• For any event A,

$$P(A) \ge 0$$

• For any event A,

$$P(A) \ge 0$$

• If $A_1, A_2, A_3, ..., A_n$ are disjoint events (i.e., $A_i \cap A_j = \phi \quad \forall i \neq j$) then

$$P(\cup A_i) = \sum_i P(A_i)$$

• For any event A,

$$P(A) \ge 0$$

• If $A_1, A_2, A_3,, A_n$ are disjoint events (i.e., $A_i \cap A_j = \phi \quad \forall i \neq j$) then

$$P(\cup A_i) = \sum_i P(A_i)$$

• If Ω is the universal set containing all events then

$$P(\Omega) = 1$$

• Suppose a student can get one of 3 possible grades in a course: A, B, C

- Suppose a student can get one of 3 possible grades in a course: A, B, C
- One way of interpreting this is that there are 3 possible events here

- Suppose a student can get one of 3 possible grades in a course: A, B, C
- One way of interpreting this is that there are 3 possible events here
- Another way of looking at this is there is a random variable G which each student to one of the 3 possible values

- Suppose a student can get one of 3 possible grades in a course: A, B, C
- One way of interpreting this is that there are 3 possible events here
- Another way of looking at this is there is a random variable G which each student to one of the 3 possible values
- And we are interested in P(G = g) where $g \in \{A, B, C\}$

- Suppose a student can get one of 3 possible grades in a course: A, B, C
- One way of interpreting this is that there are 3 possible events here
- Another way of looking at this is there is a random variable G which each student to one of the 3 possible values
- And we are interested in P(G = g) where $g \in \{A, B, C\}$
- Of course, both interpretations are conceptually equivalent

• But the second one (using random variables) is more compact

- But the second one (using random variables) is more compact
- Specially, when there are multiple attributes associated with a student (outcome) grade, height, age, etc.

- But the second one (using random variables) is more compact
- Specially, when there are multiple attributes associated with a student (outcome) grade, height, age, etc.
- We could have one random variable corresponding to each attribute

- But the second one (using random variables) is more compact
- Specially, when there are multiple attributes associated with a student (outcome) grade, height, age, etc.
- We could have one random variable corresponding to each attribute
- And then ask for outcomes (or students) where Grade = g, Height = h, Age = a and so on

• A random variable is a *function* which maps each outcome in Ω to a value

- A random variable is a *function* which maps each outcome in Ω to a value
- In the previous example, G (or f_{grade}) maps each student in Ω to a value: A, B or C

- A random variable is a *function* which maps each outcome in Ω to a value
- In the previous example, G (or f_{grade}) maps each student in Ω to a value: A, B or C
- The event Grade = A is a shorthand for the event $\{\omega \in \Omega : f_{Grade} = A\}$

Random Variable (continuous v/s discrete)

• A random variable can either take continuous values (for example, weight, height)

Random Variable (continuous v/s discrete)

- A random variable can either take continuous values (for example, weight, height)
- Or discrete values (for example, grade, nationality)

Random Variable (continuous v/s discrete)

- A random variable can either take continuous values (for example, weight, height)
- Or discrete values (for example, grade, nationality)
- For this discussion we will mainly focus on discrete random variables

• What do we mean by *marginal distribution* over a random variable?

- What do we mean by *marginal distribution* over a random variable?
- ullet Consider our random variable G for grades

G	P(G =
	g)
A	0.1
В	0.2
C	0.7

- What do we mean by *marginal distribution* over a random variable?
- Consider our random variable G for grades
- Specifying the marginal distribution over G means specifying

$$P(G=g) \quad \forall g \in A, B, C$$

G	P(G =
	g)
A	0.1
В	0.2
С	0.7

- What do we mean by *marginal distribution* over a random variable?
- Consider our random variable G for grades
- Specifying the marginal distribution over G means specifying

$$P(G=g) \quad \forall g \in A, B, C$$

• We denote this marginal distribution compactly by P(G)

• Consider two random variable G (grade) and I (intellegence $\in \{High, Low\}$)

- Consider two random variable G (grade) and I (intellegence $\in \{High, Low\}$)
- The joint distribution over these two random variables assigns probabilities to all events involving these two random variables

$$P(G=g,I=i) \quad \forall (g,i) \in \{A,B,C\} \times \{H,L\}$$

G	I	P(G=g, I=i)
A	High	0.3
A	Low	0.1
В	High	0.15
В	Low	0.15
C	High	0.1
С	Low	0.2

- Consider two random variable G (grade) and I (intellegence $\in \{ High, Low \})$
- The joint distribution over these two random variables assigns probabilities to all events involving these two random variables

$$P(G=g,I=i) \quad \forall (g,i) \in \{A,B,C\} \times \{H,L\}$$

G	I	P(G=g, I=i)
A	High	0.3
A	Low	0.1
В	High	0.15
В	Low	0.15
C	High	0.1
С	Low	0.2

- Consider two random variable G (grade) and I (intellegence $\in \{High, Low\}$)
- The joint distribution over these two random variables assigns probabilities to all events involving these two random variables

$$P(G=g,I=i) \quad \forall (g,i) \in \{A,B,C\} \times \{H,L\}$$

• We denote this joint distribution compactly by P(G, I)

