

Automation

Figure 3.1. A finite-state automaton.

■ From NFA → DFA:

- (1) the case with the empty string.
- (2) the case without the empty string.
- (3) remove the empty string, and then ...

Input token

Figure 3.2. Finite-state automaton of figure 3.1 as a table, expressing the transition function δ .

Figure 3.3. A non-deterministic machine equivalent to the machine in figure 3.1.

 $(+|-|_{\mathcal{E}})$ $(d+|d+.d^*|d^*.d+)$ \Rightarrow signed real number

Input Symbols

	δ	+	_	•	d	ε
	S	Α	Α			Α
	Α				В, С	E
	В				В	F
	С			D	С	
States	D				D	F
	E			G	Ε	
	(F)					
	Ğ				Н	
	Н				Н	F

Figure 3.4. Tabular form of the non-deterministic finite automaton of figure 3.3.

Figure 3.5.

Figure 3.5. Backtracking machine M and its tape T, shown in one configuration. Input string: "-3."

Figure 3.6. A finite-state automaton with several empty cycles.

Figure 3.7. The finite-state automaton of figure 3.6 with the ACD empty cycle removed by merging states A, C, and D.

Figure 3.8. The finite-state automaton of figure 3.7 with all empty cycles removed by merging states.

Figure 3.9. A state p with empty moves to state q_1 , q_2 , \dots

Figure 3.10. The finite-state automaton of figure 3.3 with empty moves to F removed.

Figure 3.11. The finite-state automaton of figure 3.10 with the S to A empty moves removed.

Figure 3.12. The finite-state automaton of figure 3.11 with all empty moves removed.

Input symbols

Figure 3.13. Tabular form of the non-deterministic finite-state automaton of figure 3.5, with the halt states marked.

Figure 3.14. Empty move removal. Theε column may be deleted.

Figure 3.15. New composite state {B, C, E} created.

Figure 3.16. Completion of new state creation.

Figure 3.17. Inaccessible states removed.

{B}{C} are merged

Figure 3.18. A machine to be reduced.

Figure 3.19. Machine of figure 3.18 reduced.

Figure 3.20. The machine of figure 3.12 made deterministic and reduced.

			Input		
	δ	а	b	С	
_	1	2	5		
	2	3	4	1	
	3	5	2		
			_		
States	4	3	2	1	
	5	1	4	1	
	6	1		1	
	O	•		•	
	7	3	6	3	

Figure 3.21. Another machine to be reduced.

(a) Unmark	ed	Input		
		a	b	С
-	(1,3)	(2,5)	(2,5)	
Feasible	(2,5)	(1,3)	(4,4)	(1,1)
state	(2,7)	(3,3)	(4,6)	(1,3)
pairs	(5,7)	(1,3)	(4,6)	(1,3)
(b) Marked			Input	
		a	b	C
-	(1,3)	(2,5)	(2,5)	
Feasible	(2,5)	(1,3)	(4,4)	(1,1)

state (2,7) \checkmark (3,3) (4,6) (1,3) pairs (5,7) \checkmark (1,3) (4,6) (1,3)

{2,7}. {5,7} are not mergeable.

 $\{4\}\{123567\} => \{13\}\{2567\} => \{257\}\{6\}$

Try {13}{25}{27}{57}

General machine

(b) _____S

(Null)

a

Empty set

(c)

Empty string

(d)

Alphbet symbol

Figure 3.23. Generation of a non-deterministic finite-state automaton from components of a regular expression.

Automation 1 - 27

Figure 3.24. The regular expression " $(+|-|\varepsilon|)d\{d\}$ " as a tree.

Figure 3.25. Development of a finite-state automaton from the regular expression " $(+|-|\varepsilon|)$ d{d}". Automation1 - 29

Fig.3.27. NFA for (a|b)*abb.

STATE	INPUT SYMBOL		
	а	b	
Α	В	С	
В	В	D	
С	В	С	
D	В	E	
(E)	В	С	

(a|b)*abb

Fig. 3.28. Transition table for DFA.

Fig.3.29. Result of applying the subset construction to Fig. 3.27.

STATE	INPUT SYMBOL		
	а	b	
Α	В	Α	
В	В	D	
D	В	E	
(E)	В	Α	

Fig. 3.46. Transition table of reduced DFA.