Title: Data augmentation

URL: https://en.wikipedia.org/wiki/Data_augmentation

PageID: 51443362

Categories: Category:Machine learning

Source: Wikipedia (CC BY-SA 4.0). Content may require attribution.

Supervised learning

Unsupervised learning

Semi-supervised learning

Self-supervised learning

Reinforcement learning

Meta-learning

Online learning

Batch learning

Curriculum learning

Rule-based learning

Neuro-symbolic Al

Neuromorphic engineering

Quantum machine learning

Classification

Generative modeling

Regression

Clustering

Dimensionality reduction

Density estimation

Anomaly detection

Data cleaning

AutoML

Association rules

Semantic analysis

Structured prediction

Feature engineering

Feature learning

Learning to rank

Grammar induction

Ontology learning

Multimodal learning

Apprenticeship learning
Decision trees
Ensembles Bagging Boosting Random forest
Bagging
Boosting
Random forest
k -NN
Linear regression
Naive Bayes
Artificial neural networks
Logistic regression
Perceptron
Relevance vector machine (RVM)
Support vector machine (SVM)
BIRCH
CURE
Hierarchical
k -means
Fuzzy
Expectation-maximization (EM)
DBSCAN
OPTICS
Mean shift
Factor analysis
CCA
ICA
LDA
NMF
PCA
PGD
t-SNE
SDL
Graphical models Bayes net Conditional random field Hidden Markov
Bayes net
Conditional random field
Hidden Markov
RANSAC
k -NN

Local outlier factor
Isolation forest
Autoencoder
Deep learning
Feedforward neural network
Recurrent neural network LSTM GRU ESN reservoir computing
LSTM
GRU
ESN
reservoir computing
Boltzmann machine Restricted
Restricted
GAN
Diffusion model
SOM
Convolutional neural network U-Net LeNet AlexNet DeepDream
U-Net
LeNet
AlexNet
DeepDream
Neural field Neural radiance field Physics-informed neural networks
Neural radiance field
Physics-informed neural networks
Transformer Vision
Vision
Mamba
Spiking neural network
Memtransistor
Electrochemical RAM (ECRAM)
Q-learning
Policy gradient
SARSA
Temporal difference (TD)
Multi-agent Self-play
Self-play
Active learning
Crowdsourcing
Human-in-the-loop

Mechanistic interpretability **RLHF** Coefficient of determination Confusion matrix Learning curve **ROC** curve Kernel machines Bias-variance tradeoff Computational learning theory Empirical risk minimization Occam learning **PAC** learning Statistical learning VC theory Topological deep learning **AAAI ECML PKDD NeurIPS ICML ICLR IJCAI** ML **JMLR** Glossary of artificial intelligence List of datasets for machine-learning research List of datasets in computer vision and image processing List of datasets in computer vision and image processing Outline of machine learning Data augmentation is a statistical technique which allows maximum likelihood estimation from incomplete data. Data augmentation has important applications in Bayesian analysis, and the technique is widely used in machine learning to reduce overfitting when training machine learning models, achieved by training models on several slightly-modified copies of existing data. Synthetic oversampling techniques for traditional machine learning

Synthetic Minority Over-sampling Technique (SMOTE) is a method used to address imbalanced datasets in machine learning. In such datasets, the number of samples in different classes varies significantly, leading to biased model performance. For example, in a medical diagnosis dataset with 90 samples representing healthy individuals and only 10 samples representing individuals with a particular disease, traditional algorithms may struggle to accurately classify the minority class.

SMOTE rebalances the dataset by generating synthetic samples for the minority class. For instance, if there are 100 samples in the majority class and 10 in the minority class, SMOTE can create synthetic samples by randomly selecting a minority class sample and its nearest neighbors, then generating new samples along the line segments joining these neighbors. This process helps increase the representation of the minority class, improving model performance.

Data augmentation for image classification

When convolutional neural networks grew larger in mid-1990s, there was a lack of data to use, especially considering that some part of the overall dataset should be spared for later testing. It was proposed to perturb existing data with affine transformations to create new examples with the same labels, which were complemented by so-called elastic distortions in 2003, and the technique was widely used as of 2010s. Data augmentation can enhance CNN performance and acts as a countermeasure against CNN profiling attacks.

Data augmentation has become fundamental in image classification, enriching training dataset diversity to improve model generalization and performance. The evolution of this practice has introduced a broad spectrum of techniques, including geometric transformations, color space adjustments, and noise injection.

Geometric Transformations

Geometric transformations alter the spatial properties of images to simulate different perspectives, orientations, and scales. Common techniques include:

Rotation: Rotating images by a specified degree to help models recognize objects at various angles.

