Neural Machine Translation

February 8, 2018

- Machine Translation Overview
- 2 Sequence-to-Sequence Learning
- 3 Sequence-to-Sequence with Attention
- 4 Applications
- 5 Extensions of Attention
- 6 Open Research Questions

- Machine Translation Overview
- 2 Sequence-to-Sequence Learning
- 3 Sequence-to-Sequence with Attention
- 4 Applications
- 5 Extensions of Attention
- Open Research Questions

Machine Translation

- \$40 billion industry
- Google: translates 100 billion words a day

Machine Translation History

Phrase-based MT

Complex pipelines, all trained separately

Phrase-based MT

Alignment Model

Neural Machine Translation

- No pipelines. Single model trained end-to-end with backprop.
- Essentially a conditional language model

Machine Translation Progress (English-German)

Machines vs. Humans

- Machine Translation Overview
- 2 Sequence-to-Sequence Learning
- 3 Sequence-to-Sequence with Attention
- 4 Applications
- Extensions of Attention
- Open Research Questions

Pure Encoder-Decoder Network

Input (sentence, image, etc.)

Fixed-Size Encoder (MLP, RNN, CNN)

 $\mathsf{Encoder}(\mathsf{input}) \in \mathbb{R}^D$

Decoder

Decoder(Encoder(input))

Pure Encoder-Decoder Network

Input (sentence, image, etc.)

Fixed-Size Encoder (MLP, RNN, CNN)

 $\mathsf{Encoder}(\mathsf{input}) \in \mathbb{R}^D$

Decoder

Decoder(Encoder(input))

Pure Encoder-Decoder Network

Input (sentence, image, etc.)

Fixed-Size Encoder (MLP, RNN, CNN)

 $\mathsf{Encoder}(\mathsf{input}) \in \mathbb{R}^D$

Decoder

Decoder(Encoder(input))

Source sentence: $\mathbf{x} = [x_1, \dots, x_T]$ Target sentence: $\mathbf{y} = [y_1, \dots, y_L]$

- $h_t = \text{RNN}(x_t, h_{t-1})$ (Encoder RNN)
- $h_T = \text{Last hidden state of RNN encoder (summary of source)}$
- $q_i = RNN(y_l, q_{i-1})$ (Decoder RNN)
- $p(y_i|y_{\leq i}, \mathbf{x}) = \operatorname{softmax}(\operatorname{MLP}([q_i, h_T]))$
- Training: word-level maximum likelihood

$$\underset{\theta}{\arg\max} \sum_{i=1}^{L} \log p(y_i|y_{\leq i}, \mathbf{x})$$

Source sentence: $\mathbf{x} = [x_1, \dots, x_T]$ Target sentence: $\mathbf{y} = [y_1, \dots, y_L]$

- $h_t = RNN(x_t, h_{t-1})$ (Encoder RNN)
- $h_T = \text{Last hidden state of RNN encoder (summary of source)}$
- $q_i = RNN(y_l, q_{i-1})$ (Decoder RNN)
- $p(y_i|y_{< i}, \mathbf{x}) = \operatorname{softmax}(\operatorname{MLP}([q_i, h_T]))$
- Training: word-level maximum likelihood

$$\underset{\theta}{\operatorname{arg max}} \sum_{i=1}^{L} \log p(y_i|y_{< i}, \mathbf{x})$$

Source sentence:
$$\mathbf{x} = [x_1, \dots, x_T]$$

Target sentence: $\mathbf{y} = [y_1, \dots, y_L]$

- $h_t = \text{RNN}(x_t, h_{t-1})$ (Encoder RNN)
- $h_T = \text{Last hidden state of RNN encoder (summary of source)}$
- $q_i = RNN(y_l, q_{i-1})$ (Decoder RNN)
- $p(y_i|y_{< i}, \mathbf{x}) = \operatorname{softmax}(\operatorname{MLP}([q_i, h_T]))$
- Training: word-level maximum likelihood

