Lecture 1

事件与概率

课程内容

- ∥ 先修课程: 微积分, 多元微积分
- 本课程是概率论与数理统计的入门课程,将向初学者介绍:概率论,统计推断和随机过程;(1)概率论:概率空间,事件与概率,条件概率,随机变量,多元随机变量,随机变量的期望与方差,大数定理与中心极限定理(2)统计推断:Bayes 估计,极大似然估计,样本估计量及其分布,假设检验(3)随机过程:平稳随机过程,宽平稳随机过程,Markov链及其应用
- * 教学参考书目以及讲稿等课程相关内容可在课程中心或是 https://scistats.github.io/ 找到

作业与评估

- // 课程时间: 周二(单), 周四; 上午 1-2 节, J3-311.
- 助教答疑: 助教主要负责批改平时作业并答疑,答疑时间待定.
- 习题解答: 助教应在每次作业批改前认真解答习题,并在批 改之后将参考解题过程提交到网上供学生参考
- 平时作业: 由学习委员收齐后,在安排的答疑时间交给助教,对于无故或是以不可接受的理由而缺交或迟交作业的同学,助教将参考如下规则扣除其作业分-----缺交一次作业扣2分,迟交一次作业扣1分,平时作业缺交(或迟交)扣分总和不超过10分.
- 〃 评估方法: 平时作业 (10%) + 期末考试 (90%). 闭卷考试.

概率与不确定性

几个常见例子:

- 〃 在一个计算机网络系统中, 网络出现拥挤的概率有多大?
- 〃 同一生产线生产的某产品,其合格率如何估计?
- 如何使用随机模型估算基于股票走势的金融产品的价格?
- // 某一机构为客户提供服务,怎样分配资源才能让服务更有效?
- // Google 搜索引擎是如何对页面进行排序的?
- 语音识别系统如何使用概率模型对音频序列进行识别?

集合

定义 集合是由一些对象组成的,这些对象称为集合的元素. 如果 S 是一个集合并且 x 是 S 的一个元素,我们写作 $x \in S$. 反之则写作 $x \notin S$. 空集记为 \emptyset .

例题 $S = \{x_1, x_2\}$ 是一个有限集. $S = \{x_1, x_2, x_3, ...\}$ 是一个可数集合. $S = \{x | 0 \le x \le 1\}$ 是区间 [0, 1] 中所有实数组成的集合,这是一个不可数集合.

定义 如果集合 S 的元素同时也属于 T, 我们就称 S 是 T 的**子集**, 并记为 $S \subset T$. 如果 $S \subset T$ 并且 $T \subset S$, 那么 S = T.

例题 包含所有元素的集合称是一个全集 Ω. 全集的定义取决于所考虑的问题. 当全集给定之后,所有集合都是全集的子集,特别地 Ø 是全集的子集.

集合的运算

集合S的**余集**

$$S^c = \{x | x \notin S\} = \Omega \backslash S$$

并集

$$S \cup T = \{x | x \in S$$
或者 $x \in T\}$

交集

$$S \cap T = \{x | x \in S \not \exists \exists x \in T\}$$

$$\bigcap_{k=1}^{n} S_{n} = \{x | x \in S_{k} \, \forall \text{MA} \}$$

一些相关性质(其中 Ω 为全集)

定理 (De Morgan's Law) 对任意集合 $S_1, ..., S_n$, 我们有

$$\left(\bigcup_{k=1}^{n} S_{k}\right)^{c} = \bigcap_{k=1}^{n} S_{k}^{c}, \left(\bigcap_{k=1}^{n} S_{k}\right)^{c} = \bigcup_{k=1}^{n} S_{k}^{c}$$

■ 我们证明第一个等式. $x \in (\bigcup S_k)^c \iff x \notin \bigcup S_k \iff x \notin S_k$ 对所有 $k \iff x \in S_k^c$ 对所有 $k \iff x \in \bigcap S_k^c$.

