

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1970-09

The robustness of the student t test when sampling from a Weibull distribution

Allen, David P.

Monterey, California; Naval Postgraduate School

http://hdl.handle.net/10945/15152

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

THE ROBUSTNESS OF THE STUDENT T TEST WHEN SAMPLING FROM A WEIBULL DISTRIBUTION

by

David P. Allen

LIBRARY
NAVAL POSTGRADUATE SCHOOL
NONTEREY, CALIF. 93940

United States Naval Postgraduate School

THESIS

THE ROBUSTNESS OF THE STUDENT t TEST WHEN SAMPLING FROM A WEIBULL DISTRIBUTION

bу

David P. Allen

September 1970

This document has been approved for public release and sale; its distribution is unlimited.

The Robustness of the Student t Test When Sampling from a Weibull Distribution

bу

David P. Allen
Captain, United States Marine Corps
B.S., State University at Brockport, New York, 1964

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the
NAVAL POSTGRADUATE SCHOOL
September 1970

The Asier

ABSTRACT

When testing with the t-test, it is assumed that the sample under investigation is from a normal population. The purpose of this thesis is to examine the sensitivity of the t-test to violations of this normality assumption. A computer simulation was performed to draw sets of 10,000 samples from an infinite Weibull population. A t-test was performed on each sample to test the null hypothesis $H_0: \mu \leq \mu_0$ where μ_0 was the true mean of the Weibull population. The number of times that H_0 was rejected was recorded for all combinations of eight levels of significance, samples ranging in size from 2 to 31, and for values of the parameters of the distribution $\lambda = 1,2,3$ and $\beta = 1,2,3$.

TABLE OF CONTENTS

I.	INT	RODU	JCTION	7
	Α.	GEN	VERAL	7
	В.	ВАС	CKGROUND AND PURPOSE	8
	С.	WEI	BULL DISTRIBUTION	9
II.	MET	HOD		12
	Α.	GEN	VERAL	12
	В.	SAM	MPLING TECHNIQUE	13
	С.	TES	STING PROCEDURE	15
III.	MET	HOD	OF ANALYSIS	16
IV.	OUT	PUT	FORM	18
V.	RES	ULTS	S	19
	Α.	NOF	RMAL CASE	19
	В.	WEI	BULL CASE	19
VI.	CON	CLUS	SIONS	21
VII.	EXA	MPLE	E	23
VIII.	EXT	ENSI	ONS	25
APPENI	XIC	A:	PROBABILITY OF A TYPE I ERROR - NORMAL CASE	26
APPENI	XIC		PROBABILITY OF A TYPE I ERROR - WEIBULL CASE (λ=1, β=1)	27
APPENI	XIC	C:	PROBABILITY OF A TYPE I ERROR - WEIBULL CASE (λ=1, β=2)	28
APPENI	XIC	D:	PROBABILITY OF A TYPE I ERROR - WEIBULL CASE (λ=1, β=3)	
APPENI	XIC	E:	PROBABILITY OF A TYPE I ERROR - WEIBULL CASE (λ=2, β=1)	30

APPENDIX F:	PROBABILITY OF A TYPE I ERROR - WEIBULL CASE (λ =2, β =2)	31
APPENDIX G:	PROBABILITY OF A TYPE I ERROR - WEIBULL CASE (λ=2, β=3)	32
APPENDIX H:	PROBABILITY OF A TYPE I ERROR - WEIBULL CASE (λ=3, β=1)	33
APPENDIX I:	PROBABILITY OF A TYPE I ERROR - WEIBULL CASE (λ =3, β =3)	34
APPENDIX J:	PROBABILITY OF A TYPE I ERROR - WEIBULL CASE (λ =3, β =3)	35
LIST OF REFE	ERENCES	 36
INITIAL DIST	RIBUTION LIST	 - 37
FORM DD 1473	3	30

A MARINE MARINE

I. INTRODUCTION

A. GENERAL

In statistical experimentation it is sometimes desired to test the assumption that the mean, μ , of a statistical population is in some way related to a hypothesized value μ_{o} . To evaluate the assumption, a null hypothesis H_{o} is formulated about μ , and tested against an alternative hypothesis, H, by taking a sample from the population under investigation and forming the t-statistic $t=\frac{\bar{x}-\mu_{o}}{S/\sqrt{n}}$. In this transformation $\bar{x}=\frac{1}{n}\sum\limits_{k=1}^{n}x_{k}$ is the sample average, $S=\frac{1}{n-1}\sum\limits_{k=1}^{n}(x_{k}-\bar{x})^{2} \text{ is the unbiased sample standard deviation,}$ n is the sample size, and μ_{o} is the hypothesized population mean.

The cumulative t-distribution has been tabled for various values of n, and levels of significance α . When testing the null hypothesis H_0 : $\mu \leq \mu_0$ against the alternative hypothesis $H: \mu > \mu_0$, the procedure is to reject H_0 if the calculated t is greater than or equal to the tabled (critical) $t(n-1)(1-\alpha)$ for n-1 degrees of freedom at the 1- α conficence level where $t(n-1)(1-\alpha)$ is obtained from the upper tail of the t-distribution. Similarly, if the null hypothesis $H_0: \mu \geq \mu_0$ is tested against $H: \mu < \mu_0$, the null hypothesis is rejected if $t \leq -t(n-1)(1-\alpha)$ where $-t(n-1)(1-\alpha)$ is obtained from the lower tail of the t-distribution. In the case of a two trailed test, the null hypothesis $H_0: \mu = \mu_0$

is tested against H: $\mu \neq \mu_0$ and is rejected if $t \leq -t_{(n-1)(1-\alpha/2)}$ or if $t \geq t_{(n-1)(1-\alpha/2)}$ [Ref. 5].

