High level models of human-computer behaviour

Human Computer Interaction

Based on slide deck

Part 2: Understanding users and their tasks. High level models of human-computer behaviour Human Computer Interaction I: Principles and Design

by Saul Greenberg

Professor

University of Calgary, Canada

The new slides are marked with a *

Slide deck by Saul Greenberg. Permission is granted to use this for non-commercial purposes as long as general credit to Saul Greenberg is clearly maintained. Warning: some material in this deck is used from other sources without permission. Credit to the original source is given if it is known.

High level models of human-computer behaviour

Are there theories that describe how people interact with computers?

Quantitative low-level models

Fitts's Lae Keystroke level model

. . .

Qualitative high-level models

Shneiderman's syntactic/semantic model Norman's stages of human interaction

. . .

High-level models of human-computer behaviour

- Developing Theories in HCl
 - must explain and predict human behaviour in the human-computer system
 - must work in a wide variety of task situations
 - must work within broad spectrum of system designs and implementations

High-level models of human-computer behaviour

- Low-level theories can be used to predict human performance
 - Fitts's law
 - time to select an item with a pointing device
 - Keystroke level model
 - sums up times for keystroking, pointing, homing, drawing, thinking and waiting

*Fitts's Law

- The time required to rapidly move to a target area is a function of the ratio between the distance to the target and the width of the target
- used to model the act of *pointing* (physically or virtually)
- $MT = a + b \times log_2(2 \times D/W)$
 - MT time to hit the target
 - a,b empirically determined constants

*Keystroke level modelling

- estimates the ideal task time
- based on a detailed analysis of all elementary steps that users need to go through to reach the goal of the task
- it works by summarizing all the elementary steps (keystroke, typing, mouse click, homing, pointing, mental operations, system response) which are needed for finalizing the task

*Keystroke level modelling - An example

Assumptions: im Hands on keyboard

Design A	Design B
1. Initiate the search operation M + 1.2 sec. 2. Home mouse H + 0.4 sec. 3. Point mouse to the Searchbox field P + 1.1 sec. 4. Click into the Searchbox field BB + 0.2 sec. 5. Home keyboard H + 0.4 sec. 6. Recall the search term M + 1.2 sec. 7. Type ACCServer.*01\ Prod\ .*Agent/ 31K + 8.68 sec. 8. Type ENTER K + 0.28 sec.	1. Initiate
M + H + P + BB + H + M + 31K + K	M + H + P + BB + M + BB + M + BB + BB
1.2 + 0.4 + 1.1 + 0.2 + 0.4 + 1.2 + 8.68 + 0.28	1.2 + 0.4 + 1.1 + 0.2 + 1.2 + 0.2 + 1.2 + 0.2 + 0.2
13.46 sec.	8.8 sec.

Peter Zalman, Key-stroke Level Model

https://medium.com/enterprise-ux/

*High-level models of human-computer behaviour

- Uses of these low-level theories
 - compare two design variants
 - common benchmarking
 - measure improvement in case of reduce time-on-task by N% design goals
 - user testing (in case evaluation with real users is not possible)

High-level models of human-computer behaviour

- General models that explain human behaviour with machines/computers
 - Syntactic/semantic model (Shneiderman)
 - Stages of interaction (Norman)
 - all of psychology!

Syntactic/semantic model of user knowledge

 A high level model of interaction, developed by Ben Shneiderman

*Syntactic knowledge

Star Trek Transporter console

https://vidasmps.com/star-trek-map/

star-trek-map-lovely-transporter-console-at-the-ready-pictu

Syntactic knowledge

- The rules or combinations of commands and signals
 - seen as device-dependent details of how to use system
 - examples:
 - backspace key deletes previous character
 - right mouse button raises contextual menu
 - grep <word> <file> finds a word in a file character
 - tab moves to next field in a form
 - dd deletes current line in vim text editor.

User problems with syntactic knowledge

- syntactic details differ between (and within!) systems
 - little/arbitrary consistency
 - e.g.
 - :q quits vim text editor
 - exit quits current login user
 - Ctrl + X quits nano text editor
 - q quits displaying content with less

User problems with syntactic knowledge

- hard to learn
 - acquired by rote memorization
 - repeated rehearsals to reach competency
 - must be frequently applied for retention over time
- easily forgotten
 - expert/frequent users ok
 - novice/casual users troubled by syntactic irregularities

Semantic knowledge: computer concepts

- The meaning behind computer concepts
- Usually follows a hierarchical structure
 - high level concepts decomposed to many low level concepts
 - objects
 - e.g. stored information as directories and files as name, length, creation date, owner,...
 - actions
 - e.g. saving a file, creating backups, verify access control, etc.

Semantic knowledge: computer concepts

How it works

- people learn computer concepts by
 - meaningful learning
 - demonstrations
 - explanations of features
 - trial by error
 - model of concepts (abstract, concrete, analogical)
 - e.g.

file hierarchies are like file/folder systems

Semantic knowledge: computer concepts

Properties of semantic knowledge (computer concepts)

- relatively stable in memory
 - high level concepts
 - logical structure
 - cognitive model produced
- usually transferable across computer systems
 - but not always!