7

排列组合知识点复习

- 〃 n 个不同对象的不同的排列方法总数为: n!
- N 从 n 个不同对象中选择 k 个组成一个 k- 序列,不同的 k- 序列总数为:

$$\frac{n!}{(n-k)!}$$

// 从n个不同对象中任选k个(不计顺序)的方法总数为:

$$C_n^k = \frac{n!}{(n-k)!k!}$$

$$C_n^{n_1,n_2,\ldots,n_r} = \frac{n!}{n_1!n_2!\cdots n_r!}$$

概率模型

定义 概率模型由样本空间和概率组成. 样本空间是所有实验结果的集合. 样本空间的子集称为**事件**. **概率**则是集合上的函数,它赋予每一个事件一个非负数.

很多概率模型可以通过图形或是树形结构来表示:

样本空间

<mark>例题</mark> 在一次游戏中,玩家连续投掷一个硬币 10 次. 每出现一次正面,玩家赢得 1 元.

■ 在这个游戏中,影响到游戏结果的是正面出现的个数. 令 s_k (k = 0, ..., 10) 表示在 10 次连续投掷中正面出现 k 次的事件. 那么我们可以定义样本空间为 $\Omega = \{s_0, s_1, ..., s_{10}\}.$

例题 在一次游戏中,玩家连续投掷一个硬币 10 次. 当第一个正面出现时,玩家赢得 1元. 当第二个正面出现时,玩家赢得 2元. 以此类推......

■ 在这个游戏中正面出现的次数以及何时出现都将影响到游戏结果. 因此合适的样本空间应该包括所有可能出现的 10-投掷序列.

例题 将一根长度为x的木棍分为三段,它们正好组成一个三角形的概率是多少?

■ 提示: 考虑一个高为 x 的等边三角形. 从该三角形的内部任意一点 p 向三边作垂线. 三条垂线段对应着一个分割木棍的方法. 注意到在图形中 x = a + b + c. a, b, c 能组成一个三角形当且仅当 p 点位于绿色三角形中,绿色三角形是通过连接三边中电形成的. 所以所求的事件概率为 1/4.

概率公理

给定样本空间,**概率律**将赋予每一个事件 A 一个非负数 P(A),称之为事件 A 的概率. 概率律应满足一下公理

- $P(A) \geqslant 0;$
- $P\left(\bigcup_{n=1}^{\infty}A_{n}\right)=\sum_{n=1}^{\infty}P\left(A_{n}\right)$ 如果 A_{n} 互不相交, 即. $A_{i}\cap A_{j}=\varnothing$ 如果 $i\neq j$;
- $P(\Omega) = 1.$

例题 假设 C_n , n = 1, ..., N 为互不相交的集合, 即, $C_i \cap C_j = \emptyset$ 对于 $i \neq j$, 那么

$$P\left(\bigcup_{n=1}^{N} C_{n}\right) = \sum_{n=1}^{N} P\left(C_{n}\right).$$

■ 取 $A_n = C_n$, 如果 n = 1, ..., N, $A_n = \emptyset$ 如果 n > N. 然后对 $A_1, A_2, ..., A_n$... 运用概率公理.

12

从概率公理可以推出一些简单的性质, 它们可以通过图形直接验证:

$$P(\varnothing) = 0$$

$$P(\Omega) = P(\Omega \cup \varnothing) = P(\Omega) + P(\varnothing) = 1 + P(\varnothing)$$

- $\prime\prime$ 由于 $\Omega = A \cup A^c$, 总有 $P(A^c) = 1 P(A)$
- M 如果 $A \subset B$, 那么 $P(A) \leqslant P(B)$ $P(B) = P(A \cap B) + P(A^c \cap B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

注意到 $A \cup B$ 可以写成两个不相交集合的并集 $A \cup B = B \cup (A \cap B^c)$, 因此

$$P(A \cup B) = P(B) + P(A \cap B^{c})$$

= $P(B) + P(A) - P(A \cap B)$

$$^{\prime\prime}$$
 $P(A \cup B) \leqslant P(A) + P(B)$

$$P\left(\bigcup_{n=1}^{N} A_n\right) \leqslant \sum_{n=1}^{N} P\left(A_n\right)$$

$$P(A \cup B \cup C) = P(A) + P(A^c \cap B) + P(A^c \cap B^c \cap C)$$

例题 投掷两个硬币并假设样本空间 $S = \{HH, HT, TH, TT\}$ 中的每一个事件是等概率的, 即. $\frac{1}{4}$. 令

$$E = \{$$
第一个硬币出现正面 $\}$

$$F = \{$$
第二个硬币出现正面 $\}$

试计算 $P(\{ 至少有一个硬币出现正面 \})$.

■ 直接计算

$$P\left(\left\{ \mathbf{\underline{\Sigma}}$$
少有一个硬币显示正面 $\right\} \right) = P\left(\left\{ HH, HT, TH \right\} \right) = \frac{3}{4}.$

或者运用概率的性质

$$P\left(\left\{ \mathbf{至少有} - \mathbf{ } \uparrow \mathbf{ } \oplus \mathbf{ } \downarrow \mathbf{ } \right\}\right) = P\left(E \cup F\right)$$
 $= P\left(E\right) + P\left(F\right) - P\left(E \cap F\right)$
 $= P\left(\left\{HH, HT\right\}\right) + P\left(\left\{HH, TH\right\}\right) - P\left(\left\{HH\right\}\right)$
 $= \frac{1}{2} + \frac{1}{2} - \frac{1}{4} = \frac{3}{4}.$

lh

例题 水电公司希望对水电需求进行预先规划.为此工程人员将水需求量标记在 X 轴上,而将电需求量标记在 Y 轴上.假设水的需求通常在 0 至 200 单位之间,而电需求量则在 0 至 150 之间.那么水电需求量分布在平面上的一个矩形区域里.假设任何一个水电需求量事件 E 的发生概率等于事件所占区域面积与总水电分布区域面积的比值.试求出用水量和用电量都至少在 100 以上的区域概率.

$$A = \{$$
用水量至少在 100 以上的区域 $\}$
 $B = \{$ 用电量至少在 100 以上的区域 $\}$

由题设
$$P(A) = (200 - 100) / 200 = 0.5$$
, $P(B) = (150 - 100) / 150 \approx 0.3$,

$$P(A \cap B) = \frac{(200 - 100) \cdot (150 - 100)}{200 \cdot 150} \approx 0.15$$

因此

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \approx 0.65$$

概率为零并不表明不可能发生,例如令

$$E = \{ 用水量为100, 用电量在在0至150之间 \},$$

那么在水电需求的矩形区域中(通过简单的极限计算可知),

$$P(E)=0.$$

但这一事件 E 仍然是有可能发生的.

并集的概率

定理 对任意集合序列 $\{A_i\}_{i=1}^n$, 下列公式成立

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P\left(A_{i}\right) - \sum_{i < j \leqslant n} P\left(A_{i} A_{j}\right)$$
$$+ \sum_{i < j < k \leqslant n} P\left(A_{i} A_{j} A_{k}\right) - \cdots$$
$$+ \left(-1\right)^{n+1} P\left(A_{1} A_{2} ... A_{n}\right)$$

■ 用归纳法证明. 假设定理对 n 成立, 希望证明 n+1 时上式仍然成立, 也就是, 需要证明

$$P\left(\bigcup_{i=1}^{n+1} A_i\right) = \sum_{i=1}^{n+1} P(A_i) - \sum_{i < j \le n+1} P(A_i A_j) + \sum_{i < j < k \le n+1} P(A_i A_j A_k) - \cdots + (-1)^{n+2} P(A_1 A_2 ... A_{n+1})$$

为此,我们用 I_{RHS} 表示上面等式的右侧,希望证明

$$P\left(\bigcup_{i=1}^{n+1} A_i\right) = I_{RHS}.$$

用 I_{n+1} 表示 I_{RHS} 不含有 n+1 的各项之和, J_{n+1} 表示 I_{RHS} 含有 n+1 的各项之和. 那么 $I_{RHS}=I_{n+1}+J_{n+1}$, 运用对 n 个集合并集

