Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Minimum Spanning Trees

Minimum Spanning Trees

Spanning subgraph

Subgraph of a graph G
 containing all the vertices of G

Spanning tree

Spanning subgraph that is itself a (free) tree

Minimum spanning tree (MST)

- Spanning tree of a weighted graph with minimum total edge weight
- Applications
 - Communications networks
 - Transportation networks

Prim's Algorithm

```
Algorithm Prim (G,s)
In: weighted connected graph G and vertex s
Out: {compute a minimum spanning tree}
for each vertex u of G do {
   u.d \leftarrow \infty // distance from vertex s to vertex u u.p \leftarrow null // predecessor or parent of vertex u in a shortest paths tree -c_1 -c_1n
   u.d \leftarrow \infty // distance from vertex s to vertex u
s.d \leftarrow 0
          // Distance from s to itself is 0
for i \leftarrow 0 to n-1 do {
                        // Find unmarked vertex u with minimum distance to s
   \min \leftarrow \infty
   for each vertex v of G do
       if (v.marked = false) and (v.d < min) then {
          min \leftarrow v.d
          u \leftarrow v
   u.marked ← true // Relax all edges incident on vetex u
   for each edge (u,v) incident on u do
       if length(u,v) < v.d then {
          v.d \leftarrow length(u,v)
          v.p \leftarrow u
```

© 2014 Goodrich, Tamassia, Goldwasser

Example

Example (contd.)

Analysis of Prim's Algorithm

Using an adjacency matrix:

$$f(n,m) = c_1 n + \sum_{u \in G} (c_4 + c_2 n + c_3 n) = c_1 n + c_4 n + c_2 n^2 + c_3 n^2 \text{ is } O(n^2)$$

Using an adjacency list:

$$f(n,m) = c_1 n + \sum_{u \in G} (c_4 + c_2 n + c_3 deg(u)) = c_1 n + c_4 n + c_2 n^2 + 2c_3 m \text{ is } O(n^2)$$