# 사람의 뇌를 닮은 AI 기술로 효율적인 IT 솔루션을 이끌어 나가겠습니다.





# **CONTENTS**



# About me



# 이진의 Jinui Lee

융합적 가고와 항의생

융합적이고 창의적인 /가고로 /내로운 분야에 도전하고 , 다양한 /기각으로 아이디어를 도출합니다.

다양한 프로젝트 경험

다양한 프로젝트를 기획하고, 생공적으로 수행하여 생과를 도출하였습니다.

커뮤니케이션 능력

다양한 문화적 배경을 가진 //라들과 효과적으로 소통하고 협업하는 능력을 개발하였습니다.

#### 프로필

연락처: 010 - 7576 - 7388

이메일: dml706@naver.com

#### 학력

**감육대학교 화학생명과학과** 

고려대학교 뇌공학과(꾸전공), 정밀보건과학융합전공(융합전공)

복구 색/ 학위 취득 예정 (2024.08 expect)

#### 딥러닝 AI 분색 연구 생과

#### AI 분야 프로젝트 기획 및 연구 활동

- 1. Multi-modal 연구 국제 SCIE 저널 단독 1저자 논문 게재
- 2. 딥러닝 경량화 연구 국제 SCIE 저널 단독 1저자 논문 게재
- 3. 딥러닝 경량화 연구 국내 전자, 반도체, 인공지능 학회 1건 우수논문상
- 4. 게임 빈도에 따른 뇌파 분류 및 분객 국내 특허 등록 결정 (등록 과정 중)
- 5. 게임 중 초등학생, 중학생 뇌파 분류 및 분석 국내 특허 등록 결정 (등록 과정 중)

#### 대외활동

스페인 국제 워크 캠프 (2018)

삼육대학교 화학생명과학과 문화교류부 학회 (2020~2021)

#### 핵심 기술

PYTHON 80

SPSS 80

VERILOG 45

# About me



2020.12~2021.02

세젠 의료재단 코로나 검체 파이펫팅



2022.10 ~ 2023.07

NOI 스포츠 선수를 위한 게임 기반 뇌파 분석



2018.06 ~ 2018.07

스페인 국제워크캠프



2022.01 ~ 2022.02

Actibrain-bio 게임 기반 디지털치료제 fNIRS 측정 경험



2023.12 ~ 진행중

디지털 회로설계 스터디





#### 멀티 모달, 경량화 딥러닝 모델 설계 능력

멀티모달 연구는 다양한 데이터를 결합하여 더욱 정밀한 분객을 가능하게 합니다. 이 연구는 다양한 분야에 적용 가능합니다.
딥러닝 경량화 연구는 실계간 데이터 처리와
분객의 효율생을 높이며, 에게 디바이스에/개도
효과적으로 작동하는 경량화된 모델을 개발하는데 기여합니다.



# 센/H 데이터 취득, 전처리 능력

EEG와 fNIRS 센/커를 활용한 뇌 신호 측정 및 신호 처리 방법을 연구합니다. 이는 뇌과학 연구와 건강 모니터링에 적용할 수 있는 정밀한 데이터 처리를 합니다. 이 과정을 통해 노이끄 감고와 데이터 정확도 향상에 기여하며, 신경학적 진단 및 치료 분야에 기여합니다.



#### 뇌파민호(EEG) 분석 및 해석

EEG를 활용하여 / 사용/ 자의 집중도와 관심도를 일/기간으로 측정하고 분석함으로/ 대,

/ 사용/ 자들에게 맞춤형 / 서비스를 제공합니다.

주의력과 기억력 같은 인지 기능을 최대화할 수 있도록 / 미스템을 설계하며 맞춤형 / 서비스를 제공하는데 기여합니다.

