高等数学和线性代数方法和细节总结—

—线性代数

作者: 禾旺

一类必须铭记的错误:

T算题为该即 隔一段时间再检查.

目录

第七章:	行列式、矩阵和向量	1
第八章:	线性方程组	7
	相似理论和二次型	

第七章: 行列式、矩阵和向量

-----当题目中出现多个条件时:看到一个条件便把其引申含义尽可能多的写出来,并且做出清楚的标记(比如某个矩阵的大小是 m*n),要对自己手中有什么工具了如指掌(##李林卷五)

----向量组:被表出的秩不大!!

----初看不觉其中味, 再见才识巷子深

$$(AB)^m = \overbrace{(AB)(AB)\cdots(AB)}^{m\uparrow} \neq A^mB^m.$$

-----范德蒙行列式: 高年级的把低年级的欺负个遍, 并且得注意第一行必须是 0 次方而不是 1 次方(应该直接想到添加一行的办法, 如果没有想到, 其实初等变换加按行展开也可以计算(要注意初等变换提出的系数是结果的一部分, 不能像矩阵变换那样直接去掉))

$$\begin{vmatrix}
1 & 1 & 1 & 1 \\
2 & 2^2 & 2^3 & 2^4 \\
3 & 3^2 & 3^3 & 3^4 \\
4 & 4^2 & 4^3 & 4^4
\end{vmatrix} = \underline{\qquad}.$$

答案 288.

解 利用范德蒙德行列式.

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 2^{2} & 2^{3} & 2^{4} \\ 3 & 3^{2} & 3^{3} & 3^{4} \\ 4 & 4^{2} & 4^{3} & 4^{4} \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 2^{2} & 3^{2} & 4^{2} \\ 1 & 2^{3} & 3^{3} & 4 \\ 1 & 2^{4} & 3^{4} & 4^{4} \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2^{2} & 3^{2} & 4^{2} \\ 0 & 1 & 2^{2} & 3^{2} & 4^{2} \\ 0 & 1 & 2^{3} & 3^{3} & 4^{3} \\ 0 & 1 & 2^{4} & 3^{4} & 4^{4} \end{vmatrix} = \prod_{1 \le j < i \le 5} (x_{i} - x_{j}),$$

其中 $x_i = i - 1$.

因此, 所求行列式 = 4! · 3! · 2! · 1! = 288.

----注意行列式的计算和矩阵的不同:

• 在行列式中,某一行(列)的每个元素是两数之和,则此行列式可拆分为两个相加的行列式[31]。

该性质在抽象计算中容易出现(##660-280)

----行最简矩阵不是热门考点, 但容易忽视:

需要零行都在最下面、主元(非零行的第一个元素)所在的列其元素都为 0、主元为 1

---出现月量且的明文性问题时必避当当 kolthout…thron=0 定一定义,维历在 加基础上对条件而盈料进行严格论证,再要起(①⇒② 元行) (①←①小属 写商廷 (排料204年起).

----A 与 A 的伴随矩阵并列起来, 其秩并没有必然的关系(在这种题目中, 举出一个正面的例子, 再根据正面的例子成立的条件尝试找出负面的例子, 找到就成功了)

若 $r((A^*)^*) < r(A^*)$,则 $r(A^*) = 1$,r(A) = n - 1. $r(A,A^*) \ge n - 1$,但并不能确定 $r(A,A^*)$, $r(A-A^*)$ 是否等于n.

例如,取
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
,则 $A^* = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$,(A,A^*) = $\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$, $A - A^*$ = $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$, $A - A^*$ = $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$, $A - A^*$ = $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$, $A - A^*$ = $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$, $A - A^*$ = $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$.

----当 A 没有 0 特征值时,可以使用一般方法计算 A*的特征值,而有 0 的时候,A*的特征值的获得方式(要提前算出或表达出正交变换)

$$\gamma_3 = \frac{1}{\sqrt{3}}(1,1,1)^{\mathrm{T}},$$
再令 $\mathbf{Q} = (\gamma_1, \gamma_2, \gamma_3),$ 则 $\mathbf{Q}^{\mathrm{T}}\mathbf{A}\mathbf{Q} = \mathbf{\Lambda} = \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix}$.

