Heaps

Specialized Binary Trees

The following special Binary Trees are NOT Binary Search Trees.

Two Tree

- Two Tree
 - A binary tree where every node has either 0 or 2 children

Two Tree

Full Tree

- Full Tree
 - Two Tree with all leaves on the same level

Not a Full Tree (Not a Two Tree)

Full Tree

Not a Full Tree (Leaves on different levels)

Complete Tree

- Complete Tree
 - A tree that is full up to the last level
 - The last level has all nodes as far left as possible

- Every full tree is complete
- Not every complete tree is full
- A complete tree is NOT NECESSARILY a BST. There is no restrictions on the contents of the node

Complete Tree Properties

- Height is |Ig(n)|
- Structurally representable as an array
 - More on this later

Heaps

- Heap
 - A complete binary tree with two properties:
 - All contents are directly comparable (numbers, for example)
 - For every node in the tree the contents are less than or equal to its descendants (Min Heap)
 - Alternately, a Max Heap will have every node be greater than or equal to its descendants
 - Discussion in these slides will focus on min heaps
- Recursive Definition (Min Heap)
 - Complete tree where:
 - The root of the tree has the smallest value
 - Both subtrees are min heaps

Heap Terms

- The root of a heap is called the top of the heap
- The top is always the smallest element
- The last element in a heap is the rightmost position of the lowest level

Heap Addition

- If the last level is not full, element is added to the next position available
- If the last level is full, element becomes first element in the new level
- Element is swapped up the heap if necessary
- Example: Add 14 to the heap

Example: Adding

Heap Removal

- Move the last element to the top
- Swap the new root element down the heap to maintain heapiness
 - For a min heap, swap with the smallest child element
- Example: Remove the top element

Example: Removing the Top

Removal Result

Complete Trees as Arrays

- Heaps can be implemented as an array or using binary tree nodes
 - Keeping track of last can be difficult with a binary tree
- In the below picture, values at nodes correspond to indexes in an array

Addressing

- Root has index 0
- For a node with index i, the left child has index 2*i+1
- For a node with index i, the right child has index 2*i+2
- For a node with index i, the parent has index (i-1)/2 using integer division

Benefits

- Memory usage is low
- The last element has index array.size() 1 (easy to keep track of)
- Insertion can be done using array.add(), which is easy and fast

Heap Performance

- Insertion into a heap is ok
 - Not as fast as insertion into a set or end of a list
 - Faster than inserting near the beginning of an array list
- Removal from a heap is ok
- Searching is slow (we only know something about the top of the heap)