

Description

The NCEP068N10K uses **Super Trench II** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{DS(ON)}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

General Features

- V_{DS} =100V,I_D =80A
 - $R_{DS(ON)}$ =6.3m Ω (typical) @ V_{GS} =10V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating

TO-252

Schematic Diagram

Package Marking and Ordering Information

Device Ma	arking	Device	Device Package	Reel Size	Tape width	Quantity
VST10N0	63-T2	VST10N063	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	100	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	80	А	
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	61	Α	
Pulsed Drain Current	I _{DM}	320	А	
Maximum Power Dissipation	P _D	125	W	
Derating factor		0.83	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	320	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R ₀ JC	1.2	°C/W	ı
---	-------------------	-----	------	---

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	100		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)				•	•	•
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	3	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =40A	-	6.3	6.8	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =40A		60	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}		-	3600	-	PF
Output Capacitance	C _{oss}	V_{DS} =50V, V_{GS} =0V, F=1.0MHz	-	335	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.UIVIH2	-	19.5	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	16	-	nS
Turn-on Rise Time	t _r	V_{DD} =50 V , I_D =40 A	-	11	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =3 Ω	-	35	-	nS
Turn-Off Fall Time	t _f		-	9	-	nS
Total Gate Charge	Qg	\/ -50\/1 -404	-	60	-	nC
Gate-Source Charge	Q _{gs}	$V_{DS}=50V, I_{D}=40A,$	-	20		nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	15		nC
Drain-Source Diode Characteristics				•		
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =40A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	80	Α
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C, I_F = 40A$	-	70	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	137	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\!\!\mathrm{C}$,V_DD=50V,V_G=10V,L=0.5mH,Rg=25 Ω

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance