This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images please do not report the images to the Image Problem Mailbox.

WEST

End of Result Set

Generate Collection Print

L14: Entry 1 of 1

File: JPAB

Apr 2, 1991

PUB-NO: JP403077163A

DOCUMENT-IDENTIFIER: JP 03077163 A

TITLE: RISK MINIMIZED PORTFOLIO SELECTION DEVICE USING MUTUALLY COUPLED NETWORK

PUBN-DATE: April 2, 1991

INVENTOR - INFORMATION:

NAME COUNTRY

IZUMI, HIROYUKI SATO, HIDEKI SEKI, JUNJI HAMAYA, SATOSHI UKAJI, MACHIKO

ASSIGNEE-INFORMATION:

NAME

COUNTRY

FUJITSU LTD

APPL-NO: JP01213953

APPL-DATE: August 19, 1989

INT-CL (IPC): G06F 15/20; G06F 9/44

ABSTRACT:

PURPOSE: To obtain an optimum fund distribution ratio to each brand so as to maximize the total return and also minimize the total risk by using a problem that minimizes the energy function of a mutually coupled network.

CONSTITUTION: The fund distribution ratios are set opposite to each other among plural brands in terms of the value 13 of each node of a mutually coupled network. A link weight setting means 6 sets each link weight value 12 so that the total return and the total risk are automatically maximized and minimized respectively and at the same time the limit conditions are satisfied when the energy function value of the network is minimized. Under such conditions, a node value updating means 7 obtains an optimum fund distribution ratio 14 as the value 13 with the minimum energy function. Thus it is possible to obtain the ratio 14 to each brans so as to maximize the total return and to minimize the total risk respectively.

COPYRIGHT: (C) 1991, JPO&Japio

19日本国特許庁(JP)

⑩特許出願公開

平3-77163 ⑫ 公 開 特 許 公 報 (A)

®Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成3年(1991)4月2日

G 06 F 15/20 9/44

Z Z 3 3 0

7165-5B 8724-5B

審査請求 未請求 請求項の数 5 (全14頁)

会発明の名称

相互結合型ネットワークを利用したリスク最小化ポートフォリオセ レクション装置

> 20特 願 平1-213953

願 平1(1989)8月19日 22出

@発 明 者 泉 寬

神奈川県川崎市中原区上小田中1015番地 富士通株式会社

内

70発 明 者 佐 藤 秀 樹 神奈川県川崎市中原区上小田中1015番地 富士通株式会社

個発 明 者 関 順

神奈川県川崎市中原区上小田中1015番地 富士通株式会社

勿出 願 人 富士通株式会社 神奈川県川崎市中原区上小田中1015番地

個代 理 人 弁理士 大管 義之

外1名

最終頁に続く

明 稇

1. 発明の名称

相互結合型ネットワークを利用したリスク 最小化ポートフォリオセレクション装置

2. 特許請求の範囲

1) 相互結合型ネットワークの構造を記憶する 手段であって、複数の各銘柄への資金配分比を各 々対応させた前記相互結合型ネットワークの複数 の各ノードの値(14)と、該各ノード間のリンク重 み値(13)を記憶するネットワーク記憶手段(5) と、 前記各銘柄別のリターン(9) とリスク(10)、及 び前記各銘柄間の相関係数(11)から前記各リンク 重み値(12)を設定する手段であって、該各リンク 重み値(12)及び前記各ノード値(13)から求まるエ ネルギー関数の値が極小とされたときに、前記各 銘柄別リターン(9) 及び前記各ノード値(13)から 求まる総リターンが極大となり、前配各相関係数 (11)及び前記各ノード値(13)から求まる総リスク

が極小となり、かつ前記各ノード値(13)に関する 制約条件に最も適合するように、前記各リンク重 み値(12)を設定し、前記ネットワーク記憶手段(5) に記憶させるリンク重み値設定手段(6)と、

前記リンク重み値(12)に基づいて、前記ネット ワーク記憶手段(5)上の前記各ノード値(13)を、 前記エネルギー関数の値が減少するように逐次更 新するノード値更新手段(7)と、

該更新動作毎に、前記相互結合型ネットワーク を規定する前記各リンク重み値(12)及び前記各ノ ード値(13)から求まるエネルギー関数の値を判定 し、その値が極小の場合の該各ノード値(13)を前 記各銘柄への最適な資金配分比(14)として出力す る判定出力手段(8)と、を有することを特徴とす る相互結合型ネットワークを利用したリスク最小 化ポートフォリオセレクション装置。

2) 相互結合型ネットワークの構造を記憶する 手段であって、複数の各銘柄への資金配分比を各 々対応させた前記相互結合型ネットワークの複数 の各ノードの値と、該各ノード間のリンク重み値 及び前記各ノード毎に設けられ該各ノードへ他の ノードから入力する総和の値の大きさを判定する 閾値を記憶するネットワーク記憶手段と、

前記各リンク重み値及び前記各関値に基づいて、 前記ネットワーク記憶手段上の前記各ノード値を、 前記エネルギー関数の値が減少するように逐次更 新するノード値更新手段と、

該更新動作毎に、前記相互結合型ネットワーク

を規定する前記各リンク重み値、前記各関値及び前記各ノード値から求まるエネルギー関数の値を判定し、その値が極小の場合の該各ノード値を前記各銘柄への最適な資金配分比として出力する判定出力手段と、を有することを特徴とする相互結合型ネットワークを利用したリスク最小化ポートフォリオセレクション装置。

3) 前記複数の銘柄数をNとし、i及びjを各々 $1 \le i \le N$ 、 $1 \le j \le N$ と変化する変数として、前記各ノード値を X_i 、前記各ノード値を X_i 、前記各ノード値を θ_i 、前記各銘柄別のリターンを θ_i の前記各銘柄別のリターンを θ_i の前記各銘柄別のが θ_i のが表し、前記各銘柄別のを θ_i の前記各銘柄別のを θ_i の前記各銘柄別の θ_i のが表し、 θ_i のが表し、 θ_i のが表し、 θ_i のが表し、 θ_i の記を θ_i のが表し、 θ_i の記を θ

