Inclusive Jet pt Analysis in Runll

Jan Lochman
Czech Technical University, Prague

Inclusive Jet Meeting

Introduction

- Measurement of double differential inclusive jet cross section in p_T and |y| at 13 TeV
- Test of NLO pQCD
- Analysis Base 2.1.27
- Jet Algorithm: AntiKt4LCTopoJets
- Everything I have written is on SVN: http://svn.cern.ch/guest/JLxAOD/JLxAOD/trunk/
- Based on exotics dijet framework xAODAnaHelpers: https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/XAODAnaHelpers

MC Samples

Datasets used:

```
mc14 13TeV.14791(0..7).Pythia8 AU2CT10 jetjet JZ(0..7)W.merge.AOD.e2743 s1982 s2008 r5787 r5853/
```

Or equivalently

mc14_13TeV.14791(0..7).Pythia8_AU2CT10_jetjet_JZ(0..7)W.merge.DAOD_JETM1.e2743_s1982_s2008_r5787_r5853_p1815/

JZ0W samples ignored - reasons will be shown

JZXW	pT [GeV]	XS [fb]	Filter Efficiency	# Events
JZ0W	0 - 20	7.8420E+13	9.7193E-01	3498000
JZ1W	20 - 80	7.8420E+13	2.7903E-04	2998000
JZ2W	80 - 200	5.7312E+10	5.2261E-03	500000
JZ3W	200 - 500	1.4478E+09	1.8068E-03	499500
JZ4W	500 - 1000	2.3093E+07	1.3276E-03	477000
JZ5W	1000 - 1500	2.3793E+05	5.0449E-03	499000
JZ6W	1500 - 2000	5.4279E+03	1.3886E-02	493500
JZ7W	2000 +	9.4172E+02	6.7141E-02	497000

Event weight:

(XS) . (Filter Efficiency) . (Weight)

(# Events)

Saved in EventInfoAux container

Binning

Analysis made in double differential binning

in p_T and |y| from 2012 analysis

 $p_T = 15:20:25:35:45:55:70:85:100:116:134:152:172:194:216:240:264:290:$

318:346:376:408:442:478:516:556:598:642:688:736:786:838:894:952:1012:

1076:1162:1310:1530:1992:2300:2800:3400:4100:5000:6000:7200 GeV

|y| = 0.0 : 0.5 : 1.0 : 1.5 : 2.0 : 2.5 : 3.0 : 3.5 : 4.0

Jet Calibration

- ApplyJetCalibration-00-03-28
- Implemented with JetCalibrator class from xAODAnaHelpers
- Configuration file: JES_Prerecommendation2015_Feb2015.config
- Calibration Sequence: JetArea Residual EtaJES
- Jet algorithm: AntiKt4LCTopo
- To be updated for 2015 recommendation

Cuts

p_T cut and y cut
 removed jets with p_T < 15 GeV and |y| > 4

MOST
IMPORTANT CUT
for JZ0W sample

- 0-jet cut
 removed events with no reco or no truth jets
- Leading Ratio (LR) cut
 LR = (p_T reco leading) / (p_T truth leading);
 kept events with 0.6 < LR < 1.4
 same cut used in 2012 analysis

In case there are at least two reco jets, (p_T reco leading) is taken as the average of two leading reco jets p_T

Reco Jets: Cut Results, JZ0-7W

Reco Jets: 0-Jet Cut, JZ0-7W

- Contribution of reco jets which were removed by 0-jet cut, for all JZSlices
- It can be seen, there is contribution only from JZ0,1W

Reco jets: 0-jet cut

Event #4667 from JZ0W sample:

/mc14_13TeV.147910.Pythia8_AU2CT10_jetjet_JZ0W.merge.AOD.e2743_s1982_s2008_r5787_r5853_tid01598021_00/ AOD.01598021. 000062.pool.root.1

Reco jets without cuts:

CALIB:

CALIB: pt: 125.786 -2.6443phi: 1.4586 **UNCALIB:** 97.6901 -2.6361phi: 1.4586 CALIB: 123.742 y: -0.5543phi: -1.838 pt: **UNCALIB:** pt: 94.7108 v: -0.5510phi: -1.838 y: -0.3061phi: 3.0896 CALIB: pt: 57.1304 #3 phi: **UNCALIB:** pt: 26.8852 -0.30383.0890

y: -1.2838phi: 0.4170 CALIB: pt: 45.0555 pt: 13.0524 y: -1.2685phi: 0.4170 UNCALIB: pt: 44.4577 v: 1.50811 phi: 2.7526

		•					
#7	CALIB: UNCALIB:	pt: pt:	42.7879 12.5796	y: y:	-0.2844 -0.2830	phi: phi:	1.2135 1.2135
#8	CALIB:	pt:	42.5615	v:	-0.9339	phi:	2.9635

Truth jets without cuts:

6	#1	TRUTH:	pt:	9.74696	у:	-1.4113	phi: 1.0435
							phi: 2.3951
							phi: 0.0370
0	#4	TRUTH:	pt:	6.32004	у:	-3.7754	phi: -1.489

And another 10 reco jets with p_T(CALIB) < 40 GeV

and

p_T(UNCALIB) < 15 GeV

in this event

Reco Jets: Cut Results, JZ1-7W

Truth Jets: Cut Results, JZ1-7W

Matching

For each pair of reco and truth jets (i,j) was calculated

$$dR_{ij} = \sqrt{d\phi_{ij}^2 + dy_{ij}^2}$$

 $d\phi_{ij}$ azimuthal angle and rapidity between ith reco and jth truth jet

If the minimum between all dR_{ij}'s fulfilled

$$\min\left(dR_{ij}\right) = dR_{pq} < 0.2$$

Jets (p,q) were matched

Reco Jets: Match Results, JZ1-7W

Truth Jets: Match Results, JZ1-7W

Reco & Truth: Matched+Unmatched, JZ1-7W

Reco & Truth Jets: All Rapidity Bins, JZ1-7W

Unfolding

- Used Iterative Dynamical Stabilized unfolding method with one iteration
- Unfolding was done as
 - SIMPLE UNFOLDING: matching truth and reco jets within the same rapidity bin.
 8 transfer matrices 46x46
 - 2. 2D UNFOLDING: migration between rapidity bins in matching procedure allowed.1 transfer matrix 368x368
- In the figure shown transfer matrix in |y|<0.5 region

 Library used: <u>https://svnweb.cern.ch/trac/atlasusr/browser/cjmeyer/Unfolding</u>

Transfer Matrix for 2D Unfolding

NLO pQCD Prediction

- Used Zdenek's calculations from SM Workshop
- CT10 NLO PDFs, μ_R & $\mu_F = p_T^{max}$
- Uncertainty calculated as the sum of α_S, PDF and Scale uncertainties

Path to NLO prediction:

/afs/cern.ch/user/z/zhubacek/public/ForPavel/13TeV_260115/stand

Histograms used: CT10nlo/pdfs/xsec_pdf_0 and from remaining histograms determined αs, PDF and Scale uncertainty:

Comparison with CT10 NLO Prediction

Conclusion

- Preliminary study of the double differential cross section in p_T na |y| from mc14_13TeV Pythia simulation
- Between Pythia (LO) and NLO pQCD there is difference < 40 % - in low pT region LO overwhelms the NLO whereas in high pT region the situation is reversed