

Institución Universitaria Digital de Antioquia IUDIGITAL Faculta de Ingeniería y Ciencias Agropecuarias Ingeneria de Software y datos

EVIDENCIA DE APRENDIZAJE 1. MODELO ESTRELLA DE UN DATA MART

Omar Aleiser Alvarez Laverde PREICA2401B010094

> Bucaramanga, Santander 21 Abril 2024

Introducción

Realizar un análisis de datos para comprender el comportamiento de ventas y tomar decisiones informadas basadas en la información de la base de datos Jardinería. En este contexto, con base al *modelo estrella datamart* que permite organizar y estructurar los datos de manera efectiva, facilitando el análisis de ventas y descubriendo información valiosa entre esta misma.

Objetivo general

Diseñar un modelo estrella de datamart para la base de datos la Jardinería.

Objetivos especificados

- Identificar el producto más vendido de la base de datos la Jardinería
- Analizar la categoría con más productos de la base de datos la Jardinería
- Analizar el año con más ventas de la base de datos la Jardinería

Planteamiento del problema

La base de datos Jardinería contiene información sobre productos, pedidos, clientes, empleados y otros datos relevantes. Sin embargo, su estructura actual no está optimizada para realizar análisis de ventas de manera eficiente. Es necesario diseñar un modelo estrella que organice los datos de forma adecuada para facilitar consultas analíticas y obtener información valiosa sobre las ventas.

Análisis del problema

Para abordar el problema, se analizó la estructura de la base de datos Jardinería y se identificaron las tablas relevantes, como: detalle_pedido, producto, Categoria_producto, pedido y cliente. Estas tablas contienen información clave para el análisis de ventas, pero se encuentran normalizadas y dispersas, lo que dificulta el rendimiento de las consultas analíticas.

Propuesta de solución

Descripción del modelo estrella

El modelo estrella propuesto consta de una tabla de hechos central llamada: Ventas y varias dimensiones relacionadas, como; Producto, Categoría, Pedido, Cliente y Tiempo. Esta estructura permite organizar los datos de manera desnormalizada y optimizada para el análisis de ventas.

Diseño del modelo estrella

Lista de dimensiones propuestas

La siguiente son las dimensiones propuestas para este caso especificado.

- Dimensión Producto
- Dimensión Categoría
- Dimensión Pedido
- Dimensión Cliente
- Dimensión Tiempo

Cada dimensión debe tener especificadas las columnas y qué tipos de datos van a almacenar

DIMCliente	
PK	ID_Cliente
	Nombre_Cliente: varchar(50)
	Nombre_Contacto: varchar(30)
	Apellido_Contacto: varchar(30)
	Telefono: varchar (15)

Fax: varchar(15)
Direccion_Linea1: varchar (15)
Direccion_Linea2: varchar (15)
Ciudad: varchar (50)
Region: varchar (50)
Pais: varchar (50)
Codigo_Postal: varchar (50)
ID_Empleado_Rep_Ventas: integer
Limite_Credito: integer

DIMCategoria	
PK	ID_Categoria
	Nombre_Categoria: varchar (50)
	Descripcion_Texto: varchar (200)
	Descripcion_html: varchar (200)
	imagen: varchar (200)

DIMTiempo	
PK	ID_Tiempo
	Fecha: date NOT NULL
	Año: int (4)
	Trimestre: integer (2)
	Semana: integer (2)
	Mes: integer (2)

DIMPedidos	
PK	ID_Pedido
	Fecha_Pedido: date NOT NULL
	Fecha_Esperada: date NOT NULL
	Fecha_Entrega: date NOT NULL
	Estado_Pedido: varchar(15)
	Comentarios: varchar(200)

DIMProductos	
PK	ID_Producto
	Nombre_producto: varchar (70)
	Proveedor: varchar (50)
	Descripcion: varchar (200)
	Cantidad_En_Stock: integer (20)
	Precio_Venta: integer (20)

Detalla la tabla de hechos, con sus campos y tipos de datos.

hecho_ventas	
PK	ID_Hechos_Ventas
FK	ID_Cliente
FK	ID_Tiempo
FK	ID_Pedido
FK	ID_Categoria
FK	ID_Producto
	Cantidad: integer (20)
	Precio_Unitario: integer (20)
	Total_Venta: integer (20)

Conclusiones

El diseño del modelo estrella propuesto permite organizar los datos de manera eficiente para el análisis de ventas en la empresa. Al desnormalizar los datos en la tabla de hechos Ventas y relacionarla con las dimensiones relevantes, se facilita el rendimiento de las consultas analíticas y se obtiene una estructura clara y comprensible. Este modelo estrella puede ser utilizado para realizar análisis específicos, como identificar el producto más vendido, la categoría con más productos y el año con más ventas.

Anexos

Link acceso al diagrama modelo Estrella https://drive.google.com/file/d/17z41maPg8IJnioSvV84t4Sq4n ply3Pg/view?usp=sharing

Bibliografía

P. Muñoz. "Desarrollo de una arquitectura de Big Data para registros mercantiles". Trabajo de grado, UCV, Caracas, 2016.