

MICROCOPY RESOLUTION TEST CHART NATIONAL BUFFAU OF STANDARDS 1963 A

FAULT TOLERANT ELECTRICAL POWER SYSTEM

Phase I: Study

Mark W. Dige Patrick J. Leong David L. Sommer

Boeing Military Airplane Company P.O. Box 3707, M/S 33-03 Seattle, WA 98124-2207

December 1986

Interim Report for Period April 1985 - June 1985

Approved for public release; distribution unlimited.

AEROPROPULSION LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-6563

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

JOSEPH A. WEIMER, Electrical Engineer

Power Components Branch Aerospace Power Division Aero Propulsion Laboratory Lower D. Massie

LOWELL D. MASSIE, Technical Area Manager Power Components Branch Aerospace Power Division Aero Propulsion Laboratory

とうないないない。 はななななななななな

FOR THE COMMANDER

THE PROPERTY STATES PROPERTY SERVICES

JAMES D. REAMS, Chief Aerospace Power Division Aero Propulsion Laboratory

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/POOC, W-PAFB, OH 45433-6563 to help us maintain a current mailing list".

Copies of this report should not be returned unless required by security considerations, contractual obligations, or notice on a specific document.

L	4	,.	 •	,	•
,-	_	1	-		_

REPORT DOCUM	MENTATION (PAGE		
18 REPORT SECURITY CLASSIFICATION	16 RESTRICTIVE	MARKINGS		
Unclassified	N/A			
28 SECURITY CLASSIFICATION AUTHORITY	Approved	/AVAILABILITY OF for public re		stribution
26 DECLASSIFICATION / DOWNGRADING SCHEDULE N/A	unlimited			
4 PERFORMING ORGANIZATION REPORT NUMBER(S) D180-28576-2		ORGANIZATION REP 86-2084, Phas		5)
6a NAME OF PERFORMING ORGANIZATION Mechanical/Electrical Systems (If applicable) Technology - Boeing Military	Propi	ONITORING ORGAN Ulsion Labora Wright Aeror	atory (AFW	· · ·
6C. ADDRESS (City, State, and ZIP Code)	7b ADDRESS (Cit	y, State, and ZIP Co	ode)	
P. O. Box 3707, M/S 33-03 Scattle, WA 98124-2207	Wright-Pa	Ctorson AZB,	он 45433-	-6563
8a. NAME OF FUNDING/SPONSORING ORGANIZATION Laboratory (P00); Air Force Wright Aeronautical Laboratorie 8b OFFICE SYMBOL (If applicable) AFWAL/P00C-1		r instrument ider 5-85-0-2504	NTIFICATION NU	JMBER
8c. ADDRESS (City, State, and ZIP Code) AFSC	10 SOURCE OF F	UNDING NUMBERS		
Wright-Paleanson Air Force Base, OH 45433	PROGRAM ELEMENT NO	PROJECT	TASK NO	WORK UNIT ACCESSION NO
	62203F	3145	29	
Luter in Report FROM Apr 85 to Jul 85	14 DATE OF REPO	RT (Year, Month, D. 1986		COUNT (1)
COSATI CODES 18 SUBJECT TERMS (COSATI CODES 18 SUBJECT TERMS (high reliat	•	, ,	
*** ABSTRACT (Continue on reverse if necessary and identify by block in the report documents the results of Phase I serves of this program are to develop are not tabricate a low cost FTEPS demonstrator to tabricate a low cost FTEPS demonstrator to tabricate a low cost FTEPS demonstrator to the program is to develop that the system that can supply electrical the sirroraft with a reliability and power quantities in the loads. In Phase I, the electrical loads to the AIF baseling aircraft model. The loads	, Study, of FTEPS designed with an interpolation of the power to the ality level and their ads were als	yn for an ATF egrated load cal power gen e various cri commensurate ir power requ so located in	aircraft simulator. seration ar tical syst with the ircuments we the basel	and to design The Id dis- Lems on requirements vere defined
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT		CURITY CLASSIFICA	TION	
☐ INCLASSIFIED/UNLIMITED ☐ SAME AS RPT ☐ DTIC USERS 22 NAME OF RESPONSIBLE INDIVIDUAL		ICLASSIFIED	1.00	
Freph A. Weimer	(513) 25	Include Area Code) 5–6235	226 OFFICE S	умвоі .L /P(1()(. = 1

83 APR edition may be used until exhausted All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

SUMMARY

This interim technical report presents the sults of the study phase of the Fault Tolerant Electrical Power System program.

In this phase, the electric loads and their power requirements were defined for the ATF baseline aircraft model. The total connected load for the aircraft is 176 kva. This represents 126 loads. 41 kva is flight critical and 123 kva is mission critical. For flight critical loads, maximum power interruption times, which the load can withstand, were established. For many of the digital processors, these times were on the order of 50 microseconds. Some flight control actuators, can withstand power interruptions on the order of 1 second. The electrical loads have been located in the baseline aircraft model. The load list includes loads considered "high technology". These are the electric driven vapor cycle machine in the ECS and the electro-hydraulic flight control actuator called integrated actuator packages (IAP).

PREFACE

This Interim Technical Report presents the results of work performed by the Boeing Military Airplane Company, Seattle, Washington under Air Force Control F33615-85-C-2504. The work is sponsored by the Aero Propulsions Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio. Mr. Joseph A. Weimer, AFWAL/POOC-1 is the project engineer.

This document, which covers Phase I, Study, fulfills the requirements of CDRL item number 17.

THE PROPERTY WAS A PROPERTY OF THE PROPERTY OF

The program manager is I. S. Mehdi. This report was prepared by Mark W. Dige, Patrick J. Leong, and David L. Sommer.

TABLE OF CONTENTS

Sect	ion	Page				
1.0	Introduction	1				
2.0	Aircraft System Description	3				
	2.1 Avionics System	3				
	2.2 Flight Control	9				
	2.3 Engine Control	12				
	2.4 Fuel	12				
	2.5 Environmental Control System	12				
	2.6 Stores Management	12				
	2.7 Secondary Power	14				
	2.8 High Technology Loads	14				
3.0	Electrical Loads	18				
	3.1 Flight Critical Loads	18				
	3.2 Mission Critical Loads	18				
	3.3 Non Flight Critical Loads	18				
	3.4 Power Interruptions	18				
4.0	Aircraft Conceptual Layout	29				
5.0	Results and Conclusions	4 1				
6.0	Recommendations	42				
	References	4 3				

LIST OF FIGURES

Figure		Page
2-1	Model 908-833 General Arrangement	4
2-2	Flight Envelope	5
2-3	Advanced Avionics Architecture	6
2-4	Integrated Avionics Rack	10
2 -5	Flight Control Actuation System	11
2-6	Primary Interface Signal Set	13
2-7	Secondary Power System With Three Generators	15
2-8	Secondary Power System With Four Generators	16
4-1	ATF Baseline Left Profile	30
4-2	ATF Baseline Right Profile	32
4-3	ATF Baseline Top View	34

LIST OF TABLES

Table		Page
2-1	Integrated Actuator Package Motor Demand	17
3-1	Aircraft Load List	19
3-2	Flight Critical Loads	26
3-3	Mission Critical Loads	27
4-1	Equipment Location List	36

ease resourt, assesses represe assesses econocis

LIST OF ABBREVIATIONS

AMAD airframe mounted accessory drive

CNI communication, navigation, identification
DISAC digital integrated servoactuator controller

ECS environmental control system
EMI electromagnetic interference

EMP electromagnetic pulse

GOX gaseous oxygen

IAP integrated actuator package

IIRA integrated inertial reference assembly INEWS integrated electronic warfare system

IPU integrated power unit
IRST infrared search and track

LRM line replaceable module
LRU line replaceable unit
MAS mission avionics system

MSIGG molecular sieve inert gas generator

[F/TA terrain following, terrain avoidance]

VMS vehicle management system

1.0 INTRODUCTION

The two objectives of this program are to produce a low-cost FTEPS design for an ATF aircraft and to design and fabricate a low-cost FTEPS demonstrator with an integrated load simulator for an ATF. The purpose of the program is to develop an electrical power generation and distribution system that can supply electrical power to the various critical systems on the aircraft with a reliability and power quality level commensurate with the requirements of the loads. Faults in the electrical system can and do occur due to various reasons. Adequate protection and controls to prevent propagation of these faults within the system need to be incorporated such that other normally operating electrical power channels are not effected.

future aircraft are incorporating advancements in digital computer technology for more and more of the stability and control of the aircraft as well as mission functions. Some of the functions on the aircraft can be categorized as mission critical and loss of these functions could therefore keep the aircraft from completing its mission. More importantly, there are functions on the aircraft which are flight critical and loss of these functions would not only cause termination of the mission but also loss of the aircraft itself, especially when the aircraft is a fly-by-wire (FBW) aircraft.

The FIEPS program is a five-phase program as shown below:

Phase I - Load Study

Phase II - Analysis and Preliminary Design

Task 1 - FTEPS Demonstrator Basic Requirements

Task 2 - FIEPS Analysis, Trade-off Study, and Specific Requirements

Task 3 - FIEPS Demonstrator Conceptual Design

Task 4 - FIEPS Demonstrator Preliminary Design

Phase III - Detailed Design

Phase IV - Fabrication

Phase V - Testing and Reporting

The total length of the program is 42 months. This report documents the work done in Phase I - Load Study. The primary emphasis in Phase I was to define and characterize the electrical loads for an ATF class aircraft. Additionally, a conceptual layout of the ATF aircraft and the location of the electrical loads and equipment was prepared.

2.0 AIRCRAFT SYSTEM DESCRIPTION

The airplane configuration that has been selected for the baseline aircraft is the Model 908-833 (ref. 1). This 1989 Technology Availability Date (TAD) airplane is ideally suited for use in this program since it is designed to fulfill the mission requirements of the ATE class aircraft. Figure 2-1 shows a summary of the characteristics of the 908-833, including a 3-view of the airplane with principal dimensions.

This twin engine design is a high performance aircraft with a thrust-to-weight ratio of 1.25 to 1. It can operate throughout the flight envelope required for the ATF class aircraft. The wide speed and altitude range of this airplane are shown in Figure 2-2. The 908-833 incorporates canards, wing trailing edge surfaces, and 2-D vectorable and reversible nozzles for thrust and pitch control. Four flaperons, two leading edge flaps, two trailing edge flaps, twin rudders, and independently controlled and actuated canards are a part of the basic design. The actuation systems for the flight surfaces include electro-hydraulic pumps which constitute part of the high technology loads (HTL) for the FTEPS.

2.1 Avionics System

The avionics for the baseline aircraft is the PAVE PILLAR system (ref. 2). This system includes not just the mission avionics, but all the aircraft electronics - including flight control and propulsion. A diagram of the PAVE PILLAR system architecture is shown in Figure 2-3. This system is fault tolerant with system-level capabilities to detect faults, isolate failed modules, and recover from an intermittent module failure. A system goal is to operate 200 hrs. with 90% probability that no scheduled or unscheduled maintenance will be required. The entire avionics system is sized to provide 100% reserve capacity in processing throughout, memory, and bus traffic.

TAVE PILLAR improvements in system performance are obtained through the collective incorporation of several features in the avionics system: advanced subsystems, sensor sharing, information fusion, onboard digital map, selective autocation, and an advanced crew station. Advanced integrated subsystems,

Model 908-833 1989 TAD Single Crew	
Takeoff gross weight (TOGW) (Ib) Flight design weight (FDWT) (Ib) Propulsion type: T/W at TOGW SLST A/B per eng (Ib) Nozzle Inlet Wing: Area (trap) W/S at TOGW (Ib/ft²) AR Leading edge sweep (deg) Taper T/C Landing gear at TOGW	40,000 36,000 2 PWA STJ 562 A/B 1.25 25,000 2-D/reverser 2-D/fixed ramp 571 70 4.5 37.5 0.25 0.05/0.035 CBR 9,50 passes

Figure 2-1: Model 908-833 General Arrangement

Copy available to DTIC done not permit fully legible reproduction

6

Figure 2-2: Flight Envelope

processors is organized as a resource pool, where every processor can perform any of the necessary data processing functions. The resource pool includes spare processors that can assume the duties of any failed data processor, thereby allowing the system to "fly-with-failures" with no loss in functional capability. Reconfiguration of the system following a processor failure (or later recovery) is done automatically, avoiding any interruption of the normal crew workload unless functional capability is lost. Advanced packaging techniques make the module accessible at the flightline, permit replacement of a failed component in the flightline environment, distribute power in a fault tolerant fashion, provide EMI/EMP protection, and keep the VHSIC/VLSI components at temperatures needed to ensure long life. This packaging concept is shown in Figure 2-4. The LRM's are contained in a series of integrated avionics racks which are liquid cooled and contain centralized power supplies. The signal processing for the mission sensors is pooled, much as for the data processors, in an integrated subsystem that can share programmable signal processing hardware among several sensor front ends. Control of the entire avionics systems is decentralized and shared among the data processors so that loss of a single processor has negligible effect on system operation. The ITM function summarizes the results of advanced testing techniques to provide maintenance data that speed the ground maintenance actions necessary to return a non-mission-capable aircraft to full mission capability.

2.2 Flight Control

The flight control system is digital fly-by-wire with a mix of hydraulic and electrical actuators. The digital processors are four channels, with the processors residing in the VMS avionics racks. The VMS, which is part of the PAVE PILLAR avionics system, is flight critical.

The flight control actuation system is shown in Figure 2-5. Hydraulic actuators are used for the leading edge flaps and the flaperons. The electrical actuators are integrated actuator packages (IAP) which are electric motor driven hydraulic pumps in a self-contained actuator package. A duplex IAP is used for each canard. A simplex IAP is used for each rudder and inboard trailing edge flap.

such as ICNIA and INEWS, provide increased functional capability for the system. Shared sensors allow a single sensor to provide data to several system functions, such as terrain following/terrain avoidance (TF/TA), target acquisition, or threat warning. Information fusion combines data from multiple sensors to achieve better results than can be obtained from any single sensor; sensor blending of terrain inputs permits more effective scene generation for safe penetration at low altitude, while fusion of target inputs from multiple sensors results in better target detection and classification rates with fewer false alarms. An onboard digital map allows route planning for areas outside sensor coverage, minimizes threat exposure by taking advantage of terrain shadowing, and improves stealthiness by allowing reduced use of active sensors for terrain imaging. Automation of certain time-critical functions, such as TF/TA and target acquisition ensures that the performance objectives can be met within the very short periods between the first acquisition of data and the point where a decision must be made. An advanced crew station featuring a highly automated cockpit, voice control, and pictorial display formats reduces the crew workload to a level that can be managed by one pilot.

PAVE PILLAR improvements in avionics availability are being achieved through the implementation of an architecture that (1) changes the primary maintenance element from a line replaceable unit (i.e., the black box) to a line replaceable module (LRM), (2) standardizes the LRM units, (3) uses a self-checking processing pair as a data processing LRM, (4) groups the data processors as a resource pool with spare units, (5) automatically reconfigures the system after a fault is recognized, (6) applies advanced packaging techniques to the LRM, (7) integrates and pools the signal processing components in sensor subsystems, (8) decentralizes system control, and (9) employs an integrated test and maintenance (ITM) function. The reduction in size of the line replaceable unit to a module or card level reduces module cost and allows use of a two-level maintenance concept in PAVE PILLAR. The data processor LRM is standardized so that an entire data processor is contained in a single module, thereby eliminating the need for a conventional processor backplane and dramatically reducing the number of connectors in the system. The data processor is designed as a self-checking pair to provide nearly perfect fault isolation if the processor fails. The entire set of data

Figure 2-4: Integrated Avionics Rack

THE STATE STATES STATES STATES WHITE

Figure 2-5: Flight Control Actuation System

The controls for the actuators are called Digital Integrated Servoactuator Controllers (DISAC) (ref. 3). The DISAC provides the data bus interface as well as the local control and redundancy management of the actuators. Each DISAC has the capability of controlling one or both halves of a dual redundant actuator.

2.3 Engine Control

An electronic engine control system is incorporated in the baseline aircraft as part of the VMS. A digital data bus is the control link to the engine. For each engine, there are three groups of loads, control module, effectors, and ignition. Power for the control modules and effectors are provided by the aircraft. Power for the ignition is provided by dedicated engine generators.

2.4 Fuel

The fuel system loads consist of two boost pumps and 5 transfer pumps. The boost pumps are always on. Only two of the 5 transfer pumps are on at a time. The boost and transfer pumps are not flight critical since the fuel can be gravity fed.

2.5 Environmental Control System

The environmental control system (ECS) uses a vapor cycle cooling system with two electric motor driven vapor cycle compressors. Two cooling loops are used, a liquid loop and an air loop. In addition to the vapor cycle compressors, other major ECS electrical loads are four coolant pumps (2 dual redundant sets) for the liquid loop and one loop compressor for the air loop.

2.6 Stores Management

The stores management system includes provisions for 8 MIL-SID-1760A store stations. The interface for each station will include only the primary interface and will not include the 270 VDC power lines. Each station will require a total of 4010 watts. Figure 2-6 shows the primary interface for a MIL-SID-1760A stores station.

Figure 2-6: Primary Interface Signal Set

2.7 Secondary Power

The secondar, power system, shown in Figure 2-7, is based on the use of the airframe mounted accessory drives (AMAD) and an integrated power unit (IPU). Through the series of clutches and shafts, each AMAD can be driven from either engine or the IPU. This arrangement also allows for engine start from the IPU or from the other engine if it is operating. Shaft driven accessories such as generators and hydraulic pumps are driven off of the AMADs. The IPU is an inflight operable auxiliary power unit which also functions as an emergency power source. In the emergency mode, the IPU can be started and be up to operating speed in 2 seconds. The configuration shown in Figure 2-7 shows a three generator system. This is one of the generator configurations to be trade studied in Phase II. The study will also include the four generator configurations shown in Figure 2-8.

2.8 High Technology Loads

High technology loads have been incorporated into the FTEPS load list. These include the electrically driven flight control actuators (see 2.2) and the electrically driven ECS (see 2.5). The actuators are called integrated actuator packages (IAP) which are electric motor driven hydraulic pumps in a self-contained actuator package. The load demand for the IAPs is shown in Table 2-1. These estimates are for the two duplex IAPs for the canard surfaces and the four simplex IAPs, one for each rudder and inboard trailing-edge flap. The power demands, expressed in horsepower from the electric motor shaft to the hydraulic pump, are based on the aerodynamic surface loads and rates.

