MA4271 Homework 1

Khanh Nguyen

August 2023

Problem 1 Let $\alpha: I \to \mathbb{R}^3$ be a parameterized smooth curve with $||\alpha(t)|| \neq 0$ and $||\alpha'(t)|| \neq 0$ for all $t \in I$. Prove that $||\alpha(t)||^2$ is a nonzero constant if and only if $\alpha(t)$ is orthogonal to $\alpha'(t)$ for all $t \in I$

$$(\Longrightarrow)$$
 Let $||\alpha(t)||^2=c>0,$ we have

$$c = ||\alpha(t)||^2 = \alpha(t) \cdot \alpha(t)$$

Take the derivative on both sides.

$$0 = \frac{d}{dt}(\alpha(t) \cdot \alpha(t))$$

$$= \alpha(t) \cdot \alpha'(t) + \alpha'(t) \cdot \alpha(t) \qquad \text{(property of dot product derivative)}$$

$$= 2(\alpha'(t) \cdot \alpha(t)) \qquad \text{(symmetry of dot product)}$$

The inner product between $\alpha'(t)$ and $\alpha(t)$ is zero; that is, they are orthogonal for all $t \in I$

$$(\Leftarrow)$$

$$0 = \alpha'(t) \cdot \alpha(t) = \frac{1}{2} \frac{d}{dt} ||\alpha(t)||^2$$

 $||\alpha(t)||^2$ is a real-valued function having derivative being 0 for all $t \in I$, therefore, it is a constant

Problem 2 Prove that the equation of a plane passing through three noncolinear $p_1 = (x_1, y_1, z_1), p_2 = (x_2, y_2, z_2), p_3 = (x_3, y_3, z_3)$ is given by

$$(p - p_1) \times (p - p_2) \cdot (p - p_3) = 0$$

where p=(x,y,z) is an arbitrary point of the plane and $p-p_1$ is the vector $(x-x_1,y-y_1,z-z_1)$

¹This means that p_1, p_2, p_3 cannot be covered by a single line

For any 3 vectors in \mathbb{R}^3 , $(u \times v) \cdot w = \det(u, v, w)$ (\Longrightarrow)

 $[(p-p_1)\times(p-p_2)]\cdot(p-p_3)=0$ implies $\det(p-p_1,p-p_2,p-p_3)=0$. So, 3 vectors $p-p_1,p-p_2,p-p_3$ lie on a subspace of dimension d<3. Since p_1,p_2,p_3 is noncolinear, d>1. Therefore, d=2; that is, the set of all p lie on the plane containing p_1,p_2,p_3

$$(\Leftarrow)$$

Given p on the plane containing p_1, p_2, p_3 , the span of $p - p_1, p - p_2, p - p_3$ must be a proper subspace of \mathbb{R}^3 ; that is, $\det(p - p_1, p - p_2, p - p_3) = 0$. Hence, $[(p - p_1) \times (p - p_2)] \cdot (p - p_3) = 0$

Problem 3 Let $u(s) = (u_1(s), u_2(s), u_3(s)), v(s) = (v_1(s), v_2(s), v_3(s))$ be smooth maps from interval (a, b) into \mathbb{R}^3 . If the derivative u'(s) and v'(s) satisfy the conditions

$$u'(s) = c_1 u(s) + c_2 v(s), \quad v'(s) = c_3 u(s) - c_1 v(s)$$

where $c_1, c_2, c_3 \in \mathbb{R}$ are constants. Prove that $u(s) \times v(s)$ is a constant vector.

$$\frac{d}{ds}(u \times v) = \frac{du}{ds} \times v + u \times \frac{dv}{dt}$$
 (property of vector product derivative)
$$= (c_1u + c_2v) \times v + u \times (c_3u - c_1v)$$
 (premise)
$$= c_1u \times v + c_2v \times v + c_3u \times u - c_1u \times v$$
 (linearity of vector product)
$$= c_1u \times v - c_1u \times v$$
 ($u \times u = 0, v \times v = 0$)
$$= 0$$

All 3 components of $u \times v$ is a real-valued function having derivative being 0 for all $s \in (a, b)$, therefore $u \times v$ is a constant vector.

