Discussion #11

PCA

1. Consider the following dataset *X*:

Observations	Variable 1	Variable 2	Variable 3
1	-3.59	7.39	-0.78
2	-8.37	-5.32	0.90
3	1.75	-0.61	-0.62
4	10.21	-1.46	0.50
Mean	0	0	0
Variance	63.42	28.47	0.68

After performing the SVD on this data, we obtain $X = U\Sigma V^T$, where:

$$U = \begin{bmatrix} -0.25 & 0.81 & 0.20 \\ -0.61 & -0.56 & 0.24 \\ 0.13 & -0.06 & -0.85 \\ 0.74 & -0.18 & 0.41 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 13.79 & 0 & 0 \\ 0 & 9.32 & 0 \\ 0 & 0 & 0.81 \end{bmatrix}$$

$$V^{T} = \begin{bmatrix} 1.00 & 0.02 & 0.00 \\ -0.02 & 0.99 & -0.13 \\ 0.00 & 0.13 & 0.99 \end{bmatrix}$$

$$V^T = \begin{bmatrix} 1.00 & 0.02 & 0.00 \\ -0.02 & 0.99 & -0.13 \\ 0.00 & 0.13 & 0.99 \end{bmatrix}$$

Note: Values were rounded to 2 decimals, U and V^T are not perfectly orthonormal due to approximation error.

(a) Recall that XV contains the principal components of dataset X, and that we can alternatively calculate it given that $XV = U\Sigma$. Show that $XV = U\Sigma$.

1

(b) Compute the first principal component (round to 2 decimals).

- (c) Given the results of (a), how can we interpret the rows of V^T ? What do the values in these rows represent?
- (d) Show that the principal component vectors are orthogonal. In other words, for all vectors v_i, v_j that are principal components of dataset X for $i \neq j$, it is true that $v_i^T v_j = 0$. To show this easily, we can demonstrate that given the principal component matrix P, $P^T P$ is a diagonal matrix. Show that $P^T P$ is diagonal and justify why this proves that the principal component vectors are orthogonal.
 - *Hint:* The fact that $(AB)^T = B^T A^T$ might help!

2. Compare the scree plots produced by performing PCA on dataset A and on dataset B. For which dataset would PCA provide the most informative scatter-plot (i.e. plotting PC1 and PC2)? Note that the columns of both datasets were centered to have means of 0 and scaled to have a variance of 1. This means you can interpret the vertical axis as proportional to the fraction of variance captured by each principal component.

Discussion #11 3

Discussion #11

Application of PCA

3. Anirudhan wants to apply PCA to a dataset of rare rabbits to understand patterns in rabbit population per location as a function of the year. Provided is a Pandas DataFrame, rabbit_pop (shown below), which contains the rabbit population for every particular year and location. Note that not every year and location is shown here.

	2017	2018	2019	2020
Site A	8789	29372	49271	101822
Site B	18573	38317	102847	192742
Site C	402	3928	20212	80272
Site D	4392	28172	93172	203082

He needs to preprocess his current dataset in order to use PCA.

- (a) Select all appropriate preprocessing steps used for PCA.
 - ☐ A. Transform each row to have a magnitude of 1 (Normalization)
 - \square B. Transform each column to have a mean of 0 (Centering)
 - \square C. Transform each column to have a mean of 0 and a standard deviation of 1 (Standardization)
 - \square D. None of the above
- (b) Assume you have correctly preprocessed your data using the correct response in part (a). Write a line of code that returns the first 3 principal components assuming you have the correctly preprocessed DataFrame rabbit_PCA and the following variables returned by SVD.

```
u, s, vt = np.linalg.svd(rabbit_PCA, full_matrices = False)
first_3_pcs = ______
```

(c) We now wish to display the first two principal components in a scatterplot. Which of the following plots could potentially display the first two principal components given that the first principal component captures 60% of the variance and the second principal component captures 15% of the variance?

Discussion #11 5

