EXAMEN PARCIAL OCTUBRE 2015

Ejerciaio 1

$$X(e^{i\Omega}) = j2n J(\Omega + \frac{17}{3}) + nJ(\Omega) - j2nJ(\Omega - \frac{17}{3})$$

a); Son dellas equiapaciades?

$$\frac{2n}{6} = \frac{n}{3}$$
 $\frac{2n}{6} = \frac{n}{6}$
 $\frac{8n}{6} = \frac{8n}{6}$
 $\frac{10n}{6}$
 $\frac{n}{3} = \frac{2n}{3}$
 $\frac{2n}{3} = \frac{n}{3}$
 $\frac{4n}{3} = \frac{8n}{6}$
 $\frac{4n}{6} = \frac{8n}{6}$
 $\frac{10n}{6} = \frac{n}{6}$
 $\frac{n}{3} = \frac{n}{3}$
 $\frac{2n}{3} = \frac{n}{3}$
 $\frac{5n}{3} = \frac{n}{3}$
Están todo pero valar 0, la $N=6$

Periódica v

$$a_{r}$$
) $\chi_{aggr} = \sum_{N=-\infty}^{\infty} \chi_{r}(N) = \infty$

yens sera algo aus:

$$\frac{\partial}{\partial x} \times x_{n} = \frac{\partial}{\partial x_{n}} = \frac{\partial}{\partial x$$

Schelm que:
$$\frac{\pi}{j} \left(\delta(x - x_0) - \delta(x + x_0) \right)$$

$$j^{2n}\left(\delta\left(\Omega+\frac{n}{3}\right)-\delta\left(\Omega-\frac{n}{3}\right)\right)$$

$$\chi=j^{2n}\left[\frac{1}{2}+2\sin\left(\frac{n}{3}\right)\right]$$

Tenerms:
$$j 2n \left(\delta(x+\frac{n}{s}) - \delta(x-\frac{n}{s})\right)$$
 $cte^{-n} 2n \delta$ $cte^{-n} 2n \delta$

C)
$$\frac{1}{2} + 2 \operatorname{Sen} \left(\frac{n}{3} n \right)$$

Frec $\frac{n}{3}$ sole 0 (privers file)

 $\frac{1}{2} = 0 \times \frac{1}{2} = -1/6$

Fracio 2 $\frac{1}{2} = -1/6$

Fracio 2 $\frac{1}{2} = \frac{1}{2} = -1/6$

Fracio 2 $\frac{1}{2} = \frac{1}{2} =$

C)
$$\chi cn = \sqrt{P}$$
 $x(t)$
 $\chi(pu)$ $x(e^{i\omega})$
 $\chi(t) = co (soont)$ $sont$

$$X(E) = as (500nt) - s xtns = as (\frac{10}{2}n)$$
 $Xtns$ mention

0 1 2 3 4

Interpolation _____

Esto seria en el jonnolo del liempo, pero me piden frevencia.

TF
$$\left\{ \begin{array}{c} X_{r}(\xi) \right\} \\ \hline \\ -\frac{T}{2} \\ \hline \\ \end{array}$$
 Sn $\left(\begin{array}{c} W \\ \overline{2} \end{array} \right)$

$$V(\rho i^{2})$$

$$A \cap A \cap A$$

 $-3D - \frac{1}{2} \qquad \frac{1}{2} \qquad \frac{3D}{2}$ Diaps II g/2

