Package 'fnets'

January 23, 2024

```
Type Package
```

Title Factor-Adjusted Network Estimation and Forecasting for High-Dimensional Time Series

Version 0.1.6

Maintainer Haeran Cho <haeran.cho@bristol.ac.uk>

Description

Implements methods for network estimation and forecasting of high-dimensional time series exhibiting strong serial and cross-sectional correlations under a factor-adjusted vector autoregressive model.

See Barigozzi, Cho and Owens (2024+) <doi:10.1080/07350015.2023.2257270> for further descriptions of FNETS methodology and

Owens, Cho and Barigozzi (2024+) <arXiv:2301.11675> accompanying the R package.

Depends R (>= 4.1.0)

Imports lpSolve, parallel, doParallel, foreach, MASS, fields, igraph, RColorBrewer

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Matteo Barigozzi [aut], Haeran Cho [cre, aut], Dom Owens [aut]

Repository CRAN

Date/Publication 2024-01-23 09:30:03 UTC

2 data.restricted

R topics documented:

data	restricted.	Simu sion		date	a fr	om	the	e r	esti	ric	tea	! fc	icte	or-	ad	jus	te	dι	rec	to	r c	ıut	or	eg	res	·-
Index																										30
	threshold		 						•	•		٠		•	•					•	•	•				28
	sim.var		 						•											•						27
	sim.unrestricted		 				•								•					•					•	26
	sim.restricted		 						•											•						25
	print.threshold																									24
	print.fnets																									23
	print.fm																									23
	print.factor.number		 																							22
	predict.fnets		 																							21
	predict.fm		 																							20
	plot.threshold		 																							19
	plot.fnets		 																							17
	plot.factor.number .		 																							16
	par.lrpc		 																							14
	network.fnets		 																							13
	network		 																							12
	fnets.var		 																							10
	fnets.factor.model .		 																							8
	fnets																									5
	factor.number		 																							3
	data.unrestricted																									3
	data.restricted		 																							2

Description

```
set.seed(123)
n <- 500
p <- 50
common <- sim.restricted(n, p)
idio <- sim.var(n, p)
x <- common$data + idio$data</pre>
```

Usage

data.restricted

Format

'data.restricted' A ts object with 500 rows (observations) and 50 columns (series)

data.unrestricted 3

data.unrestricted

Simulated data from the unrestricted factor-adjusted vector autoregression model

Description

```
set.seed(123)
n <- 500
p <- 50
common <- sim.unrestricted(n, p)
idio <- sim.var(n, p)
x <- common$data + idio$data</pre>
```

Usage

data.unrestricted

Format

'data.unrestricted' A ts object with 500 rows (observations) and 50 columns (series)

factor.number

Factor number selection methods

Description

Methods to estimate the number of factor. When method = 'er', the factor number is estimated by maximising the ration of successive eigenvalues. When method = 'ic', the information criterion-methods discussed in Hallin and Liška (2007) (when fm.restricted = FALSE) and Alessi, Barigozzi and Capasso (2010) (when fm.restricted = TRUE) are implemented. The information criterion called by ic.op = 5 (as an argument to fnets or fnets.factor.model) is recommended by default.

Usage

```
factor.number(
    x,
    fm.restricted = FALSE,
    method = c("ic", "er"),
    q.max = NULL,
    center = TRUE
)
```

4 factor.number

Arguments

input time series each column representing a time series variable; it is coerced into a ts object

fm.restricted whether to estimate the number of restricted or unrestricted factors

A string specifying the factor number selection method; possible values are:

"ic" information criteria-based methods of Alessi, Barigozzi & Capasso (2010)

when fm.restricted = TRUE or Hallin and Liška (2007) when fm.restricted = FALSE

"er" eigenvalue ratio of Ahn and Horenstein (2013) when fm.restricted = TRUE or Avarucci et al. (2022) when fm.restricted = FALSE

maximum number of factors; if q.max = NULL, a default value is selected as

min(50, floor(sqrt(min(dim(x)[2] - 1, dim(x)[1]))))

center whether to de-mean the input x

Details

q.max

For further details, see references.

Value

S3 object of class factor.number. If method = "ic", a vector containing minimisers of the six information criteria, otherwise, the maximiser of the eigenvalue ratio

References

Ahn, S. C. & Horenstein, A. R. (2013) Eigenvalue ratio test for the number of factors. Econometrica, 81(3), 1203–1227.

Alessi, L., Barigozzi, M., and Capasso, M. (2010) Improved penalization for determining the number of factors in approximate factor models. Statistics & Probability Letters, 80(23-24):1806–1813.

Avarucci, M., Cavicchioli, M., Forni, M., & Zaffaroni, P. (2022) The main business cycle shock(s): Frequency-band estimation of the number of dynamic factors.

Hallin, M. & Liška, R. (2007) Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association, 102(478), 603–617.

Owens, D., Cho, H. & Barigozzi, M. (2024+) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling. The R Journal (to appear).

See Also

plot.factor.number, print.factor.number

```
library(fnets)
## Alessi, Barigozzi, and Capasso method for restricted models
abc <- factor.number(data.restricted, fm.restricted = TRUE)
print(abc)</pre>
```

fnets 5

```
plot(abc)
## Eigenvalue ratio method
er <- factor.number(data.restricted, method = "er", fm.restricted = TRUE)
print(er)
plot(er)
## Hallin and Liška method for unrestricted models
hl <- factor.number(data.unrestricted, fm.restricted = FALSE)
print(hl)
plot(hl)</pre>
```

fnets

Factor-adjusted network estimation

Description

Under a factor-adjusted vector autoregressive (VAR) model, the function estimates the spectral density and autocovariance matrices of the factor-driven common component and the idiosyncratic VAR process, the impulse response functions and common shocks for the common component, and VAR parameters, innovation covariance matrix and long-run partial correlations for the idiosyncratic component.

Usage

```
fnets(
  Х,
  center = TRUE,
  fm.restricted = FALSE,
  q = c("ic", "er"),
  ic.op = NULL,
  kern.bw = NULL,
 common.args = list(factor.var.order = NULL, max.var.order = NULL, trunc.lags = 20,
    n.perm = 10),
  var.order = 1,
  var.method = c("lasso", "ds"),
  var.args = list(n.iter = NULL, n.cores = 1),
  do.threshold = FALSE,
  do.lrpc = TRUE,
  lrpc.adaptive = FALSE,
 tuning.args = list(tuning = c("cv", "bic"), n.folds = 1, penalty = NULL, path.length =
    10)
)
```

Arguments

x input time series each column representing a time series variable; it is coerced into a ts object

6 fnets

center	whether to de-mean the input x
fm.restricted	whether to estimate a restricted factor model using static PCA
q	Either the number of factors or a string specifying the factor number selection method; possible values are:
	"ic" information criteria-based methods of Alessi, Barigozzi & Capasso (2010) when fm.restricted = TRUE or Hallin and Liška (2007) when fm.restricted = FALSE
	"er" eigenvalue ratio of Ahn and Horenstein (2013) when fm.restricted = TRUE or Avarucci et al. (2022) when fm.restricted = FALSE
	see factor.number.
ic.op	choice of the information criterion penalty, see factor.number for further details
kern.bw	a positive integer specifying the kernel bandwidth for dynamic PCA; by default, it is set to $floor(4*(dim(x)[2]/log(dim(x)[2]))^(1/3))$). When fm. restricted = TRUE, it is used to compute the number of lags for which autocovariance matrices are estimated
common.args	a list specifying the tuning parameters required for estimating the impulse response functions and common shocks. It contains:
	factor.var.order order of the blockwise VAR representation of the common component. If factor.var.order = NULL, it is selected blockwise by Schwarz criterion
	max.var.order maximum blockwise VAR order for the Schwarz criterion
	trunc.lags truncation lag for impulse response function estimation
	n.perm number of cross-sectional permutations involved in impulse response function estimation
var.order	order of the idiosyncratic VAR process; if a vector of integers is supplied, the order is chosen via tuning
var.method	a string specifying the method to be adopted for idiosyncratic VAR process estimation; possible values are:
	"lasso" Lasso-type 11-regularised M-estimation
	"ds" Dantzig Selector-type constrained 11-minimisation
var.args	a list specifying the tuning parameters required for estimating the idiosyncratic VAR process. It contains:
	<pre>n.iter maximum number of descent steps, by default depends on var.order; applicable when var.method = "lasso"</pre>
	n.cores number of cores to use for parallel computing, see makePSOCKcluster; applicable when var.method = "ds"
do.threshold	whether to perform adaptive thresholding of all parameter estimators with threshold
do.lrpc	whether to estimate the long-run partial correlation
lrpc.adaptive	whether to use the adaptive estimation procedure
tuning.args	a list specifying arguments for selecting the tuning parameters involved in VAR parameter and (long-run) partial correlation matrix estimation. It contains:

fnets 7

tuning a string specifying the selection procedure for var.order and lambda; possible values are: "cv" for cross validation, and "bic" for information criterion

n.folds if tuning = "cv", positive integer number of folds

penalty if tuning = "bic", penalty multiplier between 0 and 1; if penalty = NULL, it is set to 1/(1+exp(dim(x)[1])/dim(x)[2])) by default

path.length positive integer number of regularisation parameter values to consider; a sequence is generated automatically based in this value

Details

See Barigozzi, Cho and Owens (2024+) for further details. List arguments do not need to be specified with all list components; any missing entries will be filled in with the default argument.

Value

kern.bw

an S3 object of class fnets, which contains the following fields:

input parameter

q	number of factors
spec	if fm.restricted = FALSE a list containing estimates of the spectral density matrices for x, common and idiosyncratic components
acv	a list containing estimates of the autocovariance matrices for \boldsymbol{x} , common and idiosyncratic components
loadings	if fm.restricted = TRUE, factor loadings; if fm.restricted = FALSE and q >= 1, a list containing estimators of the impulse response functions (as an array of dimension (p, q, trunc.lags + 2))
factors	if fm.restricted = TRUE, factor series; else, common shocks (an array of dimension (q, n))
idio.var	a list containing the following fields:
	beta estimate of VAR parameter matrix; each column contains parameter estimates for the regression model for a given variable
	Gamma estimate of the innovation covariance matrix
	lambda regularisation parameter
	var.order VAR order
lrpc	see the output of par.lrpc
mean.x	if center = TRUE, returns a vector containing row-wise sample means of x ; if center = FALSE, returns a vector of zeros
var.method	input parameter
do.lrpc	input parameter

8 fnets.factor.model

References

Ahn, S. C. & Horenstein, A. R. (2013) Eigenvalue ratio test for the number of factors. Econometrica, 81(3), 1203–1227.

Alessi, L., Barigozzi, M., & Capasso, M. (2010) Improved penalization for determining the number of factors in approximate factor models. Statistics & Probability Letters, 80(23-24):1806–1813.

Avarucci, M., Cavicchioli, M., Forni, M., & Zaffaroni, P. (2022) The main business cycle shock(s): Frequency-band estimation of the number of dynamic factors.

Barigozzi, M., Cho, H. & Owens, D. (2024+) FNETS: Factor-adjusted network estimation and forecasting for high-dimensional time series. Journal of Business & Economic Statistics (to appear).

Hallin, M. & Liška, R. (2007) Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association, 102(478), 603–617.

Owens, D., Cho, H. & Barigozzi, M. (2024+) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling. The R Journal (to appear).

See Also

predict.fnets, plot.fnets, print.fnets

Examples

```
out <- fnets(data.unrestricted,
   do.threshold = TRUE,
   var.args = list(n.cores = 2)
)
pre <- predict(out, common.method = "unrestricted")
plot(out, type = "granger", display = "network")
plot(out, type = "lrpc", display = "heatmap")</pre>
```

fnets.factor.model

Factor model estimation

Description

Performs factor modelling under either restricted (static) or unrestricted (dynamic) factor models

Usage

```
fnets.factor.model(
    x,
    center = TRUE,
    fm.restricted = FALSE,
    q = c("ic", "er"),
    ic.op = NULL,
    kern.bw = NULL,
```

fnets.factor.model 9

```
common.args = list(factor.var.order = NULL, max.var.order = NULL, trunc.lags = 20,
    n.perm = 10)
)
```

Arguments

x input time series each column representing a time series variable; it is coerced

into a ts object

center whether to de-mean the input x

fm. restricted whether to estimate a restricted factor model using static PCA

q Either a string specifying the factor number selection method when fm.restricted

= TRUE; possible values are:

"ic" information criteria-based methods of Alessi, Barigozzi & Capasso (2010) when fm.restricted = TRUE or Hallin and Liška (2007) when fm.restricted

= FALSE

"er" eigenvalue ratio of Ahn and Horenstein (2013) when fm.restricted =

TRUE or Avarucci et al. (2022) when fm. restricted = FALSE

or the number of unrestricted factors, see factor.number

ic. op choice of the information criterion penalty, see hl.factor.number or abc.factor.number

for further details

kern.bw a positive integer specifying the kernel bandwidth for dynamic PCA; by de-

fault, it is set to floor($4*(\dim(x)[2]/\log(\dim(x)[2]))^(1/3)$)). When fm.restricted = TRUE, it is used to compute the number of lags for which au-

tocovariance matrices are estimated

common.args a list specifying the tuning parameters required for estimating the impulse re-

sponse functions and common shocks. It contains:

factor.var.order order of the blockwise VAR representation of the common component. If factor.var.order = NULL, it is selected blockwise

by Schwarz criterion

max.var.order maximum blockwise VAR order for the Schwarz criterion trunc.lags truncation lag for impulse response function estimation

n.perm number of cross-sectional permutations involved in impulse response

function estimation

Details

See Barigozzi, Cho and Owens (2024+) for further details.

Value

an S3 object of class fm, which contains the following fields:

q number of factors

spec if fm.restricted = FALSE a list containing estimates of the spectral density

matrices for x, common and idiosyncratic components

10 fnets.var

acv	a list containing estimates of the autocovariance matrices for \boldsymbol{x} , common and idiosyncratic components
loadings	if fm.restricted = TRUE, factor loadings; if fm.restricted = FALSE and q >= 1, a list containing estimators of the impulse response functions (as an array of dimension (p, q, trunc.lags + 2))
factors	if fm.restricted = TRUE, factor series; else, common shocks (an array of dimension (q, n))
mean.x	if center = TRUE, returns a vector containing row-wise sample means of x; if center = FALSE, returns a vector of zeros

References

Ahn, S. C. & Horenstein, A. R. (2013) Eigenvalue ratio test for the number of factors. Econometrica, 81(3), 1203–1227.

Alessi, L., Barigozzi, M., & Capasso, M. (2010) Improved penalization for determining the number of factors in approximate factor models. Statistics & Probability Letters, 80(23-24):1806–1813.

Avarucci, M., Cavicchioli, M., Forni, M., & Zaffaroni, P. (2022) The main business cycle shock(s): Frequency-band estimation of the number of dynamic factors.

Barigozzi, M., Cho, H. & Owens, D. (2024+) FNETS: Factor-adjusted network estimation and forecasting for high-dimensional time series. Journal of Business & Economic Statistics (to appear).

Hallin, M. & Liška, R. (2007) Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association, 102(478), 603–617.

Owens, D., Cho, H. & Barigozzi, M. (2024+) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling. The R Journal (to appear).

See Also

print.fm, predict.fm

Examples

out <- fnets.factor.model(data.restricted, fm.restricted = TRUE)</pre>

fnets.var	11-regularised Yule-Walker estimation for VAR processes	

Description

Estimates the VAR parameter matrices via 11-regularised Yule-Walker estimation and innovation covariance matrix via constrained 11-minimisation.

fnets.var 11

Usage

```
fnets.var(
    x,
    center = TRUE,
    method = c("lasso", "ds"),
    lambda = NULL,
    var.order = 1,
    tuning.args = list(tuning = c("cv", "bic"), n.folds = 1, penalty = NULL, path.length =
        10),
    do.threshold = FALSE,
    n.iter = NULL,
    tol = 0,
    n.cores = 1
)
```

Arguments

X	input time series each column representing a time series variable; it is coerced into a ts object
center	whether to de-mean the input x
method	a string specifying the method to be adopted for VAR process estimation; possible values are:
	"lasso" Lasso-type 11-regularised M-estimation
	"ds" Dantzig Selector-type constrained 11-minimisation
lambda	11-regularisation parameter; if lambda = NULL, tuning is employed to select the parameter
var.order	order of the VAR process; if a vector of integers is supplied, the order is chosen via tuning
tuning.args	a list specifying arguments for tuning for selecting the regularisation parameter (and VAR order). It contains:
	tuning a string specifying the selection procedure for var.order and lambda; possible values are: "cv" for cross validation, and "bic" for information criterion
	n.folds if tuning = "cv", positive integer number of folds
	penalty if tuning = "bic", penalty multiplier between 0 and 1; if penalty = $NULL$, it is set to $1/(1+exp(dim(x)[1])/dim(x)[2])$ by default
	path.length positive integer number of regularisation parameter values to consider; a sequence is generated automatically based in this value
do.threshold	whether to perform adaptive thresholding of VAR parameter estimator with threshold
n.iter	maximum number of descent steps, by default depends on var.order; applicable when method = "lasso"
tol	numerical tolerance for increases in the loss function; applicable when method = "lasso"
n.cores	number of cores to use for parallel computing, see <pre>makePSOCKcluster</pre> ; applicable when method = "ds"

12 network

Details

Further information can be found in Barigozzi, Cho and Owens (2024+).

Value

a list which contains the following fields:

beta estimate of VAR parameter matrix; each column contains parameter estimates

for the regression model for a given variable

Gamma estimate of the innovation covariance matrix

lambda 11-regularisation parameter

var.order VAR order

mean.x if center = TRUE, returns a vector containing row-wise sample means of x; if

center = FALSE, returns a vector of zeros

References

Barigozzi, M., Cho, H. & Owens, D. (2024+) FNETS: Factor-adjusted network estimation and forecasting for high-dimensional time series. Journal of Business & Economic Statistics (to appear).

Owens, D., Cho, H. & Barigozzi, M. (2024+) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling. The R Journal (to appear).

Examples

network

Convert networks into igraph objects

Description

Convert networks into igraph objects

Usage

```
network(object, ...)
```

network.fnets 13

Arguments

object object

... additional arguments

See Also

network.fnets

network.fnets

Convert networks estimated by fnets into igraph objects

Description

Converts S3 objects of class fnets into a network. Produces an igraph object for the three networks underlying factor-adjusted VAR processes: (i) directed network representing Granger causal linkages, as given by estimated VAR transition matrices summed across the lags, (ii) undirected network representing contemporaneous linkages after accounting for lead-lag dependence, as given by partial correlations of VAR innovations, (iii) undirected network summarising (i) and (ii) as given by long-run partial correlations of VAR processes. When plotting the network, note that the edge weights may be negative since they correspond to the entries of the estimators of VAR parameters and (long-run) partial correlations.

Usage

```
## S3 method for class 'fnets'
network(
  object,
  type = c("granger", "pc", "lrpc"),
  names = NA,
  groups = NA,
  group.colours = NA,
  ...
)
```

Arguments

object fnets object

type a string specifying which of the above three networks (i)–(iii) to visualise; pos-

sible values are

"granger" directed network representing Granger causal linkages

"pc" undirected network representing contemporaneous linkages; available when

object\$do.lrpc=TRUE

"1rpc" undirected network summarising Granger causal and contemporaneous

linkages; available when x\$do.1rpc = TRUE

names a character vector containing the names of the vertices

par.lrpc

```
groups an integer vector denoting any group structure of the vertices
group.colours a vector denoting colours corresponding to groups
... additional arguments to igraph::graph_from_adjacency_matrix
```

Value

a list containing

```
network igraph object

names input argument

groups input argument

grp.col vector of colours corresponding to each node

... additional arguments to igraph::graph_from_adjacency_matrix
```

See Also

fnets, plot.fnets

Examples

```
out <- fnets(data.unrestricted,
   do.threshold = TRUE,
   var.args = list(n.cores = 2)
)
net <- network(out, type = "granger")$network
plot(net, layout = igraph::layout_in_circle(net))
network(out, type = "pc")
network(out, type = "lrpc")</pre>
```

par.lrpc Parametric estimation of long-run partial correlations of factoradjusted VAR processes

Description

Returns a parametric estimate of long-run partial correlations of the VAR process from the VAR parameter estimates and the inverse of innovation covariance matrix obtained via constrained 11-minimisation.

par.lrpc 15

Usage

```
par.lrpc(
  object,
  eta = NULL,
  tuning.args = list(n.folds = 1, path.length = 10),
  lrpc.adaptive = FALSE,
  eta.adaptive = NULL,
  do.correct = TRUE,
  do.threshold = FALSE,
  n.cores = 1
)
```

Arguments

object fnets object

eta 11-regularisation parameter; if eta = NULL, it is selected by cross validation

tuning.args a list specifying arguments for the cross validation procedure for selecting the

tuning parameter involved in long-run partial correlation matrix estimation. It

contains:

n. folds positive integer number of folds

path.length positive integer number of regularisation parameter values to con-

sider; a sequence is generated automatically based in this value

1rpc.adaptive whether to use the adaptive estimation procedure

eta.adaptive 11-regularisation parameter for Step 1 of the adaptive estimation procedure; if

eta.adaptive = NULL, the default choice is 2 * sqrt(log(dim(x)[1])/dim(x)[2])

do.correct whether to correct for any negative entries in the diagonals of the inverse of

long-run covariance matrix

do.threshold whether to perform adaptive thresholding of Delta and Omega parameter esti-

mators with threshold

n.cores number of cores to use for parallel computing, see makePSOCKcluster

Details

See Barigozzi, Cho and Owens (2024+) for further details, and Cai, Liu and Zhou (2016) for further details on the adaptive estimation procedure.

Value

a list containing

Delta estimated inverse of the innovation covariance matrix

Omega estimated inverse of the long-run covariance matrix

pc estimated innovation partial correlation matrix

lrpc estimated long-run partial correlation matrix

eta 11-regularisation parameter

lrpc.adaptive input argument

plot.factor.number

References

Barigozzi, M., Cho, H. & Owens, D. (2024+) FNETS: Factor-adjusted network estimation and forecasting for high-dimensional time series. Journal of Business & Economic Statistics (to appear).

Cai, T. T., Liu, W., & Zhou, H. H. (2016) Estimating sparse precision matrix: Optimal rates of convergence and adaptive estimation. The Annals of Statistics, 44(2), 455-488.

Owens, D., Cho, H. & Barigozzi, M. (2024+) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling. The R Journal (to appear).

Examples

```
out <- fnets(data.unrestricted, do.lrpc = FALSE, var.args = list(n.cores = 2))
plrpc <- par.lrpc(out, n.cores = 2)
out$lrpc <- plrpc
out$do.lrpc <- TRUE
plot(out, type = "pc", display = "network")
plot(out, type = "lrpc", display = "heatmap")</pre>
```

plot.factor.number

Plot factor number

Description

Plots the eigenvalue ratio or information criteria from a factor. number object

Usage

```
## S3 method for class 'factor.number'
plot(x, ...)
```

Arguments

```
x factor.number object
... not used
```

Value

NULL, printed to console

See Also

factor.number

plot.fnets 17

Examples

```
library(fnets)
## Alessi, Barigozzi, and Capasso method for restricted models
abc <- factor.number(data.restricted, fm.restricted = TRUE)
print(abc)
plot(abc)

## Eigenvalue ratio method
er <- factor.number(data.restricted, method = "er", fm.restricted = TRUE)
print(er)
plot(er)

## Hallin and Liška method for unrestricted models
hl <- factor.number(data.unrestricted, fm.restricted = FALSE)
print(hl)
plot(hl)</pre>
```

plot.fnets

Plotting the networks estimated by fnets

Description

Plotting method for S3 objects of class fnets. When display = "network" or display = "heatmap", it produces a plot visualising three networks underlying factor-adjusted VAR processes: (i) directed network representing Granger causal linkages, as given by estimated VAR transition matrices summed across the lags, (ii) undirected network representing contemporaneous linkages after accounting for lead-lag dependence, as given by partial correlations of VAR innovations, (iii) undirected network summarising (i) and (ii) as given by long-run partial correlations of VAR processes. Edge widths are determined by edge weights. When display = "tuning", it produces up to two plots (when do.larpc = TRUE) visualising the outcome of CV or IC adopted for selecting the 11-regularisation parameters and the VAR order.

Usage

```
## S3 method for class 'fnets'
plot(
    x,
    type = c("granger", "pc", "lrpc"),
    display = c("network", "heatmap", "tuning"),
    names = NA,
    groups = NA,
    group.colours = NA,
    ...
)
```

plot.fnets

Arguments

x	fnets object
type	a string specifying which of the above three networks (i)—(iii) to visualise when display = "network" or display = "heatmap"; possible values are
	"granger" directed network representing Granger causal linkages
	"pc" undirected network representing contemporaneous linkages; available when x\$do.1rpc = TRUE
	"1rpc" undirected network summarising Granger causal and contemporaneous linkages; available when x\$do.1rpc = TRUE
display	a string specifying which plot to produce; possible values are
	"network" visualise the network as an igraph object, see plot.igraph
	"heatmap" visualise the network as a heatmap, see imagePlot
	"tuning" visualise the outcome from CV or IC (specified by tuning.args $\$$ tuning of fnets) for selecting 11-regularisation parameters and the VAR order
names	a character vector containing the names of the network vertices
groups	an integer vector denoting any group structure of the network vertices
group.colours	a vector denoting colours corresponding to groups
	additional arguments

Value

A plot produced as per the input arguments

See Also

fnets

```
out <- fnets(data.unrestricted,
   do.threshold = TRUE,
   var.args = list(n.cores = 2)
)
plot(out, type = "granger", display = "network",
groups = rep(c(1,2), 50/2), group.colours = c("orange","blue"))
plot(out, type = "lrpc", display = "heatmap")
plot(out, display = "tuning")</pre>
```

plot.threshold 19

plot.threshold

Plotting the thresholding procedure

Description

Plotting method for S3 objects of class threshold. Produces a plot visualising three diagnostics for the thresholding procedure, with threshold values t_k (x axis) against (i) Ratio_k, the ratio of the number of non-zero to zero entries in the matrix, as the threshold varies (ii) Diff_k, the first difference of Ratio_k (iii) |CUSUM k|, the absolute scaled cumulative sums of Diff_k

Usage

```
## S3 method for class 'threshold'
plot(x, plots = c(TRUE, FALSE, TRUE), ...)
```

Arguments

```
x threshold object
plots logical vector, which plots to use (Ratio, Diff, CUSUM respectively)
... additional arguments
```

Details

See Owens, Cho and Barigozzi (2024+) for further details.

Value

A network plot produced as per the input arguments

References

Owens, D., Cho, H. & Barigozzi, M. (2024+) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling. The R Journal (to appear).

See Also

threshold

```
## Not run:
library(fnets)
out <- fnets(data.unrestricted,
    var.args = list(n.cores = 2)
)
# Granger-causal network
th1 <- threshold(out$idio.var$beta)
plot(th1)</pre>
```

20 predict.fm

```
print(th1)
# Partial correlations
th2 <- threshold(out$lrpc$pc)
# Long-run partial correlations
th3 <- threshold(out$lrpc$lrpc)
## End(Not run)</pre>
```

predict.fm

Forecasting for factor models

Description

Produces forecasts of the data input to object for a given forecasting horizon by estimating the best linear predictors of the common component

Usage

```
## S3 method for class 'fm'
predict(object, n.ahead = 1, fc.restricted = TRUE, r = c("ic", "er"), ...)
```

Arguments

object fm object

n.ahead forecasting horizon

fc.restricted if fc.restricted = TRUE, the forecast is generated under a restricted factor

mode!

r number of static factors, or a string specifying the factor number selection method

when fc.restricted = TRUE; possible values are:

"ic" information criteria of Alessi, Barigozzi & Capasso (2010)

"er" eigenvalue ratio of Ahn & Horenstein (2013)

... not used

Value

a list containing

is in-sample predictions

forecast for the given forecasting horizon

r factor number

See Also

fnets.factor.model

```
out <- fnets.factor.model(data.restricted, fm.restricted = TRUE)
pre <- predict(out)</pre>
```

predict.fnets 21

predict.fnets Forecasting by fnets

Description

Produces forecasts of the data for a given forecasting horizon by separately estimating the best linear predictors of common and idiosyncratic components

Usage

```
## S3 method for class 'fnets'
predict(
  object,
  newdata = NULL,
  n.ahead = 1,
  fc.restricted = TRUE,
  r = c("ic", "er"),
  ...
)
```

Arguments

object fnets object

newdata input time series matrix; by default, uses input to object. Valid only for the

case where newdata is modelled as a VAR process without any factors

n.ahead forecasting horizon

fc.restricted whether to forecast using a restricted or unrestricted, blockwise VAR represen-

tation of the common component

r number of static factors, or a string specifying the factor number selection method

when fc.restricted = TRUE; possible values are:

"ic" information criteria of Alessi, Barigozzi & Capasso (2010)

"er" eigenvalue ratio of Ahn & Horenstein (2013)

... not used

Value

a list containing

forecast for the given forecasting horizon

common.pred a list containing forecasting results for the common component a list containing forecasting results for the idiosyncratic component

mean.x mean.x argument from object

See Also

fnets

22 print.factor.number

Examples

```
out <- fnets(data.restricted, q = 2, do.lrpc = FALSE, var.args = list(n.cores = 2))
pre.unr <- predict(out, fc.restricted = FALSE)
pre.res <- predict(out, fc.restricted = TRUE)</pre>
```

print.factor.number

Print factor number

Description

Prints a summary of a factor.number object

Usage

```
## S3 method for class 'factor.number'
print(x, ...)
```

Arguments

```
x factor.number object
```

... not used

Value

NULL, printed to console

See Also

factor.number

```
library(fnets)
## Alessi, Barigozzi, and Capasso method for restricted models
abc <- factor.number(data.restricted, fm.restricted = TRUE)
print(abc)
plot(abc)

## Eigenvalue ratio method
er <- factor.number(data.restricted, method = "er", fm.restricted = TRUE)
print(er)
plot(er)

## Hallin and Liška method for unrestricted models
hl <- factor.number(data.unrestricted, fm.restricted = FALSE)
print(hl)
plot(hl)</pre>
```

print.fm 23

print.fm

Print factor model

Description

Prints a summary of a fm object

Usage

```
## S3 method for class 'fm'
print(x, ...)
```

Arguments

```
x fm object ... not used
```

Value

NULL, printed to console

See Also

fnets.factor.model

Examples

```
out <- fnets.factor.model(data.restricted, q = "ic")
print(out)</pre>
```

print.fnets

Print fnets

Description

Prints a summary of a fnets object

Usage

```
## S3 method for class 'fnets' print(x, ...)
```

Arguments

```
x fnets object ... not used
```

24 print.threshold

Value

NULL, printed to console

See Also

fnets

Examples

```
out <- fnets(data.restricted, q = 2,
do.lrpc = FALSE, var.args = list(n.cores = 2))
print(out)
x <- sim.var(500, 50)$data
out <- fnets.var(x,
n.cores = 2)
print(out)</pre>
```

print.threshold

Print threshold

Description

Prints a summary of a threshold object

Usage

```
## S3 method for class 'threshold'
print(x, ...)
```

Arguments

```
x threshold object ... not used
```

Value

NULL, printed to console

See Also

threshold

sim.restricted 25

Examples

```
## Not run:
library(fnets)
out <- fnets(data.unrestricted,
    var.args = list(n.cores = 2)
)
# Granger-causal network
th1 <- threshold(out$idio.var$beta)
plot(th1)
print(th1)
# Partial correlations
th2 <- threshold(out$lrpc$pc)
# Long-run partial correlations
th3 <- threshold(out$lrpc$lrpc)
## End(Not run)</pre>
```

sim.restricted

Simulate data from a restricted factor model

Description

Simulate the common component following an unrestricted factor model that admits a restricted representation; see the model (C2) in the reference.

