ISEM 501-90 Information and Communications Technologies Wednesday June 7, 2017

Agenda:

1. Assignment: Chapters 3 and 4

2. Case Study: Amazon Web Services

Class Notes

Download this AWS article

Assignment 1: Chapters 3 and 4

Module 1 - Hardware/Software

Download these 3 PDFs

Essays due June 21, 2017

- ITC Concepts Chapters 3 and 4
- Notes for Chapter 3
- Notes for Chapter 4
- Essays for Chapters 3 and 4 Due June 21, 2017

Essay Instructions (See Moodle Page)

Summary:

Instructions

You are to write two (2) essays for this assignment, picking from the topics listed below.

You must pick one hardware topic, and one software topic.

Remember to follow the format for essays EXACTLY, and to include references for the work you researched and used for additional information.

CHAPTER 3: Hardware

(PICK ONE HARDWARE QUESTION ONLY)

- 1. Refer to Figure 3.1 in the text. Has this architecture changed in 10 years? Where have the most advances been made? What is limiting advances in each component?
- 2. Refer to Table 3.3. What storage technologies have been introduced since this chart was produced? What is your prediction for the next 5-10 years for storage?
- 3. Update Table 3.4 to include current Types of Computer Systems. What is your prediction for the next 5-10 years for computer systems?
- 4. Update Figure 3.3 to show the latest Intel chips. How much did each of the Pentium processors cost when they were introduced?. What is your prediction for the next 5-10 years for CPUs?
- 5. Refer to Table 3.2, showing various types of memory. What memory technologies have been introduced since this chart was produced? What is your prediction for the next 5-10 years for memory?

CHAPTER 4: Software

(PICK ONE SOFTWARE QUESTION ONLY)

- 1. Identify the most common software you use at work and and home. How did you choose it? What features do you like/dislike? What criteria do you use when judging software?
- 2. Update Table 4.5, ranking the example software by popularity. Note which software packages are no longer used, and add new ones. Are there new types of software (column 1) that did not exist when the article was written 10 years ago?
- 3. Update Table 4.9, and give examples of programming languages. What is your prediction for the next 5-10 years?
- 4. The chapter does not discuss security issues such as viruses and break-ins. Identify and discuss the major security problems that have been in the news over the last 10 years.

Note: You will upload ONE document that contains BOTH essays.

Case Study – AWS: Amazon Web Services

RUN MICROSERVICES ON AWS Learn to build and scale containerized microservices with Amazon ECS

DEV TOOLS: AWS X-RAY Analyze and debug production, distributed applications

AMAZON KINESIS
Real-time clickstream anomaly detection with Amazon Kinesis Analytics

Abstract

Amazon Web Services - Building a Real-Time Bidding Platform on AWS

February 2016

Abstract

Amazon Web Services (AWS) is a flexible, cost-effective, easy-to-use, global cloud computing platform. The AWS cloud delivers a comprehensive portfolio of secure and scalable cloud computing services in a self-service, pay-as-you-go model, with zero capital expense needed to manage your real-time bidding platform. This whitepaper helps architects, engineers, advertisers, and developers understand real-time bidding (RTB) and the services available in AWS that can be used for RTB. This paper will showcase the RTB platform reference architecture used by customers today, as well as provide additional resources to get started with building an RTB platform on AWS.

Conclusion

Conclusion

Real-time bidding is a growing trend that has many different components required to effectively deliver intelligent real-time purchasing of media. The AWS platform is a perfect fit for each component of the RTB platform due to the global reach and breadth of services. An RTB architecture on AWS allows you to get the real-time performance necessary for RTB as well as reduce the overall cost and complexity involved in running an RTB platform. The result is a flexible big data

of 21

Web Services – Building a Real-Time Bidding Platform on AWS

February 2016

architecture that is able to scale along with your business on the AWS global infrastructure. Deploying on AWS offloads a significant amount of the complexity of operating a scalable real-time infrastructure, so that you can focus on what differentiates you from your competitors and focus on making the best possible bidding strategies for your customers.

	Student Term to look up
Terms	Alkanti, Hemanth Reddy Elastic
	Alshurafa, Aman Latency
	Bandaru, Nishanth AWS
	Bhasale, Satyajeet Mukesh RTB
	Chaudhari, Mitul Rameshbhai Spot Instances
	Chen, Dandan Reserved Instances
	Huang, Xiaofei scalable
	Jiang, Yuanqing S3
) Jonnalagadda, Kiran Raj VPC
	Kikani, Darshak Madhubhai DynamoDB
	2 Kolesnyk, Yuliya Online advertising
	Liang, Jiayin granular
	Liu, Yingchen impression
	Maddipatla, Ramprasad ecosystem
	Parupudi, Ishwarya ad-exchange
	Peddolla, Praveen Kumar third-party data providers
	Qiang, Jiaqing Bid Traffic
	Ranghavajhala, Praveen Analysis Traffic
	Ren, Yuejiao tracking pixels
	Saxena, Abhinav AWS Lambda
	Singh, Manmohan data repository
	Soni, Bhavneet replication
	Soundaram, Vijay Kumar machine learning
	Trivedi, Tapan multi-tenant
	Vaddadi, Ashwini Kumar EC2
	7 Voore, Santosh Karthik scalable
	3 Wu, Jieying S3
	Zhang, Cuiping VPC
7/6/17	Zhang, Jiahe DynamoDB
	Zou, Xiuji AWS Lambda 7

Structure

Contents

Abstract	4	
Introduction		
Real-Time Bidding Explained		
Elastic Nature of Advertising and Ad Tech	5	
Why Speed Matters	7	
Advertising Is Global	8	
The Economics of RTB	8	
Components of a RTB Platform	8	
RTB Platform Diagram	11	
Real Time Bidding on AWS	11	
Elasticity on AWS	12	
Low Latency Networking on AWS	12	
AWS Global Footprint	12	
The Economics of RTB on AWS	13	
Components of an RTB Platform on AWS	13	
Reference Architecture Example	19	
Citations	19	
Conclusion	19	
Contributors		
Further Reading		
Notes		

Figure 2: Daily Load Pattern for RTB

Figure 3: RTB Platform Components

Figure 5: Example Reference Architecture

Contributors

The following individuals and organizations contributed to this document:

- Steve Boltuch, solutions architect, Amazon Web Services
- Chris Marshall, solutions architect, Amazon Web Services
- Marco Pedroso, software engineer, A9
- Erik Swensson, solutions architect manager, Amazon Web Services
- Dmitri Tchikatilov, business development manager, Amazon Web Services
- Vlad Vlasceanu, solutions architect, Amazon Web Services

Further Reading

For additional help, please consult the following sources:

- IAB Real Time Bidding Project
- Beating the Speed of Light with Your Infrastructure on AWS
- Deploying an RTBkit on AWS with a CloudFormation Template

Notes

- ¹ US Programmatic ad spend to double by 2016 eMarketer analysis
- ² US Programmatic digital display ad spending 2014-2017 eMarketer analysis2014-2017
- ³ <u>US Programmatic ad spend to double by 2016</u> eMarketer analysis