

2016 VCAA Math Methods Sample (v2 April) Exam 1 Solutions © 2016 itute.com

Q1a
$$\frac{d}{dx}\sqrt{4-x} = -\frac{1}{2\sqrt{4-x}}$$

Q1b
$$f(x) = \frac{x}{\sin x}, f'(x) = \frac{(\sin x)(1) - x(\cos x)}{\sin^2 x}$$

$$f'\left(\frac{\pi}{2}\right) = \frac{\left(\sin\frac{\pi}{2}\right)(1) - \frac{\pi}{2}\left(\cos\frac{\pi}{2}\right)}{\sin^2\frac{\pi}{2}} = 1$$

Q3a
$$\int \frac{1}{(2x-1)^3} dx = \frac{1}{2(-2)(2x-1)^2} = -\frac{1}{4(2x-1)^2}$$

Q3b
$$g'(x) = \sin(2\pi x)$$
, $g(x) = \int \sin(2\pi x) dx = -\frac{\cos(2\pi x)}{2\pi} + c$
Given $g(1) = \frac{1}{\pi}$, $g(1) = -\frac{\cos(2\pi)}{2\pi} + c = \frac{1}{\pi}$, $\therefore c = \frac{3}{2\pi}$

$$g(x) = \frac{3 - \cos(2\pi x)}{2\pi}$$

$$g(x) = \frac{3 - \cos(2\pi x)}{2\pi}$$

Q4a
$$\overline{X} = 0 \times 0.2 + 1 \times 0.2 + 2 \times 0.5 + 3 \times 0.1 = 1.5$$

Q4b
$$0.2^3 = 0.008$$

Q5a At the point of intersection,
$$\cos \frac{\pi}{3} = a \sin \frac{\pi}{3}$$

$$\therefore \frac{1}{a} = \tan \frac{\pi}{3} = \sqrt{3} \, , \therefore a = \frac{1}{\sqrt{3}}$$

Q5b
$$\tan x = \sqrt{3}$$
, $x = \frac{\pi}{3}, \frac{4\pi}{3}$, ... the other point of intersection is at $x = \frac{4\pi}{3}$.

Q6a
$$2\log_3 5 - \log_3 2 + \log_3 x = 2$$
, $\log_3 \frac{5^2 x}{2} = 2$
 $\frac{5^2 x}{2} = 3^2$, $x = \frac{18}{25}$

Q6b
$$3e^{t} = 5 + 8e^{-t}$$
, equation $\times e^{t}$, $3(e^{t})^{2} - 5e^{t} - 8 = 0$
 $(3e^{t} - 8)(e^{t} + 1) = 0$.

Since
$$e^t + 1 \neq 0$$
, .: $3e^t - 8 = 0$, $t = \log_e \frac{8}{3}$

Q7a
$$sd(\hat{p}) \le \frac{1}{100}$$
, $\sqrt{\frac{p(1-p)}{n}} \le \frac{1}{100}$ where $p = \frac{1}{5}$
 $\therefore \frac{2}{5\sqrt{n}} \le \frac{1}{100}$, $\sqrt{n} \ge 40$, $n \ge 1600$, \therefore smallest $n = 1600$

Q7b Pr(exactly one success) = Pr(SF) + Pr(FS)
= Pr(S)Pr(F | S) + Pr(F)Pr(S | F) =
$$\frac{1}{23} \times \frac{22}{22} + \frac{22}{23} \times \frac{1}{22} = \frac{2}{23}$$

Q8a
$$\int_{0}^{m} \frac{1}{5} e^{-\frac{x}{5}} dx = 0.5$$
, $\left[-e^{-\frac{x}{5}} \right]_{0}^{m} = 0.5$, $-e^{-\frac{m}{5}} + e^{0} = 0.5$
 $e^{-\frac{m}{5}} = 0.5$, $m = 5\log_{e} 2$

Q8b
$$\Pr(X < 1 | X \le 5 \log_e 2) = \frac{\Pr(X < 1)}{\Pr(X \le 5 \log_e 2)}$$

$$= \frac{\int_{0}^{1} \frac{1}{5} e^{-\frac{x}{5}} dx}{0.5} = \frac{\left[-e^{-\frac{x}{5}}\right]_{0}^{1}}{0.5} = \frac{-e^{-\frac{1}{5}} + e^{0}}{0.5} = 2\left(1 - e^{-\frac{1}{5}}\right)$$

Q9a
$$\frac{d}{dx}x^{2}\log_{e}x = x^{2}\left(\frac{1}{x}\right) + 2x\log_{e}x = x + 2x\log_{e}x$$

Q9b
$$\frac{d}{dx}x^2 \log_e x = x + 2x \log_e x$$

$$\therefore x \log_e x = \frac{1}{2} \left(\frac{d}{dx} x^2 \log_e x - x \right)$$

Area of the shaded region

$$= \int_{1}^{3} x \log_{e} x \, dx = \frac{1}{2} \left(\int_{1}^{3} \frac{d}{dx} x^{2} \log_{e} x \, dx - \int_{1}^{3} x \, dx \right)$$

$$= \frac{1}{2} \left[\left[x^2 \log_e x \right]_1^3 - \left[\frac{x^2}{2} \right]_1^3 \right] = \frac{1}{2} \left(9 \log_e 3 - \frac{9}{2} + \frac{1}{2} \right) = \frac{9}{2} \log_e 3 - 4$$

Q10a
$$y = ax^2 + bx$$
, $\frac{dy}{dx} = 2ax + b$

At
$$(2,4)$$
, $4 = a(2^2) + b(2)$, .: $4a + 2b = 4$, .: $2a + b = 2$... (1)

also gradient of the tangent =
$$2a(2) + b = 4a + b = \frac{0-4}{6-2}$$
,

$$a + b = -1$$
 ... (2)

Solve (1) and (2) simultaneously,
$$a = -\frac{3}{2}$$
 and $b = 5$

Q10bi Gradient of
$$VQ$$
 = gradient of QU

$$\therefore \frac{v-4}{0-2} = \frac{4-0}{2-u}, \ v-4 = \frac{8}{u-2}, \ v = 4 + \frac{8}{u-2}, \ v = \frac{4u}{u-2}$$

Q10bii Shaded area
$$A(u) = \frac{1}{2}uv - 8 = \frac{2u^2}{u - 2} - 8$$

Let
$$\frac{dA}{du} = 0$$
 to find the turning point(s).

$$\frac{(u-2)(4u)-(2u^2)(1)}{(u-2)^2}=0 \quad : \ 2u^2-8u=0 \ , \ 2u(u-4)=0 \ .$$

Since
$$u > 0$$
, .: $u = 4$ and $A = \frac{2(4^2)}{4-2} - 8 = 8$

First end point at
$$u = \frac{5}{2}$$
, $A = \frac{2(\frac{5}{2})^2}{\frac{5}{2} - 2} - 8 = 17$

Second end point at
$$u = 6$$
, $A = \frac{2(6^2)}{6-2} - 8 = 10$

$$A_{\min} = 8$$
 square units

Q10biii From part ii,
$$A_{\text{max}} = 17$$
 square units at $u = \frac{5}{2}$

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors