

NAVAL Postgraduate School

OA3802 Computational Methods for Data Analytics

Text Mining and Natural Language Processing

Prof. Sam Buttrey
Fall AY 2020

The Nation's Premiere Defense Research University

Monterey, California
WWW.NPS.EDU

Admin Notes

- This is week 9 of 11 (not 10)
 - Remaining topics:
 - Spatial statistics and mapping
 - Visualization
 - Anything else I can think of
- New AWS instance starting 3 p.m. today
 - All your files will be deleted!

Thrusts in Text Mining

Search and Retrieval

Computational Linguistics

Natural Language Processing

...And of course these overlap

Search and Retrieval

- Search tries to find documents that match a words (or sets of words)
- Difficult to handle differences in spelling, synonyms, etc. automatically
- Direction: XML/XHTML encodes "metadata" about author, subject, date, etc.
- No new information generated
- No claim about understanding

Search vs Text Mining

- Search find documents that match
- Text mining seeks to deduce meaning from text (examples: IED reports, EOD team reports, Marine PCR's)...
- ...Or at least establishing similarities among documents

Computational Linguistics

- Reads lots of text docs., tries to extract statistical-type data (frequencies, cooccurrences etc.)
- That data would then be used in algorithms to locate parts of speech, resolve ambiguities, translate and so on
- Operates in aggregate over large bodies of documents

Natural Language Processing

- Turn sentences typed by humans into machine-readable "thoughts"
- "Safety is our organization's first priority"
- "I feel the XO puts too much emphasis on speed and not enough on safety"
- Very difficult in any language; perhaps it will never be foolproof since even humans can't do it perfectly
 - Words have multiple meanings, and so can sentences: "the man saw a boy with a telescope"

- Text mining requires us to extract information from free-form text
- Examples of data:
 - Web pages, blogs
 - Tweets and other social media input
 - Open-ended survey responses
 - Incident reports, press releases
 - Documents like theses, patent apps, journal articles

Examples of output:

- Categorization, classification
- Social media trends, early warning
- Sentiment analysis; positive and negative reviews
- Identify topics in document, where longer documents might span topics
- Label images using a combination of neural nets for the image and some sort of text analysis for the label

Text Mining Tasks: Low Level

- "Tokenizing" (extracting words)
- Stemming/lemmatization, removal of stop words
- Part-of-speech tagging
 - Lots of English words have ambiguous senses (noun and verb, for example)
- Named Entity Extraction
 - Produce a list of the people, places, dates, organizations, amounts (etc.) in a document
- Resolution of Coreferences
- Constructing the term-document matrix

- English words are separated by spaces, but:
 - Tokens should be "linguistically significant" and "methodologically useful"
 - Some tokens need two words ("kung fu"); some combinations are ambiguous ("Down Under")
 - Punctuation and abbreviations can confuse
 - "where is meadows dr. who asked"
 - Some hyphens split end-of-line words; others don't
 - "She's" = "she has" or "she is"
 - Dates and times, phone #s, e-mail/street addresses, SSNs, book citations...

- Stemming is the replacement of inflected forms by their base form (turn "bringing" but maybe not "brought" into "bring")
- Stemming is done one word at a time, without neighboring context; sometimes produces a root that is not a word
- Lemmatization uses the context of nearby words, maybe parts of speech indicators, to find the "lemma" – the root – that is always a word.
- Ex.: "dove" (n) ⇒ dove; "dove" (v) ⇒ dive"

- Stop words are words that can be removed with little loss of meaning ("the," "who" -- unless you're looking for "The Who" or "The The") but this might be context-dependent ("first" and "second")
- Most of these language-specific tasks will need to be done quite differently in other languages
 - One text handling tool, Udpipe, handles ~50 languages

Part-of-Speech Tagging

Chars A dog is chasing a boy on the playground

Tokens A dog is chasing a boy on the playground

Noun Aux Verb Noun Prep Det Det Det Noun Part of Speech (POS) Tagging (97%) Noun Phrase **Syntactic** Verb Phrase Prep Phrase **Structures** Parsing (>90%) Verb Phrase Sentence Semantics: some aspects a playground a boy -Entity/relation extraction A dog ON CHASE -Word sense disambiguation **Place Person** Animal -Sentiment analysis

Taken from Coursera: Natural Language Content Analysis; ChengXiang Zhai (2015)

Inter-entity distances (again)

- We may need to compute distances between character strings for web search to check spelling, to identify duplicates, or for record linkage (entity disambiguation)
 - We've met edit (Levenshtein) distance
 - Alternatives include Jaro-Winkler distance for comparing census entries (e.g. Geraldine Massey vs. Jeraldine Massie)
- Your text probably has typos!

