

JUSTIFIED BELIEF BASED ON

UNCERTAIN AND CONTRADICTORY EVIDENCE

LILAC SEMINAR APR. 2, 2024 DAIRA PINTO PRIETO

joint work with

AYBÜKE ÖZGÜN

and

RONALD DE HAAN

"Computing (degree of) belief based on evidence."

THE PROBLEM

Suspects =
$$\{$$

$$:= \{\mathsf{Dog}\}$$

$$\mathbf{Q}^{\bullet}:=\{\mathsf{Rabbit},\mathsf{Turtle}\}$$

Images: Freepik.com, Flaticon.com

THE PROBLEM

Do I believe in P?

Solution: Topological Models of Evidence

evidence, argument, justification

Baltag, A.; Bezhanishvili, N.; Özgün, A.; and Smets, S. 2022. Justifed belief, knowledge, and the topology of evidence. Synthese 200(6):1-51. Images: Freepik.com. Flaticon.com

$$:= (\{\mathsf{Dog}\}, \mathsf{0.70})$$

$$\mathbf{Q}^{\bullet} := (\{\mathsf{Rabbit}, \mathsf{Turtle}\}, \mathsf{o.45})$$

Shafer, G. 1976. A Mathematical Theory of Evidence. Princeton, NJ: Princeton University Press.

Which is my degree of belief in P?

Solution: Demspter-Shafer Theory

uncertainty, ignorance

INPUT

OUTPUT

$$S = \{ Dog, Cat, Rabbit, Turtle \}$$

$$E_1 = (\{Dog, Cat, Rabbit\}, 0.95)$$

$$E_2 = (\{Dog\}, O.70)$$

$$E_3 = (\{Rabbit, Turtle\}, o.45)$$

 $Degree_of_Belief(P)$

where P is a subset of S

How to combine *imperfect* evidence and compute degree of belief based on it? (Capturing both Topological Models of Evidence and Dempster-Shafer Theory)

OUR SOLUTION: MULTI LAYER BELIEF MODEL

d.pintoprieto@uva.nl 6

NOTE ON TOPOLOGICAL MODELS OF EVIDENCE

$$S = \{a, b, c, d, e\}$$

$$B(\{b,d,e\})=1$$

$$B(\{d,e\}) = 0$$

$$\begin{array}{ccc} (\{\mathsf{Dog},\mathsf{Cat},\mathsf{Rabbit}\},\mathsf{o.95}) \\ \\ (\{\mathsf{Dog}\},\mathsf{o.70}) & (\{\mathsf{Rabbit}\},\ref{eq}) \end{array} \\ (\{\mathsf{Rabbit},\mathsf{Turtle}\},\mathsf{o.45}) \end{array}$$

MULTI LAYER BELIEF MODEL I

Input: Universe S, Evidence + Certainty Degree $\mathcal{E} = \{(E_i, p_i)\}_{i=1,...,k'}$ 2 Parameters **Output:** Degree of belief for every $P \in 2^S$

Justification Frame (Qualitative Layer)

 $\mathcal{J}_1 := \text{Every element of the topology of evidence (except }\emptyset\text{).}$

```
e.g., \mathcal{J}_1 = \{\{\text{Dog, Cat, Rabbit}\}, \{\text{Dog}\}, \{\text{Rabbit, Turtle}\}, \{\text{Rabbit}\}, \{\text{Rabbit, Dog}\}, \{\text{Dog, Rabbit, Turtle}\}\}
```

 $\mathcal{J}_2 :=$ Dense elements of the topology of evidence.

```
e.g., \mathcal{J}_2 = \{\{\text{Dog, Cat, Rabbit}\}, \{\text{Dog, Rabbit}\}, \{\text{Dog, Rabbit}, \text{Turtle}\}\}
```

Input: Universe *S*, Evidence + Certainty Degree $\mathcal{E} = \{(E_i, p_i)\}_{i=1,...,k'}$, 2 Parameters **Output:** Degree of belief for every $P \in 2^S$

 δ -function (Quantitative Layer)

$$\delta: \mathbf{2}^{\mathcal{E}}
ightarrow [\mathbf{0}, \mathbf{1}]$$

$$\delta(\mathbf{E}) = \prod_{\substack{(E_i, p_i) \text{ s.t.} \\ E_i \in \mathbf{E}}} p_i \prod_{\substack{(E_i, p_i) \text{ s.t.} \\ E_i \notin \mathbf{E}}} (1 - p_i)$$

e.g.,
$$\delta(\{\{\text{Dog}, \text{Cat}, \text{Rabbit}\}, \{\text{Rabbit}, \text{Turtle}\}\}) = 0.95 \cdot 0.45 \cdot (1 - 0.70) = 0.13$$

- \checkmark The Certainty values are combined and distributed over $2^{\mathcal{E}}$.
- X Our justifications are in 2^S , not in $2^{\mathcal{E}}$.

