Learning from Aggregated Data

Joydeep Ghosh

Schlumberger Centennial Chair Professor,
Dept of Electrical and Computer Engineering

The University of Texas at Austin

Co-authors

Avradeep Bhowmik UT Austin

Oluwasanmi Koyejo UIUC

Yubin Park Accordion Health

Motivation: Privacy Aware Data Release

- Health Indicators Warehouse
 - http://healthindicators.gov
- CDC data and statistics
 - http://www.cdc.gov/DataStatistics
- ➤ Statehealthfacts.org Kaiser Family Foundation
 - http://www.statehealthfacts.org

And many more ...

- > Additional Drivers: Scale, Bandwidth, Robustness
 - Sensor Networks, IoT, etc.

Motivation: Privacy Aware Data Release

- Health Indicators Warehouse
 - http://healthindicators.gov
- CDC data and statistics
 - http://www.cdc.gov/DataStatistics
- ➤ Statehealthfacts.org Kaiser Family Foundation
 - http://www.statehealthfacts.org

And many more ...

- > Additional Drivers: Scale, Bandwidth, Robustness
 - Sensor Networks, IoT, etc.
- Can such variably aggregated, multi-source data be leveraged to improve predictive models at the individual level?
 - ightharpoonup person \longrightarrow hospital \longrightarrow county \longrightarrow HRR \longrightarrow state
 - different time scales

This Talk: Learning from Aggregated Data

- > Sensitive Variables are only available as group averages (KDD'14)
- Dependent variables are given only as histograms (AISTATS'15)
- ➤ All variables are group-wise aggregated (ICML'16)
- ➤ Some/All variables averaged over (different) time intervals (AISTATS'17)

Ecological Fallacy

- Naive use of aggregated data leads to Ecological Fallacy
- Group-level attributes differ from individual level ground truth
 - Literacy rate vs. Proportion of Immigration¹
 - State-level correlation: -0.53
 - Individual-level correlation: 0.12

¹Robinson, W. S., "Ecological correlations and the behavior of individuals", American Sociological Review (1950)

Ecological Fallacy

Real population data tends to be heterogeneous

State-Level Data

County-Level Data

Figure: Percentage of population lacking basic literacy (2003)

Aggregated Sensitive Variables

Gender	Age	Diabetes	State	State	Diabetes Rate
F	23	Neg.	TX	CA	8.5 %
F	53	Neg.	CA	FL	8.0 %
M	46	? (suppressed)	FL	IL	6.3 %
F	63	? (suppressed)	FL	NY	6.2 %
M	63	Neg.	CA	PA	9.2 %
M	63	? (suppressed)	FL	TX	8.7 %
	:			:	

Y. Park, J. Ghosh, LUDIA: an aggregate-constrained low-rank reconstruction algorithm to leverage publicly released health data, KDD 2014

Key Considerations

- Main Ideas:
 - Heterogeneous partitions with relatively homogeneous sub-populations
 - Aggregated statistics reflect different proportion of sub-populations
- > Terminology
 - Individual level data vs. Aggregated data
- Objectives
 - Individual level inference using only Aggregated data
 - Avoid data reconstruction

Clustering Using features with DIfferent levels of Aggregation (CUDIA)

- y : sensitive feature (not observed)
- s : aggregated value of y over a partition
- P: a number of partitions
- N_p: a number of samples in partition p

(a) Complete Individual-level Data

(b) Aggregated Sensitive Data

CUDIA - Probabilistic Formulation

"Central Limit Theorem" for a mixture distribution:

$$\mathbf{s} = \mathsf{Average}[\mathbf{y}] \sim \mathsf{Normal}(\boldsymbol{\mu}_{\pi}, \boldsymbol{\Sigma}_{\pi}^2), \quad \mathsf{where} \quad \boldsymbol{\mu}_{\pi} = \sum_{k=1}^K \pi_k \boldsymbol{\theta}_{yk}$$

where θ_k represents the mean of $p(\mathbf{y} \mid z_k = 1)$.

¹In [Park and Ghosh, 2012], $\theta_{\gamma k}$ is a parameter set that contains the mean and variance.

County-level Medicare payments Dartmouth Health Atlas

Using 2 aggregated and 1 county-level variable

KLUDIA Summary

- Aggregated and suppressed data can be effectively utilized in individual-inferential tasks
 - reconstruction, prediction, hypothesis testing,

➤ Can use multiple sources with different-levels of aggregation

Generalised Linear Modelling with Histogram Aggregated Data

- Individual Level Features
- Histogram-Aggregated Targets

➤ A Bhowmik, J Ghosh, O Koyejo, "Generalized Linear Models for Aggregated Data", Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, (AISTATS) 2015

Motivation

Motivation

- ➤ Healthcare, sociological, etc. data can be of two kinds
 - ➤ Non-sensitive attributes (age, sex, etc.)
 - > Privacy-sensitive information (income, health indicators, etc.)
- Sensitive data often summarised as mean, median, quartile, etc., or with histograms
- > Focus of this work: order statistics and histograms

