečnou přípravu", za které mají v základní vo-jenské službě určité výhody (např. zůstat na vycházce po večerce o jednu

hodinu déle atd.).

Využívám příležitosti našeho roz-hovoru a děkuji upřímně všem orgánům a instruktorům Svazarmu i redakci Amatérského radia a Radiového konstruktéra za účast na výchově, technické přípravě a výcviku mladých lidí v této oblasti. Účinně totiž přispívá ke komplexnímu plnění závěrů červencového pléna ÚV KSČ.

Přáli bychom si, aby základna radioamatérů a okruh čtenářů Amatérského radia se neustále rozšiřoval a tím se prohlubovaly a rozšiřovaly politické i odborné technické znalosti předvojenské mládeže. To bude značným přínosem pro spojaře Čs. lidové armády při zvyšování jejich bojového mistrovství.

Závěrem bych chtěl blahopřát k tomuto významnému výročí všem čtenářům našich časopisů, zvláště bývalým účastníkům 1. čs. armádního sboru a popřát jim mnoho pracovních úspěchů

a osobní spokojenosti.

Věrni této tradici považujeme my, příslušníci ČSLA, za svoji prvořadou povinnost a věc osobní cti naplňovat revoluční odkaz Dukly novými činy.

Děkujeme za interview. Přejeme Vám, soudruhu generále, mnoho úspěchů při plnění náročných úkolů Rozkazu ministra národní obrany a při posilení bojové připravenosti naší armády.

Rozmlouval ing. F. Smolík

PŘISPĚJME KE ZDARU V. SJEZDU SVAZARMU

Od V. celostátního sjezdu Svazarmu nás dělí již jen několik týdnů. Přípravy k nejvýznamnější události v životě naší branné organizace tedy vrcholí. Na přípravě sjezdu se plně podíleli také svazarmovští radioamatéři – na výročních schůzích, na svých aktivech v okresech, na okresních konferencích Svazarmu, na obou národních konferencích i celostátní konferenci svazarmovských radioamatérů a konečně na II. sjezdu Svazarmu ČSR a II. sjezdu Zväzarmu SSR. Mnozí radioamatéři získali také mandát delegáta V. celostátního sjezdu na nedávných republikových sjezdech Svazarmu.

Ve více jak roční předsjezdové kampani byla tedy dána všem členům naší branné organizace všech odborností možnost posoudit na nejrůznějších stupních od základních organizací a klubů počínaje vykonanou práci, její výsledky, úspěchy, ale i těžkosti, a současně vyslovit názory a stanoviska, jak chtějí přispět k dalšímu rozvoji Svazarmu, k splnění úkolů, jež pro nás vyplývají z vojenské a branné politiky Komunistické strany Československa. Předsjezdová kampaň, z níž nejcennější zkušenosti, podněty a myšlenky z celého hnutí mají podpořit rozhodující závěry V. celostátního sjezdu, ještě nekončí, ale spěje k vyvrcholení. Proto bychom rádi připomněli, čím je ještě možno a třeba přispět ke zdaru sjezdu.

Tak především – které hlavní otázky jednání V. sjezdu Svazarmu nastolí? Jistě nejprve zhodnotí krizové období Svazarmu, v mnohém nepochybně hlouběji, než to mohl učinit IV. mimořádný sjezd, a ve spojitosti s tím celé složité období konsolidace. Posoudí, jak Svazarm plnil usnesení federálního vý boru, jež rozpracovávala závěry XIV. sjezdu KSČ, jednotného systému branné výchovy obyvatelstva i usnesení jiných plén či orgánů ÚV KSČ. Zhodnotí dosavadní výsledky na všech úsecích práce a bude je konfrontovat s novými, náročnějšími požadavky na rozvoj a působnost Svazarmu. Zobecní poznatky a vyvodí poučení z řídicí, politicko-vý chovné, organizátorské a masově politické práce; ukáže, jak na všech úsecích činnosti uvádět v život usnesení předsednictva ÚV KSČ z 30. 3. 1973 o úloze a dalších směrech rozvoje Svazarmu, a jak přispět v duchu červencového pléna ÚV KSČ k socialistické výchově mladého pokolení; přijme zásadní rozhodnutí k dalšímu zkvalitnění a zefektivnění veškeré činnosti Svazarmu, doplní a schválí návrh nových jednotných stanov Svazarmu a na závěr zvolí nový ústřední výbor.

Ke všem těmto otázkám budou zaujímat své stanovisko delegáti V. celostátního sjezdu a mezi nimi i radioamatéři, kteří – tak jako jiní – obdrželi svůj mandát na národních sjezdech Svazarmu. Je to pro ně nepochybně výjimečná příležitost prospět radioamatérskému sportu a Svazarmu, zejména tím, jak vystoupí v diskusi a jak tvořivě přispějí k analyzující i výhledové koncepci sjezdových dokumentů. Z tohoto hlediska vystupuje do popředí úloha delegátů vůbec, jejich důkladná příprava na sjezd a odpovědný přístup k řešení všech otázek dalšího rozvoje Svazarmu.

V. celostátní sjezd Svazarmu uzavře nejen složité období konsolidace celé organizace, ale také etapu, v níž strana podala pomocnou ruku Svazarmu takovou měrou, jako dosud nikdy – v kon-solidačním procesu, v závěrech XIV. sjezdu KSČ i jednotného systému branné výchovy, v četných usneseních plén i předsednictev ÚV KSČ a všemi svými orgány v krajích, okresech i místech. Všemi těmito dokumenty prolíná základní myšlenka, kterou rozpracovalo červencové zasedání ÚV KŠČ. Jeho závěry ukládají Svazarmu přispět všemi silami k branné a tudíž i socialistické a komunistické výchově především mladého pokolení. Federální výbor Svazarmu již tento závažný úkol strany rozpracovává, pojímá jej plně a široce do příprav V. sjezdu Svazarmu a vy-slovil požadavek, aby oba národní sjez-dy, které již proběhly, a po nich i celostátní sjezd byly orientovány naplno k mládeži. K dosažení tohoto cíle mohou na svém úseku činnosti velmi účinně přispět také radioamatéři – delegáti V. celostátního sjezdu.

Mezi radioamatéry je živý zájem i o návrh nových jednotných stanov Svazarmu, které V. celostátní sjezd jako nejvyšší orgán doplní a schválí. Návrh stanov je vypracován, na mnoha aktivech v okresech i krajích byl a dosud je diskutován, doplňován a upřesňo-

ván. Tak je to správné a jinak tomu ani nemůže být. Nadále je i funkcionářům, kolektivům i delegátům sjezdu z řad radioamatérů dávána možnost, aby k návrhu stanov vyjádřili svá stanoviská. Příležitosti je tedy třeba využít. Návrh nových stanov je k dispozici na všech okresních výborech Svazarmu a obšírný komentář k tomuto návrhu byl otištěn v srpnovém čísle AGITÁTOŘA, které bylo již v polovině srpna rozesláno až do všech ZO a klubů.

V předminulém čísle Amatérského radia byla informace o tom, jak je třeba na základě rozhodnutí XII. pléna FV Svaz-armu ČSSR souběžně s přípravami obou národních sjezdů i celostátního sjezdu Svazarmu rozvíjet předsjezdovou aktivitu v základních organizacích a klu-bech, v celém hnutí. Vytýčeny byly tři základní myšlenky: za prvé – Svazarm mládeži, za druhé – Svazarm naší lidové armádě a za třetí – Svazarm k prohlou-bení internacionálních vztahů. Výjimečnou příležitost k ideověvýchovné práci ve svazarmovských kolektivech každé odbornosti, k uspořádání vhodných akcí, navazujících na naše tradice a milníky nedávné minulosti, nabízejí zejméná tato nadcházející historická výročí:

6. 11. 1973 tomu bude 30 let, co se první čs. samostatná brigáda v SSSR ve svazku 38. armády zúčastnila osvobození metropole Ukrajiny, Kyjeva. Brigáda vznikla z přislušníků 1. čs. samo-

statného praporu v SSSRýkterý prošel prvním bojovým křtem u Sokolova 8. 3. 1943, ze zakarpatských Ukrajinců a ze slovenských vojáků, kteří na východní frontě přešli k Rudé armádě. Začala se organizovat v květnu 1943 v Novochopěrsku. Když devět jejich ešalonů odjíždělo 30. 9. 1943 na frontu, měla brigáda 3 517 vojáků, poddůstojníků a důstojníků, z toho 82 žen a 148 příslušníků RA, specialistí technických jednotek, a skvědou výzbroj: 20 středních a těžkých tanků, 10 obrněných aut, 212 automobilů, 62 motocyklů, 6 houfnic ráže 122, 12 kanónů 76 mm 10 PT kanónů, 30 minometů, PL kanón, 99 kulometů všech ráží, 512 samopalů, 2 158 automatických pušek. Velitel plukovník Ludvík Svoboda si vymohl u sovětského velení, aby brigáda byla nasazena nikoli ve druhém, nýbrž v prvním sledu a na směru hlavního úderu armády. V předvečer oslav Velkého října, 6. 11. 1943, splnili vojáci brigády úkol daný velitelem – bojovali o Kyjev, jako by bojovali o Prahu a proslavili se urputným bojem o přistupy k městu a nakonec o město samo. Brigáda byla za úspěšný boj jmenována v rozkaze J. V. Stalina, obdřzěla řád Suvorova II. stupně, dva velitelé – poručící Antonín Tesař a Richard Tesařík byli jmenování hrdiny Sovětského svazu a 139 vojáků a důstojníků bylo vyznamenáno sovětskými a československými bojovými řády.

slovenskými bojovými řády.

12. 12. 1973 tomu tedy bude rovněž 30 let, co byla v Moskvě podepsána dnes již legendární smlouva o přátelství, vzájemné pomocí a poválečné spolupráci mezi ČSR a SSSR. Soudruh Gottwald krátce na to řekl v moskevském rozhlase: "Naše národní a státní loď našla bezpečný přistav!". Po letošních oslavách 56. výročí Velké říjnové socialistické revoluce bude pokračovat Měsic československo-sovětského přátelství celostátními oslavami právě historické spojenecké smlouvy ČSR-SSSR. Bude to přiležitost posoudit jako dosud nikdy její obrovský a blahodárný vliv na poválečný život naších národů, na socialistický rozvoj naší země i na zajištění její obrany. Na uto smlouvu přimo navazuje Smlouva o přátelství a vzájemné pomocí mezi ČSSR a SSSR, která byla uzavřena 6. 5. 1970 v Praze. —Cf1

NA VÝSTAVĚ V MOSKVĚ

N. A. Grigorjeva

Všesvazové výstavy tvořivosti radioamatérů-konstruktérů DOSAAF, pořádané v SSSR jednou za dva roky, se vyznačují velkou popularitou. Netrpělivě je očekávají návštěvníci, a zodpovědně se na ni připravují i účastníci. O velkém zájmu o výsledky tvořivosti radioamatérů svědčí to, že 1 620 závodů a projektových i jiných organizací požádalo o popis exponátů, které byly vystaveny na minulé, 25. výstavě.

Letos se sešlo na výstavě v Moskvě 694 konstrukci. Zaslaly je radiokluby DOSAAF z 12 republik a z měst Moskvy a Leningradu. Více než 40 exponátů bylo patentově chráněno. Je to důkazem zralosti technických řešení, vycházejících z práce radioamatérů. V tomto článku popišene alecná vycházejících.

V tomto článku popíšeme alespoň několik přístrojů, které dostaly na výstavě nejvyšší ohodno-

Hlavní cenu - cenu známého sovětského radistypolárnika Ernsta Krenkela – obdržel litevský ra-dioamatér Vladas Žalnerauskas, UP2NV, za vy-stavenou krátkovinnou radiostanici I. kategorie –

dioamatér Vladas Žalnerauskas, UP2NV, za vystavenou krátkovlnnou radiostanici I. kategorie transceiver.

Tento radioamatér, pravidelný účastník všesvazových výstav, byl jedním z operatérů radiostanice 4L7A, která v r. 1967 získala zlatou plaketu za I. místo na světě v závodě CQ WW Contest. Jeho vystavovaný transceiver je určen pro prácí CW i SSB. Přistroj má rozměry 150 × 320 × 300 mm a váží 10,5 kg. Dříve než UP2NV přistoupil ke stavbě tohoto transceiveru, provedl analýzu schémat zapojení populárních konstrukcí sovětských i zahraničních autorů, včetně např. maďarského transceiveru DELTA-A, amerických Swan-270, SR-400, sovětské konstrukce J. Kudrjavceva, UW3DI, a dalších. Jím navržené zapojení ve všech ukazatelích předčilo očekávání. Čitlivost přijímače při poměru s/š 10 dB je 0,5 µV. V transceiveru jsou použity vlastnoručně zhotovené krystalové filtry na kmitočtu 5 MHz. Dosažená šířka pásma je 2,4 kHz pro SSB a 400 Hz pro CW. Transceiver je postaven na plošných spojích. V zapojení je použito originální řešení automatického fizení citlivosti, v kterém se využívá logický prvek "nebo". Díky, tomu byl dosažen velký dynamický rozsah vyrovnávání citlivosti – 160 dB. Sumové číslo přijímače je 6,2 dB, činitel křížové modulace menší než 8 %. Potlačení nosné vlny je 56 dB, potlačení druhého postranního pásma je 54 dB. Výkon transceiveru je 200 W.

Viktor Kalačev a Leonid Šlipper z Moskvy obdrželi 1. cenu za sportovní přijímač pro hon na lišku. Jeho zvláštnosti je to, že obsahuje měřič úrovně elektromagnetického pole, umožňující určit vzdálenost k lišce. Přijímač je určen pro práci v pásmech 3,5 až 3,65, 28 až 29,7 a 144 až 146 MHz. Vysoká přesnost zaměření, stabilita kmitočtu a velká citlivost znatelně ulehčují vyhledávání lišek v nejtěžších podmínkách. Citlivost přijímače v pásmu 3,5 MHz; e 0,5 až 0,7 µV, v pásmech 28 až 144 MHz 1 až 2 µV. Selektivita je lepší než 50 dB pro dva sousední kanály. Potlačení zrcadlových kmitočtů je včtší než 60 dB. Napájecí napětí 10 V se získává z baterií, odebíraný proud je 30 mA. Pro vy

charakteristiku a prutová, která upravuje charakteristiku rámové antény na kardioidu. Pro pásmo 144 MHz se používá třiprvková směrová anténa. Použítí radiokompasu umožňuje pohyb po azimu-tu s přesnosti 1,5°. Váha přijímače i s anténami je

Nutno říci, že z této oblasti radioamatérské tvo

Nutno říci, že z této oblasti radioamatérské tvo-řivosti bylo představeno mnoho dalších zajímavých konstrukcí. Např. Vasilij Prisjažňuk z Ivanofran-kovské oblasti vystavoval přijímač pro hon na lišku osazený integrovanými obvody. Nejvice návštěvníků vždy přilákají vitriny, kde jsou vystaveny rozhlasové přijímače, zesilovače a další elektroakustické přistroje. Nejlepším exponá-tem zde byl tranzistorový stereofonní superhet nej-vyšší třidy "Moskva stereo", zhotovený moskev-ským radioamatérem Valeriem Chvalcevem – zná-mým autorem mnohých podobných přistrojů. Při-strojů. vyšši třídy "Moskva stéreo", zhotovený moskevským radioamatérem Valeriem Chvalcevem – známým autorem mnohých podobných přistrojů. Přijimač obsahuje 29 tranzistorů a 21 polovodičových diod a je určen pro přijem rozhlasových stanic, pracujících s kmitočtovou modulací v pásmech dlouhých (150 až 408 kHz), středních (525 až 1 605 kHz) a krátkých vln (5950 až 6 200 kHz, 7 100 až 7 300 kHz, 9,4 až 10 MHz a 11,7 až 12,1 MHz). V pásmu VKV používá stereofonní dekodér. Citlivost přijímače na všech krátkovlnných pásmech je 15 až 20 uV při poměru s/8 20 dB, v pásmu středních vln při použítí vestavěné feritové antěny je citlivost 0,5 mV/m a v pásmu dlouhých vln 0,6 mV/m. Citlivost v pásmu VKV je při poměru s/8 26 dB 5 µV. Mezifrekvenční kmitočet části AM je 465 kHz, části FM 6,8 MHz. Selektivita v pásmech SV a DV je 60 dB pro ± 10 kHz, potlačení zrcadlových kmitočtů na DV 60 dB, na SV 50 dB a na VKV 40 dB. Siřku propustného pásma 1ze přepinat z úzkého pásma 6 kHz na široké pásmo 13 kHz. V pásmu VKV má přijimač automatické doladování kmitočtu. Vestavěný nf předzesilovač umožňuje stereofonní reprodukci při připojení k libovolnému kvalitnímu nf výkonovému zesilovačí.
Nejvyššího ohodnocení se dostalo i tranzistorovému dvoukanálovému stereofonním zesilovačí, zhotovenému dvěma leningradskými konstruktéry – G. Levinsonem a A. Loginovem. Výkon zesilovačí.

vému dvoukanálovému stereofonnímu zesilovači, zhotovenému dvěma leningradskými konstruktéry G. Levinsonem a A. Loginovem. Výkon zesilovače je 2×45 W a má vstupy pro mikrofon, elektromagnetickou přenosku, piezoelektrickou přenosku, linku 10 V a univerzální vstup. Dynamický rozsah zesilení se pohybuje podle použitého vstupu mezi 56 až 74 dB. Odstup rušivých signálů je 90 dB u všech vstupů. Zesilovač má regulaci výšek a hloubek + 18 dB na kmitočtech 50 Hz, 200 Hz, 7,5 kHz a 15 kHz.

a 15 kHz.

V oblasti televizni techniky byla jednoznačně nejlepším exponátem malá kamera průmyslové televize. Jejím autorem je Konstantin Vasiljev ze Saratova. Kamera slouží k předávání obrazů střežených objektů po kabelu do kontrolního střediska. Snimací televizní kamera je osazena výhradně polovodičovými prvky (vyjma vidikonu) a používá i integrované obvody. To umožnilo dosáhnout rozměrů kamery 170×80×33 mm. Výjimečnou vlastností této kamery je použití systému automatické regulace nastavní snímacího zařízení, který umožňuje získání kvalitního obrazu při různém osvětlení objektu (od 5d o 7 500 Lx). Spotřeba elektrické energie kamery je 5,5 W. Propojovací vedení mezi kamerou a monitorem (kabel 75 Ω) může být až 3 km dlouhé. Mezi návštěvníky výstavy se našlo mnoho takových, kteří si chtěli vyzkoušet svoje schopností ve hře na originální elektronický nástroj "FAEMI", zhotovený radioamatěrem Vladimirem Lugovcevem ze Sverdlovska. "FAEMI" je jednohlasý hudební nástroj, který může imitovat i zvuk z fětny, hoboje, klarinetu, savofonu, verhan a umožňuje vytvářet

nástroj, který může imitovat i zvuk z flétny, hoboje, klarinetu, saxofonu, varhan a umožňuje vytvářet i mnoho dalších specifických zbarvení současného stylu. Při zapnutí vibrací zvuku u některých registrů může napodobit i housle a violoncello. "FAEMI" má malé rozměry a váhu a napájení z baterii, což umožňuje jeho využití na turistických výletech a zájezdech. Rozsah klaviatury je 3 oktávy od f do e. Vyrábí základní tóny v rozsahu 6 oktáv a v 19 různých zabarveních. Vibráto tónů je kmitočtové (6 až 7 Hz) s regulací hloubky. Maximální výstupní výkon 0,5 W je zajištěn napájením z šesti monočlánků nebo z devitivoltového usměrňovače. Váha přistroje je 3,5 kg, rozměry i s pouzdrem 490 × 200 × × 90 mm.

x 90 mm.
"FAEMI" je osazen 16 tranzistory a 12 polovodičovými diodami. Základ zapojení tvoří tónový
generátor, jehož kmitočet je ovládán klávesovými
přepinači. S generátorem je spojen systém děličů
kmitočtu, který dává možnost změny kmitočtu o celé
oktávy a možnost harmonické syntézy zvukových
zabarvení. Přes přepínače registrů jsou generátor
i děliče kmitočtů spojeny se zesilovačem, na jehož
výstupu je připojen reproduktor. Jeden ze závodů
ve Sverdlovsku zahájil sériovou výrobu tohoto hudebního nástroie. debního nástroje.

debniho nástroje.

Na závěr bych chtěla uvést, že jedna třetina vystavených přistrojů byla určena pro použití v průmyslu, vědě a technice, lékařství, zemědělství, strojirenství. Mnoho z nich již bylo zavedeno do výroby. Na vývoj těchto aparatur, pokud by byl zadán vědeckým nebo projektovým organizacim, by bylo nutno vynaložit okolo jednoho miliónu rublů. Takový vklad tedy přinášeji sovětští radioamatéři k rozvoji národního hospodářství svojí země.

Přeložil -amy-

III. LETNÍ SPARTAKIÁDA SPŘÁTELENÝCH ARMÁD

V oblasti armádního sportu je pravidelně organi-zována spartákiáda spřátelených armád, která má vysoké sportovní hodnoty a jejímž úkolem je přede-vším prohloubit spolupráci a bratrství mezi armáda-mi socialistických zemí na principech proletářského internacionalismu.

mi socialistických zemí na principech proletářského internacionalismu.

Spartakiády spřátelených armád jsou vždy setkáním vrcholových armádních sportovců. Soutěže jsou organizovány ve všech druzích branných sportů, proto jsou pořádány zimní i letní spartakiády.

První letní spartakiáda se konala v NDR v roce 1958, druhá v SSR v roce 1969. III. letní spartakiáda spřátelených armád se uskutečnila ve dnech 2. až 11. září 1973. Uspořádáním a organizaci byla pověřena Československá lidová armáda.

Význam této politické a sportovní akce zdůraznila účast více než 1 500 sportovců z Bulharské lidové republiky, Korejské lidově demokratické republiky, Korejské lidově demokratické republiky, Maďarské lidové republiky, Korejské lidově demokratické republiky, SSSR, Vietnamské demokratické republiký, SSSR, Vietnamské demokratické republiký, SSSR, Vietnamské demokratické republiký, SSSR, Vietnamské demokratické republiký, Přepravila oheň z mist hrdinných bojů čs. jednotek ve II. světové válce – z Dukly, přes historické město Slovenského národního povstání – Banskou Bystricu, přes další místa, kde se konaly soutěže III. LSSA: Žilina – Trenčín – Bratislava – Brno – Prostějov – Olomouc – Liberec – Plazoř – Sedlčany – Lidice – Praha

konaly soutěže III. LSSA: Žilina – Trenčín – Bratislava – Brno – Prostějov – Olomouc – Liberec –
Plzeň – Sedlčany – Lidice – Praha.

Soutěže se konaly v místech, která v daných druzich sportu už maji svoji tradici a bylo možno využít
stávajících dokonalých sportovních zařízení. To zaručilo regulérnost a vysokou sportovní hodnotu
všech soutěží.

K řízení a koordinaci všech akci byl vytvořen
štáb III. LSSA a v každém místě sportovních akci
ještě organizační výbor.
Na vybudování soustavy spojení pro III. LSSA

ještě organizační výbor.

Na vybudování soustavy spojení pro III. LSSA se kromě útvarů a jednotek ČSLA podílely i orgány Federálního ministerstva spojů.

Spojení pro III. LSSA bylo organizováno téměř všemi druhy pojitek – linkovými, radiovými i radioreléovými. Byl používán telefonní i dálnopisný provoz. K doplnění vnitřního spojení v jednotlivých štábech bylo použíto i dispečinkových zařízení.

Spojovací systém III. LSSA byl vybudován pro - štáb III. LSSA,

organizační výbory III. LSSA,
tiskové středísko a tiskové buňky III. LSSA.

Byly organizovány radiové sítě pro pokladní službyly organizovany randove site pro pokladmi siuż-bu na stadionech, poradatelskou službu, pro organi-zaci atletických soutěží, pro zabezpečení průběhu motoristických soutěží, pro řízení slavnostního za-hájení, řízení výsadku, řízení střeleb, letecké a dělostřelecké sítě apod.

Spojovací systém III. LSSA zabezpečoval:

Pro štáb III. LSSA:

- přímé telefonní a dálnopisné automatické spojení ke všem organizačním výborům,
 vnitřní automatické telefonní spojení ve sportov-
- ním areálu, telefonní spojení s účastníky pražské, meziměst-ské a mezinárodní sítě.

Pro organizační výbory:

- telefonní i automatické dálnopisné spojení se štá-bem a s ostatními organizačními výbory, vnitřní telefonní spojení ve všech sportovištích, telefonní spojení s účastníky místní městské, me-ziměstské a mezinárodní sitě; radiové a radioreléové spojení pro zabezpečení

Pro tískové středísko III. LSSA:

- telefonní i automatické dálnopisné spojení k uskutečňování meziměstských i mezistátních hovor
- vnitřní automatické telefonní spojení pracoviší korespondentů, dálnopisné automatické spojení ke všem tiskovým buňkám organizačních výborů III. LSSA.

Organizace spojení byla zaměřena na zabezpečení úspěšného průběhu III. letní spartakiády spřáteleuspěsteno probeh III. telhi spatraktady sprátelených armád) tak i armádní spojaří ve spolupráci s orgány Federálního ministerstva spojú přispějí svým podilem ke splnění ústředního hesla III. LSSA: "Za internacionální jednotu a přátelství armád socialistických zemí".

Pplk. ing. Zdeněk Dolanský

Letní výcvikový tábor radioamatérské mládeže v rámci JSBVO

Letní výcvikový tábor radioamatérské mládeže v rámci JSBVO

Nedaleko Jablonce nad Nisou je táhlý zalesněný kopec 865 m vysoký, Černá studnice, na jehož vrcholu je chata s rozhlednou, cíl mnohých turistů. Je odrud krásný rozhled na všechny strany, je tu "ráj" houbařů, sběračů borůvek i těch, kdož touží po klidu. Kousek pod vrcholem v romantickém prostredi si jablonečtí radioamatěři vybudovali v akci "Z" výcvikové středisko radioklubu Svazarmu; postavili si pětkný zděný domek s vysilaci mistnosti, převáděčem FM OKOB a ubytovnou. Odtud "jezdi" pravidelně Polní dny a jiné závody na amatérských pásmech a pravidelně každou neděli dopoledne se střídají čtyři v klubovní kolektivce.

Letos si tu opět – již po několikáté – zřidíl tento radioklub ve spolupráci s OV Svazarmu, ODPM a vojenským útvarem letní stanový tábor radioamatérske mládeže, v němž se od 15. do 28. července konal kurs mladých zájemců o radioamatérskou provozní činnost. Odborná náplň kursu býla zaměřena k plnění úkolů, vyplývajících z JSBVO.

OKIAIA a OKIAP, členové jabloneckého RK nás upozornili na letošní výcvikový tábor mládeže a tak jsme se tam zajeli podivat (víz 4. str. obálky.) V zelení dubů, smrků a borovic, ve vonném vřesu a mateřidoušce zela prázdnotou řada stanů, zapůjčených zároveň s polní kuchyní vojenským útvarem. Když jsme se tak rozhlédlí kolem dokola a poodešli kousek dál, uviděli jsme na malé vyvýšené mýtince skupinu chlapců a jednu ditvku, jak cvičí telegrafní značky (bylo slyšet pipáni); o něco výš, koušek stranou na strání mezi stromy kolem stanu seděla větá skupina chlapců a dieve při pozorném poslechu výkladu instruktorky o telegrafním provozu. Ale to nebylo všechno. Stranou při čestě jsme viděli na černé tabulí nakresleno zapojení a instruktor názorně vysvětloval hloučku zájemců příklady z radiotechniky. V přímém směru po cestě vzhůru bylo vidět mezi stromy stavení – QTH jabloneckých amatérů. V něm bylo dočasně umístěno ústředí zábora. Vysilaci zařízení bylo neustále v provozu, je stály. Na jednotlivé okresní výbor svazarmu v CSR,

364 (amatérske! 1 1 1 10 73

např. z Nejdku, Děčína, Libochovic, Liberce, Turnova, Prahy, Brna atd. Většina frekventantů byla z kroužků ZO Svazarmu, už o radioamatérském sportu něco věděli; byli tu i pokročilejši a několik účastniků loňského kursu. Mezi nimi bylo devět úplných nováčků. Dodatečně, až v táboře, se přihlásila dyě děvčata; když viděla zajímavý výcvik – ziskala zájem. Byla tu na rekreaci s rodiči. Obsáhnout ve čtrnácti dnech rozsáhlou látku: základy elektrotechniky, radiotechniky, teoretických základů navazování spojení – telegrafní značky, Q-kód, amatérské zkratky, radiový provoz, koncesní podmínky, bezpečnostní předpisy, informace o organizaci radioamatérů apod. – vše co je třeba znát k provozu na amatérských pásmech a ke složení zkoušek registrovaných operatérů, bylo pro frekventanty velmi náročným úkolem.
Výcvík byl tvřdý – plných osm hodin denně intenzívní práce a navic si někteří po večerech docvičovali to, co se v průběhu dne naučili. Kurs byl rozdělen podle znalosti frekventantů do tří skupin: první byli ti, kteří přijímali 30 znaků za min. (instruktor Hana Solcová, OK1 JEN), v druhě přijem do 30 znaků/min. (instruktor Lubomír Jiruše), a ve třetí nováčci (instruktor Miroslav Horáček), techniku přednášeli ing. V. Křížek, ex OK1XW a s. Tumajer, OK1ATX.

Denní zaměstnání se začínalo v 6 hodin ráno budíčkem. Po rozevičce a snidani byl nástup pod vlajkou, kde velitel tábora oznámil dopolední pro-gram. Polední přestávka byla věnována odpočinku. Oběd byl vždy vydatný a chutnal všem, z čehož měl největší radost kuchař Láďa Čermák. Po obědě nč-kteří odpočívalí, jiní se věnovali sportu – odb jené, kopané nebo se jinak rekreovali. Po dvouhodinové přestávce pokračovalo odpolední zaměstnání.

Kurs byl zakončen závěrečnými testy frekventan-tů. Každý z nich obdrží dodatečně osvědčení s osob-ním popisem svojí aktivity a s vyjádřením zda mu přísluší vysvědčení RO (registrovaný operateř) nebo RP (radiový posluchač). Každý z frekventantů obdržel také legitimaci s vyjádřením o absolvování

Celý jeden den byl věnován branné náplni; byly uspořádány branné soutěže jako např. DZBZ, střelba ze vzduchovky, hod granátem, přechod zamořeným územím, hon na lišku, různé branné hry, ukázky výcvíkoých pomůcek používaných ve Svazarmu; kynologové předvedli ukázky z výcvíku služebních psů atd.

Všem, kteří se o tuto velmi náročnou akci se zdarem zasloužili, patří velký dik.

USNESENÍ CELOSTÁTNÍ KONFERENCE ÚSTŘEDNÍHO RADIOKLUBU SVAZARMU

Celostátní konference Ústředního radioklubu Svazarmu ČSSR (URK), uskutečněná dne 30. 6. 1973 v Praze, jednala v období, které je charakterizováno zvýšenou aktivitou všech svazarmovských organizací před V. sjezdem Svazarmu ČSSR a naplněno úsilím o realizaci závěrů XIV. sjezdu KSC, Jednotného systému branné výchovy obyvatelstva ČSSR a usnesení orgánů FV Svazarmu při přípravě obyvatelstva k obraně socialistické vlasti.

Období od IV. sjezdu Svazarmu bylo zvlášť důležitou etapou ve vývoji Svazarmu i na úseku radioamatérského hnutí. Ústřednímu radioklubu se v uplynulém období podařilo zkonsolidovat a obnovit práci na úseku rychlotelegrafie, moderního radioamatérského viceboje, rozšířit zájem o technickou a konstrukční činnost, zlepšovat postupně materiální zabezpečení činnosti. Daří se získávat mládež pro technickou i provozně brannou činnost. Při rozšíření masové základny bylo dosaženo i zlepšení na úseku státní reprezentace především v honu na lišku, ve vicebojí a v provozu na pásmech KV a VKV.

V tomto období bylo vynaloženo velké úsilí, směřující k překonávání stagnace činnosti v důsledku celospolečenské krize z let 1968—1969, k odstranění nedostatků v politickovýchovné práci, v organizátorské a řídicí činnosti i v oblasti materiálně technického vybavení.

nizátorské a řídicí činnosti i v oblasti materiálně technického vybavení.
Celostátní konference oceňuje práci všech poctivých a obětavých aktivistů i pracovníků aparátu, kteří se aktivně podileli na konsolidaci činnosti ÚRK a na dosažených vysledcích. Vyjadřuje přesvědčení, že URK Svazarmu ČSSR, jako nedilná součási jednotné dobrovolné branné společenské organizace Svazarmu se bude i nadále podílet na upevnění ideové a organizační jednoty naší organizace a vynaloží maximální úsilí na splnění všech úkolů dalšího rozvoje radioamaterského hnutí. Delegáti konference projednali zprávu o činnosti a dalších směrech rozvoje ÚRK a zprávu kontrolní a revizní komise ÚRK.

Jednání celostátní konference ÚRK Svazarmu ČSSR schvaluje:

a) Zprávu Federální rady ÚRK o činnosti a dalších úkolech ÚRK
 b) Zprávu kontrolní a revizní komise ÚRK

Ve smyslu směrů dalšího rozvoje Svazarmu a usnesení FV Svazarmu ukládá tyto úkoly:

- Seznámit s dokumentem PÚV KSČ z 30. 3. 1973 o směrech dalšího rozvoje Svazarmu všechny orgány a odbory. Docílit u všech funkcionářů jednotné pochopení a aktivní přistup při realizaci přijatých opatření.
- Rozpracovat usnesení a závěry V. sjezdu Svazarmu a doplnit o ně výhledový plán činností URK do roku 1975 a zpřesnit roční plán 1974.
- Seznámit všechny nově zvolené funkcioná-ře ÚRK a členy odborů se závěry V. sjezdu Svazarmu ČSSR.
- 4) A) V oblasti politickovýchovné práce
- v oblasti politickovýchovné práce zkvalitnit práci politickovýchovných komisí. Upřesnit plány práce těchto komisí v tom směru, aby politickovýchovné komise usměrňovaly jako metodický orgán ustřední rady politickovýchovný proces v jednotlivých činnostech ÚRK v duchu závěrů XIV. sjezdu, zásad JSBVO a usnesení 9. a 11. pléna FV Svazarmu. vychovávat členy klubů k tomu, aby měli kladný vztah k naší jednotné branné organizaci, znali její úkoly a cíle, aby aktivně pomáhali při uskutečňování politiky KSČ a NF, stali se skutečňými socialistickými vlastenci a proletářskými internacionalisty, připravenými k práci i obraně socialismu. pochopit politickovýchovný proces v tom

pochopit politickovýchovný proces v tom smyslu, že vychovatelem a politicky

- působícím činitelem v radioamatérské činnosti musí být každý funkcionář, každý cvičitel, instruktor, trenér a rozhodčí, všechny volené orgány, odbory i áparát ÚRK Svazarmu ČSSR.

 prověřit osnovy všech školení, seminářů, soustředění a IMZ s cílem upřesnění obsahu, metod a forem politickovýchovného působení v duchu "Hlavních směrů dalšího rozvoje činnosti Svazarmu".

 zvýšit úroveň popularizace branné politiky KSČ a činnosti svazarmu v veřejnosti prostřednictvím Amatérského radia a Radioamatérského zpravodaje, zabezpečit v těchto časopisech pravidelnost zvěrejňování potřeb politickovýchovného působení na účastníky radioamatérské činnosti i veřejnosti, popularizací dosahovaných výsledků, výměnu zkušeností. Toto projednat v obou redakčních radách prověřit a upřesnit plány všech akcí ÚRK s cílem orientace provádění sportovních akcí v jednotlivých odbornostech na významné politicko-společenské události, revoluční tradice a výročí. využívat v technické a sportovní činnosti v RK ostatní poutavé formy politickovýchovného působení (besedy, tematické večery, film, apod.), s cílem orientace účastníků činnosti na plnění hlavních úkclů Svazarmu, rozšírováním jejich znalostí v oblastí vojenské politiky KSČ na ziskávání občanů k aktivnímu přístupu k obraně vlastí. Dlouhodobým základním cílem politickovýchovné práce je, aby občané a zvláště middež cítila povinnost být členem vlastenecké, branné organizace Svazarmu.

V oblasti masového rozvoje radioamatérské činnosti a práce s mládeží:

- chápať masový rozvoj radioamatérské činnosti jako zásadní prostředek plnění hlavních směrů dalšího rozvoje ÚRK a Svazarmu. Vytvářet pro plnění tohoto ůkolu příznivé podminky v nižších organizačních složkách formou modernizace obsahu činnosti a zaváděním vhodných
- systémů soutěží. v duchu zásad jednotného působení na mládež přijatých mezi Svazarmem, SSM a ČSTV:
- a) vytvářet v jednotlivých odborech optimální podminky pro masové zapojování mládeže do radioamatérské činnosti.

- zapojovaní mladeze do radioamaterske činnosti.
 Podílet se na vytváření metodíckých pomůcek pro výcvik mladých zájemců o radiotechniku a radioamatérský provoz a zabezpečit jejich vydávání. b) poskytovat SSM odbornou, metodickou a kádrovou pomoc při rozvíjení základních masových radioamatérských činnosti.
 c) podilet se s orgány SSM a jeho PO na rozpracování koncepce radioamatérských činnosti dětí a mládeže.
 d) aktivně pomáhat orgánům SSM a jeho PO při organizování radioamatérských her všeho druhu.
 e) umožnit členům SSM pracovat v orgánech radioklubů a věst naše členy, aby pracovalí v organizacích SSM.

f) poskytovat orgánům SSM a PO pomoc při organizování náplně letních táborů pro děti a mládež, při školních výle-tech a branných evičeních. Spolu s orgány SSM a PO organizovat v ho-nu na lišku, v radioamatérském více-boji a v rychlotelegrafii soutěže v mist-ních kolech, popř. i na vyšších stup-ních.

ních kolech, popř. i na vyšších stupnich.
g) umožnit členům SSM a PO zapojení do soutěži organizovaných ÚRK bez členských průkazů Svazarmu za předpokladu splnění podminek o účasti podle rozpisu soutěžních řádů schválených ÚRK Svazarmu ČSSR.
[h) pomáhat funkcionářům SSM a PO v jejich přípravě na radioamatérskou činnost a dále v připravě vlastních i svazáckých instruktorů, rozhodčích a organizátorů radioamatérské činnosti mezi dětmi a mládeží.
i) umožnit členům SSM a PO, kteří projevují hlubší zájem o radioamatérskou činnost, jejich zapojení do radioklubů a kroužků při ZO Svazarmu.
j) umožnit školní mládeží zvýhodněnou, připadně i bezplatnou účast na radioamaterských akcích.
k) sdruženými prostředky a silami plánovat výstavbu a údržbu zařízení promasové provádění radioamatérské činnosti v rámci svépomoci a vycházet si

nosti v rámci svépomoci a vycházet si vzájemně vstřic při propůjčování branných zařízení na dohodnuté akce.

přehodnotit dosavadní systém práce s mládeží, organizované v radioklubech a přijmout účinná opatření ke zkvalitnění a přijmout účinna opatření ke zkvalitnění metod a forem jejich výchovy a výcviku v návaznosti na jednotné působení-na mládež, s cílem rozšířování členské základny v radioamatérské činnosti. uložit odboru ÚRK pro práci s mládeží soustavně se touto závažnou problematikou zabývat, vyhodnocovat a předkládat indictivili návrhy.

iniciativní návrhy.

C) Ve výkonnostním a vrcholovém sportu:

chápat výkonnostní a vrcholovém sportu:

chápat výkonnostní sport jako základnu pro výběr talentů a zkvalitňování státní reprezentace. Vyhodnotit prozatímně zavedené propozice v honu na lišku, radioamatérském víceboji, radiotelegrafií a pro technické soutěže a uspořádat je tak, aby dávaly možnost celorocního provádění daných sportů v místě, v rámci okresů, krajů neb národních organizaci. zpřístupnit soutěže v honu na lišku, radioamatérský víceboj, rychlotelegrafií a technickou soutěž v základních kolech a na stupni okresu širokým vrstvám mládeže i dospělých občanů.

vytvářet podminky pro zvyšování*kvality a všestranné účinnosti tréninkového procesu s důrazem na ideové politické a morální vychovné působení.
přehodnotiť rozsahy a počet celostátních soutěží v rámci URK Svazarmu ČSSR (dále jen ÚRK), zvážiť možnosti jejich redukce a tím vytvořit podminky pro masové provádění soutěží v nižších kolech, přehodnotiť práci trenérů, cvičitelů, rozhoděcíh, zpracovat ucelený jednotný systém jejich politickovýchovné ajodborné přípravy včetně špičkových sportovců a státní řeprezentace.

vyhodnotit plány mezinárodních sportovních styků, zvýšit důraz na kvalitu i rozsah styků se ZST, včnovat včtší pozornost komplexním soutěžím sportovců ZST.

D) V oblasti kádrové práce:

v rámci postupného upevňování a poslání ÚRK v jednotné branné organizaci Svazarmu v oblasti výběru výchovy a připravy kádrů zvýští náročnost na politickou i odbornou úroveň funkcionářů i pracovníků aparátu ÚRK.

i pracovníků aparátu ÚRK.
zpracovat systém přípravy a doškolování cvičitelů, trenérů, vedoucích kolektivů mládeže, instruktorů a rozhodčích s cilem postupného zabezpečení masového rozvoje radioamatérského odvětví.
zlepšit výběr a přípravu vedoucích sportovních výprav do zahraničí, dbát na to, aby každý vedoucí splňoval kromě jazykových znalostí politické i odborné předpoklady a schopnosti dobré reprezentace ČSSR v zahraničí.

E) V oblasti materiálně technického zabez-pečení činnosti:

zkvalitňovat postupně v souladu s?při-pravou kádrů a plánovaným masovým rozvojem jednotlivých odvětví materiálně technickou základnu.

technickou základnu. prověřit současný stav a možnosti roz-šíření MTZ v jednotlivých radioama-térských činnostech, učinit opatření ke zkvalitnění a cilevědomému využívání stávajícího materiálu a zařízení. zpracovat ve spolupráci s ekonomickým úsekem FV Svazarmu dlouhodobé plány rozvoje MTZ jednotlivých činnosti. Pro-

sazovat při zabezpečování MTZ sdružo-

vání prostředků vzájemnou spoluprací a maximálním využitím iniciativy a akti-

F) V podílu na výcviku branců a záloh:

organizovat a zabezpečovat systematickou pomoc jednotlivých odborů výcvikovým střediskům branců. Pomáhat při budování výcvikových středisek při ZO Svazarmu.

výcvikových středisek při ZO Svazarmu, projednat s oddělením branné připravy FV další prohloubení spolupráce při připravě branců a záloh, vytvářet v RK podmínky pro zavedení a systematický rozvoj předbranecké výchovy mládeže, zajistit větší pěči volených orgánů o výcvik branců a záloh, zabezpečit pravidelné projednávání a řešení problémů výchovy a připravy branců v řadách radioamatérů na všech organizačních stupních.

G) V oblasti organizátorské a řídicí činnosti:

dále prohlubovat zájmovou, branně technickou a sportovní činnost jednotlivých odborů v duchu "Žásad pro řízení zájmově branné technické a sportovní činnosti ve Svazarmu", schválených 9. plénem FV Svazarmu ČSSR v dubnu 1972. zkvalitňovat odborně metodické řízení zájmové činnosti v hnutí ze strany URK ČSSR s cílem zajištění důsledného plnění usnesení FV Svazarmu a ostatních příslušných orgánů Svazarmu. zavádět do systému řídicí práce metody vědeckého řízení. V srpnu 1973 ustavit komisi pro zpracování koncepce rozvoje svazarmovské činnosti v oblasti radistiky. Osnovu předložit do prosince 1973. Práci dále prohlubovat zájmovou, branně tech-

Osnovu předložit do prosince 1973. Práci komise ukončit v I. pololetí 1974. Pod-klady podle potřeby předloží předsedové rad národních radioklubů.

CELOSTÁTNÍ SETKÁNÍ RADIOAMATÉRŮ – OLOMOUC 1973

Téměř 500 radioamatérů a jejich rodinných příslušníků se sjelo ve dnech 20. až 22. července 1973 do Olomouce, aby se zúčastnili v jubilejním 50. roce radioamatérské činnosti v našem státě Celostátního setkání radioamatérů Svazarmu ČSSR, uspořádaného při příležitosti oslav 400 let existence University Palackého v Olomouci. Bylo to zatím největší a nejlépe připravené setkání radioamatérů; lesu mu dodad učast akademické obce University Palackého při jeho zahájení se potentil hteré ned oslavím temporativa poslavím se potentil hteré ned oslavím temporativa poslavím se potentil hteré ned oslavím se potentil se poslavím se potentil procesu se potentil se potent a patronát, který nad setkáním převzal její prorektor profesor MUDr. Jan Hrbek, ČSc.

Učastníci setkání se začali sjíždět v pátek 20. 7. již od časných odpoledních hodin. Presentace a ubytování bylo zajištěno ve vysokoškolské koleji B. Václavka. Vstupní hala byla neustále plná nově příchozích i již vznikajících debatních kroužků.

Díky kolektivu OK2KYJ jsem měl ještě v pátek večer možnost si prohlédnout, jak pokročila výstavba vysílacího střediska radioklubu Haná v Pohořa-nech u Olomouce. Toto středisko je ukázkou toho, co lze svépomocí a obětováním nespočetného množství hodin volného času dosáhnout. Po definitivním dokončení střediska s ním seznámíme naše čtenáře podrobněji.

Obr. 1. Vedení UP se dostavilo na zahájení setkání v tradičních úborech

Celostátní setkání radioamatérů bylo oficiálně zahájeno v sobotu 21. 7. v 8.30 hod. (přesně podle programu) ve velké posluchárně lékařské fakulty University Palackého v Olomouci. Zúčastnilo se ho celé vedení university, rektor, prorektor, děkani jednotlivých fakult, dále představitelé zastupitelských úřadů SSSR, Polska, Japonska a Francie a další hosté. Akademické představenstvo university se zúčastnilo zahájení v tradičních úborech a se všemi akademickými poctami. Bylo to důkazem přízně, kterou vedení university radioamatérům věnuje. V zahajovacím projevu to potvrdil čestný předseda organizačního výboru setkání prorektor University Palackého v Olomouci profesor MUDr. Jan Hrbek, CSc. Jeho pěkný projev přinášíme v plném

Vážené soudružky a soudruzi, vážení a milí hosté.

mám tu čest a milou povinnost pozdravit vaše celostátní setkání jménem vedení Univer-

sity Palackého] a co nejsrdečněji vás uvítat v těchto vám tak dobře známých prostorách lékařské falkulty.

Dovolte mi, abych zvlášť srdečně přivítal představitele zastupitelských úřadů Svazu sovětských socialistických republik, Polské lidové republiky, Japonského císařství a Fran-couzské republiky, zástupce federálních, krajských, okresních a městských stranických a státních institucí, zástupce federálních, národních, krajských a okresních složek Svazarmu, naše milé hosty ze Slovenska, představitele jiných sekcí Švazarmu a všechny vás přítomné na dnešní oslavě. Máme z vaší přítomnosti upřímnou radost a přáli bychom si, aby se vám pobyt v Olomouci líbil a byl pro vás užitečný.

Pro lékařskou fakultu University Palackého je nesporně poctou, že již po páté se scházejí čs. radioamatéři v Olomouci. Těší nás, že na všech setkáních se podíleli nejvyšší měrou pracovníci UP.

Vaše celostátní setkání se koná v jubilejním roce čtyřstého výročí založení vysokého školství v Olomouci a je tedy součástí našich universitních oslav.

Dějiny olomoucké university jsou shodné s osudy našeho národa v posledních 400 letech. V roce 1566 byla v Olomouci založena jesuitská akademie, která postupně získala pri-vilegia university a v roce 1573 byla Maxmiliánem II. postavena na roveň universitám evropským. Olomoucká universita měla působit proti neutuchajícímu ohlasu lidového revolučního hnutí husitského, měla se stát ohniskem protireformace a rekatolizace. Je radostné konstatovat, že nesplnila ani jediné z těchto reakčních poslání; naopak, v první polovině 19. století se stala významnou nositelkou naší národní myšlenky a vlasteneckých

Růst českého živlu v první polovině 19. století na olomoucké universitě - v městě s německou většinou - byl výrazem obrozeneckého procesu na Moravě, jednou z příčin, proč byla universita po porážce revoluce v době Bachova absolutismu postupně rušena; nejdříve, v roce 1851, byla zrušena její filosofická fakulta, v roce 1855 fakulta právnická a roku 1860 byla universita zrušena jako celek. Lékařsko--chirurgický ústav přetrval do sedmdesátých let a jako jediná součást bývalé university byla vedle universitní knihovny ponechána fakulta teologická, jak to odpovídalo spojení habsburské monarchie s římskokatolickou církví.

amatérské V. 1) 10 365

Tuto křivdu neodčinila ani buržoazní republika. Až revoluční události roku 1945, porážka fašismu a kapitalismu vedly k tomu, že zákonem č. 35 z 21. února 1946 byla olomoucká universita obnovena v plném rozsahu a nazvána Universitou Palackého.

Již za poměrně krátkou dobu prokázala universita oprávněnost slov Klementa Gott-walda, že Palackého universita bude rozsévačem vědění nejen pro olomoucký kraj a Mora-vu, ale i pro celé Československo.

Universita se stala školou vpravdě socialistickou. Stala se místem šlechetného zápolení za vědecké myšlení a poznání, za vědeckou pravdu, místem boje proti neprincipiálnosti a maloměšťáctví. Stala se ohniskem vzdělávání nových generací, oddaných věci celého národa, prodchnutých internacionalismem a schopných pokračovat ve velikém díle budování socialismu ve všech speciálních oborech vědy. U každého učitele prosazuje jednotu vědecké či umělecké činnosti s činnosti ideologickou a výchovnou, a vytváří tak optimální podmínky pro výchovu specialistů a pedagogů s vysokou úrovní světonázorovou i odbornou. V oblasti vědy, výzkumu a umělecké činnosti prosazuje jednotu socialistického umění jako složek kultury spjaté s pokrokovými a revolučními tradicemi lidu jeho tužbami a ideály usilujícími o mír socialismus na celém světě.

Vaše celostátní setkání ale spadá také do jubilejního roku padesátého výročí vzniku radioamatérské činnosti v Československu. A protože mezi Universitou Palackého a radioamatérskou sekcí Svazarmu existuje již řadu let oboustranně prospěšná spolupráce, využívám této příležitosti, abych vám k významnému výroci blahopiál a do dalších let vám popiál co nejlepší podmínky k splnění vašeho politickovýchovného a branného poslání. Vyslovuji zá-roveň naději, že naše spolupráce otevírá perspektivu ďalších společných činů a akci.

Zcela ojedinělou, mimořádnou a neobyčejně významnou kapitolou naší spolupráce je ne-sporně pomoc radioamatérů Universitě Palackého v roce oslav 400. výročí jejího založení.

Psal se rok 1971, kdy u příležitosti obdobného setkání jsem se obrátil na jeho účastníky se žádostí, aby napomohli dostat mírové poslání UP v Olomouci do povědomí nejen čs. veřej-nosti, nýbrž i do povědomí co největšího počtu lidí v nejrůznějších zemích a kontinentech světa. Požádal jsem je o takovou akci, která by roku 1973 pomohla šířit éterem jméno naší staroslavné almae matris.

Radioamatéři se chopili této příležitosti s nevšedním zájmem. Zrodila se tak celosvětová soutěž radioamatérů, nazvaná "400 let university v Olomouci", stala se skutečností a vzbudila neobytejně živý ohlas mezi radio-

amatéry celého světa. Soutěž byla zahájena 1. února a ukončena 31. května t. r. Olomoucký pracovní tým byl 35členný, z toho byly 3 stanice kolektivní. V soutěžním období bylo navázáno celkem 32 394 platných spojení. Za všechna tato spojení byla odeslána speciální pamětní pospojeni byla odestana specium pumem po tvrzení s propagací města Olomouce i mírové-ho poslání UP. S propagačními lístky před-soutěžními to činilo celkem přes 45 000 lístků.

Celkem bylo pracováno s 8 948 stanicemi ze 144 zemí všech kontinentů.

dnešnímu dni došlo soutěžní komisi 830 žádostí o pamětní diplomy od soutěžících, kteří splnili podmínky závodu. Podle naších přehledu má však splněno podmínky pro vydání diplomu celkem 1 161 stanic. Všem těmto stanicím bude diplom postupně vydán.

Z uvedeného počtu 1 161 stanic je česko-slovenských účastníků 482, ostatní stanice jsou převážně z Evropy a asi 14 % stanic je mimoevropských.

O nesmírné náročnosti soutěže svědčí skutečnost, že z uvedených 8 948 stanic splnilo podmínky pro vydání diplomu pouze necelých 13 % stanic.

Provedeme-li střízlivým odhadem bilanci časové náročnosti této akce pro členy týmu tak, že na každé uskutečněné spojení počítáme 5 minut provozních, 5 minut technických a 5 minut organizačních, pak dospějeme k číslu 8 100 hodin, které pracovní tým prokazatelně věnoval propagaci University Palackého a města Olomouce v této obrovské kulturněpolitické akci. Každý člen týmu se v průméru podílí na celé akci 231 hodinou.

Již tento kusý, telegrafický přehled svédčí o mohutnosti soutěže a o vynikající pomoci radioamatérů Svazarmu Universitě Palackého v jejím jubilejním roce, a naopak, o úžasném rozvoji radiotechniky a skvělém mistrovství našich svazarmovců-radioamatérů v roce jejich významného výročí. Celosvětová soutěž "400 let University v Olomouci" je konkrét-ním dokladem a důkazem dobré a užitečné

spolupráce UP a Svazarmu.

Dovolte mi proto, abych u této příležitosti a z tohoto místa co nejsrdečněji poděkoval Federálnímu výboru Svazarmu, Ústřednímu výboru Svazu radioamatérů Svazarmu ČSR v Praze, povolovacímu orgánu ministerstva vnitra v Praze, OV Svazarmu v Olomouci, OV KSČ v Olomouci, MěstNV v Olomouci, 35 členům pracovního týmu, členům organizačního výboru a soutěžní komise celosvétové soutěže, mým nejbližším spolupracovníkům soudruhům Spilkovi, dr. Minaříkovi, ing. Švandovi, Evě Lasovské a Mir. Koudetkovi a dalším, jakož i zástupcům institucí, kteří umožnili uskutečnit tak významnou a rozsáhlou celosvělovou akci, jež nemá v dějinách radio-amatérské činnosti obdoby, a vyslovit přání, aby se naše spolupráce dále rozvíjela a sílila ku prospěchu obou stran.

Vivat, crescat, floreat Universitas Palac-

kiana Olomucensis!

At se ještě více prohloubí soudružská spolupráce mezi Universitou Palackého a Svazar-

Poté předal rektor, prorektor, děkani jednotlivých fakult a zástupci dalších organizací ceny a diplomy nejúspěšnějším účastníkům celosvětové radioamatérské soutěže "400 let university v Olomouci". Tyto ceny získali:

Obr. 2. Cenu rektora University Palackého převzal zástupce kolektivu OK3KWK

Cenu rektora University Palackého – radioklub při Vysoké škole dopravní v Žilině – stanice OK3KWK, cenu okresní mírové rady v Olomouci – okresní

cenu okresni mirove rady v Olomouci - okresni radioklub Svazarmu v Přerově - stanice OKZKJU, cenu městského národního výboru v Olomouci - stanice Technického inistitutu mladých z Volgogradu, SSSR, stanice UK4AAI, cenu děkana lékařské fakulty UP - Fumio

lwashita z Edogawa, Tokio, Japonsko – stanice JAIKRU, cenu děkana filosofické fakulty UP – Witold Macko z Krakowa. PLR – stanice SP9DOU, cenu děkana přírodovědecké fakulty UP – Pierre Mercier ze Sant dié, Francie – stanice F6CKF,

cenu děkana pedagogické fakulty UP – ing. Peter Stahl z Bratislavy – stanice OK3EE, cenu prorektora University Palackého –

ing. Jiří Peček z Přerova – stanice OK2QX, cenu předsedy OV Svazarmu v Olomouci – Bohumil Křenek z Olomouce – stanice OK2BOB.

Zvláštní čestné uznání University Palackého za zásluhy o rozvoj radioamatérského hnutí obdržela kromě představitelů ÚRK a obou národních radioamatérských organizací i redakce Amatérského radia; z rukou prof. MUDr. . Hrbka je převzal šéfredaktor AR ing.

F. Smolik (viz obr. 8 na 3. str. obálky). Po předání všech cen a diplomů přivítal přítomné jménem federální rady Ústředního radioklubu ČSSR její předseda dr. L. Ondriš. Za zvuku fanfár bylo poté slavnostní zahájení Celostátního setkání radioamatérů ukončeno.

Pracovní část setkání byla zahájena přednáškou dr. ing. J. Daneše, OKIYD, o historii radioamatérského hnutí u nás. leho účastníci se dílem zúčastnili této a posléze i dalších přednášek, dílem v ne-menším počtu "kuloárních" debat a diskusi. Odpoledne probéhlo několik se-minářů na témata technika a provoz VKV, práce s mládeží, branné sporty apod. Nechyběl ani tradiční společenský vecer radioamatérů, uspořádaný ve vel-kém sále vysokoškolské koleje. Jeho součástí byla i bohatě dotovaná tombola; mezi výhrami bylo mnoho obrazovek pro SSTV a tak snad tímto způsobem přispějí olomoučtí i k rozvoji SSTV. V sobotu pokračovalo setkání přednáškou A. Glance, OK1GW, na téma "Snímání obrazu technikou SSTV" a besedou YL a XYL. V 11.00 hod. bylo slavnostně ukončeno a všichni se rozjeli do svých domovů.

Obr. 3. Transceiver pro pásma 3,5 až 21 MHz RK Junior z Bratislavy

Obr. 4. Tranzistorový monitor pro SSTV konstrukce OK2BNE _

Mnoho radioamatérů si na setkání přivezlo svá zařízení – transceivery, elektronické klíče, zařízení pro SSTV a jiné. Nebyla z nich uspořádána oficiální výstavka, ale přesto si je každý mohl prohlédnout, dostalo se mu zasvěceného vysvětlení většinou od samotného autora průběh setkání tak byl zpestřen i touto technickou stránkou. Svůj stánek měla na setkání také radioamatérská prodejna ÚRK ČSSR.

V pozadí setkání byla obětavá práce, mnohdy dlouho do noci, mnoha olo-mouckých radioamatérů, členů radiomouckých radioamatérů, členů radio-klubů OK2KYJ a OK2KOV, i pra-covníků OV Svazarmu, kteří zajišťovali hladký organizační průběh setkání. Podařilo se jim to velmi dobře a patří jim

za to dík všech radioamatérů.

EXPEDICE

Na počest V. sjezdu Svazarmu ČSSR a jako součást předsjezdové kampaně jsme se rozhodli uspořádat dvanáctidenní expedici mezi Prahou, Brnem a Bratislavou, a navštívit během ní radiokluby, základní organizace Svazarmu, továrny elektronického průmyslu, uspořádat besedy s radioamatérskou a předsjezdovou tématikou a vysílat na amatérských pásmech.

Expedici zahájíme 24. října 1973. Náš redakční automobil Volha poznávací značky ABN 45-95 bude vybaven mobilním zařízením pro práci v pásmech 3,5 MHz a 145 MHz, vesměs výrobky zakoupenými či zapůjčenými z Ústřední radiodilny ÚDK v Head-: z Ústřední radiodílny ÚRK v Hradci Králové. Pro pásmo 3,5 MHz to bude mobilní transceiver pro SSB PETR 103 s vf výkonem 7 W a mobilní anténa, pro pásmo 145 MHz vysílač PETR 104

a prototyp připravovaného příjímače pro 145 MHz; anténa GP. Postupně hodláme navštívit radiokluby v Mladé Boleslavi, v Pardubicích, kolektiv konstruktérů zařízení pro KV ve Žďáru n. S., radioklub v Kunštátu, Brno - radioklub Kompas a městský

radioklub v Brně OK2KUB, ZO Sva zarmu v Bučovicích, oba radiokluby Olomouci, Gottwaldov, spojovací učiliště v Novém Mestě nad Váhom a hlavní město Slovenska Bratislavu. výrobních závodů máme v úmyslu navštívit n. p. TESLA v Pardubicích, v Brně, ustřední sklady n. p. TESLA v Uherském Brodě, n. p. TESLA v Uherském Brodě, n. p. TESLA Piešťany. V Brně a Bratislavě bychom rádi uspořádali besedy s co nejširším počtem radioamatérů.

Během cesty (především z neobsaze-ných čtverců) a během pobytu v kolektivních stanicích budeme vysílat na pásmech 3,5 a 145 MHz a budeme se snažit navazovat spojení převážně s čes-

koslovenskými stanicemi.

Posláním expedice propagace V. sjezdu Svazarmu, navázání osobních kontaktů, získání informací a materiálu z radioamatérského hnutí a získávání názorů radioamatérů na vnitrosvazarmovské dění, vysvětlování úlohy našeho časopisu a úlohy Svazarmu ve společnosti a v JSBVO.

Přibližný harmonogram expedice je zřejmý z obrázku.

Svazarm v ČSR — jeho příprava na II. sjezd

Ve dnech 12. a 13. října 1973 se konal II. sjezd Svazarmu ČSR, který zhodnotil a posoudil dosažené výsledky Svazarmu od I. sjezdu a realizaci usnesení XIV. sjezdu KSČ. Tento sjezd se stal nedilnou součástí příprav V. celostátního sjezdu Svazarmu. V duchu II. sjezdu Svazarmu ČSR a hesla "Pod vedením KSČ za rozvoj branné výchovy", probíhala od 6.—27. 9. 1973 v Pražské výstavní sini SČSP na Václavském nám. výstava, která ve stručností, ale výstižně (i když ve velmi malych prostorách) ukázala výsledky ve všech odvětvích činnosti a další úkoly v rozvoji branné výchovy.

Den před zahájením výstavy byla v Klubu novinářů tisková konference, na niž plukovník M. Kovařík seznámil účastníky s činnostmi odborností Svazarmu, s plněním úkolů červencového pléna a s poznatky z dosavadní spolupráce Svazarmu, SSM, závodních klubů a PO.
Výstava byla jednou z významných politickopropagačních akci k II. sjezdu Svazarmu, která měla přesvědčit naší veřejnost, zejména však mládež o tom, že nejen budování naší socialistické vlastí, ale i její obrana je záležitostí všeho našeho lidu a že její posilování podporuje mirovou politiku naší země a přátelství se Sovětským svazem.

M. Skalová

PD v jižních Čechách

Několika obrázky se ještě vracíme k letošnímu Polnímu dnu - nejvýznamnějšímu radioamatérskému závodu v roce. Tentokrát se podíváme za pražskými radioamatéry na Šumavu, kde na kótě Javorník sídlila kolektivní radiostanice OK1KAX z Prahy; v kruhu OKIJY, OKIACO, OKIHJ, OKIAZ, OKIBEG a OKIDNC (ex OKINC) i dalších, nekoncesionářů, jsme byli mile přijati. Kolektivka pracovala na 145 MHz a zkušebně i na 435 MHz. Při naší návštěvě těsně před závodem uváděli do provozu zařízení na 435 MHz (stavěli anténu) a dělali poslední provozní zkoušky zařízení na 145 MHz – někteří sice neměli čas, zbytek jsme však "sehnali" dohromady do malebné skupinky (obr. 1) a udělali jeden památeční snímek do alba.

Z jejich zařízení stojí za zmínku celotranzistorový vysílač (konstrukce OK1DJJ) pro pásmo 435 MHz (na obr. 2 spolu s elektronkovým přijímačem a zdrojem). Vysílač má při provozu F3 výkon až 1 W, pro A2 je výkon nosné až asi 200 mW. Při PD pracovali se dvěma zařízeními (jedno rezervní), z nichž

jedno, celotranzistorový transceiver, "umí" na 145 MHz provoz SSB, CW i FM (obr. 3). Jejich mladistvý elán (i když někteří z nich patří do skupiny dříve narozených) by jim mohla závidět kdejaká kolektivka!

Obr. 3. Operatérské pracoviště 🕨

Obr. 2. Zařízení pro 435 MHz (vpravo dole)

Obr. 1. Část kolektivky při přípravách na PD

Rychlý blesk

Svým přítelem fotografem jsem byl nedávno postaven před následující problém. Chtěl se pokusit o fotografii rozfazovaného pohybu. Tyto záběry umožňují speciální fotoaparáty nebo některá příslušenství, která umožňují sejmout např. 10 obrázků do jednoho okénka filmu za vteřinu, jejich použití je však podmíněno dostatečným osvětlením a nejsou finančně příliš dostupné. Oba tyto problémy současně by výřešil blesk, který by měl požadovaný kmitočet i za toho předpokladů, že směrné číslo by bylo poněkud nižší.

Při řřešení jsem vycházel z toho, že celé zařízení musí být z tuzemských součástek s výjimkou výbojky. Po několika pokusech jsem dospěl k uvedenému zapojení, které využívá moderní polovodičové prvky – diac a tyristor. Funkci celého zařízení je možno rozdělit do dvou částí. První část je usměrňovač (zdvojovač), který vyrábí potřebné napájecí napětí pro výbojku, ke kterému není zapotřebí další vysvětlení. Druhou částí je spouštěcí obvod, který vyrobí impuls pro řídicí elektrodu výbojky. Jeho činnost v krátkosti popíši.

Obr. 1. (diody⁷KY705; R₁ M33, R₂ 2M7, R₃ 22/6 W; C₁ M1/1 kV, C₂ 22 k, C₃ 4M/250 V, 4M/600 V, P₁ 1M)

Pomocí diody D_1 jsou současně nabíjeny kondenzátory C_1 a C_2 . Kondenzátor C_2 je nabíjen přes proměnný odpor P_1 , kterým se mění kmitočet záblesků, a odpor R_2 , který je zde proto, aby C_2 byl nabíjen pomaleji než C_1 . V okamžiku, habijen pomateji nez C_1 . V okaliziku, kdy napětí na C_2 dosáhne spínacího napětí diody diac, vnitřní odpor diody poklesne a procházející proudový impuls otevře tyristor. Přes tyristor a vinutí L_1 se vybije kondenzátor C_1 . Tento impuls je velkým převodem cívek L_1 , L_2 (1:60) transformován na vysoké napětí, které je přivedeno na zapalovací vývod výbojky. Konstrukční návrh neuvádím, protože jsem nebyl vázán velikostí celého zařízení. Transformátor L_1, L_2 byl zhotoven na kostře o Ø 10 mm, na kterou jsem navinul 2 000 závitů drátu o Ø 0,08 mm CuS. Do její osy jsem umístil ferokartové jádro, na kterém je 35 závitů drátu o Ø 0,3 mm CuS. Celý transformátor jsem impregnoval voskem.

Směrné číslo je nutno zjistit pokusně, stejně jako nastavení a rozsah regulace kmitočtu startovacího obvodu podle vlastních požadavků.

Vladimír Svoboda

Úpravy žhavicího řetězce s ohledem na zvýšení spolehlivosti TVP z n. p. TESLA Orava

U všech televizorů vyráběných v n. p. TESLA Orava je použito sériové žhavení elektronek a já bych chtěl v tomto krátkém přispěvku alespoň zčásti vysvětlit jednak problémy spojené s tímto způsobem žhavení, jednak optimalizaci poměrů ve žhavicím řetězci s ohledem na prodloužení doby života, zlepšení provozní spolehlivosti a použití vhodného termistoru k omezení proudového nárazu.

Televizor jako elektronická soustava stárne z ekonomického hlediska nejen morálně, ale i díky opotřebení. Stárnutí zásluhou vývoje nelze nijak ovlivnit, je proto třeba potlačit na co nejmenší míru stárnutí zásluhou opotřebení. Velmi podstatné zlepšení v tomto směru lze očekávat od zavedení polovodičů a prvků s co největší účinností (tedy s co nejmenšími nežádoucími teplotními ztrátami). Není třeba zdůrazňovat, že největší vliv na elektrické opotřebení přijímače mají teplotně namáhané prvky, jimiž jsou právě v prvé řadě žhavicí vlákna a katody elektronek. Lze jednoduše vypočítat, že odpor studeného wolframového vlákna je asi sedmkrát menší než provozní odpor vlákna (1 400 °C). Je přirozené, že tento poměr zůstane zachován pro celý žhavicí řetězec. Proud tekoucí vlákny elektronek je tedy v okamžiku zapnutí teoreticky sedmkrát větší než pracovní proud žha-vicích vláken (obr. 1). Dochází tedy

Obr. I. Proud Zhavicím obvodem po zapnutí televizoru

při zapnutí televizoru k proudovému a nestejnému výkonovému namáhání jednotlivých elektronek (jejich vláken). Měřením (fotografováním osciloskopických průběhů) bylo zjištěno, že největší proudový náraz je časově velice krátký

(setiny sekundy) a že se prakticky projeví tří až čtyřnásobné proudové přetížení během asi sedmi vteřin (měřeno na několika typech TVP řady Oliver, Orava a TVP první etapy tranzisto-rizace – Aramis, atd. a na několika ekvivalentních záhraničních typech -Kuba Montana, Körting, Philips termistor nahrazen odporem). Je tedy třeba do série s vlákny zařadit prvek s opačnou teplotní charakteristikou, než má wolframové vlákno – tedy termistor. Dalším problémem zůstává výběr vhodného typu termistoru. V našem konkrétním případě se tento problém zu-žuje na rozhodnutí mezi třemi typy termistorů n. p. Pramet Sumperk NR 002 350; NR 002 750 a NR 002 1100, kde poslední číslo znaku udává odpor termistoru za studena. Provozni odpor těchto termistorů lze určit z tabulek výrobce a statisticky byl určen (měřením) u jednotlivých typů termistorů tento odpor $R_1=33,2~\Omega,~R_2=46,1~\Omega,~R_3=46,8~\Omega,~\text{pro}~I_t=300~\text{mA}.~\text{Z}~\text{měření}~\text{v}~\text{n.}~\text{p.}~\text{TESLA}~\text{Orava vyplývá,}$ že z hlediska namáhání žhavicího řetězce v okamžiku zapnutí je nejvýhod-nější typ NR 002 750 (max. proud. náraz je 1,3 I_t a převýšení je velmi po-zvolné). Je však nutné uvést, že termistory s větším odporem "za studena" mají větší rozptyl odporu (při použití v sériové výrobě to znamená větší rozptyl proudu It) a vyšší pracovní teplotu asi 35 °C, vzhledem k nejvíce užívaným typům NR - 002 - 350, 155 °C.) V TVP řady Oliver byl používán tento termistor (NK 003 750), ale právě jeho vyšší pracovní teplota způsobovala značnou po-ruchovost díky konstrukci vývodů, jež byly k termistoru pájeny. Proto se v ďalší řadě (Orava až posoučasné typy) používají i termistory NR 002 350 i za cenu většího proudového nárazu.

Protože v současné době n. p. Pramet termistory "čepičkuje", není se třeba obávat vyšší pracovní teploty a termistory NR 002 350 lze nahradit typy NR 002 750 s příslušnou úpravou předřadného odporu tak, aby se nezměnil žhavicí proud $I_t = 300$ mA. Až po typy první etapy tranzistorizace (Aramis, Diana, Spoleto, Martino, Salermo, Castelo, Cavallo) lze I_t měřit např. Avometem, u TVP vyráběných v současné době je však nutno brát ohled na polovodičové diody zapojené ve žhavicím řetězci (půlvlnné žhavení) a I_t je třeba měřit tepelnými měřicími přístroji. Při použití termistoru NR 002 750 místo původního typu NR 002 350 je, třeba tedy zmenšit předřadný odpor (obr. 2, obr. 3) přibližně o 13 Ω .

Ing. M. Kouba

Obr. 2. Žhavicí řetězec TVP Marcela 4121U

Obr. 3. Žhavicí řetězec TVP Salermo

368 Amatérske AD 10 73

Minule jsme se zabývali soutěžními podmínkami 1. kategorie 5. ročníku soutěže o nejlepší zadaný radiotechnický výrobek, kterou vyhlásil Český ústřední výbor SŚM, Česká ústřední rada Pionýrské organizace SSM a Ústřední dům pionýrů a mládeže Julia Fučíka.

Druhá kategorie je vypsána pro děti a mládež do 19 let včetně,

to znamená, že se jí mohou zúčastnit i ti, kteří budou soutěžit v rámci 1. kategorie (do 13 let) - pokud zvládnou úkol skutečně sami.

Každý jednotlivec se může zúčastnit soutěže jen s jedním výrobkem (jeden výrobek může mít jen jednoho autora), který zašle do 15. 5. 1974 na adresu Ústřední dům pionýrů a mládeže Julia Fučíka, oddělení techniky – úsek soutěží, Havlíčkovy sady 58, 120 28 Praha 2.

Všechny výrobky se budou hodnotit v UDPM JF na jednotném zkušebním zařízení. Hodnotit se bude: funkce, provedení, čistota pájení a vtipnost konstrukce. Každý výrobek může získat nejvíce 30 bodů.

Podle výsledků hodnocení budou účastníci soutěže pozváni na oborové setkání mladých radiotechniků. Všichni účastníci soutěže obdrží účastnický diplom.

Podmínky pro 2. kategorii (děti a mládež do 19 let včetně):

1. Zhotovit výrobek "Indikátor po-tlesku" podle zadaného schématu.

2. Přístroj musí být postaven na destičce s plošnými spoji, jejichž obrazec je součástí tištěného návodu pro tento výrobek (při zhotovení desky vlastní výrobou musí být obrazec spojů přesně dodržen). Plošný spoj pro výrobek můžete objednat v Radioamatérské prodejně Svazarmu, Budečská 7, 120 00 Praha 2.

Osazená deska s plošnými spoji musí být ve skříňce umístěna tak, aby bylo možno posoudit čistotu pájení.

Samotný měřicí přístroj (miliampérmetr) není třeba zasílat. Doporučujeme jej vymontovat a označit vývo-dy k němu tak, aby na ně mohla hodnotící komise připojit zkušební zařízení.

5. Schéma indikátoru potlesku je závazné a lze podle něho volit ekvivalentní součástky. Tranzistory však lze nahradit pouze typy n-p-n.

6. Hotový výrobek je nutno do 15. květ-na 1974 záslat k hodnocení s průvodním listem, který musí obsahovat jméno autora, den, měsíc a rok jeho naroní a přesnou adresu bydliště.

Tištěný návod pro výrobky obou ka-tegorií a další informace o soutěži vám na požádání pošle oddělení techniky – úsek soutěží UDPM JF Praha.

A my se opět s naší rubrikou připojujeme s mimořádnou nabídkou: nalepíte-li na průvodní list k výrobku druhé kategorie zde otištěný kupón, můžete

RUBRIKA PRO NEJMLADŠÍ ČTENÁŘE AR

vyhrát kompletní stavebnici tranzistorového přijímače nebo alespoň balíček radiotechnického materiálu. Losování o stavebnici a patnáct balíčků s materiálem bude však uskutečněno jen s těmi kupóny, které budou nalepeny na průvodním listu obsahujícím všechny požadované údaje a zaslaném ve stanoveném terminu.

Návod na zhotoveni indikátoru potlesku podle podmínek propozic 2. kategorie:

Material:

reproduktor s impedanc $z=4\Omega$ (např. ARO 211) skříňka ARS 231 (kompletní) knoflík

knoflik
nosná deska s plošnými spoji
šroub M3×10 mm (2 ks)
šroub M3×20 mm
šroub M4×10 mm (5 ks)
matice M3 (3 ks)
kovová podložka Ø 3,2 mm (3 ks)
distanční sloupek dělky 7 mm
držák baterie (plechový úhelník)
papírová podložka Ø 4 mm
příchytky reproduktoru s pryžovými návleky (4 ks)
propojovací vodič (2 m)
pájeci očka do plošných spojú (5 ks)
cinová-pájka

propojovac volic (2 III)
pájeci očka do plošných spojů (5 ks)
cinová pájka

R₁ odpor TR112a, 0,68 MΩ/0,125 W

R₈ odpor TR112a, 0,22 MΩ/0,125 W

R₉ odpor TR112a, 0,22 MΩ/0,125 W

R₀ odpor TR112a, 5,6 kΩ/0,125 W

C₁ odpor TR112a, 5,6 kΩ/0,125 W

C₂ odpor TR106, 10 kΩ/0,25 W

P potenciometr 10 kΩ/N se spinačem S

C₁ elektrolytický kondenzátor TC966 1 μF/70 V

C₂ kondenzátor TC161 0,47 μF/160 V

c₃ elektrolytický kondenzátor TC965 5 μF/50 V

c₄ elektrolytický kondenzátor TC965 250 μF/6 V

C₅ elektrolytický kondenzátor TC962 50 μF/6 V

c₆ tranzistor n-p-n KC149

T₁ tranzistor n-p-n KC149

T₂ tranzistor n-p-n KC149

T₃ tranzistor n-p-n KC149

T₄ tranzistor n-p-n KC149

T₆ tranzistor n-p-n KC149

T₇ tranzistor n-p-n KC149

D libovolná vf dioda

T výstupní transformátor (Jiskra VT35 apod.)

B plochá baterie typ 314, 4,5 V

M měřicí přístroj MP40 100 μA s příchytkami

dvoupólový spinač na potenciometru P

R.R.R.R.P.G.C.C.C.C.T.T.T.D.T.B

dvoupólový spínač na potenciom

Amatérští učinkující jsou tradičně posuzování intenzitou potlesku, pískání a pokřikování, jehož se jim dostává od obecenstva. Někdy je nesnadné říci, komu se skutečně nejvíce tleskalo – hranice hluku, vydávaného obecenstvem, jsou si ve své intenzitě blízké. Elektronika, jak je uvedeno v tomto námětu, vyloučí veškerou pochybnost. Ručka měridla stoupá s hlukem publika. Čím větší potlesk, tím větší výchylku vykazuje. Jako mikrofon je použit reproduk-

tor s impedancí $Z = 4 \Omega$. Přístroj zabudujte do vzhledné skříňky, jakou je např. kompletní reproduktorová skříňka TESLA ARS231. Původní transformátorek (100 V) nebude nejvhodnějším přizpůsobením reproduktoru na vstup zesilovače, podle na-sledujícího zapojení by lépe vyhovoval např. výstupní transformátor Jiskra VT35. Není-li skříňka kompletní, připevníte na její čelní stěnu pomocí šroubu M4 a příchytek reproduktor a také transformátor Tr. Příchytky potáhněte gumovými návleky, aby se chvění membrány reproduktoru nepřenášelo na další součástky přístroje. Pro šrouby M4 jsou ve skříňce předlisovány závity. Z boku odvrtejte a vypilujte otvor pro měřidlo M o průměru 32 mm a pro po-tenciometr P o Ø 10 mm. Z plechu zho-tovte úhelník, který bude sloužit jako držák baterie B a připevněte jej dvěma šrouby M3×10 u druhé bočnice, asi 25 mm od stěny. Držák trochu napružte, aby v něm plochá baterie 4,5 V dobře držela. Na dno přišroubujte jedním šroubem M3×20 desku s plošnými spoji, na ní ovšem předem zapojíte příslušné součástky zesilovače. Pro držák baterie a desku plošných spojů vyvrtejte ve dnu na potřebných místech díry ø 3,2 mm.

Do skříňky připevněte nyní napevno reproduktor, transformátor Tr, měřidlo M, potenciometr P, baterii B, a tyto součástky propojte podle schématu na obr. 1. Přímo k vývodům měřidla M připájíte elektrolytický kondenzátor C5 a odpor R₅. Propojení s deskou plošných spojů provedete až po osazení desky ostatními součástkamí.

Na obr. 2 vidíte obrazec plošných spojů. Naznačený otvor k uchycení desky vrtejte vrtákem Ø 3,2 mm, otvory pro vývody součástek Ø 1 mm. Hrany začistěte smírkovým papírem. Podle sestavy na obr. 2 zasuňte součástky: odpory R_1 až R_4 , kondenzátory C_1 až C_4 (pozor na správnou polaritu elektrolytických kondenzátorů!), tranzistory a diodu D. Do děr pro vývody (k připojení

Obr. 2. Rozmístění součástek na destičce s plošnými spoji G46

Obr. 3. Jedno z možných konstrukčních řešení

ostatních součástek ve skříňce) patří pá-

jecí očka pro plošné spoje.

Všechny součástky připájejte, plošné spoje očistěte od zbytků kalafuny a potřete roztokem kalafuny v lihu nebo acetonu. Osazenou deskú plošných spojů upevněte na dno skříňky, nejlépe pomocí distančního sloupku délky asi 7 mm, který u plošných spojů podložíte papírovou podložkou (aby sloupek nezkrato-

val dvě sousední plošky spojů). Propojovacím vodičem spojte podle schématu vývod + S s kladným pólem baterie (ovšem až za spínačem potenciometru), vývod M s měřicím přístrojem (je to přívod kladného pólu baterie na měřidlo M), vývod označený R₅ na tento odpor, vývod -S na druhý kontakt spínače. Poslední vývod P spojte s běžcem potenciometru.

Na hřídel potenciometru nasuňte větší knoflík. Můžete pod něj umístit stupnici pro srovnání úrovně hluku v různém prostředí. Pro nastavení úrovně v počáteční poloze potenciometru je výhodnější, je-li spřažený spínač v "tažném"

provedení. Při zkoušce funkce přístroje nastavte skříňku tak, aby reproduktor směřoval přímo do středu obecenstva. Jakmile určíte základní úroveň hluku potenciometrem P, nepohybujte jim již, dokud nebudou všechny výstupy účinkujících posouzeny. Změna polohy běžce potenciometru ovlivní výchylku ručky měřicího přístroje - řídí se jí citlivost měřidla.

Při zapínání a vypínání indikátoru potlesku by měl být potenciometr P v krajní nulové poloze. Ochráníte tím měřidlo před proudovými nárazy.

Literatura

[1] Electronic Projects for Students, Beginners & Hobbyists. Semitronics, New York 1965.

Mezinárodní soutěž techniků - pionýrů

V bulharské Sofii se konala ve dnech –7. června 1973 Druhá mezinárodní soutěž techniků – pionýrů. Technická činnost chlapců a děvčat do patnácti let tu byla zastoupena soutěžemi v těchto oborech: dopravní technika, letečtí modeláři, forografie, radiotechnika, lodní modeláři a raketoví modeláři. Své reprezentanty vyslaly pionýrské organiza-

ce Polska, Maďarska, NDR, Jugoslávie, Mongolska, Československa a samozřejmě hostitelská země.

Boje reprezentantů - radiotechniků byly soustředěny do třech disciplín: praktická činnost, teoretický test a soutěž v honu na lišku. ČSSR zastupovali Pavel Malina (pracuje v Krajském domě pio-nýrů a mládeže v Ostravě v kroužku radiotechniky) a Jozef Fekiač (z Ústřed-ního domu pionýrů a mládeže Klementa Gottwalda v Bratislavě). Byli vybráni na základě dobré práce ve svých kroužcích a myslím, že se oba snažili dosáhnout těch nejlepších výsledků.

V praktické části dostali soutěžící za úkol sestavit v co nejkratší době stavebnici rozhlasového přijímače Jacek (u nás se prodává pod označením Junák TESLA), kterou vyrábí PLR. Jozef Fekiač odevzdal hrající přístroj velmi brzy a umístil se na 4. místě. To je výborné umístění vzhledem k tomu, že sestavení přístroje bylo v Bulharsku obsahem soutěže technické tvořivosti a tak měli bulharští reprezentanti jakýsi "náskok" v tom směrů, že už přijímač několikrát sestavili.

Teoretický test obsahoval několik desítek otázek a umístění našich (na šestém místě) není také špatné. Protože by nás docela zajímalo, jak byste se drželi vy, mladí čtenáři rubriky Radioklub 15, uveřejníme v některém z příštích čísel tyto otázky a požádáme vás o zaslání odpovědí. Samozřejmě, že očekáváme odpovědi jen od čtenářů do patnácti let, abychom mohli srovnávat.

Hon na lišku nedopadl pro Jozefa Fekiače dobře, protože mu odmítl poslušnost přijímač. Zato Pavel Malina si vedl výborně, našel v limitu čtyři z pěti vysílajících lišek a celkové umístění (5. místo) je dobré. Je pravda, že v některých odbornos-

tech si vedli naši pionýři ještě lépe (např. lodní modeláři), ale i tak se zasloužili mladí radiotechnici o celkové umístění družstva ČSSR na 3. místě a tím o získá-

ní bronzové medaile. A protože příští – Třetí mezinárodní soutéž techniků - pionýrů - bude u nás v Bratislavě (pravděpodobně v červenci 1974), mají před sebou radiotechnici, členové pionýrských zájmových oddílů a kroužků úkol: připravit se tak, aby dosáhli alespoň takových výsledků, jako Pavel Malina z Ostravy a Jozef Fekiač z Bratislavy v letošním roce.

Celoslovenská súťaž rádioamatérov pionierov

Slovenská ústredná rada PO SZM a Ústredný dom pionierov a mládeže K. Gottwalda usporiadali

pod patronátom Slovenského ústredného výboru Zväzarmu II. celoslovenské stretnutie mladých tech-nikov – pionierov. Stretnutie sa uskutočnilo v areáli

nikov – pionierov. Stretnutie sa uskutočnilo v areáli Strednej priemyselnej školy strojnickej v Martine od 3. do 16. jula 1973.

Okrem leteckých, raketových, lodných a automodelárov sa zúčastnili stretnutia aj rádioamatéri z celého Slovenska, ktorí pracovali počas školského roku v rádioamatérskych krůžkoch v DPM, na školách a vo zvázarmovských kluboch. 25 pionierov tu pracovalo pod vedením odborných vedúcich s. Ivana Harminca a Elemýra Pályu. Na stretnutí bola inštalovaná kolektivna stanica OK3KDH, ktorá bola celjé čas v nepretržitej prevádzke.

Okrem odbornej náplne, ktorá pozostávala z výcviku s malými rádiostanicami, oboznámením sa prevádzkou rádioamatérskej vysielacej stanice, uskutočnenia honby na líšku, telegrafického viacboja, učili sa pionieri stavať prijimaće apod. Počas Poľného dňa 1973 sledovali činnost rádioamatérov na prijimači a navštívili tiež stanovisko martinských rádioamatérov v blízkosti televizneho vysielača "Križava"

Rádioamatéri-pionieri dostávajú posledné pokyny pred súťažou

Zabezpečovali spojovaciu službu počas Majstrovstiev Slovenska PO SZM v modelárskych disciplinach a plnili podmienky Festivalového športového odznaku. Aj ostatná činnosť bola zaujímavá. Besedovali so s plk. Cyrilom Kuchtom, priamym účastníkom SNP a navštivili martinské kasárne. Sústredenie mladých rádioamatérov boľo sľubným začiatkom rozvijajúcej sa spolupráce Zväzu rádioamatérov Slovenska so Slovenskou ústrednou radou PO ZSM a určite podnietilo pionierov k ďalšej činnosti v oblasti rádioamatérstva a rádioamatérských športov.

térských športov. Pre budúci rok vyhlásila Slovenská ústredná rada

Pre budúci rok vyhlásila Slovenská ústredná ráda PO SZM celoslovenskú súťaž mladých rádioamatérov, ktorej vyvrcholením po absolvovaní okresných a krajských kôl bude opäť majstrovstvo Slovenska PO SZM v rádioamatérskych disciplinach, ktoré sa uskutoční v rámci III. celoslovenského stretnutia mladých technikov v auguste 1974.

Výsledky

I. Telegrafický viacboj

- 1. Dušan Vraňúch, Prešov
- Igor Kováč, Bratislava
 Štefan Bednárik, Sp. N. Ves

II. Honba na lišku

- Jozef Valach, Bratislava
 Dušan Vraňúch, Prešov
 Vladislav Stračár, Bratislava

Vladimir Mazák

TRANZINTOROUY BUDÍK

šipky pečlivě ocejchujeme jednotlivé polohy. Na popis přístroje použijeme obtisky Propisot. Čelý budík můžeme pro lepší vzhled polepit samolepicí tapetou, kterou (aby lépe držela) potřeme na rubu trichloretylénem (Čikuli). Na vývod trimru nasadíme knoflik WF 243 05 až 08.

M. Vach, Ústřední dům pionýrů a mládeže Julia Fučíka

(Dokončení)

Obr. 2. Tranzistorový budík (sepnutý stav)

Millerův integrátor můžeme zhotovit dvourozsahový (na obr. 1 čárkovaně), první rozsah bude umožňovat volbu kratších časů a jemnější nařízení, druhý rozsah delší časy a hrubší nastavení. Maximální i minimální čas sepnutí je obecně několik minut až několik hodin, závisí na kvalitě a toleranci jednotlivých součástek a především na zesilovacím činiteli použitých tranzistorů. V prototypu, v němž byly odpory s tolerancí 10 i 20 %, zesilovací činitel použitých tranzistorů. byl okolo 350 a potenciometr 1,6 M Ω , je minimální spínací doba 80 minut a maximální 12 hodin.

Celý spínač i s relé je postaven na desce s plošnými spoji (obr. 3), mechanické díly budíku jsou na obr. 4.

Další důležitou částí budíku je vyzváněcí zařízení. V původním přistroji byl zabudován multivibrátor s reproduktorem, po delší době provozu jsem zjistil, že se více osvědčil (i z rozměrových důvodů) jednoduchý bzučák, vestavěný v telefonním sluchátku na desce s plošnými spoji D23 (AR č. 5/1970). Natočením membrány ve sluchátku si najdeme nejpronikavější tón.

Další částí budíku je spínač (na obr. 2 ve vyčárkovaném obdélníku). Jde o spínač, který určuje, jak dlouhou dobu má budík po sepnutí zvonit. Spínač lze nahradit např. jednoduchým přerušovačem (obr. 5). Spínač na obrázku je velmi jednoduchý. Kondenzátor C₂ se začne nabíjet po připojení ke zdroji, tím se posouvá pracovní bod tranzistoru a zvětšuje se jeho kolektorový proud tak dlouho, až dosáhne velikosti, potřebné k sepnutí relé Re₂.

Poznámky k součástkám

Nejdůležitější je vybrat pro Millerův integrátor dobré součástky. Tranzistory typu KC508 až 9 nebo KC149 vybereme s co možno největším zesilením, což je velmi důležité pro využití Millerova jevu v integrátoru, neboť je třeba dosáhnout co největší vstupní kapacity tranzistoru; vstupní kapacita je dána vztahem $C_{\rm v} = C_{\rm BE} + C_{\rm M}$, kde $C_{\rm M} = C_{\rm BC}(1+h_{\rm 21e})$; $(E_{\rm BE}$ je kapacita báze-emitor a $C_{\rm BC}$ kapacita báze-kolektor). Důležitým prvkem přístroje je kvalitní relé malých rozměrů, spínající již pří napětí 2 až 3 V a rozepínající při napětí

0,5 až 1 V (odpor asi 300 Ω). Před časem byla a možná že ještě jsou v bazaru v Myslíkově ulicí k dostání zvláštní miniaturní relé s jedním přepínacím kontaktem, plně vyhovující elektrickým i mechanickým požadavkům. V nouzi můžeme použít relé LUN, dobře se hodí i miniaturní polarizované relé, nebo malá modelářská relé; relé musí mít však jeden přepínací nebo rozpínací kontakt; nehodí se telesonní plochá nebo křížová relé.

Odpory musí mít malou toleranci, potenciometr je miniaturní typu TP 180, u něhož zkrátíme hřídel z rozměrových důvodů asi na 5 mm. Tlačítko se budeme snažit sehnat co nejmenší, stejně tak i spínač; ten můžeme udělat i z rozbitého odporového trimru, z něhož odstraníme odporovou dráhu. Výběr součástí do bzučáku i do spínače není kritický; u bžučáku lze použít jakýkoli tranzistor p-n-p nebo n-p-n, při použítí tranzistoru p-n-p musíme však obrátit polaritu zdroje a kondenzátoru. Tolerance mohou být velké. U spínače použijeme tranzistor řady GC a jako relé se hodí i výše popsané miniaturní relé.

Sestavení přístroje

Celý přístroj kromě napájecího zdroje vestavíme do krabičky z organického skla rozměrů 5 × 9,5 × 4 cm. Velmi se hodí např. krabička od sýru,,Olympic", u níž umístíme víko asi o 1 cm výše. V místech, která jsou na obr. 4 označena, musíme vyříznout díry, do nichž přesně zapadne bzučák. Desku s plošnými spoji se spínačem a relé buď ke krabičce přišroubujeme, nebo přilepíme upraveným lepidlem Epoxy: při jeho rozdělávání přilijeme kromě tužidla také stejné množství trichloretylénu, jenž je obsažen např. v čističi skvrn Čikuli – lepidlo pak pevně drží. Potenciometr, tlačítko i mechanický spínač připevníme do víka.

Potenciometr opatříme knofiíkem ve tvaru šipky. V místech, kde je bzučák, vyvrtáme do organického skla několik malých děr pro lepší slyšitelnost signálu bzučáku. Na hřídel potenciometru se hodí šipka typu WF 24360; po upevnění

Obr. 3. Deska s plošnými spoji G47

Obr. 4. Mechanické díly budíku

Obr. 5. Přerušovač tónu bzučáku

Budík nařizujeme na čas, za který máme být vzbuzeni.

Bzučák vypínáme vypnutím celého přístroje.

Technická data

Napájecí napětí: 9 V.
Odběr:
není konstantní (9 mA
až 56 mA).
Rozměry:
5 × 9,5 × 4 cm.
0 sazení:
2 × KC509, 2 ×
× GC516.
na vzorku min. 80 min.,
maximálně 12 hod.

10 Amatérske! 1 1 1 1 371

SDRUŽENÝ PALUBNÍ-

OTÁČKOMĚR A VOLTAMPÉRMETR

Ing. Bohumil Vybíral, CSc.

O výhodách otáčkoměru v osobním automobilu se není nutné rozepisovat (na stránkách tohoto časopisu bylo o nich podrobně pojednáno [1]). Návody na stavbu elektronických (tranzistorových) otáčkoměrů předpokládají užití citlivých měřicích přístrojů (se základním rozsahem do 1 mA) nejlépe s úhlem výchylky ručky 270°. Speciální přístroje s úhlem výchylky 270° se u nás nyní již koupit nedostanou. Tyto přístroje se prodávaly v poválečných létech (výprodejní letecké přístroje).

Běžné měřicí přístroje s citlivostí do l mA jsou pro podmínky provozu v automobilu příliš citlivé. Proto byl navržen tranzistorový otáčkoměr, který neklade přísné podmínky na citlivost měřicího přístroje při zachování přesnosti měření rychlosti otáčení. Ke kontrole činnosti relé, dobíjení baterie a stavu jejího nabití bylo měřicího přístroje z otáčkoměru využito k měření napětí palubní sítě a k měření dobíjecího a vybíjecího proudu baterie (mimo proud, procházející startérem při startu). Vznikl tak sdružený otáčkoměr a voltampérmetr.

Otáčkoměr

K měření rychlosti otáčení (ot/min) byl použit tranzistorový otáčkoměr s multivibrátorem, spouštěným impulsy ze snímací cívky, navinuté na vysokonapěťovém kabelu. Tento způsob snímání impulsů pro otáčkoměr je zvlášť vhodný při použití elektronického zapalování. Otáčkoměr pracující na tomto principu byl již popsán v [1] na str. 66. Zapojení jsem však upravil tak, aby otáčkoměr mohl pracovat s méně citlivým měřidlem. Protože měřidlem budeme měřit i proud, musí být jeho odpor co nejmenší. V konkrétním případě bylo použito magnetoelektrické měřidlo se základním rozsahem 15 mA a s vnitřním odporem 1,8 Ω. Protože úhel výchylky běžných přístrojů je jen 90°, byl otáčkoměr navržen jako dvourozsahový. První rozsah 0 až 1 800 ot/min slouží při nastavování "volnoběžné" rychlosti otáčení a rychlosti otáčení, při níž přepíná relé dobíjení baterie. Druhý rozsah 0 až 6 000 ot/min (0 až 8 000 ot/min) je provozní.

Schéma zapojení otáčkoměru je na obr. 1. Popis jeho činnosti je v článku [1]. Uvedené hodnoty odporů a kondenzátorů platí pro případ, kdy maximální výchylka měřicího přistroje je 15 mA při signálu o kmitočtu 200 Hz (6 000 ot/min u čtyřválcového čtyřdobého motoru). V zapojení na obr. 1 je stejnosměrný proudový zesilovací činitel tranzistoru T1 180 a T2 190. Vlastnosti obvodu však na velikosti zesilovacího činitele tranzistorů příliš nezávisí; v konkrétních případech se maximální výchylka ručky měřidla upraví potenciometrem R8. Otevření tranzistoru T2 (při použití měřicího přístroje o jiném proudovém rozsahu) se nastaví odporem R6, přičemž se se zmenšujícím odporem R6 zvětšuje kolektorový proud tranzistoru T2.

Aby nezávisela výchylka měřicího přístroje na napětí palubní sítě, napájí se otáčkoměr stabilizovaným napětím.

Obr. 1. Schéma zapojení otáčkoměru

S ohledem na použití stabilizátoru i pro obvod k měření proudu je obvod stabilizátoru zapojen v záporném pólu napájecího napětí. Podle velikosti stabilizovaného napětí se musí nastavit odpor R_4 (nejlépe trimr) v bázi tranzistoru T_1 tak, aby při nulovém signálu na vstupu byl tranzistor T_2 uzavřen.

Uvedený popis platí pro vstupní signál 0 až 200 Hz (0 až 6 000 ot/min). Pro rozsah 0 až 60 Hz (0 až 1 800 ot/min) je třeba, aby ručka měřidla měla maximální výchylku již při kmitočtu 60 Hz. Toho lze dosáhnout tím, že se paralelně ke kondenzátoru C_2 připojí kondenzátor C_3 a k odporu R_6 trimr R_5 . Připojením kondenzátoru C_3 se zvětší šířka impulsů multivibrátoru a připojením odporu R_6 se více otevře tranzistor T_2 . Kondenzátory C_2 a C_3 musí být kvalitní (typu MP).

Zapojení multivibrátoru podle obr. l je částečně teplotně kompenzováno, neboť místní zvětšení teploty tranzistoru T_2 vede ke zvětšení výchylky přístroje, kdežto místní zvětšení teploty tranzistoru T_1 vede naopak ke zmenšení výchylky přístroje. Ke zlepšení teplotní stabilizace je do emitoru tranzistoru T_2 zařazen odpor R_9 . Vzhledem k tomu, že kolektorový proud tranzistoru T_2 je mnohem větší než proud T_1 , vzniká u tranzistoru T_2 větší vnitřní ohřev než u tranzistoru T_1 . Aby se nelišily údaje přístroje studeného a provozně zahřátého (zahřátí je však nepatrné), je vhodné opatřit tranzistor T_2 chladičem.

Stabilizátor napětí

K podstatnému zlepšení přesnosti otáčkoměru je použit účinný stabilizátor napětí podle obr. 2. Stabilizátor jegurčen rovněž k napájení obvodu pro vytvoření "elektrické nuly" uprostřed stupnice při měření proudu. Proto je regulační tranzistor T_8 umístěn do záporné větve napájecího zdroje. Podle použité Zenerovy diody D_8 dostaneme na výstupu určité stabilizované napětí. Zenerovy diody typu KZ722 mají napětí. Zenevy diody typu KZ722 mají napětí $T_8 = 7.7 \pm 1.00$

Obr. 2. Schéma zapojení stabilizátoru napětí

 \pm 0,05 V, kolísalo-li na vstupu napětí v mezích 8 až 16 V.

Voitmetr

Měřidlo z otáčkoměru lze s výhodou použít k měření napětí palubní sítě. K měření napětí je však nutné vřadit do okruhu měřicího systému předřadný odpor. Označíme-li $I_{\rm g}$ maximální proud systému a $R_{\rm g}$ jeho odpor, bude mít ručka maximální výchylku při napětí $U_{\rm g}=R_{\rm g}I_{\rm g}$. Je-li maximální měřené napětí U, musíme rozsah zvětšit $n=U/U_{\rm g}=U/R_{\rm g}I_{\rm g}$ krát. Pro velikost předřadného odporu pak bude platit

$$R_{\rm p} = (n-1)R_{\rm g} = \frac{U}{I_{\rm g}} - R_{\rm g}$$
.

V konkrétním případě, kdy $I_g = 15 \text{ mA}$, $R_g = 1,8 \Omega$ a kdy jako maximální měřené napětí volíme U = 18 V, vychází $R_p = 1 198 \Omega$. Předřadný odpor je vhodné sestavit z pevného odporu R_p' (820 Ω) a z trimru ΔR_p (470 Ω) podle obr. 3. Zde je v měřeném okruhu zařazena ještě dioda D_3 z důvodů, které vyplynou z popisu celkové elektrické sestavy sdruženého přístroje. Při měření napětí je nutné počítat s provozním odporem diody, popř. s úbytkem napětí na ní.

Ampérmetr

Ke kontrole dobíjení a vybíjení baterie (pro měření proudu) je využito měřidla otáčkoměru. Aby bylo možno měřit dobíjecí i vybíjecí proud, je nutné

Obr. 3. Schéma zapojení voltmetru

Obr. 4. Schéma zapojení ampérmetru $(R_8 - R_8)$

Obr. 5. Zjednodušené schéma obvodu pro vytvoření "elektrické nuly"

Obr. 6. Náhradní elektrické schéma pro výpočet bočníku

při přepnutí na ampérmetr vytvořit nulovou polohu ručky uprostřed stupnice. Toho lze s výhodou dosáhnout elektricky, protože je k dispozici stabilizované napětí. Obvod pro měření proudu je na obr. 4. Ze způsobu připojení bočníku R je vidět, že měřidlo nebude měřit značný vybíjecí proud, procházející startérem při startu.

K vytvoření "elektrické nuly" slouží obvod z odporů R_0 a $R_0 = R_0' + \Delta R_0$, které jsou připojeny ke stabilizovanému napětí Us. Z uspořádání tohoto obvodu je zřejmé, proč musí být stabilizátor v záporné větvi napájení. Platí-li pro dobijeci, popř. vybijeci proud vztah l=0, musí na odporu R_0 vzniknout napěti $U_0=R_{\rm g}I_{\rm g}/2$, kde $I_{\rm g}$ je maximalní proud miliampérmetru.

Zjednodušené elektrické schéma tohoto obvodu je na obr. 5. Vzhledem k tomu, že pro odpor bočníku platí If $R \ll R_g$, můžeme jej při I = 0 vypustit. Je vhodné zvolit odpor R_o tak, aby $R_o = R_g$. Potom $I_o = I_g/2$ a $I_s = I_g$. Pro odpor R_g pak platí

$$R_s = \frac{U_s}{I_g} = \frac{R_g}{2}.$$

Odpor R_8 je vhodné sestavit ze dvou odporů (viz obr. 4), přičemž proměnným odporem ΔR_a se přesně nastaví nula uprostřed stupnice.

Pro výpočet bočníku si můžeme napěťové a proudové poměry v obvodu napetove a proudove pomery v obvodu na obr. 4 zjednodušeně znázornit podle obr. 6. Odpor R_0 si přitom můžeme představit jako článek o napětí U_0 s vnitřním odporem $R_0 = R_g$. Na bočníku R vzniká napětí $U_R = RI$, kde $I \gg I_g$ je dobíjecí proud. Proto si můžeme božník R představit jako žlánek žeme bočník R představit jako článek o napětí $U_{\mathbb{R}}$ se zanedbatelným vnitřním odporem $(R \ll R_g)$. Pak podle obr. 6 platí

$$U_{\rm o} + U_{\rm R} = R_{\rm g}I_{\rm g} + R_{\rm o}I_{\rm g}.$$

Po dosazení za Uo, UR a Ro dostáváme

$$R = \frac{3}{2} R_{\rm g} \frac{I_{\rm g}}{I} -$$

Obr. 7. Celkové elektrické schéma sdruženého otáčkoměru a voltampérmetru s jeho připojením do elektrické sítě vozidla

(zcela nahoře kontakt V přepínače má být spojen s ne)

Při vybíjecím proudu (I < 0) je polarita článku U_R opačná a za uvedeného zjednodušení ($R \ll R_g$) bychom dostali pro bočník stejný výraz. V obou případech je výchylka ručky přístroje lineární funkcí proudu I.

Je vhodné zvolit maximální měřený dobíjecí proud I = 10 A a vybíjecí aobijeci proud I = 10 A. a vybijeci proud I = -10 A. Pak pro parametry použitého měřidla ($I_g = 15$ mA, $R_g = 1,8$ Ω) vychází $R_0 = 1,8$ Ω, $R_0 =$ The definition of the second of the second

Elektrická sestava sdruženého přístroje

Celkové elektrické schéma sdruženého otáčkoměru a voltampérmetru s jeho připojením do elektrické sítě vozidla je na obr. 7. Pro přepínání funkcí přístroje je použit přepínač, který musí být čtyřpolohový, třípólový. Pro použití v popisovaném přístroji se velmi dobře osvědčil miniaturní otočný přepínač (typové řady WK 553) s maximálním spínaným proudem 15 mA, který se používá jako vlnový přepínač u některých tranzistorových přijímačů TESLA a který lze (za 15 Kčs) koupit v technických partiových prodejnách. Přepínač je schematicky naznačen na obr. 8. Počet přepínaných poloh se dá vymezit od dvou do osmi polohou podložky s jazýčkem pod upevňovací maticí; vymezíme čtyři polohy. V každé poloze se u všech řad nezávisle spínají kontakty a, b na protilehlých místech kolem osy. Např. se současně spínají kontakty la,

Obr. 8. Schéma přepínače řady WK553

Ib a 5a, 5b. První dvě řady kontaktů (I. a II.) jsou použity k přepínání mě-řidla, přičemž u každé z těchto řad jsou kontakty a trvale spojeny dokrátka. Aby se zvětšila spolehlivost a prodloužila doba života přepínače, jsou vždy dva protilehlé kontakty b spojeny. Tím se pro každé spínané místo vytvoří dva paralelní spínače. Třetí řada kontaktů je použita jednak k připojení stabilizátoru do obvodu pro měření proudu, jednak k přepínání rozsahu vlastníh otáčkoměru (viz obr. 1). Obvody otáčkoměru se od stabilizátoru při měření napětí nebo proudu jinak odpojovat nemusí, protože o lpojením měřidla z obvodu tranzistoru T₂ se zmenší odběr proudu otáčkoměru na zanedbatelnou

Napájení otáčkoměru (s výjimkou bočníku) je zapojeno do mista elektrického rozvodu vozidla, spínaného klíč-kém zapalování (u Š 100 je to pojistka č. 2). Aby se při vypnutém zapalování nedostal při náhodném přepínání z po-lohy V na A nebo naopak ze svorky 2 přes přepínač do svorky 5 (připojené k zapalování) proudový impuls (asi 3 A!), je mezi přepínač a svorku 5 připojena dioda D_3 . Dále je nutné zachovat pořadí přepínaných funkcí podle obr. 7, tj. $n_{1,8}$, n_6 , V, A. Kdyby se změnilo pořadí V – A, docházelo by při přepínání funkce otáčkoměr-ampérmetr k proudovým impulsům, které by mohly ohrozit obvody otáčkoměru.

K osvětlení stupnice přístroje slouží žárovka, připojená paralelně k žárovce Ž pro osvětlení tachometru. Do přívodů ke sdruženému přístroji jsou vřazeny

tavné pojistky.

Mechanické provedení

Sdružený měřicí přístroj je nejlépe zhotovit na jedné desce s plošnými spoji, k níž se mechanicky připevní přepínač i měřidlo (viz obr. 9 a 10).

Obr. 9. Vnitřní uspořádání součástek při pohledu shora

Obr. 10. Vnitřní uspořádání součástek při pohledu zespodu

(Pokračování)

TUNER UKV

Ing. Karel Mráček

Není jistě daleko doba, kdy se i na našem trhu objeví kapacitní diody vhodné pro UKV, vyráběné již nyní v n. p. TESLA Piešťany – obdoba osvědčených BB105. Tyto párované diody (místo ladicího kondenzátoru) umožní stavbu přeladitelných tunerů a konvertorů širokému okruhu amatérů. Nejobtížnějším úkolem při stavbě těchto přístrojů s drátovými spoji je zhotovení a nastavení laděných obvodů. Popisovaný tuner je proto celý navržen na plošných spojích, včetně laděných obvodů.

Popis činnosti

Zapojení je na obr. 1. Schéma odpovídá obvyklému provedení: tuner má řízený předzesilovač s tranzistorem T_1 , pásmovou propust a kmitající směšovač

toru. Mezifrekvenční signál prochází obvyklou dolní propustí na mřzesilovač. Vlastnosti tuneru popisuje diagram na obr. 2.

Konstrukce

Na obr. 3 je obraz plošných spojů a rozložení součástek na destičce. Vyšrafovaný prostor okolo laděných obvodů L_4 , L_5 a L_7 je odfrézován nebo vypilován. Tím se zvětší jakost okruhů a zmenší kapacita. Omezime tak rovněž závislost na tloušíce a vlastnostech základního materiálu destičky. Destička musí být samozřejmě co nejtenčí a materiál má mít nejmenší permitivitu (dielektrickou konstantu).

Kovové přepážky jsou jen mezi vstupem a pásmovou propustí a mezi oscilátorem a mí propustí. Tím se zamezí většímu vyzařování oscilátoru.

Obr. 1. Zapojení tuneru UKV

s tranzistorem T₂. Jako kapacitní diody se používají tři párované kapacitní diody firmy Siemens typu BB105A.

Předzesilovač je těsně vázán s pásmovou propustí kondenzátorem C_3 , čímž se zvětšuje zesílení na nižších kmitočtech. Dobrá stabilita i malý činitel odrazu zůstávají přesto zachovány. Jsou určeny kapacitou (velikostí) a zemnicím bodem kondenzátoru C_4 . Vazba v pásmové propusti je indukční a současně při nižších kmitočtech přes cívku L_3 . Tranzistor směšovače je vázán smyčkou L_6 .

Aby byla zachována konstantní amplituda oscilací přes celý laděný kmitočtový rozsah, používá se kombinovaná indukční a kapacitní zpětná vazba. Emitorový proud tranzistoru T₂ je volen poměrně malý (1,5 mA), aby bylo oteplení tranzistoru minimální. Tím se zmenšil kmitočtový teplotní drift oscilá-

Obr. 2. Přenosové vlastnosti tuneru. F – šum, V – výkonové zesílení, B – šířka pásma, r – absolutní hodnota činitele odrazu

Poznámky k náhradě součástek

Rozpiska běžných součástek je uvedena na konci clánku. Náhrada tranzistorů AF279 a AF280 by byla možná typcm AF239, který se mezi amatéry vyskytuje poměrně často. Kdo sežene párované kapacitní diody z Piešťan, může je samozřejmě použit (místo diod BB105A).

Elektrická rozpiska

R ₁ 1 kΩ R ₂ 470 Ω R ₃ 27 kΩ R ₄ 3.9 kΩ R ₄ 2.7 kΩ R ₆ 5.6 kΩ R ₇ 27 kΩ Kondenzátory C ₁ 10 pF C ₂ 10 pF C ₃ 0.5 pF C ₄ 24 pF C ₅ 18 pF C ₆ 18 pF C ₆ 18 pF C ₇ 150 pF C ₈ 150 pF C ₉ 150 pF C ₁ 150 pF C ₁ 1 pF C ₁₁ 3 pF C ₁₁ 1 pF C ₁₂ 1 pF C ₁₃ 1 pF C ₁₄ C ₁₅ C ₁₆ 1 nF C ₁₅ C ₁₆ C ₁₇ C ₁₈ 1 nF C ₁₆ C ₁₉ C ₁₉ 1 nF C ₁₁ C ₁₉ 10 pF C ₁₁ 10 pF C ₁₁ 10 pF C ₁₂ 1 nF, průchodkové C ₁₃ 10 pF, průchodkové nebo ke	Odpory TR 11:	2a		
R ₁ 27 kΩ R ₄ 3.9 kΩ R ₄ 2.7 kΩ R ₅ 5.6 kΩ R ₇ 27 kΩ Kondenzátory C ₁ 10 pF C ₂ 10 pF C ₃ 0.5 pF C ₄ 24 pF C ₅ 18 pF C ₅ 18 pF C ₇ trimr 5 pF C ₈ 150 pF C ₉ 150 pF C ₁₀ 1 pF C ₁₁ 3 pF C ₁₁ 1 pF C ₁₂ 1 pF C ₁₃ C ₁₄ 1 pF C ₁₄ C ₁₅ C ₁₅ 1 pF C ₁₅ C ₁₆ 10 pF C ₁₆ 10 pF C ₁₇ 10 pF C ₁₈ 10 pF C ₁₉ 10 pF, průchodkové nebo ke	R_1			
R ₁ 2,7 kΩ R ₂ 5.6 kΩ R ₃ 27 kΩ Kondenzátory C ₁ 10 pF C ₂ 10 pF C ₃ 0,5 pF C ₄ 24 pF C ₅ 18 pF C ₆ 18 pF C ₇ trimr 5 pF C ₈ 150 pF C ₉ 150 pF C ₁₀ 1 pF C ₁₁ 3 pF C ₁₁ 1 pF C ₁₂ 1 pF C ₁₃ C ₁₄ 1 nF C ₁₄ 1 pF C ₁₄ 1 pF C ₁₅ 1 pF C ₁₆ 10 pF C ₁₇ 10 pF C ₁₈ 10 pF C ₁₉ 10 pF, průchodkové nebo ke	R_s	27 kΩ		
R ₁ 27 kΩ Kondenzátory C ₁ 10 pF C ₂ 0,5 pF C ₄ 24 pF C ₅ 18 pF C ₇ 18 pF C ₇ 150 pF C ₈ 150 pF C ₉ 150 pF C ₁₁ 3 pF C ₁₁ 3 pF C ₁₂ 1 pF C ₁₃ 1 pF C ₁₄ C ₁₅ 1 pF C ₁₅ 1 pF C ₁₆ 1 pF C ₁₇ 1 pF C ₁₈ 1 pF C ₁₉ 1 pF C ₁₉ 1 pF C ₁₀ 1 pF C ₁₁ C ₁₂ 1 pF C ₁₄ C ₁₅ 1 pF C ₁₅ 1 pF C ₁₆ 10 pF C ₁₇ 10 pF C ₁₈ 10 pF C ₁₉ 10 pF, průchodkové nebo ke	R_{\bullet}	2,7 kΩ		
C ₁ 10 pF C ₂ 10 pF C ₃ 0,5 pF C ₄ 24 pF C ₅ 18 pF C ₆ 18 pF C ₇ trimr 5 pF C ₉ 150 pF C ₁₀ 1 pF C ₁₁ 3 pF C ₁₁ 1 pF C ₁₂ 1 pF C ₁₃ C ₁₄ 1 nF C ₁₄ 1 pF C ₁₅ 1 pF C ₁₆ 1 pF C ₁₆ 1 pF C ₁₇ 1 pF C ₁₈ 1 pF C ₁₈ 1 pF C ₁₉ 1 p				
C: 10 pF C: 0,5 pF C: 0,5 pF C: 24 pF C: 18 pF C: 18 pF C: 150 pF	Kondenzátory			
	C: C	10 pF 0,5 pF 24 pF 18 pF 18 pF 18 pF 55 pF 150 pF 150 pF 1 pE 3 pF 1	nebo	kera-
mický	VII	mický		

Všechny kondenzátory jsou keramické pro vf obvody, co nejmenších rozměrů. C_1 a C_2 se použijí v případě potřeby k doladění D_2L_2 , popř. D_3L_2 .

Polovodičové prvky

T_1	AF279
T_{\bullet}	AF280
D, až D.	BB105A

Literatura

Siemens Halbleiterschaltbeispiele 1972.

Tabulka civek

Civka	Poč. závitů	Civka na Ø [mm]	Drát o Ø [mm]	Jádro, pozn.
L_1	8	3	0,5	
L.	3	3	.0,5	_
L_2, L_3	12	3	0,35	
L_{\bullet}	12	3	0,5 .	;
L10	12	4,3	0,35	vf ferit.
L11	18	4,3	0,35	vf ferit.
L12	5,5	4,3	0,5	vf ferit.
L13	4	-	0,35	přes L ₁₁
L_4, L_5, L_7	podle of	or. 3		
L_{\bullet}	postříbi 40 mm	ený drát	o Ø 0,8 1	nm délky
L ₄₁ ,	smyčka 10 mm	drátu Cu	o Ø 0,5	mm délky

-Mrk-

Obr. 3. Plošné spoje (deska G48), vyšrafované části odfrézovat!

Mf zosilňovač 10,7 MHz s 10

Ing. Gabriel Kuchár

V AR 1/73 boli zhrnuté najdôležitejšie požiadavky kladené na medzifrekvenčný zosilňovač prijímača FM. Na možnosť realizácie takéhoto obvodu, pomocou modernej súčiastkovej základne,

má poukázať tento článok.

Použitie integrovaných obvodov v jednotlivých oblastiach spotrebnej elektroniky nie je dnes v zahraničí žiadnou zvláštnosťou. Okrcm veľkého množstva lineárnych obvodov, aplikovaných v nízkofrekvenčných zariadeniach, množstvo zahraničných firiem vyrába integrované obvody pre vysokofrekvenčné aplikácie. Jedným z prvých bolo ich použitie v medzifrekvenčných zosilňovačoch FM prijímačov (fy Fisher, Scott, Heathkit, Görler atd.). Dnes je situácia priaznivá i u nás. V n. p. TESLA Rožnov boli vyvinuté a v súčasnosti sa vyrábajú integrované obvody pre vysokofrekvenčné aplikácie – MA3005, MA3006, MA3013, MA3014 a obvod určený pre zvukovú časť TV prijímačov – MAA661.

Základom medzifrekvenčného (mf) dielu 10,7 MHz, realizovaného lineárnymi integrovanými obvodmi (IO), je symetricky limitujúcí zosilňovač tvorený jednotlivými diferenciálnymi stupňami, prípadne viacstupňový jednosmerne viazaný diferenciálny zosilňovač v monolitickom prevedení.

Selektivita zosilňovača je zaistená:

a) kaskádnym medzistupňovým zapojením množstva filtrov LC, viazaných

prevážne indukčnou väzbou;

b) obvodmi so sústredenou selektivitou – keramické prípadne krystalové filtre. Výhoda krystalových filtrov spočíva vo väčšej strmosti bokov rezonančnej charakteristiky, takže pri realizácii mf dielu postačí jeden filter. V zahraničí sa častejšie používajú keramické filtre, ktorých výhodou sú menšie rozmery a nižšia cena.

Ďalší obvod, ktorý obsahuje mf diel, slúži k zpracovaniu zosilneného a symetricky obmedzeného frekvenčne modulovaného signálu – frekvenčný demodulátor typu Foster-Seeley, pomerový detektor, synchrodetektor alebo v poslednej dobe častejšie používaný koinci-

denčný detektor.

Kombináciou popísaných alternatív získame množstvo obvodov, ktorých rozdielnosť spočíva predovšetkým v nákladnosti, počte použitých pasívnych prvkov – hlavne ladených obvodov (indukčností).

Ako bolo uvedené, základom mf zosilňovača je diferenciálny stupeň, ktorého schéma (základné zapojenie) je na obr. 1. Rozbor tohoto obvodu podľa symboliky na obr. 1:

$$I_0 = I_{c1} + I_{e2}$$
 zdroj prúdu zapojený v emitoroch tranzistorov T_1 a T_2 (1),

$$U_{\rm b1} - U_{\rm e} = U_{\rm be1}$$
 (2),

$$U_{\rm b2} - U_{\rm e} = U_{\rm be2} \tag{3}.$$

Odčítaním rovníc (2) a (3) dostávame

$$U_{\rm b1} - U_{\rm b2} = U_{\rm be1} - U_{\rm be2}$$
 (4).

Emitorový prúd tranzistoru môže byť vyjadrený pomocou vzťahu pre jednoduchý prechod p-n

 $I_{\rm e} = I_{\rm s} \; (\exp \; U_{\rm be}/U_{\rm T} - 1) \quad (5),$

kde I_s je saturačný prúd prechodu p-n v závernom smere,

U_{be} napatie na prechode bázaemitor,

 $U_{\rm T}$ teplotné napätie, dané pomerom kT/q, ktorého teoretická hodnota pre T=300 °K je 26 mV,

k Boltzmanova konštanta 0,863.10-4 eV/°K,

T absolutná teplota v °K,

q náboj elektrônu.

Pre emitorové prúdy väčšie ako 1 nA môžme vo vzťahu (5) zanedbať výraz —1. Potom pre jednotlivé tranzistory na obr. 1 môžme napísať:

$$I_{e1} = I_{s1} \exp U_{be1}/U_T$$
 (6),

$$I_{e2} = I_{s2} \exp U_{be2}/U_{T}$$
 (7).

Predpokladajme, že parametre tranzistorov T_1 a T_2 sú identické, tj.:

$$I_{01} = I_{02} = I_{0},$$

$$\alpha_1 = \alpha_2 = \alpha,$$

kde α je prúdový zosilňovací činiteľ tranzistoru zapojeného so spoločnou bázou.

