R Package ArfimaMLM

An Effective Approach to the Repeated Cross-Sectional Design

Patrick Kraft Christopher Weber Matthew Lebo

Stony Brook University

University of Arizona

November 18, 2015

Introduction

Overview

- Implementation of ArfimaMLM approach presented by Lebo and Weber ("An Effective Approach to the Repeated Cross-Sectional Design", AJPS 2015) in R.
- Basic idea: Correcting for temporal autocorrelation in repeated cross-sectional data (as well as panel data).
- Key Aspects:
 - ▶ Individual observations are embedded within multiple, sequential time-points.
 - ▶ Retrieve estimates at the individual-level and at the aggregate level.
 - Allows use of variables that vary only within cross-sections and some that vary between cross-sections (e.g., unemployment rate)
 - ▶ Box-Jenkins and fractional differencing techniques can control for autocorrelation at level-2. (e.g. Box-Steffensmeier and Smith, 1996; Lebo et al., 2000; Clarke and Lebo, 2003)
 - Introduce double filtering to clean up two kinds of autocorrelation.

Description of Package

```
arfimaMLM(formula, data, timevar
          . d = "Hurst", arma = NULL
          . ecmformula = NULL. decm = "Hurst"
          , drop = 5, report.data = TRUE, ...)
arfimaMLM(y.ydif ~ x1.xdif + x1.fd + x2 + z1.fd + z2.fd
          + (1 | time)
          . data = data. timevar = "time". ...)
arfimaMLM(y.ydif ~x1.xdif + x1.fd + x2 + z1.fd + z2.fd + ecm
          + (1 | time)
          , data = data, timevar = "time"
          , d = "Sperio"
          , ecmformula = y.mean ~ x1.mean
          , decm = "ML", \ldots)
arfimaMLM(y.ydif ~ x1.xdif + x1.fd + x2 + z1.fd + z2.fd + ecm
          + (1 + x1.dif | time)
          . data = data. timevar = "time"
          , d = list(y = "Hurst", x1 = "GPH", z1 = "Sperio", z2 = 0.25)
          , arma = list(y = c(1,0), z2 = c(0,1)), ...)
```

- ► Scenario: repeated cross-sectional dataset with 100 timepoints and 500 units within each timepoint
- ► Independent variables:
 - $x_1 \sim \mathcal{N}(\mu = \bar{X}_{1t}, \sigma^2 = 2)$; \bar{X}_{1t} follows a fractionally integrated series with d = 0.3 and a mean of 5
 - $x_2 \sim \mathcal{N}(\mu = 0, \sigma^2 = 40)$
 - $z_1 \sim \mathcal{N}(\mu = \bar{Z}_{1t}, \sigma^2 = 3); \; \bar{Z}_{1t} \; \text{follows a fractionally integrated series}$ with d = 0.1 and a mean of 2
 - ▶ Z_{2t} follows a fractionally integrated series with d = 0.25 and a mean of 3 (Z_{2t} does not differ within timepoints)
- ► Dependent Variable:

$$y = \bar{Y}_t + \beta_{1t} * x_1 - 0.05 * x_2 + 0.3 * \bar{Z}_{1t} + 0 * Z_{2t} + \epsilon$$
 , where $\beta_{1t} \sim \mathcal{N}(\mu = 0.2, \sigma^2 = 0.1)$ $\epsilon \sim \mathcal{N}(\mu = 0, \sigma^2 = 1)$,

where $ar{Y}_t$ follows a fractionally integrated series with d=0.4 and a mean of 10

Data Overview I

```
data[496:505,]
    time
                           x2
                                                  z2
                x1
                                        z1
                                                              У
496
         2.782894
                    99.649591
                                4.52390786 2.222936
                                                      6.556912
497
         4.666993
                    15.769259
                                4.58101935 2.222936
                                                     10.326180
         3.479995
498
                   -23.151975
                               -0.05688266 2.222936
                                                     13.371325
499
       1 4.927197
                    -3.963808
                                6.34666239 2.222936
                                                     12.706198
500
         4.671967
                    33.751661
                                0.60743779 2.222936
                                                      9.181135
                    26.234304
501
       2 2.888744
                                2.96382521
                                           1.969999
                                                     10.004992
502
         3.334345
                   -22.937614
                                3.75093669
                                            1.969999
                                                     13.311789
       2 5.516160
503
                     5.706410
                                6.43928311
                                            1.969999
                                                      11.906759
504
         8.195076
                    31.802270
                                4.88271529
                                            1.969999
                                                      14.047000
                    95.629309
505
       2 7.086206
                                2.69268251
                                           1.969999
                                                      6.587762
```