Order Statistics and Histograms

We use histogram to mean a set of order statistics and vice versa

Problem Setup

 \triangleright Standard GLM : Data obtained as (covariate, target) pairs (x_i, z_i)

Problem Setup

- \triangleright Standard GLM : Data obtained as (covariate, target) pairs (x_i, z_i)
- ➤ This setting: *z* only known upto order statistics, correspondence between covariates and targets unknown

Problem Setup

- \triangleright Standard GLM : Data obtained as (covariate, target) pairs (x_i, z_i)
- ➤ This setting: *z* only known upto order statistics, correspondence between covariates and targets unknown
- Task is two-fold
 - ➤ Impute the targets z subject to order statistic constraints
 - \triangleright Estimate parameter β using the imputed targets

Optimisation Problem

$$egin{array}{ll} \min & D_{\phi}\left(m{z} \| g_{\phi}(m{X}m{eta})
ight) \ \mathrm{s.t.} & au^{th} ext{ order statistic of } m{z} = s_{ au} \end{array}$$

 \blacktriangleright Use alternating minimisation to solve for eta and $oldsymbol{z}$ separately

Algorithm: Step I

$$\min_{\boldsymbol{\beta}} D_{\boldsymbol{\phi}}\left(\boldsymbol{z_{t-1}} \| g_{\boldsymbol{\phi}}(\boldsymbol{X}\boldsymbol{\beta})\right)$$

- ➤ This is a standard GLM parameter estimation problem
- \triangleright Can use any off-the-shelf package to solve for β

Algorithm: Step II

$$\min_{m{z}} \quad D_{m{\phi}}\left(m{z} \| g_{m{\phi}}(m{X}m{eta})
ight) \ ext{s.t.} \quad au^{th} ext{ order statistic of } m{z} = s_{ au}$$

 Constraint set looks non-convex, seems difficult to succinctly represent mathematically

Algorithm: Step II

$$\min_{m{z}} \quad D_{m{\phi}}\left(m{z} \| g_{m{\phi}}(m{X}m{eta})
ight) \ ext{s.t.} \quad au^{th} ext{ order statistic of } m{z} = m{s}_{ au}$$

- Constraint set looks non-convex, seems difficult to succinctly represent mathematically
- ➤ But for GLMs, solution can be obtained in closed form!

Algorithm: Step II

$$egin{array}{ll} \min_{m{z}} & D_{\phi}\left(m{z} \| g_{\phi}(m{X}m{eta})
ight) \ & ext{s.t.} & au^{th} ext{ order statistic of } m{z} = m{s}_{ au} \end{array}$$

- Constraint set looks non-convex, seems difficult to succinctly represent mathematically
- ➤ But for GLMs, solution can be obtained in closed form!
- ightharpoonup Proof relies on fact that optimal z is isotonic with $g_{\phi}(X\beta)$

Without order statistic constraint: Direct Substitution

$$egin{aligned} oldsymbol{z}_t &= \min_{oldsymbol{z}} & D_\phi(oldsymbol{z} \| oldsymbol{g}_\phi(oldsymbol{X}eta_t)) \ & ext{s.t.} & oldsymbol{z} \in \mathbb{R}^n_\downarrow \end{aligned}$$

With order statistic constraint: Elementwise Thresholding

$$egin{aligned} oldsymbol{z}_t &= \min_{oldsymbol{z}} & D_{\phi}(oldsymbol{z} \| oldsymbol{g}_{\phi}(oldsymbol{X} oldsymbol{eta}_t)) \ & ext{s.t.} & oldsymbol{z} \in \mathbb{R}^n_{\downarrow}, \ oldsymbol{z}_{ au} = oldsymbol{s}_{ au} \end{aligned}$$

Histogrammed Data: Multiple Order Statistics Constraints

Imputation of target variables - with histogram constraints

Summary of the Algorithm

Two simple steps, repeated alternatingly till convergence:

- \triangleright Estimation of GLM parameter β
 - ➤ Can use standard, off-the-shelf packages

- ightharpoonup Imputation² of target variables z
 - Elementwise thresholding operation

²up to a re-permutation step

Experiments: TX Inpatient Discharge Dataset

Fitting hospital charges on predictor variables age, race, sex, length of stay, etc.

Figure: Accuracy on Training and Test set for TxID Dataset

Summary

- Learning individual level regressors when targets are provided as histogram aggregates
- Simple, efficient algorithm, two alternating steps
 - fit GLM model parameter
 - impute targets subject to constraints

- Estimation is reasonably effective given granular histograms
- Potential impact on aggregation as a privacy preserving technique

Sparse Linear Models for Group-wise Aggregated Data

- > Features and Targets are Both Aggregated
- Recovery of Sparse Model parameter

➤ A Bhowmik, J Ghosh, O Koyejo, "Sparse Parameter Recovery from Aggregated Data", Proceedings of the 33rd International Conference on Machine Learning (ICML) 2016

23 / 48

Motivation

Setting

Figure: Learning Linear Models : Aggregated vs Non-Aggregated Setup

Summary of Main Results

Assuming empirical estimates have been computed from sufficiently large number of samples, w.h.p.-

- Noise free aggregated data: exact parameter recovery
- Data with observation noise: recovery within arbitrarily small tolerance
- Histogram aggregation: approximate recovery upto tolerance specified by histogram granularity

Aggregated Data with Observation Noise

Theorem

Sparse parameter β^* can be recovered from noise aggregates within arbitrarily small tolerance with probability at least $1-e^{-C_0n}-e^{-C_1n}$

Figure: Probability of Exact Parameter Recovery for Gaussian and Bernoulli Models

Frequency Domain Predictive Modelling with Aggregated Data

- Spatio-Temporally Correlated Data
- ➤ Non-uniform Aggregation

A Bhowmik, J Ghosh, O Koyejo, "Frequency Domain Predictive Modelling with Aggregated Data", Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS) 2017

Motivation

Motivation

- Spatio-temporal data often released in aggregated form in practice (Burrell et al., 2004; Lozano et al., 2009; Davidson et al., 1978)
- Worse, sampling periods need not be aligned, aggregation periods need not be uniform³
 - ratio of government debt to GDP reported yearly
 - GDP growth rate reported quarterly
 - unemployment rate and inflation rate reported monthly
 - interest rate, stock market indices and currency exchange rates reported daily
- Challenges in mathematical representation
- Reconstruction is expensive and unreliable

³Bureau of Labor Statistics, Bureau of Economic Analysis

bypasses local non-alignment by matching global properties

- bypasses local non-alignment by matching global properties
- > avoids input data reconstruction

- bypasses local non-alignment by matching global properties
- > avoids input data reconstruction
- achieves provably bounded generalization error

Problem Setup

Features
$$\mathbf{x}(t) = [x_1(t), x_2(t) \cdots x_d(t)]$$
, targets $y(t)$

- ➤ Weak Stationarity+
 - Zero-mean, Finite variance
 - Autocorrelation function independent of time

- Performance measure
 - ightharpoonup expected squared residual error $\mathcal{L}(\beta) = E[|x(t)^{\top}\beta y(t)|^2]$
 - \triangleright Because of weak stationarity, $\mathcal{L}(\beta)$ is independent of t

Data Aggregation in Time Series

Non-Aggregated Feature X_1 Aggregated Feature \overline{X}_1

Non-Aggregated Feature X_2 Aggregated Feature \overline{X}_2

Non-Aggregated Feature X_3 Aggregated Feature \overline{X}_3

Non-Aggregated Target YAggregated Target \overline{Y}

Aggregation in Time and Frequency Domain

In time domain, convolution with square wave + sampling

$$z(t)$$
 $\xrightarrow{convolution}$ $\xrightarrow{Square function u_T}$ $\xrightarrow{sampling}$ $\xrightarrow{Sampling Function \delta_T}$ \longrightarrow $\overline{z}[k]$

In frequency domain, multiplication with sinc function + sampling

$$Z(\omega) \xrightarrow{multiplication} \xrightarrow{\text{Sinc function } U_T} \xrightarrow{\text{sampling Function } \delta_{\omega}} \longrightarrow \overline{Z}(\omega)$$

Fourier Duality

Finite signal length, use T_0 -restricted Fourier transforms -

$$Z_{T_0}(\omega) = \int_{-T_0}^{T_0} z(t) e^{-\iota \omega t} dt$$

Global Properties \iff Local Properties

Bypass local mis-alignment by matching global properties

Algorithm: Step I

1 Input parameters T_0, ω_0, D , aggregated data samples $\overline{x}[k], y[l]$

Algorithm: Step I

1 Input parameters T_0, ω_0, D , aggregated data samples $\overline{x}[k], y[l]$

 $oldsymbol{\circ}$ Sample D frequencies uniformly between $(-\omega_0,\omega_0)$

$$\Omega = \{\omega_1, \omega_2, \cdots \omega_D : \omega_i \in (-\omega_0.\omega_0)\}$$

Algorithm: Step I

1 Input parameters T_0, ω_0, D , aggregated data samples $\overline{x}[k], y[l]$

 $oldsymbol{\circ}$ Sample D frequencies uniformly between $(-\omega_0,\omega_0)$

$$\Omega = \{\omega_1, \omega_2, \cdots \omega_D : \omega_i \in (-\omega_0.\omega_0)\}$$

§ For each $\omega \in \Omega$, compute T_0 -restricted Fourier Transforms $\overline{X}_{T_0}(\omega), \overline{Y}_{T_0}(\omega)$ from aggregated signals $\overline{x}[k], \overline{y}[l]$

Algorithm: Step II

Recall: U_T is Fourier transform of square wave

4 Estimate non-aggregated Fourier transforms

$$\widehat{X}_{i,T_0}(\omega) = \frac{\widehat{X}_{i,T_0}(\omega)}{U_{T_i}(\omega)}, \ \widehat{Y}_{T_0}(\omega) = \frac{\overline{Y}_{T_0}(\omega)}{U_{T}(\omega)}$$

Algorithm: Step II

Recall: U_T is Fourier transform of square wave

4 Estimate non-aggregated Fourier transforms

$$\widehat{X}_{i,T_0}(\omega) = \frac{\widehat{X}_{i,T_0}(\omega)}{U_{T_i}(\omega)}, \ \widehat{Y}_{T_0}(\omega) = \frac{\overline{Y}_{T_0}(\omega)}{U_{T_i}(\omega)}$$

5 Estimate parameter $\widehat{\beta}$ as:

$$\widehat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \frac{1}{|\Omega|} \sum_{\boldsymbol{\omega} \in \Omega} E \|\widehat{\boldsymbol{X}}_{T_0}(\boldsymbol{\omega})^\top \boldsymbol{\beta} - \widehat{Y}_{T_0}(\boldsymbol{\omega})\|^2$$

Main result I: Generalization Error

Generalisation error -

 \mathcal{L}^* : best possible, $\hat{\mathcal{L}}$: frequency domain estimation

Theorem 1

For every small $\xi > 0$, \exists corresponding T_0, D such that

$$\hat{\mathcal{L}} < (1+\xi)\mathcal{L}^* + 2\xi$$

with probability at least $1 - e^{-O(D^2 \xi^2)}$

Thus, generalization error is bounded with sufficiently long signal (large T_0) and sufficient number of computed Fourier coefficients (large D)

Aliasing Effects, Non-uniform Sampling

➤ Signals not bandlimited ⇒ Aliasing

Aliasing Effects, Non-uniform Sampling

➤ Signals not bandlimited ⇒ Aliasing

- ➤ Assume autocorrelation function decays rapidly, e.g. a Schwartz function (Terzioğlu, 1969)
 - \blacktriangleright Then, most of the signal power concentrated between $(-\omega_0, \omega_0)$

Non-uniform aggregation, Finite samples

Generalisation error -

 \mathcal{L}^* : best possible, $\hat{\mathcal{L}}$: frequency domain estimation

Theorem 2

With high probability, for any small $\xi > 0$, there exists T_0, D such that

$$\hat{\mathcal{L}} < (1+\xi)\mathcal{L}^* + 4\xi + \gamma$$

given sufficient samples, where $\gamma \sim e^{-O(\omega_s^2)}$.

Stronger performance guarantees for-

- sufficiently long signal
- large number of Fourier coefficients
- high sampling frequency

Comprehensive Climate Dataset (CCDS)

Regressing atmospheric vapour levels over continental United States vs readings of carbon dioxide levels, methane, cloud cover, and other extra-meteorological measurements

Additional Details

- More detailed analysis (not shown) allows for more precise error control
- Algorithm and analysis easily extend to sliding window aggregation schemata, and multi-dimensional settings e.g. spatio-temporal data using the multi-dimensional Fourier transform
- Extends to cases where aggregation and sampling period are non-overlapping.

Summary

- > Spatio-temporal data is often aggregated, leading to significant challenges in learning and inference
- By converting the problem to frequency domain, we can bypass many of these problems using Fourier analysis
- Novel framework and estimation algorithm, provably bounded generalisation error
- Significant improvements vs reconstruction-based estimation.

Conclusion

- Data in many modern applications often released in aggregated form
- Summary of recent results
 - Learning generalised linear models with histogram-aggregated targets
 - > Sparse learning for linear models with group-wise aggregated data
 - > Frequency domain methods for aggregated spatio-temporal data

Future work

- Designing aggregation protocols for learning with privacy
- Partially aggregated data and concept drift
- > Aggregation in matrix completion and recommendation systems

References

References I

- Jenna Burrell, Tim Brooke, and Richard Beckwith. Vineyard computing: Sensor networks in agricultural production. *IEEE Pervasive computing*, 3(1): 38–45, 2004.
- Emmanuel J Candes. The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique, 346(9):589–592, 2008.
- Emmanuel J Candes and Terence Tao. Near-optimal signal recovery from random projections: Universal encoding strategies? Information Theory, IEEE Transactions on, 52(12):5406–5425, 2006.
- James EH Davidson, David F Hendry, Frank Srba, and Stephen Yeo. Econometric modelling of the aggregate time-series relationship between consumers' expenditure and income in the united kingdom. The Economic Journal, pages 661–692, 1978.
- David L Donoho. For most large underdetermined systems of linear equations the minimal ℓ_1 -norm solution is also the sparsest solution. Communications on pure and applied mathematics, 59(6):797–829, 2006.
- Simon Foucart. A note on guaranteed sparse recovery via \$\ell_1\$-minimization. Applied and Computational Harmonic Analysis, 29(1):97-103, 2010.
- Aurelie C Lozano, Hongfei Li, Alexandru Niculescu-Mizil, Yan Liu, Claudia Perlich, Jonathan Hosking, and Naoki Abe. Spatial-temporal causal modeling for climate change attribution. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 587–596. ACM, 2009.
- T Terzioğlu. On schwartz spaces. Mathematische Annalen, 182(3):236-242, 1969.

