ANÁLISE DE ALGORITMOS

Prof. André Backes | @progdescomplicada

Algoritmos

- Como resolver um problema no computador?
 - Precisamos descrevê-lo de uma forma clara e precisa
- Precisamos escrever o seu algoritmo
 - Um algoritmo é uma sequência simples e objetiva de instruções
 - Cada instrução é uma informação que indica ao computador uma ação básica a ser executada

Algoritmo: Bolo de Chocolate

- Aqueça o forno a 180 C
- Unte uma forma redonda
- Numa taça
 - Bata
 - 75g de manteiga
 - 250g de açúcar
 - até ficar cremoso
 - Junte
 - 4 ovos, um a um
 - 100g de chocolate derretido
 - Adicione aos poucos 250g de farinha peneirada
- Deite a massa na forma
- Leve ao forno durante 40 minutos

Algoritmos

- Vários algoritmos para um mesmo problema
 - Os algoritmos se diferenciam uns dos outros pela maneira como eles utilizam os recursos do computador
- Os algoritmos dependem
 - Principalmente do tempo que demora pra ser executado
 - Da quantidade de memória do computador

- Área de pesquisa cujo foco são os algoritmos
 - Busca responder a seguinte pergunta: podemos fazer um algoritmo mais eficiente?
 - Algoritmos diferentes mas capazes de resolver o mesmo problema não necessariamente o fazem como a mesma eficiência
 - Exemplo: ordenação de números

- · As diferenças de eficiência podem ser
 - Irrelevantes para um pequeno número de elementos processados
 - Crescer proporcionalmente com o número de elementos processados
- Dependendo do tamanho dos dados e da eficiência, um programa poderia executar
 - Instantaneamente
 - De um dia para o outro
 - Por séculos

- Complexidade computacional
 - Medida criada para comparar a eficiência dos algoritmos
 - Indica o custo ao se aplicar um algoritmo

custo = memória + tempo

- memória: quanto de espaço o algoritmo vai consumir
- tempo: a duração de sua execução

- Importante
 - O custo pode estar associado a outros recursos computacionais, além da memória
 - Exemplo: tráfego de rede
 - No entanto, para a maior parte dos problemas o custo está relacionado ao tempo de execução em função do tamanho da entrada a ser processada

- Para determinar se um algoritmo é o mais eficiente, podemos utilizar duas abordagens
 - Análise empírica
 - Comparação entre os programas
 - Análise matemática
 - Estudo das propriedades do algoritmo

- Definição
 - Avalia o custo (ou complexidade) de um algoritmo a partir da avaliação da execução do mesmo quando implementado
 - Análise pela execução de seu programa correspondente

 Exemplo: calcular o tempo de execução

```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main(){
   clock t inicio, fim;
   unsigned long int tempo;
   inicio = clock();
   /* coloque seu código aqui */
   //==========
   fim = clock();
   tempo = (fim - inicio) *1000/CLOCKS PER SEC;
   printf("tempo: %lu milissegundo\n", tempo);
   return 0;
```

- Vantagens
 - Permite avaliar o desempenho em uma determinada configuração de computador/linguagem
 - Considera custos n\u00e3o aparentes
 - Por exemplo, o custo da alocação de memória
 - Permite comparar computadores
 - Permite comparar linguagens

- Desvantagens
 - Necessidade de implementar o algoritmo
 - Depende da habilidade do programador
 - Resultado pode ser mascarado
 - Hardware: computador utilizado
 - Software: eventos ocorridos no momento de avaliação
 - Depende da natureza dos dados
 - Dados reais
 - Dados aleatórios: desempenho médio
 - **Dados perversos**: desempenho no pior caso

Análise matemática

- Muitas vezes, é preferível que a medição do tempo gasto por um algoritmo seja feita de maneira independente
 - Neste caso, devemos desconsiderar o hardware ou a linguagem de programação usada

 Nesse tipo de situação, convém utilizar a análise matemática do algoritmo

Análise matemática

- Permite um estudo formal de um algoritmo ao nível da sua idéia
 - Faz uso de um computador idealizado e simplificações que buscam considerar somente os custos dominantes do algoritmo
 - Detalhes de baixo nível são ignorados
 - Linguagem de programação utilizada
 - Hardware no qual o algoritmo é executado
 - Conjunto de instruções da CPU
 - Etc

Análise matemática

- Permite entender como um algoritmo se comporta à medida que o conjunto de dados de entrada cresce
 - Exemplo: número de elementos em um array, lista, árvore, etc
- Expressa a relação entre o conjunto de dados de entrada e a quantidade de tempo necessária para processar esses dados

