

Estimating the contributions of anthropogenic and environmental factors to Florida manatee mortality

Jeffrey A. Hostetler
Christopher Fonnesbeck
Chip J. Deutsch
Michael C. Runge

Cause of Mortality Analyses

- Fractions of mortality or cause-specific mortality (CSM) rates from carcass recovery and necropsy
 - Radio-telemetry
 - Public reporting / convenience sampling
 - Both
- Generally large number of carcasses where cause of death is undetermined
- Existing methods either ignore those or put in own category

Modeling Changes in Mortality

- Unusual mortality events (UMEs)
- Sometimes can estimate effects from other sources of information, such as capture-mark-recapture (CMR) studies
- May occur in years or situations where don't have reliable estimates of mortality
- Because CMR doesn't include cause of death, difficult to ascribe changes in mortality to UME

Method

- Bayesian hierarchical model
- Accounts for uncertainty due to carcasses with undetermined cause of death
- Total carcasses due to a cause (in year) sum of determined and undetermined
- Model undetermined carcasses due to each cause as multinomial from total undetermined and fractions for undetermined

- Model total carcasses due to each cause as multinomial from total carcasses and fractions for total
- Uninformed Dirichlet priors for total and undetermined baseline fractions
- Implemented in Python with PyMC

Tricky thing is incorporating undetermined cause

$$\begin{cases} y_{r,t,i}^{(a)} \end{cases} \sim \text{Multinomial} \left(y_{r,t,tot}^{(a)}, \left\{ \eta_{r,t,i}^{(a)} \right\} \right)$$

$$x_{r,t,i}^{(a)} = y_{r,t,i}^{(a)} + z_{r,t,i}^{(a)}$$

$$\begin{cases} x_{r,t,i}^{(a)} \end{cases} \sim \text{Multinomial} \left(x_{r,t,tot}^{(a)}, \left\{ \theta_{r,t,i}^{(a)} \right\} \right)$$

where r is region, i is cause,
t is year, (a) is age,
y is undetermined carcasses,
and z is determined carcasses

Sample Row of Data

Year	Age	Area	Habitat	Boats	wcs	Debris	Cold	Tide	Other	Undet.	Total
2009	Adult	SW	Low	12	1	1	0	2	1	13	30

One possibility:

Undetermined

Year	Age	Area	Habitat	Boats	WCS	Debris	Cold	Tide	Other
2009	Adult	SW	Low	3	2	2	2	2	2

Total

Year	Age	Area	Habitat	Boats	wcs	Debris	Cold	Tide	Other	Total
2009	Adult	SW	Low	15	3	3	2	4	3	30

Modeling Additional Mortality

$$\theta_{t,i} = \begin{cases} \pi_i & \text{where } t \notin U \\ (\pi_i + f)/(1 + f) & \text{where } t \in U \text{ and } i = c \\ \pi_i/(1 + f) & \text{where } t \in U \text{ and } i \neq c \end{cases}$$

$$f = d_{add}$$

$$f = \frac{d_{add}}{d_{base}}$$

$$d_{add} \sim \text{Uniform}(0, 1 - d_{base})$$

 $\theta_{t,i}$ is fraction in year t from cause i, π_i is baseline fraction, f is additional fraction factor, d_{add} is additional mortality rate, and d_{base} is total baseline mortality

- Can change just total fraction or both total and undetermined fractions
 - Does number of undetermined carcasses due to that cause go up during UME?
- Total baseline mortality is estimated separately

Application

Carcass Recovery and Necropsy

- Florida Fish and Wildlife Conservation Commission (FWC) has had 24/7 wildlife alert hotline last 30 years for public reporting of wildlife issues
- Staff members respond to reports of injured and dead Florida manatees
- Necropsies performed by trained staff
- Data used
 - December 1995 November 2013
 - Exclude perinatal and carcasses with undetermined length

- Causes of death
 - Watercraft
 - Water control structures (WCS)
 - Marine debris
 - Cold
 - Red tide (fraction fixed at 0 for USJ region)
 - Other
- Analyze calves separate from sub-adults and adults
- Estimate baseline fractions of mortality by region

Additional Red Tide Mortality

- Estimate additional mortality from red tide in moderate and intense red tide years (SW region only)
 - Moderate years: 2002, 2003, 2005, 2006, and 2012
 - Intense years: 1996 and 2013
- Additional mortality factor only affects total fraction
- Baseline mortality estimates from photo-ID CMR analysis (separate)

Additional Cold Mortality

- Estimate additional mortality fractions from cold in normal, cold, and severe years, by habitat quality, region, and age class
- Using that and estimates of baseline mortality, estimate additional mortality rates (by habitat quality and age class only)
- Habitat-specific and modify fractions of undetermined in same way as total
- Need to be able to estimate additional mortality due to cold by age class, habitat, and winter severity

Additional Cold Mortality Table

ADULT	Winter Severity					
WW Habitat Quality	Normal	Cold	Severe			
High-quality	0	0	?			
Medium-quality	0	0	?			
Low-quality	0	?	?			

SUBADULT	Winter Severity					
WW Habitat Quality	Normal	Cold	Severe			
High-quality	0	0	?			
Medium-quality	0	?	?			
Low-quality	?	?	?			

CALF	Winter Severity					
WW Habitat Quality	Normal	Cold	Severe			
High-quality	0	0	?			
Medium-quality	?	?	?			
Low-quality	?	?	?			

Discussion and Assumptions

Research and Management Implications

- Put threats into context for manatee managers and stakeholders
- Key part of manatee population viability analysis
 - Evaluate threats by taking away one at time, see how affects viability
 - Test scenarios of proportional changes in threats
 - Test scenarios of changing frequencies or strengths of unusual mortality events

Some Key Model Assumptions

- Cause-specific mortality rates are additive when one mortality rate increases, the others are unchanged
- The cause of death does not affect the probability of being recovered
- Fractions of mortality (both undetermined and overall) did not vary between years, except as modeled
- Combining our method with telemetry-based CSM would permit relaxing some assumptions

Acknowledgments

- Analysis support
 - Jim Nichols
 - KB Langtimm
 - CBM team
- Necropsies
 - Martine deWit
 - MMPL team
- Funding
 - FWC
 - Save the Manatee Trust Fund

- Data management
 - Stacie Koslovsky
 - Brandon Bassett
- Presentation feedback
 - Leslie Ward-Geiger
 - Martine deWit
 - Julien Martin
 - Margie Barlas
 - Michael Kosempa

