# Hopcroft's automaton minimization algorithm and Sturmian words

Jean Berstel, Luc Boasson, Olivier Carton

Institut Gaspard-Monge, Université Paris-Est Liafa, Université Paris Diderot

DMTCS'08

### Outline

- Minimal automaton
  - Minimal automata
- Hopcroft's algorithm
  - The algorithm
  - Cyclic automata
- Standard words
  - Definition
  - Standard words and Hopcroft's algorithm
- 4 Generating series
  - The equation
  - Example: Fibonacci
  - Acceleration
- Closed form
- 6 Closed form
  - Circular continuant polynomials
  - Further results



#### Automata



Each state q defines a language  $L_q = \{ w \mid q \cdot w \text{ is final } \}.$ 

The automaton is minimal if all languages  $L_q$  are distinct.

Here  $L_2 = L_4$ . States 2 and 4 are (Nerode) equivalent.

The Nerode equivalence gives the coarsest partition that is compatible with the next-state function.

### Refinement algorithm

Starts with the partition into two classes 05 and 12346.

A first refinement:  $12346 \rightarrow 1234|6$  because of a.

A second refinement:  $05 \rightarrow 0|5$  because of a.

### History

- Hopcroft has developed in 1970 a minimization algorithm that runs in time  $O(n \log n)$  on an n state automaton (discarding the alphabet).
- No faster algorithm is known for general automata.
- Question: is the time estimation sharp?
- A first answer, by Berstel and Carton: there exist automata where you need  $\Omega(n \log n)$  steps if you are "unlucky". These are related to De Bruijn words.
- A better answer, by Castiglione, Restivo and Sciortino: there exist automata where you need always  $\Omega(n \log n)$  steps. These are related to Fibonacci words.
- Here: the same holds for all Sturmian words corresponding to quadratic irrational slopes.
- Later: Hopcroft's algorithm needs always  $\Omega(n \log n)$  steps for all Sturmian words with bounded directive sequence, and it may require less steps.

4 / 22

# Hopcroft's algorithm

```
1: \mathcal{P} \leftarrow \{F, F^c\}
                                                  Initialize current partition P
 2: for all a \in A do
 3: ADD((\min(F, F^c), a), \mathcal{W}) \triangleright Initialize waiting set \mathcal{W}
 4: while \mathcal{W} \neq \emptyset do
    (C, a) \leftarrow \text{Some}(\mathcal{W})
                                                  \triangleright takes some element in \mathcal{W}
     for each B \in \mathcal{P} split by (C, a) do
 6:
           B', B'' \leftarrow \text{Split}(B, C, a)
 7:
           Replace B by B' and B" in \mathcal{P}
 8:
           for all b \in A do
 9:
              if (B, b) \in \mathcal{W} then
10:
                 REPLACE (B, b) by (B', b) and (B'', b) in W
11:
12:
              else
                 Add((min(B',B''),b),\mathcal{W})
13:
```

#### Definition

The pair (C, a) splits the set B if both sets  $(B \cdot a) \cap C$  and  $(B \cdot a) \cap C^c$  are nonempty.

### Example



Initiale partition  $\mathcal{P}$ : 05|12346

Waiting set W: (05, a), (05, b)

Pair chosen: (05, a)States in inverse: 06

Class to split:  $12346 \rightarrow 1234|6$ 

Pairs to add: (6, a) and (6, b)

Class to split :  $05 \rightarrow 0|5$ 

Pair to add: (5, a) (or (0, a))

Pair to replace: (05, b): by (0, b) and (5, b)

New partition  $\mathcal{P}$ : 0|1234|5|6

New waiting set W: (0, b), (6, a), (6, b), (5, a), (5, b)

### Basic fact

Splitting all sets of the current partition by one block (C, a) has a total cost of  $Card(a^{-1}C)$ .

# Cyclic automata

### Cyclic automaton $A_w$ for w = 01001010



States:  $Q = \{1, 2, ..., |w|\}$ 

One letter alphabet:  $A = \{a\}$ 

Transitions:  $\{k \stackrel{a}{\rightarrow} k + 1 \mid k < |w|\} \cup \{|w| \stackrel{a}{\rightarrow} 1\}$ 

Final states:  $F = \{k \mid w_k = 1\}$ 

#### Notation

 $Q_u$  is the set of starting positions of the occurrences of u in w.

