

Exercice 4

vendredi 14 avril 2017

16.18

Soit $f: \mathbb{N} \to \mathbb{N}$ calculable, bijective Soit m une machine de Turing implémentant fOn peut définir $f^{-1}(n)$: while f(i) != ni += 1

Dans. le cas surjectif, non injectif, f^{-1} n'est pas défini mais l'algorithme ci-dessus peut trouver le plus petit antécédent.

Si la fonction est injective mais non surjective, l'algorithme ne peut pas terminer.

Soient $L_1 \in R, L_2 \in \mathbb{R}$. Montrons que $L_1 \cup L_2 \in \mathbb{R}$ Soit $f_1(w) = \begin{cases} 0 \text{ si } w \notin L_1 \\ 1 \text{ si } w \in L_1 \end{cases}$ $f_{\cup}(w) = f_2(w) \text{ si } f_1(w) = 0$, sinon 1 $f_{\cap}(w) = f_2(w) \text{ si } f_1(w) = 1$, sinon 0

Montrons que $L_1, L_2 \in R \Rightarrow L_1 \cup L_2 \in R_E$ $f_1(w) = 1$ si $w \in L_1$ $f_2(w) = 1$ si $w \in L_2$ $f_0 = f_1 || f_2$

→ Exécuter un pas de f_1 Exécuter un pas de f_2 Si f_1 reconnaît alors 1 Sinon si f_2 reconnaît alors 1

Montrons que
$$L, \overline{L} \in R_E \Rightarrow L, \overline{L} \in R$$

 $f(w) = 1 \text{ si } w \in L$
 $\overline{f}(w) = 1 \text{ si } w \in \overline{L}$

 $(f || \bar{f})w$ Exécution pas à pas : Si f s'arrête en 1 alors 1 Si \bar{f} s'arrête en 1 alors 0 $E_n = \{x | \exists MT \ a \ n + 1 \ \text{\'etats}, \text{tq } MT(n) = x\}$

Montrons que cet ensemble est fini et non vide.

Pour une machine de Turing donnée, les états possibles sont :

$$\delta\left(\underbrace{q_{\underline{i}}}_{n+1 \text{ possibilit\'es}} + \underbrace{x}_{3 \text{ possibilit\'es}}\right) = \left(\underbrace{q_{\underline{j}}}_{n+1 \text{ possibilit\'es}} + \underbrace{y}_{3 \text{ possibilit\'es}} + \underbrace{m}_{3 \text{ possibilit\'es}}\right) \text{ ou } \emptyset$$

$$\Rightarrow \operatorname{Card}(E_n) \leq 2^{n+1} (9n+10)^{3(n+1)}$$

Soit $g(n) = \max E_n$

Supposons *g* calculable.

On pose : f(x) = g(x) + 1. f est calculable, donc $f(k) > \max E_k$: absurde!

vendredi 28 avril 2017

16.17

Soit
$$h(n) = \begin{cases} 1 \text{ si la MTU}(n, n) \text{ s'arrête} \\ 0 \text{ sinon} \end{cases}$$

Supposons h calculable.

On pose
$$f(n) = \begin{cases} 1 \text{ si } h(n) = 0 \\ \text{boucle sinon} \end{cases}$$

Cette fonction est partielle et calculable.

$$MTU(\hat{f}, \hat{f}) = f(\hat{f}) = \begin{cases} 1 \text{ si } h(\tilde{f}) = 0 \\ \text{boucle sinon} \end{cases}$$
$$h(\hat{f}) = 0 \Rightarrow \underbrace{MTU(\hat{f}, \hat{f})}_{f(\hat{f})} \text{ boucle mais } f(\hat{f}) = 1$$

$$h(\hat{f}) = 1 \Rightarrow idem$$

Exercice 9

vendredi 28 avril 2017

 $H = \{n | h(n) = 1\}$ (Définie dans l'exercice 8)

 $H = \{n | MTU(n, n) \text{ s'arrête} \}$

H n'est pas récursif (sinon *h* serait calculable) H est récursif énumérable car MT(n, n) s'arrête si $n \in H$.

 \overline{H} n'est pas récursif énumérable, sinon H (et \overline{H}) seraient récursif.

Soient deux suites de mots (D'un alphabet de plus de 2 lettres)

$$\alpha_1 \dots \alpha_n$$

$$\beta_1 \dots \beta_n$$

Existe-t-il une suite d'indices $i_1, \dots, i_k \in \{1, \dots, n\}$ tel que :

$$\alpha_{i_1} \dots \alpha_{i_k} = \beta_{i_1} \dots \beta_{i_k} ?$$

Exemple:

α_1	α_2	α_3	eta_1	eta_2	β_3	i_1	i_2	i_3	i_4
a	ab	bba	baa	aa	bb	3	2	3	1

En effet, on forme bbaabbbaa.

Reste à trouver un codage pour faire le lien entre les deux problèmes :

Post = oui
$$\Leftrightarrow L(G_1) \cap L(G_2) \neq \emptyset$$

$$Post = non \Leftrightarrow L(G_1) \cap L(G_2) = \emptyset$$

$$S_1 \to \alpha_1 S_1 \#_1 | \dots | \alpha_n S_1 \#_n | \alpha_1 \#_1 \dots | \alpha_n \#_n$$

 $S_2 \to \beta_1 S_2 \#_1 | \dots | \beta_n S_2 \#_n | \beta_1 \#_1 | \dots | \beta_n \#_n$

Théorème de Rice

Toute proposition non triviale (c'est-à-dire, pas vraie partout) sur toutes les MT/programmes est indécidable.

Question 1

- 1) $L_w = \{\langle m \rangle | w \in L(m) \}$ $L_{m_1} = \emptyset \rightarrow w \notin L_{m_1}, w \in L_{m_2}$ \Rightarrow " $w \in L(m)$ " non triviale $\Rightarrow L_w$ non récursif d'aprèse Rice.
- 2) $L_{ne} = \{\langle m \rangle | L(m) \neq \emptyset \}$ $L_1 = \emptyset, L_2 = \{\varepsilon\} \Rightarrow \text{non récursif}$
- 3) $L_e = \{\langle m \rangle | L(m) = \emptyset \}$ $L_1 = \emptyset, L_2 = \{\varepsilon\} \Rightarrow \text{non récursif}$
- 4) $L_k, k > 0 : L_1 = \emptyset, L_2 = \{a^*\}, \{a, b, c\} \in \Sigma$
- 5) L_f , $L_1 = \emptyset$, $L_2 = \{a^*\}$
- 6) $L_{\text{reg}}, L_1 = \{a^n b^n c^n | n > 0\}, L_2 = \emptyset$
- 7) L_{hc} , $L_1 = \{a^n b^n c^n | n > 0\}$, $L_2 = \emptyset$
- 8) L_r , $L_1 = \emptyset$, $L_2 = L_u$
- 9) L_{nr} , $L_1 = \emptyset$, $L_2 = L_u$.

Question 2

 L_w est r.e $m \in L_w \Leftrightarrow (m, w) \in L_u$ qui est R.E

L, L' RE.

1) "
$$L = L'$$
" décidable ?

"
$$L=\emptyset$$
" indécidable ?
$$L_1=\emptyset, L_2=\{\varepsilon\} \underset{\mathrm{Rice}}{\Longrightarrow} "L=\emptyset" \text{ indécidable}$$
 Si " $L=L'$ " décidable $(L'=\emptyset)$ alors " $L=\emptyset$ " devient décidable