前記リンク重み値/関値設定手段は、a、b、c、dを所定の定数として、前記エネルギー関数

Bが等価的に、

$$E = a \left(-\sum_{i=1}^{N} P_{i} X_{i} \right)^{2} + b \sum_{i=1}^{N} \sum_{j=1}^{N} S_{i} S_{j} R_{ij} X_{i} X_{j} + c \sum_{i=1}^{N} \left((1 - X_{i})^{2} + X_{i}^{2} \right) + d \left(1 - \sum_{i=1}^{N} X_{i} \right)^{2}$$

となるように、前記各リンク重み値 w_1 3及び前記各関値 θ_1 を、

$$W_{i,j} = -2 b S_i S_j R_{i,j} - 4 c \delta_{i,j} - 2 d$$
但し、 $\delta_{i,j} = \begin{cases} 1 & (i = j) \\ 0 & (i \neq j) \end{cases}$

 $\theta_1 = -a P_1 - 2 c - 2 d$

として設定することを特徴とする請求項2記載の 相互結合型ネットワークを利用したリスク最小化 ポートフォリオセレクション装置。

4) 前記ノード値更新手段は、更新前の前記各ノード値を X₁(t)、更新後の前記各ノード値を X₁(t+1) とし、Aを所定の正の定数として、 X₁(t+1) = X₁(t) + A (Σ w₁, X₁(t) + θ₁) を満たすように、前記各ノード値を更新することを特徴とする請求項3記載の相互結合型ネットワ

ークを利用したリスク最小化ポートフォリオセレ クション装置。

5) 前記ネットワーク記憶手段上の前記各ノード値の初期値を、前記制約条件に適合する範囲内でランダムに設定する初期値設定手段を有することを特徴とする請求項1又は2記載の相互結合型ネットワークを利用したリスク最小化ポートフォリオセレクション装置。

3. 発明の詳細な説明

〔概 要〕

債券や株への投資において、利益を一定の下で、 危険率を少なくするように、債券や株に資金配分 を行う相互結合型ネットワークを利用したリスク 最小化ポートフォリオセレクション装置に関し、

コンピュータアーキテクチャの一方式として有望な相互結合型ネットワークを用いて、特にリターンが最大で、リスクが最小の配分を求めるポートフォリオセレクションを実現し、処理時間が少なく、かつ各銘柄への資金配分率まで正確に決定

することを可能ならしめることを目的とし、

相互結合型ネットワークの構造を記憶する手段 であって、複数の各銘柄への資金配分比を各々対 応させた前記相互結合型ネットワークの複数の各 ノードの値と、該各ノード間のリンク重み値を記 **惶するネットワーク記憶手段と、前記各銘柄別の** リターンとリスク、及び前記各銘柄間の相関係数 から前記各リンク重み値を設定する手段であって、 該各リンク重み値及び前配各ノード値から求まる エネルギー関数の値が極小とされたときに、前記 各銘柄別リターン及び前記各ノード値から求まる 総リターンが極大となり、前記各相関係数及び前 記各ノード値から求まる総リスクが極小となり、 かつ前記各ノード値に関する制約条件に最も適合 するように、前記各リンク重み値を設定し、前記 ネットワーク記憶手段に記憶させるリンク重み値 設定手段と、前記リンク重み値に基づいて、前記 ネットワーク記憶手段上の前記各ノード値を、前 記エネルギー関数の値が減少するように逐次更新 するノード値更新手段と、該更新動作毎に、前記

相互結合型ネットワークを規定する前記各リンク 重み値及び前記各ノード値から求まるエネルギー 関数の値を判定し、その値が極小の場合の該各ノ ード値を前記各銘柄への最適な資金配分比として 出力する判定出力手段とを有するように構成する。

〔産業上の利用分野〕

本発明は、債券や株への投資において、利益を 一定の下で、危険率を少なくするように、債券や 株に資金配分を行う相互結合型ネットワークを利 用したリスク最小化ポートフォリオセレクション 装置に関する。

〔従来の技術〕・

証券市場の発展とともに、証券投資のリスクを 低減しつつ利益をあげるため、最適な証券の組み 合わせを決定する様々な手法が求められている。

ここで、債券や株当の銘柄への証券投資において、投資収益率の変動による危険を避けるために 各銘柄に適当に資金を分散させた状態を、一般に

ボートフォリオと呼ぶ。そして、前述の最適な証券の組み合わせの決定問題は、ボートフォリオにおいてみれば、利益ができるだけ大きく、かつ危険率ができるだけ少なくなるような各銘柄への資金配分比を求めるボートフォリオセレクションと呼ばれる最適化問題となる。

上記ポートフォリオセレクションを行うための 従来技術として、二次計画法(QP法)を利用し たモデルによって、証券の組み合わせを最適化す る問題を定式化したマルコビッツモデルがある。

マルコピッツモデルにおいては、資金配分比率の2つの制約条件、リターン及びリスクという、4つの定義を基にしたモデルである。以下、それらにつき具体的に示す。

まずN個の銘柄について考えるものとする。 1 からNに渡る変数iによってi番目の銘柄を指す。 各銘柄iの資金配分比率を変数 X 。とおく。この とき各iに対して、

 $X_1 + X_2 + \cdots + X_1 + \cdots + X_N = \sum_{i=1}^{N} X_i = 1$ $\cdots \cdot (2)$ という第 2 の制約条件がある。例えばM円の資金があるとき、資金の配分はM×X₁円、M×X₂円、 \cdots 、M×X_N円ずつとなる。