Usage

```
sim.restricted(n, p, q = 2, heavy = FALSE)
```

Arguments

n	sample size
р	dimension
q	number of unrestricted factors; number of restricted factors is given by $2 * q$
heavy	if heavy = FALSE, common shocks are generated from rnorm whereas if heavy = TRUE, from rt with df = 5 and then scaled by $sqrt(3 / 5)$

Value

a list containing

data ts object with n rows and p columns

q number of factors

r number of restricted factors

26 sim.unrestricted

References

Barigozzi, M., Cho, H. & Owens, D. (2024+) FNETS: Factor-adjusted network estimation and forecasting for high-dimensional time series. Journal of Business & Economic Statistics (to appear).

Owens, D., Cho, H. & Barigozzi, M. (2024+) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling. The R Journal (to appear).

Examples

```
common <- sim.restricted(500, 50)</pre>
```

sim.unrestricted

Simulate data from an unrestricted factor model

Description

Simulate the common component following an unrestricted factor model that does not admit a restricted representation; see the model (C1) in Barigozzi, Cho and Owens (2024+)

Usage

```
sim.unrestricted(n, p, q = 2, heavy = FALSE)
```

Arguments

n sample size p dimension

q number of unrestricted factors

heavy if heavy = FALSE, common shocks are generated from rnorm whereas if heavy

= TRUE, from rt with df = 5 and then scaled by sqrt(3 / 5)

Value

a list containing

data ts object with n rows and p columns

q number of factors

References

Barigozzi, M., Cho, H. & Owens, D. (2024+) FNETS: Factor-adjusted network estimation and forecasting for high-dimensional time series. Journal of Business & Economic Statistics (to appear).

Owens, D., Cho, H. & Barigozzi, M. (2024+) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling. The R Journal (to appear).

```
common <- sim.unrestricted(500, 50)</pre>
```

sim.var 27

sim.var Simulate a VAR(1) process				
· /1	si	m.var	Simulate a VAR(1) process	
			() F	

Description

Simulate a VAR(1) process; see the reference for the generation of the transition matrix.

Usage

```
sim.var(n, p, Gamma = diag(1, p), heavy = FALSE)
```

Arguments

n sample size p dimension

Gamma innovation covariance matrix; ignored if heavy = TRUE

heavy if heavy = FALSE, common shocks are generated from rnorm whereas if heavy

= TRUE, from rt with df = 5 and then scaled by sqrt(3 / 5)

Value

a list containing

data ts object with n rows and p columns

A transition matrix

Gamma innovation covariance matrix

References

Barigozzi, M., Cho, H. & Owens, D. (2024+) FNETS: Factor-adjusted network estimation and forecasting for high-dimensional time series. Journal of Business & Economic Statistics (to appear).

Owens, D., Cho, H. & Barigozzi, M. (2024+) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling. The R Journal (to appear).

```
idio <- sim.var(500, 50)
```

28 threshold

threshold

Threshold the entries of the input matrix at a data-driven level

Description

Threshold the entries of the input matrix at a data-driven level. This can be used to perform edge selection for VAR parameter, inverse innovation covariance, and long-run partial correlation networks.

Usage

```
threshold(mat, path.length = 500)
```

Arguments

mat input parameter matrix

path.length number of candidate thresholds

Details

See Owens, Cho & Barigozzi (2024+) for more information on the threshold selection process

Value

an S3 object of class threshold, which contains the following fields:

threshold data-driven threshold thr.mat thresholded input matrix

References

Owens, D., Cho, H. & Barigozzi, M. (2024+) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling. The R Journal (to appear).

See Also

plot.threshold, print.threshold

```
## Not run:
library(fnets)
out <- fnets(data.unrestricted,
    var.args = list(n.cores = 2)
)
# Granger-causal network
th1 <- threshold(out$idio.var$beta)
plot(th1)</pre>
```

threshold 29

```
print(th1)
# Partial correlations
th2 <- threshold(out$lrpc$pc)
# Long-run partial correlations
th3 <- threshold(out$lrpc$lrpc)
## End(Not run)</pre>
```

Index

```
* datasets
    data.restricted, 2
    data.unrestricted, 3
abc.factor.number, 9
data.restricted, 2
data.unrestricted, 3
factor.number, 3, 6, 9, 16, 22
fnets, 5, 14, 18, 21, 24
fnets.factor.model, 8, 20, 23
fnets.var, 10
hl.factor.number,9
imagePlot, 18
makePSOCKcluster, 6, 11, 15
network, 12
network.fnets, 13, 13
par.1rpc, 7, 14
plot.factor.number, 4, 16
plot.fnets, 8, 14, 17
plot.igraph, 18
plot.threshold, 19, 28
predict.fm, 10, 20
predict.fnets, 8, 21
print.factor.number, 4, 22
print.fm, 10, 23
print.fnets, 8, 23
print.threshold, 24, 28
sim.restricted, 25
sim.unrestricted, 26
sim.var, 27
threshold, 6, 11, 15, 19, 24, 28
ts, 4, 5, 9, 11
```