1、综述	
1.1 论文	·····································
1.2 介绍	
2.Batch Nor	malization
3. Layer Noi	rmalization
4、Instance Normalization	
5、Group N	lormalization
6、Switchable Normalization	

1、综述

1.1 论文链接

1, Batch Normalization

https://arxiv.org/pdf/1502.03167.pdf

2, Layer Normalizaiton

https://arxiv.org/pdf/1607.06450v1.pdf

3, Instance Normalization

https://arxiv.org/pdf/1607.08022.pdf

https://github.com/DmitryUlyanov/texture nets

4, Group Normalization

https://arxiv.org/pdf/1803.08494.pdf

5. Switchable Normalization

https://arxiv.org/pdf/1806.10779.pdf

1.2 介绍

归一化层,目前主要有这几个方法,batch normalization(2015), layer normalization(2016), instance normalization(2017), group normalization(2018), switchable normalization(2018)。

将输入的图像shape记为[N, C, H, W],这几个方法主要的区别就是在,n: 样本数量 c: 图像通道数 w: 图像宽度 h: 图像高度

- batchnorm是在batch上,对NHW做归一化,对小batchsize效果不好;
- layernorm是在通道方向上,对CHW归一化,主要对rnn作用明显;
- instancenorm在图像像素上,对HW做归一化,用于风格化迁移;
- groupnorm将channel分组,然后再做归一化
- switchablenorm是将BN LN IN结合,赋予权重,让网络自己去学习归一 化层应该使用什么方法。

Figure 2. Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C as the channel axis, and (H, W) as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

2.Batch Normalization

首先,在进行训练之前,一般要对数据做归一化,使其分布一致,但是在深度神经网络训练过程中,通常以送入网络的每一个batch训练,这样每个batch具有不同的分布;此外,为了解决internal covarivate shift问题,这个问题定义是随着batch normalizaiton这篇论文提出的,在训练过程中,数据分布会发生变化,对下一层网络的学习带来困难。

所以batch normalization就是强行将数据拉回到均值为0,方差为1的正太分布上,这样不仅数据分布一致,而且避免发生梯度消失。

此外, internal corvariate shift和covariate shift是两回事, 前者是网络内部, 后者是针对输入数据, 比如我们在训练数据前做归一化等预处理操作。

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$ $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$ $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$ $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch. https://blog.csdn.net/liuxiao21

算法过程:

- 沿着通道计算每个batch的均值u
- 沿着通道计算每个batch的方差σ^2
- 对x做归一化, x' =(x-u)/开根号(σ^2+ε)
- 加入缩放和平移变量γ和β,归一化后的值, y=yx'+β

加入缩放平移变量的原因是:保证每一次数据经过归一化后还保留原有学习来的特征,同时又能完成归一化操作,加速训练。这两个参数是用来学习的参数。

import numpy as np

def Batchnorm(x, gamma, beta, bn param):

```
# x_shape:[B, C, H, W]
running_mean = bn_param['running_mean']
running_var = bn_param['running_var']
results = 0.
eps = 1e-5

x_mean = np.mean(x, axis=(0, 2, 3), keepdims=True)
x_var = np.var(x, axis=(0, 2, 3), keepdims=True0)
x_normalized = (x - x_mean) / np.sqrt(x_var + eps)
results = gamma * x_normalized + beta

# 因为在测试时是单个图片测试,这里保留训练时的均值和方差,用在后面测试时用
running_mean = momentum * running_mean + (1 - momentum) * x_mean
running_var = momentum * running_var + (1 - momentum) * x_var

bn_param['running_mean'] = running_mean
bn_param['running_var'] = running_var
return results, bn_param
```

3. Layer Normalization

batch normalization存在以下缺点:

- 对batchsize的大小比较敏感,由于每次计算均值和方差是在一个batch上,所以如果batchsize太小,则计算的均值、方差不足以代表整个数据分布;
- BN实际使用时需要计算并且保存某一层神经网络batch的均值和方差等统计信息,对于对一个固定深度的前向神经网络(DNN,CNN)使用BN,很方便;但对于RNN来说,sequence的长度是不一致的,换句话说RNN的深度不是固定的,不同的time-step需要保存不同的statics特征,可能存在一个特殊sequence比其他sequence长很多,这样training时,计算很麻烦。

与BN不同,LN是针对深度网络的某一层的所有神经元的输入按以下公式进行normalize操作。

$$\mu^{l} = \frac{1}{H} \sum_{i=1}^{H} a_{i}^{l} \qquad \sigma^{l} = \sqrt{\frac{1}{H} \sum_{\text{log. } c_{i} \neq 1}^{H} \left(a_{i}^{l} - \mu^{l}\right)^{2}}$$

$$\text{https://} \frac{1}{1} \sum_{\text{log. } c_{i} \neq 1}^{H} \left(a_{i}^{l} - \mu^{l}\right)^{2}$$

BN与LN的区别在于:

LN中同层神经元输入拥有相同的均值和方差,不同的输入样本有不同的均值和方差;

BN中则针对不同神经元输入计算均值和方差,同一个batch中的输入拥有相同的均值和方差。

所以,LN不依赖于batch的大小和输入sequence的深度,因此可以用于batchsize为1和RNN中对边长的输入sequence的normalize操作。

4. Instance Normalization

BN注重对每个batch进行归一化,保证数据分布一致,因为判别模型中结果取决于数据整体分布。

但是图像风格化中,生成结果主要依赖于某个图像实例,所以对整个batch归一化不适合图像风格化中,因而对HW做归一化。可以加速模型收敛,并且保持每个图像实例之间的独立。

$$y_{tijk} = \frac{x_{tijk} - \mu_{ti}}{\sqrt{\sigma_{ti}^2 + \epsilon}}, \quad \mu_{ti} = \frac{1}{HW} \sum_{l=1}^{W} \sum_{m=1}^{H} x_{tilm}, \quad \sigma_{ti}^2 = \frac{1}{HW} \sum_{ht, l=1/m=1, \text{ csdn. net/liuxiao214}}^{W} \sum_{tilm=1/m=1, \text{ csdn. net/liuxiao214}}^{H} (x_{tilm} - mu_{ti})^2.$$

def Instancenorm(x, gamma, beta):

```
# x_shape:[B, C, H, W]
results = 0.
eps = 1e-5

x_mean = np.mean(x, axis=(2, 3), keepdims=True)
x_var = np.var(x, axis=(2, 3), keepdims=True0)
x_normalized = (x - x_mean) / np.sqrt(x_var + eps)
results = gamma * x_normalized + beta
return results
```

5. Group Normalization

主要是针对Batch Normalization对小batchsize效果差,GN将channel方向分group,然后每个group内做归一化,算(C//G)*H*W的均值,这样与batchsize无关,不受其约束。

Group Norm. Formally, a Group Norm layer computes μ and σ in a set S_i defined as:

$$S_i = \{k \mid k_N = i_N, \lfloor \frac{k_C}{C/G} \rfloor = \lfloor \frac{i_C}{C/G} \rfloor \}.$$
 (7)

Here G is the number of groups, which is a pre-defined hyper-parameter (G=32) by default). C/G is the number of channels per group. $\lfloor \cdot \rfloor$ is the floor operation, and " $\lfloor \frac{k_C}{C/G} \rfloor = \lfloor \frac{i_C}{C/G} \rfloor$ " means that the indexes i and k are in the same group of channels, assuming each group of channels are stored in a sequential order along the C axis. GN computes μ and σ along the (H,W) axes and along a group of $\frac{C}{G}$ channels. The computation of GN is illustrated in Figure 2 (rightmost), which is a simple case of 2 groups (G=2) each having 3 channels. https://blog.csdn.net/liuxiao214

def GroupNorm(x, gamma, beta, G=16):

```
# x_shape:[B, C, H, W]
results = 0.
eps = 1e-5
x = np.reshape(x, (x.shape[0], G, x.shape[1]/16, x.shape[2], x.shape[3]))
x_mean = np.mean(x, axis=(2, 3, 4), keepdims=True)
x_var = np.var(x, axis=(2, 3, 4), keepdims=True0)
x_normalized = (x - x_mean) / np.sqrt(x_var + eps)
results = gamma * x_normalized + beta
return results
```

6. Switchable Normalization

本篇论文作者认为,

第一,归一化虽然提高模型泛化能力,然而归一化层的操作是人工设计的。在实际应用中,解决不同的问题原则上需要设计不同的归一化操作,并没有一个通用的归一化方法能够解决所有应用问题;

第二,一个深度神经网络往往包含几十个归一化层,通常这些归一化层都使用同样的归一化操作,因为手工为每一个归一化层设计操作需要进行大量的实验。

因此作者提出自适配归一化方法——Switchable Normalization (SN)来解决上述问题。与强化学习不同,SN使用可微分学习,为一个深度网络中的每一个归一化层确定合适的归一化操作。

公式:

SN has an intuitive expression

$$\hat{h}_{ncij} = \gamma \frac{h_{ncij} - \sum_{k \in \Omega} w_k \mu_k}{\sqrt{\sum_{k \in \Omega} w_k' \sigma_{k}^2 + \epsilon}} + \beta, \tag{3}$$

$$w_k = \frac{e^{\lambda_k}}{\sum_{z \in \{\text{in}, \ln, \text{bn}\}} e^{\lambda_z}}, \quad k \in \{\text{in}, \ln, \text{bn}\}, \sum_{z \in \{\text{in}, \ln, \text{bn}\}} e^{\lambda_z} e^{\lambda_z}$$

$$\mu_{\text{in}} = \frac{1}{HW} \sum_{i,j}^{H,W} h_{ncij}, \ \sigma_{\text{in}}^2 = \frac{1}{HW} \sum_{i,j}^{H,W} (h_{ncij} - \mu_{\text{in}})^2,$$

$$\mu_{\text{ln}} = \frac{1}{C} \sum_{c=1}^{C} \mu_{\text{in}}, \ \sigma_{\text{ln}}^2 = \frac{1}{C} \sum_{c=1}^{C} (\sigma_{\text{in}}^2 + \mu_{\text{in}}^2) - \mu_{\text{ln}}^2,$$

$$\mu_{\text{bn}} = \frac{1}{N} \sum_{n=1}^{N} \mu_{\text{in}}, \ \sigma_{\text{bn}}^2 = \frac{1}{N} \sum_{n=1}^{N} (\sigma_{\text{in}}^2 + \mu_{\text{in}}^2) - \mu_{\text{bn}}^2, \ (5)$$