PAT-NO:

JP405297276A

DOCUMENT-IDENTIFIER: JP 05297276 A

TITLE:

WIDE ZOOM LENS

PUBN-DATE:

November 12, 1993

INVENTOR-INFORMATION:

NAME

NOSE, AKIRA

YAMADA, MASAMI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

ELMO CO LTD

N/A

APPL-NO:

JP04128194

APPL-DATE: April 21, 1992

INT-CL (IPC): G02B015/167

US-CL-CURRENT: 359/689

ABSTRACT:

PURPOSE: To provide a lens system for a wide zoom lens for use on an optical system of a TV camera, a data exhibiting device, etc., wherein the lens system is embodied in a compact structure and presents a large 'wide' termination picture angle and large zoom ratio.

CONSTITUTION: A wide zoom lens concerned is composed of the first lens group presenting a negative refraction power for focusing, a second and a third lens group of positive and negative refraction power, respectively, to be moved in correlationship for continuous varyiation of the power, and a fourth lens group of positive refraction power which is a master lens, wherein the zoom ratio [(focal distance ft at 'tele' termination)/(focal distance fw at 'wide' termination)] is set over 3.0. The relationship between their focal distances F1, F2, F3, F4 is so arranged as to meet the conditions 3.0&le,-Fl/fw<4.0, -F4/F3≤0.7, and fw/F4≤0.5, and thereby designing of a lens system is made practicable in which the manufacturing error and the product performance are well balanced.

COPYRIGHT: (C)1993,JPO&Japio

(19)日本国特許庁(JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-297276

(43)公開日 平成5年(1993)11月12日

(51)Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

G 0 2 B 15/167

8106-2K

請求項の数2(全 8 頁) 審査請求 有

(01)	da 1866	4 11
(21)	(LI) MSI	番号

特願平4-128194

(22)出顧日

平成 4年(1992) 4月21日

(71)出願人 000000424

株式会社エルモ社

愛知県名古屋市瑞穂区明前町6番14号

(72)発明者 野瀬 彰

名古屋市瑞穂区明前町六番14号 株式会社

エルモ社内

(72)発明者 山田 正美

名古屋市瑞穂区明前町六番14号 株式会社

エルモ社内

(74)代理人 弁理士 五十嵐 孝雄 (外1名)

(54)【発明の名称】 ワイドズームレンズ

(57)【要約】

【目的】 TVカメラあるいは資料提示装置などの光学 系に利用されるワイドズームレンズに関し、ワイド端画 角とズーム比とが共に大きく、しかもコンパクトなレン ズ系を提供する。

【構成】 フォーカシング用の負の屈折力の第1レンズ 群、連続変倍のため相互に関係的に移動される正の屈折 力の第2レンズ群及び負の屈折力の第3レンズ群、マス タレンズである正の屈折力の第4レンズ群の焦点距離を それぞれF1, F2, F3, F4とし、そのズーム比 { (テレ端の焦点距離ft)/(ワイド端の焦点距離f w) } が3.0以上であるワイドズームレンズにおい て、これらの焦点距離の相互関係が、3.0≦-F1/ $fw \le 4.0$, $-F4/F3 \le 0.7$ 及 $fw/F4 \le$ 0.5を満足するよう構成することにより、製造誤差と 製品性能との均衡のとれたレンズ系の設計ができる。

【特許請求の範囲】

【請求項1】 最も物体側に配置されるフォーカシング 用の負の屈折力の第1レンズ群と、

該第1レンズ群に続いて配置され、連続変倍及び該連続 変倍によって生じる像面の移動を補正のため相互に関係 をもって移動される正の屈折力の第2レンズ群及び負の 屈折力の第3レンズ群と、

最も像面側に固定され、マスタレンズである正の屈折力 の第4レンズ群とを有し、そのズーム比 { (テレ端の焦 以上であるワイドズームレンズにおいて、

前記第1レンズ群ないし第4レンズ群の焦点距離をそれ ぞれF1, F2, F3, F4とするとき、これらの焦点 距離の相互関係が、

3. $0 \le -F1/f \le 4.0$

-F4/F3≦0.7

 $fw/F4 \le 0.5$

なる条件を満足することを特徴とするワイドズームレン ズ.