Conditional Distribution

G	P(G I=H)
A	0.6
В	0.3
C	0.1
	1

G	P(G I=L)
A	0.3
В	0.4
C	0.3

ullet Consider two random variable G (grade) and I (intellegence)

Conditional Distribution

G	P(G I=H)
A	0.6
В	0.3
C	0.1

- Consider two random variable G (grade) and I (intellegence)
- Suppose we are given the value of I (say, I = H) then the conditional distribution P(G|I) is defined as

$$P(G = g|I = H) = \frac{P(G = g, I = H)}{P(I = H)} \forall g \in \{A, B, C\}$$

G	P(G I=H)
A	0.6
В	0.3
$^{\circ}$ C	0.1

G	P(G I=L)
A	0.3
В	0.4
C	0.3

Conditional Distribution

- Consider two random variable G (grade) and I (intellegence)
- Suppose we are given the value of I (say, I = H) then the conditional distribution P(G|I) is defined as

$$P(G = g|I = H) = \frac{P(G = g, I = H)}{P(I = H)} \forall g \in \{A, B, C\}$$

• More compactly defined as

$$P(G|I) = \frac{P(G,I)}{P(I)}$$
or
$$\underbrace{P(G,I)}_{joint} = \underbrace{P(G|I)}_{conditional} * \underbrace{P(I)}_{marginal}$$

• The joint distribution of n random variables assigns probabilities to all events involving the n random variables,

	$P(X_1, X_2, \dots, X_n)$
 	 • • •

$$\sum = 1$$

- The joint distribution of n random variables assigns probabilities to all events involving the n random variables,
- In other words it assigns

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

for all possible values that variable X_i can take

$$\sum = 1$$

•	The joint distribution of n random variables
	assigns probabilities to all events involving the
	n random variables,

• In other words it assigns

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

for all possible values that variable X_i can take

• If each random variable X_i can take two values then the joint distribution will assign probabilities to the 2^n possible events

X_1	 X_n	$P(X_1, X_2, \dots, X_n)$

$$\sum = 1$$

X_1	 X_n	$P(X_1, X_2, \dots, X_n)$

• The joint distribution over two random variables X_1 and X_2 can be written as,

$$P(X_1, X_2) = P(X_2|X_1)P(X_1) = P(X_1|X_2)P(X_2)$$

X_1	 X_n	$P(X_1, X_2, \dots, X_n)$

• The joint distribution over two random variables X_1 and X_2 can be written as,

$$P(X_1, X_2) = P(X_2|X_1)P(X_1) = P(X_1|X_2)P(X_2)$$

 \bullet Similarly for n random variables

$$P(X_1, X_2, ..., X_n)$$

X_1	 X_n	$P(X_1, X_2, \dots, X_n)$

• The joint distribution over two random variables X_1 and X_2 can be written as,

$$P(X_1, X_2) = P(X_2|X_1)P(X_1) = P(X_1|X_2)P(X_2)$$

$$P(X_1, X_2, ..., X_n)$$

= $P(X_2, ..., X_n | X_1) P(X_1)$

X_1	 X_n	$P(X_1, X_2, \dots, X_n)$

• The joint distribution over two random variables X_1 and X_2 can be written as,

$$P(X_1, X_2) = P(X_2|X_1)P(X_1) = P(X_1|X_2)P(X_2)$$

$$P(X_1, X_2, ..., X_n)$$
= $P(X_2, ..., X_n | X_1) P(X_1)$
= $P(X_3, ..., X_n | X_1, X_2) P(X_2 | X_1) P(X_1)$

X_1	 X_n	$P(X_1, X_2, \dots, X_n)$

• The joint distribution over two random variables X_1 and X_2 can be written as,

$$P(X_1, X_2) = P(X_2|X_1)P(X_1) = P(X_1|X_2)P(X_2)$$

$$P(X_1, X_2, ..., X_n)$$
= $P(X_2, ..., X_n | X_1) P(X_1)$
= $P(X_3, ..., X_n | X_1, X_2) P(X_2 | X_1) P(X_1)$
= $P(X_4, ..., X_n | X_1, X_2, X_3) P(X_3 | X_2, X_1)$
 $P(X_2 | X_1) P(X_1)$

X_1	 X_n	$P(X_1, X_2, \dots, X_n)$

• The joint distribution over two random variables X_1 and X_2 can be written as,

$$P(X_1, X_2) = P(X_2|X_1)P(X_1) = P(X_1|X_2)P(X_2)$$

$$P(X_{1}, X_{2}, ..., X_{n})$$

$$= P(X_{2}, ..., X_{n}|X_{1})P(X_{1})$$

$$= P(X_{3}, ..., X_{n}|X_{1}, X_{2})P(X_{2}|X_{1})P(X_{1})$$

$$= P(X_{4}, ..., X_{n}|X_{1}, X_{2}, X_{3})P(X_{3}|X_{2}, X_{1})$$

$$P(X_{2}|X_{1})P(X_{1})$$

$$= P(X_{1}) \prod_{i=1}^{n} P(X_{i}|X_{1}^{i-1}) \quad (chain rule)$$

From Joint Distributions to Marginal Distributions

•	Suppose we	are given	a joint	$\operatorname{distribtion}$	over
	two random	variables	A, B		