于是 $A = Q\Lambda Q^{T}$,此时

$$Q^{\mathsf{T}} \mathbf{A}^* \mathbf{Q} = Q^{\mathsf{T}} (\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}})^* \mathbf{Q} = Q^{\mathsf{T}} (\mathbf{Q}^{\mathsf{T}})^* \mathbf{\Lambda}^* \mathbf{Q}^* \mathbf{Q}$$

$$= |\mathbf{Q}^{\mathsf{T}}| \mathbf{E} \mathbf{\Lambda}^* |\mathbf{Q}| \mathbf{E} = |\mathbf{Q}|^2 \mathbf{\Lambda}^* = \mathbf{\Lambda}^*$$

$$= \begin{pmatrix} 0 \\ 0 \\ -9 \end{pmatrix}.$$

----向量组的线性相关性也可以列为方阵计算行列式(该方式用于判断含参向量组十分有效)(##660)

----向量组的线性相关性的一个难题: (本题没有别的办法,应该在尝试了一些常规办法之后想到先证两个无关,实际上这是一个必要条件)(##李艳芳卷二)

②② 设 α_1 为 3 阶矩阵 A 的属于特征值 1 的特征向量. 3 维列向量 α_2 , α_3 满足 $A\alpha_2 = -2\alpha_3$, $A\alpha_3 = \alpha_2 + 2\alpha_3$, 且 $\alpha_3 \neq 0$. 证明 :

(I)α₁,α₂,α₃ 线性无关;

 $(II)A^3 - 3A^2 + 4A = 2E.$

证 (I) 首先我们证明 α_2, α_3 线性无关. 假设存在常数 k, l 使得

$$k\alpha_2 + l\alpha_3 = 0. (1)$$

(1) 式两端同时左乘矩阵 A 可得 $kA\alpha_2 + lA\alpha_3 = 0$,整理可得

$$l\alpha_2 + 2(l-k)\alpha_3 = 0. (2)$$

令 $l \cdot (1) - k \cdot (2)$, 得 $(l^2 - 2kl + 2k^2)\alpha_3 = 0$. 由于 $\alpha_3 \neq 0$, 故 $l^2 - 2kl + 2k^2 = (l - k)^2 + k^2 = 0$, 于是 k = l = 0. 因此, α_2 , α_3 线性无关.

下面我们证明 α_1 , α_2 , α_3 线性无关. 假设存在常数 s, t, w 使得

$$s\alpha_1 + t\alpha_2 + w\alpha_3 = 0. ag{3}$$

(3) 式两端同时左乘矩阵 A 可得 $sA\alpha_1 + tA\alpha_2 + wA\alpha_3 = 0$,整理可得

$$s\alpha_1 + w\alpha_2 + 2(w - t)\alpha_3 = 0. (4)$$

令(3) - (4),得 $(t-w)\alpha_2$ + $(2t-w)\alpha_3$ = 0. 又因为 α_2 , α_3 线性无关,所以t-w = 0,2t-w = 0. 于是t=w = 0. 将其代回(3) 式可得s = 0.

因此, α_1 , α_2 , α_3 线性无关.

10%性表示「可以与矩阵订算) 10%性表示「可以与矩阵订算) 10%性表示「可以与矩阵订算) 10%性表示「可以与矩阵可量 10%性表示「可以与矩阵订算) 10%性表示「可以与矩阵订算) 10%性表示「可以与矩阵订算) 10%性表示「可以与矩阵订算) 10%性表示「可以与矩阵订算) 10%性表示(可以与矩阵订算) 10%性表示(可以与电压可量) 10%性表示(10%性表示) 10%性表示的表示(10%性表示) 10%性表示(10%性表示) 10%性表示:10%性表示(10%性表示) 10%性表示(10%性表示的表示的。10%性表示:10%性表示:1

2--- 竹具名写方程 rat=rat=rata) 时季分子 对三直计算,得出商晰的伤果 有例表示交易有多条件的交集,不偏一种情况(树如何麽).