【請求項2】 前記第1レンズ群は、物体側より順に負 20 レンズ、像面側に凸な正メニスカスレンズ、負レンズを 有し、

前記第3レンズ群は、正負または負正の接合レンズであ

前記第4レンズ群は、第3レンズ群と第4レンズ群の間 に位置する絞りから第4レンズ群を構成する第1面まで の光軸上の距離をdとしたとき

d/F4≥1.0

なる条件を満足することを特徴とする請求項1記載のワ イドズームレンズ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、TVカメラ用あるいは 資料提示装置用などの光学系に利用されるワイドズーム レンズに関し、特にワイド端画角とズーム比とが共に大 きなワイドズームレンズに関する。

[0002]

【従来技術】従来より、TVカメラあるいは資料提示装 置などのズームレンズとして、広角域を含み、高変倍を 得ることができるレンズが要求されている。こうした要 40 求をある程度満たすものとして、物体側から順に負、

正、負、正の屈折力からなる4つのレンズ群から構成さ れるズームレンズや、物体側から順に正、負、負、正の 屈折力からなる4つのレンズ群から構成されるズームレ ンズが知られている。前者のように、物体側から順に負 の屈折力の第1レンズ群と正の屈折力の第2レンズ群と を備えるものを、ネガティブリードタイプのズームレン ズと呼び、後者のように、物体側から順に負の屈折力の 第1レンズ群と正の屈折力の第2レンズ群とを備えるも のを、ポジティブリードタイプのズームレンズと呼んで 50

いる。

【0003】これら各構成タイプのズームレンズは共 に、その第2レンズ群と第3レンズ群とを相互の関係を もって移動させることで、変倍し、その変倍に伴って変 動する像面位置のずれを補正している。

2

[0004]

【発明が解決しようとする課題】しかし、上記従来のズ ームレンズでは、未だにワイド端画角とズーム比とが共 に大きなレンズ系を提供するに至ってはおらず、各タイ 点距離ft)/(ワイド端の焦点距離fw)}が3.0 10 プの有する特徴に応じて適宜使い分けられているのが現 状である。すなわち、上記ネガティブリードタイプ(以 下、Nタイプと呼ぶ)のレンズ系は、ワイド端画角を大 きくする仕様に適しており、比較的コンパクトな設計が 可能である。しかし、その反面、高ズーム比の要求に答 えることができない。なぜなら、画面の中心に集光する 光線の光路を考えてみると、第1 レンズ群が負の屈折力 となっていることから、第1レンズ群に入射する光線の 高さ(光学軸からの距離)に対して、第2レンズ群に入 射する光線の高さは大きくなり、結果的に、第2レンズ 群のレンズ径は大きなものが必要となるためであり、こ のために、コンパクトさを保つといった設計上の制限か ら、そのズーム比はせいぜい2倍程度が限度であり、高 ズーム比の要求に答えることができない。

【0005】一方、ポジティブリードタイプ (以下、P タイプと呼ぶ)のレンズ系は、Nタイプに比較して高ズ ームを得ることが可能で、6倍~8倍の高ズーム比のレ ンズ系が提案されている。しかし、その反面、ワイド端 画角を大きくすることができない。 なぜなら、 画面の隅 に集光する光線の光路を考えてみると解るように、Pタ 30 イプのレンズ系は、第2レンズ群が負の屈折力となって いることから、物体側の第1レンズ群のレンズ径は、N タイプに比較して大きなものが必要となるためであり、 より大きなワイド端画角を得ようとすればする程この傾 向は大きくなり、収差補正が困難になるなどの設計上の 制限から、ワイド端画角を大きくすることができない。 【0006】例えば、上記Nタイプのレンズ系を1/2 インチサイズの撮像素子を使用したTVカメラ用レンズ として用いた場合、大きなワイド端画角が得られるもの の、その焦点距離 f は $f = 6 \sim 1.2$ m程度となるために ズーム比がせいぜい2倍程度となってしまう。また、上 記Pタイプのレンズ系にてズーム比6,8の高ズームレ ンズ系を設計するならば、その焦点距離fはf=8.5 ~48mm, f=8.5~68mmとなり、ワイド端画角と しては50度程度が限度である。

【0007】本発明のワイドズームレンズは、大きなワ イド端画角が得られるNタイプのレンズ系にあってズー ム比の拡大を可能とすることで、ワイド端画角とズーム 比とが共に大きく、しかもコンパクトなレンズ系を提供 することを目的としてなされ、次の構成を採った。

[0008]

【課題を解決するための手段】本発明のワイドズームレ ンズは、最も物体側に配置されるフォーカシング用の負 の屈折力の第1レンズ群と、該第1レンズ群に続いて配 置され、連続変倍及び該連続変倍によって生じる像面の 移動を補正のため相互に関係をもって移動される正の屈 折力の第2レンズ群及び負の屈折力の第3レンズ群と、 最も像面側に固定され、マスタレンズである正の屈折力 の第4レンズ群とを有し、そのズーム比 { (テレ端の焦 点距離 f t) / (ワイド端の焦点距離 f w) } が3.0 以上であるワイドズームレンズにおいて、前記第1レン 10 容され、製造し易いことになる。 ズ群ないし第4レンズ群の焦点距離をそれぞれF1、F 2, F3, F4とするとき、これらの焦点距離の相互関 係が、

3. $0 \le -F1/fw \le 4.0$ $-F4/F3 \le 0.7$ $fw/F4 \le 0.5$

なる条件を満足することを特徴とする。

【0009】また、上記構成のワイドズームレンズにお いて、前記第1レンズ群は、物体側より順に負レンズ、 像面側に凸な正メニスカスレンズ、負レンズを有し、前 20 3.0≤(-F1)/fw=Z/√(δXi/δd6T) 記第3レンズ群は、正負または負正の接合レンズであ り、前記第4レンズ群は、第3レンズ群と第4レンズ群 の間に位置する絞りから第4レンズ群を構成する第1面 までの光軸上の距離をdとしたとき $d/F4 \ge 1.0$

なる条件を満足することが好ましい。

[0010]

【作用】以上のように構成された本発明のワイドズーム レンズでは、各レンズ群の焦点距離の配分が最適に選択 ンズ系のズーム比拡大が可能となり、ズーム比が3.0 以上となっても、全体のコンパクトさを損ねることな く、良好なズームレンズを得ることができる。

【0011】まず、第1の条件(-F1)/fwの数値 限定について説明する。前述のごとくズームレンズにお いては、変倍作用をなすために第2レンズ群と第3レン ズ群が相互の関係をもって前後に移動するが、これらレ ンズ群の相対位置に誤差が発生すると、本来撮像素子の 撮影面上にあるべき結像面が変倍中にずれてしまい、結 像位置に誤差が生じる。

【0012】いま、変倍範囲内のある焦点距離fi にお ける第1レンズ群と第2レンズ群の間隔D6iの誤差Δd 6iと像面位置の誤差∆Xi との関係式は近似的に $\Delta Xi = \{ (\delta Xi) / (\delta d6i) \} \times \Delta d6i$ と表される。ここで、δは偏微分の記号を表わすものと して、例えば、zのyに関する偏微分係数はδz/δy と表わされる。 (δ Xi) / (δ d6i) は、誤差感度と でも呼ぶべき係数で、レンズ系の焦点距離fiと、第1 レンズ群の焦点距離F1によって決まり、 $(\delta Xi)/(\delta d6i) = (fi/F1)^2$

と表される。

【0013】上記の誤差発生の要因としては、次の2つ が挙げられる。その1つは、フォーカシング用の第1レ ンズ群を繰り出すための機構、例えばヘリコイドネジの バックラッシであり、もう1つは変倍作用をなす第2レ ンズ群を移動させる機構、例えばカム機構のバックラッ シや製造誤差である。従って、像面位置の誤差AXi を 一定値(許容範囲)以内に抑さえるためには、(SXi)/(δ d6i)が小さい方が、位置の誤差 Δ d6iが許

4

【0014】ここで、ズーム比Z (=ft/fw)とす

 $-(F1/fw) = (ft/fw) \times (-F1/ft)$

 $=Z/\{ft/(-F1)\}$

 $=Z/\sqrt{[\{ft/(-F1)\}^2]}$

 $=Z/\sqrt{(\delta Xi / \delta d6T)}$

となる。

【0015】このため、第1の条件のうちの前半の不等 式3. $0 \le -F1/f$ wは、次のように変形される。 すなわち、

 $\delta Xi / \delta d6T \le (Z/3.0)^2$

であり、例えばズーム比Z=4. 0のとき、δXi /δ d6T≤1.78であることを規定している。

【0016】この条件を外れるならば、許容される像面 位置の誤差量に比較して Ad6Tの誤差を過度に抑さえる ことが要求され、製造コストが急激に増加する。なお、 上記関係式から明らかなように、この条件はズーム比Z が小さくなるほど (δ Xi /δ d6T) への要求が軽減さ されているため、本来ワイド性能に優れるNタイプのレ 30 れる関係である。従って、ズーム比Zが大きい高級仕様 対応ならば、その製造コストの上昇をある程度許容して $\delta Xi / \delta d6T$ の上限を小さく設定し、逆にズーム比Zが小さな廉価仕様ならばδXi /δd6Tの上限を大きく 設定することで製造費を低く抑さえるための重要な基準 を与えるのである。

> 【0017】一方、第1式の後半の条件(-F1/f w) ≤4. 0について説明する。ワイドズームレンズを 構成する各レンズ群の焦点距離Fiは全く独立で決めら れるものではなくズームレンズたる条件式を満たしなが ら、それぞれが関係し合って決まっている。いいかえれ ば、 | F1 | が大きくなるとF2も大きくなり、その結 果、変倍に際して第2レンズ群の移動するストロークが 長くなって、それだけのスペースを必要とするため、ズ ームレンズ全体のスケールを大きくし、また、その結果 として、各レンズ群の有効径を増大させる。さらに、第 1レンズ群はフォーカシングの為に物体側に繰り出され るが、 | F1 | が大きくなると同一の物点距離でも、合 焦のために大きな繰り出し量が必要となり、そのことが より一層第1レンズ群の有効径を大きくしてしまう。し 50 たがって、 | F1 | が大き過ぎると、全体のコンパクト

さを損なうと共に、設計上、不都合が生じることから、 (-F1/fw)≤4.0の条件により、第1レンズ群 の焦点距離F1の上限を規定する。特に、本発明の1つ の目的としている広画角のズームレンズではその傾向が 顕著である。

【0018】第2の条件式 (-F4/F3) ≦0.7 は、次のような物理的意義を有する。本発明の用件を満 たすワイドズームレンズでは、第1レンズ群ないし第3 レンズ群でほぼアフォーカル (afocal) となる。従っ て、前記像面位置の誤差 AXi に対する第2レンズ群と 第3レンズ群の間隔D11のその誤差Δd11i との関係 は、近似的に次式にて表される。

 $(\delta Xi)/(\delta d11i) = \{(-F4)/F3\}^{2}$ 【0019】この式から明らかなように、誤差感度はレ ンズ系の焦点距離には無関係であり、常に一定値とな る。ここで、第2の条件-F4/F3≤0.7を上式に 代入するならば、

 $(\delta Xi)/(\delta d11i) \leq (0.7)^2$ ≤0.49

となる。すなわち、この条件を外れるならば、前述した 20 条件1と同様にレンズ系製造誤差を過度に抑制すること となり、その製造コストに大幅な上昇を来たすこととな るのである。

【0020】また、第1の条件である第1レンズ群と第 2レンズ群の間隔の誤差感度の許容値に比較して、本第 2の条件である第2レンズ群と第3レンズ群の間隔の誤 差感度 { (δ Xi) / (δ d 11i) } の許容値を低く設 定しているのは、この第2レンズ群と第3レンズ群は共 に変倍に際しての移動群であり、変倍を達成するための 機構上誤差を発生する箇所が多いためである。

【0021】更に、この条件式を外れるならば、第3レ ンズ群の焦点距離が短くなり、例えば第3レンズ群を正 負または負正の接合レンズ群により構成する場合には、 その収差の補正が困難となり、3枚以上のレンズエレメ ントが必要となる。このことは当然に製造コストのアッ プを招くし、エレメントの増加によって第3レンズ群全 体の中心肉厚が増加し、第3レンズ群とその前後のレン ズ群とのスペースを余分に必要とするため、レンズ系全 体のスケールが大きくなる。

【0022】他方、第3の条件式fw/F4≦0.5 は、次のような作用を内包している。一般に、撮像素子 を有するカラーTVカメラにおいては、高い空間周波数 の被写体で発生するカメラ系の偽色信号を防止するた め、水晶ローパスフィルタなどがズームレンズの最終面 から撮像素子の間に挿入される。従って、それらが挿入 され、かつ、それらを保持する機構のスペースのため、 適度な長さのバックフォーカスを保有することが必要と なる。従って、この条件を満たすためにはマスタレンズ である第4レンズ群の焦点距離F4が長いことが要求さ れる。例えば、ワイド端画角60度以上を目標とするた 50 質を表現している。なお、長さの単位はmmである。

めには、1/3インチサイズTVカメラにあってはfw ≒5㎜でバックフォーカスは7㎜を必要とする。また1 /2インチサイズのTVカメラではfw≒7㎜でバック フォーカスとして10㎜を必要とする。

6

【0023】しかしながら、一般にマスタレンズの焦点 距離F4に対して、通常のレンズエレメントの配置にて 達成できるバックフォーカスは0.7×F4である。そ こで、上記した条件fw/F4≤0.5を満足するよう にレンズ系を設計するならば、第4レンズ群の焦点距離 10 F411.

 $F4 \ge fw/0.5$

となり、達成できるバックフォーカスは、1/3インチ サイズの場合ではfw=5㎜, バックフォーカス7㎜、 1/2インチサイズの場合ではf w=7 2 2 1 バックフォ ーカス9.8~10 mとなるのである。すなわち、この 条件を逸脱する設計仕様では、必要とするバックフォー カスの達成が困難となる。したがって、前述してきた第 1ないし第3の条件式を満たすことにより、ズーム比が 3. 0以上となっても、全体のコンパクトさを損ねるこ とがなく、また、製造誤差を過度に抑制して製造コスト に大幅な上昇を来すこともない。

【0024】ところで、像面湾曲及び非点収差を始めと した各種の収差の補正を最小限のレンズエレメントによ り構成するためには、上記各条件に加えて、前記第1レ ンズ群を物体側より順に負レンズ、像面側に凸な正メニ スカスレンズ、負レンズとして構成し、前記第3レンズ 群を正負の接合レンズとし、前記第4レンズ群と第3レ ンズ群との間に位置する絞りから第4レンズ群を構成す る第1面までの光軸上の距離をdとしたとき

30 d/F4≥1.0

なる条件を満足することが好ましいことを前述した。以 下、その作用を説明する。

【0025】一般に、第1から第3レンズ群での像面湾 曲や非点収差等の画面周辺にて発生する収差の補正は、 ズーミングによる収差の変動を少なくする様になされて いる。したがって、第1から第3レンズ群において平均 的に残存した収差量をマスタレンズである第4レンズ群 によって補正する必要がある。そのために、条件d/F 4≥1.0を満足する事によって、即ち、第4レンズ群 40 における軸外主光線の光線高を高くすることによって補 正可能となる。

[0026]

【実施例】以上説明した本発明の構成、作用を一層明ら かにするために、以下本発明のワイドズームレンズの好 適な実施例について説明する。以下の実施例において、 Rはレンズ面の曲率半径、Dはレンズ中心肉厚または面 間隔、Nは硝材の屈折率、レは硝材のアッベ数を示して いる。また、これらの記号に符される添字iは、その記 号が物体側より順に数えたときにi番目のレンズ群の性

30

7

【0027】(実施例1)1/3インチCCD搭載のT Vカメラ用のワイドズームレンズを、次の各レンズエレ メントから成るレンズ群により図1に示すように構成す る。ここで、焦点距離は、f=5.274~19.83 1(1/2インチTVカメラ用換算値 f=7.033~26.44) である。ワイド端画角は64.2度とな る。

[0028] R1 = -507.32D1=1.2N1=1.51825 ν1=63.9 R2= 18.845 D2=4.3R3= -19.375 D3=2.0 $\nu 2 = 23.7$ N2=1.85498 R4= -15.847 D4=0.3R5 = -20.605D5=1.2 N3=1.51825 $\nu 3=63.9$ R6= 52.514 D6=28.9687~1.7778 (可変) [0029] R7= 109.46 D7=1.3 N4=1.85498 ν 4=23.7 R8= 24.60 D8=5.2 N5=1.65425 ν 5=58.3 R9= -32.528 D9=0.2 R10= 25.268 D10=4.3 N6=1.65425 ν 6=58.3 R11= -69.83 D11=2.2662~28.2255(可変) [0030] R12= -22.543 D12=0.8 N7=1.59143 ν 7=61.0 R13= 22.543 D13=1.2 N8=1.81264 ν 8=25.2 R14= 30.28 D14=19.9778~21.2094(可変) [0031] R15= 22.00 D15=2.8 N9=1.65425 ν9=58.3 R16= -31.94 D16=0.2R17= 14.4 D17=4.2 N10=1.65425 ν 10=58.3 R18= -14.4 D18=1.0 N11=1.85498 ν 11=23.7 R19= 80.89 D19=2.0 R20= ∞ D20=5.0 N12=1.51825 ν 12=63.9 R21= ∞ 【0032】第1レンズ群の焦点距離 F1=-17.943 第2レンズ群の焦点距離 F2= 18.665 第3レンズ群の焦点距離 F3=-22.844 第4レンズ群の焦点距離 F4= 13.326 とした本実施例のレンズ系のワイド端の収差図を図2 に、テレ端の収差図を図3に示している。なお、図2お よび図3において、実線は546.1mmの光線波長、一 点鎖線は656.3nmの光線波長、破線は460.0nm 40 の光線波長を表している。 【0033】ワイド端の焦点距離fw=5.27及びテ レ端の焦点距離 f t = 19.831となり、その比は ft/fw=3.76となる。また、第3レンズ群と第4 レンズ群の間に位置する絞りから第4レンズ群を構成す る第1面までの光軸上の距離はは17.81となる。な $3 \cdot -F1/fw = 3.4, -F4/F3 = 0.58,$ fw/F4=0.40,d/F4=1.34となり、上 述した4つの条件を満足している。

【0034】このため、本実施例では、ワイド端画角と 50 R19= 80.89

ズーム比とが共に大きく、しかもコンパクトなレンズ系 となる。しかも、各種収差の良好な補正を最小限のレン ズエレメントにより達成できる。

【0035】(実施例2)図4のレンズ断面及び移動説

明図に示す第2の実施例は、資料提示装置に使用するズ

8

ームレンズである。資料提示装置のような近距離の被写 体を撮影する場合には、通常、ワイドズームレンズの前 に接写用のクローズアップレンズを着けて使用される が、本実施例では、前記実施例のワイドズームレンズに 10 クローズアップレンズを装着したのと同等の性能を引き 出すために、第1レンズ群にクローズアップレンズの機 能を奏するレンズ系、即ち、第1レンズ群にクローズア ップレンズを足し込んだレンズ系を採用している。 【0036】なお、こうした資料提示装置において、ク ローズアップレンズの焦点距離はクローズアップレンズ から被写体(資料)までの距離となるが、装置をコンパ クト化するためには、レンズから被写体までの距離を短 く、即ちクローズアップレンズの焦点距離を短くして資

い画角を持つことが要求される。こうした要求を満たす ものが、本実施例の資料提示装置である。本実施例で は、前記実施例のワイドズームレンズに焦点距離300 ■のクローズアップレンズを装着したのと同等の性能を 引き出している。以下、撮影距離を300㎜とした場合 について説明する。

料を取り込む必要があり、そうするとズームレンズの画

から、取り込みサイズを保つためにはズームレンズが広

20 角が小さくては資料の取り込みサイズが小さくなること

[0037]			
R1 = -778.7	D1=1.2	N1=1.51825	ν 1=63.9
R2= 20.64	D2=4.3		
R3= -20.256	D3=2.0	N2=1.85498	ν2=23.7
R4= -16.26	D4=0.3		
R5= -20.85	D5=1.2	N3=1.51825	ν3=63.9
R6= 50.31	D6=28.972	24~1.7848(可変	5)
[0038]			
R7= 143.42	D7=1.3	N4=1.85498	ν 4= 23.7
R8= 24.00	D8=5.2	N5=1.65425	ν5=58.3
R9= -30.731	D9=0.2		
R10= 24.92	D10=4.3	N6=1.65425	ν 6=58.3
R11= -69.149	D11=2.42	28~28.3804(可2	変)
[0039]			
R12= -22.543	D12=0.8	N7=1.59143	ν7=61.0
R13= 22.543	D13=1.2	N8=1.81264	ν8=25.2
R14= 30.28	D14=19.9800~21.2102(可変)		
[0040]			
R15= 22.00	D15=2.8	N9=1.65425	ν9=58.3
R16= -31.94	D16=0.2		
R17= 14.4	D17=4.2	N10=1.65425	ν 10=58.3
R18= -14.4	D18=1.0	N11=1.85498	ν 11=23.7

D19=2.0

R20= ∞ D20=5.0 N12=1.51825 ν 12=63.9 R21= ∞

【0041】第1レンズ群の焦点距離 F1=-19.085

第2レンズ群の焦点距離 F2= 18.665

第3レンズ群の焦点距離 F3=-22.844

第4レンズ群の焦点距離 F4= 13.326

とした本実施例のレンズ系のワイド端の収差図を図5 に、テレ端の収差図を図6に示している。なお、前記実 施例と同様に、図5及び図6において実線は546.1 線波長を表している。

【0042】本実施例にあっては、ワイド端の焦点距離 fw=5.61及びテレ端の焦点距離ft=21.09 となり、その比はf t/f w=3.76となる。また、 距離dは17.81となる。なお、-F1/fw=3. 40, -F4/F3=0.58, fw/F4=0.42, d/F4=1.34となり、上述した4つの条件を 満足している。

【0043】このため、本実施例では、第1実施例と同 様な効果を奏する。さらには、ワイドズームレンズにク 20 ローズアップレンズを足し込んでいることから、第1レ ンズ群の焦点距離の絶対値 | F1 | を大きくすることが でき、この結果、第1の条件(-F1)/fwの数値限 定を満たすことが容易となり、また、収差の補正も容易 となる。

【0044】なお、前記実施例1および実施例2では、 条件d/F4≥1.0を満たすように第4レンズ群の焦 点距離F4を最適に選択しているが、必ずしもこの条件 を満たす必要はない。但し、請求項1の条件に、d/F 4≥1.0の条件を付加することによって、より一層効 30 Ri 果的なものになる。

[0045]

【発明の効果】以上説明したように本発明のワイドズー

ムレンズは、各レンズ群の焦点距離F1、F2、F3、 F4を適切に配分することにより、ワイド端画角とズー ム比が共に大きいレンズ系を4つのレンズ群により安価 かつコンパクトに構成することができる。また、各レン ズ群を構成するエレメントを最適に選択し、かつ、第4 レンズ群の焦点距離F4と絞りから第4レンズ群を構成 する第1面までの光軸上の距離との関係を適切に設計し たため、像面湾曲等の収差の良好な補正が達成できる。 【図面の簡単な説明】

10

nm、一点鎖線は656.3nm、破線は460.0nmの光 10 【図1】本発明の第一実施例であるワイドズームレンズ のレンズ系の断面及び移動説明図である。

> 【図2】そのワイドズームレンズのワイド端の収差図で ある。

> 【図3】 そのワイドズームレンズのテレ端の収差図であ

【図4】本発明の第二実施例であるワイドズームレンズ のレンズ系の断面及び移動説明図である。

【図5】そのワイドズームレンズのワイド端の収差図で ある。

【図6】そのワイドズームレンズのテレ端の収差図であ る。

【符号の説明】

F 4

テレ端の焦点距離 ft

ワイド端の焦点距離 f w

F 1 第1レンズ群の焦点距離

F 2 第2レンズ群の焦点距離

F3 第3レンズ群の焦点距離

第4レンズ群の焦点距離 d 絞りと第4レンズ群の第1面までの距離

レンズ面の曲率半径

Di レンズ中心肉厚または面間隔

Νi 硝材の屈折率

硝材のアッベ数 νi

【手続補正書】

【提出日】平成4年6月16日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0035

【補正方法】変更

【補正内容】

【0035】(実施例2)図4のレンズ断面及び移動説 明図に示す第2の実施例は、資料提示装置に使用するワ イドズームレンズである。資料提示装置のような近距離の被写体を撮影する場合には、通常、ズームレンズの前に接写用のクローズアップレンズを着けて使用されるが、本実施例では、前記実施例のワイドズームレンズにクローズアップレンズを装着したのと同等の性能を引き出すために、第1レンズ群にクローズアップレンズの機能を奏するレンズ系、即ち、第1レンズ群にクローズアップレンズを足し込んだレンズ系を採用している。