Première partie

Formalisme de Dirac

1 Expérience de Stern-Gerlach

L'expérience consister à faire passer des atomes d'argent dans un champ magnétique non uniforme. Classiquement, les atomes d'argent, ayant un moment cinétique et un moment magnétique orbital également nul, ne devraient pas subir l'influence du champ magnétique. L'expérience montre que le faisceau se **sépare en deux**. Nous expliquons ce résultat en introduisant le moment cinétique de spin.

Mathématiquement, rappellons à toute fin utile que :

Moment angulaire
$$\mathbf{L} = m\mathbf{r} \times \mathbf{v}$$
 (I.1)

Moment magnétique
$$\mathbf{m} = I\mathbf{S} = \frac{ev}{2\pi r}\pi r^2 = \frac{1}{2}evr = \frac{1}{2}\frac{e}{m}L$$
 $I = \frac{ev}{2\pi r}$ (I.2)

$$m = \frac{1}{2} \frac{e}{m} L \tag{I.3}$$

Où I est le courant et \boldsymbol{S} est la surface considérée.

En pratique, les atomes/particules élémentaires suivent cette relation à un facteur prêt : $\mathbf{m} = \frac{g}{2} \frac{e}{m} \mathbf{L}$, où g est le **facteur de Londé**. Elle prend différentes valeurs en fonction de ce que nous considérons : nous avons g = -2.002 pour un électron, $g_n = -3.8$ et $g_p = 5.6$.

En pratique, nous mettrons en évidence la quantification du moment angulaire en mesurant le moment magnétique. L'énergie d'un moment magnétique dans un champ magnétique sera donnée par l'expression

$$E = \boldsymbol{m} \cdot \boldsymbol{B} \tag{I.4}$$

Lorsque le champ est non-uniforme, nous observons un gradient d'énergie :

$$F = \nabla \cdot (m \cdot B) = \nabla \cdot (E) \tag{I.5}$$

En faisant l'expérience, nous nous attendons donc à observer ce gradient d'énergie - et donc un "gradient de résultats". Ce n'est pas le cas : seul deux tâches sont observées. Chaque électron se comporte comme un aimant à seulement deux directions vertiables possibles : Nord-Sud ou Sud-Nord. Cette propriété quantique s'appelle le spin, et s'écrit :

$$S = \pm \frac{\hbar}{2} \tag{I.6}$$

FIGURE 1 – Une photo des rayons séparés, avec un message. La traduction donne : "Ci-contre, une preuve expérimentale du spin quantique. Nous vous félicitons pour la vérification expérimentale de votre théorie".

2 Notations propre à la Mécanique Quantique

Dans le cadre de la Mécanique Quantique, nous nous placerons dans des expaces de Hilbert H séparables.

Nous introduisons:

- Vecteur $\in \mathbb{H} : |\Psi\rangle$. Il s'agit d'un vecteur colonne v, appelé le ket.
- Vecteur transposé conjugué $\in \mathbb{H}: \langle \Psi |$. Il s'agit du vecteur ligne \overline{v}^T , appelé le bra.
- Le produit scalaire $\langle \varphi, \Psi \rangle$, appelé le braket.

2.1 Correspondance entre bra et ket

Si $|\Psi\rangle = \alpha |\Phi\rangle + \beta |\Phi'\rangle$, alors $\langle \Psi| = \overline{\alpha} \langle \Phi| + \overline{\beta} \langle \Phi'|$: la correspondance bra \rightarrow ket est donc antilinéaire.

Remarque 2.1. Si λ est un nombre complexe et $|\Psi\rangle$ un ket, alors $\lambda |\Psi\rangle$ est un ket. Nous l'écrirons parfois $|\lambda\Psi\rangle$. Il faudra alors faire attention que la relation entre bra et ket étant anti-linéaire, $\langle \lambda\Psi| = \overline{\lambda} |\Psi\rangle$.

Notons que les états quantiques sont :

1. normalis'es:

$$\langle \Psi | \Psi \rangle = 1 \tag{I.7}$$

en raison de l'interprétation probabiliste.

2. définis à une phrase prêt :

$$|\Psi\rangle$$
 $e^{i\varphi}|\Psi\rangle$ (I.8)

représentent le même état quantique.

Nous sommes dans un espace projectif de Hilbert. Dès lors,

$$|\Psi\rangle \sim |\varphi\rangle$$
 quand $|\Psi\rangle = \lambda |\varphi\rangle$

2.1.1 Exemples

Spin $\frac{1}{2}$: base orthonormée = $\{|\uparrow\rangle,|\downarrow\rangle\}$.

Nous pouvons définir un état arbitraire :

$$|\Psi\rangle = \cos\frac{\theta}{2}|\uparrow\rangle + e^{i\varphi}\sin\frac{\theta}{2}|\downarrow\rangle$$
 (I.9)

Où $\theta \in [0, \pi]$ et $\varphi \in [0, 2\pi]$ et θ, φ appartiennent à la sphère de Bloch.

Si $|\varphi\rangle = \cos\frac{\theta'}{2}|\uparrow\rangle + e^{i\varphi'}\sin\frac{\theta'}{2}|\downarrow\rangle$, alors le produit scalaire donnera

$$\langle \varphi | \Psi \rangle = \cos \frac{\theta}{2} \cos \frac{\cos'}{2} + e^{\varphi - \varphi'} \sin \frac{\theta}{2} \sin \frac{\theta'}{2}$$
 (I.10)

Oscillateur harmonique : base orthonormée = $\left\{|n\rangle: n=0,1,2,\ldots\right\}$ et les états d'énergies sont donnés par $E_n=\hbar\omega\left\{n+\frac{1}{2}\right\}$.

Nous pouvons définir un état arbitraire par $|\Psi\rangle=\sum_n c_n\,|n\rangle$ avec $\sum_n\|c_n\|^2=1$.

3 Opérateurs linéaires

Soit $A: \mathbb{H} \to \mathbb{H}: |\Psi\rangle \to A |\Psi\rangle$ un opérateur linéaire, c'est à dire tel quel $A(a|\Psi\rangle + b|\varphi\rangle) = a(A|\Psi\rangle) + b(A|\varphi\rangle)$. Soit B un (autre) isomorphisme ² sur le même ensemble \mathbb{H} . Nous pouvons définir plusieurs opérations :

- **Produit d'opérateurs** : $(AB) |\Psi\rangle = A(B |\Psi\rangle)$. B agit d'abord sur ket $|\psi\rangle$ pour donner $B |\Psi\rangle$, et A agira ensuite sur $A |\Psi\rangle$.
- En général, $AB \neq BA$, le commutateur [A,B] de A,B est par définition [A,B] = AB-BA.
- 1. Nous pouvons également le voir comme un élément du dual \mathbb{H}^*
- 2. Demander vérification à Massar.

— Anticommutateur : $\{A, B\} = AB + BA$.

 $\text{Action de A sur le dual/les bras. Soit } A: \mathbb{H}^* \to \mathbb{H}^*: \langle \varphi | \to \langle \varphi | \, A \text{ est défini par } \left\{ \left. \langle \varphi | \, A \right\} | \Psi \rangle \right. = \left. \langle \varphi | \left\{ A \left| \Psi \right\rangle \right. \right\},$ pour tout $|\varphi\rangle$, $|\Psi\rangle$. Nous le noterons $\langle \varphi|A|\Psi\rangle$.

Remarque 3.1. Observons que l'ordre dans lequel apparaît les symbols a une importance capital. Seul les nombres complexes peuvent être déplacés sans influencer le résultat.

