

Apprentissage machine 1

Chapitre 3 : Classification supervisée Les arbres de décision

Ouadfel Salima

Faculté NTIC/IFA

salima.ouadfel@univ-constantine2.dz

Apprentissage machine 1

Chapitre 3 : Classification supervisée Les arbres de décision

Faculté NTIC/IFA

Salima.ouadfel@univ-constantine2.dz

Etudiants concernés

Faculté/Institut	Département	Niveau	Spécialité
Nouvelles technologies	IFA	Master1	STIC

Université Constantine 2 2023/2024. Semestre 1

Sélection du meilleur l'attribut avec l'indice de Gini

Soit S l'ensemble de données, l'indice de Gini mesure le degré d'impureté de S et il est exprimé par:

$$Gini(S) = \sum_{i=1}^{C} p_i (1 - p_i) = 1 - \sum_{i=1}^{C} p_i^2$$

avec
$$p_i = \frac{|C_i|}{|S|}$$
 et $C = nombre de classes$

G(S) = 0 veut dire que S est pure et G(S) = 1 veut dire que S est impure

Sélection du meilleur l'attribut avec l'indice de Gini

La sélection d'un attribut a_j divise l'ensemble S en deux sous-ensembles S_1 et S_2 dont l'indice de Gini défini par $Gini_{a_j}(S_1, S_2)$ est exprimé comme suit:

$$Gini_{a_j}(S_1, S_2) = \frac{|S_1|}{|S|} Gini(S_1) + \frac{|S_2|}{|S|} Gini(S_2)$$

On sélectionne l'attribut a_i qui diminue le plus la valeur de l'impureté.

On cherche a_i tel que

$$Gini_{a_i}(S_1, S_2)$$
 est minimum

et
$$\Delta Gini = Gini(S) - Gini_{a_i}(S_1, S_2)$$
 est maximum

Exemple de construction de l'arbre de décision avec l'indice de Gini

Soit S l'ensemble de données du jeu de tennis,

1- calcul de L'indice de Gini de l'ensemble S

On a 14 données, 9 oui et 5 non

Gini(S) =
$$1 - \sum_{i=1}^{2} p_i^2 = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2$$

$$Gini(S) = 0.459$$

Jour	Temps	Température	Humidité	Vent	Jouer
1	Ensoleillé	chaude	Élevée	faible	non
2	Ensoleillé	chaude	Élevée	fort	non
3	Couvert	chaude	Élevée	faible	oui
4	pluie	douce	Élevée	faible	oui
5	pluie	fraiche	normale	faible	oui
6	pluie	fraiche	normale	fort	non
7	Couvert	fraiche	normale	fort	oui
8	Ensoleillé	douce	Élevée	faible	non
9	Ensoleillé	fraiche	normale	faible	oui
10	Pluie	douce	normale	faible	Oui
11	Ensoleillé	douce	normale	Fort	Oui
12	Couvert	douce	Élevée	Fort	Oui
13	Couvert	chaude	normale	Faible	Oui
14	pluie	douce	Élevée	fort	Non

Exemple de construction de l'arbre de décision avec l'indice de Gini

2- Sélection du meilleur attribut de S

$$Gini_{a_j}(S_1, S_2) = \frac{|S_1|}{|S|} Gini(S_1) + \frac{|S_2|}{|S|} Gini(S_2)$$

 a_i =temps

	S_1 = {Ensoleillé, couvert} S_2 = {pluie}	S_1 = {Ensoleillé, pluie} S_2 = {couvert}	S_1 = {Ensoleillé} S_2 = {couvert.pluie}
$Gini(S_1)$	$1 - \left(\frac{6}{9}\right)^2 - \left(\frac{3}{9}\right)^2 = 0.444$	$1 - \left(\frac{5}{10}\right)^2 - \left(\frac{5}{10}\right)^2 = 0.5$	$1 - \left(\frac{3}{5}\right)^2 - \left(\frac{2}{5}\right)^2 = 0.48$
$Gini(S_2)$	$1 - \left(\frac{3}{5}\right)^2 - \left(\frac{2}{5}\right)^2 = 0.48$	$1 - \left(\frac{4}{4}\right)^2 - \left(\frac{0}{4}\right)^2 = 0$ (pure)	$1 - \left(\frac{6}{9}\right)^2 - \left(\frac{3}{9}\right)^2 = 0.444$
$Gini_{a_j} (S_1, S_2)$	$\frac{9}{14} * 0.444 + \frac{5}{14} * 0,48 = 0.457$	$\frac{10}{14} * 0.5 + \frac{4}{14} * 0 = 0,359$	$\frac{5}{14} * 0.48 + \frac{9}{14} * 0,444 = 0.457$

 a_i =température

		S_1 = {Chaude, fraiche} S_2 = {douce}	S_1 = {Chaude, douce} S_2 = {fraiche}	S_1 = {Chaude} S_2 = {fraiche, douce}
•	$Gini(S_1)$	$1 - \left(\frac{5}{8}\right)^2 - \left(\frac{3}{8}\right)^2 = 0.468$	$1 - \left(\frac{6}{10}\right)^2 - \left(\frac{4}{10}\right)^2 = 0.48$	$1 - \left(\frac{2}{4}\right)^2 - \left(\frac{2}{4}\right)^2 = 0.5$
	$Gini(S_2)$	$1 - \left(\frac{4}{6}\right)^2 - \left(\frac{2}{6}\right)^2 = 0.444$	$1 - \left(\frac{3}{4}\right)^2 - \left(\frac{1}{4}\right)^2 = 0.375$	$1 - \left(\frac{7}{10}\right)^2 - \left(\frac{3}{10}\right)^2 = 0.42$
	$Gini_{a_j} (S_1, S_2)$	$\frac{8}{14} * 0.468 + \frac{6}{14} * 0,444 = 0.458$	$\frac{10}{14} * 0.48 + \frac{4}{14} * 0 = 0.4498$	$\frac{4}{14} * 0.5 + \frac{10}{14} * 0.42 = 0.443$

