Student Number:

St. Catherine's School Waverley

August 2008

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Extension I Mathematics

Time allowed:

2 Hours + 5 mins Reading Time

INSTRUCTIONS

- Write your STUDENT NUMBER on each page
- All questions are of equal value
- Marks for each part of a question are indicated
- All questions should be attempted on the separate paper provided
- All necessary working should be shown
- Start each question on a NEW page
- Approved scientific calculators and drawing templates may be used
- Standard integrals are printed at the end of the paper

OUESTION 1 (12 marks)	Marl
a) Solve the inequality $\frac{2x+5}{x-4} \le 1$	3
b) Evaluate $\int_{-3}^{3} \frac{1}{9+x^2} dx$	2
$\text{(c)} \text{Evaluate } \lim_{x \to 0} \frac{\sin x}{5x}$	2
d) Given that $\log_b \left(\frac{p}{q}\right) = 3$ and $\log_b \left(\frac{q}{r}\right) = 1.6$, evaluate $\log_b \left(\frac{p}{r}\right)$	2
e) Evaluate $\int_{0}^{\frac{1}{2}} 2x\sqrt{1-2x} \ dx \text{ using the substitution } u = 1-2x$	3

-2

OUESTION 2 (12 marks) Start a new page.

Marks

(a) $\tan \theta = m$ and $\tan \phi = 3$ find the value of m if $\theta - \phi = \frac{\pi}{4}$

2

2

2

- b) Prove that, if $x^4 x^3 + kx 4$ has a factor of (x+1), then it also has a factor $\frac{1}{2}$ 2 of (x-2).
- $\begin{array}{c} \text{(c)} \quad \text{Prove that } \frac{2}{\cot x + \tan x} = \sin 2x \end{array}$
- dy Find the general solution of $\sqrt{3}\sin 2x = \cos 2x$
- e) Consider the function $f(x) = \frac{\pi}{2} + 2\sin^{-1}\left(\frac{2x}{3}\right)$
 - (i) Find the domain and range of f(x)

 - (ii) Sketch the graph of f(x) showing clearly its end points.

QUESTION 3 (12 marks) Start a new page.

Year 12 Mathematics Extension 1 Trial HSC

Marks

- a). Use mathematical induction to show that, for all positive integers $n \ge 1$, 3 $1^{2} + 3^{2} + 5^{2} + \dots + (2n-1)^{2} = \frac{1}{3}n(2n-1)(2n+1)$
- b) Find the value of the term that is independent of x in the expansion of x. 2 $\left(2x^2 + \frac{1}{r^3}\right)^{10}$
- c) $Q(x) = ax^2 + bx + c$
 - (i) State the sum of the roots of Q(x) = 0

1

2

- (ii) When Q(x) is divided by either (x-m) or (x-n) the remainder is the same. 2 Prove that, if $m \neq n$, then (m+n) is equal to the sum of the roots of Q(x) = 0
- d) Consider the function $f(x) = \frac{x-2}{x-1}$.
 - Prove that f(x) is an increasing function for all values of x.
 - Find the equation of the inverse function $f^{-1}(x)$ and deduce that f(x) is 2 symmetrical about the line y = x

OUESTION 4 (12 marks) Start a new page.

Marks

Prove that $\int_{0}^{\pi} \sin^2 x \, dx = \frac{\pi}{8} - \frac{1}{4}$

2

Prove that $\frac{d}{dx}(x\sin^2 x) - \sin^2 x = x\sin 2x$

2

Hence or otherwise, prove $\int_{0}^{\frac{\pi}{4}} x \sin 2x \ dx = \frac{1}{4}$

2

b)

The diagram shows the graph of $x^2 = 4y$. The tangent to the parabola at $P(2p, p^2)$, p > 0, cuts the x axis at A. The normal to the parabola at P cuts the y axis at B.

Derive the equation of the tangent AP

2

Show that B has coordinates $(0, p^2 + 2)$.

1

(iii) Let C be the midpoint of AB. Find the Cartesian equation of the locus of C. 3

Page 5 of 9

QUESTION 5 (12 marks) Start a new page.

Marks

6

- a) The rate at which a drug is being expelled from the body at time t hours is given by the equation $\frac{dM}{dt} = -k(M - 0.04)$ where k is a constant and M is measured in grams.
 - (i) Show that $M = 0.04 + M_0 e^{-kt}$, for some constant M_0 , satisfies this equation.
 - (ii) Initially 4 grams was ingested. Find the value of M_0
 - (iii) After 10 hours, 1.6 grams was still present. Find the value of k
 - (iv) Show that the drug will never be entirely eliminated from the body.

b)

A pole, OT, of length ℓ m, stands on horizontal ground. The pole leans towards the east, making an angle of θ with the vertical. From P, a m south of O the elevation of T is α .

- Find expressions, in terms of ℓ and θ , for OM and MT
- Prove that $PM = \ell \cos \theta \cot \alpha$.
- (iii) Prove that $\ell^2 = \frac{a^2}{\cos^2 \theta \cot^2 \alpha \sin^2 \theta}$
- (iv) Find the length of the pole, to the nearest m, if a = 25, $\theta = 20^{\circ}$ and $\alpha = 24^{\circ}$

QUESTION 6 (12 marks) Start a new page.

Marks

a) A wine glass is formed by rotating $y = ax^2$ around the y axis.

The depth of liquid in the glass is h and the radius at the top of the liquid is r.

(i) Find the value of a

- 1
- (ii) Write an expression for h in terms of r.
- 1
- (iii) Show that the volume of liquid in the glass 1 when the depth is h cm is $\frac{8\pi r^4}{9}$
- (iv) Liquid is being added to the glass at the 3 at a rate 3(15-h) ml per second. Find the rate at which the radius of the surface is increasing when h = 10cm.
- b) A particle moves in a straight line such that its displacement from a fixed point O
 6
 is given by;

$$x = \sqrt{3}\cos 3t - \sin 3t$$

- (i) Show that $\ddot{x} = -n^2x$
- (ii) Express x in the form $a\cos(nt+\alpha)$ and hence determine the period and amplitude of the motion.
- (iii) Find the speed of the particle when it is 1m from O.
- (iv) After how many seconds will the particle be 1m from O

Page 7 of 9

QUESTION 7 (12 marks) Start a new page.

Marks

2

2

a) (i) Show that, in the binomial expansion of $\left(x-\frac{1}{x}\right)^{2n}$, the term independent of x is $(-1)^{n-2n}C_n$

(ii) Show that
$$(1+x)^{2n} \left(1-\frac{1}{x}\right)^{2n} \equiv \left(x-\frac{1}{x}\right)^{2n} \left(\frac{1+x}{x}\right)^{2n} \left(\frac{x-1}{x}\right)^{2n}$$

- (iii) Deduce that ${2 \choose {^{2n}C_0}^2 {2^nC_1}^2 + {2^nC_2}^2 \dots + {2^nC_{2n}}^2 = {(-1)}^{n} \, {^{2n}C_n} }$
- b) A particle is projected from a point P on horizontal ground, with initial speed V metres per second at an angle of elevation to the horizontal of α .

Its equations of motion are $\ddot{x} = 0$, $\ddot{y} = -g$

- (i) Derive expressions for its horizontal and vertical displacements from P after t seconds
- (ii) Determine the time of flight of the particle
- (iii) The particle reaches the point Q as shown, where the direction of the flight 2 makes an angle of β with the horizontal. Show that the time taken to travel from P to Q is $\frac{VSin(\alpha \beta)}{g\cos\beta}$ seconds

Course: MATHEMATICS EXTENSION!

