

Kasturi Gnanaguna Sagar - 19IM30010

Kethavath Pavan Chandra - 19IM30012

Mukesh Adhikary -19IM30013

Narwade Pratham - 19IM30014

Penukonda Yeshwanth - 19IM30015

Prashant Jangid -19IM30016

01

ABOUT THE COMPANY & PROBLEM STATEMENT

02

CURRENT SITUATION EXPLAINED

03

CALCULATING COSTS

04

SUPPLY CHAIN REDESIGN

05

GREEDY BASED SOLUTION

STRATEGIC POSITIONING

COMPETITORS

SportStuff's competition includes other online sports equipment retailers like Amazon, eBay, etc.

UNIQUE SELLING POINT

SportStuff.com provides affordable sports equipment's to parents for their children by resale of discarded equipment.

CUSTOMER DEMOGRAPHICS

Mainly targeted at the **price-sensitive** customer segment which accounts to over 60% of the US sports market.

SPORT-STUFF'S JOURNEY TILL NOW

2004 FOUNDING YEAR

Achieved Sales of \$0.8 Million by the end of the year

2006-7

The senior management noticed that the demand is growing but the costs are growing faster. **FEW KEY THINGS TO NOTICE**

Investors were happy. But Why?

Senior management knew what was coming

Unsustainable business which was bound to fail without proper redesigning of the Logistics Model shows the importance of Logistics and Supply Chain Management as a subject

2008

HUMBLE BEGINNINGS

The company witnessed

decent demand and growth in the initial few years and

leased some space in a

single

Louis

warehouse in St.

If the supply chain model is not re designed immediately the company would face a huge loss.

SCM PERFORMANCE MEASURES

SCM performance measures are important to judge the performance of the supply chain system.

There are two categories:

- Qualitative Measures: Customer Satisfaction and Product quality.
- •Quantitative Measures: Order-to-delivery lead time, flexibility, resource utilization, delivery performance.

QUANTITATIVE MEASURES

Non-Financial Measures:

- A. Cycle Time: The company must reduce the supply chain lead time and order-to-delivery lead time to be an effective supply chain.
 B. Customer Service Level:
- - i) Order Fill Rate:
 - ii) Stockout Rate
 - iii) Backorder Level
 - iv) Probability of one-time delivery.

In order to maximize the customer service level, it is important to maximize order fill rate, minimize stockout rate, and minimize backorder levels.

Financial Performance:

The financial performance of a supply chain is assessed by considering the following items

- 1. Cost of raw materials.
- 2. Revenue from goods sold.
- 3. Inventory holding costs.
- 4. Transportation costs.

CURRENT LOGISTICS MODEL OF SPORTSTUFF.COM

CHANGE IN LOGISTICS MODEL

During the initial year sof sportstuff.com the **network distribution model** of the company follows the "**Distribution storage with carriage model** " with the only distribution warehouse in the outskirts of St. Louis.

CHANGE IN BUSINESS MODEL

• Initially the founder had plans to purchase used equipment and jackets from families and any surplus equipment from manufacturers and retailers and sell these over the Internet, which later on enhanced and led to the direct purchasing of the products from sellers and thus transformed the company into a full fledged professional E-commerce company.

THE PROBLEM STATEMENT AND THE GIVEN DATA

Table 5-15 Red	gional Demand	l at SportStuff.com	for 2007
----------------	---------------	---------------------	----------

Zone	Demand in 2007	Zone	Demand in 2007
Northwest	320,000	Lower Midwest	220,000
Southwest	200,000	Northeast	350,000
Upper Midwest	160,000	Southeast	175,000

Table F 16	Fived.	and Variable	Conto	of Dotontial	Marchauses
Table 5-10	rixea	and variable	COSIS	oi Potentiai	Warehouses

	Small Warehouse Fixed Cost Variable Cost (\$/year) (\$/Unit Flow)		Large V	Varehouse
Location			Fixed Cost (\$/year)	Variable Cost (\$/Unit Flow)
Seattle	300,000	0.20	500,000	0.20
Denver	250,000	0.20	420,000	0.20
St. Louis	220,000	0.20	375,000	0.20
Atlanta	220,000	0.20	375,000	0.20
Philadelphia	240,000	0.20	400,000	0.20

Table 5-17 UPS Charges per Shipment (Four Units)

	Northwest	Southwest	Upper Midwest	Lower Midwest	Northeast	Southeast
Seattle	\$2.00	\$2.50	\$3.50	\$4.00	\$5.00	\$5.50
Denver	\$2.50	\$2.50	\$2.50	\$3.00	\$4.00	\$4.50
St. Louis	\$3.50	\$3.50	\$2.50	\$2.50	\$3.00	\$3.50
Atlanta	\$4.00	\$4.00	\$3.00	\$2.50	\$3.00	\$2.50
Philadelphia	\$4.50	\$5.00	\$3.00	\$3.50	\$2.50	\$4.00

QUESTIONS TO ANSWER

- What is the cost SportStuff.com incurs if all the warehouses leased are in st. Louis?
- What supply chain network configuration do you recomment for SportStuff.com? Why?
- Any other recommendations?

