Ejemplo de ajuste de distribución

Vásquez Guerra Carlos Fernando

El archivo payments.csv contiene información de clientes que hicieron pagos por una deuda del mismo tipo, es de interés para la compañía modelar los pagos que se están realizando.

La base proporcionada tiene 6 variables en total las siguientes se enlistan a continuación:

- id : Identificador de la persona que realiza el pago.
- Gender: Genero del cliente (male o female).
- Age: Edad del cliente.
- Payment.Method: Métodod de pago que uso el usuario (credit card, cheque o cash).
- Churn: Identifica si el cliente se ha retirado de la empresa (churn) o sigue con ella (loyal).
- Payment : Cantidad monetaria que realizo el usuario.

id	Gender	Age	Payment.Method	Churn	Payment
1	male	64	credit card	loyal	91.74816
2	male	35	cheque	churn	79.20001
3	female	25	credit card	loyal	90.15703
4	female	39	credit card	NA	69.85222
5	male	39	credit card	loyal	79.12670
6	female	28	cheque	churn	74.03494

Tratando a los datos de una forma más exhaustiva, se tienen las siguientes características:

	Unicos	%Unicos	Valores Perdidos	Moda	Tipo
Gender	2	0.2008032	0	male	character
Payment.Method	3	0.3012048	0	credit card	character
Churn	3	0.3012048	96	loyal	character

	Unicos	%Unicos	Mínimo	Máximo	Media	Desviación estandar	Tipo
id	996	100.000000	1.00000	996.0000	498.50000	287.66474	double
Age	74	7.429719	17.00000	91.0000	45.61647	18.77675	double
Payment	996	100.000000	48.50817	111.4355	84.64396	9.49986	double

Hay que destacar algunos puntos importantes:

- No importa que existan valores nulos en la variable Churn ya que no es la variable de interés, al menos para las instrucciones dadas.
- De manera rápida identificamos que la mayoría de clientes son hombres, tiene 42 años, al menos 17 y máximo 91 años, utilizan tarjeta de crédito, todos los usuarios tienen han realizado pagos diferentes y, en promedio, los usuarios deben 84.64396 ± 9.49986 unidades monetarias.

De manera general, esta la información que se tienen de los datos nulos sobre las variables.

No es de nuestro interés, al menos por el momento, arreglar los problemas con los valores perdidos, por que eso es todo lo que se mencionará sobre estos; además, no afectan a la variable que es de nuestro interés en este momento.

De manera rápida, para ver algunas relaciones y comportamientos de las variables dos a dos; se tiene la siguiente gráfica donde las gráficas de color rojo representan a los clientes de genero femenino y las de color azul para los hombres.

Con esto, podemos ver la siguiente información de manera más clara:

- La cantidad de hombres y mujeres solo varia por cien clientes.
- No hay una tendencia significativa que indique que las mujeres o los hombres pagan deudas más grandes que el otro género y lo mismo sucede con el método de pago y la edad.

Es de principal interés analizar el comportamiento de los pagos, por lo que se tiene una ampliación de la densidad de estos a continuación y más gráficas que serán de ayuda

Primero, veremos un histograma, densidad y distribución empirica de los pagos

Ahora, un boxplot

Ahora, nos interesa buscar de forma **empírica** qué variable aleatoria está detrás de los pagos de los clientes y así proponer una distribución.

Antes que nada, veamos algunas características que debe tener la variable aleatoria que propongamos:

- Valores continuos mayores a cero, ya que son precios y ningún precio en esta base de datos es negativo.
- Se tienen las siguientes estadísticas (aunque algunas ya se pudieron apreciar en las gráficas anteriores):
- 1. Media = 84.64396
- 2. Mediana = 85.1851347
- 3. Moda = 82.5
- 4. Varianza = 90.2473479
- 5. $Desviación \ estandar = 9.4998604$
- 6. $Rango\ intercuantil = [78.8975482, 91.0959555]$
- 7. Coeficiente de variación = 11%
- 8. Coeficiente de asimetría (Skewness) = -0.4685155
- 9. Curtosis = 3.4315899

Con los datos y las gráficas anteriores podemos resumir lo siguiente:

- Al ser los valores mayores a cero y continuos, descartamos cualquier variable discreta (como poisson, etc) y cualquiera que tenga un rango con valores negativos (como la normal y la t de Student), además de que se tienen valores mayores a uno por lo que se descartan otras distribuciones como la beta
- La densidad no tiene colas pesadas, en todo caso, la cola donde tiene la mayor cantidad de outliers es la cola izquierda (notable de ver en cualquiera de los tres gráficos anteriores); por lo que descartamos distribuciones con colas muy pesadas (como la log-Normal, Pareto y Burr)
- Al tener una curtosis positiva, inidica la presencia, como se puede ver en la gráfica de la densidad, de un pico y al tener un coeficiente de variación del 11%; los valores no varían demasiado de la media, lo cual, generalmente no cumple la distribución *exponencial*, por lo que proponemos una función gamma o weibull para ajustar estos datos.

Para la distribución gamma, se utilizaron los estimadores por momentos y para la función weibull, los estimadores máximo verosimil. Ambos con la función fitdistrplus::fitdist()

Gamma: forma = 79.4682621; rate = 0.9388534.
Weibull: forma = 10.281482; escala = 88.7567643.

A manera de resumen, se tiene lo siguiente:

Prueba	Estadístico	P-Value
Anderson-Darling	5.8184513	0.0011751
Kolmogorov-Smirnoff	0.0497377	0.0144837
Anderson-Darling	1.0908218	0.3129271
Kolmogorov-Smirnoff	0.0246616	0.5798048
	Anderson-Darling Kolmogorov-Smirnoff Anderson-Darling	Anderson-Darling 5.8184513 Kolmogorov-Smirnoff 0.0497377 Anderson-Darling 1.0908218

Por lo que elegimos la distribución Weibull como la distribución que mejor se ajusta a los datos; ya que, con esta distribución, no existe evidencia estadística suficiente para reachazar la hipótesis nula, es decir, no se recahza que no siguen una distribución weibull. Siendo más específicos sobre la distribución, se propone el siguiente modelo:

$$Weibull(x;\alpha=10.28148,\beta=88.75676) = \frac{\alpha}{\beta}(\frac{1}{\beta}x)^{(\alpha-1)}e^{-(\frac{1}{\beta}x)^{\alpha}} = \frac{10.28148}{88.75676}(\frac{1}{88.75676}x)^{(10.28148-1)}e^{-(\frac{1}{88.75676}x)^{10.28148}}e^{-(\frac{1}{88.75676}x)^{10.28$$

Finalmente, como algo extra; fijando una semilla ,set.seed(9), y realizando simulaciones sobre la weibull propuesta, se tiene la siguiente comparación de densidades

