

ON A NEW ITERATIVE ALGORITHM
FOR FINDING THE SOLUTIONS OF GAMES
AND LINEAR PROGRAMMING PROBLEMS

Richard Bellman

P-473 /

1 June 1953

Approved for OTS release

Summary: A new iterative procedure for finding the solutions of games is presented.

ON A NEW ITERATIVE ALGORITHM FOR FINDING THE SOLUTIONS OF GAMES AND LINEAR PROGRAMMING PROBLEMS

Richard Bellman

61. Introduction.

The purpose of this paper is to present a new iterative procedure for finding the solutions of games. Since, as is now well known, every linear programming problem of conventional type can be transformed into a symmetric game, this technique may be applied to the solution of linear programming problems. It was actually with this purpose in mind that the method was developed. Our aim is to obtain a procedure which converges more rapidly than either the statistical method of Brown, or the differential equation approach of Brown and von Neumann.

We shall first present a variant of the differential equation approach which converges more rapidly than the original. Carrying this approach to its logical limit we obtain a process with an exponential rate of convergence. The discrete analogue, obtained by replacing the differential equation by a difference equation, furnishes the new iterative algorithm.

In replacing the differential equation by a difference equation, the expression dx/dt is replaced by (x(t+h)-x(t))/h with t taking the values 0, h, 2h, etc. At the Nth step the error will be proportional to e^{-Nh}. Since, in general, h must be taken small to insure that the solution of the difference equation is close to

the solution of the differential equation, a large number of iterations will be required to obtain an accurate approximation.

bination of a continuous and discrete iteration process which seems well suited to hand computation. For games of fairly large size it would seem that the most economic policy, taking account of the cost of both hand and machine computation, would be to use the continuous iteration technique up to a certain point and then let the machines take over using a discrete technique.

The method has been tried on a number of examples, and in all cases it seems to yield the value of the game very rapidly. It is conceivable that in certain linear programming problems it might be desired only to determine the value of the maximum or minimum rather than the variables which yield the critical value. For problems of this type the method seems admirably suited.

I would like to express my sincere appreciation to Bernice Brown, without whose enthusiastic interest and cooperation the method would have perished still-born.

§2. The Brown-von Neumann Technique.

Let us consider a symmetric game characterized by the skew.

symmetric matrix (a_{1.1}) and set

(a)
$$x_1 \ge 0$$
, $\sum_{i=1}^{N} x_i = 1$
(b) $u_1 = \sum_{j=1}^{N} a_{i,j}x_j$
(1) (c) $\phi(u_1) = \text{Max} [0,u_1]$

(d)
$$\phi(x) = \sum_{1} \phi(u_{1})$$

The system of differential equations to be used to yield a solution is

(2)
$$\frac{dx_{1}}{dt} = \phi(u_{1}) - \phi(x)x_{1},$$
$$x_{1}(0) = c_{1},$$

with
$$c_1 \ge 0$$
, $\sum_{i=1}^{N} c_i = 1$.

An ingenious argument from this point on shows that $\phi(u_1) \longrightarrow 0$ as $t \longrightarrow \infty$, which means that the $x_1(t)$ must have cluster points which furnish solutions to the game. These may be obtained by inspection of the numerical results.

The convergence of $\phi(u_1)$ is of the order of 1/t as t $\longrightarrow \infty$.

§3. A Variant of the Brown-von Neumann Technique.

In an effort to speed up convergence, let us see what happens if we replace (2) of §2 by

(1)
$$\frac{dx_1}{dt} = \phi(u_1)^{\alpha} - \phi_{\alpha}(x)x_1, \quad \alpha > 0,$$

where

(2)
$$\phi_{\prec}(x) = \sum_{i=1}^{N} \phi(u_i)^{\sim}.$$

We need no longer have uniqueness of solution if 0 < 0 < 1. This, however, is no handicap since the method will show that any solution of (1) will have the property that $\phi(u_1) \longrightarrow 0$.

