SCHEMA REFINEMENT and NORMALIZATION

Eliminate or reduce redundancy

Redundancy means duplicate copies of the same data

A relation with redundancy can be redefined by decomposing it, or replacing it with smaller relations that contain the same information, but without redundancy.

Sid	Sname	Cid	Cname	Fid	Fname	Sal	
S1	Α	C1	С	F1	Х	5K	M Sal
S2	Α	C1	С	F1	Х	5K	Cid (now Fid from Sal
S3	β\	C1	С	F1	Х	5K	CID - VISE
S4	В	C2	C++	F2	Υ	10K	
S5	В	C1	С	F1	Х	5K	
	*						
	Ί.						

Sid - Student ID, Sname - Student Name, Cid - Course ID, Fid - Faculty ID, Fname - Faculty Name, Sal- Salary

Problems Caused by Redundancy:

Storing the same information redundantly, that is, in more than one place within a database, can lead to several problems:

Redundant storage: Some information is stored repeatedly.

Update anomalies: If one copy of such repeated data is updated, an inconsistency is created unless all copies are similarly updated.

FSK-to7K

 Insertion anomalies: It may not be possible to store some information unless some other information is stored as well.

 <u>Deletion anomalies</u>: It may not be possible to delete some information without losing some other information as well.

	Sid	Sname	Cid	Cname	Fid	Fname	Sal	
	S1	Α	C1	С	F1	Х	5K	
Ī	S2	Α	C1	С	F1	Χ	5K	
	S3	В	C1	С	F1	Χ	5K	
\prod	S4	В	C2	C++	F2	Υ	10K	
	S5	В	C1	С	F1	Χ	5K	
	ðι	22						
		•	43	JZVZ	F3	À K	121	_

[C3 Java F3 Y 15K

Decomposition

A relation with redundancy can be redefined by decomposing it, or replacing it with smaller relations that contain the same information, but without redundancy.

Splitting Relation R into two or more sub relations

A decomposition of a relation schema R consists of replacing the relation schema by two (or more) relation schemas that each contain a subset of the attributes of R and together include all attributes in R.

				P										
	Sid	Sname	Cid	Cname	Fid	Fname	Sal							
	S1	Α	C1	С	F1	X	5K							
	S2	Α	C1	С	F1	X	5K							
	S3	В	C1	С	F1	Х	5K							
	S4	В	C2	C++	F2	Υ	10K							
	S5	В	C1	С	F1	X	5K							
							_	RZ						
			R_1			1	$\neg \lor$							7
_				TEK			Cid	(han	e	Fij	Fha	 SGL	
T 5:	.)	Shan	_	[cid]		ŀ	_				_			
-	0.	Α		(1		6		(FI Fz	X	5k	
>	l	γ,		c ₁			,	<i>r</i>			_	\vee		
\ S1	L	10		1			(2	C	++	PZ	/	10K	
[S:	3	D		Γ_{c_1}								_		
5	4	Ņ		_ (2_										
Si Si Si S	5	15_		[4]	/									

Retrieve student details that are under Faculty F1

2. Dependency-Preserving Decomposition

