An Architecture for Collecting Longitudinal Social Data

Jeremy Blackburn, Adriana Iamnitchi University of South Florida

Our Experience: Mining the Steam Community OSN

Steam Community:

- Large online social network for PC gamers
- Built on top of Steam digital delivery platform
- Purchased games permanently tied to account
- Steam account required to create Steam Community profile
 - Steam Community profile not required to play games

Steam Community Profile

- Unique SteamID
- Friends list
- User specified location
- Cheating flag (VAC ban)
- Nickname (mutable)
- Date of account creation
- Screenshots
- Videos
- Comments ("wall posts")
- Profile information
- Game reviews
- Gameplay ownership/stats
- Virtual goods inventory

The cheating flag

- Cheating automatically detected via Valve Anti Cheat system
 - Method and timestamp not public
 - Delayed application
- Permanent
- Publicly viewable
 - Even private accounts
- Can't play on VAC secured servers
 - Only applies to the game that was cheated in
- Most servers are VAC secured
 - 4,200 of 4,234 Team Fortress 2 servers
- Cheaters not removed from Steam Community

Why Care About Cheaters in Online Games?

- Cheats (hacks): code that enhances skills (see through walls, automatically aim, move very fast)
- Cheating in online games:
 - serious cost for the gaming industry
 - undisputed unethical behavior
- Cheating affects many aspects of our lives
 - Opportunity to quantify and study spread
- Initial research question: the location of cheaters in the social network: Influential? Clustered together?

Steam Community data set

Туре	Nodes	Edges	Profiles	Public	Private	Friends-only	Location set
All users	12,479,765	88,557,725	10,191,296	9,025,656	313,710	851,930	4,681,829
Cheaters	-	-	720,469	628,025	46,270	46,714	312,354

- Data collected March 16 April 3, 2011
 - Distributed BFS using Amazon EC2
- Cheaters make up 7% of profiles
- 7% of cheaters have private profiles
 - 3% of non-cheaters with private profiles
- Cheaters as likely to be friends-only as private
 - Non-cheaters about 3 times as likely to be friends-only as private

Cheaters more likely to be private than non-cheaters

Are Cheaters Well Embedded in the OSN?

Who is Friends with Cheaters?

We Needed More Accurate Data...

- 3rd party web site, vacbanned.com, provides historical data on when a VAC ban was first observed
 - Dates must be treated as banned "on or before"

Blackburn et al, "Branded with a Scarlet "C": Cheaters in a Gaming Network", WWW 2012.

Evolution of Cheaters' Social Structure

Interval starting 2011-06-25

10⁰

10⁻¹

Challenges with Data Collection

- APIs provided by OSNs are often incomplete, poorly documented or simply not working.
- New functionalities are continuously added, and with them new attributes that prove relevant to data analysis.
- Continuously changing needs both in data and analysis.
- New sources of data might appear.

Our Solution (1)

- Decoupling data collection from extraction and analysis
 - successive iterations of data extractions as informed by data analysis results with minimum costs;
 - transparent collection of newly introduced attributes embedded within the data source independent of the data extraction or processing mechanisms;
 - Independent insertion or removal of new sources of data.

Our Solution (2)

- Versioning and provenance
 - At minimum, this requires time stamping of data.
 - Changes in data extraction code requires versioning
- Multigraph, ego-net based model: representing the fusion of multiple sources of social data for a single ego

The System

Monitoring Gamers

- Rails application with distributed worker processes
- MongoDB for data storage
 - 9 nodes + 1 application server, each with 32 GB RAM
 - ~155 GB of data (~525M observations)
- At 00:01 users in the system have their ban status queried
 - Deltas stored
- Newly transitioned cheaters have their neighborhood monitored for 10 days
 - Their neighbors added to system too
 - Monitor only if we have at least one observation where the users is not banned

Reaction to Cheating Flag

New cheaters

Interval 1 Interval 2 Interval 4 164 (56.4%) cheaters Interval 3 107 (36.8%) cheaters Interval 5 Interval 6

High resolution spread

- 5 day intervals
- 10 largest connected components

Most are friends for a long time before they cheat

Thank you!

An Architecture for Collecting Longitudinal Social Data

Jeremy Blackburn, Adriana Iamnitchi University of South Florida http://www.cse.usf.edu/dsg/