时的归纳假设容易看出

$$I_{n+1} = P\left(\bigcup_{i=1}^{n} A_i\right)$$

而

$$J_{n+1} = P(A_{n+1}) - \sum_{i < n+1} P(A_i A_{n+1}) + \sum_{i < j < n+1} P(A_i A_j A_{n+1}) - \cdots + (-1)^{n+2} P(A_1 A_2 ... A_{n+1}).$$

进一步地观察并再次运用对 n 个集合并集时的归纳假设可以看出, J_{n+1} 中除去第一项后余下的部分(连同符号)等于

$$-P\left(\bigcup_{i=1}^{n}\left(A_{i}\cap A_{n+1}\right)\right)=-P\left(\left(\bigcup_{i=1}^{n}A_{i}\right)\cap A_{n+1}\right).$$

换言之

$$J_{n+1} = P(A_{n+1}) - P\left(\left(\bigcup_{i=1}^{n} A_i\right) \cap A_{n+1}\right).$$

这样我们证明了

$$I_{RHS} = I_{n+1} + J_{n+1}$$

$$= P\left(\bigcup_{i=1}^{n} A_i\right) + P\left(A_{n+1}\right) - P\left(\left(\bigcup_{i=1}^{n} A_i\right) \cap A_{n+1}\right)$$

$$= P\left(\bigcup_{i=1}^{n+1} A_i\right).$$

h

<mark>例题</mark> 现有 n 张写有不同数字的卡片, 对应每一张卡片都有 1 个信封,它内侧写有一个与对应卡片相同的数字. 现在将 n 张卡

片随机地放入信封,至少有一张卡片装入与之对应信封的概率 是多大?

■ $A_i = \{ \hat{\mathbf{g}}_i \}$ 张卡片放入正确的信封 $\}$,那么我们需要计算 $P(\bigcup_{i=1}^n A_i)$. 这需要用到并集的概率公式. 首先 $P(A_i) = \frac{1}{n}$,于是

$$\sum_{i=1}^{n} P(A_i) = n \cdot \frac{1}{n} = 1.$$

当 $i < j, P(A_i A_j) = \frac{1}{n(n-1)}$,于是

$$\sum_{i < i < n} P(A_i A_j) = C_n^2 \cdot \frac{1}{n(n-1)} = \frac{1}{2!}.$$

当 $i < j < k, P(A_i A_j A_k) = \frac{1}{n(n-1)(n-2)}$, 于是

$$\sum_{1 \le j \le k \le n} P(A_i A_j A_k) = C_n^3 \cdot \frac{1}{n(n-1)(n-2)} = \frac{1}{3!}.$$

以此类推,
$$P(A_1A_2...A_n) = \frac{1}{n(n-1)(n-2)...1} = \frac{1}{n!}$$
. 所以

$$P\left(\bigcup_{i=1}^{n} A_i\right) = 1 - \frac{1}{2!} + \frac{1}{3!} - \dots + (-1)^{n+1} \frac{1}{n!} = 1 - e^{-1}.$$

条件概率

条件概率是在有限的信息中对事件概率的估计

定义 在事件 B 发生的条件下, 事件 A 发生的概率, 记为 P(A|B), 定义为

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) > 0.$$

P(A|B) 没有定义,如果 P(B) = 0. 非负数 P(A|B) 则称为事件 A 在事件 B 发生时的**条件概率**

条件概率是一个概率律

定理 如果 P(B) > 0, 那么 $P(\cdot|B)$ 概率公理中的所有条件.

