CPLX. Nombres complexes

QCOP CPLX.1

3. Résultat. $\{(a,b) \in \mathbb{R}^2 \mid e^{ia} + e^{ib} \in \mathbb{R}\} = \left\{(a,b) \in \mathbb{R} \mid \begin{cases} a-b \equiv \pi & [2\pi] \\ a+b \equiv 0 & [2\pi] \end{cases} \right\}.$

Il y a deux conditions car :

- \blacklozenge il faut traiter le cas où $\cos\left(\frac{a-b}{2}\right)=0$;
- igoplus ensuite, lorsque $\cos\left(\frac{a-b}{2}\right)
 eq 0$, on étudie les cas où $e^{i\frac{a+b}{2}} = e^{-i\frac{a+b}{2}}$.

QCOP CPLX.2

3. Utiliser l'inégalité triangulaire (question précédente) avec z=(z-z')+z' et z'=(z'-z)+z.

QCOP CPLX.3

- **2.** Résultat. $|z + z'| = |z| + |z'| \iff \exists \lambda \geqslant 0 : z' = \lambda \cdot z$.
- 3. On note a l'affixe de A, b l'affixe de B et c l'affixe de C.

Il s'agit alors de montrer que

$$|b-a|+|c-b|=|c-a| \iff \exists \lambda\geqslant 0: \ b-a=\lambda(c-b).$$

En effet, dire que A, B et C sont alignés dans le même sens revient à dire que \overrightarrow{AB} et \overrightarrow{BC} sont positivement colinéaires (colinéaires et de coefficient de colinéarité positif).

QCOP CPLX.4

- $\mathbf{1.} \ \ \underline{\mathsf{R\'esultat.}} \ \mathsf{e}^{\mathsf{z}} = \mathsf{e}^{\mathfrak{Re}(\mathsf{z})} \bigg(\mathsf{cos} \big(\mathfrak{Im}(\mathsf{z}) \big) + \mathsf{i} \, \mathsf{sin} \big(\mathfrak{Im}(\mathsf{z}) \big) \bigg).$
- **2.** Résultat. $|e^z| = e^{\Re e(z)}$ et $arg(z) \equiv \Im m(z)$ [2 π]
- **3.** Résultat. $|e^z| = 1 \iff z \in i\mathbb{R}$.
- 4. Utiliser la première question.

QCOP CPLX.5

1. Résultat. $Z = Re^{i\theta}$.

2. Résultat.
$$\{z \in \mathbb{C} \mid e^z = Z\} = \{\ln(R) + \mathrm{i}(\theta + 2k\pi) ; k \in \mathbb{Z}\}.$$
 On peut raisonner par analyse-synthèse.

♦ ANALYSE.

Soit $z \in \mathbb{C}$ tel que $e^z = Z$.

Notons $a, b \in \mathbb{R}$ tels que z = a + ib, de sorte que $e^z = e^a e^{ib}$.

Alors on a les équivalences suivantes :

$$e^z = Z \quad \iff \quad \begin{cases} e^a = R \\ b \equiv \theta \ [2\pi] \end{cases}$$

... (poursuivre et compléter la rédaction).

♦ SYNTHÈSE. ...

$$\textbf{3.} \ \underline{\mathsf{R\'esultat.}} \ \{z \in \mathbb{C} \quad | \quad \mathsf{e}^z = 1 + \mathsf{i}\} = \bigg\{ \frac{\mathsf{In}(2)}{2} + \mathsf{i} \Big(\frac{\pi}{4} + 2k\pi \Big) \ ; \ \ k \in \mathbb{Z} \bigg\}.$$

QCOP CPLX.6

$$\textbf{3.} \ \underline{\mathsf{R\'esultat.}} \ \underline{\sum_{\omega \in \mathbb{U}_n} \omega} = 0 \ \mathrm{et} \ \prod_{\omega \in \mathbb{U}_n} \omega = (-1)^{n-1}.$$

QCOP CPLX.7

1. Résultat.
$$\mathbb{U}_n = \{z \in \mathbb{C} \mid z^n = 1\} = \left\{ e^{\frac{2ik\pi}{n}} ; k \in \llbracket 0, n-1 \rrbracket \right\}$$
.

2. Résultat.
$$A = \left\{ R^{\frac{1}{n}} e^{\frac{i}{n}(\theta + 2k\pi)} ; k \in \llbracket 0, n-1 \rrbracket \right\}$$
.

On utilise que le nombre $\frac{Z}{R^{\frac{1}{n}}e^{i\frac{\theta}{n}}}$ est une racine *n*-ième de l'unité (un élément de \mathbb{U}_n).

$$\textbf{3. } \underline{\mathsf{R\'esultat.}} \, \sum_{\omega \in A} \omega = 0 \,\, \mathrm{et} \, \prod_{\omega \in A} \omega = R \mathrm{e}^{\mathrm{i} \theta} (-1)^{n-1}.$$

QCOP CPLX.8

2. Résultat.
$$z^2 = a \iff \begin{cases} x^2 - y^2 = \mathfrak{Re}(a) \\ x^2 + y^2 = |a| \\ \operatorname{signe}(xy) = \operatorname{signe}(\mathfrak{Im}(a)). \end{cases}$$

QCOP CPLX.9

2. Résultat. Les nombres z_1 et z_2 sont solutions de l'équation polynomiale $z^2 - d_1z + d_2$. On utilise les relations entre coefficients et racines d'un polynôme de degré 2.