$$\arg\max_{\theta} \sum_{i=1}^{L} \log p(y_i|y_{< i}, \mathbf{x})$$

Source sentence:
$$\mathbf{x} = [x_1, \dots, x_T]$$

Target sentence: $\mathbf{y} = [y_1, \dots, y_L]$

- $h_t = \text{RNN}(x_t, h_{t-1})$ (Encoder RNN)
- $h_T = \text{Last hidden state of RNN encoder (summary of source)}$
- $q_i = RNN(y_l, q_{i-1})$ (Decoder RNN)
- $p(y_i|y_{< i}, \mathbf{x}) = \operatorname{softmax}(\operatorname{MLP}([q_i, h_T]))$
- Training: word-level maximum likelihood

$$\underset{\theta}{\arg\max} \sum_{i=1}^{L} \log p(y_i|y_{< i}, \mathbf{x})$$

Source sentence: $\mathbf{x} = [x_1, \dots, x_T]$

Target sentence: $\mathbf{y} = [y_1, \dots, y_L]$

- $h_t = RNN(x_t, h_{t-1})$ (Encoder RNN)
- $h_T = \text{Last hidden state of RNN encoder (summary of source)}$
- $q_i = RNN(y_l, q_{i-1})$ (Decoder RNN)
- $p(y_i|y_{\leq i}, \mathbf{x}) = \operatorname{softmax}(\operatorname{MLP}([q_i, h_T]))$
- Training: word-level maximum likelihood

$$\underset{\theta}{\operatorname{arg\,max}} \sum_{i=1}^{L} \log p(y_i|y_{< i}, \mathbf{x})$$

	Exa	mple:	Neural	Machine	Translat	ion (Sut	skever et	al., 201	4)
Ovei	r	the	line	!					

Communication Bottleneck

All input information communicated through fixed-size hidden vector.

Encoder(input)

- Training: All gradients have to flow through single bottleneck.
- Test: All input encoded in single vector.

- Machine Translation Overview
- 2 Sequence-to-Sequence Learning
- 3 Sequence-to-Sequence with Attention
- 4 Applications
- 5 Extensions of Attention
- 6 Open Research Questions

Input (sentence, image, etc.)

Memory-Bank Encoder (MLP, RNN, CNN)

$$\mathsf{Encoder}(\mathsf{input}) = x_1, x_2, \dots, x_T$$

Attention Distribution Annotation Function
"where" "what"

Context Vector ("soft selection")

Input (sentence, image, etc.)

Memory-Bank Encoder (MLP, RNN, CNN)

$$\mathsf{Encoder}(\mathsf{input}) = x_1, x_2, \dots, x_T$$

Attention Distribution Annotation Function
"where" "what"

Context Vector ("soft selection")

Input (sentence, image, etc.)

Memory-Bank Encoder (MLP, RNN, CNN)

$$\mathsf{Encoder}(\mathsf{input}) = x_1, x_2, \dots, x_T$$

Attention Distribution Annotation Function "where" "what"

Context Vector ("soft selection")

Input (sentence, image, etc.)

Memory-Bank Encoder (MLP, RNN, CNN)

$$\mathsf{Encoder}(\mathsf{input}) = x_1, x_2, \dots, x_T$$

Attention Distribution Annotation Function "where" "what"

Context Vector ("soft selection")

Input (sentence, image, etc.)

Memory-Bank Encoder (MLP, RNN, CNN)

$$\mathsf{Encoder}(\mathsf{input}) = x_1, x_2, \dots, x_T$$

Attention Distribution Annotation Function

"where"

"what"

Context Vector ("soft selection")

Attention-based Neural Machine Translation (Bahdanau et al., 2015)

Source sentence: $\mathbf{x} = [x_1, \dots, x_T]$

Target sentence: $\mathbf{y} = [y_1, \dots, y_L]$

- $[h_1, \ldots, h_T] = \text{RNN}(\mathbf{x})$ (Memory/Annotation Function)
- $q_i = RNN(y_l, q_{i-1})$ (Decoder RNN)
- $\alpha_{i,t} = \frac{\exp(q_i^{\top}h_t)}{\sum_{j=1}^{T} \exp(q_j^{\top}h_j)}$ (Attention distribution)
- $c_i = \sum_{t=1}^{T} \alpha_{i,t} h_t$ (Context vector)
- $p(y_i|y_{\leq i}, \mathbf{x}) = \operatorname{softmax}(\operatorname{MLP}([q_i, c_i]))$

Source sentence: $\mathbf{x} = [x_1, \dots, x_T]$

- ullet $[h_1,\ldots,h_T]=\mathrm{RNN}(\mathbf{x})$ (Memory/Annotation Function)
- $q_i = RNN(y_l, q_{i-1})$ (Decoder RNN)
- $\alpha_{i,t} = \frac{\exp(q_i^{\top}h_t)}{\sum_{j=1}^{T} \exp(q_i^{\top}h_j)}$ (Attention distribution)
- $c_i = \sum_{t=1}^{T} \alpha_{i,t} h_t$ (Context vector)
- $p(y_i|y_{\leq i}, \mathbf{x}) = \operatorname{softmax}(\operatorname{MLP}([q_i, c_i]))$

Source sentence: $\mathbf{x} = [x_1, \dots, x_T]$

- $[h_1, \ldots, h_T] = \text{RNN}(\mathbf{x})$ (Memory/Annotation Function)
- $q_i = RNN(y_l, q_{i-1})$ (Decoder RNN)
- $\alpha_{i,t} = \frac{\exp(q_i^{\top}h_t)}{\sum_{j=1}^{T} \exp(q_j^{\top}h_j)}$ (Attention distribution)
- $c_i = \sum_{t=1}^{T} \alpha_{i,t} h_t$ (Context vector)
- $p(y_i|y_{< i}, \mathbf{x}) = \operatorname{softmax}(\operatorname{MLP}([q_i, c_i]))$

Source sentence: $\mathbf{x} = [x_1, \dots, x_T]$

- ullet $[h_1,\ldots,h_T]=\mathrm{RNN}(\mathbf{x})$ (Memory/Annotation Function)
- $q_i = RNN(y_l, q_{i-1})$ (Decoder RNN)
- $\alpha_{i,t} = \frac{\exp(q_i^\top h_t)}{\sum_{j=1}^T \exp(q_i^\top h_j)}$ (Attention distribution)
- $c_i = \sum_{t=1}^{T} \alpha_{i,t} h_t$ (Context vector)
- $p(y_i|y_{< i}, \mathbf{x}) = \operatorname{softmax}(\operatorname{MLP}([q_i, c_i]))$

Source sentence: $\mathbf{x} = [x_1, \dots, x_T]$

- $[h_1, \ldots, h_T] = \text{RNN}(\mathbf{x})$ (Memory/Annotation Function)
- $q_i = RNN(y_l, q_{i-1})$ (Decoder RNN)
- $\alpha_{i,t} = \frac{\exp(q_i^\top h_t)}{\sum_{j=1}^T \exp(q_i^\top h_j)}$ (Attention distribution)
- $c_i = \sum_{t=1}^{T} \alpha_{i,t} h_t$ (Context vector)
- $p(y_i|y_{\leq i}, \mathbf{x}) = \operatorname{softmax}(\operatorname{MLP}([q_i, c_i]))$

Source sentence: $\mathbf{x} = [x_1, \dots, x_T]$

- $[h_1, \ldots, h_T] = \text{RNN}(\mathbf{x})$ (Memory/Annotation Function)
- $q_i = RNN(y_l, q_{i-1})$ (Decoder RNN)
- $\alpha_{i,t} = \frac{\exp(q_i^\top h_t)}{\sum_{j=1}^T \exp(q_i^\top h_j)}$ (Attention distribution)
- $c_i = \sum_{t=1}^{T} \alpha_{i,t} h_t$ (Context vector)
- $p(y_i|y_{< i}, \mathbf{x}) = \operatorname{softmax}(\operatorname{MLP}([q_i, c_i]))$

Attention Networks: Notation

$$x_1,\dots,x_T$$
 Memory bank
$$q$$
 Query
$$z$$
 Memory selection ("where")
$$p(z=i\,|\,x,q;\theta)$$
 Attention distribution
$$f(x,z)$$
 Annotation function ("what")
$$c=\mathbb{E}_z[f(x,z)]$$
 Context vector ("soft selection")

- $\textbf{ 0} \ \ \text{Need to compute attention distribution} \ \ p(z=i\,|\,x,q;\theta)$
- 2 Need to backpropagate to learn parameters 6

Attention Networks: Notation

$$x_1,\dots,x_T$$
 Memory bank
$$q$$
 Query
$$z$$
 Memory selection ("where")
$$p(z=i\,|\,x,q;\theta)$$
 Attention distribution
$$f(x,z)$$
 Annotation function ("what")
$$c=\mathbb{E}_z[f(x,z)]$$
 Context vector ("soft selection")

- $\textbf{ 0} \ \ \text{Need to compute attention distribution} \ \ p(z=i\,|\,x,q;\theta)$
- 2 Need to backpropagate to learn parameters θ

$$\begin{array}{cccc} x_1,\dots,x_T & \text{Memory bank} & \text{Source RNN hidden states} \\ q & \text{Query} & \text{Decoder hidden state} \\ z & \text{Memory selection} & \text{Source position } \{1,\dots,T\} \\ p(z=i\,|\,x,q;\theta) & \text{Attention distribution} & \text{softmax}(x_i^\top q) \\ f(x,z) & \text{Annotation function} & \text{Memory at time z, i.e. x_z} \\ c=\mathbb{E}_z[f(x,z)] & \text{Context vector} & \sum_{i=1}^T p(z=i\,|\,x,q)x_i \end{array}$$

- ① Need to compute attention $p(z = i \mid x, q; \theta)$ \implies softmax function
- Need to backpropagate to learn parameters (
 Backprop through softmax function

x_1,\ldots,x_T	Memory bank	Source RNN hidden states	
q	Query	Decoder hidden state	
z	Memory selection	Source position $\{1,\ldots,T\}$	
$p(z=i x,q;\theta)$	Attention distribution	$\operatorname{softmax}(x_i^\top q)$	
f(x,z)	Annotation function	Memory at time z , i.e. x_z	
$c = \mathbb{E}_z[f(x,z)]$	Context vector	$\sum_{i=1}^{T} p(z=i \mid x, q) x_i$	

- $\begin{tabular}{l} \bullet \end{tabular} \begin{tabular}{l} \textbf{Need to compute attention} & p(z=i\,|\,x,q;\theta) \\ \Longrightarrow & \text{softmax function} \\ \end{tabular}$
- ② Need to backpropagate to learn parameters θ \implies Backprop through softmax function

Performance vs Length

Practical Issues

Some issues you will explore in the homework...

- How to set up data for batch training? (source/target sentences have varying lengths)
- What type of encoder/decoder architecture (GRU/LSTM/CNN)?
- How to find $\arg \max_{\mathbf{v} \in \mathcal{V}} p(\mathbf{y}|\mathbf{x})$?
- How to deal with unknown tokens?

Attention Visualization

Alignment Model as a "Hidden Layer"

- Machine Translation Overview
- 2 Sequence-to-Sequence Learning
- 3 Sequence-to-Sequence with Attention
- 4 Applications
- 5 Extensions of Attention
- 6 Open Research Questions

Greg is a frog		
Brian is a rhino		
Lily is a rhino		
Greg is green		
Brian is white		
John is a frog		

Question Answering (Sukhbaatar et al., 2015)

Question Answering (Sukhbaatar et al., 2015)

Question Answering (Sukhbaatar et al., 2015)

Other Applications of Attention Networks

- Machine Translation (Bahdanau et al., 2015; Luong et al., 2015)
- Question Answering (Hermann et al., 2015; Sukhbaatar et al., 2015)
- Natural Language Inference (Rocktäschel et al., 2016; Parikh et al., 2016)
- Algorithm Learning (Graves et al., 2014, 2016; Vinyals et al., 2015a)
- Parsing (Vinyals et al., 2015b)
- Speech Recognition (Chorowski et al., 2015; Chan et al., 2015)
- Summarization (Rush et al., 2015)
- Caption Generation (Xu et al., 2015)
- and more...

Other Applications: Image Captioning (Xu et al., 2015)

(b) A woman is throwing a frisbee in a park.

