Тема 6. Функции и пределы

Содержание

Тема 6. Функции и пределы 6.3. Предел последовательности	2
6.3.1. Бесконечно малые последовательности, предел последовательности	
6.3.2. Связь между сходимостью и ограниченностью последовательности	3
6.3.3. Свойства бесконечно малых последовательностей	
6.3.4. Операции над пределами последовательностей	
6.3.5. Пределы и неравенства	
6.3.6. Бесконечно большие последовательности	
6.3.7. Число е	

6.3. Предел последовательности

6.3.1. Бесконечно малые последовательности, предел последовательности

 \Rightarrow Последовательность $\{\alpha_n\}$ называется бесконечно малой, если для любого сколь угодно малого положительного числа ε можно подобрать такой номер N, что, начиная с этого номера (т. е. для всех $n \geqslant N$), будет выполнено неравенство $|\alpha_n| < \varepsilon$.

В дальнейшем тот факт, что последовательность $\{\alpha_n\}$ — бесконечно малая, мы будем сокращенно обозначать так: б. м. $\{\alpha_n\}$.

 \Rightarrow Число a называется npedenom последовательности $\{x_n\}$, если последовательность $\{\alpha_n\} = \{x_n - a\}$ является бесконечно малой.

На основе определения бесконечно малой последовательности можно дать другое, эквивалентное, определение предела последовательности.

 \Rightarrow Число a называется пределом последовательности $\{x_n\}$, если для любого положительного числа ε можно подобрать такой номер N (как правило, зависящий от ε), что, начиная с этого номера (т. е. для всех $n \ge N$), будет выполнено неравенство $|x_n - a| < \varepsilon$.

В случае, если последовательность $\{x_n\}$ имеет своим пределом число a, говорят также, что последовательность $\{x_n\}$ сходится (или стремится) к числу a, и обозначают этот факт так:

$$\lim_{n \to \infty} x_n = a$$
 или $x_n \to a$ (при $n \to \infty$).

⇒ Если последовательность не имеет предела, то говорят, что она расходится.

Иногда удобно использовать *геометрическое* определение предела последовательности, эквивалентное двум предыдущим:

 \Rightarrow Число a называется пределом последовательности $\{x_n\}$, если в любом интервале с центром в точке a находятся почти все (т. е. все, кроме конечного числа) члены этой последовательности.

6.3.2. Связь между сходимостью и ограниченностью последовательности

Всякая сходящаяся последовательность является ограниченной.

Всякая монотонная и ограниченная последовательность сходится.

Всякая постоянная последовательность, члены которой равны a, сходится к этому числу, т. е. $\lim_{n\to\infty} a=a$.

6.3.3. Свойства бесконечно малых последовательностей

Сумма (разность) двух бесконечно малых последовательностей также является бесконечно малой последовательностью.

Таким образом,
$$\{\alpha_n\}$$
 и $\{\beta_n\}$ — б. м. \Longrightarrow $\{\alpha_n \pm \beta_n\}$ — б. м.

Произведение бесконечно малой последовательности на ограниченную последовательность является бесконечно малой последовательностью, т. е.

$$\{\alpha_n\}$$
 — б. м., $\{x_n\}$ — огранич. посл-ть $\implies \{\alpha_n\cdot x_n\}$ — б. м.

Произведение двух бесконечно малых последовательностей является бесконечно малой последовательностью:

$$\{\alpha_n\}, \{\beta_n\} - 6. \text{ M.}, \implies \{\alpha_n \cdot \beta_n\} - 6. \text{ M.}$$

Произведение бесконечно малой последовательности на постоянное число является бесконечно малой последовательностью:

$$\{\alpha_n\}$$
 — б. м., $c \in \mathbb{R} \implies \{c \cdot \alpha_n\}$ — б. м.

6.3.4. Операции над пределами последовательностей

Предел суммы (разности) двух сходящихся последовательностей равен сумме (соответственно, разности) их пределов:

$$\lim_{n\to\infty} x_n = a, \lim_{n\to\infty} y_n = b \implies \lim_{n\to\infty} (x_n \pm y_n) = a \pm b.$$

2. Предел произведения двух сходящихся последовательностей равен произведению их пределов:

$$\lim_{n\to\infty} x_n = a, \lim_{n\to\infty} y_n = b \implies \lim_{n\to\infty} (x_n \cdot y_n) = a \cdot b.$$

В частности:

постоянный множитель можно выносить за знак предела:

$$\lim_{n\to\infty} x_n = a, \quad c \in \mathbb{R} \implies \lim_{n\to\infty} (cx_n) = c \cdot a;$$

 предел натуральной степени от сходящейся последовательности равен этой степени от ее предела:

$$\lim_{n\to\infty} x_n = a \implies \lim_{n\to\infty} (x_n)^k = (\lim_{n\to\infty} x_n)^k = a^k, \quad k = 1, 2, 3, \dots$$

Предел частного двух сходящихся последовательностей равен частному их пределов:

$$\lim_{n\to\infty} x_n = a, \lim_{n\to\infty} y_n = b, \ (b\neq 0, \ y_n\neq 0 \ \forall n) \implies \lim_{n\to\infty} \frac{x_n}{y_n} = \frac{a}{b}.$$

4. Предел корня k-й степени от сходящейся последовательности равен корню этой же степени от предела последовательности:

$$\lim_{n\to\infty} x_n = a, \quad k = 2, 3, 4, \ldots \implies \lim_{n\to\infty} \sqrt[k]{x_n} = \sqrt[k]{a}.$$

6.3.5. Пределы и неравенства

Пусть все члены данной сходящейся последовательности неотрицательны. Тогда ее предел также неотрицателен:

$$\lim_{n\to\infty} x_n = a, \quad x_n \geqslant 0 \ \forall n \implies a \geqslant 0.$$

Пусть каждый член одной сходящейся последовательности больше или равен соответствующему члену другой сходящейся последовательности. Тогда и предел первой последовательности больше или равен пределу второй последовательности:

$$\lim_{n\to\infty} x_n = a, \lim_{n\to\infty} y_n = b, \quad x_n \geqslant y_n \ \forall n \implies a \geqslant b.$$

Теорема 6.1 (о промежуточной переменной). Пусть соответствующие члены трех данных последовательностей $\{x_n\}$, $\{y_n\}$ и $\{z_n\}$ удовлетворяют условию $x_n\leqslant y_n\leqslant z_n$.

Тогда если последовательности $\{x_n\}$ и $\{z_n\}$ сходятся к одному и тому же пределу, то последовательность $\{y_n\}$ также сходится к этому пределу:

$$x_n \leqslant y_n \leqslant z_n, \ \forall n, \quad \lim x_n = \lim z_n = a \implies \lim_{n \to \infty} y_n = a.$$

 \Rightarrow Последовательность $\{x_n\}$ называется положительной бесконечно большой, если для любого сколь угодно большого числа M найдется такой номер N, что для всех n, начиная с этого номера, выполняется неравенство $x_n > M$.

Про положительную бесконечно большую последовательность $\{x_n\}$ говорят также, что она *стремится* κ *плюс бесконечности*, и пишут $\lim_{n\to\infty} x_n = +\infty$.

Заметим, что эта запись, так же, как и слова о стремлении к плюс бесконечности, носит условный характер и не означает существование предела в том смысле, как это было определено в начале этого параграфа. То же относится к отрицательной бесконечно большой и бесконечно большой последовательностям, определенным ниже.

 \Rightarrow Последовательность $\{x_n\}$ называется *отрицательной бесконечно большой*, если для любого сколь угодно большого по модулю отрицательного числа M найдется такой номер N, что для всех n, начиная с этого номера, выполняя неравенство $x_n < M$.

Про отрицательную бесконечно большую последовательность $\{x_n\}$ говорят также, что она *стремится* к минус бесконечности, и пишут $\lim_{n\to\infty} x_n = -\infty$.

 \Rightarrow Последовательность $\{x_n\}$ называется бесконечно большой, если последовательность $\{|x_n|\}$ является положительной бесконечно большой.

Если последовательность $\{x_n\}$ — бесконечно большая (б. б.), то говорят также, что она *стремится* к бесконечности, и пишут $\lim_{n\to\infty} x_n = \infty$.

Последовательность $\{x_n\}$, все члены которой отличны от нуля, — бесконечно малая тогда и только тогда, когда последовательность $\left\{\frac{1}{x_n}\right\}$ — бесконечно большая:

$$x_n \neq 0 \; (\forall n); \; \{x_n\} - \text{6. M.} \iff \left\{\frac{1}{x_n}\right\} - \text{6. 6.}$$

Кроме того, полезно иметь в виду следующее:

- 1. Пусть $\lim_{n\to\infty}x_n=a,\ \lim_{n\to\infty}y_n=\pm\infty.$ Тогда $\lim_{n\to\infty}\frac{x_n}{y_n}=0.$
- 2. Пусть $\lim_{n\to\infty} x_n = a$, (в том числе $a = +\infty$), a > 0 (соответственно, a < 0, в том числе $a = -\infty$), $\lim_{n\to\infty} y_n = 0$, $y_n > 0 \,\,\forall n$. Тогда $\lim_{n\to\infty} \frac{x_n}{y_n} = +\infty$ (соответственно, $= -\infty$).

6.3.7. Число е

Последовательность $\left\{\left(1+\frac{1}{n}\right)^n\right\}$ — возрастает и ограничена сверху, а поэтому сходится. Ее пределом является замечательное иррациональное число $e=2,71828182845\ldots$, служащее основанием натуральных логарифмов.

Таким образом,

$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e.$$