----与向量等价相对比: A、B等价 ⇔ A B 同型且 r(A)=r(B). (这区别大了,下面的划线部分是重点)

- (1)向量组等价和矩阵等价是两个不同的概念.矩阵等价要同型,当然行数、列数都要相等,向量 组等价要同维,但向量个数可以不等.
 - (2)A,B 同型时, $A \cong B \Leftrightarrow r(A) = r(B) \Leftrightarrow PAQ = B(P,Q)$ 是可逆矩阵).
 - $(3)\alpha_i,\beta_i$ $(i=1,2,\cdots,s;j=1,2,\cdots,t)$ 同维,则

 $\{\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_s\}\cong\{\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\cdots,\boldsymbol{\beta}_t\}$

 $\Leftrightarrow \{\alpha_1, \alpha_2, \cdots, \alpha_s\} = \{\beta_1, \beta_2, \cdots, \beta_t\}$ 可以相互表出

 $\Leftrightarrow r(\alpha_1, \alpha_2, \cdots, \alpha_s) = r(\beta_1, \beta_2, \cdots, \beta_t)$,且可单方向表出,即只知 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 与 $\beta_1, \beta_2, \cdots, \beta_t$ 这两个 向量组中的某一个向量组可由另一个向量组线性表出

 $\Leftrightarrow r(\alpha_1,\alpha_2,\cdots,\alpha_s)=r(\beta_1,\beta_2,\cdots,\beta_t)=r(\alpha_1,\alpha_2,\cdots,\alpha_s,\beta_1,\beta_2,\cdots,\beta_t)$ (三秩相同).

----注意区分"无关"和"有关"、"可逆"和"不可逆",往往是这种简单的二元关系容易搞错

-- 斯若AB=EMBA=E 何逢). 阿用以证明 @CD=DC (在CB在

70-- T(A+T(B) > Y(AB) > T(4)+T(B)-1.

----r(A+B)与 r(AB)没有必然关系,而 r(AB)<=r(A|B),与上式联立

---- (##330) 本题含义在于: r(A)>=r(AB) 理解 (我 A 出去浪了秩只可能变小或不变, 不 会变大)

2)设 $A \in m \times n$ 矩阵, $B \in n \times m$ 矩阵,且满足AB = E,则

(A)A 的列向量组线性无关,B 的行向量组线性无关.

- (B)A 的列向量组线性无关,B 的列向量组线性无关.
- (C)A 的行向量组线性无关,B 的列向量组线性无关.
- (D)A 的行向量组线性无关,B 的行向量组线性无关.

【分析】 因为 $AB = E \stackrel{\cdot}{E} m$ 阶矩阵, 所以 r(AB) = m.

那么 $r(A) \geqslant r(AB) = m$,又因 $r(A) \leqslant m$,故 r(A) = m.

于是 A 的行秩 = r(A) = m,所以 A 的行向量组线性无关.

同理,**B** 的列秩 = r(B) = m,所以**B** 的列向量组线性无关.

----一个经典的用向量组解决方程同解的问题(##330) 注意这里的阶数和次方是相等的, 并不是任意次方的这两个方程组都是同解的

293 \bigcup 设 $A \in \mathbb{R}$ 阶矩阵,对于齐次线性方程组([]) $A^n x = 0$ 和([]) $A^{n+1} x = 0$,现有四个命题

①(I)的解必是(II)的解;\/·

③(I)的解不是(II)的解;×,

以上命题中正确的是

(A)①②.

(C) (3)(4).

②(II)的解必是(I)的解;

④(Ⅱ)的解不是(I)的解. V.

(B)(1)(4).

(D)23.

【分析】 若 $A^n\alpha = 0$,则 $A^{n+1}\alpha = A(A^n\alpha) = A0 = 0$,即若 α 是(I)的解,则 α 必是(I)的解,可见命题 ① 正确.

下面的问题是选(A) 还是选(B),即②与④哪一个命题正确.

如果 $A^{n+1}\alpha = 0$,而 $A^n\alpha \neq 0$,那么对于向量组 α , $A\alpha$, $A^2\alpha$,…, $A^n\alpha$,一方面有:

若 $k\alpha + k_1 A\alpha + k_2 A^2 \alpha + \dots + k_n A^n \alpha = 0$,用 A^n 左乘该式的两边,并把 $A^{n+1}\alpha = 0$, $A^{n+2}\alpha = 0$, \dots 代人,得

$$kA^n\alpha=0.$$

由于 $A^n\alpha \neq 0$ 而知必有 k=0. 类似地用 A^{n-1} 左乘可得 $k_1=0,\cdots$.

