

Universidade de Brasília - UnB Faculdade UnB Gama - FGA Engenharia de Software

Adoção de Métodos Ágeis e da filosofia LEAN para a Gestão de Contratos de Fornecedores de Desenvolvimento de Software em Organizações Públicas Brasileiras

Autor: Aline Gonçalves dos Santos

Orientador: Msc. Hilmer Rodrigues Neri

Brasília, DF 2013

Aline Gonçalves dos Santos

Adoção de Métodos Ágeis e da filosofia LEAN para a Gestão de Contratos de Fornecedores de Desenvolvimento de Software em Organizações Públicas Brasileiras

Monografia submetida ao curso de graduação em (Engenharia de Software) da Universidade de Brasília, como requisito parcial para obtenção do Título de Bacharel em (Engenharia de Software).

Universidade de Brasília - UnB Faculdade UnB Gama - FGA

Orientador: Msc. Hilmer Rodrigues Neri Coorientador: (quando houver, Titulação Acadêmica e Nome do Orientador)

> Brasília, DF 2013

Aline Gonçalves dos Santos

Adoção de Métodos Ágeis e da filosofia LEAN para a Gestão de Contratos de Fornecedores de Desenvolvimento de Software em Organizações Públicas Brasileiras/ Aline Gonçalves dos Santos. – Brasília, DF, 2013-

69 p. : il. (algumas color.) ; 30 cm.

Orientador: Msc. Hilmer Rodrigues Neri

Trabalho de Conclusão de Curso – Universidade de Brasília - Un
B Faculdade Un
B Gama - FGA , 2013.

1. contratos. 2. ágeis. I. Msc. Hilmer Rodrigues Neri. II. Universidade de Brasília. III. Faculdade UnB Gama. IV. Adoção de Métodos Ágeis e da filosofia LEAN para a Gestão de Contratos de Fornecedores de Desenvolvimento de Software em Organizações Públicas Brasileiras

CDU 02:141:005.6

Errata

Elemento opcional da ??, 4.2.1.2). Caso não deseje uma errata, deixar todo este arquivo em branco. Exemplo:

FERRIGNO, C. R. A. Tratamento de neoplasias ósseas apendiculares com reimplantação de enxerto ósseo autólogo autoclavado associado ao plasma rico em plaquetas: estudo crítico na cirurgia de preservação de membro em cães. 2011. 128 f. Tese (Livre-Docência) - Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, 2011.

Folha	Linha	Onde se lê	Leia-se
1	10	auto-conclavo	autoconclavo

Aline Gonçalves dos Santos

Adoção de Métodos Ágeis e da filosofia LEAN para a Gestão de Contratos de Fornecedores de Desenvolvimento de Software em Organizações Públicas Brasileiras

Monografia submetida ao curso de graduação em (Engenharia de Software) da Universidade de Brasília, como requisito parcial para obtenção do Título de Bacharel em (Engenharia de Software).

Trabalho aprovado. Brasília, DF, 01 de junho de 2013:

Msc. Hilmer Rodrigues Neri Orientador

Titulação e Nome do Professor Convidado 01 Convidado 1

Titulação e Nome do Professor Convidado 02

Convidado 2

Brasília, DF 2013

Agradecimentos

A inclusão desta seção de agradecimentos é opcional, portanto, sua inclusão fica a critério do(s) autor(es), que caso deseje(em) fazê-lo deverá(ão) utilizar este espaço, seguindo a formatação de espaço simples e fonte padrão do texto (arial ou times, tamanho 12 sem negritos, aspas ou itálico.

Caso não deseje utilizar os agradecimentos, deixar toda este arquivo em branco.

A epígrafe é opcional. Caso não deseje uma, deixe todo este arquivo em branco. "Não vos amoldeis às estruturas deste mundo, mas transformai-vos pela renovação da mente, a fim de distinguir qual é a vontade de Deus: o que é bom, o que Lhe é agradável, o que é perfeito. (Bíblia Sagrada, Romanos 12, 2)

Resumo

O resumo deve ressaltar o objetivo, o método, os resultados e as conclusões do documento. A ordem e a extensão destes itens dependem do tipo de resumo (informativo ou indicativo) e do tratamento que cada item recebe no documento original. O resumo deve ser precedido da referência do documento, com exceção do resumo inserido no próprio documento. (...) As palavras-chave devem figurar logo abaixo do resumo, antecedidas da expressão Palavras-chave:, separadas entre si por ponto e finalizadas também por ponto. O texto pode conter no mínimo 150 e no máximo 500 palavras, é aconselhável que sejam utilizadas 200 palavras. E não se separa o texto do resumo em parágrafos.

Palavras-chaves: latex. abntex. editoração de texto.

Abstract

This is the english abstract.

 $\mathbf{Key\text{-}words}:$ latex. abntex. text editoration.

Lista de ilustrações

Figura 1	-	Seleção de Metodologia de Pesquisa	21
Figura 2	_	Modelo de Contratações de Soluções de TI	29
Figura 3	_	Gerenciamento de Contratações de Soluções de TI	31
Figura 4	_	Ranking de Vendas da Indústria Automobilística (GUEDES, 2012)	37
Figura 5	_	Pirâmide de Princípios Lean	37
Figura 6	_	Matriz de Gerenciamento de Tempo (BELL; ORZEN, 2011)	40
Figura 7	_	Quadro Andon, com o mesmo objetivo do Kanban, na fábrica da Toyota	
		(WILLIAMS, 2009)	47
Figura 8	_	Quadro Kanban (JENSES, 2009)	55
Figura 9	_	Work in Progress (KLIPP, 2011)	56
Figura 10) –	-Gráfico de Medições Kanban (KLIPP, 2011)	56

Lista de tabelas

Lista de abreviaturas e siglas

Fig. Area of the i^{th} component

456 Isto é um número

123 Isto é outro número

lauro cesar este é o meu nome

Lista de símbolos

 Γ Letra grega Gama

 Λ Lambda

 \in Pertence

Sumário

I	INTRODUÇÃO			
1	1.1 1.2 1.3 1.4 1.5	Conte Justifi Proble Objeti Metod Organ	exto	. 18 . 19 . 19 . 20
II			ATAÇÕES DE FORNECEDORES DE DESENVOLVI- DE SOFTWARE	23
2	2.1 2.2	Impor	ctância da Contração de Fornecedores de Desenvolvimento de Softwar as, Processos e Legislação Pertinentes à Contratação	e 24 . 25 . 25 . 27
Ш	PE	NSAN	MENTO LEAN	34
3	Pen 3.1		to Lean	
	5.1	3.1.1 3.1.2	Histórico	. 35 . 36 . 38 . 38 . 39 . 40 . 41 . 42

			3.1.3.1	Valor	43
			3.1.3.2	Cadeia de Valor	44
			3.1.3.3	Os Três Ms	44
		3.1.4	Práticas	s e Ferramentas	44
			3.1.4.1	A3 Thinking	44
			3.1.4.2	Mapeamento da Cadeia de Valor	45
			3.1.4.3	Kaizen	45
			3.1.4.4	Metodologia 5S	46
			3.1.4.5	Kanban	47
	3.2	Lean n	no Desenv	volvimento de Software	48
		3.2.1	Abordag	${ m gem}$	48
		3.2.2	Princípi	os	48
			3.2.2.1	Eliminar o Desperdício	48
			3.2.2.2	Integrar Qualidade	49
			3.2.2.3	Criar Conhecimento	49
			3.2.2.4	Adiar Comprometimentos	50
			3.2.2.5	Entregar Rápido	50
			3.2.2.6	Respeitar as Pessoas	50
			3.2.2.7	Otimizar o Todo	51
		3.2.3	Prática	s	51
			3.2.3.1	Gerenciamento de Código Fonte e Scripts de Builds	51
			3.2.3.2	Teste Automatizado	51
			3.2.3.3	Integração Contínua	52
			3.2.3.4	Menos Código	53
			3.2.3.5	Iterações Curtas	53
			3.2.3.6	Participação do Cliente	54
			3.2.3.7	Kanban	55
IV	ME	TOD	OLOGI	AS ÁGEIS DE DESENVOLVIMENTO DE SOFT	_
		RE			58
4	Met			s de Desenvolvimento de Software	
	4.1	O Mar	`	gil	
		4.1.1	Princípi	os	59
	4.2	Scrum			
		4.2.1		ework	
		4.2.2	-		
		4.2.3	Artefato	os	59
		4.2.4	Cerimôr	nias	59

4.3	Contratação Ágil nas Organizações Públicas	59
VAI	PROPOSTA DE TRABALHO	60
5 A P	Proposta de Trabalho	61
5.1	Definição da Proposta	61
5.2	Estudo de Caso	61
	5.2.1 Contexto	61
	5.2.2 Hipóteses	61
	5.2.3 Fonte e Método Coleta de Dados	61
5.3	Resultados Esperados	61
5.4	Cronograma de Execução	61
5.5	Conclusão	61
Referêi Apên o	ncias	62 64
Apen	inces	UŦ
APÊNI	DICE A Primeiro Apêndice	65
APÊNI	DICE B Segundo Apêndice	66
Anexo	os Os	67
ANEX	O A Primeiro Anexo	68
ANEX	O B Segundo Anexo	69

Parte I INTRODUÇÃO

1 Introdução

1.1 Contexto

Nos últimos anos temos visto iniciativas isoladas de algumas entidades da Administração Pública em procurar adotar métodos ágeis, com destaque para o Scrum e o Extreme Programming-XP, em suas equipes de desenvolvimento. Ainda mais recente, houve a iniciativa de mesclar o uso de métodos ágeis com a filosofia de gestão da produção, conhecida com LEAN, com o foco em gerenciar o contrato dos fornecedores de desenvolvimento de software.

Lean no Desenvolvimento de Software é uma filosofia que busca aplicar os princípios do Pensamento Lean no desenvolvimento do software. Dentre os princípios do Lean se destacam: a eliminação de desperdícios; o respeito às pessoas envolvidas no processo; a qualidade; a simplicidade; a otimização do todo e entregas rápidas. É importante ressaltar que apesar de sugerir diversas ferramentas, como o Kanban, também presente em Métodos Ágeis, o Lean está mais relacionado à forma de pensar, exige muito mais uma mudança cultural de cada organização do que a aplicação e utilização de ferramentas.

Lean está relacionado com Métodos Ágeis, não só pela semelhança dos seus princípios e práticas, mas também porque ambos valorizam as pessoas em detrimento de ferramentas e buscam agregar valor de negócio ao sistema que está sendo desenvolvido. Do ponto de vista teórico os métodos ágeis e o Lean, se baseiam em diferentes teorias, como: teoria geral dos sistemas, teoria da complexidade e teoria das restrições. Essas teorias representam um contraponto a metodologias mais prescritivas e preditivas, também conhecidas como tradicionais, que possuem seu amparo teórico principalmente na visão da teoria da administração científica.

Scrum é uma metodologia ágil desenvolvida para a gestão do processo de desenvolvimento de software. É uma abordagem que aplica ideias de controle de processos da indústria ao desenvolvimento de software, resultando assim, numa abordagem que reintroduz a ideia de flexibilidade, adaptabilidade e produtividade. Scrum surgiu a partir do "Manifesto Ágil", publicado em 2001, e como método ágil tem como valores: indivíduos e interações em vez de processos e ferramentas; software funcional em vez de documentação; colaboração com o cliente em vez de negociação de contratos e resposta rápida às mudanças em vez de seguir planos.

A ideia principal é que o desenvolvimento do sistema envolve diversas variáveis quer sejam de natureza ambiental ou técnica que estão provavelmente mudando durante a execução do processo. Essa característica torna o processo de desenvolvimento pouco

previsível e complexo, requerendo flexibilidade para ser capaz de responder às alterações.

A terceirização de serviços em organizações públicas no contexto de contratação de fábricas de software é crescente. A gestão do processo de desenvolvimento de software é um grande desafio para essas organizações, pois a maioria delas não são responsáveis diretamente pelo desenvolvimento do software e ao mesmo tempo elas precisam, como contratantes, gerenciar o andamento do processo de desenvolvimento do software de suas contratadas.

A legislação de contratação de serviço de desenvolvimento vigente, se apoia na Lei 8.666/93, IN 04/2010 SLTI/MPOG (para Poder Executivo) e acórdãos do TCU. O que se observa é que as exigências previstas no normativo legal induzem o gestor público, no âmbito da gestão do contrato, a fazer uso de metodologias tradicionais.

1.2 Justificativa

A utilização de metodologias ágeis e semelhantes em contratações de serviços de tecnologia da informação está ganhando espaço nas organizações públicas brasileiras e gerando questões importantes de estudo para a academia. Assim, recentemente, iniciativas de inserção de tais metodologias na gestão de contratos de fornecedores de desenvolvimento de software nas organizações públicas estão sendo feitas e, portanto, torna-se necessário estudos que evidenciem os bons resultados advindos do uso de métodos ágeis neste contexto. Uma das principais contribuições deste trabalho será evidenciar para os gestores de contratos e para os demais envolvidos no processo de gestão e desenvolvimento de software terceirizado os resultados do uso de métodos ágeis em contraposição aos métodos tradicionais de gestão e desenvolvimento de software.

1.3 Problema

Durante muitos anos as organizações privadas e públicas utilizaram metodologias tradicionais no desenvolvimento de software ou na gestão de contratos da terceirização do desenvolvimento das soluções de TI. Nos últimos anos, com o surgimento das metodologias ágeis, este cenário começou a mudar no contexto das instituições privadas a fim de aumentar sua produtividade, eliminar desperdícios e aumentar o valor de negócio produzido para o cliente. Nas instituições públicas essa mudança teve início recentemente, tais organizações perceberam que uma grande quantidade de documentos estava sendo produzida e pouco software estava sendo entregue no final do contratado. Assim, a questão de pesquisa deste trabalho é:

Como a utilização de metodologias ágeis e da filosofia Lean por meio do Kanban no Gerenciamento de Contratos de desenvolvimento de software

nas organizações públicas brasileiras é mais eficiente que o uso de metodologias tradicionais;

1.4 Objetivos

A combinação de uso do Scrum com o Lean Software, pode ajudar a melhorar as práticas de engenharia e gestão existentes em organizações públicas. Nesse sentido o objetivo geral deste trabalho é investigar o uso de Kanban alinhado a Metodologias Ágeis de Desenvolvimento de Software e ao Lean no Desenvolvimento de Software, procurando evidenciar as principais dificuldades e riscos encontrados em sua adoção, bem como suas vantagens e benefícios e a partir de então, propor ações para o uso de tais métodos, com intuito de melhorar a capacidade das organizações públicas em gerenciarem seus contratos de desenvolvimento de software. Dentre os obejtivos específicos estão:

- Caracterizar o processo de contratações de soluções de TI nas organizações públicas;
- Caracterizar a filosofia Lean no desenvolvimento de software e metodologias ágeis;
- Investigar aplicação dos métodos tradicionais em gerenciamento de contratos nas organizações públicas;
- Investigar aplicação dos métodos Ágeis em gerenciamento de contratos nas organizações públicas;
- Definir um estudo de caso;
- Coletar dados de contratações de soluções de TI passadas;
- Relatar resultados obtidos;

1.5 Metodologia de Pesquisa

Nessa seção apresenta-se a metodologia de pesquisa adotada neste trabalho. Para isso, foi definido a natureza da pesquisa, o tipo de metodologia de pesquisa, o tipo de abordagem de pesquisa, os métodos de procedimentos de pesquisa e os tipos de técnicas de coletas de dados.

Os procedimentos de pesquisa selecionados foram pesquisa bibliográfica, documental, levantamento e estudo de caso. As técnicas de coleta de dados selecionadas foram documentos, entrevista e revisão sistemática. A seleção metodológica é apresentada na Figura 1.

Nesta pesquisa, o esquema adotado compreende as fases: Planejamento; Coleta de Dados; Análise e Interpretação dos dados, e Redação do Resultado.

Figura 1 – Seleção de Metodologia de Pesquisa

O Planejamento consiste na determinação da questão de pesquisa, a escolha da metodologia de pesquisa, a definicação das fases da pesquisa, a definição dos procedimentos de pesquisa e das técnicas de coleta de dados, a construção do referencial teórico e a proposta do trabalho final.

Na Coleta de Dados são executados os procedimentos de pesquisa e as técnicas de coletas de dados a seguir:

- Pesquisa Bibliográfica: pesquisa realizada a partir de livros, dissertações e trabalhos relacionados à área de pesquisa.
- Pesquisa Documental: pesquisa realizada a partir de documentos públicados por organizações públicas.
- Estudo de Caso: utilizar um estudo de caso real de uma organização pública brasileira.

- Entrevistas: dados serão coletados por meio de estrevistas semi-estruturadas para incremento do estudo de caso.
- Documentos: técnicas de leitura dos documentos fornecidos pelo órgão público do estudo de caso será emprega para coleta de dados para análise.

A Análise dos Resultados diz respeito a fase em que os dados coletados são analisados e interpretados.

A Redação dos Resultados diz respeito a fase em que os resultados serão estruturados e concluídos.

1.6 Organização do Trabalho

Este trabalho está organizado em cinco capítulos. Neste Capítulo 1 encontra-se a introdução do trabalho que consiste em: contexto do trabalho, a justificativa, o problema, os objetivos e a metodologia de pesquisa adotada.

No Capítulo 2 - Contratações de Fornecedores de Desenvolvimento de Software - apresenta-se as principais informações referentes à Contratações de Fornecedores de Desenvolvimento de Software. Para isso, o capítulo é iniciado cum uma visão geral sobre a importância das contratação e suas principais características, posteriormente, é apresentado um resumo das legislações e processos relativos à Contratações de Serviços de Tecnologia da Informação.

No Capítulo 3 - Pensamento Lean - é apresentado os conceitos referentes ao Lean na Manufatura e ao Lean no Desenvolvimento de Software. Com este fim, é apresentado um breve histórico sobre o surgimento do Lean na manufatura e os seus principais princípios e práticas e, posteriormente, é apresentado como o Lean Manufatura foi adaptado para o desenvolvimento de software e para isso é abordado os princípios e práticas do Lean no Desenvolvimento de Software.

Parte II

CONTRATAÇÕES DE FORNECEDORES DE DESENVOLVIMENTO DE SOFTWARE

2 Contratações de Fornecedores de Desenvolvimento de Software

O descumprimento da legislação de licitações e contratos gera riscos para à contratação de tecnologia da informação e, portanto, devem ser conhecidos e usados como base de qualquer processo de contratação de fornecedores de desenvolvimento de software. Assim, neste Capítulo será apresentada uma visão sobre a importância da contratação de serviços de TI e a caracterização de contratação de tecnologia da informação pelas organizações públicas brasileiras segundo a legislação pertinente. Apresentando-se, de forma resumida os conceitos de contratação de serviços de TI presentes em normas, modelos, guias e processos de contratação de serviços de TI.

2.1 Importância da Contração de Fornecedores de Desenvolvimento de Software

Um dos principais, mais complexos e mais frequentemente utilizados atos administrativos é a contratação. Contratar é fazer contrato. Um contrato é um acordo ou convenção entre duas ou mais pessoas, para execução de alguma coisa, sob determinadas condições. O contrato é, portanto, o documento em que se registra esse acordo ou convenção (MPOG, 2011).

Há vários anos, os órgãos da Administração Pública Federal (APF) têm adotado a prática da execução indireta de muitos serviços que dão suporte às suas áreas-fim, conhecida comumente como "terceirização de serviços". O Decreto-Lei 200/1967 traz, no Art.10 § 7°, a diretriz para que a Administração Pública Federal se desobrigue da realização de tarefas executivas (execução de tarefas operacionais), recorrendo, sempre que possível, à execução indireta, desde que a iniciativa privada esteja suficientemente desenvolvida na área, bem como não haja comprometimento da segurança nacional (Art.10 §8°). De acordo com o Decreto-Lei 200/1967, Art.10, §7°, as razões para se partir para execução indireta são: possibilitar que a APF execute melhor as tarefas de planejamento, coordenação, supervisão e controle, tarefas que hoje podem ser traduzidas como gestão e governança; impedir o crescimento desmesurado da máquina administrativa, para que o Estado não alcance dimensão indevida em função da incorporação de tarefas de caráter operacional (TCU, 2012).

Um levantamento do Tribunal de Contas da União (TCU) mostrou que o orçamento de gastos em TI da Administração Pública Federal de 2010 era de pelo menos 12,5

bilhões de reais, sendo grande parte desse valor destinado a contratações de serviços relacionados a software. No mesmo ano também era previsto um orçamento de cerca de 1,8 trilhão de reais da União, sendo que a maior parte seria gasto em TI. Com isso, os serviços de TI requerem bastante atenção e tem suma importância para administração pública brasileira, tanto no que diz respeito a contratações ou desenvolvimento de produtos de TI.

A definição e institucionalização de processos de contratação de serviços de TI, especialmente aqueles relacionados a software envolvem ações complexas, principalmente no que diz respeito à identificação dos requisitos necessários, a garantia da qualidade dos resultados esperados, os critérios de aceitação, a gestão de mudanças, as transferências de conhecimentos, a legislação pertinente, entre outros. E envolvem também questões de relacionamento entre clientes e fornecedores, o que implica em competências administrativas e jurídicas. Essas complexidades apresentam riscos para partes envolvidas e, como consequência, é comum a ocorrência de conflitos (CRUZ; ANDRADE; FIGUEIREDO, 2011).

Assim, contratações envolvem riscos e incertezas oriundos de diversos fatores inerentes do objeto do contrato. Com isso, é preciso observar as características do objeto e do contexto em que ele será inserido, com especial atenção à conformidade legal em contratações de serviços de TI em organizações públicas, para que seja realizado o devido controle.

2.2 Normas, Processos e Legislação Pertinentes à Contratação

2.2.1 Lei n° 8.666/93

A Lei nº 8.666 (BRASIL, 1993) estabelece normas gerais sobre licitações e contratos administrativos. A licitação é tida como antecedente ao contrato administrativo. Pode ser considerado o procedimento no qual a Administração Pública escolhe a proposto mais vantajosa para contrato do seu interesse e ao mesmo tempo dá igual oportunidade aos que desejam fazer parte do contrato.