B. BACKGROUND AND PURPOSE

When testing with the t-test it is assumed that the sample under investigation is from a normal population. In general, the purpose of this thesis is to examine the sensitivity of the t-test to certain violations of this normality assumption.

Some previous writers, e.g. Bartlett [1] have investigated the theoretical distribution of the t statistic, when sampling from an infinite non-normal population. Bartlett concludes from his study that even though his work was incomplete, and not of much quantitative value, it does indicate that for moderate departures from normality the t-test may still be used with confidence, particularly for testing differences in means of equal numbers of observations.

In a different approach, Pearson [6] describes how he mechanically drew samples from an infinite non-normal population. In the case where the means of only two samples were being tested for equivalence, the value of t was calculated for each sample to empirically obtain some idea of the frequency distribution. Using a chi square test to fit the observed t to a theoretical t distribution did not appear to bring out any systematic discrepancy. Taken as a whole the values of χ^2 were higher than should be expected if the variation from theory was solely due to chance. Also

the fits on the whole were better for larger size samples. However, Pearson never drew more than 1000 samples. A greater number of samples is needed to determine the five percent point, and more so the one percent point, since the number of rejections at these levels is so low.

Specifically, this thesis examined the effect of sampling from a non-normal population, on the number of times the null hypothesis was rejected (given that the null hypothesis was true) when testing with the t-test. The probability of such an event is commonly known as a type I error. observed number of rejections obtained when sampling from a non-normal distribution is near the expected number of rejections that should be obtained by sampling from a normal distribution, it will be possible to use the t-table as if the sample had come from a normal distribution. However, if the observed number of rejections (when sampling from a nonnormal distribution) is significantly different from the expected number of rejections that should have been obtained by sampling from a normal distribution, it will be necessary to adjust the procedure for using the t-table to estimate a critical t value.

C. WEIBULL DISTRIBUTION

The non-normal distribution of interest is the Weibull distribution with distribution function $f(x) = \lambda \beta x^{\beta-1} e^{-\lambda x^{\beta}}$. The expected value of the random variable X is $\lambda^{-1/\beta} \Gamma(\frac{1}{\beta} + 1)$ and the variance is $\lambda^{-2/\beta} \left\{ \Gamma(2/\beta + 1) - [\Gamma(1/\beta + 1)]^2 \right\}$ [Ref.3].

The Weibull distribution frequently appears in reliability theory and life testing, where the random variable X represents the time between failures. When the shape parameter $\beta=1$ the Weibull distribution reduces to the exponential distribution which has applications in queueing theory as well as reliability theory and life testing.

The Weibull distribution takes on a variety of shapes, depending on the value of the parameter β . The spread of the distribution is determined by the value of the parameter λ . One might therefore expect that the "t-statistic" obtained by sampling from a Weibull distribution will somehow depend on the values of β and λ . If this is true, the number of rejections, given that the null hypothesis is true, will also depend on the parameter values. To examine this possibility, combinations of λ =1,2,3 with β = 1,2,3 were used to develop 9 distributions from the family of Weibull distributions. Tables I and II below give the resultant means and variances for the 9 sets of parameter values.

Means							riances	
λ ^β	1	2	3		λ ^β	1	2	3
1	1.00	0.886	0.893		1	1.000	0.216	0.1067
2	0.500	0.626	0.708		2	0.250	0.108	0.0664
3	0.333	0.511	0.618		3	0.111	0.072	0.0511

TARLE II

TARLE T

Figure 1 shows the shape of the Weibull distribution for the parameter values above.

II. METHOD

A. GENERAL

To examine the "robustness" of the Student t-test when sampling from a Weibull distribution, a computer simulation was performed to repeatedly draw samples of size i from an infinite Weibull population. A t-statistic was calculated for each sample and used to test the null hypothesis that the sample was drawn from a population with a mean equal to or less than μ_0 . To ensure that the hypothesis was in fact true, the hypothesized mean μ_0 was set equal to the mean μ of the Weibull population. Each time that the null hypothesis was rejected, the result was recorded for the level of significance, α_j , at which the test was conducted, and the size of the sample. The total number of observed rejections, r_{ij} , was computed at each of eight different levels of significance α_j , $j=1,\ldots,8$ in the t-test, and for samples of size $i=2,\ldots,31$.

For comparison, and to assist in validating the computer program, the entire experiment was repeated with sampling from a standard normal distribution. As with the Weibull case, computer simulation was used to repeatedly draw samples of size i. For each sample, a t-statistic was calculated and used to test the null hypothesis that the sample was drawn from a population with a mean μ equal to or less than μ_0 . Once again the hypothesized mean μ_0 was

set equal to the population mean μ = 0. The number of rejections was recorded as in the Weibull case.

B. SAMPLING TECHNIQUE

Using the random number generator RANDU provided for Fortran IV with the IBM System /360 Source Library, uniform random variates were generated on the interval (0,1).

J. N. Bramhall [2] in a report that discusses a comparison of three uniform random number generators for the IBM 360, fitted RANDU to a uniform (0,1) distribution with a Chi Square test at the 95% confidence level.

The uniform random variates obtained from RANDU were subsequently used to produce Weibull random variates by the inverse transformation method [4]. Since the cumulative frequency distribution F(x) ranges over the interval (0,1), the uniform (0,1) random variates, V, that were generated from RANDU were set equal to F(x). Solving the resultant equation for x produces random variates with the distribution function desired.

In the case of the Weibull distribution $F(x) = 1 - e^{-\lambda x}$. Setting F(x) = V and solving for x yields

$$F(x) = V = 1 - e^{-\lambda x^{\beta}}$$
$$e^{-\lambda x^{\beta}} = 1 - V$$
$$\ln e^{-\lambda x^{\beta}} = \ln (1-V)$$

Since the distribution of V is symmetric

$$-\lambda x^{\beta} = \ln V$$

$$x^{\beta} = \frac{-\ln V}{\lambda}$$

$$x = \left(\frac{-\ln V}{\lambda}\right)^{1/\beta}$$

Here, V represents uniform random variates on the interval (0,1), and λ and β are again the parameters of the Weibull distribution.

Normal random variates were obtained using the subroutine GAUSS provided by the IBM System/360 Source Library. The Central Limit Theorem states that the probability distribution of the sum of n independent and identically distributed random variables X_i , with mean μ_i and variance σ_{i}^{2} approaches asymptotically a normal distribution with mean μ and variance σ^{2} , where $\mu = \sum_{i=1}^{n} \mu_{i}$ and $\sigma^{2} = \sum_{i=1}^{n} \sigma_{i}^{2}$. Subroutine GAUSS calls RANDU to produce n uniform random uniform random variates V_{i} , on the interval (0,1). The expected value of the sum $E(\sum_{i=1}^{n} V_i) = \frac{n}{2}$, and the variance of the sum $Var(\sum_{i=1}^{n} V_i) = \frac{n}{12}$. Making the transformation $Z = \frac{Y - E(Y)}{\sqrt{V(Y)}} = \frac{\sum_{i=1}^{\Sigma} V_i - n/2}{\sqrt{n/12}}$ yields a standard normal random variate. A normal random variate X with any desired mean μ_{x} and variance σ_{x}^{2} is obtained from X = σ_{x}^{2} + μ_{x} . Subroutine GAUSS sets n at 12, which eliminates the radical in Z and speeds up the computation.

C. TESTING PROCEDURE

For each sample, the sample average and standard deviation were calculated. A t-test was then conducted on each sample to test the null hypothesis H_0 : $\mu \leq \mu_0$ where μ_0 was the true mean of the population from which the sample was drawn. The calculated value of t was then compared with the critical (tabled) t for the appropriate sample size $i=2,\ldots,31$, and significance level α_j , $j=1,\ldots,8$. If the calculated t was equal to or greater than the critical t the null hypothesis was rejected. The number of rejections r_{ij} was recorded for each level of significance α_j at which the null hypothesis was tested, and for samples of size $i=2,\ldots,31$.

III. METHOD OF ANALYSIS

Once the number of rejections r_{ij} was determined (given that the null hypothesis was true) for each level of significance α_j , $j=1,\ldots,8$, and for all sample sizes $i=2,\ldots,31$, it was necessary to determine if the number of observed rejections were significantly different from the expected number of rejections e_j . The expected number of rejections, assuming a normal population, was obtained by taking the product of the probability of a type I error, α (i.e., the probability of rejecting the null hypothesis when in fact the null hypothesis is true), and the number of times the test was repeated with a different sample. For each size sample, the null hypothesis $\mu \leq \mu_0$ was tested for 10,000 different samples at the α_j level of significance. The values of α_j that were used, and the resultant expected number of rejection e_i is shown below in Table III.

TABLE III

25	.20	.15	.10	.05	.025	.005	.0005
00 2	000	1500	1000	500	250	50	5
							.25 .20 .15 .10 .05 .025 .005 .000 2000 1500 1000 500 250 50

To determine if the observed number of rejections was significantly different from the expected number of rejections, a Chi Square test with one degree of freedom was

conducted to evaluate the null hypothesis H_0^* : $r_{ij} = e_j$ for each value of r_{ij} . Table IV is the contingency table for the Chi Square test.

TABLE IV

	Number of times H accepted	Number of times H rejected	Total
Expected number	10000-е _ј	ej	10000
Observed number	10000-r _{ij}	r	10000

The Chi Square statistic was obtained by calculating $\chi^2 = \frac{(ej-r_{ij})^2}{10000-e_j} + \frac{(r_{ij}-e_j)^2}{e}.$ When the calculated χ^2 was greater than the critical χ^2 with one degree of freedom at the $1-\alpha$ confidence level the null hypothesis H_o : $r_{ij}=e_j$ was rejected. An example of the method of analysis is given in Section VII.

IV. OUTPUT

The output obtained from the computer simulation was r_{ij} , the observed number of times that the null hypothesis $H_o\colon \mu \leq \mu_o$ was rejected, when in fact the null hypothesis was true. As previously indicated r_{ij} was obtained for $j=1,\ldots,8$ levels of significance in the t-test, and for samples ranging in size from $i=2,\ldots,31$. For each r_{ij} , the probability of a type I error, γ_{ij} was obtained by taking the ratio of the number of observed rejections to the number of samples M = 10,000 tested, e.g., $\gamma_{ij} = \frac{r_{ij}}{10000}$

Appendices A-J table the values of γ_{ij} for each of the ten cases examined (sampling from a standard normal distribution, and sampling from a Weibull distribution with nine sets of parameter values). The values of the index $i=2,\ldots,31$ again represent the sample sizes used, and $j=1,\ldots,8$ reference the levels of significance for which each sample was tested (see Table III). Probabilities that appear with an asterisk, i.e. γ_{ij}^* represent a situation where the number of observed rejections r_{ij} was significantly different from the expected number of rejections e_j at the .01 level of significance. Probabilities appearing with a check, i.e. γ_{ij}^* represent the same situation at the .05 level of significance.

V. RESULTS

A. NORMAL CASE

In review, for the normal case samples were drawn from a standard normal distribution. A one tailed t-test was conducted on each of 10,000 different samples at eight levels of significance to test the null hypothesis $H_{\text{O}}\colon \mu \leq \mu_{\text{O}}.$ The process was repeated for samples ranging in size from 2 to 31.

As anticipated the observed number of rejections r_{ij} did nearly equal the expected number of rejections e_j in all cases. In fact the null hypothesis H_o : r_{ij} = e_j was accepted for all r_{ij} at the .01 level of significance and rejected for only eight of the 240 r_{ij} at the .05 level of significance. The rejections that did occur were attributed to the stochastic nature of the testing procedure.

Appendix A tables the results for the normal case.

B. WEIBULL CASE

The results of the simulation changed significantly when samples were drawn from a Weibull distribution.

In general, for a given value of the parameter β , and for fixed i and j, the observed number of rejections r_{ij} was relatively insensitive to changes in the parameter λ . However, for a given λ , as β increased, the r_{ij} increased causing a decrease in the number of times that H_o : r_{ij} = e_j was rejected. In the three cases where β = 1, with the

exception of testing H_o : $\mu \leq \mu_o$ at the .0005 level, H_o^* : r_{ij} = e_j was rejected for all r_{ij} at the .01 level. When testing H_o : $\mu \leq \mu_o$ at the .0005 level, H_o^* : r_{ij} = e_j was rejected for most of the r_{ij} at the .05 level. Otherwise H_o^* : r_{ij} = e_j was accepted. The results were essentially the same for the three cases where β = 2 with only a slight decrease in the total number of times H_o^* : r_{ij} = e_j was rejected. In the three cases where β = 3, the results were closest to the results expected if sampling had been from a normal distribution. In fact, for λ = 3 the null hypothesis H_o^* : r_{ij} = e_j was accepted for 206 of the 240 r_{ij} .

With few exceptions, the values of r_{ij} tended to increase as the sample size increased. This increasing trend was difficult to detect for small values of α , possibly because the increase was masked by the random fluctuations in r_{ij} , where the r_{ij} were already small.

A final result of the experiment was that the r_{ij} were usually less than the expected number of rejections. In fact, the stronger hypothesis H_0 ': $r_{ij} \leq e_j$ was accepted at the .95 level of confidence in all cases for all r_{ij} .

VI. CONCLUSIONS

The results of the experiment suggest that the validity of the t-test is sensitive to the assumption of normality if sampling is done from a Weibull distribution with the parameter values chosen in this paper. Accepting the null hypothesis H_0 : $r_{ij} \leq e_i$ for any sample size and level of significance implies that the probability of rejecting a true hypothesis is less when sampling from a Weibull distribution than when sampling from a normal distribution. will tend to cause the experimenter to announce too few significant results if the t-table is used as if sampling from a normal distribution. However, since the probability of making a false rejection γ_{ij} , when actually testing at the α level of significance has now been determined for the Weibull case, the problem of too few significant results can be overcome for any sample size by finding the critical t value corresponding to the desired level of significance This procedure will be demonstrated in an example in the next section.

In order to obtain a better estimate of the probability of rejecting a true hypothesis at the .0005 level of significance, more samples are needed. At this level of significance with 10,000 samples, the expected number of rejections is only five. The amount of deviation from the expected number of rejections was such that no rejections

frequently occurred in 10,000 samples. This implies that the probability of rejecting a true hypothesis is zero when testing at the .0005 level. However, based on the hypothesis that the observed number of rejections is equal to or less than the expected number of rejections, the probability of rejecting a true hypothesis when testing at the .0005 level is bounded between zero and .0005.

The fact that the r_{ij} increased as the sample size increased is supported by the Central Limit theorem. For large samples, the "pseudo t-distribution" formed by sampling from a Weibull distribution asymptotically approaches a normal distribution. Since this is also true of a "real t-distribution" where sampling is from a normal distribution, the observed number of rejections obtained by sampling from a Weibull distribution will approach the expected number of rejections for increasing sample sizes.

VII. EXAMPLE

To illustrate the method of analysis, and to demonstrate a procedure for using a t-table to estimate a critical t value when sampling from a Weibull distribution consider the following example.

From Appendix B the value γ_{45} = .0100 implies that for samples of size four, and testing at the .05 level of significance with a one tailed t-test, that the probability of a type one error is estimated to actually be .0100 when sampling is from a Weibull distribution. If γ_{45} = .0100 then r_{45} = 100 which implies 100 observed rejections of the null hypothesis H_0 : $\mu \le 1.0$. Filling in Table IV gives the results below.

	Number of times H accepted	Number of times H rejected	Total
Expected number	9500	500	10000
Observed number	9900	100	10000

The Chi Square statistic becomes $\chi^2 = \frac{(500-100)^2}{500} + \frac{(500-100)^2}{9500} = 336$. Since 336 is larger than the critical Chi Square with one degree of freedom at either the .05 or .01 level of significance, the null hypothesis H_0^* : $r_{45} = 500$ is rejected. It can then be concluded that when sampling from a Weibull distribution with $\lambda = 1$, $\beta = 1$ and testing with a one tailed t-test at the .05 level of significance for samples of size

four, that the observed number of rejections in significantly different from the expected number of rejections had the sample been from a normal distribution. Consequently, the probability of a type I error, when sampling from the above Weibull distribution, is significantly different from the expected probability of a type I error when sampling from a normal distribution. In fact, since the stronger hypothesis H_0' : $r_{45} \leq 500$ can be accepted, the probability of a type I error under the above conditions is less than the probability of a type I error when sampling from a normal distribution. As previously mentioned, this will cause the experimenter to announce too few significant results if a t-table is used as if sampling from a normal distribution. The experimenter is now faced with the problem of determining a critical value that corresponds to the probability of a type I error for samples from a Weibull distribution. Returning to Appendix B to test the null hypothesis $H_0: \mu \leq \mu_0$ for samples of size four at the .05 level of significance, where it is known that sampling is from Weibull distribution, it is observed that $\gamma_{\mu\nu}$ = 0.05 falls between the α = 0.15 and α = 0.10 columns. By entering a t-table at either the α = 0.15 or α = 0.10 level, for samples of size four, the experimenter will obtain an estimate of the critical value that corresponds to testing at the 0.05 level of significance for samples from a Weibull distribution. Choosing $\alpha = 0.15$ will result in a larger critical value and a more conservative test.

VIII. EXTENSIONS

The choice of the Weibull distribution was mostly arbitrary, even though reference was made to its application in reliability theory and life testing. The possibilities for extending this investigation to other non-normal distributions are numerous. In addition to the common distributions with known distribution functions, bimodal and truncated distributions warrent investigation. It would also be interesting to examine the robustness of the t-test when sampling from non-normal distributions when two means are being compared. Also of interest would be the case where the two samples are from different non-normal distributions. As indicated, the possibilities for extensions are numerous and limited only by the experimenters time, interest, and needs.

4
×
Н
9
Z
_
口
Д
Д
K

	$\alpha = 0.0005$	00	00	00	00	00	00	00	00	00	00	00	00	000	00	000	000	00	00	00	00	00	00	00	00	00	00	00	00	00
	$\alpha = 0.005$	90	04	05	05	05	005	05	0 4	0 4	05	05	0 4	0 4	005	007	005	0 4	05	05	04	0 4	05	005	05	005	0.4	0 4	0 4	0 4
NORMAL CASE	α=0.025 .0256	25	24	56	25	25	23	27	24	56	24	56	24	56	026	22	26	23	24	22	24	24	24	23	25	26	24	28	24	ζ,
STANDARD NO	$\alpha = 0.05$	49	48	51	49	49	50	53	48	51	49	50	53	48	50	45	51	47	49	917	51	50	48	47	51	50	49	52	47	4 0
ERROR, ST	$\alpha = 0.10$	01	99	02	01	66	95	02	98	00	00	94	02	96	96	92	03	26	00	93	66	98	98	01	00	00	05	03	26	2
A TYPE I	$\alpha = 0.15$	53	47	54	51	50	44	47	49	50	48	42	51	44	94	43	50	42	50	42	50	746	7 7	53	94	52	53	54	50) 17
ILITY OF	$\alpha = 0.20$	01	98	01	00	98	92	97	99	02	01	91	01	98	96	94	201	94	98	94	01	26	94	02	97	02	04	03	00	9 4
PROBABILI	$\alpha = 0.25$. 2448	49	50	49	48	45	45	49	249	53	248	240	256	247	546	42	249	243	249	245	50	44	42	52	14	55	54	52	51	7
	Sample size i	\sim	77	Ŋ	9	7	∞	0																					30	

		$\alpha = 0.0005$	00	000	000	000	0000	0000	000	0001	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	00	00
		α=0.005 .0019* .0016*	010	0002	0003	0000	0003	002	0000	003	900	003	008	007	0002	9000	001	000	004	007	007	000	002	002	003	005	005	005
	$(\lambda=1, \beta=1)$	a=0.25 .0110* .0078*	0041	027	041	051	051	031	040	045	059	057	690	950	054	950	054	059	950	070	090	070	074	690	690	088	062	063
	ULL CASE	α=0.05 .0221* .0133*	100	0110	0122	139	0158	0131	0154	0147	0171	0173	0175	0182	0185	189	0187	170	209	204	185	223	215	217	219	259	219	21.7
NDIX B	OR, WEIB	α=0.10 .0442* .0349*	305	3780	393	480	461	479	516	489	499	946	531	539	555	545	586	524	615	590	607	959	649	645	619	629	645	623
APPEND.	TYPE I ERR	α=0.15 .0701* .0628*	695	0782	0839	0903	0920	0938	960	931	066	026	975	1028	1032	600	027	000	039	950	054	117	118	104	153	660	139	105
	OF A	α=0.20 .1014* .1043*	139	1275	1302	428	1454	1410	1494	1451	1547	1587	1448	1533	1529	1541	1536	1532	1587	1590	1582	1629	1694	1653	1684	1600	64	1578
	PROBABILITY	α=0.25 .1355* .1571*	690	1810	1841	1964	1967	1191	2039	1983	2066	2136	1997	2072	2052	2077	2129	2101	2108	2112	2150	2159	2214	2210	2221	2183	2185	21.17
		Sample size i 2 3) 	no	7	∞ c																						31

