MAT-206: Funciones de inferencia

Felipe Osorio

fosorios.mat.utfsm.cl

Departamento de Matemática, UTFSM

Configuración:

Vamos a suponer que el vector aleatorio $oldsymbol{Y}$ puede ser escrito como

$$\boldsymbol{Y} = (\boldsymbol{Y}_1^\top, \dots, \boldsymbol{Y}_n^\top)^\top,$$

donde los \boldsymbol{Y}_i 's son independientes. Asumiremos también que \boldsymbol{Y} sigue un modelo estadístico

$$\mathcal{P} = \{ \mathsf{P}_{\beta} : \beta \in \mathcal{B} \}, \qquad \mathcal{B} \in \mathbb{R}^k,$$

y \mathcal{Y} es el espacio muestral.

Definición 1:

Una función $g_n:\mathcal{B}\times\mathcal{Y}\to\mathbb{R}^k$ tal que $g_n(\boldsymbol{\beta};\cdot)$ es medible para todo $\boldsymbol{\beta}\in\mathcal{B}$ se dice una función de estimación.

Observación:

Para una función de inferencia g_n y una muestra $Y \in \mathcal{Y}$ dadas, es posible obtener un estimador $\widehat{\beta} = \widehat{\beta}(Y)$ como solución de la ecuación

$$\boldsymbol{g}_n(\boldsymbol{\beta}; \boldsymbol{Y}) = \boldsymbol{0}.$$

Ejemplo (Regresión lineal):

Sea Y_1, \ldots, Y_n variables independientes tal que $\mathsf{E}(Y_i) = \boldsymbol{x}_i^{\top}\boldsymbol{\beta}$, para $i = 1, \ldots, n$, donde \boldsymbol{x}_i es vector de covariables y $\boldsymbol{\beta}$ denota coeficientes de regresión. La ecuación de estimación asociada a OLS es:

$$g_n(\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^n \boldsymbol{x}_i (Y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta}) = \mathbf{0}.$$

Note que

$$\mathsf{E}(\boldsymbol{g}_n(\boldsymbol{\beta})) = \mathbf{0},\tag{1}$$

de ahí que (1) corresponde a una condición de momentos.

Resolviendo $g_n(\beta) = 0$ con relación a β , obtenemos las ecuaciones

$$\sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top} \widehat{\boldsymbol{\beta}}_{n} = \sum_{i=1}^{n} \boldsymbol{x}_{i} Y_{i},$$

lo que lleva al estimador OLS,

$$\widehat{\boldsymbol{\beta}}_n = \Big(\sum_{i=1}^n \boldsymbol{x}_i \boldsymbol{x}_i^{\top}\Big)^{-1} \sum_{i=1}^n \boldsymbol{x}_i Y_i = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}.$$

Es decir, OLS es un estimador de momentos.

Ejemplo (Regresión no-lineal):

Considere Y_1,\ldots,Y_n independientes con $\mathsf{E}(Y_i)=f(\boldsymbol{x}_i;\boldsymbol{\beta})$ donde $f(\cdot;\boldsymbol{\beta})$ es una función suave de $\boldsymbol{\beta}$. La función de estimación es dada por

$$\boldsymbol{g}_n(\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^n \Big(\frac{\partial f(\boldsymbol{x}_i; \boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \Big) (Y_i - f(\boldsymbol{x}_i; \boldsymbol{\beta})).$$

La función $g_n(\beta)$ es fácil de estudiar debido a que es lineal en los residuos

$$r_i(\boldsymbol{\beta}) = Y_i - f(\boldsymbol{x}_i; \boldsymbol{\beta}), \qquad i = 1, \dots, n.$$

Observación:

Considere Y_1, \ldots, Y_n variables aleatorias independientes con log-verosimilitud conjunta

$$\ell_n(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^n \log f(y_i; \boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^n \ell_i(\boldsymbol{\theta}).$$

La condición de primer orden adopta la forma:

$$\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \ell_{i}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}_{\mathsf{ML}}} = \mathbf{0},$$

permite notar que los estimadores ML tienen una interpretación de momentos. 1

¹En efecto, $\mathsf{E}(U_n(\theta)) = 0$.