Additional Slides

KUDIA & LUDIA - Optimisation Formulation

$$\mathbf{D} = \mathbf{Z}\mathbf{\Theta} + \mathbf{\Xi}$$
 (clustering)
 $\mathbf{D} = \mathbf{U}\mathbf{V}^{\top} + \mathbf{\Xi}$ (low-rank)

 \mathbf{D} : Complete data matrix $[\mathbf{X} \ \mathbf{Y}]$

X : Non-sensitive feature matrix (observed)

Y: Sensitive feature matrix (hidden)

 \mathbf{Z} : Cluster assign matrix

 $\boldsymbol{\Theta}$: Cluster parameter matrix

 \mathbf{U} : Low-rank matrix for rows

V: Low-rank matrix for columns

KUDIA & LUDIA - Optimisation Formulation

> KUDIA:
$$\min_{\mathbf{Y}, \mathbf{Z}, \boldsymbol{\Theta}} \| \begin{bmatrix} \mathbf{X} & \mathbf{Y} \end{bmatrix} - \mathbf{Z} \begin{bmatrix} \boldsymbol{\Theta}_X & \boldsymbol{\Theta}_Y \end{bmatrix} \|_2^2$$
 subject to $\mathbf{A}\mathbf{Y} = \mathbf{S}$

> LUDIA:
$$\min_{\mathbf{Y}, \mathbf{U}, \mathbf{V}} \| \begin{bmatrix} \mathbf{X} & \mathbf{Y} \end{bmatrix} - \mathbf{U} \begin{bmatrix} \mathbf{V}_X^\top & \mathbf{V}_Y^\top \end{bmatrix} \|_2^2$$
 subject to $\mathbf{A}\mathbf{Y} = \mathbf{S}$

A: Aggregation matrix

S: Aggregated sensitive feature matrix S = AY

Experiments: Individual-level Prediction

 $\label{eq:predictive} \textit{Performance: BRFSS (individual-level)} + \textit{KFF (aggregated)}$

(Diabetes)_{BRFSS} \approx

 $(Age)_{BRFSS} + (BMI)_{BRFSS} + (Avg. Fruit Consumption)_{KFF} + (Avg. Heart Disease Rate)_{KFF}$

- CUDIA uses cross-level imputed KFF features
- baseline model uses the average statistics as the individual-level estimates

47 / 48

Generalised Linear Modelling with Histogram Aggregated Data

- Individual Level Features
- Histogram-Aggregated Targets

➤ A Bhowmik, J Ghosh, O Koyejo, "Generalized Linear Models for Aggregated Data", Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, (AISTATS) 2015

Loss Function: Bregman Divergences

Bregman Divergences are matching loss functions for GLMs

$$D_{\phi}(\boldsymbol{z} \| g_{\phi}(\boldsymbol{X}\boldsymbol{\beta})) = \sum_{i} D_{\phi}(z_{i} \| g_{\phi}(\boldsymbol{x}_{i}^{\top}\boldsymbol{\beta}))$$

- Generalisation of square loss, other examples are KL divergence, I-Divergence, etc.
- \succ Convex in first argument, one-one correspondence with GLMs via ϕ

GLM link
$$g_\phi^{-1}(\cdot)$$
 \iff $D_\phi(\cdot\|\cdot)$ Bregman Divergence

Generalised Linear Models

- ightharpoonup Covariates $m{X} = [x_1, \cdots, x_n]^{\top}$, Targets $z = [z_1, \cdots z_n]$, Parameter $m{eta}$
 - Mean of target variables related to a monotonically transformed linear function of covariates, that is, $E[z] = g_{\phi}(X\beta)$
- \triangleright Estimating the GLM parameter $oldsymbol{eta}$ is equivalent to solving

$$\min_{\boldsymbol{\beta}} D_{\boldsymbol{\phi}}\left(\boldsymbol{z} \| g_{\boldsymbol{\phi}}(\boldsymbol{X}\boldsymbol{\beta})\right)$$

- ightarrow $D_{\phi}(\cdot\|\cdot)$ is a Bregman Divergence- the matching loss functions for GLMs
- ➤ E.g., square loss for Gaussian model (standard linear regression), I-divergence for Poisson model, etc.

Reformulation of Constraint Set

$$\min_{m{z}} \quad D_{m{\phi}}\left(m{z} \| g_{m{\phi}}(m{X}m{eta})
ight) \ ext{s.t.} \quad au^{th} ext{ order statistic of } m{z} = m{s}_{ au}$$

Proposition: Say \hat{z} is the solution of the above problem. Then, the optimal \hat{z} is isotonic to $g_{\phi}(X\beta)$

$$\hat{\pmb{z}} \sim_{\downarrow} g_{\phi}(\pmb{X}\pmb{\beta})$$

Proof relies on the properties of identically separable Bregman Divergences and uses the fact that re-ordering a vector does not change its order statistics.

Reformulation of Constraint Set

$$\begin{aligned} & \min_{\pmb{z}} & & D_{\phi}\left(\pmb{z} \| g_{\phi}(\pmb{X}\pmb{\beta})\right) \\ & \text{s.t.} & & \tau^{th} \text{ order statistic of } \pmb{z} = s_{\tau} \\ & & & \hat{\pmb{z}} \sim_{\downarrow} g_{\phi}(\pmb{X}\pmb{\beta}) \end{aligned}$$

- ightarrow WLOG assume $z\sim_{\downarrow} g_{\phi}(oldsymbol{X}eta)\in\mathbb{R}^n_{\downarrow}$ is ordered in descending order
- ightharpoonup The, au^{th} order statistic of $m{z}$ is simply $m{z}_{ au}$

Reformulated Optimisation Problem

Putting it all together, we write the overall task as the following optimisation problem

$$egin{aligned} oldsymbol{z}_t &= \min_{oldsymbol{z}} & D_{\phi}(oldsymbol{z} \| oldsymbol{g}_{\phi}(oldsymbol{X}oldsymbol{eta}_t)) \ & ext{s.t.} & oldsymbol{z} \in \mathbb{R}^n_{\downarrow}, \ & oldsymbol{z}_{ au} = oldsymbol{s}_{ au} \end{aligned}$$

Solution can be obtained in closed form!

Histogram Constraints

$$egin{aligned} oldsymbol{z}_t &= \min_{oldsymbol{z}} & D_{\phi}(oldsymbol{z} \| oldsymbol{g}_{\phi}(oldsymbol{X}oldsymbol{eta}_t)) \ & ext{s.t.} & oldsymbol{z} \in \mathbb{R}^n_{\downarrow}, \ oldsymbol{z}_{ au_k} = oldsymbol{s}_{ au_k}, \ k = 1, 2, \cdots, h \end{aligned}$$

Solution to this can be obtained in closed form: For all 1 < k < h, and all $j \in \{1, 2, \dots n\}$,

$$\hat{\boldsymbol{z}}^{(j)} = \begin{cases} \min(g_{\phi}(\boldsymbol{X}\boldsymbol{\beta})^{(j)}, s_{\tau_1}) & j < \tau_1 \\ s_{\tau_k} & j = \tau_k \\ \min\left(s_{\tau_{k+1}}, \max(g_{\phi}(\boldsymbol{X}\boldsymbol{\beta})^{(j)}, s_{\tau_k})\right) & \tau_k \leq j \leq \tau_{k+1} \\ \max(g_{\phi}(\boldsymbol{X}\boldsymbol{\beta})^{(j)}, s_{\tau_h}) & j > \tau_h \end{cases}$$

Experiments: Testing with Permutation

Results compared with estimation done on randomly permuted targets

Experiments: Testing with Permutation

Results compared with estimation done on randomly permuted targets

Experiments: Simulated Datasets

Figure: Accuracy on Training and Test Dataset with Poisson Model

Experiments: Simulated Datasets

Figure: Accuracy on Training and Test Dataset with Gaussian Model

Experiments: DESynPUF Dataset

Fitting primary payer reimbursement on predictor variables including age, race, rex, duration of coverage, presence/absence of certain diseases, etc.

Figure: Accuracy on Training and Test set for DESynPUF Dataset

Sparse Linear Models for Group-wise Aggregated Data

- Features and Targets are Both Aggregated
- Recovery of Sparse Model parameter

➤ A Bhowmik, J Ghosh, O Koyejo, "Sparse Parameter Recovery from Aggregated Data", Proceedings of the 33rd International Conference on Machine Learning (ICML) 2016

IIT Austin

Restricted Isometry Property

M satisfies (s, δ_s) -RIP if for any s-sparse z

$$(1 - \delta_s) \|\mathbf{z}\|_2^2 \le \|\mathbf{M}\mathbf{z}\|_2^2 \le (1 + \delta_s) \|\mathbf{z}\|_2^2$$

- Every small submatrix behaves approximately like an orthonormal system
- > Satisfied by many random matrices including Gaussian ensembles, etc.

Parameter Estimation from True Means

If M satisfies (s, δ_s) -RIP, given (M, v) a sparse β^* can be estimated⁴ from an under-determined system

$$\boldsymbol{v} = \boldsymbol{M} \boldsymbol{\beta}^*$$
: $\boldsymbol{M} \in \mathbb{R}^{k \times d}, \boldsymbol{v} \in \mathbb{R}^k, \boldsymbol{\beta}^* \in \mathbb{R}^d$

- \triangleright Assumption: True mean matrix M satisfies RIP, β^* is sparse
 - ightharpoonup If exact (M, v) were known, we would be done.
- ightharpoonup Real life: true (M,v) unknown, only empirical estimates available

⁴(Candes and Tao, 2006; Donoho, 2006; Candes, 2008; Foucart, 2010)

Noise-free Aggregated Data

Theorem 1

Given empirical aggregates , the true $m{\beta}^*$ can be recovered exactly with probability at least $1-e^{-C_0n}$.

