# $UNQ \mid CLP \mid Cheat Sheet$

Basado en Apuntes de la Materia

# PCF no tipado

### Gramática

 $t ::= x \mid \lambda x.t \mid tt \mid n \in \mathbb{N} \mid t+t \mid t-t \mid t \times t \mid t/t \mid \text{ifz } t \text{ then } t \text{ else } t \mid \mu x.t \mid \text{let } x=t \text{ in } t$ 

## Semántica Operacional

### Reglas Base

$$(\lambda x.u)t \to u[t/x] \qquad \qquad (\beta \ \text{reducción}) \qquad (1)$$

$$p \otimes q \to n \qquad \text{Si} \ p \otimes q = n, \ \text{con} \otimes = +, -, \times \text{ o} \ / \qquad (2)$$
ifz  $0 \ \text{then} \ t \ \text{else} \ u \to t \qquad \qquad (3)$ 
ifz  $n \ \text{then} \ t \ \text{else} \ u \to u \qquad \qquad \text{Si} \ n \neq 0 \qquad (4)$ 

$$\mu x.t \to t[\mu x.t/x] \qquad \qquad (5)$$

$$\text{let} \ x = t \ \text{in} \ u \to u[t/x] \qquad \qquad (6)$$

### Reglas de Congruencia

$$\frac{t \to u}{tv \to uv} \ rc_1 \qquad \qquad \frac{t \to u}{vt \to vu} \ rc_2 \qquad \qquad \frac{t \to u}{\lambda x.t \to \lambda x.u} \ rc_3$$

$$\frac{t \to u}{t \otimes v \to u \otimes v} \ rc_4 \qquad \qquad \frac{t \to u}{v \otimes t \to v \otimes u} \ rc_5 \qquad \qquad \frac{t \to u}{\text{ifz } t \text{ then } s \text{ else } v \to \text{ifz } u \text{ then } s \text{ else } v} \ rc_6$$

$$\frac{t \to u}{\mu f.t \to \mu f.u} \ rc_7 \qquad \frac{t \to u}{\text{let } x = t \text{ in } s \to \text{let } x = u \text{ in } s} \ rc_8 \qquad \qquad \frac{t \to u}{\text{let } x = s \text{ in } t \to \text{let } x = s \text{ in } u} \ rc_9$$

# Estrategias de Reducción

**Definición 3.1.** Notamos  $\rightarrow^*$  al cierre reflexivo y transitivo de  $\rightarrow$ .

**Definición 3.3.** Un término t:

- 1. está en forma normal si  $\nexists u$  tal que  $t \to u$ .
- 2. es normalizable si  $\exists u$  en forma normal tal que  $t \to^* u$ .
- 3. es fuertemente normalizable si  $\nexists$  secuencia infinita  $v_0, v_1, \ldots \mid t \to v_0 \to v_1 \to \ldots$

**Definición 3.4.** Sea  $\to_R$  una relación binaria, y  $\to_R^*$  su cierre reflexivo y transitivo.

finición 3.4. Sea  $\to_R$  una relacion  $\to_R$  satisface la propiedad del diamante si  $t \to_R v_1$  y  $t \to_R v_2$ implica que  $v_1 \to_R u$  y  $v_2 \to_R u$  para algún u.  $v_1$   $v_2$ 



- $\bullet$   $\to_R$  es Church-Rosser o confluente si  $\to_R^*$  satisface la propiedad del diamante.
- lacktriangledown tiene <u>formas normales únicas</u> si  $t \to_R^* v_1$  y  $t \to_R^* v_2$  para términos en forma normal  $v_1$  y  $v_2$  implica  $v_1 = v_2$ .

#### Lema 3.5.

- 1. Si  $\rightarrow_R$  satisface la propiedad del diamante, entonces es Church-Rosser.
- 2. Si  $\rightarrow_R$  es Church-Rosser, entonces tiene formas normales únicas.

Definición 3.8. Llamamos redex a un subtérmino de un término que puede reducir.

### Reducción débil

**Definición 3.9.** Una estrategia de reducción es débil si no reduce nunca el cuerpo de una función, es decir, si no reduce bajo  $\lambda$ .

### Call-by-name

**Definición 3.10.** La estrategia call-by-name reduce siempre el redex más a la izquierda. En caso de ser además débil, será el más a la izquierda que no esté debajo de un  $\lambda$ .

Teorema 3.11 (Estandarización). Si un término reduce a un término en forma normal, entonces la estrategia call-by-name termina.

# Call-by-value

**Definición 3.12.** A los términos t de PCF tales que  $FV(t) = \emptyset$  y que t esté en forma normal, se les llaman valores.

Definición 3.13. La estrategia call-by-value consiste en evaluar siempre los argumentos antes de pasarlos a la función. La idea es que  $(\lambda x.t)v$  reduce sólo cuando v esté en forma normal.

# PCF tipado

### Gramática

$$\begin{array}{l} A ::= \mathsf{nat} \mid A \Rightarrow A \\ t ::= x \mid \lambda x : A.t \mid tt \mid n \in \mathbb{N} \mid t \otimes t \mid \mathsf{ifz} \ t \ \mathsf{then} \ t \ \mathsf{else} \ t \mid \mu x : A.t \mid \mathsf{let} \ x : A = t \ \mathsf{in} \ t \end{array}$$

**Contextos** Un <u>contexto</u> nos da tipos para variables, entonces, en vez de decir  $\lambda x$ : nat.yx: nat  $\Rightarrow$  nat, decimos, si y: nat  $\Rightarrow$  nat, entonces  $\lambda x$ : nat.yx: nat  $\Rightarrow$  nat. La notación que usamos es la siguiente:

$$\underbrace{y: \mathsf{nat} \Rightarrow \mathsf{nat}}_{\mathsf{contexto}} \vdash \lambda x: \mathsf{nat}.yx: \mathsf{nat} \Rightarrow \mathsf{nat}$$

Genéricamente, queremos definir la relación  $\Gamma \vdash t : A$  que asocia un término t y un contexto  $\Gamma$  a un tipo A.

**Definición 4.2.** La relación de tipado  $\Gamma \vdash t : A$  se define inductivamente por:

$$\begin{array}{ll} \overline{\Gamma,x:A\vdash x:A} \ ax_v & \overline{\Gamma\vdash n:\mathsf{nat}} \ ax_c \\ \\ \frac{\Gamma,x:A\vdash t:B}{\Gamma\vdash \lambda x:A.t:A\Rightarrow B} \Rightarrow_i & \frac{\Gamma\vdash t:A\Rightarrow B}{\Gamma\vdash tu:B} \Rightarrow_e \\ \\ \frac{\Gamma\vdash t:\mathsf{nat} \ \Gamma\vdash u:\mathsf{nat} \ S\vdash u:\mathsf{nat}}{\Gamma\vdash t\otimes u:\mathsf{nat}} \otimes & \frac{\Gamma\vdash t:\mathsf{nat} \ \Gamma\vdash u:A}{\Gamma\vdash \mathsf{ifz} \ t \ \mathsf{then} \ u \ \mathsf{else} \ v:A} \ \mathsf{ifz} \\ \\ \frac{\Gamma,x:A\vdash t:A}{\Gamma\vdash \mu x:A.t:A} \ \mathsf{fix} & \frac{\Gamma,x:A\vdash t:B}{\Gamma\vdash \mathsf{let} \ x:A=u \ \mathsf{in} \ t:B} \ \mathsf{let} \end{array}$$

Donde ⊗ son cuatro reglas, una para cada operación aritmética.

**Teorema 4.4** (Subject reduction o conservación de tipos). Si  $\Gamma \vdash t : A \text{ y } t \to u$  entonces  $\Gamma \vdash u : A$ .

Teorema 4.5 (Teorema de Tait o normalización fuerte). Todo término tipado que no contenga a fix, termina.