- One thing can have two names (e.g. Napoleon, Bonaparte)
- One thing can have multiple titles (king, emperor), nicknames, patronymics
- A thing can be referred to by personal or relative pronouns, "former"/"latter," etc.
- E.g. Ruth B. Ginsberg: "the Justice," "the New York City native," "she," ...
- We would like to be clear about what thing each noun (etc.) in the text refers to

Relationships between Words

- Words exhibit synonymy, polysemy (same word, multiple meanings), plus hyper- and hyponymy
 - "Bear" means "carry" but also
 - "Bear" is a hyponym of "mammal" and a hypernym of "grizzly"
- Relationships between words can be paradigmatic (substitutable, like "May" and "April") or syntagmatic (frequent cooccurrence, like "car"/"drive," "cat"/"YouTube")

Relationships between Words

- Understanding these relationships can help with POS tagging, entity recognition, acronym expansion, learning of grammar
- Useful in summarizing: "in negative iPhone reviews, which words are most strongly related to 'battery'?"
- Direct application: broaden search queries (if I search for "Napoleon," add in Bonaparte)

Text Mining Tasks: High Level

- Document classification
 - What sort of document is this?
 - Summarization
 - Sentiment Analysis: product reviews, blog "chatter"
 - E.g. LDA (Bag of Words) Model
- Document clustering
 - Which documents go together in groups?
 - E.g. Vector space model
- Many of these tasks use the termdocument matrix

Constructing the TDM

- Term-document matrix (or TDM) or its transpose, document-term matrix (DTM)
 - "Term" = "word" or "unique token"
- Start with a corpus (pl. "corpora") of documents that serves as the training set
- Different corpora for different applications (e.g. biomedical vs. military)
- Suppose you tabulate all the words in the corpus
- Each word has a frequency in the corpus

Constructing the TDM (cont'd)

- Represent document d by a vector of counts across your vocabulary
- The wth count shows the number of times word w appears in the document
 - This is one column of the TDM
- Now construct a column like that for each of D documents
- We end up with an W×D matrix whose (w, d)th element is the number of times word w appears in document d

Adjusting TDM weights

- But some words are common in the corpus; if they're frequent in the document, that's not as interesting as when rare words are frequent in the document
- Moreover, some documents are just longer – they have more words
- So it's reasonable to weight the entries in the TDM to account for these two factors

One scheme: Tf-idf Weights

- Term frequency tf_{ij} is the count for each term i in doc j, normalized by the total number of all terms in doc j
- It's a vector whose elements add up to 1 across terms i for each document j
- It's common to use tf-idf: term frequency, inverse document frequency
- Weigh tf_{ij} by, e.g., log(1 + #docs/# with i)

Vector Space Model

- Consider each document (and each query)
 to be a vector in W-space where W is the
 number of terms in the corpus
- Each document is represented by a column in the TDM
- Measure document similarity by the cosine of the angle between them
- For $\{a_i\}$, $\{b_i\}$: $\Sigma_i (a_i b_i) / \sqrt{[\Sigma_i (a_i^2) \Sigma_i (b_i^2)]}$
- 0 = orthogonal = no overlap; 1 = match

Principal Components

- The TDM represents documents in a Wdimensional space, but...
- ...the TDM is very sparse -- mostly zeros
- One idea: use Principle Components to reduce the dimensionality of the space
- Then measure cosine similarity between these new representations
- This is Latent Semantic Analysis

Latent Dirichlet Allocation Model

- Understanding whole sentences is hard
- LDA uses the "bag of words" idea to describe a simple model for document generation
- Suppose that we have n topics, N words
- Each document is represented by a vector
 (a₁, a₂, ..., a_n) with Σa_i = 1:
- A distribution of documents across topics

- Topic t is described by a distribution across words $(b_{t1}, b_{t2}, ..., b_{tN})$
- Here's how you construct a bag of words representing a document:
- 1. Pick a topic from your distribution of topics; then
- 2. Pick a word from the distribution of words from that topic, and
- 3. Add that word to the bag