Definición 2 (Vector de residuos):

Un vector aleatorio m-dimensional $m{r}(m{eta};m{Y})$ es llamado un vector de residuos si:

(i) r es insesgado, es decir,

$$\mathsf{E}_{\beta}\{\boldsymbol{r}(\boldsymbol{\beta};\boldsymbol{Y})\}=\mathbf{0}.$$

(ii) r tiene matriz de variabilidad

$$\boldsymbol{V}_r(\boldsymbol{\beta}) = \mathsf{Cov}(\boldsymbol{r}(\boldsymbol{\beta};\boldsymbol{Y}))$$

Observación:

- Un vector $r(\beta)$ se dice no-singular si $V_r(\beta)$ es definida positiva para todo β .
- Note el énfasis que se hace sobre supuestos de momentos.

Un vector $r(\beta)$ es llamado suave si $r(\cdot; Y)$ es diferenciable para casi todo Y, y la matriz de sensibilidad $m \times k$

$$S_r(\beta) = \mathsf{E}_{\beta} \left\{ \frac{\partial r(\beta)}{\partial \beta} \right\},$$

existe para todo β .

Definición 3 (Información de Godambe):

Para un vector residual no-singular y suave, $r(\beta)$ se define la matriz de información de Godambe 2 como:

$$G_r(\boldsymbol{\beta}) = S_r^{\top}(\boldsymbol{\beta}) V_r^{-1}(\boldsymbol{\beta}) S_r(\boldsymbol{\beta}).$$

²Note la forma de sandwich

Sea ${m A}({m eta})$ matriz p imes m no estocástica y considere

$$q(\beta) = A(\beta)r(\beta).$$

De ahí que

$$\boldsymbol{V}_q(\boldsymbol{\beta}) = \mathsf{Cov}(\boldsymbol{q}(\boldsymbol{\beta})) = \boldsymbol{A}(\boldsymbol{\beta}) \boldsymbol{V}_r(\boldsymbol{\beta}) \boldsymbol{A}^\top(\boldsymbol{\beta}).$$

Resultado 1:

Para ${m A}({m eta})$ matriz p imes m no estocástica y ${m r}({m eta})$ regular. Entonces

$$S_q(\boldsymbol{\beta}) = A(\boldsymbol{\beta})S_r(\boldsymbol{\beta}).$$

Demostración:

En efecto,

$$\begin{split} \boldsymbol{S}_q(\boldsymbol{\beta}) &= \mathsf{E}\{\nabla_{\boldsymbol{\beta}}\boldsymbol{q}(\boldsymbol{\beta})\} = \mathsf{E}\{[\nabla_{\boldsymbol{\beta}}\boldsymbol{A}(\boldsymbol{\beta})]\boldsymbol{r}(\boldsymbol{\beta}) + \boldsymbol{A}(\boldsymbol{\beta})\nabla_{\boldsymbol{\beta}}\boldsymbol{r}(\boldsymbol{\beta})\} \\ &= [\nabla_{\boldsymbol{\beta}}\boldsymbol{A}(\boldsymbol{\beta})]\,\mathsf{E}\{\boldsymbol{r}(\boldsymbol{\beta})\} + \boldsymbol{A}(\boldsymbol{\beta})\,\mathsf{E}\{\nabla_{\boldsymbol{\beta}}\boldsymbol{r}(\boldsymbol{\beta})\} \\ &= \boldsymbol{A}(\boldsymbol{\beta})\boldsymbol{S}_r(\boldsymbol{\beta}) \end{split}$$

Considere $r(\beta)$ y $s(\beta)$ vectores residuales m-dimensionales. Entonces,

$$S_{r+s}(\boldsymbol{\beta}) = S_r(\boldsymbol{\beta}) + S_s(\boldsymbol{\beta}).$$

La linealidad de $S(\beta)$ es evidentemente, pues

$$\nabla_{\beta}[\boldsymbol{r}(\boldsymbol{\beta}) + \boldsymbol{s}(\boldsymbol{\beta})] = \nabla_{\beta}\boldsymbol{r}(\boldsymbol{\beta}) + \nabla_{\beta}\boldsymbol{s}(\boldsymbol{\beta}).$$

Además, si $r(\beta)$ y $s(\beta)$ son independientes. Entonces,

$$V_{r+s}(\boldsymbol{\beta}) = V_r(\boldsymbol{\beta}) + V_s(\boldsymbol{\beta}).$$

