SURF-Face: Face Recognition Under Viewpoint Consistency Constraints

Human Language Technology and Pattern Recognition, RWTH Aachen University, Aachen, Germany

Philippe Dreuw, Pascal Steingrube, Harald Hanselmann and Hermann Ney

Introduction

- ► Most face recognition approaches are sensitive to registration errors
 - rely on a very good initial alignment and illumination
- ► We propose/analyze:
 - grid-based and dense extraction of local features
 - ▶ block-based matching accounting for different viewpoints and registration errors

Feature Extraction

- ► Interest point based feature extraction
- ▶ SIFT or SURF interest point detector
- ▶ leads to a very sparse description
- ► Grid-based feature extraction
 - > overlaid regular grid
 - ▶ leads to a dense description

Orig. Grid

Feature Description

- Scale Invariant Feature Transform (SIFT)
 - ▶ 128-dimensional descriptor, histogram of gradients, scale invariant
- Speeded Up Robust Features (SURF)
 - ▶ 64-dimensional descriptor, histogram of gradients, scale invariant
- ► face recognition: invariance w.r.t. rotation is often not necessary ▶ rotation dependent upright-versions U-SIFT, U-SURF-64, U-SURF-128

Feature Matching

- Recognition by Matching
 - nearest neighbor matching strategy
 - be descriptor vectors extracted at keypoints in a test image **X** are compared to all descriptor vectors extracted at keypoints from the reference images $Y_n, n = 1, \dots, N$ by the Euclidean distance
 - ▶ decision rule:

$$X \to r(X) = \arg \max_{c} \left\{ \max_{n} \left\{ \sum_{x_i \in X} \delta(x_i, Y_{n,c}) \right\} \right\}$$

- \triangleright additionally, a ratio constraint is applied in $\delta(x_i, Y_{n,c})$
- Viewpoint Matching Constraints
- maximum matching: unconstrained
- grid-based matching: absolute box constraints
- ▶ grid-based best matching: absolute box constraints, overlapping
- Postprocessing
 - ▶ RANSAC-based outlier removal
 - ▶ RANSAC-based system combination

Matching Examples for the AR-Face and CMU-PIE Database

Feature	Maximum	Grid	Grid-Best	Maximum	Grid	Grid-Best	Feature
SIFT							
U-SIFT							

- ► Matching results for the AR-Face (left) and the CMU-PIE database (right)
 - maximum matching show false classification examples
 - grid matchings show correct classification examples
 - ▶ upright descriptor versions reduce the number of false matches

Databases

- ► AR-Face
 - variations in illumination
- many different facial expressions
- ► CMU-PIE

U-SIFT

variations in illumination (frontal images from the illumination subset)

0.25 0.25

0.25

Results: Manually Aligned Faces

► AR-Face: 110 classes, 770 train, 770 test Error Rates [%] Descriptor # Features Extraction Maximum Grid Grid-Best SURF-64 IPs 64×5.6 (avg.) 84.15 80.64 84.15 SIFT $128 \times 633.78 \text{ (avg.)}$ IPs 1.03 95.84 95.84 SURF-64 64x64-2 grid 64×1024 0.90 0.51 SURF-128 64x64-2 grid 128×1024 0.90 0.51 SIFT 64x64-2 grid 128×1024 11.03 0.90 U-SURF-64 64x64-2 grid 64×1024 0.90 1.03 U-SURF-128 1.55 1.29 64x64-2 grid 128×1024 1.03

 128×1024

► CMU-PIE: 68 classes, 68 train ("one-shot" training), 1360 test

64x64-2 grid

Descriptor	Extraction	# Features	Erro	Error Rates [%]		
			Maximum	Grid	Grid-Best	
SURF-64	IPs	$64 \times 6.80 \text{ (avg.)}$	93.95	95.21	95.21	
SIFT	IPs	$128 \times 723.17 \text{ (avg.)}$	43.47	99.33	99.33	
SURF-64	64x64-2 grid	64×1024	13.41	4.12	7.82	
SURF-128	64×64-2 grid	128×1024	12.45	3.68	3.24	
SIFT	64x64-2 grid	128×1024	27.92	7.00	9.80	
U-SURF-64	64x64-2 grid	64×1024	3.83	0.51	0.66	
U-SURF-128	64x64-2 grid	128×1024	5.67	0.95	0.88	
U-SIFT	64×64-2 grid	128×1024	16.28	1.40	6.41	

Results: Unaligned Faces

► Automatically aligned by Viola & Jones

5.97	CMU-PIE 15.32
	15.32
5.71	11.42
5.45	8.32
5.32	5.52
5.71	4.86
4.15	8.99
	5.32 5.71

Unaligned faces

Results: Partially Occluded Faces

► AR-Face: 110 classes, 110 train ("one-shot" training), 550 test

Descriptor	Error Rates [%]						
	AR1scarf	AR1sun	ARneutral	AR2scarf	AR2sun	Avg.	
SURF-64	2.72	30.00	0.00	4.54	47.27	16.90	
SURF-128	1.81	23.63	0.00	3.63	40.90	13.99	
SIFT	1.81	24.54	0.00	2.72	44.54	14.72	
U-SURF-64	4.54	23.63	0.00	4.54	47.27	15.99	
U-SURF-128	1.81	20.00	0.00	3.63	41.81	13.45	
U-SIFT	1.81	20.90	0.00	1.81	38.18	12.54	
U-SURF-128+R	1.81	19.09	0.00	3.63	43.63	13.63	
U-SIFT+R	2.72	14.54	0.00	0.90	35.45	10.72	
U-SURF-128+U-SIFT+R	0.90	16.36	0.00	2.72	32.72	10.54	

Conclusions

- ► Grid-based local feature extraction instead of interest points
- ► Local descriptors:
 - upright descriptor versions achieved better results
 - ▶ SURF-128 better than SURF-64
- System robustness: manually aligned/unaligned/partially occluded faces
- ▶ SURF more robust to illumination
- ▶ SIFT more robust to changes in viewing conditions
- RANSAC-based system combination and outlier removal

<surname>@cs.rwth-aachen.de