Lista 4, Analiza Matematyczna I

1. Obliczyć sumy szeregów:

a)
$$\sum_{n=0}^{\infty} (-1)^n 2^{-n}$$

$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$$
b)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
ë)
$$\sum_{n=1}^{\infty} \frac{1}{(3n-2)(3n+1)}$$

2. Zbadać zbieżność szeregów:

a) e)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{2\sqrt{n} - 1}$$

$$\sum_{n=1}^{\infty} \frac{1}{n + \sqrt{n}}$$
 b)
$$\sum_{n=3}^{\infty} \frac{n^2}{n^3 - 5n + 1}$$

$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$$
 c)
$$\sum_{n=1}^{\infty} (\sqrt{n^2 + 1} - n)$$

$$\sum_{n=1}^{\infty} (\sqrt{n^6 + n} - n^3)$$
 d)
$$\sum_{n=1}^{\infty} \frac{1}{n + n^2}$$

$$\sum_{n=1}^{\infty} \frac{n^2 \cdot 2^n}{3^n}$$

- **3.** Szeregi $\sum_{n=1}^{\infty} a_n$ i $\sum_{n=1}^{\infty} b_n$ o wyrazach dodatnich są rozbieżne. Co można powiedzieć o zbieżności szeregów $\sum_{n=1}^{\infty} \min(a_n, b_n)$ i $\sum_{n=1}^{\infty} \max(a_n, b_n)$?
- **4.** Wykazać, że jeśli szeregi $\sum_{n=1}^{\infty} a_n$ i $\sum_{n=1}^{\infty} b_n$ są zbieżne oraz $a_n \leq c_n \leq b_n$, to szereg $\sum_{n=1}^{\infty} c_n$ też jest zbieżny.
- **5.** Pokazać z kryterium porównawczego, że jeśli szeregi $\sum_{n=1}^{\infty}a_n^2$ i $\sum_{n=1}^{\infty}b_n^2$ są zbieżne to zbieżny jest szereg $\sum_{n=1}^{\infty}a_nb_n$.
- **6.** Dla $a_n \ge 0$ pokazać, że szeregi $\sum_{n=1}^{\infty} a_n$ oraz $\sum_{n=1}^{\infty} \frac{a_n}{a_n + 1}$ są jednocześnie zbieżne albo jednocześnie rozbieżne.

 $¹ W s kaz \acute{o} w ka$: $1/(n\sqrt{n}) \le 2/\sqrt{n-1} - 2/\sqrt{n}$

- **7.** Wykazać, że jeśli szereg $\sum_{n=1}^{\infty}a_n$ o wyrazach dodatnich i malejących jest zbieżny, to $na_n\to 0.2$
- **8.** Czy przy warunkach z poprzedniego zadania warunek $na_n \to 0$ wystarcza do zbieżności $\sum_{n=1}^{\infty} a_n$?
- 9. à) Na prostym odcinku torów dwa pociągi, jadące każdy z prędkością 30 km na godzinę, zbliżają się do siebie. Gdy odległość pomiędzy pociągami wynosi 1 km, pszczoła zaczyna latać tam i z powrotem pomiędzy pociągami z prędkością 60 km na godzinę. Wyrazić odległość jaką przeleci pszczoła zanim pociągi się zderzą za pomocą nieskończonego szeregu i obliczyć sumę tego szeregu.
 - b) Znaleźć elementarne rozwiązanie zagadnienia bez użycia szeregów.³
- **10.** Wykazać, że ciąg $(1+1/n)^{n+1}$ jest malejący.
- **i1.** Oprocentowanie depozytu w banku wynosi p procent w skali rocznej, p > 0. Bank nalicza odsetki w równych odstępach czasu n razy w roku. Niech x = 0,01p. Pokazać, że efektywne oprocentowanie w skali roku wynosi $100[(1+x/n)^n 1]$ procent i wywnioskować, że ciąg $(1+x/n)^n$ jest rosnący. Pokazać, że ciąg $(1-x/n)^n$, dla $n \ge x$, jest rosnący przez podanie odpowiedniej interpretacji.
- ii2. Mrówka idzie z prędkością 30 cm na minutę wzdłuż jednorodnej gumowej taśmy. Na początku taśma ma długość 1 m i pod koniec każdej minuty jest rozciągana o dodatkowy metr. Mrówka zaczyna marsz w jednym końcu taśmy. Czy kiedykolwiek dotrze do drugiego końca? Jeśli tak, to po jakim czasie?⁴
- 13. Posługując się warunkiem Cauchy'ego zbadać zbieżność szeregów

a)
$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{2^n}, \quad x \in \mathbb{R}$$

$$\sum_{n=1}^{\infty} \frac{\cos(nx) - \cos(n+1)x}{n}, \quad x \in \mathbb{R}$$
 b)
$$\sum_{n=1}^{\infty} \frac{\arctan n}{n(n+1)}$$

$$1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} + \frac{1}{8} - \frac{1}{9} + \dots$$

 $^{^2}$ Wskazówka: Wykazać, że $s_n - s_{[n/2]} \stackrel{n}{\to} 0.$

³Wskazówka: Jak długo pszczoła będzie latała? Krąży anegdota, że podobną zagadkę ktoś powiedział słynnemu matematykowi John'owi von Neumannowi (1903-1957), który podał odpowiedź błyskawicznie. Gdy rozmówca zasugerował, że von Neumann musiał rozwiązać to prostym sposobem, von Neumann odpowiedział, że w rzeczywistości otrzymał rozwiązanie poprzez zsumowanie szeregu.

 $^{^4}Wskazówka$: Niech a_n oznacza stosunek odległości mrówki od początku taśmy do aktualnej długości taśmy. Wyrazić a_{n+1} poprzez a_n .