jp60019610/pn

L12 ANSWER 1 OF 1 JAPIO (C) 2004 JPO on STN

ACCESSION NUMBER:

1985-019610 **JAPIO**

TITLE:

CARRIER DEVICE

INVENTOR:

KITAMURA TETSUO; YUMINO HIROSHI; OOTA MASATOSHI;

MITSUI NORIHIKO; GOTO MUNEHARU

PATENT ASSIGNEE(S):

HITACHI LTD

PATENT INFORMATION:

KIND DATE ERA MAIN IPC PATENT NO ______ ***JP 60019610*** A 19850131 Showa B65G037-00

APPLICATION INFORMATION

STN FORMAT: ORIGINAL:

JP 1983-125515

19830712

PRIORITY APPLN. INFO.: JP 1983-125515 19830712

JP58125515

SOURCE:

PATENT ABSTRACTS OF JAPAN (CD-ROM), Unexamined

Applications, Vol. 1985

INT. PATENT CLASSIF.:

MATN: SECONDARY: B65G037-00 B66B017-20

ADDITIONAL:

B61B013-00; B65G047-52

ABSTRACT:

PURPOSE: To realize efficient conveyance of articles having no definite form by constituting so as to lift and mount/demount an article loading stand between an article receiving space and an auto-car on back-bed guide rail, and transfer the auto-car by guide rail and elevator, in a liner carrier device in a hospital or the like.

CONSTITUTION: An auto-car 3 not loading a container 1 is located over a lifter device 17, and a table 18 is also located on a receiving device 21, and a container 1 is located on a table 18. A table 18 lifted by the lifter 17 and the container is hung on the auto-car 3. The auto-car 3 is transfered to the desired station along a guide rail 5, or the desired flour by an elevator 15. By this constitution, articles of undifined scale, weight, and form can be carried efficiently and automatically. COPYRIGHT: (C) 1985, JPO&Japio

⑩日本国特許庁(JP)

① 特許出願公告

辒(B2) 許 公 12 特

四60-19610

@Int_Cl_4 H 01 B 13/00 5/14 // H 01 B

織別記号

庁内整理番号

❷❷公告 昭和60年(1985)5月17日

7037-5E A-7227-5E

発明の数 1 (全4頁)

透明導電膜形成法 69発明の名称

> 願 昭54-161437 ②特 昭54(1979)12月14日 砂出 阳

開 昭56-84809 ❽公

49昭56(1981)7月10日

正 昭 79発 明 者 中

横浜市戸塚区吉田町292番地 株式会社日立製作所生産技

術研究所内

株式会社日立製作所 顖 人 の出

東京都千代田区丸の内一丁目5番1号

弁理士 髙橋 明夫 10代 理

外1名

信 雄 小 林 審 査 官

匈参考文献

特開 昭52-37763(JP, A)

1

動特許請求の範囲

1 インジウム化合物、スズ化合物、配位子、溶 剤よりなる溶液を基板上に塗布し、ついでこの塗 膜に紫外線を照射した後髙温で焼成することを特 徴とする透明導電膜形成法。

発明の詳細な説明

本発明は透明導電膜をガラス、セラミツクスな どの基板表面に形成する方法に関する。

液晶表示素子、エレクトロルミネツセンス表示 素子、プラズマ表示素子などの表示素子類、光電 10 ばならない問題がある。 池、撮像管などの感光素子類などにおいて、光に 対して透明性を有する電極材料が使用されてい る。これらの透明導電膜としては、酸化インジウ ムに微量の酸化スズを添加したもの、あるいは酸 化スズに微量の酸化アンチモンを添加したものが 15 ある。

透明導電膜を形成するには次の方法が知られて いる。

- (1) 酸化インジウム、酸化スズなどを蒸着あるい に付着せしめる。
- (2) あらかじめ予熱した基板上にインジウム化合 物、スズ化合物などを吹き付けて、熱分解およ び酸化反応を起こさせ、基板表面に透明導電膜 を付着せしめる。
- (3) あらかじめ加熱した基板上に、インジウム化 合物あるいはスズ化合物の蒸気を接触させ、熱