(i)

$$P\left(\Omega|B\right) = \frac{P\left(\Omega \cap B\right)}{P\left(B\right)} = \frac{P\left(B\right)}{P\left(B\right)} = 1;$$

(ii) 对任意的事件集 An, 总有

$$\left(\bigcup_{n=1}^{\infty} A_n\right) \cap B = \bigcup_{n=1}^{\infty} \left(A_n \cap B\right).$$

如果 A_n 互不相交, 那么

$$P\left(\bigcup_{n=1}^{\infty} A_n \middle| B\right) = \frac{P\left(\bigcup_{n=1}^{\infty} (A_n \cap B)\right)}{P\left(B\right)}$$
$$= \frac{\sum_{n=1}^{\infty} P\left(A_n \cap B\right)}{P\left(B\right)} = \sum_{n=1}^{\infty} P\left(A_n \middle| B\right).$$

乘法法则

定理 如果 P(B) > 0, 那么 $P(A \cap B) = P(B) P(A|B)$.

定理 如果 $P(A_1 \cap A_2 \cap ...A_{n-1}) > 0$, 那么

$$P(A_1 \cap A_2 \cap ...A_n) = P(A_1) P(A_2|A_1) P(A_3|A_1 \cap A_2) ...P(A_n|A_1 \cap A_2 \cap ...A_{n-1}).$$

■ 右侧公式为

$$P\left(A_{1}\right)\frac{P\left(A_{1}\cap A_{2}\right)}{P\left(A_{1}\right)}\frac{P\left(A_{1}\cap A_{2}\cap A_{3}\right)}{P\left(A_{1}\cap A_{2}\right)}...\frac{P\left(A_{1}\cap A_{2}\cap ...A_{n}\right)}{P\left(A_{1}\cap A_{2}\cap ...A_{n-1}\right)}.$$

由于 $P(A_1 \cap A_2 \cap ...A_{n-1}) > 0$, 上始中所有分母必须为正数.

例题 一个盒子中装有 $r \ge 2$ 个红球和 $b \ge 2$ 个蓝球. 任取 4 个球并不再放回. 试确定取出的小球依次为红, 蓝, 红, 蓝的概率.

■ 令 $R_j = \{ \hat{\mathbf{x}}_j \text{ 次取出的为红球} \}$, $B_j = \{ \hat{\mathbf{x}}_j \text{ 次取出的为蓝球} \}$. 需要计算 $P(R_1 \cap B_2 \cap R_3 \cap B_4)$. 注意到

$$P(R_1) = \frac{r}{r+b}, P(B_2|R_1) = \frac{b}{r+b-1},$$

$$P(R_3|B_2\cap R_1) = \frac{r}{r+b-2}, P(B_4|R_3\cap B_2\cap R_1) = \frac{b}{r+b-3}.$$

因此

$$P(R_{1} \cap B_{2} \cap R_{3} \cap B_{4})$$

$$= P(R_{1}) P(B_{2}|R_{1}) P(R_{3}|B_{2} \cap R_{1}) P(B_{4}|R_{3} \cap B_{2} \cap R_{1})$$

$$= \frac{r}{r+b} \cdot \frac{b}{r+b-1} \cdot \frac{r}{r+b-2} \cdot \frac{b}{r+b-3}.$$

例题 三个人将他们的帽子放在桌上. 打乱帽子顺序,然后三个人从中任意取走一顶帽子. 每一个人都正好拿到自己原本帽子的概率有多大?

■ 令 $E_j = \{ \hat{\mathbf{x}}_j \land \hat{\mathbf{y}} \in \mathbb{R}_2 \in \mathbb{R}_3 \}$. 我们来计算 $P(E_1 E_2 E_3)$. 根据乘法法则,

$$P(E_1E_2E_3) = P(E_1) P(E_2|E_1) P(E_3|E_1E_2).$$

易见

$$P(E_1) = \frac{1}{3}, P(E_2|E_1) = \frac{1}{2}, P(E_3|E_1E_2) = 1.$$

因此

$$P(E_1E_2E_3) = \frac{1}{3} \cdot \frac{1}{2} \cdot 1 = \frac{1}{6}.$$

乘法法则对条件概率同样成立

定理 如果 P(B) > 0, $P(A_1 \cap A_2 \cap ...A_{n-1}|B) > 0$, 那么

$$P(A_1 \cap A_2 \cap ...A_n | B)$$

= $P(A_1 | B) P(A_2 | A_1 \cap B) ...P(A_n | A_1 \cap A_2 \cap ...A_{n-1} \cap B)$.

