<u>CS - F241</u> MICROPROCESSORS & INTERFACING

Design Assignment:

H_{FE} TESTER FOR NPN TRANSISTORS

Team Members:

Vidit Jain-2016A7PS0064P

Rohit Chauhan- 2016A7PS0065P

Devyash Parihar- 2016A7PS0066P

Rigvita Sharma- 2016A7PS0067P

Problem -24 Group -29

Problem Statement:

Design a microprocessor transistor h_{FE} tester. The system has to display the h_{FE} value of NPN transistors. The transistor under test (TUT) is to be inserted in the socket, and its base is energized with a current from a device DI.

The current I produced by the device DI, can be controlled by supplying it with a DC voltage V. The relationship is as follows:

$$[I = V*10^{-4} A]$$

The emitter of the transistor is grounded, and the collector is connected to a 2.2K resistor, whose other end is connected to the +5V supply. The Voltage drop across a 2.2K resistor is measured and this is related to the hFE by the following relation:

$$[H_{FE} *I *2200 = Voltage Drop]$$

The hFE value should be displayed on a LCD display. If the hFE value is less than 50, an alarm should be sounded 2 seconds.

Specification:

- User inserts the transistor into a socket and turns on a switch to indicate a transistor has been connected.
- "DI" is supplied with a voltage of 0.1V from the microprocessor using resistor-relay combination.
- The base is energized with the corresponding current gain given by the relation: [I = V *10⁻⁴]
- Depending upon the input current and the hFE value of the transistor, the collector current and hence the voltage drop across the resistor varies.
- This voltage drop is fed to ADC 0804 and the hFE is calculated using the relation: [H_{FE} *I*2200 = Voltage Drop]

The hFE value is displayed on the LCD.
 [If it is less than 50, the alarm is activated for 2 seconds.]

"DI" device circuit:

["DI" is a VCCS (Voltage Controlled Current Source) with the given transconductance of 100 Micro Ω .]

- "DI" is connected to a resistor circuit. There are two resistors of resistances $9.8K\Omega$ and 200Ω connected to a 5V source.
- One end of each resistor is connected to a "DI" device through a relay circuit switch.
- Each of these switches are connected to the microprocessor(8086)
 through an 8255. When a switch is closed (i.e., logic 1 at terminals of
 coil) the voltage at that end of the resistor (where the switch is
 connected) is provided to the DI device.

Assumptions:

- The values of H_{FE} are integral.
 [The loss of resolution is insignificant for the expected values of H_{FE}]
- Voltage supplied to the device "DI" is 0.1 V.
- This value of voltage won't drive the transistor to saturation.
- DI draws very little current (negligible) owing to its very high impedance.
- The value of H_{FE} won't exceed 256.

Components Used:

COMPONENT	DESCRIPTION	NUMBER				
Intel 8086	Microprocessor	1				
82C55	Programmable Peripheral Interface	2				
ADC0804	Analog to Digital Converter	1				
6116	2K * 8-bit SRAM	2				
2732	4K * 8-bit ROM	2				
74LS244	4-bit Buffer	1				
74LS373	8-bit Latch	4				
74LS245	8-bit Buffer	4				
2N2369	NPN Transistor	1				
-	NOT gate	8				
LM020L	LCD	1				
ACS755XCB-130	Voltage Sensor	1				

Memory Organization:

Two SRAM chips and two ROM chips are used. Both SRAM and ROM are organized into even and odd banks to facilitate both byte size and word size data transfer. The circuitry for chip selection has been shown on the drawing sheet.

STATIC RANDOM ACCESS MEMORY -SRAM

Starting address: 08000H
 Ending address: 08FFFH
 READ ONLY MEMORY –ROM

Starting address: 00000HEnding address: 01FFFH

The code resides in the ROM and begins at address **00000H**. (The address loaded as soon as the system is switched on is FFFF0H).

