AMS 361: Applied Calculus IV

Homework 4

Assignment Date: When available in Brightspace

Due Date:See BrightspaceSubmission to:Brightspace (1 PDF)Grades:See individual problems

Ch2: Math Models (a total of 4 problems including one in HW3).

Problem 4.1 (10 points): In a hot summer day at a constant temperature A = 90F, my car overheated to $T_0 = 250F$. I pulled over and waited for 15 minutes and read the temperature again: it's $T_{15} = 180F$. The car can function, properly, only at (or below) $T_x = 125F$. How much longer should I wait? Of course, when I drive again, it will heat up again. Never mind of that.

Problem 4.2 (10 points): The radii of the two end-discs of a container (as shown) are r_1 and r_2 and its height is h. Two identical holes are made at the centers of the 2 end-discs to enable a draining constant k. We define T_1 as the time needed to empty the fully filled container when it is placed as shown and T_2 as the time to empty the fully filled (same liquid) container after it's turned upside down. Derive the formulas for T_1 and T_2 . In addition, if $r_1 = 0$, derive the formulas again.

Problem 4.3 (10 points): *Please do a hypothetical problem:* A particular animal is diagnosed to have contracted P_0 a particular virus at time t=0 and these viruses "multiply" subsequently according $P'=-\alpha P(M-P)$ where P(t) is #viruses at time t while $\alpha>0$ and M>0 are constants. The animal will die when $P(t)\to\infty$. If $P_0>M$, the animal's prognosis, i.e., the time T_P it has left to live, is short. Derive a formula for T_P and for given $T_P=1000$, $T_P=1000$, $T_P=1000$. Compute the value of $T_P=1000$.