Isolation Forest

Handong Global University Bigdata Design 24F 21900707 조영우

Cases

Case 1. 금융 사기 Case 2. 불량품 탐지 Case 3. 희귀한 질병

Cases

DBSCAN Algorithm

Problem of DBSCAN, Dimensional Curse

Division, instead of Distance

- 1. Based on decision tree
- 2. Add random forest concept
- 3. Assume that outliers may be detected with a little division

Process

- Step 1. Select Random data points for training
 - Prevent masking(When outliers are clustered together and are mistaken for normal)
- Step 2. Partition the data until each data point become unique
 - Using random features (difference from decision tree)

- Step 3. Calculate the number of divisions of each data
 - It will be used in calculating anomaly score

Process

- Step 4. Create multiple trees randomly
 - Concept of random forest

Step 5. Calculate the anomaly score

$$s(x,n) = 2^{-rac{E(h(x))}{c(n)}} \qquad \qquad s(x,n) = egin{cases} 1 & ext{if } E(h(x)) = 0 \ 0.5 & ext{if } E(h(x)) = c(n) \ 0 & ext{if } E(h(x)) = n-1 \end{cases}$$

- E(h(x)) = (average number of divisions for each data x)
- C(n) = (average number of division for every data)
- Example 1) E(h(x)) increasing gradually -> $2^{-\infty} = 0$
- Example 2) E(h(x)) decreasing gradually -> $2^{-0} = 1$

Toy Example

- Iris data(150) + Outlier data(10)
 - Add column (Iris = 1, Outlier = -1)

```
IsolationForest(n_estimators=100, max_samples=256, contamination=0.0625, random_state=19)
```

- n_estimators: number of decision trees
- max_samples: number of data to use
- contamination: Detecting outlier rate

Fig1

Fig2

Reality Example

• Creditcard data(Normal=170,614 / Outlier=136 / %=0.0797)

```
dbscan = DBSCAN(eps=2, min_samples=3)
IsolationForest(n_estimators=200, contamination="auto",
                                                             Time taken to train the model: 91.98seconds
 Time taken to train the model: 0.50seconds
                                                             <Evaluation of DBSCAN>
 <Evaluation of Isolation Forest>
                                                             [[41052 44255]
 [[82542 2765]
                                                              [ 8 128]]
      23 113]]
                                                             Accuracy: 0.4820
 Accuracy: 0.9674
                                                             Precision: 0.0029
 Precision: 0.0393
                                                             Recall: 0.9412
 Recall: 0.8309
```

comparison

- Isolation Forest
 - Good in both time and accuracy
 - FP(2,765) > FN(23) -> Find as many fraud cases as possible

DBSCAN

- Accuracy 50% means randomly choose
- Improvement: decrease the number of outlier detection
 - -> eps=2 is too short to make large group (curse of dimension)
 - -> time, and memory are consumed more

More information...

• E-mail: <u>veryssp129@handing.ac.kr</u>

• Github: https://github.com/jayjo9/bigdata_design