Обработка реального сигнала в виде М-последовательности

Необходимо реализовать многоканальную обработку сигнала, представленного в виде отсчётов сигнала. Предпочтительная среда обработки – Matlab, несущая частота сигнала 10,2 ГГц. Данные представлены в бинарном файле, тип данных single (float, число с плавающей точкой, размер 4 байта).

Параметры сигнала представлены в таблице. Каждый вариант имеет свои параметры сигнала и свой файл данных. Структурно сигнал переставляет собой сумму двух компонент: условно сигнала передатчика, который не имеет доплеровского сдвига частоты, и отражённого сигнала со значительным доплеровским сдвигом.

Частота ПЧ есть ¼ от частоты дискретизации.

Необходимо:

- 1. Произвести обработку сигнала наиболее оптимальным (по времени) методом при потерях на обработку не более 1 дБ (без учёта весового окна).
 - 2. Выделить отражённый сигнала и определить его параметры.

Таблица с вариантами

Номер	Частота	Период	Степень	Скважность	0 –
варианта	дискретизации,	повторения	полинома	импульса	поимпульсный
_	МГц	сигнала, мкс	для ФКМ	-	ФКМ
					1- импульс
					ФКМ
1	12	410	6	4	0
2	30	180	5	5	1
3	10	1500	7	6	0
4	50	300	8	7	1
5	40	50	5	1	0
6	48	160	8	8	1
7	50	90	7	7	0
8	16	230	6	6	1
9	12	170	8	1	0
10	8	1000	5	5	1
11	32	340	7	3	0
12	9	240	6	1	0

Используемые полиномы

Полином 5-й степени [5 3 0]

Полином 6-й степени [6 5 0];

Полином 7-й степени [7 6 0];

Полином 8-й степени [8 6 5 4 0];