Together we are beating cancer

Luca Porcu & Chandra Chilamakuri (Bioinformatics core)

21st February 2025

# Linear regression models

Fixed-effects models

#### **Process flow**









Definition and classification

10.15 -10.40 am

Together we are beating cancer

### Fisher's one-way ANOVA



#### Assumptions of ANOVA (ANalysis Of VAriance) models are the following:

- The effect of each factor is additive on  $\mu$  (i.e. population mean) parameter
- $\varepsilon_{ik}$  is assumed to be independent of one another and normally distributed with mean = 0 and common standard deviation =  $\sigma$

### Fisher's one-way ANOVA

Hypothesis to test:  $\tau_1 = \dots = \tau_n$ 

#### Test statistic:

| Source of variation | Sum of Squares                             | Degrees of freedom | Mean Squares        | F <sub>df1,df2</sub> | P-value |
|---------------------|--------------------------------------------|--------------------|---------------------|----------------------|---------|
| Treatment           | SSB = $\Sigma_i u_i (m_i - M)^2$           | df1 = n -1         | MSB = SSB / (n - 1) | MSB / MSE            | 0.023   |
| Residuals           | SSE = $\Sigma_i \Sigma_k (x_{ik} - m_i)^2$ | df2 = N - n        | MSE = SSE / (N - n) |                      |         |
| Total               | SST = SSB + SSE                            | $df_{TOT} = N - 1$ |                     | -                    |         |

Legend: m<sub>i</sub> is the sample mean of group i

Note: the ANOVA divides the total variation in the response into parts.

| R implementation |                                           |                                                     |
|------------------|-------------------------------------------|-----------------------------------------------------|
| Step             | Aim                                       | R function                                          |
| 1                | We should fit our data to the ANOVA model | fitModel = $Im(Response \sim Treatment, data=dSet)$ |
| 2                | We can get R to produce an ANOVA table    | anova(fitModel)                                     |

**Equation of the statistical model:** 

 $Y_{iik} = \mu + \tau_i + \eta_i + \varepsilon_{iik}$ 

### Fisher's two-way ANOVA

- 1. The unit k (e.g. mouse),  $k = 1,...,u_{ij}$ ;  $N = \Sigma_{ij} u_{ij}$
- 2.  $\tau_i$ : effect of treatment i, i = 1,...,n;  $\eta_i$ : effect of treatment j, j = 1,...,r

3.  $\varepsilon_{ijk}$ : the *random* part of the model (i.e. error Treatment term of the model). It is a blanket characterization of the uniqueness of the k<sub>th</sub> unit assignment assigned to group ij Group<sub>3B</sub> Group<sub>2B</sub> Group<sub>1B</sub>  $\mu$ Group<sub>2A</sub> Group<sub>1A</sub> Group<sub>3A</sub>

### Fisher's two-way ANOVA

Hypothesis to test n.1:  $\tau_1 = \dots = \tau_n$ 

Hypothesis to test n.2:  $\eta_1 = ... = \eta_r$ 

#### Test statistic:

| Source of variation | Sum of Squares                                  | Degrees of freedom      | Mean Squares                        | F <sub>df1,df2</sub> | P-value |
|---------------------|-------------------------------------------------|-------------------------|-------------------------------------|----------------------|---------|
| Treatment τ         | $SSB_{\tau} = \Sigma_{i} u_{i} (m_{i} - M)^{2}$ | $df1_{\tau} = n - 1$    | $MSB_{\tau} = SSB_{\tau} / (n - 1)$ | $MSB_{\tau}$ / $MSE$ | 0.023   |
| Treatment $\eta$    | $SSB_{\eta} = \Sigma_{j} u_{i} (m_{j} - M)^{2}$ | $df1_{\eta} = r - 1$    | $MSB_{\eta} = SSB_{\eta} / (r - 1)$ | $MSB_{\eta}/MSE$     | 0.150   |
| Residuals           | SSE = $\Sigma_i \Sigma_k (x_{ijk} - m_{ij})^2$  | $df2 = N - (n \cdot r)$ | $MSE = SSE / [N - (n \cdot r)]$     |                      |         |
| Total               | $SST = SSB_{\tau} + SSB_{\eta} SSE$             | $df_{TOT} = N - 1$      |                                     | •                    |         |

Note: the ANOVA divides the total variation in the response into parts.

| R implementation |                                           |                                                                                                 |
|------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------|
| Step             | Aim                                       | R function                                                                                      |
| 1                | We should fit our data to the ANOVA model | $fitModel = Im(Response \sim \mathit{Treat}_\tau + \mathit{Treat}_\eta,  data = \mathit{dSet})$ |
| 2                | We can get R to produce an ANOVA table    | anova(fitModel)                                                                                 |