The ECS consists of a vapor cycle cooling system which requires two 16 horsepower electrically driven compressors. In addition, the ECS requires 9.4 horsepower for the vapor compressor and 2.7 horsepower for each of four coolant pumps. These are all provided by electric motors.

ACCORDED ACCORDE ACCORDE SACROSSE ACCORDE ACCO

Figure 2-7: Secondary Power System with Three Generators

Figure 2-8: Secondary Power System with Four Generators

3.0 ELECTRICAL LOADS

A load complement has been compiled for the aircraft described in Section 2.0. The total connected load is 176,366 va. A listing of the loads are contained in Table 3-1. Many of the avionics loads are part of systems still in the development stage and no data was available on them. In these cases estimates were made on the power requirements and reliability based on similarity to existing equipment or "projections" by experienced design engineers. The loads were either 28VDC or 115VAC, 400 Hz.

3.1 Flight Critical Loads

Flight critical loads are those loads necessary for Level III flight. The VMS flight control digital processors, which are in the VMS integrated avionics racks, are quad redundant. Since the flight critical loads are redundant, a loss of an individual flight critical load does not result in the loss of the aircraft. Because of the sparing concept of the PAVE PILLAR system (ref. 2), the functional failure rate is much less than the hardware failure rate. The total load considered flight critical is 41,832 va, as shown in Table 3-2.

3.2 Mission Critical Loads

The majority of the aircraft loads are classified mission critical. These include the MAS integrated avionics racks and the sensor systems. Most mission equipment is hardware redundant or functionally redundant. The total load classified mission critical is 122,846 kva, as shown in Table 3-3.

3.3 Nonflight Critical Loads

Monflight critical loads make up the smallest group of loads. The total load classified nonflight critical is 11,688 va.

.. Power Interruptions

For thight critical loads, the maximum tolerable power interruption for each load have been identified. These are shown in Table 3-1. The shortest

TABLE 2-1 INTEGRATE: ACTUATOR PACKAGE MOTOR DEMAND

Operating Regime	Canard (6.5-h	HIAPs p motor)	Rudder (5.4-hp		Flap IAPr (2.3-np r	
	Average Activity	Power Demand	Average Activity	Power <u>Demand</u>	Average Activity	Power Demand
Taxi	5%	1.25 hp	5%	1.04 hp	5%	0.45 hp
ctimb	10%	1.52 hp	10%	1.27 hp	10%	0.55 hp
Dash	5%	1.25 hp	5 %	1.04 hp	0%	0.35 np
Combat	2.5%	2.35 hp	25%	1.96 hp	25%	0.85 hp
Return	5%	1.25 hp	5%	1.04 hp	5%	0.45 hp
Loiter	10%	1.52 hp	10%	1.27 np	10%	0.55 hp

Table 3-1 Aircraft Load List

INTERRUPT TIME																								
<u>€1.455.</u>		¥	Æ	£	ĵ.		Æ	ũ	3C	Ţ	ÄČ	Œ	3 C	Σ	J H	Ĭ	ũ	J E	J.	J E	Ţ	J.	£	Ų X
7007		:	77	F3	4		L54	RSS	R56	r8	r.8	r8	R58	R58	R58	r.8	R58	R53	191	192	193	194	R62	141
MTBF		1,666	288	886	5,666		866	888	899	1,666	1,666	1,869	1,888	1,688	1,000	1,686	1.666	962	902	982	992	9002	9.8%	1,508
PROB. OF FAILURE	1	2.0.10	2.91x9.5	2.5/10	4.0×10	ſ	2.5.10	_3 2.5∞10 2	2.5×10	2.ë×1ë 2.	2.6×16 2	2.0×10	2.8×18	2.8<18 2.8<18	2.6×10	-3 2.8×18 3	2.6.16	5 - 91 '6 'Z	5.9×18	2.91.9.5	2.9×10	8 - 8 × 4 · 5	2.9×10	1.3×10
PHASES		m	ო	m	m		-		-	-	1	-			,		-	ועיו	m	m	ო	m	м	
POWER FACTOR		o. 0	ø. Ø-	٠.6	9. 89		à. 9-	٥. 9-	6.9-	-6.85	-0.85	-6.85	ଅଛି. ଖି-	-8.85	-8.85	-8.85	28.6-	ه. ه -	6.8	۵۰ د د	6.0-	6.6	6.6	
MAX. CONNECTED LOND, VA AC DC		982	9996	266	468		188	1.66	1 6 6	198	1.66	999	991	 80	166	9	186	5,800	2,088	2.868	5,888	2,868	2,866	588
EQUI PMENT	RADAR SENSOR SYSTEM	ETENE	TRANSMITTER	RECEIVER	SIGNAL PROCESSOR	INEWS SENSOR STSTEM	RF WARNINGS&RANGE REC 1	RF WARNINGSLAMNGE REC 2	RF WHRNINGSARHNGE REC 3	IR EO STARTING REC 1	IR EU STARTING REC 2	IR EO STARTING PEC 3	IR ED STARTING REC 4	IR EU STARTING REC 5	IR-EO STARTING PEC 5	IR EO TRACKING REC 1	IP EU TRACHING PEC 2	FUSELHGE RF JANNEP	WINGTIP RE JAMMER 1	WINGTIP RE JAHMEP 2	THIL RE JAMMEP 1	THIL RF JANNER 2	IR JANNER	CHAFF DISPENSER
<u>.</u>		~	21	m	7		S	o	r	20	·) iè	=	21	1.3	4.	u')	0	1,	.	•	97	77	24

Table 3.1 Aircraft Load List (continued)

