

SAM file

VN:1.0 SO:coordinate SN:chr20 LN:64444167 ID:TopHat VN:2.0.14 CL:/srv/dna_tools/tophat/tophat -N 3 --read-edit-dist 5 --read-rea 1145:74:C101DACXX:7:1114:2759:41961 16 chr20 193953 50 100M * 0 0
TGCTGGATCATCTGGTTAGTGGCTTCTGACTCAGAGGACCTTCGTCCCCTGGGGCAGTGGACCTTCCAGTGATTCCCCTGACATAAGGGGCATGGACGA DDDDDDDDDDDDDDDDDDDEEEEEEEFFFEFFEGHHHHFGDJJIHJJIJJJJIIIIGGFJJIHIIIJJJJJJJJIGHHFAHGFHJHFGGHFFFDD@BB AS:i:-11 XM:i:2 X0:i:0 XG:i:0 MD:Z:0A85G13 NM:i:0 NH:i:1 HWI-ST1145:74:C101DACXX:7:1210:11167:8699 0 chr20 271218 50 accepted_hits.sam

	Tag	Description	
1	CHD	The header line. The first line if present.	
	VN*	Format version. Accepted format: /~[0-9]+\.[0-9]+\$/.	
	S0	Sorting order of alignments. Valid values: unknown (default), unsorted, queryname and coordinate. For coordinate sort, the major sort key is the RNAME field, with order defined by the order of \$80 lines in the header. The minor sort key is the POS field. For alignments with equal RNAME and POS, order is arbitrary. All alignments with ** in RNAME field follow alignments with some other value but otherwise are in arbitrary order.	
	GO	Grouping of alignments, indicating that similar alignment records are grouped together but the file is not necessarily sorted overall. Valid values: none (default), query (alignments are grouped by QNAME), and reference (alignments are grouped by RNAME/POS).	
	QSQ	Reference sequence dictionary. The order of @SQ lines defines the alignment sorting order.	
	SN*	Reference sequence name. Each \$SQ line must have a unique SN tag. The value of this field is used in the alignment records in RNAME and RNEXT fields. Regular expression: [!-)+->-][!-]*	
	LN*	Reference sequence length. Range: [1,2 ³¹ -1]	
	AS	Genome assembly identifier.	
	M5	MD5 checksum of the sequence in the uppercase, excluding spaces but including pads (as '*'s).	
	SP	Species.	
	UR	URI of the sequence. This value may start with one of the standard protocols, e.g http: or ftp:. If it does not start with one of these protocols, it is assumed to be a file-system path.	
	GRC	Read group. Unordered multiple @RG lines are allowed.	
	ID*	Read group identifier. Each \$RG line must have a unique ID. The value of ID is used in the RG tags of alignment records. Must be unique among all read groups in header section. Read group IDs may be modified when merging SAM files in order to handle collisions.	
	CN	Name of sequencing center producing the read.	
	DS	Description.	
	DT	Date the run was produced (ISO8601 date or date/time).	
	FO	Flow order. The array of nucleotide bases that correspond to the nucleotides used for each flow of each read. Multi-base flows are encoded in IUPAC format, and non-nucleotide flows by various other characters. Format: /\tilde{\text{V-NGRSYTPYRGOSD}} +/	
	KS	The array of nucleotide bases that correspond to the key sequence of each read.	
	LB	Library.	
	PG	Programs used for processing the read group.	
	PI	Predicted median insert size.	
	PL	Platform/technology used to produce the reads. Valid values: CAPILLARY, LS454, ILLUMINA, SOLID, HELICOS, IONTORRENT, ONT, and PACBIO.	
	PM	Platform model. Free-form text providing further details of the platform/technology used.	
	PU	Platform unit (e.g. flowcell-barcode.lane for Illumina or slide for SOLiD). Unique identifier.	
	SM	Sample. Use pool name where a pool is being sequenced.	
	GPG	Program.	
	ID*	Program record identifier. Each @PC line must have a unique ID. The value of ID is used in the alignment PG tag and PP tags of other @PG lines. PG IDs may be modified when merging SAM files in order to handle collisions.	
	PN	Program name	
	CL	Command line	

Why do we care about quality scores so much?

- Variant calling algorithms rely on the quality score assigned to the individual base calls
- Tells us how much we can trust that particular observation to inform us about the biological truth of the site
- If we have a basecall that has a low quality score, that means we're not sure we actually read that A correctly, and it could actually be something else
- So we won't trust it as much as other base calls that have higher qualities
- We use that score to weigh the evidence that we have for or against a variant existing at a particular site

Why Recalibrate?

- Scores produced by the machines are subject to various sources of systematic technical error
- Leads to over- or under-estimated base quality scores in the data.
- Errors can arise due to the physics or the chemistry of how the sequencing reaction works, possibly manufacturing flaws in the equipment.