なお、これ以後、表記を簡単にするために、 Σ を Σ または Σ で示すことがある。

今、ある銘柄iの過去の投資収益率の平均値を、 その銘柄のリターンと呼び、今後はPiで示す。

また、その銘柄iの過去の投資収益率の標準偏差を、その銘柄のリスクと呼び、今後はSiで示す。

R:」を銘柄iと銘柄jとの期待リターンの相関係数とする。

ここで、総リターンPを、
$$P = \sum_{i=1}^{N} P_{i} X_{i} \cdots (3)$$

とおく。これは、N個の銘柄にそれぞれ資金配分 比X:の比率で資金を配分したときに、期待され る総利益である。

さらに、総リスクRを、

 $R = \sum_{i=1}^{n} \sum_{j=1}^{n} S_{i} \cdot S_{j} \cdot R_{i,j} \cdot X_{i} \cdot X_{j} \cdot \cdots \cdot (4)$ とおく。 R が極小値をとるとき、個々の X_{i} は、 期待される総利益 P のもとでの期待される総リスクが最小の配分比を示す。

以上、(I)~(4)式の定式化によって、マルコピッツモデルが定義される。

上述の(1)~(4)式の下で前述のポートフォリオセレクションを行うということは、

①同じ総リターンならば、総リスクが最小になる資金の組み合わせ、

②同じ続リスクならば、総リターンが最大になる資金の組み合わせ、

である。すなわち、ポートフォリオセレクション つまり最適なポートフォリオの問題とは、利益を 極大にしてかつ、危険率が少なくなることが期待 されるように、債券や株に資金配分を行うための 配分比を求めることである。

ここで、最適ポートフォリオの問題は、下記の

(a), (b), (c)のように3種類考えられる。

(a)リターンを大きくし、かつリスクを小さくする 配分を求める問題である。

目的関数として、リターン $P = \sum_{i}^{N} P_{i} X_{i}$ を最大にし、

同時にリスク R = $\sum_{i=1}^{N} \sum_{j=1}^{N} S_{ij} S_{ij} X_{ij} X_{ij} X_{ij}$ を 最小にする

『制約 $0 \le X_1 \le 1$ 、 $\sum_{i=1}^{n} X_1 = 1.0$ のもとで、目的関数 $-a \sum_{i=1}^{n} P_i X_i + b \sum_{i=1}^{n} \sum_{i=1}^{n} S_i S_i R_i$ 、 $X_1 \times X_1 \times X_2 \times X_1 \times X_2 \times X_1 \times X_2 \times X_3 \times X_4 \times X_$

(ロリターンを一定のまま、リスクが最小の配分を

求める問題である。すなわち、

「制約 $0 \le X_i \le 1$ 、 $\sum_{i=1}^{N} X_i = 1.0$ 、 $\sum_{i=1}^{N} P_i$ $X_i = P$ のもとで、

目的関数 R = ∑ S S S R 1 J X 1 X 1 を最小に するような資金配分比 X 1 . X 2 . · · · , X 1 . · · · · . X N を求めよ。 J

という問題である。

(c)リスクを一定にしたまま、リターンを最大にする配分を求める問題である。すなわち、

『制約 $0 \le X_i \le 1$ 、 $\sum_i^N X_i = 1.0$ 、 $\sum_i^N \sum_j^N S_i$ S」 $R_{i,j} X_i X_j = R のもとで$

目的関数 $P = \sum_{i=1}^{N} P_i X_i$ を最大にするような資金配分比 X_1 , X_2 , · · · , X_4 , · · · · , X_8 を求めよ。』

という問題である。

マルコピッツモデルに基づく上記(a)、(b)の最適ポートフォリオの問題は、第1の従来例としてQ P法等の二次計画法で解かれていた。 Q P法は目 的関数が2次式で、制約式が1次式の場合の非線 形計画法である。リスクが2次式であるため、リ スクを最小にする問題にQP法を用いている。

第7図に、第1の従来例によるリスク最小化ポートフォリオ決定装置のブロック構成を示す。

この装置においては、まず、リターン/リスク人力装置1から、銘柄数N、リターンP』、リスクS』、リターンの相関係数R』、期待総リターンPを入力する。これから、数式モデル表現装置2により、二次計画法の数式を構成する。

次に、二次計画法計算装置3により、最適な資金配分比X₁, X₂, ···, X₁, ···, X_Nを求めて、配分比出力装置4から出力する、という手続きをとる。

一方、第2の従来例として、マルコピッツモデルに直接対応する最適ポートフォリオの問題の解法ではないが、コンピュータアーキテクチャの一方式として有望な相互結合ネットワークを用いて、複数の銘柄(例えば 100銘柄)の中から最適な特定銘柄(例えば 5 銘柄)の組み合せを選択するものがある。

(発明が解決しようとする課題)

しかし、上記第1の従来例の場合、計算量が銘 柄数のほぼ3乗に比例するため、銘柄数が増大す ると処理時間が膨大になると共に、計算時のメモ リ容量が膨大になってしまうという問題点を有し ている。また、銘柄数が増大すると解けない場合 もあるという問題点を有している。

一方、第2の従来例の場合、処理時間は短いが、ボートフォリオにおける各銘柄への資金配分比までは求めることができず、厳密な意味でのボートフォリオセレクションとはなっていないという問題点を有している。

本発明は、コンピュータアーキテクチャの一方式として有望な相互結合型ネットワークを用いて、特にリターンが最大で、リスクが最小の配分を求めるポートフォリオセレクションを実現し、処理時間が少なく、かつ各銘柄への資金配分率まで正確に決定することを可能ならしめることを目的とする。

ら求まる総リスクが極小となり、かつ各ノード値 13に関する制約条件に最も適合するように、各 リンク重み値12が設定される。なお、前述のよ うに各ノード毎に閾値を有する場合、上記手段は、 各リンク重み値と共に、閾値も上記と同様の条件 となるように設定するリンク重み値/閾値設定手 段としてもよい。この場合、相互結合型ネットワ 一クのエネルギー関数は、各リンク重み値、各関 値及び各ノード値から求まる。