2

分解および酸化反応を起こさせ、基板表面に透 明導電膜を付着せしめる。

(4) 基板上にインジウム化合物、スズ化合物を主 成分とする液を塗布した後、加熱して熱分解お よび酸化反応を起こさせ基板表面に透明導電膜 を形成する。

しかし上記(1)(2)(3)の方法は装置が複雑となり、 作業性が劣り、しかも微細なパターンを形成する には、あとでエツチング加工などを行なわなけれ

また ト記(4)の方法は、(1)(2)(3)の方法にかかわる 上記問題を解決する可能性を有しているが、従来 の方法では実用に耐える低抵抗の膜を得難いとい う問題があつた。

本発明の目的は、上記した塗布法の欠点をなく し低抵抗の透明導電膜形成法を提供するにある。

このような目的は、インジウム化合物、スズ化 合物、配位子(ジカルボン酸、ジカルボン酸モノ エステル、ヒドロキシ酸など)、溶媒を必須成分 はスパツタなどにより真空雰囲気中で基板表面 20 とする透明導電膜形成用溶液を、ガラス、セラミ ックスなどの基板上に塗布した後、この基板に紫 外線を照射し、ついでこの基板を高温で焼成し透 明導電膜を形成することで達成される。

> 従来では、溶液を基板上に塗布した後、恒温槽 25 にて乾燥する方法をとるため、溶媒の乾燥が強膜 の表面と内部とで異なる。すなわち、膜表面では 比較的よく乾燥しているが、塗膜内部では十分に

乾燥され難い。このような乾燥不均一な塗膜を焼 成した場合、焼成後に得られる酸化膜は、均一 性、緻密性ともに失なわれ、ピンホールが生じや すい。以上述べた理由から、恒温槽での乾燥によ 溶液を塗布後紫外線照射すれば塗膜の内部まで紫 外線が貫通するため、塗膜内部の乾燥が促進され 均一良好な乾燥塗膜となる。このような均一良好 な乾燥塗膜を焼成して得られる酸化膜は、均質か つ緻密であるために低抵抗となる。

本発明に用いるインジウム化合物として、塩化 インジウム、硝酸インジウム、過塩素酸インジウ ムのいずれのインジウム化合物を用いても紫外線 照射効果があるが、硝酸インジウムを用いた場合 ンC=C<二重結合をもつジカルボン酸を用いた 場合に紫外線照射の効果が最も大きい。これには マレイン酸、フマル酸、シトラコン酸、メサコン 酸などがある。またジカルボン酸モノエステル、 化合物との配合比(モル比)は、0.1~2.9が望ま しい。配合比が0.1より小さい場合には均一な溶 液が得られない。また、配合比が2.9より大きい と、得られる透明導電膜のピーリング強度が低下 し、また、シート抵抗値が高くなる。

スズ化合物としては、SnCℓ4・3H2O, Sn $(OCOC_7H_{15})_2$, $(C_4H_8)_2Sn$ $(OCOCH_3)_2$, $(C_4H_9)_2Sn$ (OCOCH = CHCOO), $(C_4H_9)_2Sn$ $(OCOC_{11}H_{23})_2$, $(C_4H_9)_2Sn$ (OCOCH = CH_2)₂, Bu_3SnF , $Bu_3SnC\ell$, Sn $(OC_2H_5)_4$, Sn(OC₃H₁)₄, (CH₃)₂SnCℓ₂ などが用いられる。 スズ化合物とインジウム化合物との配合比(モル 比)は0.05~0.25が望ましい。スズ化合物の配合 比がこれよりも小さくても、また大きくてもシー*35 燥の場合よりも低抵抗の透明導電膜が得られた。

*ト抵抗値が高くなる。

溶媒としてはアルコール系、セロソルブ系、カ ルピトール系、グリコール系、アミド、ジアルキ ルスルホギシドが適する。上記以外の溶媒、例え ると低抵抗膜は得難い。しかるに本発明に従い、5 ば、ケトン系、芳香族系の溶媒を用いた場合には 均一な塗布溶液は得られない。溶媒とインジウム 化合物との配合比は特に制限はないが、4000rpm でスピンナ途布し、0.1μmの透明導電膜を得る には2~3(重量比)が適当である。

紫外線ランプとしては種々のものがあるが、高 10 圧水銀ランプは1~10気圧の水銀蒸気を封入した もので、360~600nmの波長の強い線スペクトル と220~400mmの波長の弱い連続スペクトルが得 られ、短時間に大きな発熱量があり、瞬時にして にその効果が最も大きい。また配位子としては、15 途膜を乾燥するに適している。また、メタルハラ イドランプも本発明に適するものである。