Flipping: Reflecting images horizontally or vertically to introduce variability in orientation.

Cropping: Removing sections of the image to focus on particular features or simulate closer views.

Translation: Shifting images in different directions to teach models positional invariance.

Morphing within the same class: Generating new samples by applying morphing techniques between two images belonging to the same class, thereby increasing intra-class diversity.

Color Space Transformations

Color space transformations modify the color properties of images, addressing variations in lighting, color saturation , and contrast. Techniques include:

Brightness Adjustment: Varying the image's brightness to simulate different lighting conditions.

Contrast Adjustment: Changing the contrast to help models recognize objects under various clarity levels.

Saturation Adjustment: Altering saturation to prepare models for images with diverse color intensities.

Color Jittering: Randomly adjusting brightness, contrast, saturation, and hue to introduce color variability.

Noise Injection

Injecting noise into images simulates real-world imperfections, teaching models to ignore irrelevant variations. Techniques involve:

Gaussian Noise: Adding Gaussian noise mimics sensor noise or graininess.

Salt and Pepper Noise: Introducing black or white pixels at random simulates sensor dust or dead pixels .

Data augmentation for signal processing

Residual or block bootstrap can be used for time series augmentation.

Biological signals

Synthetic data augmentation is of paramount importance for machine learning classification, particularly for biological data, which tend to be high dimensional and scarce. The applications of robotic control and augmentation in disabled and able-bodied subjects still rely mainly on subject-specific analyses. Data scarcity is notable in signal processing problems such as for Parkinson's Disease Electromyography signals, which are difficult to source - Zanini, et al. noted that it is possible to use a generative adversarial network (in particular, a DCGAN) to perform style transfer in order to generate synthetic electromyographic signals that corresponded to those exhibited by sufferers of Parkinson's Disease.

The approaches are also important in electroencephalography (brainwaves). Wang, et al. explored the idea of using deep convolutional neural networks for EEG-Based Emotion Recognition, results show that emotion recognition was improved when data augmentation was used.

A common approach is to generate synthetic signals by re-arranging components of real data. Lotte proposed a method of "Artificial Trial Generation Based on Analogy" where three data examples x 1 , x 2 , x 3 {\displaystyle x_{1},x_{2},x_{3}} provide examples and an artificial x s y n t h e t i c {\displaystyle x_{synthetic}} is formed which is to x 3 {\displaystyle x_{3}} what x 2 {\displaystyle x_{1}} to make it more similar to x 2 {\displaystyle x_{1}} . A transformation is applied to x 1 {\displaystyle x_{1}} to make it more similar to x 2 {\displaystyle x_{2}} , the same transformation is then applied to x 3 {\displaystyle x_{3}} which generates x s y n t h e t i c {\displaystyle x_{synthetic}} . This approach was shown to improve performance of a Linear Discriminant Analysis classifier on three different datasets.

Current research shows great impact can be derived from relatively simple techniques. For example, Freer observed that introducing noise into gathered data to form additional data points improved the learning ability of several models which otherwise performed relatively poorly. Tsinganos et al. studied the approaches of magnitude warping, wavelet decomposition, and synthetic surface EMG models (generative approaches) for hand gesture recognition, finding classification performance increases of up to +16% when augmented data was introduced during training. More recently, data augmentation studies have begun to focus on the field of deep learning, more specifically on the ability of generative models to create artificial data which is then introduced during the classification model training process. In 2018, Luo et al. observed that useful EEG signal data could be generated by Conditional Wasserstein Generative Adversarial Networks (GANs) which was then introduced to the training set in a classical train-test learning framework. The authors found classification performance was improved when such techniques were introduced.

Mechanical signals

The prediction of mechanical signals based on data augmentation brings a new generation of technological innovations, such as new energy dispatch, 5G communication field, and robotics control engineering. In 2022, Yang et al. integrate constraints, optimization and control into a deep network framework based on data augmentation and data pruning with spatio-temporal data correlation, and improve the interpretability, safety and controllability of deep learning in real industrial projects through explicit mathematical programming equations and analytical solutions.

