Assignment 4: Return, Autocorrelation and GBM

By Sandeep Joshi

Question 1: Returns and Autocorrelations

1. Download data for any symbol for at least 2 years

Output

```
> head(msft)
          MSFT.Open MSFT.High MSFT.Low MSFT.Close MSFT.Volume MSFT.Adjusted
2013-10-01
            33.35
                               33.30
                                           33.58
                                                   36718700
                      33.61
                                                              31.79213
                                33.29
                                                   46946800
                                                                 32.11403
2013-10-02
                       34.03
                                           33.92
              33.36
2013-10-03
              33.88
                       34.00
                                33.42
                                           33.86
                                                   38703800
                                                                 32.05723
             33.69
                                                   33008100
2013-10-04
                       33.99
                              33.62
                                           33.88
                                                                 32.07616
                                                   35069300
2013-10-07
              33.60
                       33.71 33.20
                                           33.30
                                                                 31.52704
2013-10-08
              33.31
                       33.33
                                           33.01
                                                   41017600
                                32.80
                                                                 31.25248
```

2. Calculate One period simple and log returns

```
# This is in ascending order.. flipping it

msft <- msft[nrow(msft):1,]

# making another column for n - 1 prices vector as for n enteries we will have n - 1 deltas

msft.shift_price <- msftsMsFT.Adjusted[1:length(msftsMsFT.Adjusted) - 1]

# make another column for t -1 prices so that we get two vectors to get delta

msft.shift_price1 <- msftsMsFT.Adjusted[2:length(msftsMsFT.Adjusted)]

length = length(msft.shift_price1)

# calculating simple return

msft.simple_return <- (msft.shift_price - msft.shift_price1)/ msft.shift_price1 # Rt

# Calculating log return

msft.log_return <- log(msft.shift_price) - log(msft.shift_price1) # rt
```

Output

```
> head(msft.simple_return)
[1] 0.0079078856 0.0188765888 0.0034649572 -0.0147928542 0.0006831929 0.0009118076
> # Calculating log return
> msft.log_return <- log(msft.shift_price) - log(msft.shift_price1) # rt
> head(msft.log_return)
[1] 0.0078767821 0.0187006368 0.0034589681 -0.0149033596 0.0006829596 0.0009113922
```

3. Calculate multi period returns for log and simple and verify their relationship with one periods calculated earlier

```
# Calculating multiperiod simple return
     msft.simple_return_m <- msft.shift_price/ msft$MSFT.Adjusted[length(msft$MSFT.Adjusted)] - 1</pre>
40
41
     # Calculating multi period log return
msft.log_return_m <- log(msft.shift_price/ msft$MSFT.Adjusted[length(msft$MSFT.Adjusted)])</pre>
     msft.log_return_m <-
     #print(msft.log_return_m)
43
     # Re-Calculating multiperiod returns based on simple returns calculated above
               length(msft.simple_return)
                                                    # should be length - 1
    msft.simple_return_m2 <- double(size)
msft.log_return_m2 <- double(size)
47
48
49
50
51
52
53
54
55
56
57
58
59
     for (i in 1:size)
          \label{lem:msft.simple_return_m2[i] <- prod((msft.simple_return[i:size] + 1)) - 1} \\ print \ (msft.simple_return_m2[i])|
     for (i in 1:size)
          msft.log_return_m2[i] <- sum(msft.log_return[i:size])</pre>
          print (msft.log_return_m2[i])
60
61
62
63
     cbind.data.frame(msft$MSFT.Adjusted[1:size], msft.shift_price, msft.shift_price1,
                           msft.simple_return, msft.simple_return_m, msft.simple_return_m2,
                           msft.log_return_m, msft.log_return_m2)
     # Comparing columns for simple_return_m and simple_return_m2 and log_return_m and log_return_m2 we c # the relationship between single and multiperiod.
```

Output

It could be easily seen from the result shot above that values in column 5 & 6 as well as 7 & 8 are clearly matching validating our two formulae given in the study material.

4. Calculate auto correlation functions for log and log squared returns.

P.S. Library acf functions used to perform this.

```
# Auto correlation function
# log return series
# Reusing the log vector here fr
# msft.log_return
acf_log <- acf(msft.log_return)
print(acf_log)
# squared log return series
acf_log_sq <- acf(msft.log_return)
print(acf_log_sq)
# squared log_return series
         # Reusing the log vector here from earlier endeavors and employing acf function
         # Squared log return series
acf_log_sq <- acf(msft.log_return^2)
```

Output:

1.