また、ノード値更新手段7は、リンク重み値設定手段6又はネットワーク記憶手段5からの各リンク重み値12に基づいて、ネットワーク記憶手段5上の各ノード値13を、エネルギー関数の値が減少するように逐次更新する手段である。なお、前述のように各ノード毎に関値を有する場合、該各関値も更新動作に寄与する。

そして、判定出力手段8は、上記更新動作毎に、相互結合型ネットワークを規定する各リンク重み値12及び各ノード値13から求まるエネルギー関数の値を判定し、その値が極小の場合の該各ノ

(課題を解決するための手段)

第1図は、本発明のブロック図である。

ネットワーク記憶手段 5 は、相互結合型ネットワークの構造を記憶する手段であって、債券や株への投資における複数の各銘柄への資金配分比を各々対応させた複数の各ノードの値14 と、該各ノード間のリンク重み値13を記憶する手段である。更に、相互結合型ネットワークの構造によっては、各ノード毎に設けられ該各ノードへ他のノードから入力する総和の値の大きさを判定する関値を記憶するようにしてもよい。

次に、リンク重み値段定手段6は、各銘柄別のリターン9とリスク10、及び各銘柄間の相関係数11から各リンク重み値12を設定し、ネットワーク記憶手段5に記憶させる手段である。この場合、各リンク重み値12及び各ノード値13から求まる相互結合型ネットワークのエネルギーリ数の値が極小とされたときに、各銘柄別リターンが極り及び各ノード値13か大となり、各相関係数11及び各ノード値13か

ード値13を各銘柄への最適な資金配分比14と して出力する手段である。なお、前述のように各 ノード毎に関値を有する場合、該各関値もエネル ギー関数の導出に寄与する。

以上の構成において、ネットワーク記憶手段5 上の各ノード値13の初期値を、前述の制約条件 に適合する範囲内でランダムに設定する初期値設 定手段を有するようにしてもよい。

〔作 用〕

本発明では、相互結合型ネットワークの各ノードの値13として、複数の各銘柄への資金配分比を各々対応させている。

そして、リンク重み設定手段6は、相互結合型 ネットワークのエネルギー関数の値が極小とされ たときに、自動的に総リターンが極大、総リスク が極小となり、かつ制約条件を満たすように、各 リンク重み値12を設定する。

このような設定の下で、ノード値更新手段7が、 ネットワーク記憶手段5上の各ノード値13をエ ネルギー関数の値が減少するように逐次更新し、 判定出力手段8がエネルギー関数の極小値を判定 することで、エネルギー極小のときの各ノード値 13として、最適な資金配分比14を求めること ができる。

従って、本発明は、相互結合型ネットワークのエネルギー関数を極小化する問題として、総リターンを最大、総リスクを最小にするような各銘柄への最適な資金配分比14を求めることができる。この場合の、処理計算量は、銘柄数に対応するノード数のほぼ2乗に比例するため、計算量が銘柄数のほぼ3乗に比例する従来の2次計画法等に比較して、処理時間が少なく計算時のメモリ容量が少ない処理を実現することができる。

〔実 施例〕

以下、図面を参照しながら本発明の実施例を説明する。

原理説明

まず、本発明の具体的な実施例について説明す

④各ノードの次の時点の値(更新された値) X 1 (t+1) は、そのノード自身の現時点の値 (更新前の値) X 1 (t) と閾値 8 1 と、その ノードに向けられているすべての有向リンクの 重みw13と、それらの有向リンクの反対側のノードの各値 X 1 (t) とを用いて決定される。 特に、本発明では、次のような形式の値変化規 則を用いたネットワークで考える。

X, $(t+1) = f(\sum_{i=1}^{\infty} w_{i,i} X_{i,j}(t) - \theta_{i,j})$ ここで、f() は一個の実数を引数として持つ 適当な関数である。なお、この式の形式について は後述する。

上配の如き相互結合型ネットワークを前提として、本発明による相互結合型ネットワークの構造を以下に示す。

- ①N個のノードを用意し、N個の各銘柄を各ノードに対応づける。
- ②解となる銘柄の資金配分比X, $(0 \le X$, \le 1) はノードの値で表現される。
- ③制約と目的関数(総リスク)とは、まとめて

る前に、本発明の原理について説明する。

本発明は、「従来の技術」の項で説明した3種類の最適ポートフォリオ(a)、(b)、(c)のうち、(a)のリターンを一定のまま、リスクが最小の各銘柄への資金配分を求める問題を解決する発明である。

ここで、本発明では、相互結合型ネットワーク を用いて、上記最適ポートフォリオの問題を解決 する。

相互結合型ネットワークは、次のような構造を 持つネットワークである。

①複数個のノードがあり、すべてのノードが自 分自身を含む他のノードと有向リンクで結合し ている。ノードの個数をNで表す。

②各ノードは、値として一つの変化しうる数値を持つ。ノードiの値をX、で表す。また、各ノードiは、関値と呼ぶ固定された数値を持つ。 ノードiの関値の値は θ 」で表現される。

③ノード間の各リンクは、数値をリンクの重み として持つ。ノード」からノードiに到るリン クの重みは、wijで表現される。

一つのエネルギー関数 P。で表現された後、ネットワークのすべてのリンクの重みと関値 に分散表現される。

ノードiからノードiに到るリンクの重みは、 wiiで、ノードiの関値の値はθiで表現される。

上記構造の相互結合型ネットワークの動作規則を以下に示す。

- ④各ノードの値X」を変化させる値変化規則は、 上記のエネルギーE。が減少するように定義 される。
- ⑤エネルギー表現 B は、極小になったとき、 各制約式が満足され、目的関数が極小(総リターンが極大、総リスクが極小)をとるよう に定められる。