■ 右侧公式为

$$\frac{P\left(A_{1}\cap B\right)}{P\left(B\right)}\frac{P\left(A_{1}\cap A_{2}\cap B\right)}{P\left(A_{1}\cap B\right)}...\frac{P\left(A_{1}\cap A_{2}\cap ...A_{n}|B\right)}{P\left(A_{1}\cap A_{2}\cap ...A_{n-1}\cap B\right)}.$$

由于 $P(A_1 \cap A_2 \cap ...A_{n-1}|B) > 0$, 上式所有分母为正.

全概率公式

定义 令 S 为一个集合. 如果 A_n , n = 1, ..., N 互不相交并且 $\bigcup_{n=1}^{N} A_n = S$, 那么 $\{A_n\}$ 称为集合 S 的一个**划分**.

例如, 在如下图示中 $B \cap A_1$, $B \cap A_2$, $B \cap A_3$ 是集合 B 的一个

划分,并且容易看到

$$P(B) = \sum_{n=1}^{N} P(B \cap A_n).$$

一般地,下面的定理告诉我们,为了求出集合的概率,可以首先确定一个样本空间的划分,再尝试求出在每一个划分集合上的条件概率.

定理 如果 $\{A_n\}$ 是样本空间 S 的划分, $P(A_n) > 0$,n = 1, ..., N 那么

$$P(B) = \sum_{n=1}^{N} P(B \cap A_n) = \sum_{n=1}^{N} P(A_n) P(B|A_n).$$

■ 直接运用划分以及条件概率的定义得出.

/h

例题 投掷一个均匀的骰子. 假设第一次投掷中出现的点数为 X, 继续投掷直到出现点数 $Y \ge X$. 令 A 表示 Y = 6 这一事件,试 求出其概率

■ 如果 X = i, 那么 Y 可能是 i, i + 1,..., 6, 并且它们是等可能的. 因此

$$P(A|X=i) = \frac{1}{7-i},$$

从而

$$P(A) = \sum_{i=1}^{6} P(A|X=i) P(X=i)$$
$$= \frac{1}{6} \left(\frac{1}{6} + \frac{1}{5} + \frac{1}{4} + \frac{1}{3} + \frac{1}{2} + 1 \right).$$

m

注意本例的样本空间是 $\{Y \geqslant X\}$.

例题 投掷一个均匀四面体骰子. 如果出现 1 或者 2, 那么你可以继续投掷一次, 否则停止投掷. 投掷总点数至少为 4 的概率是多少?

■ 令 $E_j = \{$ 第一次点数为 $j\}$, $E = \{$ 总点数至少为4 $\}$. 如果第一次点数为 1, 那么第二次投掷必须是 3 或者 4. 因此 $P(E|E_1) = 2/4 = 1/2$. 类似地 $P(E|E_2) = 3/4$. 如果第一次点数为 3, 那么停止投掷,总点数只能是 3, 因此 $P(E|E_3) = 0$. 如果第一次点

数为 4, 那么停止投掷,总点数为 4, 因此 $P(E|E_4) = 1$. 运用全概率公式得到

$$P(E) = \sum_{n=1}^{4} P(E_n) P(E|E_n)$$

$$= \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{3} + \frac{1}{4} \cdot 0 + \frac{1}{4} \cdot 1$$

$$= \frac{9}{16}$$

Bayes's 法则

定理 假设 $\{A_i\}_{i=1}^n$ 是样本空间的一个划分. 并假设 $P(A_i) > 0$,

$\forall i.$ 对于任意具有正概率的事件 B, 都成立

$$P(A_i|B) = \frac{P(A_i) P(B|A_i)}{P(B)} = \frac{P(A_i) P(B|A_i)}{\sum_{i=1}^{n} P(A_i) P(B|A_i)}.$$

■ 由条件概率与全概率公式得到

/h

例题 当飞机出现时, 雷达探测到飞机并发出警报的概率为 0.99. 如果飞机没有出现, 那么雷达对以 0.1 的概率发出错误的警报. 假设飞机出现的概率为 0.05. 那么当雷达发出警报时飞机确实出现了的概率有多大?