Exemple de construction de l'arbre de décision avec l'indice de Gini

2- Sélection du meilleur attribut de S

$$Gini_{a_j}(S_1, S_2) = \frac{|S_1|}{|S|} Gini(S_1) + \frac{|S_2|}{|S|} Gini(S_2)$$

a_i =humidité

	S_1 = {élevée} S_2 = {normale}
$Gini(S_1)$	$1 - \left(\frac{3}{7}\right)^2 - \left(\frac{4}{7}\right)^2 = 0.489$
$Gini(S_2)$	$1 - \left(\frac{6}{7}\right)^2 - \left(\frac{1}{7}\right)^2 = 0.244$
$Gini_{a_j} (S_1, S_2)$	$\frac{7}{14} * 0.489 + \frac{7}{14} * 0.244 = 0.368$

$$a_i$$
=vent

	S_1 = {fort} S_2 = {faible}
$Gini(S_1)$	$1 - \left(\frac{3}{6}\right)^2 - \left(\frac{3}{6}\right)^2 = 0.5$
$Gini(S_2)$	$1 - \left(\frac{6}{8}\right)^2 - \left(\frac{2}{6}\right)^2 = 0.375$
$Gini_{a_j} (S_1, S_2)$	$\frac{6}{14} * 0.5 + \frac{7}{84} * 0.375 = 0.429$

Exemple de construction de l'arbre de décision avec l'indice de Gini

2- Sélection du meilleur attribut de S

On cherche a_j tel que $\Delta Gini = Gini(S) - Gini_{a_j}(S_1, S_2)$ est maximum

Attribut	(S_1, S_2)	$Gini_{a_j}(S_1, S_2)$	ΔGini
temps	S_1 = {Ensoleillé, pluie} S_2 = {couvert}	0,359	0.459 - 0.359 = 0,10
temperatur e	S_1 = {Chaude} S_2 = {fraiche, douce}	0.443	0.459 - 0.443 = 0.016
humidité	S_1 = {élevée} S_2 = {normale}	0.368	0.459 - 0.368 = 0.091
vent	S_1 = {fort} S_2 = {faible}	0.429	0.459-0.429 = 0.03

L'attribut temps est sélectionné comme nœud racine de l'arbre de décision

Exemple de construction de l'arbre de décision avec l'indice Gingini

3- division de l'ensemble S selon l'attribut temps

Exemple de construction de l'arbre de décision avec l'indice de Gini

1- calcul de L'indice de Gini de l'ensemble S₁

On a 10 données, 5 oui et 5 non

$$\begin{aligned} \text{Gini}(\mathbf{S_1}) &= 1 - \sum_{i=1}^{2} p_i^2 \\ &= 1 - \left(\frac{5}{10}\right)^2 - \left(\frac{5}{10}\right)^2 \end{aligned}$$

$$Gini(S_1) = 0.5$$

Jour	Temps	Température	Humidité	Vent	Jouer
1	Ensoleillé	chaude	Élevée	faible	non
2	Ensoleillé	chaude	Élevée	fort	non
4	pluie	douce	Élevée	faible	oui
5	pluie	fraiche	normale	faible	oui
6	pluie	fraiche	normale	fort	non
8	Ensoleillé	douce	Élevée	faible	non
9	Ensoleillé	fraiche	normale	faible	oui
10	Pluie	douce	normale	faible	oui
11	Ensoleillé	douce	normale	fort	oui
14	pluie	douce	Élevée	fort	non

Exemple de construction de l'arbre de décision avec l'indice de Gini

2- Sélection du meilleur attribut de S₁

 a_i =temps

	S_1 = {Ensoleillé} S_2 = {pluie}
$Gini(S_1)$	$1 - \left(\frac{2}{5}\right)^2 - \left(\frac{3}{5}\right)^2 = 0.48$
$Gini(S_{12})$	$1 - \left(\frac{3}{5}\right)^2 - \left(\frac{2}{5}\right)^2 = 0.48$
$Gini_{temps} (S_1, S_2)$	$\frac{5}{10} * 0.48 + \frac{5}{10} * 0.48 = 0.48$

 a_j =humidité

	S_1 = {élevée} S_2 = {normale}
$Gini(S_1)$	$1 - \left(\frac{1}{5}\right)^2 - \left(\frac{4}{5}\right)^2 = 0.32$
$Gini(S_2)$	$1 - \left(\frac{4}{5}\right)^2 - \left(\frac{1}{5}\right)^2 = 0.32$
$Gini_{a_j} (S_1, S_2)$	$\frac{5}{10} * 0.32 + \frac{5}{10} * 0.32 = 0.32$
$(\mathfrak{S}_1,\mathfrak{S}_2)$	10 10

 a_j =vent

	S_1 = {fort} S_2 = {faible}
$Gini(S_1)$	$1 - \left(\frac{1}{4}\right)^2 - \left(\frac{3}{4}\right)^2 = 0.375$
$Gini(S_2)$	$1 - \left(\frac{4}{6}\right)^2 - \left(\frac{2}{6}\right)^2 = 0.444$
$Gini_{a_j} (S_1, S_2)$	$\frac{4}{10} * 0.375 + \frac{6}{10} * 0,444 = 0.416$

 a_i =température

	S_1 = {Chaude, fraiche} S_2 = {douce}	S_1 = {Chaude, douce} S_2 = {fraiche}	S_1 = {Chaude} S_2 = {fraiche, douce}
$Gini(S_1)$	$1 - \left(\frac{2}{5}\right)^2 - \left(\frac{3}{5}\right)^2 = 0.48$	$1 - \left(\frac{3}{7}\right)^2 - \left(\frac{4}{7}\right)^2 = 0.489$	$1 - \left(\frac{0}{2}\right)^2 - \left(\frac{2}{2}\right)^2 = 0$
$Gini(S_2)$	$1 - \left(\frac{3}{5}\right)^2 - \left(\frac{2}{5}\right)^2 = 0.48$	$1 - \left(\frac{2}{3}\right)^2 - \left(\frac{1}{3}\right)^2 = 0.444$	$1 - \left(\frac{5}{8}\right)^2 - \left(\frac{3}{8}\right)^2 = 0.468$
$Gini_{a_j} (S_1, S_2)$	$\boxed{\frac{5}{10} * 0.48 + \frac{5}{10} * 0,48 = 0.48}$	$\frac{7}{10} * 0.489 + \frac{3}{10} * 0.444 = 0.471$	$\frac{2}{10} * 0 + \frac{8}{10} * 0,468 = 0.375$

Exemple de construction de l'arbre de décision avec l'indice de Gini

2- Sélection du meilleur attribut de S₁

On cherche a_j tel que $\Delta Gini = Gini(S) - Gini_{a_j}(S_1, S_2)$ est maximum

Attribut	(S_1, S_2)	$Gini_{a_j}(S_1, S_2)$	ΔGini
temps	S_1 = {Ensoleillé} S_2 = {pluie}	0.48	0.5 - 0.48 = 0.02
temperature	S_1 = {Chaude} S_2 = {fraiche, douce}	0.375	0.5 - 0.375 = 0.125
humidité	S_1 = {élevée} S_2 = {normale}	0.32	0.5-0 , 32 = 0.18
vent	S_1 = {fort} S_2 = {faible}	0.416	0.5-0,416 = 0.084

L'attribut humidité est sélectionné.

Exemple de construction de l'arbre de décision avec l'indice de Gini

3- division de l'ensemble S_1 selon l'attribut temps

Exemple de construction de l'arbre de décision avec l'indice de Gini

1- calcul de L'indice de Gini de l'ensemble S₁

Jour	Temps	Température	Humidité	Vent	Jouer
1	Ensoleillé	chaude	Élevée	faible	non
2	Ensoleillé	chaude	Élevée	fort	non
4	pluie	douce	Élevée	faible	oui
8	Ensoleillé	douce	Élevée	faible	non
14	pluie	douce	Élevée	fort	non

On a 5 données, 1 oui et 4 non

$$\mathsf{Gini}(\mathbf{S_1}) = 1 - \sum_{i=1}^{2} p_i^2 = 1 - \left(\frac{1}{5}\right)^2 - \left(\frac{4}{5}\right)^2 = 0.32$$

Exemple de construction de l'arbre de décision avec l'indice de Gini

2- sélection de l'attribut

a_j =temps	S_{11} = {Ensoleillé} S_{12} = {pluie}		
$Gini(S_{11})$	$1 - \left(\frac{0}{3}\right)^2 - \left(\frac{3}{3}\right)^2 = 0$		
$Gini(S_{12})$	$1 - \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = 0.5$		
$Gini_{temps} (S_{11}, S_{12})$	$\frac{3}{5}*0+\frac{2}{5}*0,5=0.2$		

a_j =vent	S_1 = {fort} S_2 = {faible}
$Gini(S_1)$	$1 - \left(\frac{0}{2}\right)^2 - \left(\frac{2}{2}\right)^2 = 0$
$Gini(S_2)$	$1 - \left(\frac{1}{3}\right)^2 - \left(\frac{2}{3}\right)^2 = 0.444$
$\begin{array}{c} \textbf{\textit{Gini}}_{a_j} \\ (S_1, S_2) \end{array}$	$\frac{2}{5} * 0 + \frac{3}{5} * 0,444 = 0.266$

a_j =température	S_1 = {Chaude} S_2 = {douce}		
$Gini(S_1)$	$1 - \left(\frac{0}{2}\right)^2 - \left(\frac{2}{2}\right)^2 = 0$		
$Gini(S_2)$	$1 - \left(\frac{1}{3}\right)^2 - \left(\frac{2}{3}\right)^2 = 0.444$		
$Gini_{a_j} (S_1, S_2)$	$\frac{2}{5} * 0 + \frac{3}{5} * 0, 444 = 0.266$		

Exemple de construction de l'arbre de décision avec l'indice de Gini

2- Sélection du meilleur attribut de S₁

On cherche a_j tel que $\Delta Gini = Gini(S) - Gini_{a_j}(S_1, S_2)$ est maximum

Attribut	(S_1, S_2)	$Gini_{a_j}(S_1, S_2)$	ΔGini
temps	S_1 = {Ensoleillé} S_2 = {pluie}	0.2	0.32-0 . 2 = 0 . 12
temperature	S_1 = {Chaude} S_2 = {douce}	0.266	0.32-0,266 = 0.054
vent	S_1 = {fort} S_2 = {faible}	0.266	0.32-0,266 = 0.054

L'attribut temps est sélectionné.

