Linear Regression

Professor Jie Peng, PhD

Department of Statistics

University of California, Davis

Model Ingredients

Key Ingredients

- (a) Fixed component: How does the mean of the response variable Y change with the X value(s)?
 - ► E(Y|X=x) = f(x): $f(\cdot)$ is called the regression function. What is the functional form of $f(\cdot)$? E.g., $f(x) = \beta_0 + \beta_1 x$, $f(x) = \beta_0 + \beta_1 x + \beta_2 x^2$.
- (b) Random component: Given the X value(s), what is the distribution of the response variable Y?
 - ▶ What is the distribution of Y given X = x? E.g., $Y|(X = x)|N(f(x), \sigma^2(x))$.

Remark: In this class, we treat X variables as given (and thus non-random).

Figure: Illustration of regression model

Heights: Scatter Plot

Figure: Child's height versus midparent's height

Heights: Binning
Figure: Child's height versus midparent's height

- bins (indicated by the vertical broken lines) are created by grouping data points with parent's heights within a certain 0.5inch wide interval.
- If we calculate the average of children's heights within each bin (indicated by the red triangles), we can see that they lie approximately on a straight line across the bins (indicated by the red zigzag line).
- The within-bin degree of dispersion of children's heights (indicated by the red vertical segments) is roughly the same across the bins.

How are these observations related to the regression model? Can

Heights

Model the mean of children's heights as a linear function of the midparent's height (X):

$$f(x) = E(Y|X = x) = \beta_0 + \beta_1 x$$

Model the distribution of children's heights as having a constant variance (i.e., not depending on the X-value):

$$Var(Y|X=x) \equiv \sigma^2$$

Simple Regression Model

Simple Linear Regression Model

The model contains **only one** *X* **variable**:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \quad i = 1, ..., n.$$

- Y_i: value of the response variable in the *ith* case; X_i: value of the X variable in the *ith* case.
- Random errors/fluctuations: ε_i random variables: zero-mean; equal-variance; uncorrelated;
- ► Unknown parameters: β_0 regression intercept; β_1 regression slope; σ^2 error variance

Given X_i , the response Y_i is the sum of two terms:

Non-random (deterministic) term:

$$E(Y_i) = \beta_0 + \beta_1 X_i$$

Random term:

 $\epsilon_i \sim$ zero mean, common variance, uncorrelated

The simple linear regression model says:

- ightharpoonup The response variable Y_i is a random variable.
- lts mean is linearly related to X_i .
- lts variance is a constant (i.e., not depending on X_i).
- ▶ Two responses Y_i and Y_i ($i \neq j$) are uncorrelated.

Regression Line

The fixed component: $y = \beta_0 + \beta_1 x$

- ▶ β_1 regression slope: the change in E(Y) per unit change of X.
- $ightharpoonup eta_0$ regression intercept: the value of E(Y) when X=0.

Least-Squares Estimator

Which Line is the "Best" Fit?

The answer depends on how the *goodness of fit to the data* is evaluated.

Figure: A data set with 5 data points

©Jie Peng 2025. This content is protected and may not be shared, uploaded, or distributed.

Least-Squares Principle

Given the observations $\{(X_i, Y_i)\}_{i=1}^n$ and a line $y = b_0 + b_1 x$, we can calculate the *sum of squared vertical deviations* of the observations from this line:

$$Q(b_0,b_1)=\sum_{i=1}^n (Y_i-(b_0+b_1X_i))^2.$$

► The least squares (LS) principle is to find the line that minimizes the sum of squared vertical deviations.

Figure: A data set with 5 data points: $Q(b_0, b_1)$ for four different lines.

Least-Squares Estimator

$$\begin{split} (\hat{\beta}_0, \hat{\beta}_1) &= \mathsf{argmin}_{(b_0, b_1)} Q(b_0, b_1) \\ \hat{\beta}_1 &= \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2} = r_{XY} \frac{s_Y}{s_X}, \qquad \hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X} \end{split}$$

- $ightharpoonup \overline{X} = rac{1}{n} \sum_{i=1}^{n} X_i, \ \overline{Y} = rac{1}{n} \sum_{i=1}^{n} Y_i$, are the sample means.
- ▶ $s_X = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2}$, $s_Y = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (Y_i \overline{Y})^2}$, are the sample standard deviations.
- $ightharpoonup r_{XY}$ is the **sample correlation** between *X* and *Y*.

What happens if X_i s are all equal?