Problem 4 Let $\alpha: I \to \mathbb{R}^3$ be a smooth regular curve parameterized by arc length and $\alpha''(s) \neq 0$ for all $s \in I$. Prove that the torsion τ of α is given by

$$\tau(s) = -\frac{\alpha'(s) \times \alpha''(s) \cdot \alpha'''(s)}{|\kappa(s)|^2}$$

 α is parameterized by arc length, then

- tangent vector α' has norm $||\alpha'|| = 1$
- normal vector $n = \frac{\alpha''}{||\alpha''||}$, curvature $\kappa = ||\alpha''||$
- binormal vector $b = \alpha' \times n$

We have

$$\tau n = b'$$

$$= \frac{d}{ds}(\alpha' \times n)$$

$$= \alpha'' \times \frac{\alpha''}{\kappa} + \alpha' \times \frac{dn}{ds} \qquad \text{(property of vector product derivative)}$$

$$= \alpha' \times \frac{dn}{ds} \qquad (\alpha'' \times \alpha'' = 0)$$

$$= \alpha' \times \frac{d}{ds} \frac{\alpha''}{\kappa}$$

$$= \alpha' \times \left(\frac{\alpha'''}{\kappa} + \gamma \alpha''\right) \qquad \text{where } \gamma = \frac{d}{ds} \frac{1}{\kappa}$$

$$= \frac{\alpha' \times \alpha'''}{\kappa} + \gamma (\alpha' \times \alpha'')$$

$$= \frac{\alpha' \times \alpha'''}{\kappa} + \gamma \kappa (\alpha' \times n)$$

$$= \frac{\alpha' \times \alpha'''}{\kappa} + \gamma \kappa b$$

Dot product both sides by n

$$\tau = \tau(n \cdot n) = \frac{(\alpha' \times \alpha''') \cdot n}{\kappa} + \gamma \kappa(b \cdot n)$$

 $b \cdot n = 0$ implies

$$\tau = \frac{(\alpha' \times \alpha''') \cdot n}{\kappa}$$

$$= \frac{(\alpha' \times \alpha''') \cdot \alpha''}{\kappa^2}$$

$$= \frac{\det(\alpha', \alpha''', \alpha'')}{\kappa^2}$$

$$= -\frac{\det(\alpha', \alpha'', \alpha''')}{\kappa^2}$$

$$= -\frac{(\alpha' \times \alpha'') \cdot \alpha'''}{\kappa^2}$$
(odd permutation \rightarrow even permutation)
$$= -\frac{(\alpha' \times \alpha'') \cdot \alpha'''}{\kappa^2}$$

Problem 5 Let $\alpha: I \to \mathbb{R}^3$ be a smooth regular curve parameterized by arc length. Assume that $\tau(s) \neq 0$ and $\kappa'(s) \neq 0$ for all $s \in I$. Prove that a necessary and sufficient condition for $\alpha(I)$ to lie on a sphere is that

$$(R(s))^2 + (R'(s))^2 (T(s))^2 = const$$

where $R(s) = \frac{1}{\kappa(s)}$, $T(s) = \frac{1}{\tau(s)}$ and R'(s) is the derivative of R(s) relative to s

In this proof, we will make an additional assumption $\kappa(s) \neq 0$ for all s. We have

$$(R(s))^2 + (R'(s))^2 (T(s))^2 = \left(\frac{1}{\kappa}\right)^2 + \left(\frac{\kappa'}{\tau \kappa^2}\right)^2$$

Lemma 1 A trajectory of a smooth regular curve α parameterized by arc length lies on a sphere centered at c of radius r > 0 with $\tau(s) \neq 0$ and $\kappa(s) \neq 0, \kappa'(s) \neq 0$ for all s. Must have

$$\alpha' \cdot (\alpha - c) = 0 \tag{1}$$

$$n \cdot (\alpha - c) = -\frac{1}{\kappa} \tag{2}$$

$$b \cdot (\alpha - c) = -\frac{\kappa'}{\tau \kappa^2} \tag{3}$$

where κ is curvature, τ is torsion, n is normal vector, and b is binormal vector.

Main Proof

 (\Longrightarrow)

Let c be the center of the sphere with radius r > 0 where the trajectory of α lies on. Project $\alpha - c$ onto Frenet trihedron

$$\begin{aligned} \alpha - c &= (\alpha' \cdot (\alpha - c))\alpha' + (n \cdot (\alpha - c))n + (b \cdot (\alpha - c))b \\ \alpha - c &= -\frac{1}{\kappa}n - \frac{\kappa'}{\tau\kappa^2}b \end{aligned}$$

Take the norm of both sides

$$const = ||a - c|| = \left(\frac{1}{\kappa}\right)^2 + \left(\frac{\kappa'}{\tau \kappa^2}\right)^2$$

 (\Longleftrightarrow)

Let β be defined by

$$\beta = \alpha + \frac{1}{\kappa}n + \frac{\kappa'}{\tau\kappa^2}b$$

We will prove that β is a constant w.r.t arc length s. Hence, the norm of $\alpha - \beta$ is

$$||a - \beta|| = \left(\frac{1}{\kappa}\right)^2 + \left(\frac{\kappa'}{\tau \kappa^2}\right)^2 = const$$

We will conclude that β is the center of the sphere where the trajectory of α lies on.

