- 1. For a dynamical system (T, X), a point $x \in X$ is called *eventually periodic* if there exists m > m' so that $T^m x = T^{m'} x$.
 - (a) Let (T, [0, 1)) be the doubling map and let (σ, Ω) be the full two shift. For each system, give an example of (i) a point that is eventually periodic, and (ii) a point that is eventually periodic but *not* periodic.
 - (b) Let \mathbb{C} be the coding function for the doubling map with the usual partition $(\mathcal{P}_0 = [0, 1/2)$ and $\mathcal{P}_1 = [1/2, 1)$.
 - Prove $\mathbb{C}(x)$ is eventually periodic in (σ, Ω) if and only if x is eventually periodic in (T, [0, 1)).
 - (c) Prove that $\mathbb{C}(x)$ is eventually periodic if and only if x is a rational number.
 - (d) Prove that the binary expansion of a number in [0,1) is eventually periodic if and only if that number is rational. (*Hint:* $\mathbb{C}(x)$ is always a binary expansion, but not all binary expansions come from codings).
 - (e) Prove that the base n expansion of a number in [0,1) is eventually periodic if an only if that number is rational.
- 2. Let (σ, Ω) be the full two-shift. Let $G \subseteq \Omega$ bet the set of sequences without two ones in a row. Let $X \subseteq \Omega$ be the set of sequences without *three* ones in a row.
 - (a) Show that (σ, X) is a subshift.
 - (b) A two-step Markov chain is a Markov chain where the transition probabilities between states depend on the current state and the previous state.

A two-step Markov chain on a state space S can be thought of as a one-step (regular) Markov chain on the state space $S \times S$. For example, let \mathcal{M} be the Markov chain on states 0 and 1 with equal transition probabilities. Normally, \mathcal{M} has a graph like this:

However, we can also model \mathcal{M} as a Markov chain \mathcal{M}' with state space 00, 01, 10, and 11 and transition graph like this:

Explain how \mathcal{M}' models \mathcal{M} . In particular, explain why the graph for \mathcal{M}' has no edge between 00 and 11.

- (c) Let \mathcal{M}_G be a Markov chain whose set of realizations is G.
 - i. Draw a graph for \mathcal{M}_G and find its associated transition matrix.
 - ii. Use the transition matrix for \mathcal{M}_G to compute the entropy of (σ, G) .

iii. Model \mathcal{M}_G as a two-step Markov chain \mathcal{M}'_G , which can be viewed as a Markov chain

Due: 11:59pm April 6

- Draw the graph associated with \mathcal{M}_G' and find its transition matrix.
- iv. Using the transition matrix for \mathcal{M}'_G , compute the entropy of (σ, G) .
- (d) Can X be modeled by a one-step Markov chain? Why or why not?
- (e) Find the entropy of (σ, X) .

with state space $\{00, 01, 10, 11\}$.

- 3. Let (σ, Ω) be the full two shift.
 - (a) Prove that (σ, Ω) is expansive.
 - (b) Prove that (σ, Ω) is transitive.
 - (c) Show that (σ, Ω) is *chaotic*.
 - (d) Let (T, X) be a dynamical system and let $x, y \in X$. We say x and y are δ -correlated for n steps if the distance between $T^i x$ and $T^i y$ is at most δ for i = 0, ..., n. Let $x, y \in \Omega$ be points that are at distance 2^{-k} of each other. For how many steps will x and y be δ -correlated when $\delta = 1/4$?
 - (e) If (T, X) is a chaotic dynamical system, can two points be δ -correlated indefinitely? What implications does this have for measurement error?
- 4. Two dynamical systems (T, X) and (S, Y) are called *conjugate* if there exists a continuous, invertible function $\Phi: X \to Y$ so that $T = \Phi^{-1} \circ S \circ \Phi$. In this case, Φ is called a *conjugacy*.
 - (a) Let (T, X) and (S, Y) be conjugate dynamical systems.
 - i. Show that if there exists a point of period k in X, there exists a point of period k in Y.
 - ii. Show that if (T, X) is transitive, then (S, Y) is transitive.
 - iii. Is it true that if (T, X) is expansive, then (S, Y) is expansive?
 - (b) Let (T, [0, 1)) be the doubling map and let (L, [0, 1)) be the *logistic map* defined by L(x) = rx(1-x) for r=4.
 - i. Define $f:[0,1)\to [0,1)$ by $f(x)=\sin^2(2\pi x)$. Show that f is a conjugacy between (T,[0,1)) and (L,[0,1)).
 - ii. Show that (L, [0, 1)) is chaotic.
 - iii. (bonus) Show that (L, [0, 1)) contains points of every period.

Programming Problems

For the programming problems, please use the Jupyter notebook available at

https://utoronto.syzygy.ca/jupyter/user-redirect/git-pull?repo=https://github.com/siefkenj/2020-MAT-335-webpage&subPath=homework/homework3-exercises.ipynb

Make sure to comment your code and use "Markdown" style cells to explain your answers.

1.