Nekonečné rady - 2. časť

Zuzana Minarechová

Katedra matematiky a deskriptívnej geometrie Slovenská technická univerzita, Stavebná fakulta

5 December 2022

Nekonečné rady

Obsah prednášky:

- Kritéria konvergencie radov:
 - Cauchyho (odmocninové) kritérium
 - D'Alambertovo (podielové) kritérium
 - Porovnávacie kritérium
 - Cauchyho integrálne kritérium

Nekonečné rady - kritéria konvergencie radov

Definícia 1

Rad
$$\sum\limits_{n=k+1}^{\infty}a_n=\sum\limits_{n=1}^{\infty}a_{n+k}$$
 nazývame **zvyšok radu** $\sum\limits_{n=1}^{\infty}a_n$ po k -tom člene.

Nekonečné rady - kritéria konvergencie radov

Definícia 1

$$\textit{Rad} \sum_{n=k+1}^{\infty} a_n = \sum_{n=1}^{\infty} a_{n+k} \; \textit{nazývame} \; \textit{zvyšok} \; \textit{radu} \; \sum_{n=1}^{\infty} a_n \; \textit{po} \; k\text{-tom člene}.$$

Veta 1

Rad $\sum\limits_{n=1}^{\infty}a_n$ je konvergentný práve vtedy, keď je konvergentný jeho zvyšok

$$\sum_{n=k+1}^{\infty} a_n = \sum_{n=1}^{\infty} a_{n+k}$$

po (ľubovoľnom) k-tom člene.

Cauchyho (odmocninové) kritérium

Cauchyho odmocninové kritérium

Nech $\sum_{n=1}^{\infty} a_n$ je nekonečný rad.

Cauchyho odmocninové kritérium

Nech $\sum\limits_{n=1}^{\infty}a_n$ je nekonečný rad. Predpokladajme, že existuje číslo q, q<1 a

také k, že pre každé $n \geq k$ platí $\sqrt[n]{|a_n|} < q$,

Cauchyho odmocninové kritérium

Nech $\sum\limits_{n=1}^{\infty}a_n$ je nekonečný rad. Predpokladajme, že existuje číslo q, q<1 a

také k, že pre každé $n \geq k$ platí $\sqrt[n]{|a_n|} < q$,čo je splnené, ak

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = L < 1,$$

potom nekonečný rad $\sum_{n=1}^{\infty} a_n$ konverguje.

Cauchyho odmocninové kritérium

Nech $\sum\limits_{n=1}^{\infty}a_n$ je nekonečný rad. Predpokladajme, že existuje číslo q, q<1 a

také k, že pre každé $n \geq k$ platí $\sqrt[n]{|a_n|} < q$,čo je splnené, ak

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = L < 1,$$

potom nekonečný rad $\sum\limits_{n=1}^{\infty}a_n$ konverguje.

• Ak L > 1, rad $\sum_{n=1}^{\infty} a_n$ diverguje.

Cauchyho odmocninové kritérium

Nech $\sum\limits_{n=1}^{\infty}a_n$ je nekonečný rad. Predpokladajme, že existuje číslo q, q<1 a

také k, že pre každé $n \geq k$ platí $\sqrt[n]{|a_n|} < q$,čo je splnené, ak

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = L < 1,$$

potom nekonečný rad $\sum\limits_{n=1}^{\infty}a_n$ konverguje.

- Ak L > 1, rad $\sum_{n=1}^{\infty} a_n$ diverguje.
- Ak L=1, podľa tohto kritéria o konvergencii (divergencii) radu $\sum_{n=1}^{\infty}a_n$ nevieme rozhodnúť.

Príklad 1

Zistite, či nekonečný rad konverguje/diverguje:

- a) $\sum_{n=1}^{\infty} (\arctan(n+1))^n$ diverguje
- b) $\sum_{n=1}^{\infty} \frac{1}{\ln^n(n+1)}$ konverguje
- c) $\sum_{n=2}^{\infty} \left(\frac{1}{\ln n}\right)^n$ konverguje
- d) $\sum_{n=1}^{\infty} \left(\frac{n^2+1}{2n^2+1}\right)^n$ konverguje
- e) $\sum_{n=1}^{\infty} \frac{n^n}{3^{1+3n}}$ diverguje
- f) $\sum_{n=1}^{\infty} \frac{2^{n+1}}{n^n}$ konverguje
- g) $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$ konverguje
- h) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ konverguje

- i) $\sum_{n=1}^{\infty} \frac{2^n}{n^2}$ diverguje
- j) $\sum_{n=1}^{\infty} \frac{1}{n2^n}$ konverguje
- k) $\sum_{n=1}^{\infty} \left(\frac{n+6}{4n-2}\right)^n$ konverguje
- I) $\sum_{n=1}^{\infty} \left(\frac{3n^3+6}{8n^3+3}\right)^n$ konverguje

D'Alambertovo (podielové) kritérium

D'Alambertovo podielové kritérium

Nech $\sum\limits_{n=1}^{\infty}a_n$ je nekonečný rad.

D'Alambertovo podielové kritérium

Nech $\sum\limits_{n=1}^{\infty}a_n$ je nekonečný rad. Predpokladajme, že existuje číslo q, q<1 a

také k, že pre každé $n \geq k$ platí $\left| \frac{a_{n+1}}{a_n} \right| < q$,

D'Alambertovo podielové kritérium

Nech $\sum\limits_{n=1}^{\infty}a_n$ je nekonečný rad. Predpokladajme, že existuje číslo q, q<1 a

také k, že pre každé $n \geq k$ platí $\left| \frac{a_{n+1}}{a_n} \right| < q$, čo je splnené, ak

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1,$$

potom nekonečný rad $\sum\limits_{n=1}^{\infty}a_n$ konverguje.

D'Alambertovo podielové kritérium

Nech $\sum\limits_{n=1}^{\infty}a_n$ je nekonečný rad. Predpokladajme, že existuje číslo q, q<1 a

také k, že pre každé $n \geq k$ platí $\left| \frac{a_{n+1}}{a_n} \right| < q$, čo je splnené, ak

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1,$$

potom nekonečný rad $\sum\limits_{n=1}^{\infty}a_n$ konverguje.

• Ak L>1, rad $\sum\limits_{n=1}^{\infty}a_{n}$ diverguje.

D'Alambertovo podielové kritérium

Nech $\sum\limits_{n=1}^{\infty}a_n$ je nekonečný rad. Predpokladajme, že existuje číslo q, q<1 a

také k, že pre každé $n \geq k$ platí $\left| \frac{a_{n+1}}{a_n} \right| < q$, čo je splnené, ak

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1,$$

potom nekonečný rad $\sum_{n=1}^{\infty} a_n$ konverguje.

- Ak L>1, rad $\sum\limits_{n=1}^{\infty}a_{n}$ diverguje.
- Ak L=1, podľa tohto kritéria o konvergencii (divergencii) radu $\sum\limits_{n=0}^{\infty}a_{n}$ nevieme rozhodnúť.

Príklad 2

Zistite, či nekonečný rad konverguje/diverguje:

- a) $\sum_{n=1}^{\infty} \frac{n+1}{2^n}$ konverguje
- b) $\sum_{n=1}^{\infty} \frac{1}{n^2}$ o konvergencii nevieme rozhodnúť
- c) $\sum_{n=1}^{\infty} \frac{n!}{2^n}$ diverguje
- d) $\sum_{n=1}^{\infty} \frac{2^n}{(n+1)!}$ konverguje
- e) $\sum_{n=1}^{\infty} n \left(\frac{2}{3}\right)^n$ konverguje
- f) $\sum_{n=1}^{\infty} \frac{n^3}{(\ln 2)^n}$ diverguje
- g) $\sum_{n=1}^{\infty} \frac{(n+2)!5!}{n!5^n}$ konverguje
- h) $\sum_{n=1}^{\infty} \frac{n^n}{n!}$ diverguje

- i) $\sum_{n=1}^{\infty} \frac{n!n!}{(2n)!}$ konverguje
- j) $\sum_{n=1}^{\infty} \frac{n!}{e^n}$ diverguje
- k) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ konverguje
- I) $\sum_{n=1}^{\infty} \frac{n(-3)^n}{4^{n-1}}$ konverguje
- m) $\sum_{n=1}^{\infty} \frac{n^n}{3^{1+3n}}$ diverguje
- n) $\sum_{n=1}^{\infty} \frac{3^{n-1}}{n!}$ konverguje

Porovnávacie kritérium

Porovnávacie kritérium

Nech sú dané rady $\sum\limits_{n=1}^\infty a_n$ a $\sum\limits_{n=1}^\infty b_n$ s nezápornými členmi a nech pre každé $n\geq k$ platí, že $a_n\leq b_n$.

Porovnávacie kritérium

Nech sú dané rady $\sum\limits_{n=1}^\infty a_n$ a $\sum\limits_{n=1}^\infty b_n$ s nezápornými členmi a nech pre každé $n\geq k$ platí, že $a_n\leq b_n$. Potom platí:

Porovnávacie kritérium

Nech sú dané rady $\sum\limits_{n=1}^\infty a_n$ a $\sum\limits_{n=1}^\infty b_n$ s nezápornými členmi a nech pre každé $n\geq k$ platí, že $a_n\leq b_n$. Potom platí:

 \bullet Ak konverguje rad $\sum\limits_{n=1}^{\infty}b_{n}$, tak konverguje aj rad $\sum\limits_{n=1}^{\infty}a_{n}.$

Porovnávacie kritérium

Nech sú dané rady $\sum\limits_{n=1}^\infty a_n$ a $\sum\limits_{n=1}^\infty b_n$ s nezápornými členmi a nech pre každé $n\geq k$ platí, že $a_n\leq b_n$. Potom platí:

- \bullet Ak konverguje rad $\sum\limits_{n=1}^{\infty}b_{n}$, tak konverguje aj rad $\sum\limits_{n=1}^{\infty}a_{n}.$
- ullet Ak diverguje rad $\sum\limits_{n=1}^{\infty}a_n$, tak diverguje aj rad $\sum\limits_{n=1}^{\infty}b_n$.

Porovnávacie kritérium

Nech sú dané rady $\sum\limits_{n=1}^\infty a_n$ a $\sum\limits_{n=1}^\infty b_n$ s nezápornými členmi a nech pre každé $n\geq k$ platí, že $a_n\leq b_n$. Potom platí:

- ullet Ak konverguje rad $\sum\limits_{n=1}^{\infty}b_n$, tak konverguje aj rad $\sum\limits_{n=1}^{\infty}a_n$.
- ullet Ak diverguje rad $\sum\limits_{n=1}^{\infty}a_n$, tak diverguje aj rad $\sum\limits_{n=1}^{\infty}b_n$.

Hovoríme, že rad

• $\sum\limits_{n=1}^{\infty}b_n$ je majorantný k radu $\sum\limits_{n=1}^{\infty}a_n.$

Ako postupujeme pri určovaní konvergencie?

Ako postupujeme pri určovaní konvergencie?

 Ak predpokladáme konvergenciu daného radu, hľadáme k nemu majorantný konvergentný rad.

Ako postupujeme pri určovaní konvergencie?

- Ak predpokladáme konvergenciu daného radu, hľadáme k nemu majorantný konvergentný rad.
- Ak naopak predpokladáme divergenciu radu, hľadáme divergentný rad, ku ktorému je daný rad majorantný.

Príklad 3

Zistite, či nekonečný rad konverguje/diverguje:

- a) $\sum_{n=2}^{\infty} \frac{\sqrt{n}}{\ln n}$ diverguje
- b) $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n^2+3}}$ konverguje
- c) $\sum_{n=1}^{\infty} \frac{\sin^2 n}{3^n}$ konverguje
- d) $\sum_{n=1}^{\infty} \frac{8n+8}{n(n+1)(n+3)}$ konverguje
- e) $\sum_{n=1}^{\infty} \frac{2}{n^3+4}$ konverguje
- f) $\sum_{n=0}^{\infty} \frac{1+\sin n}{10^n}$ konverguje
- g) $\sum_{n=2}^{\infty} \frac{\sqrt{n}}{n-1}$ diverguje
- h) $\sum_{n=4}^{\infty} \frac{3}{n-3}$ diverguje

i)
$$\sum_{n=1}^{\infty} \frac{1}{(n^4+n)^{1/3}}$$
 - konverguje

j)
$$\sum_{n=1}^{\infty} \frac{\arctan(n)}{n^2}$$
 - konverguje

k)
$$\sum_{n=1}^{\infty} \frac{4}{4n-3}$$
 - diverguje

I)
$$\sum_{n=2}^{\infty} \frac{5}{3n-4}$$
 - diverguje

m)
$$\sum_{n=1}^{\infty} \frac{n^4+2}{n^5}$$
 - diverguje

n)
$$\sum_{n=1}^{\infty} \frac{1}{3^n+1}$$
 - konverguje

o)
$$\sum_{n=2}^{\infty} \frac{1}{(3n-4)^2}$$
 - konverguje

p)
$$\sum_{n=1}^{\infty} \frac{\cos^2(n)}{2^n}$$
 - konverguje

Cauchyho integrálne kritérium

Cauchyho integrálne kritérium

Nech rad $\sum_{n=1}^{\infty} a_n$ má nezáporné členy

Cauchyho integrálne kritérium

Nech rad $\sum\limits_{n=1}^\infty a_n$ má nezáporné členy a existuje k nemu funkcia f(x), ktorá je spojitá, nerastúca (a aj nezáporná) na nejakom intervale $\langle k, \infty \rangle$

