Machine Learning

Neural Networks and Deep Learning: Training

Gabriele Russo Russo Francesco Lo Presti

Laurea Magistrale in Ingegneria Informatica – A.Y. 2024/25

Dipartimento di Ingegneria Civile e Ingegneria Informatica

Training Neural Networks

- ▶ In principle, training a NN is not different than training other parametric models you studied so far
 - e.g., linear or logistic regression
 - in practice, you might face more challenges
- We search for model parameters θ that optimize a cost function $J(\theta)$
 - e.g., via stochastic gradient descent (SGD)
- ln this case, θ includes:
 - ▶ the connection weights, $\mathbf{W}^{(\ell)}$, $\forall 1 \leq \ell \leq L$
 - ▶ the bias vectors, $\boldsymbol{b}^{(\bar{\ell})}$, $\forall 1 \leq \ell \leq L$

Cost Function: Example

Which is the cost/objective function to optimize?

- ► Similar to those you have seen so far
- e.g., for a regression task, with squared error as the loss function

$$\mathcal{L} = \frac{1}{2}(t - y)^2 \tag{1}$$

where t is the prediction target and y is the NN prediction.

▶ The cost function $J(\theta)$

$$J(\theta) = \sum_{i=1}^{N} \frac{1}{2} (t^{(i)} - y^{(i)})^2$$
 (2)

3

Training with SGD

Can we just keep using SGD for NNs?

Yes ...but better algorithms exist (discussed later)

NN training via SGD (simplified)

```
Data: training dataset \mathcal{D}

1 for epoch \leftarrow 1, ..., N_e do

2 | foreach random minibatch \mathcal{B} \in \mathcal{D} do

3 | \hat{g} \leftarrow \frac{1}{|\mathcal{B}|} \nabla_{\theta} J^{\mathcal{B}}(\theta) /* Compute the gradient */

4 | \theta \leftarrow \theta - \alpha \hat{g}

5 | end

6 end
```

Training with SGD (2)

Training with SGD (3)

- ► How many epochs?
 - It is a hyperparameter
 - Tens of epochs are usually required for convergence (possibly many more!)
 - We will discuss a strategy to automatically stop the training based on a convergence criterion (early stopping)
- ► How to choose the size of the minibatch?
 - Larger batches may enable processing speedup (e.g., exploiting hardware parallelism); smaller batches may be better for convergence
 - Ideal size depend on hardware & implementation
 - Usually a power of 2 (e.g., 16, 32, 64)

Example

Spend some time on http://playground.tensorflow.org

7

Training: Issues

Unfortunately, training NNs is more challenging compared to basic models

- ► NNs lead to nonconvex cost functions
 - We can use gradient-based methods to drive the cost function to a low value
 - But we have no global convergence guarantees!
 - ▶ Still, many local minima empirically shown to have acceptable quality
- How to efficiently compute the gradient?
 - Cost is a composite function of the weights of all the layers
 - Evaluation can be computationally expensive

Example: Gradient Computation

- We have seen that the output of a NN (and, hence, the cost function) is the result of composing several functions
- Let's consider a very simple univariate composite function f(x)

$$f(x) = \sqrt{x^2 + e^{x^2}} + \cos(x^2 + e^{x^2})$$

► How to compute $\frac{df}{dx}$?

9

Recall: Chain Rule of Calculus

- \blacktriangleright Let $f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$
- ▶ The derivative of the composite function f(g(x)) is computed as

$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x) \tag{3}$$

- Intuition: perturbing x by some infinitesimal quantity h_1 "causes" g to change by the infinitesimal $h_2 = g'(x)h_1$. This in turn causes f to change by $f'(g(x))h_2 = f'(g(x))g'(x)h_1$.
- Equivalently:

$$\frac{\mathrm{d}f(g(x))}{\mathrm{d}x} = \frac{\mathrm{d}f}{\mathrm{d}g}\frac{\mathrm{d}g}{\mathrm{d}x} \tag{4}$$

Example: Gradient Computation (2)

$$f(x) = \sqrt{x^2 + e^{x^2}} + \cos(x^2 + e^{x^2})$$

► How to compute $\frac{df}{dx}$ through the chain rule?

$$\frac{df}{dx} = \frac{2x + 2xe^{x^2}}{2\sqrt{x^2 + e^{x^2}}} - \sin\left(x^2 + e^{x^2}\right) \left(2x + 2xe^{x^2}\right)$$

- Note that we end up with a longer expression than *f* (and more expensive to evaluate)
- We must be careful (and smart) in implementing the chain rule

Automatic Differentiation

- Automatic differentiation (AD): techniques to numerically evaluate the gradient of a function through the chain rule
- Applied to general computer programs implementing (complicated) functions
- Programs formally represented as computational graphs before applying AD
 - Nodes indicate variables
 - Edges indicate operations among variables

Example

$$f(x) = \sqrt{x^2 + exp(x^2)} + \cos(x^2 + exp(x^2))$$

It is useful to introduce variables

$$a = x^2$$
 $b = exp(a)$ $c = a + b$
 $d = \sqrt{c}$ $e = \cos c$ $f = d + e$

Example (2)

$$\frac{\mathrm{d}f}{\mathrm{d}c} = \frac{\mathrm{d}f}{\mathrm{d}d}\frac{\mathrm{d}d}{\mathrm{d}c} + \frac{\mathrm{d}f}{\mathrm{d}e}\frac{\mathrm{d}e}{\mathrm{d}c}$$

$$\frac{\mathrm{d}f}{\mathrm{d}b} = \frac{\mathrm{d}f}{\mathrm{d}c}\frac{\mathrm{d}c}{\mathrm{d}b}$$

$$\frac{\mathrm{d}f}{\mathrm{d}a} = \frac{\mathrm{d}f}{\mathrm{d}b}\frac{\mathrm{d}b}{\mathrm{d}a} + \frac{\mathrm{d}f}{\mathrm{d}c}\frac{\mathrm{d}c}{\mathrm{d}a}$$

$$\frac{\mathrm{d}f}{\mathrm{d}c} = \frac{\mathrm{d}f}{\mathrm{d}c}\frac{\mathrm{d}a}{\mathrm{d}c}$$

- Green indicates derivatives of elementary functions (easy)
- We apply a reverse-mode AD algorithm: we propagate gradients traversing the graph backwards (from f towards a)
- No redundant computations!

Backpropagation

- Backpropagation (or, backprop for short) is a reverse-mode automatic differentiation algorithm, mostly used to compute the gradient of the NN cost function
 - ▶ Rumelhart, Hinton, Williams (1986). *Learning representations by back-propagating errors*, Nature, 323 (6088): 533–536.
- ► The term "backpropagation" is often used loosely to refer to the entire training algorithm – including how the gradient is used, such as by SGD – but this is not strictly correct!

Backpropagation: Overview

The algorithm consists of 2 phases:

- ► Forward pass: A minibatch of training instances is fed into the NN as input, resulting in a cascade of computations across the layers. The final output is used to compute the cost function.
- Backward pass: The gradient of the cost function with respect to the parameters is computed, traversing the NN in the opposite direction (starting from the output layer).

Forward Propagation

Forward propagation (or forward pass): computation of intermediate variables and outputs in order, from the input layer to the output layer

e.g., for a NN with a single hidden layer, forward prop. computes:

- $ightharpoonup a = W^{(1)}x + b^{(1)}$
- $h = \phi(a)$
- $y = W^{(2)}h + b^{(2)}$

Forward Pass

To keep things simple, we assume that a single training instance x is used to compute the cost $J(\theta)$ (we will generalize to minibatches later)

Forward pass

```
1 h^{(0)} \leftarrow x

2 for k=1,...,L do

3 | a^{(k)} \leftarrow W^{(k)} h^{(k-1)} + b^{(k)}

4 | h^{(k)} \leftarrow \phi^{(k)} (a^{(k)})

5 end

6 y \leftarrow h^{(L)}

7 return J = L(y, t)
```

Backward Pass

Backpropagation for multi-layer NNs

```
1 \mathbf{g} \leftarrow \nabla_{\mathbf{v}} J = \nabla_{\mathbf{v}} L(\mathbf{v}, \mathbf{t})
_{2} for k=L....2.1 do
\mathbf{g} \leftarrow \nabla_{\mathbf{a}^{(k)}} J = \mathbf{g} \odot \phi^{(k)\prime}(\mathbf{a}^{(k)})
4 \quad \nabla_{\boldsymbol{b}^{(k)}} J = \boldsymbol{g}
6 \mathbf{g} \leftarrow \nabla_{\mathbf{h}^{(k-1)}} J = \mathbf{W}^{(k)T} \mathbf{g}
                                                                                                         /* Propagate gradient */
7 end
8 return \nabla_{\mathbf{M}^{(k)}} J, \nabla_{\mathbf{h}^{(k)}} J, \forall k = 1, ..., L
```

Example

Backward Pass (2)

1
$$\mathbf{g} \leftarrow \nabla_{\mathbf{y}} J = \nabla_{\mathbf{y}} \mathcal{L}(\mathbf{y}, \mathbf{t})$$

- g is initialized as the gradient of the cost function with respect to the output vector y (easy to compute)
- This step can be performed analytically and depends on the loss function in use
 - e.g., if $\mathcal{L} = \frac{1}{2} || \mathbf{y} \mathbf{t} ||_2^2$, we get $\nabla_{\mathbf{y}} \mathcal{L} = (\mathbf{y} \mathbf{t})$
- We will see that J may include a regularization term, which does not depend on the output though

Example

Backward Pass (3)

2 for k=L,...,2,1 do

```
3 \mathbf{g} \leftarrow \nabla_{\mathbf{a}^{(k)}} J = \mathbf{g} \odot f^{(k)\prime}(\mathbf{a}^{(k)})
4 ...
```

- ▶ We iterate backwards from the *L*-the layer to the first hidden layer
- ► At the beginning of each iteration, *g* stores the gradient of the cost with respect to the *k*-th layer
- e.g., at first iteration, g is the gradient w.r.t. the output layer

Example

Backward Pass (4)

- 2 for k=1,...,2,1 do
- $oldsymbol{g} igl| oldsymbol{g} \leftarrow
 abla_{oldsymbol{a}^{(k)}} J = oldsymbol{g} \odot \phi^{(k)\prime}(oldsymbol{a}^{(k)})$

- ▶ We compute the gradient w.r.t. the pre-activation value
- ▶ Being $\phi^{(k)}$ the activation function of the k-th layer:

$$\mathbf{h}^{(k)} = f^{(k)}(\mathbf{a}^{(k)})$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{a}^{(k)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{h}^{(k)}} \frac{\partial \mathbf{h}^{(k)}}{\partial \mathbf{a}^{(k)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{h}^{(k)}} \odot \phi^{(k)\prime}(\mathbf{a}^{(k)}) = \mathbf{g} \odot \phi^{(k)\prime}(\mathbf{a}^{(k)})$$

Note: ⊙ denotes the element-wise product

Example

Backward Pass (5)

4
$$\nabla_{\pmb{b}^{(k)}} J = \pmb{g}$$

5 $\nabla_{\pmb{W}^{(k)}} J = \pmb{g} \pmb{h}^{(k-1)T}$

► Recall: g is the gradient w.r.t. $a^{(k)} = W^{(k)}h^{(k-1)} + b^{(k)}$

$$\frac{\partial J}{\partial \boldsymbol{W}^{(k)}} = \frac{\partial \mathcal{L}}{\partial \boldsymbol{W}^{(k)}} = \frac{\partial \mathcal{L}}{\partial \boldsymbol{a}^{(k)}} \frac{\partial \boldsymbol{a}^{(k)}}{\partial \boldsymbol{W}^{(k)}} = \boldsymbol{g} \boldsymbol{h}^{(k-1)T}$$

ightharpoonup The same reasoning holds for $\boldsymbol{b}^{(k)}$

Example

Backward Pass (6)

6
$$oldsymbol{g} \leftarrow
abla_{oldsymbol{h}^{(k-1)}} J = oldsymbol{W}^{(k)T} oldsymbol{g}$$

- ▶ We use g to back-propagate the gradient
- \blacktriangleright At the next iteration g must hold the gradient w.r.t. $h^{(k-1)}$

$$\mathbf{a}^{(k)} = \mathbf{W}^{(k)} \mathbf{h}^{(k-1)} + \mathbf{b}^{(k)}$$
$$\frac{\partial \mathcal{L}}{\partial \mathbf{h}^{(k-1)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{(k)}} \frac{\partial \mathbf{a}^{(k)}}{\partial \mathbf{h}^{(k-1)}} = \mathbf{W}^{(k)T} \mathbf{g}$$

Derivative of Activation Functions: Examples

Logistic (sigmoid)	$\frac{\phi(x)}{\frac{1}{1+e^{-x}}}$	$\frac{\phi'(x)}{\phi(x)(1-\phi(x))}$
ReLU	$\max\left\{0,x\right\}$	
		$\begin{cases} 1 & x > 0 \\ 0 & x < 0 \end{cases}$
Hyp. tan	$\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$	$1 - \phi(x)^2$

Remark: Softmax

- 2 for k=1,...,2,1 do
- $oldsymbol{g} igl| oldsymbol{g} \leftarrow
 abla_{oldsymbol{a}^{(k)}} J = oldsymbol{g} \odot \phi^{(k)\prime}(oldsymbol{a}^{(k)})$

- ▶ The simple expression of line 3 above is not correct if $\phi^{(k)}$ is the softmax
- ► In that case, the output of the layer depends on **all** the pre-activation variables. Therefore, the Jacobian must be used

$$\mathbf{g} \leftarrow \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{(k)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{h}^{(k)}} \frac{\partial \mathbf{h}^{(k)}}{\partial \mathbf{a}^{(k)}} = \left(\frac{\partial \mathbf{h}^{(k)}}{\partial \mathbf{a}^{(k)}}\right)^T \cdot \mathbf{g}$$

Exercise

Given the following NN specification and the input vector $\mathbf{x} = \{0.5, 0.1\}$, apply backprop algorithm

$$\mathbf{W}^{(1)} = \begin{bmatrix} 0.15 & 0.25 \\ 0.2 & 0.3 \end{bmatrix}$$

$$\mathbf{W}^{(2)} = \begin{bmatrix} 0.4 & 0.5 \\ 0.5 & 0.55 \end{bmatrix}$$

$$\mathbf{b}^{(1)} = [0.35, 0.35]$$

 $\mathbf{b}^{(2)} = [0.6, 0.6]$
 $\mathbf{t} = [0.01, 0.99]$
 $\mathcal{L} = \frac{1}{2} \parallel \mathbf{y} - \mathbf{t} \parallel_2^2$

All the units use the logistic activation.

Exercise: Solution (partial)

$$\mathbf{a}^{(1)} = \mathbf{W}^{(1)} \mathbf{x} + \mathbf{b}^{(1)} =$$

$$= \begin{bmatrix} 0.15 & 0.25 \\ 0.2 & 0.3 \end{bmatrix} \cdot \begin{bmatrix} 0.5 \\ 0.1 \end{bmatrix} + \begin{bmatrix} 0.35 \\ 0.35 \end{bmatrix} =$$

$$= \begin{bmatrix} 0.095 \\ 0.155 \end{bmatrix} + \begin{bmatrix} 0.35 \\ 0.35 \end{bmatrix} = \begin{bmatrix} 0.445 \\ 0.505 \end{bmatrix}$$

$$\mathbf{h}^{(1)} = \sigma(\mathbf{a}^{(1)}) = \begin{bmatrix} 0.6094 \\ 0.6236 \end{bmatrix}$$

Note: numerical results may be inaccurate due to approximations...check the notebook for correct results!

Exercise: Solution (partial)

$$\mathbf{a}^{(2)} = \mathbf{W}^{(2)} \mathbf{h}^{(1)} + \mathbf{b}^{(2)} =$$

$$= \begin{bmatrix} 0.4 & 0.5 \\ 0.5 & 0.55 \end{bmatrix} \cdot \begin{bmatrix} 0.6094 \\ 0.6236 \end{bmatrix} + \begin{bmatrix} 0.6 \\ 0.6 \end{bmatrix} =$$

$$= \begin{bmatrix} 0.5244 \\ 0.6478 \end{bmatrix} + \begin{bmatrix} 0.6 \\ 0.6 \end{bmatrix} = \begin{bmatrix} 1.1244 \\ 1.2478 \end{bmatrix}$$

$$\mathbf{y} = \mathbf{h}^{(2)} = \sigma(\mathbf{a}^{(2)}) = \begin{bmatrix} 0.7548 \\ 0.7770 \end{bmatrix}$$

$$= \mathbf{t} \parallel_{2}^{2} = \frac{1}{2} \parallel 0.7448 \parallel^{2} = 0.3$$

$$\mathcal{L} = \frac{1}{2} \parallel \mathbf{y} - \mathbf{t} \parallel_2^2 = \frac{1}{2} \left\| \frac{0.7448}{-0.213} \right\|_2^2 = 0.3$$

Exercise: Solution (partial)

$$\mathbf{g} \leftarrow \nabla_{\mathbf{y}} \mathcal{L} = \mathbf{y} - \mathbf{t} = \begin{bmatrix} 0.7448 \\ -0.213 \end{bmatrix}$$

k=2

$$\begin{split} \mathbf{g} &\leftarrow \nabla_{\mathbf{a}^{(2)}} \mathcal{L} = \mathbf{g} \odot \sigma \prime (\mathbf{a}^{(2)}) = \\ &= \begin{bmatrix} 0.7448 \\ -0.213 \end{bmatrix} \odot \begin{bmatrix} \sigma (1.1244) (1 - \sigma (1.1244)) \\ \sigma (1.2478) (1 - \sigma (1.2478)) \end{bmatrix} = \\ &= \begin{bmatrix} 0.7448 \\ -0.213 \end{bmatrix} \odot \begin{bmatrix} 0.1851 \\ 0.1733 \end{bmatrix} = \begin{bmatrix} 0.1378 \\ -0.0369 \end{bmatrix} \end{split}$$

$$\nabla_{\mathbf{W}^{(2)}} \mathcal{L} = \mathbf{g} \mathbf{h}^{(1)T} = \begin{bmatrix} 0.1378 \\ -0.0369 \end{bmatrix} \cdot \begin{bmatrix} 0.6094 & 0.6236 \end{bmatrix} = \begin{bmatrix} 0.0840 & 0.0860 \\ -0.0225 & -0.0230 \end{bmatrix}$$

Computational Demand

- Consider a NN with L hidden layers, each with m neurons
- Forward pass: an add-and-multiply operation for every weight: $\mathcal{O}(Lm^2)$
- **Backward pass:** more operations to perform, but still: $\mathcal{O}(Lm^2)$
- ▶ As desired, the cost of gradient evaluation is the same of the forward pass
- ▶ But, keep in mind that this is just a tiny step in the whole training process!

Generalizing Backpropagation: Minibatch

- So far, we considered the gradient of the cost function computed on a single input instance x
- ► In practice, training is more efficient if minibatches of input are considered, because computational parallelism can be exploited (e.g., vectorization)
- The same algorithm can be applied: just replace x with a matrix X, where each row is a different training instance
- Operations involving gradients do not change: just imagine to "flatten" matrices (or tensors) into a vector

Example with scikit-learn

- scikit-learn provides MLPClassifier and MLPRegressor, based on multi-layer feedforward NNs
- Very easy to use, but not recommended to work with NNs
 - ► No GPU support
 - Less flexibility compared to other frameworks (e.g., TensorFlow)
- ▶ We see a simple classification example on the Iris data set

Introduction to Keras and TensorFlow

TensorFlow

- Library for ML focused on DNNs
- Developed by Google Brain team
 - Many scientists and developers involved, including (in the past) Geoffrey Hinton (2018 Turing Award winner)
- ► First released in 2015; major update (TensorFlow 2) in 2019
- Built-in support for GPU execution, as well as distributed execution