Least-Squares Line
$$y = \hat{\beta}_0 + \hat{\beta}_1 x = \overline{Y} + r_{XY} \frac{s_Y}{s_X} (x - \overline{X}).$$

- ▶ The LS line passes through the **center of the data** $(\overline{X}, \overline{Y})$.
- ▶ If the data are **centered** (i.e., $\overline{X} = 0$, $\overline{Y} = 0$), then $\hat{\beta}_0 = 0$ and the LS line must pass the origin (0,0).
- If the data are standardized (i.e.,

$$\overline{X}=0,$$
 $s_X=1;$ $\overline{Y}=0,$ $s_Y=1),$ then $\hat{\beta}_0=0$ and $\hat{\beta}_1=r_{XY}.$

▶ **Regression effect**: One standard deviation change in X leads to r_{XY} standard deviation change in E(Y). (Recall

 $|r_{XY}| \leq 1$

Reading: Derive the LS Estimator

The pair (b_0, b_1) that minimizes the function $Q(\cdot, \cdot)$ satisfies:

$$\frac{\partial Q(b_0,b_1)}{\partial b_0}=0, \quad \frac{\partial Q(b_0,b_1)}{\partial b_1}=0.$$

This leads to the **normal equations**:

$$nb_0 + b_1 \sum_{i=1}^n X_i = \sum_{i=1}^n Y_i$$

$$b_0 \sum_{i=1}^n X_i + b_1 \sum_{i=1}^n X_i^2 = \sum_{i=1}^n X_i Y_i$$

The solution is the LS estimator.

Fitted Values and Residuals

Fitted Values and Residuals

► Fitted values (one for each case) are predictions by the LS line :

$$\widehat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i = \overline{Y} + \hat{\beta}_1 (X_i - \overline{X}), \quad i = 1, \dots n.$$

Residuals (one for each case) are differences between the observed values and their respective fitted values, i.e, they are the vertical deviations of the observations to the LS line:

$$e_{i} = Y_{i} - \widehat{Y}_{i} = Y_{i} - (\widehat{\beta}_{0} + \widehat{\beta}_{1}X_{i})$$

$$= (Y_{i} - \overline{Y}) - \widehat{\beta}_{1}(X_{i} - \overline{X}), \quad i = 1, \dots n.$$

Residuals e_i and error terms ϵ_i are NOT the same thing! ©Jie Peng 2025. This content is protected and may not be shared, uploaded, or distributed.

Example

Case	Xi	Yį	$X_i - \overline{X}$	$Y_i - \overline{Y}$	$(X_i - \overline{X})^2$	$(X_i - \overline{X})(Y_i - \overline{Y})$
1	1.86	3.34	-0.17	-0.94	0.03	0.16
2	0.22	1.79	-1.81	-2.48	3.29	4.50
3	3.55	5.66	1.52	1.39	2.30	2.11
4	3.29	5.83	1.26	1.56	1.58	1.96
5	1.25	4.74	-0.78	0.47	0.61	-0.36
Col. Sum	10.17	21.36	0.00	0.00	7.81	8.37
Col. Mean	2.03	4.27				

$$\hat{\beta}_1 = 8.37/7.81 = 1.07, \quad \hat{\beta}_0 = 4.27 - 1.07 \times 2.03 = 2.09$$

Figure: LS line, fitted values and residuals

©Jie Peng 2025. This content is protected and may not be shared, uploaded, or distributed.

Properties of Residuals

The residuals e_i s satisfy the following constraints (two independent constraints):

(i)
$$\sum_{i=1}^n e_i = 0$$
; (ii) $\sum_{i=1}^n X_i e_i = 0$; (iii) $\sum_{i=1}^n \widehat{Y}_i e_i = 0$

Case	Xi	Y_i	\widehat{Y}_i	ei
1	1.86	3.34	4.09	-0.75
2	0.22	1.79	2.33	-0.54
3	3.55	5.66	5.90	-0.23
4	3.29	5.83	5.62	0.22
5	1.25	4.74	3.43	1.31

Mean Squared Error

Estimation of Error Variance

- Error variance $\sigma^2 = \text{Var}(\epsilon_i)$.
- Idea: Estimate σ^2 by the "variance" of residuals. (Recall residual $e_i = Y_i \hat{Y}_i = Y_i (\hat{\beta}_0 + \hat{\beta}_1 X_i)$ and $\epsilon_i = Y_i (\beta_0 + \beta_1 X_i)$
- Error sum of squares (SSE):

$$SSE := \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

Mean squared error (MSE):

$$MSE = \frac{SSE}{n-2}$$

Degrees of Freedom

- The degrees of freedom of a random vector is the number of its components that are free to vary.
- ▶ Recall $\sum_{i=1}^{n} e_i = 0$, $\sum_{i=1}^{n} X_i e_i = 0$ → degrees of freedom of (e_1, \dots, e_n) is n-2.
- ▶ d.f.(SSE) = n 2.
- ▶ Indeed, it can be shown that $E(SSE) = (n-2)\sigma^2$; thus $E(MSE) = \sigma^2$, i.e, MSE is an **unbiased estimator** of σ^2 .

