Санкт-Петербургский государственный университет Математико-механический факультет Информационно-аналитические системы

Ким Юния Александровна 18.Б07-мм

Вычислительный практикум

Отчёт по заданию №3

Преподаватель: Евдокимова Т.О.

 ${
m Caнкт-}\Pi{
m erep}{
m fypr}$ 2021

Содержание

1.	Ссылка на код	3
2.	Постановка задачи	3
	Теоретическая часть	3
	3.1. QR-разложение	3
	Численный эксперимент	4
	4.1. Описание	4
	4.2. Результаты	4
		5

1. Ссылка на код

https://github.com/yuniyakim/MethodsOfComputation/pull/13

2. Постановка задачи

Задача — реализация метода решения СЛАУ под названием QR-разложение методом вращений, а также реализация метода регуляризации для нескольких плохо обусловленных матриц и определение лучшего параметра регуляризации.

3. Теоретическая часть

Исходная задача – решение СЛАУ вида Ax = b.

3.1. QR-разложение

Пусть матрица A — невырожденная вещественная. В таком случае можно сказать, что существуют единственные матрицы Q и R, такие что A = QR, Q — ортогональная, а R — верхняя треугольная с положительными элементами на главной диагонали.

Сущетсвует ортогональная матрица вращения T_{ij} , у которой только следующие элементы отличны от нуля: $t_{ii} = c_{ij}$, $t_{ij} = -s_{ij}$, $t_{ji} = s_{ij}$, $t_{jj} = c_{ij}$, $t_{kk} = 1$ для всех

$$k=1,..,n,k\neq i,j,c_{ij}=\frac{a_{ii}}{\sqrt{a_{ii}^2+a_{ji}^2}},s_{ij}=\frac{a_{ji}}{\sqrt{a_{ii}^2+a_{ji}^2}}.$$

$$\begin{bmatrix} 1&\cdots&0&0&0&\cdots&0&0&\cdots&0\\ \vdots&\ddots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\ 0&\cdots&1&0&0&\cdots&0&0&\cdots&0\\ 0&\cdots&0&c_{ij}&0&\cdots&0&-s_{ij}&0&\cdots&0\\ 0&\cdots&0&0&1&\cdots&0&0&\cdots&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&\ddots&\vdots&\vdots&\vdots&\vdots&\vdots\\ 0&\cdots&0&0&0&\cdots&1&0&0&\cdots&0\\ 0&\cdots&0&s_{ij}&0&\cdots&0&c_{ij}&0&\cdots&0\\ 0&\cdots&0&s_{ij}&0&\cdots&0&c_{ij}&0&\cdots&0\\ 0&\cdots&0&0&0&\cdots&0&0&1&\cdots&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\ 0&\cdots&0&0&0&\cdots&0&0&1&\cdots&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\ 0&\cdots&0&0&0&\cdots&0&0&0&\cdots&1 \end{bmatrix}$$
 Cyшествуют формулы для нахожления матрии Q и B

Существуют формулы для нахождения матриц Q и R через ортогональные матрицы вращения T_{ij} :

•
$$Q = \prod_{i=1}^{n-1} \prod_{j=i+1}^{n} T_{ij}^{T}$$
.

•
$$R = \prod_{i=n-1}^{1} \prod_{j=n}^{i+1} T_{ij} * A.$$

Таким образом решение исходной СЛАУ Ax = b заключается в решении системы с верхней треугольной матрицей $Rx = Q^T b$.

4. Численный эксперимент

4.1. Описание

Для численного эксперимента брались матрицы Гильберта порядков 4, 5, 6 и 7. Параметр α варьировался от 10^{-1} до 10^{-12} .

