

Universidad Autónoma del Estado de Hidalgo

Instituto de Ciencias Básicas e Ingeniería

Licenciatura en Física y Tecnología Avanzada

Escala de Neutrinos en un Modelo con Textura Universal y Masas de Majorana

Jonathan Abel Hernández Acosta

Asesores: Dr. Selim Gómez Ávila Dr. Lao Tse Lopez Lozano

20 de julio de 2022

<u>ÍNDICE</u>

Índice

1.	Resumen	2
2.	Introducción 2.1. Cálculo de ΔC_0 para las familias de quarks; u, d y leptones cargados	3
3.	Estudio mediante masas de Dirac 3.1. Resultados parte 1	5
4.	Estudio mediante corrección de Majorana 4.1. Caso 1	6 7 7
5	Cosas que faltan	11

1. Resumen

Un hecho notable del sector de neutrinos, es la posibilidad de tener dos contribuciones a su masa como es una descripción de Majorana y otra de Dirac. Por otro lado, para quarks y leptones cargados, es posible encontrar parámetros invariantes aproximados dependientes de las razones de las masas con la masa del fermión más pesado de cada sector. Dichas invariancias podrían representar límites a bajas energías de simetrías de sabor a escalas energéticas superiores. En este trabajo se muestra cómo usando el concepto de UTC (Universal Texture Constraint) y las correcciones provenientes de las contribuciones de Majorana a las masas de los neutrinos, puede establecerse una relación entre los parámetros de otros sectores del SM con el de neutrinos para hacer predicciones de la escala absoluta de las masas del neutrino más pesado suponiendo ordenamiento normal.

2. Introducción

Dentro del modelo estándar de la física existen distintas familias que alojan un conjunto de partículas cuyas cualidades sean similares, por ejemplo; los quarks interaccionan fuertemente mientras que ninguna partícula de la familia de leptones lo hace. Así pues a lo largo del tiempo se han identificado muchas otras características que permiten diferenciar entre familias de partículas, una de estas características es la mezcla de generaciones de partículas de una misma familia.

Actualmente se tiene que la mezcla de leptones y en particular la mezcla de neutrinos es mucho mayor a la mezcla en el sector de quarks, sin embargo no hay respuesta aún al por qué existe este comportamiento. Dentro de las posibilidades que puedan brindar una explicación a este fenómeno se encuentra el hecho de que los neutrinos permiten la inclusión de un termino de Majorana para su masa, puesto que son las únicas partículas que teóricamente podrían ser su propia anti-partícula.

Ademas es posible, mediante la propuesta de una textura universal con la cual explicar los ángulos de mezcla para neutrinos y para quarks por medios de la jerarquía de masas, dar la misma estructura para los mecanismos de mezcla en los sectores de quarks y leptones, perdiendo información sobre la naturaleza de las masas de todos los fermiones.

Dicho mas específicamente para los fines de este trabajo; suponiendo una textura universal se desea obtener información sobre las masas de los neutrinos por medios del mecanismo de mezcla para la familia de leptones cargados. Para encontrar dicho mecanismo, se hace uso de las matrices de Gell-Mann.

Las matrices de Gell-Mann, utilizadas en la descripción de las interacciones fuertes dentro del estudio de la física de partículas, reproducen el álgebra de Lie del grupo SU(3) en la definición del modelo estándar. Dichas matrices se representan en la forma;

$$\ell_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \ell_{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \ell_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\ell_{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \ell_{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \qquad \ell_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$(1)$$

$$\ell_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \ell_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \qquad \ell_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \tag{2}$$

$$\ell_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \qquad \ell_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \tag{3}$$

Estas ocho matrices, junto con la matriz identidad, permiten escribir una matriz Hermítica arbitraria 3×3 cuando se considera que su normalización es $\text{Tr}[\ell_a\ell_b]=2\delta_{ab}$, con la peculiaridad de que todas tienen $\text{Tr}(\ell_a)=0$. En el estudio sobre generación de neutrinos, las matrices de Gell-Mann intervienen en la mezcla de tres sabores de neutrino. En este trabajo son de interés las matrices $\ell_0,\ \ell_3,\ \ell_8$ que son las únicas cuya diagonal no esta compuesta de ceros solamente.

Para tener un punto de comparación con los resultados que se puedan obtener es necesario utilizar datos experimentales, en particular los valores para las diferencias de las masas al cuadrado de los neutrinos bajo ordenamiento normal, Δm_{21}^2 , Δm_{32}^2 , ya que aunque las masas por separado para cada neutrino no se conozcan con precisión, estas diferencias están mejor definidas.

Cálculo de ΔC_0 para las familias de quarks; u, d y leptones cargados

Habiendo definido las matrices de Gell-Mann y los valores C_0 para las familias de quarks y leptones cargados en la forma;

$$C_0 = 2\sqrt{\frac{3}{2}}\underline{I} \cdot \underline{M_i} \tag{4}$$

Donde;

$$\underline{I} = \sqrt{\frac{2}{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{5}$$

$$\underline{M_i} = \frac{1}{m_{3,i}} \underline{m_i} = \frac{1}{m_{3,i}} \begin{pmatrix} m_{1,i} & 0 & 0\\ 0 & m_{2,i} & 0\\ 0 & 0 & m_{3,i} \end{pmatrix} \qquad i = u, d, l$$
 (6)

Y el factor 2 en C_0 se incluye con fines de normalización. Si en estas definiciones se introducen los valores numéricos para cada masa, se obtienen entonces los valores:

> $C_{0,u} = 1,0073667265041402$ $C_{0,d} = 1,0233660287081339$ $C_{0,l} = 1,0597510721159797$

Donde es posible observar que los valores son del mismo orden y muy parecidas. Por otro lado lo que resulta de interés es la derivada de estas definiciones respecto de la ultima masa en cada familia, expresada en la siguiente forma:

$$\Delta C_{0,i} = \sum_{j=1}^{3} \frac{dC_{0,i}}{dm_j} \cdot \delta m_j \tag{7}$$

Dando como resultado las siguientes expresiones:

$$\Delta C_{0,u} = \frac{\delta m_{up}}{m_{top}} + \frac{\delta m_{charm}}{m_{top}} - \frac{m_{up} + m_{charm}}{m_{top}^2} \cdot \delta m_{top}$$
 (8)

$$\Delta C_{0,u} = \frac{\delta m_{up}}{m_{top}} + \frac{\delta m_{charm}}{m_{top}} - \frac{m_{up} + m_{charm}}{m_{top}^2} \cdot \delta m_{top}$$

$$\Delta C_{0,d} = \frac{\delta_{down}}{m_{bottom}} + \frac{\delta m_{charm}}{m_{bottom}} - \frac{m_{down} + m_{strange}}{m_{bottom}^2} \cdot \delta m_{bottom}$$

$$\Delta C_{0,l} = \frac{\delta m_e}{m_{\tau}} + \frac{\delta m_{\mu}}{m_{\tau}} - \frac{m_e + m_{\mu}}{m_{\tau}^2} \cdot \delta m_{\tau}$$

$$(8)$$

$$\Delta C_{0,l} = \frac{\delta m_e}{m_\tau} + \frac{\delta m_\mu}{m_\tau} - \frac{m_e + m_\mu}{m_\tau^2} \cdot \delta m_\tau \tag{10}$$

Nuevamente si se introducen los valores numéricos para cada familia, considerando solo el error de mayor magnitud, se puede observar que es el sector leptónico el que difiere de los otros dos en un orden de magnitud considerable:

> $\Delta C_{0,u} = 0.00010158844981379264$ $\Delta C_{0,d} = 0.002578712712621048$ $\Delta C_{0,l} = 4,036633023376959 \times 10^{-6}$

Tomando los valores de error calculados para las C_0 's se construye un gráfico para visualizar de mejor manera la discrepancia entre las tres familias y ademas conocer si existen rangos compartidos entre ellas.