Noise-free Aggregated Data

Theorem 1

Given empirical aggregates , the true β^* can be recovered exactly with probability at least $1 - e^{-C_0 n}$.

Here, the constant C_0 is such that

$$C_0 \sim O\left(rac{(\Theta_0 - \delta_{2s_0})^2}{kd\sigma^2(1 + \delta_{2s_0})}
ight)$$

- \blacktriangleright $\delta_{2s_0} < \Theta_0 = rac{3}{4+\sqrt{6}} pprox 0.465$ be $2s_0$ -restricted RIP constant for M
- ightarrow Each covariate has a sub-Gaussian distribution with parameter σ^2
- ightharpoonup True $oldsymbol{eta}^*$ is κ_0 -sparse, $\kappa_0 < s_0$

Noise-free Aggregated Data

Theorem 1

Given empirical aggregates , the true β^* can be recovered exactly with probability at least $1 - e^{-C_0 n}$.

Here, the constant C_0 is such that

$$C_0 \sim O\left(rac{(\Theta_0 - \delta_{2s_0})^2}{kd\sigma^2(1 + \delta_{2s_0})}
ight)$$

Fewer samples required for-

- \triangleright lower value of δ_{2s_0} , the RIP constant for true means M
- ightarrow smaller sub-Gaussian parameters for covariates σ^2

Each sample measurement corrupted by zero mean additive noise as

$$y = \mathbf{x}^{\top} \boldsymbol{\beta}^* + \epsilon$$

ightharpoonup Means $(\widehat{\pmb{M}}_n, \widehat{Y}_{\epsilon})$ computed from n noisy obs. for each group

$$\widehat{\boldsymbol{M}}_{n} = \boldsymbol{M} + \boldsymbol{\zeta}_{x,n}$$

$$\widehat{\boldsymbol{Y}}_{n} = \boldsymbol{\upsilon} + \boldsymbol{\zeta}_{y,n} + \boldsymbol{\epsilon}_{n}$$
(1)

➤ Two sources of error: aggregation and observation noise

Theorem 2

Let $\xi > 0$ be any small positive real value. Given noisy empirical aggregates , true β^* can be recovered within an ℓ_2 distance of $O(\xi)$ with probability at least $1 - e^{-C_1 n} - e^{-C_2 n}$.

Theorem 2

Let $\xi>0$ be any small positive real value. Given noisy empirical aggregates , true $\boldsymbol{\beta}^*$ can be recovered within an ℓ_2 distance of $O(\xi)$ with probability at least $1-e^{-C_1n}-\boldsymbol{e}^{-C_2n}$.

Here, the constants C_1 , C_2 are such that

$$C_1 \sim O\left(\frac{(\Theta_1 - \delta_{2s_0})^2}{kd\sigma^2(1 + \delta_{2s_0})}\right), \quad C_2 \sim O\left(\frac{\xi^2}{\rho^2 k}\right)$$

- $m \delta_{2s_0} < \Theta_1 = (\sqrt{2}-1)$ be the 2 s_0 -restricted RIP constant for m M
- ightarrow Each covariate has a sub-Gaussian distribution with parameter σ^2
- ightharpoonup True $oldsymbol{eta}^*$ is κ_0 -sparse, $\kappa_0 < s_0$
- ightharpoonup Zero-mean, sub-Gaussian noise with parameter ho^2

Theorem 2

Let $\xi>0$ be any small positive real value. Given noisy empirical aggregates , true $\boldsymbol{\beta}^*$ can be recovered within an ℓ_2 distance of $O(\xi)$ with probability at least $1-e^{-C_1n}-e^{-C_2n}$.

Here, the constants C_1 , C_2 are such that

$$C_1 \sim O\left(rac{(\Theta_1 - \delta_{2s_0})^2}{kd\sigma^2(1 + \delta_{2s_0})}
ight), ~~ C_2 \sim O\left(rac{\xi^2}{
ho^2 k}
ight)$$

Fewer samples required for-

- \triangleright lower value of δ_{2s_0} , the RIP constant for true means M
- \blacktriangleright smaller sub-Gaussian parameters for covariates σ^2 , & noise ρ^2
- \triangleright Higher level of allowed tolerance ξ

Special Case: Histogram Aggregated Data

Theorem 3

Given data in histograms of bin size Δ , the true β^* can be recovered within an ℓ_2 distance of $O(\sqrt{k}\Delta)$ with probability at least $1-e^{-C_1 n}$ where

$$C_1 \sim O\left(rac{(\Theta_1 - \delta_{2s_0})^2}{kd\sigma^2(1 + \delta_{2s_0})}
ight)$$