### Fisher's two-way ANOVA with interaction

- 1. The unit k (e.g. mouse),  $k = 1,...,u_{ij}$ ;  $N = \Sigma_{ij} u_{ij}$
- 2.  $\tau_i$ : effect of treatment i, i = 1,...,n;  $\eta_i$ : effect of treatment j, j = 1,...,r

**Equation of the statistical model:** 

$$Y_{ijk} = \mu + \tau_i + \eta_j + \tau_i : \eta_j + \varepsilon_{ijk}$$



# Fisher's two-way ANOVA with interaction

Hypothesis to test n.1:  $\tau_1 = \dots = \tau_n$ 

Hypothesis to test n.2:  $\eta_1 = ... = \eta_r$ 

Hypothesis to test n.3:  $\tau$ : $\eta$  = 0

#### Test statistic:

| Source of variation         | Sum of Squares                                                    | Degrees of freedom                    | Mean Squares                                     | F <sub>df1,df2</sub>                | P-value |
|-----------------------------|-------------------------------------------------------------------|---------------------------------------|--------------------------------------------------|-------------------------------------|---------|
| Treatment $	au$             | $SSB_{\tau} = \Sigma_{i} u_{i} (m_{i} - M)^{2}$                   | $df1_{\tau} = n - 1$                  | $MSB_{\tau} = SSB_{\tau} / df1_{\tau}$           | $MSB_{\tau}/MSE$                    | 0.023   |
| Treatment $\eta$            | $SSB_{\eta} = \Sigma_{j} u_{i} (m_{j} - M)^{2}$                   | $df1_{\eta} = r - 1$                  | $MSB_{\eta} = SSB_{\eta} / df1_{\eta}$           | $MSB_{\eta}$ / $MSE$                | 0.150   |
| Interaction $\tau$ : $\eta$ | $SSB_{\tau:\eta} = \Sigma_{jj} u_{ij} (m_{ij} - m_j - m_i + M)^2$ | $df1_{\tau:\eta} = (n-1) \cdot (r-1)$ | $MSB_{\tau:\eta}SSB_{\tau:\eta}/df1_{\tau:\eta}$ | $MSB_{	au:oldsymbol{\eta}}$ / $MSE$ | 0.401   |
| Residuals                   | SSE = $\Sigma_i \Sigma_k (x_{ijk} - m_{ij})^2$                    | $df2 = N - (n \cdot r)$               | MSE = SSE / df2                                  |                                     |         |
| Total                       | $SST = SSB_{\tau} + SSB_{\eta} + SSB_{\tau:\eta} + SSE$           | $df_{TOT} = N - 1$                    |                                                  | -                                   |         |

Note: the ANOVA divides the total variation in the response into parts.

| R implementation |                                           |                                                                         |
|------------------|-------------------------------------------|-------------------------------------------------------------------------|
| Step             | Aim                                       | R function                                                              |
| 1                | We should fit our data to the ANOVA model | fitModel = Im(Response ~ $Treat_{\tau}^* Treat_{\eta}$ , data= $dSet$ ) |
| 2                | We can get R to produce an ANOVA table    | anova(fitModel)                                                         |

### Diagnostics: residuals



The residuals are equal to the difference between the observations and the corresponding fitted values.

| R imp | R implementation                             |                                                     |  |  |
|-------|----------------------------------------------|-----------------------------------------------------|--|--|
| Step  | Aim                                          | R function                                          |  |  |
| 1     | We should fit our data to the ANOVA model    | fitModel = $Im(Response \sim Predictor, data=dSet)$ |  |  |
| 2     | We want to obtain the residuals of the model | dSet\$resid = resid(fitModel)                       |  |  |

### **Diagnostics: residuals**



data: dSet\$resid

W = 0.97324, p-value = 0.3119

Bartlett test of homogeneity of variances

data: resid by Predictor

Bartlett's K-squared = 1.5374, df = 1, p-value = 0.215





| R imp | R implementation               |                                    |                                                     |  |  |
|-------|--------------------------------|------------------------------------|-----------------------------------------------------|--|--|
| Step  | Aim                            | Tool                               | R function                                          |  |  |
| 1     | 1 We should plot the residuals | Histogram                          | hist( <i>dSet</i> \$resid)                          |  |  |
|       |                                | Q-Q plot                           | qqnorm(dSet\$resid); qqline(dSet\$resid)            |  |  |
| 2     | We could test the              | Shapiro-Wilk <i>normality</i> test | shapiro.test( <i>dSet</i> \$resid)                  |  |  |
|       | assumptions                    | Bartlett's homoscedasticity test   | bartlett.test(resid ~ $Predictor$ , data = $dSet$ ) |  |  |

#### Diagnostics: residuals

**Equation of the statistical model:** 

$$Y_{ijk} = \mu + \tau_i + \eta_j + \tau_i : \eta_j + \varepsilon_{ijk}$$

Assumptions of normality and homoscedasticity **must be satisfied** by residuals of single treatment group and **combined** treatment groups (e.g. **pooled** residuals of  $Group_{1A}$ ,  $Group_{3A}$  and  $Group_{3B}$ .

# Source of problems and possible solutions

| Solution                      | Normality | Unequal variance | Outliers |
|-------------------------------|-----------|------------------|----------|
| Welch's one-way ANOVA         |           | <b>√</b>         |          |
| Weighting                     |           | ✓                |          |
| Distribution-free methods ○ ✓ |           | ✓                | ✓        |
| Data transformation           | ✓         | <b>✓</b>         | ✓        |

<sup>⊙</sup> e.g. Kruskal-Wallis test

### Welch's one-way ANOVA

The Welch version of one-way ANOVA do not assume that all the groups are sampled from populations with equal variances.



#### Assumptions of ANOVA (ANalysis Of VAriance) models are the following:

- The effect of each factor is additive on  $\mu$  (i.e. population mean) parameter
- ε<sub>ik</sub> is assumed to be independent of one another and normally distributed with mean = 0. Standard deviation could be different between groups: σ<sub>i</sub> ≠ σ<sub>j</sub>, i ≠ j

#### Weighted least square

The *gls* function of the R package *nlme* using generalized least squares. The errors are allowed to be correlated and/or have unequal variances.



Assumptions of linear models fitted with the gls function are the following:

- The effect of each factor is additive on  $\mu$  (i.e. population mean) parameter
- $\varepsilon_{ik}$  could be **correlated**. They are normally distributed with mean = 0. Standard deviation could be different between groups:  $\sigma_i \neq \sigma_j$ ,  $i \neq j$

#### **Kruskal-Wallis test**

The Kruskal-Wallis test (i.e. one-way ANOVA on ranks) works on ranks. It tests whether samples originate from the same distribution.





#### Assumptions of Kruskal-Wallis test are the following:

We only assume that the observations in the data set are independent of each other.

# **R** functions

| R implementation                                                                                                                                                                         |          |                                                                                                                                                                                                                                                                           |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test                                                                                                                                                                                     | R        |                                                                                                                                                                                                                                                                           |  |  |
| Welch's one-way ANOVA                                                                                                                                                                    | Function | <ul> <li>oneway.test(Response ~ Predictor, data = dSet, var.equal = FALSE)</li> <li>One-way analysis of means (not assuming equal variances)</li> <li>data: Response and Predictor</li> <li>F = 118.34, num df = 1.000, denom df = 45.143, p-value = 3.342e-14</li> </ul> |  |  |
|                                                                                                                                                                                          | Output   |                                                                                                                                                                                                                                                                           |  |  |
| <ul> <li>Weighted least square</li> <li>Function</li> <li>fitModel &lt;- gls(Response ~ Predictor, weights = varIdent(form= ~ 1   Predictor), days</li> <li>summary(fitModel)</li> </ul> |          | minodo: Gio(1305p01250 110d10001; WoiBitto Validotto(101111 1 110d10001); data discot)                                                                                                                                                                                    |  |  |
|                                                                                                                                                                                          | Output   | Variance function: Structure: Different standard deviations per stratum Formula: ~1   Predictor Parameter estimates: 1 2 1.000000 1.293192  Coefficients:                                                                                                                 |  |  |
|                                                                                                                                                                                          |          | Value Std.Error t-value p-value<br>(Intercept) -0.001177 0.1890228 -0.006228 0.9951<br>Predictor 3.361487 0.3090014 10.878548 0.0000                                                                                                                                      |  |  |
| Kruskal-Wallis                                                                                                                                                                           | Function | kruskal.test( <i>Response ~ Predictor</i> , data = <i>dSet</i> )                                                                                                                                                                                                          |  |  |
|                                                                                                                                                                                          | Output   | Kruskal-Wallis rank sum test  data: Response by Predictor Kruskal-Wallis chi-squared = 34.222, df = 1, p-value = 4.917e-09                                                                                                                                                |  |  |

#### **Data transformation**

We can transform the data mathematically...

 to make them fit the normality more closely

to obtain more similar variance

to handle outliers



#### **Data transformation**

#### Common and useful transformations of the response variable:

- 1. the logarithm  $(x_i > 0, i=1,...n)$
- 2. the square root  $(x_i \ge 0, i=1,...n)$
- 3. the square power  $(x_i \ge 0, i=1,...n)$
- 4. the ranks (e.g. Welch's one-way ANOVA on ranks)

http://bioinformatics-core-sharedtraining.github.io/IntroductionToStats/practical.html