Estudio mediante masas de Dirac

El estudio se centra ahora en encontrar las masas de tres generaciones de neutrinos por medios de la familia de leptones únicamente. A fin de encontrar las masas de estos neutrinos se calculan las matrices $C_0,\,C_3$ y C_8 para la familia de leptones cargados:

$$C_{0,l} = 2\sqrt{\frac{3}{2}} * \underline{I} \cdot \underline{M_l} \tag{11}$$

$$C_{3,l} = 2 * \ell_3 \cdot \underline{M_l}$$
 (12)
 $C_{8,l} = 2 * \ell_8 \cdot \underline{M_l}$ (13)

$$C_{8,l} = 2 * \ell_8 \cdot M_l \tag{13}$$

(14)

Además se calculan estas mismas matrices pero utilizando una matriz para masas de neutrino;

$$\underline{M_{\nu}} = \frac{1}{m_3} \begin{pmatrix} m_1 & 0 & 0\\ 0 & m_2 & 0\\ 0 & 0 & m_3 \end{pmatrix} \tag{15}$$

$$C_{0,\nu} = 2\sqrt{\frac{3}{2}} * \underline{I} \cdot \underline{M_{\nu}} = \frac{m_1 + m_2}{m_3} + 1 \tag{16}$$

$$C_{3,\nu} = 2 * \ell_3 \cdot \underline{M_{\nu}} = \frac{m_1 + m_2}{m_3} \tag{17}$$

$$C_{8,\nu} = 2 * \ell_8 \cdot \underline{M_\nu} = \frac{1}{\sqrt{3}} \left[\frac{m_1 + m_2}{m_3} - 2 \right]$$
 (18)

Combinando estas tres expresiones se pueden encontrar soluciones posibles para las masas m_1 y m_2 en términos de la masa 3, que recordando la condición de ordenamiento normal, es la mas pesada y de las expresiones $C_{0,l}, C_{3,l}, C_{8,l}$ para leptones.

$$m_1 = \frac{m_3(C_{0,l} + C_{3,l})}{2} - \frac{m_3}{2} \tag{19}$$

$$m_2 = \frac{m_3(C_{0,l} - C_{3,l})}{2} - \frac{m_3}{2} \tag{20}$$

Y el valor de la masa m_3 es fijo y esta dado por $m_3=0.05~{
m eV}$ **Referencia**

3.1. Resultados parte 1

Habiendo introducido los valores numéricos en estas expresiones se obtienen los siguiente valores para las masas;

$$m_1 = 1,4379016917476228 \times 10^{-5} \text{eV}$$
 (21)

$$m_2 = 2,973174588881508 \times 10^{-3} \text{eV}$$
 (22)

Estos valores sin embargo no arrojan mucha información puesto que no hay mediciones precisas de ellas por separado, lo interesante es entonces realizar una comparación con las mediciones de sus diferencias bajo ordenamiento normal. Calculando estas diferencias con los valores obtenidos se tiene:

$$(\Delta m_{21}^2)' = m_2^2 - m_1^2 = 8,83956037984321 \times 10^{-6} \,\text{eV}^2$$
(23)

$$(\Delta m_{32}^2)' = m_3^2 - m_2^2 = 2,49116023286403 \times 10^{-3} \,\mathrm{eV}^2$$
 (24)

$$\Delta m_{21}^2 \neq (\Delta m_{21}^2)'$$
 $\Delta m_{32}^2 \approx (\Delta m_{32}^2)'$ (25)

Con esta discrepancia entre los valores experimentales y los valores deducidos es de interés conocer la relación entre las tres masas cuando $m_3 \in [1 \times 10^{-5} \, \mathrm{eV}, 1 \times 10^{-1} \, \mathrm{eV}]$. Esta relación se muestra en la gráfica siguiente.

De donde se puede deducir que no existe valor alguno de m_3 para el cual ambas diferencias cuadradas de masas coincidan con los valores experimentales.

4. Estudio mediante corrección de Majorana

Se desea conocer ahora si existe una combinación de correcciones a los valores de las masas m_1 y m_2 a fin de encontrar un valor de m_3 con el que se consiga un mejor ajuste entre los datos deducidos y los encontrados experimentalmente.

Caso 1 4.1.

Primero supóngase:

$$m_1 \to m_1 + \delta_1 \,, \quad m_2 \to m_2 + \delta_2 \quad | \quad \delta_1 + \delta_2 = \delta \,, \quad \delta_1 - \delta_2 = 0$$
 (26)

Entonces, las ecuaciones blablablabla se convierten en la forma:

$$m_{1\mathcal{M}} = \frac{m_3(C_{0,l} + C_{3,l})}{2} - \frac{m_3 + \delta}{2} \tag{27}$$

$$m_{2\mathcal{M}} = \frac{m_3(C_{0,l} - C_{3,l})}{2} - \frac{m_3 + \delta}{2} \tag{28}$$

Bajo el mismo régimen que para el estudio de Dirac, al hacer variar la masa m_3 dentro del mismo rango se observa el siguiente comportamiento de las diferencias de masa:

4.2. Caso 2

El segundo caso consta de considerar de manera distinta las contribuciones de las correcciones a las masas m_1 y m_2 , siendo esto:

$$\delta_1 + \delta_2 = 0, \quad \delta_1 - \delta_2 = \delta \tag{29}$$

Lo que arroja las expresiones para las masas;

$$m_{1\mathcal{M}} = \frac{m_3(C_{0,l} + C_{3,l})}{2} - \frac{m_3 + \delta}{2}$$

$$m_{2\mathcal{M}} = \frac{m_3(C_{0,l} - C_{3,l})}{2} - \frac{m_3 - \delta}{2}$$
(30)

$$m_{2\mathcal{M}} = \frac{m_3(C_{0,l} - C_{3,l})}{2} - \frac{m_3 - \delta}{2} \tag{31}$$

Haciendo que m_3 tome distintos valores dentro del rango especificado y graficando las curvas resultantes se obtiene;

4.3. Resultados parte 2

4.3.1. Caso 1

En el primer caso, si se observa solo la curva para la diferencia Δm_{21}^2 se puede notar que su comportamiento es de decaimiento y no se acercará al valor experimental para ningún valor de m_3 :

Variando también el valor de la corrección total δ dentro de un rango definido en la misma escala que los valores de m_3 y realizando un gráfico de contorno que indique la relación entre m_3 , δ , m_1 y m_2 se obtiene:

Figura 1: (a) blah (b) blah (c) blah (d) blah

Este caso sin embargo pierde interés por el hecho mismo de que los valores para Δm^2_{21} decaen en el rango dado.

4.3.2. Caso 2

Luego en el segundo caso, si se observa solo la curva para la diferencia Δm^2_{21} se puede notar que su comportamiento es de decaimiento aproximadamente hasta $m_3=0.05$ eV y después comienza a crecer por lo que podría acercarse al valor experimental para algún valor de m_3 mas grande:

Variando ahora el valor de la corrección total δ dentro del rango y realizando un gráfico de contorno que indique nuevamente la relación entre m_3 , δ , m_1 y m_2 se obtiene:

Figura 2: (a) blah (b) blah (c) blah (d) blah

Lo cual es mas conveniente puesto que los valores de ambos parámetros libres son positivos en el rango de interés. Resta entonces por encontrar un conjunto de valores, en este caso representado por un área donde exista la posibilidad de determinar dos valores para m_3 y δ que se ajusten de mejor manera a los valores experimentales dados.

Tomando los valores de error para las definiciones experimentales de Δm_{21}^2 y Δm_{32}^2 y restandolos de los contornos definidos anteriormente se construyen las gráficas:

Figura 3: (a) blah (b) blah

Superponiendo ambos contornos y centrando el enfoque solo en la intersección de las curvas para los contornos de nivel cero se obtiene:

Que para fines prácticos se puede 'recortar' a manera de mostrar solamente el área de interés.

Esto indica que podrían existir conjuntos de valores en m_3 , δ tal que las predicciones para las diferencias de masas al cuadrado de los neutrinos concuerden con los valores experimentales.

5. Cosas que faltan

- Falta poner descripciones a todas las figuras.
- Como se elige el rango para variar a m3 y delta?
- Conclusiones