Data Overview II

Figure: Plot of Dependent Variable y Across Time

Data Overview III

Figure: Plot of Independent Variables Across Time

Data Overview IV

Figure: Plot of Independent Variables Across Time

Results without ArfimaMLM I

```
m1a \leftarrow lm(y \sim x1 + x2 + z1 + z2, data = data)
m1b \leftarrow lmer(y \sim x1 + x2 + z1 + z2)
              + (1 | time), data = data)
m1c \leftarrow lmer(y \sim x1 + x2 + z1 + z2)
              + (1 + x1 \mid time), data = data)
```

Model Estimation

Results without ArfimaMLM II

Table: Results for Simple OLS and Multilevel Model

_	Dependent variable:			
		y		
	OLS	linear mixed-effects		
	(1)	(2)	(3)	
×1	0.200***	0.207***	0.207***	
	(0.003)	(0.002)	(0.011)	
x2	-0.050 [*] **	-0.050***	-0.050***	
	(0.0002)	(0.0001)	(0.0001)	
z1	0.025***	0.003*	0.003*	
	(0.002)	(0.002)	(0.001)	
z2	-0.223***	-0.224**	-0.181*	
	(0.006)	(0.106)	(0.099)	
Constant	11.546***	11.567***	11.455***	
	(0.024)	(0.325)	(0.304)	
Observations	50,000	50,000	50,000	
R^2	0.655			
Log Likelihood		-72,501.370	-71,566.660	
Bayesian Inf. Crit.		145,078.500	143,230.700	

Note:

4 D F 4 D F

^{*}p<0.1; **p<0.05; ***p<0.01

Results using ArfimaMLM I

```
m2a \leftarrow arfimaMLM(y.ydif ~ x1.xdif + x2 + z1.fd + z2.fd
                 + (1 | time)
                 , data = data, timevar = "time")
m2b <- arfimaMLM(y.ydif ~ x1.xdif + x2 + z1.fd + z2.fd
                  + (1 + x1.xdif | time)
                 , data = data, timevar = "time")
```

Model Estimation 00000

Results using ArfimaMLM II

Table: Results for ArfimaMLM

Dependent	variable:	
y.ydif		
(1)	(2)	
0.203***	0.204***	
(0.002)	(0.011)	
-0.050***	-0.050 [*] **	
(0.0001)	(0.0001)	
0.204*	0.233**	
(0.118)	(0.105)	
-0.071	-0.034	
(0.107)	(0.095)	
0.055	0.055	
(0.110)	(0.110)	
47,500	47,500	
-69,004.340	-68,091.650	
138,022.700	136,201.300	
138,084.100	136,280.200	
	y.yd (1) 0.203*** (0.002) -0.050*** (0.0001) 0.204* (0.118) -0.071 (0.107) 0.055 (0.110) 47,500 -69,004.340 138,022.700	

Note:

^{*}p<0.1; **p<0.05; ***p<0.01

Getting the Package

▶ on CRAN: http://cran.r-project.org/web/packages/ArfimaMLM/

Model Estimation

on GitHub (development version): https://github.com/pwkraft/ArfimaMLM/ ational Scenario Model Esti

References

- Box-Steffensmeier, Janet M and Renee M Smith. 1996. "The dynamics of aggregate partisanship." *American Political Science Review* 90(3):567–580.
- Clarke, Harold D and Matthew Lebo. 2003. "Fractional (co) integration and governing party support in Britain." *British Journal of Political Science* 33(02):283–301.
- Lebo, Matthew and Christopher Weber. 2015. "An Effective Approach to the Rolling Cross Sectional Design." *American Journal of Political Science* 59(1):242–258.
- Lebo, Matthew J, Robert W Walker and Harold D Clarke. 2000. "You must remember this: dealing with long memory in political analyses." *Electoral Studies* 19(1):31–48.

References