上記規則に基づく相互結合型ネットワークの動作を以下に示す。

- ®最初、各ノードには、ランダムに値が入れられる。
- ⑦すると、値変化規則により、各ノードの値が

次々に変化していく。

そのとき、ノードの値が変化していくにつれ、 値変化規則により、エネルギー関数 E。は減 少していく。

⑧エネルギー関数E。は、いつか極小値に到達する。

エネルギー関数 P。 は、極小になったとき最適ポートフォリオ問題の各制約式が満足されて目的関数が極小をとるように定められているので、そのときの各ノードの値 X 。が、銘柄iへの最適な資金配分比を示す。

このことにより、相互結合型のネットワークに より、最適ポートフォリオを計算することができ る。

以上の動作を可能とするために最も重要なことは、前述の③のように、ポートフォリオにおける目的関数と制約を一つのエネルギー関数 E。で表現することである。この場合、前述の⑤のように、E。が極小となったとき、目的関数が極小となり、各制約式が満足されるように、エネルギー表現を

行う必要がある。

そこで、ここではまず、目的関数のエネルギー 表現E, , E, 及び各制約のエネルギー表現E, , E, について定義し、しかる後にそれを一つのエ ネルギー表現E, としてまとめる。

まず、第1の目的関数すなわち総リターンのエネルギー表現E」を定義する。

目的関数を表すエネルギー表現が極小になった とき、期待される総リターンができるだけ大きく なるように、総リターンを表現するエネルギー表 現 E: を定める。例えば、前記(3)式より、

E」= - Σ P ι X ι · · · (5)
と定めると、E ι が極小値をとるとき、Σ P ι X ι
は、極大値を取るから、他に極大値がないことが
保証されているとき、個々の X ι は期待される総
リターンが最大のときの銘柄 ι への資金配分比を
示す。

次に、第2の目的関数すなわち続リスクのエネルギー表現E2を定義する。

目的関数を表すエネルギー表現Ezが極小にな

ったとき、期待される総リスクも極小になるようにするために、 B』は総リスクを表す式そのものを用いる。従って、前記(4)式より、

 $E_2 = \sum_{i=1}^{N} \sum_{j=1}^{N} S_i S_j R_{i,j} X_i X_j \cdots (6)$ E_2 が極小値をとるとき、個々の X_i はリスクが最小のときの銘柄 i への資金配分比を示す。

次に、制約「 $0 \le X$ 」 ≤ 1 」を表すエネルギー表現 E 。について定義する。 E 。は、ある程度小さくなると、各 i とも $0 \le X$ 」 ≤ 1 になりやすいような表現でなければならない。例えば、次のような式である。

 $E_{2} = \sum_{i=1}^{N} ((1-X_{i})^{2} + X_{i}^{2})$ ・・・(7) 続いて、制約「 $\sum_{i=1}^{N} X_{i} = 1.0$ 」を表わすエネル ギー表現 E_{4} について定義する。 E_{4} は、極小に なったとき、制約 $\sum_{i=1}^{N} X_{i} = 1.0$ が満たされている ような表現である。例えば、次のような式がその 一つである。

$$E_4 = (1 - \sum_{i=1}^{N} X_i)^2 \cdot \cdot (8)$$

以上、(5)式~(8)式で示される目的関数と制約と のエネルギー表現を使うと、前述のポートフォリ オ問題(a)は、次のように表現される。

「(係数 a, b, c, dを適当に定めた上で) エネルギー関数 E。ニaE₁ + bE₂ +

c E : + d E 4 を最小にせよ。』

当然、これらのエネルギー表現では、制約と目的 関数の条件を満たすような他の表現も考えられる。

ここで、前述の①~③で規定される相互結合型 ネットワークのエネルギー関数は一般に、

$$E = - (1/2) \sum_{i} \sum_{j} w_{i,j} X_{i} X_{j} + \sum_{i} \theta_{i} X_{i}$$

という形式で表現できる。上記(9)式は、ノード値 Xを変数とみた場合、Xの2次式の形式で表現さ れている。一方、前述のポートフォリオ問題にお けるエネルギー関数

$$E_{0} = a E_{1} + b E_{2} + c E_{3} + d E_{4}$$

$$= a \left(-\sum_{i}^{N} P_{i} X_{i}\right) + b \sum_{i}^{N} \sum_{j}^{N} S_{i} S_{j} R_{ij}$$

$$X_{i} X_{j} X_{i} + c \sum_{i}^{N} \left(\left(1 - X_{i}\right)^{2} + X_{i}^{2}\right) + d \left(1 - \sum_{i}^{N} X_{i}\right)^{2}$$

もノード値×の2次式の形式で表現されている。

そこで、上記(9)式と仰式を恒等式として対応づけ ることにより、ポートフォリオ問題を相互結合ネ ットワークに適用した場合の、各ノード間のリン ク重み値w i 及び各ノードの関値 θ i を、以下の ようにして定めることができる。

前述の仰式を以下のように変形する。

$$E_{0} = a E_{1} + b E_{2} + c E_{3} + d E_{4}$$

$$= a \left(-\sum_{i}^{N} P_{i} X_{i}\right) + b \sum_{i}^{N} \sum_{i}^{N} S_{i} S_{j} R_{ij}$$

$$X_{i} X_{j} X_{i} + c \sum_{i}^{N} \left((1 - X_{i})^{2}\right)$$

$$+ X_{i}^{2} + d \left(1 - \sum_{i}^{N} X_{i}\right)^{2}$$

$$= a \left(-\sum_{i}^{N} P_{i} X_{i}\right) + b \sum_{i}^{N} \sum_{j}^{N} S_{i} S_{j} R_{ij}$$

$$X_{i} X_{j} X_{i} + c \sum_{i}^{N} \left(1 - 2 X_{i} + 2 X_{i}^{2}\right)$$

$$+ d \left(1 - 2 \sum_{i}^{N} X_{i} + b \sum_{i}^{N} \sum_{j}^{N} S_{j} S_{j} R_{ij}$$

$$X_{i} X_{j} + c \sum_{i}^{N} 1 - 2 c \sum_{i}^{N} X_{i} + 2 c \sum_{i}^{N} \left(X_{i}^{N} X_{i}\right)^{2}$$

$$= a \sum_{i}^{N} P_{i} X_{i} + b \sum_{i}^{N} \sum_{j}^{N} S_{j} S_{j} R_{ij}$$

$$X_{i} X_{j} + c \sum_{i}^{N} 1 - 2 c \sum_{i}^{N} X_{i} + d \left(\sum_{i}^{N} X_{i}\right)^{2}$$