ر)
×	
7	
F)	
д Д	4
	7

ROBABILITY OF A TYPE I ERROR, WEIBULL CASE (12), 8=2)	0.10 α=0.05 α=0.025 α: 0795* .0380* .0188* 0728* .0345* .0160*	0. *20		233* .1730* .1222* .0745* .0306* .0134* .0019*	365* .1847* .1328* .0836* .0376* .0149* .0015*	228* .1710* .1232* .0751* .0341* .0154* .0022*	00. *1771* .00149* .0339* .0149* .0017*	320* .1824* .1327* .0826* .0340* .0150* .0018*	00. *0100. *1803. *0837. *0361. *0155. *0019.	271* .1756* .1247* .0741* .0321* .0137* .0026*	359* .1842* .1317* .0813* .0362* .0147* .0025*	342* .1853* .1368* .0856* .0368* .0149* .0016*	320* .1767* .1258* .0771* .0338* .0143* .0021*	330* .1798* .1284* .0793* .0340* .0143* .0024*	288* .1781* .1303* .0815* .0352* .0168* .0019*	333* .1806* .1306* .0826* .0345* .0159* .0021*	355* .1865* .1331* .0841* .0383* .0170* .0027*	353* .1866* .1337* .0831* .0324* .0136* .0021*	400, 1875* .1358* .0870* .0378* .0179* .0024*	357* .1864* .1370* .0873* .0364* .0159* .0023*	430 .1892* .1362* .0852* .0363* .0161* .0023* .000	0000 "1884" "1384" "0866" "0375" "0165" "0030"	459 .1942 .1396* .0856* .0388* .0159* .0030*	3937 .1880* .1332* .0874* .0401* .0175* .0028*	000. 1934 .1391* .0831* .0362* .0173* .0018*	00. *8100. *0710. *86. *4080. *5781. *704	380* .1848* .1328* .0830* .0374* .0172* .0032*
SABILITY OF A TYPE I ERRO	.25 α=0.20 α=0.15 α= 053* .1635* .1209* .	. *1911. *8191. *8191.	213* .1685* .1198* .	233* .1730* .1222*	365* .1847* .1328* .	.1732* .1732* .	263* .1771* .1270* .	320* .1824* .1327* .	289* .1803* .1316* .	271* .1756* .1247* .	359* .1842* .1317* .	342* .1853* .1368* .	320* .1767* .1258* .	330* .1798* .1284*	288* .1781* .1303* .	3333* .1806* .1306* .	355* .1865* .1331* .	353* .1866* .1337* .	4007 .1875* .1358* .	357* .1864* .1370* .	430 .1892* .1362*	4147 .1894* .1384*	459 .1942 .1396* .	3937 .1880* .1332*	4097 .1934 .1391*	4077 .1879* .1373*	380* .1848* .1328*

 $\alpha = 0.0005$.0000. 0008 0004 0003 0002 0000 0001 0003 0004 .0002 0002 .0003 0002 0000 0000 7000 0000 .000 * 00.00 \sim 11 .0235 .0216/ .0218/ .0213/ .0233 $(\lambda=1,$ WEIBULL CASE APPENDIX ERROR, TYPE Ø 년 (PROBABILITY ರ 4 (1) N Si Φ ample

4000

000

000

戸	
×	
H	
2	
\sim	
囯	
Д	
щ	
S.	

	α=0.0005 .0000√	000	0000	0000	0000	0000	000	0000	000	0000	0000	000	0000	00	0000	0000	0000	000	00	000	000	000	00	000	00	000	000	00	000	00
	α=0.005 .0020*	910	00100	2000	005	0003	0000	0003	0003	005	0000	0003	0000	003	0008	0000	0002	9000	001	0002	0007	0004	007	0000	002	0002	003	005	000	002
$(\lambda=2, \beta=1)$	$\alpha = 0.025$ $0111*$	078	041	040	027	041	0051	031	051	0031	040	0045	0059	0057	690	0056	0054	950	054	050	0056	0070	090	0070	074	690	690	088	062	063
IBULL CASE	α=0.05 .0222*	13	100	109	110	122	139	127	158	131	154	0147	0171	173	175	182	185	189	187	170	209	204	185	223	215	217	219	259	219	217
RROR, WE	$\alpha = 0.10$ 0444	034	305	348	378	393	480	456	194	479	516	0489	6640	949	531	0539	555	542	586	524	619	590	209	9690	649	645	619	629	945	623
TYPE I E	$\alpha = 0.15$	062	669	0719	782	839	0903	884	920	938	096	931	990	026	975	1028	032	600	027	000	039	950	054	117	118	104	153	660	139	1.05
LITY OF A	$\alpha = 0.20$	0 4	139	187	275	302	428	405	454	410	494	451	547	587	448	533	529	541	536	532	587	590	582	629	694	653	684	009	999	578
PROBABILIT	α=0.25 .1357*	57	069	1748	1810	1841	964	1950	1967	1991	2039	1983	2066	136	1997	2072	2053	2077	2129	2101	2108	2112	2150	2159	2214	2210	2221	2183	185	11.7
	Sample size i 2	\sim	4	5	9	_	∞	0																					30	

