CODA 19

ICU raw data : first 24 hours

2021-02-02 11:32:49

Data report overview

The dataset examined has the following dimensions:

Feature	Result
Number of observations	165
Number of variables	264

Checks performed

The following variable checks were performed, depending on the data type of each variable:

	characte	er factor	labelled	haven labelled	numeric	integer	logical	Date
Identify miscoded missing values	×	×	×	×	×	×		×
Identify prefixed and suffixed whitespace	×	×	×	×				
Identify levels with < 6 obs.	×	×	×	×				
Identify case issues	×	×	×	×				
Identify misclassified numeric or integer variables	×	×	×	×				
Identify outliers					×	×		×

Please note that all numerical values in the following have been rounded to 2 decimals.

Summary table

values 165 2 2 2 54 2 3 3 2 2 3 3 3 3 2 3 3	0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 81.21 % 81.21 % 81.21 % 81.21 %	problems? × × ×
2 2 2 54 2 2 3 3 3 2	0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 81.21 % 81.21 % 81.21 % 81.21 %	×
2 2 54 2 2 3 3 2 2	0.00 % 0.00 % 0.00 % 0.00 % 81.21 % 81.21 % 81.21 % 81.21 %	×
2 54 2 2 3 3 2 2	0.00 % 0.00 % 0.00 % 81.21 % 81.21 % 81.21 % 81.21 %	×
54 2 2 3 3 2 2	0.00 % 0.00 % 81.21 % 81.21 % 81.21 % 81.21 %	×
2 2 3 3 2 2	0.00 % 81.21 % 81.21 % 81.21 % 81.21 %	×
2 3 3 2 2	81.21 % 81.21 % 81.21 % 81.21 %	×
3 3 2 2	81.21 % 81.21 % 81.21 %	×
$\begin{matrix} 3 \\ 2 \\ 2 \end{matrix}$	$81.21~\% \\ 81.21~\%$	
$\frac{2}{2}$	81.21~%	
2		×
		×
3	81.21~%	×
	81.21~%	×
2	81.21 %	×
2	81.21 %	×
3	81.21~%	×
3	81.21~%	×
3	81.21~%	×
2	81.21~%	×
3	81.21~%	×
3	81.21~%	×
2	81.21~%	×
2	81.21 %	×
2	81.21 %	×
4	81.21 %	×
3	4.85 %	×
3	4.85 %	
3	4.85 %	
3	4.85 %	
	4.85 %	×
	4.85 %	
		×
		×
		×
		×
3	4.85 %	
	3 3 2 3 3 2 2 4 3 3 3 3 3 3 3 3 3 3 3 3	3 81.21 % 2 81.21 % 3 81.21 % 3 81.21 % 2 81.21 % 2 81.21 % 2 81.21 % 4 81.21 % 3 4.85 %

	Variable class	# unique values	Missing observations	Any problems?
antidiarrheals	numeric	3	4.85 %	×
antiemetics	numeric	3	4.85~%	
antifibrinolytic agents	numeric	3	4.85~%	×
antifungal_agents	numeric	3	4.85~%	×
antihypertensive_agents	numeric	3	4.85~%	
antimetabolites	numeric	3	4.85~%	×
antiparkinson agents	numeric	3	4.85~%	×
antipsychotic_agents	numeric	3	4.85~%	
antitussive agents	numeric	3	4.85~%	×
antiviral_agents	numeric	3	4.85~%	
benzodiazepines	numeric	3	4.85~%	
bicarbonate	numeric	3	4.85 %	
bone_density_conservation_agents	numeric	3	4.85 %	
bronchodilator agents	numeric	3	4.85 %	
calcium_regulating_hormones_and_a	gentameric	3	4.85 %	
carbonic anhydrase inhibitors	numeric	3	4.85 %	×
chelating_agents	numeric	3	4.85 %	×
cholagogues_and_choleretics	numeric	3	4.85 %	×
diuretics	numeric	3	4.85 %	
diuretics_osmotic	numeric	$\ddot{3}$	4.85 %	×
factor_xa_inhibitors	numeric	$\ddot{3}$	4.85 %	×
gastrointestinal_agents	numeric	$\ddot{3}$	4.85 %	×
glucocorticoids	numeric	$\ddot{3}$	4.85 %	
gout_suppressants	numeric	3	4.85 %	×
hiv medication	numeric	3	4.85 %	×
hypoglycemic_agents	numeric	3	4.85 %	^
immunosuppressive_agents	numeric	3	4.85 %	
laxatives	numeric	3	4.85 %	
levothyroxine	numeric	3	4.85 %	
narcotic_antagonists	numeric	3	4.85 %	×
neuromuscular_blocking_agents	numeric	3	4.85 %	^
parasympatholytics	numeric	3	4.85 %	×
platelet aggregation inhibitors	numeric	3	4.85 %	^
sedation	numeric	3	4.85 %	
serotonin_uptake_inhibitors	numeric	3	4.85 %	
sleep_aids_pharmaceutical	numeric	3	4.85 %	×
smoking_cessation_agents	numeric	3	4.85 %	×
vasodilator_agents	numeric	3	4.85 %	^
vasopressors	numeric	3	4.85 %	
vitamin_b_complex	numeric	3	4.85 %	
vitamins	numeric	3	4.85 %	
hemoglobin_min	numeric	73	9.09 %	×
hemoglobin max	numeric	73	9.09~%	^
hemoglobin mean	numeric	122	9.09~%	×
plt_min	numeric	121	9.09~%	×
plt_max	numeric	125	9.09 %	×
plt_mean	numeric	142	9.09 %	×
wbc_min	numeric	87	9.09 %	×
wbc_max	numeric	99	9.09 %	×
wbc_max wbc_mean	numeric	126	9.09 %	×
	numeric numeric	$\frac{120}{23}$	$9.09~\% \\ 9.70~\%$	
albumin_min		23 20	9.70 % 9.70 %	×
albumin_max	numeric		$9.70\ \% \ 9.70\ \%$	X
albumin_mean	numeric	67	$9.70\ \%$ $100.00\ \%$	×
globulin_min	logical	1	100.00 %	×

Variable classvaluesglobulin_maxlogical1globulin_meanlogical1protein_minnumeric9protein_maxnumeric9protein_meannumeric9sodium_minnumeric24sodium_maxnumeric23sodium_meannumeric89chloride_minnumeric25chloride_maxnumeric29chloride_meannumeric88potassium_minnumeric27	100.00 % × $100.00 %$ × $94.55 %$ × $94.55 %$ × $94.55 %$ ×
globulin_meanlogical1protein_minnumeric9protein_maxnumeric9protein_meannumeric9sodium_minnumeric24sodium_maxnumeric23sodium_meannumeric89chloride_minnumeric25chloride_maxnumeric29chloride_meannumeric88	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
protein_min numeric 9 protein_max numeric 9 protein_mean numeric 9 sodium_min numeric 24 sodium_max numeric 23 sodium_mean numeric 89 chloride_min numeric 25 chloride_max numeric 29 chloride_mean numeric 88	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
protein_max numeric 9 protein_mean numeric 9 sodium_min numeric 24 sodium_max numeric 23 sodium_mean numeric 89 chloride_min numeric 25 chloride_max numeric 29 chloride_mean numeric 88	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
protein_mean numeric 9 sodium_min numeric 24 sodium_max numeric 23 sodium_mean numeric 89 chloride_min numeric 25 chloride_max numeric 29 chloride_mean numeric 88	94.55~% $ imes$
sodium_minnumeric24sodium_maxnumeric23sodium_meannumeric89chloride_minnumeric25chloride_maxnumeric29chloride_meannumeric88	
sodium_maxnumeric23sodium_meannumeric89chloride_minnumeric25chloride_maxnumeric29chloride_meannumeric88	9.09~%
sodium_meannumeric89chloride_minnumeric25chloride_maxnumeric29chloride_meannumeric88	
chloride_minnumeric25chloride_maxnumeric29chloride_meannumeric88	9.09~% ×
chloride_maxnumeric29chloride_meannumeric88	9.09~% ×
chloride_maxnumeric29chloride_meannumeric88	10.30~%
chloride_mean numeric 88	10.30~%
	10.30~%
potassium_max numeric 28	
potassium_mean numeric 77	
bicarbonate_min numeric 97	
bicarbonate_max numeric 80	
bicarbonate mean numeric 136	
bun_min numeric 102	
bun_max numeric 106	
bun_mean numeric 131	
calcium_min logical 1	
calcium_max logical 1	
calcium_mean logical 1	
magnesium_min numeric 54	
magnesium_max numeric 56	
magnesium_mean numeric 50	
phosphate_min numeric 76	
phosphate_max numeric 93	
phosphate_mean numeric 95 phosphate_mean numeric 87	
creatinine min numeric 99	
_	
_	
creatinine_mean numeric 130	
gfr_min logical 1	, •
gfr_max logical 1	
gfr_mean logical 1	
glucose_min numeric 62	
glucose_max numeric 93	
glucose_mean numeric 135	
anion_gap_min numeric 17	
anion_gap_max numeric 20	
anion_gap_mean numeric 26	
eos_min numeric 15	
eos_max numeric 23	
eos_mean numeric 21	
lymph_min numeric 81	
lymph_max numeric 84	
lymph_mean numeric 94	
neutrophil_min numeric 133	
neutrophil_max numeric 136	
neutrophil_mean numeric 137	
mono_min numeric 71	
mono_max numeric 75	
mono_mean numeric 73	
baso_min numeric 8	10.91~%

	Variable class	# unique values	Missing observations	Any problems?
baso_max	numeric	11	10.91 %	×
baso_mean	$\operatorname{numeric}$	11	10.91 %	×
stab_min	numeric	9	95.15~%	
stab max	numeric	9	95.15~%	
stab mean	numeric	9	95.15~%	
pt_min	numeric	18	38.18 %	×
pt_max	numeric	19	38.18 %	×
pt_mean	numeric	30	38.18 %	×
ptt_min	numeric	27	13.33 %	×
ptt_max	numeric	39	13.33 %	×
ptt_mean	numeric	66	13.33 %	×
fibrinogen_min	numeric	92	36.97~%	×
fibrinogen_max	numeric	95	36.97 %	×
fibringen_mean	numeric	94	36.97~%	×
d_dimer_min	numeric	42	75.15 %	×
d_dimer_max	numeric	42	75.15 %	×
d_dimer_mean	numeric	42	75.15 %	×
alt_min	numeric	71	13.94 %	×
alt_max	numeric	80	13.94 %	×
alt mean	numeric	106	13.94 %	×
ast_min	numeric	76	16.36 %	×
ast max	numeric	76	16.36 %	×
ast_max ast_mean	numeric	98	16.36 %	×
palc_min	numeric	76	25.45 %	
_		82	25.45 % $25.45 %$	×
palc_max	numeric	93	25.45 % $25.45 %$	×
palc_mean	numeric	43	67.88 %	×
ggt_min	numeric	43		×
ggt_max	numeric		67.88 %	×
ggt_mean	numeric	42	67.88 %	×
amylase_min	logical	1	100.00 %	×
amylase_max	logical	1	100.00 %	×
amylase_mean	onumber logical onumber .	1	100.00 %	×
lipase_min	numeric	53	49.09 %	×
lipase_max	numeric	54	49.09 %	×
lipase_mean	numeric	60	49.09 %	×
bili_tot_min	numeric	27	15.15 %	×
bili_tot_max	numeric	29	15.15 %	×
bili_tot_mean	$\operatorname*{numeric}_{\cdot}$	52	15.15 %	×
bili_direct_min	numeric	14	92.12 %	×
bili_direct_max	numeric	14	92.12 %	×
bili_direct_mean	numeric	14	92.12 %	×
bili_indirect_min	numeric	13	92.12 %	×
bili_indirect_max	numeric	14	92.12 %	×
bili_indirect_mean	numeric	14	92.12 %	
ck_min	numeric	115	24.85 %	×
ck_max	numeric	114	24.85 %	×
ck_mean	numeric	122	24.85~%	×
ckmb_min	numeric	53	36.97 %	×
ckmb_max	numeric	58	36.97 %	×
ckmb_mean	numeric	71	36.97~%	×
ldh_min	$\operatorname{numeric}$	28	83.64 %	×
ldh_max	numeric	27	83.64~%	×
ldh_mean	numeric	27	83.64~%	×
tropot_min	numeric	52	46.67~%	

	# unique		Missing	Any	
	Variable class	values	observations	problems?	
tropot_max	numeric	59	46.67~%		
$tropot_mean$	$\operatorname{numeric}$	64	46.67 %		
lactate_min	$\operatorname{numeric}$	23	14.55~%	×	
lactate_max	$\operatorname{numeric}$	40	14.55 %	×	
lactate_mean	$\operatorname{numeric}$	81	14.55 %	×	
svo2sat_min	numeric	65	24.85 %	×	
svo2sat max	numeric	51	24.85 %		
svo2sat mean	numeric	81	24.85~%		
pao2_min	$\operatorname{numeric}$	94	38.79 %	×	
pao2_max	$\operatorname{numeric}$	83	38.79 %	×	
pao2_mean	numeric	101	38.79 %	×	
pvo2_min	numeric	112	24.24 %	×	
pvo2_max	numeric	118	24.24 %	×	
pvo2_mean	numeric	124	24.24 %	×	
paco2_min	numeric	102	24.24~%	×	
paco2_max	numeric	107	24.24~%	×	
paco2_mean	numeric	114	24.24 %	×	
pvco2_min	numeric	102	24.24 %	×	
pvco2_max	numeric	102	24.24 %	×	
pvco2_mean		114	24.24 %		
	numeric	21	24.24 % 87.88 %	×	
tsh_min	numeric	21		×	
tsh_max	$\operatorname*{numeric}_{\cdot}$		87.88 %	×	
tsh_mean	numeric	21	87.88 %	×	
vitd_min	numeric	4	98.18 %	×	
vitd_max	numeric	4	98.18 %	×	
vitd_mean	numeric	4	98.18 %	×	
crp_min	$\operatorname{numeric}$	71	56.97 %		
crp_max	numeric	69	56.97~%	×	
crp_mean	numeric	71	56.97~%		
ferritin_min	numeric	15	91.52~%		
ferritin_max	numeric	15	91.52~%		
ferritin_mean	$\operatorname{numeric}$	15	91.52~%		
bnp_min	$\operatorname{numeric}$	23	86.06 %		
bnp_max	$\operatorname{numeric}$	23	86.06~%		
bnp_mean	$\operatorname{numeric}$	23	86.06~%		
weight_min	$\operatorname{numeric}$	99	34.55 %	×	
weight_max	numeric	97	34.55~%	×	
weight_mean	$\operatorname{numeric}$	100	34.55 %	×	
sbp_min	numeric	51	43.64 %	×	
sbp_max	numeric	54	43.64~%	×	
sbp_mean	numeric	89	43.64~%	×	
dbp_min	numeric	37	43.64 %	×	
dbp_max	numeric	42	43.64 %	×	
dbp_mean	numeric	79	43.64 %	×	
temp min	numeric	29	8.48 %	×	
temp_max	numeric	33	8.48 %	×	
temp_max temp_mean	numeric	102	8.48 %	×	
so2_min	numeric	31	14.55 %	× ×	
		13	14.55 %		
so2_max	numeric			×	
so2_mean	numeric	102	14.55 %	×	
rr_min	$\operatorname*{numeric}_{\cdot}$	14	43.64 %	×	
rr_max	numeric	23	43.64 %	×	
rr_mean	numeric	61	43.64 %	×	
flow_min	numeric	12	67.27~%		

	Variable class	# unique values	Missing observations	Any problems?
flow_max	numeric	12	67.27 %	×
flow_mean	$\operatorname{numeric}$	37	67.27~%	×
fio2_min	$\operatorname{numeric}$	26	17.58 %	
fio2_max	$\operatorname{numeric}$	25	17.58 %	×
fio2_mean	$\operatorname{numeric}$	106	17.58 %	×
mv	$\operatorname{numeric}$	2	0.00~%	

Variable list

patient_site_uid

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	165
Median	5585806
1st and 3rd quartiles	1031034; 5639181
Min. and max.	17413; 5683487

wave

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	2
Mode	"0"
Reference category	0

female

Feature	Result
Variable type	integer
Number of missing obs.	0 (0 %)
Number of unique values	2
Mode	"0"
Reference category	0

male

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	integer
Number of missing obs.	0 (0 %)
Number of unique values	$\stackrel{\cdot}{2}$
Mode	"1"
Reference category	0

patient_age

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	54
Median	64
1st and 3rd quartiles	51; 72
Min. and max.	19; 92

• Note that the following possible outlier values were detected: "86", "92".

death

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	2
Mode	"0"
Reference category	0

ami

• The variable only takes one (non-missing) value: "0". The variable contains 81.21 % missing observations.

\mathbf{chf}

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	integer
Number of missing obs.	134 (81.21 %)
Number of unique values	$\overset{\backprime}{2}$
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

pvd

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	integer
Number of missing obs.	134 (81.21 %)
Number of unique values	2
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

cevd

• The variable only takes one (non-missing) value: "0". The variable contains 81.21 % missing observations.

dementia

• The variable only takes one (non-missing) value: "0". The variable contains 81.21 % missing observations.

copd

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	integer
Number of missing obs.	134 (81.21 %)
Number of unique values	$\dot{2}$
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

rheumd

 \bullet The variable only takes one (non-missing) value: "0". The variable contains 81.21 % missing observations.

pud

• The variable only takes one (non-missing) value: "0". The variable contains 81.21 % missing observations.

mld

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	integer
Number of missing obs.	134 (81.21 %)
Number of unique values	2
Mode	"0"
Reference category	0

diab

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	integer
Number of missing obs.	134 (81.21 %)
Number of unique values	2
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

diabwc

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	integer
Number of missing obs.	134 (81.21 %)
Number of unique values	$\stackrel{\cdot}{2}$
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

hp

• The variable only takes one (non-missing) value: "0". The variable contains 81.21 % missing observations.

rend

Feature	Result
Variable type	integer
Number of missing obs.	134 (81.21 %)
Number of unique values	$\stackrel{\cdot}{2}$
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

canc

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	integer
Number of missing obs.	134 (81.21 %)
Number of unique values	$\overset{\cdot}{2}$
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

msld

• The variable only takes one (non-missing) value: "0". The variable contains 81.21 % missing observations.

metacanc

• The variable only takes one (non-missing) value: "0". The variable contains 81.21 % missing observations.

aids

 \bullet The variable only takes one (non-missing) value: "0". The variable contains 81.21 % missing observations.

score

Feature	Result
Variable type	numeric
Number of missing obs.	134 (81.21 %)
Number of unique values	3
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "3".

