# Credit Card Default Prediction

#### **Motivation**

- Intrigued by the idea of influencing customer behavior positively to help them make better financial decisions.
- From personal experience, I have found it personally hard to manage credit card payments and I have ended up defaulting them multiple times.
- If had known at the start of a month that I would be potentially defaulting a credit card bill, I would have found ways to cut back on my spending.
- Without risk assessment on the repayment ability of customers, banks could potentially find themselves in crisis.

#### **Problem Statement**

- 1. To predict the likelihood of a credit card user defaulting using on a monthly payment based on a 6-month payment history and demographic features.
- 2. To discern patterns on the results derived from supervised learning and attempt to clusters the users into varying levels of risk.

#### **Dataset**

- The dataset contains payment information from October, 2005, from a reputed bank (a cash and credit card issuer) in Taiwan and the targets were credit card holders of the bank.
- Among 30,000 observations, 5529 observations (22.12%) were records of credit card defaulters.
- There are two types of features in the dataset
  - Demographic Features Age, Gender, Education, and Marital Status
  - Customer Financial Behavior Features Credit Card Limit, payment history and bill statements from the last 6 months.

#### **Evaluation Setup**

- Data would be split into train and validation randomly.
  - Train Validation set split (25,000 5000)
- Key Performance Indicators Supervised Learning (Order of Precedence)
  - F-1 Score
  - AUC
  - False Positive Rate
  - Accuracy
- Key Performance Indicators Unsupervised Learning (Order of Precedence)
  - Elbow curves for number of distinct clusters
  - Silhouette scores

#### Results Supervised Learning Model

| KPI           | Logistic Regression | Random Forest | Gradient Boosting | Neural Network |
|---------------|---------------------|---------------|-------------------|----------------|
| F1 Score      | 0.37                | 0.47          | 0.45              | 0.51           |
| AUC           | 0.61                | 0.65          | 0.65              | 0.68           |
| FPR (%)       | 2.41                | 3.70          | 3.88              | 5.91           |
| Accuracy (%)  | 82.10               | 83.26         | 82.76             | 82.90          |
| Precision (%) | 73.09               | 71.54         | 69.52             | 65.17          |
| Recall (%)    | 24.39               | 34.69         | 32.99             | 41.21          |

Neural Network (Adam optimizer and 5 hidden layers with dropout layers) outperforms all the traditional machine learning model after substantial tuning.

### **Tuning Neural Network**

Switch to Jupyter Notebook - Link

#### **Unsupervised Learning - Procedure**

- 1. Use predictions made on the test set by the best model (neural network with adam optimizer and 6 hidden layers).
- 2. Decompose the X- feature space (84 dimensions) into 2 principal components for easier evaluation as some features are one-hot encoded.
- 3. Use elbow curve to figure out the appropriate number of clusters for the dataset.
- 4. Use silhouette score to ratify the significance of clusters.

#### **Unsupervised Learning**



| Number of Clusters | Silhouette Score |  |
|--------------------|------------------|--|
| 3                  | 0.480457047      |  |
| 4                  | 0.468868967      |  |
| 5                  | 0.472492888      |  |
| 6                  | 0.448608291      |  |
| 7                  | 0.444949954      |  |

Elbow Curve

Silhouette Score

#### **Unsupervised Learning Results**

#### Silhouette analysis for KMeans clustering on sample data with n\_clusters = 3





## **Unsupervised Learning - Percentile Based Clusters**



#### **Conclusions**

- Neural Nets performed the best with a F1 score of 0.51 and a AUC of 0.67
- Based on the predictions, it was possible to segment the user group into 3 distinct groups although it's hard to interpret the clusters.
- With more features like FICO scores or household income, the accuracy of the model can
  definitely improve and the clusters will become more interpretable. Payment date related data,
  financial prudence