

A Bright Millisecond Radio Burst of Extragalactic Origin

D. R. Lorimer, 1,2* M. Bailes, 3 M. A. McLaughlin, 1,2 D. J. Narkevic, 1 F. Crawford 4

Pulsar surveys offer a rare opportunity to monitor the radio sky for impulsive burst-like events with millisecond durations. We analyzed archival survey data and found a 30-jansky dispersed burst, less than 5 milliseconds in duration, located 3° from the Small Magellanic Cloud. The burst properties argue against a physical association with our Galaxy or the Small Magellanic Cloud. Current models for the free electron content in the universe imply that the burst is less than 1 gigaparsec distant. No further bursts were seen in 90 hours of additional observations, which implies that it was a singular event such as a supernova or coalescence of relativistic objects. Hundreds of similar events could occur every day and, if detected, could serve as cosmological probes.

2014

A real-time fast radio burst: polarization detection and multiwavelength follow-up

```
E. Petroff<sup>1,2,3*</sup>, M. Bailes<sup>1,3</sup>, E. D. Barr<sup>1,3</sup>, B. R. Barsdell<sup>4</sup>, N. D. R. Bhat<sup>3,5</sup>, F. Bian<sup>6,7</sup>,
 S. Burke-Spolaor<sup>8</sup>, M. Caleb<sup>7,1,3</sup>, D. Champion<sup>9</sup>, P. Chandra<sup>10</sup>, G. Da Costa<sup>7</sup>, C. Delvaux<sup>11</sup>,
 C. Flynn<sup>1,3</sup>, N. Gehrels<sup>12</sup>, J. Greiner<sup>11</sup>, A. Jameson<sup>1,3</sup>, S. Johnston<sup>2</sup>, M. M. Kasliwal<sup>13,14</sup>,
 E. F. Keane<sup>1,3</sup>, S. Keller<sup>7</sup>, J. Kocz<sup>4,15</sup>, M. Kramer<sup>9,16</sup>, G. Leloudas<sup>17,18</sup>, D. Malesani<sup>17</sup>,
 J. S. Mulchaey<sup>13</sup>, C. Ng<sup>9</sup>, E. O. Ofek<sup>18</sup>, D. A. Perley<sup>8,14</sup>, A. Possenti<sup>19</sup>, B. P. Schmidt<sup>7,3</sup>
 Yue Shen<sup>13,20</sup>, B. Stappers<sup>16</sup>, P. Tisserand<sup>7,3,21,22</sup>, W. van Straten<sup>1,3</sup>, C. Wolf<sup>7,3</sup>
  Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122, Australia
  <sup>2</sup> CSIRO Astronomy & Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710, Australia
  <sup>3</sup>ARC Centre of Excellence for All-sky Astrophysics (CAASTRO)
  <sup>4</sup> Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts, 02138, USA
  <sup>5</sup> International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia
  <sup>6</sup>Stromlo Fellow
  <sup>7</sup> Research School of Astronomy and Astrophysics, Australian National University, ACT, 2611, Australia
  <sup>8</sup> Cahill Center for Astrophysics, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
  <sup>9</sup> Max Planck Institut f
ür Radioastronomie, Auf dem H
ügel 69, D-53121 Bonn, Germany
  <sup>10</sup>National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune University Campus, Ganeshkhind, Pune 411 007, India
  <sup>11</sup>Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany
  <sup>12</sup> Astrophysics Science Division, NASA Goddard Space Flight Center, USA
  <sup>13</sup>Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101, USA
  <sup>15</sup> Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91104, USA
  <sup>16</sup> Jodrell Bank Centre for Astrophysics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, United Kingdom
<sup>17</sup> Dark Cosmology Centre (DARK), Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen Ø, Denmark
  <sup>18</sup> Department of Particle Physics & Astrophysics, Weizmann Institute of Science, Rehovot 76100, Israel
  19 INAF - Osservatorio Astronomico di Cagliari, Via della Scienza 5, 09047 Selargius (CA), Italy
  <sup>20</sup>Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China
  <sup>21</sup>Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, Institut d'Astrophysique de Paris, F-75005 Paris, France
  <sup>22</sup>CNRS, UMR 7095, Institut d'Astrophysique de Paris, 98 bis Boulevard Arago, F-75014 Paris, France
```

