Center for micromorphic multiphysics porous and particulate materials simulations within exascale computing workflows Multi-disciplinary Simulation Center (MSC)

Ratel Implicit MPM Update

Jeremy L Thompson, Ratel Team

4 Oct 2024

Boulder, CO

Start of Timestep $t_n + \Delta t$

Material Point Data:

- Previous converged deformation gradient F_n^n
- Previous converged position x_p^n
- Previous converged displacement $oldsymbol{u}_p^n$
- Material properties, e.g., bulk and shear moduli K, μ
- Initial density ρ_0

Mesh Data:

Nothing, in initial configuration

Diagram from I. Iaconeta, A. Larese, R. Rossi, and Z. Guo, "Comparison of a Material Point Method and a Galerkin Meshfree Method for the Simulation of Cohesive-Frictional Materials," *Materials*, vol. 10, no. 10, Art. no. 10, Oct. 2017, doi: 10.3390/ma10101150.

Goal: Compute u such that

(Not currently considered)

$$\int_{\Omega_0} \nabla_{\boldsymbol{X}} \boldsymbol{v} : \boldsymbol{P}(\boldsymbol{u}) \, dV - \int_{\Omega_0} \boldsymbol{v} \cdot \rho_0 \boldsymbol{g} \, dV - \int_{\partial \Omega_0} \boldsymbol{v} \cdot \boldsymbol{t} \, dS = 0$$

Note: *X* is the initial configuration coordinates – these are lost at material points as they move through the domain.

Instead, find Δu such that

$$\int_{\Omega_n} \nabla_{\widetilde{X}} \boldsymbol{v} : \underbrace{\left(\frac{1}{J_n} \boldsymbol{\tau}(\Delta \boldsymbol{u}) \cdot \Delta \boldsymbol{F}^{-T}\right)}_{\widetilde{\boldsymbol{P}}(\Delta \boldsymbol{u})} dV - \int_{\Omega_n} \boldsymbol{v} \cdot \underbrace{\left(\frac{\rho_0}{J_n} \Delta \boldsymbol{g}\right)}_{\rho(\boldsymbol{x}_n, t) \Delta \boldsymbol{g}} = 0$$

Diagram from I. Iaconeta, A. Larese, R. Rossi, and Z. Guo, "Comparison of a Material Point Method and a Galerkin Meshfree Method for the Simulation of Cohesive-Frictional Materials," *Materials*, vol. 10, no. 10, Art. no. 10, Oct. 2017, doi: 10.3390/ma10101150.

UPDATE MATERIAL POINTS POSITION UNDEFORMED GRID RECOVERED UPDATE LIST OF MATERIAL POINTS WITHIN ELEMENT I,J,K

Force and Stiffness at Material Points

For each node i, compute force contributions via the sum over each material point p in its support:

$$f_i^{int} = \sum_p V_p^n \nabla N_i(x_p^n) : \widetilde{P}(\Delta u_p)$$

$$\boldsymbol{f}_{i}^{ext} = \sum_{p} V_{p}^{n} \boldsymbol{N}_{i} (\boldsymbol{x}_{p}^{n}) \frac{\rho_{p}^{0}}{J_{p}^{n}} \cdot \Delta \boldsymbol{g}$$

Process is similar for stiffness matrix.

Reassemble at each Newton iteration to compute $\Delta u_i^{(k)}$, which is temporarily interpolated back to points for the above computation as

$$\Delta \boldsymbol{u}_p^{(k)} = \sum_{i} \boldsymbol{N}_i (\boldsymbol{x}_p^n) \Delta \boldsymbol{u}_i^{(k)}$$

Diagram from I. Iaconeta, A. Larese, R. Rossi, and Z. Guo, "Comparison of a Material Point Method and a Galerkin Meshfree Method for the Simulation of Cohesive-Frictional Materials," *Materials*, vol. 10, no. 10, Art. no. 10, Oct. 2017, doi: 10.3390/ma10101150.

Moving the Material points

Interpolate the final nodal displacement increment to material points:

$$\Delta \boldsymbol{u}_p^* = \sum_{i} \boldsymbol{N}_i(\boldsymbol{x}_p^n) \Delta \boldsymbol{u}_i^*$$

Update position and state data at material points as

$$\mathbf{x}_{p}^{n+1} = \mathbf{x}_{p}^{n} + \Delta \mathbf{u}_{p}^{*}$$

$$\mathbf{u}_{p}^{n+1} = \mathbf{u}_{p}^{n} + \Delta \mathbf{u}_{p}^{*}$$

$$V_{p}^{n+1} = \det(\Delta F_{p}^{*}) V_{p}^{n}$$

$$\mathbf{F}_{p}^{n+1} = \Delta \mathbf{F}_{p}^{*} \cdot \mathbf{F}_{p}^{n},$$

where
$$\Delta F_p^* = I + \nabla_{\widetilde{X}}(\Delta u_p^*)$$
.

