1 Signalbeschreibung Skript S.1

Energie- und Leistungssignale Skript S.3

Klasse 1: Energiesignal	Klasse 2: Lei	stungssignale
zeitbegrenzt oder abklingend,	nicht zeit	bregrenzt
einmalige Vorgänge, Impulse		
$W_n < \infty$	W_n	$=\infty$
$P_n = 0$	P_n	$\neq 0$
	Klasse 2a: periodisch	Klasse 2b: aperiodisch
30 24 20 5 1.0 0.5 -10 -5 -0.5	0.5 -0.5 -1.0;	15 C S C S C S C S C S C S C S C S C S C
	Zeitbereich	Frequenzbereich
Normierte Signalenergie	$E_n = W_n = \lim_{T \to \infty} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) ^2 dt$	$E_n = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) ^2 dt$
Normierte Signalleistung:	$P_n = \lim_{T \to \infty} \frac{1}{T} \int_{-T}^{\frac{T}{2}} f(t) ^2 dt$	$P_n = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\lim_{T \to \infty} \frac{ F(j\omega) ^2}{T} \right) dt$

Mittelwerte Skript S.5 1.2

Arithmetischer Mittelwert,
$$X_0 = \overline{X} = X_m = \frac{1}{T} \int\limits_{t_0}^{t_0+T} x(t) dt$$
 Gleichwert, Linearer MW

 $X_0 = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t)dt$

Quadratischer MW, Leistung

Quadratischer MW, Leistung
$$X^2 = \frac{1}{T} \int_{t_0}^{t_0+T} x^2(t) dt$$

Effektivwert $X = X_{\text{eff}} = \sqrt{X^2} = \sqrt{\frac{1}{T}} \int_{0}^{t_0+T} x^2(t) dt$

 $X_{|m|} = |\bar{X}| = \frac{1}{T} \int_{t_0}^{t_0 + T} |x(t)| dt$ Gleichrichtwert

Varianz, Standardabweichung

$$X = X_{\text{eff}} = \sqrt{X^2} = \sqrt{\frac{1}{T}} \int_{t_0}^{t_0 + T} x^2(t) dt$$

$$Var(x) = \sigma^2 = \frac{1}{T} \int_{-T/2}^{T/2} (x(t) - X_0)^2 dt = X^2 - X_0^2$$

 $X^{2} = var(x) + X_{0}^{2} = |X|^{2} = var(|x|) + |X_{0}|^{2}$

(Kl. 2a) Ist die Fläche unter der Zeitfunktion über eine Periode.

(Kl. 2b)

$$X^n = \frac{1}{T} \int\limits_{t_0}^{t_0+T} x^n(t) dt$$
 (MW $n.$ Ordnung)

Arithm. Mittelwert der Zweiweggleichrichterschaltung

Mittl. Abweichung im Quadrat

1.3 Funktionen

Autokorrelationsfunktion (AKF)

"Wie weit wird die Zukunft von der Vergangenheit geprägt?" Für **Energiesignale** (Klasse 1):

$$\varphi_{xx}(\tau) = \lim_{T \to \infty} \int_{-T/2}^{T/2} x(t)x(t-\tau)dt = \lim_{T \to \infty} \int_{-T/2}^{T/2} x(t+\tau)x(t)dt = \varphi_{xx}(-\tau)$$

Für periodische Leistungssignale (Klasse 2a):

$$\varphi_{xx}(\tau) = \frac{1}{T} \int_{-T/2}^{T/2} x(t)x(t-\tau)dt = \frac{1}{T} \int_{-T/2}^{T/2} x(t+\tau)x(t)dt = \varphi_{xx}(-\tau)$$

Für nichtperiodische, stochastische Leistungssignale (Klasse 2b):

$$\varphi_{xx}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t)x(t-\tau)dt = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t+\tau)x(t)dt = \varphi_{xx}(-\tau)$$

Eigenschaften

- $\varphi_{xx}(0) = X^2$ (Hat immer Diracstoss bei $\tau = 0$)
- $\varphi_{xx}(\tau) = \varphi_{xx}(\tau \pm mT)$, d.h. die AKF ist periodisch mit der gleichen Periode T wie das Signal x(t).
- $\varphi_{xx}(\tau) = \varphi_{xx}(-\tau)$: d.h. die AKF ist eine **gerade Funktion**
- $\varphi_{xx}(0) \ge |\varphi_{xx}(\tau)|$
- $\varphi_{xx}(\tau) \geq (X_0)^2 \sigma^2$

Beispiel:
$$x(t) = a_k \cos(\omega t + \varphi) \Rightarrow \varphi_{xx}(\tau) = \frac{a_k^2}{2} \cos(\omega \tau)$$

 $x(t) = b_k \sin(\omega t + \varphi) \Rightarrow \varphi_{xx}(\tau) = \frac{b_k^2}{2} \cos(\omega \tau)$

Skript S.8

Kreuzkorrelationsfunktion (KKF)

"Wie ähnlich sind sich zwei Signale?" (Matlab: xcorr) Für Energiesignale (Klasse 1):

$$\varphi_{xy}(\tau) = \lim_{T \to \infty} \int_{-T/2}^{T/2} x(t)y(t-\tau)dt = \int_{-T/2}^{T/2} x(t+\tau)y(t)dt$$

Für **periodische Leistungssignale** (Klasse 2a):

$$\varphi_{xy}(\tau) = \frac{1}{T} \int_{-T/2}^{T/2} x(t)y(t-\tau)dt = \frac{1}{T} \int_{-T/2}^{T/2} x(t+\tau)y(t)dt$$

Für nichtperiodische, stochastische Leistungssignale (Klasse 2b):

$$\varphi_{xy}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t)y(t-\tau)dt = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t+\tau)y(t)dt$$

Bei Signalen mit verschiedenen Frequenzen ist φ_{xy} immer 0, ausser die Gleichstromanteile!

Sprungfunktion $_{Skript}$ S.16

Einschaltfunktion, Einheitssprung, Heaviside-Function (Matlab: heaviside)

$$u(t) = 1(t) = \begin{cases} 0 & \text{für } t < 0, \\ \frac{1}{2} & \text{für } t = 0, \\ 1 & \text{für } t > 0. \end{cases}$$

$$\mathcal{L}: u(t) \circ \longrightarrow \frac{1}{s}$$

Signumfunktion Skript S.17

Vorzeichenfunktion (Matlab: sign)

$$\mathrm{sgn}(t) = \begin{cases} -1 & \text{für } t < 0, \\ 0 & \text{für } t = 0, \\ 1 & \text{für } t > 0. \end{cases}$$

$$\mathcal{F}: \operatorname{sgn}(t) \circ \longrightarrow \frac{-2j}{\omega}$$

Rampenfunktion Skript S.17

(Matlab: ramp)

$$r(t) = tu(t) = \begin{cases} 0 & \text{für } t \le 0 \\ t & \text{für } t > 0 \end{cases}$$

$$\mathcal{L}: r(t) \circ \longrightarrow \frac{1}{s^2}$$

Rechteckimpuls Skript S.18

$$p_a(t) = u(t+a) - u(t-a) = \begin{cases} 1 & \text{für } |t| < a \\ \frac{1}{2} & \text{für } |t| = a \\ 0 & \text{für } |t| > a \end{cases}$$

$$\mathcal{F}: p_a(t) \circ - 2a \operatorname{sinc}(a\omega) = \frac{2}{\omega} \sin(a\omega)$$

Dreieckimpuls Skript S.19

$$\Lambda_a(t) = \begin{cases} 1 - \frac{|t|}{a} & \text{für } |t| < a \\ 0 & \text{für } |t| \ge a \end{cases}$$

$$\mathcal{F}: \quad \Lambda_a(t) \circ \longrightarrow a \left(\frac{\sin(\frac{a\omega}{2})}{\frac{a\omega}{2}} \right)^2 = a \operatorname{sinc}^2 \left(\frac{a\omega}{2} \right)$$