	\$ = 0.0000 .000002 .0000002 .000002 .000002 .000002 .000002 .000002 .000002 .000002 .000002 .000002 .000002 .000002 .000002 .000002 .0000002 .000002 .000002 .000002 .000002 .000002 .000002 .0000002 .000002 .000002 .000002 .000002 .000002 .000002 .0000002 .000002 .000002 .000002 .000002 .000002 .000002 .0000002 .000002 .000002 .000002 .000002 .000002 .000002 .0000002 .000002 .000002 .000002 .000002 .000002 .000002 .0000002 .000002 .000002 .000002 .000002 .000002 .000002 .0000002 .000002 .000002 .000002 .000002 .000002 .000002 .0000002 .000002 .000002 .000002 .000002 .000002 .000002 .0000002 .000002 .000002 .000002 .000002 .000002 .000002 .0000002 .000002 .000002 .000002 .000002 .000002 .000002 .0000002 .000002 .0000002 .0000002 .0000002 .0000000000
	2 * * * * * * * * * * * * * * * * * * *
(3=2, 8=2	**************************************
IBULL CASE	**************************************
ENDIX F RROR, WE	**************************************
APP TYPE I E	8 ************************************
LITY OF A	**
PROBABILIT	™ № ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
	Sample Size 128

Ç
L
\bowtie
Н
\Box
$\overline{}$
Z
团
Д
щ
Y,

3)	*	
($\lambda = 2$, $\beta =$	** * * * * * * * * * * * * * * * * * *	
IBULL CASE	* * * * * * * * * * * * * * * * * * *	
ERROR, WEI	**	
TYPE I	*	
LITY OF A	*	
PROBABIL	*	
	10	

-	Ι	77	
	×	4	
(×	, נו	
	2	i	
	7	1	
	1	4	

	α=0.0005 .0000		00	000	0000	000	0000	0000	000	0000	000	0000	0000	0000	0000	0000	000	0000	0000	000	000	000	000	000	000	000	000	00	000	
3)	α = 0 · 0 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 ·	00073	005	003	003	004	0002	0003	002	0000	0000	000	0003	9000	0002	1000	004	0003	0005	003	0007	0003	0003	005	002	000	008	005	007	
$(\lambda=2, \beta=3)$	α=0.025 .0112*	082	036	034	032	038	032	040	0 1/10	940	9400	0 48	059	9900	640	0053	059	056	050	070	071	690	690	920	082	054	085	690	073	
IBULL CASE	α	010	104	0102	120	0136	0110	0148	134	167	0145	179	183	174	180	194	182	170	177	9610	0211	0197	250	0204	226	215	235	230	222	
RROR, WE	α=0.10 .0445*	300	350	403	418	463	7 7 7	467	691	515	506	515	575	510	538	571	543	264	567	619	618	615	633	654	652	919	629	635	657	
TYPE I E	α=0.15 .0703*	005	752	0821	948	910	911	908	196	696	932	984	084	996	051	1031	034	055	033	115	082	960	136	1163	149	153	151	112	118	
LITY OF A	α=0.20 .1018*	000	240	315	352	454	423	431	492	487	456	1499	602	497	558	517	541	617	578	619	919	1645	1649	1698	671	693	658	633	612	
PROBABILI	a.1360**	56 7	758	844	903	900	776	955	015	011	2000	2047	140	042	105	2027	077	137	127	159	160	161	167	222	219	234	181	127	1.35	
	Sample size i	√1	. 17	. 9	7	∞	0																					30		

۲	_	4	
ķ	×	4	
ا	_	1	
7	2	7	
۲	J	4	
۲	1	4	

	α=0.0005 .0000.	00	00	00	000	000	000	000	00	000	000	002	0000	000	0000	0000	00	000	000	00	00	00	00	00	00	00	00
<u></u>	α=0.005 .0046 .0035,	003	0020	021	0027	017	0022	0017	024	0024	0030	0027	0026	0019	0030	0018	020	0024	0027	024	021	028	022	023	026	028	022
$(\lambda=2, \beta=3)$	α=0.020 .0194* .0167*	145	0144	9810	132	0152	0144	0168	147	0910	0151	0100	0141	0910	0140	1910	137	0164	0185	0157	0116	182	0116	175	173	182	166
IBULL CASE	8 * * * * * * * * * * * * * * * * * * *	327	0332	333	0330	345	0363	361	0342	0355	0320	341	0358	377	0363	0360	0324	0393	371	0344	0387	404	0396	393	412	904	360
RROR, WE	α=0.10 .0804* .0758*	714 684	751	798	813	834	867	831	799	821	849	780	814	820	828	877	795	903	845	833	998	606	900	883	903	899	840
TYPE I E	α=0.15 .1221. .1196.	150	215	249	326	279	354	304	303	334	368	546	326	318	309	371	321	904	383	347	387	409	391	395	405	419	348
LITY OF A	α=0.20 .1646* .1647*	636 658	709	748	824	786	844	826	771	879	884	769	857	824	822	886	863	901	884	1881	922	912	93	93	95	91	84
PROBABI	8 * * * * * * * * * * * * * * * * * * *	183	216	289	348	284	358	327	302	2353	242	308	396	310	354	38	371	43	40	40	42	45	43	45	44	39	33
	Sample size i	4 C	· •	<u></u>	∞ c																						31