OUR SOLUTION METHODOLOGY

LINEAR PROGRAMMING V

provide We two unique approaches to solve this case, the first is a typical linear programming formulation that we have solved in excel and the other is an approach using Algorithm Greedy based formulation which we found to be fascinating.

Redesigning the Supply Chain

Redesigning the Supply Chain

THE PROBLEM STATEMENT AND THE GIVEN DATA

Table 5-15 Re	egional Demand	at SportStuff.com	for 2007
---------------	----------------	-------------------	----------

Zone	Demand in 2007	Zone	Demand in 2007
Northwest	320,000	Lower Midwest	220,000
Southwest	200,000	Northeast	350,000
Upper Midwest	160,000	Southeast	175,000

Table 5-16	Fixed an	d Variable	Costs	of F	Potential	Warehouses
Table J-10	i ixeu aii	iu variable	CUSIS	OI I	Oterruar	v val el louses

	Small Warehouse Fixed Cost Variable Cost (\$/year) (\$/Unit Flow)		Large V	Varehouse
Location			Fixed Cost (\$/year)	Variable Cost (\$/Unit Flow)
Seattle	300,000	0.20	500,000	0.20
Denver	250,000	0.20	420,000	0.20
St. Louis	220,000	0.20	375,000	0.20
Atlanta	220,000	0.20	375,000	0.20
Philadelphia	240,000	0.20	400,000	0.20

Table 5-17 UPS Charges per Shipment (Four Units)

	Northwest	Southwest	Upper Midwest	Lower Midwest	Northeast	Southeast
Seattle	\$2.00	\$2.50	\$3.50	\$4.00	\$5.00	\$5.50
Denver	\$2.50	\$2.50	\$2.50	\$3.00	\$4.00	\$4.50
St. Louis	\$3.50	\$3.50	\$2.50	\$2.50	\$3.00	\$3.50
Atlanta	\$4.00	\$4.00	\$3.00	\$2.50	\$3.00	\$2.50
Philadelphia	\$4.50	\$5.00	\$3.00	\$3.50	\$2.50	\$4.00

QUESTIONS TO ANSWER

- What is the cost SportStuff.com incurs if all the warehouses leased are in st. Louis?
- What supply chain network configuration do you recomment for SportStuff.com? Why?
- Any other recommendations?

Total Costs Calculation

Shipping Cost = (Demand/4)*(\$3)
Shipment Charges = Demand*(Shipping Cost/4)

A	Α	В	C	D	E
1	Zone	Demand in 2007	Shipping cost	Shipping cost from St. L	Shipment charges
2	Northwest	320,000	240,000	3.5	280,000
3	Southwest	200,000	150,000	3.5	175,000
4	Upper Midwest	160,000	120,000	2.5	100,000
5	Lower Midwest	220,000	165,000	2.5	137,500
6	Northeast	350,000	262,500	3.0	262,500
7	Southeast	175,000	131,250	3.5	153,125
8	Total Demand	1,425,000	1,068,750		1,108,125

Calculating the total cost by summing up all the costs as shown below:

```
Lease Cost = Fixed Cost + (Variable Cost x Total Demand)
= 220,000 + (1,425,000 x 0.20)
= $505,000
Shipping cost = 1425000*3/4
Shipping Charges = $1,108,125
```

Total Costs Calculation

Shipping Cost = (Demand/4)*(\$3)
Shipment Charges = Demand*(Shipping Cost/4)

Total Cost = Lease Cost + Inventory Holding Cost - Shipping Cost + Shipping Charges

= \$505000 + \$710125 - \$1068750 + \$1108125

= \$1254500

Therefore, the company will incur the cost of \$1,254,500 if all warehouses leased are in location St. Louis in 2007.

