Questionário - 17

Arthur C. M. Barcella e Matheus P. Salazar

O que é uma falta de página? Quais são suas causas possíveis e como o sistema operacional deve tratá-las?

A falta de página é quando uma página não se encontra na memória para ser utilizada por um determinado processo.

Uma das possíveis causas é que os quadros que deveriam estar com essa página se encontram vazios ou armazenados em disco (dados do processo em disco) então, caso a memória esteja cheia, um quadro deve ser "liberado" ou seja, os dados copiados em disco, para então trazer a página faltante e adicioná-la novamente em disco.

Caso se tenha quadro vazio então apenas acessa o disco e busca a página, em ambos os casos é o sistema operacional que deve fazer o controle de páginas e quadros na memória.

Calcule o tempo médio efetivo de acesso à memória se o tempo de acesso à RAM é de 5ns, o de acesso ao disco é de 5 ms e em média ocorre uma falta de página a cada 1.000.000 (106) de acessos à memória. Considere que a memória RAM sempre tem espaço livre para carregar novas páginas. Apresente e explique seu raciocínio.

t med = [((acesso a memória - falta de páginas) * t Ram) + t Ram + t disk] / acesso a memória

t med = [(1.000.000 - 1) * 5ns) + 5ns + 5ms]/ 1.000.000

t med = [(999.999 * 5 * 10^-9) + (5 * 10^-9) + (5 * 10^-3)] / 1.000.000

t med = 10ns

Repita o exercício anterior, considerando que a memória RAM está saturada: para carregar uma nova página na memória é necessário antes abrir espaço, retirando outra página.

```
t med = [((acesso a memória - falta de páginas) * t Ram) + t Ram + t disk] / acesso a memória
```

t med =
$$[(1.000.000 - 1) * 5ns) + (5ns) + (5ms)*2]/1.000.000$$

t med =
$$[(999.999 * 5 * 10^{-9}) + (5 * 10^{-9}) + (10 * 10^{-3})] / 1.000.000$$

t med = 15ns

Considere um sistema de memória com quatro quadros de RAM e oito páginas a alocar. Os quadros contêm inicialmente as páginas 7, 4 e 1, carregadas em memória nessa sequência. Determine quantas faltas de página ocorrem na sequência de acesso {0, 1, 7, 2, 3, 2, 7, 1, 0, 3}, para os algoritmos de escalonamento de memória FIFO, OPT e LRU.

Repita o exercício anterior considerando um sistema de memória com três quadros de RAM.

							FIFO						
p	7	4	1	0	1	7	2	3	2	7	1	0	3
q0	7	7	7	0	0	0	0	3	3	3	2	2	3
q1		4	4	4	4	7	7	7	7	7	1	1	1
q2			1	1	1	1.	2	2	2	2	7	0	0

							OPT						
p	7	4	1	0	1	7	2	3	2	7	1	0	3
q0	7	7	7	7	7	7	7	7	7	7	1	1	1
q1		4	4	0	0	0	2	2	2	2	2	0	0
q2			1	1	1	1	1	3	3	3	3	3	3

							LRU						
p	7	4	1	0	1	7	2	3	2	7	1	0	3
q0	7	7	7	0	0	0	2	2	2	2	2	0	0
q1	1	4	4	4	4	7	7	7	7	7	7	7	3
q2			1	1	1	1	1	3	3	3	1	1	1

Um computador tem 8 quadros de memória física; os parâmetros usados pelo mecanismo de paginação em disco são indicados na tabela a seguir:

página	carga na memória	último acesso	bit R	bit M
p_0	14	58	1	1
p_1	97	97	1	0
p_2	124	142	1	1
p_3	47	90	0	1
p_4	29	36	1	0
p_5	103	110	0	0
p_6	131	136	1	1
p_7	72	89	0	0

Qual será a próxima página a ser substituída, considerando os algoritmos LRU, FIFO, segunda chance e NRU? Indique seu raciocínio.

LRU: Na prática, o algoritmo LRU não é utilizado, por inviabilidade em sua aplicação. Isto ocorre pois o algoritmo funcionaria através de datas de acesso de cada processo, com isso o projeto do algoritmo fica complexo, e sua aplicação demandaria uma alta carga na CPU / memória.

FIFO: A página p5 seria modificada, pois é a primeira a obter o bit de referência 0 e de modificação 0, visto que na ordem cronológica pode ser considerada a mais antiga no sistema.

Segunda Chance: A primeira página a ser modificada seria a p3, pois o algoritmo de segunda chance segue uma ordem cronológica avaliando o bit de referência no caso em questão a p3 é a primeira que se encontra com o bit de referência em 0. (supondo que o ponteiro iniciou em p1).

NRU: Seria a p5, pois é a primeira que se encontra com o bit de referência e modificação em 0. (supondo que o ponteiro iniciou em p1).

Considere um sistema com 4 quadros de memória. Os seguintes valores são obtidos em dez leituras consecutivas dos bits de referência desses quadros: 0101, 0011, 1110, 1100, 1001, 1011, 1010, 0111, 0110 e 0111. Considerando o algoritmo de envelhecimento, determine o valor final do contador associado a cada página e indique que quadro será substituído.