- Considere o pequeno trecho de código
 - Este algoritmo procura o maior valor presente em um array A contendo n elementos e o armazena na variável M

```
int M = A[0];
for(i = 0; i < n; i++) {
    if(A[i] >= M) {
        M = A[i];
    }
}
```

- Quantas instruções simples ele executa?
 - Instruções simples: instruções que podem ser executadas diretamente pelo CPU (ou algo muito perto disso)
 - atribuição de um valor a uma variável
 - acesso ao valor de um determinado elemento do array
 - comparação de dois valores
 - incremento de um valor
 - operações aritméticas básicas, como adição e multiplicação

- Instruções simples
 - Todas possuem o mesmo custo
 - Comandos de seleção (como o comando if) possuem custo zero
 - Não contam como instruções

```
int M = A[0];
for(i = 0; i < n; i++) {
    if(A[i] >= M) {
        M = A[i];
    }
}
```

- Custo da inicialização de M: 1 instrução
 - Apenas uma operação de atribuição

```
int M = A[0];

for(i = 0; i < n; i++) {
    if(A[i] >= M) {
        M = A[i];
    }
}
```

- Custo de inicialização do laço for: 2 instruções
 - Uma operação de atribuição e uma comparação

```
int M = A[0];
for(i = 0; i < n; i++) {
   if(A[i] >= M) {
        M = A[i];
   }
}
```

- Custo de execução do laço for: 2n instruções
 - Uma operação de incremento e uma comparação executadas **n** vezes

```
int M = A[0];
for(i = 0; i < n; i++){
   if(A[i] >= M) {
        M = A[i];
   }
}
```

- Ignorando os comandos contidos dentro do laço for, temos que o algoritmo irá executar 3+2n instruções
 - 3 instruções antes de iniciar o laço for
 - 2 instruções ao final de cada laço for

```
int M = A[0];
for(i = 0; i < n; i++) {
   if(A[i] >= M) {
        M = A[i];
   }
}
```

 Assim, considerando um laço vazio, podemos definir uma função matemática que representa o custo do algoritmo em relação ao tamanho do array de entrada

```
 \cdot f(n) = 2n + 3
```

```
int M = A[0];
for(i = 0; i < n; i++) {
   if(A[i] >= M) {
        M = A[i];
   }
}
```

- As instruções vistas anteriormente eram sempre executadas.
- Porém, as instruções dentro do for podem ou não ser executadas
 - Comando de seleção: 1 instrução
 - Sempre executada
 - Atribuição: 1 instrução
 - Depende do resultado do comando de seleção

```
int M = A[0];

for(i = 0; i < n; i++) {
    if(A[i] >= M) {
        M = A[i];
    }
}
```

- Antes, bastava saber o tamanho do array, n, para definir a função de custo f(n)
- Agora, temos que considerar também o conteúdo do array
- Tome como exemplo os dois arrays abaixo

```
int A1[4] = \{1, 2, 3, 4\};
int A2[4] = \{4, 3, 2, 1\};
```

- O array A1 irá executar mais instruções do que o array A2
 - Array A1: o comando if é sempre verdadeiro
 - Array A2: o comando if é sempre falso
- Devemos considerar o pior caso possível
 - Maior número de instruções é executado

```
int A1[4] = \{1, 2, 3, 4\};
int A2[4] = \{4, 3, 2, 1\};
```

- Neste exemplo, o pior caso ocorre quando o array possui valores em ordem crescente
 - Valor de M é sempre substituído: 2n instruções
 - Maior número de instruções
 - A função custo será, no pior caso,
 - f(n) = 3 + 2n + 2n ou
 - f(n) = 4n + 3

```
int M = A[0];

for(i = 0; i < n; i++) {
    if(A[i] >= M) {
        M = A[i];
    }
}
```

 Exemplo: maior valor presente em uma matriz A contendo n x n elementos

COMPORTAMENTO ASSINTÓTICO

- Vimos que o custo para o algoritmo abaixo é dado pela função
- f(n) = 4n + 3

```
int M = A[0];
for(i = 0; i < n; i++) {
    if(A[i] >= M) {
        M = A[i];
    }
}
```

- Essa é a função de complexidade de tempo
 - Nos dá uma ideia do custo de execução do algoritmo para um problema de tamanho n
 - Exemplo: array de n elementos
 - É possível criar o mesmo tipo de função para a análise do espaço gasto

```
int M = A[0];

for(i = 0; i < n; i++) {
    if(A[i] >= M) {
        M = A[i];
    }
}
```