因此, α , $A^2\alpha$,···, $A^n\alpha$ 线性无关. 但另一方面,这是n+1 个 n 维向量,它们必然线性相关,两者矛盾. 故 $A^{n+1}\alpha=0$ 时,必有 $A^n\alpha=0$,即(II) 的解必是(I) 的解. 因此命题 ② 正确. 故命题 ①② 正确,即 $A^nx=0$ 和 $A^{n+1}x=0$ 是同解方程,故应选(A).

----抽象矩阵的计算一般都没什么难度(不可能比纯代数计算难),只是要搞清楚各个概念的关系: (##330)

A=E+0/F+0/FK/T. =E+50/F=5A-9E. ==(A+2E)(A-7E)=-18E. =>(0+2E)==(A-7E).

----矩阵的计算一定要抓住最基本的一些公式(本题考查的是向量长度公式,虽不起眼,但应用起来十分直观)(##李艳芳卷二)

考虑选项 C. 若 A 是正交矩阵,则 $A^{T}A = E$. 从而

$$||Ax|| = \sqrt{(Ax)^{\mathrm{T}}Ax} = \sqrt{x^{\mathrm{T}}A^{\mathrm{T}}Ax} = \sqrt{x^{\mathrm{T}}x} = ||x||,$$

----遇到单位正交向量的矩阵(##张四一)(答案的思路是严谨的,方法一是对它的形象化

解释,作为选择题来说,应该发现 A 是不可逆的,否则可以取 A=E, B 的这种设法很常见,可以应对大部分类似的选择题)

9. 答 应选 C.

解 因为 α 为 3 维实列向量,且 $\alpha^{T}\alpha=1$,所以 $B=\alpha\alpha^{T}$ 的特征值为 1,0,0,从而 B-E 的特征值为 0,-1,-1. 由于 B-E 为实对称矩阵,故 B-E 可相似对角化,从而 r(B-E)=2. 由 A+B-AB=E,得 A(B-E)=B-E,故 $\lambda=1$ 为 A 的特征值,B-E 的非零列向量均为 A 的属于特征值 $\lambda=1$ 的特征向量. 而由 r(B-E)=2 知,A 的属于特征值 $\lambda=1$ 的 线性无关的特征向量至少有两个,从而 $\lambda=1$ 为 A 的二重或三重特征值,又 A 为 3 阶不可逆矩阵,故 A 有一个特征值为 0. 因此, $\lambda=1$ 必为 A 的二重特征值. 于是,A 的全部特征值为 1,1,0,从而 A+E 的全部特征值为 2,2,1,故 $|A+E|=2\times2\times1=4$.

$$515.-1$$
 $A[EB=E-B]$
 $A[CO] = A[C_{1}] = [C_{1}]$
 $A[CO] = A[C_{1}] = [C_{1}]$

-----施密特正交化方法 (##张四一) 该方法的公式需要牢记 (本题中使用的逆向的公式应该不可能考),不要使用别的表达方式 (第一个公式里的字母虽然是可以替换的,但在有后续正交需求的时候,还是尽量少使用原来的字母) 并注意施密特是正交方法,如需单位化则再加几步。

(1) 设**A**= $(\alpha_1, \alpha_2, \alpha_3)$, $\alpha_1, \alpha_2, \alpha_3$ 为 3 维线性无关的列向量组. 将 $\alpha_1, \alpha_2, \alpha_3$ 作施密特正交化并单位化后得到 η_1, η_2, η_3 , 令 $Q = (\eta_1, \eta_2, \eta_3)$, 证明 A 可分解为 A = QR, 其中 R 为主对角元素均大于 0 的 3 阶上三角矩阵;

!.(1) **证** 用施密特正交化,得

$$m{eta}_1 = m{lpha}_1, m{eta}_2 = m{lpha}_2 - rac{suckiplia}{supple m{eta}_1, m{eta}_1} m{eta}_1, m{eta}_3 = m{lpha}_3 - rac{subseteq m{lpha}_3, m{eta}_1}{supple m{eta}_1, m{eta}_1} m{eta}_1 - rac{blace m{lpha}_3, m{eta}_2}{blace m{eta}_2, m{eta}_2} m{eta}_2.$$

