Что такое технология связи? Информация, данные, сигналы Преобразование сигналов в каналах связи Ряд и интеграл Фурье

Телекоммуникационные технологии Введение

Что такое технология связи?

Информация, данные, сигналы

Преобразование сигналов в каналах связи

Ряд и интеграл Фурье

Технология связи = кодирование + модуляция

ПРИМЕРЫ:

- ▶ Эволюция стандартов IEEE 802.11x
- Семейство стандартов Ethernet
- GPS
- WiMAX

Mодель взаимодействия открытых систем ISO/OSI

Open Systems Interconnection

- Прикладной
- Представлений
- Сеансовый
- Транспортный
- Сетевой
- Канальный
- Физический

Модель взаимодействия TCP/IP

- Прикладной
- Транспортный
- Межсетевой
- Канальный

Структурная схема телекоммуникационного канала

Информация и данные

1 бит? - "да"или "нет"?

$$I = \Delta H = -\sum_{i=0}^{1} p_i \log p_i$$

Информация - это мера изменения неопределенности субъективных представлений о физическом мире – объектах, системе или среде.

Данные - это структурированные в соответствии с определенным форматом элементы, описывающие свойства объектов, системы, среды.

Преобразование сигналов - способ передачи информации

Сигнал - это физическое явление, служащее средством передачи информации.

Сигнал имеет различимые - . . .

Преобразование сигналов - способ передачи информации

Сигналы телекоммуникационных систем

- 1. Физические явления любой природы, применяемые для передачи информации, называются "сигналы".
- 2. В теории телекоммуникационных технологий предметом исследования является сигнал как математический объект функция f(x), где x независимая переменная любой физической природы (время, перемещение, частота и т.п.).
- 3. Представление сигналов в виде f(x), используется для математического описания физических явлений и позволяет привлечь аппарат линейной алгебры и функционального анализа.

Анализ сигналов (общий подход)

- 1. Принцип моделирования реального сигнала аналитической функцией некоторого (возможно бесконечного) числа переменных $f(x_1, x_2, \dots x_n)$ позволяет применить аппарат функционального анализа к процессам передачи и обработки информации.
- 2. Рассматривая функцию $f(x_1, x_2, ... x_n)$ как элемент пространства функций, можно провести ее разложение в базисе этого пространства.

Пространство разложения

В общем случае, базисом бесконечномерного линейного пространства \mathfrak{R} , на котором определено понятие скалярного произведения функций (векторов), т.е. Гильбертова пространства, называется набор линейно независимых функций (векторов) v_i такой, что любому элементу пространства $f \in \mathfrak{R}$ можно сопоставить единственную линейную комбинацию базисных векторов v_i :

$$f=\sum(c_i\cdot v_i)$$

где c_i — коэффициенты разложения, v_i — компоненты базиса.

Базисы анализа сигналов

Разложение (анализ) сигнала отражает общий подход к исследованию физического объекта x путем его представления в виде суммы элементарных блоков x_i

$$x=\sum x_i$$

Для сигналов или изображений это могут быть гармонические функции (базис Фурье-анализа, дискретное косинусное преобразование), гармонические функции вида (базис Шеннона-Котельникова), прямоугольные функции (базис Хаара), некоторые функции специального вида (вейвлет-анализ).

(Вместо вывода) Для чего выполняется разложение сигналов в базисе?

- 1. Представление сигнала в виде, удобном для исследования и обработки
- 2. Приближение представления сигнала к оптимальному путем минимизации числа компонент разложения при максимальном качестве аппроксимации

Очевидно, что результативность применения определенного набора базисных функций напрямую зависит от природы сигнала.

Теорема Дирихле

Если $f(x_1, x_2, \dots x_n)$ — периодическая функция с периодом 2π , имеющая на интервале $[-\pi, \pi]$ конечное количество точек строгого экстремума и конечное количество точек разрыва первого рода, тогда для $f(x_1, x_2, \dots x_n)$ существует разложение:

$$\frac{(f(x-0)+f(x+0))}{2} = \frac{a_0}{2} + \sum (a_n \cdot \cos(nx) + b_n \cdot \sin(nx))$$

где a_0, a_n, b_n — коэффициенты Фурье:

Коэффициенты ряда Фурье

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx,$$

Комплексная экспонента. Формулы Эйлера.

$$\sin x = \frac{e^{jx} - e^{-jx}}{2j}$$

$$\cos x = \frac{e^{jx} + e^{-jx}}{2}$$

$$e^{jkx} = \cos(kx) + j\sin(kx)$$

$$k \in \mathbb{Z}$$

Ряд Фурье в комплексной форме для s(t)

$$s(t) = C_0 + \sum_{k=1}^{\infty} \left(a_k \cos(2\pi f k t) + b_k \sin(2\pi f k t) \right)$$
 $s(t) = \sum_{k=-\infty}^{\infty} C_k \phi_k(t) = \sum_{k=-\infty}^{\infty} C_k e^{j2\pi f k t}$

Коэффициенты ряда Фурье:

$$egin{aligned} C_k &= rac{1}{T} \cdot s(t) \cdot \overline{\phi_k(t)} = rac{1}{T} \int_t^{t+T} s(t) e^{-j2\pi f k t} dt \ &C_0 &= rac{1}{T} \int_t^{t+T} s(t) dt \end{aligned}$$

Интеграл Фурье. Преобразование Фурье

$$s(t) = \lim_{T o \infty} (\sum_{-\infty}^{\infty} C_k e^{j2\pi fkt})$$
 $s(t) = \lim_{T o \infty} (\sum_{-\infty}^{\infty} \underbrace{(1/T \int_t^{t+T} s(t) e^{-j2\pi fkt} dt)}_{C_k} e^{j2\pi fkt})$
 $s(t) = \int_{-\infty}^{+\infty} \left(\underbrace{\int_{-\infty}^{\infty} s(t) e^{-j2\pi ft} dt}_{S(f)} e^{j2\pi ft} df\right)$

Выводы

- 1. Преобразование Фурье сигнала является разложением по гармоническим функциям всех частот в диапазоне от $-\infty$ до $+\infty$.
- 2. Позволяет при работе с сигналами выполнить частотно-временной переход.
- 3. Прямое преобразование Фурье имеет низкое разрешение по времени: параметр t является постоянным.
- 4. Обратное преобразование Фурье имеет низкое разрешение по частоте: f является постоянным.