Total Demand Calculation(2008)

Z	А	В	С	D
1	Zone	Demand in 2007	Increased Demand	New Demand
2	Northwest	320,000	256,000	576,000
3	Southwest	200,000	160,000	360,000
4	Upper Midwest	160,000	128,000	288,000
5	Lower Midwest	220,000	176,000	396,000
6	Northeast	350,000	280,000	630,000
7	Southeast	175,000	140,000	315,000
8	Total Demand	1,425,000		2,565,000

We consider a large Warehouse in St.Louis Considering a Demand of 2565000 unit

Total Costs Calculation (2008)

1	A	В	С	D	E	F	G
1	Zone	Demand in 2007	Increased Demand	New Demand	Shipping cost	Shipping cost from St. L	Shipment charges
2	Northwest	320,000	256,000	576,000	432,000	3.5	504,000
3	Southwest	200,000	160,000	360,000	270,000	3.5	315,000
4	Upper Midwest	160,000	128,000	288,000	216,000	2.5	180,000
5	Lower Midwest	220,000	176,000	396,000	297,000	2.5	247,500
6	Northeast	350,000	280,000	630,000	472,500	3.0	472,500
7	Southeast	175,000	140,000	315,000	236,250	3.5	275,625
8	Total Demand	1,425,000		2,565,000	1,923,750		1,994,625

Total Cost = Lease Cost + Inventory Holding Cost - Shipping Cost + Shipping Charges

= 888,000 + 898,225 - 1923750 + 1994625

= \$1,857,100

Therefore,

Optimal Solution = \$ 1,857,100

Q1 Total Demand Calculation (2009)

Calculating Total Cost for year 2009 by estimating an increase of 80% in the demand as shown below:

	А	В	С	D
1	Zone	Demand in 2008	Increased Demand	New Demand
2	Northwest	576,000	460,800	1,036,800
3	Southwest	360,000	288,000	648,000
4	Upper Midwest	288,000	230,400	518,400
5	Lower Midwest	396,000	316,800	712,800
6	Northeast	630,000	504,000	1,134,000
7	Southeast	315,000	252,000	567,000
8	Total Demand	1,425,000		4,617,000

We consider a large and small Warehouse in St.Louis Considering a Demand

of 4,617,000

Lease Cost = Fixed Cost + (Variable Cost x Total Demand) =\$1,5118,400

Total Costs Calculation (2009)

1	A	В	С	D	E	F	G
1	Zone	Demand in 2008	Increased Demand	New Demand	Shipping cost	Shipping cost from St. L	Shipment charges
2	Northwest	576,000	460,800	1,036,800	777,600	3.5	907,200
3	Southwest	360,000	288,000	648,000	486,000	3.5	567,000
4	Upper Midwest	288,000	230,400	518,400	388,800	2.5	324,000
5	Lower Midwest	396,000	316,800	712,800	534,600	2.5	445,500
6	Northeast	630,000	504,000	1,134,000	850,500	3.0	850,500
7	Southeast	315,000	252,000	567,000	425,250	3.5	496,125
8	Total Demand	1,425,000		4,617,000	3,462,750		3,590,325

Calculating the holding cost for single linear inventory shown below: Holding Cost = $(\$475,000Y + 0.165F) \times 2$ = \$2,473,610

Total Cost = Lease Cost + Inventory Holding Cost - Shipping Cost + Shipping Cost = \$4,119,585

Total Demand Calculation (2010)

	` A	В	С	D
1	Zone	Demand in 2009	Increased Demand	New Demand
2	Northwest	1,036,800	829,440	1,866,240
3	Southwest	648,000	518,400	1,166,400
4	Upper Midwest	518,400	414,720	933,120
5	Lower Midwest	712,800	570,240	1,283,040
6	Northeast	1,134,000	907,200	2,041,200
7	Southeast	567,000	453,600	1,020,600
8	Total Demand	4,617,000		8,310,600

We consider a 2 large and small Warehouse in St.Louis Considering a Demand of 8,310,600

Lease Cost = Fixed Cost + (Variable Cost x Total Demand) = 2 x 375,000 + 220,000 + (8,310,600 x 0.2) = \$2,632,120 Holding Cost = \$5,538,747

Total Costs Calculation (2010)

1	A	В	С	D	E	F	G
1	Zone	Demand in 2009	Increased Demand	New Demand	Shipping cost	Shipping cost from St. L	Shipment charges
2	Northwest	1,036,800	829,440	1,866,240	1,399,680	3.5	1,632,960
3	Southwest	648,000	518,400	1,166,400	874,800	3.5	1,020,600
4	Upper Midwest	518,400	414,720	933,120	699,840	2.5	583,200
5	Lower Midwest	712,800	570,240	1,283,040	962,280	2.5	801,900
6	Northeast	1,134,000	907,200	2,041,200	1,530,900	3.0	1,530,900
7	Southeast	567,000	453,600	1,020,600	765,450	3.5	893,025
8	Total Demand	4,617,000		8,310,600	6,232,950		6,462,585

Total Cost = Lease Cost + Inventory Holding Cost - Shipping Cost + Shipping Charges = \$ 8,400,502

Therefore,

the optimal solution for 2010 calls for one small and two large warehouse will incur the cost of \$ 8,400,502

PROBLEMS WITH CURRENT SUPPLY CHAIN MODEL

- The costs of the company would grow faster than the revenues if the demand continue to grow and the supply chain network is not redesigned.
- The company needs more warehouse space in order to cope with the anticipated demand growth.
- We proposed the solution of decentralisation of warehouse network of the company as this would help to lower the transportation cost to great extent.