因为 α_1 , α_2 , α_3 线性无关, 所以 β_1 , β_2 , β_3 均不为零向量. 再单位化,则

$$\eta_1 = \frac{\beta_1}{\parallel \beta_1 \parallel}, \eta_2 = \frac{\beta_2}{\parallel \beta_2 \parallel}, \eta_3 = \frac{\beta_3}{\parallel \beta_3 \parallel}.$$
.....2 β_3

因为 $\boldsymbol{\alpha}_1 = \| \boldsymbol{\beta}_1 \| \boldsymbol{\eta}_1, \boldsymbol{\alpha}_2 = [\boldsymbol{\alpha}_2, \boldsymbol{\eta}_1] \boldsymbol{\eta}_1 + \| \boldsymbol{\beta}_2 \| \boldsymbol{\eta}_2, \boldsymbol{\alpha}_3 = [\boldsymbol{\alpha}_3, \boldsymbol{\eta}_1] \boldsymbol{\eta}_1 + [\boldsymbol{\alpha}_3, \boldsymbol{\eta}_2] \boldsymbol{\eta}_2 + \| \boldsymbol{\beta}_3 \| \boldsymbol{\eta}_3,$ 所以

$$egin{aligned} oldsymbol{A} = (oldsymbol{lpha}_1, oldsymbol{lpha}_2, oldsymbol{\eta}_3) = (oldsymbol{\eta}_1, oldsymbol{\eta}_2, oldsymbol{\eta}_3) egin{pmatrix} \|oldsymbol{eta}_1\| & [oldsymbol{lpha}_2, oldsymbol{\eta}_1] & [oldsymbol{lpha}_3, oldsymbol{\eta}_1] \ 0 & \|oldsymbol{eta}_2\| & [oldsymbol{lpha}_3, oldsymbol{\eta}_2] \ 0 & \|oldsymbol{eta}_3\| \end{bmatrix} = oldsymbol{Q} oldsymbol{R} \,, \end{aligned}$$

其中
$$\mathbf{R} = \begin{bmatrix} \| \boldsymbol{\beta}_1 \| & [\boldsymbol{\alpha}_2, \boldsymbol{\eta}_1] & [\boldsymbol{\alpha}_3, \boldsymbol{\eta}_1] \\ 0 & \| \boldsymbol{\beta}_2 \| & [\boldsymbol{\alpha}_3, \boldsymbol{\eta}_2] \\ 0 & 0 & \| \boldsymbol{\beta}_3 \| \end{bmatrix}$$
为主对角元素均大于 0 的 3 阶上三角矩阵.

第八章:线性方程组

第四世 AMP的通解 M可以另出 AIB!方齿是从者次通解和非疗久特解出发得到 A的到同量等式并解出,这实际上是代对证的过程。 脚头意叫).

一一部市次方电组的特解形中住意,生态1914岁的,严重它代有"一倍"。 (国种 蒙卷二).

- ----同解方程组的判断: 两个增广矩阵经过初等行变换之后具有相同的非零行(高斯消元之后没有产生多余的约束)
- ----将线性方程组化为阶梯型后,选取自由变量的准则是:把这两列划去后剩下的方阵行列式不为 0 (##660)
- ----线性方程组——秩——解 的关系 (##330)

第九章: 相似理论和二次型

----k 重特征值最多有 k 个线性无关的特征向量,因此如果 A 是三阶矩阵 r(A)=1,则 0*E-A已经有两个线性无关的解,那么 0 至少是二重特征值,当然也可能是三重(A 不可相似对角

化)

----计算特征值:

当 A 是实对称矩阵时,对于属于最后一个特征值(通常是多重特征值)的特征向量可利用 "属于不同特征值的特征向量正交"这一性质快捷地计算.

第一等以为⁹¹ 截定 P¹4P=八. 成 P¹的形式: P¹= pp P*. 或 P*是基本有运, 放图 "先对角线、再次点、再边点"的分支,一定要 路算: @##2016复数).