PARKES TELECOPE

FRB 140514

Table 1. Observed properties of FRB 140514

Event date UTC	14 May, 2014
Event time UTC, $\nu_{1.4~\mathrm{GHz}}$	17:14:11.06
Event time, ν_{∞}	17:14:09.83
Local date AEST	15 May, 2014
Local time AEST	03:14:11.06
RA	22:34:06.2
Dec	-12:18:46.5
(<i>ℓ</i> , <i>b</i>)	(50.8°, -54.6°)
Beam diameter	14.4'
DM _{FRB} (pc cm ⁻³)	562.7(6)
DM _{MW} (pc cm ⁻³)	34.9
Detection S/N	16(1)
Observed width, Δt (ms)	$2.8 \begin{array}{l} +3.5 \\ -0.7 \end{array}$
Scattering timescale, τ_{1GHz} (ms)	5.4(1)
Dispersion index, α	-2.000(4)
Peak flux density, $S_{\nu,1400 \mathrm{MHz}}$ (Jy)	$0.47 \begin{array}{l} +0.11 \\ -0.08 \end{array}$
Fluence, \mathcal{F} (Jy ms)	1.3 +2.3 -0.5

Table 2. Derived cosmological properties of FRB 140514

2	< 0.44(1)
Co-moving distance (Gpc)	< 1.71(3)
Luminosity distance (Gpc)	$< 2.46^{+0.04}_{-0.06}$
Energy (erg)	$< 3.7^{+4.7}_{-2.0} \times 10^{38}$
Distance modulus (mag)	< 42.2

 The source of the burst was up 5.5 billion years from Earth, near the constellation Aquarius.

 The burst could have hurled out as much energy in a few milliseconds as the Sun does in an entire day.

Parkes real time detection of FRB 140514

 The intensity profile of the fast radio burst, showing how quickly it evolved in time, last only a few milliseconds. Before and after the burst, only noise from the sky was detected.

Figure 1. The pulse profile and dynamic spectrum of FRB 140514 with pulse width $2.8^{+3.5}_{-0.7}$ ms, dedispersed to DM = 562.7 pc cm⁻³ and summed to 8 frequency channels across the band. The total time plotted has been reduced to 400 ms for greater clarity. Frequency channels between 1520 to 1580 MHz are excised due to narrow-band radio interference from the Thuraya 3 satellite which transmits in this band.

FRB FOLLOW AT OTHER TELESCOPES

Table 3. Follow-up observations conducted at 12 telescopes. Limits presented are the minimum detectable magnitude or flux of each epoch. All dates are for the year 2014.

Telescope	Date Start time	T+	Limits
	UTC		
Parkes	May 14 17:14:12	1 s	1.4 GHz - 145 mJy
ATCA	May 15 00:10:00	7 h	5.5 GHz - 40 mJy
			2 GHz - 60 mJy
Parkes	May 15 23:57:38	6 h 52 m	1.4 GHz - 145 mJy
Swift	May 15 01:44:43	8 h 30 m	$8.2 \times 10^{-15} \text{ erg cm}^{-2} \text{ s}^{-1}$
GROND	May 15 08:49:30	16 h	J = 21.1, H = 20.4,
	_		K - 18.4
Swope	May 15 09:57:13	16 h 51 m	R - 16
iPTF	May 15 11:16:03	18 h 11 m	R - 19.1
Swift	May 15 16:08:44	23 h 18 m	$3.9 \times 10^{-15} \text{ erg cm}^{-2} \text{ s}^{-1}$
GMRT	May 16 01:30:00	1.3 d	610 MHz - 125 μJy
Effelsberg	May 16 06:50:00	1.4 d	4.8 GHz - 2.5 mJy
iPTF	May 16 11:18:21	1.7 d	R - 19.3
SkyMapper	May 16 17:57:24	2 d	$H\alpha - 17$
NOT	May 17 04:48:46	2.4 d	370 - 730 nm
GROND	May 17 09:04:13	2.6 d	J = 21.1, H = 20.5,
	_		K - 18.6
Swope	May 17 09:50:00	2.6 d	R - 16
Magellan	May 17 10:11:19	2.6 d	R - 22.5, I - 22.5
iPTF	May 17 11:15:33	2.7 d	R - 19.3
Effelsberg	May 18 03:50:00	3.4 d	2.7 GHz - 1.2 mJy
iPTF	May 19 11:23:52	4.7 d	R - 19.1
Effelsberg	May 21 05:35:00	7.5 d	1.4 GHz - 1.2 mJy
SkyMapper	May 23 17:45:48	9 d	$H\alpha - 17$
Keck	May 27 14:06:22	12.8 d	30 - 1000 nm
Swift	June 02 00:06:02	18.3 d	$6.35 \times 10^{-15} \text{ erg cm}^{-2} \text{ s}^{-1}$
GMRT	June 03 00:20:00	19.3 d	1390 MHz - 61 μJy
NOT	June 05 03:51:09	21.4 d	370 - 730 nm
GMRT	June 08 20:30:00	24.1 d	610 MHz - 150 μJy
Parkes	June 24 14:36:40	41 d	1.4 GHz - 145 mJy
Magellan	July 8 07:34:44	55 d	R - 24.5, I - 24.5
Parkes	July 27 12:14:00	74 d	145 mJy

Figure 3. The limits for optical in apparent magnitude (green), radio flux density in mJy (red), and X-ray flux in erg cm⁻² s⁻¹ (blue) of our observations of the field of FRB 140514 from 8 telescopes that fully sampled the Parkes beam. Colors of data points refer to the axis scale of the same color. Light curves from GRB140512A (z = 0.725), 1.4 GHz radio data and R-band optical data for supernova SN1998bw ($z \sim 0.008$), R-band data for superluminous supernova SN2003ma (z = 0.289) and an R-band light curve for a typical type-Ia SN (z = 0.5) have been included for reference (Evans et al. 2007; Rest et al. 2011; Kulkarni et al. 2014; Galama et al. 1998).

VISIBLE LIGHT

- Photometry: Amount of light coming from an object.
- Spectrometry: Distribution of that light with respect to its wavelength
- Polarimetry: The polarisation state of that light.

INFRARED Cool objects Cosmic Dust

RADIO

- Radio galaxies: type of active galaxy that are very luminous at radio wavelengths.
- Quasars: Astronomic source of electromagnetic energy.
- Pulsars: highly magnetized, rotating neutron star that emits a beam of electromagnetic radiation.

WHY DIFFERENT WAVELENGTHS?

- Identify astronomical phenomena.
- It helped the scientist eliminate a couple of candidates: gamma-ray burst and supernovae.

Figure 3. The limits for optical in apparent magnitude (green), radio flux density in mJy (red), and X-ray flux in erg cm⁻² s⁻¹ (blue) of our observations of the field of FRB 140514 from 8 telescopes that fully sampled the Parkes beam. Colors of data points refer to the axis scale of the same color. Light curves from GRB140512A (z = 0.725), 1.4 GHz radio data and R-band optical data for supernova SN1998bw ($z \sim 0.008$), R-band data for superluminous supernova SN2003ma (z = 0.289) and an R-band light curve for a typical type-Ia SN (z = 0.5) have been included for reference (Evans et al. 2007; Rest et al. 2011; Kulkarni et al. 2014; Galama et al. 1998).

POLARISATION

*Polarisation is the direction in which electromagnetic waves oscillate.

 The signal from the radio wave burst was more than 20 percent circularly polarised and it suggests that there is a magnetic field in the vicinity that aligned the waves in particular directions.

NEUTRON STAR OR BLACK HOLE

- Quasars
- Extremely compact object
- Magnetic field