PROVA SCRITTA DI CALCOLATORI ELETTRONICI DEL 11/7/2007 (Tempo a disposizione: 2 ore e 30 minuti) TRACCIA A

ESERCIZIO 1:

Si realizzi una rete sequenziale sincrona $\bf R$ con un ingresso $\bf X$ ed una uscita $\bf Z$. La rete deve riconoscere sequenze di bit $\bf b_0 \bf Q \, \beta$, in cui $\bf Q = \alpha' \, \alpha'' \dots \, \alpha^{(k)}$ è una sequenza di sottosequenze α , di 4 bit, identiche tra loro (cioè, $\alpha = \alpha' = \alpha'' = \dots = \alpha^{(k)}$). Il bit $\bf b_0$ determina la sottosequenza α che compone $\bf Q$. Se $\bf b_0 = 0$ allora $\bf \alpha = 1010$. Se $\bf b_0 = 1$ allora $\bf \alpha = 0101$. La rete restituisce $\bf 1$ dopo aver letto la sottosequenza $\bf \beta$, di 4 bit, diversa da $\bf \alpha$. Si noti che, in ogni caso, la sottosequenza $\bf \beta$ va letta fino alla fine (leggendo tutti e quattro i suoi bit) prima di produrre $\bf 1$ in uscita e prepararsi a leggere una nuova sequenza $\bf b_0 \, \bf Q \, \bf \beta$.

Segue un esempio di possibile funzionamento di R:

											10		
x:	0	1	0	1	0	1	0	1	0	1	1	1	0
z:	0	0	0	0	0	0	0	0	0	0	0	0	1

Poiché $b_0=0$ allora $\alpha=1010$. La prima sottosequenza $(x(t_1)\ x(t_2)\ x(t_3)\ x(t_4))$ e la seconda sottosequenza $(x(t_5)\ x(t_6)\ x(t_7)\ x(t_8))$ rappresentano delle α . La terza sottosequenza, che ha inizio in t_9 , è riconosciuta come sottosequenza β all'istante t_{10} poiché $x(t_{10})\neq 0$ ma, in ogni caso, la rete continua a leggere la sottosequenza fino all'istante t_{12} , quando restituisce $\mathbf{1}$, e si prepara a leggere una nuova sequenza $b_0\ Q\ \beta$.

ESERCIZIO 2:

Estendere il set di istruzioni della macchina ad accumulatore con l'operazione **FINDNEIGH X**. A partire dalla locazione di memoria M[X], è memorizzato un vettore V di 32 elementi. L'istruzione restituisce nell'accumulatore l'elemento di V per cui è minima la differenza con l'elemento successivo.

Ad esempio, sia V=[7,8,15,9,10,11], al termine dell'esecuzione dell'istruzione **FINDNEIGH** l'accumulatore conterrà il valore "8", poiché 8-15=-7 è il valore minore tra le differenze 7-8=-1; 8-15=-7; 15-9=6; 9-10=-1; 10-11=-1.

PROVA SCRITTA DI CALCOLATORI ELETTRONICI DEL 11/7/2007 (Tempo a disposizione: 2 ore e 30 minuti) TRACCIA B

ESERCIZIO 1:

Si realizzi una rete sequenziale sincrona $\bf R$ con un ingresso $\bf X$ ed una uscita $\bf Z$. La rete deve riconoscere sequenze di bit $\bf b_0 \bf Q \, \beta$, in cui $\bf Q = \alpha' \, \alpha'' \dots \, \alpha^{(k)}$ è una sequenza di sottosequenze α , di 4 bit, identiche tra loro (cioè, $\alpha = \alpha' = \alpha'' = \dots = \alpha^{(k)}$). Il bit $\bf b_0$ determina la sottosequenza α che compone $\bf Q$. Se $\bf b_0 = 0$ allora $\bf \alpha = 0101$. Se $\bf b_0 = 1$ allora $\bf \alpha = 1010$. La rete restituisce $\bf 1$ dopo aver letto la sottosequenza $\bf \beta$, di 4 bit, diversa da $\bf \alpha$. Si noti che, in ogni caso, la sottosequenza $\bf \beta$ va letta fino alla fine (leggendo tutti e quattro i suoi bit) prima di produrre $\bf 1$ in uscita e prepararsi a leggere una nuova sequenza $\bf b_0 \, \bf Q \, \bf \beta$.

Segue un esempio di possibile funzionamento di R:

t:	0	1	2	3	4	5	6	7	8	9	10	11	12
x:	1	1	0	1	0	1	0	1	0	1	1	1	0
z:	0	0	0	0	0	0	0	0	0	0	0	0	1

Poiché $b_0=1$ allora $\alpha=1010$. La prima sottosequenza $(x(t_1)\ x(t_2)\ x(t_3)\ x(t_4))$ e la seconda sottosequenza $(x(t_5)\ x(t_6)\ x(t_7)\ x(t_8))$ rappresentano delle α . La terza sottosequenza, che ha inizio in t_9 , è riconosciuta come sottosequenza β all'istante t_{10} poiché $x(t_{10})\neq 0$ ma, in ogni caso, la rete continua a leggere la sottosequenza fino all'istante t_{12} , quando restituisce $\mathbf{1}$, e si prepara a leggere una nuova sequenza $b_0\ Q\ \beta$.

ESERCIZIO 2:

Estendere il set di istruzioni della macchina ad accumulatore con l'operazione **FINDNEIGH X**. A partire dalla locazione di memoria M[X], è memorizzato un vettore V di 32 elementi. L'istruzione restituisce nell'accumulatore l'elemento di V per cui è massima la somma con l'elemento successivo.

Ad esempio, sia V=[7,8,15,9,10,11], al termine dell'esecuzione dell'istruzione **FINDNEIGH** l'accumulatore conterrà il valore "15", poiché 15 + 9= 24 è il valore massimo tra le somme 7 + 8 = 15; 8 + 15= 23; 15 + 9 = 24; 9 + 10 = 19; 10 + 11 = 21.