AML5103: Applied Probability & Statistics – Formula Sheet – August 14, 2023

1. Counting formulas:

Setup	Formula
# of ways to select (without replacement) and arrange (order matters) n distinct objects	n!
# of ways to distribute n distinct objects into n distinct bins with one object per bin	<i>11</i> :
# of ways to select (without replacement, order doesn't matter) r objects out of n distinct objects	
# of ways to arrange n objects when one object repeats r times and the other $n-r$ times	$\binom{n}{r} = nC_r$
# of ways to divide n distinct objects into two unlabeled groups of unequal sizes r and $n-r$	()
# of ways to divide n distinct objects into two labeled groups of specific sizes r and $n-r$	
# of ways to select (without replacement) and arrange (order matters) r objects out of n distinct objects	$r! \binom{n}{r} = nP_r$
# of ways to distribute r distinct objects into n distinct bins with at most one object per bin	$r: \binom{r}{r} = n_{F_r}$
# of ways to select (with replacement) and arrange (order matters) r objects out of n distinct objects	_
# of ways to distribute r distinct objects into n distinct bins	n^r
# of ways to arrange n objects with r_1, r_2, \ldots, r_k repetitions, where $n = r_1 + r_2 + \cdots + r_k$	n!
# of ways to divide n distinct objects into k unlabeled groups of unequal sizes r_1, r_2, \ldots, r_k , where $n = r_1 + r_2 + \cdots + r_k$	$\overline{r_1!r_2!\cdots r_k!}$
# of ways to divide n distinct objects into k labeled groups of specific sizes r_1, r_2, \ldots, r_k , where $n = r_1 + r_2 + \cdots + r_k$	
# of ways to divide n distinct objects into k unlabeled groups with some of equal sizes, say $r_1 = r_2$, $r_3 = r_4 = r_5$, and r_6, \ldots, r_k are different such that $n = r_1 + r_2 + \cdots + r_k$ 3 groups	$\left(\frac{1}{2!3!}\right)\left(\frac{n!}{r_1!r_2!\cdots r_k!}\right)$
# of ways to select r objects (with replacement, order doesn't matter) out of n distinct objects	(, 1)
# of ways to distribute r identical objects into n distinct bins	$\binom{n+r-1}{r}$
# of non-negative integer solutions to the equation $x_1 + x_2 + \cdots + x_n = r$	\ ' /
# of ways to distribute r identical objects into n distinct bins such that no bin is empty	$\binom{r-1}{n-1}$
# of positive integer solutions to the equation $x_1 + x_2 + \cdots + x_n = r$	$\binom{n}{n}-1$

2. Inclusion–exclusion principle for 4 events:

$$P(A_1 \cup A_2 \cup A_3 \cup A_4) = P(A_1) + P(A_2) + P(A_3) + P(A_4)$$

$$- P(A_1 \cap A_2) - P(A_1 \cap A_3) - P(A_1 \cap A_4) - P(A_2 \cap A_3) - P(A_2 \cap A_4) - P(A_3 \cap A_4)$$

$$+ P(A_1 \cap A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_4) + P(A_1 \cap A_3 \cap A_4) + P(A_2 \cap A_3 \cap A_4)$$

$$- P(A_1 \cap A_2 \cap A_3 \cap A_4).$$

3. Conditional probability:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \Leftrightarrow P(A \cap B) = P(A \mid B) \times P(B).$$

4. Law of total probability:

For event A and the mutually exclusive & collectively exhaustive set of events $\{B_1, B_2, \ldots, B_k\}$ for the same sample space,

$$P\left(\underbrace{A \cap B_{1}}_{\text{e.g., has Cancer}}\right) = P\left(\underbrace{A \cap B_{1}}_{\text{has Cancer AND from State-1}}\right) + P\left(\underbrace{A \cap B_{2}}_{\text{has Cancer AND from State-2}}\right) + \dots + P\left(\underbrace{A \cap B_{k}}_{\text{has Cancer AND from State-k}}\right)$$

$$= P(A \mid B_{1}) \times P(B_{1}) + P(A \mid B_{2}) \times P(B_{2}) + \dots + P(A \mid B_{k}) \times P(B_{k}).$$

