Signals and Systems 1.2

---Elementary Signals

School of Information & Communication Engineering, BUPT

Reference:

1. Textbook: 1.6

Outline of Today's Lecture

- Elementary Signals: Several elementary signals feature prominently in the study of signals and systems. All of elementary signals serve as building blocks for construction of more complex signals.
 - Exponential Signals
 - Sinusoidal Signals
 - The Unit-Step Function
 - The Unit-Impulse Function

Elementary Signals---Exponential Signals

$$x(t) = Be^{at}$$

B and a are real parameters

- 1. Decaying exponential, for which a < 0
- 2. Growing exponential, for which a > 0

Elementary Signals---Exponential Signals

For a physical example of an exponential signal, consider a so-call lossy capacitor. The capacitor has capacitance C, and the loss is represented by shunt resistance(分流电阻) R. The capacitor is charged by connecting a battery across it, and then the battery is removed at time t=0. Let V_0 denote the initial value of the voltage developed across the capacitor. For $t \ge 0$:

$$RC\frac{d}{dt}v(t) + v(t) = 0$$

$$i(t) = C \frac{d}{dt} v(t)$$

$$+ \qquad \qquad \downarrow$$

$$v(t) \qquad \qquad \downarrow$$

$$R$$

$$v(t) = V_0 e^{-t/(RC)}$$
 / RC = Time constant

where v(t) is the voltage measured across the capacitor at time t.

Elementary Signals---Exponential Signals

♦ Discrete-time case:

$$x[n] = Br^n$$

$$r = e^{\alpha}$$

♦ Continuous-time case:

$$x(t) = A\cos(\omega t + \phi)$$

Periodicity

$$T = \frac{2\pi}{\omega}$$

 $A \cos(\omega t + \Phi)$ with phase $\Phi = +\pi/6$

$$x(t+T) = A\cos(\omega(t+T) + \phi)$$

$$= A\cos(\omega t + \omega T + \phi)$$

$$= A\cos(\omega t + 2\pi + \phi)$$

$$= A\cos(\omega t + \phi)$$

$$= x(t)$$

Generation of a sinusoidal signal:

Parallel of an inductor and an capacitor, without loss.

$$LC\frac{d^2}{dt^2}v(t) + v(t) = 0$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 Natural angular frequency of oscillation of the circuit

Discrete-time case :

Periodic condition

$$x[n] = A\cos(\Omega n + \phi)$$

$$x[n+N] = A\cos(\Omega n + \Omega N + \phi)$$

$$\Omega N = 2\pi m$$

$$\Omega = \frac{2\pi m}{N}$$
 radians/cycle, integer m, N

Ex. A discrete-time sinusoidal signal: A = 1, $\phi = 0$, and N = 12.

Example 1.7 Discrete-Time Sinusoidal Signal

A pair of sinusoidal signals with a common angular frequency is defined by

$$x_1[n] = \sin[5\pi n]$$
 and $x_2[n] = \sqrt{3}\cos[5\pi n]$

- (a) Both $x_1[n]$ and $x_2[n]$ are periodic. Find their common fundamental period.
- (b) Express the composite sinusoidal signal

$$y[n] = x_1[n] + x_2[n]$$

In the form $y[n] = A\cos(\Omega n + \phi)$, and evaluate the amplitude A and phase ϕ .

<Sol.>

(a) Angular frequency of both $x_1[n]$ and $x_2[n]$:

$$\Omega = 5\pi$$
 radians/cycle $N = \frac{2\pi m}{\Omega} = \frac{2\pi m}{5\pi} = \frac{2m}{5}$

This can be only for m = 5, 10, 15, ..., which results in N = 2, 4, 6, ...

(b) Trigonometric identity:

$$A\cos(\Omega n + \phi) = A\cos(\Omega n)\cos(\phi) - A\sin(\Omega n)\sin(\phi)$$

Let $\Omega = 5\pi$, then compare $x_1[n] + x_2[n]$ with the above equation to obtain that

$$A\sin(\phi) = -1$$
 and $A\cos(\phi) = \sqrt{3}$

$$\tan(\phi) = \frac{\sin(\phi)}{\cos(\phi)} = \frac{\text{amplitude of } x_1[n]}{\text{amplitude of } x_2[n]} = \frac{-1}{\sqrt{3}} \quad \Rightarrow \quad \phi = -\pi/6$$