A	B	P(A=a,B=b)
High	High	0.3
High	Low	0.25
Low	High	0.35
Low	Low	0.1

A	P(A=a)
High	0.55
Low	0.45

B	P(B=a)
High	0.65
Low	0.35

A	P(A=a)
High	0.55
Low	0.45
B	P(B=a)

B	P(B=a)
High	0.65
Low	0.35

From Joint Distributions to Marginal Distributions

- Suppose we are given a joint distribtion over two random variables A, B
- The marginal distributions of A and B can be computed as

$$P(A = a) = \sum_{\forall b} P(A = a, B = b)$$

$$P(B=b) = \sum_{\forall a} P(A=a,B=b)$$

A	B	P(A=a, B=b)
High	High	0.3
High	Low	0.25
Low	High	0.35
Low	Low	0.1

A	P(A=a)
High	0.55
Low	0.45
D	D(D-a)

B	P(B=a)
High	0.65
Low	0.35

From Joint Distributions to Marginal Distributions

- Suppose we are given a joint distribution over two random variables A. B.
- The marginal distributions of A and B can be computed as

$$P(A=a) = \sum_{\forall b} P(A=a, B=b)$$

$$P(B=b) = \sum_{\forall a} P(A=a, B=b)$$

• More compactly written as

$$P(A) = \sum_{B} P(A, B)$$

$$P(B) = \sum_{A \subseteq A} P(A, B)$$

What if there are n random variables?

• Suppose we are given a joint distribtion over n random variables $X_1, X_2, ..., X_n$

A	B	P(A=a,B=b)
High	High	0.3
High	Low	0.25
Low	High	0.35
Low	Low	0.1

A	P(A=a)
High	0.55
Low	0.45

B	P(B=a)
High	0.65
Low	0.35

What if there are n random variables?

A	B	P(A=a,B=b)
High	High	0.3
High	Low	0.25
Low	High	0.35
Low	Low	0.1

A	P(A=a)
High	0.55
Low	0.45

$$\begin{array}{c|c} B & P(B=a) \\ \hline \text{High} & 0.65 \\ \hline \text{Low} & 0.35 \\ \end{array}$$

- Suppose we are given a joint distribution over n random variables $X_1, X_2, ..., X_n$
- The marginal distributions over X_1 can be computed as

$$P(X_1 = x_1)$$
= $\sum_{\forall x_2, x_3, ..., x_n} P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$

$\begin{array}{c|cccc} A & B & P(A=a,B=b) \\ \hline \text{High} & \text{High} & 0.3 \\ \hline \text{High} & \text{Low} & 0.25 \\ \hline \text{Low} & \text{High} & 0.35 \\ \hline \end{array}$

0.1

A	P(A=a)
High	0.55
Low	0.45

Low

Low

$\mid B \mid$	P(B=a)
High	0.65
Low	0.35

What if there are n random variables?

- Suppose we are given a joint distribution over n random variables $X_1, X_2, ..., X_n$
- The marginal distributions over X_1 can be computed as

$$P(X_1 = x_1)$$
= $\sum_{\forall x_2, x_3, \dots, x_n} P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$

• More compactly written as

$$P(X_1) = \sum_{X_2, X_3, \dots, X_n} P(X_1, X_2, \dots, X_n)$$

ullet Two random variables X and Y are said to be independent if

$$P(X|Y) = P(X)$$

ullet Two random variables X and Y are said to be independent if

$$P(X|Y) = P(X)$$

• We denote this as $X \perp \!\!\! \perp Y$

ullet Two random variables X and Y are said to be independent if

$$P(X|Y) = P(X)$$

- We denote this as $X \perp \!\!\! \perp Y$
- In other words, knowing the value of Y does not change our belief about X

• Two random variables X and Y are said to be independent if

$$P(X|Y) = P(X)$$

- We denote this as $X \perp \!\!\! \perp Y$
- ullet In other words, knowing the value of Y does not change our belief about X
- We would expect *Grade* to be dependent on *Intelligence* but independent of *Weight*

• Recall that by Chain Rule of Probability

$$P(X,Y) = P(X)P(Y|X)$$

Conditional Independence

• Two random variables X and Y are said to be independent if

$$P(X|Y) = P(X)$$

- We denote this as $X \perp \!\!\! \perp Y$
- In other words, knowing the value of Y does not change our belief about X
- We would expect *Grade* to be dependent on *Intelligence* but independent of *Weight*

• Recall that by Chain Rule of Probability

$$P(X,Y) = P(X)P(Y|X)$$

• However, if X and Y are independent, then

$$P(X,Y) = P(X)P(Y)$$

Conditional Independence

• Two random variables X and Y are said to be independent if

$$P(X|Y) = P(X)$$

- We denote this as $X \perp \!\!\! \perp Y$
- In other words, knowing the value of Y does not change our belief about X
- We would expect *Grade* to be dependent on *Intelligence* but independent of *Weight*