Machine Learning 101

Árboles de decisión

Felipe Alonso Atienza

Data Scientist @BBVA

Índice

- 1. Intuición
- 2. Construcción del árbol
- 3. Conclusiones

Intuición

Supongamos el problema de clasificación: concesión de un préstamo

Intuición

 ¿Cómo trasladamos este proceso a datos? Segmentar el espacio de características en regiones sencillas

Nomenclatura

- Hojas: región y=1
- Nodos intermedios: x₂
- Ramas: <a

Predicción

- Una vez segmentado el espacio de características, para cada nueva observación que cae en alguna de las regiones, se predice:
- Clasificación: moda de etiquetas (majority vote)
- Regresión: media (ej: estimar saldo del potencial préstamo)

Nota: Existen distintos algoritmos para implementar árboles de decisión, algunos son: <u>ID3</u>, <u>C4.5</u>, o <u>CART</u> (Classification And Regression Tree). Este último es el que utiliza scikit-learn (**decisiones binarias**).

Índice

- 1. Intuición
- 2. Construcción del árbol
- 3. Conclusiones

Construcción del árbol

- 1. Empezamos con el árbol vacío
- 2. Seleccionamos la característica sobre la que particionar el espacio (splitting)
 - a. Regresión: minimizar error cuadrático medio (MSE)
 - b. Clasificación:
 - i. Mínimo error de clasificación
 - ii. Mínima impureza
 - iii. Máxima entropía
- 3. Para cada región resultante repetimos el proceso (recursive splitting), hasta que se cumpla un criterio de parada:
 - a. Todas las muestras con única variable target (y)
 - b. Complejidad
 - i. Profundidad
 - ii. Número de muestras en hoja
 - iii. Mejora en el criterio de splitting

Métricas clasificación

Sea un problema de clasificación con K categorías. En el nodo m, se define p_{km} como la proporción de observaciones de entrenamiento en dicho nodo para la clase k.

- Error de clasificación: $E(X_m) = 1 max\{p_{km}\}$
- Índice Gini: $G(X_m) = \sum p_{km} (1 p_{km}) = 1 \sum (p_{km})^2$
- Entropía: $D(X_m) = -\sum p_{km} \log p_{km}$

donde X_m son los datos de entrenamiento en el nodo m.

■ Ejemplo sencillo

- ¿Por qué variable particionamos el árbol?
- Dos hipótesis:
 - o Var1 == 1
 - \circ Var2 >= 32

Label	Var1	Var2
А	0	33
А	0	54
А	0	56
А	0	42
А	1	50
В	1	55
В	1	31
В	0	-4
В	1	77
В	0	49

http://www.learnbymarketing.com/481/decision-tree-flavors-gini-info-gain/

Ejemplo sencillo

$$G_{IFFT} = 1 - [(4/6)^2 + (2/6)^2] = 0.444$$

$$E_{LEFT} = 1 - max{4/6,2/6} = 2/6 = 1/3$$

$$G_{RIGHT} = 1 - [(1/4)^2 + (3/4)^2] = 0.375$$

$$E_{RIGHT} = 1 - max\{1/4,3/4\} = 1/4$$

$$G_{TOTAL} = 6/10 \cdot 0.44 + 4/10 \cdot 0.375 = 0.41667$$

$$\mathbf{E}_{\text{TOTAL}} = 6/10 \cdot 1/3 + 4/10 \cdot 1/4 = 3/10 = \mathbf{0.3}$$

Label	Var1	Var2
Α	0	33
А	0	54
А	0	56
А	0	42
Α	1	50
В	1	55
В	1	31
В	0	-4
В	1	77
В	0	49

Ejemplo sencillo

$$G_{IFFT} = 1 - [(0/2)^2 + (2/2)^2] = 0$$

$$E_{LEFT} = 1 - max\{0/2, 2/2\} = 0$$

$$G_{RIGHT} = 1 - [(5/8)^2 + (3/8)^2] = 0.469$$

$$E_{RIGHT} = 1 - max\{5/8,3/8\} = 3/8$$

$$\mathbf{G}_{\text{TOTAL}} = 2/10 \cdot 0 + 8/10 \cdot 0.469 = \mathbf{0.375}$$

$$\mathbf{E}_{\text{TOTAL}} = 2/10 \cdot 0 + 8/10 \cdot 3/8 = 3/10 = \mathbf{0.3}$$

Label	Var1	Var2
Α	0	33
А	0	54
А	0	56
Α	0	42
Α	1	50
В	1	55
В	1	31
В	0	-4
В	1	77
В	0	49

Ejemplo sencillo: resultado

- ¿Por qué variable particionamos el árbol?
- Dos hipótesis:
 - o Var1 == 1
 - Var2 >= 32
- Así continuaríamos construyendo el árbol hasta cumplir criterio de parada

Label	Var1	Var2
Α	0	33
A	0	54
A	0	56
Α	0	42
Α	1	50
В	1	55
В	1	31
В	0	-4
В	1	77
В	0	49

Gini vs Error clasificación

- Preferible Gini (medida de pureza, ejemplo anterior)
- Valores pequeños significan que un nodo contiene predominantemente muestras de una única clase
- Gmax = 1 1/K (si K = 4, entonces Gmax = 1-0.25 = 0.75)
- Entropía es similar a Gini (ejercicio: calcule los valores de Entropía en el ejemplo anterior)

Índice

- 1. Intuición
- 2. Construcción del árbol
- 3. Conclusiones

Conclusiones

- Sencillos e interpretables
- Clasificación binaria o multiclase
- Variables numéricas y categóricas
- No necesidad de normalización
- Estimación de la probabilidad
- Útiles cuando se utilizan en combinación
 - a. Random forest
 - b. Boosted Trees
- Cuando muchas variables, riesgo de overfitting: control de la complejidad
- Prestaciones no tan buena como otros algoritmos
- No miran al futuro

Sobre estimación probabilidad

- Se calcula como % de la clase mayoritaria en una hoja: P(y=k|x)
- Si el árbol no se poda, $P(y=k|\mathbf{x}) = 1!$
 - a. No métodos de poda en sklearn.
 - b. Necesario por tanto controlar la complejidad

Sobre series temporales

Referencias

Introduction to Statistical Learning. Capítulo 8.

Hora de practicar