Recommended Plan of Action:

The above analysis explains the ideal condition for each year. Our recommended plan for Sanjay is to use the small warehouse in St. Louise in 2007 (instead of a large warehouse) as a large warehouse is required to meet the 2008 demand.

Therefore:

- 2007 Use the existing warehouse in St. Louis.
- 2008 Close the St. Louis warehouse and open a large warehouse.
- 2009 Open the small warehouse again and use the existing large warehouse.
- 2010 Open another large warehouse, hence we operate 3 warehouses for 2010.

THE PROBLEM STATEMENT AND THE GIVEN DATA

Table 5-15 Regional Demand a	at SportStuff.com for 2007
------------------------------	----------------------------

Zone	Demand in 2007	Zone	Demand in 2007
Northwest	320,000	Lower Midwest	220,000
Southwest	200,000	Northeast	350,000
Upper Midwest	160,000	Southeast	175,000

Table 5-16 Fixed and Variable Costs of Potential Warehouses

	Small	Warehouse	Large V	Varehouse
Location	Fixed Cost (\$/year)	Variable Cost (\$/Unit Flow)	Fixed Cost (\$/year)	Variable Cost (\$/Unit Flow)
Seattle	300,000	0.20	500,000	0.20
Denver	250,000	0.20	420,000	0.20
St. Louis	220,000	0.20	375,000	0.20
Atlanta	220,000	0.20	375,000	0.20
Philadelphia	240,000	0.20	400,000	0.20

Table 5-17 UPS Charges per Shipment (Four Units)

	Northwest	Southwest	Upper Midwest	Lower Midwest	Northeast	Southeast
Seattle	\$2.00	\$2.50	\$3.50	\$4.00	\$5.00	\$5.50
Denver	\$2.50	\$2.50	\$2.50	\$3.00	\$4.00	\$4.50
St. Louis	\$3.50	\$3.50	\$2.50	\$2.50	\$3.00	\$3.50
Atlanta	\$4.00	\$4.00	\$3.00	\$2.50	\$3.00	\$2.50
Philadelphia	\$4.50	\$5.00	\$3.00	\$3.50	\$2.50	\$4.00

QUESTIONS TO ANSWER

- What is the cost SportStuff.com incurs if all the warehouses leased are in st. Louis?
- What supply chain network configuration do you recomment for SportStuff.com? Why?
- Any other recommendations?

If you can handle only a single linear inventory cost, you should use \$475,000Y + 0.165F. For each facility, Y=1 if the facility is used, 0 otherwise.

LINEAR PROGRAMMING MODEL

DECISION VARIABLES:

Xij : Demand Satisfied by warehouse i to customer zone j

 $Yij: i \rightarrow Warehouse, j = \{0 if small warehouse, 1 if large warehouse\}$

OTHER VARIABLES:

 $Fij: Fixed\ Cost\ of\ Warehouse\ i \rightarrow Warehouse\ , j = \{0\ if\ small\ warehouse\ , 1\ if\ large\ warehouse\}$

Cij: Cost of UPS charge to shift 1 unit from warehouse i to customer zone j.

Dij: Demand of each customer zone.

Lij: Capacity of i warehouse, $j = \{0 \text{ if small warehouse}, 1 \text{ if large warehouse}\}$

MATHEMATICAL FORMULATION

MINIMIZING:

$$\sum Cij \, Xij \quad + \ (475000 \sum Yij \ + \ 0.165 \sum Dj \,) \quad + \ (\sum Fij \, Yij \ + \ 0.2 \sum Dj \,) \ - \frac{3}{4} \sum Dj$$

CONSTRAINTS:

 $Xij \ge 0 \& Xij \in I$ (Demand fulfilled by each warehouse should be greater than or equal to zero)

 $Yij \ge 0 \& Yij \in I$ (Number of small or large warehouse should be greater than or equal to zero)

 $\sum_i Y_{ij} L_{ij} - \sum_i X_{ij} \ge 0$ (Total left-over space in warehouses should be greater than or equal to zero)

 $\sum_j Xij - Dj = 0$ (Total Demand fulfilled to a zone by all warehouses should be equal to its demand

