MEASURE THEORETIC PROBABILITY III HW 5

TOMMENIX YU ID: 12370130 STAT 38300 DUE THU MAY 4TH, 2023, 11AM

Discussed with classmates.

Exercise 1.

Proof.

Theorem 13.7 in Williams says that we can show the sequence is UI if we can show the following:

- (1) $X_n \in L^1$;
- (2) $X \in L^1$;
- (3) $X_n \to X$ in L^1 .

So let's just try to solve this.

For (1) we get this because $E[X_n] \to EX < \infty$ as a sequence of real numbers, so $E[X_n] < M < \infty$ is uniformly bounded. But then it means each is integrable because $X_n \ge 0$.

For (2) we know $EX < \infty$, this means $EX^+ < \infty$ and $EX^- < \infty$, and thus $X \in L^1$.

For (3) note that first, $E[X_n] \to EX < \infty$ as a sequence of real numbers, so $E[X_n] < M < \infty$ is uniformly bounded. Then we break the integral into

$$\int_{\Omega} |X_n - X| d\mathbb{P} = \int_{\{|X_n - X| > \varepsilon\}} |X_n - X| d\mathbb{P} + \int_{\{|X_n - X| \le \varepsilon\}} |X_n - X| d\mathbb{P}$$

for the second term we have

$$\int_{\{|X_n - X| \le \varepsilon\}} |X_n - X| d\mathbb{P} \le 1 \cdot \varepsilon = \varepsilon$$

and for the first we take limit and try to pass limit. Since $E[X_n] < M < \infty$ is uniformly bounded we know

$$|X_n - X| \le 2M + \delta$$

is also uniformly bounded, so DCT means we can pass in the limit:

$$\lim_{n \to \infty} \int_{\{|X_n - X| > \varepsilon\}} |X_n - X| d\mathbb{P} = \int_{\Omega} \lim_{n \to \infty} \mathbb{1}_{\{|X_n - X| > \varepsilon\}} (2M + \varepsilon) d\mathbb{P}$$

$$\leq (2M + 1) \lim_{n \to \infty} \mathbb{P}\left(|X_n - X| > \varepsilon\right) = 0$$

where the last equality is because $X_n \stackrel{as}{\to} X$ implies $X_n \stackrel{p}{\to} X$, and apply definition of convergence in probability.

Exercise 2.

Proof.

(a):

 Z_n is a martingale with respect to probability P:

We know
$$Z_n$$
 is integrable because $\int_{\Omega} Z_n d\mathbb{P} = Q(\Omega) = 1 < \infty$.

We know it's measurable just by what it is (Radon- Nykodym derivatives).

For the crutial property we compute: For any $F \in \mathcal{F}_{n-1}$

$$\int_{F} Z_{n} d\mathbb{P} = Q(F) = \int_{F} Z_{n-1} d\mathbb{P}$$

since $F \in \mathcal{F}_{n-1}$ and $F \in \mathcal{F}_n$.

Now it's in general not true that it is also a Martingale with respect to Q. So we add some conditions.

A trivial condition is that P = Q, but that's too much to ask for. I have some guesses that are correct, but not sure whether equivalent:

Z_n is monotone a.s.:

Just because monotone we can do simple function approximation then get the c_i on each part, i.e. if $\sum_i c_i \mathbb{1}_{A_i} \uparrow Z_n$ then we can pass limit. Thus, by absolute continuous property means if $\sum_i c_i P(A_i \cap F) = 0$ then each is 0, so we can pass the limit to the simple function approximation to get to Z_n and get $\int_F Z_n dQ = \int_F Z_{n-1} dQ$.

$$\int_F Z_n Z_{n-1} dP = \int_F Z_n dQ:$$

This is indeed a new condition since we cannot use simple function approximation to pass Z_n since Z_{n-1} is not \mathcal{F}_n measurable. If the condition hold then

$$\int_{F} Z_{n} dQ = \int_{F} Z_{n} Z_{n-1} dP = \int_{F} Z_{n-1} dQ$$

where the second is by simple function approximation, since Z_n is \mathcal{F}_{n-1} measurable we can do this.

Z_n is invariant in n:

That's just obvious. But many of the conditions we thought of in study group is equivalent to this, say predictable, etc.

(b): If Z_n are UI then the result holds (even equivalent).

If Z_n is UI then there is a L^1 and a.s. limit Z because it is a Martingale. Note that we do not need UI to have a.s. limit Z^* since it is a martingale bounded above, hence supermartingale, hence a.s. limit exists. Now because every subsequence a.s. converge to Z, thus $Z^* = Z$ (subseq of subseq argument, not important point here though).

