Fundación Tarpuy

SEGUNDO NIVEL INGENIA

SEGUNDO SEMESTRE 2023

Redes Neuronales

Aplicada a la detección de señales de tránsito

Tutor: Leandro Borgnino

Integrantes: Medina Santiago y Esteban Suarez

Índice

1.	Introducción	2
	1.1. Motivación	2
	1.2. Objetivos	2
2.	Marco Teórico	4
	2.1. Detección de Objetos	4
	2.2. Clasificación de la imágen	4
	2.3. Clasificación con Localización	5
	2.4. Redes STN	6
	2.5. Etapa de la detección de objetos	
	2.5.1. Arquitecturas Integradas	
	2.6. Ventana deslizante	
	2.6.1. Otros datos	
	2.7. Intersección sobre la Union (IoU)	
	2.8. Non-Max Supression	
	2.9. Mapa de densidad	
	2.10. Ventana deslizante convolucional	
	2.11. Predicción del cuadro delimitador	
3.	Implementación	13
4.	Resultados	13
5.	Conclusión	13
6.	Bibliografía	13

Introducción

1.1. Motivación

En el vertiginoso avance de la tecnología, la aplicación de redes neuronales en el procesamiento de imágenes ha emergido como un catalizador revolucionario en diversas disciplinas. Entre las múltiples facetas que abarca esta amalgama de inteligencia artificial y visión computarizada, la detección y clasificación de señales de tránsito se destaca como un campo de estudio de gran relevancia e impacto práctico. La seguridad vial es una preocupación global de suma importancia, y el tráfico vehicular se presenta como un escenario dinámico y complejo donde la correcta interpretación de señales juega un papel crucial. La detección automatizada y la clasificación precisa de señales de tránsito no solo pueden potenciar la eficiencia de los sistemas de transporte, sino que también desempeñan un papel esencial en la prevención de accidentes y la mejora de la movilidad urbana.

Figura 1: Reconocimiento de Objetos.

El crecimiento exponencial de datos visuales en entornos urbanos y la necesidad de respuestas rápidas ante señales cambiantes hacen imperativa la adopción de enfoques avanzados. Acá es donde las redes neuronales toman importancia, porque su capacidad para aprender patrones complejos a partir de grandes conjuntos de datos permite el desarrollo de modelos capaces de discernir con precisión las señales de tráfico en imágenes, incluso en condiciones adversas. En este contexto, la motivación subyacente es impulsar la aplicación de redes neuronales en el ámbito específico de la detección y clasificación de señales de tránsito.

1.2. Objetivos

Los objetivos del proyecto son los siguientes:

- 1. **Pre-procesamiento de los datos:** Se llevará a cabo un pre-proceso en los datasets que tendrán relevancia en el entrenamiento de los distintos modelos.
- 2. Implementación de Arquitecturas Neuronales:
 - a) Desarrollo del modelo VGG-16: Desarrollar la arquitectura de la red neuronal VGG-16 para la obtención de mapas de características, quitando capas para obtener resultados que necesitaremos para la siguiente etapa.
 - b) Desarrollo del modelo ROI-Pooling:
 - Diseñar la arquitectura de la red neuronal ROI Pooling para identificar la presencia de señales de tránsito en los mapas de características obtenidos por VGG-16.

 Entrenar la red ROI Pooling con diversos conjuntos de mapas de características generados a partir de imágenes de tráfico.

c) Implementación del modelo de clasificación:

- Investigación y evaluación de diferentes arquitecturas de redes neuronales. Se seleccionará la arquitectura más adecuada para el clasificador de señales de tránsito, teniendo en cuenta la precisión, la eficacia computacional y el tamaño del modelo.
- Entrenar la red de clasificación utilizando un conjunto de datos exclusivo que incluye imágenes de señales de tránsito etiquetadas.
- 3. Integración de las redes neuronales: Integrar las arquitecturas VGG-16, ROI Pooling y la red de clasificación para formar un modelo coherente y funcional de clasificación de señales de tránsito.
- 4. Evaluación del rendimiento del modelo: Evaluar la precisión y eficacia del modelo completo mediante métricas relevantes de clasificación.
- 5. **Comunicación:** Analizar críticamente los resultados, identificar posibles mejoras y proporcionar recomendaciones para futuras investigaciones.