Exemple de construction de l'arbre de décision avec l'indice de Gini

3- division de l'ensemble S_1 selon l'attribut temps

Exemple de construction de l'arbre de décision avec l'indice de Gini

3- division de l'ensemble S_1 selon l'attribut temps

Exemple de construction de l'arbre de décision avec l'indice de Gini

3- division de l'ensemble S_1 selon l'attribut temps

Exemple de construction de l'arbre de décision avec l'indice de Gini

1- calcul de L'indice de Gini de l'ensemble S₂

Jour	Temps	Température	Humidité	Vent	Jouer
5	pluie	fraiche	normale	faible	oui
6	pluie	fraiche	normale	fort	non
9	Ensoleillé	fraiche	normale	faible	oui
10	Pluie	douce	normale	faible	oui
11	Ensoleillé	douce	normale	fort	oui

On a 5 données, 4 oui et 1 non

Gini(
$$S_2$$
) = $1 - \sum_{i=1}^2 p_i^2 = 1 - \left(\frac{4}{5}\right)^2 - \left(\frac{1}{5}\right)^2 = 0.32$

Exemple de construction de l'arbre de décision avec l'indice de Gini

2- sélection de l'attribut

temps	S_{11} = {Ensoleillé} S_{12} = {pluie}
$Gini(S_{11})$	$1 - \left(\frac{2}{2}\right)^2 - \left(\frac{0}{2}\right)^2 = 0$
$Gini(S_{12})$	$1 - \left(\frac{2}{3}\right)^2 - \left(\frac{1}{3}\right)^2 = 0.444$
$Gini_{temps} (S_{11}, S_{12})$	$\frac{2}{5} * 0 + \frac{3}{5} * 0,444 = 0.266$

vent	$S_1 = \{ fort \}$ $S_2 = \{ faible \}$
$Gini(S_1)$	$1 - \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = 0.5$
$Gini(S_2)$	$1 - \left(\frac{3}{3}\right)^2 - \left(\frac{0}{3}\right)^2 = 0$
$Gini_{a_j} $ (S_1, S_2)	$\frac{2}{5} * 0.5 + \frac{3}{5} * 0 = 0.2$

température	S_1 = {fraiche} S_2 = {douce}
$Gini(S_1)$	$1 - \left(\frac{2}{3}\right)^2 - \left(\frac{1}{3}\right)^2 = 0.444$
$Gini(S_2)$	$1 - \left(\frac{2}{2}\right)^2 - \left(\frac{0}{2}\right)^2 = 0$
$Gini_{a_j} (S_1, S_2)$	$\frac{3}{5} * 0.444 + \frac{2}{5} * 0 = 0.266$

Exemple de construction de l'arbre de décision avec l'indice de Gini

2- Sélection du meilleur attribut de S₂

On cherche a_j tel que $\Delta Gini = Gini(S) - Gini_{a_j}(S_1, S_2)$ est maximum

Attribut	(S_1, S_2)	$Gini_{a_j}(S_1, S_2)$	ΔGini
temps	S_1 = {Ensoleillé} S_2 = {pluie}	0.266	0.32 - 0.266 = 0.054
temperature	S_1 = {fraiche} S_2 = {douce}	0.266	0.32 - 0.266 = 0.054
vent	S_1 = {fort} S_2 = {faible}	0.2	0.32-0, 2 = 0.12

L'attribut vent est sélectionné.

Exemple de construction de l'arbre de décision avec l'indice de Gini

3- division de l'ensemble S_2 selon l'attribut temps

Humidité

normale

normale

normale

normale

normale

Vent

faible

faible

faible

fort

fort

Jouer

oui

non

oui

oui

oui

Exemple de construction de l'arbre de décision avec l'indice de Gini

4- Prédiction

(Ensoleillé, Fraîche, Élevée, Fort) est classée comme « non »; (Ensoleillé, Fraîche, Normale, Fort) est classée comme « oui »; (Pluie, Chaude, Normale, Faible) est classée comme « oui »; (Pluie, Fraîche, Élevée, Fort) est classée comme « non ».

