Riepilogo di Teoria dei Sistemi a.a. 2020/2021

Mario Sassano

Dipartimento di Ingegneria Civile e Ingegneria Informatica Università di Roma Tor Vergata

Sistema Lineare a Tempo Continuo

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0 \qquad t \in \mathbb{R}$$
$$y(t) = Cx(t) + Du(t), \qquad t \in \mathbb{R}$$

 $x(t) \in \mathbb{R}^n$ stato, $u(t) \in \mathbb{R}^p$ controllo, $y(t) \in \mathbb{R}^q$ uscita

 $A \in \mathbb{R}^{n \times n}$, matrice dinamica, $B \in \mathbb{R}^{n \times p}$, matrice d'ingresso

 $C \in \mathbb{R}^{q \times n}$, matrice d'uscita, $D \in \mathbb{R}^{q \times p}$ legame diretto ingresso/uscita

⇒ La soluzione **esiste** sempre ed è **unica**

$$x(t) = \underbrace{e^{At}x_0}_{\text{evoluzione libera}} + \underbrace{\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau}_{\text{evoluzione forzata}}$$

Verifichiamo che $x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$ è la soluzione facendone la derivata rispetto al tempo¹

$$\dot{x}(t) = Ae^{At}x_0 + Bu(t) + \int_0^t Ae^{A(t-\tau)}Bu(\tau)d\tau$$

$$= A\underbrace{\left(e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau\right)}_{=x(t)} + Bu(t)$$

$$= Ax(t) + Bu(t)$$

Inoltre, sostituendo t = 0

$$x(0) = e^{A0}x_0 + \int_0^0 e^{A(t-\tau)}Bu(\tau)d\tau = x_0$$

$$\frac{d}{dt}\left(\int_0^t g(t,s)ds\right) = g(t,t) + \int_0^t \frac{d}{dt}g(t,s)ds$$

e che

$$\frac{d}{dt}e^{At} = Ae^{At} = e^{At}A$$

¹Ricordiamo che

Proprietà di Stabilità (con u = 0)

Stato di Equilibrio: uno stato $x_e \in \mathbb{R}^n$ nel quale il sistema rimane *indefinitamente* in assenza di perturbazioni (lo studio della stabilità si occupa proprio di studiare cosa succede in presenza di perturbazioni...)

$$x(0) = x_e \Rightarrow x(t) = x_e, \forall t \text{ (derivata nulla, } Ax_e = 0 \text{ ovvero } x_e \in \ker(A)$$

Stabilità di x_e : piccoli scostamenti da x_e comportano solo piccoli moti intorno all'equilibrio, e *tanto più piccoli quanto più è piccolo lo scostamento iniziale*

$$\forall \varepsilon > 0, \exists \delta_{\varepsilon} > 0 : \|x_0 - x_e\| < \delta_{\varepsilon} \Rightarrow \|x(t) - x_e\| < \varepsilon, \forall t \ge 0$$

Instabilità di x_e:

$$\exists \varepsilon > 0, \forall \delta_{\varepsilon} > 0 : \|x_0 - x_e\| < \delta_{\varepsilon} \Rightarrow \|x(t) - x_e\| < \varepsilon, \forall t \ge 0$$

Attrattività di x_e : i moti del sistema riportano lo stato nella configurazione di equilibrio

$$\exists \delta_a > 0 : \|x_0 - x_e\| < \delta_a \Rightarrow \lim_{t \to \infty} \|x(t) - x_e\| = 0$$

Stabilità + Attrattività → **Stabilità Asintotica**

<□ > < Ē > < Ē > 〈Ē > 〈Ē > 〈Ē > ○ 집 · ♡ Q ⓒ

Sassano (DICII) OSC 1 - Lezione 10

Teoria di Lyapunov (1/2)

La teoria di Lyapunov ci permette di concludere circa le proprietà di stabilità di $x_{\rm e}$ senza dover calcolare tutti i moti "perturbati"

Origine della teoria: **Analisi di Sistemi Meccanici** pendolo con attrito:

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -gsin(x_1) - bx_2$$

9

 $x_1 = \varphi$ (posizione angolare), $x_2 = \dot{\varphi}$ (velocità angolare), g gravità, b coefficiente di attrito Definiamo **energia totale** E(x) = energia potenziale + energia cinetica

$$E(x) = \underbrace{g(1 - cos(x_1))}_{\text{energia potenziale}} + \underbrace{\frac{1}{2}x_2^2}_{x_2} \ge 0$$

Si nota che $E(x(t)) \rightarrow 0$ per $t \rightarrow \infty$ lungo le traiettorie del sistema

L'energia E converge ad un minimo \Rightarrow L'equilibrio $x_e = (0,0)$ è asintoticamente stabile

Sassano (DICII) OSC 1 - Lezione 10 4

Teoria di Lyapunov (2/2)

Metodo diretto di Lyapunov

Per uno stato di equilibrio x_e cerchiamo di trovare una *opportuna* funzione ("di energia") V(x) che assume il valore minimo in x_e e che venga dissipata lungo il moto del sistema

Intuitivamente, significa valutare la funzione V lungo le traiettorie del sistema e vedere che decresca sempre

Energia converge ad un minimo $\Rightarrow x(t)$ converge a x_e (punto di minimo)!

Due aspetti da spiegare:

1) Cosa significa "valutare V lungo le traiettorie del sistema"? \rightarrow calcolare V(x(t))

$$\dot{x} = -(x - x_e), \ V(x) = (x - x_e)^2$$

Teoria di Lyapunov (2/2)

Metodo diretto di Lyapunov

Per uno stato di equilibrio x_e cerchiamo di trovare una opportuna funzione ("di energia") V(x) che assume il valore minimo in x_e e che venga dissipata lungo il moto del sistema

Intuitivamente, significa valutare la funzione V lungo le traiettorie del sistema e vedere che decresca sempre

Energia converge ad un minimo $\Rightarrow x(t)$ converge a x_e (punto di minimo)!

Due aspetti da spiegare:

- 1) Cosa significa "valutare V lungo le traiettorie del sistema"? \rightarrow calcolare V(x(t))
- 2) come vedere se "decresce"? \rightarrow calcolare derivata² $\dot{V}(x(t))$

$$\frac{d}{dt}V(x(t)) = \frac{\partial V}{\partial x}\dot{x} = \frac{\partial V}{\partial x}Ax < 0$$

Sassano (DICII) OSC 1 - Lezione 10

 $^{{}^2}f:\mathbb{R} \to \mathbb{R}$, derivata totale df/dx, $f:\mathbb{R}^n \to \mathbb{R}$, derivata parziale $\partial f/\partial x = \mathbb{R} + \mathbb{R}$

Metodo diretto di Lyapunov

Funzione di Lyapunov

Supponiamo $V(0)=0,\ V(x)>0$ per ogni $x\neq 0$ e $V\in\mathcal{C}^1$ (derivabile con continuità), allora

- \dot{V} < 0, per ogni $x \neq 0$, implica x = 0 è asintoticamente stabile (AS)
- $\dot{V} \le 0$, per ogni $x \ne 0$, implica x = 0 è stabile

Proviamo ad "indovinare" la struttura della funzione di Lyapunov, $V = x^T P x$, $P = P^T > 0$

$$\Rightarrow \dot{V} = \frac{\partial V}{\partial x} \dot{x} = 2x^{T} P(Ax) = x^{T} (PA + A^{T} P) x$$

Quindi, x = 0 è AS se (e solo se) per ogni $Q = Q^{T} > 0$ esiste una P tale che

$$PA + A^{\mathsf{T}}P = -Q$$
, Equazione di Lyapunov $(\Rightarrow \dot{V} < 0, \forall x)$

Inoltre, l'Equazione di Lyapunov ammette una soluzione P quale che sia Q se e solo se tutti gli **autovalori** di A sono a parte reale negativa

Proprietà di raggiungbilità e controllabilità

Vista l'importanza della stabilità, ci chiediamo se sia possibile imporre la proprietà di stabilità applicando al sistema un controllo u=Fx

Raggiungibilità: uno stato \bar{x} si dice *raggiungibile* se esistono un istante finito $\bar{t} > 0$ e una funzione di ingresso $u(\cdot)$ tali che

$$\bar{x} = \int_0^{\bar{t}} e^{A(t-\tau)} Bu(\tau) d\tau$$

$$(x(0) = 0 \rightarrow x(\bar{t}) = \bar{x})$$

⇒ Il sistema si dice raggiungibile se tutti gli stati sono raggiungibili

Controllabilità: uno stato \bar{x} si dice *controllabile* se esistono un istante finito $\bar{t} > 0$ e una funzione di ingresso $u(\cdot)$ tali che

$$0 = e^{A\bar{t}}\bar{x} + \int_0^{\bar{t}} e^{A(t-\tau)} Bu(\tau) d\tau$$

$$(x(0) = \bar{x} \rightarrow x(\bar{t}) = 0)$$

⇒ Il sistema si dice controllabile se tutti gli stati sono controllabili

<□ > 4 Ē > 4 Ē > 4 Ē > 4 Ē > 1 Ē · 9 Q ⓒ

Insieme degli stati raggiungibili

Consideriamo il sistema $\dot{x} = Ax + Bu$ e definiamo la matrice Gramiana di raggiungibilità $G(t) \in \mathbb{R}^{n \times n}$

$$G(t) = \int_0^t e^{A\tau} B B^{\mathsf{T}} e^{A^{\mathsf{T}} \tau} d\tau$$

Inoltre definiamo la matrice di raggiungibilità $\mathcal{P} \in \mathbb{R}^{n \times (np)}$

$$\mathcal{P} = \begin{bmatrix} B & AB & A^2B & \dots & A^{n-1}B \end{bmatrix}$$

$$\Rightarrow$$
 per ogni³ $t \neq 0$, $\operatorname{im}(G(t)) = \operatorname{im}(P)$

Stati Raggiungibili

L'insieme \mathcal{X}_r degli stati raggiungibili, che coincide con quello degli stati controllabili per sistemi a tempo continuo, è il sottospazio di \mathbb{R}^n definito come $\mathcal{X}_r = \operatorname{im}(G(t)) = \operatorname{im}(\mathcal{P})$. Quindi il sistema è raggiungibile/controllabile se e solo se^a $\operatorname{rank}(G(t)) = \operatorname{rank}(\mathcal{P}) = n$

Sassano (DICII) OSC 1 - Lezione 10 9 / 1

^ail rango, rank, è il massimo numero di righe o colonne linearmente indipendenti

³matrice $M = [m_1, m_2, ..., m_p]$, $\operatorname{im}(M) = \operatorname{span}\{m_1, m_2, ..., m_p\}$, ovvero i vettori $v = \alpha_1 m_1 + ... + \alpha_p m_p$ ottenuti al variare di $\alpha_1, ..., \alpha_p$

Assegnazione degli autovalori

Abbiamo visto che per il sistema (autonomo, ovvero con u=0) $\dot{x}=Ax$ la stabilità è legata agli autovalori di A

Se applichiamo al sistema controllato $\dot{x} = Ax + Bu$ il feedback u = Fx(+v) otteniamo il sistema a ciclo-chiuso

$$\dot{x} = (A + BF)x(+Bv)$$

 \Rightarrow cosa possiamo dire degli autovalori di A + BF?

Assegnazione arbitraria degli autovalori

Gli autovalori di A+BF possono essere assegnati arbitrariamente tramite F se e solo se il sistema è controllabile/raggiungibile

Algoritmo di Mitter

Ipotesi semplificative

- supponiamo che la matrice A possieda tutti autovalori distinti
- ullet vogliamo spostare l'autovalore reale λ_a di A nell'autovalore reale γ_a di A + BF

Algoritmo

1) calcoliamo un autovettore sinistro v_a di A relativo a λ_a , ovvero

$$v_a \neq 0, \qquad v_a^{\mathsf{T}} A = \lambda_a v_a^{\mathsf{T}}$$

- 2) per la controllabilità, $v_a^T B \neq 0$
- 3) introduciamo l'incognita $f_a \in \mathbb{R}^p$ (p numero di colonne di B) e risolviamo

$$v_a^{\mathsf{T}} B f_a = \gamma_a - \lambda_a$$

4) poniamo $u = F_a x + v$, con $F_a = f_a v_a^{\mathsf{T}}$

Verifica

$$v_a^\top \big(A + BF_a\big) = v_a^\top A + v_a^\top Bf_a v_a^\top = \frac{\lambda_a}{\lambda_a} v_a^\top + \big(\gamma_a - \frac{\lambda_a}{\lambda_a}\big) v_a^\top = \gamma_a v_a^\top \text{ (per l'autovalore considerato..)}$$

$$(A + BF_a)w_i = Aw_i + Bf_a v_a^{\top} w_i = \lambda_i w_i$$
 (per tutti gli altri autovalori λ_i di $A...$)

Consideriamo le matrici

$$A = \left[\begin{array}{rrr} -1 & 0 & 1 \\ 1 & -8 & 0 \\ 0 & 0 & 2 \end{array} \right], \qquad B = \left[\begin{array}{rrr} 2 & 0 \\ 0 & 1 \\ 1 & 0 \end{array} \right]$$

verifichiamo se la stabilizzazione sia già risolta con u = 0, calcolando gli autovalori di A

$$\begin{split} \det(A-\lambda I) = & \det\left(\begin{bmatrix} -1-\lambda & 0 & 1 \\ 1 & -8-\lambda & 0 \\ 0 & 0 & 2-\lambda \end{bmatrix} \right) = (2-\lambda) \det\left(\begin{bmatrix} -1-\lambda & 0 \\ 1 & -8-\lambda \end{bmatrix} \right) \\ = & (2-\lambda)(-1-\lambda)(-8-\lambda) \quad \Rightarrow \quad \text{autovalori} := \{2,-1,-8\} \end{split}$$

 \Rightarrow dobbiamo spostare l'autovalore λ_a = 2 in, ad esempio, γ_a = -6

verifichiamo se il sistema è controllabile

 \Rightarrow dobbiamo costruire la matrice \mathcal{P} = $\begin{bmatrix} B & AB & A^2B \end{bmatrix}$ e verificare che abbia rango pari a 3

