Controlling Separation in Turbomachines

Simon Evans, Christoph Himmel Bronwyn Power, Christian Wakelam Liping Xu, Tom Hynes, Howard Hodson

Outline

- · Four examples of flow control
 - Passive control of LP turbine blades
 - · Laminar separation control
 - Aspiration of a conventional axial compressor blade
 - Turbulent separation control
 - Compressor blade designed for aspiration
 - Turbulent separation control
 - Control of intakes in crosswinds
 - · Turbulent separation control

- For laminar flow control investigations, need:
 - Incoming wakes
 - Realistic FSTI
- · Importrant influences
 - Scale and shape of roughness elements
 - Reynolds number
 - Blade design
- Controlled ultra high lift airfoils have higher loss than lower lift airfoils

Turbulent Separation on Compressor Blades

- 1. Conventional Design with Aspiration
 - 2. Design for Aspiration

Problem statement

- Risk of high Reynolds number <u>turbulent</u> separation from suction surface due to
 - Low solidity
 - High Incidence
- Flow control can
 - Prevent separation
 - Increase blade loading
 - Act as Virtual VGV?

Conventional Compressor Blade with Aspiration

Conventional Compressor Blade with Aspiration

Variable Skew Jet Holes on Flat Plate

- Pitch angle set to 30 degrees
- Optimal skew angle approximately 60 degrees
- Simulates suction surface of compressor blade at i = 12.5 deg

Jet hole plug on flat plate surface. Variable skew angle achieved by rotating plug.

Aspirated Blade & Siren Valve

- $V_{jet} \le V_1$ Jets at 54% chord
- Jet pitch angle = 30 degrees
- Jet skew angle = 60 degrees
- Jet spacing 8 diameters
- AVDR=1 achieved by endwall suction

Pulsed jet output

Definition of loss coefficient

$$Y_{p} = \frac{p_{01} - p_{02M}}{\frac{1}{2} \rho V_{1}^{2}} + \left(\frac{\dot{m}_{j}}{\dot{m}_{2}}\right) \left(\frac{p_{0j} - p_{02M}}{\frac{1}{2} \rho V_{1}^{2}}\right) + \left(-\frac{\dot{m}_{s}}{\dot{m}_{2}}\right) \left(\frac{p_{0s} - p_{02M}}{\frac{1}{2} \rho V_{1}^{2}}\right)$$

measured jet loss term suction loss term loss term

Influence of flow control on the engine cycle

- · At realistic velocity ratios
 - Unsteady blowing not worthwhile cf steady blowing
 - Optimal skew angle approx 60 deg
- Endwall flow control
 - Required when using blade flow control
- For a conventional airfoil, flow control
 - offers benefit only over a limited range of incidence
 - could reduce solidity from 1.5 to 1.0 but at cost to efficiency (0.3%)

3D CFD of Flow Inside Blade Bleed Slot

- Aspect ratio ~1
- Endwall flow control removes corner separation
- · Slot optimisation is essential for uniform bleed flow

- · Good efficiency achievable due to
 - Relatively low cost of bleed flow (2.6% of mass flow)
 - High loading/low solidity

0.015

Bleed Mass Fraction

0.02

0.025

0.03

0.035

- · Above excludes bleed loss
- · "Soft failure" when aspiration reduces

0 0

0.005

0.01

- Must design with control in mind
- Experimental results from low speed cascade show design is viable
- "Soft failure" when aspiration mass flow reduces

- Vortex generator jets positioned between the stagnation point and intake highlight delay shock induced separation
- Distortion is reduced over the full range of operating conditions
- A ratio formed from appropriate lip static pressures is a good indicator of when to apply control

- In the case of LP turbines
 - Problem is one of laminar separation control
 - Incoming wakes & realistic turbulence levels needed for tests
 - Increasing lift+flow control does not improve efficiency
- In the case of compressors
 - Problem is one of turbulent separation control
 - Unsteady blowing not worthwhile compared to steady blowing
 - Suction better than blowing
 - Endwall flow control necessary
 - For a conventional airfoil, benefit is limited
 - Aggressive designs for use with aspiration are viable

Conclusions (cont)

- · In the case of intakes
 - Shock induced separation occurs as the fan face Mach number is increased (exact value depends on Reynolds No.)
 - VGJs between the stagnation point and intake highlight delay shock induced separation over a range of Mach No.
 - The distortion resulting from separation is reduced over full range of operating conditions
 - A ratio formed from appropriate lip static pressures is good indicator of when to apply control