- Goal: identify the parameters (including the number of topics)
 - There are lots, but we have lots of data
 - Algorithms (like the "EM") exist
- Assign documents to topics: classification
- "Topic" is different from "content"
- No notion of sentiment here
- The assumption of interchangeable words seems to be not too costly

General Text Mining Problem

- (1) Represent this free-form text as something we can analyze (a vector in a space)
- (2) Determine what patterns the set of somethings show, among text items
- Outputs might be distances (for MDS), clusters, in the form of association rules ("If <safety concern> then <unhappiness>: covers 20%, accuracy 70%") or something else

One Author's View

Finding Finding Nuggets **Patterns**

> New Not New

Non-text DM

Database queries

Comp Ling

Retrieval

(Hearst, Proc. ACL '99)

Medical Diagnostic Example

- Experts can't read everything, especially outside their own fields
- Swanson (1988) used a text-mining-like approach (not all automated) to generate a new hypothesis about disease which, he says, was later found to be supported by evidence

- "Extracted evidence from titles of articles in the biomedical literature."
- Apparently only titles used this wouldn't work in statistics!
- "Extraction" does not seem to have been automatic – but this was nearly 20 years ago

Swanson Found That...

- Stress is associated with migraines
- Stress can lead to loss of magnesium
- Calcium channel blockers prevent some migraines
- Magnesium is a natural calcium channel blocker
- Spreading cortical depression (SCD) is implicated in some migraines
- High levels of magnesium inhibit SCD
- Migraine patients have high platelet aggregability
- Magnesium can suppress platelet aggregability

...and concluded that...

- ...magnesium deficiency might play a role in some migraines
- There does appear to be a relationship, although I'm not an expert here
- While not entirely automatic, the key point here is the (allegedly) new hypothesis, generated from text

Sentiment Analysis

- Move beyond "bag of words" to try to extract positive or negative sentiment in text
 - Claim: humans only agree on this 80% of the time; if true, this is a hard problem!
- One way: use humans to characterize sentiment, then fit supervised learning models
 - Possibly by reading every element in the training set
 - Possibly by assigning sentiment to words or phrases or emoji www.nps.edu

Language Models

- Language Models have applications in:
 - Speech, handwriting, optical character recognition
 - Predictive text (think cellphone text app)
 - POS tagging and parsing
- These might be supervised/unsupervised
- Example: Form bags from spam and from non-spam messages. Now assume a new e-mail is like a random sample from one of the two bags. Which bag is it more likely to have come from?
 - Easy extension to multiple classes

- E.g. Half the e-mail I get is spam
 Pr (S) = 0.5; Pr (~S) = 0.5;
- Imagine a set of messages pre-identified as spam or not
- Pr ("Rolex" | S) = 0.4; Pr ("Rolex" | ~S) = 0.01
- Pr (S | "Rolex") =

Pr ("Rolex" | S) Pr (S)

Pr ("Rolex" | S) Pr (S)+Pr ("Rolex" | ~S) Pr (~S) = 0.98.

How do we combine multiple words?

Prior

E.g. Half the e-mail I get is spam

$$-$$
 Pr (S) = 0.5; Pr (~S) = 0.5;

- Imagine a set of messages pressure spam or not
- Pr ("Rolex" | S) = 0.4; Pr ("Rolex")
- Pr (S | "Rolex") =

Pr ("Rolex" | S) Pr (S)

Pr ("Rolex" | S) Pr (S)+Pr ("Rolex" |
$$\sim$$
S) Pr (\sim S) = 0.98.

How do we combine multiple words?

- E.g. Half the e-mail I get is spam $- Pr(S) = 0.5; Pr(\sim S) = 0.5;$
- Imagine a set of messages pre-identified as spam or not
- Pr ("Rolex" | S) = 0.4; Pr ("Rolex" | ~S) = 0.01
- Pr (S | "Rolex") =

Pr ("Rolex" | S) Pr (S)+Pr ("R

Pr ("Rolex" | S) P Easy to estimate = 0.98.

How do we combine multiple

Posterior

- E.g. Half the e-mail I get is spam
 - $Pr(S) = 0.5; Pr(\sim S) = 0.5;$
- Imagine a set of messages presented in the set of mes
- Pr ("Rolex" | S) = 0.4; Pr ("Rolex"
- Pr (S | "Rolex") =

Pr ("Rolex" | S) Pr (S)

Pr ("Rolex" | S) Pr (S)+Pr ("Rolex" | ~S) Pr (~S)

= 0.98.

How do we combine multiple words?

