Atividade 1

AUTHOR
Mikael Marin Coletto

PUBLISHED
November 20, 2024

Questão 1

Um instituto de pesquisa afirma que um determinado produto possui 50% de aceitação por parte dos consumidores. Em uma amostra de 180 consumidores, observaram-se 100 pessoas declarando rejeição e 80 declarando aceitação para com o produto. Teste a afirmação dada pelo instituto, adotando-se α=5%. (Dá pra fazer tanto por qui-quadrado, quanto binomial. Escolha um.)

R: Como possuímos uma amostra grande (mais de 30) usaremos uma aproximação pela normal. Também usaremos como hipótese nula que a proporção de aceitação é de 50% e como hipótese alternativa que a proporção de aceitação é diferente de 50%.

H0: p = 0.5 H1: p != 0.5

▶ Code

Exact binomial test

data: 80 and 180
number of successes = 80, number of trials = 180, p-value = 0.1565
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.3705325 0.5202165
sample estimates:
probability of success
0.4444444

- ▶ Code
- [1] "Não rejeitamos H0, ou seja, não há evidências para aceitar de que a proporção de aceitação é diferente de 50%"
- ▶ Code

Chi-squared test for given probabilities

data: observado
X-squared = 2.2222, df = 1, p-value = 0.136

▶ Code

1-sample proportions test with continuity correction

[1] "Não rejeitamos H0, ou seja, não há evidências para aceitar de que a proporção de aceitação é diferente de 50%"

Portanto, concluímos que, com base nos testes qui-quadrado e binomial aproximado pela normal, não há evidências para aceitar de que a proporção de aceitação é diferente de 50%. A indicação da pesquisa foi comprovada.

Questão 2

Deseja-se testar a hipótese de que os resultados das faces de um dado tem uniformidade de ocorrência. Para tanto, joga-se o mesmo o numero de vezes mostrado abaixo, anotando-se os resultados:

Valor do dado	1	2	3	4	5	6
Freq. Observada	180	207	191	203	210	209

Tabela 1

Execute um teste qui-quadrado. Utilize α =5%.

H0: p1 = p2 = p3 = p4 = p5 = p6 (As faces do dado tem uniformidade de ocorrência) H1: Pelo menos uma das probabilidades é diferente (As faces do dado não tem uniformidade de ocorrência)

► Code

Chi-squared test for given probabilities

```
data: observado
X-squared = 3.6, df = 5, p-value = 0.6083
```

▶ Code

[1] "Não rejeitamos H0, ou seja, não há evidências para rejeitar a afirmação de que os resultados das faces de um dado tem uniformidade de ocorrência"

Portanto, concluímos que, com base no teste qui-quadrado, não há evidências para rejeitar a afirmação de que os resultados das faces de um dado tem uniformidade de ocorrência. Ou seja, podemos dizer que as probabilidades de ocorrência de cada face do dado são iguais.

Questão 3

24 crianças foram avaliadas com relação a um índice de agressividade e em seguida converteram-se os dados em sinais positivos (+) e negativos (-), dependendo se o índice estava acima ou abaixo da mediana do grupo. Deseja-se verificar a aleatoriedade dos escores de agressividade com relação à ordem em que foram obtidos.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
+	-	+	+	+	+	-	+	+	+	-		-	-	+	-	-	+	+	+	-		-	-

Tabela 2

Verificar a aleatoriedade dos escores.

H0: Os escores são aleatórios H1: Os escores não são aleatórios

▶ Code

[1] "Não rejeitamos H0, ou seja, não há evidências para rejeitar a afirmação de que os escores são aleatórios"

Portanto, concluímos que, com base no teste de aleatoriedade dos escores, não há evidências para rejeitar a afirmação de que os escores são aleatórios. Ou seja, podemos dizer que os escores de agressividades são aleatórios.

Questão 4

Um fabricante de autopeças garante que o diâmetro de eixos produzidos por sua fábrica segue uma distribuição normal com média 100 mm e desvio padrão 2 mm. Teste a afirmação considerando a amostra de 6 peças obtidas e o teste de Kolmogorov Smirnov ao nível de 5% de significância:

R: Testar Distribuição normal, média 100mm e desvio padrão 2mm. Usando o teste de kolmogorov e nível de significância de 5%.

H0: A distribuição dos diâmetros segue uma distribuição normal com média 100 mm e desvio padrão 2 mm. H1: A distribuição dos diâmetros não segue uma distribuição normal com média 100 mm e desvio padrão 2 mm.

▶ Code

Exact one-sample Kolmogorov-Smirnov test

data: amostra

D = 0.34967, p-value = 0.3679 alternative hypothesis: two-sided

▶ Code

[1] "Não rejeitamos H0, ou seja, não há evidências para rejeitar a afirmação de que a distribuição dos diâmetros segue uma distribuição normal com média 100 mm e desvio padrão 2 mm"

Portanto, concluímos que, com base no teste de Kolmogorov-Smirnov, não há evidências para rejeitar a afirmação de que a distribuição dos diâmetros segue uma distribuição normal com média 100 mm e desvio padrão 2 mm, ou seja, podemos dizer que as peças seguem os parâmetros indicados pelo fabricante.

Questão 5

Refaça pelo teste de Lilliefors, o exemplo feito em sala de aula sobre o peso das carnes nas refeições do restaurante. (Testar Normalidade) α =5%.

R:

H0: A distribuição dos pesos das carnes segue uma distribuição normal. H1: A distribuição dos pesos das carnes não segue uma distribuição normal.

▶ Code

Lilliefors (Kolmogorov-Smirnov) normality test

data: amostra D = 0.24322, p-value = 0.09606

Portanto, concluímos que, com base no teste de Lilliefors, não há evidências para rejeitar a afirmação de que a distribuição dos pesos das carnes segue uma distribuição normal, ou seja, podemos dizer que os pesos .