

# Low-Voltage 0.4 $\Omega$ SPDT Analog Switch

# **FSA5157**

## **Description**

The FSA5157 is a low on resistance, low-power, Single Pole Double Throw (SPDT) analog switch. This product has been designed for switching audio signals in applications such as cell phones and portable media players. The ultra-low 0.4  $\Omega$  impedance, sub- $\mu A$  current consumption, and 1.65 V to 4.3 V operating voltage range makes this product ideal for battery-powered applications. The FSA5157 also features bi-directional operation and break-before-make functionality. This device is fully specified for operation at 1.8 V, 2.5 V, and 3.3 V.

A growing number of applications require the voltage applied to the select input to be lower than the  $V_{CC}$  applied. Under this condition, most switches would typically consume over  $100~\mu A$  of current. This would be an unacceptable level for battery-powered applications. The FSA5157 is designed to minimize current consumption under this condition. The  $I_{CCT}$  is specified for <12  $\mu A$  under a worst-case condition of  $V_{CC}$  = 4.3 V and  $V_{IN}$  = 1.8 V.

## **Features**

- Typical 0.4  $\Omega$  On Resistance (R<sub>ON</sub>) for +2.7 V Supply
- FSA5157 Features Less than 12  $\mu A~I_{CCT}$  Current When S Input is Lower than  $V_{CC}$
- 0.25 Ω Maximum R<sub>ON</sub> Flatness for +2.7 V Supply
- 1.45 x 1 mm 6-Lead Package
- Broad V<sub>CC</sub> Operating Range: 1.65 V to 4.3 V
- Low THD (0.02% Typical for 32  $\Omega$  Load)
- High-Current Handling Capability (350 mA Continuous Current under 3.3 V Supply)
- Control Logic is 1.8 V CMOS Logic Compatible
- These Devices are Pb-Free and are RoHS Compliant

## **APPLICATION DIAGRAM**



Figure 1. Application Diagram

## MARKING DIAGRAMS



SIP6 1.45 x 1.0 CASE 127EB FTKK XYZ

FT = Specific Device Code

KK = 2-Digits Lot Run Traceability Code

XY = 2-Digit Date CodeZ = Assembly Plant Code



SC-88/SC-70 6 Lead, 1.25x2 CASE 419AD



C57 = Specific Device Code M = Assembly Operation Month

\*Date Code orientation and/or position may vary depending upon manufacturing location.

#### **ORDERING INFORMATION**

See detailed ordering and shipping information on page 8 of this data sheet.

## **Applications**

- Cellular Phone
- PDA

1

Portable Media Player

## **PIN CONFIGURATIONS**



S Βı **GND**  $V_{CC}$ 3  $B_0$ 

Figure 2. 6-Lead SC70

Figure 3. SIP6

## **PIN DEFINITIONS**

| Pin Names                          | Function      |
|------------------------------------|---------------|
| A, B <sub>0</sub> , B <sub>1</sub> | Data Ports    |
| S                                  | Control Input |

## **TRUTH TABLE**

| Control Input (S) | Function                      |
|-------------------|-------------------------------|
| LOW Logic Level   | B <sub>0</sub> Connected to A |
| HIGH Logic Level  | B <sub>1</sub> Connected to A |

# **ABSOLUTE MAXIMUM RATINGS**

| Symbol              | Parameter                                                       | Min  | Max                     | Unit |
|---------------------|-----------------------------------------------------------------|------|-------------------------|------|
| V <sub>CC</sub>     | Supply Voltage                                                  | -0.5 | 5.5                     | V    |
| V <sub>S</sub>      | Switch Voltage (Note 1)                                         | -0.5 | V <sub>CC</sub> + 0.3 V | V    |
| V <sub>IN</sub>     | Input Voltage (Note 1)                                          | -0.5 | V <sub>CC</sub>         | V    |
| I <sub>IK</sub>     | Input Diode Current                                             |      | -50                     | mA   |
| I <sub>SW</sub>     | Switch Current                                                  |      | 350                     | mA   |
| I <sub>SWPEAK</sub> | Peak Switch Current (Pulsed at 1 ms Duration, < 10% Duty Cycle) |      | 500                     | mA   |
| P <sub>D</sub>      | SC70 6L Package                                                 |      | 180                     | mW   |
|                     | SIP6 Package                                                    |      | 180                     | mW   |
| T <sub>STG</sub>    | Storage Temperature Range                                       | -65  | +150                    | °C   |
| TJ                  | Maximum Junction Temperature                                    |      | +150                    | °C   |
| TL                  | Lead Temperature Soldering, 10 seconds                          |      | +260                    | °C   |
| ESD                 | Human Body Model                                                |      | 8000                    | V    |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The Input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

## RECOMMENDED OPERATING CONDITIONS

| Symbol          | Parameter                      | Min  | Max             | Unit |
|-----------------|--------------------------------|------|-----------------|------|
| V <sub>CC</sub> | Supply Voltage                 | 1.65 | 4.30            | V    |
| V <sub>IN</sub> | Control Input Voltage (Note 2) | 0    | V <sub>CC</sub> | V    |
| V <sub>IN</sub> | Switch Input Voltage           | 0    | V <sub>CC</sub> | V    |
| T <sub>A</sub>  | Operating Temperature          | -40  | +85             | °C   |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

2. Unused inputs must be held HIGH or LOW. They may not float.

# DC ELECTRICAL CHARACTERISTICS (All Typical values are at 25°C unless otherwise specified.)

|                                                |                                                                  |                                                                                                                                    |                     | -    | Γ <sub>A</sub> = +25°( | С    | T <sub>A</sub> = -4<br>+85 |      |      |
|------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|------------------------|------|----------------------------|------|------|
| Symbol                                         | Parameter                                                        | Conditions                                                                                                                         | V <sub>CC</sub> (V) | Min  | Тур                    | Max  | Min                        | Max  | Unit |
| V <sub>IH</sub>                                | Input Voltage High                                               |                                                                                                                                    | 3.6 to 4.3          |      |                        |      | 1.4                        |      | V    |
|                                                |                                                                  |                                                                                                                                    | 2.7 to 3.6          |      |                        |      | 1.3                        |      |      |
|                                                |                                                                  |                                                                                                                                    | 2.3 to 2.7          |      |                        |      | 1.1                        |      |      |
|                                                |                                                                  |                                                                                                                                    | 1.65 to 1.95        |      |                        |      | 0.9                        |      |      |
| V <sub>IL</sub>                                | Input Voltage Low                                                |                                                                                                                                    | 3.6 to 4.3          |      |                        |      |                            | 0.7  | V    |
|                                                |                                                                  |                                                                                                                                    | 2.7 to 3.6          |      |                        |      |                            | 0.5  |      |
|                                                |                                                                  |                                                                                                                                    | 2.3 to 2.7          |      |                        |      |                            | 0.4  |      |
|                                                |                                                                  |                                                                                                                                    | 1.65 to 1.95        |      |                        |      |                            | 0.4  |      |
| I <sub>IN</sub>                                | Control Input Leakage                                            | V <sub>IN</sub> = 0 V to V <sub>CC</sub>                                                                                           | 1.65 to 4.3         |      |                        |      | -0.5                       | 0.5  | μΑ   |
| I <sub>NO(OFF)</sub> ,<br>I <sub>NC(OFF)</sub> | Off-Leakage Current of<br>Port B <sub>0</sub> and B <sub>1</sub> | $A = 0.3 \text{ V}, \text{ V}_{CC} - 0.3 \text{ V}, \\ B_0 \text{ or } B_1 = 0.3 \text{ V}, \\ V_{CC} - 0.3 \text{ V or Floating}$ | 1.95 to 4.3         | -10  |                        | 10   | -50                        | 50   | nA   |
| I <sub>A(ON)</sub>                             | On Leakage Current of Port A                                     | $A = 0.3 \text{ V, V}_{CC} - 0.3 \text{ V,} \\ B_0 \text{ or B}_1 = 0.3 \text{ V,} \\ V_{CC} - 0.3 \text{ V or Floating}$          | 1.95 to 4.3         | -20  |                        | 20   | -100                       | 100  | nA   |
| R <sub>ON</sub>                                | R <sub>ON</sub> Switch On Resistance (Note 3)                    | I <sub>OUT</sub> = 100 mA,<br>B <sub>0</sub> or B <sub>1</sub> = 0 V, 0.7 V,<br>3.6 V, 4.3 V                                       | 4.3                 |      | 0.36                   |      |                            | 0.60 | Ω    |
|                                                |                                                                  | I <sub>OUT</sub> = 100 mA,<br>B <sub>0</sub> or B <sub>1</sub> = 0 V, 0.7 V,<br>2.0 V, 2.7 V                                       | 2.7                 |      | 0.4                    |      |                            | 0.70 |      |
|                                                |                                                                  | I <sub>OUT</sub> = 100 mA,<br>B <sub>0</sub> or B <sub>1</sub> = 0 V, 0.7 V,<br>2.0 V, 2.3 V                                       | 2.3                 |      | 0.55                   |      |                            | 0.80 |      |
|                                                |                                                                  | I <sub>OUT</sub> = 100 mA,<br>B <sub>0</sub> or B <sub>1</sub> = 0.7 V                                                             | 1.65                |      | 1.5                    | 2.5  |                            | 3.0  |      |
| $\Delta R_{ON}$                                | On Resistance Matching                                           | I <sub>OUT</sub> = 100 mA,                                                                                                         | 4.3                 |      | 0.04                   |      |                            | 0.75 | Ω    |
|                                                | Between Channels (Note 4)                                        | $B_0 \text{ or } B_1 = 0.7 \text{ V}$                                                                                              | 2.7                 |      | 0.06                   |      |                            | 0.13 |      |
|                                                |                                                                  |                                                                                                                                    | 2.3                 |      | 0.12                   |      |                            | 0.20 |      |
|                                                |                                                                  |                                                                                                                                    | 1.65                |      | 1.0                    |      |                            |      |      |
| R <sub>FLAT(ON)</sub>                          | On Resistance Flatness                                           | I <sub>OUT</sub> = 100 mA,                                                                                                         | 4.3                 |      |                        |      |                            | 0.25 | Ω    |
| (Note 5)                                       | (INOLE 5)                                                        | $B_0$ or $B_1 = 0$ V to $V_{CC}$                                                                                                   | 2.7                 |      |                        |      |                            | 0.25 |      |
|                                                |                                                                  |                                                                                                                                    | 2.3                 |      |                        |      |                            | 0.3  | ]    |
|                                                |                                                                  |                                                                                                                                    | 1.65                |      | 0.3                    |      |                            |      |      |
| I <sub>CC</sub>                                | Quiescent Supply<br>Current                                      | $V_{IN} = 0 \text{ V or } V_{CC}$ , $I_{OUT} = 0$                                                                                  | 4.3                 | -100 | 30                     | 100  | -500                       | 500  | nA   |
| I <sub>CCT</sub>                               | Increase in I <sub>CC</sub> per                                  | V <sub>IN</sub> = 1.8 V                                                                                                            | 4.3                 |      | 7.0                    | 12.0 |                            | 15.0 | μΑ   |
|                                                | Control Input                                                    | V <sub>IN</sub> = 2.6 V                                                                                                            | 4.3                 |      | 3.0                    | 6.0  |                            | 7.0  |      |

On resistance is determined by the voltage drop between the A an B pins at the indicated current through the switch.
 ΔR<sub>ON</sub> = R<sub>ONmax</sub> - R<sub>ONmin</sub> measured at identical V<sub>CC</sub>, temperature, and voltage.
 Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions.

# AC ELECTRICAL CHARACTERISTICS (All Typical values are at 25°C unless otherwise specified.)

|                  |                |                                                                                    |                     | 1   | Γ <sub>A</sub> = +25°0 | C   |     | 40°C to<br>5°C |      |           |    |          |          |
|------------------|----------------|------------------------------------------------------------------------------------|---------------------|-----|------------------------|-----|-----|----------------|------|-----------|----|----------|----------|
| Symbol           | Parameter      | Conditions                                                                         | V <sub>CC</sub> (V) | Min | Тур                    | Max | Min | Max            | Unit | Figure    |    |          |          |
| t <sub>ON</sub>  | Turn-On Time   | $B_0$ or $B_1 = 1.5 \text{ V}$ ,                                                   | 3.6 to 4.3          |     |                        | 55  |     | 60             | ns   | Figure 7  |    |          |          |
|                  |                | $R_L = 50 \Omega, C_L = 35 pF$                                                     | 2.7 to 3.6          |     |                        | 60  |     | 65             | 1    |           |    |          |          |
|                  |                |                                                                                    | 2.3 to 2.7          |     |                        | 65  |     | 70             | 1    |           |    |          |          |
|                  |                |                                                                                    | 1.65 to 1.95        |     | 70                     |     |     | 90             |      |           |    |          |          |
| t <sub>OFF</sub> | Turn-Off Time  | B <sub>0</sub> or B <sub>1</sub> = 1.5 V,                                          | 3.6 to 4.3          |     |                        | 30  |     | 35             | ns   | ns        | ns | ns       | Figure 7 |
|                  |                | $R_L = 50 \Omega, C_L = 35 pF$                                                     | 2.7 to 3.6          |     |                        | 35  |     | 40             |      |           |    |          |          |
|                  |                |                                                                                    | 2.3 to 2.7          |     |                        | 40  |     | 45             | 1    |           |    |          |          |
|                  |                |                                                                                    | 1.65 to 1.95        |     | 40                     |     |     | 55             | 1    |           |    |          |          |
| t <sub>BBM</sub> | Break-Before-  | $B_0$ or $B_1 = 1.5 \text{ V}$ ,                                                   | 3.6 to 4.3          |     |                        |     | 5   |                | ns   | Figure 8  |    |          |          |
|                  | Make Time      | $R_L = 50 \Omega, C_L = 35 pF$                                                     | 2.7 to 3.6          |     |                        |     | 5   |                | 1    |           |    |          |          |
|                  |                |                                                                                    | 2.3 to 2.7          |     |                        |     | 5   |                |      |           |    |          |          |
|                  |                |                                                                                    | 1.65 to 1.95        |     |                        |     | 5   |                |      |           |    |          |          |
| Q                | Charge         | $C_L = 1.0 \text{ nF, } V_{GEN} = 0 \text{ V,}$                                    | 3.6 to 4.3          |     | 6                      |     |     |                | pC F | Figure 11 |    |          |          |
|                  | Injection      | $R_{GEN} = 0 \Omega$                                                               | 2.7 to 3.6          |     | 6                      |     |     |                |      |           |    |          |          |
|                  |                |                                                                                    | 2.3 to 2.7          |     | 6                      |     |     |                |      |           |    |          |          |
|                  |                |                                                                                    | 1.65 to 1.95        |     |                        |     |     |                |      |           |    |          |          |
| OIRR             | Off-Isolation  | $f = 100 \text{ kHz}, R_L = 50 \Omega,$                                            | 3.6 to 4.3          |     | -75                    |     |     |                | dB   | dB        | dB | Figure 9 |          |
|                  |                | C <sub>L</sub> = 5 pF (Stray)                                                      | 2.7 to 3.6          |     | -75                    |     |     |                | 1    |           |    |          |          |
|                  |                |                                                                                    | 2.3 to 2.7          |     | -75                    |     |     |                | 1    |           |    |          |          |
|                  |                |                                                                                    | 1.65 to 1.95        |     | -75                    |     |     |                |      |           |    |          |          |
| Xtalk            | Crosstalk      | $f = 100 \text{ kHz}, R_L = 50 \Omega,$                                            | 3.6 to 4.3          |     | -75                    |     |     |                | dB   | Figure 10 |    |          |          |
|                  |                | $C_L = 5 pF (Stray)$                                                               | 2.7 to 3.6          |     | -75                    |     |     |                | 1    |           |    |          |          |
|                  |                |                                                                                    | 2.3 to 2.7          |     | -75                    |     |     |                |      |           |    |          |          |
|                  |                |                                                                                    | 1.65 to 1.95        |     | -70                    |     |     |                |      |           |    |          |          |
| BW               | -3db Bandwidth | $R_L = 50 \Omega$                                                                  | 1.65 to 4.3         |     | 80                     |     |     |                | MHz  | Figure 13 |    |          |          |
| THD              | Total Harmonic |                                                                                    | 3.6 to 4.3          |     |                        |     |     |                | %    | Figure 14 |    |          |          |
|                  | Distortion     | $R_L$ = 32 $\Omega$ , $V_{IN}$ = 2 $V_{PP}$ , $f$ = 20 Hz to 20 kHz                | 2.7 to 3.6          |     | 0.02                   |     |     |                |      |           |    |          |          |
|                  |                | $R_L = 32 \ \Omega, \ V_{IN} = 1.5 V_{PP}, \ f = 20 \ Hz \ to \ 20 \ kHz$          | 2.3 to 2.7          |     | 0.036                  |     |     |                |      |           |    |          |          |
|                  |                | $R_L = 32 \Omega$ , $V_{IN} = 1.2 V_{PP}$ , $f = 20 \text{ Hz to } 20 \text{ kHz}$ | 1.65 to 1.95        |     | 0.01                   |     |     |                |      |           |    |          |          |

# **CAPACITANCE**

|                  |                               |            |                     | $T_A = +25^{\circ}C$ $T_A = -40^{\circ}$ $+85^{\circ}C$ |      |     |     |     |      |           |
|------------------|-------------------------------|------------|---------------------|---------------------------------------------------------|------|-----|-----|-----|------|-----------|
| Symbol           | Parameter                     | Conditions | V <sub>CC</sub> (V) | Min                                                     | Тур  | Max | Min | Max | Unit | Figure    |
| C <sub>IN</sub>  | Control Pin Input Capacitance | f = 1 MHz  | 0.0                 |                                                         | 1.5  |     |     |     | pF   | Figure 12 |
| C <sub>OFF</sub> | B Port OFF Capacitance        | f = 1 MHz  | 4.5                 |                                                         | 21.0 |     |     |     | pF   | Figure 12 |
| C <sub>ON</sub>  | A Port ON Capacitance         | f = 1 MHz  | 4.5                 |                                                         | 90.0 |     |     |     | pF   | Figure 12 |

# **TYPICAL CHARACTERISTICS**



600 540 85°C 480 420 Rov (m $\Omega$ ) 360 300 -40<sup>°</sup> C 25<sup>'</sup>°C 240 180 120 60 0 0.00 0.60 1.20 1.80 2.40 3.0 VB (V)  $\rightarrow$  Sweep Left to Right  $\rightarrow$ 

Figure 4.  $R_{ON}$  Switch On Resistance,  $I_{ON}$  = 100 mA,  $V_{CC}$  = 2.3 V B0

Figure 6.  $R_{ON}$  Switch On Resistance,  $I_{ON}$  = 100 mA,  $V_{CC}$  = 2.7 V B0



Figure 5.  $R_{ON}$  Switch On Resistance,  $I_{ON}$  = 100 mA,  $V_{CC}$  = 4.3 V B0

# **AC LOADINGS AND WAVEFORMS**





## NOTES:

- 6.  $R_L$ ,  $R_S$ , and  $C_L$  are functions of the application environment (see AC Tables for specific values). 7.  $C_L$  includes test fixture and stray capacitance.

Figure 7. Turn-Off Timing



<sup>\*</sup>C<sub>L</sub> includes test fixture and stray capacitance.

Figure 8. Break-Before-Make Timing



Figure 9. Off Isolation

# AC LOADINGS AND WAVEFORMS (Continued)



RS and RT are functions of the application environment (50, 75, or 100).

Figure 10. Non-Adjacent Channel-to-Channel Crosstalk



 $<sup>{}^{\</sup>star}C_{L}$  includes fixture and stray capacitance.

Figure 11. Charge Injection Test



Figure 12. On/Off Capacitance Measurement Setup

# AC LOADINGS AND WAVEFORMS (Continued)



Figure 13. Bandwidth



Figure 14. Harmonic Distortion

# **ORDERING INFORMATION**

| Part Number | Top Mark | Package                              | Shipping <sup>†</sup> |
|-------------|----------|--------------------------------------|-----------------------|
| FSA5157P6X  | C57      | SC-88/SC-70 6 Lead, 1.25x2 (Pb-Free) | 3000 / Tape & Reel    |
| FSA5157L6X  | FT       | SIP6 1.45 x 1.0 (Pb-Free)            | 5000 / Tape & Reel    |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.



**ISSUE O DATE 31 AUG 2016** 2X 0.05 C 1.45 В 2X (1) $\bigcirc$  0.05 C (0.49)(0.254)1.00 5X \ (0.75)(0.52)TOP VIEW Α 1X <u>1</u> PIN 1 IDENTIFIER /5\ 0.50±0.05 (0.30)6X PIN 1 0.05 RECOMMENED 0.00 LAND PATTERN 0.05 C - 0.35±0.05 С 1.45±0.05 -0.20±0.05 6X DETAIL A 1.0 0.10M|C|B|A

0.05(M)

0.30±0.05 5X

0.35±0.05 5X

(0.125)

4X

**SIP6 1.45X1.0** CASE 127EB

NOTES:

1.00±0.05

(0.050)

6X

1. CONFORMS TO JEDEC STANDARD MO-252 VARIATION UAAD

0.5

- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-2009

**BOTTOM VIEW** 

- 4.PIN ONE IDENTIFIER IS 2X LENGTH OF ANY
  - OTHER LINE IN THE MARK CODE LAYOUT.

| DOCUMENT NUMBER: | 98AON13590G   | Electronic versions are uncontrolled except when accessed directly from the Documer<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in rec |             |  |  |
|------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| DESCRIPTION:     | SIP6 1.45X1.0 |                                                                                                                                                                       | PAGE 1 OF 1 |  |  |

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

0.40±0.05

**PIN 1 TERMINAL** 

**DETAIL** A

0.075 X 45°

CHAMFER





## SC-88 (SC-70 6 Lead), 1.25x2 CASE 419AD ISSUE A

**DATE 07 JUL 2010** 



**TOP VIEW** 





SIDE VIEW



**END VIEW** 

## Notes:

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Complies with JEDEC MO-203.

| DOCUMENT NUMBER: | 98AON34266E               | Electronic versions are uncontrolled except when accessed directly from the Document Repositor<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |  |
|------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| DESCRIPTION:     | SC-88 (SC-70 6 LEAD), 1.3 | 25X2                                                                                                                                                                              | PAGE 1 OF 1 |  |  |

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales