GWT The Google Web Toolkit

Jeppe R. Thomsen jenslyn@cs.aau.dk

Aalborg University Department of Computer Science

January 22, 2010

GWT - SW7 1/28

Content Of The Thesis

Two novel privacy-aware proximity detection approaches:

- FRIENDLOCATOR (FL)
 - Article of 18 pages. Submitted to SSTD 2009
 - Article of 6 pages. Accepted to SSTD 2009
- VICINITYLOCATOR (VL)
 - Article is not yet submitted

Privacy-Aware Proximity Detection Services

Functions:

- Track objects in the real-time.
 - Positioning technology, e.g. GPS, Wi-Fi
 - Wireless communication, e.g. GPRS, 3G
- Determines if two objects are close to each other.
 - Notifies users
 - Generates event
- Guarantees that object exact location is secured.
 - Prevent crime possibilities

Applications:

- Nearby friends identification in mobile social networks
- Collision detection
- Advertising

server

Our vs. Existing Approaches

FL&VL versus existing privacy-aware proximity detection approaches:

Feature	FL&VL	Solution 1	Solution 2
P2P comm.			+
Client-server comm.	+	+	+
Strength of privacy	strong	weak	average
User settings flexibility	high	average	average

5/28

FL vs. VL

Differences between FRIENDLOCATOR and VICINITYLOCATOR:

Feature	FriendLocator	VicinityLocator	
Notion of proxim-	$dist(a,b)$ < ϵ	$loc(a) \in vic(b)$	
ity	a dist(a,b) b dist(a,c) c dist(c,b)	loc(b) loc(c) vic(b)	
User settings	$\forall (a,b): \epsilon_{a,b}$	$\forall a : vic(a), \ \lambda(a),$	
Quality of service	Depends on $\epsilon_{a,b}$	$min(\lambda(a), \lambda(b))$	
(precision)			
Communication is	ϵ and precision	Precision	
traded for			

Problem setting

FRIENDLOCATOR

FRIENDLOCATOR - A Location Privacy Aware Friend Locator

8/28

Core idea Grouping of friends Incremental Proximity Detection Approach Problem setting

Limitation and extensions of the idea

Limitations of the core idea:

- **1** Intercepted Ψ opens location privacy leakage possibility
- 2 A proximity detection distance is fixed $(2d\sqrt{2})$

Extensions, supported by FriendLocator:

- Grouping of friends
- 2 Incremental Proximity Detection Approach

Grouping of friends

Solution:

- Users are grouped into friend-groups
- ullet A distinct Ψ is assigned for every friend-group

Consequences:

 When user becomes malicious, users from common groups are endangered

The solution:

 A list of grids with decreasing cell size is assigned for every friend-group

Consequences:

 Any pair of friends in friend-group will be able to choose a preferred proximity distance

Problem setting

VicinityLocator

VICINITYLOCATOR.

_

Flexible Proximity Detection In Mobile Social Networks

Jeppe

14/28

Motivation

FRIENDLOCATOR.

- the Proximity Detection Guaranties is to weak $(2d\sqrt{2})$
- is too inflexible privacy & precision not independent.

Want solution independent of how the space it partitioned

Improvements

New features and improvements in VICINITYLOCATOR

- Granules (and rasterasation)
- Better guaranties
- Ajustable vicinity

Jeppe

Demo of VicinityLocator

Demo of VicinityLocator

Demo of VicinityLocator

18/28

VICINITYLOCATOR with Incremental Update

Incremental Update

VICINITYLOCATOR with Incremental Update

 Incremental Update & Roadnetwork Filter

Testing Methodology

System Test Settings

- 50000 users.
- 40 timestamps per user.
- All users partitioned into disjoint groups.
- L_{ϵ} & L_{max} : 6
- \bullet ϵ & $B(L_{max})$: 200 units

Comparative message development

- Small groups, better message ratio
- Communication efficient
- Total messages per user, per update
 - 0.0805, 0.0935, 0.1463, 0.2663

Messages to LS

 less updates over time, on this data

Effect of ϵ_L

- Levels calculated
- Higher ϵ_L , more communication
- Higher ϵ_L , better tracking

User count	Messages	
	FL	VL
25000	2.69	2.92
50000	2.46	2.93
75000	2.38	2.94

Conclusion

- Novel privacy preserving approaches.
- 2 Solutions developed: VICINITYLOCATOR & FRIENDLOCATOR
- Gives strong privacy guaranties
- Both approaches strong against attacks
- Both approaches have low operating cost in terms of messages
- Messages vs. Flexibility
 - VICINITYLOCATOR offers more flexibility
 - FRIENDLOCATOR has lower communication cost.

Future Work

Possible extensions Other Directions

End of Presentation

Thank You For Listening

Jeppe