$$P(B|A) = 0.99, P(B|A^c) = 0.1, P(A) = 0.05.$$

需要计算 P(A|B). 由 Bayes's 法则

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$= \frac{P(B|A) P(A)}{P(B|A) P(A) + P(B|A^c) P(A^c)}$$

$$= \frac{0.99 \cdot 0.05}{0.99 \cdot 0.05 + 0.1 \cdot 0.95}$$

$$\approx 0.34.$$

h

例题 在回答多项选择的问题时, 学生要么知道如何解答要么用猜的办法来解答. 假设 p 是学生知道如何解答的概率, 而 1-p 是学生通过猜来解答的概率. 同时假设不知道如何解答的学生会以 1/4 的概率来选择 4 个选项中的任何一个. 已知一个学生选对了正确答案, 那么有多大的概率是这个学生真正知道正确的解题方法?

■ 令 $A = \{$ 学生知道解答方法 $\}$, $B = \{$ 学生回答正确 $\}$. 根据题设已知 P(B|A) = 1, $P(B|A^c) = 1/4$ 以及 P(A) = p. 要计算 P(A|B) 由 Bayes's 法则

$$P(A|B) = \frac{P(B|A) P(A)}{P(B|A) P(A) + P(B|A^c) P(A^c)}$$
$$= \frac{1 \cdot p}{1 \cdot p + \frac{1}{4} \cdot (1 - p)}$$
$$= \frac{4p}{1 + 3p}$$

独立性

定义 事件 A 和 B 称为相互**独立**的, 如果

$$P(A \cap B) = P(A) P(B)$$
.

例题 一个均匀的硬币投掷两次. 令 $A = \{$ 第一次为 $H \}$, $B = \{$ 第二次为 $T \}$. 那么事件 A 和 B 独立.

■ 样本空间为 {HH, HT, TH, TT}. 每一个单一事件概率为 1/4.

$$P\left(A\right) = P\left(\left\{HH, HT\right\}\right) = \frac{1}{2}, P\left(B\right) = P\left(\left\{HT, TT\right\}\right) = \frac{1}{2}.$$

因此

$$P(B \cap A) = \frac{1}{4} = P(A)P(B).$$

定理 如果事件 A 和 B 独立, 那么事件 A^c 和 B 独立, 事件 A^c 和 B^c 独立.

例题 投掷一个均匀硬币直到正面出现. 假设各次投掷是相互独立的. 那么有多大的概率,正面最终出现?

■ 令 p_n 为正面首次出现在第 n 次投掷的概率. 那么正面最终出现的概率应该是

$$\sum_{n=1}^{\infty} p_n = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} \dots = 1.$$

因此在连续投掷一个均匀硬币时,正面可能很早出现,可能很晚才出现,但可以肯定正面最终会以概率1出现. //

定义 一列集合族 $\{A_i\}_{i=1}^n$ 称为是相互独立的,如果对于任何子

集 $\{j_1, ..., j_s\}$ ⊂ $\{1, ..., n\}$, 都有

$$P(A_{j_1}A_{j_2}...A_{j_s}) = P(A_{j_1}) P(A_{j_2})...P(A_{j_s}).$$

两两独立不能推出相互独立.

例题 投掷两个均匀的相互独立的硬币. 今

 $E = \{$ 第一次为正 $\}$, $F = \{$ 第二次为正 $\}$,

 $G = \{$ 两次投掷一正一反 $\}$.

这些事件两两独立, 但它们不是相互独立的,

■ 由于 P(E) = 1/2, P(F) = 1/2, P(G) = 1/2, \square P(EFG) = 1/2 $0 \neq 1/2$, 所以它们不是独立的. 由前面的例题已经知道 E 和 F独立. 为证明 E 和 G 独立. 只需注意

$$P(G|E) = \frac{P(G \cap E)}{P(E)}$$

$$\begin{split} &= \frac{P\left(\left\{ \mathbf{第} - \mathbf{次} \mathbf{为} \mathbf{E}, \, \mathbf{第} - \mathbf{x} \mathbf{为} \mathbf{D} \right\}\right)}{P\left(E\right)} \\ &= \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2} = P\left(G\right). \end{split}$$

同样地, F和G独立.

