

Ecole Polytechnique Fédérale de Lausanne Course syllabus — extracts

• Name – First name of the student: GENIN Aurélien

• Academic years completed: M1 (H2 2024), M2 (H1 2025)

• Current academic year: M3 (H2 2025)

• Major: Robotics

• Minor: Space science technologies

• Full course catalogue available here: <a href="https://search.epfl.ch/?q=

Legend:

MICRO/CIVIL/ENV	Robotics
ME/EE	Applied mathematics
EE/ENG	Space technologies
PHYS	Physics
HUM	Humanities and Social Sciences

<u>M1:</u>

MICRO-452 Basics of mobile robotics	The course teaches the basics of autonomous mobile robots. Both hardware (energy, locomotion, sensors) and software (signal processing, control,
(4 ECTS)	localization, trajectory planning, high-level control) will be tackled. The students
(4 2013)	will apply the knowledge to program and control a real mobile robot.
Professor:	,
Mondada Francesco	
MICRO-507	The course presents the design, control, and applications of legged robots. It
Legged robots	gives a review of different types of legged robots (including two-, four- and multi-
(4 ECTS)	legged robots), and an analysis of different control methods for legged
	locomotion. It also trains students in making critical analysis of key articles in the
Professor:	field, and in designing their own models and locomotion controllers for legged
Ijspeert Auke	robots in simulation.
EE-584	The main objective of the course is to provide tools and notions for spacecraft
Spacecraft design and	design. The course will start with an introduction on systems engineering, then
system engineering	the different subsystems of a spacecraft will be explored. External teachers from
(5 ECTS)	industry will bring their expertise.
Professors:	
David Emmanuelle	
Brigitte Marie, Udriot	
Mathieu Jean-Pierre	
MICRO-450	This course introduces the basics of robotics for manipulation. The aspects
Basics of robotics for	concerning robot architectures (Serial, Parallel and Cartesian), sensors,
manipulation	kinematics and dynamic modelling and control are presented. Each of these
(3 ECTS)	theoretical topics is in concern with a industrial context.
Professor:	
Bouri Mohamed	

EE-585	This course is a "concepts" course. It introduces a variety of concepts to design
Space mission design and	and operate a space mission. These concepts cover orbital mechanics, spacecraft
operations	operation phases and critical subsystems.
(2 ECTS)	
Professor:	
Kuntzer Thibault Adrien	
EE-589	The aim of this course is to give students the practical skills to carry out a project
Project in space	linked to the development of space technologies. The subject of the project is
technology	defined after discussion with the teaching staff. The projects will always be part
(12 ECTS)	of the Swiss Space Center's projects.
Supervisor:	Performed at the EPFL Spacecraft Team on the "Programming and optimization
Kneib Jean-Paul Richar	of algorithms to enable autonomous tracking of satellites with an X-band
	antenna"
ME-425	Provide an introduction to the theory and practice of Model Predictive Control
Model Predictive Control	(MPC). Main benefits of MPC: flexible specification of time-domain objectives,
(4 ECTS)	performance optimization of highly complex multivariable systems and ability to
(42013)	explicitly enforce constraints on system behavior.
Professor:	explicitly emoree constraints on system behavior.
Jones Colin Neil	
HUM-490	Students will learn how to convey scientific content to different types of
Scientific mediation I	audience and using different mediation formats. This year, the course will
(3 ECTS)	culminate in the creation and running of an interactive educational workshop
(3 2013)	with a group of young people.
Professors:	During the first semester, specialists in the fields concerned will cover the
Albertini Marion, Dutto	theoretical foundations for understanding the issues and methods involved in
Fabrizia, Pontais Anna	scientific outreach: communication, sociology of science-society relations,
Elisabeth	· · · · · · · · · · · · · · · · · · ·
Elisabeth	psychology of learning and educational design.
	In parallel with these theoretical contributions, students will draw up a
	mediation project: they will identify a scientific theme, adapt the content of their
	discourse to the target audience and draw up a detailed plan for implementing
	their mediation activity.
	The second semester will be devoted to implementing the project developed in
	the first semester. Students will work on prototyping their mediation activity
	within the allocated budget, and on creating and formalising the visual and
	textual content. They will have to present their activity to a group of young
	people and suggest ways of improving their project.
	During the course, students will be coached through all phases of the project,
	from design to presentation.