Other Applications: Speech Recognition (Chan et al., 2015)

Other Applications: Summarization (Rush et al., 2015)

Other Applications: Image-to-Latex (Deng et al., 2016)

- Machine Translation Overview
- 2 Sequence-to-Sequence Learning
- 3 Sequence-to-Sequence with Attention
- 4 Applications
- **5** Extensions of Attention
- Open Research Questions

 $s_{ij} =$ score of target word i attending to source word j

$$\alpha_{ij} = \frac{\exp s_{ij}}{\sum_{t \in T} \exp s_{it}}$$

- $s_{ij} = q_i^{\mathsf{T}} h_j$ (Rush et al. 2015)
- $s_{ij} = w^{\top} \tanh(Wq_i + Uh_j)$ (Bahdanau et al. 2015)
- $s_{ij} = (q_i W)^{\top} h_j$ (Luong et al. 2015)
- $s_{ij} = \text{ForwardBackward}([s_{i1}, \dots, s_{iT}])$ (Me et al. 2017)

 $s_{ij} =$ score of target word i attending to source word j

$$\alpha_{ij} = \frac{\exp s_{ij}}{\sum_{t \in T} \exp s_{it}}$$

- $s_{ij} = q_i^{\top} h_j$ (Rush et al. 2015)
- $s_{ij} = w^{\top} \tanh(Wq_i + Uh_j)$ (Bahdanau et al. 2015)
- $s_{ij} = (q_i W)^{\top} h_i$ (Luong et al. 2015)
- $s_{ij} = \text{ForwardBackward}([s_{i1}, \dots, s_{iT}])$ (Me et al. 2017)

 $s_{ij} =$ score of target word i attending to source word j

$$\alpha_{ij} = \frac{\exp s_{ij}}{\sum_{t \in T} \exp s_{it}}$$

- $s_{ij} = q_i^{\top} h_j$ (Rush et al. 2015)
- $s_{ij} = w^{\top} \tanh(Wq_i + Uh_j)$ (Bahdanau et al. 2015)
- $s_{ij} = (q_i W)^{\top} h_j$ (Luong et al. 2015)
- $s_{ij} = \text{ForwardBackward}([s_{i1}, \dots, s_{iT}])$ (Me et al. 2017)

 $s_{ij} = \mathsf{score}\ \mathsf{of}\ \mathsf{target}\ \mathsf{word}\ i\ \mathsf{attending}\ \mathsf{to}\ \mathsf{source}\ \mathsf{word}\ j$

$$\alpha_{ij} = \frac{\exp s_{ij}}{\sum_{t \in T} \exp s_{it}}$$

- $s_{ij} = q_i^{\top} h_j$ (Rush et al. 2015)
- $s_{ij} = w^{\top} \tanh(Wq_i + Uh_j)$ (Bahdanau et al. 2015)
- $s_{ij} = (q_i W)^{\top} h_j$ (Luong et al. 2015)
- $s_{ij} = \text{ForwardBackward}([s_{i1}, \dots, s_{iT}])$ (Me et al. 2017)

 $s_{ij}=$ score of target word i attending to source word j $\alpha_{ij}=\frac{\exp s_{ij}}{\sum_{t\in T}\exp s_{it}}$

- $s_{ij} = q_i^{\top} h_i$ (Rush et al. 2015)
- $s_{ij} = w^{\top} \tanh(Wq_i + Uh_i)$ (Bahdanau et al. 2015)
- $s_{ij} = (q_i W)^{\top} h_j$ (Luong et al. 2015)
- $s_{ij} = \text{ForwardBackward}([s_{i1}, \dots, s_{iT}])$ (Me et al. 2017)

- Ideally, encoder RNN state h_t should capture all information about x_t including the global sentence context (if using bidirectional RNN).
- In practice, this is hard to, and h_t only captures local information.
- In language, there are often long-range dependencies.

"I voted for Nader because he was most aligned with my values," she said.

- Idea: Perform **self**-attention over the sentence
- $\beta_{ij} = \operatorname{softmax}(h_i^{\top} h_j)$ where h_i, h_j are source hidden states
- For each word x_i , get its "soft-match":

$$\tilde{x}_i = \sum_{i=1}^T \beta_{ij} x_j$$

• Use \tilde{x}_i along with x_i as input into encoder

(Vaswani et al. 2017)

(Vaswani et al. 2017)

- Machine Translation Overview
- 2 Sequence-to-Sequence Learning
- 3 Sequence-to-Sequence with Attention
- 4 Applications
- 5 Extensions of Attention
- 6 Open Research Questions

