§1 УИнтеграл от дифференциальной формы по пути

Параграфы со значком «Х» лучше не читать, они недопилены.

Дифференциальные формы. Начать лучше с полилинейных форм.

Определение 1. Пусть L — линейное пространство над полем K. Тогда функция $A: L^k \to K$, линейная по каждому из своих аргументов, называется k-линейной формой.

< ну его> < потом лучше напишу>

Нам тут хватит и 1-форм, так что

Определение 2. Дифференциальной 1-формой можно назвать отображение из \mathbb{R}^n в линейную (по h) форму, $P \in C^0$

$$\omega = \langle P(x), dx(x, h) \rangle$$

Но это как-то не очень (а что такое дифференциал?).

Гладкие пути.

Определение 3. Пусть γ : $[a;b]\subset\mathbb{R}\to\mathbb{R}^n$. Тогда γ называется путём в пространстве \mathbb{R}^n .

- Путь гладкий, если $\gamma \in C^1$,
- путь регулярный, если $\operatorname{rk} \gamma' \geqslant 1$,
- путь простой, если γ биекция.

Определение 4. Образ $\Gamma = \gamma([a;b]) \subset \mathbb{R}^n$ называется *кривой* в \mathbb{R}^n . Ещё говорят, что Γ — носитель пути γ , а γ — параметризация Γ .

Замечание. Путь простой ⇔ кривая не имеет самопересечений.

Определение 5. Будем говорить, что простые пути имеют одинаковую ориентацию, если

$$\gamma_1(a_1) = \gamma_2(a_2) \ \gamma_1(b_1) = \gamma_2(b_2)$$

и противоположную, если всё наоборот. Тут ещё введу нестандартное обозначение, но так жить проще ...

- 🕆 одинаковая ориентация
- 🕽 противоположная ориентация

Замечание. Для биективных параметризаций видимо просто нет другого выбора. С петлями всё будет интереснее.

Интегралы от форм по пути

Определение 6. Просто возьмём и определим интегралы по простому гладкому пути от 1-форм так:

$$I = \int_{\gamma} \omega := \int_{a}^{b} \langle P, \dot{x}(t) \rangle dt$$

Утверждение 1 (Корректность определения выше). Интеграл по пути не зависит от параметризации.

 \square Пусть γ_1, γ_2 — параметризации Γ , одинаково ориентированы. Докажем,что

$$I_1 = \int_{\gamma_1} \omega = \int_{\gamma_2} \omega = I_2$$

Поскольку γ_1, γ_2 — биекции, $\exists \, \varphi \colon \ t_2 = \varphi(t_1)$, тоже биекция, такого сорта: $t_1 \stackrel{\gamma_1}{\longmapsto} x \stackrel{\gamma_2^{-1}}{\longmapsto} t_2$ Тогда

$$I_2 = \int_{a_2}^{b_2} \langle P(\gamma_2(t_2)), \partial_{t_2} \gamma_2(t_2) \rangle dt_2 = \int_{a_1}^{b_1} \langle P(\underbrace{\gamma_2(\varphi(t_1))}_{x}), \partial_{t_2} \gamma_2(t_2)) \rangle \partial_{t_1} \varphi(t_1) dt_1$$

Покажем, что $\partial_{t_2}\gamma_2(t_2)\partial_{t_1}\varphi=\partial_{t_1}\gamma_1(t_1)$. Это просто следует равенства $\gamma_1(t_1)=\gamma_2(t_2)$, если его продифференцировать по t_1 . Так что

$$\int\limits_{a_1}^{b_1} \langle P(x), \partial_{t_1} \gamma_1(t_1) \rangle \left(\partial_{t_1} \varphi(t_1) \right)^{-1} \partial_{t_1} \varphi(t_1) \, \mathrm{d}t_1 = I_1$$

Замечание 1. Если $\gamma_1 \uparrow \downarrow \gamma_2$, то $I_2 = -I_1$.

Замечание 2. Если рассматривать только одинаково ориентированые пути, то

$$\int_{\gamma} \omega = \int_{\Gamma} \omega$$

Замечание 3. Если Γ разбивается на непересекащиеся Γ_1 , Γ_2 , то

$$\int_{\Gamma} \omega = \int_{\Gamma_1} \omega + \int_{\Gamma_2} \omega$$

Петли и интегралы по ним

Определение 7. Кривая Γ — петля, если для всякой её параметризации $\gamma(a) = \gamma(b)$. Петля называется простой, если $\exists : \gamma|_{[a;b)}$ — биекция.

Замечание. Плохие петли можно разбивать на простые.

Определение 8. Пусть Γ — простая петля. Тогда

$$I = \oint_{\gamma} \omega := \int_{a}^{b} \langle P, \dot{x}(t) \rangle dt$$

Утверждение 2. Определение выше корректно, и не зависит от выбора «начала» петли.

▼

Можно рассмотреть 2 разные параметризации и разбить на 2 куска. Дальше работает определение интеграла по простому пути.

Замечание. Чтобы посчитать интегралы по всем остальным путям, их нужно разбивать на прострые пути и простые петли

§ 2 УТочные формы

Определение 1. 1-форма ω называется точной в G, если $\exists \Phi \colon G \subset \mathbb{R}^n \to \mathbb{R}$, такая что $\omega = \mathsf{d}\Phi$. Φ в таком случае называется потенциалом, а сама форма ещё иногда называется потенциальной.

E.g. Работа в физике.

Теорема 1. Пусть ω — точная форма в G, $\Gamma \subset G$, $\gamma(a) = A$, $\gamma(b) = B$ Тогда

$$\int_{\gamma} \omega = \Phi(B) - \Phi(A)$$

 $\square \langle P, x \rangle = (\Phi \circ \gamma)'(t)$. Дальше уже тривиально из непрерывности Φ .

Теорема 2. Пусть ω — точная форма в G, Γ_1 , $\Gamma_2 \subset G$, $\gamma_{1,2}(a) = A$, $\gamma_{1|2}(b) = B$. Тогда

$$\int_{\gamma} \omega = \Phi(B) - \Phi(A)$$

Теорема 3. Пусть ω — точная форма в G, $\Gamma \subset G$ — петля Тогда

$$\oint_{\gamma} \omega = 0$$

Теорема 4. Пусть ω — форма в G, и $\int_{\gamma} \omega$ не зависит от пути при фиксировнных концах. Тогда ω — точна.

 \square Надо показать, что $\partial_i \Phi = P^i$. В этом месте можно забить на общности и объявить n=2. Докажем, что $\partial_x \Phi = P^1$. Поскольку от пути ничего не зависит,

$$\frac{\partial \Phi}{\partial x}(x,y) = \lim_{\Delta x \to 0} \frac{\Phi(x + \Delta x) - \Phi(x,y)}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left(\int_{A}^{(x + \Delta x,y)} \omega - \int_{A}^{(x,y)} \omega \right)$$

А это по сути интеграл по пути, соединяющем $(x + \Delta x, y)$ и (x, y). А здесь уже можно взять приличную кривую (прямую) с правильной параметризацией, и воспользоваться теоремой о среднем.

$$\cdots = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_{x}^{x + \Delta x} P(t, y) dt = \lim_{\Delta x \to 0} P(\xi, y) = P(x, y)$$

Последнее равенство верно по непрерывности. ■

Теорема 5.
$$\oint \omega = 0 \Rightarrow \omega - \tau$$
очна

Теорема 6. Пусть G, $\phi \omega = 0$ для любой прямоугольной петли. Тогда ω — точна.

□ Аккуратно свести к теореме 0.2.4, там всё будет работать и с путями, параллельными осям координат.