Why Recalibrate?

Base quality score recalibration (BQSR) is a process in which we apply machine learning to model these errors empirically and adjust the quality scores accordingly.

Raw, high-sensitivity callsets contain many false positives

- Mutation calling algorithms are very permissive by design
- · How to filter?
 - Hand-tuned hard-filtering requires time and expertise
 - Better to learn what the filters should be from the data itself
- Must enable analysts to trade off sensitivity and specificity depending on project goals
- ☑ Building a model of what true genetic variation looks like will allow us to rank-order variants based on their likelihood of being real

How does BQSR work?

- 1. You provide GATK Base Recalibrator with a set of known variants.
- ². GATK Base Recalibrator analyzes all reads looking for mismatches between the read and reference, skipping those positions which are included in the set of known variants (from step 1).
- ³ GATK Base Recalibrator computes statistics on the mismatches (identified in step 2) based on the reported quality score, the position in the read, the sequencing context (ex: preceding and current nucleotide).
- ⁴ Based on the statistics computed in step 3, an empirical quality score is assigned to each mismatch, overwriting the original reported quality score.

From annotations to mixture models

- · Each variant has a diverse set of statistics associated with it.
- These annotations tend to form Gaussian clusters
- We can fit a "Gaussian mixture model" to the annotations known variants in our dataset.
- Any new variant can be scored by evaluating the associated annotations in this model.

Variant annotations are the "features" of the model VCF record for an A/G SNP at 22:49582364 22 49582364 Α G 198.96 AC=3; AF=0.50; AC No. chromosomes carrying MLEAF Max likelihood AF alt allele AN=6; AN Total no. of chromosomes MQ RMS MAPQ of all reads DP=87; INFO field MLEAC=3; AF Allele frequency No. of MAPQ 0 reads at locus MQ0 MLEAF=0.50; DP Depth of coverage QD QUAL score over depth MQ=71.31;MQ0=22; Max likelihood AC MLEAC OD=2.29; SB = -31.76GT:DP:GQ 0/1:12:99 0/1:11:89 0/1:28:37 Note that VQSR will only look at INFO annotations;

(1) Training the model

(1) Train model using e.g. HapMap

- We choose a training set
- Variants that are both in the training set and in our callset are selected.
- We train the model using the annotations of the selected variants
- · This tells us what good variants look like
- A similar model for the variants in our callset that least look like good variants is also created (bad model, no biscuit!)
- All variants can now be ranked based on the ratio between their scores in the good model and the bad model (= VQSLOD)

(2) Applying the model to our callset

- Using the ranking produced by the model, filtering variants is as easy as setting a single threshold value
- Any variants whose score falls below the threshold is filtered out

(2) Apply model to callset

But how do we set that threshold?

1) Call Variants

- We use the GATK HaplotypeCaller tool
- This step is designed to maximize sensitivity in order to minimize false negatives, i.e. failing to identify real variants
- Creates a single file with both SNPs and indels
- We extract each type of variant into it's own file so we can process them individually

- The first step is designed to maximize sensitivity and is thus very lenient in calling variants
- Good because it minimizes the chance of missing real variants
- But means that we need to filter the raw call set in order to reduce the amount of false positives
- Important in order to obtain the highest-quality call set possible

3) Annotation

- We use SnpEff
- Annotates and predicts the effects of variants on genes
 - Codon changes
 - Amino acid changes
 - Genomic region
- SnpEff has pre-built databases for thousands of genomes

Variant Annotation: SnpEff

- Variant annotation and effect prediction tool. It annotates and predicts the effects of genetic variants (such as amino acid changes).
- Many effects are calculated: such as SYNONYMOUS_CODING, NON_SYNONYMOUS_CODING, FRAME_SHIFT, STOP_GAINED just to name a few.

SnpEff: Public databases

- **ENCODE** datasets are supported by SnpEff (by means of BigWig files provided by ENCODE project).
- **Epigenome Roadmap** provides data-sets that can be used with SnpEff.
- **TFBS** Transcription factor binding site predictions can be annotated. Motif data used in this annotations is generates by Jaspar and ENSEBML projects
- **NextProt** database can be used to annotate protein domains as well as important functional sites in a protein (e.g. phosphorilation site)

CADD - Combined Annotation Dependent Depletion

- Framework that integrates multiple annotations into one metric by contrasting variants that survived natural selection with simulated mutations
- C-scores strongly correlate with allelic diversity, pathogenicity of both coding and non-coding variants, and experimentally measured regulatory effects, and also highly rank causal variants within individual genome sequences.
- C-scores of complex trait-associated variants from genomewide association studies (GWAS) are significantly higher than matched controls and correlate with study sample size, likely reflecting the increased accuracy of larger GWAS.

https://cadd.gs.washington.edu/