Uma licitação supõe concorrência entre ofertantes, portanto, os objetos propensos à licitação são aqueles que podem ser fornecidos por mais uma pessoa ou entidade. Os princípios da licitação de acordo com o Art. 3º são: igualdade, é impedido a existência de cláusulas no edital que favorecem um em detrimento de outros, mas não é considerado atentado ao principio da igualdade estabelecer requisitos mínimos de participação; legalidade, a licitação é um procedimento completamente vinculado à lei, todas suas fases não disciplinadas nesta lei, além disso, é possível a participação da população no controle do principio da legalidade na licitação, os Art.4º, Art.41, Art.101 e Art.113 prevê várias for-

mas de participação popular; impessoalidade, a Administração deve considerar critérios claros e objetivos para escolha do licitante, todos devem ser tratados igualmente em termos de direito e obrigações; moralidade e probidade administrativa, é passível de punição qualquer comportamento que vá contra a moral, bons costumes, as regras de boa administração e aos princípios de justiça e equidade; publicidade, diz respeito tanto à divulgação da licitação para todos os interessados como também a que todos os atos praticados pela Administração durante todas as fases sejam abertos aos interessados, os Art. 3°, Art. 4°, Art.15, Art.16 e Art.43 deixam esse princípio claro; vinculação ao instrumento convocatório, o edital deve estar vinculado à licitação e sua alteração só é permitida quando for falho ou inadequado ao interesse público, o Art. 41 deixa esse princípio claro; julgamento objetivo, previsto no Art. 3°, diz respeito a utilizar o critério indicado no ato convocatório para julgamento das propostas, seja ela técnica ou de preço; fiscalização da licitação, diz respeito a qualquer cidadão poder controlar a licitação contra irregularidades na aplicação da lei de licitação, como disposto nos Art.4°, Art.8°, Art.63 e Art.113; competitividade, a lei proíbe a existência de cláusulas que vá contra o caráter competitivo da licitação, com ressalva em casos de só haver um interessado ou um concorrente após a fase de classificação; e a padronização, que sempre que possível deve ser adotada a padronização como estabelecido no Art. 15;

A Lei 8.666 prevê cinco modalidades de licitação no Art. 22: concorrência, tomada de preços, convite, concurso e leilão, elas estão relacionadas ao valor estimado do contrato. O pregão foi criado como modalidade de licitação pela medida provisória nº 2.026 e na lei nº 10.520. As modalidades sem finalidade específica entram no grupo formado pela concorrência, pela tomada de preços e pelo convite. O grupo das modalidades com finalidades específicas é formado pelo concurso e pelo leilão. Os quatro tipos de licitação presentes no Art.45 são: menor preço, melhor técnica, técnica e preço e maior lance ou oferta, elas estão relacionas com o julgamento.

As fases da licitação são: a interna, que é destinada a firmar a intenção da entidade licitante e a obter informações necessárias para a consolidação da licitação; e a externa, que é destinada a selecionar a melhor proposta. A fase interna é composta por determinar o objeto de licitação, as condições, a estimativa de despesas e a decisão pela modalidade mais adequada, além da verificação da existência de recursos e a obtenção da autorização de abertura do instrumento convocatório.

A fase externa é dividida de forma geral em: abertura; habilitação, classificação; e julgamento. A abertura é o momento em que o instrumento convocatório, edital ou cartaconvite é tornado conhecido publicamente. O edital é composto por preâmbulo, texto e fecho. Segundo Art. 40, no texto do edital devem estar: as condições relacionadas à apresentação das propostas e à participação dos licitantes; os critérios de julgamento das propostas; a descrição resumida do objeto da licitação; o prazo de execução; as garantias;

os recursos admissíveis; os critérios de desempate; o prazo e condições para assinatura do contrato; as sanções para o caso de inadimplência; as condições de pagamento; as condições de recebimento do objeto da licitação; e os critérios de reajustamento.

A habilitação é onde a comissão de licitação confirma os licitantes aptos a participarem da licitação de acordo com o edital. As condições para conseguir a habilitação são: habilitação jurídica; qualificação técnica; qualificação econômico-financeira; regularidade fiscal; não empregar menores de 18 anos em trabalho noturno, perigoso ou insalubre, ou menores de 16 anos, salvo a partir dos 14 anos na condição de aprendiz.

A classificação é o ato o qual a comissão de licitação reúne as propostas apresentadas formalmente e de acordo com o edital ou carta-convite que são aptas para classificação e as que não estão conforme edital ou carta-convite são desclassificadas. O julgamento costuma ocorrer logo após a classificação das propostas. Para o julgamento é considerado apenas o foi permitido no instrumento convocatório e é feito de acordo com um dos quatro tipos de licitação, aquele que foi previsto no edital.

A licitação do tipo menor preço é aquela que o fator de decisão é apenas o menor preço, as demais características como qualidade e produtividade não são consideradas. A licitação do tipo melhor técnica não considera só o preço, considera as melhores tecnologias, aquelas mais modernas ou que satisfaçam da melhor forma as necessidades da Administração licitante e que estejam dentro dos recursos financeiros disponíveis. A licitação do tipo técnica e preço é aquele em que é feita uma ponderação para técnica e preço a fim de considerar ambos. E a licitação do tipo maior lance ou oferta é aquele em que é escolhida a proposta que faz a maior oferta, este tipo é especialmente usado em vendas de bens ou permissões de uso de bens ou serviços públicos.

Após o julgamento, é realizado o processo de homologação e adjudicação. Na homologação, uma autoridade competente, indicado por lei, promove o controle de todo o processo licitatório no que diz respeito à legalidade. E na adjudicação é atribuído ao vencedor da licitação o objeto da licitação pela mesma autoridade competente. Outros detalhes da Lei 8.666 não foram considerados pertinentes para o escopo desse trabalho.

2.2.2 Instrução Normativa nº 04

A Instrução Normativa nº 04 (BRASIL, 2010) disciplina sobre o processo de Contratação de Soluções de Tecnologia da Informação pelos órgãos integrantes do Sistema de Administração dos Recursos de Informação e Informática do Poder Executivo Federal e é a consolidação de um conjunto de boas práticas para Contratação de Solução de TI pela Administração Pública Federal. Este conjunto de boas práticas é chamado de Modelo de Contratações de Soluções de TI (MCTI). Esta Instrução Normativa está dividida em três capítulos. O primeiro capítulo diz respeito às Disposições Gerais. O segundo capítulo diz

respeito ao Processo de Contratação. E o terceiro capítulo diz respeito às Disposições Finais.

De forma geral no capítulo das Disposições Gerais é mencionado os atores, os artefatos e o que é vedado no processo de contratações. Os atores considerados no processo de contratação de acordo com Art. 2º são:

- Área requisitante da solução, que é a entidade ou órgão que demanda a contratação de uma Solução de Tecnologia da Informação;
- Área de tecnologia da informação, que é a unidade setorial do SISP responsável por gerir a Tecnologia da Informação do órgão ou entidade;
- Equipe de planejamento da contratação, constituída pelo integrante técnico (servidor da área de TI), integrante administrativo (servidor da área administrativa) e integrante requisitante (servidor da área requisitante);
- Gestor do contrato, que é o servidor com atribuições gerenciais, técnicas e operacionais responsável pela gestão do contrato;
- Fiscal técnico do contrato (servidor da área de TI);
- Fiscal administrativo do contrato (servidor da área administrativa);
- Fiscal requisitante do contrato (servidor da área requisitante);
- Contratada, entidade provedora da Solução de Tecnologia da Informação;
- Preposto, que é o funcionário representante da contratada, responsável por acompanhar a execução do contrato e atuar como interlocutor principal junto à contratante.

Os artefatos que podem ser produzidos e fornecidos para contratada ou recebidos pelo contratante são: a solução de tecnologia da informação; os requisitos; o documento de oficialização da demanda; a análise de viabilidade da contratação; o plano de sustentação; a estratégia da contratação; a análise de riscos; o plano de inserção; a ordem de serviço ou de fornecimento de bens; o termo de recebimento provisório; o termo de recebimento definitivo; os critérios de aceitação; a gestão e o plano diretor de tecnologia da informação.

Dentro das Disposições Gerais é ressaltado no Art.5° que não poderão ser objetos de contratação mais de uma solução de TI em um único contrato e a gestão de processos de TI. No Art. 6° é dito que a contratada que provê a solução de TI não poderá ser a mesma que realiza medições, avaliação ou fiscalização. E é vedado, segundo Art. 7° prever a remuneração dos funcionários da contratada já no edital, reembolsar despesas que são de exclusiva responsabilidade da contratada, exigir qualquer tipo de capacitação ou

certificação no edital, demandar aos funcionários da contratada tarefas fora do escopo do objetivo da contratação e indicar pessoas para compor o quadro funcional da contratada.

Neste capítulo está ainda a Estratégia Geral de Tecnologia da Informação (EGTI) que contém orientações gerais para as áreas de TI e dos órgãos e entidades da Administração Pública Federação e a formulação de um Plano Diretor de Tecnologia da Informação (PDTI) por parte de cada entidade integrante do Sistema de Administração dos Recursos de Informação e Informática (SISP) do Poder Executivo Federal, de forma geral neste documento são apresentados a avaliação e o diagnóstico dos recursos de TI, as necessidades da entidade e o planejamento de investimentos e recursos.

O Capítulo dois sobre o Processo de Contratação, que é de fato o MCTI, divide as contratações de soluções de TI em três fases: Planejamento da Contratação (PCTI); Seleção do Fornecedor (SFTI) e Gerenciamento do Contrato (GCTI).

Figura 2 – Modelo de Contratações de Soluções de TI

Cada fase é constituída de processos/etapas, atividades, artefatos e atores conforme mostrado na tabela abaixo.

Fases	Etapas	Atividades	Artefatos	Atores
PCTI	5	41	8	7
SFTI	3	7	1	4
GCTI	5	19	4	5

No Planejamento da Contratação é necessário no mínimo ter no documento quais são as necessidades corporativas da instituição e seus objetivos estratégicos, motivação, resultados esperados, fonte de recursos e a indicação do integrante requisitante que fará parte da equipe de planejamento. Após o recebimento desse documento a área de TI indicará, então, o integrante técnico que também fará parte da equipe de planejamento. E finalmente, o documento será encaminhado para a área administrativa, a qual indicará o integrante administrativo que fará parte da equipe de planejamento e dará prosseguimento

para a contratação. Assim, a equipe de planejamento da contratação estará completa para acompanhar e apoiar todas as atividades presentes nas fases de planejamento da contratação e seleção do fornecedor.

A fase de Planejamento da Contratação é obrigatória independentemente do tipo de contratação, deve ser elaborada em harmonia com o PDTI e contém cinco etapas: análise de viabilidade; plano de sustentação; estratégia da contratação; análise de riscos; e termo de referência ou projeto básico. A análise de viabilidade da contratação compreende a definição e especificação de requisitos levando em conta que compete ao integrante técnico especificar os requisitos tecnológicos e ao integrante requisitante os demais requisitos, a identificação de possíveis soluções, análise e comparação de custos totais dessas soluções, a escolha da solução de TI e a justificativa da solução escolhida e avaliação das necessidades de adequação para viabilização da execução contratual.

O plano de sustentação, que deve conter quais os recursos materiais e humanos que serão necessários, atividades de transição contratual e encerramento do contrato, assim como a continuidade do fornecimento da solução de TI em caso de interrupção contratual e a estratégia de independência do contratante com relação à contratada.

A estratégia da contratação será elaborada a partir das duas etapas anteriores e conterá a indicação da solução de TI a ser contratada, definição das responsabilidades da contratada além das responsabilidades estabelecidas no contrato, a indicação dos termos contratuais observando os elementos contidos na Lei nº 8.666, de 1993, a elaboração do orçamento detalhado, da estimativa do impacto econômico-financeiro no orçamento do órgão requisitante, a elaboração dos termos de compromisso e sigilo, a definição dos critérios técnico de julgamento das propostas para a fase de seleção de fornecedor.

A análise de riscos deverá conterá identificação dos principais riscos que podem comprometer o sucesso dos processos de contratação e de gestão contratual ou que possam fazer com que a solução de TI não atenda às necessidades esperadas, a mensuração das probabilidades de ocorrência e dos dados potenciais relacionados a cada risco, a definição das ações de contingência em caso de ocorrência dos ricos e a definição dos responsáveis pelas ações de prevenção e de contingência dos riscos.

E o termo de referência ou projeto básico que deverá conter no mínimo a definição do objetivo, a fundamentação da contratação, a descrição da solução de TI, os requisitos da solução, o modelo de prestação de serviços ou de fornecimentos de bens, os elementos para gestão do contrato, a estimativa de preços, a adequação orçamentária, as definições dos critérios de sanções e os critérios de seleção do fornecedor.

Na fase de Seleção de Fornecedor deverão ser observadas as normas pertinentes e tem como recomendação a utilização da modalidade de Pregão na forma eletrônica devido à padronização existente no mercado de TI. A área de licitações conduzirá esta fase a cabe a área de TI analisar as sugestões feitas, apoiar tecnicamente o pregoeiro na reposta à questionamentos e na análise e julgamento das propostas e dos recursos apresentados pelos licitantes. No encerramento desta fase, além do contrato, terá a nomeação do gestor do contrato, do fiscal técnico do contrato, do fiscal requisitante do contrato e do fiscal administrativo do contrato.

A fase de Gerenciamento do Contrato visa acompanhar e garantir a adequado prestação do serviço e o fornecimento de bens que compõem a solução de TI e compreende as seguintes etapas: início do contrato; encaminhamento formal de ordem de serviço ou fornecimento de bens; monitoramento da execução; e transição contratual e/ou encerramento do contrato. O início do contrato abrange a elaboração do plano de inserção da contratada, que contempla o repasse de conhecimento e a disponibilização de infraestrutura, e uma reunião inicial que tem como objetivo a entrega do termo de compromisso e do termo de ciência e de sigilo assim como possíveis esclarecimentos.

Figura 3 – Gerenciamento de Contratações de Soluções de TI

O encaminhamento formal de ordem de serviço ou fornecimento de bens pelo gestor do contrato para o preposto da contratada deve conter a definição e especificação dos serviços prestados ou bens fornecidos, o volume dos serviços ou quantidade de bens segundo métricas, o cronograma e a identificação dos responsáveis pela solicitação da solução de TI.

O monitoramento da execução consiste da confecção e assinatura do termo de recebimento provisório, na avaliação da qualidade do serviço, na identificação de não conformidade, na verificação de aderência aos termos contratuais, na verificação da manutenção das condições classificatórias, no encaminhamento das demandas de correção à contratada, no encaminhamento de indicações de sanções, na confecção e assinatura do

termo de recebimento definitivo, na autorização para emissão de nota fiscal, na verificação das regularidades fiscais, trabalhistas e previdenciárias, na verificação de manutenção de necessidade, economicidade e oportunidade da contratação, no encaminhamento de pedidos de modificação contratual e na manutenção do histórico de gerenciamento de contrato.

E por fim a etapa de transição contratual ou encerramento do contrato que deverá observar o Plano de Sustentação. Vale ressaltar que para cada contrato, deverá haver pelo menos uma Ordem de Serviço ou de Fornecimento de Bens e pode haver quantas forem necessárias para execução do objeto contratado.

2.2.3 Processo de Contratação de Servços Tecnologia da Informação

O propósito do Processo de Contratação de Serviços de Tecnologia da Informação para Organizações Públicas (PCSTI), de 2011, é obter *software* e serviços de TI que satisfaçam às necessidades de negócio da organização contratante, de forma alinhada à sua estratégia e à legislação brasileira, considerando a necessidade de cumprir os princípios de eficácia, eficiência, efetividade, economicidade, legalidade e legitimidade dos projetos de TI. Este processo pode ser adotado para contratação de qualquer tipo de serviço de TI no setor público.

A estrutura do PCSTI é composta por quatro fases, dezoito atividades e 90 tarefas. As fases são: planejamento de TI; planejamento da contratação; seleção do fornecedor; e gestão do contrato. A fase de Planejamento de TI é a fase em que são escolhidas as ações de TI de acordo com a estratégia de cada organização para produzirem os benefícios de negócio que foram priorizados. Esta fase é composta de duas atividades: estabelecer diretrizes para uso organizacional de TI e estabelecer o plano de contratações do PDTI.

A fase de Planejamento da Contratação é aquela em que todos os elementos da contratação são definidos de forma a garantir os príncipios de economicidade, efetividade, eficiência e eficácia. As atividades relacionadas a esta fase são: analisar a viabilidade, elaborar o plano de sustentação, elaborar a estratégia de contratação, analisar e tratar riscos e concluir o planejamento da contratação.

A fase de Seleção do Fornecedor é aquela em que o modelo de prestação de serviços, a análise do mercado, o modelo de gestão do contrato e o modelo de seleção do fornecedor são utilizados para selecionar o fornecedor mais adequado às necessidades da Administração. As atividades desta fase são: formalizar e aprovar o termo de referência, selecionar fornecedor e formalizar contrato.

E a fase de Gestão do Contrato é aquele em que há o controle da execução do contrato de forma a alcançar os benefícios de negócio que foram previstos inicialmente. As atividades relacionadas a esta fase são: iniciar o contrato, encaminhar demandas,

realizar o monitoramento técnico, executar a atestação técnica, realizar o monitoramento administrativo, tratar as demandas por alterações contratuação e realizar o encerramento contratual e a transição.

Parte III PENSAMENTO LEAN

3 Pensamento Lean

3.1 Lean na Manufatura

3.1.1 Histórico

Lean é um modo de pensar sobre como entregar valor ao cliente mais rapidamente por meio da eliminação de desperdícios que impedem a qualidade e a produtividade. O Pensamento Lean teve origem no sistema de produção da Toyota (TPS – Toyota Production System) como Lean Manufacturing e surgiu com o objetivo de reduzir desperdícios na produção. É uma filosofia de gestão que promove formas de especificar valor para o cliente, melhora sequência de fluxos de processos, torna o desempenho mais eficiente e elimina desperdícios na produção.

Para entendermos porque e como surgiu o pensamento Lean é preciso entender o que ele substituiu: a produção em massa. A produção em massa foi popularizada por Henry Ford. A produção em massa é usada para produzir em larga escala a baixo custo. Ela divide o processo de manufatura em pequenos passos que possam ser desempenhados por trabalhadores com poucas habilidades, para isso é usado um maquinário de alta precisão e um trabalho padronizado. A produção em massa tem uma característica de inflexibilidade, pois alterações na linha de produção podem acarretar alto custo, assim, apenas é econômico produzir grandes quantidades da mesma coisa e da mesma forma (padronização) (HIBBS; JEWETT; SULLIVAN, 2009).

Em 1945, no Japão pós-guerra, o presidente da Toyota Motor Company, Kiichiro Toyoda, desafio sua companhia a se igualar às companhias da América, porque se não a indústria automobilistica Japonesa não sobreviveria. E ficou claro que isso não poderia ser feito adotando o modelo de produção em massa norte-americano, pois no Japão os materiais eram escassos, as encomendas eram inconstantes e havia demanda por variedade, o que impediria o sucesso de produção larga escala de produtos idênticos.

Taiichi Ohno, chefe de produção da Toyota, notou essas características que inviabilizam a indústria automobilistica japonesa de adotar o modelo de produção em massa. Com isso, Taiichi Ohno experimentou muitas ideias e técnicas que foram inseridas aos poucos no que veio a ser conhecido como Sistema Toyota de Produção. Ele estudou o sistema de produção de Henry Ford e ampliou sua visão como os supermercados norte-americanos controlavam seus estoques. E acrescentou seus conhecimentos de fiação e tecelagem e as percepções dos trabalhodores que ele supervisionava. Ele descreveu o sistema como "um sistema para absoluta eliminação de desperdícios" e explica que o sistema se mantém sobre dois pilares: Just-in-Time (JIT) e Jidoka (autonomação).

O fluxo Just-in-Time é o único modelo industrial para gerenciar com eficiência a complexidade inerente do custo de se produzir com variedade. Durante muitos anos o Sistema Toyota de produção foi ignorado, até mesmo no Japão, no entanto, após a crise econômica do petróleo nos anos 70, o sistema foi estudado e adotado por outras empresas japonesas devido ao fato de a Toyota ter emergido da crise rapidamente. Após uma década, o Japão passou a ser forte concorrente dos Estados Unidos e da Europa. Com uma investigação, foi descoberto que as empresas japonesas estavam utilizando uma nova abordagem chamada Just-in-Time, que diz respeito ao princípio de eliminar estoques que costuma estarem presentes em produção de larga escala, tendo o foco em fazer tudo em pequenos lotes e estar apto a realizar mudanças de forma rápida.

O Jidoka surgiu como o mecanismo utilizado pela máquina de tear automática G-Type criada por Kiichiro, ele consiste na paragem automatica da máquina quando um fio quebrava, evitando que ocorressem desperdícios de material ao se produzir produtos defeituosos. Ao eliminar a criação de produtos defeituosos e diminuir desperdícios no processo, a máquina se tornou um sucesso absoluto, melhorando tanto a produtividade quanto a eficiência do trabalho (KATAYAMA, 2010). Com isso, o conceito que ficou com o Jidoka foi: organizar o trabalho de modo que ele seja imediatamente interropido quando a menor anomalia for detectada, sendo necessário encontrar a causa e a resolução do problema antes de recomeçar a atividade. No português, Jidoka significa autonomoção, que diz respeito ao fato de responder aos eventos de forma instantânea e correta sem ter que ir ao cérebro receber instruções, no caso da máquina assim que surgir um problema ela para (POPPENDIECK; POPPENDIECK, 2011).

O sistema de produção sofreu alterações ao longo das décadas, nos anos 90 o Pensamento Lean passou a ser o termo usado para descrever este processo desenvolvido e utilizado pela Toyota. Assim, o Sistema Toyota de Produção, baseado no que hoje é chamado de Pensamento Lean, começou a ser formado nos anos 50 e aos poucos os resultados puderam ser notados na indústria automobilistica mundial. Como a figura 4 mostra nos anos 50 a Toyota nem sequer aparecia do ranking de vendas liderado pela GM e pela Ford. Já nos anos 70 o cenário começou a mudar, a Toyota passou a aparecer na sexta posição do ranking e teve uma ascendência até 2007 onde se tornou líder do ranking de vendas.

3.1.2 Princípios

O Pensamento tem como objetivo fornecer o que o cliente deseja sem haver desperdícios. Para atingir este objetivo Lean possui alguns princípios. Muitas companhias e indivíduos que querem implementar o Pensamento Lean cometem o erro de ficarem preocupados e focados em especificar ferramentas e práticas. Quando aplicadas de forma correta, as ferramentas podem gerar bons resultados de desempenho, mas são os princí-

Ranking de vendas				
	1950	1970	2005	2007
1	GM	GM	GM	Toyota
2	Ford	Ford	Toyota	GM
3	Chrysler	Chrysler	Ford	VW
4	Studebaker	VW	Renault	Ford
5	Nash	Fiat	VW	Hyundai
6	Kaiser - Fra.	Toyota	DaimlerC	PSA
7	Morris	Nissan	Honda	Honda
8	Hudson	Renault	Hyundai	Nissan
9	Austin	BL	PSA	Fiat
10	Renault	Peugeot	Fiat	Suzuki

Figura 4 – Ranking de Vendas da Indústria Automobilística (GUEDES, 2012)

pios inseridos na cultura da organização que resultarão na mudança de comportamento em longo prazo. Sem uma clara compreensão dos princípios que regem o Pensamento Lean, as empresas conseguirão resultados a curto prazo, mas a longo prazo não consiguiram manter esses bons resultados e a melhoria contínua que irão dar estabilidade ao negocio e à satisfação do cliente. Assim, é preciso enfativar os princípios acima das ferramentas. Os princípios do Pensamento Lean são apresentados na figura abaixo e serão descritos nas seções a seguir.

Figura 5 – Pirâmide de Princípios Lean

3.1.2.1 Constância de Propósitos

O princípio de Constância de Propósitos diz respeito a manter a clareza dos objetivos importantes de longo prazo e é um dos constituintes da base da pirâmide dos princípios porque prover a persistência necessária para influenciar o comportamento de todos dentro da organização. Quando diariamente o comportamento muda, a cultura da organização também muda. A Constância de Propósitos tem o foco no pensamento e no comportamento, alinhando esforçando e fazendo com que todos caminhem na mesma direção. As pessoas devem ser encorajadas a desafiar o modo como as coisas são feitas e começar a perceber dificuldades e oportunidades de melhoria, resolução de problemas de forma colaborativa e propriedade do processo de qualidade começam a nascer (BELL; ORZEN, 2011).