ここで、 δ $_{i,j}$ = 1 (i = jのとき)、= 0($i \neq j$ のとき)と定義して、また、 $\sum 1 = N$ だ

 $E_0 = -a \sum P_i X_i + b \sum \sum S_i S_j R_{ij}$

$$X_{1} X_{1} + c N - 2 c \sum_{i} X_{i}$$
 $+ 2 c \sum_{i} \sum_{j} X_{i} X_{j} \delta_{1j}$
 $+ d - 2 d \sum_{i} X_{i} + d \sum_{j} \sum_{i} X_{i} X_{j}$
 $= b \sum_{i} \sum_{j} \sum_{i} \sum_{j} X_{1,j} X_{1,j} X_{1,j} X_{1,j}$
 $+ 2 c \sum_{i} \sum_{j} X_{i} X_{j} \delta_{1,j}$
 $+ d \sum_{i} \sum_{j} X_{i} X_{j} - a \sum_{i} P_{i} X_{i}$
 $- 2 c \sum_{i} X_{i} X_{j} - a \sum_{i} P_{i} X_{i}$
 $- 2 c \sum_{i} X_{i} - 2 d \sum_{i} X_{i} + c N + d$
 $= - (1/2) \sum_{i} \sum_{j} (-2 b \sum_{i} \sum_{j} R_{i,j} + c N + d)$
 $+ c \delta_{1,j} - 2 d \sum_{i} X_{i} X_{j} + c N + d$
 $+ c N + d$
 $(t t \cup_{i} \delta_{1,j} = 1 (i = j))$

 $= 0 (i \neq j)$

上記00式の変形結果を前述の(9)式の相互結合型 ネットワークのエネルギー関数の一般形と対応づ $(X_i^{-1})+d-2d\sum_i X_i^{-1}+d(\sum_i X_i)^2$ けることにより、リンクの重み w_i 」と閾値 θ_i は、、 $\delta_{i,j}=1$ (i=jのとき)、=0 次のように定められる。すなわち、ノードjから 次のように定められる。すなわち、ノードiから iにいたるリンクの重みは、

$$w_{ij} = -2 b S_i S_j R_{ij} - 4 c \delta_{ij}$$

- 2 d · · · (1)

ただし、
$$\delta_{ij}=1$$
 ($i=j$)、 $=0$ ($i\neq j$)

となる。また、ノードiの閾値は、

 $\theta_i = -2 c - 2 d - a P_i$

次に、(9)式、(1)式及び(0)式により定まるエネル ギー関数Eのもとで、「Eが減少するように各ノ ードの値Xェを変化させる」という前述の④の値 変化規則の具体的動作について説明する。

まず、各ノードX』において、

 $x_{i}(t+1) = X_{i}(t) + dX_{i} \cdot \cdot \cdot 03$ として、Xi(t)の値を変化させていく。こ こで、Xı(t)は更新前のxıの値を示し、Xı (t+1)は更新後のX1の値を示す。

また、dX。は各更新動作毎のX。の変化分 (差分) である。このときエネルギー関数 B が減 少していくように、ノード内の値変化規則を決め

今、Eの時間変化(微分/差分)をdE、Xi の時間変化(微分/差分)をdXiとおいて、前 記(9)式の両辺を微分すると、

$$d E = - (1/2) \left(\sum_{i} \sum_{j} (X_{i,j} (d X_{i}) X_{j} + w_{i,j} X_{i} (d X_{j}) \right) + \sum_{i} \theta_{i} (d X_{i})$$

$$= - (1/2) \left(\sum_{i} \sum_{j} w_{i,j} (d X_{i}) X_{j} + X_{i} (d X_{j}) \right) + \sum_{i} \theta_{i} (d X_{i})$$

$$w_{i,j} = w_{j,i} b b,$$

$$= - (1/2) \left(\sum_{i} \sum_{j} w_{i,j} 2 X_{j} (d X_{i}) \right)$$

$$+ \sum_{i} \theta_{i} (d X_{i})$$

$$= - \sum_{i} \left(\sum_{j} w_{i,j} X_{j} - \theta_{i} \right) (d X_{i})$$
となる。すなわち、一般に、

 $(\Sigma w_i, X_i - \theta_i)$ $(d X_i) \ge 0 \ge t \delta \delta$ うにすれば、dB≦0、となって、Bは減少して

このとき、次のような同値関係=がある。

$$(\sum_{i} w_{i,i} X_{i} - \theta_{i}) (d X_{i}) \ge 0$$

$$= ((\sum_{i} w_{i,i} X_{i} - \theta_{i}) \ge 0 \text{ } \text{h} \text{o} d X_{i} \ge 0$$

それゆえ、

$$\left(\begin{array}{c} \Sigma \otimes i_1 X_1 - \theta_1 \end{array}\right) \ge 0 \text{ obs.}$$

$$d X_1 \ge 0$$

$$\left(\begin{array}{c} \Sigma \otimes i_1 X_1 - \theta_1 \end{array}\right) \le 0 \text{ obs.}$$

$$d X_1 \le 0$$

となるように、ノードの値変化規則を構成すると、 エネルギーEは減少する。

上記(4)式に基づく値変化規則の具体例としては、 d X ₁ = A (Σ w 1, X 1 - θ 1) [A は正の定数]

