Math 1540: HW1

February 10, 2023

Book Problems:

55. If $(f,g) = h \neq 1$, then there must exist an extension field of F, E, which contains a root of h which is common between f and g since (f,g) = h

Else, (f,g) = 1, then there exists no field E containing both F and a common root of f(x) and g(x) since $(\exists a,b \in F)(af+bg=1)$ implies f and g share no roots $(a(x)f(x)+b(x)g(x)=1 \neq 0$ for all x).

56. (i) Let $f(x) = a_0 + a_1 x \dots + a_n x^n$ then:

$$(f(x))^p = (a_0 + a_1 x \dots + a_n x^n)^p$$

= $a_0^p + a_1^p (x)^p \dots + a_n^p (x^n)^p$

Because of Fermat's Little Theorem $a^p \equiv a \pmod{p}$:

$$= a_0 + a_1(x)^p \dots + a_n(x^n)^p$$

= $a_0 + a_1(x^p) \dots + a_n(x^p)^n$
= $f(x^p)$

- (ii) If we replace \mathbb{Z}_p with an infinite field, F, of characteristic p we can be no longer sure that Fermat's Little Theorem holds for all a_i in $f(x) = a_0 + a_1 x \dots + a_n x^n$. $x^p x$ only has p roots, and they are only the elements $\mathbb{Z}_p \subset F$. a_i could be in F and not \mathbb{Z}_p , so we are left will a less strong result: $(f(x))^p = a_0^p + a_1^p x^p \dots + a_p^n (x^p)^n = g(x^p)$
- 61. Let's factor $x^8 x$ in \mathbb{Z}_2

$$x^{8} - x$$

$$x(x^{7} - 1)$$

$$x(x - 1)(x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1)$$

Since we are in \mathbb{Z}_2 , 3 = 1 and we can factor it further:

$$x(x-1)(x^6 + x^5 + x^4 + 3x^3 + x^2 + x + 1)$$
$$x(x-1)(x^3 + x + 1)(x^3 + x^2 + 1)$$

Now we can use either x^3+x+1 or x^3+x^2+1 . I will use x^3+x+1 . $\mathbb{Z}_2/(x^3+x+1)\cong \mathbb{F}_8$ so our elements will be $1,x,x+1,x^2,x^2+1,x^2+x,x^2+x+1$

Therefore, our addition table will look like:

	0	1	x	x + 1	x^2	x^2 + 1	x^2 + x	x^2 + x + 1
0	0	1	x	x + 1	x^2	x^2 + 1	x^2 + x	x^2 + x + 1
1	1	0	x + 1	x	x^2 + 1	x^2	x^2 + x + 1	x^2 + x
×	x	x + 1	0	1	x^2 + x	x^2 + x + 1	x^2	x^2 + 1
x + 1	x + 1	x	1	0	x^2 + x + 1	x^2 + x	x^2 + 1	x^2
x^2	x^2	x^2 + 1	x^2 + x	x^2 + x + 1	0	1	x	x + 1
x^2 + 1	x^2 + 1	x^2	x^2 + x + 1	x^2 + x	1	0	x + 1	x
x^2 + x	x^2 + x	x^2 + x + 1	x^2	x^2 + 1	×	x + 1	0	1
x^2 + x + 1	x^2 + x + 1	x^2 + x	x^2 + 1	x^2	x + 1	x	1	0

And, our multiplication table will look like

	0	1	x	x + 1	x^2	x^2 + 1	x^2 + x	x^2 + x + 1
0	0	0	0	0	0	0	0	0
1	0	1	x	x + 1	x^2	x^2 + 1	x^2 + x	x^2 + x + 1
x	0	x	x^2	x^2 + x	x + 1	1	x^2 + x + 1	x^2 + 1
x + 1	0	x + 1	x^2 + 1	x^2 + 1	x^2 + x + 1	x^2	1	x
x^2	0	x^2	x + 1	x^2 + x + 1	x^2 + x	x	x^2 + 1	1
x^2 + 1	0	x^2 + 1	1	x^2	x	x^2 + x + 1	x + 1	x^2 + x
x^2 + x	0	x^2 + x	x^2 + x + 1	1	x^2 + 1	x + 1	x	x^2
x^2 + x + 1	0	x^2 + x + 1	x^2 + 1	x	1	x^2 + x	x^2	x+1

