WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

WO 95/33833 (51) International Patent Classification 6: (11) International Publication Number: **A1** C12N 15/14, 1/19 (43) International Publication Date: 14 December 1995 (14.12.95)

(21) International Application Number:

PCT/GB95/01317

(22) International Filing Date:

7 June 1995 (07.06.95)

(30) Priority Data:

9411356.0

7 June 1994 (07.06.94)

GB

(71) Applicant (for all designated States except US): DELTA BIOTECHNOLOGY LIMITED [GB/GB]; Castle Court, Castle Boulevard, Nottingham NG7 1FD (GB).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): WOOD, Patricia, Carol [GB/GB]; Delta Biotechnology Limited, Castle Court, Castle Boulevard, Nottingham NG7 1FD (GB). QUIRK, Alan, Victor [GB/GB]; Delta Biotechnology Limited, Castle Court, Castle Boulevard, Nottingham NG7 1FD (GB).
- (74) Agent: BASSETT, Richard; Eric Potter Clarkson, St. Mary's Court, St. Mary's Gate, Nottingham NG1 1LE (GB).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TT, UA, UG, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: YEAST STRAINS

(57) Abstract

Reduction (preferably elimination) of the HSP150 protein in a yeast used to produce desired foreign proteins, especially human albumin, facilitates subsequent purification of the protein.

5' and 3' regions of HSP150 gene obtained by PCR:

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	· LV	Latvia	ТJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon				

YEAST STRAINS

Field of the Invention

5 The present invention relates to the production of heterologous proteins by yeast species and more particularly to an adaptation of the yeast in which the protein is produced.

Background and Prior Art

10

15

20

25

30

In recent years, yeasts have been widely used as host organisms for the production of heterologous proteins (reviewed by Romanos et al, 1992), including recombinant human albumin (rHA) (Sleep et al, 1990, 1991; Fleer et al, 1991). Yeasts are readily amenable to genetic manipulation, can be grown to high cell density on simple media, and as eukaryotes are suitable for the production of secreted as well as cytosolic proteins.

When yeasts are utilised to produce a desired heterologous protein by secretion into the growth medium, a large number of host-derived proteins may also be present, including other proteins secreted by the host but also intracellular proteins present in the supernatant as the result of leakage from cells or cell lysis. In processes in which the protein is not secreted, there is of course an even higher level of contamination with intracellular yeast proteins. It is necessary to purify the desired protein and to remove these contaminating proteins from the preparation; such methods have been disclosed in WO 92/04367 and EP 524 681. The majority of contaminating proteins will have physicochemical properties sufficiently different from the desired protein to permit efficient separation by standard techniques, such as ion exchange or size exclusion chromatography. The prior art gives the impression that such proteins can be satisfactorily removed by such techniques; see, for example EP

524 681 (Gist-brocades), EP 570 916 (Green Cross) and EP 464 590 (Green Cross). Indeed, we have developed sophisticated chromatographic techniques (unpublished) to remove contaminating proteins from desired proteins.

5 Summary of the Invention

10

25

30

We have now also adopted a different approach and have identified the gene responsible for a protein, namely the *HSP150* gene, which co-purifies with recombinant human albumin (rHA) and, in principle, with other desired proteins. In accordance with the invention, we eliminate the contaminating protein from the initial fermentation, rather than develop highly sophisticated and complex means of removal during purification. This protein was not previously known to be a co-purifying contaminant.

In one aspect of the invention, the *HSP150* gene is functionally deleted from the genome of the host. This has not caused any detrimental effects on production of the desired protein and removes a potential contaminant that has proven difficult to remove by standard purification techniques. Despite the presence of at least two closely related genes encoding proteins very similar to Hsp150, *PIR1* and *PIR3*, in such modified yeast, rHA purified from these organisms does not contain detectable levels of any protein from this family.

The S. cerevisiae Hsp150 protein was originally described by Russo et al (1992) and was shown to be produced constitutively, to be extensively O-glycosylated and to be secreted efficiently into the growth medium. A 7-fold increase in the level of Hsp150 protein was seen when cells grown at 28°C were shifted to 37°C. Makarow has proposed preparing fusions of Hsp150 (or fragments thereof) and a desired protein, in order to achieve enhanced, controllable secretion (WO 93/18167). The HSP150 gene encodes a primary translation product of 413 amino acids, including an N-terminal secretion signal

10

15

20

sequence of 18 amino acids that is not present in the mature protein. A further post-translational processing event occurs C-terminal to a pair of basic residues to yield two subunits of 54 and 341 amino acids which remain associated. The 341 amino acid subunit contains 11 tandem repeats of a 19 amino acid sequence, the function of which is unknown. Homologues of the HSP150 gene were found in Torulaspora delbrueckii, Kluyveromyces marxianus and Schizosaccharomyces pombe (Russo et al., 1992).

The same protein has been designated the PIR2 protein by Toh-e et al (1993). The HSP150/PIR2 gene was shown to be a member of a family of at least three genes (PIR1, PIR2 and PIR3) all of which contain similar internal tandem repeats of approximately 19 amino acids. Homologues of the PIR genes were shown to be present also in Kluyveromyces lactis and Zygosaccharomyces rouxii (Toh-e et al, 1993). Disruption of the HSP150/PIR2 gene showed that this is not an essential gene (Russo et al, 1992; Toh-e et al, 1993).

In this specification we refer to rHA as the desired protein. However, it is to be understood that the problem addressed by the invention will, in principle, be encountered with any other protein which has similar properties to those of rHA and which is therefore purified in the same way. Thus, the solution provided by the invention, namely elimination of Hsp150, is applicable also to the production of such other proteins.

Our studies have revealed that the Hsp150 protein is inefficiently separated from rHA by ion exchange chromatography. Surprisingly, however, Hsp150 does not appear in the fraction equivalent to the rHA fraction when rHA is absent. For example, when rHA-containing culture supernatant is passed through a cation exchange column under conditions which ensure binding of the rHA to the column (eg pH4.5, conductivity <7mS), Hsp150 also binds to the column and is eluted under the same conditions as rHA and thus contaminates

10

20

25

30

the rHA preparation. However, when culture supernatant from a yeast that does not secrete rHA is passed through such a column under the same conditions, the Hsp150 protein does not bind to the matrix but passes straight through the column. The eluate fraction does not contain Hsp150 in the absence of rHA. Similarly, the Hsp150 protein does not bind to an anion exchange column run under conditions which would result in binding of albumin (eg pH5.5, 1.5mS) in the absence of rHA, but is present in the rHA eluate fraction when rHA is present. Surprisingly, we have found that the presence of rHA in culture supernatant significantly alters the behaviour of some yeast proteins during chromatographic purification of the rHA such that proteins with physico-chemical properties which indicate that they would be separated from albumin by, for instance, ion exchange chromatography in fact contaminate the rHA preparation and are difficult to remove.

