Supplementary Information

Genome-scale and pathway engineering for the sustainable aviation fuel precursor isoprenol production in *Pseudomonas putida*

Deepanwita Banerjee^{1,2,§}, Ian S. Yunus^{1,2,§}, Xi Wang^{1,2,§}, Jinho Kim^{1,2}, Aparajitha Srinivasan^{1,2}, Russel Menchavez^{1,2}, Yan Chen^{1,2}, Jennifer W. Gin^{1,2}, Christopher J. Petzold^{1,2}, Hector Garcia Martin^{1,2}, Jon K. Magnuson^{1,3}, Paul D. Adams^{1,4}, Blake A. Simmons^{1,2}, Aindrila Mukhopadhyay^{1,2,5}, Joonhoon Kim^{1,3,§,*}, Taek Soon Lee^{1,2,*}

¹Joint BioEnergy Institute, 5885 Hollis St., Emeryville, CA 94608, USA

²Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

³Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA

⁴Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

⁵Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

§Equal Contributors

*Corresponding Authors, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA.

E-mail addresses: tslee@lbl.gov (T. S. Lee). Tel: +1-510-495-2470. Fax: +1-510-495-2629.; joonhoonkim@lbl.gov (J. Kim).

Supplementary Figures and Tables

Supplementary Figure 1: Comparison of isoprenol production for multiple gene knockout strains. Time-course production of XW17 to XW19 strains in EZ rich media. Glucose, isoprenol, OD_{600} , and organic acids were measured. Data were obtained from three biological replicates and error bars represent standard deviation. The isoprenol yield was calculated as mg isoprenol per g consumed glucose.

Supplementary Figure 2: Correlation between isoprenol production and cell growth of XW11 to XW19 strains in EZ rich media. Error bars represent standard deviation from three biological replicates.

Supplementary Figure 3: Fluorescence level of red fluorescent protein expressed under (A) P_{AllacO-1} and (B) P_{BAD} inducible promoter. Cultures were induced with different concentrations of IPTG or L-Arabinose, 2 hr after inoculation. Fluorescence level from at least 50000 cells was measured using a BD C6 Accuri flow cytometer with FL-4 detector at 24 hr. Error bars represent standard deviation of three biological replicates.

Supplementary Figure 4: Targeted proteomics of isoprenol production pathway. Data were obtained from three biological replicates and error bars represent standard deviation.

Supplementary Figure 5: Cell growth, glucose consumption, and isoprenol production/degradation from time-course experiment in M9 medium by IY1262 ($\Delta phaABC\Delta mvaB\Delta hbdH\Delta ldhA$), IY1200 ($\Delta phaABC\Delta mvaB\Delta hbdH\Delta ldhA\Delta PP_2675$), and IY1452 ($\Delta phaABC\Delta mvaB\Delta hbdH\Delta ldhA\Delta PP_2675$). Data were obtained from three biological replicates and error bars represent standard deviation.

Supplementary Figure 6: Flux variability analysis (FVA) for *P. putida* KT2440 $\Delta phaABC\Delta mvaB\Delta hbdH\Delta ldhA\Delta 2675$ compared to WT flux span distribution normalized to glucose consumption.

Supplementary Figure 7: Subsystem-wise distribution of reactions that had a substantial fold change in flux for *P. putida* KT2440 $\Delta phaABC\Delta mvaB\Delta hbdH\Delta ldhA\Delta 2675$ compared to WT.