INTERRUPT																								
CLASS.		A C	ũ	MC		H.C	ÄĈ	ЭC	J C	ũ		Σ) £		ÄČ		ũ	Ē		Ę	ĭ	Ţ	ĭ	Œ
. 301		۲٦	77	۲٦		۲٦	۲٥	R63	R43	2		L39	148		L16		д 4	L1.7		713	717	717	112	717
HTBF		1,666	1,668	400		406	1,400	10,000	1,888	1.688		868	868		998		998	769		2,088	2,068	2,688	2.888	20,000
PROB. OF FAILURE	Ć	2.0×18	2.8×18	5.8×18	,	5.8,18	1.4×10	2.8×18	2.8×16	2.8×18	(2.5×10	2.5×10	•	2.5×10	ſ	2.5×18	5.8×18 β.π.		1.8×18-3	1.6.18	1.8×18	1.8×18	1.8.18
PHASES		ю	m	m		(**)	-	m	1	-		'n	m		m		m	m		-	,	1	-	-
POWER FACTOR		ა. 8-	٠. ١	٥. 9		٠. ه	÷ . 0 -	÷. 69-	9.1	9.		٠. وي	ۍ 90		٥. و		٥. 9-	6.8		6.9-	٠. 9-	٥. 9	٠. و.	6.0-
MAX, CONNECTED LOAD, VA AC DC		1999	.1988	200		266	25	150	288	200		566	500		8.60 is		808	766		85.4 64	258	258	258	8
EOU! PMENT	UNI SENSOR SYSTEM	L-BAND RF	LOW BAND RF	L-BANG CSP I F UNIT	Little Band CSP	I F UNIT	RHIMR ALTIMETER	CRIPTO UNIT	IIRH IMU	118m 1MU	MAISTE SENSOR STEEM	IR EU SENSOR I	IR EU SENSOR 2	SEUSOR CRIDGENIC	UNIT 1	SENSOR CRYDGENIC	U417 2	Time 3 F 48) 41	INFORMATION MAINGEMENT	. אהנ	MILTI-FUNC DISPLAY 1	MULTI-FURA GISPLAY Z	mulli-Fura Dispuer 3	THE BAMTED HE BOWARD
3		3. 13.	7	25	• 1		, ,	Ð	ф 24	36		16	3.6	91 3 0		7		u 1		41	·.	Į.) 71	÷

Table 3-1 Aircraft Load List (continued)

esse incorre, appropre especes entropse incertes disposes propres appropri appropri l'appropri unitation la page

-4 -4	<u>स्थ्यम्</u> यातम्	MAX. CONNECTED LONG. VA	POWER FACTOR	PHASES	PROB. OF FAILURE	MTBF	700	CLASS.	INTERRUPT TIME
7	FLHT PHUEL-UPPER	3.6	o. 190	-	1.8-18	2,888	717	£	
1	FLMT PMMEL-LOWER	15	0.09-	-	1.8 × 1.8	2,668	713	H C	
7	EATA TRENSPER CALT 1	20	6.6	1	3.3.10	3,886	L11	Ų.	
7	CHIH TRANSFER UNIT 2	3.6	o. 9-	~	3.3×18	999,0	843 8	ĦC	
	STUMPL PRUCESSURS								
٠ <u>٠</u>	KHUN 1	୫ ୭ ଜ	۶. چ	m	•	•	L13	ž	
0 7	SH(1-2)	588	o. 9-	l.D.	•	•	114)£	
r. T	PACE 3	588	o. 9	m	•	*	я 4	Σ	
70	RHCF 4	586	9.	м	*	•	K47	X C	
7	FACT S	999	0.0-	iΥı	*	*	121	υ	
39	אן בין אין אין אין אין אין אין אין אין אין א	566	6.0	m	•	4	777	¥	
v.	RHCH 7	Sae	6.9-	m	•	*	848	J.	
S)	RPCF &	568	÷.0-	m	•	•	я ў	물	
י"ט י"ט	POWER SUPPL, 1	586	٠. 6	m	2.9×16	7,000	L25	¥C	
าสา เข้า	POWER SUPPLY 2	990	÷. 9-	m	2.9 × 1.8	7,008	75 50 60	Ų.	
	MISSICH PRODUCTS SYSTEM RACKS				,				
ψ,	MAS RACK 1	450	٠. 8	m	2.9×18	7.888	L18	Ě	
•) L O	MAS RACE 2	458	٥. 6	m	2.9×18	666.7	119	ĦĊ	
	VEHICLE MATHGENENT SYSTEM RACKS				•				
, 10	JMS RACE 1	୨୫୫	-(8.9	m	2.9×16	988.	م	F.C	58 u SEC
œ œ	- MS RICK 2	588	٠. و٠.	m	2.9×10	7,688	115	FC	50 u SEC
54	1415 RACE 3	588	6.9-	m	2.9.18	966,5	L 20	J.	58 u SE (
9	115 FGCF 4	588	6.0-	m	2.9×10	7,888	R52	ñ	58 u SE č
7.	MHSS MEMORY UNIT	200	٠.6		8.8×18	2,588	R 51	ÄČ	

est expressed the consisted productor becomes at the second

Table 3-1 Aircraft Load List (continued)

							-		
<u>10.</u>	EQUIPMENT	MAX. CONNECTED LOND, VA AC DC	POWER FACTOR	PHG5E5	PROB. OF FHILURE	MTBF	00.	CLASS.	INTERPURT
	EMOTNE CONTROLS								
ं <u>।</u>	ELEC CONTROL UNIT 1H	186			1.8.18	989,5	۲۷ه	F.C	50 u 3E i
Ö	ELEC CONTROL UNIT 18	199			-3 1.6×18	2.909	۲۷۶	Ų.	58 u SEC
7 0	ELEC CONTROL UNIT 2H	160			-3 1.8.18	2,888	R75	.	
g g	ELEC CONTROL UNIT 28	166			1.0.18	2,868	P.75	FC	58 ⊌3E€
	SECULOME. POVER								
0 0	60» COMPPESSOR	95,	æ. •••	m	2.9.16	26.6	127	NF.C	
	FUEL INERTING								
ų, L.	MSIGG GAS SEPHRATOR	58 84	ъ. 9-	-	4-18	967	ж 4	u Z	
8	HIGH PRESSURE COMPRESS	9990	e. ⊌-	m	-3 2.6×10	1,688	804	. U	
9	BOUST COMPRESS	2288	æ.	m	4.0.10	5,888	R 40	Z D	
	FUEL STEP								
	PM: INFLIGHT LOWOS ONL: TWO TRAISFER POINPS ON AT	T 4 TIME							
'n	LEFT 800ST PUMF	5486	ю. 9	m	1. 8×10	5,668	L 33	Σ	
ī	PIGHT BOOST POMP	0.480	9) S9 1	ıΥı	4.61.6	5.888	86 80	: <u>:</u>	
5.	TRANSFER PUMP 1	1 588	æ. •9•	m	2. ex16	669.89	T 34	¥	
m f	TRHUSPER PUMP 2	1566	Ф. 9	m	2.9×18	ଚଞ୍ଚ.ଖଖ	T 35	Σ	
4.	TRANSFER PUMP 3	1086	ا دو.	m	2.9×18	୧୫.୫୫	T 30	ı E	
ر آ	TRATISFEP PUMP 4	1 000	.o. •9-	,v)	r)	68,966	T 3.7	ر. ک	
40	TRAISFER PUNA S	1088	8.8	ıπ	NO.	68.66	138	T	
;	FUEL GUARITITA	20	. i	-	1.7 16	1,200	R 80	Ę,	
TO F	FIJEL FLOW	e 24	6.9		-3 2.ë×16	1.800	۲78	MC	