Considere una re-parametrización $\beta=\beta(\gamma)$, donde γ es un vector l-dimensional $(l\leq k)$, y sea

$$q(\gamma) = r(\beta(\gamma))$$

Entonces,

$$oldsymbol{V}_q(oldsymbol{\gamma}) = oldsymbol{V}_r(oldsymbol{eta}(oldsymbol{\gamma})), \qquad oldsymbol{S}_q(oldsymbol{\gamma}) = oldsymbol{S}_r(oldsymbol{eta}(oldsymbol{\gamma}))
abla_{oldsymbol{\gamma}} oldsymbol{eta}(oldsymbol{\gamma}).$$

En efecto

$$\begin{split} \boldsymbol{S}_q(\boldsymbol{\gamma}) &= \mathsf{E}_{\boldsymbol{\gamma}}\{\nabla_{\boldsymbol{\gamma}}\boldsymbol{q}(\boldsymbol{\gamma})\} = \mathsf{E}_{\boldsymbol{\gamma}}\{\nabla_{\boldsymbol{\gamma}}\boldsymbol{r}(\boldsymbol{\beta}(\boldsymbol{\gamma}))\} = \mathsf{E}_{\boldsymbol{\gamma}}\{\nabla_{\boldsymbol{\beta}}\boldsymbol{r}(\boldsymbol{\beta}(\boldsymbol{\gamma}))\,\nabla_{\boldsymbol{\gamma}}\boldsymbol{\beta}(\boldsymbol{\gamma})\} \\ &= \mathsf{E}_{\boldsymbol{\gamma}}\{\nabla_{\boldsymbol{\beta}}\boldsymbol{r}(\boldsymbol{\beta})\}\nabla_{\boldsymbol{\gamma}}\boldsymbol{\beta}(\boldsymbol{\gamma}) = \boldsymbol{S}_r(\boldsymbol{\beta}(\boldsymbol{\gamma}))\nabla_{\boldsymbol{\gamma}}\boldsymbol{\beta}(\boldsymbol{\gamma}) \end{split}$$

Adicionalmente, si r es no-singular, entonces

$$egin{aligned} m{G}_q(m{\gamma}) &= m{S}_q^{ op}(m{\gamma}) m{V}_q^{-1}(m{\gamma}) m{S}_q(m{\gamma}) \ &=
abla_{m{\gamma}}^{ op} m{eta}(m{\gamma}) m{S}_r^{ op}(m{\gamma}) m{V}_r^{-1}(m{\gamma}) m{S}_r(m{eta}(m{\gamma}))
abla_{m{\gamma}} m{eta}(m{\gamma}) \ &=
abla_{m{\gamma}}^{ op} m{eta}(m{\gamma}) m{G}_r(m{eta}(m{\gamma}))
abla_{m{\gamma}} m{eta}(m{\gamma}) \end{aligned}$$

Definición 4:

Un vector residual suave m-dimensional $r(\beta)$ es dicho regular, si $k \leq m$ y la matriz de sensibilidad $S_r(\beta)$ tiene rango k para todo β .

Resultado 2:

Un vector residual regular $r(\beta)$ es no-singular.

Demostración:

(Por contradicción) Suponga que $r(\beta)$ es singular, en cuyo caso $V_r(\beta) = \operatorname{Cov}(r(\beta))$ no es definida positiva. Entonces, existe un vector no nulo c tal que la combinación $c^{\top}r(\beta)$ es cero casi seguramente. De ahí que

$$\mathbf{0} = \boldsymbol{S}_{c^{\top}r}(\boldsymbol{\beta}) = \boldsymbol{c}^{\top}\boldsymbol{S}_r(\boldsymbol{\beta}),$$

y por tanto, $S_r(\beta)$ es singular, lo que contradice que $r(\beta)$ sea regular. De ahí que $V_r(\beta)$ debe ser definida positiva.

Para un vector residual regular $r(oldsymbol{eta})$, la matriz de información de Godambe

$$G_r(\boldsymbol{\beta}) = S_r^{\top}(\boldsymbol{\beta}) V_r^{-1}(\boldsymbol{\beta}) S_r(\boldsymbol{\beta}),$$

es definida positiva.

Para función de estimación regular $g_n:\mathbb{R}^k \to \mathbb{R}^k$, la matriz de sensibilidad será cuadrada aunque no necesariamente simétrica.

Suponga $q_n(m{eta}) = A(m{eta})g_n(m{eta})$ con $A(m{eta})$ matriz no singular $k \times k$. Entonces

$$egin{aligned} m{G}_q(m{eta}) &= m{S}_g^{ op}(m{eta}) m{A}(m{eta}) \{m{A}^{- op}(m{eta}) m{V}_g^{-1}(m{eta}) m{A}^{-1}(m{eta}) \} m{A}(m{eta}) m{S}_g(m{eta}) \ m{S}_q^{ op}(m{eta}) m{V}_q^{-1}(m{eta}) m{S}_g(m{eta}) &= m{G}_g(m{eta}), \end{aligned}$$

de ahí que ${\it g}$ y ${\it q}$ son equivalentes.

Definición 5 (Algoritmo Newton-scoring):

Considere la expansión en series de Taylor de $g(oldsymbol{eta})$ en torno de $oldsymbol{eta}_0$, tenemos

$$m{g}(m{eta}) pprox m{g}(m{eta}_0) + rac{\partial m{g}(m{eta})}{\partial m{eta}^{ op}} \Big|_{eta = eta_0} (m{eta} - m{eta}_0),$$

como $g(\widehat{m{eta}})=\mathbf{0}$ y substituyendo $\dot{m{g}}(m{eta}_0)$ por $m{S}_g(m{eta}_0)$, sigue que

$$\widehat{\boldsymbol{\beta}} = \boldsymbol{\beta}_0 - \boldsymbol{S}_g^{-1}(\boldsymbol{\beta}_0) \boldsymbol{g}(\boldsymbol{\beta}_0), \tag{2}$$

esto sugiere considerar:

$$\boldsymbol{\beta}^{(t+1)} = \boldsymbol{\beta}^{(t)} - \boldsymbol{S}_q^{-1}(\boldsymbol{\beta}^{(t)}) \boldsymbol{g}(\boldsymbol{\beta}^{(t)}),$$

para llevar a cabo la estimación de parámetros.

Observación:

Este procedimiento fue propuesto por Jørgensen y Knudsen $(2004)^3$ quienes lo denominaron algoritmo Newton-scoring.

³Scandinavian Journal of Statistics **31**, 93-114.

Ejemplo:

Considere la función de estimación de minimos cuadrados no lineales

$$\boldsymbol{g}_n(\boldsymbol{\beta}) = \sum_{i=1}^n \boldsymbol{f}_i(\boldsymbol{\beta})(Y_i - f(\boldsymbol{x}_i; \boldsymbol{\beta})),$$

con ${m f}_i({m eta})=\partial f({m x}_i;{m eta})/\partial {m eta}.$ En efecto, E $\{{m g}_n({m eta})\}={m 0}$, y

$$\begin{split} \boldsymbol{V}(\boldsymbol{\beta}) &= \sum_{i=1}^n \boldsymbol{f}_i(\boldsymbol{\beta}) \operatorname{var}(Y_i - f(\boldsymbol{x}_i; \boldsymbol{\beta})) \boldsymbol{f}_i^\top(\boldsymbol{\beta}) = \sigma^2 \sum_{i=1}^n \boldsymbol{f}_i(\boldsymbol{\beta}) \boldsymbol{f}_i^\top(\boldsymbol{\beta}) \\ &= \sigma^2 \boldsymbol{F}^\top \boldsymbol{F}, \end{split}$$

donde ${\pmb F}=({\pmb f}_1,\ldots,{\pmb f}_n)^{ op}.$ Mientras que

$$oldsymbol{S}(oldsymbol{eta}) = -\sum_{i=1}^n oldsymbol{f}_i(oldsymbol{eta}) oldsymbol{f}_i^ op(oldsymbol{eta}).$$

De este modo.

$$G(\beta) = \sigma^2 F^\top F$$
.

Definición 6:

Sea $r(\beta)$ vector de residuos no singular. Defina la función quasi-score como:

$$q(\boldsymbol{\beta}) = -\boldsymbol{S}_r^{\top}(\boldsymbol{\beta}) \boldsymbol{V}_r^{-1}(\boldsymbol{\beta}) \boldsymbol{r}(\boldsymbol{\beta}),$$

donde S_r y V_r son las matrices de sensibilidad y variabilidad de $r(\beta)$.

La matriz $k \times m$,

$$\boldsymbol{A}(\boldsymbol{\beta}) = -\boldsymbol{S}_r^\top(\boldsymbol{\beta})\boldsymbol{V}_r^{-1}(\boldsymbol{\beta}),$$

es llamada matriz de pesos de Crowder (1987). 4 Además, las matrices de sensibilidad y variabilidad de $q(\beta)$ son

$$egin{aligned} oldsymbol{S}_q &= -oldsymbol{S}_r^ op oldsymbol{V}_r^{-1} oldsymbol{S}_r &= -oldsymbol{G}_r \ oldsymbol{V}_q &= oldsymbol{S}_r^ op oldsymbol{V}_r^{-1} oldsymbol{V}_r oldsymbol{V}_r^{-1} oldsymbol{S}_r &= oldsymbol{G}_r. \end{aligned}$$

Es decir, $oldsymbol{V}_q = -oldsymbol{S}_q$, y de ahí que

$$G_q = G_r$$
.

