EDA

March 15, 2021

1 Gender Voice Recognition

Dane: https://www.apispreadsheets.com/datasets/119

1.1 Importy

```
[61]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

[62]: voice_df = pd.read_csv("gender_voice_dataset.csv")
```

1.2 Analiza wstępna

```
[64]: voice_df.head()
```

```
[64]:
        meanfreq
                        sd
                              median
                                           Q25
                                                     maxdom
                                                             dfrange
                                                                       modindx
     label
     0 0.059781 0.064241
                            0.032027
                                      0.015071 ... 0.007812
                                                           0.000000
                                                                      0.000000
     male
     1 0.066009
                 0.067310
                            0.040229
                                      0.019414 ... 0.054688
                                                            0.046875
                                                                      0.052632
     male
     2 0.077316 0.083829
                            0.036718
                                      0.008701 ... 0.015625
                                                            0.007812
     male
     3 0.151228 0.072111
                            0.158011 0.096582 ... 0.562500
                                                            0.554688
                                                                      0.247119
     male
     4 0.135120 0.079146 0.124656 0.078720 ... 5.484375 5.476562 0.208274
     male
```

[5 rows x 21 columns]

[65]: voice_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3168 entries, 0 to 3167
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	${\tt meanfreq}$	3168 non-null	float64
1	sd	3168 non-null	float64
2	median	3168 non-null	float64
3	Q25	3168 non-null	float64
4	Q75	3168 non-null	float64
5	IQR	3168 non-null	float64
6	skew	3168 non-null	float64
7	kurt	3168 non-null	float64
8	sp.ent	3168 non-null	float64
9	sfm	3168 non-null	float64
10	mode	3168 non-null	float64
11	centroid	3168 non-null	float64
12	${\tt meanfun}$	3168 non-null	float64
13	minfun	3168 non-null	float64
14	maxfun	3168 non-null	float64
15	meandom	3168 non-null	float64
16	${\tt mindom}$	3168 non-null	float64
17	maxdom	3168 non-null	float64
18	dfrange	3168 non-null	float64
19	${\tt modindx}$	3168 non-null	float64
20	label	3168 non-null	object

dtypes: float64(20), object(1)

memory usage: 519.9+ KB

[66]: voice_df.describe()

[66]:		${\tt meanfreq}$	sd		dfrange	modindx
	count	3168.000000	3168.000000	•••	3168.000000	3168.000000
	mean	0.180907	0.057126		4.994630	0.173752
	std	0.029918	0.016652		3.520039	0.119454
	min	0.039363	0.018363	•••	0.000000	0.000000
	25%	0.163662	0.041954		2.044922	0.099766
	50%	0.184838	0.059155		4.945312	0.139357
	75%	0.199146	0.067020		6.992188	0.209183
	max	0.251124	0.115273	•••	21.843750	0.932374

[8 rows x 20 columns]

```
[67]: count_man=voice_df[voice_df['label']=='male'].shape[0]
      print('Liczba labeli male:',count_man)
      print('Liczba labeli female:',voice_df.shape[0]-count_man)
     Liczba labeli male: 1584
     Liczba labeli female: 1584
[68]: voice_df.isnull().sum()
[68]: meanfreq
                  0
                  0
      sd
                  0
      median
      Q25
                  0
      Q75
                  0
      IQR
                  0
      skew
                  0
      kurt
                  0
      sp.ent
                  0
      sfm
                  0
      mode
                  0
      centroid
                  0
      meanfun
      minfun
                  0
      maxfun
                  0
      meandom
                  0
      mindom
                  0
      maxdom
                  0
      dfrange
                  0
      modindx
      label
      dtype: int64
```

1.3 Eksploracyjna Analiza Danych

```
[69]: fig, axs = plt.subplots(nrows = 5, ncols=4, figsize=(20,30))
   plt.subplots_adjust(hspace=0.3)
   i = 0
   j = 0
   for col in voice_df.columns:
      if col == "label":
            continue
      sns.boxplot(data=voice_df, y=col, x = "label", ax = axs[i][j])
      i+=1
      if i == 5:
      i = 0
      j += 1
```



```
[70]: fig, (ax1, ax2) = plt.subplots(nrows = 1, ncols=2, figsize=(20,10))
   plt.subplots_adjust(hspace=0.3)
   sns.boxplot(data=voice_df, y="kurt", x = "label", ax = ax1)
   sns.boxplot(data=voice_df, y="mindom", x = "label", ax = ax2)
   plt.show()
```



```
[71]: fig, axs = plt.subplots(nrows = 5, ncols=4, figsize=(20,30))
   plt.subplots_adjust(hspace=0.3)
   i = 0
   j = 0
   for col in voice_df.columns:
      if col == "label":
            continue
      sns.kdeplot(data=voice_df, x=col, hue = "label", ax = axs[i][j])
      i+=1
      if i == 5:
      i = 0
      j += 1
```



```
[72]: fig, (ax1, ax2) = plt.subplots(nrows = 1, ncols=2, figsize=(20,10))
sns.kdeplot(data=voice_df, x="modindx", hue = "label", ax = ax2)
sns.kdeplot(data=voice_df, x="IQR", hue = "label", ax = ax1)
plt.show()
```



```
[55]: sns.pairplot(data=voice_df, vars=["mode", "sd", "meanfun", "IQR", "sp.ent", \
\( \to \"sfm" \], hue="label", plot_kws={"alpha":0.2})
plt.show()
```


1.4 Znaleziona prosta klasyfikacja

```
[57]: def gender(row):
        if row["meanfun"] >= 0.14:
          return "female"
        else:
          if row["IQR"] >= 0.07:
            return "male"
          else:
            return "female"
[58]: dt = voice_df[["meanfun", "IQR"]]
      result = voice_df["label"]
[59]: result_function = dt.apply((lambda row : gender(row)), axis = 1)
[60]: c = pd.concat([result_function, result], axis = 1)
      acc = 1-len(c.loc[c[0]!=c["label"]])/len(voice_df)
      print(f"Accuracy is equal to {acc}")
     Accuracy is equal to 0.9564393939393939
[60]:
```