CYBER SECURITY LAB

Analysis of LAN-Based Attacks Captured in Splunk

ARP Poisoning:

ARP poisoning (or ARP spoofing) is a type of cyberattack that manipulates the ARP (Address Resolution Protocol) tables in a network. This attack allows an attacker to intercept, modify, or block communication between devices on a local network.

How ARP Works

- ARP maps IP addresses to MAC (Media Access Control) addresses in a network.
- When a device wants to communicate with another device, it sends an ARP request asking, "Who has this IP address?"
 The device with the matching IP responds with its MAC address.
- This mapping is stored in an ARP cache for future use.

How ARP Spoofing Happens

- 1. The attacker sends falsified ARP messages on the local network.
- 2. These messages associate the attacker's MAC address with the IP address of another device (e.g., the router or another host).
- 3. This causes the victim devices to update their ARP cache with the incorrect mapping, redirecting traffic to the attacker.

Attacker ip address: 10.0.2.5 Victim ip address: 10.0.2.4

```
varshini@varshini-VirtualBox:~$ ifconfig
enp0s3: flags=4163<UP.BROADCAST.RUNNING.MULTICAST> mtu 1500
        inet 10.0.2.4 netmask 255.255.255.0 broadcast 10.0.2.255
        inet6 fe80::fcc:fb30:ee06:e6c1 prefixlen 64 scopeid 0x20<link>
        ether 08:00:27:8a:f0:c8 txqueuelen 1000 (Ethernet)
        RX packets 266 bytes 313317 (313.3 KB)
        RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 145 bytes 15063 (15.0 KB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
        inet 127.0.0.1 netmask 255.0.0.0
        inet6 :: 1 prefixlen 128 scopeid 0x10<host>
        loop txqueuelen 1000 (Local Loopback)
        RX packets 123 bytes 10647 (10.6 KB)
        RX errors 0 dropped 0 overruns 0 frame 0
        TX packets 123 bytes 10647 (10.6 KB)
        TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Ettercap interface


```
Host List ×

IP Address MAC Address Description

10.0.2.1 52:54:00:12:35:00

10.0.2.2 52:54:00:12:35:00

10.0.2.3 08:00:27:28:95:15

10.0.2.4 08:00:27:8A:F0:C8
```

- -> Added 10.0.2.4 as Target 1
- -> Added 10.0.2.1 as Target 2

Delete Host	Add to Target 1	Add to Target 2
Unified sniffing was stopped. Randomizing 255 hosts for scanning Scanning the whole netmask for 255 hosts 4 hosts added to the hosts list Host 10.0.2.1 added to TARGET2 Host 10.0.2.4 added to TARGET1		

-> Select the "sniff remote connections"

-> ARP Poisoning is activated

Delete Host	Add to Target 1	Add to Target 2			
ARP poisoning victims:					
GROUP 1 : 10.0.2.4 08:00:27:8A:F0:C8					
GROUP 2:10.0.2.152:54:00:12:35:00					

```
varshini@varshini-VirtualBox:~$ sudo su
[sudo] password for varshini:
root@varshini-VirtualBox:/home/varshini# arp -a >> /var/log/arp.log
root@varshini-VirtualBox:/home/varshini# sudo tcpdump -i enp0s3 arp -w /var/log/arp_traffic.pcap
tcpdump: listening on enp0s3, link-type EN10MB (Ethernet), snapshot length 26214
4 bytes
```

```
115 Standard query 0x7a53 A incoming.telemetry.mozilla.org.a
42 Who has 192,168.1.1? Tell 192,168.1.100
         12 0.990225510
                                           PCSSystemtec 0c:64:... Broadcast
                                                                                                                                ARP
                                                                                                                                                    42 Who has 192.168.1.17 Fell 192.168.1.100
81 Standard query 0xa607 AAAA google.com OPT
95 Standard query 0xf82f AAAA google.com.amritanet.edu OPT
81 Standard query 0xf83c A google.com OPT
122 Standard query 0xf525 A firefox.settings.services.mozilla
108 Standard query 0x38c4 AAAA firefox.settings.services.mozi
42 Who has 192.168.1.17 Tell 192.168.1.100
         14 1.518608650
                                           10.0.2.4
                                                                                     172.17.18.4
                                                                                                                                DNS
         15 1.519719264
                                           10.0.2.4
         16 1.522174062
                                                                                                                                DNS
                                                                                     172.17.18.4
                                           10.0.2.4
         17 1.522174331
18 2.019865921
                                           10.0.2.4 172.17.18.4 PCSSystemtec_0c:64:... Broadcast
                                                                                                                                DNS
                                                                                     172.17.18.4
172.17.18.4
                                                                                                                                                    122 Standard query 0x86ee AAAA firefox.settings.services.mozi
108 Standard query 0xf60a A firefox.settings.services.mozilla
         19 2.266857689
                                           10.0.2.4
         20 2.266858155
         21 2.573030794
                                           10.0.2.4
                                                                                     10.11.131.19
                                                                                                                                TCP
                                                                                                                                                      74 48364 - 9997 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PE
                                           PCSSystemtec_0c:64:...
                                                                                     PCSSystemtec_8a:f0:
         24 2 641363679
                                           PCSSvstemtec 8a:f0:... Broadcast
                                                                                                                                                       60 ARP Announcement for 10.0.2.4
                                                                                                                                                    120 Standard query 0xca3c AAAA content-signature-2.cdn.mozil
42 Who has 192.168.1.1? Tell 192.168.1.100
         25 3.023074043
                                                                                      172.17.18.4
                                           PCSSvstemtec 0c:64:... Broadcast
         26 3.037735977
                                                                                                                                ARP
         27 3.767850411
                                                                                                                                                    120 Standard query 0x3e22 A content-signature-2.cdn.mozilla
106 Standard query 0x4e82 AAAA content-signature-2.cdn.mozi
         28 3.768116518
                                           10.0.2.4
                                                                                     172.17.18.4
                                                                                                                                DNS
        29 3.768526805
                                          10.0.2.4
                                                                                     172.17.18.4
                                                                                                                                DNS
                                                                                                                                                    106 Standard query 0x0cc1 A content-signature-2.cdn.mozilla.
Frame 23: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface eth0, id 0
Ethernet II, Src: PCSSystemtec_0c:64:94 (08:00:27:0c:64:94), Dst: 52:54:00:12:35:00 (52:54:00:12:35:00)
Address Resolution Protocol (reply)
Hardware type: Ethernet (1)
Protocol type: IPv4 (0x0800)
Hardware size: 6
Protocol size: 4
Opcode: reply (2)
Sender MAC address: PCSSystemtec_0c:64:94 (08:00:27:0c:64:94)
Sender IP address: 10.0.2.4
Target MAC address: 52:54:00:12:35:00 (52:54:00:12:35:00)
Target IP address: 10.0.2.1
Target IP address: 10.0.2.1
Target IP address detected for 10.0.2.4 (08:00:27:0c:64:94) - also in use by 08:00:27:8a:f0:c8 (frame)
  [Duplicate IP address detected for 10.0.2.4 (08:00:27:0c:64:94) - also in use by 08:00:27:8a:f0:c8 (frame 22)]
[Duplicate IP address detected for 10.0.2.1 (52:54:00:12:35:00) - also in use by 08:00:27:0c:64:94 (frame 22)]
```

SSL Stripping:

SSL stripping is a type of cyberattack that downgrades a secure HTTPS connection to an unencrypted HTTP connection. The attacker intercepts traffic between a client (e.g., a web browser) and a server, removing the encryption that HTTPS provides, allowing them to read and manipulate the data in plaintext.

How SSL Stripping Works

- 1. Intercept the Traffic: The attacker positions themselves between the client and the server using a Man-in-the-Middle (MITM) attack (e.g., ARP spoofing or DNS spoofing).
- 2. Downgrade the Connection:

- When a user tries to visit an HTTPS website, the browser first sends an HTTP request (if they don't type https:// explicitly).
- The server responds with a redirect to HTTPS (HTTP 301/302 response).
- The attacker intercepts this redirect and replaces it with an HTTP version of the page, preventing the client from upgrading to HTTPS.

3. Proxy the Connection:

- The attacker establishes an HTTPS connection with the server but maintains an HTTP connection with the client.
- This makes the client unaware that their communication with the server is not encrypted.

- -> Target 1 = 10.0.2.4
- -> Target 2 = 10.0.2.1

Delete Host	Add to Target 1	Add to Target 2
Unified sniffing was stopped. Randomizing 255 hosts for scanning Scanning the whole netmask for 255 hosts 4 hosts added to the hosts list Host 10.0.2.1 added to TARGET2 Host 10.0.2.4 added to TARGET1		

-> Activate the sslstrip

Name	Version	Into
krb5_downgrade	1.0	Downgrades Kerberos V5 security by modifying AS-REQ packets
link_type	1.0	Check the link type (hub/switch)
mdns_spoof 1.		Sends spoofed mDNS replies
nbns_spoof	1.1	Sends spoof NBNS replies & sends SMB challenges with custom challenge
pptp_chapms1	1.0	PPTP: Forces chapms-v1 from chapms-v2
pptp_clear	1.0	PPTP: Tries to force cleartext tunnel
pptp_pap	1.0	PPTP: Forces PAP authentication
pptp_reneg	1.0	PPTP: Forces tunnel re-negotiation
rand_flood	1.0	Flood the LAN with random MAC addresses
remote_browser	1.2	Sends visited URLs to the browser
reply_arp	1.0	Simple arp responder
repoison_arp	1.0	Repoison after broadcast ARP
scan_poisoner	1.0	Actively search other poisoners
search_promisc	1.2	Search promisc NICs in the LAN
smb_clear	1.0	Tries to force SMB cleartext auth
smb_down	1.0	Tries to force SMB to not use NTLM2 key auth
smurf_attack	1.0	Run a smurf attack against specified hosts
sslstrip	1.2	SSLStrip plugin
stp_mangler	1.0	Become root of a switches spanning tree

Activating sslstrip plugin... SSLStrip plugin: bind 80 on 59263

DOS ATTACK:

A DoS (Denial-of-Service) attack is a type of cyberattack where the attacker overwhelms a system, network, or application, making it unavailable to legitimate users. The goal is to disrupt the normal functioning of the targeted resource, often causing downtime or service interruptions.

