Outline

- Classification basics
- Decision tree classifiers
- Overfitting
- Lazy vs Eager Learners
- k-Nearest Neighbors (or learning from your neighbors)
- Evaluation of classifiers

True vs predicted class labels

- The quality of a classifier is evaluated over a *test set*, different from the training set
 - For each instance in the test set, we know its true class label
 - Compare the predicted class label (by the classifier) with the true class of the test instances

true class

Confusion matrix

- Terminology
 - Positive tuples: tuples of the main class of interest (e.g., "Play tennis = yes")
 - Negative tuples: all other tuples
- A useful tool for analyzing how well a classifier performs is the confusion matrix
 - □ For an *m*-class problem, the matrix is of size *mxm*
- An example of a matrix for a 2-class problem:

Predicted class

Actual/ true

		yes	no	totals
	yes	TP (true positive)	FN (false negative)	Р
כוס	no	FP(false positive)	TN (true negative)	N
	Totals	P'	N'	

Classifier evaluation measures

- Accuracy
- Error rate
- Sensitivity
- Specificity
- Precision
- Recall
- F-measure
- \blacksquare F_{β} -measure
- **..**

Classifier evaluation measures 1/3

Accuracy/ Recognition rate:

% of test set instances correctly classified

$$accuracy(M) = \frac{TP + TN}{P + N}$$

Predicted class

totals

Р

Ν

C₁ C₂

C₁ TP (true positive) FN (false negative)

C₂ FP(false positive) TN (true negative)

Totals P' N'

Actual class

Predicted class

	classes	buy_computer = yes	buy_computer = no	total
CIdSS	buy_computer = yes	6954	46	7000
בֿ	buy_computer = no	412	2588	3000
	total	7366	2634	10000

→ Accuracy(M)=95.42%

Error rate/ Missclassification rate: error_rate(M)=1-accuracy(M)

$$error_rate(M) = \frac{FP + FN}{P + N}$$

→Error_rate(M)=4.58%

Limitations of accuracy and error rate

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

!!! Accuracy and error rate are more effective when the class distribution is relatively balanced

Classifier evaluation measures 2/3

If classes are *imbalanced*:

Sensitivity/ True positive rate/ recall:

% of positive tuples that are correctly recognized

$$sensitivity(M) = \frac{TP}{P}$$

Actual

Specificity/ True negative rate: % of negative tuples that are correctly recognized

$$specificity(M) = \frac{TN}{N}$$

Predicted class

	The direction of the control of the			
	classes	buy_computer = yes	buy_computer = no	total
class	buy_computer = yes	6954	46	7000
	buy_computer = no	412	2588	3000
	total	7366	2634	10000

- → Accuracy(M)=95.42%
- → sensitivity(M)=99.34%
- →specificity(M)=86.27%

Classifier evaluation measures 3/3

Precision: % of tuples labeled as positive which are actually positive

$$precision(M) = \frac{TP}{TP + FP}$$

Recall: % of positive tuples labeled as positive

$$recall(M) = \frac{TP}{TP + FN} = \frac{TP}{P}$$

- Precision biased towards TP and FP
- Recall biased towards TP and FN
- □ Higher precision → less FP
- □ Higher recall → less FN

Predicted class

classes	buy_computer = yes	buy_computer = no	total
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
total	7366	2634	10000

Predicted class

	_		
	C ₁	C ₂	totals
C ₁	TP (true positive)	FN (false negative)	Р
C ₂	FP(false positive)	TN (true negative)	N
Totals	P'	N'	

Actual class

Recall the definition of precision/recall in IR:

- Precision: % of selected items that are correct
- Recall: % of correct items that are selected

→ precision(M)=94.41%

→recall(M)=99.34%

Classifier evaluation measures 3/3

■ F-measure/ F₁ score/F-score combines both

$$F(M) = \frac{2 * precision(M) * recall(M)}{precision(M) + recall(M)}$$

It is the harmonic mean of precision and recall

Predicted class

Actual class

		C ₁	C ₂	totals
	C ₁	TP (true positive)	FN (false negative)	Р
	C ₂	FP(false positive)	TN (true negative)	N
	Totals	P'	N'	

More on harmonic mean: http://mathworld.wolfram.com/HarmonicMean.html

 \blacksquare F_{β} -measure is a weighted measure of precision and recall

$$F_{\beta}(M) = \frac{(1+\beta^2) * precision(M) * recall(M)}{\beta^2 * precision(M) + recall(M)}$$

Common values for β:

- $\beta=1 \rightarrow F_1$
- β=0.5

 β is used to justify the importance of recall w.r.t. precision: recall is considered β times as important as precision!!!

For our example, F(M)=2*94.41%*99.34%/(94.41%+99.34%)=96.81%

Evaluation setup

- How to create the training and test sets out of a dataset?
 - We don't want to make unreasonable assumptions about our population
- Many approaches
 - Holdout
 - Cross-validation
 - Bootstrap
 - **...**

Evaluation setup 1/5

- Holdout method
 - Given data is randomly partitioned into two independent sets
 - Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation
 - □ (+) It takes no longer to compute
 - (-) it depends on how data are divided
- Random sampling: a variation of holdout
 - Repeat holdout *k* times, accuracy is the *avg* accuracy obtained

Evaluation setup 2/5

- Cross-validation (k-fold cross validation, k = 10 usually)
 - Randomly partition the data into k mutually exclusive subsets D_1 , ..., D_k each approximately equal size
 - Training and testing is performed k times
 - At the *i*-th iteration, use D_i as test set and rest as training set

- Each point is in a test set 1 time and in a training set k-1 times
- Accuracy is the avg accuracy over all iterations
- (+) Does not rely so much on how data are divided
- □ (-) The algorithm should re-run from scratch k times
- Leave-one-out: k-folds with k = #of tuples, so only one sample is used as a test set at a time;
 - for small sized data
- Stratified cross-validation: folds are stratified so that class distribution in each fold is approximately
 the same as that in the initial data
 - Stratified 10 fold cross-validation is recommended!!!

Evaluation setup 3/5

- Stratified sampling vs random sampling
 - Stratified sampling creates a mini-reproduction of the population in terms of the class labels. E.g., if 25% of the population belongs to the class "blue", 25% to class "green" and 50% to class "red" then 25% of the sample is drawn randomly from class "blue", 25% from class "green" and 50% from class "red".

Source: https://faculty.elgin.edu/dkernler/statistics/ch01/images/strata-sample.gif

- Stratified cross-validation: folds are stratified so that class distribution in each fold is approximately
 the same as that in the initial data
 - Stratified 10 fold cross-validation is recommended!!!

Evaluation setup 4/5

- Bootstrap: Samples the given training data uniformly with replacement
 - i.e., each time a tuple is selected, it is equally likely to be selected again and re-added to the training set
 - Works well with small data sets
- Several boostrap methods, and a common one is .632 boostrap
 - Suppose we are given a data set of #d tuples. The data set is sampled #d times, with replacement, resulting in a training set of #d samples (known also as bootstrap sample):
 - The data tuples that did not make it into the training set end up forming the test set.
 - Each sample has a probability 1/d of being selected and (1-1/d) of not being chosen. We repeat d times, so the probability for a tuple to <u>not</u> be chosen during the whole period is (1-1/d)^d.
 - For large d: $\left(1 \frac{1}{n}\right)^n \approx e^{-1} \approx 0.368$
 - So on average, 36.8% of the tuples will <u>not</u> be selected for training and thereby end up in the test set; the remaining 63.2% will form the train set.

Evaluation setup 5/5

- Repeat the sampling procedure k times → k bootstrap datasets
- Report the overall accuracy of the model:

$$acc_{boot}(M) = \frac{1}{k} \sum_{i=1}^{k} (0.632 \times acc(M_i)_{testSet_i} + 0.368 \times acc(M_i)_{train_set})$$

Accuracy of the model obtained by bootstrap sample i when it is applied on test set i.

Accuracy of the model obtained by bootstrap sample i when it is applied over all labeled data

Evaluation summary

- Evaluation measures
 - ullet accuracy, error rate, sensitivity, specificity, precision, F-score, F_{eta} ...
- Train test splitting
 - Holdout, cross-validation, bootstrap,...
- Other parameters
 - Speed (model building time, model testing time)
 - Robustness to noise, outliers and missing values
 - Scalability for large data sets
 - Interpretability (by humans)