

COE/EE152: Basic Electronics

Lecture 5

Andrew Selasi Agbemenu

EE/COE 152 – A.S Agbemenu

1

Outline

- Physical Structure of BJT
- Two Diode Analogy
- Modes of Operation
- Forward Active Mode of BJTs
- BJT Configurations
- Early Effect
- Large Signal Model
- DC operating Point Determination

EE/COE 152 – A.S Agbemenu

Bipolar Junction Transistors (BJTs)

- The BJT is a nonlinear 3-terminal active device
- It can be thought of as a three layer sandwich with one type of doped semiconductor sandwiched between two oppositely doped ones
- Transistors are the basic building blocks of integrated circuits and can work as a switch on amplifier

EE/COE 152 - A.S Agbemenu

2

Physical Structure

 The BJT can either be *npn* (an n-type semiconductor is sandwiched between two p-types) or a *pnp* (a p-type semiconductor is sandwiched between two n-types)

EE/COE 152 – A.S Agbemenu

Cross Section of Integrated Circuit npn Transistor

EE/COE 152 – A.S Agbemenu

Emitter

5

Collector

Transistor Two-Diode Analogy

Emitter

Collector

c). Symbols

EE/COE 152 – A.S Agbemenu

Modes of Operation

- The BJT has two PN junctions which can either be forward biased or reverse biased
- The bias of these junctions determines the BJTs operation mode

Modes of Operation

Mode	EBJ	CBJ	Applications
Cutoff	Reverse	Reverse	Switching (Logic circuits): Assumed off and usually used for logic 'off' or '0'
Forward-Active	Forward	Reverse	Amplifier
Reverse-Active	Reverse	Forward	Not used
Saturation	Forward	Forward	Switching (Logic circuits): used for logic 'ON' or '1'

EE/COE 152 – A.S Agbemenu

7

Forward-Active Mode Operation of an NPN Transistor

- In the active region, the collector-base junction is reverse biased and the emitter-base junction is forward biased
- The emitter is heavily doped with high density of electrons
- The base is thin and lightly doped and therefore has how density of holes
- The collector is also heavily doped (lower than emitter) and large

EE/COE 152 – A.S Agbemenu

NPN BJT in Forward Active Mode

- Electrons are injected from the emitter to the base through the forward biased EBJ
- About 5% of the electrons recombine with holes in the base because it is thin and lightly doped
- The rest of the electron acts as minority charge carriers and drift through the reverse biased CBJ due to the reverse biased voltage
 V_{CB}

EE/COE 152 – A.S Agbemenu

Profile of Carrier Concentrations of NPN

 This shows the profile of carrier concentration of an NPN transistor in the forward active mode

EE/COE 152 – A.S Agbemenu

11

Terminal Currents

Collector Current (i_C) :

$$i_{C} = I_{S} e^{\frac{v_{BE}}{V_{T}}}$$

$$i_{C} = \alpha i_{E} \quad ; \quad i_{C} = \beta i_{B}$$

Base Current (i_R) :

$$i_B = \frac{i_C}{\beta} = \frac{I_S}{\beta} e^{\frac{v_{BE}}{V_T}}$$

Emitter Current (i_E) :

$$i_E = i_C + I_B$$

$$i_E = \frac{\beta + 1}{\beta} \left(I_S e^{\frac{V_{BE}}{V_T}} \right)$$

Where:

 i_C is the collector current

 i_B is the base current

 i_E is the emitter current

 β is the common emitter current gain

 α is the common base current gain

$$\alpha = \frac{\beta}{\beta + 1}$$

Notice that n = 1 and $i_{\rm C}$ is independent of $V_{\rm CB}$ Therefore collector behaves like a current source Whose magnitude is determined by $V_{\rm BE}$

EE/COE 152 - A.S Agbemenu

Active Mode Operation of a PNP Transistor

- The emitter and collector are p-type and base n-type
- Operation of the PNP transistor is similar to the that of NPN
- The Active mode equations are the same
 - $\rightarrow V_{BF}$ in NPN changes to V_{FB} in PNP

EE/COE 152 – A.S Agbemenu

13

Example

- 1. Calculate the collector and emitter currents given $\beta = 150$, $i_B = 15\mu A$
- 2. An npn transistor is biased in the forward-active mode. The base current $I_{\rm B}$ = 8.50 μ A and the emitter current $I_{\rm E}$ = 1.20 μ A. Determine β , α and $I_{\rm C}$

EE/COE 152 – A.S Agbemenu

BJT Configurations

- There are three possible ways in connecting a transistor in a circuit
 - Common Base Configuration
 - The base is common to both the input and output
 - Common Emitter Configuration
 - The emitter is common to both the input and the output
 - Common Collector Configuration
 - The collector is common to both the input and the output

EE/COE 152 – A.S Agbemenu

15

Common Emitter Configuration

Notice emitter is common to both the base and the collector

EE/COE 152 – A.S Agbemenu

Common-Base Configurtion

EE/COE 152 – A.S Agbemenu

17

I-V Characteristics of a Common-Base Circuit Configuration

Notice that $I_{\rm C}$ = $I_{\rm E}$ which makes common base nearly a constant current source

EE/COE 152 – A.S Agbemenu

I-V Characteristics of a Common-Emitter Circuit Configuration

Notice that the common-emitter characteristics, collector current varies linearly with change in collector-emitter voltage at constant base current

EE/COE 152 – A.S Agbemenu

19

Early Effect

- It is the variation in the base width due to a variation in the applied collector- base voltage discovered by James M. Early
- A narrower base decreases the chance of recombination and therefore increases the number of minority charge carriers collected by the collector

EE/COE 152 – A.S Agbemenu

Early Voltage

- When the characteristics curve is extrapolated backwards they meet at a certain negative voltage (-V_A) on the voltage axis
- V_A is the Early voltage
- Typical Values range 50V
 V_A<300V

EE/COE 152 – A.S Agbemenu

21

Output Resistance of BJG

$$\frac{1}{r_o} = \frac{\Delta v_{CE}}{\Delta v_{CE}}$$

$$r_o \approx \frac{V_A}{\Delta I_C}$$

Where I_C is the Q – point current at constant v_{BE}

EE/COE 152 – A.S Agbemenu

Comparison of BJT Configuration Modes

Characteristics	Common Base	Common Emitter	Common Collector
Input resistance (R _i)	Low	Low	High
Output resistance (R_o)	High	High	Low
Current amplification factor	$\alpha = \frac{\beta}{1+\beta}$	$\beta = \frac{\alpha}{1-\alpha}$	$\gamma = \frac{\alpha}{1-\alpha}$
Phase relationship between input and output	In phase	Out of phase	In phase
Application	High frequency applications	Audio frequency application	Impedance matching
Current gain	Less than Unity	Greater than unity	Very high
Voltage gain	High	Greater than unity	Less than unity

EE/COE 152 – A.S Agbemenu

23

BJT Large Signal Model in Active Mode

- In the active mode, the EBJ is forward and behaves like a diode in the forward biased mode.
 - A forward biased diode is placed between the base and diode terminals
- A voltage controlled current source is placed between the collector terminal and the emitter

EE/COE 152 – A.S Agbemenu

Large Signal Model in active Mode

Large-signal model for a npn transistor:

Large-signal model for a pnp transistor:

In this representation $\beta_{\scriptscriptstyle F}\,$ = β , the common emitter current gain

EE/COE 152 – A.S Agbemenu

Next Lecture

- Load Line Analysis and Operating Point Determination
- Small Signal Model
- Transistor as Amplifier
- Operational amplifiers

EE/COE 152 – A.S Agbemenu