Marco Teórico

2.1. Detección de Objetos

La detección de objetos constituye una rama esencial en el campo del procesamiento de imágenes y la visión por computadora. Su objetivo principal es discernir y localizar la presencia de uno o más objetos dentro de una imagen completa, asignándoles una identidad específica. Las técnicas de detección de objetos se han desarrollado de manera significativa en respuesta a la creciente necesidad de sistemas capaces de comprender y responder a entornos visuales complejos. Uno de los enfoques más destacados y exitosos en este ámbito es el uso de redes neuronales convolucionales (CNN), que han demostrado una eficacia excepcional en la extracción de características relevantes de las imágenes. La arquitectura típica para la detección de objetos a menudo involucra dos etapas cruciales: la generación de propuestas y la clasificación de esas propuestas. En la primera etapa, se utilizan técnicas como Region Proposal Networks (RPN) para proponer regiones de interés que podrían contener objetos. Posteriormente, estas regiones son clasificadas y refinadas utilizando capas de clasificación y regresión.

Figura 2: Reconocimiento facial

Un enfoque más reciente y potente en la detección de objetos es la utilización de modelos de detección de objetos de una sola etapa, como YOLO (You Only Look Once) y SSD (Single Shot Multibox Detector). Estos modelos permiten la detección de objetos en tiempo real al abordar la tarea de manera conjunta, prediciendo las clases y las ubicaciones de los objetos de una sola vez. Además, existen distintos tipos de detecciones y clasificaciones:

- Clasificación de la imagen.
- Clasificación con Localización.
- Detección.

2.2. Clasificación de la imágen

En líneas generales, la clasificación de imágenes implica el uso de CNN seguidas de capas totalmente conectadas. Estas redes convolucionales son particularmente eficientes en la extracción de características relevantes, como bordes, texturas y patrones, mientras que las capas totalmente conectadas permiten la interpretación global de estas características para realizar la clasificación final. Por ejemplo, en el contexto específico de la detección de vehículos, el objetivo de la clasificación se centraría en determinar la probabilidad de que la imagen contenga un automóvil. Esta probabilidad se obtiene al alimentar la imagen a través de la red neuronal, que ha sido previamente entrenada para reconocer patrones asociados con la presencia de vehículos.

Figura 3: Representación del proceso de clasificación

2.3. Clasificación con Localización

Para refinar aún más esta tarea, se pueden agregar neuronas de salida adicionales que proporcionen información sobre la localización del vehículo. Este enfoque, a menudo utilizado en sistemas de detección y clasificación de objetos, utiliza una bounding box (caja delimitadora) para representar la región en la que se encuentra el objeto de interés. En el caso de la detección de vehículos, esta bounding box se define mediante cuatro valores: bx (coordenada x del centro), by (coordenada y del centro), bh (altura) y bw (ancho)

Figura 4: Representación del proceso de clasificación con localización

La inclusión de esta información espacial permite no solo identificar la presencia de un vehículo en la imagen, sino también delimitar su ubicación precisa. Este enfoque, combinado con técnicas avanzadas de clasificación, potencia la capacidad del sistema para comprender la escena visual en su totalidad y, en el caso específico de la detección de vehículos, proporcionar información detallada sobre su posición en la imagen.

Por ejemplo, la salida de la red de clasificación con localización, considerando tres clases de objetos diferentes, sería la siguiente:

$$y = [p_c \ b_x \ b_y \ b_w \ c_1 \ c_2 \ c_3]^T$$

Si ahora planteamos la función de pérdida de la salida (con MSE) tenemos:

• Si
$$p_c=1$$

$$L(y,\hat{y})=(\hat{y_1}-y_1)^2+(\hat{y_2}-y_2)^2+\ldots+(\hat{y_8}-y_8)^2$$
 • Si $p_c=0$

$$L(y, \hat{y}) = (\hat{y_1} - y_1)^2$$

Por lo general se utiliza la función de pérdida log likelihood para las clases, mse para las coordenadas de la región limitante y logistic regression para p_c .

2.4. Redes STN

Las Redes STN, o Redes de Transformadores Espaciales (Spatial Transformer Networks), representan un enfoque innovador en el campo de las Redes Neuronales Convolucionales (CNN). Estas redes han sido diseñadas para abordar la invarianza espacial en las entradas, permitiendo que la red aprenda a manejar variaciones en rotación, traslación y escala de manera más efectiva.

Figura 5: Representación de un Transformador espacial

El núcleo distintivo de una Red STN radica en su incorporación de módulos de "transformadores espaciales". Estos módulos proporcionan a la red la capacidad de realizar transformaciones geométricas sobre las imágenes de entrada de manera automática durante el proceso de aprendizaje. Esta capacidad es fundamental para mejorar la robustez y la generalización del modelo, ya que permite que la red se vuelva espacialmente invariante a las variaciones mencionadas. Las transformaciones espaciales, tales como rotaciones y traslaciones, pueden introducir variaciones significativas en las características visuales de una imagen. Por ejemplo, en el contexto de la detección de objetos en imágenes de tráfico, la rotación de una señal de tránsito o su traslación en la imagen pueden desafiar la capacidad de una red convencional para reconocerla de manera efectiva.