⁴Biometrika **74**, 591-597.

Observación:

Cualquier función de estimación regular $g(oldsymbol{eta})$ satisfaciendo

$$-\boldsymbol{S}_g(\boldsymbol{\beta}) = \boldsymbol{V}_g(\boldsymbol{\beta}),$$

es una función quasi-score.

En particular, la función score

$$U(\boldsymbol{\beta}) = \frac{\partial}{\partial \boldsymbol{\beta}} \log p(\boldsymbol{\beta}),$$

es una función quasi-score.

Suponga $oldsymbol{Y}_1,\ldots,oldsymbol{Y}_n$ vectores aleatorios independientes y sea

$$r_i(\mu_i), \quad \mu_i = \mu_i(\beta),$$

vectores m_i -dimensionales. Considere la siguiente definición.

Definición 7:

Una función de estimación lineal es definida como:

$$oldsymbol{g}(oldsymbol{eta}) = \sum_{i=1}^n oldsymbol{W}_i(oldsymbol{eta}) oldsymbol{r}_i(oldsymbol{\mu}_i),$$

donde $\boldsymbol{W}_i = \boldsymbol{W}_i(\boldsymbol{\beta})$ es una matriz no aleatoria $k \times m_i$.

Ejemplo (mínimos cuadrados):

En este caso tenemos

$$g(\boldsymbol{eta}) = \sum_{i=1}^n \boldsymbol{x}_i (Y_i - \boldsymbol{x}_i^{\top} \boldsymbol{eta}).$$

Ejemplo (M-estimación):

Considere Y_i con distribución simétrica, la función de estimación M es

$$oldsymbol{g}(oldsymbol{eta}) = \sum_{i=1}^n oldsymbol{x}_i \psi(Y_i - oldsymbol{x}_i^ op oldsymbol{eta}),$$

donde ψ es una función impar.

Definición 8:

Basado en la Ecuación (2) podemos definir una función de estimación normalizada como:

$$\overline{\boldsymbol{g}}(\boldsymbol{\beta}) = -\boldsymbol{S}_g^{-1}(\boldsymbol{\beta})\boldsymbol{g}(\boldsymbol{\beta}).$$

Previo (Ordenamiento de Löwner):

Si A y B son matrices de covarianza de la misma dimensión. Entonces $A \geq B$ si y sólo si A-B es semidefinida positiva.⁵

EX LANGEA EX SOLEM

⁵Esto corresponde a un ordenamiento parcial en el espacio de matrices semidefinidas positivas.

Resultado 3:

Sea \overline{g}_1 y \overline{g}_2 dos funciones de estimación normalizadas con matrices de información de Godambe K_1 y K_2 , respectivamente. La condición

$$Cov(\overline{g}_1, \overline{g}_2) = K_1, \tag{3}$$

implica las siguientes tres condiciones:

- (a) \overline{g}_1 y $\overline{g}_2 \overline{g}_1$ son no correlacionadas.
- (b) $K_2 \ge K_1$.
- $(\mathbf{c}) \ \ \mathsf{var}(\boldsymbol{c}^{\top} \overline{\boldsymbol{g}}_2) \geq \mathsf{var}(\boldsymbol{c}^{\top} \overline{\boldsymbol{g}}_1) \ \mathsf{para} \ \mathsf{cualquier} \ \mathsf{vector} \ \boldsymbol{c} \in \mathbb{R}^k.$

Demostración:

Note que podemos escribir

$$\overline{\boldsymbol{g}}_2 = \overline{\boldsymbol{g}}_1 + (\overline{\boldsymbol{g}}_2 - \overline{\boldsymbol{g}}_1). \tag{4}$$

