MICROINVERSORES DC/DC - DC/AC

Universidad Industrial de Santander

Juan José León Carreño Maribel Duarte Romero

SHREC Inverter

dustrial de

Inversor	Eficiencia %	# Switch	# Diodos	# L	Ruido CM	Corrientes fuga		Indi Sa
SHREC	98.67	6	2	2	Mejor	Bajo	HIGH	

Somos **el mejor** escenario de creación e innovación.

$$\frac{V_o}{V_i} = \frac{1+D}{1-D} \qquad D = \frac{V_o - V_i}{V_o - V_i}$$

Eficiencia: 92-96%

Rizado:

SMagnetically coupled coils boost

Modified SEPIC converter without magnetic coupling

Somos el mejor escenario de creación e innovación

Switched Capacitor (SC) Configuration

Coupled inductor based boost converter

Inductor and switched capacitor (ISC) Configuration

$$Gain, G_v = \frac{V_0}{V_s} = \frac{2}{1-D}$$

Inductor and switched capacitor based converter

ICoupled inductor and switched capacitor (CISC) Configuration

Universidad Industrial de Santander

Gain,
$$G_v = \frac{V_0}{V_S} = \frac{2+n+nD}{1-D}$$
 (3)

Topol ogies	Duty cycle (%)	Output Voltage (V ₀)	Outp ut Powe r (W)	Effici ency (%)	Switch off-state Voltage (V)	Switchin g Stress
SC	50	382.5	271	38.48	234	Very high
CI	50	398.2	297.4	88.98	250	Voltage spikes
ISC 87.5		376.9	266.5	85.83	190	High
CISC	37	387.7	282	89.25	40	Less

Universidad Industrial de Santander

SIMLBC Converter

Propuesto por João Bosco RF. Cabral, Tiago Lemes da Silva, Sérgio Vidal Garcia Oliveira, Yales Rômulo de Novaes

Universidad Industrial de Santander

$$\frac{V_{oint}}{V_{in}} = \frac{1}{2(1-D)}$$

Somos **el mejor** escenario de creación e innovación.

HGIBC Converter

$$\frac{v_0}{V_g} = \frac{2}{(1-D)}$$

Universidad Industrial de Santander

HGIBC Converter

$$V_0 = \frac{V_{in}(1+2D)}{(1-2D)}$$

MLBC Converter

$$V_o = \frac{NV_{in}}{(1-D)}$$

