

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра автоматизации систем вычислительных комплексов

Отчет по заданию практикума **Генетический алгоритм**

Выполнил:

Басалов Ярослав Александрович, 421 группа

Содержание

1	Введение	2
2	Исследование реализации	2

1 Введение

С помощью генетического алгоритма решить задачу:

Найти начальную конфигурацию «Game of Life» поля размером 50х50, минимизирую требуемый критерий.

Критерий: количество заполненных клеток после 100 шагов клеточного автомата (т.е. в 101-й конфигурации, в нумерации с 1).

Ограничение: конфигурация, возникающая после 100 шагов клеточного автомата, не является стационарной. То есть её потомок (результат следующего шага клеточного автомата) не совпадает с ней.

Детализация алгоритма:

- Функция выживаемости: значение оптимизируемого критерия + возможный штраф.
- Решение битовый вектор
- Размер популяции 100
- Для селекции использовался турнирный алгоритм
- Использовалось двуточечное скрещивание
- Вероятность скрещивания 0.8
- Начальная популяция: полностью случайно генерируется, вероятность того что в клетке 1 равна 0.5.
- Критерий останова: 50 итераций ГА (т.е. 50 смен популяций) подряд без улучшения значения оптимизируемого критерия на лучшем из найденных решений.
- Решения, не удовлетворяющие ограничению, штрафуются.
- Операция мутации стандартная, вероятность мутации перебирается в ходе исследования.

2 Исследование реализации

Для небольших размеров полей (не более 25x25 алгоритм получает решения с оптимизируемым критерием $\in [1,3]$. Для больших размеров полей алгоритм сойтись не всегда успевает.

Задание: необходимо исследовать зависимость характеристик работы алгоритма от интенсивности мутации, т.е. от значения P_{mut} . Начальное значение P_{mut} : $P_{mut_init} = \frac{1}{50*50} = 0.0004$, т.е. в среднем в каждом решении мутирует 1 бит.

Изменять P_{mut} в ходе исследования следует по формуле: $P_{mut}(i) = P_{mut_init} * 1.5^i, i = 0, \ldots, 9; i$ – номер серии экспериментов, т.е. нужно провести 10 серий экспериментов, каждая со своим фиксированным значением P_{mut} . Например, в серии 3 $P_{mut} = P_{mut}(3) = 0.0004 * (1.5^3) = 0.00135$.

Для каждого значения і необходимо провести серию из 10 запусков ГА с соответствующим значением $P_{mut} = P_{mut}(i)$ и определить:

- Стабильность алгоритма (разброс значений критерия на решении-результате, т.е. разность между значениями критерия на худшем и на лучшем прогоне)
- Качество работы алгоритма (значение критерия на лучшем прогоне)
- Вычислительные затраты на выполнение алгоритма (количество процессорного времени, затраченного на прогон; брать максимум по 10 прогонам)

Результаты: Стабильность

Стабильность в целом увеличивается с увеличением вероятности мутации. Оптимальными являются значения на сериях 6–8. На графике модуль разности между значениями лучшего найденного решения и худшего.

Качество

Качество с увеличением вероятности мутации в целом падает, но лучше всего показала себя вероятность мутации на сериях 4–5.

Вычислительные затраты

В целом с увеличением вероятности мутации время выполнения уменьшается, т.к. алгоритм быстрее находит оптимальное решение и количество перезапусков счетчика "не сменяемости лучшего решения"минимизируется. Больше всего время выполнения на средних значениях вероятности мутации. Лучшие значения (минимальное время работы) на сериях 1–4 или 7. Но в целом время выполнения ведёт себя не предсказуемо.

Вывод:

В целом данной задачи лучше всего показали себя вероятность мутации как в сериях $4{\text -}5$.