Санкт-Петербургский национальный исследовательский университет

информационных технологий, механики и

оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	M3215	К работе допущен
Студент	Бажура А., Демидович Э.	Работа выполнена
Преподаватель Зинчик А.А.		Отчет принят

Рабочий протокол и отчет по лабораторной работе № 5.07

Определение постоянной Планка методом задерживающего потенциала

Цели работы

- Экспериментально проверить законы фотоэффекта.
- Определение постоянной Планка и работы выхода электрона из металла.

Задачи

- 1. Определение запирающего напряжения
- 2. Изучение зависимости кинетической энергии электронов от ча стоты падающего излучения
- 3. Экспериментальное определение материала фотокатода и вычис ление постоянной Планка

Объект исследования

Внешний фотоэффект в полупроводнике.

Экспериментальная установка

Рис. 5. Общий вид экспериментальной установки

Установка (см. рис.5) состоит из вакуумного фотоэлемента на основе цезиевого катода и измерительных приборов: вольтметра 3 и наноамперметра 2. В качестве источников излучения используются пять светодиодов с различными длинами волн: 472 нм, 505 нм, 525 нм, 588 нм, 611 нм. Светодиоды подключаются к приемной камере 4, с помощью разъема 5. Блок подключается к сети через адаптер и разъем 6. Светодиод запитывается через разъем 7. Регулировка интенсивности регулируется ручкой регулятора 10.

Рабочие формулы и исходные данные.

$$U_0 = rac{h
u}{e} - rac{A_{ ext{\tiny BMX.}}}{e}$$
 $u = c/\lambda$

Таблица 1					
λ, нм	<i>U</i> _0, B	ν, ТГц	$T = e * U_0, Дж$		
472	0.637	635.1535127	1.02059E-19		
505	0.484	593.6484317	7.75453E-20		
525	0.439	571.0332533	7.03356E-20		
588	0.153	509.851119	2.45133E-20		
611	0.082	490.6586874	1.31378E-20		

Уравнение линейной аппроксимации

$$Y = Ax + B$$

A = 6.25319E-22

B = -2.927E-19

 ν (красная граница фотоэффекта) = 468 ТГц

lpha угол наклона = 6.25319E-22

Таким образом, вычисленная постоянная планка $\sim 6.25 * 10 ^ (-34)$

λ (красная граница фотоэффекта) = 640.463 нм

Металл – цезий

<u>Цезий</u> 662 нм

Длина волны,	Относительная	Абс	Абс погр.
HM	погрешность	погрешность	Частоты, ТГц
	для	длины	
	напряжения	волны, нм	
500	0.005	0.5	3

$\Delta h/h$	0.005099
$\Delta U/U$	0.005
$\Delta \lambda / \lambda$	0.001
ΔA/A	0.005196

Вывод:

Исследовали зависимость величины запирающего напряжения от частоты источника света, аппроксимировали ее к линейной.

Получили экспериментальное значение постоянной Планка, красной границы фотоэффекта, выяснили тип металла, используемого для канода.