Súčet rovníc (6), (7) vyjadruje rovnicu (1) pre zdroj prúdu:

$$I_0 = I_s \exp U_{bel}/U_T + I_s \exp U_{bel}/U_T$$
 (8)

Úpravou rovnice (8) a dosadením vzťahu (4) dostávame:

$$I_{0} = I_{8} \exp U_{b1}/U_{T} [1 + \exp (U_{b2} - U_{b1})/U_{T}] =$$

$$= I_{8} \exp U_{b2}/U_{T} [1 + \exp (U_{b1} - U_{b2})/U_{T}]$$
(9)

Spätným dosadením tejto rovnice do vzťahov (6) a (7) dostaneme výrazy pre jednotlivé emitorové prúdy:

$$I_{\rm e1} = \frac{\Gamma I_0}{1 + \exp{(U_{\rm b2} - U_{\rm b1})/U_{\rm T}}} \ (10),$$

$$I_{e2} = \frac{I_0}{1 + \exp((U_{b1} - U_{b2})/U_T)}$$
 (11).

Pretože pre kolektorový prúd tranzistoru platí $I_c = \alpha I_e$, môžme písať:

$$I_{c1} = \frac{\alpha I_0}{1 + \exp(U_{b2} - U_{b1})/U_T}$$
(12),

$$I_{c2} = \frac{\alpha I_0}{1 + \exp((U_{b1} - U_{b2})/U_T}$$
(13)

Grafické znázornenie rovníc (12) a (13) je na obr. 2. Kolektorové prúdy jednotlivých tranzistorov sú v jednotkách αI_0 a vstupné rozdielové napätie $U_{\rm b1} - U_{\rm b2}$ v jednotkách $U_{\rm T} = kT/q$.

Z prevodových charakteristík na obr. 2 vyplývajú základné vlastnosti diferenciálneho stupňa, dôležité pre mf zosilňovač:

- Prevodová charakteristika je lineárna v rozsahu ± U_T = ± 26 mV.
- 2. Diferenciálny zosilňovač je prirodzený symetrický limiter. Z obr. 2 je

Obr. 2.

Obr. 3. δ je posuv nulové úrovne fo nesymetrickou limitáciou, φ - fázový posuv priechodu nulou, φ₂ > φ₁ vznik fázovej parazitnej modulácie

PŘIPRAVUJEME PRO VÁS

Volba reproduktorů a konstrukce reproduktorových soustav s reproduktory TESLA

Oscilátor RC

10 Amatérské? ADI 1 375

vidieť, že plné obmedzenie nastáva pre signály väčšie ako $\pm 4U_{\rm T}$ (približne ± 100 mV).

Požiadavka symetrickej limitácie vychádza z možnosti parazitnej fázovej modulácie (obr. 3)

Ďalšou pozitivnou vlastnosťou diferenciálneho stupňa je, že jeho fázový posuv je aj na vysokých kmitočtoch malý (10 až 15°) a medzi normálnou úrovňou a limitáciou sa mení pomerne málo (maximálne o 5°).

Typickými predstaviteľmi jednodu-chého diferenciálneho stupňa sú integro-vané obvody CA3053 (RCA) obr. 4a, MC1550 (Motorola) obr. 4b, μA703 (Fairchild) obr. 4c, Amelco 911 obr. 4d, Signetics 511 obr. 4e, MA3005 až 6

(TESLA) obr. 4f.

Príkladom mf zosilňovača zostaveného z jednoduchých diferenciálnych stupňov a pomerového detektoru je obr. 5a. Použité IO, μΑ703, môžme nahradiť z našej súčiastkovej základne typom MA3005 a 6. Zapojenie jedného stupňa s týmto IO je na obr. 5b.

Zložitejšie IO pozostavajú z viacstup

ňového jednosmerne viazaného zosilňovača, prípadne obsahujú párované diódy pre pomerový detektor. Príkladem

V najnovších IO určených pre zvukovú časť TV prijímačov, príp. pre pri-jímače FM, je použitý odlišný spôsob detekcie frekvenčne modulovaného sig-nálu v porovnaní s klasickými spôsobmi pomerovým, popr. fázovým detektorom. Využíva sa logickej funkcie – koincidencie – známej z číslicovej techniky. Odtial je aj názov tohoto detektoru – koincidenčný. Typickým pred-

staviteľom takéhoto monolitického IO je typ TAA661, vyvinutý firmou SGS (priamy ekvivalent u nás vyrábaného obvodu MAA661).

Tento IO, vyrobený planárnou technológiou na kremíkovej dostičke 1,25 × 1,25 mm², obsahuje širokopásmový trojstupňový limitujúci zosilňovač, koincidenčný detektor určený k demodulácii signálov FM, interný napäťový stabilizátor (úmožňujúci činnosť obvodú v rozsahu napájacieho napätia 4,5 až 15 V) a výstupný nf stupeň. Frekvenčný rozsah tohoto obvodu je 5 kHz až 60 MHz. Blokové schéma obvodu je na obr. 7.

Širokopásmový zosilňovač DZ je zlo-žený z troch diferenciálnych stupňov, viazaných emitorovými sledovačmi jednosmerná väzba). Pracovné body sú nastavené tak, že jednosmerné napä-tie na výstupe každého stupňa je rovné napätiu vstupnému. Emitorový sledovač pracuje ako prevodník jednosmernej napäťovej úrovne $3U_{\rm be}$ na $2U_{\rm be}$. Pre striedavé signály -predpokladajme pre-

takéhoto obvodu je typ MA3013 až 14 (obr. 6a), typická aplikácia je na obr. èь.

Obr. 7. DZ je diferenciálný zosilňovač, S stabilizátor, KD koincidenčný detektor, NF nf zosilňovač (výstup je 14)

376 amatérske AD 10 73

nos emitorového sledovača rovný 1. Potom zosilnenie stupňa na obr. 8 vypočítame pomocou jednoduchej úvahy. Diferenciálny stupeň pracuje v lineárnej-oblasti pre vstupné signály maximálne $\pm U_{\rm T}$ (obr. 2), tj. -3 dB od plnej limi-tácie. Maximálny rozkmit na výstupe diferenciálneho stupňa (bod B) je daný astavaním jednosmerných pracouvých nastavením jednosmerných pracovných podmienok, v našom prípade Ube. Napäťové zosilnenie stupňa je potom dané

$$A_{\rm u} = 20 \log \frac{U_{\rm be}}{2U_{\rm T}} = 20 \log \frac{650}{2.26} \doteq \pm 22 \text{ dB}$$
 (14).

Zosilňovač obsahuje tri tieto stupne, takže jeho celkový zisk je väčší ako 60 dB.

Cez celý zosilňovač je zavedená jednosmerná stabilizačná spätná väzba (odpor R₈), ktorá zaisťuje činnosť obvodu v teplotnom rozsahu 0 až 100 °C.

Prenosová charakteristika celého širo kopásmového zosilňovača je na obr. 9.

Obr. 10.

9=0

Ymax Y=Ymax

Y=90

 $Y_S = Y_{max/2}$

Ψ=180°

Y=0

Koincidenčný detektor KD realizuje funkciu známu v číslicovej technike pod názvom ekvivalencia, Exclusive - Nor, príp. koincidencia:

$$\Upsilon = A \cdot B + \overline{A} \cdot \overline{B}$$
 (15).

Stavová tabulka tejto funkcie je v tab. 1, jej grafické znázornenie je na obr. 10a. Po zintegrovaní jednotlivých priebe-

hov Υ (čiarkovaný priebeh na obr. 10a) dostávame lineárnu závislosť $\Upsilon = f(\varphi)$, kde φ je fázový posuv vstupných premenných A, B (obr. 10b).

Tab. 1. Stavová tabuľka pre koincidenciu

A	В	Y
0	0	ì
0	1 `	0
1 _	0	0
1	` 1	1

Ak priradíme funkcii Y výstupné napätie, môžme písať:

$$U_{\text{vyst}} = k_1 \varphi \qquad (16)$$

Frekvenčný demodulátor realizuje v určitom obmedzenom frekvenčnom rozsahu funkciu

$$U_{\text{vyst}} = k_2 f \text{ [V; V/Hz, Hz]}$$
 (17).

Pri porovnaní vzťahov (16), (17) vidieť, že koincidenčným obvodom môžme realizovať lineárny frekvenčný demodulátor za predpokladu splnenia podmienky $\varphi/f = \text{konšt.}$ Prakticky je tento obvod realizovaný pomocou fázovacieho člán-ku (obr. 11a). Skutočné prevedenie je na obr. 11b, z ktorého vidieť, že koincidenčný obvod je zložený z troch diferenciálnych stupňov vzájomne viazaných, a zdroja konštantného prúdu. Pracovné body obvodu sú nastavené tak, že bez signálu na vstupoch A, B a pri zanedbaní bázových prúdov platí:

$$I_{17} = I_{18} = I_{20} = I_{21} = I_{19}/2 =$$

$$= I_{22}/2 = I_0/4 \qquad (17),$$

$$I_{\rm L} = I_{18} + I_{20} = I_0/2$$
 (18),

$$U_{\text{vyst}} = I_{\text{L}} R_{\text{L}} = R_{\text{L}} I_0 / 2$$
 (19).

Funkciu obvodu dostatočne popisuje

V prípade, že zredukujeme vstupný signál na dvojstavovú logiku (obr. 12a), tj. uvažujeme z tab. 2 iba stavy č. 5 až 8, môžme previesť obr. 11b na analogický obvod logickej štruktúry (obr. 12 b). Vzhľadom k tomu, že berieme $U_{vyst} = I_L R_L$, v porovnaní s tab. 1 je vidieť, že výstupná funkcia v tomto prípade je inverzná a daná vzťahom:

$$\Upsilon = A \cdot \overline{B} + \overline{A} \cdot B$$
 (20)

Demodulačná charakteristika má potom : kladnú deriváciu v pracovnom bode (čiarkovaný priebeh na obr. 10b).

Tab. 2.

	stupn ignál			J	edno	tlivé	prúd	у	
č.	A	В	I17	I15	Izo	I 21	I,,	I 23	IL
1	+	0	I ₀ /2	0	1./2	0	I ₀ /2	I ₀ /2	I _• /2
2	_	0	0	I _• /2	0	<i>I</i> √2	I ₀ /2	I ₀ /2	I _• /2
3			I ₀ /2	I ₀ /2	0	0	I ₀	0	I ₀ /2
4	0	-	0	0,	I ₀ /2	I ₀ /2	0	I ₀	I ₀ /2
5	+	,+	I ₀	0	0	0	I ₀	0	٥,
6	+	_	0	0	<i>I</i> ,	0	0	I.	I.
7	_	+	0	-I ₀	0	0	I.	0	I ₀
8	-	_	0	0	. 0	0 I ₀		.I.	0

Popísaný typ obvodu je tzv. celovlnný detektor. Jeho určitú odolnosť vôči vonkajším poruchám si ukážeme na porovnaní s jednoduchším typom, tzv. polovlnným detektorem (obr. 13a). Za predpokladu symetrie limitujúceho zosilňovača a bezporuchového vstupného signálu bude signál A symetricky. Rozdiel medzi obvodmi potom spočíva iba v rozdielnom prúde I_{vyst} (polovičný u polovlnného typu, obr. 13b). Obr. 13c znážorňuje prípad nesymetrického signálu B, ktorý je spôsobený hlavne vonkajšími poruchami. Ako vidieť z obr. 13, bude Ivýst u polovlnného typu iný ako v predchádzajúcom prípade. U celovlnného detektoru budú jednotlivé zložky prúdu IL rôzne, ale výsledný Ivyst bude totožný s prúdom pri symetrickom vstupnom

signáli B, pretože výsledná plocha (integrácia) prúdu IL za jednu periodu je

grácia) prudu 11. za jedna postovat v oboch prípadoch rovnaká. Fázovací článok má splňovať požiadavku lineárneho prevodu $\varphi = Kf$ v určenom frekvenčnom pásme. Vyhovojúco splňuje túto podmienku charakteristika článku LG (obr. 14a). Vzhľadom

Obr. 14.

k nutnosti kapacitnej väzby mf zosil-ňovač - koincidenčný detektor (s ohľadom na jednosmerné pracovné body týchto blokov), sa najčastejšie používa sérioparalelný článok *LC* (obr. 14b). Vzťahy pre jeho výpočet sú v tab. 3.

Tab. 3.

	·
Výstupné ní napätie Uef	$0.45U_{\rm b}Q \frac{\Delta f}{f_0}$
Väzbová kapacita C1	$\frac{4,2}{2\pi f_0 R}$
Rezonančná kapacita C	$\frac{1}{2\pi f_0 R} (Q-4,2)$
Rezonančná indukčnosť L	$\frac{R}{2\pi f_{\bullet}Q}$
Skreslenie k, výst. nf signálu 3. harmonickou [%]	$\frac{1}{3} \left(Q \frac{\Delta f}{f_0} \right)^2. 100$

V tab. 3 značí fo medzifrekvenciu, Δf frekvenčný zdvih, Q činiteľa kvality a Ub napájacie napaue.

Z uvedených vzťahov je zrejmé, že šírka lineárnej oblasti demodulačnej charakteristiky je závislá (v nepriamej úmere) na činiteľovi kvality Q ladeného obvodu: Priebehy demodulačnej charakteristiky pre rôzny činiteľ Q (daný predovšetkým odporom R) sú na obr. 15. Ovšem velikosti Q je priamoúmerná veľkosť výstupného signálu a potlačenie amplitúdovej parazitnej modulácie.

Záverom môžme zhrnúť hlavné prednosti tohoto typu demodulátoru - nutnosť jediného ladeného obvodu a možnosť dosiahnutia požadovaných parametrov U_{nf} , AMR a k vhodnou voľbou jednotlivých prvkov R, L, C a C_1 .

Napätový stabilizátor S je tvorený

sériovým regulačným tranzistorom T10 s referenčným napätím (ktoré tvoria diódové prechody B—E tranzistorov T_{11} až T_{15}) v bázi.

Výstupný nf stupeň NF je tvorený emitorovým sledovačom T_{25} , ktorý služi ako impedančný transformátor s výstupným odporom približne 100 Ω. Maximálna zaťažovacia impedancia pri napájaní 12 V je 2 kΩ vzhľadom k celkovému harmonickému skresleniu THD = = 1% pre $\Delta f = \pm 50$ kHz. Pre menšie zaražovacie odpory je nutné upraviť jednosmerný pracovný bod výstupného tranzistoru T_{25} paralelným pridavného odporu R^*_{25} k výstupným rozblovatelným producením pridavného odporu T_{25} k výstupným pridavneno odporu R^{*}_{25} k vystapnym svorkám, tj. k pracovnému odporu R_{25} (obr. 16). Pre prídavný odpor R^{*}_{25} = 1,5 kΩ je najmenšia zaražovacia impedancia 500 Ω (pre THD = 1 % a $\Delta f = 50 \text{ kHz}$).

Celková elektrická schéma TAA661 je na obr. 17, parametre v tab. 4.

Snaha po zmenšení počtu pasívnych prvkov (hlavne ladených obvodov) a zjednodušenie nastavovania prijímačov viedla zahraničných výrobcov k vývoji keramických, príp. krystalových filtrov, určených pre frekvencie použité v prijímačoch FM a TV. Jedna z prvých priviedla tieto prvky na trh japonská firma Murata, ktorá pre foe 10,7 MHz vyrába dva typy keramických filtrov (tab. 5)

Filtre SFC10,7MA sa vyrábajú v 5 skupinách v rozmedzí f_0 od 10,62 do 10,78 MHz a odlíšené sú farebným kódom. Filter CFP10,7MA sa skladá z kaskádneho zapojenia 2 párovaných filtrov SFC10,7MA.

Tab. 4. Elektrické parametre TAA661 (pre $t_A = 25$ °C, $f_0 = 10,7$ MHz)

Parameter	<i>U</i> _b = = 6 V	9 V	12 V
Vstupný odpor [kΩ]	2	2	2
Vstupná kapacita [pF]	9	9	9
Vstupné napätie pre plnú limitáciu [µV]	230	230	230
Výstupný odpor [Ω]	200	150	100
Minimálny zaťažovací odpor [kΩ]	10	4	2
Výstupné napätie [V] pre $f_{\rm m}=1$ kHz, $\Delta f=\pm 50$ kHz, $U_{\rm vst}=10$ mV Potlačenie parazitnej	0,5	0,75	1,2
amplitúdovej modulácie $f_m = 1 \text{ kHz}, \Delta f =$ = 50 kHz, $m = 30 \text{ %}$ $U_{\text{Vst}} = 5 \text{ mV [dB]}$	vāčšie a	ko 40	40
Celkový prúď zo zdro- ja [mA]	10	15	18

Tab. 5.

Parameter	SFC10,7MA	CFP10,7MA
Stredná frekvencia	10,7 MHz ±35 kHz	10,7 MHz ±30 kHz
Šírka pásma		
B, dB	250 ±50 kHz	240 kHz min.
B, dB		400 kHz max.
B, dB .	650 kHz max.	_
B _{so} dB		750 kHz max.
Vložný útlm	9 dB max.	10 dB max.
Max. pracovné napătie	50 V	50 V
Vstupná a vý- stupná impe- dancia	330 Ω	330 Ω

(Pokračování)

m	- ·		Han	1 ta		f _T fα*	$T_{\mathbf{a}}$	P _{tot}	U_{CB}	_*,∑	$I_{\mathbb{C}}$	[]C					<u> </u>		Roz	zdíly	
Тур	Druh	Použití	U _{CE} [V]	I _C [mA]	h _{24E} h _{24E} *	fβ• [MHz]	$\begin{bmatrix} T_{\mathbf{c}} \\ {}^{\mathbf{c}} C \end{bmatrix}$	max [mW]	max [V]	UCED ** UCER ** max [V]	max [mA]	Tj max [Pouzdro	Výrobce	Patice	Náhrada TESLA	$P_{\mathbf{C}}$	UC	$f_{\mathbf{T}}$	h24	Spin, vit.
SDT6314	SPn	NF,VFv	5	1 A	> 100	70	100c	40 W	60	40	5 A	200	TO-111	Sol	34				<u> </u>	1	<u> ~ </u>
SDT6315	SPn	NF,VFv	5	1 A	> 100	70	100c	40 W	80	60	5 A	200	TO-111	Sol	34						
SDT6316	SPn	NF, VFv	5	1 A	> 100	70	100c	40 W	100	80	5 A	200	TO-111	Sol	34						
SDT6408	SPn	NF, VFv	5	1 A	2060	70	100c	30 W	60	40	5 A	200	TO-111		ŀ	PILEGE			_		
SDT6409	SPn	NF,VFv		1 A	2060	70	100c	30 W	80					Sol	35	KU606	>	>	<	1	
SDT6410	SPn	NF,VFv		1 A	2060		1		İ	60	5 A	200	TO-111	Sol	35	KU606	>	>	<	1	
SDT6411	SPn	_				70	100c	30 W	100	80	5 A	200	TO-111	Sol	35	KU606	>	>	<	=	
	1	NF,VFv		1 A	40120	70	100c	30 W	60	40	5 A	200	TO-111	So1	35	KU606	>	>	<	≤	
SDT6412	SPn	NF,VFv		1 A	40120	70	100c	30 ₩	80	60	5 A	200	TO-111	Sol	35	KU606	>	>	<	≤	
SDT6413	SPn	NF,VFv	5	1A	40—120	70	100c	30 W	100	80	5 A	200	TO-111	Sol	35	KU606	>	>	<	≤	
SDT6414	SPn	NF,VFv	5	1 A.	> 100	70	100c	30 W	60	40	5 A	200	TO-111	Sol	35						
SDT6415	SPn	NF,VFv	5	1 A	> 100	70	100c	30 W	80	60	5 A	200	TO-111	Sol	35						
SDT6416	SPn	NF,VFv	5	1 A	> 100	70	100c	30 W	100	80	5 A	200	TO-111	Sol	35						
SDT6901	SPn	NF, VFv	5	1A	2060	70	100c	20 W	145	125	5 A	200	TO-66	Sol	31	KU605	>	>	<	122	
SDT6902	SPn	NF, VFv	5	1 A	20-60	70	100c	20 W	170	150	5 A	200	TO-66	Sol	31	KU605	>	>	ľ		1
SDT6903	SPn	NF,VFv	5	1 A	20-60	70	100c	20 W	195	175	5 A	200					i i		<		
SDT6904	SPn	NF,VFv	5	1 A	20—60	70				i i			TO-66	Sol	31	KU605	>	>	<		
	SPn	-		į			100c	20 W	220	200	5 A	200	TO-66	Sol	31	KU607	>	<	<	-	
SDT6905		NF,VFv	5	1 A	40120	70	100c	20 W	145	125	5 A	200	TO-66	Sol	31	KU605	>	>	<	=	
SDT6906	SPn	NF, VFv	5	1 A	40—120	70	100c	20 W	170	150	5 A	200	TO-66	SoI	31	KU605	>	>	<	=	
DT6907	SPn	NF,VFv	5	1 A	40—120	70	100c	20 W	195	175	5 A	200	TO-66	Sol	31	KU605	>	>	<	=	
SDT6908	SPn	NF, VFv	5	1 A	40-120	70	100c	20 W	220	200	5 A	200	TO-66	Sol	31	KU607	>	<	<	=	
SDT7011	SPn	NF, VFv	5	5 A.	2060	60	100c	50 W	60	40	10 A	200	TO-61	Sol	2	KU606	<	>	<	=	
SDT7012	SPn	NF,VFv	5	5 A	20-60	60	100c	50 ₩	80	60	10 A	200	TO-61	Sol	2	KU606		>	<		
DT7013	SPn	NF, VFv	5	5 A	2060	60	100c	50 W	100	80	10 A	200	TO-61	Sol	2	KU606	1		<	_	
DT7014	SPn	NF, VFv	5	5 A	40-120	60	100c	50 W	60		i	200			1		<		1		
SDT7015	SPn	NF, VFv	5	5 A	40120	60	100c			40	10 A		TO-61	Sol	2	KU606	<	>	<	≤	
DT7016	SPn							50 W	80	60	10 A	200	TO-61	Sol	2	KU606	<	>	<	≤	
i		-	5	5 A.	40-120	60	100c	50 W	100	80	10 A	200	TO-61	Sol	2	KU606	<	>	<	≤	
DT7017	SPn		5	5 A	> 100	60	100c	50 W	60	40	10 A	200	TO-61	Sol	2						
DT7018	SPn	NF, VFv	5	5 A	> 100	60	100c	50 W	80	60	10 A	200	TO-61	Sol	2						
DT7019	SPn	NF, VFv	5	5 A	> 1.00	60	100c	50 W	100	80	10 A	200	TO-61	Sol	2						
DT7140	SPn	NF,VFv	5	5 A.	40-120	60	100c	50 W	120	100	10 A	200	TO-61	So1	2	KU605	<	>	<	≤	
DT7141	SPn	NF, VFv	5	5 A	40-120	60	100c	50 W	200	150	10 A	200	TO-61	Sol	2	KU605			<	<u></u>	
DT7150	SPn	NF, VFv	5	5 A	20—60	60	100c	50 W	140	120	10 A	200	TO-61	Sol	2	KU605	<			1	
DT7151	SPn		5	5 A	2060	60	100c			1			i	l			<	>	<	=	
DT7152	SPn	-	5	5 A			1	50 W	170	150	10 A	200	TO-61	Sol	2	KU605	<	>	<	==	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	51.1	NF,VFv	<i>,</i>) A	2060	60	100c	50 W	220	200	10 A	200	TO-61	Sol	2	KU607 KUY12	< <	=	٧ ٧	=	
SDT7154	SPn	NF, VFv	5	5 A	40-120	60	100c	50 W	140	120	10 A	200	TO-61	Sol	2			=	l i	1	
SDT7155	SPn	NF, VFv	5	5 A,	40—120	60	100c	50 W	170	150	1	200	ľ		- 1	KU605	<	>	<	≤	
DT7156	SPn	NF, VFv		5 A		60	100c				i		TO-61	Sol .	2	KU605	<	>	<	≤	
	5111	, ,,,	_	3 A.	40- 120	00	1000	50 W	220	200	10 A	200	TO-61	Sol	2	KU607 KUY12	< <		<	=	
SDT7201	SPn	NF, VFv	5	5 A.	2060	50	100c	65 W	225	200	10 A	200	ТО-3	C-1	31	10112			<		
DT7202	SPn	NF, VFv	5	5 A	20—60	50	100c	65 W	250	225	10 A			Sol	ſ	_					
DT7203	SPn	NF, VFv		5 A	2060	50			1			200	TO-3	Sol	31	-					
DT7204		3				1 1	100c	65 W	275	250		200	TO-3	Sol	31						
- 1		NF, VFv		5 A	2060	50	100c	65 W	325	300	10 A	200	TO-3	Sol	31	-					
DT7205	SPn	NF, VFv	1	5 A	20—60	50	100c	65 W	350	325	10 A	200	TO-3	Sol	31		- 1				
DT7206	SPn		5	5 A	> 10	50	100c	65 W	150	150	10 A	200	TO-3	Sol	31						
DT7207	F.	NF, VFv	1	5 A	> 10	50	100c	65 W	200	200	10 A	200	то-з	Sol	31						
DT7208	SPn	NF, VFv	5	5 A	> 10	50	100c	65 W	250	250	10 A	200	то-з	Sol	31						
DT7209	SPn	NF, VFv	5	5 A	> 10	50	100c	65 W	300	300	10 A	200	TO-3	Sol	31						
DT7401	SPn	NF, VFv	5	5 A	40120		100c	5 W	60	40	10 A	200	TO-5	Sol	2			,	ļ		
DT7402	-SPn	NF, VFv	- 1	5 A	40-120		100c	5 W	80	60	10 A	200	TO-5	Sol	2						
DT7403	SPn		5	5 A	40-120		100c	5 W	100	1		- 1	1		- 1				1		
DT7411	SPn	NF, VFv	1	5 A	20-60		1	ľ		80	10 A	200	TO-5	Sol	2		ĺ		1		
DT7412	SPn	NF, VFv	- 1	- 1			100c	5 W	60	40	10 A	200	TO-5	Sol	2		-				
1		i	1	5 A	2060		100c	5 W	80	60	10 A	200	TO-5	Sol	2						
DT7413	SPn	NF, VFv	1	5 A	2060		100c	5 W	100	80	10 A	200	TO-5	Sol	2	_					
DT7414		NF, VFv	- 1	5 A	40120		100c	5 W	60	40	10 A	200	TO-5	Sol	2	_	-				
DT7415	SPn	NF, VFv	5	5 A	40120		100c	5 W	80	60	10 A	200	TO-5	Sol	2		}	1			
DT7416	SPn	NF,VFv	5	5 A	40-120	į i	100c	5 W	100	80	10 A	200	TO-5	Sol	2	_					
DT7417	SPn	NF,VFv	5	5 A	> 100		100c	5 W	60	40	10 A	200	TO-5	Sol	2	_					
DT7418	SPn	NF, VFv	5	5 A	> 100	j	100c	5 W	80	60	10 A	200	TO-5	Sol	- 1						
DIATE :	SPn	NF,VFv	1	5 A	> 100		100c	5 W	2400	- 1					2					, 1	
	SPn	NF,VFv	- 1			60			100	80	10 A	200	TO-5	Sol	2	*****				,	
DT7419	יו דר	NF,VFv		5 A	40—120	60	100c	65 W	60	40	10 A	200	TO-3	Sol	31					,	
DT7419 DT7 6 01	en-		5 I	5 A	40-120	60	100c	65 W	80	60	10 A	200	TO-3	Sol	31				1	, 1	İ
DT7419 DT7601 DT7602	SPn			- 1				•								1			- 1	1	
DT7419 DT7601 DT7602 DT7603	SPn	NF,VFv	5	5 A	40-120	60	100c	65 W	100	80	10 A	200	TO-3	Sol	31	_					
DT7419 DT7601 DT7602 DT7603 DT7604	-		5	- 1	40—120 40—120	60 60	100c 100c	65 ₩ 65 ₩	100 140	80 120		200 200	TO-3	Sol Sol	- 1						
DT7419 DT7601 DT7602 DT7603	SPn	NF,VFv NF,VFv	5	5 A											31	_					

Тур	Druh	Použití	U _{CE} [V]	I _C [mA]	h ₂₄ E h ₂₄ e*	fη fα* fβ• [MHz]	$T_{\mathbf{a}}$ $T_{\mathbf{c}}$ [°C]	Ptot PC* max [mW]	U _{CB} max [V]	UCEO UCER* max [V]	IC max [mA]	Tj max [°C]	Pouzdro	Výrobce	Patice	Náhrada TESLA	P _C	$U_{ m C}$	<u> </u>	dily	;
SDT7608	SPn	NF,VFv	5	5 A	2060	60	100c	65 W	80	60	10 A	200	ТО-3	Sol	31				<u> </u>		
SDT7609	SPn	NF,VFv	5	5 A	2060	60	100c	65 W	100	80	10 A	200	то-3	Sol	31	_					
SDT7610	SPn	NF, VFv		5 A	20—60	60	100c	65 W	140	120	10 A	200	TO-3	Sol	31						
SDT7611	SPn	NF,VFv		5 A	20—60	60	100c	65 W	170	150	10 A	200	TO-3	Sol	31						
SDT7612	SPn	NF,VFv		5 A	20—60	60	100c	65 W	220	200	10 A	200	TO-3	Sol	31						
SDT7801	SPn	NF, VFv		5 A	20—60	50	100c	50 W	225	200	10 A	200	TO-61	Sol	2						
SDT7802	SPn	NF,VFv	5	5 A	2060	50	100c	50 W	250	225	10 A	200	TO-61	Sol	2	-					
SDT7803 SDT7804	SPn	NF, VFv		5 A	2060	50	100c	50 W	275	250	10 A	200	TO-61	Sol	2						
SDT7805	SPn SPn	NF,VFv		5 A	20— 6 0	50	100c	50 W	325	300	10 A	200	TO-61	Sol	2	—					
SDT7806	SPn	NF,VFv NF,VFv		5 A	20—60	50	100c	50 W	350	325	10 A	200	TO-61	Sol	2	_					
SDT7807	SPn	NF,VFv		5 A	> 10	50	100c	50 W	150	150	10 A	200	TO-61	Sol	2	KU605	<	>	<	-	
SDT7808	SPn	NF,VFv		5 A	> 15	50	100c	50 W	200	200	10 A	200	TO-61	Sol	2	KU605	<	>	<	=	
SDT7809	SPn	NF,VFv		5 A	> 15	50	100c	50 W	250	250	10 A	200	TO-61	Sol	2	KU608	<	>	<	=	
SDT7901	SPn	NF,VFv		5 A	> 15 2060	50 50	100c	50 W	300	300	10 A	200	TO-61	Sol	2						
SDT7902	SPn	NF,VFv		5 A	2060	50	100c	25 W	225	200	10 A	200	TO-66	Sol	31	KU608	>	>	<	=	
SDT7903	SPn	NF,VFv		5 A	2060	50	100c 100c	25 W	250 275	225 250	10 A	200	TO-66	Sol	31	KU608	>	1225	<	200	
SDT7904	SPn	NF,VFv		5 A	2060	50	100c	25 W	325	300	10 A	200	TO-66	Sol	31	_					
SDT7905	SPn	NF,VFv		5 A	2060	50	100c	25 W	350	325	10 A 10 A	200	TO-66	Sol	31	_					
SDT7907	SPn	NF, VFv	5	5 A	> 15	50	100c	25 W	200	200	10 A	200	TO-66 TO-66	Sol Sol	31 31	 KU605	>	_	<		
SDT7908	SPn	NF,VFv	5	5 A	> 15	50	100c	25 W	250	250	10 A	200	TO-66	Sol	31	KU608	>	_	/ /	_	
SDT7909	SPn	NF,VFv	5	5 A	> 15	50	100c	25 W	300	300	10 A	200	TO-66	Sol	31	_		_	_	_	
SDT7910	SPn	NF,VFv	5	5 A	> 10	50	100c	25 W	150	150	10 A	200	TO-66	Sol	31	KU605	>	>	<	_	
SDT8002	SPn	NF,VFv	5	10 A	40—120	35	100c	100 W	80	60	20 A	200	TO-63	Sol	2	_		-	`		
SDT8003	SPn	NF, VFv	5	10 A	40120	35	100c	100 W	100	80	20 A	200	TO-63	Sol	2	_					
SDT8012	SPn	NF,VFv	4	10 A	20—60	35	100c	100 W	80	60	20 A	200	TO-63	Sol	2						1
SDT8013	SPn	NF, VFv	5	10 A	20—60	35	100c	100 W	100	80	20 A	200	TO-63	Sol	2	nov					
SDT8015	SPn	NF, VFv	5	10 A	40—120	35	100c	100 W	80	60	20 A	200	TO-63	Sol	2						
SDT8016	SPn	NF,VFv	5	10 A	40—120	35	100c	100 W	100	80	20 A	200	TO-63	Sol	2	_					
SDT8045	SPn	NF, VFv	5	10 A	> 40	35	100c	100 W	40	25	20 A	200	TO-63	SoI	2						
SDT8070	SPn	-		10 A	> 100	35	100c	100 W	80	60	20 A	200	TO-63	Sol	2	_					
SDT8071	SPn	NF,VFv	5	10 A	> 100	35	100c	100 W	100	80	20 A	200	TO-63	Sol	2	_					
SDT8105 SDT8106	SPn	NF,VFv	5	10 A	40-120	35	100c	65 W	80	60	20 A	200		Sol	29	W					
SDT8110	SPn	1	5	10 A	40—120	35	100c	65 W	100	80	20 A	200	i	Sol	29						
SDT8111	SPn SPn	NF, VFv	5	10 A	> 100	35	100c	65 W	80	60	20 A	200		Sol	29						
SDT8112	SPn	- 1	5	10 A	> 100	35	100c		100	80	20 A	200		Sol	29	_					
SDT8113	SPn	NF,VFv NF,VFv	- 1	10 A	2060	35	100c	65 W	80	60	20 A	200		Sol	29	_					
SDT8114	SPn	NF,VFv	1	10 A 10 A	2060	35	100c	65 W	100	80	20 A	200		Sol	29	_					
SDT8115	SPn		5	10 A	> 40	35 35	100c	65 W	40	25	20 A	200		Sol	29						
SDT8116	SPn		5	10 A	40—120 40—120	35	100c	65 W	80	60	20 A	200		SoI	29	_					
SDT8301	SPn		5	10 A	40-120	35	100c 100c	65 W	100 80	80	20 A	200	TO 42	Sol	29	-					
SDT8302	SPn		5	10 A	40—120	35	100c	100 W	100	60 80	30 A 30 A	200	TO-63	Sol .	2			1			
SDT8303	SPn	- 1	5	10 A	> 100	35	100c	100 W	80	60	30 A	200	TO-63	Sol	2	_					
SDT8304	SPn		5	10 A	> 100	35	100c	100 W	100	80	30 A	200	TO-63	Sol Sol	2 2	_					
SDT8601	Sdfn	NFv, I	5	75 A	> 100	15	100c	166 W	80	60	100A		TO-68	Sol	39						
SDT8602	Sdfn	NFv, I	5	75 A	> 10	15	100c	166 W	100	80	100A	1	TO-68	Sol	39					- The second second	
SDT8603	Sdfn		5	75 A	> 10	15	100c	166 W	120	100		1	TO-68	Sol	39	_			ļ		
SDT8604	Sdfn	NFv, I	5	75 A	> 10	15	100c	166 W	140	120			TO-68	Sol	39	_					
I	Sdfn	NFv, I	10	40 A	1040	15	100c	166 W	200	200	i	200	TO-68	Sol	36		-				
	Sdfn	NFv, I	10	40 A	10-40	15	100c	166 W	225	225		200	TO-68	Sol	36	_			Į		
1	Sdfn	NFv, I	10	40 A	10-40	15	100c	166 W	250	250	1	200	TO-68	Sol	36	_			-		
	Sdfn	NFv, I	10	40 A	10-40	15	100c	166 W	275	275	j	200	TO-68	Sol	36						
	Sdfn		10	40 A	10-40	15	100c	166 W	300	300	60 A	200	TO-68	Sol	36						
1			5	10 A	15—60	30	100c	100 W	200	200	20 A	200	TO-63	Sol	2						1
		1	5	10 A	1560	30	100c	100 W	225	225	20 A	200	TO-63	Sol	2	_					
1			5	10 A	1560	30	100c	100 W	250	250	20 A	200	TO-63	Soi	2	_			-		
			5	- 1	1560	30	100c	100 W	275	275	20 A	200	TO-63	Sol	2	_	Approx.				
			5	10 A	15—60	30	100c	100 W	300	300	20 A	200	TO-63	Sol	2					-	
		- 1	5	75 A	> 10	15	100c	200 W	80	60	100A	200	İ	Sol	2	-					
			5	75 A	> 10	15	100c	200 W	100	80	100 A	200		Sol	2	-	-				
1	1		5	75 A	> 10	15	100c	200 W	120	100	100 A	200		Sol	2.	-	-				1
1	1	i	5	75 A	> 10	15	100c	200 W	140	120	100 A	200		Soi	2	-					
SDT8951	Sdfn	NFv, I	10	40 A	10-40	15	100c	200 W	200	200	60 A	200	1	Sol	2			1			
	Sdfn	NFv, I	10	40 A	10-40	15	100c	200 W	225	225			l			ı	- 1	- #	- 1		- 1

Тур	Druh	Použití	UCE [V]	I _C [mA]	h ₂₁ E h ₂₁₀ *	fπ fα* fβ• [MHz]	Ta Te [°C]	P _{tot} P _C * max [mW]	UCB max [V]	UCEO UCER* max [V]	IC max [mA]	T _j max [°C]	Pouzdro	Výrobce	Patice	Náhrada TESLA	P _C	$v_{ m c}$		h ₂₁	Spin, VI.	F
2N3048	SPn	DZ-nš	5	0,01	50200	> 30	25	250	45	45	30	200	TO-89	TI,	138	KC510	>		=_			
2N3049	SPp	DZ-nš	5	0,01- 10	30— 120	> 60	25	250	25	25	100	200	TO-89	Mot TI, Mot	138	_						
2N3050	SPp	DZ-nš	5	0,01- 10		> 60	25	250	25	25	100	200	TO-89	TI, Mot	138	_						
2N3051	SPEp	Spyr		< 10 m N2412	$V h_{21} = 0.8 - 1$																	
2N3052	SPEn	Spvr		6 + 2N9	914		25	2x300	25	20	100	200	TO-89	TI	138	!				'		
2N3053	SPEn	NFv, Sp	10	150	50—250	> 100	25c	5 W	60	40	700	200	1	TI,GE RCA, F	138							
2N3053/ /4053	SPEn	NFv, Sp	10	150	50—250	> 100	25c	5 W		=0.1	500	200			!							
2N3054	SPEn	NFv, Sp		500	25—100	> 0,8	25c	29 W	60 90	50* 55	700 4 A	200		RCA RCA, Tr	31	WU612 KU606	< >	> >	^ ^			
2N3055	Sdfn	NFv, Sp	4	4 A	2070	> 0,8	25c	117 W	100	60	15 A	200	TO-3	RCA	31	KD606 KD502	>	11		=		
2N3055S	Sn	NFv, Sp	4	4 A	2070	> 0,8	25c	117 W		= 100	15 A	200	TO-3	SE SE	31	KD502	>		=			
2N3056	SPEn	VF, NF	10	150	40—120	> 100	25	400	100	60	1 A	200	TO-5	Ray,	2	_						
2N3056A	SPEn	VF, NF-nš	10	150	40—120	> 80	25	400	140	80	I A	200	TO-46	SE Ray	2	_						
2N3057	SPEn	VF, NF	10	150	100—300	> 100	25	400	100	60	1 A	200	TO-46	Ray	2	_						
2N3057A	SPEn	VF, NF nš	10	150	100—300	> 100	25	400	140	80	1 A	200	TO-46	Ray	2	_						
2N3058	SEp	VF, NF	0,5	0,0001	> 40	10	25	400	6	6	100	200	TO-46	NSC	2							
2N3059	SEp	VF, NF	3	0,01	> 100	10	25	400	10	10	100	200	TO-46	NSC	2	_						
2N3060	SEp	VF, Sp	6	1	3090		25	400	70	60		200	TO-46	NSC	2	KFY16	>	<		=		
2N3061 2N3062	SEp	NF, Sp	6	1	60—180		25	400	70	60		200	TO-46	NSC	2	KFY18	>	<		=		
2N3062 2N3063	SEp SEp	NF, Sp	6	1	2080		25	400	90	80		200	TO-46	NSC	2	_						
2N3064	SEp	NF, Sp NF, Sp	6 6	1 .	50150		25	400	90	80		200	TO-46	NSC	2	_						
2N3065	SEp	NF, Sp	6	1	15—45 30—90		25 25	400 400	110	100		200	TO-46	NSC	2	_						
2N3072	SPp	VF, Sp	1	50	30—130	210 > 130	25	800	110 60	100 60	500	200	TO-46 TO-5	NSC	2 2	KFY16	_			_	≥	
2N3073	SPp	VF, Sp	1	50	30—130	210 > 130	25	360	60	60	500	200	TO-18	F, Tr F, Tr	2	KFY16	>	E 1	<		_	
2N3074	Gdfp	NF, I	5	14	> 14		25	140	25	25*	20	90	TO-12	Am, Ph	6	GC515	_	>	Ì	≥	_	
2N3075	Gdfp	NF, I	12	3	> 20		25	140	35	25*	20	90	TO-12	Am, Ph	6	GC515	=					
2N3076	SPn	VFv-Tx	2	7 A	> 30	> 50	25c	125 W	140	100*	10 A	150	MT38	TRW	2							
2N3077 2N3078	SPn SPn	NF, VF	5	0,01	> 80	> 60	25	360	80	60	50	200	TO-18	Am, Ph	2	_	İ					
2N3079	Sdfn	NF, VF NFv, Sp	5	0,01 5 A	> 25	> 60 > 2	25	360	80	60	50	200	TO-18	Am, Ph	i							
2N3080	Sdfn	NFv, Sp	5	5 A	1050 1050	> 2	25c 25c	178 W	200 300	200 300	10 A 10 A	200	TO-36 TO-36	Del	36	_						
2N3081	SPEp	Spvr	10	150	3090	> 150	25	600	70	50	600	200	TO-5	Del	36							
2N3082	SPn	Sp	5	0,25	> 100	> 100	25	500	25	7	100	200	TO-77	Ray GE	57	_						
2N3083	SPn	Sp	5	0,25	> 100	> 100	25	500	25	7	100	200	TO-77	GE	57	_						
2N3107	SPEn	Sp	10	150	100300	> 70	25	800	100	60	1 A	200	TO-5	F, Ray	2							
2N3108 2N3109	SPEn SPEn	Sp	1	150	40-120	> 60	25	800	100	60	1 A	200	TO-5	F, Ray	2							
2N3110	SPEn	Sp Sp	10 1	150 150	100300	> 70	25	800	80	40	1 A	200	TO-5	F, Ray	2							
2N3114	SPn	VFv	10	30	40—120 30—120	> 60 > 40	25 25	800 800	100	40	1 A	200	TO-5	F, Ray	2		- 1	l			İ	
2N3115	SPEn	Spvr	10	150	40-120	> 250	25	400	150 60	150 20	200 600	175	TO-5 TO-18	F, Mot	2 2	KF504 KSY34	>		_	=	<	
2N3116	SPEn	Spyr	10	150	100300	> 250	25	400	60	20	600	175	TO-18	Mot Mot	2	KSY34	>	-	2002	<	<	
2N3117	SPEn	NF-nš	5	0,01	250500	> 60	25	360	60	60	50	200	TO-18	NSC, TI	2	-						
2N3118	SPEn	VFv-Tx	28 28	25 25	50-235 Po = 0,2 W	> 250 50*	25	1 W	85	60	500	200	TO-5	RCA	2			***************************************				
2N3119 2N3120	S3dfn SPEp	VFv	10	100	50—200	> 250	25	1 W	100	80	500	200	TO-5	RCA	2	-			ļ			
2N3120 2N3121	SPEp	Sp Sp	1	50 50	30—130 30—130	210 > 130 210 > 130	25	800	45	45	500	200	TO-5	Tr, F	2	_		•				
2N3122	SPEn	VF, Sp	5	300	25—100	> 60	25 25	360 800	45 50	45 30	500 500	200	TO-18 TO-5	Tr, F F, Ray	2 2	- KSY34 KFY34	< =	>	>		٧٧	
2N3123	SPEn	VF, Sp	10	150	> 100	> 400	25	800	60	30	800	200	TO-5	Mot	2	KSY34			-	<		
2N3124	Gjp	NFv	2	10 A	50100	>0,0025•	25c	90 W	40	30	15 A	90	TO-41	KSC	31	3NU74	<	>	_	_		
2N3125	Gjp C:-	NFv	2	3 A	3075	> 0,005.	25c	90 W	80	80	3,3 A	90	TO-41	KSC	31	6NU74	<	>	-	-		
2N3126 2N3127	Gjp	NFv	2	10 A	1030	> 0,006.	25c	90 W	100	75	15 A	90	TO-41	KSC	31	6NU74	<	>	-	≥		
2N3127 2N3128	GMp SPn	VF _v	10 5	3	125*	> 400	25	100	25	20	50	75	TO-72	Mot	6	GF507	<	-	=	≦		
2N3128 2N3129	SPn	VF, NF	5	0,1	50500 100300	> 60 > 60	25	150	20	20	100	150	keram	NSC	53	-	-					
2N3130	SPn		5	0,01	60-180	> 60	25 25	150 150	60	45 60	100	ŀ	keram	NSC	53	_			-			
2N3131	SPn		1	10	30-120	> 250	25	150	40	15	100		keram keram	NSC NSC	53	_			-			
									.	/	100	130	warnij	NOC	53			-				

	T				- fm	<u> </u>	P	Prot		, 5 . 5 l	[[]	<u>5</u>		: ;	1	Rozdíly						
Тур	Druh	Použití	U _{CE} [V]	I _C [mA]	h ₂₁ E h ₂₁₀ *	fπ fα* fβ• [MHz]	<i>T</i> a <i>T</i> e [°C]	$P_{ m tot} \ P_{ m C}^{\star} \ { m max} \ [{ m mW}]$	UCB max [V]	UCE0 UCER* max [V]	IC max [mA]	$T_{\rm j}$ max [°C]	Pouzdro	Výrobce	Patice	Náhrada TESLA	P_{C}	U_{C}	$f_{\mathbf{T}}$	h 11	Spín, vi.	F
2N3132	Gjp	NFv, I	2	2 A	40—200	> 0,003.	25c	90 W	100	70	5 A	100	TO-3	ITT	31	7NU74	<	<	_	≦		: Í
2N3133	SPEp	VF, Sp	10	150	40—120	> 200	25	600	50	35	600	200	TO-5	Mot	2	KFY16	>	>	<	_	n	
2N3134	SPEp	VF, Sp	10	150	100-300	> 200	25	600	50	35	600	200	TO-5	Mot	2	KFY18	>	>	<	=	n	
2N3135	SPEp	VF, Sp	10	150	40—120	> 200	25	400	50	35	600	200	TO-18	Mot	2	KFY16	>	>	<	=	n	
2N3136	SPEp	VF, Sp	10	150	100—300	> 200	25	400	50	35	600	200	TO-18	Mot	2	KFY18	>	>	<	222	n	!
2N3137	SPEn	VFv-Tx	5 20	50	20—120 A _G > 6 dB	> 500 250*	25	600	40	20	150	200	TO-39	Mot, Sesco	2						ļ	
2N3138	SPn	VFv	10	1 A.	50 > 10	100	25c	20 W	65	65	2 A.	175	MT-24	NS	2							
2N3139	SPn	VFv	10	1 A	50 > 10	100	25c	20 W	140	140	2 A	175	MT-24	NS	2	-					.	ļ
2N3140	SPn	VFv	10	1 A	50 > 10	200	25c	20 W	65	65	2 A	175	MT-24	NS	2	-						ĺ
2N3141	SPn cp.	VFv	10	1 A	50 > 10	200	25c	20 ₩	140	140	2 A.	175	MT-24	NS	2	—						
2N3142	SPn SPn	VFv VFv	10	1 A	50 > 10	100	25c	25 W	65	65	2 A	175	MT-16	NS	2							
2N3143	SPn	VFv	10	1 A	50 > 10	100	25c	25 W	140	140	2 A	175		NS	2							
2N3144 2N3145	SPn	VFv	10 10	1 A	50 > 10	200	25c	25 W	65	65	2 A	175		NS	2	-						
2N3146	Sdfn	NFv, Sp	1,5	1 A 5 A	50 > 10	200	25c	25 W	140	140	2 A	175	1	NS	2				İ		,	
2N3147	Sdfn	NFv, Sp	1,5	5 A	3090 3090	> 0,2	25c	150 W	150	65	15 A	200	TO-3	TI	31							
2N3147 2N3148	Gjp	VF, Sp	3	0,5	> 80	> 0,2 > 25	25c 25	150 W	180	75 6	15 A	90 90	TO-24	TI	31 8		1					
2N3148 2N3149	Sdfn	NFv, I	3	50 A	> 10	> 0,1	25 100c	25 200 W	11 80	80	50 50 A		TO-24 TO-114	Spr	2							[
2N3150	Sdfn	NFv, I	3	50 A	> 10	> 0,1	100c	200 W	100	100	50 A	200	TO-114		2	I _						
2N3151	Sdfn	NFv, I	3	50 A	> 10	> 0,1	100c	200 W	150	150	50 A		TO-114	1	2	I						
2N3152	SPn	VFv, I	20	30	> 40	> 200	25c	2,5 W	120	120	100	200		Mot	2	KF504			≦	<u></u> ;		İ
2N3153	SPn	Sp	5	$I_{ m B}=1$	_3 > <u>_2</u>	90 > 30	25	300	15	15		200	TO-18	NS	2		-		=			
2N3154	Gjp	Sp	2	500	60—180	0,015•	25c	28 W	40	35	3 A	100	MS-7	KSC		3NU74	>	>	_	≦		
2N3155	Gjp	Sp	2	500	60—180	0,015•	25c	28 W	60	50	3 A	100		KSC		3NU74	>	_	_	≦		
2N3156	Gjp	Sp	2	500	60180	0,015•	25c	28 W	80	65	3 A	100		KSC		5NU74	>	_	_	\		
2N3157	Gjp	Sp	2	500	60180	0,015•	25c	28 W	100	75	3 A	100	MS-7	KSC		7NU74	>	<	=	_		ĺ
2N3158	Gjp	Sp	2	500	30—75	0,01•	25c	28 W	40	35	3 A	100	MS-7	KSC		2NU74 OC26	> <	>	=	==		
2N3159	Gjp	Sp	2	500	3075	0,01•	25c	28 W	60	50	3 A	100	MS-7	KSC		4NU73 4NU74 5NU73	>	- xx	= =	M IV		
2N3160	Gjp	Sp	2	500	3075	0,01•	25c	28 W	80	65	3 A	100	MS-7	KSC		6NU74 7NU73	< > <	\ \		7 1		
2N3161 2N3162	Gjp Sn	Sp DZ	2	500 10	3075 50200	$0.01 \cdot \Delta h_{21} < 1$	25c 25	28 W 2×300	100 45	75 25	3 A	100 200	MS-7 TO-33	KSC F	9	6NU74 KCZ58	>	<	لسو	=		
2N3163	Sdfp	NFv, I	3	1 A	1236	> 1	25c	85 W	40	40	3 A	200	MT-10	Mot	2	KCZ58	= .	=		=		
2N3164	Sdfp	NFv, I	3	1 A	12—36	> 1	25c	85 W	60	60	3 A	1	MT-10	Mot	2							
2N3165	Sdfp	NFv, I	3	1 A	12—36	> 1	25c	85 W	80	80	3 A	200	MT-10	Mot	2							Ė
2N3166	Sdfp	NFv, I	3	1 A	1236	> 1	25c	85 W	100	100	3 A	200	MT-10	Mot	2	l						
2N3167	Sdfp	NFv, I	3	1 A	1236	> 1	25c	85 W	40	40	3 A	200	TO-53	Sil	95	l —						ĺ
2N3168	Sdfp	NFv, I	3	1 A	1236	> 1	25c	85 W	60	60	3 A	200	TO-53	Sil	95	l _						İ
2N3169	Sdfp	NFv, I	3	1 A	12—36	> 1	25c	85 W	80	80	3 A	200	TO-53	Sil	95							1
2N3170	Sdfp	NFv, I	3	1 A	1236	> 1	25c	85 W	100	100	3 A	200	TO-53	Sil	95							
2N3171	Sdfp	NFv, I	3	1 A	1236	> 1	25c	75 W	40	40	3 A	200	TO-3	Mot	31	_						
2N3172	Sdfp	NFv, I	3	1 A	1236	> 1	25c	75 W	60	60	3 A	200	TO-3	Mot	31	_						i
2N3173	Sdfp	NFv, I	3	1 A	12—36	> 1	25c	75 W	80	80	3 A	200	TO-3	Mot	31	_					+	
2N3174	Sdfp	NFv, I	3	1 A	1236	> 1	25c	75 W	100	100	3 A	200	TO-3	Mot	31	_					ļ	
2N3175	Sdfp	NFv, I	3	2 A	1030	> 1	25c	85 W	40	40	5 A	200	MT-10	Mot	2							
2N3176	Sdfp	NFv, I	3	2 A	1030	> 1	25c	85 W	60	60	5 A	200	MT-10	Mot	2							
2N3177	Sdfp	NFv, I	3	2 A	1030	> 1	25e	85 W	80	80	5 A	200	MT-10	Mot	2							
2N3178	Sdfp	NFv, I	3	2 A	10—30	> 1	25c	85 W	100	100	5 A	200	MT-10	Mot	2				***************************************		ļ	
2N3179	Sdfp	NFv, I	3	2 A	10-30	> 1	25c	85 W	40	40	5 A	200	TO-53	Sil	95							
2N3180	Sdfp	NFv, I	3	2 A	1030	> 1	25c	85 W	60	60	5 A	200	TO-53	Sil	95							
2N3181	Sdfp	NFv, I	3	2 A	10—30	> 1	25c	85 W	80	80	5 A	200	TO-53	Sil	95							
2N3182 2N3183	Sdfp	NFv, I	3	2 A	1030	> 1	25c	85 W	100	100	5 A	200	TO-53	Sil	95	***************************************					1	
2N3183 2N3184	Sdfp	NFv, I	3	2 A	1030	> 1	25c	75 W	40	40	5 A	200	TO-3	Mot	31							
2N3184 2N3185	Sdfp Sdfp	NFv, I NFv, I	3	2 A 2 A	10—30 10—30	> 1	25c	75 W	60 en	60	5 A	200 200		Mot	31			1	-			
2N3186	Sdfp	NFv, I	3	2 A 2 A		> 1	25c	75 W	80 100	100	5 A	200		Mot	31							
2N3187	Sdfp	NFv, I	3	3 A	1030 1030	> 1 > 1	25c 25c	75 W 85 W	100	100	5 A	200		Mot	31					-		
2N3187	Sdfp	NFv, I	3	3 A 3 A	1030	> 1 > 1	25c 25c	85 W 85 W	40 60	40	5 A	200		Mot	2	*******			.	-		
2N3189	Sdfp	NFv, I	3	3 A	1030	> 1	25c 25c	85 W	60 80	60 80	5 A.	200	MT-10	Mot	2							
2N3199 2N3190	Sdfp	NFv, I	3	3 A	1030	> 1 > 1	25c 25c	85 W	100	100	5 A	200	MT-10	Mot	2	_			[
2N3190 2N3191	Sdfp	NFv, I	3	3 A	10—30 10—30	> 1	25c 25c	85 W	40	100	5 A.	200		Mot	2				-		1	
2N3191 2N3192	Sdfp	NFv, I	3	3 A	10—30 10—30	> 1	25c	85 W	60	40 60	5 A.	200	TO-53 TO-53	Sil	95 95	_		Ì	-			
2N3192 2N3193	Sdfp	NFv, I	3	3 A	10-30	> 1	25c	85 W	80	60 80	5 A.	200		Sil Sil	95 95]	
	2/			~ 43	20 00	- 1	المردا	05 W	- 00	50	5 A.	200	10-00	Sil	93]		-			

Keramické Kondenzátory

Ing. Retík Jiří, ing. Hušek Bohumil, n. p. TESLA Hradec Králové

(Dokončení)

Při zvýšené teplotě jsou příznivější podmínky pro ionizaci a vodivost di-

elektrika se zvětšuje.

Napětí, které můžeme připojit na kondenzátor, závisí především na tloušíce a elektrické pevnosti dielektrika a na konstrukci kondenzátoru. U většiny dielektrik lze pozorovat, že se při stárnutí dielektrika (které je urychlováno např. zvýšenou teplotou) postupně zmenšuje elektrická pevnost. Při hodnocení elektrické pevnosti kondenzátorů se používá:

jmenovité napětí - určuje maximální přípustné napětí, na které může být kondenzátor trvale připojen bez poškození. Je-li kondenzátor pro stejnosměrné napětí připojen na stejnosměrné napětí se střídavou složkou nebo na smíšená střídavá napětí, potom největší amplituda napětí nesmí překročit velikost jmeno-vitého napětí. Nesinusová střídavá napětí se posuzují jen podle jejich maxi-mální amplitudy. U některých typů keranických kondenzátorů lze jmenovité provozní napěti překročit o 30 % po dobu maximálně 30 vteřin, tj. po dobu, kterou potřebuje elektronický přistroj spotřebního charakteru po zapnutí, aby se napětí zmenšilo na jmenovitou velikost.

Jmenovitá stejnosměrná napětí se volí z řady: 25-40-50-63-100-160 V a jejich násobků. Rozsah a hustotu řady určují rozměrové normy. Za "vysokona-pětové" se označují kondenzátory se jmenovitým napětím 1 600 V a větším.

Imenovitá střídavá napětí pro keramické kondenzátory jsou zatím 250,

350 a 500 V;

zkušební napětí je takové, které kondenzátor musí bez průrazů a přeskoků vydržet po určitou stanovenou dobu (obvykle 1 minutu).

U keramických kondenzátorů se jmenovitým napětím U_1 menším než 330 V je zkušební napětí rovno $3U_1$. Pro kondenzátory se jmenovitým napětím větším než 330 V je zkušební napětí rovno 1,5*U*₁ + 500 V. Kondenzátor se má zkušebním napětím zatížit pouze jednou;

průrazné napětí je takové, při němž dojde k porušení kondenzátoru (přeskoku, průrazu) během velmi krátké doby.

Tab.6. Přehled části sortimentu kondenzátorů

	о јинепочна парен Ој
U) C	1 pF 10 pF 100 pF 1 nF 10 nF 0,1 uF
12 V	
32 V	
40 V	
60 V	
100 V	<u> </u>
160 V	
250V	
350 V	
500V	
750 V	

Keramické kondenzátory se obvykle konstruují tak, aby průrazné napětí bylo dva až třikrát větší než napětí zkušební.

Některé keramické hmoty (především s velkou permitivitou) mají určitou závislost průrazného napětí na teplotě. Průrazné napětí se např. zmenšuje v oblasti Curieova bodu a dále v oblasti fázových přechodů dvou struktur hmoty. Vlivem makrodefektů a nehomogenity vypáleného dielektrika se průrazné napětí značně zmenší a je potom prakticky v celé oblasti pracovních teplot kondenzátorů nezávisle na teplotě. Velmi výrazná je však závislost průrazného napětí na permitivitě keramické hmoty dielektrika (obr. 5).

Obr. 5. Závislost průrazného napětí na permitivitě dielektrika

Ztráty energie v kondenzátoru lze vyjádřiť jako součet ztrát v dielektriku P_d a tzv. činných ztrát P_o (jsou způsobeny např. činným odporem elektrod, přívodu), tedy výrazem $P_{\rm a}=P_{\rm d}+P_{\rm o}$. Proto je třeba k dosažení malých ztrát kondenzátorů, především pro vysoké kmitočty, volit dielektrikum s malými ztrátami, vhodnou povrchovou ochranu a zabránit možnému vzniku ionizace. Pro elektrody kondenzátoru volit materiál s velkou vodivostí a dostatečným průřezem, stejně volit i přívody a zajistit minimální přechodový odpor v místě spojení elektrod s vývody.

V ideálním kondenzátoru je aktivní výkon $P_a = Ul\cos \varphi = 0$, protože $\varphi = 90^\circ$. Ve skutečnosti je však P_a odlišné od nuly a potom tedy $\cos \varphi \neq 0$ a $\varphi < 90^\circ$; platí, že $\varphi + \delta = 90^\circ$, kde úhel δ , doplňující fázový posuv mezi vektorem napětí a vektorem proudu v kondenzátoru, nazýváme ztrátovým úhlem kon-

denzátoru.

Ztrátový činitel tg ó keramických kondenzátorů typu 1 nesmí být větší než údaj

Tab. 7. Jmenovité ztrátové úhly pro kondenzátory

Jmenovitá kapacita	Ztrátový činitel tg ô					
C [pF]	Uj < 100 V	<i>U</i> _j > 100 V				
C ≥ 50	15 . 10-4	10 . 10-4				
5 < C < 50	$(\frac{150}{C} + 12).10^{-4}$	$\left(\frac{150}{C}+7\right).10^{-4}$				
5 > C		ly odběratele obcem				

v tab. 7; měří se při kmitočtu 1 MHz. U kondenzátorů s kapacitami menšími než 5 pF je nutno dohodnout měřicí metody s výrobcem.

Ztrátový úhel kondenzátorů typu 2 nesmí být větší než 350. 10-4 a měří se

při kmitočtu 1 kHz.

U kondenzátorů typu 3 je maximální ztrátový úhel 1 000 . 10-4.

Pokud není stanoveno jinak, měří se při teplotě 20 °C a při nejvyšší relativní vlhkosti vzduchu 65 %. V praxi je ztrá-tový úhel vyráběných kondenzátorů vždy menší než uvedené údaje. Současně je třeba uvážit, že i velikost ztrátového úhlu je závislá jak na teplotě, tak na kmitočtu. Teplotní závislost ztrátového úhlu kondenzátoru je dána především teplotní závislostí dielektrika, ztráty v kovových částech kondenzátoru na teplotě nezávisí. Typická závislost ztrátového úhlu hmoty kondenzátorů typu 1 (Stabilit K 47 N) a typu 2 (Permitit 2000) na kmitočtu je na obr. 6 a 7.

Závislost ztrátového úhlu hmoty Stabilit K 47 N na kmitočtu

Obr. 7. Závislost ztrátového úhlu hmoty Permitit 2000 na kmitočtu

Klimatická odolnost keramických kondenzátorů

Jedním ze základních požadavků, které jsou kladeny na všechny vyráběné součástky a tedy i na keramické kondenzátory, je stabilita jejich parametrů jak elektrických, tak i mechanických, v různých klimatických podmínkách. Poža-davky na klimatickou odolnost jsou různé podle použití finálního zařízení. Celkově se však požadavky stále zpřísňují. Protože keramická hmota, která je základem keramických kondenzátorů, může pracovat v širokém rozsahu teplot i v různých klimatických podmínkách, záleží především na povrchové úpravě, ostatních použitých materiálech (materiál vývodů, pájka) a v neposlední řadě na materiálu elektrod. Jistý vliv má tvar kondenzátoru.

U keramických kondenzátorů v běžném provedení je horní hranice teplot-ního rozsahu +85 °C. Některé speciální výrobky lze používat i při vyšší provozní teplotě + 100 °C. Krátkodobé překročení těchto mezi nemusí přivodit poškození kondenzátoru, dojde však např. k dočasné změně elektrických parametrů. Dolní hranice teplotního rozsahu u keramických kondenzátorů typu 1 je závislá na rozdílné tepelné roztaživosti keramiky, kovových vývodů a popř.

10 Amatérské VAIII 19 383

povrchové ochrany. Hranicí použitelnosti je teplota —40 °C, v některých případech —65 °C. U keramických kondenzátorů typu 2 se však při snížení teploty značně zmenšuje kapacita a zvětšuje se ztrátový úhel. Doporučuje se proto používat tyto kondenzátory pouze

Kondenzátory jsou povrchově chráněny těmito způsoby:

a) Vrstvou "samopájitelného" laku u kondenzátorů bez vývodů. Jejich klimatická odolnost je nejmenší, protože vrstva stříbra není vubec chráněna. Jde o malé procento

výrobků. b) Vrstvou syntetického emailu, který je tepelně zpracován. Používá se u trubkových a v současné době u malé části plochých kondenzátorů. Tato ochrana je vhodná pro klimatickou odolnost 94. Pro větší nároky není tato ochrana vhodná. Tyto kondenzátory je možno používat v prostředí s relativní vlhkostí do 80 %. Přechodné zvětšení vlhkosti vzduchu nad tuto dovolenou mez kondenzátor nepoškodí, přivodí však přechodné zhoršení elektrických vlastností. Orosení kondenzátorů není v žádném případě přípustné.

Vrstvou epoxidového tmelu u speciálních typů. Tato ochrana vyhoví zkoušce vlhkým teplem po 21 dnů, není však vhodná pro teploty pod —10 °C. V současné době se používá jen u některých vn typů.

d) Tmelem na bázi fenolických pryskyřic. Tato povrchová ochrana se používá u většiny plochých kon-denzátorů. Zatmelené kondenzátory jsou ještě impregnovány ve vakuu voskem. Kondenzátory s touto povrchovou ochranou je možno používat v rozmezí pracovních teplot od -55 do +85 °C a vyhoví dlouhodobé zkoušce vlhkým teplem po 21 dnů. Tyto kondenzátory

jsou vhodné pro těsnou montáž. Vrstvou skelné glazury u kondenzátorů trubkových tvarů. Tyto kondenzátory je možno používat ve zvlášť obtížných podmínkách, v prostředí s relativní vlhkostí vzduchu 95 % a krátkodobě až 98 %. Třída klimatické odolnosti těchto kondenzátorů je 56 dní.

Všechny kondenzátory mohou bez ohrožení funkce pracovat i při nízkém tlaku vzduchu do 225 mm Hg (300 milibarů). Některé speciální typy pracují spolehlivě při plném jmenovitém napětí ještě při tlaku 40 mm Hg (53 milibarů). Příslušnou kategorii klimatické odolnosti přislušnou kategorii klimatické odolnosti přislušnou kategorii klimatické odolnosti. jednotlivých typů kondenzátorů udává rozměrová norma.

Podle odolnosti proti vnějším vliyům kondenzátory třídí podle ČSN 35 8031. K označení se používají tři skupiny čísel, oddělené šikmými čarami. První skupinu tvoří číslo, určující nejnižší provozní teplotu, druhá skupina určuje nejvyšší provozní teplotu a třetí skupina udává odolnosti proti vlhkosti, vyjádřenou trváním dlouhodobé zkouš-

ky vlhkým teplem.

Při používání kondenzátoru na vyso-kých kmitočtech zajímá konstruktéra především ztrátový úhel (někdy též ztrátový činitel). Vlastností dokončeného keramického kondenzátoru se však neřídí pouze konstantami dielektrického materiálu. Vliv mají také kovové elek-trody a vývody. Uvažujeme-li průběh

Obr. 8. Náhradní schéma kondenzátoru pro vysoké kmitočty

proudu v každém konstrukčním prvku zvlášť, můžeme si nakreslit náhradní schéma celého kondenzátoru (obr. 8). Protože vnitřní indukčnost je u keramićkých kondenzátorů nepatrná, bude nás zajímat především indukčnost přívodů. Výpočtem pro používané přívodní dráty 2. 10 mm můžeme zjistit indukčnost asi 1. 10-8 H. Sestrojíme-li graf závislosti rezonančních kmitočtů sériového náhradního zapojení na kapacitě, dostaneme přímku, která jednoznačně omezuje oblast použití. Za dělicí přímkou převažuje již vliv indukčnosti. Jako příklad je uvedena závis. st rezonančního kmitočtu na kapolitě a délce vývodů pro kondenzátor ppu TK 754. Přerušení v oblasti 75 pF je dáno podstatnou změnou rozměrů kondenzátorů (obr. 9).

V poslední době jsou neméně důležité údaje o spolehlivosti součástky (měří se podle ČSN 35 8001). Účelem zkoušek spolehlivosti je získat základní informace o poruchovosti výrobku v závislosti na čase při různých zátěžích a v různých prostředích. Zkoušky spolehlivosti jsou

rozděleny na

a) zkoušky bezporuchovosti - slouží ke zjištění intenzity poruch během provozu.

b) zkoušky skladovatelnosti - slouží zjištění intenzity poruch během skladování.

c) zkoušky doby života – slouží ke zjištění doby technického života.

Při všech zkouškách še současně zjišťuje stabilita parametrů.

Podmínky zkoušky jsou např. při zkoušce bezporuchovosti tyto: teplota prostředí 40 °C, maximální elektrická zátěž, doba zkoušky 1 000 hodin (nebo déle). Ve stanovených časových intervalech se kondenzátory aklimatizují a měří se jejich elektrické parametry. Ze získaných údajů se potom určí případná doba poruchy součástky.

Ze zjištěného počtu poruch součástek (r) a celkové akumulovatelné doby zkoušky (T) se vypočte odhad intenzity poruch (λ)

 $\lambda \left[h^{-1} \right] = \frac{r}{T}.$

Intenzita poruch dobrých součástek je od 1.10-5 do 1.10-8 h-1 a menší. Uvedený postup výpočtu je značně zjedno-dušený, a je uveden jen pro názornost. I tak je zřejmé, že ověření intenzity poruch řádu 10-6h-1 a menší je ekonomicky i časově velmi náročné a v mnoha případech i neproveditelné. Např. pro ově-French intensity $\lambda = 1.10^{-6} h^{-1}$ s počtem poruch r = 1 a pro úroveň věrohodnosti 90 % je třeba zkoušet 3 890 ks součástek po dobu 1 000 hodin – proto je možné nahradit zkoušku údaji z praktického provozu. Při vlastní zkoušce se součástky umísťují ve žkušební komoře na zkušebních rámečcích tak, aby byla zajištěna volná cirkulace vzduchu. Během zkoušky jsou komory vytápěny a teplota se ky jsou kolnory vytapeny a tepiota se automaticky udržuje na požadované úrovni. Vzorky se měří na počátku zkouš-ky a dále po uplynutí 20, 50, 100, 200, 500, 1 000 hodin a každých dalších 1 000 hodin. Před každým měřením se kondenzátory aklimatizují v běžném prostředí. Dobu aklimatizace je nutno přesně dodržet, jinak dochází v naměřených údajích k výkyvům, které zkreslují výsledky zkoušek. Vzhledem k tomu, že nejsou známy podmínky, za nichž bude kondenzátor pracovat, měří se základní parametry podle norem, plat-ných pro kondenzátory. Změny parametrů během zkoušky vzhledem k údajům, naměřeným v čase t=0 hodin, nesmí překročit meze dané tab. 8.,

Tab. 8. Připustné toleranční změny

	Kondenzá- tory typu 1	Kondenzá- tory typu 2	Kondenzá- tory typu 3
С	±1pF;±1%	± 20 %	± 20 %
tg ð max.	1,5 tg ðj	1,5 tg ðj	0,1
R _{iz} min. [Ω]	3.10*	30 % Riz j	2 . 10 ⁴

Při překročení povolených mezí je kondenzátor považován za vadný, stejně tak jako při úplném průrazu. Změny parametrů se zjistí při průběžném měření v daných časových intervalech, zatímco čas průrazu kondenzátoru lze zjistit poměrně velmi přesně. Pro informaci uvedme, že zjištěná intenzita poruch pro kondenzátor TK 754 je 4,5. 10-8h-1. Tento údaj platí pro teplo-tu okolí 40 °C a maximální jmenovité napětí s úrovní věrohodnosti 90 %. Samozřejmě že se změnou pracovních podmínek se tento údaj mění.

Značení keramických kondenzátorů

Ve značení keramických kondenzátorů se tuzemský výrobce snaží aplikovat v maximální míře systém doporučený Mezinárodní elektrotechnickou komisí (IEC). Dnes se u nás používají dva sy-

Obr. 9. Závislost rezonančního kmitočtu na kapacitě a délce vývodů konden-zátoru – typ TK 754

stémy (A a B) podle ČSN 358014. Systémem A jsou značeny staré typy kondenzátorů, u nových výrobků od roku 1968 je použit doporučený moderní systém B. Jeho podstatou jsou zkratky a písmenové kódy, jimiž se na keramických kondenzátorech značí jmenovitá kapacita, tolerance kapacity, teplotní součinitel kapacity a provozní napětí. Přehled o tomto značení podává tab. 9. U miniaturních kondenzátorů, na

nichž nelze vyznačit úplné údaje podle této tabulky, je způsob značení uveden v příslušných rozměrových normách. Na všech kondenzátorech je však vždy uvedena jmenovitá kapacita a teplotní

součinitel kapacity.

Použití keramických kondenzátorů

Z předcházejících kapitol vyplývá oblast použití jednotlivých typů keramických kondenzátorů.

vysokofrekvenčních obvodech, v nichž je důležitá stabilita parametrů a malé ztráty, používáme kondenzátory typu 1. Teplotní závislost kapacity kondenzátoru volíme podle potřeby.

Jako vazební a blokovací kondenzá-

tory, u nichž nezáleží příliš na teplotní změně kapacity a nevadí větší ztráty,

volíme kondenzátory typu 2 nebo 3. Podle napětí, které je v daném místě, zvolíme kondenzátor s nejblíže větším napětím z řady. Kondenzátory lze trvale připojit na plné jmenovité napětí v celém rozsahu pracovních teplot.

Kondenzátor umísťujeme pokud možno mimo dosah sálavého tepla elektronek a výkonových odporů. Zajistíme tak

jeho spolehlivost.

Podle obvodu a účelu použití volíme také tvar kondenzátoru a délku vývodů. případně použijeme disky bez vývodů, které mají minimální indukčnost. S tím úzce souvisí otázka pájení. Při pájení keramického kondenzátoru nesmí teplota ve spoji vývodu s tělem kondenzátoru překročit 110 °C, krátkodobě po dobu 3 vteřin maximálně 125 °C. Přitom orosení, které vznikne na povrchu tmeleného kondenzátoru, není na závadu. Je způsobeno částečným roztavením impregnačního vosku, který po ochlazení kondenzátoru zatuhne. Pro pájení diskových kondenzátorů bez vývodů po-

Tab. 9, Značer	ní kondenzálo	rů písmen	ovým	kódem	1		
Kapacita	Zkrácené označení			6n8		6.0	100 pF
6.8 pF	608			S W s			% P4000 40 V
680 pF	680p		/	//	3/		
1000 pF	1nO						_
6 800 pF	608	$^{\prime}$ $^{\prime}$] '
10 000 pF	10n			Obchodní,		Kód	
68 000 pF	68n			, pojmenování		1	
680 000 pF	680n	}		Porcelit	+100		Steinnemerne
		İ		Stabilit L33P	+33	B	Kód Slejnosměrné napělí
		ı		Stabilit_K-NP-0	0	C	3,2 V
Tolerance	1 "	- 1]		-33	N	6,3 V
kapacity	Kód		1	Stabilit K L 47 N	-47	1	10 V
±0,25 pF	C			Stabilit K O 75 N	-75	L	n 125 V
±0,5 pF	D	- 1	ĺ	Stabilit K 150 N	-150	P	16 V
±1 pF	F		-	Stabilit K 220 N	-220	R	20.7
±2 %	G	1	Typ1		-330	S	p 25 V
±5 %	J				-4.70	T	a 32 V
±10 %	K	- 1		Rutilit	-750	111	s 40 V
±20 %	N ·	1 '	1	Negatil 1500	-1500	VI	a 63 V
· · · · · · · · · · · · · · · · · · ·		.		7.000	-2200		b 100 V
-20 +50 %	S	. لـــــ			-3300		c 160 V
-20 +90 %	7		[-4700	1	d. 250 V
20 150 10	<u> </u>	•	1		-6800	† †	- e 400 V
			Ь—	<u> </u>	1 0 000	<u> </u>	f 500 V
				Permitit 2000	2C	121	
-		•	~		2E		g 630 V h 1000 V
		,	12				
				Permitit 6000	-2F	\ <u>X</u>	
Transmit mere				Permitit 10 000	2G	11	
V tabulce má bý: Permitit 4000 sp	i vsude mi rávně Peri	sto mi-				.	
tit 40	002		<u>§</u>	Supermit		N	ē
			1 10	1	Γ.	1 1	

užíváme kadmiovou pájku PbSn47Cd podle ČSN 42 3633 s bodem tání 142 °C. Přitom doba pájení nemá překročit 3 vteřiny. Delší doba pájení zmenšuje mechanickou pevnost.

Všechny troy kondenzátorů lze povšít

Všechny typy kondenzátorů lze použít i pro montáž do plošných spojů. Kondenzátory chráněné fenolickým tmelem jsou vhodné i pro těsnou montáž. U starších typů kondenzátorů je nutno rozteče vývodů přizpůsobit rastru. U nové miniaturní řady jsou již vývody s roztečí 2,5; 5 a 7,5 mm.

Pro praktické použití kondenzátorů typu 3 je třeba uvést ještě další méně známou skutečnost. Dosud nepoužitý kondenzátor typu 3 může být použit při libovolné polaritě napětí. Po zapojení a

dlouhodobém provozu při určité polaritě je nutno při případném odpájení kondenzátoru a jeho opětném zapojení jednou zvolenou polaritu zachovat. Do-poručuje se, aby kondenzátor, vymontovaný po dlouhodobém provozu, u něhož polarita nebyla označena, byl před novým použitím změřen na izolační odpor pro obě polarity měřicího napětí. Při nesprávné polaritě je izolační odpor podstatně menší.

S ohledem na vlastnosti elektrod a konstrukci kondenzátorů není vhodné používat kondenzátory z běžného sortimentu pro impulsní provoz. Pro takové případy jsou určeny kondenzátory s typovým označením TK 910 až 914 a TK 920.

Tekuté krystaly v NDR

Rychlý pokrok elektronického prů-myslu NDR umožnil realizaci tzv. tekutých krystalů v podniku VEB Werk für Fernsehenelektronik, Berlín. (O te-kutých krystalech viz AR 11/72, s. 423.) Kombinací sedmi elektrod lze znázornit číslice od 1 do 0 nebo jiné znaky odraženým nebo procházejícím světlem. Hodí se pro digitální displeje stolních kalkulaček, elektrických hodin, měři-cích přístrojů apod. Zabírají málo místa, příkon je menší než 100 μW pro 1 znak a vynikají dobrou čitelností za každého okolního osvětlení. Jsou kompatibilní s některými IO. Předběžné údaje: napětí 30 V, proud 1 až 2 μA, budicí čas 100 ms, dosvit 200 ms; dovolená teplota okolí 10 až 60 °C. -sn-

RFT-Presseinformation

Trvalým proudem 3 A (při teplotě okoli 55 °C) bez přídavného chlazení mohou být zatěžovány miniaturní kře-míkové usměrňovače 3LO3 a 3LO5 firmy Semtech Corp. S přídavným

chlazením je lze zatěžovat proudem až 6 A. Těchto vlastností bylo dosaženo zvláštním výrobním postupem a speciálním pouzdřením, nazvaným "metoxilite". Pouzdro usměrňovačů je z kysličníku kovu, který je v přímém, tepelně vodivém dotyku s křemíkovým systémem. Přední napětí usměrňovačů je max. 0,9 V při proudu 3A. Závěrný proud je max. 1 μA při závěrném napětí 30 V (3LO3), popříp. 50 V (3LO5). Doba zotavení je prům. 80 ns. Usměrňovače lze provozovat v nezvykle širokém rozsahu teplot okolí (od -194 do +200 °C).

Podle firemních podkladů

Pod typovým znakem BYX71 dodává anglický výrobce Mullard usměrňovací diody se závěrným napětím 300 a 500 V pro trvalé zatížení proudem 1,5 A (při teplotě okolí max. 50 °C) v plochém pouzdru z plastické hmoty o rozměrech 11 × 18 × 5 mm. Jsou určeny především pro použití v televizních obvodech jako např. v obvodech řádkového vy-

chylování a proudových zdrojích spinacího typu. Usměrňovače mají úbytek napětí max. 1,25 V při proudu 5 A. Závěrný proud je max. 400 µA při max. závěrném napětí podle typu 300 či 500 V. Zpětný zotavovací náboj mají 0,7 μC při přepnutí z předního proudu 2 A na závěrné napětí 30 V (di/dt = 20 A/μs). Přední zotavovací doba je 0,8 μ s (při špičkovém předním proudu 25 A, di/dt = 5 A/ μ s).

Pro jednoduché proudové zdroje dodává Mullard ve stejném plastickém pouzdru jako typ BYX71 usměrňovače BYX72. Lze je zatěžovat trvalým proudení vednosti proudení proudení proudení proudení stejném proudení prou dem až 10 A (při teplotě chladiče max. 75 °C). Dodávají se se závěrným napětím 150, 300 a 500 V. Usměrňovače snášejí spičkový proud až 50 A a proudové impulsy do 100 A. Při předním proudu 20 A mají úbytek napětí max. 1,25 V, závěrný proud max. 500 µA při jmenovitém závěrný proud max. 500 µA při jmenovitém závěrný proud max. vitém závěrném napětí podle typu.

Podle podkladů Mullard

Sž

Zapojení s operačními zesilovači

Ing. Zdeněk Sluka

(Dokončení)

Přes diody D_1 , D_2 teče výstupní proud. je-li zátěž odpojena. Polaritu výstupního proudu lze změnit tím, že signál z prvního OZ přivedeme na neinvertující vstup druhého OZ (propojíme body a-d a c-b). Korekční a kompenzační obvody lze použít jako v zapojení na obr. 43.