4.2. Результаты

Hilbert matrix of order 4.					Hilbert matrix of order 4.			
α	cond (A + αE)	x - x_a	b - Ax_α	α	cond (A + aE)	x - x_a	b - Ax_α	
0	15513.738738928416	0	0	0	15513.738738928416	2.7214934198456562E-11	1.1234667099445444E-14	
0.1	15198.05520000203	145.12642927251778	1.230769230769135	0.1	15198.05520000203	145.12642927250207	1.2307692307691538	
0.01	15132.224821592801	32.52833759560168	0.2758620689655001	0.01	15132.224821592801	32.528337595581974	0.27586206896550713	
0.001	15466.722125016608	3.713865316067835	0.03149606299212948	0.001	15466.722125016608	3.713865316070454	0.03149606299212771	
0.0001	15508.934501026793	0.3767259546304032	0.003194888178922995	0.0001	15508.934501026793	0.37672595468500425	0.00319488817891056	
1E-05	15513.2572732246	0.0377268353393004	0.0003199488081868651	1E-05	15513.2572732246	0.0377268353407321	0.0003199488081850888	
1E-06	15513.69058192336	0.00377322682560255	3.19994880122465E-05	1E-06	15513.69058192336	0.0037732268956832387	3.1999488010470145E-05	
1E-07	15513.733923125625	0.0003773281688122252	3.1999948841843207E-06	1E-07	15513.733923125625	0.0003773281710525035	3.1999948699734664E-06	
1E-08	15513.738257348969	3.7732908788857153E-05	3.199999500935746E-07	1E-08	15513.738257348969	3.773293129783869E-05	3.1999994654086105E-07	
1E-09	15513.738690773913	3.7733838128059915E-06	3.2000000871335966E-08	1E-09	15513.738690773913	3.77329488522976E-06	3.199998666048165E-08	
1E-10	15513.738734114811	3.773806161899095E-07	3.2000055938530176E-09	1E-10	15513.738734114811	3.773774805161485E-07	3.2000002647731316E-09	
1E-11	15513.738738449456	3.7755774862434036E-08	3.2000357921031885E-10	1E-11	15513.738738449456	3.779035089441337E-08	3.200071319437185E-10	
1E-12	15513.738738879874	3.8653228673659875E-09	3.199929309105404E-11	1E-12	15513.738738879874	3.843490325511479E-09	3.1999293091054043E-11	

(a) LU-разложение

(b) QR-разложение

Рисунок 4.1. Результаты матрицы Гильберта 4 порядка

Hilbert matrix of order 5.					Hilbert matrix of order 5.			
α	cond (A + αE)	x - x_α	b - Ax_a	lα	cond (A + aE)	x - x_a	b - Ax_α	
0	476607.2502423224	0	0	0	476607.2502423224	1.3771444928537285E-08	4.4938668397781776E-14	
0.1	489426.3324141757	1025.845843150612	1.597191412499339	0.1	489426.3324141757	1025.8458431496579	1.5971914124996518	
0.01	462592.0558135596	287.2368360967612	0.4472135954995226	0.01	462592.0558135596	287.23683609129034	0.4472135955000596	
0.001	474692.276629531	35.028882467965325	0.05453824335364192	0.001	474692.276629531	35.028882466529645	0.05453824335362922	
0.0001	476409.36069434066	3.581506702518172	0.005576229370287022	0.0001	476409.36069434066	3.5815067054639025	0.005576229370363287	
1E-05	476587.39579456596	0.35895631786299426	0.0005588772750898119	1E-05	476587.39579456596	0.35895632117301485	0.0005588772750961673	
1E-06	476605.264139339	0.035903714914588304	5.590030191482177E-05	1E-06	476605.264139339	0.035903729169833164	5.590030195295348E-05	
1E-07	476607.0516251624	0.003590470391385792	5.590155986135025E-06	1E-07	476607.0516251624	0.0035904672663688393	5.590155967069164E-06	
1E-08	476607.23037988006	0.0003590614233133974	5.59016916700117E-07	1E-08	476607.23037988006	0.0003590685331581003	5.590168213708054E-07	
1E-09	476607.248255909	3.592595473765507E-05	5.590171200694584E-08	1E-09	476607.248255909	3.592010305742076E-05	5.5901667519935964E-08	
1E-10	476607.25004290685	3.604745798583967E-06	5.5901680231722494E-09	1E-10	476607.25004290685	3.60844499279927E-06	5.590142601935819E-09	
1E-11	476607.25022248446	3.721641074785029E-07	5.590174401457238E-10	1E-11	476607.25022248446	3.7223864519854766E-07	5.58966596112289E-10	
1E-12	476607.25023920275	5.4105222189915565E-08	5.59456010422163E-11	1E-12	476607.25023920275	4.9520303879131714E-08	5.5945673236725845E-11	

