Problem 1 (Polynomial-vector transformations). Denote by $\mathbb{Z}[x]$ the ring of polynomials with integer coefficients and fix an integer $X \in \mathbb{Z}$.

In the lectures, we have defined a way to convert between polynomials of at most degree d in $\mathbb{Z}[x]$ and (column) vectors in \mathbb{Z}^{d+1} .

Consider the following function:

poly2vec :
$$\mathbb{Z}[x] \to \mathbb{Z}^{d+1}$$

$$a_0 + a_1x + a_2x^2 + \ldots + a_dx^d \mapsto [a_0, a_1X, a_2X^2, \ldots, a_dX^d]$$

Let vec2poly be the following operation:

$$\begin{aligned} \text{vec2poly}: & \mathbb{Z}^{d+1} \to \mathbb{Z}[x] \\ & [v_0, v_1, v_2, \dots, v_d] \mapsto v_0 + \frac{v_1}{X} x + \frac{v_2}{X^2} x^2 + \dots + \frac{v_d}{X^d} x^d \end{aligned}$$

- Consider a polynomial $P(x) \in \mathbb{Z}[x]$. Prove that the result of poly2vec(P) can be computed by taking the coefficient vector of P(xX) (i.e. the polynomial P evaluated at $x \cdot X$).
- Argue that the function vec2poly is well defined. That is, prove that, for any polynomial P(x) of degree at most d vec2poly(poly2vec(P)) = P and that all operations are well defined.
- Consider two polynomials $P_1(x), P_2(x) \in \mathbb{Z}[x]$ of degree at most d with a common root x_0 and their corresponding vectors $\mathbf{v}_i := \mathsf{poly2vec}(P_i)$, for $i \in \{1, 2\}$. Prove that the following operations are well-defined and their results are polynomials that also have a root in x_0 .
 - $\text{ vec2poly(poly2vec}(P_1) + \text{poly2vec}(P_2))$
 - $\text{ vec2poly}(k \cdot \text{poly2vec}(P_1)), \forall k \in R$
- Consider \mathbb{Z}_N , where N is an RSA modulus. Assume we use Coppersmith's method to find a small root x_0 of a polynomial $P(x) \in \mathbb{Z}_N[x]$. Argue that the matrix *after* the application of LLL consists of rows, all of which encode polynomials with x_0 as one of the roots.

Problem 2 (Generalizing Coppersmith's Method). In the lecture you have seen that Coppersmith's method can be used to find small roots of a polynomial P(x) modulo N, even when the factorization of N is not known. In this exercise, we show that Coppersmith's method can also be employed to find small roots of a polynomial P(x) modulo a divisor of N, even if we do not know the divisor. This, however, requires changing the algorithm a bit.

Let N be a large integer of unknown factorization.¹ Let b be an integer such that $b < N^{\beta}$ for some $0 < \beta \le 1$. Note that the case $\beta = 1$ corresponds to the case already analyzed in the lectures. Let $P(x) \in \mathbb{Z}_b[x]$ be a polynomial of degree d with a root x_0 , $|x_0| < X$ for some $X \in \mathbb{Z}$. Let h be a positive integer to be fixed later.

Consider the sequence of polynomials from the "Full Coppersmith Method" from the lectures:

$$G_{i,j}(x) = N^{h-1-j}P(x)^j x^i, \quad 0 \le i < d, \ 0 \le j < h$$

¹Recall that, if the factorization is known, one can split the problem into sub-problems, one for each factor. Each sub-problem consists of finding a root modulo a prime p, which is easy. One can then compose the final solution by using the Chinese Remainder Theorem

Note that all $G_{i,j}(x_0) = 0 \mod N^{h-1}$ and that $G_{i,j}$ has degree dj + i. Let \mathcal{L} be the lattice with $\mathsf{poly2vec}(G_{i,j})$ as basis vectors. Note that \mathcal{L} has dimension dh.²

• Consider P(x) = x + a. Assume that $P(x_0) = 0 \mod b$, where $b < N^{\frac{1}{2}}$ (thus $\beta = 1/2$) and $|x_0| < X$ for some $X \in \mathbb{Z}$. Show that the method above cannot provably find this small root x_0 , even for large values of h (e.g. h = 10).

Hint: this requires you to show that X < 1. In other words, the only root that we can hope to find would be 0.

• Let $t = \lfloor dh(1/\beta - 1) \rfloor$. Consider now the following additional polynomials:

$$H_i(x) = x^i P(x)^h, \quad 0 \le i < t$$

Show that for h = 2, including both polynomials $G_{i,j}$ and H_i , we can provably find the root x_0 for the polynomial above if $X < N^{\frac{1}{6}}$.

²The maximum degree of any polynomial is $d \cdot (h-1) + (d-1) = dh-1$, which means that there are dh-1+1=dh coefficients