Komparátory

Srovnat dvě napětí je v praxi velmi častou úlohou. S OZ ji lze snadno řešit přivedením napětí na obě vstupní svorky zesilovače. Základní zapojení komparátoru je na obr. 48, na němž je

Obr. 48. Základní zapojení komparátoru

i průběh převodní charakteristiky. Ze zapojení je zřejmé, že se OZ používá bez smyčky zpětné vazby, a tedy i s minimálními hodnotami korekčních prvků. Uvedený průběh převodní charakteris-tiky platí za předpokladu, že vstupní napětová nesymetrie je vykompenzována na nulu.

V praktických případech se obvykle výstupní napětí upravuje na požadova-nou velikost (např. k navázání na logické obvody) podle obr. 49 [14].

Obr. 49. Komparátor s úpravou výstupního napětí

Komparátor s hysterezí je na obr. 50. Hystereze je vhodná tam, kde by superponovaná poruchová napětí mohla způsobit nežádoucí překlápění komparátoru. Zavádí se tedy jisté pásmo necitlivostí kolem $U_{\rm ref}$. Hystereze je dána nastavením kladné zpětné vazby. Pro hysterezní napětí platí [14]

 $U_{\rm H} \sim \Delta U_{\rm výst} \alpha$,

kde

$$\alpha = \frac{R_1}{R_1 + R_2}$$

 $\Delta U_{
m výst} = U_{
m výst\,max} - U_{
m výst\,min}$.

Obr. 50. Komparátor s hysterezí

S OZ lze dosáhnout hysterezního napětí Un řádu jednotek mV

Jiné zapojení napěťového komparátoru, využívající pouze jednoho vstupu OZ, je na obr. 51 a 52. Jsou-li v obvodu na obr. 51 $U_{11} + U_{12}$ různé od nuly, zvětší se rychle výstupní napětí, které je omezeno na požadovanou velikost Ze-nerovými diodami ve zpětné vazbě. V obvodu na obr. 52 lze navíc nasta-

vit hysterezní napětí. Diody D1, D2 spolu s R2 omezují výstupní napětí z komparátoru.

Obr. 51. Napěťový komparátor s využitím pouze jednoho vstupu OZ

Obr. 52. Jiný napělový komparátor s využitím pouze jednoho vstupu OZ

Ukázkou jiného praktického použití komparátoru s OZ je samočinný přepínač polarity u ss měřicích přístroju (obr. 53) [15]. Je vhodný pro připojení k většině ss voltmetrů, neboť jeho vstup-ní impedance je $1 \text{ M}\Omega$. Kondenzátor C_1 ni impedance je i Mtl. Kondenzator C_1 spolu s odporem R_1 vytváří filtr, který odstraňuje případná brumová napětí. Ochranné diody D_1 , D_2 omezují napětí do invertujícího vstupu na $U_{\text{vst}} < U_{\text{vst max}}$. Relé B je nejvýhodnější jazýčkové s přepínacími kontakty. Zatím není u nás toto relé běžně na trhu, je tedy třeba použít např. relé LUN (12 V) se třemi přepínacími kontakty. V tom případě lze vynechat tranzistor T₂ a třetí přepínací kontakt lze využít přímo ke spínání signalizačních žárovek.

Výstupní napětí komparátorů větši-

nou omezujeme, abychom dosáhli konstantního výstupního napětí a dále aby-

chom zabránili saturaci (a tím i zmen-šení rychlosti reakce) komparáto-ru. Rychlost reakce lze, jak již bylo-uvedeno, posoudit z odezvy na skoko-

vou změnu vstupního napětí. U OZ

Bistabilní klopný obvod

Zapojení Schmittova obvodu jevna obr. 54. Ze zapojení je zřejmá podobnost se zapojením komparátorů. Objeví-li se na vstupu OZ napětí, změní se výstupní napětí okamžitě ve stejné povystupní napeti okanizne ve stejne polarité na U_{vyst} . Přechod je velmi rychlý, neboť část výstupního napětí se přičitá ke vstupnímu napětí (kladná zpětná vazba). Má-li se obvod dostat do druhého stabilního stavu, musí vstupní na-pětí "překonat" tu část výstupního napětí, která je na neinvertujícím vstupu. Vzniká hystereze, jejíž velikost lze vyjádřit vztahem $U_{\rm H} = (U_{\rm výst+} + D_{\rm p})$ + $U_{ t v t y t st ext{-}}) rac{R_1}{R_2}$. Abychom zabránili saturaci, zařazujeme na výstup Zenero-

Obr. 55. Generátor pravoúhlých a trojúhelníkovitých impulsů

vy diody D_8 , D_4 . Diody D_1 , D_2 chrání vstup OZ před poškozením nadměrným signálem. Obvod má vlastnosti paměti, tj. podle stavu U_{vyst} lze usuzovat, jakou polaritu mělo naposledy použité vstupní napětí U_{vst} . Korekční prvky volíme obvykle jako u komparátořů. Bistabilní obvod na obr. 54 lze ovlá-

Bistabilní obvod na obr. 54 lze ovládat i z invertujícího vstupu. Chování obvodu je stejné, napětí budou však mít

opačnou polaritu.

Spojením Schmittova obvodu a integrátoru lze vytvořit generátor pravoúhlých a trojhelníkovitých impulsů podle obr. 55. Dosáhne-li výstupní napětí z integrátoru úrovně překlápění Schmittova obvodu, přejde bistabilní obvod do druhého stabilního stavu a integrace probíhá opačným směrem opět až do dosažení další překlápěcí úrovně. Perioda trojúhelníkovitých kmitu závisí na časové konstantě integrátoru R₆C₁, na nastavení potenciometru R₆ a na hysterezi Schmittova obvodu.

Monostabilní klopný obvod

S využitím vstupů OZ lze snadno realizovat monostabilní klopný obvod (obr. 56). Stabilním stavem obvodu je kladná saturace, dioda D_2 pak vede a na invertujícím vstupu je napětí U_{D2} . Na neinvertujícím vstupu je napětí U_{vyst+} .

 R_3 . $R_3 + R_4$, které musí být větší než U_{D2} . Zápornou špičkou vstupního napětí U_{mv} , získaného derivací U_{vst} -obvodem C_1R_1 , se překlopí obvod do záporné saturace. Amplituda U_{mv} musí být tak velká, aby neinvertující vstup byl na nižším potenciálu než vstup invertující, tj.

$$U_{\rm mv} > U_{\rm výst} + \frac{R_3}{R_3 + R_4} - U_{\rm D2}.$$

V tomto pracovním stavu je dioda D_3 uzavřena a kondenzátor C_2 se nabíjí přes odpor R_2 potud, pokud napětí na invertujícím vstupu není větší než napětí na neinvertujícím vstupu. Doba t, po níž je obvod překlopen, závisí převážně na časové konstantě R_2C_2 . Lze odvodit přesný vztah pro délku impulsu

$$t = \tau \ln \left(\frac{R_3 + R_4}{R_4} - \frac{U_{\text{výst}} - U_{\text{D2}}}{U_{\text{výst}}} \right) .$$

Kapacitu kondenzátoru C_2 volíme asi od 1 nF do 10 μ F, R_2 od 10 k Ω do jed-

notek $M\Omega$. Pro malé časové konstanty C_2R_2 je třeba brát zřetel na omezenou rychlost odezvy OZ na jednotkový skok. Odpor R_1 má být alespoň desetkrát větší než R_3 . Korekční prvky volíme stejně jako u bistabilního obvodu. Uvedené zapojení monostabilního klopného obvodu má dobu zotavení asi poloviční než dobu kyvu. V náročných použitích muže vadit (kromě poměrně dlouhé doby zotavení) i to, že napětí na kondenzátoru C_2 je před příchodem spouštěcího impulsu určeno úbytkem na diodě D_2 (zapojené v propustném směru), který je teplotně závislý. Tyto nedostatky odstraňují různá zapojení, kombinující OZ s tranzistory nebo logickými prvky, v nichž OZ pracuje pouze jako komparátor [22].

Astabilní klopný obvod

Kladnou a zápornou zpětnou vazbou lze měnit lineární OZ na astabilní multivibrátor (obr. 57) který produkuje pravoúhlé impulsy o kmitočtu

$$1 = \frac{1}{2R_1C_1 \ln\left(1 + \frac{2R_3}{R_2}\right)}.$$

Obr. 57. Astabilní multivibrátor

Vztah platí za předpokladu symetrického napájení a tedy i symetrického saturačního výstupního napětí.

Přivedeme-li na OZ napájecí napětí, dostane se OZ vlivem nesymetrie na vstupu do jednoho ze stabilních stavů, např. $+U_{vyst}$. Na neinvertujícím vstupu je v tom případě napětí

$$+U_{ extsf{vyst}} \, rac{R_3}{R_3+R_2}$$

a napětí na invertujícím vstupu se zvětšuje tak, jak se nabíjí kondenzátor C_1 přes odpor R_1 . Bude-li napětí na invertujícím vstupu včtší než napětí na neinvertujícím vstupu, přejde OZ do svého druhého stabilního stavu s $-U_{vyst}$ a děj se znovu opakuje. Výstupní napětí i vstupní napětí lze omezit diodami podobně jako u Schmittova obvodu. Korekční prvky volíme minimální: R=0, $C_1=10$ pF, $C_2=3$ pF. Příklad zapojení generátoru obdélníkovitých impulsů s rozsahem 2 Hz až >20 kHz je v [14], [10].

Často je potřeba synchronizovat činnost astabilního multivibrátoru; jeden z možných způsobů je na obr. 58.

Zkoušení OZ]

Ověření všech parametrů OZ měřením je poměrně složité a zdlouhavé. Pro občasná měření, která obvykle v praxi přicházejí v úvahu, je vhodné

Obr. 58. Synchronizovaný astabilní multivibrátor

využít doporučených zapojení pro měření OZ, uvedených např. v [3], [9]. Kombinací těchto zapojení a jejich vhodným přepínáním lze realizovat univerzální měřicí přístroj. Pro hromadná měření nejsou tyto metody vhodné vzhledem k parazitním jevům, které se při složitém přepínání mohou projevit.

projevit.

V běžné praxi se OZ měří přesně méně často, využívá se většinou zkoušení na principu "dobrý—špatný". U OZ pak obvykle sledujeme zesílení v uzavřené smyčce při použití obou vstupů, případně proudovou a napěťovou nesymetrii. Jednoduchý přípravek k měření zesílení a vstupní napěťové nesymetrie je na obr. 59. V poloze 1 přepínače přivádíme na invertující vstup napětí +0.1 V. Zesílení OZ je nastaveno na 100 a měřicí přístroj ukáže výchylku —10 V. V poloze 2 přivádíme na invertující vstup napětí opačné polarity —0,1 V. V poloze 3 a 4 přepínače měříme stejně jako v poloze 1 a 2, ovšem pro neinvertující vstup. V poloze 5 (NULA) se měří v podstatě vstupní napěťová nesymetrie. Vstupní i zpětnovazební odpory jsou však příliš veliké, a tak se při tomto měření uplatní značně i vliv proudové nesymetrie. Při orientačním zkoušení to však není na závadu.

Přípravek je možno zabudovat spolu s přepínačem, zdrojem a měřidlem (nejlépe s nulou uprostřed) do společné krabice. Pro připojení OZ je vhodné zabudovat kulatou objímku i objímku pro OZ v pouzdru dual-in-line, obě vyrábí n. p. TESLA Liberec.

Vývoj a současný stav monolitických OZ

Operační zesilovače se používají (především v analogové technice) již

Obr. 59. Přípravek k mětení OZ

10 Amatérike AII 1 387

řadu let s elektronkami a později s tranzistory; k jejich širokému uplatnění však došlo až s výrobou levných integrovaných operačních zesilovačů. I když první monolitický zesilovač byl vyroben již v roce 1963 (SN521, Texas Instru-ments) lze za počátek úspěšné cesty operačních zesilovačů označit rok 1964, kdy firma Fairchild vyrobila OZ typu kdy firma Fairchild vyrobila OZ typu μA702 a o rok později μA709. Poslední OZ se brzy rozšířil prakticky po celém světě. Naše OZ MAA501, 502, 504 jsou přímým ekvivalentem OZ μA709, μA709A, μA709C. Nedostatky uvedeného typu jsou: malý rozsah vstupního napětí, malé mezní diferenciální napětí mezi vstupy velká vstupní proudová mezi vstupy, velká vstupní proudová a napěťová nesymetrie a teplotní drift zbytečně velká proudová spotřeba. Nevýhodou je i nutnost vnějších ko-rekčních prvků (k zajištění stability). Výraznější zlepšení přinesl v roce 1967 zesilovač LM101 (National Semiconductors), který se rozšířil v zahraničí téměř stejně jako typ μA709. Vstupní napětí tohoto zesilovače je ±15 V a diferenciální napětí mezi vstupy ± 30 V. Velmi výhodný je i rozsah napájecího napětí od ±5 do ±20 V při odběru proudu 1,8 mA. OZ má i vnitřní ochranu proti zničení trvalým zkratem. Samostatné vývody jsou použity k připojení potenciometru 5 MΩ (vyvážení nesymetrie). Nejdůležitější zlepšení však spočívalo v tom, že v jakékoli aplikaci zesilovače lze jeho stabilitu zajistit jedním vnějším kondenzátorem 30 pF. Ekyivalentními OZ k typu LM101 jsou OZ μΑ748 (Fairchild) a MC1533 (Motorola). V roce 1968 byl OZ LM101 nahrazen typem LH101, u ně-hož byl již korekční kondenzátor 30 pF vestavěn. Současně byly vyrobeny další OZ s vnitřní kompenzací, z nichž nej-rozšířenějším je typ µA741. Tento ze-silovač má zcela nové zapojení, jímž se dosahuje dalších zlepšení. Obdobné OZ vnráhí National Semiconductore

dosanuje daisich ziepseni. Obdobne OZ vyrábí National Semiconductors (LM174), ITT (MIC741), Texas Instruments (SN72741) a další výrobci. Všechny uvedené zesilovače, nazývané také OZ první generace, mají vstupní proudy řádu stovek nanoampérů a při větších impendančních úrovních mají značný teplotní drift. Výrazné zlepšení přinášejí OZ druhé generace, jejichž nejznámějším představitelem je OZ typu LM101A. Firmě National Semiconductors se podařilo zmenšit vstupní proud na 0,25 μA (oproti 1,5 μA u μΑ709) a proudovou nesymetrii na 20 nA (oproti 500 nA u μΑ709). Tohoto zlepšení se dosáhlo použitím tranzistorů FET v monolitické materialsky tické struktuře a dalšími technologic-kými změnami. Dalšími OZ druhé generace jsou např. typy MC1439 a MC1539 (Motorola).

Od roku 1970 se datuje vznik OZ třetí generace, u nichž se dále zmenšily vstupní proudy (vstupní tranzistory mají extrémní proudové zesílení). Velmi rozšířeným zesilovačem této generace je opět typ fy National Semiconductors, LM108. Vstupní proud se podařilo zmenšit na 0,2 nA, vstupní odpor se radikálně zvětšil, mnimálně na 35 MΩ, proudová spotřeba se zmenšila na 0,15 mA. V roce 1971 již nabízí tato firma OZ LM216, který má přednosti dřívějších typů (velký rozsah napájecích napětí ±3 až ±20, vnitřní kmitočtová korekce, kompenzace vstupní napěťové

symetrie) a jehož vstupní proudová nesymetrie je zmenšena na 15 pA při vstupním proudu 50 pA a napěťovém driftu 3 µV/°C.

V současné době se vyrábí téměř nepřehledná řada OZ ať již čistě monolitických nebo hybridních (využívajících samostatných křemíkových destiček pro vstupní obvodý, vlastní zesilovače atd., montovaných do společného pouzdra). Je tedy přehlednější třídit OZ podle charakteru parametru, pro který byl speciálně konstruován. OZ s velmi malým driftem jsou pokračováním snahy po zmenšení vstupní proudové a napěřové nesymetrie a teplotních driftů. Typickým představitelem této skupiny je OZ μΑ725 (případně μΑ726, μΑ727 s vlastním termostatováním přímo v monolitické struktuře). Ekvivalentem OZ μA725 bude u nás vyráběný OZ MAA725. Vyznačuje se značným napě-MAA/25. Vyznacuje se znacnym nape-ťovým zesílením $A_u \le 3 \cdot 10^6$, dále-extrémně malou napěťovou i prou-dovou nesymetrií vstupů a malými teplotními drifty (typ. 0,6 μ V/°C). Přitom se u něho zaručuje spolehlivá činnost při napájecím napětí ± 3 až ± 22 V. Spolehlivá činnost je zaručo-vána v teplotním rozsahu -55 až v teplotním rozsahu –55 až +125 °C; ÓZ má malé šumové napětí a malou závislost napěťového zesílení na napájecím napětí a na teplotě. Zesilovač je poměrně pomalý (šířka pásma při zapojení jako sledovač je 500 kHz), což však nevadí při aplikacích, pro něž je určen. Z uvedených parametrů plyne, že OZ MAA725 je vhodný pro regu-lační, měřicí a speciální techniku, především k zesilování malých stejnosměrných nebo pomalu se měnících signálů z termočlánků, fotodiod apod. Funkční vlastnosti a zapojení OZ

MAA725 (obr. 60) je obdobné MAA500,

Obr. 60. Zapojení OZ MAA725

OZ však vyžaduje menší počet vnějších součástek k realizaci funkčních obvodů. Prvky C_1 , C_2 , R_1 , R_2 slouží ke kmitočtové kompenzaci, přičemž korekční smyčka s kondenzátorem C_2 a odporem R_2 se používá jen tehdy, je-li požadována dokonalá funkční stabilita a stačí-li zesílení do 30 dB. Vstupní napěťová nesymetrie se vyvažuje potenciometrem $0,1~M\Omega$ mezi svorkami $I,~\theta$ s kladným napájecím napětím na běžci. Je-li napajecim napetim na běžci. Je-li vstupní nesymetrie vyvážena na nulu při teplotě +25 °C, je potom její změna s teplotou v rozmezí —55 až +125 °C v mezích —30 až +75 μV. OZ s velkou vstupní impedancí mají jako vstupní obvody Darlingtonovy páry tranzistorů nebo tranzistory FET. Jako představitele druhé koncence řeže-Jako představitele druhé koncepce řeše-ní lze uvést OZ μΑ740 se vstupním odporem 1012 Ω, proudovou nesymetrii 20 pA a vstupním proudem 150 pA. Hybridní OZ mají ještě lepší parametry, např. OZ fy Burr Brown, BBRC3503, má vstupní odpor $10^{13}~\Omega$ a vstupní proud pouze l pÅ.

OZ pro vyšší kmitočty jsou obvykle charakterizovány šířkou pásma a rychlostí odezvy při zesílení jedna. U OZ μΑ709 je to 1 MHz a 0,5 V/μs. Současné OZ mají šířku pásma 5 až 15 MHz a rychlost odezvy 10 až 130 V/µs.

Éxistuje řada dalších speciálních OZ, např. pro elektroakustiku dva OZ (Motorola MC1303), případně tři OZ (Westinghouse WC788) v jednom pouzdře, OZ s velmi malou spotřebou (μΑ735 – 0,1 až 6 mW) a další. Světové firmy mají obvykle ve výrobním pro-gramu celou škálu OZ monolitických i hybridních.

Literatura

- [13] Applications Manual for Operational Amplifiers. Philbrick-Nexus. Intergrierte Analogschaltungen
- (SGS). Telekosmos: Stuttgart 1970.
- [15] Spannungsmesser mit automatischer Polaritätsumschaltung.
- Funktechnik č. 8/1971.

 [16] Kabeš, K.: Přesný nf usměrňovač.

 ST č. 7/1968.

 [17] Günzel, K.: Schaltungstechnik mit
- Operationsverstärker. Funktechnik č. 2/1971.
- [18] Günzel, K.: Schaltungstechnik mit Operationsverstärker. Funktechnik č. 3/1971.
- [19] Rechenverstärker, 3. část. Elektro-
- nik č. 8/1966.
 [20] Moschytz, J.: Inductorless filters
 a survey. IEEE Spectrum, září 1970.
- [21] Simple arithmetic: an easy way to design active bandbass filters. Electronics č. 7/1971.
- [22] IO a jejich aplikace. Sborník ze symposia CVTS: Luhačovice

Nf tranzistory 100 W

běžně dodává fa RCA (USA) v několika druzích. Napájecí napětí je 60 až 100 V při kolektorovém proudu až 15 A. Např. typ 2N6248 má při napětí 100 V kolektorový proud 12,5 A při teplotě pouzdra 25 °C. Zesilovací činitel v zapojení SE je až 100. Pár takových transtate v zapojení SE je až 100. Pár takových transtate v zapojení se požení se zapojení zistorů v dvojčinném zapojení třídy AB na odpovídajícím chladiči může dávat sinusový výkon více než 150 W. -sn-

Z materiálů RCA

Vodní světelné varhany se 762 reflektory se žárovkami 500 W, umístěnými pod vodou, se staví v hamburském výstavním parku. Vodní fontány po-hánějí dvě čerpadla s výkonem motorů 315 kW a řídí 13 pneumatických a dva přímo řízené magnetické ventily. K zařízení patři spínací jednotka a elektronický řídicí pult. Varhany se mají stát zvláštní atrakcí na připravované mezi-národní zahradnické výstavě IGA 1973.

Podle Siemens-Zeit č.9/1972

Tyristory IR122 v plastickém pouzdru pro max. efektivní zatěžovací proud 8 A (popř. pro trvalý mezní proud 5,1 A) vyvinula firma International Rectifier. Dodává je se závěrným napětím 50 až 400 V v pěti typech. Kritická napěťová strmost tyristorů je 50 V/µs. Pouzdro z plastické hmoty má rozměry 15,5 x \times 10,3 \times 4,7 mm, vývody jsou jednostranné. Systém je montován na kovo-vém chladiči, zalisovaném do pouzdra.

Podle firemních podkladů

ŠKOLA amatērskēho vysīlānī

Vidíme, že je značně zjednodušeno oproti funkčnímu zapojení. Všechny označené součástky jsou tvořeny jednak vnitřním vodičem souosého kabelu, a dále dalším vodičem, který tvoří měrné vedení a je navlečen pod plášť souosého ka-belu (viz další text). Měrné vedení zhotovíme tím způsobem, že souosý kabel zbavíme vrchní izolace z PVC a označíme si přesně polovinu jeho délky. V tomto místě mezi jednotlivými dráty stínicí měděné punčošky uděláme otvor (ø 3-4 mm). Poté punčošku sesuneme od obou konců kabelů směrem ke středu. Tím nám vznikne mezera mezi polyethylenovým dielektrikem kabelu a punčoškou a můžeme tedy dříve zhotoveným otvorem protáhnout směrem ke koncům smaltovaný drát (ø asi 0,25 mm). Punčošku opatrně natáhneme a zabándážujeme. Přitom musíme dát pozor, abychom neprodřeli izolaci drátu.

K nastavení přístroje potřebujeme umělou zátěž o odporu charakteristické impedance souosého kabelu. Zátěž připojíme na konektor K_2 a do konektoru K_1 přivedeme vf výkon z vysílače. Přepínač S přepneme do polohy 2 (odražené napětí). V této poloze nastavíme správný odpor R tak, že nejprve použijeme potenciometrický trimr 220 Ω , který nastavíme na minimální výchylku měřicího přístroje. Trimr nahradíme bezindukčním odporem. Činitel stojatých vln stanovíme z výrazu

$$CSV = \frac{U_p + U_o}{U_p - U_o}$$
,

kde U_p je "napětí postupné" a U_o "napětí odražené".

V praxi provádíme měření tím způsobem, že v poloze přepínače I nastavíme na měřicím přístroji maximální výchylku a po přepnutí do polohy 2 zjištujeme přímo že stupnice činitel stojatých vln. Máme-li měřicí přístroj o 100 dílcích (100 μA), můžeme jej ocejchovat podle následující tabulky.

Dilky stupnice	•	Čin	itel stojatých vln
0			1
10		0	1,2
20			1,5
30			1,9
40			2,3 3
50			3
60			4
70			5,7
80			9
90			19
100			60

Rozpiska součástek měřiče přizpůsobení

C ₁ C ₂ C ₃	10 nF 10 nF 10 nF	TK750 TK750 TK750 GA206; párovaná dioda
D ₁ K ₁ K ₂ M ₁ P ₁ R ₁	0,2 až 1 mA 47 kΩ	GA206 – párovaná djoda souosý konektor souosý konektor DHR nebo podobný TP280, lineární viz text jednopólový dvojpolohový
V -	·	přepínač souosý kabel VFKP 391 délky 300 mm

Vf průchozí wattmetr-reflektometr

Velmi užitečným přístrojem je reflektometr, který na rozdíl od předcházejí-

Obr. 6. Zapojení průchozího wattmetru

Obr. 7. Měřicí sonda

cích typů umožňuje přímé měření vysokofrekvenčního výkonu, procházejícího směrem k zátěži i odraženého. Zapojení je na obr. 6 a uspořádání součástek na obr. 7. Přístroj může být velmi jednoduše použit jako měřič ČSV.

Nejobtižnější prací je ocejchování v požadovaném výkonovém rozsahu. Nejjednodušší je srovnání s komerčním wattmetrem nebo s umělou zátěží s indikací výkonu. Pokud tuto možnost nemáme, můžeme použít vysokofrekvenční ampérmetr a umělou zátěž a výkon stanovit z výrazu

$$P = I^2R$$

kde P je výkon ve W, L proud do zátěže v A, R odpor umělé zátěže v Ω (zpravidla 50 Ω nebo 75 Ω).

Výhodou tohoto typu ve srovnání s předcházejícími typy je, že údaje o ví výkonu jsou téměř kmitočtově nezávislé v celém rozsahu od 3,5 do 30 MHz. Tato vlastnost může být ovlivněna vlastnostmi použitého feritového jádra.

Prostřední vodič napájecího vedení prochází středem toroidního jádra a tvoří primární vinutí transformátoru Tr₁. Na jádru je rovnoměrně navinuto

Tr1. Na jádru je rovnoměrně navinuto
-40 až 50 závitů drátu ø 0,2 CuL 2× H,
které vytvářejí sekundární vinutí.

Proud, který protéká napájecím vedením, indukuje v sekundárním vinutí napětí. Odpory R_1 a R_2 tedy protéká proud. Napětí, které je na těchto odporech, má stejnou amplitudu, ale vzhledem ke kostře má opačnou fázi. Napětí jsou ve fázi, respektive v opačné fázi i s proudem, který protéká napájecím vedením. Kapacitní děliče C_1C_3 a C_2C_4 jsou zapojeny přes napájecí vedení a jsou nastaveny tak, aby vytvářely stejné napětí, jako je na odporech R_1 a R_2 , ovšem ve fázi s napětím na vedení. (Toto však platí pouze v tom případě, že je vedení zakončeno zátěží o charakteristické impedanci. V ostatních případech dochází ke změně poměru proud — napětí.)

Za těchto předpokladů napětí usměrněná diodami D_1 a D_2 představují vektorový součet a rozdíl indukovaného napětí a napětí, získaného z linky.

Přihlédneme-li nyní k impedanci vedení, pro které byl dělič nastaven, součtové napětí je úměrné postupující složce stojaté vlny a rozdílové napětí je úměrné odražené složce.

Zde je nutno poznamenat, že pro správnou činnost musí být jalový odpor ωL sekundárního vinutí toroidního transformátoru Tr_1 mnohem větší, než jsou odpory R_1 a R_2 . Pro správnou činnost je zapotřebí elektrostaticky odstínit primární a sekundární vinutí, aby nedocházelo ke kapacitní vazbě. To je uskutečněno tak, že toroid se sekundárním vinutím je nasazen na kousék souosého kabelu. Vnitřní vodič tvoří vedení, plášť kabelu, který je spojen s kostrou jen na jednom konci, vytváří stínění.

Dále je vhodné odstínění snímací části, aby nedocházelo k přímé vazbě vf energie na další části a tím k ovlivňování funkce. Odpory R_1 a R_2 je nutno vybrat tak, aby se navzájem nelišily o více než 1 %.

Konstrukce a nastavení

Vysokofrekvenční obvody umístíme v kovové krabici $8 \times 8 \times 4$ cm (možno zhotovit i z Cuprextitu). Jednotlivé součástky upevníme do destičky s plošnými spoji. Mimo tuto "měřicí sondu" umístíme odpory pro nastavení rozsahů, dále přepínač rozsahů a měřicí přístroj.

Po zhotovení přístroje je nutno nastavit kondenzátory C_1 a C_2 v děličích napětí a potenciometrické trimry pro příslušné rozsahy. Konektor K_1 propojíme s vysílačem a ke konektoru K_2 připojíme zpravidla zátěž 75 Ω, u které můžeme zjistit spotřebovaný výkon. Přepínač S_2 přepneme do polohy "odražený výkon", přepínač S nastavíme do polohy 100 W a zkratujeme odpor R_3 . Nyní zaklíčujeme vysílač a nastavíme takový výkon, abychom dostali výchylku na přístroji M_1 . Šroubovákem z izolantu nastavíme kapacitu kondenzátoru C_2 tak, aby měřicí přístroj M_1 ukazoval nulovou výchylku. Dále zaměníme přívody souosých konektorů K_1 a K_2 , přepneme přepínač S_2 do polohy "přímý výkon", zkratujeme odpor R_4

a nastavíme kapacitu kondenzátoru C1 na nulovou výchylku měřicího přístroje M_1 .

Nyní zbývá nastavit pomocí potenciometrických trimrů R3, R4, R5 a R6 správné rozsahy.

Přepínač S₂ přepneme do polohy "odražený výkon" a podle cejchované zátěže nastavíme pomocí potenciometrického trimru R₃ rozsah 100 W a pomocí potenciometrického trimru R5

Jako poslední úkol nám zbývá za-pojit opět zátěž na výstupní konektor K₂ a vysílač připojit ke konektoru K₁. Přepínač S₂ přepneme do polohy "přímy výkon" a potenciometrické trimry R4 a R6 nastavíme na rozsah 100 W, respektive 500 W. Nyní můžeme přístroj ocejchovat pomocí cejchované zátěže. Pro běžnou praxi však stačí zhotovení stupnice podle následující ta-

Rozsah [W]	Údaj [μΑ]	Rozsah [W
100	200	500
90	185	450
80	173	400
70	157	350
60	142	300
50	. 124	250
` 40	107	- 200
30	89	150
20	67	100
10	40	50

Uvedené rozsahy nejsou závazné. Je možno si zvolit třeba 50 W a 250 W, případně i rozsahy pro menší výkony.

Rozpiska součástek vf průchozího wattmetru

C_1	0,8 až 5 pF	WK70109
\tilde{C}_{i}	0,8 až 5 pF	WK70109
č.	510 pF	TC210
0000	510 pF	TC210
č	2,2 nF	průchodkový kondenzátor
Ž,	2,2 nF	průchodkový kondenzátor
C,	10 nF	TK751
	10 nr	
D_1		GA206 - párovaná dioda
D,		GA206 - párovaná dioda
K_1		souosý konektor
K,		souosý konektor
M_1	200 μΑ .	DHR 5
R_1	10 Ω	TR112a
R,	10 Ω	TR112a
$R_{\mathbf{s}}$	4,7 kΩ	TP012
R_{\bullet}	4,7 kΩ	TP012
R_{\bullet}	15 kΩ	TP012
R_{\bullet}	15 kΩ	TP012
$S_{\mathbf{i}}$		dvoupólový dvoupolohový
		přepínač
$S_{\mathbf{s}}$		jednopólový dvoupolohový
٠,	•	přepinač
Tr_1		transformátor na toroidním
2.1		jádru H6 Ø 20/12 x 8 mm
		- viz text
T!,	500 µH	vysokofrekvenční tlumivka
· Tl,	500 µH	vysokofrekvenční tlumivka

Uvedený přístroj nám umožní zajišťovat přímo výkon vysílače nebo pomocí nomogramu na obr. 8 určovat činitel stojatých vln (ČSV).

Obr. 8. Nomogram pro stanovení ČSV

Obr. 9. Celkový vzhled průchozího wattmetru

Krystalové kalibrátory

Jednoduchý krystalem řízený kalibrátor lze zhotovit s integrovaným obvodem MH7400. Tento obvod obsahuje čtyři hradla. Pro naše účely vystačíme se třemi hradly, z nichž dvě jsou zapojena jako multivibrátor řízený krystalem 1 MHz. Třetí hradlo tvoří oddělovací stupeň. Kalibrátor dává velmi silné signály harmonických kmitočtů až do oblasti VKV. Zapojení je na obr. 10. Kondenzátor, který je zapojen v sérii s krystalem, slouží k nastavení přesného kmitočtu oscilací. Kmitočet při nastavování kontrolujeme na 10 MHz nebo 20 MHz se záznějem stanice WWV.

V obvodu můžeme použít i krystal 100 kHz (500 kHz). V tomto případě je možno kalibrátor přesně nastavit podle naší stanice OMA na kmitočtu 2,5 MHz.

Seznam součástek

C ₁ 50 pF keramický filtr
C ₁ 100 pF, TC210
C, 0,1 μF, TK751 (polštářkový)
D ₁ KZ721
K ₁ souosý konektor
R ₁ 100 kΩ, TR112a
R: 100 kΩ, TR112a
R ₂ 220 Ω, TR152
H_1, H_2, H_3 MH7400
X ₁ krystal 1 MHz (100 kHz)

Obr. 10. Krystalový kalibrátor s MH7400 (místo C má být C.)

cházejících lekcí.

Krystalový kalibrátor 100 kHz a 25 kHz

Na obr. 11 je zapojení kalibrátoru, které používá ve svých zařízeních japonská firma Yaesu (Sommerkamp). Kalibrátor je osazen čtyřmi křemíkovými tranzistory n-p-n, které mají následující funkce:

 T_1 oscilátor 100 kHz, multivibrátor 25 kHz, zesilovač.

Kmitočet multivibrátoru je synchronizován základním kmitočtem 100 kHz. Potenciometrickým trimrem P_1 lze nastavit žádaný kmitočet multivibrátoru. V původním zapojení kmitá multivibrátor na kmitočtu 25 kHz.

V některých případech se nemusí podařit nastavit kmitočet oscilátoru přesně na 100 kHz, ale bude nepatrně vyšší. V tom případě je nutno zvětšit kapacitu kondenzátoru C4. Postačující by měla být kapacita maximálně 330 pF.

Seznam součástek

50 pF, keramický trimr 82 pF, TC210 220 pF, TC210 47 pF, TC210, viz text 2,2 nF, TC212 22 nF, TK751 47 pF, TC210 47 pF, TC210 47 pF, TC210 10 nF, TK750 47 pF, TC210 C_{11} 1 nF, TC281 C_{13} 1 nF, TC281 22 nF, TK751 souosý konektor 15 kΩ, TP040 P₁
X₁
R₁
R₂
R₄
R₅
R₆
R₇ krystal 100 kHz 10 kΩ, TR112a 100 kΩ, TR112a 100 Ω, TR112a 10 kΩ, TR112a 100 kΩ, TR112a 1 kΩ, TR152 100 Ω, TR112a 1 kΩ, TR152 R_{s} 22 kΩ, TR112a 4,7 kΩ, TR112a R 10 33 kΩ, TR112a R11 4,7 kΩ, TR112a R_{12} 1 kΩ, TR152 S₁
T
Tl₁ jednopólový spínač KSY62 nebo i KC508 apod. vysokofrekvenční tlumivka 4 mH vysokofrekvenční tlumivka 2,5 mH Napájení kalibrátorů je možné buď

z baterii, nebo lépe ze stabilizovaného zdroje, který byl popsán v jedné z před-

Úmava лохhlasového mijímače na transceiver mo 144MHz

Pavel Šír, OKIAIY

(Dokončení)

Zpravidla se stává, že když se zdá, že je oscilátor nastaven nejlépe a dává největší výstupní napětí, pak kmitá i bez krystalu. Cívka, která je paralelně ke krystalu, má kompenzovat kapacitu polepů a držáku. Pomocí GDO je třeba nastavit její rezonanci zhruba na požadovaném kmitočtu (to je tří nebo pětinásobek základního kmitočtu krystalu). Pak je nutné nastavit dělič kondenzátorem C3. Správně nastavený oscilátor pracuje již při napájecím napětí 3 V a při proladování jádra v cívce kolek-torového obvodu musí na obě strany od správného nasazení vysazovať. Kvalita krystalu i tranzistoru se projeví na nastavení děliče kolektorového obvodu např. při lepším tranzistoru bude mít C₃ větší kapacitu. Další tranzistor násobí kmitočet na požadovaných 138 MHz. Vstup konventoru je osazen tranzis-torem AF239 v mezizapojení. Tím je dáno dostatečné zesílení a šumové číslo kolem 2 kTo. Praktickými zkušenostmi se ukázalo, že tato kombinace je méně pracnější, na šumové číslo lepší a hlavně podstatně levnější než osazení vstupu vhodným typem

S-metr a záznějový oscilátor

Jako S-metr slouží upravený měřič úrovně⁰z magnetofonu; místa pro něj bylo málo, takže jsem vyjmul z krytu jen vlastní systém a připevnil jej tak, aby ručka ukazovala na plech. Tam jsem později dokreslil stupnici. Měřidlo jsem připojil přes příslušný předřadný odpor (trimr 0,1 MΩ) až za detekční diodu. Je však lepší udělat pro něj z posledního mí transformátoru zvláštní detektor, jinak je nebezpečí akustické vazby s reproduktorem. U Transcontinentu Ek je kompletní mf zesilovač jako jeden celek v bloku a na desku jsou vyvedeny jen vstup, výstup a napájení. Z tohoto důvodu nebyl k dosažení kolektor posledního mf tranzistoru. Injekce z BFO je pripojena pres malou kapacitu na bázi posledního mí tranzistoru, která je vyvedena jako měřicí bod. BFO je na společné desce s vysílačem, zapíná se tlačítkem AFC, ke kterému jsem přidal ještě pár spínacích kontaktů.

Vysílač

Zhotovení vysílače na napájecí napětí 9 V není samo o sobě žádným problémem. Složitější je již odebírat z takového vysílače výkon řádu stovek mW, ale jsou-li k dispozici vhodné tranzistory, je i to zvládnutelné. Nejsložitější je snažit se o jakoukoli modulaci. Nejjednodušší je modulace kmitočtová (FM), je z hlediska správné funkce stupňů ve třídě C i nejvhodnější. Rovněž pro mobilní provoz i práci přes převaděče je FM přímo doporučována.

poručována. Rozhodneme-li se pro AM, vyvstanou problémy. Vzhledem k nízkému napájecímu napětí není dost dobře možné použít sériový závěrný tranzistor či modulaci emitorového proudu. Modulace je sice dobrá, ale za cenu značného zmenšení vf výkonu. V našem případě se nabízí Heisinkova kolektorová modulace. Je možné použít celý nf výkonový zesilovač a modulovat přes vhodný modulační transformátor. Výhodou je značné zvýšení vf výkonu v modulačních špičkách. Při uvádění do chodu se ale ukázalo, že tak jednoduché to přece jen není. Při tomto druhu modulace pracují totiž tranzistory v nevhodném režimu. S měnící se amplitudou se mění i kolektorové napětí a tím i kolektorová kapacita. Na-víc ve chvíli, kdy je na kolektoru nízké napětí, prochází přechodem báze-kolektor celý nemodulovaný budicí signál na výstup. V okamžiku, kdy je na kolektoru kladná špička, je opět buzení nedostatečné. Prakticky se to projevilo slabou a málo kvalitní modulací, indikační žárovka, zapojená na výstup, při modulaci pohasinala. Doporučuje se přimodulovávat budicí stupeň kladnými modulačními špičkami, získanými diodou D_2 . Dioda D_1 odděluje zvýšené napětí od napájecího napětí. Ani toto opatření však v mém případě nepomohlo. Situace byla stejná jako u PA, ukázalo se nedo-statečné buzení z násobiče. Přimoduloval jsem tedy i násobič - to bylo velmi účinné; ihned se modulace obrátila směrem nahoru a při mluvení do mikrofonu

teleskopická

se i indikační žárovička 6 V/50 mA rozsvěcela do běla. Při porovnávání tohoto způsobu modulace s vysílačem FM (i většího výkonu) se ukázalo, že hlavně při slabých signálech je tato modulace daleko čitelnější. Zůstal jsem proto u ní, i když je třeba připomenout, že-není zadarmo s ohledem na napájeci zdroje. Odběr z baterií dosahuje při modulaci mikrofonem až 350 mA. Jsou-li baterie starší, nestačí potřebnou energii v modulačních špičkách dodat, což se projevuje snížením kvality modulace a indikační žárovička mírně pohasíná. Je proto vhodné zvětšit kapacitu elektrolytického kondenzátoru v napájecím zdroji; v mém případě na 3×1000 μF/15 V. Toto opatření velmi pomohlo, kvalita modulace byla dobrá i když byl jeden z napájecích článků vadný.