Table 3-1 Aircraft Load List (continued)

special population escription represents represent societies areastaris reco

nine manage monde

INTERRUPT LOC. CLASS. IIME		L23 FC 2 SEC	L24 FC 2 SEC	R66 FC 2 SEC	R67 FC 2 SEC	L29 FC 2 SEC	R69 FC 2 SEC	L28 FC 2 SEC	R68 FC 2 SEC	26 FC 500 mSEC		L42 NFC	L32 NFC			T83 MC	T83 MC	T83 MC		T84 MC	T84 MC	
MTBE		16,000	15,888	16,666	15,888	16,000	16,688	15.000	16,888	16,888		1,888	5,666			4,666	4.888	4,000		4,666	4,668	
PROB. OF	•	1.2×10	1.2×10	1.2×10	1.2×10	1.2×10	1.2×10	1.2×10	1.2×10	1.2×10		-3 2.0×10	4.8×18			5.8×18	5.8×18	5.6×10		5.8×18	5.8×18	•
PHASES		٣	е	m	m	m	m	m	m									ო				
POWER FACTOR		8.8	8.8	8.8	æ. æ.	8.0-	8.8	8.8	8.6-			6.9-						6.9-				
MAX. CONNECTED LOAD, VA		4847	4847	4647	484.7	4827	4827	1715	1715	999		1231	586			288	288	3458		286	280	
EQUIPMENT	FLIGHT CONTROL ACTUATION	L CANARD IAP 1	L CHMARD 1AP 2	R CANARD Las 1	R CHNHRD TAP 2	L RUDDER 1AP	R RUDDER 1AP	L FLAP 1AP	R FLAP IAP	14 DISACS (48 EA, DC)	LIGHTING & MISCELLANEOUS	LIGHTING	SEAT ADJUST	STORES MANAGEMENT	STATION 1	CC 1	5 20	ΑC	STRITON 2	00 1	DC 2	
2		6. 6.	98	8		893	84	88	8	6,00		89	œ 6			9	6	2.6		9.3	40	

Table'3-1 Aircraft Load List (continued)

INTERRUPT																								
CLASS.		Z C	ÄĈ	õ		£	Ä	ň		¥	¥C	£		£	J C	Ţ.		Œ	Ų	Ţ		. Ē) I	Ĵ E
.39		T85	185	185		186	186	186		187	187	187		188	188	188		189	189	189		198	198	198
MTBE		4,888	4,666	4,600		4,668	4,688	4,666		4,666	4,668	4,888		4,608	4,888	4,808		4,888	4,868	4,688		4,888	4,666	4,666
PROB. OF		5.8×18	5.8×18	5.0×18		5.8×18	5.8×10	5.8×18		5.8×18	5.6×18	5.8×18		5.8×18	5.8×18	5.6×16		5.8×18	5.8×18	5.0×10		5.8×18	5.8×18	5.0×10
PHASES				m				m				ო				m				m				m
POWER FACTOR				6:89-				6. 0				6.8-				s. 8-				6. 8 -				6.0
MAX. CONNECTED LOAD, VA AC DC		288	280			288	288			280	586			588	286			280	280			289	280	
Max. C				3450				3458				3458				3458				3450				3458
EQUIPMENT	E NOTTHIS	54. 1	D(2) 4	4 NOT1413	DC 1	DC 2	ÞC	STATION 5	DC 1	DC 2	ΑĆ	STATION &	DC 1	S (5)]H	2 MOTIMIS	DC 1	K. 20	HĆ	PIHION 8	DC 1	5. 2	AL
NO.		9 9	ў.	38 \$		٠ ٠	1 9 6	101		102	103	164		185	90	1.67		86	ф Э			111	1112	113

Table 3-1 Aircraft Load List (continued)

N.	EQUIPMENT	MAX. CONNECTED LOAD, VA AC DC	POWER FACTOR	PH95E5	PROB. OF FAILURE	MIBE	.00.	CLASS.	INTERRUPT T <u>ime</u>
	THUTICAL LIFE SUPPORT SYSTEM				•				
711	BREATHING SYSTEM	35			1.4×18	1,488	L18	ñ	
113	FILTER BLOWER SYSTEM	23			4.8×18	50,666	L18	ñ	
0	ANTI-6 UALUE	*** ***			2.9×10	2,688	611	ÄĈ	
117	OCCULAR PROTECT	m			6.7×10	3,688	L18	ÄČ	
9	PERSONAL THERMAL CONT	865	8.8	m	2.8×10	7,198	611	U Ž	
	ENVIRONMENTAL CONTROL SYSTEM				•				
119	AUTONICS LOOP COMPRESSOR	7988	-6.8	m	6,6×18	25,000	131	F C	
1.20	COOLDAYT PUMP 14	2686	8.8	m	8.8×18 25,888	25,666	R71	J.	2 SEC
121	COOLANT PUMP 18	2666	8.6	m	8.8×18	25,000	R71	1 C	2 SEC
122	COOLANT PUMP 24	2006	-6.8	m	6.8×18	25,688	R71	FC	2 SEC
123	COOLANT PUMP 28	2888	8.8	m	8.8×18	25,666	R71	FC	2 SEC
124	MISC. FENS	1888	8.8	m	1.3×10 1	15,668	R72	Ž	
125	UMPOR CYCLE CUMPRESSOR 1	12,000	æ. •	m	1.7×10	12,686	L.36	Ţ	
120	UMPOR CICLE COMPRESSOR 2	12,000	8.8	(F)	1.7×10 12,000	12,000	R 30	ĦC	

Table 3-2 Flight Critical Loads

	Connected	Uninterrupted
VMS racks	2000 VA	2000 VA
Engine controls	400	400
ECS	8000	0
Flight control actuation *	31432	0
Total	41832 VA	2400 VA

^{*} Actual operational load = 7696 VA

Table 3-3 Mission Critical Loads

	Connected	Uninterruptible
Radar sensor	10800 VA	
INEWS	13600	
CNI	2975	
IRST	3000	
Information management	1125	
MAS racks	900	900
Signal processor racks	5200	· 5200
Mass memory unit	200	
Fuel system (1)	20849	
ECS	32,000	
TLSS	117	
Stores (2)	32080	
Total	122,846 VA	6100 VA

⁽¹⁾ Actual operational load = 16000 VA(2) Actual operational load = 8020 VA

4.0 AIRCRAFT CONCEPTUAL LAYOUT

Connect sources appropria province sources

The equipment identified in the load study includes all major equipment required for an ATF Type Vehicle. This equipment has been assigned specific locations on the baseline ATF Vehicle Configuration layout shown in Figure 2-1. The equipment and equipment racks were considered to be consistent with the integrated rack concepts being developed for next generation air vehicles. These racks emphasize modularity, maintainability, reliability and fault tolerance.

The primary equipment categories defined for the ATF vehicle used in this study are described in the following paragraphs and shown in Figures 4-1, 4-2 and 4-3. The conceptual layout shown in these figures provides a first-cut idea of how the equipment defined in the load study will be located in the vehicle. Changes to these drawings are anticipated as the preliminary and detailed designs are developed.

Major concerns in locating the equipment included size and space available, proximity requirements to user equipment or cockpit, and separability requirements for redundancy.

The major equipment categories are (See Table 4-1):

- A) The Radar System which includes items L1, L2, L3 and L4.
- B) The INEWS Sensor System which includes items L8, L41, L54, R52, R56, R58, T90, T91, T92 and T93.
- C) The CNI Sensor System which includes items L7, L6, L5, R43, and R63.
- D) The IRST Sensor System which includes items 39, 40, L16, L17 and R44.
- E) The Information Management System which includes those items labeled £12, £11 and R45.

interruption time is 50 microseconds for the VMS integrated avionics racks which contain digital processors used for flight controls. Although not flight critical, the MAS and signal processor integrated avionics racks also have maximum tolerable power interruption times of 50 microseconds. The electronic control unit for the engine controls also has a power interruption time of 50 microseconds. The longest allowable interruption time is 2 seconds for the IAPs. In Phase II, methods for providing power, which has an interruption time of 50% shorter than the maximum allowed for each load, will be developed. For the shorter time, such as 50 microseconds, uninterruptible power may be required due to limitations of the hardware available for performing power transfers.

Figure 4-1: ATF Baseline Left Profile

Figure 4-2. ATF Baseline Right Profile

TABLE 4-1

EQUIPMENT LOCATION LIST

#_	Nomenclature	Location Bay	Station #
Lì	Radar Antenna	Nose	100
L2	Radar Transmitter	FWD Eq. Bay(Upper)	140
L3	Radar Receiver	FWB Eq. Bay	140
L4	Radar Signal Processor	FWD Eq. Bay	140
L5	IIRA/IMN #1	FWD Eq. Bay	140
L6	Radar Altimeter	FWD Eq. Bay	140
L7	CNI Low Band/LBand Sensors	FWD Eq. Bay	140
L8	Starting Receivers #1, #2, #3		
	Tracking Receiver #1	FWD Eq. Bay	140
L9	VMS Rack #1	FWD Eq. Bay	140
L10	MAS Rack #1	FWD Eq. Bay	140
L11	Data Transfer Unit #1	FWD Left Cockpit	140
L12	HUD	Cockpit	175
	Multifunction Display #1, #2, #3		
	Keyboard		
	Flat Panel (Upper and Lower)		
L13	Signal Processor Rack #1	AFT Equip. Bay #2	310
L14	Signal Processor Rack #2	Lower Cockpit Bay	175
L15	VMS Rack #2	Lower Cockpit Bay	175
L16	Sensor Cryogenic Unit #1	FWD Cockpit	175
L17	IR CSP I/F Unit	FWD Cockpit	175
L18	Tactical Life Support System	Aft of Cockpit	210
	Breathing System		
	Filter Blower Sys./		
	Personal Thermal Cont.		
	Anti-G Value/Occular Protect		

TABLE 4-1

EQUIPMENT LOCATION LIST (continued)

# Nomenclature	Location/Bay	Station #
L19 MAS Rack #2	Aft Eq. Bay #1	280
L20 VMS Rack #3	A. Eq. Bay #1	280
L21 Signal Processor Rack #5	A. Eq. Bay #1	280
L22 Signal Processor Rack #6	A. Eq. Bay #1	280
L23 L Canard IAP #1	Root Left Canard	300
L24 L Canard IAP #2	Root Left Canard	300
L25 Signal Processor Pwr. Sup. Rk. #	1 A. Eq. Bay #2	310
L26 DISACS	Locate near each IAP	
L27 GOX Compressor	A. Eq. Bay #2	310
L28 L Flap IAP	Aft Root Left Wing	500
L29 L Rudder IAP	Lower Rudder Aft. Tail	640
L30/R30 Vapor Cycle Machine #1, #2	Aft of Cockpit	210
L31 Loop Compressor	Aft of Cockpit	210
L32 Seat Adjust	Left Cockpit	200
L33 Left Boost Pump	Left Midfuselage	450
T34 Transfer Pump #1	Left Wing	475
T35 Transfer Pump #2	Left Wing	400
T36 Transfer Pump #3	Mid Fuselage	400
T37 Transfer Pump #4	Right Wing	400
T38 Transfer Pump #5	Right Wing	475
L39 IR/EO Sensor #1	FWD Upper	140
L40 IR/E0 Sensor #2	FWD Lower	140
L41 Chaff Dispenser	Lower AFT Fuselage	60 0
L42 Lighting Group		

TABLE 4-1
EQUIPMENT LOCATION LIST (continued)

<pre># Nomenclature</pre>		Location/Bay	Station #
R43 IIRA/IMU		FWD Eq. Bay	140
R44 Sensor Cryogenic Unit	#2	FWD Eq. Bay	140
R45 Data Transfer Unit #2	•	FWD Eq. Bay	140
R46 Signal Processor Rack	: #3	Lower Cockpit Bay	160
R47 Signal Processor Rack	#4	Lower Cockpit Bay	160
R48 Signal Processor Rack	: #7	Aft. Equip. Bay #1	260
R49 Signal Processor Rack	. #8	All. Equip. Bay #1	260
R50 Signal Processor Pwr	Supply #2	Aft. Equip. Bay #1	260
R52 VMS Rack #4		Aft. Eq. Bay #1	275
R53 Fuselage RF Jammer/IF	l Jammer	Aft. Eq. Bay #1	275
L54 RF Warning Rec #1		AFT Eq. Bay #2	310
R55 RF Warning & Range De	ec. #2	Aft. Eq. Bay #2	325
R56 RF Warning & Range De	c. #3	Lower Aft. Eq. Bay	290
R57 ELMC Rack #1		Lower Cockpit Bay	190
R58 IR/ED Starting Rec #4	, #5, #6		
<pre>IR/EO Tracking Rec. #</pre>	2	Fwd. Equip. Bay	140
R59 ELMC Rack #2		Lower Aft. Equip. Bay	325
R60 ELMC Rack #3		Aft. Equip. Bay #2	325
R61 VMS Mass Memory Unit		Aft. Equip. Bay #2	325
R62 INEWS IR Jammer		Aft. Equip. Bay #2	325
R63 CNI Crypto Unit		Aft. Equip. Bay #2	325
R64 Fuel Inerting System		Aft. Cockpit	240
R65 Right Fuel Boost Pump	1	Mid Fuselage Right	450
R66 Right Canard IAP #1		Root Right Canard	300
R67 Right Canard IAP #2		Root Right Wing	500

FABLE 4-I
EQUIPMENT LOCATION LIST (continued)

# Nomenclature		Location/Bay	Station #
R68 Right Flap IAP		Roof of Right Wing	500
R69 Right Rudder IAP		Root of Right Rudder	640
L70 ELMC Rack #4		Lower Cockpit Bay	160
R71 ECS Pumps #1A,B; #2A,	В	Aft. Cockpit	250
R72 ECS Fans		Aft. Cockpit	225
R75 Engine Control Unit #	¹ 2A,B	Aft. Fuselage	530
L76 Engine Control Unit #	1A,B	Aft. Fuselage	530
L78 Fuel Flowset		Aft. Fuselage	530
L80 Fuel Quantity Set		Lower Aft. Equip. Bay	275
T81 Electrical Generators	; (4)	Fwd. Engine	520
T82 APU Generator		Fwd. Engine	520
T33 Stores Management Sta	ation #1	Mid Fuselage	350
T84	#2		
T85	#3		
T86	#4		
T87	#5		
T88	#6		
Т89	#7		
T90	#8		
T91 Wingtip Jammer #1		Right Wingtip	550
T92 Wingtip Jammer #2		Left Wingtip	550
T93 Tail Jammer #1		Left Tail	675
T94 Tail Jammer #2		Right Tail	675

- F) The Signal Processor System which includes items £13, £14, £21, £22, £25, R46, R47, R48, R49 and R50.
- G) The Mission Avionics System which includes items L10 and L19.
- H) The Vehicle Management System which includes items L9, L15, L20, R53, and R61.
- I) The Engine Controls which includes items L75, L77, L78, R76, R79 and R80.
- J) The Secondary Power System which includes items L27, L57, L70, R59, R60, T81 and T82.
- K) The Fuel Inerting System which includes those items designated R64.
- L) The Fuel System which includes items L33, T34, T35, T36, T37, T38 and R65.
- M) Lighting and Miscellaneous items which include L32 and L42.

ess reseases, received research respects respects respects

- N) The Stores Management System which includes items T83, T84, T85, T86, T87, T88, T89 and T90.
- 0) The Flight Control Actuation System which includes items L23, L24, L28, L29, R66, R67, R68 and R69.
- P) The Tactical Life Support System which includes items designated L18.
- Q) The Environmental Control System which includes items L30, L31, R71 and R72.

5.0 RESULTS AND CONCLUSIONS

A model of an ATF aircraft was selected. The loads have been located in the model aircraft. This will be used to prepare the physical layout of the electrical generation and distribution system.

A load list for the ATF baseline aircraft was completed. The total load for the aircraft is 176 kva of which 6.6 kw has been identified as DC loads. The loads have been categorized flight critical, mission critical and nonflight critical. The length of power interruptions which each flight critical load can withstand was identified. For the VMS and MAS, integrated avionics racks, which perform the digital processing for flight and mission functions, the maximum power interruption is 50 microseconds.

For each load, a MTBF number has been assigned. This number will be used to calculate the probability of failure for each load (based on a 2 hour mission length). Power, which has a probability of failure 100 times less than the probability of failure of the load itself, will be delivered to each load.

For the flight critical loads, maximum tolerable power interruption times have been identified. These times range from 50 microseconds for the VMS integrated avionics racks which contain the flight control digital processors to 2 seconds for the flight control IAPs.

Two high technology loads have been identified for the ATF baseline. These are the IAPs and the electric motor driven vapor cycle machines.

6.0 RECOMMENDATIONS

A baseline aircraft and a load complement have been established. The loads have been located in the aircraft. The data has been developed which is required to perform Phase II, Analysis and Preliminary Design of the FTEPS Demonstrator. It is therefore recommended that the program be allowed to proceed into Phase II.

REFERENCES

elected position assists

- 1) D130-28576-1, Fault Tolerant Electrical Power System, Technical Proposal, Boeing Co., November 1984.
- AFWAL-TR-84-1193, Advanced System Integration Demonstrators (ASID) System Definition, August 1984.
- D180-26981-1, Specification for Digital Integrated Servoactuator Controller (DISAC) for Reconfigurable Fly-By-Wire Actuation System, May 1982.

STATES SANDON SERVICE SANDON ROBBERS WASHING