Interesting Event Detection through Hall of Fame Rankings

Alvanaki, Foteini, et al.

Saarland University

ACM SIGMOD Workshop on Databases and Social Networks, 2013

11 August, 2014 Jaehwan Lee

Outline

- Introduction
- Study on Entity Rankings
- Framework
- Event Ranking
- Experiments
- Conclusion

Introduction

- Some rankings are highly subjective
 - E.g. top-10 movies through user votes
- A large amount of rankings can be generated and refreshed fully automatically, also
- We call the considered rankings "Halls of Fame"
 - not only the top portion of a ranking
 - but entity centric
 - have meaningful constraints and ranking criteria
 - competitive to be of interest to users

Introduction

- Key Idea
 - If there is changes on ranking, there would be an interesting event

순위	팀
1	삼성
2	넥센
6	두산
3	NC
7	KIA
4	롯데
8	SK
9	한화
5	LG

Study on Entity Rankings

- Ranking size
 - crawled from ranker.com on Nov 11th and 12th, 2012
 - intended ranking size
 - usually specified in the title like "top-10 movies"
 - no strict control, however
 - a shift toward rankings longer than the authors intention
 - users can propose own entities to be included

Figure 1: Log-log plots of the number of rankings with respect to their real (left) and intended (right) size.

Study on Entity Rankings

- Ranking popularity
 - the most popular ranking received around 6 million views
 - 27 rankings received over 1 million views in total
 - 118 rankings with less than 100 views
 - further inspection of the creation time showed
 - a linear dependency between the age of a ranking and the number of views it received, on average

Figure 2: Log-log plot of the number of rankings with respect to their views.

Study on Entity Rankings

- Specificity
 - a drastic decline in views with increasing number of constraints
 - E.g. the best actors in the world vs. in France

Figure 3: The impact of the number of constraints on the number of views by users, for different topics.

Framework

- Queries
 - executing standard OLAP-style SQL aggregation queries
 - expert user annotate entity types, numerical or categorical attributes

SELECT entity attribute, aggregate(numeric attribute)
FROM dataTable
WHERE predicate
GROUP BY entity attribute
ORDER BY aggregate(numeric attribute) ASC|DESC
LIMIT K

- Maintenance
 - requires monitoring Hall of Fame rankings for changes
 - use of techniques from materialized view maintenance

- Scoring model
 - consider small rank improvements of a player throughout an entire season
 - each individual rank improvement of, say 1 rank each,
 - might not be noteworthy compared to its overall improvement of many ranks
 - hence, accumulation of individual rank improvements is considered
- Two Characteristics
 - Dynamic Characteristics
 - Static Characteristics
 - Entropy
 - Selectivity

- Dynamic Characteristics
 - to compute a score describing the quality of the jump from rank
 r to r`
 - E.g. 'from 84 to 65' not 'from 100 to 65' on e₂ of Figure 4

Figure 4: Information at hand for computing the dynamic score component

- Dynamic Characteristics Score
 - rank b is a parameter
 - gives weight 1 to all rank improvements above rank b
 - punishes lower ranks with a weight of $1/\log_b(.)$
 - results in values between $1/\log_b(K)$ and K
 - for the smallest noticeable rank improvement from rank K+1 to K
 - for the biggest noticeable improvement from rank K+1 to 1

$$rs(\{(r_i, r_i') | i \in \mathbb{N}\}) := \sum_{r_i' \le b} (r_i - r_i') + \sum_{r_i' > b} \frac{(r_i - r_i')}{\log_b(r_i')}$$

- Static Characteristics
 - Entropy
 - each Hall of Fame predicate consists of a set of attributes used in categorical attributes bindings (E.g. team='Phoenix')
 - inspect all possible instantiations I_i , of the set (attr₁, attr₂, ··· attr_n)
 - for each instantiation I, count the number of tuples that satisfy it
 - and divide with the total number of tuples in the table
 - Selectivity
 - the quality of the specific instantiation used in a query
 - the smaller the fraction of the table that qualifies for a query result is the lower the score of such a query is

- Putting it All Together
 - use lexicographical ordering (not plain version)
 - $u <_{lt} v$, iff $(u + 1/2n) <_{lt} v$ (n is the number of coarse groups)
 - u, v are considered as normalized in the range [0,1]
 - 0 denote the lowest possible score
 - 1 denote the largest possible score
 - final score vector goes in order like below
 - (SELECTIVITY, DYNAMIC SCORE, ENTROPY)

Figure 5: Ranges in Lexicographic Tradeoffs

- Lexicographical ordering
 - in case, $u \langle u | v \text{ iff } 2^*u \leq v \text{ and } u \rangle_v \text{ if } v \rangle 2^*u$
 - then, (7, 3, 6) is larger than (3, 8, 4)
 - on the other hand, (7, 2, 6) is smaller than (5, 6, 2)

- uses Java 1.7 and Postgresql 9.1
- Basketball statistics obtained from databasebasketball.com
- 4,000 players in the last 65 years
- entity attributes : player, team
- categorical attributes: league, team, age

column name	aggr. function	order
turnovers	sum	ascending
rebounds	sum	descending
assists	sum	descending
field goals percentage	avg	both
points per game	avg	descending
points	sum	descending
three-points per game	sum	descending
three throws made	sum	descending

Table 1: Sample user generated description of how to use numeric attributes. Used in the experimental evaluation.

- Update Modelling
 - it lacks "live" data
 - create 10 update statements where the intermediate values are calculated differently depending on whether summation or averaging is used
 - for the summation, generate values using N \sim (0.5, 0.2²) until have 9 values in range (0,1) values are sorted in ascending order
 - for the averaging, generate values using N \sim (0, 0.12) until have 9 values in range (-1,1)
 - the value of the ith update equals to the ith generated value times the final (actual) value
 - to keep the evaluation tractable, used the years 2005 to 2011
 - generated a total of 275,580 updates

- User Study on Ranking Quality
 - present to users 9 rankings of events
 - Hall of Fame size K = 20, the parameter b = 5
 - for each user in a couple of minutes
 - each ranking consists of 3 events
 - one put by our algorithm at rank one, rank five and rank ten
 - for each such event, manually created a statement
 - E.g. "Team Philadelphia advanced from position 19 to position 17 in the NBA top field game points scored list."
 - randomly order these sentences
 - ask users to order them using a scale from 1 to 3, allowing ties

- Results
 - a good trend of diagonal elements being the largest

			by Users Rating 3
Event at Rank 1	49	34	16
Event at Rank 5	24	52	23
Event at Rank 10	29	25	45

Table 2: Raw results of our user study

- for three pairs : (1, 5), (1, 10), (5, 10)
 - right order +1, reverser order -1, otherwise 0 point
 - sum up this scores over all pairs, over all event rankings and over all users and achieve 66 points
 - as for the best 148 points, for the worst 148 points
 - it goes 72.39% accuracy (66+148+1/148+148+1)

Conclusion

- We conducted a carefully designed experimental evaluation using real-world data obtained from a basketball statistics website
- conducted user study showed that the ordering of events using the proposed lexicographic-tradeoff-based ranking is in line with user expectations