(Sorry for the non LaTeX, the tables were giving a lot of trouble)

62. If \mathbb{F}_4 was isomorphic to a subfield of \mathbb{F}_8 , there would have to be a field extension of \mathbb{F}_4 to \mathbb{F}_8 , a \mathbb{F}_4 vector space of dimension n; however this would imply $\exists n \in \mathbb{Z}, 4^n = 8$, which is not possible, so it is not possible that \mathbb{F}_4 is isomorphic to a subfield of \mathbb{F}_8 .

Given Problems:

1. f has no repeated roots if and only if (f, f') = 1 is equivalent to f has repeated roots if and only if $(f, f') \neq 1$

Assume f(x) has repeated roots then $f(x) = (x - \alpha)^k g(x)$ where (α) is a repeated root. If $f(x) = (x - \alpha)^k g(x)$, then $f'(x) = k(x - \alpha)^{k-1} g(x) + (x - \alpha) g'(x) = (x - \alpha)(k(x - \alpha)^{k-2} g(x) + g'(x))$. Therefore, $(x - \alpha)|(f, f') \Rightarrow (f, f') \neq 1$

Assume $(f, f') \neq 1$ then (f, f') is a non-constant polynomial, h(x). Then $f = h(x)g_1(x)$ and $f' = h(x)g_2(x)$ Therefore, f and f' share roots of h(x) and so f has repeated roots.

2. Let f = hf' and g = hg' where $h, f', g' \in F[x]$ and f' and g' are relatively prime. Then $\exists a, b \in F$ s.t:

$$af' + bg' = 1$$

which is equivalent to

$$h(af' + bg') = h(1)$$
$$haf' + hbg' = h$$
$$af + bg = h$$

Since $\exists a, b \in E$

$$af' + bg' = 1$$

in E, this implies

$$af + bq = h$$

Therefore, $(f, g)_F = (f, g)_E = h$

- 3. Eisenstein's Criterion says that if you have a polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, and a prime p dividing each a_i for $0 \le i < n$, but p doesn't divide a_n and p^2 doesn't divide a_0 , then f(x) is irreducible in $\mathbb{Q}[x]$. For $f(x) = x^n m$, the conditions to meet the criterion are simplified to $p|m \land p \nmid 1 \land p^2 \nmid m$ since $a_0 = m$ and $a_n = 1$. Let m be expressed as a prime factorization $p_1 \dots p_n$. By the definition of square free $(\forall p \in p_1 \dots p_n)(p^2 \nmid m)$. Therefore, $(\forall p \in p_1 \dots p_n)(p|m \land p \nmid 1 \land p^2 \nmid m)$.
- 4. Let $f(x) = x^4 + 6x^3 + 12x^2 + 6x + 1$ Let's apply a coordinate transformation to f(x). Since a coordinate transformation does not change whether a polynomial is irreducible, we can pick a clever coordinate transformation to make the problem simpler. Since there are multiple terms with positive coefficients that are multiples of 6 making a coordinate transformation of x-1 might be a good choice. $f(x-1) = 2-4x+2x^3+x^4$ Now we can use Eisenstein's Criterion more easily. Recall Eisenstein's Criterion says that if you have a polynomial $g(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, and a prime p dividing each a_i for $0 \le i < n$, but p doesn't divide a_n and p^2 doesn't divide a_0 , then g(x) is irreducible in $\mathbb{Q}[x]$. Using Eisenstein's criterion on f(x-1), we can see that

a prime p=2 divides each a_i for $0 \le i < n$ (2|2, -4, 2), p=2 doesn't divide $a_n=1$, and $p^2=4$ doesn't divide $a_0=2$; therefore, f(x-1) is irreducible in $\mathbb{Q}[x]$ and so f(x) is irreducible in $\mathbb{Q}[x]$.