Spark for Learning Analytics

Dropout prediction in MOOCs

by

David Torres Pascual

Content

1. Introduction

Motivation

Goals

2. Methodology

Data

Tools

Model

- 3. Results
- 4. Conclusions & future work

Introduction

Introduction 1/19

Motivation (I)

What is a MOOC?

What are their main ploblems?

Introduction 2/19

Motivation (II)

Introduction 3/19

Goals (I)

UNIVERSIDAD AUTONOMA DE MADRID ESCUELA POLITECNICA SUPERIOR

Grado en Ingeniería Informática

TRABAJO FIN DE GRADO

Predicción y análisis de interacciones de usuarios en plataformas de enseñanza online

> Miguel Ángel González-Gallego Sosa Tutor: Estrella Pulido Cañabate

> > (a) Fase 1

Spark para Learning Analytics: análisis del abandono en cursos de formación online

> David Torres Pascual Tutora: Dra. Estrella Pulido Cañabate

(b) Fase 2

Introduction 4/19

Goals (II)

- Apply Big Data tools and machine learning algorithms to Learning Analytics problems.
- Understand MOOC's user behavior.
- Identify dropout in order to help those students with problems with individual educational plans.

Introduction 5/19

Methodology

Methodology 6/19

Data (I)

- JSON file with the events in the platform (a).
- Structured tables (b).

nota_java	nota_examen				
57	NaN				
7	NaN				
71	NaN				
NaN	NaN				
79	81				
	57 7 71 NaN				

(b) pandas dataframe

- (a) JSON file
- No users $= 7172 \rightarrow 2906$ (users with ≤ 50 events were removed).

Methodology 7/19

Data (II)

Features:

Video	Start a video, finish a video, click play, click pause, seek along video total n° of interactions with each video (37)						
Exercise	$n^{\rm o}$ of problems as nwered, $n^{\rm o}$ of attempts and scores; $n^{\rm o}$ of proyect problems and scores; Java exercise scores and exam scores						
Forum	$n^{\rm o}$ of threads, $n^{\rm o}$ of comments, $n^{\rm o}$ of replies, $n^{\rm o}$ of threads with problems, $n^{\rm o}$ of words and $n^{\rm o}$ of searches in the forum						

Target:

Continue / Dropout

Methodology 8/19

Tools

Apache Spark...

... jand Python! (pandas, numpy, sklearn...)

Methodology 9/19

Model (I)

Methodology 10/19

Model (II)

Algorithms for classification:

- Support Vector Classifier
- Random Forest
- Gradient Boosting (w. weights)

Methodology 11/19

Model (III)

Preprocess, train-test split, and feature selection with k-Fold cross-validation.

Methodology 12/19

Results

Results 13/19

Results I

Accuracy (Acc.), Precision (Pr.) and Recall (Rec.)

	Weeks 2-3		Weeks 3-4		Weeks 4-5			Weeks 5-6				
Alg.	Acc.	Pr.	Rec.	Acc.	Pr.	Rec.	Acc.	Pr.	Rec.	Acc.	Pr.	Rec.
SVM	0.55	0.59	0.53	0.65	0.66	0.66	0.75	0.75	0.75	0.74	0.79	0.72
RF	0.55	0.57	0.53	0.70	0.70	0.70	0.79	0.79	0.79	0.76	0.78	0.74
GB	0.33	0.65	0.40	0.56	0.67	0.61	0.66	0.74	0.68	0.62	0.75	0.57

Results 14/19

Results II

(C) Dropout in week 4 or 5

(b) Dropout in week 3 or 4

(d) Dropout in week 5 or 6

Results 15/19

Conclusions and future work

Conclusions and future work 16/19

Conclusions

- We obtain good results with our classification models after the third week of the course.
- We get great results with weighted-classes in the algorithms if we want to focus on dropouts.
- There are some good features for our classification model:
 - score of the problems.
 - involvement in the course project.

Conclusions and future work 17/19

Future work

"Perhaps the most important principle for the good algorithm designer is to refuse to be content." (Aho, Hopcroft & Ullman)

- Improve our results: better classifiers (tuning hyperparameters).
- Look for new goals related to MOOCs:
 - Cluster analysis.
 - Recommender systems.
 - Predict results of the final exam.

Conclusions and future work 18/19

Thanks!

Comments, questions?

Conclusions and future work 19/19