HAND IN

Answers recorded on exam paper

QUEEN'S UNIVERSITY FINAL EXAMINATION

FACULTY OF ARTS AND SCIENCE School of Computing

CISC/CMPE 422 and CISC 835 – Professor Juergen Dingel December 18, 2016

INSTRUCTIONS TO STUDENTS:

This examination is 3 HOURS in length.

There are five questions to this examination, some with several parts.

Please answer all questions in the exam.

The following aids are allowed: One 8.5"x11" data sheet with information on both sides.

Put your student number on all pages of all answer booklets, including the front.

GOOD LUCK!

PLEASE NOTE:

Proctors are unable to respond to queries about the interpretation of exam questions.

Do your best to answer exam questions as written.

This material is copyrighted and is for the sole use of students registered in CISC/CMPE 422 or CISC 835 and writing this exam. This material shall not be distributed or disseminated. Failure to abide by these conditions is a breach of copyright and may also constitute a breach of academic integrity under the University Senate's Academic Integrity Policy Statement.

Td.			
Iu.		 	

Question 1: Predicate Logic (15 points)

Consider the following two predicate logic formulas

$$\varphi_1 = \forall x. \exists y. P(x, f(y))$$

$$\varphi_2 = \exists x. \exists y. P(x, f(y))$$

where x and y are variables, P is a predicate symbol of arity 2, and f is a function symbol of arity 1. φ_1 and φ_2 are not equivalent. More precisely, φ_2 does not imply φ_1 . Find a model \mathcal{M} , such φ_2 holds in \mathcal{M} , but φ_1 does not hold in \mathcal{M} . Make sure you provide a *complete* definition of your model \mathcal{M} .

Id:	

Question 2: Alloy (35 points)

1. Consider the following Alloy specification M of classes, interfaces, methods, and some of their relationships as typically found in object-oriented programming:

```
module Classes

sig Class {

implements : set Interface,

sig Method {}

sig Interface {

declares : set Method }

inherits : set Method }
```

a) (3 points) In the space below, draw the graphical representation (i.e., meta model) of M. Make sure you include multiplicity constraints, if any.

```
b) (4 points) Consider the predicate
pred show() {
   some implements
   #Method > 1
```

Draw an instance of M that also satisfies all the constraints in show, that is, draw an instance that could be created by Alloy in response to executing the command 'run show for 3' on M.

1	.a:
Question 2: Alloy (continued)	***
2. For your convenience, the Alloy model M from the previous page is remodule Classes	sig Class {
<pre>sig Method {} sig Interface { declares : set Method }</pre>	<pre>implements : set Interface, defines : set Method, extends : set Class, inherits : set Method }</pre>
Using the Alloy specification above, express each of the following invaria	ants formally in Alloy.
a) (4 points) "The extends relationship does not contain any cycles"	
b) (4 points) "A class c inherits method m if and only if m is defined by	one of the classes extended by c"
c) (4 points) "For every class and every interface implemented by the interface are defined in the class"	e class, all methods declared in the
d) (4 points) "Every class c1 extending another class c2 implements all	interfaces that c2 implements"

Question 2: Alloy (continued)

3. (12 points) Consider the Alloy specification test on the left and the instance satisfying all constraints in test produced by the Alloy analyzer on the right.

For each of the following Alloy expressions and formulas, determine which value the expression or formula evaluates to in the instance on the right and write down that value.

- a) f.g evaluates to:
- b) some a:A | no a.f evaluates to:
- c) f = ~g evaluates to:
- d) some a:A | one a.f evaluates to:
- e) {a:A | a in f.g.a} evaluates to:
- f) (A -> B) f evaluates to:

Id:			
ld:			

Question 3: CTL (18 points)

Consider the three pairs of non-equivalent formulas φ_i , φ_i' below. For each pair, find a Kripke Structure that distinguishes them. More precisely, for each pair, draw a Kripke Structure M_i such that one formula holds in M_i , but not the other.

Important: When drawing M_i , make sure that you clearly indicate (1) the initial state of M_i , (2) which atomic propositions occurring φ_i and φ_i' hold in which states of M_i , and (3) which of the two formulas holds in M_i . Also, remember that the transition relation of a Kripke Structure is total.

a) (6 points)
$$\varphi_1 = \mathbf{AG} \ p$$
 and $\varphi_1' = \mathbf{AG} \ \mathbf{AX} \ p$

b) (6 points)
$$\varphi_2 = \mathbf{E} \big[p \ \mathbf{U} \ \mathbf{AG} \ q \big]$$
 and $\varphi_2' = \mathbf{E} \big[p \ \mathbf{U} \ q \big]$

c) (6 points)
$$\varphi_3 = \mathbf{EF} \ p$$
 and $\varphi_3' = \mathbf{EF} \ \mathbf{EX} \ p$

Question 4: Model checking (28 points)

Consider the following graphical representation of a Kripke Structure (i.e., finite state machine) M_{\odot}

a) (4 points) Define M textually as a 4-tuple $M = (S, S_0, R, L)$. Make sure you define all components of M.

b) (4 points) Beginning from state s_0 , unwind M into its corresponding computation tree T. Draw T to a depth of 4. More precisely, you must show all computation paths of M starting at s_0 up to length 4, where the length of a path is the number of edges on it.

Ide				
Lu.	 			

Question 4: Model checking (continued)

For your convenience, the Kripke Structure M from the previous page is repeated here.

c) (16 points) In the table below, the rows are labeled with CTL formulas φ_i and the columns are labeled with states s_j of M. For each empty cell (φ_i, s_j) in the table, determine whether or not M in state s_j satisfies formula φ_i , i.e., if $(M, s_j) \models \varphi_i$ or $(M, s_j) \not\models \varphi_i$. Write "Yes" into cell (φ_i, s_j) , if $(M, s_j) \models \varphi_i$. Write "No", otherwise. For instance, \mathbf{AX} $(a \lor b)$ is satisfied in state s_0 , but not satisfied in state s_3 , i.e., $(M, s_0) \models \mathbf{AX}$ $(a \lor b)$ and $(M, s_3) \not\models \mathbf{AX}$ $(a \lor b)$.

	s_0	s_1	s_2	83	S ₄
$\mathbf{AX}\;(aee b)$	Yes	Yes	Yes	No	
$\mathbf{A}[b \; \mathbf{U} \; a]$					
$\mathbf{AG} \; \mathbf{EX} \; (a \; \rightarrow \; b)$					
EG EF $(a \wedge b)$					

d) (4 points) Consider the formula $\varphi = \mathbf{AG} \left[\left(\mathbf{EX} \left(\neg a \wedge \neg b \right) \right) \to \mathbf{AX} \mathbf{AX} \neg a \right]$. Does M satisfy this formula, i.e., does $(M, s_0) \models \varphi$ hold? If so, write "Yes" in the space below. If not, write "No" and a counterexample, i.e., an execution of M violating the formula.

Question 5: SMV (29 points)

Consider the following code defining an NuSMV program main:

```
MODULE main
                                                                         MODULE P(x,c)
VAR x : \{U, D\};
                                                                         ASSIGN
     c : {0, 1, 2, 3};
                                                                            next(c) := case
     p : P(x,c);
                                                                                          x=U & c<3 : c+1;
ASSIGN
                                                                                          x=D & c>0 : c-1;
     init(x) := U; init(c) := 0;
                                                                                          TRUE : c;
     next(x) := case
                                                                                        esac;
                  c<3 : {U, D};
                  c=3 : x;
                esac;
```

a) (9 points) Draw the finite state machine M that is defined by the code above. Represent a single state s of M by a pair (x,c) where x is the value of variable x and c is the value of variable c. For instance, the initial state of M is represented as (U,0). Your drawing should clearly indicate the initial states of M, the reachable states of M, and the transition relation of M.

Question 5:	Id:
b) (20 points) For whether or not it	or each of the following properties φ_1 through φ_5 , express it formally in CTL and decide is satisfied by program main given in Part a) of this question by writing "Yes" or "No". Heccessary. A successor of a state s is a state that can be reached in one step from s.
1. (4 points) φ_1 : • φ_1 in CTL:	"There exists a path along which ${\bf x}$ is always equal to ${\tt U}$ "
2. (4 points) φ_2 : • φ_2 in CTL:	"Along all paths, whenever x is U and c is 1, then c is 2 is all successor states"
3. (4 points) φ_3 : • φ_3 in CTL:	"There exists an execution to a state s such that from s c will forever always be 3"
4. (4 points) φ_4 : • φ_4 in CTL:	"There exists a path along which c is 2 eventually, and c is 1 until then"
5. (4 points) φ_5 : all next states" • φ_5 in CTL:	"Always along all executions, whenever c is 2 in some state, then c is different from 2 in

	Id: :	
Scratch sheet:		