Si $\mathsf{Cov}(\overline{\boldsymbol{g}}_1,\overline{\boldsymbol{g}}_2) = \boldsymbol{K}_1$ entonces

$$\begin{split} \mathsf{Cov}(\overline{\pmb{g}}_1,\overline{\pmb{g}}_2-\overline{\pmb{g}}_1) &= \mathsf{Cov}(\overline{\pmb{g}}_1,\overline{\pmb{g}}_2) - \mathsf{Cov}(\overline{\pmb{g}}_1,\overline{\pmb{g}}_1) \\ &= \mathsf{Cov}(\overline{\pmb{g}}_1,\overline{\pmb{g}}_2) - \pmb{K}_1 = \mathbf{0}, \end{split}$$

lo que prueba (a). Tomando covarianzas en ambos lados de (4) lleva a

$$K_2 = K_1 + A, \qquad A = \text{Cov}(\overline{g}_2 - \overline{g}_1),$$

como $m{A}$ es semidefinida positiva, sigue (b). Además, tenemos que para cualquier $m{c}$,

$$\begin{split} 0 &\leq \boldsymbol{c}^{\top} \boldsymbol{A} \boldsymbol{c} = \boldsymbol{c}^{\top} (\boldsymbol{K}_2 - \boldsymbol{K}_1) \boldsymbol{c} = \boldsymbol{c}^{\top} \boldsymbol{K}_2 \boldsymbol{c} - \boldsymbol{c}^{\top} \boldsymbol{K}_1 \boldsymbol{c} \\ &= \operatorname{var}(\boldsymbol{c}^{\top} \overline{\boldsymbol{g}}_2) - \operatorname{var}(\boldsymbol{c}^{\top} \overline{\boldsymbol{g}}_1), \end{split}$$

lo que implica (c).

Suponga que tenemos una función de estimación lineal

$$oldsymbol{g}(oldsymbol{eta}) = \sum_{i=1}^n oldsymbol{W}_i(oldsymbol{eta}) oldsymbol{r}_i(oldsymbol{\mu}_i).$$

De este modo,

$$S_g = \sum_{i=1}^n W_i S_{r_i} = \sum_{i=1}^n W_i S_i D_i,$$

mientras que

$$oldsymbol{V}_g = \sum_{i=1}^n \operatorname{Cov} \left(oldsymbol{W}_i(oldsymbol{eta}) oldsymbol{r}_i(oldsymbol{\mu}_i)
ight) = \sum_{i=1}^n oldsymbol{W}_i oldsymbol{V}_i oldsymbol{W}_i^{ op}.$$

Es decir,

$$G_g(\boldsymbol{\beta}) = S_g^{\top}(\boldsymbol{\beta}) V_q^{-1}(\boldsymbol{\beta}) S_g(\boldsymbol{\beta}).$$

Resultado 4 (Optimalidad de Crowder):

Suponga $q(\beta)$ función quasi-score

$$oldsymbol{q}(oldsymbol{eta}) = -\sum_{i=1}^n oldsymbol{D}_i^ op oldsymbol{S}_i^ op oldsymbol{V}_i^{-1} oldsymbol{r}_i(oldsymbol{\mu}_i), \qquad oldsymbol{D}_i = \partial oldsymbol{\mu}_i/\partial oldsymbol{eta}^ op.$$

Entonces $q(oldsymbol{eta})$ es óptima para todas las funciones de estimación lineales en el sentido que

$$G_g^{-1}(\boldsymbol{\beta}) \geq G_q^{-1}(\boldsymbol{\beta}),$$

para cualquier función de estimación lineal $g(oldsymbol{eta})$, con la igualdad si y sólo si

$$\overline{g}(\boldsymbol{\beta}) = \overline{q}(\boldsymbol{\beta}),$$

esto es, si $g(\beta)$ y $q(\beta)$ son equivalentes.

Demostración:

Deseamos mostrar la Ecuación (3) del Resultado 3. En efecto

$$\begin{split} \mathsf{Cov}(\boldsymbol{q}, \boldsymbol{g}) &= \mathsf{E}(\boldsymbol{q} \boldsymbol{g}^\top) = -\, \mathsf{E}\left[\sum_{i=1}^n \boldsymbol{D}_i^\top \boldsymbol{S}_i^\top \boldsymbol{V}_i^{-1} \boldsymbol{r}_i \Big(\sum_{j=1}^n \boldsymbol{W}_j \boldsymbol{r}_j\Big)\right] \\ &= -\, \mathsf{E}\left[\sum_{i=1}^n \boldsymbol{D}_i^\top \boldsymbol{S}_i^\top \boldsymbol{V}_i^{-1} \boldsymbol{r}_i \sum_{j=1}^n \boldsymbol{r}_j^\top \boldsymbol{W}_j^\top\right] \\ &= -\sum_{i=1}^n \boldsymbol{D}_i^\top \boldsymbol{S}_i^\top \boldsymbol{V}_i^{-1} \sum_{j=1}^n \mathsf{E}(\boldsymbol{r}_i \boldsymbol{r}_j^\top) \boldsymbol{W}_j^\top, \end{split}$$

