Mid Term Examination

B. TECH PROGRAMMES (UNDER THE AEGIS OF USICT)

Second Semester, May, 2023

Paper Code: BS 106

Physics-II

Time: 1.5 Hours

Paper: Applied

Max. Marks: 30

Note: Attempt Question no. 1which is compulsory and any two more questions from remaining.

	Question	Marks	COs
1(a)	Distribute three particles in three energy states in accordance of MB, BE and FD statistics.	2.5	CO2
1(b)	What do you understand by normalisation of a wave function? Sive the essential features of acceptable wave function.	2.5	CO1
1(c)	Determine the uncertainty in position of an electron whose speed is measured to be 5.0x10 ³ m/sec to an accuracy of 0.003%.	2.5	CO1
1(d)	Compute the root mean square speed of oxygen molecules at 0° C. Given mass of $O_2 = 5.31 \times 10^{-26}$ kg	2.5	CO2

	Question 2	Marks	Cos
2(a)	Evaluate the expectation value of the position and the momentum of a particle trapped in a box of width L.	5	CO1
2(b)	Determine the energy required to jump from ground state to second excited state by an electron trapped in a box of length 1 A.	2	CO1
2(c)	Brief the conditions required for the quantum tunnelling. Calculate the transmission probability for an electron of energy 2eV when incident upon a rectangular potential barrier of height 6eV and width 0.50 nm.	3	CO1

	Question 3	Marks	Cos
3(a)	Find the expression of the average molecular energy of an ideal gas molecule.	4	CO2
3(b)	How does Fermions differ from Bosons? Give examples.	3	CO2
3(c)	Calculate the average energy and speed of a free electron at 0K for a given substance? Given fermi energy of substance is 7.9 eV	3	CO2

	Question 4	Marks	Cos
4(a)	Using Schrodinger's equation, find wave function for a particle of mass m in an infinite potential well of width L. Also find its eigen energy values.	6	CO1
4(b)	An electron gas obeys the Maxwell-Boltzmann statistics. Calculate the average thermal energy (in eV) for an electron in the system at 300K.	2	CO2
4(0)	States the Plancks' radiation law and give its expression for energy density.	2	CO2

CLASS TEST

II Semester (B.Tech)
Paper Code: BS106

Time: 1.5 hour

June 2023

Subject: Applied Physics-II

Max. Marks: 30

Note: Q. No. 1 is compulsory. Attempt any two Question from the rest.

	Questions	Marks	CO
1a//	Distinguish between crystalline and amorphous solids.	2.5	3
b/	Discuss diamond structure and calculate its atomic packing factor.	2.5	3
c	X-ray of wavelength 2×10^{-11} m suffers first order reflection from (111) crystal plane at an angle of 45° . Calculate the interatomic spacing of the crystal.	2.5	3
8	Explain why a semiconductor acts as an insulator at 0 Kelvin.	2.5	4
2.a V	Discuss the seven crystal systems pointing out their characteristic features and giving examples.	4	3
b/	What is the utilization of miller Indices in crystal structure? Making use of intercepts in the ratio 3a:4b on the x and y-axis and parallel to z- axis. Find the miller Indices of planes.	3	3
	Explain Laue's method of X-rays diffraction.	3	3
3.a	Discuss the point defects in solids. Derive an expression for the concentration of Erenkel defect.	5	3
b /	Draw sketches illustrating (110), (111) and (002) planes in cubic unit cell.	3 .	3
	Ca has FCC structure and its atomic radius is 1.278A ⁰ . Calculate its density.	2	3
4.	Distinguish between intrinsic and extrinsic semiconductor and draw their Fermi energy level diagram. Derive an expression for the electron carrier concentration in an intrinsic semiconductor. OR Explain the Kronig-Penney model for the motion of an electron in the periodic potential. Derive effective mass of an electron and explain its physical significance.	10	4