Introduction

Let \mathcal{P} be a population of total size n, on which we study two quantitative characteristics X and Y, we are interested in the relation between these two variables.

We start by defining the double statistical series of ${\mathcal P}$ for the characters X and Y

$$\mathcal{P} \longrightarrow \mathbb{R}^2$$
 $e_{ij} \mapsto (x_i, y_j)$

A first idea to try to show the relation between X and Y is to plot the scatter plot associated with the double statistical series.

Scatter plot

The scatter plot can have various shapes and these shapes will guide us in defining the notion of correlation.

Scatter plot

- **First situation:** the Scatter plot can be formed of aligned points so X and Y are linked by a functional relation of the form y = f(x).
- **Second situation:** the scatter plot is dispersed, the two observed values do not depend on each other, we say that the two characters X and Y are **independent**.
- Third situation: intermediate situation between independence and functional relationship.

Contingency table

X	<i>y</i> 1	y 2		Уј		Уі	Marginal numbers
<i>x</i> ₁	n ₁₁	<i>n</i> ₁₂		n_{1j}		n _{1/}	$n_{1\bullet}$
<i>x</i> ₂	<i>n</i> ₂₁	<i>n</i> ₂₂		n_{2j}		<i>n</i> ₂₁	<i>n</i> _{2•}
i i	:	:		:		:	:
Xi	n _{i1}	n _{i2}	• • •	n _{ij}		n _{il}	n _{i•}
i i	:	:		:		:	:
x_k	n_{k1}	n_{k2}		n _{kj}		n _{kl}	$n_{k\bullet}$
Marginal numbers	<i>n</i> •1	<i>n</i> •2		n∙j		n _• /	n

 n_{ij} is the partial numbers of the couple (x_i, y_j) and $n = \sum_{i=1}^k \sum_{j=1}^l n_{ij}$ $n_{i\bullet}$ is the marginal numbers of x_i and $n_{i\bullet} = \sum_{j=1}^l n_{ij}$ $n_{\bullet j}$ is the marginal numbers of y_j and $n_{\bullet j} = \sum_{i=1}^k n_{ij}$.

 $n = \sum_{i=1}^k n_{i\bullet} = \sum_{j=1}^l n_{\bullet j}$

Covariance

Definition

The couple (X, Y) is statistically independent if we have $\forall i = 1, \dots, k; j = 1, \dots, I$

$$f_{ij} = \frac{n_{ij}}{n} = f_{i\bullet} \times f_{\bullet j} = \frac{n_{i\bullet}}{n} \times \frac{n_{\bullet j}}{n}$$

Definition

We call covariance of the variables X and Y and we note Cov(X, Y), the number

$$Cov(X,Y) = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{l} n_{ij} (x_i - \overline{X}) (y_j - \overline{Y})$$
$$= \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{l} n_{ij} x_i y_j - \overline{X} \overline{Y}.$$

Covariance

Remark

Covariance

Remark

1 The marginal means \overline{X} and \overline{Y} are given by

$$\overline{X} = \frac{1}{n} \sum_{i=1}^k n_{i \bullet} x_i \text{ et } \overline{Y} = \frac{1}{n} \sum_{j=1}^l n_{\bullet j} y_j.$$

Covariance

Remark

1 The marginal means \overline{X} and \overline{Y} are given by

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{k} n_{i \bullet} x_i \text{ et } \overline{Y} = \frac{1}{n} \sum_{j=1}^{l} n_{\bullet j} y_j.$$

② If the variables X and Y are statistically independant then Cov(X,Y)=0.

Covariance

Remark

1 The marginal means \overline{X} and \overline{Y} are given by

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{k} n_{i \bullet} x_i \text{ et } \overline{Y} = \frac{1}{n} \sum_{j=1}^{l} n_{\bullet j} y_j.$$

② If the variables X and Y are statistically independant then $Cov\left(X,Y\right)=0$. But the reciprocal is not true

Covariance

Remark

1 The marginal means \overline{X} and \overline{Y} are given by

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{k} n_{i \bullet} x_i \text{ et } \overline{Y} = \frac{1}{n} \sum_{j=1}^{l} n_{\bullet j} y_j.$$

② If the variables X and Y are statistically independant then $Cov\left(X,Y\right)=0$. But the reciprocal is not true

Definition

If Cov(X, Y) = 0 we say that the variables X and Y are uncorrelated.

- 4 ロ ト 4 団 ト 4 豆 ト - 豆 - り 9 (で)

Linear coefficient of correlation

Definition

We call the linear coefficient of correlation of the variables X and Y the number

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}.$$

- The linear coefficient of correlation is invariant by change of origin and unit of measurement.
- ② We have $-1 \le \rho(X, Y) \le 1$
- **1** If $\rho(X, Y) = 0$, the variables X and Y are uncorrelated.

Remark

If $\rho(X, Y) > 0$: X and Y evolve in the same direction

Linear coefficient of correlation

Definition

We call the linear coefficient of correlation of the variables X and Y the number

$$\rho\left(X,Y\right) = \frac{\operatorname{Cov}\left(X,Y\right)}{\sigma_{X}\sigma_{Y}}.$$

- The linear coefficient of correlation is invariant by change of origin and unit of measurement.
- ② We have $-1 \le \rho(X, Y) \le 1$
- **1** If $\rho(X, Y) = 0$, the variables X and Y are uncorrelated.