Supplementary Table 1. Plasmids used in this study

Plasmids	Description	Reference
pXW1	pBbB5k-MvaS _{ef} -MvaE _{ef} -T1-MK _{mm} -PMD _{HKQ}	Wang et al. 2022
pK18-mvaB	Plasmid to knockout <i>mvaB</i> (PP_3540)	This study
pK18-aceA	Plasmid to knockout aceA (PP_4116)	This study
pK18-gntZ	Plasmid to knockout gntZ (PP_4043)	This study
pK18- <i>hbdH</i>	Plasmid to knockout <i>hbdH</i> (PP_3073)	This study
pK18-gltA	Plasmid to knockout gltA (PP_4194)	This study
pK18-ldhA	Plasmid to knockout <i>ldhA</i> (PP_1649)	This study
pK18-ppsA	Plasmid to knockout ppsA (PP_2082)	This study
pIY554	$pRK2\text{-}Kan\text{-}\textit{araC}\text{-}P_{BAD}\text{-}MvaS_{ef}\text{-}MvaE_{ef}\text{-}T_{rpoH}\text{-}P_{trc1\text{-}O}\text{-}MK_{mm}\text{-}PMD_{HKQ}$	This study
pIY602	$pBBR1-B5-Kan-\textit{lacI-P}_{lacUV5}-MvaS_{ef}-MvaE_{ef}-T_{rpoH}-P_{trc1-O}-MK_{mm}-PMD_{HKQ}$	This study
pIY603	$pRK2\text{-}Kan\text{-}\textit{lacI-}P_{lacUV5}\text{-}MvaS_{ef}\text{-}MvaE_{ef}\text{-}T_{rpoH}\text{-}P_{trc1\text{-}O}\text{-}MK_{mm}\text{-}PMD_{HKQ}$	This study
pIY604	$pRSF1010\text{-}Kan\text{-}\textit{lacI-}P_{lacUV5}\text{-}MvaS_{ef}\text{-}MvaE_{ef}\text{-}T_{rpoH}\text{-}P_{trc1\text{-}O}\text{-}MK_{mm}\text{-}PMD_{HKQ}$	This study
pIY605	$pBBR1\text{-}Kan\text{-}\textit{lacI-}P_{lacUV5}\text{-}MvaS_{ef}\text{-}MvaE_{ef}\text{-}T_{rpoH}\text{-}P_{trc1\text{-}O}\text{-}MK_{mm}\text{-}PMD_{HKQ}$	This study
pIY670	$pRK2\text{-}Kan\text{-}\textit{araC}\text{-}P_{BAD}\text{-}MvaS_{ef}\text{-}MvaE_{ef}\text{-}T_{rpoH}\text{-}P_{trc1\text{-}O}\text{-}MK_{mm}\text{-}PMD_{HKQ}\text{-}AphA$	This study
pIY671	$pRK2-Kan-\textit{araC-P}_{BAD}-MvaS_{ef}-MvaE_{ef}-T_{rpoH}-P_{trc1-O}-MK_{mm}-PMD_{HKQ}-NudB$	This study
pIY672	$pRK2-Kan-\textit{araC-P}_{BAD}-MvaS_{ef}-MvaE_{ef}-T_{rpoH}-P_{trc1-O}-MK_{mm}-PMD_{HKQ}-AphA-NudB$	This study
pIY697	$pRK2\text{-}Kan\text{-}\textit{araC}\text{-}P_{BAD}\text{-}MvaS_{ef}\text{-}MvaE_{ef}\text{-}T_{rpoH}\text{-}P_{trc1\text{-}O}\text{-}MK_{mm}\text{-}PMD_{HKQ}\text{-}PhoA$	This study

pIY761	$pRK2-Kan-\textit{araC}-P_{BAD}-MvaS_{ef}-MvaE_{ef}-AtoB-T_{rpoH}-P_{trc1-O}-MK_{mm}-PMD_{HKQ}-AphA-NudB$	This study
pIY762	$pRK2\text{-}Kan\text{-}\textit{araC}\text{-}P_{BAD}\text{-}MvaS_{ef}\text{-}MvaE_{ef}\text{-}NphT7\text{-}T_{rpoH}\text{-}P_{trc1\text{-}O}\text{-}MK_{mm}\text{-}PMD_{HKQ}\text{-}AphA\text{-}NudB}$	This study
pIY763	$pRK2\text{-}Kan\text{-}\textit{araC}\text{-}P_{BAD}\text{-}MvaS_{ef}\text{-}MvaE_{ef}\text{-}PMK\text{-}T_{rpoH}\text{-}P_{trc1\text{-}O}\text{-}MK_{mm}\text{-}PMD_{HKQ}\text{-}AphA\text{-}NudB}$	This study
pIY765	$pRK2\text{-}Kan\text{-}\textit{araC}\text{-}P_{BAD}\text{-}MvaS_{ef}\text{-}MvaE_{ef}\text{-}PMK\text{-}AtoB\text{-}T_{rpoH}\text{-}P_{trc1\text{-}O}\text{-}MK_{mm}\text{-}PMD_{HKQ}\text{-}AphA\text{-}NudB}$	This study
pIY853	pK18-PP_2675	This study

Supplementary Table 2. Strains used in this study

Strains	JBEI Registry	Description	Reference
XW01	JPUB_019964	P. putida KT2440 ΔphaABC (PP_5003 to PP_5005)	Wang et al. 2022
XW02	JPUB_019990	P. putida KT2440 ΔphaABC ΔmvaB	This study
XW03	JPUB_019992	P. putida KT2440 ΔphaABC ΔmvaB ΔaceA	This study
XW04	JPUB_019994	P. putida KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta gntZ$	This study
XW05	JPUB_019996	P. putida KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta hbdH$	This study
XW06	JPUB_019998	P. putida KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta hbdH$ $\Delta gltA$	This study
XW07	JPUB_020000	P. putida KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta hbdH$ $\Delta aceA$	This study
XW08	JPUB_020002	P. putida KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta hbdH$ $\Delta gntZ$	This study
XW09	JPUB_020004	P. putida KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta hbdH$ $\Delta aceA$ $\Delta gntZ$	This study
XW11	JPUB_019977	P. putida KT2440 ΔphaABC with plasmid pXW1	Wang et al. 2022
XW12	JPUB_019991	<i>P. putida</i> KT2440 $\Delta phaABC$ $\Delta mvaB$ with plasmid pXW1	This study
XW13	JPUB_019993	<i>P. putida</i> KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta aceA$ with plasmid pXW1	This study
XW14	JPUB_019995	<i>P. putida</i> KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta gntZ$ with plasmid pXW1	This study
XW15	JPUB_019997	<i>P. putida</i> KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta hbdH$ with plasmid pXW1	This study
XW16	JPUB_019999	<i>P. putida</i> KT2440 Δ <i>phaABC</i> Δ <i>mvaB</i> Δ <i>hbdH</i> Δ <i>gltA</i> with plasmic pXW1	1 This study
XW17	JPUB_020001	<i>P. putida</i> KT2440 Δ <i>phaABC</i> Δ <i>mvaB</i> Δ <i>hbdH</i> Δ <i>aceA</i> with plasmic pXW1	l This study

XW18	JPUB_020003	<i>P. putida</i> KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta hbdH$ $\Delta gntZ$ with plasmid This study pXW1
XW19	JPUB_020005	P. putida KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta hbdH$ $\Delta aceA$ $\Delta gntZ$ This study with plasmid pXW1
IY721	JBEI-233609	P. putida KT2440 ΔphaABC with plasmid pIY554 This study
IY781	JBEI-233601	P. putida KT2440 ΔphaABC with plasmid pIY602 This study
IY782	JBEI-233603	P. putida KT2440 ΔphaABC with plasmid pIY603 This study
IY783	JBEI-233605	P. putida KT2440 ΔphaABC with plasmid pIY604 This study
IY784	JBEI-233607	P. putida KT2440 ΔphaABC with plasmid pIY605 This study
IY846	JBEI-233611	<i>P. putida</i> KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta hbdH$ with plasmid This study pIY554
IY939	JBEI-233615	<i>P. putida</i> KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta hbdH$ with plasmid This study pIY670
IY940	JBEI-233617	<i>P. putida</i> KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta hbdH$ with plasmid This study pIY671
IY941	JBEI-233619	<i>P. putida</i> KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta hbdH$ with plasmid This study pIY672
IY954	JBEI-233613	<i>P. putida</i> KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta hbdH$ with plasmid This study pIY697
IY1049	JBEI-233621	<i>P. putida</i> KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta hbdH$ with plasmid This study pIY761
IY1050	JBEI-233623	<i>P. putida</i> KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta hbdH$ with plasmid This study pIY762
IY1054	JBEI-233625	<i>P. putida</i> KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta hbdH$ with plasmid This study pIY765

IY1056	JBEI-233627	<i>P. putida</i> KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta hbdH$ with plasmid This study pIY763
IY1101	JBEI-233629	P. putida KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta hbdH$ $\Delta ldhA$ This study with plasmid pIY672
IY1102	JBEI-233631	<i>P. putida</i> KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta hbdH$ $\Delta ppsA$ with plasmid This study pIY672
IY1200	JBEI-233633	<i>P. putida</i> KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta hbdH$ ΔPP_2675 with This study plasmid pIY672
IY1245	JBEI-233635	P. putida KT2440 WT with plasmid pIY670 This study
IY1246	JBEI-233637	P. putida KT2440 ΔPP_2675 with plasmid pIY670 This study
IY1249	JBEI-233639	<i>P. putida</i> KT2440 $\Delta phaABC \Delta mvaB$ with This study plasmid pIY670
IY1251	JBEI-233641	<i>P. putida</i> KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta gntZ$ with plasmid pIY670 This study
IY1252	JBEI-233643	<i>P. putida</i> KT2440 Δ <i>phaABC</i> Δ <i>mvaB</i> Δ <i>hbdH</i> Δ <i>aceA</i> This study with plasmid pIY670
IY1254	JBEI-233645	P. putida KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta hbdH$ $\Delta aceA$ This study $\Delta gntZ$ with plasmid pIY670
IY1261	JBEI-233647	P. putida KT2440 $\triangle phaABC$ with plasmid pIY670 This study
IY1262	JBEI-233649	P. putida KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta hbdH$ $\Delta ldhA$ This study with plasmid pIY670
IY1263	JBEI-233651	<i>P. putida</i> KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta hbdH$ $\Delta ppsA$ with plasmid This study pIY670
IY1319	JBEI-233653	P. putida KT2440 $\Delta mvaB$ with plasmid pIY670 This study
IY1320	JBEI-233655	P. putida KT2440 $\Delta hbdH$ with plasmid pIY670 This study

IY1452	JBEI-233661	<i>P. putida</i> KT2440 $\Delta phaABC$ $\Delta mvaB$ $\Delta hbdH$ $\Delta ldhA$ ΔPP_2675 with plasmid pIY670	This study
IY1884	JBEI-233657	<i>P. putida</i> KT2440 Δ <i>phaABC</i> Δ <i>PP</i> _2675 with plasmid pIY670	This study
IY1885	JBEI-233659	<i>P. putida</i> KT2440 Δ <i>phaABC</i> Δ <i>PP</i> _2675 Δ <i>ldhA</i> with plasmi pIY670	d This study

Supplementary Table 3. Minimal M9 medium recipe

10X M9 Salts

Compound	Final concentrations
Na ₂ HPO ₄	68 g
KH ₂ PO ₄	30 g
NaCl	5 g

1X minimal M9 medium solution

Compound/Stock	Per 1 L	Comments
10X M9 Salts	100 mL	Make 10x stock/filter separately
1M MgSO ₄	2 mL	Make 1 M solution/filter separately
1M CaCl ₂	100 μL	Make 1 M solution/filter separately
MQ H ₂ O	787.4 mL	Autoclaved
20% Glucose	100 ml	Autoclaved
Trace elements solution	500 μL	Teknova
(NH ₄) ₂ SO ₄	10 ml	1 M stock