Markov Decision Processes (MDPs)

Ron Parr CSCI 2951-F Brown University

With thanks to Kris Hauser for some slides

The MDP Framework

• State space: S

• Action space: A

• Transition function: P

• Reward function: R(s,a,s') or R(s,a) or R(s)

• Policy: $\pi(s) \to a$

• Discount factor: γ

Objective: Maximize expected, discounted return (sum of rewards)

Applications of MDPs

- AI/Computer Science
 - Robotic control (Koenig & Simmons, Thrun et al., Kaelbling et al.)
 - Air Campaign Planning (Meuleau et al.)
 - Elevator Control (Barto & Crites)
 - Computation Scheduling (Zilberstein et al.)
 - Control and Automation (Moore et al.)
 - Spoken dialogue management (Singh et al.)
 - Cellular channel allocation (Singh & Bertsekas)

Applications of MDPs

- Economics/Operations Research
 - Fleet maintenance (Howard, Rust)
 - Road maintenance (Golabi et al.)
 - Packet Retransmission (Feinberg et al.)
 - Nuclear plant management (Rothwell & Rust)
 - Debt collection strategies (Abe et al.)
 - Data center management (DeepMind)

Applications of MDPs

- EE/Control
 - Missile defense (Bertsekas et al.)
 - Inventory management (Van Roy et al.)
 - Football play selection (Patek & Bertsekas)
- Agriculture
 - Herd management (Kristensen, Toft)
- Other
 - Sports strategies
 - Board games
 - Video games

The Markov Assumption

- Let S_t be a random variable for the state at time t
- $P(S_t | A_{t-1}S_{t-1},...,A_0S_0) = P(S_t | A_{t-1}S_{t-1})$
- Markov is special kind of conditional independence
- Future is independent of past given current state, *action* (similar to HMM assumptions, but adds actions)

About Rewards

- R(s,a,s') is most general typically interpreted to associate rewards with transitions. Reward is accrued in state s.
- R(s,a) Any R(s,a,s') model can be converted to this w/o changing the optimal policy (because of linearity of expectation)
- R(s) Simplest to write and work with. In general, cannot convert from R(s,a) w/o changing the optimal policy.
- Can always convert from less complicated reward models to more complicated (upwards in this list) w/o consequences

Understanding Discounting: $0 \le \gamma \le 1$

- · Mathematical motivation
 - Keeps values bounded
 - What if I promise you \$0.01 every day you visit me?
- Economic motivation
 - Discount comes from inflation
 - Promise of \$1.00 in future is worth \$0.99 today
- Probability of dying (losing the game)
 - Suppose ε probability of dying at each decision interval
 - Transition w/prob ϵ to state with value 0
 - Equivalent to 1- ϵ discount factor

Discounting in Practice

- Often chosen unrealistically low
 - Faster convergence of the algorithms we'll see later
 - Leads to slightly myopic policies
- Can reformulate most algs. for avg. reward
 - Mathematically uglier
 - Somewhat slower run time

Value Determination

Determine the value of each state under policy $\boldsymbol{\pi}$

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$$

Bellman Equation for a fixed policy π

$$V^{\pi}(s_1) = 1 + \gamma(0.4V^{\pi}(s_2) + 0.6V^{\pi}(s_3))$$

Matrix Form

$$\mathbf{P}^{\pi} = \begin{pmatrix} P(s_1 \mid s_1, \pi(s_1)) & P(s_2 \mid s_1, \pi(s_1)) & P(s_3 \mid s_1, \pi(s_1)) \\ P(s_1 \mid s_2, \pi(s_2)) & P(s_2 \mid s_2, \pi(s_2)) & P(s_3 \mid s_2, \pi(s_2)) \\ P(s_1 \mid s_3, \pi(s_3)) & P(s_2 \mid s_3, \pi(s_3)) & P(s_3 \mid s_3, \pi(s_3)) \end{pmatrix}$$

$$\mathbf{V}^{\pi} = \gamma \mathbf{P}^{\pi} \mathbf{V}^{\pi} + \mathbf{R}^{\pi}$$

Generalization of the game show example from earlier

How to solve this system efficiently? Does it even have a solution?