In

撞击时间

例题 考虑这样一个游戏. 假设 m, n, i 为整数, $i \in [m, n]$. 一个小球停留在 i 处. 现投掷一个硬币,正面出现的概率为 p. 当硬币为正面时小球移动到 i+1, 反之移动到 i-1. 假设硬币的投掷是互不影响的. 如果小球抵达 m, 那么游戏结束,你不会得到任何奖励. 如果小球抵达 n, 那么游戏也结束,并且你可以获得奖励. 试求出你赢得奖励的概率 a_i .

■ 注意到,由于硬币的投掷互不影响,每一次投掷硬币之后, 游戏又回到原有的状态,唯一的区别是,小球的起始位置发生 了改变. 令

$$E_1 = \left\{ \mathbf{第}$$
一次投掷是正面 $\right\},$
 $W = \left\{$ 赢得奖励 $\right\}.$

那么我们有

$$P(W) = P(W|E_1) P(E_1) + P(W|E_1^c) P(E_1^c)$$

= $pP(W|E_1) + (1-p) P(W|E_1^c)$

也就是

$$a_i = pa_{i+1} + (1-p)a_{i-1}.$$
 (1.1)

这一方程的边界条件为 $a_n = 0$, $a_n = 1$. 我们需要求解方程 (1.1).

$$a_{m+1} = pa_{m+2}$$

$$a_{m+2} = pa_{m+3} + (1-p) a_{m+1}$$

:

$$a_{n-1} = p + (1-p) a_{n-2}$$

将左侧的 a_j 写作 $pa_j + (1-p) a_j$ 的形式, 那么上述方程可以写作

$$a_{m+2} - a_{m+1} = \frac{1-p}{p} a_{m+1}$$

$$a_{m+3} - a_{m+2} = \frac{1-p}{p} (a_{m+2} - a_{m+1}) = \left(\frac{1-p}{p}\right)^2 a_{m+1}$$

:

$$1 - a_{n-1} = \frac{1 - p}{p} (a_{n-1} - a_{n-2}) = \left(\frac{1 - p}{p}\right)^{n - m - 1} a_{m+1}$$

相加得到,

$$1 - a_{m+1} = a_{m+1} \sum_{k=1}^{n-m-1} \left(\frac{1-p}{p} \right)^k.$$
 (1.2)

例题 均匀硬币时的抵达时间, p=1/2.

■ 将 p = 1/2 代入 (1.1) 得到 $a_{m+1} = 1/(n-m)$. 因此

$$a_{m+k} = \frac{k}{n-m}, k = 1, ..., n-m.$$

例题 非均匀硬币时的抵达时间, $p \neq 1/2$.

■ 由于 $p \neq 1/2$, (1.1) 等价于

$$1 - a_{m+1}$$

$$= a_{m+1} \sum_{k=1}^{n-m-1} \left(\frac{1-p}{p} \right)^k$$

$$= a_{m+1} \frac{\left(\frac{1-p}{p}\right) - \left(\frac{1-p}{p}\right)^{n-m}}{1 - \left(\frac{1-p}{p}\right)}$$

因此

$$1 = a_{m+1} \frac{1 - \left(\frac{1-p}{p}\right)^{n-m}}{1 - \left(\frac{1-p}{p}\right)}$$

于是

$$a_{m+1} = \frac{1 - \left(\frac{1-p}{p}\right)}{1 - \left(\frac{1-p}{p}\right)^{n-m}}$$

这样每一个 a_i 都可以被依次求解出,

$$a_{m+k} = \frac{1 - \left(\frac{1-p}{p}\right)^k}{1 - \left(\frac{1-p}{p}\right)^{n-m}}, k = 1, ..., n - m.$$