como r_i y r_j son no correlacionados para $i \neq j$, sigue que

$$\begin{split} \mathsf{E}(\boldsymbol{q}\boldsymbol{g}^\top) &= -\sum_{i=1}^n \boldsymbol{D}_i^\top \boldsymbol{S}_i^\top \boldsymbol{V}_i^{-1} \, \mathsf{E}(\boldsymbol{r}_i \boldsymbol{r}_i^\top) \boldsymbol{W}_j^\top = -\sum_{i=1}^n \boldsymbol{D}_i^\top \boldsymbol{S}_i^\top \boldsymbol{V}_i^{-1} \boldsymbol{V}_i \boldsymbol{W}_j^\top \\ &= -\sum_{i=1}^n \boldsymbol{D}_i^\top \boldsymbol{S}_i^\top \boldsymbol{W}_i^\top = -\boldsymbol{S}_g^\top \end{split}$$

Esto permite calcular

$$\begin{split} \mathsf{Cov}(\overline{q},\overline{g}) &= \mathsf{E}\{\boldsymbol{S}_q^{-1}\boldsymbol{q}(\boldsymbol{S}_g^{-1}\boldsymbol{g})^\top\} = \boldsymbol{S}_q^{-1}\,\mathsf{E}(\boldsymbol{q}\boldsymbol{g}^\top)\boldsymbol{S}_g^{-\top} \\ &= -\boldsymbol{S}_q^{-1}\,\boldsymbol{S}_g^\top\boldsymbol{S}_g^{-\top} = -\boldsymbol{S}_q^{-1} = \boldsymbol{G}_q^{-1}, \end{split}$$

y esto implica la optimalidad de \emph{q} , lo que concluye la prueba.

Corolario (Desigualdad de Godambe):

Asuma que g es función de inferencia regular. Entonces

$$G_g^{-1}(\boldsymbol{\theta}) - \boldsymbol{\mathcal{F}}^{-1}(\boldsymbol{\theta}) \geq \mathbf{0},$$

para todo $\theta \in \Theta$, donde la igualdad se cumple si y sólo si g y U son funciones de estimación equivalentes, con U la función score.

Asuma una función de estimación lineal

$$oldsymbol{g}_n(oldsymbol{eta}) = \sum_{i=1}^n oldsymbol{W}_i oldsymbol{r}_i(oldsymbol{\mu}_i),$$

donde la notación enfatiza la dependencia de n. Asimismo $S_n(\beta)$ y $V_n(\beta)$ denotan las matrices de sensibilidad y variabilidad de g_n .

Además, suponga que

$$\lim_{n\to\infty}\frac{1}{n}\boldsymbol{S}_n(\boldsymbol{\beta})=\boldsymbol{S}(\boldsymbol{\beta}),\qquad \lim_{n\to\infty}\frac{1}{n}\boldsymbol{V}_n(\boldsymbol{\beta})=\boldsymbol{V}(\boldsymbol{\beta}).$$

Resultado 5:

Si $S(oldsymbol{eta})$ es no singular, entonces $V(oldsymbol{eta})$ es no singular.

Demostración:

La prueba se lleva a cabo por contradicción. Suponga que $V(oldsymbol{eta})$ es singular. Entonces existe un vector c tal que

$$c^{\top}V(\boldsymbol{\beta})c = 0,$$

y de ahí que

$$\lim_{n \to \infty} \frac{1}{n} \boldsymbol{c}^{\top} \boldsymbol{V}_n(\boldsymbol{\beta}) \boldsymbol{c} = 0,$$

lo cual implica que

$$\frac{1}{n} \boldsymbol{c}^{\top} \boldsymbol{g}_n(\boldsymbol{\beta}) \stackrel{\mathsf{p}}{\to} 0.$$

Asumiendo la continuidad del operador de sensibilidad $S(\cdot)$, tenemos

$$\begin{aligned} \mathbf{0} &= \boldsymbol{S} \Big[\lim_{n \to \infty} \boldsymbol{c}^{\top} \boldsymbol{g}_n(\boldsymbol{\beta}) \Big] = \lim_{n \to \infty} \boldsymbol{S} \Big[\frac{1}{n} \boldsymbol{c}^{\top} \boldsymbol{g}_n(\boldsymbol{\beta}) \Big] \\ &= \boldsymbol{c}^{\top} \lim_{n \to \infty} \frac{1}{n} \boldsymbol{S}_n(\boldsymbol{\beta}) = \boldsymbol{c}^{\top} \boldsymbol{S}(\boldsymbol{\beta}) \end{aligned}$$

lo que es una contradicción pues S(eta) ha sido asumida no singular.

