CNN

Stands for Convolutional Neural Network (ConvNN)

CNN

 Convolutional neural network (CNN) is a regularized type of <u>feed-forward</u> neural network that learns feature engineering by itself via filters (or kernel) optimization.

CNN applications examples:

- image and video recognition
- image classification,
- medical image analysis,
- natural language processing

Architecture

Convolution Neural Network (CNN)

Convolutional Layer

Applying filters convolutional layer cont..

Input Image Size = 5 X 5

Filter Size = 3×3

Stride = 1

Padding = 0

Feature map size(output) = 3×3

Applying filters convolutional layer cont..

0	0	0	0	0	0	0
0	60	113	56	139	85	0
0	73	121	54	84	128	0
0	131	99	70	129	127	0
0	80	57	115	69	134	0
0	104	126	123	95	130	0
0	0	0	0	0	0	0

Kernei					
0	-1	0			
-1	5	-1			
0	-1	0			

Image Source: vitalflux.com

Input Image Size = 5 X 5

Filter Size = 3×3

Stride = 1

Padding = 1

Feature map size(output) = 5×5

Feature map size convolutional layer cont..

Depends on:

- Input Image Size Dr
- Filter Size DF
- Stride S
- Padding P

Stride Convolutional layer cont..

• Stride: It denotes how many steps we are moving the filter at each step. [default is 1]

Stride = 2

Padding Convolutional layer cont..

 Padding is a process of adding (row or column) to the input at each side

Calculate the feature map size

$$feature map = \frac{D_I - D_f + 2P}{S} + 1$$

Convolutional Layer – Filters – Output Feature Map

- Output Feature Map of One complete convolution:
 - Filters: 3
 - Filter Size: 3 X 3
 - Stride: 1
- Conclusion:
 - Input Image:

9 X 9

 Output of Convolution:

7 X 7 X 3

ReLU layer

- Applying max(0, x) on the previous feature map layers
- This one does not change size unlike the previous one

Relu Layer

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77
0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33
-0.55	0.55	-0.55	0.33	-0.55	0.55	40.55
0.11	-0.55	0.55	-0.77	0.55	-0.55	0.11
-0.11	0.33	-0.77	1.00	-0.77	0.33	-0.11
0.11	-0.55	0.55	-0.77	0.55	-0.55	0.11
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.55
0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33
]	
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.55	-0.11	0.11	-0.33	1.00	0.11	0.11
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.11	-0.11	1.00	-0.33	0.11	4.11	0.55
-0.11	1.00	-0.11	0.53	-0.11	0.11	-0.11
0.77	-0.11	0.11	0.33	0.55	-0.11	0.33

Pooling layer

- Its purpose is to gradually shrink the representation's spatial size to reduce the number of parameters and computations in the network.
- The pooling layer treats each feature map separately.

Pooling layer methods (types)

Max Pooling

- Max pooling

- Average Pooling

Resources

- Convolutional neural network [wikipedia]
- Feed-forward neural network [wikipedia]
- Basics of CNN in Deep Learning
- Intuitively Understanding Convolutions for Deep Le arning
- Convolutional Neural Network CNN- الشبكات ال by dr. Ahmed Yousry [youtube]
- What is ReLU and Sigmoid activation function?