Attributs numériques versus attributs catégoriques

Jour	Temps	Températu	ire	humidité	vent	Jouer au tennis?
1	Ensoleillé	Chaude		Élevée	Faible	Non
2	Ensoleillé	Chaude		Élevée	Fort	Non
3	Couvert	Chaude		Élevée	Faible	Oui
4	Pluie	Tiède		Élevée	Faible	Oui
5	Pluie	Fraîche		Normale	Faible	Oui
6	Pluie	Fraîche		Normale	Fort	Non
7	Couvert	Fraîche		Normale	Fort	Oui
8	Ensoleillé	Tiède		Élevée	Faible	Non
9	Ensoleillé	Fraîche		Normale	Faible	Oui
10	Pluie	Tiède		Normale	Faible	Oui
11	Ensoleillé	Tiède		Normale	Fort	Oui
12	Couvert	Tiède		Élevée	Fort	Oui
13	Couvert	Chaud		Normale	Faible	Oui
_14	Pluie	Tiède		Élevée	Fort	Non

Jour	Temps	Température	humidité	vent	Jouer au tennis?
1	Ensoleillé	27,5	Élevée	Faible	Non
2	Ensoleillé	25	Élevée	Fort	Non
3	Couvert	26, 5	Élevée	Faible	Oui
4	Pluie	20	Élevée	Faible	Oui
5	Pluie	19	Normale	Faible	Oui
6	Pluie	17, 5	Normale	Fort	Non
7	Couvert	17	Normale	Fort	Oui
8	Ensoleillé	21	Élevée	Faible	Non
9	Ensoleillé	19, 5	Normale	Faible	Oui
10	Pluie	22,5	Normale	Faible	Oui
11	Ensoleillé	22,5	Normale	Fort	Oui
12	Couvert	21	Élevée	Fort	Oui
13	Couvert	25, 5	Normale	Faible	Oui
_14	Pluie	20,5	Élevée	Fort	Non

Valeurs catégoriques

Valeurs numériques

Attributs numériques versus attributs catégoriques

En présence d'attributs numériques:

1- comment sélectionner un attribut s'il est numérique?

2- Comment subdiviser l'ensemble de données S en des sousensemble par rapport à cet attribut numérique

Attributs numériques versus attributs catégoriques

Pour prendre en compte les attributs numériques, C4.5 et CART introduisent un seuil pour la division de l'ensemble en deux sousensembles.

Comment choisir le seuil?

Attributs numériques versus attributs catégoriques

Pour choisir le seuil de séparation, on effectue les étapes suivantes:

- 1. trier les exemples selon l'ordre croissant de l'attribut quantitatif
- 2. détecter le changement de classes entre deux exemples consécutifs
- 3. Si on coupe entre deux valeurs v et w (v < w) alors le seuil est fixé à v (ou bien (v+w)/2).
- Calculer le gain d'information ou l'index de Gini pour chaque seuil
- 5. Choisir le seuil qui maximise la mesure d'homogéneité (gain d'information ou indice de Geni)

Jouer au tennis ?

Exemple de construction de l'arbre de décision avec le gain d'information

On suppose que l'attribut racine est le temps

Jour	Temps T	empérature	humidité	vent	Jouer au tennis
1	Ensoleillé	27,5	Élevée	Faible	Non
2	Ensoleillé	25	Élevée	Fort	Non
3	Couvert	26,5	Élevée	Faible	Oui
4	Pluie	20	Élevée	Faible	Oui
5	Pluie	19	Normale	Faible	Oui
6	Pluie	17,5	Normale	Fort	Non
7	Couvert	17	Normale	Fort	Oui
8	Ensoleillé	21	Élevée	Faible	Non
9	Ensoleillé	19,5	Normale	Faible	Oui
10	Pluie	22,5	Normale	Faible	Oui
11	Ensoleillé	22,5	Normale	Fort	Oui
12	Couvert	21	Élevée	Fort	Oui
13	Couvert	25, 5	Normale	Faible	Oui
14	Pluie	20,5	Élevée	Fort	Non
		-			

Jour	Temps	Température	Humidité	Vent	Jouer
1	Ensoleillé	27.5	Élevée	faible	non
2	Ensoleillé	25	Élevée	fort	non
8	Ensoleillé	21	Élevée	faible	non
9	Ensoleillé	19.5	normale	faible	oui
11	Ensoleillé	22.5	normale	fort	oui

Jour	Temps	Température	Humidité	Vent	Jouer
4	pluie	20	Élevée	faible	oui
5	pluie	19	normale	faible	oui
6	pluie	17.5	normale	fort	non
10	Pluie	22.5	normale	faible	oui
14	pluie	20.5	Élevée	fort	non

S1

S3

Jour	Temps	Température	Humidité	Vent	Jouer		
3	Couvert	26.5	Élevée	faible	Oui		
7	Couvert	17	normale	fort	Oui		
12	Couvert	21	Élevée	fort	Oui		
13	Couvert	25.5	normale	faible	Oui		

S2

Exemple de construction de l'arbre de décision avec le gain d'information

On suppose que l'attribut racine est le temps

Jour	Temps T	empérature	humidité	vent	Jouer au tennis
1	Ensoleillé	27,5	Élevée	Faible	Non
2	Ensoleillé	25	Élevée	Fort	Non
3	Couvert	26,5	Élevée	Faible	Oui
4	Pluie	20	Élevée	Faible	Oui
5	Pluie	19	Normale	Faible	Oui
6	Pluie	17,5	Normale	Fort	Non
7	Couvert	17	Normale	Fort	Oui
8	Ensoleillé	21	Élevée	Faible	Non
9	Ensoleillé	19,5	Normale	Faible	Oui
10	Pluie	22,5	Normale	Faible	Oui
11	Ensoleillé	22,5	Normale	Fort	Oui
12	Couvert	21	Élevée	Fort	Oui
13	Couvert	25, 5	Normale	Faible	Oui
14	Pluie	20,5	Élevée	Fort	Non
		_			

		_			
Jour	Temps	Température	Humidité	Vent	Jouer
4	pluie	20	Élevée	faible	oui
5	pluie	19	normale	faible	oui
6	pluie	17.5	normale	fort	non
10	Pluie	22.5	normale	faible	oui
14	pluie	20.5	Élevée	fort	non

Jour	Temps	Température	Humidité	Vent	Jouer
1	Ensoleillé	27.5	Élevée	faible	non
2	Ensoleillé	25	Élevée	fort	non
8	Ensoleillé	21	Élevée	faible	non
9	Ensoleillé	19.5	normale	faible	oui
11	Ensoleillé	22.5	normale	fort	oui

S1

S2

Exemple de construction de l'arbre de décision avec le gain d'information

1- Calcul de l'entropie de l'ensemble S1

$$E(S_1) = -\sum_{i=1}^{2} p_i \log_2(p_i) = -\frac{2}{5} \log_2 \frac{2}{5} - \frac{3}{5} \log_2 \frac{3}{5}$$

$$E(S_1) = 0.971$$

Jour	Temps	Température	Humidité	Vent	Jouer
1	Ensoleillé	27.5	Élevée	faible	non
2	Ensoleillé	25	Élevée	fort	non
8	Ensoleillé	21	Élevée	faible	non
9	Ensoleillé	19.5	normale	faible	oui
11	Ensoleillé	22.5	normale	fort	oui

Exemple de construction de l'arbre de décision avec le gain d'information 2- Sélection du meilleur attribut pour diviser S1

1- Si on choisi l'attribut humidité

temps		humidité	Oui	Non	Total
Ensole	eillé	Elevée	0	3	3
		Normale	2	0	2

$$IG(S_1, humidité) = 0.971$$

2- Si on choisi l'attribut vent

temps	vent	Oui	Non	Total
Ensoleillé	Fort	1	1	2
	Faible	1	2	3

$$IG(S_1, vent) = 0.020$$

Exemple de construction de l'arbre de décision avec le gain d'information 2- Sélection du meilleur attribut pour diviser \$1

3- Si on choisi l'attribut température

Temps	Température	Humidité	Vent	Jouer
Ensoleillé	27.5	Élevée	faible	non
	25	Élevée	fort	non
	21	Élevée	faible	non
	19.5	normale	faible	oui
	22.5	normale	fort	oui

a) Tri des valeurs de l'attribut température par ordre croissant

Temps	Température	Humidité	Vent	Jouer
Ensoleillé	19.5	normale	faible	oui
	21	Élevée	faible	non
	22.5	normale	fort	oui
	25	Élevée	fort	non
	27.5	Élevée	faible	non

Exemple de construction de l'arbre de décision avec le gain d'information 2- Sélection du meilleur attribut pour diviser \$1

3- Si on choisi l'attribut température

b) A chaque changement de classe, on considère un seuil:

seuil= 19.5

ou seuil= 21

Ou seuil= 22.5

-	- , ,		., ,	
Temps	Température	Humidité	Vent	Jouer
Ensoleillé	19.5	normale	faible	oui
	21	Élevée	faible	non
	22.5	normale	fort	oui
	25	Élevée	fort	non
	27.5	Élevée	faible	non

c) On calcul le gain d'information pour chaque seuil choisi

 $IG(S_1, température = 19.5)$

 $IG(S_1, temp\'erature = 21)$

 $IG(S_1, température = 22.5)$

d) Choisir le seuil qui maximise le gain d'information

Exemple de construction de l'arbre de décision avec le gain d'information 2- Sélection du meilleur attribut pour diviser \$1

3- Si on choisi l'attribut température

c) On calcule le gain d'information pour s=19.5

Temps	Température	Humidité	Vent	Jouer
Ensoleillé	19.5	normale	faible	oui
	21	Élevée	faible	non
	22.5	normale	fort	oui
	25	Élevée	fort	non
	27.5	Élevée	faible	non

$$IG(S_1, temp\'erature = 19.5) = E(S_1) - [p(S_{1 temp\'erature \le 19.5}) * E(S_{1 temp\'erature \le 19.5}) + p(S_{1 temp\'erature > 19.5}) * E(S_{1 temp\'erature > 19.5})]$$

$$p(S_{1 \ temp\'erature \le 19.5}) * E(S_{1 \ temp\'erature \le 19.5}) = \frac{1}{5} * \left(-\frac{1}{1} log_2 \frac{1}{1} - \frac{0}{1} log_2 \frac{0}{1}\right)$$

$$p(S_{1 \ temp\'erature > 19.5}) * E(S_{1 \ temp\'erature > 19.5}) = \frac{4}{5} * \left(-\frac{1}{4} log_2 \frac{1}{4} - \frac{3}{4} log_2 \frac{3}{4}\right)$$

 $IG(S_1, temp\'erature = 19.5) = 0.971 - 0.649 = 0.322$

Exemple de construction de l'arbre de décision avec le gain d'information 2- Sélection du meilleur attribut pour diviser S1

