Tumor Diagnosis (Part 1): Exploratory Data Ar

About the Dataset:

The <u>Breast Cancer Diagnostic data (https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29)</u> is available on the UCI Machin Repository. This database is also available through the <u>UW CS ftp server (http://math-prog/cpo-dataset/machine-learn/cancer/WDBC/)</u>.

Features are computed from a digitized image of a fine needle aspirate (FNA) o They describe characteristics of the cell nuclei present in the image. n the 3-diu that described in: [K. P. Bennett and O. L. Mangasarian: "Robust Linear Program Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Soi 23-34].

Attribute Information:

- ID number
- Diagnosis (M = malignant, B = benign) 3-32)

Ten real-valued features are computed for each cell nucleus:

- 1. radius (mean of distances from center to points on the perimeter)
- 2. texture (standard deviation of gray-scale values)
- 3. perimeter
- 4. area
- 5. smoothness (local variation in radius lengths)
- 6. compactness (perimeter^2 / area 1.0)
- 7. concavity (severity of concave portions of the contour)
- 8. concave points (number of concave portions of the contour)
- 9. symmetry
- 10. fractal dimension ("coastline approximation" 1)

The mean, standard error and "worst" or largest (mean of the three largest value features were computed for each image, resulting in 30 features. For instance, Radius, field 13 is Radius SE, field 23 is Worst Radius.

All feature values are recoded with four significant digits.

Missing attribute values: none

Class distribution: 357 benign, 212 malignant

Task 1: Loading Libraries and Data

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns # data visualization library
import matplotlib.pyplot as plt
import time

In [2]:
data= pd.read_csv('data/data.csv')
```

Exploratory Data Analysis

Task 2: Separate Target from Features

Note: If you are starting the notebook from this task, you can run cells from all in the kernel by going to the top menu and Kernel > Restart and Run All

```
In [3]: data.head()
```

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoot
0	842302	M	17.99	10.38	122.80	1001.0	0.11840
1	842517	M	20.57	17.77	132.90	1326.0	0.08474
2	84300903	M	19.69	21.25	130.00	1203.0	0.10960
3	84348301	M	11.42	20.38	77.58	386.1	0.14250
4	84358402	M	20.29	14.34	135.10	1297.0	0.10030

5 rows × 33 columns

```
In [4]: col=data.columns
```

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compac
0	17.99	10.38	122.80	1001.0	0.11840	0.27760
1	20.57	17.77	132.90	1326.0	0.08474	0.07864
2	19.69	21.25	130.00	1203.0	0.10960	0.15990
3	11.42	20.38	77.58	386.1	0.14250	0.28390
4	20.29	14.34	135.10	1297.0	0.10030	0.13280

⁵ rows × 30 columns

Task 3: Plot Diagnosis Distributions

Note: If you are starting the notebook from this task, you can run cells from all in the kernel by going to the top menu and Kernel > Restart and Run All

```
In [6]:
    ax= sns.countplot(y, label='Count')
    B, M= y.value_counts()
    print('Number of Benign Tumours', B)
    print('Number of Malignant Tumours', M)
    Number of Benign Tumours 357
    Number of Malignant Tumours 212
```



```
In [8]:

y.value_counts()

B 357

M 212

Name: diagnosis, dtype: int64
```

In [9]: x.describe()

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	con
count	569.000000	569.000000	569.000000	569.000000	569.000000	569.
mean	14.127292	19.289649	91.969033	654.889104	0.096360	0.10
std	3.524049	4.301036	24.298981	351.914129	0.014064	0.05
min	6.981000	9.710000	43.790000	143.500000	0.052630	0.01
25%	11.700000	16.170000	75.170000	420.300000	0.086370	0.06
50 %	13.370000	18.840000	86.240000	551.100000	0.095870	0.09
75 %	15.780000	21.800000	104.100000	782.700000	0.105300	0.13
max	28.110000	39.280000	188.500000	2501.000000	0.163400	0.34

8 rows × 30 columns

Data Visualization

Task 4: Visualizing Standardized Data with Seaborn

Note: If you are starting the notebook from this task, you can run cells from all in the kernel by going to the top menu and Kernel > Restart and Run All

Task 5: Violin Plots and Box Plots

Task 6: Using Joint Plots for Feature Comparison

Task 7: Observing the Distribution of Values and their Va Swarm Plots

Task 8: Observing all Pair-wise Correlations