次に本発明を実施例により説明する。

途布液の代表的組成を表に示す。

所定量のインジウム化合物、配位子、溶媒を秤 ヒドロキシ酸も使用される。配位子とインジウム 20 量し混合する。数時間室温で攪拌すると均一な溶 液となつた。この溶液に秤量したスズ化合物を添 加し、さらに約1時間攪拌し塗布液とした。この ようにして調製した塗布液をスピンナにより 4000rpmの回転数でガラス基板上に塗布した後、 25 この途膜に紫外線を照射した。紫外線ランプは 3KWの高圧水銀灯またはメタルハライドランプ を用いた。照射距離は10㎝、照射時間は60秒とし た。このようにして乾燥した塗膜を500℃で1時 間焼成した。本発明の比較例として紫外線を照射 CHCOOC₂H₅)₂, (C₄H₉)₂Sn (OCOC (CH₃)= 30 しない場合には、スピンナで鈴布した後、恒温槽 で130℃で10分間乾燥した後、500℃で1時間焼成

> 表に示したように、いずれの組成液を用いて も、紫外線照射による乾燥をした方が、恒温槽乾

5

液組成および	液	組 成
抵抗值 番号	インジウム化合物 (配合量 , mol)	ス ズ 化 合 物 (配合量 , mo l)
1	In (NO ₃) ₈ ·3H ₂ O	Sn(OCOC ₇ H ₁₅) ₂ (0.10)
2	u .	Sπ (OCOC ₇ H _{1 5}) ₂
3	u	Sn (OCOC ₇ H ₁₅) ₂ (0.15)
4	n	Sn(OCOC ₇ H ₁₅) ₂ (0.10)
5	"	"
6	,,	ll .
7	"	"
8	ıt	U
9	"	U
1 0	,,	И
1 1	п	, and the second
1 2	" .	И
1.3	"	p .
1 4	n .	SnCl ₄ ·3H ₂ O (0.10)
1 5	"	(C ₄ H ₉) ₂ Sn(OCOCH=CHCOOC ₂ H ₅) ₂ (0.10)
1 6	u .	Sn (OC ₂ H ₅) ₄ (0.10)
1 7	In (C ₁ O ₄) ₈ ·8H ₂ O	Sn (OCOC, H, 5) 2 (0.10)
18	,,	. "
1 9	InC ₁₈ ·4H ₂ O (1)	II
2 0	"	
2 1	In (OCOC 7 H _{1 5}) ₃	II .

液組成および			成		
抵抗値 番号	配 位 子 (配合量, mol)	容 媒 (配合量, g)	紫外線照射 (A)	紫外線無照射 (B)	A / B
1	シトラコン酸 (0.5)	エチルセロソルプ (1200)	0. 2 8	0. 5 4	0. 5 2
2	"	"	0.47	0.89	0. 5 3
3	"	"	0. 4 1	0. 7 5	0, 5 5
4	シトラコン酸 (0.3)	"	0.32	0. 7 1	0. 4 5
5	シトラコン酸 (1.0)	"	0.38	0.63	0. 6 1
6	シトラコン酸 (0.5)	エチルカルビトール (1200)	0.30	0.57	0. 5 3
7		ジエチレングリコール (1200)	0.32	0.60	0. 5 4
8	ョハク酸 (0.5)	エチルセロソルプ (1200)	0, 6 3	0.83	0.76
9	アジピン酸 (0.5)	II .	1.03	1.41	0. 7 3
1 0	マレイン酸 (0.5)	"	0. 2 6	0. 5 1	0.5]
1 1.	メサコン酸 (0.5)	,,	0. 2 8	0. 5 4	0.52
1 2	コハタ酸モノエチル (0.5)	"	0. 4 4	1. 1 3	0.63
1 3	クエン酸 (0.5)	"	0.56	0. 9 2	0.61
1 4	シトラコン酸 (0.5)	,,	1. 1 3	1.58	0.72
1 5	"	"	1. 0 4	1. 4 3	0.73
1 6	r/	11	1. 1 5	1. 5 7	0.73
1 7	"	"	0. 3 3	0. 5 3	0.62
1 8	コハク酸 (0.5)	"	0. 7 6	0. 9 4	0.81
1 9	シトラコン酸 (0.5)	"	0. 5 7	0.94	0.61
2 0	コハク酸 (0.5)	"	1. 4 2	1.67	0.85
2 1	_	"	0.53	0.65	0.82

本発明により、釜布方法による透明導電膜の従来の製造法よりも低抵抗の膜が得られる。