3- Si on choisi l'attribut température

c) On calcule le gain d'information pour s=21

Temps	Température	Humidité	Vent	Jouer
Ensoleillé	19.5	normale	faible	oui
	21	Élevée	faible	non
	22.5	normale	fort	oui
	25	Élevée	fort	non
	27.5	Élevée	faible	non

$$IG(S_1, temp\'erature = 21) = E(S_1) - [p(S_{1 temp\'erature \le 21}) * E(S_{1 temp\'erature \le 21}) + p(S_{1 temp\'erature > 21}) * E(S_{1 temp\'erature > 21})]$$

$$\begin{split} p\big(S_{1 \; temp\'erature \leq 21}\big) * E\big(S_{1 \; temp\'erature \leq 21}\big) &= \frac{2}{5} * \left(-\frac{1}{2} log_2 \frac{1}{2} - \frac{1}{2} log_2 \frac{1}{2}\right) \\ p\big(S_{1 \; temp\'erature > 21}\big) * E\big(S_{1 \; temp\'erature > 21}\big) &= \frac{3}{5} * \left(-\frac{1}{3} log_2 \frac{1}{3} - \frac{2}{3} log_2 \frac{2}{3}\right) \end{split}$$

 $IG(S_1, temp\'erature = 21) = 0.971 - 0.95 = 0.021$

Exemple de construction de l'arbre de décision avec le gain d'information 2- Sélection du meilleur attribut pour diviser S1

3- Si on choisi l'attribut température

c) On calcule le gain d'information pour s=22.5

Temps	Température	Humidité	Vent	Jouer
Ensoleillé	19.5	normale	faible	oui
	21	Élevée	faible	non
	22.5	normale	fort	oui
	25	Élevée	fort	non
	27.5	Élevée	faible	non

$$IG(S_1, temp\'erature = 22.5) = E(S_1) - [p(S_{1 temp\'erature \le 22.5}) * E(S_{1 temp\'erature \le 22.5}) + p(S_{1 temp\'erature > 22.5}) * E(S_{1 temp\'erature > 22.5})]$$

$$p(S_{1 \ temp\'erature \le 22.5}) * E(S_{1 \ temp\'erature \le 22.5}) = \frac{3}{5} * \left(-\frac{2}{3} log_2 \frac{2}{3} - \frac{1}{3} log_2 \frac{1}{3}\right)$$

$$p(S_{1 \ temp\'erature > 22.5}) * E(S_{1 \ temp\'erature > 22.5}) = \frac{2}{5} * \left(-\frac{0}{2} log_2 \frac{0}{2} - \frac{2}{2} log_2 \frac{2}{2}\right)$$

 $IG(S_1, temp\'erature = 22.5) = 0.971 - 0.55 = 0.420$

Exemple de construction de l'arbre de décision avec le gain d'information 2- Division de l'ensemble S1 selon l'attribut humidité

Attribut	Gain d'information
Température=22.5	0.420
humidité	0.971
vent	0.020

Temps	Température	Humidité	Vent	Jouer
Ensoleillé	19.5	normale	faible	oui
	21	Élevée	faible	non
	22.5	normale	fort	oui
	25	Élevée	fort	non
	27.5	Élevée	faible	non

Exemple de construction de l'arbre de décision avec le gain d'information

1- Calcul de l'entropie de l'ensemble S2

$$E(S_2) = -\sum_{i=1}^{2} p_i \log_2(p_i) = -\frac{3}{5} \log_2 \frac{2}{5} - \frac{2}{5} \log_2 \frac{2}{5}$$

$$E(S_2) = 0.971$$

Jour	Temps	Température	Humidité	Vent	Jouer
4	pluie	20	Élevée	faible	oui
5	pluie	19	normale	faible	oui
6	pluie	17.5	normale	fort	non
10	Pluie	22.5	normale	faible	oui
14	pluie	20.5	Élevée	fort	non

Exemple de construction de l'arbre de décision avec le gain d'information 2- Sélection du meilleur attribut pour diviser S1

1- Si on choisi l'attribut humidité

temps	humidité	Oui	Non	Total
Pluie	Elevée	1	1	2
	Normale	2	1	3

$$IG(S_1, humidité) = 0.020$$

2- Si on choisi l'attribut vent

temps	vent	Oui	Non	Total
Pluie	Fort	0	2	2
	Faible	3	0	3

$$IG(S_1, vent) = 0.971$$

Exemple de construction de l'arbre de décision avec le gain d'information 2- Sélection du meilleur attribut pour diviser S2

3- Si on choisi l'attribut température

Temps	Température	Humidité	Vent	Jouer
pluie	20	Élevée	faible	oui
	19	normale	faible	oui
	17.5	normale	fort	non
	22.5	normale	faible	oui
	20.5	Élevée	fort	non

a) Tri des valeurs de l'attribut température par ordre croissant

Temps	Température	Humidité	Vent	Jouer
pluie	17.5	normale	fort	non
	19	normale	faible	oui
	20	Élevée	faible	oui
	20.5	Élevée	fort	non
	22.5	normale	faible	oui

Exemple de construction de l'arbre de décision avec le gain d'information 2- Sélection du meilleur attribut pour diviser S2

3- Si on choisi l'attribut température

b) A chaque changement de classe, on considère un seuil:

seuil= 17.5

ou seuil= 20

Ou seuil= 20.5

Temps	Température	Humidité	Vent	Jouer
pluie	17.5	normale	fort	non
	19	normale	faible	oui
	20	Élevée	faible	oui
	20.5	Élevée	fort	non
	22.5	normale	faible	oui

c) On calcul le gain d'information pour chaque seuil choisi

 $IG(S_1, temp\'erature = 17.5)$ $IG(S_1, temp\'erature = 20)$

 $IG(S_1, température = 20.5)$

d) Choisir le seuil qui maximise le gain d'information

Exemple de construction de l'arbre de décision avec le gain d'information

2- Sélection du meilleur attribut pour diviser S2

3- Si on choisi l'attribut température

c) On calcule le gain d'information pour s=17.5

Temps	Température	Humidité	Vent	Jouer
pluie	17.5	normale	fort	non
	19	normale	faible	oui
	20	Élevée	faible	oui
	20.5	Élevée	fort	non
	22.5	normale	faible	oui

$$IG(S_2, temp\'erature = 17.5) = E(S_1) - [p(S_{2 temp\'erature \le 19.5}) * E(S_{2 temp\'erature \le 19.5}) + p(S_{2 temp\'erature > 19.5}) * E(S_{2 temp\'erature > 19.5})]$$

$$p(S_{2 \ temp\'erature \le 17.5}) * E(S_{2 \ temp\'erature \le 17.5}) = \frac{1}{5} * \left(-\frac{0}{1} log_2 \frac{0}{1} - \frac{1}{1} log_2 \frac{1}{1}\right)$$

$$p(S_{2 \ temp\'erature > 17.5}) * E(S_{2 \ temp\'erature > 17.5}) = \frac{4}{5} * \left(-\frac{3}{4} log_2 \frac{3}{4} - \frac{1}{4} log_2 \frac{1}{4}\right)$$

 $IG(S_2, temp\'erature = 17.5) = 0.971 - 0.649 = 0.322$

Exemple de construction de l'arbre de décision avec le gain d'information

2- Sélection du meilleur attribut pour diviser S2

3- Si on choisi l'attribut température

c) On calcule le gain d'information pour s=20

$$IG(S_2, temp\'erature = 20) = E(S_2) - \left[p\left(S_{2 \ temp\'erature \le 20}\right) * E\left(S_{2 \ temp\'erature \le 20}\right) + p\left(S_{2 \ temp\'erature > 20}\right) * E\left(S_{2 \ temp\'erature > 20}\right) \right]$$

$$p(S_{2 \text{ temp\'erature} \le 20}) * E(S_{2 \text{ temp\'erature} \le 20}) = \frac{3}{5} * \left(-\frac{2}{3} \log_2 \frac{1}{3} - \frac{1}{3} \log_2 \frac{1}{3}\right)$$

$$p(S_{2 \text{ temp\'erature} \ge 20}) * E(S_{2 \text{ temp\'erature} \ge 20}) = \frac{2}{5} * \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2}\right)$$

$$IG(S_2, temp\'erature = 20) = 0.971 - 0.751 = 0.020$$

Exemple de construction de l'arbre de décision avec le gain d'information

2- Sélection du meilleur attribut pour diviser S2

3- Si on choisi l'attribut température

c) On calcule le gain d'information pour s=20.5

Temps	Température	Humidité	Vent	Jouer
pluie	17.5	normale	fort	non
	19	normale	faible	oui
	20	Élevée	faible	oui
	20.5	Élevée	fort	non
	22.5	normale	faible	oui

$$IG(S_2, temp\'erature = 20.5) = E(S_2) - [p(S_{2 temp\'erature \le 20.5}) * E(S_{2 temp\'erature \le 20.5}) + p(S_{2 temp\'erature > 20.5}) * E(S_{2 temp\'erature > 20.5})]$$

$$p(S_{2 \ temp\'erature \le 20.5}) * E(S_{2 \ temp\'erature \le 20.5}) = \frac{4}{5} * \left(-\frac{2}{4} log_2 \frac{2}{4} - \frac{2}{4} log_2 \frac{2}{4}\right)$$

$$p(S_{2 \ temp\'erature \ge 20.5}) * E(S_{2 \ temp\'erature \ge 20.5}) = \frac{1}{5} * \left(-\frac{1}{1} log_2 \frac{1}{1} - \frac{0}{1} log_2 \frac{0}{1}\right)$$

$$IG(S_2, temp\'erature = 20.5) = 0.971 - 0.8 = 0.17$$

Exemple de construction de l'arbre de décision avec le gain d'information 2- Division de l'ensemble S2 selon l'attribut vent

Attribut	Gain d'information
Température=17.5	0.322
humidité	0.020
vent	0.971

Temps	Température	Humidité	Vent	Jouer
pluie	20	Élevée	faible	oui
	19	normale	faible	oui
	17.5	normale	fort	non
	22.5	normale	faible	oui
	20.5	Élevée	fort	non

Exemple de construction de l'arbre de décision

Elagage (optimisation) de l'arbre de décision

L'élagage consiste à simplifier l'arbre de décision en coupant des branches.

On a deux types:

Pré-élagage: avant la construction de l'arbre

La division d'un sous-ensemble n'est plus nécessaire lorsqu'il est constitué d'un nombre réduit de données ou bien quand la pureté (homogéneité) d'un nœud a atteint un niveau suffisant.

Post-élagage: après la construction de l'arbre

Une fois l'arbre construit, on coupe les branches de l'arbre qui n'améliorent pas la classification de nouvelles données. Dans ce cas on remplace ces branches par un nœud feuille auquel on associe la classe majoritaire.