$$P(-z_{\alpha/2} < Z < z_{\alpha/2}) = 1 - \alpha$$

$$Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

$$P(\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$$

$$\alpha = 1 - 0.9 = 0.1 \Rightarrow P(Z < -z_{\alpha/2}) = \alpha/2 = 0.05 \Rightarrow z_{\alpha/2} = 1.645$$

$$\sigma_{\overline{X}} = \frac{0.001}{\sqrt{9}}, \overline{X} = 8.05$$

$$8.05 - 1.645 \frac{0.001}{\sqrt{9}} < \mu < 8.05 + 1.645 \frac{0.001}{\sqrt{9}}$$

Question 9

Similar to question 8, solve it yourself:

$$\begin{split} P\left(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) &= 1 - \alpha = 0.95 \Rightarrow \alpha = 0.05 \\ P\left(\mu - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \bar{X} < \mu + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) &= 0.95 \\ P\left(20 - z_{\alpha/2} \frac{\sqrt{3}}{\sqrt{n}} < \bar{X} < 20 + z_{\alpha/2} \frac{\sqrt{3}}{\sqrt{n}}\right) &= 0.95 = P(19.9 < \bar{X} < 20.1) \\ \Rightarrow z_{\alpha/2} \frac{\sqrt{3}}{\sqrt{n}} &= 0.1, z_{\alpha/2} = z_{0.025} = 1.96 \Rightarrow 1.96 \frac{\sqrt{3}}{\sqrt{n}} = 0.1 \end{split}$$

$$n=1152.48 \implies n=1153$$

Question 10

- *a*) $\overline{X} = 715$, $S_X = 1.57$
- b) True standard deviation is unknown!
- => use t-distribution

•
$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$$

 $\overline{X} - t_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}} < \mu < \overline{X} + t_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}$
 $715 - 2.262 * \frac{1.57}{\sqrt{10}} < \mu < 715 + 2.262 * \frac{1.57}{\sqrt{10}}$

 $715-1.123 < \mu < 715+1.123$ $713.877 < \mu < 716.123$

t distribution critical values								
				Upper-tail probability p				
df	.25	.20	.15	.10	.05	.025	.02	
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	Ī
2	0.816	1.061	1.386	1.886	2.920	4.303	4.849	
3	0.765	0.978	1.250	1.638	2.353	3.182	3.482	
4	0.741	0.941	1.190	1.533	2.132	2.776	2.999	
5	0.727	0.920	1.156	1.476	2.015	2.571	2.757	
6	0.718	0.906	1.134	1.440	1.943	2.447	2.612	
7	0.711	0.896	1.119	1.415	1.895	2.365	2.517	
8	0.706	0.889	1.108	1.397	1.860	2.306	2.449	
9	0.703	0.883	1.100	1.383	1.833	2.262	2.398	
10	0.700	0.879	1.093	1.372	1.812	2.228	2.359	

c) According to chi-squared table with df=9 $\alpha = 1 - 0.95 = 0.05$

$$\chi_{1-\alpha/2}^2 < \chi^2 = \frac{(n-1)S^2}{\sigma^2} < \chi_{\alpha/2}^2$$
$$\frac{(n-1)s^2}{\chi_{\alpha/2}^2} < \sigma^2 < \frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}$$

$$\chi^2_{1-\alpha/2=0.975} = 2.70$$
, $\chi^2_{\alpha/2=0.025} = 19.023$

$$\frac{9*(1.57)^2}{19.023} < \sigma^2 < \frac{9*(1.57)^2}{2.700} \Rightarrow 1.166 < \sigma^2 < 8.216 \quad 1.080 < \sigma < 2.866$$

Question 11

- Two different populations $\sigma_1^2=1.5$, $\sigma_2^2=1.2$
- Two different samples:

$$n_1 = 15, \bar{X}_1 = 89.6, S_1 = 1.8$$

 $n_2 = 20, \bar{X}_2 = 92.5, S_2 = 1.5$

•
$$\mu_{\bar{X}_1 - \bar{X}_2} = \mu_1 - \mu_2$$
, $\sigma_{\bar{X}_1 - \bar{X}_2}^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$

$$\bullet \quad Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} = \frac{(92.5 - 89.6) - (\mu_1 - \mu_2)}{\sqrt{\frac{1.2}{20} + \frac{1.5}{15}}} = \frac{(2.90) - (\mu_1 - \mu_2)}{0.40}$$