Naïve Bayes Classifier

- This is an example of the Naïve Bayes Classifier
- Widely used beyond language analysis
- Suppose in some general classification problem we have k classes C₁,..., C_k
- Given a vector of (usually categoricals w/small numbers of levels) x, we seek

Pr
$$(y_i = C_j | x_{i1}, x_{i2}, ..., x_{ip})$$
 for each class j

=
$$Pr(C_i) Pr(\mathbf{x} \mid C_i) / Pr(\mathbf{x})$$
 ["the posterior"]

$$\propto \Pr(\mathbf{x} \mid C_i) \Pr(C_i) = \text{the joint } \Pr(\mathbf{x}, C_i)$$

Naïve Bayes Classifier (cont'd)

- Now Pr (\mathbf{x} ,Cj) = Pr ($x_1 \mid x_2, ..., x_p, C_j$) × Pr ($x_2, x_3, ..., x_p, C_j$) = Pr ($x_1 \mid x_2, ..., x_p, C_j$) × Pr ($x_2 \mid x_3, ..., x_p, C_j$) × Pr ($x_3, x_4, ..., x_p, C_j$)
- = $\Pr(x_1 \mid x_2, ..., x_p, C_j) \times \Pr(x_2 \mid x_3, ..., x_p, C_j)$ $\times ... \times \Pr(x_{p-1} \mid x_p, C_j) \times \Pr(x_p \mid C_j) \Pr(C_j)$
 - = Π Pr $(x_i | x_{i+1}, ..., x_p, C_i)$ call this J for joint
- And now comes the naïve part...

Naïve Bayes Classifier

- Let's assume that each x_i is conditionally independent of the others, given C
 - That's "naïve" because...why should they be?
- Then $J = Pr(C_j) \times \Pi Pr(x_i \mid C_j)$, and the posterior is proportional to J
- It's easy to estimate Pr (C_j) ["the prior"] from data
- The other part is p separate onedimensional density estimations; if the x's are categorical, these are just frequencies in the table of x_i | C_i

Naïve Bayes Considerations

- Other schemes exist for continuous x, but binning into discrete values is common
- Frequencies are often "smoothed" to accommodate rare combinations of C and x_i which would otherwise be given prob. 0
- Easy and fast
- Even when the Naïve Bayes estimates of Pr (C_j) aren't very good numerically, the largest of these is often a good choice for classification
- "Naïve Bayes is to $p(C_j, \mathbf{x})$ as logit is to $p(C_j|\mathbf{x})$ " say Ng and Jordan

- An n-gram model tracks the frequencies of consecutive sets of n words
- Extends the "bag of words" (1-gram) model
- "Words" might be:
 - proteins in protein sequencing
 - sounds in speech recognition
 - {A, C, T, G} in DNA sequencing
 - letters in text, handwriting, image
 - words in text
- Word n-grams are straightforward to tabulate across a large corpus of text

n-Gram Models

- If we tabulate all the 3-grams, say, in a corpus, then we can estimate the probability Pr (word | two preceding words)
 - And we can generate text: start with any two words, pick subsequent ones one at a time
- This is an order 2 Markov model
- Bigger n → better fidelity, except that bigger n → sparser data for estimating
- In its basic form, no mention of the position of the word inside a sentence

Word 2 Vec

- This is a scheme due to Mikolov et al (2013) and apparently patented by Google
 - Open-source implementations are available
- Uses (e.g.) a neural network to embed words in vector spaces in a way that is more sophisticated than just the TDM
 - Extension: sense embedding differentiates between a single word with two distinct meanings, like "tank" or "general"

- Under this scheme, vector differences between terms are preserved across the space
 - Though apparently there is no general agreement as to exactly why!
- So, e.g., France Paris = Germany –
 Berlin
 - Which means the set of items close to (France – Paris + Berlin) includes, among other things, "Germany"

- RSS feeds, streaming data, updated blogs, social media ever more common; we need schemes to digest and analyze large amounts of text
- Low-level tasks differ by language
- Clustering vs. classification (Unsupervised vs. supervised)
- Need to detect changes in time evolution of new topics or terms, distributions of topics etc.

Sites and Software

- Clustering: Yippy search engine (e.g., check out results for "Tiger")
- GATE.ac.uk: the GATE project
- Lingpipe: Competitors, Demo
- Weka (open-source Java-based data mining project) has a text module
 - Companion MOA for streaming data
- Library tm in R
- Lots more