

福州清大教育

FuZhou Qingda Education

教师姓名	沈炜炜	学生姓名	郑皓天	首课时间	20181207	本课时间	20181207
学习科目	数学	上课年级	高一	教材版本		人教	A版
课题名称	函数及其性质						
重点难点	函数的单调性						

课前检测

填写下表,写出各函数的定义域、值域、单调性以及奇偶性.

f(x)	定义域	值域	单调性	奇偶性
x				
x^2				
$\log_2 x$				
3^x				
$\frac{1}{x}$				
\sqrt{x}				
$\log_x 2$				

一、函数的概念与表示

定义 一般地,有:

设 A, B 是非空的数集,如果按照某种确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x) 和它对应,那么就称 $f:A\mapsto B$ 为从集合 A 到集合 B 的一个函数,记作

$$y = f(x), \qquad x \in A.$$

其中,x 叫做自变量,x 的取值范围 A 叫做函数的定义域;与x 的值相对应的 y 值叫做函数值,函数值的集合 { $f(x)|x \in A$ } 叫做函数的值域,值域是集合 B 的子集.

- 函数是两个数集间的一种对应关系:
- 未指明定义域的情况下, 默认定义域取使得对应关系有意义的所有实数. 具体如下:
 - ① 分式的分母不为 0;
 - ② 偶次根式的被开方数不小于 0;
 - ③ 零次或负次指数次幂的底数不为零:
 - ④ 对数的真数大于 0;
 - ⑤ 指数、对数函数的底数大于0且不等于1;
 - ⑥ 实际问题对自变量的限制.
- 若函数 f(x) 定义域为 D, 且 f(A) 存在,则

 $A \in D$.

1.1 函数 $f(x) =$	$\sqrt{2^x-1}$ 的定义域是		()
A. $[0, +\infty)$	B. $[1, +\infty)$	C. $(-\infty, 0]$	D. $(-\infty, 1]$	
1.2 函数 $f(x) =$			()
	$\sqrt{\left(\log_2 x\right)^2 - 1}$			
$A.\left(0,\frac{1}{2}\right)$	B. $(2, +\infty)$	$C.\left(0,\frac{1}{2}\right)\bigcup\left(2,+\infty\right)$	$D.\left(0,\frac{1}{2}\right] \cup [2,+\infty)$	
1.3 已知函数 f(x) 的定义域为 (-1,0),则函	数 $f(2x+1)$ 的定义域为	()
A. $(-1,1)$	$B.\left(-1,-\frac{1}{2}\right)$		$D.\left(\frac{1}{2},1\right)$	
1.4 已知函数 f($2x+1$) 的定义域为 $\left(-2,\frac{1}{2}\right)$,	则函数 $f(x)$ 的定义域为	()
A. $\left(-\frac{3}{2}, -\frac{1}{4}\right)$	B. $\left(-1, \frac{3}{2}\right)$	C. $(-3, 2)$	D. $(-3, 3)$	
1.5 下列函数中,	其定义域和值域分别与函数	数 $y = 10^{\lg x}$ 的定义域和值域	相同的是()
A. y = x	$B. y = \lg x$	C. $y = 2^x$	D. $y = \frac{1}{\sqrt{x}}$	

二、函数的奇偶性

几何定义 一般地,图像关于 y 轴对称的函数称为偶函数,图像关于原点对称的函数称为奇函数.

代数定义 若对于函数 f(x) 定义域内任意一个 x,都有 f(-x) = f(x),则函数 f(x) 称为偶函数;若对于函数 f(x) 定义域内任意一个 x,都有 f(-x) = -f(x),那么函数 f(x) 称为奇函数;奇函数与偶函数的定义域关于原点对称

性质 • 奇函数左右对应中会有负号,偶函数没有负号,此处的规律可以参考"负负得正".(以下假设奇偶函数都不恒为 0)

- ① 奇士奇=奇;偶士偶=偶;奇士偶=非奇非偶
- ② 奇 ×(÷) 奇 = 偶; 偶 ×(÷) 偶 = 偶; 奇 ×(÷) 偶 = 奇.
- ③ 当复合函数的内外两层函数都具有奇偶性时,有偶即偶,两奇为奇.
- 奇(偶)函数在关于原点对称的两个区间上具有相同(相反)的单调性;
- 若奇函数 f(x) 在原点有定义,则 f(x) = 0.