MULTI LAYER BELIEF MODEL III

Input: Universe S, Evidence + Certainty Degree $\mathcal{E} = \{(E_i, p_i)\}_{i=1,...,k}$, 2 Parameters **Output:** Degree of belief for every $P \in 2^S$

Allocation Function (Bridging Layer)

 $f: 2^{\mathcal{E}} o \mathsf{Topology} \ \mathsf{of} \ \mathsf{Evidence}$

Intersection, Union 🧖


```
e.g., if f = \text{intersection} then f(\{\{\text{Dog}, \text{Cat}, \text{Rabbit}\}, \{\text{Rabbit}, \text{Turtle}\}\}) = \{\text{Rabbit}\} and the \delta-value of \{\{\text{Dog}, \text{Cat}, \text{Rabbit}\}, \{\text{Rabbit}, \text{Turtle}\}\} goes for \{\text{Rabbit}\}.
```

- \checkmark The certainty values are combined and distributed over 2^S .
- \checkmark After some operations \ref{figure} , the certainty values are combined and distributed over \mathcal{J} .

OUR SOLUTION: MULTI LAYER BELIEF MODEL

Input: Universe *S*, Evidence + Certainty Degree $\mathcal{E} = \{(E_i, p_i)\}_{i=1,...,k'}$ 2 Parameters **Output:** Degree of belief for every $P \in 2^S$

Layers

Justification Frame * δ -function Allocation Function *

Belief Function

 $\mathsf{BELIEF}(P) \in [\mathsf{O},\mathsf{1}]$ adding $\delta\text{-values}$ of justifications contained in P

- ✓Partial evidence ✓Uncertain evidence
- ✓Inconsistent evidence
- ✓It replicates Topological Models of Evidence and Demspter's rule of combination
- ✓It does not increase the computational complexity of the problem (#P-COMPLETE)

Pinto Prieto, D.; de Haan, R.; and Özgün, A. 2023. A belief model for conficting and uncertain evidence. In KR 2023, 552-561.

OUR OTHER LINES OF WORK

- Computational Complexity analysis of Demspter's rule of combination, Topological Models of Evidence and Multi-Layer Belief Model.
- Knowledge Compilation approach for Demspter's rule of combination.
- Logic for reasoning about comparative strengths of evidence and belief under uncertainty.

d.pintoprieto@uva.nl 13

LOGIC FOR COMPARING EVIDENCE UNDER UNCERTAINTY

Starting point:

Harmanec, David; Hájek, Petr. 2011. **A qualitative belief logic**. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems.

$$\mathcal{M} = \langle S, \mathsf{bel}, \mathcal{V} \rangle \qquad \qquad \mathcal{M} = \langle S, \mathcal{E}^Q, \mathsf{Bel}, \mathcal{V} \rangle$$

$$\mathsf{Bel}(\varphi) = \mathsf{bel}(\llbracket \varphi \rrbracket) \qquad \qquad \mathcal{M}, \mathsf{s} \models \varphi \triangleleft_{\mathsf{Bel}} \psi \text{ if and only if } \mathsf{Bel}(\varphi) \leq \mathsf{Bel}(\psi)$$

$$\mathcal{M}, \mathsf{s} \models \varphi \triangleleft \psi \text{ if and only if } \mathsf{Pel}(\varphi) \leq \mathsf{Bel}(\psi)$$

$$\mathcal{M}, \mathsf{s} \models \varphi \triangleleft_{\bullet} \psi \text{ if and only if } \mathsf{Pel}(\varphi) \leq \mathsf{Pel}(\psi)$$

d.pintoprieto@uva.nl 14

DEFINING A ELEMENT-WISE COMPARISON OPERATOR

 $\varphi \triangleleft_{\bullet} \psi$ if and only if for every $X,Y \in \mathcal{E}$ such that $X \subseteq \llbracket \varphi \rrbracket$ and $Y \subseteq \llbracket \psi \rrbracket$, $q_X \leq q_Y$.

DEFINING A ELEMENT-WISE COMPARISON OPERATOR

 $\varphi \triangleleft_{ullet} \psi$ if and only if for every $X \in \mathcal{E}$ such that $X \subseteq \llbracket \varphi \rrbracket$ there exists $Y \in \mathcal{E}$ such that $Y \subseteq \llbracket \psi \rrbracket$ and $q_X \leq q_Y$, and for every $Y \in \mathcal{E}$ such that $Y \subseteq \llbracket \psi \rrbracket$ there exists $X \in \mathcal{E}$ such that $X \subseteq \llbracket \varphi \rrbracket$ and $q_X \leq q_Y$.

DEFINING A ELEMENT-WISE COMPARISON OPERATOR

?

d.pintoprieto@uva.nl 17 / 17

REFERENCES

- Shafer, G. 1976. A Mathematical Theory of Evidence. Princeton, NJ: Princeton University Press.
- Baltag, A.; Bezhanishvili, N.; Özgün, A.; and Smets, S. 2022. Justifed belief, knowledge, and the topology of evidence. *Synthese* 200(6):1–51.
- Pinto Prieto, D.; de Haan, R.; and Özgün, A. 2023. A belief model for conficting and uncertain evidence connecting dempster-shafer theory and the topology of evidence. In Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning (KR 2023), 552–561.
- Harmanec, David; Hájek, Petr. 2011. A qualitative belief logic. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems.

RESOURCES AND CONTACT

SOLUTION QUANTITATIVE: DEMPSTER-SHAFER THEORY

Input: Universe S, Evidence + Certainty Degree $\mathcal{E} = \{(E_i, p_i)\}_{i=1,\dots,p}$

Output: Degree of belief for every $P \in 2^S$

e.g.,
$$\operatorname{BEL}(\{\operatorname{Dog},\operatorname{Rabbit}\}) = \operatorname{O.75}; \operatorname{BEL}(\{\operatorname{Dog}\}) = \operatorname{O.56}$$

Dempster's Rule of Combination

Belief Functions

 $E_1 \oplus E_2$

 $BEL(P) \in [0,1]$

✓ Partial evidence ✓ Uncertain evidence ~ Inconsistent evidence

Computational Complexity: #P-COMPLETE

DEMPSTER-SHAFER THEORY

Definition (Basic probability assignment)

$$m: 2^S \to [0,1]$$
 such that $m(\emptyset) = 0$ and $\sum_{A \subseteq S} m(A) = 1$.

Definition (Dempster's rule of combination)

Let m_1 and m_2 be b.p.a. Then $m_1 \oplus m_2$, is:

$$m(\emptyset) = o \text{ and } \sum_{A_i \cap B_i = C} m_1(A_i) m_2(B_i)$$

$$m(C) = \frac{\sum_{A_i \cap B_j = C} m_1(A_i) m_2(B_j)}{K}$$
, where K is $1 - \sum_{A_i \cap B_j = \emptyset} m_1(A_i) m_2(B_j)$, for all nonempty sets $C \subseteq S$.

Definition (Belief function)

BEL:
$$2^S \to [0,1]$$
 such that BEL(\emptyset) = 0, BEL(S) = 1 and BEL($\bigcup_{i=1}^n A_i$) $\geq \sum_{\emptyset \neq I \subset \{1,\dots,n\}} (-1)^{|I|+1}$ BEL($\bigcap_{i \in I} A_i$).

SOLUTION QUALITATIVE: TOPOLOGICAL MODELS OF EVIDENCE

Input: Universe S, Evidence $\mathcal{E} = \{E_i\}_{i=1}^n$ (no uncertainty!)

Output: Boolean belief operator for every $P \in 2^S$

e.g.,
$$B(\{Dog, Rabbit\}) = 1$$
; $B(\{Dog\}) = 0$

Topology of Evidence

Evidence set closed under finite intersections and arbitrary unions

Belief Operator

B(P) = 1 iff there is a dense set in the topology contained in P

✓ Partial evidence ✓ Uncertain evidence ✓ Inconsistent evidence

Computational Complexity: EXP (applying formal definition straightforward)

TOPOLOGICAL MODELS OF EVIDENCE

Definition (Topological Space)

A topological space is a pair (S, τ) , where S is a nonempty set and τ is a family of subsets of S such that $S, \emptyset \in \tau$, and τ is closed under finite intersections and arbitrary unions.