Student Number:

St. Catherine's School Waverley

August 2008

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Extension | Mathematics Solutions

Time allowed:

2 Hours + 5 mins Reading Time

INSTRUCTIONS

- Write your STUDENT NUMBER on each page
- · All questions are of equal value
- Marks for each part of a question are indicated
- All questions should be attempted on the separate paper provided
- All necessary working should be shown
- Start each question on a NEW page
- Approved scientific calculators and drawing templates may be used
- Standard integrals are printed at the end of the paper

Marking Scheme for Task: HSC TRIAL EXAMINATION	Academic Year	: 2007-8
Solutions Solutions	Marks	Comments
Juestion 1:		
a) $\frac{2x+5}{x-4} \le 1 (x \ne 4)$		
$(x-4)(2x+5) \leq (x-4)^{2}$		
$2x^2 - 3x - 20 \le x^2 - 8x + 16$		I for arriving this line
x2+sx-36 = 0 0		l .
$(x+q)(x-4) \leq 0$		I for factorising
@ 1 × 4 14		1 correct
but $x \neq 4$: $-9 \leq x < 4*$	3	answer *
2	`	(-0.5 if -96x64
b) $\int_{-3}^{3} \frac{1}{9+x^{2}} dx = 2 \int_{0}^{3} \frac{1}{9+x^{2}} dx$ (even function)	/	Ť
J_{-3} $q+\chi$ J_{o} $q+\chi$		1 correct
$= 2, \frac{1}{3} \left[+ \tan^{-1} \frac{x}{3} \right]_{0}^{3}$		primitive
		<i>r</i>
$= \frac{2}{3} \left[\frac{\pi}{4} \right]$		· west
= 4	2	anone
6		
c) $\lim_{X\to 0} \frac{\sin x}{\sin x} = \frac{1}{5} \lim_{X\to 0} \frac{\sin x}{x}$		1 simplifying
12-30 SX SX-70 X		1/2 line Sink
= 1	2	12 manuel
9		I mand for
d) $\log_e(\frac{f}{r}) = \log_e(\frac{f}{q} \times \frac{q}{r})$ 1321		I want
100 ft + 109 g line2		0.5 mont 1 line 2
= log & + log & 1:42		1
= 3 + 1.6 line3	٦	0.5 line 3
= 4.6	a	
e) $\int_{0}^{1/2} 2x \sqrt{1-2x} dx$ $u = 1-2x : 2x = 1 du = -2dx : dx = -$	die	
,	2	
X=0 K=1		,
x=: u=0	\mathcal{I}	

Page no.	კ (of /	
----------	-----	------	--

Marking Scheme for Task:	Academic Year	r: 2007-8
Solutions	Marks	Comments
e) (continued)		
$= -\int_{1}^{6} (1-u) \sqrt{u} \frac{du}{2} $ [ine]		1/2 mark or the
$=-\frac{1}{2}\int_{1}^{0}\left(u^{2}-u^{2}\right)du$ line 2		1/2 mark for line 2
$= -\frac{1}{2} \left[\frac{2u^{3/2}}{3} - \frac{2u^{5/2}}{5} \right]_{i}^{0} $ line 3		1/2 mark fortin
$=-\frac{1}{2}\left[0-\left(\frac{2}{3}-\frac{2}{5}\right)\right]$		In make forle
$=\frac{2}{15}$ line4	3 (-05 for incorrect limits
Ovestion 2 a) fand = m fan \$ = 3		
$\theta - \phi = \frac{\pi}{4}$ $\therefore \tan(\theta - \phi) = 1 \qquad \left[\tan \frac{\pi}{4} = 1 \right]$		
ton A - tank		1 mal for the
tane-tand = 1 *		i made for the
$\frac{m-3}{1+3m}=1$		
		I made for
M-3 = 1+3m		I mark for, solving in
$\int f(x) = x^{4} - x^{3} + kx - 4$	2	•
If $x + i$ is a factor $f(-i) = 0$		
1, 1+1-k-4=0 => k=-1	2 of ma	inise to this
$(1+1-k-4=0) \implies k=-2$ $(-f(x) = x^4-x^3-2x-4)$		line
Man f(2) = 16 - 8 - 4 - 4 = 0		, ,
: (x-2) is also a factor.	ュ	for short for short for a factor
0= tanim and \$ =tanis		do a factor
tan - m - +an 3= I		
fent m = T + fan 13	-	
m = tem (# + tan 3)		
m = -2		

Course:	U	
Marking Scheme for Task: Acade		: 2007-8
Solutions	Marks	Comments
Question 2 c) LHS = $\frac{2}{\cot x + \tan x}$ = $\frac{2}{\cos x} + \frac{\sin x}{\cos x}$ [ine 1] $= \frac{2 \sin x \cos x}{\cos^2 x + \sin^2 x}$ $= \sin 2x$ [ine 3]	2	frank Iral Imal limit I made for line 3
d) $\sqrt{3-\sin 2x} = \cos 2x$ $\tan 2x = \frac{1}{\sqrt{3}}$ $2x = n\pi + \tan^{-1} \frac{1}{\sqrt{3}}$		1 means
e) $f(x) = \frac{\pi T}{2} + 2 \sin^{2} \frac{2K}{3}$	2	
Domain: $-1 \leq \frac{2x}{3} \leq 1$ $-3 \leq 2x \leq 3$ $-\frac{3}{2} \leq x \leq \frac{3}{2}$ $-\frac{3}{2} \leq x \leq \frac{3}{2}$ $-\frac{3}{2} \leq x \leq \frac{3}{2}$ $-\pi \leq 2\sin^{2}x \leq \pi$ $-\pi \leq 2\sin^{2}x \leq \pi$ $-\pi \leq 2\sin^{2}x \leq \pi$ $-\pi \leq \frac{\pi}{2} + 2\sin^{2}\left(\frac{2x}{3}\right) \leq \frac{3\pi}{2}$ $-\pi \leq \frac{\pi}{2} + 2\sin^{2}\left(\frac{2x}{3}\right) \leq \frac{3\pi}{2}$	2	/ V mens
$ \begin{array}{c} 3\overline{2} \\ -\frac{2}{3} \end{array} $ $ \begin{array}{c} -\frac{2}{3} \end{array} $ $ \begin{array}{c} -\frac{7}{2} \end{array} $	2	I for word showing welpoints In for we ginterest

Page no. 4 of /2

Course:

Page no. 5 of /2

Academic Year: 2007-8

Course.	/	12
Marking Scheme for Task:	Academic Year	
Solutions	Marks	Comments
Question 3 a) $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{1}{3}n(2n-1)$	1)(2n+1)	
() for $n=1$ LHS= $1^2=1$ RHS= $\frac{1}{3}.1(1)(2)=1$: frue for $n=1$		I mark for
(2) assume true for n=k		+ mah for
1e. $(2k-1)^2 + 3^2 + \dots + (2k-1)^2 = \frac{1}{3}k(2k-1)$		
(3) Arm to prove true for n=k+1 if true for	or n=k	
1.e. Ast. 12+32+52++(2k-1)+(2k+1)= 1/8(k+1)(2k	kn) (24+3)	2 norths for
$LHS = \frac{1}{3}k(2k-1)(2k+1) + (2k+1)^{2}$:	
= $(2k+1)$ $\left[\frac{1}{3}k(2k-1)+(2k+1)\right]$		
= $(2k+1) \int \frac{2h^2-k}{3} + 2k+1$		
$= (2k+1)\left(\frac{2k^2-k+6k+3}{3}\right)$		
$=\frac{1}{2}(2k+1)(2k^2+5k+3)$		
$= \frac{1}{3} (2k+1) (2k+3)(k+1) = RHS$:	
: true for n=k+1 if true for n=k		
Canco for n=1 then by theory of	≥/ 3	
mathematical induction true for all n		
b) $(2\pi + \frac{1}{\chi^3})^{10}$ $T_{R+1} = {}^{10}C_R(2\chi^2)^{10-R/(1)} (\chi^3)^{10}$		
$\chi^{20-2k-3k} = \chi^0 \implies 20-5k=0$ 1. $k=0$	4 V	V means In
$T_{s} = {}^{10}c_{4}(2x^{3})^{6}(1)^{4} = 210.64.x^{12} \frac{1}{x^{12}}$	26	X means os
= 13440 X 6× 10C	42 2	

