

实验报告

数字逻辑实验(九)

姓名	邓语苏 董梅 董芸 均
学号1	22920212204066
学号 2	36720212204617
学号 3	22920212204072
日期	2023年6月20日
学院	信息学院
课程名称	数字逻辑

数字逻辑实验 计算机科学系

实验九 多谐振荡器和单稳态电路

一、实验目的

- 1. 熟悉用小规模集成门电路构成脉冲产生及整形电路的基本方法。
- 2.了解555 定时器的工作原理,熟悉其典型应用,掌握这些脉冲产生及整形电路的参数测量和调试方法。

二、实验设备和器件

数字逻辑实验箱		1台
万用表		1台
示波器		1台
2 输入四与非门	(74LS00)	2 片
555 定时器芯片		1片
电阻: 3ΚΩ,10ΚΩ,20ΚΩ,47ΚΩ		各1只
电容:2000P, 0.01µ, 0.033µ, 0.1µ		各2只

三、实验内容和步骤

1. 多谐振荡器(矩形波发生器)

利用 555 定时器构成多谐振荡器,电路如图 9.1 所示。输出信号 V_0 的周期 T=0.7 (R_A+2R_B) C,实验时,按图 9.1 连接实验电路,接通电源后用示波器观察 V_C 、 V_0 端波形的变化,并测量 V_0 的周期 T 及其脉冲宽度,改变 R_A 、 R_B 的数值, V_0 观察并记录波形的变化。

2. 单稳态电路只有一个稳态, 电路若由输入触发转入暂稳态, 由于 RC 电路的充放电, 将会自动返回稳态, 单稳态电路处于暂稳态的时间就是它的输出脉冲宽度, 它只与电路中的参数有关, 而与输入脉冲无关, 其输出脉冲宽度 Tw=0.7RC, 电路恢复时间 Tre=(3~5) RC。

用 TTL 与非门构成的单稳态电路(微分型)如图 9.2 所示。

用 555 定时器构成单稳态电路如图 9.3 所示。

数字逻辑实验 计算机科学系

在 TTL 与非门构成的单稳态电路(微分型)中,应保证 $R < R_{off}$ (关门电阻), $R_1 > R_{on}$ (开门电阻),实验时,调节频率为 1 KHz 连续脉冲信号作为触发器输入信号(或 V_1 频率可调,以保证电路有足够的恢复时间)。用示波器观察并记录 V_{O1} 、 V_{I2} 、 V_O 各点的波形,以及它们之间的时间关系。

用 555 定时器构成单稳态电路中,RiCi 为输入微分电路,RC 为定时元件,输出脉冲宽度 Tw 正比于 RC。实验时,选择合适的触发信号 V_I ,用示波器观察并记录 V_I 、 V_C 、 V_O 的波形,测量其脉冲宽度,触发器输入信号 V_I 可使用 1KHz 的连续脉冲信号。

实验结果 七

多谐振荡器 7.1

使用 Multisim 软件模拟该电路,可以得到波形如图 1

图 1:图 9.1 波形

更改阻值后的波形如图 2

图 2:图 9.1 波形 (2)

7.2 TTL 单稳态电路

模拟 TTL 与非门单稳态电路的参数,效果如图 3。

图 3: 图 9.2 波形

7.3 555 定时器单稳态电路

模拟 555 定时器单稳态电路的参数,效果如图 4。

图 4: 图 9.3 波形

八 实验总结

通过本次实验,我练习了使用软件模拟电路的方法。软件模拟是一种方便快捷有效的学习数字电路、设计数字电路的方法。