STAT6201: Theoretical Statistics I

Satvik Saha

Homework 5

- 1. Let $X \mid \theta \sim f(x \mid \theta), \ \theta \mid \lambda \sim \pi(\theta \mid \lambda), \ \text{and} \ \lambda \sim \psi(\lambda).$
 - (a) The mutual information

$$I(X,Y) = \mathrm{KL}(P_{X,Y}, P_X \otimes P_Y) \ge 0$$

simply by the properties of the KL divergence (which in turn is due to Jensen's inequality). Furthermore, we have equality if and only if $P_{X,Y} = P_X \otimes P_Y$; but this is precisely the criterion for independence of X and Y.

(b) Note that $f(x, \lambda) = \psi(\lambda \mid x) m(x)$. We have

$$I(X,\lambda) = \mathbb{E}_{X,\lambda} \left[\log \left(\frac{f(X,\lambda)}{m(X)\psi(\lambda)} \right) \right]$$

$$= \mathbb{E}_X \left[\mathbb{E}_{\lambda|X} \left[\log \left(\frac{f(X,\lambda)}{m(X)\psi(\lambda)} \right) \right] \right]$$

$$= \mathbb{E}_X \left[\mathbb{E}_{\lambda|X} \left[\log \left(\frac{\psi(\lambda \mid X)}{\psi(\lambda)} \right) \right] \right]$$

$$= \mathbb{E}_X \left[\text{KL}(\psi(\lambda \mid X), \psi(\lambda)) \right].$$

(c) The same calculations will give

$$I(X, \theta) = \mathbb{E}_X \left[KL(\pi(\theta \mid X), \pi(\theta)) \right].$$

Using the fact that

$$KL(\psi(\lambda \mid X), \psi(\lambda)) \le KL(\pi(\theta \mid X), \pi(\theta)),$$

taking expectations with respect to X immediately gives $I(X, \lambda) \leq I(X, \theta)$.

2. Check

$$\begin{split} P(U < \rho(Y)) &= \int P(U < \rho(y)) g(y) \; dy \\ &= \int \rho(y) g(y) \; dy \\ &= \frac{1}{M} \int f(y) \; dy \\ &= \frac{1}{M}. \end{split}$$

Thus,

$$\begin{split} P(X \in A) &= P(Y \in A \mid U < \rho(Y)) \\ &= \frac{P(Y \in A, U < \rho(Y))}{P(U < \rho(Y))} \\ &= M \int_A \rho(y) g(y) \, dy \\ &= \int_A f(y) \, dy. \end{split}$$

It follows that $X \sim f$.

- 3. We have the closed unit ball \mathcal{U}_p in \mathbb{R}^p , and the unit sphere $\partial \mathcal{U}_p$.
 - (a) Define

$$h: \mathbb{R}^p \to \partial \mathcal{U}_p, \qquad x \mapsto x/\|x\|_2$$
.

Suppose that Y is spherically symmetric. To show that h(Y) is uniformly distributed on $\partial \mathcal{U}_p$, it suffices to show that h(Y) is spherically symmetric. Indeed, for $H \in O_p(\mathbb{R})$, we have

$$Hh(Y) = \frac{HY}{\|Y\|_2} = \frac{HY}{\|HY\|_2} = h(HY) \stackrel{d}{=} h(Y).$$

The last equality follows since $HY \stackrel{d}{=} Y$.

(b) Suppose that $X \sim \text{Uniform}(\mathcal{U}_p)$. Note that its density is

$$f_X = C\mathbf{1}_{\mathcal{U}_p} = C\mathbf{1}_{[0,1]}(\|\cdot\|_2),$$

where C is a normalizing constant (the reciprocal of the volume of \mathcal{U}_p). Since this is purely a function of $||x||_2$, we have X spherically symmetric.

Next, we claim that V=h(X) and $R=\|X\|_2$ are independent. Recall that V is uniformly distributed on $\partial \mathcal{U}_p$ and is spherically symmetric. Note that for $r\in[0,1]$, we have

$$P(R \le r) = P(X \in r\mathcal{U}_p) = \frac{\operatorname{vol}(r\mathcal{U}_p)}{\operatorname{vol}(\mathcal{U}_p)} = r^p.$$

Thus, we have a density

$$f_R(r) = pr^{p-1} \mathbf{1}_{[0,1]}(r).$$

Now, for $A \subseteq \partial \mathcal{U}_p$, observe that

$$P(R \le r, V \in A) = P(X \in cone_r(A)) = \frac{vol(cone_r(A))}{vol(\mathcal{U}_n)},$$

where $cone_r(A) = \bigcup_{r' \in [0,r]} r'A$. But this is just

$$\frac{\operatorname{vol}(\operatorname{cone}_r(A))}{\operatorname{vol}(\operatorname{cone}_1(A))} \cdot \frac{\operatorname{vol}(\operatorname{cone}_1(A))}{\operatorname{vol}(\mathcal{U}_p)} = r^p \cdot \frac{\operatorname{area}(A)}{\operatorname{area}(\partial \mathcal{U}_p)} = P(R \leq r) \cdot P(V \in A).$$

It follows that V and R are independent.

Remark: Here, area(·) refers to the surface area i.e. the Lebesgue measure on $\partial \mathcal{U}_p$. We typically define for measurable $A \subseteq \partial \mathcal{U}_p$

$$\operatorname{area}(A) = p \cdot \operatorname{vol}(\operatorname{cone}_1(A)).$$

With this, area(·) becomes the measure (up to normalization) describing the distribution of V = h(X), i.e. the uniform distribution on $\partial \mathcal{U}_p$. This can be verified by checking that area(·) is spherically symmetric.

As a consequence, we have

$$\frac{\operatorname{vol}(\operatorname{cone}_{1}(A))}{\operatorname{vol}(\operatorname{cone}_{1}(B))} = \frac{\operatorname{area}(A)}{\operatorname{area}(B)}.$$

Remark: With this notation, cone₁($\partial \mathcal{U}_p$) = \mathcal{U}_p .

(c) To sample from uniform $(\partial \mathcal{U}_p)$, first generate $Z \sim N(0, \mathbf{I}_p)$, say via a vector of $Z_i \stackrel{iid}{\sim} N(0, 1)$. Then, the result in part (a) will show that $V = Z/\|Z\|_2 \sim \text{uniform}(\partial \mathcal{U}_p)$. Next, we can independently sample $R = U^{1/p}$ where $U \sim \text{uniform}[0, 1]$; then, $P(R \leq r) = r^p$, so $R \stackrel{d}{=} \|X\|_2$ where $X \sim \text{uniform}(\mathcal{U}_p)$. Using the result from (b), we have $VR \stackrel{d}{=} X \sim \text{uniform}(\mathcal{U}_p)$.

Remark: We have Z spherically symmetric, since it has density

$$f_Z(z) = \frac{1}{(2\pi)^{1/p}} e^{-\|z\|_2^2/2}.$$