AI 6102: Machine Learning Methodologies & Applications

Additional Notes on Kernelized Regularized Regression Models

Sinno Jialin Pan

Nanyang Technological University, Singapore

Homepage: http://www.ntu.edu.sg/home/sinnopan

Kernelized Regularized Regression

Regularized linear regression with kernels

$$\widehat{\mathbf{w}} = \arg\min_{\mathbf{w}} \frac{1}{2} \sum_{i=1}^{N} (\mathbf{w} \cdot \phi(\mathbf{x}_i) - y_i)^2 + \frac{\lambda}{2} ||\mathbf{w}||_2^2$$

• It can be reformulated in terms of a dual form where kernel function arises naturally

$$\frac{\partial \left(\frac{1}{2}\sum_{i=1}^{N}(\boldsymbol{w}\cdot\boldsymbol{\phi}(\boldsymbol{x}_{i})-y_{i})^{2}+\frac{\lambda}{2}\|\boldsymbol{w}\|_{2}^{2}\right)}{\partial \boldsymbol{w}}=\mathbf{0}$$

$$\sum_{i=1}^{N}(\boldsymbol{w}\cdot\boldsymbol{\phi}(\boldsymbol{x}_{i})-y_{i})\boldsymbol{\phi}(\boldsymbol{x}_{i})+\lambda\boldsymbol{w}=0$$

Closed-form Solution

• By using kernel trick $k(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)$, the regression prediction function $f(x) = w \cdot \phi(x)$ can be written as

$$f(x) = k_x^T (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$$

$$\mathbf{K} = \begin{pmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & \cdots & k(\mathbf{x}_1, \mathbf{x}_N) \\ \vdots & \ddots & \vdots \\ k(\mathbf{x}_N, \mathbf{x}_1) & \cdots & k(\mathbf{x}_N, \mathbf{x}_N) \end{pmatrix} \begin{pmatrix} \phi(\mathbf{x}_1) \cdot \phi(\mathbf{x}_1) & \cdots & \phi(\mathbf{x}_1) \cdot \phi(\mathbf{x}_N) \\ \vdots & \ddots & \vdots \\ \phi(\mathbf{x}_N) \cdot \phi(\mathbf{x}_1) & \cdots & \phi(\mathbf{x}_N) \cdot \phi(\mathbf{x}_N) \end{pmatrix}$$

 k_{x} $k(x_{1},x)$ $k(x_{2},x)$ \dots $k(x_{N},x)$

 $egin{array}{c} y_1 \ y_2 \ \dots \ y_N \end{array}$

 $I(N \times N)$

1	0	 0
0	1	 0

Derivation

$$\sum_{i=1}^{N} (\mathbf{w} \cdot \phi(\mathbf{x}_i) - y_i)\phi(\mathbf{x}_i) + \lambda \mathbf{w} = 0$$

$$\mathbf{w} = -\frac{1}{\lambda} \sum_{i=1}^{N} (\mathbf{w} \cdot \phi(\mathbf{x}_i) - y_i)\phi(\mathbf{x}_i)$$

$$\mathbf{w} = -\frac{1}{\lambda} \sum_{i=1}^{N} (\mathbf{w} \cdot \phi(\mathbf{x}_i) - y_i)\phi(\mathbf{x}_i)$$

$$\mathbf{w} = -\frac{1}{\lambda} \sum_{i=1}^{N} (\mathbf{w} \cdot \phi(\mathbf{x}_i) - y_i)\phi(\mathbf{x}_i)$$

$$\mathbf{w} = -\frac{1}{\lambda} \sum_{i=1}^{N} (\mathbf{w} \cdot \phi(\mathbf{x}_i) - y_i)\phi(\mathbf{x}_i)$$

$$\mathbf{w} = -\frac{1}{\lambda} \sum_{i=1}^{N} (\mathbf{w} \cdot \phi(\mathbf{x}_i) - y_i)\phi(\mathbf{x}_i)$$

$$\mathbf{w} = -\frac{1}{\lambda} \sum_{i=1}^{N} (\mathbf{w} \cdot \phi(\mathbf{x}_i) - y_i)\phi(\mathbf{x}_i)$$

$$\mathbf{w} = -\frac{1}{\lambda} \sum_{i=1}^{N} (\mathbf{w} \cdot \phi(\mathbf{x}_i) - y_i)\phi(\mathbf{x}_i)$$

$$\mathbf{w} = -\frac{1}{\lambda} \sum_{i=1}^{N} (\mathbf{w} \cdot \phi(\mathbf{x}_i) - y_i)\phi(\mathbf{x}_i)$$

$$\mathbf{w} = -\frac{1}{\lambda} \sum_{i=1}^{N} (\mathbf{w} \cdot \phi(\mathbf{x}_i) - y_i)\phi(\mathbf{x}_i)$$