$x5_alpha_reductase_inhibitors$

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

acetaminophene

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"1"
Reference category	0

$adrenergic_alpha_1_receptor_antagonists$

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

$adrenergic_beta_antagonists$

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

$adrener gic_up take_inhibitors$

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

analgesics

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

$an algesics_opioid$

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	$\overset{\cdot}{2}$
Mode	"1"
Reference category	0

androgens

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	$\dot{2}$
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

$anti_arrhythmia_agents$

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	$\overset{\cdot}{2}$
Mode	"0"
Reference category	0

anti_bacterial_agents

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"1"
Reference category	0

anti_infective_agents_local

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	$\dot{2}$
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

$anti_inflammatory_agents$

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

anti_inflammatory_agents_non_steroidal

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

anti_ulcer_agents

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	$\dot{2}$
Mode	"1"
Reference category	0

anticholesteremic_agents

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

anticoagulants

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"1"
Reference category	0

anticonvulsants

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

$antidepressive_agents$

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

antidiarrheals

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	$\dot{2}$
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

antiemetics

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	$\dot{2}$
Mode	"0"
Reference category	0

antifibrinolytic_agents

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

$antifungal_agents$

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

antihypertensive_agents

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	$\dot{2}$
Mode	"0"
Reference category	0

antimetabolites

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

$antiparkins on _agents$

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

$antipsychotic_agents$

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

$antitus sive_agents$

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

antiviral_agents

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

benzodiazepines

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

bicarbonate

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

bone_density_conservation_agents

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	$\dot{2}$
Mode	"0"
Reference category	0

bronchodilator_agents

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	$\dot{2}$
Mode	"0"
Reference category	0

calcium_regulating_hormones_and_agents

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	$\dot{2}$
Mode	"0"
Reference category	0

$carbonic_anhydrase_inhibitors$

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	$\dot{2}$
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

chelating_agents

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	$\overset{\cdot}{2}$
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

cholagogues_and_choleretics

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	$\overset{\cdot}{2}$
Mode	"0"
Reference category	0

diuretics

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	$^{'}$
Mode	"0"
Reference category	0

$diuretics_osmotic$

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

$factor_xa_inhibitors$

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	$\overset{\cdot}{2}$
Mode	"0"
Reference category	0

gastrointestinal_agents

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

glucocorticoids

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	$\overset{\cdot}{2}$
Mode	"0"
Reference category	0

gout_suppressants

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

hiv_medication

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

hypoglycemic_agents

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	$\dot{2}$
Mode	"0"
Reference category	0

$immuno suppressive_agents$

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

laxatives

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"1"
Reference category	0

levothyroxine

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	$\dot{2}$
Mode	"0"
Reference category	0

$narcotic_antagonists$

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	$\dot{2}$
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

neuromuscular_blocking_agents

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

parasympatholytics

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

platelet_aggregation_inhibitors

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	$\dot{2}$
Mode	"0"
Reference category	0

sedation

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

serotonin_uptake_inhibitors

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	$\dot{2}$
Mode	"0"
Reference category	0

sleep_aids_pharmaceutical

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

$smoking_cessation_agents$

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

• Note that the following levels have at most five observations: "1".

$vasodilator_agents$

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

vasopressors

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"1"
Reference category	0

$vitamin_b_complex$

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	$\dot{2}$
Mode	"0"
Reference category	0

vitamins

Feature	Result
Variable type	numeric
Number of missing obs.	8 (4.85 %)
Number of unique values	2
Mode	"0"
Reference category	0

$hemoglobin_min$

Feature	Result
Variable type	numeric
Number of missing obs.	15 (9.09 %)
Number of unique values	72
Median	115
1st and 3rd quartiles	99; 127
Min. and max.	64; 170

• Note that the following possible outlier values were detected: "156", "158", "170".

$hemoglobin_max$

Feature	Result
Variable type	numeric
Number of missing obs.	15 (9.09 %)
Number of unique values	72
Median	123
1st and 3rd quartiles	105.75; 138
Min. and max.	76; 172

$hemoglobin_mean$

Feature	Result
Variable type	numeric
Number of missing obs.	15 (9.09 %)
Number of unique values	121
Median	119.5
1st and 3rd quartiles	101.06; 132.94
Min. and max.	68.33; 170

 $\bullet\,$ Note that the following possible outlier values were detected: "170".

plt_min

Feature	Result
Variable type	numeric
Number of missing obs.	15 (9.09 %)
Number of unique values	120
Median	204
1st and 3rd quartiles	$145.5;\ 259.75$
Min. and max.	36; 609

• Note that the following possible outlier values were detected: "455", "465", "481", "521", "609".

plt_max

Feature	Result
Variable type	numeric
Number of missing obs.	15 (9.09 %)
Number of unique values	124
Median	231.5
1st and 3rd quartiles	$159.75;\ 305$
Min. and max.	67; 618

• Note that the following possible outlier values were detected: "618".

plt_mean

Feature	Result
Variable type	numeric
Number of missing obs.	15 (9.09 %)
Number of unique values	141
Median	210.5
1st and 3rd quartiles	$149.42;\ 284.62$
Min. and max.	49.33; 613

• Note that the following possible outlier values were detected: "613".

wbc_min

esult
neric
9 %)
86
7.4
9.88
30.9

• Note that the following possible outlier values were detected: "1", "30.9".

wbc_max

Feature	Result
Variable type	numeric
Number of missing obs.	15 (9.09 %)
Number of unique values	98
Median	9.35
1st and 3rd quartiles	6.7; 12.3
Min. and max.	2.9;1000

• Note that the following possible outlier values were detected: "25.4", "32.3", "1000".

wbc_mean

Feature R	esult
Variable type nur	neric
Number of missing obs. 15 (9.0)	9 %)
Number of unique values	125
Median	8.29
1st and 3rd quartiles 6.18; 1	11.17
Min. and max. 2.05; 5	502.5

• Note that the following possible outlier values were detected: "2.05", "2.43", "2.48", "31.6", "502.5".

albumin_min

Feature	Result
	1005010
Variable type	numeric
Number of missing obs.	16 (9.7 %)
Number of unique values	22
Median	30
1st and 3rd quartiles	28; 33
Min. and max.	18; 41

• Note that the following possible outlier values were detected: "18", "20", "41".

$albumin_max$

Result
numeric
16 (9.7 %)
19
33
30; 35
21; 42

• Note that the following possible outlier values were detected: "21".

albumin_mean

Result
numeric
16 (9.7 %)
66
31
29; 34.5
19.67; 41

• Note that the following possible outlier values were detected: "19.67", "20.2", "23", "23.2", "23.33".

globulin_min

• The variable only takes one value: "NA".

$globulin_max$

• The variable only takes one value: "NA".

globulin_mean

• The variable only takes one value: "NA".

protein_min

Feature	Result
Variable type	numeric
Number of missing obs.	156 (94.55 %)
Number of unique values	8
Median	64
1st and 3rd quartiles	63; 67
Min. and max.	0.47;71

• Note that the following possible outlier values were detected: "0.47", "20".

$protein_max$

Feature	Result
Variable type	numeric
Number of missing obs.	156 (94.55 %)
Number of unique values	8
Median	64
1st and 3rd quartiles	63; 67
Min. and max.	0.47; 71

• Note that the following possible outlier values were detected: "0.47", "20".

$protein_mean$

Feature	Result
Variable type	numeric
Number of missing obs.	156 (94.55 %)
Number of unique values	8
Median	64
1st and 3rd quartiles	63; 67
Min. and max.	0.47;71

• Note that the following possible outlier values were detected: "0.47", "20".

$sodium_min$

Feature	Result
Variable type	numeric
Number of missing obs.	15 (9.09 %)
Number of unique values	23
Median	137
1st and 3rd quartiles	135; 139.75
Min. and max.	115; 146

• Note that the following possible outlier values were detected: "115", "120", "123", "127".

$sodium_max$

Feature	Result
Variable type	numeric
Number of missing obs.	15 (9.09 %)
Number of unique values	22
Median	140
1st and 3rd quartiles	138; 143
Min. and max.	122; 154

• Note that the following possible outlier values were detected: "122", "127", "132", "134".

$sodium_mean$

Feature	Result
Variable type	numeric
Number of missing obs.	15 (9.09 %)
Number of unique values	88
Median	138.5
1st and 3rd quartiles	136.5; 141.24
Min. and max.	119.67; 147

 \bullet Note that the following possible outlier values were detected: "119.67", "126.22", "127", "129.25", "130.67", "131.36", "132".

chloride_min

Feature	Result
Variable type	numeric
Number of missing obs.	17 (10.3 %)
Number of unique values	24
Median	101
1st and 3rd quartiles	98; 104.25
Min. and max.	76; 111

• Note that the following possible outlier values were detected: "76", "87", "88", "91".