- Dúvida
 - Será que todos os termos da função f(n) são necessários para termos uma noção do custo?
- De fato, nem todos os termos são necessários
 - Podemos descartar certos termos na função
 - Devemos manter apenas os que nos dizem o que acontece quando o tamanho dos dados de entrada (n) cresce muito

- Idéia geral
 - Se um algoritmo é mais rápido do que outro para um grande conjunto de dados de entrada, é muito provável que ele continue sendo também mais rápido em um conjunto de dados menor
 - Assim, podemos
 - Descartar todos os termos que crescem lentamente
 - Manter apenas os que crescem mais rápido à medida que o valor de n se torna maior

- A função f(n) = 4n + 3 possui dois termos
 - 4n e 3
- O termo 3 é uma constante de inicialização
 - Não se altera à medida que o valor de n cresce
 - Exemplo: atribuições antes de um laço
 - Pode, portanto, ser descartado
- Assim, a função é reduzida para f(n) = 4n

- Constantes que multiplicam o termo n da função também devem ser descartadas
 - Representam particularidades de cada linguagem e compilador
 - Queremos analisar apenas a ideia por trás do algoritmo, sem influências da linguagem

- Exemplo: atribuição em array
 - Na linguagem Pascal, essa operação equivale a um teste lógico e uma atribuição na linguagem C
 - Pascal: 3 instruções (etapa de verificação)
 - C: 1 instrução (sem etapa de verificação)

Assim, a função f(n) = 4n + 3 é reduzida para f(n) = n

- Descartando todos os termos constantes e mantendo apenas o de maior crescimento obtemos o comportamento assintótico
 - Comportamento de uma função f(n) quando n tende ao infinito
 - O termo de maior expoente domina o comportamento da função

• Exemplo: $g(n) = 1000n+500 e h(n) = n^2+n+1$

- Assim, podemos
 - Suprimir os termos menos importantes da função e considerar apenas o termo de maior grau
 - Descrever a complexidade usando somente o seu custo dominante
 - n para a função g(n)
 - n² para h(n)

- Exemplos de função de custo juntamente com o seu comportamento assintótico
 - Obs: Se a função não possui nenhum termo multiplicado por n, seu comportamento assintótico é constante

Função custo	Comportamento assintótico
f(n) = 105	f(n) = 1
f(n) = 15n + 2	f(n) = n
$f(n) = n^2 + 5n + 2$	$f(n) = n^2$
$f(n) = 5n^3 + 200n^2 + 112$	$f(n) = n^3$

- De modo geral, podemos obter a função de custo de um programa simples apenas contando os comandos de laços aninhados
 - Não possui laço (exceto se houver recursão)
 - f(n) = 1
 - Um comando de laço indo de 1 a n
 - f(n) = n
 - Dois comandos de laço aninhados
 - $f(n) = n^2$
 - e assim por diante

- Existem várias formas de análise assintótica
- A mais conhecida e utilizada é a notação grande-O (O)
 - Custo do algoritmo no pior caso possível para todas as entradas de tamanho n
 - Analisa o limite superior de entrada
 - Permite dizer que o comportamento do nosso algoritmo não pode nunca ultrapassar um certo limite

- Para entender essa notação, considere o algoritmo de ordenação selection sort
 - Dado um array V de tamanho n, procure o menor valor (posição me) e coloque na primeira posição
 - Repetir processo para a segunda posição, depois para a terceira etc.
 - Pare quando o array estiver ordenado

Implementação do selection sort

```
void selectionSort(int *V, int n) {
    int i, j, me, troca;
    for (i = 0; i < n-1; i++) {
        me = i;
        for(j = i+1; j < n; j++) {
            if(V[j] < V[me])
                me = j;
        if(i != me) {
            troca = V[i];
            V[i] = V[me];
            V[me] = troca;
```

- Dois comandos de laço no selection sort
 - Laço externo: executado n-1 vezes
 - Laço interno: número de execuções depende do valor do índice do laço externo (n-1,n-2,n-3,..., 2,1)

Procura o menor valor.