See also

Oversampling and undersampling in data analysis

Surrogate data

Generative adversarial network

Variational autoencoder

Data pre-processing

Convolutional neural network

Regularization (mathematics)

Data preparation

Data fusion
References
V
t
e
Acquisition
Augmentation
Analysis
Anonymization
Archaeology
Big
Cleansing
Collection
Compression
Corruption
Curation
Deduplication
Degradation
De-identification
Ecosystem
Editing
Engineering
Erasure
ETL / ELT Extract Transform Load
Extract
Transform
Load
Ethics
Exhaust
Exploration
Farming
Format management
Fusion
Governance Cooperatives
Cooperatives
Infrastructure
Integration
Integrity

Library Lineage Loss Management Meta Migration Mining Philanthropy Pre-processing Preservation Processing Protection (privacy) Publishing Open data Open data Recovery Reduction Redundancy Re-identification Remanence Rescue Retention Quality Science Scraping Scrubbing Security Sharing Stewardship Storage Structure Synchronization Topological data analysis Type Validation Warehouse Wrangling/munging ٧ t

Imitation

Diffusion

Policy gradient

Parameter Hyperparameter Regression Bias-variance tradeoff Double descent Overfitting Gradient descent SGD Quasi-Newton method Conjugate gradient method Conjugate gradient method Backpropagation Attention Convolution Normalization Batchnorm Batchnorm Activation Softmax Sigmoid Rectifier Softmax Sigmoid Rectifier Gating Weight initialization Regularization **Datasets Augmentation** Augmentation Prompt engineering Reinforcement learning Q-learning SARSA Imitation Policy gradient Q-learning SARSA

Latent diffusion model Autoregression Adversary RAG Uncanny valley **RLHF** Self-supervised learning Reflection Recursive self-improvement Hallucination Word embedding Vibe coding Machine learning In-context learning In-context learning Artificial neural network Deep learning Deep learning Language model Large language model NMT Large language model NMT Reasoning language model Model Context Protocol Intelligent agent Artificial human companion Humanity's Last Exam Artificial general intelligence (AGI) AlexNet WaveNet Human image synthesis **HWR** OCR Computer vision Speech synthesis 15.ai ElevenLabs 15.ai ElevenLabs Speech recognition Whisper Whisper Facial recognition AlphaFold

Text-to-image models Aurora DALL-E Firefly Flux Ideogram Imagen Midjourney Recraft Stable Diffusion
Aurora
DALL-E
Firefly
Flux
Ideogram
Imagen
Midjourney
Recraft
Stable Diffusion
Text-to-video models Dream Machine Runway Gen Hailuo Al Kling Sora Veo
Dream Machine
Runway Gen
Hailuo Al
Kling
Sora
Veo
Music generation Riffusion Suno Al Udio
Riffusion
Suno Al
Udio
Word2vec
Seq2seq
GloVe
BERT
T5
Llama
Chinchilla AI
PaLM
GPT 1 2 3 J ChatGPT 4 4o o1 o3 4.5 4.1 o4-mini 5
1
2
3
J
ChatGPT
4

01
03
4.5
4.1
o4-mini
5
Claude
Gemini Gemini (language model) Gemma
Gemini (language model)
Gemma
Grok
LaMDA
BLOOM
DBRX
Project Debater
IBM Watson
IBM Watsonx
Granite
PanGu- Σ
DeepSeek
Qwen
AlphaGo
AlphaZero
OpenAl Five
Self-driving car
MuZero
Action selection AutoGPT
AutoGPT
Robot control
Alan Turing
Warren Sturgis McCulloch
Walter Pitts
John von Neumann
Claude Shannon
Shun'ichi Amari
Kunihiko Fukushima
Takeo Kanade
Marvin Minsky

John McCarthy

Nathaniel Rochester

Allen Newell

Cliff Shaw

Herbert A. Simon

Oliver Selfridge

Frank Rosenblatt

Bernard Widrow

Joseph Weizenbaum

Seymour Papert

Seppo Linnainmaa

Paul Werbos

Geoffrey Hinton

John Hopfield

Jürgen Schmidhuber

Yann LeCun

Yoshua Bengio

Lotfi A. Zadeh

Stephen Grossberg

Alex Graves

James Goodnight

Andrew Ng

Fei-Fei Li

Alex Krizhevsky

Ilya Sutskever

Oriol Vinyals

Quoc V. Le

Ian Goodfellow

Demis Hassabis

David Silver

Andrej Karpathy

Ashish Vaswani

Noam Shazeer

Aidan Gomez

John Schulman

Mustafa Suleyman

Jan Leike

Daniel Kokotajlo

François Chollet

Neural Turing machine

Differentiable neural computer

Transformer Vision transformer (ViT)

Vision transformer (ViT)

Recurrent neural network (RNN)

Long short-term memory (LSTM)

Gated recurrent unit (GRU)

Echo state network

Multilayer perceptron (MLP)

Convolutional neural network (CNN)

Residual neural network (RNN)

Highway network

Mamba

Autoencoder

Variational autoencoder (VAE)

Generative adversarial network (GAN)

Graph neural network (GNN)

Category