# Why Brain?

# 뇌과학.뇌공학적 지익이 AI 산업에 필요한 이유는?

사용자의 뇌 반응 이해. 맞춤형 개비스 01 예를 들어, 어떤 요소가 /\\용\\이 긍정적인 감정을 유발하는지, 어떤 상황에서 스트레스나 공포를 느끼는지 제공 등을 파악하며, 이를 바탕으로 더 효과적인 개비스 디자인과 맞춤형 개비스 제공. 뇌과학은 /사용/자의 동기부여, 보강 체계, 학습 과정 등 김리적 요소를 이해. AIS/W 02 이러한 이해를 바탕으로, 도파민과 /베르토닌 같은 신경전달물질의 역할을 고려하여 더 매력적인 AI /H비스를 디까인 회적화 제작. / 사용자의 만족감과 긍정적인 감정에 중요한 역할을 하므로, 이를 통해 / 사용자 참여를 높임. 뇌과학은 사용자가 왜 특정 상품을 선택하는지, 어떤 유형의 제품에 더 많이 끌리는지 등의 행동을 분석하는 / 사용자 행동 03 데 도움을 줄 수 있습니다. 이러한 분석은 /\\용\T\ 행동을 예측하고, 마케팅 전략을 더 효과적으로 수립하는 데 신경마케팅 기여. 뇌를 모방한 '뇌의 구조와 기능을 모방한 신경망 모델은 AI 기술의 발전에 중요한 영감을 제공합니다. 뇌과학 연구를 통해 04 신경망 개발 더욱 효율적이고 강력한 인공 인경망을 설계할 수 있으며, 이는 기계 학습의 생능을 개선하는 데 기여.

# ■Multi - modal 연구 - 연구 배경 (국내 특허 등록 결정)

● 배경 내용

게임은 엔터테인먼트의 소스일 뿐만 아니라 창의생, 학습 및 사회적 상호 작용을 위한 매체로 사용.

Minecraft와 같은 가강 환경에게의 탐색은 해마 관련 기억력을 향강기켜 가고력과 창의력 증가. 수많은 연구에게는 비디오 게임플레이가 창의성, 문제해결 기술, 물체 감지 능력, 기각-운동 쪼정 및 공간 주의력 향상을 포함하여 주의력 및 지각 작업 향상에 기여함.

본 연구에서는 게임 빈도수에 따른 뇌파를 분류하였다. (게임을 까꾸하는 플레이어와 게임을 가끔하는 플레이어 뇌파 분류)

© 인제암태 평가 도구

fNIRS
기능적
근적외선
분광법

fMRI
기능적
지가기공명영강

● 채택 ///유

/ 가용자 분석을 위한 인지(상태 평가 도구로 EEG 채택 EEG는 그 / 가용의 광범위함과 필수생으로 인해 두각을 나타내며, 웨어러블 센/ 가, 비침습적, 높은 / 기간 해상도, 실/ 기간 모니터링 가능의 큰 장점을 가지고 있다.

# ■Multi - modal 연구 - CNN을 결합한 Transformer 모델 개발

● 꾸요 목적

Multi-signal 분석을 위한 Bimodal Transformer 모델을 뇌파 데이터에 적용. 뇌의 부위별로 기능이 다르기 때문에 전두엽 (AF7, AF8)채널과 측두엽 (TP9, TP10) 채널을 분리하여 채널 간의 강관관계 유추.

● 뇌의 부위별 기능



전두엽은 전략적 /가고, 문제 해결, 의/가 결정, 감정적 반응 제어에 관여하며, 이는 빠른 /가고와 전략이 필요한 게임에/개 매우 중요하다. 즉두엽은 청각 처리와 기억에 중요한 복잡한 게임을 처리하는 역할을 한다. ● 뇌파 데이터 전처리 과정



# ■ Multi-modal 연구 – CNN을 결합한 Transformer 모델 개발

● 연구배경

Transformer에 CNN을 결합함으로에 더욱 정밀한 분석을 가능. 이 모델은 CNN의 지역적인 특징 추출과 Transformer의 글로벌 특징 추출을 통합하여 각 데이터 포인트의 세부적인 정보와 전체 데이터 구조 간의 복잡한 상관관계를 모두 파악.