Installing TensorFlow

- Main version available for Linux; Windows; macOS
- Additional versions (for inference):
 - tensorflow.js for browsers
 - ► TensorFlow Lite for embedded/mobile devices
- ► To install:

```
conda install tensorflow
Alternatively: to explicitly include/exclude GPU support:
conda install tensorflow-cpu
conda install tensorflow-gpu
```

If you use Google Colab, it is already installed

Keras

- Keras is an open-source library, first released in 2015, that provides a Python API for ANNs
- The goal is easing the definition of deep models
- Keras requires a backend for actual execution
 - TensorFlow, PyTorch, JAX, ...
- Since 2017, TensorFlow has integrated its own implementation of Keras (tf.keras)
 - we will use this Keras implementation
 - no need to install it explicitly

TensorFlow APIs

- ► As part of tf.keras:
 - Sequential API: easiest to use; OK for most apps
 - Functional API: more flexibility
- Core API: only for advanced stuff
- We will mostly use the Sequential API

Basics

- Let's start with the basics of TensorFlow
 - Tensors
 - Variables
 - Graphs
 - Automatic differentiation
 - Modules
 - tf_basics.ipynb

Keras

- 2 core data structures: layers and models
- Layer: simple input/output transformation
 - encapsulates a state (weights) and some computation
 - may represent a layer of a DNN, but also a data preprocessing step
- ► Model: directed acyclic graph (DAG) of layers
 - e.g., Sequential model: a linear stack of layers
 - fit() and predict() methods (similar to scikit-learn)
- tf_keras.ipynb

NNs for Regression: Hints

Hyperparameter	Possible/typical values	
# input neurons	1 per input feature	
# hidden layers	?? (1-5 for many tasks)	
# hidden units per layer	?? (10-100 for most tasks)	
# output units	1 per predicted dimension	
Hidden activation	ReLU	
Output activation	None; ReLU for positive outputs; tanh	
	for bounded outputs	
Loss	MSE or MAE	

NNs for Classification: Hints

Hyperparameter	Binary	Multiclass
Input and hidden layers	Same as regression	
# output units	1	1 per class
Output activation	Sigmoid	Softmax
Loss	Cross entropy	Cross entropy

Remark: Cross-Entropy Loss

▶ With 2 classes, in Keras you have BinaryCrossentropy

$$\mathcal{L} = -\left(t\log y + (1-t)\log\left(1-y\right)\right)$$

▶ With C > 2 clssses and, hence, $y = (y_1, ..., y_C)$, the loss is:

$$\mathcal{L} = -\sum_{c=0}^{C} t_c \log y_c$$

- CategoricalCrossentropy if targets are given as one-hot vectors
- \blacktriangleright SparseCategoricalCrossentropy if targets are integers between 0 and $(\mathcal{C}-1)$

Example: Fashion MNIST

- We consider the Fashion MNIST dataset
- \triangleright 60,000 grayscale images of 28 \times 28 pixels each to classify, with 10 classes

tf_fashion.ipynb

Hyperparameter Optimization (HPO)

- Flexibility of NNs is also one of their drawbacks: many hyperparameters to tweak!
 - Number of layers, units, activation functions, ...
- General approach: try many configurations and pick the best one (evaluated on validation data!)
- Exhaustive exploration (i.e., grid search) usually not admissible
- We have seen "randomized search" in action in scikit-learn
- Specialized libraries for hyperparameter tuning
 - Hyperopt, Ray Tune, Optuna, ...
 - ► They integrate with the most popular DNN frameworks (e.g., Tensorflow)

KerasTuner

- Keras provides KerasTuner for HPO
- Not advanced as other libraries (e.g., Optuna), but still a good option
- Different algorithms available, including:
 - Random Search
 - Bayesian Optimization
 - Hyperband
- conda install keras-tuner
- Docs: https://keras.io/guides/keras_tuner/getting_started/
- tf_fashion_hyper.ipynb

References

- "Understanding Deep Learning", 6.1, 6.2, 7.1–7.4
- ► D2L: 5.3-5.6, 8.5, 12
- ► Goodfellow et al.: 6.5, 7.1, 7.4, 7.8, 7.11, 7.12, 8.1–8.5, 8.7.1
- Hands-on ML: Chapters 10-11