

NBS TECHNICAL NOTE 991

U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards

COMPF2--A Program for Calculating Post-Flashover Fire Temperatures

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards¹ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government Agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities² — Radiation Research — Thermodynamics and Molecular Science — Analytical Chemistry — Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical services to users in the public and private sectors to address national needs and to solve national problems in the public interest; conducts research in engineering and applied science in support of objectives in these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the utlimate user. The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering² — Mechanical Engineering and Process Technology² — Building Technology — Fire Research — Consumer Product Technology — Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal Agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal Agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following divisions:

Systems and Software — Computer Systems Engineering — Information Technology.

¹Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C., 20234. ²Some divisions within the center are located at Boulder, Colorado, 80303.

The National Bureau of Standards was reorganized, effective April 9, 1978.

Hadional Bureau of Standards
JUN 2 ~ 1979

mat we /- me

COMPF2--A Program for Calculating Post-Flashover Fire Temperatures

Vytenis Babrauskas

Center for Fire Research National Engineering Laboratory National Bureau of Standards Washington, D.C. 20234

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary Jordan J. Baruch, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued June 1979

National Bureau of Standards Technical Note 991

Nat. Bur. Stand. (U.S.), Tech. Note 991, 76 pages (June 1979) CODEN: NBTNAE

U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1979

TABLE OF CONTENTS

		Page
LIST	T OF TABLES	iv
LIST	T OF FIGURES	iv
NOME	ENCLATURE	v
ABST	TRACT	. 1
1.	INTRODUCTION	. 1
2.	HISTORY OF DEVELOPMENT	. 1
3.	THEORY	2
4.	PYROLYSIS RATES	5
	4.1 Liquid or Thermoplastic Pools	5 6
	4.2 Solid Fuels	_
5.	DETAILS OF SUBROUTINES	7
	5.1 COMPF2	7
	5.3 DEONS	
	5.4 ECHOID	8
	5.5 ICONDS	8
	5.6 INC	
	5.7 OUTPUT	8
	5.8 PFLFIX	8
	5.9 POOL	8
	5.10 PP	9
	5.11 PVTFIX	
	5.12 RPFIX	
	5.13 STFLOW	_
	5.14 TLU	_
	5.15 TRIDGF	9
6.	AGREEMENT WITH EXPERIMENT	9
7.	INPUT INSTRUCTIONS	9
	7.1 Deck Set-up	9
	7.2 Namelist VARS	
	7.3 Modes of Program Operation	10
8.	FILES USED	11
9.	IMPLEMENTATION	12
10.	LIST OF VARIABLES	12
11.	ACKNOWLEDGMENTS	12
12.	REFERENCES	12
APPI	ENDIX A SAMPLE PROBLEMS	20
APPI	ENDIX B PROGRAM LISTING	38

LIST OF TABLES

						Pa	ge
Table 1.	Variables specified i	n the input Namel	ist VARS	 		• •	14
Table 2.	List of variables .			 	•	• •	16
		LIST OF FIGURES					
						Pa	ge
Figure 1.	Flow chart for main	program COMPF2 .		 			19

NOMENCLATURE

```
molecular weight (kg mol -1)
     area (m<sup>2</sup>)
Α
     combustion efficiency (-)
                                                   thickness dimension (m)
b
                                             Х
                                             \epsilon emissivity (-)
Cd
     discharge coefficient (-)
     heat capacity (J kg -1 K -1)
                                            \rho density (kg m<sup>-3</sup>)
                                                   Stefan-Boltzmann constant (W m<sup>-2</sup> K<sup>-4</sup>)
D
     smallest fuel dimension (m)
                                        σ
     gravitational acceleration (m s<sup>-1</sup>)
g
     convective coefficient (W m^{-2} K^{-1}) Subscripts
h
                                             air
                                                      air
h
     enthalpy (J)
                                                      vaporization
                                             b
     combustion enthalpy (J)
h
                                                      excess pyrolysate
                                             ep
     calorific value ( J kg<sup>-1</sup>)
Δh
                                                      hot gases; pool
     total heat of pyrolysis (J kg<sup>-1</sup>)
Δhp
                                                      ambient
     thermal conductivity (W m<sup>-1</sup> K<sup>-1</sup>)
k
                                                      pyrolysis
m
     mass (kg)
                                                      window radiation
M
     initial fuel mass (kg)
                                                      ventilation, window
     heat (J)
q
                                                      walls, including ceiling
     heat flow (W)
Q
     stoichiometric air/fuel ratio (-)
r
                                             Superscripts
T
     temperature (K)
                                                      time rate
```

per volume

regression velocity (m s 1)

 q^{V}

COMPF2--A PROGRAM FOR CALCULATING POST-FLASHOVER FIRE TEMPERATURES

Vytenis Babrauskas

COMPF2 is a computer program for calculating the characteristics of a post-flashover fire in a single building compartment, based on fire-induced ventilation through a single door or window. It is intended both for performing design calculations and for the analysis of experimental burn data. Wood, thermoplastic, and liquid fuels can be treated. In addition to the capability of performing calculations for compartments with completely determined properties, routines are included for calculating fire behavior by an innovative variable abstraction method. A comprehensive output format is provided which gives gas temperatures, heat flow terms, and flow variables. The documentation includes input instructions, sample problems, and a listing of the program. The program is written in Fortran and constitutes an improved version of an earlier program, COMPF.

Key words: Computer programs--fire protection; fire protection; fire resistance; fire tests; fire walls; safety engineering--fires.

1. INTRODUCTION

With increasing efforts $[1-4]^{\perp}$ towards rational methods of providing fire endurance for structural building components, it becomes highly desirable for both the designer and the researcher to have available computer programs for calculating expected fire temperatures and heat transfer through the building components. A fire is not considered as becoming a threat to a structure and its fire barriers until it reaches the flashover stage. Flashover of a room is defined as that fire stage when the bulk of the room volume becomes involved in flames. Operationally, this roughly coincides with flames coming out the door or window, or an upper gas space temperature of around 600° C, or a radiant heat flux at floor level of about 20 kW/m^2 . For the purpose of designing for fire endurance, then, only post-flashover fires are The present report describes a computer program for calculating the expected temperatures, heat and mass flows and other variables in post-flashover building fires. Different routines are incorporated for producing design time-temperature curves and for permitting comparative theoretical curves to be generated based on experimental mass loss rates.

2. HISTORY OF DEVELOPMENT

The first computer program for calculating post-flashover fire temperatures was developed by Kawagoe [5], in conjunction with his pioneering studies leading to a theoretical room fire model. This model was an adaptation of an earlier graphical technique. The main limitations of both the computer program

Numbers in brackets refer to the literature references listed at the end of this paper.

and the theoretical model was the restriction to ventilation-limited fires. Fuel-limited fires could only be expressed in terms of an empirical temperature change rate. Magnusson and Thelandersson [6] studied heat release rates in more detail and produced a model. An unpublished computer program was used to implement that model. The normalized shape of the fire time-temperature curves was an input variable in this model; the shape was based on sets of typical measurements. Based on Magnusson and Thelandersson's theory, Fedock [7] published a similar computer program with emphasis on prestressed concrete structures. The first program to provide for theoretically based calculations of both ventilation-limited and fuel-limited burning was written by Tsuchiya [8]. It was restricted to fires starting in ventilation control and to fuel consisting of sparsely-packed wood sticks.

The predecessor to the present program, COMPF [9], was issued in 1975 and incorporated several new advances, including the ability to treat entirely fuel-limited fires, to allow for temperature-dependent wall properties, to permit the optional use of numerical input fuel weight loss rates, and to perform certain variable abstraction ("pessimization") calculations as an aid to design. (These techniques enable an input variable to be treated non-deterministically.) Program COMPF2 is intended to replace program COMPF and differs from it in the following main ways:

- 1. A subroutine has been added to allow treatment of fires where thermoplastic or liquid fuel exists in the form of a pool on the floor. The routine implements the theory discussed in reference [10] and outlined in section 4.1; examples of calculations are also given and discussed in that reference.
- 2. The deterministic wood fuel burning model has been extended to include the possibility of densely-packed cribs.
- 3. Both pool fire and densely-packed crib options have been incorporated into the pessimization routines.
- 4. In addition to performing transient calculations, the program can now also treat steady-state solutions, for both lossy and adiabatic walls.
- 5. The program is now in S.I. units throughout.
- 6. Certain corrections and improvements have been incorporated in the calculation routines. The method for the iterative solution of the heat balance equation has especially been improved.

3. THEORY

The post-flashover compartment fire theory has been given in some detail in reference [11], thus, only a brief summary will be given here. The main assumptions are:

- The compartment represents a well-stirred reactor, i.e., spatial temperature variations in the hot fire gases are ignored.
- The model is quasi-steady. Time variations in fuel release rate and in conduction losses are fully included. However, time rate of change terms in gas phase mass and energy balance are dropped.
- Air supply and gas outflow is through a single window in a vertical wall and is the result of fire-induced convection.
- The thermal discontinuity away from the window region is at a level below the bottom of the window. The volume below the discontinuity is occupied

by cold incoming air. In a flashed-over fire this discontinuity is close to the floor. Its exact location below the window bottom is immaterial [12].

- Burning is limited by rates of air or fuel supply rather than by gas phase chemical kinetics.
- Walls (including the ceiling) are modeled as portions of a homogeneous solid of finite thickness. Temperature-dependent material properties are allowed for.

The heat balance equation is:

$$h_{c} - m_{f} (h_{T_{f}} - h_{298}) - Q_{w} - Q_{r} - Q_{ep} = 0$$
 (1)

where h denotes enthalpy and the definition of symbols is given in the Nomenclature section. The subscripts on the enthalpy terms denote the temperature at which they are evaluated. The window radiation loss is, simply

$$Q_r = A_V \sigma (T_f^4 - T_O^4)$$
 (2)

The wall loss term has a radiative and a convective component,

$$Q_{W} = A_{W} \left[\sigma \frac{1}{1/\epsilon_{f} + 1/\epsilon_{W}^{-1}} (T_{f}^{4} - T_{W}^{4}) + h (T_{f} - T_{W}) \right]$$
 (3)

The convective coefficient h above is not well known since the exact flow conditions at the wall and ceiling surfaces in a post-flashover fire are not known in detail. The convective fraction is much less than the radiative fraction, permitting a rather simplified treatment. For turbulent-free convection flow over flat plates the value for h should depend [13] on $(T_f - T_w)^{1/3}$. A value of

$$h = 5.0 (T_f - T_w)^{1/3}$$
 (4)

was selected as being in reasonable agreement with data.

The analysis in [11] shows that for compartments greater than about 2 m on a side, a flame emissivity of $\epsilon_f^{\sim}0.9$ may be used.

The enthalpy evolved from combustion, $h_{_{\hbox{\scriptsize C}}}$, must be evaluated as the lesser of

$$\mathring{\mathbf{m}}_{\mathbf{D}} \wedge \mathbf{h}_{\mathbf{C}} \quad \mathbf{b}_{\mathbf{D}} \tag{5}$$

or

$$\stackrel{\text{m}}{\text{air}} \stackrel{\Delta}{\underline{}} \stackrel{\text{b}}{\underline{}} p. \tag{6}$$

When equation (5) is limiting, the combustion is known as "fuel-limited", while if equation (6) is smaller, combustion is "ventilation-limited". Here bp represents the maximum combustion efficiency and is a largely unknown number. Since it represents, effectively, the "unmixedness" of the combustion, there may be a scale effect, with smaller compartment spaces showing less complete mixing. Experimental data can generally be correlated within a range of about $0.7 \leq b_p \leq 0.9$.

The value of $\mathring{\textbf{m}}_{\text{air}}$ is obtained from the Bernoulli equation at the window and is

$$\dot{m}_{air} = \frac{2}{3} c_{d}^{\rho} o \left[2g \frac{1 - w_{f}^{T} o / w_{o}^{T} f}{\left[1 + (w_{o}^{T} f / w_{f}^{T} o \left[1 + (\dot{m}_{p} / \dot{m}_{air})\right]^{2})^{1/3}\right]^{3}} \right]^{\frac{1}{2}} A_{v} / h_{v}.$$
 (7)

The discharge coefficient has been determined by Prahl and Emmons [14] to be 0.68 for normal-shaped windows. This value does not hold in cases where the window takes up almost an entire wall. For such windows the flow patterns have not been studied, but data can be correlated by taking \mathbf{C}_d at about one-half its normal value. The molecular weight of the products, \mathbf{W}_f , is not exactly known since the composition of the gases, especially the unburned fuel gases (excess pyrolysates) is generally unknown. For simplicity their molecular weight has been assumed equal to that of nitrogen. The contribution of carbon monoxide and other minor combustion products is also ignored. The main dependence of $\hat{\mathbf{m}}_{\text{air}}$ is on the window parameter \mathbf{A}_{V} $/\mathbf{h}_{\text{V}}$. For reasonable values of temperature the whole expression becomes approximately equal to

$$\dot{m}_{air} \simeq (0.45 \text{ to } 0.50) A_{V} \sqrt{h}_{V}$$
 (8)

But this approximation has not been employed here.

Ventilation through multiple openings has not been provided for in this program. An approach for treating such problems is given in [11].

The heat of combustion, Δh , is taken as the net value since the hot gas outflow is above 100° c. The stoichiometric ratio, r, is a constant for a pure material; a tabulation of values is given in [15].

The rate of pyrolysis, $\dot{m}_{\rm p},$ is one of the hardest quantities to determine. A discussion of available values is given in the next section.

The outflow mass rate, $\dot{m}_{\rm f}$, is by mass conservation the sum of $\dot{m}_{\rm air}$ and $\dot{m}_{\rm p}$. The enthalpy of the outflow products, $h_{\rm Tf}$ and h_{298} is evaluated on the assumption that the combusted fuel goes to ${\rm CO}_2^{\rm f}$ and ${\rm H}_2{\rm O}$. No account is taken of CO for two reasons: because the effect on a mass basis would be very small, and because it was considered advisable not to introduce any reaction kinetics. Also, only elements C, H, O, and N have been considered for the fuel composition.

The excess pyrolysate term Q_{ep} , is the heat required to vaporize the excess pyrolysates. Note that with the conventional definition of heat of combustion, the loss for vaporization of combusted pyrolysates is already included in Δ has a superior of combusted pyrolysates.

The second major equation to be solved is for heat conduction through the wall.

$$\rho C_{p} \frac{\partial T_{w}}{\partial t} = \frac{\partial}{\partial x} (k \frac{\partial T_{w}}{\partial x}) + \dot{q}$$
 (9)

The wall is initially at ambient temperature, $T_{\rm o}$, and is subjected to boundary conditions at the fire side of:

$$-k \frac{\partial T_{W}}{\partial x} = h [T_{f} - T_{W}(0)] + \epsilon \sigma [T_{f}^{4} - T_{W}^{4}(0)]$$
 (10)

and on the unexposed side (x = L),

$$-k \frac{\partial T_{W}}{\partial x} = h \left[T_{W}(L) - T_{O}\right] + \varepsilon \sigma \left[T_{W}^{4}(L) - T_{O}^{4}\right]$$
 (11)

For the fire side the convective coefficient has been given above. For the unexposed side a value of

$$h = 1.87 [T_O - T_W (L)]^{1/3}$$
 (12)

was taken.

4. PYROLYSIS RATES

4.1 Liquid or Thermoplastic Pools

There is currently only one fuel arrangement where the pyrolysis rate may adequately be predicted from theory. It consists of a pool of thermoplastic or liquid fuel on the floor. The fuel is pyrolyzed solely by radiant flux and "sees" the compartment with a view factor of 1.0 and itself with a view factor of zero. In addition, the fuel must pyrolyze at a known surface temperature, $T_{\rm b}$, and with a known heat of pyrolysis, $\Delta\,h_{\rm p}$. Then:

$$\dot{m}_{p} = A_{f} \frac{\epsilon \sigma \left(T_{f}^{4} - T_{b}^{4}\right)}{\Delta h_{p}}$$
 (13)

Tewarson and Pion [16] have measured heats of pyrolysis for numerous thermoplastic materials.

The above simple model is fully adequate for steady-state solutions. At the start of the fire, however, the radiation feedback is small from the hot gas volume but may be larger from the local plume above the pool itself. Thus, a plume term should be added in to model the starting transient. Very limited experimental data by Burgess [17] and by Modak [18] can be used to derive an empirical relationship for the plume pyrolysis rate as:

$$\dot{m} = A_f \quad 0.0014 \frac{\Delta h_c}{\Delta h_p} \quad (kg/s)$$
 (14)

This relationship does not take into account differences in flame emissivities for various materials; as a result, it only provides a crude measure. In the present application, however, the contribution of this term is minor; therefore, an approximate expression is adequate. Also, as the room radiation increases, the effect of plume radiation on pyrolyzing the

fuel decreases. For a radiatively black room, at high temperature, the plume term should properly be negligible. This interaction is crudely modeled by multiplying the plume term by a proportionality factor before adding to the far-field term. The proportionality factor, χ , has been set equal to

$$\chi = 1.0 - \frac{T_{f}^{4} - T_{b}^{4}}{1700^{4} - T_{b}^{4}}$$
 (15)

with $\chi \ge 0$.

4.2 Solid Fuels

Empirical data are available for the mass loss rates of wood planks in flashed-over fires. Because of the nature of wood combustion, these rates are not especially sensitive to room radiation and can be specified [11] using a regression velocity of 7-15 $\mu\text{m/s}$. This relationship is adequate to describe the burning of large, isolated wood panels. For pieces thin in two or three dimensions, yet still widely spaced, the following expression is suitable:

$$\frac{\dot{m}_{p}}{M} = \frac{F}{C} \left(\frac{m}{M} \right)^{1-1/F} \tag{16}$$

Here M is the original mass, m is the mass at a given time, and F is a constant equal to 2 for cylinders or rectangular sticks and equal to 3 for spheres or cubes. C is given by

$$C = \frac{D}{2v_p}$$

with D being the smallest fuel dimension and \boldsymbol{v}_p the regression velocity. For thin fuels \boldsymbol{v}_p is approximately

$$v_p \approx 1.7 \times 10^{-6} D^{-0.6} (m/s)$$
 (17)

The final arrangement for wood fuel for which data are available is a crib, or a regular stacked array. From the data of Nilsson [19] and Yamashika [20], a set of simplified relationships has been evolved for the three crib burning regimes.

Fuel Surface Control

$$\dot{m}_{p} = \frac{4}{D} v_{p} \left(\frac{m}{M_{o}} \right)^{\frac{1}{2}} M_{o}$$
 (kg/s) (18)
$$v_{p} = 1.7 \times 10^{-6} D^{-0.6}$$

Crib Porosity Control

$$\dot{m}_{p} = 4.4 \times 10^{-4} (^{S}/h_{C}) \frac{^{M}o}{D}$$
 (19)

 S_{h_c} = ratio of stick clear spacing to crib height

Room Ventilation Control

$$\dot{m}_{p} = 0.12 A_{V} / \dot{h}_{V}$$
 (20)

In calculations, each of the three rates above are determined and the lowest rate taken as governing.

5. DETAILS OF SUBROUTINES

The program routines are written in Fortran language. A complete listing is given in appendix B. The following are brief descriptions of the operation of each subroutine.

5.1 COMPF2

COMPF2 is the main program. It calls most of the calculational routines. A flow chart of COMPF2 is given in figure 1. The program starts with the initialization of certain constants and default values. The input title and namelist are then read in. If tabular data are specified, subroutine INC is called. ICONDS is then called in to set initial starting values. The input data are echoed in ECHOID. After that, the appropriate computational routine is called in. If no iteration failure has occurred the program then loops back to the start and goes to the next problem. In case of iteration failure, the program returns to the same problem, this time printing out additional intermediate calculation values. This intermediate output can also be forced to appear by specifying KTRACE=1.

5.2 CRIB

Subroutine CRIB calculates the burning of wood crib fires. A trial gas temperature value is assumed for the first time step. This value is preset, but may be overridden by specifying a value of TINPT. The flow quantities are computed, then the wall losses are determined by calling DESOLV. The heat balance is then determined. If the normalized residue is greater than 0.002, the iteration continues. The new temperature is normally determined by the Newton method. If divergence results, a scanning technique is used initially and a splitting of differences once a bounded oscillation results. After successful convergence a new wall temperature profile is established by calling RSTA. The calculation then proceeds to the next time step. Computation is terminated at the end of time MTIME, or when gas temperature drops to 353 K, or if errors or convergence failure is detected.

5.3 DEQNS

Subroutine DEQNS computes wall heat conduction using the Crank-Nicolson method [21]. DEQNS has two entry points: DESOLV and RSTA. The radiation boundary condition is linearized; updating every iteration rather than every time step ensures minimal error. An additional within-loop iteration is also used. DEQNS calls TRIDGF to solve the equation matrix.

5.4 ECHOID

Subroutine ECHOID echoes the input data. The complete data set is given for each run, rather than just the changed values. Care has been taken to give physical meaning for the variables printed.

5.5 ICONDS

Subroutine ICONDS initializes starting values and does some preliminary calculations on the input data. It also makes a few checks on the validity of the input data. The user, however, is cautioned that this checking is very rudimentary and in case of error exit or iteration failure the input data must be carefully examined.

5.6 INC

Subroutine INC is called in when tabular input data are to be read.

5.7 OUTPUT

Subroutine OUTPUT is the primary output routine. It writes at each time step a large number of variables to output files (logical units) 2 and 3. The temperatures, burning rates, and other primary variables are put on file 2, while the heat balance values and the mass fractions are written on file 3. OUTPUT also converts temperatures from Kelvin to degrees Celsius before printing them out.

5.8 PFLFIX

PFLFIX is a pessimization design routine. Fuel pyrolysis rate is calculated according to governing equations, but the ventilation is pessimized by instantaneously adjusting the window width to give the highest possible temperatures. Wood stick or wood crib fuel is assumed unless PLFUEL=T, in which case a pool fire is used. The window width is not allowed to exceed a maximum, as set by AWDOW/HWDOW. Calculations stop when the fuel, as specified by FLOAD, is exhausted, since the window width would be undefined beyond that point. Calculational procedures are similar to those in CRIB.

5.9 POOL

POOL is a pool fire burning routine. Computational details are similar to those as in CRIB. The pyrolysis rate is based on equations 13, 14, and 15. Three modes of subroutine operation are possible. If STOICH=T, the steady-state temperatures and pool area are determined for stoichiometric burning. If EISCAN=T, the steady-state solution is found for a given pool area greater than stoichiometric. The pool area is specified by use of the parameter EITA, defined as [10]

$$\eta = \frac{\frac{A_{V} \sqrt{h}_{V}}{A_{f}}}{\left(\frac{A_{V} \sqrt{h}_{V}}{A_{f}}\right) \text{stoich}}$$
(21)

For constant window size, this becomes simply a ratio of pool areas. No solutions are possible for $\eta\!\geq\!1$. Finally, a transient calculation can be made, which proceeds similarly as in the other transient calculations. The user must make sure that the pool size given is sufficiently large so that $\eta\!\leq\!1$.

5.10 PP

Subroutine PP is a plotting routine. Details are not given since plotting routines are dependent on the hardware used.

5.11 PVTFIX

PVTFIX is a pessimization routine, and is effectively the inverse of PFLFIX. In PVTFIX a fixed ventilation opening is specified. The fuel release rate is instantaneously varied to always result in the highest possible burning temperature. Temperatures drop after the fuel load is consumed. Computational details are similar to those in PFLFIX.

5.12 RPFIX

For comparison of measured data against numerical predictions a routine is needed which can accept $\dot{\text{m}}$ rates as an input tabular function of time. RPFIX provides for this type of checking calculation. The case of measured combustion rate input (as provided, for instance, by oxygen depletion measurements in the window outflow) can also be treated by dividing the measured rate by $\Delta\,h_{\text{C}}$ (net) and setting $b_{\text{D}}=1.0$.

5.13 STFLOW

Subroutine STFLOW is a wall heat conduction routine. It is similar to DEQNS, except that only the steady-state temperatures are determined.

5.14 TLU

Function TLU is a tabular data interpolating function used in several subroutines. If the independent variable entered is smaller than the smallest data point or larger than the largest data point, the output is set equal to the smallest, or largest dependent value, respectively.

5.15 TRIDGF

Subroutine TRIDGF uses a Gauss elimination procedure to solve a set of tri-diagonal matrix equations.

6. AGREEMENT WITH EXPERIMENT

A comparison of numerical predictions with experimental results has been given in [22] for the program COMPF. Similar agreement should hold for COMPF2, since COMPF2 is improved mainly in operational features, especially increased versatility, while retaining the same theoretical model as in COMPF. For pool fires useable full-scale experimental data are not available.

7. INPUT INSTRUCTIONS

7.1 Deck Set-up

The input is assigned to file 1. Each problem run consists of two or three card groups, as follows:

- Title card (20A4). One card only. Card must be present. The identifying information from the title card is printed at the head of the output.
- Namelist card(s). One or more cards. Details are given in the next section.

3. Tabular input (optional). This input group is contained only for the first run and for those ensuing runs where NEWPRP=T. If no tabular input is present, then blank cards must not be inserted. If tabular input is present, it is arranged as follows:

First card: NCN, NCP, NEM, NR, NQG (10I3). These are the number of points for the wall thermal conductivity, wall heat capacity, wall emissivity, mass pyrolysis rate, and wall heat generation rate, respectively. The number of points may be 0, 1, or greater than 1. If N=O, then the previous run value is unchanged. If N=1, then it is assumed the value is a constant, independent of temperature or time. If N>1, then an array is inputted.

Ensuing card(s): These are in the format (8F10.0) and arranged in pairs (independent, dependent). For wall thermal properties, temperature is the independent variable, while for mass pyrolysis rate it is time. The order is: CNDA, CPW, EMSA, RPX, QGEN. First all the points (if any) for CNDA are read in, four pairs per card. Then a new card is started even if the last card is part-full, and CPW is read in. The process is continued for EMSA, RPX, QGEN. No blank cards may be inserted. If N=1 for an array, then the constant value is entered in columns 11-20.

After cards for one run are finished, the cards for the next one are stacked, again with no blank cards.

7.2 Namelist VARS

For all non-tabular data, the namelist format was adopted. This undeservedly obscure Fortran feature is highly advantageous for the present application. Its features include:

- Semi free-format input
- Variables may be in any order
- Unneeded variable values need not be specified
- Variables needed, but not specified in current run are automatically set equal to the prior given value.

The namelist card(s) must contain the following information: the first card must start with \$VARS in columns 2-6, then a space, then the desired values, separated by commas. Input may be continued on continuation cards, each of which must have columns 1-2 blank. The stream is terminated by a \$ after the last variable.

The user is cautioned to check the input carefully, since namelist format provides for only rudimentary error messages. The namelist VARS values are written to file 5 when read in. In normal operation file 5 can be rewound or discarded. If error failures occur, however, the VARS listing on file 5 may be useful in determining input errors.

Table 1 lists all the variables inputted in namelist VARS.

7.3 Modes of Program Operation

Time

Three possibilities are available: complete time-temperature curve calculation, calculation of steady-state temperature for a given wall, or the calculation of a steady-state temperature for adiabatic walls. To select adiabatic walls, set ADIA=TRUE. To select steady-state solution for real walls,

set STEADY=TRUE. To obtain complete time-temperature curve, set ADIA and STEADY both FALSE. Note that for some fuel pyrolysis conditions below not all three possibilities are available.

Fuel Pyrolysis

The following modes of operations are available:

- Pool fire Set PLFUEL=TRUE.
 - a. Time-temperature curve for given ventilation and pool area. Specify SIZE. Set STOICH and EISCAN both FALSE.
 - b. Burning conditions at steady state for stoichiometric pool size, that is, determine values for EITA=1. Set STOICH=TRUE. Do not input SIZE. Do not set EISCAN=TRUE.
 - c. Burning conditions for any other EITA. Set EISCAN=TRUE. Specify EITA. This option must be preceded by the stoichiometric problem (option lb, above). SIZE input is not used; if given, the value is disregarded.
- 2) Wood crib fire. This is the default option. Set FLSPEC, PLFUEL, RPSPEC, and VTSPEC all FALSE.
 - a. Simple stick burning. Must specify a value for REGRES greater than zero.
 - b. Nilsson's crib formulas for crib burning in three possible regimes. Specify REGRES=0. (default). Also specify SH.
- 3) Checking option when tabular input pyrolysis rates are given. Set RPSPEC=TRUE. Also must set NEWPRP=TRUE and give an appropriate array of RPX.
- 4) Pessimization over ventilation. Set FLSPEC=TRUE. Window width is automatically adjusted, but is no greater than determined by the inputted value of AWDOW/HWDOW. Program stops when fuel is exhausted.
 - a. Simple stick burning. Must specify a value for REGRES greater than zero and set PLFUEL=FALSE.
 - b. Nilsson's crib formulas for crib burning in three possible regimes. Set PFLUEL=FALSE and REGRES=0. Also specify SH.
 - c. Pool burning. Set PLFUEL=TRUE.
- 5) Pessimization over fuel pyrolysis rate. Set VTSPEC=TRUE. Fuel pyrolysis rate is automatically adjusted for pessimal burning conditions.

8. FILES USED

The Fortran file logical units must be declared as follows:

- File 1 -- Input
- File 2 -- Output (echoed input and main calculated variables)
- File 3 -- Output (heat balance and mass fractions)
- File 4 -- Output (intermediate tracing output used only if KTRACE=1)
- File 5 -- Output (listing of namelist VARS contents).

File 5 can be arranged to be rewound after each problem so that it will contain data only in case of error failure.

9. IMPLEMENTATION

Program COMPF2 has been successfully implemented on a UNIVAC 1108 computer. The predecessor program, COMPF, was run on a CDC 6400 computer. The program uses, as much as possible, only standard Fortran expressions. Minor unavoidable implementation differences exist, however, in commands associated with file usage.

10. LIST OF VARIABLES

Table 2 gives a list of all the major problem variables.

11. ACKNOWLEDGMENTS

Ulf Wickstrom (Lund Institute of Technology) assisted in program development; Richard Peacock (NBS) helped implement the program.

12. REFERENCES

- [1] Pettersson, O., Magnusson, S-E., and Thor, J., Fire Engineering Design of Steel Structures (Publication 50), Stålbygnadsinstitutet, Stockholm (1976).
- [2] [Law, M.], Design Guide for Fire Safety of Bare Exterior Structural Steel, prepared for American Iron and Steel Institute by Ove Arup and Partners, London (1977).
- [3] Centre Scientifique et Technique du Batiment, The Behavior of Concrete Structures in Fire -- A Method for Prediction by Calculation, Nat. Bur. Stand. (U.S.), Tech. Note 710-10 (1978), translation from French.
- [4] Centre Technique Industriel de la Construction Métallique, Méthode du Prévision par le Calcul du Comportement au Feu des Structures en Acier, Construction Métallique, No. 4 (1976).
- [5] Kawagoe, K., Estimation of Fire Temperature Time Curve in Rooms (Research Paper 29), Building Research Institute, Tokyo (1967).
- [6] Magnusson, S-E., and Thelandersson, S., Time-Temperature Curves of Complete Process of Fire Development, Acta Polytechnica Scandinavica (Civil Engineering and Building Construction Series), No. 65 (1970).
- [7] Fedock, J. J., Combustion Gas Temperatures in Prestressed Concrete Apartment Fires, M.S. Thesis, University of Colorado, Department of Civil and Environmental Engineering (1973).
- [8] Tsuchiya, Y., Computer Program for the Behavior of Fire in an Enclosure (CP 32), National Research Council, Division of Building Research, Ottawa (1972).
- [9] Babrauskas, V., COMPF, A Program for Calculating Post-Flashover Fire Temperatures (Report UCB FRG 75-2), Fire Research Group, University of California, Berkeley (1975).
- [10] Babrauskas, V., and Wickstrom, U. G., Thermoplastic Pool Compartment Fires, Combustion and Flame, 34, 195-202 (1979).

- [11] Babrauskas, V., and Williamson, R. B., Fire and Materials, $\underline{2}$, 39-53 (1978).
- [12] Rockett, J. A., Combustion Science and Technology, 12, 165-175 (1976).
- [13] McAdams, W. M., Heat Transmission, McGraw-Hill Book Co., New York (1954).
- [14] Prahl, J., and Emmons, H. W., Combustion and Flame, 25, 369-385 (1975).
- [15] Throne, J. L., and Griskey, R. G., Modern Plastics, 49, 96-100 (Nov. 1972).
- [16] Tewarson, A., and Pion, R. F., A Laboratory-Scale Test Method for the Measurement of Flammability Parameters (Serial 22524), Factory Mutual Research Corporation, Norwood, Mass. (1977).
- [17] Burgess, D. S., Strasser, A., and Grumer, J., Fire Research Abstracts and Reviews, $\underline{3}$, 177-192 (1961).
- [18] Modak, A., and Croce, P. A., Plastic Pool Fires (Serial 22361-3), Factory Mutual Research Corporation, Norwood, Mass. (1976).
- [19] Nilsson, L., The Effect of Porosity and Air Flow on the Rate of Combustion of Fire in an Enclosed Space, Bulletin 18, Division of Structural Mechanics and Concrete Construction, Lund Institute of Technology, Lund (1971).
- [20] Yamashika, S., and Kurimoto, H., Report of the Fire Institute of Japan, No. 41, 8-15 (1976).
- [21] Carnahan, B., Luther, H. A., and Wilkes, J. O., Applied Numerical Methods, John Wiley & Sons, Inc., Somerset, N. J. (1969).
- [22] Babrauskas, V., Fire Endurance in Buildings, Ph.D. dissertation, University of California, Berkeley (1976).

Table 1. Variables specified in the input Namelist VARS

Default Values

_	CIAGIC VAI								
Variable	First	Following							
	run	run	Information						
·····									
ADIA	FALSE	pv	if true, walls area adiabatic and only						
		·	steady-state solution is sought						
AFLOOR	none	pv	area of floor (m ²)						
AWALL	none	vď	gross area of walls and ceiling (m ²)						
AWDOW	none	pv	area of window (m ²)						
BPF	none	pv	maximum fraction of pyrolyzed fuel burned						
D11	110110	P·	to be <1.0						
CD	0.68	DIZ	discharge coefficient						
	44.4	pv							
CFLPC		pv	percent, by weight, of carbon in fuel						
CPPYR(2)	CPN2	pv	heat capacity of pyrolysis gases (J/kg-K)						
CVGROS	none	pv	upper calorific value for dry fuel (J/kg)						
DENSW	none	pv	wall density (kg/m³)						
DHP	none	pv	total heat of gasification for fuel (J/kg)						
DTIME	none	pv	increment of time step (s)						
EF	0.9	pv	gas emissivity, assumed gray						
EISCAN	FALSE	FALSE	if true, solve steady-state problem in						
			POOL for a given EITA						
EITA	none	pv	normalized air-fuel parameter for pool						
22111	110110	PV	burning						
FLOAD	none	211	fuel load (kg/m ² floor area)						
		pv							
FLSPEC	FALSE	FALSE	if true, pessimize ventilation for a						
			specified pyrolysis rate						
HFLPC	5.4	pv	percent of hydrogen, by weight, in fuel						
HWDOW	none	pv	window height (m)						
IRUN	1	sequential	run problem number						
IX	10	pv	number of wall slices, to be < 10						
KTRACE	0	0	print intermediate output if =1						
MTIME	360.	pv	maximum fire time (s)						
MWPYR	28.97	pv	molecular weight of pyrolysis gases (g/g-						
		•	mole)						
NEWPLT	FALSE	FALSE	if true, start new plot frame						
NEWPRP	TRUE	FALSE	if true, new data arrays will be given						
NFLPC	0.		percent of nitrogen, by weight, in fuel						
OFLPC	0.	pv							
PLFUEL		pv	percent of oxygen, by weight, in fuel						
	FALSE	FALSE	if true, fuel is a pool fire						
PLOT	FALSE	pv	if true, plot time-temperature curve						
PNCH	FALSE	pv	if true, punch time-temperature curve						
PRNT	none	pv	interval at which results are to be						
			printed (s)						
REGRES	0.	pv	rate of fuel regression (m/s)						
RPSPEC	FALSE	FALSE	if true, use tabular input fuel pyrolysis						
SH	0	pv	ratio of clear spacing between sticks/crib						
		•	height for crib						
SHAPE	2.	pv	shape factor in pyrolysis equation for						
		r ·	wood sticks						
SIZE	none	pv	for cribs: smallest dimension of						
5 1 6 1	110110	Pv	stick (m)						
STEADY	FALSE	EAT CE	for pools: pool area (m ²)						
SIERDI	LALSE	FALSE	if true, only steady-state solution is to						
CMOTOT	DALCE	E2.7.6.7	be sought						
STOICH	FALSE	FALSE	if true, EITA=1 solution is sought in						
			POOL						

- 1 - 1	/
Table 1.	(continued)

TBOILC	0.	pv	fuel vaporization temperature for pools (C)
THICKW	none	pv	wall thickness (m)
TINPT	0.	0.	optional input iteration gas temperature (K)
VTSPEC	FALSE	FALSE	if true, pessimize pyrolysis rate for a specified ventilation
WFLPC	0.	pv	percent of water, by weight, in fuel

Note:

pv = previous value

Table 2. List of variables

```
true if walls are adiabatic
ADTA
          area of floor (m<sup>2</sup>)
AFLOOR
          gross area of walls and ceiling (m2)
AWALL
          AWALL minus window area
AWALLN
          area of window (m<sup>2</sup>)
AWDOW
          maximum fraction of pyrolyzed fuel burned
RPF
          width of window (m)
BWDOW
BWORST
          window width (.LE.BWDOW) which maximizes gas temperatures (m)
С
          moles of carbon in fuel (mole/kg fuel)
CD
          discharge coefficient
CFLDC
          percent of carbon, by weight, in fuel
          conductivity of a given wall slice (W/m-K)
CND
CNDA
          conductivity of the wall, as a function of temperature (W/m-K)
          average conductivity, next to higher numbered slice
CNG
          average conductivity, next to lower numbered slice
CNL
CNV
          numerical factor in heat transfer coefficient
CPA
          heat capacity of ambient air (J/kg-K)
          heat capacity of CO, as a function of temperature (J/kg-K)
CPCO
CPCO2
          heat capacity of CO<sub>2</sub>, as a function of temperature (J/kg-K)
          heat capacity of H_2, as a function of temperature (J/kg-K)
CPH2
CPH20
          heat capacity of H<sub>2</sub>O, as a function of temperature (J/kq-K)
          heat capacity of N_2, as a function of temperature (J/kg-K)
CPN2
          heat capacity of 02, as a function of temperature (J/kg-K)
CPO2
CPPYR
          heat capacity of pyrolysis gases, as a function of temperature
             (J/kq-K)
CPW
          wall heat capacity, as a function of temperature (J/kg-K)
          upper calorific value for dry fuel (J/kg)
CVGROS
CVNET
          lower calorific value for moist fuel (J/kg)
          Biot Number/2--fire side
DENF
          ambient air density (kg/m³)
DENSA
DENSW
          wall density (kg/m<sup>3</sup>)
DENU
          Biot Number/2--unexposed side
DERIV1
          current derivative of heat balance remainder (W/K)
          previous derivative of heat balance remainder (W/K)
DERIV2
          temperature error in iteration (K)
DIF
          increment in gas temperature (K)
DTGAS
DTIME
          time increment (s)
          wall thickness increment (m)
DX
          effective flame grey body emissivity
          true if seeking contant EITA≠1 solution
EISCAN
EITA
          dimensionless air/fuel parameter for pool burning
          computed wall emissivity for parallel plane problem
EMS
EMSA
          wall emissivity, as a function of temperature
FC
          true if in fuel control
          fuel load (kg/m<sup>2</sup> of floor area)
FLOAD
FLREM
          mass of fuel remaining at a given time (kg)
FLSPEC
          true if fuel pyrolysis rate is fixed and ventilation pessimized
          percent of original fuel supply still remaining
FUELPC
Fl
          current heat balance error (W)
F2
          previous heat balance error (W)
G
          acceleration of gravity (m/s2)
H
          moles of hydrogen in fuel (mole/kg fuel)
HCP
          variable in solving differential equation
          effective heat transfer coefficient, fire side (W/m2-K)
_{
m HF}
HFLPC
          percent of hydrogen, by weight, in fuel
HU
          effective heat transfer coefficient, unexposed side (W/m2-K)
HIN
          height of neutral plane (m)
HRATIO
          fractional height of neutral plan above window bottom
HWDOW
          height of window (m)
          line number
ILINE
```

Table 2. (continued)

```
page number
IPG
         run number
IRUN
         number of wall slices
IX
IXC
         number of middle slice
IXL
         number of penultimate slice
         number of current time step
J.
         maximum number of time steps
JM
JPRINT
         output to be printed every JPRINT time steps
         number of trial iterations at any given time step
KD
         number of iterations to converge differential equation
KITER
         equals 0 for normal operation, equals 1 for convergence failure
KNTRL
         parameter indicating exit status
KTRACE
         print intermediate tracing output if KTRACE-1
         maximum time for fire simulation (s)
MTIME
         molecular weight of ambient air (g/g-mole)
MWIN
MWOUT
         molecular weight of exhaust gases (g/g-mole)
MWPYR
         molecular weight of pyrolysis gases (g/g-mole)
         moles of nitrogen in fuel (mole/kg fuel)
NCND
         number of points in CNDA table
NCPW
         number of points in CPW table
         number of points in EMSA table
NEMS
         true if start new plot frame (not overlay previous one)
NEWPLT
         true if read in new set of tabular data
NEWPRP
         percent of nitrogen, by weight, in fuel
NFLPC
NQGEN
         number of points in QGEN table
         number of points in RPX table
NRP
\cap
         moles of oxygen in fuel (mole/kg fuel)
OFLPC
         percent of oxygen by weight, in fuel
         opening factor ration (m2 · 5)
OPENF
PLFUEL
         true if pool fire configuration
PLOT
         true if plot time-temperature curve
PNCH
         true if punch time-temperature curve
PRNT
         number of times per second output is to be printed
QCONW
         heat transferred to walls by convection (W)
OFIRE
         heat generated by combustion (W)
         net flow enthalpy (exhaust minus inflow) (W)
OFLOW
OFUEL
         heat lost in heating up unburned fuel fraction (W)
QGEN
         wall heat generation, as a function of temp (W/m3)
QRADO
         heat radiated out the window (W)
         new flow enthalpy (exhaust minus inflow) (W)
QFLOW
         heat lost in heating up unburned fuel fraction (W)
QFUEL
         wall heat generation, as a function of temp (W/m^3)
QGEN
QRADO
         heat radiated out the window (W)
         heat transfered to walls by radiation (W)
QRADW
         total heat removed from compartment and passing into the walls (J)
OWLSUM
R
         stoichiometric air/fuel mass ratio
RO
         stoichiometric oxygen/fuel mass ratio
RC
         rate of burning (kg/s)
REGRES
         rate of fuel surface regression (m/s)
RMA
         mass inflow rate of air (kg/s)
RMF
         mass outflow rate of hot gases (kg/s)
         rate of pyrolysis (kg/s)
RPSPEC
         true if rate of pyrolysis is prescribed as input
         rate of pyrolysis, as a function of time (kg/s)
RPX
SCAN
         true if search for solution by scanning temperatures
         ratio of clear spacing between sticks to crib height
SH
         contant indicating shape of fuel sticks
SHAPE
         Stefan-Boltzmann constant (W/m<sup>2</sup>-K<sup>4</sup>)
SIGMA
         thickness of crib sticks (m)
SIZE
         area of pool (m2)
        pool area for EITA=1 condition (m<sup>2</sup>)
SIZEL
```

Table 2. (continued)

```
true if only steady-state calculation to be made
STEADY
STOICH true if pool fire and EITA=1
TAMB
         ambient temperature (K)
TGAS
         gas temperature (K)
TGAS1
        previous value of TGAS (K)
        previous value of TGAS1 (K)
TGAS2
TGASC
        gas temperature (C)
TGASN
         closest gas temperature, lower than true (K)
         closest gas temperature, higher than true (K)
TGASP
TGOLD
         value of TGAS from prior time step (K)
THICKW
         wall thickness (m)
TINPT
         input trial starting gas temperature (K)
        title of this run
TITLE
TSF
         wall surface temperature, fire side (K)
TSU
        wall surface temperature, unexposed side (K)
TTIME
        total time (s)
Tl
         old wall temperature profile (K)
T2
         new wall temperature profile (K)
T2C
         wall temperature profile (C)
VAVGIN
         average inflow velocity (m/s)
        true if ventilation is fixed and pyrolysis rate pessimized
VTSPEC
         moles of water in fuel (mole/kg fuel)
WA
         format constant
WB
        format constant
WFLPC
         percent of water, by weight, in fuel
WTFUEL
        initial total mass of fuel (kg)
YCO2
         mass fraction of CO2 in outflow
         mass fraction of H2O in outflow
YH20
YN2
         mass fraction of N2 in outflow
YO2
         mass fraction of O2 in outflow
YPYR
        mass fraction of pyrolysates in outflow
```


Figure 1. Flow chart for main program COMPF2

APPENDIX A -- SAMPLE PROBLEMS

Given below is a set of ten concatenated input problems. Each problem is intended to test out a subroutine or other feature of the program. The output for the problems is given following the input.

```
TEST PROGRAM FOR POOL FIRE, STEADY STATE, EITA=1.0
 $VARS AFLOOR=20. AWALL=80. AWDOW=4. BPF=0.7.CD=0.68.CFLPC=85.7.
   CVGROS=46.5E6.DENSW=790.DHP=2.4E6.EITA=1.0.FLOAD=20.HFLPC=14.3.
   HWDOW=1.5,OFLPC=0.0.PLFUEL=T.STOICH=T.TBOILC=390.
   THICKW=0.038, WFLPC=0.0$
001000001
          0.17
          0.5
TEST PROGRAM FOR POOL FIRE, STEADY STATE, EITA=0.01
 SVARS EISCAN=T.EITA=0.01.PLFUEL=T$
TEST PROGRAM WITH DELIBERATE ERROR TO CHECK KTRACE OPERATION
 SVARS EISCAN=T. PLFUEL=T. TBOILC=2000.$
TEST PROGRAM FOR POOL FIRE, TRANSIENT CASE, SIZE=7.5 M2
 SVARS DTIME=60. MTIME=3600. NEWPRP=T, PLFUEL=T, PRNT=60. SIZE=7.5.
   TB01LC=390.5
000001
          840
TEST PROGRAM FOR WOOD CRIB FIRE, REGRES SPECIFIED
 $VARS CFLPC=44.4.CVGROS=18.8E6.FLDAD=10.0.HFLPC=5.4.DFLPC=38.2.
   REGRES=1.5E-5. SHAPE=2.0.SIZE=0.05. WFLPC=12.0$
TEST PROGRAM 1 FOR WOOD CRIB FIRE, NILSSON'S FORMULAS
 SVARS REGRES=0.0.SH=0.10$
TEST PROGRAM 2 FOR WOOD CRIB FIRE, NILSSON'S FORMULAS
 $VARS FLOAD=20. SH=0.20$
TEST PROGRAM FOR PYTFIX ROUTINE, VARIABLE WALL PROPERTIES
 SVARS NEWPRP=T.VTSPEC=TS
004008
                                                             1073.
                                                                       0.26
273.
                                        373.
          0.21
                    372.
                              0.21
                                                   0.16
                                        373.
                                                   47300 ·
                                                                       47300°
273.
          1090.
                    372.
                              1090.
                                                             383.
                                                             1073.
384.
          5000.
                    413.
                              5000e
                                        484.
                                                   840.
                                                                       840.
TEST PROGRAM FOR-PFLFIX ROUTINE, POOL OPTION
 SVARS AWDOW=10..CFLPC=85.7.CVGRDS=46.5E6.FLSPEC=T.HFLPC=14.3.NEWPRP=T.
   OFLPC=0.0.PLFUEL=T.SIZE=5.0.WFLPC=0.0$
001001
          0.17
          840.
TEST PROGRAM FOR RPFIX ROUTINE
 SVARS MTIME=1903. NEWPRP=T.RPSPEC=TS
00000000003
0.0
          0.12
                   120.
                             0.12
                                       121.
                                                   0.25
```

----GEOMETRY AND VENTILATION----

WALL SURFACE AREA = 80.00 M2 FLOOR AREA = 20.00 M2 WINDOW HEIGHT = 1.50 M AREA = 4.00 M2 OPENING FACTOR = 4.899 M2.5 DISCHARGE COEFF.= .68

----FUEL LOAD PROPERTIES--

FIRE LOAD PER FLOOR AREA = 20.0 KG/M2
TOTAL ENTHALPY OF PYROLYSIS= 2.40+06 J/KG
BOILING TEMPERATURE= 390. DEG C

FUEL COMPOSITION
CARBON = 88.7 PERCENT BY WEIGHT
HYDROGEN = 14.3 PERCENT
OXYGEN = .0 PERCENT
NITROGEN = .0 PERCENT
NITROGEN = .0 PERCENT
MATERIAL = .0 PERCENT
R = 14.78
R0 = 3.43
R0 = 3.

---WALL THERMAL PROPERTIES----

THICKNESS = .038 M DENSITY = 790. KG/M3 THERMAL CONDUCTIVITY = .170 W/M-K

EMISSIVITY = .50

THERMOPLASTIC POOL FIRE

FUEL	CNTRL	L
MOL . WT		29 . 93
VELOCITY	M/S	1.93
o. Z		92°
AIR IN	K6/S	2.26
FUEL	PCT	100.0
EXC . PYR.	KG/S	.046
RC	KG/S	.107
g G	KG/S	.153
lp S		262.
WALL TEMPS	U	709.
MA		1157.
TEMP	GASOC	0. 1169.
TIME	v	.0

RUN NO.

PAGE NO. 1

STOICHIOMETRIC FUEL SIZE= 1.741 M2

0 2	YPYR	2	MASS	610°
RUN NO.	YH20	2	MASS	0.057
PAGE NO. 1	YC02	2	MASS	.139
PAG	YNZ	-	MASS	.721
	Y 02	2	MASS	*063
	Q-WALL	E 00	٦	00000
	i i	U-T-KE	3	4.639+06
		BALL XAD	PCT	6.331
IRE	H	MALL CNA	PCT	•229
THERMOPLASTIC POOL FIRE	HEAT BALANCE	CAX CAR	PCT	21.096
THERMOPL		043 TLUM	PCT	69.955
	TIME			0

N

----GEOMETRY AND VENTILATION----

WALL SURFACE AREA = 80.0 M2 FLOOR AREA = 20.00 M2 WINDOW HEIGHT = 1.50 M AREA = 4.00 M2 DPENING FACTOR = 4.899 M2.5 DISCHARGE COEFF.= .68

----FUEL LOAD PROPERTIES----

FIRE LOAD PER FLOOR AREA = 20.0 KG/M2
TOTAL ENTHALPY OF PYROLYSIS= 2.40+06 J/KG
BOILING TEMPERATURE= 390. DEG C

FUEL COMPOSITION
CARBON = 83-7 PERCENT 8Y WEIGHT
HYDROGEN = 44-3 PERCENT
OXYGEN = .0 PERCENT
OXYGEN = .0 PERCENT
NITROGEN = .0 PERCENT
WATER = .0 PERCENT
WATER = .0 PERCENT
R = 14-78
R0 = 3+43
HAT OF COMBUSTION OF DRY FUEL = 46.50+06 J/KG
LOWER ACTUAL HEAT OF COMBUSTION = 43.36+06 J/KG
MOLECULAR WEIGHT OF UNBURNT PYROLYSATES = 28.97
CP OF PYROLYSIS GAS = (.1127*TGAS + 1010.) J/KG-K
MAXIMUM FRACTION OF PYROLYSATES BURNED = .70
GREY-GAS FLAME EMISSIVITY = .900

---WALL THERMAL PROPERTIES----

174.07 M2

FUEL AREA=

THICKNESS = .038 M DENSITY = 790. KG/M3 THERMAL CONDUCTIVITY = .170 W/M-K

EMISSIVITY = .50

0			N	αv
RUN NO.	FUEL	u.	RON NO.	YPYR PCT MASS
3	MOL. WT	29.71	ă	YH20 PCT MASS
PAGE NO. 1			PAGE NO. I	YCO2 PCT MASS
PAGE	VELOCITY M/S	1.72	PAGE	YNZ Y PCT F
	å. 2	.37		YOZ YI PCT PC
				> Q ¥
	AIR IN KG/S	2.04		Q-WALL SUM
	FUEL	100.0		g
	RC EXC.PYR. KG/S KG/S	• 688		O-FIRE
	RC KG/S	160.		R A D
	RP KG/S	.785		WALL RAD PCT
	S	153.		WALL CNV PCT
FIRE	WALL TEMPS C	327.	FIRE	NCE
THERMOPLASTIC PODL FIRE	WAL	501. 327. 153.	THERMOPLASTIC POOL FIRE	HEAT BALANCE WND RAD
THERMOPLA	TEMP GAS.C	\$25.	THERMOPLA	GAS FLOW PCT
	TIME S	•		Ą
		-		TIME

.24S

.044

.049

MASS .

MASS •SS5

0.000

4.188+06

2.218

•608

2,152

37.526

•

TEST PROGRAM WITH DELIBERATE ERROR TO CHECK KTRACE OPERATION

COMPF2 VERSION I.1 - RUN NO. 3

----GEOMETRY AND VENTILATION----

WALL SURFACE AREA = 80.0 M.
FLODR AREA = 20.00 M2
WINDOW HEIGHT = 1.50 M
AREA = 4.00 M2
OPENING FACTOR = 4.899 M2.S
OISCHARGE COEFF. = .68

----FUEL LOAD PROPERTIES----

FIRE LOAD PER FLOOR AREA = 20.0 KG/M2
TOTAL ENTHALPY OF PYROLYSIS= 2.40+06 J/KG
80ILING TEMPERATURE=2000. DEG C

FUEL COMPOSITION
CARBON = 85.7 PERCENT BY WEIGHT
HYDROGEN = 14.3 PERCENT
DXYGEN = .0 PERCENT
NITROGEN = .0 PERCENT
WATER = .0 PERCENT
WATER = .0 PERCENT
R = 14.78
R0= 3.43
HEAT OF COMBUSTION OF DRY FUEL = 46.50+06 J/KG
MOLECULAR WEIGHT OF UNBURNT PYROLYSATES = 28.97
CP OF PYROLYSIS GA5 = (.1127*TGA5 + 1010.) J/KG-K
MAXIMUM FRACTION OF PYROLYSATES BURNED = .70
GREY-GA5 FLAME EMISSIVITY = .900
FUEL AREA = 174.07 M2

---- WALL THERMAL PROPERTIES----

THICKNESS = .038 M DENSITY = 790. KG/M3

THERMAL CONDUCTIVITY = .170 W/M-K

EMISSIVITY = .50

THERMOPLASTIC POOL FIRE

PAGE NO. 1 RUN NO. 3

TIME TEMP WALL TEMPS RP RC EXC.PYR. FUEL AIR IN N.P. VELOCITY MOL.WT FUEL S GAS.C C KG/S KG/S PCT KG/S M/S CNTRL

--- ITERATION FAILURE---

TGA5= 1890.00

TGAS.LT.TBOIL TGAS= 1890.0 GO TO NEXT CASE

RUN NO. 3

TGA51 TGA52 F1 F2 OBRIVI K KD KH J T2(1) TSF QFIRE QFLOW QRAOW RP RC

1800.00 .00 2.43+08 0.00 1.35+05 I 3 0 1 1730.86 1791.43 4.028+05 -1.009+08 4.052+05-59.938 .000

1800.00 1800.00 2.40+08 2.43+08 -2.93+05 2 3 0 1 1740.49 1801.51 2.891+04 -1.008+08 4.083+05-59.068 .001

1900.00 1810.00 2.10+08 2.40+08 -3.33+05 3 3 0 1 1827.13 1892.16 2.405+03 -9.183+07 4.363+05-50.558 .000

TEST PROGRAM FOR POOL FIRE, TRANSIENT CASE, SIZE=7.5 M2

----GEOMETRY AND VENTILATION----

WALL SURFACE AREA = 80.0 M2
FLOOR AREA = 20.00 M2
WINDOW HEIGHT = 1.50 M
AREA = 4.00 M2
OPENING FACTOR = 4.899 M2.5
DISCHARGE COEFF. = .68

----FUEL LOAD PROPERTIES----

FIRE LOAD PER FLOOR AREA = 20.0 KG/M2
TOTAL ENTHALPY OF PYROLYSIS= 2.40+06 J/KG
BOILING TEMPERATURE = 390. DEG C

FUEL COMPOSITION

CARBON = 85.7 PERCENT BY WEIGHT

HYDROGEN = 14.3 PERCENT

OXYGEN = .0 PERCENT

NITROGEN = .0 PERCENT WATER = .0 PERCENT

R = 14.78

R0= 3.43

HEAT OF COMBUSTION OF DRY FUEL = 46.50+06 J/KG
LOWER ACTUAL HEAT OF COMBUSTION = 43.36+06 J/KG
MOLECULAR WEIGHT OF UNBURNT PYROLYSATES = 28.97
CP OF PYROLYSIS GAS = (.1127*TGAS + 1010.) J/KG-K
MAXIMUM FRACTION OF PYROLYSATES BURNED = .70
GREY-GAS FLAME EMISSIVITY = .900
FUEL AREA = 7.50 M2

----WALL THERMAL PROPERTIES----

THICKNESS = .038 M DENSITY = 790. KG/M3

THERMAL CONDUCTIVITY = .170 W/M-K

HEAT CAPACITY = 840. J/KG-K.

EMISSIVITY = .50

THERMOPLASTIC POOL FIRE	THERMOR	LASTIC	POOL	FIRE
-------------------------	---------	--------	------	------

1		TIME	TEMP	WA	LL TEM	P5	RP	RC	EXC.PYR.	FUEL	AIR IN	N.P.	VELOC1TY	MOL. WT	FUEL
2 60. 826. 712. 34. 25. 362. 106 .256 90.0 2.23 .37 1.87 29.85 F 4 180. 870. 790. 83. 25. 381 105 .277 84.3 2.21 .37 1.87 29.85 F 4 180. 870. 790. 83. 26. 396 .104 .292 78.3 2.20 .37 1.87 29.85 F 5 240. 882. 620. 117. 27. 4.06 .104 .302 72.2 2.19 .36 1.67 29.84 F 5 240. 882. 620. 117. 27. 4.06 .104 .302 72.2 2.19 .36 1.67 29.84 F 6 300. 891. 836. 151. 30. 4.13 .103 .310 66.0 2.18 .36 1.87 29.83 F 7 360. 898. 847. 183. 34. 4.19 .103 .316 59.7 2.18 .36 1.87 29.83 F 8 420. 903. 857. 213. 39. 4.24 .103 .321 59.4 2.17 .36 1.87 29.83 F 9 480. 907. 864. 240. 46. 428 .103 .325 47.0 2.17 .36 1.87 29.83 F 10 540. 911. 871. 265. 55. 4.31 .103 .328 47.0 2.17 .36 1.87 29.83 F 11 600. 914. 876. 288. 61. 4.34 .102 .331 34.0 2.16 .36 1.87 29.82 F 12 660. 917. 881. 309. 69. 4.36 .102 .331 34.0 2.16 .36 1.87 29.82 F 13 720. 919. 885. 329. 77. 439 .102 .336 20.9 2.16 .36 1.87 29.82 F 14 780. 921. 888. 347. 85. 440 .102 .338 14.3 2.16 .36 1.87 29.82 F 15 840. 923. 892. 364. 93. 442 .102 .338 14.3 2.16 .36 1.87 29.82 F 16 900. 925. 894. 380. 101. 4.44 .102 .334 1.0 2.15 .36 1.87 29.82 F 18 1020. 358. 534. 407. 115. 0.00 .000 .000 .00 .0 2.25 .45 1.87 29.82 F 18 1020. 358. 534. 407. 115. 0.00 .000 .000 .0 2.27 .43 1.78 26.90 T 21 1200. 184. 310. 402. 133. 000 .000 .000 .0 2.29 .45 1.66 .26.95 T 22 1260. 164. 280. 387. 137. 000 .000 .000 .0 2.27 .45 1.66 .16 1.67 29.82 F 23 1320. 149. 257. 371. 141. 000 .000 .000 .0 2.20 .47 1.33 26.67 T 24 1380. 138. 238. 355. 149. 000 .000 .000 .0 2.20 .47 1.33 26.67 T 25 1440. 129. 222. 339. 145. 0.00 .000 .000 .0 2.20 .47 1.33 26.67 T 25 1440. 129. 222. 339. 145. 0.00 .000 .000 .0 2.20 .47 1.33 26.67 T 26 1500. 121. 299. 324. 145. 0.00 .000 .000 .000 .0 2.20 .47 1.33 26.67 T 27 1560. 114. 198. 310. 145. 0.00 .000 .000 .000 .0 2.20 .47 1.33 26.67 T 28 1620. 108. 188. 296. 144. 0.00 .000 .000 .000 .0 1.95 .47 1.30 26.67 T 31 1800. 95. 164. 261. 137. 0.00 .000 .000 .000 .0 1.95 .47 1.33 26.60 T 31 1800. 95. 164. 261. 137. 0.00 .000 .000 .000 .000 .000 .000 .		5	GA5.C		c		KG/5	KG/5	KG/5	PCT	KG/5		M/5		CNTRL
2 60. 826. 712. 34. 25. 362. 106 .256 90.0 2.23 .37 1.87 29.85 F 4 180. 870. 790. 83. 25. 381 105 .277 84.3 2.21 .37 1.87 29.85 F 4 180. 870. 790. 83. 26. 396 .104 .292 78.3 2.20 .37 1.87 29.85 F 5 240. 882. 620. 117. 27. 4.06 .104 .302 72.2 2.19 .36 1.67 29.84 F 5 240. 882. 620. 117. 27. 4.06 .104 .302 72.2 2.19 .36 1.67 29.84 F 6 300. 891. 836. 151. 30. 4.13 .103 .310 66.0 2.18 .36 1.87 29.83 F 7 360. 898. 847. 183. 34. 4.19 .103 .316 59.7 2.18 .36 1.87 29.83 F 8 420. 903. 857. 213. 39. 4.24 .103 .321 59.4 2.17 .36 1.87 29.83 F 9 480. 907. 864. 240. 46. 428 .103 .325 47.0 2.17 .36 1.87 29.83 F 10 540. 911. 871. 265. 55. 4.31 .103 .328 47.0 2.17 .36 1.87 29.83 F 11 600. 914. 876. 288. 61. 4.34 .102 .331 34.0 2.16 .36 1.87 29.82 F 12 660. 917. 881. 309. 69. 4.36 .102 .331 34.0 2.16 .36 1.87 29.82 F 13 720. 919. 885. 329. 77. 439 .102 .336 20.9 2.16 .36 1.87 29.82 F 14 780. 921. 888. 347. 85. 440 .102 .338 14.3 2.16 .36 1.87 29.82 F 15 840. 923. 892. 364. 93. 442 .102 .338 14.3 2.16 .36 1.87 29.82 F 16 900. 925. 894. 380. 101. 4.44 .102 .334 1.0 2.15 .36 1.87 29.82 F 18 1020. 358. 534. 407. 115. 0.00 .000 .000 .00 .0 2.25 .45 1.87 29.82 F 18 1020. 358. 534. 407. 115. 0.00 .000 .000 .0 2.27 .43 1.78 26.90 T 21 1200. 184. 310. 402. 133. 000 .000 .000 .0 2.29 .45 1.66 .26.95 T 22 1260. 164. 280. 387. 137. 000 .000 .000 .0 2.27 .45 1.66 .16 1.67 29.82 F 23 1320. 149. 257. 371. 141. 000 .000 .000 .0 2.20 .47 1.33 26.67 T 24 1380. 138. 238. 355. 149. 000 .000 .000 .0 2.20 .47 1.33 26.67 T 25 1440. 129. 222. 339. 145. 0.00 .000 .000 .0 2.20 .47 1.33 26.67 T 25 1440. 129. 222. 339. 145. 0.00 .000 .000 .0 2.20 .47 1.33 26.67 T 26 1500. 121. 299. 324. 145. 0.00 .000 .000 .000 .0 2.20 .47 1.33 26.67 T 27 1560. 114. 198. 310. 145. 0.00 .000 .000 .000 .0 2.20 .47 1.33 26.67 T 28 1620. 108. 188. 296. 144. 0.00 .000 .000 .000 .0 1.95 .47 1.30 26.67 T 31 1800. 95. 164. 261. 137. 0.00 .000 .000 .000 .0 1.95 .47 1.33 26.60 T 31 1800. 95. 164. 261. 137. 0.00 .000 .000 .000 .000 .000 .000 .			770	617	0.0	25	707		100	05.4	2 22	7.0	1 04	20.03	_
1															
180. 870. 798. 83. 26. 396 104 202 78.3 2.20 37 1.67 29.84 F 5 240. 882. 820. 117. 27. 406 104 302 72.2 2.19 336 1.87 29.84 F 6 300. 891. 836. 151. 30. 413. 103. 310. 66.0 2.18 36 1.87 29.83 F 7 360. 898. 847. 833. 34. 419 103. 331. 59.7 2.18 36 1.87 29.83 F 8 220. 903. 857. 213. 39. 424. 103. 321. 53.4 2.17 36 1.87 29.83 F 8 420. 903. 857. 213. 39. 424. 103. 321. 53.4 2.17 36 1.87 29.83 F 8 480. 907. 864. 240. 46. 428. 103. 322. 47.0 2.17 36. 1.87 29.83 F 10. 540. 911. 871. 265. 53. 431. 103. 328. 40.5 2.17 36. 1.87 29.83 F 11. 600. 914. 876. 288. 61. 434. 102. 3331. 34.0 2.16 36. 1.87 29.82 F 12. 600. 914. 876. 288. 61. 434. 102. 3331. 34.0 2.16 36. 1.87 29.82 F 13. 720. 919. 885. 329. 77. 439. 102. 336. 20.9 2.16 36. 1.87 29.82 F 14. 780. 921. 888. 347. 85. 440. 102. 338. 2.16 36. 1.87 29.82 F 15. 840. 923. 892. 364. 93. 442. 102. 330. 7.6 2.16 36. 1.87 29.82 F 17. 960. 926. 897. 394. 108. 445. 102. 334. 3.0 2.15 36. 1.87 29.82 F 18. 1020. 358. 534. 407. 115. 0.00 0.00 0.00 0.0 2.47 4.3 1.78 26.90 T 1400. 211. 350. 412. 128. 0.00 0.00 0.00 0.0 2.32 4.45 1.60 26.87 T 27.															
\$ 240. 882. 820. 117. 27406 .104 .302 72.2 2.19 .36 1.87 29.84 F 6 300. 891. 836. 151. 30413 .103 .310 66.0 2.18 .36 1.87 29.83 F 8 420. 903. 857. 213. 39424 .103 .321 53.4 2.17 .36 1.87 29.83 F 8 480. 907. 864. 240. 46428 .103 .321 53.4 2.17 .36 1.87 29.83 F 10 540. 911. 871. 265. 53431 .103 .328 40.5 2.17 .36 1.87 29.83 F 11 600. 914. 876. 288. 61434 .102 .331 34.0 2.16 .36 1.87 29.82 F 12 660. 917. 881. 309. 69436 .102 .331 27.5 2.16 .36 1.87 29.82 F 13 720. 919. 886. 329. 77439 .102 .335 20.9 2.16 .36 1.87 29.82 F 15 840. 923. 892. 364. 93442 .102 .331 1.43 2.16 .36 1.87 29.82 F 15 840. 923. 892. 364. 93442 .102 .330 14.3 2.16 .36 1.87 29.82 F 17 960. 926. 897. 394. 108445 .102 .333 .0 2.15 .36 1.87 29.82 F 18 100. 358. 534. 407. 115000 .000 .000 .0 2.15 .36 1.87 29.82 F 19 180. 255. 409. 414. 122000 .000 .000 .0 2.39 .45 1.66 26.95 T 22 1260. 164. 280. 387. 137000 .000 .000 .0 2.12 .47 .43 1.78 26.90 T 23 130. 138. 238. 355. 143000 .000 .000 .0 2.12 .47 1.36 1.49 26.87 T 24 1380. 138. 238. 355. 143000 .000 .000 .0 2.12 .47 1.36 26.87 T 25 1440. 129. 222. 339. 145000 .000 .000 .0 2.12 .47 1.36 1.49 26.87 T 25 160. 164. 280. 387. 137000 .000 .000 .0 2.12 .47 1.36 1.49 26.87 T 27 1560. 114. 198. 310. 145000 .000 .000 .0 2.12 .47 1.42 26.80 T 28 160. 91. 188. 238. 355. 143000 .000 .000 .0 2.12 .47 1.42 26.80 T 27 1560. 114. 198. 310. 145000 .000 .000 .0 2.12 .47 1.42 26.80 T 28 1620. 108. 188. 296. 144000 .000 .000 .0 2.12 .47 1.42 26.80 T 28 1620. 108. 188. 296. 144000 .000 .000 .0 1.99 .47 1.31 26.70 T 29 1680. 95. 164. 261. 137000 .000 .000 .0 1.99 .47 1.31 26.70 T 30 1740. 99. 171. 272. 140000 .000 .000 .0 1.99 .47 1.31 26.67 T 31 1800. 95. 164. 261. 137000 .000 .000 .0 1.99 .48 1.22 .26.60 T 31 1800. 95. 164. 261. 137000 .000 .000 .000 .0 1.99 .48 1.22 .26.60 T 31 1800. 95. 164. 261. 137000 .000 .000 .000 .0 1.99 .48 1.22 .26.60 T 32 1800. 91. 151. 251. 135000 .000	_														
6 300. 891. 836. 151. 30. 413 103 .310 66.0 2.18 .36 1.87 29.83 F 7 360. 898. 847. 183. 34. 419 .103 .316 59.7 2.18 .36 1.87 29.83 F 8 420. 903. 857. 213. 39. 424 103 .321 53.4 2.17 .36 1.87 29.83 F 9 480. 907. 864. 240. 46. 428 .103 .321 53.4 2.17 .36 1.87 29.83 F 10 540. 911. 871. 265. 53. 431 .103 .326 47.0 2.17 .36 1.87 29.83 F 11 600. 914. 876. 288. 61. 434 .102 .331 34.0 2.16 .36 1.87 29.82 F 12 660. 917. 881. 309. 69. 436 .102 .331 27.5 2.16 .36 1.87 29.82 F 13 720. 919. 885. 329. 77. 439 .102 .336 20.9 2.16 .36 1.87 29.82 F 14 780. 921. 888. 347. 85. 440 .102 .338 14.3 2.16 .36 1.87 29.82 F 15 840. 923. 892. 364. 93. 442 .102 .334 27.5 2.16 .36 1.87 29.82 F 16 900. 925. 894. 380. 101. 444 .102 .334 14.3 2.16 .36 1.87 29.82 F 18 1020. 358. 534. 407. 115. 000 .000 .000 .000 .2.15 .36 1.87 29.82 F 19 1080. 255. 409. 414. 122000 .000 .000 .00 .2.25 .45 1.66 .26.95 T 24 1380. 138. 238. 355. 143000 .000 .000 .00 .2.26 .46 1.49 26.87 T 25 140. 138. 238. 355. 143000 .000 .000 .00 .2.26 .46 1.49 26.87 T 26 1500. 121. 209. 324. 145000 .000 .000 .0 .2.20 .47 1.34 26.90 T 27 1500. 121. 209. 324. 145000 .000 .000 .0 .2.20 .47 1.36 26.96 T 31 1800. 95. 164. 261. 137000 .000 .000 .00 .2.20 .47 1.34 26.90 T 28 1620. 108. 138. 238. 355. 143000 .000 .000 .000 .0 .2.20 .47 1.34 26.97 T 29 1680. 103. 179. 284. 145000 .000 .000 .000 .000 .000 .000 .															
7 360. 898. 847. 183. 34. 419. 103. 316. 59.7. 2.18. 36. 1.87. 29.83. F 8 420. 903. 857. 213. 39. 424. 103. 321. 53.4 2.17. 36. 1.87. 29.83. F 10 540. 911. 871. 265. 53. 431. 103. 328. 40.5. 2.17. 36. 1.87. 29.83. F 10 540. 911. 871. 265. 53. 431. 103. 328. 40.5. 2.17. 36. 1.87. 29.83. F 12 660. 917. 881. 309. 69. 436. 102. 334. 27.5. 2.16. 36. 1.87. 29.82. F 12 660. 917. 881. 309. 49. .402. .338. 17.3 2.16. .36. 1.87. 29.82. F<	_														
8 420. 903. 857. 213. 39424 .103 .321 53.4 2.17 .36 1.87 29.83 F 9 480. 907. 864. 240. 46428 .103 .325 47.0 2.17 .36 1.67 29.83 F 10 540. 911. 871. 265. 53431 .103 .328 40.5 2.17 .36 1.67 29.83 F 11 600. 914. 876. 288. 61434 .102 .331 34.0 2.16 .36 1.87 29.82 F 11 600. 917. 881. 309. 69436 .102 .331 34.0 2.16 .36 1.87 29.82 F 13 720. 919. 885. 329. 77439 .102 .338 20.9 2.16 .36 1.87 29.82 F 14 780. 921. 888. 347. 85440 .102 .338 14.3 2.16 .36 1.87 29.82 F 15 840. 923. 892. 364. 93442 .102 .334 14.3 2.16 .36 1.87 29.82 F 16 900. 925. 894. 380. 101444 .102 .340 7.6 2.16 .36 1.87 29.82 F 18 1020. 358. 534. 407. 115000 .000 .000 .00 2.15 .36 1.87 29.82 F 18 1020. 358. 534. 407. 115000 .000 .000 .0 2.47 .43 1.78 26.90 T 21 1200. 184. 310. 402. 133000 .000 .000 .0 2.37 .45 1.66 26.95 T 21 1200. 184. 310. 402. 133000 .000 .000 .0 2.26 .46 1.49 26.87 T 22 1260. 164. 280. 387. 137000 .000 .000 .00 2.26 .46 1.49 26.87 T 24 1380. 138. 238. 355. 143000 .000 .000 .00 2.21 .46 1.49 26.87 T 25 1440. 129. 222. 339. 145000 .000 .000 .00 .0 2.21 .46 1.49 26.87 T 26 1500. 121. 299. 324. 145000 .000 .000 .00 .0 2.22 .47 1.30 26.87 T 25 1600. 121. 299. 324. 145000 .000 .000 .00 .000 .00 .20 .20 .47 1.39 26.87 T 26 1500. 121. 299. 324. 145000 .000 .000 .000 .000 .000 .000 .															
9															
10 540. 911. 871. 265. 53. 431 103 328 40.5 2.17 36 1.87 29.83 F 11 600. 914. 876. 288. 61. 434 102 331 34.0 2.16 36 1.87 29.82 F 12 660. 917. 881. 309. 69. 436 102 334 27.5 2.16 36 1.87 29.82 F 13 720. 919. 885. 329. 77. 439 102 336 20.9 2.16 36 1.87 29.82 F 14 780. 921. 888. 347. 85. 440 102 338 14.3 2.16 36 1.87 29.82 F 15 840. 923. 892. 364. 93. 442 102 336 14.3 2.16 36 1.87 29.82 F 16 900. 925. 894. 380. 101. 444 102 342 1.0 2.15 36 1.87 29.82 F 18 1020. 358. 534. 407. 115. 000 000 000 000 00 2.15 36 1.87 29.82 F 18 1020. 358. 534. 407. 115. 000 000 000 00 2.47 43 1.78 26.90 T 19 1080. 255. 409. 414. 122. 000 000 000 00 2.47 43 1.78 26.95 T 21 1200. 184. 310. 402. 133. 000 000 000 00 2.26 46 1.54 26.90 T 22 1260. 164. 280. 387. 137. 000 000 000 000 00 2.26 46 1.54 26.90 T 23 1320. 149. 257. 371. 141. 000 000 000 000 00 2.12 47 1.42 26.87 T 24 1380. 138. 238. 355. 143. 000 000 000 00 00 2.16 46 1.45 26.87 T 25 1440. 129. 222. 339. 145. 000 000 000 00 000 000 000 000 000 00															
11 600. 914. 876. 288. 61. 434 102 331 34.0 2.16 36 1.87 29.82 F 12 660. 917. 881. 309. 69. 436 102 333 27.5 2.16 36 1.87 29.82 F 13 720. 919. 885. 329. 77. 439 102 3336 20.9 2.16 36 1.87 29.82 F 14 780. 921. 888. 347. 85. 440 102 338 14.3 2.16 36 1.87 29.82 F 15 840. 923. 892. 364. 93. 442 102 338 14.3 2.16 36 1.87 29.82 F 16 900. 925. 894. 380. 101. 444 102 342 10.0 2.15 36 1.87 29.82 F 17 960. 926. 897. 394. 108. 445 102 343 0.0 2.15 36 1.87 29.82 F 18 1020. 358. 534. 407. 115. 000 000 000 000 2.47 43 1.78 26.90 T 19 1080. 255. 409. 414. 122. 000 000 000 00 2.32 45 1.59 20 1140. 211. 350. 412. 128. 000 000 000 00 2.32 45 1.59 21 1200. 184. 310. 402. 133. 000 000 000 00 2.22 46 1.54 26.90 T 22 1260. 164. 280. 387. 137. 000 000 000 00 2.21 46 1.49 26.67 T 23 1320. 149. 257. 371. 141. 000 000 000 00 2.21 46 1.49 26.67 T 25 1440. 129. 222. 339. 145. 000 000 000 000 00 2.09 47 1.39 26.78 T 26 1500. 121. 209. 324. 145. 000 000 000 000 000 2.09 47 1.39 26.78 T 28 1620. 108. 188. 296. 144. 000 000 000 000 000 000 000 000 000															
12 660. 917. 881. 309. 69. 436 102 334 27.5 2.16 36 1.87 29.82 F 13 720. 919. 885. 329. 77. 439 102 336 20.9 2.16 36 1.87 29.82 F 14 780. 921. 888. 347. 85. 440 102 338 14.3 2.16 36 1.87 29.82 F 15 840. 923. 892. 364. 93. 442 102 340 7.6 2.16 36 1.87 29.82 F 16 900. 925. 894. 380. 101. 444 102 342 1.0 2.15 36 1.87 29.82 F 17 960. 926. 897. 394. 108. 445 102 342 1.0 2.15 36 1.87 29.82 F 18 1020. 358. 534. 407. 115. 000 .000 .000 .0 2.47 .43 1.78 26.95 F 19 1080. 255. 409. 414. 122000 .000 .000 .0 2.47 .43 1.78 26.95 T 20 1140. 211. 350. 412. 128000 .000 .000 .0 2.32 .45 1.59 26.94 T 21 1200. 184. 310. 402. 133000 .000 .000 .0 2.26 .46 1.54 26.90 T 22 1260. 164. 280. 387. 137000 .000 .000 .0 2.26 .46 1.49 26.87 T 23 1320. 149. 257. 371. 141000 .000 .000 .0 2.12 .47 1.42 26.80 T 24 1380. 138. 238. 355. 143000 .000 .000 .0 2.12 .47 1.33 26.78 T 26 1500. 121. 209. 324. 145000 .000 .000 .0 2.09 .47 1.39 26.78 T 28 1620. 108. 188. 296. 144000 .000 .000 .0 2.05 .47 1.36 26.75 T 28 1620. 108. 188. 296. 144000 .000 .000 .0 2.00 .0 2.02 .47 1.34 26.70 T 29 1680. 103. 179. 224. 145000 .000 .000 .0 1.99 .47 1.31 26.70 T 31 1800. 95. 164. 261. 137000 .000 .000 .0 1.99 .47 1.31 26.70 T 31 1800. 95. 164. 261. 137000 .000 .000 .00 .0 1.99 .47 1.30 26.67 T 31 1800. 95. 164. 261. 137000 .000 .000 .00 .0 1.99 .48 1.22 26.66 T 33 1920. 88. 151. 241. 132000 .000 .000 .000 .0 1.99 .48 1.22 26.66 T															
13 720. 919. 885. 329. 77. 439 .102 .336 20.9 2.16 .36 1.87 29.82 F 14 780. 921. 888. 347. 85. 440 .102 .338 14.3 2.16 .36 1.87 29.82 F 15 840. 923. 892. 364. 93. 442 .102 .340 7.6 2.16 .36 1.87 29.82 F 16 900. 925. 894. 380. 101. 444 .102 .342 1.0 2.15 .36 1.87 29.82 F 17 960. 926. 897. 394. 108. 445 .102 .342 1.0 2.15 .36 1.87 29.82 F 18 1020. 358. 534. 407. 115000 .000 .000 .00 2.47 .43 1.78 26.90 T 19 1080. 255. 409. 414. 122000 .000 .000 .00 2.47 .43 1.78 26.90 T 21 140. 211. 350. 412. 128000 .000 .000 .00 2.39 .45 1.66 26.95 T 21 1200. 184. 310. 402. 133000 .000 .000 .0 2.32 .45 1.59 26.94 T 22 1260. 164. 280. 387. 137000 .000 .000 .00 2.26 .46 1.54 26.90 T 23 1320. 149. 257. 371. 141000 .000 .000 .00 2.16 .46 1.49 26.87 T 24 1380. 138. 238. 355. 143000 .000 .000 .00 2.16 .46 1.49 26.87 T 25 1440. 129. 222. 339. 145000 .000 .000 .00 2.20 .47 1.39 26.78 T 27 1560. 114. 198. 310. 145000 .000 .000 .00 2.00 .47 1.36 26.75 T 28 1620. 108. 188. 296. 144000 .000 .000 .00 2.00 .47 1.36 26.73 T 29 1680. 103. 179. 284. 142000 .000 .000 .000 .0 1.99 .47 1.31 26.70 T 31 1800. 95. 164. 261. 137000 .000 .000 .00 .199 .47 1.31 26.70 T 31 1800. 95. 164. 261. 137000 .000 .000 .000 .0 1.99 .47 1.31 26.70 T 31 1800. 95. 164. 261. 137000 .000 .000 .000 .0 1.99 .47 1.30 26.67 T 31 1800. 95. 164. 261. 137000 .000 .000 .000 .0 1.99 .47 1.30 26.67 T 31 1800. 95. 164. 261. 137000 .000 .000 .000 .000 .000 .000 .															
14 780. 921. 888. 347. 85. .440 .102 .338 14.3 2.16 .36 1.87 29.82 F 15 840. 923. 892. 364. 93. .442 .102 .340 7.6 2.16 .36 1.87 29.82 F 10 900. 925. 894. 380. 101. .444 .102 .342 10 2.15 .36 1.87 29.82 F 17 960. 926. 897. 394. 108. .445 .102 .343 .0 2.15 .36 1.87 29.82 F 18 1020. 358. 534. 407. 115. .000 .000 .000 .00 2.15 .36 1.87 29.82 F 18 1020. 358. 534. 407. 115. .000 .000 .000 .00 2.15 .36 1.87 29.82 F 18 1020. 358. 534. 407. 115. .000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>															
15 840. 923. 892. 364. 93. 442 .102 .340 7.6 2.16 .36 1.87 29.82 F 16 900. 925. 894. 380. 101. 444 .102 .342 1.0 2.15 .36 1.87 29.82 F 17 960. 926. 897. 394. 108. 445 .102 .343 .0 2.15 .36 1.87 29.82 F 18 1020. 358. 534. 407. 115. 000 .000 .000 .00 .2.47 .43 1.78 26.90 T 19 1080. 255. 409. 414. 122000 .000 .000 .0 2.47 .43 1.78 26.90 T 21 140. 211. 350. 412. 128000 .000 .000 .0 2.32 .45 1.59 26.94 T 21 1200. 184. 310. 402. 133000 .000 .000 .0 2.32 .45 1.59 26.94 T 22 1260. 164. 280. 387. 137000 .000 .000 .0 2.26 .46 1.54 26.90 T 23 1320. 149. 257. 371. 141000 .000 .000 .0 2.26 .46 1.49 26.87 T 24 1380. 138. 238. 355. 143000 .000 .000 .0 2.16 .46 1.49 26.87 T 25 1440. 129. 222. 339. 145000 .000 .000 .0 2.12 .47 1.42 26.80 T 26 1500. 121. 209. 324. 145000 .000 .000 .0 2.05 .47 1.39 26.78 T 28 1620. 108. 188. 296. 144000 .000 .000 .00 .0 2.05 .47 1.36 26.75 T 29 1680. 103. 179. 284. 142000 .000 .000 .00 .0 1.99 .47 1.31 26.70 T 31 1800. 95. 164. 261. 137000 .000 .000 .0 1.99 .47 1.30 26.67 T 31 1800. 95. 164. 261. 137000 .000 .000 .0 1.99 .47 1.30 26.67 T 31 1800. 95. 164. 261. 137000 .000 .000 .0 1.99 .47 1.30 26.67 T 31 1800. 95. 164. 261. 137000 .000 .000 .0 1.99 .47 1.30 26.67 T 31 1800. 95. 164. 261. 137000 .000 .000 .0 1.99 .48 1.26 26.66 T 31 1800. 95. 164. 261. 137000 .000 .000 .0 1.99 .48 1.26 26.66 T 31 1800. 95. 164. 261. 137000 .000 .000 .000 .0 1.99 .48 1.22 26.66 T															
16 900. 925. 894. 380. 101444 .102 .342 1.0 2.15 .36 1.87 29.82 F 17 960. 926. 897. 394. 108445 .102 .343 .0 2.15 .36 1.87 29.82 F 18 1020. 358. 534. 407. 115000 .000 .000 .0 2.15 .36 1.87 29.82 F 19 1080. 255. 409. 414. 122000 .000 .000 .0 2.37 .43 1.78 26.90 T 20 1140. 211. 350. 412. 128000 .000 .000 .0 2.32 .45 1.59 26.94 T 21 1200. 184. 310. 402. 133000 .000 .000 .0 2.32 .45 1.59 26.94 T 22 1260. 164. 280. 387. 137000 .000 .000 .0 2.21 .46 1.54 26.90 T 23 1320. 149. 257. 371. 141000 .000 .000 .0 2.16 .46 1.49 26.87 T 24 1380. 138. 238. 355. 143000 .000 .000 .0 2.16 .46 1.45 26.64 T 25 1440. 129. 222. 339. 145000 .000 .000 .0 2.02 .47 1.39 26.78 T 26 1500. 121. 209. 324. 145000 .000 .000 .0 2.09 .47 1.39 26.78 T 28 1620. 108. 188. 296. 144000 .000 .000 .0 2.02 .47 1.34 26.73 T 28 1620. 108. 188. 296. 144000 .000 .000 .0 1.99 .47 1.31 26.70 T 29 1680. 103. 179. 284. 142000 .000 .000 .0 1.99 .47 1.31 26.70 T 31 1800. 95. 164. 261. 137000 .000 .000 .0 1.99 .48 1.24 26.60 T 31 1800. 95. 164. 261. 137000 .000 .000 .0 1.99 .48 1.24 26.60 T 31 1800. 95. 164. 261. 137000 .000 .000 .000 .0 1.99 .48 1.24 26.60 T 33 1920. 88. 151. 241. 132000 .000 .000 .000 .0 1.99 .48 1.22 26.68 T															
17 960. 926. 897. 394. 108. 445 .102 .343 .0 2.15 .36 1.87 29.82 F 18 1020. 358. 534. 407. 115000 .000 .000 .0 2.47 .43 1.78 26.90 T 19 1080. 255. 409. 414. 122000 .000 .000 .0 2.47 .43 1.78 26.95 T 20 1140. 211. 350. 412. 128000 .000 .000 .0 2.32 .45 1.66 26.95 T 21 1200. 184. 310. 402. 133000 .000 .000 .0 2.32 .45 1.59 26.94 T 21 1200. 184. 310. 402. 133000 .000 .000 .0 2.26 .46 1.54 26.90 T 22 1260. 164. 280. 387. 137000 .000 .000 .0 2.21 .46 1.49 26.87 T 23 1320. 149. 257. 371. 141000 .000 .000 .0 2.16 .46 1.45 26.84 T 24 1380. 138. 238. 355. 143000 .000 .000 .0 2.16 .46 1.45 26.84 T 25 1440. 129. 222. 339. 145000 .000 .000 .0 2.02 .47 1.39 26.78 T 26 1500. 121. 209. 324. 145000 .000 .000 .0 2.05 .47 1.39 26.78 T 28 1620. 108. 188. 296. 144000 .000 .000 .0 2.02 .47 1.36 26.75 T 28 1620. 108. 188. 296. 144000 .000 .000 .0 2.92 .47 1.31 26.70 T 29 1680. 103. 179. 284. 142000 .000 .000 .0 1.99 .47 1.31 26.70 T 31 1800. 95. 164. 261. 137000 .000 .000 .0 1.99 .47 1.32 26.66 T 31 1800. 95. 164. 261. 137000 .000 .000 .0 1.99 .48 1.26 26.66 T 33 1920. 88. 151. 241. 132000 .000 .000 .000 .0 1.99 .48 1.22 26.68 T															
18 1020. 358. 534. 407. 115000 .000 .000 .0 2.47 .43 1.78 26.90 T 19 1080. 255. 409. 414. 122000 .000 .000 .0 2.39 .45 1.66 26.95 T 20 1140. 211. 350. 412. 128000 .000 .000 .0 2.39 .45 1.66 26.95 T 21 1200. 184. 310. 402. 133000 .000 .000 .0 2.26 .46 1.59 26.94 T 21 1200. 184. 310. 402. 133000 .000 .000 .0 2.26 .46 1.54 26.90 T 22 1260. 164. 280. 387. 137000 .000 .000 .0 2.26 .46 1.49 26.87 T 23 1320. 149. 257. 371. 141000 .000 .000 .0 2.16 .46 1.49 26.87 T 24 1380. 138. 238. 355. 143000 .000 .000 .0 2.16 .46 1.45 26.84 T 25 1440. 129. 222. 339. 145000 .000 .000 .0 2.12 .47 1.42 26.80 T 26 1500. 121. 209. 324. 145000 .000 .000 .0 2.09 .47 1.39 26.78 T 27 1560. 114. 198. 310. 145000 .000 .000 .000 .0 2.05 .47 1.36 26.75 T 27 1560. 114. 198. 310. 145000 .000 .000 .000 .0 2.05 .47 1.36 26.75 T 29 1680. 103. 179. 284. 142000 .000 .000 .000 .0 1.99 .47 1.31 26.70 T 29 1680. 103. 179. 284. 142000 .000 .000 .000 .0 1.99 .47 1.31 26.70 T 31 1800. 95. 164. 261. 137000 .000 .000 .000 .0 1.92 .48 1.26 26.64 T 31 1800. 95. 164. 261. 137000 .000 .000 .000 .0 1.99 .48 1.26 26.65 T 31 1800. 95. 164. 261. 137000 .000 .000 .000 .0 1.99 .48 1.26 26.66 T 31 1800. 95. 164. 261. 137000 .000 .000 .000 .0 1.99 .48 1.26 26.66 T 31 1800. 95. 164. 261. 137000 .000 .000 .000 .000 .000 .000 .															
19 1080															
20 1140. 211. 350. 412. 128000 .000 .000 .0 2.32 .45 1.59 26.94 T 21 1200. 184. 310. 402. 133000 .000 .000 .0 2.26 .46 1.54 26.90 T 22 1260. 164. 280. 387. 137000 .000 .000 .0 2.26 .46 1.54 26.87 T 23 1320. 149. 257. 371. 141000 .000 .000 .0 2.16 .46 1.49 26.87 T 24 1380. 138. 238. 355. 143000 .000 .000 .0 2.16 .46 1.45 26.84 T 24 1380. 138. 238. 355. 143000 .000 .000 .0 2.12 .47 1.42 26.80 T 25 1440. 129. 222. 339. 145000 .000 .000 .0 2.09 .47 1.39 26.78 T 26 1500. 121. 209. 324. 145000 .000 .000 .0 2.05 .47 1.36 26.75 T 27 1560. 114. 198. 310. 145000 .000 .000 .0 2.05 .47 1.36 26.75 T 28 1620. 108. 188. 296. 144000 .000 .000 .0 2.02 .47 1.34 26.70 T 29 1680. 103. 179. 284. 142000 .000 .000 .0 1.99 .47 1.31 26.70 T 30 1740. 99. 171. 272. 140000 .000 .000 .00 .0 1.97 .47 1.30 26.67 T 31 1800. 95. 164. 261. 137000 .000 .000 .00 1.95 .47 1.28 26.64 T 31 1800. 95. 164. 261. 137000 .000 .000 .000 .0 1.92 .48 1.26 26.62 T 32 1860. 91. 157. 251. 135000 .000 .000 .000 .0 1.99 .48 1.26 26.65 T															
21 1200. 184. 310. 402. 133000 .000 .000 .0 2.26 .46 1.54 26.90 T 22 1260. 164. 280. 387. 137000 .000 .000 .0 2.21 .46 1.49 26.87 T 31 1320. 149. 257. 371. 141000 .000 .000 .0 2.11 .46 1.45 26.84 T 24 1380. 138. 238. 355. 143000 .000 .000 .0 2.12 .47 1.42 26.80 T 25 1440. 129. 222. 339. 145000 .000 .000 .00 2.09 .47 1.39 26.78 T 26 1500. 121. 209. 324. 145000 .000 .000 .0 2.09 .47 1.39 26.78 T 27 1560. 114. 198. 310. 145000 .000 .000 .0 2.05 .47 1.36 26.75 T 27 1560. 114. 198. 310. 145000 .000 .000 .000 .0 2.02 .47 1.34 26.73 T 28 1620. 108. 188. 296. 144000 .000 .000 .00 .0 1.99 .47 1.31 26.70 T 29 1680. 103. 179. 284. 142000 .000 .000 .0 1.99 .47 1.31 26.70 T 30 1740. 99. 171. 272. 140000 .000 .000 .0 1.97 .47 1.30 26.67 T 31 1800. 95. 164. 261. 137000 .000 .000 .00 1.95 .47 1.28 26.64 T 31 1800. 95. 164. 261. 137000 .000 .000 .00 1.99 .48 1.26 26.62 T 32 1860. 91. 157. 251. 135000 .000 .000 .000 .0 1.99 .48 1.24 26.60 T 33 1920. 88. 151. 241. 132000 .000 .000 .000 .0 1.88 .48 1.23 26.58 T															
22 1260. 164. 280. 387. 137															
23 1320. 149. 257. 371. 141. 0000 0000 000 000 2.16 46 1.45 26.84 T 24 1380. 138. 238. 355. 143. 0000 0000 000 00 2.12 47 1.42 26.80 T 25 1440. 129. 222. 339. 145. 0000 000 000 00 2.09 47 1.39 26.78 T 26 1500. 121. 209. 324. 145. 0000 0000 000 00 2.05 47 1.36 26.75 T 27 1560. 114. 198. 310. 145. 0000 0000 000 00 2.05 47 1.36 26.75 T 28 1620. 108. 188. 296. 144. 0000 0000 000 0 1.99 47 1.31 26.70 T 29 1680. 103. 179. 284. 142. 0000 0000 000 00 1.99 47 1.31 26.70 T 30 1740. 99. 171. 272. 140. 0000 0000 000 00 1.97 47 1.30 26.67 T 31 1800. 95. 164. 261. 137. 0000 000 000 00 1.95 48 1.26 26.64 T 32 1860. 91. 157. 251. 135. 0000 000 000 0 1.99 48 1.26 26.66 T 33 1920. 88. 151. 241. 132. 0000 000 000 0 1.88 48 1.23 26.58 T															
24 1380. 138. 238. 355. 143000 .000 .000 .0 2.12 .47 1.42 26.80 T 25 1440. 129. 222. 339. 145000 .000 .000 .0 2.09 .47 1.39 26.78 T 26.1500. 121. 209. 324. 145000 .000 .000 .0 2.09 .47 1.36 26.75 T 27 1560. 114. 198. 310. 145000 .000 .000 .0 2.05 .47 1.36 26.75 T 28 1620. 108. 188. 296. 144000 .000 .000 .00 2.02 .47 1.34 26.73 T 28 1620. 108. 188. 296. 144000 .000 .000 .0 1.99 .47 1.31 26.70 T 29 1680. 103. 179. 284. 142000 .000 .000 .0 1.99 .47 1.31 26.67 T 30 1740. 99. 171. 272. 140000 .000 .000 .0 1.97 .47 1.28 26.67 T 31 1800. 95. 164. 261. 137000 .000 .000 .0 1.95 .47 1.28 26.64 T 31 1800. 95. 164. 261. 137000 .000 .000 .0 1.92 .48 1.26 26.62 T 32 1860. 91. 157. 251. 135000 .000 .000 .0 1.99 .48 1.24 26.60 T 33 1920. 88. 151. 241. 132000 .000 .000 .000 .0 1.88 .48 1.23 26.58 T															
25 1440. 129. 222. 339. 145000 .000 .000 .0 2.09 .47 1.39 26.78 T 26 1500. 121. 209. 324. 145000 .000 .000 .0 2.05 .47 1.36 26.75 T 27 1560. 114. 198. 310. 145000 .000 .000 .0 2.05 .47 1.36 26.75 T 28 1620. 108. 188. 296. 144000 .000 .000 .0 2.02 .47 1.31 26.70 T 29 1680. 103. 179. 284. 142000 .000 .000 .0 1.99 .47 1.31 26.70 T 29 1680. 103. 179. 284. 142000 .000 .000 .0 1.97 .47 1.30 26.67 T 31 1800. 99. 171. 272. 140000 .000 .000 .0 1.95 .47 1.28 26.64 T 31 1800. 95. 164. 261. 137000 .000 .000 .0 1.92 .48 1.26 26.62 T 32 1860. 91. 157. 251. 135000 .000 .000 .0 1.99 .48 1.24 26.60 T 33 1920. 88. 151. 241. 132000 .000 .000 .000 .0 1.88 .48 1.23 26.58 T															
26 1500. 121. 209. 324. 145. 000 .000 .000 .0 2.05 .47 1.36 26.75 T 27 1560. 114. 198. 310. 145000 .000 .000 .0 2.02 .47 1.34 26.73 T 28 1620. 108. 188. 296. 144000 .000 .000 .0 1.99 .47 1.31 26.70 T 29 1680. 103. 179. 284. 142000 .000 .000 .0 1.97 .47 1.30 26.67 T 30 1740. 99. 171. 272. 140000 .000 .000 .0 1.97 .47 1.30 26.67 T 31 1800. 95. 164. 261. 137000 .000 .000 .0 1.95 .47 1.28 26.64 T 32 1860. 91. 157. 251. 135000 .000 .000 .0 1.90 .48 1.26 26.65 T 33 1920. 88. 151. 241. 132000 .000 .000 .000 .0 1.88 .48 1.24 26.65 T															т
27 1560. 114. 198. 310. 145000 .000 .000 .0 2.02 .47 1.34 26.73 T 28 1620. 108. 188. 296. 144000 .000 .000 .0 1.99 .47 1.31 26.70 T 29 1680. 103. 179. 284. 142000 .000 .000 .0 1.99 .47 1.31 26.67 T 30 1740. 99. 171. 272. 140000 .000 .000 .0 1.97 .47 1.30 26.67 T 31 1800. 95. 164. 261. 137000 .000 .000 .0 1.95 .47 1.28 26.64 T 31 1800. 91. 157. 251. 135000 .000 .000 .0 1.92 .48 1.26 26.62 T 33 1920. 88. 151. 241. 132000 .000 .000 .0 1.88 .48 1.23 26.58 T															
28 1620. 108. 188. 296. 144000 .000 .000 .0 1.99 .47 1.31 26.70 T 29 1680. 103. 179. 284. 142000 .000 .000 .0 1.97 .47 1.30 26.67 T 30 1740. 99. 171. 272. 140000 .000 .000 .0 1.95 .47 1.28 26.64 T 31 1800. 95. 164. 261. 137000 .000 .000 .0 1.92 .48 1.26 26.62 T 32 1860. 91. 157. 251. 135000 .000 .000 .0 1.99 .48 1.24 26.60 T 33 1920. 88. 151. 241. 132000 .000 .000 .0 1.88 .48 1.23 26.58 T															т
29 1680. 103. 179. 284. 142000 .000 .000 .0 1.97 .47 1.30 26.67 T 30 1740. 99. 171. 272. 140000 .000 .000 .0 1.95 .47 1.28 26.64 T 31 1800. 95. 164. 261. 137000 .000 .000 .0 1.92 .48 1.26 26.62 T 32 1860. 91. 157. 251. 135000 .000 .000 .0 1.90 .48 1.24 26.60 T 33 1920. 88. 151. 241. 132000 .000 .000 .0 1.88 .48 1.23 26.58 T												.47		26.70	Ť
30 1740. 99. 171. 272. 140000 .000 .000 .0 1.95 .47 1.28 26.64 T 31 1800. 95. 164. 261. 137000 .000 .000 .0 1.92 .48 1.26 26.62 T 32 1860. 91. 157. 251. 135000 .000 .000 .0 1.90 .48 1.24 26.60 T 33 1920. 88. 151. 241. 132000 .000 .00 .0 1.88 .48 1.23 26.58 T												.47		26.67	Ť
31 1800. 95. 164. 261. 137. 000 000 000 0 1.92 048 1.26 26.62 T 32 1860. 91. 157. 251. 135. 000 000 000 0 1.90 048 1.24 26.60 T 33 1920. 88. 151. 241. 132. 000 000 000 0 1.88 048 1.23 26.68 T												.47		26.64	т
32 1860. 91. 157. 251. 135000 .000 .000 .0 1.90 .48 1.24 26.60 T 33 1920. 88. 151. 241. 132000 .000 .000 .0 1.88 .48 1.23 26.58 T	31											• 48		26.62	т
												• 48	1.24	26.60	т
												•48	1.23	26.58	Т
34 1980. 85. 146. 232. 129000 .000 .000 .0 1.80 .48 1.22 20.30 1	34	1980.	85 .	146.	232.	129.	.000	.000	.000	. 0	1.86	.48	1.22	26.56	т
35 2040. 82. 141. 223. 126000 .000 .00 1.85 .48 1.20 26.54 T										. 0		.48	1.20	26.54	т
36 2100. 80. 136. 215. 123000 .000 .000 .0 1.83 .48 1.19 26.52 T												•48	1.19	26.52	Т

	THERMOPL	ASTIC POOL	FIRE					PA	GE NO.	1 RUI	ND.	4
TIME		HEAT BALAN	NCE.			Q-WALL	Y02	YN2	YC02	YH20	YPYR	
1 2 1416	GAS FLOW	WND RAD	WALL CHY	WALL RAD	Q-F1RE	5UM	PCT	PCT	PCT	PCT	PCT	
	PCT	PCT	PCT	PCT	W	J	MA55	MASS	MA55	MASS	MASS	
	, ,			201		,	MASS	MASS	MASS	MASS	MADD	
0.	44.886	5.022	11.092	28.910	4.694+06	1.127+08	•060	•679	.131	•054	.076	
60 •	51.859	7.174	4.559	22.952	4.582+06	1.883+08	.058	.663	-128	•052	•099	
120.	54 • 0 89	7.950	3.297	20.091	4.543+06	2.520+08	.058	.657	.127	• 052	.107	
180.	55.726	8.546	2.523	17.707	4.514+06	3.068+08	.057	.652	.126	.052	-113	
240.	56.787	8.943	2.091	16.097	4.496+06	3.559+08	.057	.650	.126	•051	.116	
300.	57.586	9.250	1.787	14.794	4.481+06	4.005+08	.057	.647	-125	.051	•119	
360.	58.196	9.486	1.574	13.785	4.470+06	4.417+08	.057	.646	.125	•051	-122	
420.	58.693	9.681	1.411	12.954	4.461+06	4.801+08	.057	.644	•125	.051	.124	
480.	59.095	9.840	1.283	12.252	4.453+06	5.163+08	.056	.643	-124	• 051	-125	
540.	59.440	9.978	1.180	11.659	4.447+06	5.505+08	.056	.642	-124	•051	.126	
600.	59.737	10.097	1.094	11.144	4.442+06	5.832+08	.056	.641	-124	.051	-128	
660 •	59.996	10.201	1.022	10.691	4.437+06	6.143+08	.056	•641	.124	.051	.129	
720.	60.224	10.294	• 96 0	10.290	4.433+06	6.443+08	•056	.640	.124	.051	-130	
780.	60.427	10.376	•907	9.929	4.429+06	6.731+08	.056	•639	.124	.051	•130	
840.	60.610	10.451	. 860	9.604	4.426+06	7.008+08	.056	.639	.123	.051	•131	
900.	60.776	10.518	•818	9.308	4.423+06	7.277+08	•056	.638	.123	.051	.132	
960.	60.927	10.560	•781	9.037	4.420+06	7.537+08	•056	.638	•123	•050	.132	
1020.	96.257	3.743	-40.770	-59.079	0.000	7.537+08	.230	.770	-000	.000	•000	
1080.	97.357	2.643	-52.654	-47.486	0.000	7.537+08	-230	.770	-000	• 0 0 0	.000	
1140.	97.717	2.283	-58.391	-41.795	0.000	7.537+08	.230	.770	-000	.000	.000	
1200.	97.914	2.086	-62.064	-37.859	0.000	7.537+08	•23 0	•770	.000	.000	-000	
1260.	98.036	1.964	-64.780	-35.129	0.000	7.537+08	.230	.770	• 000	.000	-000	
1320.	98.120	1.880	-67.042	-33.129	0.000	7.537+08	•230	.770	.000	-000	-000	
1380.	98.180	1.820	-68.677	-31.505	0.000	7.537+08	.230	.770	• 000	• 000	-000	
1440.	98.223	1.777	-69.805	-30.128	0.000	7.537+08	.230	.770	.000	.000	-000	
1500.	98.258	1.742	-71.093	-29.103	0.000	7.537+08	.230	.770	.000	• 0 0 0	.000	
1560.	98.285	1.715	-71.919	-28.159	0.000	7.537+08	.230	.770	.000	•000	.000	
1620.	98.306	1.694	-72.779	-27.407	0.000	7.537+08	.230	•770	• 000	.000	.000	
1680.	98.324	1.676	-73.334	-26.712	0.000	7.537+08	•230	•770	• 00 0	.000	.000	
1740.	98.338	1.662	-73.959	-26.146	0.000	7.537+08	•230	•770	.000	• 000	.000	
1800.	98.349	1.651	-74.362	-25.603	0.000	7.537+08	.230	.770	.000	• 000	•000	
1860.	98.359	1.641	-74.862	-25.162	0.000	7.537+08	.230	.770	.000	-000	.000	
1920.	98.367	1.633	-75.260	-24.756	0.000	7.537+08	.230	.770	.000	•000	.000	
1980.	98.374	1.626	-75.620	-24.394	0.000	7.537+08	.230	.770	.000	•000	.000	
2040.	98.379	1.621	-75.777	-24.028	0.000	7.537+08	.230	•770	.000	-000	.000	
2100.	98.384	1.616	-76.079	-23.735	0.000	7.537+08	.230	•770	.000	.000	.000	

TEST PROGRAM FOR WOOD CRIB FIRE, REGRES SPECIFIED

----GEOMETRY AND VENTILATION----

WALL SURFACE AREA = 80.0 M2
FLOOR AREA = 20.00 M2
WINDOW HEIGHT = 1.50 M
AREA = 4.00 M2
OPENING FACTOR = 4.899 M2.5
DISCHARGE COEFF.= .68

----FUEL LOAD PROPERTIES----

FIRE LOAD PER FLOOR AREA = 10.0 KG/M2

FUEL COMPOSITION CARBON = 44.4 PERCENT BY WEIGHT HYDROGEN = 5.4 PERCENT OXYGEN = 38.2 PERCENT NITROGEN = .0 PERCENT WATER = 12.0 PERCENT R = 5.32R0 = 1.23HEAT OF COMBUSTION OF DRY FUEL = 18.80+06 J/KG LOWER ACTUAL HEAT OF COMBUSTION = 15.07+06 J/KG MOLECULAR WEIGHT OF UNBURNT PYROLYSATES = 28.97 CP OF PYROLYSIS GAS = (.1127*TGAS + 1010.) J/KG-K MAXIMUM FRACTION OF PYROLYSATES BURNED = .70 GREY-GAS FLAME EMISSIVITY = .900 RATE OF REGRESSION = 15.00-06 M/S FUEL DIMENSION = .050 M SHAPE FACTOR = 2.00

----WALL THERMAL PROPERTIES----

THICKNESS = .038 M DENSITY = 790. KG/M3

THERMAL CONDUCTIVITY = .170 W/M-K

HEAT CAPACITY = 840. J/KG-K

EMISSIVITY = .50

	TIME	TEMP	WA	LL TEM	P5	RP	RC	EXC.PYR.	FUEL	AIR IN	N.P.	VELO	CLTY	MOL.WT	FUEL	
	5	GA5.C		С		KG/5	KG/5	KG/S	PCT	KG/5			/5		CNTRL	
															_	
1 2	0. 60.	510. 560.	296. 422.	26. 30.	25. 25.	•240 •231	•168 •162	• 072 • 069	92.8	2.35 2.35	•41		•80 •82	29.90 29.86	T T	
3	120.	572.	461.	41.	25.	.222	.156	.067	79.2	2.36	.40	-	.83	29.83	Ť	
4	180.	574.	482.	58.	25.	.214	.150	.064	72.8	2.36	.40		.83	29.79	T	
5 6	240. 300.	571 • 563 •	490.	78. 98.	26.	.205 .196	•143 •137	•061 •059	66.6	2.37 2.37	•40		. 83 . 83	29.76 29.72	T T	
7	360.	553.	489.	117.	30.	.187	•131	• 056	55.2	2.38	.41		. 83 . 83	29.72	T	
8	420.	540.	483.	134.	33.	.178	.125	• 053	49.8	2.38	•41		82	29.65	Ť	
9	480.	526.	474.	149.	37.	.169	•119	.051	44.7	2.39	-41		82	29.62	Т	
10	540. 600.	510.	463. 451.	162.	42.	•161 •152	•112 •106	.048 .045	39.9	2.39 2.40	•41 •41		81	29.58	T T	
12	660.	476.	437.	184.	51.	.143	.100	.043	31.1	2.40	•42		.81 .80	29.55 29.51	Ť	
13	720.	457.	423.	192.	56.	.134	.094	.040	27.1	2.40	.42	1.	.79	29.48	Т	
14	780.	438.	408.	199.	61.	.125	.087	-037	23.3	2.40	•42		.78	29.44	T	
15	840. 900.	417. 396.	392. 375.	204.	66. 70.	.116 .107	.081	.035 .032	19.8	2.40	.42 .43		.76 .75	29.41 29.37	T T	
17	960.	374.	358.	212.	74.	.098	.069	• 029	13.7	2.40	• 43		• 75 • 73	29.37	Ť	
18	1020.	352.	341.	214.	78.	.089	.062	.027	11.0	2.38	•43		.71	29.30	Ť	
19	1080.	328.	324.	216.	81.	.080	.056	.024	8.6	2.37	.44	_	69	29.26	Т	
20	1140.	304.	307.	216.	84 •	.071	•049	•021	6.5	2.35	• 44		•66	29.23	Ţ	
21	1200.	279. 253.	289. 271.	216.	87. 89.	.061 .052	.043 .036	•018 •016	4.7 3.1	2.33	.45 .45		•63 •59	29.19 29.15	T T	
23	1320.	226.	252.	213.	91.	.042	.030	.013	1.9	2.25	.45		54	29.12	Ť	
24	1380.	199.	233.	210.	93.	.033	.023	.010	• 9	2.19	• 46	1	48	29.08	т	
25	1440.	169.	213.	207.	94 •	.022	.016	.007	• 2	2.10	• 47		•40	29.03	Ţ	
26 27	1500.	134.	190 • 166 •	203.	95. 96.	•011	.008	•003	• 0	1.96 1.74	•47 •48		• 29 • 13	28.98 28.92	T T	
28	1620.	92.	152.	193.	96.	.000	.000	.000	• 0	1.68	.48		.08	28.92	Ť	
29	1680.	87.	143.	187.	96.	.000	.000	.000	. 0	1.63	.48		.05	28.92	Т	
30	1740.	83.	135.	181.	96 •	.000	.000	.000	• 0	1.59	• 49		02	28.92	T	
31	1800.	79.	129.	175.	95.	•000	•000	-000	• 0	1.55	•49		•99	28.92	Т	
	CF	R18 FIRE										PA	GE ND.	1 RU	N NO.	5
TIM	F		HEAT BAL	ANCE						Q-WALL	Y02	YN2	YC02	YH20	YPYR	
		5 FLOW	WND RAD		LL CNV	WALL	RAD	Q-FIRE		5UM	PCT	PCT	PCT	PCT	PCT	
		PCT	PCT		PCT	PCT	г	W		J	MA55	MA 55	MA55	MA55	MAS 5	
0	-	5.544	3.303	10	.249	21.90		2.531+06		6.250+07	•129	•699	.106	• 043	-028	
60		3.693	4.410		.122	20.80		2.438+06		1.092+08	.132	.701	.102	.041	•028	
120		7.496	4.843		.615	19.04		2.345+06		1.481+08	.136	.704	.098	.040	.026	
180		0.479	5.113		-081	17.33		2.252+06		1.811+08	.139	.706	• 09 4	.038	.025	
240 300		2.815 4.815	5.238 5.278		•119 •434	15.82		2.159+06		2.095+08	•143 •147	.709	.091 .087	.037 .035	.024 .023	
360		6.584	5.253	_	•919	14.47		1.973+06		2.557+08	.150	•714	.083	.034	.022	
420		8.203	5.181		507	12.10		1.880+06		2.745+08	.154	.716	.079	.032	.021	
480		9.721	5.074		•160	11.04		1.786+06		2.908+08	. 158	.719	.075	-030	.020	
540 600		1.173 2.590	4.941		•852	10.03		1.693+06		3.049+08 3.170+08	•161 •165	•722 •724	.072 .068	.029 .027	.019 .018	
660		2.590 3.993	4.787 4.619		3.564 3.280	9.00		1.599+06		3.273+08	.169	•727	.064	.026	.017	
720		5.405	4.440		.987	7.17		1.411+06		3.359+08	.172	.729	.060	.024	.016	
780		6.848	4.254		673	6.2		1.317+06		3.429+08	-176	.732	.056	.023	-015	
840		8.347	4.064		.324	5.28		1.222+06		3.485+08	-180	•735	.052 .049	•021	• 014	
900 960		9.926 1.618	3.872 3.681		•924	3.2		1.127+06		3.527+08 3.556+08	•183 •187	.737	.049	.020	•013 •012	
1020		3.446	3.492		•919	2.15		9.368+05		3.573+08	.191	.742	• 04 1	.017	•011	
1080	. 9	5.478	3.308		.318	• 90	2	8.407+05		3.580+08	•194	.745	.037	-015	.010	
1140		6.899	3.101		.220	63		7.440+05		3.580+08	•198	•748	• 033	-013	•009	
1200		7.133 7.353	2.867 2.647		•288 •035	-2.18 -3.81		6.465+05 5.479+05		3.580+08 3.580+08	•202 •206	.750 .753	.029	.012 .010	.008 .007	
1320		7.559	2.441		.736	-5.61		4.476+05		3.580+08	.210	.756	.021	.009	•006	
1380	• 9	7.750	2.250	-10	.041	-7.7	76	3.446+05		3.580+08	.214	.759	.017	.007	.004	
1440		7.922	2.078		•571	-10.73		2.366+05		3.580+08	•218	.762	.012	• 005	.003	
1500		8.072 8.139	1.928		•791 8•760	-16.21 -26.34		1.134+05		3.580+08 3.580+08	.224 .230	•766 •770	•006	.003	•002	
1620		8.135	1.865		.639	-25.4		0.000		3.580+08	.230	.770	.000	-000	•000	
1680		8.127	1.873		.239	-24 - 81		0.000		3.580+08	.230	.770	.000	.000	•000	
1740	-	8.116	1.884		6-698	-24.3		0.000		3.580+08	-230	.770	.000	-000	.000	
1800	• 9	8.104	1.896	-76	.063	-23.99	94	0.000		3.580+08	.230	.770	.000	-000	•000	

PAGE NO. 1 RUN NO. 5

CRIS FIRE

TEST PROGRAM 1 FOR WOOD CRIB FIRE, NILSSON'S FORMULAS

----GEOMETRY AND VENTILATION----

WALL SURFACE AREA = 80.0 M2
FLOOR AREA = 20.00 M2
WINDOW HEIGHT = 1.50 M
AREA = 4.00 M2
OPENING FACTOR = 4.899 M2.5
DISCHARGE COEFF.= .68

----FUEL LOAD PROPERTIES----

FIRE LOAD PER FLOOR AREA = 10.0 KG/M2

FUEL COMPOSITION

CARBON = 44.4 PERCENT BY WEIGHT

HYDROGEN = 5.4 PERCENT

OXYGEN = 38.2 PERCENT

NITROGEN = .0 PERCENT

WATER = 12.0 PERCENT

R = 5.32

R0= 1.23

HEAT OF COMBUSTION OF DRY FUEL =

HEAT OF COMBUSTION OF DRY FUEL = 18.80+06 J/KG
LOWER ACTUAL HEAT OF COMBUSTION = 15.07+06 J/KG
MOLECULAR WEIGHT OF UNBURNT PYROLYSATES = 28.97
CP OF PYROLYSIS GAS = (.1127*TGAS + 1010.) J/KG-K
MAXIMUM FRACTION OF PYROLYSATES BURNED = .70
GREY-GAS FLAME EMISSIVITY = .900
RATE OF REGRESSION = 00.00 M/S
FUEL DIMENSION = .050 M
SHAPE FACTOR = 2.00

CRIB SPACING/HEIGHT RATIO= .100

---- WALL THER MAL PROPERTIES----

THICKNESS = .038 M DENSITY = 790. KG/M3

THERMAL CONDUCTIVITY = .170 W/M-K

HEAT CAPACITY = 840. J/KG-K

EMISSIVITY = .50

C	RI	В	F	Ĭ	R	Ε

PAGE	NO a	1	RUN	NO.	6

	TIME 5	TEMP GA5.C	WA	LL TEM	IP5	RP KG/5	RC KG/5	EXC.PYR. KG/5	FUEL	AIR IN KG/5	N.P.		OCITY M/5	MOL.WT	FUEL CNTRL
1	0.	408.	217.	25.	25.	•176	.123	• 053	94.7	2.36	.42		1.74	29.65	т
2	60.	452.	315.	28.	25.	•176	.123	• 053	89.4	2.38	•42		1.78	29.65	Ť
3	120.	472.	357.	36.	25.	.176	.123	.053	84.2	2.38	.41		1.79	29.65	Ť
4	180.	487.	386.	49.	25.	•176	-123	• 053	78.9	2.38	-41		1.80	29.65	Т
5	240.	498.	408.	64.	26.	•176	.123	• 053	73.6	2.38	- 41		1.80	29.65	T
6	300. 360.	506. 513.	424.	80.	27. 29.	•176	•123	• 053	68.3	2.38	-41		1.81	29.65	T
8	420.	519.	449.	96 .	31.	•176 •176	•123 •123	.053 .053	63.0	2.38	.41		1.81	29.65	Ţ
9	480.	524.	458.	126.	34.	.176	.123	•053	57.8 52.5	2.39 2.39	•41 •41		1.82	29.65	T T
10	540.	524.	463.	139.	38.	.173	.121	• 052	47.3	2.39	.41		1.82	29.64	Ť
11	600.	512.	458.	152.	42.	.165	.115	.049	42.3	2.39	.41		1.81	29.60	Ť
12	660.	497.	449.	164.	46.	.156	-109	.047	37.7	2.40	.41		1.81	29.56	т
13	720.	481.	438.	174.	51.	.147	.103	.044	33.3	2.40	•42		1.80	29.53	T
14	780. 840.	464.	425. 411.	183.	55.	.138	.097	+041	29.1	2.40	•42		1.79	29.49	т
16	900.	445.	396.	191.	64.	•129 •120	•090 •084	•039 •036	25.2	2.40	•42		1.78	29.46	Ţ
17	960.	405.	381.	203.	68.	.111	•078	•033	18.3	2.40	•42 •43		l • 77 l • 76	29.42	T T
18	1020.	384.	364.	207.	72.	•102	.072	.031	15.2	2.39	• 43		1.74	29.35	Ť
19	1080.	362.	348.	210.	76.	.093	.065	.028	12.4	2.39	.43		1.72	29.32	Ť
20	1140.	339.	330.	212.	79.	.084	.059	•025	9.9	2.38	.44		1.70	29.28	т
21	1200.	315.	313.	213.	82.	.075	.053	• 023	7.6	2.36	.44	1	1.67	29.25	T
22	1260.	291.	296.	213.	85.	.066	• 046	.020	5.6	2.34	.44		1.64	29.21	Т
23 24	1320. 1380.	266. 240.	279. 261.	213.	8 7.	.057	.040	.017	3.9	2.31	•45		1.61	29.17	Ţ
25	1440.	213.	242.	209.	90.	.047	.033 .027	•014 •011	2.5	2.27 2.22	.45 .46		l • 5 7 l • 5 1	29.14	T
26	1500.	185.	222.	206.	93.	.028	.020	•008	.5	2.15	•46		1.45	29.10	T T
27	1560.	154.	201.	203.	94 .	.017	.012	• 005	•0	2.04	.47		36	29.01	Ť
28	1620.	109.	175.	199.	94 .	.002	.001	.001	• 0	1.80	•48		1.17	28.93	Ť
29	1680.	95.	157.	194.	95 .	.000	.000	.000	• 0	1.70	•48	1	1.10	28.92	т
30	1740.	89.	146.	189.	95.	.000	.000	.000	. 0	1.65	.48		1.06	28.92	Т
31 32	1800.	84.	138. 131.	183.	95 •	•000	.000	.000	.0	1.60	•48		1.03	28.92	Ţ
33	1920.	77.	125.	171.	95 •	•000	.000	• 000	• 0	1.56	.49 .49	,	.98	28.92 28.92	T T
55	.,20.		123.		24.	.000	.000	.000	. 0	1.55	• 4 9		• 90	20.92	'
	CR	RIB FIRE										PA	GE NO.	1 RU	N NO. 6
TIM			HEAT BAL					0 = 10=		O-WALL	Y02	YN2	Y CO 2	YH20	YPYR
TIM	GA 5	FLOW	WND RAD		LL CNV	WALL		Q-F1RE		5UM	PCT	PCT	PCT	PCT	PCT
TIM	GA 5				LL CNV PCT	WALL		Q-F1RE							
T1M	GA5	PCT 7.683	WND RAD	WA			7			5UM	PCT	PCT	PCT	PCT	PCT
0 60	GA 5	PCT 7.683	WND RAD PCT 2.530 3.282	22 14	PCT .491 .508	17.29 17.29	94	W 1.856+06 1.856+06	:	5UM J 4.431+07 7.971+07	PCT MA55 •154 •155	PCT MASS	PCT MA55 •079 •079	PCT MA55	PCT MASS
0 60 120	GA 5	PCT 7.683 9.928	wnD RAD PCT 2.530 3.282 3.673	22 14	PCT •491 •508 •511	17.29 17.28 16.62	94 30 22	W 1.856+06 1.856+06 1.856+06	:	5UM J 4.431+07 7.971+07 1.110+08	PCT MA55 •154 •155 •155	PCT MA55 •717 •717 •717	PCT MA55 .079 .079	PCT MA55 •032 •032 •032	PCT MA55 •021 •021
0 60 120 180	GA5 . 57 . 64 . 70	PCT 7.683 9.928 8.196	wnD RAD PCT 2.530 3.282 3.673 3.978	22 14 11 9	.491 .508 .511	17.29 17.28 16.62	74 30 22	W 1.856+06 1.856+06 1.856+06 1.856+06	:	5UM J 4.431+07 7.971+07 1.110+08 1.394+08	PCT MA55 •154 •155 •155	PCT MA55 •717 •717 •717 •717	PCT MA55 .079 .079 .078	PCT MA55 •032 •032 •032 •032	PCT MA55 •021 •021 •021
0 60 120 180 240	GA5	FLOW PCT 7.683 9.928 3.196 0.573 2.319	PCT 2.530 3.282 3.673 3.978 4.215	22 14 11 9	.491 .508 .511 .568	17.29 17.28 16.62 15.88	94 30 22 31	W 1.856+06 1.856+06 1.856+06 1.856+06	:	5UM J 4.431+07 7.971+07 1.110+08 1.394+08 1.655+08	PCT MA55 .154 .155 .155 .155	PCT MA55 •717 •717 •717 •717 •717	PCT MA55 .079 .079 .078 .078	PCT MA55 .032 .032 .032 .032	PCT MA55 .021 .021 .021 .021
0 60 120 180	GAS . 57 . 64 . 68 . 70 . 72 . 73	FLOW PCT 7.683 8.928 8.196 0.573 2.319	WND RAD PCT 2.530 3.282 3.673 3.978 4.215 4.411	22 14 11 9 8	.491 .508 .511 .568 .266	17.29 17.28 16.62 15.88 15.20	94 30 22 31	W 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06	:	5UM J 4.431+07 7.971+07 1.110+08 1.394+08 1.655+08 1.899+08	PCT MA55 •154 •155 •155 •155 •155 •155	PCT MA55 •717 •717 •717 •717 •717 •717	PCT MA55 .079 .079 .078 .078 .078	PCT MA55 .032 .032 .032 .032 .032	PCT MA55 .021 .021 .021 .021 .021
0 60 120 180 240 300	GAS . 57 . 64 . 68 . 70 . 72 . 73	FLOW PCT 7.683 8.928 8.196 0.573 2.319 8.706	WND RAD PCT 2.530 3.282 3.673 3.978 4.215 4.411 4.576	22 14 11 9 8 7	PCT -491 -508 -511 -568 -266 -306 -571	17.29 17.28 16.62 15.88 15.20 14.57	24 30 22 31 00 78	W 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06	:	5UM J 4.431+07 7.971+07 1.110+08 1.394+08 1.655+08 1.655+08 1.659+08	PCT MA55 .154 .155 .155 .155 .155 .155	PCT MA55 •717 •717 •717 •717 •717 •717 •717	PCT MA55 .079 .079 .078 .078 .078 .078	PCT MA55 •032 •032 •032 •032 •032 •032 •032	PCT MA55 .021 .021 .021 .021 .021 .021
0 60 120 180 240 300 360 420 480	GAS . 57 . 64 . 68 . 70 . 72 . 73 . 74 . 75	FLOW PCT 7.683 6.928 6.196 0.573 2.319 6.786 6.838 6.787	WND RAD PCT 2.530 3.282 3.673 3.978 4.215 4.411 4.576 4.717 4.841	22 14 11 9 8 7 6 5	PCT -491 -508 -511 -568 -266 -306 -571 -985 -508	17.29 17.28 16.62 15.88 15.20	74 30 22 31 00 78 20	W 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06	:	5UM J 4.431+07 7.971+07 1.110+08 1.394+08 1.655+08 1.899+08 2.128+08 2.345+08 2.345+08	PCT MASS *154 *155 *155 *155 *155 *155 *155 *155	PCT MA55 •717 •717 •717 •717 •717 •717	PCT MA55 .079 .079 .078 .078 .078 .078 .078	PCT MA55 .032 .032 .032 .032 .032	PCT MA55 .021 .021 .021 .021 .021
0 60 120 180 240 300 360 420 480 540	GAS . 57 . 64 . 68 . 70 . 72 . 73 . 74 . 75	5 FLOW PCT 7.683 .928 3.196 0.573 2.319 2.706 4.838 5.787 5.5597	WND RAD PCT 2.530 3.282 3.673 3.978 4.215 4.411 4.576 4.717 4.8841 4.912	22 14 11 9 8 7 6 5	PCT -491 -508 -511 -568 -266 -306 -571 -985 -508 -042	17.29 17.28 16.62 15.88 15.20 14.57 14.57 13.51	74 30 22 31 00 78 20 15	W 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06		5UM J 4.431+07 7.971+07 1.110+08 1.394+08 1.655+08 1.699+08 2.126+08 2.345+08 2.552+08 2.743+08	PCT MASS *154 *155 *155 *155 *155 *155 *155 *155	PCT MA55 •717 •717 •717 •717 •717 •717 •717 •717 •717 •718	PCT MA55 .079 .079 .078 .078 .078 .078 .078	PCT MA55 .032 .032 .032 .032 .032 .032 .032 .032	PCT MA55 -021 -021 -021 -021 -021 -021 -021 -02
0 60 120 180 240 300 360 420 480 540	GAS . 57 . 64 . 68 . 70 . 72 . 73 . 74 . 75 . 76	7.683 3.928 3.196 3.573 2.319 3.706 4.838 5.787 5.597 7.663	WND RAD PCT 2.530 3.282 3.673 3.978 4.215 4.411 4.576 4.717 4.841 4.912 4.862	22 14 11 9 8 7 6 5 5	PCT .491 .508 .511 .568 .266 .306 .571 .985 .508 .042 .485	PCT 17.29 17.28 16.62 15.88 15.20 14.57 14.02 13.51 13.03 12.38	04 30 22 31 00 78 20 15 59 32	W 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06		5UM J 4.431+07 7.971+07 1.110+08 1.394+08 1.655+08 1.899+08 2.128+08 2.345+08 2.345+08 2.345+08 2.743+08 2.743+08	PCT MASS *154 *155 *155 *155 *155 *155 *155 *155	PCT MA55 •717 •717 •717 •717 •717 •717 •717 •717 •718 •720	PCT MA55 .079 .078 .078 .078 .078 .078 .078 .078	PCT MA55 .032 .032 .032 .032 .032 .032 .032 .03	PCT MA55 .021 .021 .021 .021 .021 .021 .021 .021
0 60 120 180 240 300 360 420 480 540 600	GA5 . 57 . 64 . 68 . 70 . 73 . 74 . 75 . 76 . 81	7.683 6.928 6.196 6.573 2.319 8.706 8.838 6.838 6.63 7.6663 9.542	WND RAD PCT 2.530 3.282 3.673 3.978 4.215 4.411 4.576 4.717 4.841 4.912 4.862 4.862	22 14 11 19 8 7 6 5 5 5	PCT -491 -508 -511 -568 -266 -306 -571 -985 -508 -042 -485 -077	17.29 17.28 16.62 15.88 15.20 14.57 14.02 13.51 13.05 12.38	94 90 90 90 90 90 90 90 90 90 90	W 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06		5UM J 4.431+07 7.971+07 1.110+08 1.394+08 1.655+08 1.899+08 2.128+08 2.345+08 2.552+08 2.743+08 2.906+08 3.045+08	PCT MASS .154 .155 .155 .155 .155 .155 .155 .155 .155 .155 .156 .160	PCT MA55 •717 •717 •717 •717 •717 •717 •717 •717 •717 •718 •720 •723	PCT MA55 .079 .078 .078 .078 .078 .078 .078 .078 .077	PCT MA55 .032 .032 .032 .032 .032 .032 .032 .03	PCT MA55 -021 -021 -021 -021 -021 -021 -021 -02
0 60 120 180 240 300 360 420 480 540 660 720	GA5 . 57 . 64 . 68 . 70 . 72 . 73 . 74 . 75 . 76 . 77 . 81	7.683 1.928 3.196 3.573 2.319 3.706 3.838 5.787 5.663 9.542 1.169 2.701	WND RAD PCT 2.530 3.282 3.673 3.978 4.215 4.411 4.576 4.717 4.841 4.912 4.862 4.755 4.618	22 14 11 11 9 8 7 6 5 5 5	PCT -491 -508 -511 -568 -266 -306 -571 -985 -508 -042 -485 -077 -722	17.29 17.28 16.62 15.88 15.20 14.57 14.02 13.51 13.05 12.38 11.11	04 30 22 31 00 78 20 15 59 32 11 11 15 15 15 15 15 15 15 15	W 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.829+06 1.736+06 1.643+06 1.550+06		5UM J 4.431+07 7.971+07 1.110+08 1.394+08 1.655+08 1.899+08 2.128+08 2.345+08 2.552+08 2.906+08 3.045+08 3.162+08	PCT MASS .154 .155 .155 .155 .155 .155 .155 .155 .156 .160 .160	PCT MA55 •717 •717 •717 •717 •717 •717 •717 •717 •718 •728 •723 •726	PCT MA55 .079 .079 .078 .078 .078 .078 .078 .077 .073 .077	PCT MA55 .032 .032 .032 .032 .032 .032 .032 .03	PCT MA55 .021 .021 .021 .021 .021 .021 .021 .021
0 60 120 180 240 300 360 420 480 540 600 660 720 780	GAS . 57 . 64 . 68 . 70 . 72 . 73 . 74 . 75 . 76 . 81 . 82 . 84	7.683 8.196 8.196 8.573 2.319 8.706 8.838 8.787 8.597 7.663 9.542 8.169 8.701	WND RAD PCT 2.530 3.282 3.673 3.978 4.215 4.411 4.576 4.717 4.841 4.912 4.862 4.755 4.618	22 14 11 9 8 7 6 5 5 5 4 4 3 3	PCT -491 -508 -511 -568 -266 -306 -571 -985 -508 -042 -485 -077 -722 -388	PCT 17 · 29 17 · 28 16 · 62 15 · 88 15 · 20 14 · 57 14 · 02 13 · 51 13 · 03 12 · 38 11 · 11 10 · 00 8 · 96	24 30 22 31 00 28 20 55 59 32 11	W 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.736+06 1.736+06 1.736+06 1.550+06		5UM J 4.431+07 7.971+07 1.110+08 1.394+08 1.655+08 1.899+08 2.128+08 2.345+08 2.345+08 2.345+08 3.462+08 3.462+08 3.462+08	PCT MA55 *154 *155 *155 *155 *155 *155 *155 *1	PCT MA55 •717 •717 •717 •717 •717 •717 •717 •717 •718 •720 •723 •726 •728	PCT MA55 .079 .079 .078 .078 .078 .078 .078 .077 .073 .077	PCT MA55 .032 .032 .032 .032 .032 .032 .032 .03	PCT MA55 -021 -021 -021 -021 -021 -021 -021 -02
0 60 120 180 240 300 360 420 480 540 660 720	GA5 . 57 . 64 . 70 . 72 . 74 . 75 . 77 . 79 . 81 . 82 . 84	7.683 1.928 3.196 3.573 2.319 3.706 3.838 5.787 5.663 9.542 1.169 2.701	WND RAD PCT 2.530 3.282 3.673 3.978 4.215 4.411 4.576 4.717 4.841 4.912 4.862 4.755 4.618	22 14 11 9 8 7 6 5 5 5 4 4 3 3	PCT -491 -508 -511 -568 -266 -306 -571 -985 -508 -042 -485 -077 -722	17.29 17.28 16.62 15.88 15.20 14.57 14.02 13.51 13.05 12.38 11.11	94 30 22 31 78 20 55 59 32 11 11	W 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.829+06 1.736+06 1.643+06 1.550+06		5UM J 4.431+07 7.971+07 1.110+08 1.394+08 1.655+08 1.655+08 2.128+08 2.345+08 2.345+08 2.52408 2.743408 2.906+08 3.045+08 3.1622+08	PCT MASS .154 .155 .155 .155 .155 .155 .155 .155 .156 .160 .160	PCT MA55 •717 •717 •717 •717 •717 •717 •717 •717 •718 •728 •723 •726	PCT MA55 .079 .079 .078 .078 .078 .078 .078 .077 .073 .077	PCT MA55 .032 .032 .032 .032 .032 .032 .032 .03	PCT MA55 .021 .021 .021 .021 .021 .021 .021 .021
0 60 120 180 240 300 360 420 480 540 660 720 780 840	GAS . 57. 64. 68. 70. 72. 73. 74. 75. 76. 77. 81. 82. 84. 85.	7.683 .928 8.196 0.573 9.319 6.406 6.838 6.787 7.663 9.542 1.169 2.701	WND RAD PCT 2.530 3.282 3.673 3.978 4.215 4.411 4.576 4.717 4.8841 4.912 4.862 4.755 4.618 4.461 4.291	22 14 11 9 7 6 5 5 5 4 4 3 3 3	PCT .491 .508 .511 .568 .266 .306 .571 .985 .508 .0042 .485 .077 .722 .388 .052	PCT 17.29 16.62 15.88 15.20 14.57 14.02 13.51 13.05 12.38 11.11 10.00 8.96 7.99 6.98	04 00 02 22 11 00 78 00 15 99 92 11 11 62 55	W 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.550+06 1.643+06 1.550+06 1.356+06 1.356+06		5UM J 4.431+07 7.971+07 1.110+08 1.394+08 1.655+08 1.655+08 2.128+08 2.345+08 2.552+08 2.743+08 2.906+08 3.045+08 3.162+08 3.262+08 3.262+08	PCT MASS .154 .155 .155 .155 .155 .155 .155 .155 .155 .155 .156 .160 .160 .161 .171	PCT MA55 •717 •717 •717 •717 •717 •717 •717 •717 •717 •717 •718 •720 •723 •726 •728 •731	PCT MA55 .079 .079 .078 .078 .078 .078 .078 .077 .073 .070 .070 .070	PCT MA55 .032 .032 .032 .032 .032 .032 .032 .03	PCT MA55 -021 -021 -021 -021 -021 -021 -021 -02
0 60 120 180 240 360 420 480 540 660 720 780 960 960 1020	GAS . 57 . 64 . 68 . 70 . 72 . 73 . 74 . 75 . 76 . 81 . 82 . 84 . 85 . 87 . 88	5 FLOW PCT 7.683 4.928 5.196 5.573 2.2319 5.787 5.597 7.663 7.542 1.169 2.701 1.190 5.673 7.180 3.743 5.393	wND RAD PCT 2.530 3.282 3.673 3.978 4.215 4.411 4.576 4.717 4.841 4.912 4.862 4.715 4.618 4.461 4.291 4.113 3.930 3.745	22 14 11 9 8 5 5 5 5 4 4 3 3 3 2 2	PCT .491 .508 .511 .568 .266 .306 .571 .985 .508 .042 .485 .077 .722 .388 .052 .697 .307	PCT 17.22 17.28 16.62 15.88 15.22 14.57 14.02 13.51 13.05 12.38 11.11 10.00 8.96 7.96 6.98 6.00 5.03	7 30 4 30 22 31 30 31 30 31 30 31 31 32 32 32 32 32 32 32 32 32 32	W 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.643+06 1.550+06 1.456+06 1.362+06 1.268+06 1.268+06 1.174+06 1.100+06		5UM J 4.431+07 7.971+07 1.110+08 1.394+08 1.655+08 1.899+08 2.128+08 2.345+08 2.5252+08 2.743408 2.906+08 3.162+08 3.162+08 3.262+08 3.262+08 3.344+08 3.344+08 3.3410+08 3.3500+08	PCT MA55 -1154 -1155 -1155 -1155 -1155 -1155 -1155 -1156 -1160 -1167 -1171 -1174 -1178 -1181 -1185	PCT MA55 •717 •717 •717 •717 •717 •717 •717 •717 •718 •723 •726 •723 •726 •723 •733 •736 •733 •736 •738	PCT MASS .079 .079 .078 .078 .078 .078 .078 .078 .077 .075 .075 .075 .075 .075 .075 .075	PCT MA55 .032 .032 .032 .032 .032 .032 .032 .03	PCT MA55 021 021 021 021 021 021 021 021 021 02
0 60 120 180 240 300 420 480 540 600 720 780 840 900 960 1020	GAS . 57, 64. 68. 70, 70, 70, 74, 75, 76, 82, 82, 84, 85, 87, 88, 90, 92, 92, 92	5 FLOW PCT 7.683 9.928 9.196 9.573 2.319 9.706 9.838 9.706 9.8597 7.663 9.542 9.1169 9.701 9.190 9.673 7.180 9.743 9.393	wND RAD PCT 2.530 3.282 3.673 3.978 4.215 4.411 4.576 4.717 4.841 4.912 4.862 4.755 4.6118 4.461 4.291 4.113 3.930 3.745 3.560	22 14 11 9 8 5 5 5 5 4 4 3 3 3 2 2	.491 .508 .508 .5168 .266 .306 .307 .985 .508 .042 .485 .072 .388 .072 .388 .307 .864 .351	PCT 17.29 17.26 16.66 15.88 15.22 14.57 14.02 13.51 13.05 11.11 10.00 8.99 6.00 5.03 4.02	7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	W 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.736+06 1.736+06 1.736+06 1.550+06 1.362+06 1.268+06 1.268+06 1.268+06 1.268+06 1.268+06 1.9365+09 1.9365+09 1.9365+09 1.9365+09 1.9365+09 1.9365+09 1.9365+09		5UM J 4.431+07 7.971+07 1.110+08 1.394+08 1.655+08 1.899+08 2.126+08 2.345+08 2.345+08 2.345+08 2.345+08 3.345+08 3.045+08 3.062+08 3.3410+08 3.410+08 3.410+08 3.525+08	PCT MA55 *154 *155 *155 *155 *155 *155 *155 *1	PCT MA55 •717 •717 •717 •717 •717 •717 •717 •717 •717 •718 •720 •723 •726 •728 •731 •736 •736 •741	PCT MAS5 .079 .079 .078 .078 .078 .078 .078 .078 .077 .073 .070 .062 .058 .054 .051	PCT MA55 .032 .032 .032 .032 .032 .032 .032 .03	PCT MA55 -021 -021 -021 -021 -021 -021 -021 -02
0 60 120 180 240 300 360 420 480 600 660 720 780 840 900 960 1080	GAS . 57 . 64 . 68 . 70 . 72 . 73 . 74 . 75 . 76 . 77 . 99 . 81 . 82 . 83 . 85 . 87 . 88 . 90 . 92	7.683 928 3.196 0.573 2.319 2.319 2.3706 838 5.787 7.663 7.542 7.169 2.701 190 5.673 7.180 3.743 0.393 2.159	wND RAD PCT 2.530 3.282 3.673 3.978 4.211 4.576 4.411 4.576 4.717 4.841 4.912 4.862 4.755 4.618 4.461 4.291 4.113 3.930 3.745 3.550	22 14 11 13 6 5 5 5 4 4 4 3 3 3 2 2	PCT .491 .508 .511 .568 .266 .306 .571 .985 .508 .042 .485 .077 .722 .388 .042 .485 .077 .722 .3864 .351 .307 .8664	PCT 17.25 17.26 16.62 15.88 15.20 14.02 13.51 14.02 13.51 11.11 10.00 8.99 7.99 6.98 6.01 5.03 4.02 2.95	64 80 82 81 90 88 90 95 95 95 97 97 97 97 97 97 97 97 97 97	W 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.855+06 1.855+06 1.736+06 1.643+06 1.550+06 1.362+06 1.268+06 1.174+06 1.080+06 9.850+05 8.8977+05		5UM J 4.431+07 7.971+07 1.110+08 1.394+08 1.655+08 2.128+08 2.345+08 2.345+08 2.345+08 3.452+08 3.462+08 3.462+08 3.442+08 3.462+08 3.462+08 3.462+08 3.555+08	PCT MASS .154 .155 .155 .155 .155 .155 .155 .155 .156 .160 .163 .167 .171 .174 .178 .181 .185 .185	PCT MA55 • 717 • 717 • 717 • 717 • 717 • 717 • 717 • 717 • 717 • 717 • 718 • 728 • 731 • 736 • 738 • 738 • 744	PCT MAS5 .079 .078 .078 .078 .078 .078 .078 .079 .077 .073 .070 .066 .052 .058 .054 .051	PCT MA55 .032 .032 .032 .032 .032 .032 .032 .03	PCT MA55 .021 .021 .021 .021 .021 .021 .021 .02
0 60 120 180 240 300 360 420 600 720 780 900 900 900 1020 1140	GAS . 57 . 64 . 68 . 70 . 72 . 73 . 74 . 75 . 76 . 81 . 82 . 85 . 87 . 89 . 90 . 92 . 94	5 FLOW PCT 7.683 4.928 3.196 3.573 2.319 3.706 8.838 8.787 5.597 7.663 2.542 8.169 2.701 8.190 3.743 3.180 3.743 3.2159 8.0393 2.159 8.035	wND RAD PCT 2.530 3.282 3.673 3.978 4.215 4.411 4.5767 4.841 4.912 4.862 4.755 4.618 4.461 4.291 4.113 3.930 3.745 3.560 3.378	22 14 11 19 8 7 6 5 5 5 4 4 3 3 3 2 2	PCT .491 .508 .511 .568 .266 .306 .571 .985 .508 .042 .485 .722 .388 .077 .722 .388 .052 .697 .307 .307 .305 .307	PC1 17.25 17.25 16.62 15.88 15.20 14.57 14.02 13.51 13.05 12.38 11.11 10.00 8.96 6.98 6.01 5.03 4.02 2.99	7 4 3 4 3 5 2 2 2 3 1 5 2 2 2 1 1 5 2 2 2 3 3 9 9 1 7 5 2 2 2 5 1 3 3 3 3 3 3 3	W 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.643+06 1.550+06 1.456+06 1.362+06 1.268+06 1.268+06 1.000+06 9.850+05 8.897+05		5UM J 4.431+07 7.971+07 1.110+08 1.394+08 1.655+08 1.899+08 2.128+08 2.345+08 2.525+08 3.045+08 3.065+08 3.065+08 3.062+08 3.1622+08 3.262408 3.262408 3.344+08 3.462208 3.5025408	PCT MA55 -154 -155 -155 -155 -155 -155 -155 -156 -160 -163 -167 -171 -174 -181 -185 -189 -193 -196	PCT MA55 *117 *717 *717 *717 *717 *717 *717 *	PCT MA55 .079 .079 .078 .078 .078 .078 .078 .077 .073 .070 .062 .058 .051 .043 .043	PCT MA55 .032 .032 .032 .032 .032 .032 .032 .03	PCT MA55 .021 .021 .021 .021 .021 .021 .021 .02
0 60 120 180 240 300 360 420 480 600 660 720 780 840 900 960 1080	GAS . 57, 644 . 688 . 70 . 722 . 73 . 744 . 75 . 76 . 81 . 82 . 87 . 88 . 90 . 90 . 94 . 96	5 FLOW PCT 7.683 .928 .196 .573 2.319 2.706 .838 5.787 5.597 .663 .9.542 .1169 2.701 2.1190 3.673 7.180 3.743 3.393 2.2159 2.085	wND RAD PCT 2.530 3.282 3.673 3.978 4.215 4.411 4.576 4.717 4.841 4.912 4.862 4.755 4.618 3.930 3.745 3.560 3.378 3.200 2.979	22 14 11 11 19 87 66 55 55 44 43 33 32 22	PCT .491 .508 .511 .568 .266 .306 .571 .985 .508 .042 .485 .077 .722 .388 .052 .307 .864 .351 .759	PCT 17.25 17.26 15.88 15.26 15.88 15.27 14.07 13.51 13.06 12.38 11.11 10.00 8.96 6.96 6.96 6.97 6.97 6.97 6.97 6.97 6	24 30 22 31 31 31 32 32 32 33 34 35 36 36 36 36 36 36 36 36 36 36 36 36 36	W 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.855+06 1.855+06 1.736+06 1.643+06 1.550+06 1.362+06 1.268+06 1.174+06 1.080+06 9.850+05 8.8977+05		5UM J 4.431+07 7.971+07 1.110+08 1.394+08 1.899+08 2.128+08 2.345+08 2.345+08 2.345+08 2.345+08 3.345+08 3.906+08 3.062+08 3.262+08 3.344+08 3.410+08 3.410+08 3.4262+08 3.5262+08 3.5262+08 3.5262+08 3.5262+08	PCT MA55 *154 *155 *155 *155 *155 *155 *155 *1	PCT MA55 **117 **717 **717 **717 **717 **717 **717 **717 **717 **718 **720 **723 **726 **723 **726 **723 **736 **738 **736 **738 **736 **738 **736 **738 **736 **738 **736 **738	PCT MASS .079 .078 .078 .078 .078 .078 .078 .078 .078	PCT MA55 .032 .032 .032 .032 .032 .032 .032 .03	PCT MA55 -021 -021 -021 -021 -021 -021 -021 -02
0 60 120 180 240 300 360 420 480 660 660 720 780 840 900 960 1020 1080 1140 1260	GAS . S7 . 64 . 68 . 68 . 70 . 72 . 73 . 74 . 75 . 76 . 82 . 84 . 85 . 87 . 89 . 90 . 92 . 94 . 96	5 FLOW PCT 7.683 4.928 3.196 3.573 2.319 3.706 8.838 8.787 5.597 7.663 2.542 8.169 2.701 8.190 3.743 3.180 3.743 3.2159 8.0393 2.159 8.035	wND RAD PCT 2.530 3.282 3.673 3.978 4.215 4.411 4.5767 4.841 4.912 4.862 4.755 4.618 4.461 4.291 4.113 3.930 3.745 3.560 3.378	22 14 11 19 8 6 55 5 5 4 4 3 3 3 3 2 2 1	PCT .491 .508 .511 .568 .266 .306 .571 .985 .508 .042 .485 .722 .388 .077 .722 .388 .052 .697 .307 .307 .305 .307	PC1 17.25 17.25 16.62 15.88 15.20 14.57 14.02 13.51 13.05 12.38 11.11 10.00 8.96 6.98 6.01 5.03 4.02 2.99	7 4 3 4 3 3 3 3 3 3 3 3 3 5 8 5 7 7	W 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.736+06 1.736+06 1.736+06 1.456+06 1.268+06 1.268+06 1.174+06 1.000+06 9.850+05 8.897+05 7.938+05		5UM J 4.431+07 7.971+07 1.110+08 1.394+08 1.655+08 1.899+08 2.128+08 2.345+08 2.525+08 3.045+08 3.065+08 3.065+08 3.062+08 3.1622+08 3.262408 3.262408 3.344+08 3.462208 3.5025408	PCT MA55 -154 -155 -155 -155 -155 -155 -155 -156 -160 -163 -167 -171 -174 -181 -185 -189 -193 -196	PCT MA55 *117 *717 *717 *717 *717 *717 *717 *	PCT MA55 .079 .079 .078 .078 .078 .078 .078 .077 .073 .070 .062 .058 .051 .043 .043	PCT MA55 .032 .032 .032 .032 .032 .032 .032 .03	PCT MA55 .021 .021 .021 .021 .021 .021 .021 .02
0 60 120 180 240 300 360 420 600 720 780 960 1020 1080 1140 1200 1200 1320	GAS . 57 . 64 . 68 . 70 . 72 . 73 . 74 . 75 . 76 . 76 . 82 . 84 . 85 . 87 . 88 . 90 . 92 . 94 . 97 . 97	5 FLOW PCT 7.683 4.928 8.196 3.573 2.319 3.706 4.838 5.787 5.597 7.663 9.542 1.169 2.701 1.190 3.743 3.393 2.159 4.085 5.227 7.021	wND RAD PCT 2.530 3.282 3.673 3.978 4.215 4.411 4.576 4.717 4.841 4.912 4.862 4.755 4.411 3.930 3.745 3.560 3.778 3.200 2.979	22 14 11 19 8 7 6 5 5 5 5 4 4 3 3 3 2 2 2 1	PCT .491 .508 .511 .568 .266 .306 .571 .985 .508 .042 .485 .077 .722 .388 .052 .697 .307 .864 .351 .357 .859	PCT 17.25 17.26 16.62 15.88 15.20 14.02 13.51 14.02 13.51 11.11 10.00 8.99 6.98 6.01 5.03 4.02 2.95 1.77 4.45	7 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	W 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.736+06 1.643+06 1.643+06 1.550+06 1.362+06 1.362+06 1.362+06 1.174+06 1.080+06 9.850+05 8.8977+05 7.938+05 5.998+05		5UM J 4.431+07 7.971+07 1.110+08 1.394+08 1.655+08 1.899+08 2.128+08 2.345+08 2.52408 2.7431+08 2.906+08 3.162+08 3.162+08 3.262+08 3.262+08 3.344+08 3.462+08 3.500+08 3.525+08 3.542+08	PCT MA55 1154 1155 1155 1155 1155 1155 1155 1156 1160 1163 1167 1171 1174 1178 1181 1185 1185 1196 1200 1204	PCT MA55 **17 **717 **717 **717 **717 **717 **717 **717 **717 **717 **717 **717 **717 **718 **720 **723 **726 **728 **731 **733 **736 **731 **733 **736 **741 **744 **746 **749 **752	PCT MA55 .079 .079 .078 .078 .078 .078 .078 .078 .078 .077 .073 .070 .062 .054 .051 .047 .043 .035 .031	PCT MA55 .032 .032 .032 .032 .032 .032 .032 .03	PCT MA55 0021 0021 0021 0021 0021 0021 0021 0
0 600 1200 3000 3600 4200 6600 6600 6600 7200 7800 9600 10200 10200 12200 13200 13200 13400 14400 15000	GAS . 57 . 64 . 68 . 70 . 72 . 73 . 74 . 75 . 76 . 81 . 82 . 85 . 87 . 90 . 92 . 94 . 96 . 97 . 97	5 FLOW PCT 7.683 4.928 3.196 3.573 2.319 3.706 8.838 8.787 5.597 7.663 7.180 3.742 8.199 8.277 8.199 8.277 8	wNO RAD PCT 2.530 3.282 3.673 3.978 4.215 4.411 4.576 4.717 4.841 4.912 4.862 4.715 4.618 4.461 4.291 4.113 3.930 3.745 3.560 3.378 3.200 2.979 2.753 2.542 2.345	22 14 11 9 7 6 5 5 5 5 4 4 4 3 3 3 2 2 2 1 1	PCT .491 .508 .511 .568 .266 .306 .571 .985 .508 .042 .485 .077 .722 .386 .052 .697 .864 .351 .759 .135 .524 .697	PCT 17.25 17.26 16.62 15.88 15.20 14.02 13.51 14.02 13.51 11.11 10.00 8.96 6.98 6.01 5.03 4.02 2.95 1.77 4.44 -6.38	7 8 8 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	W 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.862+06 1.643+06 1.550+06 1.362+06 1.362+06 1.374+06 1.080+06 9.850+05 7.938+05 6.973+05 5.998+05 5.009+05 4.001+05 2.958+05		5UM J 4.431+07 7-971+07 1.110+08 1.394+08 1.655+08 1.899+08 2.128+08 2.345+08 2.525+08 2.345+08 2.525+08 3.045+08 3.162+08 3.162+08 3.262+08 3.3440+08 3.462+08 3.502+08 3.525+08 3.522+08 3.542+08 3.542+08 3.542+08	PCT MA55 **154 **155 **155 **155 **155 **155 **155 **155 **156 **160 **163 **167 **171 **174 **178 **181 **188 **189 **193 **196 **200 **204 **208 **212 **216	PCT MA55 *117 *717 *717 *717 *717 *717 *717 *	PCT MA55 .079 .079 .078 .078 .078 .078 .078 .078 .077 .073 .070 .066 .062 .058 .051 .047 .043 .039 .035 .031 .027 .023 .019	PCT MA55 .032 .032 .032 .032 .032 .032 .032 .03	PCT MA55 **021 **021 **021 **021 **021 **021 **021 **021 **021 **021 **021 **021 **021 **021 **017 **016 **017 **016 **015 **014 **013 **012 **011 **010 **009 **008 **007 **006 **005 **004
0 60 120 180 240 300 360 420 660 720 900 960 1020 1080 1140 1260 1380 1440 1560	GAS . 57, . 64, . 68, . 70, . 73, . 74, . 75, . 76, . 82, . 84, . 85, . 97, . 99, . 96, . 97, . 97, . 97, . 97,	5 FLOW PCT 7.683 9.928 9.196 9.573 2.319 9.706 9.838 9.706 9.8542 9.701 9.190 9.673 7.180 9.7180 9.7180 9.728 9.7021 9.7021 9.7458 7.655 9.836 9.836	wND RAD PCT 2.530 3.282 3.673 3.978 4.215 4.411 4.576 4.717 4.841 4.912 4.862 4.755 4.6118 3.930 3.745 3.3560 3.378 3.200 2.979 2.753 2.2345 2.164 2.003	22 14 11 19 87 66 55 55 44 43 33 22 21 1	PCT .491 .508 .5511 .568 .266 .306 .571 .985 .042 .485 .077 .722 .388 .052 .697 .307 .864 .759 .135 .759 .135 .524 .857 .970 .264 .699	PCT 17.25 17.26 15.88 15.26 15.88 15.27 14.02 13.51 13.06 12.38 11.11 10.00 8.96 6.99 6.00 10.50 2.99 1.77 4.44 -6.38 -1.15 -2.74 -4.44 -6.38 -1.2.55	24 30 31 31 31 31 32 32 32 33 34 35 36 36 37 36 36 37 36 36 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38	W 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.736+06 1.736+06 1.736+06 1.736+06 1.736+06 1.7406 1.268+06 1.		5UM J 4.431+07 7.971+07 1.110+08 1.394+08 1.655+08 1.695+08 2.345+08 2.345+08 2.345+08 2.345+08 2.345+08 3.342+08 3.045+08 3.410+08 3.410+08 3.410+08 3.525+08 3.525+08 3.525+08 3.525+08 3.525+08 3.542+08 3.542+08	PCT MA55 *154 *155 *155 *155 *155 *155 *155 *1	PCT MA55 *117 *717 *717 *717 *717 *717 *717 *	PCT MAS5 .079 .078 .078 .078 .078 .078 .078 .078 .078	PCT MA55 .032 .032 .032 .032 .032 .032 .032 .03	PCT MA55 -021 -021 -021 -021 -021 -021 -021 -02
0 60 120 300 360 420 480 540 6600 6600 720 780 840 900 1020 1140 1200 1200 1380 1380 1500 1500	GAS . 57 . 64 . 68 . 70 . 73 . 74 . 75 . 76 . 77 . 81 . 82 . 84 . 90 . 92 . 94 . 96 . 97 . 97 . 97 . 97	5 FLOW PCT 7.683 4.928 8.196 3.573 2.319 3.706 4.838 5.787 5.597 7.663 7.180 8.743 8.3743	wND RAD PCT 2.530 3.282 3.673 3.978 4.215 4.411 4.576 4.717 4.881 4.912 4.862 4.755 4.618 4.461 4.291 4.113 3.930 3.745 3.560 3.778 3.200 2.979 2.753 2.542 2.164 2.083	22 144 11 9 8 7 6 5 5 5 5 4 4 4 3 3 3 2 2 2 1 1 1	PCT .491 .508 .511 .568 .266 .306 .571 .985 .508 .042 .485 .077 .722 .388 .052 .697 .864 .351 .351 .524 .857 .976 .985 .9264 .695 .094	PCT 17.25 17.26 17.26 15.66 15.66 15.66 15.26 14.02 13.51 14.02 13.51 11.00 6.98 6.01 5.03 4.02 2.95 1.77 4.44 4.44 -6.33 -8.82 -12.53 -8.82 -12.53 -23.58	24 30 22 31 31 32 32 33 34 36 37 36 37 36 37 37 38 38 37 38 38 38 38 38 38 38 38 38 38 38 38 38	W 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.829+06 1.6439+06 1.456+06 1.174+06 1.080+06 9.850+05 9.897+05 7.938+05 5.998+05 5.009+06 4.001+05 2.958+05 1.840+05 2.958+05 1.840+05 2.958+05		5UM J J 4.431+07 7.971+07 1.110+08 1.394+08 1.3934+08 1.899408 2.128+08 2.345+08 2.552+08 3.045+08 3.162+08 3.2622+08 3.462408 3.50408 3.50408 3.525408 3.5422408 3.5422408 3.5422408 3.5422408 3.5422408 3.5422408 3.5422408	PCT MA55 **154 **155 **155 **155 **155 **155 **155 **155 **156 **160 **163 **167 **171 **174 **181 **181 **183 **189 **193 **196 **200 **204 **208 **212 **221 **229	PCT MA55 *117 *717 *717 *717 *717 *717 *717 *	PCT MA55 .079 .079 .078 .078 .078 .078 .078 .078 .078 .078	PCT MA55 .032 .032 .032 .032 .032 .032 .032 .03	PCT MA55 021 021 021 021 021 021 021 021 021 02
0 60 120 180 240 300 360 420 480 540 660 720 780 900 960 1020 1020 1260 1260 1330 1440 1560 1560 1680	GAS - 57 - 64 - 68 - 70 - 72 - 73 - 74 - 75 - 76 - 77 - 79 - 81 - 82 - 84 - 85 - 87 - 90 - 92 - 94 - 97 - 97 - 97 - 97 - 97 - 98 - 98	5 FLOW PCT 7.683 4.928 5.196 5.73 2.319 5.787 5.597 7.663 7.921 7.180 3.743 2.159 5.227 7.021 7.247 7.458 7.655 7.836 7.997 5.133 3.6137	wND RAD PCT 2.530 3.282 3.673 3.978 4.215 4.411 4.576 4.717 4.841 4.912 4.862 4.755 4.618 4.461 4.213 3.930 3.745 3.560 3.378 3.200 2.9793 2.542 2.345 2.164 2.003 1.866	22 14 11 9 6 5 5 5 5 5 4 4 4 3 3 3 3 2 2 1 1 1	PCT .491 .508 .511 .568 .266 .306 .571 .985 .508 .042 .485 .077 .388 .052 .697 .307 .8697 .307 .8697 .307 .8697 .307 .8697 .307 .8697 .307 .8697 .307 .87 .87 .89 .99 .90 .90 .90 .90 .90 .90 .90 .90 .9	PCT 17.25 17.26 15.88 15.20 14.57 14.02 13.51 13.05 12.38 11.11 10.00 6.98 6.00 5.03 4.02 2.95 6.01 5.03 4.02 2.55 1.77 4.44 6.38 -1.15 -2.74 -4.44 -6.38 -12.53 -23.88	24 30 31 31 31 32 32 33 34 35 35 35 35 35 35 35 36 37 37 38 38 38 38 38 38 38 38 38 38	W 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.736+06 1.736+06 1.736+06 1.736+06 1.736+06 1.748+06		5UM J 4.431+07 7.971+07 1.110+08 1.394+08 1.655+08 1.655+08 1.655+08 2.345+08 2.345+08 2.345+08 2.345+08 2.345+08 3.342+08 3.440+08 3.440+08 3.440+08 3.502+08 3.522+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08	PCT MA55 *154 *155 *155 *155 *155 *155 *155 *1	PCT MA55 *117 *717 *717 *717 *717 *717 *717 *	PCT MAS5 .079 .078 .078 .078 .078 .078 .078 .078 .078	PCT MA55 .032 .032 .032 .032 .032 .032 .032 .03	PCT MA55 -021 -021 -021 -021 -021 -021 -021 -02
0 60 120 180 240 300 360 480 540 660 720 900 960 1080 1140 1260 1380 1440 1500 1620 1680 1740	GAS . 57, 644, 688, 700, 722, 733, 744, 755, 765, 765, 765, 769, 814, 824, 855, 877, 888, 900, 922, 944, 946, 977, 977, 977, 977, 977, 988, 988, 988	5 FLOW PCT 7.683 3.928 3.196 3.573 2.319 2.706 3.838 5.787 5.597 3.663 2.701 2.1190 3.673 7.180 3.743 3.393 2.2159 3.085 5.227 7.458 7.655 8.836 7.497 7.458 7.655	wND RAD PCT 2.530 3.282 3.673 3.978 4.215 4.411 4.576 4.717 4.841 4.912 4.862 4.755 4.618 3.930 3.745 3.200 3.378 3.200 2.979 2.753 2.164 2.2164 2.164 2.1867 1.8667 1.8667 1.867	22 14 11 19 87 66 55 55 54 44 43 33 32 22 11 1	PCT .491 .508 .511 .568 .266 .306 .571 .985 .508 .042 .485 .077 .722 .388 .052 .307 .864 .695 .339 .351 .759 .135 .759 .759 .759 .759 .759 .759 .759 .75	PCT 17.25 17.26 16.66 15.66 15.66 15.66 15.67 14.02 13.51 13.05 12.33 11.11 10.00 8.96 6.98 6.01 5.03 4.02 2.99 1.76 4.45 -2.74 -4.44 -6.38 -8.62 -12.53 -23.88 -25.73	24 30 22 21 20 20 20 20 20 20 20 20 20 20 20 20 20	W 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.736+06		5UM J 4.431+07 7.971+07 1.110+08 1.394+08 1.899+08 2.128+08 2.345+08 2.345+08 2.345+08 2.345+08 2.345+08 3.345+08 3.966+08 3.962+08 3.962+08 3.962+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08	PCT MA55 *154 *155 *155 *155 *155 *155 *155 *1	PCT MA55 **117 **718 **723 **733 **733 **733 **733 **733 **733 **733 **733 **734 **744 **746 **752 **754 **757 **760 **763 **769 **770	PCT MAS5 .079 .079 .078 .078 .078 .078 .078 .078 .078 .078	PCT MA55 .032 .032 .032 .032 .032 .032 .032 .03	PCT MA55 -021 -021 -021 -021 -021 -021 -021 -02
0 600 1200 3000 3600 4200 6000 6600 7200 7800 9600 10200 10200 11400 12000 13200 13800 14400 15000 1600 1600 1600 1600 1600 1600 1	GAS . 57 . 64 . 68 . 70 . 72 . 73 . 74 . 75 . 76 . 81 . 82 . 85 . 87 . 90 . 92 . 94 . 96 . 97 . 97 . 97 . 97 . 97 . 97 . 98	5 FLOW PCT 7.683 4.928 8.196 3.573 2.319 8.787 6.597 7.663 7.542 1.169 2.701 1.190 3.743 2.159 2.085 1.227 7.458 7.655 1.836 7.997 7.458 7.655 1.836 7.997 7.458 7.655 1.833 7.130 7.130 7.130 7.130	wND RAD PCT 2.530 3.282 3.673 3.978 4.215 4.411 4.576 4.811 4.912 4.862 4.715 4.618 4.461 4.291 4.113 3.930 3.745 3.560 3.378 3.200 2.979 2.753 2.542 2.346 2.003 1.863 1.867	22 14 11 9 6 5 5 5 5 4 4 4 3 3 3 3 2 2 2 1 1 1 1 	PCT .491 .508 .5511 .568 .266 .306 .571 .985 .508 .042 .485 .077 .722 .388 .052 .697 .307 .307 .307 .351 .524 .970 .264 .970 .2695 .094 .6659 .094 .6659 .329 .024 .537	PCT 17.25 17.26 16.62 15.86 15.20 14.02 13.51 14.02 13.51 11.11 10.00 8.99 6.98 6.01 5.03 4.02 2.95 1.77 4.44 4.44 -6.38 -8.82 -12.53 -23.88 -25.73 -25.02	24 30 22 31 31 20 32 32 33 34 35 36 37 38 38 33 33 33 33 33 33 33 33 33 33 33	W 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.655+06 1.736+06 1.736+06 1.736+06 1.736+06 1.736+06 1.736+06 1.746+06 1.746+06 1.746+06 1.746+06 1.746+06 1.746+06 1.746+06 1.746+06 1.746+06 1.746+06 1.746+06 1.746+06 1.746+06 1.746+06 1.746+06 1.746+06 1.868+06 1.989+06 9.850+05 8.897+03 5.998+05 5.998+05 5.998+05 1.840+05 2.958+05 1.840+05 2.958+05 1.840+05 2.191+04 0.000 0.000		5UM J 4.431+07 7.971+07 1.110+08 1.394+08 1.655+08 1.655+08 1.655+08 2.128+08 2.128+08 2.525+08 2.743+08 2.906+08 3.162+08 3.162+08 3.162+08 3.162+08 3.262+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08	PCT MA55 **154 **155 **155 **155 **155 **155 **155 **155 **156 **160 **163 **167 **171 **174 **181 **188 **189 **193 **193 **200 **200 **200 **212 **221 **229 **230 **230 **230 **230	PCT MA55 **117 **717 **717 **717 **717 **717 **717 **717 **717 **717 **717 **718 **720 **723 **733 **741 **744 **746 **749 **752 **754 **757 **760 **763 **769 **770	PCT MA55 .079 .079 .078 .078 .078 .078 .078 .078 .077 .073 .070 .066 .062 .051 .047 .043 .039 .035 .031 .027 .023 .019 .015 .010 .000 .000	PCT MA55 .032 .032 .032 .032 .032 .032 .032 .03	PCT MA55 **021 **021 **021 **021 **021 **021 **021 **021 **021 **021 **021 **021 **021 **021 **021 **016 **017 **016 **015 **014 **013 **012 **011 **010 **009 **006 **007 **006
0 60 120 180 240 300 360 480 540 660 720 900 960 1080 1140 1260 1380 1440 1560 1620 1680 1740	GAS - 57 - 64 - 68 - 70 - 72 - 73 - 74 - 75 - 76 - 77 - 77 - 77 - 79 - 81 - 82 - 84 - 85 - 87 - 88 - 90 - 92 - 94 - 97 - 97 - 97 - 97 - 97 - 97 - 98 - 98 - 98 - 98 - 98 - 98 - 98 - 98	5 FLOW PCT 7.683 3.928 3.196 3.573 2.319 2.706 3.838 5.787 5.597 3.663 2.701 2.1190 3.673 7.180 3.743 3.393 2.2159 3.085 5.227 7.458 7.655 8.836 7.497 7.458 7.655	wND RAD PCT 2.530 3.282 3.673 3.978 4.215 4.411 4.576 4.717 4.841 4.912 4.862 4.755 4.618 3.930 3.745 3.200 3.378 3.200 2.979 2.753 2.164 2.2164 2.164 2.1867 1.8667 1.8667 1.867	22 14 11 9 8 7 6 5 5 5 5 4 4 4 3 3 3 3 2 2 2 1 1 1 - - - - - - - - - - - - - -	PCT .491 .508 .511 .568 .266 .306 .571 .985 .508 .042 .485 .077 .722 .388 .052 .307 .864 .695 .339 .351 .759 .135 .759 .759 .759 .759 .759 .759 .759 .75	PCT 17.25 17.26 16.66 15.66 15.66 15.66 15.67 14.02 13.51 13.05 12.33 11.11 10.00 8.96 6.98 6.01 5.03 4.02 2.99 1.76 4.45 -2.74 -4.44 -6.38 -8.62 -12.53 -23.88 -25.73	044 030 032 031 032 033 034 035 035 035 035 035 035 035 035	W 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.856+06 1.736+06		5UM J 4.431+07 7.971+07 1.110+08 1.394+08 1.899+08 2.128+08 2.345+08 2.345+08 2.345+08 2.345+08 2.345+08 3.345+08 3.966+08 3.962+08 3.962+08 3.962+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08 3.542+08	PCT MA55 *154 *155 *155 *155 *155 *155 *155 *1	PCT MA55 **117 **718 **723 **733 **733 **733 **733 **733 **733 **733 **733 **734 **744 **746 **752 **754 **757 **760 **763 **769 **770	PCT MAS5 .079 .079 .078 .078 .078 .078 .078 .078 .078 .078	PCT MA55 .032 .032 .032 .032 .032 .032 .032 .03	PCT MA55 -021 -021 -021 -021 -021 -021 -021 -02

TEST PROGRAM 2 FOR WOOD CRIB FIRE, NILSSON'S FORMULAS

---- GEOMETRY AND VENTILATION----

WALL SURFACE AREA = 80.0 M2
FLOOR AREA = 20.00 M2
WINDOW HEIGHT = 1.50 M
AREA = 4.00 M2
OPENING FACTOR = 4.899 M2.5
DISCHARGE COEFF.= .68

----FUEL LOAD PROPERTIES----

FIRE LOAD PER FLOOR AREA = 20.0 KG/M2

FUEL COMPOSITION

CARBON = 44.4 PERCENT BY WEIGHT

HYDROGEN = 5.4 PERCENT

OXYGEN = 38.2 PERCENT

NITROGEN = .0 PERCENT

WATER = 12.0 PERCENT

R = 5.32R0 = 1.23

HEAT OF COMBUSTION OF DRY FUEL = 18.80+06 J/KG
LDWER ACTUAL HEAT OF COMBUSTION = 15.07+06 J/KG
MOLECULAR WEIGHT OF UNBURNT PYROLYSATES = 28.97
CP OF PYROLYSIS GAS = (.1127*TGAS + 1010.) J/KG-K
MAXIMUM FRACTION OF PYROLYSATES BURNED = .70
GREY-GAS FLAME EMISSIVITY = .900
RATE OF REGRESSION = 00.00 M/S
FUEL DIMENSION = .050 M
SHAPE FACTOR = 2.00

CRIB SPACING/HEIGHT RATIO= .200

---- WALL THERMAL PROPERTIES----

THICKNESS = .038 M DENSITY = 790. KG/M3

THERMAL CONDUCTIVITY = .170 W/M-K

HEAT CAPACITY = 840. J/KG-K

	TIME	TEMP	WA	LL TEM	P5	RP	RC	EXC . PYR .	FUEL	AIR IN	N.P.	VELOCITY	MOL.WT	FUEL
	5	GA5.C		С		KG/5	KG/5	KG/5	PCT	KG/5		M/5		CNTRL
1		739.	514.	26.	25.	.479	.288	• 191	92.8	2.19	.37	1.83	30.60	F
2		858.	745.	34.	25.	.461	.286	. 176	85.9	2.17	• 36	1.85	30.60	F
3		902.	815.	54.	25.	.444	. 286	- 158	79.2	2.17	• 36	1.86	30.60	F
4		936.	866.	85.	26.	.426	.286	• 141	72.8	2.17	•36	1.87	30.59	F
5		960.	900.	122.	27.	• 4 09	.286	. 123	66.7	2.17	• 36	1.87	30.59	т
6		955.	905.	159.	30.	.391	.274	. 117	60.8	2.18	.36	1.88	30.52	Т
7		942.	897.	194.	34.	.374	.261	•112	55.2	2.20	• 36	1.88	30.45	т
8		924.	884.	227.	40.	.356	. 249	• 107	49.9	2.21	. 37	1.88	30.38	т
9		903.	866.	255.	47.	.338	.237	• 101	44.8	2.23	• 37	1.88	30.31	Т
10		879.	846.	281.	55 •	. 321	. 2 24	• 096	40.0	2.25	• 37	1.88	30.24	т
11		853.	822.	302.	63.	.303	.212	.091	35.5	2.26	• 37	1.88	30.17	т
12		824.	797.	321.	72.	.285	.200	• 086	31.2	2.28	.38	1.88	30.09	Т
13		794.	769.	336.	80.	.267	.187	.080	27 . 2	2.30	•38	1.88	30.02	Т
14		762.	740.	349.	89.	.250	.175	.075	23.4	2.31	.38	1.88	29.95	т
15		728.	709.	360.	97.	.232	.162	.070	20.0	2.33	. 39	1.87	29.87	T_
16		693.	678.	368.	104.	.214	.150	. 064	16.8	2.35	. 39	1.87	29.80	T
17		656.	644.	374.	111.	.196	.137	.059	13.8	2.37	.40	1.86	29.73	Т
18		617.	610.	378.	117.	.178	.125	. 053	11.1	2.38	. 40	1.85	29.65	Ţ
19		576.	575.	380.	122.	.160	.112	.048	8.7	2.39	-40	1.84	29.58	Ţ
20		533.	540.	380.	127.	.142	.099	.042	6.6	2.41	.41	1.83	29.51	Ţ
21		489.	504.	379.	131.	•123	• 086	. 037	4.8	2.41	.42	1.81	29.43	T
22		442.	467.	376.	134.	.105	.073	.031	3.2	2.42	• 42	1.78	29.36	T
23		393.	429.	372.	137.	.086	.060	. 026	1.9	2.41	.43	1.75	29.28	T
24		342.	390.	306.	139.	.066	.046	• 020	• 9	2.39	- 44	1.71	29.21	т
25		286.	350.	359.	141.	.046	.032	.014	• 2	2.35	.44	1.64	29.12	Ţ
26		223.	307.	350.	142.	.023	.016	.007	.0	2.25	.46	1.54	29.03	Ţ
27		155.	261.	341.	143.	.000	.000	.000	. 0	2.06	.47	1.37	28.92	Ţ
28		140.	236.	330.	143.	.000	.000	.000	. 0	1.99	•47	1.31	28.92	Ţ
29		129.	219.	318.	143.	.000	.000	• 000	.0	1.94	.47	1.27	28.92	Ţ
30		121.	205.	306.	142.	•000	.000	• 000	. 0	1.89	•48	1.24	28.92	Ţ
31		115.	194.	294.	141.	.000	.000	.000	.0	1.85	•48	1.21	28.92	Ţ
32		109.	184.	282.	139.	.000	.000	.000	• 0	1.81	.48	1.18	28.92	T T
33		105.	175.	270.	137.	.000	.000	.000	• 0	1.78	.48	1.15	28.92	T
34		101.	168.	260.	135.	.000	.000	.000	• 0	1.75	•48	1.13	28.92	Ť
35		97.	161.	250.	133.	.000	.000	.000	. 0	1.72	•48	1.11	28.92	Ť
36		94.	155.	240.	130.	.000	.000	.000	• 0	1.69	•48	1.09	28.92	7
37		91.	149.	231.	128.	.000	.000	. 000	.0	1.66	•48	1.07	28.92	Ť
38		88.	144.	223.	125.	.000	.000	. 000	.0	1.64	•48	1.05	28.92	
39		85.	139.	214.	122.	.000	.000	.000	. 0	1.61	.48	1.04	28.92	T T
40		83.	135.	207.	119.	.000	.000	.000	.0	1.59	.49	1.02	28.92	Ť
41		81.	131.	199.	117.	.000	.000	.000	.0	1.56	•49	1.00	28.92	,
42	2460.	79.	127.	192.	114.	•000	.000	.000	. 0	1.54	•49	•99	28.92	•
	c	R18 F1RE										PAGE NO.	1 RL	JN NO. 1
т	1 ME		HEAT BAL	ANCE					0	-WALL	Y 02	YN2 YCD2		YPYR
		5 FLOW	WND RAD		LL CNV	WALL	RAD	Q-FIRE		5UM	PCT	PCT PCT	PCT	PCT
		PCT	PCT		PCT	PCI		W		J	MA55	MASS MASS		MA55

	CRIO FIRE	=						PA	GE NO.	1 RUN	I NO. 7	
TIME		HEAT BALA	NCE			Q-WALL	Y 02	YN2	Y C02	YH20	YPYR	
	GAS FLOW	WND RAD	WALL CNV	WALL RAD	Q-F1RE	5UM	PCT	PCT	PCT	PCT	PCT	
	PCT	PCT	PCT	PCT	W	J	MA 55	MA55	MA55	MA55	MA 55	
0.	51.239	5.446	11.986	31.326	4.342+06	1.128+08	•055	.632	.176	.074	.071	
60.	59.890	8.578	4.838	26.713	4.305+06	1.943+08	.056	.635	.177	.074	.067	
120.	62.785	10.011	3.385	23.867	4.301+06	2.647+08	.056	.639	.178	.073	.061	
180.	64.837	11.207	2.533	21.406	4.303+06	3.265+08	.057	.644	.179	.073	.054	
240.	66.133	12.113	2.058	19.706	4.310+06	3.828+08	.057	.648	.180	.073	.047	
300.	68.439	12.473	1.715	17.383	4.125+06	4.300+08	.064	.653	.173	.070	-046	
360.	70.315	12.500	1.524	15.674	3.939+06	4.707+08	.071	•658	.166	.067	.044	
420.	72.040	12.361	1.389	14.222	3.754+06	5.058+08	.078	.663	.158	. 064	.042	
480.	73.682	12.102	1.287	12.939	3.568+06	5.363+08	•086	•669	- 150	.061	.040	
540.	75.291	11.754	1.203	11.759	3.381+06	5.626+08	.093	.674	.142	.058	.037	
600.	76.901	11.339	1.128	10.638	3.195+06	5.851+08	-101	.679	.135	.054	.035	
660.	78.537	10.870	1.056	9.543	3.008+06	6.043+08	.108	.684	. 127	.051	.033	
720.	80.222	10.360	.978	8.444	2.821+06	6.202+08	•116	.690	-119	.048	.031	
780.	81.979	9.818	.888	7.317	2.633+06	6.332+08	.123	•695	.111	.045	.029	
840.	83.833	9.251	•778	6.136	2.445+06	6.433+08	.131	.700	.103	.042	.027	
900.	85.814	8.668	.640	4.874	2.256+06	6.508+08	· 1 39	.706	.095	.038	.025	
960.	87.960	8.074	• 464	3.496	2.067+06	6.557+08	.146	•711	.087	• 035	.023	
1020.	90.318	7.476	· 24 3	1.956	1.877+06	6.582+08	- 1 54	.716	• 079	.032	.021	
1080.	92.946	6.878	.010	•165	1.686+06	6.583+08	.162	.722	.071	.029	.019	
1140.	93.846	6.154	314	-1.899	1.494+06	6.583+08	.169	.727	.063	.026	.017	
1200.	94.558	5.442	-1.020	-4.049	1.300+06	6.583+08	.177	• 733	. 055	.022	.015	
1260.	95.238	4.762	-2.239	-6.376	1.103+06	6.583+08	.185	.738	. 047	.019	.012	
1320.	95.883	4.117	-4.264	-8.925	9.040+05	6.583+08	.192	.744	. 039	.016	.010	
1380.	96.485	3.515	-7.700	-11.864	6.995+05	6.583+08	.200	.749	.031	.012	.008	
1440.	97.049	2.951	-14.093	-15.688	4 • 853+05	6.583+08	.209	• 755	.022	.009	-006	
1500.	97.574	2.426	-28.573	-21.936	2.439+05	6.583+08	-219	.762	.012	.005	.003	
1560.	97.982	2.018	-66.264	-33.909	0.000	6.583+08	.230	.770	.000	.000	.000	
1620.	98.049	1.951	-68.413	-31.701	0.000	6.583+08	.230	•770	.000	.000	.000	
1680.	98.085	1.915	-69.814	-30.274	0.000	6.583+08	.230	.770	.000	.000	.000	
1740.	98.107	1.893	-70.898	-29.183	0.000	6.583+08	.230	•770	.000	.000	.000	
1800.	98.122	1.878	-71.769	-28.312	0.000	6.583+08	.230	.770	.000	.000	.000	
1860.	98.131	1.869	-72.495	-27.590	0.000	6.583+08	.230	.770	• 00 0	.000	.000	
1920.	98.136	1.864	-73.116	-26.981	0.000	6.583+08	.230	•770	.000	-000	-000	
1980.	98.138	1.862	-73.665	-26.462	0.000	6.583+08	-230	.770	.000	.000	• 000	
2040.	98.138	1.862	-73.953	-25.954	0.000	6.583+08	.230	.770	.000	.000	.000	
2100.	98.136	1.864	-74.573	-25.606	0.000	6.583+08	•230	•770	.000	• 000	•000	
2160.	98.133	1.867	-74.768	-25.201	0.000	6.583+08	.230	•770	.000	• 000	.000	
2220.	98.128	1.872	-75.114	-24.888	0.000	6.583+08	.230	.770	- 000	.000	.000	
2280.	98.123	1.877	-75.413	-24.604	0.000	6.583+08	• 230	.770	.000	• 000	• 000	
2340.	98.116	1.884	-75.679	-24.347	0.000	6.583+08	.230	.770	.000	• 0 0 0	• 000	
2400.	98.109	1.891	-75.769	-24.079	0.000	6.583+08	• 230	•770	.000	.000	.000	
24 -0.	98.100	1.900	-75.979	-23.867	0.000	6.583+08	.230	•770	.000	.000	.000	

TEST PROGRAM FOR PYTFIX ROUTINE. VARIABLE WALL PROPERTIES

---- GEOMETRY AND VENTILATION----

WALL SURFACE AREA = 80.0 M2
FLOOR AREA = 20.00 M2
WINDOW HEIGHT = 1.50 M
AREA = 4.00 M2
OPENING FACTOR = 4.899 M2.5
DISCHARGE COEFF.= .68

----FUEL LOAD PROPERTIES----

FIRE LOAD PER FLOOR AREA = 20.0 KG/M2

FUEL COMPOSITION

CARBON = 44.4 PERCENT BY WEIGHT

HYDROGEN = 5.4 PERCENT OXYGEN = 38.2 PERCENT NITROGEN = .0 PERCENT WATER = 12.0 PERCENT

R = 5.32R0 = 1.23

HEAT OF COMBUSTION OF DRY FUEL = 18.80+06 J/KG
LOWER ACTUAL HEAT OF COMBUSTION = 15.07+06 J/KG
MOLECULAR WEIGHT OF UNBURNT PYROLYSATES = 28.97
CP OF PYROLYSIS GAS = (.1127*TGAS + 1010.) J/KG-K
MAXIMUM FRACTION OF PYROLYSATES BURNED = .70
GREY-GAS FLAME EMISSIVITY = .900

----WALL THERMAL PROPERTIES----

THICKNESS = .038 M DENSITY = 790. KG/M3

THERMAL CONDUCTIVITY ARRAY (W/M-K)

TEMPERATURE CONDUCTIVITY
273.0 .210
.372.0 .210
.373.0 .160
.1073.0 .260

HEAT CAPACITY ARRAY (J/KG-K) .

TEMPERATURE HEAT CAPACITY 1090 -273.0 372.0 1090 . 373.0 47300. 383.0 47300. 384.0 413.0 5000. 414.0 840. 1073.0 840.

	TIME	TEMP	WA	LL TEM	P5	· RP	RC	EXC.PYR.	FUEL	AIR IN	N. P.	VELOC1TY	MOL . WT	FUEL
	5	GA5.C		С		KG/5	KG/5	KG/5	PCT	KG/5		M/5		CNTRL
1	0.	720.	453 •	26.	25.	.419	.293	. 126	93.7	2.23	. 38	1.84	30.59	F
2	60.	853.	729.	32.	25.	.414	.290	.124	87.5	2.20	.37	1.86	30.59	F
3	120.	887.	787.	48.	25.	.412	.289	.124	81.3	2.19	.37	1.87	30.59	F
4	180.	913.	829.	75.	26.	.411	•288	.123	75.2	2.19	•36	1.87	30.59	F
5	240.	933.	860.	96.	27.	•410	.287	.123	69.0	2.18	• 36	1.87	30.59	F
6	300.	947.	881.	131.	29.	•409	.287	.123	62.9	2.18	•36	1.87	30.59	F
7	360.	959.	898.	146.	32.	.409	•286	.123	56.7	2.17	.36	1.87	30.59	F
8	420.	969.	914.	214.	36.	·408	•286	.122	50.6	2.17	.36	1.88	30.59	F
9	480.	978.	927.	252.	41.	.408	.285	.122	44.5	2.17	•36	1.88	30.59	F
10	540.	986 •	938.	278.	47.	.407	•285	.122	38.4	2.17	•36	1.88	30.59	F
11	600.	992.	947.	312.	53.	.407	.285	.122	32.3	2.17	.36	1.88	30.59	F
12	660.	998.	955.	343.	57.	.407	.285	.122	26.2	2.16	.36	1.88	30.59	F
13	720.	1002.	961.	363.	61.	.407	.285	.122	20.1	2.16	.36	1.88	30.59	F
14	780.	1007.	967.	379.	64.	.406	.284	. 122	14.0	2.16	•36	1.88	30.59	F
15	840.	1010.	972.	392.	67.	.406	.284	•122	7.9	2.16	•36	1.88	30.59	F
16	900.	1013.	976.	403.	69.	.406	.284	. 122	1.8	2.16	.36	1.88	30.59	F
17	960.	1015.	980.	416.	72.	.406	.284	•122	.0	2.16	•36	1.88	30.59	F
18	1020.	426.	606.	428.	73.	.000	.000	.000	.0	2.47	.43	1.79	28.92	Т
19	1080.	296.	459.	433.	74 .	.000	.000	.000	.0	2.39	•45	1.67	28.92	Т
20	1140.	239.	385.	419.	76.	.000	.000	.000	.0	2.30	•45	1.58	28.92	Т
21	1200.	203.	335.	392.	77.	.000	.000	.000	. 0	2.22	.46	1.50	28.92	T
22	1260.	178.	298.	364.	78.	.000	.000	.000	. 0	2.15	.47	1.44	28 • 92	Ť
23	1320.	160.	269.	337.	79.	.000	.000	•000	.0	2.08	.47	1.38	28.92	Т
24	1380.	145.	245.	312.	80.	.000	.000	.000	• 0	2.02	. 47	1.33	28.92	T
25	1440.	134.	226.	290.	81.	.000	.000	.000	.0	1.96	.47	1.29	28.92	т
26	1500.	124.	209.	271.	81.	.000	.000	.000	.0	1.91	•48	1.25	28.92	Т
27	1560.	115.	194.	255.	82.	.000	.000	.000	.0	1.85	• 48	1.21	28.92	Т
28	1620.	108.	181.	240.	82 •	.000	.000	.000	. 0	1.80	.48	1.17	28.92	T
29	1680.	102.	170.	227.	82.	.000	.000	.000	• 0	1.76	-48	1.14	28.92	T
30	1740.	96.	160.	216.	82.	.000	.000	.000	. 0	1.71	.48	1.11	28.92	T
31	1800.	92.	152.	205.	83.	.000	.000	.000	• 0	1.67	.48	1.08	28.92	Т
32	1860.	87.	144.	190.	83.	.000	.000	.000	.0	1.63	.48	1.05	28.92	т
33	1920.	84.	137.	187.	83.	.000	.000	.000	• 0	1.60	.48	1.03	28.92	т
34	1980.	80.	131.	179.	83.	.000	.000	.000	.0	1.56	•49	1.00	28.92	T
35	2040.	77.	125.	172.	83.	.000	.000	.000	.0	1.53	•49	•98	28.92	T
35	2040.	′′•	125.	1,2.	05.		- 300		• •					

	VENT ILA	TION SPECIF	IEO. FUEL PI	YROLYSIS AOJUS	STEO FOR WORST	CONDITIONS		PA	GE NO.	1 RUN	1 NO. 8
TIME		HEAT BALAN	NCE			O-WALL	Y02	YN2	YCD2	YH20	YPYR
	GAS FLOW	WND RAD	WALL CNV	WALL RAD	Q-FIRE	5UM	PCT	PCT	PCT	PCT	PCT
	PCT	PCT	PCT	PCT	w	Ĵ	MAS5	MA 55	MAS5	MA55	MA55
0.	48.339	4.946	14.745	32.022	4.419+06	1.240+08	.057	•648	.180	.073	.047
60.	58.154	8.318	5.410	28.134	4.363+06	2.118+08	•057	•648	.180	.073	.047
120.	60.694	9.415	4.060	25.768	4.347+06	2.896+08	•057	•648	.180	.073	.047
180.	62.608	10.308	3.244	23.808	4.334+06	3.599+08	.057	.648	-180	.073	.047
240.	64.103	11.047	2.695	22.137	4.324+06	4.244+08	•057	•648	.180	.073	.047
300.	65.155	11.590	2.344	20.860	4.317+06	4.845+08	.057	.648	.180	.073	-047
360.	66.052	12.068	2.081	19.804	4.310+06	5.411+08	.057	•648	.180	.073	.047
420.	66.825	12.493	1.862	18.807	4.305+06	5.945+08	•057	.648	.180	•073	.047
480.	67.492	12.868	1.686	17.929	4.301+06	6.451+08	.057	•648	.180	.073	•047
540.	68.080	13.204	1 • 5 4 5	17.190	4.296+06	6.934+08	.057	•648	- 180	• 073	.047
600.	68.577	13.494	1.429	16.529	4.293+06	7.396+08	.057	.648	.180	.073	.047
660.	68.996	13.741	1.335	15.963	4.290+06	7.841+08	.057	•648	.180	.073	.047
720.	69.354	13.956	1.254	15.443	4.288+06	8.271+08	.057	.648	.180	•073	.047
780.	69.673	14.149	1.187	15.000	4.285+06	8.687+08	.057	.648	.180	•073	.047
840.	69.940	14.313	1.132	14.625	4.284+06	9.092+08	•057	.648	.180	•073	•047
900.	70.160	14.448	1.088	14.315	4.282+06	9.488+08	.057	•648	.180	.073	.047
960.	70.342	14.561	1.052	14.056	4.281+06	9.876+08	.057	-648	-180	.073	.047
1020.	95.334	4.666	-34.635	-65.520	0.000	9.876+08	.230	•770	.000	.000	.000
1080.	96.914	3.086	-47.715	-52.475	0.000	9.876+08	.230	.770	.000	.000	-000
1140.	97.433	2.567	-54.773	-45.402	0.000	9.876+08	.230	.770	.000	.000	•000
1200.	97.701	2.299	-59.342	-40.481	0.000	9.876+08	.230	.770	.000	.000	•000
1260.	97.857	2.143	-62.819	-37.109	0.000	9.876+08	.230	.770	.000	.000	•000
1320.	97.958	2.042	-65.406	-34.512	0.000	9.876+08	.230	.770	.000	•000	.000
1380.	98.025	1.975	-67.489	-32.461	0.000	9.876+08	.230	.770	.000	.000	.000
1440.	98.071	1.929	-69.232	-30.849	0.000	9.876+08	.230	.770	.000	.000	.000
1500.	98.101	1.899	-70.589	-29.483	0.000	9.876+08	.230	.770	.000	• 000	.000
1560.	98.121	1.879	-71.719	-28.347	0.000	9.876+08	•230	.770	.000	.000	-000
1620.	98.133	1.867	-72.665	-27.396	0.000	9.876+08	.230	.770	.000	.000	.000
1680.	98.138	1.862	-73.461	-26.598	0.000	9.876+08	.230	.770	.000	•000	.000
1740.	98.138	1.862	-74.133	-25.925	0.000	9.876+08	.230	.770	.000	-000	-000
1800.	98.135	1.865	-74-703	-25.355	0.000	9.876+08	.230	.770	.000	.000	.000
1860.	98.128	1.872	-75.188	-24.871	0.000	9.876+08	-230	•770	.000	•000	.000
1920.	98.119	1.881	-75.603	-24.459	0.000	9.876+08	.230	.770	.000	.000	.000
1980.	98.108	1.892	-75.960	-24.108	0.000	9.876+08	.230	.770	.000	.000	• 000
7040.	98.095	1.905	-76.269	-23.809	0.000	9.876+08	.230	.770	-000	.000	•000

TEST PROGRAM FOR PFLFIX ROUTINE. POOL OPTION

----GEOMETRY AND VENTILATION----

WALL SURFACE AREA = 80.0 M2
FLOOR AREA = 20.00 M2
WINDOW HEIGHT = 1.50 M
AREA = 10.00 M2
OPENING FACTOR = 12.247 M2.5
DISCHARGE COEFF.= .68

----FUEL LOAD PROPERTIES----

FIRE LOAD PER FLOOR AREA = 20.0 KG/M2
TOTAL ENTHALPY OF PYROLYSIS= 2.40+06 J/KG
BOILING TEMPERATURE= 390. DEG C

FUEL COMPOSITION

CARBON = 85.7 PERCENT BY WEIGHT

HYDROGEN = 14.3 PERCENT

OXYGEN = .0 PERCENT

NITROGEN = .0 PERCENT

WATER = .0 PERCENT

R = 14.78

R0 = 3.43

HEAT OF COMBUSTION OF DRY FUEL = 46.50+06 J/KG
LOWER ACTUAL HEAT OF COMBUSTION = 43.36+06 J/KG
MOLECULAR WEIGHT OF UNBURNT PYROLYSATES = 28.97
CP OF PYROLYSIS GAS = (.1127*TGAS + 1010.) J/KG-K
MAXIMUM FRACTION OF PYROLYSATES BURNED = .70
GREY-GAS FLAME EMISSIVITY = .900
FUEL AREA = 5.00 M2

---- WALL THER MAL PROPERTIES----

THICKNESS = .038 M DENSITY = 790. KG/M3

THERMAL CONDUCTIVITY = .170 W/M-K

HEAT CAPACITY = 840. J/KG-K

0	WINDOW	4.67	29.9	29.9	29°9	29.9	29.9	29.9	29.9	29.9	29.9	29.9	29.9	29.9	2.9.9	0																	
° O N	FUEL W	iL	L	iL.	L	Œ.	iL.	ıL	iL.	iL.	iL.	iL.	iL.	u_	L	°	YPYR	PCT	MASS	0100	.031	•034	°036	•037	°039	°039	0000	0000	• 041	0041	.042	.042	.042
RUN NO.	MOL.WT F	2993	29.92	29.92	29.91	29.91	29.91	29.91	29.91	29.91	29.91	29.91	29.91	29.91	29.91	RUN NO.	YHZD	PCT	MASS	• 057	056	• 050	• 056	° 056	°056	• 050	• 056	• 056	050	。056	° 056	• 056	• 056
	MOL	29	29	59	29	29	29	59	29	29	29	29	29	29	29	-	C)		S	6	00		7	_			9		9	9	9	9	vQ.
PAGE NO.	VELOCITY M/S	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.92	1.92	1.92	1.92	PAGE NO.	YC02	PCT	MASS	•139										0.136			. 136
	>																YNZ	PCT	MASS	.721	.712	.710	•709	.708	2020	• 706	°706	.705	°705	.705	.705	•704	•704
ons	° Z	.37	• 36	• 36	•36	• 36	• 36	• 36	•36	• 36	•36	• 36	.36	•36	. 36	SNO	Y02	PCT	MASS	.063	•063	•062	• 062	• 062	0.062	• 062	• 062	0.062	•062	• 062	.062	0.062	• 062
FUEL PYROLYSIS (POOL) SPECIFIED. VENTILATION ADJUSTED FOR WORST CONDITIONS	AIR IN KG/S	5.73	5.63	5.61	5.59	5.58	5.58	5.57	5.57	5.56	5.56	5.56	5.55	5.55	5.55	SPECIFIED, VENTILATION ADJUSTED FOR WORST CONDITIONS	O-WALL	SUM	7	1.787+08	2.702+08	3.484+08	4.136+08	4.715+08	5.239408	5.721+08	6.170+08	6.591+08	80+066°9	7.369+08	7.731+08	800462008	8.413+08
FOR WORS	FUEL	94.2	87.3	80°3	73.0	65.6	58.1	50.6	43.0	35 . 3	27.7	19.9	12.2	4.4	0.	FOR WORS	Ġ	0,															
A ADJUSTED	EXC.PYR. KG/S	• 116	. 190	.205	.220	• 228	• 234	•239	. 243	• 246	.249	.251	.253	.255	• 256	A ADJUSTED		Q-FIRE	3	1 - 1 7 7 + 0 7	1.157+07	1.153+07	1.149+07	1,147+07	1 0 1 4 5 + 0 7	1.144+07	1.143+07	1.142+07	1.142+07	1.141+07	1.140+07	1.140+07	1.140+07
TILATION	RC KG/S	.271	.267	.266	.265	.264	.264	.264	.264	.263	.263	.263	.263	.263	.263	TILATION		WALL RAD	 -	7.0	41	78	00	62	25	74	29	64	56	92	62	59	4
ED. VEN	RP KG/S	.388	.457	.471	.485	.493	.499	.503	.507	.510	.512	•514	.516	.518	.519	ED. VEN		WALL	PCT	22.170	12.241	10.578	8°900	7.962	7 . 225	6.674	6.229	5.864	5.556	5,292	5.062	4 . 859	4.679
SPECIFIE	TEMPS	25.	25°	25.		28.	32.		46.	55.	65.				100	SPECIFI		WALL CNV	PCT	3.130	.948	•734	.551	.461	962.	.351	•316	•288	• 266	.247	• 231	.218	•206
00()	WALL TE	27.	39.	70.	115.	165.	211.	254.	293	329。	361.	390	417.	442.	464.		ANCE																
LYSIS (P	*	866.	1052.	1079.	1104.	1118.	1128。	1135.	11410	1146.	1150.	1154.	1156.	1159.	1161.	LYSIS (P	HEAT BALANCE	WND RAD	PCT	10.328	18,755	19,586	20.397	20.849	21.204	21.469	21.683	21.859	22.007	22.134	22.244	22,342	22.428
FUEL PYRC	TEMP GAS.C	1051.	1126.	1140.	1154.	1161.	1166.	1170.	1174.	1176.	1178.	1180.	1182.	1183.	1185.	FUEL PYROLYSIS (POOL)		GAS FLOW	PCT	62.235	68.003	69°104	70.153	70.729	71.176	71.507	71.773	71.990	72.172	72,327	72.462	72.581	72.686
	TIME S	0	600	120.	180.	240.	300°	360°	420.	480°	540.	009	660	7200	780.			GA		9	9	9	7	2	(50	7	2	(4)	7	7	7	-	-
		-	2	m	4	2	9	7	89	o	10	11	12	131	14		TIME			0	09	120 •	180.	240 •	300°	360°	420 •	480°	540°	°009	°099	720 .	780.

TEST PROGRAM FOR RPFIX POUTINE

----GEOMETRY AND VENTILATION----

WALL SURFACE AREA = 80.0 M2
FLOOR AREA = 20.00 M2
WINDOW HEIGHT = 1.50 M
AREA = 10.00 M2
DPENING FACTOR = 12.247 M2.5
DISCHARGE COEFF.= .68

----FUEL LOAD PROPERTIES----

FIRE LOAD PER FLOOR AREA = 20.0 KG/M2

FUEL COMPOSITION

CARBON = 85.7 PERCENT BY WEIGHT HYDROGEN = 14.3 PERCENT

OXYGEN = .0 PERCENT NITROGEN = .0 PERCENT WATER = .0 PERCENT

R = 14.78R0 = 3.43

HEAT OF COMBUSTION OF DRY FUEL = 46.50+06 J/KG
LOWER ACTUAL HEAT OF COMBUSTION = 43.36+06 J/KG
MOLECULAR WEIGHT OF UNBURNT PYROLYSATES = 28.97
CP OF PYROLYSIS GAS = (.1127*TGAS + 1010.) J/KG-K
MAXIMUM FRACTION OF PYROLYSATES BURNED = .70
GREY-GAS FLAME EMISSIVITY = .900

RATE OF PYROLYSIS (KG/S)

TIME RP
0 • 120
120 • 120
121 • 250

---- WALL THERMAL PROPERTIES----

THICKNESS = .038 M DENSITY = 790. KG/M3

THERMAL CONDUCTIVITY = .170 W/M-K

HEAT CAPACITY = 840. J/KG-K

	TIME 5	TEMP GA5.C	WA	LL TEM	IP5	RP KG/5	RC KG/5	EXC.PYR. KG/5	PCT	AIR IN KG/5	N.P.		OCITY M/5	MOL.WT	FUEL CNTRL
	5	GASeC				7073	KG/5	KG/ 5	PCI	KG/5			4/ S		CNIKL
1	0.	432.	234.	26.	25.	-120	• 0 84	• 0 36	98.2	6.11	.43		1.79	29.23	т
2	60.	457.	323.	29.	25.	.120	.084	.036	96 • 4	6.13	.42		1.80	29.23	T
3	120.	467.	355.	37.	25.	.120	.084	.036	94.6	6.13	. 42		1.81	29.23	Т
4 5	180.	805.	666. 756.	51. 71.	25.	.250 .250	•175 •175	.075	90 • 9 87 • 1	5.98 5.95	.39		1.91	29.56	T T
6	240 ·	843. 856.	784.	97.	27.	.250	.175	.075	83.4	5.95	.39		1.92 1.92	29.56 29.56	†
7	360.	866.	804.	128.	29.	.250	.175	.075	79.6	5.94	•39		1.92	29.56	Ť
8	420.	872.	817.	160.	32.	·250	.175	• 075	75.9	5.93	.38		1.92	29.57	Т
9	480.	877.	827.	190.	37.	.250	•175	• 075	72 • 1	5.93	. 38		1.92	29.57	т
10	540.	881.	835.	218.	42.	•250	.175	• 075	68.4	5.93	.38		1.92	29.57	T
11	600.	884.	841.	244.	49. 56.	•250	.175	•075 •075	64.6	5.92	.38		1.92	29.57	T T
12	660. 720.	887.	846. 851.	267.	64.	.250 .250	.175	.075	60.9 57.1	5.92 5.92	.38 .38		1.92 1.92	29.57 29.57	÷
14	780.	891.	855.	309.	72.	.250	.175	.075	53.4	5.92	.38		1.92	29.57	T
15	840.	893.	858.	327.	80.	.250	.175	.075	49.6	5.92	. 38		1.92	29.57	T
16	900.	894.	861.	344.	88.	.250	•175	.075	45.9	5.92	. 38		1.92	29.57	T
17	960.	896.	864.	360.	95 •	-250	.175	• 075	42.1	5.92	•38		1.92	29.57	T -
18	1020.	897.	866.	375.	102.	•250	• 175	• 075 • 075	38.4 34.6	5.91	.38 .38		1.92	29.57 29.57	T T
19 20	1080.	898. 899.	868. 870.	389. 401.	109.	•250 •250	•175 •175	.075	30.9	5.91 5.91	.38		1.92 1.92	29.57	Ť
21	1200.	900.	872.	413.	122.	•250	.175	.075	27.1	5.91	•38		1.92	29.57	Ť
22	1260.	901.	874.	425.	127.	•250	.175	.075	23.4	5.91	.38		1.93	29.57	Ť
23	1320.	902.	876.	435.	133.	.250	.175	.075	19.6	5.91	.38		1.93	29.57	т
24	1380.	903.	877.	445.	138.	.250	.175	•075	15.9	5.91	•38		1.93	29.57	Т
25	1440.	904.	878.	454.	142.	.250	.175	• 075	12.1	5.91	.38		1.93	29.57	Ţ
26	1500.	904.	880.	463.	147.	•250	.175	• 075 • 075	8 • 4	5.91	.38 .38		1.93 1.93	29.57 29.57	T T
2 7 28	1560. 1620.	905. 905.	881. 882.	471. 478.	151. 154.	.250 .250	•175 •175	•075	4.6 .9	5.91 5.91	.38		1.93	29.57	,
29	1680.	906.	883.	485.	158.	.250	.175	.075	•0	5.91	.38		1.93	29.57	Ť
30	1740.	206.	476.	491.	161.	.000	.000	.000	•.0	5.58	•46		1.51	28.92	Т
31	1800.	148.	357.	491.	164.	.000	.000	.000	• 0	5.08	.47		1.34	28.92	T
32	1860.	126.	307.	481.	167.	.000	.000	.000	• 0	4.80	.48		1.26	28.92	Т
33	1920.	112.	272.	464.	169.	.000	.000	•000	. 0	4.58	.48		1.19	28.92	τ
TIM			VALUES O							Q-WALL	Y02	YN2	AGE NO.	1 RU	N NO. 10
		5 FLOW	WND RAD		LL CNV	WALL	RAD	Q-FIRE		5UM	PCT	PCT	PCT	PCT	PCT
		PCT	PCT		PCT	PC	г	W		J	MA55	MA 55	MA55	MA 55	MA55
	_														
0 60		5.919 0.960	3.719 4.296		.044	9.31		3.642+06 3.642+06		4.450+07 7.672+07	•179 •179	.755	.042 .042	.017	•006 •006
120		2.877	4.533		5.171	7.41		3.642+06		1.042+08	.180	.755	.042	.017	•006
180		2.523	10.016		3.312	14.15		7.588+06		1.837+08	.124	.739	.088	.036	.012
240		6.015	11.532		.779	10.65	59	7.588+06		2.404+08	-124	.739	.089	.036	-012
300		7.201	12.086		. 379	9.31		7.588+06		2.891+08	.124	•739	.089	• 036	.012
360 420		8.063	12.502	,	.963	8.30 7.60		7.588+06 7.588+06		3.320+08 3.710+08	•124 •124	.739 .739	•089 •089	•036 •036	.012 .012
480		9.090	13.013		.848	7.04		7.588+06		4.070+08	.124	.739	.089	.036	•012
540		9.441	13.191		.762	6.60		7.588+06		4.405+08	.124	.739	.089	.036	.012
600		9.729	13.339		.694	6.2		7.588+06		4.721+08	-123	.7 39	.089	•036	.012
660 720		9.970	13.464		.639	5 • 92		7.588+06		5.020+08	.123	•739 •739	.089 .089	.036 .037	-012
720		0.176 0.355	13.571 13.665		• 594 • 556	5 • 65 5 • 42		7.588+06 7.588+06		5.305+08 5.577+08	•123 •123	.739	.089	.037 .037	•012 •012
840		0.513	13.748		•523	5.21		7.588+06		5.838+08	.123	.739	-089	a037	.012
900		0.653	13.822		.494	5.03		7.588+06		6.090+08	.123	.739	.089	.037	-012
960	. 8	0.778	13.889		.469	4.86	64	7.588+06		6.332+08	.123	.739	.089	.037	-012
1020		0.892	13.949		.447	4.71		7.588+06		6.567+08	.123	.739	•089	.037	•012
1080		30.996	14.005		.427	4.5		7.588+06		6.795+08	.123	.739	.089	•037 •037	.012
1140		31.090 31.178	14.055		.409 .393	4.44		7.588+06 7.588+06		7.016+08 7.231+08	.123 .123	.739 .739	.089	.037 .037	.012 .012
1260		1.258	14.102		.378	4.21		7.588+06		7.440+08	.123	.739	.089	.037	.012
1320		1.333	14.186		.364	4.11		7.588+06		7.644+08	.123	.739	.089	.037	.012
1380		1.402	14.224		.352	4.02		7.588+06		7.843+08	-123	. 739	.089	+037	.012
1440		31.466	14.258		.340	3.9		7.588+06		8.038+08	.123	• 739	.089	• 037	.012
1500 1560	. 8	1.526	14.291		.330 .320	3.89		7.588+06 7.588+06		8.228+08 8.415+08	•123 •123	.739 .739	.089 .089	。037 。037	.012 .012
		1 600						1. 288406							
1620	. 8	1.635	14.322							8.598+08	.123	. 739	.089	.037	.012
1620 1680	. 8	1.635	14.350		.311	3.70	4	7.588+06		8.598+08	.123 .123	.739 .739	.089 .089	•037 •037	.012 .012
	888			-55		3.70 3.63) 4 3 7			8.598+08 8.777+08 8.777+08	.123 .230	.739 .770	.089 .000	•037 •000	•012 •000
1680 1740 1800	8899	31.635 31.683 97.678 98.014	14.350 14.377 2.322 1.986	-64	•311 •303 •416	3.70 3.63 -44.73 -35.28) 4 37 32 32	7.588+06 7.588+06 0.000 0.000		8.777+08 8.777+08 8.777+08	.123 .230 .230	.739 .770 .770	.089 .000	•037 •000 •000	•012 •000 •000
1680 1740 1800 1860	88899	31.635 31.683 97.678 98.014	14.350 14.377 2.322 1.986 1.906	-64 -68	.311 .303 5.416 6.641 3.298	3.70 3.63 -44.73 -35.28 -31.50	04 37 32 32	7.588+06 7.588+06 0.000 0.000		8.777+08 8.777+08 8.777+08 8.777+08	.123 .230 .230 .230	.739 .770 .770	.089 .000 .000	.037 .000 .000	•012 •000 •000
1680 1740 1800	88899	31.635 31.683 97.678 98.014	14.350 14.377 2.322 1.986	-64 -68	•311 •303 •416	3.70 3.63 -44.73 -35.28	04 37 32 32	7.588+06 7.588+06 0.000 0.000		8.777+08 8.777+08 8.777+08	.123 .230 .230	.739 .770 .770	.089 .000	•037 •000 •000	•012 •000 •000

APPENDIX B -- PROGRAM LISTING

```
C
C
          COMPF2--MAIN PROGRAM
C
          CONSTITUTES REVISION OF PROGRAM COMPF
C
          COMPF2 VERSION 1.0 PROGRAMMED 1 MARCH 1978 BY V. BABRAUSKAS
C
          VERSION 1.1 MINOR REVISIONS 18 AUG 1978
C
      COMMON /CNSTS/ AWALLN, BWDOW, DENSA, G, GASCNT, KTRACE, MTIME
                       CPA, CPCO(2), CPCO2(2), CPH2(2), CPH20(2), CPN2(2),
      COMMON /CP/
         CPO2(2), CPPYR(2)
      COMMON /FUEL/ COCFLPCOCVGROSOCVNETOHOHFLPCOMWPYRONONFLPCOO
         OFL PC. R. RO. REGRES, SH. SHAPE, SIZE, W. WFLPC, WTFUEL
      COMMON /GP/
                       AWDOW, BPF, CD, CNV, DTIME, EMS(2), HWDOW, IX, IXC, IXL,
         J.JM.JP.JPRINT.K.KD.KH.KITER.KNTRL.MWIN.MWOUT.RC.RP.SIGMA
      COMMON /LOGIC/ FC.FLSPEC.KRIT.NEWPLT.NEWPRP.PLFUEL.PLOT.PNCH.
         RPSPEC, VTSPEC
      COMMON /PLAST/ TBOILC. DHP. STOICH. SIZE1, EITA, EISCAN
      COMMON /PRBLM/ ADIA, AFLOOR, AWALL, DENSW, FLOAD, IRUN, OPENF,
         PRNT, STEADY, THICKW
      COMMON /TEMP/ DENF, DENU, TAMB, TGAS, TINPT, T1(20), T2(20), TSF, TSU
      COMMON /THERML/ CNDA(2,10), CPW(2,10), DX, EF, EMSA(2,10),
         NCND, NCPW, NEMS, NQGEN, NRP, QGEN(2, 10), RPX(2, 50)
      COMMON /TITLE/ TITLE(14)
      COMMON /CPLOT/ BUFX(500), BUFY(500), SCALX, SCALY, SPECS(30)
      INTEGER TITLE
      LOGICAL ADIA, EISCAN, FC, FLSPEC, KRIT, NEWPLT, NEWPRP, PLFUEL,
         PLOT, PNCH, RPSPEC, STEADY, STOICH, VTSPEC
      REAL MWIN, MWOUT, MWPYR, MTIME, N, NFLPC
      DATA ADIA, CD, CFLPC, CNV, CPA, DENSA, EF, G
         /.FALSE.,0.68,44.4,5.0,1005.,1.18,0.9,9.8/,
         HFLPC. IRUN. IX. MTIME, MWPYR, NEWPRP
     3
         /5.4,0,10,360.,28.97,.TRUE./,
         NFLPC.OFLPC.PLOT.PNCH.REGRES.SH.SHAPE
     5
         /0.0, 38.2, .FALSE., .FALSE., 0.0, 0.0, 2./
         SIGMA, SIZE1, STEADY, TINPT, WFLPC
         /5.6697E-8,-10., FALSE., 0.0, 12.0/
         HEAT CAPACITIES ARE GIVEN IN THE FORM CP(1)*TEMP+CP(2)
C
                    /0.1185, 1018./,
            CPCO
            CPC02 /0.2114, 931./,
            CPH20 /0.3549, 1814./
     2
                   /0.6862, 13966./.
     3
            CPH2
                    /0.3704, 931./,
     4
            CPO2
     5
             CPN2
                    /0.1127, 1010./
             CPPYR /0.1127, 1010./
         PROPERTIES OF PYROLYSIS GASES ARE ASSUMED SAME AS FOR NITROGEN
C
      NAMELIST /VARS/ ADIA.AFLOOR, AWALL, AWDQW, BPF, CD, CFLPC, CPPYR, CVGROS,
         DENSW, DHP. DTIME. EF. EISCAN, EITA. FLOAD. FLSPEC, HFLPC. HWDOW,
     2
         IRUN.IX.KTRACE.MTIME.MWPYR.NEWPLT, NEWPRP.NFLPC, OFLPC, PLFUEL,
         PLOT.PNCH.PRNT.REGRES.RPSPEC.SH.SHAPE.SIZE.STEADY.STOICH.
     3
         TINPT. THICKW. TBOILC, VTSPEC, WFLPC, SCALX, SCALY
   10 READ (1.900.END=150) TITLE
  900 FORMAT (13A6, A2)
      WRITE(2,910) TITLE
  910 FORMAT (1H1, 13A6, A2)
      EISCAN=.FALSE.
      STOICH=.FALSE.
```

```
STEADY = . FALSE .
   KITER= 0
   TINPT = 0.
   KNTRL= 1
   KTRACE= 0
   NEWPLT= .FALSE.
   RPSPEC= .FALSE.
   FLSPEC= .FALSE.
   VTSPEC= .FALSE.
   PLFUEL= .FALSE.
   IRUN= IRUN+1
20 READ (1. VARS)
   WRITE (5. VARS)
   IF(ADIA.OR.EISCAN.OR.STOICH) STEADY=.TRUE.
   IF (PNCH) PUNCH 900, TITLE
   IF (NEWPLT.AND.PLOT) CALL PLTRST
   IF (NEWPRP) CALL INC
   NEWPRP= .FALSE.
30 CALL ICONDS
   IF (KNTRL.EQ.2) GOTO 10
   IF (KTRACE.NE.1) GOTO 50
40 WRITE (4,901) IRUN
901 FORMAT ("1 RUN NO.", 14//
      TGAS1
                 TGAS2 F1
                                     F2
                                              DERIV1 K KD *
                          TSF
                                   QFIRE
      •KH J
                 T2(1)
  2
                                              QFLOW
      • RP
                 RC (/)
50 IF (KITER.EQ.1) GO TO 60
   CALL ECHOID
60 IF (RPSPEC) GOTO 70
   IF (FLSPEC) GOTO 80
   IF (VTSPEC) GOTO 90
    IF (PLFUEL.AND..NOT.FLSPEC) GOTO 100
    CALL CRIB
   GOTO 110
70 CALL RPFIX
   GOTO 110
 80 CALL PFLFIX
    GOTO 110
 90 CALL PYTFIX
   GOTO 110
100 CALL POOL
110 GO TO (120, 10, 130, 120), KNTRL
       KNTRL= 1 INITIAL VALUE
       KNTRL= 2 INPUT ERROR DETECTED, PROCEED TO NEW RUN
       KNTRL= 3 ITERATION FAILURE--PRINT OUT STEPS EVEN IF KTRACE= 0.
       KNTRL= 4 SIMULATION TIME LIMIT EXCEEDED
120 CONTINUE
       INSERT HERE ANY REWIND COMMAND TO BE DONE IF NO ERROR
    IF (PLOT.OR.PNCH) CALL DOUT
   GO TO 10
130 IF (KTRACE.EQ.1) GOTO 10
140 KTRACE= 1
   KITER= 1
    WRITE (2,903) TGAS
903 FORMAT (*0---ITERATION FAILURE---*/* TGAS=*,F16.2)
    GO TO 30
150 CONTINUE
    ENDFILE 5
    STOP
    END
```

C

C

C

```
000000
```

C

CRIB FIRE ROUTINE
EQUATIONS FOLLOW NILSSON'S DATA FOR WOOD CRIBS.
OTHER FUEL CRIBS CAN BE TREATED IF PYROLYSIS CONSTANTS
ARE KNOWN.

COMMON /CNSTS/ AWALLN, BW DOW, DENSA, G, GASCNT, KTRACE, MTIME COMMON /CP/ CPA, CPCO(2), CPCO2(2), CPH2(2), CPH2O(2), CPN2(2), CP02(2), CPPYR(2) 1 COMMON /FUEL/ C, CFLPC, CVGROS, CVNET, H, HFLPC, MWPYR, N, NFLPC, O, OFLPC.R, RO, REGRES, SH, SHAPE, SIZE, W, WFLPC, WTFUEL COMMON /GP/ AWDOW, BPF, CD, CNV, DTIME, EMS(2), HWDOW, IX, IXC, IXL, J, JM, JP, JPRINT, K, KD, KH, KITER, KNTRL, MWIN, MWOUT, RC, RP, SIGMA COMMON /LOGIC/ FC, FLSPEC, KRIT, NEWPLT, NEWPRP, PLFUEL, PLOT, PNCH, RPSPEC. VTSPEC COMMON /PLAST/ TBOILC, DHP, STOICH, SIZE1, EITA, EISCAN COMMON /PRBLM/ ADIA, AFLOOR, AWALL, DENSW, FLOAD, IRUN, OPENF, PRNT, STEADY, THICKW QCONW.QFIRE.QFLOW.QRADO.QRADW.QWLSUM COMMON /QS/ COMMON /TEMP/ DENF, DENU, TAMB, TGAS, TINPT, T1 (20), T2(20), TSF, TSU COMMON /THERML/ CNDA(2,10), CPW(2,10), DX, EF, EMSA(2,10), NCND, NCPW, NEMS, NQGEN, NRP, QGEN(2, 10), RPX(2,50) COMMON /WOUT/ BWORST, FLREM, HRATIO, RMA, RMF, TTIME, VAVGIN, WA, WB, YCO2, YH2O, YN2, YO2, YPYR LOGICAL ADIA, EISCAN, FC, FLSPEC, KRIT, NEWPRP, PLFUEL, PLOT, PNCH, RPSPEC, SCAN, STEADY, STOICH, VTSPEC REAL MWIN, MWOUT, MWPYR, MTIME, N, NFLPC IF (STEADY) GOTO 190 FC= .FALSE . SCAN= .FALSE. QRADW=0. QCONW= 0. F2=0. F1=0. DTGAS=10. CALL HEADNG START TIME LOOP DO 170 J=1.JM KH = 0DERIVI= 1. TGAS2= 0. TGAS1 = 0. TGASP= 2000. TGASN= TAMB 20 CONTINUE K = 030 CONTINUE IF (FLREM.GT.O.) GOTO 40 RC= 0. RP= 0.

GO TO 50

40 IF (REGRES.LE.O.O) GOTO 45

USE THIS FORMULA IF INPUT REGRES IS SPECIFIED

RP= REGRES*2.*SHAPE/SIZE*FLREM**(1.-1./SHAPE)*WTFUEL**(1./SHAPE)

GO TO 50

45 CONTINUE

```
C
         FUEL SURFACE CONTROL
         ASSUME CRIB STICK DENSITY RHOCR= 500 KG/M**3
      RHOCR= 500.
      REGREN= 1.24E-3/RHOCR*SIZE**-0.6
      RP1= REGREN*2.*SHAPE/SIZE*FLREM**(1.-1./SHAPE)*WTFUEL**(1./SHAPE)
         CRIB POROSITY CONTROL
      RP2= 0.22*WTFUEL/(RHOCR*SIZE)*SH
C
         ROOM VENTILATION CONTROL
      RP3= 0.120*AWDOW*SQRT(HWDOW)
      RP= AMIN1 (RP1,RP2,RP3)
   50 RMF= RMA+RP
      YCO2= 3.66667*CFLPC*RC/100./RMF
      YH20= (WFLPC*RP+9.0*HFLPC*RC)/100./RMF
      Y02= (0.23*RMA-R0*RC)/RMF
      YN2= 0.77*RMA/RMF +NFLPC*RP/100./RMF
      YPYR= (RP-RC)/RMF
      IF(YPYR.LT..O) YPYR= 0.
      MWOUT = 44.*YCO2+18.*YH2O+28.*YN2+32.*YO2+MWPYR*YPYR
      HRATIO= 1./(1.+((TGAS/TAMB)*(MWIN/MWOUT)*(1.+RP/RMA)**2)
         **0.3333333333)
\boldsymbol{c}
         NOTE HIN IS TAKEN AS POSITIVE
      HIN= HWDOW* HRATIO
      ZW=1.-MWOUT*TAMB/MWIN/TGAS
      IF(ZW)195,55,55
   55 VAVGIN= 0.666667*SQRT(2.*G*HIN*ZW)
      RMA= CD*VAVGIN*HIN*BWDOW*DENSA
      RMF= RMA+RP
      IF (RMA/R-RP) 60,60,65
   60 RC= BPF*RMA/R
      GO TO 70
   65 RC= BPF*RP
      FC= .TRUE.
   70 CONTINUE
      QFLOW= RMF*(YCO2*(TGAS*(0.5*CPCO2(1)*TGAS+CPCO2(2))-TAMB*(0.5*
         CPCD2(1)*TAMB+CPCD2(2))) +YH2O*(TGAS*(0.5*CPH2D(1)*TGAS+
     1
         CPH20(2))-TAMB*(0.5*CPH20(1)*TAMB+CPH20(2))) +Y02*(TGAS*(
     2
         0.5*CP02(1)*TGAS+CP02(2))-TAMB*(0.5*CP02(1)*TAMB+CP02(2)))
     3
     4
         +YN2*(TGAS*(0.5*CPN2(1)*TGAS+CPN2(2))=TAMB*(0.5*CPN2(1)*
         TAMB+CPN2(2))) +YPYR*(TGAS*(0.5*CPPYR(1)*TGAS+CPPYR(2))
         -TAMB*(0.5*CPPYR(1)*TAMB+CPPYR(2))))
      QFIRE = RC*CVNET
      IF (ADIA) GOTO 90
      CALL DESOLV
      QRADW= AWALLN*EMS(1)*SIGMA*(TGAS**4.-TSF**4.)
      QCONW= AWALLN*(TGAS-TSF)*CNV*((TGAS-TSF)*(TGAS-TSF))**0.16666667
   90 CONTINUE
      QRADD= AWDOW*SIGMA*(TGAS**4.-TAMB**4.)
      K = K + 1
      F3=F2
      F2=F1
      F1= QFIRE-QFLOW-QRADO-QRADW-QCONW
      TGAS3=TGAS2
      TGAS2=TGAS1
      TGAS1=TGAS
      IF (F1.LT.O..AND.TGAS.LT.TGASP) TGASP=TGAS
      IF (F1.GT.O..AND.TGAS.GT.TGASN) TGASN=TGAS
      DERIV2= DERIV1
      IF (TGAS1.EQ.TGAS2) GOTO 130
```

DERIVI=(F1-F2)/(TGAS1-TGAS2) IF (KTRACE.GT.0) WRITE (4.99) TGAS1.TGAS2.F1.F2.DERIV1.K.KD. KH.J.T2(1).TSF.QFIRE,QFLOW,QRADW.RP.RC 99 FORMAT(2F9.2.3(1PE9.2),3I3.I5,2(0PF9.2),3(1PE10.3),2(0PF7.3)) IF (.NOT.SCAN) GOTO 95 (F1/F2.GE.O.O) GOTO 93 SCAN= .FALSE. GOT 0 100 93 TGAS= TGAS-DTGAS IF (TGAS.LT.TAMB) GOTO 200 **GOTO 120** 95 IF (DERIVI.LT..O.AND.ABS(F2).GT..O001)GOTO 100 IF (DERIV2.LT..O.AND.J.GT.2) GOTO 100 TGAS= TGAS1+DTGAS/5. **GOTO 120** 100 DIF= ABS(F1/QFLOW) IF (DIF.LT.0.002.AND.ABS(TGAS2-TGAS1).LT.2.) GOTO 130 TGAS=(F1+TGAS2-F2+TGAS1)/(F1-F2) IF (K.GT.10.AND.F1.LT.0..AND.TGAS.GT.TGASP) GOTO 105 IF (K.GT.10.AND.F1.GT.0..AND.TGAS.LT.TGASN) GOTO 105 IF (K.EQ.1.AND.KH.EQ.O) TGAS= TGAS1 +10. IF (TGAS.GT.2000.) GOTO 110 IF (TGAS.LT.(TAMB+30.)) GOTO 110 GOT 0 120 105 TGAS= (TGASN+TGASP)/2. GOT 0 120 110 SCAN= .TRUE . TGAS= 1900. 120 CONTINUE IF (K-200) 30,30,200 130 CONTINUE CALL RSTA FLREM= FLREM-RP*DTIME IF(FLREM.LT.O.) FLREM=0. IF (QCONW.GT.0.) QWLSUM= QWLSUM+(QRADW+QCONW)*DTIME IF (TTIME .GE. MTIME) GO TO 210 IF (TGAS.LE.353..AND.J.GE.10) GO TO 210 IF (J.EQ.1) GO TO 150 IF (JP.LT.JPRINT) GO TO 160 JP= 0 150 CALL OUTPUT 160 JP= JP+1 TTIME= TTIME+DTIME 170 CONTINUE END TIME STEP DO-LOOP 180 CONTINUE 185 CALL DUTPUT RETURN EFROR IN INPUT 190 CONTINUE KNTRL= 2 WRITE (2,910) 910 FORMAT (/// CRIB ROUTINE DOES NOT ACCEPT STEADY-STATE CASE!) RETURN SQUARE ROOT ERROR 195 CONTINUE IF(KTRACE.EQ.1) WRITE(2,930) TGAS.RC.RP.YPYR.ZW.RMA.MWOUT 930 FORMAT (/ TGAS= *, F5.0, RC= *, E10.4, RP= *, E10.4,

