BJT仿真

无04 2019012137 张鸿琳

首先搭建如下仿真电路:

之后利用dc仿真模式,对 V_{IN} 进行扫描,得到输入输出转移特性曲线。

从理论角度分析,当 V_{IN} 较小时,即 $V_{IN} < V_{on} = 0.7V$,未能达到二极管的正向导通电压时,此时BE结反偏,BC结也反偏,相当于开路,此时 $V_{out} = VCC = 5V$,BJT处于截止区。此后随着 V_{IN} 增大,BE结正偏导通,而BC结反偏,故而BJT进入有源区,此时

 $V_{out}=VCC-i_C\cdot R_C=VCC-\beta i_BR$,而 i_B 随着 V_{IN} 近似指数增长,故而输出电压迅速下降,而与此同时 V_{BE} 变化较为缓慢,基本略大于 V_{on} ,当 $V_C=V_{BE}-V_{on}$ 时,其BE结正偏,BC结也正偏,即BJT进入饱和区,之后由于 V_{IN} 大部分电压加载于 R_B 上, V_{BE} 基本仍为 V_{on} ,故而此时BJT近似为恒压源,电压保持在 $V_{BE}-V_{on}$ 左右。

而通过cadence得到仿真特性曲线如下:

根据上面的分析,可知图像中左侧平台,BJT位于截止区,突然下降的部分,BJT位于有源区,而右侧较低的平台,BJT位于饱和区。

为了验证上面理论分析的结果,取 $V_{IN}=V_{on}\approx 0.7V$ 和 $V=V_{BE}$ 两根线,观察其与转移特性曲线的关系。得到下图:

其中白色虚线对应 $V_{IN}=0.7V$,与输出电压(绿线)的交点为第一个临界点,而 V_{BE} 与输出电压在第二个临界点处也相差约为0.7V,即 V_{on} ,这说明上面的分析和实际仿真结果相符得很好。

 R_B 的作用是分压,从而放缓 V_{IN} 对 V_{BE} 的影响,使得第二个平台较为平缓,相当于BJT可以近似为恒压源。假如没有 R_B ,那么第二个平台将不再平缓,并且会随着 V_{IN} 近似线性变化,从而使得该功能电路的适用电压范围大大降低。仿真结果如下:

