

Contexto:

- Neste projeto foi analisado o pulo do paraquedista Felix Baumgartner.
- Salto estratosférico detentor do recorde mundial (38.696,4 m).
- Pulo convencional: 1.500 m.

Objetivos:

- Estimar a máxima velocidade em função da altura.
- Estimar a máxima potência dissipada pela força de atrito na queda em função da altura.
- Estimar a máxima velocidade em função da massa e da altura.
- Estimar a máxima potência dissipada pela força de atrito na queda em função da massa e da altura.

Insper

Diagrama de corpo livre, equações diferenciais e parâmetros :

• Eixo y:

•
$$\overrightarrow{Ry} = \overrightarrow{D} - \overrightarrow{P}$$

• Equações diferenciais:

•
$$\frac{dy}{dt} = vy$$

•
$$\frac{dvy}{dt} = \left(\frac{1}{2} \cdot \rho(y) \cdot A \cdot Cd \cdot v^2 - m \cdot g(y)\right) \cdot \frac{1}{m}$$

Como valores constantes temos:

• Gravidade na superfície da Terra: $g = 9.8 \frac{m}{s^2}$

• Altura Total do Pulo: $h_0 = 38.969 m$

Massa (média): $m = 110 \, kg$

Área da pessoa paralela ao solo: $a_q=1\ m^2$

• Área do paraquedas: $a_p = 100 \, m^2$

• Densidade do Ar na superfície da Terra: $ho_a=1$,2 $rac{kg}{m^3}$

• Coeficiente de arrasto: $C_d = 0.8$

• Raio da Terra: $R_e = 6.378 \ km$

Considerando a variação da gravidade e da densidade do ar temos:

• Gravidade: $g(y) = \frac{g}{1 + (\frac{y}{R_e})}$

• Densidade do ar: $\rho(y) = \rho_a \cdot e^{\frac{-y}{7500}}$

Implementação e Validação:

Conclusão 1:

Conclusão 2:

Conclusão 3:

Máxima velocidade

Conclusão 4:

Máxima potência dissipada

Possíveis Melhorias:

- Os objetivos foram atingidos, mas e agora, como podemos melhorar o modelo?
- 1- Considerar a variedade do coeficiente de arrasto já que na queda Felix começa girar por um tempo.
- 2- Considerar a abertura gradativa do paraquedas.