Let $F \in \mathcal{F}_N$ for arbitrary N, just by what L^1 converge means we have

$$\int_{F} Zd\mathbb{P} = \lim_{n \to \infty} \int_{F} Z_{n}d\mathbb{P} \stackrel{n > N}{=} \lim_{n \to \infty} Q(F) = Q(F)$$

thus if we define the left side to be

$$\mu(F) := \int_{F} Zd\mathbb{P}$$

then we know $\mu = Q$ on all the sets in $\bigcup_{n=0}^{\infty} F_n$. Then the two measures agree on the σ -algebra

$$\sigma\left(\bigcup_{n=0}^{\infty}F_{n}\right)=F_{\infty} \text{ by } \pi-\lambda. \text{ Thus, if } \mathbb{P}(F)=0 \text{ then for all } F\in\mathcal{F}_{\infty}$$

$$Q(F) = \mu(F) = \int \mathbb{1}_F Z d\mathbb{P} = 0$$

so $P \ll Q$ with respect to the set F_{∞} .

(To see equivalence just note if this holds then there is the Radon-Nykodym derivative Z that is the L^1 limit of Z_n , hence UI.)

(c):

First, we denote ∞ as a stopping time where $\{\infty \le n\} = \emptyset \in \mathcal{F}_n$ and $\{\infty = \infty\} = \Omega$. Then by appendix we have

$$\mathcal{F}_\tau \subset \mathcal{F}_{\tau \vee \infty} = \mathcal{F}_\infty$$

where we note the last step is because

$$\{s=\infty\} = \left(\bigcup_{i=1}^{\infty} \{s=i\}\right)^c \in \mathcal{F}_{\infty}.$$

Thus if we assume UI then since $Q \ll \mathbb{P}$ on $\mathcal{F}_{\infty} \supset \mathcal{F}_{\tau}$, we know $Q \ll \mathbb{P}$ on \mathcal{F}_{τ} . As for the formula, by Doob's stopped optional stopping time theorem we have

$$\mathbb{E}[Z|\mathcal{F}_{\tau}] = Z_{\tau}$$

and being the left conditional expectation just means

$$Q(F) = \int_{F \in \mathcal{F}_{-}} Z d\mathbb{P} = \int_{F} Z_{\tau} d\mathbb{P}$$

since $F \in \mathcal{F}_{\infty}$. Thus Z_{τ} is indeed a formula for $\frac{dQ}{d\mathbb{P}}$ under the sigma-field \mathcal{F}_{τ} .

(This is also equivalent as we just choose $\tau = n$ for every n and see we really need UI.)

Exercise 3.

Proof.

Just bravely write out (first step taking out what is known) we have for all $F \in \mathcal{F}_{n-1}$

$$\begin{split} &\int_{F} \mathbb{E}_{P_{0}} \left[X \frac{L_{n}(\theta)}{L_{n-1}(\theta)} | \mathcal{F}_{n-1} \right] dP_{\theta} \overset{P_{\theta} \gg P_{0}}{=} \int_{F} \mathbb{E}_{P_{0}} \left[X L_{n}(\theta) | \mathcal{F}_{n-1} \right] \frac{1}{L_{n-1}(\theta)} dP_{\theta} \\ &= \int_{F} \mathbb{E}_{P_{0}} \left[X L_{n}(\theta) | \mathcal{F}_{n-1} \right] dP_{0} = \int_{F} X L_{n}(\theta) dP_{0} = \int_{F} X dP_{\theta} \end{split}$$

and thus right hand side is an instance of the left hand side conditional expectation. We've implicitly used the fact $F \in \mathcal{F}_{n-1} \subset \mathcal{F}_n$ above.

Exercise 4.

Proof.

We use the fact that a Gaussian measure is absolutely continuous with respect to the common Lebesgue measure. This is because, well, a Gaussian, say N(0, 1) is 0 on a set F iff the set has Lebesgue measure 0.

So we now argue why each X_n is a Gaussian. But this is obvious since under P_{θ} for all θ , we know X_n is a iterative addition of scaled and shifted guassians. Thus there is a definite density $\phi_{n,\theta}$ for each X_n under P_{θ} , which no where vanishes (it is a plane wave function).

For mutually absolutely continuous, say $P_{\theta_1}(A) = 0$, then

$$\int_{A} X_{n+1} d\mathbb{P}_{\theta_{1}} = \int_{X_{n+1}(A)} x \phi_{n+1,\theta_{1}} dx = 0$$

and this holds iff $\lambda(X_{n+1}(A))=0$ (argument from first paragraph). So do the same for P_{θ_1} and P_{θ_2} we get the result.

So we know

$$\frac{dP_{\theta}}{dP_0} = \frac{\phi_{n+1,\theta}}{\phi_{n+1,0}}$$

since we're considering on \mathcal{F}_{n+1} . Since both nominator and denominator does not vanish, this, and the inverse are both well-defined.

So we have offhand find the Radon-Nikodym derivative already. We'll find a more explicit expression later.

Now for an more explicit expression, we compute and get

$$\frac{\phi_{n+1,\theta}}{\phi_{n+1,0}} = \frac{\frac{1-\theta^{n+2}}{1-\theta}\phi(x-\theta^n X_1)}{\phi(x)}$$

where ϕ is the given density.