Marking Scheme for Task:	Academic Year	2007-8
Solutions	Marks	Comments
Question 3; c) $Q(x) = ax^2 + bx + c$ (1) sum of roots = $-\frac{b}{a}$ (1) remainder when $Q(x)$ divided by $(x-a)$ $Q(x) = ax^2 + bx + c$) I	
remounder when $Q(x)$ divided by $Q(x)$ $Q(n) = An^{2} + bn + c$ $now am^{2} + bm + c = an^{2} + bn + c$ $am^{2} - an^{2} = -bm + bn \times c$ $a(m-n)(m+n) = -b(m-n) \times c$ $m+n = -b = sum g roots$		
d) $f(x) = \frac{x-2}{x-1}$ (1) $f'(x) = \frac{(x-1) - (x-2)}{(x-1)^2}$ $= \frac{1}{(x-1)^2} \ge 0 \text{for all } x, x \ne 0$ i. $f(x) \text{ is increasing for all } x$		fal wrent f(x)>0 (male) 1 malfor (x-1)=30
(11) Let $y = \frac{x-2}{x-1}$ $x = \frac{y-2}{y-1}$ is inverse $xy-x = y-2$ $xy-y = x-2$ $y(x-1) = x-2$ $y = \frac{x-2}{x-1}$ is inverse function if (x) is its own inverse if (x) is Symmetrical about	')	I for firely, inverse, I mente.

Page no. 6 of 12

2

Academic Year: 2007-8 Marking Scheme for Task: Comments Marks Question 4: a) (1) \[\int_4 \sin^2 x \, dn = \int_0^{\frac{1}{4}} \frac{1}{2} (1-cos 2x) \, dn \times $=\frac{1}{2}\int X-\frac{1}{2}SinzX\int_{0}^{\frac{\pi}{2}}$

 $=\frac{1}{2}\left[\frac{\pi}{4}-\frac{1}{2}\right]$

(11) $\frac{d}{dx}(x \sin^2 x) - \sin^2 x$ = $\sin^2 x + x \cdot 2 \sin x \cos x - \sin^2 x$ (11) Su x Sinzx dr $= \left(x \sin^{2}x\right)_{0}^{\frac{1}{4}} - \int_{0}^{\frac{1}{4}} \sin^{2}x \, dx \, \sqrt{\frac{1}{8}} = \frac{\pi}{8} - \left(\frac{\pi}{8} - \frac{1}{4}\right) \quad \text{from part (1)}$

4) (1) $P(2p, p^2)$ $y = \frac{x^2}{4}$ $y' = \frac{x^2}{2}$ x' = x at P(y' = p)

 $y-p^{2} = \rho(x-2p)$ $y-p^{2} = \rho x - 2\rho^{2} \times$ $y-\rho x + \rho^{2} = 0 \times \text{is tangent AP.}$

Course:

Page no. 7 of /D

Academic Year: 2007-8

Marking Scheme for Task.	emic real:	
Solutions	Marks	Comments
b) (11) normal: $y - \rho^2 = -\frac{1}{\rho} (x - 2\rho) \times $	2	
(iii) $H(\rho,\delta) = Q(\gamma)$ $\therefore C\left(\frac{1}{2} \times \frac{\rho^2 + 2}{2}\right) \times \left(\frac{1}{2} \times \frac{1}{2}\right) \times \left(\frac{1}{2} \times \frac{1}{2}\right)$	2 2	
Question 5: a)(1) M = 0.04 + Moe-kt		
$\frac{dM}{dt} = -k M_0 e^{-kt}$ but from (1) $M_0 e^{-kt} = M - 0.04$		
i. dm = -k (M - 0.04)	2	
(11) when $t = 0$ $M = 4$ $4 = 0.04 + M_0 \implies M_0 = 3.96$	1	
(iii) when $t = 10$ $M = 1.6$ = 10k $M = 1.6 = 0.04 + 3.96 e$ $1.56 = 3.96 e^{-10k}$ $e^{-10k} = \frac{1.56}{3.96}$	2	End marks if wrong No used

