IN THE CLAIMS

Please amend the claims as follows:

- 1. (original) A device for the three-dimensional reconstruction of a moving object in a body volume, comprising a memory which contains a series of two-dimensional projection photographs (A_1, A_2, A_n, A_N) of the body volume from different directions, as well as a data processing unit which is coupled to the memory and which is set up to execute the following steps:
- a) Segmentation of the image $(Pr_n(Q))$ of at least one feature point (Q) of the object or its surroundings in the projection photographs (A_n) ;
- b) Specification of a spatial reference position (Q_θ) for each feature point (Q);
- c) Calculation of transformations (Σ_n, σ_n) of the object space and of the projection photographs (A_n) , after the use of which the projection of the transformed reference position coincides with the respective transformed image of the feature point;
- d) Three-dimensional reconstruction of the object from the projection photographs (A_n) with the aid of the calculated transformations $(\Sigma_n,\ \sigma_n)$.

- 2. (original) Device as claimed in claim 1, characterized in that the spatial reference position (Q_0) of a feature point (Q) is reconstructed in step b) from two projection photographs that originate from a similar state of the body volume, in particular from a heartbeat phase of the same type.
- 3. (original) Device as claimed in claim 1, characterized in that the transformation (Σ_n) of the object space or the transformation (σ_n) of the projection photographs is the same image.
- 4(original) Device for the three-dimensional reconstruction of an object (5) in a body volume that is subject to cyclical selfmovement, comprising a memory (3) which contains a series of twodimensional projection photographs (An) of the body volume from different directions together with the respective corresponding values of a parameter (En) that characterizes the cyclical selfmovement, as well as a data processing unit (4) which is coupled to the memory (3) and which is set up to execute the following steps: a) Segmentation of the image (R_n, Q_n) of at least one feature point (R, Q) of the object (S) in the projection photographs (A_n) ; Classification of the projection photographs (An) into classes b) (K_p) which each correspond to a given phase (E_p^{Cl}) of the cyclical self-movement;

- c) Three-dimensional localization of said feature point (R, Q) for each of the said classes (K_p) from at least two projection photographs $(A_{n1},\ A_{n2})$ of this class;
- d) Calculation of three-dimensional transformations (Σ_{p_m}) which describe the movement $(S^R_{p_m}, S^Q_{p_m})$ of the localized feature point (R, Q) between different phases (p, m) of the cyclical self-movement;
- e) Three-dimensional reconstruction of the object (5) from the projection photographs (A_n) with the aid of the calculated transformations $(\Sigma_{p,m})\,.$
- 5. (currently amended) Device as claimed in claim 1— ∞ -4, characterized in that the transformations $(\sigma_n, \; \Sigma_n, \; \Sigma_{p_m})$ comprise a translation, a rotation, a dilation and/or an affine transformation.
- 6. (currently amended) Device as claimed in claim 1-0x-4, characterized in that it includes an input unit for interactive segmentation in step a).
- 7. (currently amended) Device as claimed in claim $1-\phi_{F}-4$, characterized in that it includes an image-producing device (1) for producing the series of two-dimensional projection photographs (A_n)

of the body volume, preferably an X-ray apparatus (1) and/or an NMR device.

- 8. (currently amended) Device as claimed in claim $1 \rightarrow *-4$, characterized in that it includes a sensor device (2) for recording a parameter (E_n) that characterizes a cyclical self-movement of the body volume in parallel with the production of the projection photographs, wherein the sensor device preferably comprises an electrocardiograph device (2) and/or a respiration sensor.
- 9. (original) Method for the three-dimensional reconstruction of a moving object in a body volume based on a quantity of data which contains a series of two-dimensional projection photographs (A_1, A_2, A_3) of the body volume from different directions, comprising the steps:
- a) Segmentation of the image $(Pr_n(Q))$ of at least one feature point (Q) of the object or its surroundings in the projection photographs (A_n) ;
- b) Specification of a spatial reference position (Q_0) for each feature point (Q);
- Calculation of transformations (Σ_n, σ_n) of the object space and of the projection photographs (A_n) , after the use of which the projection of the transformed reference position coincides with the

transformed image of the feature point each time;

- d) Three-dimensional reconstruction of the object from the projection photographs (A_n) with the aid of the calculated transformations $(\Sigma_n,\ \sigma_n)$.
- 10. (original) Method for the three-dimensional reconstruction of an object (5) in a body volume that is subject to a cyclical self-movement, based on a quantity of data which contains a series of two-dimensional projection photographs (A_n) of the body volume from different directions together with the respective corresponding values of a parameter (E_n) that characterizes the cyclical self-movement, comprising the steps:
- a) Segmentation of the image (R_n, Q_n) of at least one feature point (R, Q) of the object (S) in the projection photographs (A_n) ;
- b) Classification of the projection photographs (A_n) into classes (K_p) which each correspond to a given phase $(E_p^{\ cl})$ of the cyclical self-movement;
- c) Three-dimensional localization of said feature point (R, Q) for each of the said classes (K_p) from at least two projection photographs $(A_{n1},\ A_{n2})$ of this class;
- d) Calculation of three-dimensional transformations (Σ_{p_m}) which describe the movement $(S^R_{p_m}, S^Q_{p_m})$ of the localized feature point (R, Q) between different phases (p, m) of the cyclical self-

movement;

e) Three-dimensional reconstruction of the object (5) from the projection photographs (A_n) with the aid of the calculated transformations (Σ_{P_m}) .