Definition (Topology of Evidence)

Given a set of pieces of evidence \mathcal{E} , the topology $\tau_{\mathcal{E}}$ generated by \mathcal{E} is called the *topology of evidence*.

Definition (Mutually inconsistent/consistent)

We say that two pieces of evidence $E, E' \in \tau \mathcal{E}$ are mutually inconsistent if $E \cap E' = \emptyset$, and mutually consistent otherwise.

Definition (Belief Operator)

A proposition P is believed if and only if there is a $T \in \tau_{\mathcal{E}} \setminus \{\emptyset\}$ and $T \subseteq P$, such that T is consistent with any piece of evidence in $\tau_{\mathcal{E}} \setminus \{\emptyset\}$, i.e., T is dense in S w.r.t. $\tau_{\mathcal{E}}$.

MULTI-LAYER BELIEF MODEL: ALLOCATION FUNCTIONS

Definition (Set of evidence allocation functions)

Let (S, \mathcal{E}) be a qualitative evidence frame. A set of evidence allocation functions \mathfrak{F} on (S, \mathcal{E}) is a set of of functions from $2^{\mathcal{E}}$ to $\tau_{\mathcal{E}}$ (the topology generated by \mathcal{E}) such that for all $f, g \in \mathfrak{F}$:

- 1. $f(\emptyset) = S$,
- 2. for all $\mathbf{E} \subseteq \mathcal{E}$, $f(\mathbf{E}) \in \tau_{\mathbf{E}}$ (the topology generated by \mathbf{E}) and it is dense in $\cup \mathbf{E}$ w.r.t. $\tau_{\mathbf{E}}$; or $f(\mathbf{E}) = \emptyset$.
- 3. for all $\mathbf{E} \subseteq \mathcal{E}$ and every f, g in \mathfrak{F} , $f(\mathbf{E}) \subseteq g(\mathbf{E})$ or $g(\mathbf{E}) \subseteq f(\mathbf{E})$.

Definition (Minimal dense set allocation function)

 $d: 2^{\mathcal{E}} \to \tau_{\mathcal{E}}$ such that

$$d(\mathbf{E}) = \begin{cases} \min((\mathsf{dense}(\mathbf{E}), \subseteq)) & \text{if } \mathbf{E} \neq \emptyset, \\ S & \text{otherwise.} \end{cases}$$

^aNote that since $\mathbf{E} \subseteq \mathcal{E}$, we have $\tau_{\mathbf{F}} \subseteq \tau_{\mathcal{E}}$ (follows immediately by the definitions of generated topologies).

MULTI-LAYER BELIEF MODEL: FORMULAS

Input:		Justification frame:	Allocation Function:	Mass Function:
S	$\mathcal{E} imes [0,1]$	${\cal J}$	$f: extsf{2}^{\mathcal{E}} ightarrow au$	$\delta: 2^{\mathcal{E}} o [0, 1]$

$$\delta_{\tau}(T) = \sum_{\mathbf{E}: f(\mathbf{E}) = T} \delta(\mathbf{E})$$
 $\delta_{\mathcal{J}}(A) = \frac{\delta_{\tau}(A)}{\sum\limits_{T \in \mathcal{J}} \delta_{\tau}(T)}$ $\mathsf{Bel}^{\mathcal{J}}(P) = \sum\limits_{J \subseteq P} \delta_{\mathcal{J}}(J)$

MULTI-LAYER BELIEF MODEL: FULL EXAMPLE

\mathcal{J}_1	\mathcal{J}_{2}
0.75	0
0.02	0
0.81	0.62
\mathcal{J}_1	\mathcal{J}_2
0.56	0
0.02	0
0.40	0
	0.02 0.81 J ₁ 0.56 0.02

ZADEH'S PARADOX

$$S = \{A, B, C\}$$

$$m_1(A) = 0.99, m_1(B) = 0.01,$$

$$m_2(C) = 0.99, m_2(B) = 0.01$$

$$m_1 \oplus m_2(B) = 1$$

$$m_1 \oplus m_2(\{A,C\}) = 0$$