## Отчет по лабораторной работе №3

Дисциплина: Научное программирование

Выполнила Дяченко Злата Константиновна, НПМмд-02-22

# Содержание

| 1 | Целі | ь работь | l   |    |    |    |     |    |    |    |    |    |    |   |  |  |   |   |  |   |   |  |  |  |   |  |   | 5  |
|---|------|----------|-----|----|----|----|-----|----|----|----|----|----|----|---|--|--|---|---|--|---|---|--|--|--|---|--|---|----|
| 2 | Зада | ание     |     |    |    |    |     |    |    |    |    |    |    |   |  |  |   |   |  |   |   |  |  |  |   |  |   | 6  |
| 3 | Вып  | олнение  | е л | ıa | бо | pa | этс | эp | HC | ρй | pa | аб | ΟТ | ъ |  |  |   |   |  |   |   |  |  |  |   |  |   | 7  |
|   | 3.1  | Шаг 1    |     |    |    |    |     |    |    |    |    |    |    |   |  |  |   |   |  |   |   |  |  |  |   |  |   | 7  |
|   | 3.2  | Шаг 2    |     |    |    |    |     |    |    |    |    |    |    |   |  |  |   |   |  |   |   |  |  |  |   |  |   | 8  |
|   | 3.3  | Шаг 3    |     |    |    |    |     |    |    |    |    |    |    |   |  |  |   |   |  |   |   |  |  |  |   |  |   | 8  |
|   | 3.4  | Шаг 4    |     |    |    |    |     |    |    |    |    |    |    |   |  |  |   |   |  |   |   |  |  |  |   |  |   | 9  |
|   | 3.5  | Шаг 5    |     |    |    |    |     |    |    |    |    |    |    |   |  |  |   |   |  |   |   |  |  |  |   |  |   | 11 |
|   | 3.6  | Шаг 6    |     |    |    |    |     |    |    |    |    |    |    |   |  |  |   |   |  |   |   |  |  |  |   |  |   | 12 |
|   | 3.7  | Шаг 7    |     |    |    |    |     |    |    |    |    |    |    |   |  |  |   |   |  |   |   |  |  |  |   |  |   | 13 |
|   | 3.8  | Шаг 8    |     |    | •  | •  |     | •  |    | •  | •  | •  | •  |   |  |  | • | • |  | • | • |  |  |  | • |  | • | 14 |
| 4 | Выв  | оды      |     |    |    |    |     |    |    |    |    |    |    |   |  |  |   |   |  |   |   |  |  |  |   |  |   | 16 |

# Список иллюстраций

| 3.1  | Простейшие операции                                         | 7  |
|------|-------------------------------------------------------------|----|
|      | Операции с векторами                                        | 8  |
| 3.3  | Вычисление проектора                                        | 9  |
| 3.4  |                                                             | 10 |
|      | Определитель, обратная матрица, собственные значения и ранг |    |
|      | матрицы                                                     | 10 |
| 3.6  | График функции                                              | 11 |
| 3.7  | Улучшенный график функции                                   | 12 |
|      |                                                             | 12 |
| 3.9  | Два графика на одном чертеже                                | 13 |
| 3.10 | График $y=x^2\sin x$                                        | 13 |
| 3.11 | Файл loop_for.m                                             | 14 |
|      |                                                             | 14 |
| 3.13 | Запуск файлов loop vec.m и loop for.m                       | 15 |

## Список таблиц

# 1 Цель работы

Научиться работать с Octave.

## 2 Задание

Ознакомиться с простейшими операциями, операциями с векторами и матрицами, построить графики функций и сравнить эффективность работы с циклами и операций с векторами.

### 3 Выполнение лабораторной работы

#### 3.1 Шаг 1

Включила журналирование сессии с помощью *diary*, вычислила значение выражения, задала вектор-строку и вектор-столбец, а также матрицу, используя показанные на Рисунке 1 (рис - fig. 3.1) строки.



Рис. 3.1: Простейшие операции

### 3.2 Шаг 2

Задала два вектор-столбца  $\vec{u}$  и  $\vec{v}$ . Выполнила их сложение, скалярное и векторное умножения и вычислила норму вектора, используя строки, показанные на Рисунке 2 (рис - fig. 3.2).

```
>> u = [1; -4; 6]

u =

1

-4

6

>> v = [2; 1; -1]

v =

2

1

-1

>> 2*v + 3*u

ans =

7

-10

16

>> dot(u, v)

ans = -8

>> cross(u, v)

ans =

-2

13

9

>> norm(u)

ans = 7.2801
```

