Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Variable Stepsize Scaling

Yu-Guan Hsieh, Franck lutzeler, Jérôme Malick, Panayotis Mertikopoulos

NeurIPS 2020

Outline

1 Background: Saddle-point optimization

2 Literature review: Convergence of extragradient

3 Contributions: Explore aggressively, update conservatively

Outline

1 Background: Saddle-point optimization

② Literature review: Convergence of extragradient

3 Contributions: Explore aggressively, update conservatively

Saddle-point problem

Find
$$x^* = (\theta^*, \phi^*)$$
 such that

$$\mathcal{L}(\theta^{\star}, \phi) \leq \mathcal{L}(\theta^{\star}, \phi^{\star}) \leq \mathcal{L}(\theta, \phi^{\star}) \quad \text{for all } \theta \in \mathbb{R}^{d_1} \text{ and all } \phi \in \mathbb{R}^{d_2}.$$

 $\mathcal{L}: \mathbb{R}^{d_1} imes \mathbb{R}^{d_2} o \mathbb{R}$ is a differentiable function.

Saddle-point problem

Find
$$x^* = (\theta^*, \phi^*)$$
 such that

$$\mathcal{L}(\theta^{\star}, \phi) \leq \mathcal{L}(\theta^{\star}, \phi^{\star}) \leq \mathcal{L}(\theta, \phi^{\star}) \quad \text{for all } \theta \in \mathbb{R}^{d_1} \text{ and all } \phi \in \mathbb{R}^{d_2}.$$

 $\mathcal{L}: \mathbb{R}^{d_1} \times \mathbb{R}^{d_2} \to \mathbb{R}$ is a differentiable function.

• Arising from: • GANs • adversarial training • robust optimization • self-play in RL . . . Caveat: saddle-point problem versus minimax optimization

Saddle-point problem

Find
$$x^* = (\theta^*, \phi^*)$$
 such that

$$\mathcal{L}(\theta^{\star},\phi) \leq \mathcal{L}(\theta^{\star},\phi^{\star}) \leq \mathcal{L}(\theta,\phi^{\star}) \quad \text{for all } \theta \in \mathbb{R}^{d_1} \text{ and all } \phi \in \mathbb{R}^{d_2}.$$

 $\mathcal{L}: \mathbb{R}^{d_1} \times \mathbb{R}^{d_2} \to \mathbb{R}$ is a differentiable function.

- Arising from: GANs adversarial training robust optimization self-play in RL . . .
 Caveat: saddle-point problem versus minimax optimization
- Associated vector field: $V(\theta, \phi) = (\nabla_{\theta} \mathcal{L}(\theta, \phi), -\nabla_{\phi} \mathcal{L}(\theta, \phi))$ First order optimality condition: $V(x^*) = 0$

The failure of gradient descent/ascent in bilinear games

Algorithm

Gradient descent/ascent

$$\theta_{t+1} = \theta_t - \gamma_t \nabla_{\theta} \mathcal{L}(\theta_t, \phi_t)$$

$$\phi_{t+1} = \phi_t + \gamma_t \nabla_{\phi} \mathcal{L}(\theta_t, \phi_t)$$

Equivalently,
$$X_{t+1} = X_t - \gamma_t V(X_t)$$
.

$$\min_{\theta \in \mathbb{R}} \max_{\phi \in \mathbb{R}} \theta \phi; \quad V(\theta, \phi) = (\phi, -\theta)$$

Remedy: Extragradient [Korpelevich 1976]

Algorithm

Extra-gradient

$$X_{t+\frac{1}{2}} = X_t - \gamma_t V(X_t) \text{ (leading state)}$$

$$X_{t+1} = X_t - \gamma_t V(X_{t+\frac{1}{2}}) \text{ (base state)}$$

$$\min_{\theta \in \mathbb{R}} \max_{\phi \in \mathbb{R}} \theta \phi; \quad V(\theta, \phi) = (\phi, -\theta)$$

Remedy: Extragradient [Korpelevich 1976]

Algorithm

Extra-gradient

$$X_{t+\frac{1}{2}} = X_t - \gamma_t V(X_t)$$
 (leading state)

$$X_{t+1} = X_t - \gamma_t V(X_{t+\frac{1}{2}})$$
 (base state)

$$\min_{\theta \in \mathbb{R}} \max_{\phi \in \mathbb{R}} \theta \phi; \quad V(\theta, \phi) = (\phi, -\theta)$$

Outline

Background: Saddle-point optimization

2 Literature review: Convergence of extragradient

3 Contributions: Explore aggressively, update conservatively

Extragradient in the deterministic setting

Blanket assumption: V is β -Lipschitz continuous

Deterministic	Additional Hypothesis	Convergence type	Rate
Korpelevich 1976	Monotone	Last iterate	-
Tseng 1995	Monotone + Error bound	Last iterate	Geometric
Nemirovski 2004	Monotone	Ergodic	$\mathcal{O}(1/t)$

Extragradient in the deterministic setting

Blanket assumption: V is β -Lipschitz continuous

Deterministic	Additional Hypothesis	Convergence type	Rate
Korpelevich 1976	Monotone	Last iterate	-
Tseng 1995	Monotone + Error bound	Last iterate	Geometric
Nemirovski 2004	Monotone	Ergodic	$\mathcal{O}(1/t)$

Extensive literature: • Different convergence metrics and assumptions • Adaptive and universal methods • Dealing with non-smoothness • More efficient variants . . .

Extragradient in the stochastic setting

Stochastic oracle $(s \in \mathbb{N}/2)$

$$\hat{V}_s = V(X_s) + Z_s \qquad (i) \ \mathbb{E}[Z_s \mid \mathcal{F}_s] = 0 \qquad (ii) \ \mathbb{E}[\|Z_s\|^2 \mid \mathcal{F}_s] \le \sigma^2$$

Extragradient in the stochastic setting

Stochastic oracle $(s \in \mathbb{N}/2)$

$$\hat{V}_s = V(X_s) + Z_s \qquad (i) \quad \mathbb{E}[Z_s \mid \mathcal{F}_s] = 0 \qquad (ii) \quad \mathbb{E}[\|Z_s\|^2 \mid \mathcal{F}_s] \le \sigma^2$$

V is β -Lipschitz continuous

Stochastic	Additional Hypothesis	Convergence type	rate
Juditsky et al. 2011	Monotone	Ergodic	$\mathcal{O}(1/\sqrt{t})$
Kannan and Shanbhag 2019	Strongly monotone	Last iterate	$\mathcal{O}(1/t)$
Mertikopoulos et al. 2019	Strictly coherent	Last iterate	-

Extragradient in the stochastic setting

Stochastic oracle $(s \in \mathbb{N}/2)$

$$\hat{V}_s = V(X_s) + Z_s \qquad (i) \quad \mathbb{E}[Z_s \mid \mathcal{F}_s] = 0 \qquad (ii) \quad \mathbb{E}[\|Z_s\|^2 \mid \mathcal{F}_s] \le \sigma^2$$

V is β -Lipschitz continuous

Stochastic	Additional Hypothesis	Convergence type	rate
Juditsky et al. 2011	Monotone	Ergodic	$\mathcal{O}(1/\sqrt{t})$
Kannan and Shanbhag 2019	Strongly monotone	Last iterate	$\mathcal{O}(1/t)$
Mertikopoulos et al. 2019	Strictly coherent	Last iterate	-

$$\begin{aligned} & \min_{\theta \in \mathbb{R}} \max_{\phi \in \mathbb{R}} \theta \phi; & \hat{V}_t = (\phi_t + \xi_t, -\theta_t) \\ & \mathbb{E}[\xi_t] = 0, & \mathbb{E}[\xi_t^2] = \sigma^2 > 0. \end{aligned}$$

Non-convergence: Solutions?

$$\begin{aligned} & \min_{\theta \in \mathbb{R}} \max_{\phi \in \mathbb{R}} \theta \phi; & \hat{V}_t = (\phi_t + \xi_t, -\theta_t) \\ & \mathbb{E}[\xi_t] = 0, & \mathbb{E}[\xi_t^2] = \sigma^2 > 0. \end{aligned}$$

Candidate solutions:

Regularization with vanishing weight

$$\min_{\theta \in \mathbb{R}} \max_{\phi \in \mathbb{R}} \theta \phi; \quad \hat{V}_t = (\phi_t + \xi_t, -\theta_t)$$
$$\mathbb{E}[\xi_t] = 0, \quad \mathbb{E}[\xi_t^2] = \sigma^2 > 0.$$