Exemple 3.1. Soit $|\Psi\rangle$ et $|\Theta\rangle$ deux kets. Ecrivons les dans l'ordre inverse : $\langle\Psi|$ et $\langle\Theta|$. Considérons

$$|\Psi\rangle\langle\Theta|$$
 (I.11)

Prenons un ket $|\gamma\rangle$ tel que

$$|\Psi\rangle\langle\Theta|\gamma\rangle$$
 (I.12)

Nous avons que $\langle \Theta | \gamma \rangle$ est un nombre complexe; par conséquent, nous avons que un bra $\langle \Psi |$ multiplié par un scalaire. Nous avons alors que (I.11) appliqué à un ket donne un nouveau ket.

Opérateur adjoint A^{\dagger} 4

Définition 4.1. Soit $A: \mathbb{H} \to \mathbb{H}$ un opérateur linéaire. Nous définissons l'opérateur adjoint $A^{\dagger}: \mathbb{H} \to \mathbb{H}$ par $\langle \Psi | A^{\dagger} | \varphi \rangle = \langle \varphi | A | \Psi \rangle^* \text{ pour tout } | \Psi \rangle, | \varphi \rangle.$

Si $\{|u_i\rangle\}$ forme une base orthonormée, alors :

 $\rightarrow A^{\dagger} = \overline{A^T}$ est la transposée conjuguée ³.

4.1 Propriétés intéressantes

Nous donnons ici une série de propriétés de l'opérateur adjoint A^{\dagger} .

- 2. $(\lambda A)^{\dagger} = \lambda^* A^{\dagger}$ pour tout $\lambda \in \mathbb{C}$. 3. $(A+B)^{\dagger} = A^{\dagger} + B^{\dagger}$ 4. $(AB)^{\dagger} = A^{\dagger} B^{\dagger}$.

- 5. Si $A = |\alpha\rangle \langle \beta|$, alors $A^{\dagger} = |\beta\rangle \langle \alpha|$.

4.2 Exemples d'opérateurs

1. Soit $A = |\alpha\rangle\langle\beta|$. Alors,

$$\langle \varphi | A | \Psi \rangle = \langle \varphi | \left\{ |\alpha\rangle \langle \beta| \right\} | \Psi \rangle \tag{I.13}$$

$$= \langle \varphi | \alpha \rangle \langle \beta | \Psi \rangle \tag{I.14}$$

Et
$$A|\Psi\rangle = |\alpha\rangle\langle\beta|\Psi\rangle$$
 (I.15)

2. Soit $\{(u_i)\}$ une base orthonormée. Nous avons que $\langle u_i|u_j\rangle=\delta_{ij}$. De plus, nous appelons éléments de la matrice A l'opérateur

$$\langle u_i | A | u_j \rangle = a_{ij} \tag{I.16}$$

Nous pouvons représenter A dans la base via

$$A = \sum_{i,j} a_{ij} |u_i\rangle \langle u_j| \tag{I.17}$$

^{3.} Ask teacher what's up.

5 Opérateur Hermitien et observable

Définition 5.1. Un opérateur A est Hermitien (ou encore Hermitique) lorsque $A = A^{\dagger}$.

Proposition 5.1. En particulier, nous avons alors que $\langle u_i|A|u_j\rangle=a_{ij}=\langle u_i|A^{\dagger}|u_j\rangle=\overline{a_{ji}}$.

Définition 5.2. Un opérateur Hermitien est dit observable lorsqu'il possède une base de vecteurs propres.

5.1 Equation aux vecteurs propres

Soit

$$A|\Psi\rangle = \lambda |\Psi\rangle. \tag{I.18}$$

Proposition 5.2. Lorsque $A = A^{\dagger}$ est Hermitien, les valeurs propres sont réelles.

Démonstration.
$$\lambda = \langle \Psi | A | \Psi \rangle = \langle \Psi | A^{\dagger} | \Psi \rangle = \overline{\langle \Psi | A | \Psi \rangle} = \overline{\lambda}$$
.