One aspect of the invention provides a process for preparing a desired protein from yeast, comprising culturing the yeast and obtaining the protein, characterised in that the yeast is deficient in heat shock protein 150 (Hsp150).

The most convenient way of achieving this is to create a yeast which has a defect in its genome such that a reduced level of the Hsp150 protein is produced. For example, there may be a deletion, insertion or transposition in the coding sequence or the regulatory regions (or in another gene regulating the expression of the Hsp150 gene) such that little or no Hsp150 protein is produced. Alternatively, the yeast could be transformed to produce an anti-Hsp150 agent, such as an anti-Hsp150 antibody.

To modify the *HSP150* gene so that a reduced level of co-purifying protein is produced, site-directed mutagenesis or other known techniques can be employed to create single or multiple mutations, such as replacements, insertions, deletions, and transpositions, as described in Botstein and Shortle, "Strategies

15

20

25

30

and Applications of In Vitro Mutagenesis", Science, 229: 193-210 (1985), which is incorporated herein by reference. Suitable mutations include chain termination mutations (clearly stop codons introduced near the 3' end might have insufficient effect on the gene product to be of benefit; the person skilled in the art will readily be able to create a mutation in, say, the 5' three quarters of the coding sequence), point mutations that alter the reading frame, small to large deletions of coding sequence, mutations in the promoter or terminator that affect gene expression and mutations that de-stabilize the mRNA. desirable point mutations or specific amino acid substitutions may affect chromatographic behaviour by altering the charge distribution. Hence, the protein produced has a similar primary amino acid sequence to that of native Hsp150, but is functionally distinct such that it will not co-purify with the desired protein. Such a modified protein is not regarded as being Hsp150. Specific mutations can be introduced by an extension of the gene disruption technique known as gene transplacement (Winston, F. et al (1983) Methods Enzymol. 101, 211-228).

Any polypeptides inserted into the Hsp150 protein should not be, and should not create, ligands for the desired protein. Those skilled in the art can readily determine, by simple binding assays, whether a ligand has been used or created. Generally one uses a selectable marker to disrupt a gene sequence, but this need not be the case, particularly if one can detect the disruption event phenotypically. In many instances the insertion of the intervening sequence will be such that a stop codon is present in frame with the Hsp150 sequence and the inserted coding sequence is not translated. Alternatively the inserted sequence may be in a different reading frame to Hsp150.

The gene may have one or more portions (optionally including regulatory regions, up to the whole gene) excised or inverted, or it may have a portion inserted, in order to result either in no production of protein from the HSP150

WO 95/33833 PCT/GB95/01317

6

locus or in the production of protein from the HSP150 locus which does not copurify with the desired protein.

Preferably, the yeast secretes the desired protein, which is then purified from the fermentation medium. The purification may take place elsewhere; hence, production of culture medium, containing desired protein, in which the level of Hsp150 protein is low or zero is an end in itself.

A protein is generally regarded as co-purifying with Hsp150 if the two are still associated after two dissimilar chromatographic separation techniques (one of which is affinity chromatography for the desired protein) or, if affinity chromatography is not used, if the proteins are still associated after three dissimilar steps (for example an anion exchange, a cation exchange and a gel permeation step). Essentially, the identity of the desired protein is self-defined: if a person skilled in the art finds that his desired protein is, after an otherwise suitable purification process, contaminated with a yeast protein, he can determine (using known methods, which are explained in more detail below) whether that yeast protein is Hsp150 and, if it is, use the yeasts and methods of the invention; if the desired protein is not contaminated with Hsp150, then the need for the present invention will not arise. We have found the process of the invention to be particularly applicable to albumins and to other proteins which have similar physico-chemical properties to albumins, such that they are purified by similar chromatographic techniques. Preferably, the desired protein is a human albumin.

25

30

20

5

10

15

Human serum albumin (HSA) is a protein of 585 amino acids that is present in human serum at a concentration of 35-45g L⁻¹ and represents about 60% of the total serum protein. HSA is responsible for a significant proportion of the osmotic pressure of serum, and also functions as a carrier of endogenous and exogenous ligands. It is used clinically in the treatment of patients with severe

PCT/GB95/01317

burns, shock, or blood loss, and at present is produced commercially by extraction from human blood. The production of recombinant human albumin (rHA) in microorganisms has been disclosed in EP 330 451 and EP 361 991.

The albumin may be a variant of normal HSA/rHA. By "variants" we include insertions, deletions and substitutions, either conservative or non-conservative, where such changes do not substantially alter the oncotic, useful ligand-binding or non-immunogenic properties of albumin. In particular, we include naturally-occurring polymorphic variants of human albumin; fragments of human albumin, for example those fragments disclosed in EP 322 094 (namely HSA (1-n), where n is 369 to 419); and fusions of albumin with other proteins, for example the kind disclosed in WO 90/13653.

By "conservative substitutions" is intended swaps within groups such as Gly,
Ala; Val, Ile, Leu; Asp, Glu; Asn, Gln; Ser, Thr; Lys, Arg; and Phe, Tyr.

A second main aspect of the invention provides a yeast transformed to express a desired protein which will co-purify with Hsp150 in chromatographic techniques, characterised in that the yeast is deficient in such Hsp150.

20

In addition to the transformed host cells themselves, the present invention also contemplates a culture of those cells, preferably a monoclonal (clonally homogeneous) culture, or a culture derived from a monoclonal culture, in a nutrient medium.

25

The desired protein is produced in conventional ways, for example from a coding sequence inserted in the yeast chromosome or on a free plasmid.

The yeasts are transformed with a coding sequence for the desired protein in any of the usual ways, for example electroporation. Methods for

10

15

25

30

transformation of yeast by electroporation are disclosed in Becker & Guarente (1990) Methods Enzymol. 194, 182.