Denote by
$$\mathbf{\Phi} = (\phi(\mathbf{x}_1), \phi(\mathbf{x}_2), \dots, \phi(\mathbf{x}_N))^T$$
 and $\mathbf{a} = (a_1, \dots, a_N)^T$

Φ: *N*-by-*F* matrix (suppose φ(·) maps x_i to a *F*-dimensional space)

a: a column vector

$$\mathbf{w} = \sum_{i=1}^{N} a_i \phi(\mathbf{x}_i) = \mathbf{\Phi}^T \mathbf{a}$$

$$a_i = -\frac{1}{\lambda}(\mathbf{w} \cdot \phi(\mathbf{x}_i) - y_i) \implies \mathbf{a} = \frac{1}{\lambda}(\mathbf{y} - \mathbf{\Phi}\mathbf{w})$$

• By substituting $\mathbf{w} = \mathbf{\Phi}^T \mathbf{a}$ into $\mathbf{a} = \frac{1}{\lambda} (\mathbf{y} - \mathbf{\Phi} \mathbf{w})$, we have

$$a = \frac{1}{\lambda} (y - \Phi \Phi^{T} a)$$

$$\downarrow \downarrow \downarrow$$

$$\lambda \mathbf{I} a = y - \Phi \Phi^{T} a$$

$$\downarrow \downarrow \downarrow$$

$$(\lambda \mathbf{I} + \Phi \Phi^{T}) a = y$$

$$\downarrow \downarrow$$

$$a = (\lambda \mathbf{I} + \Phi \Phi^{T})^{-1} y$$

Closed-form solution of a

• By denoting the Kernel matrix (Gram matrix) as follows,

$$\mathbf{K} = \begin{pmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & \cdots & k(\mathbf{x}_1, \mathbf{x}_N) \\ \vdots & \ddots & \vdots \\ k(\mathbf{x}_N, \mathbf{x}_1) & \cdots & k(\mathbf{x}_N, \mathbf{x}_N) \end{pmatrix} = \begin{pmatrix} \phi(\mathbf{x}_1) \cdot \phi(\mathbf{x}_1) & \cdots & \phi(\mathbf{x}_1) \cdot \phi(\mathbf{x}_N) \\ \vdots & \ddots & \vdots \\ \phi(\mathbf{x}_N) \cdot \phi(\mathbf{x}_1) & \cdots & \phi(\mathbf{x}_N) \cdot \phi(\mathbf{x}_N) \end{pmatrix}$$

$$\boldsymbol{a} = (\lambda \mathbf{I} + \boldsymbol{\Phi} \boldsymbol{\Phi}^T)^{-1} \boldsymbol{y} = (\lambda \mathbf{I} + \mathbf{K})^{-1} \boldsymbol{y}$$

$$\mathbf{w} = \mathbf{\Phi}^T \mathbf{a} = \mathbf{\Phi}^T (\lambda \mathbf{I} + \mathbf{K})^{-1} \mathbf{y}$$

Unknown as $\phi(\cdot)$ is unknown

• Our goal is to construct an explicit form of $f(\cdot)$ not **w**

$$f(\mathbf{x}) = \mathbf{w} \cdot \phi(\mathbf{x}) = \phi(\mathbf{x})^T \mathbf{w}$$

• By substituting $\mathbf{w} = \mathbf{\Phi}^T (\lambda \mathbf{I} + \mathbf{K})^{-1} \mathbf{y}$ into $f(\mathbf{x})$, we have

$$f(\mathbf{x}) = \phi(\mathbf{x})^T \mathbf{\Phi}^T (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$$

Denote $k_x = \Phi \phi(x)$, which is an N-dimensional column vector, where the *i*-th element of k_x is $k(x_i, x)$

Therefore

$$f(\mathbf{x}) = \mathbf{k}_{\mathbf{x}}^{T} (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$$

Thank you!