Лабораторная работа №3

Детерминированные вычислительные процессы с управление по аргументу. Численное интегрирование.

Цель работы: реализовать ДЦВП с управление по аргументу на примере численного интегрирования.

Оборудование: ПК, PascalABC

Задание 1:

Задача: Реализовать программу для вычисления интеграла методом прямоугольников (левых частей).

Математическая модель:

$$\int_a^b f(x) dx \sim h * \sum_{x=a}^{b-h} f(x)$$
 , где $h = rac{b-a}{n}$ и n вводится

пользователем.

Вид интеграла:

$$\int_{0.8}^{2.4} \frac{\sqrt{0.4x^2 + 1.5} \, dx}{2.5 + \sqrt{2x + 0.8}};$$

Блок-схема:

Список идентификаторов:

Имя	Тип	Смысл
а	нижний предел интегрирования	const
b	верхний предел интегрирования	const
n	количество разбиений	integer
h	шаг	real
r	результат	real
х	значение аргумента	real

Код программы:

```
program integral_lev;
const a=0.8;
b=2.4;
var
 r, h, x:real;
 n: integer;
begin
 writeln('введите количество разбиений');
 readln(n);
 h:=(b-a)/n;
 r:=0;
 x:=a;
 while x<=(b-h) do
 begin
  r:=r+(sqrt(0.4*x*x+1.5)/(2.5+sqrt(2*x+0.8)));
  x:=x+h;
 end;
 r:=h*r;
 writeln(r:7:5);
end.
```

Результат:

Окно вывода		Окно вывода			
введите 10 0.56480	количество		введите 100 0.56358	количество	разбиений

Окно вывода		Окно вывода		
введите количество 1000 0.57050	разбиений	введите 10000 0.57049	количество	разбиений

Анализ:

Вычислительный процесс был организован с помощью цикла while в котором значение аргумента x изменялось от а до b-h.

Задание 2

Задача: Реализовать программу для вычисления интеграла методом прямоугольников (правых частей).

Математическая модель:

$$\int_a^b f(x)dx \sim h*\sum_{x=a+h}^b f(x)$$
 , где $h=rac{b-a}{n}$ и n вводится пользователем.

Вид интеграла:

$$\int_{0.5+\sqrt{2x+0.8}}^{2.4} \frac{\sqrt{0.4x^2+1.5}\,dx}{2.5+\sqrt{2x+0.8}};$$

Блок-схема:

Список идентификаторов:

Имя	Тип	Смысл
а	нижний предел интегрирования	const
b	верхний предел интегрирования	const
n	количество разбиений	integer
h	шаг	real
r	результат	real
х	значение аргумента	real

Код программы:

```
program integral prav;
const a=0.8;
b=2.4;
var
 r, h, x:real;
 n: integer;
begin
 writeln('введите количество разбиений');
 readln(n);
 h:=(b-a)/n;
 r:=0;
 x:=a+h;
 while x<=b do
 begin
  r=r+(sqrt(0.4*x*x+1.5)/(2.5+sqrt(2*x+0.8)));
 end;
 r:=h*r;
 writeIn(r:7:5);
end.
```

Результат:

Окно вывода	Окно вывода		
введите количество разбиений	введите количество разбиений		
10	100		
0.57657	0.56474		
Окно вывода	Окно вывода		
введите количество разбиений	введите количество разбиений		
1000	10000		

Анализ: Вычислительный процесс был организован с помощью цикла while в котором значение аргумента х изменялось от a+h до b.

Задание 3

Задача: Реализовать программу для вычисления интеграла методом трапеций.

Математическая модель:

$$\int_a^b f(x)dx \sim h*(rac{f(a)+f(b)}{2}+\sum_{x=a+h}^{b-h} f(x))$$
, где $h=rac{b-a}{n}$ и n вводится пользователем.

Вид интеграла:

$$\int_{0.8}^{2.4} \frac{\sqrt{0.4x^2 + 1.5} \, dx}{2.5 + \sqrt{2x + 0.8}};$$

Блок-схема:

Список идентификаторов:

Имя	Тип	Смысл
-----	-----	-------

а	нижний предел интегрирования	const
b	верхний предел интегрирования	const
n	количество разбиений	integer
h	шаг	real
r	результат	real
х	значение аргумента	real
fa	Значение функции в верхнем пределе интегрирования	real
fb	Значение функции в нижнем пределе интегрирования	real

Код программы:

```
program integral trap;
const a=0.8;
b=2.4;
var
 fa, fb, r, h, x:real;
 n: integer;
begin
 writeln('введите количество разбиений');
 readln(n);
 h:=(b-a)/n;
 r:=0;
 x:=a+h;
 while x<=(b-h) do
 begin
  r:=r+(sqrt(0.4*x*x+1.5)/(2.5+sqrt(2*x+0.8)));
  x:=x+h;
 end;
 fa:= sqrt(0.4*a*a+1.5)/(2.5+sqrt(2*a+0.8));
 fb := sqrt(0.4*b*b+1.5)/(2.5+sqrt(2*b+0.8));
 r:=h*((fa+fb)/2+r);
 writeln(r:7:5);
end.
```

Результат:

			OKHO BBIB		
введите 10 0.57069	количество		введите 100 0.56417	количество	разбиений
Окно выв	ода		Окно выв	ода	
введите 1000 0.57056	количество	разбиений	введите 10000 0.57050	количество	разбиений

Анализ: Вычислительный процесс был организован с помощью цикла while в котором значение аргумента х изменялось от a+h до b-h.

Задание 4

Окно вывода

Задача: Реализовать программу для вычисления интеграла методом парабол (Симпсона).

Математическая модель:

$$\int_a^b f(x) dx \sim rac{h}{3} * (f(a) + f(b) + 4 * \sum_{x=a+h}^{b-h} f(x) + 2 * \sum_{x=a+2h}^{b-2h} f(x))$$
, шаг 2h, где $h = rac{b-a}{n}$ и n вводится пользователем.

Вид интеграла:

$$\int_{0.8}^{2.4} \frac{\sqrt{0.4x^2 + 1.5} \, dx}{2.5 + \sqrt{2x + 0.8}};$$

Блок-схема:

Список идентификаторов:

Имя	Тип	Смысл
а	нижний предел интегрирования	const
b	верхний предел интегрирования	const
n	количество разбиений	integer
h	шаг	real
r	результат	real
х	значение аргумента	real
fa	Значение функции в верхнем пределе интегрирования	real
fb	Значение функции в нижнем пределе интегрирования	real
r1	Сумма значений интеграла в нечетных точках	real
r2	Сумма значений интеграла в четных точках	real

Код программы:

```
program integral_Simp;
const a=0.8;
b=2.4;
var
r, r1, r2, fa, fb, h, x:real;
n: integer;
begin
writeln('введите количество разбиений');
readln(n);
h:=(b-a)/(n*2);
r:=0;
r1:=0;
r2:=0;
x:=a+h;
while x<=(b-h) do
```

```
begin r1:=r1+(sqrt(0.4*x*x+1.5)/(2.5+sqrt(2*x+0.8))); x:=x+2*h; end; x:=a+2*h; while x<=(b-2*h) do begin r2:=r2+(sqrt(0.4*x*x+1.5)/(2.5+sqrt(2*x+0.8))); x:=x+2*h; end; fa:= sqrt(0.4*a*a+1.5)/(2.5+sqrt(2*a+0.8)); fb:= sqrt(0.4*b*b+1.5)/(2.5+sqrt(2*b+0.8)); r:=h*(fa+fb+4*r1+2*r2)/3; writeln(r:7:5); end.
```

Результат:

Окно вывода	Окно вывода
введите количество разбиений 10 0.57056	введите количество разбиений 100 0.56416
Окно вывода	Окно вывода

Анализ: Вычислительный процесс был организован с помощью двух циклов while. В первом цикле, где считалась сумма значений интеграла в нечетных точках, аргумент х изменялся от a+h до b-h (с шагом 2h). Во втором цикле, где считалась сумма значений интеграла в четных точках, аргумент х изменялся от a+2h до b-2h (с шагом 2h).

Вывод:

В ходе выполнения лабораторной я получила следующие приблизительные значения данного мне вида интеграла:

N количество разбиений	Н шаг	I Метод левых частей прямоугольников	I Метод правых частей прямоугольников	I Метод трапеций	I Метод парабол
10	0,16	0,56480	0,57657	0,57069	0,57056
100	0,016	0,56358	0,56474	0,56417	0,56416
1000	0,0016	0,57050	0,57062	0,57056	0,57056
10000	0,00016	0,57049	0,57050	0,57050	0,57050

Для каждой функции свой метод будет являться более точным, поэтому существует такое количество видов численного интегрирования. Но точность каждого метода можно увеличить с помощью большего количества разбиений.