SOLVING THE MODEL USING EXCEL SOLVER

C30		- : ×	√ fx	=(I22*J	14)+(J22*L14)-S	UM(C22:H22)								
	Α	В	С	D	E	F	G	Н		J	К	L	М	N
11		DEMAND(2008)	576000	360000	288000	396000	630000	315000	2565000	-		_		
12		UPS Charges I)				Fixed and Vari	able Costs	of Potential W	Jarehouse		
13		Of 5 Charges 1				Lower midwest	Norteast	Southeast	Small Warehouse					
14		Seattle	0.5	0.625	0.875	1	1.25	1.375		2000000	500000	4000000		
15		Denver	0.625	0.625	0.625	0.75	1	1.125		2000000	420000	4000000		
16		St.Louis	0.875	0.875	0.625	0.625	0.75	0.875	-	2000000	375000	4000000		
17		Atlanta	1	1	0.75	0.625	0.75	0.625	220000	2000000	375000	4000000		
18		Philadelphia	1.125	1.25	0.75	0.875	0.625	1	240000	2000000	400000	4000000		
19														
20		Decision Varia	ables						Fixed and Vari	able Costs	of Potential W	Varehouse		
21			Nortwest	Southwes	Upper Midwest	Lower midwest	Norteast	Southeast	SmallWarehouse	LargeWareho	Total			
22		Seattle									0			
23		Denver									0			
24		St.Louis									0			
25		Atlanta									0			
26		Philadelphia									0			
27														
28														
29		Capacity												
30		Seattle	0											
31		Denver	0											
32		St.Louis	0											
33		Atlanta	0											
34		Philadelphia	0											

Demand Constraint						=C11-SUM(C22:C26)
Nortwest 5	Southwes	Upper Midwest	Lower midwest	Norteast	Southeast	
0	0	0	0	0	0	

OBJECTIVE	FUNCT	ON
Shipping cost	1994625	=SUMPRODUCT(C22:H26,C14:H18)
Inventory Holding	898225	=475000*SUM(K22:K26)+0.165*SUM(C11:H11)
Ware House	888000	=SUMPRODUCT(I22:I26,I14:I18)+SUMPRODUCT(J22:J26,K14:K18)+SUM(C11:H11
Shipping Charges	1923750	=(SUM(C11:H11)/4)*3
Total Cost(\$)	1857100	=SUM(C41:C43)-C44

REPORT FOR YEAR 2008

Decision Varia	bles			Fixed and Variable Costs of Potential Warehouse					
	Nortwest :	Southwes U	Jpper Midwest	Lower midwest	Norteast	Southeast	SmallWarehouse LargeWarehouse	Total	
Seattle	0	0	0	0	0	0	0	0	0
Denver	0	0	0	0	0	0	0	0	0
St.Louis	576000	360000	288000	396000	630000	315000	0	1	1
Atlanta	0	0	0	0	0	0	0	0	0
Philadelphia	0	0	0	0	0	0	0	0	0
1	1, 1	'							

OBJECTIVE	FUNC'	TION
Shipping cost	1994625	
Inventory Holding	898225	
Ware House	888000	
Shipping Charges	1923750	
Total Cost(\$)	1857100	

- So, we see that the total cost has reduced to \$1,857,100.
- So, for year 2008, we lease a large warehouse in St. Louis.

REPORT FOR 2009

DEMAND(2009)	1036800	648000	518400	712800	1134000	567000	4617000				
UPS Charges P	er Unit(I	n dollars)		Fixed and Variable Costs of Potential Warehouse						
	Nortwest	Southwest	Upper Midwest	Lower midwest	Norteast	Southeast	Small Warehouse	Capacity(small)	LargeWarehouse	Capacity(large)	
Seattle	0.5	0.625	0.875	1	1.25	1.375	300,000	2000000	500000	4000000	
Denver	0.625	0.625	0.625	0.75	1	1.125	250,000	2000000	420000	4000000	
St.Louis	0.875	0.875	0.625	0.625	0.75	0.875	220000	2000000	375000	4000000	
Atlanta	1	1	0.75	0.625	0.75	0.625	220000	2000000	375000	4000000	
Philadelphia	1.125	1.25	0.75	0.875	0.625	1	240000	2000000	400000	4000000	
Decision Varia	bles						Fixed and Variable Costs of Potential Warehouse				
	Nortwest	Southwest	Upper Midwest	Lower midwest	Norteast	Southeast	SmallWarehouse	LargeWarehouse	Total		
Seattle	1036800	648000	0	0	0	0	1	0	1		
Denver	0	0	0	0	0	0	0	0	0		
St.Louis	0	0	0	0	0	0	0	0	0		
Atlanta	0	0	518400	712800	1134000	567000	0	1	1		
Philadelphia	0	0	0	0	0	0	0	0	0		
	I										

OBJECTIVE	E FUNC	TION
Shipping cost	2962575	
Inventory Holding	1711805	
Ware House	1598400	
Shipping cost	3462750	
Total Cost(\$)	2810030	

So, in year 2009, we are getting better total cost as \$2,810,030.

