Demande de Dataset pour la Détection et Conversion Automatique des Antennes

Mustapha Addazi, Brahim Elharche Université Cadi Ayyad Département Informatique, Réseaux et Télécommunications Janvier 2025

Objet : Demande de Dataset d'Images d'Antennes pour un Projet de Recherche

Dans le cadre de notre projet de recherche visant à développer un système de détection et conversion automatique des antennes en plans techniques (AutoCAD), nous sollicitons votre collaboration pour obtenir un dataset d'images d'antennes, en respectant les caractéristiques suivantes :

Caractéristiques des Images Demandées

Type d'image	Description et exigences
Images d'antennes en vue	Images montrant une vue générale des
globale	antennes installées sur différents supports
	(pylônes, toits, mâts). Les images doivent
	inclure des antennes modernes et anciennes.
Images d'antennes par	Photos représentant les antennes de
génération	différentes générations (2G, 3G, 4G,
	5G). Les variations dans le design et les
	caractéristiques des antennes doivent être
	visibles.
Plans rapprochés	Images de détails des antennes, notamment
	des connecteurs, câbles, panneaux, ou in-
	scriptions visibles.
Antennes dans différents	Photos illustrant des antennes dans des en-
contextes	vironnements variés (zones urbaines, rurales,
	montagneuses, etc.).

Antennes partiellement	Images d'antennes partiellement obstruées		
cachées	par des objets (arbres, bâtiments, pan-		
	neaux).		
Images nocturnes	Photos d'antennes capturées de nuit, avec		
	éclairage visible ou non, dans des contextes		
	urbains ou ruraux.		
Images sans antennes	Un pourcentage (10%) du dataset doit in-		
	clure des images sans antennes (terrains,		
	toits vides, paysages), pour réduire les faux		
	positifs.		

Spécifications Techniques Requises

- Formats d'image : JPEG, PNG (prioritaires), et, si disponible, TIFF, BMP, ou RAW pour des besoins spécifiques.
- Résolution minimale : 1920x1080 pour les vues globales, 1280x720 pour les plans rapprochés.
- Annotations : Les images doivent inclure des annotations (bounding boxes) précisant la position et la classe des antennes. Les coordonnées exactes doivent être fournies au format YOLO (label x_center y_center width height).
- Équilibre des données : Répartition équitable entre les types d'antennes et leurs générations (2G, 3G, 4G, 5G).

Livraison des Données

Nous souhaiterions recevoir les données sous forme d'un dossier structuré contenant :

- Les images dans les formats spécifiés.
- Les fichiers d'annotations au format YOLO.
- Une documentation expliquant la structure du dataset et les éventuelles particularités.

Conclusion

Nous vous remercions d'avance pour votre collaboration et restons à votre disposition pour toute précision nécessaire.

Cordialement,

Mustapha Addazi ,Brahim Elharche

Elèves ingénieurs Université Cadi Ayyad

Rgression Linaire Simple/Multiple

Exercice 1

Soit X et Y deux variables statistiques qui sont dpendant; $\rho(X,Y)$ est le coefficient de corrélation qui mesure la liaison statistique (dépendance) entre X et Y.

1°) Donner l'expression de $\rho(X,Y)$.

Supposons qu'on a un échantillon de taille n, soit $x_1, x_2, x_3, \ldots, x_n; y_1, y_2, y_3, \ldots, y_n$ les n réalisations de X et Y.

- 2°) Donner l'expression empirique de $\rho(X,Y)$.
- 3°) Le modèle linéaire de la régression simple est donné par : $Y = \beta_0 + \beta_1 X + \varepsilon$ où β_0 et β_1 sont deux paramétres à estimer. Le résidu ε est une variable aléatoire suit une loi normale donnée par : $\mathcal{N}(0, \sigma^2)$ et représente l'erreur du modèle linéaire sur l'échantillo. Pour i = 1, 2, ..., n, le résidu est donné par la formule suivante : $\varepsilon_i = Y_i \beta_0 \beta_1 X_i$ où Y_i et X_i sont deux variables aléatoires. Notons **l'erreur d'estimation** ou résidu observé par $e_i = y_i \beta_0 \beta_1 x_i$.

Déterminer les expressions de β_0 et β_1 en fonction de $x_1, x_2, x_3, \ldots, x_n; y_1, y_2, y_3, \ldots, y_n$ en minimisant la fonction suivante :

$$f(\beta_0, \beta_1) = \sum_{i=1}^n (y_i \quad \beta_0 \quad \beta_1 x_i)^2 = \sum_{i=1}^n e_i^2$$

par rapport aux deux paramétres β_0 et β_1 .

Exercice 2

Les deux tableaux représentent les résultats de la régression linéaire simple d'une variable dépendante par rapport à une autre variable explicative. Les deux variables sont Prix de vente : $Prix\ V$ et Prix à l'achat : $Prix\ A$.

Récapitulatif du modèle b

				Erreur
				standard de
Modèle	R	R-deux	R-deux ajusté	l'estimation
1	,959 ^a	,919	,916	3,6273

a. Valeurs prédites : (constantes), Prix_A

b. Variable dépendante : Prix_V

Coefficients

		Coefficients non standardisés		Coefficients standardisés				e confiance à de B
Modèle		В	Erreur standard	Bêta	t	Signification	Borne inférieure	Borne supérieure
1	(constante)	-43,615	7,668		-5,688	,000	-59,323	-27,908
	Prix_A	1,775	,100	,959	17,816	,000	1,571	1,979

a. Variable dépendante : Prix_V

Figure1: Tableaux récapilatif et coefficients du modèle.

ANOVA

	Somme des carrés	ddl	Carré moyen	F	Signification
Régression	4206,671	1	4206,671	348,374	,000a
Résidu	338,105	28	12,075		
Total	4544,775	29			

a. Valeurs prédites : (constantes), Prix_Achat

b. Variable dépendante : Prix_Vente

Figure 2: Table de l'anova.

- 1°) Quel la variable à expliquer (dépendante) et la variables explicative pour notre cas.
- $2^{\circ})$ Quel sont les deux critères qui permet de confirmer l'application de la méthode.
- $3^\circ)$ Quel est le critère qui mesure la qualité du modèle suivant le 1er tableau.
- 4°) Tirer les coefficients du modèle linéaire simple correspond l'exemple traité.
- 5°) Que représente le coefficient Bêta et donner la formule qui permet de le calculer.
- 6°) Que représente les intervalles de confiance.
- 7°) Calculer en utilisant le modèle le prix estimé de vente d'une maison dont la valeur l'achat est de 67K.

Demande de Dataset pour la Détection et Conversion Automatique des Antennes

Mustapha Addazi, Brahim Elharche Université Cadi Ayyad Département Informatique, Réseaux et Télécommunications Janvier 2025

Objet : Demande de Dataset d'Images d'Antennes pour un Projet de Recherche

Dans le cadre de notre projet de recherche visant à développer un système de détection et conversion automatique des antennes en plans techniques (AutoCAD), nous sollicitons votre collaboration pour obtenir un dataset d'images d'antennes, en respectant les caractéristiques suivantes :

Caractéristiques des Images Demandées

Type d'image	Description et exigences
Images d'antennes en vue	Images montrant une vue générale des
globale	antennes installées sur différents supports
	(pylônes, toits, mâts). Les images doivent
	inclure des antennes modernes et anciennes.
Images d'antennes par	Photos représentant les antennes de
génération	différentes générations (2G, 3G, 4G,
	5G). Les variations dans le design et les
	caractéristiques des antennes doivent être
	visibles.
Plans rapprochés	Images de détails des antennes, notamment
	des connecteurs, câbles, panneaux, ou in-
	scriptions visibles.
Antennes dans différents	Photos illustrant des antennes dans des en-
contextes	vironnements variés (zones urbaines, rurales,
	montagneuses, etc.).

Antennes partiellement	Images d'antennes partiellement obstruées		
cachées	par des objets (arbres, bâtiments, pan-		
	neaux).		
Images nocturnes	Photos d'antennes capturées de nuit, avec		
	éclairage visible ou non, dans des contextes		
	urbains ou ruraux.		
Images sans antennes	Un pourcentage (10%) du dataset doit in-		
	clure des images sans antennes (terrains,		
	toits vides, paysages), pour réduire les faux		
	positifs.		

Spécifications Techniques Requises

- Formats d'image : JPEG, PNG (prioritaires), et, si disponible, TIFF, BMP, ou RAW pour des besoins spécifiques.
- Résolution minimale : 1920x1080 pour les vues globales, 1280x720 pour les plans rapprochés.
- Annotations : Les images doivent inclure des annotations (bounding boxes) précisant la position et la classe des antennes. Les coordonnées exactes doivent être fournies au format YOLO (label x_center y_center width height).
- Équilibre des données : Répartition équitable entre les types d'antennes et leurs générations (2G, 3G, 4G, 5G).

Livraison des Données

Nous souhaiterions recevoir les données sous forme d'un dossier structuré contenant :

- Les images dans les formats spécifiés.
- Les fichiers d'annotations au format YOLO.
- Une documentation expliquant la structure du dataset et les éventuelles particularités.

Conclusion

Nous vous remercions d'avance pour votre collaboration et restons à votre disposition pour toute précision nécessaire.

Cordialement,

Mustapha Addazi ,Brahim Elharche

Elèves ingénieurs Université Cadi Ayyad