Solving for Values

$$\mathbf{V}^{\pi} = \gamma \mathbf{P}^{\pi} \mathbf{V}^{\pi} + \mathbf{R}^{\pi}$$

For moderate numbers of states we can solve this system exacty:

$$\mathbf{V}^{\pi} = (\mathbf{I} - \gamma \mathbf{P}^{\pi})^{-1} \mathbf{R}^{\pi}$$

Guaranteed invertible because $\gamma \mathbf{P}^{\pi}$ has spectral radius <1 when γ <1

Iteratively Solving for Values

$$\mathbf{V}^{\pi} = \gamma \mathbf{P}^{\pi} \mathbf{V}^{\pi} + \mathbf{R}^{\pi}$$

For larger numbers of states we can solve this system *indirectly*:

$$\mathbf{V}^{\pi}_{i+1} = \gamma \mathbf{P}^{\pi} \mathbf{V}^{\pi}_{i} + \mathbf{R}^{\pi}$$

Guaranteed convergent because γP_{π} has spectral radius <1

Converges to V^{π} , which we call a fixed point because updates Don't change the value any more

When to stop an iterative solver?

- Just pick some big number of iterations
- Use convergence rates to bound minimum number of iterations required to get within some range of true value function
- Dynamically decide when to stop when change in value function is small from one iteration to the next (also can be guided by theory)

Interpreting the Iterations

- Suppose $V_0^{\pi} = 0$, and R is defined on (s,a)
- Then $V_1^{\pi} = R^{\pi}$ (value of executing 1 step of π)
- $V_2^{\pi} = R^{\pi} + \gamma P^{\pi} V_1^{\pi} = R^{\pi} + \gamma P^{\pi} R^{\pi}$ (expected value of executing 2 steps of π)
- $V^{\pi}_{3} = R^{\pi} + \gamma P^{\pi} V^{\pi}_{2} = R^{\pi} + \gamma P^{\pi} R^{\pi} + \gamma^{2} (P^{\pi})^{2} R^{\pi}$ (expected value of executing 3 steps of π)
- Can interpret these as the value of a finite horizon problem, where everything stops after i steps

Interpretation Continued

- $V^{\pi}_{\infty} = (I \gamma P^{\pi})^{-1}R = V^{\pi} = \text{infinite horizon values}$
- Infinite horizon = value of running π forever
- Nota bene: This interpretation applies when $V^{\pi}_0=0$, but iteration converges to V^{π} for any choice of V^{π}_0

Notation Alert

- Policy (π) is sometimes used as a subscript rather than superscript by some authors
- π may be dropped if there (should be) no confusion about which policy is under evaluation
- Some authors (e.g., textbook) use T(s,a,s') for P(s'|s,a)
- Most CS authors use V for the value function
 - textbook uses U
 - Some from operations research use J or other letters

Establishing Convergence

- Eigenvalue analysis
- Monotonicity
 - Assume all values start pessimistic
 - One value must always increase
 - Can never overestimate
 - Easy to prove
- Contraction analysis...

(Proof included but not discussed in interest of time)

Contraction Analysis

• Define maximum norm

$$||V||_{\infty} = \max_{i} |V[i]|$$

Consider two value functions V^a and V^b each at iteration 1:

$$\left\|V_1^a - V_1^b\right\|_{\infty} = \varepsilon$$

WLOG say

$$V_1^a \leq V_1^b + \vec{\mathcal{E}}$$
 (Vector of all ϵ 's)

Contraction Analysis Contd.

• At next iteration for Vb:

$$V_2^b = R + \gamma P V_1^b$$

For V^a

$$V_{_{2}}^{a} = R + \gamma P(V_{_{1}}^{a}) \leq R + \gamma P(V_{_{1}}^{b} + \vec{\varepsilon}) = R + \gamma PV_{_{1}}^{b} + \gamma P\vec{\varepsilon} = R + \gamma PV_{_{1}}^{b} + \gamma \vec{\varepsilon}$$

• Conclude:

$$\left\| V_2^{\alpha} - V_2^{b} \right\|_{\infty} \leq \gamma \varepsilon$$

Importance of Contraction

- Any two value functions get closer
- True value function V* is a fixed point (value doesn't change with iteration)
- Max norm distance from V* decreases dramatically quickly with iterations

$$\left\| V_0 - V^* \right\|_{\infty} = \varepsilon \longrightarrow \left\| V_n - V^* \right\|_{\infty} \le \gamma^n \varepsilon$$

Finding Good Policies

Suppose an expert told you the "true value" of each state:

Improving Policies

- How do we get the optimal policy?
- If we knew the values under the optimal policy, then just take the optimal action in every state
- How do we define these values?
- Fixed point equation with choices (Bellman equation):

$$V^*(s) = \max_{\alpha} R(s,\alpha) + \gamma \sum_{s'} P(s'|s,\alpha)V^*(s')$$

Decision theoretic optimal choice given V*
If we know V*, picking the optimal action is easy
If we know the optimal actions, computing V* is easy
How do we compute both at the same time?

