Attention to Scale: Scale-aware Semantic Image Segmentation

Liang-Chieh Chen¹ Yi Yang² Jiang Wang² Wei Xu² Alan L. Yuille^{1,3} ¹UCLA ²Baidu USA ³ JHU

ATTENTION MODEL: MULTI-SCALE FEATURES

- Suppose input image resized to several scales $s \in \{1, ..., S\}$.
- Input with scale s produces a score map $f_{i,c}^s$, (i over pixels, and c over object classes).
- Let $g_{i,c}$ be the weighted sum of score maps at (i,c) for all scales

$$g_{i,c} = \sum_{s=1}^{S} w_i^s \cdot f_{i,c}^s \tag{1}$$

The weight w_i^s is computed by

$$w_i^s = \frac{\exp(h_i^s)}{\sum_{t=1}^S \exp(h_i^t)}$$
 (2)

where h_i^s is score map by attention model.

- w_i^s reflects importance of feature at position i and scale s.
- Visualize attention for each scale by visualizing w_i^s .
- Average- or max-pooling over scales are two special cases.

LEARNED ATTENTION: MAX VS. ATTENTION

- Scale-1 attention \rightarrow small-scale objects.
- Scale-0.75 attention → middle-scale objects. • Scale-0.5 attention \rightarrow large-scale objects or background.

ı	EXTRA SUPERVISION
	Image with scale = 0.5 Deep Convolutional Neural Network Score Map X Supervision
	Attention to Scales Image with scale = 1 Deep Convolutional Neural Network Supervision Result Supervision X Score Map

PASCAL VOC 2012

Baseline: DeepLab-LargeFOV		67.58	
Merging Method		w/ E-Supv	
$Scales = \{1, 0.75, 0.5\}$			
Max-Pooling	69.70	70.06	
Average-Pooling	68.82	70.55	
Attention	69.47	71.42	

mIOU Method DeepLab-CRF-COCO-LargeFOV 72.7 DeepLab-MSc-CRF-COCO-LargeFOV 73.6 DeepLab-CRF-COCO-LargeFOV-Attention 75.1 DeepLab-CRF-COCO-LargeFOV-Attention+ 75.7

(b) test set

SEGMENTATION RESULTS

CONCLUSION

- Using multi-scale inputs > single scale input.
- Attention model brings better performance and allows to visualize the importance of features.
- Adding extra supervision is essential for better performance.
- Try it out! Source code and trained models available at http:

//liangchiehchen.com/projects/DeepLab.html.

REFERENCES

- [1] C. Farabet et al. Learning hierarchical features for scene labeling. PAMI, 2013. [2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. In *ICLR*, 2015. G. Lin et al. Efficient piecewise training of deep structured models for semantic segmentation. arXiv:1504.01013, 2015.