Repeating the Brown-von Neumann argument we have, if $\phi(u_1) > 0$,

(3)
$$\frac{d}{dt} \phi(u_1) = \sum_{j} a_{1j} \frac{dx_j}{dt} = \sum_{j} a_{1j} \left[\phi(u_j)^{\alpha} - \phi_{\alpha}(x)x_j \right]$$
$$= \sum_{j} a_{1j} \phi(u_j)^{\alpha} - \phi_{\alpha}(x) \sum_{j} a_{1j}x_j.$$

Hence for all t,

$$(4) \qquad \phi(u_1)^{\alpha} \frac{d}{dt} \phi(u_1) = \sum_{\mathbf{j}} \mathbf{a}_{1\mathbf{j}} \phi(u_{\mathbf{j}})^{\alpha} \phi(u_1)^{\alpha}$$
$$-\phi_{\alpha}(\mathbf{x}) \phi(u_1)^{\alpha(+1)}.$$

Summing over 1 this yields

(5)
$$\frac{1}{1+\alpha} \frac{d}{dt} \left(\sum_{1} \phi(u_1)^{n+1} \right) = -\phi_{\alpha}(x) \sum_{1} \phi(u_1)^{n+1},$$

since

(6)
$$\sum_{i,j} \mathbf{a_{ij}} \phi(\mathbf{u_j})^{\alpha_i} \phi(\mathbf{u_i})^{\alpha_i} = 0$$

by virtue of the skew symmetry $a_{ij} = -a_{ji}$. Let us now use the fact that

(7)
$$\phi_{\alpha}(x) = \sum_{1}^{\infty} \phi(u_{1})^{\alpha} \geq k(\alpha) \left(\sum_{1}^{\infty} \phi(u_{1})^{\alpha+1}\right)^{\alpha/\alpha+1}$$

where k(o() is an appropriate constant. Hence

(8)
$$\frac{1}{(1+\alpha)} \frac{d}{dt} \left(\sum_{i} \phi(u_{i})^{\alpha+1} \right) < -k(\alpha) \left(\sum_{i} \phi(u_{i})^{\alpha+1} \right)^{1+\frac{\alpha}{\alpha+1}}$$
.

Writing $v = \sum_{i}^{\infty} \phi(u_i)^{\alpha+1}$, (8) becomes

$$(9) \qquad \frac{dv}{dt} < -k_1 v^{1+\frac{\alpha}{\alpha(+1)}}.$$

Integrating this inequality we obtain

(10)
$$v \le \frac{1}{(k_1 t + k_2)^{(1+\alpha)/\alpha}}$$

where k1 and k2 are positive constants.

The interesting feature about this result is that the smaller of is chosen, the more rapid the convergence.

64. The Limiting Case <= 0.

The above observation leads us to consider the case $\alpha=0$. The differential equation takes the form

(1)
$$\frac{dx_1}{dt} = f(u_1) - \psi(x)x_1,$$

where

(2)
$$f(u_1) = 1 \text{ if } u_1 > 0,$$

= 0 if $u_1 \le 0,$
 $\psi(x) = \sum_{i=1}^{N} f(u_i).$

We have

(3)
$$\frac{du_{1}}{dt} = \sum_{j=1}^{N} a_{1j} \frac{dx_{1}}{dt} - \sum_{j=1}^{N} a_{1j} \left[f(u_{j}) - \psi(x)x_{j} \right]$$
$$= \sum_{j=1}^{N} a_{1j}f(u_{j}) - \psi(x)u_{1},$$

and, as above,

(4)
$$\sum_{i=1}^{N} f(u_i) \frac{du_i}{dt} = -\psi(x) \sum_{i=1}^{N} u_i f(u_i)$$

Hence

(9)
$$\frac{d}{dt} \left(\sum_{i=1}^{N} u_i f(u_i) \right) = -\phi(x) \sum_{i=1}^{N} u_i f(u_i),$$

which yields

(10)
$$\sum_{i=1}^{N} u_{i}f(u_{i}) = a_{i}e$$
 .

Since $\psi(x) \ge 1$ as long as the system is not in its equilibrium position we see that

(11)
$$\sum_{i=1}^{N} u_i f(u_i) \leq a_i e^{-t},$$

as long as one f is positive. This shows that the convergence is exponential.

55. The Difference Equation.

For computing purposes we write (1) of 54 in the form

(1)
$$x_1(n+1) - x_1(n) = h \left[f(u_1(n)) - \psi(x(n))x_1(n)\right]$$
,

or

(2)
$$x_1(n+1) = x_1(n)(1-h\psi(x(n)) + hf(u_1(n)).$$

In this form, although $\sum_{i} x_{i}(n)$ is equal to 1 for all n, an individual x_{i} may go negative to a small degree.

To avoid this, we replace (1) by

(3)
$$x_1(n+1) - x_1(n) - h \left[f(u_1(n)) - \psi(x(n))x_1(n+1) \right]$$
,

which yields

(4)
$$x_1(n+1) = \frac{x_1(n) + hf(u_1(n))}{1 + hf(x(n))}$$
.