$$A\sin(\phi) = -1$$

$$A = \frac{-1}{\sin(-\pi/6)} = 2$$

$$y[n] = 2\cos\left(5\pi n - \frac{\pi}{6}\right)$$

Elementary Signals

-Relation Between Sinusoidal and Complex Exponential Signals

1. Euler's identity:

$$e^{j\theta} = \cos\theta + j\sin\theta$$

Complex exponential signal: $B = Ae^{j\phi}$

$$B = Ae^{j\phi}$$

$$x(t) = A\cos(\omega t + \phi)$$

Complex exponential signal:
$$B = Ae^{j\phi}$$

$$x(t) = A\cos(\omega t + \phi)$$

$$A\cos(\omega t + \phi) = \text{Re}\{Be^{j\omega t}\}$$

$$= Ae^{j\phi}e^{j\omega t}$$

$$= Ae^{j(\phi + \omega t)}$$

$$Be^{j\omega t}$$

$$=Ae^{j\phi}e^{j\omega t}$$

$$=A\rho^{j(\phi+\omega t)}$$

$$= A\cos(\omega t + \phi) + jA\sin(\omega t + \phi)$$

Continuous-time signal in terms of sine function:

$$x(t) = A\sin(\omega t + \phi)$$

$$A\sin(\omega t + \phi) = \operatorname{Im}\{Be^{j\omega t}\}\$$

Elementary Signals

-Relation Between Sinusoidal and Complex Exponential Signals

2. Discrete-time case:

$$A\cos(\Omega n + \phi) = \text{Re}\{Be^{j\Omega n}\}\$$

$$A\sin(\Omega n + \phi) = \operatorname{Im}\{Be^{j\Omega n}\}\$$

3. Two-dimensional representation of the complex exponential $e^{j\Omega n}$ for $\Omega = \pi/4$ and n = 0, 1, 2, ..., 7.

Elementary Signals - Exponential Damped Sinusoidal Signals

$$x(t) = Ae^{-\alpha t}\sin(\omega t + \phi), \quad \alpha > 0$$

Example for A = 60, $\alpha = 6$, and $\phi = 0$

Elementary Signals - Exponential Damped Sinusoidal Signals

Ex. Generation of an exponential damped sinusoidal signal

Let Vo denote the initial voltage developed across the capacitor at t = 0.

Circuit Eq.:
$$C \frac{d}{dt} v(t) + \frac{1}{R} v(t) + \frac{1}{L} \int_{-\infty}^{t} v(\tau) d\tau = 0$$

$$v(t) = V_0 e^{-t/(2CR)} \cos(\omega_0 t) \quad t \ge 0$$

where v(t) is the voltage across the capacitor at time t > 0.

$$\omega_0 = \sqrt{\frac{1}{LC} - \frac{1}{4C^2R^2}}$$
 $R > \sqrt{L/(4C)}$

$$x(t) = Ae^{-\alpha t}\sin(\omega t + \phi), \quad \alpha > 0$$

$$A = V_0$$
, $\alpha = 1/(2CR)$, $\omega = \omega_0$, and $\phi = \pi/2$

Elementary Signals---Step Function

♦ Discrete-time case:

$$u[n] = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$$

◆ Continuous-time case: unit-step function

$$u(t) = \begin{cases} 1, & t > 0 \\ 0, & t < 0 \end{cases}$$

$$u(0)$$
 ($t = 0$) is undifined

Elementary Signals---Step Function

Example 1.8 Rectangular Pulse

Consider the rectangular pulse x(t). This pulse has an amplitude A and duration of 1 second. Express x(t) as a weighted sum of two step functions.

<Sol.>

$$x(t) = \begin{cases} A, & 0 \le |t| < 0.5 \\ 0, & |t| > 0.5 \end{cases}$$

Discrete-time case:

$$\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

Continuous-time case:

$$\delta(t) = 0$$
 for $t \neq 0$

Dirac delta function

$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

Figure 1.42 (p. 46)

- (a) Evolution of a rectangular pulse of unit area into an impulse of unit strength (i.e., unit impulse). (b) Graphical symbol for unit impulse.
- (c) Representation of an impulse of strength a that results from allowing the duration Δ of a rectangular pulse of area a to approach zero.
- 1. As the duration decreases, the rectangular pulse approximates the impulse more closely.
- 2. Mathematical relation between impulse and rectangular pulse function:

$$\int_{2} \delta(t) = \lim_{\Delta \to 0} x_{\Delta}(t)$$

- 1. $x_{\Delta}(t)$: even function of t, Δ = duration.
- 2. $x_{\wedge}(t)$: Unit area.

The impulse and unit step function u(t) are related to each other

3. $\delta(t)$ is the derivative of u(t):

4. u(t) is the integral of $\delta(t)$:

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$

Example 1.10 RC Circuit (Continued)

For the RC circuit shown in Fig. 1.43 (a), determine the current i (t) that flows through the capacitor for $t \ge 0$.