•
$$\alpha = 1 - 0.99 = 0.01 \Rightarrow P(Z < -z_{\alpha/2}) = 0.005$$
, $z_{\alpha/2} = 2.575$
-2.575 < $Z < +2.575 \Rightarrow -2.575 < \frac{(2.90) - (\mu_1 - \mu_2)}{0.40} < +2.575$

 \Rightarrow confidence interval 2.90 \pm 2.575 * 0.40

20

Question 12

- The true variance is unknown! => t-distribution
- $T = \frac{\bar{X} \mu}{S/\sqrt{n}}$
- The mean of sample $\bar{X} = 1.35, S = 0.3385$
- According to t-distribution table:

$$df=16-1=15 \to t_{\alpha/2} = t_{0.025} = 2.131$$

$$\overline{x} - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

$$1.35 - 2.131*\frac{0.3385}{\sqrt{16}} < \mu < 1.35 + 2.131*\frac{0.3385}{\sqrt{16}}$$

$$1.35 - 0.1803 < \mu < 1.35 + 0.1803$$

$$1.170 < \mu < 1.530$$

• Sample information: $\bar{X} = 17, S = 0.319$

•
$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$
 why?

•
$$df = 6 - 1 = 5$$
, $\rightarrow t_{\alpha/2} = t_{0.01} = 3.365$

$$\overline{x} - t_{\alpha/2} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{\alpha/2} \frac{s}{\sqrt{n}}$$

$$17 - 3.365 * \frac{0.319}{\sqrt{6}} < \mu < 17 + 3.365 * \frac{0.319}{\sqrt{6}}$$

 $173.365*0.130 < \mu < 17 + 3.365*0.130$

 $16.562 < \mu < 17.438$

Question 14

· Paired observations

•
$$d = \mu_1 - \mu_2$$
, $T = \frac{\bar{d} - \mu_D}{S_d / \sqrt{n}}$

- \bar{d} = mean (commutator-Pinion) = -4.18
- $S_d = STD$ (commutator-Pinion) = 35.85
- $df = 17 1 = 16, t_{\alpha/2} = t_{0.025} = 2.120$

$$\overline{d} - t_{\alpha/2} \frac{s_d}{\sqrt{n}} < \mu_D < \overline{d} + t_{\alpha/2} \frac{s_d}{\sqrt{n}}$$

interval for $\mu_D: -4.18 \pm 2.120 \times 35.85/\sqrt{17}$

Question 15

- $\sigma_{standard} = 0.004$, $df_{standard} = 24$,
- $\sigma_{alloyed} = 0.005$, $df_{alloyed} = 15$
- $F_{\alpha/2=0.05}(24,15) = 2.29$
- $F_{\alpha/2=0.05}(15,24) = 2.11$

$$\frac{s_1^2}{s_2^2} \frac{1}{f_{\alpha/2} \big(df_1, df_2 \big)} \! < \ \frac{\sigma_1^2}{\sigma_2^2} \ < \frac{s_1^2}{s_2^2} f_{\alpha/2} \big(df_2, df_1 \big)$$

$$\Rightarrow \frac{(0.004)^2}{(0.005)^2} \frac{1}{2.29} < \frac{\sigma_{stand}^2}{\sigma_{alloyed}^2} < \frac{(0.004)^2}{(0.005)^2} \times 2.11$$
$$0.279 < \frac{\sigma_{stand}^2}{\sigma_{alloyed}^2} < 1.350$$

2

24

See section 09 page 37:

$$\hat{p} - z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}} < \quad p \quad < \hat{p} + z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

$$0.01 \pm 1.96 * \sqrt{\frac{0.01 * 0.99}{500}} = 0.01 \pm 1.96 * 0.00445$$

$$0.0013$$

25