

Dokaz

- 1. Prva implikacija: <u>Ako je G stablo, dokazati da postoji jedinstveni uv-put</u>.
- Pretpostavimo suprotno, tj. da G jeste stablo, ali ne postoji jedinstven uv-put izmedju nekih čvorova u i v.
- Posledice ove pretostavke:
- Ako postoji više od jednog puta izmedju u i v, to znači da postoji ciklus u G (jer se dva različita puta izmedju u i v zatvaraju u ciklus)
- Kontradikacija:
- Stablo je, po definiciji, graf koji je povezan i ne sadrži cikluse. Ako G ima ciklus onda nije stablo.
 Ovo je u suprotnosti sa pretpostavkom da je G stablo.
- Dakle, ako je G stablo, mora postojati jedinstven uv-put za bilo koja dva čvora u i v.

- 2. **Druga implikacija**: Ako za svaka dva evora u postoji jedinstven uv-put, dokazati da je G stablo
- Pretpostavimo suprotno, tj. Da za svaka dva čvora u, v ∈ V postoji jedinstven uv-put, ali G nije stablo.
- Posledice ove pretpostavke:
- Ako G nije stablo, onda:
- G nije povezan, ili
- G sadrži ciklus.
- Kontradikcija:
- U oba slučaja dolazimo do kontradikcije sa definicijom stabla. Dakle, ako za svaka dva čvora postoji jedinstven uv-put, G mora biti stablo

Priferov kod za stabla je način predstavljanja stabla kao niza brojeva. Ovaj kod je posebno koristan za kodiranje stabala, jer svako stablo ima jedinstven Priferov kod.

Šta je Priferov kod?

Priferov kod je niz brojeva koji predstavlja označeno stablo sa nnn čvorova. Kod je dugačak n-2, jer se kodira samo n-2 uklanjanja čvorova iz stabla dok ne ostanu samo dva čvora.

Ako je n = 2, imamo jedno označeno stablo i tvrđenje važi. Posmatraćemo sada $n \ge 3$ i pokazaćemo dva podtvrđenja:

- i) svakom stablu sa čvorovima {1,...,n} možemo na jedinstven način pridružiti Prüferov niz (p₁,...,p_{n-2}) koji čine n-2 cela broja iz skupa {1,...,n} (koja se mogu ponavljati);
- (ii) svaki niz $(p_1,...,p_{n-2})$ sa osobinom $\{p_1,...,p_{n-2}\}\subseteq\{1,...,n\}$ je Priferov niz nekog stabla sa n čvorova.
- (i) Niz ćemo formirati kao što je objašnjeno u nastavku.
- 1. Odrediti najmanju oznaku lista u stablu i za p₁ uzeti oznaku njemu susednog čvora. Oduzeti iz grafa list sa oznakom p₁ (i njemu incidentnu granu).
- 2. Ponavljati prvi korak, dok god ne ostanu samo dva čvora u stablu. Znači za pi, $2 \le i \le n-2$, uzeti oznaku suseda lista (u novodobijenom stablu) sa najmanjom oznakom.

Tako smo svakom stablu pridružili Priferov niz.

Zadatak. Odrediti Priferov niz za stablo sa slike.

Rešenje. Priferov niz za dato stablo je (p1, p2, p3, p4, p5, p6) = (1, 4, 1, 1, 4, 7).

Zadatak. Odrediti stablo čiji je Priferov niz (1,3,1,1,3,3).

Rešenje. Prvo treba primetiti da je dužina niza n 2=6, odakle je broj čvorova stabla n = 8. Daćemo grafički prikaz formiranja stabla. Uvedimo oznaku V = {1, 2, 3, 4, 5, 6, 7, 8}.

Algoritmi za odredjivanje minimalnog pokrivajućeg stabla

Šta je minimalno pokrivajuće stablo (MST)?

Minimalno pokrivajuće stablo (MST) je podskup grana povezanog, neusmerenog grafa koji povezuje sve čvorove bez ciklusa i sa najmanjom ukupnom težinom.

1. Kruskalov algoritam

Istorija: Razvio ga je Joseph Kruskal 1956. godine.

Postupak:

Sortiraj sve grane po težini. Iterativno dodaj grane sa najmanjom težinom koje ne formiraju ciklus (koristeći strukturu disjunktnih skupova – union-find).

Zaustavi se kada se doda n-1n-1n-1 grana (za nnn čvorova).

Karakteristike: Pogodan za grafove sa malim brojem grana (retki grafovi).

2. Primov algoritam

Istorija: Objavio ga je matematičar Vojtěch Jarník 1930, a redistribuirao ga je Robert Prim 1957. godine. Kasnije ga je popularizovao Edsger Dijkstra.

Postupak:

Počni sa proizvoljnim čvorom i dodaj ga u MST.

Nađi granu najmanje težine koja povezuje čvor u MST s čvorom izvan MST.

Ponavljaj dok svi čvorovi ne budu deo MST.

Karakteristike: Pogodan za guste grafove (mnogi čvorovi povezani).

```
def dijkstra(graph, start): | usage
distances = {node: Float('inf') for node in graph}
distances[start] = 0
previous = {node: None for node in graph}
priority_queue = [(8, start)] # (udaljenost, dvor)
while priority queue:
    current_distance, current_mode = heapq.heappop(priority_queue)
    if current_distance > distances[current_node]:
    # Prover1 sve susede trenutnog Cvora
    for neighbor, weight in graph[current_node]:
        distance = current_distance + weight
        if distance < distances[neighbor]:
            distances[neighbor] = distance
            previous[neighbor] = current_node
            heapq.heappush( "wos priority_queue, (distance, neighbor))
return distances, previous
```

