<u>Теорема запаздывания</u>.

Импульс $\dot{U}_1(t) = U_{1,m}(t) \cdot Exp(j\varphi)$. Спектрально ограниченный φ = 0.

Спектр этого импульса
$$S_1(\omega) = \int_{-\infty}^{\infty} U_{1,m}\left(t
ight) Exp(-j\omega t) dt$$

Тот же импульс, но с задержкой $U_{2,m}(t) = U_{1,m}(t+t_0)$

$$S_2(\omega)=\int_{-\infty}^{\infty}U_{1,m}\,(t+t_0)Exp(-j\omega t)dt$$

Введем обозначение $au=t+t_0$. Тогда $t= au-t_0$

$$S_{2}(\omega) = \int_{-\infty}^{\infty} U_{1,m}(\tau) Exp(-j\omega\tau) Exp(j\omega t_{0}) d\tau$$
$$= \left[\int_{-\infty}^{\infty} U_{1,m}(\tau) Exp(-j\omega\tau) \right] Exp(j\omega t_{0}) d\tau$$

В прямоугольных скобках спектр исходного импульса $S_1(\omega)$.

Окончательно

$$S_2(\omega) = S_1(\omega) Exp(j\omega t_0)$$

Импульсу с задержкой соответствует амплитудный спектр исходного импульса с линейно изменяющейся фазой.