2.

```
Autocorrelations of series 'msft.log_return^2', by lag
                                                                                                                                                                                                                                                                                                                                                                           4
                                                                                                                                                                                                                                                                                                                                                                                                                                                         5
            1.000 \quad 0.064 \quad 0.043 \quad 0.089 \quad 0.057 \quad -0.013 \quad -0.016 \quad 0.020 \quad 0.047 \quad -0.020 \quad -0.003 \quad -0.008 \quad 0.011 \quad -0.005 \quad 0.029 \quad -0.028 \quad -0.011 \quad -0.005 \quad 0.029 \quad -0.028 \quad -0.011 \quad -0
                                                                                                                                                                                                     18
                                                                                                                                                                                                                                                                                   19
                                                                                                                                                                                                                                                                                                                                                            20
                                                                                                                                                                                                                                                                                                                                                                                                                                            21
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      22
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             23
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    24
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              26
        -0.025 -0.029 -0.039 -0.029 -0.029 0.004 0.002 -0.040 -0.009 0.032 -0.004 0.019
```

Lag

Series msft.log_return^2

Question 2: Geometrical Brownian Motion

<u>Disclaimer</u>: For this solution I have understood and borrowed code from the lecture 6 material. I have just seeded the two methods equally and looped them couple of times with different but consistent seeds to compare the final termination values.

```
83 # Question 2
84 # Geomatrical Brownian Motion
85 # Disclaimer: Used code provided in lecture 6'
86
87 rm(list = ls())
88 cat("\014")
89 ## parameters
90 r <- 0.05
91 sigma <- 0.2
92 Maturity <- 1
93 steps <- 252
94 s0 <- 100
95 iterations <- 20
96 result = matrix(nrow = 20, ncol = 2)
97
98 # Start the loop
99 for (i in 1:iterations)
L00 - {
L01
         set.seed(i) # Set seed so we get same rnorm
L02
L03
         ## method 1: Euler Method
04
         dt \leftarrow Maturity / steps
L05
         epsilon_t_vec <- rnorm(steps)</pre>
         epsilon_t_vec <- append(0, epsilon_t_vec)</pre>
06
L07
         dwt_vec <- epsilon_t_vec * sqrt(dt)</pre>
108
         St_vec <- c()
L09
         St_vec[1] <- S0
10
         for(j in 1:steps)
111 -
12
             dwt <- dwt_vec[j+1]</pre>
L13
             St_vec[j+1] \leftarrow St_vec[j] + r * St_vec[j] * dt + sigma * St_vec[j] * dwt
L14
115
         result[i, 1] = St_vec[steps+1]
L16
         set.seed(i)
17
18
         ## method 2: Solution to GBM
         dt <- Maturity / steps
119
L20
         epsilon_t_vec <- rnorm(steps)</pre>
         epsilon_t_vec <- append(0, epsilon_t_vec)
L21
L22
         cum_wt_vec <- cumsum(epsilon_t_vec) * sqrt(dt)</pre>
L23
         ST \leftarrow S0 * exp(r*Maturity + cum_wt_vec[steps + 1] * sigma)
24
L25
         result[i, 2] = ST
L26 }
L27
L28 # Check terminal values by both methods side by side
L29 print (result)
```

Output

```
> # Check terminal values by both methods side by side
> print (result)
           [,1]
                     [,2]
 [1,] 111.44277 113.50458
 [2,] 115.44639 118.12764
 [3,] 117.10242 119.45490
 [4,] 105.82910 107.75000
 [5,] 111.32775 113.52884
 [6,]
      81.76372
                83.33268
 [7,] 131.66559 134.21623
 [8,]
      90.60343 92.51594
 [9,]
       75.92925
                 77.37672
[10,]
       79.66654 81.11691
[11,] 100.50049 102.33094
[12,]
       98.72282 100.47425
[13,]
       83.32588 85.05723
[14,]
      99.11526 101.08123
[15,] 101.59396 103.85768
[16,] 116.48931 118.78816
[17,] 94.77287 96.96509
[18,] 81.27659 82.98324
[19,] 106.27734 108.58006
[20,] 111.74490 114.15058
```

The first column contains terminal value using method 1 and the second column shows terminal value using method 2. As we can see they are pretty same and consistently shows same pattern for same seeds.