Ь	
×	
H	
Z	
III	
Ъ	
Щ	
K	į

	α=0.0005 .0000/ .0005 .0004	00	00	00	00	00	00	00		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
ERROR, WEIBULL CASE ($\lambda=3$, $\beta=3$)	α=0.005 .0052 .0051 .0049	03	0 4	04	0 4	0 4	0.4	0 4	0 4	0.00	0 4	04	04	0.4	0 4	0.5	0 4	0 4	04	0 4	04	0 4	0.4	0 4	
	α=0.025 .0247 .0272 .0233	272	24	24	22	23	21	23	0 V.	2 Z	22	224	21	198	24	241	21	22	24	24	22	23	56	22	
	α=0.05 .0499 .0514 .0465	43	49	94	047	49	940	46	407	44	047	47	464	43	20	475	44	48	49	48	47	51	487	43	
	α=0.10 .0980 .0976 .0940.	909	97	92	97	97	97	97		993	96	94	02	94	03	99	96	99	03	99	00	02	01	94	
TYPE I E	α=0.15 .1497 .1481 .1401*	39	471	7 X	45	400	44	51	ν ν ς	100 100 100 100 100 100 100 100 100 100	94	45	52	48	53	50	47	54	54	54	54	96	52	49	
LITY OF A	α=0.20 .1947 .1948 .1902	87	97	87	0000	96	92	202	704	201	195	198	03	199	05	0 4	02	03	07	90	05	05	90	16	
PROBABILI	α=0.25 .2409/ .2378* .2434	37	48 5	35	46	49	44	57	シー	547	44	50	54	52	57	54	54	54	59	99	58	57	55	45	
	Sample size 1 2 3 4	O/J	~ α) O	010																				

LIST OF REFERENCES

- 1. Bartlett, M. S., "The Effect of Non-Normality on the t Distribution," <u>Proceedings of the Cambridge Philosophical Society</u>, V. 31, p. 223-231, 1935.
- 2. Bramhall, J. N., A Comparison of Three Uniform Pandom Number Generators for the IBM 360 and Resultant Test Program, report prepared at Applied Physics Lab., John Hopkins University, 12 February 1969.
- 3. Meyer, Paul L., <u>Introductory Probability and Statistical Applications</u>, p. 216, Addison-Wesley Publishing Co., Inc., 1965.
- 4. Naylor, T. H., and others, <u>Computer Simulation Techniques</u>, p. 70-71, John Wiley and Sons, Inc., 1966.
- 5. Ostle, Bernard, Statistics in Research, p. 113-114, Iowa State University Press, 1963.
- 6. Pearson, E. S., "The Analysis of Variance in Case of Non-Normal Variation," Biometrika, V. 23, p. 114-133, 1931.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314		2
2.	Library, Code 0212 Naval Postgraduate School Monterey, California 93940		2
3.	Professor G. A. Tuck Department of Operations Analysis Naval Postgraduate School Monterey, California 93940		1
4.	Department of Operations Analysis Naval Postgraduate School Monterey, California 93940		1
5.	Capt. David. P. Allen 47 North Center Street Perry, New York 14530		1

DOCUMENT CONTROL DATA - R & D (Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified) ORIGINATING ACTIVITY (Corporate author) 28. REPORT SECURITY CLASSIFICATION Unclassified Naval Postgraduate School 2b. GROUP Monterey, California 93940 3 REPORT TITLE THE ROBUSTNESS OF THE STUDENT t TEST WHEN SAMPLING FROM A WEIBULL DISTRIBUTION Master's Thesis; September 1970 5. AUTHORIS) (First name, middle initial, last name) David P. Allen, Captain, United States Marine Corps 6. REPORT DATE 78. TOTAL NO. OF PAGES 7b. NO. OF REFS September 1970 6 BA. CONTRACT OR GRANT NO. 98. ORIGINATOR'S REPORT NUMBER(S) b. PROJECT NO. 9b. OTHER REPORT NO(5) (Any other numbers that may be assigned this report)

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Naval Postgraduate School Monterey, California 93940

13. ABSTRACT

When testing with the t-test, it is assumed that the sample under investigation is from a normal population. The purpose of this thesis is to examine the sensitivity of the t-test to violations of this normality assumption. A computer simulation was performed to draw sets of 10,000 samples from an infinite Weibull population. A t-test was performed on each sample to test the null hypothesis H_{o} : $\mu \leq \mu_{o}$ where μ_{o} was the true mean of the Weibull population. The number of times that H_{0} was rejected was recorded for all combinations of eight levels of significance, samples ranging in size from 2 to 31, and for values of the parameters of the distribution $\lambda = 1,2,3$ and $\beta = 1, 2, 3,$

(PAGE 1) J 1 NOV 65 14

UNCLASSIFIED

Security Classification

KEY WORDS		LINK A		LINK B		LINK C	
	ROLE	w T	ROLE	₩ T	FOLE	A 7	
					ľ		
ROBUSTNESS							
STUDENT t-TEST		}					
t-TEST							
VIOLATION OF NORMALITY							
ASSUMPTION							
	1						

D FORM 1473 (BACK)

UNCLASSIFIED

OCT 2 4 1994

Thesis A3765

Allen

c.1

121670

The robustness of the student t test when sampling from a Weibull distribution. thesA3765
The robustness of the student t test whe

3 2768 000 98961 0
DUDLEY KNOX LIBRARY