∢□▶ ∢圖▶ ∢團▶ ∢團▶ □ 團□

Algoritmo di Mitter - Esempio (2/3)

costruiamo la matrice ${\mathcal P}$ per passi (aggiungendo colonne) e verifichiamo il rango via via:

$$\mathcal{P}_1 = B = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \implies \text{può avere rango } 3?$$

$$\mathcal{P}_2 = [B \ AB] = \begin{bmatrix} 2 & 0 & -1 & 0 \\ 0 & 1 & 2 & -8 \\ 1 & 0 & 2 & 0 \end{bmatrix} \Rightarrow \text{scegliamo le prime 3 colonne...}$$

$$\det\left(\left[\begin{array}{cc|cc|c} 2 & 0 & -1 \\ 0 & 1 & 2 \\ 1 & 0 & 2 \end{array}\right]\right) = \left[\begin{array}{cc|cc|c} 2 & 0 & -1 & 2 & 0 \\ 0 & 1 & 2 & 0 & 1 \\ 1 & 0 & 2 & 1 & 0 \end{array}\right] = \underbrace{\underbrace{4+0+0}_{\text{diagonali}}}_{\text{diagonali}} \underbrace{(0+0-1)}_{\text{elagonali}} = 5 \neq 0$$

(applicando la regola di Sarrus...)

⇒ Il sistema è controllabile!

Sassano (DICII) OSC 1 - Lezione 10

Algoritmo di Mitter - Esempio (3/3)

Calcoliamo un autovettore sinistro di A relativo a $\lambda_a = 2$, incognita $v_a^{\top} = [a, b, c]$

$$[a,b,c] \left[\begin{array}{cccc} -1-2 & 0 & 1 \\ 1 & -8-2 & 0 \\ 0 & 0 & 2-2 \end{array} \right] \quad \Rightarrow \quad \left\{ \begin{array}{cccc} -3a+b & = & 0 \\ -10b & = & 0 \\ a & = & 0 \end{array} \right. \Rightarrow \quad v_a = \left[\begin{array}{cccc} 0 \\ 0 \\ 1 \end{array} \right]$$

Verifichiamo che $v_a^T B = [1, 0] \neq 0$

Introduciamo l'incognita $f_a = [f_1, f_2]^T$ e risolviamo

$$\begin{bmatrix} 1,0 \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = -6 - 2 = -8 \implies \text{ad esempio } f_a = \begin{bmatrix} -8 \\ 0 \end{bmatrix}$$

Selezioniamo $F = f_a v_a^{\mathsf{T}}$

$$\left[\begin{array}{c} -8 \\ 0 \end{array}\right] \left[0,0,1\right] = \left[\begin{array}{ccc} 0 & 0 & -8 \\ 0 & 0 & 0 \end{array}\right]$$

 \Rightarrow calcolare autovalori di A + BF...

Proprietà di osservabilità

Un sistema si dice osservabile dall'uscita y se esiste un intervallo finito di tempo $[0, \bar{t}]$ tale che, conoscendo senza errori y(t) e u(t) per $t \in [0, \bar{t}]$ e le matrici A, B, C e D, risulti possibile in ogni caso individuare **univocamente** il valore dello stato all'inizio di tale intervallo, ovvero x(0)

Matrice Gramiana di osservabilità/ Matrice di osservabilità

$$L(t) = \int_0^t e^{A^T \tau} C^T C e^{A\tau} dd\tau \qquad \mathcal{O} = \begin{bmatrix} C & CA \\ CA^2 & \vdots \\ CA^{n-1} \end{bmatrix}$$

Stati Inosservabili¹

L'insieme \mathcal{X}_i degli stati inosservabili è $\mathcal{X}_i = \ker(L(t)) = \ker(\mathcal{O})$. Quindi il sistema è osservabile se e solo se $\operatorname{rank}(L(t)) = \operatorname{rank}(\mathcal{O}) = n$

Sassano (DICII) OSC 1 - Lezione 10 15/

¹ Due stati iniziali x_a e x_b sono inosservabili se le corrispondenti uscite $y_a(t)$ e $y_b(t)$ coincidono per ogni t, ovvero (con u = 0 per semplicità) $y_a(t) = Ce^{At}x_a = y_b(t) = Ce^{At}x_b \forall t \ge 0$

Nelle prossime lezioni...

Siamo interessati a studiare problemi di controllo ottimo per sistemi a tempo continuo

Prossimi passi:

- Forniamo la definizione generale di un problema di controllo ottimo a tempo continuo
- Formalizziamo e dimostriamo il Principio di Ottimalità di Bellman
- Dimostriamo che l'equazione di Hamilton-Jacobi-Bellman (HJB) fornisce condizioni necessarie e sufficienti di ottimalità