Número de execuções depende do laço externo n-1 vezes na 1º iteração n-2 vezes na 2º iteração etc

Repete o processo para cada posição do array Executado **n-1** vezes

- Como calcular o custo do selection sort?
 - Temos que calcular o resultado da soma
 - 1 + 2 + ... + (n 1) + n
 - Essa soma representa o número de execuções do laço interno
 - Dependendo do algoritmo, isso pode ser uma tarefa muito complicada

- Neste caso, temos uma ajuda da matemática
 - A soma
 - 1 + 2 + ... + (n 1) + n
 - equivale a soma dos n termos de uma progressão aritmética, S_n, de razão 1
 - Assim
 - $S_n = 1 + 2 + ... + (n 1) + n$
 - $S_n = n + (n 1) + ... + 1 + 1$
 - $2S_n = (1 + n) + (2+(n-1)) + ... + ((n 1)+2) + (n+1)$

- Vamos analisar os termos equidistantes dos extremos
 - Como 1 e n, 2 e (n-1),...,
 - Suas somas são sempre iguais a (1 + n)
 - Logo
 - $2S_n = (1 + n) + (2+(n-1)) + ... + ((n 1)+2) + (n+1)$
 - $2S_n = n(1 + n)$
 - $S_n = n(1 + n)/2$

Como resultado, o número de execuções do laço interno é

$$S_n = n(1 + n)/2$$

- Sabemos agora o número de execuções do laço interno
- Porém, essa é uma tarefa trabalhosa!

- Uma alternativa mais simples: estimar um limite superior
 - Podemos alterar mentalmente o algoritmo e, em seguida, calcular o custo desse novo algoritmo
 - Desse modo, vamos torná-lo menos eficiente
 - Assim, saberemos que o algoritmo original é no máximo tão ruim, ou talvez melhor, que o novo algoritmo

- Como diminuir a eficiência do selection sort?
 - Podemos trocar o laço interno por um laço que seja executado sempre n vezes
 - Fica mais fácil descobrir o custo do algoritmo
 - Piora o desempenho: algumas execuções do laço interno serão inúteis

```
void selectionSort(int *V, int n) {
    int i, j, me, troca;
    for (i = 0; i < n-1; i++) {
        me = i;
        for(j = i+1; j < n; j++)
            if(V[j] < V[me])
                me = j;
        if(i != me){
            troca = V[i];
            V[i] = V[me];
            V[me] = troca;
```

- Temos agora dois comandos de laço aninhados sendo executados
 n vezes cada
 - Função de custo passa a ser f(n) = n²
 - Utilizando a notação grande-O, O, podemos dizer que o custo do algoritmo no pior caso é O(n²)

- O que O(n²) significa para um algoritmo?
 - A notação O(n²) nos diz que o custo do algoritmo não é, assintoticamente, pior do que n²
 - Nosso algoritmo nunca vai ser mais lento do que um determinado limite
 - Ou seja, o custo do algoritmo original é no máximo tão ruim quanto n²
 - Pode ser melhor, mas nunca pior
 - Limite superior para a complexidade real do algoritmo

TIPOS DE ANÁLISE ASSINTÓTICA

- A notação grande-O é a forma mais conhecida e utilizada de análise assintótica
 - Complexidade do nosso algoritmo no pior caso
 - Seja de tempo ou de espaço
 - É o caso mais fácil de se identificar
 - Limite superior sobre o tempo de execução do algoritmo
 - Para diversos algoritmos o pior caso ocorre com frequência

- No entanto, existem várias formas de análise assintótica
 - Notação grande-Omega, Ω
 - Notação grande-O, O
 - Notação grande-Theta, O
 - Notação pequeno-o, o
 - Notação pequeno-omega, ω
- A seguir, são matematicamente descritas outras formas de análise assintótica.

- Notação grande-Omega, Ω
 - Descreve o limite assintótico inferior
 - É utilizada para analisar o melhor caso do algoritmo
 - A notação Ω(n²) nos diz que o custo do algoritmo é, assintoticamente, maior ou igual a n²
 - Ou seja, o custo do algoritmo original é no mínimo tão ruim quanto n²

- Notação grande-Omega, Ω
 - Matematicamente, a notação Ω é assim definida
 - Uma função custo f(n) é $\Omega(g(n))$ se existem duas constantes positivas c e m tais que
 - Para $n \ge m$, temos $f(n) \ge c.g(n)$
 - Confuso?