It is probably true that Max $[0,u_1(n)]$ goes to zero as $n \longrightarrow \infty$, and exponentially fast, although we have not proved this. Computation on particular games with small values of h would seem to bear this out. A discussion of some of these will be given subsequently.

§6. A Procedure for Speeding up the Discrete Iteration.

Since $f(u_1(n))$, and hence $\psi(x(n))$, depend only upon the sign of $u_1(n)$, not its magnitude, it is clear that the iteration formula will be the same for long stretches. Furthermore, if h is small, (4)

of §5 may be replaced by (2).

If one step of the iteration is performed, linear interpolation method can now be used to continue the iteration until a boundary is reached, that is to say, a point where some $\sum a_{ij}x_{j}$ changes sign.

In this way, performing the equivalent of one hundred or more steps at a time the hand computer can, in the early stages of the computation, keep pace with and perhaps even gain on a machine. When, however, the values are close to an actual solution the sign changes become so frequent that a machine is more efficient.

67. A 7 x 7 Matrix.

Let us consider the following game matrix

$$\begin{pmatrix} 0 & -1 & -2 & 0 & 0 & 2 & 1 \\ 1 & 0 & 0 & 4 & 0 & 0 & -1 \\ 2 & 0 & 0 & -1 & 1 & 0 & -1 \\ 0 & -4 & 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & -1 & 0 & 0 & -3 & 1 \\ -2 & 0 & 0 & 1 & 3 & 0 & -1 \\ -1 & 1 & 1 & -1 & -1 & 1 & 0 \\ \end{pmatrix}$$

which has the unique solution

(2)
$$x_1 = .111$$
, $x_2 = .111$, $x_3 = .167$, $x_4 = .056$, $x_5 = .167$, $x_6 = .056$, $x_7 = .333$

where the value of the original 3×3 game which gave rise to this skew-symmetric matrix is 1, the last component.

To begin with we take h = .001 and make an initial guess

(3)
$$x_1 = x_2 = \cdots x_7 = 1/7$$

Following we present the first two pages of the calculation and the subsequent values of x_7 .

1 2 3 4 5 6 7	x(0) .1429 .1429 .1429 .1429 .1429 .1429	Σax 0 5714 1429 -4286 -4286 1429 0	x(1) 1425 1435 1425 1425 1425 1425	-0010 5700 1425 -4315 -4315 1425 0030	x(2) 1419 1439 1439 1419 1419 1429	Σax -0010 5666 1409 -4327 -4327 1399 0060	x(3) 1413 1443 1413 1413 1443 1433	2010 5632 1393 -4339 -4339 1393 0090
1234567	x(90) .0926 .1808 .1808 .0926 .0926	Zax -0005 2827 0049 -5429 0049	x(91) 0922 1811 1811 0922 0922 1811	Σax -0005 2804 0038 -5438 -5438 0038	x(95) 0907 1822 1822 0907 0907 1822	Σax -0005 2718 -0003 -5471 -5471 -0003	x(96) 0905 1828 1818 0905 0905 1818	Σax -0005 2702 -0015 -5489 -5449 -0013
1234567	.2893 .1203 .0601 .0601	Σax -0005 0117 -1686 -8684 -1924 -1686	1806 x(266) 0600 2897 1201 0600 0600 1201	2667 Σαχ 0108	1817 x(278) 0586 2947 1172 0586 0586 1172	Σax -0005 -0012 -1770 -8846 -1746 -1770	x(279) 0586 2944 1171 0586 0586 1171	Σax -0005 -0019 -1777 -8827 -1735 -1777
1234567	.1111 .0556 .0556	Σax 0500 -0519 -2187 -7897 -1145 -2187 3353	2892 x(330) 0565 2793 1109 0555 0555 1109 3302	Σax 0509 -0517 -2172 -7870 -1134 -2212 3336	2942 x(331) 0574 2787 1107 0554 0554 1107 3305	Σax 0518 -0515 -2157 -7843 -1123 -2237 3319	2949 x(431) 1454 2227 0887 0444 0887 3645	Σax 1418 -0415 -0737 -5263 0097 -4777 1659