Com isso, líderes executivos têm a responsabilidade de definir objetivos estratégicos e criar constância de propósitos. Os gestores tem como responsabilidade eliminar impedimentos, estabilizar os processos e ajudar os trabalhadores a desenvolver habilidades de resolução de problemas, para que eles possam sentir-se donos do seu trabalho e possam assumir responsabilidade sobre a melhoria contínua.

3.1.2.2 Respeito às Pessoas

O segudo princípio base é o respeito às pessoas. Todos os indivíduos possuem uma única coleção de experiências e fazem distintas contribuições quando participam de um processo de melhoria. A resolução de problemas coletiva só ocorre quando existe respeito pelas pessoas em todos os níveis hierárquicos de uma organização. Respeito direciona desenvolvimento dos trabalhadores, encoraja participação e melhora a relação entre fornecedor e cliente (BELL; ORZEN, 2011).

Além disso, respeito às pessoas encoraja alcançar a excelência profissiona e o pontêncial criativo. Em um ambiente de aprendizado e desenvolvimento colaborativo as pessoas sabem que suas ideias possuem valor e são apreciadas, e sentem-se mais estimuladas em melhorar diariamente. Pessoas estimuladas e respeitadas não só geram sucesso individual como também sucesso coletivo e organizacional.

3.1.2.3 Melhoria Contínua e Perfeição

O último princípio da base da pirâmide é a melhoria contínua em busca da perfeição. As soluções imediadas, emboram possam ser adequadas para hoje, são na melhor das hipoteses temporárias. A mudança é constante, e novas ideias são necessárias sempre que o padrão de trabalho atual não produz mais os resultados esperados. Em uma cultura Lean, os trabalhadores devem aceitar as mudanças como inevitáveis e de forma proativa enfrentar os desafios. Cada indivíduo deve ver o seu trabalho como tendo dois componentes inseparáveis: trabalho diário e melhoria diária (BELL; ORZEN, 2011).

As pessoas possuem hábitos diferentes. Muitas pessoas gostam da mudança, mas não gostam de serem mudadas. Mudança efetiva costuma ser inconfortável. Com isso, as pessoas costumam resistir a mudanças e impedir que a criatividade e inovação sejam desenvolvidas dentro de si. Quando Lean é visto como um programa ou projeto, com início e fim, elas costumam aceitar e realizar o que é pedido. Quando o programa termina, voltam a praticar os mesmo hábitos e comportamentos de antes.

Quando coletivamente as pessoas reconhecem que se não estão melhorando, estão ficando para trás, a compreenssão do trabalho diário muda radicalmente. Esta percepção inspira novas ideias e a reinvenção diária influenciando no sucesso de toda a organização. Com foco constante em melhoria evita-se cair na estagnação no comportamento diário de cada um.

3.1.2.4 Comportamento Proativo

O princípio que fica sobre a base da pirâmide é o de comportamento proativo, que significa tomar iniciativa, assumindo pessoal responsabilidade pela qualidade do próprio trabalho e pelo ambiente de trabalho. Ser proativo significa aproveitar a oportunidade para fazer a diferença dia a dia (BELL; ORZEN, 2011).

Em os 7 Hábitos de Pessoas Altamente Eficazes, o Dr. Stephen Covey introduz um modelo chamado Matriz de Gerenciamento de Tempo, dividindo o trabalho em quatro quadrantes com base na importância e urgência, como ilustrado na imagem abaixo.

Ele ressalta que o trabalho de maior valor encontra-se no quandrante importante e não urgente, onde o planejamento proativo, a prevenção, a preparação e a aprendizagem serão mais fortemente desenvolvidos. Trabalho não planejado concentra-se no quadrante importante e urgente (combate de forma reativa) ou não importante e urgente (atividades que parecem importante devido à sua urgência). Em ambos os casos, eles roubam tempo e recursos que devem ser usados para abordar proativamente o trabalho importante e não urgente. O comportamento reatiavo, geralmente, deixa desperdício e impede o progresso.

Lean desloca-se da ênfase em sempre realizar trabalho não planejado para o trabalho proativo de melhoria contínua. Esta é uma abordagem eficaz porque quanto mais tempo é gasto na melhoria contínua, menos trabalho não planejado e urgente aparecem e mais tempo é liberado para trabalhar de forma proativa.

O próximo nível da pirâmide está relacionado ao conhecimento em três perspectivas: voz do cliente, qualidade na raíz e pensamento sistêmico.

3.1.2.5 Voz do Cliente

A maioria dos processos têm tanto os clientes internos que irão receber os produtos de trabalho e o rendimento deles quanto os clientes externos (parceiros comerciais

Figura 6 – Matriz de Gerenciamento de Tempo (BELL; ORZEN, 2011)

e usuários finais) que rebem o produto final, serviço ou informação. Para compreender claramente a voz do cliente é preciso estar envolvido com os clientes, seja ele quem for (BELL; ORZEN, 2011).

Use a segmentação de clientes, entrevistas, grupos focais, pesquisas, análises de dados e observação para desenvolver e perceber quais são os requisitos de qualidade críticos. Em seguida, é necessário encontrar regurlamente o cliente para garantir melhorias e inovações e entregar o que o cliente mais valoriza.

Assim, constantemente ouvir a voz do cliente garante que você está focado nas questões certas e fazendo melhorias que serão valiosas para os clientes atuais e futuros. Entender as necessidades e desejos dos clientes mais claramente que seu concorrente faz com que seja mais competitivo e ágil.

3.1.2.6 Qualidade na Raíz

A qualidade na raíz significa fazer as coisas certas da primeira vez sempre, trabalho com problemas ou imperfeito não é enviado para etapa seguinte ou para o cliente. A abordagem de concertar mais tarde um problema é praticado em muitas organizações devido a pressão do prazo, inadequado treinamento e conhecimento não adequado do

processo. A melhor hora de resolver um problema é quando ele acontece porque a causa ainda está fresca, os trabalhadores estão atentos e isso previne a adição de defeitos até que a causa do problema seja encontrada. O foco do trabalho diário deve ser produzir qualidade desde o início. Correções demoradas e esclarecimentos tornam-se necessárias quando a qualidade é pobre, criando interrupções e atrasos que aumentam os custos e aborrecimentos (BELL; ORZEN, 2011).

Em um ambiente Lean existe a obrigação de parar e corrigir problemas e um comprometimento coletivo de não deixar que os defeitos conhecidos cheguem até o cliente. Por meio do trabalho padronizado e do treinamento todo esforço é feito para garantir que o problema ou defeito seja repetido novamente. As pessoas assumem a responsabilidade do trabalho que elas passam adiante, independentemente de onde veio o problema. Essa mudança fundamental na atitude reduz o desperdício e a frustração. Com isso, quando a qualidade na raíz toma conta, mais tempo é disponibilizado para desenvolver o que o cliente está pagando, o que por sua vez melhora a produtividade, custo, qualidade e moral.

3.1.2.7 Pensamento Sistêmico

O terceiro elemento do terceiro nível da pirâmide é o pensamento sistêmico: a capacidade de visualizar a interligação entre os processos que compõesm a cadeia de valor inteira embora esteja ciente da interdependência de causa e efeito que podem criar valor ou criar desperdícios (BELL; ORZEN, 2011).

A cadeia de valor é composta de todos os processos, atividades e tarefas usados para gerar um produto ou serviço desde a sua concepção até a sua entrega ao cliente, e inclui todas as informações, procedimentos e materiais. Para evitar soluções que criem otimização localizada, o Pensamento Lean requer conhecimento da natureza da simultaneamente integrada e interdependente de todas as regras de negócio e fluxos de informações.

Esta não é a forma natural que a mente humana e as organizações trabalham, as pessoas tendem a concentrar-se em partes espcíficas de um quebra-cabeça em vez de concentrar-se em toda a imagem. Medidas inadequadas e os incentivos muitas vezes reforçam essa estreita forma de concentrar.

Quando a solução de problemas baseia-se em uma compreensão clara da cadeia de valor global e os clientes que são atendidos por ela, as empresas evitam o erro comum de realizar melhorias locais, que muitas vezes transferem ineficiências e desperdícios de uma área para a outra. Equipes multifuncionais fornecem a amplitude de entendimento necessário para o pensamento sistêmico, abrangendo o fluxo de valor, ligando o conhecimento e a compreensão de cada membro da equipe.

A perspectiva holística mostrada aqui pode ser desconhecida para muitos profissi-

onais que passaram suas carreiras a aperfeiçoar as habilidades em uma área especializada da empresa. Um pensamento sistêmico estimula o potencial criativo dos trabalhadores, ampliando seus horizontes e desafiando a amplitude de sua percepção. Para fazer melhorias que impactam no que é recebido pelo cliente externo, a cadeia de valor deve ser vista como um sistema. O mapeamento do fluxo de valor e o pensamento sistêmico são complementares, ambos ajudam as pessoas a ver processos de negócios em um novo contexto: fluxo. Assim, o pensamento sistêmico permite ver o todo, criando um fluxo de valor para o cliente.

3.1.2.8 Fluxo Contínuo, Produção Puxada e Just in Time

O próximo nível da pirâmide concentra-se no fluxo: a progressão ininterrupta de materiais, serviços e informações. Como Jeffrey Liker enfatiza no "Toyota Way": permitir que o trabalho flua sempre que puder, quando o fluxo é interrompido, utilize sinais para puxar o início do trabalho.

O fluxo é conseguido por meio da eliminação de atrasos e interrupções durante toda a cadeia de valor. O mapeamento do fluxo de valor é uma ferramenta eficaz para identificar, quantificar e eliminar o desperdício. O fluxo de informações produz a transparência e visibilidade necessária para coordenar de forma eficiente o fluxo de trabalho. Quando a informação é usada para nivelar a demanda, equilibrar a capacidade e melhorar a qualidade, o fluxo é melhorado e valor é entregue ao cliente de forma rápida.

Quando não há interrupções em uma série de tarefas, o trabalho flui sem problemas. Tipicamente, o trabalho irá fluir até encontrar uma barreira que impeça sua continuidade, por exemplo, o transporte para o outro local.

A produção puxada diz respeito a o cliente puxar a cadeia de valor. Ou seja, o cliente determina qual é o produto que ele deseja. Com isso, a produção é feita sobre demanda, a produção em massa deve ser eliminada, pois ela empurra o produto para o cliente sem que ele tenha oportunidade de decidir o que é de valor para ele. Assim, a produção puxada inverte o valor produtivo: as empresas não mais empurram os produtos para o consumidor por meio de descontos e promoções. O consumido que passa a "puxar o fluxo do valor", reduzindo estoques e valorizando o produto.

O Just in Time como dito na seção anterior é um dos pilares do Pensamento Lean e estar relacionado aos dois conceitos anteriores. Ele tem como objetivo eliminar todas as fontes de desperdício e tudo o que não acrescenta valor à organização. O princípio para atingir este fim é simples: só produzir o que é pedido pelo cliente e só quando ele o pretende, ou seja, não manter estoques, seja de produtos acabados ou intermediários.

3.1.2.9 Cultura

O princípio topo da pirâmide é a cultura, que representa crenças compartilhadas de uma organização e os valor, que se manifestam como atitude e comportamento. Cultura é o resultado da mudança de comportamento. A cultura Lean de melhoria contínua cria uma capacidade compartilhada que permite que as pessoas busquem ser proativas e resolvam problemas, resultando em um desempenho superior, vantagem competitiva e bons resultados financeiros (BELL; ORZEN, 2011).

A evolução de uma cultura Lean geralmente começa com adoção de práticas de melhoria contínua, seguido pela formação de um comportamento orientado a sistemas e orientado por valores e princípios comuns. As ferramentas fornecem estrutura e capacitação. Sistemas desenvolvem práticas em comum. E princípios fornecem a base que reforça os padrões culturais e o comportamento diário.

3.1.3 Conceitos de Valor e Desperdício

O principal foco do Lean é a resolução de problemas com o propósito de entregar valor ao cliente, com base na sistemática eliminação de desperdícios ao longo do fluxo ou cadeia de valor. Portanto, esses três conceitos: valor, fluxo de valor e desperdícios precisam estar claros.

Para um entendimento mais conciso do Pensamento Lean é importante ainda ter em mente que o termo desperdício recebe uma conotação específica e uma autêntica subordinação à ideia de valor. Ou mais especificamente, ao valor percebido pelos clientes considerando suas expectativas, necessidades e desejos. A melhor maneira para se identificar os desperdícios segundo o pensamento Lean, é você se colocar na posição do seu cliente e refletir criticamente sobre os processos de produção, na forma como são realmente feitos (JARDIM, 2010).

3.1.3.1 Valor

O ponto de partida para o Pensamento Lean consiste em definir o que é valor e o fluxo do valor. Diferente do que muitos pensam, não é a empresa, e sim o cliente quem define o que é valor. Para ele, a necessidade gera o valor, e cabe às empresas determinarem qual é essa necessidade, procurando satisfazê-la e cobrar um preço específico, a fim de manter a empresa no negócio e aumentar seus lucros por meio de melhoria contínua dos processos e da qualidade (LEAN INSTITUTE BRASIL, 2013). Assim, valor é aquilo que o cliente deseja e pelo que ele paga.

3.1.3.2 Cadeia de Valor

O fluxo de valor é composto por todo o ciclo de vida dos processos requeridos para gerar serviços, produtos e informação do conceito ao cliente. Isto incluí todas as atividades, que criam ou não valor. O pensamento sistêmico ajuda as pessoas a perceberem o processo e entender o valor da perspectiva do cliente.

Para isso, é preciso dissecar a cadeia produtiva e separar os processos em três tipos: os que efetivamente geram valor, aqueles que não geram valor, mas são importantes para a manutenção do processo e para a qualidade do processo e do produto, e aqueles que não agregam valor e que devem ser eliminados, ou seja, os desperdícios (LEAN INSTITUTE BRASIL, 2013).

3.1.3.3 Os Três Ms

De acordo com o Lean, os desperdícios podem ser divididos em três categorias, conhecidas como os três Ms: mura, muri e muda. O Mura significa irregularidade e variação, ele representa a inconsistência no fluxo de trabalho, causada pelas mudanças, variedade e qualidade desejadas pelo cliente. É preciso saber minimizar os impactos causados pelo mura por meio da padronização do processo.

O Muri significa sobrecarga, que representa a carga excessiva sobre as pessoas ou sobre os equipamentos, o que pode causar stress, erros e retrabalho. É preciso saber remover sobrecargas por meio da padronização do processo e gerenciamento adequado da demanda. E o Muda diz respeito ao desperdício em si, que na produção da Toyota foram identificados sete: superprodução, estoque, tempo de espera, transporte, processos inadequados, movimentação de pessoas e correção devido à defeitos.

3.1.4 Práticas e Ferramentas

O Pensamento Lean sugere um conjunto de práticas e ferramentas que podem ser aplicadas na organização a fim de atingir os objetivos por defendidos por ele. Vale ressaltar que as práticas aqui apresentada são as consideradas principais, a organização deve buscar aqueles que melhor se adeque ao seu contexto. Como dito anteriormente, as ferramentas servem de estrutura e meio de capacitação, é importante que os trabalhadores, sobretudo, vivam diariamente os princípios da cultura Lean.

3.1.4.1 A3 Thinking

O pensamento A3 é a aplicação consistente do PDCA(Plan, Do, Check and Act) na resolução de problemas para identificar o melhor caminho para enfrentar desafios e oportunidades. O pensamento A3 guia as atividades da equipe em direção a uma correta definição dos problemas ou oportunidades. A ferramenta usada no pensamento A3 é o

relatório A3, que se refere a um formato padronizado de comunicação que expressa o processo de resolução de problema em uma folha de papel em tamanho A3.

O uso de apenas uma folha para expressar todo o conhecimento faz com que as pessoas refinem seus pensamentos de modo que todas as questões e soluções sejam expostas de forma simples (MORGAN; LIKER, 2006).

3.1.4.2 Mapeamento da Cadeia de Valor

O mapeamento da cadeia de valor é uma das ferramentas mais utilizados no Lean, ele permite identificar todas as atividades de um processo da organização que criam ou não criam valor do ponto de vista do cliente, ou seja, permite visualizar todo o fluxo, ao longo da cadeia de valor, desde a conceituação até à entrega ao cliente (BELL; ORZEN, 2011).

O mapeamento do fluxo de valor representa visualmente o fluxo de informações e materiais com ênfase na quantificação de desperdícios e na quantificação de tempo e qualidade. Ele pode ser feito com grande nível de detalhe, porém, tipicamente, o foco está em um nível mais macro do que no mapeamento de processos e não inclui tarefas e decisões individuais.

3.1.4.3 Kaizen

O Kaizen é uma das práticas sugeridas pelo Lean. A palavra Kaizen é a junção de duas palavras japonesas: Kai que significa mudança e Zen que significa bom, porém é comum traduzi-la para melhoria contínua. O Kaizen pode ser considerado uma forma de atingir os objetivos do Lean (BELL; ORZEN, 2011).

Esta melhoria é obtida por todos os trabalhadores focando os esforços na eliminação de todo tipo de desperdício. Apesar de este ser um processo lento e incremental, os ganhos em longo prazo são grandes.

Um dos conceitos utilizados pelo Kaizen é o PDCA, desenvolvido por William Edwards Deming, que é orientado à resolução de problemas, este ciclo enfatiza a prevenção de problemas por meio da padronização em busca da melhoria contínua.

Esta metodologia é composta por quatro etapas:

- Planejar, que é onde é feita a definição do problema, bem como suas possíveis causas e soluções, o estabelecimento de um plano corretivo e os objetivos de forma clara;
- Fazer, que é onde o plano é implementado e os dados são recolhidos para análise;
- Verificar, que é onde é verificado se os dados recolhidos vão de encontro aos objetivos definidos e é feito o registro dos resultados;

• Agir, que é onde são padronizados os resultados que foram eficazes e se houver medidas não eficazes, o ciclo e refeito.

Assim, o Kaizen é um processo incremental e contínuo, que abrange toda a organização e o envolvimento de todos os trabalhadores. Todos devem trabalhar de forma proativa em busca da melhoria diária e acreditar que bons resultados virão em longo prazo.

3.1.4.4 Metodologia 5S

Os 5S pode ser considerada a ferramenta mais básica que o Lean sugere, é considerado um passo a mais em direção à melhoria da qualidade e da produtividade. O objetivo desta prática é organizar o ambiente de trabalho de forma adequada para que o trabalhador tenha, apenas, os materiais e ferramentas necessários para executar seu trabalho a sua disposição de forma rápida (BELL; ORZEN, 2011).

O nome desta metodologia é originado de cinco palavras japonesas: Seiri, Seiton Seiso, Seiketsu e Shitsuke..Para que o método funcione é preciso que as pessoas realmente entendam a importância dele e que ele seja um processo rotineiro e não apenas aplicado de forma isolada.

O primeiro conceito, Seiri, consiste na remoção de todos os materiais e ferramentas não necessários para executar as tarefas diárias. É importante que os itens sejam identificados por frequência de utilização para que sua prioridade seja percebida. Os itens não necessários no momento devem ser armazenados em locais próprios.

O segundo conceito, Seiton, consiste na organização dos itens de trabalho, de forma que eles estejam acessíveis ao trabalhador de forma rápida, aumentando a eficácia e eficiência das atividades. Os itens devem estar alocados em lugares próximos, quando forem físicos, e instalados e configurados no ambiente de trabalho de forma correta, no caso de softwares serem necessários.

O terceiro conceito, Seiso, consiste na limpeza do local de trabalho. O objetivo é proporcionar ao trabalhador um ambiente confortável, limpo e ergonômico. Esta atividade deve ser realizada diariamente, numa atitude de responsabilidade e envolvimento de todos os trabalhadores.

O quarto conceito, Seiketsu, consiste na padronização e sistematização de todas as atividades ditas anteriormente, de forma que estejam disponíveis para todos os trabalhadores, através de processos, planos e etc.

O quarto conceito, Shitsuke, diz respeito à sustentabilidade e disciplina. Para que os resultados sejam visíveis em longo prazo existe a necessidade de ser ter acompanhamento e disciplina, para que seja garantido que todos os trabalhadores estejam exercendo

as atividades que devem ser feitas de modo regular. É preciso ter em mente que quando um problema é identificado não deve julgar ou culpar os trabalhadores, mais sim realizar sessões ou reuniões para que o problema seja resolvido de forma colaborativa e harmoniosa.

3.1.4.5 Kanban

Uma das ferramentas de grande importância associado ao Pensamento Lean é o sistema Kanban, palavra japonesa que significa cartão ou registro visível. Sendo mais um dos conceitos desenvolvidos pela Toyota, este sistema tem como objetivo o balanceamento da produção, e a minimização de estoque. Por meio da gestão visual, os kanbans fornecem de forma simples e intuitiva indicações aos trabalhadores relativas a fluxos de materiais, recursos e informação.

Este sistema é implementado com objetivo de atingir a produção Just-in-Time, ou seja, produzir na quantidade certa, na altura devida e o produto correto. O Kanban limita o trabalho em progresso o que fornece previsibilidade de tempo em ciclos e faz as entregas serem mais confiáveis. A abordagem de "parar a linha de produção" para superar os obstáculos e os erros encontrados, também resulta em níveis mais elevados de qualidade e uma queda rápida de retrabalho. Além disso, o kanban implica um modelo de produção do tipo "pull", ou seja, este sistema desencadeia ordens de produção, numa relação cliente/fornecedor interno (RODRIGUES, 2012).

Figura 7 – Quadro Andon, com o mesmo objetivo do Kanban, na fábrica da Toyota (WIL-LIAMS, 2009)

3.2 Lean no Desenvolvimento de Software

3.2.1 Abordagem

Mary e Tom Poppendieck fizeram um mapeamento dos princípios Lean na Manufatura em sete princípios em Lean no Desenvolvimento de software (POPPENDIECK; POPPENDIECK, 2011). Tais princípios serão detalhados nas seções a seguir.

3.2.2 Princípios

3.2.2.1 Eliminar o Desperdício

Eliminar desperdícios no sistema Lean de produção (manufatura) funciona da seguinte forma: olhar a linha do tempo desde a concepção do produto até a entrega ao cliente, e remover aquilo que não acrescenta valor (desperdícios). No desenvolvimento Lean de software o objetivo de eliminar desperdícos é o mesmo, porém, o início e fim da linha do tempo podem ser alterados. A linha do tempo no desenvolvimento de software tem início no momento do pedido e para quando o pedido é entregue. Reduzir os desperdícios na linha do tempo significa reduzir a própria linha do tempo, ou seja, entregar o que foi pedido o mais rápido possível e com qualidade.

Para conseguir eliminar desperdícios é preciso, primeiramente, identificá-lo. Como desperdício é tudo que não agrega valor, é preciso ter conhecimento do que realmente é o valor. Na área de desenvolvimento de software, identicar o que é valor para o cliente é algo mais complexo, pois, dificilmente, no início do desenvolvimento o cliente sabe realmente o que quer, as suas necessidades e ou seus desejos mudam ao longo do desenvolvimento, alterando a definição do que agrega valor. No entanto, grandes organizações têm conseguido ter um conhecimento profundo do que é valor para o cliente e têm conseguido satisfazer suas necessidades. Assim, o objetivo de todas as organizações é conseguir alcançar esse entendimento profundo de valor.

A partir do momento que as pessoas conseguem identificar o que é valor, é possível começar a desenvolver a capacidade de identificar o que é desperdício. Qualquer atividade, não importante, que impeça o cliente de receber o que ele deseja e quando ele deseja é desperdício. Semelhante ao estoque no sistema produtivo, trabalhos inacabados no desenvolvimento de software gera todos os prejuízos com o fato de ser perdido, estar tecnologicamente atrasado, esconder problemas de qualidade e estagnar dinheiro.

Especificamente no desenvolvimento de software alguns desperdícios acontecem de forma constante: todos os requisistos especificados no início, que obviamente irão sofrer mudanças, testes realizados muito perto do fim, que claramente vão gerar muito retrabalho, e principalmente, funcionalidades desenvolvidas que nunca chegam a ser utilizadas. De fato, estima-se que cerca de 20

3.2.2.2 Integrar Qualidade

A meta dentro do desenvolvimento de software Lean é construir software com qualidade desde o início, não deixar para inserir testes só no final do de senvolvimento. A organização precisa ser bastante disciplinada. Para desenvolver um software com qualidade é preciso controlaras condições desde o começo de forma a não permitir defeitos. Como não é possível previnir todos os defeitos, é indicado inspecionar o produto após cada pequena funcionalidade ser implementada para que possa encontrar o defeito imediatamente após surgirem.

É importante ressaltar que o slogan "faça certo na primeira vez", muito comumente usado, não se refere a construir o código e jamais modificá-lo, mas sim ao fato de usar-se as técnicas Test Driven Development (TDD), integração contínua e refatoração para garantir que um código simples e limpo que agregue valor ao cliente.

3.2.2.3 Criar Conhecimento

O desenvolvimento de software é um processo de criação do conhecimento. Um processo de desenvolvimento concentrado em criar conhecimento esperará que o projeto evolua durante a codificação e não desperdiçará muito tempo fazendo todos os requisitos e arquitetura prematuramente.

As empresas que já mostraram uma excelência a longo prazo em desenvolvimento de produtos compartilham um traço em comum: elas geram novo conhecimento por meio de uma experimentação disciplinada e codificam este conhecimento concisamente para torná-lo acessível ao restante da organização. Essas empresas não somente capturam dados explícitos, mas encontram maneiras de tornar explícito o conhecimento tático e fazê-lo parte da base de conhecimento organizacional (Referencia 16 da pag 53).

É importante ter um processo de desenvolvimento que encoraje o aprendizado sistemático durante todo o ciclo de desenvolvimento, mas também é preciso melhorar os processos de desenvolvimento. Às vezes, na constante busca por padrões ou modelos de processos, as empresas se prendem a uma documentação que torna mais difícil para as equipes de desenvolvimento melhorar diariamente seus próprios processos. Em Lean devem-se melhorar continuamente os processos, porque em ambientes complexos, sempre haverão problemas.

A cada problema, é preciso acionar uma busca pela causa raiz, construir soluções possíveis para o problema e acionar uma mudança no processo para impedir que ele ressurja. Cada equipe de desenvolvimento deve reservar algum tempo para melhorar seus próprios processos.

3.2.2.4 Adiar Comprometimentos

A ideia principal deste princípio é deixar as decisões irreversíveis para o último momento possível, ou seja, a última oportunidade de tomar a decisão antes que seja tarde demais, afinal de contas é um comprometimento que é tomado. Porém, isto não quer dizer que todas as decisões devam ser adiadas. Em primeiro lugar, é preciso tentar tornar a maioria das decisões reversíveis, ou seja, que possam ser mudadas ao decorrer do desenvolvimento sem prejuízos significativos. Um sistema de software não precisa ser completamente flexível, mas precisa que opções sejam preservadas em pontos onde as mudanças invariavelmente ocorram. É preciso experiência para saber quando devem ser mantidas essas opções.

3.2.2.5 Entregar Rápido

É a ideia deste principio é que é preciso entregar o software tão rápido que os clientes não tenham tempo de mudar de ideia. As empresas que competem com base no tempo frequentemente têm uma vantagem significativa de custo sobre seus concorrentes. E para isso ser possível, elas eliminaram uma grande quantidade de desperdício, e desperdício tem influência diretamente no prazo e no custo. Além disso, velocidade repetível e confiável não é possível sem desenvolver com grande qualidade e, ainda, para ter sucesso tais empresas desenvolveram um profundo conhecimento sobre o que é valor para o cliente. Com a rapidez, é possível testar novas ideias e aprender o que funciona ou não funciona.

3.2.2.6 Respeitar as Pessoas

O princípio de respeitar as pessoas diz respeito a não impedir que as pessoas façam seus trabalhos só porque um outra pessoa acredita que não é a melhor forma de fazê-lo. Todos devem respeitar-se e trabalharem juntos na melhor solução. No processo de desenvolvimento também deve haver respeito, todos devem fazer parte da melhoria contínua dos processos. Existem três bases que sustentam o respeito às pessoas:

Líder empresarial: uma empresa que respeita as pessoas desenvolve bons líderes e garante que a equipe tenha o tipo de liderança que promove pessoas engajadas e pensantes, concentrando seus esforços na criação de um ótimo produto.

Mão de obra técnica especializada: empresas sábias garantem que a especialização técnica apropriada seja estimulada dentro da própria empresa e que as equipes estejam abastecidas da especialização necessária para atingir determinado objetivo.

Responsabilidade baseada em planejamento e controle: respeitar as pessoas significa que as equipes recebem planos genéricos e objetivos claros, e em vez de dizer como e o que fazer, desenvolve uma organização reflexiva onde as pessoas usam suas cabeças e descobrem isso sozinhas.

3.2.2.7 Otimizar o Todo

Uma organização Lean otimiza todo o fluxo de valor, do momento em que recebe o pedido visando uma necessidade do cliente até o momento em que o software seja implantado e a necessidade do cliente seja atendida. Se houver concentração em otimizar apenas uma pequena parte do todo, inevitavelmente, o fluxo de valor completo sofrerá.

3.2.3 Práticas

3.2.3.1 Gerenciamento de Código Fonte e Scripts de Builds

O Gerenciamento de Código Fonte e Scripts de Builds não são práticas exclusivas do Lean, mas sim uma prática que deveria ser usada adotando Lean ou não, por isso é considerada como um pré-requisito para as práticas do Lean. Estas práticas ajudam a construir um time disciplinado e um ambiente de desenvolvimento estável.

O Gerenciamento de Código Fonte também é conhecido como controle de versão, basicamente, diz respeito a manter todo o código fonte e outros artefatos importantes do projeto em um repositório que mantém um histórico de versões de todos os itens de configuração, que são artefatos que precisam ser mantido sobre controle, pois sofrem mudanças e evoluções. Com o controle de versão é possível recuperar uma configuração, versão dos itens de configuração, em um momento desejado do tempo. Sempre é possível retornar a uma versão estável (baseline) quando erros são identificados.

O objetivo de realizar scripts de builds é automatizar todo o processo de construção do sistema e garantir que as mudanças no projeto são construídas, testadas e relatadas tão logo quanto o possível depois de serem relatadas. Como resultado, o build do sistema é gerado da mesma forma em todas as vezes. Esta prática elimina erros escondidos e torna mais fácil a inserção de novos integrantes à equipe. E também torna mais fácil realizar testes e a entrega de release do software, uma vez que constrói arquivos executáveis e de instalação do produto (HIBBS; JEWETT; SULLIVAN, 2009).

3.2.3.2 Teste Automatizado

Um sistema à prova de erros é uma das práticas fundamentais do Lean. É parte central da produção de um produto com qualidade e da redução de desperdícios. O teste automatizado é um dos principais meios de evitar erros no desenvolvimento de software. O teste automatizado engloba todos os tipos de testes: teste unitário, teste de integração, teste de aceitação, teste de desempenho, teste de carga, desenvolvimento orientado a testes, etc.

Cada um dos tipos de testes possui um objetivo principal, mas todos eles têm os seguintes objetivos em comum:

- Os testes são criados manualmente pelos desenvolvedores.
- Todos os testes podem ser executados automaticamente, sem intervenção humana.
- Os erros são detectados automaticamente.
- O desenvolvedor é notificado quando os erros acontecem.

O teste automatizado suporta três princípios do Lean: eliminação de desperdícios, qualidade na raiz e criar conhecimento. Ele ajuda a eliminar desperdícios que geram retrabalho e custos quando erros são detectados apenas nas fases finais do ciclo de desenvolvimento de software. No que diz respeito a construir com qualidade, o teste automatizado é um dos principais meios. Uma base de código com uma suíte de testes automatizados realiza a validação e checagem de forma automática, o que reduz a possibilidade de erros não detectados seja introduzido dentro do software.

Além disso, os testes automatizados servem como uma documentação atualizada do que está sendo feito. Ele cria um conhecimento primário e confiável para os desenvolvedores porque garante conformidade com o esperado toda vez que a suíte de teste é executada com sucesso (HIBBS; JEWETT; SULLIVAN, 2009).

3.2.3.3 Integração Contínua

A integração diz respeito ao momento que todos os módulos ou componentes do software que está sendo desenvolvido são executados juntos. Componentes individuais, banco de dados, interfaces de usuário e recursos do sistema são todos reunidos e testados em cima da arquitetura. A integração envolve verificar a comunicação dos componentes e garantir que a mensagem passada entre eles é compatível e completa.

O processo de desenvolvimento tradicional trata integração como uma fase separada que ocorre depois que todos os componentes tenham sido implementados, o que costuma gerar uma serie de correções e retrabalho. A integração contínua transforma a tradicional fase de integração em uma atividade que ocorre durante toda o processo de implementação do sistema.

A integração contínua é o processo de integrar pequenas mudanças em uma base estável para entrega de um novo release do produto. Integrando pequenas mudanças em um curto intervalo, os desenvolvedores podem evoluir o produto um pouco de cada vez enquanto garantem que cada novo pedaço funciona corretamente com todo o resto do sistema. A integração contínua usa testes unitários para garantir que cada pequena parte do sistema está implementada corretamente e usa o gerenciamento do código fonte e os scripts de build para garantir que a cada nova pequena integração nada foi quebrado, ou seja, garantir que o sistema continue funcionando corretamente como um todo (HIBBS; JEWETT; SULLIVAN, 2009).

3.2.3.4 Menos Código

A prática de escrever menos código não diz respeito a escrever menos software, mas sim a ter todas as funcionalidades implementadas com poucas linhas de código e de maneira simples. Diz respeito a eliminar código desnecessário e fazer com que o código necessário se torne mais eficiente, mantendo a base de código pequena ao menos tempo em que funcionalidades (valor) são entregues ao cliente.

O tamanho da base de código afeta o projeto de vários modos. Quanto maior o código maior é a quantidade de componentes que precisam ser conectadas e mais esforço de integração será gasto. Quanto maior o tamanho da base de código mais erros podem ser gerados e mais esforço para encontrar e corrigir os erros será gasto. Ainda, quanto maior o tamanho maior é a dificuldade de entender o que foi desenvolvido, aumentando a curva de aprendizado de novos desenvolvedores e futuros mantedores.

Como uma base de código grande acarreta em mais componentes, mais bugs e grande curva de aprendizagem, como consequência terá mais custos em desenvolvimento e manutenção. A definição de desperdício no desenvolvimento Lean é qualquer coisa que aumente os custos sem produzir valor, então o custo de desenvolvimento e manutenção resultante de uma grande base de código pode ser considerado como desperdício.

Para escrever menos código e manter o valor desejado pelo cliente, os desenvolvedores precisam adotar uma atitude de olhar criticamente para cada linha de código. Minimizar o tamanho do código, no entanto, não é limitar a implementação. Os desenvolvedores precisam ser minimalistas durante todo o processo de desenvolvimento, desenvolvendo de maneira simples cada funcionalidade. Um design simplista facilita, ainda, a implementação de mudanças (HIBBS; JEWETT; SULLIVAN, 2009). Os padrões e técnicas podem ser utilizados para auxiliar os desenvolvedores a desenvolver apenas o código que é realmente necessário, por exemplo, utilizar padrões de design, reuso e refatoração.