Recovery guarantees improve for-

- \triangleright lower value of δ_{2s_0} , the RIP constant for true means M
- \triangleright lower value of sub-Gaussian parameter for covariates σ^2
- > Finer granularity for histogram, i.e., lower bin size Δ

Histogram Aggregated Data

Theorem 2

With probability at least $1 - e^{-C_2n}$, the sparse parameter β^* can be recovered approximately upto a tolerance specified by histogram granularity

Recovery guarantees improve if-

- > true M satisfies RIP with higher fidelity
- data and noise distribution have a small "spread"
- histogram has fine granularity, i.e., lower bin size

Experiments on Synthetic Data: Gaussian Model

> Recovery Probability on Gaussian Ensemble

Figure: Probability of Exact Parameter Recovery and Exact Support Recovery for Gaussian Ensemble

Experiments on Synthetic Data: Bernoulli Model

> Recovery Probability on Bernoulli Ensemble

Figure: Probability of Exact Parameter Recovery and Exact Support Recovery for Bernoulli Ensemble

Experiments on Real Data: TxID dataset

Modelling hospital charges using healthcare billing records in the Texas Inpatient Discharge Dataset (TxID) from the TX Dept. of State Health Services

Figure: Parameter Recovery Error and Support Recovery Error for TxID Dataset

Frequency Domain Predictive Modelling with Aggregated Data

- Spatio-Temporally Correllated Data
- ➤ Non-uniform Aggregation

A Bhowmik, J Ghosh, O Koyejo, "Frequency Domain Predictive Modelling with Aggregated Data", Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS) 2017

Problem Setup

Features
$$\mathbf{x}(t) = [x_1(t), x_2(t) \cdots x_d(t)]$$
, targets $y(t)$

Weak Stationarity+

- ightharpoonup Zero-mean E[y(t)] = 0.
- Finite variance $E[y(t)] < \infty$
- Autocorrelation function satisfies: $E[y(t)y(t')] = \rho(||t-t'||)$

same assumptions for x(t)

Problem Setup

Features
$$\mathbf{x}(t) = [x_1(t), x_2(t) \cdots x_d(t)]$$
, targets $y(t)$

Weak Stationarity+

- ightharpoonup Zero-mean E[y(t)] = 0.
- Finite variance $E[y(t)] < \infty$
- Autocorrelation function satisfies: $E[y(t)y(t')] = \rho(||t-t'||)$

same assumptions for x(t)

Residual process

- \triangleright Let $\varepsilon_{\beta}(t) = \mathbf{x}(t)^{\top} \beta \mathbf{y}(t)$ be the residual error process of a linear model
- \triangleright Observe that $\varepsilon_{\beta}(t)$ is weakly stationary

Main result I: Generalization Error

Theorem

For every small $\xi > 0$, \exists corresponding T_0 , D such that:

$$E\left[|\mathbf{x}(t)^{\top}\widehat{\boldsymbol{\beta}} - y(t)|^2\right] < (1+\xi)\left(E\left[|\mathbf{x}(t)^{\top}\boldsymbol{\beta}^* - y(t)|^2\right]\right) + 2\xi$$

with probability at least $1 - e^{-O(D^2 \xi^2)}$

Thus, generalization error bounded with sufficiently large T_0 , D

Main result II: Generalisation Error

Non-uniform aggregation, Finite samples

Theorem

Let ω_i, ω_y be the sampling rate for $\mathbf{x}_i(t), y(t)$ respectively. Let $\omega_s = \min\{\omega_y, \omega_1, \omega_2, \cdots \omega_d\}$. Then, for small $\xi > 0, \exists$ corresponding T_0, D such that:

$$E\left[|\mathbf{x}(t)^{\top}\widehat{\boldsymbol{\beta}} - y(t)|^{2}\right] < (1+\xi)\left(E\left[|\mathbf{x}(t)^{\top}\boldsymbol{\beta}^{*} - y(t)|^{2}\right]\right)$$
$$+4\xi + 2e^{-O((\omega_{s}-2\omega_{0})^{2})}$$

with probability at least $1 - e^{-O(D^2\xi^2)} - e^{-O(N^2\xi^2)}$

Generalization error can be made small if T_0, D are high, ω_0 is small, minimum sampling frequency ω_s is high

Synthetic Data

Fig 1(a): No Discrepancy

Fig 1(b): Low Discrepancy

ightharpoonup Performance on synthetic data with varying ω_0 , and increasing sampling and aggregation discrepancy

Synthetic Data - II

Fig 1(c): Medium Discrepancy

Fig 1(d): High Discrepancy

Performance on synthetic data with varying ω_0 , and increasing sampling and aggregation discrepancy

Las Rosas Dataset

Regressing corn yield against nitrogen levels, topographical properties, brightness value, etc.

UCI Forest Fires Dataset

Regressing burned acreage against meteorological features, relative humidity, ISI index. etc. on UCI Forest Fires Dataset