IMPLICAÇÃO E EQUIVALÊNCIA LÓGICA

Já sabemos avaliar os valores lógicos de uma proposição composta e julgar se ela é uma tautologia, contradição ou contingência. Mas será que dada uma proposição composta conseguimos deduzir alguma coisa a respeito de outra proposição composta?

Fala Professor

5.1 Implicação Lógica

Diz-se que uma proposição P(p,q,r,...) implica logicamente ou apenas implica uma proposição Q(p,q,r,...), se Q(p,q,r,...) é verdadeira (V) todas as vezes que P(p,q,r,...) é verdadeira (V).

Conceitos

Em outras palavras, uma proposição P(p,q,r,...) implica logicamente uma proposição Q(p,q,r,...), todas as vezes que nas respectivas tabelas-verdade dessas duas proposições não aparecer V na última coluna de P e P na última coluna de P e P na mesma linha, ou seja, não ocorre P e P com valores lógicos simultâneos P e P (ALENCAR FILHO, 2003).

Representação: $P(p,q,r,...) \Rightarrow Q(p,q,r,...)$

Em particular, toda proposição implica uma tautologia e somente uma contradição implica uma contradição.

5.2 Propriedades da Implicação Lógica

A relação de implicação lógica entre proposições possui as propriedades reflexiva (R) e transitiva (T), isto é, simbolicamente.

(R)
$$P(p,q,r,...) => P(p,q,r,...)$$

(T) Se
$$P(p,q,r,...) => Q(p,q,r,...)$$
 e $Q(p,q,r,...) => R(p,q,r,...)$, então $P(p,q,r,...) => R(p,q,r,...)$

Exemplos:

(1) Considere a tabela-verdade para as proposições (p \land q), (p \lor q) e (p \longleftrightarrow q)

p	q	$p \wedge q$	$p \vee q$	$p \leftrightarrow q$
V	V	V	V	V
V	F	F	V	F
F	V	F	V	F
F	F	F	F	V

Vamos observar (p \land q). Esta proposição é verdadeira apenas na 1ª linha. Nesta mesma linha, p, q, (p \lor q) e (p \hookleftarrow q) são também verdadeiras. Quer dizer, (p \land q) implica logicamente em p, por exemplo. Assim, podemos escrever: (p \land q) \Longrightarrow p.

Observe que p \wedge q implica logicamente todas as outras proposições da tabela-verdade. As mesmas tabelas-verdade demonstram importantes regras de inferência:

$$p \Rightarrow p \lor q$$
 e $q \Rightarrow p \lor q$ (Adição)

$$p \land q \Longrightarrow p$$
 e $p \land q \Longrightarrow q$ (Simplificação)

Prove por tabela-verdade que: a) $p \leftrightarrow q \Rightarrow p \rightarrow q$

b)
$$p \leftrightarrow q \Rightarrow q \rightarrow p$$

(2) Seja a tabela-verdade da proposição (p \vee q) \wedge ~p:

p	q	$p \lor q$	~p	$(p \lor q) \land \sim p$
V	V	V	F	F
V	F	V	F	F
F	V	V	V	V
F	F	F	V	F

Ela é verdadeira apenas na linha 3, em que q também é verdadeira. Logo existe a seguinte implicação lógica:

$$(p \lor q) \land \sim p \Longrightarrow q$$
 e $(p \lor q) \land \sim q \Longrightarrow p$ (Regra do Silogismo Disjuntivo)

(3) Seja a tabela-verdade da proposição ($\mathbf{p} \rightarrow \mathbf{q}$) \wedge \mathbf{p} :

p	q	$p \rightarrow q$	$(p \rightarrow q) \land p$
V	V	V	V
V	F	F	F
F	V	V	F
F	F	V	F

Ela é verdadeira apenas na linha 1, em que \mathbf{q} também é verdadeira. Logo existe a seguinte implicação lógica:

$$(p \rightarrow q) \land p \Longrightarrow q$$
 (Regra Modus Ponens)

(4) Sejam as tabelas-verdade das proposições ($\mathbf{p} \rightarrow \mathbf{q}$) $\wedge \sim \mathbf{q} \ \mathbf{e} \sim \mathbf{p}$:

p	q	$p \rightarrow q$	~q	$(p \rightarrow q) \land \sim q$	~p
V	V	V	F	F	F
V	F	F	V	F	F
F	V	V	F	F	V
F	F	V	V	V	V

Ela é verdadeira apenas na linha 4, em que ~**p** também é verdadeira. Logo existe a seguinte implicação lógica:

$$(p \longrightarrow q) \land \neg q \Longrightarrow \neg p$$
 (Regra Modus tollens)

5.3 Tautologias e Implicação Lógica

Teorema: Dizemos que a proposição P(p, q, r, ...) **implica** a proposição Q(p, q, r, ...), ou seja P(p, q, r, ...) \Rightarrow Q(p, q, r, ...), se e somente se a condicional P(p, q, r, ...) \rightarrow Q(p, q, r, ...) é tautológica.

Portanto, a toda implicação lógica corresponde uma condicional tautológica e vice-versa. Isso acontece porque, como $P \Rightarrow Q$, não ocorre situação onde P é verdadeiro e Q é falso. Desse modo, $P \rightarrow Q$ nunca será falso.

Observe que os símbolos → e => são diferentes. O primeiro é de operação lógica e o segundo é de relação.

Exemplo:

A proposição ($\mathbf{p} \leftrightarrow \mathbf{q}$) ^ \mathbf{p} implica a proposição \mathbf{q} , pois a condicional ($\mathbf{p} \leftrightarrow \mathbf{q}$) ^ $\mathbf{p} \rightarrow \mathbf{q}$ é tautológica.

p	q	$p \leftrightarrow q$	$(p \Leftrightarrow q) \land p$	$(p \leftrightarrow q) \land p \rightarrow q$
V	V	V	V	V
V	F	F	F	V
F	V	F	F	V
F	F	V	F	V

Ou seja: $(p \leftrightarrow q) \land p \Rightarrow q$.

Prove que $(p\rightarrow q) \land (q\rightarrow r) \Rightarrow (p\rightarrow r)$ (Regra do Silogismo hipotético).

Princípio da inconsistência: de uma contradição se deduz qualquer proposição. Ex.: p∧~p⇒q.

Atividades

ATIVIDADE 6 - Para exercitar, vamos realizar algumas das atividades propostas por (PINHO, 1999, p. 53):

- 1. Utilizando tabelas-verdade, verifique se existem as relações de implicação lógica seguintes:
- (a) $p \land q \Longrightarrow q \land p$
- (b) \sim (p \wedge q) \Longrightarrow \sim p \vee \sim q
- (c) $p \rightarrow q \land r \rightarrow \sim q \Longrightarrow r \rightarrow \sim p$
- $(d) \sim p \land (\sim q \rightarrow p) \Longrightarrow \sim (p \land \sim q)$
- 2. Mostrar que:
- (a) $q \Rightarrow p \rightarrow q$
- (b) $q \Longrightarrow p \land q \longleftrightarrow p$
- 3. Mostrar que $\mathbf{p} \leftrightarrow \sim \mathbf{q}$ não implica $\mathbf{p} \rightarrow \mathbf{q}$.
- 4. Mostrar $(x \neq 0 \rightarrow x = y) \land x \neq y \Longrightarrow x = 0$.

5.4 EQUIVALÊNCIA LÓGICA

Conceitos

Uma proposição P(p,q,r...) é logicamente equivalente a uma proposição Q(p,q,r...), se as tabelas-verdade destas duas proposições são idênticas.

Em particular, se as proposições P e Q são ambas tautológicas ou são ambas contradições, então são equivalentes.

5.5 Propriedades da Equivalência Lógica

Vamos relacionar algumas propriedades:

- Reflexiva (a proposição é equivalente a ela mesma): P(p,q,r..)
 ⇒ P(p,q,r..)
- **Simétrica** (se uma proposição equivale a uma outra, esta outra equivale à primeira):

Se
$$P(p,q,r..) \Leftrightarrow Q(p,q,r..)$$
 então $Q(p,q,r..) \Leftrightarrow P(p,q,r..)$

• Transitiva (se uma proposição equivale a uma segunda, e a segunda proposição é equivalente à uma terceira, a primeira equivale à terceira):

Se
$$P(p,q,r..) \Leftrightarrow R(p,q,r..)$$
 e $R(p,q,r..) \Leftrightarrow Q(p,q,r..)$ então $P(p,q,r..) \Leftrightarrow Q(p,q,r..)$

5.6 Exemplos

(1) Regra da dupla negação

As proposições $\sim p e p$ são equivalentes, ou seja, $\sim p \Leftrightarrow p$:

p	~p	~~p
V	F	V
F	V	F

(2) Regra de CLAVIUS

As proposições $\sim p \rightarrow p$ e p são equivalentes, ou seja, $\sim p \rightarrow p \Leftrightarrow p$:

p	~p	$\sim p \rightarrow p$
V	F	V
F	V	F

(3) Regra de absorção

As proposições $\mathbf{p} \rightarrow \mathbf{p} \wedge \mathbf{q}$ e $\mathbf{p} \rightarrow \mathbf{q}$ são equivalentes:

p	q	$p \wedge q$	$p \rightarrow p \land q$	$p \rightarrow q$
V	V	V	V	V
V	F	F	F	F
F	V	F	V	V
F	F	F	V	V

A condicional p→q e a disjunção ~pvq são equivalentes. Prove através da tabela-verdade.

A bicondicional $p \leftrightarrow q$ e a conjunção $(p \rightarrow q) \wedge (q \rightarrow p)$ também são equivalentes. Prove através da tabela-verdade.

5.7 Tautologias e Equivalência Lógica

Teorema: Dizemos que a proposição P(p, q, r, ...) é equivalente a proposição Q(p, q, r, ...), ou seja P(p, q, r, ...) \Leftrightarrow Q(p, q, r, ...), se e somente se a bicondicional P(p,q,r,...) \Leftrightarrow Q(p, q, r, ...) é tautológica (ALENCAR FILHO, 2003).