3.2.3.5 Iterações Curtas

O desenvolvimento iterativo entrega software funcional ao cliente para avaliação a cada intervalo específico de tempo. Cada iteração adiciona novas funcionalidades ao produto e aumenta o entendimento do cliente sobre como o produto final irá atender à suas necessidades. A efetividade do processo iterativo vem da oportunidade de ter o feedback do cliente e incorporar esse feedback ao desenvolvimento. O feedback do cliente é que irá direcionar a próxima iteração quanto a adição, remoção ou modificação de requisitos e implementação. Quanto menor a iteração, mais oportunidades de receber o feedback do cliente e maior é a possibilidade de atender o que o cliente deseja no produto final.

As iterações curtas suportam três princípios do Lean: eliminar desperdício, adiar

compromisso e entrega rápida. Existem duas formas de desperdícios advindos de iterações largas, o trabalho parcial, aquele que não é construído de forma completa seja com requisitos não implementados ou incompletos quanto com código não testado, porque não adiciona novo valor ao produto e o replanejamento, quando o planejamento inicial é feito para um futuro muito distante e as necessidades e desejos do cliente podem mudar fazendo com que seja preciso o realizar o replanejamento, porque o trabalho planejado anteriormente é desperdiçado. As iterações curtas previnem tais situações de desperdícios, pois o esforço fica concentrado em desenvolver o que é de alta prioridade para o cliente mais rapidamente e planeja tão longe quanto necessário para manter o desenvolvimento.

O princípio de adiar compromisso, como já explicado anteriormente, diz respeito a adiar decisões importantes tanto quanto possível. Adiar tais decisões fornece aos desenvolvedores tempo para coletar e entender as informações necessárias para o desenvolvimento, e iterações curtas dão oportunidades de coletar informações por meio do feedback do cliente. Os desenvolvedores podem criar protótipos do produto final já nas iterações iniciais, recebem o feedback e usam o feedback para decidir a implementação final nas iterações finais (HIBBS; JEWETT; SULLIVAN, 2009).

As iterações curtas, claramente, suportam o princípio de entrega rápida devido a redução dos intervalos de contato com o cliente e por entregar novas funcionalidades rapidamente para receber feedback. Em vez de esperar até o final do desenvolvimento para vê os efeitos das suas solicitações, o cliente já poderá visualizá-los na próxima iteração.

3.2.3.6 Participação do Cliente

Se o objetivo do desenvolvimento de um produto é criar um produto que o cliente irá usar, é importante ter a participação do cliente em grande parte do processo. Os conceitos de priorizar requisitos e de realizar correções de acordo com o feedback do cliente necessitam de participação ativa do cliente no processo de desenvolvimento. Os clientes são as melhores fontes de informações sobre o domínio do problema. Eles sabem as atividades que precisam ser feitas, eles sabem as condições que o software será executado e eles sabem os objetivos que desejam atingir com a solução. No entanto, eles raramente sabem sobre a tecnologia que será usada na implementação da solução.

Por outro lado, os desenvolvedores sabem sobre as a tecnologias e sabem o caminho mais eficiente para modelar e implementar problemas e soluções. O que os desenvolvedores não sabem é sobre os conhecimentos do negócio no qual a solução será incorporada.

Combinando o conhecimento do negócio do cliente com o conhecimento técnico do desenvolvedor cria uma equipe dinâmica que resulta em um desenvolvimento de um melhor produto. Desenvolvedor e clientes trabalhando juntos inspiram um ao outro a criar algo melhor do que eles poderiam criar individualmente (HIBBS; JEWETT; SULLIVAN, 2009).

3.2.3.7 Kanban

O Kanban no desenvolvimento de software surgiu a partir do Kanban do Lean na manufatura, ambos usam um mecanismo de controle visual para acompanhar o trabalho à medida que ele flui através das várias etapas do fluxo de valor.

3 Ready Development Acceptance test To be Backlog In progress Pri Systemtest for AT Deployed In progress Done In progress Done User story 2 User story 1 story 4 User User story 5 story 3 User story 6 User story 7 Emergency fixes 1 Legend Done In progress КJ Critical Feature Team member

Kanban board

Figura 8 – Quadro Kanban (JENSES, 2009)

O Kanban não é um processo ou ciclo de vida de gerenciamento de projetos ou de desenvolvimento de software. Ele é uma abordagem para introduzir mudanças em um ciclo de desenvolvimento de software ou metodologia de gerenciamento de projetos. O Kanban tem três conceitos básicos: visualizar o fluxo de trabalho, limitar o trabalho em progresso (WIP – work in progress) e medir e melhorar o fluxo.

Para visualizar o fluxo de trabalho divida o trabalho em partes, escreva cada item em um cartão, ou post-its, e coloque no quadro Kanban, e use colunas nomeadas para ilustrar onde cada item está no fluxo de trabalho. Com o mapeamento do fluxo de trabalho já é possível ter o entendimento do processo atual. Para limitar o WIP é preciso associar limites explícitos para quantos itens podem estar em progresso em cada estado do fluxo de trabalho, existe um número limite de tarefas que podem ser bem feitas durante um mesmo período de tempo. É preciso saber também a diferença entre a complexidade das tarefas, duas tarefas podem ser feitas em uma semana assim como duas tarefas podem

ser feitas em três horas, tudo dependerá de quanto esforço será gasto em cada uma. As métricas do Kanban ajudam a chegar a um número ótimo.

Figura 9 – Work in Progress (KLIPP, 2011)

Além disso, com o WIP limitado em um sistema Kanban, tudo que fica bloqueado por qualquer motivo tende a parar o sistema. Se certa quantidade de itens de trabalho fica bloqueada, todo o processo para de funcionar. Isso cria a necessidade de concentrar toda a equipe e toda a empresa na solução do problema para desbloquear o item e restaurar o fluxo.

A melhoria deve sempre ser baseada em objetivos mensuráveis, e no Kanban isto não é diferente. Encontrar e aplicar boas métricas é geralmente um passo difícil, mas algumas métricas simples automaticamente geradas por uma aplicação pode dar a informação necessária para otimizar o processo e maximizar a eficiência (KLIPP, 2011).

Figura 10 – Gráfico de Medições Kanban (KLIPP, 2011)

O Kanban, no entanto, vai um passo além e dá transparência ao processo e seu

fluxo. O Kanban expõe gargalos, filas, variabilidade e desperdício. Tudo que impacta o desempenho da organização em termos de quantidade de trabalho de valor entregue e o tempo de ciclo necessário para entregá-lo. Proporciona aos membros da equipe e às partes interessadas externas a visibilidade sobre os efeitos de suas ações (ou falta de ações) e esta visibilidade incentiva a discussão sobre melhorias que precisam ser feitas nos seus processos encorajando a evolução incremental dos processos existentes. Ainda, o Kanban, através da natureza do sistema pull, encoraja também comprometimento tardio, tanto em priorização de trabalho novo quanto na entrega de trabalho existente (KNIBERG; SKARIN, 2009).

Parte IV

METODOLOGIAS ÁGEIS DE DESENVOLVIMENTO DE SOFTWARE

4 Metodologias Ágeis de Desenvolvimento de Software

- 4.1 O Manifesto Ágil
- 4.1.1 Princípios
- 4.2 Scrum
- 4.2.1 O Framework
- 4.2.2 Papéis
- 4.2.3 Artefatos
- 4.2.4 Cerimônias
- 4.3 Contratação Ágil nas Organizações Públicas

Parte V A PROPOSTA DE TRABALHO

5 A Proposta de Trabalho

- 5.1 Definição da Proposta
- 5.2 Estudo de Caso
- 5.2.1 Contexto
- 5.2.2 Hipóteses
- 5.2.3 Fonte e Método de Coleta de Dados
- 5.3 Resultados Esperados
- 5.4 Cronograma de Execução
- 5.5 Conclusão

Referências

- BELL, S. C.; ORZEN, M. A. Lean IT Enabling and Sustaining your Lean Transformation. [S.l.: s.n.], 2011. Citado 8 vezes nas páginas 10, 38, 39, 40, 41, 43, 45 e 46.
- BRASIL. Lei n^a 8.666/93, de 21 de Junho de 1993: Regulamenta o art. 37, inciso xxi, da constituição federal, institui normas para licitações e contratos da administração pública e dá outras providências. [S.l.], 1993. Citado na página 25.
- BRASIL. *Instrução Normativa nº 04*: Dispõe sobre o processo de contratação de soluções de tecnologia da informação pelos órgãos integrantes do sistema de administração dos recursos de informação e informática (sisp) do poder executivo federal. [S.l.], 2010. Citado na página 27.
- CRUZ, C. S.; ANDRADE, E. L. P.; FIGUEIREDO, R. M. C. Processo de Contratação de Serviços de Tecnologia da Informação para Organizações Públicas. [S.l.: s.n.], 2011. Citado na página 25.
- GUEDES, P. 2012. Citado 2 vezes nas páginas 10 e 37.
- HIBBS, C.; JEWETT, S.; SULLIVAN, M. The Art of Lean Software Development. [S.l.: s.n.], 2009. Citado 5 vezes nas páginas 35, 51, 52, 53 e 54.
- JARDIM, R. S. C. e G. Os Cinco Passos do Pensamento Enxuto. [S.l.: s.n.], 2010. Citado na página 43.
- JENSES, K. 2009. Disponível em: <http://ketiljensen.wordpress.com/2009/10/31-/kanban-the-next-step-in-the-agile-evolution/>. Citado 2 vezes nas páginas 10 e 55.
- KATAYAMA, E. A contribuição da indústria da manufatura no desenvolvimento de software. [S.l.: s.n.], 2010. Citado na página 36.
- KLIPP, P. Getting Started with Kanban. [S.l.: s.n.], 2011. Citado 2 vezes nas páginas 10 e 56.
- KNIBERG, H.; SKARIN, M. Kanban e Scrum obtendo o melhor de ambos. [S.l.: s.n.], 2009. Citado na página 57.
- LEAN INSTITUTE BRASIL. 2013. Disponível em: http://www.lean.org.br/o_que_e-aspx. Citado 2 vezes nas páginas 43 e 44.
- MINISTÉRIO DO PLANEJAMENTO, ORÇAMENTO E GESTÃO. Guia Prático para Contratação de Soluções de Tecnologia da Informação. Brasília, Brasil, 2011. Citado na página 24.
- MORGAN, J. M.; LIKER, J. K. The Toyota product development system: integrating people, process, and technology. [S.l.: s.n.], 2006. Citado na página 45.
- POPPENDIECK, M.; POPPENDIECK, T. Implementando o Desenvolvimento Lean de Software: Do conceito ao dinheiro. [S.l.: s.n.], 2011. Citado 2 vezes nas páginas 36 e 48.

Referências 63

RODRIGUES, M. J. F. Implementação de práticas Lean numa linha de produção eletrónica. [S.l.: s.n.], 2012. Citado na página 47.

TRIBUNAL DE CONTAS DA UNIÃO. Guia de boas práticas em contratação de soluções de tecnologia da informação. Brasília, Brasil, 2012. Citado na página 24.

WILLIAMS, S. 2009. Disponível em: . Citado 2 vezes nas páginas 10 e 47.">http://wheels.blogs.nytimes.com/2009/09/04-/toyota-quality-control-includes-greensleeves-and-popeye/?_r=1>. Citado 2 vezes nas páginas 10 e 47.

APÊNDICE A – Primeiro Apêndice

Texto do primeiro apêndice.

APÊNDICE B – Segundo Apêndice

Texto do segundo apêndice.

ANEXO A - Primeiro Anexo

Texto do primeiro anexo.

ANEXO B – Segundo Anexo

Texto do segundo anexo.