一种B的判断条件:有b重特定质就存在依住形的特征的。 A可相似对插化 动气:对针的A进行消,证明题目碎如的细知的

----要求某特征值对应的特征向量时, 写出带 k (k≠0) 系数的一般形式

一一 关键队性的证明也不然高记 和二人以的证明和原用,他们只是关于八WEXT的时候(排头老四)

----矩阵的问题大多可以用秩、特征值解决(##330)要理解对角矩、特征值的含义

(y) (2)、 (2)、 (2)、 (2)、 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (3) (4)

321 【证明】 必要性:如 $A^2 = A$,则 A(A - E) = O,

于是
$$r(A) + r(A - E) \leq n$$
.

又 $r(A) + r(A - E) = r(A) + r(E - A)$

$$\geq r[A + (E - A)]$$
(1)

即
$$r(A) + r(A - E) \geqslant n$$
.

(2)

比较(1)(2) 得 r(A) + r(A - E) = n.

充分性:设r(A) = r, 则 r(A - E) = n - r.

于是 Ax = 0 有 n-r 个线性无关的解,设为 $\alpha_{r+1}, \alpha_{r+2}, \cdots, \alpha_n$.

(E-A)x=0有 n-(n-r) 个线性无关的解,设为 $\alpha_1,\alpha_2,\cdots,\alpha_r$.

即矩阵A,

对特征值 $\lambda = 1$ 有 r 个线性无关的特征向量.

对特征值 $\lambda = 0$ 有 n-r 个线性无关的特征向量.

 $= r(\mathbf{E})$,

令 $\mathbf{P} = [\alpha_1, \alpha_2, \cdots, \alpha_n]$,则 \mathbf{P} 可逆,且 $\mathbf{P}^{-1}\mathbf{AP} = \mathbf{\Lambda} = \begin{bmatrix} \mathbf{E}_r \\ \mathbf{O} \end{bmatrix}$. 而 $\mathbf{P}^{-1}\mathbf{A}^2\mathbf{P} = \mathbf{\Lambda}^2 = \mathbf{\Lambda}$,那么 $\mathbf{P}^{-1}\mathbf{A}^2\mathbf{P} = \mathbf{P}^{-1}\mathbf{AP}$. 故必有 $\mathbf{A}^2 = \mathbf{A}$.

----如上,关于 A 的转置和 A 的特征值、特征向量的计算时,可以把 Aa=2a 两边转置,并结合其他条件做乘法得到想要的等式(##李林卷四)

夏一般中出犯彭血兴体拓降马元历罗曲到月夏山进行单地、旗和华原研究,李任确部降条件,对条件对伤任的充分性推导保持高敏感度(栅头港四)

是一一有价值的正友的实界红髓 → A是实对标矩阵.(树麓)

----注意题中**关于"实对称矩阵"的描述,直接联想特征值相互正交**,这是条件最直接的转化(如果出现了实对称矩阵和伴随矩阵的关系时,也要注意实对称矩阵的伴随矩阵也是实对称矩阵)(##李艳芳卷二)

一若 o是 A的特征值, (M Y(A) <n. |A|=0, A可以化为常有 o 可的常有 矩阵. 这种方征通的性质是相通的(科20)[延息).

一切来P、QME且PTAP=A、PMQTPTAPQ=12 PPQ也可以使A对解(C) (柳水克一)。

双一届二次型与矩阵翻译:图中心中默为"第二斤第三列"写为的栅景。

夏一两根据特征值水矩阵时还需要注意不要使用单位化正交矩阵(因为比较多多)。 ① 罗用卡单位化的 P(耕 头卷八)。

- ----标准型(biaozhun,拼音字母多一些,系数的可能要多一些,±d、0) 规范型(guifan,拼音字母少一些,系数只有1、0、-1)
- ----如果两个矩阵合同⇔他们的秩和正惯性指数相等⇔正负惯性指数相同
- ----关于合同的基础(这里求 D 的方法要注意(再确认))

1. 定义

n 元二次型 $f(x_1,x_2,\cdots,x_n)=x^TAx$. 若对任意的 $x=[x_1,x_2,\cdots,x_n]^T\neq 0$,均有 $x^TAx>0$,则称 f 为正定二次型,称二次型的对应矩阵 A 为正定矩阵.

