

Recent progress of self-supervised speaker representation learning at Tencent Al Lab

Chunlei Zhang

Tencent Al Lab

05/28/2022

Outline

Introduction

- SSL in speech processing, what and why?
- Generative/predictive learning (frame-level)
- Contrastive learning
- Non-contrastive learning

Speaker embedding training with SSL

- ► MoCo speaker embedding and class-collision corrections (C3)
- DINO speaker embedding and C3-DINO
- Experimental results and discussion

Others

- Disentangled speech representation learning
- Applications

SSL in speech processing, what and why?

Self-supervised learning:

A form of unsupervised leaning where data itself provides the supervision. SSL usually defines a proxy loss, which is directly or indirectly connected with the downstream tasks.

Why SSL?

- Fully supervised learning frameworks oftentimes are domain-specific and expensive to build.
- Vast numbers of unlabeled (in-domain) data are available, a small portion of labeled data; however, it is difficult to directly apply them to the supervised frameworks.
- ► And both machine and human annotators introduce their systematic errors/bias into the labels, which revent the supervised models from achieving the optimal performance

Generative/predictive learning (frame-level)

(a) Mockingjay [Liu et.al. 2020]

(b) HuBERT [Hsu et.al. 2021]

(c) BEST-RQ [Chiu et.al. 2022]

Contrastive learning (instance-level)

General objective is, after training:

- Supervised contrastive losses: triplet loss [Zhang et.al. 2017], GE2E [Wan et.al. 2018], SupCon [Khosla et.al. 2020]
- ► Self-supervised contrastive loss: InfoNCE loss [Oord et.al. 2018]
- ▶ Discriminating positive and negative examples, MoCo [He et al., 2020], SimCLR [Chen et al., 2020]

$$\mathcal{L}_{N} = -\mathbb{E}_{X} \left[\log \frac{\exp \left(f(\mathbf{x})^{T} f(\mathbf{x}^{+}) \right)}{\exp \left(f(\mathbf{x})^{T} f(\mathbf{x}^{+}) \right) + \sum_{j=1}^{N-1} \exp \left(f(\mathbf{x})^{T} f(\mathbf{x}_{j}) \right)} \right]$$

Non-contrastive learning (instance-level)

- ▶ BYOL links to Mockingjay, BYOL's latent "Target" is from a momentum encoder (teacher), while Mockingjay's "Target" is the raw feature
- ▶ DINO is more like HuBERT and BEST-RQ, DINO's "Target" is from the distribution sharping of the teacher output, HuBERT and BEST-RQ is from a tokenizer (either iterative k-means index or random projection index)

MoCo speaker embedding

- A data augmentation module that transforms a data example into two different views, which formulates a positive pair.
- ► A neural encoder module that encodes the input features into a fixed latent space.
- ▶ A MLP projection head that maps the latent representation to a *L*₂-normalized embedding (i.e., speaker embedding) where a contrastive loss is applied.

$$\mathcal{L}_{MoCo} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\exp \left(\mathbf{v}_{qi} \cdot \mathbf{v}_{ki}^{\prime} / \tau\right)}{\exp \left(\mathbf{v}_{qi} \cdot \mathbf{v}_{ki}^{\prime} / \tau\right) + \sum_{j=1}^{K} \exp \left(\mathbf{v}_{qi} \cdot \mathbf{v}_{kj} / \tau\right)},$$

Class-Collision Correction (C3) for MoCo systems

MoCo's negative samples in the memory queue are randomly sampled. It may contain wrong anchor, negative pairs – ${\bf class\text{-}collision}$ problem.

Proposal 1: Re-weighted InfoNCE loss

$$\mathcal{L}_{i} = -\log \frac{\exp \left(\mathbf{v}_{qi} \cdot \mathbf{v}_{ki}^{\prime} / \tau\right)}{\exp \left(\mathbf{v}_{qi} \cdot \mathbf{v}_{ki}^{\prime} / \tau\right) + \sum_{j=1}^{K} \exp \left(\mathbf{v}_{qi} \cdot \mathbf{v}_{kj} / \tau\right)}, \quad (2)$$