$chloride_max$

Feature	Result
Variable type	numeric
Number of missing obs.	17 (10.3 %)
Number of unique values	28
Median	106
1st and 3rd quartiles	103; 110
Min. and max.	88; 132

• Note that the following possible outlier values were detected: "88", "89", "132".

$chloride_mean$

Feature	Result
Variable type	numeric
Number of missing obs.	17 (10.3 %)
Number of unique values	87
Median	104.66
1st and 3rd quartiles	$101.24;\ 107.58$
Min. and max.	84.17; 117.13

 \bullet Note that the following possible outlier values were detected: "84.17", "114", "114.83", "117.13".

potassium_min

Feature	Result
Variable type	numeric
Number of missing obs.	15 (9.09 %)
Number of unique values	26
Median	3.65
1st and 3rd quartiles	3.32; 4
Min. and max.	1.2; 5.4

• Note that the following possible outlier values were detected: "1.2", "5.4".

potassium_max

Feature	Result
Variable type	numeric
Number of missing obs.	15 (9.09 %)
Number of unique values	27
Median	4.25
1st and 3rd quartiles	3.9; 4.68
Min. and max.	3.3; 8.2

• Note that the following possible outlier values were detected: "6", "6.2", "8.2".

potassium_mean

Feature	Result
Variable type	numeric
Number of missing obs.	15 (9.09 %)
Number of unique values	76
Median	4
1st and 3rd quartiles	3.6; 4.23
Min. and max.	2.93; 5.81

• Note that the following possible outlier values were detected: "4.88", "4.9", "4.93", "5.07", "5.08", "5.15", "5.29", "5.72", "5.81".

$bicarbonate_min$

Feature	Result
Variable type	numeric
Number of missing obs.	17 (10.3 %)
Number of unique values	96
Median	21.6
1st and 3rd quartiles	18.48; 24.3
Min. and max.	9.8; 37.7

• Note that the following possible outlier values were detected: "32.1", "37", "37.7".

$bicarbonate_max$

Result
numeric
17 (10.3 %)
79
25.85
23.08; 27.63
13; 43.6

• Note that the following possible outlier values were detected: "31.4", "32", "32.1", "32.5", "35.3", "38", "38.4", "42.8", "43.6".

bicarbonate_mean

Feature	Result
Variable type	numeric
Number of missing obs.	17 (10.3 %)
Number of unique values	135
Median	23.32
1st and 3rd quartiles	21.12; 25.86
Min. and max.	12; 41.06

• Note that the following possible outlier values were detected: "12", "13.86", "14.77", "15.79", "40.21", "41.06".

bun_min

Feature	Result
Variable type	numeric
Number of missing obs.	19 (11.52 %)
Number of unique values	101
Median	7.15
1st and 3rd quartiles	4.82; 11.8
Min. and max.	1.3; 41.1

• Note that the following possible outlier values were detected: "1.3", "1.6", "1.7", "2", "2.1", "2.3", "2.4".

bun_max

Feature	Result
Variable type	numeric
Number of missing obs.	19 (11.52 %)
Number of unique values	105
Median	8.85
1st and 3rd quartiles	5.82; 15.7
Min. and max.	1.3; 421

 \bullet Note that the following possible outlier values were detected: "1.3", "2.5", "2.6", "2.7", "2.8", "69", "257", "268", "421".

bun mean

Feature	Result
Variable type	numeric
Number of missing obs.	19 (11.52 %)
Number of unique values	130
Median	8.03
1st and 3rd quartiles	5.45; 14.68
Min. and max.	1.3; 143.83

• Note that the following possible outlier values were detected: "1.3", "2.03", "2.3", "2.35", "2.37", "2.48", "2.57", "2.6", "2.63", "2.8" (3 additional values omitted).

calcium_min

• The variable only takes one value: "NA".

$calcium_max$

• The variable only takes one value: "NA".

calcium_mean

• The variable only takes one value: "NA".

magnesium_min

Feature	Result
Variable type	numeric
Number of missing obs.	17 (10.3 %)
Number of unique values	53
Median	0.81
1st and 3rd quartiles	0.71; 0.88
Min. and max.	0.46; 1.18

• Note that the following possible outlier values were detected: "1.05", "1.06", "1.07", "1.09", "1.11", "1.11", "1.12", "1.18".

$magnesium_max$

Feature	Result
Variable type	numeric
Number of missing obs.	17 (10.3 %)
Number of unique values	55
Median	0.88
1st and 3rd quartiles	0.8; 0.98
Min. and max.	0.6; 1.67

• Note that the following possible outlier values were detected: "0.6", "0.65", "0.66", "0.66", "0.67", "0.68", "1.67".

magnesium_mean

Result
numeric
17 (10.3 %)
49
0.84
0.76; 0.92
0.58; 1.18

• Note that the following possible outlier values were detected: "0.58".

phosphate_min

Feature	Result
Variable type	numeric
Number of missing obs.	17 (10.3 %)
Number of unique values	75
Median	0.91
1st and 3rd quartiles	0.76; 1.11
Min. and max.	0.42; 2.13

• Note that the following possible outlier values were detected: "0.42", "0.47", "2.06", "2.13".

$phosphate_max$

Feature	Result
Variable type	numeric
Number of missing obs.	17 (10.3 %)
Number of unique values	92
Median	1.17
1st and 3rd quartiles	0.93; 1.54
Min. and max.	0.56; 3.27

• Note that the following possible outlier values were detected: "3.27".

phosphate_mean

Feature	Result
Variable type	numeric
Number of missing obs.	17 (10.3 %)
Number of unique values	86
Median	1.03
1st and 3rd quartiles	0.86; 1.27
Min. and max.	0.56; 2.59

• Note that the following possible outlier values were detected: "0.56", "0.61".

${\bf creatinine_min}$

Feature	Result
Variable type	numeric
Number of missing obs.	15 (9.09 %)
Number of unique values	98
Median	77
1st and 3rd quartiles	60; 117.75
Min. and max.	19; 1433

• Note that the following possible outlier values were detected: "19", "25", "29", "35", "36", "40", "41", "42", "43", "44" (6 additional values omitted).

$creatinine_max$

Result
resur
umeric
.09 %)
103
90
; 180.5
2; 2094

• Note that the following possible outlier values were detected: "22", "35", "37", "42", "45", "46", "47", "49", "50", "52" (6 additional values omitted).

$creatinine_mean$

Feature	Result
Variable type	numeric
Number of missing obs.	15 (9.09 %)
Number of unique values	129
Median	82
1st and 3rd quartiles	65.5; 142
Min. and max.	20.33; 1848.4

• Note that the following possible outlier values were detected: "20.33", "29", "34.33", "38.75", "40", "40.33", "45", "46", "46.67", "48.8" (14 additional values omitted).

gfr_min

• The variable only takes one value: "NA".

gfr_max

• The variable only takes one value: "NA".

gfr_mean

• The variable only takes one value: "NA".

$glucose_min$

Feature	Result
Variable type	numeric
Number of missing obs.	14 (8.48 %)
Number of unique values	61
Median	6
1st and 3rd quartiles	5.1; 7.15
Min. and max.	1.9; 17.2

• Note that the following possible outlier values were detected: "1.9", "2.8", "3.1", "17.2".

$glucose_max$

Feature	Result
Variable type	numeric
Number of missing obs.	14 (8.48 %)
Number of unique values	92
Median	9.6
1st and 3rd quartiles	7.7; 13.45
Min. and max.	5.2; 27.2

• Note that the following possible outlier values were detected: "5.2", "5.4", "5.6", "5.8", "5.9".

$glucose_mean$

Feature	Result
Variable type	numeric
Number of missing obs.	14 (8.48 %)
Number of unique values	134
Median	7.57
1st and 3rd quartiles	6.34;10.05
Min. and max.	4.66; 19.1

• Note that the following possible outlier values were detected: "4.66", "4.97".

anion_gap_min

Feature	Result
Variable type	numeric
Number of missing obs.	77 (46.67 %)
Number of unique values	16
Median	10.5
1st and 3rd quartiles	9; 14
Min. and max.	4; 22

• Note that the following possible outlier values were detected: "4".

anion_gap_max

Feature	Result
Variable type	numeric
Number of missing obs.	77 (46.67 %)
Number of unique values	19
Median	11.5
1st and 3rd quartiles	9; 14
Min. and max.	5; 25

• Note that the following possible outlier values were detected: "22", "23", "25".

$anion_gap_mean$

Feature	Result
Variable type	numeric
Number of missing obs.	77 (46.67 %)
Number of unique values	25
Median	11
1st and 3rd quartiles	9; 14
Min. and max.	4.5; 22.5

• Note that the following possible outlier values were detected: "4.5".

eos_min

Result
numeric
32 (19.39 %)
14
0
0; 0.01
0; 0.4

• Note that the following possible outlier values were detected: "0.4".

eos_max

Feature	Result
Variable type	numeric
Number of missing obs.	32 (19.39 %)
Number of unique values	22
Median	0
1st and 3rd quartiles	0; 0.04
Min. and max.	0; 0.64

eos_mean

Feature	Result
Variable type	numeric
Number of missing obs.	32 (19.39 %)
Number of unique values	20
Median	0
1st and 3rd quartiles	0; 0.03
Min. and max.	0; 0.52

lymph_min

Feature	Result
Variable type	numeric
Number of missing obs.	18 (10.91 %)
Number of unique values	80
Median	0.7
1st and 3rd quartiles	0.4; 0.98
Min. and max.	0; 3.31

• Note that the following possible outlier values were detected: "2.25", "3.25", "3.31".

$lymph_max$

Feature	Result
Variable type	numeric
Number of missing obs.	18 (10.91 %)
Number of unique values	83
Median	0.9
1st and 3rd quartiles	0.63; 1.21
Min. and max.	0.1; 3.45

• Note that the following possible outlier values were detected: "0.1", "0.16", "2.84", "3.25", "3.31", "3.45".

lymph_mean

Feature	Result
Variable type	numeric
Number of missing obs.	18 (10.91 %)
Number of unique values	93
Median	0.8
1st and 3rd quartiles	0.55; 1.1
Min. and max.	0.1; 3.38

• Note that the following possible outlier values were detected: "2.55", "3.25", "3.31", "3.38".

$neutrophil_min$

Feature	Result
Variable type	numeric
Number of missing obs.	18 (10.91 %)
Number of unique values	132
Median	5.92
1st and 3rd quartiles	4.2;8.17
Min. and max.	0.09; 30.59

• Note that the following possible outlier values were detected: "0.09", "0.59", "1.05", "1.4", "1.58", "1.75", "1.78", "23.37", "30.59".

$neutrophil_max$

Feature	Result
Variable type	numeric
Number of missing obs.	18 (10.91 %)
Number of unique values	135
Median	7.25
1st and 3rd quartiles	$4.92;\ 10.56$
Min. and max.	0.18; 83

• Note that the following possible outlier values were detected: "0.18", "31.33", "83".

neutrophil_mean

Feature	Result
Variable type	numeric
Number of missing obs.	18 (10.91 %)
Number of unique values	136
Median	6.51
1st and 3rd quartiles	4.64; 9.56
Min. and max.	0.14; 33.59

• Note that the following possible outlier values were detected: "0.14", "1.24", "1.74", "2", "2.06", "30.96", "33.59".

mono_min

Feature	Result
Variable type	numeric
Number of missing obs.	18 (10.91 %)
Number of unique values	70
Median	0.37
1st and 3rd quartiles	0.21; 0.58
Min. and max.	0; 2.51

• Note that the following possible outlier values were detected: "1.8", "2.18", "2.51".

mono_max

Feature	Result
Variable type	numeric
Number of missing obs.	18 (10.91 %)
Number of unique values	74
Median	0.5
1st and 3rd quartiles	0.32; 0.74
Min. and max.	0; 2.51

 $\bullet\,$ Note that the following possible outlier values were detected: "0", "2.49", "2.51".

mono_mean

Result
numeric
18 (10.91 %)
72
0.45
0.28; 0.66
0; 2.51

• Note that the following possible outlier values were detected: "0", "1.8", "2.34", "2.51".

$baso_min$

Feature	Result
Variable type	numeric
Number of missing obs.	18 (10.91 %)
Number of unique values	7
Median	0
1st and 3rd quartiles	0; 0.01
Min. and max.	0; 0.1

baso_max

Feature	Result
Variable type	numeric
Number of missing obs.	18 (10.91 %)
Number of unique values	10
Median	0.01
1st and 3rd quartiles	0; 0.02
Min. and max.	0; 0.19

• Note that the following possible outlier values were detected: "0.08", "0.1", "0.11", "0.19".

baso_mean

Feature	Result
Variable type	numeric
Number of missing obs.	18 (10.91 %)
Number of unique values	10
Median	0.01
1st and 3rd quartiles	0; 0.01
Min. and max.	0; 0.11

 \bullet Note that the following possible outlier values were detected: "0.03", "0.04", "0.05", "0.06", "0.07", "0.1", "0.11".

stab_min

Feature	Result
Variable type	numeric
Number of missing obs.	157 (95.15 %)
Number of unique values	8
Median	0.17
1st and 3rd quartiles	0.1; 0.31
Min. and max.	0.02; 0.85

$stab_max$

Result
numeric
157 (95.15 %)
8
0.17
0.1; 0.31
0.02; 0.85

$stab_mean$

Feature	Result
Variable type	numeric
Number of missing obs.	157 (95.15 %)
Number of unique values	8
Median	0.17
1st and 3rd quartiles	0.1; 0.31
Min. and max.	0.02;0.85

pt_min

Feature	Result
Variable type	numeric
Number of missing obs.	63 (38.18 %)
Number of unique values	17
Median	18
1st and 3rd quartiles	17; 21
Min. and max.	13; 120

• Note that the following possible outlier values were detected: "13", "15", "45", "120".

pt_max

Feature	Result
Variable type	numeric
Number of missing obs.	63 (38.18 %)
Number of unique values	18
Median	19
1st and 3rd quartiles	18; 22
Min. and max.	15; 120

• Note that the following possible outlier values were detected: "15", "16", "45", "120".

pt_mean

Feature	Result
Variable type	numeric
Number of missing obs.	63 (38.18 %)
Number of unique values	29
Median	19
1st and 3rd quartiles	18; 22
Min. and max.	14; 120

• Note that the following possible outlier values were detected: "14", "15", "16", "41", "45", "51.33", "74", "88.33", "120".

ptt_min

Feature	Result
Variable type	numeric
Number of missing obs.	$22\ (13.33\ \%)$
Number of unique values	26
Median	26
1st and 3rd quartiles	23; 29
Min. and max.	19; 111

• Note that the following possible outlier values were detected: "41", "43", "53", "55", "69", "111".

ptt_max

Feature	Result
Variable type	numeric
Number of missing obs.	$22\ (13.33\ \%)$
Number of unique values	38
Median	28
1st and 3rd quartiles	24; 34
Min. and max.	19; 120

• Note that the following possible outlier values were detected: "19", "20", "89", "111", "120".

ptt_mean

Feature	Result
Variable type	numeric
Number of missing obs.	22 (13.33 %)
Number of unique values	65
Median	27
1st and 3rd quartiles	24; 32.75
Min. and max.	19; 111

• Note that the following possible outlier values were detected: "19", "19.5", "20", "20.5", "69", "74.5", "87.6", "111".

$fibrinogen_min$

Feature	Result
Variable type	numeric
Number of missing obs.	61 (36.97 %)
Number of unique values	91
Median	5.8
1st and 3rd quartiles	4.56; 6.47
Min. and max.	2.15; 11.78

• Note that the following possible outlier values were detected: "8.19", "8.28", "8.31", "8.52", "8.53", "8.61", "8.97", "9.42", "9.62", "11.78".

$fibrinogen_max$

Feature	Result
Variable type	numeric
Number of missing obs.	61 (36.97 %)
Number of unique values	94
Median	6.04
1st and 3rd quartiles	5.2; 6.97
Min. and max.	$2.23;\ 11.78$

• Note that the following possible outlier values were detected: "2.23", "2.25", "2.26", "2.33", "10.57", "10.7", "10.87", "11.69", "11.78".

fibrinogen_mean

Feature	Result
Variable type	numeric
Number of missing obs.	61 (36.97 %)
Number of unique values	93
Median	6.02
1st and 3rd quartiles	4.77; 6.6
Min. and max.	2.19; 11.78

• Note that the following possible outlier values were detected: "7.83", "8.19", "8.28", "8.36", "8.42", "8.52", "8.53", "8.6", "8.97", "9.62" (3 additional values omitted).

d_dimer_min

Feature	Result
Variable type	numeric
Number of missing obs.	$124 \ (75.15 \ \%)$
Number of unique values	41
Median	2317
1st and 3rd quartiles	756; 4092
Min. and max.	$358;\ 34255$

• Note that the following possible outlier values were detected: "18871", "19574", "27322", "31118", "34255".

d_dimer_max

Feature	Result
Variable type	numeric
Number of missing obs.	$124 \ (75.15 \ \%)$
Number of unique values	41
Median	2317
1st and 3rd quartiles	895; 4151
Min. and max.	358; 34255

• Note that the following possible outlier values were detected: "18871", "19574", "27322", "31118", "34255".

d_dimer_mean

Feature	Result
Variable type	numeric
Number of missing obs.	124 (75.15 %)
Number of unique values	41
Median	2317
1st and 3rd quartiles	884.67; 4151
Min. and max.	$358;\ 34255$

 $\bullet \ \ \text{Note that the following possible outlier values were detected: "18871", "19574", "27322", "31118", "34255". \\$

alt_min

Feature	Result
Variable type	numeric
Number of missing obs.	$23\ (13.94\ \%)$
Number of unique values	70
Median	31.5
1st and 3rd quartiles	18; 56
Min. and max.	7; 476

• Note that the following possible outlier values were detected: "258", "265", "314", "387", "476".

alt_max

Result
numeric
23 (13.94 %)
79
33.5
20.25; 62.5
7; 1861

• Note that the following possible outlier values were detected: "7", "8", "9", "10", "11", "627", "759", "1861".

alt_mean

Feature	Result
Variable type	numeric
Number of missing obs.	23 (13.94 %)
Number of unique values	105
Median	32.75
1st and 3rd quartiles	19.5; 59.5
Min. and max.	7; 915.67

• Note that the following possible outlier values were detected: "7", "8", "8.5", "9", "327.5", "527.67", "617.5", "915.67".

ast_min

Feature	Result
Variable type	numeric
Number of missing obs.	$27 \ (16.36 \ \%)$
Number of unique values	75
Median	36
1st and 3rd quartiles	25.25; 63.75
Min. and max.	9; 1735

• Note that the following possible outlier values were detected: "9", "10", "12", "13", "14", "15", "16", "17", "547", "1735".

ast_max

Feature	Result
Variable type	numeric
Number of missing obs.	27 (16.36 %)
Number of unique values	75
Median	41
1st and 3rd quartiles	29; 68
Min. and max.	12; 5486

• Note that the following possible outlier values were detected: "12", "13", "14", "17", "18", "19", "20", "21", "22", "400" (3 additional values omitted).

ast_mean

Feature	Result
Variable type	numeric
Number of missing obs.	$27 \ (16.36 \ \%)$
Number of unique values	97
Median	38.75
1st and 3rd quartiles	27;66.38
Min. and max.	11.5; 2493.33

• Note that the following possible outlier values were detected: "11.5", "12", "14", "15.75", "16.5", "17", "18", "18.5", "19", "547" (2 additional values omitted).

palc_min

Feature	Result
Variable type	numeric
Number of missing obs.	42 (25.45 %)
Number of unique values	75
Median	62
1st and 3rd quartiles	50.5; 93
Min. and max.	18; 331

• Note that the following possible outlier values were detected: "18", "21", "22", "26", "30", "35", "37", "38", "39".

palc_max

Feature	Result
Variable type	numeric
Number of missing obs.	$42\ (25.45\ \%)$
Number of unique values	81
Median	64
1st and 3rd quartiles	52; 97
Min. and max.	18; 418

• Note that the following possible outlier values were detected: "18", "21", "22", "26", "30", "32", "35", "38", "39", "41" (2 additional values omitted).

$palc_mean$

Feature	Result
Variable type	numeric
Number of missing obs.	42 (25.45 %)
Number of unique values	92
Median	62.5
1st and 3rd quartiles	52; 96
Min. and max.	18; 353.5

• Note that the following possible outlier values were detected: "18", "21", "22", "26", "26.75", "30", "35", "38", "39", "41" (3 additional values omitted).

ggt_min

Feature	Result
Variable type	numeric
Number of missing obs.	112~(67.88~%)
Number of unique values	42
Median	46
1st and 3rd quartiles	28; 135
Min. and max.	12; 479

• Note that the following possible outlier values were detected: "12", "14".

ggt_max

Feature	Result
Variable type	numeric
Number of missing obs.	112 (67.88 %)
Number of unique values	42
Median	46
1st and 3rd quartiles	28; 135
Min. and max.	12; 479

• Note that the following possible outlier values were detected: "12", "14".

ggt_mean

Feature	Result
Variable type	numeric
Number of missing obs.	112 (67.88 %)
Number of unique values	41
Median	46
1st and 3rd quartiles	28; 135
Min. and max.	12; 479

• Note that the following possible outlier values were detected: "12", "14".

amylase_min

• The variable only takes one value: "NA".

$amylase_max$

• The variable only takes one value: "NA".

$amylase_mean$

• The variable only takes one value: "NA".

lipase_min

Feature	Result
Variable type	numeric
Number of missing obs.	81 (49.09 %)
Number of unique values	52
Median	26
1st and 3rd quartiles	16; 57.25
Min. and max.	5; 548

• Note that the following possible outlier values were detected: "5", "6", "7", "8", "9", "466", "548".

lipase_max

Feature	Result
Variable type	numeric
Number of missing obs.	81 (49.09 %)
Number of unique values	53
Median	26.5
1st and 3rd quartiles	17.75; 59.25
Min. and max.	5; 736

• Note that the following possible outlier values were detected: "5", "6", "7", "8", "9", "11", "12", "13", "685", "736".

lipase_mean

Feature	Result
Variable type	numeric
Number of missing obs.	81 (49.09 %)
Number of unique values	59
Median	26
1st and 3rd quartiles	16.88; 58.25
Min. and max.	5; 642

• Note that the following possible outlier values were detected: "5", "6", "7", "8", "8.67", "9", "10", "11", "11.5", "12" (2 additional values omitted).

bili_tot_min

Feature	Result
Variable type	numeric
Number of missing obs.	$25 \ (15.15 \ \%)$
Number of unique values	26
Median	8.5
1st and 3rd quartiles	6; 11.25
Min. and max.	3; 70

• Note that the following possible outlier values were detected: "27", "29", "37", "44", "51", "70".

$bili_tot_max$

Feature	Result
Variable type	numeric
Number of missing obs.	25 (15.15 %)
Number of unique values	28
Median	10
1st and 3rd quartiles	7; 14
Min. and max.	4; 88

- The following suspected missing value codes enter as regular values: "88".
- Note that the following possible outlier values were detected: "4", "45", "57", "68", "88".

bili_tot_mean

Feature	Result
Variable type	numeric
Number of missing obs.	25 (15.15 %)
Number of unique values	51
Median	9
1st and 3rd quartiles	7; 12.75
Min. and max.	3.5; 78.33

• Note that the following possible outlier values were detected: "3.5", "3.75", "4", "4.5", "36.33", "37", "52.33", "59.5", "78.33".

bili_direct_min

Feature	Result
Variable type	numeric
Number of missing obs.	152 (92.12 %)
Number of unique values	13
Median	17.3
1st and 3rd quartiles	14.1; 28.5
Min. and max.	10.4; 45.2

• Note that the following possible outlier values were detected: "10.4".

$bili_direct_max$

Result
numeric
152 (92.12 %)
13
20.4
17.3; 33.7
13.1; 61.1

 $\bullet\,$ Note that the following possible outlier values were detected: "13.1".

$bili_direct_mean$

Feature	Result
Variable type	numeric
Number of missing obs.	152 (92.12 %)
Number of unique values	13
Median	18
1st and 3rd quartiles	$16.4;\ 31.1$
Min. and max.	12.8;50.73

• Note that the following possible outlier values were detected: "12.8", "13.1".

$bili_indirect_min$

Feature	Result
Variable type	numeric
Number of missing obs.	152 (92.12 %)
Number of unique values	12
Median	11.3
1st and 3rd quartiles	9.5; 15.4
Min. and max.	7.5; 24.3

• Note that the following possible outlier values were detected: "7.5", "7.6".

$bili_indirect_max$

Result
numeric
152 (92.12 %)
13
17.3
10.3; 20.5
$7.5;\ 31.5$

 $\bullet\,$ Note that the following possible outlier values were detected: "30.9", "31.5".

$bili_indirect_mean$

Feature	Result
Variable type	numeric
Number of missing obs.	152 (92.12 %)
Number of unique values	13
Median	14.3
1st and 3rd quartiles	10.05; 18.33
Min. and max.	7.5; 27.27

ck_min

Feature	Result
Variable type	numeric
Number of missing obs.	41 (24.85 %)
Number of unique values	114
Median	166
1st and 3rd quartiles	72.25; 449.5
Min. and max.	16;6245

• Note that the following possible outlier values were detected: "4806", "6245".

ck_max

Feature	Result
Variable type	numeric
Number of missing obs.	41 (24.85 %)
Number of unique values	113
Median	212.5
1st and 3rd quartiles	100.75; 638.25
Min. and max.	16; 9303

• Note that the following possible outlier values were detected: "16", "18", "29", "5990", "9303".

ck_mean

Result
numeric
41 (24.85 %)
121
212.5
93.75; 508.88
16;7854.67

• Note that the following possible outlier values were detected: "3359.75", "3619.5", "5398", "7854.67".

$ckmb_min$

Result
numeric
61 (36.97 %)
52
2.2
1.08; 3.9
0.4; 39.6

• Note that the following possible outlier values were detected: "28.2", "31.3", "39.6".

$ckmb_max$

Feature	Result
Variable type	numeric
Number of missing obs.	61 (36.97 %)
Number of unique values	57
Median	2.3
1st and 3rd quartiles	1.17; 5.38
Min. and max.	0.4;57.9

 $\bullet \ \ \ Note that the following possible outlier values were detected: "0.4", "0.5", "49.7", "56.6", "57.9".$

$ckmb_mean$

Feature	Result
Variable type	numeric
Number of missing obs.	61 (36.97 %)
Number of unique values	70
Median	2.25
1st and 3rd quartiles	1.14; 5
Min. and max.	0.4; 44.65

• Note that the following possible outlier values were detected: "42.4", "44.6", "44.65".

ldh_min

Feature	Result
Variable type	numeric
Number of missing obs.	138 (83.64 %)
Number of unique values	27
Median	448
1st and 3rd quartiles	378; 550
Min. and max.	107; 926

• Note that the following possible outlier values were detected: "107", "926".

ldh_max

Feature	Result
Variable type	numeric
Number of missing obs.	138 (83.64 %)
Number of unique values	26
Median	490
1st and 3rd quartiles	403.5;560.5
Min. and max.	107; 926

• Note that the following possible outlier values were detected: "707", "709", "926".

ldh_mean

Feature	Result
Variable type	numeric
Number of missing obs.	138 (83.64 %)
Number of unique values	26
Median	460
1st and 3rd quartiles	403.5;560.5
Min. and max.	107; 926

• Note that the following possible outlier values were detected: "107", "926".