- Notação grande-Omega, Ω
 - Em outras palavras, para todos os valores de n à direita de m, o resultado da função custo f(n) é sempre maior ou igual ao valor da função usada na notação Ω, g(n), multiplicada por uma constante c

ullet Notação grande-Omega, $oldsymbol{\Omega}$ *f*(*n*)

m

 $f(n) = \Omega(g(n))$

- Exemplo: mostrar que a função custo é f(n)=3n² + n é Ω (n)
 - Temos que encontrar constantes c e m tais que
 - $3n^2 + n \ge cn$
 - Dividindo por n², temos
 - $3 + 1/n \ge c/n$
 - Considerando $\mathbf{c} = \mathbf{4} \in \mathbf{n} > \mathbf{0}$, temos que $\mathbf{f(n)} = \mathbf{3n^2} + \mathbf{n} \in \Omega$ (n)

- Notação grande-O, O
 - Descreve o limite assintótico superior
 - É utilizada para analisar o **pior caso** do algoritmo
 - A notação O(n²) nos diz que o custo do algoritmo é, assintoticamente, menor ou igual a n²
 - Ou seja, o custo do algoritmo original é no máximo tão ruim quanto n²

- Notação grande-O, O
 - Matematicamente, a notação O é assim definida
 - Uma função custo f(n) é O(g(n)) se existem duas constantes positivas c e m tais que
 - Para n ≥ m, temos f(n) ≤ c.g(n)
 - Confuso?

- Notação grande-O, O
 - Em outras palavras, para todos os valores de n à direita de m, o resultado da função custo f(n) é sempre menor ou igual ao valor da função usada na notação O, g(n), multiplicada por uma constante c.

- Exemplo: mostrar que a função custo é f(n)=2n² + 10 é O(n³)
 - Temos que encontrar constantes c e m tais que
 - $2n^2 + 10 \le cn^3$
 - Dividindo por n², temos
 - $2 + 10/n^2 \le cn$
 - Considerando c = 1 e n > 3, temos que $f(n)=2n^2+10 é O(n^3)$
 - Dá para melhorar essa análise!

- Exemplo: mostrar que a função custo é f(n)=2n² + 10 é O(n²)
 - Temos que encontrar constantes c e m tais que
 - $2n^2 + 10 \le cn^2$
 - Dividindo por n², temos
 - $2 + 10/n^2 \le c$
 - Considerando c = 12 e n > 0, temos que $f(n)=2n^2+10 é O(n^2)$

- Exemplo: mostrar que a função custo é f(n)=4n + 7 é O(n)
 - Temos que encontrar constantes c e m tais que
 - $4n + 7 \leq cn$
 - Dividindo por n, temos
 - $4 + 7/n \le c$
 - Considerando c = 8 e n > 1, temos que $f(n)=4n+7 \in O(n)$

- Exemplo: mostrar que a função custo é f(n)=n² não é O(n)
 - Temos que encontrar constantes c e m tais que
 - $n^2 \leq cn$
 - Dividindo por n, temos
 - $n \leq c$
- A desigualdade é inválida!
 - O valor de n está limitado pela constante c
 - A análise assintótica não é possível (entrada tendendo ao infinito)

- Notação grande-O, O
 - Essa notação possui algumas operações
 - A mais importante é a regra da soma
 - Permite a análise da complexidade de diferentes algoritmos em sequência
 - Definição
 - Se dois algoritmos são executados em sequência, a complexidade será dada pela complexidade do maior deles
 - O(f(n)) + O(g(n)) = O(max(f(n),g(n)))

- Notação grande-O, O
 - Exemplo da regra da soma. Se temos
 - Dois algoritmos cujos tempos de execução são O(n) e O(n²), a execução deles em sequência será O(max(n,n²)) que é O(n²)
 - Dois algoritmos cujos tempos de execução são O(n) e O(n log n), a execução deles em sequência será O(max(n,n log n)) que é O(n log n)

- Notação grande-Theta, *O*
 - Descreve o limite assintótico firme
 - É utilizada para analisar o limite inferior e superior do algoritmo
 - A notação Θ(n²) nos diz que o custo do algoritmo é, assintoticamente, igual a n²
 - Ou seja, o custo do algoritmo original é n² dentro de um fator constante acima e abaixo

- Notação grande-Theta, *O*
 - Matematicamente, a notação *O* é assim definida
 - Uma função custo f(n) é $\Theta(g(n))$ se existem três constantes positivas c_1 , c_2 e m tais que
 - Para $n \ge m$, temos $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$
 - Confuso?