Cauchyho integrálne kritérium

Nech rad $\sum\limits_{n=1}^\infty a_n$ má nezáporné členy a existuje k nemu funkcia f(x), ktorá je spojitá, nerastúca (a aj nezáporná) na nejakom intervale $\langle k, \infty \rangle$ a pre každé $n \geq k$ platí $a_n = f(n)$.

Cauchyho integrálne kritérium

Nech rad $\sum\limits_{n=1}a_n$ má nezáporné členy a existuje k nemu funkcia f(x), ktorá je spojitá, nerastúca (a aj nezáporná) na nejakom intervale $\langle k,\infty\rangle$ a pre každé $n\geq k$ platí $a_n=f(n)$. Potom ak nevlastný integrál

$$\int_{k}^{\infty} f(x) \, \mathrm{d}x$$

Cauchyho integrálne kritérium

Nech rad $\sum\limits_{n=1}^\infty a_n$ má nezáporné členy a existuje k nemu funkcia f(x), ktorá je spojitá, nerastúca (a aj nezáporná) na nejakom intervale $\langle k,\infty\rangle$ a pre každé $n\geq k$ platí $a_n=f(n)$. Potom ak nevlastný integrál

$$\int_{k}^{\infty} f(x) \, \mathrm{d}x$$

konverguje, konverguje aj rad $\sum\limits_{n=k}^{\infty}a_{n}.$

Cauchyho integrálne kritérium

Nech rad $\sum\limits_{n=1}^\infty a_n$ má nezáporné členy a existuje k nemu funkcia f(x), ktorá je spojitá, nerastúca (a aj nezáporná) na nejakom intervale $\langle k,\infty\rangle$ a pre každé $n\geq k$ platí $a_n=f(n)$. Potom ak nevlastný integrál

$$\int_{k}^{\infty} f(x) \, \mathrm{d}x,$$

konverguje, konverguje aj rad $\sum\limits_{n=k}^{\infty}a_{n}$. Ak $\int\limits_{k}^{\infty}f(x)\,\mathrm{d}x$ diverguje,

Cauchyho integrálne kritérium

Nech rad $\sum\limits_{n=1}^\infty a_n$ má nezáporné členy a existuje k nemu funkcia f(x), ktorá je spojitá, nerastúca (a aj nezáporná) na nejakom intervale $\langle k,\infty\rangle$ a pre každé $n\geq k$ platí $a_n=f(n)$. Potom ak nevlastný integrál

$$\int_{k}^{\infty} f(x) \, \mathrm{d}x,$$

konverguje, konverguje aj rad $\sum\limits_{n=k}^{\infty}a_{n}.$ Ak $\int\limits_{k}^{\infty}f(x)\,\mathrm{d}x$ diverguje, aj rad

$$\sum_{n=k}^{\infty} a_n$$
 diverguje.

Príklad 4

Zistite, či nekonečný rad konverguje/diverguje:

- a) $\sum_{n=1}^{\infty} \frac{1}{n}$ diverguje
- b) $\sum_{n=1}^{\infty} \frac{1}{n^2}$ konverguje
- c) $\sum_{n=1}^{\infty} \frac{1}{1+n^2}$ konverguje
- d) $\sum_{n=2}^{\infty} \frac{2}{n \ln n}$ diverguje
- e) $\sum_{n=3}^{\infty} \frac{3}{n(\ln n)^{3/2}}$ konverguje
- f) $\sum_{n=1}^{\infty} \frac{6n}{(n^2+8)^{2/3}}$ diverguje
- g) $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ diverguje

- h) $\sum_{n=1}^{\infty} ne^{-n}$ konverguje
- i) $\sum_{n=1}^{\infty} \frac{n}{n^2+1}$ diverguje
- j) $\sum_{n=1}^{\infty} \frac{1}{n^2-4n+5}$ konverguje
- k) $\sum_{n=1}^{\infty} ne^{-n^2}$ konverguje

Ďakujem za pozornosť.