Object Classification using Convolutional Neural Network(CNN) for Advanced Driver Assistance Systems (ADAS).

Sai Sravan Manne EDM13B018

Guided by:

Dr. Binsu J Kailath

Points discussed in previous review:

- What is ADAS?
- Which one is better, camera or LIDAR (Light Detection and Ranging)?
- Why CNN?
- Architecture of CNN?

Today's Discussion:

- Performance issues associated with applying still image object detection CNN's on videos.
- Execution time analysis of Alexnet and VGG Net, and how to reduce it?
- Problem with current method being used for object detection and classification from videos.
- Proposed solution for optimizing the execution time.
- Future work.

Performance issues associated with applying still image object detection CNN's on videos:

Variable Confidence Level

Performance issues associated with applying still image object detection CNN's on videos:

False Positives

Red Panda

Red Panda

Red Panda

Turtle

Turtle

Execution time analysis of Alexnet and VGG Net:

Implemented on a 2GB GPU(Graphics Processing Unit)

Profile Summary Generated 04-Oct-2016 08:59:41 using cpu time.							
Function Name	<u>Calls</u>	Total Time	Self Time*	Total Time Plot (dark band = self time)			
matconv	1	2.023 s	1.582 s				
<u>run</u>	1	0.282 s	0.005 s				
vl_setupnn	1	0.272 s	0.002 s				
<u>addpath</u>	5	0.262 s	0.007 s				
<u>path</u>	5	0.254 s	0.203 s				
vl_simplenn	1	0.069 s	0.009 s	I			
general\private\parsedirs	10	0.051 s	0.050 s	I			
graphics\private\clo	2	0.040 s	0.005 s	I			
vl_nnconv (MEX-file)	8	0.039 s	0.039 s	1			

Execution time for Alexnet for a 384*512*3 image

Execution time analysis of Alexnet and VGG Net:

Implemented on a 2GB GPU(Graphics Processing Unit)

Profile Summary Generated 04-Oct-2016 08:24:33 using cpu time.							
Function Name	<u>Calls</u>	<u>Total Time</u>	Self Time*	Total Time Plot (dark band = self time)			
matconv	1	1.936 s	1.477 s				
<u>run</u>	1	0.289 s	0.010 s				
<u>vl_setupnn</u>	1	0.279 s	0.000 s				
<u>addpath</u>	5	0.279 s	0.010 s				
path	5	0.269 s	0.209 s				
<u>vl_simplenn</u>	1	0.070 s	0.000 s	1			
general\private\parsedirs	10	0.060 s	0.060 s	I			
graphics\private\clo	2	0.060 s	0.000 s	I			
setdiff	3	0.060 s	0.020 s	I			
setdiff>setdifflegacy	3	0.040 s	0.010 s	I			
<u>vl_nnconv</u> (MEX-file)	8	0.040 s	0.040 s	I			

Execution time for VGG Net for a 384*512*3 image

How to reduce the execution time period?

- Using a powerful GPU(Graphics Processing Unit), but cost of a 2GB GPU is Rs 6,000 ~ 10,000.
- In-order to completely avoid or predict accidents, required FPS (frames per second) execution is 60~100, so each image needs to classified within 0.01~0.016th second.
- FPS of human eye is 24~40.

Current method being used for object detection and classification from videos:

Proposed Solution:

- Velocity vector calculation for individual pixels.
- Can it be used for object detection in non-stationary environmental conditions?

Result:

Advantages and Disadvantages:

Work to be done

- 1. The above mentioned method needs to be thoroughly tested to check its reliability.
- 2. Design, development and training of a new CNN for Indian road conditions, with incorporation of recent advancements in cost and back propagation algorithms, and also it can be applied to videos.
- 3. Path estimation for detected vehicles.

References

[1] Kai Kang, Hongsheng Li, Junjie Yan, Xingyu Zeng, Bin Yang, Tong Xiao, Cong Zhang, Zhe Wang, Ruohui Wang, Xiaogang Wang, and Wanli Ouyang, "T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos," published in CVPR 2016.

[2] Andrej Karpathy, George Toderici, and Sanketh Shetty, "Large-scale Video Classification with Convolutional Neural Networks," published in CVPR 2014.

[3] Sayanan Sivaraman, and Mohan Manubhai Trivedi, "Looking at Vehicles on the Road: A Survey of Vision-Based Vehicle Detection, Tracking, and Behavior Analysis," IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 4, December 2013.

Thank You