Disciplina: Programação Computacional*

Prof. Fernando Rodrigues e-m@il: fernandorodrigues@sobral.ufc.br

Aula 02: Arquitetura básica:

- Hardware x Software;
- Componentes de Hardware;
- Tipos de Software;
- Noções de Execução de Programas;
- Linguagens de Programação: Níveis.

A computação pode ser definida como a busca de uma solução para um problema a partir de entradas e saídas

- Computadores podem ser úteis em problemas que envolvem:
 - Grande número de dados.
 - □ Grande número de cálculos.
 - □ Complexidade.
 - □ Precisão.

Pré-história

20.000 a.C.

Osso de Ishango

3.000 a.C.

Ábaco

1832

Máquina Analítica

1945

ENIAC

1980's

PC

Arquitetura básica

- Componentes básicos do computador
 - HARDWARE:
 - □ Toda parte física do computador
 - SOFTWARE:
 - Constituído pelos programas que permitem atender às necessidades do usuário

Arquitetura básica

Hardware

- Componentes eletrônicos
 - □ Processador, memória.
 - Placas controladoras (placa-mãe, placas de: vídeo, áudio, rede, fax-modem, etc.)
 - □ Dispositivos de armazenamento (disquete, HD, DVD-RW, pen drive, etc.)
- Periféricos
 - □ Entrada: teclado, mouse.
 - Saída: monitor, impressora.
- Software
 - Sistema operacional
 - □ Windows, UNIX, Linux.
 - Aplicativos
 - □ Processadores de texto, navegadores, jogos.

Sistema Operacional (SO)

O Sistema Operacional (SO) é um programa que controla a execução de programas aplicativos e age como uma interface entre o usuário e o hardware do computador

Arquitetura de Von Neumann

Se caracteriza pela possibilidade de uma máquina digital armazenar seus programas no mesmo espaço de memória que os dados, podendo assim manipular tais programas.

Arquitetura Geral de um Computador

Processador (CPU)

- Na CPU são executadas as instruções
 - Instrução: comando que define integralmente uma operação a ser executada
- Programa:
 - □ instruções ordenadas logicamente.

Processador (CPU)

Frequência de Operação

Relacionada com a velocidade de execução das operações

>	modelo	ano	freqüência (MHz)	barramento (bits)	transistores
	4004	1971	0,74	4	2.250
	6800	1975	1,0	8	6.800
	8080	1975	2-3	8	4.500
	8086	1978	5-12	16	29.000
	80286	1982	8-25	16	134.000
	80486DX	1990	33-50	32	1.200.000
	Pentium	1993	60-100	32	3.100.000
	Pentium II	1997	233-333	32	7.500.000
	Pentium III	2000	550-1000	32	28.000.000
	Pentium 4	2001	1400-2800	32	42.000.000
	Pentium 4 HT	2003	3000	32	55.000.000
	Core 2 Duo	2006	2800	64	291.000.000

Processador (CPU)

A geração atual de sistemas computacionais é marcada por várias evoluções que ocorrem cada vez de maneira mais rápida.

Processador	Ano de Lançamento	Qtd. De Transistores
Pentium III	1999	9.500.000
Pentium IV	2000	42.000.000
Família Core	2006	291.000.000 (Core 2 Duo)
Família Core i	2009	1.400.000.000 (Core i7)

Geração atual

A geração atual de sistemas computacionais é marcada por várias evoluções que ocorrem cada vez de maneira mais rápida.

Processador	Ano de Lançamento	Qtd. De Transistores
Pentium III	1999	9.500.000
Pentium IV	2000	42.000.000
Família Core	2006	291.000.000 (Core 2 Duo)
Família Core i	2009	1.400.000.000 (Core i7)

Intel® Hyper-Threading Technology:http://goo.gl/GisBZv

Memória

Função

- Armazenar dados em processamento.
- Armazenar a sequência lógica de passos a ser executada para processar os dados (programa)

A memória é dividida em camadas

- Memória auxiliar
- Memória principal
- Memória cache

Memória

o Memória cache

- armazenamento temporário de dados e instruções em processamento.
- localizada dentro do processador (muito rápida.)
- pequena (muito cara.)

Memória principal (RAM)

- armazenamento temporário de programas em execução.
- mais lenta que a memória cache.
- grande quantidade (mais barata.)

- armazenamento permanente de programas e dados.
- mais lenta que a memória principal.
- maior quantidade (bem mais barata.)

Tamanho da memória

Unidades de medida

- Kbyte = 1024 bytes
- ► Kilobyte (Kbyte ou KB) ~= 10³ bytes
- Megabyte (Mbyte ou MB) ~= 106 bytes
- Gigabyte (Gbyte ou GB) ~= 109 bytes
- ► Terabyte (Tbyte ou TB) ~= 10¹² bytes Quantidade medida em bytes (B).

BIOS

- Basic Input/Output System (Sistema Básico de Entrada/Saída)
- Gravado em memória permanente (firmware)
- Responsável pelo suporte básico de acesso ao hardware, e início do sistema operacional.

Nova BIOS: UEFI (Unified Extensible Firmware

Interface)

Execução de um programa

Dados adicionais podem ser fornecidos pelo usuário.

1. Os programas são carregados para a memória principal.

2. O processador acessa as informações contidas na memória.

 O resultado do processamento é gravado em disco rígido.

 O resultado do processamento é exibido no monitor.

Linguagem de máquina

Um processador apenas executa instruções escritas em linguagem de máquina (dígitos binários).

Cada instrução é composta de duas partes:

comando	operando
1000	11101001

A linguagem de máquina é a mais rápida, pois as instruções são enviadas como impulsos elétricos diretamente aos dispositivos.

Linguagens de baixo nível

São linguagens de programação que utilizam palavras ou abreviações simples para definir as instruções para o processador.

comando	operando	significado	
LD	A	load A	
MPY	5	multiply by 5	
STO	В	store in B	

Antes de serem executadas, as instruções são traduzidas para a linguagem de máquina.

Linguagens de alto nível

São linguagens de programação que permitem escrever programas usando um vocabulário semelhante à maneira natural de se expressar o problema que se deseja resolver.

read(A);
$$B = A + 5$$
;

A escolha da linguagem depende do propósito:

- Científicas: FORTRAN, Pascal, C/C++.
- Comerciais: Cobol, RPG, PL-I.
- Internet: Delphi, Java, Python.

Referências Online:

- Notas de aula do Prof. Filipe Damasceno
- Google.com
- Tecmundo: http://www.tecmundo.com.br/

FIM