Experiment 03 - Classification using Rapid Miner tool

Roll No.	19	
Name	Manav Jawrani	
Class	D15A	
Subject	Business Intelligence Lab	
LO Mapped	LO3: Implement the appropriate data mining methods like classification, clustering or association mining on large data sets using open-source tools like WEKA	
Grade		

Aim- classification opecision tree and Maine Bayes classification algorithms) using tepid minet tool.

theory -

Q.

3-

Introduction:

Rapid Mines is a power ful and intuitive data science pratform that provides a variety of tools and functionalities for that prepartion, marchine wearing, deep dearining, and predictive analysis. The Rapidmines pratform is designed to help when extract Valuable insights and knowledge from comprex data sets, even if they have little to no coding experience.

· Classification algorithms:

Classification algorithms are a type of markine bearing algorithm will to categorize of classify data into predefined classification algorithms include: most commonly used classification algorithms include: Logistic regression - A steptistical model that uter a logistic function to model binary outromes. Decision trees - A method that uter a tree-like model to represent delisions and their possible con sequences including the final outrome. Maive Bayes - A probabilistic model that assumes independence between input features and coliculates the probability of each class based on input.

WELDECS -
In machine learning, metors are used to nearly
the performance of model or algorithm. There are
vations we tosses used for different proposes,
such as evaluating the accubacy precision.
tecall and F1 scote of a classification madel.
02-the mean squated etast and R-squated of a
Jeggession model. Here are some commonly
used me toscs , along with these definitions and
tosmulas;
Accusacy: measures the proposition of costeply
classified instances.
Form U19:
(TP+TM)/(TP+TN+FP+FN), where TP= Tome
POSÍKUR, THE TOME MEGATIVE, FPE FAISE POSÍTIVE, FNE
False Megative.
PHEOPSION: Measures the proposition of correctly
3 den 42 filed possessure instances out of all predicted
positive postances.
formy(9:
-to 1 (-t0 1 ED)
TP / (TP + FP)

•	Data set:
	The date set Conterns information about passents who
	had a stroke. It includes 5110 Objediations and
	12 Vastables which as:
\ • .	id: Unique identifies to each patient.
	Attasbule type: (ategosical (Nominal).
2.	Gender: gender of the patient.
	Attobate type: (ategosica (CNomina))
3.	age: Age of the patient in yeass.
	Attabute type: Continuous (Ratio)
u.	hypestension: O if the patient doesn't have hypestenson
	1 if the patient has hypertension.
	Attorbute type: categorical (Nomings).
5,	heart disease: Off the patient doesn't have any
	heast disteases, 2 if the patient has a heast-distage.
	Atto3byte type: Categosical Colominal).
6,	Eng-wassig; mystles the batient has enes peen
	married or not.
	Attorbute type: Categorical (Moningl).
7.	work-type: The type of work the patient does.
	Attribute type: (ategorical (Noming).
8.	Residence type: The type of residence of patient
	Attablute type: Categodical CNominal).
9.	avg_grucose_lever: The average glucose lever of papient.
	Attailante type: (ONTINUOUS (Ratio).
0.	bm? - The body mass Endex (bm?) of patient.
	Attorbute type: (ontinuous (Ratio)
1/~	Smoking - Status: The Smoking Stertus OF patient.
`	Attoibute type: Categosical (Mominger).
	FOR EDUCATIONAL USE

12.	Stooke & Whether the Patient had stooke or not.						
	Attorbute type: (attgodical (Mominal)-						
e	0628494900:						
	These are the final accuracies, which we found -						
		Tagining date	7est data				
	Decision 18ee	64.10%	64.91°6				
		0 -					
	Moile Bayes	65.22%	69.21%				
•	con ausion:						
	Based on given final accuracies for the perining						
	and test dates of Decision Take and Maine Bayes						
	classifiers, we can conclude the following:						
1.	BOTH decision thee and raise bayes classificate						
2.	have similar accusacy nevers on the training data.						
	69.21°1° com paded to 64.91°10.						
3.	Both Classifiers have slightly dower accuracy						
	usuels on the	test data com	pated to the t	agining			
	data, including	a potential (SS	ue of over fitter	79 0			
ч.	overall, Maire	Bayes appears	to be the be	Hed-			
		sifier for this.		olem			
	wasted on the	test data.	allubely.	. '			
	FOR EDUCATIONAL USE						

FOR EDUCATIONAL USE

Roll No: 19

Implementation:

- ** Initially we had 5110 entries/rows **
- 1. Splitting the dataset in training data

Process -

Dataset -

2. Splitting the dataset in test data

Process

Dataset -

3. Decision tree of training data

Process -

Tree -

Performance matrix -

4. Decision tree of test data

Process -

Tree -

Performance matrix -

5. Naive Bayes of training data

Process -

Simple Distribution -

SimpleDistribution Distribution model for label attribute gender Class Male (0.415) 11 distributions Class Female (0.585) 11 distributions Class Other (0.000) 11 distributions

Performance matrix -

PerformanceVector							
PerformanceVector:							
accurac	accuracy: 65.22%						
Confusi	ConfusionMatrix:						
True:	Male	Female	Other				
Male:	545	305	0				
Female:	939	1787	0				
Other:	0	0	1				
kappa:	kappa: 0.237						
Confusi	ConfusionMatrix:						
True:	Male	Female	Other				
Male:	545	305	0				
Female:	939	1787	0				
Other:	0	0	1				

6. Naive Bayes of test data

Process -

Roll No: 19

Simple Distribution -

SimpleDistribution

Distribution model for label attribute gender

Class Male (0.425) 11 distributions

Class Female (0.575) 11 distributions

Class Other (0.000) 11 distributions

Performance matrix -

PerformanceVector

PerformanceVector: accuracy: 69.21% ConfusionMatrix:

True: Male Female Other Male: 325 146 0 Female: 326 736 0 Other: 0 0 0

kappa: 0.346 ConfusionMatrix:

True: Male Female Other Male: 325 146 0 Female: 326 736 0

Other: 0 0 0