Lecture 14

Aakash Jog

Tuesday 16^{th} December, 2014

Contents

1	App	olications of Definite Integrals	2
	1.1	Area under a curve	2
	1.2	Length of a curve	3
	1.3	Volume of solids	4
		1.3.1 Volume of solids of revolution about x -axis	4
		1.3.2 Volume of solids of revolution about y -axis	7

1 Applications of Definite Integrals

1.1 Area under a curve

An area S of the region which is situated between two functions f(x) and g(x) over [a, b] is

$$S = \int_{a}^{b} |f(x) - g(x)| \, \mathrm{d}x$$

Example 1. Calculate the area S of the region which is between $y = \cos x$ and $y = \sin x$ over $[0, \pi/3]$.

Solution.

$$S = \int_{0}^{\pi/3} |\cos x - \sin x| \, \mathrm{d}x$$

Therefore,

$$S = \int_{0}^{\pi/4} (\cos x - \sin x) \, dx + \int_{\pi/4}^{\pi/3} (\sin x - \cos x) \, dx$$
$$= 2\sqrt{2} - \frac{3 + \sqrt{3}}{2}$$

1.2 Length of a curve

Example 2. Calculate the length L of a curve which is given by a differentiable function y = f(x) over [a, b].

Solution.

Solution.

$$L = \lim_{\Delta T \to 0} \sum_{i=1}^{n} |P_{i-1}P_i|$$
$$= \lim_{\Delta T \to 0} \sum_{i=1}^{n} \sqrt{(\Delta x_i)^2 + (\Delta y_i)^2}$$

By Lagrange Theorem for $[x_{i-1}, x_i]$,

$$\Delta y_i = f(x_i) - f(x_{i-1})$$

$$= f'(c_i) \Delta x_i$$

$$\therefore L = \lim_{\Delta T \to 0} \sum_{i=1}^n \sqrt{1 + (f'(c_i))^2} \Delta x_i$$

$$= \int_a^b \sqrt{1 + (f'(x))^2} \, \mathrm{d}x$$

Example 3. Find the length of the curve $y = f(x) = x^{3/2}$ on [1, 4].

$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx$$

$$\therefore L = \int_{1}^{4} \sqrt{1 + \left(\frac{3}{2}x^{1/2}\right)^{2}} dx$$

$$= \int_{1}^{4} \sqrt{1 + \frac{9}{4}x} dx$$

$$= \frac{4}{9} \cdot \frac{\left(1 + \frac{9}{4}(4)\right)^{3/2}}{\frac{3}{2}} - \frac{4}{9} \cdot \frac{\left(1 + \frac{9}{4}(1)\right)^{3/2}}{\frac{3}{2}}$$

$$= \frac{8}{27} \left(10^{3/2} - (\frac{13}{4})^{3/2}\right)$$

1.3 Volume of solids

Definition 1 (Volume of a cylindrical solid). The volume of a cylindrical solid with a base S and a height h is equal to V = Sh.

For a solid situated between two planes x = a and x = b with a cross-sectional area S(t) at any slice of the solid with the plane x = t, $t \in [a, b]$,

$$V = \lim_{\Delta T \to 0} \sum_{i=1}^{n} S(c_i) \Delta x_i$$
$$= \int_{a}^{b} S(x) dx$$

Example 4. Find the volume of a sphere.

Solution.

$$V = \int_{-R}^{R} \pi (R^2 - x^2) dx$$
$$= 2\pi \int_{-R}^{R} (R^2 - x^2) dx$$
$$= 2\pi \left(R^3 - \frac{R^3}{3} \right)$$
$$= \frac{4}{3}\pi R^3$$

1.3.1 Volume of solids of revolution about *x*-axis

If the graph of y = f(x) is rotated about the x-axis,

$$V = \int_{a}^{b} S(x) dx$$
$$= \int_{a}^{b} \pi y^{2} dx$$
$$= \pi \int_{a}^{b} (f(x))^{2} dx$$

Example 5. Find the volumes of solids of revolution which are obtained by rotating $y = f(x) = \sqrt{x}$, $x \in [0, 4]$ about the x-axis and the y-axis.

Solution.

$$V_x = \pi \int_a^b (f(x))^2 dx$$
$$= \pi \int_0^4 (\sqrt{x})^2 dx$$
$$= 8\pi$$

$$V_y = \pi \int_c^d (f(y))^2 dy$$
$$= \pi \int_0^2 (y^2)^2 dy$$
$$= \pi \int_0^2 y^4 dy$$
$$= \frac{32}{5} \pi$$

1.3.2 Volume of solids of revolution about y-axis

The volume of a solid of revolution which is obtained by rotating about the y-axis of a region between y = f(x), y = 0, x = a, x = b is

$$V = 2\pi \int_{a}^{b} x f(x) \, \mathrm{d}x$$

Example 6. Find the volumes of solids of revolution which are obtained by rotating the area under $y = f(x) = x(x-1)^2$, $x \in [0,1]$ about the x-axis and the y-axis.

Solution.

$$V_x = \pi \int_a^b (f(x))^2 dx$$
$$= \pi \int_0^1 (x(x-1)^2)^2 dx$$
$$= \pi \int_0^1 x^2 (x-1)^2 dx$$

$$V = 2\pi \int_{a}^{b} x f(x) dx$$
$$= 2\pi \int_{0}^{1} x \cdot x(x-1)^{2} dx$$