Figura 6: Representación de la aplicación de una transformación.

Los módulos de transformadores espaciales en una Red STN actúan como mecanismos de atención, permitiendo a la red aprender a enfocarse en regiones específicas de la entrada y realizar ajustes geométricos según sea necesario. Esta adaptabilidad a las variaciones espaciales mejora la capacidad del modelo para capturar patrones relevantes independientemente de la orientación o posición en la imagen.

Ahora bien, para el caso de una red de localización, donde se tiene un mapa de características de entrada U, con canales de ancho W y alto H, las salidas son y los parámetros de transformación T, existiendo distintos tipos de transformaciones posibles. Una de esas transformaciones es la Transformación afín, donde dependiendo de los valores en la matriz, podemos transformar (X_1, Y_1) a (X_2, Y_2) con diferentes efectos.

Figura 7: Representación de algunos efectos

2.5. Etapa de la detección de objetos

En el campo de la detección de objetos, las arquitecturas aplicadas a menudo se estructuran en dos etapas distintas, cada una desempeñando un papel crucial en el proceso global de reconocimiento y localización de objetos en imágenes. Estas etapas son la detección de la región y la detección y clasificación del objeto.

- 1. Detección de la Región En la primera etapa, la detección de la región se centra en identificar áreas candidatas que podrían contener objetos de interés. Diversas técnicas han sido desarrolladas para esta tarea, entre las cuales se destacan la ventana deslizante y la búsqueda selectiva, entre otras similares. La ventana deslizante implica el escaneo sistemático de la imagen mediante una ventana móvil, evaluando cada región para determinar la probabilidad de contener un objeto. Por otro lado, la búsqueda selectiva utiliza propuestas generadas previamente para enfocarse en áreas más prometedoras de la imagen, reduciendo así la carga computacional.
- 2. Detección y Clasificación del Objeto: Una vez identificadas las regiones de interés, la siguiente etapa involucra la detección y clasificación del objeto dentro de estas regiones. Aquí, se pueden utilizar clasificadores clásicos o redes neuronales convolucionales entrenadas específicamente para reconocer patrones visuales asociados con categorías de objetos. Este paso es esencial para asignar una etiqueta a cada objeto detectado, proporcionando información sobre su naturaleza y características

Figura 8: Esquema de detectores por etapas

Trabajo Práctico Final Segundo Nivel

2.5.1. Arquitecturas Integradas

Aunque las dos etapas mencionadas anteriormente son comunes, han surgido arquitecturas más avanzadas que realizan ambas tareas simultáneamente. Estas arquitecturas integran la detección de la región y la clasificación del objeto en una única red neuronal, permitiendo una inferencia más eficiente y rápida. En el panorama de la detección de objetos, la elección entre arquitecturas de una o dos etapas depende de los requisitos específicos de la aplicación y las limitaciones computacionales.

Figura 9: Arquitectura con dos etapas

2.6. Ventana deslizante

La técnica de ventana deslizante, que implica el desplazamiento de rectángulos a través de una imagen en busca de objetos, se convierte en una estrategia aún más potente cuando se incorporan optimizaciones clave. Este enfoque exhaustivo se beneficia de la flexibilidad para cambiar el tamaño de la imagen o de la propia ventana deslizante, permitiendo la obtención de cajas de delimitaciones más precisas.

Figura 10: Representación de la técnica

Cuando se trabaja con imágenes de tamaños variados, ajustar la escala de la ventana deslizante es esencial para garantizar la detección efectiva de objetos en diferentes contextos. Posteriormente, basándose en las ventanas donde se detecta el objeto en imágenes más pequeñas, se puede escalar nuevamente y unir las detecciones. Este proceso contribuye significativamente a obtener resultados más precisos y detallados, especialmente en escenarios donde la escala de los objetos varía considerablemente.

Figura 11: Representación de la técnica

La versatilidad de la ventana deslizante también puede conducir a situaciones en las que varias cajas de delimitaciones detectan el mismo objeto. El desafío radica en seleccionar la mejor candidata entre estas detecciones redundantes. Para abordar este problema, se emplea la técnica de **Non-Maximum Suppression** (supresión de no máximos) entre las candidatas. Esta estrategia se centra en retener únicamente la detección más confiable, descartando las demás para evitar duplicaciones innecesarias.