のようなものが考えられる。

上記憶式を前述の協式に代入することにより、 値変化規則の具体的動作は、

以上、(9)式、(10式及び(20式で規定されるエネルギー関数の表現と、(9)式で規定される値変化規則に基づいて、前述の⑥~⑧の相互結合型ネットワークの動作を実行することにより、期待される総リス

ワーク19に記憶されている各リンク重み値及び 各閾値に基づいて、同ネットワーク上の各各ノー ド値を、エネルギー関数の値が減少するように逐 次更新する。なお、ここには、ノードの古い値を 格納する配列 Xold (i)、1 ≤ i ≤ Nが記憶されている。

エネルギー極小化判定装置21は、上記更新動作毎に、相互結合型ネットワーク19を規定する各リンク重み値、各関値及び各ノード値から求まるエネルギー関数の値を判定し、その値が極小となった場合にその旨を配分比出力装置22に通知し、極小とならなければ値変化規則設定装置18に次の更新動作を指示する。

配分比出力装置22は、エネルギー極小化判定装置21からエネルギー関数が極小になった旨の通知を受けると、相互結合型ネットワーク19からそのときの各ノード値を各銘柄への最適な資金配分比として出力する。

一方、初期値設定装置20は、相互結合型ネットワーク19上の各ノード値の初期値を設定する。

クをできるだけ小さくするような最適ポートフォ リオを求めることができる。

具体的実施例

上記原理構成に基づく本発明の具体的な実施例 について以下に説明する。第2図は、本発明の具 体的実施例のプロック構成図である。

相互結合型ネットワーク19は、コンピュータのメモリ又は専用ハードウエアとして、1≦i, j≦Nに対して各ノードの値の配列X(i)、各ノード間のリンク重み値の配列w(i, j)、各ノードの関値の配列θ(i)からなる相互結合型ネットワークの構造を記憶する。

リンク重み/閾値設定装置17は、リタン/リスク入力装置15から入力される各銘柄別のリターンとリスク、及び各銘柄間の相関係数、並びにパラメタ入力装置16から入力されるエネルギ関数定のための各パラメタから、各ノード間のリンク重み値及び各ノードの閾値を設定し、相互結合型ネットワーク19に設定する。

値変化規則設定装置18は、相互結合型ネット

上記構成の具体的実施例の動作を第3図~第5 図の動作フローチャートに基づいて説明する。

第3図は主手続きの動作フローチャートである。まず、S1は、相互結合型ネットワーク19の構造作成処理であり、第2図のリンク重み/関値設定装置17で実行される。すなわち、リンク重み値を示す配列 $\theta(i)$ に値を設定する手続きが実行される。上記w(i,j) 及び $\theta(i)$ は、前述の「原理説明」の項で説明したリンク重み w_{11} 及び関値 θ_{1} に対応し、添え字i、jの意味も同じである。そして、ここでの動作は、前述の「原理説明」で説明した項「③」に対応する。

上記51の具体的な動作を第4図に示す。

まず、第2図のリンク重み/関値設定装置17は、リタン/リスク入力装置15から、銘柄数N、銘柄iのリターンPi、銘柄iと銘柄jの期待リターンの相関係数Rij及び銘柄iのリスクSiを入力する(第4図S11)。

次に、リンク重み/閾値設定装置17は、パラ

メタ入力装置16から、前述の(5)~(8)式で示される各エネルギー関数E」~E₄を、前述の(0)式の如くエネルギー関数E。に反映させるための各係数a、b、c及びdを入力する(第4図S12)。これらの係数は、経験的に定められる。

そして、リンク重み/関値設定装置17は、上記S11及びS12の入力動作の後、前述の「原理説明」の項で説明した(I)及び(I)式に基づいて、リンク重み値(I)と関値(I)を計算する。すなわち、 $I \leq I$, $I \leq N$ に対して、

が計算される(第4図S13)。以上の動作により求まった各リンク重み値w(i,j) と各関値θ(i) (1≤i,j≤N)が、相互結合型ネットワーク19に設定(記憶)され、第3図S1の処理を終了する。 次に、第3図のS2は、相互結合型ネットワー

ク19の初期化を行う処理であり、第2図の初期値設定装置20によって実行される。すなわち、ノード値を示す配列 X(i) に初期値を設定する手続きが実行される。上記 X(i) は、前述の「原理説明」の項で説明したノード値 Xi に対応する。ここでの動作は、前述の「原理説明」で説明した項「⑥」に対応する。

上記 S 2 の具体的な動作を第 5 図に示す。すなわち、初期値設定装置 2 0 は、第 5 図 S 2 1 の如く、相互結合型ネットワーク 1 9 内のノードの配列 X (i)、1 \leq i 、j \leq N に対して、 X (i) の範囲が0.0 \sim 1.0 で、すべてのノード値 X (i) の範囲が0.0 \sim 1.0 で、すべてのノード値 X (i) 1 \leq i 、j \leq N の総和が 1 、各ノード値 X (i) のにあまり大きくならないほうがよい。これはあまり大きくならないほうがよい。これに分り設定する。なお、経験的に乱数ののより設定する。ないほうがよい。これに分別であまり大きくフード値の配列 X (i)、1 \leq i、j \leq N が相互結合型ネットワーク 1 9 に設定 にれ、第 3 図 S 2 の処理を終了する。

続いて、第3図S3で過去のエネルギーの記録 E.i.a の値を初期値0.0 にセットする。

そして、第3図S4~S8のループは、前述の「原理説明」で説明した項「⑦、⑧」の動作に対応する。

まず、第2図のエネルギー極小化料定装置21 は、相互結合型ネットワーク19を起動し、前述の(9)式に基づいてエネルギーEを計算する(第3図S4)。 すなわち、相互結合型ネットワーク19上の各ノード値の配列X(i)、各リンク重み値w(i,j)及び各関値 $\theta(i)$ (共に1 $\leq i$, $j \leq N$)から、エネルギーEが、

$$E = - (1/2) \sum_{i}^{n} \sum_{j}^{n} w(i,j) X (i) X (j) + \sum_{i}^{n} \theta(i) X (i)$$

の如く求まる。

次に、第3図S5は、動作終了判定処理であり、 第2図のエネルギー極小化判定装置21において 実行される。すなわち、上述の如く計算された現 在のエネルギーEと、過去のエネルギーE。」。と の差が、ある関値B以下であるか否かが判定され る。なお、閾値Bは、予め第2図のパラメタ入力 装置16から入力されているとする。

上記判定の結果、EとE。14 との差が閾値B未満であれば、エネルギーEは極小値になったと判定し、その旨を第2図の配分比出力装置22に通知する。

これにより、配分比出力装置22は、相互結合型ネットワーク19から、各ノード値の配列X(i)を銘柄iの最適な資金配分比として出力して、動作を終了する(第3図S9)。

以上のS5及びS9の処理動作は、前述の「原理説明」で説明した項「®」の動作に対応する。

一方、第3図S5の判定の結果、EとE。」』との差が関値B以上であれば、第2図のエネルギー極小化判定装置21は、過去のエネルギーの記録E。」。に現在のエネルギーの値Eをセットした後(第3図S6)、値変化規則設定装置18にノード値の配列X(i)の更新動作を指示する。

これにより、値変化規則設定装置18は、第3 図S7~S8のノード値更新動作を実行する。 すなわち、値変化規則設定装置18は、まず相 互結合型ネットワーク19上のノード値の配列 X の内容を、ノード値の旧配列 X。」。にセーブする (第3図S7)。なお、この旧配列の記憶領域は 値変化規則設定装置18内部に設けられている。 具体的には、X。」。(i) = X(i), 1≤i,j≤Nの 代入処理が実行される。

次に、値変化規則設定装置 1 8 は、パラメタ入力装置 1 6 から係数 A を入力した後、すべてのノード値の配列 X (i), 1 ≤ i, j ≤ N に対して、前述の協式、協式及び協式に基づいて、以下の更新動作を実行する。すなわち、

 $d X_i = A \left(\sum_{j=1}^{N} w(i,j) X \text{ old } (j) - \theta(i) \right)$ $X(i) = X(i) + d X_i$

の更新演算を行う。これにより更新された各ノード値の配列 X(i), $1 \le i$, $j \le N$ が相互結合型ネットワーク 1 9 に設定(記憶)され、第 3 図 S 8 の処理を終了する。

以上の更新動作の後、再び第3図S4の処理に 戻り、前述の動作を繰り返す。

(発明の効果)

本発明によれば、相互結合型ネットワークのエネルギー関数を極小化する問題として、総リターンを最大にし、かつ総リスクを最小にするような 各銘柄への最適な資金配分比を求めることが可能 となる。

この場合の、処理計算量は、銘柄数に対応する ノード数のほぼ2乗に比例するため、計算量が銘 柄数のほぼ3乗に比例する従来の2次計画法等に 比較して、処理時間が少なく計算時のメモリ容量 が少ない処理を実現することが可能となる。

特に、本発明による相互結合型ネットワークにおいては、各ノードの値をエネルギー関数の値が減少するように逐次更新する場合、前述の過式等として示される如く、各ノード値が離散値としてではなく連続値として変化するように更新させることが可能なため、これら各ノード値を各銘柄への資金配分比に対応させることにより、正確な資金配分比を求めることが可能となる。

以上の具体的実施例により、各銘柄の資金配分 比を最適に求めることが可能となる。

この場合の本実施例の処理時間を、従来の 2 次計画法(Q P 法)の処理時間と比較した推計結果を第 6 図に示す。本実施例における処理計算量は、銘柄数に対応するノード数のほぼ 2 乗に比例し、一方、 2 次計画法(Q P 法)の処理計算量は、銘柄数のほぼ 3 乗に比例する。従って、第 6 図から明らかなように、銘柄数が多くなるほど、本実施例の方が処理時間が少なく計算時のメモリ容量が少ない処理を実現することができる。なお、実際の証券投資等における銘柄数は1000~2000銘柄程度になると思われる。

なお、第2図の実施例は、汎用計算機上で実行されるソフトウェアの形式、又は専用のハードウェアの形式のいずれでも実現可能である。特に、専用ハードウェアチップとして実現すれば、高速かつ信頼性の高いシステムの実現が可能となる。

4. 図面の簡単な説明

第1図は、本発明のブロック図、

第2図は、本発明の具体的実施例のブロック構成図、

第3図は、主手続きの動作フローチャート、

第4図は、リンクの重みと関値の設定手続きの 動作フローチャート、

第5図は、ノードの初期値設定手続きの動作フローチャート、

第6図は、本実施例と従来例の処理時間の比較 図、

第7図は、従来例のブロック構成を示した図で ある。

5・・・ネットワーク記憶手段、

6・・・リンク重み値設定手段、

7・・・ノード値更新手段、

8・・・判定出力手段、

9・・・各銘柄別リターン、

10・・・各銘柄別リスク、

11・・・各銘柄間の相関係数、

12・・・各ノード間のリンク重み値、

13・・・各ノードの値、

14・・・最適な資金配分比.

特許出願人 富士通株式会社

本発明の具体的実施例のブロック構成図

第 2 図

本発明のプロック図

第 1 図

-447-

本実施例と従来例の処理時間の比較図 第 6 図

オ1の従来例のプロック構成を示した図 第 7 図

第1頁の続き @発 明 者 浜 屋 敏 神奈川県川崎市中原区上小田中1015番地 富士通株式会社 内 @発 明 者 宇 梶 町 子 神奈川県川崎市中原区上小田中1015番地 富士通株式会社 内