	Valores iniciais					
Quadro	Valor (Bin)	Valor (Dec)				
Quadro 1	00000000	0				
Quadro 2	00000000	0				
Quadro 3	00000000	0				
Quadro 4	00000000	0				

Leitura 1					
Quadro	Valor (Bin)	Valor (Dec)			
Quadro 1	00000000	0			
Quadro 2	10000000	128			
Quadro 3	00000000	0			
Quadro 4	10000000	128			
	Quadro 1 Quadro 2 Quadro 3	Quadro Valor (Bin) Quadro 1 00000000 Quadro 2 10000000 Quadro 3 00000000			

	Leitura 4						
Entrada	Quadro	Valor (Bin)	Valor (Dec)				
1	Quadro 1	11000000	192				
1	Quadro 2	11010000	208				
0	Quadro 3	01100000	96				
0	Quadro 4	00110000	48				

	Leitura 2					
Entrada	Quadro	Valor (Bin)	Valor (Dec)			
0	Quadro 1	00000000	0			
0	Quadro 2	01000000	64			
1	Quadro 3	10000000	128			
1	Quadro 4	11000000	192			

Leitura 5					
Entrada	Quadro	Valor (Bin)	Valor (Dec)		
1	Quadro 1	11100000	224		
0	Quadro 2	01101000	104		
0	Quadro 3	00110000	48		
1	Quadro 4	10011000	152		

	01						
	Leitura 3						
Entrada	Quadro	Valor (Bin)	Valor (Dec)				
1	Quadro 1	10000000	128				
1	Quadro 2	10100000	160				
1	Quadro 3	11000000	192				
0	Quadro 4	01100000	96				

Leitura 6					
Entrada	Quadro	Valor (Bin)	Valor (Dec)		
1	Quadro 1	11110000	240		
0	Quadro 2	00110100	52		
1	Quadro 3	10011000	152		
1	Quadro 4	11001100	204		

	Leitura 7					
Entrada	Quadro	Valor (Bin)	Valor (Dec)			
1	Quadro 1	11111000	248			
0	Quadro 2	00011010	26			
1	Quadro 3	11001100	204			
0	Quadro 4	01100110	102			

	Leit	tura 8	
Entrada	Quadro	Valor (Bin)	Valor (Dec)
0	Quadro 1	01111100	124
1	Quadro 2	10001101	141
1	Quadro 3	11100110	230
1	Quadro 4	10110011	179

Leitura 9						
Entrada	Quadro	Valor (Bin)	Valor (Dec)			
0	Quadro 1	00111110	62			
1	Quadro 2	11000110	198			
1	Quadro 3	11110011	243			
0	Quadro 4	01011001	89			

	Leitura 10					
Entrada	Quadro	Valor (Bin)	Valor (Dec)			
0	Quadro 1	00011111	31			
1	Quadro 2	11100011	227			
1	Quadro 3	11111001	249			
1	Quadro 4	10101100	172			

Como o Quadro 1 possui o menor valor, esse quadro seria utilizado para substituição de memória em uma eventual troca de página.

Sobre as afirmações a seguir, relativas à gerência de memória, indique quais são incorretas, justificando sua resposta:

a. Por "Localidade de referências" entende-se o percentual de páginas de um processo que se encontram na memória RAM.

Nota: a localidade de referência não é o percentual de memória de um processo. A localidade de referenciais tem haver com o acesso repetido de cada programa/processo a uma mesma região de memória ou página.

b. De acordo com a anomalia de Belady, o aumento de memória de um sistema pode implicar em pior desempenho.

Nota: A anomalia de Belady mostra um cenário onde o aumento na quantidade de páginas em um sistema mantém ou aumenta a quantidade de troca de páginas de memória para disco. Entretanto, tipicamente o aumento da memória traz melhora de desempenho, além de que, mesmo em um cenário com a anomalia ocorrendo, aumentar mais ainda a melhora resolveria o problema.

Sobre as afirmações a seguir, relativas à gerência de memória, indique quais são incorretas, justificando sua resposta:

- c. A localidade de referência influencia significativamente a velocidade de execução de um processo.
- d. O algoritmo LRU é implementado na maioria dos sistemas operacionais, devido à sua eficiência e baixo custo computacional.
- e. O compartilhamento de páginas é implementado copiando-se as páginas a compartilhar no espaço de endereçamento de cada processo.

Nota: a cópia de páginas ocorre conforme a página precisa ser alterada, se for apenas lida não há necessidade de fazer a cópia. Dessa forma, vários processos podem apontar para a mesma região de memória até o momento que precisarem fazer uma alteração.

f. O algoritmo ótimo define o melhor comportamento possível em teoria, mas não é implementável.

Em um sistema que usa o algoritmo WSClock, o conteúdo da fila circular de referências de página em tc = 220 é indicado pela tabela a seguir. Considerando que o ponteiro está em p0 e que τ = 50, qual será a próxima página a substituir? E no caso de τ = 100?

página	último acesso	bit R	bit M
p_0	142	1	0
p_1	197	0	0
p_2	184	0	1
p_3	46	0	1
p_4	110	0	- 0
p_5	167	0	1
p_6	97	0	1
p_7	129	1	0

No primeiro caso (T=50), a página a ser substituída será p1. Pois é a primeira página com os bits de R e M setados em 0.

No segundo caso (T=100), a página a ser substituída será p4. Pois é a primeira página com os bits de R e M setados em 0 (após a modificação da página p1).

Questionário - 17

Arthur C. M. Barcella e Matheus P. Salazar