When \mathcal{L}_i satisfies two conditions:

$$\mathbf{v}_{qi} \cdot \mathbf{v}_{kj} > 0.8 \times \mathbf{v}_{qi} \cdot \mathbf{v}'_{ki}, j \in [1, K], \tag{3}$$

$$\mathbf{v}_{qi} \cdot \mathbf{v}'_{ki} > 0.4,\tag{4}$$

We can "predict" \mathcal{L}_i contains "false negatives", and re-weight the MoCo loss \mathcal{L}_{MoCo} as:

$$\mathcal{L}_{re_MoCo} = \omega_1 \mathcal{L}_{MoCo}^{tn} + \omega_2 \mathcal{L}_{MoCo}^{fn}, \tag{5}$$

Class-Collision Correction (C3) for MoCo systems

Proposal 2: ProtoNCE loss

▶ Introduce a prototype memory bank. Perform clustering on all samples (with cluster IDs) and only sample negatives prototypes from different classes. Positives are from the same class prototypes.

 $\mathcal{L}_{C3\ MoCo} = \mathcal{L}_{re\ MoCo} + \alpha \mathcal{L}_{pNCE}$

(7)

- Dynamically estimate the cluster density for each epoch
- Later, extended to queue based ProtoNCE loss [Peng et .al. 2022]

DINO speaker embedding

- ► A softmax layer with **K** dimension is added after the embedding layer in each branch
- ► Centering: $C = mC + (1 m)\frac{1}{B}\sum_{i=1}^{B}X^{i}$, representing the EMA of the batch centers (m = 0.99)
- $ightharpoonup au_t$ and au_s is the teacher/student branch temperature coefficient.

DINO speaker embedding

 $\boldsymbol{\tau}$ is the key that determines the direction of the self-distillation process.

Figure 1: A τ =0.1 applied to logits [0.2 0.9 0.5 0.7]

Avoid training collapse:

- Without centering, the training may end up with one position (class) dominates for all samples.
- Without distribution sharping, the training may end up with a flatten distribution for all samples
- K is important, the initial center C is important

A multi-stage C3-DINO training framework

Figure 2: A multi-stage training framework.

- For the C3-MoCo training, the first stage is trained the infoNCE loss.
- ► Then, replace the InfoNCE loss with the re-weighted InfoNCE loss for the second stage, and jointly train with the ProtoNCE loss for stage 3.
- Finally, using the pretrained C3-MoCo model as the initial, and apply the DINO loss.

Baseline MoCos and DINOs:

Table 1: The SV performances of MoCo and DINO baseline systems w.r.t. three main stream architectures on Voxceleb1 test set. We use R34L and E-TDNN to represent ResNetSE34L and ECAPA-TDNN.

Training		EER(in%)			minDCF		
Data		TDNN	R34L	E-TDNN	TDNN	R34L	E-TDNN
Vox1	MoCo	11.3	10.8	9.8	0.76	0.72	0.67
Vox2	МоСо	8.5	8.3	7.3	0.63	0.62	0.61
Vox1	DINO	7.2	6.8	6.1	0.76	0.72	0.52
Vox2	DINO	5.6	4.6	4.0	0.51	0.50	0.48

► K=10000, encoders and **C** are randomly initialed

Impact of K in the DINO systems:

Figure 3: The SV performance (EER) of the DINO speaker embedding systems w.r.t. different dimension K. Specifically, K is [6000, 10000, 20000, 30000, 40000, 50000, 60000, 65536, 98304, 131072].

► The best DINO baseline system with ECAPA-TDNN achieves 3.3% EER.

Progressive system development:

Table 2: Progressive results with the proposed techniques (EER in%), reported with the best ECAPA-TDNN model.

system	method	Vox1 test	VoxSRC21 Dev
1	MoCo	7.3	17.5
2	+ re-weighted infoNCE	6.9	16.9
3	++ProtoNCE (C3-MoCo)	6.4	16.4
4	DINO	3.3	12.7
5	C3-DINO ₁ (sys.3+4 multi-task)	3.4	13.2
6	C3-DINO ₂ (sys. 1 initial)	2.9	12.5
7	C3-DINO ₂ (sys. 2 initial)	2.7	12.4
8	C3-DINO ₂ (sys. 3 initial)	2.5	12.2
9	C3-DINO ₂ (sys. 4 initial)	3.0	12.7

- Better MoCo initial results in better DINO system
- Multi-task with MoCo and DINO does not outperform the single objective DINO system

Table 3: Ablation study on Vox1 test set (EER in%).

supervision	method	Vox1 test
self-sup	i-vector [Huh et.al. 2020]	15.3
self-sup	AP+AAT[Huh et.al. 2020]	8.6
self-sup	MoCo+ProtoNCE[Xia et.al. 2022]	8.2
self-sup	MoCo (E-TDNN) [ID Lab 2020]	7.3
self-sup	Siaseme+SSR [Sang et.al. 2021]	7.0
self-sup	C3-MoCo (system 3)	6.4
self-sup	DINO [Cho et.al. 2021]	4.8
self-sup	DINO [Heo et.al. 2022]	4.8
self-sup	C3-DINO ₂ (system 8)	2.5
self-sup	C3-DINO ₂ (system 8 + LDA)	2.2
semi-sup	GCL+PLDA (15% label)[Inoue et.al. 2020]	6.0
semi-sup	MoCo+SupCon (15% label) [Xia et.al. 2020]	4.3
sup	X-vector [Snyder et.al. 2018]	3.1
sup	ECAPA-TDNN [ID Lab et.al. 2020]	0.9

Our results represent SOTA for both contrastive and non-contrastive SSL speaker systems.

Open questions

1. Self-training on SSL embeddings instead of on the raw features?

Figure 4: DET curves of the proposed SV systems on Vox1 test set.

- Pseudo-labeling/iterative training works well for Voxceleb task, but not necessary good for a much larger scale data with unknown speaker number prior information?
- ► Train a large scale SSL initial embedding, and build "supervised" back-end classifiers are more efficient and proper?
- ► Initial SSL embedding are sufficiently good and back-end classifiers are working great again [Brummer et.al 2022, Wang et.al. 2022].

Open question

2. DINO is all your need in SSL speaker embedding training ?

Table 4: The SV performance (EER in %) conditioned on different scales of training data. With Tencent in-house training and test data.

method	2k	4k	6k	8k	10k	12k
МоСо	8.5	7.5	6.8	6.3	5.7	5.4
DINO	6.3	5.4	4.9	4.5	4.4	4.3
SupCon	5.2	4.6	4.2	3.9	3.7	3.6

- ▶ Looks like DINO is still better than MoCo on all conditions.
- MoCo does not seem to be saturating.

Others - Disentangled representation learning

Figure 5: The system diagram of conditional DSVAE.

Applications

	content	spk embd	
model	Phn ACC %	SV EER %	SV EER %
DSVAE [Lian et.al. 2022]	30.5	40.5	4.8
C-DSVAE(UA)	53.6	43.2	3.9
C-DSVAE(+MP)	68.2	41.6	4.1
C-DSVAE(++LibriTTS)	72.1	44.5	3.6
C-DSVAE(FA)	54.6	43.4	3.8
C-DSVAE(+MP)	70.5	42.3	3.6
C-DSVAE(++LibriTTS)	73.3	45.6	3.3

Table 5: Objective analysis of content embeddings and speaker embeddings.

- Speaker embedding for speaker verification, voice conversion, zero-shot voice cloning in TTS
- ASR pretraining, like HuBERT, WavLM and BEST-RQ etc.
- Voice conversion and TTS.

Reference

SSL for speaker embedding:

- Wei Xia, Chunlei Zhang, Chao Weng, Meng Yu, and Dong Yu. "Self-supervised Text-independent Speaker Verification using Prototypical Momentum Contrastive Learning." In IEEE ICASSP 2021.
- Junyi Peng, Chunlei Zhang, Jan "Honza" Černocký, Dong Yu. "Progressive contrastive learning for self-supervised text-independent speaker verification". In ISCA Odyssey 2022.
- Chunlei Zhang, Dong Yu. "State-of-the-Art Self-Supervised Learning Based Speaker Verification". Submitted to IEEE J. Sel. Topics Signal Process., 2022.

Disentangled speech representation learning:

- * Jiachen Lian, *Chunlei Zhang, Gopala K. Anumanchipalli and Dong Yu". UTTS: Unsupervised TTS with Conditional Disentangled Sequential Variational Auto-encoder". Submitted to NeurIPS 2022. (*Equal contribution).
- * Jiachen Lian, *Chunlei Zhang, Gopala K. Anumanchipalli and Dong Yu". Towards Improved Zero-shot Voice Conversion with Conditional DSVAE". Submitted to ISCA Interspeech 2022. (*Equal contribution).
- Jiachen Lian, Chunlei Zhang, Dong Yu. "Robust Disentangled Variational Speech Representation Learning for Zero-shot Voice Conversion". In IEEE ICASSP 2022.

Thanks for your attention!