Oscilátor vysílače (obr. 3) je zapojen stejně jako v konvertoru, další tranzistor ztrojuje přímo na 144 MHz. Následující zesilovač dodává již vf výkon 20 mW (bez modulace). Připojíme-li indikační žárovku 6 V/50 mA místo koncového tranzistoru mezi bázi a zem, stačí tento výkon na její slabé rozežhnutí – při modulaci je patrné znatelné zvětšování vf výkonu. Na koncovém stupni jsem použil tranzistor 2N4427, který dodával výkon 0,5 W při nejlepší modulaci a nejmenším odběru proudu. Tento tranzistor je konstruován pro malé napájecí napětí (jen 12 V) a proti proražení napěťovými špičkami, vznikajícími např. při zapnutí, vypnutí či modulaci je chráněn Zenero-vou diodou 18 V. Pro jistotu jsem zapojil Zenerových diod několik. Poněkud kombinované navázání koncového stupně zajišťuje jednak vhodné přizpůsobení z hlediska velmi malého vstupního odporu (asi 5 Ω) a zároveň lépe odfiltruje kmitočet 48 MHz.

U tohoto druhu malých, jednoduchých a tolik v nedávné minulosti oblíbených konstrukcí se totiž stává, že kapacitní vazbou mezi stupni se přenesou nižší kmitočty od základního oscilátoru až po koncový stupeň. Tento je samozřejmě velmi ochotně zesílí a výstupní obvod svojí malou selektivitou toho již mnoho nezachrání. Takový vysílač pak ohromuje značným výkonem, ale připojením selektivního voltmetru se přesvědčíme, že tam jsou přítomny všechny možné kmitočty až po několik set MHz. Zároveň je tím zatěžován koncový tranzistor, protože výkon na všech těchto nežádoucích kmitočtech není dokonale odveden. Z toho vyplývá i nebezpečí naladění posledního stupně u takovýchkonstrukci např. na 144 – 12 = = 132 MHz, jestliže se ladí jen podle žárovky. Poslechem na přijímači v pásmu 2 m se to nepozná a mnohdy se lze s vysílačem i dovolat. Jsou dokonce i případy, že při vhodném nastavení takový koncový tranzistor dělil dvěma. Abych se těchto nepřesností vyvaroval, měl jsem neustále připojený vlnoměr a kontroloval celé spektrum od 48 MHz až po 432 MHz. Za zmínku stojí, že i když není nikde v signálové cestě použit kmitočet 16 MHz (krystal kmitá přímo na 3. harmonické), přesto se v obvodu báze začalo objevovat 144 – 16 = 128 MHz. Správným početm závita na L₆ a pečlivým nastavením L₅ a L₄ se tento nedostatek nechal odstranit. Zároveň s výstupním kmitočtem a výkonem j sem sledoval i proud koncovým tranzistorem. V okamžiku, kdy bylo všechno

10 Amatérské! ADI 10 391

Obr. 4. Zapojení přidaného BFO

Obr. 5. Filtrační obvod-stabilizátor pro připojení k autobaterii 12 V.

správně naladěno, odpovídal největší výkon relativně nejmenšímu proudu – 100 mA. Při nesprávném naladění kteréhokoli obvodu stoupal proud a tranzistor se zahříval. Při uvádění do chodu se vyplatí sledovat celý postup na přijímači pro 144 MHz, a to jak na vlastním kmitočtu, tak i v jeho okolí. Tam totiž uslyšíme případné oscilace i ostatní nestability, s kterými se při experimentování setkáme a které při sledování na voltmetru naší pozornosti uniknou. Některé druhy oscilací jsou slyšet i na tranzistorový přijímač na rozsahu SV.

Navázání teleskopické antény

Koncový stupeň je naladěn do zátěže 70 Ω, připojené k výstupnímu konektoru, umístěnému na boku skříňky. K tomuto konektoru je trvale navázána také vysouvací teleskopická anténa, jejíž délka při úplném vytažení je 82 cm. Vazebním kondenzátorem je nastavena kapacita, při které anténa nejvíc "táhne". V tu chvíli je koncový stupeň zatížen zrovna tak, jako by byla připojena víceprvková směrovka. Při provozu na směrovku se anténa zasune; její délka je pak asi 12 cm a nepusobí rušivě.

Výsuvná anténa je současně použita pro příjem VKV i KV. Znamená to, že vstupní cívka tuneru VKV je k ní trvale připojena. Samozřejmě by bylo nejlepší i tuto anténu přepínat, ale na přepínači vlnových rozsahů již nebylo místo. Je tedy do přívodu antény k tuneru VKV zařazen paralelní rezonanční obvod na 144 MHz, který funguje jako odlaďovač a zmenší ztráty vf výkonu jak při vysílání, tak i při příjmu na snesitelnou míru.

Provoz z automobilu

Vyzkoušel jsem i provoz z automobilu na výsuvnou anténu, kterou jsou obvykle vozy s autoradiem vybaveny. Prodloužil jsem koaxiální kabel asi o 1,5 m (aby se dalo pracovat i ze zadního sedadla). Pak už stačí jen vytáhnout autoanténu na určitou délku, při které nejvíce "táhne". Optimální délku lze nastavit podle údaje reflektometru nebo měřiče síly pole, ale i poslechem stanic na pásmu s ohledem na S-metr. Délku lze nastavit tak přesně, že je patrný rozdíl mezi začátkem a koncem pásma. Nastavíme tedy anténu na vlastní vysílací kmitočet, délku změříme měřítkem či přeneseme na nějakou šablonu, podle které pak již

délku kdykoli jednoduše znovu nastavime. Ukázalo se, že tato jednoduchá anténa, umístěna nad plochou střechy či sklopená před předním sklem má i směrový účinek. Je ovšem nutné vzít v úvahu, že je to pouze provizorní řešení a k pořádné anténě má velmi daleko; podle toho vypadají i výsledky. Přesto byla navázána již řada spojení za jízdy, nejdelší asi na 100 km. Velkým problémem je odstranční rušení, které automobil sám produkuje.

Pozor také při napájení tranzisto-rových zařízení z autobaterie. Elektromagnetické spotřebiče jako např. startér, relé, houkačka ap. vyrobí pulsy o amplitudě až několík desítek voltů. Není-li zařízení vhodným způsobem chráněno, zaručeně dojde k proražení výkonového tranzistoru. Čím větší jsou odebírané proudy, tím je otázka dokona-lého chránění složitější. V každém případě to chce připojit napájecí přívody co nejkratší cestou na svorky akumulátoru, protože jeho velká kapacita napětové špičky snáze utlumí. Je též možné zařadit do přívodu tlumivku. Její indukčnost a provedení by bylo možné určit na základě oscilografického rozboru napěťových špiček. Pro jistotu ale bude nejlepší použít osvědčeného způsobu - filtrace na sériovém tranzistoru (obr. 5). Jeho průrazné napětí musí být větší, než maximální vyskytující se napěťové špičky. Tyto požadavky splňuje výkonový křemíkový tranzistor. Odpory R_1 a R_2 spolu s C_1 a C_2 tvoří články RC_1 jejichž časová konstanta má být větší než šířka rušivého impulsu. Velikostí R1 a R2 se nastaví pracovní bod tranzistoru tak, aby byl otevřen. Zenerovajdioda stabilizuje výstupní napětí v případě, že by došlo k náhlému zvýšení vstupního napětí; D_1 – např. KY708 nebo KZ710 apod. má zkratovat případné špičky opačné polarity.

Zkušenosti z provozu

Při praktickém provozu se zařízení ukázalo jako dobrý a spolehlivý pomocník. Obava z krátké životnosti napájecích článků se brzy ukázala jako zbytečná. Vysílač se "povedl" tak, že spolehlivě funguje ještě při napětí 6 V. Při poklesu napětí pod 7 V ale přestával pracovat konvertor. Ukázalo se, že FET potřebuje ke správné funkci napětí alespoň 8 až 9 V; výrobce předepisuje optimální napájecí napětí 15 V. Zařadil jsem proto do přívodu napájení ke konvertoru dva tužkové články, takže celý konvertor pracuje při napětí 12 V. Při odběru 9 mA vydrží baterie poměrně dlouho.

Zatěžkávací zkoušku prodělalo zařízení na spojovací službě při MS v orientačním běhu. Bylo zajišťováno spojení v tak obtížném a členitém terénu, kde neuspěly ani profesionální radiostanice. I když někdy už žádné rezervy v "síle" signálu nebyly, spojení bylo stále spolehlivé. Při provozu z kopce, kdy bylo použito jen teleskopické antény, se dala snadno navazovat spojení až na vzdálenost 250 km. Velmi pohodlně se pracovalo také přes převaděč OKOA, který byl v létě minulého roku ve zkušebním provozu v Praze; na vzdálenost 110 km je to vcelku úspěch a až bude převaděč instalován na Sněžce, budou právě podobná zařízení vhodná pro spojení přes něj (s ohledem na jeho přetěžování zbytečně silnými signály).

Literatura

Konstrukční katalog TESLA Rožnov. Funkamateur 9/1970. UKW-Berichte 4/1970. DL-QTC 2 a 3/1971. Konstrukční katalog RCA.

NAD NÁMI STÁLE OSCAR 6

Ing. Karel Jordan, OK1BMW

Dne 12. 6. 1973 v 07.00 GMT dovršila první dlouhodobě pracující radioamatérská družice Oscar 6 3 000 oběhů. Uplynulá, téměř osmiměstční doba provozu převáděče na palubě družice dala již dostatek pozorování a zkušeností k zhodnocení pokroku dosaženém v tomto kosmickém směru radioamatérské komunikace. Prostřednictvím převáděče byla navázána desetitisíce spojení po celém světě a nechybí mezi nimi i mnoho mezikontinentálních na vzdálenosti až 8 000 km, přičemž se provoz neomezuje jen na telegrafii a SSB, ale zahrnuje i SSTV a RTTY. V dalších odstavcích je uvedena stručná historie družice Oscar 6, její parametry, základní problémy telekomunikace a provozní zkušenosti i výsledky čs. stanic k jubilejnímu 3 000. oběhu.

Stručná historie

Současný Oscar je již šestou radioamatérskou družicí. První dvě z r. 1961 a 1962 nesly na palubě pouze jednoduché majákové vysílače určené k poslechovému pozorování. Oscar 3 z r. 1965 byl již vybaven lineárním převáděčem se vstupním a výstupním kanálem v pásmu 145 MHz o šířce 50 kHz. Oscar 4 z r. 1965/66 byl vybaven převáděčem 145/432 MHz o šířce 10 kHz. Elektronická výzbroj všech těchto družic měla relativně krátkou dobu života. Ani provozně nebyly obzvláště úspěšné, což se projevovalo v potřebě velkých výkonů

u pozemních stanic, a tak provoz přes převáděče nebyl přístupný širokým amatérským vrstvám. V r. 1969 byla založena ve Washingtonu nekomerční, vědecká společnost AMSAT (Radio Amateur Satellite Corporation), která si vytyčila úkol zajišťovat družice pro radioamatérské účely s cílem podpořit provoz na pásmech VKV, usnadnit komunikaci při živelných pohromách, rozšiřovat vědecké, technické a provozní informace získané při provozu družic. AMSAT sdružuje nyní asi 650 členu z celého světa a neomezuje se jen na amatérské kruhy; členy jsou i vědecké a školské organizace, za jejichž podpory se pro-

gram uskutečňuje. Družice totiž slouží i jako učební pomůcka k demonstrování principů a možností družicové komunikace.

Startu Oscara 6 předcházel v r. 1970 let družice Australis Oscar 5. Účelem této akce bylo především ověření vhodnosti pásma 29 MHz pro spoj družice--Země, obzvláště v období ionosférických poruch. Využití pásma 29 MHz pro palubní vysílač je totiž výhodné pro menší útlum šíření vln prostorem, takže jsou podstatně menší nároky na výkon palubního vysílače. Oscar 5 byl vypušpatubního vysilace. Oscar 3 byl vypus-těn spolu s meteorologickou družicí ITOS, vážil 18 kg a byl vybaven majákem na 144,05 MHz s výkonem 50 mW a majákem na 29,45 MHz s výkonem 180 mW. Elektronická vý-zbroj, napájená z elektrochemických článků, vydržela v činnosti 46 dnu, při-čemě majáky vysílaly i údaje sedmikačemž majáky vysílaly i údaje sedmikanálového telemetrického systému. Na palubě byl i povelový přijímač k dálkovému zapínání a vypínání majákových vysílačů ze Země. I za poměrně krátkou dobu činnosti družice byly získány zajímavé poznatky o rušivých účincích neklidu ionosféry a anomáliích v šíření vln, právě tak jako důležité údaje pro konstrukci dalších družic. Na družici byla též úspěšně ověřena pasivní magnetická stabilizace polohy, jíž byla podstatně zpomalena vlastní rotace družice.

Mezitím již byly zahájeny na převáděčovém projektu AMSAT Oscar B (A-O-B). Palubní vybavení se mělo skládat ze tří různých převáděčů a složitého telemetrického a ovládacího systému. Jednotlivé díly vyvíjely amatérské konstrukční skupiny v USA, Austrálii a NSR. Z časových důvodů byl dříve realizován jednodušší projekt, označený A-O-C, který má jen jeden lineární převáděč 145/29 MHz, a ten nyní od 15. 10. 1972 krouží kolem Země

jako Oscar 6.

Technické údaje družice

Oscar 6 byl vypuštěn dne 15. 10. 1972 v 17.19 GMT jako přítěž meteorologické družice NOAA-2. Jeho život počal v 18.34 GMT téhož dne, kdy byl nad východním pobřežím Afriky odvržen od druhého stupně rakety Thor-Delta. Od druheno stupne rakety 1101-Della. Ou tohoto okamžiku je v provozu elektronické zařízení a již během prvního obletu byla pomoci převáděče navazována spojení. Dráha družice je polární, přibližně kruhová o výšce 1 460 km, má sklon k rovníku 101,73° a je retrogradní (směžuje proti otáčení Země). gradní (směřuje proti otáčení Země). Oběžná doba je 114,9945 minut, za dva dny vykoná družice téměř přesně 25 oběhù a proto se dráhy po dvou dnech vel-mi přibližně opakují. Posuv drah (tzv. separace) v důsledku rotace Země je 28,7485° západně na jeden oběh. Družice váží 20 kg a její pouzdro má rozměry $16 \times 30 \times 44$ cm. Polovina povrchu je pokryta články sluneční baterie. Poloha Oscara 6 je stabilizována vůči zemskému magnetickému poli silným tyčovým permanentním magnetem o délce 20 cm, umístěným podél nejdelší osy pouzdra (osy Y).

. Palubní výzbroj:

1. Lineární převáděč – vstupní kanál 145,90 až 146,00 MHz, výstupní kanál 29,45 až 29,55 MHz, výkon 1 až 1,3 W PEP, citlivost —100 dBm, k provozu postačí 100 W vyzářeného výkonu (ERP) pozemní stanice.

2. Majákové vysílače – 200 mW na 29,45 MHz, 300 mW na 435,1 MHz.

Maják v pásmu 29 MHz sdílí část obvodů s převáděčem.

Antény - pro vysílač v pásmu 29 MHz dipól zhotovený ze svinovacího ocelového měřítka, pro přijímač 145 MHz a maják 435 MHz čtvrtvlnné pruty z ocelové struny. Umístění antén je patrné z obr. 1.

4. Telemetrický systém - přenáší postupně 24 údajů z paluby. Údaje proudů jednotlivých panelů sluneční baterie, napětí zdrojů, teplota slu-neční baterie, akumulátoru, koncového stupně, výkon převáděče a majáku, napětí samočinného řízení citlivosti a některé další kontrolní proudy a napětí se snímají každých 180 nebo 90 vteřin a vysílají v podobě číselných skupin Morseovy abecedy rychlostí 50 nebo 100 znaků za minutu.

Paměť CODESTORE – posuvný registr o kapacitě 896 bitů na zvláštní povel zaznamená zprávu pozemní stanice o délce až 18 slov Morseovy abecedy nebo 22 slov dálnopisných a na další povel ji opět vysílá do doby než je vložena nová zpráva.

Povelová souprava – provádí celkem 21 povelů 0/I, které zapínají a vypí-nají převáděč, majáky, telemetrii, CODESTORE a volí rychlost vysílání telemetrických údajů.

Zdroje proudu – křemíkové sluneční baterie n-p, nabíjející NiCd akumu-látor o napětí 24 V a kapacitě 6 Ah. Na počátku života dodává sluneční baterie průměrný výkon 2 W

Očekávaná životnosť zařízení je asi jeden rok, je určena především postupně se zhoršujícím stavem sluneční a akumulátorové baterie. Blokové zapojení lineárního převáděče je na obr. 2.

u Oscara 6 průměr 7 900 km, což současně představuje max. komunikační dosah (na obr. 3 šrafovaná plocha) a spojení je možné jen mezi stanicemi nacházejícími se v této oblasti. Následkem oběžného pohybu družice se oblast komunikace neustále posouvá. Pozemní stanice může přes převáděč pracovat, pokud je druži-ce nad jejím obzorem. Toto období je nejdelší tehdy, když dráha družice probíhá nadhlavníkem stanice; pro Oscara 6 je to asi 21 minut. Spojení mezi oběma stanicemi lze uskutečnit jen během doby, kdy je družice nad obzorem obou stanic.

Obr. 3

Obr. 4

Z obr. 4 je patrno, že následkem polární dráhy trvají déle podmínky pro vzdálené stanice ve směru V – Z (stanice A, B) než ve směru S – J (stanice C, D). Výsledný pohyb družice vůči pozemní stanici vzniká složením oběžného pohybu a rotace Země. Na mapě světa v obvyklé rovníkové projekci se dráha promítá jako vlnovka a následující oběh bude vlnovka stejného tvaru posunuta o separaci 28,75° západně. K jednoznačné identifikaci se oběhy družice číslují. Oběh začíná okamžikem křížení rovníku z jihu na sever. Čas křížení rovníku a zeměpisná délka toho místa spolu se znalostí

parametrů dráhy jsou zcela postačující. údaje k přesné předpovědi polohy druži-ce v libovolném okamžiku. Znalost polohy je základním předpokladem úspěšného provozu, neboť při přeletu družice je zapotřebí na ni mířit směrovou vysílací anténou, a to jak v azimutu, tak i u vý-konnějších antén v elevaci. Pro ilustraci jsou na obr. 5 znázorněny v pragocentrické azimutální projekci tři typické dráhy družice - dopolední, odpolední a večerní. V nočních hodinách, přibližně mezi 23-5 hod. SEČ není Oscar 6 vy-užitelný - nevychází u nás nad obzor. Navigační pomůcka, využívající stereo-metrickou polární projekci pro určování polohy družice, byla popsána autorem v [2], viz obr. 6.

Druhý výrazný znak je Dopplerův po-suv kmitočtu. Podle Dopplerova principu vnímá pozorovatel, blíží-li se k němu zdroj periodického vlnění, kmitočet zuroj periodickeno vineni, kmitočet vyšší, a vzdaluje-li se, kmitočet nižší, než je skutečný kmitočet zdroje. Pro Oscara 6 (oběžná rychlost je asi 7,2 km/s) je posuv kmitočtu ±4,5 kHz. Jev je nejpatrnější při východu a západu družice na držee procházející nadblavníhom z na dráze procházející nadhlavníkem pozorovatele. Dopplerův posuv způsobuje potíže hlavně při příjmu SSB signálů. Ve vědeckých kruzích vzbudil pozorňost objev anomálie Dopplerova posuvu, která je kmitočtově selektivní. Při příjmu majáku na 435 MHz zjistili amatéři WOLER a WOMJS, že v období kolem zimního slunovratu nad jistou oblastí Země existuje opačný Dopplerův posuv. Podobný úkaz byl později shledán u navigační družice Copernicus, pracující na 400,5 MHz. Pro tento jev se zatím hledá vysvětlení a objev anomálie potvrzuje, žé i dnes mohou amatéři účinně

prospívat vědě.

Třetím charakteristickým rysem je kolísavá intenzita přijímaných signálů. Příčin je několik, především se mění vzdálenost mezi pozemní stanicí a druvzdalenost mezi pozemni stanici a dru-zici, a tedy i útlum trasy. Tato poměrně pozvolná změna je překryta krátkodo-bým únikem způsobeným rotací druži-ce, která má za následek změny polari-začních rovin družicových antén. O dal-ší napravidalosetí se přičíňuje joposféra ší nepravidelnosti se přičiňuje ionosféra. Při průchodu vln ionosférou dochází k Faradayově rotaci, což je stáčení původní polarizační roviny vln v závislosti na koncentraci iontů; navíc, protože ionosféra není homogenní, se projevuje zejména na 29 MHz scintilace, což je v podstatě rozptylování nebo zaostřování svazku radiových vln. Další příčinou prudkých úniků jsou neukáznění uživatelé, používající nadměrně velkých výkonů. Převáděč je vybaven účinným řízením citlivosti, aby nebyl překročen maximální lineární výstupní výkon 1,3 W PEP, a proto jediný nepřiměřeně silný signál potlačí citlivost přijímače a zeslabí signály ostatních stanic.

Provozní zkušenosti

Ihned od prvního oběhu Oscara 6 byl výstupní kanál doslova horký jako při největších KV závodech o Zpočátku se spojení navazovala dost o Džině vlivem značného úniku, vzájemného rušení a nedostatku zkušeností uživatelů. V této době byl podstatný rozdíl mezi slyšet a dovolat se, a právě tak mezi dovolat se a dokončit spojení. Těžiště provozu bylo a stále je v CW a méně v SSB, ale již 18. 10. navázali W9NTP a WA9UHV první spojení SSTV a 21.10. G8CUO

Obr. 5

394 (amatérske! 1111) 10 73

a G3TWX první spojení RTTY. Postupem času se rotace družice a tím i únik zpomalil a provoz přes převáděč se stal zcela rutinní záležitostí. Díky krátké době přeletu a rychle se měnícím podmínkám snaží se stanice maximálně využít aktivní doby a provoz i dnes je velmi stručný a omezuje se pouze na výměnu reportů a jejich potvzení; spojení mají charakter téměř závodní. Při vhodných přeletech lze též zachytit výkonnější majákové vysílače pracující mezi 145,9 až 146 MHz. Celkem pravidelně bývá slyšet HB9HB, SM4MPI, SK IVHF, DLOPR, OZIIGY. Na kvalitu přijímaných signálů má rozhodující vliv stav ionosféry: v klidných dnech jsou signály čisté a nejsou vzácné síly i S9, jindy jsou signály postiženy značným útlumem a jsou roztřesené. Je to výrazné hlavně při poledních přeletech nad polárními oblastmi. V letních měsících je patrné celkové zhoršení v denních hodinách, způsobené zřejmě mohutněji ionizovanou vrstvou E.

Podle původního záměru měl být převáděč v provozu trvale. Záhy ale počalo docházet k nepravidelnému vypínání a zapínání z různých důvodů: část sluneční baterie v ose Y nepracuje spolehlivě a to spolu s intenzívním provozem a přetěžování silnými signály vedlo k potřebě častějšího dobíjení akumulátoru; navíc nespolehlivý kontakt v sluneční baterii způsoboval proudové nárazy v palubní síti, které logické obvody vyhodnocovaly jako falešné povely. Závada trvá doposud, ale daří se ji zmírnit opakovanými povely řídicích stanic. V polovině ledna nastala porucha na majáku 435,1 MHz a jeho výkon značně poklesl. Funkci telemetrického vysílače musel převzít maják na 29,45 MHz, sdílející výkonové stupně s převáděčem. Po vyzkoušení různých rozvrhů provozu převáděče se stav ustálil na režimu: převáděč zapnut každé pondělí, čtvrtek a sobotu 0 až 24 GMT. V ostatní dny se nesmí používat (telemetrie, nabíjení). Schéma provozu se osvědčuje a zlepšil se stav palubní baterie, která byla před tím ohrožena vysokou teplotou (47°C).

Přes uvedené neduhy znamená Oscar 6 podstatný pokrok proti dřívějším družicím. Zatím co Oscara 4 využilo jen několik desítek stanic a nejúspěšnější z nich navázala všeho všudy 21 spojení, přes Oscara 6 pracuje přes 1 100 stanic z 59 zemí. Přitom nejaktivnější účastníci měli začátkem června přes 3 500 spojení a např. F9FT již pracoval s 42 zeměmi a 450 různými stanicemi. Teoretický pracovní dosah 7 900 km byl již při příznivých podmínkách překročen a jsou hlášeny i odposlechy na vzdálenost 8 800 km. Za mimořádných ionosférických podmínek K7BBO sledoval Oscara až 20 minut po teoretickém západu a F9FT, který používá na 29 MHz pětiprvkovou anténu, slyší pravidelně provoz 10 minut před východem a 10 minut po západu družice. Na signálech družíce jsou dobře patrny i ionosférické poruchy a naskýtá se tak další pomůcka k předpovídání polárních září.

Souhlasně s teorií se potvrdilo, že hlavním omezujícím činitelem je spoj na 29,5 MHz a že nejúčelnějším zlepšením zařízení pozemní stanice je dobrá přijimací, pokud možno směrová anténa. Na 29 MHz je totiž ještě značně vysoká úroveň kosmického šumu a zejména ve městech úroveň průmyslových a jiných poruch znesnadňuje příjem slabých signálů. Potřebný vyzářený výkon vysílače je různý podle stavu ionosféry a momen-

tální hustoty provozu, v průměru skutečně postačí 100 W ERP. Samočinné řízení zisku převáděče pracuje účinně: při zvyšování ERP od 10 W do 1 kW se výstupní signál mění méně než o 6 dB. V době příznivých přeletů nejsou vzácností spojení uskutečněná s výkonem 5 W. V každém případě se pro vysílání nejlépe osvědčuje kruhová polarizace, která podstatně zmenší únik.

První československé spojení přes Oscara 6 navázal telegraficky OK IBMW a SK6AB dne 16. 10. při osmém obletu. O dva dny později následoval OK IMBS provozem SSB. Š větším časovým odstupem přibývaly další OK stanice a k 3 000. oběhu je jich celkem 13. Jsou to: OK IBMW, IMBS, 3CDI, 3CDB, IPG; 2JI, 5VSZ, 2BEJ, 2EH, IKCO/p, INR, IATQ, 3CWM. Nejúspěšnější je OK3CDI, který již navázal 2 072 spojení s 252 stanicemi v 37 zemích na 4 kontinentech. Tyto výsledky ho řadí mezi evropskou špičku. OK3CDI aOK IBMW získali také diplom "1 000 Satellite DX Award", vydávaný ARRL, pod pořadovým číslem 59. a 63., což představuje 12. a 13. pořadí v Evropě. Většina OK stanic má dnes již podmínky pro diplom splněny, čekají jen na QSL listky.

Účast čs. stanic "v kosmu" je poněkud pod naše možnosti, uvážíme-li počet aktivních amatérů na VKV. Někdo se nechal odradit nepravidelným vypínáním převáděče, jiný počátečními neúspěchy. Provozní režim se již nyní ustálil a tak každý, kdo přivede do tříprvkové směrové antény skloněné pod úhlem asi 30—45° a směrované v azimutu na Oscara vf výkon kolem 20 W a poslouchá alespoň na dipól či GP anténu na 29 MHz selektivním a citlivým přijímačem, se při trošce vytrvalosti dočká úspěchu. Nejobtížnější je jen to první spojení!

Budoucnost Oscarů

Dosud vzdáleným cílem je synchronní družice pro amatérské účely (projekt

SYNCART), či dokonce převáděč na mčsíčním povrchu (projekt MOON-RAY). Pro různé, nejen technické překážky mají jistou budoucnost zatím jen následovníci Oscara 6 – družice na relativně nízké, polární oběžné dráze. V současné době AMSAT kompletuje projekt A-O-B, který po úspěšném startu ponese označení Oscar 7. Bude mít na palubě podobný lineární převáděč jako Oscar 6, pouze výkonnější, dále záložní převáděč 432,15/145,95 MHz o šírce kanálu ±25 kHz. Jeho autorem je DJ4ZC, známý tvůrce balónových převáděčů ARTOB. Telemetrické vybavení bude téměř shodné s nynějším. Významné bude zvýšení výkonu sluneční baterie na trojnásobek, takže očekávaná životnost bude tři léta. Oscar 7 má být vypuštěn po dožití Oscara 6 a ten, jak se zdá, překročí projektovanou jednoroční dobu života. Dále se v Austrálii pracuje na poněkud diskutabilním projektu A-O-D, který obsahuje čtyřkanálový FM převáděč 145/433 MHz. Uvažuje se též o převáděči 21/28 MHz, který by v nastávajícím období minima sluneční činnosti dovolil pracovat na těchto pásmech v nočních hodinách.

Jak je vidět, bude na radioamatérské kosmické scéně v nejbližších letech rušno a tak si budeme muset zvykat stále častěji mířit svými anténami vzhůru k nebi.

Literatura

- Jordan, K.: Než odstartuje Oscar. Radioamatérský zpravodaj č. 6/72 a 10/72.
- [2] Jordan, K.: Navigační pomůcka pro Oscar 6. RZ 4/73.
- [3] AMSAT Newsletter 3/72 a 1/73.

Dále byly použity zprávy z pravidelných rubrik časopisů RZ, QST, Radio Communication, Short Wave Magazine.

Vědeckým výzkumem orgánů ptáků se zabývá zoologický institut university v Saarbrückenu. K tomuto účelu sledují a elektricky snímají aktivitu svalů a křídel – točivé momenty, vztlakové a přední hnací síly, které se zaznamenávají na čtyřstopý magnetofonový pásek. Pro vyhodnocení se ze záznamu oddělují jednotlivé údaje a pomocí šestikanálového oscilografu Siemens Oscillomink E se registrují na pásku. V případech, kdy čtyřstopý záznam nevyhovuje, používá se speciální sedmikanálový magnetofon a dvanáctikanálový oscilograf Oscillomink B.

Podle Siemens-Zeitschrift č. 9/1972

Dosud vyráběné metalizované rezistory s velkými odpory doplňuje anglický výrobce Mullard novou sérií rezistorů VR37 s odpory podle řady E24 od 1 do 33 M Ω s přesností ± 3 %. Protože u jejich tlustého kovového povlaku dochází při provozu při plném zatížení ke změnám, zaručuje Mullard u této řady při provozní teploté 70 °C po dobu 1 000 hodin změnu odporu menší než 0,5 % a teplotní součinitel menší než 200.10 6 °C. Ačkoli rezistory jsou jen 10 mm dlouhé a jejich průměr je 3,7 mm, vyznačují se velmi vysokou napěťovou pevností 2,5 kV; mají největší ztrátový

výkon 0,5 W při teplotě 70 °C. Tyto vlastnosti předurčují metalizované odpory VR37 k průmyslovým účelům, tam kde se vyžaduje velká spolehlivost, jako např. ve vysokonapětových impulsních obvodech a vysokonapětových stupních v televizní přijímací technice.

Podle Mullard 17/49

824 tisíc barevných televizních přijímačů bylo v roce 1971 dáno do obchodní sítě k prodeji nebo pronájmu ve Velké Británii (v roce 1970 jen 467 tisíc). Vyplývá to z informací britského svazu výrobců elektronických přístrojů Brema. Zvětšil se i dovoz zahraničních přístrojů. V roce 1971 bylo dovezeno 97 tisíc přijímačů. Nejúspěšnějšími vývozci byli Japonci, kteří prodali za 3,5 miliónu liber přístrojů do Británie. President Brema, lord Thorneycroft, se vyjádřil skepticky k možnosti importního tlaku zemí EHS po odbourání dovozních omezení do Británie. Naopak, angličtí výrobci přístrojů mají dobré šance zvětšit vývoz svých výrobků.

Podle Funkschau 17/1972

Sž

Sž

Luminiscenční diody

LAR051Z a LAR052Z na bázi krystalů arzenidu a fosfidu galia, které po připojení napětí vydávají červené světlo, vyvinul též závod VEB Werk für Fernsehenelektronik, Berlín (NDR). Hodí se jako číslicové ukazatele v čítačích, elektrických hodinách, elektronických kalkulačkách apod. Mají malé rozměry dobrou viditelnost, dlouhou dobu života a malé provozní napětí (již od 1,5 V). Stejným účelům slouží světelné číslice a značky v tuhé fázi LAR35N, LAR70N a další.

Podle RFT-Presseinformation

Kapesní kalkulačka Minirex '73

je první elektronický přístroj toho dru-hu vyrobený v ZST. Výrobcem je Kom-binat VEB Funkwerk Erfurt v NDR. Lze jím provádět základní početní úkony, smíšený počet, násobení a dělení konstantou atd. Až osmimístný výsledek -úplný nebo zkrácený - se samočinně nastavitelnou desetinnou tečkou je in-dikován světelnými diodami. Účelné, praktické pouzdro je lisováno z rázuvzdorné plastické hmoty. Kalkulačka má rozměry 80 × 140 × 32 mm a hmotnost jen 350 g. Ovládá se tlačítky

s číslicemi a početními symboly. Proudový zdroj tvôří 6 akumulátorků NiCd; jedno nabití vystačí na 5 provozních hodin. Zmenšení napájecího napětí pod přípustnou mez se signalizuje světelně. Ke kalkulačce patří doplněk pro provoz ze sítě a k dobíjení akumulátorů. Malými rozměry a přístupnou cenou je Minirex '73 určen širokým vrstvám spotřebitelů.

RFT-Presseinformation

Sebevědomí Japonců

Na podzim 1972 pronikla známá japonská firma Hitachi na západoněmecký trh barevných televizních přijímačů třemi typy televizorů v normě PAL za výhodné čeny (od 1 600 do 1 800 DM). Přístroje jsou vybaveny veškerým komfortem obvyklým u německých přijímačů a navíc jsou levnější (cena německých přijímačů je 1 800 až 2 400 DM). K zajištění servisu praví výrobce doslova: kdyby se ve vašem přijímači opravdu a skutečně vyskytla porucha, potom, prosíme, napište našemu ob-chodnímu řediteli H. Frankovi s po-známkou OSOBNĚ. Následuje přesná adresa...

Podle Funktechnik

OKIAKU OKIACO OKIAWO OKIAWO OKIOO OKIKZ OK2BDE OKIATZ OK2BDE OKIATZ OK2BDE OKICAM OKIWX OKIWX OKIKZD OK3KWK OKIKZD OK3YAI OKIPON OKIDVK OK3UN OKIDVK OK3UN OKION OKION OKION OKION OKION OKION OKION OKION OKION OKION OKION	145 (150) 142 (171) 141 (141) 140 (180) 140 (150) 138 (182) 135 (159) 133 (160) 130 (130) 128 (139) 126 (141) 120 (140) 120 (138) 120 (140) 131 (125) 115 (141) 115 (133) 114 (146) 112 (132) 115 (133) 114 (146) 112 (132) 119 (115) 109 (115) 109 (109) 106 (122)	OKZALC OKYAIN OKIKCF OKZBEU OKIDAV OKJYBZ OKIXK OKIAPS OKZBEF OKZKVI OKIAFX OKIAFX OKIAFX OKIPCL OKIFAV OKIAFAV OKIADT OKIADT OKIADT OKIKIR OKIADT OKIKIR OKIASG OKZKYD OKZSBV OKZPDI OKIAIJ	94 (123) 94 (112) 93 (102) 89 (113) 88 (100) 87 (103) 84 (102) 84 (111) 84 (102) 83 (199) 83 (199) 82 (96) 80 (95) 88 (122) 78 (126) 73 (90) 69 (76) 55 (60) 54 (74) 55 (60) 55 (60) 52 (60)
		TV	
OKINH	20 (30		19 (29)
OK1MP	RT: 56 (64)		3′ 13
OKIMP	30 (04) R.		3. 13
	OK2 - 4857	-	
	10102 - 4057		
OK1 - 7417 OK1 - 6701 OK1 - 10896 OK1 - 15835	282 (315) 277 (302) 5 250 (291)	OK1 - 13188 OK2 - 5385 OK2 - 21118 OK2 - 20240	177 (265) 153 (251)
OK1 - 11779		OK1 - 17358	106 (173)
OK2 - 17762 OK1 - 18556	135 (155)	OK1 - 5324 OK1 - 17728	93 (155) 89 (156)
OK1 - 18550	124 (205)	OK1 - 18764	87 (171)
OK1 - 18549 OK1 - 25322) 122 (201) ! 121 (210)	OK1 - 18438 OK2 - 16350	76 (123) 73 (117)
OK1 - 17323	117 (176)	OK2 - 6910	67 (75)
OK2 - 9329	108 (177)	OK1 - 18583	52 (185)
V posledne	om čisle RZ	bol uverejnený	nový zoz-

V poslednom čísle RZ bol uverejnený nový zoznám zemí DXCC; pevne verim, že každý podľa tohoto nového zoznamu si prekontroluje svoj stav. Prajem Vám pri jesenných podmienkách veľa nových zemí a teším sa s Vama dopočutia na pásme.

OK11Q

310 (314)

Stav k 10. 8. 1973

CWIFONE

I.							
OK1FF OK3MM	336 (336) 335 (335)	OKISV OKIADP	321 (336) 315 (320)				
OKIADM	328 (328)	OK1MP	304 (306)				
	11						
OK1GT	290 (293)	OKIKTL	212 (216)				
OKITA	280 (287)	OKINH	210 (229)				
OKIFV	278 (289)	OKIAPJ	208 (215)				
OK1ZL	277 (278) 275 (283)	OK1NG OK1IZ	206 (249)				
OK1AHZ OK3EA	274 (278)	OK2AOP	206 (206) 200 (238)				
OKIKUL	271 (291)	OKIAGO	197 (205)				
OKIMG	267 (267)	OKIXV	194 (210)				
OKIJKM	265 (266)	OK3AS	193 (206)				
ОКЗНМ	256 (258)	OK1ACF	191 (197)				
OK2NN	251 (261)	OK3YCE	191 (191)				
OKILY	247 (275)	OKIIQ	191 (191)				
OK2QX	247 (253)	OKIAUZ	189 (201)				
OK2DB OK1AAW	247 (252) 246 (260)	OK2BMH OK1KDC	182 (194) 179 (200)				
OKIUS	243 (250)	OKIFAK	175 (191)				
OK103	242 (251)	OK2BNZ	175 (186)				
OKIPR	242 (247)	OKIAHI	173 (225)				
OKIAKQ	241 (287)	OK1AOR	171 (198)				
OK2OP	241 (245)	OK2BMF	171 (182)				
OK2BGT	241 (244)	OK1AWQ	170 (170)				
OK3CDP	240 (259)	OK1MGW	169 (211)				
OKIMPP	238 (265)	OKIPG	169 (192)				
OKINR OKICG	235 (249) 232 (252)	OK3CAU OK2ABU	166 (181) 166 (176)				
OKIAII	232 (235)	OK3ALE	164 (184)				
OKIBY	230 (250)		163 (181)				
OK300	230 (249)	OKISTU	158 (179)				
OKIVK	229 (235)	OKIAKU	157 (157)				
OKIAHV	224 (224)	OK2BEM	154 (163)				
OK3EB	217 (226)	OKIMSP	152 (170)				
FONE							
1.							