Successfully transformed cells, ie cells that contain a DNA construct of the present invention, can be identified by well known techniques. For example, cells resulting from the introduction of an expression construct can be grown to produce the desired polypeptide. Cells can be harvested and lysed and their DNA content examined for the presence of the DNA using a method such as that described by Southern (1975) J. Mol. Biol. 98, 503 or Berent et al (1985) Biotech. 3, 208. Alternatively, the presence of the protein in the supernatant can be detected using antibodies.

Useful yeast plasmid vectors include pRS403-406 and pRS413-416 and are generally available from Stratagene Cloning Systems, La Jolla, CA 92037, USA. Plasmids pRS403, pRS404, pRS405 and pRS406 are Yeast Integrating plasmids (YIps) and incorporate the yeast selectable markers *HIS3*, *TRP1*, *LEU2* and *URA3*. Plasmids pRS413-416 are Yeast Centromere plasmids (YCps).

A variety of methods have been developed to operably link DNA to vectors via complementary cohesive termini. For instance, complementary homopolymer tracts can be added to the DNA segment to be inserted to the vector DNA. The vector and DNA segment are then joined by hydrogen bonding between the complementary homopolymeric tails to form recombinant DNA molecules.

Synthetic linkers containing one or more restriction sites provide an alternative method of joining the DNA segment to vectors. The DNA segment, generated by endonuclease restriction digestion as described earlier, is treated with bacteriophage T4 DNA polymerase or *E. coli* DNA polymerase I, enzymes that remove protruding, 3'-single-stranded termini with their 3'-5'-exonucleolytic

10

15

20

activities, and fill in recessed 3'-ends with their polymerizing activities.

The combination of these activities therefore generates blunt-ended DNA segments. The blunt-ended segments are then incubated with a large molar excess of linker molecules in the presence of an enzyme that is able to catalyze the ligation of blunt-ended DNA molecules, such as bacteriophage T4 DNA ligase. Thus, the products of the reaction are DNA segments carrying polymeric linker sequences at their ends. These DNA segments are then cleaved with the appropriate restriction enzyme and ligated to an expression vector that has been cleaved with an enzyme that produces termini compatible with those of the DNA segment.

Synthetic linkers containing a variety of restriction endonuclease sites are commercially available from a number of sources including International Biotechnologies Inc, New Haven, CN, USA.

A desirable way to modify the DNA in accordance with the invention is to use the polymerase chain reaction as disclosed by Saiki et al (1988) Science 239, 487-491. In this method the DNA to be enzymatically amplified is flanked by two specific oligonucleotide primers which themselves become incorporated into the amplified DNA. The said specific primers may contain restriction endonuclease recognition sites which can be used for cloning into expression vectors using methods known in the art.

25 Any yeast which produces an Hsp150 protein can be modified in accordance with the invention. Exemplary genera of yeast contemplated to be useful in the practice of the present invention are Pichia (Hansenula), Saccharomyces, Kluyveromyces, Candida, Torulopsis, Torulaspora, Schizosaccharomyces, Citeromyces, Pachysolen, Debaromyces, Metschunikowia, Rhodosporidium, Leucosporidium, Botryoascus, Sporidiobolus, Endomycopsis, and the like.

WO 95/33833 PCT/GB95/01317

Preferred genera are those selected from the group consisting of Saccharomyces, Schizosaccharomyces, Kluyveromyces, and Torulaspora. Examples of Saccharomyces spp. are S. cerevisiae, S. italicus and S. rouxii. Examples of Kluyveromyces spp. are K. fragilis, K. lactis and K. marxianus. A suitable Torulaspora species is T. delbrueckii. Examples of Pichia (Hansenula) spp. are P. angusta (formerly H. polymorpha), P. anomala (formerly H. anomala) and P. pastoris.

5

20

25

10

Homologues of HSP150 have already been shown to be present in a wide range of different yeast genera: Torulaspora sp., Kluyveromyces sp., Schizosaccharomyces sp. and Zygosaccharomyces sp. (Russo et al, 1992; Tohe et al, 1993). In addition, our own studies have shown by Southern blotting that Pichia sp. possess a homologue of HSP150.

15 Methods for the transformation of *S. cerevisiae* are taught generally in EP 251 744, EP 258 067 and WO 90/01063, all of which are incorporated herein by reference.

Suitable promoters for S. cerevisiae include those associated with the PGK1 gene, GAL1 or GAL10 genes, CYC1, PHO5, TRP1, ADH1, ADH2, the genes for glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, triose phosphate isomerase, phosphoglucose isomerase, glucokinase, α-mating factor pheromone, a-mating factor pheromone, the PRB1 promoter, the GUT2 promoter, the GPD1 promoter, and hybrid promoters involving hybrids of parts of 5' regulatory regions with parts of 5' regulatory regions of other promoters or with upstream activation sites (eg the promoter of EP-A-258 067).

Convenient regulatable promoters for use in *Schizosaccharomyces pombe* are the thiamine-repressible promoter from the *nmt* gene as described by Maundrell

(1990) J. Biol. Chem. 265, 10857-10864 and the glucose-repressible fbp1 gene promoter as described by Hoffman & Winston (1990) Genetics 124, 807-816.

Methods of transforming *Pichia* for expression of foreign genes are taught in, for example, Cregg *et al* (1993), and various Phillips patents (eg US 4 857 467, incorporated herein by reference), and *Pichia* expression kits are commercially available from Invitrogen BV, Leek, Netherlands, and Invitrogen Corp., San Diego, California. Suitable promoters include *AOXI* and *AOX2*.

The Gellissen et al (1992) paper mentioned above and Gleeson et al (1986) J. Gen. Microbiol. 132, 3459-3465 include information on Hansenula vectors and transformation, suitable promoters being MOX1 and FMD1; whilst EP 361 991, Fleer et al (1991) and other publications from Rhône-Poulenc Rorer teach how to express foreign proteins in Kluyveromyces spp., a suitable promoter being PGK1.

The transcription termination signal is preferably the 3' flanking sequence of a eukaryotic gene which contains proper signals for transcription termination and polyadenylation. Suitable 3' flanking sequences may, for example, be those of the gene naturally linked to the expression control sequence used, ie may correspond to the promoter. Alternatively, they may be different in which case the termination signal of the *S. cerevisiae ADH1* gene is preferred.