Additional conditioning form:

$$P\left(\underbrace{A \cap B_{1}}_{\text{e.g., has Cancer}} \mid \text{male}\right) = P\left(\underbrace{A \cap B_{1}}_{\text{has Cancer AND from State-1}} \mid \text{male}\right) + P\left(\underbrace{A \cap B_{2}}_{\text{has Cancer AND from State-2}} \mid \text{male}\right) + \dots + P\left(\underbrace{A \cap B_{k}}_{\text{has Cancer AND from State-k}} \mid \text{male}\right) = P(A \mid B_{1}, \text{ male}) \times P(B_{1} \mid \text{male}) + P(A \mid B_{2}, \text{ male}) \times P(B_{2} \mid \text{male}) + \dots + P(A \mid B_{k}, \text{ male}) \times P(B_{k} \mid \text{male}).$$

5. Bayes' theorem:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B \cap A)}{P(B)} = \frac{P(B \mid A) \times P(A)}{P(B)} = \frac{P(B \mid A) \times P(A)}{P(B \mid A) \times P(A) + P(B \mid A^c) \times P(A^c)}$$

Additional conditioning form:

$$P(A \mid B, \mathbf{C}) = \frac{P(B \mid A, \mathbf{C}) \times P(A \mid \mathbf{C})}{P(B \mid \mathbf{C})} = \frac{P(B \mid A, \mathbf{C}) \times P(A \mid \mathbf{C})}{P(B \mid A, \mathbf{C}) \times P(A \mid \mathbf{C}) + P(B \mid A^c, \mathbf{C}) \times P(A^c \mid \mathbf{C})}.$$

6. Discrete random variables:

Random Variable X	Parameters	Values Taken j or x	$\mathbf{PMF} \ P_X(j) \\ = P(X=j)$	Expected Value $E[X]$ = $\sum_{j} j P_X(j)$	Variance $Var[X]$ = $\sum_{j} (j - E[X])^{2} P_{X}(j)$
Bernoulli	p	j = 0, 1	$p^j(1-p)^{1-j}$	p	p(1 - p)
Multinoulli	p_1, p_2, \ldots, p_k	$x = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$ assuming $k=4$	$\prod_{i=1}^k p_i^{I(x_i=1)}$	$ \underbrace{\begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix}}_{\text{assuming } k=4} $	$\underbrace{\begin{bmatrix} p_1(1-p_1) \\ p_2(1-p_2) \\ p_3(1-p_3) \\ p_4(1-p_4) \end{bmatrix}}_{\text{assuming } k=4}$
Binomial	n, p	$j = 0, 1, \dots, n$	$\binom{n}{j}p^j(1-p)^{n-j}$	np	np(1-p)
Multinomial	n, p_1, p_2, \cdots, p_k	$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}, \text{ where } \sum_{i=1}^4 x_i = n$ assuming $k=4$	$\underbrace{\binom{n}{x_1, x_2, x_3, x_4} \prod_{i=1}^4 p_i^{x_i}}_{\text{assuming } k=4}$	$\underbrace{\begin{bmatrix} np_1 \\ np_2 \\ np_3 \\ np_4 \end{bmatrix}}_{\text{assuming } k=4}$	$\underbrace{\begin{bmatrix} np_1(1-p_1) \\ np_2(1-p_2) \\ np_3(1-p_3) \\ np_4(1-p_4) \end{bmatrix}}_{\text{assuming } k=4}$
Negative Binomial	r, p	$j=r,r+1,\ldots$	$\binom{j-1}{r-1} p^r (1-p)^{j-r}$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$
Geometric	p	$j=1,2,\ldots$	$(1-p)^{j-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Poisson	λ	$j=0,1,\dots$	$\frac{e^{-\lambda}\lambda^j}{j!}$	λ	λ
Hypergeometric	$n_{success}, n_{failure}, n$	$j=0,1,\ldots,n$	$\frac{\binom{n_{success}}{j}\binom{n_{failure}}{n-j}}{\binom{n_{success}+n_{failure}}{n}}$	where $p = \frac{np}{n_{success}}$	where $N = \frac{\frac{np(1-p)(N-n)}{N-1}}{n}$, where $N = n_{success} + n_{failure}$

7. Connections:

- $X \sim \text{Bin}(n = 1, p)$ is same as $X \sim \text{Bernoulli}(p)$.
- $X \sim \text{NegBin}(r = 1, p)$ is same as $X \sim \text{Geom}(p)$.
- If $X \sim \text{HypGeom}(n_{success}, n_{failure}, n)$ such that $n << (n_{success} + n_{failure})$ and $n_{success}$ is not close to 0 and $n_{success} + n_{failure}$ then $X \sim \text{Bin}(n, p)$ approximately where $p = n_{success}/(n_{success} + n_{failure})$.
- For n >> p, $X \sim \text{Bin}(n, p)$ implies $X \sim \text{Poi}(\lambda = n \times p)$ approximately.