Overfitting, Bias and Variance

Machine Learning Unit 9

Sudeshna Sarkar

Centre of Excellence in Artificial Intelligence

Indian Institute of Technology Kharagpur

Which Decision Tree?

Training Error = 0.05 Test Error = 0.2

Training Error = 0.1 Test Error = 0.15

Overfitting

Overfitting:

- Fit the training data too well
- But fail to generalize to new examples

Causes

- Noise
- Irrelevant Features
- Insufficient Data

Overfitting

A hypothesis h is said to overfit the training data if there is another hypothesis h' such that h has smaller error than h' on the training data but h has larger error on the test data than h'.

Overfitting with noisy data

Overfitting results in decision trees that are more complex than necessary

Regression

Regression

Regularization

• In a linear regression model overfitting is characterized by large weights

- Penalize large weights in Linear Regression
 - L2-Regularization or Ridge Regression
 - L1-Regularization

Overfitting vs Underfitting

Underfitting

- Not able to capture the concept
 - Features don't capture concept
 - Model is not powerful.

Overfitting

Fitting the data too well

Bias

BIAS

- Error caused because the model can not represent the concept
- Bias is the expected difference between the model prediction and the true y's.
- Higher Bias:
 - Decision tree of lower depth
 - Linear functions
 - Important features missing

VARIANCE

- Error caused because the learned model reacts to small changes (noise) in the training data
- High variance can cause an algorithm to model the random noise in the training data, rather than the intended outputs
- Higher Variance
 - Decision tree with large no of nodes
 - High degree polynomials
 - Many features

Bias and Variance

BIAS

• if we train models $f_D(X)$ on many training sets D, bias is the expected difference between their predictions and the true y's.

$$Bias = \mathbb{E}[f_D(X) - y]$$

VARIANCE

• if we train models $f_D(X)$ on many training sets D, variance is the variance of the estimates:

Variance
=
$$E\left[\left(f_D(X) - \bar{f}(X)\right)^2\right]$$

Bias and Variance

Bias and Variance Tradeoff

There is usually a bias-variance tradeoff caused by model complexity.

Complex models often have lower bias, but higher variance.

Simple models often have higher bias, but lower variance.