(a) LU-разложение

(b) QR-разложение

Рисунок 4.2. Результаты матрицы Гильберта 5 порядка

Hilbert matrix of order 6.					Hilbert matrix of order 6.				
α	cond (A + αE)	x - x_α	b - Ax_α	α	cond (A + αE)	x - x_a	b - Ax_α		
0	14951058.640470082	0	0	0	14951058.640470082	3.4254690859750394E-07	3.0212691549237007E-13		
0.1	16126004.005345587	6806.541788991131	1.9169919726352098	0.1	16126004.005345587	6806.541789287662	1.9169919726159868		
0.01	14466210.384424854	2302.21266509495	0.6483943436721934	0.01	14466210.384424854	2302.2126640674455	0.6483943436896097		
0.001	14876487.639876958	302.2209681707392	0.08511740419022677	0.001	14876487.639876958	302.22096830731647	0.08511740418931013		
0.0001	14943248.822279872	31.197780894648897	0.008786531560599501	0.0001	14943248.822279872	31.197781125663223	0.008786531560181788		
1E-05	14950274.009042876	3.1298822059145115	0.0008814989676926866	1E-05	14950274.009042876	3.1298824104941283	0.0008814989673329902		
1E-06	14950980.141133988	0.31308916413558685	8.817845659007201E-05	1E-06	14950980.141133988	0.31309051016144995	8.817845631159727E-05		
1E-07	14951050.790406989	0.03131056399505059	8.818131396139328E-06	1E-07	14951050.790406989	0.031310926773314256	8.81813143094867E-06		
1E-08	14951057.8569046	0.0031314207266336875	8.81815869826729E-07	1E-08	14951057.8569046	0.003132434042096914	8.818162991419841E-07		
1E-09	14951058.563158356	0.00031333497729284633	8.818155681488366E-08	1E-09	14951058.563158356	0.00031370015058267543	8.818204414635243E-08		
1E-10	14951058.634177089	3.015204916134309E-05	8.818366860946723E-09	1E-10	14951058.634177089	3.221697145252073E-05	8.818378462206037E-09		
1E-11	14951058.639529917	3.131698986009441E-06	8.820571746725982E-10	1E-11	14951058.639529917	2.9960666898521755E-06	8.820455727034747E-10		
1E-12	14951058.639633762	1.3183682076163991E-06	8.799856953180092E-11	1E-12	14951058.639633762	3.501403153986754E-07	8.804449237550978E-11		

(a) LU-разложение

(b) QR-разложение

Рисунок 4.3. Результаты матрицы Гильберта 6 порядка

Hilbert m	atrix of order 7.						
α	cond (A + aE)	x - x_α	b - Ax_α	lα	cond (A + αE)	x - x_a	b - Ax_α
0	475367356.65265673	10	i - 01	0	475367356.65265673	7.49963894371557E-05	4.392786442249793E-12
0.1	537642672.9325366	43536.753728331205	2.1973188863451925	0.1	537642672.9325366	43536.75380037472	2.1973188856420385
0.01	459307971.92901814	17239.385857983765	0.8700792901106599	0.01	459307971.92901814	17239.385776570278	0.8700792903597974
0.001	472549363.0024246	2448.682935937153	0.12358609566039482	0.001	472549363.0024246	2448.683036261223	0.12358609561617907
0.0001	475067636.83164793	255.61418615742284	0.01290096670218661	0.0001	475067636.83164793	255.61427583816513	0.012900966699909219
1E-05	475337196.98744303	25.673902250903094	0.0012957832118702375	1E-05	475337196.98744303	25.674051577939846	0.001295783209936606
1E-06	475364338.0973986	2.568449272083931	0.00012963546223663071	1E-06	475364338.0973986	2.5685184147246467	0.00012963546326790075
1E-07	475367054.2285104	0.2568912490450661	1.2964117585947294E-05	1E-07	475367054.2285104	0.2569799508111276	1.2964117500008131E-05
1E-08	475367326.14974135	0.02567373537666407	1.2964183544265487E-06	1E-08	475367326.14974135	0.025731843482425198	1.2964147879546446E-06
1E-09	475367353.6145305	0.002426344044588283	1.2964143153236724E-07	1E-09	475367353.6145305	0.002528392628116221	1.2963975573995956E-07
1E-10	475367357.5601552	3.832892511593119E-05	1.296448271668595E-08	1E-10	475367357.5601552	0.00040108012910387283	1.2963193562751346E-08
1E-11	475367356.351966	0.00013478999874193007	1.294931958171225E-09	1E-11	475367356.351966	8.78322287604417E-06	1.294635084642261E-09
1E-12	475367356.26605624	8.957987389802108E-05	1.3085295758285285E-10	1E-12	475367356.26605624	0.00011677599007435657	1.327083846128932E-10

(a) LU-разложение

(b) QR-разложение

Рисунок 4.4. Результаты матрицы Гильберта 7 порядка

4.3. Анализ

В результате экспериментов была выявлена зависимость между параметром регуляризации, точностью решения, а также величиной числа обусловленности: при уменьшении параметра регуляризации α увеличивается точность решения новой СЛАУ, при этом можно заметить, что число обусловленности в общем растёт.

Кроме того, при сравнении результатов, полученных с помощью метода LU-разложения и QR-разложения, было замечено, что погрешности отличаются незначительно. У начального решения результаты при использовании метода LU-разложения немного лучше, чем при при использовании метода QR-разложения.