Remark

If $\rho(X, Y) > 0$: X and Y evolve in the same direction

If $\rho(X, Y) < 0$: X and Y evolve in the opposite direction

Linear coefficient of correlation

Definition

We call the linear coefficient of correlation of the variables X and Y the number

$$\rho\left(X,Y\right) = \frac{\operatorname{Cov}\left(X,Y\right)}{\sigma_{X}\sigma_{Y}}.$$

- The linear coefficient of correlation is invariant by change of origin and unit of measurement.
- **2** We have $-1 \le \rho(X, Y) \le 1$
- **1** If $\rho(X, Y) = 0$, the variables X and Y are uncorrelated.

Remark

If $\rho\left(X,Y\right)>0$: X and Y evolve in the same direction If $\rho\left(X,Y\right)<0$: X and Y evolve in the opposite direction If $\rho\left(X,Y\right)$ is \pm near of 1: the correlation will be very good.

Example

Determine all the parameters for X and Y from the following contingency table

X	5	7	9	11	13	$n_{i\bullet}$
1				1	4	5
2			2	7	1	10
4			9	1		10
6	2	8	6	1		17
9	5	2	1			8
n₀j	7	10	18	10	5	50

Example

X	5	7	9	11	13	n_i .	n _i .x _i	$n_i.x_i^2$	$\sum_{j} n_{ij} x_i y_j$
1				1	4	5	5	5	63
2			2	7	1	10	20	40	216
4			9	1		10	40	160	368
6	2	8	6	1		17	102	612	786
9	5	2	1			8	72	648	432
n.j	7	10	18	10	5	50	239	1465	1865
n.jyj	35	70	162	110	65	442			
$n_{ij}y_j^2$	175	490	1458	1210	845	4178			
$\sum n_{ij} x_i y_i$	285	462	765	275	78	1865			

Example

$$\overline{X} = \frac{239}{50} = 4.78; \overline{Y} = \frac{442}{50} = 8.84$$

$$\sigma_X = \sqrt{\frac{1465}{50} - 4.78^2} = \sqrt{6.4516} = 2.54$$

$$\sigma_Y = \sqrt{\frac{4178}{50} - 8.84^2} = \sqrt{5.4144} \approx 2.3269$$

$$Cov(X, Y) = \frac{1865}{50} - 4.78 \times 8.84 = -4.9552$$

$$\rho(X, Y) = \frac{-4.9552}{2.54 \times 2.3269} \approx -0.8384.$$

Since $\rho\left(X,Y\right)<0$, then X and Y evolve in the opposite direction.

Study of the regression - Conditional distributions

To have a general idea on the relation between two characters we study the conditional distributions, for that we are interested in the couples (x_i, y_j) where we fix one of the variables.

Definition

We call the conditional mean of the variable Y knowing x_i , the real number

$$\overline{Y}/x_i = \frac{1}{n_i} \sum_{j=1}^l n_{ij} y_j.$$

Definition

We call the regression curve of Y in X the broken curve that connects the points $(x_i, \overline{Y}/x_i)$.

→□→ →□→ →□→ □ →○Q○

Study of the regression - Conditional distributions

In the same way we can construct the regression curve of X in Y.

Definition

We call the conditional mean of the variable X knowing y_j , the real number

$$\overline{X}/y_j = \frac{1}{n_{\cdot j}} \sum_{i=1}^k n_{ij} x_i.$$

Definition

We call the regression curve of X in Y the broken curve that connects the points $(\overline{X}/y_j,y_j)$.

Study of the regression - Conditional distributions

We can also determine the conditional variance.

Definition

We call the conditional variance of the vairable Y knowing x_i , the real number

$$\sigma_{Y/x_i}^2 = \frac{1}{n_{i.}} \sum_{j=1}^{l} n_{ij} \left(y_j - \overline{Y}/x_i \right)^2 = \frac{1}{n_{i.}} \sum_{j=1}^{l} n_{ij} y_j^2 - \left(\overline{Y}/x_i \right)^2.$$

Definition

We call th conditional variance of the vairable X knowing y_j , the real number

$$\sigma_{X/y_j}^2 = \frac{1}{n_{ij}} \sum_{i=1}^k n_{ij} \left(x_i - \overline{X}/y_j \right)^2 = \frac{1}{n_{ij}} \sum_{i=1}^l n_{ij} x_i^2 - \left(\overline{X}/y_j \right)^2.$$

Study of the regression - Conditional distributions

We will use the conditional variance or conditional standard deviation to measure the strength of the relationship of Y with X, by drawing the broken curves connecting the points $(x_i, \overline{Y}/x_i - \sigma_{Y/x_i})$ et $(x_i, \overline{Y}/x_i + \sigma_{Y/x_i})$.

The band between these two curves is called the regression corridor of Y in X

In the same way we can draw the regression corridor of X in Y by joining the points $\left(\overline{X}/y_j - \sigma_{X/y_j}, y_j\right)$ and $\left(\overline{X}/y_j + \sigma_{X/y_j}, y_j\right)$.