į			x(432)	Eax	x(433)	Σαχ	x(464)	Σax	x(465) Sax
		1 2 3 4 5 6 7	.1460 .2220 .0884 .0443 .0453 .0884 .3644	1424 -0412 -0714 -5236 0108 -3302 1632	1466 2213 0881 0442 0462 0881 3643	1430 -0409 -0691 -5209 0119 -4747 1605	1640 2008 0800 0402 0729 0800 3612	0005	1645 2002 0798 0401 0737 0798 3611	-0362 0015 -4397 0419 -4289
Carbonings		x (4	66) Σ a x	x(467)) Σax	×(533)	Σαχ	x(534)	Σax x	(536) Σax
	1 2 3 4 5 6 7	.16 .19 .08 .03 .07 .07	94 -0383 05 0034 99 -4359 44 0417 95 -4272	1986 0812 0397 0751 0792	0415 -0791	1875 1458 1254 0291 1213 0581 3326	0522 -0287 1346 -1833 0329 -3146 -0086	1454 - 1260 0290 -	0277 1371 1819 0208 3127	1887 0459 1445 -0257 1272 1421 0288 -1788 1231 0296 0576 -3089 3296 -0113
ENGINEE CONTRACTOR		x (5		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		x(560)	Σαχ	x(561)		(562) Σ a x
Agin more more	1 2 3 4 5 6 7	.13 .02 .13	89 –0119 53 1757 76 –1591	1347 1412 0268 1373 0537	-0026 -0015 9002 -1442 0048 -2652 -0329	1980 1344 1419 0267 1380 0536 3065	-0017 0038	1976 1341 1426 0266 1387 0535 3059	0019	1972 1338 1433 0265 1394 0018 0534
SANCED MESSAGE			x(563)	Σαχ	x(564)	Σαχ	x(5 65)	Σαχ		
CONTRACTOR SECURITION OF SECUR		1234567	.1968 .1335 .1440 .0264 .1401 .0533 .3047	0008	1964 1332 1447 0263 1408 0532 3041	-0121 -0025 2032 -1372 -0002 -2482 -0324	1962 1331 1456 0263 1407 0531 3038	-0143 -0024 2090 -1361 -0011 -2298 -0314		

	×7	N	$\sum_{j} Max (\Sigma a_{j} x_{j}, 0)$
	.3008	561	.203 +
(4)	.2944	59 3	.197 +
	.3227	743	•13 +
	.3539	830	.15.4
	.3077	886	.10 +

§8. A 21 x 21 Matrix.

With the aim of testing the convergence of the value, we obtained the following 21 x 21 matrix with value .5 from Ruth Wagner.

											11	12	13	14	15	16	17	18	19	20 2	1
1234567890					0						2 1 2 2 3 1 1 1 2	322212322	2 2 2 1 2 1 2 1 2	223223221	2 3 2 2 2 1 1 2 3 2	1222323222	3 1 3 1 3 1 2 1 1 3	322223222	323212322	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	1 1 1 1 1 1
10 11 12 13 14 15 16 17 18 19 20 21	カシャカキーシンシャ1	444444	かいか	7444744	4144444141	4444	-1	- የአሌ! ትሌሌ	14142414421	122	-1	-1	-1			Q			-1	2 -1	111111111111111111111111111111111111111
	1	2	3	4	5	6	7	8	9	10											

Following are the results of the computations. Observe that the

P-

Σαχ	160678 163316 160678 164194 164194 164194	-1.165074 -1.164194 -1.1965074 -1.1965040 -1.1965050 -1.580520	
x(191)	081020	081020	.180900
Σαχ	067481 070418 067481 071397 071397	1. 072376 1. 072376 1. 072376 1. 040340 1. 040340	ideddd
x(91)	.090020	.090020	080000.
Σax	1.036843 .894802 1.036843 .847655 .894808		963751 963751 011889 963751 -1.011889
x(1)	.048138	.047147	.041147 .041148 .041148
Σax	1.047619 .904761 1.047619 .857142		904761 952381 857142 -1.000000
x (0)	047619 647619 047619		

Zax

x(841)

Sax

x(791)

Sax

x(741)

2ax

x(691)

.040520

-14-

000380

x(892)	00000000000000000000000000000000000000	020 021 081 081 080 081 080 081 080 081 080 081 081	00000000000000000000000000000000000000	
Zax		1984 0833 0915 0198	00000000000000000000000000000000000000	
x(891)	.024105	2410 8120 1951	000226 000226 000226 000227 000227 000227	
Sax		66888	00000000000000000000000000000000000000	
x(881)	.025737	M = 0 -		
Zex	172109	002258	029627 002258	
x(871)	.172109	i .	.000256 .000256 .000256 .000256 .000257	3340.00
	i	. 027369 . 156 . 069626 565 . 000256 -	0000256 0000256 0000256 0000257	
	- 027369	. 017665 . 069626 - 017665 . 000256 - 017665	042272 .000256 042272 .000256 042272 .000256 014942 .030136 070879 .000257 071879 .000257	