STAT 222: Bayesian Nonparametric Methods (Spring 2020)

Homework set on Dirichlet process mixture models (due Monday May 18)

1. Assume that $\theta_i \mid G \stackrel{i.i.d.}{\sim} G$, for i = 1, ..., n, with $G \mid \alpha, \psi \sim \mathrm{DP}(\alpha, G_0(\psi))$, where G_0 is a continuous distribution (i.e., it has no atoms) with density g_0 . Then, marginalizing G over its DP prior, the joint distribution for the θ_i can be written as

$$p(\theta_1, ..., \theta_n \mid \alpha, \psi) = \sum_{\pi \in \mathcal{P}_n} p(\pi \mid \alpha) \left\{ \prod_{j=1}^{n^*} g_0(\theta_{e_{j,1}} \mid \psi) \prod_{i=2}^{n_j} \delta_{\theta_{e_{j,1}}}(\theta_{e_{j,i}}) \right\}$$

where \mathcal{P}_n denotes the set of all partitions $\boldsymbol{\pi} = \{s_j : j = 1, ..., n^*\}$ of $\{1, ..., n\}$, and $p(\boldsymbol{\pi} \mid \alpha)$ the DP-implied prior probability for partition $\boldsymbol{\pi}$. Here, n^* is the number of cells of partition $\boldsymbol{\pi}$, n_j is the number of elements in cell s_j , and $e_{j,1} < ... < e_{j,n_j}$ are the elements of cell s_j . Prove by induction that

$$p(\boldsymbol{\pi} \mid \alpha) = \frac{\alpha^{n^*}}{\alpha^{(n)}} \prod_{j=1}^{n^*} (n_j - 1)!$$

where $\alpha^{(n)} = \prod_{m=1}^{n} (\alpha + m - 1) = \Gamma(\alpha + n) / \Gamma(\alpha)$ is the ascending factorial.

2. Consider the location normal DP mixture model:

$$f(y \mid G, \phi) = \int k_N(y \mid \theta, \phi) dG(\theta), \quad G \mid \alpha, \mu, \tau^2 \sim DP(\alpha, G_0 = N(\mu, \tau^2)),$$

where $k_N(\cdot \mid \theta, \phi)$ denotes the density function of the normal distribution with mean θ and variance ϕ . Assume an inv-gamma (a_{ϕ}, b_{ϕ}) prior for ϕ , a gamma (a_{α}, b_{α}) prior for α , and take $N(a_{\mu}, b_{\mu})$ and inv-gamma (a_{τ^2}, b_{τ^2}) priors for the mean, μ , and variance, τ^2 , respectively, of the normal centering distribution G_0 . (Here, inv-gamma(a, b) denotes the inverse gamma distribution with mean b/(a-1), provided a > 1, and gamma(a, b) denotes the gamma distribution with mean a/b.) Therefore, the hierarchical version of this semiparametric DP mixture model is given by

$$y_{i} \mid \theta_{i}, \phi \quad \stackrel{ind.}{\sim} \quad N(y_{i} \mid \theta_{i}, \phi), \quad i = 1, ..., n$$

$$\theta_{i} \mid G \quad \stackrel{i.i.d.}{\sim} \quad G, \quad i = 1, ..., n$$

$$G \mid \alpha, \mu, \tau^{2} \quad \sim \quad DP(\alpha, G_{0} = N(\mu, \tau^{2}))$$

$$\alpha, \mu, \tau^{2}, \phi \quad \sim \quad p(\alpha)p(\mu)p(\tau^{2})p(\phi),$$

with the (independent) priors $p(\alpha)$, $p(\mu)$, $p(\tau^2)$, $p(\phi)$ for α , μ , τ^2 , ϕ given above.

To study inference under this model, consider the data in "hwk3-data.txt" (the file is available from Files on canvas). This is a synthetic data set based on n=250 responses generated from the mixture $0.2 \,\mathrm{N}(-5,1) + 0.5 \,\mathrm{N}(0,1) + 0.3 \,\mathrm{N}(3.5,1)$.

- (1) Derive the expressions for the posterior full conditionals of the Pólya urn based Gibbs sampler, which can be used for posterior simulation from $p(\boldsymbol{\theta}, \alpha, \phi, \mu, \tau^2 \mid \text{data})$, where $\boldsymbol{\theta} = (\theta_1, ..., \theta_n)$, and data = $\{y_i : i = 1, ..., n\}$. Develop your own code to implement the Gibbs sampler.
- (2) Discuss specification of the prior hyperparameters for ϕ , μ , and τ^2 . Study sensitivity of posterior inference for ϕ , μ , and τ^2 to the prior choice. In addition to the posterior distributions for ϕ , μ , τ^2 , examine sensitivity of posterior predictive inference (see (5) below).
- (3) Obtain the posterior distributions for α and n^* under different prior choices for α corresponding to an increasing number of distinct mixture components. For example: $a_{\alpha} = 2$, $b_{\alpha} = 15$ (E(n^*) ≈ 1); $a_{\alpha} = 2$, $b_{\alpha} = 4$ (E(n^*) ≈ 3); $a_{\alpha} = 2$, $b_{\alpha} = 0.9$ (E(n^*) ≈ 10); and $a_{\alpha} = 2$, $b_{\alpha} = 0.1$ (E(n^*) ≈ 48). Discuss prior sensitivity analysis results for α and n^* , as well as for posterior predictive inference (again, see (5) below).
- (4) Illustrate the *clustering* induced by this DP mixture model using the posterior samples for the θ_i . For example, you can plot the median and two quantiles from $p(\theta_i \mid \text{data})$, for i = 1, ..., n. You can also obtain $p(\theta_0 \mid \text{data}) = \int p(\theta_0 \mid \boldsymbol{\theta}, \alpha, \mu, \tau^2) p(\boldsymbol{\theta}, \alpha, \mu, \tau^2 \mid \text{data})$, that is, the posterior predictive density for θ_0 (associated with a *new* observation y_0).
- (5) Obtain the posterior predictive density $p(y_0 \mid \text{data})$ and use it to study how successful the model is in capturing the distributional shape suggested by the data. Compare also with the prior predictive density.
- 3. Consider the more general location-scale normal DP mixture model

$$f(y \mid G) = \int k_N(y \mid \theta, \phi) dG(\theta, \phi), \quad G \mid \alpha, \psi \sim DP(\alpha, G_0(\psi)),$$

with the conjugate normal/inverse-gamma specification for the centering distribution

$$G_0(\theta, \phi \mid \boldsymbol{\psi}) = N(\theta \mid \mu, \phi/\kappa) \times \text{inv-gamma}(\phi \mid c, \beta)$$

for fixed c and random $\psi = (\mu, \kappa, \beta)$.

Use the function DPdensity from the DPpackage to fit this model to the same data set with problem 2. Discuss prior specification for the hyperparameters μ , κ and β . Use appropriate types of inference to compare the performance of the location-scale normal DP mixture above with the location normal DP mixture model from problem 2.