Multilingual Translation

Low Resource Translation

Language	Train	Test	SBMT	NMT	
	size	size	BLEU	BLEU	
Hausa	1.0m	11.3K	23.7	16.8	
Turkish	1.4m	11.6K	20.4	11.4	
Uzbek	1.8m	11.5K	17.9	10.7	
Urdu	0.2m	11.4K	17.9	5.2	

(Zoph et al. 2016)

Subword Machine Translation

(Lee et al. 2016)

Unsupervised Machine Translation

Unsupervised Machine Translation

(Lample et al. 2018)

Unsupervised Machine Translation

		FR-EN	EN-FR	DE-EN	EN-DE
Unsupervised	Baseline (emb. nearest neighbor) Proposed (denoising) Proposed (+ backtranslation) Proposed (+ BPE)	9.98 7.28 15.56 15.56	6.25 5.33 15.13 14.36	7.07 3.64 10.21 10.16	4.39 2.40 6.55 6.89
Semi- supervised	5. Proposed (full) + 10k parallel 6. Proposed (full) + 100k parallel	18.57 21.81	17.34 21.74	11.47 15.24	7.86 10.95
Supervised	7. Comparable NMT (10k parallel) 8. Comparable NMT (100k parallel) 9. Comparable NMT (full parallel) 10. GNMT (Wu et al., 2016)	1.88 10.40 20.48	1.66 9.19 19.89 38.95	1.33 8.11 15.04	0.82 5.29 11.05 24.61

(Lample et al. 2018)

References I

- Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural Machine Translation by Jointly Learning to Align and Translate. In *Proceedings of ICLR*.
- Chan, W., Jaitly, N., Le, Q., and Vinyals, O. (2015). Listen, Attend and Spell. arXiv:1508.01211.
- Chorowski, J., Bahdanau, D., Serdyuk, D., Cho, K., and Bengio, Y. (2015). Attention-Based Models for Speech Recognition. In *Proceedings of NIPS*.
- Deng, Y., Kanervisto, A., and Rush, A. M. (2016). What You Get Is What You See: A Visual Markup Decompiler. *arXiv:1609.04938*.
- Graves, A., Wayne, G., and Danihelka, I. (2014). Neural Turing Machines. arXiv:1410.5401.

References II

- Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwinska, A., Colmenarejo, S. G., Grefenstette, E., Ramalho, T., Agapiou, J., Badia, A. P., Hermann, K. M., Zwols, Y., Ostrovski, G., Cain, A., King, H., Summerfield, C., Blunsom, P., Kavukcuoglu, K., and Hassabis, D. (2016). Hybrid Computing Using a Neural Network with Dynamic External Memory. *Nature*.
- Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., and Blunsom, P. (2015). Teaching Machines to Read and Comprehend. In *Proceedings of NIPS*.
- Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective Approaches to Attention-based Neural Machine Translation. In *Proceedings of EMNLP*.
- Parikh, A. P., Tackstrom, O., Das, D., and Uszkoreit, J. (2016). A Decomposable Attention Model for Natural Language Inference. In Proceedings of EMNLP.

References III

- Rocktäschel, T., Grefenstette, E., Hermann, K. M., Kocisky, T., and Blunsom, P. (2016). Reasoning about Entailment with Neural Attention. In Proceedings of ICLR.
- Rush, A. M., Chopra, S., and Weston, J. (2015). A Neural Attention Model for Abstractive Sentence Summarization. In *Proceedings of EMNLP*.
- Sukhbaatar, S., Szlam, A., Weston, J., and Fergus, R. (2015). End-To-End Memory Networks. In *Proceedings of NIPS*.
- Sutskever, I., Vinyals, O., and Le, Q. (2014). Sequence to Sequence Learning with Neural Networks. In *Proceedings of NIPS*.
- Vinyals, O., Fortunato, M., and Jaitly, N. (2015a). Pointer Networks. In *Proceedings of NIPS*.
- Vinyals, O., Kaiser, L., Koo, T., Petrov, S., Sutskever, I., and Hinton, G. (2015b). Grammar as a Foreign Language. In *Proceedings of NIPS*.

References IV

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R., and Bengio, Y. (2015). Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. In *Proceedings of ICML*.