So, we choose to have 1 small warehouse is Seattle and 1 large warehouse in Atlanta.

REPORT FOR YEAR 2010

DEMAND(2010)	1866240	1166400	933120	1283040	2041200	1020600						
UPS Charges P				Fixed and Variable Costs of Potential Warehouse								
	Nortwest	Southwest	Upper Midwest	Lower midwest	Norteast	Southeast	Small Warehouse	Capacity(sma	LargeWarehouse	Capacity(large)		
Seattle	0.5	0.625	0.875	1	1.25	1.375	300,000	2000000	500000	4000000		
Denver	0.625	0.625	0.625	0.75	1	1.125	250,000	2000000	420000	4000000		
St.Louis	0.875	0.875	0.625	0.625	0.75	0.875	220000	2000000	375000	4000000		
Atlanta	1	1	0.75	0.625	0.75	0.625	220000	2000000	375000	4000000		
Philadelphia	1.125	1.25	0.75	0.875	0.625	1	240000	2000000	400000	4000000		
Decision Varia	bles						Fixed and Var	iable Costs	of Potential V	Varehouse		
	Nortwest	Southwest	Upper Midwest	Lower midwest	Norteast	Southeast	SmallWarehouse	LargeWareho	Total			
Seattle	1866240	1166400	0	0	0	0	0	1	1			
Denver	0	0	0	0	0	0	0	0	0			
St.Louis	0	0	0	0	0	0	0	0	0			
Atlanta	0	0	933120	1283040	41200	1020600	0	1	1			
Philadelphia	0	0	0	0	2000000	0	1	0	1			

OBJECTIVE FUNCTION

Shipping cost 5082635
Inventory Holding 2796249
Ware House 2777120
Shipping Charges 6232950
Total Cost(\$) 4423054

So, in year 2010, we are getting total costs as \$4,423,054.

So, we choose 1 large warehouse in Seattle, 1 large warehouse in Atlanta and 1 small warehouse in Philadelphia.

CostChart

Year	Total Cost - St. Louis	Total Cost		
2007	1254500	1254500		
2008	1857100	1857100		
2009	4119585	2810030		
2010	8400502	4423054		

How would your recommendation change if transportation costs were twice those shown in Table 5-17?

Total Cost Calculation For Year 2008

• Below table shows the resulting UPS charges and the formulation

	В	С		D	Е	F	G	Н	I	J	K	L
12	UPS Charges F	Per Unit(In dollars)							Fixed and Var	iable Costs	of Potential V	Varehouse
13		Nortwest		Southwest	Upper Midwest	Lower midwest	Norteast	Southeast	Small Warehouse	Capacity(sma	LargeWarehouse	Capacity(large)
14	Seattle		1	1.25	1.75	2	2.5	2.75	300,000	2000000	500000	4000000
15	Denver		1.25	1.25	1.25	1.5	2	2.25	250,000	2000000	420000	4000000
16	St.Louis		1.75	1.75	1.25	1.25	1.5	1.75	220000	2000000	375000	4000000
17	Atlanta		2	2	1.5	1.25	1.5	1.25	220000	2000000	375000	4000000
18	Philadelphia		2.25	2.5	1.5	1.75	1.25	2	240000	2000000	400000	4000000

OBJECTIVE FUNCTION							
Shipping cost	=SUMPRODUCT(C22:H26,C14:H18)						
Inventory Holding	=475000*SUM(K22:K26)+0.165*SUM(C11:H11)						
Ware House	=SUMPRODUCT(I22:I26,I14:I18)+SUMPRODUCT(J22:J26,K14:K18)+SUM(C11:H11)*0.2						
Shipping cost	=(SUM(C11:H11)/4)*3						
Total Cost(\$)	=SUM(C41:C43)-C44						

Total cost calculation 2008

Total cost incurred in 2008 after doubling transportation costs is \$3774225

Total Cost Calculation For Year 2009

Below excel sheet is the formulation for the Total cost calculation in 2009

Total cost calculation For 2009

	В	С	D	Е	F	G	Н	1	J	K	L	
20	Decision Varia	bles						Fixed and Variable Costs of Potential Warehouse				
21		Nortwest	Southwest	Upper Midwest	Lower midwest	Norteast	Southeast	SmallWarehouse	LargeWareh	o Total		
22	Seattle	1036800	648000	0	0	0	0	1	. (0	1	
23	Denver	0	0	0	0	0	0	0) (0	0	COST CHART
24	St.Louis	0	0	0	0	0	0	0)	0	0	
	Atlanta	0	0	518400	712800	1134000	567000	0)	1	1	■Q1 ■Q2 ■Q3
	Philadelphia	0	0	0	0	0	0	0) (0	0	ſΩ
27												72605
28												
29	Capacity											τΟ
	Seattle	315200										10
	Denver	0										19585
	St.Louis	0										119
	Atlanta	1067800										4
34		0										330
35												7810030
36	Demand Cor	nstraint										788
37		Nortwest	Southwest	Upper Midwest	Lower midwest	Norteast	Southeast					
38		0	0	0	0	0	0					_
39												_
40	OBJECTIVE	FUNC	TION									_
41	Shipping cost	5925150										_
42	Inventory Holding	1711805										
	Ware House	1598400										
	Shipping Charge	3462750										COST (2009)\$
45	Total Cost(\$)	5772605										200. (2000)#

• Total cost incurred in 2009 after doubling transportation costs is \$5772605

Total Cost Calculation For Year 2010

Below excel sheet is the formulation for the Total cost calculation in 2010.

Total cost calculation For 2010

	_	_	_	_	_	_					
1.4	В	С	D	E	F	G	Н	ı	J	К	L
	DEMAND(2007)	320000	200000	160000	220000	350000	175000				
11	DEMAND(2010)	1866240	1166400	933120	1283040	2041200	1020600				
	UPS Charges 1	Per Unit(In doll						Fixed and Var			
13		Nortwest	Southwest	Upper Midwest	Lower midwest	Norteast	Southeast	Small Warehouse	Capacity(sma	LargeWarehouse	Capacity(large)
14	Seattle	1	1.25	1.75	2	2.5	2.75	300,000	2000000	500000	4000000
15	Denver	1.25	1.25	1.25	1.5	2	2.25	250,000	2000000	420000	4000000
16	St.Louis	1.75	1.75	1.25	1.25	1.5	1.75	220000	2000000	375000	4000000
	Atlanta	2		1.5	1.25	1.5	1.25	220000	2000000	375000	4000000
18	Philadelphia	2.25	2.5	1.5	1.75	1.25	2	240000	2000000	400000	4000000
19											
20	Decision Varia	bles						Fixed and Van	riable Costs	of Potential	Warehouse
21		Nortwest	Southwest	Upper Midwest	Lower midwest	Norteast	Southeast	SmallWarehouse	LargeWareho	Total	
22	Seattle	1866240	1166400	0	0	0	0	0	1	1	
23	Denver	0	0	0	0	0	0	0	0	0	
24	St.Louis	0	0	0	0	0	0	0	0	0	
25	Atlanta	0	0	933120	1283040	41200	1020600	0	1	1	
26	Philadelphia	0	0	0	0	2000000	0	1	0	1	
27											
28											
29	Capacity										
30	Seattle	967360									
31	Denver	0									
32	St.Louis	0									
33	Atlanta	722040									
34	Philadelphia	0									
35											
36	Demand Cons	straint									
37		Nortwest	Southwest	Upper Midwest	Lower midwest	Norteast	Southeast				
38		0		0	0						
39											
40	OBJECTIVE	FUNCTION									
41	Shipping cost	10165270									
42	Inventory Holding	2796249									
	Ware House	2777120									
44	Shipping Charge										
	Total Cost(\$)	9505689									
45	Total Cost(3)	5303089									

• Total cost incurred in 2009 after doubling transportation costs is \$9505689

Greedy Algorithm Based Solution Approach

- The Linear Programming solution mentioned above is not feasible in a constantly changing market in real life.
- That is to say, when solving each subproblems of the original problem, we always make a local optimal solution, until the end of the final problem. Because greedy algorithm does not consider a problem as a whole, the final solution often tends to be a local optimal solution to some extent.

Greedy algorithm for most problems can be summarized as the following main steps:

- Express the original problem in the form of mathematical models, and make its goal and initial state clear.
- Starting from the initial state, look for the local optimal solution in this state.
- Repeat until the end of the algorithm, finally get the solution.

Insights and Approximations

To make the greedy algorithm continue to work, the concentration is focused on how to convert the fixed costs to transport costs in a reasonable way. Suppose each warehouse holds average storage inventory (generally half of the maximum inventory), we can calculate the average fixed cost which per unit of inventory holds, then add it to the the original transport costs, thus forming a new transportation cost table.