M2:

ENG-411	The main objective of this course is to teach the students the fundamentals of
Concurrent engineering	concurrent engineering for space missions and systems. The course is built
of space missions	around a similar framework to that of the European Space Agency's (ESA)
(2 ECTS)	Concurrent Engineering Challenge.
(====)	
Professors:	
Udriot Mathieu Jean-	
Pierre, Verkammen	
Marnix Hendrik G	
MICRO-502	The course provides an introduction to the design, control, and applications of
Aerial robotics	aerial robots. Students will be able to translate theoretical concepts into practice
(5 ECTS)	by means of hands-on exercises with simulated and real drones.
· · · · · · · · · · · · · · · · · · ·	
Professor:	

Floreano Dario	
MICRO-372	This course presents advanced mechanical engineering concepts through
Advanced mechanisms	concrete examples of precision mechanisms. These mechanisms operate in
for extreme	
	extreme environments, whether in space or on earth. Theoretical concepts are
environments	covered in depth, as well as environmental constraints.
(3 ECTS)	
5 (
Professor:	
Cosandier Florent	
EE-580	Space environment is different from what we can experience on Earth, requiring
Introduction to the	specific design approaches in order to achieve reliable operations. Engineers
design of space	must hence face new challenges stimulating their creativity to tackle those
mechanisms	particular constraints.
(2 ECTS)	
Professor:	
Feusier Gilles	
EE-559	This course explores how to design reliable discriminative and generative neural
Deep Learning	networks, the ethics of data acquisition and model deployment, as well as
(4 ECTS)	modern multi-modal models.
Professor:	
Cavallaro Andrea	
CIVIL-459	Deep Learning (DL) is the subset of Machine learning reshaping the future of
Deep learning for	transportation and mobility. In this class, we will show how DL can be used to
autonomous vehicles	teach autonomous vehicles to detect objects, make predictions, and make
(6 ECTS)	decisions. (Fun fact: this summary is powered by DL)
Professor:	
Alahi Alexandre Massoud	
PHYS-402	Cosmology is the study of the structure and evolution of the universe as a whole.
Astrophysics V:	This course describes the principal themes of cosmology, as seen from the point
observational cosmology	of view of observations.
(4 ECTS)	
Professor:	
Kneib Jean-Paul Richard	
MICRO-453	The goal of this lab series is to practice the various theoretical frameworks
Robotics practicals	acquired in the courses on a variety of robots, ranging from industrial robots to
(4 ECTS)	autonomous mobile robots, to robotic devices, all the way to interactive robots.
Professors:	
Billard Aude, Boero	
Giovanni, Bouri	
Mohamed, Floreano	
Dario, Kneib Jean-Paul	
Richard, Micera Silvestro,	
Mondada Francesco,	
Sakar Mahmut Selman,	
Skaloud Jan	
ENV-548	Determination of spatial orientation (i.e. position, velocity, attitude) via
Sensor orientation	integration of inertial sensors with satellite positioning. Prerequisite for many
(4 ECTS)	applications related to remote sensing, environmental monitoring, mobile
	mapping, robotics, space exploration, smart-phone navigation, etc.
Professor:	
Skaloud Jan	

HUM-492	Follow-up course to HUM-490
Scientific mediation II	
(3 ECTS)	
Professors:	
Albertini Marion, Dutto	
Fabrizia, Pontais Anna	
Elisabeth	

<u>M3:</u>

ENV-540	This course covers optical remote sensing from satellites and airborne platforms.
Image processing for Earth observation	The different systems are presented. The students will acquire skills in image processing and machine/deep learning to extract end-products from the images
(4 ECTS)	such as land cover or risk maps.
Professor: Tuia Devis	
PHYS-465	Galaxy formation & evolution is about studying how galaxies in our Universe
Astrophysics III : galaxy	come into existence, how they evolve and what shapes their properties. This
formation and evolution	course describes the observational facts of galaxies and the various processes of
(4 ECTS)	galaxy evolution as seen from theoretical/numerical models.
Professor: Hirschmann	
Michaela	
ENG-466	The goal of this course is to provide methods and tools for modeling distributed
Distributed intelligent	intelligent systems as well as designing and optimizing coordination strategies.
systems	The course is a well-balanced mixture of theory and practical activities.
(5 ECTS)	
Professor: Martinoli	
Alcherio	
ME-523	Non-linear systems are analysed with a view to establishing control laws. Stability
Nonlinear control	in the Lyapunov sense is presented, as well as geometric control methods (exact
systems	linearisation). Various examples illustrate the theory (paper and pencil exercises
(3 ECTS)	and computer simulations).
Professor: Müllhaupt	
Philippe	
ME-422	This course covers methods for the analysis and control of systems with multiple
Multivariable control	inputs and outputs, which are ubiquitous in modern technology and industry.
(4 ECTS)	Special emphasis will be placed on discrete-time systems due to their relevance
Professor: Ferrari Trecate	to digital and embedded control architectures.
Giancarlo	
MICRO-580	The student applies the acquired skills in an engineering or a research project.
Robotics project I	
(10 ECTS)	Performed at EPFL/LASTRO/Astrobots on the fine open-loop control of a folding
	mirror for ESO VLT's BlueMUSE integral field unit.
Supervisor:	
Kneib Jean-Paul Richar	