- Notação grande-Theta, *O*
 - Em outras palavras, para todos os valores de n à direita de m, o resultado da função custo f(n) é sempre igual ao valor da função usada na notação Θ, g(n), quando está é multiplicada por constantes c₁ e c₂

 $c_2.g(n)$ Notação grande-Theta, f(n) $c_1.g(n)$ m $f(n) = \Theta(g(n))$

- Exemplo: mostrar que a função custo $f(n) = \frac{1}{2}n^2 3n$ é $\Theta(n^2)$
 - Temos que encontrar constantes c₁ e c₂ e m tais que

•
$$c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2$$

- Dividindo por n², temos
- $c_1 \le \frac{1}{2} \frac{3}{n} \le c_2$

- Exemplo: mostrar que a função custo $f(n) = \frac{1}{2}n^2 3n$ é $\Theta(n^2)$
 - $c_1 \le \frac{1}{2} \frac{3}{n} \le c_2$
 - A desigualdade do lado direito é válida para n ≥ 1 escolhendo c₂ ≥ 1/2
 - A desigualdade do lado esquerdo é válida para n ≥ 7 escolhendo c₁ ≥ 1/14
 - Assim, para $c_1 \ge 1/14$, $c_2 \ge 1/2$ e $n \ge 7$, $f(n) = \frac{1}{2}n^2 3n$ é $\Theta(n^2)$

- Exemplo: mostrar que a função custo $f(n) = 6n^3$ não é $\Theta(n^2)$
 - Temos que encontrar constantes c₁ e c₂ e m tais que
 - $c_1 n^2 \le 6n^3 \le c_2 n^2$
 - Dividindo por n², temos
 - $c_1 \leq 6n \leq c_2$

- Exemplo: mostrar que a função custo $f(n) = 6n^3$ não é $\Theta(n^2)$
 - $c_1 \le 6n \le c_2$
- A desigualdade do lado direito é inválida!
 - $n \leq \frac{c_2}{6}$
 - O valor de n está limitado pela constante c₂
 - A análise assintótica não é possível (entrada tendendo ao infinito)

- Notação pequeno-o, o, e pequeno-omega, ω
 - Parecidas com as notações Grande-O e Grande-Omega
 - As notações Grande-O e Grande-Omega possuem uma relação de menor ou igual e maior ou igual
 - As notações Pequeno-o e Pequeno-omega possuem uma relação de menor e maior

- Notação pequeno-o, o, e pequeno-omega, ω
 - Ou seja, essas notações não representam limites próximos da função
 - Elas representam limites estritamente
 - superiores: sempre maior
 - **inferiores**: sempre menor

- A seguir, são apresentadas algumas classes de complexidade de problemas comumente usadas
 - O(1): ordem constante
 - As instruções são executadas um número fixo de vezes. Não depende do tamanho dos dados de entrada
 - O(log n): ordem logarítmica
 - Típica de algoritmos que resolvem um problema transformando-o em problemas menores
 - O(n): ordem linear
 - Em geral, uma certa quantidade de operações é realizada sobre cada um dos elementos de entrada

$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n) < O(n!)$$

- Mais classes de problemas
 - O(n log n): ordem log linear
 - Típica de algoritmos que trabalham com particionamento dos dados. Esses algoritmos resolvem um problema transformando-o em problemas menores, que são resolvidos de forma independente e depois unidos
 - O(n²): ordem quadrática
 - Normalmente ocorre quando os dados são processados aos pares. Uma característica deste tipo de algoritmos é a presença de um aninhamento de dois comandos de repetição

- Mais classes de problemas
 - O(n³): ordem cúbica
 - É caracterizado pela presença de três estruturas de repetição aninhadas
 - O(2ⁿ): ordem exponencial
 - Geralmente ocorre quando se usa uma solução de força bruta. Não são úteis do ponto de vista prático
 - O(n!): ordem fatorial
 - Geralmente ocorre quando se usa uma solução de força bruta. Não são úteis do ponto de vista prático. Possui um comportamento muito pior que o exponencial

- Comparação no tempo de execução
 - Computador executa 1 milhão de operações por segundo

f(n)	n = 10	n = 20	n = 30	n = 50	n = 100
n	1,0E-05	2,0E-05	4,0E-05	5,0E-05	6,0E-05
	segundos	segundos	segundos	segundos	segundos
n log n	3,3E-05	8,6E-05	2,1E-04	2,8E-04	3,5E-04
	segundos	segundos	segundos	segundos	segundos
n²	1,0E-04	4,0E-04	1,6E-03	2,5E-03	3,6E-03
	segundos	segundos	segundos	segundos	segundos
n³	1,0E-03	8,0E-03	6,4E-02	0,13	0,22
	segundos	segundos	segundos	segundos	segundos
2 ⁿ	1,0E-03	1,0	2,8	35,7	365,6
	segundos	segundo	dias	anos	séculos
3 ⁿ	5,9E-02	58,1	3855,2	2,3E+08	1,3E+13
	segundos	minutos	séculos	séculos	séculos

