Кластеризация

Анализ данных— осень 2016

Цели кластеризации

Дано:

• $X = \left\{\vec{x}^{(i)}\right\}_{i=1}^m$, $\overrightarrow{x}^{(i)} \in \mathbb{R}^n$ -- выборка

Зачастую надо:

 Разбить выборку на группы схожих объектов, чтобы работать с ними по отдельности (классификация, регрессия, вот это все)

Иногда надо:

- Сократить объем хранимых данных
- Выделить нетипичные объекты
- Построить иерархию множества объектов

Подводные камни

Решение задачи кластеризации неоднозначно:

- Точной постановки задачи не существует
- Непонятно (обычно), на сколько кластеров можно разбить данные надо выбирать самому
- Непонятно, как оценивать качество кластеризации существует множество метрик
- Результат кластеризации сильно зависит от выбора метрики

Два основных подхода

Статистические методы

- ЕМ-алгоритм
- Его частный случай k-means

Иерархические методы

• Агломеративная иерархическая кластеризация

- Еще есть сети Кохонена, нечеткие методы, что-то еще
- Мы разберем k-means и иерархическую кластеризацию
- За всем остальным к Воронцову!

Метод К-средних (K-means algorithm)

Основная идея

Основная идея состоит в группировки немаркированных наблюдений в заданное количество кластеров (классов) путём минимизации расстояний до их центров

Общая схема алгоритма

Задать начальные значения центроидов кластеров

Повторять {

присвоить наблюдениям номер кластера с ближайшим к ним центром

передвинуть центроиды кластеров к среднему значению координат их членов

}

Иллюстрация работы метода

Влияние начальной инициализации

Функция потерь

К — количество классов, $c^{(i)}$ — класс і-го наблюдения, $i \in \{1; ... m\}$ $\vec{\mu}_k = [1 \times n]$ — центроид k-го класса, $k \in \{1; ...; K\}$

$$J(c^{(1)}, \dots, c^{(m)}, \vec{\mu}_1, \dots, \vec{\mu}_K) = \frac{1}{m} \sum_{i=1}^{m} ||\vec{x}^{(i)} - \vec{\mu}_{c^{(i)}}||^2$$

Более формальный алгоритм:

Повторять {

 $\min_{c^{(1)},\dots,c^{(m)}} J$

для і = 1 до m $c^{(i)} \coloneqq$ индекс ближнего центроида

для k = 1 до K
$$\vec{\mu}_k \coloneqq mean(\vec{x}^{(i)} \in кластер k)$$

}

 $\min_{\overrightarrow{\mu}_1,...,\overrightarrow{\mu}_k} J$

Метод K-средних в R

Пусть X — матрица наблюдений

```
km <- kmeans(X, centers = K, nstart = 10, iter.max = 20)
K-means clustering with 2 clusters of sizes 50, 50
Cluster means:
     [,1] \qquad [,2]
1 0.98398589 1.03541527
2 -0.03894685 -0.02637371
Clustering vector:
 Within cluster sum of squares by cluster:
[1] 8.535306 10.700694
 (between SS / total SS = 73.9 %)
Available components:
                                         "tot.withinss"
[1] "cluster" "centers" "totss"
                            "withinss"
[6] "betweenss" "size" "iter"
                            "ifault"
```

Скользкие моменты

• Почему метод сходится за конечное время?

Потому что на самом деле центроиды хоть и находятся в \mathbb{R}^n , есть не более K^m способов их расположения

• Как выбрать начальные позиции центроидов?

Можно провести несколько кластеризаций со случайной инициализацией центроидов. Или выбрать один случайно из точек, а затем выбирать из оставшихся с вероятностью, пропорциональной их удаленности от ближайшего центроида.

• Как выбрать количество кластеров?

Выбор количества классов

Количество классов рекомендуется увеличивать до тех пор, пока сохраняется быстрое снижение внутригрупповой ошибки

Агломеративная иерархическая кластеризация

Основная идея

Алгоритмы иерархической кластеризации можно разделить на два основных типа:

- Нисходящие алгоритмы, которые разбивают выборку на всё более и более мелкие кластеры.
- Агломеративные алгоритмы, в которых объекты объединяются во всё более и более крупные кластеры.

Общая схема алгоритма

```
Поместить все элементы в отдельные кластеры
Повторять {
выбрать два ближайши кластера
объединить их элементы в один кластер
}
```

Расстояние между кластерами

Как задать расстояние между кластерами? В общем случае — формула Ланса-Уильямса.

$$R(U \cup V, S)$$

$$= \alpha_U R(U, S) + \alpha_V R(V, S) + \beta R(U, V) + \gamma |R(U, S) - R(V, S)|$$

Несколько частных случаев:

- $R(W,S) = \min \rho(w,s)$
- $R(W,S) = \max \rho(w,s)$
- $R(W,S) = \frac{|S||W|}{|S|+|W|} \rho^2 (\sum_{w \in W} \frac{w}{|W|}, \sum_{S \in S} \frac{s}{|S|})$

Какая лучше? Последняя (потому что обладает "хорошими" свойствами)

Более формальное описание алгоритма

```
1) Задаем множество кластеров C_1: t=1 ; C_t=\{x_1,\dots,x_l\} 2) Для всех t=2..l { 3) В C_{t-1} найти два ближайших кластера (U,V)=\arg\min R(U,V); \ R_t=R(U,V) 4) убираем кластеры U,V; добавляем W=U\cup V 5) для всех S\in C_t { 6) вычисляем расстояние R(W,S) } }
```

Результат работы алгоритма

1. Расстояние ближнего соседа:

Диаграмма вложения

Дендрограмма

Результат работы алгоритма

2. Расстояние дальнего соседа:

Диаграмма вложения

Дендрограмма

Алгоритм в R

```
clusters = hclust(dist(iris[, 3:4]))
plot(clusters)
```


Домашнее задание

В файле «grades.csv» содержатся оценки 304-х студентов по 9-ти предметам

Вашей задачей является разделение этих студентов на академические группы, которое должно осуществляться, исходя из их успеваемости

Используйте оба метода, сравните результаты (количество кластеров, внутригрупповая дисперсия, что-нибудь еще)