Experiment

Be careful with the magnets!!
They are very Strong!!!

Keep them away
From your computer
And credit cards

2.76 / 2.760 Lecture 3: Large scale

Flexure experiment

Constraints

Micro-fabrication

Micro-physics scaling

Assignment

Experiment

- (1) What is the smallest displacement you can "really" measure with the probes? It is smaller than the ticks....
- (2) What metrology/measurement issues must be dealt with?
- (3) Estimate the effect of actuator angular misalignment on parasitic error. Do an order of magnitude estimate. Use your finger...
- (4) How should you design a constraint between the actuator and the flexure to mitigate angular misalignment?
- (5) How effective would this constraint be? What are the important design variables? Use CoMeT...

Time Limit: 30 minutes
Email results to me when time is called

Experiment

Be careful with the magnets!! They are very Strong!!!

Keep them away
From your computer
And credit cards

Discussion

Metrology/measurement issues

Actuator angular misalignment on parasitic error

Effectiveness of constraint between actuator-flexure

Purpose of today

Finish mechanical gain factors to make big machines work with little machines

Micro-scale flow/interface dominators

- Micro-scale fabrication
- Micro-scale surface/volume physics

Constraints

Constraint-based design

Constraint-based compliant mechanism design

STEP 1: Design requirements

Motion path, stiffness, load capacity, etc...

STEP 2: Motion path decomposition

Arcs, lines, rotation pts. sub-paths

STEP 3:Kinematic parametric concepts

Motions, constraint metric, symmetry, etc.

STEP 4:Constraint-motion addition rules

Serial, parallel, hybrid

STEP 5: Topology concept generation

Path & constraint driven

STEP 6: Concept selection phase I

Path errors & over constraint

STEP 7: Size and shape optimization

Stiffness, load capacity, efficiency, etc...

STEP 8: Concept selection phase II

Direct comparison with design requirements

Photo removed for copyright reasons. Compliant test rig for automotive steering column.

Exact constraint

At some scale, everything is a mechanism

Exact constraint: Achieve desired motion

- ☐ By applying minimum number of constraints
- ☐ Arranging constraints in optimum topology
- Adding constraints only when necessary

Visualization is critical, this is not cookbook

For now:

- ☐ Start with ideal constraints
- ☐ Considering small motions
- \square Constraints = lines

Figure: Layton Hales PhD Thesis, MIT.

Constraint fundamentals

Rigid bodies have 6 DOF

DOC = # of linearly independent constraints

$$DOF = 6 - DOC$$

Figure: Layton Hales PhD Thesis, MIT.

A linear displacement can be visualized as a rotation about a point which is "far" away

Statements

Points on a constraint line move perpendicular to the constraint line

Figure: Layton Hales PhD Thesis, MIT.

Constraints along this line are equivalent

Diagrams removed for copyright reasons. Source: Blanding, D. L. Exact Constraint: Machine Design using Kinematic Principles. New York: ASME Press, 1999.

Statements

Intersecting, same-plane constraints are equivalent to other same-plane intersecting constraints

Instant centers are powerful tool for visualization, diagnosis, & synthesis

Abbe error

Error due to magnified moment arm

Statements

Constraints remove rotational degree of freedom

Length of moment arm determines the quality of the rotational constraint

Statements

Parallel constraints may be visualized/treated as intersecting at infinity

Basic elements

Bars Beams Plates

Diagrams removed for copyright reasons. Source: Blanding, D. L. Exact Constraint: Machine Design using Kinematic Principles. New York: ASME Press, 1999.

Notch Hinge

X

Do you really get δz ?

Series: Add DOF

Follow the serial chain

Pick up every DOF

Differentiate series by Load path

Shared load path = Series

This could be 5 DOF

Depends on blade length

Parallel: Add Constraints

Where there is a common DOF, then have mechanism DOF

There are no conflicts in circumferential displacement To θz

Non-shared load paths = parallel

Theta z is a common Degree of freedom

All others conflict

 δz is a common Degree of freedom

All others conflict

Rotation arms cause Conflict in out-of-plane rotations

Over constraint

Flexures are often forgiving of over constraint

Over constraint = redundant constraint

Identifying over constraint

☐ How much energy is stored?

General metric relating constraint stiffness to motion along constraint

$$\frac{K_{\parallel}}{K_{\perp}} \cdot \frac{\delta_{\perp}}{\delta_{\parallel}} \to CM_{k} \cdot CM_{\mathcal{S}} << 1$$

Extension: Fixtures

You will need to build a Passive fixture for your STM

Kelvin

Fixtures as mechanisms

Details of QKC element geometry

Figure: Layton Hales PhD Thesis, MIT.

Consequences of friction

Are kinematic couplings perfect?

Ideal in-plane constraints

Real in-plane constraints

Flexure grooves reduce friction effect

Orrr....

Instant center visualization example

Instant center can help you identify how to best constrain or free up a mechanism

$$\frac{K_{\parallel}}{K_{\perp}} \cdot \frac{\delta_{\perp}}{\delta_{\parallel}} \to CM_{\Bbbk} \cdot CM_{\varnothing} << 1$$

Diagram removed for copyright reasons. Source: Alex Slocum, *Precision Machine Design*.

Poor

Good

Is it a wise idea to put three balls in three cones while the balls are rigidly attached to a rigid part?

$$\frac{K_{\parallel}}{K_{\perp}} \cdot \frac{\delta_{\perp}}{\delta_{\parallel}} \to CM_{k} \cdot CM_{\mathfrak{S}} << 1$$

In-plane use of flexures

Three balls in three cones What does the constraint diagram look like?

Use of flexures to avoid over constraint

Flexures provide a very low CM for each joint

- ☐ Energy stored due to over constraint is minimized
- ☐ Energy is channeled through continuously variable
- ☐ Is possible to reach a true minimum

Low-cost couplings

Kinematic elements

Manufacturing

Diagrams removed for copyright reasons. "Cast + Form Tool = Finished"

Constraint diagrams

Metrics

2.76 Multi-scale System Design & Manufacturing

Case study: Duratec engine

Components

Block

Bedplate

Pinned joint Assembly Bolts

QKC

2.76 Multi-scale System Design & Manufacturing

Micro-scale systems

Micro-scale MuSS main challenges

Fabrication is fundamentally different

- ☐ Chemical
- □ Molecular
- **□** Ballistic
- ☐ Finished geometry
- ☐ Possible geometries

Physics "rounding" is no longer acceptable

- ☐ Surface forces
- ☐ Thermal time constants
- □ Strains

Micro-fabrication video

General process

Bulk micromachining = Removal of the wafer

Surface micromachining = Add/remove layers

MiHx fabrication

Step	Recipe/Description
	Double deck SOIOI; Device layers @ 8 microns thickness; Oxide at 1 micron thickness
	Photoresist and pattern
	DRIE (Si) and BOE Oxide
	Pattern AL contacts at 350 nm thickness
	Photoresist and pattern
	DRIE (Si) and BOE Oxide and DRIE (Si)
	Pattern handle wafer; Mount to quartz wafer; DRIE backside etch
	Release with vapor HF
	Remove resist via plasma etch

Micro-scale physics

For strong dependence on characteristic length, importance of phenomena decreases with characteristic dimension

 \Box Gravity L³

 \Box Inertia L^3

For weaker dependence on characteristic length, phenomena become dominate at

small scale

 \Box Electrostatic L^2

☐ Surface tension L²

☐ Thermal L

Thermal physics

Ratio of surface area to volume increases

Where does this help?

Where does this hurt?

Assignment

Design a mechanical filter system (may be more than one flexure which is capable of reducing actuator input by a factor of 100. The reduction is called the transmission ratio = output/input

Design constraints

- \Box 5 x 5 envelope
- \square ½ inch thick
- ☐Flexures should be movable by hand
- ☐ Stress less than 20% of yield stress
- \square Actuator range = 0 150 microns
- \square Actuator resolution = 10 nanometers