Fizyka układów złożonych Samozorganizowany stan krytyczny

Krzysztof Malarz

Będziemy (to znaczy Państwo będą) modelowali stertę piachu (hmmm, materiału granulowanego może lepiej mówmy), na którą wąską strużką ten materiał (znaczy piach) dosypujemy. W trzech wymiarach piach tworzy pryzmę (stożek), o kącie nachylanie α , który fluktuuje w czasie. Od czasu do czasu kolejne ziarenko upadające na wierzchołek tej pryzmy stacza się po jej zboczu na same dno (do podnóża tej sterty) czasami samotnie a czasami pociągając za sobą inne niewinne ziarenka (powodując zejście całej lawiny ziarenek). Chcielibyśmy przebadać rozkład P(s) rozmiaru s takich lawin, to jest otrzymać informację jak często w lawinie wzieło udział s ziarenek.

Ponieważ wydziałowi administratorzy sieci komputerowej są (z bliżej nieznanych mi powodów) przeciwni nanoszeniu do tej pracowni jedenastu worków materiału granulowanego i jego rozsypaniu celem realizacji tego zadania, to (by przeciwdziałać linczowi administratorów na mnie) ograniczymy się do eksperymentu komputerowego w tej sprawie.

W tym celu przygotujemy sieć kwadratową, w której węzłach (x,y) trzymamy informację o wysokości h(x,y) pryzmy. W kolejnych chwilach czasowych:

- 1. losujemy współrzedną węzła (x,y) i dosypujemy jedno ziarenko na szczyt wylosowanej kolumny
 - $h(x,y) \rightarrow h(x,y) + 1$;
- 2. jeśli po tym dosypaniu h(x,y) wynosi cztery lub więcej, to "rozładuj" tę kolumnę
 - $h(x,y) \rightarrow h(x,y) 4$

rozsypując te cztery ziarnka do jej najbliższych sąsiadów:

- $h(x-1,y) \to h(x-1,y) + 1$,
- $h(x+1,y) \to h(x+1,y) + 1$,
- $h(x, y-1) \to h(x, y-1) + 1$,
- $h(x, y + 1) \to h(x, y + 1) + 1$

i powtarzaj ten punkt tak długo, aż żadna z kolumn nie ma $h(x,y)\geqslant 4;$

3. idź do punktu 1.

Zakładamy otwarte warunki brzegowe: jeśli "rozładowując" kolumnę (x, y) ziarenko trafiłoby poza naszą macierz to trudno: zarienko przepada (zostało przez Państwa zgubione) ale doliczamy jego ruch poza naszą pryzmę do rozmiaru lawiny.

Zadanie 1: (50 pkt.) Zakładamy rozmiar tablicy h(x,y) na 10×10 . W chwili początkowej wysokości h(x,y) przyjmują losowe wartości ze zbioru $\{0,1,2,3\}$. Wypisujemy macierz h(x,y). Upuszczamy kolejno kilka ziarenek, po każdym upuszczeniu wypisując współrzędne wylosowanego węzła, tablicę h(x,y) (również w trakcie rozchodzenia się ewentualnej lawiny) oraz zapisując ile finalnie ziarenek s piasku przesunęło się w wyniku dosypania tego jednego (a nim dosypaliśmy kolejne). Ziarenka upuszczamy, aż do momentu pojawienia się pierwszej nietrywialnej lawiny (tj. z $s \ge 8$).

Zadanie 2: (30 pkt.) Zwiększamy rozmiar układu do 20×20 . Automatyzujemy proces upuszczania ziarenek oraz zliczania liczby ziarenek s, które przesunęły się do sąsiednich kolumn. Upuszczamy 10^4 ziarenek wypisując niezerowy rozmiar lawiny w tym kroku (wraz z numerem kroku).

Zadanie 3: (20 pkt.) Tworzymy (oraz prezentujemy graficznie) histogram rozmiarów lawin H(s) (ile razy zdażyła się lawina o rozmiarze s). Histogram H(s) konwertujemy na rozkład prawdopodobieństwa P(s) napotkania lawiny o rozmiarze s. Rozkład fitujemy prostą ale w układzie logarytmicznym (czyli zakładamy, że $P(s) \propto s^{-\tau}$). Wypisujemy wykładnik τ i niepewność jego wyznaczenia $u(\tau)$.