- Regularization with vanishing weight
- Variance reduction with increasing batch size

$$\min_{\theta \in \mathbb{R}} \max_{\phi \in \mathbb{R}} \theta \phi; \quad \hat{V}_t = (\phi_t + \xi_t, -\theta_t)$$
$$\mathbb{E}[\xi_t] = 0, \quad \mathbb{E}[\xi_t^2] = \sigma^2 > 0.$$

- Regularization with vanishing weight
- Variance reduction with increasing batch size
- Finite sum: SVRG-like variance reduction

$$\min_{\theta \in \mathbb{R}} \max_{\phi \in \mathbb{R}} \theta \phi; \quad \hat{V}_t = (\phi_t + \xi_t, -\theta_t)$$
$$\mathbb{E}[\xi_t] = 0, \quad \mathbb{E}[\xi_t^2] = \sigma^2 > 0.$$

- Regularization with vanishing weight
- Variance reduction with increasing batch size
- Finite sum: SVRG-like variance reduction
- Second-order: stochastic Hamiltonian descent.

$$\begin{aligned} & \min_{\theta \in \mathbb{R}} \max_{\phi \in \mathbb{R}} \theta \phi; & \hat{V}_t = (\phi_t + \xi_t, -\theta_t) \\ & \mathbb{E}[\xi_t] = 0, & \mathbb{E}[\xi_t^2] = \sigma^2 > 0. \end{aligned}$$

- Regularization with vanishing weight
- Variance reduction with increasing batch size
- Finite sum: SVRG-like variance reduction
- Second-order: stochastic Hamiltonian descent
- Different stepsizes for the two steps of EG!

Outline

Background: Saddle-point optimization

② Literature review: Convergence of extragradient

3 Contributions: Explore aggressively, update conservatively

Our proposal: Double stepsize extragradient

• Explore aggressively, update conservatively: $\eta_t \leq \gamma_t$ (frequently $\eta_t/\gamma_t \to 0$)

Our proposal: Double stepsize extragradient

- Explore aggressively, update conservatively: $\eta_t \leq \gamma_t$ (frequently $\eta_t/\gamma_t \to 0$)
- Stochastic oracle $\hat{V}_s = V(X_s) + Z_s$
 - (i) $\mathbb{E}[Z_s \mid \mathcal{F}_s] = 0$
 - (ii) $\mathbb{E}[\|Z_s\|^2 | \mathcal{F}_s] \le (\sigma + \kappa \|X_s x^*\|)^2, \forall x^* \in \mathcal{X}$

Our proposal: Double stepsize extragradient

$$X_{t+\frac{1}{2}} = X_t - \gamma_t \hat{V}_t \\ X_{t+1} = X_t - \gamma_t \hat{V}_{t+\frac{1}{2}}$$

$$X_{t+\frac{1}{2}} = X_t - \gamma_t \hat{V}_t \\ X_{t+1} = X_t - \eta_t \hat{V}_{t+\frac{1}{2}}$$

- Explore aggressively, update conservatively: $\eta_t \leq \gamma_t$ (frequently $\eta_t/\gamma_t \to 0$)
- Stochastic oracle \hat{V}_s = $V(X_s)$ + Z_s
 - (i) $\mathbb{E}[Z_s \mid \mathcal{F}_s] = 0$
 - (ii) $\mathbb{E}[\|Z_s\|^2 | \mathcal{F}_s] \leq (\sigma + \kappa \|X_s x^*\|)^2, \forall x^* \in \mathcal{X}$
 - (ii') $\hat{V}_s = \hat{V}(\xi, X_s)$; $\hat{V}(\xi, \cdot)$ is $(\kappa/2)$ -Lipschitz; \hat{V} has bounded variance on \mathcal{X}^*

Descent Lemma ($\kappa = 0$)

$$\mathbb{E}[\|X_{t+1} - x^*\|^2 | \mathcal{F}_t] \le \|X_t - x^*\|^2 - 2\eta_t \mathbb{E}_t[(V(X_{t+\frac{1}{2}}), X_{t+\frac{1}{2}} - x^*)] - (\gamma_t \eta_t - \gamma_t^3 \eta_t \beta^2) \|V(X_t)\|^2 + (2\gamma_t^2 \eta_t \beta + \gamma_t^3 \eta_t \beta^2 + \eta_t^2) \sigma^2.$$

1 Variational stability: $\langle V(x), x - x^* \rangle \ge 0$ for all $x \in \mathbb{R}^d$, $x^* \in \mathcal{X}^*$. Bilinear \subset Convex-concave \subset Monotone \subset Pseudo-monotone \subset Variationally stable

$$\mathbb{E}[\|X_{t+1} - x^{\star}\|^{2} | \mathcal{F}_{t}] \leq \|X_{t} - x^{\star}\|^{2} - 2\eta_{t} \mathbb{E}_{t}[\langle V(X_{t+\frac{1}{2}}), X_{t+\frac{1}{2}} - x^{\star} \rangle] - (\gamma_{t}\eta_{t} - \gamma_{t}^{3}\eta_{t}\beta^{2})\|V(X_{t})\|^{2} + (2\gamma_{t}^{2}\eta_{t}\beta + \gamma_{t}^{3}\eta_{t}\beta^{2} + \eta_{t}^{2})\sigma^{2}.$$

- **1** Variational stability: $\langle V(x), x x^* \rangle \ge 0$ for all $x \in \mathbb{R}^d$, $x^* \in \mathcal{X}^*$.

 Bilinear ⊂ Convex-concave ⊂ Monotone ⊂ Pseudo-monotone ⊂ Variationally stable
- **2** Error bound: For some $\tau > 0$ and all $x \in \mathbb{R}^d$, we have $||V(x)|| \ge \tau \operatorname{dist}(x, \mathcal{X}^*)$. e.g., Affine, strongly monotone operators...

$$\mathbb{E}[\|X_{t+1} - x^*\|^2 | \mathcal{F}_t] \le \|X_t - x^*\|^2 - 2\eta_t \,\mathbb{E}_t[\langle V(X_{t+\frac{1}{2}}), X_{t+\frac{1}{2}} - x^* \rangle] - (\gamma_t \eta_t - \gamma_t^3 \eta_t \beta^2) \|V(X_t)\|^2 + (2\gamma_t^2 \eta_t \beta + \gamma_t^3 \eta_t \beta^2 + \eta_t^2)\sigma^2.$$

- **1** Variational stability: $\langle V(x), x x^* \rangle \ge 0$ for all $x \in \mathbb{R}^d$, $x^* \in \mathcal{X}^*$.

 Bilinear ⊂ Convex-concave ⊂ Monotone ⊂ Pseudo-monotone ⊂ Variationally stable
- ② Error bound: For some $\tau > 0$ and all $x \in \mathbb{R}^d$, we have $||V(x)|| \ge \tau \operatorname{dist}(x, \mathcal{X}^*)$. e.g., Affine, strongly monotone operators...

$$\mathbb{E}[\|X_{t+1} - x^*\|^2 | \mathcal{F}_t] \le \|X_t - x^*\|^2 - 2\eta_t \,\mathbb{E}_t[\langle V(X_{t+\frac{1}{2}}), X_{t+\frac{1}{2}} - x^* \rangle] - (\gamma_t \eta_t - \gamma_t^3 \eta_t \beta^2) \|V(X_t)\|^2 + (2\gamma_t^2 \eta_t \beta + \gamma_t^3 \eta_t \beta^2 + \eta_t^2)\sigma^2.$$

- **1** Variational stability: $\langle V(x), x x^* \rangle \ge 0$ for all $x \in \mathbb{R}^d$, $x^* \in \mathcal{X}^*$.

