Recitation #18: Comparison Tests and Alternating Series

Warm up:

For each of the following, answer **True** or **False**, and explain why.

(a) If
$$a_n \ge 0$$
 and $\sum_{n=0}^{\infty} a_n$ converges, then $\sum_{n=0}^{\infty} a_n^2$ converges.

(b) If
$$a_n, b_n \ge 0$$
 and both $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ converge, then $\sum_{n=0}^{\infty} a_n b_n$ converges.

Group work:

Problem 1 (a) Why can we not use the Comparison test with $\sum_{k=1}^{\infty} \frac{1}{k^2}$ to show that $\sum_{k=1}^{\infty} \frac{1}{k^2 - 5}$ converges?

(b) Adjust
$$\sum_{k=1}^{\infty} \frac{1}{k^2}$$
 to show that $\sum_{k=1}^{\infty} \frac{1}{k^2 - 5}$ converges via the Comparison Test.

(c) Give a convergent series we can use in the Limit Comparison Test to show that $\sum_{k=1}^{\infty} \frac{1}{k^2 - 5}$ converges.

Problem 2 Determine if the following series converge or diverge.

(a)
$$\sum_{n=0}^{\infty} \frac{n^2 + 2n + 1}{3n^3 + 1}$$

(c)
$$\sum_{n=0}^{\infty} \frac{\cos^2 n}{n^3 + 1}$$

(b)
$$\sum_{n=0}^{\infty} \frac{n^2 + 2n + 1}{3n^4 + 1}$$

(d)
$$\sum_{n=1}^{\infty} \left[\left(1 + \frac{1}{n} \right)^2 e^{-n} \right]$$