$tropot_min$

Feature	Result
Variable type	numeric
Number of missing obs.	77 (46.67 %)
Number of unique values	51
Median	20.5
1st and 3rd quartiles	11; 92.25
Min. and max.	10; 917

$tropot_max$

Feature	Result
Variable type	numeric
Number of missing obs.	77 (46.67 %)
Number of unique values	58
Median	27.5
1st and 3rd quartiles	13.75; 125.25
Min. and max.	10; 1617

$tropot_mean$

Feature	Result
Variable type	numeric
Number of missing obs.	77 (46.67 %)
Number of unique values	63
Median	25.5
1st and 3rd quartiles	13; 108.21
Min. and max.	10; 1258

$lactate_min$

Feature	Result
Variable type	numeric
Number of missing obs.	24 (14.55 %)
Number of unique values	22
Median	0.8
1st and 3rd quartiles	0.6; 1.2
Min. and max.	0.2; 5.6

• Note that the following possible outlier values were detected: "0.2", "0.3", "4.2", "5.6".

$lactate_max$

Feature	Result
Variable type	numeric
Number of missing obs.	$24 \ (14.55 \ \%)$
Number of unique values	39
Median	1.4
1st and 3rd quartiles	1; 2.2
Min. and max.	0.5; 18.7

• Note that the following possible outlier values were detected: "0.5", "11.4", "18.7".

$lactate_mean$

Feature	Result
Variable type	numeric
Number of missing obs.	24 (14.55 %)
Number of unique values	80
Median	1.1
1st and 3rd quartiles	0.88; 1.57
Min. and max.	0.35; 13.11

• Note that the following possible outlier values were detected: "0.35", "0.5", "0.53", "0.63", "

svo2sat_min

Feature	Result
Variable type	numeric
Number of missing obs.	41 (24.85 %)
Number of unique values	64
Median	66
1st and 3rd quartiles	44.75; 76
Min. and max.	12; 95

• Note that the following possible outlier values were detected: "91", "93", "95".

$svo2sat_max$

Feature	Result
Variable type	numeric
Number of missing obs.	41 (24.85 %)
Number of unique values	50
Median	77.5
1st and 3rd quartiles	65; 88
Min. and max.	15; 98

$svo2sat_mean$

Feature	Result
Variable type	numeric
Number of missing obs.	$41\ (24.85\ \%)$
Number of unique values	80
Median	69.75
1st and 3rd quartiles	58; 79.81
Min. and max.	15; 95.5

pao2_min

Feature	Result
Variable type	numeric
Number of missing obs.	64 (38.79 %)
Number of unique values	93
Median	70.8
1st and 3rd quartiles	61.7; 83.3
Min. and max.	40; 153

• Note that the following possible outlier values were detected: "40", "43.7", "153".

pao2_max

Feature	Result
Variable type	numeric
Number of missing obs.	64 (38.79 %)
Number of unique values	82
Median	118
1st and 3rd quartiles	88; 143
Min. and max.	43.7; 368

• Note that the following possible outlier values were detected: "291", "368".

$pao2_mean$

Feature	Result
Variable type	numeric
Number of missing obs.	64 (38.79 %)
Number of unique values	100
Median	90.4
1st and 3rd quartiles	77.66; 110.28
Min. and max.	43.7; 179.83

 $\bullet\,$ Note that the following possible outlier values were detected: "43.7", "50.6".

pvo2_min

Feature	Result
Variable type	numeric
Number of missing obs.	40 (24.24 %)
Number of unique values	111
Median	37.9
1st and 3rd quartiles	27.8; 45.9
Min. and max.	15.8; 79.3

• Note that the following possible outlier values were detected: "73.9", "79.3".

$pvo2_max$

Feature	Result
Variable type	numeric
Number of missing obs.	40 (24.24 %)
Number of unique values	117
Median	47.3
1st and 3rd quartiles	36.8; 61.5
Min. and max.	16; 142

• Note that the following possible outlier values were detected: "16", "17.4", "20.4", "142".

pvo2_mean

Feature	Result
Variable type	numeric
Number of missing obs.	40 (24.24 %)
Number of unique values	123
Median	44
1st and 3rd quartiles	35.1; 53.1
Min. and max.	16; 90.75

• Note that the following possible outlier values were detected: "80.9", "82.95", "83.2", "90.75".

paco2_min

Feature	Result
Variable type	numeric
Number of missing obs.	40 (24.24 %)
Number of unique values	101
Median	40.4
1st and 3rd quartiles	33.8; 47.5
Min. and max.	24.4;79.3

• Note that the following possible outlier values were detected: "74.2", "78.1", "79.3".

$paco2_max$

Feature	Result
Variable type	numeric
Number of missing obs.	40 (24.24 %)
Number of unique values	106
Median	44
1st and 3rd quartiles	39.2; 52.8
Min. and max.	26.8; 87

• Note that the following possible outlier values were detected: "26.8", "28.9", "29.4", "31.6", "32.6", "33.3".

paco2_mean

Feature	Result
Variable type	numeric
Number of missing obs.	40 (24.24 %)
Number of unique values	113
Median	42.53
1st and 3rd quartiles	36.43; 49.4
Min. and max.	26.8;79.3

 $\bullet\,$ Note that the following possible outlier values were detected: "78.1", "79.3".

pvco2_min

Feature	Result
Variable type	numeric
Number of missing obs.	40 (24.24 %)
Number of unique values	101
Median	40.4
1st and 3rd quartiles	33.8; 47.5
Min. and max.	24.4;79.3

• Note that the following possible outlier values were detected: "74.2", "78.1", "79.3".

$pvco2_max$

Feature	Result
Variable type	numeric
Number of missing obs.	40 (24.24 %)
Number of unique values	106
Median	44
1st and 3rd quartiles	39.2; 52.8
Min. and max.	26.8; 87

• Note that the following possible outlier values were detected: "26.8", "28.9", "29.4", "31.6", "32.6", "33.3".

pvco2_mean

Feature	Result
Variable type	numeric
Number of missing obs.	40 (24.24 %)
Number of unique values	113
Median	42.53
1st and 3rd quartiles	36.43; 49.4
Min. and max.	26.8;79.3

 $\bullet\,$ Note that the following possible outlier values were detected: "78.1", "79.3".

tsh_min

Feature	Result
Variable type	numeric
Number of missing obs.	145 (87.88 %)
Number of unique values	20
Median	1.42
1st and 3rd quartiles	0.91; 2.5
Min. and max.	0.18; 8.69

• Note that the following possible outlier values were detected: "0.18".

tsh_max

Feature	Result
Variable type	numeric
Number of missing obs.	145 (87.88 %)
Number of unique values	20
Median	1.42
1st and 3rd quartiles	0.91; 2.5
Min. and max.	0.18; 8.69

 $\bullet\,$ Note that the following possible outlier values were detected: "0.18".

tsh mean

Feature	Result
Variable type	numeric
Number of missing obs.	145 (87.88 %)
Number of unique values	20
Median	1.42
1st and 3rd quartiles	0.91; 2.5
Min. and max.	0.18;8.69
-	,

• Note that the following possible outlier values were detected: "0.18".

$vitd_min$

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	162 (98.18 %)
Number of unique values	3
Mode	"37"
Reference category	37

• Note that the following levels have at most five observations: "113", "129", "37".

$vitd_max$

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	162 (98.18 %)
Number of unique values	3
Mode	"37"
Reference category	37

• Note that the following levels have at most five observations: "113", "129", "37".

$vitd_mean$

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	162 (98.18 %)
Number of unique values	3
Mode	"37"
Reference category	37

• Note that the following levels have at most five observations: "113", "129", "37".

crp _min

Feature	Result
Variable type	numeric
Number of missing obs.	94 (56.97 %)
Number of unique values	70
Median	144.5
1st and 3rd quartiles	$94.3;\ 218.7$
Min. and max.	5; 367.7

crp_max

Feature	Result
Variable type	numeric
Number of missing obs.	94 (56.97 %)
Number of unique values	68
Median	150.1
1st and 3rd quartiles	95.2; 230.55
Min. and max.	5; 367.7

• Note that the following possible outlier values were detected: "5", "6.7".

crp_mean

Feature	Result
Variable type	numeric
Number of missing obs.	94 (56.97 %)
Number of unique values	70
Median	149.7
1st and 3rd quartiles	94.3; 222.58
Min. and max.	5; 367.7

ferritin_min

Feature	Result
Variable type	numeric
Number of missing obs.	151 (91.52 %)
Number of unique values	14
Median	584.5
1st and 3rd quartiles	$284.5;\ 1096.5$
Min. and max.	51; 2433

$ferritin_max$

Feature	Result
Variable type	numeric
Number of missing obs.	151 (91.52 %)
Number of unique values	14
Median	584.5
1st and 3rd quartiles	284.5; 1096.5
Min. and max.	100; 2433

$ferritin_mean$

Result
numeric
151 (91.52 %)
14
584.5
284.5; 1096.5
75.5; 2433

bnp_min

ult
eric
%)
22
703
301
353
-

bnp_max

Feature	Result
Variable type	numeric
Number of missing obs.	$142 \ (86.06 \ \%)$
Number of unique values	22
Median	703
1st and 3rd quartiles	209.5; 2301
Min. and max.	6; 13853

bnp_mean

Feature	Result
Variable type	numeric
Number of missing obs.	$142 \ (86.06 \ \%)$
Number of unique values	22
Median	703
1st and 3rd quartiles	209.5; 2301
Min. and max.	6; 13853

$weight_min$

Feature	Result
Variable type	numeric
Number of missing obs.	57 (34.55 %)
Number of unique values	98
Median	81.65
1st and 3rd quartiles	72.15; 95.93
Min. and max.	42.9; 236

• Note that the following possible outlier values were detected: "42.9", "43.1", "48.3", "54.7", "236".

