Pairwise Sum and Divide

You are given an array of numbers. Let us denote the array with A[]. Your task is very simple. You need to find the value returned by the function $\mathbf{fun}(A)$.

In short, this function takes all distinct pairs of indexes from the array and adds the value $\left\lfloor \frac{A[i] + A[j]}{A[i] \times A[j]} \right\rfloor$ to the sum. Your task is to find the sum.

Note: $\left\lfloor \frac{A}{B} \right\rfloor$ is the integer division function.

Input Format

The first line contains T, the number of test cases to follow.

Each test case contains two lines: the first line contains N, the size of the array, and the second line contains N integers separated by spaces.

Output Format

The output should contain exactly T lines where the $i^{
m th}$ line contains the answer for the $i^{
m th}$ test case.

Constraints

```
egin{aligned} 1 &\leq T \leq 15 \ 1 &\leq N \leq 2 	imes 10^5 \ 1 &\leq 	ext{Sum of $N$ over all test cases} &\leq 2 	imes 10^5 \ 1 &\leq A[i] &\leq 10^9 \end{aligned}
```

Sample Input

```
2
3
423
3
141
```

Sample Output

```
0
4
```

Explanation

First Test Case:
$$\left\lfloor \frac{6}{8} \right\rfloor + \left\lfloor \frac{7}{12} \right\rfloor + \left\lfloor \frac{5}{6} \right\rfloor = 0$$

Second Test Case: $\left\lfloor \frac{5}{4} \right\rfloor + \left\lfloor \frac{2}{1} \right\rfloor + \left\lfloor \frac{5}{4} \right\rfloor = 4$