The fixed cost is evened out throughout the expected demand from the warehouse for the particular year i.e. converting the fixed cost to variable cost and updating the transportation table

First of all, we will share the fixed costs equally into the transportation costs

Small Warehouse Capacity	2000000	Large Warehouse Capacity	4000000	
		mall Warehouse	lawa Y	Marahawaa
				Warehouse
	Fixed Cost	Average Fixed Cost	Fixed Cost	Average Fixed Cost
Seattle	300000	1.2	500000	1
Denver	250000	0.5	420000	0.84
St. Louis	220000	0.88	375000	0.75
Atlanta	220000	0.88	375000	0.75
Philadelphia	240000	0.96	400000	0.8
Average	246000		2070000	

The Average fixed cost is calculated by the formula,

Avg FC = Fixed Cost * Price per unit Shipment / Capacity

 By comparing the costs, we can presuppose the kind of warehouse we will rent or build, and according to the final usage we can change big warehouse to small warehouse

Seattle	Denver	St. Louis	Atlanta	Philadelphia
LARGE	SMALL	LARGE	LARGE	LARGE

• Add the average fixed costs to transportation costs, we can get the new transportation cost table.

	NEW TRANSPORTATION COST TABLE							
	NorthWest	SouthWest	Upper MidWest	Lower MidWest	NorthEast	SouthEast		
Seattle	3	3.5	4.5	5	6	6.5		
Denver	3	3	3	3.5	4.5	5		
St. Louis	4.2	4.25	3.25	3.25	3.75	4.25		
Atlanta	4.75	4.75	3.75	3.25	3.75	3.25		
Philadelphia	5.3	5.8	3.8	4.3	3.3	4.8		
MINIMUM	3	3	3	3.25	3.3	3.25		

Now, Using Greedy algorithm to find out the solutions in the next 3 years. from [2008 - 2010]

• Year 2008

The solution is to rent **small** warehouse in **Denver, Atlanta and Philadelphia**

Total cost = **\$2528535**

1	Zone	New Demand
2	Northwest	576,000
3	Southwest	360,000
4	Upper Midwest	288,000
5	Lower Midwest	396,000
6	Northeast	630,000
7	Southeast	315,000
8	Total Demand	2,565,000

	NorthWest	SouthWest	Upper MidWest	Lower MidWest	NorthEast	SouthEast
Seattle						
Denver	576000	360000	288000	396000		
St. Louis						
Atlanta						315000
Philadelphia					630000	

• Year 2009

The solution is to rent <u>small</u> warehouse in **Denver, St.Louis, Atlanta and Philadelphia**

Total cost = **\$3967984**

1	А	В	С	D
1	Zone	Demand in 2008	Increased Demand	New Demand
2	Northwest	576,000	460,800	1,036,800
3	Southwest	360,000	288,000	648,000
4	Upper Midwest	288,000	230,400	518,400
5	Lower Midwest	396,000	316,800	712,800
6	Northeast	630,000	504,000	1,134,000
7	Southeast	315,000	252,000	567,000
8	Total Demand	1,425,000		4,617,000

	NorthWest	SouthWest	Upper MidWest	Lower MidWest	NorthEast	SouthEast
Seattle						
Denver	1036800	648000	315200			
St. Louis			203200	712800		
Atlanta						567000
Philadelphia					1134000	

• Year 2010

Solution -

- rent <u>small</u> warehouse in Seattle, Denver, St.Louis,
- rent <u>large</u> warehouse in Atlanta

Total cost = **\$5360012**

A	A	В	C	D
1	Zone	Demand in 2009	Increased Demand	New Demand
2	Northwest	1,036,800	829,440	1,866,240
3	Southwest	648,000	518,400	1,166,400
4	Upper Midwest	518,400	414,720	933,120
5	Lower Midwest	712,800	570,240	1,283,040
6	Northeast	1,134,000	907,200	2,041,200
7	Southeast	567,000	453,600	1,020,600
8	Total Demand	4,617,000		8,310,600

	NorthWest	SouthWest	Upper MidWest	Lower MidWest	NorthEast	SouthEast
Seattle		1032760				
Denver	1866240	133760				
St. Louis			933120		344840	
Atlanta				1283040	1696360	1020600
Philadelphia						

Conclusion

Firstly, this is because greedy algorithm usually chooses the local optimal choice, instead considering it as a whole.

Secondly, in the operation process of the greedy algorithm, due to the limitation of algorithm itself and ignorance of holding costs and variable costs, it will have some impact on the results to some extent.

But, it does not mean that those algorithms which didn't give out a fine solution is useless, after some adjustments and improvements, they could also be efficient and effective.

CONCLUSIONS

Sportstuff.com one advantage was it has divided the customer demands from different cities into customer zones (or clustering) which has saved the time and information for calculating the best network for the supply chain.

The specified both algorithms (linear programming and greedy algorithm) do not guarantee the optimal solution but these give us the nearest optimal solution.

Further, more algorithms can be developed considering heuristics, when the demands and number of warehouse locations become huge in number.