Problems

- many people now using computers are not computer scientists!
- must be trained in "computer literacy"
- people prefer to concentrate on task, not on computer knowledge

*Semantic knowledge: task concepts

Racing wheel for Playstation https://origin-gaming.logitech.com/en-us/product/g29-driving-force

Semantic knowledge: task concepts

- The meaning behind task concepts
 - is independent of the computer
- Similar in mechanisms to computer concepts
- e.g.
 - how to write a business letter format concerns stylistic concerns paragraph structure etc
 - creating lecture notes

What syntactic/semantic model reveals

Mapping between three items is extremely important: **Task semantics to computer semantics to computer syntax**

- e.g.
 - task semantics: write letter
 - computer semantics: open a file, use editor, save it to disk
 - computer syntax: select menu items, key strokes for formatting,...

What syntactic/semantic model reveals

- Bad mapping: using latex to write letter
 - aside from task semantics, must also know semantics/syntax of:
 - text editor
 - latex
 - Unix compiling and printing sequence (to typeset and print)
- Relatively good mapping: trashcan to throw away files
 - must know mouse syntax of selecting and dragging
 - computer semantics almost analogous to task semantics

Guidelines suggested by syntactic/semantic model

Reduce the burden of learning a separate computer semantics and syntax, for the task-oriented user

Methods:

- computer semantics
 - metaphors allow computer artifacts to be represented as task artifacts
 - e.g. office workers: files/folders represent hierarchical directory/file systems
 - information hiding
 - don't force people to know computer concepts that are not relevant to their work

Guidelines suggested by syntactic/semantic model

- computer syntax
 - a little learning should go a long way ...
 - should be as understandable as possible (tied to semantics)
 - e.g. meaningful command names, icons, keyboard shortcuts
 - should be as simple as possible and uniformly applicable
 - e.g., object selection with mouse: single click selects, double click activates
 - generic commands
 - same command can be applied across different objects
 - syntax should be consistent between systems!

The Four Stages of an Interaction

Intention, Selection, Execution, Evaluation (a simplified version of Norman's 7 stages)

• 1 Forming an intention

- "What we want to happen"
- internal mental characterization of a goal
- may comprise goals and sub-goals (but rarely are they well planned)
- similar to task semantics
 - e.g. "begin a letter to Aunt Harriet"

• 2. Selecting an action

- review possible actions and select most appropriate
- similar to mapping between task and compute semantics
 - e.g. "use the gedit editor to create a file harriet letter"

The Four Stages of an Interaction

• 3. Executing the action

- carry out the action using the computer
- similar to mapping between semantics and computer syntax
 - e.g. type "gedit harriet letter"

4. Evaluate the outcome

- check the results of executing the action and compare it with the expectations
 - e.g. see if gedit editor is on the display and verify that file name is "harriet.letter"
 - requires perception, interpretation, and incremental evaluation

The stages of user activities when performing a task

A typical task: making a business letter look better

The "Gulf of Execution"

- Gulf: amount of effort exerted to transform intentions into selected and executed actions
- do actions provided by system correspond to the intentions of the user?
- a good system:
 - direct mappings between intention and selections
 - e.g. printing a letter
 - put document on printer icon
 - vs select print from menu
 - vs "latex letter tex; lpr Palw3 latex dvi"
 - drawing a line: move mouse on graphical display vs "draw (x1, y1, x2, y2)"

The "Gulf of Execution"

The "Gulf of Evaluation"

- Gulf: amount of effort exerted to interpret feedback
- can feedback be interpreted in terms of intentions and expectations?
- a good system:

feedback easily interpreted as task expectations

- e.g. graphical simulation of text page being printed
- a bad system:

no feedback or difficult to interpret feedback

• e.g. Unix: "\$", "bus error", "command not found"

The "Gulf of Evaluation"

Bridging the Gulf of Execution and Evaluation

Using four stages to ask design questions

How easily can a user:

- determine the function of the system?
- tell what actions are possible?
- determine mapping from intention to selection?
- perform the action?
- tell what state the system is in?
- determining mapping from system state to interpretation?
- tell if system is in the desired state?

Using four stages to ask design questions

Questions similar to principles of good design:

- visibility
 - can see state of application and alternatives for actions
- good conceptual model
 - consistency in presentations of operations and results
 - coherent system image
- good mappings
 - relations between
 - actions and results
 - controls and their effects
 - system state and what is visible
- feedback
 - full and continuous feedback about results of actions

Using four stages to ask design questions

Questions similar to principles of good design:

- Principle of transparency:
 - "the user is able to apply intellect directly to the task; the tool itself seems to disappear"

You know now

- Several high level theories exist that describe how people interact with computers
- Shneiderman's syntactic/semantic model
 - a user's mapping between computer syntax, computer semantics, and task semantics
 - problems identified when the user's mapping is poor
- Norman's stages of human interaction
 - intention, selection, execution, evaluation
 - problems identified as gulfs of execution and evaluation

*Bibliography

- Saul Greenberg, Understanding users and their tasks.
 High level models of human-computer behaviour,
 University of Calgary, Canada
 http://pages.cpsc.ucalgary.ca/~saul/481/
- Mehmet Goktürk, Fitts's Law, in The Glossary of Human Computer Interaction
 https://www.interaction-design.org/literature/
 book/the-glossary-of-human-computer-interaction/ fitts-s-law
- Zbynek Sterba, Keystroke Level Modeling as a Method for Usability Quantification

```
https://medium.com/@zbynekste/
keystroke-level-modeling-as-a-method-for-usability-quar
```