CHIP	A19	A18	3 A ₁	7 A16	A	15 A ₁	4 A13	A ₁₂	A ₁₁	A ₁	o A	9 A8	A7	A	6	45 A	4	A	3 A	2 A	AO
EPROM																					
2732																					
From																					
00000h	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
To																					
01FFFh	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1		1	1	1	1
SRAM					Т																
6116																					
								l													
								l													
								l													
From																					
H00080	0	0	0	0	1	0	0	0	0	(0	0 0	0	0	0	0	(0	0	0)
То																					
08FFFh	0	0	0	0	1	0	0	0	1		1	1	1	1	1	1	Ī	1	1	1 1	

I/O Organization:

8255 (1)

Port Type	Port Address	Туре	
Α	00h	Output	
В	02h	Output	
C (lower)	04h	Output	
C (upper)	04h	Input	
Control register	06h		

8255 (2)

Port Type	Port Address	Туре	
A	10h	Output	
В	12h	Input	
C (lower)	14h	Output	
C (upper)	14h	Input	
Control register	16h		

Both used in i/o mode.

Control Word for 8255 (1): 10001000

- Mode for port A = simple i/o (i.e. 00)
- Port A is used for generating control signal of LCD
- Port B is used for giving input to the LCD
- Mode for group B = simple i/o (i.e. 0)
- PC0 PC3 used as output to LED.
- PC4 PC7 used as input from the switch.

Control Word for 8255 (2): 10001010

- Mode for port A = simple i/o (i.e. 00)
- Port A is used for giving input to DI device
- Port B is used for taking input from ADC
- Mode for group B = simple i/o (i.e. 0)
- PC0 PC3 used as output (PC2 is used for controlling the alarm)
- PC4 PC7 used as input (PC5 INTR of ADC)

Flow Chart:

x86 Code:

#make_bin# #LOAD_SEGMENT=FFFFh# #LOAD_OFFSET=0000h#

#CS=0000h#

#IP=0000h#

#DS=0000h#

#ES=0000h#

#SS=0000h#

#SP=FFFEh#

#AX=0000h#

#BX=0000h#

#CX=0000h#

#DX=0000h#

#SI=0000h#

#DI=0000h#

#BP=0000h#

.MODEL TINY

.DATA

;8253 USED TO GENERATE CLOCK FOR ADC

CNT0 EQU 20H

CREG EQU 26H

<u>;8255(1) INITIALISE</u>

PORT1A EQU 00H ;CONTROLLING THE LCD

PORT1B EQU 02H ;INPUT TO LCD

PORT1C EQU 04H ;UPPER - ROW

;LOWER - COLUMN

CREG1 EQU 06H

;8255(2) USED FOR ADC, ALARM AND SWITCH

PORT2A EQU 10H ; INPUT TO DI DEVICE

PORT2B EQU 12H ;ADC

PORT2C EQU 14H :PC1 - SOC OF ADC

;PC2 - ALARM

;PC3 - ADDC OF ADC (USED FOR SELECTING THE ;FIRST INPUT CHANNEL OF

ADC)

;PC5 - EOC OF ADC

CREG2 EQU 16H

TABLE K DB

<u>0EEH,0EDH,0EBH,0E7H,0DEH,0DDH,0DBH,0D7H,0BEH,0BDH,0BBH,0B7H,7EH,7D</u>

H,7BH,77H

DAT2 DB 3 DUP(" ");

T DB 30H,31H

.CODE

.STARTUP

MOV AL,00010110B ;INITIALIZING 8253

OUT CREG,AL

MOV AL.5

OUT CNT0,AL

MOV AL,10001000B ; INITIALIZING 8255(1)

OUT CREG1.AL

CALL DELAY 2MS

MOV AL,10001010B ;INITIALIZING 8255(2)

OUT CREG2.AL

CALL DELAY 2MS

KX1: IN AL, PORT1C

AND AL,80H

CMP AL,80H

JNZ KX1

MOV AL,20H

OUT PORT2A,AL

MOV AL,06H ;GIVE ADC

OUT CREG2,AL

MOV AL,00H ;GIVE ALE

OUT CREG2,AL

MOV AL,02H ;GIVE SOC

OUT CREG2,AL

MOV AL,01H OUT CREG2,AL

MOV AL,03H OUT CREG2,AL

MOV AL,02H ;GIVE SOC

OUT CREG2,AL

MOV AL,00H ;GIVE ALE

OUT CREG2,AL

LOOP2:

IN AL, PORT2C

CALL DELAY 2MS

AND AL,20H ; CHECK FOR EOC

CMP AL,20H

JNZ LOOP2

CALL DELAY 2MS

MOV AL,10001010B ;INITIALIZING 8255(2)

OUT CREG2,AL

IN AL, PORT2B; AL HAS THE VOLTAGE DROP ACROSS THE RESISTOR

NOT AL

CALL HFE

CALL FUNC

CALL ALARM

.EXIT

ALARM PROC NEAR
CMP AL,50
JNB Z2
MOV AL,05H
OUT CREG2,AL

CALL DELAY_2S

MOV AL,04H
OUT CREG2,AL
Z2:
MOV CX,10
Z3:
CALL DELAY_2S
LOOP Z3
CALL DELAY_2S
RET

HFE PROC NEAR
MOV BL,2DH
MUL BL
MOV BL,033H
DIV BL
MOV AH,00H

ALARM ENDP

RET HFE ENDP

FUNC PROC NEAR
PUSH AX
MOV AL,38H
CALL COMNDWRT
CALL DELAY
CALL DELAY
CALL DELAY

MOV AL,0EH

CALL COMNDWRT

MOV AL, 01 ;CLEAR LCD

CALL COMNDWRT

CALL DELAY

CALL DELAY

POP AX

PUSH AX

LEA DI,DAT2

MOV BX.100D

MOV DX,0

DIV BX

ADD AL,30H

CALL DATWRIT ; ISSUE IT TO LCD

CALL DELAY

CALL DELAY

MOV AX,DX

MOV BX,10D

MOV DX,0

DIV BX

ADD AL,30H

CALL DATWRIT

CALL DELAY

CALL DELAY

MOV AX,DX

MOV DX,0

ADD AL,30H

CALL DATWRIT

CALL DELAY

CALL DELAY

POP AX

RET

FUNC ENDP

COMNDWRT PROC ;THIS PROCEDURE WRITES COMMANDS TO LCD OUT PORT1B, AL ;SEND THE CODE TO PORT A

```
MOV AL, 00000100B ;RS=0,R/W=0,E=1 FOR H-TO-L PULSE
OUT PORT1A, AL
NOP
NOP
MOV AL, 00000000B ;RS=0,R/W=0,E=0 FOR H-TO-L PULSE
OUT PORT1A. AL
RET
COMNDWRT ENDP
DATWRIT PROC NEAR
     PUSH DX: SAVE DX
     MOV DX.PORT1B :DX=PORT A ADDRESS
     OUT DX. AL :ISSUE THE CHAR TO LCD
     MOV AL, 00000101B ;RS=1, R/W=0, E=1 FOR H-TO-L PULSE
     MOV DX, PORT1A ; PORT B ADDRESS
     OUT DX, AL ;MAKE ENABLE HIGH
     MOV AL. 00000001B :RS=1.R/W=0 AND E=0 FOR H-TO-L PULSE
     OUT DX, AL
     POP DX
     RET
DATWRIT ENDP: WRITING ON THE LCD ENDS
DELAY 2MS PROC NEAR
MOV CX.100
HER: NOP
LOOP HER
RET
DELAY 2MS ENDP
;DELAY IN THE CIRCUIT HERE THE DELAY OF 20 MILLISECOND IS PRODUCED
DELAY PROC
     MOV CX, 1325 ;1325*15.085 USEC = 20 MSEC
     W1:
          NOP
          NOP
          NOP
          NOP
          NOP
     LOOP W1
```

```
RET
DELAY ENDP
DELAY 2S PROC
     MOV CX, 33125D
    <u>W2:</u>
         NOP
         NOP
         NOP
         NOP
         NOP
     LOOP W2
         MOV CX, 33125D
    W3:
         NOP
         NOP
         NOP
         NOP
         NOP
    LOOP W3
         MOV CX, 33125D
    W4:
         NOP
         NOP
         NOP
         NOP
         NOP
     LOOP W4
         MOV CX, 33125D
    W5:
         NOP
         NOP
         NOP
         NOP
         NOP
    LOOP W5
    RET
DELAY_2S ENDP
END
```

Circuit Diagram:

