Teoría de Números 2024

Lista 05

27.septiembre.2024

1. Sea m = pq producto de dos primos distintos p < q. Hallar una fórmula para p y para q en términos de m y $\varphi(m)$.

Asumiendo que m=39247771 es producto de dos primos distintos, usar esta fórmula para encontrar p y q, sabiendo que $\varphi(m)=39233944$.

- 2. Muestre que si $d \mid n$, entonces $\varphi(d) \mid \varphi(n)$.
- 3. Para cualquier $n \in \mathbb{N}$, sea $\sigma(n)$ la suma de los divisores positivos de n; por ejemplo, $\sigma(6) = 1 + 2 + 3 + 6 = 12$ y $\sigma(10) = 1 + 2 + 5 + 10 = 18$.

Supongamos que n=pqr con p< q< r primos distintos. Diseñe un algoritmo eficiente que, dados n, $\varphi(n)$ y $\sigma(n)$, calcule la factorización de n. Por ejemplo, si n=105, entonces p=3, q=5 y r=7, por lo que la entrada al algoritmo sería n=105; $\varphi(n)=48$ y $\sigma(n)=192$; y la salida sería q=105; q=105;

Con su algoritmo, hallar los factores de n = 158650368521, sabiendo que $\varphi(n) = 158556411360$ y $\sigma(n) = 158744360544$.

- 4. Usar el Lema de Hensel para hallar las 6 soluciones de la ecuación $x^2 + x + 7 \equiv 0 \pmod{189}$ que vimos en clase.
- 5. Resolver las congruencias
 - a) $x^5 + x^4 + 1 \equiv 0 \pmod{34}$,
 - b) $x^3 + x + 57 \equiv 0 \pmod{53}$,
 - c) $x^2 + 5x + 24 \equiv 0 \pmod{36}$,
 - d) $x^11 + x^8 + 5 \equiv 0 \pmod{7}$.
- 6. Haga una implementación en Python del método ρ de Pollard para hallar factores no triviales. Use este método, en conjunto con el test de Fermat (simple o fuerte), para hallar la factoración en primos de los siguiente números:
 - a) 8, 131,
 - b) 16,019,
 - c) 199, 934, 971.
- 7. Alice y Bobo se quieren acordar una clave secreta k mediante un protocolo de intercambio de Diffie-Hellman. Alice anuncia que su clave pública es p=3793 y g=7. Bob elige secretamente una clave privada, y elige de forma aleatoria un número 1 < b < p y envía a Alice el resultado $g^b \equiv 454 \pmod{p}$. ¿Cuál es la clave secreta?