**NCPC Simulation Day1 Begin:** 2021-10-09 **End:** 2021-10-09 12:30 CST 17:30 CST **Elapsed:** 06:15:56 Running **Remaining:** -2:44:03 Problem Overview Status Rank (05:00:00) 0 Comments ☆Favorite Setting Α В  $\Box$ G Η Т J Submit Status My Status

| Time | limit |
|------|-------|
|      |       |

1000 ms

#### **Memory limit**

262144 kB

# **K - A Determined Cleanup**

In order to put away old things and welcome a fresh new year, a thorough cleaning of the house is a must.

Little Tommy finds an old polynomial and cleaned it up by taking it modulo another. But now he regrets doing this...

Given two integers p and k, find a polynomial f(x) with non-negative integer coefficients strictly less than k, whose remainder is p when divided by (x + k). That is  $f(x) = q(x) \cdot (x + k) + p$ , where q(x) is a polynomial (not necessarily with integer coefficients).

#### Input

The only line of input contains two space–separated integers p and k ( $1 \le p \le 10^{18}$ ,  $2 \le k \le 2000$ ).

## Output

If the polynomial does not exist, print a single integer -1, or output two lines otherwise.

In the first line print a non-negative integer d — the number of coefficients in the polynomial.

In the second line print d space–separated integers  $a_0, a_1, ..., a_{d-1}$ , describing a polynomial  $f(x) = \sum_{i=0}^{d-1} a_i \cdot x^i$  fulfilling the given requirements. Your output should satisfy  $0 \le a_i < k$  for all  $0 \le i \le d-1$ , and  $a_{d-1} \ne 0$ .

If there are many possible solutions, print any of them.

## **Examples**

### Input

46 2

### **Output**

7

0100111

## Input

2018 214

## **Output**

5

92 205 1

#### Note

In the first example,  $f(x) = x^6 + x^5 + x^4 + x = (x^5 - x^4 + 3x^3 - 6x^2 + 12x - 23) \cdot (x + 2) + 4$ 



All Copyright Reserved © 2010-2021 Xu Han

Server Time: 2021-10-09 18:45:56 CST