FÍSICA

Quando necessário, considere as seguintes constantes:

Aceleração local da gravidade $g=10~\rm m/s^2$. Velocidade da luz no vácuo $c=3.0\times10^8~\rm m/s$. Massa molar do ar seco $m_{\rm ar}=29~\rm g/mol$. Massa molar da água $m_{\rm H2O}=18~\rm g/mol$. Constante de Rydberg $R_y=13.6~\rm eV$.

Questão 1. Um bloco de massa m_A encontra-se sobre a superfície de uma cunha de massa m_B , que desliza sem atrito em uma superfície plana devido à ação de uma força horizontal. O ângulo de inclinação da cunha é dado por θ . Sabendo que o coeficiente de atrito entre o bloco e a cunha é μ , calcule em função de m_A , m_B , θ , μ e g:

(a) a aceleração mínima à qual a cunha deve ser submetida para que o bloco inicie um movimento de subida;

(b) a intensidade da força de contato entre o bloco e a cunha.

Questão 2. Existe um limite inferior da distância Terra-Lua para que o nosso satélite não se desintegre por efeitos de maré. Para determinar uma expressão aproximada dessa distância, considere a Lua como a composição de dois semi-satélites esféricos idênticos, homogêneos e em contato. Os corpos descritos realizam um movimento circular ao redor da Terra, cuja massa é dada por M_T , com os três centros sempre colineares. A estabilidade da Lua é associada à tendência natural dessas duas metades manterem o contato entre si por efeitos gravitacionais. Considerando que o raio da lua R_L é muito menor do que a distância Terra-Lua D e que M_T é muito maior que a massa da Lua M_L , faça o que se pede.

Caso necessário, use: $(1+x)^n \approx 1 + nx$, se $|x| \ll 1$.

- (a) Considerando que os semi-satélites têm a mesma densidade da Lua, determine os seus raios r e massas m. Deixe sua resposta em termos dos dados do enunciado.
- (b) Estime o valor mínimo de D para que a Lua não se desintegre. Deixe sua resposta em termos de M_T , m e r.

Questão 3. As fontes F_1 e F_2 contém duas buzinas que geram ruídos de frequências próprias f_1 e f_2 $(f_2 > f_1)$, respectivamente. A fonte F_1 mantém-se em repouso, enquanto a fonte F_2 realiza um movimento harmônico simples de frequência f_m e amplitude A ao longo da reta que une os dois corpos. Um observador vizinho a F_1 registra um intervalo acústico entre os dois sons captados que varia de 5/4 até 3/2. Considere o tempo de propagação do som desprezível. Com base nas informações fornecidas, determine:

- (a) o intervalo acústico entre f_1 e f_2 ;
- (b) a relação entre f_m , A e a velocidade do som v_0 .

Questão 4. Considere um cubo de lado a, que contém n mols de um gás ideal em equilíbrio termodinâmico, sobre o qual é colocado um recipiente cilíndrico de altura h e raio r, completamente preenchido de um fluido de densidade ρ . O cilindro e o cubo são separados por uma membrana flexível. No topo do cilindro, há uma outra membrana flexível sobre a qual é colocada um corpo de massa m. Sabendo que a velocidade de propagação do som é v_0 a uma temperatura T_0 , que a pressão atmosférica vale P_{atm} e que uma fonte sonora gera uma onda com frequência f no interior do cubo, determine:

- (a) a temperatura do gás no interior do cubo;
- (b) uma expressão para o comprimento de onda dessa onda no meio gasoso.

Questão 5. Uma cidade localiza-se ao nível do mar, próxima à costa oceânica à oeste e a poucos quilômetros de uma cordilheira. Durante o dia, uma brisa constante úmida de ar flui da costa para a montanha. Um barômetro localizado na cidade indica uma pressão de 100 kPa a temperatura de 25°C. Por sua vez, um outro barômetro localizado no ponto mais alto da cordilheira indica uma pressão de 80 kPa. Considere que o calor específico molar do ar a volume constante vale 2R. Se necessário, considere: $\sqrt[3]{2} \approx 1,26$ e $\sqrt[3]{10} \approx 2,15$.

- (a) Estime a temperatura no ponto mais alto da cordilheira em Kelvin.
- (b) Considerando uma umidade relativa $\phi_0 = 50 \%$ ao nível do mar e $\phi_1 = 10 \%$ no ponto mais alto da cordilheira, estime o volume de água em m³ que precipita por hora na trajetória da brisa entre a cidade e o pico se o fluxo médio de ar seco que alcança o topo da cordilheira for de $2,0 \times 10^9$ kg/h.
- (c) Explique qualitativamente a razão pela qual desertos se formam no lado continental das cordilheiras

Questão 6. O LIGO é um observatório de ondas gravitacionais baseado em interferômetros de Michelson-Morley. Considere um interferômetro no qual um feixe LASER monocromático de 300 nm é dividido em dois feixes que percorrem dois caminhos ópticos de 4,0 km. Quando uma onda gravitacional atravessa esse sistema com velocidade c, o espaço-tempo é perturbado. Esse efeito pode ser aproximado como movimentos harmônicos simples do espelho 1 e do espelho 2 ao longo dos caminhos ópticos de seus respectivos feixes incidentes. Enquanto um comprimento de um braço do interferômetro contrai, o outro se dilata na mesma amplitude. Durante a passagem da onda gravitacional, o sinal medido no detector, originalmente igual a I_0 , passa a descrever um comportamento como o representado no gráfico abaixo.

Faça o que se pede nos itens a seguir.

- (a) Determine o comprimento de onda da onda gravitacional detectada.
- (b) Qual a máxima variação do comprimento de cada braço do interferômetro?

Questão 7. Considere o circuito ilustrado abaixo com uma fonte de corrente alternada senoidal de 60 Hz e tensão de pico de 120 V, um diodo ideal sujeito a uma diferença de potencial V_d , dois resistores, cujas resistências elétricas valem 50Ω e 100Ω , e um reostato de resistência variável R. Um diodo é um dispositivo eletrônico que permite a passagem de corrente em apenas um sentido ($V_d > 0$).

Faça o que se pede nos itens a seguir.

- (a) Descreva e esboce o gráfico da corrente i(t) que atravessa o reostato quando este está configurado para oferecer uma resistência elétrica de $R=25\Omega$.
- (b) Determine o valor de R que proporciona uma transferência máxima de potência da fonte alternada ao reostato.

Questão 8. Em um espectrômetro de massa, íons de massa m e carga q são acelerados de uma fonte S até uma fenda por uma diferença de potencial elétrico V. Assim que atravessam a fenda, acessam uma câmara na qual existe um campo magnético uniforme $B\hat{z}$, perpendicular ao plano ilustrado pela figura abaixo. Em condições normais de funcionamento, os íons entram na câmara com velocidade perpendicular ao anteparo e têm o movimento completamente contido no plano da figura até atingir a placa detectora a uma distância horizontal x da fenda de entrada.

Contudo, verificou-se um desvio horizontal d_x nos valores esperados de suas medidas, resultando em uma distância $x-d_x$, associada a uma elevação vertical do ponto de detecção de d_z . Suspeita-se que as partículas carregadas tenham uma componente de velocidade vertical de tal forma que a velocidade de entrada das mesmas faz um ângulo α com a direção normal ao anteparo. Assumindo essas considerações, calcule:

- (a) $\cos \alpha$ em termos de d_x , B, q, $m \in V$;
- (b) a distância d_z em termos de B, q, m, V e α .

Questão 9. Considere uma haste condutora móvel de massa m e resistência R sobre trilhos fixos condutores em forma de U, conforme a figura abaixo. Esse sistema está em uma região com campo magnético \vec{B} uniforme e perpendicular ao plano do trilho. Em um determinado instante, a haste é solta do repouso e cai sob a influência da gravidade \vec{g} e de uma força de resistência do ar, proporcional à sua velocidade, $\vec{F}_r = -\alpha \vec{v}$. Considerando que a resistência da haste é muito maior que a resistência do trilho, faça o que se pede.

- (a) Forneça o diagrama de forças que atuam na haste e indique suas intensidades.
- (b) Determine a velocidade terminal da haste.
- (c) Esboce o gráfico da velocidade v(t).

Questão 10. Uma placa metálica é iluminada com radiação de diferentes comprimentos de onda a fim de coletar fotoelétrons. Os elétrons emitidos são desacelerados por uma diferença de potencial, e os potenciais de corte para os quais a corrente elétrica deixa de ser detectada para cada comprimento de onda isolado são apresentados na tabela a seguir.

λ (Å)	$V_c(V)$
250	37
150	70
110	100
50	235

Faça o que se pede nos itens a seguir.

- (a) Determine, em eV, a função trabalho da placa metálica.
- (b) Em seguida, foi utilizada uma lâmpada de hidrogênio para iluminar a mesma placa metálica. Determine de quais saltos quânticos dos elétrons do átomo de H é possível obter radiação capaz de emitir fotoelétrons da placa metálica considerada.