Aula 40

Sistemas Lineares de EDOs de 1^a Ordem Homogéneos

com condição inicial

$$\mathbf{y}(t_0) = \mathbf{y}_0 \Leftrightarrow egin{bmatrix} y_1(t_0) \ y_2(t_0) \ dots \ y_n(t_0) \end{bmatrix} = egin{bmatrix} y_1^0 \ y_2^0 \ dots \ y_n^0 \end{bmatrix}$$

Proposição: Seja A(t) uma matriz $n \times n$ com entradas reais contínuas num intervalo $I \subset \mathbb{R}$. Então, o conjunto das soluções do sistema de EDOs lineares de primeira ordem homogéneo

$$\frac{d\mathbf{y}}{dt} = A(t)\mathbf{y}$$

constitui um espaço vectorial de dimensão n.

O teorema de Picard-Lindelöf garante a existência de um isomorfismo linear entre o espaço vectorial dos dados iniciais $\mathbf{y}_0 \in \mathbb{R}^n$ para algum $t_0 \in I$ e o espaço vectorial das soluções.

<u>Sistemas Lineares de EDOs de 1^a Ordem</u> Homogéneos de Coeficientes Constantes

$$\frac{d\mathbf{y}}{dt} = A\mathbf{y}$$

com

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{bmatrix}, \qquad a_{i,j} \in \mathbb{R}.$$

Proposição: Seja A uma matriz $n \times n$ constante com entradas reais. Então,

$$\mathbf{y}(t) = e^{\lambda t} \mathbf{v},$$

é solução do sistema linear homogéneo de coeficientes constantes

$$\frac{d\mathbf{y}}{dt} = A\mathbf{y}$$

se e só se λ e \mathbf{v} são, respectivamente, valor e vector próprio associado da matriz A.

Proposição: Seja A(t) uma matriz $n \times n$ com entradas **reais** contínuas num intervalo $I \subset \mathbb{R}$. Então,

$$\mathbf{y}(t) = \mathbf{u}(t) + i\mathbf{v}(t),$$

é solução complexa do sistema linear homogéneo

$$\frac{d\mathbf{y}}{dt} = A(t)\mathbf{y}$$

se e só se $\mathbf{u}(t)$ e $\mathbf{v}(t)$ são soluções reais do mesmo sistema.

Proposição: Uma matriz A, $n \times n$, de coeficientes constantes tem n vectores próprios associados linearmente independentes se e só se é diagonalizável.

Definição: Dada uma matriz A de coeficientes constantes chama-se **multiplicidade algébrica** dum valor próprio λ de A à sua multiplicidade como raíz do polinómio característico $\det(A - \lambda I) = 0$.

Chama-se **multiplicidade geométrica** dum valor próprio λ à dimensão do correspondente espaço próprio, ou seja, ao número de vectores próprios linearmente independentes associados a λ .

Proposição: Seja A uma matriz $n \times n$ de coeficientes constantes e λ um valor próprio. Então

 $1 \leq \text{mult.}$ geométrica de $\lambda \leq \text{mult.}$ algébrica de $\lambda \leq n$