Estadística Inferencial

Capítulo X - Ejercicio 56

Aaric Llerena Medina

El gerente de ventas de pantalones "INCA" quiere saber si una reducción del 5 % en el precio de su producto es suficiente para aumentar sus ventas. Para comprobar esta hipótesis el fabricante seleccionó en forma aleatoria 10 sucursales donde se vendió el producto a precio normal y otras 10 sucursales donde se vendió a precio de oferta. El número de unidades vendidas durante la semana pasada fue:

Suponga que cada una de tales ventas se distribuyen aproximadamente normal. En el nivel de significación de 0.05.

- a) ¿Se puede concluir que son iguales las varianzas de los precios?
- b) ¿Se puede inferir que la reducción del precio aumenta las ventas?

Solución:

Calculando los datos necesarios:

	Oferta	$(x_i - x_{\text{Oferta}})^2$		Normal	$(x_i - x_{\text{Normal}})^2$
	55	2		50	5.29
	56	0		45	53.29
	57	0		49	10.89
	56	0		50	5.29
	58	2		38	204.49
	53	12		58	32.49
	54	6		63	114.49
	59	6		37	234.09
	60	12		48	18.49
	57	0.25		85	1,069.29
Cantidad	10		Cantidad	10	
Suma	565	43	Suma	523	1,748.10
Promedio	56.50		Promedic	52.30	
Varianza		4.72	Varianza		194.23

a) Se plantea las hipótesis:

$$H_0: \sigma_{\text{oferta}}^2 = \sigma_{\text{normal}}^2 \quad \leadsto \quad \text{(Las varianzas de los precios son iguales)}$$

$$H_1: \sigma_{
m oferta}^2
eq \sigma_{
m normal}^2 \quad \leadsto \quad ({
m Las\ varianzas\ de\ los\ precios\ no\ son\ iguales})$$

Para determinar si las varianzas son iguales, se determina el estadístico F:

$$F = \frac{\sigma_{\text{normal}}^2}{\sigma_{\text{oferta}}^2} = \frac{194.23}{4.72} \approx 41.1504$$

Para un nivel de significación de 0.05 y con 9 grados de libertad para el numerador y 9 grados de libertad para el denominador, el valor crítico de $F_{0.05/2,9,9} \approx 4.0260$.

Como $F_{\rm cal}=41.1504>4.0260$ se rechaza la hipótesis nula. Por lo tanto, hay evidencia suficiente para concluir que las varianzas de las ventas no son iguales con un α de 0.05.

b) Para determinar si la reducción del precio aumenta las ventas, se utiliza una prueba t unilateral con varianzas desiguales.

$$H_0: \mu_{\text{oferta}} \leq \mu_{\text{normal}} \quad \leadsto \quad \text{(No hay diferencia en las ventas medias)}$$

$$H_1: \mu_{ ext{oferta}} > \mu_{ ext{normal}} \quad \leadsto \quad \text{(La reducción del precio aumenta las ventas)}$$

Dado que las varianzas no son homogéneas, se utiliza la prueba t para dos muestras independientes con varianzas desiguales (prueba de Welch). Por ello, el estadístico de prueba:

$$t = \frac{\bar{X}_{\text{oferta}} - \bar{X}_{\text{normal}}}{\sqrt{\frac{s_{\text{oferta}}^2}{n_{\text{normal}}} + \frac{s_{\text{normal}}^2}{n_{\text{normal}}}}} = \frac{56.50 - 52.30}{\sqrt{\frac{4.72}{10} + \frac{194.23}{10}}} = \frac{4.2}{4.4604} \approx 0.9416$$

Los grados de libertad aproximados se calcula como:

$$df = \frac{\left(\frac{s_{\text{oferta}}^2}{n_{\text{oferta}}} + \frac{s_{\text{normal}}^2}{n_{\text{normal}}}\right)^2}{\left(\frac{s_{\text{oferta}}^2}{n_{\text{oferta}}}\right)^2} + \left(\frac{s_{\text{normal}}^2}{n_{\text{normal}}}\right)^2}{\frac{s_{\text{normal}}^2}{n_{\text{oferta}} - 1}} + \frac{\left(\frac{s_{\text{normal}}^2}{n_{\text{normal}}}\right)^2}{n_{\text{normal}} - 1} = \frac{\left(\frac{4.72}{10} + \frac{194.23}{10}\right)^2}{\left(\frac{4.72}{10}\right)^2} + \frac{\left(\frac{194.23}{10}\right)^2}{10 - 1} = \frac{(19.895)^2}{41.9417} = 9.4372 \approx 9$$

Para un nivel de significación de 5 % ($\alpha = 0.05$) y una prueba unilateral, el valor crítico de t con 9 grados de libertad es $t_{1-0.05,9} \approx 1.8331$. Por lo que la región de rechazo es t > 1.8331.

El valor calculado del estadístico de prueba es $t \approx 0.9416$ y como es menor que 1.8331 no se acepta la hipótesis nula. Por lo tanto, no hay pruebas significativas de que la reducción de precios aumente las ventas.