C

```
1 " YPYR=".E10.4." ZW=".F6.4." RMA=".E10.4." MWOUT=".F6.1)

C FAIL TO CONVERGE, ERROR EXIT

200 CONTINUE

KNTRL=3

RETURN

C FIRE IS OVER (TRANSIENT CASE)

210 CONTINUE

CALL OUTPUT

RETURN

END
```

```
SUBROUTINE DEQNS
C
C
         DIFFERENTIAL EQUATION SOLVER BASED ON CRANK-NICOLSON METHOD.
C
                      AWDOW, BPF, CD, CNV, DTIME, EMS(2), HWDOW, IX, IXC, IXL,
        J.JM.JP.JPRINT.K.KD.KH.KITER.KNTRL.MWIN.MWOUT.RC.RP.SIGMA
      COMMON /PRBLM/ ADIA, AFLOOR, AWALL, DENSW, FLOAD, IRUN, OPENF,
         PRNT.STEADY.THICKW
      COMMON /TEMP/ DENF, DENU, TAMB, TGAS, TINPT, T1(20), T2(20), TSF, TSU
     COMMON /THERML/ CNDA(2,10), CPW(2,10), DX, EF, EMSA(2,10),
        NCND NCPW NEMS NQGEN NRP QGEN(2.10) RPX(2.50)
     DIMENSION A(20), B(20), C(20), CND(20), D(20), HCP(20)
C
      ENTRY RSTA
C
         ENTER HERE WHEN READY FOR NEW TIME STEP (FINISHED ITERATING)
C
C
      DO 10 I=1.IX
      T1(I) = T2(I)
   10 CONTINUE
      TGOLD= TGAS
      IF (J.EQ.O) TGOLD=TAMB
      RETURN
C
      ENTRY DESOLV
C
         SOLVE DIFFERENTIAL EQUATION
С
C
      KD= 1
      DX1 = DX
      DO 20 I=1.IX
      CND(I)= TLU(CNDA, NCND, T1(I))
   20 HCP(I)= DENSW*DX/DTIME*TLU(CPW,NCPW,T1(I))
      EMS(1) = 1./(1./TLU(EMSA, NEMS, TSF) +1./EF -1.)
      EMS(2) = TLU(EMSA, NEMS, TSU)
      DO 50 I=2. IXL
      CNL = 1./(DX/CND(I-1)+DX/CND(I))
      IF (I.EQ.2 ) CNL= 1./(DX1/CND(1)+DX/CND(2))
      CNG= 1./(DX/CND(I)+DX/CND(I+1))
      A(I) = -CNL
      B(I) = HCP(I) + CNL + CNG
      C(I) = -CNG
      D(I) = (HCP(I)-CNL-CNG)*T1(I)+CNL*T1(I-1)+CNG*T1(I+1)
   50 IF (NQGEN.GT.O) D(I)= D(I)+DX*TLU(QGEN.NQGEN.T1(I))
      CNG= 1./(DX1/CND(1)+DX/CND(2))
      C(1) = -CNG
      CNL= 1./(DX/CND(IXL)+DX/CND(IX))
      A(IX) = -CNL
C
         ENTER HERE WHEN KD.GT.1 SINCE PRIOR EXPRESSIONS DO NOT CHANGE
C
C
   30 TSFOLD= TSF
      ZRF= TGAS*(TGAS*(TGAS+TSF)+TSF*TSF)+TSF*TSF
      ZCF= CNV*((TGAS-TSF)*(TGAS-TSF))**0.1666666667
      HF= ZCF+SIGMA*EMS(1)*ZRF
      DENF= HF*DX1/2./CND(1)
      ZF= HF/2./(DENF+1.)
```

B(1) = HCP(1) + ZF + CNGD(1) = (HCP(1) - ZF - CNG) + T1(1) + ZF + (TGAS + TGOLD) + CNG + T1(2)IF (NQGEN.GT.0) D(1)= D(1)+DX*TLU(QGEN.NQGEN.T1(1)) ZRU= TAMB*(TAMB*(TAMB+TSU)+TSU*TSU)+TSU*TSU*TSU ZCU= 1.87*((TAMB-TSU)*(TAMB-TSU))**0.1666666667 HU= ZCU+SIGMA*EMS(2)*ZRU DENU= HU*DX/2./CND(IX) ZU= HU/2./(DENU+1.) B(IX) = HCP(IX) + ZU + CNLD(IX)= (HCP(IX)-ZU-CNL)+T1(IX)+ZU+2.+TAMB+CNL+T1(IXL) IF (NQGEN.GT.0) D(IX)= D(IX)+DX*TLU(QGEN.NQGEN.T1(IX)) CALL TRIDGF (A, B, C, D, T2, IX) TSF= (DENF*TGAS+T2(1))/(DENF+1.) TSU= (DENU*TAMB+T2(IX))/(DENU+1.) KD = KD + 1IF (ABS(TSF-TSFOLD).LT.4) RETURN IF (KD.LE.6) GO TO 30 WRITE (2,100) TSF, TSFOLD 100 FORMAT ('0 FAIL TO CONVERGE D.E. TSF=',F7.2,' TSFOLD=' F7.2) IF (KD.LE.30) GO TO 30 RETURN END

SUBROUTINE TO ECHO INPUT DATA

```
CPA, CPCO(2), CPCO2(2), CPH2(2), CPH2O(2), CPN2(2),
   COMMON /CP/
       CP02(2), CPPYR(2)
    COMMON /FUEL/ C.CFLPC.CVGROS.CVNET.H.HFLPC.MWPYR.N.NFLPC.O.
       OFLPC.R.RO.REGRES.SH.SHAPE.SIZE.W.WFLPC.WTFUEL
    COMMON /GP/
                   AWDOW, BPF, CD, CNV, DTIME, EMS(2), HWDOW, IX, IXC, IXL,
       J.JM.JP.JPRINT.K.KD,KH.KITER.KNTRL,MWIN,MWOUT.RC.RP.SIGMA
    COMMON /LOGIC/ FC.FLSPEC.KRIT.NEWPLT.NEWPRP.PLFUEL.PLOT.PNCH.
       RPSPEC. VTSPEC
    COMMON /PLAST/ TBOILC, DHP, STOICH, SIZE1, EITA, EISCAN
    COMMON /PRBLM/ ADIA, AFLOOR, A WALL, DENSW, FLOAD, IRUN, OPENF,
       PRNT, STEADY, THICKW
    COMMON /THERML/ CNDA(2.10).CPW(2.10).DX.EF.EMSA(2.10).
       NCND. NCPW. NEMS. NQGEN. NRP. QGEN(2,10). RPX(2,50)
    LOGICAL ADIA, EISCAN, FC, FLSPEC, KRIT, NEWPRP, PLFUEL.
       PLOT, PNCH, RPSPEC, STEADY, STOICH, VTSPEC
    REAL MWIN, MWOUT, MWPYR, N. NFLPC
    WRITE (2,90) IRUN
    WRITE (2,91) AWALL, AFLOOR, HWDOW, AWDOW, OPENF, CD
    WRITE (2.92) FLOAD
    IF (PLFUEL) WRITE (2,93) DHP, TBOILC
    WRITE (2.94) CFLPC. HFLPC. OFLPC. NFLPC. WFLPC.R.RO
    WRITE (2,95) CVGROS, CVNET, MWPYR, CPPYR, BPF, EF
    IF (.NOT.(PLFUEL.OR.VTSPEC.OR.RPSPEC)) WRITE (2,96) REGRES.SIZE,
       SHAPE
    IF (PLFUEL.AND..NOT.STOICH) WRITE (2.97) SIZE
    IF (.NOT.(PLFUEL.OR.VTSPEC.OR.RPSPEC).AND.SH.GT.0.0) WRITE (2,908)
    IF (RPSPEC.AND.NRP.EQ.1) WRITE (2.913) RPX(2.1)
    IF (RPSPEC.AND.NRP.NE.1) WRITE (2.914) ((RPX(I,J),I=1.2),J=1,NRP)
    IF(ADIA) GOTO 200
    WRITE (2.98) THICKW.DENSW
    IF (NCND.EQ.1) WRITE (2,900) CNDA(2,1)
    IF (NCND.GT.1) WRITE (2,901)((CNDA(I,J),I=1,2),J=1,NCND)
    IF (NCPW.EQ.1) WRITE (2,904) CPW(2,1)
    IF (NCPW.GT.1) WRITE (2,905)((CPW(I.J),I=1.2),J=1,NCPW)
    IF (NEMS.EQ.1) WRITE (2,902) EMSA(2,1)
    IF (NEMS.NE.1) WRITE (2,903)((EMSA(I.J).I=1.2).J=1.NEMS)
    IF (NQGEN.EQ.1) WRITE (2.906) QGEN(2.1)
    IF (NQGEN.GT.1) WRITE (2.907)((QGEN(I.J).I=1.2).J=1.NQGEN)
200 IF(ADIA) WRITE(2,909)
    RETURN
 90 FORMAT (1H+, T86, COMPF2 VERSION 1.1 - RUN NO.1,14)
 91 FORMAT ( *0-+--GEOMETRY AND VENTILATION----*//
      * WALL SURFACE AREA = *,F8.1, M2*/
   1
       * FLOOR AREA = *,F8.2. M2*/
      * WINDOW HEIGHT = *,F8.2, M*/
                  AREA = '.F8.2.' M2'/
      • OPENING FACTOR = 1.F7.3. M2.51/
      * DISCHARGE COEFF.= *.F4.2/)
 92 FORMAT ( *0----FUEL LOAD PROPERTIES-----!//
       * FIRE LOAD PER FLOOR AREA = *, F6.1, * KG/M2*)
913 FORMAT ('ORATE OF PYROLYSIS =',F7.2,' KG/S')
914 FORMAT ('ORATE OF PYROLYSIS (KG/S)'/'
                                              TIME
                                                          RP .
```

```
1 50(/3X,F5.0,F9.3))
 93 FORMAT ( * TOTAL ENTHALPY OF PYROLYSIS= *
       .1PE10.2. J/KG'/ BOILING TEMPERATURE= .. OPF5.0. DEG C')
  1
 94 FORMAT ( *OFUEL COMPOSITION */
      " CARBON = ",F4.1," PERCENT BY WEIGHT "/
  1
      " HYDROGEN = ",F4.1." PERCENT"/
      * DXYGEN = *,F4.1.* PERCENT */
  3
      " NITROGEN = ",F4.1," PERCENT"/
      " WATER = ",F4.1," PERCENT"/
  6
      * R = *.F5.2/
      * R0= *.F5.2)
  7
 95 FORMAT ( * HEAT OF COMBUSTION OF DRY FUEL = *,2PE10.2,* J/KG*/
      * LOWER ACTUAL HEAT OF COMBUSTION = *,E10.2. J/KG*/
  1
      • MOLECULAR WEIGHT OF UNBURNT PYROLYSATES = •. 0PF6.2/
   2
      • CP OF PYROLYSIS GAS = (*,F6.4,**TGAS + *,F6.0,
      *) J/KG-K*/

    MAXIMUM FRACTION OF PYROLYSATES BURNED = '.F5.2/

      • GREY-GAS FLAME EMISSIVITY = •F5.3)
 96 FORMAT ( RATE OF REGRESSION = .2PE9.2, M/S'/
      • FUEL DIMENSION = ', OPF5.3.' M'/
  1
       • SHAPE FACTOR = •,F4.2 /)
 97 FORMAT ( * FUEL AREA= * . F10 . 2 . * M2 *)
908 FORMAT ( * CRIB SPACING/HEIGHT RATIO= *. F6.3)
 98 FORMAT ( 0---- WALL THERMAL PROPERTIES---- 1/
      * THICKNESS = *.F5.3.* M*/
  1
  2 * DENSITY = *.F6.0.* KG/M3*)
909 FORMAT ( O---- WALL THERMAL PROPERTIES---- 1/
  1 * ADIABATIC WALL *//)
900 FORMAT ( OTHERMAL CONDUCTIVITY = .F7.3. W/M-K)
901 FORMAT ("OTHERMAL CONDUCTIVITY ARRAY (W/M-K)"/
  TEMPERATURE CONDUCTIVITY • 10(/3x,F7.1.4x,F10.3))
902 FORMAT ( *OEMISSIVITY = *.F4.2)
903 FORMAT (*OEMISSIVITY ARRAY*/* TEMPERATURE EMISSIVITY*
      10(/3X,F7.1,4X,F10.3))
904 FORMAT (*OHEAT CAPACITY = *.F7.0. * J/KG-K*)
905 FORMAT ("OHEAT CAPACITY ARRAY (J/KG-K)"/
  * TEMPERATURE HEAT CAPACITY*, 10(/3X,F7.1,4X,F10.0))
906 FORMAT ( OWALL HEAT GENERATED = , F9.3, W/M3)
907 FORMAT ("OWALL HEAT GENERATED ARRAY (W/M3)"/
  1 * TEMPERATURE QGEN*, 10(/3x,F7.1,4x,F10.3))
   END
```

SET INITIAL CONDITIONS AND CONSTANTS

```
COMMON /CNSTS/ AWALLN, BWDOW, DENSA, G, GASCNT, KTRACE, MTIME
  COMMON /CP/
                    CPA, CPCO(2), CPCO2(2), CPH2(2), CPH2O(2), CPN2(2),
      CP02(2), CPPYR(2)
   COMMON /FUEL/ C.CFLPC.CVGROS.CVNET.H.HFLPC.MWPYR.N.NFLPC.O.
      OFLPC, R. RO. REGRES, SH. SHAPE, SIZE, W. WFLPC, WTFUEL
                  AWDOW, BPF, CD, CNV, DTIME, EMS(2), HWDOW, IX, IXC, IXL,
  COMMON /GP/
      J.JM.JP.JPRINT.K.KD.KH.KITER.KNTRL.MWIN.MWOUT.RC.RP.SIGMA
  COMMON /LOGIC/ FC.FLSPEC, KRIT, NEWPLT, NEWPRP, PLFUEL, PLOT, PNCH,
     RPSPEC, VTSPEC
   COMMON /PLAST/ TBOILC, DHP, STOICH, SIZE1, EITA, EISCAN
   COMMON /PRBLM/ ADIA, AFLOOR, AWALL, DENSW, FLOAD, IRUN, OPENF,
      PRNT, STEADY, THICKW
  COMMON /QS/
                    QCONW, QFIRE, QFLOW, QRADO, QRADW, QWLSUM
  COMMON /TEMP/
                    DENF.DENU.TAMB.TGAS.TINPT.T1(20).T2(20).TSF.TSU
  COMMON /THERML/ CNDA(2,10), CPW(2,10), DX, EF, EMSA(2,10),
      NCND, NCPW, NEMS, NQGEN, NRP, QGEN(2, 10), RPX(2,50)
  COMMON /WOUT/ BWORST, FLREM, HRATIO, RMA, RMF, TTIME, VAVGIN,
     WA. WB. YCO2, YH2O, YN2, YO2, YPYR
  LOGICAL ADIA, EISCAN, FC, FLSPEC, KRIT, NEWPRP, PLFUEL,
      PLOT, PNCH, RPSPEC, STEADY, STOICH
   REAL MWIN, MWOUT, MWPYR, MTI ME, N, NFLPC
   FC= .FALSE.
   KNTRL= 1
   AWALLN= AWALL-AWDOW
   BWDOW= AWDOW/HWDOW
   WTFUEL= FLOAD*AFLOOR
   OPENF= AWDOW*SQRT(HWDOW)
   MWIN= 28.97
   MWOUT= MWIN
   TAMB= 298.
   TGAS= 1800.
   IF (TINPT.GT.O.) TGAS= TINPT
   IXL= IX-1
   IXC= IX/2
   TSF= TAMB
   TSU= TAMB
   DENF= 0.
   DENU= 0.
   WA= 6H
   WB= 5H
   IF (.NOT.FLSPEC) GO TO 10
   WA= 6HWINDOW
   WB= 5HWIDTH
10 JP= 0
   IF (.NOT.STEADY) JPRINT= PRNT/DTIME + (1.0-1.E-6)
   IF (STEADY) GOTO 20
   IF (DTIME.GT.0.00001) GOTO 15
   WRITE (2,95)
   KNTRL= 2
   RETURN
95 FORMAT (///* FOR NON-STEADY PROBLEMS MUST SPECIFY DTIME *,
      *GREATER THAN ZERO*)
15 IF (MTIME.GT.DTIME) GOTO 20
```

```
WRITE (2,92)
   92 FORMAT (///" FOR NON-STEADY PROBLEMS MUST SPECIFY MTIME .,
     1 *GREATER THAN DTIME*)
      KNTRL= 2
      RETURN
   20 CONTINUE
      IF (.NOT.STEADY) JM= MTIME/DTIME +2
      IF (STEADY) JM= 2
      DX= THICKW/IX
     FLREM= WTFUEL
      TTIME= 0.
      EMS(1) = 1./(1./TLU(EMSA, NEMS, TAMB) +1./EF -1.)
      QWLSUM= 0.
      DO 60 I=1,IX
   60 T2(I)= TAMB
      J= 0
      CALL RSTA
      TOTAL = CFLPC+HFLPC+DFLPC+NFLPC+WFLPC
      IF (TOTAL.LT.101.1.AND.TOTAL.GT.98.9) GOTO 70
C
           CHECK FOR ERRORS IN FUEL COMPOSITION
      KNTRL= 2
      WRITE (2,90)
   90 FORMAT (///* SUM OF FUEL COMPOSITION INPUT IS INCORRECT*)
      RETURN
   70 C= CFLPC*(10./12.)
      H= HFLPC*10.
      O= OFLPC*(10./16.)
      W= WFLPC*(10./18.)
      N= NFLPC*(10./14.)
      R0 = (C+H/4.-D/2.)*32./1000.
      R = R0/0.232
      CVNET= CVGROS*(1.-WFLPC/100.)-(WFLPC+9.0*HFLPC)/100.*2440.E+3
         LATENT HEAT OF H20 EVAPORATION= 2440E+3 J/KG AT 25 C
C
      RMA= 0.16*AWDOW*DENSA*SQRT(G*HWDOW)
      RMF= RMA
      RC= BPF*RMA/R
      YO2= 0.10
      IF (STOICH) EITA= 1.
      IF (EISCAN) SIZE= SIZE1/EITA
      RETURN
      END
```

ROUTINE TO INPUT ALL CONSTANTS NOT GIVEN IN NAMELIST -VARS-

COMMON /THERML/ CNDA(2,10), CPW(2,10), DX, EF, EMSA(2,10), NCND, NCPW, NEMS, NQGEN, NRP, QGEN(2, 10), RPX(2,50) NQGEN= 0 READ (1,91) NCN, NCP, NEM, NR, NQG IF (NCN.EQ.0) GO TO 10 NCND= NCN READ (1,90) (CNDA(1,1), CNDA(2,1), I=1, NCND) 10 IF (NCP.EQ.0) GO TO 20 NCPW= NCP READ (1,90) (CPW(1,I),CPW(2,I),I=1,NCPW) 20 IF (NEM.EQ.0) GO TO 30 NEMS= NEM READ (1,90) (EMSA(1,I), EMSA(2,I), I=1, NEMS) 30 IF (NR.EQ.0) GO TO 40 NRP= NR READ (1,90) (RPX(1,1),RPX(2,1), I=1,NRP) NQGEN= NQG

- 40 IF (NQG.EQ.O) GO TO 50 READ (1,90) (QGEN(1,1),QGEN(2,1),I=1,NQGEN)
- 50 RETURN
- 90 FORMAT (8F10.0)
- 91 FORMAT (1013) END

```
SUBROUTINE OUTPUT
C
         PRINTS OUTPUT DATA
C
C
      COMMON /FUEL/ C,CFLPC,CVGROS,CVNET,H,HFLPC,MWPYR,N,NFLPC,O,
       OFLPC, R, RO, REGRES, SH, SHAPE, SIZE, W, WFLPC, WTFUEL
      COMMON /GP/
                      AWDOW.BPF.CD.CNV.DTIME.EMS(2).HWDOW.IX.IXC.IXL.
         J.JM.JP.JPRINT.K.KD.KH.KITER.KNTRL.MWIN.MWOUT.RC.RP.SIGMA
      COMMON /LOGIC/ FC.FLSPEC.KRIT.NEWPLT.NEWPRP.PLFUEL.PLOT.PNCH,
         RPSPEC. VTSPEC
      COMMON /PLAST/ TBOILC.DHP.STOICH.SIZE1.EITA.EISCAN
      COMMON /PRBLM/ ADIA, AFLOOR, AWALL, DENSW. FLOAD, IRUN, OPENF,
         PRNT.STEADY.THICKW
      COMMON /QS/
                       QCONW, QFIRE, QFLOW, QRADO, QRADW, QWLSUM
      COMMON /TEMP/
                       DENF, DENU, TAMB, TGAS, TINPT, T1(20), T2(20), TSF, TSU
                     BWORST . FLREM, HRATIO, RMA, RMF . TTIME, VAVGIN,
      COMMON /WOUT/
         WA, WB, YCO2, YH2O, YN2, YO2, YPYR
      LOGICAL ADIA, EISCAN, FC, FLSPEC, KRIT, NEWPRP, PLFUEL,
         PLOT, PNCH, RPSPEC, STEADY, STOICH, VTSPEC
      REAL MWIN, MWOUT, MWPYR, N, NFLPC
      LOGICAL DATPRT
      DIMENSION T2C(3)
      DATA DATPRT / .FALSE ./
      IF (KITER.EQ.1) RETURN
      IF (PLOT.OR.PNCH) CALL DSTO
                                      (TTIME, TGAS)
      IF (ILINE.LE.47) GO TO 50
      DATPRT = .TRUE.
      GO TO 300
   50 TGASC= TGAS-273.
      T2C(1)= TSF-273.
      T2C(2) = T2(IXC) - 273
      T2C(3)= TSU-273.
      FUELPC = FLREM/WTFUEL * 100.
      QNORM= QFIRE/100.
      IF (QCONW.LT.O) QNORM= (QFLOW+QRADO)/100.
      ZFLOW= QFLOW/QNORM
      ZRADO= QRADO/QNORM
      ZCONW= QCONW/QNORM
      ZRADW= QRADW/QNORM
      EXCESS= RP-RC
      ILINE = ILINE+1
      WRITE (2,90) J.TTIME.TGASC.T2C.RP.RC.EXCESS.FUELPC.RMA.HRATIO.
         VAVGIN, MWOUT, FC
      IF (FLSPEC) WRITE (2,91) BWORST
      WRITE (3,92) TTIME.ZFLOW.ZRADO.ZCONW.ZRADW.QFIRE.QWLSUM.
```

Y02, YN2, YC02, YH20, YPYR

IF (STOICH) WRITE (2,901) SIZE1 RETURN

c

ENTRY HEADING
START NEW PAGE
IF (KITER.EQ.1) RETURN
IPG = 1
300 CONTINUE
ILINE = 0

IF (.NOT.RPSPEC) GOTO 315 WRITE (2.94) IPG.IRUN

PIRM

```
WRITE (3,94) IPG, IRUN
    GO TO 400
315 IF (.NOT.FLSPEC) GOTO 325
    IF (.NOT.PLFUEL) WRITE (2,95) IPG, IRUN
    IF (.NOT.PLFUEL) WRITE (3,95) IPG.IRUN
    IF (PLFUEL) WRITE (2,905) IPG, IRUN
    IF (PLFUEL) WRITE (3,905) IPG, IRUN
    GO TO 400
325 IF (.NOT.VTSPEC) GOTO 335
    WRITE (2,96) IPG, IRUN
    WRITE (3,96) IPG, IRUN
    GO TO 400
335 IF (.NOT.PLFUEL) GO TO 345
    WRITE (2.97) IPG, IRUN
    WRITE (3,97) IPG, IRUN
    GO TO 400
345 WRITE (2.98) IPG, IRUN
    WRITE (3,98) IPG, IRUN
400 IPG = IPG+1
    WRITE (2.99) WA. WB
    WRITE (3,900)
    IF (.NOT.DATPRT) RETURN
    DATPRT = .FALSE.
    GO TO 50
90 FORMAT (1H .14.T6.F8.0.T15.F7.0.T25.3F6.0.T44.F6.3.T51.F6.3.
       T60,F6.3,T69,F5.1,T79,F4.2,T87,F7.2,T96,F9.2,T109,F6.2,5X,L1)
   1
91 FORMAT (1H+, T124, F6.2)
92 FORMAT (1H +F7.0,4F11.3,1PE15.3,E15.3,1X,0P(5F8.3))
 94 FORMAT (1H1,T14, INPUTTED VALUES OF RP ARE USED.
       T100, "PAGE NO.", I3, T115, "RUN NO.", I4//)
 95 FORMAT (1H1,T14, • FUEL PYROLYSIS (CRIB) SPECIFIED, VENTILATION •
   1
       * ADJUSTED FOR WORST CONDITIONS*, T100, * PAGE NO.*, I3, T115,
       *RUN NO. * . 14//)
 96 FORMAT (1H1.T14.* VENTILATION SPECIFIED. FUEL PYROLYSIS ADJUSTED.
       * FOR WORST CONDITIONS .T100, PAGE NO. . I3, T115, RUN NO. . . I4/
       1)
 97 FORMAT (1H1,T14, THERMOPLASTIC POOL FIRE ,T100, PAGE NO.
       I3,T115, 'RUN NO.', I4//)
98 FORMAT (1H1.T14. *CRIB FIRE*.T100. *PAGE NO. *. I3.
       T115, RUN NO. , 14/)
 99 FORMAT (1H0,T10, 'TIME',T17, 'TEMP',T30, 'WALL TEMPS',T47, 'RP',
       T54, 'RC', T59, 'EXC.PYR. ', T70, 'FUEL', T78, 'AIR IN', T90, 'N.P. ',
       T98, 'VELOCITY', T109, 'MOL. WT', T118, 'FUEL', T124, A6/
       T11, 'S', T17, 'GAS, C', T34, 'C', T46, 'KG/S', T53, 'KG/S', T61,
       'KG/S',T71, 'PCT',T79, 'KG/S',T101, 'M/S',T108,
       T118, "CNTRL", T124, A5/)
900 FORMAT (T5, 'TIME', T24, 'HEAT BALANCE', T75, 'Q-WALL', T88, 'Y02', T96,
       'YN2',T104, 'YCO2',T112, 'YH20',T120, 'YPYR'/
   2
       T13. GAS FLOW ,T25. WND RAD .T36. WALL CNV .T47. WALL RAD .
   2
   3
      T60, 'Q-FIRE', T76, 'SUM', T88, 'PCT', T96, 'PCT', T104, 'PCT', T112,
       "PCT",T120, "PCT"/
   5
       T16, 'PCT', T27, 'PCT', T39, 'PCT', T49, 'PCT', T62, 'W', T77,
       "J".T88, "MASS", T96, "MASS", T104, "MASS", T112, "MASS",
       T120, "MASS"/)
901 FORMAT (// STOICHIOMETRIC FUEL SIZE= ",F8.3, M2")
905 FORMAT (1H1,T14, * FUEL PYROLYSIS (POOL) SPECIFIED, VENTILATION*
       * ADJUSTED FOR WORST CONDITIONS *, T100, * PAGE NO. *, I3.T115.
       "RUN NO. ", 14//)
```

END

20 CONTINUE

K = 0

30 CONTINUE

KR = 0

RMA = 0.666667*CD*0.5*AWDOW*DENSA*SQRT(G*HWDOW*(1.-TAMB/TGAS))

IF (FLREM) 220.35

AS SOON AS FUEL TO EXHAUSTED DROGRAM MUST STOR

AS SOON AS FUEL IS EXHAUSTED PROGRAM MUST STOP, SINCE WINDOW SIZE WOULD NOT BE WELL DEFINED.

35 IF (.NOT.PLFUEL) GOTO 40

C

C

```
RP= SIZE*EF*SIGMA*(TGAS**4.-TBOIL**4.)/DHP
      PLUME = SIZE *0 .0014 *CVNET/DHP
      PROP= 1 -- (TGAS**4 -- TBOIL**4 - )/(1700 - **4 -- TBOIL**4 - )
      IF (PROP.LT.O.) PROP= 0.
      RP= RP+PROP*PLUME
      GO TO 50
   40 IF (REGRES.LE.0.0) GOTO 45
C
         USE THIS FORMULA IF INPUT REGRES IS SPECIFIED
      RP= REGRES*2.*SHAPE/SIZE*FLREM**(1.-1./SHAPE)*WTFUEL**(1./SHAPE)
      GO TO 50
   45 CONTINUE
C
         FUEL SURFACE CONTROL
C
         ASSUME CRIB STICK DENSITY RHOCR= 500 KG/M##3
      RHOCR= 500.
      REGREN= 1.24E-3/RHOCR*SIZE**-0.6
      RP1 = REGREN*2.*SHAPE/SIZE*FLREM**(1.-1./SHAPE)*WTFUEL**(1./SHAPE)
         CRIB POROSITY CONTROL
C
      RP2= 0.22*WTFUEL/(RHOCR*SIZE)*SH
      RP= AMIN1 (RP1,RP2)
   50 RMF= RMA+ RP
      YCO2= 3.66667*CFLPC*RC/100./RMF
      YH20= (WFLPC*RP+9.0*HFLPC*RC)/100./RMF
      Y02= (0.23*RMA-R0*RC)/RMF
      YN2= 0.77*RMA/RMF +NFLPC*RP/100./RMF
      YPYR= (RP-RC)/RMF
      IF(YPYR.LT..O) YPYR= 0.
      MWOUT = 44.*YCO2+18.*YH2O+28.*YN2+32.*YO2+MWPYR*YPYR
      HRATIO = 1./(1.+((TGAS/TAMB)*(MWIN/MWOUT)*(1.+RP/RMA)**2)
         **0.3333333333)
         NOTE HIN IS TAKEN AS POSITIVE
      HIN= HWDOW* HRATIO
      ZW=1 .- MWOUT + TAMB / MWI N/TGAS
      IF(ZW)195.55.55
   55 VAVGIN= 0.666667*SQRT(2.*G*HIN*ZW)
      RMA= CD+VAVGIN+HIN+BWDOW+DENSA
      IF (RP-RMA/R) 60,60,65
   60 RC= RP*BPF
      BWORST = BWDOW*RC*R/RMA
      RMA= RC*R/BPF
      GO TO 70
   65 RC= BPF*RMA/R
      BWORST = BWDOW
         RECALCULATE Y- VALUES SINCE RP,RC HAVE BEEN CHANGED
C.
   70 KR= KR+1
      IF (KR-3) 50,75,75
   75 CONTINUE
      QFLOW= RMF*(YCO2*(TGAS*(0.5*CPCO2(1)*TGAS+CPCO2(2))-TAMB*(0.5*
         CPCO2(1)*TAMB+CPCO2(2))) +YH2O*(TGAS*(0.5*CPH2O(1)*TGAS+
         CPH20(2) )-TAMB*(0.5*CPH20(1)*TAMB+CPH20(2))) +Y02*(TGAS*(
         0.5*CP02(1)*TGAS+CP02(2))-TAMB*(0.5*CP02(1)*TAMB+CP02(2)))
         +YN2*(TGAS*(0.5*CPN2(1)*TGAS+CPN2(2))-TAMB*(0.5*CPN2(1)*
         TAMB+CPN2(2))) +YPYR*(TGAS*(0.5*CPPYR(1)*TGAS+CPPYR(2))
         -TAMB*(0.5*CPPYR(1)*TAMB+CPPYR(2))))
      QFIRE= RC*CVNET
      IF (ADIA) GOTO 90
      CALL DESOLV
      QRADW= AWALLN*EMS(1)*SIGMA*(TGAS**4.-TSF**4.)
      QCONW= AWALLN*(TGAS-TSF)*CNV*((TGAS-TSF)*(TGAS-TSF))**0.16666667
```

```
90 CONTINUE
    QRADO= HWDOW*BWORST*SIGMA*(TGAS**4.~TAMB**4.)
    K = K + 1
    F3=F2
    F2=F1
   F1= QFIRE-QFLOW-QRADO-QRADW-QCONW
   TGAS3=TGAS2
    TGAS2=TGAS1
    TGAS1=TGAS
    IF (F1.LT.O. AND.TGAS.LT.TGASP) TGASP=TGAS
    IF (F1.GT.O..AND.TGAS.GT.TGASN) TGASN=TGAS
    DERIV2= DERIV1
   IF (TGAS1.EQ.TGAS2) GOTO 130
   DERIVI=(F1-F2)/(TGAS1-TGAS2)
    IF (KTRACE.GT.O) WRITE (4,99) TGAS1.TGAS2.F1.F2.DERIV1.K.KD.
       KH, J, T2(1) TSF, QFIRE, QFLOW, QRADW, RP, RC
99 FORMAT(2F9.2,3(1PE9.2),3I3,I5,2(0PF9.2),3(1PE10.3),2(0PF7.3))
    IF (.NOT.SCAN) GOTO 95
    IF (F1/F2.GE.0.0) GOTO 93
    SCAN= .FALSE.
    GOTO 100
 93 TGAS= TGAS-DTGAS
    IF ((PLFUEL.AND.(TGAS.LT.TBOIL)).OR.(TGAS.LT.TAMB)) GOTO 200
    GOTO 120
95 IF (DERIV2.LT..O.AND.ABS(F2).GT..O001)GOTO 100
    IF(DERIV2.LT..O.AND.J.GT.2) GOTO 100
   TGAS= TGAS1+DTGAS
    GOTO 120
100 DIF= ABS(F1/QFLOW)
    IF (DIF-LT-0.002-AND-ABS(TGAS2-TGAS1)-LT-2-) GOTO 130
   TGAS=(F1*TGAS2-F2*TGAS1)/(F1-F2)
    IF (K.GT.10.AND.F1.LT.0..AND.TGAS.GT.TGASP) GOTO 105
    IF (K.GT.10.AND.F1.GT.00.AND.TGAS.LT.TGASN) GOTO 105
    IF (TGAS.GT.TGASP.OR.TGAS.LT.TGASN) TGAS=(TGASP+TGASN)/2.
    IF (K.EQ.1.AND.KH.EQ.0) TGAS= TGAS1+10.
    IF (TGAS.GT.2000.) GOTO 110
    IF (TGAS.LT.(TAMB+30.)) GOTO 110
    IF (PLFUEL.AND.TGAS.LT.TBOIL) GOTO 110
    GOTO 120
105 TGAS= (TGASN+TGASP)/2.
    GOTO 120
110 SCAN= .TRUE.
   TGAS= 1900.
120 CONTINUE
    IF (K-200) 30.30.200
130 CONTINUE
    CALL RSTA
   FLREM- FLREM-RP*DTIME
    IF(FLREM.LT.O) FLREM=0.
    IF (QCONW.GT.O.) QWLSUM= QWLSUM+(QRADW+QCONW)*DTIME
    IF (TTIME .GE. MTIME) GO TO 210
    IF (TGAS.LE.353..AND.J.GE.10) GO TO 210
    IF (J.EQ.1) GO TO 150
    IF (JP.LT.JPRINT) GO TO 160
    JP= 0
150 CALL OUTPUT
160 JP= JP+1
   TTIME = TTIME+DTIME
```

```
170 CONTINUE
         END TIME STEP DO-LOOP
      RETURN
        ERROR IN INPUT
C
 190 CONTINUE
     KNTRL= 2
      WRITE (2.910)
 910 FORMAT (/// PFLFIX ROUTINE DOES NOT ACCEPT STEADY-STATE CASE)
 195 CONTINUE
     IF(KTRACE.EQ.1) WRITE(2.930) TGAS.RC.RP.YPYR.ZW.RMA.MWOUT
 930 FORMAT (/ TGAS= + F5.0 + RC= + E10.4 + RP= + E10.4 +
    1 'YPYR=',E10.4,' ZW=',F6.4.' RMA=',E10.4,' MWOUT=',F6.1)
        FAIL TO CONVERGE, ERROR EXIT
 200 CONTINUE
     KNT RL=3
     RETURN
        FIRE IS OVER (TRANSIENT CASE)
 210 CONTINUE
     CALL OUTPUT
 220 CONTINUE
     RETURN
     END
```

```
c
c
          PLASTIC FUEL (POOL FIRE) ROUTINE
c
          FUEL 'SEES' ONLY COMPARTMENT AND NOT ITSELF
c
      COMMON /CNSTS/
                       AWALLN. BW DOW. DENSA, G, GASCNT, KTRACE, MTI ME
      COMMON /CP/
                       CPA, CPCO(2), CPCO2(2), CPH2(2), CPH2O(2), CPN2(2),
         CP02(2), CPPYR(2)
      COMMON /FUEL/ C.CFLPC.CVGROS.CVNET.H.HFLPC.MWPYR.N.NFLPC.O.
         OFLPC.R.RO.REGRES.SH.SHAPE, SIZE, W. WFLPC. WTFUEL
      COMMON /GP/
                       AWDOW, BPF, CD, CNV, DTIME, EMS(2), HWDOW, IX, IXC, IXL,
         J.JM.JP.JPRINT.K.KD.KH.KITER.KNTRL.MWIN.MWOUT.RC.RP.SIGMA
      COMMON /LOGIC/ FC.FLSPEC.KRIT.NEWPLT.NEWPRP.PLFUEL.PLOT.PNCH.
         RPSPEC. VT SPEC
      COMMON /PLAST/ TBOILC.DHP.STOICH.SIZE1.EITA.EISCAN
      COMMON /PRBLM/ ADIA, AFLOOR, AWALL, DENSW, FLOAD, IRUN, OPENF,
         PRNT, STEADY, THICKW
      COMMON /QS/
                        QCONW.QFIRE.QFLOW.QRADO,QRADW,QWLSUM
      COMMON /TEMP/
                       DENF, DENU, TAMB, TGAS, TINPT, T1 (20), T2(20), TSF, TSU
      COMMON /THERML/ CNDA(2,10), CPW(2,10), DX, EF, EMSA(2,10),
         NCND, NCPW, NEMS, NQGEN, NRP, QGEN(2,10), RPX(2,50)
      COMMON /WOUT/
                       BWORST, FLREM, HRATIO, RMA, RMF, TTIME, VAVGIN,
         WA, WB, YCO2, YH2O, YN2, YO2, YPYR
      LOGICAL ADIA, EISCAN, FC, FLSPEC, KRIT, NEWPRP, PLFUEL,
         PLOT. PNCH, RPSPEC, SCAN, STEADY, STOICH, VTSPEC
      REAL MWIN. MWOUT. MWPYR. MTIME. N. NFLPC
C
            Y- DENOTE MASS FRACTIONS OF OUTFLOW
c
            RMA= MASS INFLOW RATE
c
            RMF= MASS OUTFLOW RATE
c
           R= STOICHIOMETRIC AIR/FUEL MASS RATIO
C
           RO= STOICHIOMETRIC OXYGEN/FUEL RATIO
      SCAN= .FALSE.
C
         INITIALIZES STOICHIOMETRIC CASE
      IF (STOICH) EITA =1.
      QRADW=0.
      QCONW= 0.
      F2=0.
      F1=0.
      DTGAS=10.
      TBOIL=TBOILC+273.
      FC= .FALSE.
      CALL HEADNG
      TF2= TGAS
C
         START TIME STEP
      DO 170 J=1.JM
      KH = 0
      DERIV1= 1.
      TGAS2= 0.
      TGAS1= 0.
      TGASP= 2000 .
      TGASN= TAMB
   20 CONTINUE
      K = 0
   30 CONTINUE
      IF (STOICH) GOTO 34
```