Proposition 5.3. Lorsqu'un opérateur est Hermitien, alors les vecteurs propres associés à des valeurs propres distinctes sont orthogonaux.

$$A|\Psi\rangle = \lambda |\Psi\rangle$$
 (I.19)

Démonstration.

$$\lambda \langle \Phi | \Psi \rangle = \langle \Phi | (A | \Psi \rangle) = \langle \Phi | A^{\dagger} | \Psi \rangle = \langle \Psi | A | \Phi \rangle^{*}$$
$$= \langle \Psi | (\lambda' | \Phi \rangle)^{*} = \lambda'^{*} \langle \Psi | \Phi \rangle^{*} = \lambda' \langle \Phi | \Psi \rangle$$

Nous avons en général que $\lambda - \lambda' \neq 0$. Dès lors, il s'ensuit que $\langle \Phi | \Psi \rangle = 0$: la conclusion s'ensuit.

Proposition 5.4. Pour un opérateur Hermitien A, nous avons que :

- En dimension finie, A possède une base orthonormée de vecteurs propres.
- En dimension infinie, cela n'est pas nécessairement le cas.

Démonstration. Cette propriété n'est pas démontrée. Pour une preuve détaillée, se référer à MATH-F102 lors de son édition 2019-2020 donné par Samuel FIORINI.

5.2 Exemples d'opérateurs

— <u>Projecteurs</u>: Soit un opérateur π tel que : $\begin{cases} \pi = \pi^{\dagger} \\ \pi^2 = \pi \end{cases}$. Les valeurs propres sont alors soit 0, soit 1.

Démonstration.

$$\begin{split} \pi & |\Psi\rangle = \lambda \, |\Psi\rangle \\ \lambda & \langle \Psi | \Psi \rangle = \langle \Psi | \pi | \Psi \rangle = \langle \Psi | \pi^2 | \Psi \rangle \\ & = (\langle \Psi | \, \pi)(\pi \, |\Psi \rangle) \\ & = \lambda \overline{\lambda} \, \langle \Psi | \Psi \rangle & \lambda \in \mathbb{R} \end{split}$$

Dès lors, nous avons que $\lambda^2 = \lambda$: soit donc $\lambda = 0$ ou $\lambda = 1$.

Nous avons alors que $|\Psi\rangle$ et $\langle\Psi|$ sont des projecteurs $\forall |\Psi\rangle$.

Remarque 5.1. Une application linéaire Ψ tel que $\Psi^2 = \Psi$ est dite idempotente.

Définition 5.3. Si $\{|u_i\rangle: i \in \mathbb{N}\}$ est une base orthonomée et si I est un sous-ensemble de \mathbb{N} , alors $\pi = \sum_{i \in I} |u_i\rangle \langle u_i|$ est un projecteur.

- <u>Oscillateur harmonique</u> : Soit $\{|n\rangle : n \in \mathbb{N}\}$. Nous définissons alors plusieurs opérations :
 - Opérateur destruction : $a|n\rangle = \sqrt{n}|n-1\rangle$ et $a|0\rangle = 0$. En particulier, les éléments de la matrice de a sont donnés par $\langle m|a|n\rangle = \sqrt{n}\delta_m^{n-1}$.
 - Opérateur création : Soit a^{\dagger} l'hermitien conjugué de a. Nous avons alors que $a^{\dagger} | n \rangle = \sqrt{n+1} | n+1 \rangle$.
- <u>Opérateur identité</u> : Soit $\mathbb{I} |\Psi\rangle = |\Psi\rangle$ pour tout $|\Psi\rangle$ sur une base orthonormée $\{|u_i\rangle : n \in \mathbb{N}\}$. Alors, nous avons que $\mathbb{I} = \sum_i |u_i\rangle \langle u_i|$. Il s'agit de la définition de l'opérateur identité.
- <u>Spin $\frac{1}{2}$ </u>: Soit une base orthonormée $\{|\uparrow\rangle,|\downarrow\rangle\}$.

Deuxième partie

Postulats de la Mécanique Quantique

Dans ce chapitre, nous allons énoncer les postulats de la mécanique quantique selon le formalisme développé en I. Ils permettront de répondre aux questions suivantes :

- 1. Comment décrire mathématiquement l'état d'un système quantique à un instant donné?
- 2. Comment, cet état étant donné, prévoir les résultats de mesure des diverses grandeurs physiques?
- 3. Comment trouver l'état du système à un instant t quelconque lorsqu'on connait ce état à l'instant t_0 ?

6 Énoncé des postulats

PREMIER POSTULAT

A chaque instant, l'état d'un système physique est donné par un vecteur $|\Psi\rangle$ appartenant à un espace de Hilbert $\mathbb H$ normalisé tel que $\langle\Psi|\Psi\rangle=1$, défini à une phase près : $|\Psi\rangle\sim e^{i\varphi}\,|\Psi\rangle$.

Remarque 6.1. L'espace des états \mathbb{H} étant un espace vectoriel, ce premier postulat implique un principe de superposition : une combinaison linéaire de vecteurs d'états est un vecteur d'état. Si $|\Psi_1(t)\rangle$ et $|\Psi_2(t)\rangle$ sont des solutions, alors $\alpha |\Psi_1(t)\rangle + \beta |\Psi_2(t)\rangle$ est une solution.

SECOND POSTULAT

A toute grandeur observable est associé un opérateur hermitien $A = A^{\dagger}$.

Lorsque l'opérateur A possède une base de vecteurs propres, nous pouvons écrire A sous la forme

$$A = \sum_{n} a_n P_n \tag{II.1}$$

où a_n est une valeur propre de A et P_n est un projecteur sur le sous-espace propre de A de la valeur propre a_n .

La probabilité d'observer le résultat a_n dans l'état $|\Psi\rangle$ est donnée par $P(a_n) = \langle \Psi | P_n | \Psi \rangle$ où P_n est un projecteur.

Cela représente-il bien un probabilité en son sens classique? Vérifions une série de conditions.

- 1. Normalisation : $\sum_{n} P(a_n) = \sum_{n} \langle \Psi | P_n | \Psi \rangle = \langle \Psi | \sum_{n} P_n | \Psi \rangle = \langle \Psi | \mathbb{I} | \Psi \rangle = \langle \Psi | \Psi \rangle = 1$.
- 2. Positivité : $P(a_n) = \langle \Psi | P_n | \Psi \rangle = \langle \Psi | P_n^2 | \Psi \rangle = ||P_n | \Psi \rangle||^2 \ge 0.$
- 3. Probabilité indépendante de la phase. En effet, lorsque $|\Psi\rangle \to e^{i\varphi} |\Psi\rangle$, $P(a_n)$ ne change pas.

6.1 Réduction du paquet d'onde

Supposons que nous souhaitions mesurer, en un instant t donné, une grandeur physique \mathcal{A} . Si nous connaissons $|\Psi\rangle$, nous pouvons ⁴ obtenir les probabilité des différents résultats possibles. Cependant, en effectuant l'expérience, nous n'obtiendront qu'un seul des résultats possible : ce faisant après avoir obtenu le résultat a_n ⁵, on postule que l'état du sytème change : $|\Psi\rangle \rightarrow |u_n\rangle$.

TROISIEME POSTULAT

Lors de la mesure de la grandeur physique \mathcal{A} sur un système dans un état $|\Psi\rangle$ donne le résultat a_n , l'état dy système immédiatement après la mesure est la projection normée $\frac{P_n|\Psi\rangle}{\sqrt{\langle\Psi|P_n|\Psi\rangle}}$ de $|\Psi\rangle$ sur le sous-espace propre associé à a_n .

^{4.} à travers des techniques qui seront expliquées ultérieurement.

^{5.} on parle de la valeur propre a_n .

6.2 Valeur moyenne d'une observable A

La moyenne d'une observable physique \mathbb{A} est donnée par $\langle A \rangle = \sum_n a_n P(a_n) = \sum_n a_n \langle \Psi | P_n | \Psi \rangle = \langle \Psi | \sum_n a_n P_n | \Psi \rangle$, ce qui implique que $\langle A \rangle = \langle \Psi | A | \Psi \rangle$.

6.3 Ecart quadratique moyen

Lemme 6.1. $A^2 = \sum_n a_n^2 P_n$

Démonstration.

$$A^{2} = (\sum_{n} a_{n} P_{n})(\sum_{n'} a_{n} P_{n}) = \sum_{nn'} a_{n} a_{n'} P_{n} P_{n} = \sum_{n} a_{n}^{2} P_{n}.$$

Effectivement, remarquons que $P_n P_{n'}$ revient à $\delta_{nn'} P'_n$.

$$\begin{split} \Delta A^2 &= \sum_n a_n^2 P(a_n) - \langle A \rangle^2 \\ &= \sum_n a_n^2 \langle \Psi | P_n | \Psi \rangle - \langle A \rangle^2 \\ &= \sum_n a_n^2 \langle \Psi | P_n | \Psi \rangle - \langle A \rangle^2 \\ &= \langle \Psi | \sum_n a_n^2 P_n | \Psi \rangle - \langle A \rangle^2 \\ &= \langle \Psi | A^2 | \Psi \rangle - \langle \Psi | A | \Psi \rangle^2 \,. \end{split}$$

Remarque 6.2. Nous ne pouvons pas mesurer simultanément des obserbables qui ne commutent pas. A l'inverse, nous pouvons mesurer simultanément des observables qui commutent : [A, B] = 0.

6.4 Evolution des systèmes dans le temps

QUATRIEME POSTULAT

Soit H(t) l'obserbable associée à l'énergie totale du système ^a. Alors, l'évolution temporelle est donnée par l'équation

$$i\hbar\partial_t |\Psi(t)\rangle = H(t) |\Psi(t)\rangle$$
 (II.2)

a. Souvent, elle est appelée l'Hamiltonien du système

Soit une base $\left\{ \left| u_i \right\rangle \right\}$ orthonormée. Alors,

$$|\Psi(t)\rangle = \sum_{i} c_i(t) |u_i\rangle$$
 (II.3)

$$H(t) = \sum_{ii'} |u_i\rangle \langle u_{i'}| H_{ii'}(t)$$
(II.4)

Proposition 6.1. Soit $|\Psi(t)\rangle$ une solution de l'équation de Schrödinger (??). Alors, le produit scalaire $\langle \Psi(t)|\Psi(t)\rangle$ est constante.

Démonstration.

$$\frac{d}{dt} \langle \Psi(t) | \Psi(t) \rangle = \left(\frac{d}{dt} \langle \Psi(t) | \right) | \Psi(t) \rangle + \langle \Psi(t) | \left(\frac{d}{dt} | \Psi(t) \rangle \right) \tag{II.5}$$

Remarquons que H est un opérateur hamiltonien. Dès lors,

$$\langle \Psi(t)|H = -i\frac{d}{dt}\langle \Psi(t)|$$
 $H^{\dagger} = H.$ (II.6)

Dès lors,

$$\frac{d}{dt} \langle \Psi(t) | \Psi(t) \rangle = i \langle \Psi(t) | H(t) | \Psi(t) \rangle - i \langle \Psi(t) | H(t) | \Psi(t) \rangle = 0. \tag{II.7}$$

Remarque 6.3. Nous prenons $\langle \Psi(t)|\Psi(t)\rangle = 1$.

6.5 Hamiltonien indépendant du temps

Lorsque l'Hamiltonien ne dépend pas du temps, nous parlons de système *conservatif*. Rappelons l'équation aux valeurs propres (??) :

$$H|\varphi_{n,\tau}\rangle = E_n|\varphi_{n,\tau}\rangle$$

Où les $|\varphi_{n,\tau}\rangle$ forment une base de vecteurs propres (H est une observable). En particulier, notons que H étant hermitique, cette dernière égalité peut se réécrire :

$$\langle \varphi_{n,\tau} | H = E_n \langle \varphi_{n,\tau} | \tag{II.8}$$

Nous allons montrer que E_n et $|\varphi_{n,\tau}\rangle$ suffisent à déterminer les solutions de l'équation de Schrödinger.

Notons que $|\varphi_{n,\tau}\rangle$ formant une base, nous pouvons pour chaque valeur de t développer un état du système $|\Psi\rangle$ dans la base :

$$|\Psi(t)\rangle = \sum_{n,\tau} c_{n,\tau}(t) |\varphi_{n,\tau}\rangle$$
 (II.9)

Où $c_{n,\tau}(t) = \langle \varphi_{n,\tau} | \Psi(t) \rangle$. Projetons alors l'équation de Schrödinger sur chacun des états $|\varphi_{n,\tau}\rangle$. Nous obtenons que :

$$i\hbar \frac{\partial}{\partial t} \langle \varphi_{n,\tau} | \Psi(t) \rangle = \langle \varphi_{n,\tau} | H | \Psi(t) \rangle$$
$$i\hbar \partial_t c_{n,\tau}(t) = E_n \langle \varphi_{n,\tau} | \Psi(t) \rangle = E_n c_{n,\tau}$$

Nous obtenons alors l'équation différentielle d'ordre 1 en $c_{n,\tau}(t)$

$$i\hbar\partial_t c_{n,\tau}(t) = E_n c_{n,\tau}.$$
 (II.10)

Sa solution générale est donné par

$$c_{n,\tau}(t) = c_{n,\tau}(t_0)e^{-i\frac{E_n}{\hbar}(t-t_0)}$$
(II.11)

Dès lors, le vecteur d'état $|\Psi(t)\rangle$ vaudra

$$|\Psi(t)\rangle = \sum_{n} c_n(t_0) e^{-i\frac{E_n}{\hbar}(t-t_0)} |\varphi_{n,\tau}\rangle$$
 (II.12)

Pour résoudre l'équation de Schrödinger avec un Hamiltonien indépendant du temps, il suffit de diagonaliser l'Hamiltonien et de connaître la décomposition de $|\Psi\rangle$ à l'instant initial dans la base des vecteurs propres de \mathcal{H}

6.6 Opérateurs unitaires

La notion d'unité est introduite en ??; plus spécifiquement en les définitions ?? et en ??. En utilisant les notations introduites dans en I, nous pouvons réécrire cela sous la forme

$$U^{-1} = U^{\dagger} \tag{II.13}$$

$$UU^{\dagger} = U^{\dagger}U = \mathbb{I} \tag{II.14}$$

Proposition 6.2. Soit U une application unitaire. Soient $|\Psi\rangle$, $|\varphi\rangle$ deux kets. Notons

$$\begin{split} |\tilde{\Psi}\rangle &= U \, |\Psi\rangle \\ |\tilde{\varphi}\rangle &= U \, |\varphi\rangle \, . \end{split}$$

Alors, le produit scalaire est conservé :

$$\langle \tilde{\Psi} | \tilde{\Psi} \rangle = \langle \Psi | \varphi \rangle. \tag{II.15}$$

Proposition 6.3. Soit $\{|i\rangle\}$ une base orthonormée et U une matrice unitaire. Alors, $\{U|i\rangle\} = |i\rangle\}$ est également une base orthonormée et

$$|\tilde{i}\rangle = U |i\rangle = \sum_{j} |j\rangle \langle j| U |i\rangle = \sum_{j} |j\rangle U_{ji}$$
 (II.16)

est la matrice de changement de base.

Proposition 6.4. Si U et V sont des matrices unitaires, alors UV est unitaire.

Proposition 6.5. Si U est unitaire et $|\Psi\rangle$ est un vecteur propre de U

$$U|\Psi\rangle = \lambda |\Psi\rangle$$
 $\rightarrow \|\lambda\|^2 = 1.$ (II.17)

De plus, $\lambda = e^{i\varphi}$. Nous pouvons diagonaliser une matrice unitaire

$$U = \sum_{j} e^{i\varphi_{j}} |i\rangle \langle j| \tag{II.18}$$

 $O\dot{u} \{|j\rangle\}$ est une base orthonormée de vecteurs propres.

Théorème 6.1. Si U est une matrice $n \times n$ telle que $\langle \Psi | U^{\dagger} U | \Psi \rangle = \langle \Psi | \Psi \rangle$ pour tout $| \Psi \rangle$, alors U est unitaire 6 et donc $U^{\dagger}U = \mathbb{I}$.

Démonstration. En utilisant le premier postulat de la Mécanique Quantique, nous pouvons écrire tout état sous la forme $|\Psi\rangle = |\alpha\rangle + e^{i\varphi} |\beta\rangle$. Dès lors,

$$\langle \Psi | U^{\dagger} U | \Psi \rangle = \langle \Psi | \Psi \rangle$$

$$(|\alpha\rangle + e^{-i\varphi} |\beta\rangle)(U^{\dagger} U)(|\alpha\rangle + e^{i\varphi} |\beta\rangle) = (|\alpha\rangle + e^{-i\varphi} |\beta\rangle)(|\alpha\rangle + e^{i\varphi} |\beta\rangle)$$

$$\langle \alpha | U^{\dagger} U | \alpha\rangle + e^{-i\varphi} \langle \beta | U^{\dagger} U | \alpha\rangle + e^{i\varphi} \langle \alpha | U^{\dagger} U | \beta\rangle + \langle \beta | U^{\dagger} U | \beta\rangle = \langle \alpha | \alpha\rangle + e^{-i\varphi} \langle \beta | \alpha\rangle + e^{i\varphi} \langle \alpha | \beta\rangle + \langle \beta | \beta\rangle$$

Or, nous avons que

$$\langle \alpha | U^{\dagger} U | \alpha \rangle = \langle \alpha | \alpha \rangle \qquad \langle \beta | U^{\dagger} U | \beta \rangle = \langle \beta | \beta \rangle.$$

Dès lors,

$$\langle \beta | U^{\dagger} U | \alpha \rangle = \langle \beta | \alpha \rangle$$

$$\langle \alpha | U^{\dagger} U | \beta \rangle = \langle \alpha | \beta \rangle$$

$$\forall | \alpha \rangle | \beta \rangle ,$$

$$\forall | \alpha \rangle | \beta \rangle .$$

Ce qui implique alors que $U^{\dagger}U = \mathbb{I}$.

Proposition 6.6. Si $|\Psi\rangle$ est une solution de l'équation de Schrödinger, alors il existe un opérateur linéaire $U(t,t_0)$ tel que

$$|\Psi(t,t_0)\rangle = U(t,t_0)|\Psi(t_0)\rangle. \tag{II.19}$$

En utilisant ce résultat, nous obtenons que

$$\begin{split} i\partial_t U(t,t_0) \left| \Psi(t_0) \right\rangle &= H(t) U(t,t_0) \left| \Psi(t_0) \right\rangle \\ &\quad i\partial_t U(t,t_0) = H(t) U(t,t_0) \end{split}$$

Avec la condition initiale $U(t_0, t_0) = \mathbb{I}$.

Proposition 6.7. Comme $\langle \Psi(t_0)|\Psi(t)\rangle$ est indépendant de t, il s'ensuit que

$$\langle \Psi(t_0)|U^{\dagger}(t,t_0)U(t,t_0)|\Psi(t_0)\rangle = \langle \Psi(t_0)|\Psi(t_0)\rangle \qquad \forall |\Psi(t_0)\rangle. \tag{II.20}$$

Nous avons alors que $U(t, t_0)$ est une matrice unitaire.

6.7 Fonction d'Opérateurs/de Matrices

^{6.} La matrice U appartient à U_n , l'ensemble des matrices de taille $n \times n$ définie en ??