Figura 12: Representación de la técnica NMS

La evaluación de la calidad de las detecciones se realiza mediante la métrica Intersection Over Union (Intersección sobre Unión, IoU). Esta métrica calcula la proporción entre la intersección y la unión de dos regiones delimitadas por cajas. Al establecer un umbral específico de IoU, se puede determinar la superposición aceptable entre dos cajas para considerarlas como duplicadas o no. Esto asegura que la mejor candidata seleccionada sea la que mejor se ajusta a la verdadera posición y forma del objeto.

Figura 13: Representación de la técnica NMS

2.6.1. Otros datos

La técnica de ventana deslizante, a pesar de ser efectiva en la detección de objetos, enfrenta desafíos computacionales significativos, especialmente en términos de eficiencia. Su alto costo computacional se debe a que cada recorte generado por el desplazamiento de la ventana debe procesarse individualmente por la red convolucional, siendo más intensivo en recursos con imágenes de alta resolución o detecciones más precisas.

La situación empeora al buscar un desplazamiento más preciso, ya que explorar un espacio de búsqueda más fino implica procesar más regiones, aumentando exponencialmente la carga computacional. La ventana deslizante no es óptima para Redes Neuronales Convolucionales (CNN), ya que la complejidad de las CNN hace que el procesamiento independiente de cada recorte sea ineficiente y costoso.

Para superar estas limitaciones, se propone la ventana deslizante convolucional, que optimiza el proceso al introducir la convolución directamente en la ventana. Esto permite a la red compartir cálculos entre regiones superpuestas, reduciendo redundancias y mejorando la eficiencia global del modelo.

2.7. Intersección sobre la Union (IoU)

La métrica de Intersección sobre la Unión (IoU) es como un elemento crucial en la evaluación de la precisión y calidad de las predicciones en la detección de objetos. Esta métrica proporciona una medida del grado de superposición entre dos regiones delimitantes, ofreciendo una indicación clara de la similitud y, por ende, de la efectividad del modelo predictivo.

El cálculo de IoU está dado por la siguiente expresión:

$$IoU = \frac{\text{área de la intersección}}{\text{área de la unión}}$$

Donde el numerador representa el área compartida entre las dos regiones delimitantes, y el denominador representa el área total cubierta por ambas. Este cálculo proporciona un valor normalizado que varía entre 0 y 1, donde 0 indica ninguna superposición y 1 indica una coincidencia perfecta entre las regiones.

La interpretación del resultado de IoU es directa:

- A medida que el valor de IoU se acerca a 1, se indica una mayor similitud y precisión en la predicción
- Un IoU de 0.5 se considera un umbral comúnmente aceptado para determinar si una predicción es correcta
- Si el IoU es mayor a 0.5, se considera que la predicción es precisa, lo que implica que la región predicha se superpone significativamente con la región real del objeto.

Esta métrica es especialmente valiosa en situaciones donde es esencial evaluar no solo la detección de un objeto, sino también la precisión de su ubicación y forma predicha. Al establecer un umbral significativo, se puede establecer un estándar para la aceptabilidad de las predicciones, contribuyendo así a la toma de decisiones en la optimización de modelos de detección de objetos.

Figura 14: Representación de la métrica IoU

2.8. Non-Max Supression

La técnica de Non-Maximum Suppression (NMS) es una estrategia esencial en la postprocesamiento de detecciones, particularmente cuando se enfrenta a la presencia de múltiples celdas o ventanas que comprenden un solo objeto. El objetivo principal de NMS es seleccionar la ventana que mejor encuadre al objeto en cuestión, eliminando redundancias y asegurando una salida precisa. El proceso de Non-Maximum Suppression inicia evaluando las probabilidades asociadas con cada detección (pc) y seleccionando la ventana con la probabilidad más alta. Este paso inicial garantiza que la predicción más confiable se mantenga, sirviendo como referencia para la supresión de detecciones redundantes.

A continuación, se examinan los rectángulos **cercanos** al rectángulo con la mayor probabilidad:

Se calcula el valor de solapamiento (IoU) entre estos rectángulos y el rectángulo de mayor probabilidad. Aque-

Figura 15: Referencia a la técnica NMS

llos rectángulos que tienen un valor de IoU significativo con el rectángulo de referencia son suprimidos, ya que representan detecciones superpuestas o redundantes. Este proceso, además de supresión, garantiza que

solo se retenga la detección más confiable y precisa, eliminando aquellas que no aportan información adicional significativa. La técnica de Non-Maximum Suppression, por lo tanto, contribuye a la generación de resultados más limpios y coherentes en el contexto de la detección de objetos. Es importante destacar que, en escenarios donde hay varios objetos a detectar, NMS puede ejecutarse de manera independiente para cada salida, permitiendo así un manejo eficiente de múltiples detecciones en una única imagen, y así asegurando que la selección de ventanas se realice de manera óptima para cada objeto individual.

Figura 16: Representación de NMS+IoU

2.9. Mapa de densidad

Otra estrategia que se utiliza ampliamente es la de los mapas de densidad. La metodología de mapas de densidad comienza con la creación de una matriz de ceros del mismo tamaño que la imagen original. Por cada ventana cuyo puntaje (score) supere un umbral predeterminado, se incrementa en uno la cantidad en las posiciones que la ventana abarca en la matriz. Este enfoque tiene el propósito de construir un mapa que refleje la densidad de detecciones en diferentes regiones de la imagen.

Posteriormente, el proceso implica recortar las zonas de la matriz cuyos valores superan un umbral específico. Este paso refina la información, destacando las regiones con una densidad significativa de detecciones y descartando áreas con puntuaciones inferiores.

La utilización de mapas de densidad aporta varios beneficios al proceso de detección de objetos. Al construir una representación más rica de la distribución espacial de los

Figura 17: Ejemplo de un mapa de densidad

objetos detectados, esta técnica puede ser especialmente valiosa en situaciones donde se busca comprender la concentración y la disposición precisa de los elementos de interés.

Es importante tener en cuenta que la elección de los umbrales juega un papel crucial en la efectividad de los mapas de densidad. Ajustar adecuadamente estos umbrales permite adaptar la técnica a las características específicas de la aplicación y optimizar la detección de objetos en diferentes contextos.

2.10. Ventana deslizante convolucional

La Ventana Deslizante Convolucional es una evolución de la técnica original de ventana deslizante en el ámbito de la detección de objetos. Esta adaptación introduce la convolución directamente en el proceso de exploración de la imagen, superando las limitaciones computacionales asociadas con la versión clásica.

Figura 18: Ejemplo de funcionamiento

En la implementación convolucional de la ventana deslizante, se aprovecha la capacidad de las redes neuronales convolucionales (CNN) para realizar operaciones de convolución de manera eficiente. En lugar de procesar cada recorte de la imagen de manera independiente, la red convolucional comparte cálculos entre regiones superpuestas, reduciendo así la redundancia y optimizando el costo computacional asociado con la técnica de ventana deslizante tradicional.

El proceso se inicia con la generación de múltiples niveles de representaciones a través de capas convolucionales. Estas representaciones capturan gradualmente características de diferentes niveles de abstracción en la imagen. Luego, se desliza una ventana convolucional a través de estas representaciones, permitiendo que la red focalice su atención en regiones específicas y aprenda patrones jerárquicos de manera eficaz.

Figura 19: Proceso

La Ventana Deslizante Convolucional aborda la desventaja computacional de la ventana deslizante clásica al mejorar la eficiencia y la capacidad de aprendizaje de la red. Al utilizar capas convolucionales, se logra una mayor capacidad de generalización, lo que permite al modelo detectar objetos en diferentes escalas, orientaciones y contextos visuales.

Figura 20: Representación de la técnica

Además, esta técnica contribuye a la generación de mapas de características que resaltan áreas relevantes

de la imagen. Estos mapas, combinados con capas de clasificación y regresión, permiten la detección precisa y la asignación de categorías a los objetos identificados.

2.11. Predicción del cuadro delimitador

A pesar de la optimización que proporciona la implementación de la técnica de ventana deslizante en conjunto con redes neuronales convolucionales (CNN), surge una limitación crucial en la precisión de los cuadros delimitadores asociados a los objetos detectados.

Esta limitación se manifiesta en situaciones donde ninguna ventana deslizante coincide de manera precisa con la posición real del objeto, como un vehículo. Además, la forma y tamaño predeterminados de la ventana deslizante pueden no ser los más apropiados para delimitar con precisión la región de interés.

La falta de precisión en los límites del cuadro delimitador puede comprometer la exactitud global del sistema de detección de objetos. Esto se convierte en un desafío importante, ya que la correcta delimitación de la región ocupada por el objeto es esencial para comprender su ubicación y forma con precisión. Para abordar esta limitación, se exploran enfoques avanzados que buscan mejorar la predicción de los cuadros delimitadores, permitiendo una detección más

Figura 21: Ejemplo de predicción

precisa y detallada de los objetos en la imagen. Estos enfoques a menudo involucran técnicas de regresión que buscan ajustar dinámicamente los límites del cuadro en función de las características específicas del objeto detectado.

Implementación

Resultados

Conclusión

Bibliografía