- 연구방법 및 결과
- 1. CNN을 결합한 Transformer 모델



- 데이터 도메인 별 컨볼루션을 통해 local 정보 추출
- self-attention으로 global 정보 파악. 중요한 부분에 가중치
- 다양한 데이터 유형의 지역 및 전역 정보 추출을 위한 모델 설계

#### 2. 생능 비교



- ) 제안된 모델이 SOTA 모델과 비교하였을 때, 정확도와 AUC에/H 최고 생능을 보임
- AUC 0.93은 모델의 우수한 분류 능력을 나타냄
- □ 모델은 패턴을 효과적으로 인식하고 분류함
- Cross-attention을 통해 분객의 정밀도 향상

## ● 연구생과



#### SCIE 논문 게재

국제 SCIE 단독 1저자 논문 게재 저널 – Brain Sciences

DOI: 10.3390/brainsci14030282

multi modal 연구 적용



우요 예측: 다양한 신호(기상 데이터, 과거 오비 데이터, 실기간 센개 데이터 등)를 결합하여 미래 수요를 예측



배터리 수명 예측: 배터리 // 아용 패턴, 충전/방전 // 아이클, 환경 조건 등 다양한 데이터를 분석하여 배터리의 수명을 예측.

# ■에지 디바이스에 적용하기 위한 딥러닝 경량화 연구 - 연구 배경 (국내 특허 등록 결정)

● 배경 내용

/ 가춘기를 겪기 전의 뇌와 / 가춘기를 겪을 때의 뇌 차이.

이 연구는 소아를 대상으로 마인크래프트 게임을 할 때 아동 그룹과 청소년 그룹 간 뇌파 패턴의 차이를 밝히고자 하였음.

● 연령대별 행동 패턴



/마춘기 이전 (~11살 이하) 전두엽 발달, 충동 억제,

문제해결, <mark>이성적</mark>으로 행동



/사춘기 /기기 (12/세~16/세) 전두엽 후퇴, 변연계 발달

<mark>감정적</mark>으로 행동

게임 / 마용/ 마의 경험을 향상/기키기 위해 / 마용/ 마분석을 연령대에 따라, 그 중에/ 내도 / 마춘기를 기점으로 분류한다. 제안하는 모델을 이용하여 두 그룹을 분류하고, 집중 뇌파를 분석한다.

# ■에지 디바이스에 적용하기 위한 딥러닝 경량화 연구 – 확장가능한 하이브리드 모델 개발

● 연구배경

컴퓨팅 자원의 제한이 있는 에지 디바이스를 위해 경량화 작업이 필수적으로 요구되며 에지 디바이스를 위한 모델 제안

● 연구방법 및 결과

#### 1. 모델 구조도



- demographic factor와 관련된 정보 집약적인 채널만을 건정하여 모델에 입력
- □ / 기간 및 채널축 특성 추출의 분리를 통한 성능 향상
- CNN과 self-attention 연간으로, 지역적·전역적 inductive bias 하이브리드 모듈 // N용
- 네트워크 복잡도의 Trade-off 관계를 고려 확장 가능한 구조를 통한 모델 효율생 향상

