ZS z05-021

riešil(a): PETER MASIAR 521025

1. Nájdite zložené funkcie $f_2=f(f),\,f_3=f(f(f)),\,\ldots,\,f_n=f(f(f(\ldots(f)))),\,n\in\mathbb{N},$ ak funkcia $f_1=f$ je definovaná predpisom $f(x) = 6 + 3x, x \in \mathbb{R}$.

$$f_2(x) = 24 + 9 \times$$
 $f_3(x) = 78 + 27 \times$
 $f_4(x) = 240 + 816$
 $f_{n}(x) = 3^{n} + 6 \sum_{k=0}^{n-1} 3^{n} = 3^{n} \times 6 \frac{3^{n-1}}{2}$

2. Nájdite zložené funkcie $f_2 = f(f), f_3 = f(f(f)), \dots, f_n = f(f(f(\dots(f)))), n \in \mathbb{N}$, ak funkcia $f_1 = f$ je definovaná predpisom $f(x) = 6 - 3x, x \in \mathbb{R}$.

$$f_{1}(x) = (3^{m} \times 76^{m} + 6^{m} \times 76^{m} + 6^{m} \times 76^{m} + 6^{m} \times 76^{m} \times 76$$

3. Nájdite zložené funkcie $f_2 = f(f), f_3 = f(f(f)), f_4 = f(f(f(f)))$ a inverznú funkciu f^{-1} , ak funkcia f je definovaná predpisom $f(x) = \frac{x+3}{2x-1}, x \in R - \{\frac{1}{2}\}.$

$$f_{3}(x) = \frac{x+3}{2\times-1} |2\times-1| \times = \frac{x+5}{2}$$

$$f_{3}(x) = \frac{x+5}{2\times-1}$$

$$f_{3}(x) = \frac{x+5}{2\times-1}$$

$$f_{4}(x) = \frac{26\times-49}{2\times-1}$$

$$f_{5}(x) = \frac{26\times-49}{2\times-1}$$

4. Zostrojte periodickú funkciu y = f(x) s primitívnou periodou 10 a načrtnite jej graf tak, aby bola párna, klesajúca na intervale $\langle -9; -8 \rangle$, rastúca na intervale $\langle 18; 19 \rangle$ a aby f(5) = -1.

5. Nájdite s presnosťou $\varepsilon=0.01$ kladné riešenie rovnice $4\,\mathrm{e}^x-16x^5-4=0.$

Výpočet počtu krokov n: $0,01 = 10^{-2} = \frac{1}{100} = \frac{1}{2^n} = \frac{1}{100} = 100 = 2^m$ m=4 $2^{7}=12p$

	$f(x_{n+1})$
0 0 0,5 1 2,09489 6 0,48124 0,4830625 0,486845	-0.08882
1 0,5 0,75 A 0,67113 7 0,78125 0,78515625 0,4890625	-0,0032
2 0,75 0,875 1 -2,61104 8 0,48175 0,783203125 0,48315625	0,0388
3 0.45 0.8425 0.845 -0.65134 9	
4 0.75 0.78125 0.8125 0.08019 10	
5 0,48125 0,49\$875 0,8125 -1,26689 11	

Približné riešenie $x_{n+1} \approx Q$, 983203125