Sincfunktion Skript S.19

(Matlab: sinc)

$$\operatorname{sinc}_{\alpha}(t) = \frac{\sin(\alpha t)}{t}$$
 $\operatorname{sinc}(\alpha t) = \frac{\sin(\alpha t)}{\alpha t}$

$$\mathcal{F}: \quad \operatorname{sinc}_{\alpha}(t) = \frac{\sin(\alpha t)}{t} \circ - \bullet \pi p_{\alpha}(\omega)$$

$$\mathcal{F}: \quad \operatorname{sinc}(\alpha t) = \frac{\sin(\alpha t)}{\alpha t} \circ - \underbrace{\frac{\pi}{\alpha} p_{\alpha}(\omega)}$$

Impulsfunktion Skript S.20

Diracimpuls, Diracstoss, Deltaimpuls (Matlab: dirac)

$$\delta(t) = \begin{cases} \infty & \text{für } t = 0 \\ 0 & \text{sonst} \end{cases} \int_{-\infty}^{\infty} \delta(t)dt = 1$$

$\delta(t)$	$\delta(t-t_0)$	
		t

Siebungseigenschaft

		50
1.	$\delta(at) = \frac{1}{ a }\delta(t)$	Skalierung
2.	$\delta(\frac{t-t_0}{a}) = a \cdot \delta(t-t_0)$	Skalierung und Verschiebung
3.	$\delta(-t+t_0) = \delta(t-t_0)$	symmetrisch
4.	$\delta(-t) = \delta(t)$	$\delta(t) = \text{gerade Funktion}$
5.	$\int_{-\infty}^{\infty} \delta(t - t_0) f(t) dt = f(t_0)$	Siebungseigenschaft
6.	$\delta(t - t_0)f(t) = f(t_0)\delta(t - t_0)$	Abtastung
7.	$\int_{-\infty}^{\infty} A \cdot \delta(t) dt = A$	Spezialfall der Siebungseigenschaft
8.	$\delta(t - t_0) * f(t) = f(t - t_0)$	Faltung
9.	$\delta(t-t_1) * \delta(t-t_2) = \delta(t-t_1-t_2)$	Faltung
10.	$\int_{-\infty}^{t} \delta(\tau)d\tau = u(t); \qquad \delta(t) = \frac{\partial u(t)}{\partial t}$	Ableitung des Einheitssprungs
11.	$\delta(t) = \lim_{\omega \to \infty} \frac{\sin(\omega t)}{\pi t}$	Definition
12.	$\mathcal{L}, \mathcal{F}: \delta(t) \circ \longrightarrow 1$	Frequenzbereich
	$1 \circ - \delta(\omega)$	

(Matlab: randn)

Ist die Intensität der Rauschspannung über viele Frequenzdekaden gleich verteilt, so spricht man von weissem Rauschen. Signal to Noise Ratio: SNR = $\frac{\text{Signalleistung}}{\text{Rauschleistung}}$ (rauschfrei $\rightarrow \infty$)

Signal-Rausch-Verhältnis (SNR):

$$a_r = 10 \cdot \log_1 0(\frac{P_s}{P_r}) = 20 \cdot \log_1 0(\frac{U_s}{U_r})$$
$$F = \frac{P_{sEingang}}{P_{rEingang}} \cdot \frac{P_{rAusgang}}{P_{sAusgang}}$$

 P_s, U_s : Nutzsignal

Rauschzahl (noise figure):

$$F = \frac{P_{sEingang}}{P_s} \cdot \frac{P_{rAusgang}}{P_s}$$

 P_r, U_r : Rauschsignal

F=1, bei einem idealen Vierpol

T: absolute Temperatur $(0 \circ = 273.15K)$

Rauschmass:

$$a_F = 10 \cdot \log_1(F) = a_{rEingang} - a_{rAusgang}$$

 ΔF : Bandbreite

Effektive Rauschspannung:

$$U_r = \sqrt{4 \cdot k \cdot T \cdot \Delta f \cdot R}$$

 $k = 1.380662 \cdot 10^{-23} \frac{J}{K}$: Boltzmann-Konstante

Effktive Rauschleistung:

$$P_r = k \cdot T \cdot \Delta f$$

Amplitudenanalyse Skript S.29 1.4

"Zeit während sich Signal in bestimmtem Amplitudenintervall aufhält"

$$p(a) = \lim_{da \to 0} \frac{\sum_{da \to 0} t \left(a - \frac{da}{2} < x(t) \le a + \frac{da}{2}\right)}{\sum_{da \to 0} T \cdot da} = \frac{1}{T} \cdot \frac{dt}{da}$$

$$\int_{-\infty}^{\infty} p(a)da = 1; \qquad p(a) \ge 0 \forall a$$

Linearer Mittelwert
$$X_0 = \int_{-\infty}^{\infty} a \cdot p(a) da$$

Mittelwert n. Ordnung

$$X^n = \int_{-\infty}^{\infty} a^n \cdot p(a) da$$

Varianz

$$Var(x) = \int_{-\infty}^{\infty} (a - X_0)^2 \cdot p(a)da$$

$$x(t) \qquad a \qquad da$$

$$\sum_{dt} t \left(a - \frac{da}{2} < x(t) \le a + \frac{da}{2} \right)$$

$$\begin{array}{lll} x_1(t) \text{ mit} & p_1(a) \\ x_2(t) \text{ mit} & p_2(a) \end{array} \rightarrow x_3(t) = x_1(t) + x_2(t) \text{mit} \\ p_3(a) = (p_1 * p_2)(a) \end{array}$$

Anmerl				T			T			7	7
sung zur gaussförmige	Leistung $X^2 =$	${\rm Varianz} {\rm Var}(x) =$	Mittelwert $X_0 =$	$P(a \le \alpha) = \int_{-\infty}^{\alpha} p(a)da =$	dass die Amplitude a kleiner gleich α ist	Wahrscheinlichkeit,	p(a) =	Amplitudendichte		Verteilung	
en Verteilung: Im Intervall μ	$m^2 + \frac{A^2}{12}$	$\frac{A^2}{12}$	m	$\begin{cases} 0 & \alpha < m - \frac{A}{2}, \\ \frac{\alpha - (m - \frac{A}{2})}{A} & \alpha - m \le \frac{A}{2}, \\ 1 & \alpha \ge m + \frac{A}{2}. \end{cases}$			$\begin{cases} \frac{1}{A} & a-m \le \frac{A}{2}, \\ 0 & a-m > \frac{A}{2}. \end{cases}$		$p(a)$ $p(a)$ $p(a < \alpha)$ $m - \frac{A}{2} \qquad m \qquad m + \frac{A}{2}$	gleichverteilt	Zusammenste
Anmerkung zur gaussförmigen Verteilung: Im Intervall $\mu \pm 3\sigma$ sind 99,73% aller Messwerte zu	$\mu^2 + \sigma^2$	σ^2	μ	$Q\left(\frac{\mu-\alpha}{\sigma}\right)$			$\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-(a-\mu)^2}{2\sigma^2}}$		$p(a)$ $p(a < \alpha)$ $p(a < \alpha)$ $p(a < \alpha)$	gaussförmig	Zusammenstellung verschiedener Verteilungen Skript S.39
erte zu finden. In der Zeichung i	$\frac{A^2}{2}$	$\frac{A^2}{2}$	0	$\begin{cases} 0 & \alpha \leq -A, \\ \frac{1}{\pi} \left(\frac{\pi}{2} + \sin^{-1} \left(\frac{a}{A} \right) \right) & \alpha < A, \\ 1 & \alpha \geq A. \end{cases}$			$\begin{cases} \frac{1}{\pi\sqrt{A^2 - a^2}} & a \le A, \\ 0 & a > A. \end{cases}$		$P(a < \alpha)$ $\frac{1}{A\pi}$ $-A \qquad 0 \qquad A$	sinusförmig	lungen Skript S.39
finden. In der Zeichung ist diese Stelle mit b gekennzeichnet.	<u>></u> 2	$\frac{1}{\lambda^2}$	<i>></i> 1⊥	$\begin{cases} 0 & \alpha < 0 \\ 1 - e^{-\lambda \alpha} & \alpha \ge 0 \end{cases}$			$\begin{cases} \lambda e^{-\lambda a} & a \ge 0\\ 0 & a < 0 \end{cases}$		$p(a) \qquad P(a < \alpha)$ $\lambda \qquad \qquad \lambda$ $0 \alpha \qquad a$	exponentiell	
eichnet.				,			1				

Zentraler Grenzwertsatz

 X_1, X_2, \dots, X_n sind lauter identisch verteilte (nicht notwendig normalverteilt!) unabhängige Zufallsvariablen mit demselben Erwartungswert μ und derselben Varianz σ^2 und mit $Z = \frac{X - \mu}{\sigma}$ Dann hat die Summe

$$S_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n Z_i$$

den Erwartungswert $n\mu$ und die Varianz $n\sigma^2$.

Die damit verbundene standardisierte (E(X) = 0, var(X) = 1) Variable S_n ist somit wie folgt definiert:

$$S_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{X_i - \mu}{\sigma} = \frac{1}{\sqrt{n} \cdot \sigma} \left[\left(\sum_{i=1}^n X_i \right) - n\mu \right] = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Für $n \to \infty$ strebt die Verteilung von S_n gegen die Standardnormalverteilung.

Faltung Skript S.35

Convolution, "Addition zweier unabhängiger ergodischer Prozesse n_i " (Matlab: conv)

$$p(a) = \int_{-\infty}^{\infty} p_1(\xi) \cdot p_2(a-\xi) d\xi = p_1(a) * p_2(a) = p_2(a) * p_1(a) = \int_{-\infty}^{\infty} p_2(\xi) \cdot p_1(a-\xi) d\xi$$

Die Breite des Faltungsproduktes entspricht der Summe der Breite der einzelnen

Faktoren.

Faltung im Zeitbereich \rightarrow Multiplikation im Frequenzbereich

$$f(t) * g(t) \circ - F(s)G(s)$$

Faltung im Frequenzbereich \rightarrow Multiplikation im Zeitbereich

Faltung zweier Normalverteilungen

$$N(\mu_1; \sigma_1) * N(\mu_2; \sigma_2) = N(\mu_1 + \mu_2; \sqrt{\sigma_1^2 + \sigma_2^2})$$

Q-Funktion Skript S.42

"Wahrscheinlichkeit eines Fehlers" (Matlab: erf, erfc)

Wenn die Resultate einer Messserie mit einer Normalverteilung mit Varianz σ und Erwartungswert 0 auftreten, dann ist erf $\left(\frac{a}{\sigma\sqrt{2}}\right)$ die Wahrscheinlichkeit, dass ein einzelner Messwert zwischen -a und a liegt. Tabelle Skript S.53

$$Q(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\xi}^{\infty} e^{-\frac{y^2}{2}} dy$$

$$Q(\xi) = \frac{1}{2}\operatorname{erfc}\left(\frac{\xi}{\sqrt{2}}\right) = \frac{1}{2}\left(1 - \operatorname{erf}\left(\frac{\xi}{\sqrt{2}}\right)\right)$$

2 Frequenzanalyse $_{Skript}$ $_{S.55}$

2.1 Divere Formeln

Bessel's Theorem _{Skript} S.72	$\int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) ^2 d\omega$
Parseval's Theorem _{Skript} S.72	$\int_{-\infty}^{\infty} f(t) \cdot g^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) \cdot G^*(j\omega) d\omega$
Gibbschesphänomen	Überschwinger beträgt ca. 18% der Amplitude oder ca. 9% der Sprunghöhe.
	$S_{\infty} = \frac{f(x_0^+) + f(x_0^-)}{2}$ (approximient)
Autokorrelation _{Skript} S.67	$\varphi_{xx}(\tau) = \sum_{k=-\infty}^{\infty} c_k c_{-k} e^{-j\frac{2\pi k}{T_0}\tau} = \sum_{k=-\infty}^{\infty} c_k ^2 e^{-j\frac{2\pi k}{T_0}\tau} = c_0 ^2 + 2 \cdot \sum_{k=1}^{\infty} c_k ^2 \cdot \cos(\frac{2\pi k}{T_0}\tau)$
Leistung _{Skript} S.67	$X^{2} = \sum_{k=-\infty}^{\infty} c_{k} ^{2} = c_{0} ^{2} + 2 \cdot \sum_{k=1}^{\infty} c_{k} ^{2} = \left(\frac{a_{0}}{2}\right)^{2} + \sum_{k=1}^{\infty} \frac{a_{k}^{2} + b_{k}^{2}}{2} = \left(\frac{a_{0}}{2}\right)^{2} + \sum_{k=1}^{\infty} \frac{A_{k}^{2}}{2}$
Bandbreitentheorem _{Skript} S.70	$\Delta\omega \cdot \Delta t \ge \gamma \qquad \text{mit } \gamma \ge \frac{1}{2}$

2.2 Leisungsdichtespektrum_{Skript} s.80

 $\phi(j\omega) = \lim_{T \to \infty} \frac{|F(j\omega)|^2}{T}$

 $\phi(j\omega)$: Leistungsdichtespektrum

 $P_n = \frac{1}{2\pi} \int_{-\infty}^{\infty} \infty \phi(j\omega) d\omega$

 P_n : normierte Leistung

 $E(j\omega) = |F(j\omega)|^2$

 $E(j\omega)$: Energiedichtespektrum

2.3 Wiener-Chintchine Theorem_{Skript} S.81

$$\varphi_{xx}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi(j\omega) e^{j\omega t} d\omega \circ - \bullet \phi(j\omega) = \int_{-\infty}^{\infty} \varphi_{xx}(t) e^{-j\omega t} dt$$

$$\varphi_{xx}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} E(j\omega) e^{j\omega t} d\omega \circ - \bullet E(j\omega) = \int_{-\infty}^{\infty} \varphi_{xx}(t) e^{-j\omega t} dt$$

$$\varphi_{xy}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi_{xy}(j\omega) e^{j\omega t} d\omega \circ - \bullet \phi_{xy}(j\omega) = \int_{-\infty}^{\infty} \varphi_{xy}(t) e^{-j\omega t} dt$$

2.4 Eigenschaften von $\phi(j\omega)$

- 1. $\phi(j\omega)$ ist reell
- 2. $\phi(j\omega) \geq 0$
- 3. $\phi(j\omega) = \phi(-j\omega)$

4.
$$P = X^2 = \varphi_{xx}(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi(j\omega)d\omega$$

5.
$$\phi(0) = \int_{-\infty}^{\infty} \varphi_{xx}(\tau) d\tau$$

3 Systeme Skript S.109

3.1 Begriffe

Bezeichnung	Beschreibung	Bedingung, Erkennung		
Wirkungsfreiheit Skript S.109 Eingang des System hochohn		Die Eingänge haben keine Rückwirkung auf die Ausgänge der vorhergehenden Systeme.		
Statische bzw. dynamische Systeme Skript S.110,111 Ohne(statisch, resistiv) bzw. mit Gedächtnis		Statisch: der Ausgang hängt direkt vom Eingar zur Zeit t_0 ab. $y(t_0) = f(x(t_0)) \ \forall t_0$ Dynamisch: $\int dt; \ \frac{d}{dt}; \ f(t \pm t_0)$		
Kausale bzw. akausale Systeme Skript S.112	Keine zukünftigen Werte bzw. nicht in "Echtzeit"	Kausal: hängt <u>nicht</u> von zukünftigen Werten ab. $f(t-t_0)$; $\int_0^t f(\tau)d\tau$ ($t_0 > 0$) Statische Systeme sind immer kausal. Akausal: hängt von zukünftigen Werten ab. $f(-t)$; $f(t+t_0)$; $\int_0^{t+t_0} f(\tau)d\tau$		
Zeitinvariante bzw. zeitvariante Systeme Skript S.118	Von der Zeit (un-) abhängig	Zeitvariant: $\cos(t)x(t); t^{\alpha}x(t) \qquad (\alpha \neq 0)$ Zeitinvariant: $x(t) \rightarrow y(t)$, dann gilt $x(t-t_0) \rightarrow y(t-t_0) \ \forall t_0$		
Lineare bzw. nichtlineare Systeme Skript S.113		Nichtlinear: $x(t) = 0 \rightarrow y(t) \neq 0 \Rightarrow$ Ausgangssignal, kann Frequenzkomponenten enthalten, welche beim Eingangssignal <u>nicht</u> enthalten sind. Linear: $S(x1+x2) = S(x1) + S(x2)$ $S(c \cdot x) = c \cdot S(x) \Rightarrow$ enthält <u>keine</u> neuen Frequenzkomponenten im Ausgangssignal.		
Reelle Systeme Skript S.121 ein reelles Eingangssignal bewirkt immer ein reelles Ausgangssignal				
Invertierbare Systeme Skript S.121	bei jedem Ausgangssignal kann eindeutig auf das Eingangssignal geschlossen werden	invertierbar: $y=x^3 \to x=\sqrt[3]{y}$ nicht invertierbar: $y=x^2 \to x=\pm \sqrt{y}$		

3.2 Übertragungsfunktion von LTI-Systemen $_{Skript}$ S.108

$$h(t) \circ --- H(s)$$

$$y(t) = h(t) * f(t) \circ --- Y(s) = H(s)F(s)$$

$$f(t) ---- h(t) \longrightarrow y(t)$$

$$F(s) ---- H(s)$$

$$F(s) ---- H(s)$$

h(t): Impulsantwort

H(s): Übertragungsfunktion

Kaskadierung von wirkungsfreien Systemen: $H_{total}(s) = H_1(s)H_2(s)$ bzw. bei n gleichen Systemen: $H_{total} = (H(s))^n$

Beispiel: Gesucht UTF $H(s) = \frac{Y(s)}{F(s)}$

$$H(s) = \frac{sL}{\frac{1}{sC} + sL + R} = \frac{s^2}{\frac{1}{LC} + s\frac{R}{L} + s^2}$$

$$\implies$$
 Pole bei $s=-rac{R}{2L}\pm j\sqrt{rac{1}{LC}-\left(rac{R}{2L}
ight)^2}\quad;\quad$ Doppelte Nullstelle bei $s=0$

Differential gleichung: $\ddot{y}(t) + \frac{R}{L} \dot{y}(t) + \frac{1}{LC} y = \ddot{x}(t)$

3.2.1 Bestimmung der UTF

Bauteil Ersatz

- \mathbf{R} R
- sLL
- \mathbf{C} $\frac{1}{sC}$
- Berechnung des Amplituden- und Phasengangs aus der Übertragungsfunktion

$$H(j\omega) = \frac{Y(j\omega)}{F(j\omega)} = |H(j\omega)|e^{j\Theta(\omega)} = \frac{|Y(j\omega)|}{|F(j\omega)|}e^{j(\arg(Y(j\omega)) - \arg(F(j\omega)))} = \frac{|Y(j\omega)|}{|F(j\omega)|}e^{j\left[\arctan\left(\frac{\operatorname{Im}\{Y(j\omega)\}}{\operatorname{Re}\{Y(j\omega)\}}\right) - \arctan\left(\frac{\operatorname{Im}\{F(j\omega)\}}{\operatorname{Re}\{F(j\omega)\}}\right)\right]}$$

Phasengang:

$$\Theta(\omega) = \arctan\left(\frac{\operatorname{Im}(H(j\omega))}{\operatorname{Re}(H(j\omega))}\right)$$
$$|H(j\omega)| = \frac{|Y(j\omega)|}{|F(j\omega)|}$$

Amplitudengang:

$$|H(j\omega)| = \frac{|Y(j\dot{\omega})|}{|F(j\omega)|}$$

Zusammenhang zwischen Impuls- & Einheitssprungantwort, Endwerte Skript S.109

Einheitssprungantwort g(t), Impulsantwort h(t)

$$h(t) = \frac{\partial g(t)}{\partial t} \quad \text{bzw.} \quad g(t) = \int_{-\infty}^t h(\tau) d\tau \qquad ; \qquad \lim_{t \to \infty} h(t) = \lim_{s \to 0} sH(s) \qquad ; \qquad \lim_{t \to \infty} g(t) = \lim_{s \to 0} H(s)$$

3.5 Phasen- & Gruppenlaufzeit Skript S.130

Die Phasenlaufzeit (phase delay) ist nur für reine Sinussignale bestimmbar: $\tau_P(\omega) = \frac{-\theta(\omega)}{\omega}$

Die Gruppenlaufzeit (groupe delay) hingegen ist für sämtliche Signale möglich: $\tau_G(\omega) = \frac{\partial \theta(\omega)}{\partial \omega}$

Die Signalverzögerung, Phasenlaufzeit $\tau_P(\omega)$ und Gruppenlaufzeit $\tau_G(\omega)$ sind gleich wenn,

$$\theta(\omega) = -\omega t_0$$

und $H(j\omega)$ die Form $H(j\omega) = a \cdot e^{j\omega t_0}$ hat $(t_0$: Signalverzögerung).

Eingangssignal x(t) und Ausgangssignal y(t) des Systems $H(s) = \frac{1}{s^2 + 0.2s + 1}$. Bemerkung: y(t) ist grösser als x(t).

3.6 Stabilität von LTI-Systemen Skript S.125

3.6.1 BIBO-Stabilität Skript S.125

Ein System ist BIBO-stabil (Bounded Input Bounded Output), wenn auf jedes beschränkte Eingangssignal das Ausgangssignal ebenfalls beschränkt ist. $|u_{in}(t)| < A \rightarrow |u_{out}(t)| < B \text{ mit } 0 < A, B \in \mathbb{N} < \infty$

$$\int_{-\infty}^{\infty} |h(t)| dt < \infty$$

3.6.2 Asymptotische Stabilität Skript S.126

Stabil: $\lim_{t\to\infty} h(t) = 0$ Pole **nur** in der linken s-Halbebene.

Instabil: Mind. ein Pol in der rechten s-Halbebene oder mind. ein mehrfacher Pol auf der j-Achse der

s-Ebene.

Grenzstabil: mindestens ein einfacher Pol, aber kein mehrfach Pol auf der j-Achse und kein Pol auf der

rechten s-Halbebene

3.6.3 Stabilität mit Hurwitz-Polynom Skript S.127

Es wird jeweils das Polynom im **Nenner der Übertragungsfunktion** betrachtet: $P(s) = a_n s^n + a_{n-1} s^{n-1} + \ldots + a_1 s + a_0$ Ist ein solches Polynom ein Hurwitz-Polynom, so ist das System **asymptotisch stabil**. Handelt es sich um ein **modifiziertes Hurwitz-Polynom** so ergibt es ein **grenzstabiles** System.

P(s) ist nur dann ein Hurwitz-Polynom, wenn folgende Bedingungen erfüllt sind:

- 1. alle Koeffizienten a_i von P(s) sind grösser als Null (und sind vorhanden). (bei einem Polynom 2.Ordnung ist es instabil, wenn min. 1 Koeffizient negativ ist)
- 2. alle Hurwitz-Determinanten D_1 bis D_n sind grösser als Null

$$D_{1} = a_{n-1} > 0$$

$$D_{2} = \begin{vmatrix} a_{n-1} & a_{n} \\ a_{n-3} & a_{n-2} \end{vmatrix} > 0$$

$$\vdots$$

$$D_{n-1} = \begin{vmatrix} a_{n-1} & a_{n} & 0 & 0 & \cdots & 0 \\ a_{n-3} & a_{n-2} & a_{n-1} & a_{n} & 0 & 0 \\ a_{n-5} & a_{n-4} & a_{n-3} & a_{n-2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \vdots & 0 & a_{1} \end{vmatrix} > 0$$

$$D_{n} = a_{0}D_{n-1} > 0$$

Modifiziertes Hurwitz-Polynom

Nebst allen $a_i \ge 0$ müssen alle Hurwitz-Determinanten $D_1, D_2, \dots, D_{n-2} > 0$ und $D_{n-1} = D_n = 0$ sein.

N	P(s) ist ein Hurwitz-Polynom (stabil)	P(s) ist ein modifiziertes Hurwitz-Polynom (grenzstabil)
1	gilt für alle $P(s)$	$a_0 = 0$
2	gilt für alle $P(s)$	$a_1 = 0$
3	$a_1 a_2 > a_0 a_3$	$a_1 a_2 = a_0 a_3$
4	$a_3(a_1a_2 - a_0a_3) > a_1^2a_4$	$a_3(a_1a_2 - a_0a_3) = a_1^2a_4$
5	$a_3a_4 > a_2a_5$ und	$a_3a_4 > a_2a_5$
	$(a_1a_2 - a_0a_3)(a_3a_4 - a_2a_5) > (a_1a_4 - a_0a_5)^2$	$(a_1a_2 - a_0a_3)(a_3a_4 - a_2a_5) = (a_1a_4 - a_0a_5)^2$

- Wenn ein Koeffizient negativ ist $(a_x < 0)$, dann ist das System instabil.
- Wenn alle Koeffizienten negativ sind, kann −1 ausgeklammert werden und in den Zähler verschoben werden ⇒ System stabil oder grenzstabil (siehe Punkt 3)
- Wenn ein Koeffizient nicht vorhanden ist $(a_x = 0)$, dann ist das System evtl. grenzstabil, d.h. es ist eine Überprüfung mit modifiziertem Hurwitz-Polynom nötig.

3.7 Klirrfaktor Skript S.137

Als Mass für nichtlineare Verzerrungen gilt der Klirrfaktor. Betrachtet wird jeweils der Effektivwert am Ausgang

$$k = \sqrt{\frac{U_2^2 + U_3^2 + \ldots + U_n^2}{U_1^2 + U_2^2 + \ldots + U_n^2}} \qquad 0 \le k \le 1$$

Teilklirrfaktor (frequenzselektiv) $k_m = \frac{U_m}{\sqrt{U_1^2 + U_2^2 + ... + U_n^2}}$

Klirrdämpfungsmass $a_k = 20 \log \left(\frac{1}{k}\right)$

Teilklirrdämpfungmass $a_k = 20 \log \left(\frac{1}{k_m}\right)$

3.8 Total Harmonic Distortion (THD) Skript S.137

$$\text{THD} = \sqrt{\frac{U_2^2 + U_3^2 + \ldots + U_n^2}{U_1^2}} \qquad \infty > \text{THD} \geq k \geq 0; \quad \text{Für kleine Verzerrungen: THD} \approx k$$

3.9 Verzerrungsfreie Übertragung von Signalen $_{\tt Skript}$ S.138

Bedingungen für eine verzerrungsfreie Übertragung:

1. Amplitude: konstant (unabhängig von der Frequenz) $\leftrightarrow |H(j\omega)| = \text{konstant} = a \neq 0$

2. Phase: proportional zur Frequenz $\leftrightarrow \Theta(\omega) = -\omega t_0$

3.10 Übertragung von stochastischen Signalen Skript S.141

lineare Mittelwert Y_0 :	$Y(j0) = X(j0) \cdot H(j0) \to Y_0 = X_0 \cdot H(j0)$
Autokorrelation:	$\varphi_{yy}(\tau) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\alpha)h(\beta)\varphi_{xx}(\tau + \alpha - \beta)d\alpha d\beta = h(-\tau) * h(\tau) * \varphi_{xx}(\tau)$
	$\varphi_{yy}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(j\omega) ^2 \phi_{xx}(j\omega) e^{j\omega\tau} d\omega$
Leistungsdichtespektrum:	$\phi_{yy}(j\omega) = H(j\omega) ^2 \phi_{xx}(j\omega)$
Leistung:	$Y^{2} = \varphi_{yy}(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(j\omega) ^{2} \phi_{xx}(j\omega) d\omega$
Kreuzkorrelation:	$\varphi_{xy}(\tau) = h(\tau) * \varphi_{xx}(\tau) \circ - \bullet \phi_{xy} = H(j\omega) \cdot \phi_{xx}(j\omega)$
	$\varphi_{yx}(\tau) = h(-\tau) * \varphi_{xx}(\tau) \circ - \bullet \phi_{yx} = H^*(j\omega) \cdot \phi_{xx}(j\omega)$
	$\varphi_{yx}(\tau) = \varphi_{xy}(-\tau) \circ - \bullet \phi_{yx}(j\omega) = \phi_{xy}(-j\omega) = \phi_{xy}^*(j\omega)$

4 Idiotenseite

4.2 Ableitungen elementarer Funktionen_{S436}

Funktion	Ableitung	Funktion	Ableitung
C (Konstante)	0	$\sec x$	$\frac{\sin x}{\cos^2 x}$
x	1	$\sec^{-1} x$	$\frac{-\cos x}{\sin^2 x}$
$x^n \ (n \in \mathbb{R})$	nx^{n-1}	$\arcsin x (x < 1)$	$\frac{1}{\sqrt{1-x^2}}$
$\frac{1}{x}$	$-\frac{1}{x^2}$	$\left \arccos x (x < 1) \right $	$-\frac{1}{\sqrt{1-x^2}}$
$\frac{1}{x^n}$	$-\frac{n}{x^{n+1}}$	$\arctan x$	$\frac{1}{1+x^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	$\operatorname{arccot} x$	$-\frac{1}{1+x^2}$
$\sqrt[n]{x} (n \in \mathbb{R}, n \neq 0, x > 0)$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$	$\operatorname{arcsec} x$	$\frac{1}{x\sqrt{x^2-1}}$
e^x	e^x	arcossec x	$-\frac{1}{x\sqrt{x^2-1}}$
$e^{bx} (b \in \mathbb{R})$	$b\mathrm{e}^{bx}$	$\sinh x$	$\cosh x$
$\begin{vmatrix} a^x & (a > 0) \end{vmatrix}$	$a^x \ln a$	$\cosh x$	$\sinh x$
$a^{bx} (b \in \mathbb{R}, a > 0)$	$ba^{bx} \ln a$	$\tanh x$	$\frac{1}{\cosh^2 x}$
$\ln x$	$\frac{1}{x}$	$ coth x (x \neq 0) $	$-\frac{1}{\sinh^2 x}$
$\log_a x (a > 0, a \neq 1, x > 0)$	$\frac{1}{x}\log_a e = \frac{1}{x\ln a}$	Arsinh x	$\frac{1}{\sqrt{1+x^2}}$
gx (x > 0)	$\frac{1}{x}\lg e \approx \frac{0.4343}{x}$	Arcosh $x (x > 1)$	$\frac{1}{\sqrt{x^2 - 1}}$
$\sin x$	$\cos x$	Artanh $x (x < 1)$	$ \frac{1}{1-x^2} $
$\cos x$	$-\sin x$	Arcosh x $(x > 1)$ Artanh x $(x < 1)$ Arcoth x $(x > 1)$	$-\frac{1}{x^2-1}$
$\tan x (x \neq (2k+1)\frac{\pi}{2}, k \in \mathbb{Z})$ $\cot x (x \neq k\pi, k \in \mathbb{Z})$	$\frac{1}{\cos^2 x} = \sec^2 x$	$[f(x)]^n (n \in \mathbb{R})$	$\left n[f(x)]^{n-1}f'(x) \right $
$\cot x (x \neq k\pi, k \in \mathbb{Z})$	$\frac{-1}{\sin^2 x} = -\csc^2 x$		$\frac{f'(x)}{f(x)}$

4.1 Einige unbestimmte Integrale_{S1074}

$\int dx = x + C$	$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \ x \in \mathbb{R}^+, \ \alpha \in \mathbb{R} \setminus \{-1\}$
$\int \frac{1}{x} dx = \ln x + C, \ x \neq 0$	$\int e^x dx = e^x + C$
$\int a^x dx = \frac{a^x}{\ln a} + C, \ a \in \mathbb{R}^+ \setminus \{1\}$	$\int \sin x dx = -\cos x + C$
$\int \cos x dx = \sin x + C$	$\int \frac{dx}{\sin^2 x} = -\cot x + C, \ x \neq k\pi \text{ mit } k \in \mathbb{Z}$
$\int \frac{dx}{\cos^2 x} = \tan x + C, \ x \neq \frac{\pi}{2} + k\pi \text{ mit} k \in \mathbb{Z}$	$\int \sinh x dx = \cosh x + C$
$\int \cosh x dx = \sinh x + C$	$\int \frac{dx}{\sinh^2 x} = -\coth x + C, \ x \neq 0$
$\int \frac{dx}{\cosh^2 x} = \tanh x + C$	$\int \frac{dx}{ax+b} = \frac{1}{a} \ln ax+b + C, \ a \neq 0, x \neq -\frac{b}{a}$
$\int \frac{dx}{a^2 x^2 + b^2} = \frac{1}{ab} \arctan \frac{a}{b} x + C, \ a \neq 0, \ b \neq 0$	$\int \frac{dx}{a^2 x^2 - b^2} = \frac{1}{2ab} \ln \left \frac{ax - b}{ax + b} \right + C, \ a \neq 0, \ b \neq 0, \ x \neq \frac{b}{a}, \ x \neq -\frac{b}{a}$
$\int \sqrt{a^2 x^2 + b^2} dx = \frac{x}{2} \sqrt{a^2 x^2 + b^2} + \frac{b^2}{2a} \ln(ax + \sqrt{a^2 x^2 + b^2}) + C, \ a \neq 0, \ b \neq 0$	$\int \sqrt{a^2x^2-b^2}dx = \tfrac{x}{2}\sqrt{a^2x^2-b^2}-\tfrac{b^2}{2a}\ln\left ax+\sqrt{a^2x^2-b^2}\right + C, \ a\neq 0, \ b\neq 0, a^2x^2 \geqq b^2$
$\int \sqrt{b^2 - a^2 x^2} dx = \frac{x}{2} \sqrt{b^2 - a^2 x^2} + \frac{b^2}{2a} \arcsin \frac{a}{b} x + C, \ a \neq 0, \ b \neq 0, \ a^2 x^2 \leq b^2$	$\int \frac{dx}{\sqrt{a^2x^2 - b^2}} = \frac{1}{a} \ln(ax + \sqrt{a^2x^2 + b^2}) + C, \ a \neq 0, \ b \neq 0$
$\int \frac{dx}{\sqrt{a^2 x^2 - b^2}} = \frac{1}{a} \ln ax + \sqrt{a^2 x^2 - b^2} + C, \ a \neq 0, \ b \neq 0, \ a^2 x^2 > b^2$	$\int \frac{dx}{\sqrt{b^2 - a^2 x^2}} = \frac{1}{a} \arcsin \frac{a}{b} x + C, \ a \neq 0, \ b \neq 0, \ a^2 x^2 < b^2$
Die Integrale $\int \frac{dx}{X}$, $\int \sqrt{X} dx$, $\int \frac{dx}{\sqrt{X}}$ mit $X = ax^2 + 2bx + c$, $a \neq 0$ werden durch die Umformung $X = a(x + \frac{b}{2})^2 + (c - \frac{b^2}{2})$ und die Substitution $t = x + \frac{b}{2}$ in die	$\int \frac{x dx}{X} = \frac{1}{2a} \ln X - \frac{b}{a} \int \frac{dx}{X}, \ a \neq 0, \ X = ax^2 + 2bx + c$
$\int \sin^2 \alpha r d\alpha - \frac{x}{x} - \frac{1}{x} \cdot \sin^2 \alpha r + C \alpha \neq 0$	$\int \cos^2 a x dx = \frac{x}{2} + \frac{1}{2} \cdot \sin^2 a x + C \cdot a \neq 0$
si.	
$\int \frac{dx}{\sin ax} = \frac{1}{a} \ln \left \tan \frac{ax}{2} \right + C, \ a \neq 0, \ x \neq k \frac{\pi}{a} \text{ mit } k \in \mathbb{Z}$	$\int \frac{dx}{\cos ax} = \frac{1}{a} \ln \left \tan \left(\frac{ax}{2} + \frac{\pi}{4} \right) \right + C, \ a \neq 0, \ x \neq \frac{\pi}{2a} + k \frac{\pi}{a} \text{ mit } k \in \mathbb{Z}$
$\int \tan ax dx = -\frac{1}{a} \ln \cos ax + C, \ a \neq 0, \ x \neq \frac{\pi}{2a} + k \frac{\pi}{a} \text{mit } k \in \mathbb{Z}$	$\int \cot ax dx = \frac{1}{a} \ln \sin ax + C, \ a \neq 0, \ x \neq k^{\frac{\pi}{a}} \text{mit} k \in \mathbb{Z}$
$\int x^n \sin ax dx = -\frac{x^n}{a} \cos ax + \frac{n}{a} \int x^{n-1} \cos ax dx, \ n \in \mathbb{N}, \ a \neq 0$	$\int x^n \cos ax dx = \frac{x^n}{a} \sin ax - \frac{n}{a} \int x^{n-1} \sin ax dx, \ n \in \mathbb{N}, \ a \neq 0$
$\int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx, \ n \in \mathbb{N}, \ a \neq 0$	$\int e^{ax} \sin bx dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + C, \ a \neq 0, \ b \neq 0$
$\int e^{ax} \cos bx dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + C, \ a \neq 0, \ b \neq 0$	$\int \ln x dx = x(\ln x - 1) + C, \ x \in \mathbb{R}^+$
$\int x^{\alpha} \cdot \ln x dx = \frac{x^{\alpha+1}}{(\alpha+1)^2} [(\alpha+1)\ln x - 1] + C, \ x \in \mathbb{R}^+, \ \alpha \in \mathbb{R} \setminus \{-1\}$	

4.3 Eigenschaften unterschiedlicher Schwingungsformen

1	DC						Formel	Schwingungsform
	1	$\begin{cases} A & 0 < x < t \\ 0 & \text{True} \end{cases}$	$A\cdot \Lambda(t)$	$\begin{cases} A \cdot \sin(t) & 0 < t < \pi \\ 0 & \text{True} \end{cases}$	$A\cdot \sin(t) $	$A\cdot\sin(t)$		Funktion
T L	1	ш	$\frac{1}{2} = 0.5$	$\frac{1}{\pi} \approx 0.318$	$\frac{2}{\pi} \approx 0.637$	$\frac{2}{\pi} \approx 0.637$	$\overline{ x } = \frac{1}{T} \int_0^T x(t) dt$	Gleichrichtwert
$\sqrt{rac{T}{t_1}}$	<u> </u>	П	$\frac{2}{\sqrt{3}} \approx 1.155$	$\frac{\pi}{2} \approx 1.571$	$\frac{\pi}{2\sqrt{2}} \approx 1.11$	$\frac{\pi}{2\sqrt{2}} \approx 1.11$	X	Formfaktor
$\sqrt{rac{t_1}{T}}$	1	1	$\frac{1}{\sqrt{3}} pprox 0.557$	$\frac{1}{2}=0.5$	$\frac{1}{\sqrt{2}} pprox 0.707$	$\frac{1}{\sqrt{2}} pprox 0.707$	$X = \sqrt{X^2} = \sqrt{\frac{1}{T}} \int_{t_0}^{t_0+T} x^2(t)dt$	Effektivwert
$\sqrt{\frac{T}{t_1}}$	<u> </u>	П	$\sqrt{3} \approx 1.732$	2	$\sqrt{2} \approx 1.414$	$\sqrt{2} \approx 1.414$	$k_s = rac{X_{ m max}}{X_{ m eff}}$	Scheitelfaktor
$Arac{t}{T}$	ı	0	0	η A	$\frac{2A}{\pi}$	0		X_0
$A^2 rac{t}{T}$	1	A^2	$\frac{A^2}{3}$	4 42	$\frac{A^2}{2}$	$\frac{A^2}{2}$		X^2
$\frac{A^2t}{T} - \frac{A^2t^2}{T^2}$	1	A^2	$\frac{A^2}{3}$	$\frac{A^2}{4} - \frac{A^2}{\pi^2}$	$\frac{A^2}{2} - \frac{4A^2}{\pi^2}$	$\frac{A^2}{2}$		var(X)

Anhang zum Kapitel 2

2.A Tabelle von Fourier-Transformationspaaren

Die Fourier-Transformationspaare sind zum Teil von [6, 47, 69] entnommen. Es gilt jeweils: $0 < (\alpha, \beta, t_0, \omega_0, A) \in \mathbb{R}, n \in \mathbb{N}$.

Tabelle 2.3: Fourier-Transformationspaare

100 Frequenzanalyse

Tabelle 2.4: Fourier-Transformationspaare

Tabelle 2.5: Fourier-Transformationspaare

102 Frequenzanalyse

Tabelle 2.6: Fourier-Transformationspaare

 ${\bf Tabelle~2.7:}~ {\bf Fourier\text{-}Transformations paare}$

104 Frequenzanalyse

 ${\bf Tabelle~2.8:}~ {\bf Fourier\text{-}Transformations paare}$

Tabelle 2.9: Fourier-Transformationspaare

2.B Tabelle von Laplace-Transformationspaaren

Die Transformationspaare sind mehrheitlich [6, 7, 21, 47, 69] entnommen. Es gilt: $0 < \alpha \in \mathbb{R}, n \in \mathbb{N}, a, \nu \in \mathbb{C}, s = \sigma + j\omega$ und somit $\Re\{s\} = \sigma$ und $\Im\{s\} = \omega$.

#	f(t), wobei $f(t) = 0$ für $t < 0$	F(s) mit Konvergenzbereich
1	$\frac{d^n f(t)}{dt^n}$	$s^n F(s) - s^{n-1} f(0) - s^{n-2} \frac{df(0)}{dt} - \dots - \frac{d^{n-1} f(0)}{d^{n-1} t}$
2	$\int_{0}^{t} f(x)dx$	$\frac{F(s)}{s}$
3	$\frac{f(t)}{t}$	$\int_{0}^{\infty} F(s)ds$
4	$f(t-\alpha)u(t-\alpha)$	$e^{-s\alpha}F(s)$
5	$f(t+\alpha)u(t+\alpha)$	$e^{+s\alpha}\left(F(s) - \int_{0}^{a} e^{-st} f(t)dt\right)$
6	$f_1(t) * f_2(t) * f_3(t)$	$F_1(s) \cdot F_2(s) \cdot F_3(s)$
7	$f_1(t) \cdot f_2(t)$	$\frac{1}{2\pi j}(F_1(s)*F_2(s))$
8	$\lim_{t \to 0^+} f(t)$	$\lim_{s \to \infty} sF(s)$
9	$\lim_{t \to \infty} f(t)$	$\lim_{s \to \infty} sF(s)$ $\lim_{s \to 0} sF(s)$
10	u(t)	$\frac{1}{s}$ mit $\sigma > 0$
11	$\delta(t)$	$1 \text{ mit } \sigma \in \mathbb{R}$
12	$\frac{d\delta(t)}{dt}$	s
13	$\frac{t^{n-1}}{(n-1)!}$	$\frac{1}{s^n}$
14	$\frac{d\delta(t)}{dt}$ $\frac{t^{n-1}}{(n-1)!}$ $\frac{t^{n-1}e^{-at}}{(n-1)!}$ $\frac{1}{\sqrt{\pi t}}$	$\frac{1}{(s-a)^n}$
15	$\frac{1}{\sqrt{\pi t}}$	$\frac{\frac{1}{(s-a)^n}}{\frac{1}{\sqrt{s}}}$
16	$\frac{n!4^nt^{n-\frac{1}{2}}}{(2n)!\sqrt{\pi}}$	$\frac{1}{s^n\sqrt{s}}$
17	$J_{\nu}(at) \text{ mit } \Re\{\nu\} > -1$	$\frac{\frac{1}{s^n \sqrt{s}}}{\frac{(\sqrt{s^2 + a^2} - s)^{\nu}}{a^{\nu} \sqrt{s^2 + a^2}}} \text{ mit } \sigma > \Im\{a\} $ $\frac{(s - \sqrt{s^2 - a^2})^{\nu}}{a^{\nu} \sqrt{s^2 - a^2}} \text{ mit } \sigma > \Re\{a\} $
18	$I_{\nu}(at) \text{ mit } \Re\{\nu\} > -1$	$\frac{\left(s - \sqrt{s^2 - a^2}\right)}{a^{\nu} \sqrt{s^2 - a^2}} \text{ mit } \sigma > \Re\{a\} $
19	$\frac{\sin(\alpha t)}{t}$	$\arctan\left(\frac{\alpha}{s}\right) \text{ mit } \sigma > 0$
		\tan^{-1}

Tabelle 2.10: Laplace-Transformationspaare

 $J_{\nu}(at)$ ist die Bessel- oder Zylinderfunktion ν . Ordnung 1. Gattung und $I_{\nu}(at)$ ist die modifizierte Bessel-Funktion ν . Ordnung [7].

Die folgende Tabelle ist nach dem Grad des Nenners geordnet. Die Tabelle ist bis zum Nennergrad 3 vollständig und stammt von [6, 21].

F(s),	Konvergenzbereich	$f(t)$, wobei $f(t) = 0$ für $t < 0$ mit $(\alpha, \beta, \gamma) \in \mathbb{C}$.
1,	$\sigma\in\mathbb{R}$	$\delta(t)$
$\frac{1}{s}$,	$\sigma > 0$	$1 (\equiv u(t))$
$\frac{\frac{1}{s}}{\frac{1}{s+\alpha}}$,	$\sigma > -\Re\{\alpha\}$	$e^{-\alpha t}$
$\frac{1}{s^2}$,	$\sigma > 0$	t
$\frac{1}{s(s+\alpha)}$,	$\sigma > -\min\{\Re\{\alpha\},0\}$	$\frac{1-e^{-\alpha t}}{\alpha}$
$\frac{1}{(s+\alpha)(s+\beta)}$,	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\}\}$	$\frac{e^{-\alpha t} - e^{-\beta t}}{\beta - \alpha}$
$\frac{s}{(s+\alpha)(s+\beta)}$,	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\}\}$	$\frac{\alpha e^{-\alpha t} - \beta e^{-\beta t}}{\alpha - \beta}$
$\frac{1}{(s+\alpha)^2}$,	$\sigma > -\Re\{\alpha\}$	$te^{-\alpha t}$
$\frac{s}{(s+\alpha)^2}$,	$\sigma > -\Re\{\alpha\}$	$e^{-\alpha t}(1-\alpha t)$
$\frac{1}{s^2-\alpha^2}$,	$\sigma > \Re\{\alpha\} $	$\frac{\sinh(\alpha t)}{\alpha}$
$\frac{s}{s^2-\alpha^2}$,	$\sigma > \Re\{\alpha\} $	$\cosh(\alpha t)$
$\frac{1}{s^2+\alpha^2}$,	$\sigma > \Im\{\alpha\} $	$\frac{\sin(\alpha t)}{\alpha}$
$\frac{s}{s^2+\alpha^2}$,	$\sigma > \Im{\{\alpha\}} $	$\cos(\alpha t)$
$\frac{1}{(s+\beta)^2+\alpha^2}$,	$\sigma > \Im\{\alpha\} - \Re\{\beta\}$	$\frac{e^{-\beta t}\sin(\alpha t)}{\alpha}$
$\frac{s}{(s+\beta)^2+\alpha^2}$,	$\sigma > \Im\{\alpha\} - \Re\{\beta\}$	$\frac{e^{-\beta t}(\alpha\cos(\alpha t) - \beta\sin(\alpha t))}{\alpha}$
$\frac{1}{s^3}$,	$\sigma > 0$	$\frac{t^2}{2}$
$\frac{1}{s^2(s+\alpha)}$,	$\sigma > -\min\{\Re\{\alpha\},0\}$	$\frac{e^{-\alpha t} + \alpha t - 1}{\alpha^2}$
$\frac{1}{s(s+\alpha)(s+\beta)}$,	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\},0\}$	$\frac{(\alpha - \beta) + \beta e^{-\alpha t} - \alpha e^{-\beta t}}{\alpha \beta (\alpha - \beta)}$ $\frac{1 - e^{-\alpha t} - \alpha t e^{-\alpha t}}{1 - \alpha t}$
$\frac{1}{s(s+\alpha)^2}$,	$\sigma > -\min\{\Re\{\alpha\},0\}$	α^2
$\frac{1}{(s+\alpha)(s+\beta)(s+\gamma)}$,	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\},\Re\{\gamma\}\}$	$\frac{(\gamma - \beta)e^{-\alpha t} + (\alpha - \gamma)e^{-\beta t} + (\beta - \alpha)e^{-\gamma t}}{(\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)}$ $\alpha(\beta - \gamma)e^{-\alpha t} + \beta(\gamma - \alpha)e^{-\beta t} + \gamma(\alpha - \beta)e^{-\gamma t}$
$\frac{s}{(s+\alpha)(s+\beta)(s+\gamma)}$,	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\},\Re\{\gamma\}\}$	$(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)$
$\frac{s^2}{(s+\alpha)(s+\beta)(s+\gamma)}$,	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\},\Re\{\gamma\}\}$	$\frac{-\alpha^2(\beta - \gamma)e^{-\alpha t} - \beta^2(\gamma - \alpha)e^{-\beta t} - \gamma^2(\alpha - \beta)e^{-\gamma t}}{(\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)}$
$\frac{1}{(s+\alpha)(s+\beta)^2}$,	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\}\}$	$\frac{e^{-\alpha t} - [1 + (\beta - \alpha)t]e^{-\beta t}}{(\beta - \alpha)^2}$
$\frac{s}{(s+\alpha)(s+\beta)^2}$,	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\}\}$	$\frac{-\alpha e^{-\alpha t} + [\alpha + t\beta(\beta - \alpha)]e^{-\beta t}}{(\beta - \alpha)^2}$
$\frac{s^2}{(s+\alpha)(s+\beta)^2},$	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\}\}$	$\frac{\alpha^2 e^{-\alpha t} + \beta(\beta - 2\alpha - t\beta^2 + \alpha\beta t)e^{-\beta t}}{(\beta - \alpha)^2}$
$\frac{1}{(s+\alpha)^3}$,	$\sigma > -\Re\{\alpha\}$	$\frac{t^2e^{-\alpha t}}{2}$
$\frac{s}{(s+\alpha)^3}$,	$\sigma > -\Re\{\alpha\}$	$\frac{(2-\alpha t)te^{-\alpha t}}{2}$
$\frac{s^2}{(s+\alpha)^3}$,	$\sigma > -\Re\{\alpha\}$	$\frac{(2-4\alpha t + \alpha^2 t^2)e^{-\alpha t}}{2}$
$\frac{1}{s[(s+\beta)^2+\alpha^2]},$	$\sigma > -\min\{\Re\{\beta\} - \Im\{\alpha\} , 0\}$	$\frac{\alpha - e^{-\beta t} [\alpha \cos(\alpha t) + \beta \sin(\alpha t)]}{\alpha (\alpha^2 + \beta^2)}$
$\frac{1}{s(s^2+\alpha^2)}$,	$\sigma > \Im\{\alpha\} $	$\frac{1-\cos(\alpha t)}{\alpha^2}$
$\frac{1}{(s+\alpha)(s^2+\beta^2)}$,	$\sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\}$	$\frac{\beta e^{-\alpha t} + \alpha \sin(\beta t) - \beta \cos(\beta t)}{\beta (\alpha^2 + \beta^2)}$
$\frac{s}{(s+\alpha)(s^2+\beta^2)},$	$\sigma > -\min\{- \Im\{\beta\} ,\Re\{\alpha\}\}$	$-\alpha e^{-\alpha t} + \alpha \cos(\beta t) + \beta \sin(\beta t)$
$\frac{s^2}{(s+\alpha)(s^2+\beta^2)},$	$\sigma > -\min\{- \Im\{\beta\} ,\Re\{\alpha\}\}$	$\frac{\alpha^2 + \beta^2}{\alpha^2 e^{-\alpha t} - \alpha \beta \sin(\beta t) + \beta^2 \cos(\beta t)}$ $\frac{\alpha^2 + \beta^2}{\alpha^2 + \beta^2}$
	$> -\min\{\Re\{\alpha\}, \Re\{\beta\} - \Im\{\gamma\} \}$	$\frac{e^{-\alpha t} - e^{-\beta t}\cos(\gamma t) + \frac{\alpha - \beta}{\gamma}e^{-\beta t}\sin(\gamma t)}{(\beta - \alpha)^2 + \gamma^2}$
	$> -\min\{\Re\{\alpha\}, \Re\{\beta\} - \Im\{\gamma\} \}$	$-\alpha e^{-\alpha t} + \alpha e^{-\beta t} \cos(\gamma t) - \frac{\alpha \beta - \beta - \gamma}{\gamma} e^{-\beta t} \sin(\gamma t)$
0	$> -\min\{\Re\{\alpha\}, \Re\{\beta\} - \Im\{\gamma\} \}$	$\frac{(\beta - \alpha)^2 + \gamma^2}{\alpha^2 e^{-\alpha t} + [(\alpha - \beta)^2 + \gamma^2 - \alpha^2] e^{-\beta t} \cos(\gamma t) - (\alpha \gamma + \beta \left(\gamma - \frac{\beta(\alpha - \beta)}{\gamma}\right)) e^{-\beta t} \sin(\gamma t)}{(\beta - \alpha)^2 + \gamma^2}$
$\frac{1}{s^4}$	$\sigma > 0$	$\frac{t^3}{6}$
- 		· ·

 ${\bf Tabelle~2.11:}~ {\bf Laplace\text{-}Transformations paare}$