1. Selection of Target

• The attacker identifies a vulnerable system, application, or network to exploit.

• Common targets include websites, servers, or network infrastructure.

2. Preparation for the Attack

 Exploiting Vulnerabilities: If specific protocol or application-layer vulnerabilities are targeted (e.g., TCP/IP weaknesses, HTTP flaws), the attacker tailors the attack accordingly.

3. Execution of the Attack

- The attacker sends a large volume of traffic or resource requests to the target system.
- Depending on the type of DoS attack, different methods are used to overwhelm the target

	Host List 🗴	Plugins 🗴	
	Name	Version	Info
	arp_cop	1.1	Report suspicious ARP activity
	autoadd	1.2	Automatically add new victims in the target range
	chk_poison	1.1	Check if the poisoning had success
	dns_spoof	1.3	Sends spoofed dns replies
*	dos_attack	1.0	Run a d.o.s. attack against an IP address
	dummy	3.0	A plugin template (for developers)
	find_conn	1.0	Search connections on a switched LAN
	find_ettercap	2.0	Try to find ettercap activity
	find_ip	1.0	Search an unused IP address in the subnet
	finger	1.6 Fingerprint a remote host	
	finger_submi	t 1.0	Submit a fingerprint to ettercap's website
	fraggle_attac	k 1.0	Run a fraggle attack against hosts of target one

-> Enter the victim (ubuntu) ip address

-> Enter any unused ip

-> DOS attack is activated

∏ ip.	addr == 10.0.2.4 && tcp				⊠ 🗖 🔻
No.	Time	Source	Destination	Protocol	Length Info
	10 4.554691622	10.0.2.4	10.11.137.69	TCP	74 57792 → 9997 [SYN] Seq=0 W
	11 4.724701253	10.0.2.4	10.0.2.5	TCP	74 59604 → 9997 [SYN] Seq=0 W
L	12 4.724735777	10.0.2.5	10.0.2.4	TCP	54 9997 → 59604 [RST, ACK] Se
	13 4.729145026	10.0.2.4	10.11.137.69	TCP	74 58640 → 9994 [SYN] Seq=0 W
	31 5.452369160	10.0.2.4	172.17.18.4	TCP	78 50490 → 53 [SYN] Seq=0 Win
	34 5.771259693	10.0.2.4	10.11.137.69	TCP	74 [TCP Retransmission] 58640
	35 6.475776367	10.0.2.4	172.17.18.4	TCP	74 [TCP Retransmission] 50490
	36 6.795866732	10.0.2.4	10.11.137.69	TCP	74 [TCP Retransmission] 58640
	37 7.500842942	10.0.2.4	172.17.18.4	TCP	74 [TCP Retransmission] 50490
	40 7.819811019	10.0.2.4	10.11.137.69	TCP	74 [TCP Retransmission] 58640
	41 8.525352299	10.0.2.4	172.17.18.4	TCP	74 [TCP Retransmission] 50490
	42 8.844462364	10.0.2.4	10.11.137.69	TCP	74 [TCP Retransmission] 58640
	43 9.548615793	10.0.2.4	172.17.18.4	TCP	74 [TCP Retransmission] 50490
	44 9.869458192	10.0.2.4	10.11.137.69	TCP	74 [TCP Retransmission] 58640
	51 10.575046175	10.0.2.4	172.17.18.4	TCP	74 [TCP Retransmission] 50490
	52 11.919270272	10.0.2.4	10.11.137.69	TCP	74 [TCP Retransmission] 58640
	55 12.622462877	10.0.2.4	172.17.18.4	TCP	74 [TCP Retransmission] 50490
	58 15.953088343	10.0.2.4	10.11.137.69	TCP	74 [TCP Retransmission] 58640
	90 24.021245421	10.0.2.4	10.11.137.69	TCP	74 [TCP Retransmission] 58640
	113 33.818161538	10.0.2.4	10.11.137.69	TCP	74 35532 → 9994 [SYN] Seq=0 W
	133 34.841847980	10.0.2.4	10.11.137.69	TCP	74 [TCP Retransmission] 35532
	134 35.866323803	10.0.2.4	10.11.137.69	TCP	74 [TCP Retransmission] 35532
	137 36.890682819	10.0.2.4	10.11.137.69	TCP	74 [TCP Retransmission] 35532
	140 37.919219235	10.0.2.4	10.11.137.69	TCP	74 [TCP Retransmission] 35532
	141 38.939668297	10.0.2.4	10.11.137.69	TCP	74 [TCP Retransmission] 35532
	144 40.989118948	10.0.2.4	10.11.137.69	TCP	74 [TCP Retransmission] 35532
	145 41.583361381	10.0.2.4	172.17.18.4	TCP	78 60150 → 53 [SYN] Seq=0 Win
	146 42.590280002	10.0.2.4	172.17.18.4	TCP	74 [TCP Retransmission] 60150
	149 43.614445812	10.0.2.4	172.17.18.4	TCP	74 [TCP Retransmission] 60150
	150 44.639158409	10.0.2.4	172.17.18.4	TCP	74 [TCP Retransmission] 60150
	151 45.023121583	10.0.2.4	10.11.137.69	TCP	74 [TCP Retransmission] 35532
	152 45.663315819	10.0.2.4	172.17.18.4	TCP	74 [TCP Retransmission] 60150
	153 46.688033184	10.0.2.4	172.17.18.4	TCP	74 [TCP Retransmission] 60150
	156 48.737340926	10.0.2.4	172.17.18.4	TCP	74 [TCP Retransmission] 60150
	166 53.219409700	10.0.2.4	10.11.137.69	TCP	74 [TCP Retransmission] 35532
	167 53.671802289	10.0.2.4	10.11.137.69	TCP	74 43596 → 9997 [SYN] Seq=0 W
	190 54.692196864	10.0.2.4	10.11.137.69	TCP	74 [TCP Retransmission] 43596
	191 55.717238477	10.0.2.4	10.11.137.69	TCP	74 [TCP Retransmission] 43596