- Cuidado
 - Na análise assintótica as constantes de multiplicação são consideradas irrelevantes e descartadas
 - Porém, elas podem ser relevantes na prática, principalmente se o tamanho da entrada é pequeno
 - Exemplo: qual função tem menor custo?
 - $f(n) = 10^{100} * n$
 - g(n) = 10n log n

- Cuidado
 - Análise assintótica: o primeiro é mais eficiente
 - $f(n) = 10^{100} * n$ tem complexidade O(n)
 - g(n) = 10n log n tem complexidade O(n log n)
 - No entanto, 10¹⁰⁰ é um número muito grande
 - Neste caso, 10n log n > 10¹⁰⁰ * n apenas para
 - Para qualquer valor menor de **n** o n $> 2^{10^{\,99}}$ complexidade **O(n log n)** será melhor

RELAÇÕES DE RECORRÊNCIAS

- Função recursiva
 - Função que chama a si mesma durante a sua execução
- Exemplo: fatorial de um número N.
 - Para **N** = **4** temos
 - 4! = 4 * 3!
 - 3! = 3 * 2!
 - 2! = 2 * 1!
 - 1! = 1 * 0!
 - 0! = 1

- Função recursiva
 - Matematicamente, o fatorial é definido como

```
N! = N * (N-1)!0! = 1
```

Implementação

```
int fatorial(int n) {
    if (n == 0)
        return 1;
    else
        return n * fatorial(n-1);
}
```

- Recorrência ou Relação de Recorrência
 - Expressão que descreve uma função em termos de entradas menores da função
 - Exemplo: definição de um função recursiva
 - Muitos algoritmos se baseiam em recorrência
 - Ferramenta importante para a solução de problemas combinatórios
- Relação de recorrência do fatorial
 - T(n) = T(n-1) + n

- Complexidade da recorrência
 - Uma recursão usualmente não utiliza estruturas de repetição, apenas comandos condicionais, atribuições etc
 - Podemos erroneamente imaginar que essa funções possuem complexidade
 O(1)

```
int fatorial(int n) {
   if (n == 0)
      return 1;
   else
      return n * fatorial(n-1);
}
```

- Complexidade da recorrência
 - Saber a complexidade da recursão envolve resolver a sua relação de recorrência
 - T(n) = T(n-1) + n

```
int fatorial(int n) {
    if (n == 0)
        return 1;
    else
        return n * fatorial(n-1);
}
```

- Complexidade da recorrência
 - Temos que encontrar uma fórmula fechada que nos dê o valor da função
 T(n) = T(n-1) + n em termos de seu parâmetro n
 - Geralmente obtido como uma combinação de polinômios, quocientes de polinômios, logaritmos, exponenciais etc.

```
int fatorial(int n) {
   if (n == 0)
      return 1;
   else
      return n * fatorial(n-1);
}
```

- Considere a seguinte relação de recorrência
 - T(n) = T(n-1) + 2n + 3
- Para n ∈ {2, 3, 4, ...}, existem inúmeras funções T que satisfazem a recorrência
 - Depende do caso base, T(1)
 - Exemplos

n	1	2	3	4	5
T(n)	1	8	17	28	41

•
$$T(1) = 5$$

n	1	2	3	4	5
T(n)	5	12	21	32	45

- Problema
 - Para cada valor i e o intervalo n ∈ {2, 3, 4, ...} existe uma (e apenas uma) função T que tem caso base T(1) = i e satisfaz a recorrência
 - T(n) = T(n-1) + 2n + 3

n	1	2	3	4	5
T(n)	1	8	17	28	41

n	1	2	3	4	5
T(n)	5	12	21	32	45

- Solução
 - Precisamos encontrar uma fórmula fechada para a recorrência
 - Podemos expandir a relação de recorrência T(n)=T(n-1) + 2n + 3 até que se possa detectar um comportamento no seu caso geral

- Para entender essa técnica de expansão, considere a seguinte recorrência
 - T(n) = T(n-1) + 3
 - Essa relação de recorrência representa um algoritmo que possui 3 operações mais uma chamada recursiva

- Expandindo a recorrência T(n) = T(n-1) + 3
 - Se aplicarmos o termo T(n-1) sobre a relação T(n). Com isso, obtemos
 - T(n-1) = T(n-2) + 3
 - Se aplicarmos o termo T(n-2) sobre a relação T(n), teremos
 - T(n-2) = T(n-3) + 3

- Expandindo a recorrência T(n) = T(n-1) + 3
 - Se continuarmos esse processo, teremos a seguinte expansão
 - T(n) = T(n-1) + 3
 - T(n) = (T(n-2) + 3) + 3
 - T(n) = ((T(n-3) + 3) + 3) + 3
 - Perceba que a cada passo um valor 3 é somado a expansão e o valor de n é diminuído em uma unidade