2.1 设奇函数 f(x) 在 $(0, +\infty)$ 上增函数且 f(1) = 0,则不等式 $\frac{f(x) - f(-x)}{x} < 0$ 的解集为......() A. $(-1,0) \cup (1, +\infty)$ B. $(-\infty, -1) \cup (0,1)$ C. $(-\infty, -1) \cup (1, +\infty)$ D. $(-1,0) \cup (0,1)$ **2.2** 奇函数 f(x) 的定义域为 **R**,若 f(x+2) 为偶函数,且 f(1) = 1,则 $f(8) + f(9) = \dots$ () A. -2 B. -1 C. 0 D. 1

FuZhou Qingda Education

2.3 设函数 $f(x), g(x)$	x) 的定义域都为 \mathbf{R} ,且 $f(z)$	(x) 是奇函数, $g(x)$ 是偶图	函数,则下列结论正确的是	.()
A. <i>f</i> (<i>x</i>) <i>g</i> (<i>x</i>) 是偶函	函数 B. $ f(x) g(x)$ 是奇	函数 $C. f(x) g(x) $ 是	奇函数 D. $ f(x)g(x) $ 是奇	函数
2.4 已知函数 <i>f</i> (<i>x</i>)	$= \ln\left(\sqrt{1+9x^2} - 3x\right) + 1,$	则 $f(\lg 2) + f(\lg \frac{1}{2})$ 等	于	.()
A1	B. 0	C. 1	D. 2	
2.5 已知函数 <i>f</i> (<i>x</i>)	是定义在 R 上的偶函数,	且在区间 [0,+∞) 上单	上调递增,若实数 a 满足 $f(1)$	$\log_2 a) +$
$f(\log_{\frac{1}{2}}a) \le 2f(1),$,则 a 的取值范围是			.()
A. [1, 2]	$B.\left(0,\frac{1}{2}\right]$	$C.\left[\frac{1}{2},2\right]$	D. $(0, 2]$	
2.6 已知函数 <i>f</i> (<i>x</i>)	是定义在 ℝ上的奇函数,	$g(x)$ 是定义在 \mathbb{R} 的偶函	数,且 $f(x) - g(x) = 1 - x^2$	- x ³ ,则
g(x) 的解析式为.				.()
A. $1 - x^2$	B. $2 - 2x^2$	C. $x^2 - 1$	D. $2x^2 - 2$	
2.7 若 $f(x) = x \ln(x)$	$x + \sqrt{a + x^2}$) 为偶函数,见	a =		

三、函数的单调性

定义 一般地,设函数 f(x) 的定义域为 I:

- 1) 如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x_1 , x_2 , 当 $x_1 < x_2$ 时,都有 $f(x_1) < f(x_2)$, 那么就说函数 f(x) 在区间 D 上是增函数;
- 2) 如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x_1 , x_2 , 当 $x_1 < x_2$ 时,都有 $f(x_1) > f(x_2)$,那么就说函数 f(x) 在区间 D 上是减函数.

如果函数 f(x) 在区间 D 上是增函数或减函数,那么就说函数 f(x) 在区间 D 具有(严格的)单调性,区间 D 叫做函数 f(x) 的单调区间.

- 函数的单调性是定义在区间上的, 即单调性是函数在某个区间上的性质;
- 单调区间是定义域的子集:
- 单调区间的写法: 尽可能地使用闭区间 (不能写成闭区间的三种情形: ∞ 符号旁; 端点不在函数定义域内; 端点处函数增减性发生变化);
- 自变量量和函数值:变化趋势相同时,函数单调增;变化趋势相反时,函数单调减;简记为:同增异减.

单调递增
$$\Leftrightarrow$$
 $(x_1 - x_2)[f(x_1) - f(x_2)] > 0 \Leftrightarrow \frac{f(x_1) - f(x_2)}{x_1 - x_2} > 0$

单调递减 ⇔
$$(x_1 - x_2)[f(x_1) - f(x_2)] < 0 \Leftrightarrow \frac{f(x_1) - f(x_2)}{x_1 - x_2} < 0$$

判定 函数单调性的判断目前有以下几种常见方法:

• 根据图像判断:

- 根据定义: 由定义证明函数 f(x) 在给定区间 D 上单调性的步骤:
 - ① 取值: 任取 $x_1, x_2 \in D$, 且 $x_1 < x_2$;
 - ② 作差或作商: $f(x_1) f(x_2)$ 或 $f(x_1)/f(x_2)$; (当 f(x) 在区间 D 内恒大于 0 或恒小于 0 时才可使用作商法)
 - ③ 变形: 因式分解、配方、通分、根式有理化等等, 化简至能够简单判断正负号的式子;
 - ④ 定号: 判断 $f(x_1) f(x_2)$ 的正负 (或 $f(x_1)/f(x_2)$ 与 1 比大小), 进一步判断 $f(x_1)$ 与 $f(x_2)$ 的 大小值关系:
 - ⑤ 得出结论: $f(x_1) < f(x_2)$ 时函数 f(x) 单调递增; $f(x_1) > f(x_2)$ 时函数 f(x) 单调递减.
- 根据单调性已知的函数,并利用函数单调性的几个结论判断:
 - ① f(x) 与 f(x) + C(C 是常数) 具有相同的单调性;
 - ② k>0 时, kf(x) 与 f(x) 单调性相同; k<0 时, kf(x) 与 f(x) 单调性相反;
 - ③ 在公共定义域内,两增函数相加仍为增函数;减函数相减仍为减函数;
 - ④ 对于复合函数,"同增异减",即:

 $若\mu = g(x)$ 在 [a,b] 上是增 (滅) 函数,函数 $y = f(\mu)$ 在区间 [g(a),g(b)] (或区间 [g(b),g(a)]) 上是增 (滅) 函数,那么复合函数 y = f[g(x)] 在区间 [a,b] 上一定是单调的,且若 $f(\mu)$ 与 g(x) 单调性相同,则复合函数 y = f[g(x)] 单调递增;若 $f(\mu)$ 与 g(x) 单调递减.

2 1	北	£()	- ()	和 目 员 油 坚 粉	有如下四个命题:	
.j. I	レスユ	f(x).	g(x)	和定里调例数,	有如下四个简款:	

- ①若 f(x) 单调递增,g(x) 单调递增,则 f(x) g(x) 单调递增;
- ②若 f(x) 单调递增,g(x) 单调递减,则 f(x) g(x) 单调递增;
- ③若 f(x) 单调递减,g(x) 单调递增,则 f(x) g(x) 单调递减;
- ④若 f(x) 单调递减,g(x) 单调递减,则 f(x) g(x) 单调递减;

其中,正确的命题是.....()

A. (1)(3)

B. (1)(4)

C. 23

D. 24

 $A.\left(-\infty,\frac{1}{2}\right]$

B. $\left[\frac{1}{2}, +\infty\right)$

C. $\left[-\frac{1}{2}, 0\right]$

D. $\left| 0, \frac{1}{2} \right|$

A. $f(\pi) > f(-3) > f(-2)$

B. $f(\pi) > f(-2) > f(-3)$

C. $f(\pi) < f(-3) < f(-2)$

D. $f(\pi) < f(-2) < f(-3)$

3.4 (福州高级中学 16-17 高一期中考,11) 定义在 \mathbb{R} 上的偶函数 f(x),当 $x \in [1,2]$ 时,f(x) < 0 且 f(x) 增函数,给出下列四个结论:

(1) f(x) 在 [-2,-1] 上单调递增;

(2) 当 $x \in [-2, -1]$ 时,有 f(x) < 0;

福州清大教育

FuZhou Qingda Education

(3) $f(-x)$ 在 $[-2]$,-1] 上单调递减;	(4) $ f(x) $ 在 $[-2,-1]$ 」	亡单调递减.	
其中正确的结论是	是			.()
A. (1)(3)	B. (2)(4)	C. (2)(3)	D. (3)(4))	
3.5【2016 师大附	中 18】(本小题满分 12 分)	已知函数 $f(x)$ 为 \mathbb{R} 上	的偶函数. $x \le 0$ 时 $f(x)$	$= 4^{-x} -$
$a\cdot 2^{-x}, (a>0)$				
(I) 求函数 $f(x)$ 在	E (0,+∞) 上的解析式; (II)	求函数 $f(x)$ 在 $[0,+\infty)$	上的最小值.	

- **3.6** (福州市格致中学 2016-2017 高一上期中考试数学学科试卷 22) 已知二次函数 $f(x) = ax^2 + bx + 3$ 是 偶函数,且过点 (-1,4), g(x) = x + 4.
- (I) 求 f(x) 的解析式;
- (II) 求函数 $F(x) = f(2^x) + g(2^{x+1})$ 的值域;
- (III) 若 $f(x) \ge g(mx + m)$ 对 $x \in [2, 6]$ 恒成立,求实数 m 的取值范围.

四、 课后作业

4.1 如果 <i>f</i> (<i>x</i>) 是定义	在R上的奇函数,那么下列]函数中一定是偶函数的是	<u>=</u> ()
A. x + f(x)	B. $xf(x)$	C. $x^2 + f(x)$	D. $x^2 f(x)$	
4.2 己知函数 $g(x) =$	f(x) - x 是偶函数,且 $f(3)$	$=4$,则 $f(-3)=\ldots$	()
A4	B2	C. 0	D. 4	
4.3 设函数 $f(x), g(x)$	的定义域都为 \mathbf{R} , 且 $f(x)$ 是	奇函数, $g(x)$ 是偶函数,则	引下列结论正确的是()
A. $f(x) + g(x) $ 是偶	函数	B. $f(x) - g(x) $ 是奇函	数	
C. f(x) + g(x) 是偶	函数	B. $f(x) - g(x) $ 是奇函 D. $ f(x) - g(x)$ 是奇函)数	
4.4 (福州格致中学 1	6-17 高一期中考,10)若 f(x	$= -x^2 + 2ax = g(x) = -x^2$	$\frac{a}{c+1}$ 在区间 [1,2] 上都是减的	函
数,则实数 a 的取值	直范围		·····()
A. $(-1,0) \cup (0,1)$	B. $(-1,0) \cup (0,1]$	C.(0,1)	D. $(0,1]$	
4.5 设函数 $f(x) = \lg$	$\frac{2+x}{2-x}$, 则 $f\left(\frac{x}{2}\right)+f\left(\frac{2}{x}\right)$ 的気	定义域为	()
A. $(-4,0) \cup (0,4)$	B. $(-4, -1) \cup (1, 4)$	C. $(-2, -1) \cup (1, 2)$	D. $(-4, -2) \cup (2, 4)$	
4.6 (2009 四川卷文理	$\stackrel{!}{=} 12)$ 已知函数 $f(x)$ 是定义存	E实数集 ℝ 上的不恒为零的	的偶函数,且对任意实数 x 都	邹
有 $xf(x+1) = (1+$	$x)f(x)$,则 $f(\frac{5}{2})$ 的值是)
A. 0	B. $\frac{1}{2}$	C. 1	D. $\frac{5}{2}$	
4.7 若函数 $f(x) = \ln$	$(e^{3x}+1)+ax$ 为偶函数,则	<i>a</i> =		
4.8 若 f(x) 是定义在	R 上的奇函数,当 $x \le 0$ 时	$f(x) = 2x^2 - x$, $\mathbb{M} f(1)$) =	
4.9 设函数 f(x) 在 (-	-∞,+∞) 内有定义,下列函	数:		
	$y = xf(x^2);$			
3y = -f(-x)				
中必为奇函数的有_	(要求填写正确	角答案的序号)		
4.10【2016福州三中	17】(本小题满分 12 分)已	L知函数 $f(x) = \log_3 9x \cdot \log_3 9x$	$g_3 x + 2, x \in \left[\frac{1}{9}, 3\right].$	
(1) 求 $f(x)$ 最小值和	l最大值 ;			

