Sistemas de computação e informação - Evolução dos Sistemas Online

Benay T. da L. de Carvalho - Universidade Norte do Paraná 28 de fevereiro de 2024

1 O que será abordado?

A evolução dos sistemas de informação por meio do uso da internet. As novas tecnologias que estão mudando a forma de utilização de aplicativos que são executados diretamente por meio da internet. Os sistemas de colaboração e ferramentas de social business, que estão mudando a forma de trabalho dos usuários com uso de sistemas que permitem o trabalho de equipes de forma colaborativa.

2 Evolução dos sistemas de informação com a internet

A internet foi criada no início da década de 1970 como uma rede do Departamento de Defesa dos Estados Unidos com intenção de conectar cientistas e professores universitários ao redor do mundo. Sendo o maior caso de implementação de redes individuais.

Uma vez que a informação está disponível a todos, a internet aumenta o poder de barganha dos clientes, que podem com grande rapidez e facilidade encontrar um fornecedor com custos e/ou condições de fornecimento muito mais atrativas, fazendo que os lucros das empresas sejam reduzidos e impondo severos riscos a alguns setores da economia, por exemplo as enciclopédias impressas e as agências de turismo.

Mas a internet também possibilitou a criação de inúmeros novos serviços e mercados, constituindose atualmente como alicerce de muitos modelos de novos negócios, fazendo que setores inteiros da economia mudem sua maneira de fazer negócios em escala global. Veremos agora alguns desses serviços e tecnologias.

2.1 Computação em nuvem

Também conhecida como cloud computing, é uma tecnologia que permite o uso da internet para armazenamento de dados (textos, imagens, vídeos, jogos, filmes, etc.) e execução de alguns softwares sem que o usuário necessite instalar programas em seu computador.

Um sistema de computação em nuvem pode ser: **Público** quando o serviço é mantido por um provedor de serviço em nuvem. **Privado** quando o serviço é mantido exclusivamente por uma organização.

Os ambientes de Computação em nuvem estão sempre sujeitos à atuação de três importantes forças que, juntas, facilitam ou dificultam a adesão dos usuários. Essas são: **Barreiras potenciais** à adoção da computação em nuvem. **Benefícios potencias** da adoção da computação em nuvem. **Riscos inerentes** à computação em nuvem.

2.2 Ferramentas e tecnologias para colaboração e Social Business

Uma cultura colaborativa orientada a equipes não gera benefício se não existirem sistemas que viabilizam a colaboração e o Social Business.

Atualmente, existem algumas ferramentas avançadas como Lotus Notes porém são pagas. Outras estão disponíveis gratuitamente e são adequadas para empresas pequenas.

Exemplo dessas ferramentas são os Wikis, que nada mais são do que ferramentas que permitem adicionar, alterar e remover um conteúdo sem qualquer conhecimento sobre desenvolvimento de páginas web ou técnicas de programação. São conteúdos armazenados e organizados em um ambiente online. Maior exemplo é a Wikipédia, maior projeto de edição colaborativa do mundo.

Outros exemplos são: Emails, Whatsapp, Sharepoint, SmartCloud for Business, Discord, Dropbox, Google Drive, iCloud, FaceTime, etc.

3 Tecnologia de desenvolvimento de sistemas

Quando pensamos na arquitetura de um sistema de informação, devemos primeiro entender quais são as necessidades dos usuários e a que o sistema se presta, ou seja, quais os propósitos do sistema, antes de começarmos a projetar o sistema em si. Você pode observar que um sistema de informação nada mais é que uma ferramenta a serviço de um instituição.

3.1 Fundamentos gerais sobre desenvolvimento de sistemas

Arquitetura de um sistema de informação é composta por 3 aspectos básicos

- Estrututura do sistema: Framework, que são as funcionalidades básicas do sistema.
- Componentes: Os componentes são os módulos do sistema. Os módulos são organizados pelas funcionalidades que agrupam.
- Relacionamentos: O relacionamento entre os componentes, isto é, as comunicações, trocas de dados e informações entre os componentes.

Podemos ainda considerar que a arquitetura de sistemas de informação é um conjunto de várias arquiteturas que se completam: Arquitetura de hardware, de software, corporativa, de sistemas colaborativos, de sistemas de manufatura, de sistemas estratégicos.

O site TutorsGlobe estabelece cinco questões para definição da arquitetura de um sistema de informação. Essas perguntas devem ser expandidas dependendo do caso trabalhado.

- 1. Quem serão os usuários do sistema?
- 2. Para que servirá o sistema e quais serão seus principais processos?
- 3. Como serão as redes que transportarão os dados e informações para dentro e fora do sistema?
- 4. Que eventos e em que momento do tempo esses eventos deverão ocorrer no sistema?
- 5. Quais são as regras e casos de uso do sistema?

4 Sistemas de informação hospedados na nuvem

Esses sistemas possuem algumas particularidades importantes acerca de sua arquitetura: **O backend** fica hospedado não mais em servidores pertencentes à instituição, mas em datacenters. Permanecem privados, mas a infraestrutura não é de propriedade da instituição dona dos sistemas de informação.

O acesso aos sistemas não feito por meio de linhas privativas de comunicação, contratadas diretamente dos provedores de comunicação (operadoras) do país. A comunicação é feita por meio de canais públicos de comunicação (internet).

O frontend dos sistemas passam a ser websites acessíveis por meio de qualquer navegador ou por meio de aplicativos móveis gratuitos.

5 Classificações e tipos de linguagens de programação

Veremos sobre Linguagem de programação, linguagem de máquina, categorização, paradigma de programação.

A linguagem de máquina é composta por cadeias de números expressos em base binária e age diretamente sobre o processador. Os comandos possíveis em linguagem de máquina são bastante simples e são necesários muitos deles para realizar alguma ação que tenha significado para nós, humanos.

Alguns exemplos de comandos possíveis em linguagem de máquina são: **Buscar e escrever** dados em alguma posição de memória. **Realizar operação lógica. Comparar dois valores** e informar qual é maior ou menor. **Enviar dado** para manipulação de algum periférico.

Porém, sendo muito complexa e demorada de usar para nós humanos, a linguagem de programação serve para traduzir o que queremos para linguagem de máquina.

5.1 Categorização

A categorização de linguagens de programação é um processo arbitrário: Podemos categorizar de inúmeras formas. Uma maneira é categorizar pela maneira que a linguagem se relaciona com o processador.

Linguagens que geram código que acessa diretamente o processador são chamadas de linguagens compiladas, enquanto linguagens que precisam de programas intermediários que transformem suas instruções em comandos compreensíveis para o processador são linguagens interpretadas.

O Hyper Text Markup Language, ou HTML, é um exemplo de linguagem interpretada. O C++ utilizado para criar programas executáveis, é uma linguagem compilada.

Dentre as várias maneiras de categorizar uma linguagem, podemos citar:

Categorização histórica, categorização por paradigmas e categorização por acesso direto ou indireto ao processador

5.2 Paradigmas de programação

• Paradigma de linguages imperativas

Foco da execução e solução está em como deve ser feito. Linguagens: Pascal, Fortran e Cobol.

- P. de l. procedural

Organizado como procedimentos que o programador cria que serve como passo-a-passo que a máquina deve cumprir. Linguagens: Perl, Php, Lua.

- P. de l. orientadas a objetos

Organizado como objetos que possuem classes e comportamentos associados. Principais linguagens: Java, Python e C++.

• Paradigma de linguagens declarativas

Este paradigma está mais interessado em "o que" e menos no "como" Declara verdades lógicas imutáveis. Linguagens: HTML, XML, XAML.

P. de l. lógica

Processo que chega aos resultados através de análise lógico-matemáticas. Principais elementos: Proposições, regras de inferência e busca. Linguagem: Prolog.

- P. de l. funcional

Destaca o uso das funções e na hora de resolver um problema, divide em blocos onde são implementadas as funções. Linguagens: Lisp, Scheme e Haskell.

Além do que vimos, devemos:

- Saber quais informações devem fazer parte do banco de dados.
- Definir como fazer a modelagem dos dados, de forma a obter um conjunto de relacionamentos entre eles, para que o banco de dados tenha uma lógica coesa.
- Decidir qual bando de dados mais adequado para o sistema.
- Identificar o melhor local e o melhor modo de acesso aos dados armazenados no banco (e se esse banco deve ser centralizado ou distribuído).

6 Principais tipos de sistemas gerenciadores de banco de dados

Gerenciamento de dados e informações envolve:

Determinar quais informações serão necessárias, adquirir as informações necessárias, organizar as informações, garantir a qualidade da informação e disponibilizar ferramentas de acesso aos colaboradores.

Hierarquia de dados

Se trata de uma forma de organizar os dados desde seus elementos constituintes mais simples até os mais complexos. Os elementos da Hierarquia de dados são: Caractere, Campo, Registro, Arquivo e Banco de dados.

Caractere são letras e números. Campos são combinações de letras, números, símbolos. Registros são conjuntos de campos relacionados que descrevem uma entidade. Arquivo é um conjunto de registros relacionados. Banco de dados é uma coleção de arquivos integrados e relacionados.

7 Modelagem de dados

A modelagem de dados é parte integrante da organização da estrutura lógica dos dados. Consiste em 4 passos, ao final dos quais o modelo de dados terá sido criado e poderá ser implantado em um SGBD.

- 1. Identificar os dados que devem fazer parte do banco de dados.
- 2. Identificar as relações quantitativas entre os dados(1 para n, n para 1, n para n)
- 3. Identificar as relações qualitativas entre os dados
- 4. Refinar a representação dos dados, identificando os níveis de abstração e também ajustando os relacionamentos.

7.1 Modelo Entidade Relacionamento (MER)

Definidos os dados e suas relações, o modelo é feito por um diagrama visual. A figura a seguir apresenta um exemplo desse modelo:

Exemplo de diagrama MER

Fonte: Adaptado de Stair e Reynolds (2015, p. 213).

Os modelos de banco de dados relacional mais populares armazenam as informações em tabelas bidimensionais, chamadas **relações**. Os principais sistemas de banco de dados são:

Access, MySQL, DB2, Oracle e AWS

8 Ferramentas CASE

São ferramentas computadorizadas que automatizam processos e integram resultados e subsídios das várias fases do projeto de desenvolvimento de um sistema de informação.

Os objetivos das CASE são:

Auxiliar no desenho do sistema a ser desenvolvido. Auxiliar na definição, acompanhamento e controle das tarefas de desenvolvimento do sistema. Reduzir a complexidade do projeto por meio de sua divisão em porções menores e mais facilmente gerenciáveis. Facilitar a manutenção futura do sistema. Aumentar a consistência do projeto e a coesão dos módulos do sistema por meio de ferramentas de verificação.

8.1 Categorização das CASE

Há dois tipos de categorização. O primeiro é a categorização em termos da fase do projeto em que as ferramentas são usadas.

Nesse caso são três categorias:

Ferramentas Upper-CASE, ferramentas Lower-CASE e ferramentas Integrated-CASE

Tutorial de ferramentas CASE:

https://www.youtube.com/watch?v=kKsdVFOcrOs