- Expandindo a recorrência T(n) = T(n-1) + 3
 - Podemos resumir essa expansão para usando a seguinte equação
 - T(n) = T(n-k) + 3k
 - Resta saber quando esse processo de expansão termina
 - Isso ocorre no caso base

- Expandindo a recorrência T(n) = T(n-1) + 3
 - O caso base ocorre quando n-k = 1 ou seja, k=n-1
 - Substituindo, temos
 - T(n) = T(n-k) + 3k
 - T(n) = T(1) + 3(n-1)
 - T(n) = T(1) + 3n 3

- Expandindo a recorrência T(n) = T(n-1) + 3
- Obtemos T(n) = T(1) + 3n 3
 - T(1) é o caso base: recursão termina
 - Logo, seu custo é constante: O(1)
- Complexidade da recorrência
 - T(n) = 3n 3 + O(1)
 - Ou seja, linear: O(n)

- Outro exemplo: considere a seguinte recorrência
 - T(n) = T(n/2) + 5
 - Essa relação de recorrência representa um algoritmo que possui 5 operações mais uma chamada recursiva que divide os dados sempre pela metade (n/2)

- Neste caso, a recorrência existe apenas para valores de n que representem uma potência de 2
 - $n \in \{2^1, 2^2, 2^3, \dots\}$
- Considerando n = 2^k, podemos reescrever a recorrência como
 - $T(2^k) = T(2^{k-1}) + 5$

- Expandindo a recorrência T(2^k) = T(2^{k-1}) + 5
 - Se aplicarmos o termo T(2^{k-1}) sobre a relação T(2^k). Com isso, obtemos
 - $T(2^{k-1}) = T(2^{k-2}) + 5$
 - Se aplicarmos o termo T(2^{k-2}) sobre a relação T(2^k), teremos
 - $T(2^{k-2}) = T(2^{k-3}) + 5$

- Expandindo a recorrência T(2^k) = T(2^{k-1}) + 5
 - Se continuarmos esse processo, teremos a seguinte expansão
 - $T(2^k) = T(2^{k-1}) + 5$
 - $T(2^k) = (T(2^{k-2}) + 5) + 5$
 - $T(2^k) = ((T(2^{k-3}) + 5) + 5) + 5$
 - Perceba que a cada passo um valor 5 é somado a expansão e o valor de k é diminuído em uma unidade

- Expandindo a recorrência T(2^k) = T(2^{k-1}) + 5
 - Ao final da expansão, teremos
 - $T(2^k) = T(2^{k-k}) + 5k$
 - $T(2^k) = T(2^0) + 5k$
 - $T(2^k) = T(1) + 5k$
 - Podemos resumir essa expansão usando a seguinte equação, a qual já considera o seu caso base
 - $T(2^k) = T(1) + 5k$

- Expandindo a recorrência T(2^k) = T(2^{k-1}) + 5
 - Temos que substituir o custo do caso base, O(1)
 - Complexidade da recorrência
 - $T(2^k) = O(1) + 5k$
 - Devemos lembrar que substituímos n por 2^k no início da expansão, de modo que n = 2^k

- Expandindo a recorrência T(2^k) = T(2^{k-1}) + 5
 - Aplicando o logaritmo em n = 2^k, temos que k=log₂ n
 - Substituindo, temos
 - $T(2^k) = O(1) + 5k$
 - $T(n) = O(1) + 5 \log_2 n$
- Complexidade da recorrência
 - $T(n) = O(1) + 5 \log_2 n$
 - Ou seja, logarítmica: O(log₂ n)

Material Complementar | Vídeo Aulas

- Aula 99: Análise de Algoritmos:
 - youtu.be/iZK5WwJFIPE
- Aula 100: Análise de Algoritmos Contando Instruções:
 - youtu.be/wflNJurvTTQ
- Aula 101: Análise de Algoritmos Comportamento Assintótico:
 - youtu.be/SCIFMUpBiaw
- Aula 102: Análise de Algoritmos Notação Grande-O:
 - youtu.be/Q7nwypDgTS8
- Aula 103: Análise de Algoritmos Tipos de Análise Assintótica:
 - youtu.be/9RgC2dxi4W8
- Aula 104: Análise de Algoritmos Classes de Problemas:
 - youtu.be/8RYvWMOMnXw
- Aula 122 Relações de Recorrência:
 - youtu.be/QeLYRyW5T94

Material Complementar | GitHub

https://github.com/arbackes

Popular repositories