$weight_max$

Feature	Result
Variable type	numeric
Number of missing obs.	57 (34.55 %)
Number of unique values	96
Median	83.85
1st and 3rd quartiles	73; 98.6
Min. and max.	43.1; 236

• Note that the following possible outlier values were detected: "43.1", "173", "236".

$weight_mean$

Feature	Result
Variable type	numeric
Number of missing obs.	57 (34.55 %)
Number of unique values	99
Median	83.2
1st and 3rd quartiles	73; 98.6
Min. and max.	43; 236

• Note that the following possible outlier values were detected: "43", "43.1", "48.3", "236".

sbp_min

Feature	Result
Variable type	numeric
Number of missing obs.	72 (43.64 %)
Number of unique values	50
Median	115
1st and 3rd quartiles	106; 126
Min. and max.	19; 181

• Note that the following possible outlier values were detected: "19", "62", "66", "72", "74", "77", "80", "167", "173", "181".

sbp_max

Feature	Result
Variable type	numeric
Number of missing obs.	72 (43.64 %)
Number of unique values	53
Median	141
1st and 3rd quartiles	128; 158
Min. and max.	97; 202

• Note that the following possible outlier values were detected: "97", "104".

sbp_mean

Result
numeric
72 (43.64 %)
88
125.8
117.6; 140
90; 186.6

• Note that the following possible outlier values were detected: "90", "92.4", "94", "95", "99", "101.15", "102.65", "103.22", "106.43".

dbp_min

Feature	Result
Variable type	numeric
Number of missing obs.	72 (43.64 %)
Number of unique values	36
Median	63
1st and 3rd quartiles	57; 71
Min. and max.	28; 96

• Note that the following possible outlier values were detected: "28", "35", "96".

dbp_max

Feature	Result
Variable type	numeric
Number of missing obs.	72 (43.64 %)
Number of unique values	41
Median	81
1st and 3rd quartiles	74; 88
Min. and max.	57; 139

• Note that the following possible outlier values were detected: "113", "114", "139".

dbp_mean

Feature	Result
Variable type	numeric
Number of missing obs.	72 (43.64 %)
Number of unique values	78
Median	72.67
1st and 3rd quartiles	65.5; 77.39
Min. and max.	51.67; 99.2

• Note that the following possible outlier values were detected: "96", "99.2".

$temp_min$

Feature	Result
Variable type	numeric
Number of missing obs.	14 (8.48 %)
Number of unique values	28
Median	36.5
1st and 3rd quartiles	36; 37
Min. and max.	32.9; 39.6

• Note that the following possible outlier values were detected: "32.9", "33", "38.5", "39.6".

temp_max

Feature	Result
Variable type	numeric
Number of missing obs.	14 (8.48 %)
Number of unique values	32
Median	37.4
1st and 3rd quartiles	37; 38.35
Min. and max.	36.4; 40

• Note that the following possible outlier values were detected: "36.4", "36.6".

temp_mean

Feature	Result
Variable type	numeric
Number of missing obs.	14 (8.48 %)
Number of unique values	101
Median	37
1st and 3rd quartiles	36.75; 37.31
Min. and max.	35.57; 39.6

• Note that the following possible outlier values were detected: "35.57", "35.95", "35.98", "36", "36.01", "36.02", "36.08", "36.1", "38.75", "38.95" (1 additional values omitted).

so2_min

Feature	Result
Variable type	numeric
Number of missing obs.	$24 \ (14.55 \ \%)$
Number of unique values	30
Median	89
1st and 3rd quartiles	85; 92
Min. and max.	2; 99

• Note that the following possible outlier values were detected: "2", "32", "63", "64", "65", "68", "98", "99".

$so2_max$

Feature	Result
Variable type	numeric
Number of missing obs.	24 (14.55 %)
Number of unique values	12
Median	98
1st and 3rd quartiles	96; 99
Min. and max.	85; 969

• Note that the following possible outlier values were detected: "969".

$so2_mean$

Feature	Result
Variable type	numeric
Number of missing obs.	24 (14.55 %)
Number of unique values	101
Median	94
1st and 3rd quartiles	92; 95.6
Min. and max.	82; 152.87

• Note that the following possible outlier values were detected: "82", "85", "152.87".

rr_min

Feature	Result
Variable type	numeric
Number of missing obs.	72 (43.64 %)
Number of unique values	13
Median	20
1st and 3rd quartiles	18; 20
Min. and max.	8; 30

• Note that the following possible outlier values were detected: "22", "24", "26", "28", "30".

rr_max

Feature	Result
Variable type	numeric
Number of missing obs.	72 (43.64 %)
Number of unique values	22
Median	24
1st and 3rd quartiles	22; 29
Min. and max.	18; 48
_	,

 $\bullet\,$ Note that the following possible outlier values were detected: "18", "19".

rr_mean

Feature	Result
Variable type	numeric
Number of missing obs.	72 (43.64 %)
Number of unique values	60
Median	21.73
1st and 3rd quartiles	20; 24.5
Min. and max.	$13.55;\ 38.5$

• Note that the following possible outlier values were detected: "13.55", "17.14", "18".

flow_min

Feature	Result
Variable type	numeric
Number of missing obs.	$111 \ (67.27 \ \%)$
Number of unique values	11
Median	2
1st and 3rd quartiles	1; 3
Min. and max.	0.5; 6

$flow_max$

Feature	Result
Variable type	numeric
Number of missing obs.	111 (67.27 %)
Number of unique values	11
Median	4
1st and 3rd quartiles	3.12; 5
Min. and max.	1; 12

 $\bullet\,$ Note that the following possible outlier values were detected: "10", "12".

$flow_mean$

Result
numeric
111 (67.27 %)
36
3
$2.04;\ 3.81$
1; 7.2

• Note that the following possible outlier values were detected: "7.2".

$fio2_min$

Feature	Result
Variable type	numeric
Number of missing obs.	29 (17.58 %)
Number of unique values	25
Median	45
1st and 3rd quartiles	30; 60
Min. and max.	21; 100

$fio2_max$

Result
numeric
29 (17.58 %)
24
92
50; 100
21; 954

• Note that the following possible outlier values were detected: "954".

fio2_mean

Feature	Result
Variable type	numeric
Number of missing obs.	29 (17.58 %)
Number of unique values	105
Median	62.75
1st and 3rd quartiles	44.58; 80
Min. and max.	21; 166.73

• Note that the following possible outlier values were detected: "166.73".

$\mathbf{m}\mathbf{v}$

• Note that this variable is treated as a factor variable below, as it only takes a few unique values.

Feature	Result
Variable type	numeric
Number of missing obs.	0 (0 %)
Number of unique values	$\dot{2}$
Mode	"0"
Reference category	0

Report generation information:

- Created by: Eric Yamga (username: eyamga).
- $\bullet \ \ \text{Report was run from directory: /Users/eyamga/Documents/M\'edecine/Recherche/CODA19/git/CODA19-Phenotyper/r_eyamga/Documents/M\'edecine/Recherche/CODA19/git/CODA19-Phenotyper/r_eyamga/Documents/M\'edecine/Recherche/CODA19/git/CODA19-Phenotyper/r_eyamga/Documents/M\'edecine/Recherche/CODA19/git/CODA19-Phenotyper/r_eyamga/Documents/M\'edecine/Recherche/CODA19/git/CODA19-Phenotyper/r_eyamga/Documents/M\'edecine/Recherche/CODA19/git/CODA19-Phenotyper/r_eyamga/Documents/M\'edecine/Recherche/CODA19/git/CODA19-Phenotyper/r_eyamga/Documents/M\'edecine/Recherche/CODA19/git/CODA19-Phenotyper/r_eyamga/Documents/M\'edecine/Recherche/CODA19-Phenotyper/r_eyamga/Documents/M\'edecine/Recherche/CODA19-Phenotyper/r_eyamga/Documents/M\'edecine/Recherche/CODA19-Phenotyper/r_eyamga/Documents/M\'edecine/Recherche/CODA19-Phenotyper/r_eyamga/Documents/M\'edecine/Recherche$

- data Maid v
1.4.0 [Pkg: 2019-12-10 from CRAN (R4.0.2)]
- R version 4.0.3 (2020-10-10).