Рис. 3.2: Операции с векторами

### 3.3 Шаг 3

Задала два вектор-строки  $\vec{u}$  и  $\vec{v}$  и вычислила проекцию вектора  $\vec{u}$  на вектор  $\vec{v}$  с помощью строки  $proj = dot(u, v)/(norm(v))^2 v^*$ , что показано на Рисунке 3 (рис fig. 3.3).

```
>> u = [3 5]

u =

3 5

>> v = [7 2]

v =

7 2

>> proj = dot(u, v)/(norm(v))^2 * v

proj =

4.0943 1.1698

>> |
```

Рис. 3.3: Вычисление проектора

#### 3.4 Шаг 4

Задала две матрицы A и B, вычислила их произведение, произведение транспонированной матрицы B и A, разницу матриц, где eye(3) - единичная матрица. Выполнение операций показано на Рисунке 4 (рис - fig. 3.4). Кроме того, нашла определитель, обратную матрицу, собственные значения матрицы и ее ранг, используя показанные на Рисунке 5 (рис - fig. 3.5) строки.

Рис. 3.4: Матричные операции

```
>> det(A)

ans = 6

>> inv (A)

ans =

    0.6667 -0.8333 2.0000

-0.3333 0.6667 -1.0000

-0.3333 0.1667 0

>> eig (A)

ans =

    4.5251 + 0i

    0.7374 + 0.8844i

    0.7374 - 0.8844i

>> rank (A)

ans = 3
```

Рис. 3.5: Определитель, обратная матрица, собственные значения и ранг матрицы

#### 3.5 Шаг 5

Создала вектор значений *х* с помощью команды linspace(начальное\_значение, конечное\_значение, n), которая создаёт вектор-строку из *n* равномерно распределённых значений на заданном интервале. Чем меньше приращение, тем более гладкой будет выглядеть кривая. Точка с запятой в конце строки предназначена для подавления вывода на экран. Задала также вектор *у* и построила график, показанный на Рисунке 6 (рис - fig. 3.6).



Рис. 3.6: График функции

Для улучшения внешнего вида графика очистила получившийся до этого график, задала красный цвет для линии и ее толщину, подогнала диапазон осей, нарисовала сетку, подписала оси, добавила заголовок графика и задала легенду. Получившийся график показан на Рисунке 7 (рис - fig. 3.7).



Рис. 3.7: Улучшенный график функции

### 3.6 Шаг 6

Очистила память и рабочую область фигуры. Задала два вектора и начертила точки, используя в качестве маркеров кружочки. График представлен на Рисунке 8 (рис - fig. 3.8).



Рис. 3.8: График точек

Для добавления еще одного графика, а именно графика регрессии, использова-

ла команду *hold on*. Задала сетку, оси и легенду. Получившийся график представлен на Рисунке 9 (рис - fig. 3.9).



Рис. 3.9: Два графика на одном чертеже

#### 3.7 Шаг 7

Для построения графика  $y=x^2\sin x$  очистила память и рабочую область фигуры. Задала вектор  $\vec{x}$  и использовала поэлементное возведение в степень и поэлементное умножение для построения графика. Получившийся график, представленный на Рисунке 10 (рис - fig. 3.10), сохранила в двух форматах.



Рис. 3.10: График  $y=x^2\sin x$ 

#### 3.8 Шаг 8

Для сравнения эффективности работы с циклами и операций с векторами очистила память и рабочую область фигуры. Создала файл  $loop\_for.m$ , содержимое которого представлено на Рисунке 11 (рис - fig. 3.11). Код в данном файле вычисляет сумму  $\sum_{n=1}^{1000000} \frac{1}{n^2}$  с помощью цикла. Код, содержащийся в файле  $loop\_vec.m$ , представленный на Рисунке 12 (рис - fig. 3.12), вычисляет эту сумму с помощью операций с векторами. Результаты выполнения данных файлов представлены на Рисунке 13 (рис - fig. 3.13). Вычисление суммы с помощью операций с векторами оказалось в 17,5 раз быстрее, чем вычисление с помощью цикла.



Рис. 3.11: Файл loop for.m



Рис. 3.12: Файл loop\_vec.m

```
>> clear;
>> clf;
>> loop_for
Elapsed time is 0.163952 seconds.
>> loop_vec
Elapsed time is 0.00938487 seconds.
>> diary off
>> |
```

Рис. 3.13: Запуск файлов loop\_vec.m и loop\_for.m

### 4 Выводы

Я ознакомилась с Octave, а именно с работой с простейшими операциями, операциями с векторами и матрицами, построить графики функций и сравнить эффективность работы с циклами и операций с векторами. Результаты работы находятся в репозитории на GitHub, а также есть скринкаст выполнения лабораторной работы.