Homework 3

A portion of the following problems will be graded according to the provided rubric.

- 1. Rudin pg 44 problem 11
- 2. Let $E = [0,1] \cup (2,3)$
 - a. What are the limit points of E?
 - b. What are the isolated points of E?
 - c. What is the interior of E?
 - d. What is the closure of E?
 - e. Is *E* open, closed, clopen, or not open and not closed?
 - f. Find the boundary of E.
- 3. Prove that in any metric space (X, d) the sets X and \emptyset are clopen.
- 4. Rudin pg 43 problem 9 parts a, d, e, and f
- 5. Find two sets of real numbers A and B such that $A \cap B = \emptyset$ and $\bar{A} \cap \bar{B} \neq \emptyset$.
- 6. Rudin pg 43 problem 7
- 7. Let $E \subset \mathbb{R}$ be nonempty and bounded below. Show that $\inf(E) \in \overline{E}$.
- 8. Let (X, d) be a metric space and $E \subset X$. Show that:
 - a. E° is the union of all the open subsets of E
 - b. \overline{E} is the intersection of all the closed supersets of E
- 9. Prove that the complement of any \mathcal{F}_{σ} -set is a \mathcal{G}_{δ} -set.