TestExercise3

Jason 10/01/2018

Introduction

This test exercise is of an applied nature and uses data that are available in the data file TestExer3. We consider the so-called Taylor rule for setting the (nominal) interest rate. This model describes the level of the nominal interest rate that the central bank sets as a function of equilibrium real interest rate and inflation, and considers the current level of inflation and production. Taylor (1993) considers the model:

$$i_t = r^* + \pi_t + 0.5(\pi_t - \pi^*) + 0.5g_t$$

with i_t the Federal funds target interest rate at time t, r^* the equilibrium real federal funds rate, π_t a measure of inflation, π^* the target inflation rate and g_t the output gap (how much actual output deviates from potential output). We simplify the Taylor rule in two manners. First, we avoid determining r^* and π^* and simply add an intercept to the model to capture these two variables (and any other deviations in the means). Second, we consider production yy rather than the output gap. In this form the Taylor rule is

$$i_t = \beta_1 + \beta_2 \pi_t + \beta_3 y_t + \varepsilon_t. (1)$$

Monthly data are available for the USA over the period 1960 through 2014 for the following variables:

INTRATE: Federal funds interest rate

• INFL: Inflation

PROD: Production

• UNEMPL: Unemployment

COMMPRI: Commodity prices

PCE: Personal consumption expenditure

PERSINC: Personal income

HOUST: Housing starts

Question 1

Use general-to-specific to come to a model. Start by regressing the federal funds rate on the other 7 variables and eliminate 1 variable at a time.

The table below outlines the execution results of the models, with each model removing a variable based on their p-value. The variable with the highest p value is removed, and the model is run with the remaining variables. The removal of variables stops when the p-values of all the remaining variables are above 0.05.

Variable	Model 1 p-value	Model 2 p-value	Model 3 p-value
Intercept	0.36701	0.21827	0.29764
INFL	0	0	0
PROD	0.14833	0.32319	
UNFMPI	0.28992		

COMMPRI	0.06382	0.02132	0.00464
PCE	0	0	0
PERSINC	0.00005	0.00004	0.00006
HOUST	0.00004	0	0

As it can be seen above the final model chosen using the general to specific methodology is:

$$INTRATE = 0.71753 * INFL - 0.00750 * COMMPRI$$

+0.34053 * $PCE + 0.24024 * PERSINC$
-0.02053 * $HOUST - 0.24012$

Question 2

Use specific-to-general to come to a model. Start by regressing the federal funds rate on only a constant and add 1 variable at a time. Is the model the same as in (a)?

The table below lists the p-value and t-statistics of each model simulation that was run. Using the specific-to-general methodology one variable is chosen at a time based on the highest t-statistic until the p-value of all remaining variables exceed 0.05.

of all remaining	ng variables ex	.ceea u.us.				
Variable	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
INFL t-value	28.92451	Variable	Variable	Variable	Variable	Variable
p-value	0	Chosen	Chosen	Chosen	Chosen	Chosen
PROD						
t-value	-0.53668	4.8049	0.29571	-1.50551	-1.92312	-0.98868
p-value	0.59167	0	0.76755	0.13268	0.0549	0.32319
UNEMPL						
t-value	6.44717	7.23493	2.63784	1.18445	-0.23937	-0.07174
p-value	0	0	0.00854	0.23666	0.81089	0.94283
COMMPRI						
t-value	-2.7499	-1.65396	-2.25663	-3.1734	-2.8411	Variable
p-value	0.00613	0.09861	0.02436	0.00158	0.00464	Chosen
PCE						
t-value	21.83197	8.58994	3.41205	Variable	Variable	Variable
p-value	0	0	0.00068	Chosen	Chosen	Chosen
PERSINC						
t-value	1.4513	9.47807	Variable	Variable	Variable	Variable
p-value	0.14717	0	Chosen	Chosen	Chosen	Chosen
HOUST						
t-value	-5.10585	-0.91133	-2.73343	-4.89325	Variable	Variable
p-value	0	0.36246	0.00644	0	Chosen	Chosen

```
summary(lm(INTRATE ~ INFL + PERSINC + PCE + HOUST + COMMPRI, data = federalRatesDa
ta))$coefficients[,1]
```

```
## (Intercept) INFL PERSINC PCE HOUST COMMPRI
## -0.2401188 0.7175265 0.2402420 0.3405254 -0.0205297 -0.0075007
```

As it can be seen above, the model is the same as question (a).

Question 3

Compare your model from (a) and the Taylor rule of equation (1). Consider \mathbb{R}^2 , AIC and BIC. Which of the models do you prefer?

The Taylor model only considers two variables, INFL and PROD. Regressing the model on these two variables, we get the following coefficients.

```
taylorModel <- lm(INTRATE ~ INFL + PROD, data = federalRatesData)
summary(taylorModel)</pre>
```

```
##
## Call:
## lm(formula = INTRATE ~ INFL + PROD, data = federalRatesData)
##
## Residuals:
##
     Min
            10 Median
                        30
                             Max
## -5.159 -1.676 0.014 1.373 7.920
##
## Coefficients:
##
            Estimate Std. Error t value
                                                Pr(>|t|)
                                7.09
                                         0.000000000035 ***
## (Intercept) 1.2489
                        0.1762
                        0.0327
## INFL
              0.9750
                                29.78 < 0.0000000000000000 ***
## PROD
                                         0.0000019200327 ***
              0.0947
                        0.0197
                                4.80
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.36 on 657 degrees of freedom
## Multiple R-squared: 0.575, Adjusted R-squared:
```

Variable	Taylor Value	Reduced Model Value
AIC	1.7267	1.58099
BIC	1.74032	1.61502
R^2	0.5747	0.63736

Based on the value of AIC and BIC for the two models, since the reduced model contains lower AIC and BIC values, this is the preferred model. Additionally the R^2 value indicates how much of the variability the model explain for and since the value of R^2 is higher in there reduced model, this provides further evidence supporting the reduced model value.

Question 4

Test the Taylor rule of equation (1) using the RESET test, Chow break and forecast test (with in both tests as break date January 1980) and a Jarque-Bera test. What do you conclude?

For the chow test, 1980 was used as the break point.

The results of each of the 4 tests can be found in the table below:

Test	Test Statistic	p-value
RESET	2.53712	0.11168
Chow Break	28.73501	0
Chow Forecast	55.53487	0
Jarque-Bera	8.21163	0

Based on the table above, the p-value of RESET test indicates that we do not reject the null hypothesis of the correct model specification. However both the chow tests and the Jarque-Bera reject the null of no breaks and normality of the residuals. Therefore from this the Taylor model is not a suitable model.

Appendix

Question 1

```
model1 <- lm(INTRATE ~ INFL + PROD + UNEMPL + COMMPRI + PCE + PERSINC + HOUST, dat
a = federalRatesData)

model2 <- lm(INTRATE ~ INFL + PROD + COMMPRI + PCE + PERSINC + HOUST, data = feder
alRatesData)

model3 <- lm(INTRATE ~ INFL + COMMPRI + PCE + PERSINC + HOUST, data = federalRates
Data)</pre>
```

Question 2

```
# Model 1
oneVar1 <- summary(lm(INTRATE ~ INFL, data = federalRatesData))$coefficients[2,3]
oneVar2 <- summary(lm(INTRATE ~ PROD, data = federalRatesData))$coefficients[2,3]
oneVar3 <- summary(lm(INTRATE ~ UNEMPL, data = federalRatesData))$coefficients[2,3]
oneVar4 <- summary(lm(INTRATE ~ COMMPRI, data = federalRatesData))$coefficients[2,3]
oneVar5 <- summary(lm(INTRATE ~ PCE, data = federalRatesData))$coefficients[2,3]
oneVar6 <- summary(lm(INTRATE ~ PERSINC, data = federalRatesData))$coefficients[2,3]</pre>
```

```
oneVar7 <- summary(lm(INTRATE ~ HOUST, data = federalRatesData))$coefficients[2,3]</pre>
onePVar1 <- summary(lm(INTRATE ~ INFL, data = federalRatesData))$coefficients[2,4]</pre>
onePVar2 <- summary(lm(INTRATE ~ PROD, data = federalRatesData))$coefficients[2,4]</pre>
onePVar3 <- summary(lm(INTRATE ~ UNEMPL, data = federalRatesData))$coefficients[2,
4]
onePVar4 <- summary(lm(INTRATE ~ COMMPRI, data = federalRatesData))$coefficients[2</pre>
, 4]
onePVar5 <- summary(lm(INTRATE ~ PCE, data = federalRatesData))$coefficients[2,4]</pre>
onePVar6 <- summary(lm(INTRATE ~ PERSINC, data = federalRatesData))$coefficients[2</pre>
, 4]
onePVar7 <- summary(lm(INTRATE ~ HOUST, data = federalRatesData))$coefficients[2,4]
# Model 2
twoVar1 <- summary(lm(INTRATE ~ INFL + PROD, data = federalRatesData))$coefficient</pre>
s[3,3]
twoVar2 <- summary(lm(INTRATE ~ INFL + UNEMPL, data = federalRatesData))$coefficie
nts[3,3]
twoVar3 <- summary(lm(INTRATE ~ INFL + COMMPRI, data = federalRatesData))$coeffici
ents[3,3]
twoVar4 <- summary(lm(INTRATE ~ INFL + PCE, data = federalRatesData))$coefficients
[3,3]
twoVar5 <- summary(lm(INTRATE ~ INFL + PERSINC, data = federalRatesData))$coeffici
ents[3,3]
twoVar6 <- summary(lm(INTRATE ~ INFL + HOUST, data = federalRatesData))$coefficien</pre>
ts[3,3]
twoPVar1 <- summary(lm(INTRATE ~ INFL + PROD, data = federalRatesData))$coefficien</pre>
ts[3,4]
twoPVar2 <- summary(lm(INTRATE ~ INFL + UNEMPL, data = federalRatesData))$coeffici</pre>
ents[3,4]
twoPVar3 <- summary(lm(INTRATE ~ INFL + COMMPRI, data = federalRatesData))$coeffic</pre>
ients[3,4]
twoPVar4 <- summary(lm(INTRATE ~ INFL + PCE, data = federalRatesData))$coefficient</pre>
s[3,4]
twoPVar5 <- summary(lm(INTRATE ~ INFL + PERSINC, data = federalRatesData))$coeffic</pre>
ients[3,4]
twoPVar6 <- summary(lm(INTRATE ~ INFL + HOUST, data = federalRatesData))$coefficie</pre>
nts[3,4]
# Model 3
threeVar1 <- summary(lm(INTRATE ~ INFL + PERSINC + PROD, data = federalRatesData))</pre>
$coefficients[4,3]
threeVar2 <- summary(lm(INTRATE ~ INFL + PERSINC + UNEMPL, data = federalRatesData</pre>
))$coefficients[4,3]
threeVar3 <- summary(lm(INTRATE ~ INFL + PERSINC + COMMPRI, data = federalRatesDat
a))$coefficients[4,3]
threeVar4 <- summary(lm(INTRATE ~ INFL + PERSINC + PCE, data = federalRatesData))$</pre>
coefficients[4,3]
threeVar5 <- summary(lm(INTRATE ~ INFL + PERSINC + HOUST, data = federalRatesData)</pre>
)$coefficients[4,3]
threePVar1 <- summary(lm(INTRATE ~ INFL + PERSINC + PROD, data = federalRatesData)</pre>
```

```
)$coefficients[4,4]
threePVar2 <- summary(lm(INTRATE ~ INFL + PERSINC + UNEMPL, data = federalRatesDat
a))$coefficients[4,4]
threePVar3 <- summary(lm(INTRATE ~ INFL + PERSINC + COMMPRI, data = federalRatesDa</pre>
ta))$coefficients[4,4]
threePVar4 <- summary(lm(INTRATE ~ INFL + PERSINC + PCE, data = federalRatesData))</pre>
$coefficients[4,4]
threePVar5 <- summary(lm(INTRATE ~ INFL + PERSINC + HOUST, data = federalRatesData
))$coefficients[4,4]
# Model 4
fourVar1 <- summary(lm(INTRATE ~ INFL + PERSINC + PCE + PROD, data = federalRatesD</pre>
ata))$coefficients[5,3]
fourVar2 <- summary(lm(INTRATE ~ INFL + PERSINC + PCE + UNEMPL, data = federalRate</pre>
sData))$coefficients[5,3]
fourVar3 <- summary(lm(INTRATE ~ INFL + PERSINC + PCE + COMMPRI, data = federalRat</pre>
esData))$coefficients[5,3]
fourVar4 <- summary(lm(INTRATE ~ INFL + PERSINC + PCE + HOUST, data = federalRates</pre>
Data))$coefficients[5,3]
fourPVar1 <- summary(lm(INTRATE ~ INFL + PERSINC + PCE + PROD, data = federalRates</pre>
Data))$coefficients[5,4]
fourPVar2 <- summary(lm(INTRATE ~ INFL + PERSINC + PCE + UNEMPL, data = federalRat</pre>
esData))$coefficients[5,4]
fourPVar3 <- summary(lm(INTRATE ~ INFL + PERSINC + PCE + COMMPRI, data = federalRa</pre>
tesData))$coefficients[5,4]
fourPVar4 <- summary(lm(INTRATE ~ INFL + PERSINC + PCE + HOUST, data = federalRate</pre>
sData))$coefficients[5,4]
# Model 5
fiveVar1 <- summary(lm(INTRATE ~ INFL + PERSINC + PCE + HOUST + PROD, data = feder
alRatesData))$coefficients[6,3]
fiveVar2 <- summary(lm(INTRATE ~ INFL + PERSINC + PCE + HOUST + UNEMPL, data = fed
eralRatesData))$coefficients[6,3]
fiveVar3 <- summary(lm(INTRATE ~ INFL + PERSINC + PCE + HOUST + COMMPRI, data = fe
deralRatesData))$coefficients[6,3]
fivePVar1 <- summary(lm(INTRATE ~ INFL + PERSINC + PCE + HOUST + PROD, data = fede
ralRatesData))$coefficients[6,4]
fivePVar2 <- summary(lm(INTRATE ~ INFL + PERSINC + PCE + HOUST + UNEMPL, data = fe
deralRatesData))$coefficients[6,4]
fivePVar3 <- summary(lm(INTRATE ~ INFL + PERSINC + PCE + HOUST + COMMPRI, data = f
ederalRatesData))$coefficients[6,4]
# Model 6
sixVar1 <- summary(lm(INTRATE ~ INFL + PERSINC + PCE + HOUST + COMMPRI + PROD, dat
a = federalRatesData))$coefficients[7,3]
sixVar2 <- summary(lm(INTRATE ~ INFL + PERSINC + PCE + HOUST + COMMPRI + UNEMPL, d
ata = federalRatesData))$coefficients[7,3]
sixPVar1 <- summary(lm(INTRATE ~ INFL + PERSINC + PCE + HOUST + COMMPRI + PROD, da
ta = federalRatesData))$coefficients[7,4]
sixPVar2 <- summary(lm(INTRATE ~ INFL + PERSINC + PCE + HOUST + COMMPRI + UNEMPL,
data = federalRatesData))$coefficients[7,4]
```

Question 3

```
s = sqrt(deviance(taylorModel)/df.residual(taylorModel))
k = 2
n = nrow(federalRatesData)
aic = log(s^2) + ((2*k)/n)
bic = log(s^2) + (k*log(n))/n
taylorRSquared <- summary(taylorModel)$r.squared
reducedModel <- lm(INTRATE ~ INFL + PERSINC + PCE + HOUST + COMMPRI, data = federa lRatesData)
s2 = sqrt(deviance(reducedModel)/df.residual(reducedModel))
k2=5
aic2 = log(s2^2) + ((2*k2)/n)
bic2 = log(s2^2) + (k2*log(n))/n
reduceRSquared <- summary(lm(INTRATE ~ INFL + PERSINC + PCE + HOUST + COMMPRI, data = federalRatesData))$r.squared</pre>
```

Question 4

```
resetStat <- resettest(taylorModel, power = 2, type = "fitted", data = federalRate
sData)$statistic
resetPvalue <- resettest(taylorModel, power = 2, type = "fitted", data = federalRa
tesData)$p.value
# Chow Break Test
federalRatesData$Year <- substr(federalRatesData$OBS, 1, 4)</pre>
grp <- federalRatesData[federalRatesData$Year < 1980, ]</pre>
x1 <- grp[, c("INFL", "PROD")];
y1 <- data.frame( INTRATE = grp["INTRATE"] )</pre>
grp <- federalRatesData[federalRatesData$Year >= 1980, ]
x2 <- grp[, c("INFL", "PROD")]; y2 <- data.frame( INTRATE = grp["INTRATE"] )</pre>
chowBreak <- chow.test(y2, x2, y1, x1)</pre>
# Chow Forecast Test
sumRes <- sum(taylorModel$residuals^2)</pre>
federalRatesData$Year <- substr(federalRatesData$OBS, 1, 4)</pre>
fedDataPre <- federalRatesData[federalRatesData$Year < 1980, ]</pre>
modelPre <- lm(INTRATE ~ INFL + PROD, data = fedDataPre)</pre>
sumResPre <- sum(modelPre$residuals^2)</pre>
fedDataPost <- federalRatesData[federalRatesData$Year >= 1980, ]
modelPost <- lm(INTRATE ~ INFL + PROD, data = fedDataPost)</pre>
sumResPost <- sum(modelPost$residuals^2)</pre>
s0 = sumRes
s1 = 237
s2 = sumResPost
a3 = (s0 - (s1 + s2))/k
b3 = (s1 + s2)/(n-(2*k))
fTest3 = a3/b3
chowForecastPValue <- pf(q=fTest3, df1=k, df2=(n-(2*k)), lower.tail=FALSE)</pre>
# Jarque-Bera
n2 = nrow(fedDataPost)
n1 = nrow(fedDataPre)
a4 = (s0 - s1)/n2
b4 = s1/(n1-k)
fTest4 = a4/b4
jbPValue <- pf(q=fTest4, df1=n2, df2=n1-k, lower.tail=FALSE)</pre>
```