alpha_ATLAS_LUMI_Run2 alpha CR12 shape E ggf 16 dEta 1 Xhh 1 alpha CR12 shape E ggf 16 dEta 1 Xhh 2 alpha_CR12_shape_E_ggf_16_dEta_2_Xhh_1 alpha_CR12_shape_E_ggf_16_dEta_2_Xhh_2 alpha CR12 shape E ggf 16 dEta 3 Xhh 1 alpha_CR12_shape_E_ggf_16_dEta_3_Xhh_2 alpha_CR12_shape_E_ggf_17_dEta_1_Xhh_1 alpha_CR12_shape_E_ggf_17_dEta_1_Xhh_2 alpha CR12 shape E ggf 17 dEta 2 Xhh 1 alpha_CR12_shape_E_ggf_17_dEta_2_Xhh_2 alpha_CR12_shape_E_ggf_17_dEta_3_Xhh_1 alpha_CR12_shape_E_ggf_17_dEta_3_Xhh_2 alpha_CR12_shape_E_ggf_18_dEta_1_Xhh_1 alpha_CR12_shape_E_ggf_18_dEta_1_Xhh_2 alpha_CR12_shape_E_ggf_18_dEta_2_Xhh_1 alpha_CR12_shape_E_ggf_18_dEta_2_Xhh_2 alpha CR12 shape E ggf 18 dEta 3 Xhh 1 alpha_CR12_shape_E_ggf_18_dEta_3_Xhh_2 alpha_CR12_shape_E_vbf_-1_dEta_1 ATLAS Internal Nuis. Param. Pull $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ $(\hat{\theta} - \theta_0)/\Delta\theta$

alpha_CR12_shape_E_vbf_-1_dEta_2 alpha CR12 shape N ggf 16 dEta 1 Xhh 1 alpha_CR12_shape_N_ggf_16_dEta_1_Xhh_2 alpha_CR12_shape_N_ggf_16_dEta_2_Xhh_1 alpha_CR12_shape_N_ggf_16_dEta_2_Xhh_2 alpha CR12 shape N ggf 16 dEta 3 Xhh 1 alpha_CR12_shape_N_ggf_16_dEta_3_Xhh_2 alpha_CR12_shape_N_ggf_17_dEta_1_Xhh_1 alpha_CR12_shape_N_ggf_17_dEta_1_Xhh_2 alpha CR12 shape N ggf 17 dEta 2 Xhh 1 alpha_CR12_shape_N_ggf_17_dEta_2_Xhh_2 alpha_CR12_shape_N_ggf_17_dEta_3_Xhh_1 alpha_CR12_shape_N_ggf_17_dEta_3_Xhh_2 alpha_CR12_shape_N_ggf_18_dEta_1_Xhh_1 alpha_CR12_shape_N_ggf_18_dEta_1_Xhh_2 alpha_CR12_shape_N_ggf_18_dEta_2_Xhh_1 alpha_CR12_shape_N_ggf_18_dEta_2_Xhh_2 alpha CR12 shape N ggf 18 dEta 3 Xhh 1 alpha_CR12_shape_N_ggf_18_dEta_3_Xhh_2 alpha_CR12_shape_N_vbf_-1_dEta_1

alpha_CR12_shape_N_vbf_-1_dEta_2 alpha CR12 shape S ggf 16 dEta 1 Xhh 1 alpha CR12 shape S ggf 16 dEta 1 Xhh 2 alpha_CR12_shape_S_ggf_16_dEta_2_Xhh_1 alpha_CR12_shape_S_ggf_16_dEta_2_Xhh_2 alpha CR12 shape S ggf 16 dEta 3 Xhh 1 alpha_CR12_shape_S_ggf_16_dEta_3_Xhh_2 alpha_CR12_shape_S_ggf_17_dEta_1_Xhh_1 alpha_CR12_shape_S_ggf_17_dEta_1_Xhh_2 alpha CR12 shape S ggf 17 dEta 2 Xhh 1 alpha_CR12_shape_S_ggf_17_dEta_2_Xhh_2 alpha_CR12_shape_S_ggf_17_dEta_3_Xhh_1 alpha_CR12_shape_S_ggf_17_dEta_3_Xhh_2 alpha_CR12_shape_S_ggf_18_dEta_1_Xhh_1 alpha_CR12_shape_S_ggf_18_dEta_1_Xhh_2 alpha_CR12_shape_S_ggf_18_dEta_2_Xhh_1 alpha_CR12_shape_S_ggf_18_dEta_2_Xhh_2 alpha CR12 shape S ggf 18 dEta 3 Xhh 1 alpha_CR12_shape_S_ggf_18_dEta_3_Xhh_2 alpha_CR12_shape_S_vbf_-1_dEta_1

alpha_CR12_shape_S_vbf_-1_dEta_2 alpha CR12 shape W ggf 16 dEta 1 Xhh 1 alpha_CR12_shape_W_ggf_16_dEta_1_Xhh_2 alpha_CR12_shape_W_ggf_16_dEta_2_Xhh_1 alpha_CR12_shape_W_ggf_16_dEta_2_Xhh_2 alpha_CR12_shape_W_ggf_16_dEta_3_Xhh_1 alpha_CR12_shape_W_ggf_16_dEta_3_Xhh_2 alpha_CR12_shape_W_ggf_17_dEta_1_Xhh_1 alpha_CR12_shape_W_ggf_17_dEta_1_Xhh_2 alpha CR12 shape W ggf 17 dEta 2 Xhh 1 alpha_CR12_shape_W_ggf_17_dEta_2_Xhh_2 alpha_CR12_shape_W_ggf_17_dEta_3_Xhh_1 alpha_CR12_shape_W_ggf_17_dEta_3_Xhh_2 alpha_CR12_shape_W_ggf_18_dEta_1_Xhh_1 alpha_CR12_shape_W_ggf_18_dEta_1_Xhh_2 alpha_CR12_shape_W_ggf_18_dEta_2_Xhh_1 alpha_CR12_shape_W_ggf_18_dEta_2_Xhh_2 alpha CR12 shape W ggf 18 dEta 3 Xhh 1 alpha_CR12_shape_W_ggf_18_dEta_3_Xhh_2 alpha_CR12_shape_W_vbf_-1_dEta_1

alpha_JET_EffectiveNP_Modelling1 alpha JET EffectiveNP Modelling2 alpha JET EffectiveNP Modelling3 alpha_JET_EffectiveNP_Modelling4 alpha JET EffectiveNP Statistical1 alpha JET EffectiveNP Statistical2 alpha_JET_EffectiveNP_Statistical3 alpha_JET_EffectiveNP_Statistical4 alpha JET EffectiveNP Statistical5 alpha JET EffectiveNP Statistical6 alpha JET EtaIntercalibration Modelling alpha_JET_EtaIntercalibration_NonClosure_2018data alpha_JET_EtaIntercalibration_NonClosure_highE alpha JET EtaIntercalibration NonClosure negEta alpha JET EtaIntercalibration NonClosure posEta alpha_JET_EtaIntercalibration_TotalStat alpha_JET_Flavor_Composition alpha JET Flavor Response alpha JET JER EffectiveNP 1 alpha_JET_JER_EffectiveNP_10