32 RP= SIZE*EF*SIGMA*(TGAS**4.-TBOIL**4.)/DHP

IF (STEADY) GOTO 33

```
PLUME = SIZE*0.0014*CVNET/DHP
      PROP= 1.-(TGAS**4.-TBOIL**4.)/(1700.**4.-TBOIL**4.)
      IF (PROP.LT.O.) PROP= 0.
      RP= RP+PROP*PLUME
   33 CONTINUE
      RMF= RMA+RP
      IF (FLREM.LE. 0) RP=0.
   34 YCO2= 3.66667*CFLPC*RC/100./RMF
      YH20= (WFLPC*RP+9.0*HFLPC*RC)/100./RMF
      Y02= (0.23*RMA-R0*RC)/RMF
      YN2= 0.77*RMA/RMF +NFLPC*RP/100./RMF
      YPYR= (RP-RC)/RMF
      IF(YPYR.LT..O) YPYR= 0.
      QFUEL= (RP-RC)*DHP
      MWOUT = 44.*YCO2+18.*YH2O+28.*YN2+32.*YO2+MWPYR*YPYR
     HRATIO = 1./(1.+((TGAS/TAMB)*(MWIN/MWOUT)*(1.+RP/RMA)**2)
         **0.3333333333)
C
         NOTE HIN IS TAKEN AS POSITIVE
     HIN= HWDOW* HRATIO
      ZW=1.-MWOUT*TAMB/MWIN/TGAS
      IF(ZW)195,35,35
   35 VAVGIN= 0.666667*SQRT(2.*G*HIN*ZW)
      RMA= CD*VAVGIN*HIN*BWDOW*DENSA
      RMF= RMA+RP
      RC= BPF*RMA/R
     IF (STOICH) RP= RC/BPF
      IF ((EISCAN.AND.EITA.LT.1.).OR.STOICH) GOTO 37
   36 IF (RC.GT.RP*BPF) GOTO 40
   37 FC= .FALSE.
      GO TO 45
  40 FC= .TRUE.
      RC= RP*BPF
C
         RECALCULATE VALUES IF IN FUEL CONTROL REGIME.
      YCO2= 3.66667*CFLPC*RC/100./RMF
      YH20= (WFLPC*RP+9.0*HFLPC*RC)/100./RMF
      YO2= (0.23*RMA-RO*RC)/RMF
      YN2= 0.77*RMA/RMF +NFLPC*RP/100./RMF
     YPYR= (RP-RC)/RMF
   45 CONTINUE
      QFLOW= RMF*(YCO2*(TGAS*(0.5*CPCO2(1)*TGAS+CPCO2(2))-TAMB*(0.5*
         CPCO2(1) *T AMB+ CPCO2(2))) +YH20*(TGAS*(0.5*CPH2O(1) *TGAS+
         CPH2O(2))-TAMB*(0.5*CPH2O(1)*TAMB+CPH2O(2))) +YO2*(TGAS*(
     3
         0.5*CPO2(1)*TGAS+CPO2(2))-TAMB*(0.5*CPO2(1)*TAMB+CPO2(2)))
         +YN2*(TGAS*(0.5*CPN2(1)*TGAS+CPN2(2))-TAMB*(0.5*CPN2(1)*
        TAMB+CPN2(2))) +YPYR*(TGAS*(0.5*CPPYR(1)*TGAS+CPPYR(2))
         -TAMB*(0.5*CPPYR(1)*TAMB+CPPYR(2))))
      QFIRE = RC+CVNET
      IF (ADIA) GOTO 90
      IF (.NOT.STEADY) CALL DESOLV
      IF (STEADY) CALL STFLOW
      QRADW= AWALLN+EMS(1)*SIGMA+(TGAS++4.-TSF++4.)
      QCONW= AWALLN*(TGAS-TSF)*CNV*((TGAS-TSF)*(TGAS-TSF))**0.16666667
      QRADO= AWDOW#SIGMA*(TGAS#*4.-TAMB**4.)
      K= K+1
      F3=F2
      F2=F1
      F1= QFIRE-QFLOW-QFUEL-QRADO-QRADW-QCONW
```

```
TGAS3=TGAS2
   TGAS2=TGAS1
   TGAS1=TGAS
   IF (F1.LT.O..AND.TGAS.LT.TGASP) TGASP=TGAS
   IF (F1.GT.O..AND.TGAS.GT.TGASN) TGASN=TGAS
   DERIV2= DERIV1
   IF (TGAS1.EQ.TGAS2) GOTO 130
   DERIVI=(F1-F2)/(TGAS1-TGAS2)
   IF (KTRACE.GT.0) WRITE (4,99) TGAS1.TGAS2.F1.F2.DERIV1.K.KD.
      KH, J, T2(1), TSF, QFIRE, QFLOW, QRADW, RP, RC
99 FORMAT(2F9.2,3(1PE9.2),3I3,I5,2(0PF9.2),3(1PE10.3),2(0PF7.3))
    IF (.NOT.SCAN) GOTO 95
   IF (F1/F2.GE.O.O) GOTO 93
   SCAN= .FALSE.
   GOTO 100
93 TGAS= TGAS-DTGAS
   IF (TGAS.LT.TAMB) GOTO 200
   IF (TGAS.LT.TBOIL.AND.(FLREM.GT.0.0)) GOTO 190
   GOTO 120
95 IF (DERIVI.LT..O.AND.ABS(F2).GT..0001)GOTO 100
   IF(DERIV2.LT..O.AND.J.GT.2) GOTO 100
   TGAS= TGAS1+DTGAS
   GOT 0 120
100 DIF= ABS(F1/QFLOW)
   IF (DIF.LT.0.002.AND.ABS(TGAS2-TGAS1).LT.2.) GOTO 130
   TGAS=(F1+TGAS2-F2+TGAS1)/(F1-F2)
   IF (K.GT.10.AND.F1.LT.0..AND.TGAS.GT.TGASP) GOTO 105
   IF (K.GT.10.AND.F1.GT.0..AND.TGAS.LT.TGASN) GOTO 105
    IF (K.EQ.1.AND.KH.EQ.0) TGAS= TGAS1+10.
   IF (TGAS.GT.2000.) GOTO 110
    IF (TGAS.LT.(TAMB+30.)) GOTO 110
   IF (TGAS.LT.TBOIL.AND.(FLREM.GT.0.0)) GOTO 110
   GOTO 120
105 TGAS= (TGASN+TGASP)/2.
    GOTO 120
110 SCAN= .TRUE.
    TGAS= 1900 .
120 CONTINUE
    IF (STEADY.AND..NOT.ADIA) CALL STFLOW
    IF (K-200) 30,30,200
130 IF (STEADY) GOTO 180
    CALL RSTA
   FLREM= FLREM-RP*DTIME
    IF(FLREM.LT.O) FLREM=0.
    IF (QCONW.GT.O.) QWLSUM= QWLSUM+(QRADW+QCONW)*DTIME
    IF (TTIME .GE. MTIME) GO TO 210
    IF (TGAS.LE.353..AND.J.GE.10) GO TO 210
    IF (J.EQ.1) GO TO 150
    IF (JP.LT.JPRINT) GO TO 160
    JP= 0
150 CALL OUTPUT
160 JP= JP+1
    TTIME = TTIME+DTIME
170 CONTINUE
       END TIME STEP DO-LOOP
180 CONTINUE
    IF(.NOT.STOICH) GOTO 185
       FIND STOICHIOMETRIC FUEL SIZE
```

C

```
SIZE1= RP/(EF*SIGMA*(TGAS**4.-TBOIL**4.)/DHP)
  185 CALL DUTPUT
C
         NORMAL EXIT WHEN STEADY.EQ.T
      RETURN
         ERROR EXIT
  190 CONTINUE
      IF (KTRACE.EQ.1) WRITE (2,910) TGAS.
  910 FORMAT(///° TGAS.LT.TBOIL TGAS=".F8.1," GO TO NEXT CASE"///)
      GOT 0 200
         SQUARE ROOT ERROR
C
  195 CONTINUE
      IF(KTRACE.EQ.1) WRITE(2,930) TGAS, RC. RP. YPYR. ZW. RMA, MWOUT
  930 FORMAT (/* TGAS=*, F5.0, * RC=*, E10.4, * RP=*, E10.4,
    1 * YPYR=*,E10.4, * ZW=*,F6.4. * RMA=*,E10.4. * MWOUT=*,F6.1)
C
        FAIL TO CONVERGE, ERROR EXIT
  200 CONTINUE
      KNTRL=3
      RETURN
         FIRE IS OVER (TRANSIENT CASE)
C
  210 CONTINUE
      CALL OUTPUT
      RETURN
```

END

	SUBROUTINE PP
С	
С	PLOTTING SUBROUTINE
С	THIS ROUTINE IS LEFT BLANK SINCE IT IS MACHINE-DEPENDENT
С	
	ENTRY PLTRST
С	THIS ENTRY SETS UP THE INIALIZATION OF PLOTTING
	ENTRY DSTO
С	THIS ENTRY IS CALLED EACH TIME TO STORE A DATA POINT
	ENTRY DOUT
С	THIS IS THE LAST ENTRY FOR A GIVEN RUN
	RETURN
	END

YPYR= (RP-RC)/RMF
IF(YPYR.LT..0) YPYR= 0.

```
0 0 0
```

C

PESSIMIZATION ROUTINE FIXED VENTILATION, WORST POSSIBLE FUEL PYROLYSIS RATE.

AWALLN, BW DOW, DENSA, G, GASCNT, KTRACE, MTIME COMMON /CNSTS/ CPA, CPCO(2), CPCO2(2), CPH2(2), CPH2O(2), CPN2(2), COMMON /CP/ CP02(2), CPPYR(2) COMMON /FUEL/ C.CFLPC.CVGROS.CVNET.H.HFLPC.MWPYR.N.NFLPC.O. OFLPC.R. RO. REGRES. SH. SHAPE, SIZE, W. WFLPC, WTFUEL COMMON /GP/ AWDOW, BPF, CD, CNV, DTIME, EMS(2), HWDOW, IX, IXC, IXL, J.JM.JP.JPRINT,K.KD.KH.KITER.KNTRL.MWIN.MWOUT.RC.RP.SIGMA COMMON /LOGIC/ FC.FLSPEC.KRIT.NEWPLT.NEWPRP.PLFUEL.PLOT.PNCH. RPSPEC. VTSPEC COMMON /PLAST/ TBOILC, DHP, STOICH, SIZE1, EITA, EISCAN COMMON /PRBLM/ ADIA.AFLOOR.AWALL.DENSW.FLOAD.IRUN.OPENF. PRNT.STEADY.THICKW QCONW.QFIRE.QFLOW.QRADO.QRADW.QWLSUM COMMON /QS/ COMMON /TEMP/ DENF, DENU, TAMB, TGAS, TINPT, T1(20), T2(20), TSF, TSU COMMON /THERML/ CNDA(2,10), CPW(2,10), DX, EF, EMSA(2,10), NCND, NCPW, NEMS, NQGEN, NRP, QGEN(2, 10), RPX(2,50) COMMON /WOUT/ BWORST, FLREM, HRATIO, RMA, RMF, TTIME, VAVGIN, WA, WB, YCO2, YH2O, YN2, YO2, YPYR LOGICAL ADIA, EISCAN, FC, FLSPEC, KRIT, NEWPRP, PLFUEL, PLOT, PNCH, RPSPEC, SCAN, STEADY, STOICH, VTSPEC REAL MWIN, MWOUT, MWPYR, MTIME, N, NFLPC IF (STEADY) GOTO 190 FC= .FALSE. SCAN= .FALSE. QRADW=0. QCONW= 0. F2=0. F1=0. DT GAS=10 . CALL HEADNG START TIME LOOP DO 170 J=1.JM KH= 0 DERIV1= 1. TGAS2= 0. TGAS1 = 0. TGASP= 2000. TGASN= TAMB 20 CONTINUE K = 030 CONTINUE IF (FLREM.GT.O.) GOTO 32 RC= 0. RP= 0. FC= .TRUE. 32 RMF= RMA+RP YCO2= 3.66667*CFLPC*RC/100./RMF YH20= (WFL PC*RP+9.0*HFLPC*RC)/100./RMF YO2= (0.23*RMA-RO*RC)/RMF YN2= 0.77*RMA/RMF +NFLPC*RP/100./RMF

```
MWOUT = 44.*YCO2+18.*YH2O+28.*YN2+32.*YO2+MWPYR*YPYR
   HRATIO= 1./(1.+((TGAS/TAMB)*(MWIN/MWOUT)*(1.+RP/RMA)**2)
      **0.33333333333)
      NOTE HIN IS TAKEN AS POSITIVE
   HIN= HWDOW* HRATIO
   ZW=1.-MWOUT*TAMB/MWIN/TGAS
   1F(ZW)195.35.35
35 VAVGIN= 0.666667*SQRT(2.*G*HIN*ZW)
   RMA= CD*VAVGIN*HIN*BWDOW*DENSA
   RMF= RMA+RP
   IF (.NOT.FC) RC= BPF*RMA/R
   IF (.NOT.FC) RP= RC/BPF
45 CONTINUE
   QFLOW= RMF*(YCO2*(TGAS*(0.5*CPCO2(1)*TGAS+CPCO2(2))-TAMB*(0.5*
      CPCO2(1) *TAMB+CPCO2(2))) +YH20*(TGAS*(0.5*CPH20(1)*TGAS+
   1
      CPH20(2))-TAMB*(0.5*CPH20(1)*TAMB+CPH20(2))) +Y02*(TGAS*(
  3
      0.5*CP02(1)*TGAS+CP02(2))-TAMB*(0.5*CP02(1)*TAMB+CP02(2)))
  4
      +YN2*(TGAS*(0.5*CPN2(1)*TGAS+CPN2(2))-TAMB*(0.5*CPN2(1)*
      TAMB+CPN2(2))) +YPYR*(TGAS*(0.5*CPPYR(1)*TGAS+CPPYR(2))
      -TAMB*(0.5*CPPYR(1)*TAMB+CPPYR(2))))
  6
   QFIRE= RC*CVNET
   IF (ADIA) GOTO 90
   CALL DESOLV
   QRADW= AWALLN+EMS(1)+SIGMA+(TGAS++4.-TSF++4.)
   QCONW= AWALLN*(TGAS-TSF)*CNV*((TGAS-TSF)*(TGAS-TSF))**0.16666667
90 CONTINUE
   QRADO= AWDOW+SIGMA+(TGAS++4.-TAMB++4.)
   K = K + 1
   F3=F2
   F2=F1
   F1= QFIRE-QFLOW-QRADO-QRADW-QCONW
   TGAS3=TGAS2
   TGAS2=TGAS1
   TGAS1=TGAS
   IF (F1.LT.O..AND.TGAS.LT.TGASP) TGASP=TGAS
   IF (F1.GT.O..AND.TGAS.GT.TGASN) TGASN=TGAS
   DERIV2= DERIV1
   IF (TGAS1.EQ.TGAS2) GOTO 130
   DERIVI=(F1-F2)/(TGAS1-TGAS2)
   IF (KTRACE.GT.O) WRITE (4.99) TGAS1.TGAS2.F1.F2.DERIV1.K.KD.
      KH, J, T2(1), TSF, QFIRE, QFLOW, QRADW, RP, RC
99 FORMAT(2F9.2,3(1PE9.2),3I3,I5,2(0PF9.2),3(1PE10.3),2(0PF7.3))
   IF (.NOT.SCAN) GOTO 95
   IF (F1/F2.GE.O.O) GOTO 93
   SCAN= .FALSE.
   GOT 0 100
93 TGAS= TGAS-DTGAS
   IF (TGAS.LT.TAMB) GOTO 200
   GOTO 120
95 IF (DERIVI.LT..O.AND.ABS(F2).GT..O001)GOTO 100
    IF(DERIV2.LT..O.AND.J.GT.2) GOTO 100
   TGAS= TGAS1+DTGAS
    GOTO 120
100 DIF= ABS(F1/QFLOW)
   IF (DIF.LT.0.002.AND.ABS(TGAS2-TGAS1).LT.2.) GOTO 130
   TGAS=(F1*TGAS2-F2*TGAS1)/(F1-F2)
   IF (K.GT.10.AND.F1.LT.0..AND.TGAS.GT.TGASP) GOTO 105
   IF (K.GT.10.AND.F1.GT.0..AND.TGAS.LT.TGASN) GOTO 105
```

PHI

```
IF (K.EQ.1.AND.KH.EQ.0) TGAS= TGAS1 +10.
      IF (TGAS.GT.2000.) GOTO 110
      IF (TGAS.LT.(TAMB+30.)) GOTO 110
      GOTO 120
  105 TGAS= (TGASN+TGASP)/2.
      GOTO 120
  110 SCAN= .TRUE.
      TGAS= 1900 .
  120 CONTINUE
      IF (K-200) 30,30,200
  130 CONTINUE
      CALL RSTA
      FLREM= FLREM-RP*DTIME
      IF(FLREM.LT.O) FLREM=0.
      IF (QCDNW.GT.O.) QWLSUM= QWLSUM+(QRADW+QCCNW)*DTIME
      IF (TTIME .GE. MTIME) GO TO 210
      IF (TGAS.LE.353..AND.J.GE.10) GO TO 210
      IF (J.EQ.1) GO TO 150
      IF (JP.LT.JPRINT) GO TO 160
      JP= 0
  150 CALL OUTPUT
  160 JP= JP+1
      TTIME= TTIME+DTIME
  170 CONTINUE
C
         END TIME STEP DO-LOOP
      RETURN
        ERROR IN INPUT
C
  190 CONTINUE
      KNTRL= 2
      WRITE (2.910)
  910 FORMAT (///' PVTFIX ROUTINE DOES NOT ACCEPT STEADY-STATE CASE')
      RETURN
C
         SQUARE ROOT ERROR
  195 CONTINUE
      IF(KTRACE.EQ.1) WRITE(2,930) TGAS, RC, RP, YPYR, ZW, RMA, MWOUT
  930 FORMAT (/ TGAS=',F5.0, RC=',E10.4, RP=',E10.4,
     1 " YPYR=",E10.4," ZW=",F6.4," RMA=",E10.4," MWOUT=",F6.1)
C
         FAIL TO CONVERGE, ERROR EXIT
  200 CONTINUE
      KNTRL=3
      RETURN
         FIRE IS OVER (TRANSIENT CASE)
  210 CONTINUE
      CALL OUTPUT
      RETURN
      END
```

```
00000
```

C

TABULAR FUEL PYROLYSIS ROUTINE FUEL PYROLYSIS RATE IS AN INPUT VARIABLE.

```
COMMON /CNSTS/ AWALLN, BWDOW, DENSA, G, GASCNT, KTRACE, MTIME
   COMMON /CP/
                    CPA, CPCO(2), CPCO2(2), CPH2(2), CPH2O(2), CPN2(2),
      CP02(2), CPPYR(2)
   COMMON /FUEL/
                   C, CFLPC, CV GROS, CVNET, H, HFLPC, MWPYR, N, NFLPC, O,
      OFLPC, R, RO, REGRES, SH, SHAPE, SIZE, W, WFLPC, WTFUEL
  COMMON /GP/
                    AWDOW, BPF, CD, CNV, DTIME, EMS(2), HWDOW, IX, IXC, IXL,
      J, JM, JP, JPRINT, K, KD, KH, KITER, KNTRL, MWIN, MWOUT, RC, RP, SIGMA
   COMMON /LOGIC/ FC.FLSPEC.KRIT.NEWPLT.NEWPRP.PLFUEL.PLOT.PNCH.
      RPSPEC, VTSPEC
   COMMON /PLAST/ TBOILC, DHP, STOICH, SIZE1, EITA, EISCAN
   COMMON /PRBLM/ ADIA, AFLOOR, AWALL, DENSW.FLOAD, IRUN. OPENF.
      PRNT, STEADY, THICKW
   COMMON /Q$/
                    QCONW, QFIRE, QFLOW, QRADO, QRADW, QWLSUM
   COMMON /TEMP/
                    DENF, DENU, TAMB, TGAS, TINPT, T1(20), T2(20), TSF, TSU
   COMMON /THERML/ CNDA(2,10), CPW(2,10), DX, EF, EMSA(2,10),
      NCND.NCPW.NEMS.NQGEN.NRP.QGEN(2.10).RPX(2.50)
   COMMON /WOUT/
                    BWORST, FLREM, HRATIO, RMA, RMF, TTIME, VAVGIN,
      WA, WB, YCO2, YH2O, YN2, YO2, YPYR
   LOGICAL ADIA, EISCAN, FC, FLSPEC, KRIT, NEWPRP, PLFUEL,
      PLOT, PNCH, RPSPEC, SCAN, STEADY, STOICH, VTSPEC
   REAL MWIN, MWOUT, MWPYR, MTIME, N, NFLPC
   SCAN= .FALSE.
   QRADW = 0.
   QCONW= 0.
   F2=0.
   F1=0 .
   DTGAS=10.
   CALL HEADNG
       START TIME LOOP
   DO 170 J=1.JM
   KH= 0
   DERIVI= 1.
   TGAS2= 0.
   TGAS1 = 0.
   TGASP= 2000.
   TGASN= TAMB
20 CONTINUE
   K = 0
30 CONTINUE
   FC= .FALSE.
   IF (FLREM.GT.O.) RP= TLU(RPX, NRP, TTIME)
   IF (FLREM.LE.O.) RP= 0.
   RMF= RMA+RP
   YCO2= 3.66667*CFLPC*RC/100./RMF
   YH20= (WFLPC*RP+9.0*HFLPC*RC)/100./RMF
   Y02= (0.23*RMA-R0*RC)/RMF
   YN2= 0.77*RMA/RMF +NFLPC*RP/100./RMF
   YPYR= (RP-RC)/RMF
   IF(YPYR.LT..O) YPYR= 0.
   MWOUT = 44.*YCO2+18.*YH2O+28.*YN2+32.*YO2+MWPYR*YPYR
   HRATIO= 1./(1.+((TGAS/TAMB)*(MWIN/MWOUT)*(1.+RP/RMA)**2)
```

THE PARTY

```
**0.33333333333333
         NOTE HIN IS TAKEN AS POSITIVE
C
      HIN= HWDOW* HRATIO
      ZW=1.-MWOUT*TAMB/MWIN/TGAS
      IF(ZW)195,35,35
  35 VAVGIN= 0.666667*SQRT(2.*G*HIN*ZW)
      RMA= CD+VAVGIN*HIN*BWDDW*DENSA
      RMF= RMA+RP
      IF (RMA/R-RP) 40,40,45
   40 RC= BPF*RMA/R
      GO TO 50
   45 RC= BPF*RP
     FC= .TRUE.
   50 CONTINUE
      QFLOW= RMF*(YCO2*(TGAS*(0.5*CPCO2(1)*TGAS+CPCO2(2))-TAMB*(0.5*
         CPCD2(1)*TAMB+CPCD2(2))) +YH2O*(TGAS*(0.5*CPH2O(1)*TGAS+
     1
         CPH20(2))-TAMB*(0.5*CPH20(1)*TAMB+CPH20(2))) +Y02*(TGAS*(
         0.5*CPO2(1)*TGAS+CPO2(2))-TAMB*(0.5*CPO2(1)*TAMB+CPO2(2)))
     3
         +YN2*(TGAS*(0.5*CPN2(1)*TGAS+CPN2(2))-TAMB*(0.5*CPN2(1)*
     5
        TAMB+CPN2(2))) +YPYR*(TGAS*(0.5*CPPYR(1)*TGAS+CPPYR(2))
        -TAMB*(0.5*CPPYR(1)*TAMB+CPPYR(2))))
      QFIRE= RC*CVNET
      IF (ADIA) GOTO 90
         (.NOT.STEADY) CALL DESOLV
      IF (STEADY) CALL STFLOW
      QRADW= AWALLN*EMS(1)*SIGMA*(TGAS**4.-TSF**4.)
      QCONW= AWALLN*(TGAS-TSF)*CNV*((TGAS-TSF)*(TGAS-TSF))**0.16666667
   90 CONTINUE
      QRADO= AWDOW*SIGMA*(TGAS**4.-TAMB**4.)
      K = K + 1
     F3=F2
     F2=F1
     F1= QFIRE-QFLOW-QRADO-QRADW-QCONW
     TGAS3=TGAS2
      TGAS2=TGAS1
      TGAS1=TGAS
      IF (F1.LT.O..AND.TGAS.LT.TGASP) TGASP=TGAS
      IF (F1.GT.O..AND.TGAS.GT.TGASN) TGASN=TGAS
      DERIV2= DERIV1
      IF (TGAS1.EQ.TGAS2) GOTO 130
      DERIV1=(F1-F2)/(TGAS1-TGAS2)
      IF (KTRACE.GT.0) WRITE (4.99) TGAS1.TGAS2.F1.F2.DERIV1.K.KD.
         KH, J, T2(1), TSF, QFIRE, QFLOW, QRADW, RP, RC
   99 FORMAT(2F9.2,3(1PE9.2),3I3,I5.2(0PF9.2),3(1PE10.3),2(0PF7.3))
      IF (.NOT.SCAN) GOTO 95
      IF (F1/F2.GE.O.O) GOTO 93
      SCAN= .FALSE.
      GOT 0 100
   93 TGAS= TGAS-DTGAS
      IF (TGAS.LT.TAMB) GOTO 200
      GOTO 120
   95 IF (DERIVI.LT..O.AND.ABS(F2).GT..OO01)GOTO 100
      IF(DERIV2.LT..O.AND.J.GT.2) GOTO 100
      TGAS= TGAS1+DTGAS
      GOTO 120
  100 DIF= ABS(F1/QFLOW)
      IF (DIF.LT.0.002.AND.ABS(TGAS2-TGAS1).LT.2.) GOTO 130
      TGAS=(F1*TGAS2-F2*TGAS1)/(F1-F2)
```

```
IF (K.GT.10.AND.F1.LT.0..AND.TGAS.GT.TGASP) GOTO 105
    IF (K.GT.10.AND.F1.GT.0..AND.TGAS.LT.TGASN) GOTO 105
    IF (K.EQ.1. AND.KH.EQ.O) TGAS= TGAS1+10.
    IF (TGAS.GT.2000.) GOTO 110
    IF (TGAS.LT.(TAMB+30.)) GOTO 110
    GOTO 120
105 TGAS= (TGASN+TGASP)/2.
    GOTO 120
110 SCAN= .TRUE.
   TGAS= 1900.
120 CONTINUE
    IF (STEADY . AND . . NOT . ADIA) CALL STFLOW
    IF (K-200) 30,30,200
130 CONTINUE
    IF (STEADY) GOTO 180
    CALL RSTA
    FLREM= FLREM-RP*DTIME
    IF(FLREM.LT.O.) FLREM=0.
    IF (QCONW.GT.O.) QWLSUM= QWLSUM+(QRADW+QCONW)*DTIME
    IF (TTIME .GE. MTIME) GO TO 210
    IF (TGAS.LE.353..AND.J.GE.10) GO TO 210
    IF (J.EQ.1) GO TO 150
    IF (JP.LT.JPRINT) GO TO 160
    JP= 0
150 CALL DUTPUT
160 JP= JP+1
    TTIME = TTIME + DTIME
170 CONTINUE
       END TIME STEP DO-LOOP
180 CONTINUE
185 CALL OUTPUT
       NORMAL EXIT WHEN STEADY.EQ.T
    RETURN
       SQUARE ROOT ERROR
195 CONTINUE
    IF(KTRACE.EQ.1) WRITE(2,930) TGAS.RC.RP.YPYR.ZW.RMA.MWOUT
930 FORMAT (/* TGAS=*,F5.0, * RC=*,E10.4, * RP=*,E10.4.
   1 * YPYR=*,E10.4, * ZW=*,F6.4, * RMA=*,E10.4, * MWOUT=*,F6.1)
       FAIL TO CONVERGE, ERROR EXIT
200 CONTINUE
    KNTRL=3
    RETURN
       FIRE IS OVER (TRANSIENT CASE)
210 CONTINUE
    CALL OUTPUT
    RETURN
    END
```

C

C

HIT

```
SUBROUTINE STFLOW
C
           CALCULATES WALL HEAT CONDUCTION WHEN STEADY-STATE
C
C
           CONDITION ONLY IS NEEDED.
C
      COMMON /GP/
                      AWDOW, BPF, CD, CNV, DTI ME, EMS(2), HWDOW, IX, IXC, IXL,
         J, JM, JP, JPRINT, K, KD, KH, KITER, KNTRL, MWIN, MWOUT, RC, RP, SIGMA
      COMMON /PRBLM/ ADIA, AFLOOR, AWALL, DENSW, FLOAD, IRUN, OPENF,
         PRNT, STEADY, THICKW
      COMMON /TEMP/ DENF, DENU, TAMB, TGAS, TINPT, T1(20), T2(20), TSF, TSU
      COMMON /THERML/ CNDA(2,10), CPW(2,10), DX, EF, EMSA(2,10),
         NCND, NCPW, NEMS, NQGEN, NRP, QGEN(2, 10), RPX(2,50)
         BIOT = BIOT NUMBER
C
      KD = 0
      TSF= TGAS -30.
      TSU= TAMB +30.
   10 CONTINUE
      TSFOLD= TSF
      TSUOLD= TSU
      EMS(1)= 1./(1./TLU(EMSA, NEMS, TSF) +1./EF -1.)
      EMS(2) = TLU(EMSA, NEMS, TSU)
      TAVG= (TGAS+TAMB)/2.
      CND= TLU(CNDA, NCND, TAVG)
      ZRF= TGAS*(TGAS*(TGAS+TSF)+TSF*TSF)+TSF*TSF
      ZCF= CNV+((TGAS-TSF)+(TGAS-TSF))++0.16666667
      HF= ZCF+EMS(1) +SIGMA+ZRF
      BIOTF= HF*THICKW/CND
      ZRU= TAMB*(TAMB*(TAMB+TSU)+TSU*TSU)+TSU*TSU*TSU
      ZCU= 1.31*((TAMB-TSU)*(TAMB-TSU))**0.16666667
      HU= ZCU+EMS(2)*SIGMA*ZRU
      BIOTU= HU*THICKW/CND
      TSF= ((BIOTF+HF/HU) *TGAS+TAMB)/(1.+BIOTF+HF/HU)
      TSU= ((BIOTU+HU/HF)*TAMB+TGAS)/(1.+BIOTU+HU/HF)
      T2(1)= TSF- (TSF-TSU)*DX/THICKW/2.
      T2(IXC)= (TSF+TSU)/2.
      IF ((ABS(TSF-TSFOLD).LT.3.).AND.(ABS(TSU-TSUOLD).LT.3.))
         RETURN
      KD= KD+1
      TSU= (TSU+TSUOLD)/2.
      IF (KD.LT.20) GOTO 10
      WRITE (2,90) TSF, TSFOLD
   90 FORMAT (// **UNSUCCESSFUL ITERATION IN STFLOW 1/
```

RETURN END

```
FUNCTION TLU (ARRAY, NUM, VALIN)
C
         TABULAR LOOK-UP INTERPOLATING ROUTINE
C
      DIMENSION ARRAY(2.NUM)
C
         ARRAY(1, I) = INDEPENDENT VARIABLE
         ARRAY(2,1) = DEPENDENT VARIABLE
C
         INTERPOLATES LINEARLY WITHIN GIVEN DOMAIN. SETS EQUAL TO
C
         SMALLEST OR LARGEST VALUE IF OUTSIDE THE DOMAIN.
C
      IF (NUM.NE.1) GO TO 10
      TLU= ARRAY (2.1)
      RETURN
   10 IF (NUM.NE.2) GO TO 20
      I = 2
      GO TO 50
   20 IF (VALIN. GT. ARRAY(1.1)) GO TO 30
      TLU= ARRAY(2.1)
      RETURN
   30 DO 40 I=2.NUM
      IF (VALIN.LE.ARRAY(1.I)) GO TO 50
   40 CONTINUE
      TLU= ARRAY (2. NUM)
      RETURN
   50 TLU= ARRAY(2, I-1) + (VALIN - ARRAY(1, I-1)) +
     1 ((ARRAY(2,I) - ARRAY(2,I-1)) / (ARRAY(1,I) - ARRAY(1,I-1)))
      RETURN
      END
      SUBROUTINE TRIDGF (A, B, C, D, E, IX)
C
C
         TRIDIAGONAL GAUSS ELIMINATION PROCEDURE FOR UNSYMMETRIC
          MATRICES.
C
          A=LEFT OF DIAGONAL, B=DIAGONAL, C=RIGHT OF DIAGONAL,
          D= CONSTANT VECTOR, E= SOLUTION VECTOR, IX= SIZE OF MATRIX.
C
      DIMENSION A(20), B(20), C(20), D(20), E(20), CP(20)
      CP(1) = C(1)/B(1)
      E(1) = D(1)/B(1)
      C(IX) = 0.
      IXL= IX-1
      DO 10 I=2.1X
      J= I-1
      BX = B(I) - CP(J) * A(I)
      CP(1) = C(1)/BX
      E(I) = (D(I) - E(J) * A(I)) / BX
   10 CONTINUE
      DO 20 I=1. IXL
      J = IX - I
      E(J)=E(J)=E(J+1)*CP(J)
   20 CONTINUE
      RETURN
      END
```

NE	NBS-114A (REV. 9-78)					
	U.S. DEPT. OF COMM.	1. PUBLICATION OR REPORT NO.	2. Gov't. Accession No.	3. Recipient's Ac	cession No.	
	BIBLIOGRAPHIC DATA	NBS Tech Note 991				
	SHEET TITLE AND SUBTITLE	NES TECH NOTE 331	The same of the sa	f 5 10 11 5		
4.	. THEE AND SUBTILLE	5. Publication Date June 1979				
	COMPF2A Program for Calculating Post-Flashover Fire Temperatures					
				6. Performing Or	ganization Code	
7.	7. AUTHOR(S)				8. Performing Organ. Report No.	
	Vytenis Babrauskas					
9.	PERFORMING ORGANIZATION NAME AND ADDRESS NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, DC 20234			10. Project/Task/Work Unit No.		
				11. Contract/Grant No.		
12. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP) 13. Type of Report & Period						
12	SPONSORING ORGANIZATIO	13. Type of Report & Period Covered				
		Final				
	Same as 9 above			14. Sponsoring Ag	vency Cade	
15. SUPPLEMENTARY NOTES						
	Document describes a computer program; SF-185, FIPS Software Summary, is attached.					
16	16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or					
	tics of a post-flashover fire in a single building compartment, based on fire-induced ventilation through a single door or window. It is intended both for performing design calculations and for the analysis of experimental burn data. Wood, thermoplastic, and liquid fuels can be treated. In addition to the capability of performing calculations for compartments with completely determined properties, routines are					
included for calculating fire behavior by an innovative variable abstracting A comprehensive output format is provided which gives gas temperatures, he					tion method.	
					res, heat flow	
	terms, and flow variables. The documentation includes input instructions, sample problems, and a listing of the program. The program is written in Fortran and constitutes an improved version of an earlier program, COMPF.					
-						
17	 17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons) Computer programs—fire protection; fire protection; fire resistance; fire tests; fire walls; safety engineering—fires. 					
	TITO HALLO, DALOUY ORGINOOLING TITOO.					
18	3. AVAILABILITY	XX Unlimited	19. SECURIT		21. NO. OF PRINTED PAGES	
			(THIS RE	-UKI)		
	For Official Distribution. Do Not Release to NTIS		UNCLASS	IFIED	76	
	EV. a		20 SECURIT		22. Price	
	Order From Sup. of Doc., 20402, SD Stock No. SNOO	U.S. Government Printing Office, Washingt 03-003-02080-0	on, DC (THIS PA		\$3.50	
		hnical Information Service (NTIS), Springfie	ld			
	VA 22161	inical information service (it ris), springile	UNCLASS	IFIED		

(please detach here)

SUBSCRIPTION ORDER FORM

Enter my Subscription To DIMENSIONS/NBS at \$11.00. Add \$2.75 for foreign mailing. No additional postage is required for mailing within the United States or its possessions. Domestic remittances should be made either by postal money order, express money order, or check. Foreign remittances should be made either by international money order, draft on an American bank, or by UNESCO coupons.

Send Subscription to:

COMPANY NAME OR ADDITIONAL ADDRESS LINE

STREET ADDRESS

CITY

TATE ZIP CODE

Remittance Enclosed (Make checks payable to Superintendent of Documents)

Charge to my Deposit Account No.

MAIL ORDER FORM TO: Superintendent of Documents Government Printing Office Washington, D.C. 20402

PLEASE PRINT

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology, and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. As a special service to subscribers each issue contains complete citations to all recent NBS publications in NBS and non-NBS media. Issued six times a year. Annual subscription: domestic \$17.00; foreign \$21.25. Single copy, \$3.00 domestic; \$3.75 foreign.

Note: The Journal was formerly published in two sections: Section A "Physics and Chemistry" and Section B "Mathematical Sciences."

DIMENSIONS/NBS

This monthly magazine is published to inform scientists, engineers, businessmen, industry, teachers, students, and consumers of the latest advances in science and technology, with primary emphasis on the work at NBS. The magazine highlights and reviews such issues as energy research, fire protection, building technology, metric conversion, pollution abatement, health and safety, and consumer product performance. In addition, it reports the results of Bureau programs in measurement standards and techniques, properties of matter and materials, engineering standards and services, instrumentation, and automatic data processing.

Annual subscription: Domestic, \$11.00; Foreign \$13.75

NONPERIODICALS

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a world-wide program coordinated by NBS. Program under authority of National Standard Data Act (Public Law 90-396).

NOTE: At present the principal publication outlet for these data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St. N.W., Wash., D.C. 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The purpose of the standards is to establish nationally recognized requirements for products, and to provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

Order above NBS publications from: Superintendent of Documents, Government Printing Office, Washington, D.C. 20402

Order following NBS publications—NBSIR's and FIPS from the National Technical Information Services, Springfield, Va. 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively constitute the Federal Information Processing Standards Register. Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Services (Springfield, Va. 22161) in paper copy or microfiche form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibliographies are issued periodically by the Bureau:

Cryogenic Data Center Current Awareness Service. A literature survey issued biweekly. Annual subscription: Domestic, \$25.00; Foreign, \$30.00.

Liquified Natural Gas. A literature survey issued quarterly. Annual subscription: \$20.00.

Superconducting Devices and Materials. A literature survey issued quarterly. Annual subscription: \$30.00. Send subscription orders and remittances for the preceding bibliographic services to National Bureau of Standards, Cryogenic Data Center (275.02) Boulder, Colorado 80302.

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington, D.C. 20234

OFFICIAL BUSINESS

Penalty for Private Use, \$300

POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE COM-215

SPECIAL FOURTH-CLASS RATE BOOK