2. 二次型正定的充要条件

----注意变换矩阵的写法(严格遵守矩阵乘法的运算规则,有的是向量写法,有的是方程组写法,它们是互相转置的关系,完全不能混用)(##李艳芳卷一):

----线性代数的填空题的思路可能很多变(一般情况下要是用最基础的方法(例如行列式和矩阵的直接对应关系),上来不要想太复杂的方法(配方法、特殊化、复杂的递进关系))

(16) 设矩阵
$$A = \begin{pmatrix} 1 & -1 & 4 \\ 2 & 3 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$
, B 为 3 阶正交矩阵. 若存在上三角矩阵 P , 使得 $B = AP$, 则 P 的 対角线上各元素乘积的绝对值为 ついます。 「日本の食用である」 「日本の食用できます」 「日本の食用では、「日本の食用では、「日本の食用では、「日本の食用では、「日本の食用では、「日本の食用では、「日本の食用では、「日本の食

 \mathbf{M} 由于 \mathbf{P} 为上三角矩阵,故 \mathbf{P} 的对角线上各元素的乘积为 $|\mathbf{P}|$.

又由于B = AP,故 $|B| = |AP| = |A| \cdot |P|$.

$$|A| = \begin{vmatrix} 1 & -1 & 4 \\ 2 & 3 & -1 \\ -1 & 1 & 0 \end{vmatrix} = \begin{vmatrix} r_1 + r_3 \\ -1 & 1 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 4 \\ 2 & 3 & -1 \\ -1 & 1 & 0 \end{vmatrix} = 4 \begin{vmatrix} 2 & 3 \\ -1 & 1 \end{vmatrix} = 20.$$

由 B 是正交矩阵可得 $BB^T = E$,从而 $|BB^T| = |B| \cdot |B^T| = |B|^2 = 1$, $|B| = \pm 1$.

由 $|B| = |A| \cdot |P|$ 以及 |A| = 20 可得 $|P| = \pm \frac{1}{20}$,即 P 的对角线上各元素乘积为 $\pm \frac{1}{20}$.

因此,P的对角线上各元素乘积的绝对值为 $\frac{1}{20}$.

第十章: 誊写错误和其他

----dF=Fx' dx + Fy' dy(##张宇四): 不要漏掉微分符号!!

----一些重要的限定条件不能漏(##330)不全为0

2—对新成全的分后居住高新多,内尤其是在等代两五甲折分。合并时 8—(HH660)

文一对 |sixusn 等现表达打进厅相位变换时时到依据家院研究符号[

一部一部、全型70.16都健3的信息,但对是,基度其正种分为。 (研究的形象).

- 2 100以内的整整、分割计算不够有一直差错,革稿的监督公整:(研知报题)。 12·xylx=区中1=2.要用利保持计算效照性:(明珠意识)、
- 2-弱的4=enter的方面是可解的(耕然色三).
- 是一形的于的<类的形式的多数对解对多的,单调性形象理解的统计
- 是一形的了水厂产行的的的形介上下限额倒多主动和农力交易,保持严重伤!
- 文"出现2I= Jirdy 时连连高京客! 方以是在学代左边时到写2I.(栅外为人) (一) = lm[+7] | t=1 = lm[2. 不到隔掉相写(掛20)3.4%).
- 夏一份价程中不断把于写成于. 或需船据初近条件保持对的分对下价的的 <u>飯感性</u> 实际上这种敬感性是各种计算正确性的概率所障! (##1014), 题).
- 一解我性和有次就具对住事特解中多个数分的准确性,反复在计算中和计算后进行起路, 草稿纸蛋公整情晰: (琳知识题).

夏之 = 三(()-()) 不等无原元故如交易(##知顷起) 事年记日的取值特点,不能笔误武明以(排头卷二).

第一正常名与山部体革写简单,如"finahink"。"finato"等等关键等式。 (排放表示)

一个一在我计算中如果有分支,一定要分支的多数记好!!(糊透声).

