

Lecture: Machine Learning for Data Science

Winter semester 2021/22

Lecture 18: Reinforcement Learning (Model-free learning)

Prof. Dr. Eirini Ntoutsi

Outline

- Model-free learning
- Direct policy evaluation
- TD-learning
- Q-learning
- Exploration-vs-Exploitation
- Things you should know from this lecture & reading material

Model-free learning

- Model-based learning: learns an approximate model of T, R based on experience and uses this model to solve a (conventional) MDP.
- Model-free learning: learns the v-values of states or q-values of state-action pairs directly, without constructing a model of the rewards and transitions in the MDP
- We will cover
 - Direct evaluation
 - □ Temporal difference (TD) learning
 - Q-learning

Passive RL: An agent is given a policy to follow and learns the values of the states under that policy as its experience grows

Active RL: The agent can use the feedback it receives to iteratively update its policy

Passive Reinforcement Learning

• Passive RL: An agent is given a policy π to follow and learns the values of the states under that policy as its experience grows

Direct policy evaluation

- □ Input: a fixed policy $\pi(s)$
- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- Goal: learn the state values

- No choice about what actions to take
- Just execute the policy and learn from experience

Outline

- Model-free learning
- Direct policy evaluation
- TD-learning
- Q-learning
- Exploration-vs-Exploitation
- Things you should know from this lecture & reading material

Direct evaluation

- Goal: Compute values for each state under a policy π
- Idea: Have the agent learn from experience while following π
- The experience comes in form of episodes
- More concretely:
 - $lue{}$ Act according to π
 - Every time you visit a state s, keep track of its utility (sum of discounted rewards) as well as of the number of visits

$$U[s_o, s_1, ...] = R(s_o) + \gamma R(s_1) + \gamma^2 R(s_2) + ... + \gamma^n R(s_n)$$

- Average those samples to get the estimated value of s
- This is called direct policy evaluation

$$U[s_o, s_1, ...] = R(s_o) + \gamma R(s_1) + \gamma^2 R(s_2) + ... + \gamma^n R(s_n)$$

Input Policy π

Observed Episodes (Training)

Output Values

Assume: $\gamma = 1$

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Episodes	1
Α	
В	-1-1+10=8
С	-1+10=9
D	10
E	

$$U[s_{o'} \ s_{1'} \ ...] = R(s_{o}) + \nu R(s_{1}) + \nu^{2} R(s_{2}) + ... + \nu^{n} R(s_{n})$$

Input Policy π

Observed Episodes (Training)

Output Values

Assume: $\gamma = 1$

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Episodes	1	2
Α		
В	8	-1-1+10=8
С	9	-1+10=9
D	10	10
E		

$$U[s_o, s_1, ...] = R(s_o) + \gamma R(s_1) + \gamma^2 R(s_2) + ... + \gamma^n R(s_n)$$

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Episodes	1	2	3
Α			
В	8	8	
С	9	9	9
D	10	10	10
E			8

$$U[s_o, s_1, ...] = R(s_o) + \gamma R(s_1) + \gamma^2 R(s_2) + ... + \gamma^n R(s_n)$$

Input Policy π

Observed Episodes (Training)

Output Values

Assume: $\gamma = 1$

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Episodes	1	2	3	4
Α				-10
В	8	8		
С	9	9	9	-11
D	10	10	10	
E			8	-12

We can now estimate the values for each state s

Episodes	1	2	3	4
А				-10
В	8	8		
С	9	9	9	-11
D	10	10	10	
E			8	-12

S	Total Reward	Times Visited	$V^{\pi}(s)$
A	-10	1	-10
В	16	2	8
C	16	4	4
D	30	3	10
E	-4	2	-2

Direct evaluation: Discussion

- Batch approach: It collects data and learns the values at the end of training
- Passive approach: A fixed policy π is provided
- Model-free approach: learn directly the values of the states
- What is good about direct evaluation?
 - Easy to understand
 - Doesn't require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions

Direct evaluation: Discussion cont'

- What is bad about direct evaluation?
 - □ In our example: B and E only have C as a successor (based on training) and the transition to C gives -1 reward for both.
 - \square How can their values be different under π (recall Bellman equation)?

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

- With enough training, it will eventually converge to the true state values,
 but it takes a long time to learn
- Each state must be learned separately
 - No share of information between states, it wastes information about state connections (transitions between states)

Why not use policy evaluation?

- Simplified Bellman updates calculate v-values for a fixed policy π (see previous lectures):
 - Each round, replace V with a one-step-look-ahead layer over V

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- This approach fully exploited the connections between the states
- Unfortunately, it requires T and R to do it!
- Key question: how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?

Sample-based policy evaluation?

We want to improve our estimate of V by computing these averages but we don't have T, R:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

Idea: Take samples of outcomes s' (by doing the action in the real world!) and average

$$sample_{1} = R(s, \pi(s), s'_{1}) + \gamma V_{k}^{\pi}(s'_{1})$$

$$sample_{2} = R(s, \pi(s), s'_{2}) + \gamma V_{k}^{\pi}(s'_{2})$$

$$\dots$$

$$sample_{n} = R(s, \pi(s), s'_{n}) + \gamma V_{k}^{\pi}(s'_{n})$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$

- If we could collect data from a given state s many times this could be a good idea
 - Nice idea but hard to achieve

Almost! But we can't rewind time to get sample after sample from state s.

Detour: sampling expectations via an example

Goal: Compute expected age of the class students

Known P(A)

$$E[A] = \sum_{a} P(a) \cdot a = 0.35 \times 20 + \dots$$

Without P(A), instead collect samples [a₁, a₂, ... a_N]

Unknown P(A): "Model Based"

Estimate P(a) from samples and then expected age

Why does this work? Because eventually you learn the right model.

$$\hat{P}(a) = \frac{\text{num}(a)}{N}$$

$$E[A] \approx \sum_{a} \hat{P}(a) \cdot a$$

Unknown P(A): "Model Free"

Directly estimate expected age from samples

$$E[A] \approx \frac{1}{N} \sum_{i} a_i$$

Why does this work? Because samples appear with the right frequencies.

From direct evaluation to temporal difference learning

- Direct evaluation: collect data (in form of episodes) and learn the values at the end of training
 - No share of information between states
- Bellman update allows for share of information between states however requires T, R knowledge
- Sample-based policy evaluation idea:
 - if we could collect data from a given state s many times $(s_1, s_2, ..., s_n)$ we could compute the average state value \rightarrow not easy
- \blacksquare New idea: what if we learn from each sample as we get it? \rightarrow temporal difference learning

Outline

- Model-free learning
- Direct policy evaluation
- TD-learning
- Q-learning
- Exploration-vs-Exploitation
- Things you should know from this lecture & reading material

Temporal Difference Learning

- Main idea: learn from every experience (sample)
 - Update V(s) each time we get a new experience/sample, i.e., transition (s, a, s', r)
 - \square Policy still fixed, so $a=\pi(s)$, so we are still doing evaluation!
 - □ Likely outcomes s' will contribute updates more often
- How do we update V(s) based on just one sample?
 - \square Main idea: Correct the old estimate V(s) with the new sample value
 - Estimate value of V(s) based on sample: (s, a, s', r)

$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

• Update: Move current value estimate V(s) values toward value of whatever successor occurs (s')

$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$$

■ The learning rate a controls how to combine our current estimate with the new sampled estimate, $0 \le a \le 1$

$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$

Same update:

$$_{\text{Ma}}V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + \alpha \left[R(s,\pi(s),s') + \gamma V^{\pi}(s') \right]$$

Example: Temporal Difference Learning

States

Assume: $\gamma = 1$, $\alpha = 1/2$

Current estimates

0

0

8

Updated estimates

0

0

-1

Updated estimates

3

0

-1

$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

$$V^{\pi}(B) = (\frac{1}{4} - \alpha)V^{\pi}(B) + \alpha[R(B, east, C) + \gamma V^{\pi}(C)]$$

$$=(1-0.5)*0+0.5[-2+0]=-1$$

Only B is updated

Machine Learning for Data Science: Lecture 18 - RL (Model-free learning)

The update rule

$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

- Update rule $V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$
- Assuming k samples/updates of $V^{\pi}(s)$: sample₁, sample₂,..., sample_{k-1}, sample_k

$$V_k^{\pi}(s) \leftarrow (1-a)^* V_{k-1}^{\pi}(s) + a^* sample_k$$

 $V_{k-1}^{\pi}(s) \leftarrow (1-a)^* V_{k-2}^{\pi}(s) + a^* sample_{k-1}$

$$V_k^{\pi}(s) \leftarrow (1-a)^*[(1-a)^*V_{k-2}^{\pi}(s)+a^*sample_{k-1}]+a^*sample_k$$

 $V_k^{\pi}(s) \leftarrow (1-a)^2 V_{k-2}^{\pi}(s) + (1-a)^*a^*sample_{k-1} + a^*sample_k$

$$V_k^{\pi}(s) \leftarrow (1-\alpha)^k V_0^{\pi}(s) + \alpha \cdot [(1-\alpha)^{k-1} \cdot sample_1 + \ldots + (1-\alpha) \cdot sample_{k-1} + sample_k]$$

$$V_k^{\pi}(s) \leftarrow \alpha \cdot [(1-\alpha)^{k-1} \cdot sample_1 + \ldots + (1-\alpha) \cdot sample_{k-1} + sample_k]$$

- Since the learning rate $a: 0 \le a \le 1$, $(1-a)^k \rightarrow 0$ as k increases.
- So older samples contribute exponentially less to $V^{\pi}(s)$, which is great since these samples are based on old (hence worse) versions of $V^{\pi}(s)$ $sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$

The update rule

- So, with a simple update rule $V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$ we are able to
 - □ Learn with each experience/sample → online learning approach
 - Give exponentially less weight to older, potentially less accurate sample estimates
 - Converge to learning the true value states much faster comparing to direct policy evaluation

Outline

- Model-free learning
- Direct policy evaluation
- TD-learning
- Q-learning
- Exploration-vs-Exploitation
- Things you should know from this lecture & reading material

Problems with TD Value Learning

- TD value learning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, we're sunk (recall previous lectures):

$$\pi(s) = \arg\max_{a} Q(s, a)$$

$$Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]$$

- Idea: learn Q-values using samples, not values
- Makes action selection model-free too!

Active Reinforcement Learning

The agent can use the feedback it receives to iteratively update its policy

Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You choose the actions now
 - Goal: learn the optimal policy / values
- In this case:
 - Learner makes choices!
 - □ Fundamental tradeoff: exploration vs. exploitation

Detour: Optimal V and Q values (see previous lectures for more details)

• $V^*(s)$ = expected utility starting in s and acting optimally from that point onwards

$$V^*(s) = \max_a Q^*(s, a)$$

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

□ The utility of a state is the immediate reward for that state plus the expected discounted utility of the next state, assuming that the agent chooses the optimal action.

Bellman equation

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right]$$

Detour: Q-Value Iteration (see previous lectures for more details)

- Value iteration: find successive (depth-limited) values
 - □ Start with $V_0(s) = 0$, which we know is right
 - Given V_k , calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
 - Start with $Q_0(s,a) = 0$, which we know is right
 - \Box Given Q_k , calculate the depth k+1 q-values for all q-states:

Temporal Difference Q-learning

Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s'', a') \right]$$

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - ullet Consider your old estimate: Q(s,a)
 - Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

- Update the old estimate using the new sample estimate:
 - Again, a is the learning rate

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$$

Detour: Extracting policy from Q values (see previous lecture)

- If we have q-values, completely trivial to decide
 - Select the action that takes us to the q-state with the max q-value
 - So we don't need T,R components

$$\pi^*(s) = \arg\max_a Q^*(s, a)$$

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- This is called off-policy learning
- TD learning is an example of on-policy learning: A policy is followed and information from policy-dependent sampling of the value function is not used immediately to improve the policy

Caveats:

- You have to explore enough
- □ You have to eventually make the learning rate *a* small enough
- ... but not decrease it too quickly

Outline

- Model-free learning
- Direct policy evaluation
- TD-learning
- Q-learning
- Exploration-vs-Exploitation
- Things you should know from this lecture & reading material

Exploration vs Exploitation dilemma

- Exploitation: Make best decision given current information
- Exploration: Gather more information that might lead us to better decisions in the future
- Examples
 - Restaurant selection
 - Exploitation: go to your favorite restaurant
 - Exploration: try a new restaurant
 - Game playing:
 - Exploitation: play the move you believe is best
 - Exploration: play a random move

Exploration schemes

- ε-greedy policies
 - □ Explore with probability ε and exploit with probability 1- ε , 0 \leq ε \leq 1
 - More concretely:
 - With probability ε , select a random action a
 - With probability 1-ε, select based on current policy, i.e., a = arg_amax Q(s,a)
- Problems with fixed ε-greedy
 - Setting ε
 - Small ε: too little exploration
 - Large ε: too little exploitation
 - You do eventually explore the space, but keep thrashing around once learning is done
- One solution: lower ε over time
 - Still actions are selected uniformly at random
- Another solution: exploration functions

Exploration functions

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$
$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) [sample]$$

- When to explore?
 - **ε-greedy**: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring
- Exploration function
 - Modify q-value update to consider the frequency of visiting a particular state

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} f(s',a')]$$

 \Box f(s,a) is the exploration function typically defined as

$$f(s,a) = Q(s,a) + \frac{k}{N(s,a)}$$

- N(s,a) is the frequency of visiting a particular (s,a) state
- k is a predefined value
- Give some preference to less visited states
- After enough visits it relies on the q-value

Regret

- Even if you learn the optimal policy, you still make mistakes along the way!
 - Example: both ε-greedy and exploration function learn the optimal policy but make different mistakes along the way
 - How can we compare these strategies?
- Regret is a measure of your total mistake cost:
 - Defined as the difference between the cumulative reward of the optimal policy and that gathered by π .
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret

Overview and Reading

Overview

- Model-free learning
- Direct policy evaluation
- TD-learning
- Q-learning
- Exploration-exploitation tradeoff

Reading

- Chapter 16& 23, AI book, 4th edition
- RL Book, Barto and Sutton, 2nd edition
- Introduction to Reinforcement Learning with David Silver (DeepMind)
- Stanford CS234: Reinforcement Learning with Emma Brunskill

Hands on experience

Check project 3, released today

Thank you

Questions/Feedback/Wishes?

Acknowledgements

- The slides are based on
 - CS 188 | Introduction to Artificial Intelligence, Berkeley
 - Artificial Intelligence: A modern approach (Russel and Norvig), 4th edition