対訳文対のアライメントを考慮したサブワード分割

西田 祥人, 二宮 崇, 後藤 功雄 (愛媛大学)

目的:対訳関係を考慮した良質なデータセットで機械翻訳をしたい

1. 課題: 従来のサブワード分割手法は対訳関係を考慮していない

- ・従来のサブワード分割手法は、言語ごとに独立に分割モデルを学習してあり、 対訳関係を考慮していない
- ・先行研究!!!では、EMアルゴリズムを用いて対訳文対のアライメント確率を学習 するが、外部のアライメントツールに依存する
- ⇒ <u>対訳文対のアライメント確率に加え、サブワードアライメント確率の学習もしたい</u>

[1] 松井ら (2023) バイリンガルサブワード分割のためのEMアルゴリズム. 言語処理学会年次大会.

2. 提案手法: EMアルゴリズムを用いて、対訳文対のサブワードの対応関係を学習

2.1 サブワード分割のための確率モデル

原言語文
$$\mathbf X$$
と目的言語文 $\mathbf Y$ の生起確率: $P(X,Y) pprox \sum_k \sum_l \sum_{a \in A(x^{(k)},y^{(l)})} P_U(x^{(k)}) P_U(y^{(l)}) \prod_{u,v \in a} \alpha_{uv}$

 $S(Y): Y \mathcal{O} top-L$ サブワード分割候補 $(y^{(1)}, y^{(2)}, ..., y^{(L)} \in S(Y))$ $S(X): X \mathcal{O} top-K$ サブワード分割候補 $(x^{(1)}, x^{(2)}, ..., x^{(K)} \in S(X))$ $A(x^{(k)}, y^{(l)}): x^{(k)} と y^{(l)} のサブワードのアライメントを返す関数$ $P_{II}(x)$: ユニグラム言語モデルが出力するサブワード列の生起確率 α_{vv} : 原言語側サブワードuと目的言語側サブワードvが翻訳(アライメント)関係にある確率(u,vの同時確率P(u,v))

2.2 EMアルゴリズムによるアライメント確率 α_{uv} の学習

$$E_{nkluv} \approx \frac{P_U(x_n^{(k)})P_U(y_n^{(l)})\prod_{u \in x_n^{(k)}} \sum_{v \in y_n^{(l)}} \alpha_{uv}^{\text{old}}}{\sum_{k'} \sum_{l'} P_U(x_n^{(k')})P_U(y_n^{(l')})\prod_{u \in x_n^{(k')}} \sum_{v \in y_n^{(l')}} \alpha_{uv}^{\text{old}}} C_{nkluv}$$

アライメントを繰り返すことで確率が更新

 C_{nkluv} : n番目の文のkとlのサブワード文対に サブワードuとvが同時に存在する回数

2.3 訓練文のサブワード分割

アライメント確率から、**対応関係が最も高いサブワード文対**を取得

$$\hat{k}, \hat{l} = \underset{k,l}{\operatorname{argmax}} P_U(x^{(k)}) P_U(y^{(l)}) \prod_{u,v \in a} \alpha_{uv}$$

TGT SW1 SRC SW1 SRC SW1 TGT SW1 TGT SW2 SRC SW2 TGT SW2 TGT SW3 SRC SW3 TGT SW3

2.4 評価文のサブワード分割

目的言語文のない評価文に対してはu, vの同時確率を**目的言語側サブワードで周辺化** \rightarrow 原言語のサブワード列を取得

u,vの同時確率の周辺化: $lpha'_u = \sum_{v \in V_{\mathrm{target}}} lpha_{uv}$ e e d drink e d drink

 $V_{\rm target}$:目的言語側のサブワード集合

$$\hat{k} = \underset{k}{\operatorname{argmax}} P_U(x^{(k)}) \prod_{u \in x^{(k)}} \alpha'_u$$

3. 評価実験:提案手法を評価した結果、従来手法と同等以上の性能を達成

3.1 実験設定

32宝騒結里

・データセット: ASPEC[2]

・ベースライン:SentencePiece^[3]

・ユニグラム言語モデル: Sentence Piece

・NMTモデル(Transformer): Fairseq[4]

サブワードの語彙サイズ

各言語:16,000

・分割候補数(K, L):10

・EMステップ数:5

	訓練用	検証用	評価用
ASPEC-JE	1,000,000	1,790	1,812
ASPEC-JC	672,315	2,090	2,107

提案手法の翻訳が改善した例

		英日	日英	中日	日中
D. E. (5)	ベースライン	27.2	27.0	28.9	35.4
BLEU ^[5]	提案手法	27.6	27.5	29.2	35.5
COMET ^[6]	ベースライン	0.8882	0.8182	0.9049	0.8675
COWELL	提案手法	0.8880	0.8195	0.9055	0.8680

分割結果		翻訳結果	
正解データ	quilibrious interval disorder	平衡間隔失調	
ベースライン	_ qui lib r ious _interval _disorder	巧 妙 な 区間 障害	
提案手法	_ qui lib <mark>ri ous</mark> _interval _disorder	平衡 間隔 障害	

[2] Nakazawa et al. (LREC 2016) ASPEC: Asian Scientific Paper Excerpt Corpus.

[5] Papineni et al. (ACL 2002) Bleu: a Method for Automatic Evaluation of Machine Translation. [3] Kudo & Richardson. (EMNLP 2018) SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing.

[4] Ott et al. (NAACL 2019) fairseg: A Fast, Extensible Toolkit for Sequence Modeling.

[6] Rei et al. (WMT 2022) COMET-22: Unbabel-IST 2022 Submission for the Metrics Shared Task