集合論速習会

yui_poya0527

March 26, 2022

集合

集合

集合とは

"何かものの集まりで、集まっているものの範囲がはっきりと定まっているもの"のこと.

集合の例

№: 自然数全体の集合

図:整数全体の集合

②: 有理数全体の集合

ℝ: 実数全体の集合

ℂ:複素数全体の集合

ℙ:素数全体の集合

∅:空集合 (要素のない集合)

要素と部分集合

集合の元

集合の要素 1 つ 1 つを集合の元という. a が集合 A の元であることを, $a \in A$ で表す. 逆に a が集合 A の元でないことを, $a \notin A$ で表す.

部分集合

A が B の部分集合 \iff 任意の A の元は B の元 このことを $A \subset B$ と表す.逆に A が B の部分集合でないとき, $A \not\subset B$ と表す.

例

 $7 \in \mathbb{N}$, $\sqrt{3} \in \mathbb{R}$, $9 \notin \mathbb{P}$, $\mathbb{P} \subset \mathbb{N}$

集合の表し方

外延的定義と内包的定義

外延的定義 := 集合の要素をすべて書き出す表し方

内包的定義:=集合の要素が満たす条件を指定する表し方

 $A = \{x \mid x$ の満たす条件 $\}$

例

集合 A が一桁の自然数全体からなる集合だとする.

 $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

 $A = \{ n \in \mathbb{N} \mid n \ge 9 \}$

基本的には内包的定義を用いる (無限集合などを取り扱うため).

集合の例

開区間と閉区間

a, b を実数とし, a < b とする. \mathbb{R} において

開区間 $(a,b) := \{x \in \mathbb{R} \mid a < x < b\}$

閉区間 $[a,b] := \{x \in \mathbb{R} \mid a \le x \le b\}$

 $\mathbb{R}_{\geq 0} := \{ x \in \mathbb{R} \mid x \geq 0 \}$

べき集合

集合 A に対してそのべき集合を $\mathfrak{P}(A) := \{S \mid S \subset A\}$

集合の演算

集合の演算

集合 A, B に対して,

和集合 $A \cup B := \{x \mid x \in A \text{ または } x \in B\}$

積集合 $A \cap B := \{x \mid x \in A$ かつ $x \in B\}$

差集合 $A - B := \{x \mid x \in A$ かつ $x \notin B\}$

ド・モルガンの法則

定理 1 (ド・モルガンの法則)

 $A, B \subset X$ に対して,

1)
$$X - (A \cup B) = (X - A) \cap (X - B)$$

2)
$$X - (A \cap B) = (X - A) \cup (X - B)$$

ド・モルガンの法則を示す

示し方

A = B を示す. $\iff A \subset B$ かつ $A \supset B$ を示す.

 $A \subset B$ を示す. $\iff x \in A$ ならば $x \in B$ を示す.

のが命題の最も標準的な示し方になる.(対偶を取ったり、背理法を用いたりなどもある)

Proof.

 $X - (A \cup B) \subset (X - A) \cap (X - B)$ を示す.

 $x \in X - (A \cup B)$ より、 差集合の定義から $x \in X$ かつ $x \notin A \cup B$.

よって $x \in X - A$ かつ $x \in X - B$ なので, $x \in (X - A) \cap (X - B)$.

逆を示すために $x \in (X - A) \cap (X - B)$ とする.

このときまず $x \in X$ は $X - A \subset X$ より明らか.

また, $x \notin A$ かつ $x \notin B$ より $x \notin A \cup B$. よって $x \in X - (A \cup B)$.

補集合

補集合

 $A \subset X \$ とする.

このとき A の補集合を $A^{c} := X - A$ とする.

補集合を用いたド・モルガンの法則

$$1)(A \cup B)^{\mathsf{c}} = A^{\mathsf{c}} \cap B^{\mathsf{c}}$$

$$(A \cap B)^{\mathsf{c}} = A^{\mathsf{c}} \cup B^{\mathsf{c}}$$

直積集合

集合の直積はイメージとしては座標を取るようなもの.

集合の直積

集合 A, B の直積を $A \times B := \{(a, b) \mid a \in A, b \in B\}$

直積の例

- $1)\mathbb{R} \times \mathbb{R} := \{(x, y) \mid x, y \in \mathbb{R}\}\$
- 次の2つはどんな集合になるだろうか.
- $2)\mathbb{Z} \times \mathbb{Z}$
- $3)[a,b] \times [c,d](a,b,c,d \in \mathbb{R}, a \le b, c \le d)$

一般の直積

集合 A_1, A_2, \cdots, A_n の直積は,

$$A_1 \times A_2 \times \cdots \times A_n := \{(a_1, a_2, \cdots, a_n) \mid a_i \in A_i\}$$

写像

写像

集合 A,B に対して、写像 $A\to B$ とは すべての A の元に対して、それぞれ B の元が一つ対応するような元の対応のこと.

問題

次のような対応は写像だろうか. また違う場合はどこがまずいだろうか.

写像

定義域と値域

 $f: A \to B$ に対して,A を f の定義域という.

B のうち A の元と対応しているもの全体からなる集合を f の値域という.

問題

次のような写像の定義域と値域はどうなってるだろうか.

写像の定義域と値域

例

写像 f(x) = x + 1 を考える.

このときこの写像は実数全体で定義されるため定義域は ℝ.

x が $\mathbb R$ 全体を動くとき, f は $\mathbb R$ 全体を値に取るため値域は $\mathbb R$.

よって, $f: \mathbb{R} \to \mathbb{R}$.

問題

次の写像の定義域と値域はどうなっているだろうか.

ただし定義域も値域も実数の部分集合とする.

$$1)f(x) = x^2$$

$$2)g(x) = \sqrt{x}$$

$$3)h(x) = \sin x$$

4)
$$i(x) = \sqrt{1 - x^2}$$

写像の合成

写像の合成

2つの写像 $f: A \to B, g: B \to C$ に対して, 合成を $g \circ f: A \to C, a \mapsto g(f(a))$ とする.

写像の合成

問題

次の4つの写像のうち合成できないものはどれでしょう.

$$\mathbf{a})f: \mathbb{R} \to \mathbb{R}_{>0}, x \mapsto x^2$$

$$\mathsf{b})g:\mathbb{R}_{\geq 0}\to \mathbb{R}_{\geq 0}, x\mapsto \sqrt{x}$$

$$c)h: \mathbb{R} \to [-1,1], x \mapsto \sin x$$

d)
$$i: [-1,1] \to [0,1], x \mapsto \sqrt{1-x^2}$$

単射

単射

写像 f が単射 $\stackrel{\mathsf{def}}{\Longleftrightarrow} f(a) = f(b)$ ならば a = b

全射

全射

写像 $f:A\to B$ が全射 \iff 任意の $b\in B$ に対して, $a\in A$ が存在して f(a)=b すなわち f の値域が B.

全単射

全単射

写像 f が全単射 $\stackrel{\text{def}}{\Longleftrightarrow} f$ が単射かつ全射 全単射のことを一対一対応とも呼ぶ.

逆写像

像と逆像

```
f:A \to B,\ A' \subset A,\ B' \subset B に対して、
f による A' の像を f(A'):=\{f(a)\mid a\in A'\}\subset B
f による B' の逆像を f^{-1}(B'):=\{a\in A\mid b\in B'が存在して b=f(a)\}
```

逆写像

 $f:A \to B$ が全単射のとき $f^{-1}:B \to A, f(a) \mapsto a$ が一意に定まる.