Portanto, toda equivalência lógica corresponde a uma bicondicional tautológica e vice-versa. Isso acontece, porque, se duas proposições $P \Leftrightarrow Q$, então não ocorre o caso em que $P \in Q$ apresentam valores lógicos diferentes. Desse modo $P \Leftrightarrow Q$ é uma tautologia.

Atenção

Observe que os símbolos ↔ e ⇔ são diferentes. O primeiro é de operação lógica e o segundo é de relação.

Exemplo:

A bicondicional $(p \land \neg q \rightarrow c) \leftrightarrow (p \rightarrow q)$, onde <u>c é uma proposição</u> <u>com valor lógico F</u>, é tautológica, pois a última coluna da tabela-verdade tem apenas a letra V. Portanto, as proposições $p \land \neg q \rightarrow c e p \rightarrow q$ são equivalentes, ou seja, $(p \land \neg q \rightarrow c) \Longleftrightarrow (p \rightarrow q)$.

Nesta equivalência consiste o método de demonstração por absurdo.

ATIVIDADE 7:

Atividades

Prove que a bicondicional $(p \land q \rightarrow r) \leftrightarrow (p \rightarrow (q \rightarrow r))$ é tautológica. Esta equivalência lógica é denominada Regra de Exportação-Importação.

5.8 Proposições Associadas a uma Condicional

Dada a condicional $\mathbf{p} \rightarrow \mathbf{q}$, temos as seguintes proposições associadas:

- Proposição recíproca de p \rightarrow q: q \rightarrow p
- Proposição contrária de p → q: ~p → ~q
- Proposição contrapositiva de p → q: ~q → ~p

ATIVIDADE 8:

(ii) a recíproca e a contrária da condicional são equivalentes: q→p ⇔ ~p→~q.

Observe também que a condicional e sua recíproca ou sua contrária não são equivalentes.

A contrapositiva da condicional é contrária à recíproca da condiconal.

5.9 Negação Conjunta de Duas Proposições

Negação conjunta – de duas proposições \mathbf{p} e \mathbf{q} é a proposição não \mathbf{p} e não \mathbf{q} , ou seja, $\sim \mathbf{p} \wedge \sim \mathbf{q}$. Também indicada pela notação: $\mathbf{p} \downarrow \mathbf{q}$.

Conceitos

Atividades

Portanto temos: $\mathbf{p} \downarrow \mathbf{q} \Leftrightarrow \mathbf{p} \land \mathbf{q}$

ATIVIDADE 9:

1. Construa a tabela-verdade da proposição anterior.

Atividades

5.10 Negação Disjunta de Duas Proposições

Conceitos

Negação disjunta – de duas proposições p e q é a proposição não p ou não q, ou seja, $\sim p \vee \sim q$. Também indicada pela notação: $p \uparrow q$.

Portanto temos: $\mathbf{p} \uparrow \mathbf{q} \Leftrightarrow \sim \mathbf{p} \vee \sim \mathbf{q}$

Os conectivos ↓ e ↑ são chamados conectivos de SCHEFFER.

Atividades

ATIVIDADE 10 - Para exercitar, vamos realizar algumas das atividades propostas por (PINHO, 1999, p. 63):

- 1. Construa a tabela-verdade da proposição acima.
- 2. Mostrar que as proposições \mathbf{p} e \mathbf{q} são equivalentes ($\mathbf{p} \Leftrightarrow \mathbf{q}$) nos seguintes casos:

(a) p:
$$1 + 3 = 4$$
;

$$q: (1+3)^2 = 16$$

(b) p:
$$sen^0 = 1$$
;

$$q: \cos^0 = 0$$

q:
$$x + 1$$
 é impar ($x \in \mathbb{Z}$)

- 3. Exprimir a bicondicional p \leftrightarrow q em função dos conectivos: \wedge , \vee e \sim .
- **4.** Demonstrar, por tabelas-verdade, as seguinte equivalências:

(a)
$$p \land (p \lor q) \Leftrightarrow p$$

(b)
$$(p \rightarrow q) \lor (p \rightarrow r) \Leftrightarrow p \rightarrow q \lor r$$

5. Demonstrar através de tabelas-verdade, que os ____ conectivos ∨ e ~ exprimem-se em função do conectivo ↑, do seguinte modo:

(a)
$$\sim p \Leftrightarrow p \uparrow p$$

(b)
$$p \lor q \Leftrightarrow (p \uparrow p) \uparrow (q \uparrow q)$$

6. Sabendo que o valor lógico das proposições **q** e **p** são verdadeiras e de r é falsa, determine o valor lógico das seguintes proposições:

(a)
$$((p \uparrow q) \land (q \uparrow \sim r)$$

(a)
$$((p \uparrow q) \land (q \uparrow \neg r)$$
 (b) $(\neg p \uparrow \neg q) \longleftrightarrow ((q \downarrow r) \downarrow p)$

Indicações

Para maior compreensão, ler os capítulos 5 - Implicação Lógica e 6 - Equivalência Lógica do livro Alencar Filho, Edgard de. Iniciação à lógica matemática. São Paulo: Nobel, 2003.