Assignment 2 COMP 302

Elvric Trombert 260673394 Simon Zheng 260744353

October 5, 2017

2. 1 Theorem: $\forall l1, l2 (rev_append \ l1 \ l2 = rev_append' \ l1 \ l2)$ Base case:

$$l1 = []$$

$$rev_append [] l2$$

$$\Rightarrow l2 \qquad \text{by rev_append}$$

$$rev_append' [] l2$$

$$\Rightarrow append rev([]) l2 \qquad \text{by rev_append'}$$

$$\Rightarrow append [] l2 \qquad \text{by append}$$

$$l1 = [h::t]$$

$$l1 = [h::t]$$

$$l2 \qquad \text{by append } l2 \qquad \text{by append}$$

$$l2 \qquad \text{by append}$$

$$l1 = [h::t]$$

$$l2 \qquad \text{case 1 with rev_append } [h::t] l2$$

$$\Rightarrow rev_append [h::t] l2$$

$$\Rightarrow rev_append t (h::l2) \qquad \text{By rev_append}$$

$$\Rightarrow rev_append' t (h::l2) \qquad \text{By induction hypothesis}$$

$$\Rightarrow append rev(t) (h::l2) \qquad \text{By rev_append'}$$

$$\Rightarrow append rev(t) (h::t] l2$$

$$\Rightarrow append rev([h::t]) l2 \qquad \text{By rev_append'}$$

$$\Rightarrow append rev([h::t]) l2 \qquad \text{By rev_append'}$$

$$\Rightarrow append rev(t)@[h] l2 \qquad \text{By rev}$$

$$\Rightarrow rev(t)@[h] @l2 \qquad \text{By append}$$

$$= rev(t)@[h] @l2 \qquad \text{By append}$$

(2)

by append

 $\implies append \ rev(t) \ (h :: l2)$

So we can see that (1) = (2) therefore the induction holds.