计算机组成原理

刘宏伟

哈尔滨工业大学 计算机科学与技术学院

课程名称: 计算机组成原理

课程概貌

- 讲授内容
 - 基本部件的结构和组织方式
 - 基本运算的操作原理
 - 基本部件和单元的设计思想
- •特色
 - 计算机组成的一般原理,不以具体机型为依托
 - 采用自顶向下的方式、层层细化
- 教材
 - 唐朔飞. 计算机组成原理(第2版). 高等教育出版社

教材: 计算机组成原理(第2版)

- 普通高等教育"十二五"规划教材
- 面向21世纪课程教材
- 全国普通高等学校优秀教材二等奖
- 普通高等教育精品教材

参考教材

David A.Patterson. John
 L.Hennessy. Computer
 Organization & Design: A
 Hardware/Software Interface

David Harris, Sarah Harris.
 Digital Design and Computer Architecture. Morgan Kaufmann, 2007

本课程在课程体系中的地位

2015/3/19

6

课程内容的组织

第1篇概论

课程内容的组织

课程内容的组织

第3篇 CPU

1.4 本书结构

课程的分割整合

- ▶计算机组成原理之机器
 - ✓1) 计算机系统的基本概念
 - ✓2) 总线
 - ✓3) 存储器
 - ✓4)输入输出系统
- ▶计算机组成原理之数字
 - ✓1)计算机中数的表示
 - ✓2) 计算机的运算方法和运算器
- ▶计算机组成原理之CPU
 - √1) 指令系统
 - ✓2)CPU的结构和功能
 - √3) 控制单元
 - √4) 控制单元的设计

第1章 计算机系统概论

第2章 计算机的发展及应用

第3章 系统总线

第4章 存储器

第5章 输入输出系统

第6章 计算机的运算方法

第7章 指令系统

第8章 CPU 的结构和功能

第9章 控制单元的功能

第10章 控制单元的设计

计算机组成原理之机器

第1章 计算机系统概论

第2章 计算机的发展及应用

第3章 系统总线

第4章 存储器

第5章 输入输出系统

第1章 计算机系统概论

1.1 计算机系统简介

1.2 计算机的基本组成

1.3 计算机硬件的主要技术指标

第1章 计算机系统概论

•问题1:现代计算机系统由哪两部分构成?

1.1 计算机系统简介

• 现代计算机的多态性

把感应器嵌入和 装备到电网、铁 路、桥梁、隧道、 公路、建筑、供 水系统、大坝、 油气管道等各种 物体中,并且被 普遍连接,形成 所谓"物联网", 然后将"物联网" 与现有的互联网 整合起来,实现 人类社会与物理 <u>系统</u>的整合,形 成智慧地球

HPC

跑得最快的计算机(截止2014年11月)

Rank	Site 国家	System 名称	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)
1	National Super Computer Center in Guangzhou China	- Hanne-Z UVIIIKVVVAV-Z) - TH-IVB-FFP CJUSTER, INTEL XEON F5-	3,120,00 0	33,862.7	54,902.4
2	DOE/SC/Oak Ridge National Laboratory United States	Titan- Cray XK7, Opteron 6274 16C 2.2GHz, Cray Gemini interconnect, NVIDIA K20x 制造商: Cray Inc.克雷公司所属:美国能源部Oak Ridge国家实验室		17,590.0	27,112.5
3	DOE/NNSA/LLNL United States	Sequoia- BlueGene/Q, Power BQC 16C 1.60 GHz, Custom 制造商: IBM 所属: 美国能源部、美国国家核安全管理局	1,572,86 4	17,173.2	20132.7
4	Computational	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect 制造商: Fujitsu 富士通 所属:日本计算科学研究机构	705,024	10510.0	11280.4
5	DOE/SC/Argonne National Laboratory United States	Mira- BlueGene/Q, Power BQC 16C 1.60GHz, Custom 制造商: IBM 所属: 美国能源部/SC /Argonne国家实验室IB	786,432	8,586.6	10066.3

Tianhe-2

Site:	National Super Computer Center in Guangzhou		
Manufacturer:	NUDT		
Cores:	3,120,000		
Linpack Performance (Rmax)	33,862.7 TFlop/s		
Theoretical Peak (Rpeak)	54,902.4 TFlop/s		
Power:	17,808.00 kW		
Memory:	1,024,000 GB		
Interconnect:	TH Express-2		
Operating System:	Kylin Linux		
Compiler:	icc		
Math Library:	Intel MKL-11.0.0		
MPI:	MPICH2 with a customized GLEX channel		

Titan- Cray XK7

"泰坦"是一套拥有200个机柜、18688个计算节点的Cray XK7超算系统,每个节点有一颗推土机架构的AMD Opteron 6200十六核心处理器、一块开普勒架构的NVIDIA Tesla K20 GPU加速计算卡,整体浮点性能超过20PFlops(每秒钟2亿亿次浮点计算)。系统的性能最高可以拓展超过50PFlops

2015/3/19 哈尔滨工业大学 刘宏伟 19

1.1 计算机系统简介

基本结构都具有共性特征

1.1 计算机系统简介

- 一、计算机的软硬件概念
 - 1. 计算机系统

计算机的实体, 如主机、外设等 机系统 软件 由具有各类特殊功能的信息(程序)组成

2015/3/19

系统软件 用来管理整个计算机系统 语言处理程序 操作系统 服务性程序

数据库管理系统

网络软件

应用软件 按任务需要编制成的各种程序

简单的一个层次结构

 软件
 应用软件

 系统软件

 硬件

二、计算机系统的层次结构

• 系统复杂性管理的方法-1

✓ 抽象

抽象-指高级的模型,和低级的实体相对-----维基百科

抽象-隐藏系统中不重要的细节。-----David Harris

从物理构成的角度看

二、计算机系统的层次结构

虚拟机器 M3 高级语言 虚拟机器 M₂ 汇编语言 虚拟机器 操作系统 实际机器 M₁ 机器语言 微程序机器 M₀ 微指令系统

1.1

•计算机组成与计算机体系结构从研究内容上来说有什么区别呢?

三、计算机体系结构和计算机组成 1.1

有无乘法指令

计算机 体系结构 程序员所见到的计算机系统的属性概念性的结构与功能特性

(指令系统、数据类型、寻址技术、I/O机理)

计算机 组成 实现计算机体系结构所体现的属性

(具体指令的实现)

如何实现乘法指令