1. Voltage across the capacitor:

2. Current flowing through capacitor:

$$i(t) = C \frac{dv(t)}{dt} \qquad \Longrightarrow \qquad i(t) = CV_0 \frac{du(t)}{dt} = CV_0 \delta(t)$$

Properties of impulse function:

- 1. Even function: $\delta(-t) = \delta(t)$
- 2. Sifting property:

$$\int_{-\infty}^{\infty} x(t)\delta(t-t_0)dt = x(t_0)$$

3. Time-scaling property:

$$\delta(at) = \frac{1}{a}\delta(t), \quad a > 0$$

$$\int_{-\infty}^{\infty} \delta(t - t_0) dt = 1$$

$$\int_{-\infty}^{\infty} f(t) \delta(t) dt = f(0)$$

$$f(t)\delta(t) = f(0)\delta(t)$$

$$\int_{-\infty}^{\infty} f(t) \delta'(t) dt = -f'(0)$$

$$U(t) = \int_{-\infty}^{t} \delta(t) dt$$

To represent the function $x_{\Delta}(t)$, we use the rectangular pulse shown in Fig. 1.44(a), which has duration Δ , amplitude $1/\Delta$, and therefore unit area. Correspondingly, the time-scaled function $x_{\Delta}(at)$ is shown in Fig. 1.44(b) for a > 1. The amplitude of $x_{\Delta}(at)$ is left unchanged by the time-scaling operation. Consequently, in order to restore the area under this pulse to unity, $x_{\Delta}(at)$ is scaled by the same factor a, as indicated in Fig. 1.44(c), in which the time function is thus denoted by $ax_{\Delta}(at)$. Using this new function in Eq. (1.67) yields

Figure 1.44 (p. 48)

Steps involved in proving the time-scaling property of the unit impulse. (a) Rectangular pulse $x\Delta(t)$ of amplitude $1/\Delta$ and duration Δ , symmetric about the origin. (b) Pulse $x\Delta(t)$ compressed by factor a. (c) Amplitude scaling of the compressed pulse, restoring it to unit area.

Derivatives of The Impulse

Definitions:

$$\delta'(t) = \frac{\mathrm{d}\delta(t)}{\mathrm{d}t}$$

The first derivative of $\delta(t)$ as the limiting form of the first derivative of the same rectangular pulse. The rectangular pulse is equal to the step function $(1/\triangle)[u(t+\triangle/2)-u(t-\triangle/2)]$

Derivatives of The Impulse

1. Doublet:

$$\delta^{(1)}(t) = \lim_{\Delta \to 0} \frac{1}{\Lambda} \left(\delta(t + \Delta/2) - \delta(t - \Delta/2) \right)$$
 (1.70)

2. Fundamental property of the doublet:

$$\int_{-\infty}^{\infty} \delta^{(1)}(t) dt = 0$$
 (1.71)

$$\int_{-\infty}^{\infty} f(t) \delta^{(1)}(t - t_0) dt = \frac{d}{dt} f(t) \Big|_{t = t_0}$$
 (1.72)

3. Second derivative of impulse:

$$\frac{\partial^2}{\partial t^2} \delta(t) = \frac{d}{dt} \delta^{(1)}(t) = \lim_{\Delta \to 0} \frac{\delta^{(1)}(t + \Delta/2) - \delta^{(1)}(t - \Delta/2)}{\Delta}$$

Problem 1.24

(1.73)

(1.70)
$$\int_{-\infty}^{\infty} f(t) \delta^{(2)}(t - t_0) dt = \frac{d^2}{dt^2} f(t) \big|_{t = t_0}$$

$$\int_{-\infty}^{\infty} f(t) \delta^{(n)}(t - t_0) dt = \frac{d^n}{dt^n} f(t) \big|_{t = t_0}$$

Other signals

★ 1 Ramp Function

1A. Continuous-time case

$$r(t) = \begin{cases} t, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

1B. Discrete-time case

$$r[n] = \begin{cases} n, & n \ge 0 \\ 0, & n < 0 \end{cases}$$

★ 2 Sampling signals

$$f(t) = \frac{\sin t}{t} = Sa(t)$$

Summary and Exercises

- Summary
 - Exponential Signals
 - Sinusoidal Signals
 - The Unit-Step Function
 - The Unit-Impulse Function
- Exercises
 - P89: 1.54 (a, c, e)
 - P90: 1.56 (b, d, f, h, j), 1.57 (a, c, e, g, i), 1.58, 1.60

Trigonometric identities

$$\sin A \pm \sin B = 2\sin \frac{A \pm B}{2}\cos \frac{A \mp B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$sin(A \pm B) = sin A cos B \pm cos A sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 3A = 3\sin A - 4\sin^3 A$$

$$\cos 3A = 4\cos^3 A - 3\cos A$$

Circuit Fundenmental

$$u_R(t) = Ri_R(t)$$

$$i_C(t) = C \frac{du_C(t)}{dt}$$

$$u_L(t) = L \frac{di_L(t)}{dt}$$