The desired protein may be initially expressed with a secretion leader sequence,
which may be any leader effective in the yeast chosen. Leaders useful in S.
cerevisiae include that from the mating factor α polypeptide (MFα-1) and the
hybrid leaders of EP-A-387 319. Such leaders (or signals) are cleaved by the
yeast before the mature albumin is released into the surrounding medium.
Further such leaders include those of S. cerevisiae invertase (SUC2) disclosed
in JP 62-096086 (granted as 91/036516), acid phosphatase (PHO5), the pre-

WO 95/33833 PCT/GB95/01317

12

sequence of MF α -1, β -glucanase (BGL2) and killer toxin; S. diastaticus glucoamylase II; S. carlsbergensis α -galactosidase (MELI); K. lactis killer toxin; and Candida glucoamylase.

5 Detailed Description of the Invention

Preferred aspects of the invention will now be described in more detail, with reference to the accompanying drawings, in which

Figure 1 is a scheme showing the preparation of an *Eco*RI *HSP150-URA3-HSP150* fragment used to transform a yeast strain (DBU3) and disrupt the *HSP150* gene (Example 1); and

Figure 2 is a scheme showing the preparation of a further *Eco*RI fragment used to remove the *HSP150* coding sequence altogether (Example 2).

All standard recombinant DNA procedures are as described in Sambrook *et al* (1989) unless otherwise stated. The DNA sequences encoding rHA are derived from the cDNA disclosed in EP 201 239.

20

25

Example 1

The HSP150 gene was mutated by the process of gene disruption (Rothstein, 1983) which effectively deleted part of the HSP150 coding sequence, thereby preventing the production of Hsp150.

Four oligonucleotides suitable for the PCR amplification of the 5' and 3' ends of the HSP150 gene (Russo et al, 1992) were synthesized using an Applied Biosystems 380B Oligonucleotide Synthesizer.

5' End

LRE45: 5'-CTATTTCCTATTTCGGGAATTCTTAAAGACAAAAAAGCTC-3'

LRE46: 5'-GGCTGTGGTGCTGCAGATGATGCGCTGG-3'

5 <u>3' End</u>

20

25

LRE47: 5'-GCTACTTCCGCTTCTGCAGCCGCTACCTCC-3'

LRE48: 5'-GCCGTGTAGCGAGGGAATTCTGTGGTCACGATCACTCG-3'

Note, LRE45 and LRE48 contain changes in the *HSP150* gene sequence so as to introduce *Eco*RI sites into the 5' or the 3' end of the *HSP150* gene PCR products. LRE46 and LRE47 both contain *Pst* I sites naturally present in the *HSP150* gene sequence (SEQ 1).

PCR was carried out to amplify individually the 5' and 3' ends of the *HSP150* gene, using LRE45 and LRE46 or LRE47 and LRE48 respectively, from the DNA from *S. cerevisiae* genomic DNA (Clontech Laboratories, Inc.).

Conditions were as follows: $1\mu g/ml$ genomic DNA, $\approx 1.2 \times 10^{-10}$ moles of each primer, denature at 94°C for 61 seconds, anneal at 37°C for 121 seconds, DNA synthesis at 72°C for 181 seconds for 30 cycles, with a 10 second extension to the DNA synthesis step after each cycle, followed by a 4°C soak. PCR was carried out using a Perkin-Elmer-Cetus Thermal cycler and a Perkin-Elmer-Cetus PCR kit was used according to the manufacturer's recommendations. PCR products were analysed by gel electrophoresis and were found to be of the expected size. Each PCR product was digested with EcoRI and PstI and cloned into EcoRI/PstI digested pUC19 (Yanisch-Perron et al, 1985) to form pAYE503 (containing the 5' end of the HSP150 gene) and pAYE504 (containing the 3' end of the HSP150 gene) (see Fig. 1).

30 Plasmid DNA sequencing was carried out on pAYE503 and pAYE504 to

confirm that the inserts were the desired sequences. pAYE503 and pAYE504 were digested with EcoRI and HindIII and the HSP150 gene fragments were isolated and cloned together into pUC19XH (a derivative of pUC19 lacking a HindIII site in its polylinker) to form pAYE505. The URA3 gene was isolated from YEp24 (Botstein et al, 1979) as a HindIII fragment and cloned into the HindIII site of pAYE505 to form pAYE506 (Fig. 1). pAYE506 contains a selectable marker (URA3) flanked by 5' and 3' regions of the HSP150 gene.

To construct a strain lacking the capacity to produce HSP150, a ura3 derivative of DB1 cir^o pAYE316 (Sleep et~al, 1991) was obtained by random chemical mutagenesis and selection for resistance to 5-fluoro-orotic acid (Boeke et~al, 1987). Plasmid pAYE316 is based on the 2 μ m plasmid and contains a coding sequence for human albumin under the control of the yeast PRB1 promoter, with an ADH1 terminator and a LEU2 selectable marker.

15

20

25

30

10

5

The strain was grown overnight in 100mL buffered minimal medium (Yeast Nitrogen Base [without amino acids, without ammonium sulphate, Difco], $(NH_4)_2SO_4$ 5g/L, citric acid monohydrate 6.09g/L, NaHPO₄ 20.16g/L, sucrose 20g/L, pH6.5) and the cells were collected by centrifugation and then washed once with sterile water. The cells were then resuspended in 10mL sterile water and 2mL aliquots were placed in separate 15mL Falcon tubes. A 5mg/mL solution of N-methyl-N'-nitro-N-nitrosoguanidine (NTG) was then added to the tubes as follows: 0μ L, 20μ L, 40μ L, 80μ L or 160μ L. The cells were then incubated at 30°C for 20 min and then centrifuged and washed three times with sterile water. Finally, the cells were resuspended in 1mL YEP (1% "/", yeast extract, 2% "/", Bacto peptone) and stored at 4°C. The percentage of cells that survived the mutagenic treatment was determined by spreading dilutions of the samples on YEP plates containing 2% "/", sucrose and incubating at 30°C for 3 days. Cells from the treatment which gave approximately 50% survival were grown on YEP plates containing 2% "/", sucrose and then replica-plated onto

YNB minimal medium containing 2% v sucrose and supplemented with 5-fluoro-orotic acid (1mg/mL) and uracil (50μ g/mL). Colonies able to grow on this medium were purified, tested to verify that they were unable to grow in the absence of uracil supplementation and that this defect could be corrected by introduction of the *URA3* gene by transformation.

The *ura3* strain, DBU3 cir^o (pAYE316), was transformed with *Eco*RI digested pAYE506 and Ura⁺ transformants were selected. The disruption of the *HSP150* gene in these transformants was confirmed by Southern blot analysis using a fragment comprising the 5' and 3' ends of the *HSP150* gene (the *Eco*RI fragment from pAYE505) as a probe.

