## 데이터 분석 기초

구름 도시공학과 일반대학원

한양대학교

# 회귀분석

Regression

#### GitHub 데이터 가져오기

https://github.com/kloud80/urban\_data\_mining\_23



#### **Git > clone**

https://github.com/kloud80/urban\_data\_mining\_23.git



#### 부동산 실거래가 데이터 활용

#### http://rtdown.molit.go.kr/



## 2023년 8월 아파트 실거래가



## 가격을 가장 잘 대표하는 모델



## 평균이 대표



## **Total Sum of Squares (TSS)**



## **Total Sum of Squares (TSS)**



#### **Sum of Squares of Residuals (RSS)**



## 잔차 정규성



## RSS vs TSS



#### R Sqaure

$$TSS = RSS + ESS$$

$$But, R^{2} = 1 - \frac{RSS}{TSS}$$

$$R^{2} = \frac{ESS}{TSS}$$

## 정보 추가 제공에 따른 모델 설명력 개선



#### **P-Value**

|                                                                                  |            |              | egressio |       |                   |           |             |
|----------------------------------------------------------------------------------|------------|--------------|----------|-------|-------------------|-----------|-------------|
|                                                                                  |            |              |          |       |                   |           | ========    |
| Dep. Vari                                                                        | .able:     |              |          |       | Jared:            |           | 0.638       |
| Model:                                                                           |            |              | OLS A    | Adj.  | R-squared:        |           | 0.638       |
| Method:                                                                          |            | Least Squ    | ares F   | F-sta | atistic:          |           | 2440.       |
| Date:                                                                            | Sa         | it, 16 Sep : |          |       | (F-statistic      | c):       | 0.00        |
| Time:                                                                            |            | 13:2         | 4:50 l   | Log-l | ikelihood:        |           | -2.7200e+05 |
| No. Obser                                                                        | vations:   | 20           | 6286 A   | AIC:  |                   |           | 5.440e+05   |
| Df Residu                                                                        | als:       | 20           | 6266 E   | BIC:  |                   |           | 5.442e+05   |
| Df Model:                                                                        |            |              | 19       |       |                   |           |             |
| Covariand                                                                        |            | nonrol       |          |       |                   |           |             |
| =======                                                                          |            |              |          |       |                   |           |             |
|                                                                                  | coef       | std err      |          | t<br> | P> t              | [0.025    | 0.975]      |
| const                                                                            | 1.466e+04  | 206.899      | 70.8     | 879   | 0.000             | 1.43e+04  | 1.51e+04    |
| x1                                                                               | 305.1522   | 2.354        | 129.6    |       | 0.000             | 300.539   | 309.766     |
| x2                                                                               | -979.1896  | 15.413       | -63.5    |       | 0.000             | -1009.400 |             |
| x3                                                                               | 14.1240    | 0.392        | 35.9     |       | 0.000             | 13.355    | 14.893      |
| x4                                                                               | -3892.8593 | 204.337      | -19.0    |       | 0.000             | -4293.370 |             |
| x5                                                                               | 8233.1350  | 115.739      | 71.1     |       | 0.000             | 8006.280  | 8459.990    |
| x6                                                                               | -3474.4787 | 159.970      | -21.7    |       | 0.000             | -3788.029 | -3160.929   |
|                                                                                  | -6965.8511 | 179.486      | -38.8    |       | 0.000             |           | -6614.048   |
| x7                                                                               |            |              |          |       |                   | -7317.654 |             |
| x8                                                                               | 1074.0777  | 222.261      | 4.8      |       | 0.000             | 638.433   | 1509.722    |
| х9                                                                               | 1130.1997  | 184.019      | 6.1      |       | 0.000             | 769.512   | 1490.887    |
| x10                                                                              | 3790.6321  | 235.170      | 16.1     |       | 0.000             | 3329.687  | 4251.577    |
| x11                                                                              | 3356.3747  | 186.337      | 18.6     |       | 0.000             | 2991.143  |             |
| x12                                                                              | 1.748e+04  | 319.564      | 54.6     |       | 0.000             | 1.69e+04  | 1.81e+04    |
| x13                                                                              | 7401.3005  | 542.868      | 13.6     |       | 0.000             | 6337.250  |             |
| x14                                                                              | 156.6670   | 251.185      | 0.6      |       | 0.533             | -335.669  | 649.003     |
| x15                                                                              | 6609.0067  | 183.795      | 35.9     | 959   | 0.000             | 6248.759  | 6969.255    |
| x16                                                                              | -7277.0778 | 209.252      | -34.7    |       | 0.000             | -7687.223 | -6866.933   |
| x17                                                                              | -5227.6818 | 203.859      | -25.6    |       | 0.000             | -5627.257 | -4828.107   |
| x18                                                                              | 1700.5345  | 554.715      | 3.0      | 966   | 0.002             | 613.263   | 2787.806    |
| x19                                                                              | -5285.3587 | 175.488      | -30.1    | 118   | 0.000             | -5629.326 | -4941.392   |
| x20                                                                              | -4142.8423 | 195.837      | -21.1    |       | 0.000             | -4526.693 |             |
|                                                                                  |            |              |          |       |                   |           |             |
| Omnibus:                                                                         |            |              |          |       | in-Watson:        |           | 0.541       |
| Prob(Omnibus):                                                                   |            |              |          |       | ue-Bera (JB):<br> |           | 962.226     |
| Skew:                                                                            |            |              | .378 F   | Prob( | (JB):             |           | 1.14e-209   |
| Kurtosis:                                                                        |            |              |          |       | . No.             |           | 4.52e+17    |
|                                                                                  |            |              |          |       |                   |           |             |
| Notes:                                                                           | Notes:     |              |          |       |                   |           |             |
|                                                                                  |            |              |          |       |                   |           |             |
| [1] Standard Errors assume that the covariance matrix of the errors is correctly |            |              |          |       |                   |           |             |

strong multicollinearity problems or that the design matrix is singular.

## Multicollinearity (다중공선성)

| ======= | ========<br>coef | =======<br>std err | :=======<br>t | =======<br>P> t | ========<br>[0.025 | 0.975]    |
|---------|------------------|--------------------|---------------|-----------------|--------------------|-----------|
| ]       |                  |                    |               |                 |                    |           |
| const   | 1.457e+04        | 244.600            | 59.579        | 0.000           | 1.41e+04           | 1.51e+04  |
| x1      | 305.1502         | 2.354              | 129.638       | 0.000           | 300.536            | 309.764   |
| x2      | -1055.3432       | 106.391            | -9.919        | 0.000           | -1263.875          | -846.812  |
| х3      | 52.5497          | 80.675             | 0.651         | 0.515           | -105.577           | 210.677   |
| х4      | 3.2739           | 53.839             | 0.061         | 0.952           | -102.254           | 108.802   |
| x5      | 20.2551          | 40.472             | 0.500         | 0.617           | -59.073            | 99.583    |
| х6      | 14.1256          | 0.392              | 35.999        | 0.000           | 13.357             | 14.895    |
| x7      | -3897.2419       | 204.442            | -19.063       | 0.000           | -4297.960          | -3496.524 |
| x8      | 8226.9179        | 116.070            | 70.879        | 0.000           | 7999.414           | 8454.422  |
| х9      | -3479.2706       | 160.159            | -21.724       | 0.000           | -3793.191          | -3165.350 |
| x10     | -6970.9894       | 179.651            | -38.803       | 0.000           | -7323.115          | -6618.863 |
| x11     | 1069.9789        | 222.358            | 4.812         | 0.000           | 634.144            | 1505.813  |
| x12     | 1125.0503        | 184.207            | 6.108         | 0.000           | 763.994            | 1486.107  |
| x13     | 3782.9438        | 235.391            | 16.071        | 0.000           | 3321.565           | 4244.322  |
| x14     | 3352.1525        | 186.508            | 17.973        | 0.000           | 2986.586           | 3717.719  |
| x15     | 1.747e+04        | 319.700            | 54.652        | 0.000           | 1.68e+04           | 1.81e+04  |
| x16     | 7389.5387        | 543.102            | 13.606        | 0.000           | 6325.030           | 8454.048  |
| x17     | 151.6712         | 251.274            | 0.604         | 0.546           | -340.839           | 644.182   |

#### Stepwise feature selection



**Figure 5.** Simulation study comparing LARS, Lasso, and Stagewise algorithms; 100 replications of model (3.15)-(3.16). Solid curve shows average proportion explained, (3.17), for LARS estimates as function of number of steps  $k = 1, 2, \ldots, 40$ ; Lasso and Stagewise give nearly identical results; small dots indicate  $\pm$  one standard deviation over the 100 simulations. Classic Forward Selection (heavy dashed curve) rises and falls more abruptly.

https://hastie.su.domains/Papers/LARS/LeastAngle\_2002.pdf

# 주성분석

**Principal Component Analysis** 

## 차원이 높다 : 속성 데이터(독립변수) 가 많다

| ====== | :========<br>coef | =======<br>std err | t       | =======<br>P> t | =========<br>[0.025 | 0.975]    |
|--------|-------------------|--------------------|---------|-----------------|---------------------|-----------|
|        |                   |                    |         |                 |                     |           |
| const  | 1.466e+04         | 206.899            | 70.879  | 0.000           | 1.43e+04            | 1.51e+04  |
| x1     | 305.1522          | 2.354              | 129.647 | 0.000           | 300.539             | 309.766   |
| x2     | -979.1896         | 15.413             | -63.530 | 0.000           | -1009.400           | -948.979  |
| х3     | 14.1240           | 0.392              | 35.998  | 0.000           | 13.355              | 14.893    |
| х4     | -3892.8593        | 204.337            | -19.051 | 0.000           | -4293.370           | -3492.348 |
| x5     | 8233.1350         | 115.739            | 71.135  | 0.000           | 8006.280            | 8459.990  |
| х6     | -3474.4787        | 159.970            | -21.720 | 0.000           | -3788.029           | -3160.929 |
| x7     | -6965.8511        | 179.486            | -38.810 | 0.000           | -7317.654           | -6614.048 |
| x8     | 1074.0777         | 222.261            | 4.832   | 0.000           | 638.433             | 1509.722  |
| х9     | 1130.1997         | 184.019            | 6.142   | 0.000           | 769.512             | 1490.887  |
| x10    | 3790.6321         | 235.170            | 16.119  | 0.000           | 3329.687            | 4251.577  |
| x11    | 3356.3747         | 186.337            | 18.012  | 0.000           | 2991.143            | 3721.606  |
| x12    | 1.748e+04         | 319.564            | 54.696  | 0.000           | 1.69e+04            | 1.81e+04  |
| x13    | 7401.3005         | 542.868            | 13.634  | 0.000           | 6337.250            | 8465.351  |
| x14    | 156.6670          | 251.185            | 0.624   | 0.533           | -335.669            | 649.003   |
| x15    | 6609.0067         | 183.795            | 35.959  | 0.000           | 6248.759            | 6969.255  |
| x16    | -7277.0778        | 209.252            | -34.777 | 0.000           | -7687.223           | -6866.933 |
| x17    | -5227.6818        | 203.859            | -25.644 | 0.000           | -5627.257           | -4828.107 |
| x18    | 1700.5345         | 554.715            | 3.066   | 0.002           | 613.263             | 2787.806  |
| x19    | -5285.3587        | 175.488            | -30.118 | 0.000           | -5629.326           | -4941.392 |
| x20    | -4142.8423        | 195.837            | -21.155 | 0.000           | -4526.693           | -3758.992 |

변수의 수를 줄이고 싶다 저차원 평면에 표시

## 2차원 데이터의 분포



## 2차원 > 1차원으로 데이터 축소를 하려면 어느 축으로?



## 분산이 크면 가장 많은 설명력을 담은 저차원 곡선이다.



## 공분산 행렬은 데이터의 산포도를 의미

| X축 방향 퍼진 정도        | x,y축 방향으로 함께 퍼진 정도 |
|--------------------|--------------------|
| x,y축 방향으로 함께 퍼진 정도 | y축 방향 퍼진 정도        |







| 92.71% | 92.05%  |
|--------|---------|
| 92.05% | 183.83% |

| 92.71% | -0.32%  |
|--------|---------|
| -0.32% | 100.49% |

| 92.71%  | -90.50% |
|---------|---------|
| -90.50% | 187.95% |

#### 행렬과 벡터

## 행렬 연산을 통해 벡터가 변함



## 고유벡터(eigenvector)와 고유치(eigenvalue)

https://angeloyeo.github.io/2019/07/17/eigen\_vector.html



## 공분산 행렬을 곱하면 벡터들의 변형이 일어남



| 92.71%  | -90.50% |
|---------|---------|
| -90.50% | 187.95% |



### 길이가 1인 벡터들을 공분산 행렬로 변환



### 고유치만큼 길이만 변형되고 각도가 그대로인 고유 벡터 존재



PCA는 공분산의 고유벡터가 가장 데이터를 잘 설명함 다수의 고유 벡터 중 고유치가 가장 큰 고유벡터가 가장 많은 설명력



### PCA 분석 결과 각 고유치 변환 행렬 : pca. components\_ 고유치값(eigenvalue) 크기 비율 : explained\_variance\_ratio\_

#### 주성분2



주성분1