144-148MHz, 12.5V, 30W, FM MOBILE RADIO

PIN:

① Pin : RF INPUT ② VCC1 : 1st. DC SUPPLY ③ VCC2 : 2nd. DC SUPPLY ④ PO : RF OUTPUT ⑤ GND : FIN

ABSOLUTE MAXIMUM RATINGS (Tc = 25 ℃ unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		17	. \
Icc	Total current		7	Α
Pin(max)	Input power	$Z_G = Z_L = 50 \Omega$	0.4	W
Po(max)	Output power	$Z_G = Z_L = 50 \Omega$	40	W
Tc(op)	Operation case temperature		- 30 to 110	℃
Tstg	Storage temperature		- 40 to 110	℃

Note. Above parameters are guaranteed independently.

ELECTRICAL CHARACTERISTICS (Tc = 25 °C unless otherwise noted)

Symbol	Parameter	Test conditions	Limits		11.25
			Min	Max	Unit
f	Frequency range		144	148	MHz
Po	Output power	2 2011	30		W
ηт	Total efficiency	$P_{in} = 0.2W$ $V_{CC} = 12.5V$ $Z_{G} = Z_{L} = 50 Ω$	45		%
2fo	2nd. harmonic			- 25	dBc
3fo	3rd. harmonic			- 30	dBc
ρ in	Input VSWR			2.8	_
_	Load VSWR tolerance	$V_{CC} = 15.2V$, $P_{O} = 35W$ (P_{in} : controlled) Load VSWR=20:1 (All phase), 5sec. $Z_{G} = 50\Omega$	_	No degradation or destroy	

Note. Above parameters, ratings, limits and conditions are subject to change.

TYPICAL PERFORMANCE DATA

OUTPUT POWER, TOTAL EFFICIENCY, INPUT VSWR VS. FREQUENCY

OUTPUT POWER, 1st CURRENT TOTAL CURRENT VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER, FINAL CURRENT VS. 1st VOLTAGE

OUTPUT POWER, TOTAL CURRENT VS. DC SUPPLY VOLTAGE

INPUT INPEDANCE VS. FREQUENCY

DESIGN CONSIDERATION OF HEAT RADIA-TION

Please refer to following consideration when designing heat sink.

1. Junction temperature of incorporated transistors at standard operation.

- (1) Thermal resistance between junction and package of incorporated transistors.
 - a) First stage transistor

$$R_{th(j-c)1} = 8^{\circ}C/W (Typ.)$$

b) Second stage transistor

$$R_{th(j-c)2} = 2^{\circ}C/W \text{ (Typ.)}$$

- (2) Junction temperature of incorporated transistors at stadard operation.
- Conditions for standard operation.

 P_0 = 28W, V_{CC} = 12.5V, P_{in} = 0.2W, η_T = 45% (minimum rating), P_01 (Note 1) = 5W, I_T = 5.0A (I_{T1} (2) = 0.9A, I_{T2} (3) = 4.1A)

DESNote 1: Output power of the first stage transistor

Note 2: Circuit current of the first stage transistor

Note 3: Circuit current of the final stage transistor

• Junction temperature of the first stage transistor

$$T_{j1} = (V_{CC} \times I_{T1} - P_{O1} + P_{in}) \times R_{th(j-c)1} + T_c^{(4)}$$

= (12.5 × 0.9 - 5 + 0.2) × 8 + T_c
= 52 + T_c (°C)

Note 4: Package temperature of device

• Junction temperature of the final stage transistor

$$T_{j2} = (V_{CC} \times I_{T2} - P_0 + P_{01}) \times R_{th(j-c)2} + T_c$$

= (12.5 x 4.1 - 28 + 5) x 2 + T_c
= 57 + T_c (°C)

2. Heat sink design;

In thermal design of heat sink, try to keep the package temperature at the upper limit of the operating ambinet temperature (normally $T_a = 60^{\circ}C$) and at the output power of 28W below $90^{\circ}C$.

The thermal resistance $R_{th(c-a)}^{(5)}$ of the heat sink to realize this:

$$R_{\text{th (c-a)}} = \frac{T_{\text{c}} - T_{\text{a}}}{(P_{\text{O}}/\eta_{\text{T}}) - P_{\text{O}} + P_{\text{in}}} = \frac{90 - 60}{(28/0.45) - 28 + 0.2}$$
$$= 0.87 \text{ (°C/W)}$$

Note 5: Inclusive of the contact thermal resistance between device and heat sink

Mounting the heat sink of the above thermal resistance on the device.

 $T_{j1} = 142^{\circ}C$, $T_{j2} = 147^{\circ}C$ at $T_a = 60^{\circ}C$, $T_C = 90^{\circ}C$. In the annual average of ambient temperature is 30°C,

$$T_{j1} = 112^{\circ}C, T_{j2} = 118^{\circ}C$$

As the maximum junction temperature of these incorporated transistors T_{jmax} are 175° C, application under fully derated condition is ensured.