OK1ADM 322 (322) OK1ADP

396 (Amatérské! 1 1 1 1 73

	* 4		
OKIMP OKIAWZ OKIAHZ OKIMPP OKIAHV OKIJKM OK2BGT OKIVK OKITA OKIBY	285 (286) 265 (271) 238 (256) 234 (264) 223 (223) 220 (221) 215 (218) 210 (215) 207 (244) 205 (207)	OK2DB OK1AGQ OK1NH OK3EA OK1SV OK1FV OK3EE OK3YCE OK1KCP OK1AVU	200 (208) 194 (196) 192 (216) 190 (202), 185 (214) 185 (197) 164 (179) 157 (157) 154 (203) 151 (193)
	1	n.	
OK2BEN OK1IXN OK1KDC OK3ALE OK1AWQ OK1AWQ OK1LM OK1ZL OK1FBV OK1BEG OK1AAW OK1US OK1AKU	142 (148) 138 (138) 120 (145) 119 (157) 116 (138) 116 (130) 115 (139) 115 (115) 112 (128) 110 (124) 108 (146) 105 (127) 97 (97)	OK2QX OK1CEJ OK1DWZ OK1ACF OK1DVK OK1AKL OK1VO OK2BIQ OK1AHM OK2BBI OK2BRR OK2KNP OK2BMS OK1KZ	95 (115) 94 (149) 92 (106) 89 (114) 78 (102) 75 (95) 56 (144) 56 (88) 51 (65) 50 (50) 50 (55)
	С	W	
		 [.	
OK1FF OK1SV	336 (336) 320 (335)	окзмм	314 (314)
	1	1.	-a.
OKIADM OKIKUL OK3EA OK3UI OKITA OK3UI OKITA OK3UR OK2QX OKIPR OKIAKQ OKIAHZ OKICA OKIAHI OK3QQ OK1AHI OK3QQ OK2BRR OKIAMI OK2DB OK1BP OK2DB OK1BP OK2DB OK1BP OK2DB OK1BP OK2DB	298 (300) 267 (287) 258 (265) 253 (256) 246 (259) 244 (250) 242 (247) 239 (285) 232 (235) 232 (235) 229 (248) 229 (267) 220 (267) 220 (250) 196 (232) 196 (201) 195 (210) 191 (203)	OK2BIP OK2MBH OK1EG OK3DT OK1DH OK2BKV OK1ACF OK1IQ OK3BH OK3BNZ OK1FAK OK3EE OK1BMW OK2BMF OK1PG OK3CAU OK1KYS OK1DN OK3BT OK3JV OK1CIJ OK1MSP	191 (197) 190 (218) 190 (218) 188 (195) 188 (200) 184 (215) 184 (194) 174 (194) 173 (183) 172 (188) 172 (187) 169 (180) 165 (192) 164 (175) 162 (184) 156 (161) 156 (171) 156 (172) 153 (179) 150 (170)
OK3RC	147 (160)	i. OKIDIM	105 (146)
OKIIAG	147 (153)	OK3LW.	101 (123)

Polní den 1973

145 MHz ~ 5 W: 1. OK1KAX 38 521 b 2. OK3KTR 33 873

145 MHz - 1 W:

3. OKIKIR	28 863	3. OKIKWH	31 018
4. OK3KJF	27 063	4. OK3KGX	28 976
5. OK2KBZ	26 280	5. OK3CDM	25 911
6. OKIKNH	23 379	6. OKIKTL	25 870
7. OKIKHK	22 672	7. OK2KAT	25 836
8. OK3ZM	21 519	8. OKIAGE	24 391
9. OKIAIK	18 834	9. OKIKCI	22 123
10. OK2KLK	18 625	10. OK2KJU	20 898
Celkem 90 stani	c	Celkem 94 stani	c
433 MHz - 5 W	7:	433 MHz - 25 V	₩:
1. OK1KIR	10 196 ь	1. OKIAIB	10 177
2. OK2KEZ	9 155	2. OKIKKL	7 249
3. OK1KPR	9 128	3. OKIKCI	6 713
4. OK1KRY	8 489	4. OKIKTL	5 888
5. OKIMUK	7 454	5. OK2KJU!	5 172 -
6. OK1AIY	6 725	6. OKIKWE	4 905
7. OK1KPL	6 165	7. OK1QI	3 159
8. OK2BDS	5 918	8. OKIKAM	2 682
9. OKIKLL	5 856	9. OKIKHG	1 464
10. OK1YR	5 810	10. OK2KJT	503
Celkem 30 stani	c	Celkem 13 stani	c
1 296 MHz - 5	w:	1 296 MHz - 25	w:
1. OKIAIY	1 358	1. OK1AIB	1 798
2. OKIKRY	902	2. OKIKIR	-1388
3. OKIDAP	140	3. OKIKTL	1 271
		Celkem 7 stanic	

F Polního dne se zúčastnil rekordní počet 283 stanic ve všech soutěžních kategoriích. Tyto stanice byly obsluhovány asi 1 600 operatéry. Z celkového počru bylo 77,5 % stanic kolektivních a 22,5 stanic jednotlivců.

Vedení odboru VKV děkuje OV Svazarmu Pardubice za ochotu a pomoc přivyhodnocení PD 1973, jmenovitě pak s. Františku Loosovi – OKIQI. Práce na vyhodnocení se zúčastnilo asi 15 lidí, ponejvice z okresů Pardubice, Hradec Králové, Šumperk a Třebíč. Jim všem děkuje odbor VKV ÚRK za obětavou práci.

OKIMG

Rubriku vede F. Smola, OK100, 441 01 Podbořany 113

Obsáhlou zprávu poslal Jarda z Tlmačova. Sledoval během července tyto stanice: SVICG, YVIAQE, SVICD, YVIIG, PYIBIM, JA7FS, WODKV/mm, WIDIK, ON4WW a vice francouzských, německých a italských stanic. Vše na kmitočtu 14 230 kHz. Je zatim jediný, kdo mi posilá poslechové zprávy. Že by jediný chodíci monitor v OK ...?

Olomoucké setkání radioamatérů poskytlo v tombole radioamatérům asi 30 ks obrazovek pro SSTV. Byly to typy 8LO39, 13LO36, 18LM35 a 25QP21.

Zájemci o využití kamer pro průmyslovou televizi k provozu SSTV najdou v 7. čísle CQ DL zapojení konvertoru k této kameře.

Francouzský časopis Le Haut – Parleur č. 3/73 uveřejnil schéma monitoru SSTV, ve kterém je použito několik zajímavých, u násdosud nepoužívaných obvodů. Na obr. 1 je zapojení obrazového diskriminátoru s operačnimi zesilovači ve funkci pásmových filtrů, laděných na kmitočty 1 200 a 2 300 Hz. Princip tohoto zapojení je na obr. 2. Charakteristika diskriminátoru je na obr. 3. Tento typ diskriminatoru se nazývá double-sided diskriminátor.

Trvale běžící rozklad monitoru OK5VSZ je na obr. 4 (konstruktér Zdeněk Makarius). Je to upravené zapojení z monitoru OK1JZS. V tomto monitoru jsou použity blokovací obvody s možnosti nastavení času, kdy není možno spustit nový řádek. Stejné obvody jsou použity i ve vertikálním rozkladu. Pokud nebude autor celé schéma publikovat sám, zveřejním další zajímavé obvody v některé z dalších rubrik.

GA203 KC507 GS504

Obr. 3. Charakteristika diskriminátoru

KF517 GC520K ± 10 V

KA501

470 12k synchr vychylovací cívky 12k 1390 M12 KF507 GA203 · KF520 GC510K Obr. 4. Trvale běžící rozklad z monitorw OK5VSZ

Obr. 1. Zapojení obrazového diskriminátoru

Obr. 2. Princip funkce obrazového diskriminátoru podle obr. 1

Rubriku vede Emil Kubeš, OK1AUH, Šumberova 329, 160 00 Praha 6

Vstupní část přijímače pro hon na lišku

Vstupní část příjímače pro hon na lišku Oscilátor je v zapojení "Clapp". Je to jednoduché a stabilní zapojení. Každý jistě ocení to, že cívka oscilátoru nemá žádné vazební vinutí. Vazba je provedena kapacitním děličem C_{10} a C_{11} . Při přeladování tohoto typu oscilátoru se mění jeho výstupní napětí. V našem případě to není na závadu, protože přelaďujeme v malém rozsahu a výstupní napětí sv celém rozsahu mění maximálně o 3 dB. Oscilátor kmitá o mezifrekvenci níže. Přeladění zvětšíme na každé straně asi o 15 kHz, abychom měli rezervu v případě, že liška bude vysílat přesně na okrají pásma. Celková změna kmitočtu oscilátoru bude tedy 330 kHz. Velmi přesné nastavení rozsahu oscilátoru lze provést za současného odposlechu na přijímačí RM31. Na nižším kmitočtu ladíme jádrem cívky L₁, na vyšším kmitočtu změnou kondenzátoru C₁₁. Kapacitní trimr nedoporučují, abylako mechanicky měně stabilní prvek nezhorší kmitočtovou stabilitu oscilátoru. Lepší je kondenzátor C₁₁ složit ze dvou pevných kondenzátorů. Tvar a velikost oscilátorového napětí, které můžeme kontrolovat vysokofrekvenčním voltmetrem a vhodným osciloškonem na emitoru. T. Ize opravit změnou oscilátorom za mitoru. T. Ize opravit změnou oscilátorom na mitoru T. Ize opravit změnou a velikost oscilatoroveho napeti, ktere mužeme kontrolovat vysokofrekvenčnim volitmetrem a vhodným osciloskopem na emitoru T_4 , lze opravit změnou kapacity kondenzátorů C_{11} a C_{11} . Oscilátor musí pracovat i při sniženém napětí zdroje na 3,5 V. Jestliže oscilátor "vysadi", potom musíme upravit pracovní bod tranzistoru změnou děliče R_{11} a R_{14} . Směšovač je zapojen klasickým způsobem. Přijmaný kmitočet se přívádí do báze a oscilátorový kmitočet do emitoru tranzistoru T_4 . V kolektoru je

zapojen magnetostrikční filtr s mezifrekvenčním zesilovačem a dalšími částmi, které byly popsány v několika předcházejících číslech AR.

Velikost oscilátorového napětí pro směšovač změříme vysokofrekvenčním voltmetrem, připojeným mezi bázi a emitor tranzistoru T_{*} a lze ji nastavít vyběrem kondenzátoru G_{*} .

mezi vazi a cimioù tanizatoru T_1 a 120 ji nastavi výběrem kondenzátoru G_s .

Báze směšovače je připojena ke kapacitnímu děličí C_s a C_s , který s kondenzátorem C_L a indukčnosti L_t tvoří rezonanční obvod. Biflárním vazebním vinutím L_1 je obvod svázán s vysokofrekvenčním zesilovačem. Obvod se přeladuje kondenzátorem C_L v přijímaném pásmu opět s rezervou asi 15 kHz. Do souběhu s ocilátorem se nastavuje ve dvou bodech, na kmitočtu 3,575 kHz a 3,725 kHz. Signální generátor připojíme přes odpor 27 k Ω na vazební vinutí L_1 . Střídavé napěti indikujeme vysokofrekvenčním voltmetrem na kolektoru posledního tranzistoru v mezifrekvenčním zesilovačí. Záznějový oscilátor musí být při sladování vypnutý. Na nižším kmitočtu se souběh nastavuje jádrem L_1 , na kmitočtu vyšším změnou kapacity kondenzátoru C_s . Postup při sladování se řídí všeobecnými zásadamí jako u každého superhetu. Protože regulace zisku vysokofrekvenčního zesilovače byla nedostatečná, připi u každého superhetu. Protože regulace zisku vyso-kofrekvenčniho zesilovače byla nedostatečná, připi-nají se paralelně ke kondenzátoru C_n další konden-zátory C_r a C_n. Tim se zmenší vír napětí na bázi směšovače a tedy zisk celého přijímače. Velikost útlumu můžeme libovolně nastavit kapacitou kon-denzátorů C_r a C_n. Přívod k přepínači útlumu je nej-lépe zhotovit ze stíněného kabliku. Sladování se provádí jen v první poloze přepínače.

provádí jen v první poloze přepinače.

Jednodušší varianta přijimače, bez vysokofrekvenčního zesilovače, vznikne, jestliže civku L₁ navineme na feritovou tyčku. I tento jednoduchý superhet, lze s úspěchem použit při závodech. Na druhou polohu přepinače musíme přidat další kondenzátor a kondenzátory C, a C, a zvolit tak, aby celkový útlum byl alespoň 80 dB. Připojení prutové antény je popsáno v minulých číslech AR. Je samozřejmé, že citlivost není taková jako u přijimače

Závod Československo-sovětského přátelství

- přátelství

 1. Závod pořádá odbor VKV ÚV ČRA v době od 1. listopadu 00.01 SEČ do 30. 11. 1973 24.00 hodin SEČ.

 2. Kategorie: A 145 MHz stálé QTH

 B 145 MHz přechodné QTH

 3. Provoz: podle povolovacích podmínek. Není dovoleno pracovat s mimořádně povolenými zvýšenými příkony, nepočítají se spojení přes převáděče, balóny a umřlé družice.

 4. Soutěžní kód sestává z RS(T), pořadového čísla spojení od 001 a čtverce QTH. Zahraničním stanicím se pořadové číslo nepředává, ale musí být poznamenáno v deníku soutěžící stanice.

 5. Bodování: za spojení ve vlastním velkém čtvercí QTH se počítá 1 bod, za spojení v sousedním pásmu velkých QTH čtverců jsou to 3 body, dále 9 bodů, 27 bodů, atd. (vždy 3 × vice). Za spojení se sovětskou stanicí se příslušný počet bodů násobí ještě třemí; s každou stanicí je možno během závodu navázat jedno soutěžní spojení, které je však možno 1 × opakovat, pokud tato stanice bude pracovat z přechodného QTH. Platí i spojení se stanicemi, které se závodu neúčastní a ze všech listopadových závodů, jako je Al-Contest, HG5 Contest, PA, VKV maraton atd. Při Al-Contestu se pořadové číslo pro "Závod ČSSP" nepředává, ale musí být poznamenáno do staničního deníku.

 6. Výpis z deniku se posílá pouze na korespondenámí listku a musí obsahovatí název závodu, značku stanice, čtverce QTH, kategorii, počet spojení, celkový počet bodů a čestné prohlášení o splnění soutěžních podmínek. Každá stanice se může závodu zúčastnít v obou kategoriich. Pro každou kategorii musí být posláno hlášení na sa moštatném listku na adresu: Antonín Křiž, Okrsek 0 č. 2205, 272 01 Kladno 2. Toto hlášení musí být odesládno nejpozději do 10 dňu po závodě. Odbor VKV má právo vyžádat si kompletní výpis ze závodu na formuláři VKV.

2 × KF124 2 × KF124 +45V]R₃ 56% magnetostrikční filter R₈ 39k . 10k R2 LIK

Obr. 1. Vstupní část přijímače

na listopad 1973

Rubriku vede dr. J. Mrázek, CSc., OK1GM

(Čas v GMT)

Poměrně dobré podmínky z října budou pokračovat i v listopadu. Nesmíme však být stejně nároční, jako v době slunečního maxima a musíme stále více počítat s tím, že se noc nad Evropou prodlužuje a tedy nejvyšší použitelné kmitočty pro většinu směrů klesají, s čímž souvisí stále častější výskyt večerního a nočního pásma ticha. Očekávaný stav ionosféry má za následek ještě jednu nesnáz: zvětšující se náchylnost ionosféry k různým následkům proměnlivého a slunečního větru. V praxi to znamená někdy dost velké změny okamžitých DX podmínek den ode dne. Tato relativní nestálost se přenese i do dalších zimních měsíců a bude zřetelně patrna již ve druhé polovíně listopadu. druhé polovině listopadu.

Nejlepším denním DX pásmem zůstane pásmo 21 MHz, odpoledne se k němu přidá i pásmo dvacetimetrové. Signály vymizejí na pásmu 21 MHz rychlejí a dříve než v říjnu; rovněž dvacetimetrové pásmo bude ve druhé polovině noci prakticky uzavřeno. Nejlepším nočním DX pásmem bude pásmo čtyřicetimetrové a po půlnoci se bude v průběhu měsíce zlepšovat i "osmdesátka". Je zajímavé, že na 3,5 MHz nastávají dobré podmínky v listopadu již odpoledne, týkají se však směrů, v nichž mnoho amatérů nevysílá (VU, blízký a střední Východ); i když se jejich signály vzácně objeví, budou obvykle silně rušeny mnohem silnějšími signály evropskými. Dokonce již i pásmo 160 m nebude bez vyhli-

dek na DX spojení, budeme však obvykle muset čekat déle do noci anebo si ráno přivstat. Až zjistíte – zejména při soutěžích – že večer na osmdesáti metrech signály blízkých stanic vymizí (zaviní to vznikající pásmo ticha), přejděte na stošedesátimetrové pásmo, které bude dobrou náhražkou (pásmo ticha na něm vznikat nebude). vznikat nebude).

Souhrnně: neilépe se vám bude dařit odpo-Souhrnne: nejlépe se vám bude darit odpo-ledne a až se bude stmívat (14 a 21 MHz); vyplatí se dát se do práce i po 22. hodině (7 a pozdějí i 3,5 MHz), případně vytrvat na těchto pásmech až do rána. A pokuste se ulovit co se dá, v.prosinci to již bude o něco hosěí!

s vysokofrekvenčním zesilovačem. Pro domácí sou-

s vysokofrekvenčním zesilovačem. Pro domácí soutěže bude citlivost vyhovující. Protože je antěnní systém soumčrný proti kostře přijímače, je stejně zapojen i vysokofrekvenční zesilovač. Střídavá napětí na bázích tranzistorů T_1 a T_2 jsou v protifázi. Po zesilení se napětí sečtou v bifilárním vinutí L_1 , Je třeba, aby se parametry tranzistorů T_1 a T_2 přiliš nelišily (+ 10 %). Při proměřování jsem zjistil, že nejlepší poměr s/š je při kolektorovém proudu $I_{\rm C}=150$ až 200 $\mu{\rm A}$. Prakticky se zde potvrzuje věc známá z nízkofrekvenční techníky, že nejvýhodnější šumové poměry jsou při malém kolektorovém proudu vstupního tranzistoru. Při zvětšení proudu roste sice zesilení, ale úroveň šumu stoupá rychleji. To má za následek zhoršení citlivosti přijímače. Přepinačem P^* se mění napětí pro báze tranzistoru a tim i zisk vysokofrekvenčního zesilovače. Protože tranzistory jsou již téměř uzavřeny, není regulace získu dostatečná. Proto se dále snižuje úroveň signálu zminěným kapacitním děličem v bázi směšovače. Nejlépe je hodnoty R_1 , C_7 a C_8 individuálně vyzkoušet tak, aby maximální útlum byl alespoň 90 dB. M. Rajchl

M. Rajchl

Tab. 1.

Tran- zistor	. Kolektorový proud	Uosc	Poznámka
T ₁	150 až 200 μA		
T ₂	150 až 200 μA		-
<i>T</i> ;	300 μΑ	90 mV	mezi B a E T ₃
·T ₄	1,5 mA	160 mV	na E T ₄

398 (amaterske! 1 1) Hb 73

Použité součástky

Odpory	
R_1, R_2, R_{12}	1 kΩ
R_3	56 kΩ
R_{i}	18 kΩ
R_s	12 kΩ
R_1, R_7	470 Ω
R_s	39 kΩ
R_9, R_{13}, R_{14}	10 kΩ
R_{10} ·	220Ω
R_{11}	820 Ω

 T_1 až T_1 - KF124

Polovodiče

Kondenzátory .		
Kondenzátory C1, C2, C3 C4, C13 C5 C6 C7 C6 C7 C8 C4 C1, C11 C12 C12 C12 C12	22 nF/40 V 47 nF/40 V 68 pF, keramika stabilit 560 pF/100 V styroflex 6,8 nF/100 V styroflex 0,5 μF/100 V svirek MP 330 pF keramika stabilit 560 pF/100 V styroflex 56 pF keramika stabilit 2×25 pF vzduchový (japonský	
-	duál, prodejna Svazarmu, Budečská 7, Praha 2).	

Tabulka civek

i	L_1	2×7 závitů bifilárně, drát o Ø 0,12 mm CuSH
	L ₃	29 závitů, drát o Ø 0,12 mm CuSH, indukčnost 19 µH
	L_1 a L_2	navinout na jádro mezifrekvenčniho transformátoru přijímače Zuzana apod.
	$L_{\mathfrak{d}}$	60 závitů křižově, drát o Ø 0,12 mm CuSH, indukčnost 28 μH navinout na kostru o Ø 5 mm s jád- rem M4 z N95

Rubriku vede ing. V. Srdinko, OK1SV, Havlíčkova 5, 539 01 Hlinsko v Čechách

DX - expedice

Z ostrovů Alandských pracovala v srpnu expedice G3YUT/OHO, zejména na SSB, a požadovala QSL na E17CC. Operatéry byli G3TVY, G3VUI a G4AFJ.

Rovněž z Market Reef pracovala prázdninová expedice; pod značkou OJ0AM tam byl OH0MA, který žádá QSL na svoji domovskou značku. Dále zde pracovala i stanice OH0SUF na Aland Islands, v době od 1. do 8. 8. 1973 u příležitosti tábora mořských skautů. QSL manažérem je OH1JP.

V době od 3. do 6. srpna t.r. pracovala expedice E10OI z ostrova Dalkey CW i SSB na všech pásmech. Tento prefix je též dobrý do diplomu 10TA. QSL žádáli na E17CC.

Pod značkou FP8AA pracoval Rich, bývalý FP0CA, v první polovině měsíce srpna speciálně na pásmu 160 m. QSL žádá na svoji domovskou značku, tl. na K2OJD.

Na ostrově Ogasawara pracovala od 1. do 10. srpna 1973 další japonská expedice. Byli to JA1KSO, JA3RAF, JA9COB, JH1LLO a JR1VDA, vesměs se značkami lomenými JD1. Pracovali na všech pásmech CW i SSB. Dále tam pracoval i JD1AIV, pro nějž se maji QSL zasilat via JA3THL. Za období 1. až 10. 8. 1973 se dokonce vydává speciální diplom a plaketa za největší počet stanic z JD1.

Zprávy ze světa

Naši amatéři vypluli opět na širé moře; v současné době pracují tyto stanice /MM:

OK4IZ/MM żádá QSL via OK1IBF, stejně jako nováček na moři, OK4NH/MM; Libor, OK4PEN/MM, má manažéra OK2BRR.
Novou stanici v Ethiopii je ET3TRC, která se objevuje v nočních hodinách na pásmu 14 MHz.
Je to stanice tamního radioklubu Adis Abeba.
VS5MC pracuje z Brunei hlavně telegraficky na kmitočtu 14 035 kHz kolem 15.00 GMT a žádá QSL via bureau.
Z Antarktidy se objevuje nová stanice, 4KID, obvykle telegraficky na 21 020 kHz dopoledne.
Op. Toly žádá QSL pouze via Box 88, Moscow.
Bohužel zatím neznáme jeho QTH pro diplom P75P.

Bohužel zatím neznáme jeho QTH pro diplom P75P.

Z Rwandy se objevuje občas stanice 9X5SP, zejména SSB na kmitočtu 21 200 kHz kolem poledne. QSL požaduje bud via DL8OA, nebo na adresu: P. O. Box 420, Kigalii, Rwanda. Potřebujete-li udělat 9M8, v posledních dnech tam pracuji hned dvě silné stanice: 9M8FDS telegraficky na 14 005 kHz – zdrží se tam prý až do konce září t.r., a 9M8SDA SSB na kmitočtu 14 286 kHz.

Radu prefixů rozmnožila i stanice 9H3MIF, která pracovala SSB po několik dní z veletrhu v Naxxaru. Platí za Maltu.

Poměrně ještě vzácná Saudi Arabia je nyní lehce dosažitelná díky 7Z3AB na 14 250 kHz SSB po 14.00 GMT, nebo ina 14 236 kHz později k večeru. Henry pracuje pravidelně každý den!

Z Yemenu je aktivní stanice 4W1BC na kmitočtech 14 260 a 21 260 kHz kolem 19.00 GMT. Manažérem je G3SUW.

Z Fiji se ozvalo hned několik stanic: 3D2AN na

Z Fiji se ozvalo hned několik stanic: 3D2AN na SSB žádá QSL via K6ZIF, 3D2AZ používá kmitočtů 14 265 nebo 14 285 kHz kolem 07.00 GMT a žádá QSL na: 3D2AZ, 11 Milne Road, Suva, Fiji. Pod značkou 3D2KM tam pracoval expedičně i Kon Z11AVU

Pod značkou 3D2KM tam pracoval expedičně i Ken, ZLIAIH.

Manažér expedice ZKITA,W6KNH, oznámil, že pokud někdo požaduje QSL od ZKITA a ZKIAI, musí si poslat pro každý QSL zvlášť SASE nebo SAE s potřebným počtem IRC.

Dalším novým prefixem v rámci akce, o které jsme v naší rubrice již psali, byl WP1ORT (QRV od l. do 19. 8. 1973) u přiležitosti 350. výročí založení university v Portsmouthu, New Hapshire. QSL na Box 1973, Portsmouth, N.H. 03801 (nutno zaslat SAE+IRC). Vysílá i stanice KJ7BSA, převážně telegraficky. telegraficky

telegraficky.

HV3SJ z Vatikánu je nyní pravidelně dosa-žitelný a pracuje denně na kmitočtu 14 210 kHz od 17.00 GMT. QSL lze zasílat na adresu; P. O. Box 9048, I-00193, Rome, Italy.

P. O. Box 9048, I-00193, Rome, Italy.

Z pásma 23 pro WAZ lze navázat snadno spojení se stanicemi JT1AO na 14 010 kHz, JT1AS na 14 003 kHz (oba CW), připadně i s Pavlem JT0AE.

Znovu opakuji, že Pavel změnil manažéra a nyni jeho QSL vyřízuje pouze OK3YAO, Borislav Zelienka, Malinovského 339, Kremnica.

Z Bear Isl. je aktivní stanice JW1SO (platí do IOTA jako EU-27) a to CW na kmitočtu 14 070 kHz a SSB na 14 303 kHz. QSL via I.A1RO.

LAIRO.

Kure Isl. je stále dosažitelný díky stanici
K5LTH/KH6. Gene pracuje SSB na 14 205 kHz
kolem 08.00 GMT.

kolem 08.00 GMT.

XU1AA je ještě dosažitelný na SSB na
kmitočtech 14 168 nebo 14 107 kHz v pondčlí,
úterý, čtvrtek a sobotu. Používá 2 kW a 5el.
směrovku. Oznamuje, že v září se vrací domů,
ale v říjnu se odtud znovu ozve, takže značka
XU bude i nadále dosažitelná.

XU bude i nadále dosážitelná.

YA je nyní na pásmech zastoupen stanicemi: YA1AH – 14 175 kHz SSB, YA1DT 21 203 kHz – QSL via JH1AGH, YA1ED 21 279 kHz – má adresu: E-P-G Thompson, P. O. Box 5, Kabul, YA1JS na 14 195 kHz – má adresu John Stroud, P.O.Box 5 Kabul, YA1RYS pracuje SSB na 14 206 kHz a QSL chee via PA0RYS.

ZFIAP na Caymanu pracuje SSB na 14 196 kHz nebo 14 175 kHz časně ráno, a žádá QSL na P.O.Box 471, Grand Cayman Isl.

9LINB ze Sierra Leone pracuje kolem 17.00 GMT na 21 175 kHz, případně večer na 14 171 kHz Jeho adresa: Fr. N. Bramati, Box 1, Makeni, Sierra Leone.

Pod značkou 5C0CN pracovala koncem čer-

Pod značkou 5C0CN pracovala koncem července speciální stanice z Maroka, CN8, a QSL žádala via KIGTE.
Z British Phoenixí je opět činná stanice VRIAC. Používá kmitočet 14 221 kHz SSB a objevuje smezi 07.00 až 09.00 GMT. QSL via WB6IKI.
W4KKD/VP7 byla značka expedice, o níž jsme se včas nedozvěděli. Pracovala mezi 3. až 5. 3. 1973 z ostrova BIMINI a platí do diplomu IOTA jako NA-48. Uskutečnila přes 2 000 spolení.

VK9ZC z ostrova Willis je stále aktivní na 14 265 kHz v rannich hodinách. QSL žádá nyní na adresu: Kelvin Collins, c/o Post Office, Croydon, Victoria

3136.
Ve dnech 18. až 20. července t.r. pracovalo 6 stanic v Moskvě se spec. prefixy, např. UX3A, UX3F atd. u příležitosti Dnu sportu. Platí do diplomu WPX jako UX3.
Midway je zastoupena několika stanicemi, které však diky špatným podminkám slyšime jen velmi slabě. Jsou to: KM6DY, Frank Barnes, Box 33, Midway Islands, FPO San Francisco, Calif., 96614 (případně lze zaslat QSL via WB4WRN, což je jeho domovská značka), KM6DF – 14 290 kHz SSB a KM6DZ – 14 280 kHz SSB. Občas naleznete tyto stanice na pásmu kolem 08.30 až naleznete tyto stanice na pásmu kolem 08.30 až 09.00 GMT.

V LISTOPADU 1973

se konají tyto závody a soutěže (čas v GMT):

Datum, čas	Závod
1. až 30. 11. 00.01—24.00	Závod československo-sovětského přá- telství
2. až 5. 11. 23.00—06.00 5. 11.	IARS CHC-FHC-HTH QSO Party
19.00-20.00	TEST 160
3. a 4. 11. 18.00—18.00	RSGB 7 MHz Contest, část fone
10. 11. 19.00—24.00	OE 160 m Contest
10. a 11. 11. 21.00—02.00	RSGB Second 1,8 MHz Contest
11. 11. 00.00—24.00	OK DX Contest
16. 11. 19.00—20.00	·TEST 160
24. a 25. 11. 00.00—24.00	CQ WW DX Contest, část CW

Pod značkou DT0DDR pracovala v době Světového festivalu mládeže a studentstva speciální festivalová stanice: požadovala QSL via bureau.

QSL pro FP0XX, který pracuje občas SSB na pásmu 14 MHz, se maji zasilat na jeho domovskou značku K1DRN.

FY7AN, který pracuje obvykle SSB kolem kmitočtu 21 340 až 345 kHz, žádá zasilat QSL na svoji adresu: Christian Loit, cite Rebard, P.O.Box 746, 97305 Cayenne.

Z ostrova San Andreas pracuje mimo stálé stanice HK0BKX ještě další, a to WAKPH/HK0 na SSB kolem kmitočtu 14 300 kHz. QSL žádá na P.O. Box 160, San Andreas Isl.

Z Andaman Isl. je stále aktivní stanice VU2ANI, která se objevuje zejména na telegrafi kolem kmitočtů 14 015 až 14 060 kHz; je u nás slyšitelná od 14.00 do 17.00 GTM. QSL via K6TWT.

Několik QSL manažerů z poslední doby. K51 THKH6.Kupe Isl. via WA3HUP. K16DI

QSL via K6TWT.
Několik QSL manažerů z poslední doby:
K5LTH/KH6-Kure Isl. via WA3HUP, KJ6DI
via K4RHU, TL8GL - VE2DCY, VK9ZC
(Willis Isl.) na VK3AH, VR4AR - ZL3JO, XU1AA
- pokud operatér Vong, tedy via 9MZIR, pokud je
op. Ted, via HB9OP, XW3EO - W3HNK,
ZX0VG-PY1DVG, 5T5ES-K5HAY, 5T5KPO
WA7UHR, 5T5LO-K9KXA, 5W1AR-WA7LFD,
5W1AU-W6KNH, VP5DD-K8PKN, 9X5PB na
DK2BQ, ET3USF-WA5TKC, ZF1JN-K6JAN,
9V1RF-W2GHK. Téměř žádná země VP2 nemá
své QSL-bureau, proto je třeba při spojení se stanicemí VP2 vždy zjistit, na jakou adresu se má QSL
zaslat!

zaslat!

Do dnešní rubriky přispěli: OE3IBW, JT0AE, OK1MGM, OK4NH/MM, OK1TA. OK2SFS. OK2RZ, OK1AHZ, OK2BRR a dále posluchačí OK1-19005, OK3-26346, OK2-14760, OK1-18671. Věřím, že letní úbytek dopisovatelů byl jen přechodný, a že se opět přihlásí všichni dosavadní, jakož i další noví zájemci o naši rubriku. Zprávy zašlete jako obvykle do osmého v měsíci na moji adresu.

Radioamator i Krótkofalowiec (PLR), č. 7/1973

Rozvoj zákládních elektronických prvků – Řiditelný tyristorový regulátor napěti – Reproduktorové soustavy TONSIL – Televizní přijímač Ametyst 105 – Logické obvody typu TTL – Přijimač s jedním tranzistorem – Schodišíový spinač s regulací doby.

Radioamater (Jug.), č. 7-8/1973

Kadioamater (Jug.), c. 1—8/1973

Kličovač s klávesnicí psacího stroje – Elektronkový přijímač pro 144 nebo 145 MHz – Elektrické parametry cívky s velkou změnou indukčnosti – Nizkorfrekvenční generátor – Kvadrofonie – Tyristory – Televizní přijímač (17) – Napájení relé sníženým napětím – Krystalový oscilátor s nízkou úrovní harmonických – Zajímavá zapojení – Komunikační přijímač vysoké kvality – Spojení na VKV odrazem o Měsic – Cívky a kondenzátory na plošném spoji.

Radio, Televizia, Elektronika (BLR), č. 7/1973

Radio, Televizia, Elektronika (BLR), č. 7/1973

Integrované obvody – Třiprogramový drátový rozhlas – Výpočet laděných obvodů v superhetu – Univerzální stereofonní předzesilovač – Číslicová měřicí technika – Barevný sovětský přijímač Rubín 401-1 – Zajimavé chyby televizorů – Závady v televizorech Orion – Delta – Dvoupolohový regulátor teploty – Ještě něco o fotospínačí – Akustické alarmové zařízení – Nomogram pro výpočet děliče báze – Tranzistorový přijímač "Tenor" – Technika SSTV.

Rádió-Technika (MLR), č. 8/1973

Rádió-Technika (MLR), č. 8/1973

Nové světové výrobky z elektroniky – Nová zajímavá zapojení – Výpočet proudových poměrů tranzístorů – Data a charakterístiky tyristorů – Usměrňovače a filtry – Rozhlasový přijímač s VKV videoton RA 4324 S – SSTV – Krystaly v radiotechnice (20) – Amatérský přijímač s integrovanými obvody – Konvertor ze 145 MHz na 28 MHz – Ochrana televizních přístrojů – Televizní servis – Kazetové magnetofony MK 25, MK 26 – Mechanika elektronických varhan. nika elektronických varhan.

Radio (SSSR), č. 4/1973

Radio (SSSR), č. 4/1973

Přímozesilujíci přijímač na 28 MHz – Zařízení pro třídu programovaného vyučování – Nová specializace krystalových rezonátorů – Automatický přepinač s čislicovou indikaci – Tranzistorový přijímač "Vega-402" – Přenosný televizor "Mikron-2c" s IO – Série K224 – Generátor signálů infranizkých kmitočtů – Tranzistory typu FET v multivibrátorech a časových spinačích – Vibráto s fotoodporem – Amplitudové vibráto s tranzistory FET – Pultdiktafonového střediska – Dvourychlostní motor pro tranzistorové magnetofony – Automatický gramofonový měnič – Citlivé kapacitní relé – Vychylovací systémy obou rozkladů v televizorech. vizorech

INZERCE

První tučný řádek 20,40, další Kčs 10,20. Příslušnou Prvni tučný řádek 20,40, další Kčs 10,20. Příslušnou částku poukažte na účet č. 300-036 SBČS Praha, správa 611 pro Vydavatelství MAGNET, inzerce AR, 11366 Praha 1, Vladislavova 26.. Uzávěrka 6 týdnů před uveřejněním, tj. 13. v měsící. Neopomeňte uvést prodejní cenu, jinak inzerát ne-

Upozorňujeme všechny zájemce o inzerci, aby nezapomněli v objednávkách inzerce uvést své poštovní směrovací číslo!

PRODEI:

Výbojky na blesk IFK 120 (à 85) 10 ks nové. R. Zamazal, Vancurova 2/67, 736 01 Havirov I. nábř., tel. 3714 večer. Gramodesky naše i zahr. 20 ks seznam zašlu (1 600), zes. G4W + repro mahag. (1 100), HC 08 (300), Trans. příjímače Perla, Vega (650, 550). Prodan P., Sidl. 672, Nýrsko, okr. Klatovy. RC soupravu TX STANDARD MARS. Vysílač,

přijímač za 800 Kčs, spolehlivá. M. Honc, Havířská 380, 463 65 Nové Město p. Smrkem.
Konvertor pro příjem FM rozhlasu v pásmu CCIR (250). Kalina, Mezirka 49, 602 00 Brno.
Mgf GRUNDIG Tk 35 3 rychl., 40 až 20 000 Hz (2 400), přij. STRADIVARI 3 pro obě VKV normy (1 500), přij. UKV 87 až 100 MHz se zesil. 8 W (850), O. Adam, 170 00 Praha 7. Veletržni 31.
HIFI reprosoustavu KE 150 (ARO 835, ARO 667, ART 481) 1 500 Kčs. El. kytaru Jolanu 700 Kčs.
J. Novotný, Orlická kotlina, Skupova 1076, 105 00 Hradec Králové.
RC soupravu Delta 2a 750; vvs. Mars za 500:

Hradec Králové.

RC soupravu Delta za 750; vys. Mars za 500; přij. BRAND HOBBY za 200, F. Jašek, Osičany 48, 798 29 okr. Prostějov.

AR 1967 až 72 (à 40), plát. vazba; R. Kadeřábek. Dáblice A22/1203, 182 00 Praha 8.

Nesv. ročníky AR 1942—1968, S. T. 1948—1970.

Sov. R. 1957—1968. Vesměs úplné. 1 roč. à 30 Kčs. P. Urban, 120 00 Praha 2, Bělehradská 49, t. 325264.

Mono zesil. 10 W sin, 80% Si + 2 × 2SFT 214 (500), KE 30 osaz. jako KE 20 (600), oboje mahagon. mat., taliř SG 40 jen velký (50), K. Černý, 196 00 Praha 9 – Ouhrabkova 114.

HI-FI boxy KE 30, KE 20, zesil. AZS 175, gramo "Dual" 1210 s M 71, gramo s ramenem P 1101 a Shure M55E, cena dohodou, a Si-polovodiče PNP-BC177B, KFY16, 18 (30, 32, 39) čislic. i. o. SN7474, 7490, 74141 (60, 180, 195) 4 páry BD130Y RCA 115 W, 20 A' (pár 290) µA709C, lin. i. o. (à 65,—) a µA723, 741 (130, 110). Stanislav Kalous, Nuselská 70, 140 00 Praha 4, tel. 420 836.

Magnetofon B4 s úpravou pro stereo reprodúkci

Magnetofon B4 s úpravou pro stereo reprodúkci i záznam dle HaZ za 2 000 Kčs, Karel Fon, Vrben-ského 10, 701 00 Ostrava 1.

KOUPĚ:

KOUPĚ:

AR ročník 68, 7/72, 8/72, 9/72, 10/72, 12/72, aj celý ročník. RK 6/69, 3/70, 4/72, J. Macko, Nitr. Sučany 247, 972 21 okr. Prievidza.

Stereo-mixer 422 Grundig, J. Špaček, Hlohová 22, 612 00 Brno-Kr. Pole.

X-taly 19k, 100k, 1MHz, digitrony; MP80 (DHR 5) – 50μA, 3 ks, M. Chour. Lesní 596, 473 01 Nový Bor.

Magn. B4 nehrájící pro součástky-levně; čas. AR 1, 2, 3/71 a RK 1/71. Jaromír Slavíček, Biskupcova 53, 130 00 Praha 3.

Kvalitní detektor kovů (i amat. výroba), přip. půjčit. Zdeněk Raban, Rudé armády 839/III, 293 01 Mladá Boleslav. Osciloskop servis. do 8 MHz. Radko Mrákota, Veletržní 50, 170 00 Praha 7.

RŮZNÉ

Pumpička na odsávání cínové pájky. Vhodný, téměř nepostradatelný pomocnik při opravách elektrických obvodů na tištěných spojich a při práci s integrovanými obvody. Hodí se zejměna při výměnách součástí s větším počtem vývodů. Jednoduchá a lehká konstrukce, skládající se z 15 součástí, umožňuje snadnou obsluhu i údržbu všech částí. Vhodně upravená hrotová část umožňuje snadnou části. Vhodně upravená hrotová část umožňuje rychlé a pohodlné vyčištění a vyprázdnění pum-pičky, steině jako snádnou výměnu opotřebovaného teflonového hrotu. Pumpička je vyráběna za 93-Kčs velkoobchodní ceny a 145-- Kčs maloobchodní ceny. Zájemci ji obdrží v KRTS Kroměříž, Plačkov-Havlíčkova ul., tel. 3554, nebo přimo u výrobce Aerotechnik Uh. Hradiště, Kunovi-ce, tel. 55 10.

POLOVODIČE

z produkce n. p. TESLA Rožnov

v nejširším výběru nabízí speciální prodejna:

RADIOAMATÉR

Na poříčí 44 11000 PRAHA 1 --

TESLA obchodní podnik

dále rozšiřuje služby obyvatelstvu:

JEDINEČNÁ PŘÍLEŽITOST

PRO RADIOAMATÉRY, MODELÁŘE I PRO SOC. ORGANIZACE

všech druhů, krystalové filtry a další součástky ze sortimentu výrobního podniku TESLA - Hradec Králové můžete zakoupit přímo u nás nebo obdržet poštou na dobírku.

Pokud potřebujete mimořádný typ krystalu, který v současné době není v běžném prodeji - protože není v šírší sériové výrobě - můžeme vám zprostředkovat jeho speciální vyrobení přímo v továrně.

Přijdte si osobně vybrat, přijdte se poradit, telefonujte nebo nám napište.

Zboží, které si u nás písemně objednáte, POŠLEME VÁM NA DOBÍRKU!

PRODEJNA TESLA V HRADCI KRÁLOVÉ

Dukelská 7, sm. č. 50000, Hradec Králové, tel. 24253