The yeast was then grown to high cell density by fed batch culture in minimal medium in a fermenter (Collins, 1990). Briefly, a fermenter of 10L working volume was filled to 5L with an initial batch medium containing 50 mL/L of a concentrated salts mixture (Table 1), 10 mL/L of a trace elements solution (Table 2), 50 mL/L of a vitamins mixture (Table 3) and 20 g/L sucrose. An equal volume of feed medium containing 100 mL/L of the salts mixture, 20 mL/L of the trace elements mixture, 100 mL/L of vitamins solution and 500 g/L sucrose was held in a separate reservoir connected to the fermenter by a metering pump. The pH was maintained at 5.7 ± 0.2 by the automatic addition of ammonium hydroxide or sulphuric acid, and the temperature was maintained at 30° C. The stirrer speed was adjusted to give a dissolved oxygen tension of >20% air saturation at 1 v/v/min air flow rate.

5

10

15

20

Table 1. Salts Mixture

Chemical	Concentration (g/L)
KH ₂ PO ₄	114.0
MgSO ₄	12.0
CaCl ₂ .6H ₂ O	3.0
Na ₂ EDTA	2.0

Table 2. Trace Elements Solution

5

Chemical	Concentration (g/L)	
ZnSO ₄ .7H ₂ O	3.0	
FeSO ₄ .7H ₂ O	10.0	
MnSO ₄ .4H ₂ O	3.2	
CuSO ₄ .5H ₂ O	0.079	
H ₃ BO ₃	1.5	
KI	0.2	
Na ₂ MoO ₄ .2H ₂ O	0.5	
CoCl ₂ .6H ₂ O	0.56	
H ₃ PO ₄	75mL/L	

20

15

Table 3. Vitamins Solution

25

Chemical	Concentration (g/L)	
Ca pantothenate	1.6	
Nicotinic acid	1.2	
<i>m</i> -inositol	12.8	
Thiamine HCl	0.32	
Pyridoxine HCl	0.8	
Biotin	0.008	

30

The fermenter was inoculated with 100 mL of an overnight culture of *S. cerevisiae* grown in buffered minimal medium (Yeast nitrogen base [without amino acids, without ammonium sulphate, Difco] 1.7 g/L, (NH₄)₂SO₄ 5 g/L, citric acid monohydrate 6.09 g/L, Na₂HPO₄ 20.16 g/L, sucrose 20 g/L, pH6.5). The initial batch fermentation proceeded until the carbon source had been consumed, at which point the metering pump was switched on and the addition of feed was computer controlled (the micro MFCS system, B. Braun, Melsungen, Germany) using an algorithm based on that developed by Wang *et al* (1979). A mass spectrometer was used in conjunction with the computer control system to monitor the off gases from the fermentation and to control the addition of feed to maintain a set growth rate (eg 0.1 h⁻¹). Maximum conversion of carbon substrate into biomass is achieved by maintaining the respiratory coefficient below 1.2 (Collins, 1990) and, by this means, cell densities of approximately 100 g/L cell dry weight can be achieved.

15

5

10

The fermentation broth was centrifuged to remove the cells and then subjected to affinity chromatographic purification as follows. The culture supernatant was passed through a Cibacron Blue F3GA Sepharose column (Pharmacia) which was then washed with 0.1M phosphate glycine buffer, pH8.0. The rHA was then eluted from the column with 2M NaCl, 0.1M phosphate glycine, pH8.0. The albumin may alternatively be purified from the culture medium by any of the variety of known techniques for purifying albumin from serum or fermentation culture medium, for example those disclosed in WO 92/04367, Maurel et al (1989), Curling (1980) and EP 524 681.

25

20

Analysis of rHA purified from *Hsp150* strains revealed that no HSP150 protein was present in these samples. HSP150 protein is determined using prior art techniques such as ELISA or Western blotting.

30 Anti-HSP150 antibodies are disclosed in Russo et al (1992) Proc. Nat. Acad.

WO 95/33833 PCT/GB95/01317

18

Sci. (USA) 89, 3671-3675.

Example 2

5 The HSP150 protein coding sequence was deleted by using alternative fragments of the cloned HSP150 sequences as follows.

The URA3 HindIII fragment from YEp24 (see Example 1) was cloned into pIC19R (Marsh J.L. et al (1984) Gene 32, 481-485) at HindIII to form pAYE601 and then excised as a SalI/ClaI fragment and inserted into pAYE505 at the XhoI and ClaI sites to form pAYE602 (Fig 2). This plasmid was digested with EcoRI and then used to transform DBU3 cir° (pAYE316), selecting for Ura⁺ transformants. The disruption of the HSP150 gene in these transformants was confirmed by Southern blot analysis as described in Example 1.

Thus, in this example, the whole of the *HSP150* coding sequence is removed, whereas in Example 1 the sequence is disrupted to yield non-functional protein.

20 Example 3

Southern blotting has revealed an Hsp150 homologue in *Hansenula polymorpha* (now called *Pichia angusta*). The *P. angusta* gene may be functionally deleted by ways analogous to those in Examples 1 and 2.

10

15

20

References

- Boeke, J. D. et al (1987) Methods Enzymol. 154, 164-175.
- 5 Botstein, D. et al (1979) Gene 8, 17-24.
 - Collins, S.H. (1990) <u>In Protein Production by Biotechnology</u> (Harris, T.J.R., ed.) pp 61-77, Elsevier, Barking, Essex.
- Curling (1980) "Albumin Purification by Ion Exchange Chromatography", in "Methods of Plasma Protein Purification", Ed. Curling, J.M., Academic Press, London.
 - Fleer, R. et al (1991) Bio/Technology 9, 968-975.
 - Maurel et al (1989) "Biotechnology of Plasma Proteins", Colloque INSERM 175, 19-24.
 - Romanos, M. et al (1992) Yeast 8, 423-488.
- Rothstein, R. J. (1983) Methods Enzymol. 101, 202-211.
 - Russo, P. et al (1992) Proc. Natl. Acad. Sci. USA 89, 3671-3675.
- Sambrook, J. et al (1989) Molecular Cloning: a Laboratory Manual, 2nd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
 - Sleep, D. et al (1991) Bio/Technology 9, 183-187.
- 30 Toh-e et al (1993) Yeast 9, 481-494.

WO 95/33833 PCT/GB95/01317

20

Wang, H.Y. et al (1979) Biotechnology & Bioeng. 21, 975

Yanisch-Perron, C. et al (1985) Gene 33, 103-119.

5

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT:
 - (A) NAME: Delta Biotechnology Limited
 - (B) STREET: Castle Court, Castle Boulevard
 - (C) CITY: Nottingham
 - (E) COUNTRY: United Kingdom
 - (F) POSTAL CODE (ZIP): NG7 1FD
 - (ii) TITLE OF INVENTION: Yeast Strains
 - (iii) NUMBER OF SEQUENCES: 6
 - (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)
 - (vi) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: GB 9411356.0
 - (B) FILING DATE: 07-JUN-1994
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION: 1..40
 - (D) OTHER INFORMATION: /note = "Oligonucleotide for PCR amplification of 5' end of Hsp150 gene."

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

CTATTTCCTA TTTCGGGAAT TCTTAAAGAC AAAAAAGCTC 40

- (2) INFORMATION FOR SEQ ID NO: 2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION: 1..28
 - (D) OTHER INFORMATION: /note = "Oligonucleotide for PCR amplification of the 5' end of the Hsp150 gene."
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

GGCTGTGGTG CTGCAGATGA TGCGCTGG 28

- (2) INFORMATION FOR SEQ ID NO: 3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO

- (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION: 1..30
 - (D) OTHER INFORMATION: /note = "Oligonucleotide for PCR amplification of 3' end of the Hsp150 gene."
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

GCTACTTCCG CTTCTGCAGC CGCTACCTCC 30

- (2) INFORMATION FOR SEQ ID NO: 4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 38 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: misc feature
 - (B) LOCATION: 1..38
 - (D) OTHER INFORMATION: /note = "Oligonucleotide for PCR amplification of the 3' end of the Hsp150 gene."
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

GCCGTGTAGC GAGGGAATTC TGTGGTCACG ATCACTCG 38

- (2) INFORMATION FOR SEQ ID NO: 5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2048 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:

(A) ORGANISM: Saccharomyces cerevisiae

- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 397..1638
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

AGTGATCTTA CTATTTCCTA TTTCGGAAAT TATTAAAGAC AAAAAAGCTC ATTAATGGCT 60

TTCCGTCTGT AGTGATAAGT CGCCAACTCA GCCTAATTTT
TCATTTCTTT ACCAGATCAG 120

GAAAACTAAT AGTACAAATG AGTGTTTTCT CAAGCGGAAC ACCACATTTT GAGCTAAATT 180

TAGATTTTGG TCAAAATAAG AAAGATCCTA AAAAAGGAAT GGTTGGTGAA AAATTTATTA 240

GCTTGAATGG TAGGAATCCT CGAGATATAA AAGGAACACT TGAAGTCTAA CGACAATCAA 300

TTTCGATTAT GTCCTTCCTT TTACCTCAAA GCTCAAAAAA ATATCAATAA GAAACTCATA 360

TTCCTTTTCT AACCCTAGTA CAATAATAAT AATATA ATG CAA
TAC AAA AAG ACT 414

Met Gln Tyr Lys Lys Thr

TTG GTT GCC TCT GCT TTG GCC GCT ACT ACA TTG GCC GCC TAT GCT CCA 462

Leu Val Ala Ser Ala Leu Ala Ala Thr Thr Leu Ala Ala Tyr Ala Pro

0 15 20

TCT GAG CCT TGG TCC ACT TTG ACT CCA ACA GCC ACT TAC AGC GGT GGT 510

Ser Glu Pro Trp Ser Thr Leu Thr Pro Thr Ala Thr Tyr Ser Gly Gly 25 30 35

GTT ACC GAC TAC GCT TCC ACC TTC GGT ATT GCC GTT CAA
CCA ATC TCC 558
Val Thr Asp Tyr Ala Ser Thr Phe Gly Ile Ala Val Gln Pro Ile Ser
40 45 50

ACT ACA TCC AGC GCA TCA TCT GCA GCC ACC ACA GCC TCA TCT AAG GCC 606

Thr Thr Ser Ser Ala Ser Ser Ala Ala Thr Thr Ala Ser Ser Lys Ala 55 60 65 70

AAG AGA GCT GCT TCC CAA ATT GGT GAT GGT CAA GTC CAA GCT GCT ACC 654

Lys Arg Ala Ala Ser Gln Ile Gly Asp Gly Gln Val Gln Ala Ala Thr
75 80 85

ACT ACT GCT TCT GTC TCT ACC AAG AGT ACC GCT GCC GCC GTT TCT CAG 702

Thr Thr Ala Ser Val Ser Thr Lys Ser Thr Ala Ala Ala Val Ser Gln 90 95 100

ATC GGT GAT GGT CAA ATC CAA GCT ACT ACT AAG ACT ACC GCT GCT 750

Ile Gly Asp Gly Gln Ile Gln Ala Thr Thr Lys Thr Thr Ala Ala Ala

105 110 115

GTC TCT CAA ATT GGT GAT GGT CAA ATT CAA GCT ACC ACC AAG ACT ACC 798

Val Ser Gln Ile Gly Asp Gly Gln Ile Gln Ala Thr Thr Lys Thr Thr

120

125

130

TCT GCT AAG ACT ACC GCC GCT GCC GTT TCT CAA ATC AGT GAT GGT CAA 846
Ser Ala Lys Thr Thr Ala Ala Ala Val Ser Gln Ile Ser Asp Gly Gln 145 150

ATC CAA GCT ACC ACC ACT ACT TTA GCC CCA AAG AGC ACC GCT GCT GCC 894

Ile Gln Ala Thr Thr Thr Leu Ala Pro Lys Ser Thr Ala Ala Ala 155 160 165

GTT TCT CAA ATC GGT GAT GGT CAA GTT CAA GCT ACC ACC

ACT ACT TTA 942 Val Ser Gln Ile Gly Asp Gly Gln Val Gln Ala Thr Thr Thr Leu 170 175

GCC CCA AAG AGC ACC GCT GCT GCC GTT TCT CAA ATC GGT GAT GGT CAA 990 Ala Pro Lys Ser Thr Ala Ala Ala Val Ser Gln Ile Gly Asp Gly Gln 195 185 190

GTT CAA GCT ACT ACT AAG ACT ACC GCT GCT GTC TTT 1038 CAA ATT GGT Val Gln Ala Thr Thr Lys Thr Thr Ala Ala Ala Val Phe Gln Ile Gly 200 205 210

GAT GGT CAA GTT CTT GCT ACC ACC AAG ACT ACT CGT GCC 1086 GCC GTT TCT Asp Gly Gln Val Leu Ala Thr Thr Lys Thr Thr Arg Ala Ala Val Ser 230 220 225 215

CAA ATC GGT GAT GGT CAA GTT CAA GCT ACC AAG ACT ACC GCT GCT 1134 Gln Ile Gly Asp Gly Gln Val Gln Ala Thr Thr Lys Thr Thr Ala Ala 245 235 240

GCT GTC TCT CAA ATC GGT GAT GGT CAA GTT CAA GCA ACT ACC AAA ACC 1182 Ala Val Ser Gln Ile Gly Asp Gly Gln Val Gln Ala Thr Thr Lys Thr 260 250 255

ACT GCC GCA GCT GTT TCC CAA ATT ACT GAC GGT CAA GTT CAA GCC ACT 1230 Thr Ala Ala Ala Val Ser Gln Ile Thr Asp Gly Gln Val Gln Ala Thr 275 270

ACA AAA ACC ACT CAA GCA GCC AGC CAA GTA AGC GAT GGC CAA GTC CAA 1278 Thr Lys Thr Thr Gln Ala Ala Ser Gln Val Ser Asp Gly Gln Val Gln 280 285 290

GCT ACT ACT GCT ACT TCC GCT TCT GCA GCC GCT ACC TCC 1326 ACT GAC CCA Ala Thr Thr Ala Thr Ser Ala Ser Ala Ala Ala Thr Ser Thr Asp Pro 305 310 295 300

GTC GAT GCT GTC TCC TGT AAG ACT TCT GGT ACC TTA GAA
ATG AAC TTA 1374
Val Asp Ala Val Ser Cys Lys Thr Ser Gly Thr Leu Glu Met Asn Leu
315 320 325

AAG GGC GGT ATC TTA ACT GAC GGT AAG GGT AGA ATT GGT
TCT ATT GTT 1422

Lys Gly Gly Ile Leu Thr Asp Gly Lys Gly Arg Ile Gly Ser Ile Val
330 335 340

GCT AAC AGA CAA TTC CAA TTT GAC GGT CCA CCA CAA GCT GGT GCC 1470
Ala Asn Arg Gln Phe Gln Phe Asp Gly Pro Pro Pro Gln Ala Gly Ala
345 350 355

ATC TAC GCT GCT GGT TGG TCT ATA ACT CCA GAC GGT AAC TTG GCT ATT 1518

Ile Tyr Ala Ala Gly Trp Ser Ile Thr Pro Asp Gly Asn Leu Ala Ile 360 365 370

GGT GAC AAT GAT GTC TTC TAC CAA TGT TTG TCC GGT ACT TTC TAC AAC 1566
Gly Asp Asn Asp Val Phe Tyr Gln Cys Leu Ser Gly Thr Phe Tyr Asn 375 380 385 390

TTG TAC GAC GAA CAC ATT GGT AGT CAA TGT ACT CCA GTC CAC TTG GAA 1614

Leu Tyr Asp Glu His Ile Gly Ser Gln Cys Thr Pro Val His Leu Glu

395 400 405

GCT ATC GAT TTG ATA GAC TGT TAAGCAGAAA ACTATTAGTT CTTTTATCCT 1665
Ala Ile Asp Leu Ile Asp Cys
410

GATGACTTTT TCTCATTTGC ATTGATTAGA AAGGAAAAAA AGAAGTGTCC TTTTCTACTA 1725

CTACTCTAGT CGCATCCATT CCTTTGCATT TATCTTTCT GCGGTTGGCC AATCCATTCT 1785

TCCGAGAATT TGGCTAGCCA TACTTGATGT TTTCCCATTA
TTGGTTCGTT TGGCAATGCT 1845

AATTTCTTA ATTGCCCCTT ATATACTCTT CCATAAAATG TTTTTTTAT AACTAATTT 1905

CTGTATATCA TTATCTAATA ATCTTATAAA ATGTTAAAAA GACTTGGAAA GCAACGAGTG 1965

ATCGTGACCA CATAATTGCC TCGCTACACG GCAAAAATAA GCCAGTCCTA ATGTGTATAT 2025

TAAAGGCTGC ATGTGGCTAC GTC 2048

- (2) INFORMATION FOR SEQ ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 413 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Met Gln Tyr Lys Lys Thr Leu Val Ala Ser Ala Leu Ala Ala Thr Thr
1 5 10 15

Leu Ala Ala Tyr Ala Pro Ser Glu Pro Trp Ser Thr Leu Thr Pro Thr 20 25 30

Ala Thr Tyr Ser Gly Gly Val Thr Asp Tyr Ala Ser Thr Phe Gly Ile 35 40 45

Ala Val Gln Pro Ile Ser Thr Thr Ser Ser Ala Ser Ser Ala Ala Thr 50 55 60

Thr Ala Ser Ser Lys Ala Lys Arg Ala Ala Ser Gln Ile Gly Asp Gly 65 70 75 80

Gln Val Gln Ala Ala Thr Thr Thr Ala Ser Val Ser Thr Lys Ser Thr
85 90 95

Ala Ala Ala Val Ser Gln Ile Gly Asp Gly Gln Ile Gln Ala Thr Thr
100 105 110

- Lys Thr Thr Ala Ala Ala Val Ser Gln Ile Gly Asp Gly Gln Ile Gln
 115
 120
 125
- Ala Thr Thr Lys Thr Thr Ser Ala Lys Thr Thr Ala Ala Ala Val Ser 130 135 140
- Gln Ile Ser Asp Gly Gln Ile Gln Ala Thr Thr Thr Thr Leu Ala Pro 145 150 155 160
- Lys Ser Thr Ala Ala Ala Val Ser Gln Ile Gly Asp Gly Gln Val Gln
 165 170 175
- Ala Thr Thr Thr Leu Ala Pro Lys Ser Thr Ala Ala Ala Val Ser 180 185 190
- Gln Ile Gly Asp Gly Gln Val Gln Ala Thr Thr Lys Thr Thr Ala Ala 195 200 205
- Ala Val Phe Gln Ile Gly Asp Gly Gln Val Leu Ala Thr Thr Lys Thr 210 215 220
- Thr Arg Ala Ala Val Ser Gln Ile Gly Asp Gly Gln Val Gln Ala Thr 225 230 235 240
- Thr Lys Thr Thr Ala Ala Ala Val Ser Gln Ile Gly Asp Gly Gln Val 245 250 255
- Gln Ala Thr Thr Lys Thr Thr Ala Ala Ala Val Ser Gln Ile Thr Asp 260 265 270
- Gly Gln Val Gln Ala Thr Thr Lys Thr Thr Gln Ala Ala Ser Gln Val 275 280 285
- Ser Asp Gly Gln Val Gln Ala Thr Thr Ala Thr Ser Ala Ser Ala Ala 290 295 300
- Ala Thr Ser Thr Asp Pro Val Asp Ala Val Ser Cys Lys Thr Ser Gly 305 310 315 320
- Thr Leu Glu Met Asn Leu Lys Gly Gly Ile Leu Thr Asp Gly Lys Gly 325 330 335
- Arg Ile Gly Ser Ile Val Ala Asn Arg Gln Phe Gln Phe Asp Gly Pro 340 345 350

WO 95/33833 PCT/GB95/01317

30

Pro Pro Gln Ala Gly Ala Ile Tyr Ala Ala Gly Trp Ser Ile Thr Pro 355 360 365

Asp Gly Asn Leu Ala Ile Gly Asp Asn Asp Val Phe Tyr Gln Cys Leu 370 375 380

Ser Gly Thr Phe Tyr Asn Leu Tyr Asp Glu His Ile Gly Ser Gln Cys 385 390 395 400

Thr Pro Val His Leu Glu Ala Ile Asp Leu Ile Asp Cys 405 410

CLAIMS

- 1. A process for preparing a desired protein from yeast, comprising culturing the yeast and obtaining the desired protein, characterised in that the yeast is deficient in heat shock protein 150 (Hsp150).
 - 2. A process according to Claim 1 wherein the yeast has a defect in its genome such that a reduced level of the Hsp150 protein is produced.
- 10 3. A process according to Claim 2 wherein substantially no Hsp150 protein is produced.
 - 4. A process according to any one of the preceding claims wherein the desired protein is an albumin.
 - 5. A process according to Claim 4 wherein the desired protein is a human albumin.
- 6. A process according to any one of the preceding claims wherein the yeast is a Torulaspora, Kluyveromyces, Schizosaccharomyces, Pichia or Saccharomyces species.
 - 7. A process according to Claim 6 wherein the yeast is S. cerevisiae.
- 25 8. A process according to any one of the preceding claims wherein the desired protein is secreted from the yeast into the surrounding medium and purified therefrom.
- 9. A protein prepared by a process according to any one of the preceding30 claims.

PCT/GB95/01317

WO 95/33833

10

25

- 10. A culture medium containing a desired protein and prepared by a process according to any one of Claims 1 to 7.
- 11. A yeast transformed to express a desired protein which will co-purify with Hsp150 in chromatographic techniques, characterised in that the yeast is deficient in Hsp150.
 - 12. A yeast according to Claim 11 wherein the yeast has a defect in its genome such that a reduced level of the Hsp150 protein is produced.
- 13. A yeast according to Claim 11 wherein substantially no Hsp150 protein is produced by the yeast.
- 14. A yeast according to any one of Claims 11 to 13 wherein the desired protein is an albumin.
 - 15. A yeast according to Claim 14 wherein the desired protein is a human albumin.
- 20 16. A yeast according to any one of Claims 11 to 15 wherein the yeast is Torulaspora, Kluyveromyces, Schizosaccharomyces or Saccharomyces species.
 - 17. A yeast according to Claim 16 wherein the yeast is S. cerevisiae.
 - 18. A yeast according to any one of Claims 11 to 17 wherein the yeast is transformed with a DNA construct such that the desired protein is secreted from the yeast during culturing thereof.
- 30 19. A method of preparing a yeast according to any one of Claims 11 to 18

comprising the steps of

- (i) transforming the yeast with a coding sequence for expression of the desired protein, and
- (ii) disrupting the genome of the yeast such that the yeast has an abnormally low level of Hsp150,
- wherein steps (i) and (ii) may be carried out in either order or simultaneously.

5' and 3' regions of HSP150 gene obtained by PCR:

Figure 1

Figure 1 cont'd Subcloned into pUC19HX Pst I Hind III EcoR I pAYE505 EcoR I Pst I URA3 Hind III fragment inserted Pst | Hind III Pst | URA3 EcoR I 5' HSP150 Hind III Pst I 3'HSP150 pAYE506

िEcoR I Pst I

Fig 2

Ligate Cla I/ Sal I URA 3 fragment into Cla I/Xho I cut pAYE 505

INTERNATIONAL SEARCH REPORT

Intern al Application No
PCT/GB 95/01317

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/14 C12N1/19							
According	to International Patent Classification (IPC) or to both national class	ification and IPC					
B. FIELDS SEARCHED							
Minimum of IPC 6	documentation searched (classification system followed by classifica ${\sf C12N}$ ${\sf C07K}$	tion symbols)					
Documenta	ation searched other than minimum documentation to the extent that	such documents are included in the fields searched					
Electronic	data base consulted during the international search (name of data ba	se and, where practical, search terms used)					
C. DOCUN	MENTS CONSIDERED TO BE RELEVANT						
Category *	Citation of document, with indication, where appropriate, of the r	relevant passages Relevant to claim No.					
X	MOL GEN GENET, MAY 1993, 239 (1-19273-80, GERMANY, RUSSO P ET AL 'Dual regulation and nutrient stress of the yeast gene encoding a secretory glycop see the whole document	6-12, by heat 16-19 HSP150					
X	BIOTECHNOLOGY, vol. 8, 1990 NEW YORK US, pages 42-46, SLEEP D. ET AL. 'The secretion serum albumin from the yeast Sachcharomyces cerevisiae using different leader sequences' cited in the application see the whole document						
Fur	ther documents are listed in the continuation of box C.	Patent family members are listed in annex.					
* Special co	aterories of cited documents:	to a second sublished often the international filing date					
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention					
filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or		cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled					
other means "P" document published prior to the international filing date but later than the priority date claimed		in the art. "&" document member of the same patent family					
	e actual completion of the international search	Date of mailing of the international search report					
2	28 September 1995	10.10.95					
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2		Authorized officer					
NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016		Espen, J					

• 1