#### 2. 생등 비교

| Channel                                  | Stage | Accuracy<br>(%) | F1 score<br>(%) | Precision<br>(%)                                                | Recall (%)     |
|------------------------------------------|-------|-----------------|-----------------|-----------------------------------------------------------------|----------------|
| ALL                                      | 1     | 93.41           | 91.43           | 91,21                                                           | 91.76          |
| ALL                                      | 2     | 94.53           | 93.10           | 93.15                                                           | 93.05          |
| ALL                                      | 3     | 95.01           | 93.53           | 93.50                                                           | 93.64          |
| AF                                       | 1     | 88.10           | 85,29           | 85.81                                                           | 84.79          |
| AF                                       | 2     | 89.04           | 85.74           | 85,88                                                           | 85.74          |
| AF                                       | 3     | 90.02           | 87.44           | 86.15                                                           | 88.85          |
| TP                                       | 1     | 77.16           | 70.90           | 67.61                                                           | 74.57          |
| TP                                       | 2     | 81.13           | 75.48           | 75.24                                                           | 76.13          |
| TP                                       | 3     | 82.31           | 77.38           | 76.42                                                           | 79.28          |
| 1.0                                      |       |                 | ROC             |                                                                 |                |
| 0.8 -<br>200 0.6 -<br>200 0.4 -<br>0.2 - |       |                 |                 | icalable-Hybrid Ne                                              | 4 (AUC = 0.98) |
| 0.0                                      |       | .2 0.4          | 5               | EGNet (AUC = 0.9<br>hallowNet (AUC =<br>beepConvNet (AUC<br>0.8 | (4)            |

- 확장가능한 모델에 따른 stage에 따른 결과, 연산량이 증가할 수록 정확도가 향상되었음.
- □ 다른 평가 모델 결과, 연산량이 가장 적었음에도 정확도가 가장 높았음.
- □ 정보 집약적인 채널을 건별하여연산량을 최소화하였음. 모든 채널을// 사용한 정확도와 차이가 많이 나지 않음.
- Stage에 따라 연산량을 쪼절할 수 있으며 해널 선별을 하여 연산량을 더 줄였음.

#### ● 연구갱과



# 제 2023 제부 - 5 호 전자 · 반도체 · 인공지능 학술대회 우수논문상 이 전 최 고려대학교 는문제목: 휴대를 BBS 대비이스를 위한 제송제 지자 : 이외의, 정면은, 병원회(교례대학교) 대학는 2023년도 전자 · 반도체 · 인공제학 학숙대회 에서 논문을 발표해서 수수본으로 선정되었기에 이 상품 도입니다. 2023년 8월 10일 사산법인 대한전자공학회 회 강 이 핵 제

우수논문강 수강

- 국제 SCIE 단독 1개까 논문 게째 저널 - Electronics Letters DOI: 10.1049/ell2.13229
- 대한전자공학회의 전자·반도체·인공지능 학울대회에서 우수논문강을 수강.

#### 경량화 모델의 적용



1. 실시간 데이터 처리: 헬스케어 애플리케이션에/내는 실/11간 데이터 처리 필요. 이를 위해, 추론 시간. 모델의 파라미터 수와 연산량을 줄여 실시간 데이터 처리 /11스템에 기여.





3. 지속적인 피드백 제공: 에지 디바이스는 /\\Partial (\text{NPSTMP) 행동 데이터를 기반으로 지속적인 피드백을 제공하여. 자신의 행동 상태를 더 잘 이해할 수 있도록 기여.

SCIE 논문 게재

# ■뇌파 분객 연구

● 연구 배경

AF7 (왼쪽 전두엽 채널)을 보고 집중, 스트레스 뇌파 분색. 왼쪽 전두엽 - 실행 기능, 집중력, 스트레스 및 감정 쪼절과 관련된 부위로, 게임 중 인지 상태를 반영하는데 특히 중요하다.





● 결과 도출

집중도, 스트레스 뇌파 분석을 통해 BCI 및 높은 집중력과 낮은 스트레스가 필요한 맞춤형 기타 /미스템에 기여. 게임을 까꾸 하는 플레이어는 게임 집중을 잘 하고 스트레스를 받지 않는 반면, 게임을 가끔하는 플레이어는 게임에 집중을 못하고 스트레스를 받고 있다.

# ■뇌파 분객 연구

● 방법 내용

집중, 몰입도 뇌파 분석을 통해 두 그룹 간의 뇌파 비교 초통령 게임으로 불리는 마인크래프트 게임은 초등학생 나이에게 높은 집중.몰입도가 나타났다.



● 뇌파 분객

----- 12/베이상

- - 11/비이하





● 분객 결과

콘텐츠 개발 방향

결과를 통해 마인크래프트 게임이 초등학생에게 특히 인기있음. 초등학생 이후 / 아춘기 / 기기(중학생)들의 집중력이 상대적으로 낮아진다는 연구 결과도 고려. 이러한 연령대의 특성을 이해하여 콘텐츠를 개발.

# ■ 길내 공기질 예측 연구 – 보건과학대 공동연구

● 미세먼지/초미/세먼지 예측 연구

실내 공기질(IAQ)은 학생들의 건강과 학업 성적에 중요한 영향을 미치며, 특히 미세먼지는 호흡기 질환과 인지 기능 저하를 유발. 10개 학교를 산별하여 1년 전 측정된 학급 내 공기질을 1년 후 동일한 달에 미세먼지/초미세먼지 농도를 예측

● 예측 결과

#### 모델 별 예측 결과 그래프





### 결과 분객

미/베먼지, 초미/베먼지 데이터를 모두 /사용해/사미/베먼지 농도 예측.

실험 모델로 // N용된 6개의 머신러닝 모델 (random forest, extra tree, gradient boost, decision tree, xgboost, catboost) 중 예측 정확도가 가장 높았던 모델은 random forest 모델 이다.

# ■APPENDIX - 스포츠 선수를 위한 게임 기반 뇌파, fNIRS 분석 피드백으로 기량 향상 훈련 프로젝트

● 연구배경

스포츠 훈련에게 두뇌 게임을 통합하는 접근법은 선수들의 민첩생, 반가 신경, 그리고 기야 확장을 목적. 이와 같은 훈련은 선수들의 신체적 기술뿐만 아니라 인지적 능력을 동기에 발전기켜, 경기력 향상에 기여.

● 팀 구ሪ 및 진행 방법

#### 팀 구생



게임을 통해 선수의 복합 능력을 향상시키고 개인화된 훈련을 제공하며, 주기적인 뇌 기능 검사와 선수별 강약점 파악을 통한 피드백 제공.



#### 실험 이미지



휴대용 EEG 기기를 / 사용하여 수비수, 공격수에 대해 포지션을 분류하고, 분류한 결과에 따른 훈련 / 기행.

수비수, 공격수에 따라 다른 훈련이 적용되며, 이는 포지션을 선정할 때 도움을 줄 수 있다

# ■APPENDIX - Verilog HDL을 이용한 디찌털 회로갤계 구현

● 진행 내용

# BUS 설계검증 및 실험결과

Master와 slave 간 정보를 공유할 수 있도록 각 component들을 연결해주는 BUS의 개념과 원리를 이해. 직접 BUS module을 구현하고 검증.

# FIFO 갤계검증 및 실험결과

32bit FIFO를 만들기 위해 필요한 변수들의 각 bit 개수를 인지하고 이를 통해 32bit FIFO를 구현

# **川스템 통합 및 생능 평가**

개발된 BUS와 FIFO 모듈을 통합하여 전체 /II스템의 동작을 검증 데이터 전송 속도, 처리량, 지연 /II간, 에러율 등을 측정

# ● 결과

## Image 1. BUS 설계검증 및 실험결과



# lmage2.) FIFO 설계검증 및 실험결과



# ■APPENDIX - 북한 환경에게 잘 자라는 밀 품종 건별

#### ● 진행 내용

#### 문제점

- 해결되지 않는 북한의 고질적인
   식량 부쪽 문제
- 2. 코로나 19 / 아태로 중국과의 무역 감소하여 외부 식량 반입 어려움

#### 방안 제/1

북한 환경에/ 함 자라는 품종을 선별하기 위해 라이밀 7품종을 선별.

라이밀은 밀과 호밀을 교배하여 만든 인공 작물

#### 길험 진행

- 북한과 유/아한 지역(화천, 가평, 포천, 인제, 평창)에/대 한달 간 라이밀 7 품종을 째배
- 2. 작물의 전체 길이, 생체중, 월동률 를 비교 분석

#### 결과 확인

우수 품종 2가지 결과 확인 GY, SeY

#### ● 결과

| <sup>a</sup> Sowing date | <sup>b</sup> Cultivar | Total length (cm) | Fresh weight (g) | Winter rate (%) |
|--------------------------|-----------------------|-------------------|------------------|-----------------|
|                          | GY                    | 141.64            | 386              | 82.59           |
|                          | MP                    | 127.66            | 363              | 80.62           |
| 1 <sup>st</sup>          | SEY                   | 130.80            | 336              | 90.91           |
| 9/16                     | SS                    | 99.29             | 180              | 43.99           |
|                          | SIY                   | 121.17            | 296              | 71.08           |
|                          | JS                    | 112.91            | 290              | 58.12           |
|                          | JY                    | 100.25            | 183              | 59.34           |
|                          | GY                    | 154.13            | 610              | 60.63           |
|                          | MP                    | 145.10            | 553              | 63.31           |
| 2 <sup>nd</sup>          | SEY                   | 150.25            | 593              | 44.58           |
| 10/5                     | SS                    | 126.24            | 533              | 57.60           |
|                          | SIY                   | 132.47            | 460              | 42.19           |
|                          | JS                    | 131.66            | 463              | 43.36           |
|                          | JY                    | 124.38            | 476              | 39.76           |
|                          | GY                    | 137.13            | 383              | 95.14           |
|                          | MP                    | 124.85            | 416              | 100.00          |
| $3^{\rm rd}$             | SEY                   | 137.67            | 346              | 95.93           |
| 10/20                    | SS                    | 120.85            | 376              | 88.89           |
|                          | SIY                   | 120.21            | 356              | 78.04           |
|                          | JS                    | 121.61            | 370              | 84.43           |
|                          | JY                    | 120.15            | 276              | 71.16           |



7개의 라이밀 품종

Gwangyoung(GY), Minpung(MP), Saeyoung(SeY), Shinsung(SS), Shinyoung(SiY), Joseong(JS), Choyoung(JY).

→ 덕소 고대농장에서 함께 육종 연구에 참여한 학생들과 찍은 사진



# "AI 분석 기반으로 효율적인 IT 솔루션을 제공하고 싶습니다."

AI 딥러닝 기반 다양한 프로젝트를 통한 팀워크 극대화



다양한 프로젝트에서의 경험과 의사소통 능력을 바탕으로, 개발 프로젝트의 관리 역량을 강화하고 팀워크를 극대화하며 개발 프로/네스의 효율성에 기여하겠습니다.

복잡한 프로젝트가 원활하게 진행될 수 있도록 돕겠습니다. 

되과학과 인공지(는)(AI) 기술의 융합을 통해 / 사용자의 개별적인 취향과 필요에 완벽하게 맞춤화된 데이터 분석을 제공하고자 합니다. 뇌과학적 요소를 고려하여 / 사람들의 감각적 경험과 인지 과정을 면밀히 분석하여, / 사용자 관점에서 AI 분석을 효과적으로 수행 하겠습니다

새로운 분야에 끊임없는 도전으로 융합적이고 창의적인 기술 모색



답러닝 모델 설계, 뇌파 관련 실험 및 다양한 프로젝트에 대한 경험을 통해 얻은 문제 해결 능력을 다양한 개발 프로젝트 적용하고까 합니다. 특히, 개발 과정에/개 발생할 수 있는 기울적, 문제에 대해 혁신적이고 창의적인 해결 방안을 모색하여, 프로젝트가 생공적으로 완수 될 수 있도록 기여하겠습니다.

# 감//합니다.

