K Nearest Neighbors

Dr. Saed Sayad

University of Toronto
2010
saed.sayad@utoronto.ca

KNN - Definition

KNN is a simple algorithm that stores all available cases and classifies new cases based on a similarity measure.

KNN – different names

- K-Nearest Neighbors
- Memory-Based Reasoning
- Example-Based Reasoning
- Instance-Based Learning
- Case-Based Reasoning
- Lazy Learning

KNN – Short History

- Nearest Neighbors have been used in statistical estimation and pattern recognition already in the beginning of 1970's (non-parametric techniques).
- Dynamic Memory: A theory of Reminding and Learning in Computer and People (Schank, 1982).
- People reason by remembering and learn by doing.
- Thinking is reminding, making analogies.
- Examples = Concepts???

KNN Classification

KNN Classification - Distance

Age	Loan	Default	Distance
25	\$40,000	N	102000
35	\$60,000	N	82000
45	\$80,000	N	62000
20	\$20,000	N	122000
35	\$120,000	N	22000
52	\$18,000	N	124000
23	\$95,000	Υ	47000
40	\$62,000	Υ	80000
60	\$100,000	Υ	42000
48	\$220,000	Υ	78000
33	\$150,000	Υ ←	8000
		<u> </u>	
48	\$142,000	Ŷ	

$$D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Similarity - Distance Measure

Euclidean
$$\sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}$$

$$\sum_{i=1}^{k} |x_i - y_i|$$

Minkowski
$$\left(\sqrt{\sum_{i=1}^{k} \left(\left| x_i - y_i \right| \right)^q} \right)^{1/q}$$

KNN Classification — Standardized Distance

Age	Loan	Default	Distance
0.125	0.11	N	0.7652
0.375	0.21	N	0.5200
0.625	0.31	N ←	0.3160
0	0.01	N	0.9245
0.375	0.50	N	0.3428
0.8	0.00	N	0.6220
0.075	0.38	Υ	0.6669
0.5	0.22	Υ	0.4437
1	0.41	Υ	0.3650
0.7	1.00	Υ	0.3861
0.325	0.65	Υ	0.3771
0.7	o.61	, ÷	

$$X_{s} = \frac{X - Min}{Max - Min}$$

KNN Regression - Distance

Age	Loan	House Price Index	Distance
25	\$40,000	135	102000
35	\$60,000	256	82000
45	\$80,000	231	62000
20	\$20,000	267	122000
35	\$120,000	139	22000
52	\$18,000	150	124000
23	\$95,000	127	47000
40	\$62,000	216	80000
60	\$100,000	139	42000
48	\$220,000	250	78000
33	\$150,000	264	8000
		<u> </u>	
48	\$142,000	?	

$$D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

KNN Regression — Standardized Distance

Age	Loan	House Price Index	Distance	
0.125	0.11	135	0.7652	
0.375	0.21	256	0.5200	
0.625	0.31	— 231 ←	0.3160	
0	0.01	267	0.9245	
0.375	0.50	139	0.3428	
0.8	0.00	150	0.6220	
0.075	0.38	127	0.6669	
0.5	0.22	216	0.4437	
1	0.41	139	0.3650	
0.7	1.00	250	0.3861	
0.325	0.65	264	0.3771	
0.7	0.61	i ج		

$$X_{s} = \frac{X - Min}{Max - Min}$$

KNN – Number of Neighbors

- If K=1, select the nearest neighbor
- If K>1,
 - For classification select the most frequent neighbor.
 - For regression calculate the average of K neighbors.

Distance – Categorical Variables

X	Υ	Distance
Male	Male	0
Male	Female	1

$$x = y \Longrightarrow D = 0$$

$$x \neq y \Longrightarrow D = 1$$

Similarity – Hamming Distance

$$D_H = \sum_{i=1}^k \left| x_i - y_i \right|$$

Gene 1	Α	Α	Т	С	С	Α	G	Т
Gene 2	Т	С	Т	С	Α	Α	G	С
Hamming Distance	1	1	0	0	1	0	0	1

Instance Based Reasoning

- IB1 is based on the standard KNN
- IB2 is incremental KNN learner that only incorporates misclassified instances into the classifier.
- IB3 discards instances that do not perform well by keeping success records.

Case Based Reasoning

KNN - Applications

- Classification and Interpretation
 - legal, medical, news, banking
- Problem-solving
 - planning, pronunciation
- Function learning
 - dynamic control
- Teaching and aiding
 - help desk, user training

Summary

- KNN is conceptually simple, yet able to solve complex problems
- Can work with relatively little information
- Learning is simple (no learning at all!)
- Memory and CPU cost
- Feature selection problem
- Sensitive to representation

QUESTIONS?