```
In [23]:
               f,ax=plt.subplots(figsize=(18,18))
               sns.heatmap(x.corr(), annot=True, linewidth=.5, fmt='.1f', ax=ax);
               #fmt->precision of corr
                           radius mean 1.0 0.3 1.0 1.0 0.2 0.5
                                                                       0.1 -0.1
                                                                                   -0.1
                                                                                               -0.2
                            area mean 1.0 0.3 1.0 1.0 0.2
                                                                   0.8
                                                                           -0.3
                                                                                   -0.1
                                                                                        0.7 0.8
                                                                               0.3 0.1
                                                                                   0.0
                                                           1.0 0.9 0.8
                     compactness mean
                                                           0.9 1.0 0.9
                                                                        0.5 0.3
                                       0.8 0.3 0.9 0.8 0.6
                                                           0.8 0.9 1.0
                                                                                   0.0
                                                                                                    0.5 0.4
                                                                                                               0.1
                   concave points_mean
                                               0.2 0.2
                                                                               0.3 0.1
                                                                                       0.3 0.2 0.2
                                                                                                                        0.2 0.1 0.2
                                                                       0.5 1.0 0.0 0.2 0.0 -0.1
                 fractal dimension mean
                                                                           0.0
                                                                               1.0 0.2 1.0 1.0 0.2
                                                                                                   0.4 0.3 0.5 0.2
                                                                                                                   0.2
                                                                                                                        0.7 0.2 0.7 0.8 0.1
                             radius se
                                       -0.1 0.4 -0.1 -0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.2 0.2 1.0 0.2 0.1 0.4 0.2 0.2 0.2 0.4 0.3 -0.1 0.4 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
                            texture se
                                                                       0.3 0.0 1.0 0.2 1.0 0.9 0.2
                                                                                                   0.4 0.4 0.6 0.3
                          perimeter se
                                                                       0.2 -0.1 1.0 0.1 0.9 1.0 0.1
                                                                                                   0.3 0.3 0.4 0.1
                                       0.7 0.3 0.7 0.8 0.2
                                                                                                                        0.8 0.2 0.8 0.8 0.1
                                                           0.1 0.1 0.0 0.2
                                                                           0.4 0.2 0.4 0.2 0.1 1.0 0.3 0.3 0.3 0.4
                                                                               0.4 0.2
                                                                                                   1.0 0.8 0.7 0.4
                                                                               0.3 0.2 0.4 0.3
                                                                                   0.2
                                                                                       0.6 0.4 0.3
                      concave points se
                                       -0.1 0.0 -0.1 -0.1 0.2 0.2 0.2 0.1 0.4 0.3 0.2 0.4 0.3 0.1
                                                                                                   0.4 0.3 0.3 1.0 0.4 -0.1 -0.1 -0.1 -0.1 -0.0 0.1 0.0 -0.0
                          symmetry se
                                                                               0.2 0.3 0.2 0.1
                    fractal dimension se -0.0
                                                                       0.3
                                                                                                0.4 0.8 0.7 0.6 0.4 1.0 -0.0 -0.0 -0.0
                                                                               0.7 -0.1
                                                                                           0.8 -0.2
                                                                                                   0.1 0.1 0.1
                                                                           -0.1
                                                       0.0
                                                                                                   0.3 0.2 0.4 -0.1
                                                               0.7 0.9 0.2
                                                                           -0.2
                                                                               0.7 -0.1
                                                                                               -0.2
                                                                                0.8 -0.1
                                                                                                   0.2 0.2 0.3 -0.1
                                                                                       0.7 0.8 -0.2
                                                                               0.1 -0.1
                     compactness_worst
                                                                                       0.3 0.3
                                                                                0.4 -0.1
                                                                                               -0.1
                                                                                   -0.1
                                                                                        0.6 0.5 -0.1
                                                                                                               -0.0
                                                               0.9 0.9
                                                                           0.2
                                                                                                                        0.8 0.4 0.8 0.7
                                                                                   -0.1
                                                                                                       0.2
                                                                                           0.1
                                                                                                                                                concavity worst
                                                                                                                                                    concave points_worst
```

ave points mear concavity_meal