发一个P名易说、AB、MN、S+不容易,考试更应使用后直(##60)

----一次的典型的把点描错: 以及点不在曲线上求切线的情况 (##330)

----一个常见的 Inx 在定积分中的计算书写规范 (重要的是最后一步把 In 写在一起, 因为这样可以计算反常点, 而再代入正无穷的时候甚至需要求一下极限值):

$$I = \int_{0}^{\frac{\pi}{2}} \frac{\omega}{t\omega^{2}} dx = 2 \int_{0}^{\frac{\pi}{2}} \frac{dx_{1} M}{2-x_{1} M} (x_{1} M + t).$$

$$= 2 \int_{0}^{\frac{\pi}{2}} \frac{dt}{2-t^{2}}.$$

$$= 2 \int_{0}^{\frac{\pi}{2}} \frac{dt}{2-t^{2}}.$$

$$= \frac{1}{15} \left[\left(h(t+t) - h(t-t) \right) \right]_{0}^{\frac{\pi}{2}}.$$

$$= \frac{1}{15} \left[h \frac{5+t}{5-t} \right]_{0}^{\frac{\pi}{2}}.$$

$$= \frac{1}{15} \left[h \frac{3+2}{1-t} \right]_{0}^{\frac{\pi}{2}}.$$

$$= \frac{1}{15} \left[h \frac{3+2}{1-t} \right]_{0}^{\frac{\pi}{2}}.$$

----在字母纷杂的情况下,尤其是在含参方程的题目中,要明确区分字母,大部分情况下是不能"形式替换"的,除非能够找到足够的理由,例如下题中,t和x不能直接代换,需要严格保持独立,以防在其他情况下产生比本题严重的后果(##李林卷五)

- ----同样,函数名不能乱用,要"一个函数用一个名字",而使用 y 来代替函数的做法是讨巧而危险的,因为很容易混
- ----同样,在反函数中,y 和 x 要严格区分,注意"使用 y 来替换 x"的用法,如果没有这么用,那么 x 就是 x,y 就是 y
- ----注意 In|y|, 这个绝对值符号很重要(只要由 1/x 产生 Inx 的情况, 都要考虑)

···一关70分的强性的证明:把各分股化为Φ、②,用"Φ>Φ"、"Φ>Φ" 末组织马路.(料加到起).

----例如:必要性是很好证的,充分性的说明需要用偏微分永远等于 0 来说明(##330)

设z = f(x,y) 有连续偏导数,证明:存在可微函数 g(u),使得 f(x,y) = g(ax + y)by)(ab \neq 0)的充要条件是z = f(x,y) 满足 $b\frac{\partial z}{\partial x} = a\frac{\partial z}{\partial y}$. (2)

充分性. 令
$$u = ax + by$$
, $v = y$, 得 $x = \frac{u - bv}{a}$, $y = v$,

$$z = f(x, y) = f\left(\frac{u - bv}{a}, v\right), \frac{\partial z}{\partial v} = -\frac{b}{a}f'_{x} + f'_{y} = \frac{1}{a}\left(-b\frac{\partial z}{\partial x} + a\frac{\partial z}{\partial y}\right) = 0.$$

所以 $z = f(x,y) = f\left(\frac{u - bv}{a}, v\right)$ 与v 无关,只是u 的函数,即存在可微函数g(u),使f(x)y)=g(ax+by).

;一形面 Fm(4) Fhittot 的函数到应在推导过程中图片后通推式,形如 H土村村.的刊展不成直接写出的果(白双嘴.不利规律).(耕头巷一).

--- 胚型和多约布:基本指引额形成为(栅线气二).

17:正常与极限。

18. 积分等 (这个位置基本都需要计算一个复杂的依分)。

19: 例分等

20. 多形态等 21. 附近或复合等。

& 卷3计算量把握: 如果方式厚车,可以在 2小用内完成 而段的完成的估别应当名考新方位解驳。 (种烧色)

如中使又seax对从xelo,to的成立的最小正数a(树对党五)。

6-- 11 展有时间直接洛丛达到可以界出信果 (##SK老七)

又一正的定义成问题。明到任新是否全出犯非信此处。尤其是 hx 中山(#1660).

是一季的陈刘认识所31m所是下面的元素以多外都是南部:图册张卷印.