Object Recognition with Neuronal Network (Deep Learning)

Daniel Saavedra Morales Ingeniería Civil Matemática UC

Agenda

- 1. Introducción
- 2. RCNN (Girshick, 2013)
- 3. ★Faster-RCNN (Ren, 2015)
- 4. SWCNN Overfeat (Sermanet, 2013)
- ★YOLO (Redmon, 2015)
- 6. Variantes
 - a. ★SSD (Liu, 2015)
 - b. Retinanet (Lin, 2017)
 - c. YOLOv3 (Redmon, 2018)

7. Trabajos Futuros

Clasificación

Alexnet (Krizhevsky, 2012)

Localización

Single object

Single object

Single object

Multiple objects

starring

RCNN (Girshick, 2013)

RCNN(2013)

1. Input image

2. Extract region proposals (~2k)

warped region

RCNN(2013)

Selective Search (Uijlings,2012)

RCNN(2013)

RCNN(2013)

RCNN(2013) Bounding-box Regression

$$t_x = (G_x - P_x)/P_w$$

$$t_y = (G_y - P_y)/P_h$$

$$t_w = \log(G_w/P_w)$$

$$t_h = \log(G_h/P_h).$$

t: Predicciones.

G: Bounding-box predicho.

Faster-RCNN (Ren, 2015)

Faster-RCNN(2015)

$$L(\{p_i\}, \{t_i\}) = \frac{1}{N_{cls}} \sum_{i} L_{cls}(p_i, p_i^*) + \lambda \frac{1}{N_{reg}} \sum_{i} p_i^* L_{reg}(t_i, t_i^*).$$

Object or not object

Classification

loss

SWCNN - Overfeat (Sermanet, 2013)

OverFeat(2013)

OverFeat(2013)

OverFeat(2013) Clasificador

Mapa de Características (softmax)

OverFeat(2013) Multi-scale

Salida 1

Salida 2

OverFeat(2013) (Δx , Δy)

Salida 2

Salida 2

OverFeat(2013) Localización

OverFeat(2013)

YOLO (Redmon, 2015)

YOLO (2015)

448x448x3

YOLO (2015)

YOLO (2015)

Bounding-box + Confidence

Class Probability Map

$$\lambda_{coord} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{obj} (x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2$$

$$\lambda_{coord} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{obj} (x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2$$

$$\lambda_{coord} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{obj} (\sqrt{w_i} - \sqrt{\hat{w}_i})^2 + (\sqrt{h_i} - \sqrt{\hat{h}_i})^2$$

$$\lambda_{coord} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{obj} (x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2$$

$$\lambda_{coord} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{obj} (\sqrt{w_i} - \sqrt{\hat{w}_i})^2 + (\sqrt{h_i} - \sqrt{\hat{h}_i})^2$$

$$\sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{obj} (C_i - \hat{C}_i)^2 + \lambda_{noobj} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{noobj} (C_i - \hat{C}_i)^2$$

$$S^2$$
 B

$$\lambda_{coord} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{obj} (x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2$$

$$S^2 \quad B \quad \dots$$

$$i=0 \ j=0$$

$$S^{2} \quad B$$

$$\lambda_{coord} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{obj} (\sqrt{w_i} - \sqrt{\hat{w}_i})^2 + (\sqrt{h_i} - \sqrt{\hat{h}_i})^2$$

$$\sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{obj} (C_i - \hat{C}_i)^2 + \lambda_{noobj} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{noobj} (C_i - \hat{C}_i)^2$$

$$\sum_{i=0}^{S^2} \mathbb{1}_i^{obj} \sum_{c \in closes} (p_i(c) - \hat{p}_i(c))^2$$

MOVIECLIPS.COM

SSD (Liu, 2015)

SSD (2015)

Fully Connected

Fully Connected

SSD (2015)

Fully Connected

Fully Connected

SSD (2015)

(a) Image with GT boxes (b) 8×8 feature map (c) 4×4 feature map

Retinanet (Lin, 2017)

RetinaNet (2017)

RetinaNet (2017)

YOLOv3 (Redmon, 2018)

YOLOv3 (2018)

YOLOv3 (2018)

YOLOv3 (2018)

Trabajos Más Recientes

Imagen piramidal

Trabajos Más Recientes

Imagen piramidal

Característica piramidal

Trabajos Más Recientes

Imagen piramidal

Característica piramidal

Arquitectura Tridente

TridentNet(2019*)

Convolución estándar

Convolución extendida

Bibliografía

- 1. Girshick, R. B., Donahue, J., Darrell, T., & Malik, J. (2013). Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR, abs/1311.2524.
- 2. Uijlings, Jasper & Sande, K. & Gevers, T. & Smeulders, Arnold. (2013). Selective Search for Object Recognition. International Journal of Computer Vision. 104. 154-171.
- 3. Ren, S., He, K., Girshick, R. B., & Sun, J. (2015). Faster R-CNN: towards real-timeobject detection with region proposal networks. CoRR, abs/1506.01497.
- 4. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & Lecun, Y. (2013). Overfeat: Integrated recognition, localization and detection using convolutional net-works.
- 5. Redmon, J., Divvala, S. K., Girshick, R. B., & Farhadi, A. (2015). You only look once: Unified, real-time object detection. CoRR, abs/1506.02640.
- 6. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S. E., Fu, C., & Berg, A. C. 71(2015). SSD: single shot multibox detector. CoRR, abs/1512.02325.
- 7. Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. CoRR, abs/1804.02767.
- 8. Lin, T., Goyal, P., Girshick, R. B., He, K., & Dollár, P. (2017). Focal loss for dense object detection. CoRR, abs/1708.02002
- 9. Li, Yanghao & Chen, Yuntao & Wang, Naiyan & Zhang, Zhaoxiang. (2019). Scale-Aware Trident Networks for Object Detection.