Value Iteration

We can't solve the system directly with a max in the equation Can we solve it by iteration?

$$V_{i+1}(s) = \max_{a} R(s,a) + \gamma \sum_{s'} P(s'|s,a) V_{i}(s')$$

- •Called value iteration or simply successive approximation
- •Same as value determination, but we can change actions
- Converges to V*
- •Convergence:
 - Can't do eigenvalue analysis (not linear)
 - Still monotonic
 - Still a contraction in max norm (fun exercise)
 - Converges quickly

Robot Navigation Example

(from Russell & Norvig AIMA text)

- The robot (shown▲) lives in a world described by a 4x3 grid of squares with square (2,2) occupied by an obstacle
- A state is defined by the square in which the robot is located: (1,1) in the above figure

 \rightarrow 11 states

From Burgard et al., "Experiences with an interactive museum tour-guide robot"

Action (Transition) Model

U brings the robot to:

- (1,2) with probability 0.8
- (2,1) with probability 0.1
- (1,1) with probability 0.1
- In each state, the robot's possible actions are {U, D, R, L}
- For each action:
 - With probability 0.8 the robot does the right thing (moves up, down, right, or left by one square)
 - With probability 0.1 it moves in a direction perpendicular to the intended one
 - If the robot can't move, it stays in the same square

[This model satisfies the Markov condition]

Action (Transition) Model

L brings the robot to:

- (1,1) with probability 0.8 + 0.1 = 0.9
- (1,2) with probability 0.1
- In each state, the robot's possible actions are {U, D, R, L}
- For each action:
 - With probability 0.8 the robot does the right thing (moves up, down, right, or left by one square)
 - With probability 0.1 it moves in a direction perpendicular to the intended one
 - If the robot can't move, it stays in the same square

[This model satisfies the Markov condition]

Terminal States, Rewards, and Costs

"terminal" states

Not part of formal

MDP specification.

Usually handled by
forcing state to have a
fixed value, e.g. +1

- Two terminal states: (4,2) and (4,3)
- Rewards:
 - R(4,3) = +1 [The robot finds gold]
 - R(4,2) = -1 [The robot gets trapped in quicksand]
 - R(s) = -0.04 in all other states
- This example (from the Russell & Norvig text) assumes no discounting (γ =1)
- Discussion: Is this a good modeling decision?

How to Implement Terminal States

- Modify your algorithm
 - For states s that are "terminal"
 - For an iterative solver, just set V(s)=R(s) at each iteration
 - If using matrix inversion, hack your matrix
- Modify your MDP
 - Create a state T with R(T)=0, P(T|T,a)=1 for all a
 - For all states s that are "terminal"
 - Set P(T|s,a) = 1 for all a
 - This forces V(s)=R(s)

The Optimal Policy is Stationary

- A stationary policy is a complete map π : state \rightarrow action
- For each non-terminal state it recommends an action, independent of when and how the state is reached
- Under the Markov and infinite horizon assumptions, the optimal policy π^* is necessarily a stationary policy

[The best action in a state does not depend on the past]

Is it obvious which policy is optimal for this problem?

Value Iteration Applied

- 1. Initialize the utility of each non-terminal states to $V_0(s) = 0$
- 2. For t = 0, 1, 2, ... do

$$V_{t+1}(s) = R(s) + \max_{a \in Appl(s)} \sum_{s' \in Succ(s,a)} P(s'|s,a) V_t(s')$$

for each non-terminal state s

- The utility of a state s is the maximal expected amount of reward that the robot will collect from s and future states by executing some action in each encountered state, until it reaches a terminal state (infinite horizon)
- Under the Markov and infinite horizon assumptions, the utility of s is independent of when and how s is reached [It only depends on the possible sequences of states after s, not on the possible sequences before s]

Properties of Value Iteration

- VI converges to V* ($||.||_{\infty}$ from V* shrinks by γ factor each iteration)
- Converges to optimal policy
- Why? (Because we figure out V*, optimal policy is argmax)
- Optimal policy is stationary

 (i.e. Markovian depends only on current state)

Policy Iteration

Greedy Policy Construction

Let's name the action that looks best WRT V:

$$\pi_{v}(s) = \operatorname{arg\,max}_{a} R(s,a) + \gamma \sum_{s'} P(s'|s,a) V(s')$$

Expectation over next-state values

$$\pi_{v} = \operatorname{greedy}(V)$$

Bootstrapping: Policy Iteration

Idea: Greedy selection is useful even with suboptimal V

Guess $\pi_v = \pi_0$ $V_{\pi v}$ = value of acting on π_v (solve linear system) solicy doesn't change change

Guaranteed to find optimal policy
Usually takes very small number of iterations
Computing the value functions is the expensive part

Comparing VI and PI

- VI
 - Value changes at every step
 - Policy may change before exact value of policy is computed
 - Many relatively cheap iterations
- PI
 - Alternates policy/value updates
 - Solves for value of each policy exactly
 - Fewer, slower iterations (need to invert matrix)
- Convergence
 - Both are contractions in max norm
 - PI is shockingly fast (small number of iterations) in practice

Computational Complexity

- VI and PI are both contraction mappings w/rate γ
 (we didn't prove this for PI in slides)
- VI costs less per iteration
- For n states, a actions PI tends to take O(n) iterations in practice
 - Recent(ish) results indicate $^{\sim}O(n^2a/1-\gamma)$ worst case
 - Interesting aside: Biggest insight into PI came ~50 years after the algorithm was introduced

MDP Limitations → Reinforcement Learning

- MDP operate at the level of states
 - States = atomic events
 - We usually have exponentially (or infinitely) many of these
- We assume P and R are known
- Machine learning to the rescue!
 - Infer P and R (implicitly or explicitly from data)
 - Generalize from small number of states/policies

Bonus Material

A Unified View of Value Iteration and Policy Iteration

Notation

• Update for for a fixed policy – definition of T^{π} operator (matrix-vector form):

$$T^{\pi}V \equiv R^{\pi} + \gamma P^{\pi}V$$

 Update with policy improvement – definition of the T operator:

$$TV(s) \equiv \max_{a} r(s, a) + \gamma \sum_{s'} P(s'|s, a) V(s')$$

Value Determination

- For 0 steps $V_0 = R^{\pi}$
- For i steps $V_i = T^\pi V_{i-1} = T^\pi T^\pi V_{i-2} = \cdots = (T^\pi)^i R^\pi$
- Infinite horizon $\lim_{i\to\infty} V_i = (T^\pi)^\infty R^\pi = (1-\gamma P^\pi)^{-1} R^\pi = V^\pi$

Value Iteration (includes MAX)

- ullet For 0 steps $V_0=R$ (If R depends on a, pick a with the highest immediate reward)
- For i steps $V_i = TV_{i-1} = T^iR$
- Infinite horizon $\lim_{i\to\infty} V_i = T^{\infty}R = TV^* = V^*$

Modified Policy Iteration

- Guess V_0 (usually just R), and π or set π = greedy(V_0)
- i=1
- Repeat until convergence*

```
- For j=1 to n

• V_i = T^{\pi}V_{i-1}

• i = i+1

- \pi = greedy(V_{i-1})

n steps of iterative policy evaluation
```

• Special cases: n=1 (VI), n→∞ (PI)

Linear Programming Review

Minimize: c^Tx

• Subject to: $Ax \ge b$

- Can be solved in weakly polynomial time
- Arguably most common and important optimization technique in history

Linear Programming

$$V(s) = \max_{a} R(s,a) + \gamma \sum_{s'} P(s'|s,a)V(s')$$

Issue: Turn the non-linear max into a collection of linear constraints

$$\forall s, a : V(s) \ge R(s, a) + \gamma \sum_{s'} P(s' \mid s, a) V(s')$$

MINIMIZE: $\sum_{s} V(s)$

Optimal action has tight constraints

Weakly polynomial; slower than PI in practice (though can be modified to behave like PI)