Page no. 8 of 12

Course:

Page no. 9 of 12

Marking Scheme for Task: Ac	ademic Year	r: 2007-8
Solutions	Marks	Comments
Question 5 (continued)		Matter
$= 0.0932 (4 d.p.)$ (iv) $M = 0.04 + 3.96 e^{-0.093t}$ as $t \to \infty$ $e^{-0.093t} \to 0$ $\therefore M \to 0.04 : M \neq 0$ Thus never eliminated.	ľ	
b). (1) $OM = L SIN \Theta$ $MT = L COS \Theta$	1	'h each
(ii) $fand = \frac{MT}{PM}$ $\therefore PM = \frac{MT}{tand}$		1/2 for ratio
$= l \cos \theta \cdot L + tand$ $= l \cos \theta \cot d$	2	
(III) In $\triangle POM PM' - OM' = a' (Py + na)$		
(ir) $\ell^2 = \frac{25^2}{\cos^2 20 \cos^2 24 - \sin^2 20}$	1	

Course:		
Marking Scheme for Task: Acade	emic Year:	2007-8
Solutions	Marks	Comments
Question6 $y = ax^{2}$ $y = ax^{2}$ $(3,16)$ $(1) curve passes through (3,16)$ $a = \frac{16}{9}$ $(11) curve passes through (7, h)$ $h = ax^{2}$	1	
(III) $V = \overline{II} \int_{\alpha}^{b} x^{2} dy$ note $y = \frac{16}{9}x^{2}$ $= \overline{II} \int_{0}^{h} \frac{9y}{16} dy$ $= \overline{II} \int_{0}^{h} \frac{9y}{16} dy$ $= \overline{II} \int_{0}^{4} \frac{9y^{2}}{16} \int_{0}^{h} \frac{9y^{2}}{16} dy$		
$= \frac{q\pi h^{2}}{32} \qquad \text{but } h = \frac{16}{9}r^{2}$ $\Rightarrow h^{2} = \frac{16}{9}r^{4}$ $\Rightarrow \frac{8\pi r^{4}}{9}$	2	
(IV) $\frac{dV}{dt} = 3(15-h) find \frac{dr}{dt}$ $\frac{dr}{dt} = \frac{dV}{dt} \times \frac{dr}{dt}$ $= \frac{dV}{dt} \times \frac{dr}{dt}$ $= 15 \times \frac{1}{15\sqrt{10}} \frac{dv}{dt} = \frac{32\pi r^3}{9}$ $= \frac{1}{\sqrt{10\pi}} \times \frac{\sqrt{10}}{\sqrt{10}} = \frac{37}{15\sqrt{10}} \times \frac{37}{15\sqrt{10}} \times \frac{37}{15\sqrt{10}} = \frac{37}{15\sqrt{10}} \times \frac{37}{15\sqrt{10}} \times \frac{37}{15\sqrt{10}} = \frac{15\sqrt{10}}{15\sqrt{10}} \text{when}$	l	% for alv

Page no. 10 of 12

Course:

Page no. 11 of 12

Marking Scheme for Task: Acad	emic Year	: 2007-8
Solutions	Marks	Comments
Question 6 b) (i) $X = \sqrt{3} \cos 3t - \sin 3t$		
x = -3/3 Sin3t - 3Cos3t		
x = -9 \int 3 Cos 3 t + 9 Sin 3 t		
= -9 (vacosat - sinat)		
$\ddot{x} = -9x (S.H.M.)$	1	
(ii) $X = 2 \cos \left(3\ell + \frac{\pi}{6}\right)$ $\frac{2}{\sqrt{3}}$		
amplitude = 2 $period = \frac{2\pi}{n} = \frac{2\pi}{3}$	2	
$period = \frac{\omega_0}{n} = \frac{\omega_0}{3}$	2	
Note: when $t = 0 \times = \sqrt{3}$		
$x = 0$ $\hat{x} = 0$: Centre origin		
-2. O V3 2		
(III) when $x=1$ $\cos(3t+\frac{\pi}{6})=\frac{1}{2}$		or use
$3t+\frac{\pi}{6}=\frac{\pi}{3},\frac{5\pi}{3},\frac{7\pi}{3},\cdots$		$V^2 = n^2(a^2 - x^2)$
$3t = \overline{L}, \frac{9L}{6},$		
$t = \overline{I}, \overline{I}, \dots$	2	
Now speed = -353 Sin3t - 3 Co3t		
When $t = \frac{\pi}{18} = \left -3\sqrt{3} \cdot \frac{1}{2} - \frac{3\sqrt{3}}{2} \right $		
$= \left -\frac{3\sqrt{3}}{2} - \frac{3\sqrt{3}}{2} \right $		
$= 3\sqrt{3} m/s$		
(iv) Particle is at $x=1$ when $t=\frac{11}{18}secs$	ì	
Then I secs		

Marking Scheme for Task:	Academic Year	
Solutions	Marks	Comments
Question 7 (i) $\left(X - \frac{1}{X}\right)^{2n}$ $T_{k+1} = {}^{2n}c_k x^{2n-k} \left(\frac{1}{X}\right)^k$ $= {}^{2n}c_k x^{2n-k-k} \cdot \left(-1\right)^k$	2	
for term independent of $x = 2n - 2k = 0$ $\therefore k = n$		
$\int_{n+1}^{\infty} = \frac{2n}{c_n} \left(-1\right)^n$		
$ (u) \left(1+x\right)^{2n} \left(1-\frac{1}{x}\right)^{2n} = \left[\left(1+x\right)\left(1-\frac{1}{x}\right)\right]^{2n} $		
$= \left(1 - \frac{1}{\chi} + \chi - 1\right)^{2\chi}$		
$= \left(\chi - \frac{1}{\chi}\right)^{2n}$	2	
(11) examine terms independent of X	(20)(1)	
$ \angle HS = \left[\binom{2n}{0} + \binom{2n}{1} X + \binom{2n}{2} X^{2} + \dots + \binom{2n}{2n} X^{2n} \right] \left[\binom{2n}{0} - \binom{2n}{1} \binom{1}{X} + \binom{2n}{2} \binom{1}{X} \right] $	(in tru)	
terms independent of x are		must mention
		independent of x terms for Imak
RHS term independent of x is (-1) 2nch from (1)		for Imark
$\int_{0}^{2n} \left(\frac{2n}{n}\right)^{2} + \left(\frac{2n}{n}\right)^{2} + \left(\frac{2n}{n}\right)^{2} = -1 + \left(\frac{2n}{n}\right)^{2n} = \left(-1\right)^{n} \frac{2n}{n}$	2	
·		

Page no Q of \(Q

Marking Scheme for Task:	Academic Y	'ear: 2007-8
Solutions	Marl	ks Comments
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	VSmx	
$ \begin{aligned} \dot{x} &= V\cos \lambda & = \dot{y} &= -gt + v \sin \lambda \\ \dot{x} &= Vt \cos \lambda + c & y &= -gt^2 + vt \sin \lambda \\ \dot{y} &= vt \sin \lambda - \frac{1}{2}gt \end{aligned} $	C=0	2-
(11) at time of flight $y = 0$ $vt Sind - \frac{1}{2}gt^2 = 0$		
$2vt Sind - gt^{2} = 0$ $t(2vSind - gt) = 0$ $t = 0, \frac{2vSind}{g}$ $time of flight = \frac{2vSind}{g}$	2	
(111) at & $\frac{\beta}{x}$ $\frac{Sun\beta}{Corr} = \frac{y}{x}$ $\frac{Sun\beta}{Corr} = \frac{y Smd - gt}{v Cosd}$ $V Sun\beta Cond = v Sund Corf$ $gt los \beta = v (Sund Corf)$ $\frac{1}{x} t = \frac{v Sun(d + g)}{g cosf}$	- gt CoB	2