Deep Neural Network for Speech Emotion Recognition —A Study of Deep Learning—

7huowei Han

Institut für Signalverarbeitung und Systemtheorie

Universität Stuttgart

05.06.2014

Motivation

Why speech emotion recognition

- Most current work focuses on speech processing based on linguistic information, e.g.: Skype Translator
- More natural human-machine interaction requires paralinguistic information such as age, gender, emotion.
- Speech Recognition / Speeker Identification / Emotion

Deep Network Applications

- Handwriting Digit Recognition
- Image Recognition

Motivation

Why speech emotion recognition

- Most current work focuses on speech processing based on linguistic information, e.g.: Skype Translator
- More natural human-machine interaction requires paralinguistic information such as age, gender, emotion.
- Speech Recognition / Speeker Identification / Emotion

Deep Network Applications

- Handwriting Digit Recognition
- Image Recognition

Foundations

Mel Frequency Cepstral Features Emotion Recognition Approaches

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine

Deep Neural Networks
Concept

Problems and Solutions

Long Short Term Memory Recurrent Neural Network

Experiments

Foundations

Mel Frequency Cepstral Features Emotion Recognition Approaches

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine

Deep Neural Networks

Problems and Solutions

Long Short Term Memory Recurrent Neural Networl

Experiments

Mel Frequency Cepstral Features

- short-term power spectrum
- mel-scale approximate human perception
- widely-used in speech recognition tasks
- Transformation between Mel and Hertz scale

$$f_{mel} = 1125 \ln \left(1 + f_{Hz}/700\right)$$
 (1)

$$f_{Hz} = 700 \left(\exp(f_{mel}/1125) - 1 \right)$$
 (2)

Emotion Recognition Approaches

Traditional Approaches

- pre-selected features
- supervised training
- low-level features not appropriate for classification
- shallow structure of classifiers

Deep Learning Approaches

- learning representations from high-dim data
- extracting appropriate features without hand-crafting
- low-level features are used to build high-level features as network gets deeper
- frame-based classfication

Foundations

Mel Frequency Cepstral Features Emotion Recognition Approaches

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine

Deep Neural Networks

Concept

Problems and Solutions

Long Short Term Memory

Recurrent Neural Network

Experiments

Character

- Generative model
- Undirected graphical model, good at modeling high-dimensioanl data (speech emotion)
- Trained in unsupervised way, only use unlabeled input sequencex for learning.
 - automatically extract useful features from data
 - Find hidden structure (distribution).
 - $\hfill\Box$ Learned features used for prediction or classification
- Potential to be extend to capture temporal information.

Structure

Energy Function: $E_{\theta} = -\mathbf{x^TWh} - \mathbf{b^Tx} - \mathbf{c^Th}$

Joint Distribution: $P^{RBM}(\mathbf{x}, \mathbf{h}) = \frac{1}{Z} e^{-E_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{h})}$

Partition Function: $Z = \sum_{\mathbf{x},\mathbf{h}} e^{-E_{\boldsymbol{\theta}}(\mathbf{x},\mathbf{h})}$

Inference

$$P(h_j = 1 \mid \mathbf{x}) = sigmoid(\sum_i x_i W_{ij} + c_j)$$
$$P(x_i = 1 \mid \mathbf{h}) = sigmoid(\sum_i W_{ij} h_j + b_i)$$

Foundations

Mel Frequency Cepstral Features Emotion Recognition Approaches

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine

Deep Neural Networks

Concept

Problems and Solutions

Long Short Term Memory Recurrent Neural Network

Experiments

Computing net-activation

$$\underline{z}_{k}^{(l+1)} = \mathbf{W}^{(l)} \underline{a}_{k}^{(l)} + \underline{b}^{(l)} \\
\underline{a}_{k}^{(l+1)} = \underline{\Phi} \left(\underline{z}_{k}^{(l+1)}\right) \\
\underline{\hat{y}}_{k} = \underline{a}_{k}^{(ol)}$$

- Arbitrary non-linear mapping from \underline{x}_k to $\hat{\underline{y}}_k$ possible
- lacktriangle Relation $N\Leftrightarrow \mathsf{Complexity}$
- Deep Architectures $(l \uparrow)$ more efficient than shallow ones $(l \downarrow, N_l \uparrow)$

Determining the parameters

Training objective

$$J(\mathbf{W}, \underline{b}) = \sum_{\forall k} \frac{1}{2} ||\underline{y}_k - \underline{\hat{y}}_k||^2 + \frac{\lambda}{2} \sum_{\forall l} ||\mathbf{W}^{(l)}||_F^2$$
 (3)

$$\mathbf{W}, \underline{b} = \arg\min_{\mathbf{W}, b} J(\mathbf{W}, \underline{b})$$
 (4)

Numerical minimization

- Gradient calculation with Backpropagation
- Stochastic gradient descent
- Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)

Problems

- Optimization problem non-convex⇒ getting stuck in poor local minima
- Diffusion of gradients
- Large p small n problem \Rightarrow overfitting

Solutions

Layerwise Pre-training

■ Layerwise Pre-training

Foundations

Mel Frequency Cepstral Features Emotion Recognition Approaches

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine

Deep Neural Networks

Concept
Problems and Solutions

Long Short Term Memory Recurrent Neural Network

Experiments

- modelling sequential data, emotion in speech
- Same Structure as MLP but differs from feed-forward network, enabling nonlinear mapping.
- Feedback connection between previous hidden units and current hidden units, enabling memory past hidden state.
- Potentially to model arbitary dynamic system.
- Trained with backpropagation through time (BPTT)

- modelling sequential data, emotion in speech .
- Same Structure as MLP but differs from feed-forward network, enabling nonlinear mapping.
- Feedback connection between previous hidden units and current hidden units, enabling memory past hidden state.
- Potentially to model arbitary dynamic system.
- Trained with **b**ack**p**ropagation **t**hrough **t**ime (BPTT)

- modelling sequential data, emotion in speech .
- Same Structure as MLP but differs from feed-forward network, enabling nonlinear mapping.

$$h_t = \mathcal{H}(W_{xh}x_t + W_{hh}h_{t-1} + b_h)$$
$$y_t = W_{hy}h_t + b_y$$

- Feedback connection between previous hidden units and current hidden units, enabling memory past hidden state.
- Potentially to model arbitary dynamic system.
- Trained with backpropagation through time (BPTT)

- modelling sequential data, emotion in speech .
- Same Structure as MLP but differs from feed-forward network, enabling nonlinear mapping.
- Feedback connection between previous hidden units and current hidden units, enabling memory past hidden state.
- Potentially to model arbitary dynamic system.
- Trained with backpropagation through time (BPTT)

- modelling sequential data, emotion in speech .
- Same Structure as MLP but differs from feed-forward network, enabling nonlinear mapping.
- Feedback connection between previous hidden units and current hidden units, enabling memory past hidden state.
- Potentially to model arbitary dynamic system.
- Trained with backpropagation through time (BPTT)

- modelling sequential data, emotion in speech .
- Same Structure as MLP but differs from feed-forward network, enabling nonlinear mapping.
- Feedback connection between previous hidden units and current hidden units, enabling memory past hidden state.
- Potentially to model arbitary dynamic system.
- Trained with **b**ack**p**ropagation **t**hrough **t**ime (BPTT)

From RNN to LSTM

Problems with RNN

- lacktriangledown gradient vanishing during backpropagation as time steps increases (>100)
- difficult to capture long-time dependency (which is required in emotion recognition)

Solutions

Long short term memory

S. Hochreiter and J. Schmidhuber, Lovol. 9, pp. 1735-1780, 1997.

LSTM unit

$$i_{t} = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_{i})$$

$$f_{t} = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_{f})$$

$$c_{t} = f_{t}c_{t-1} + i_{t}\tanh(W_{xc}x_{t} + W_{hc}h_{t-1} + b_{f})$$

$$h_{t} = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_{t} + b_{o})$$

$$h_{t} = o_{t}\tanh(c_{t})$$

Long short term memory

LSTM unit

$$i_{t} = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_{i})$$

$$f_{t} = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_{f})$$

$$c_{t} = f_{t}c_{t-1} + i_{t}\tanh(W_{xc}x_{t} + W_{hc}h_{t-1} + b_{c})$$

$$o_{t} = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_{t} + b_{o})$$

$$h_{t} = o_{t}\tanh(c_{t})$$

Long short term memory

Features in LSTM

- gates are trained to learn when it shoud be open/closed.
- Constant Error Carousel
- preserve long-time dependency by maintaining gradient over time.

Foundations

Mel Frequency Cepstral Features Emotion Recognition Approaches

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine

Deep Neural Networks

Concept Problems and Solutions

Long Short Term Memory Recurrent Neural Network

Experiments

Foundations

Mel Frequency Cepstral Features Emotion Recognition Approaches

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine

Deep Neural Networks

Concept
Problems and Solutions

Long Short Term Memory Recurrent Neural Network

Experiments