### Hopcroft's algorithm on cyclic automata



Initiale partition  $\mathcal{P}$ :  $Q_0 = 13468, Q_1 = 257$ 

Waiting set  $\mathcal{W}$ :  $Q_1$ 

States in inverse of  $Q_1$ : 146

 $Q_0 = 13468 \rightarrow Q_{01} = 146, Q_{00} = 38$ 

New waiting set  $\mathcal{W}$ :  $Q_{00}$ 

New partition  $\mathcal{P}$ :  $Q_{00} = 38, Q_{01} = 146, Q_1 = Q_{10} = 257$ 

States in inverse of  $Q_{00}$ : 27

Class to split:  $Q_{10} = 257 \rightarrow Q_{100} = 27, Q_{101} = 5$ 

New waiting set  $\mathcal{W}$ :  $Q_{100}$ 

New partition  $\mathcal{P}$ :  $Q_{001} = 38, Q_{010} = 146, Q_{100} = 27, Q_{101} = 5$ 

Class to split:

### Standard words

#### Definition and examples

- directive sequence  $d = (d_1, d_2, d_3, ...)$  sequence of positive integers
- standard words  $s_n$  of binary words defined by  $s_0 = 1, s_1 = 0$  and  $s_{n+1} = s_n^{d_n} s_{n-1} \quad (n > 1)$ .
- For  $d = (\overline{1})$ , one gets the Fibonacci words:  $s_0 = 1, s_1 = 0, s_2 = 01, s_3 = 010, s_4 = 01001, s_5 = 010010101, s_6 = 0100101001001, ...$
- For  $d = (\overline{2,3})$ , one gets  $s_0 = 1$ ,  $s_1 = 0$ ,  $s_2 = 001$ ,  $s_3 = 0010010010$ ,...

# Characterization: cutting sequences



### **Proposition**

The standard words converge to the cutting sequence of a straight line  $y = \beta x$  with the irrational slope  $\beta = [0, d_1, d_2, d_3, \ldots]$ .

# Standard words and Hopcroft's algorithm

### Theorem (Castiglione, Restivo, Sciortino)

Let w be a standard word.

- Hopcroft's algorithm on the cyclic automaton  $A_w$  is uniquely determined.
- At each step i of the execution, the current partition is composed if the i+1 classes  $Q_u$  indexed by the circular factors of length i, and the waiting set is a singleton.
- This singleton is the smaller of the sets  $Q_{u0}$ ,  $Q_{u1}$ , where u is the unique circular special factor of length i-1.

### Corollary

Let  $(s_n)_{n\geq 0}$  be a standard sequence. Then the complexity of Hopcroft's algorithm on the automaton  $\mathcal{A}_{s_n}$  is proportional to  $\|s_n\|$ , where  $\|w\| = \sum_{u \in CF(w)} \min(|w|_{u0}, |w|_{u1})$ .

#### Main result

#### **Theorem**

Let  $(s_n)_{n\geq 0}$  be the standard sequence defined by an ultimately periodic directive sequence d. Then  $||s_n|| = \Theta(n|s_n|)$ , and the complexity of Hopcroft's algorithm on the automata  $\mathcal{A}_{s_n}$  is in  $\Theta(N \log N)$  with  $N = |s_n|$ .

### Generating series

Let  $d=(d_1,d_2,\ldots)$  and  $(s_n)_{n\geq 0}$  be the standard sequence defined by d. Set  $a_n=|s_n|_1$  and  $c_n=\|s_n\|=\sum\limits_{u\in CF(s_n)}\min(|s_n|_{u0},|s_n|_{u1}).$ 

 $c_n$  is the complexity of Hopcroft's algorithm on  $\mathcal{A}_{s_n}$ , and  $a_n$  is the size of  $\mathcal{A}_{s_n}$ .

The generating series are  $A_d(x) = \sum_{n \ge 1} a_n x^n$ ,  $C_d(x) = \sum_{n \ge 0} c_n x^n$ .

### Proposition

For any directive sequence  $d = (d_1, d_2, ...)$ , one has

$$C_d(x) = A_d(x) + x^{\delta(d)} C_{\tau(d)}(x) + x^{1+\delta(T(d))} C_{\tau(T(d))}(x).$$

$$au(d) = egin{cases} (d_1-1,d_2,d_3,\ldots) & ext{if } d_1 > 1 \ (d_2,d_3,\ldots) & ext{otherwise} \,. \end{cases} \qquad \delta(d) = egin{cases} 0 & ext{if } d_1 > 1 \,, \ 1 & ext{otherwise} \,. \end{cases}$$

and 
$$T(d) = \tau^{d_1}(d) = (d_2, d_3, \ldots).$$

◆ロト ◆母 ト ◆ 達 ト ◆ 達 ・ 夕 Q ②

### Example: Fibonacci

For  $d=(\overline{1})$ , one has  $\tau(d)=T(d)=d$ , and  $\delta(d)=1$ . The equation becomes

$$C_d(x) = A_d(x) + (x + x^2)C_d(x),$$

from which we get  $C_d(x) = \frac{A_d(x)}{1 - x - x^2}$ . Clearly  $a_{n+2} = a_{n+1} + a_n$  for

 $n \ge 0$ , and since  $a_0 = 1$  and  $a_1 = 0$ , one gets  $A_d(x) = \frac{x^2}{1 - x - x^2}$ . Thus

$$C_d(x) = \frac{x^2}{(1-x-x^2)^2}$$
.

This proves that  $c_n \sim Cn\varphi^n$ , where  $\varphi$  is the golden ratio, and proves the theorem of Castiglione, Restivo and Sciortino.

# Another example d = (2,3)

$$C_{(\overline{2},\overline{3})} = A_{(\overline{2},\overline{3})} + C_{(1,\overline{3},\overline{2})} + xC_{(2,\overline{2},\overline{3})}$$

$$C_{(1,\overline{3},\overline{2})} = A_{(1,\overline{3},\overline{2})} + xC_{(\overline{3},\overline{2})} + xC_{(2,\overline{2},\overline{3})}$$

$$C_{(2,\overline{2},\overline{3})} = A_{(2,\overline{2},\overline{3})} + C_{(1,\overline{2},\overline{3})} + xC_{(1,\overline{3},\overline{2})}$$

$$C_{(\overline{3},\overline{2})} = A_{(\overline{3},\overline{2})} + C_{(2,\overline{2},\overline{3})} + xC_{(1,\overline{3},\overline{2})}$$

$$C_{(1,\overline{2},\overline{3})} = A_{(1,\overline{2},\overline{3})} + xC_{(\overline{2},\overline{3})} + xC_{(1,\overline{3},\overline{2})}$$

Here  $A_{(\overline{2,3})} = A_{(1,\overline{3,2})}$  and  $A_{(\overline{3,2})} = A_{(2,\overline{2,3})} = A_{(1,\overline{2,3})}$ . Set  $D_1 = C_{(1,\overline{3,2})}$  and  $D_2 = C_{(2,\overline{2,3})}$ .

$$C_{(\overline{2,3})} = A_{(\overline{2,3})} + D_1 + xD_2,$$

where  $D_1$  and  $D_2$  satisfy the equations

$$D_1 = A_{(\overline{2},\overline{3})} + xA_{(\overline{3},\overline{2})} + 2xD_2 + x^2D_1$$
  

$$D_2 = 2A_{(\overline{3},\overline{2})} + xA_{(\overline{2},\overline{3})} + 3xD_1 + x^2D_2.$$

Thus the original system of 5 equations in the  $C_u$  is replaced by a system of 2 equations in  $D_1$  and  $D_2$ .

#### Acceleration

Let  $d = (d_1, d_2, ...)$  be a directive sequence, and for  $i \ge 1$ , set

$$e_i = T^{i-1}(d) = (d_i, d_{i+1}, \ldots).$$

Set also

$$D_i = x^{\delta(e_i)} C_{\tau(e_i)}, \qquad B_i = (d_i - 1) A_{e_i} + x A_{e_{i+1}}.$$

With these notations, the following system of equation holds.

#### Proposition

The following equations hold

$$C_d = A_d + D_1 + xD_2$$
  
 $D_i = B_i + d_i x D_{i+1} + x^2 D_{i+2}$   $(i \ge 1)$ 

### Closed form

#### Theorem

If d is a purely periodic directive sequence with period k, then

$$A_d(x) = \sum a_n x^n = x \frac{R(x)}{Q(x)},$$

where R(x) is a polynomial of degree < 2k and

$$Q(x) = 1 - Z(d_1, ..., d_k)x^k + (-1)^k x^{2k}$$

where  $Z(x_1,...,x_k)$  is a polynomial in the variables  $x_1,...,x_k$ . Moreover,  $a_n = \Theta(\rho^n)$ , where  $\rho$  is the unique real root greater than 1 of the reciprocal polynomial of Q(x). Next,

$$C_d(x) = \sum c_n x^n = \frac{S(x)}{Q(x)^2},$$

where S(x) is a polynomial, and  $c_n = \Theta(n\rho^n)$ .

### Closed form

#### **Theorem**

If d is a purely periodic directive sequence with period k, then

$$A_d(x) = \sum a_n x^n = x \frac{R(x)}{Q(x)}$$
 and  $C_d(x) = \sum c_n x^n = \frac{S(x)}{Q(x)^2}$ ,

where R(x) and S(x) are polynomials of degree < 2k and

$$Q(x) = 1 - Z(d_1, ..., d_k)x^k + (-1)^k x^{2k}$$

where  $Z(x_1,...,x_k)$  is a polynomial in the variables  $x_1,...,x_k$ . Moreover,  $a_n = \Theta(\rho^n)$  and  $c_n = \Theta(n\rho^n)$  where  $\rho$  is the unique real root greater than 1 of the reciprocal polynomial of Q(x).

# Circular continuant polynomials

Replace in the word  $x_1 \cdots x_n$  a factor  $x_i x_{i+1}$  of variables with consecutive indices by 1. The replacement of  $x_n x_1$  is allowed for circular continuants. The following are the first circular continuant polynomials.

$$Z(x_1) = x_1$$

$$Z(x_1, x_2) = x_1 x_2 + 2$$

$$Z(x_1, x_2, x_3) = x_1 x_2 x_3 + x_1 + x_2 + x_3$$

$$Z(x_1, x_2, x_3, x_4) = x_1 x_2 x_3 x_4 + x_1 x_2 + x_2 x_3 + x_3 x_4 + x_4 x_1 + 2.$$

The first continuant polynomials are

$$K(x_1) = x_1$$

$$K(x_1, x_2) = x_1 x_2 + 1$$

$$K(x_1, x_2, x_3) = x_1 x_2 x_3 + x_1 + x_3$$

$$K(x_1, x_2, x_3, x_4) = x_1 x_2 x_3 x_4 + x_1 x_2 + x_3 x_4 + x_1 x_4 + 1.$$

They are related by

$$Z(x_1,x_2,\ldots,x_n)=K(x_1,x_2,\ldots,x_n)+K(x_2,x_n,x_n)$$

### Further results

#### Theorem

For any sequence d, one has  $c_n = \Theta(na_n)$ .

### Corollary

If  $a_n$  grows at most exponentially, then  $c_n = \Theta(a_n \log a_n)$  and  $n = \Theta(\log a_n)$ .

### Corollary

If the elements of the sequence d are bounded, then  $c_n = \Theta(a_n \log a_n)$ .

### Corollary

There exist directive sequences d such that  $c_n = O(a_n \log \log a_n)$ .

# A combinatorial lemma (one of four)

#### Lemma

Assume  $d_2 > 1$ , and let  $t_n$  be the sequence of standard words generated by  $\tau T(d) = (d_2 - 1, d_3, d_4, \ldots)$ . Let  $\beta$  be the morphism defined by

$$\beta(0) = 10^{d_1}$$
 and  $\beta(1) = 10^{d_1+1}$ 

- Then  $s_{n+1}0^{d_1} = 0^{d_1}\beta(t_n)$  for  $n \ge 1$ .
- If v is a circular special factor of  $t_n$ , then  $\beta(v)10^{d_1}$  is a circular special factor of  $s_{n+1}$ .
- Conversely, if w is a circular special factor of  $s_{n+1}$  starting with 1, then w has the form  $w = \beta(v)10^{d_1}$  for some circular special factor v of  $t_n$ .
- Moreover,  $|s_{n+1}|_{w0} = |t_n|_{v1}$  and  $|s_{n+1}|_{w1} = |t_n|_{v0}$ .

### Application of the combinatorial lemma

Example 
$$(d = (\overline{2,3}), \text{ so } \beta(0) = 100, \beta(1) = 1000)$$

$$t_0 = 1 \qquad s_0 = 1$$

$$t_1 = 0 \qquad s_1 = 0$$

$$t_2 = 001 \qquad s_2 = 001$$

$$t_3 = (001)^20 \quad s_3 = (001)^3$$

$$s_300 = 00.100.100.1000 = 00\beta(001) = 00\beta(t_2)$$

$$t_2 = 001, s_300 = 001001001000 = 001001001000$$