(2) 若不等式 f(x) - 2m + 1 > 0 恒成立, 求实数 m 的取值范围.

福州清大教育

FuZhou Qingda Education

- **4.11** (福州八中 2015—2016 高一上学期期中考试 23) 设 f(x) 是定义在 \mathbb{R} 上的奇函数,且对任意 $a,b\in\mathbb{R}$,当 $a+b\neq 0$ 时,都有 $\frac{f(a)+f(b)}{a+b}>0$
- (1) 若 a > b, 试比较 f(a) 与 f(b) 的大小关系;
- (2) 若 $f(9^x 2 \cdot 3^x) + f(2 \cdot 9^x k) > 0$ 对任意 $x \in [0, \infty)$ 恒成立,求实数 k 的取值范围.

- **4.12** (福州市屏东中学 2016-2017 高一上期中 22) 已知函数 $f(x) = 2^x 2^{-2}$,定义域为 \mathbb{R} ; 函数 $g(x) = 2^{x+1} 2^{2x}$,定义域为 [-1, 1].
 - (1) 判断函数 f(x) 的奇偶性,不用证明;
 - (2) 求函数 g(x) 的最值;
 - (3) 若不等式 $f(g(x)) \le f(-3am + m^2 + 1)$ 对 $x \in [-1, 1], a \in [-2, 2]$ 上恒成立,求 m 的取值范围.

五、部分参考答案

- **1.1** A
- **1.2** C
- **1.3** B
- **1.4** A
- **1.5** D
- **2.1** D
- **2.2** D
- **2.3** C
- **2.4** D
- **2.5** C
- **2.6** C
- **2.7** 1
- **3.1** C
- **3.2** C
- **3.3** A
- **3.4** C

3.5 (I)
$$x \in (0, +\infty)$$
 时, $f(x) = f(-x) = 4^x - a \cdot 2^x$; (II) $a \ge 2$ 时, $f(x)_{\min} = f(\frac{a}{2}) = -\frac{a^2}{4}$; $0 < a < 2$ 时, $f(x)_{\min} = f(0) = 1 - a$

- **3.6** (I) $f(x) = ax^2 + 3$; (II) $(7, +\infty)$; (III) $m \le 1$
- **4.1** B
- **4.2** B
- **4.3** C
- **4.4** D
- **4.5** B
- **4.6** A
- **4.7** $-\frac{3}{2}$
- **4.8** -3
- **4.9** ②④
- **4.10** (1) $f_{\min}(x) = f(\frac{1}{3}) = 1$ $f_{\max}(x) = f(3) = 5$ (2) $m \in (-\infty, 1)$
- **4.11** (1)f(a) > f(b); (2)k < 1.
- **4.12** (1) 增函数; (2) $g_{\text{max}}(t) = g(1) = 1$; $g_{\text{min}}(t) = g(2) = 0$; (3) $m \in (-\infty, -6) \cup [6, +\infty) \cup \{0\}$