 Bilinear ⊂ Convex-concave ⊂ Monotone ⊂ Pseudo-monotone ⊂ Variationally stable
- ② Error bound: For some $\tau > 0$ and all $x \in \mathbb{R}^d$, we have $||V(x)|| \ge \tau \operatorname{dist}(x, \mathcal{X}^*)$. e.g., Affine, strongly monotone operators...

$$\mathbb{E}[\|X_{t+1} - x^*\|^2 | \mathcal{F}_t] \le \|X_t - x^*\|^2 - 2\eta_t \,\mathbb{E}_t[\langle V(X_{t+\frac{1}{2}}), X_{t+\frac{1}{2}} - x^*\rangle] - (\gamma_t \eta_t - \gamma_t^3 \eta_t \beta^2) \|V(X_t)\|^2 + (2\gamma_t^2 \eta_t \beta + \gamma_t^3 \eta_t \beta^2 + \eta_t^2)\sigma^2.$$

$$\eta_t < \gamma_t$$

Theorem [Main result]

1 Let V be variationally stable. Assume that $\sum_t \gamma_t \eta_t = \infty$, $\sum_t \eta_t^2 < \infty$, $\sum_t \gamma_t^2 \eta_t < \infty$, $\gamma_t \le c/\beta$ with c < 1. Then $(X_t)_{t \in \mathbb{N}}$ converges to a point $x^* \in \mathcal{X}^*$ almost surely.

Theorem [Main result]

- 1 Let V be variationally stable. Assume that $\sum_t \gamma_t \eta_t = \infty$, $\sum_t \eta_t^2 < \infty$, $\sum_t \gamma_t^2 \eta_t < \infty$, $\gamma_t \le c/\beta$ with c < 1. Then $(X_t)_{t \in \mathbb{N}}$ converges to a point $x^* \in \mathcal{X}^*$ almost surely.
- 2 Let V be monotone and affine. With stepsizes $\gamma_t \equiv \gamma$ and $\eta_t = \Theta(1/t)$,

$$\mathbb{E}[\operatorname{dist}(X_t, \mathcal{X}^{\star})^2] = \mathcal{O}(1/t)$$

Theorem [Main result]

- **1** Let V be variationally stable. Assume that $\sum_t \gamma_t \eta_t = \infty$, $\sum_t \eta_t^2 < \infty$, $\sum_t \gamma_t^2 \eta_t < \infty$, $\gamma_t \le c/\beta$ with c < 1. Then $(X_t)_{t \in \mathbb{N}}$ converges to a point $x^* \in \mathcal{X}^*$ almost surely.
- **2** Let V be monotone and affine. With stepsizes $\gamma_t \equiv \gamma$ and $\eta_t = \Theta(1/t)$,

$$\mathbb{E}[\operatorname{dist}(X_t, \mathcal{X}^{\star})^2] = \mathcal{O}(1/t)$$

3 Let V be variationally stable and satisfy the error bound condition. With stepsizes of the form $\gamma_t = \gamma/(t+b)^{1/3}$ and $\eta_t = \eta/(t+b)^{2/3}$,

$$\mathbb{E}[\operatorname{dist}(X_t, \mathcal{X}^{\star})^2] = \mathcal{O}\left(1/\sqrt[3]{t}\right)$$

Theorem [Main result]

- 1 Let V be variationally stable. Assume that $\sum_t \gamma_t \eta_t = \infty$, $\sum_t \eta_t^2 < \infty$, $\sum_t \gamma_t^2 \eta_t < \infty$, $\gamma_t \le c/\beta$ with c < 1. Then $(X_t)_{t \in \mathbb{N}}$ converges to a point $x^* \in \mathcal{X}^*$ almost surely.
- **2** Let V be monotone and affine. With stepsizes $\gamma_t \equiv \gamma$ and $\eta_t = \Theta(1/t)$,

$$\mathbb{E}[\operatorname{dist}(X_t, \mathcal{X}^{\star})^2] = \mathcal{O}(1/t)$$

3 Let V be variationally stable and satisfy the error bound condition. Further suppose that the noise vanishes on the solution set (i.e., $\sigma = 0$). With suitable constant stepsizes,

$$\mathbb{E}[\operatorname{dist}(X_t, \mathcal{X}^{\star})^2] = \mathcal{O}\left(e^{-\rho t}\right)$$

 $\gamma_t = \eta_t$

$$\sum_{t} \gamma_{t} \eta_{t} = \infty, \sum_{t} \eta_{t}^{2} < \infty, \sum_{t} \gamma_{t}^{2} \eta_{t} < \infty$$

$$\gamma_{t} = \eta_{t} = \gamma/(t+b)$$

$$\gamma_{t} = \gamma/(t+b)^{1/3}, \ \eta_{t} = \eta/(t+b)^{2/3}$$

$$\gamma_{t} \equiv \gamma, \ \eta_{t} = \eta/(t+b)$$

Does not converge in bilinear game

a.s. convergence for monotone/VS operators

 $\mathcal{O}(1/t)$ for strongly monotone operators

 $\mathcal{O}(1/\sqrt[3]{t})$ under error bound condition + VS

 $\mathcal{O}(1/t)$ for affine and monotone operators

Beyond monotonicity: Local convergence

Theorem

Assumptions:

- (i) Locally variational stable and locally Lipschitz around a soultion x^* .
- (ii) V is differentiable at x^* and $\operatorname{Jac}_V(x^*)$ is invertible.

Beyond monotonicity: Local convergence

Theorem

Assumptions:

- (i) Locally variational stable and locally Lipschitz around a soultion x^{\star} .
- (ii) V is differentiable at x^* and $\operatorname{Jac}_V(x^*)$ is invertible.

Guarantee:

For any tolerance level $\delta > 0$, there exists a stepsize policy for double stepsize extra-gradient such that if the algorithm is initialized close enough to x^* , there exists an event with probability at least $1 - \delta$ and, conditioned on this event:

- Under (i), the iterates converge to x^* .
- Under (i) and (ii), X_t converges to x^* at a rate $\mathcal{O}(1/\sqrt[3]{t})$ in mean square error.

Proof sketch

Stability of the algorithm

Control the probability of escaping from the neighborhood at each step: thanks to the use of the specific stepsize policy, we prove the summability of these probabilities and that this sum can be made arbitrarily small.

Proof sketch

· Stability of the algorithm

Control the probability of escaping from the neighborhood at each step: thanks to the use of the specific stepsize policy, we prove the summability of these probabilities and that this sum can be made arbitrarily small.

Conditional convergence rate

Caveat. The unbiasedness is not maintained after conditioning. Solution. Work directly with the indicator function of the probability event. Precisely, we prove recurrent bounds for $\mathbb{E}[\|X_t - x^*\|^2 \mathbb{1}_{E_{t-1}} | \mathcal{F}_{t-1}]$.

Numerical illustrations

(a) Bilinear zero-sum game

(b) Linear quadratic gaussian GAN

$$X_{t+\frac{1}{2}} = X_t - \gamma_t \hat{V}_t \quad \left[\gamma_t = \gamma/(t+b)^{r_{\gamma}} \right] \qquad X_{t+1} = X_t - \eta_t \hat{V}_{t+\frac{1}{2}} \quad \left[\eta_t = \eta/(t+b)^{r_{\eta}} \right]$$

Conclusion

 We propose a simple modification of the stochastic extragradient scheme to make its last iterate converge in a large spectrum of problems including all monotone games.

Conclusion

- We propose a simple modification of the stochastic extragradient scheme to make its last iterate converge in a large spectrum of problems including all monotone games.
- Explicit convergence rate under additional assumptions and local convergence results are derived.

Conclusion

- We propose a simple modification of the stochastic extragradient scheme to make its last iterate converge in a large spectrum of problems including all monotone games.
- Explicit convergence rate under additional assumptions and local convergence results are derived.

Thanks for your attention!

Bibliography I

Juditsky, Anatoli, Arkadi Semen Nemirovski, and Claire Tauvel (2011). "Solving variational inequalities with stochastic mirror-prox algorithm". In: *Stochastic Systems* 1.1, pp. 17–58.

Kannan, Aswin and Uday V Shanbhag (2019). "Optimal stochastic extragradient schemes for pseudomonotone stochastic variational inequality problems and their variants". In: *Computational Optimization and Applications* 74.3, pp. 779–820.

Korpelevich, G. M. (1976). "The extragradient method for finding saddle points and other problems". In: Èkonom. i Mat. Metody 12, pp. 747–756.

Mertikopoulos, Panayotis et al. (2019). "Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile". In: ICLR '19: Proceedings of the 2019 International Conference on Learning Representations.

Nemirovski, Arkadi Semen (2004). "Prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems". In: SIAM Journal on Optimization 15.1, pp. 229–251.

Tseng, Paul (1995). "On linear convergence of iterative methods for the variational inequality problem". In: Journal of Computational and Applied Mathematics 60.1-2, pp. 237–252.