Example (Cont'd)

Case	X_i	Y_i	\widehat{Y}_i	e _i
1	1.86	3.34	4.09	-0.75
2	0.22	1.79	2.33	-0.54
3	3.55	5.66	5.90	-0.23
4	3.29	5.83	5.62	0.22
5	1.25	4.74	3.43	1.31

$$SSE = (-0.75)^2 + (-0.54)^2 + (-0.23)^2 + 0.22^2 + 1.31^2 = 2.6715$$

$$MSE = \frac{2.6715}{5 - 2} = 0.8905.$$

LS Estimator: Properties

Mean and Variance

Given that the simple regression model holds:

LS estimators are unbiased:

$$E(\hat{\beta}_0) = \beta_0, \quad E(\hat{\beta}_1) = \beta_1$$

Variance of $\hat{\beta}_0, \hat{\beta}_1$:

$$\sigma^{2}\{\hat{\beta}_{0}\} = \sigma^{2}\left[\frac{1}{n} + \frac{\overline{X}^{2}}{\sum_{i=1}^{n}(X_{i} - \overline{X})^{2}}\right]$$

$$\sigma^{2}\{\hat{\beta}_{1}\} = \frac{\sigma^{2}}{\sum_{i=1}^{n}(X_{i} - \overline{X})^{2}}.$$

Standard Errors (SE)

These are calculated by replacing σ^2 by *MSE* and then taking the square-root of the variance formulae:

$$s\{\hat{\beta}_{0}\} = \sqrt{MSE\left[\frac{1}{n} + \frac{\overline{X}^{2}}{\sum_{i=1}^{n}(X_{i} - \overline{X})^{2}}\right]}$$

$$s\{\hat{\beta}_{1}\} = \sqrt{\frac{MSE}{\sum_{i=1}^{n}(X_{i} - \overline{X})^{2}}}$$

- SE decreases with the increase of the sample size n or the sample variance s_X^2 . (Recall $\sum_{i=1}^n (X_i \overline{X})^2 = (n-1)s_X^2$)
- SE tends to increase with the increase of the error variance σ^2

Illustration by Simulation

Simulation

ightharpoonup n = 5 cases with the X values

$$X_1 = 1.86, X_2 = 0.22, X_3 = 3.55, X_4 = 3.29, X_5 = 1.25,$$

fixed throughout.

- ► The responses:
 - First generate $\epsilon_1, \dots, \epsilon_5$ i.i.d. from N(0, 1).
 - Then set the response variable as:

$$Y_i = 2 + X_i + \epsilon_i, i = 1, \dots, 5.$$

Repeat 100 times → 100 data sets.

$$\hat{\beta}_0 = 1.34, \ \hat{\beta}_1 = 0.94, \ \textit{MSE} = 0.79.$$

...,...

$$\hat{\beta}_0 = 1.75, \ \hat{\beta}_1 = 1.09, \ MSE = 0.24.$$

Figure: Sampling distributions of $\hat{\beta}_0, \hat{\beta}_1$ and MSE

Sample means are 1.99, 1.02, 1.04, respectively. True parameters are 2, 1, 1, respectively.

Figure: True: red solid; LS lines: grey broken; mean LS line: blue broken

Compare sample mean and sample standard deviation of these 100 realizations of $\hat{\beta}_0, \hat{\beta}_1$ to the respective theoretical values.

 \triangleright $\hat{\beta}_0$: Theoretical mean and standard deviation:

$$E(\hat{\beta}_0) = \beta_0 = 2, \quad \sigma\{\hat{\beta}_0\} = \sqrt{\sigma^2 \left[\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^n (X_i - \overline{X})^2}\right]} = 0.854$$

Sample mean and sample standard deviation: 1.99, 0.847.

 $\hat{\beta}_1$: Theoretical mean and standard deviation:

$$E(\hat{\beta}_1) = \beta_1 = 1, \quad \sigma\{\hat{\beta}_0\} = \sqrt{\frac{\sigma^2}{\sum_{i=1}^n (X_i - \overline{X})^2}} = 0.358$$

Sample mean and sample standard deviation: 1.002, 0.36.