Universidad Técnica Federico Santa María Departamento de Química

Química y Sociedad QUI - 010 Hoja de Ejercicios Nº 3.1 (Capítulo Nº 3)

Objetivos específicos:

- Entender el Efecto Invernadero como un ejemplo de interacción radiación-materia en que moléculas de ciertos gases presentes en la atmósfera al absorber radiación infrarroja modifican su modo de vibrar. Comprender la relación entre este efecto y la temperatura.
- 2. Ser capaz de determinar la geometría de moléculas e iones simples (que no incluyan excepciones a la regla del octeto) a partir de estructuras de Lewis.
- 3. Entender la idea de usar una escala de pesos atómicos relativos. Específicamente usar la escala de pesos atómicos relativos basada en el ¹²C.
- 4. Poder asignar pesos moleculares a compuestos.
- 5. Poder aplicar el concepto de mol como unidad de cantidad de sustancia, para:
 - i. conectar el nivel microscópico con la escala macroscópica
 - ii. relacionar las cantidades de elementos que participan en un compuesto

Ejercicios:

1. Clasificar las siguientes especies químicas en: (i) no contribuyen al efecto invernadero, y (ii) si pueden contribuir. Explicar el razonamiento seguido.

N₂, O₂, Ar, CO₂, H₂O, Freón -12, NO, O₃.

R.: ver trasparencias

2. Explique por qué el creciente nivel de CO₂ en la atmósfera influye en la cantidad de energía que abandona la atmósfera terrestre, pero no afecta la cantidad de energía solar que entra.

R.: ver trasparencias

- 3. Establezca cual de las siguientes aseveraciones es falsa:
 - **a.** el efecto invernadero está asociado a que el CO₂, H₂O y otros gases presentes en la atmósfera no son transparentes a la radiación infrarroja.
 - b. las moléculas que absorben radiación infrarroja la utilizan para vibrar
 - **c.** políticas internacionales tendientes a proteger áreas forestales pueden ayudar a controlar el problema del calentamiento global del planeta
 - **d.** Las temperaturas anuales promedio de planetas tales como Venus y la Tierra solo dependen de sus correspondientes distancias desde el Sol
 - e. una buena forma de controlar el calentamiento global sería reducir el consumo masivo de hidrocarburos como fuente de energía R: d.
- **4.-** Se analizan las moléculas **X-Y-X** y **W-W**, donde **X**, **Y** y **W** son elementos que se combinan para formar esos compuestos gaseosos, para evaluar su contribución al efecto invernadero analizando su interacción con la radiación **IR**. Al respecto, la alternativa **correcta** es:
 - a. sólo X-Y-X puede contribuir al efecto invernadero
 - b. sólo W-W puede contribuir al efecto invernadero
 - c. Ambas moléculas pueden contribuir al efecto invernadero
 - d. Ninguna de las moléculas interactúa con la radiación IR.
 - e. Solo si la geometría de la molécula X-Y-X es angular interactúa con la radiación IR R: a.
- **5.-** Para al ión carbonato ($C^*O_3^{-2}$) donde C^* es el átomo central, Determine su geometría

R: Trigonal plana

- **6.-** Con respecto a la **geometría molecular** o la manera en que los átomos de la molécula o del ión están ordenados espacialmente, indique cual de las siguientes afirmaciones es **correcta**:
 - **a.** Los enlaces dobles o triples son dos o tres pares enlazantes orientados de manera diferente respecto a un átomo central.
 - b. La geometría de cualquier molécula biatómica es siempre angular
 - c. La geometría de la molécula de ozono es planar trigonal
 - d. Para predecir la geometría de una molécula o ión, se determina primero la estructura electrónica de Lewis y luego se establece el número de pares de electrones enlazantes y no enlazantes en torno al átomo central.
 - e. Ninguna de las anteriores

R: d

7. Un átomo, que en una determinada molécula cumple la regla del octeto, tiene solo un par de electrones no-enlazantes. Con respecto a esa molécula indique si las siguientes afirmaciones son Verdaderas o Falsas:

Ι.	La geometría en torno al átomo podría ser piramidal trigonal	(V)
II.	La geometría en torno al átomo podría ser angular	(V)
III.	La geometría en torno al átomo podría ser plana trigonal	(F)
IV.	El átomo podría estar localmente involucrado en una geometría lineal	(V)

8. Completar la siguiente tabla para las siguientes sustancias importantes en química atmosférica:

		sustancias	Geometría
	a.	CO_2	
Ī	b.	O_3	
	C.	CO	

d.	NO ₂	
e.	SO_3	

- 9. Un gránulo de sacarosa ($C_{12}H_{22}O_{11}$) tiene una masa de 2,5 [µg] (1 [µg] = 10^{-6} [g]). ¿Cuántas moléculas de sacarosa hay en un gránulo? R.: 4,4 x 10^{15}
- **10.** Determine cuál de las siguientes moléculas está formada por átomos que pueden ser situados en un mismo plano (el átomo central aparece destacado).
 - a) **N**H₃
 - b) SnCl₃
 - c) **C**H₄
 - d) **SO**₃

R:SO₂

11. Magnesio tiene tres isótopos. Usando los datos de la tabla, **calcular** el peso atómico del elemento **Mg**. (datos basados en la escala del ¹²**C**).

isótopo	% abundancia natural	masa isotópica [uma]
²⁴ Mg	78,99	23,9850
²⁵ Mg	10,00	24,9858
²⁶ Mg	11,01	25,9826

R.: PA=24,31[uma/molécula]

12. Se analiza la posibilidad de usar una nueva escala denominada **argonina-40**, considerando que selecciona el isótopo 40 del argón (⁴⁰**Ar**) como referencia, asignándole una masa de 100 [uma-ar] Basándose en la escala del **carbono 12**, respecto del **Ar** se sabe que tiene tres isótopos estables, con las siguientes propiedades:

isótopo	% abundancia	Masa atómica	
	natural	[uma]	
³⁶ Ar	0,337	35,967545	
³⁸ Ar	0,063	37,962732	
⁴⁰ Ar	99,600	39,962384	

Determine cual o cuales de las siguientes afirmaciones son correctas:

- (i) Las masas atómicas de cada isótopo del **Ar**, y de todo isótopo y elemento en general, cambiarían al usar la escala **argonina-40**
- (ii) Usando la escala **argonina-40** el % de abundancia del isótopo ¹²C sería el mismo declarado en la escala del **carbono 12**
- (iii) La nueva masa atómica del elemento **Ar** en la escala **argonina-40** sería 99,963160 [uma-ar] R: (i), (ii) y (iii)
- 13. La fórmula delmineral lazulita (lapizlázuli) es Na₄SSi₃Al₃O₁₂. Para 20,0 [g] de Na₄SSi₃Al₃O₁₂ Determine si las siguientes observaciones son correctas:
 - (i) El cociente entre el número de átomos de O y átomos de Na es 3,0
 - (ii) El cociente entre el número de [moles] de Si y [moles] de Al es 1,0
 - (iii) El número de átomos totales corresponde a: [20,0 / PM(Na₄SSi₃Al₃O₁₂)] · 23 · N_a

ິR: (i), (ii) y (iii)

14.- El propano (**C**₃**H**₈) (PM=44) es el combustible de los encendedores. Si la densidad de este compuesto es 0,39 [g/mL]. Calcule el número de moléculas presentes en 100 [mL].

R: 5,34 x10²³ [moléculas]

- **15.** El **espodumeno** es un importante mineral para la extracción industrial del metal **litio** y para la producción de sus compuestos. El **espodumeno** tiene la fórmula molecular **LiAlSi₂O₆**. Se dispone de cierta cantidad de **LiAlSi₂O₆** en la cual hay 4,8 [moles] de átomos de silicio (**Si**). Para esa cantidad de **espodumeno** determine:
 - a. Número de moléculas y gramos de LiAlSi₂O₆
 - b. Número de átomos de O

R: a. 1,44x10²⁴ [moléculas] y 446,7 [g] b. 8,67x10²⁴ [átomos]

16. El dicloro-difenil-tricloroetano (DDT) tiene la siguiente estructura:

Determine su Peso molecular y el % en moles de Cloro (Cl), Hidrógeno (H).

- 17.- Los compuestos ácido acrílico (A: C₃H₄O₂), acrilato de metilo (B: C₄H₆O₂) y acrilonitrilo (C: C₃H₃N) son importantes materiales de partida en la síntesis de polímeros. Para los tres compuestos calcule el % en masa de carbono e hidrógeno.

 R.: A:50%C y 5,56%H; B:55,8% C y 7,0% H; C: 67,9% C y 5,7% H
- 18. Uranocircita es un mineral de uranio cuya fórmula química es: Ba[UO2IPO4]2(H2O)8. Calcule:
 - a. Peso molecular de la Uranocircita
 - b. Moles de Uranocircita en 300[g] del mineral
 - c. % en peso de O en el mineral

R: a. 1.265,1[g/mol]; b. 0,237[moles]; c. 25,3%