Observación:

Note que

$$\begin{split} \frac{1}{n} \boldsymbol{G}_n(\boldsymbol{\beta}) &= \frac{1}{n} \boldsymbol{S}_n^\top(\boldsymbol{\beta}) \Big[\frac{1}{n} \boldsymbol{V}_n(\boldsymbol{\beta}) \Big]^{-1} \frac{1}{n} \boldsymbol{S}_n(\boldsymbol{\beta}) \\ &\rightarrow \boldsymbol{S}^\top(\boldsymbol{\beta}) \boldsymbol{V}^{-1}(\boldsymbol{\beta}) \boldsymbol{S}(\boldsymbol{\beta}) = \boldsymbol{G}(\boldsymbol{\beta}), \end{split}$$

es decir, la información de Godambe promedio converge a un límite finito.

Resultado 6:

Sea $\{\widehat{m{ heta}}_n\}_{n\geq 1}$ una secuencia de raíces de las ecuaciones de estimación

$$g_n(\theta) = \sum_{i=1}^n g_i(\theta; Y_i) = 0,$$

desde la condición de insesgamiento se tiene la consistencia $\widehat{\boldsymbol{\theta}}_n \stackrel{\mathtt{p}}{\to} \boldsymbol{\theta}_0$.

Supuestos: (Yuan y Jennrich, 1998)⁶

- C1: $g_n(\theta) \to 0$ con probabilidad 1.
- C2: Existe una vecindad de θ_0 tal que, con prob. 1, $g_n(\theta)$ es diferenciable y $\dot{g}_n(\theta)$ converge a un límite no estocástico que es no singular en θ_0 .
- ${\bf C3:} \ \frac{1}{\sqrt{n}} {\boldsymbol g}_n({\boldsymbol \theta}) \stackrel{\rm D}{\longrightarrow} {\sf N}_k({\bf 0}, {\boldsymbol V}({\boldsymbol \theta}_0)).$

Resultado 7 (Normalidad asintótica):

Si $\widehat{\theta}_n \overset{p}{\to} \theta_0$ y $g_n(\widehat{\theta}_n)=0$ con probabilidad 1. Entonces, bajo los supuestos C1 a C3, tenemos que

$$\sqrt{n}(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \stackrel{\mathsf{D}}{\longrightarrow} \mathsf{N}_k \big(\mathbf{0}, \boldsymbol{G}_q^{-1}(\boldsymbol{\theta}_0) \big).$$

⁶ Journal of Multivariate Analysis 65, 245-260.

Esbozo de la demostración:

Tenemos,

$$\frac{1}{\sqrt{n}}\boldsymbol{g}_n(\boldsymbol{\theta}) \overset{\mathsf{D}}{\to} \mathsf{N}_k(\boldsymbol{0},\boldsymbol{V}(\boldsymbol{\theta})).$$

Usando que

$$\begin{split} \sqrt{n}(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}) & \stackrel{\text{a}}{=} \sqrt{n} \overline{\boldsymbol{g}}_n(\boldsymbol{\theta}) = - \Big[\frac{1}{n} \boldsymbol{S}_n(\boldsymbol{\theta}) \Big]^{-1} \frac{1}{\sqrt{n}} \boldsymbol{g}_n(\boldsymbol{\theta}) \\ & \stackrel{\text{D}}{\to} \mathsf{N}_k \big(\boldsymbol{0}, \boldsymbol{S}^{-1}(\boldsymbol{\theta}) \boldsymbol{V}(\boldsymbol{\theta}) \boldsymbol{S}^{-\top}(\boldsymbol{\theta}) \big), \end{split}$$

es decir

$$\sqrt{n}(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}) \stackrel{\mathsf{D}}{\to} \mathsf{N}_k \big(\mathbf{0}, \boldsymbol{G}^{-1}(\boldsymbol{\theta}) \big).$$