Background grid is reset, and operators are rebuilt for the next timestep.

Diagram from I. Iaconeta, A. Larese, R. Rossi, and Z. Guo, "Comparison of a Material Point Method and a Galerkin Meshfree Method for the Simulation of Cohesive-Frictional Materials," *Materials*, vol. 10, no. 10, Art. no. 10, Oct. 2017, doi: 10.3390/ma10101150.

Where we were: Spring 2024 TST

- libCEED infrastructure
 - Operator evaluation at arbitrary points
 - Projection (lumped and consistent) from point to FEM fields
 - CPU diagonal assembly
- PETSc: DMSwarm for material point management
- Ratel: Initial MPM implementation

Consistent

Lumped

libCEED + Ratel

- Operators defined at points, with mixed FEM/point input/output
- Diagonal assembly of points operators for preconditioning
- Porting to GPU complete
- Bake-off Problems (BPs) implemented and verified for points operators:
 - Scalar and vector projection, Laplace, and collocated Laplace problems
- Linear and mixed linear elasticity implemented and verified
- Neo-Hookean elasticity implemented

Big Picture

MPM material modeling is being abstracted to the same interfaces as FEM operations in Ratel

Ratel iMPM

- Support for iMPM in Ratel improving
 - Drop-in replacement for standard FEM operators
 - Verified with BPs and static elasticity (linear and mixed linear) MMS
 - BPs include scalar and vector projection and Laplace problems
 - Quasistatic examples for linear and Neo-Hookean elasticity
 - Existing materials relatively easy to translate to iMPM now
 - Linear and Neo-Hookean damage in iMPM on the horizon
 - Performance optimization ongoing

Verification via Method of Manufactured Solutions: Linear Elasticity

Consider the prescribed displacement field

$$u_i = (i+1)A_0 \sin\left(2\pi x_0 - \frac{\pi}{2}\right) \sin\left(2\pi x_1 - \frac{\pi}{2}\right) \sin\left(2\pi x_2 - \frac{\pi}{2}\right), \qquad i = 0,1,2$$

· Generate a body forcing term which yields this displacement field as

$$\phi = -\nabla_X \cdot \sigma(u) = -\nabla_X \cdot [2\mu\epsilon + \lambda \text{tr}(\epsilon)\mathbf{I}], \qquad \epsilon = \frac{1}{2}(\mathbf{F} + \mathbf{F}^T) - \mathbf{I}$$

Ratel iMPM

- Quasistatic Implicit complete
 - Point migration and projections all working
 - Newton linearization implemented
 - Jacobi preconditioner working
- Non-homogeneous material support
 - Support for material properties defined at points (e.g. λ, μ for Neo-Hookean)
 - Potentially, projecting material properties to the mesh will work better

Code-to-code Sinker Verification problem

- Dense, stiff cube inside less dense, soft cube; both nearly incompressible
 - "Sinker": $E = 190 \; GPa$, $\nu = 0.49$, $\rho = 8050 \, {}^{kg}/{}_{m^3}$, side length 0.2 m
 - "Foam": $E = 5 \, GPa$, $\nu = 0.49$, $\rho = 15^{kg}/m^3$, side length $1 \, m$
- Gravity-like body force with acceleration vector $g = -60\hat{k}^{m}/_{S^2}$ over 20 timesteps
- Homogenous zero Dirichlet BCs on all sides
- Refinement study over 5³, 10³, and 15³ element regular hex mesh, order 2

$$f_p^{ext} = V_p^n \rho_p \cdot \boldsymbol{g}, \qquad (MPM)$$

$$f_i^{ext} = \int_{e_i} \boldsymbol{v} \cdot (\rho_i \boldsymbol{g}) \, dV, \qquad (FEM)$$

Code-to-code Sinker Verification problem

Code-to-code Sinker Verification QOIs: Force-Displacement

- Refinement over 5^3 , 10^3 , and 15^3 element regular hex mesh, order 2
- Consistent projection shown, no substantial difference from lumped

Development Progress

libCEED

- GPU support
 - Operator at points
 - Diagonal assembly at points
 - Fused operator kernels (ToDo)

Ratel

- Materials
 - Linear, mixed linear, and Neo-Hookean added
 - Finite strain damage model added and iMPM version is in progress
 - Linear poroelasticity added and finite strain case is in progress
- Optimizations
 - Project material coefficients to FEM nodes, then use Gauss quadrature
 - Total memory usage improvements ongoing

