Analytic Geometry
- Orthonormal basis (ONB)

n라워 vector gace Voll basis (b,…b, 3 이 V에 촬액, ifizan, (b, b)=0

i=32 or (bi, 6)=1

- Orthogonal Complement

Diffe Vactor Space of Mitte UCV & Subspace Up D-Mittel UCV & Subspace it 라할때, UNU = 50 3 인 관계의 나를 Griffogenal Graphement

 U^{1} of \mathcal{E}^{1} and \mathcal{E}^{2} \mathcal{E}^{2} \mathcal{E}^{3} $\mathcal{E}^$

- Orthogonal Prosection

1) High dimensional Vector Space -> Low dimensional Feature Spaces 3/1.

2) Linear Mapping TT of 4/34 TT = TT = TT 9 Mapping

2対元のは: || エーガレ(文) || is minimal, 〈ガレ(文) - 文. b>=0

 $\Pi_{\nu}(\infty) = \lambda b \Rightarrow \Pi_{\nu}(\infty) \in U$

 $\langle x-\pi_{\nu}(ac),b\rangle = 0 \implies \langle x-\lambda b,b\rangle = 0 \implies \langle x.b\rangle - \lambda \langle b,b\rangle = 0 \Rightarrow \lambda = \frac{\langle b,x\rangle}{\|b\|^2}$

 $\frac{1}{10} (sc)_2 \wedge b = \frac{b^{\frac{1}{2}}}{||b||^2} b \implies \frac{bb^{\frac{1}{2}}}{||b||^2} \chi$

chiteloute: beojection 110(20)

general

(b, ... bm) of bel basis 2 and U3 protection 5/2 The(x) of Expired

Tu(oc) & Linear Combination)

LS B=[b, ...bn] ∈ RAXM, A=[], ..., An] T ∈ RM

⇒ minimum distance きらば 到前区 〈bi, エール(な)〉=ロ、 シキャ は (x-P))=0

 $\beta^T x = \beta^T \beta \lambda$

: Bt linearly independent (basiszet 25) => BTB > regular matrix. > N=(BTB) BTA

pseudo-inverse

(BTB)-'BT only Bit has 3 78 9 BC $\beta^{n,xm}$ has 7 BTB $\in \beta^{n,xm}$, positive define.

B is full rank.

Explainly Corthogoral Projection

3/944 $\lambda = (\beta^T \beta)^{-1} \beta^T x$,

Gram - Schmidt orthogonalization process.

- Orthogonal basis = iteratively 3/m/ 25/2 method.

Projection onto Affine space.

other vector $\hat{x} = Affine$ space L^2 projection $A^2 = Affine$ space $A^2 = Aff$

Rotation

plane ? Origin only angle Order 0.18.

order 5 vector V, W.E. p. mm 2 =4, H329 distances angle 0.5, 2.8.

rotation API/2 matrixe orthogonal 3t.

Metrix Decomposition
Veterwinat ,
- Square Matrix = real numbers mapping 47/2 = 34 3 344 det (A), /A/
1) along advans AERMA
Liby Laplace Extension 1) along advain is $det(A) = \sum_{k=1}^{n} (-1)^{k+1} a_k \cdot det(A_k)$ Ali, Ask Extension 1) Ali, Ask Extension
2) along row;
det (A) = for (-1) ktja/ det (Ask)
- Relationship with determinant, Mank, invertibility, and triangular maters.
1) det (A) = 2 a4, Az invertible 7 = 424 = 424
2) def (A)fo 2/224, 2/2(A)=n ∫
3) trangular matrix of determinate attitude is det (T)=71 Ti
- Properties.
1) det (AB)= det (A) det (B)
2) det (A)= det (AT)
3) if Ais regular, det (A-1)= Jet(A)
3) if Ais regular, det (A-1)= det (A) A) B= p-1 Ap out ARABAT similar matrix => det (B)= det (A)
5) 3 rower dumn of the title determinal that WILLY.
6) I rowly column BE THE Setaminant It of The HOLZ Crist
(f) zim on like AER man of zith, det () A) = 1 det (A)
1) Scoapping with two rows or columns & definingnt on Blocks,
·· U

Trace

- sum of diagonal of A + real number 3 mapping 471/2 1/2.

tr(A):= 2 qii

- Properties

1) to (AHB)= to (A)+ to (B)

2) to (AA) = 2to (A) 2ER

3) to (To)= n

4) to (AB)= to (BA)

Characteristic Psyromial $\lambda \in \mathbb{R}^{2} + A \in \mathbb{R}^{n \times n} \text{ of } \text{ square matrix on } \text{ efficients} \qquad \qquad \text{ (6 } \text{ fet } \text{ (A)}$ $\mathbb{R}(\lambda) := \det \left(A - \lambda I \right) \text{ of } \text{ efficients} \qquad \qquad \text{ (nn} = C_{-1})^{n-1} \text{ fr}(A)$ $= C_{0} + C_{1}\lambda + C_{2}\lambda^{2} + C_{3}\lambda^{3} + \cdots + C_{-1}\lambda^{n-1} + C_{-1})^{n}\lambda^{n}$

Elgen Value and Elgen Vector

AERINATE STATE, ZERINATOR SO 321 eigen vector Er JEAS Sign value >1

Ax = 1x = 213 allor stat.

 $(A-I\lambda)\chi=0$ of A nontrivial solution χ^2_{2} of χ^2_{2} of χ^2_{3} eigen value. $\mathcal{E}_{\gamma k}(A-I\lambda)\neq n \Leftrightarrow \mathcal{E}_{\gamma k}(A-I\lambda)=0$

Eigen Value Et Characteristic Polynomia.

1. At AER^{n Xn}, LEROIM B(L) = 201 Zupit Zun, N\u00e4 eigen value.

Eigen Space.

Af prixingly of eigen vectored set of spanished official subspace.

Eigen Spectrum.

AERNXNOOM of It eigen value of Eit.

Algebraic Multiplicity.);
- characteristic polynomial = 230M); 7293 4244 39 34.

Geometric Multiplicity.

- Characteristic polynomiala 230/11 1; et 2625 linearly independent eigen vectorel 4.

(3) 1; es eigen spaceel dimension.