Take the derivative w.r.t s of β

$$\begin{split} \beta' &= \alpha' + \left[-\frac{\kappa'}{\kappa^2} n + \frac{1}{\kappa} (-\kappa \alpha' - \tau b) \right] + \left[\frac{d}{ds} \left(\frac{\kappa'}{\tau \kappa^2} \right) b + \frac{\kappa'}{\tau \kappa^2} (\tau n) \right] \\ &= \alpha' + \left[\frac{1}{\kappa} (-\kappa \alpha' - \tau b) \right] + \left[\frac{d}{ds} \left(\frac{\kappa'}{\tau \kappa^2} \right) b \right] & \text{(remove } -\frac{\kappa'}{\kappa^2} n) \\ &= \left[\frac{1}{\kappa} (-\tau b) \right] + \left[\frac{d}{ds} \left(\frac{\kappa'}{\tau \kappa^2} \right) b \right] & \text{(remove } \alpha') \\ &= \left[-\frac{\tau}{\kappa} + \frac{d}{ds} \left(\frac{\kappa'}{\tau \kappa^2} \right) \right] b \end{split}$$

On the other hand,

$$const = \left(\frac{1}{\kappa}\right)^2 + \left(\frac{\kappa'}{\tau \kappa^2}\right)^2$$

Take the derivative w.r.t to s on both sides

$$0 = \left[2\frac{1}{\kappa} \frac{-\kappa'}{\kappa^2} \right] + \left[2\frac{\kappa'}{\tau \kappa^2} \frac{d}{ds} \left(\frac{\kappa'}{\tau \kappa^2} \right) \right]$$
$$= -\frac{\tau}{\kappa} + \frac{d}{ds} \left(\frac{\kappa'}{\tau \kappa^2} \right) \qquad \text{(divide both sides by } 2\frac{\kappa'}{\tau \kappa^2})$$

That implies $\beta' = 0$. As discussed earlier, $||a - \beta|| = const.$ Therefore, the trajectory of α lies a sphere centered at β

Proof of Lemma 1 We have

$$||a-c||^2 = r^2$$

Take the derivative w.r.t s on both sides

$$2(\alpha - c)' \cdot (\alpha - c) = 0$$
 (derivative of dot product formula)
 $\alpha' \cdot (\alpha - c) = 0$

We have the first equation

$$\alpha' \cdot (\alpha - c) = 0$$

Take the derivative w.r.t s on both sides

$$\begin{split} \alpha'' \cdot (\alpha - c) + \alpha' \cdot (\alpha - c)' &= 0 \\ \kappa n \cdot (\alpha - c) + \alpha' \cdot \alpha' &= 0 \\ n \cdot (\alpha - c) &= -\frac{1}{\kappa} \end{split} \tag{definition of curvature}$$

We have the second equation

$$n \cdot (\alpha - c) = -\frac{1}{\kappa}$$

Take the derivative w.r.t s on both sides

$$n' \cdot (\alpha - c) + n \cdot (\alpha - c)' = -(-1)\frac{\kappa'}{\kappa^2}$$

$$(-\kappa \alpha' - \tau b) \cdot (\alpha - c) + n \cdot \alpha' = \frac{\kappa'}{\kappa^2}$$
 (Frenet formulas)
$$(-\kappa \alpha' - \tau b) \cdot (\alpha - c) + 0 = \frac{\kappa'}{\kappa^2}$$
 (n and α' are orthogonal)
$$\kappa \alpha' \cdot (\alpha - c) + \tau b \cdot (\alpha - c) = -\frac{\kappa'}{\kappa^2}$$
 (linearity of dot product)
$$\tau b \cdot (\alpha - c) = -\frac{\kappa'}{\kappa^2}$$
 ($\alpha' \cdot (\alpha - c) = 0$)
$$b \cdot (\alpha - c) = -\frac{\kappa'}{\tau \kappa^2}$$

We have the third equation

$$b \cdot (\alpha - c) = -\frac{\kappa'}{\tau \kappa^2}$$